Neurite Outgrowth of Neuroblastoma Cells: Dependence on Adhesion Surface–Cell Surface Interactions

HEIKKI RAUVALA
Department of Medical Chemistry, University of Helsinki, Siltavuorenpenger 10 A, SF-00170 Helsinki 17, Finland

ABSTRACT Neurite outgrowth of C 1300 neuroblastoma cells, which were dispersed from adherent cultures or grown in suspension, was studied on different protein-coated surfaces. Of 29 different surface structures studied, including surfaces treated with various fibronectins, lectins, glycosidases, or glycosyltransferases capable of stimulating fibroblast spreading, only the surfaces coated with plasma fibronectin or with a protein mixture secreted by C6 glioma cells displayed an extensive activity in the sprouting assay. Neurite outgrowth was inhibited by brain gangliosides and by colominic acid (a sialic acid polymer). A 50% inhibition of neurite outgrowth of N18 neuroblasts induced by the glioma cell proteins was observed at the following approximate concentrations: 100 μM (0.2 mg/ml) GD₁A ganglioside, 20 μM (0.04 mg/ml) GT₁B ganglioside, and 5 mg/ml colominic acid. Specificity of inhibition was suggested by the finding that a few polyanionic substances tested were not inhibitory in the sprouting assay, and that the type of gangliosides inhibiting sprouting were found to be major sialoglycolipids of the neuroblasts. A hypothesis is discussed, according to which neurite outgrowth of neuroblasts is stimulated by adhesion involving interactions of the adhesion-mediating protein with cell surface carbohydrates characteristic of brain gangliosides.

Neuronal cells are dependent on adhesive contacts with their surrounding surface in order to form neurites (1–3). Little is known however, of the molecular mechanisms of adhesive interactions capable of promoting neurite outgrowth. A study was therefore undertaken, in which the capability of neuroblasts to extend neurites on different surfaces was examined. The C 1300 neuroblastoma cells were used as a convenient model system, since clones of these cells are known to sprout long neurite-like processes (1, 2).

In an attempt to study the relationship of the adhesiveness of a surface to its capability of enhancing axonal sprouting, various adhesive surface structures were prepared by adsorbing proteins on polystyrene or tissue culture surfaces as in studies of fibroblast attachment and spreading (4–6). The data of these studies suggest that various adhesive surface structures containing lectins or enzymes capable of enhancing fibroblast spreading (4, 5, 7), fail to enhance neuroblast sprouting. In contrast, plasma fibronectin and a protein mixture secreted by C6 glioma cells stimulate neurite outgrowth by acting as contact sites on adhesion surfaces.

Inhibition studies of sprouting were carried out with substances that could compete with the cell surface structure interacting with the adhesion surface to promote neurite outgrowth. Brain gangliosides were found to inhibit strongly neuroblast sprouting. It is suggested that gangliosides or glycoproteins having ganglioside-like sugar sequences could serve as cell surface structures interacting with the adhesion surface in the stimulation of neurite outgrowth from the neuroblasts.

MATERIALS AND METHODS

Materials: Human plasma fibronectin was purchased from Sigma Chemical Co. (St. Louis, MO) and bovine plasma fibronectin from Calbiochem-Behring Corp. (La Jolla, CA). A sample of human plasma fibronectin purified with affinity chromatography according to Vuento and Vaheri (8) was kindly donated by Dr. Jukka Finne (University of Helsinki, Finland). Human plasma fibronectin purified with affinity chromatography on gelatin-Sepharose (9) was used in some experiments. Bandeiraea simplicifolia lectin was a gift from Dr. Jukka Finne (University of Helsinki, Finland) and soybean agglutinin from Dr. William G. Carter (Fred Hutchinson Cancer Research Center, Seattle, WA). All other lectins were from Sigma Chemical Co. Aspergillus niger β-galactosidase was a gift from Dr. Jonathan Knowles (University of Helsinki, Finland) and the fucosyltransferases from Dr. Jean-Paul Prieels (Free University of Brussels, Belgium). Vibrio cholerae neuraminidase was from Calbiochem-Behring Corp. Other glycosidase were purchased from Sigma Chemical Co.

The gangliosides containing one, two, or three sialic acid residues per molecule (the gangliosides GM₁, GD₁, and GT₁) were purified from pig brain according to previously described procedures (10). Other anionic sub-

THE JOURNAL OF CELL BIOLOGY | VOLUME 98 | MARCH 1984 | 1010-1016
© The Rockefeller University Press - 0021-9525/84/98/1010/07 $1.00
stances tested as inhibitors of axonal outgrowth were purchased from Sigma Chemical Co.

Cell Cultures: The neuroblastoma clones N18, NB 41A, and NIE 115 and the C6 glioma cells were kindly supplied by Dr. Ewen MacDonald, (University of Kuopio, Finland). The cells were cultured in DME supplemented with 10% fetal calf serum, 100 U penicillin G ml⁻¹ and 0.1 mg streptomycin ml⁻¹ in an atmosphere of 5% CO₂.

Preparation of Conditioned Media: The conditioned media from the C6 cells and the N18 cells were prepared using confluent cultures on 100 x 20 mm Costar tissue culture plates. The cultures were washed from the serum-containing media, and 5 ml DME (containing penicillin and streptomycin) was applied on the plates, which were then incubated for 20 h at 37°C in an atmosphere of 5% CO₂. The media were removed and centrifuged at 20,000 g for 0.5 h. The dialyzed supernatants from the C6 cells and the N18 cells contained 22 and 27 μg/ml protein, respectively. The conditioned media from the C6 and N18 cells were prepared in the same way in the presence of 0.11 mM cycloheximide, and they contained 53 and 40 μg/ml protein, respectively.

Adhesion Assays: Adherent cultures of N18 neuroblasts were labeled with 0.25 μCi ml⁻¹ [³H]thymidine (Amersham Corp., Arlington Heights, IL) in the complete medium for 20 h. The cells were dispersed, washed, and applied on different adhesion surfaces as in assays of neurite outgrowth (see below). The cells were incubated for 1 h at 37°C, the nonadherent cells were removed by washing, and the radioactivity of the adherent cells was solubilized for counting with 1% SDS in 0.5 N NaOH (4). "Adherent cultures of N18 neuroblasts were labeled with 0.25 μCi ml⁻¹ [³H]thymidine (Amersham Corp., Arlington Heights, IL) in the complete medium for 20 h. The cells were dispersed, washed, and applied on different adhesion surfaces as in assays of neurite outgrowth (see below). The cells were incubated for 1 h at 37°C, the nonadherent cells were removed by washing, and the radioactivity of the adherent cells was solubilized for counting with 1% SDS in 0.5 N NaOH (4).

Assays of Neurite Outgrowth: Different protein-coated surfaces were prepared by adsorbing fibronectins, lectins, glycosidases, glycosyltransferases, or conditioned media on polystyrene plates (Linbro 96-well microtiter wells), as described previously (4). Proteins having lectin or enzyme activity were used since these proteins are expected to interact with cell surfaces, and could therefore induce adhesion (4, 7) and sprouting. The plates were washed three times with phosphate-buffered saline (PBS), and 75 μl of HEPES-buffered DME (10 mM HEPES, 100 U penicillin G ml⁻¹, and 0.1 mg streptomycin ml⁻¹ in DME, pH 7.4; DME-HEPES) was applied on the wells before starting the assays.

Adherent cultures of neuroblasts were dispersed with 10 μg/ml of crystalline trypsin (Sigma Chemical Co.) for 20 min at 37°C, and washed twice in the presence of 40 μg/ml of soybean trypsin inhibitor (Sigma Chemical Co.) as described previously (4). The neuroblasts were centrifuged from DME-HEPES, and suspended in the same buffer at the density 0.25 x 10⁶ cells ml⁻¹. The assays were started by adding 75 μl cell suspension to the wells containing 75 μl DME-HEPES. An assay time of 3 h was routinely used since the analysis was aimed at initial interactions taking place in neurite outgrowth, and at 3 h the sprouting vs. non-sprouting cells could be differentiated without difficulties in interpretation (Fig. 1). The assays were stopped by adding 150 μl 4% glutaraldehyde in DME-HEPES to the wells.

To avoid the trypsin treatment, we cultured the N18 neuroblasts in suspension on bacteriological petri dishes in the same medium as the adherent cells. The cells were dispersed by pipetting, washed from PBS and DME-HEPES, and tested for the sprouting activity as the cells from adherent cultures.

The percentage of sprouting cells was determined by scoring 250 cells from randomly selected areas on each well. The cells containing one or more processes, which were more than half the diameter of the undifferentiated round cell (>20 μm), were defined as sprouting neuroblasts (Fig. 1). The maximum amount of sprouting cells using plasma fibronectin required 50 μg/ml protein for surface treatment in 100 μl PBS. On the basis of five duplicate experiments 68.5 ± 3.65 (SD) % of cells were defined as sprouting ones under these conditions. The sprouting index of a surface compares the effect to the sprouting value 68.5% (sprouting index 100). Mean sprouting values of duplicate or triplicate wells, as shown in each experiment, were used for calculation of the sprouting indexes.

Thin-layer Chromatography of Gangliosides from N18 Neuroblasts: Adherent cultures of confluent neuroblasts on 150 x 15 mm tissue culture plates were washed with PBS, and the gangliosides were extracted and partitioned with mixtures of chloroform-methanol-water (11). About 10

![Figure 1](image-url)
nmol of ganglioside neuraminic acid were recovered per plate. Aliquots of the upper phase glycolipids (~5 nmol as neuraminic acid) were analyzed on high-

performance thin-layer chromatography. Precoated silica gel 60 plates (E. Merck, Darmstadt, W. Germany) were used with chloroform/methanol/water 60:35:8 (vol/vol/vol) or chloroform/methanol/2.5 M NH₄OH 60:35:8 (vol/ vol/vol) as the solvent.

RESULTS

Attachment and Neurite Outgrowth of Neuroblastoma Cells on Different Protein-coated Surfaces

Cells from adherent cultures of N18 neuroblastoma were dispersed and analyzed for their ability to attach to wells, to which different proteins had been adsorbed. Almost no specificity could be observed in neurblast attachment on different types of surfaces. For example, approximately the same percentage of cells (~70%) were attached on plain tissue culture plastic, concanavalin A or fibronectin in 1-h experiments (Table I).

In contrast to the analysis of cell binding, a clearcut specificity with respect to the contact surface was revealed from an analysis of neurite extension of the N18 cells. The lectins, glycosidases, and glycosyltransferases tested were without effect in the sprouting assay (Table II). Besides the proteins given in Table II, the following proteins were studied and found to have little or no effect on neurite extension (the sprouting index for cells from adherent cultures is given within parentheses): fetuin (0.6), asialofetuin (0.6), ovalbumin (0.9), soybean agglutinin (0.0), wheat germ agglutinin (0.0), β-galactosidase from Jack beans (1.2), β-galactosidase from Aspergillus niger (0.3), and neuraminidase from Vibrio cholerae (0.0).

On the other hand, extensive sprouting was observed on surfaces treated with 10-50 µg/ml plasma fibronectin (Table II) purified in different ways (see Materials and Methods). A soluble protein mixture secreted by C6 glioma cells stimulated strongly neuroblast sprouting, whereas the proteins from the N18 cells itself had little effect (Table III). The cells dispersed from adherent culture were more reactive than the cells grown in suspension (Table II).

Sprouts could be clearly observed at 0.5-1 h after starting the assays, and at 3 h neurites extending up to ~100 µm were observed (Fig. 1). The cells from the neuroblastoma clones

Surface	Cells from adherent cultures % Sprouting cells	Sprouting index	Cells grown in suspension % Sprouting cells	Sprouting index
Polystyrene plastic	0.0	1.5	0.8	1.8
Bovine serum albumin	0.8	1.2	1.5	1.8
Human plasma fibronectin	57	74	96	28
Bovine plasma fibronectin	64	68	96	39
Bandeiraea simplicifolia lectin	0.0	1.6	1.2	2.9
Concanavalin A	0.8	2.0	0.4	0.9
α-Galactosidase	2.4	2.8	3.8	1.5
Neuraminidase (Clostridium perfringens)	0.0	0.0	0.0	0.0
α-(1-3,4)-Fucosyltransferase	0.8	2.0	2.0	2.0
α-(1-2)-Fucosyltransferase	2.0	2.4	3.2	3.2
α-Mannosidase	2.0	2.8	3.5	3.5
Tissue culture plastic	2.0	5.2	5.3	5.3
Human plasma fibronectin*	22	26	35	35
Poly-L-lysine*	0.0	1.6	1.2	1.2
superficial during a 1-h centrifugation, is nondialyzable and
labile to heating (Table III). The activity was not released to
the medium in the presence of cycloheximide (Table III),
suggesting that it derives from protein synthesis of the glioma
cell. A maximal effect on axonal sprouting was achieved at a
protein concentration 3–5 μg/ml. Both the cells from adherent
cultures and the cells grown in suspension were able to extend
urrites on polystyrene or tissue culture surfaces treated with
the glioma cell-derived proteins.

Effect of Proteins in Solution as Compared to the
Effect of Proteins Adsorbed on a Solid Surface

Although it appears that polystyrene-immobilized proteins
are not released to the medium during cell experiments (4,5),
the possibility was considered that some of the plasma
fibronectin or the C6 cell-derived protein would be detached
to the medium during the assay, get into the cell, and effect
an intracellular stimulation of neurite formation. This possi-
bility seems to be excluded since the proteins displayed little
effect when added to the medium after allowing the cells to
attach. The effect on sprouting was slight in these experi-
ments even during a 20-h observation time (Table IV). Also, if
the plates were pretreated with albumin to inhibit adsorption (4),
the effects on sprouting were lost. Therefore, both plasma
fibronectin and the C6 cell-derived protein act as surface-
bound adhesion sites necessary for neurite outgrowth. Some
cell types, including the C6 glioma cells, have been previously
shown to release factors that stimulate sprouting when added
to neuroblast culture media (12). However, the effects from
the culture media require long assay times (reference 12; Table
IV), and are slight as compared to experiments, in which the
surfaces are pretreated with active proteins (Tables III and IV).

Inhibition of Neurite Outgrowth by Gangliosides
and by Colominic Acid

Since both plasma fibronectin and the glioma cell proteins
exert their effects on neurite formation by acting as contact

Contact surface	Medium	% Sprouting cells	Sprouting index
Tissue culture plastic	DME-HEPES	3.2; 6.4; 8.8	9.0
Tissue culture plastic treated with the glioma cell proteins	DME-HEPES	75; 76; 80	112
Tissue culture plastic	Gloma cell proteins in DME-HEPES	26; 29; 29	41
Tissue culture plastic treated with fibronectin	DME-HEPES	36; 42; 44	59
Tissue culture plastic	Fibronectin in DME-HEPES	2.8; 5.6; 5.6	6.8

The polyanions (Sigma Chemical Co.) and the gangliosides purified from pig
brain (10) were dialyzed against PBS and finally against DME-HEPES before
dissolved in DME-HEPES. Microtiter wells were treated with 100-μl condi-
tioned media from C6 cells (see Materials and Methods) for 2 h at room
temperature. The surfaces were washed, and the test substances at two times
the final concentration in 75 μl DME-HEPES were applied to the wells. The
N18 cells from adherent cultures were added to the wells in 75 μl DME-
HEPES and analyzed for neurite outgrowth as explained in Materials and
Methods.

sites on adhesion surface, they probably interact with some
cell surface structure to stimulate sprouting. Experiments were
therefore carried out to inhibit the effects of the adhesion
surfaces using neuronal cell surface-related substances in the
test media. Brain gangliosides were found to have a strong
inhibitory effect on neurite outgrowth. A 50% inhibition of
neurite outgrowth from N18 neuroblasts induced by the
glioma cell proteins required only ~20 μM trisialaganglioside
GT18 (Table V). A 50% inhibition of sprouting was achieved at
~100 μM concentration of the disialoganglioside GD1A,
whereas the monosialaganglioside GM1 had little effect (Table V).
Fibronectin-treated surfaces were inhibited in a similar
way (not shown). Sprouting of the cells from the neuroblas-
toma clone NIE 115 was also very sensitive to gangliosides.
Thus, a complete inhibition of sprouting induced by the C6
glioma cell proteins was observed at 45 μM concentration of
GD1A or GT18 ganglioside.

It is unlikely that the inhibitory effect of brain gangliosides
on neurite outgrowth would be due to unspecified cell-toxic
reasons, since the gangliosides occur at high concentrations in neuronal cell membranes (13, 14). The possible cell toxic effect of the gangliosides was tested by preincubating the cells in suspension for 3 h at 37°C in the presence of 100 μM GT₁₈ ganglioside in the assay medium. The ganglioside was thereafter removed from the medium by centrifugation of the cells, which were then resuspended and tested for neurite outgrowth. The ganglioside-treated cells gave a sprouting value 65% as a mean of a triplicate determination (62, 66 and 66%, compared to Table V), and the cells incubated in the buffer without the ganglioside gave the mean spraying value 62% (58, 62, and 67%). Thus, no inhibition can be observed when the cells are preincubated with five times the GT₁₈ concentration than the concentration that gives a 50% inhibition in the spraying assay (Table V). In contrast, some tendency to an increased sprouting could be observed, which may be due to incorporation of the ganglioside into the cell surface during the preincubation.

Any of the sulfated polyanions tested did not inhibit neurite outgrowth even at high concentrations (Table V). N-acetylneuraminic acid and the sialoglycoprotein fetuin were also without effect (Table V). The sialic acid polymer from Escherichia coli (colominic acid) had repeatedly some effect, though the inhibitory concentrations were rather high (Table V).

Gangliosides of the N18 Neuroblasts

Thin-layer chromatography suggested that the type of gangliosides, which inhibit axonal outgrowth, are found in the neuroblasts used in the assay. Thus, a GD₁₄-type ganglioside was found to be a major fraction in the neuraminic acid-containing glycolipids of the N18 cells (Fig. 2). Therefore, the inhibitory effects of the GD₁₄ and GT₁₈ gangliosides may be due to competition with a cell surface component having a ganglioside-type carbohydrate structure.

DISCUSSION

The results of this study are compatible with the following hypotheses of neuroblast sprouting: (a) Neuronal cell adhesion plays an important role in neurite outgrowth. (b) Fibronectin and fibronectin-related proteins stimulate neurite outgrowth. (c) Gangliosides or glycoproteins having ganglioside-like sugar sequences are cell surface interaction sites in the stimulation of neurite outgrowth. These three postulates are discussed separately below.

Adhesiveness of a Surface and Neurite Outgrowth

The interpretation that adhesion of a neuronal cell has an important role in sprouting of neuroblasts is in agreement with studies of Letourneau (3), who showed by surface-shadowing with heavy metals that axonal outgrowth is facilitated in areas of increased adhesiveness. However, adhesiveness of a surface per se may not be a sufficient condition for initiation of neurite outgrowth, although it is a necessary one. This inference is supported by the finding that most adhesive surface structures fail to enhance sprouting in 3-h experiments (Fig. 1, and Tables I and II), and clearcut differences in the extent of neurite outgrowth on different surfaces can be observed at least up to 20 h (Table IV). For example, the cells attach and flatten rapidly on lectin surfaces, but no remarkable neurite outgrowth occurs (Tables I and II). On the other hand, the proteins stimulating axonal sprouting have a far better effect when immobilized on adhesion surfaces as compared to the effects of the same proteins in solution (Table IV). It thus appears that only neuroblast adhesion involving specific interactions of the adhesive surface with the cell surface is capable of stimulating outgrowth of neurites.

Fibronectin and Neurite Outgrowth

Fibronectin has a remarkable effect on axonal sprouting (Fig. 1, Table II). The question of whether fibronectin could stimulate neurite outgrowth in vivo requires further study. It has been suggested that cells from glioma (15) and neuroblastoma (16) synthesize fibronectin, and a fibronectin-like protein occurs in the adhesion sites of neuroblastoma cells (17). However, fibronectin may not be expressed by normal glial or neural cells (18-20). Although aggregates of neural retinal cells (21) and neuroblasts are reactive to fibronectin, it is possible that these effects only reflect a similarity in the cell surface specificity between fibronectin and some other protein occurring in the glial or neural cells. A systematic search of such proteins should be possible on the basis of this study. Preliminary results of studies on glioma cells, on cerebrospinal fluid and on cell membranes of brain suggest that the activities enhancing neurite outgrowth of neuroblastoma cells.
are due to fibronectin-related proteins. Whether these factors are related to those mediating neurite outgrowth on polyanion films or fibronectin spreading, they have been reported to increase the extent of glioside interactions (32).

It is interesting that the effect of fibronectin-like proteins on the morphology of the neuroblastoma cells might be related to the finding that fibronectin partially restores normal morphology to transformed fibroblasts (25). However, the biochemical requirements for adhesion that stimulates neurite outgrowth of neuroblasts are entirely different from those stimulating fibroblast spreading. Thus, whereas many lectins and enzymes are able to stimulate fibroblast spreading in conditions similar to those of the present study (4, 7), these proteins do not stimulate neuroblast outgrowth (Table II).

Cell Surface Gangliosides and Neurite Outgrowth

Since only few adhesion surface stimulate sprouting (Tables II and III), a specific interaction with some cell surface structure is necessary for initiation of neurite outgrowth. The inhibition data (Table V) suggest that the interaction sites at the cell surface are neuraminic acid–containing glycoconjugates. Also, treatment of the N18 cells with neuraminidase reduced the extent of sprouting, but the cells were aggregated during the treatment, which made quantitative evaluation of the effect difficult (unpublished results).

The inhibition of axonal sprouting by gangliosides may be related to the ganglioside inhibition of fibronectin-mediated fibroblast attachment (26, 27). Thus, fibronectin-like proteins could interact with anionic cell surface components, like the gangliosides and proteoglycans (28, 29). It is currently difficult to conclude which type of cell surface molecules would be most relevant in the interactions of fibronectin with different cells (30, 31). Since the type of ganglioside, which is inhibitory in the sprouting assay, is a major glycolipid in the N18 cells (Fig. 2), the inhibitory effect may be due to a specific competition with the cell surface. This inference is also supported by reasonably low concentrations of the GD1a and GT1b gangliosides necessary for the inhibition of sprouting (Table V).

The inhibitory effect of purified gangliosides (Fig. 2) is related to increasing amounts of sialic acid in the molecule, but it is not an unspecific polyanionic effect (Table V). It should be recognized that at the rather high concentrations of the monosialoganglioside GM, tested (Table V), this molecule is already highly aggregated in aqueous solution (32, 33), and should therefore form a polyionic acid structure. It is however, probable that in contrast to the GD1a and GT1b gangliosides, the sialic residues of this structure are unavailable for interaction due to steric reasons as in neuraminidase–GM1 ganglioside interactions (32).

Gangliosides have been suggested to serve as cell surface receptors in neurite outgrowth induced by nerve growth factor, and they have been reported to increase the extent of neurite formation when added to neuronal cell cultures (34, 35). The apparently controversial results of the present study may be due to an entirely different method from those used previously. Thus, in the present method the extent of neurite outgrowth is strictly dependent on the structure of the adhesion surface, and no sera or other sources of growth factors are used in the assay of neurite outgrowth. On the other hand, it is important to realize that gangliosides could function as competitive inhibitors in the test media, but they could in contrast enhance sprouting in conditions, which favor incorporation to the cell surface. In fact, pretreatment of cells with high ganglioside concentrations may enhance neurite outgrowth in the present conditions. In any case, both the nerve growth factor and the adhesive protein stimulating neurite outgrowth could act on similar ganglioside-type cell surface structures.

The question of whether the cell surface components, which interact with adhesion surfaces enhancing sprouting, are gangliosides or glycoproteins having ganglioside-like sugar sequences (36) requires further study. Since high concentrations of colominic acid have some inhibitory effect (Table V), the protein enhancing neurite outgrowth may not be strictly specific for gangliosides, but the orientation of clustered sialic acid residues might be the structural feature determining the specificity. It is worth noting that the amount and the structure of the inhibitory type of sugar chains both in glycoproteins (37–40) and in gangliosides (14, 41) change during brain development, suggesting a function in differentiation.

The author wants to thank Professor Johan Järnefelt, Docent Jaakko Pesonen, and Dr. Yrjö Määtanen for valuable discussions and advice during the study. The excellent technical assistance of Ms. Tarja Hänninen and Ms. Liisa Kuivalainen is gratefully acknowledged.

This study was supported by a grant from the Academy of Finland.

Received for publication 24 May 1983, and in revised form 19 September 1983.

Note Added in Proof: Recent studies have suggested that laminin adsorbed to polylysine or linked covalently to glass (Jousimaa, J., J. Merenemies, and H. Rauvala, manuscript in preparation) stimulates neurite outgrowth to a similar extent as fibronectin (see Table II).

REFERENCES

1. Seeds, N. W., A. G. Gilman, T. Amato, and M. W. Nirenberg. 1970. Regulation of axon formation by clones of a neural tumor. Proc. Natl. Acad. Sci. USA 66:160-167.

2. Schubert, D., S. Humphreys, F. E. Viteri, and F. Jacob. 1971. Induced differentiation of a neuroblastoma. Dev. Biol. 25:54-545.

3. Letourneau, P. C. 1975. Cell-to-substratum adhesion and guidance of axonal elongation. Neurosci. Lett. 4:32-101.

4. Rauvala, H., G. W. Carter, and S. Hakomori. 1981. Studies on cell adhesion and recognition. I. Extent and specificity of cell adhesion triggered by carbohydrate-reactive proteins (glycosidases and lectins) and by fibronectin. J. Cell Biol. 88:127-137.

5. Carter, W. G., H. Rauvala, and S. Hakomori. 1981. Studies on cell adhesion and recognition. II. The kinetics of cell adhesion and cell spreading on surfaces coated with carbohydrate-reactive proteins (glycoalcalases and lectins) and fibronectin. J. Cell Biol. 88:138-148.

6. Rauvala, H., and S. Hakomori. 1981. Studies on cell adhesion and recognition. III. The occurrence of α-mannosidase at the fibroblast cell surface and its possible role in cell recognition. J. Cell Biol. 88:149-159.

7. Rauvala, H., J. P. Prieels, and J. Finsa. 1983. Cell adhesion mediated by a purified fucosyltransferase. Proc. Natl. Acad. Sci. USA 80:3991-3995.

8. Vuento, M., and A. Valheri. 1979. Purification of fibronectin from human plasma by affinity-chromatography under non-denaturing conditions. Biochem. J. 183:331-337.

9. Engvall, E., and E. Ruoslahti. 1977. Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int. J. Cancer 20:51-57.

10. Momoi, T., S. Ando, and Y. Nagai. 1976. High resolution preparative column chromatographic system for gangliosides using DEAE-Sephadex and a new porous silica, iatrobeads. Biochim. Biophys. Acta. 448:458-497.

11. Svennerholm, L., and P. Fredman. 1980. A procedure for the quantitative isolation of brain gangliosides. Biochim. Biophys. Acta. 6:179-109.

12. Mozdowska, Z., K. Pani, and A. Wiertljusz. 1973. Glia-induced morphological differentiation in neuroblastoma cells. Proc. Natl. Acad. Sci. USA 70:1894-1897.

13. D'Amato, H. A., and J. Holmgren, and L. Svennerholm. 1973. Ultrastructural localization of cell membrane GM1 ganglioside by choleratoxin. Proc. Natl. Acad. Sci. USA. 70:3782-3786.

14. Sonnino, S., R. Ghidoni, M. Manferini, F. Aporti, and G. Tettamanti. 1980. Changes in rabbit brain cytosolic and membrane-bound gangliosides during prenatal life. J. Neurochem. 36:237-232.

15. Valheri, A., E. Ruoslahti, B. Westmark, and J. Pontén. 1976. A common cell-type specific surface antigen in cultured human glial cells and fibroblasts loss in malignant cells. J. Exp. Med. 143:644-71.

16. Alitalo, K., M. Kurkinen, A. Vaheri, J. Virtanen, H. Rohde, and R. Timpl. 1980. Basal lamina glycoproteins are produced by neuroblastoma cells. Nature (Lond.). 287:465-466.

17. Culp, L. A., A. B. Amsbacher, and C. Domn. 1980. Adhesion sites of neural tumor ceil:
biochemical composition. Biochemistry. 19:5899-5907.
18. Schachner, M., G. Schoonmaker, and R. O. Hynes. 1978. Cellular and subcellular localization of LETS proteins in the nervous system. Brain Res. 158:149-158.
19. Raff, M. C., K. L. Fields, S. Hakomori, R. Minsky, R. M. Pruss, and J. Winter. 1979. Cell-type specific markers for distinguishing and studying neurons and the major classes of glial cells in culture. Brain Res. 174:283-308.
20. Paetau, A., K. Hellström, B. Westermark, D. Dahl, M. Haltia, and A. Vaheri. 1980. Mutually exclusive expression of fibronectin and glial fibrillary acidic protein in cultured brain cells. Exp. Cell Res. 129:337-344.
21. Akers, R. M., D. F. Mosb,te and J. E. Lilien. 1981. Promotion of retinal neurite outgrowth by substratum-bound fibronectin. Dev. Biol. 86:179-188.
22. Hawrot, E. 1980. Cultured sympathetic neurons: effects of cell-derived and synthetic substrata on survival and development. Dev. Biol. 74:136-151.
23. Collins, F. 1980. Neurite outgrowth induced by the substrate associated material from nonneuronal cells. Dev. Biol. 79:247-252.
24. Lander, A. D., D. K. Fujii, D. Gospodarowicz, and L. F. Reichardt. 1982. Characterization of a factor that promotes neurite outgrowth: evidence linking activity to a heparan sulfate proteoglycan. J. Cell Biol. 94:574-585.
25. Yamada, K. M., S. S. Yamada, and I. Paast. 1976. Cell surface protein partially restores morphology, adhesiveness and contact inhibition of movement to transformed fibroblasts. Proc. Natl. Acad. Sci. USA. 73:1217-1221.
26. Kleinman, H. K., G. R. Martin, and P. H. Fishman. 1979. Ganglioside inhibition of fibronectin-mediated cell adhesion to collagen. Proc. Natl. Acad. Sci. USA. 76:3367-3371.
27. Yamada, K. M., D. W. Kennedy, G. R. Grotendorst, and T. Momoi. 1981. Glycolipid receptors for fibronectin? J. Cell Physiol. 99:323-351.
28. Laterra, J., R. Anabacher, and L. A. Culp. 1980. Glycosaminoglycans that bind cold-insoluble globulin in cell-substratum adhesion sites of marine fibroblasts. Proc. Natl. Acad. Sci. USA. 77:6662-6666.
29. Laterra, J., J. E. Silbert, and L. A. Culp. 1983. Cell surface heparan sulfate mediates some adhesive responses to glycosaminoglycan-binding matrices, including fibronectin. J. Cell Biol. 96:112-123.
30. Aplin, J. D., and R. C. Hughes. 1982. Complex carbohydrates of the extracellular matrix. Structures, interactions and biological roles. Biochem. Biophys. Acta. 694:375-418.
31. Rauvala, H. 1983. Cell surface carbohydrates and cell adhesion. Trends Biochem. Sci. 8:323-325.
32. Rauvala, H. 1979. Monomer-micelle transition of the ganglioside GM1 and the hydrolysis by Clostridium perfringens neuraminidase. Eur. J. Biochem. 97:555-564.
33. Mraz, W., G. Schwarzmann, J. Satzler, T. Momoi, B. Sennman, and H. Wingand. 1980. Aggregate formation of gangliosides at low concentrations in aqueous media. Hoppe-Seyler's Z. Physiol. Chem. 361:177-185.
34. Rosen, F. J., H. Bartfeld, R. Nagele, and G. Yorke. 1981. Ganglioside stimulation of axonal sprouting in vitro. Science (Wash. DC). 214:577-578.
35. Schwartz, M., and N. Spitzman. 1982. Sprouting from chicken embryo dorsal root ganglia induced by nerve growth factor is specifically inhibited by affinity-purified anti-ganglioside antibodies. Proc. Natl. Acad. Sci. USA. 79:6080-6083.
36. Rauvala, H., and J. Finne. 1980. Gangliosides of brain and of extraneuronal tissues: structural relationship to protein-linked glycans. In Structure and Function of Gangliosides. L. Svennerholm, P. Mandel, H. Dreyfus, and P.-F. Urban, editors. Plenum Press, New York. 185-198.
37. Finne, J., J. Krupian, and H. Rauvala. 1977. Occurrence of disialosyl groups in glycoproteins. Biochem. Biophys. Res. Commun. 74:405-410.
38. Finne, J., T. Krupian, H. Rauvala, and K. Hemminki. 1977. The disialosyl group of glycoproteins, occurrence in different tissues and cellular membranes. Eur. J. Biochem. 77:319-323.
39. Finne, J. 1982. Occurrence of unique polysialosyl carbohydrate units in glycoproteins of developing brain. J. Biol. Chem. 257:1966-1970.
40. Edelman, G. M., and C.-M. Choung. 1982. Embryonic to adult conversion of neural cell adhesion molecules in normal and staggerer mice. Proc. Natl. Acad. Sci. USA. 79:7036-7040.
41. Vanier, M. T., M. Holm, R. Øhman, and L. Svennerholm. 1971. Developmental profiles of gangliosides in human and rat brain. J. Neurochem. 18:581-592.