Supply Chain Management (SCM) – Is it Value Addition towards Academia?

Prof. Dr. Md. Mamun Habib¹ and Ikram Hasan²

¹,²BRAC School of Business (BBS), BRAC University, Bangladesh
¹University of Texas – Arlington (UTA), USA
¹mamunhabib@gmail.com, ²mamunhabib@bracu.ac.bd, ¹mohammad.habib@uta.edu
²ikramhasan.evans@bracu.ac.bd, ²ikramhasan.shavan@gmail.com

Abstract. This keynote paper illustrates the theory and evolution of Supply Chain Management (SCM) as well as highlights chronological prospective of SCM in terms of time frame in different areas of manufacturing and service industries. The objective of SCM is to incorporate activities across and within organizations for providing the customer/stakeholders value. Supply Chain Management (SCM) has been widely researched in numerous application domains during the last few decades. Despite the popularity of SCM research and applications, considerable confusion remains as to its meaning, there are several attempts made by researchers and practitioners to appropriately define SCM. This paper demonstrates Educational Supply Chain Management, Integrated Tertiary Educational Supply Chain Management (ITESCM) model, as the application of SCM in the service industry, which would add the values towards academia. ITESCM model were identified and confirmed by 493 respondents, representing experts and administrators, faculty, staffs of the university, employers, graduates, etc. The resulting model was subsequently evaluated for accuracy and validity by multiple linear regressions (MLR) analysis and the structural equation modeling (SEM) technique. The research model provides a novel approach for decision makers of each supply chain components to review and appraise their performance toward fulfillment of ultimate goals i.e. producing high-caliber graduates and high-impact research outcomes, which represent two main contributions, for the betterment of the end customer, i.e., the society.

Keywords: Supply chain management, academia, education, SCM, research, ITESCM.

1. Introduction
Researchers usually focused on Supply chain management (SCM) issues in profit organizations during last decade. Research objectives may include adding value, reducing cost, or slashing response time in various parties involved in the manufacturing supply chain. However, very few studies were attempted in non-profit organizations, i.e. service industries. An extremely scarce number of research papers focused on SCM in the academia [17], [25].

Ref. [17] states that a profit organization attempts to maximize profits, whereas a non-profit organization considers monetary returns of less importance. Their major objectives may include improved literacy rate, better quality of life, equal opportunities for all genders or races, etc. The revenues gained by a non-profit organization would be used primarily to balance the expenditure of the organization. Due to conflicting objectives, managing a successful profit organization may be drastically different from a non-profit organization [25]. Recently, an increasingly large number of research studies highlight the criticalness of SCM as a means to assuring organizational success.
SCM assists the business organization to compete in the dynamic international market. The objective of SCM is to incorporate activities across and within organizations for providing the customer value. This should also be applicable to the academia, which represents a type of non-profit organizations. The goal is to provide the society value by producing high quality graduates and research outcomes. An integrated educational supply chain involves coordination and information sharing up and down the process among all stakeholders. With technology facilitating information flow, a coordinated supply chain can be designed to meet the strategic, planning, and operating objectives of the educational institutions. It also means establishing effective and feasible relationships both inside and outside the organization [8].

SCM is needed for various reasons: improving operations, better outsourcing, increasing profits, enhancing customer satisfaction, generating quality outcomes, tackling competitive pressures, increasing globalization, increasing importance of E-commerce, and growing complexity of supply chains. Supply chains are relatively easy to define for manufacturing industries, where each participant in the chain receives inputs from a set of suppliers, processes those inputs, and delivers them to a different set of customers. With educational institutions, one of the primary suppliers of process inputs is customers themselves, who provide their bodies, minds, belongings, or knowledge as inputs to the service processes [8], [17], [24].

This exploratory study reveals the following objectives: a) Analysis the overview of SCM through different citations and the evolution of SCM, b) Presentation of ITESCM as SCM practices on tertiary educational institutions

2. Evolution of SCM
The supply chain literature review was conducted to study the past researches. Before the 1950s, logistics was thought of in military terms. It had to do with procurement, maintenance, and transportation of military facilities, materials, and personnel. The study and practice of physical distribution and logistics emerged in the 1960s and 1970s [8], [17], [25].

The logistics era prior to 1950 has been characterized as the “dormant years,” when logistics was not considered a strategic function. Around 1950s changes occurred that could be classified as a first “Transformation.” The importance of logistics increased considerably, when physical distribution management in manufacturing firms was recognized as a separate organizational function. The SCM concept was coined in the early 1980s by consultants in logistics [8]. The authors emphasized that the supply chain must have been viewed as a single entity and that strategic decision-making at the top level was needed to manage the chain in their original formulation. This perspective is shared with logisticians as well as channel theorists in marketing [17].

SCM has become one of the most popular concepts within management in general since its introduction in the early 1980s [17]. A number of journals in manufacturing, distribution, marketing, customer management, transportation, integration, etc. published articles on SCM or SCM-related topics. The evolution of SCM continued into the 1990s due to the intense global competition [25].

Ref. [8] went as far as claiming there was a paradigm shift within the management literature: “One of the most significant changes in paradigm of modern business management is that individual businesses no longer compete as solely autonomous entities, but rather as supply chains. Business management has entered the era of inter-network competition and the ultimate success of a single business will depend on management’s ability to integrate the company’s intricate network of business relationships.”

Ref. [17] adopted SCM in the National Health Service. In fact, it was the first paper of SCM in the service industry. Ref. [34] illustrated the customer supplier duality in the service organizations as it pertained to SCM in the service industry. Ref. [33] explored supply chain application to the service industry. Ref. [32] proposed an educational supply chain as a tool for strategic planning in tertiary education. The study was based on a survey among employers and students.

Survey findings revealed that integration and coordination among students and employers should have been promoted. Ref. [31] explored a framework for SCM based on several service industries
including automobile, grocery, computers, book publishing etc. According to the case study conducted at the City University of Hong Kong, ref. [19] defined educational supply chain as the ‘Student’ and the ‘Research’ supply chain.

Ref. [17] represents the first large scale empirical study that systematically investigate input of the university, output of the university through educational SCM. This exploratory research addresses the education supply chain, the research supply chain, and educational management as major constituents in an Integrated Tertiary Educational Supply Chain Management (ITESCM) model. Its applicability was successfully verified and validated through survey data from leading tertiary educational institutions around the world. Redesigned ITESCM Model was developed in 2012 which is more users friendly [21], [24]. The emergence and evolution of SCM may be depicted as a timeline shown in Figure 1.

Figure 1. Evolutionary Timeline of Supply Chain Management

3. Research Methodology
The analysis of this paper is based on both primary and secondary data. First part of this paper, evolution of SCM evolved Secondary data sources, particularly online databases, books, journals, conference papers, etc. On the other hand, 2nd part of this paper furnished based on the analysis of literature, past theoretical frameworks, interviews with stakeholders. ITESCM model constructs were identified and confirmed by 493 respondents, representing university administrators, faculty and staffs, employers, and graduates. Its applicability was successfully verified and validated through survey data from leading tertiary educational institutions around the world.

4. SCM Practices
Supply chain management practice on the service industry has been depicted in this paper. ITESCM model denotes supply chain management for the universities which represents one of the service industries. One of the main goals of an educational supply chain is to improve the well-being of the end customer or the society. To achieve this goal, educational institutions need to have a certain degree of knowledge about the partners in their supply chains including suppliers, customers, and the society. The performance of the supply chain management depends on the seamless coordination of all supply chain stakeholders to ensure attainment of desirable outcomes.

The ITESCM, which stands for Integrated Tertiary Educational Supply Chain Management, model represents supply chain management for the academia [10], [15], [17], [20]. This model depicts the integrated form of educational supply chain and educational management for the universities. Educational supply chain also consists of education supply chain and research supply chain. This paper is the revised version of ITESCM model, which represents academic supply chain management for the universities.

In academic supply chain management, raw materials are students as well as internal and external projects. Finished products are graduates and research outcomes [8], [11], [9]. Suppliers, supplied
inputs, the service provider, customers, supplied outputs, and the consumer have been identified in the integrated supply chain for the universities. Fig. 4 illustrates an education supply chain and a research supply chain, which together form the integrated supply chain for the universities [11],[12].

Initially, researcher develops a conceptual framework of Integrated Tertiary Educational Supply Chain Management (ITESCM) model. Also using research it is possible to designs an integrated supply chain for the universities. Co-ordination and information sharing involve in integrated supply chain up and down the process. Researcher depicts holistic view of educational supply chain in Figure 2 for providing the clear conception of the conceptual framework. Single-level, bi-directional simplified form of supply chain management has been formulated in this framework for the universities, as shown in Figure 3. Since a single party is unable to do anything in the higher educational institutions, the researcher involves different parties to achieve final outcomes [28], [29], [30].

![Figure 2. Holistic View of Educational Supply Chain](image)

However, determine the supplier and customer of the intangible product in the service industry is very difficult. Suppliers, the service provider, customers, and the consumer have been identified in this research. This exploratory study also identifies supplied inputs, customer-consuming output (O/P), customer-supplying input (I/O) and finally supplied outputs [28].

![Figure 3. Simplified Form of Supply Chain Management for the Universities](image)

In this paper, authors intend to redesign ITESCM model that is the revised form of original ITESCM. That model would be easily explicable and research equations are friendly for users who intend to apply in practical field of tertiary educational institutions. Fig. 5 illustrates redesigned ITESCM model [28], [29], [30].
Different Factors in the Universities

According to the concept of three decision levels, including strategic, planning and operating, in SCM, this concept would be adopted for the higher educational institutions [24]. To accomplish proper teaching and research works in the universities; different factors have to need analyzed. Four factors, namely faculty capabilities, facilities, programs establishment, university culture [8], [9], [10], [13], [14], [29], [30] will be illustrated in this section.

Programs Establishment (PE): Programs establishment would be occurred for the education and research in terms of development and assessment in the universities. Universities design different programs, to enhance the diversification in education development and establish various programs to assess the development. Universities also intend different programs to increase the diversification in research development and research assessment. Universities have to attempt product differentiation, i.e. programs establishment. Hands-on experience, industrial placements, social demand, provision of IT facilities, and innovative academic methods all demonstrate attempts to differentiate programs establishment [8], [9].

Faculty Capabilities (FC): Faculty members establish good communication, provide rich environment for classroom observation, model best practices, create opportunities for reflection, and support students' participation in curriculum planning, teaching and research. Traditionally, university faculty members are evaluated according to the three major criteria: teaching, research, and services [12], [8], [9].

University Culture (UC): The concept of organizational culture would be applicable for the universities by the name of University Culture. However, the type of the university culture will fully depends on the university management or administrator. In fact, university culture is the personality of the university [9], [15].

Facilities (FA): Universities offer a wide range of modern facilities to their students. These include state of the art lecture halls, libraries, laboratories and IT services to ensure that students are provided with an environment in which they can learn, both successfully and comfortably. Lecture rooms are principally conducted using state-of-the-art distance learning technology, online education, e-learning via Internet. Online databases, e-journal, digital library, etc. represents modern research facilities in the universities [8], [11].
5. Redesigned ITESCM Model evaluation

The researchers pointed out six hypotheses and three models. Hypothesis H₁ stands for graduates and hypothesis H₂ for research outcomes. Hypotheses H₃, H₄, H₅ and H₆ for supplied outputs. The following hypotheses are established.

H₁ There is a relationship between education development and education assessment with graduates
H₂ There is a relationship between research development and research assessment with research outcomes
H₃ There is a relationship between graduates and education customers
H₄ There is a relationship between research outcomes and research customers
H₅ There is a relationship between education customers and the society
H₆ There is a relationship between research customers and the society

Model A – Graduates

Model A contains Education Development (Ed) and Education Assessment (Ea). There are four subgroups, including programs establishment (EdPE), university culture (EdUC), faculty capabilities (EdFC), and facilities (EdFA), respectively in Education Development. Similarly four subgroups are available in Education Assessment.

MLR Equations

\[Ed = 0.63EdPE + 0.70EdUC + 0.65EdFC + 0.65EdFA \] (1)
\[Ea = 0.68EdPE + 0.74EdUC + 0.69EdFC + 0.66EdFA \] (2)
\[Graduates = 0.97Ed + 0.92Ea \] (3)
Equation (3) depicts that education development is highly contributed to produce quality graduates in the universities.

\[
\text{Graduates} = 0.97E_d + 0.92E_a = 0.97 [0.63E_{dPE} + 0.70E_{dUC} + 0.65E_{dFC} + 0.65E_{dFA}] + 0.92 [0.68E_{aPE} + 0.74E_{aUC} + 0.69E_{aFC} + 0.66E_{aFA}]
\]

\[
= 0.61E_{dPE} + 0.68E_{dUC} + 0.63E_{dFC} + 0.63E_{dFA} + 0.68E_{aUC} + 0.63E_{aFC} + 0.61E_{aFA}
\]

The above equation shows university culture at education development and education assessment is highly contributed to produce the graduates in the universities.

Model Fit Index: Chi-square = 8.936 (Ratio of relative chi-square close to 5 indicates reasonable fit) [2], Degrees of freedom = 19, Probability level = .000, RMSEA = 0.127 NFI = 0.880, CFI = 0.891 (NFI and CFI values close to 1 indicate a very good fit) [8], [9].

The above equations, graphics output, Model fit index, and above all statistical discussion on AMOS magnifies that hypothesis H1 fails to reject and states that there are significant relationship between education development and graduates as well as education assessment and graduates.

Model B - Research Outcomes

Model B contains Research Development (R_d) and Research Assessment (R_a). There are four subgroups, including

\[
\begin{align*}
E_{dPE} & \rightarrow R_{dPE} \\
E_{dUC} & \rightarrow R_{dUC} \\
E_{dFC} & \rightarrow R_{dFC} \\
E_{dFA} & \rightarrow R_{dFA}
\end{align*}
\]

\[
\begin{align*}
E_{aPE} & \rightarrow R_{aPE} \\
E_{aUC} & \rightarrow R_{aUC} \\
E_{aFC} & \rightarrow R_{aFC} \\
E_{aFA} & \rightarrow R_{aFA}
\end{align*}
\]

Figure 6. AMOS Graphics Output of Model A (Standardized Estimates)

Figure 7. AMOS Graphics Output of Model B (Standardized Estimates)
MLR Equations
\[R_d = 0.60R_{dPE} + 0.71R_{dUC} + 0.63R_{dFC} + 0.67R_{dFA} \]
\[R_a = 0.67R_{aPE} + 0.72R_{aUC} + 0.64R_{aFC} + 0.69R_{aFA} \]
Research Outcomes = 0.99\(R_d\) + 0.89\(R_a\)
(4)
(5)
(6)

From the research findings, equation (6) depicts that research development is highly contributed to produce research outcomes in the universities. From Equation (6),

Research Outcomes = 0.99 \left[0.60R_{dPE} + 0.71R_{dUC} + 0.63R_{dFC} + 0.67R_{dFA}\right] + 0.89 \left[0.67R_{aPE} + 0.72R_{aUC} + 0.64R_{aFC} + 0.69R_{aFA}\right]
= 0.59R_{dPE} + 0.70R_{dUC} + 0.62R_{dFC} + 0.66R_{dFA} + 0.60R_{aPE} + 0.64R_{aUC} + 0.66R_{aFC} + 0.61R_{aFA}
(7)

From the research results of equation (7), university culture and facilities in research development as well as faculty capabilities in research assessment are highly contributed to produce the research outcomes in the universities.

Model Fit Index: Chi-square = 9.991, Degrees of freedom = 19, Probability level = .000, RMSEA = 0.135, NFI = 0.872, CFI = 0.883

The above equations, graphics output, Model fit index and above all statistical discussion on AMOS rectifies that hypothesis H2 fails to reject and states that there are significant relationship between research development and research outcomes as well as research assessment and research outcomes.

Model C - Supplied Outputs
Model C is representing the inter relationships among different variables to justify the hypotheses H3, H4, H5 and H6 by SEM through AMOS.

MLR Equations
Society = 0.61EducationCustomers + 0.61 ResearchCustomers
= 0.61 \left[0.34Graduates\right] + 0.61 \left[0.15ResearchOutcomes\right]
= 0.21Graduates + 0.09ResearchOutcomes
(8)

From the research findings, the society consists of graduates and research outcomes. The author defined the society as the function of graduates and research outcomes.

\[\text{Figure 8. AMOS Graphics Output of Model C (Standardized Estimates)} \]
Society = \text{f (Graduates, ResearchOutcomes)}

The equation (8) represents that graduates are highly contributed to the society. This equation also depicts that education customers and research customers have equal contribution to the society.

Society = 0.21 \left[0.97E_d + 0.92E_a\right] + 0.09 \left[0.99R_d + 0.89R_a\right]
= 0.20E_d + 0.19E_a + 0.09 R_d + 0.08R_a
(9)
The above equation represents the relationship between the society and education development, education assessment, research development, research assessment. Education development and then education assessment are highly contributed to the society.

\[
\text{Society} = 0.20 [0.63E_{dPE} + 0.70E_{dUC} + 0.65E_{dFC} + 0.65E_{dFA}] + 0.19 [0.68E_{aPE} + 0.74E_{aUC} + 0.69E_{aFC} + 0.66E_{aFA}] + 0.09 [0.60R_{dPE} + 0.71R_{dUC} + 0.63R_{dFC} + 0.67R_{dFA}] + 0.08[0.67R_{aPE} + 0.72R_{aUC} + 0.64R_{aFC} + 0.69R_{aFA}]
\]

Model Fit Index: Chi-square = 5.494, Degrees of freedom = 3, Probability level = 0.001, RMSEA = 0.096, NFI = 0.896, CFI = 0.911

Equations, graphics output, Model fit index, and above all statistical discussion on AMOS states that there are significant relationships between graduates and education customers, research outcomes and research customers. There are also significant relationships among education customers, research customers and the society. Therefore, hypotheses H3, H4, H5 and H6 fail to reject.

6. Implications of Redesigned ITESCM
Integrated Tertiary Educational Supply Chain Management (ITESCM) model was developed by Habib in 2009 [8], [9]. Due to receiving feedback from academicians and practitioners, the researchers attempt to revise ITESCM model to comply it in real-life application for different universities in the world. Redesigned model is user friendly and easy to understand for current university administrators and prospective investigators.

If the researcher chooses 5 (strongly agree of 5 point Likert Scale) for each function in equation (10), in that case, the maximum value of equation (10) will equal to 7.545. On the other hand, if the investigator selects 1 (strongly disagree) for each function in the equation, in that case, the minimum value of equation (10) will equal to 1.509. Then, the researcher suggests cut off the value for the function of the society at fifty percent is 4.527 to indicate the value can be accepted.

\[
\text{UniversityOutcomes} = \frac{\text{Society} - 1.509}{7.545 - 1.509} \times (100 - 0)
\]

The resulting suitability index, UniversityOutcomes in equation (11) ranges from 0% to 100% with 0% being the least favorable and 100% being the most suitable. The index of at least 50% may serve as a rough acceptance criterion for the well-being society [9], [26], [27].

7. Conclusion
This paper encompasses the evolution of SCM in terms of time frame for the manufacturing and service industries. In addition, this research represents the first large scale empirical study that systematically investigate input, output and process of the tertiary academic institutions through redesigned ITESCM model. This empirical study based on 493 respondents from all stakeholders, including experts and administrators, faculty members and staffs of the university, employers, graduates, etc. The hypotheses testing and SEM technique through AMOS were also applied.

This paper proposes the model of academic supply chain management for the tertiary educational institutions. This model links educational management with general business management. From a managerial point of view, this research provides a novel approach to developing and assessing supply chain management application in the academia, which represents a service industry.

8. References
[1] Arbuckle J L 2005 Amos™ 6.0 User’s Guide (USA: Amos Development Corporation)
[2] Bentler P M 1990 Comparative fit indexes in structural models. Psychological Bulletin 107 pp 238–246
[3] Cutler B D, Moberg C R, Gross A and Speh T W 1998 Identifying antecedents of Information exchange within supply chains. *Int. J. of Physical Distribution & Logistics Management* (UK) 32(9) pp 755-770

[4] Ebel R L 1551 Estimation of the reliability of ratings. *Psychometrika* 16 pp 407-424

[5] Habib M and Jungthirapanich 2008 An integrated framework for research and education supply chain for the Universities. *IEEE Int. Conference on Management of Innovation and Tech.* (Thailand) pp 1027-1032, ISBN 978-1-4244-2329-3

[6] Habib M and Jungthirapanich C 2009 Integrated educational management for the Universities. *The Journal of China-USA Business Review* (USA: David Publishing Company) 8(8) pp 25-38 ISSN 1537-1514

[7] Habib M and Jungthirapanich C 2009 Research Framework of Educational Supply Chain Management for the Universities. *IEEE Int. Conference on Eng. Management and Service Sciences EMS* (China) ISBN 978-1-4244-4638-4

[8] Habib M 2009 *An Integrated Educational Supply Chain Management (ITESCM).* Ph.D. Dissertation (Thailand: Graduate School of Information Technology, Assumption University of Thailand)

[9] Habib M 2010 *Supply Chain Management for Academia.* (Germany: LAP Lambert Academic Publishing) ISBN 978-3-8433-8026-3

[10] Habib M 2010 An Empirical Research of ITESCM (Integrated Tertiary Educational Supply Chain Management) Model. *Management and Services.* Sciylo.com ISSN 978-953-307-118-3.

[11] Habib M and Jungthirapanich C 2010 An Empirical Research of Educational Supply Chain for the Universities. *The 5th IEEE Int. Conf. on Management of Innovation and Tech.* (Singapore) ISBN: 978-1-4577-0738-4

[12] Habib M and Jungthirapanich C 2010 An Empirical Study of Educational Supply Chain Management for the Universities. *INFORMS Int. Conf. on Industrial Eng. and Operations Management* (Bangladesh) ISBN 978-984-33-0989-1

[13] Habib M and Jungthirapanich 2010 An Empirical Research of Integrated Educational Management for the Universities. *The 2nd IEEE Int. Conf. on Information Management and Eng.* (China) ISBN 978-1-4244-5263-7

[14] Habib M 2011 An Exploratory Study of Supply Chain Management for Tertiary Educational Institutions. *IEEE Int. Tech. Management Conference (ITMC)* 2011a, (San Jose, California USA) ISBN 978-1-61284-950-8.

[15] Habib M 2011 An Exploratory Research on Educational Supply Chain Management. *The IEEE Int. Conf. on Industrial Eng. and Eng. Management (IEEM)* (Singapore) ISBN 978-1-4577-0738-4

[16] Habib M 2011 An Exploratory Analysis of Educational Management for the Universities. *Int. J. of Eng. Business Management (IJEBM)* (Croatia) 3(3) ISSN 1847-9790

[17] Habib M 2011 *Supply Chain Management (SCM): Theory and Evolution.* Dr. Md. Mamun Habib (Editor), *Supply Chain Management—Applications and Simulations.* [InTech Open Access] (Croatia) ISBN 978-953-307-250-0

[18] Harris R 2009 *Decision Making Techniques.* July 3, 1998. Available: www.virtualsalt.com

[19] Lau A K W 2007 *Educational supply chain management: a case study.* (Emerald Group Publishing Limited) ISSN 1074-8121 15(1) pp 15-27

[20] Pathik B B, Habib Md M and Chowdhury M T 2012 *Analysis of Educational Supply Chain Management Model: A Case Study Approach.* (Submitted) *Proc. of the 2012 Int. Conf. on Industrial Eng. and Operations Management* (Turkey)

[21] Pathik B B, Habib Md M and Chowdhury M T 2012 A Descriptive Study on Supply Chain Management Model for the Academia. (Submitted) *The 6th IEEE Conf. of Management of Innovation and Tech.* (Indonesia)
[22] Wheaton, Muthén B, Alwin D F and Summers G F 1997 Assessing reliability and stability in panel models. *Sociological methodology*. D R Heise, ed. (San Francisco: Jossey-Bass) pp 84–136

[23] Habib, Md. Mamun and Goncharuk A G 2012 *Performance Measurement through Supply Chain Management: A Case Study on Academia* (Germany: LAP Lambert Academic Publishing) ISBN 978-3-8473-7021-5

[24] Pathik B B and Habib Md M 2012 Redesigned ITESCM Model: An Academic SCM for the Universities. *Int. J. of Supply Chain Management* (UK: ExcelingTech Publisher) 1(1)

[25] Habib Md M 2010 Supply Chain Management: Theory and its Future Perspectives. *Int. J. of Business, Management and Social Sciences (IJBMSS)* 1(1) ISSN 2249-7463

[26] Habib Md M and Pathik B B 2012 Academic Supply Chain Management for Tertiary Educational Institutions. *The IEEE Int. Conf. on Industrial Eng. and Eng. Management (IEEM)* (Hong Kong)

[27] Habib M 2014 Supply Chain Management (SCM): Its Future Implications. *Open Journal of Social Sciences* 2(9) pp 238-246 ISSN: 2327-5952 (Print), 2327-5960 (Online)

[28] Govindaraju B, Jeyasingam J, Habib Md M, Letchmana U and Radhakrishnan R 2017 The Impact of Supply Chain Management Practices on the Performance of Private Universities in Malaysia. *Int. J. of Supply Chain Management (IJSCM)* 6(3) pp 22-35 ISSN: 2050-7399 (Online), 2051-3771 (Print)

[29] Paguio D P and Habib Md M 2017 A Proposed Supply Chain Management Model for Teacher Education Institutions: A Structural Equation Modeling. *Int. J. of Supply Chain Management (IJSCM)* 6(2) pp 15-26 ISSN: 2050-7399 (Online), 2051-3771 (Print)

[30] Govindaraju B, Jeyasingam J, Habib Md M 2016 Education Supply Chain Management Model to Achieve Sustainability in Private Universities in Malaysia: A Review. *Int. J. of Supply Chain Management (IJSCM)* 5(4) ISSN: 2050-7399 (Online), 2051-3771 (Print)

[31] Cigolini R, Cozzi M and Perona M 2004 A new framework for supply chain management. *Int. J. of Operations & Production Management* 24(1) pp 7-41

[32] O’Brien E M and Kenneth R 1996 Educational supply chain: a tool for strategic planning in tertiary education? *Marketing Intelligence & Planning* 14(2) pp 33-40

[33] Kathawala Y and Abdou K 2003 Supply chain evaluation in the service industry: a framework development compared to manufacturing. *Managerial Auditing J.* 18(2) pp 140-149

[34] Sampson S E 2000 Customer-supplier duality and bidirectional supply chains in service organization. *Int. J. of Service Industry Management* 11(4) pp 348-364