Mapping Bone Surface Composition Using Real-Time Surface-Tracked Micro-Raman Spectroscopy

Furqan A. Shah Krisztina Ruscsák Anders Palmquist
Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Keywords
Bone · Bone surface · Biomineralization · Raman spectroscopy

Abstract
The surface of bone tells a story – one that is worth a thousand words – of how it is built and how it is repaired. Chemical (i.e., composition) and physical (i.e., morphology) characteristics of the bone surface are analogous to a historical record of osteogenesis and provide key insights into bone quality. Analysis of bone chemistry is of particular relevance to the advancement of human health, cell biology, anthropology/archaeology, and biomedical engineering. Although scanning electron microscopy remains a popular and versatile technique to image bone across multiple length scales, limited chemical information can be obtained. Micro-Raman spectroscopy is a valuable tool for nondestructive chemical/compositional analysis of bone. However, signal integrity losses occur frequently during wide-field mapping of non-planar surfaces. Samples for conventional Raman imaging are, therefore, rendered planar through polishing or sectioning to ensure uniform signal quality. Here, we demonstrate ν1 PO4\(^{3-}\) and ν1 CO3\(^{2-}\) peak intensity losses where the sample surface and the plane of focus are offset by over 1–2 μm when underfocused and 2–3 μm when overfocused at 0.5–1 s integration time (15 mW, 633 nm laser). A technique is described for mapping the composition of the inherently irregular/non-planar surface of bone. The challenge posed by the native topology characteristic of this unique biological system is circumvented via real-time focus-tracking based on laser focus optimization by continuous closed-loop feedback. At the surface of deproteinized and decellularized/de-fatted sheep tibial cortical bone, regions of interest up to 1 mm\(^2\) were scanned at micrometer and submicrometer resolution. Despite surface height deviations exceeding 100 μm, it is possible to seamlessly probe local gradients in organic and inorganic constituents of the extracellular matrix as markers of bone metabolism and bone turnover, blood vessels and osteocyte lacunae, and the rope-like mineralized bundles that comprise the mineral phase at the bone surface.

Introduction
Morphology of the bone surface, for example, endosteal and periosteal surfaces of cortical bone, is a spatial representation of local metabolism [Marks et al., 1996] and age [Boskey and Coleman, 2010] and therefore of key significance to bone physiology. The bone surface exhibits an inhomogeneous geometry across several distinct length scales that swiftly transition from one to the next. Given the complex topography, scanning electron microscopy (SEM) is highly versatile and therefore among...
the most frequently used methods to image bone over wide fields of view, large height (z-direction) deviations, and across multiple length scales [Shah et al., 2019].

Spatially-resolved, 2D (x–y, x–z, or y–z) chemical information may be obtained using a diverse range of techniques. These include energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, Time-of-Flight Secondary Ion Mass Spectrometry, and small-angle X-ray scattering, where flat/plane surfaces (or thin sections) are desirable [Kazanci et al., 2007; Li et al., 2010; Brüel et al., 2011; Paschalis et al., 2011; Henss et al., 2013]. A third dimension is typically accessed via volumetric imaging, i.e., tomography [Binkley and Grandfield, 2017].

X-ray micro-computed tomography is a popular, non-destructive 3D analytical tool for morphometry and biomechanical imaging [Müller, 2009], however, limited chemical and nearly no molecular information can be obtained. Atom probe tomography yields 3D elemental distribution and mass spectrometric information [Gordon et al., 2012; Langelier et al., 2017; Wang et al., 2018]. Employing synchrotron radiation, more recently developed technologies such as X-ray diffraction computed tomography [Müller et al., 2018], and small-angle scattering sensor tomography [Liebi et al., 2015; Grünewald et al., 2020] enable bone mineral and collagen orientation analysis in 3D.

Early pathological alterations can be observed at the bone surface (i.e., the mineralization front) [Hoffmann et al., 2017; Lind et al., 2018]. Therefore, the chemical composition of the bone surface can provide further clues toward better understanding the effects of certain diseases or drugs, visualizing the ability of osteocytes to remodel their pericellular matrix, making hypotheses about ancient populations (diet, climate, etc.), developing a more accurate chemical signature for bone that can be mimicked by implant biomaterials, and so forth. However, the bone surface is not readily accessible using traditional sample manipulation methods for obtaining a cross-sectional view, for example, polishing. However, owing to undulations and rapidly changing topography, the possibility of directly mapping chemical information from the bone surface has thus far remained a challenge. In conventional micro-Raman spectroscopy/imaging, where measurements are made across a fixed focal plane, height deviations at the surface of a non-planar specimen give rise to underfocused or overfocused areas, resulting in severe losses of Raman signal integrity. Here, we tackle the challenge posed by the native topology and height deviations of the bone surface and overcome Raman signal deterioration that occurs during wide-field mapping using micro-Raman spectroscopy in combination with real-time surface tracking.

Methods/Design

Bone Sample Processing

Cortical bone from sheep tibia (n = 1) was fixed in 10% neutral buffered formalin and cut into 41 × 1 cm² pieces, each spanning the entire thickness of the cortex (i.e., one surface being endosteal and the other being periosteal). Deproteinized bone: Two pieces were immersed in 5% sodium hypochlorite (NaOCl) at room temperature for 14 d in order to remove cells and the organic matrix and dehydrated in a graded ethanol series (50–100%). Decellularized bone: Two pieces were exposed to 20 mM NH₄OH in deionized water for 15 min to remove the adherent lining cells without affecting the extracellular matrix [Taylor et al., 2015] and defatted in acetone for 30 min [Kerns et al., 2014]. Sheep cortical bone was obtained as part of an unrelated study [Shah et al., 2016a], approved by the Ministry of National Education, Higher Education and Research (NAMSA, Chasse-sur-Rhône, France).

Scanning Electron Microscopy

To exemplify the various length scales of organization at the bone surface, deproteinized bone was visualized by scanning electron microscopy using a Quanta 200 environmental SEM (FEI Co., The Netherlands) operated in backscattered electron (BSE) and secondary electron (SE) modes at low vacuum (1 Torr water vapor pressure) and 15–25 kV accelerating voltage.

Micro-Raman Spectroscopy

Micro-Raman spectroscopy was performed using a confocal Raman microscope (Renishaw inVia® Qontor®) equipped with a 633 nm laser and LiveTrack™ focus-tracking technology that works through a continuous closed-loop feedback of focus. The laser was focused down on to the endosteal surface using ×50 and ×100 objectives, and spectra were collected in the 300–1,800 cm⁻¹ spectral range using a Peltier-cooled charge-coupled device deep depletion near-infrared enhanced detector behind an 1,800 g mm⁻¹ grating. Background fluorescence subtraction and cosmic ray removal were performed in Renishaw WIRE 5.2 software.

To illustrate loss of signal integrity owing to the non-planar surface, multiple depth series were acquired from -10 μm (overfocus; below the sample surface) to +10 μm (underfocus; above the sample surface) at 1 μm intervals. Raman spectra were collected using an ×100 objective at 500 ms and 1,000 ms integration times (n = 3). At each plane of focus, background subtracted ν₁ PO₄³⁻ and ν₁ CO₃²⁻ peak intensities and signal-to-noise ratios (taken as the ratio between the background subtracted ν₁ PO₄³⁻ or ν₁ CO₃²⁻ peak intensity and the intensity of the subtracted fluorescence signal at the corresponding wavenumbers) were obtained. One-way analysis of variance (ANOVA) with post-hoc Bonferroni correction was used for statistical analysis between planes of focus, where p values <0.05 were considered statistically significant. Mean values ± standard deviations are presented. Surface topography-dependent loss of signal integrity is further exemplified by Raman mapping of the deproteinized bone surface with and without the real-time surface tracking (LiveTrack™).
Using LiveTrack™, Raman maps were acquired from the surface of deproteinized and decellularized/defatted bone at 200–3,000 ms integration time per pixel and isotropic pixel sizes of 5 μm, 1 μm, 300 nm, and 200 nm. 2D maps of bone surface height deviation (change in the \(z \) axis) were obtained at each region of interest (ROI), and 3D visualizations were generated using Gwyddion (http://gwyddion.net). Maps of the \(\nu_1 \) PO\(_4^3-\) (930–990 cm\(^{-1}\)) band intensity and either the \(\nu_1 \) CO\(_3^{2-}\) (1,060–1,085 cm\(^{-1}\)) band intensity or the Amide III band (1,220–1,300 cm\(^{-1}\)) integral area are presented. Additionally, data segmentation was performed using \(k \)-means filtering cluster analysis with correlation coefficient as the measure of distance (WiRE 5.2, Renishaw). From the average Raman spectrum of each cluster, the mineral-to-matrix ratio (MMR) was taken as the integral area ratio between \(\nu_2 \) PO\(_4^3-\) (420–470 cm\(^{-1}\)) and Amide III (1,220–1,300 cm\(^{-1}\)).

Deproteinized Bone Surface as Viewed by Scanning Electron Microscopy

Being sensitive to local variations in composition (Z- or atomic number) and topography, respectively, correlative BSE and SE imaging reveals the multiscale architecture of the bone surface (Fig. 1). Micrometer-scale features include blood vessels (50–70 μm) and osteocyte lacunae (8–15 μm). The extracellular matrix is assembled into an interwoven mesh of rope-like mineralized bundles comprising nanoscale apatite platelets that tangentially surround individual collagen fibrils [Shah et al., 2016c, 2020]. Submicrometer-sized openings for dendritic extensions of osteocytes are found between anisotropically arranged mineralized bundles at the floor of the osteocyte lacuna.

Conventional Micro-Raman Spectroscopy and Surface Topography Dependent Signal Deterioration

When in-focus (i.e., \(z = 0 \) μm), comparison of integration times reveals decreases in \(\nu_1 \) PO\(_4^3-\) (45%; \(p = 0.005 \)) and \(\nu_1 \) CO\(_3^{2-}\) (43%; \(p = 0.022 \)) peak intensities between 1,000 and 500 ms (Fig. 2). The \(\nu_1 \) PO\(_4^3-\) and \(\nu_1 \) CO\(_3^{2-}\) peak intensities decrease dramatically when the offset between the sample surface and the plane of focus is more than a few micrometers. Particularly when overfocused, the signal loss tolerance is superior at longer integration times. Here, significant decreases (\(p < 0.05 \)) in peak intensities are observed when the laser is focused ≥ 3 μm and ≥ 4 μm below the sample surface at 500 ms and 1,000 ms, respectively. When underfocused, \(\nu_1 \) PO\(_4^3-\) and \(\nu_1 \) CO\(_3^{2-}\) peak intensities decrease rapidly from 2 to 3 μm above the sample surface. Deterioration in the signal-to-noise ratios with increasing distance of the sample surface from the plane of focus also reveals a trend toward integration time dependence. At 500 ms, \(\nu_1 \) PO\(_4^3-\) and \(\nu_1 \) CO\(_3^{2-}\) signal-to-noise ratios deteriorate significantly (\(p > 0.05 \)) when the laser is focused ≥ 3 μm above and/or ≥ 6 μm below the sample surface, that is, the background fluorescence makes a stronger contribution to the overall signal. In comparison, \(\nu_1 \) PO\(_4^3-\) and \(\nu_1 \) CO\(_3^{2-}\) signal-to-noise ratios display better stability at 1,000 ms and remain consistent through ±10 μm discrepancy between the sample surface and the plane of focus.

During wide-field mapping of non-planar surfaces, conventional micro-Raman spectroscopy does not offer a means to compensate for variations in height deviation. Therefore, while certain parts of the ROI remain in-focus other parts may be underfocused or overfocused, resulting in loss of signal integrity. Real-time focus-tracking (i.e., with LiveTrack™) allows to overcome such surface topography-dependent signal deterioration (Fig. 3).
Raman Mapping the Deproteinized Bone Surface

The compositional characteristics as well as topological variations of the deproteinized (i.e., anorganic) bone surface, and thus the most recently laid down mineral at any given point/location, are obtained simultaneously. The spatial distribution and concentration gradients of bone mineral can be mapped at different length scales and level of detail, depending on pixel size and field width.

The general trends in tissue dynamics can be probed at micrometer pixel sizes (Fig. 4). Regions exhibiting weaker PO₄³⁻ and CO₃²⁻ signals (or low PO₄³⁻ and/or CO₃²⁻ density) represent more recently formed bone. The CO₃²⁻ content, in particular, is considered a marker of bone turnover [Deynier et al., 2020]. Blood vessel openings at the bone surface and lacunae of incompletely embedded osteocytes, also referred to as osteoblastic-osteocytes [Franz-Odendaal et al., 2006], can also be resolved.

Cellular and subcellular length scales become accessible at submicrometer pixel sizes, including rope-like mineralized bundles that comprise the bone surface and the mineral phase at the osteocyte lacuna floor (Fig. 5).

Raman Mapping the Decellularized/Defatted Bone Surface

The distribution of inorganic (PO₄³⁻ and CO₃²⁻) and organic (Amide III, Pro, Hyp, Phe, Tyr, Ala) extracellular matrix components at the surface of decellularized/defatted bone can also be probed following removal of surface adherent cells (Fig. 6). Cluster analysis reveals progressive increases in ν₁ PO₄³⁻ and ν₁ CO₃²⁻ peak intensities and the mineral-to-matrix ratio (from 0.07 to 0.33) simultaneously with a shift in the relative contributions of δ(N–H) and ν(C–N) vibrations to the Amide III band profile. Confined to poorly mineralized areas, cluster analysis reveals a broad feature at 945 cm⁻¹ assigned to amorphous calcium phosphate [Crane et al., 2006] and another feature at 995 cm⁻¹ that is likely attributable to amino acid alanine (Ala) [Rolfe et al., 2016]. Ala enters osteoblasts through a sodium-dependent transport mechanism and is involved in subsequent protein synthesis [Veldman and Schmid, 1998]. Various amino acids, including Ala, impose an indirect anabolic effect on bone [Jennings et al., 2016; MacDonell et al., 2016], and disturbances in plasma and callus amino acid levels are noted in impaired fracture healing [Wijnands et al., 2012]. Ala and Phe content decrease with progressive mineralization, while the Ala/Phe ratio changes from 1.0 to < 0.01.
Fig. 3. Wide-field Raman mapping of non-planar ROIs with (+) and without (−) signal stabilization via real-time focus-tracking. Pixels in the ROI that remain out of focus without LiveTrack™ are brought into focus with LiveTrack™.

- Example #1: 500 × 1,000 μm² ROI. ×50 objective. 5 µm pixel size. 200 ms integration time per pixel.
- Example #2: 200 × 200 μm² ROI. ×100 objective. 1 µm pixel size. 200 ms integration time per pixel.

Illustration of Raman signal stabilization using LiveTrack™. Arrows indicate direction of laser propagation. Broken lines indicate plane of focus. WL, white light image.

Fig. 4. Deproteinized bone at the micrometer level; blood vessels (large, low z structures; broken circles) and osteocyte lacunae (smaller, low z structures). Raman maps of the ν₁ PO₄³⁻ band are shown using Raman intensity-based segmentation.

- a 1,000 × 1,000 μm² ROI. ×50 objective. 5 µm pixel size. 200 ms integration time per pixel.
- b 500 × 500 μm² ROI. ×100 objective. 1 µm pixel size. 200 ms integration time per pixel. WL, white light image.
Fig. 5. Deproteinized bone at the submicrometer level; rope-like mineralized bundles (arrows) and osteocyte lacunae (demarcated with broken lines). a 70 × 60 μm² ROI. ×100 objective. 300 nm pixel size. 300 ms integration time per pixel. b 24 × 24 μm² ROI. ×100 objective. 200 nm pixel size. 300 ms integration time per pixel.

Fig. 6. Decellularized/defatted bone at the micrometer level. a 250 × 200 μm² ROI. ×100 objective. 1 μm pixel size. 2,000 ms integration time per pixel. Raman maps of $v_1 \text{PO}_4^{3-}$ and Amide III are shown. b Cluster analysis (50,000 spectra). Three clusters, denoted by 1 (green; 3,200 spectra), 2 (blue; 6,432 spectra), and 3 (magenta; 40,368 spectra) represent poor-, low-, and high mineral density zones, respectively. Cluster 1 is outlined in yellow on $v_1 \text{PO}_4^{3-}$ and Amide III maps in (a). c Average Raman spectra of clusters 1–3. Integral areas 420–470 cm⁻¹ and 1,220–1,300 cm⁻¹ are used to calculate mineral-to-matrix ratios (MMR), as shown in the bar chart. CO_3^{2-} content ($v_1 \text{CO}_3^{2-}$ at 1,072 cm⁻¹) increases simultaneously with mineral density, as shown in right inset. Presence of amorphous calcium phosphate (ACP) is noted within cluster 1. The Ala/Phe ratio decreases from 1.04 at MMR = 0.07, to 0.56 at MMR = 0.13, and 0.004 at MMR = 0.33. The $\delta(\text{N–H})$ signal at 1,274 cm⁻¹ is more intense within clusters 1 and 2.
On the submicrometer level (Fig. 7), cluster analysis reveals two spectrally identical subregions of the extralacunar matrix, confirmed using linear regression analysis ($R^2 > 0.999$, $p < 0.0001$), that differ only in total Raman intensity in the 350–1,500 cm$^{-1}$ range (21 and 28% difference at 300 and 200 nm pixel size, respectively). Of these, the lower intensity regions appear to originate from a network of subsurface voids attributable to channel-like canalicular spaces.

Relative to the extralacunar matrix, while a sudden height deviation is not apparent at the osteocyte/lacuna (as opposed to deproteinized bone where the floor of the osteocyte lacuna is readily accessible), spectral contributions of the organic components are stronger and the mineral-to-matrix ratio is comparatively lower, indicating the presence of more recently deposited extracellular matrix.

Discussion/Conclusion

The surface of bone is a representation of the local metabolism at any given point in time. The organic and inorganic phases of bone form an interpenetrating composite [Hamed et al., 2012; Schwarcz et al., 2014]. On the micrometer level, bone is made up of 1–2 μm diameter bundles of collagen fibrils arranged into a continuous interwoven network [Reznikov et al., 2014]. Similar architecture is observed at the surface of deproteinized bone [Shah et al., 2020]. At the floor of the osteocyte lacuna, these collagen fibril bundles are preferentially aligned parallel to the osteocyte lacuna [Shah et al., 2016c]. High resolution Raman imaging also finds applications in biomineralization processes such as intralacunar mineralization following osteocyte apoptosis, which has previously been undertaken in resin embedded, plane parallel, polished samples [Shah et al., 2017].

Micro-Raman spectroscopy enables studying the hierarchical architecture of complex biological surfaces. However, signal integrity is lost rapidly when the discrepancy between the sample surface and the plane of focus is more than a few micrometers. Here, the combination of Raman spectroscopy and real-time surface tracking opens new possibilities for evaluating interfaces and surfaces that exhibit a naturally occurring multiscale topography, for example, the bone-implant interface, cranial sutures, native and fractured bone surfaces of bone, and conditions characterized by defective mineralization fronts [Boyde et al., 2017]. A potential application of the technique is to detect changes or disturbances in bone me-
Real-Time Surface Tracked Micro-Raman Spectroscopy of Bone Surface

In addition to eliminating spectral contributions of the organic components that overlap the PO$_4^{3-}$ bands, deproteinization maximizes the topological challenge for the surface tracking technology (Live’Track™) by creating micrometer-sized spaces (i.e., vascular channels and osteocyte lacunae), submicrometer irregularities, and nanoporosities. Though the hierarchical architecture of bone remains intact after prolonged exposure to NaOCl [Chen et al., 2011], deproteinization may remove the most immature, nanometer-sized, amorphous mineral deposits from the mineralization front, also known as calcosphereulites [Midura et al., 2007]. Indeed, amorphous calcium phosphate is detectable at the surface of decellularized/defatted bone. The use of NH$_4$OH, however, has been shown as a highly effective method for decellularization of cell-secreted matrices without affecting the structural integrity of the extracellular matrix [Taylor et al., 2015]. The Amide III band profile reveals that the secondary structure of collagen is retained in a near-native state following decellularization, while the relative contributions of v(C–N) and δ(N–H) vibrations and the Ala/Phe ratio change with progressive mineralization.

From a practical standpoint, consideration must be given to the working distance of the objective and the geometry of the specimen, so that curvatures and protrusions do not cause physical obstruction. For this reason, another limitation of this technique is that very large ROIs (e.g., several micrometers across) cannot be mapped using short working distance objectives. Low power objectives (e.g., ×10, ×20, ×50) offer longer working distances at the expense of lateral resolution, and therefore larger step/pixel sizes are advisable. The numerical aperture is smaller than high power objectives (e.g., ×100) and the signal-to-noise ratio is comparatively worse. Though not considered in the present work, a confocal aperture (or pinhole) may be introduced into the optical path in order to improve depth resolution and generate less subsurface information by limiting the beam diameter and the in-focus volume, since this reduces the number of Raman scattered photons (referred to as “counts”). An obvious implication for both conventional and surface tracked micro-Raman spectroscopy is that signal integrity (peak intensity and/or signal-to-noise ratio) is considerably diminished, necessitating longer integration time and/or number of accumulations.

The examples presented here show the symmetric stretching modes of v$_1$ PO$_4^{3-}$ and v$_1$ CO$_3^{2-}$, which are considered sensitive to polarization (and/or sample orientation). But without a polarization analyzer, the collected signal comprises all polarized and depolarized Raman scattered photons. The v$_1$ PO$_4^{3-}$ band, however, is very intense and therefore valuable when the signal-to-noise ratio may be low, and often the only detectable apatitic PO$_4^{3-}$ band in certain experimental setups [McElderry et al., 2013]. Additionally, since the CO$_3^{2-}$/PO$_4^{3-}$ content of bone increases with tissue age [Burnell et al., 1980; Legros et al., 1987], and increasing B-type CO$_3^{2-}$ substitution is implicated in bone embrittlement [Akkus et al., 2004], many studies derive information about the chemical and physical characteristics of the mineral phase from the v$_1$ CO$_3^{2-}$/v$_2$ PO$_4^{3-}$ band [Awonusi et al., 2007], for example, Raman metrics such as v$_1$ CO$_3^{2-}$/v$_1$ PO$_4^{3-}$ and v$_1$ CO$_3^{2-}$/v$_2$ PO$_4^{3-}$ [Nyman et al., 2011; Shah et al., 2016b; Shah et al., 2018].

Need is eliminated for an independent surface pre-scan, which is liable to alter the sample (e.g., drying, contamination). A potential limitation of the technique is that sites of ongoing resorption may be more challenging to detect, while regions of recent osteogenic activity are easier to identify. Although the height deviation maps are inferior in lateral resolution compared to atomic force microscopy, both technologies remain limited by line-of-sight principles.

In conclusion, we demonstrate, for the first time, the possibility to spatially map the chemical composition of the surface of bone, which reveals early changes and trends in extracellular matrix composition. Excitingly, detection of lower mineral content (or mineral-to-matrix ratio) in the extracellular matrix associated with the osteocyte lacuno-canaliculus network may point toward metabolic processes such as perilacunar remodeling [Dole et al., 2017]. During micro-Raman spectroscopy of non-planar surfaces such as that of bone, real-time surface tracking facilitates signal stabilization, enabling seamless acquisition of chemical information across wide fields of view and multiple distinct length scales that characterize this unique and complex biological system.

Statement of Ethics

Sheep cortical bone used in this work was obtained as part of an unrelated study approved by the Ministry of National Education, Higher Education and Research (NAMSA, Chasse-sur-Rhône, France).

Conflict of Interest Statement

The authors have no conflicts of interest to declare.
Funding Sources

Financial support from the Svenska Sällskapet för Medicinsk Forskning (SSMF) postdoctoral scholarship, the Adlerbergska Foundation, the IngaBritt and Arne Lundberg Foundation, and the Hjalmar Svensson Foundation, the Dr. Felix Neubergh Foundation, Promobilia, and the Materials Science Area of Advance at Chalmers and the Department of Biomaterials, University of Gothenburg is acknowledged. None had any role in collection, analysis, and interpretation of data, or preparation of the manuscript.

Author Contributions

F.A.S. made the conception and design of the study, did data acquisition, data analysis and interpretation, and wrote the manuscript. K.R. did data acquisition, data analysis and interpretation, and wrote the manuscript. A.P. made the conception and design, wrote the manuscript, and did financial support. All authors read and approved the final version of the manuscript and agreed to be accountable for all aspects of the work.

References

Akkus O, Adar F, Schaffer MB. Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone. 2004 Dec;35(6):664–73.

Awonusi A, Morris MD, Tecklenburg MM. Carbonate assignment and calibration in the Raman spectrum of apatite. Calcif Tissue Int. 2007 Jul;81(1):46–52.

Binkley DM, Grandfield K. Advances in Multiscale Characterization Techniques of Bone and Biomaterial Interfaces. ACS Biomater Sci & Engineering. 2017.

Boyd AE, Coleman R. Aging and bone. J Dent Res. 2010 Dec;89(12):1333–48.

Brüel A, Olsen J, Birkedal H, Risager M, Andreasen TT, Raffalt AC, et al. Strontium is incorporated into the fracture callus but does not influence the mechanical strength of healing rat fractures. Calcif Tissue Int. 2011 Feb;88(2):142–52.

Burnell JM, Teubner EJ, Miller AG. Normal maturation changes in bone matrix, mineral, and crystal size in the rat. Calcif Tissue Int. 1980 Dec;31(1):13–9.

Chen PY, Toroian D, Price PA, McKittrick J. Minerals Form a Continuum Phase in Mature Cancellous Bone. Calcif Tissue Int. 2011 May;88(5):351–61.

Crane NJ, Popescu V, Morris MD, Steenhuis P, Ignelzi MA Jr. Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intra- and extramembranous mineralization. Bone. 2006 Sep;39(3):434–42.

Deymier AC, Schwartz AG, Lim C, Wingender B, Kotiya A, Shen H, et al. Multiscale effects of spaceflight on murine tendon and bone. Bone. 2020 Feb;131:115152.

Dole NS, Mazur CM, Acevedo C, Lopez JP, Montiero DA, Fowler TW, et al. Osteocyte-Intrinsic TGF-β Signaling Regulates Bone Quality through Periocular/Canalicular Remodeling. Cell Rep. 2017 Nov;21(9):2585–96.

Franz-Odendaal TA, Hall RK, Witten PF. Buried alive: how osteoblasts become osteocytes. Dev Dyn. 2006 Jan;235(1):176–90.

Gordon LM, Tran L, Joester D. Atom probe tomography of apatites and bone-type mineralized tissues. ACS Nano. 2012 Dec;6(12):10667–75.

Grünewald TA, Liebi M, Wittig NK, Johannes A, Sikjaer T, Rejmark L, et al. Mapping the 3D orientation of nanocrystals and nanostructures in human bone: Indications of novel structural features. Sci Adv. 2020 Jun;6(24):6eaav4171.

Hamed E, Novitskaya E, Li J, Chen PY, Jasik J, McKittrick J. Elastic moduli of untreated, de-mineralized and deproteinized cortical bone: Validation of a theoretical model of bone as an interpenetrating composite material. Acta Biomater. 2012 Mar;8(3):1080–92.

Hens S, Rohnke M, El Khassawna T, Govindarajan P, Schleiwitz G, Heiss C, et al. Applicability of ToF-SIMS for monitoring compositional changes in bone in a long-term animal model. J R Soc Interface. 2013 Sep;10(86):20130332.

Hoffmann B, Svensson CM, Straßburger M, Gehr B, Immler IM, Kamradt T, et al. Automated Quantification of Early Bone Alterations and Pathological Bone Turnover in Experimental Arthritis by in vivo PET/CT Imaging. Sci Rep. 2017 May;7(1):2217.

Jennings A, MacGregor A, Spector T, Cassidy A. Amino Acid Intakes Are Associated With Bone Mineral Density and Prevalence of Low Bone Mass in Women: Evidence From Discordant Monozygotic Twins. J Bone Miner Res. 2016 Feb;31(2):326–35.

Kazanci M, Wagner HD, Manjubala NI, Gupta HS, Paschalis E, Roschger P, et al. Raman imaging of two orthogonal planes within cortical bone. Bone. 2007 Sep;41(3):456–61.

Kerns JG, Gikas PD, Buckley K, Shepperd A, Birch HL, McCarthy I, et al. Evidence from Raman spectroscopy of a putative link between inherent bone matrix chemistry and degenerative joint disease. Arthritis Rheumatol. 2014 May;66(5):1237–46.

Langelier B, Wang X, Grandfield K. Atomic scale characterization techniques of bone. Acta Biomater. 2007 Jul;34(3):443–53.

Li C, Paris O, Siegel S, Roschger P, Paschalis EP, Klaushofer K, et al. Strontium is incorporated into mineral crystals only in newly formed bone during strontium ranelate treatment. J Bone Miner Res. 2010 May;25(5):968–75.

Linde T, Lugano R, Gustafsson AM, Norgård M, van Haeringen A, Dimberg A, et al. Bones in human CYP26B1 deficiency and rats with hypervitaminosis A phenocopy Vegfa overexpression. Bone Rep. 2018 Dec;9:27–36.

MacDonell R, Hamrick MW, Isales CM. Protein/ amino-acid modulation of bone cell function. Bonekey Rep. 2016 Aug;5:827.

Marks SC, Jr., Cielinski MJ, Sundquist KT. Bone surface morphology reflects local skeletal metabolism. Microsc Res Tech. 1996 Feb;33(2):121–7.

McElderry JD, Zhao G, Khaladzé A, Wilson CG, Franceschi RT, Morris MD. Tracking circadian rhythms of bone mineral deposition in murine calvarial organ cultures. J Bone Miner Res. 2013 Aug;28(8):1846–54.

Midura RJ, Vasani J, Su X, Wang A, Midura SB, Gorski JP. Calciospherulites isolated from the mineralization front of bone induce the mineralization of type I collagen. Bone. 2007 Dec;41(6):1005–16.

Müller R. Hierarchical microimaging of bone structure and function. Nat Rev Rheumatol. 2011 Jul;5(7):373–81.

Müller FK, Sanchez S, Álvarez-Murga M, Di Michiel M, Pfeiffer F, Bech M, et al. 3D Maps of Mineral Composition and Hydroxyapatite Orientation in Fossil Bone Samples Obtained by X-ray Diffraction Computed Tomography. Sci Rep. 2018 Jul;8(1):10052.

Nynman JS, Makowski AJ, Patil CA, Masui TP, O’Quinn EC, Bi X, et al. Measuring differences in compositional properties of bone tissue by confocal Raman spectroscopy. Calcif Tissue Int. 2011 Aug;89(2):111–22.
Paschalis EP, Tatakis DN, Robins S, Fratzl P, Manjubala I, Zoehrer R, et al. Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral. Bone. 2011 Dec;49(6):1232–41.

Reznikov N, Shahar R, Weiner S. Bone hierarchical structure in three dimensions. Acta Biomater. 2014 Sep;10(9):3815–26.

Rolfe SM, Patel MR, Gilmour I, Olsson-Francis K, Ringrose TJ. Defining multiple characteristic Raman bands of α-amino acids as Biomarkers for Planetary Missions using a statistical method. Origins of Life and Evolution of Biospheres. 2016 Jun;46(2):323–46.

Schwarcz HP, McNally EA, Botton GA. Dark-field transmission electron microscopy of cortical bone reveals details of extrabrillar crystals. J Struct Biol. 2014 Dec;188(3):240–8.

Shah FA, Omar O, Suska F, Snis A, Matic A, Emanuelsson L, et al. Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting. Acta Biomater. 2016a May;36:296–309.

Shah FA, Ruscsák K, Palmquist A. 50 years of scanning electron microscopy of bone—a comprehensive overview of the important discoveries made and insights gained into bone material properties in health, disease, and taphonomy. Bone Res. 2019 May;7:15.

Shah FA, Snis A, Matic A, Thomsen P, Palmquist A. 3D printed Ti6Al4V implant surface promotes bone maturation and retains a higher density of less aged osteocytes at the bone-implant interface. Acta Biomater. 2016b Jan;30:357–67.

Shah FA, Zanghellini E, Matic A, Thomsen P, Palmquist A. The Orientation of Nanoscale Apatite Platelets in Relation to Osteoblastic-Osteocyte Lacunae on Trabecular Bone Surface. Calcif Tissue Int. 2016c Feb;98(2):193–205.

Shah FA, Stoica A, Cardemil C, Palmquist A. Multiscale characterization of cortical bone composition, microstructure, and nanomechanical properties in experimentally induced osteoporosis. J Biomed Mater Res A. 2018 Nov;106(4):997–1007.

Shah FA, Ruscsák K, Palmquist A. Transformation of bone mineral morphology: From discrete marquise-shaped motifs to a continuous interwoven mesh. Bone Rep. 2020 May;13:100283.

Taylor AJ, Ratner BD, Buttery LD, Alexander MR. Revealing cytokine-induced changes in the extracellular matrix with secondary ion mass spectrometry. Acta Biomater. 2015 Mar;14(14):70–83.

Veldman CM, Schmid C. Differential effects of fluoride and insulin-like growth factor I on sodium-dependent alanine and phosphate transport in a human osteoblast-like cell line. Growth Horm IGF Res. 1998 Feb;8(1):55–63.

Wang X, Langelier B, Shah FA, Korinek A, Bugnet M, Hitchcock AP, et al. Biomineralization at titanium revealed by correlative 4D tomographic and spectroscopic methods. Adv. Mater. Interfaces. 2018;5(14):1800262.

Wijnands KA, Brink PR, Weijers PH, Dejong CH, Poeze M. Impaired fracture healing associated with amino acid disturbances. Am J Clin Nutr. 2012 May;95(5):1270–7.