On-Device Machine Learning: An Algorithms and Learning Theory Perspective

SAUPTIK DHAR, Advanced AI Team, America Research Center, LG Electronics
JUNYAO GUO, Advanced AI Team, America Research Center, LG Electronics
JIAYI LIU, Advanced AI Team, America Research Center, LG Electronics
SAMARTH TRIPATHI, Advanced AI Team, America Research Center, LG Electronics
UNMESH KURUP, Advanced AI Team, America Research Center, LG Electronics
MOHAK SHAH, Advanced AI Team, America Research Center, LG Electronics

The current paradigm for using machine learning models on a device is to train a model in the cloud and perform inference using the trained model on the device. However, with the increasing number of smart devices and improved hardware, there is interest in performing model training on the device. Given this surge in interest, a comprehensive survey of the field from an device-agnostic perspective sets the stage for both understanding the state-of-the-art and for identifying open challenges and future avenues of research. Since on-device learning is an expansive field with connections to a large number of related topics in AI and machine learning (including online learning, model adaptation, one/few-shot learning, etc), covering such a large number of topics in a single survey is impractical. Instead, this survey finds a middle ground by reformulating the problem of on-device learning as resource constrained learning where the resources are compute and memory. This reformulation allows tools, techniques, and algorithms from a wide variety of research areas to be compared equitably. In addition to summarizing the state of the art, the survey also identifies a number of challenges and next steps for both the algorithmic and theoretical aspects of on-device learning.

Contents

Abstract
1
Contents
1
1 Introduction
2
1.1 On-device Learning
3
1.1.1 Definition of an Edge Device
3
1.1.2 Training Models on an Edge Device
3
1.2 Scope of this survey
5
1.3 How to read this survey
6
2 Resource Constraints in On-Device Learning
6
2.1 Processing Speed
6
2.2 Memory
7
2.3 Power Consumption and Energy Efficiency
7
2.4 Typical Use Case and Hardware
8
3 Algorithms for On-Device Learning
8
3.1 Resource Footprint Characterization
8
3.1.1 Asymptotic Analysis
9
3.1.2 Resource Profiling
10
3.1.3 Resource Modeling and Estimation
12

Authors' addresses: Sauptik Dhar Advanced AI Team, America Research Center, LG Electronics, sauptik.dhar@lge.com; Junyao Guo Advanced AI Team, America Research Center, LG Electronics, junyao.guo@lge.com; Jiayi Liu Advanced AI Team, America Research Center, LG Electronics, jason.liu@lge.com; Samarth Tripathi Advanced AI Team, America Research Center, LG Electronics, samarth.tripathi@lge.com; Unmesh Kurup Advanced AI Team, America Research Center, LG Electronics, unmesh@ukurup.com; Mohak Shah Advanced AI Team, America Research Center, LG Electronics, mohak@mohakshah.com.
1 INTRODUCTION

The addition of intelligence to a device carries the promise of a seamless experience that is tailored to each user’s specific needs while maintaining the integrity of their personal data. The current approach to making such intelligent devices is based on a cloud paradigm where data is collected at the device level and transferred to the cloud. Once transferred, this data is then aggregated with data collected from other devices, processed, and used to train a machine learning model. When the training is done, the resulting model is pushed from the cloud back to the device where it is used to improve the device’s intelligent behavior. In the cloud paradigm, all machine learning that happens on the device is inference, that is, the execution of a model that was trained in the cloud. This separation of roles – data collection and inference on the edge, data processing and model training in the cloud – is natural given that end-user devices have form-factor and cost considerations that impose limits on the amount of computing power and memory they support, as well as the energy that they consume.

Cloud-based systems have access to nearly limitless resources and are constrained only by cost considerations making them ideal for resource intensive tasks like data storage, data processing, and model building. However, the cloud-based paradigm also has drawbacks that will become more pronounced as AI becomes an ubiquitous aspect of consumer life. The primary considerations are in the privacy and security of user data as this data needs to be transmitted to the cloud and stored there, most often, indefinitely. Transmission of user data is open to interference and capture, and stored data leaves open the possibility of unauthorized access.

In addition to privacy and security concerns, the expectation for intelligent devices will be that their behavior is tailored specifically to each consumer. However, cloud-trained models are less personalized as they are built from data aggregated from many consumers, and each model is
built to target broad user segments because building individual models for every consumer and every device is cost prohibitive. This de-personalization also applies to distributed paradigms like federated learning that typically tend to improve a global model based on averaging the individual models [85].

Finally, AI-enabled devices will also be expected to learn and respond instantly to new scenarios but cloud-based training is slow because added time is needed to transmit data and models back and forth from the device. Currently, most use cases do not require real-time model updates, and long delays between data collection and model updates is not a serious drawback. But, as intelligent behavior becomes commonplace and expected, there will be a need for real-time updates, like in the case of connected vehicles and autonomous driving. In such situations, long latency becomes untenable and there is a need for solutions where model updates happen locally and not in the cloud.

As devices become more powerful, it becomes possible to address the drawbacks of the cloud model by moving some or all of the model development onto the device itself. Model training, especially in the age of deep learning, is often the most time-consuming part of the model development process, making it the obvious area of focus to speed up model development on the device. Doing model training on the device is often referred to variously as Learning on the Edge and On-device Learning. However, we distinguish between these terms, with learning on the edge used as a broad concept to signify the capability of real or quasi-real time learning without uploading data to the cloud while on-device learning refers specifically to the concept of doing model training on the device itself.

1.1 On-device Learning

1.1.1 Definition of an Edge Device. Before we elaborate on on-device learning, it is helpful to define what we mean by a device, or specifically an edge device, in the context of on-device learning. We define an edge device to be a device whose compute, memory, and energy resources are constrained and cannot be easily increased or decreased. These constraints may be due to form-factor considerations (it is not possible to add more compute or memory or battery without increasing the size of the device) or due to cost considerations (there is enough space to add a GPU to a washing machine but this would increase its cost prohibitively). This definition of an edge device applies to all such consumer and industrial devices where resource constraints place limitations on what is available for building and training AI models. Any cloud solution such as Amazon AWS, Google Cloud Platform, Microsoft Azure, or even on-premise computing clusters do not fit the edge definition because it is easy to provision additional resources as needed. Likewise, a workstation would not be considered an edge device because it is straightforward to replace its CPU, add more memory, and even add an additional GPU card. A standard laptop on the other hand would be considered an edge device as it is not easy to add additional resources as needed, even though their resources generally far exceed what is normally considered as available in a consumer edge device.

1.1.2 Training Models on an Edge Device. The primary constraints to training models on-device in a reasonable time-frame is the lack of compute and memory on the device. Speeding up training is possible either by adding more resources to the device or using these resources more effectively or some combination of the two. Fig 1 shows a high-level breakdown of the different levels at which these approaches can be applied. Each level in this hierarchy abstracts implementation details of level below it and presents an independent interface to the level above it.

(1) Hardware - At the bottom of the hierarchy are the actual chipsets that execute all learning algorithms. Fundamental research in this area aims at improving existing chip design (by
developing chips with more compute and memory, and lower power consumption and footprint) or developing new designs with novel architectures that speed up model training. While hardware research is a fruitful avenue for improving on-device learning, it is an expensive process that requires large capital expenditure to build laboratories and fabrication facilities, and usually involves long timescales for development.

(2) **Libraries** - Every machine learning algorithm depends on a few key operations (such as Multiply-Add in the case of neural networks). The libraries that support these operations are the interface that separate the hardware from the learning algorithms. This separation allows for algorithm development that is not based on any specific hardware architecture. Improved libraries can support faster execution of algorithms and speed up on-device training. However, these libraries are heavily tuned to the unique aspects of the hardware on which the operations are executed. This dependency limits the amount of improvement that can be gained by new libraries.

(3) **Algorithms** - Since on-device learning techniques are grounded in their algorithmic implementations, research in novel algorithm development is an important part of making model training more efficient. Such algorithm development can take into account resource constraints as part of the model training process. Algorithm development leads to hardware-independent techniques but the actual performance of each algorithm is specific to the exact domain, environment, and hardware, and needs to be verified empirically for each configuration. Depending on the number of choices available in each of these dimensions, the verification space could become very large.

(4) **Theory** - Every learning algorithm is based on an underlying theory that guarantees certain aspects of its performance. Developing novel theories targeted at edge learning help us understand how algorithms will perform under resource-constrained settings. However, while theoretical research is flexible enough to apply across classes of algorithms and hardware systems, it is limited due to the difficulty of such research and the need to implement in the form of an algorithm before its utility can be realized.

Fig 2 shows an expanded hierarchical view of the different levels of the edge learning stack and highlight different ways to improve the performance of model training on the device at each level. The hardware approaches involve either adding additional resources to the restricted form-factor of the device or developing novel architectures that are more resource efficient. Software approaches to improve model training involve either improving the performance of computing libraries such as
Fig. 2. Different approaches to improving on-device learning

as OpenBLAS, Cuda, CuDNN or improving the performance of the machine learning algorithms themselves. Finally, theoretical approaches help direct new research on ML algorithms and improve our understanding of existing techniques and their generalizability to new problems, environments, and hardware.

1.2 Scope of this survey

There is a large ongoing research effort, mainly in academia, that looks at on-device learning from multiple points of view including single vs multiple edge devices, hardware vs software vs theory, and domain of application such as healthcare vs. consumer devices vs. autonomous cars. Given the significant amount of research in each of these areas it is important to restrict this survey to a manageable subset that targets the most important aspects of on-device learning.

We first limit this survey to the Algorithms and Learning Theory levels in Fig 1. This allows us to focus on the machine learning aspects of on-device learning and develop new techniques that are independent of specific hardware. We also limit the scope of this survey to learning on a single device. This restriction makes the scope of the survey manageable while also providing a foundation on which to expanded to distributed settings. In addition, at the right level of abstraction, a distributed edge system can be considered as a single device with an additional resource focused
on communication latency. This view allows us to extend single-device algorithms and theories to the distributed framework at a later stage.

The goal of this survey then is to provide a large-scale view of the current state-of-the-art in algorithmic and theoretical advances for on-device learning on single devices. To accomplish this goal, the survey reformulates on-device learning as one of resource constrained learning. This reformulation describes the efficiency of on-device learning using two resources – compute and memory – and provides a foundation for a fair comparison of different machine learning and AI techniques and their suitability for on-device learning. Finally, this survey identifies challenges in algorithms and theoretical considerations for on-device learning and provides the background needed to develop a road map for future research and development in this field.

1.3 How to read this survey

This survey is a comprehensive look at the current state-of-the-art in training models on resource-constrained devices. It is divided into 4 main sections excluding the introduction and the conclusion. Sections 2 briefly introduces the resources and their relevance to on-device learning. Sections 3 and 4 focus on the algorithmic and theoretical levels of the edge platform hierarchy. Finally section 5 provides a brief summary and identifies various challenges in making progress towards a robust framework for on-device learning. For those interested in specific aspects of on-device learning, sections 3 and 4 are mostly self-contained and can be read separately.

Resource Constraints in On-Device Learning briefly discusses the relevant resources that differentiate on-device learning from a cloud-based system. Most existing research at the various levels in Fig 1 is targeted towards addressing on-device learning when there is limited availability of these resources.

Algorithm Research addresses recent algorithmic developments towards accurately capturing the hardware constraints in a software framework and then surveys the state-of-art in machine learning algorithms that take into account resource constraints. This section categorizes the algorithms from a computational perspective (i.e. the underlying computational model used).

Theory Research addresses on-device learning from a statistical perspective and surveys traditional learning theories forming the basis of most of the algorithm designs addressed in section 4. It later addresses the ‘un-learnability’ problem in a resource constrained setting and surveys newer resource constrained learning theories. Such newer theories abstract the resource constraints (i.e. memory, processing speed etc) as an information bottleneck and provides performance guarantees for learning under resource constrained settings.

Finally, section 6 summarises the previous sections and addresses some of the open challenges in on-device learning research.

2 RESOURCE CONSTRAINTS IN ON-DEVICE LEARNING

The main difference between traditional machine learning and learning/inference on edge are the additional constraints imposed by device resources. Designing AI capabilities that run on a device necessitates building machine learning algorithms with high model accuracy while concurrently maintaining the resource constraints enforced by the device. This section discusses these critical resource constraints that pose major challenges while designing learning algorithms for edge devices.

2.1 Processing Speed

The response time is often among the most critical factors for the usability of any on-device application [95]. The two commonly used measurements are throughput and latency. Throughput is measured as the rate at which the input data is processed. To maximize throughput it is common
to group inputs into batches resulting in higher utilization. But, measuring this incurs additional wait time for aggregating data into batches. Hence, for time-critical use cases, latency is the more frequently used measure. Latency characterizes the time interval between a single input and its response. Although throughput is the inverse of latency (when batch size is fixed to 1), the runtime of an application may vary dramatically depending on whether computations are optimized for throughput vs. latency [125]. To simplify our discussion, in this survey we use an abstract notion of runtime as a proxy for both throughput and latency.

For the physical system, the processing speed dictates the runtime of an application. This speed is typically measured in clock frequency (i.e. the number of cycles per second) of a processor. Within each cycle, a processor carries out a limited number of operations based on the hardware architecture and the types of the operations. For scientific computations, FLOPS is frequently used to measure the number of floating point operations per second. Another frequently used measure specifically for matrix intensive computations such as those in machine learning algorithms is multiplier–accumulate (MAC). Thus, besides increasing the clock frequency, efficiently combining multiple operations into a single cycle is also an important topic for improving the processing speed.

On a separate note, the processing speed of a system is also sensitive to the communication latency among the components inside a system. As discussed before, the communication latency aspect is better aligned to the distributed/decentralized computing paradigm for edge learning and has not been addressed in this survey.

2.2 Memory

At the heart of any machine learning algorithm is the availability of data for building the model. The second important resource for building AI driven on-device applications is memory. The memory of a computing device provides immediate data access as compared to other storage components. However, this speed of data access comes at higher costs. For reasons of cost, most edge devices are designed with limited memory. As such, the memory footprint of edge applications are typically tailored for a specific target device.

Advanced machine learning algorithms often take a significant amount of memory during model building through storage of the model parameters and auxiliary variables etc. For instance, even relatively simple image classification models like ResNet-50 can take megabytes of memory space (see Table 3). Therefore, designing a lightweight model is of a key aspect of accomplishing machine learning on the device. A detailed survey of such techniques is covered in sections 3 and 4.

Besides the model size, querying the model parameters for processing is both time-consuming and energy-intensive [115]. For example, a single MAC operation requires three memory reads and one memory write. In the worst case, these reads and write may be on the off-chip memory rather than the on-chip buffer. This would result in a significant throughput bottleneck and cause orders of magnitude higher energy consumption [18].

2.3 Power Consumption and Energy Efficiency

Power consumption is another crucial factor for on-device learning. An energy efficient solution can prolong the battery lifetime and cut maintenance costs. The system power, commonly studied in hardware development, is the ratio of energy consumption and time span for a given task. However, it is not a suitable measure for machine learning applications on the edge. First, the power consumption depends on the volume of computation required, e.g. data throughput. Second, the application is often capped at the maximum power of the device when the learning task is intensive. Therefore to better quantify the power consumption, the total energy consumption along with the throughput is recommended for comparing energy efficiency.
Linking energy consumption of a particular AI driven application for a specific device jointly depends on a number of variables like runtime, memory etc. Capturing these dependencies are almost never deterministic. Hence, most existing research estimate the power/energy usage through a surrogate function which typically depends on the memory and runtime of an application. A more detailed survey of such advanced approaches are covered in section 3.

Table 1. Comparison of hardware requirements

Use	Device	Hardware Chip	Computing	Memory	Power
Workstation	NVIDIA DGX-2	16 NVIDIA Tesla V100 GPUs	2 PFLOPS	512 GB	10 kW
Mobile Phone	Pixel 3	Qualcomm Snapdragon™ 845	727 GFLOPS	4 GB	34mW (Snapdragon)
Autonomous Driving	NVIDIA DRIVE AGX Xavier	NVIDIA Xavier processor	30 TOPS	16 GB	30W
Smart home	Amazon Echo	TI DM3725 ARM Cortex-A8	up to 1 GHz	256 MB	4 W (peak)
General IoT	Qualcomm AI Engine	Hexagon 685 and Adreno 615	2.1 TOPS	2-4 GB	1W
General IoT	Raspberry Pi 3	Broadcom ARM Cortex A53	1.2 GHz	1 GB	0.58 W
General IoT	Arduino Uno Rev3	ATmega328P	16 MHz	2 KB	0.3 W

1. http://images.nvidia.com/content/pdf/dgx-2-print-datasheet-738070-nvidia-a4-web.pdf
2. https://store.google.com/product/pixel_3_specs
3. https://www.qualcomm.com/products/snapdragon-845-mobile-platform
4. https://www.nvidia.com/en-us/self-driving-cars/drive-platform/hardware/
5. https://www.ifixit.com/Teardown/Amazon+Echo+Teardown/33953
6. https://www.qualcomm.com/products/vision-intelligence-400-platform
7. https://www.raspberrypi.org/magpi/raspberry-pi-3-specs-benchmarks/
8. https://store.arduino.cc/usa/arduino-uno-rev3

2.4 Typical Use Case and Hardware

Finally we conclude this section by providing a brief landscape of the variety of edge devices used in several use-case domains and their resource characterization. As seen in Table 1, learning on edge spans a wide spectrum of hardware specifications. Hence, designing machine learning models for edge devices requires a very good understanding of the resource constraints, and appropriately incorporating these constraints into the systems, algorithms and theoretical design levels.

3 ALGORITHMS FOR ON-DEVICE LEARNING

The algorithms approach targets developing resource-efficient techniques that work with existing resource-constrained platforms. This section provides a detailed survey on the various approaches to analyze and estimate a Machine Learning (ML) model’s resource footprint, and the state-of-the-art algorithms proposed for on-device learning.

3.1 Resource Footprint Characterization

Before adapting ML algorithms to the resource-constrained setting, it is important to first understand the resource requirements of common algorithms and identify their resource bottlenecks. The conventional approach adopts an asymptotic analysis (such as the Big-O notation) of the algorithm’s implementation. For DNNs, an alternate analysis technique is to use hardware-agnostic metrics such as the number of parameters and number of operations (FLOPs/MACs). However, it has been demonstrated that hardware-agnostic metrics are too crude to predict the real performance of algorithms [81, 83, 133] because these metrics depend heavily on the specific platform and framework used. This hardware dependency has lead to a number of efforts aimed at measuring the true resource requirements of many algorithms (mostly DNNs) on specific platforms. A third approach to profiling proposes building regression models that accurately estimate and predict resource consumption of DNNs from their weights and operations. We will provide an overview
of all these resource characterization approaches in this subsection as well as new performance metrics for algorithm analysis that incorporates the algorithm’s resource footprint.

3.1.1 Asymptotic Analysis. In this section, we present a comparative overview of the computational and space complexities of both traditional machine learning algorithms and DNNs using asymptotic analysis and hardware-agnostic metrics.

Traditional Machine Learning Algorithms Due to the heterogeneity of model architectures and optimization techniques, there is no unified approach that characterizes the resource utilization performance of traditional machine learning algorithms. The most commonly used method is asymptotic analysis that quantifies computational complexity and space complexity using the Big-O notation. Table 2 summarizes the computational and space complexities of 10 popular machine learning algorithms based on their implementation in Map-Reduce [21] and Scikit-Learn [73]. Note that algorithm complexity can vary across implementations, but we believe the results demonstrated in Table 2 are representative of the current landscape. For methods that require iterative optimization algorithms or training steps, the training complexity is estimated for one iteration.

Algorithm	Model size	Optimization	Training complexity	Inference complexity
Decision tree	\(O(m)\)	-	\(O(mn\log(m))\)	\(O(\log(m))\)
Random forest	\(O(N_{tree} m)\)	-	\(O(N_{tree} m n \log(m))\)	\(O(N_{tree} \log(m))\)
SVM	\(O(n)\)	gradient descent	\(O(m^2 n)\)	\(O(m_{sc} n)\)
Logistic regression	\(O(n)\)	Newton-Raphson	\(O(mn^2 + n^3)\)	\(O(n)\)
kNN	\(O(mn)\)	-	-	\(O(mn)\)
Naive Bayes	\(O(nc)\)	-	\(O(mn + nc)\)	\(O(nc)\)
Linear regression	\(O(n)\)	matrix inversion	\(O(mn^2 + n^3)\)	\(O(n)\)
k-Means	-	-	\(O(mnc)\)	-
EM	-	-	\(O(mn^2 + n^3)\)	-
PCA	-	eigen-decomposition	\(O(mn^2 + n^3)\)	-

Some key observations can be made from Table 2. First, most traditional machine learning algorithms (except tree-based methods and kNN) have a model size that is linear to the input dimension, which do not require much memory (compared to DNNs which will be discussed later). Second, except for kNN which requires distance calculation between the test data and all training samples, the inference step of other algorithms is generally very fast. Third, some methods require complex matrix operations such as matrix inversion and eigen-decomposition with computational complexity around \(O(n^3)\) [21]. Therefore, one should consider whether these matrix operations can be efficiently supported by the targeted platform when deploying these methods on resource-constrained devices.

In terms of accuracy of traditional machine learning algorithms, empirical studies have been carried out using multiple datasets [2, 35, 137]. However, for on-device learning, there are few studies that analyze both accuracy and complexity of ML algorithms and the tradeoffs therein.

Deep Neural Networks Deep neural networks have shown superior performance in many computer vision and natural language processing tasks. To harvest their benefits for edge learning, one has to first evaluate whether the models and the number of operations required can fit into the available resources on a given edge device. Accuracy alone cannot justify whether a DNN is suitable for on-device deployment. To this end, recent studies that propose new DNN architectures also consider MACs/FLOPs and number of weights to provide a qualitative estimate of the model size and computational complexity. However, both memory usage and energy consumption also depend
on the feature map or activations [18, 81]. Therefore, in the following, we review popular DNNs in terms of accuracy, weights, activations and MACs. Accuracies of models are excerpted from best accuracies reported on open platforms and the papers that proposed these models. Number of weights, activations and MACs are either excerpted from papers that first proposed the model or calculated using the Netscope tool [26]. Note that these papers only count the MACs involved in a forward pass. Since the majority of the computational load in training DNNs happens in the backward pass, the values reported do not give a realistic picture of the computational complexity for model training.

Table 3. Comparison of popular CNNs.

Metric	AlexNet [66]	VGG-16 [110]	GoogLeNet [116]	ResNet-18 [49]	ResNet-50 [49]	Inception v3 [117]
Top-1 acc.	57.2	71.5	69.8	69.6	76.0	76.9
Top-5 acc.	80.2	91.3	90.0	89.2	93.0	93.7
Input size	227×227	224×224	224×224	224×224	224×224	299×299
# of stacked CONV layers	5	13	21	17	49	16
Weights	2.3M	14.7M	6.0M	9.3M	23.6M	22M
Activations	0.94M	15.23M	6.8M	3.2M	11.5M	10.6M
MACs	666M	15.3G	1.43G	1.8G	3.9G	3.8G
# of FC layers	3	3	1	1	1	1
Weights	58.7M	125M	1M	0.3M	2M	2M
Activations	9K	9K	2K	1.5K	3K	3K
MACs	58.7M	125M	1M	0.3M	2M	2M
Total weights	61M	138M	7M	10M	25.6M	24M
Total activations	0.95M	15.24M	6.8M	3.2M	11.5M	10.6M
Total MACs	724M	15.3G	1.43G	1.8G	3.9G	3.8G

Compared to other network architectures, most on-device learning research focuses on CNNs, which can be structured as an acyclic graph and analyzed layer-by-layer. Specifically, a CNN consists of two types of layers, namely, the convolutional layer (CONV) and the fully connected layer (FC). It has been shown in [18] that the resource requirement of these two layers can be very different due to their different data flow and data reuse patterns. In Table 3, we summarize the layer-wise statistics of popular high-performance CNN models submitted to the ImageNet challenge. In general, these models are very computation and memory intensive, especially during training. Training requires allocating memory to weights, activations, gradients, data batches, and workspace, which is at least hundreds of MBs if not GBs. These models are hard to deploy on a resource-constrained device, let alone be trained on one. To enable CNN deployment on edge devices, models with smaller sizes and more compact architectures are proposed, which we will review in Section 3.2.2.

3.1.2 Resource Profiling. The most accurate way to quantify the resource requirements of machine learning algorithms is to measure them during deployment. Table 4 summarizes current efforts on DNN benchmarking using various platforms and frameworks. For inference, we only present benchmarks that use at least one edge device such as a mobile phone or an embedded computing system (such as NVidia Jetson TX1). However, as it has not been feasible to train DNNs at large-scale on edge devices yet, we present training benchmarks utilizing single or multiple high-performance CPU or GPUs. Interestingly, apart from measuring model-level performance, three benchmarks [1, 36, 99] further decompose the operations involved in running DNNs and profile micro-architectural performance. We believe that these finer-grained measurements can provide more insights into resource requirement estimation for both training and inference, which are composed of these basic operations.
Table 4. DNN profiling benchmarks.

Benchmark	Platform	Framework	Model	Metric	Highlight
AI Android[60]	57 SoC Processors, 200 mobile phones	TensorFlow Lite	CNNs for 9 image processing tests	inference: runtime	the most comprehensive benchmark on CNN deployment on Android system
NAS[19]	Intel i5-7600, NVidia Jetson TX1, Xiaomi Redmi Note 4	N/A	8 light-weight CNNs from neural architecture search methods	inference: time and memory	survey of models generated from NAS methods on resource-limited devices
Fathom[1]	Skylake i7-6700K CPU with 32GB RAM; NVidia GeForce GTX 960	TensorFlow	3CNNs, 2RNNs, 1DRL, 1Autoencoder, 1Memory Network	training: single-/multi-thread execution time by optype (e.g., MatMul, Conv2D etc, 22 in total)	micro-architectural analysis; exploration of parallelism
BigDataBench[36]	Intel ® Xeon E5-2620 V3 CPU with 64GB RAM	Hadoop, Spark, JStorm, MPI, Impala, Hive, TensorFlow, Caffe (each supporting different models)	Micro benchmarks: 21 ops, e.g., sort, conv, etc; Comp benchmarks: 23, e.g., pagerank, kmeans, etc	training: runtime, bandwidth, memory (L1-L3 cache and DRAM)	operating system level benchmarking; large variety of models
DAWNbench[22]	Nvidia K80 GPU	TensorFlow, PyTorch	ResNets	training: time-to-accuracy vs optimization techniques, inference runtime vs training runtime	defining a new metric by end-to-end training time to a certain validation accuracy
DeepBench[99]	Training: Intel Xeon Phi 7250, 7 types of NVidia GPUs; Inference: 3 NVidia GPUs, iPhone6 & 7, Raspberry Pi3	N/A	Operations: Matmul, Conv, Recurrent Ops, All-reduce	training and inference runtime, FLOPs	profiling basic operations with respect to input dimensions
TBD[140]	16 machines each with a Xeon 28-core CPU and 1-4 NVidia Quadro P4000 / NVidia TITAN Xp GPUs	TensorFlow, MXNet, CNTK	3CNNs, 3RNNs, 1GAN, 1IDRL	training: throughput, GPU compute utilization, FP32 utilization, GPU utilization, memory	profiling of same model across frameworks; multi-GPU multi-machine training
SyNERGY[101]	NVidia Jetson TX1	Caffe	11 CNNs	inference: energy consumption (both per layer and network), SIMD instructions, bus access	proposing a multi-variable regression model to predict energy consumption
DNNAnalysis[13]	NVidia Jetson TX1	Torch7	14 CNNs	inference: runtime, power, memory, accuracy vs throughput, parameter utilization	comparison of CNN inference on an embedded computing system
DNNBenchmarks[9]	NVidia Jetson TX1; NVidia TITAN Xp GPU	PyTorch	44 CNNs	inference accuracy, memory, FLOPs, runtime	very comprehensive comparison of CNN inference on both embedded computing system and powerful workstation
As opposed to DNNs, there are few profiling results reported for on-device deployment of traditional machine learning algorithms, and usually as a result of comparing these algorithms to newly developed ones. For example, inference time and energy are profiled in [68] for a newly proposed tree-based Bonsai method, local deep kernel learning, single hidden layer neural network, and gradient boosted decision tree on the Arduino Uno micro-controller board. However, memory footprint is not profiled. Some other works empirically analyze the complexity and performance of machine learning algorithms [79, 135] where the experiments are conducted on computers but not resource constrained devices. To better understand the resource requirements of traditional machine learning methods, more systematic experiments need to be designed to profile their performance on different platforms and various frameworks.

Table 5. DNN resource requirements modeling. ASIC: Application-Specific Integrated Circuit. Matmul: matrix multiplication. RMSPE: root mean square percentage error.

Work	Platform	Framework	Metric	Measured features	Regression model	Relative error
Augur[81]	NVidia TK1, TX1	Caffe	inference: memory, time	matrix dimensions in matmul, weights, activations	linear	memory: 28% - 50%; time: 6% - 20%
Paleo[96]	NVidia Titan X GPU cluster	TensorFlow	training & inference: time	forward & backward FLOPs, weights, activations, data, platform percent of peak	linear	4%-30%
Gianniti et al. [39]	NVidia Quadro M6090 GPU	-	training: time	forward & backward FLOPs of all types of layers	linear	< 23%
SyNERGY [101]	Nvidia Jetson TX1	Caffe	inference: energy	MACs	linear	< 17% (w/o MobileNet)
NeuralPower [12]	Nvidia Titan X & GTX 1070	TensorFlow& Caffe	inference: time, power, energy	layer configuration, memory access, FLOPs, activations, batch size	polynomial	time: < 24%; power: < 20%; energy: < 5%
HyperPower [112]	Nvidia GTX1070 & Tegra TX1	Caffe	inference: power, memory	layer configuration hyper-parameters	linear	RMSPE < 7%
Yang et al. [133]	ASIC Eyeriss[18]	-	inference: energy	MACs, memory access	-	-
DeLight [102]	Nvidia Tegra TK1	Theano	training& inference: energy	layer configuration hyper-parameters	linear	-

3.1.3 Resource Modeling and Estimation. To provide more insights into how efficiently machine learning algorithms can be run on a given edge device, it’s helpful to model and predict the resource requirements of these algorithms. Even though performance profiling can provide accurate evaluation of resource requirements, it can be costly as it requires the deployment of all models to be profiled. If such requirements can be modeled before deployment, it will then be more helpful for algorithm design and selection. Recently, there have been an increasing number of studies that attempt to estimate energy, power, memory and runtime of DNNs based on measures such as matrix dimension and MACs. There are many benefits if one can predict resource requirements without deployment and runtime profiling. First, it can provide an estimate of training and deployment cost of a model before actual deployment, which can reduce unnecessary implementation costs. Second, the modeled resource requirements can be integrated into the algorithm design process, which helps to efficiently create models that are tailored to specific user-defined resource constraints. Third, knowing the resource consumption of different operation types can help to decide when offloading and performance optimization are needed to successfully run learning models on edge devices [81].
In Table 5, we summarize recent studies that propose approaches to model resource requirements of DNNs. Generally, a linear regression model is built upon common features such as FLOPs for certain types of operations, activation size, matrix size, kernel size, layer configuration hyperparameters, etc, which are not hard to acquire. The Relative Error column shows how these estimation models perform compared to the actual runtime profiling results of a network. We can see that most models demonstrate a relative error between 20% and 30%, which indicates that even though hardware dependency and various measures are taken into account, it can still be challenging to make consistently accurate predictions on resource requirements. This large relative error further shows that metrics such as FLOPs or MACs alone are very crude estimates that can provide limited insights. Note that all models are platform and framework dependent, meaning that the coefficients of the regression model will change when the platform or framework changes. Nevertheless, these studies provide a feasible approach to approximate resource requirements of DNNs. It remains to be seen whether similar methodology can be adopted to model the resource requirements of machine learning algorithms other than DNNs.

3.1.4 New Metrics. Resource constrained machine learning models cannot be evaluated solely on traditional performance metrics like, accuracy for classification, perplexity in language models, or mean average precision for object detection. In addition to these traditional metrics there is a need for system specific performance metrics. Such metrics can be broadly categorized as below:

1. Analyze the multi-objective pareto front of the designed model along the dimension of accuracy and resource footprint. Following [19] some commonly used metrics include,

\[
\text{Reward} = \begin{cases}
\text{Accuracy,} & \text{if Power} \leq \text{Power budget} \\
0, & \text{otherwise,}
\end{cases}
\]

or

\[
\text{Reward} = \begin{cases}
1 - \text{Energy}^*, & \text{if Accuracy} \geq \text{Accuracy threshold} \\
0, & \text{otherwise,}
\end{cases}
\]

where Energy* is a normalized energy consumption. Using this measure, a model can be guaranteed to fulfill the resource constraints. However, it is hard to compare several models as there is no single metric. In addition, it is also harder to optimize the model when reward goes to zero.

2. Scalarization of the multi-objective metric into a unified reward [50], Figure of Merit (FoM) [124], or NetScore [132] that merges all performance measures into one number, e.g.

\[
\text{Reward} = -\text{Error} \times \log(\text{FLOPs}),
\]

or

\[
\text{FoM} = \frac{\text{Accuracy}}{\text{Runtime} \times \text{Power}},
\]

or

\[
\text{NetScore} = 20 \log \left(\frac{\text{Accuracy}^\alpha}{\text{Parameters}^\beta \text{MACs}^\gamma} \right),
\]

where \(\alpha, \beta,\) and \(\gamma\) are coefficients that control the influence of individual metrics. Using a single value, a relative ordering between several models is possible. However, now there are no separate threshold on the resource requirements. Hence, the optimized model may still not fit the hardware limitations.

Note that, in addition to using the metrics in eq. (1) to (5) to evaluate the model performance, the works in [19, 50, 124] also utilize these metrics to build and optimize their learning algorithms.
The main idea is to accurately maintain the system requirements and also improve the model’s performance during training [119].

3.2 Resource Efficient Training

In this section, we review existing algorithm improvements on resource-constrained training. Note that orthogonal approaches have been made in specialized hardware architecture design and dataflow/memory optimization to enable on-device learning [100, 115]. While algorithmic and architectural approaches are tightly correlated and in most cases complement each other, we maintain our focus on resource-efficient algorithms that can work across platforms.

In the machine learning task, the available resources are mainly consumed by three sources: 1) the ML model itself; 2) the optimization process that learns the model; and 3) the dataset used for learning. For instance, a complex DNN has a large memory footprint while a kernel based method may require high computational power. The dataset requires storage when it is collected and consumes memory when it is used for training. Correspondingly, there are mainly three approaches that adapt existing ML algorithms to a resource-constrained setting: 1) reducing model complexity by incorporating resource constraints into the hypothesis class; 2) modifying the optimization routine to reduce resource requirements during training; and 3) developing new data representations that utilize less storage. Particularly, for data representation, there is a line of work that proposes new learning protocols for resource-constrained scenarios where full data observability is not possible [7, 109]. In the following, we broadly review resource efficient training methods according to these categories.

3.2.1 Lightweight ML Algorithms. As shown in Table 2 in Section 3.1.1, some traditional ML algorithms, such as Naive Bayes, Support Vector Machines (SVMs), Linear Regression, and certain Decision Tree algorithms like C4.5, have relatively low resource footprints [2]. The lightweight nature of these algorithms make them good candidates for on-device learning applications. These algorithms can be readily implemented on a particular embedded sensor system or portable device with few refinements to fit the specific hardware architecture [46, 75, 80].

3.2.2 Reducing Model Complexity. Adding constraints to the hypothesis class or discovering structures in the hypothesis class is a natural approach to selecting or generating simpler hypotheses. This approach is mostly applied to large models, such as decision trees, ensemble-based models, and DNNs.

Decision trees can have large memory footprint due to the large number of tree nodes. To avoid over-fitting and to reduce this memory footprint, pruning is a typical approach applied for deploying decision trees [67]. Recently, there are also studies that develop shallow and sparse tree learners with powerful nodes that only require a few kilobytes of memory [68].

For ensemble-based algorithms such as boosting and random forest, a critical question is how to select weak learners to achieve higher accuracy with lower computational cost. To address this issue, [43] proposed a greedy approach that selects weak decision-tree-based learners that can generate a prediction at any time, where the accuracy can increase if larger latency is allowed to process weaker learners.

For DNNs, there have been a plethora of studies that propose more lightweight model architectures for on-device learning. While most of these models are designed for edge deployment, we still include these approaches in efficient training because reductions in weights and connections in these new architectures lead to fewer resource requirements for continued training. In Table 6, we provide a comparative overview of lightweight CNN architectures. Compared to networks presented in Table 3, these networks are much smaller in terms of size and computation, while still
On-Device Machine Learning: An Algorithms and Learning Theory Perspective

retaining fairly good accuracy compared to large CNNs. Unfortunately, there is not much work developing lightweight models for DNN architectures other than CNNs.

Among the models presented in Table 6, MnasNet is a representative model generated via automatic neural architecture search (NAS), whereas all other networks are designed manually. NAS is usually based on reinforcement learning (RL) where an RL agent explores a predefined search space to find the optimal network architecture that achieves the best tradeoff between accuracy and energy/runtime. Other on-device resource constraints can also be taken into account by NAS [119]. A recent study also explores modeling resource constraints and integrating them into hyper-parameter tuning for network configuration. This approach is shown to reduce the time spent on hyper-parameter tuning [112].

Table 6. Comparison of lightweight CNNs.

Metric	MobileNet V1-1.0 [55]	MobileNet V2-1.0 [105]	Squeeze-Net [59]	Squeeze-Net-Next-1.0-23 [38]	ShuffleNet 1 x g = 8 [139]	Condense-Net [58]	MnasNet [119]
Top-1 acc.	70.9	71.8	57.5	59.0	67.6	71.0	74.0
Top-5 acc.	89.9	91.0	80.3	82.3	-	90.0	91.8
Input size	224×224	224×224	224×224	227×227	224×224	224×224	224×224
# of stacked CONV layers	27	20	26	22	17	37	18
Weights	3.24M	2.17M	1.23M	0.62M	3.9M	2.8M	3.8M
Activations	5.2M	1.46M	4.8M	4.7M	3.2M	1.1M	3.9M
MAC's	568M	299M	388M	282M	138M	274M	317M
# of FC layers	1	1	0	1	1	1	1
Weights	1M	1.3M	0	0.1M	1.5M	0.1M	0.3M
Activations	2K	2.3K	0	1.1K	2.5K	1.1K	1.3K
MAC's	1M	1.3M	0	0.1M	1.5M	0.1M	0.3M
Total weights	4.24M	3.47M	1.23M	0.72M	5.4M	2.9M	4.2M
Total activations	5.2M	1.46M	4.8M	4.7M	3.2M	1.1M	3.9M
Total MAC's	569M	300M	388M	282M	140M	274M	317M

Apart from designing new architectures from scratch, another approach to reducing DNN model complexity is to exploit the sparse structure of the model architecture. One efficient way to learn sparse DNN structures is to add a group lasso regularization term in the loss function which encourages sparse structures in various DNN components like filters, channels, filter shapes, layer depth, etc [34, 74, 130]. Particularly in [130], when designing the regularization term, the authors take into account how computation and memory access involved in matrix multiplication are executed on hardware platforms such that the resulting DNN network can achieve practical computation acceleration.

Low or mixed precision data representation is also a common approach used for reducing the memory footprint of DNN training. Conventionally, all numerical values including weights, data, and intermediate results are represented and stored using 32-bit floating point data format. Recent studies [45, 65, 86, 127] explore possibilities of using 16-bit or lower precision for storing some or all of these numerical values without much degradation in model accuracy. Notably, it is demonstrated in [127] that DNNs can be trained using 8-bit floating point numbers while fully maintaining the model’s accuracy.

3.2.3 Modifying Optimization Routines.

Optimization or other numerical computation involved in training certain traditional ML models can be very resource intensive. For example, for kernel-based algorithms such as SVM, kernel computation usually consumes the most energy and memory. Efficient algorithms have been proposed to reduce the computation complexity and memory footprint of kernel computations, and are beneficial for both training and inference [56, 63, 72].
The choice of optimization strategy is crucial for DNN training, as a proper optimization technique is critical to finding a good local minimum. While many efficient optimization algorithms such as Adam as well as network initialization techniques are exploited in DNN training, the main objective is to improve convergence and consequently reduce training time. Other resource constraints are not taken into account explicitly. Here, we focus on efficient training algorithms that consider performance other than runtime and could potentially enable DNN training on devices with limited memory and power.

There are mainly two approaches targeted at reducing memory footprint of DNN training, namely, layer-wise training [15, 42], and trading computation for memory [44]. One major cause for the heavy memory footprint of DNN training is end-to-end back-propagation which requires storing all intermediate feature maps for gradient calculation. Sequential layer-by-layer training has been proposed as an alternative [15]. While this method was originally proposed for better DNN interpretation, it requires less memory usage while retaining the generalization ability of the network. Trading computation for memory reduces memory footprint by releasing some of the memory allocated to intermediate results, and recomputing these results as needed. This approach is shown to tightly fit within almost any user-set memory budget while minimizing the computational cost [44]. Apart from these two approaches, some other studies focus on exploiting the specific DNN architectures and targeted datasets, and propose methods using novel loss functions [17, 136], and training pipelines [17] to improve the memory and computation efficiency of DNNs.

While the aforementioned studies demonstrate promising experimental results, they barely provide any analysis on the generalization error nor the sample complexity under a limited memory budget. A few studies target at this issue by developing memory-bounded learning techniques with some performance guarantees. For example, [40, 71, 113, 118] proposed memory-bounded optimization routines for sparse linear regression and provided upper bounds on regret in an online learning setting. For PCA, [3, 77, 87, 134, 138] proposed memory or computation-efficient optimization algorithms while guaranteeing optimal sample complexity.

Note that in an environment with a cluster of CPUs or GPUs, the most popular technique for speeding up training is parallelization, where multiple computational entities share the computation and storage for both data and model [27]. However, in IoT applications with embedded systems, it is not common to have similar settings as a computer cluster. Usually the devices are scattered and operated in a distributed fashion. To enable cooperation among a group of devices, distributed learning techniques such as consensus, federated learning and many others have been proposed [84, 120]. However, the primary concern of these techniques are data privacy and the lack of central control entity in the application field.

3.2.4 Data Compression. Besides complexity in models or optimization routines, the dimensionality and volume of training data can also require lots of resources. For example, the storage and memory requirement of k-Nearest Neighbor (kNN) approaches are large due the fact that all training samples need to be stored for inference. Therefore, techniques that compress training data are usually used to reduce the memory footprint of the algorithm [69, 128]. Data compression or sparsification is also used to improve DNN training efficiency. Some approaches exploit matrix sparsity to reduce the memory footprint to store training data. For example, [103] transforms the input data to a lower-dimensional embedding which can be further factorized into the product of a dictionary matrix and a block-sparse coefficient matrix. Training using the transformed data is shown to be more efficient in memory, runtime and energy consumption. In [78], a novel data embedding technique is used in RNN training, which can represent the vocabulary for language modeling in a more compressed manner.
3.2.5 New Protocols for Data Observation. For most learning algorithms, a major assumption is that full i.i.d. data is accessible in batch or streaming fashion. However, under certain constraints, only partial features of part or the entire dataset can be observed. For example, feature extraction can be costly due to either expensive feature computation or labor-intensive feature acquisition. Another instance is that memory is not sufficient to store a small batch of high-dimensional data samples. This problem leads to studies on limited attribute observation [7, 14], where both memory and computation are limited by restricted observation of sample attributes. Under this setting, a few studies propose new learning algorithms and analyze sample complexity for applications such as sparse PCA[109], sparse linear regression [14, 48, 62, 93], parity learning[114], etc. While this new learning protocol provides valuable insights into the trade-offs of sample complexity, data observability, and memory footprint, it remains to be explored how they can be used to design resource-efficient algorithms for a wider range of ML models.

3.3 Resource Efficient Inference

While inference is not the main focus of this paper, for the completeness of discussion, we provide a brief overview of resource efficient approaches that enable on-device inference. In fact, the majority of on-device ML research focus on inference; i.e., deployment of a trained ML model on a resource-constrained device. Due to the fact that most traditional ML algorithms are not resource intensive during inference, we will only focus on methods proposed for DNNs.

Apart from designing lightweight DNN architectures as discussed in Section 3.2.2, another popular approach is static model compression, where, during or after training, the model is compressed in size via techniques such as network pruning [47], vector quantization [41, 47, 126], distillation [54], hashing [16], network projection [97], binarization [23], etc. These studies demonstrate significant reduction in model size while retaining most of the network’s predictive capacity.

However, since these models will not change after compression, their complexities cannot further adapt to inputs. There have been observations that not all inputs require the same amount of computational power to be processed. A simple model may be sufficient to classify samples that are easy to distinguish, while a more complex model is only needed to process difficult samples. Based on this reasoning, a second approach focuses on building and running adaptive models that dynamically scale computation according to inputs. This approach includes early termination, exploration of cascaded models, and selectively using/skipping parts of the network [10, 57, 129]. This adaptive approach is complementary to the compression approach, can further resource efficiency can be expected if these two approaches are applied altogether.

3.4 Challenges in Resource-Efficient Algorithm Development

From the discussions in this section, we observe the following challenges for resource characterization of existing ML algorithms and development of new resource-efficient algorithms:

(1) **Hardware dependency**: As observed from existing hardware platform benchmarks and resource requirement modeling approaches, resource characterization greatly depends on the platform, framework, and the computing library used. For example, on the Nvidia Jetson TX1 platform, the memory footprint of a CNN model can be very different based on the frameworks (Torch vs Caffe) used [13, 101]. Among all resource constraints, memory footprint is particularly hard to quantify as many frameworks and libraries deploy unique memory allocation and optimization techniques. For example, MXNet provides multiple memory optimization mechanisms and the memory footprint is very different under each mechanism [94]. Consequently, given specific on-device resource budgets and performance requirements, it is challenging to choose the optimal algorithm that fits in the resource constraints.
With all the variability and heterogeneity in implementation, it is thereby important to draw insights and discover trends on what is invariant across platforms. As discussed in [83], cross-platform models which account for chip variability are needed to transfer knowledge from one type of hardware to another. Furthermore, we postulate that cross-framework or cross-library models are also important to enable resource prediction for all types of implementations.

(2) **Metric design**: While a few novel metrics are proposed for on-device ML algorithm analysis, they either cannot be used directly for algorithm comparison, or cannot provide guarantees that the training process will fit the resource budget. Particularly, for metrics devised based on hardware agnostic measures such as number of parameters or FLOPs, they rarely accurately reflect realistic algorithm performance on a specific platform. Therefore, more practical, commensurable and interpretable metrics need to be designed to determine which algorithm can provide the best trade-off between accuracy and multiple resource constraints.

(3) **Algorithm focus**: Most studies on on-device learning focus on DNNs, especially CNNs, because their layer-wise architectures carry a declarative specification of computational requirements. In contrast, there has been very little focus on RNNs and traditional machine learning methods. This is mainly due to their complexity or heterogeneity in structure or optimization method, and lack of a benchmarking dataset. However, as observed in Table 4, the edge platforms used for DNN profiling are generally mobile phones or embedded computing cards which still have gigabytes of RAM and large computational power. For IoT or embedded devices with megabytes or even kilobytes of RAM and low computational power, DNNs can barely fit. Therefore, traditional machine learning methods are equally important for edge learning, and their resource requirements and performance on edge devices need to be better profiled, estimated and understood.

(4) **Dynamic resource budget**: Most studies assume that the resource available for a given algorithm or application is static. However, resource budget for a specific application can be dynamic on platforms such as mobile phone due to events such as starting or closing applications and application priority changes [30]. Contention can occur when resource is smaller than the model requirements and resource can be wasted when it is abundant. To solve this issue, [30] proposed an approach for multi-DNN applications. When trained offline, for each application, five models with diverse accuracy-latency tradeoffs are generated and their resource requirements are profiled. The models are nested with shared weights to reduce memory footprint. During deployment, a greedy heuristic approach is used to choose the best models for multiple applications at runtime that achieve user-defined accuracy and latency requirements while not exceeding the total memory of the device.

4 **THEORETICAL CONSIDERATIONS FOR ON-DEVICE LEARNING**

While Section 3 categorizes the approaches used for building resource-constrained machine learning models, this section focuses on the computational learning theory that is used to design and analyze these algorithms. Nearly every approach in the previous section is based on one of the following underlying theories,

- **Traditional machine learning theory**: Most of the existing approaches used to build the resource efficient machine learning models for inference (in section 3.3) follow what is canonically referred to as traditional machine learning theory. In addition, approaches like, **low-footprint machine learning** (section 3.2.1), **reducing model complexity** (section 3.2.2), **data compression** (section 3.2.4), **modifying optimization routines** (section 3.2.3) used for resource efficient training, also follow this traditional learning theory. For example, low-footprint
machine learning involves using algorithms with inherently low resource footprints designed under traditional learning theory. Approaches like reducing model complexity and data compression, incorporates additional resource constraints for algorithms designed under traditional learning theory. Finally, the approach of modifying optimization routines simply modifies the optimization algorithms used to solve the machine learning problem designed under such theories.

- **Novel resource constrained machine learning theory:** These approaches highlight the gaps in traditional learning theory and propose newer notions of learnability with resource constraint settings. Most of the algorithms in new protocols for data observation (section 3.2.5) fall in this category. Typically, such approaches modify the traditional assumption of i.i.d data being presented in a batch or streaming fashion and introduces a specific protocol of data observability. Additional algorithmic details are available in 3.2.5.

In this section we provide a detailed survey of the advancements in the above categories. Note that there is an abundance of literature addressing traditional learning theories [88, 107, 122]. For completeness however we still include a very brief summary of such traditional theories in section 4.2.1. This summary also acclimatizes the readers with the notations used throughout this section.

Section 4.1 formalizes the learning problem for both traditional as well as resource constrained settings. Next, section 4.2.1 provides a brief survey of some of the popular traditional learning theories. The advanced learning theories developed for resource-constraint settings are provided in section 4.2.2. Finally, we conclude by discussing the existing gaps and challenges in section 4.3.

4.1 Formalization of the Learning problem

Before delving into the details of the learning theories, we first formalize the learning problem for traditional machine learning algorithms. We then extend this formalization to novel machine learning algorithms under resource constraint settings in section 4.1.2. For simplicity we focus on supervised problems under inductive settings [20, 122]. Extensions to other advanced learning settings like transductive, semi-supervised, universum etc., can be found in [88, 107, 122].

4.1.1 Traditional Machine Learning Problem. The supervised learning problem assumes an underlying label generating process $y = g(x)$, where $y \in \mathcal{Y}$ and $x \in \mathcal{X}$ (data domain) $\subseteq \mathbb{R}^d$; which is characterized by a data generating distribution \mathcal{D}. Under the inductive learning setting, the machine learning problem can be formalized as,

Definition 1. Inductive Learning

Given. independent and identically distributed (i.i.d) training samples $S = (x_i, y_i)_{i=1}^n$ from the underlying data generating distribution $\mathcal{S} \sim \mathcal{D}^n$, and a predefined loss function $l: \mathcal{X} \times \mathcal{Y} \rightarrow O$ (output domain).

Task. estimate a function/hypothesis $\hat{h}: \mathcal{X} \rightarrow \mathcal{Y}$ from a set of hypotheses \mathcal{H} (a.k.a Hypothesis class), that best approximates the underlying data generating process $y = g(x)$ i.e. which minimizes

$$E_{\mathcal{D}}(l(y, \hat{h}(x))) = R(\hat{h})$$

(6)

Here,

$E_{\mathcal{D}}(\cdot) =$ Expectation operator under distribution \mathcal{D} \hspace{1cm} $\mathbbm{1}_{\cdot}(\cdot) =$ Indicator function

$R(\cdot) =$ True risk of a hypothesis

Some popular examples following this problem setting are,

- **Binary Classification problems using 0/1 loss where** $\mathcal{Y} = \{-1, +1\}$, $O = \{0, 1\}$ and $l(y, \hat{h}(x)) = \mathbbm{1}_{y \neq \hat{h}(x)}$.

• Regression problems with additive gaussian noise (i.e. least-square loss) where \(\mathcal{Y} = \mathbb{R}, \mathcal{O} = \mathbb{R} \) and \(l(y, h(x)) = (y - h(x))^2 \).

Typically users incorporate apriori information about the domain while constructing the hypothesis class. In the simplest sense, the hypothesis class gets defined through the methodologies used to solve the above problems. For example, solving the regression problem using,

• least-squares linear regression: the hypothesis class includes all linear models i.e. \(\mathcal{H} = \{h : h(x) = w^T x + b; w \in \mathbb{R}^d; b \in \mathbb{R}\} \).
• lasso L1- linear regression: the hypothesis class includes all linear models of the form: \(\mathcal{H} = \{h : h(x) = w^T x + b; w \in \mathbb{R}^d; b \in \mathbb{R}; ||w||_1 \leq B\} \).

4.1.2 Resource Constrained Machine Learning Problem. In addition to the goals highlighted in the above section, building resource constrained machine learning algorithms introduces additional constraints to the learning problem. The goal now is not just to minimize the true risk, but also ensure that the resource constraints discussed in section 2 are met. Typically, these resource constraints are imposed during inference or training phase of a machine learning pipeline. A mathematical formalization of this problem can therefore be given as,

Definition 2. Resource Constrained Machine Learning

Given: i.i.d training samples \(S = (x_i, y_i)_{i=1}^n \) from the underlying data generating distribution \(S \sim \mathcal{D}^n \), a predefined loss function \(l : \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{O} \), and a predefined resource constraint \(C(\cdot) \).

Inference: estimate a function \(\hat{h} : \mathcal{X} \rightarrow \mathcal{Y} \) that best approximates the underlying data generating process i.e. eq. (6) and simultaneously satisfies \(C(h) \).

Training: estimate a function \(\hat{h} : \mathcal{X} \rightarrow \mathcal{Y} \) that best approximates the underlying data generating process i.e. eq. (6) and simultaneously satisfies \(C(A(S)) \). Here, \(A : S \rightarrow \mathcal{H} \) is an algorithm (model building process) that inputs the training data and outputs a hypothesis \(\hat{h} \in \mathcal{H} \).

As seen above the main difference of this setting w.r.t the traditional inductive learning setting is the additional constraint \(C(\cdot) \) on the final model (during inference) or the Algorithm (for training). As an example, consider the least squares linear regression example discussed above. Typical resource constraints for such a problem may look like,

• Memory constraint during inference enforced by requiring the model parameters \((w, b)\) of the estimated model \(y = w^T x + b \) be represented using float32 precision (\(\sim 2^{32(d+1)} \) bit memory footprint) or int16 precision (\(\sim 2^{16(d+1)} \) bit memory footprint); with \(x \in \mathbb{R}^d \). This is equivalent to a constraint on the final model \(C_{\text{float32}}(\hat{w}, \hat{b}) = \{\hat{w} \in \{-3.4E+38, \ldots, 3.4E+38\}^d; \hat{b} = \{-3.4E+38, \ldots, 3.4E+38\} \} \) or \(C_{\text{int16}}(\hat{w}, \hat{b}) = \{\hat{w} = \{-32768, \ldots, 32767\}^d; \hat{b} = \{-32768, \ldots, 32767\} \} \).

• Computation constraint during inference can be enforced by requiring \(\hat{w} \) to be \(k \)- sparse with \(k < d \). This, would ensure \(k + 1 \) FLOPS per sample and equivalently constraints final model as \(C(\hat{w}, \hat{b}) = \{\hat{w} \in \mathbb{R}^k\} \).

Similar, memory/computation constraint can be imposed onto the learning algorithm \(A(S) \) during training.

4.2 Learning theories

In this section we discuss the learning theories developed for the problems discussed above.

4.2.1 Traditional Learning Theories. These theories target the traditional learning problem discussed in 4.1. Most traditional learning theories provide probabilistic guarantees of the goodness of a model (actually guarantees for all models in the Hypothesis class) w.r.t the metric in eq.(6). Such
theories typically decompose eq. (6) into two main components,
\[R(h) - R^* = (\min_{h \in \mathcal{H}} R(h) - R^*) + (R(h) - \min_{h \in \mathcal{H}} R(h)) \]
(7)
approximation
estimation

Here,
Bayes Error, \(R^* = \min \) all measurable \(h \)
and \(\min_{h \in \mathcal{H}} R(h) \) = smallest in-class error

The approximation error in eq. (7), typically depends on the choice of the hypothesis class and the problem domain. The value of this error is problem dependent. Traditional learning theories then characterize the estimation error. One of the fundamental theoretical frameworks used for such analyses is the PAC-learning framework.

Definition 3. (Efficient) Agnostic PAC-learning [88]
A hypothesis class \(\mathcal{H} \) is agnostic PAC-learnable using an algorithm \(A(S) \), if for a given \(\epsilon, \delta \in (0, 1) \) and for any distribution \(D \) over \(X \times Y \) (with \(X \subseteq \mathbb{R}^d \)) there exists a polynomial function \(p_1(\frac{1}{\epsilon}, \frac{1}{\delta}, d, |\mathcal{H}|) \) such that for any sample size \(n \geq p_1(\frac{1}{\epsilon}, \frac{1}{\delta}, d, |\mathcal{H}|) \) the following holds,
\[\mathbb{P}_D(R(h_S) - \min_{h \in \mathcal{H}} R(h) \leq \epsilon) \geq 1 - \delta; \quad \text{where } h_S = A(S) \in \mathcal{H} \]
(8)

Further it is efficiently PAC learnable if the computation complexity is \(O(p_2(\frac{1}{\epsilon}, \frac{1}{\delta}, d, |\mathcal{H}|)) \) for some polynomial function \(p_2 \).

As seen from 3 there are two aspects of PAC-learning.

Sample Complexity characterizing Generalization Bounds

Although Definition 3 provides the learnability framework for a wide range of machine learning problems like regression, multi-class classification, recommendation etc. For simplicity, in this section we mainly focus on the sample-complexity (and equivalently the generalization bounds) for binary classification problems. Extensions of these theories for other learning problems can be found in [88, 107].

Definition 3 guarantees that an estimated model using the algorithm \(A(S) \) and sample size \(n \geq p_1(\frac{1}{\epsilon}, \frac{1}{\delta}, d, |\mathcal{H}|) \), will guarantee predictions with error tolerance of \(\epsilon \) and a probability \(1 - \delta \). One popular class of algorithm choice is the Empirical Risk Minimization (ERM) based algorithms. Here, the algorithms return the hypothesis that minimizes an empirical estimate of the risk function in (6) given by,
\[\text{ERM estimate } h_S = \text{ERM}(S) = \arg\max_{h \in \mathcal{H}} R_S(h) \]
(9)

where, Empirical Risk \(R_S(h) = \frac{1}{n} \sum_{i=1}^{n} 1_{y_i \neq h(x_i)} \)

A very interesting property of the ERM based algorithms is the uniform convergence property (see [107]). This property dictates that for the ERM algorithm to return a good model from within \(\mathcal{H} \), we need to bound the term \(|R_S(h) - R(h)|; \forall h \in \mathcal{H} \). In fact, most popular learning theories characterize the number of samples (a.k.a sample complexity) needed for bounding this term \(|R_S(h) - R(h)|; \forall h \in \mathcal{H} \) for any given \(\epsilon, \delta \in (0, 1) \). The canonical form adopted in most such learning theories is provided next,
Definition 4. Canonical Forms

Generalization Bound For a given hypothesis class \mathcal{H}, training set $S \sim \mathcal{D}^n$, and $\epsilon, \delta \in (0, 1)$, a typical generalization bound adopts the following form,

$$\text{with probability at least } 1 - \delta \text{ we have, } \forall h \in \mathcal{H} \quad R(h) \leq R_S(h) + O\left(p_1(\epsilon, \frac{1}{\delta}, n, |\mathcal{H}|)\right)$$

(10)

A direct implication of (10) and uniform convergence property,

Sample Complexity A hypothesis class \mathcal{H} is PAC learnable using ERM based algorithms with a training set S of sample complexity $n \geq p_2(\frac{1}{\epsilon}, \frac{1}{\delta}, |\mathcal{H}|)$

The exact forms of the confidence terms and the sample complexity term depends on the way the complexity of the hypothesis class is captured. A brief survey of some the popular theories used to capture the complexity of the hypothesis class is provided in Table 7.

Note that, Table 7 provides a very brief highlight of some of the popular traditional learning theories. For a more detailed coverage of advanced learning theories please see [88, 107]. In addition, there are a few alternative theories which uses different learning mechanisms like., mistake bounds [88], learning by distance [8], statistical query learning [64]. Most such settings are adapted for very specific learning tasks and have some connections to the PAC learning theory. Interested readers are directed to the above references for further details.

Computation Complexity Another aspect of the PAC learning theory is the computational complexity of the algorithm. Note that, there can be several algorithms to obtain the same solution. For example, to sort an array of numbers both merge sort and binary sort will provide the sorted output. Although the outcome (solution) of the algorithm may be the same; the worst-case computation complexity of each algorithm is different i.e. binary sort $O(n^2)$ and merge sort $O(n\log n)$. PAC theory captures the efficiency of an algorithm in terms of its computation complexity. However, the computation times of any algorithm is machine dependent. To decouple such dependencies most computation complexity analyses assumes an underlying abstract machine, like a Turing Machine over reals etc., and provides a comparative machine independent computational analysis in big-O notation. For example, an $O(n\log n)$ implementation of the merge sort algorithm would mean the actual runtime in seconds on any machine would follow (see [107]):

"there exist constants c and n_0, which can depend on the actual machine, such that, for any value of $n > n_0$, the runtime in seconds of sorting any n items will be at most $cn\log(n)$".

A brief coverage of the computation times for several popular algorithms in big-O notation is provided in table 2. For a more in-depth discussion on several computational models readers are directed to [64].

As seen in this section, most popular traditional learning theories mainly target the sample complexity and in turn the generalization capability of an algorithm to learn a hypothesis class followed by the computation complexity of the algorithm to learn such a hypothesis class. From a resource constrained perspective although the computational (processing power) aspect of an algorithm is (asymptotically) handled in such theories, the interplay between computation vs. sample complexity is disjunctive. Even so, most of the existing methodologies adopted for resource constrained machine learning (discussed in sections sections 3.3, 3.2.1, 3.2.2, 3.2.4, 3.2.3) follow this learning paradigm.
Table 7. Popular Traditional Learning Theories

Theory	Confidence term $p_1(\frac{1}{2}, n,	\mathcal{H})$	Sample Complexity $p_2(\frac{1}{2}, \frac{\epsilon}{\delta},	\mathcal{H})$	Additional Remarks	
Finite Hypothesis ($	\mathcal{H}	< \infty$)						
Realizable ($\min_{h \in \mathcal{H}} R(h) = 0$)	PAC Bound [121]	$\frac{\log	\mathcal{H}	+ \log \frac{1}{\delta}}{n}$	$\frac{1}{\epsilon} (\log	\mathcal{H}	+ \log \frac{1}{\delta})$	
Non-Realizable ($\min_{h \in \mathcal{H}} R(h) \neq 0$)	Agnostic PAC [121]	$\sqrt{\frac{\log	\mathcal{H}	+ \log \frac{1}{\delta}}{n}}$	$\frac{\log	\mathcal{H}	+ \log \frac{1}{\delta}}{\epsilon^2}$	
Countably Infinite ($\mathcal{H} = \cup_{n \in \mathbb{N}} \mathcal{H}_n$)	MDL [107]	$\sqrt{\frac{1}{2} d(h) + \log \frac{1}{\delta}}$	$\frac{\log d(h) + \log \frac{1}{\delta}}{\epsilon^2}$	$d(h) = \text{minimum description length of hypothesis.}$				
Infinite Hypothesis	VC (dimension) Theory [123]	$- \sqrt{\frac{2 \log E_D[\mathcal{N}(\mathcal{H}, 2n)	+ \log \frac{1}{\delta}}{n}}$	$\frac{\log \log(n + \log \frac{1}{\delta}}{n}$	- Growth Function $G_H(n) = \sup_{z_1, \ldots, z_n}	\mathcal{H}	$
	VC (Entrophy) Theory [123]	$\sqrt{\frac{2 \log D[\mathcal{N}(\mathcal{N}(\mathcal{H}, 2n)	+ \log \frac{1}{\delta}}{n}}$	$\frac{\log \log(n + \log \frac{1}{\delta}}{n}$	- VC dim, $d = \max_{n \in \mathbb{N}} n \| \mathcal{H}_n \| = \mathcal{H}_{z_1, \ldots, z_n}$.		
	Covering Number [131]	$\sqrt{\log \frac{4(2n, \epsilon/3, \mathcal{H}) + \log \frac{1}{\delta}}{n}}$	$\frac{\log \log(n + \log \frac{1}{\delta}}{n}$	- Covering no. $\Gamma(n, \epsilon, \mathcal{H}) = \{ z_1, \ldots, z_n \}$.				
	Radamacher Complexity [5]	$- 2 \mathcal{R}_d(\mathcal{H}) + \sqrt{\frac{\log \frac{1}{\delta}}{2n}}$	$- 2 \mathcal{R}_d(\mathcal{H}) + \sqrt{\frac{\log \frac{1}{\delta}}{2n}}$	- Empirical Radamacher Complexity, $\mathcal{R}_S(\mathcal{H}) = \{ \mathcal{M}(\mathcal{H}, \lambda, 2n, \epsilon, 0) \}$.				
				- Radamacher Complexity, $\mathcal{R}_m(\mathcal{H}) = \mathcal{R}_S(\mathcal{H})$. For equivalence with Gaussian complexity, Maximum Discrepancy etc. see [5].				
	Algorithm Stability [88]	$\beta + (2m \beta + M) \sqrt{\frac{\log \frac{1}{\delta}}{2n}}$	$\beta + (2m \beta + M) \sqrt{\frac{\log \frac{1}{\delta}}{2n}}$	- Applies to β stable algorithms $h_S = A(S)$.				
	Compression Bounds [107]	$R_{\text{comp}}(A(S)) \frac{1}{8} \frac{4k \log(m/\delta)}{m}$	$R_{\text{comp}}(A(S)) \frac{1}{8} \frac{4k \log(m/\delta)}{m}$	- $S' = S_I$ where \exists an index set I and a compression scheme $B : S_I \to \mathcal{H} s.t. A(S) = B(S_I)$ with $	S	> 2	S_I	$.
				- The bound is on the Algorithm A’s output in terms of error on the holdout set S'.				
4.2.2 Resource-Constrained Learning Theories. Although the PAC learning theory is the dominant theory behind majority of the ML algorithms, the notion of sample complexity and resource complexity (computation, memory, communication bandwidth, power etc.) is disjunctive in such theories. In fact, the works in [28, 104] raise some critical questions about the adequacy of the PAC learning framework for designing ML algorithms with limited computation complexity. These questions have led to a substantial amount of work modifying the PAC learning paradigm to provide an explicit tradeoff between sample and computation complexity. Good surveys of sample-computation complexity theory can be found in [24, 25, 28, 31, 82, 106, 108, 111] and is not the main focus of this paper. Rather, in this category we target the more exclusive class of literature which additionally captures the effect of space complexity on the sample complexity for learnability. There is limited research that provides an explicit characterization of such an interplay for any generic algorithm. Most such works modify the traditional assumption of i.i.d data being presented in a batch or streaming fashion and introduces a specific protocol of data observability. Such theories limit the memory/space footprint through this restricted data observability. These advanced theories provide a platform to utilize existing computationally efficient algorithms under memory constrained settings to build machine learning models with strong error guarantees. We discuss a few examples of such work next.

A seminal work in this line can be found in [7], where the authors introduce a new protocol for data observation called Restricted focus of attention (RFA). This modified protocol is formalized through a projection (or focusing) function and limits the algorithm’s memory (space) and computation footprint through selective observation of the available samples’ attributes/features. The authors introduce a new notion of k-RFA or (k-weak-RFA) learnability, where k is the number of observed bits (or features) per sample; and provides a framework to analyze the sample complexity of any learning algorithm under such memory constrained observation. The interplay between space and sample complexity of any algorithm designed in this RFA framework is provided in Table 8. Several follow-up works target a class of problems like l_1/l_2−linear regression, support vector regression etc., in a similar RFA framework and modified the projection function providing lower sample complexity [11, 48, 61, 62]. They also provide computationally efficient algorithms for these specific methods.

Another approach to characterize the sample vs. space complexity is provided in [114]. Here the authors introduce a memory efficient streaming data observation protocol and utilizes the statistical query (SQ) based learning paradigm (originally introduced in [64]) to characterize the sample vs. space complexity for learnability of finite hypothesis classes. Allowing the SQ algorithm for improper learning, the authors justifies applicability to infinite function classes through an ϵ -cover under some metric. However, such extensions have not been provided in the paper. One major advantage of this approach is that it opens up the gamut of machine learning algorithms developed in the SQ paradigm for resource constrained settings [32, 33]. As an example, the authors illustrate the applicability of their theory for designing resource efficient k-sparse linear regression algorithm following [32, 33]. Additional details on the space/sample complexity under this framework is provided in Table 8.

More recently [90, 91] introduced a graph based approach to model the version space of a hypothesis class in the form of a hypothesis graph. The authors introduced a notion of d-mixing of the hypothesis graph as a measure of (un)-learnability in bounded memory settings. This notion of mixing was formalized as a complexity measure in [90] and further utilized to show the un-learnability property of most generic neural network architectures. In another line of work a similar (yet complimentary) notion of separability was introduced in [92]. Rather than showing the negative (unlearnability) results under bounded memory settings; this framework was used to characterize the lower bound sample vs. space complexity for learnability of a hypothesis class using
an \((n, b, \delta, \epsilon)\) - bounded memory algorithm. Here, the data generating distribution is assumed to be uniform in the domain, \(n = \text{no. of training samples,}\ b = \text{bits of memory,} \ \delta, \epsilon = \text{confidence, tolerance values for PAC learnability}. \) However, the framework supports a very limited set of machine learning algorithms and its applicability for modifying popular machine learning algorithms have not yet been shown.

Finally, [98] proposes a new protocol for data access called \(\text{branching program}\) and translates the learning algorithm under resource (memory) constraints in the form of a matrix (as opposed to a graph in [90]). The authors build a connection between the stability of the matrix norm (in the form of an upper bound on its maximum singular value) and the learnability of the hypothesis class with limited memory. This work provides the interplay between the memory-size and minimum number of samples required for exact learning of the concept class. [6] extended this work for the class of problems where the sample space of tests is smaller than the sample space of inputs. [37] further improves upon the bounds proposed in [6, 98]. However, most existing work in this framework focus on analyzing the learnability of a problem, rather than providing an algorithm guaranteeing learnability for resource constrained settings.

In addition to the above theories there are a few research works that target a niche yet interesting class of machine learning problems like hypothesis testing [29, 51, 52, 70, 76] or function estimation [4, 53, 89]. However, their extension to any generic loss function has not been provided and is non-trivial. Hence, we do not delve into the details of such settings. However, one specific research on estimating biased coordinates [109] needs special consideration, mainly because it covers a set of very interesting problems like principal component analysis, singular value decomposition, correlation analysis etc. This work adopts an information theory centric general framework to handle most memory constrained estimation problems. The authors introduce a generic \((b, n_t, T)\) protocol of data observability for most iterative mini-batch based algorithms. Here, \(b = \text{space complexity of intermediate results, } n_t = \text{size of a mini-batch (of i.i.d samples with dimension } d)\text{ at } t \in T \text{ iteration, where } T = \text{no. of epochs for the iterative algorithm.}\) In a loose sense the overall space complexity including the data and intermediate results become \(O(T(b + n_t d)).\) Under such a \((b, n_t, T)\) protocol the authors casts most estimation problems like sparse PCA, Covariance estimation, correlation analysis etc., into a ‘hide-and-seek’ problem. Using this framework the authors explore the limitations in memory constrained settings and provide the sample complexity for good estimation with high probability (see Table 8). However, although this provides a framework to analyze specific estimation problems, there are no guidelines on how to cast/modify existing algorithms to optimize the space vs. sample complexities within this framework.

4.3 Challenges in Resource-Efficient Theoretical Research

As presented in the above section there are some major challenges underlying the resource efficient theories discussed in section 4.2.2.

1. Most of the new theories are mainly developed to analyze the un-learnability of a hypothesis class \(\mathcal{H}\) under resource constraints. Adapting such frameworks to develop resource efficient algorithms guaranteeing the learnability of \(\mathcal{H}\) is needed. Although there are a few theoretical frameworks like [7, 114] which provide guidelines towards developing resource efficient algorithms. However, the underlying assumptions rule out a wide range of hypothesis classes. Showing the practicality of such assumptions towards developing a wide range of machine learning algorithms is a huge challenge in such existing frameworks.

2. In addition, as shown in Table 8 most of the existing theories deal with a specific aspect of the space-complexity. For example, [7] mainly considers the per-sample space complexity while [114] considers the space complexity of the intermediate state representation. A more
Table 8. Resource Constrained Learning Theories

Theory	Sample Complexity	Space Complexity	Additional Remarks
k-RFA ([7] Corollary 4.3)	$\max \left(\frac{k^2}{\epsilon} \log \frac{1}{\epsilon}, \frac{2k^2VCdim(H)\log \frac{1}{\epsilon}}{\epsilon} \right)$	$O(k)$ per sample	- $\mathcal{H} = \Psi(F_{\epsilon})_{\epsilon=1}^D$, where Composition function $\Psi(F_{\epsilon})=\{\Psi(f_1, \ldots, f_D)
- \mathcal{F} is PAC learnable over domain X. $k < d$ is a pre-selected subset of features.
- r number of functions used in the ensemble function Ψ. This is user-defined.
- Captures the per-sample space complexity and not the overall algorithm space complexity. |
| **Statistical Query** ([114] Theorem 7) | $O\left(\frac{k\log |\mathcal{H}|}{r^2} \left(\log \log |\mathcal{H}| + \log m_0 + \log(1/\delta)\right)\right)$ | $O(\log |\mathcal{H}|(\log m_0 + \log \log(1/\tau)) + k\log(1/\tau))$ per state variable | - Assumption: \mathcal{H} is $(\epsilon, 0)$-learnable with m_0 statistical queries of tolerance τ.
- k is user defined trade-off with inverse-dependence on sample complexity and direct dependence on space complexity.
- $|\mathcal{H}|$ is size of the finite hypothesis class of probability distributions.
- Following this framework provides a k-sparse linear regression implementation with sample complexity $\tilde{O}(\frac{n^d}{\epsilon^2}\log(1/\delta))$ and space complexity $O(k\log^3(\frac{1}{\delta}))$ bits. $\tilde{O}(\cdot)$ is big-O which additionally hides the log terms. |
| **\mathcal{H}-graph separability** ([92] Theorem 7) | $\frac{k}{\alpha} \log \frac{|\mathcal{H}|}{\alpha^2}$ | $\log \frac{|\mathcal{H}|}{\alpha^2} + \log \frac{k}{\alpha}$ bits | - Assumption: \mathcal{H}- graph is (α, ϵ)- separable (see [114] for definition).
- \mathcal{H} is PAC learnable for given $(\epsilon, \delta) = e^{-k\alpha^2/8} + e^{-2k\epsilon^2}$.
- Limited to uniform distributions and targets sample complexity lower bounds. |
| **Hide-n-Seek** ([109] Theorem 3) | $\Omega(\max \left(\frac{d}{\rho b}, \frac{1}{\rho^2} \right))$ | $O(T(b + n_Td))$ | - Applicable only to estimation problems like PCA, SVD, CCA etc., falling in the hide-n-seek framework.
- b = space complexity of intermediate results.
- $n_T =$ size of a mini-batch (of i.i.d samples with dimension d) at $t \in T$ iteration.
- T = no. of epochs for the iterative algorithm. |
comprehensive analysis of the overall space/computation complexity of the algorithm $A(S)$ needs to be developed.

(3) A general limitation of most of the theoretical frameworks is the limited empirical analysis of the algorithms designed using these frameworks. For example, most of the analyses are asymptotic in nature. How such mathematical expressions translate in practicality is still an open problem.

(4) Most of the existing theories introduces error guarantees in terms of the hypothesis class. Selecting the optimal model through hyperparameter optimization, model selection routines in a resource constrained setting and guaranteeing the correctness of the selected model is missing.

(5) Finally, a comparison between the frameworks introduced in table 8 is missing.

5 DISCUSSION
The previous sections provide a comprehensive look at the current state of on-device learning from an algorithm and theory perspective. In this section we provide a brief summary of these findings and elaborate on the research and development challenges facing the adoption of an edge learning paradigm. We also highlight the effort needed for on-device learning using a few typical edge-learning use cases and explain how research in the different areas (algorithms and theory) has certain advantages and disadvantages when it comes to their usability.

5.1 Summary of the Current State-of-art in On-device Learning
We begin by briefly summarizing our findings from Sections 3 and 4. If you have read those sections, you can skip this summary and move directly to subsection 5.2.

Algorithm Research (details in section 3): Algorithm research mainly targets the computational aspects of model building under limited resource settings. The main goal is to design optimized machine learning algorithms which best satisfies a surrogate software-centric resource constraint. Such surrogate measures are designed to approximate the hardware constraints through asymptotic analysis (subsubsection 3.1.1), resource profiling (subsubsection 3.1.2) or resource modeling (subsubsection 3.1.3). For a given software-centric resource constraint, the state-of-art algorithm designs adopt one of the following approaches:

(1) Lightweight ML Algorithms (see subsubsection 3.2.1): This approach utilizes already available algorithms with low resource footprints. There are no additional modifications for resource constrained model building. As such, for cases where the available device’s resources are smaller than the resource footprint of the selected lightweight algorithm, this approach will fail. Additionally, in most cases the lightweight ML algorithms result in models with low complexity that may fail to fully capture the underlying process.

(2) Reducing Model complexity (see subsubsection 3.2.2): This approach controls the size (memory footprint) and computation complexity of the machine learning algorithm by adding additional constraints on to the model architecture (e.g. by selecting a smaller hypothesis class). For a pre-specified constrained model architecture motivated by the available resource constraints, this approach adopts traditional optimization routines. Apart from model building, this is one of the dominant approaches for deploying resource efficient models for model inference. Compared to the lightweight ML algorithms approach, model complexity reduction techniques can accommodate a broader class of ML algorithms and can more effectively capture the underlying process.

(3) Modifying optimization routines (see subsubsection 3.2.3): This approach designs specific optimization routines for resource efficient model building. Here the resource constraints
are incorporated during the model building (training) phase. Note that as opposed to the previous technique of limiting the model architectures beforehand, this approach can adapt the optimization routines to fit the resource constraints for any given model architecture (hypothesis class). In certain cases, this approach can also dynamically modify the architecture to fit the resource constraints. Although this approach provides a more wider choice of the class of models, the design process is still tied to a specific problem type (classification, regression, etc) and adopted method/loss function (linear regression, ridge regression for regression problems etc).

(4) Data Compression (see subsubsection 3.2.4): Rather than constraining the model size/complexity, this approach targets building models on compressed data. The goal is to limit the memory usage via reduced data storage and computation through fixed per-sample computation cost.

(5) New protocols for data observation (see subsubsection 3.2.5): This approach completely changes the traditional data observation protocol (like availability of i.i.d data in batch or online settings), and builds resource efficient models under limited data observation. These approaches are guided by an underlying resource constrained learning theory (discussed in subsubsection 4.2.2) which captures the interplay between resource constraints and the goodness of the model in terms of the generalization capacity. Additionally, compared to the above approaches, this framework provides a generic mechanism to design resource constrained algorithms for a wider range of learning problems applicable to any method/loss function targeting that problem type.

Obviously one of the major challenges in this research is proper software-centric characterization of the hardware constraints and appropriately using this characterization for better metric designs. Some other important challenges include applicability to a wider range of algorithms and dynamic resource budgeting. A more detailed discussion is available in subsection 3.4.

Theory Research (details in section 4): Research into the theory underlying on-device learning focuses mainly on developing frameworks to analyze the statistical aspects (i.e. error guarantees) of a designed algorithm with or without associated resource constraints. There are two broad categories into which most of the existing resource constrained algorithms can be categorized,

(1) Traditional Learning Theories (see subsubsection 4.2.1): Most of the existing resource constrained algorithm design (summarized in 1 – 4 above) follow this traditional machine learning theory. A limitation of this approach is that such theories are built mainly for analyzing the error guarantees of the algorithm used for model estimation. The effect of resource constraints on the generalization capability of the algorithm is not directly addressed through such theories. For example, algorithms developed using the approach of reducing the model complexity typically adopts a two step approach. First the size of the hypothesis class is constrained a priori to incorporate the resource constraints. Next, an algorithm is designed guaranteeing the best-in-class model within that hypothesis class. The direct interplay between the error guarantees and resource constraints is missing in such theoretical frameworks.

(2) Resource constrained learning theories (see subsubsection 4.2.2): Modern research has shown that it may be impossible to learn a hypothesis class under resource constrained settings. To circumvent such inconsistencies in traditional learning theories, newer resource constraint learning theories have been developed. Such theories provide learning guarantees in light of the resource constraints imposed by the device. The algorithms designed using the approach summarized in point 5 above follow these newer learning theories. Although such theory motivated design provides a generic framework through which algorithms can be designed for a wide range of learning problems for any loss function addressing the problem type, till date, very few algorithms based on these theories have been developed.
Overall, the newer resource constrained theory research provides a generic framework for designing algorithms with error guarantees under resource constrained settings which apply to a broader range of problems. However, currently, very few algorithms have been developed which utilize these frameworks. Developing additional algorithms in such advanced frameworks need significant effort. Also, the application of such theories to a complete ML pipeline including hyperparameter optimization, data preprocessing etc., has not yet been addressed.

5.2 Research & Development Challenges

A study of the current state-of-the-art in on-device learning also provides an understanding of the existing challenges in the field that prevent its adoption as a real alternative to cloud-based solutions. In this section we identify a few directions for research that will allow us to build learning algorithms that run on the edge. As before, we limit our discussion to the algorithm and theory levels.

Algorithm: The challenges facing the research & development of resource constrained optimized algorithms falls into three areas:

1. Software-centric Resource Constraints: A correct characterization of the software-centric resource constraints that best approximates the hardware resources is absolutely critical to developing resource constrained algorithms because the optimal algorithm design is very specific to a particular device (i.e. computational model) and its available resources.

2. Understanding how traditional ML algorithms can contribute to edge learning: Majority of current on-device algorithm research focuses on adapting modern deep learning approaches like CNN, DNN to run on the edge. Very little focus has been given to traditional machine learning methods. Traditional machine learning methods are of huge interest for building edge learning capability especially when memory is limited (for devices with megabytes or even kilobytes of RAM) and computational power is low. These are precisely the areas where modern deep architectures are wholly unsuited due to their out-sized memory and compute requirements. Hence, there is a need to explore the traditional machine learning approaches for learning on-device.

3. Dynamic resource budget: Most existing research assume the availability of dedicated resources while training their edge-learning algorithms. However, for many applications such an assumption is invalid. For example, in mobile phones an application’s priority may change based on user’s actions. Hence, there is a need for algorithm research incorporating the accuracy-latency trade-off under dynamic resource constraints.

For building edge-learning capability for use-cases like object detection, user identification etc. specific to products like., mobile phones, refrigerator etc; significant groundwork needs to be laid in terms of a complete analysis of existing approaches that cater to the specific requirements of the use-cases and the products. This analysis also forms the basis for extending existing approaches and developing newer algorithms in those cases where current methods fail to perform satisfactorily.

Theory: The research on algorithms developed using (extensions of) advanced theoretical frameworks provides a mechanism to characterize the performance (error) guarantees of a model in resource constrained settings. The effort on such research needs careful consideration of the following points,

1. Analysis of Resource Constraints: Although advanced theories abstract resource constraints as a form of information bottleneck, a good understanding of how such abstractions practically impact a resource (say memory vs. computation) needs to be properly analyzed.

2. Applicability: With the appropriate abstraction in place, applicability (of the underlying assumptions) of the theory for practical use-cases needs to be analyzed.
(3) Algorithm development: Once newer learning theories supporting resource constraints have been developed, there is need to develop new algorithms based on these new theoretical frameworks.

(4) Extending existing theories: The existing theories majorly cater to a very specific aspect of the ML pipeline (i.e. training an algorithm for a pre-specified hypothesis class). Extending this approach to the entire model building pipeline (for e.g., Hyper-parameter optimization, data pre-processing, etc) remains to be developed. Also, a majority of the underlying theories target the un-learnability of a problem. Extending such concepts to newer theories to develop practical algorithms needs to be developed.

Overall, the theory research provides a mechanism to characterize a wide range of edge-specific ML problems. However, extending research at this level needs significant effort as compared to the previous algorithmic approaches.

6 CONCLUSION

On-device learning has so far remained in the purview of academic researchers, but with the increasing number of smart devices and improved hardware, there is interest in performing learning on the device rather than in the cloud. In the industry, this interest is fueled mainly by hardware manufacturers promoting AI-specific chipsets that are optimized for certain mathematical operations, and startups providing ad hoc solutions to certain niche domains mostly in computer vision and IoT. Given this surge in interest and corresponding availability of edge hardware suitable for on-device learning, a comprehensive survey of the field from an algorithms and learning theory perspective sets the stage for both understanding the state-of-the-art and for identifying open challenges and future avenues of research. However, on-device learning is an expansive field with connections to a large number of related topics in AI and machine learning including online learning, model adaptation, one/few-shot learning, resource constrained learning etc to name just a few. Covering such a large number of research topics in a single survey is impractical but, at the same time, ignoring the work that has been done in these areas leaves significant gaps in any comparison of approaches. This survey finds a middle ground by reformulating the problem of on-device learning as resource constrained learning where the resources are compute and memory consumption. This reformulation allows tools, techniques, and algorithms from a wide variety of research areas to be compared equitably.

We limited the survey to learning on single devices with the understanding that the ideas discussed can be extended in a normal fashion to the distributed setting by adding an additional constraint based on communication latency. We also focused the survey on the algorithmic and theoretical aspects of on-device learning leaving out the effects of the systems level (hardware and libraries). This choice was deliberate and allowed us to separate out the algorithmic aspects of on-device learning from implementation and hardware choices. This distinction also allows us to identify challenges and future research that can be applied to a variety of systems.

Based on the reformulation of on-device learning as resource constrained learning, the survey found that there are a number of areas where more research and development is needed.

At the algorithmic level, it is clear that current efforts are mainly targeted at either utilizing already lightweight machine learning algorithms or limiting existing algorithms in ways that reduce resource utilization. There are a number of challenges we identified in the algorithm space including the need for decoupling algorithms from hardware constraints, designing effective loss functions and metrics that capture resource constraints, an expanded focus on traditional ML algorithms in addition to the current work on DNNs, and dealing with situations where the resource budget is dynamic rather than static. In addition, improved methods for model profiling
are needed to more accurately calculate an algorithm’s resource consumption. Current approaches to such measurements are abstract and focus on applying software engineering principles such as asymptotic analysis or low-level measures like FLOPS or MACs (Multiply-Add Computations). Neither of these approaches give a holistic idea of resource requirements and in many cases represent an insignificant portion of the total resources required by the system during learning.

Finally, current research in the field of learning theory for resource constrained algorithms is focused on the un-learnability of an algorithm under resource constraints. The natural step forward is to identify techniques that can instead provide guarantees on the learnability of an algorithm and the associated estimation error. Existing theoretical techniques also mainly focus on the space(memory) complexity of these algorithms and not their compute requirements. Even in cases where an ideal hypothesis class can be identified that satisfies resource constraints, further work is needed to select the optimal model from within that class.

REFERENCES

[1] Robert Adolf, Saketh Rama, Brandon Reagen, Gu-Yeon Wei, and David Brooks. 2016. Fathom: Reference workloads for modern deep learning methods. In Workload Characterization (IISWC), 2016 IEEE International Symposium on. IEEE, 1–10.

[2] Furqan Alam, Rashid Mehmoond, Iyad Katib, and Aiiad Albeshri. 2016. Analysis of eight data mining algorithms for smarter Internet of Things (IoT). Procedia Computer Science 98 (2016), 437–442.

[3] Zeyuan Allen-Zhu and Yuanzhi Li. 2017. First efficient convergence for streaming k-pca: a global, gap-free, and near-optimal rate. In Foundations of Computer Science (FOCS), 2017 IEEE 58th Annual Symposium on. IEEE, 487–492.

[4] Noga Alon, Yossi Matias, and Mario Szegedy. 1999. The space complexity of approximating the frequency moments. Journal of Computer and system sciences 58, 1 (1999), 137–147.

[5] Peter L Bartlett and Shahar Mendelson. 2002. Rademacher and Gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research 3, Nov (2002), 463–482.

[6] Paul Beame, Shayan Oveis Gharan, and Xin Yang. 2017. Time-Space Tradeoffs for Learning from Small Test Spaces: Learning Low Degree Polynomial Functions. arXiv preprint arXiv:1708.02640 (2017).

[7] Shai Ben-David and Eli Dichterman. 1998. Learning with restricted focus of attention. J. Comput. System Sci. 56, 3 (1998), 277–298.

[8] Shai Ben-David, Alon Itai, and Eyal Kushilevitz. 1990. Learning by Distances.. In COLT. 232–245.

[9] Simone Bianco, Remi Cadene, Luigi Celona, and Paolo Napoletano. 2018. Benchmark Analysis of Representative Deep Neural Network Architectures. IEEE Access (2018).

[10] Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. 2017. Adaptive neural networks for efficient inference. arXiv preprint arXiv:1702.07811 (2017).

[11] Brian Bullins, Elad Hazan, and Tomer Koren. 2016. The limits of learning with missing data. In Advances in Neural Information Processing Systems. 3495–3503.

[12] Ermiao Cai, Da-Cheng Juan, Dimitrios Stamoulis, and Diana Marculescu. 2017. Neuralpower: Predict and deploy energy-efficient convolutional neural networks. arXiv preprint arXiv:1710.05420 (2017).

[13] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. 2016. An analysis of deep neural network models for practical applications. arXiv preprint arXiv:1605.07678 (2016).

[14] Nicolò Cesa-Bianchi, Shai Shalev-Shwartz, and Ohad Shamir. 2011. Efficient learning with partially observed attributes. Journal of Machine Learning Research 12, Oct (2011), 2857–2878.

[15] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training deep nets with sublinear memory cost. arXiv preprint arXiv:1604.06174 (2016).

[16] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen. 2015. Compressing neural networks with the hashing trick. In International Conference on Machine Learning. 2285–2294.

[17] Xie Chen, Xunying Liu, Yongqiang Wang, Mark JF Gales, and Philip C Woodland. 2016. Efficient training and evaluation of recurrent neural network language models for automatic speech recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing 24, 11 (2016), 2146–2157.

[18] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. 2017. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks. IEEE Journal of Solid-State Circuits 52, 1 (2017), 127–138.

[19] An-Chieh Cheng, Jin-Dong Dong, Chi-Hung Hsu, Shu-Huan Chang, Min Sun, Shih-Chieh Chang, Jia-Yu Pan, Yu-Ting Chen, Wei Wei, and Da-Cheng Juan. 2018. Searching Toward Pareto-Optimal Device-Aware Neural Architectures. arXiv preprint arXiv:1808.09830 (2018).

[20] Vladimir Cherkassky and Filip Mulier. [n.d.]. Learning from data: Concepts, theory, and methods.
On-Device Machine Learning: An Algorithms and Learning Theory Perspective

33

Ashish Kumar, Saurabh Goyal, and Manik Varma. 2017. Resource-efficient Machine Learning in 2 KB RAM for the
Michael J Kearns. 1990. The computational complexity of machine learning
Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt Keutzer. 2016. KB Lakshmanan and B Chandrasekaran. 1979. Compound hypothesis testing with finite memory.
Matt Kusner, Stephen Tyree, Kilian Weinberger, and Kunal Agrawal. 2014. Stochastic neighbor compression. In Urs Köster, Tristan Webb, Xin Wang, Marcel Nassar, Arjun K Bansal, William Constable, Oguz Elibol, Scott Gray, Stewart Hall, Luke Hornof, et al. 2017. Flexpoint: An adaptive numerical format for efficient training of deep neural
Cho-Jui Hsieh, Si Si, and Inderjit S Dhillon. 2014. Fast prediction for large-scale kernel machines. In Advances in Neural Information Processing Systems. 3689–3697.
Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kilian Q Weinberger. 2018. Condensenet: An efficient densenet using learned group convolutions. CVPR 3, 12 (2018), 11.
Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt Keutzer. 2016. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size. arXiv preprint arXiv:1602.07360 (2016).
Andrey Ignatov, Radu Timofte, Przemyslaw Szczepaniak, William Chou, Ke Wang, Max Wu, Tim Hartley, and Luc Van Gool. 2018. AI Benchmark: Running Deep Neural Networks on Android Smartphones. arXiv preprint arXiv:1810.01109 (2018).
Shinji Ito, Daisuke Hatano, Hanna Sumita, Akihiro Yabe, Takuro Fukunaga, Naonori Kakimura, and Ken-Ichi Kawarabayashi. 2017. Efficient Sublinear-Regret Algorithms for Online Sparse Linear Regression with Limited Observation. In Advances in Neural Information Processing Systems. 4099–4108.
Shinji Ito, Daisuke Hatano, Hanna Sumita, Akihiro Yabe, Takuro Fukunaga, Naonori Kakimura, and Ken-Ichi Kawarabayashi. 2018. Online Regression with Partial Information: Generalization and Linear Projection. In International Conference on Artificial Intelligence and Statistics. 1599–1607.
Cijo Jose, Prasoon Goyal, Parv Aggrwal, and Manik Varma. 2013. Local deep kernel learning for efficient non-linear svm prediction. In International conference on machine learning. 486–494.
Michael J Kearns. 1990. The computational complexity of machine learning. MIT press.
Urs Köster, Tristan Webb, Xin Wang, Marcel Nassar, Arjun K Bansal, William Constable, Oguz Elibol, Scott Gray, Stewart Hall, Luke Hornof, et al. 2017. Flexpoint: An adaptive numerical format for efficient training of deep neural networks. In Advances in Neural Information Processing Systems. 1742–1752.
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems. 1097–1105.
Vrushali Y Kulkarni and Pradeep K Sinha. 2012. Pruning of random forest classifiers: A survey and future directions. In Data Science & Engineering (ICDSE), 2012 International Conference on. IEEE, 64–68.
Ashish Kumar, Saurabh Goyal, and Manik Varma. 2017. Resource-efficient Machine Learning in 2 KB RAM for the International Conference on Machine Learning. 1935–1944.
Matt Kusner, Stephen Tyree, Kilian Weinberger, and Kunal Agrawal. 2014. Stochastic neighbor compression. In International Conference on Machine Learning. 622–630.
KB Lakshmanan and B Chandrasekaran. 1979. Compound hypothesis testing with finite memory. Information and Control 40, 2 (1979), 223–233.
John Langford, Lihong Li, and Tong Zhang. 2009. Sparse online learning via truncated gradient. Journal of Machine Learning Research 10, Mar (2009), 777–801.
[126] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. 2018. HAQ: Hardware-Aware Automated Quantization. arXiv preprint arXiv:1811.08886 (2018).

[127] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrishnan. 2018. Training Deep Neural Networks with 8-bit Floating Point Numbers. In Advances in Neural Information Processing Systems. 7685–7694.

[128] Wenlin Wang, Changyou Chen, Wenlin Chen, Piyush Rai, and Lawrence Carin. 2016. Deep distance metric learning with data summarization. In ECML PKDD.

[129] Xin Wang, Fisher Yu, Zi-Yi Dou, and Joseph E Gonzalez. 2017. Skipnet: Learning dynamic routing in convolutional networks. arXiv preprint arXiv:1711.09485 (2017).

[130] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning structured sparsity in deep neural networks. In Advances in Neural Information Processing Systems. 2074–2082.

[131] Michael M Wolf. 2018. Mathematical Foundations of Supervised Learning. (2018).

[132] Alexander Wong. 2018. NetScore: Towards Universal Metrics for Large-scale Performance Analysis of Deep Neural Networks for Practical On-Device Edge Usage. (2018).

[133] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. 2017. Designing Energy-Efficient Convolutional Neural Networks Using Energy-Aware Pruning. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 6071–6079.

[134] Wenzhuo Yang and Huan Xu. 2015. Streaming sparse principal component analysis. In International Conference on Machine Learning. 494–503.

[135] Yuanshun Yao, Zhujun Xiao, Bolun Wang, Bimal Viswanath, Haitao Zheng, and Ben Y Zhao. 2017. Complexity vs. performance: empirical analysis of machine learning as a service. In Proceedings of the 2017 Internet Measurement Conference. ACM, 384–397.

[136] Heiga Zen, Yannis Agiomyrgiannakis, Niels Egberts, Fergus Henderson, and Przemyslaw Szczechowiak. 2016. Fast, compact, and high quality LSTM-RNN based statistical parametric speech synthesizers for mobile devices. arXiv preprint arXiv:1606.06061 (2016).

[137] Chongsheng Zhang, Changchang Liu, Xiangliang Zhang, and George Almpanidis. 2017. An up-to-date comparison of state-of-the-art classification algorithms. Expert Systems with Applications 82 (2017), 128–150.

[138] Kai Zhang, Chuanren Liu, Jie Zhang, Hui Xiong, Eric Xing, and Jieping Ye. 2017. Randomization or Condensation?: Linear-Cost Matrix Sketching Via Cascaded Compression Sampling. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 615–623.

[139] X Zhang, X Zhou, M Lin, and J Sun. [n.d.]. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. arXiv 2017. arXiv preprint arXiv:1707.01083 ([n. d.]).

[140] Hongyu Zhu, Mohamed Akrout, Bojian Zheng, Andrew Pelegris, Amar Phanishayee, Bianca Schroeder, and Gennady Pekhimenko. 2018. TBD: Benchmarking and Analyzing Deep Neural Network Training. arXiv preprint arXiv:1803.06905 (2018).