The complete mitochondrial genome of *Rotunda rotundapex* (Miyata & Kishida, 1990) (Lepidoptera: Bombycidae)

Jonghyun Park, Hong Xi and Jongsun Park

ABSTRACT

Rotunda rotundapex (Miyata & Kishida, 1990) is a silk moth identified in Korea. We completed its mitochondrial genome which is 15,298 bp long and the shortest mitogenome of Bombycidae s.str. It includes 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNAs, and a control region. Comparison with COI sequence of Taiwan isolate suggests the Korean population of this species can be a novel species. Gene order of *R. rotundapex* mitogenome is conserved as in other Bombycidae species. Phylogenetic trees show that *R. rotundapex* is closely related to genus *Rondotia*.

K. Rotunda rotundapex (Miyata & Kishida, 1990) is an East Asian silk moth named after its rounded wings. The species was first recorded in Taiwan as *Bombyx rotundapex* and later found in mainland China and Myanmar (Wang et al. 2015). In Korea, it was recorded as *Bombyx shini*, a novel sister species of *B. rotundapex*, based on its morphologies (Park and Sohn 2002). Despite the slight differences, a monograph on China’s silk moths treated *B. shini* as a junior synonym of *R. rotundapex*, even suggesting that the Korean population of *B. shini* was recently introduced by human activities (Wang et al. 2015). To determine its genetic background, we completed the mitochondrial genome of *R. rotundapex* collected in Korea.

Total DNA of *R. rotundapex* was extracted from a specimen collected in Hwacheon-gun, Gangwon-do, Republic of Korea (38°06’27.1"N, 127°43’26.6"E) using DNeasy Blood & Tissue Kit (QIAGEN, Hilden, Germany). Raw sequences obtained from HiSeqX at Macrogen Inc., Korea, were filtered by Trimomatic 0.33 (Bolger et al. 2014). De novo assembly and confirmation were conducted by Velvet 1.2.10 (Zerbino and Birney 2008), SOAPGapCloser 1.12 (Zhao et al. 2011), BWA 0.7.17 (Li et al. 2009), and SAMtools 1.9 (Li 2013). Geneious R11 11.1.5 (Biomatters Ltd, Auckland, New Zealand) and ARWEN (Laslett and Canbäck 2008) were used for annotation based on other silk moth mitogenomes. DNA sample and specimen (95% ethanol) were deposited in InfoBoss Cyber Herbarium (IN; J. Park, KFDS00166).

R. rotundapex (Genbank accession is MN698791) mitogenome is 15,298 bp long, the shortest in Bombycidae s.str., consisting of 13 protein-coding genes (PCGs), 2 rRNAs, 22 tRNAs, and a control region. Its GC ratio is 20.8%. Gene order is conserved in all species of Bombycoidea as in most Lepidopterans.

Partial COI gene sequence (1,459 bp) of the Taiwanese isolate (MH817447; Lin et al. 2019) presents 80 SNPs (5.5%) against that from our mitogenome. This divergence suggests that *R. rotundapex* in Korea should be considered an independent species from the Taiwanese isolate. Additional sequences of Chinese mainland’s isolates can answer the question whether the Korean population was recently introduced or not.

Thirteen PCGs and two rRNA genes from all available mitogenome of species in Bombycidae s.l., all available Bombycoidea genera, and an outgroup species were aligned by MAFFT 7.450 (Katoh and Standley 2013) and concatenated. Bootstrapped maximum likelihood, neighbor joining, and Bayesian inference trees were constructed using MEGA X (Kumar et al. 2018) and Mr. Bayes 3.2.6 (Huelsenbeck and Ronquist 2001), respectively. Our trees show that *R. rotundapex* is sister to *Rondotia*, not *Bombyx* (Figure 1), which is incongruent to previous study using COI and four nuclear markers (Lin et al. 2019). It also shows that subfamilies Oberthurinae and Pristomostictinae are far from Bombycinae (Figure 1), agreeing that former subfamilies should be treated under Endromidae (Wang et al. 2019). Sphingidae, however, is clustered with Bombycidae s.str not Saturniidae (Figure 1), which is also incongruent to former phylogenomic study (Hamilton et al. 2019) with relatively low bootstrap values.
and posterior priority (Figure 1). Our results address the question why trees of mitochondrial and nucleic genes present difference phylogenetic relationships at the level of higher taxa.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
This work was supported by both InfoBoss Research Grant [IBG-0017] and ‘Cooperative Research Program for Agriculture Science & Technology Development’ [Project No. PJ013389052019]’ Rural Development Administration, Republic of Korea.

ORCID
Jongsun Park http://orcid.org/0000-0003-0786-4701

References
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30(15):2114–2120.

Hamilton CA, St Laurent RA, Dexter K, Kitching IJ, Breinholt JW, Zwick A, Timmermans MJ, Barber JR, Kawahara AY. 2019. Phylogenomics resolves major relationships and reveals significant diversification rate shifts in the evolution of silk moths and relatives. BMC Evol Biol. 19(1):1–13.

Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 17(8):754–755.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35(6):1547–1549.

Laslett D, Canbäck B. 2008. ARWEN: a program to detect rRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics. 24(2):172–175.

Figure 1. Maximum likelihood (bootstrap repeat is 1,000), neighbor joining (bootstrap repeat is 10,000), and Bayesian inference (1,000,000 generations) phylogenetic trees of all available silk moth (Bombycidae s.l.) mitochondrial genomes: Rotunda rotundapex (MN698791 in this study), Bombyx mandarina (NC_003395), Bombyx mori (NC_002355), Bombyx lemeepauli (NC_037149), Bombyx huttoni (NC_026518), Rondotia mencia (NC_021962), Ocinara albicolor (NC_038087), Ernolatia moorei (NC_038104), Triuncina dai (NC_036484), Prismosticta fenestra (NC_038106), Prismostictoides unihyla (NC_038010), Andraca olivacea (NC_038082), Andraca theae (NC_032694), Comparmustilla sphyngiformis (NC_038083), Mustilia undulosa (NC_038085), Mustilizans hepatica (NC_038105), Oberthueria jatongae (NC_038086), as well as 16 moths of all available Bombycoida genera: Ampelophaga rubiginosa (NC_035431), Theretra japonica (NC_037725), Macroglossum stellatum (NC_037441), Para coelagata (NC_039166), Prismosticta fenestra (NC_037445), Manduca sexta (NC_010266), Sphinx morio (NC_020780), Neoria haraldi (NC_036765), Eriogyna pyrotorum (NC_012727), Saturnia boisduvalii (NC_010613), Actias selene (NC_018133), Antheraeoa pershy (NC_004622), Attacus atlas (NC_021770), Bombyx mandarina (NC_038084), and a lappet moth: Dendrolimus spectabilis (NC_025763) as an outgroup. Phylogenetic tree was drawn based on maximum likelihood tree. The numbers above branches indicate bootstrap support values of maximum likelihood, neighbor joining trees, and posterior probability of Bayesian inference tree, respectively.
Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:13033997.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The sequence alignment/map format and SAMtools. Bioinformatics. 25(16):2078–2079.
Lin R-J, Braby MF, Hsu Y-F. 2019. The immature stages, biology, and phylogenetic relationships of Rotunda rotundapex (Lepidoptera: Bombycidae). J Insect Sci. 19(2):19.
Park K-T, Sohn J-C. 2002. Description of Bombyx shini sp. nov. (Lepidoptera, Bombycidae) from Korea. Tinea. 17(2):67–69.
Wang X, Chen ZM, Gu XS, Wang M, Huang GH, Zwick A. 2019. Phylogenetic relationships among Bombycidae s.l (Lepidoptera) based on analyses of complete mitochondrial genomes. Syst Entomol. 44(3):490–498.
Wang X, Wang M, Zolotuhin VV, Hirowatari T, Wu S, Huang G-H. 2015. The fauna of the family Bombycidae sensu lato (Insecta, Lepidoptera, Bombycoidea) from Mainland China, Taiwan and Hainan Islands. Zootaxa. 3989(1):1–138.
Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18(5):821–829.
Zhao QY, Wang Y, Kong YM, Luo D, Li X, Hao P. 2011. Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinformatics. 12(Suppl 14):S2.