Optimal Placement of Unified Power Flow Controller by TOPSIS Method for Loss Minimization

Million Alemayehu Bedasso, R. Srinu Naik

Abstract: In order to eliminate active and reactive power losses in the power system, this paper proposes TOPSIS and DE algorithm for determining the best location and parameter settings for the Unified Power Flow Controller (UPFC). To mitigate power losses, the best UPFC allocation can be achieved by re-dispatching load flows in power systems. The cost of incorporating UPFC into the power system. As a consequence, the proposed objective feature in this paper was created to address this problem. The IEEE 14-bus and IEEE 30-bus systems were used as case studies in the MATLAB simulations. When compared to particle swarm optimization, the results show that DE is a simple to use, reliable, and efficient optimization technique than (PSO). The network’s active and reactive power losses can be significantly reduced by putting UPFC in the optimum position determined by TOPSIS ranking method.

Index Term: Differential Evolution (DE); Particle Swarm Optimization (PSO); Unified Power Flow Controller (UPFC).

Keywords: The Best Location And Parameter Settings For The Unified Power Flow Controller (UPFC).

I. INTRODUCTION

Building new generating unit and transmission circuits becomes more tough as the demand for electricity increases due to economic and environmental concerns. As a result, electric utilities must rely on existing generation systems, causing existing transmission lines to become overburdened. Stability, on the other hand, must always be preserved. As a consequence, to operate the power system successfully without risking system security and excellence of supply, a new control plan must be implemented, also in the event of contingency conditions including transmission line and/or generating unit failures, which occur on a regular basis and will be more likely to occur at a higher frequency under deregulation. The Flexible AC Transmission System technology program was started in the late 1980s by the Electric Power Research Institute (EPRI) (FACTS). One of the most hopeful FACTS devices is the UPFC, which Gyugyi established in 1991[2]. The UPFC is designed to optimize power flow and device stability by properly configuring its controller. However, to achieve such UPFC functionality, the best position for this device in the power system, as well as the necessary parameter settings, must be specified.

When deciding on the best position and parameter settings for UPFC, factors like increased power transmission capacity, efficient power loss decrease, avoiding power blackouts, and increased stability margin, can all be considered.

Various methods for determining the best position and parameter settings for the UPFC system have been proposed by a number of researchers. [4] proposed using an immune algorithm (IA) to determine the best location for a centralized power flow controller (UPFC) to achieve optimal power flow (OPF) and congestion management. [5] investigates the optimal locations for parallel and series FACTS devices. In light of the restructured environment, the STATCOM is chosen as a parallel FACTS device, while the SSSC is chosen as a sequence device, and the optimization issue is reformulated with a new objective function in order to relieve congestion and provide more equitable conditions for power market participants. For determining the best FACTS place, [6-8] proposed a Genetic Algorithm.

Differential Evolution is an Evolutionary Algorithm (EA) technique that is relatively new [11-13]. It’s easy to set up, quick, and dependable. This paper proposes a TOPSIS approach for deciding the best position and parameter settings for a UPFC unit. Power systems [14] and [15] are two areas where DE has shown promise to minimize active and reactive power losses in a power system. For various parameter initializations of both techniques, the TOPSIS Method efficiency is compared to PSO.

II. PROBLEM FORMULATION

A. Model of UP FC

1) Equivalent Circuit and Configuration of UPFC:

Figure 1 illustrates a UPFC basic operating principal diagram. Two switching converters based on VSC valves make up the UPFC. A common DC connection connects the two converters. A series transformer connects the transmission line to the series inverter. A shunt attached transformer connects the shunt inverter to a local bus i. To meet operating control requirements, the shunt inverter can produce or absorb controllable reactive power, as well as provide active power exchange to the series inverter. The steady-state model [17] is developed using the UPFC equivalent circuit shown in Figure 2. Two ideal voltage sources are represented in the analogous circuit by the fundamental Fourier series portion of the switched voltage waveforms at the AC converter terminals. The power supply for the UPFC is as follows:

Manuscript received on April 19, 2021.
Revised Manuscript received on May 10, 2021.
Manuscript published on May 30, 2021.

* Correspondence Author

Million Alemayehu Bedasso*, Research Scholar, Department of Electrical Engineering, Andhra University Visakhapatnam (A.P), India.
Dr. R. Srinu Naik, Assistant Professor, Department of Electrical Engineering Andhra University, Visakhapatnam (A.P), India.
2) UPFC Power Flow Constraints

For the equivalent circuit of the UPFC shown in figure 2, suppose \(V_s = V_{sh} \angle \theta_s \), \(V_e = V_{se} \angle \theta_e \), \(V_r = V_{sh} \angle \theta_r \), and \(V_e' = V_{se} \angle \theta_e' \), then the load flow constraints of the UPFC shunt and series branches are:

\[
P_{sh} = V_{sh}^2 G_{sh} - V_i V_{sh} \left[G_{sh} \cos (\delta_i - \theta_{sh}) + B_{sh} \sin (\delta_i - \theta_{sh}) \right] + Q_{sh} \left[V_i \left(G_{sh} \sin (\delta_i - \theta_{sh}) - B_{sh} \cos (\delta_i - \theta_{sh}) \right) \right] + \sum_{k} P_{sh}(V, \theta) - P_{sg} = 0
\]

\[
Q_{sh} = V_{sh}^2 B_{sh} - V_i V_{sh} \left[G_{sh} \sin (\delta_i - \theta_{sh}) - B_{sh} \cos (\delta_i - \theta_{sh}) \right] + Q_{sh} \left[V_i \left(-G_{sh} \cos (\delta_i - \theta_{sh}) + B_{sh} \sin (\delta_i - \theta_{sh}) \right) \right] + \sum_{k} Q_{sh}(V, \theta) - Q_{sg} = 0
\]

\[
P_{se} - P_{se} = 0
\]

\[
V_i = V_{sh} \cos (\theta_s + \delta_i) + j V_i \sin (\theta_s + \delta_i)
\]

\[
V_{sh} = V_{sh} \cos (\theta_s + \delta_i) + j V_{sh} \sin (\theta_s + \delta_i)
\]

\[
0 \leq \theta_{sh} \leq 2\pi, V_{sh}\text{ and } \theta_{sh}
\]

\[
V_{sh_{max}} \leq \theta_{sh} \leq 2\pi, V_{sh_{min}}
\]

\[
V_{se} \text{ and } \theta_{se}, V_{sh_{max}} \leq \theta_{sh} \leq 2\pi, V_{sh_{max}}
\]

\[
0 \leq \theta_{se} \leq 2\pi \text{ respectively}
\]

III. OPTIMIZATION METHOD

A. Overview of Differential Evolution

Storn and Price [11] suggested DE as an evolutionary computation method. In the DE technique, difference vectors are used to create perturbations in a vector population. DE algorithms have a high rate of convergence, are stable, conceptually simple, have few parameters, and are simple to implement. The use of this algorithm to solve complex optimization problems has piqued researchers' interest.

B. Finding the Weakest Bus Based on TOPSIS Method

The TOPSIS Procedure or Steps

STEP 1: Establish TOPSIS performance matrix as in figure below
w_1 w_2 \ldots w_n \\
C_1 C_2 \ldots C_n \\
X_1 \quad X_2 \quad \ldots \quad X_n \\
A_1 \quad A_2 \quad \ldots \quad A_n
\begin{bmatrix}
M = \\
\begin{pmatrix}
z_{11} & z_{12} & \cdots & z_{1n} \\
z_{21} & z_{22} & \cdots & z_{2n} \\
z_{31} & z_{32} & \cdots & z_{3n}
\end{pmatrix}
\end{bmatrix}
\end{array}

STEP 2. Normalize the decision-matrix.

n_{ij} = \frac{z_{ij}}{\sqrt{\sum_{j=1}^{n}(z_{ij})^2}} , \quad j=1 \ldots , n, i=1 \ldots , m

STEP 3. Calculate the normalized weighted decision matrix.

v_{ij} = w_j * n_{ij}, j=1 \ldots , n, i=1 \ldots , m \quad \sum_{j=1}^{m} w_j = 1;

STEP 4. Determine the solutions that are positive ideals and those that are negative ideals. \(V_j^+ \) and \(V_j^- \)

STEP 5. Calculate the separation measures.

\[S_i^+ = \left\{ \sum_{j=1}^{n} (v_{ij} - V_j^+) \right\}^{1/2}, \quad j=1 \ldots , m \]
\[S_i^- = \left\{ \sum_{j=1}^{n} (v_{ij} - V_j^-) \right\}^{1/2}, \quad j=1 \ldots , m \]

STEP 6. Determine how similar the solution is to the ideal.

\[P_i = \frac{S_i^-}{S_i^+ + S_i^-}, \quad i = 1, \ldots , m \]

If \(S_i = 1 \rightarrow S_i = S^+ \)
If \(S_i = 0
ightarrow S_i = S^- \)

STEP 7. Rank the preference order.

The active and reactive power losses in the network are minimized by optimizing these variables. The following is a summary of how the DE algorithm is implemented.

Step 1: Set up power flow data and DE-related parameters like : The size of population (N P), the maximum number of iteration or generation (Gmax), the number of variables to be optimized (D), and the DE control parameters CR, and F.

\[X_i(G_0) = X_{i,min} + rand \times [0,1] (X_{i,max} - X_{i,min}) \]

Step 2: Evaluate the fitness for each individual in the population according to the objective function in equation (9).

Step 3: A new population create by:

Mutation: Three different vectors randomly choose from the current population and generate a trial vector by:

\[U_{ij}(G) = X_{ij}(G) + F \times (X_{i2}(G) - X_{i3}(G)) \]

Crossover: From each entity X, (G), and the corresponding trial vector ui, Equation (27) is used to generate a new offspring X(i/G) (G).

\[X_{ij}(G) = \begin{cases} U_{ij}(G) & \text{ if } j \in J \\ X_{ij}(G) & \text{ otherwise} \end{cases} \]

Selection: Using equation (28) to pick vectors for the next generation for each, X_i(G) and correspondingX_i(G), and \(G = G + 1 \).

\[X_{ij}(G + 1) = \begin{cases} U_{ij}(G + 1) & \text{ if } f \left(X_{i}(G + 1) \leq f(X_{ij}(G)) \right) \quad j \in J \\ X_{ij}(G) & \text{ otherwise} \end{cases} \]

Step 4: If the stopping criterion is met, stop the method and print the best person (optimal position and UPFC parameter setting); otherwise, return to Step 4.

IV. SIMULATION RESULTS

For simulation determinations, this paper develops and integrates MATLAB programming for Differential Evolution and TOPSIS, the weak load flow algorithm with UPFC. The simulation is conducted on a computer with a 2.66 GHz Pentium IV processor and 1 GB of RAM. The initial parameter values for DE and PSG are mentioned in Tables I and II, respectively. The values [11-15], [6], and [9-10] have all been published in peer-reviewed journals. The IEEE-14 bus test system (shown in Figure.3) and the IEEE-30 bus test system data are used to demonstrate the proposed techniques (shown in Figure.4). For simulation purposes, this research develops and integrates MATLAB programming codes for DE, PSG, and an improved power flow algorithm with UPFC. The simulations are performed on a computer with a 2.66 GHz Pentium IV processor and 6 GB of RAM. There are no standard values for the parameters since DE and PSG are both probabilistic and stochastic search techniques. However, as defined in the literature, the accepted values provided the best results in the majority of cases. As a consequence, statistical validation of simulation results obtained with these methods is needed. The following are the results of ten trials used to assess the success of these techniques in this study:

![Figure 4: IEEE 30 Bus test system](image)

Table 1: DE initial parameter values

Initial Parameter values of DE	Initial Parameter values of DE
Population size (NP)	30
Maximum number of	100
Number of variables (NV)	5
Length of individual L_i	5
DE step size F	0.8
Crossover probability constant CR	0.5
Termination Criteria	DE/rand/1/bin

1xe^6 or Gmax
Table 2: parameter values of PSO(NP) Number of swarm beings

PSO Technique Parameter	Number of swarm beings (NP)	30
G_{max}, Maximum number of flights	100	
(NV), Number of variables	5	
L_i, Length of individual	5	
C₁, C₂	1.5	
w_{max}, w_{min}	0.9, 0.4	
Termination criteria	1xe^-6 or G_{max}	
Original velocities' deviation	10	

Table 3: optimal parameter setting UPFC

| Techniques of Evolution | V_{sh}(pu) | θ_{sh}(rad) | V_{se}(pu) | θ_{se}(rad) |
|-------------------------|----------------|----------------|----------------|----------------|---|
| DE | 0.9961 | 0.06961 | 0.12171 | 1.45511 |
| PSO | 1.0671 | -0.22141 | 0.13871 | 1.46191 |

Table 4: shows the objective function's worst, average, and best values for different DE and PSO parameter settings.

Computational intelligence (CI)	Technique of Evolutionary Algorithm	Objective function value	Technique of Swarm intelligence
	DE	F=0.5 CR=0.58	PSO
		F=0.8 CR=0.58	
		F=0.8 CR=0.5	
		F=0.5 CR=0.8	
		c_i = 1.2	
		w_{max} = 0.9, w_{min} = 0.4	
worst		312.458	
		312.857	
		312.867	
		316.84	
		316.89	
		315.68	
		315.97	

Table 5 Optimal parameter setting of UPFC

| Evolutionary Techniques | V_{sh}(pu) | θ_{sh}(rad) | V_{se}(pu) | θ_{se}(rad) |
|-------------------------|-------------------|-------------------|-------------------|-------------------|---|
| DE | 0.998 | -0.2070 | 0.1552 | -2.1184 |
| PSO | 1.0792 | -0.2520 | 1.627 | 1.0794 |

A. 14-Bus Test System

There are five generators, twenty transmission cables, fourteen buses, and eleven loads in this technique. The following are the outcomes of the simulation: There are five generators, twenty transmission cables, fourteen buses, and eleven loads in this technique. There are five generators, twenty transmission cables, fourteen buses, and eleven loads in this technique. The following are the outcomes of the simulation: There are five generators, twenty transmission cables, fourteen buses, and eleven loads in this technique. The following are the outcomes of the simulation: There are five generators, twenty transmission cables, fourteen buses, and eleven loads in this technique.

The DE technique's results show that line 7 (from bus 6 to bus 4) is the best location for UPFC in this case with the lowest installation cost of 0.23324 x 10^6 (US$).

The results of using the PSO technique also show that the best location for a UPFC is line 7 (from bus 6 to bus 4) with the lowest installation cost of 0.21148 x 10^6 (US$). Both methods generated the best UPFC series and shunt voltage source obtained after ten trials. After 10 trials, the convergence characteristics of the objective function are shown in Figure 5. The objective function's worst, average, and best values for various DE and PSO parameter settings are shown in Table IV after ten trials.

B. Test System for IEEE 30-Bus

There are six generators, 41 transmission cables, thirty buses, and twenty-one loads in this facility. The following are the results of the simulation: This system includes 6 generators, 41 transmission lines, 30 buses, and 21 loads. The simulation results are as follows:

The results of using the DE technique show that the best position for the UPFC in this case is line 7 (from bus 6 to bus 4) with the lowest installation cost of 0.21148 x 10^6 (US$).

The results of using the PSO technique also show that the best position for a UPFC is line 7 (from bus 6 to bus 4) with the lowest installation cost of 0.23324 x 10^6 (US$). Both methods are obtained after ten trials. Both techniques generated the best UPFC series and shunt voltage source obtained after ten trials. The DE technique's results show that line 7 (from bus 6 to bus 4) is the best place for the UPFC in this situation, with a cost of 0.21148 x 10^6 (US$) for installation. The PSO technique also reveals that line 7 (from bus 6 to bus 4) is the best position for a UPFC, with a cost of 0.23324 x 10^6 (US$) for installation. After ten trials, the results of both methods are obtained. Table 5 shows the ideal UPFC array, as well as the magnitude and phase angles of the shunt voltage source obtained using both techniques, after ten trials. The trial results are shown in Table 5.
The objective function's worst, average, and best values for various DE and PSO parameter settings are shown in Table 6 after ten trials. The best value for $c_i = 1.2$ in the PSO technique is 1.5, while the best values for W-min. and W-max. are 0.4001 and 0.9001, respectively, according to the findings. F in the DE methodology has a best value of 0.5, and CR has a best value of 0.5. The results in Table 7 show that PSO performs the optimization faster than DE because DE uses mutation, crossover, and selection operations to process the optimization while PSO does not.

Table 6: With different DE and PSO parameter settings, the objective function's worst, average, and best values are calculated.

Techniques of Computational Intelligence (CI)	Objective function	PSO	DE
The EAS (Evolutionary Algorithm) technique	$F=0.5$	5	391.216
	$CR=0.$	8	391.307
	$F=0.8$	5	391.408
	$CR=0.$	8	391.194
	$c_i=1.2$		391.1275
	$w_{max}=0.9$		391.1297
	$w_{min}=0.4$		391.10
	0.5	1.5	395.11
		2	394.48
Swarm intelligence (SI) Technique			394.48

Table 7 for proposed techniques simulation time

system Tested	Simulation time (sec)	
	DE	PSO
14-Bus	76.4872	66.1723
30_Bus	178.5423	114.43851

V. CONCLUSION

The first and most critical step in implementing UPFC in power systems is determining the proper position and parameters for the UPFC unit. This computer has the ability to rapidly and easily adjust system parameters. As a result, the UPFC device clearly provides benefits such as increased system reliability, increased system performance, and lower operating and transmitting investment costs.

In order to eliminate active and reactive power losses in a power system, this paper attempted to determine the best location and parameters for a UPFC unit. DE was successfully applied to the problem at hand, which is one of the most current computational intelligence approaches. This paper contains two case studies, one involving an IEEE 14-bus system and the other involving an IEEE 30-bus system. The findings show that the DE method has a number of advantages, including high-quality solutions, stable convergence, and fast computation speed. Finally, our findings show that active and reactive power losses in a system can be significantly reduced by using the proper parameter settings and installing UPFC in the most optimal position.

REFERENCES

1. Hingorani, N. G., 'Flexible AC Transmission', IEEE Spectrum, pp.40 - 44, April 1993.
2. L. Gyugyi, "Unified Power Flow control concept for Flexible AC Transmission Systems", IEE Proceedings-C, Vol. 139, No.4, July 1992.
3. J.Baskaran, and V.Palanimasy, "Optimal location of FACTS devices in a power system solved by a hybrid approach", Nonlinear Analysis, Vol.1, pp. 2049-2102, 2006.
4. Seyed Abbas Taber, and Mohammad Karim Amooashahi, "Optimal placement of UPFC in power systems using immune algorithm", Simulation Modelling Paractice and Theory, Vol. 19, pp. 1399-1412, 2011.
5. Sajad R., and Mohammad T. B., " Looking for optimal number and placement of FACTS devices to manage the transmission congestion", Energy Conversion and Management, Vol. 52, pp. 437-446, 2011.
6. Ghamgeen I. Rashed, H. I. Shaboen, and S. J. Cheng, "Optimal location and parameter setting of TCSC by both Genetic Algorithm and Particle Swarm optimization", in Proc. 2007 2nd IEEE Conference on Industrial Electronics and Applications, ICIEA, pp. 1141-1147, 2007.
7. Prashant Kumar Tiwari, and Yog Raj Sood, "Optimal location of FACTS devices in power system using Genetic Algorithm", in Proc. 2009 World Congress on Nature and Biologically inspired Computing, NaBIC 2009, pp.1034-1040.
8. Marouani L, Guesri T., Abdallah H. H., and Ouali A., "Optimal location of multiple FACTS devices for multiple contingencies using genetic algorithms", in Proc. 2011 8th international MultiConference on Systems, Signals and Devices (SSD), pp. 1-7.
9. R. Benabid, M. Boudour, and M. A. Abido, "Optimal placement of FACTS devices for multi-objective voltage stability problem", in Proc. 2009 Power Systems Conference and Exposition, PSCE '09, pp.I-I.
10. Sundareswaran K., Nayar P. S., and etal., "Optimal placement of FACTS devices using probabilistic particle swarm optimization", in Proc. 2011 IEIE PES innovative Smart Grid Technologies, ISIGT India, pp. 53-58.
11. Stom R., and Price K., " Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces", Technical report Int Computer Science Institute, Berkeley, 1995.
12. Price KV., Stom R., Lampinen JA., "Differential evolution: a practical approach to global optimization", Berlin-Heidelberg, Springer-Verlag, 2005.
13. Price KV., "An introduction to differential evolution", In come Come D, Dorigo M, Glover M., editors, New ideas in optimization, London, McGraw-Hill, pp. 79-108, 1999.
14. Wong ChungCh, Duan KP, and Parallel XL,” Optimal reactive power flow based on cooperative co-evolutionary differential evolution and power system decomposition”, IEEE Transactions on Power Systems, Vol. 22, pp. 249-257, 2007.
15. Husam T. Shabeen, Ghaemeeen I. Rashid, and SJ. Cheng,” Optimal location and parameter setting of UPFC for enhancing power system security based on Differential Evolution algorithm”, Electrical Power and Energy Systems, Vol. 33, pp.94-105, 2011.
16. Xiao-Ping Zhang, Christian Rehtanz, and Bikash Pal, Flexible AC Transmission Systems: Modelling and Control, Springer, 2006.
17. C. R. Fuerte-Esquivel, and E. Acha,” Unified power flow controller: a critical comparison of Newton-Raphson UPFC algorithms in power flow studies”, IEE Proceedings Generation Transmission and Distribution, Vol. 144, pp.437-444, 1997.
18. K. Habur, and D. Oleary, "FACTS- Flexible AC Transmission Systems, for Cost Effective and Reliable Transmission of Electrical energy"; http://www.siemens.com/TransSys/pdf/ CostEffectiveReliahTrans.pdf
19. IEEE 14-Bus Test System Data. http://www.ee.washington.edu/research/pstcap/pf14/pg_tca4bus.htm
20. IEEE 30-Bus Test System Data. http://www.ee.washington.edu/research/pstcap/pf/PL_tca30bus.htm.

Authors Profile

Million Alemayhu Bedasso, Received the Bachelor of engineering degree in electrical engineering from Bahir Dar University, Bahir Dar, Ethiopia 2012, and M-Tech in power system and Automation from Defense University, Deber Zeit, Ethiopia 2014. He is currently a research scholar in the department of Electrical Engineering, Andhra University Visakhapatnam, India. His research interests including power system, power system dynamics and voltage stability, multi objective optimal operation solution, power system studies, FACT devices and renewable integration in power system.

Dr. R. Srinu Naik, Received the B-Tech, BEC, Acharya Nagarjuna University, India 2003, and M-Tech from Andhra University Vishakhapatnam, India 2005, and the Ph.D. Degree in electrical engineering from Andhra University 2015. He is currently assistant professor in the department of electrical engineering Andhra University. His research interests, including power system, power system dynamics and voltage stability, multi objective optimal operation solution, power system studies, FACT devices and renewable integration in power system and He is also a member of IEEE.