Variational homotopy perturbation method for solving the generalized time-space fractional Schrödinger equation

A. M. S. Mahdy¹, A. S. Mohamed¹ and A. A. H. Mtawa²*

¹Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt.
²Department of Mathematics, Faculty of Science, Benghize University, Almarj, Libya.

Received 18 February, 2015; Accepted 26 May, 2015

We suggest and analyze a technique by combining the variational iteration method and the homotopy perturbation method. This method is called the variational homotopy perturbation method. We use this method for solving Generalized Time-space Fractional Schrödinger equation. The fractional derivative is described in Caputo sense. The proposed scheme finds the solution without any discretization, transformation or restrictive assumptions. Several example is given to check the reliability and efficiency of the proposed technique.

Key words: Caputo derivative, variational iteration method, homotopy perturbation method, Schrödinger equation.

INTRODUCTION

In recent years, considerable interest in fractional differential equations has been stimulated due to their numerous applications in the areas of nonlinear science (Dalir and Bashour, 2010), many important phenomena (Podlubny, 1999), engineering and physics (Miller and Ross, 1993), dielectric polarization (Sun et al., 1984), quantitative finance (Laskin, 2000).

To find explicit solutions of linear and nonlinear fractional differential equations, many powerful methods have been used such as the homotopy perturbation method (Momani and Odibat, 2007; Wang, 2008; Gupta and Singh, 2011), the Adomain decomposition method (Ray, 2009; Herzallah and Gepreel, 2012; Rida et al., 2008), the variational iteration method (He, 2000, 2004, 2007; He and Wang, 2007), the homotopy analysis method (Hemida et al., 2012; Gepreel and Mohamed, 2013; Ganjiani, 2010; Behzadi, 2011), the fractional complex transform (Ghazanfari, 2012; Su et al., 2013), the homotopy perturbation Sumudu transform method (Karbalaie et al., 2014; Mahdy et al., 2015), the local fractional variation iteration method (Yang and Baleanu, 2013), the local fractional Adomain decomposition method (Yang et al., 2013b), the Cantor-type Cylindrical-Coordinate method (Yang et al., 2013c), the variational iteration method with Yang-Laplace (Liu et al., 2013), the Yang-Fourier transform (Yang et al., 2013a), the Yang-Laplace transform (Zhao et al., 2014; Zhang et al., 2014) and variational homotopy perturbation method by (Noor and Mohyud-Din, 2008). The variational homotopy perturbation

*Corresponding author. E-mail: hussanahmad65@yahoo.com

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
method (VHPM) is a combination of the variational iteration method and homotopy perturbation method. The suggested VHPM provides the solution in a rapid convergent series which may lead the solution in a closed form and is in full agreement with Rida et al. (2008), where similar problems were solved by using the decomposition method. The fact that the proposed technique solves nonlinear problems without using the so-called Adomian’s polynomials is a clear advantage of this algorithm over the decomposition method.

In this paper, we investigate the application of the VHPM for solving the generalized time-space fractional Schrödinger equation with variable coefficients (Rida et al., 2008; Ganjiani, 2010):

\[i \frac{\partial^{\alpha} u}{\partial t^{\alpha}} + a \frac{\partial^{2\beta} u}{\partial t^{2\beta}} + v(x)u + \gamma |u|^2 u = 0, \]

(1)

Where \(t > 0 \), \(0 < \alpha, \beta \leq 1 \) with initial conditions

\[u(x,0) = u_0(x,t), \]

(2)

Where \(u = u(x,t) \) is unknown function, \(v(x) \) is the trapping potential, \(0 < \alpha, \beta \leq 1 \) are parameters describing the order of the fractional Jumaries derivatives (Jumaries, 2007) and \(a, \gamma \) are a real constants, respectively. If we select \(\alpha = \beta = 1 \), \(v(x) = 0 \), this equation turns to the famous nonlinear Schrödinger equation in optical fiber (Hao et al., 2004; Chen and Li, 2008; Li and Chen, 2004). In this paper, notice that Equation (1) is a complex differential equation with complex modulus term \(|u|^2 \), as we all know, a complex function \(u(\zeta) \) can be written as \(u(\zeta) e^{i\theta(\zeta)} \), where \(c(\zeta) \) and \(\theta(\zeta) \) are real functions, noticed that \(|u(\zeta)|^2 = |c(\zeta)|^2 \), assume that \(\lim_{x \to 0} |u|^2 = |u_0|^2 \), we get the VHPM for Equation (1).

BASIC DEFINITIONS OF FRACTIONAL CALCULUS

Here, we present the basic definitions and properties of the fractional calculus theory, which are used further in this paper.

Definition 1

A real function \(f(t), t > 0, f(t) \), is said to be in the space \(C_{m}^{\alpha} \), if there exists a real number \(p > \sigma \) such that \(f(t) = t^p f_1(t) \) where \(f_1(t) \in [0, \infty) \), and it is said to be in the space \(C_{m}^{\alpha} \) if \(f^m \in C_{\sigma} \), \(m \in \mathbb{N} \).

Definition 2

The left sided Riemann-Liouville fractional integral of order \(\alpha \geq 0 \), of a function \(f \in C_{\sigma} \), \(\sigma \geq -1 \) is defined as:

\[J_{-}^{\alpha} f(t) = \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t - \zeta)^{\alpha-1} f(\zeta) \, d\zeta \]

(3)

where \(\alpha > 0, t > 0 \) and \(\Gamma(\alpha) \) is the Gamma function.

Also one has the following properties:

\[J_{-}^{\alpha} J_{-}^{\beta} f(x) = J_{-}^{\alpha+\beta} f(x), \]

\[J_{-}^{\alpha} J_{-}^{\beta} f(x) = J_{-}^{\beta} J_{-}^{\alpha} f(x), \]

\[J_{-}^{\alpha} x^\gamma = \frac{\Gamma(\gamma+1)}{\Gamma(\alpha+\gamma+1)} x^{\alpha+\gamma}. \]

Definition 3

Let \(f \in C_{m}^{n}, n \in \mathbb{N} \cup \{0\} \). The left sided Caputo fractional derivative of \(f \) in the Caputo sense is defined by Podlubny (1999) and He (2014) as follows:

\[D_{-}^{\alpha} f(t) = \begin{cases} \frac{1}{\Gamma(n-\alpha)} \int_{0}^{t} (t - \zeta)^{n-\alpha-1} f^{(n)}(\zeta) \, d\zeta, & n-1 < \alpha \leq n, \\ D_{-}^{\alpha} f(t), & \alpha = n, \end{cases} \]

(5)

Also one has the following properties:

\[D_{-}^{\alpha} C = 0, \quad (C \text{ is constant}), \]

\[D_{-}^{\alpha} x^\gamma = \begin{cases} \frac{\Gamma(\gamma+1)}{\Gamma(\alpha+\gamma+1)} x^{\gamma-\alpha}, & \gamma > \alpha - 1, \\ 0, & \gamma \leq \alpha - 1, \end{cases} \]

\[J_{-}^{\alpha} D_{-}^{\alpha} f(x) = f(x) - \sum_{k=0}^{n-1} f^{(k)}(0^+) \frac{x^k}{k!}, \quad n-1 < \alpha \leq n, \]

\[D_{-}^{\alpha} J_{-}^{\alpha} f(x) = f(x). \]

(6)

Definition 4

The single parameter and the two parameters variants of the Mittag-Leffler function are denoted by \(E_{\alpha}(t) \) and \(E_{\alpha,\beta}(t) \), respectively, which are relevant for their
connection with fractional calculus, and are defined as:

\[E_{\alpha}(t) = \sum_{j=0}^{\infty} \frac{t^j}{\Gamma(\alpha j + 1)}, \quad \alpha > 0, \quad t \in C, \]
\[E_{\alpha,\beta}(t) = \sum_{j=0}^{\infty} \frac{t^j}{\Gamma(\alpha j + \beta)}, \quad \alpha, \beta > 0, \quad t \in C. \]

Some special cases of the Mittag-Leffler function are as follows:

\[E_1(t) = e^t, \quad E_{\alpha,1}(t) = E_{\alpha}(t). \]

Other properties of the Mittag-Leffler functions can be found in Kilbas et al. (2004). These functions are generalizations of the exponential function, because, most linear differential equations of fractional order have solutions that are expressed in terms of these functions.

VARIATIONAL ITERATION METHOD

To illustrate the basic concept of the technique, we consider the following general differential equation:

\[L(u) + N(u) - f(x) = 0, \]

where \(L \) is a linear operator, \(N \) a nonlinear operator, and \(f(x) \) the function term. In the variational iteration method (He, 2000, 2004, 2007; He and Wang, 2007), a correction functional can be constructed as follows:

\[u_{n+1}(x) = u_n(x) + \int_0^x \lambda (Lu_n(s) + Nu_n(s) - f(s)) \, ds, \]

Where \(\lambda \) is a general Lagrange multiplier (He, 2000, 2004, 2007; He and Wang, 2007), which can be identified optimally via a variational iteration method. The subscripts \(n \) denote the \(n \)th approximation, \(u_n \) is considered as a restricted variation. That is, \(\delta u_n = 0 \); equation (10) is called a correct functional. The solution of the linear problems can be solved in a single iteration step due to the exact identification of the Lagrange multiplier. The principles of the variational iteration method and its applicability for various kinds of differential equations are given in (He, 2000, 2004, 2007; He and Wang, 2007). With \(\lambda \) determined then several approximation \(u_{n+1}, \) \(n \geq 0 \) follow immediately. Consequently, the exact solution may be obtained by using \(u = \lim_{n \to +\infty} u_n \).

HOMOTOPY PERTURBATION METHOD

Consider the following nonlinear differential equation

\[A(u) - f(x) = 0, \quad x \in \Omega, \]

Subject to the conditions

\[B(u, \partial u/\partial m) = 0, \quad x \in \Gamma, \]

Where \(A \) is a general differential operator, \(B \) is a boundary operator, \(f(x) \) is a known an analytical function, \(\Gamma \) is boundary of the domain \(\Omega \) and \(\partial / \partial m \) denotes directional derivative.

The operator \(A \) can be decomposed into a linear operator, denoted by \(L \), and a nonlinear operator, denoted by \(N \). Therefore, Equation (11) can be written as follows:

\[L(u) + N(u) - f(x) = 0. \]

By the homotopy technique we construct defined as \(v(x, p) : \Omega \times [0, 1] \to R \) with satisfies:

\[H(v, p) = (1 - p)[L(v) - L(u_0)] + p[A(u) - f(x)] = 0, \quad 0 \leq p \leq 1, \]

Which is equivalent to

\[H(v, 0) = L(v) - L(u_0) = 0, \]

\[H(v, 1) = L(v) - N(v) - f(x) = A(u) - f(x) = 0, \]

in topology, this changing process is called deformation, and Equations (16) and (17) are called homotopic. If the \(p \)-parameter is considered as small, then the solution of Equations (13) and (14) can be expressed as a power series in \(p \) as follows:

\[v = v_0 + pv_1 + p^2v_2 + p^3v_3 + \cdots \]

The best approximation for the solution of Equation (11) is

\[u = \lim_{p \to 1} v = v_0 + v_1 + v_2 + v_3 + \cdots \]

It is well known that series (18) is convergent for most of the cases and also the rate of convergence is dependent on \(L(u) \); (Momani and Odibat, 2007; Wang, 2008; Gupta and Singh, 2011). We assume that Equation (19) has a unique solution. The comparisons of like powers of \(p \) give solutions of various orders.

VARIATIONAL HOMOTOPY PERTURBATION METHOD (VHPM)

To convey the basic idea of the variational homotopy perturbation method, we consider the following general differential equation:
\[Lu + Nu = f(x), \]
(20)

Where \(L \) is the linear operator, \(N \) is the general nonlinear operator and \(f(x) \) the forcing term. According to variational iteration method (He, 2000, 2004, 2007; He and Wang, 2007), we can construct a correct functional as follows:

\[
u_{n+1}(x) = u_n(x) + \int_0^1 \lambda(\zeta)(Lu_n(\zeta) + Nu_n(\zeta) - f(\zeta)) \, d\zeta,
\]
(21)

Where \(\lambda \) is a Lagrange multiplier (He, 2000, 2004, 2007; He and Wang, 2007), which can be identified optimally via variational iteration method. The subscripts \(n \) denote the \(n \)th approximation, \(\tilde{u}_n \) is considered as a restricted variation. That is, \(\delta \tilde{u}_n = 0 \); Equation (21) is called as a correct functional. Now, we apply the homotopy perturbation method.

\[
\sum_{n=0}^{\infty} p^n u_n = u_0(x) + \int_0^1 \lambda(\zeta) \left(\sum_{n=0}^{\infty} p^n L(u_n) + \sum_{n=0}^{\infty} p^n N(\tilde{u}_n) - f(\zeta) \right) \, d\zeta,
\]
(22)

Which is the variational homotopy perturbation method and is formulated by the coupling of variational iteration method and Adomian’s polynomials. A comparison of like powers of \(p \) gives solutions of various orders.

APPLICATIONS

Here, we apply the VHPM developed in Section 5 for solving the Generalized Time-space Fractional Schrödinger Equation with variable coefficients. We develop the correct functional and calculate the Lagrange multipliers optimally via variational theory. The homotopy perturbation method is implemented on the correct functional and finally, comparison of like powers of \(p \) gives solutions of various orders. Numerical results reveal that the VHPM is easy to implement and reduces the computational work to a tangible level while still maintaining a very higher level of accuracy. For the sake of comparison, we take the same examples as used in (Herzallah and Gepreel, 2012; Rida et al., 2008; Wazwaz, 2008; Hong and Lu, 2014).

Example 1

We first consider the time-fractional NLS equation:

\[
i \frac{\partial^\alpha u}{\partial t^\alpha} + a \frac{\partial^2 u}{\partial x^2} + \gamma |u|^2 u = 0,
\]
(23)

where \(t > 0 \), \(0 < \alpha, \beta \leq 1 \) with initial conditions

\[u(x,0) = A \sec h(x), \]
(24)

The correct functional is given as:

\[u_{n+1}(x,t) = A \sec h(x) + \int_0^1 \lambda(\zeta) \left(\frac{\partial^\alpha u_n}{\partial t^\alpha} - \partial^2 \frac{\partial \tilde{u}_n}{\partial x^2} - i \gamma |\tilde{u}_n|^2 \right) \, d\zeta, \]
(25)

Where \(\tilde{u}_n \) is considered as restricted variation. Making the above functional stationary, the Lagrange multiplier can be determined as \(\lambda = -1 \), which yields the following iteration formula:

\[u_{n+1}(x,t) = A \sec h(x) - \int_0^1 \lambda(\zeta) \left(\frac{\partial^\alpha u_n}{\partial t^\alpha} - \partial^2 \frac{\partial \tilde{u}_n}{\partial x^2} - i \gamma |\tilde{u}_n|^2 \right) \, d\zeta, \]
(26)

Applying the variational homotopy perturbation method, we have

\[u_0 = p^0 u_0(x,t) = A \sec h(x), \]

\[u_1 = p^1 u_1(x,t) = A \sec h(x) - \frac{\partial^\alpha u_0}{\partial t^\alpha} + i \gamma |u_0|^2, \]

\[u_2 = p^2 u_2(x,t) = A \sec h(x) - \frac{\partial^\alpha u_1}{\partial t^\alpha} + i \gamma |u_1|^2, \]

\[u_n = p^n u_n(x,t), \]

Comparing the coefficient of like powers of \(p \), we have

\[p^0 : u_0(x,t) = A \sec h(x), \]

\[p^1 : u_1(x,t) = A \sec h(x) - 2 \sec h^2(x) \left(\frac{\partial^\alpha u_0}{\partial t^\alpha} + i \gamma |u_0|^2 \right) \frac{t^n}{\Gamma(\alpha + 1)}, \]

\[p^2 : u_2(x,t) = A \sec h(x) - 2 \sec h^2(x) \left(\frac{\partial^\alpha u_1}{\partial t^\alpha} + i \gamma |u_1|^2 \right) \frac{t^n}{\Gamma(2\alpha + 1)} \]

Thus the solution of Equation (23) is given by

\[u(x,t) = \lim_{p \to 0} \sum_{n=0}^{\infty} p^n u_n(x,t). \]
(29)

If we put \(\alpha \to 1 \) in Equation (29) or solve Equations (23)
and (24) with $\alpha = 1$, we obtain the exact solution
\[u(x,t) = \sec h(x) \sum_{n=0}^{\infty} \frac{(ait^{\alpha})^n}{\Gamma(n\alpha + 1)} \]
\[= \pm \sqrt{\frac{2a}{\gamma}} \sec h(x) e^{iat}. \]

Which is in full agreement with the result in Hong and Lu, (2014)

Example 2

We first consider the time-space fractional NLS equation:

\[i \frac{\partial^\alpha u}{\partial t^\alpha} + a \frac{\partial^{2\beta} u}{\partial x^{2\beta}} + 2a|\dot{u}|^2 u = 0, \tag{30} \]

Where $t > 0$, $0 < \alpha$, $\beta \leq 1$ with initial conditions

\[u(x,0) = e^{ix}, \tag{31} \]

The correct functional is given as

\[u_{n+1}(x,t) = e^{ix} + \int_0^1 \lambda(\zeta) \left(\frac{\partial^\alpha u_{n}}{\partial t^\alpha} - ia \frac{\partial^{2\beta} \tilde{u}_n}{\partial x^{2\beta}} - 2ia|\tilde{u}_n|^2 \right) d\zeta. \tag{32} \]

Where \tilde{u}_n is considered as restricted variation. Making the above functional stationary, the Lagrange multiplier can be determined as $\lambda = -1$, which yields the following iteration formula:

\[u_{n+1}(x,t) = e^{ix} - J^{\alpha} \left[\frac{\partial^\alpha u_{n}}{\partial t^\alpha} - ia \frac{\partial^{2\beta} \tilde{u}_{n}}{\partial x^{2\beta}} - 2ia|\tilde{u}_n|^2 \right]. \tag{33} \]

Applying the variational homotopy perturbation method, we have:

\[u_0 + pu_1 + p^2u_2 + p^3u_3 + \ldots = e^{ix} - pJ^{\alpha} \left(\frac{\partial^\alpha u_0}{\partial t^\alpha} - ia \frac{\partial^{2\beta} \tilde{u}_0}{\partial x^{2\beta}} - 2ia|\tilde{u}_0|^2 \right). \tag{34} \]

Comparing the coefficient of like powers of p, we have:

\[p^0 : u_0(x,t) = e^{ix}, \]

\[p^1 : u_1(x,t) = \left[aie^{ix} e^{iap\beta} + 2aie^{ix} \right] \frac{at^{\alpha}}{\Gamma(\alpha + 1)} \]
\[= e^{ix} \left(2 + e^{iap\beta} \right) \frac{at^{\alpha}}{\Gamma(\alpha + 1)}, \]

\[p^2 : u_2(x,t) = \left[e^{ix} \left(2 + e^{iap\beta} \right) e^{iap\beta} + 2e^{ix} \left(2 + e^{iap\beta} \right) \right] \frac{(ait^{\alpha})^2}{\Gamma(2\alpha + 1)} \]
\[= e^{ix} \left(2 + e^{iap\beta} \right)^2 \frac{(ait^{\alpha})^2}{\Gamma(2\alpha + 1)}, \]

\[p^3 : u_3(x,t) = e^{ix} \left(2 + e^{iap\beta} \right)^3 \frac{(ait^{\alpha})^3}{\Gamma(3\alpha + 1)}, \]

\[p^n : u_n(x,t) = e^{ix} \left(2 + e^{iap\beta} \right)^n \frac{(ait^{\alpha})^n}{\Gamma(n\alpha + 1)}. \tag{35} \]

Thus the solution of Equation (30) is given by:

\[u(x,t) = \lim_{n \to \infty} \sum_{i=0}^{n} p^i u_i(x,t) \]
\[= e^{ix} \left(1 + (2 + e^{iap\beta}) a \left(a \frac{\alpha p \beta}{\alpha + 1} \right) + (2 + e^{iap\beta})^2 \left(a \frac{\alpha p \beta}{2(\alpha + 1)} \right) + \ldots \right) \]
\[= e^{ix} \sum_{i=0}^{\infty} (2 + e^{iap\beta})^i \frac{(ait^{\alpha})^i}{\Gamma(i\alpha + 1)} \]
\[= e^{ix} E_{\alpha}(a t^{2 + e^{iap\beta}}). \tag{36} \]

If we put $\alpha \to 1$ in Equation (36) or solve Equations (30) and (31) with $\alpha = 1$, we obtain the exact solution

\[u(x,t) = e^{ix} \sum_{n=0}^{\infty} (2 + e^{iap\beta})^n \frac{(ait^{\alpha})^n}{\Gamma(n\alpha + 1)} \]
\[= e^{ix(1+at)}. \]

Which is in full agreement with the result of Herzallah and Gepreel (2012); Wazwaz (2008) and Hong and Lu (2014)

Example 3

We first consider the time-space fractional NLS equation:

\[i \frac{\partial^\alpha u}{\partial t^\alpha} + \frac{1}{2} \frac{\partial^{2\beta} u}{\partial x^{2\beta}} - u \cos^2(x) - |\dot{u}|^2 u = 0, \tag{37} \]

Where $t > 0$, $0 < \alpha$, $\beta \leq 1$ with initial conditions

\[u(x,0) = \sin(x), \tag{38} \]

The correct functional is given as:
\[u_{\text{app}}(x, t) = \sin(x) + \int_0^1 \frac{1}{\alpha^2} \left[\frac{\partial^2 u}{\partial x^2} + \frac{1}{2} \frac{\partial^2 v}{\partial x^2} + iuv \cos^2(x) + iuv \right] d\zeta, \quad (39) \]

Where \(\tilde{u}_n \) is considered as restricted variation. Making the above functional stationary, the Lagrange multiplier can be determined as \(\lambda = -1 \), which yields the following iteration formula:

\[u_{n+1}(x, t) = \sin(x) - 4 \left[\frac{\partial^2 u}{\partial x^2} - iuv \cos^2(x) + iuv \right] \left[\frac{1}{\alpha^2} \left(\frac{\partial^2 u}{\partial x^2} + \frac{1}{2} \frac{\partial^2 v}{\partial x^2} + p \frac{\partial^2 u}{\partial x^2} + \cdots \right) \right] \quad (40) \]

Applying the variational homotopy perturbation method, we have

\[u_t + p \frac{\partial u}{\partial x} + p^2 \frac{\partial^2 u}{\partial x^2} + \cdots = \sin(x) - \beta \]

Comparing the coefficient of like powers of \(p \), we have

\[p^0 : u_0(x, t) = \sin(x), \]

\[p^1 : u_1(x, t) = \left[\frac{1}{4} \sin(x + 2\beta) - \sin(x) \right] \frac{it^{\beta}}{\Gamma(\alpha + 1)} \]

\[p^2 : u_2(x, t) = \left[\frac{1}{8} \sin(x + 3\beta) - \frac{3}{4} \sin(x + 2\beta) + \frac{3}{2} \sin(x + \beta) \right] \frac{(it^{\beta})^2}{\Gamma(2\alpha + 1)} \]

\[p^3 : u_3(x, t) = \left[\frac{1}{16} \sin(x + 4\beta) - \frac{1}{2} \sin(x + 3\beta) - \frac{3}{4} \sin(x + 2\beta) - \frac{5}{4} \sin(x + \beta) \right] \frac{(it^{\beta})^3}{\Gamma(3\alpha + 1)} \]

\[p^n : u_n(x, t) = C_{\alpha}(x) \frac{(it^{\beta})^n}{\Gamma(n\alpha + 1)}, \quad (42) \]

Where

\[C_{\alpha}(x) = C_{\alpha,0}(x) \sin(x) + C_{\alpha,1}(x) \sin(x + \alpha \beta) + C_{\alpha,2}(x) \sin(x + 2\alpha \beta) + \cdots + C_{\alpha,n}(x) \sin(x + n\alpha \beta) \]

And where

\[C_{\alpha,0} = (-1)^n, \quad n \geq 0, \]

\[C_{\alpha,1} = \frac{1}{2} C_{\alpha,0} - C_{\alpha,-1}, \quad n > 1, \]

\[C_{\alpha,2} = \frac{1}{2} C_{\alpha,1} - C_{\alpha,-2}, \quad n > 2, \]

\[\vdots \]

\[C_{\alpha,n+i} = \frac{1}{2} C_{\alpha,n-i} - C_{\alpha,n+i+1}, \quad i = 0, 1, 2, \ldots \]

\[C_{\alpha,n} = \frac{1}{2} C_{\alpha,n-1}, \quad n \geq 1. \]

Thus the solution of Equation (37) is given by:

\[u(x, t) = \lim_{\beta \to \alpha} \sum_{n=0}^{\infty} p^n u_n(x, t) \]

\[= e^{\alpha} \sum_{n=0}^{\infty} C_{\alpha}(x) \frac{(it^{\beta})^n}{\Gamma(n\alpha + 1)} \]

\[= \sin \left[\frac{x^\beta}{\Gamma(\beta + 1)} \right] \exp \left[-\frac{3it^{\beta}}{2\Gamma(\alpha + 1)} \right] \]

If we put \(\alpha \to 1 \) in Equation (43) or solve Equation (37) and (38) with \(\alpha = 1 \), we obtain the exact solution

\[u(x, t) = e^t \sum_{n=0}^{\infty} C_{\alpha}(x) \frac{(it)^n}{\Gamma(n\alpha + 1)} \]

\[= \sin(x) e^{(-3/2)t}. \]

Which is in full agreement with the result of Rida et al. (2008) and Hong and Lu (2014).

Comparisons between the real part of some numerical results and the exact solution (43) are summarized in Tables 1 and 2, and the simulations for \(u_x \), \(u_{abs} \), and \(u \) are plotted in Figures 1 and 2, which shows that VHPM produced a rapidly convergent series.

Comparisons between the imaginary part and the exact solution Equation (43) are plotted in Figures 3 and 4, and the simulations for \(u_x \), \(u_{abs} \), and \(u \), which shows that VHPM produced a rapidly convergent series.
Table 2. Comparison between the real part of u_4 and u when $\alpha = 0.7$, $\beta = 0.9$.

x	t	Approximate $u_{4\text{appr}}$	Exact solution	Absolute error
0.2	0.1	0.1989280524	0.2288404399	0.0299123875
0.2	0.2	0.1978265247	0.2080382267	0.010211702
1	0.3	0.6273816436	0.6355277868	0.0081461432
2	0.4	0.5092408030	0.6018550035	0.0926142005

Figure 1. Comparison between the real part of u_4 and the exact solution u.

Figure 2. Plots of the absolute error u_{abs} when $\alpha = 0.7$ and $\beta = 0.9$.
CONCLUSIONS

In this paper, we have introduced a combination of the variational iteration method and homotopy perturbation method for time-space fractional equations. This combination builds a strong method called the VHPM. We used the variational homotopy perturbation method for solving the Generalized Time-space Fractional Schrödinger Equation with variable coefficient. The VHPM has been shown to solve effectively, easily and accurately a large class of nonlinear problems with the approximations which converge rapidly to exact solutions. The obtained results are compared well with those obtained by VIM, ADM, HAM, MFVIM. Finally, we conclude that the VHPM may be considered as a nice refinement in existing numerical techniques.
Conflict of Interest

The authors have not declared any conflict of interest.

ACKNOWLEDGEMENT

The authors wish to thank the referees for their comments.

REFERENCES

Behzadi SS (2011). Solving Schrödinger equation by using modified variational iteration and homotopy analysis methods. J. Appl. Anal. Comput. 1(4):427-437.

Chen Y, Li B (2008). An extended sub equation rational expansion method with symbolic computation and solutions of the nonlinear Schrödinger equation model. Nonlinear Analysis: Hybrid Systems. 2(2):242-255.

Dair M, Bazou M (2010). Applications of fractional calculus. Appl. Math. Sci. 4:1021-1032.

Ganjiani M (2010). Solution of nonlinear fractional differential equations using homotopy analysis method. Appl. Mathematical Model. Simul. Comput. Eng. Environ. Syst. 34(6):1634-1641.

Gepreel KA, Mohamed MS (2013). Analytical approximate solution for nonlinear space-time fractional Klein-Gordon equation. Chin. Phys. B. 22(1):012001-012011.

Ghazanfari B, Ghazanfari AG (2012). Solving fractional nonlinear Schrödinger equation by fractional complex transform method. Int. J. Math. Model. Comput. 2(4):277-281.

Gupta Pk, Singh M (2011). Homotopy perturbation method for fractional Fornberg-Whitham equation. Computers and Mathematics with Applications. 61(2):250-254.

Hao R, Li L, Li Z, Xue W, Zhou G (2004). A new approach to exact solitary solutions and solitary interaction for nonlinear Schrödinger equation with variable coefficients. Opt. Commun. 236(1-3):79-86.

He JH (2000). Variational iteration method for autonomous ordinary differential. Appl. Math. Comput. 114:115-123.

He JH (2004). Variational principle for some nonlinear partial differential equations with variable coefficients. Chaos Solitons Fractals. 19:847-851.

He JH (2007). Variational iteration method some recent results and new interpretations. J. Comp. Appl. Math. 367:188-191.

He JH (2014). A Tutorial Review on fractional space-time and fractional calculus. Int. J. Theoretical Phys. 53(11):3698-3718.

He JH, Liu FJ (2013). Local fractional variational iteration method for fractional heat transfer in silk cocoon hierarchy. Nonlinear Sci. Lett. A. 4(1):15-20.

He JH, Wang SQ (2007). Variational iteration method for solving integro-differential equations. Phys. Lett. A. 207:3-17.

Hemida KM, Gepreel KA, Mohamed MS (2012). Analytical approximate solution to the time-space nonlinear fractional differential equations. Int. J. Pure Appl. Math. 78(2):233-243.

Herzallah MAE, Gepreel KA (2012). Approximate solution to the time-space fractional cubinonlinear Schrödinger equation. Appl. Math. Model. Simul. Comput. Eng. Environ. Syst. 36(11):5678-5685.

Hong B, Lu D (2014). Modified fractional variational iteration method for solving the generalized time-space fractional Schrödinger equation. Sci. World J. Article ID 964643, P. 6.

Jumarie G (2007). Fractional partial differential equations and modified Riemann-Liouville derivative new methods for solution. J. App. Math. Comput. 1:31-48.

Kabalaia A, Montazeri MM, Muhammed HH (2014). Exact solution of Time-Fractional partial differential equations using Sumudu transform. Wseas Trans. Math. 13:142-151.

Kilbas AA, Saigo M, Saxena RK (2004). Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transforms Special Func. 15:31-49.

Laskin N (2000). Fractional market dynamics. Physica A. 287(3-4):482-492.

Li B, Chen Y (2004). On exact solutions of the nonlinear Schrödinger equations in optical fiber. Chaos Solitons Fractals 21(1):241-247.

Liu CF, Kong SS, Yuan SJ (2013). Reconstructive schemes for variational iteration method with in Yang-Laplace transform with application to fractional heat conduction problem. Thermal Sci. 117(3):715-721.

Mahdy AMS, Mohamed AS, Mowa AH (2015). Implementation of the homotopy perturbation Sumudu transform method for solving Klein-Gordon equation. Appl. Math. 6:617-628.

Miller KS, Ross B (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons, New York, NY, USA.

Momani S, Odibat Z (2007). Homotopy perturbation method for nonlinear partial differential equations of fractional order. Physica Lett. A. 365(5-6):345-350.

Noor MA, Mohyud-Din ST (2008). Variational homotopy perturbation method for solving higher dimensional initial boundary value problems. Math. Problems Eng. Article ID 696734, P. 11.

Podlubny I (1999). Fractional Differential Equations. Academic Press, New York, NY, USA.

Ray SS (2009). Analytical solution for the space fractional diffusion equation by two-step Adomian decomposition method. Commun. Nonlinear Sci. Numer. Simul. 14(4):1295-1306.

Rida SZ, El-sherbiny HM, Arafa AAM (2008). On the solution of the fractional nonlinear Schrödinger equation. Physica Lett. A. 372(5):553-558.

Su WH, Yang XJ, Jafari H, Baleanu D (2013). Fractional complex transform method for wave equations on cantor sets with in local fractional differential operator. Adv. Diff. Equ. 1:1-8.

Sun HH, Abdelwahab AA, Onaral B (1984). Linear approximation of transfer function with a pole of fractional order. IEEE Trans. Automatic Control 29(5):441-444.

Wang Q (2008). Homotopy perturbation method for fractional KdV-Burgers equation. Chaos Solitons Fractals 35(5):843-850.

Wazwaz AA (2008). Study on linear and nonlinear Schrödinger equations by the variational iteration method. Chaos Solitons Fractals 37(4):1136-1142.

Yang AM, Zhang YZ, Long Y (2012a). The Yang-Fourier transforms to Heat-Conduction in a Semi-Infinite fractal BAR. 17(3):707-713.

Yang XJ, Baleanu D (2013). Fractional heat conduction problem solved by Local fractional variation iteration method. Thermal Sci. 17(2):625-628.

Yang XJ, Baleanu D, Khan Y, Mohyud-Din ST (2014). Local fractional variational iteration method for diffusion and wave equations on cantor sets. Romanian J. Phys. 59(1-2):36-48.

Yang XJ, Baleanu D, Zhong WP (2013b). Approximate solutions for Diffusion equations on cantor space-time. Proc. Romanian Acedemy Series A. 14(2):127-133.

Yang XJ, Srivastava HM, He JH, Baleanu D (2013c). Cantor-type Cylindrical-Coordinate fractional derivatives. Phys. A. 377(28):1696-1700.

Zhang YZ, Yang AM, Long Y (2014). Initial boundary value problem for fractional Heat equation in the Semi-infinite Region by Yang-Laplace transform. Thermal Sci. 18(2):677-681.

Zhao CG, Yang AM, Jafari H, Haghbin A (2014). The Yang-Laplace transform for solving He IVPs with local fractional derivative. Abst. Appl. Anal. Article ID 386459, P. 5.