Abstract. We investigate an extended cosmological model motivated by the asymptotic safety of gravitational field theory, in which the matter and radiation densities and the cosmological constant receive a correction parametrized by the parameters δ_G and δ_Λ, leading to that both the evolutions of the matter and radiation densities and the cosmological constant slightly deviate from the standard forms. Here we explain this model as a scenario of vacuum energy interacting with matter and radiation. We consider two cases of the model: (i) ΛCDM with one additional free parameter δ_G, with δ_G and δ_Λ related by a low-redshift limit relation and (ii) eΛCDM with two additional free parameters δ_G and δ_Λ that are independent of each other. We use two data combinations, CMB+BAO+SN (CBS) and CMB+BAO+SN+H_0 (CBSH), to constrain the models. We find that, in the case of using the CBS data, neither ΛCDM nor eΛCDM can effectively alleviate the H_0 tension. However, it is found that using the CBSH data the H_0 tension can be greatly relieved by the models. In particular, in the case of eΛCDM, the H_0 tension can be resolved to 0.71σ. We conclude that as an interacting dark energy model, eΛCDM is much better than $\Lambda(t)$CDM in the sense of both relieving the H_0 tension and fitting to the current observational data.
1 Introduction

The Hubble constant H_0 is the first cosmological parameter, which was introduced by Edwin Hubble to describe the current expansion of the universe, and it has been measured for about one century. Precisely measuring the value of the Hubble constant is extremely important for cosmology because it determines the absolute scale of the universe. But with the development of precision cosmology, cosmologists now face an increasingly puzzling problem, i.e., the discrepancy between the value of H_0 inferred from the early universe using the cosmic microwave background (CMB) data observed by the Planck satellite assuming a base ΛCDM cosmology [1] and the one directly measured by using the Cepheid-supernovae distance ladder [2]. Based on the CMB measurements from Planck TT,TE,EE+lowE+lensing [1] and baryon acoustic oscillation (BAO) measurements from galaxy redshift surveys [3–5], it is found that in the base ΛCDM model we have $H_0 = (67.36 \pm 0.54) \text{ km s}^{-1} \text{ Mpc}^{-1}$ [1]. On the other hand, the direct measurement of the Hubble constant from the Hubble Space Telescope using the distance ladder method gives the result of $H_0 = (74.03 \pm 1.42) \text{ km s}^{-1} \text{ Mpc}^{-1}$, which shows a 4.4σ tension in statistical significance with the early-universe result from the Planck CMB measurement (for some reviews on this tension, see Refs. [6–11]). The reasons for this tension are usually ascribed to systematic errors or new physics.

To solve this problem, a number of articles have attempted to address the systematic errors in these two methods [12–18], but no reliable evidence is found and the tension actually still exists. Therefore, it is of great importance to measure the Hubble constant in other independent ways. In fact, besides the Cepheid-supernova distance ladder, there are also two distance ladders, i.e., the ones using Mira variables [19] or red giants [20] instead of Cepheids to calibrate type Ia supernovae (SNIa). Other late-universe measurement methods also include the observations of strong lensing time delays [21], water masers [22], surface brightness fluctuations [23], gravitational waves from neutron star mergers [24], different ages of galaxies as cosmic clocks [25, 26], baryonic Tully-Fisher relation [27], and so forth. All these observations show that the late-universe estimations of H_0 disagree with the prediction from the Planck CMB observation in conjunction with the base ΛCDM cosmology at the 4–6σ level.

On the other hand, there have been lots of theoretical ideas [28–42] to address the Hubble tension by extending the standard model of cosmology. For example, in the aspect
of the late universe, one may consider dynamical dark energy instead of the cosmological
costant, or the interaction between dark energy and dark matter, and in the aspect of the
early universe, one may consider the extra relativistic degrees of freedom, early dark energy,
or the self-interaction among neutrinos. A comprehensive analysis of many typical extended
cosmological models [43] shows that among these extended models actually no one can truly
resolve the Hubble tension.

In this paper, we wish to investigate a new extension to the standard ΛCDM model,
which is motivated by the asymptotic safety of gravitational field theory [44], from the perspec-
tive of how to relieve the H_0 tension. As the universe expands and the energy (time)
scale varies, the gravitational coupling parameter G and the cosmological constant Λ will
vary following scaling laws and approach to the present values G_0 and Λ_0. This implies
that in the normal Friedmann equations of ΛCDM the matter (radiation) term Ω_m, r
and the cosmological constant term Ω_Λ could receive an additional scaling factor $(1 + z)^\delta$
with $\delta \ll 1$. To constrain the model parameter δ and address the
H_0 tension issue, we adopt the
combination of the latest cosmological datasets CMB + BAO + SN with or without the H_0
prior from the local measurement, compared to the ΛCDM model and some other typical
cosmological models. In our analysis, we fit all the models to the same datasets and examine
the H_0 tension by taking ΛCDM as a benchmark model.

The structure of this paper is arranged as follows. In Section 2, we present the description
of the new extended cosmological model. Section 3 briefly describes the data and methods
used in this work. The results and related analysis are presented in Section 4. We test the
robustness of results in Section 5. Conclusion is given in Section 6.

2 Motivation and cosmological models

The ΛCDM model has usually been viewed as a standard model of cosmology at the
present. In the ΛCDM model, the expansion history of the universe, described by the Hubble
expansion rate, is given by the Friedmann equation,

$$H^2 = \frac{8\pi G}{3}(\rho_m + \rho_r + \rho_\Lambda),$$

(2.1)

where H is the Hubble parameter, G is the gravitational constant, and the densities of matter
and radiation evolve with redshift as $\rho_{m,r} = \rho_{m,r}^0(1 + z)^{3(1 + w_{m,r})}$, with their equations of state
$w_m = 0$ for non-relativistic particles and $w_r = 1/3$ for relativistic particles. The cosmological
constant Λ describes the vacuum energy density, which serves as dark energy in this model.
The vacuum energy density is given by $\rho_\Lambda = \rho_\Lambda^0 = \Lambda/(8\pi G_0)$, which has a negative pressure
with the equation of state $p_\Lambda = w_\Lambda \rho_\Lambda$, with $w_\Lambda = -1$. Note that here in fact we use Λ to
denote the “effective” cosmological constant $\Lambda \approx 4.2 \times 10^{-66}$ eV$^2 = 2.8 \times 10^{-122}$ m_{Pl}^2
with m_{Pl} the Planck mass. Actually, the puzzling problem of why the original vacuum energy
density could precisely cancel with the “bare” cosmological constant leading to such a small
value of Λ is still an open question, also known as the cosmological constant problem, which
is usually viewed to be closely relevant to quantum gravity, and we will not deeply discuss
this issue in this paper.

Here we present a new extended cosmological model. The principle of the new model
discussed in this work is the same as in Ref. [44], and we assume that the gravitational
constant varies with redshift. As a consequence, the cosmological constant Λ will also change
with the redshift because of this assumption. In this paper, the quantities with subscript or
superscript “0” stand for their present values \((z = 0)\), i.e., \(G_0\) and \(\Lambda_0\) are the present values of gravitational constant and cosmological constant, respectively, while \(\rho_{m0}\), \(\rho_{r0}\), and \(\rho_{\Lambda0}\) are the densities of matter, radiation, and dark energy at the present, respectively.

As one of the fundamental theories for interactions in nature, the classical Einstein theory of gravity, which plays an essential role in the standard model of modern cosmology (ΛCDM), should be realized in the scaling-invariant domain of a fixed point of its quantum field theory. It was suggested by Weinberg [45] that the quantum field theory of gravity regularized with an ultraviolet (UV) cutoff might have a non-trivial UV-stable fixed point and asymptotic safety, namely the renormalization group (RG) flows are attracted into the UV-stable fixed point with a finite number of physically renormalizable operators for the gravitational field. Ref. [44] studied the asymptotic safety of the quantum field theory of gravity, namely the gravitational “constant” \(G\) and the cosmological “constant” \(\Lambda\) are time varying, approaching to the point \((G_0, \Lambda_0)\) where two relevant operators of Ricci scalar term \(R\) and cosmological term \(\Lambda\) of classical Einstein gravity are realized. This implies the “scaling laws” (ansatz) \(G/G_0 = (1 + z)^{-\delta G}\) and \(\Lambda/\Lambda_0 = (1 + z)^{\delta \Lambda}\), where the two “critical exponents” (parameters) \(\delta G \ll 1\) and \(\delta \Lambda \ll 1\) are related. This motivates us to extend the ΛCDM model by assuming

\[
\begin{align*}
(G/G_0)\rho_{m,r} &= \rho_{m,r}^0 (1 + z)^{3(1+w_{m,r})-\delta G}, \quad (2.2) \\
(G/G_0)\rho_{\Lambda} &= \rho_{\Lambda}^0 (1 + z)^{\delta \Lambda}, \quad (2.3)
\end{align*}
\]

where \(w_{m} \approx 0\), \(w_r \approx 1/3\), and \(\rho_{\Lambda} \equiv \Lambda/(8\pi G)\) is time varying, but \(w_{\Lambda} = -1\) still holds. The parameter \(\delta G\) is the same for the matter \(\rho_m\) and radiation \(\rho_r\) terms, assuming the deviation is only due to time-varying \(G\). Two Friedmann equations are extended to

\[
\begin{align*}
E^2(z) &= \Omega_m (1 + z)^{(3-\delta G)} + \Omega_r (1 + z)^{(4-\delta G)} + \Omega_{\Lambda} (1 + z)^{\delta \Lambda}, \quad (2.4) \\
(1 + z) \frac{d}{dz} E^2(z) &= 3\Omega_m (1 + z)^{(3-\delta G)} + 4\Omega_r (1 + z)^{(4-\delta G)}, \quad (2.5)
\end{align*}
\]

where \(E(z) \equiv H(z)/H_0\). Here, \(\Omega_m\), \(\Omega_r\), and \(\Omega_{\Lambda} = 1 - \Omega_m - \Omega_r\) are the present-day fractional energy densities of matter, radiation, and dark energy, respectively. Eq. (2.5) comes from the generalized energy conservation law [44] for varying gravitational and cosmological “constants” interacting with matter and radiation. It reduces to the matter conservation in usual Friedmann equations for constants \(\Lambda\) and \(G\). Substituting Eq. (2.4) to Eq. (2.5), we find the relation of the parameters \(\delta G\) and \(\delta \Lambda\),

\[
\delta \Lambda \approx \delta G \left(\frac{\Omega_m + \Omega_r}{\Omega_{\Lambda}} \right) \approx 0.47 \delta_G, \quad (2.6)
\]

in the low redshift \((z \to 0)\) limit. Nonzero \(\delta_{G,\Lambda}\) show that dark energy and matter interact and can be converted from one to another. They obey the total energy conservation (2.5). The relations of small parameters \(\delta_{G,\Lambda}\) to other interacting models of dark energy and matter can be found in Eqs. (10)–(15) of Ref. [46].

Notwithstanding the absence of the detailed and explicit interpretation of such a modelling \(E(z)\), we are in the position of providing some insights into possible physics. The parameters \(\delta G\) and \(\delta \Lambda\) effectively represent the possible physical effects or combinations of these effects in addition to those of the ΛCDM model, such as: small time-varying gravitational constant \(G\) and inhomogeneity of matter distribution in different redshift \(z\); the transition from the radiation-dominated era to the matter-dominated era, and vice versa,
depending on species of normal particles or dark matter particles; and massive particle production and annihilation due to the interaction between dark energy (vacuum energy) and other cosmological components [47, 48]. \(\delta G > 0 \) or \(\delta G < 0 \) implies that the decrease of \(\rho_{m,r} \) is slower or faster than that of \(\Lambda_{CDM} \). Actually, we can treat the model as a kind of interacting dark energy (vacuum energy) model, and thus the effects of \(\delta G \neq 0 \) and \(\delta \Lambda \neq 0 \) in the late universe are expected. Here, we wish to emphasize the usage of the terminology of “vacuum energy” in the following of this work; actually we exactly refer to “vacuum energy” with the case of \(w = -1 \).

In general, the value of the parameter \(\delta G \) can be different for matter \((\rho_m) \) and radiation \((\rho_r) \) terms in \(E^2(z) \) in Eq. (2.4), since dark energy should interact differently with matter and radiation. Therefore, we consider in this article two cases: (i) \(\delta G, \Lambda \) related by the relation Eq. (2.6) and (ii) \(\delta G, \Lambda \) independent from each other. Henceforth, for a short notation and readers’ convenience, the one-parameter extended model for the first case with the relation (2.6) is called the “varying \(\Lambda \)” \(\Lambda_{CDM} \), represented by the symbol \(\tilde{\Lambda}_{CDM} \). Whereas, because the second case has one more parameter than the \(\tilde{\Lambda}_{CDM} \) model, the two-parameter extension is called the extended \(\tilde{\Lambda}_{CDM} \), abbreviated as e\(\tilde{\Lambda}_{CDM} \).

In this article, we compare the \(\tilde{\Lambda}_{CDM} \) model with other one-parameter extensions of the \(\Lambda_{CDM} \) model, i.e., \(w_{CDM} \) and \(\Lambda(t)_{CDM} \). Besides, we compare the e\(\tilde{\Lambda}_{CDM} \) model with the Chevallier-Polarski-Linder (CPL) model, both are two-parameter extensions to \(\Lambda_{CDM} \). These models used for comparison are summarized as follows:

1. the \(w_{CDM} \) model [49, 50]: The equation-of-state parameter \(w \) is treated as a constant free parameter instead of \(w = -1 \). We adopt \(E^2(z) = \Omega_m(1+z)^3 + \Omega_r(1+z)^4 + \Omega_{\Lambda}(1+z)^3(1+w) \).

2. the \(\Lambda(t)_{CDM} \) model [51–53]: The vacuum energy with \(w_{\Lambda} = -1 \) serves as dark energy, and the interaction between dark energy (vacuum energy) and cold dark matter is described by the equations \(\dot{\rho}_{de} = Q \) and \(\dot{\rho}_c = -3H\rho_c - Q \). Here, the subscript “de” is for dark energy and the subscript “c” is for cold dark matter. The interaction term \(Q = -\beta H\rho_c \) determines characteristics of energy transfer between dark energy and dark matter, and \(\beta \) is a dimensionless coupling parameter.

3. the CPL model [49, 50]: We have \(w(a) = w_0 + w_a(1 - a) \), where \(w_0 \) and \(w_a \) are free parameters, and \(E^2(z) = \Omega_m(1+z)^3 + \Omega_r(1+z)^4 + \Omega_{\Lambda}(1+z)^3(1+w_0+w_a)\exp(-\frac{3w_a z}{1+z}) \).

There are three interacting dark energy models, i.e., the \(\tilde{\Lambda}_{CDM} \) model, the e\(\tilde{\Lambda}_{CDM} \) model, and the \(\Lambda(t)_{CDM} \) model, considered in this paper. The former two models are motivated from the time-varying gravitational “constant” \(G \) and the cosmological “constant” \(\Lambda \), which effectively lead to the interaction between dark energy and matter. The last one is a phenomenological fluid model with an assumptive direct interaction between dark energy and dark matter, whose interaction term \(Q \) is not derived from first principles and its form is purely phenomenological and for the convenience of calculation.

In the next section, we will use the observational datasets to constrain the \(\tilde{\Lambda}_{CDM} \), e\(\tilde{\Lambda}_{CDM} \), \(w_{CDM} \), \(\Lambda(t)_{CDM} \), and CPL models from the point of view of alleviating the \(H_0 \) tension. The results are compared with the base 6-parameter \(\Lambda_{CDM} \) model that is taken as a benchmark model in this work.

3 Data and method

We summarize the observational data used in this work below.

1. CMB: In this work, we use the distance prior data from Planck 2018 [54] for convenience.
from the Data Release 12 of Baryon Oscillation Spectroscopic Survey [5].

\[H_0 \text{ [km s}^{-1}\text{ Mpc}^{-1}] \]

\[\Omega_m \text{, } 67.70^{+0.44}_{-0.43}, 68.25^{+0.87}_{-0.89}, 67.49^{+0.81}_{-0.85}, 66.95^{+1.39}_{-1.35} \]

Table 1. The constraint results of parameters in the ΛCDM model and the one-parameter extension models with the CBS data.

Model	ΛCDM	wCDM	Λ(t)CDM	˜ΛCDM
Ω_b	0.0489 ± 0.0005	0.0480^{+0.0013}_{-0.0012}	0.0491^{+0.0010}_{-0.0009}	0.0499^{+0.0019}_{-0.0018}
Ω_c	0.2638 ± 0.0055	0.2606^{+0.0071}_{-0.0067}	0.2622^{+0.0094}_{-0.0086}	0.2610^{+0.0072}_{-0.0071}
w	−	−1.0256^{+0.0364}_{-0.0360}	−	−
β	−	−	0.0022^{+0.0063}_{-0.0060}	−
δ_G	−	−	−	0.0019^{+0.0032}_{-0.0032}

Table 2. The constraint results of parameters in the ΛCDM model and the one-parameter extension models with the CBSH data.

Model	ΛCDM	wCDM	Λ(t)CDM	˜ΛCDM
Ω_b	0.0483 ± 0.0005	0.0458^{+0.0011}_{-0.0010}	0.0481 ± 0.0009	0.0452^{+0.0013}_{-0.0012}
Ω_c	0.2569^{+0.0052}_{-0.0050}	0.2491^{+0.0058}_{-0.0057}	0.2600^{+0.0093}_{-0.0088}	0.2688^{+0.0069}_{-0.0072}
w	−	−1.0832^{+0.0324}_{-0.0339}	−	−
β	−	−	−0.0030 ± 0.0062	−
δ_G	−	−	−	−0.0062^{+0.0025}_{-0.0023}

Model	ΛCDM	wCDM	Λ(t)CDM	˜ΛCDM
Ω_m	0.3127 ± 0.0059	0.3087^{+0.0082}_{-0.0077}	0.3113^{+0.0097}_{-0.0088}	0.3109^{+0.0066}_{-0.0065}

2. BAO: The BAO data used in this work include five data points from three observations, i.e., \(z_{\text{eff}} = 0.016 \) from the 6dF Galaxy Survey [3]; \(z_{\text{eff}} = 0.15 \) from Main Galaxy Sample of Data Release 7 of Sloan Digital Sky Survey [4]; \(z_{\text{eff}} = 0.38 \), \(z_{\text{eff}} = 0.51 \), and \(z_{\text{eff}} = 0.61 \) from the Data Release 12 of Baryon Oscillation Spectroscopic Survey [5].
Figure 1. Observational constraints on H_0 and Ω_m (68.3% and 95.4% confidence level) in the ΛCDM, wCDM, $\Lambda(t)$CDM, and $\tilde{\Lambda}$CDM models using the CBS data. Here, H_0 is in units of km s$^{-1}$ Mpc$^{-1}$.

3. SNIa: We employ the SNIa Pantheon compilation [55] containing 1048 data points.

4. H_0: The measurement result of $H_0 = (74.03 \pm 1.42)$ km s$^{-1}$ Mpc$^{-1}$ from distance ladder given by the SH0ES team [2] is used as a Gaussian prior.

We use the Markov-chain Monte Carlo (MCMC) package CosmoMC [56] to perform the cosmological fits. We consider two data combinations in this work, namely, CMB+BAO+SN (abbreviated as CBS) and CBS+H_0 (abbreviated as CBSH). It should be emphasized that Bayesian joint analyses cannot automatically show inconsistencies between datasets. However, for the purpose of investigating whether our models can relieve the tension or not, we still combine the local H_0 measurement with the CMB+BAO+SN dataset to perform joint analyses as conducted by some other researches [57–60].

Since the cosmological models have different numbers of free parameters, using only χ^2_{min} values to compare models is obviously unfair. Thus we use Akaike information criterion (AIC) and Bayesian information criterion (BIC) to perform some punishments to the models having more parameters, which embodies the principle of Occam’s Razor to some extent. We adopt AIC and BIC [61–64] given by

$$
\text{AIC} \equiv \chi^2 + 2d, \quad \text{BIC} \equiv \chi^2 + d \ln N, \quad (3.1)
$$

where d is the number of free parameters and N is the number of observational data points.

The χ^2 functions for the two data combinations are given by

$$
\chi^2 = \chi^2_{\text{CMB}} + \chi^2_{\text{BAO}} + \chi^2_{\text{SN}}, \quad (3.2)
$$

$$
\chi^2 = \chi^2_{\text{CMB}} + \chi^2_{\text{BAO}} + \chi^2_{\text{SN}} + \chi^2_{H_0}. \quad (3.3)
$$
Figure 2. Observational constraints on H_0 and Ω_m (68.3% and 95.4% confidence level) in the ΛCDM, wCDM, $\Lambda(t)$CDM, and $\tilde{\Lambda}$CDM models using the CBSH data combination. Here, H_0 is in units of km s$^{-1}$ Mpc$^{-1}$.

The ΛCDM model is taken as a benchmark model in the comparison, and thus its AIC and BIC values are set to be zero. For other cosmological models, only the differences from ΛCDM, $\Delta\text{AIC}=\Delta\chi^2+2\Delta d$ and $\Delta\text{BIC}=\Delta\chi^2+\Delta d\ln N$, are important and should be considered.

4 Results and discussion

We show the posterior distributions of cosmological parameters in the ΛCDM model and the one-parameter extensions to ΛCDM in Figs. 1–3 and report the detailed results in Tabs. 1 and 2.

Fig. 1 and Table 1 show the results of using the CBS data to constrain the ΛCDM model and its one-parameter extensions, i.e., wCDM, $\Lambda(t)$CDM, and $\tilde{\Lambda}$CDM. We can see that, in this case, only wCDM can slightly alleviate the H_0 tension, with the best-fit value of H_0 equal to 68.25 km s$^{-1}$ Mpc$^{-1}$; $\Lambda(t)$CDM and $\tilde{\Lambda}$CDM even get smaller H_0 values (best-fit values), and they are equal to $67.49^{+0.81}_{-0.81}$ km s$^{-1}$ Mpc$^{-1}$ and $66.95^{+1.29}_{-1.35}$ km s$^{-1}$ Mpc$^{-1}$, respectively. This is because using the CBS data leads to the results (central values) of $w < -1$ in wCDM, $\beta > 0$ in $\Lambda(t)$CDM, and $\delta_G > 0$ in $\tilde{\Lambda}$CDM. It is known that the phantom energy case of $w < -1$ can lead to a larger H_0. The cases of $\beta > 0$ in $\Lambda(t)$CDM and $\delta_G > 0$ in $\tilde{\Lambda}$CDM do not realize an effective phantom, but on the contrary they actually realize an effective quintessence, and thus in this situation $\Lambda(t)$CDM and $\tilde{\Lambda}$CDM cannot effectively alleviate the H_0 tension. We can see from Fig. 1 that basically both $\Lambda(t)$CDM and $\tilde{\Lambda}$CDM are in
Figure 3. Observational constraints on H_0, Ω_m, and δ_G (68.3% and 95.4% confidence level) in the ΛCDM model using the CBS and CBSH data combinations. Here, H_0 is in units of km s$^{-1}$ Mpc$^{-1}$.

good agreement with the ΛCDM cosmology in the case of CBS constraint. In addition, from Table 1 we find that ΛCDM is the best one in fitting to the CBS data, and the other three extension models actually cannot provide a good fit to the CBS data, which can be seen from their large values of ΔAIC and ΔBIC.

However, when the H_0 direct measurement from the SH0ES team is added in the data combination, the situation will be dramatically changed. Now, we consider the CBS + H_0 data combination (also abbreviated as CBSH), and the constraint results are shown in Fig. 2 and Table 2. We find that in this case wCDM and ΛCDM can yield larger values of H_0, but $\Lambda(t)$CDM still cannot make H_0 larger. Actually, even though the H_0 prior is involved in the data combination, one cannot detect the coupling between vacuum energy and cold dark matter in $\Lambda(t)$CDM; the constraint on β is $\beta = -0.0030 \pm 0.0062$. Therefore, $\Lambda(t)$CDM cannot help alleviate the H_0 tension (the tension is still in 3.36σ). Although wCDM slightly prefers a phantom energy with $w = -1.0832^{+0.0324}_{-0.0339}$ and the anti-correlation between w and H_0 can help relieve the H_0 tension, it still cannot lead to a large enough value of H_0; it gives $H_0 = 69.88^{+0.77}_{-0.76}$ km s$^{-1}$ Mpc$^{-1}$, and the tension is still in 2.57σ. Evidently, the focus is on ΛCDM. When the H_0 prior is added in the data combination, ΛCDM yields a much larger H_0, i.e., $H_0 = 70.69^{+1.08}_{-1.06}$ Mpc$^{-1}$, leading to the H_0 tension enormously relieved (the tension is now in 1.88σ). This is owing to the fact that a non-zero δ_G is obtained in this case, i.e., $\delta_G = -0.0062^{+0.0025}_{-0.0023}$. A negative δ_G implies that the “cosmological constant” in $\tilde{\Lambda}$CDM becomes larger and larger with the cosmological evolution, and thus actually it is
Figure 4. Observational constraints on H_0 and Ω_m (68.3% and 95.4% confidence level) in the ΛCDM, CPL, and eΛCDM models using the CBS data. Here, H_0 is in units of km s$^{-1}$ Mpc$^{-1}$.

an effective phantom providing stronger repulsive force driving the cosmic acceleration. The faster late-time cosmic expansion means a larger H_0, and thus a more negative δ_G will yield a larger H_0.

In Fig. 3, we compare the constraints from CBS and CBSH on ΛCDM. We can clearly see that, when the H_0 prior is added, the situation is dramatically changed, as the value of δ_G is changed from the case of consistent with 0 to the one with a negative value. The anti-correlation between δ_G and H_0 is also explicitly shown, and we can immediately find that a negative δ_G leads to a high value of H_0. In the cases of CBS and CBSH, the H_0 tension is in 3.59σ and 1.88σ, respectively. In addition, it is easily found that, in the CBS case, ΛCDM is not favored, but in the CBSH case, ΛCDM is strongly preferred (see the negative values of ΔAIC and ΔBIC in Table 2). Therefore, for ΛCDM, we find that δ_G is very sensitive to H_0, and the local measurement of H_0 in the datasets becomes a dominant factor in the cosmological fit. But for $\Lambda(t)$CDM, the coupling parameter β is not sensitive to H_0. We can thus conclude that ΛCDM as a kind of interacting dark energy model behaves much better than $\Lambda(t)$CDM in the sense of resolving the H_0 tension.

Next, let us see the situation of the two-parameter extension models, i.e., the CPL and eΛCDM models. The main results are shown in Figs. 4–6 and Table 3. The comparison of CPL and eΛCDM is given in Figs. 4 and 5; Fig. 4 shows the case of CBS and Fig. 5 shows the case of CBSH. From Fig. 4, we find that in the CBS case neither CPL nor eΛCDM can effectively alleviate the H_0 tension. In this case in eΛCDM both δ_G and δ_Λ are well consistent with 0, and thus the value of H_0 cannot be increased (see Table 3 for detailed results). From Fig. 5, we find that, once the H_0 prior is added in the data combination, the
Figure 5. Observational constraints on \(H_0\) and \(\Omega_m\) (68.3% and 95.4% confidence level) in the \(\Lambda\text{CDM},\) CPL, and \(\text{e}\tilde{\Lambda}\text{CDM}\) models using the CBSH data. Here, \(H_0\) is in units of \(\text{km s}^{-1} \text{Mpc}^{-1}\).

situation for \(\text{e}\tilde{\Lambda}\text{CDM}\) is changed dramatically. In this case, we have \(\delta_G = -0.0066^{+0.0023}_{-0.0022}\) and \(\delta_\Lambda = -0.2832^{+0.1025}_{-0.0966}\), showing the results of \(\delta_G < 0\) and \(\delta_\Lambda < 0\) at the more than 2\(\sigma\) level. Hence, \(\text{e}\tilde{\Lambda}\text{CDM}\) in the CBSH case can also yield an effective phantom behavior, which leads to a high value of \(H_0\), i.e., \(H_0 = 72.69^{+1.23}_{-1.28} \text{ km s}^{-1} \text{ Mpc}^{-1}\). Therefore, in the CBSH case, \(\text{e}\tilde{\Lambda}\text{CDM}\) can well resolve the \(H_0\) tension, with the tension relieved to 0.71\(\sigma\) level. The comparison of the values of \(\Delta\text{AIC}\) and \(\Delta\text{BIC}\) is explicitly shown in Table 3, and we can see that the \(\text{e}\tilde{\Lambda}\text{CDM}\) model in the CBSH case is the best one (with \(\Delta\text{AIC} = -10.250\) and \(\Delta\text{BIC} = -0.323\)) in the sense of both relieving the \(H_0\) tension and fitting to the observational data. In Fig. 6, for the constraints on \(\text{e}\tilde{\Lambda}\text{CDM}\), we make a comparison for the cases of CBS and CBSH. From the posterior distributions of \(\delta_G,\) \(\delta_\Lambda,\) and \(H_0\), we can clearly see their shifts after the addition of the \(H_0\) prior into the data combination.

5 Robustness of results

There may still be some concerns about the robustness of our results. The first concern could arise from the belief that baryons and radiation should receive less modifications than cold dark matter, i.e., the interaction between dark energy and radiation (or baryons) is tightly constrained. Using the CBS and CBSH datasets, we make several attempts to study how different values of \(\delta_G\) associate to the matter and radiation terms in \(E^2(z)\) in Eq. (2.4), to illustrate the effects of different components on the results. Indeed, we find that the coupling of cold dark matter and dark energy plays an important role in the interaction between matter and dark energy. Therefore, in this article, we present the results of the particular
Figure 6. Observational constraints (68.3% and 95.4% confidence level) on H_0, Ω_m, δ_G, and δ_Λ in the $e\Lambda$CDM model using the CBS and CBSH data. Here, H_0 is in units of km s$^{-1}$ Mpc$^{-1}$.

Namely, we only consider the corrections on the evolutions of cold dark matter and dark energy, and assume that δ_G and δ_Λ are independent of each other, so the resulting model can be considered as a limiting case of the $e\Lambda$CDM model. Hereafter, this limiting $e\Lambda$CDM model is abbreviated as $l\Lambda$CDM.

The constraint results using the CBS and CBSH datasets are listed in Table 4. The $l\Lambda$CDM model gives $H_0 = (68.06 \pm 1.36)$ km s$^{-1}$ Mpc$^{-1}$ with the CBS dataset and a relatively larger value $H_0 = 71.10^{+0.94}_{-1.07}$ km s$^{-1}$ Mpc$^{-1}$ with the CBSH dataset. The H_0 tension is relieved to 1.68σ with the CBSH dataset. This result implies that the interaction of dark energy and cold dark matter plays a dominant role in the background evolution of the $e\Lambda$CDM model. Therefore, our models can still be effective in resolving the H_0 tension, even if the modifications of the evolutions of radiation and baryons are negligible.

The second concern is that we used the CMB distance prior to constrain the models rather than the full power spectrum of Planck 2018. In the following, we test the difference
of these two data in constraining the eΛCDM model. We use the MontePython code [65] to perform the MCMC analysis. We also use the two data combinations as above, i.e., CBS (full spectrum) and CBSH (full spectrum), in which the *Planck* TT,TE,EE+lowE+lensing data [1] are used as the CMB data, and other cosmological data are still the same as in Section 3.

We list the results in Table 5 and compare them with the previous results using distance prior of CMB in Table 3. We find that the mean values of parameters slightly shift and the errors greatly shrink. For the eΛCDM model, the CBS and CBS (full spectrum) datasets can give $H_0 = 67.71_{-2.40}^{+2.64}$ km s$^{-1}$ Mpc$^{-1}$ and $H_0 = (68.17 \pm 0.87)$ km s$^{-1}$ Mpc$^{-1}$, respectively; the CBSH and CBSH (full spectrum) datasets can give $H_0 = 72.69_{-1.28}^{+1.23}$ km s$^{-1}$ Mpc$^{-1}$ and $H_0 = (73.05 \pm 0.56)$ km s$^{-1}$ Mpc$^{-1}$, respectively. These results show that although the full

Data	CBS	CBSH		
Ω_b	0.0481$^{+0.0012}_{-0.0013}$	0.0488$^{+0.0036}_{-0.0035}$	0.0457$^{+0.0011}_{-0.0010}$	0.0425$^{+0.0015}_{-0.0014}$
Ω_c	0.2603$^{+0.0073}_{-0.0069}$	0.2604$^{+0.0072}_{-0.0073}$	0.2478$^{+0.0066}_{-0.0054}$	0.2607$^{+0.0072}_{-0.0073}$
w_0	$-1.0439^{+0.0964}_{-0.0846}$	$-1.1216^{+0.0930}_{-0.0848}$	$-1.1216^{+0.0930}_{-0.0848}$	$-1.1216^{+0.0930}_{-0.0848}$
w_a	0.0823$^{+0.2852}_{-0.3085}$	$-0.0525^{+0.1365}_{-0.1466}$	$-0.1517^{+0.3113}_{-0.3085}$	$-0.0666^{+0.0023}_{-0.0022}$
δ_G	$0.0009^{+0.0042}_{-0.0043}$	$-0.0009^{+0.0042}_{-0.0043}$	$-0.0009^{+0.0042}_{-0.0043}$	$-0.0009^{+0.0042}_{-0.0043}$
δ_A	$-0.0525^{+0.1365}_{-0.1466}$	$-0.0525^{+0.1365}_{-0.1466}$	$-0.0525^{+0.1365}_{-0.1466}$	$-0.0525^{+0.1365}_{-0.1466}$

Table 3. The constraint results of parameters in the two-parameter extension models with the CBS and CBSH data.

Data	CBS	CBSH		
H_0 [km s$^{-1}$ Mpc$^{-1}$]	$68.25^{+0.90}_{-0.86}$	$67.71^{+2.64}_{-2.40}$	$69.98^{+0.71}_{-0.81}$	$72.69^{+1.23}_{-1.28}$
Ω_m	$0.3084^{+0.0083}_{-0.0080}$	$0.3092^{+0.0078}_{-0.0081}$	$0.2936^{+0.0075}_{-0.0082}$	$0.3031^{+0.0073}_{-0.0073}$

Table 4. The constraint results of δ_G, δ_A, H_0, and Ω_m in the eΛCDM model with the CBS and CBSH datasets.
power spectrum data of CMB can provide more information than the distance prior, the main conclusions still hold.

There is another tension between the Planck base-ΛCDM cosmology and galaxy clustering of the matter fluctuations. As a result of the full CMB anisotropies data, the amplitude of the matter power spectrum σ_8 and its related parameter $S_8 = \sigma_8 (\Omega_m/0.3)^{0.5}$ can be constrained and the σ_8/S_8 tension can also be evaluated.

We discuss the σ_8/S_8 tension in the CBSH (full spectrum) dataset, because the eΛCDM model can effectively relieve the H_0 tension in this dataset. The CBSH (full spectrum) dataset gives $\sigma_8 = 0.8099 \pm 0.0060$ and $S_8 = 0.8194 \pm 0.0101$ in the ΛCDM model and $\sigma_8 = 0.8720 \pm 0.0090$ and $S_8 = 0.8310 \pm 0.0110$ in the eΛCDM model. We find that the value of σ_8 in the eΛCDM model increases than that in the ΛCDM model, but the value of S_8 only slightly changes because Ω_m tends to decrease in the eΛCDM model. We compare with the results from the combination of the KiDS/Viking and SDSS data, $\sigma_8 = 0.760^{+0.025}_{-0.020}$ and $S_8 = 0.766^{+0.020}_{-0.014}$ [66]. In the ΛCDM model, the σ_8 and S_8 tensions are in 2.36σ and 2.44σ, respectively, while the ones in the eΛCDM model are in 4.26σ and 3.21σ, respectively.

As a crosscheck, we also compare our constraint results with the results in the literature [1, 43, 67] and find that they are statistically consistent. For example, in the wCDM model, we obtain $H_0 = 68.25^{+0.87}_{-0.89}$ km s$^{-1}$ Mpc$^{-1}$ using the CBS data as shown in Table 1, and Ref. [1] gives $H_0 = (68.34 \pm 0.81)$ km s$^{-1}$ Mpc$^{-1}$ using the Planck 2018 TT,TE,EE+lowE+lensing+BAO+Pantheon data. Moreover, in the Λ(t)CDM model, we obtain $H_0 = 68.50^{+0.85}_{-0.82}$ km s$^{-1}$ Mpc$^{-1}$ using the CBSH data as shown in Table 2, and Ref. [43] gives $H_0 = (69.36 \pm 0.82)$ km s$^{-1}$ Mpc$^{-1}$ using also the CBSH data, but in which the Planck 2015 data and an earlier local H_0 measurement are used. Through all these tests of the robustness of the results, we further confirm that our models are helpful to relieve the H_0 tension.

6 Conclusion

In this work, we consider a phenomenological cosmological model motivated by the asymptotic safety of gravitational field theory. In this model, the matter and radiation densities and the cosmological constant receive a correction parametrized by the parameters δ_G,
and δ_Λ, leading to that both the evolutions of the matter and radiation densities and the cosmological constant slightly deviate from the standard forms. Actually, this model can be explained by the scenario of vacuum energy interacting with matter and radiation. Furthermore, we consider two cases of the model: (i) ΛCDM with one additional free parameter δ_G, in which δ_G and δ_Λ are related by a low-redshift limit relation and (ii) $e\Lambda$CDM with two additional free parameters δ_G and δ_Λ independent of each other. We use the current observational data (CBS and CBSH) to constrain the models.

We find that, when using the CBS data, neither ΛCDM nor $e\Lambda$CDM can effectively alleviate the H_0 tension. In this case, we obtain that both δ_G and δ_Λ are around 0, and thus the models are well consistent with ΛCDM. Actually, in this case, the CBS data prefer ΛCDM more over ΛCDM and $e\Lambda$CDM.

However, when the direct measurement of H_0 by the SH0ES team is added in the data combination (i.e., CBSH is considered), the situation is dramatically changed. We find that in this case both $\delta_G < 0$ and $\delta_\Lambda < 0$ are obtained at the more than 2σ significance. We find that, when using the CBSH data to constrain ΛCDM and $e\Lambda$CDM, the H_0 tension can be greatly relieved. In particular, for example, in the case of $e\Lambda$CDM, the H_0 tension can be resolved to 0.71σ. In addition, through an analysis of model selection using the information criteria, we find that the CBSH data prefer $e\Lambda$CDM over ΛCDM. We also perform some tests on the robustness of our results, including a limiting case in which the modifications of the evolutions of radiation and baryons are negligible, a comparison of using the CMB distance prior and the full power spectrum of Planck 2018 to constrain parameters, and a crosscheck with the previous results in other works. These tests confirm our results, so we can conclude that, from a comprehensive analysis, $e\Lambda$CDM as an interacting dark energy model is much better than $\Lambda(\tau)CDM$ in the sense of both relieving the H_0 tension and fitting to the current observational data.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11975072, 11875102, 11835009, and 11690021), the Liaoning Revitalization Talents Program (Grant No. XLYC1905011), the Fundamental Research Funds for the Central Universities (Grant No. N2005030), and the Top-Notch Young Talents Program of China (Grant No. W02070050).

References

[1] N. Aghanim et al. [Planck], Astron. Astrophys. 641 (2020), A6 doi:10.1051/0004-6361/201833910 [arXiv:1807.06209 [astro-ph.CO]].
[2] A. G. Riess, S. Casertano, W. Yuan, L. M. Macri and D. Scolnic, Astrophys. J. 876, no. 1, 85 (2019) doi:10.3847/1538-4357/ab1422 [arXiv:1903.07603 [astro-ph.CO]].
[3] F. Beutler et al., Mon. Not. Roy. Astron. Soc. 416, 3017 (2011) doi:10.1111/j.1365-2966.2011.19250.x [arXiv:1106.3366 [astro-ph.CO]].
[4] A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden and M. Manera, Mon. Not. Roy. Astron. Soc. 449, no. 1, 835 (2015) doi:10.1093/mnras/stv154 [arXiv:1409.3242 [astro-ph.CO]].
[5] S. Alam et al. [BOSS Collaboration], Mon. Not. Roy. Astron. Soc. 470, no. 3, 2617 (2017) doi:10.1093/mnras/stx721 [arXiv:1607.03155 [astro-ph.CO]].
[6] E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D. F. Mota, A. G. Riess and J. Silk, [arXiv:2103.01183 [astro-ph.CO]].

[7] L. Verde, T. Treu and A. G. Riess, Nature Astron. 3, 891 doi:10.1038/s41550-019-0902-0 [arXiv:1907.10625 [astro-ph.CO]].

[8] E. Di Valentino, Nature Astron. 1 (2017) no.9, 569-570 doi:10.1038/s41550-017-0236-8 [arXiv:1709.04046 [physics.pop-ph]].

[9] E. Di Valentino, L. A. Anchordoqui, O. Akarsu, Y. Ali-Haimoud, L. Amendola, N. Arendse, M. Asgari, M. Ballardini, S. Basilakos and E. Battistelli, et al. [arXiv:2008.11284 [astro-ph.CO]].

[10] W. L. Freedman, Nature Astron. 1 (2017), 0121 doi:10.1038/s41550-017-0121 [arXiv:1706.02739 [astro-ph.CO]].

[11] A. G. Riess, Nature Rev. Phys. 2 (2019) no.1, 10-12 doi:10.1038/s42254-019-0137-0 [arXiv:1807.09542 [astro-ph.CO]].

[12] D. N. Spergel, R. Flauger and R. Hložek, Phys. Rev. D 91 (2015) no.2, 023518 doi:10.1103/PhysRevD.91.023518 [arXiv:1312.3313 [astro-ph.CO]].

[13] G. Efstathiou, Mon. Not. Roy. Astron. Soc. 440, no. 2, 1138 (2014) doi:10.1093/mnras/stu278 [arXiv:1311.3461 [astro-ph.CO]].

[14] W. Cardona, M. Kunz and V. Pettorino, JCAP 1703, 056 (2017) doi:10.1088/1475-7516/2017/03/056 [arXiv:1611.06088 [astro-ph.CO]].

[15] B. R. Zhang, M. J. Childress, T. M. Davis, N. V. Karpenka, C. Lidman, B. P. Schmidt and M. Smith, Mon. Not. Roy. Astron. Soc. 471, no. 2, 2254 (2017) doi:10.1093/mnras/stx1600 [arXiv:1706.07573 [astro-ph.CO]].

[16] B. Follin and L. Knox, Mon. Not. Roy. Astron. Soc. 477, no. 4, 4534 (2018) doi:10.1093/mnras/sty720 [arXiv:1707.01175 [astro-ph.CO]].

[17] C. D. Huang, A. G. Riess, W. Yuan, L. M. Macri, N. L. Zakamska, S. Casertano, P. A. Whitelock, S. L. Hoffmann, A. V. Filippenko and D. Scolnic, doi:10.3847/1538-4357/ab5dbd [arXiv:1908.10883 [astro-ph.CO]].

[18] K. C. Wong, S. H. Suyu, G. C. F. Chen, C. E. Rusu, M. Millon, D. Sluse, V. Bonvin, C. D. Fassnacht, S. Taubenberger and M. W. Auger, et al. Mon. Not. Roy. Astron. Soc. 498 (2020) no.1, 1420-1439 doi:10.1093/mnras/stz3094 [arXiv:1907.04869 [astro-ph.CO]].

[19] D. W. Pesce, J. A. Braatz, M. J. Reid, A. G. Riess, D. Scolnic, J. J. Condon, F. Gao, C. Henkel, C. M. V. Impellizzeri and C. Y. Kuo, et al. Astrophys. J. Lett. 891 (2020) no.1, L1 doi:10.3847/2041-8213/ab75f9 [arXiv:2001.09213 [astro-ph.CO]].

[20] J. B. Jensen, J. L. Tonry and G. A. Luppino, Astrophys. J. 505 (1998), 111 doi:10.1086/306163 [arXiv:astro-ph/9804169 [astro-ph]].

[21] B. P. Abbott et al. [LIGO Scientific, Virgo, 1M2H, Dark Energy Camera GW-E, DES, DLT40, Las Cumbres Observatory, VINROUGE and MASTER], Nature 551 (2017) no.7678, 85-88 doi:10.1038/nature24471 [arXiv:1710.05835 [astro-ph.CO]].
[25] R. Jimenez and A. Loeb, Astrophys. J. **573** (2002), 37-42 doi:10.1086/340549 [arXiv:astro-ph/0106145 [astro-ph]].

[26] M. Moresco, L. Pozzetti, A. Cimatti, R. Jimenez, C. Maraston, L. Verde, D. Thomas, A. Citro, R. Tojeiro and D. Wilkinson, JCAP **05** (2016), 014 doi:10.1088/1475-7516/2016/05/014 [arXiv:1601.01701 [astro-ph.CO]].

[27] J. Schombert, S. McGaugh and F. Lelli, Astron. J. **160** (2020) no.2, 71 doi:10.3847/1538-3881/ab9d88 [arXiv:2006.08615 [astro-ph.CO]].

[28] M. Li, X. D. Li, Y. Z. Ma, X. Zhang and Z. Zhang, JCAP **1309**, 021 (2013) doi:10.1088/1475-7516/2013/09/021 [arXiv:1305.5302 [astro-ph.CO]].

[29] D. Camarena and V. Marra, Phys. Rev. D **98**, no. 2, 023537 (2018) doi:10.1103/PhysRevD.98.023537 [arXiv:1805.09900 [astro-ph.CO]].

[30] V. Salvatelli, A. Marchini, L. Lopez-Honorez and O. Mena, Phys. Rev. D **88**, no. 2, 023531 (2013) doi:10.1103/PhysRevD.88.023531 [arXiv:1304.7119 [astro-ph.CO]].

[31] A. A. Costa, X. D. Xu, B. Wang, E. G. M. Ferreira and E. Abdalla, Phys. Rev. D **89**, no. 10, 103531 (2014) doi:10.1103/PhysRevD.89.103531 [arXiv:1311.7380 [astro-ph.CO]].

[32] W. Yang, S. Pan and D. F. Mota, Phys. Rev. D **96**, no. 12, 123508 (2017) doi:10.1103/PhysRevD.96.123508 [arXiv:1709.00006 [astro-ph.CO]].

[33] E. Di Valentino, S. Pan, W. Yang and L. A. Anchordoqui, [arXiv:2102.05641 [astro-ph.CO]].

[34] W. Yang, S. Pan, E. Di Valentino, O. Mena and A. Melchiorri, [arXiv:2101.03129 [astro-ph.CO]].

[35] E. Di Valentino, A. Melchiorri and O. Mena, Phys. Rev. D **96**, no. 4, 043503 (2017) doi:10.1103/PhysRevD.96.043503 [arXiv:1704.08342 [astro-ph.CO]].

[36] G. B. Zhao, M. Raveri, L. Pogosian, Y. Wang, R. G. Crittenden, W. J. Handley, W. J. Percival, F. Beutler, J. Brinkmann and C. H. Chuang, et al. Nature Astron. **1** (2017) no.9, 627-632 doi:10.1038/s41550-017-0216-z [arXiv:1701.08165 [astro-ph.CO]].

[37] M. Martinelli and I. Tutusaus, Symmetry **11** (2019) no.8, 986 doi:10.3390/sym11080986 [arXiv:1906.09189 [astro-ph.CO]].

[38] G. Alestas, L. Kazantzidis and L. Perivolaropoulos, Phys. Rev. D **101** (2020) no.12, 123516 doi:10.1103/PhysRevD.101.123516 [arXiv:2004.08363 [astro-ph.CO]].

[39] E. Di Valentino, Mon. Not. Roy. Astron. Soc. **502** (2021) no.2, 2065-2073 doi:10.1093/mnras/stab187 [arXiv:2011.00246 [astro-ph.CO]].

[40] G. Efstathiou, [arXiv:2007.10716 [astro-ph.CO]].

[41] W. Yang, E. Di Valentino, S. Pan, Y. Wu and J. Lu, Mon. Not. Roy. Astron. Soc. **501** (2021) no.4, 5845-5858 doi:10.1093/mnras/staa3914 [arXiv:2101.02168 [astro-ph.CO]].

[42] Q. G. Huang and K. Wang, Eur. Phys. J. C **76** (2016) no.9, 506 doi:10.1140/epjc/s10052-016-4352-x [arXiv:1606.05965 [astro-ph.CO]].

[43] R. Y. Guo, J. F. Zhang and X. Zhang, JCAP **02** (2019), 054 doi:10.1088/1475-7516/2019/02/054 [arXiv:1809.02340 [astro-ph.CO]].

[44] S. Xue, Nucl. Phys. B **897** (2015), 236-345 doi:10.1016/j.nuclphysb.2015.05.022 [arXiv:1410.6152 [gr-qc]], and Modern Physics Letters A, (2020) 2050123, DOI: 10.1142/S0217732320501230, https://arxiv.org/abs/2004.10859.

[45] S. Weinberg, Phys. Rev. D **81** (2010), 083535 doi:10.1103/PhysRevD.81.083535 [arXiv:0911.3165 [hep-th]].

[46] D. Bégué, C. Stahl and S. S. Xue, Nucl. Phys. B **940** (2019), 312-320 doi:10.1016/j.nuclphysb.2019.01.001 [arXiv:1702.03185 [astro-ph.CO]].
[47] S. S. Xue, [arXiv:2006.15622 [gr-qc]].
[48] S. S. Xue, [arXiv:1910.03938 [gr-qc]].
[49] M. Chevallier and D. Polarski, Int. J. Mod. Phys. D 10, 213 (2001) doi:10.1142/S0218271801000822 [gr-qc/0009008].
[50] E. V. Linder, Phys. Rev. Lett. 90, 091301 (2003) doi:10.1103/PhysRevLett.90.091301 [astro-ph/0208512].
[51] R. Y. Guo, Y. H. Li, J. F. Zhang and X. Zhang, JCAP 1705, 040 (2017) doi:10.1088/1475-7516/2017/05/040 [arXiv:1702.04189 [astro-ph.CO]].
[52] L. Feng, J. F. Zhang and X. Zhang, Phys. Dark Univ., 100261 [Phys. Dark Univ. 23, 100261 (2019)] doi:10.1016/j.dark.2018.100261 [arXiv:1712.03148 [astro-ph.CO]].
[53] R. Y. Guo, J. F. Zhang and X. Zhang, Chin. Phys. C 42, no. 9, 095103 (2018) doi:10.1088/1674-1137/42/9/095103 [arXiv:1803.06910 [astro-ph.CO]].
[54] L. Chen, Q. G. Huang and K. Wang, JCAP 02 (2019), 028 doi:10.1088/1475-7516/2019/02/028 [arXiv:1808.05724 [astro-ph.CO]].
[55] D. M. Scolnic et al., Astrophys. J. 859, no. 2, 101 (2018) doi:10.3847/1538-4357/aab9bb [arXiv:1710.00845 [astro-ph.CO]].
[56] A. Lewis and S. Bridle, Phys. Rev. D 66, 103511 (2002) doi:10.1103/PhysRevD.66.103511 [astro-ph/0205436].
[57] V. Poulin, T. L. Smith, T. Karwal and M. Kamionkowski, Phys. Rev. Lett. 122 (2019) no.22, 221301 doi:10.1103/PhysRevLett.122.221301 [arXiv:1811.04083 [astro-ph.CO]].
[58] P. Agrawal, F. Y. Cyr-Racine, D. Pinner and L. Randall, [arXiv:1904.01016 [astro-ph.CO]].
[59] M. X. Liu, G. Benevento, W. Hu and M. Raveri, Phys. Rev. D 100 (2019) no.6, 063542 doi:10.1103/PhysRevD.100.063542 [arXiv:1905.12618 [astro-ph.CO]].
[60] E. Di Valentino, A. Melchiorri, O. Mena and S. Vagnozzi, Phys. Rev. D 101 (2020) no.6, 063502 doi:10.1103/PhysRevD.101.063502 [arXiv:1910.09853 [astro-ph.CO]].
[61] M. Szydlowski, A. Krawiec, A. Kurek and M. Kamionka, Eur. Phys. J. C 75 (2015) no.99, 5 doi:10.1140/epjc/s10052-014-3236-1 [arXiv:0801.0638 [astro-ph]].
[62] S. del Campo, J. C. Fabris, R. Herrera and W. Zimdahl, Phys. Rev. D 83 (2011), 123006 doi:10.1103/PhysRevD.83.123006 [arXiv:1103.3441 [astro-ph.CO]].
[63] D. Huterer, D. Shafer, D. Scolnic and F. Schmidt, JCAP 05 (2017), 015 doi:10.1088/1475-7516/2017/05/015 [arXiv:1611.09862 [astro-ph.CO]].
[64] A. R. Liddle, Mon. Not. Roy. Astron. Soc. 351 (2004), L49-L53 doi:10.1111/j.1365-2966.2004.08033.x [arXiv:astro-ph/0401198 [astro-ph]].
[65] B. Audren, J. Lesgourgues, K. Benabed and S. Prunet, JCAP 02 (2013), 001 doi:10.1088/1475-7516/2013/02/001 [arXiv:1210.7183 [astro-ph.CO]].
[66] C. Heymans, T. Tröster, M. Asgari, C. Blake, H. Hildebrandt, B. Joachimi, K. Kuijken, C. A. Lin, A. G. Sánchez and J. L. van den Busch, et al. Astron. Astrophys. 646 (2021), A140 doi:10.1051/0004-6361/202039063 [arXiv:2007.15632 [astro-ph.CO]].
[67] D. Camarena and V. Marra, doi:10.1093/mnras/stab1200 [arXiv:2101.08641 [astro-ph.CO]].