Antimicrobial Resistance in Escherichia coli Isolates from Healthy Poultry, Bovine and Ovine in Tunisia: A Real Animal and Human Health Threat

Mohamed Salah Abbassi1*, Hajer Kilani1, Mohamed Zouari3, Riadh Manssouri1, Oussama El Fekih1, Salah Hammami1 and Noureddine Ben Chehida1

1Institute of Veterinary research of Tunisia, Bab Saadoun, 1006 Tunis, Tunisia
2University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES09 Laboratory of Antimicrobial Resistance, Tunis, Tunisia
3Office des Terres Domaniales de Mateur, Tunisia

Introduction

Multi-drug-resistant bacteria have emerged as a major concern for human and veterinary medicine. To fight against this worrisome problem, reliable data on the rates of antimicrobial resistance in bacteria isolated from both human and animal are required. Therefore, it is necessary to develop monitoring programs to survey for the objective the extent of antimicrobial resistance [1,2]. Continued surveillance of the antimicrobial susceptibility profiles of foodborne pathogens, including Escherichia coli, has been strongly recommended to identify emerging antimicrobial–resistant phenotypes [3]. E. coli is a common component of the gut flora of food animals that can serve as an indicator for the acquisition of resistance to various antibiotics by enteric organisms [4,5]. The use of E. coli as the indicator bacteria is also appropriate because changes in the antibiotic resistance of this species may serve as an early warning of the development of resistance by related pathogenic bacteria [5]. Although, antimicrobial therapy is an available tool for treating clinical infections, antibiotic resistance in pathogenic bacteria from human, animal and environmental sources is recognized as a global problem in public health. Especially, the high degree of resistance to common antibiotics, the worldwide emergence of multidrug resistant phenotypes (MDR) and extended spectrum β-lactamases (ESBLs)–producing E.coli strains are of increasing concern [6,7]. A number of studies have reported that antimicrobial drugs commonly used for the treatment of human infections are misused in animals either for therapy or prevention, which has significant clinical implications for both human and veterinary medicine [8,9].

Resistant bacteria can compromise public and animal health and lead to severe economic losses in animal production [10,11].

Nowadays, the resistance to antimicrobial agents increased significantly for E. coli [12]. Initially, this resistance was described for certain antimicrobial agents such ampicillin, trimethoprime, sulphonamides and tetracycline [13]. However, since many years, large phenotypes of resistance have been observed such as resistance to all β-lactams, aminosides, and quinolones.

Many studies on antimicrobial resistance in E. coli strains isolated from human origins in Tunisia have been published. In addition, same studies have been published, where genetic characterization of ESBL–producing E. coli isolates from animal origins and from food products of animal of origin. However,
little is known about the antibiotic resistance in commensal *E. coli* from livestock. Indeed, it is very important to know the actual epidemiology of antibiotic susceptibility of *E. coli* from livestock in order to establish a guide for Tunisian veterinarians for the reasonable use of antibiotic in husbandry. For these reasons, we carried out this study to investigate antimicrobial resistance in *E. coli* isolates from healthy poultry, bovine and ovine during a period of 4 years and 6 months (June 2009 to December 2013).

Materials and Methods

Bacterial isolates and epidemiological background

Two hundred feces samples from various healthy animal species (bovine (n=50), ovine (50) and poultry (100)). Samples were collected from several regions in Tunisia (Sillana, Kef, Sidi Bouzid, Beja, Nabeul, Bousalem, Mateur, and Sousse) between June 2009–December 2013. Five grams of feces were incubated in Brain Heart Infusion (BHI, Becton-Dickinson) for 1 h at 37°C and then subcultured on Mac Conkey Agar (MSA, Becton-Dickinson) for 18–24h [14]. One colony from each positive sample with typical *E. coli* morphology was picked up randomly for further identification. Then, isolates were identified by classical bacteriological tests (Oxydase test, catalase test, Gram staining) and Api20E (Bio-Mérieux, France).

Antimicrobial susceptibility testing

Antimicrobial susceptibility testing was carried out by the agar disk diffusion method on Mueller–Hinton Agar (Bio–Rad, France) plates according to recommendation of *Clinical and Laboratory Standards Institute* guidelines [15]. The antibiotics tested were the following: amoxicillin (25 μg), amoxicillin/clavulanic acid (20 μg + 10 μg), ticarcillin (75 μg), ticarcillin/clavulanic acid (75 μg + 10 μg), piperacillin (75 μg), cefoxitin (30 μg), ceftazidim (30 μg), cefotaxim (30 μg), imipenem (10 μg), streptomycim (10 μg), gentamicin (10 μg), kanamycin (30 μg), tobramycin (10 μg), tetracycline (30 μg), chloramphenicol (30 μg), colistin (50 μg), nalidixic acid (30 μg), ofloxacin (5 μg), ciprofloxacin (5 μg), trimethoprim/sulfamethoxazole (1,25 μg + 23,75 μg), and fosfomycin (50 μg) (Bio–Rad, France). *E. coli* ATCC 25922 was used as a control strain. The double-disc synergy test with cefotaxime or ceftazidime in the proximity to amoxicillin–clavulanic acid was used for the screening of Extended-Spectrum Beta-lactamases (ESBL) [16].

Statistical analysis

Statistical testing was performed using SPSS version 12.0. *P* < 0.05 was considered statistically significant.

Results

Identification of isolates

Amongst the 200 feces samples, 174 isolates of *E. coli* were collected. They were from: poultry (79), bovine (60) and ovine (35).

Antibiotic resistance rates

Occurrence of antibiotic resistance in the 174 *E. coli* isolates is of presents in table 1. High rates of resistance were observed for tetracycline (53.4 %), streptomycin (51.7 %), amoxicillin (40.2 %), and trimethoprin/sulfamethoxazole (39 %). Moderate rates of resistance were observed for nalidixic acid (28.7 %) and ciprofloxacin (18.4 %). However, low frequencies of resistance were observed for amoxicillin–clavulanic acid (9.8 %), gentamicin (6.3 %), cefotaxime (2.3 %) and ceftazidime (1.7 %) (Figure 1). Interestingly, only one ESBL-producing *E. coli* isolate of avian origin was detected.

Analysis of resistance profile of the 174 isolates, showed that 37 isolates (21.3 %) were susceptible to all antibiotics, 33 (19 %) were resistant to one antibiotic, 27 (15.5 %) were resistant for two antibiotics, and 77 (44.2 %) were multidrug-resistant (resistant to three or more families of antibiotics).

Rates of antibiotics resistance according to origins

For poultry isolates, the highest rates of resistance were observed for tetracycline (74.7 %), followed by streptomycin, trimetoprin/sulfametoxazole, and amoxicillin (each 57 %), nalidixic acid (54.4 %) and ciprofloxacin (34.2 %). Whereas, much lower resistances were observed for cefotaxime, gentamicin (5.1 %), and ceftazidime (3.8 %) (Table 2). For bovine isolates, streptomycin showed an important resistance...

Antibiotics	Resistant isolates, n (%)
Acide nalidixic (NA)	50 (28.5)
Ciprofloxacin (CIP)	32 (18.4)
Streptomycin (S)	90 (51.7)
Gentamicin (G)	11 (6.3)
Tetracycline (TET)	93 (53.4)
Trimethoprin/sulfamethoxazole (SXT)	68 (39)
Amoxicillin (AMX)	70 (40.2)
Amoxicillin/clavulanic acid (AMC)	17 (9.8)
Cefotaxime (CTX)	4 (2.3)
Ceftazidime (CAZ)	3 (1.7)

Figure 1: Frequencies of antibiotics resistance in 174 *E. coli* isolates. Ciprofloxacin (CIP), Streptomycin (S), Nalidixic acid (NA); Amoxicillin (AMX), Gentamicin (G); Tetracycline (TET); Trimethoprin/sulfamethoxazole (SXT); Amoxicillin-clavulanic acid (AMC), Cefotaxime (CTX), Ceftazidime (CAZ).
(65 %) followed by tetracycline (33.3 %), trimethoprim-sulfamethoxazole (30 %), and amoxicillin (28.3 %). However, for ovine isolates, we observed low resistance rates, being, limited to tetracycline (40 %) and amoxicillin (22.85 %) (Figure 2). Taken together, we observed that avian E. coli isolates were more resistant than bovine and ovine ones, especially for tetracycline, trimethoprim/sulfamethoxazole (p=10⁻⁵), amoxicillin (p=10⁻²), nalidixic acid (p=10⁻⁴) and ciprofloxacin (p=510⁻⁵).

Discussion

The aim of our study was to identify the profiles of antibiotics resistance for a collection of E. coli isolates (174) recovered from apparently healthy poultry, bovine and ovine. Our work showed high rates of resistance to tetracycline and streptomycin. Average rates of resistance were noted for amoxicillin, trimethoprim/sulfamethoxazole, nalidixic acid and ciprofloxacin. Low frequencies were observed for the resistance to amoxicillin/clavulanic-acid, gentamicin, cefotaxime and ceftazidime. A single ESBL producing strain was detected from chicken. High rates of resistance to tetracycline and streptomycin have been reported previously [17]. These antibiotics were the oldest molecules very widely used in veterinary medicine [18]. Indeed, tetracycline was usually used in the treatment of omphalites, respiratory infections, whit lows and interdigites dermatitis in ruminants as well as respiratory diseases and enteritis in poultry; it was also used as a growth promoter. Streptomycin is used for the treatment of diarrhea and streptococcal infections. These two molecules (streptomycin and tetracycline) are used very frequently and for a long time in the poultry sector. Studies made by other authors [14,19] were in agreement with our findings. Indeed, they showed a high rates of resistance to tetracycline (90.8-95.2 %), and streptomycin (46 %). High rates of antibiotic resistance in E. coli towards tetracycline were reported at most species breeding [8,20-22]. Although frequencies of streptomycin resistance vary according to countries and conditions of breeding, the reported rates were generally very high whatever the type of animal species [8,20-22].

A moderate rate of resistance was noted for trimethoprim-sulfamethoxazole (39 %), similarly to other studies from many countries (66.1-88.6 %) [23-26]. However, a very high frequency of resistance to trimethoprim -sulfamethoxazole (80 %) was reported in our previous work [27]. Trimethoprim is used in medicine against a wide specter of bacteria including E. coli and other enterobacteria. Furthermore, the combination with sulfonamides increases its efficiency. However, the use of this antimicrobial in the animal feed, as well as its use in an uncontrolled way in human medicine, during a prolonged time can entail the development and the transmission of genes encoding this resistance marker [27].

The mechanisms of resistance to beta-lactams in E. coli from animal origins is mainly encoded by extended spectrum beta-lactamases (ESBL) [28-33]. In this study, a single isolate producing ESBL from poultry origin, was identified. In Tunisia, the presence of isolates producing ESBL was reported for the first time by [34], from poultry meat, by using a selective protocol for the isolation of these isolates. However [35], did not identify ESBL-producing isolates from 164 isolates by using a non-selective protocol. [36], were the first researchers in Tunisia to report ESBL-producing E. coli from avian feces using a selective protocol. Moderate rates of resistance were observed for quinolones, nalidixic acid (28.7 %) and ciprofloxacin (18.4 %). Actually, worldwide, high rates of quinolones-resistance are increasingly reported in E. coli from animal origins.

Indeed, high rates of quinolones-resistance (18.2 % - 92.5 %) were observed worldwide [14,19,37]. For ovine isolates, the frequencies of resistance were low and almost all isolates were susceptible to the tested antibiotics, except for tetracycline (40 %) and amoxicillin (22.85 %).

Our study showed that antibiotics resistance rates in E. coli varied according to the animal species. Indeed, and for all antibiotics, except for streptomycin in bovine isolates, avian isolates were the most resistant ones, especially for tetracycline, streptomycin, trimethoprim/sulfamethoxazole, and amoxicillin. On the other hand, in cattle, the resistance rates were lower and concern only streptomycin, tetracycline and trimethoprim/sulfamethoxazole.

The results concerning the frequencies of antibiotic resistance in poultry are in agreement with other studies.

Table 2: Frequencies of antimicrobial resistance in E. coli isolates according to origins.

Antibiotics	Poultry (N=79)	Bovine (N=60)	Ovine (N=35)	Total (n)	Test χ²				
	n	%	n	%	n	%	n	%	
Ciprofloxacin	27	34.2	2	3.3	3	8.6	32	18.4	S
Nalidixic acid	43	54.4	4	6.7	3	8.6	50	28.7	S
Streptomycin	45	57	39	65	6	17.1	90	51.7	S
Gentamicin	4	5.1	5	8.3	2	5.7	11	6.3	NS
Trimethoprim/sulfameth	45	57	18	30	5	14.3	68	39	S
Tetracycline	59	74.7	20	33.3	14	40	93	53.4	S
Amoxicillin	45	57	17	28.3	8	22.8	70	40.2	S
Amoxicillin/clav acid	12	15.2	2	3.3	3	8.6	17	9.8	NS
Cefotaxime	4	5.1	0	0	0	0	4	2.3	NS
Ceftazidime	3	3.8	0	0	0	0	3	1.7	NS

Figure 2: Distribution of antibiotic resistance in E. coli isolates according to their origins. Ciprofloxacin (CIP), Streptomycin (S), Nalidixic acid (NA), Amoxicillin (AMX), Gentamicin (G), Tetracycline (TET), Amoxicillin-clavulanic acid (AMC), Trimethoprim/sulfamethoxazole (SXT), Cefotaxime (CTX), Ceftazidime (CAZ).
and Ovine in Tunisia: A Real Animal and Human Health Threat. J Clin Microbiol Biochem Technol 3(2): 019-023.

The multiresistant bacteria, which accumulate resistance to several antibiotics of different families, can lead to therapeutic impasses. A simultaneous resistance to several families of antibiotics is considered as a major problem in animal and human health. Indeed, amongst our isolates, 77 (44.2 %) isolates were resistant to 3 families of antibiotics or more.

In conclusion, antibiotic susceptibility of 174. E. coli isolates collected from healthy poultry, bovine and ovine showed high frequencies of resistance to tetracycline, streptomycin, amoxicillin, and to trimethoprim–sulfamethoxazole with the presence of a single isolate producing ESBL. The highest rates of resistance were observed in poultry isolates. These results can be explained by the excessive usage of antibiotics in the industrialized poultry sector and to the practices of avian extensive breeding. However, the low rates of antibiotic resistance observed in E. coli isolates from bovine and ovine is probably linked to the scarce use of antibiotics in the Tunisian’s bovine and ovine husbandries. Taken together, antibiotic resistance in avian E. coli isolates is alarming and possible dissemination of such isolates to human and environment is worrisome.

References

1. Allen SE, Janecko N, Pearl DL, Boerlin P, Reid Smith RJ, et al. (2013) Comparison of Escherichia coli recovery and antibiotic resistance in cecal, colon, and fecal samples collected from wild house mice (Mus musculus lus). J Wild Dis 49: 432–436. Link: https://doi.org/10.7589/dm13-015a

2. Jong DA, Thmaso V, Simjee S, Godinho K, Schiessl B, et al. (2012) Pan-European monitoring of susceptibility to human-use antimicrobial agents in enteric bacteria isolated from healthy food-producing animals. J Antimicrob Chemother 67: 538–651. Link: https://doi.org/10.1093/jac/dkr247

3. EFSA and ECDC (2012) The European Union Summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2010. Link: https://europa.eu/healthRESSED

4. Aarestrup FM, Bager F, Jensen NE, Madsen M, Meyling A, et al. (1998) Resistance to antimicrobial agents used for animal therapy in pathogenic, zoonotic- and indicator bacteria isolated from different food animals in Denmark: a baseline study for the Danish Integrated Antimicrobial Resistance Monitoring Programme (DANMAP). Acta Pathologica, Microbiologica et Immunologica Scandinavica 106: 745–770. Link: https://doi.org/10.1111/j.1600-0749.1998.tb10813.x

5. Bogaard AE, Stobberingh EE (2000) Epidemiology of resistance to antibiotics. Links between animals and humans. International Journal of Antimicrobial Agents 14: 327–333. Link: https://doi.org/10.1016/S0924-8579(00)00078-2

6. Johnson JR, Kuskowski MA, Smith K, O’Byran TT, Tatini S (2005) Antimicrobial resistant and extraintestinal pathogenic Escherichia coli in retail foods. J Infect Dis 191: 1040-1049. Link: https://doi.org/10.1086/429270

7. Teschager T, Herrero IA, Porro MC, Garde J, Moreno MA, et al. (2000) Surveillance of antimicrobial resistance in Escherichia coli strains isolated from pigs at Spanish slaughterhouses. Int J Antimicrob Agents 15: 137-142. Link: https://doi.org/ahGMip

8. Boerlin P, Travis R, Gyles CL, Smith RR, Janecko N, et al. (2005) Antimicrobial resistance and virulence genes of Escherichia coli isolates from swine in Ontario. Appl Environ Microbiol 71: 6753-6761. Link: https://doi.org/10.1128/AEM.00706-06

9. Yang H, Chen S, White DG, Zhao S, McDermott P, et al. (2004) Characterization of multiple-antimicrobial-resistant Escherichia coli isolates from diseased chickens and swine in China. J Clin Microbiol 42: 3483-3489. Link: https://doi.org/10.1128/JCM.00769-04

10. Morfin OR, Tinoco Favila JC, Sader HS, Salcido GL, Perez G, et al. (2012) Resistance trends in gram negative bacteria : surveillance results from twoMexicanhospitals,2005- 2010. BMCRes Notes 5: 277. Link: https://doi.org/10.1186/1756-0500-5-277

11. EFSA. (2009). Joint opinion on antimicrobial resistance (AMR) focused on zoonotic infections. Scientific opinion of the European Centre for Disease Prevention and Control; Scientific Opinion of the Panel on Biological Hazards; Opinion of the Committee for Medicinal Products for Veterinary Use; Scientific Opinion of the Scientific Committee on Emerging and Newly Identified Health Risks. EFSA J 7: 1-78. Link: https://doi.org/10.2903/j.efsa.2009.1343

12. Carattoli A (2009) Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother 53: 2227-2238. Link: https://doi.org/1004v2H

13. Gupta K, Scholes D, Stamm WE (1999) Increasing prevalence of antimicrobial resistance among uropathogens causing acute uncomplicated cystitis in women. J Am Med A 281: 736-738. Link: https://doi.org/XGl4tl

14. Lei T, Tian W, He L, Huang XH, Sun YX, et al. (2010) Escherichia coli isolates from food animals, animal food products and companion animals in China. Vet Microbiol 146: 85-89. Link: https://doi.org/10.1016/j.vetmic.2010.08.006

15. CLSI (Clinical Laboratory Standards Institute) (2015) Performance Standards for Antimicrobial Susceptibility Testing. Twenty-Fifth Information Supplement. M100-S25. National Committee for Clinical Laboratory Standards, Wayne PA. Link: https://doi.org/10.1093/jac/dkx198

16. Bradford, P. A. (2001) Extended-Spectrum -lactamases in the 21st Century: Characterization, Epidemiology, and detection of this important Resistance Threat. Clin Microbiol Rev. 14: 933-951.

17. Jiang X, Tao Yu, Nan Wu, Hecheng M, Lei S (2014) Detection of qnr, aac(6’)-Ib-cr and qepA genes in Escherichia coli isolated from cooked meat products in Henan, China. Link: https://doi.org/10.1093/qjmi/q561u

18. Sayah RS, Kaneene JB, Johnson Y, Miller R (2005) Patterns of antimicrobial resistance observed in Escherichia coli isolates obtained from domestic- and wild-animal fecal samples, human septage, and surface water. Appl Environ Microbiol 71: 1394-1404. Link: https://doi.org/10.1128/AEM.01676-04

19. Jiang HX, Lü DH, Chen ZL, Wang XM, Chen JR, et al. (2009) High prevalence and widespread distribution of multi-resistant Escherichia coli isolates in pigs and poultry in China. Veterinary J 187: 99-103. Link: https://doi.org/10.1016/j.vetj.2008.09.006

20. Maynard C, Fairbrother JM, Belsal S, Sanschagrin F, Levesque RC, et al. (2003) Antimicrobial resistance genes in enterotoxigenic Escherichia coli O149: K91 isolates obtained over a 23 year period from pigs. Antimicrob Agents Chemother 47:3214-3221. Link: https://doi.org/10.1128/AAC.47.7.3214-3221.2003

21. Blanco JE, Blanco M, Mora A, Blanco J (1997) Production of toxins (enterotoxins, verotoxins, and necrotoxins) and colicins by Escherichia coli strains isolated from septicemic and healthy chickens: relationship with in vivo pathogenicity J Clin Microbiol 35: 2953-2957. Link: https://doi.org/10.1128/JCM.35.11.2953-2957.1997

22. Gyles CL (2008) Antimicrobial resistance in selected bacteria from poultry. Anim Helth Res. Rev 9: 149-158. Link: https://doi.org/10.1017/S1466201608002814
23. Guerra B, Junker E, Schroeter A, Malorny B, Lehmann S, et al. (2003) Phenotypic and genotypic characterization of antimicrobial resistance in German *Escherichia coli* isolates from cattle, swine and poultry. *J Antimicrob Chemother* 52: 489-491. [Link](https://goo.gl/VOyTfg)

24. Kang HY, Jeong YS, Oh JY, Tae SH, Choi CH, et al. (2005) Characterization of antimicrobial resistance and class 1 integrons found in *Escherichia coli* isolates from humans and animals in Korea. *J Antimicrob Chemother* 55: 639-644. [Link](https://goo.gl/mQfb36)

25. Meyer E, Lunke C, Kist M, Schwab F, Frank U (2008) Antimicrobial resistance in *Escherichia coli* strains isolated from food, animals and humans in Germany. *Infection* 36: 59-61. [Link](https://goo.gl/YCDM18)

26. Van Thi TH, Mouta [34x554]sifi G, Tran LT, Coloe PJ (2007) Antibiotic resistance in foodborne bacterial contaminants in Vietnam. *Appl Environ Microbiol* 73: 7906-7911. [Link](https://goo.gl/2PWlK7)

27. Soufi L, Abbassi MS, Sáenz Y, Vinué L, Somalo S, et al. (2009) Prevalence and diversity of integrons and associated resistance genes in *Escherichia coli* isolates from poultry meat in Tunisia. *Foodborne Pathogens and Disease* 6: 1067-1073. [Link](https://goo.gl/TBZCPL)

28. Smet A, Martel A, Persoons D, Dewulf J, Heyndrickx M, et al. (2008) Diversity of extended-spectrum β-lactamases and class C β-lactamases among cloacal *Escherichia coli* in Belgian broiler farms. *Antimicrob Agents Chemother* 52: 1238-1243. [Link](https://goo.gl/WyEfy)

29. Smet A, Martel A, Persoons D, Dewulf J, Heyndrickx M, et al. (2009) Comparative analysis of extended-spectrum β-lactamase (ESBL)-carrying plasmids from different members of Enterobacteriaceae isolated from poultry, pigs and humans: evidence for a shared β-lactam resistance gene pool? *J Antimicrob Chemother* 63: 1286-1288. [Link](https://goo.gl/XlnKCI)

30. Sáenz Y, Bríñás L, Domínguez E, Ruiz J, Zarazaga M, et al. (2004). Mechanisms of resistance in multiple-antibiotic-resistant *Escherichia coli* strains of human, animal, and food origins. *Antimicrob Agents Chemother* 48: 3996-4001. [Link](https://goo.gl/wzz22u)

31. Brins L, Moreno MA, Zarazaga M, Porrero C, Senz Y, et al. (2003) Detection of CMY-2, CTX-M-14, and SHV-12 β-lactamases in *Escherichia coli* fecal-sample isolates from healthy chickens. *Antimicrob Agents Chemother* 47: 2056-2058. [Link](https://goo.gl/YqQj4n)

32. Li XZ, Mehrrota M, Ghimire S, Adewoye L (2007) β-Lactam resistance and β-lactamases in bacteria of animal origin. *Vet Microbiol* 121: 197-214. [Link](https://goo.gl/OSzxi3)

33. Canton R, Gonzales-Alba JM, Galan RC (2012) CTX-M-enzymes: Origin and diffusion. *Frontiers Microbiol.* 3:110. [Link](https://goo.gl/cJUagm)

34. Jouini A, Vinué L, Ben Slama K, Sáenz Y, Klibi N, et al. (2007) Characterization of CTX-M and SHV extended-spectrum beta-lactamases and associated resistance genes in *Escherichia coli* strains of food samples in Tunisia. *J Antimicrob Chemother* 60: 1137-1141. [Link](https://goo.gl/l08w3)

35. Soufi L, Sáenz Y, Vinué L, Abbassi MS, Ruiz E, et al. (2011) *Escherichia coli* of poultry food origin as reservoir of sulphonamide resistance genes and integrons. *Inter J Food Microbiol* 144: 497-502. [Link](https://goo.gl/9fsfTX)

36. Mnif B, Ktari S, Rhimi FM, Hammami A (2012) Extensive dissemination of CTX-M-1- and CMY-2-producing *Escherichia coli* in poultry farms in Tunisia. *Lett Appl Microbiol* 55: 407-413. [Link](https://goo.gl/Mw7T32)

37. Thorsteinsdottir TR, Haraldsson G, Fridriksdottir V, Kristinsson KG, Gunnarsson E (2009) Prevalence and genetic relatedness of antimicrobial-resistant *Escherichia coli* isolated from animals, foods and humans in Iceland. *Zoonoses Public Health* 57: 189-196. [Link](https://goo.gl/3NzqSK)

38. Ayaz ND, Gencay YE, Erol I (2015) Phenotypic and genotypic antibiotic resistance profiles of *Escherichia coli* O157 from cattle and slaughterhouse wastewater isolates. *Annals Microbiol* 65: 1137-1144. [Link](https://goo.gl/cwh7AU)

39. Goncuoglu M, Omranci FS, Ayaz ND, Erol I (2010) resistance of *Escherichia coli* O157:H7 isolated from cattle and sheep. *Annals Microbiol* 60: 489-494. [Link](https://goo.gl/9BKVA9)

40. Enne VI, Cassar C, Spriggins K, Woodward MJ, Bennett PM (2007) A high prevalence of antimicrobial resistant *Escherichia coli* isolated from pigs and a low prevalence of antimicrobial resistant *E. coli* from cattle and sheep in Great Britain at slaughter. *FEBS Microbiol Lett* 278: 193-199. [Link](https://goo.gl/EXXsSL)