Rapid tests for the diagnosis of visceral leishmaniasis in patients with suspected disease (Review)

Boelaert M, Verdonck K, Menten J, Sunyoto T, van Griensven J, Chappuis F, Rijal S

Boelaert M, Verdonck K, Menten J, Sunyoto T, van Griensven J, Chappuis F, Rijal S. Rapid tests for the diagnosis of visceral leishmaniasis in patients with suspected disease. Cochrane Database of Systematic Reviews 2014, Issue 6. Art. No.: CD009135. DOI: 10.1002/14651858.CD009135.pub2.
Table of Contents

- **Header** .. 1
- **Abstract** .. 1
- **Plain Language Summary** ... 2
- **Summary of Findings** ... 3
- **Background** .. 6
- **Objectives** .. 7
- **Methods** .. 7
- **Results** .. 11
 - Figure 1. ... 12
 - Figure 2. ... 14
 - Figure 3. ... 14
 - Figure 4. ... 16
 - Figure 5. ... 17
 - Figure 6. ... 19
 - Figure 7. ... 20
 - Figure 8. ... 21
 - Figure 9. ... 23
 - Figure 10. ... 24
 - Figure 11. ... 25
 - Figure 12. ... 26
 - Figure 13. ... 27
 - Figure 14. ... 28
- **Discussion** ... 28
- **Authors’ Conclusions** .. 30
- **Acknowledgements** ... 30
- **References** ... 31
- **Characteristics of Studies** ... 40
- **Data** .. 94
 - Test 1. rK39 immunochromatographic test. ... 94
 - Test 2. KAtex. .. 94
 - Test 3. FAST. .. 94
 - Test 4. rK26 immunochromatographic test. ... 94
 - Test 5. rK39 Primary Analysis. .. 94
 - Test 6. rKE16 immunochromatographic test. ... 94
- **Additional Tables** .. 94
- **Appendices** ... 97
- **Contributions of Authors** ... 101
- **Declarations of Interest** .. 101
- **Sources of Support** ... 101
- **Differences Between Protocol and Review** .. 102
- **Index Terms** ... 102
[Diagnostic Test Accuracy Review]

Rapid tests for the diagnosis of visceral leishmaniasis in patients with suspected disease

Marleen Boelaert¹, Kristien Verdonck¹, Joris Menten¹, Temmy Sunyoto¹, Johan van Griensven¹, Francois Chappuis², Suman Rijal³

¹Institute of Tropical Medicine, Antwerp, Belgium. ²Division of International and Humanitarian Medicine, Geneva University Hospitals, Geneva, Switzerland. ³Department of Internal Medicine, BP Koirala Institute of Health Sciences, Sunsari, Nepal

Contact address: Marleen Boelaert, Institute of Tropical Medicine, Antwerp, Belgium. mboelaert@itg.be.

Editorial group: Cochrane Infectious Diseases Group.

Publication status and date: Unchanged, published in Issue 6, 2014.

Citation: Boelaert M, Verdonck K, Menten J, Sunyoto T, van Griensven J, Chappuis F, Rijal S. Rapid tests for the diagnosis of visceral leishmaniasis in patients with suspected disease. Cochrane Database of Systematic Reviews 2014, Issue 6. Art. No.: CD009135. DOI: 10.1002/14651858.CD009135.pub2.

ABSTRACT

Background

The diagnosis of visceral leishmaniasis (VL) in patients with fever and a large spleen relies on showing *Leishmania* parasites in tissue samples and on serological tests. Parasitological techniques are invasive, require sophisticated laboratories, consume time, or lack accuracy. Recently, rapid diagnostic tests that are easy to perform have become available.

Objectives

To determine the diagnostic accuracy of rapid tests for diagnosing VL in patients with suspected disease presenting at health services in endemic areas.

Search methods

We searched MEDLINE, EMBASE, LILACS, CIDG SR, CENTRAL, SCI-expanded, Medion, Arif, CCT, and the WHO trials register on 3 December 2013, without applying language or date limits.

Selection criteria

This review includes original, phase III, diagnostic accuracy studies of rapid tests in patients clinically suspected to have VL. As reference standards, we accepted: (1) direct smear or culture of spleen aspirate; (2) composite reference standard based on one or more of the following: parasitology, serology, or response to treatment; and (3) latent class analysis.

Data collection and analysis

Two review authors independently extracted data and assessed quality of included studies using the QUADAS-2 tool. Discrepancies were resolved by a third author. We carried out a meta-analysis to estimate sensitivity and specificity of rapid tests, using a bivariate normal model with a complementary log-log link function. We analysed each index test separately. As possible sources of heterogeneity, we explored: geographical area, commercial brand of index test, type of reference standard, disease prevalence, study size, and risk of bias (QUADAS-2). We also undertook a sensitivity analysis to assess the influence of imperfect reference standards.
Main results
Twenty-four studies containing information about five index tests (rK39 immunochromatographic test (ICT), KAtex latex agglutination test in urine, FAST agglutination test, rK26 ICT, and rKE16 ICT) recruiting 4271 participants (2605 with VL) were included. We carried out a meta-analysis for the rK39 ICT (including 18 studies; 3622 participants) and the latex agglutination test (six studies; 1374 participants). The results showed considerable heterogeneity. For the rK39 ICT, the overall sensitivity was 91.9% (95% confidence interval (95% CI) 84.8 to 96.5) and the specificity 92.4% (95% CI 85.6 to 96.8). The sensitivity was lower in East Africa (85.3%; 95% CI 74.5 to 93.2) than in the Indian subcontinent (97.0%; 95% CI 90.0 to 99.5). For the latex agglutination test, overall sensitivity was 63.6% (95% CI 40.9 to 85.6) and specificity 92.9% (95% CI 76.7 to 99.2).

Authors’ conclusions
The rK39 ICT shows high sensitivity and specificity for the diagnosis of visceral leishmaniasis in patients with febrile splenomegaly and no previous history of the disease, but the sensitivity is notably lower in east Africa than in the Indian subcontinent. Other rapid tests lack accuracy, validation, or both.

15 April 2019
Update pending
Studies awaiting assessment
The CIDG is currently examining a new search conducted in April 2019 for potentially relevant studies. These studies have not yet been incorporated into this Cochrane Review.

PLAIN LANGUAGE SUMMARY
Rapid diagnostic tests for visceral leishmaniasis
Visceral leishmaniasis (or kala-azar) is caused by a parasite, results in fever, a large spleen and other health problems, occurring in India, Bangladesh and Nepal, east Africa, the Mediterranean region and Brazil. Without treatment people die, and proper treatment can result in cure, so diagnosis is important. Many of the tests that are used to determine if a person has visceral leishmaniasis are complicated, costly, painful and sometimes dangerous for the patients. Now rapid diagnostic tests that are safe and easy to perform are available.

This Cochrane review describes how accurate these rapid diagnostic tests are for diagnosing visceral leishmaniasis. We summarize those studies that evaluated the rapid tests in people who, according to their physicians, could have the disease. We only included studies in which the researchers had used established methods to distinguish the people with visceral leishmaniasis from those who did not have the disease.

We found 24 studies, which contained information about five different rapid tests. A total of 4271 people participated in these studies. One of the rapid tests (called the rK39 immunochromatographic test) gave correct, positive results in 92% of the people with visceral leishmaniasis and it gave correct, negative results in 92% of the people who did not have the disease. This test worked better in India and Nepal than in east Africa. In India and Nepal, it gave correct, positive results in 97% of the people with the disease. In east Africa, it gave correct, positive results in only 85% of the people with the disease.

A second rapid test (called latex agglutination test) gave correct, positive results in 64% of the people with the disease and it gave correct, negative results in 93% of the people without the disease. For the other rapid tests evaluated, there are too few studies to know how accurate they are.
SUMMARY OF FINDINGS

Summary of findings 1. rK39 immunochromatographic test for visceral leishmaniasis in the Indian subcontinent

Population: Patients suspected to have visceral leishmaniasis disease

Setting: Health services in endemic areas of the Indian subcontinent

New test: rK39 immunochromatographic test

Reference standard: (1) direct smear test or culture of splenic aspirate; (2) composite reference standard based on one or more of the following: parasitology, serology, or response to treatment; or (3) latent class analysis

Pooled sensitivity: 0.97 (95% CI 0.90 to 1.00) | **Pooled specificity:** 0.90 (95% CI 0.76 to 0.98)

Setting
Peripheral health centre with a prior probability of disease of 40%
Positive predictive value
87%

Setting
Referral centre with a prior probability of disease of 60%
Positive predictive value
94%

Quality of the evidence (QUADAS-2)

Risk of bias: none of the studies had a low risk of bias in all domains. One study had a high risk of bias (domain of flow and timing). Five studies had an unclear risk of bias (domains of index test or reference standard).

Applicability: low concerns in all studies and in all domains.

Interpretation: When the rK39 ICT is used in the Indian subcontinent, in a setting where the prior probability of VL among clinical suspects is 40%, which is typically seen in a peripheral health centre in an endemic area, the positive predictive value of the test is 87%. This means that out of 100 patients with a positive rK39 result, 87 would have VL (true positive result) and 13 would have another disease (false positive). The negative predictive value is 98%, meaning that out of 100 patients with a negative rK39 ICT result, 98 would have another disease (true negative) and 2 would have VL (false negative).

When the same test is used in a setting with a prior probability of VL of 60%, which is more typical for a referral centre in an endemic area, the positive predictive value is 94% and the negative predictive value is 95%.

A likelihood ratio is another way of expressing how informative a diagnostic test is: it indicates to what extent the rK39 ICT result changes the odds that a patient has VL. The likelihood ratio of a positive rK39 ICT result is 9.90, and the likelihood ratio of a negative test result is 0.03. This means that in the Indian subcontinent, a positive rK39 ICT result is a strong argument in favour of VL (ruling in) and that a negative rK39 ICT result is a strong argument against VL (ruling out).

CI: confidence interval

Boelaert M, Verdonck K, Menten J, Sunyoto T, van Grientsv J, Chappuis F, Rijal S. Rapid diagnostic tests for visceral leishmaniasis. Cochrane Database of Systematic Reviews 2011, Issue 6. Art. No.: CD009135. DOI: 10.1002/14651858.CD009135.

1. The rK39 immunochromatographic test must be used in combination with a clinical case definition (fever and splenomegaly for more than two weeks and no previous history of visceral leishmaniasis). Studies with mainly HIV-positive patients were not included in the pooled analyses.
2. The results of the meta-analysis showed considerable heterogeneity, which was partly explained by the geographic region.
3. This rapid diagnostic test has been developed specifically for field use. It is less invasive, less time-consuming, and easier to perform than the alternative parasitological or serological tests.
4. Latent class analysis is a modelling technique that allows us to estimate the sensitivity and specificity of a set of diagnostic tests in situations in which there is no good reference standard.
5. Two hypothetical situations: a peripheral health centre and a referral centre with a different prior probability of disease
6. A narrative explanation of the predictive values is given in Appendix 3.
7. QUADAS-2 is a tool for the assessment of the quality of diagnostic accuracy studies. The tool comprises four domains: patient selection, index test, reference standard, and flow and timing. Each domain is assessed in terms of risk of bias, and the first three domains are also assessed in terms of concerns regarding applicability.
Summary of findings 2. rK39 immuno chromatographic test for visceral leishmaniasis in east Africa

Population: Patients suspected to have visceral leishmaniasis disease ¹

Setting: Health services in endemic areas of east Africa ²

New test: rK39 immuno chromatographic test ³

Reference standard: (1) direct smear test or culture of splenic aspirate; (2) composite reference standard based on one or more of the following: parasitology, serology, or response to treatment; or (3) latent class analysis ⁴

Pooled sensitivity: 0.85 (95% CI 0.75 to 0.93); **Pooled specificity:** 0.91 (95% CI 0.80 to 0.97)

Setting	Positive predictive value	Negative predictive value	Number of participants (studies)	Quality of the evidence (QUADAS-2)
Peripheral health centre with a prior probability of disease of 40%	86%	90%	1692 (9 studies)	Risk of bias: three studies had a low risk of bias across all domains; four studies had an unclear risk of bias (domains of index test or reference standard); two studies had a high risk of bias (domains of patient selection or flow and timing, or both).
Referral centre with a prior probability of disease of 60%	93%	81%		Applicability: one study with high concerns about applicability (domain of patient selection); low concerns for all other studies and all other domains.

Interpretation: When the rK39 ICT is used in east Africa, in a setting where the prior probability of VL is 40%, which is typically seen in a peripheral health centre in an endemic area, the positive predictive value of the test is 86%. This means that out of 100 patients with a positive rK39 ICT result, 86 would have VL (true positive result) and 14 would have another disease (false positive). The negative predictive value is 90%, meaning that out of 100 patients with a negative rK39 ICT result, 90 would have another disease (true negative) and 10 would have VL (false negative).

When the same test is used in a setting with a prior probability of VL of 60%, which is more typical for a referral centre in an endemic area, the positive predictive value is 93% and the negative predictive value is 81%.

In east Africa, the likelihood ratio of a positive rK39 ICT result is 9.58, and the likelihood of a negative rK39 ICT result is 0.16. This means that a positive rK39 ICT result is strong argument in favour of VL (ruling in), and that a negative rK39 ICT result is not an absolute argument against VL (does not allow to rule out VL completely).

1. The rK39 immunochromatographic test must be used in combination with a clinical case definition (fever and splenomegaly for more than two weeks and no previous history of visceral leishmaniasis). Studies with mainly HIV-positive patients were not included in the pooled analyses.
2. The results of the meta-analysis showed considerable heterogeneity, which was partly explained by the geographic region.
3. This rapid diagnostic test has been developed specifically for field use. It is less invasive, less time-consuming, and easier to perform than the alternative parasitological or serological tests.
4. Latent class analysis is a modelling technique that allows to estimate the sensitivity and specificity of a set of diagnostic tests in situations in which there is no good reference standard.
5. Two hypothetical situations: a peripheral health centre and a referral centre with a different prior probability of disease
6. A narrative explanation of the predictive values is given in Appendix 3.
7. QUADAS-2 is a tool for the assessment of the quality of diagnostic accuracy studies. The tool comprises four domains: patient selection, index test, reference standard, and flow and timing. Each domain is assessed in terms of risk of bias, and the first three domains are also assessed in terms of concerns regarding applicability.

Boelaert M, Verdonck K, Menten J, Sunyoto T, van Griensven J, Chappuis F, Rijal S. Rapid diagnostic tests for visceral leishmaniasis. Cochrane Database of Systematic Reviews 2011, Issue 6. Art. No.: CD009135. DOI: 10.1002/14651858.CD009135.
Summary of findings 3. Latex agglutination test in urine for the diagnosis of visceral leishmaniasis

Population: Patients suspected to have visceral leishmaniasis disease

Setting: Health services in endemic areas

New test: Latex agglutination test in urine

Reference standard: (1) direct smear test or culture of splenic aspirate; (2) composite reference standard based on one or more of the following: parasitology, serology, or response to treatment; or (3) latent class analysis

Pooled sensitivity: 0.64 (95% CI 0.41 to 0.86); Pooled specificity: 0.93 (95% CI 0.77 to 0.99)

Setting	Positive predictive value	Negative predictive value	Number of participants (studies)	Quality of the evidence (QUADAS-2)
Peripheral health centre with a prior probability of disease of 40%	86%	79%	1374 (6 studies)	Risk of bias: none of the studies had a low risk of bias in all domains. One study had a high risk of bias (domain of flow and timing). Five studies had an unclear risk of bias (domain of reference standard).
Referral centre with a prior probability of disease of 60%	93%	63%		Applicability: low concerns in all studies and in all domains.

CI: confidence interval

Boelaert M, Verdonck K, Menten J, Sunyoto T, van Griensven J, Chappuis F, Rijal S. Rapid diagnostic tests for visceral leishmaniasis. Cochrane Database of Systematic Reviews 2011, Issue 6. Art. No.: CD009135. DOI: 10.1002/14651858.CD009135.

1. Studies with mainly HIV-positive patients were not included in the pooled analyses.
2. The studies included in this review were conducted in Ethiopia, Kenya, Sudan, India and Nepal.
3. This rapid diagnostic test has been developed specifically for field use. It is less invasive, less time-consuming, and easier to perform than the alternative parasitological or serological tests.
4. Latent class analysis is a modelling technique that allows to estimate the sensitivity and specificity of a set of diagnostic tests in situations in which there is no good reference standard.
5. The results of the meta-analysis showed considerable heterogeneity.
6. Two hypothetical situations: a peripheral health centre and a referral centre with a different prior probability of disease.
7. QUADAS-2 is a tool for the assessment of the quality of diagnostic accuracy studies. The tool comprises four domains: patient selection, index test, reference standard, and flow and timing. Each domain is assessed in terms of risk of bias, and the first three domains are also assessed in terms of concerns regarding applicability.
BACKGROUND

Target condition being diagnosed

Visceral leishmaniasis (VL), also known as kala-azar, is a life-threatening systemic disease caused by the obligate intracellular protozoan, *Leishmania*, and transmitted through the bites of phlebotomine sand flies (Herwaldt 1999). Leishmanial infection can cause a diverse spectrum of diseases, among which VL is the most severe form and which is almost always fatal without adequate, timely treatment. The species that causes VL is *Leishmania donovani* in Asia and eastern Africa, and *L. infantum* in Europe, North Africa and Latin America (Boelaert 2000). The geographical distribution of VL is often limited to well-identified endemic foci, but it has also emerged as epidemics (Seaman 1996) and as one of the opportunistic infections in human immunodeficiency virus (HIV)-positive patients (Alvar 2008; Pasquau 2005). VL is a neglected disease that affects the poorest and most vulnerable people in rural, remote settings where there is limited access to health care. The estimated incidence is 200,000 to 400,000 cases per year, of which more than 90% are reported from India, Bangladesh, Ethiopia, Sudan, South Sudan, and Brazil (Alvar 2012). The two main transmission modes of VL are anthropoontic and zoonotic. The human-to-human transmission is predominant in the Indian subcontinent and in eastern Africa, while the zoonotic transmission mode is found in the Mediterranean region and the Americas. The zoonotic transmission mode involves dogs as the main parasite reservoir (Chappuis 2007).

The pathogenesis of VL entails a complex interaction between the characteristics of the parasite and the host (Rittig 2000). The parasite life cycle involves the replication of the promastigote form in the gut of the female sand fly and is completed when she takes a blood meal on a non-immune host. In the human body, the *Leishmania* promastigote evolves into an amastigote form (without flagellum), which colonizes the macrophages in the liver, spleen and bone marrow. The control of the infection depends on the characteristics of the host, especially an intact cell-mediated immunity in the form of a T-helper type 1 response, involving the secretion of interleukin 12 and interferon-gamma. The failure of this cell-mediated immunity in some, but not all, of the infected individuals ultimately leads to the clinical manifestations of VL disease (Murray 2005).

The main clinical manifestations of VL are fever of insidious onset, weakness, loss of appetite, weight loss, abdominal distension due to enlargement of the spleen or the liver or both, lymph node enlargement, and a low blood cell count (pancytopenia). In children, other symptoms include diarrhea, coughing, abdominal pain, and growth retardation. In any age group, if left untreated, the disease will progress with time, causing debilitation, bleeding, susceptibility to secondary infection and, eventually, death. Anti-leishmanial treatment is life-saving but non-response or relapse can occur. The pentavalent antimonials, sodium stibogluconate and meglumine antimoniate, despite their toxicity, have been the mainstay of VL treatment in many areas for decades. Alternatives include (liposomal) amphotericin B, paromomycin, and miltefosine. Combination therapy is the suggested way forward to increase treatment efficacy, prevent resistance, and reduce treatment duration and cost (van Griensven 2010). It is important that diagnostic tests for VL do not give false-negative results because VL may be fatal. Neither should they give false-positive results in order to prevent people without VL from receiving the toxic VL treatment.

As stated above, asymptomatic or subclinical infections also occur, and in cross-sectional surveys in endemic areas, a significant proportion of the healthy individuals present with anti-leishmanial antibodies. In longitudinal studies, the ratio between incident clinical cases and incident asymptomatic infections ranged from 1:5 in Kenya (Ho 1982) to 1:8 in Brazil (Evans 1992), 1:9 in Ethiopia (Hailu 2009), 1:8.9 in India and Nepal (Ostyn 2011), and 1:11 and 2:6:1 in Sudan (Zijlstra 1994). Furthermore, antibodies (seropositivity) in VL patients tend to persist for many years after cure (de Almeida 2006; Hailu 1990).

Index test(s)

Rapid diagnostic tests (RDTs) are defined as equipment-free diagnostic devices that do not require highly skilled laboratory staff. The results of an RDT can be read easily within minutes, or at most an hour or two (PATH 2008). Most RDTs work by capturing either an antigen or an antibody on a solid surface and then attaching molecules to them that allow detection by the naked eye. The technology used is mainly immunochromatography with a dipstick or lateral flow format. These immunochromatographic tests (ICTs) are used for VL diagnosis in dipstick or cassette format, using protein isolated from *Leishmania* sp as the antigen. The recombinant form of the 39 amino-acid-sequence from L. chagasi is the most widely used and is known as rK39. Other recombinant antigens such as rK9, rK16, rK26 and rK28 have also been evaluated. Currently, there are several on-going projects to develop a VL test based on antigen detection, for example, the latex agglutination test detecting a urinary leishmanial antigen.

The rK39 antigen was first used in an enzyme-linked immunosorbent assay (ELISA) format, but the newer dipstick or strip formats are increasingly being used in the field or away from the main centres. These rK39 ICTs give an immediate result (typically between 10 and 20 minutes) and give a binary reading (positive or negative). The test procedure involves adding the patient’s blood or serum with diluted buffer on the strip. When present in the blood or serum, specific antibodies against rK39 antigens, which are bound to the strip, can be read with the naked eye in the test window. There is a limited number of commercially available RDTs for VL, such as the IT-LEISH® (DiaMed AG, Switzerland – now Biorad, France), Kalazar Detect® (InBios International, USA), Onsite Leishmania Ab Rapid Test (CTK Biotech, USA) as well as a number of prototypes under various formats (Cunningham 2012).

rK39 ICTs cannot be used to diagnose VL in people with a past history of VL due to the persistence of antibodies after cure. In addition, to avoid diagnosis of asymptomatic infections, these tests must be applied in patients suspected to have VL, ie patients with prolonged fever and splenomegaly (WHO 2010).

Clinical pathway

Prior test(s)

The RDTs are meant to be used in patients with a clinical suspicion of VL without previous history of VL. According to the case definition proposed by the World Health Organization (WHO), VL is an illness with prolonged irregular fever, splenomegaly and weight loss as its main symptoms (WHO 2010).
Role of index test(s)

The RDTs were specifically developed for field use in VL-endemic areas. If they are sufficiently accurate, they could be used for the early diagnosis of VL at both peripheral and central levels. A positive RDT result would then confirm the diagnosis of VL in clinically suspected patients and allow the start of treatment (WHO 2010).

Alternative test(s)

A definite VL diagnosis is provided by the demonstration of the parasite through a microscopic visualization from spleen, bone marrow or lymph node aspirates. These invasive procedures are not always feasible in field settings, and using them is by no means free of risk: spleen aspirates are the most sensitive (93% to 99%) but the aspiration carries a rare but fatal risk of bleeding (Zijlstra 1992). Splenic aspiration should only be performed if there is rapid access to blood transfusion in case of bleeding and if there are no contraindications. Clinical contraindications include signs of active bleeding, jaundice, pregnancy, a barely palpable spleen and a bad general condition. Biological contraindications include severe anaemia, a prolonged prothrombin time and a low platelet count (WHO 2010). Bone marrow and lymph node aspiration are safer, but both have lower sensitivity (Sarker 2004; Babiker 2007). Parasitological confirmation through culture or molecular techniques such as a polymerase chain reaction (PCR) is possible, but their complexity restricts their use as a routine diagnosis method. In addition, in endemic areas, a substantial proportion of healthy individuals have parasite DNA in the blood, which is detected by PCR (Bhattarai 2009).

Serological tests based on indirect fluorescence antibody, ELISA and Western blot were developed but their use is limited in the first-line health services of endemic areas as they require a too sophisticated laboratory infrastructure. A more useful antibody detection test is the direct agglutination test (DAT), a semi-quantitative method based on visual agglutinations obtained by the increased dilution of blood or serum mixed with stained, killed parasites in V-shaped wells (Harith 1986). It has been extensively validated and used in the field. Nonetheless, it cannot be categorized as an RDT because it requires a degree of laboratory skills, facilities and equipment, and the result is ready only after overnight incubation (Boelaert 1999).

Rationale

Correctly diagnosing VL disease is crucial as the signs and symptoms of VL are not specific enough to differentiate the condition from chronic malaria, schistosomiasis or other systemic infections. VL should be suspected in patients presenting with fever and splenomegaly, but confirmation is needed. The classical method relying on microscopic smears from tissue aspirates (spleen, bone marrow, lymph node) are unsuitable for settings with limited resources. Other methods such as antibody detection are more feasible, most notably the DAT and the rK39 antigen-based ICT. Both have been specifically developed in the past two decades for use in such contexts and have shown high diagnostic accuracy in most endemic areas (Boelaert 2004; Chappuis 2006).

The major drawbacks of these serological methods are linked to the antibodies that remain detectable after a cure and those that are due to past or present asymptomatic infection present in a sizeable proportion of residents of endemic areas. The use of a clinical case definition and adequate medical history taking should help to avoid false positives, yet it underscores the need for better VL diagnosis tests that are specific to acute stage disease. Ideally, the test should be highly sensitive, as VL is potentially fatal, and it should also be specific, as presumptive treatment cannot be fully justified with the current treatment regimens (den Boer 2006).

The RDTs for VL, mainly but not exclusively the rK39-based ICTs, seem to be the current solution for field diagnosis in remote settings: their ease of use, convenience and cost make them potentially advantageous to increase patients’ access to VL diagnosis and treatment. The current WHO recommendation for VL case management includes the use of the rK39-based ICT as the basis for initiating treatment and it has also been adopted as the diagnostic tool in first-line services in the VL elimination initiative in the Indian subcontinent (WHO 2005). In other areas, the RDTs have been used as the first test in diagnosis-treatment algorithms that often incorporate other test(s), such as the DAT or tissue aspiration (Raguenaud 2007; Veeken 2003).

Despite its operational advantages, some regional variability in rK39-based ICT performance has been observed (Chappuis 2006). Other prototype tests have been proposed as RDTs, but their real value in clinical practice is unclear. Furthermore, in the published literature, many phase II studies (with a sub-optimal, case-control design) might overshadow the more limited information of better quality based on phase III studies (including consecutive patients suspected to have VL). Thus, it is of utmost importance to synthesize the available evidence in this rapidly evolving field. Knowing the diagnostic accuracy of these RDTs would help inform policy makers and stakeholders on how best to use them in VL control in diverse settings. The role of RDTs in the different epidemiological contexts could be better defined, giving clearer evidence on their accuracy, and this review aims to contribute to exactly this goal.

OBJECTIVES

To determine the diagnostic accuracy of rapid tests for the diagnosis of visceral leishmaniasis in patients with suspected disease presenting at health services in endemic areas.

Secondary objectives

Investigation of sources of heterogeneity
We investigated differences in diagnostic accuracy in relation to test conditions (index and reference: commercial brand of index test, type of reference standard), geographical region (the Indian subcontinent, eastern Africa, Latin America and the Mediterranean region), disease prevalence in the sample, and study quality.

METHODS

Criteria for considering studies for this review

Types of studies

Only original diagnostic accuracy studies of the phase III type (Zhou 2002) were included in the review, that is, prospective or retrospective cohort studies (meaning studies with patients who were consecutively enrolled, be it prospectively or retrospectively, and in which all patients were given the index test and reference standard), or studies that enrolled a random selection of patients from a series of patients. Randomized controlled trials in which
patients were randomized to one of several index tests and all received the reference test could also be included.

Participants

Patients with a clinical suspicion of VL, that is, those who are febrile for more than two weeks, and present with splenomegaly; according to the WHO case definition (WHO 2010) presenting at health services in endemic areas.

We excluded studies with participants:

- who were previously treated for VL (non-responders or relapsed cases); and
- who had signs and symptoms of other forms of leishmaniasis, such as post kala-azar dermal leishmaniasis (PKDL).

Studies in which only a subgroup of participants was eligible for the review were included if it was possible to extract relevant data specific to that subgroup.

Studies of patients with HIV or other co-infections were eligible for this review.

Index tests

All types of RDTs for VL, with results that are read out within one hour, regardless of the manufacturer. The RDTs could be assessed alone or in comparison with other tests.

Target conditions

The target condition was restricted to current clinical VL, and did not include asymptomatic leishmanial infection or VL in the past.

Reference standards

We accepted the following reference standards for the diagnosis of active VL (adapted from Boelaert 2007):

- reference standard including direct smears or culture of splenic aspirate;
- composite reference standard (Sullivan 2003) based on a combination of several tests. Test algorithms could include smears or culture of tissue aspirate, serology (other than the index test), or clinical arguments; and
- latent class analysis (LCA) (Zhou 2002) based on one or more of the following: smears or culture of tissue aspirates, serology (other than the index test), clinical response to antimonal treatment; or specific clinical signs (pancytopenia, darkened skin). To be selected, the studies had to assess the conditional independence assumption between the tests, and, if conditional dependence was expected, they had to use appropriate statistical methods (Dendukuri 2001). More information about LCA is given in Appendix 1.
Were consecutive patients enrolled retrospectively or prospectively?

If the study evaluated more than one RDT, how were tests allocated to individuals, or did each individual receive all tests?

Target condition
Leishmania species, clinical features.

Reference standard
The reference standard test(s) used.

Who performed the reference standard test(s) and where?

How many observers or repeats were used?

How were discrepancies between observers resolved?

If not all patients received the reference tests, how many did not (and what proportion were they of the total)?

If any participant received a different reference test, what reasons were stated for this, and how many participants were involved?

Index test
The commercial name, with batch number, if provided.

Transport and storage conditions.

Details of the test operators.

Index test results and reference standard results
Number of missing, not interpretable or doubtful results (for both index and reference tests).

For each index test (and for each acceptable reference standard, if more than one reference standard was reported), the number of true and false positives, false and true negatives (2 x 2 contingency table); or for studies that used LCA as the reference standard: estimates and 95% confidence intervals (CI) for the prevalence and for the sensitivity and specificity of each index test.

Notes
Anything else of relevance

Assessment of methodological quality
We first assessed the standard signalling questions of the QUADAS-2 tool (Whiting 2011) and decided to omit one question ("If a threshold was used, was it pre-specified?") and not to add any specific signalling questions for this review.

The QUADAS-2 tool comprises four domains: patient selection, index test, reference standard, and flow and timing. We considered that the risk of bias for a certain domain was low if all the signalling questions for that domain indicated a low risk of bias. If the answer to at least one signalling question for a certain domain was ‘no’, the risk of bias for that domain was considered to be high. If none of the answers was ‘no’, but the answer to at least one question was ‘unclear’, the risk of bias for that domain was considered to be unclear.

Two review authors (JVG and MB) then independently applied the tool to the included records. For each record, they assessed risk of bias and concerns about applicability. Several of the original studies included in this review were conducted by the review team. In order to ensure an objective assessment of all the included records, the judgements about eligibility, bias and applicability were entirely based on the published documents and not on unpublished background information. In addition, two of the three review authors who made the judgements about bias and applicability (JVG and KV) had not been involved in any of the original studies. In case of discrepant judgements, KV took the final decision.

Statistical analysis and data synthesis
The aim of the analysis was to estimate the diagnostic accuracy, that is, the sensitivity (Se) and specificity (Sp), of the index tests (RDTs for VL). We analysed each RDT separately and did not plan to make comparisons between different index tests.

The analysis was performed using R (R Development Team 2010) and WinBugs (Spiegelhalter 2003) because of these programs’ flexibility in model fitting, in line with recommendations in the Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy - Chapter 10 Analysing and Presenting Results (Macaskill 2010). More technical detail on the statistical methods can be found in Appendix 1 and Menten 2013.

1) Outcome data
The statistical analysis was based on summary data as provided in the source publications: either the number of true and false positive or negative test results compared to the reference test, or the Sensitivity (Se) and Specificity (Sp) of the index tests and 95% CI or credible intervals obtained from latent class analysis.
For those studies that reported data using several reference standards (Table 1), we extracted and summarized all 2 x 2 tables or Se and Sp estimates. The main analysis used a single 2 x 2 table or set of Se and Sp estimates for each study. The primary data for each study was selected based on a predefined ranking of reference standards: (1) latent class analysis, (2) parasitology and serology, (3) parasitology including spleen aspirate without serology, and (4) parasitology not including spleen aspirate without serology. The influence of the possible selection of alternative data sets was explored in sensitivity analyses.

2) Basic data presentation

The basic study results were summarized using coupled forest plots, presenting the crude Se and Sp estimates and 95% CIs as presented in the original publications. A summary receiver operating characteristic (ROC) plot was presented to assess the need for a ROC-based analysis rather than the bivariate logistic normal model, planned and described below.

3) Basic statistical model

The primary analysis was performed using the bivariate model with a hierarchical approach (Reitsma 2005). The bivariate, rather than a ROC-based, approach was chosen based on the prior experience of the author team in a VL diagnostic meta-analysis (Chappuis 2006), where no threshold effects were observed. In addition, the rapid tests report the results as positive or negative, which implies a common cut-off point for test positivity and which indicates, on prior grounds, that the bivariate model is the most appropriate. We determined the most appropriate link function for the bivariate model using the deviance information criterion (DIC, Verde 2010) and graphical assessment of model fit. Based on this analysis, we selected the complementary log-log (cloglog) function (see Appendix 1) as providing the best and most parsimonious fit to the data. All results are presented on the probability scale allowing direct comparison with results obtained using the logit link function.

For the studies estimating Se and Sp compared to a reference standard, at the lower level the cell counts in the 2 x 2 tables extracted from each study were modelled using binomial distributions (Macaskill 2010).

For the studies estimating Se and Sp through LCA, the cloglog transforms of the Se and Sp and their standard errors were derived from the estimates and CIs in the source publications. They were then entered in the lower level of the hierarchical model using the normal distribution.

The Se and Sp, irrespective of their source, were, in the higher level of the hierarchical model, presumed to come from the same bivariate normal, that is, the model proposed corresponds to a hybrid approach of the bivariate model of Reitsma (Reitsma 2005) and standard random effects meta-analyses (Whitehead 2002). This model was estimated using Markov Chain Monte Carlo (MCMC) methods as implemented with WinBugs with uniform [0,1] priors for the index test Se and Sp. The WinBugs code for the model can be found in Appendix 1.

4) Model summary

Results from the models were provided as point estimates of test Se and Sp and joint 95% CI and prediction regions. The confidence regions and prediction regions were plotted on the Se versus 1-Sp diagram (that is, the ROC space), together with the crude or model-based point estimates of Se and Sp, or both, for each study. In tables, we presented marginal CIs obtained from these confidence regions.

Investigations of heterogeneity

The amount of between-study heterogeneity was graphically assessed in coupled forest plots.

To explain the between-study variability, we assessed the following possible sources of heterogeneity:

- geographical area: Indian subcontinent, eastern Africa, Latin America, Mediterranean region (note: this is related to the Leishmania species diversity and distribution: L. donovani complex in Asia and eastern Africa, and L. infantum in the Mediterranean region and Latin America);
- commercial brand or type of test: categories determined based on extracted data;
- type of reference standard: (a) parasitology including spleen aspirate – no serology; (b) parasitology not including spleen aspirate – no serology; (c) parasitology and serology; (d) latent class analysis;
- disease prevalence (in the sample): below versus equal to or above the median (65%) across all studies; and
- quality assessment: a first indicator of quality was based on the QUADAS-2 assessment. Here, we used an overall, study-level assessment of the risk of bias. If the risk of bias in a study was low in all four QUADAS-2 domains, we defined the overall risk of bias in that study as ‘low’. If the risk of bias was high in at least one of the QUADAS-2 domains, we defined the overall risk of bias as ‘high’. In all other cases, the overall risk of bias was labelled ‘uncertain’. A second indicator of quality was the size of the study (below versus equal to or above median [250]), because in order to ensure reasonably precise estimates of sensitivity and specificity, investigators are expected to consider sample size issues during the planning of the study (Bachmann 2006; Peeling 2007). Larger studies may have been subjected to closer scrutiny and may have recruited a more representative sample of the clinical suspect population. Yet, the precision of Se and Sp estimates in original studies does not only depend on sample size, but also on disease prevalence (Deeks 2005).

We informally assessed the influence of these factors by presenting summary Sp and Se for subgroups of studies (categories of covariate). In a formal analysis, these sources were then individually added as fixed-effect predictors of Se and Sp in the statistical model described above. We assessed the estimates and 95% CI of the effects of each of the predictors on Se and Sp. If warranted by the results of these analyses and the amount of studies available, we planned to consider developing this model further using multiple predictors or assuming separate bivariate normal distributions in different subgroups of studies.

Sensitivity analyses

Analysis using secondary reference standards

As a sensitivity analysis to the choice of the set of estimates of a given study, we made an alternative selection of the reference standards: (1) latent class analysis, (2) parasitology and serology, (3) parasitology including spleen aspirate without serology, and (4) parasitology not including spleen aspirate without serology. The confidence intervals of the effects of each of the predictors on Se and Sp. If warranted by the results of these analyses and the amount of studies available, we planned to consider developing this model further using multiple predictors or assuming separate bivariate normal distributions in different subgroups of studies.

Rapid tests for the diagnosis of visceral leishmaniasis in patients with suspected disease (Review)

Copyright © 2014 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
standard for those studies presenting results for two reference standards (Table 1).

Analysis allowing for imperfect reference standards

The model described above estimated the Se and Sp by comparison to a reference standard presuming that this reference standard was perfect, that is, that its Se and Sp were both equal to 1. However, in VL, it can be expected that reference standards have less than perfect Se or Sp, or both.

To allow for possible imperfect reference standards, we used the following approach:

- during data extraction, each study was classified according to the type of reference standard: (a) parasitology including spleen aspirate – no serology; (b) parasitology not including spleen aspirate – no serology; (c) parasitology and serology; or (d) latent class analysis;
- for these reference standards, expert opinion for the Se and Sp was elicited from seven experts (three of the authors FC, MB and SR, and four from the WHO technical expert panel on leishmaniasis);
- the expert opinion on the reference test Se and Sp was then entered as priors, using the beta distribution, in an extension of the bivariate model described above as a Bayesian sensitivity analysis (Greenland 2006).

The bivariate model was extended using a multinomial distribution for the cell counts in the 2 x 2 tables, as in the latent class analysis of diagnostic tests (Black 2002). The Se and Sp of the index test were modelled through a bivariate normal distribution as in the basic model described above. The Se and Sp of the reference tests were assumed to be equal across studies using the same reference standard, with informative priors for the Se and Sp derived from expert opinion as described above. Prevalences were estimated for each study separately by providing a uniform [0,1] for the study-specific prevalences. Data from studies that performed LCA in the source publication were included as in the basic model, as they already allowed for uncertainty in the true disease status in the source publication. The model was fitted using MCMC methods. Care was taken in assessing the fit and identifiability of the model using posterior predictive checks (Gelman 1995). It could be expected that the model would remain identifiable through the use of informative priors on the Se and Sp of the reference test and the assumption that the Se and Sp of the index test across studies arose from the same normal bivariate distribution (Enoe 2000), but, if needed, further constraints on the model parameters could be added (for example, by constraining the Sp of some of the reference standards to 1).

The results from this model were compared with those obtained in the primary analysis, described above. We also contrasted the assumptions of our model against the assumption of perfect ascertainment underlying the primary analysis approach. The performance of the model was evaluated through simulation studies. Details are given in Appendix 1 and Menten 2013.

Assessment of structure of hierarchical model

We compared the primary results with those obtained using the standard logit link function for hierarchical model. In addition, we relaxed the assumption of normally distributed random-effects, by using the t-distribution instead of the normal distribution.

Assessment of reporting bias

It is well known that reporting or publication bias in studies of diagnostic test accuracy may be difficult to detect and that formal tests of funnel plot asymmetry are biased (Macaskill 2010). We did not formally test for publication bias but explored the relationship between the logit Se, logit Sp, and log diagnostic odds ratio and the effective sample size (Deeks 2005) using funnel plots. However, the presence or absence of funnel plot asymmetry was not interpreted as definite proof of the presence or absence of publication bias.

RESULTS

Results of the search

The date of the search was 3 December 2013. The search identified 1758 records, each record corresponding to a published article (Figure 1). After screening titles and abstracts, 1648 irrelevant records were removed. We were unable to obtain the full-text article of one record and excluded one other article because it was written in Chinese language and no translators were available. We retrieved the full text of one record and excluded another for the following reasons: publication of the same study in more than one record (we kept the record that was published most recently and excluded the others; n = 4); no original research (n = 6); index test not a rapid test (n = 1); target condition not clinical visceral leishmaniasis (n = 5); not a phase III diagnostic accuracy study (n = 66); and reference standard not according to criteria (n = 5; Figure 1 and Characteristics of excluded studies). The remaining 21 records were included in this review.
Figure 1. Study flow diagram showing the process of selection of records and studies for the review and for the meta-analyses

1768 records identified through database searching

- 1648 records removed after screening titles and abstracts
- 1 full-text article not obtained
- 1 article excluded because of language

87 full-text articles excluded:
- Publication of same findings in more than one record (n=4)
- Not original research articles (n=6)
- Index test is not a rapid test (n=1)
- Target condition not clinical VL (n=5)
- Not phase III diagnostic accuracy study (n=66)
- Reference standard not according to criteria (n=6)

108 full-text articles assessed for eligibility

21 records (24 studies) included in qualitative synthesis

- 18 studies included in meta-analysis of rK39 dipstick test
Several records reported multi-country, multicentre or stratified data. If a ‘study’ is defined as a phase III design leading to a sensitivity and specificity estimate of one or more RDTs in a specific patient population, then three of the 21 included records contained results of more than one unique study. One article described RDT performance in patient populations in five countries (Boelaert 2008, henceforth distinguished as Boelaert 2008 - Ethiopia; Boelaert 2008 - India; Boelaert 2008 - Kenya; Boelaert 2008 - Nepal; Boelaert 2008 - Sudan); Ter Horst et al. reported data separately for HIV-positive and HIV-negative patient populations (ter Horst 2009 - HIV neg; ter Horst 2009 - HIV pos); and Diro 2007 included data from clinically suspected patients presenting at the study site and from people identified through active case finding in the community. Furthermore, in one record, two different brands of the rK39 immunochromatographic test (ICT) were evaluated in the same population (Chappuis 2005 - DiaMed; Chappuis 2005 - InBios), and we treated this record as two different studies. On the other hand, three patient populations were presented in more than one record. Boelaert 2008 - Ethiopia re-analysed the same patient population data as Diro 2007, but using a different reference standard. Similarly, Boelaert 2008 - India described the same patient population as Sundar 2007 but again, analysed it with a different reference standard. This also occurred in Machado de Assis 2011 and Machado de Assis 2012. We have treated these records as one single study in each country with a primary and a secondary analysis (see below). Altogether, the 21 included records contained information about 25 unique studies.

We excluded the study based on active case finding (part of Diro 2007) from the review as it did not comply with the eligibility criteria of our protocol and, therefore, we finally included 24 studies. These 24 studies included 4271 participants of whom 2606 were classified as having VL. Four studies used a reference standard including direct smears or culture of splenic aspirate, or both, 11 used a composite reference standard, three used latent class analysis, and six presented two sets of accuracy estimates using two different reference standard categories (Table 1).

The 24 studies contained information about five index tests: the rK39 ICT, the latex agglutination test in urine, the FAST agglutination test, an rK26 ICT and an rKE16 ICT. Six studies assessed the accuracy of more than one index type of test in the same patient population: four studies evaluated the rK39 ICT and the latex agglutination test; one study evaluated the rK39 and the rKE16 ICT; and one study evaluated the rK39 ICT, the rK26 ICT, and the latex agglutination test (Sundar 2007). Overall, the rK39 ICT test was evaluated in 20 studies including a total of 3806 participants of whom 2370 had VL. The latex agglutination test was evaluated in seven studies, which corresponds to 1459 participants including 873 people with VL. The FAST agglutination screening test was evaluated in two studies with a total of 148 participants including 69 with VL. The rK26 ICT test was assessed in one study with 352 participants of whom 282 had VL, and the rKE16 test was evaluated in one study with 219 participants of whom 131 had VL.

For the meta-analysis of the accuracy of the rK39 ICT test, 18 out of 20 studies were included (Table 2). At this stage, we excluded two studies because they only described HIV-positive patients (ter Horst 2009 - HIV pos and Cota 2013). In all the other studies using the rK39 ICT test, the included patients were HIV negative or the HIV status was unknown but considered of no importance in the study population. Six out of the 18 included studies generated more than one set of sensitivity and specificity estimates by using different reference standards in a primary and a secondary analysis. We selected one of the two estimates for the primary meta-analysis and explored the effects of this choice in the sensitivity analysis (Table 1).

For the meta-analysis of the accuracy of the latex agglutination test, we included six studies (Table 2). We excluded one study because it described mostly HIV-positive patients (Vilaplana 2004).

The QUADAS-2 tool was used to assess the quality of the 21 included records in terms of the risk of bias and of concerns about applicability. Figure 2 summarizes the overall methodological quality and Figure 3 gives the ratings for each of the included records. In the domain of patient selection, we had high concerns about the risk of bias and the applicability of one record (Veeken 2003 - composite) because the inclusion of participants was conditional on the availability of stored serum samples and of diagnostic information from another serological test that could have correlated with the index test. In another record (Cota 2013), we had high concerns about the applicability to the review question because a considerable proportion of the study population (21%) had a previous history of VL. In the domains of the index test and the reference standard, the risk of bias was unclear for 14 of the 21 included records. The most frequent underlying reason was that the publication did not report whether the index test results were interpreted without knowledge of the reference standard and vice versa. We considered that there was a high risk of bias in those studies that used bone marrow aspirate smear tests and culture with or without clinical information as a reference standard due to the low sensitivity of these techniques (Kiliki 2008 and Cota 2013 - composite 2). In the domain of flow and timing, we considered that there was a high risk of bias in five records, because not all patients were included in the analysis (Rijal 2004; ter Horst 2009; Veeken...
2003; and Peruhype-Magalhaes 2012) or because not all patients received the same reference standard (Sundar 1998).

Figure 2. Risk of bias and applicability concerns graph: review authors' judgements about each domain presented as percentages across included studies Footnote Figure 2 represents studies but our quality assessment was done per record. Some of the records include more than one study. Figure 2 shows all the estimates used in this review, including the estimates for primary and sensitivity analyses of the same study.

Figure 3. Risk of bias and applicability concerns summary: review authors' judgements about each domain for each included study Footnote Figure 3 represents studies but our quality assessment was done per record. Some of the
records include more than one study. Figure 3 shows all the estimates used in this review, including the estimates for primary and sensitivity analyses of the same study.

Study	Risk of Bias	Applicability Concerns	
Patient Selection	Index Test	Reference Standard	Flow and Timing
Patient Selection	Index Test	Reference Standard	Flow and Timing
Boelaert 2004 - classic			
Boelaert 2004 - LCA			
Boelaert 2008 - Ethiopia			
Boelaert 2008 - India			
Boelaert 2008 - Kenya			
Boelaert 2008 - Nepal			
Boelaert 2008 - Sudan			
Chappuis 2003			
Chappuis 2005 - Diamed			
Chappuis 2005 - InBios			
Chappuis 2006b			
Cota 2013 - composite 1			
Cota 2013 - composite 2			
Dito 2007			
Haiku 2006			
Idia 2008			
Machado de Assis 2011			
Machado de Assis 2012			
Meui 2013			
Pereyra-Magalhaes 2012			
Rijal 2004			
Ritmeijer 2006			
Sundar 1998			
Sundar 2007			
ter Horst 2009 - HIV neg			
ter Horst 2009 - HIV pos			
Findings

rK39-based rapid diagnostic tests

Data summary

Twenty studies reported Se and Sp estimates for the rK39 ICT. Six of these studies gave two sets of Se and Sp estimates, based on alternative reference standards (Table 1). A forest plot of the 26 available Se/Sp estimates is given in Figure 4. Figure 5 presents the available Se/Sp pairs according to the reference standard used; the results referring to the same data analysed with different reference standards are connected with a line.

Figure 4. rK39 ICT: forest plot of all the available estimates of sensitivity and specificity (n = 20 studies; 26 sets of estimates)

Footnote

For studies that use latent class analysis, the counts of true positive, false positive, false negative and true negative results are imputed from the Se and Sp estimates and the overall sample size. The estimates and confidence intervals are subsequently calculated from these imputed values.
Figure 5. rK39 ICT: summary of sensitivity-specificity pairs according to the reference standard (n = 20 studies; 26 sets of estimates). The type of reference standard is classified as: (a) parasitology including spleen aspirate – no serology; (b) parasitology not including spleen aspirate – no serology; (c) parasitology and serology; or (d)
latent class analysis. The data points that are connected with a line refer to the same data analysed with different reference standards.
Meta-analysis

A formal meta-analysis was performed on 18 of the 26 available data points: studies including mainly HIV-infected patients were reported separately (ter Horst 2009 - HIV pos, Cota 2013 - composite 1 and Cota 2013 - composite 2) and for the five remaining studies with multiple Se and Sp estimates, we used one set of estimates for the primary analysis (Table 1). Combining data from all studies without accounting for possible covariates explaining heterogeneity and using the bivariate model (Reitsma 2005), the average (95% CI) Se was 91.9% (84.8 to 96.5) and the average Sp was 92.4% (85.6 to 96.8).

The 95% prediction interval (PI) for the diagnostic accuracy that would be observed in a new study was (52.3 to 100)% for the Se and (54.9 to 100)% for the Sp (Figure 6).

Figure 6. rK39 ICT: basic summary using the bivariate normal model with a complementary log-log link function. This analysis combines data from all studies without accounting for covariates. The average sensitivity is 91.9% (95% confidence interval: 84.8, to 96.5) and the average specificity is 92.4% (95% confidence interval: 85.6, to 96.8). The confidence region is indicated with a full line, the prediction region with a dotted line.

Of note is the fact that, in contrast to what is presumed in the HROC model, the estimated correlation between the transformed Se and Sp was positive: 0.16 (95% CI: -0.40 to 0.65). Given these
observations, we only report results from the bivariate model using the complementary log-log, and not from the ROC-based analysis.

Assessment of heterogeneity

A summary of the heterogeneity assessment through meta-analysis can be found in Figure 7 and Table 3.

Figure 7. rK39 ICT; summary of the heterogeneity assessment through meta-analysis: sensitivity and specificity estimates by covariates. Rectangles indicate significant differences.

![Figure 7](image)

Geographic region

We assessed the difference in diagnostic accuracy effect between East Africa and the Indian subcontinent. There were nine data points from East Africa (two from Ethiopia, two from Kenya, three from Sudan, and two from Uganda), and six from the Indian subcontinent (two from India and four from Nepal). Three studies from other regions (two from Brazil and one from Turkey) were not considered in this analysis. The Se was significantly lower in East Africa (85.3%; 95% CI: 74.5 to 93.2) than in the Indian subcontinent (97.0%; 95% CI: 90.0 to 99.5). There was no significant difference in Sp: the Sp (95% CI) in east Africa was 91.1% (80.3 to 97.3) and in the Indian subcontinent 90.2% (76.1 to 97.7) (Summary of findings 1 and Summary of findings 2). Confidence and prediction regions by geographic region are given in Figure 8.
Figure 8. rK39 ICT: summary of the meta-regression model with effects for geographic region using the bivariate normal model with a complementary log-log link function. The sensitivity was significantly lower in East Africa (85.3%; 95% confidence interval: 74.5 to 93.2) than in the Indian subcontinent (97.0%; 95% confidence interval: 90.0 to 99.5). There was no significant difference in specificity: the specificity (95% confidence interval) in East Africa was 91.1% (80.3 to 97.3) and in the Indian subcontinent 90.2% (76.1 to 97.7). The confidence region is indicated with a full line, the prediction region with a dotted line.

Commercial brand or type of test
The majority of studies used the InBios rK39 ICT test (11 studies); four assessed the DiaMed rK39 ICT test; and three evaluated other tests (DiaMed DUAL-IT L/M ICT test, Amrad ICT rK39 ICT test, and Arista Biologicals rK39 ICT test). There were no significant differences in diagnostic accuracy between commercial brands.

Disease prevalence
We separated studies by estimated prevalence of VL in the study sample: nine studies reported prevalence rates < 65% and nine reported prevalence rates ≥ 65%. There were no significant differences in diagnostic accuracy between studies with low and high prior probability of disease in the patient sample.
Quality assessment

We used study size and risk of bias according to QUADAS-2 as indicators of the quality of the primary studies.

Study size

We categorized studies according to the total number of study participants (true cases + non-cases) in small (< 250) and large (≥ 250) studies. There were 10 small and eight large studies. There were no significant differences in diagnostic accuracy between small and large studies, but there was a trend for larger studies to show a higher Sp estimate.

QUADAS-2: risk of bias

Studies were categorized according to the risk of bias assessed with QUADAS-2: low risk (three studies), high risk (four studies), and unclear risk of bias (11 studies). There were no significant differences among these categories, but there was a trend for studies with high risk of bias to show a low Se and studies with low risk of bias to show a higher Sp.

Type of reference standard

Studies were categorized according to the reference standard used in the primary publication. There were no significant differences in accuracy among these categories. Further exploration of the influence of the reference standard is assessed in the sensitivity analysis below.

Diagnostic accuracy in HIV-positive participants

Two studies evaluated the rK39 ICT in HIV-positive participants and were not included in the meta-analysis.

The first study reported on the accuracy of the DiaMed rK39 ICT in 71 HIV-positive participants in Ethiopia (ter Horst 2009 - HIV pos). Based on a composite reference standard that combined direct parasitological examination of spleen aspirate with DAT serology, 65 participants had a diagnosis of VL. In this setting, the sensitivity of the rK39 ICT was 64.6% and the specificity 66.7%.

The second study evaluated the InBios rK39 ICT in 113 HIV-infected people in Brazil. Data were extracted according to two different reference standards: (1) the decision of an adjudication committee after clinical follow-up and taking into account all available information (including parasitology and serology) (Cota 2013 - composite 1; VL prevalence: 40.7%); and (2) direct smear and culture of bone marrow aspirate (Cota 2013 - composite 2; VL prevalence: 36.5%). The choice of the reference standard was of little influence. The Se of the rK39 ICT was low: 45.7% with the first and 46.3% with the second reference standard; and the Sp was high: 97.0% with the first and 97.1% with the second reference standard.

Sensitivity analyses

We performed sensitivity analyses of the influence of the choice of reference standard and possible biases resulting from imperfect reference standards. Given the impact of geographic region on the diagnostic accuracy of rK39 ICT, we corrected the sensitivity analyses for region effects and limited the analyses to 15 studies performed in the Indian subcontinent and East Africa. An overview of the results of the sensitivity analyses is given in Table 4.

Analysis using secondary reference standards

As a sensitivity analysis to the choice of the set of estimates of a given study, we made an alternative selection of the reference standard for those studies presenting results for two reference standards (Table 1). The estimated Sp was slightly lower compared to the main analysis set: 86.7% versus 90.2% for the Indian subcontinent and 90.1% versus 91.1% for east Africa. This may be related to a lower Se of the reference standards included in this analysis, which would result in an underestimation of the Sp of the index test. Estimated Se was similar in the sensitivity and main analysis.

Analysis allowing for imperfect reference standards

In the studies available for this sensitivity analysis, two types of reference standards were used: parasitology including spleen aspirate – no serology; (three studies) and a combined reference standard of parasitology and serology (six studies), in addition to the six studies analysed using latent class analysis. We elicited the opinion from seven VL experts on the diagnostic accuracy and possible variation across the two reference standards (Figure 9). We used these expert opinions as prior information in a Bayesian statistical model to estimate the diagnostic accuracy of the rK39 ICT. This analysis indicated that due to lack of sensitivity of the reference standard, the Sp of rK39 ICT may be somewhat underestimated. The estimated Sp correcting for this bias was 93.7% in the Indian subcontinent, and 95.7% in east Africa, compared to 90.2% and 91.1% assuming perfect reference standards. The estimates of Se did not change significantly when we corrected for imperfect reference standards. In this model, the Se of spleen aspirate was estimated to be 96.0% (95% CI: 92.5 to 98.8) and the Sp was estimated to be 99.4% (95% CI: 98.1 to 99.9). The estimated Se of the combined reference standard of spleen parasitology and a serological test was estimated to be 98.6% (95% CI: 97.1 to 99.4) and the estimated Sp was 96.5% (95% CI: 91.5 to 99.2).
Similar results were obtained when we used non-informative priors instead of expert opinion to estimate the Bayesian model.

Assessment of structure of hierarchical model

Using the more standard logit link, in comparison to the better fitting complementary log-log link increased the DIC from 171.3 to 199.0. The logit link resulted in similar estimates of Se and Sp: the average (95% CI) Se was 91.9% (83.6 to 96.2) and the average Sp was 92.4% (84.9 to 96.3). However, the remaining heterogeneity was considerably larger resulting in wider prediction regions: 28.3 to 99.7% for Se and 31.1 to 99.7% for Sp (Figure 10) compared to the primary analysis.
Figure 10. rK39 ICT: basic model summary using the bivariate logistic normal model. This analysis combines data from all studies without accounting for covariates. The average sensitivity is 91.9% (95% confidence interval: 83.6, to 96.2) and the average specificity is 92.4% (95% confidence interval: 84.9, to 96.3). The confidence region is indicated with a full line, the prediction region with a dotted line. In this analysis, the prediction intervals are wide: 28.3 to 99.7% for the sensitivity and 31.1 to 99.7% for the specificity.

Using a bivariate t-distribution for the random-effects did not improve model fit compared to the normal model.

Assessment of reporting bias

Reporting bias was assessed through the robust funnel plot proposed by Deeks 2005. This robust funnel plot presents the log of the diagnostic odds ratio by a robust measure of the study size. No indication of reporting bias was observed in this plot (Figure 11).
Data summary

Seven studies were identified that reported Se or Sp results of the latex agglutination test in urine (KAtex). For two of these studies, two sets of Se and Sp estimates were available. A forest plot of the nine available Se/Sp estimates is given in Figure 12.
Figure 12. Latex agglutination test: forest plot of all the available estimates of sensitivity and specificity (n = 7 studies; 9 sets of estimates).

Study	TP	FP	FN	TN	Country	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Boelaert 2008 - Ethiopia	14	5	8	10	Ethiopia	0.70 [0.46, 0.88]	0.67 [0.38, 0.88]		
Boelaert 2008 - India	185	95	83	105	India	0.66 [0.60, 0.72]	0.68 [0.78, 0.84]		
Boelaert 2008 - Kenya	159	55	29	105	Kenya	0.84 [0.78, 0.89]	0.88 [0.80, 0.93]		
Boelaert 2008 - Nepal	40	1	72	45	Nepal	0.38 [0.27, 0.45]	0.60 [0.80, 1.00]		
Boelaert 2008 - Sudan	79	3	29	180	Sudan	0.73 [0.65, 0.81]	0.98 [0.95, 1.00]		
Diro 2007	17	5	6	19	Ethiopia	0.74 [0.62, 0.90]	0.64 [0.35, 0.97]		
Ricai 2004	74	4	81	76	Nepal	0.48 [0.40, 0.56]	0.93 [0.93, 1.00]		
Sundar 2007	199	8	93	82	India	0.67 [0.61, 0.72]	0.89 [0.78, 0.95]		
Vilaplana 2004	12	3	0	70	Spain	1.00 [0.74, 1.00]	0.66 [0.88, 0.99]		

Meta-analysis

One study was not pooled with the others in the formal meta-analysis because, contrary to the other studies, this study included a majority of HIV-positive participants (Vilaplana 2004). For the two studies that presented Se/Sp estimates using LCA and a reference standard on the same data (Boelaert 2008 - Ethiopia and Diro 2007, Boelaert 2008 - India and Sundar 2007), the results from the two analysis approaches were very similar. We used the results from LCA for the primary meta-analysis.

Combining data from six studies without accounting for possible covariates explaining heterogeneity, and using the bivariate normal model with complementary log-log link, the average (95% CI) Se was 63.6% (40.9 to 85.6) and the average Sp was 92.9% (76.7 to 99.2) (Figure 13 and Summary of findings 3). The 95% prediction intervals were very wide: (16.5 to 99.6)% for the Se and (41.3 to 100)% for the Sp (Figure 13). The estimated correlation between the transformed Se and Sp was -0.39 (95% CI: -0.90 to 0.70).
Figure 13. Latex agglutination test: basic summary using the bivariate normal model with a complementary log-log link function. This analysis combines data from all studies without accounting for covariates. The average sensitivity (95% confidence interval) is 63.6% (40.9 to 85.6) and the average specificity is 92.9% (76.7 to 99.2). The confidence region is indicated with a full line, the prediction region with a dotted line. The 95% prediction intervals are very wide: 16.5% to 99.6% for the sensitivity and 41.3% to 100% for the specificity.

Assessment of heterogeneity

Of the predefined sources of heterogeneity, geographic region, disease prevalence, and study size showed sufficient variability across studies to warrant a meta-regression. All studies used the KAtex latex agglutination test manufactured by Kalon biological. Five of the six studies had an unclear risk of bias. All studies in east Africa reported prevalences of VL < 65% and all studies in the Indian subcontinent reported prevalences ≥ 65%. Consequently, the effects of region and disease prevalence in the sample could not be separated. There were no significant differences in diagnostic accuracy of the latex agglutination test among regions or study sizes (Figure 14 and Table 5).
Figure 14. Latex agglutination test; summary of the heterogeneity assessment through meta-analysis: sensitivity and specificity estimates by covariates.

Sensitivity analysis
As a sensitivity analysis to the choice of the set of estimates of a given study, we made an alternative selection of the reference standard for those studies presenting results for two reference standards. The results were very similar to the primary analysis: the average (95% CI) Se was 63.4% (40.8 to 85.4) and the average Sp was 92.8% (76.3 to 99.2) (Table 6).

Diagnostic accuracy in HIV-positive participants
One study assessed the accuracy of the latex agglutination test in a population of 85 mostly HIV-positive participants (93%) in Spain (Vilaplana 2004). According to a reference standard based on culture or direct parasitological examination of bone marrow aspirate, 12 participants were classified as having VL. The estimated Se and Sp of the KAtex test were very high: the Se was 100% (12/12; 95% CI: 74 to 100) and the Sp was 96% (70/73; 95% CI: 88 to 99).

FAST
Two studies assessed the accuracy of the Fast agglutination screening test (FAST), one in Ethiopia (Hailu 2006) and one in Turkey (Kilic 2008). Both studies were small (89 participants in Ethiopia and 59 in Turkey). The prevalence of VL in the study population was 51% in Ethiopia and 41% in Turkey. The reference standard was the culture or direct parasitological examination of spleen or lymph node samples (Ethiopia) or of bone marrow samples (Turkey). In Ethiopia, the estimated Se of FAST was 91.1% and the Sp 70.5%. In Turkey, the estimated Se was 95.8% and the Sp 85.7%.

rK26-based rapid diagnostic test
One study assessed the accuracy of an rK26-based rapid diagnostic test manufactured by InBios International (Seattle, Washington, USA) in a population of 352 patients with suspected VL in India (Sundar 2007). According to a reference standard combining direct parasitological examination of spleen aspirate with DAT serology and response to VL treatment, 282 participants had a diagnosis of VL. The sensitivity of the rK26 ICT was 21.3% and the specificity 100%.

rKE16 immunochromatographic test
One study evaluated an rKE16-based ICT (Signal KA, Span Diagnostics, India) in Kenya (Mbui 2013). This study included 219 patients suspected to have VL. Based on a reference standard consisting of direct smear examination of a splenic aspirate sample, 131 participants were classified as having VL. The Se of the rKE16 ICT was 77.1% and the Sp 95.5%.

DISCUSSION
Summary of main results
The rK39 ICT, developed in 1998, is the rapid diagnostic test for VL that has been most thoroughly evaluated so far. We retrieved 21 publications that corresponded to our inclusion criteria for the review, and from these, ultimately 18 independent sets of sensitivity (Se) and specificity (Sp) estimates could be included in a formal meta-analysis of diagnostic accuracy of the rK39 ICT. In patients with febrile splenomegaly and no previous history of VL, the overall sensitivity of the rK39 ICT was 91.9% (95% CI 84.8 to 96.5) and the specificity 92.4% (95% CI 85.6 to 96.8). Sensitivity was significantly lower in East Africa (84.3%; 95% CI 74.5 to 93.2) than in the Indian subcontinent (97.0%; 95% CI 90.0 to 99.5), but there was no significant difference in specificity between geographic regions (Summary of findings 1, Summary of findings 2, and Appendix 3). This assessment of heterogeneity did not include the Latin American and Mediterranean region as the number of studies from those regions was too low. There was no significant difference according to prevalence of disease in the sample or manufacturer of the rK39 ICT, but the number of estimates in some categories of the latter was low (11/18 InBios, 4/18 DiaMed, and 3/18 other brands). Generally, care should be taken when interpreting this heterogeneity assessment due to the limited number of studies included in the meta-analysis. Apart from the lack of power, several
risk factors may be correlated inducing confounding between different covariates.

For the KATex test, a latex agglutination test in urine, when used in a clinical setting in patients with febrile splenomegaly, overall sensitivity was 63.6% (95% CI 40.9 to 85.6) and specificity 92.9% (95% CI 76.7 to 99.2) (Summary of findings 3). Seven studies were included in the review and six in the meta-analysis. Because of the limited number of estimates, no complete heterogeneity assessment could be made. There were no significant differences in diagnostic accuracy of the KATex test among regions or study sizes, but the number of included studies was too small to allow for definite conclusions.

The number of studies addressing three other rapid diagnostic tests (FAST, rK26 ICT, and rKE16 ICT) was too low to allow for a meta-analysis. Our conclusions do not apply to HIV-positive patients. In summary, completeness of evidence was most satisfactory for the rK39 ICT, only partially complete for the latex agglutination test in urine, and too incomplete for the other three tests.

The methodological quality of the evidence on the rK39 ICT and the latex agglutination test was acceptable, although we had concerns about the risk of bias in some studies (see below).

Strengths and weaknesses of the review

Our review protocol explicitly set out to select clinical evaluations in a phase III design, based on consecutively recruited patients all suspect for VL, as this type of evidence level is required for making policy recommendations for clinical practice. Therefore, we had to exclude many records using a phase II (case control) design. However, in some records, the study design was not clearly reported, which made it difficult to distinguish between a phase III and a case control design. Because of this poor reporting, we may have missed some true phase III studies.

We believe that the procedures used for study selection were quite exhaustive, as we did not impose any a priori language barriers (excluding only one study in Chinese ex-post), and we searched several databases including regional ones such as LILACS. Therefore, we believe that the information presented here reflects the body of evidence accumulating over the past 15 years rather well. In addition, assessment of possible publication bias did not indicate that smaller studies without favourable results for the RDTs were less likely to be reported.

Most important was the striking heterogeneity in methods across the studies. Although the included studies all complied with the criteria for an acceptable reference standard set out in our protocol, there was a remarkable variety in the reference standards that were used. These reference standards were based on different tests, done in different orders, with different cut-off values, and making different use of clinical information. We formally assessed the risk of bias in each record using the revised QUADAS-2 instrument. In five out of the 21 included records, we had clear concerns related to the patient and sample flow and the timing. For 14 records, the risk of bias was difficult to assess in the domains of the index test and the reference standard mainly because authors failed to report explicitly if and how blinding was applied. When we categorized records into low (n = 3), unclear (n = 11), and high (n = 7) risk of bias, there was no significant difference in Se and Sp of the rK39 ICT, but high-risk studies tended to have a higher sensitivity and a lower specificity. One possible explanation is that the reference standards in studies classified as at high risk of bias were of sub-optimal sensitivity. This could result in a selection of cases being primarily severe cases which may be easy to diagnose with rapid diagnostic tests, while the control group may contain some undiagnosed true VL cases (falsey negative in the reference standard).

We tried to assess the influence of this quality in study design on the estimates of accuracy in a sensitivity analysis in the case of the rK39 ICT. Neither the accuracy of a secondary analysis set that was based on a different reference standard, nor an analysis allowing for an imperfect reference standard affected the main conclusions of the meta-analysis on the rK39 ICT, although the secondary analysis using an alternative reference standard in five studies tended to give a lower specificity estimate. This may be related to a lower Se of the reference standards included in this analysis, which would result in an underestimation of the Sp of the index test.

Finally, the findings seemed sufficiently homogeneous to allow for a meaningful summary estimate for the specificity of rK39 ICT as well as the Se and Sp of the latex agglutination test in urine. However, the sensitivity of rK39 ICT varied according to geographic region, and seems substantially lower in East Africa than in the Indian subcontinent. This finding is in line with an earlier meta-analysis conducted by our team (Chappuis 2006) and with a multi-country study conducted by WHO/TDR (data not included) (Cunningham 2012). Several hypotheses have been raised to explain this lower sensitivity in East Africa: a lower level of circulating antibodies, different age group, or parasitological differences (Bhattacharyya 2013; Harhay 2011).

Applicability of findings to the review question

Our review focused on clinical studies (phase III) of diagnostic accuracy, recruiting participants representative for the spectrum of patients encountered in clinical practice in whom a rapid diagnostic test for VL would be warranted. In summary, those patients would be in line with the WHO case definition and defined as “patients with a clinical suspicion of VL, that is, those who are febrile for more than two weeks and have splenomegaly, presenting at health services in endemic areas.” (Source: protocol). Patients who were previously treated for VL (non-responders or relapsed cases), and those who had signs and symptoms of other forms of leishmaniasis, such as post kala-azar dermal leishmaniasis (PKDL) were excluded. All clinical studies included in the review clearly corresponded with these inclusion criteria. Nevertheless, the settings of these clinical studies varied: some were conducted in tertiary care centres, and some in smaller hospitals of an intermediary level. Few studies recruited patients at the first-contact point, the most peripheral level of the health service, ie health centres or health posts. Although the level of health service leads to variable prior probability of disease in the study sample, and as such is of influence in diagnostic accuracy studies, we believe that our findings are applicable across the several levels of the health system as an analysis of heterogeneity according to disease prevalence did not reveal any difference in the Se or Sp estimates.

Our review does not apply to HIV-positive patients, and caution should be taken in areas with high HIV-prevalence. Because HIV-status is known to influence diagnostic accuracy (ter Horst 2009 - HIV neg; ter Horst 2009 - HIV pos; Alvar 2008), we originally intended to analyse the accuracy of the RDTs in HIV-positive and...
HIV-negative patients separately. Unfortunately, the number of included studies of HIV-positive people was too low (n = 3) for a separate analysis or a comparison. Furthermore, the information from the Mediterranean region and from Latin America was too limited to draw robust conclusions. Finally, it was not possible to precisely evaluate the importance of the type of sample (serum, plasma or blood; fresh or frozen urine) or the manufacturer or version of a certain test, because these parameters did not vary enough among the included studies. In particular, Cunningham et al. pointed to important variations of sensitivity in a head-to-head comparison of five brands of RDT where two tests based on rK16 antigen performed substantially less well in east Africa and Brazil (Cunningham 2012).

In summary, we conclude that for current practice of VL control, there is one rapid diagnostic test, the rK39 ICT, which has been sufficiently evaluated, showing high sensitivity and specificity on average, but with a notably lower sensitivity in east Africa compared to the Indian subcontinent. In the Indian subcontinent, the rK39 ICT clearly complies with the normative requirements put forward before, of a sensitivity above 95% and a specificity above 90% (Boelaert 2007). In east Africa, the sensitivity of the rK39 ICT does not comply with these criteria, and can therefore not be used as a stand-alone test to reliably rule out VL in a patient who is suspected to have VL. This does not mean that the use of an rK39 ICT is precluded, but it should be embedded in a test algorithm with a clear instruction on what to do in case of a negative rK39 ICT (second test, referral, come back after two weeks for repeat testing or other).

For the latex agglutination test, although there were only six studies included in the meta-analysis, we can conclude that the low sensitivity makes it unsuitable for use in current clinical practice, though it does not preclude that its performance could be further improved in the future.

No recommendations can be made concerning the FAST test, the rK26 ICT or the rKE16 ICT because of paucity of evidence.

A U T H O R S’ C O N C L U S I O N S

Implications for practice

The rK39 ICT can be clearly recommended as a rapid diagnostic test for use in clinical care in the Indian subcontinent in patients with febrile splenomegaly and no previous history of VL.

In east Africa, the rK39 ICT can replace the DAT and other diagnostic tests as the basis for the therapeutic decision in patients suspected to have VL. However, because of the low sensitivity of the rK39 ICT, a negative test result does not rule out VL. Therefore, additional actions are needed in case of a negative result (eg second or different test, referral, coming back after two weeks for repeat testing or other). Too little evidence has accrued so far from other regions to make specific recommendations.

It is important to remember that this antibody-based test has to be used in combination with a clinical case definition (fever of more than two weeks, splenomegaly and no previous history of VL) that needs to be strictly adhered to.

The sensitivity of the KAtex latex agglutination test in urine is too low to recommend it for standard practice guidelines for detection of VL in similar settings.

Implications for research

Although this review yielded solid evidence for recommending the rK39 ICT for clinical practice in the Indian subcontinent and East Africa, it would be helpful to conduct in the future more head-to-head comparisons of available tests by region and by test format, as was done by Cunningham et al. (Cunningham 2012), on a regular basis, as this would inform policy makers for their purchasing policies and quality assurance.

Several rapid diagnostic tests such as the latex agglutination test and the FAST should be further developed and evaluated before any recommendation on wide-scale use can be made. Furthermore, better tests are needed, ie tests that are more specific for the acute stage of disease and more sensitive in all geographic regions, especially east Africa.

Last but not least, phase III clinical prospective studies are an essential element in the research and development process of a diagnostic device because they provide the basis for clinical guidelines. More studies of this type are needed, although in the case of VL, they are more complex in terms of reference standards. In addition, further standardization of evaluation methodology and a broader awareness of the QUADAS-2 and STARD criteria by investigators would be beneficial for the quality of future evidence in this field.

A C K N O W L E D G E M E N T S

We thank Anne-Marie Trooskens from the Institute of Tropical Medicine in Antwerp for expert administrative support and Vittoria Lutje, Information Specialist of the Cochrane Infectious Diseases Group for the literature searches.

The editorial base of the Cochrane Infectious Diseases Group (CIDG) is funded by UKaid from the UK Government for the benefit of low-and middle-income countries.
Chappuis 2005 - DiaMed (published data only)
Chappuis F, Mueller Y, Nguimfack A, Rwakimari JB, Couffignal S, Boelaert M, et al. Diagnostic accuracy of two rk39 antigen-based dipsticks and the formal gel test for rapid diagnosis of visceral leishmaniasis in northeastern Uganda. *Journal of Clinical Microbiology* 2005;43(12):5973-7.

Chappuis 2006b (published data only)
Chappuis F, Rijal S, Jha UK, Desjeux P, Karki BM, Koirala S, et al. Field validity, reproducibility and feasibility of diagnostic tests for visceral leishmaniasis in rural Nepal. *Tropical Medicine & International Health : TM & IH* 2006;11(1):31-40.

Cota 2013 - composite 1 (published data only)
Cota GF, de Sousa MR, de Freitas Nogueira BM, Gomes LI, Oliveira E, Assis TS, et al. Comparison of parasitological, serological, and molecular tests for visceral leishmaniasis in HIV-infected patients: a cross-sectional delayed-type study. *American Journal of Tropical Medicine and Hygiene* 2013;89:570-7.

Cota 2013 - composite 2 (published data only)
Cota GF, de Sousa MR, de Freitas Nogueira BM, Gomes LI, Oliveira E, Assis TS, et al. Comparison of parasitological, serological, and molecular tests for visceral leishmaniasis in HIV-infected patients: a cross-sectional delayed-type study. *American Journal of Tropical Medicine and Hygiene* 2013;89:570-7.

Diro 2007 (published data only)
Diro E, Techan T, Tefera T, Assessa Y, Kebede T, Genetu A, et al. Field evaluation of FD-DAT, rk39 dipstick and KATEX (urine latex agglutination) for diagnosis of visceral leishmaniasis in northwest Ethiopia. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 2007;101(9):908-14.

Hailu 2006 (published data only)
Hailu A, Schoone GJ, Diro E, Tesfaye A, Tchene Y, Tefera T, et al. Field evaluation of a fast anti-Leishmania antibody detection assay in Ethiopia. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 2006;100(1):48-52.

Kilic 2008 (published data only)
Kilic S, Taylan Ozkan A, Babur C, Tanir G, Schallig H. Evaluation of serological tests for the diagnosis of visceral leishmaniasis [Visseral Leishmaniasis Tan›s›nda Serolojik Testlerin De¤erlendirilmesi]. *Turkish Journal of MedicalSciences* 2008;38(1):13-9.

Machado de Assis 2011 (published data only)
de Assis TS, Braga AS, Pedras MJ, Oliveira E, Barral A, de Siqueira IC, et al. Multi-centric prospective evaluation of rk39 rapid test and direct agglutination test for the diagnosis of visceral leishmaniasis in Brazil. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 2011;105(2):81-5.
References to studies excluded from this review

Abeijon 2013 (published data only)
Abeijon C, Campos-Neto A. Potential non-invasive urine-based antigen (protein) detection assay to diagnose active visceral leishmaniasis. PLoS Neglected Tropical Diseases 2013;7:e2161.

Ahsan 2010 (published data only)
Ahsan MM, Islam MN, Mollah AH, Hoque MA, Hossain MA, Begum Z, et al. Evaluation of latex agglutination test (KAtex) for early diagnosis of kala-azar. Mymensingh Medical Journal 2010;19(3):335-9.

Akhoundi 2010 (published data only)
Akhoundi B, Mohebali M, Babakhan L, Edrissian GH, Eslami MB, Keshavarz H, et al. Rapid detection of human Leishmania infantum infection: a comparative field study using the fast agglutination screening test and the direct agglutination test. Travel Medicine and Infectious Disease 2010;8(5):305-10.

Alam 2008 (published data only)
Alam M, Shamsuzzaman A, Musa A, Khan A, Mahmud M, Hossain M, et al. Antigen detection from urine of Kala-azar cases by latex agglutination test. Mymensingh Medical Journal 2008;17(1):22-7.

Alborzi 2006 (published data only)
Alborzi A, Rasouli M, Nademi Z, Kadivar MR, Pourrabbas B. Evaluation of rK39 strip test for the diagnosis of visceral leishmaniasis in infants. Eastern Mediterranean Health Journal = La revue de sante de la Mediterranee orientale = al-Majallah al-sihhiyah li-sharq al-mutawassit 2006;12(3-4):294-9.

Al-Nahhas 2003 (published data only)
Al-Nahhas S, Shabaan M, Hammoud L, Al-Taweel A, Al-Jorf S. Visceral leishmaniasis in the Syrian Arab Republic: early detection using rK39. Eastern Mediterranean Health Journal = La revue de sante de la Mediterranee orientale = al-Majallah al-sihhiyah li-sharq al-mutawassit 2003;9(4):856-62.
Al-Nahhas 2008 (published data only)
Al-Nahhas SA, Al-Taweel AA, Al-Taweel MA. Assessment of the direct agglutination test, fast agglutination screening test, and rK39 dipstick test for the sero-diagnosis of visceral leishmaniasis in Syria. *Saudi Medical Journal* 2008;29(9):1250-4.

Amato 2009 (published data only)
Amato Neto V, Amato VS, Tuon FF, Gakiya E, de Marchi CR, de Souza RM, et al. False-positive results of a rapid K39-based strip test and Chagas disease. *International Journal of Infectious Diseases : IJID : official publication of the International Society for Infectious Diseases* 2009;13(2):182-5.

Arya 1997 (published data only)
Arya SC. Latex agglutination test for visceral leishmaniasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 1997; Vol. 91, issue 3:366.

Arya 2001 (published data only)
Arya SC. Field performance of the direct agglutination test and the K39 dipstick test to diagnose visceral leishmaniasis. American Journal of Tropical Medicine and Hygiene 2001; Vol. 65, issue 5:403-4.

Attar 2001 (published data only)
Attar ZJ, Chance ML, el-Safi S, Carney J, Azazy A, El-Hadi M, et al. Latex agglutination test for the detection of urinary antigens in visceral leishmaniasis. *Acta Tropica* 2001;78(1):11-6.

Azazy 2004 (published data only)
Azazy AA. Detection of circulating antigens in sera from visceral leishmaniasis patients using dot-ELISA. *Journal of the Egyptian Society of Parasitology* 2004;34(1):35-43. [PUBMED: 15125515]

Bagchi 1998 (published data only)
Bagchi AK, Tiwari S, Gupta S, Katiyar JC. The latex agglutination test: standardization and comparison with direct agglutination and dot-ELISA in the diagnosis of visceral leishmaniasis in India. *Annals of Tropical Medicine and Parasitology* 1998;92(2):159-63.

Bern 2000 (published data only)
Bern C, Jha SN, Joshi AB, Thakur GD, Bista MB. Use of the recombinant K39 dipstick test and the direct agglutination test in a setting endemic for visceral leishmaniasis in Nepal. *American Journal of Tropical Medicine and Hygiene* 2000;63(3-4):153-7.

Brandonisio 2002 (published data only)
Brandonisio O, Fumaraola L, Maggi P, Cavaliere R, Spinelli R, Pastore G. Evaluation of a rapid immunochromatographic test for serodiagnosis of visceral leishmaniasis. *European Journal of Clinical Microbiology & Infectious Diseases : official publication of the European Society of Clinical Microbiology* 2002;21(6):461-4.

Canavate 2011 (published data only)
Canavate C, Herrero M, Nieto J, Cruz I, Chicharro C, Aparicio P, et al. Evaluation of two rK39 dipstick tests, direct agglutination test, and indirect fluorescent antibody test for diagnosis of visceral leishmaniasis in a new epidemic site in highland Ethiopia. *American Journal of Tropical Medicine and Hygiene* 2011;84(1):102-6.

Carvalho 2003 (published data only)
Carvalho SF, Lemos EM, Corey R, Dietze R. Performance of recombinant K39 antigen in the diagnosis of Brazilian visceral leishmaniasis. *American Journal of Tropical Medicine and Hygiene* 2003;68(3):321-4.

Cruz 2006 (published data only)
Cruz I, Chicharro C, Nieto J, Ballo B, Canavate C, Figueras MC, et al. Comparison of new diagnostic tools for management of pediatric Mediterranean visceral leishmaniasis. *Journal of Clinical Microbiology* 2006;44(7):2343-7.

de Assis 2008 (published data only)
de Assis T, da Costa Braga AS, Junqueira Pedras M, Prado Barral A, de Siqueira IC, Nery Costa CH, ET AL. Validation of the rapid immunochromatographic test IT-LEISH® for the diagnosis of human visceral leishmaniasis [Validação do teste imunocromatográfico rápido IT-LEISH® para o diagnóstico da leishmaniose visceral humana]. *Epidemiologia e Serviços de Saúde, Brasília* 2008;17(2):107-16.

Delgado 2001 (published data only)
Delgado O, Feliciangeli MD, Coraspe V, Silva S, Perez A, Arias J. Value of a dipstick based on recombinant RK39 antigen for differential diagnosis of American visceral leishmaniasis from other sympatic endemic diseases in Venezuela. *Parasite (Paris, France)* 2001;8(4):355-7.

Edrissian 2003 (published data only)
Edrissian GH, Shamss S, Mohebali M, Hajjaran H, Mamishi S, Desjeux P. Evaluation of rapid “dipstick rK39” test in diagnosis and serological survey of visceral leishmaniasis in humans and dogs in Iran. *Archives of Iranian Medicine* 2003;6(1):29-31.

El-Safi 2003 (published data only)
El-Safi SH, Abdel-Haleem A, Hammad A, El-Basha I, Omer A, Kareem HG, et al. Field evaluation of latex agglutination test for detecting urinary antigens in visceral leishmaniasis in Sudan. *Eastern Mediterranean Health Journal = La revue de sante de la Mediterranee orientale = al-Majallah al-sihhiyah li-sharq al-mutarawissati* 2003;9(4):844-55.

Ferreira Dourado 2007 (published data only)
Ferreira Dourado Z, Delleon Silva H, Silveira-Lacerda E, García-Zapata MTA. Historical panorama of laboratorial diagnostic of visceral leishmaniasis until the appearance of immunochromatographic tests [Panorama histórico do diagnóstico laboratorial da leishmaniose visceral até o surgimento dos testes imunocromatográficos (rK39)]. *Revista de Patologia Tropical* 2007;36(3):205-14.

Gavagni 2008 (published data only)
Gavagni AM, Vatan SK, Ghazanchaei A. KAtex antigen-detection test as a diagnostic tool for latent visceral leishmaniasis cases. *African Journal of Biotechnology* 2008;7(7):852-9.

Goswami 2003 (published data only)
Goswami RP, Bairagi B, Kundu PK. K39 strip test--easy, reliable and cost-effective field diagnosis for visceral leishmaniasis in India. *Journal of the Association of Physicians of India* 2003;51:759-61.
Goswami 2007 (published data only)
Goswami RP, Rahman M, Guha SK. Utility of K39 strip test in visceral leishmaniasis (VL) and HIV co-infected patients: an early report from Eastern India. Journal of the Association of Physicians of India 2007; Vol. 55:154-5.

Goswami 2012 (published data only)
Goswami RP, Das S, Ray Y, Rahman M. Testing urine samples with rK39 strip as the simplest non-invasive field diagnosis for visceral leishmaniasis: an early report from eastern India. Journal of Postgraduate Medicine 2012;58:180-4.

Gupta 1994 (published data only)
Gupta S, Srivastava JK, Pal A, Katiyar JC, Saxena KC, Dhawan BN, et al. Direct agglutination test (DAT) in the serodiagnosis of visceral leishmaniasis (Kala-azar) - a comparative study. Serodiagnosis and Immunotherapy in Infection 1994;6:154-8.

Hatam 2009 (published data only)
Hatam GR, Ghasaei MA, Hossini SM, Sarkari B. Improvement of the newly developed latex agglutination test (Katex) for diagnosis of visceral leishmaniasis. Journal of Clinical Laboratory Analysis 2009;23(4):202-5.

Hommel 2001 (published data only)
Hommel M, Sarkari B, Carney J, Chance ML. Katex for the diagnosis of human visceral leishmaniasis [Le Katex pour le diagnostic de la leishmaniose viscerele humaine]. Médicine Tropicale: Revue du Corps de Santé Colonial 2001;61(6):503-5. [PUBMED: 11980401]

Iqbal 2002 (published data only)
Iqbal J, Hira PR, Saroj G, Philip R, Al-Ali F, Madda PJ, et al. Imported visceral leishmaniasis: diagnostic dilemmas and comparative analysis of three assays. Journal of Clinical Microbiology 2002;40(2):475-9.

Jelinek 1999 (published data only)
Jelinek T, Eichenlaub S, Loscher T. Sensitivity and specificity of a rapid immunochromatographic test for diagnosis of visceral leishmaniasis. European Journal of Clinical Microbiology & Infectious Diseases: official publication of the European Society of Clinical Microbiology 1999;18(6):669-70.

Khan 2009 (published data only)
Khan AM, Pandey K, Kumar V, Dutta P, Das P, Mahanta J. Sample survey for indigenous cases of kala-azar in Assam by rK39 dipstick test. The Indian Journal of Medical Research 2009; Vol. 129, issue 3:327-8.

Khan 2010 (published data only)
Khan MG, Alam MS, Podder MP, Itoh M, Jamil KM, Haque R, et al. Evaluation of rK-39 strip test using urine for diagnosis of visceral leishmaniasis in an endemic area in Bangladesh. Parasites & Vectors 2010;3:114.

Kumar 2006 (published data only)
Kumar R, Rai K, Kumar P, Pandey HP, Sundar S. Sero-epidemiological study of kala-azar in a village of Varanasi district, India. Tropical Medicine & International Health : TM & IH 2006;11(1):41-8.

Lemos 2003 (published data only)
Lemos EM, Carvalho SF, Corey R, Dietze R. Evaluation of a rapid test using recombinant k39 antigen in the diagnosis of visceral leishmaniasis in Brazil [Availalico do teste rapido utilizando o antigeno recombinante k39 no diagnostic da leishmaniose visceral no Brasil]. Revista da Sociedade Brasileira de Medicina Tropical 2003;36 Suppl 2:36-8.

López Corbalán 2012 (published data only)
López Corbalán JC, Seguí Ripoll JM, Estebán Fernández JM. Urinary antigen as an effective and safe diagnosis of visceral leishmaniasis [Antigeno urinario como diagnostico eficaz y seguro de leishmaniasis visceral]. Atención Farmacéutica 2012;14(4):298-9.

Mandal 2008 (published data only)
Mandal J, Khurana S, Dubey ML, Bhatia P, Varma N, Malla N. Evaluation of direct agglutination test, rK39 Test, and ELISA for the diagnosis of visceral leishmaniasis. American Journal of Tropical Medicine and Hygiene 2008;79(1):76-8.

Mansour 2009 (published data only)
Mansour D, Abass EM, Mahamoud A, el Harith A. Qualitative and semi-quantitative comparison of an rK39 strip test and direct agglutination test for detection of anti-Leishmania donovani antibodies in the Sudan. Iranian Journal of Immunology : IJI 2009;6(4):208-15.

Marty 2007 (published data only)
Marty P, Delaunay P, Fissore C, Le Fichoux Y. Mediterranean leishmaniasis caused by Leishmania infantum. Update on the utility of the IT-Leish and ID-Pagia leishmaniasis tests [La leishmaniose mediterraneenne due a Leishmania infantum Mise au point--interets des tests de diagnostique rapide: IT-Leish et ID-Pagia leishmaniasis.]. Médicine Tropicale: Revue du Corps de Santé Colonial 2007;67(1):79-85.

Mathur 2005 (published data only)
Mathur P, Samantaray J, Chauhan NK. Evaluation of a rapid immunochromatographic test for diagnosis of kala-azar & post kala-azar dermal leishmaniasis at a tertiary care centre of north India. The Indian Journal of Medical Research 2005;122(6):485-90.

Matlashewski 2013 (published data only)
Matlashewski G, Das V N, Pandey K, Singh D, Das S, Ghosh A K, et al. Diagnosis of visceral leishmaniasis in Bihar India: comparison of the rK39 rapid diagnostic test on whole blood versus serum. PLoS Neglected Tropical Diseases 2013;7:e2233.

Mbui 2011 (published data only)
Mbui J, Wasunna M, Kirigi G, Kinoti D, Riongoita M, De La Tour R, et al. Validation of two rapid tests for diagnosis of visceral leishmaniasis in Kenya. Tropical Medicine and International Health 2011;Conference: 7th European Congress on Tropical Medicine and International Health Barcelona Spain. Conference Start: 20111003 Conference End: 20111006. Conference Publication: (var.pagings). 16:283.
Mohapatra 2010 (published data only)
Mohapatra TM, Singh DP, Sen MR, Bharti K, Sundar S. Comparative evaluation of rK9, rK26 and rK39 antigens in the serodiagnosis of Indian visceral leishmaniasis. *Journal of Infection in Developing Countries* 2010;4(2):114-7.

Monno 2009 (published data only)
Monno R, Giannelli G, Rizzo C, De Vito D, Fumara L. Recombinant K39 immunochromatographic test for diagnosis of human leishmaniasis. *Future Microbiology* 2009;4(2):159-70.

Moura 2013 (published data only)
Moura AS, Lopes HM, Mourao MV, Morais MH. Performance of a rapid diagnostic test for the detection of visceral leishmaniasis in a large urban setting. *Revista da Sociedade Brasileira de Medicina Tropical* 2013;46:589-93.

Mueller 2013 (published data only)
Mueller YK, Kolaczinski JH, Koech T, Lokwang P, Riongoita M, Velilla E, et al. Clinical epidemiology, diagnosis and treatment of visceral leishmaniasis in the Pokot endemic area of Uganda and Kenya. *American Society of Tropical Medicine and Hygiene* 2013;90(1):33-9.

Ozerdem 2009 (published data only)
Ozerdem D, Ergolu F, Genc A, Demirkazik M, Koltas IS. Comparison of microscopic examination, rK39, and PCR for visceral leishmaniasis diagnosis in Turkey. *Parasitology Research* 2009;106(1):197-200.

Ozkan 2008 (published data only)
Ozkan AT, Yalcinkaya T, Kilic S, Babur C, Schallig HD. Investigation of Leishmania infantum seropositivity in HIV/AIDS patients [HIV/AIDS hastalarinda Leishmania infantum serozitliginin arastirilmasi]. *Mikrobiyoloji Bulteni* 2008;42(1):113-7.

Pappas 1983 (published data only)
Pappas MG, Hajkowksi R, Hockmeyer WT. Dot enzyme-linked immunosorbent assay (Dot-ELISA): a micro technique for the rapid diagnosis of visceral leishmaniasis. *Journal of Immunological Methods* 1983;64(1-2):205-14.

Pappas 1984 (published data only)
Pappas MG, Hajkowksi R, Cannon JT Sr, Hockmeyer WT. Dot enzyme-linked immunosorbent assay (Dot-ELISA): comparison with standard ELISA and complement fixation assays for the diagnosis of human visceral leishmaniasis. *Veterinary Parasitology* 1984;14(3-4):239-49.

Pappas 1984a (published data only)
Pappas MG, Hajkowksi R, Hockmeyer WT. Standardization of the dot enzyme-linked immunosorbent assay (Dot-ELISA) for human visceral leishmaniasis. *American Journal of Tropical Medicine and Hygiene* 1984;33(6):1105-11.

Pattabhi 2010 (published data only)
Pattabhi S, Whittle J, Mohamath R, El-Safi S, Moulton GG, Guderian JA, et al. Design, development and evaluation of rK28-based point-of-care tests for improving rapid diagnosis of visceral leishmaniasis. *PLoS Neglected Tropical Diseases* 2010;4(9):e822.

Qu 1987 (published data only)
Qu QJ, Bao YF. Dot-ELISA using monoclonal antibodies for identification of Leishmania donovani. *Chinese Medical Journal* 1987;100(10):823-6.

Qu 2000 (published data only)
Qu QJ, Guan LR, Shulidan I, Zuo XP, Chai JJ, Chen SB, et al. Rapid screening with a recombinant antigen (rK39) for diagnosis of visceral leishmaniasis using dipstick. *Zhongguo ji sheng chong xue yu jii sheng chong bing za zhi = Chinese Journal of Parasitology & Parasitic Diseases* 2000;18(3):155-8.

Riera 2004 (published data only)
Riera C, Fisa R, Lopez P, Ribera E, Carrio J, Falco V, et al. Evaluation of a latex agglutination test (KATex) for detection of Leishmania antigen in urine of patients with HIV-Leishmania coinfection: value in diagnosis and post-treatment follow-up. *European Journal of Clinical Microbiology & Infectious Diseases: official publication of the European Society of Clinical Microbiology* 2004;23(12):899-904.

Rouf 2009 (published data only)
Rouf MA, Rahman ME, Islam MN, Islam MN, Ferdous NN, Hossain MA. Sensitivity, specificity and predictive values of immunochromatographic strip test in diagnosis of childhood kala-azar. *Mymensingh Medical Journal* 2009;18(1 Suppl):S1-5.

Saghrouni 2009 (published data only)
Saghrouni F, Gaied-Meki S, Fathallah A, Amri F, Ach H, Guizani I, et al. Immunochromatographic K39 strip test in the serodiagnosis of visceral leishmaniasis in Tunisia. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 2009;103(12):1273-8.

Saha 2011 (published data only)
Saha S, Goswami R, Pramanik N, Guha S K, Saha B, Rahman M, et al. Easy test for visceral Leishmaniasis and post-Kala-azar Dermal Leishmaniasis. *Emerging Infectious Diseases* 2011;17:1304-6.

Salam 2008 (published data only)
Salam MA. Immunochromatographic strip test detection of anti-rK39 antibody for the diagnosis of kala-azar in an endemic zone of Bangladesh. *Pakistan Journal of Medical Sciences* 2008;24(4):497-501.

Salam 2011 (published data only)
Salam MA, Khan MG, Mondal D. Urine antigen detection by latex agglutination test for diagnosis and assessment of initial cure of visceral leishmaniasis. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 2011;105(5):269-72.

Salotra 2005 (published data only)
Salotra P, Singh R. Rapid & reliable diagnostic tests for visceral leishmaniasis. *The Indian Journal of Medical Research* 2005;122(6):464-7.
Sarkari 2005 (published data only)
Sarkari B, Chance M, Hommel M. A capture ELISA for the diagnosis of visceral leishmaniasis using a monoclonal antibody against a leishmanial urinary antigen. *Iranian Biomedical Journal* 2005;9(3):117-22.

Sarker 2003 (published data only)
Sarker CB, Momen A, Jamal MF, Siddiqui NI, Siddiqui FM, Chowdhury KS, et al. Immunochromatographic (rK39) strip test in the diagnosis of visceral leishmaniasis in Bangladesh. *Mymensingh Medical Journal* 2003;12(2):93-7.

Schallig 2002 (published data only)
Schallig HD, Canto-Cavalheiro M, da Silva ES. Evaluation of the direct agglutination test and the rK39 dipstick test for the sero-diagnosis of visceral leishmaniasis. *Memorias do Instituto Oswaldo Cruz* 2002;97(7):1015-8.

Schoone 2001 (published data only)
Schoone GJ, Hallu A, Kroon CC, Nieuwenhuys JL, Schallig HD, Oskam L. A fast agglutination screening test (FAST) for the detection of anti-Leishmania antibodies. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 2001;95(4):400-1.

Scott 1991 (published data only)
Scott JM, Shreffler WG, Ghalib HW, el Asad A, Siddig M, Badaro R, et al. A rapid and simple diagnostic test for active visceral leishmaniasis. *American Journal of Tropical Medicine and Hygiene* 1991;44(3):272-7.

Senaldi 1996 (published data only)
Senaldi G, Xiao-su H, Hoesl DC, Bordier C. Serological diagnosis of visceral leishmaniasis by a dot-enzyme immunoassay for the detection of a Leishmania donovani-related circulating antigen. *Journal of Immunological Methods* 1996;193(1):9-15.

Shamsuzzaman 2003 (published data only)
Shamsuzzaman AK, Hossain MA, Musa AK, Hasan MU, Dhar DK. A preliminary report on culture of Leishmania donovani in Mymensingh Medical College and evaluation of new immunochromatography test (ICT). *Mymensingh Medical Journal* 2003;12(1):51-4.

Sharma 2009 (published data only)
Sharma NL, Mahajan VK, Negi AK, Verma GK. The rK39 immunochromatopic dipstick testing; a study for K39 seroprevalence in dogs and human leishmaniasis patients for possible animal reservoir of cutaneous and visceral leishmaniasis in endemic focus of Satluj river valley of Himachal Pradesh (India). *Indian Journal of Dermatology, Venereology, and Leprology* 2009;75(1):52-5.

Silva 2005 (published data only)
Silva ES, Schoone GJ, Gontijo CM, Brazil RP, Pacheco RS, Schallig HD. Application of direct agglutination test (DAT) and fast agglutination screening test (FAST) for sero-diagnosis of visceral leishmaniasis in endemic area of Minas Gerais, Brazil. *Kinetoplastid Biology and Disease* 2005;4:4.

Singh 2009 (published data only)
Singh DP, Sundar S, Mohapatra TM. The rK39 strip test is non-predictor of clinical status for kala-azar. *BMC Research Notes* 2009;2:187.

Singh 2010 (published data only)
Singh DP, Goyal RK, Singh RK, Sundar S, Mohapatra TM. In search of an ideal test for diagnosis and prognosis of kala-azar. *Journal of Health, Population, and Nutrition* 2010;28(3):281-5.

Sinha 2008 (published data only)
Sinha PK, Bimal S, Pandey K, Singh SK, Ranjan A, Kumar N, et al. A community-based, comparative evaluation of direct agglutination and rK39 strip tests in the early detection of subclinical Leishmania donovani infection. *Annals of Tropical Medicine and Parasitology* 2008;102(2):119-25.

Srivastava 1988 (published data only)
Srivastava L, Singh VK. Diagnosis of Indian kala-azar by dot enzyme-linked immunosorbent assay (dot-ELISA). *Annals of Tropical Medicine and Parasitology* 1988;82(4):331-4.

Sundar 2002 (published data only)
Sundar S, Sahu M, Mehta H, Gupta A, Kohli U, Rai M, et al. Noninvasive management of Indian visceral leishmaniasis: clinical application of diagnosis by K39 antigen strip testing at a kala-azar referral unit. *Clinical Infectious Diseases: an official publication of the Infectious Diseases Society of America* 2002;35(5):581-6.

Sundar 2002a (published data only)
Sundar S, Pai K, Sahu M, Kumar V, Murray HW. Immunochromatographic strip-test detection of anti-K39 antibody in Indian visceral leishmaniasis. *Annals of Tropical Medicine and Parasitology* 2002;96(1):19-23.

Sundar 2002b (published data only)
Sundar S, Rai M. Laboratory diagnosis of visceral leishmaniasis. *Clinical and Diagnostic Laboratory Immunology* 2002;9(5):951-8.

Sundar 2005 (published data only)
Sundar S, Agrawal S, Pai K, Chance M, Hommel M. Detection of leishmanial antigen in the urine of patients with visceral leishmaniasis by a latex agglutination test. *American Journal of Tropical Medicine and Hygiene* 2005;73(2):289-71.

Sundar 2005a (published data only)
Sundar S. Serological diagnosis of Indian visceral leishmaniasis - direct agglutination test versus rK39 strip test and comparison of two strip formats. 2005; Vol. 73, issue 6:302.

Sundar 2006 (published data only)
Sundar S, Singh RK, Maurya R, Kumar B, Chhabra A, Singh V, et al. Serological diagnosis of Indian visceral leishmaniasis: direct agglutination test versus rK39 strip test. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 2006;100(6):533-7.

Sundar 2006a (published data only)
Sundar S, Maurya R, Singh RK, Bharti K, Chakravarty J, Parekh A, et al. Rapid, noninvasive diagnosis of visceral leishmaniasis
in India: comparison of two immunochromatographic strip tests for detection of anti-K39 antibody. *Journal of Clinical Microbiology* 2006;44(1):251-3.

Teran-Angel 2010 *(published data only)*

Teran-Angel G, Rodriguez V, Silva R, Zerpa O, Schallig H, Ulrich M, et al. Non invasive diagnostic tests for visceral leishmaniasis: a comparison of the immunoserological tests DAT, rk26 and rk39 [Herramientas no invasivas en Venezuela: comparacion entre las pruebas inmunoserologicas DAT, rk26 y rk39 en el diagnostico de leishmaniasis visceral.]. *Biomedica: Revista del Instituto Nacional de Salud* 2010;30(1):39-45.

Walton 1986 *(published data only)*

Walton BC, Pappas MG, Sierra M Jr, Hajkowksi R, Jackson P, Custodio R. Field use of the Dot-ELISA test for visceral leishmaniasis in Honduras. *Bulletin of the Pan American Health Organization* 1986;20(2):147-56.

Walton 1987 *(published data only)*

Walton BC, Pappas MG, Sierra M, Hajkowski R, Jackson P, Custodio R. Field use of the DOT-ELISA test for visceral leishmaniasis in Honduras [La prueba DOT-ELISA para la detección de campo de la leishmaniasis visceral en Honduras]. *Boletín de la Oficina Sanitaria Panamericana* 1987;102(1):19-28.

Welch 2008 *(published data only)*

Welch RJ, Anderson BL, Litwin CM. Rapid immunochromatographic strip test for detection of anti-K39 immunoglobulin G antibodies for diagnosis of visceral leishmaniasis. *Clinical and Vaccine Immunology : CVI* 2008;15(9):1483-4.

Zijlstra 2001 *(published data only)*

Zijlstra EE, Nur Y, Desjeux P, Khalil EA, El-Hassan AM, Groen J. Diagnosing visceral leishmaniasis with the recombinant K39 strip test: experience from the Sudan. *Tropical Medicine & International Health : TM & IH* 2001;6(2):108-13.

Additional references

Alvar 2008

Alvar J, Aparicio P, Aseffa A, Den Boer M, Canavate C, Dedet JP, et al. The relationship between leishmaniasis and AIDS: the second 10 years. *Clinical Microbiology Reviews* 2008;21(2):334-59.

Alvar 2012

Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. *PloS One* 2012;7(5):e35671.

Babiker 2007

Babiker ZO, Davidson R, Mazinda C, Kipnegich S, Ritmeijer K. Utility of lymph node aspiration in the diagnosis of visceral leishmaniasis in Sudan. *American Journal of Tropical Medicine and Hygiene* 2007;76(4):689-93.

Bachmann 2006

Bachmann LM, Puhan MA, ter Riet G, Bossuyt PM. Sample sizes of studies on diagnostic accuracy: literature survey. *BMJ (Clinical research ed.)* 2006;332(7550):1127-9.

Baughman 2008

Baughman AL, Bisgard KM, Cortese MM, Thompson WW, Sanden GN, Strebel PM. Utility of composite reference standards and latent class analysis in evaluating the clinical accuracy of diagnostic tests for pertussis. *Clinical and Vaccine Immunology : CVI* 2008;15(1):106-14.

Bhattacharya 2013

Bhattacharya T, Boelaert M, Miles MA. Comparison of visceral leishmaniasis diagnostic antigens in African and Asian Leishmania donovani reveals extensive diversity and region-specific polymorphisms.. *PLoS Neglected Tropical Diseases* 2013;7(2):e2057.

Bhattarai 2009

Bhattarai NR, Van der Auwera G, Khanal B, De Doncker S, Rijal S, Das ML, et al. PCR and direct agglutination as Leishmania infection markers among healthy Nepalese subjects living in areas endemic for Kala-Azar. *Tropical Medicine & International Health : TM & IH* 2009;14(4):404-11.

Black 2002

Black MA, Craig BA. Estimating disease prevalence in the absence of a gold standard. *Statistics in Medicine* 2002;21(18):2653-69.

Boelaert 1999

Boelaert M, El Safi S, Jacquet D, de Muynck A, van der Stuyft P, Le Ray D. Operational validation of the direct agglutination test for diagnosis of visceral leishmaniasis. *American Journal of Tropical Medicine and Hygiene* 1999;60(1):129-34.

Boelaert 2000

Boelaert M, Criek B, Leeuwenburg J, Van Damme W, Le Ray D, Van der Stuyft P. Visceral leishmaniasis control: a public health perspective. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 2000;94(5):465-71.

Boelaert 2004

Boelaert M, Rijal S, Regmi S, Singh R, Karki B, Jacquet D, et al. A comparative study of the effectiveness of diagnostic tests for visceral leishmaniasis. *American Journal of Tropical Medicine and Hygiene* 2004;70(1):72-7.

Boelaert 2007

Boelaert M, Bhattacharya S, Chappuis F, El Safi SH, Hailu A, Mondal D, et al. Evaluation of rapid diagnostic tests: visceral leishmaniasis. *Nature Reviews Microbiology* November 2007;5(11):S30-S39.

Branscum 2005

Branscum AJ, Gardner IA, Johnson WO. Estimation of diagnostic-test sensitivity and specificity through Bayesian modeling. *Preventive Veterinary Medicine* 2005;68(2-4):145-63.
Chappuis 2006
Chappuis F, Rijal S, Soto A, Menten J, Boelaert M. A meta-analysis of the diagnostic performance of the direct agglutination test and rK39 dipstick for visceral leishmaniasis. BMJ (Clinical Research Ed.) 2006;333(7571):723.

Chappuis 2007
Chappuis F, Sundar S, Hailu A, Ghaliab H, Rijal S, Peeling RW, et al. Visceral leishmaniasis: what are the needs for diagnosis, treatment and control?. Nature Reviews Microbiology 2007;5(11):873-82.

Cunningham 2012
Cunningham J, Hasker E, Das P, El Safi S, Goto H, Mondal D, et al. A global comparative evaluation of commercial immunochromatographic rapid diagnostic tests for visceral leishmaniasis. Clinical Infectious Diseases: an official publication of the Infectious Diseases Society of America 2012;55(10):1312-9.

De Almeida 2006
De Almeida Silva L, Romero HD, Prata A, Costa RT, Nascimento E, Carvalho SF, et al. Immunologic tests in patients after clinical cure of visceral leishmaniasis. American Journal of Tropical Medicine and Hygiene 2006;75(4):739-43.

Deeks 2005
Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. Journal of Clinical Epidemiology 2005;58(7):882-93.

den Boer 2006
den Boer M, Davidson RN. Treatment options for visceral leishmaniasis. Expert Review of Anti-infective Therapy 2006;4(2):187-97.

Dendukuri 2001
Dendukuri N, Joseph L. Bayesian approaches to modeling the conditional dependence between multiple diagnostic tests. Biometrics 2001;57(1):158-67.

Enoe 2000
Enoe C, Georgiadi MP, Johnson WD. Estimation of sensitivity and specificity of diagnostic tests and disease prevalence when the true disease state is unknown. Preventive Veterinary Medicine 2000;45(1-2):61-81.

Evans 1992
Evans TG, Teixeira MJ, McAuliffe IF, Vasconcelos I, Vasconcelos AW, Sousa Ade A, et al. Epidemiology of visceral leishmaniasis in northeast Brazil. Journal of Infectious Diseases 1992;166(5):1124-32.

Gelman 1995
Gelman A, Carlin JC, Stern H, Rubin DB. Bayesian Data Analysis. New York: Chapman and Hall, 1995.

Greenland 2006
Greenland S. Bayesian perspectives for epidemiological research: I. Foundations and basic methods. International Journal of Epidemiology 2006;35:765-75.

Hailu 1990
Hailu A. Pre- and post-treatment antibody levels in visceral leishmaniasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 1990;84(5):673-5.

Hailu 2009
Hailu A, Gramiccia M, Kager PA. Visceral leishmaniasis in Aba-Roba, south-western Ethiopia: prevalence and incidence of active and subclinical infections. Annals of Tropical Medicine and Parasitology 2009;103(8):659-70.

Harhay 2011
Harhay MO, Olliaro PL, Vaillant M, Chappuis F, Lima MA, Ritmeijer K, et al. Who is a typical patient with visceral leishmaniasis? Characterizing the demographic and nutritional profile of patients in Brazil, East Africa, and South Asia. American Journal of Tropical Medicine and Hygiene 2011;84(4):543-50.

Harith 1986
Harith AE, Kolk AH, Kager PA, Leeuwenburg J, Muigai R, Kiugu S, et al. A simple and economical direct agglutination test for serodiagnosis and sero-epidemiological studies of visceral leishmaniasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 1986;80(4):583-6.

Herwaldt 1999
Herwaldt BL. Leishmaniasis. Lancet 1999;354(9185):1191-9.

Ho 1982
Ho M, Siongok TK, Lyerly WH, Smith DH. Prevalence and disease spectrum in a new focus of visceral leishmaniasis in Kenya. Transactions of the Royal Society of Tropical Medicine and Hygiene 1982;76(6):741-6.

Hui 1980
Hui SL, Walter SD. Estimating the error rates of diagnostic tests. Biometrics 1980;36(1):167-71.

Macaskill 2010
Macaskill P, Gatsonis C, Deeks JJ, Harbord RM, Takwoingi Y. Analysing and presenting results. In: Deeks JJ, Bossuyt PM, Gatsonis C editor(s). Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy. Version 1.0. The Cochrane Collaboration, 2010.

Menten 2013
Menten J, Boelaert M, Lesaffre E. Bayesian meta-analysis of diagnostic tests allowing for imperfect reference standards. Statistics in medicine 2013;32(30):5398-413.

Murray 2005
Murray HW, Berman JD, Davies CR, Saravia NG. Advances in leishmaniasis. Lancet 2005;366(9496):1561-77.

Ostyn 2011
Ostyn B, Gidwani K, Khanal B, Picado A, Chappuis F, Singh SP, et al. Incidence of symptomatic and asymptomatic Leishmania donovani infections in high-endemic foci in India and Nepal: a prospective study. PLoS Neglected Tropical Diseases 2011;5(10):e1284.
Rapid tests for the diagnosis of visceral leishmaniasis in patients with suspected disease (Review)
Characteristics of Studies

Characteristics of included studies [ordered by study ID]

Boelaert 2004 - classic

Study characteristics

Patient sampling	Consecutive and prospective enrolment of patients with suspected VL
Patient characteristics and setting	Sample size: 310
	Age (reported for 181 new VL cases): median 25, interquartile range 13-36
	Sex (reported for 181 new VL cases): male:female ratio 1.7:1
	Presenting signs and symptoms: fever of 14 days or more and splenomegaly
	Frequency of VL: 59%
	HIV: not reported
	Clinical setting: tertiary care centre (B.P. Koirala Institute of Health Sciences in Dharan)
	Country: Nepal
	Endemic Leishmania species: L. donovani

Index tests

| Brand | InSure Rapid test for Visceral Leishmaniasis, InBios International, Washington, USA |
| | Sample: serum |

Target condition and reference standard(s)

Target condition	clinical VL (3/310 participants were relapse cases)
	Sample: bone marrow; if negative, possible and no malaria: spleen
	Technique: direct smear (Giemsa stain)
	Definition of VL: bone marrow or spleen parasitology positive
	Definition of non-VL: bone marrow negative, and spleen negative or spleen aspirate not done

Reference standard category

| parasitology including spleen aspirate - no serology |

Flow and timing

| one participant was excluded because of a missing serum sample |

Comparative

| Notes | Same study as Boelaert 2004 - LCA but different analysis |

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Boelaert 2004 - classic (Continued)

Patient sampling	Yes
Was a case-control design avoided?	Yes
Did the study avoid inappropriate exclusions?	Yes

Low **Low**

DOMAIN 2: Index Test All tests

Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear

Unclear **Low**

DOMAIN 3: Reference Standard

Is the reference standards likely to correctly classify the target condition?	Yes
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear

Unclear **Low**

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes
Did all patients receive a reference standard?	Yes

Low

Boelaert 2004 - LCA

Study characteristics

Patient sampling	Consecutive and prospective enrolment of patients with suspected VL
Patient characterisics and setting	**Sample size:** 310
	Age (reported for 181 new VL cases): median 25, interquartile range 13-36
	Sex (reported for 181 new VL cases): male:female ratio 1.7:1
	Presenting signs and symptoms: fever of 14 days or more and splenomegaly
Boelaert 2004 - LCA (Continued)

Frequency of VL: 59%

HIV: not reported

Clinical setting: tertiary care centre (B.P. Koirala Institute of Health Sciences in Dharan)

Country: Nepal

Endemic Leishmania species: *L. donovani*

Index tests

Type	Brand
rK39 immunochromatographic test	InSure Rapid test for Visceral Leishmaniasis, InBios International, Washington, USA

Sample: serum

Target condition and reference standard(s)

Target condition: clinical VL (3/310 participants were relapse cases)

Approach: latent class analysis

Tests included in latent class analysis: rK39 immunochromatographic test, pancytopenia, IFAT, DAT, formol-gel test, and parasitology (direct smear; Giemsa stain) of bone marrow or spleen samples

Flow and timing

One participant was excluded because of a missing serum sample

Comparative

Notes

Same study as Boelaert 2004 - classic but different analysis

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes	Low	Low
Was a case-control design avoided?	Yes	Low	Low
Did the study avoid inappropriate exclusions?	Yes	Low	Low
DOMAIN 2: Index Test All tests			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear	Unclear	Low
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	Yes		
Boelaert 2004 - LCA (Continued)

Were the reference standard results interpreted without knowledge of the results of the index tests?
Unclear

Unclear

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?
Yes

Did all patients receive the same reference standard?
Yes

Were all patients included in the analysis?
Yes

Did all patients receive a reference standard?
Yes

Low

Boelaert 2008 - Ethiopia

Study characteristics

Patient sampling
Consecutive and prospective enrolment of patients with suspected VL

Patient characteristics and setting
Sample size: 38
Age: median 25 years; range 16-49. No children ≤ 12 years
Sex: 95% men
Presenting signs and symptoms: fever of 2 weeks or more, and splenomegaly or lymphadenopathy or both
Pregnant women were excluded. Patients with a thick-film-positive malaria episode were excluded.
Estimated frequency of VL: 57%
HIV: not tested
Clinical setting: university hospital (Kahsay Abera Hospital in Humera and Gondar College of Medical Sciences)
Country: Ethiopia
Endemic Leishmania species: L. donovani

Index tests
Type: rK39 immunochromatographic test; Brand: Kalazar Detect, InBios International, Washington, USA; Sample: serum
Type: latex agglutination test in urine; Brand: KAtex, Kalon Biological Ltd, Guildford, UK; Sample: fresh urine

Target condition and reference standard(s)
Target condition: clinical VL
Approach: latent class analysis
Boelaert 2008 - Ethiopia (Continued)

Tests included in latent class analysis: rK39 immunochromatographic test, latex agglutination test, DAT, and parasitology (culture and direct smear (Giemsa stain)) of lymph node, bone marrow or spleen sample

Flow and timing
Three participants were excluded because of missing data.

Comparative

Notes
Same study as Diro 2007 but different analysis.

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes	Low	Low
Was a case-control design avoided?	Yes	Low	Low
Did the study avoid inappropriate exclusions?	Yes	Low	Low
DOMAIN 2: Index Test All tests			
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes	Low	Low
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	Yes		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear	Unclear	Low
DOMAIN 4: Flow and Timing			
Was there an appropriate interval between index test and reference standard?	Yes		
Did all patients receive the same reference standard?	Yes		
Were all patients included in the analysis?	Yes		
Did all patients receive a reference standard?	Yes		
Study characteristics

Patient sampling	Consecutive and prospective enrolment of patients with suspected VL
Patient characteristics and setting	**Sample size**: 352
	Age (computed on 260/352 participants): median 15 years; range 2-65; 44% of the study population was ≤ 12 years old
	Sex (computed on 260/352 participants): 55% men
	Presenting signs and symptoms: fever (more or less than 2 weeks), and splenomegaly or lymphadenopathy or both
	No children < 2 years old; no pregnant women
	Estimated frequency of VL: 80%
	HIV: not reported
	Clinical setting: research centre (Kala-Azar Medical Research and Training Centre in Muzaffarpur)
	Country: India
	Endemic Leishmania species: *L. donovani*

Index tests

Target condition and reference standard(s)	**Target condition**: clinical VL
Approach: latent class analysis	
Tests included in latent class analysis: rK39 immunochromatographic test, latex agglutination test, DAT, and parasitology (direct smear (Giemsa stain)) of lymph node, bone marrow or spleen sample	

Flow and timing

Flow and timing	No withdrawals

Notes

| **Notes** | Same study as Sundar 2007 but different analysis |

Methodological quality

Item	**Authors’ judgement**	**Risk of bias**	**Applicability concerns**
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Boelaert 2008 - India (Continued)

Did the study avoid inappropriate exclusions?
- Yes

DOMAINE 2: Index Test All tests

- **Were the index test results interpreted without knowledge of the results of the reference standard?**
 - Yes

DOMAINE 3: Reference Standard

- **Is the reference standards likely to correctly classify the target condition?**
 - Yes

- **Were the reference standard results interpreted without knowledge of the results of the index tests?**
 - Unclear

DOMAINE 4: Flow and Timing

- **Was there an appropriate interval between index test and reference standard?**
 - Yes

- **Did all patients receive the same reference standard?**
 - Yes

- **Were all patients included in the analysis?**
 - Yes

- **Did all patients receive a reference standard?**
 - Yes

Boelaert 2008 - Kenya

Study characteristics

Patient sampling	Consecutive and prospective enrolment of patients with suspected VL

Patient characteristics and setting

- **Sample size:** 308

- **Age:** median 13 years; range 1-75; 45% of the study population was ≤12 years old

- **Sex:** 65% men

- **Presenting signs and symptoms:** fever for 2 weeks or more, and splenomegaly or lymphadenopathy or both;

- no children < 2 years old; no pregnant women; no patients with a thick-film-positive malaria episode

- **Estimated frequency of VL:** 61%
Boelaert 2008 - Kenya (Continued)

HIV: not reported
Clinical setting: hospital (Kabarnet hospital in Baringo district)
Country: Kenya
Endemic Leishmania species: *L. donovani*

Index tests

Type	Brand	Sample
rK39 immunochromatographic test	Kalazar Detect, InBios International, Washington, USA	serum
latex agglutination test in urine	KAtex, Kalon Biological Ltd, Guildford, UK	fresh urine

Target condition and reference standard(s)

Target condition	Approach	Tests included in latent class analysis
clinical VL	latent class analysis	rK39 immunochromatographic test, latex agglutination test, DAT, and parasitology (direct smear (Giemsa stain)) of lymph node, bone marrow or spleen sample

Flow and timing

One participant was excluded because of missing data.

Comparative

Notes

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes	Low	Low
Was a case-control design avoided?	Yes	Low	Low
Did the study avoid inappropriate exclusions?	Yes	Low	Low
DOMAIN 2: Index Test All tests			
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes	Low	Low
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	Yes		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		
Boelaert 2008 - Kenya (Continued)

DOMAIN 4: Flow and Timing

Question	Answer
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes
Did all patients receive a reference standard?	Yes

Low

Boelaert 2008 - Nepal

Study characteristics

Patient sampling	Consecutive and prospective enrolment of patients with suspected VL
Sample size	158
Age	median 23 years; range 2-68; 25% of the study population was ≤ 12 years old
Sex	59% men
Presenting signs and symptoms	fever for 2 weeks or more, and splenomegaly or lymphadenopathy or both;
No children < 2 years old; no pregnant women	
Estimated frequency of VL	71%
HIV	not reported
Clinical setting	tertiary care centre (B.P. Koirala Institute of Health Sciences in Dharan)
Country	Nepal
Endemic Leishmania species	L. donovani

Index tests

| Type: rK39 immunochromatographic test; Brand: Kalazar Detect, InBios International, Washington, USA; Sample: serum |
| Type: latex agglutination test in urine; Brand: KAtex, Kalon Biological Ltd, Guildford, UK; Sample: fresh urine |

Target condition and reference standard(s)

| Target condition: clinical VL |
| Approach: latent class analysis |
| Tests included in latent class analysis: rK39 immunochromatographic test, latex agglutination test, DAT, and parasitology (direct smear (Giemsa stain)) of lymph node, bone marrow or spleen sample |
Flow and Timing

- No withdrawals

Comparative

Notes

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes	Low	Low
Was a case-control design avoided?	Yes	Low	Low
Did the study avoid inappropriate exclusions?	Yes	Low	Low
DOMAIN 2: Index Test All tests			
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes	Low	Low
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	Yes	Low	Low
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear	Unclear	Low
DOMAIN 4: Flow and Timing			
Was there an appropriate interval between index test and reference standard?	Yes	Low	Low
Did all patients receive the same reference standard?	Yes	Low	Low
Were all patients included in the analysis?	Yes	Low	Low
Did all patients receive a reference standard?	Yes	Low	Low
Study characteristics

Patient sampling	Consecutive and prospective enrolment of patients with suspected VL
Patient characteristics and setting	Sample size: 294
Age: median 20 years; range 2-72; 36% of the study population was ≤12 years old	
Sex: 64% men	
Presenting signs and symptoms: fever for 2 weeks or more, and splenomegaly or lymphadenopathy or both	
No children < 2 years old; no pregnant women; no patients with a thick-film-positive malaria episode	
Estimated frequency of VL: 37%	
HIV: not reported	
Clinical setting: two health centres (Umalkhair and Tabarakelleh)	
Country: Sudan	
Endemic Leishmania species: L. donovani	
Index tests	Type: rK39 immunochromatographic test; Brand: Kalazar Detect, InBios International, Washington, USA; Sample: serum
Type: latex agglutination test in urine; Brand: KAtex, Kalon Biological Ltd, Guildford, UK; Sample: fresh urine	
Target condition and reference standard(s)	Target condition: clinical VL
Approach: latent class analysis	
Tests included in latent class analysis: rK39 immunochromatographic test, latex agglutination, DAT, and parasitology (direct smear (Giemsa stain)) of lymph node, bone marrow or spleen sample	
Flow and timing	Three participants were excluded because of missing data.
Comparative	
Notes	

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
Boelaert 2008 - Sudan (Continued)

DOMAIN 2: Index Test All tests		Low	Low
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes		

DOMAIN 3: Reference Standard		Unclear	Low
Is the reference standards likely to correctly classify the target condition?	Yes		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		

DOMAIN 4: Flow and Timing		Low
Was there an appropriate interval between index test and reference standard?	Yes	
Did all patients receive the same reference standard?	Yes	
Were all patients included in the analysis?	Yes	
Did all patients receive a reference standard?	Yes	

Chappuis 2003

Study characteristics

Patient sampling	Consecutive and prospective enrolment of patients with suspected VL
Patient characteristics and setting	
Sample size: 195	
Age (data available for 184 included participants): mean 23 years	
Sex (data available for 184 included participants): 59% men	
Presenting signs and symptoms: fever for 2 weeks or more and clinical splenomegaly	
Frequency of VL: 76%	
HIV: 0%	
Clinical setting: tertiary care centre (B.P. Koirala Institute of Health Sciences in Dharan)	
Country: Nepal

Endemic Leishmania species: *L. donovani*

Index tests	Type: rK39 immunochromatographic test; Brand: InSure Rapid Test for Visceral Leishmaniasis, InBios International, Washington, USA; Sample: serum
Target condition and reference standard(s)	Target condition: clinical VL; Sample: bone marrow; if bone marrow negative and spleen aspiration possible: spleen; Technique: direct smear examination; Reference standard category: parasitology including spleen aspirate - no serology

Flow and timing

Eleven participants with an uncertain diagnosis were excluded.

Comparative

Notes

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		Low
Was a case-control design avoided?	Yes		Low
Did the study avoid inappropriate exclusions?	Yes		Low
DOMAIN 2: Index Test All tests			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		Low
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	Unclear		Low
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		Low
DOMAIN 4: Flow and Timing			

Chappuis 2003 (Continued)
Chappuis 2003 (Continued)

Question	Answer
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes
Did all patients receive a reference standard?	Yes

Low

Chappuis 2005 - DiaMed

Study characteristics

Patient sampling	Consecutive and prospective enrolment of patients with suspected VL

Patient characteristics and setting	Sample size: 255
Age (among 131 VL patients): mean age 14 years (standard deviation 11)	
Age (among 112 non-VL patients): mean age 16 years (standard deviation 13)	
Sex (among 131 VL patients): 73% men;	
Sex (among 112 non-VL patients): 53% men	
Presenting signs and symptoms: fever for 2 weeks or more and either clinical splenomegaly or wasting syndrome	
Frequency of VL: 54%	
6/112 non-VL patients had previous history of treatment for VL	
HIV: not reported	
Clinical setting: a 120-bed district hospital (Amudat Hospital)	
Country: Uganda	
Endemic Leishmania species: *L. donovani*	

Index tests

| Type: rK39 immunochromatographic test (dual test for visceral leishmaniasis and malaria); |
| Brand: DUAL-IT L/M dipstick, Diamed AG, Switzerland; Sample: blood |

Target condition and reference standard(s)

Target condition: clinical VL
Combination of parasitology of spleen sample (direct smear, Giemsa stain), PCR of spleen sample, serology (DAT), and response to VL therapy
Definition of VL: (1) positive spleen aspirate in two laboratories (by microscopic reading in local or regional laboratory and by PCR in reference laboratory) or (2) DAT >1:12800 and response to VL therapy
Definition of non-VL: (1) DAT titres of <1:1600; or (2) borderline DAT titres with negative spleen aspirate in two laboratories with no diagnosis of VL made during the following 6 months
Reference standard category: combination of parasitology and serology
Chappuis 2005 - DiaMed (Continued)
Flow and timing
Twelve participants were excluded: 2 persons died and 10 had discrepant results for the reference standard

Comparative
Notes
Same patient population as Chappuis 2005 - InBios but different brand of rk39 immunochromatographic test. Considered as two studies in meta-analysis.

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes	Low	Low
Was a case-control design avoided?	Yes	Low	Low
Did the study avoid inappropriate exclusions?	Yes	Low	Low
DOMAIN 2: Index Test All tests			
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes	Low	Low
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	Yes	Low	Low
Were the reference standard results interpreted without knowledge of the results of the index tests?	Yes	Low	Low
DOMAIN 4: Flow and Timing			
Was there an appropriate interval between index test and reference standard?	Yes	Low	Low
Did all patients receive the same reference standard?	Yes	Low	Low
Were all patients included in the analysis?	Yes	Low	Low
Chappuis 2005 - DiaMed (Continued)

| Did all patients receive a reference standard? | Yes |

Chappuis 2005 - InBios

Study characteristics

Patient sampling	Consecutive and prospective enrolment of patients with suspected VL

Patient characteristics and setting
Sample size: 255
Age (among 131 VL patients): mean age 14 years (standard deviation 11)
Age (among 112 non-VL patients): mean age 16 years (standard deviation 13)
Sex (among 131 VL patients): 73% men;
Sex (among 112 non-VL patients): 53% men
Presenting signs and symptoms: fever for 2 weeks or more and either clinical splenomegaly or wasting syndrome
Frequency of VL: 54%
6/112 non-VL patients had previous history of treatment for VL
HIV: not reported
Clinical setting: a 120-bed district hospital (Amudat Hospital)
Country: Uganda
Endemic Leishmania species: *L. donovani*

Index tests
Type: rK39 immunochromatographic test; Brand: InBios International, Washington, USA; Sample: plasma

Target condition and reference standard(s)
Target condition: clinical VL
Combination of parasitology of spleen sample (direct smear, Giemsa stain), PCR of spleen sample, serology (DAT), and response to VL therapy
Definition of VL: (1) positive spleen aspirate in two laboratories (by microscopic reading in local or regional laboratory and by PCR in reference laboratory) or (2) DAT >1:12800 and response to VL therapy
Definition of non-VL: (1) DAT titres of <1:1600; or (2) borderline DAT titres with negative spleen aspirate in two laboratories with no diagnosis of VL made during the following 6 months
Reference standard category: combination of parasitology and serology

Flow and timing
Twelve participants were excluded: 2 persons died and 10 had discrepant results for the reference standard

| Comparative |

Chappuis 2005 - InBios (Continued)

Notes
Same patient population as Chappuis 2005 - DiaMed but different brand of rK39 immunochromatographic test. Considered as two studies in meta-analysis.

Methodological quality	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
DOMAIN 2: Index Test All tests			
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes		
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	Yes		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Yes		
DOMAIN 4: Flow and Timing			
Was there an appropriate interval between index test and reference standard?	Yes		
Did all patients receive the same reference standard?	Yes		
Were all patients included in the analysis?	Yes		
Did all patients receive a reference standard?	Yes		

Low

Low

Low

Low

Low

Low

Low
Chappuis 2006b

Study characteristics

Patient sampling	Consecutive and prospective enrolment of patients with suspected VL
Patient characteristics and setting	**Sample size**: 154
Age (among 85 VL patients)	mean age 22 years (standard deviation 13)
Age (among 57 non-VL patients)	mean age 26 (standard deviation 15)
Sex (among 85 VL patients)	57% men
Age (among 57 non-VL patients)	65% men
Presenting signs and symptoms: fever for 2 weeks or more and clinical splenomegaly	
All patients received malaria treatment	
12/142 participants had previous history of VL	
Frequency of VL: 60%	
HIV: not tested	
Clinical setting: 15-bed first-referral government hospital (Rangeli District Hospital)	
Country: Nepal	
Endemic Leishmania species: *L. donovani*	
Index tests	**Type**: rK39 immunochromatographic test; **Brand**: InSure One-Step Rapid Test for Visceral Leishmaniasis, InBios International, Washington, USA; **Sample**: serum
Target condition and reference standard(s)	**Target condition**: clinical VL
Combination of parasitology of bone marrow sample (direct smear) and serology (DAT) and response to therapy	
Definition of VL: (1) positive bone marrow aspirate during initial evaluation or follow-up; or (2) DAT titre ≥1:3200 and absence of response to antimalarial treatment but successful response to anti-leishmanial therapy	
Definition of non-VL: negative bone marrow aspirate with (1) DAT titre < 1:3200 or with (2) positive DAT but a definite cure with non-VL specific therapy	
Reference standard category: combination of parasitology and serology	
Flow and timing	Twelve patients were excluded: 4 with incomplete diagnostic work-up and 8 with an uncertain diagnosis
Comparative	
Notes	Exclusion of patients with previous history of VL had no significant effect on Se and Sp estimates (data not reported). Data on accuracy of latex agglutination test were incomplete and not included.

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Chappuis 2006b (Continued)

Question	Answer
Was a consecutive or random sample of patients enrolled?	Yes
Was a case-control design avoided?	Yes
Did the study avoid inappropriate exclusions?	Yes

DOMAIN 2: Index Test All tests

Question	Answer
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear

Question	Answer
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear

DOMAIN 3: Reference Standard

Question	Answer
Is the reference standards likely to correctly classify the target condition?	Yes
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear

DOMAIN 4: Flow and Timing

Question	Answer
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes
Did all patients receive a reference standard?	Yes

Low

Cota 2013 - composite 1

Study characteristics

Topic	Description
Patient sampling	Consecutive and prospective enrolment of patients with suspected VL
Patient characteristics and setting	Sample size: 113
Age (VL cases): mean 41.0 years (standard deviation 10.8) |
Cota 2013 - composite 1 (Continued)

Age (non-VL cases): mean 40.0 years (standard deviation 9.8)
Sex (VL cases): 24% men (11 men out of 46)
Sex (non-VL cases): 42% men (28 men out of 67)
Presenting signs and symptoms: clinical suspicion of VL, i.e., more than 14 days of fever or splenomegaly or cytopenia
Previous VL diagnosis: 24 out of 113 participants had a previous history of VL
Frequency of VL: 41%
HIV: 100%
Clinical setting: HIV cohort in reference hospital in Belo Horizonte (Eduardo de Menezes Hospital, Fundação Hospitalar do Estado de Minas Gerais)
Country: Brazil
Endemic Leishmania species: L. infantum

Index tests	Type: rK39 immunochromatographic test; Brand: Kalazar Detect, InBios International, Washington, USA; sample: serum
Target condition and reference standard(s)	Target condition: clinical VL
Samples: bone marrow aspirate and venous blood	
Techniques: direct smear and culture of bone marrow aspirate; PCR on peripheral blood; and three serological tests: index test, indirect fluorescent antibody test (IFI, Bio-Manguinhos) and direct agglutination test (prototype kit)	
Definition of VL and non-VL: decided after clinical follow-up by an adjudication committee with four members. They evaluated results of all tests available, including tests performed for other diagnostic possibilities	
Reference standard category: parasitology and serology	

Flow and timing

Comparative

Notes

Another estimate of Se and Sp based on latent class analysis in the same study population was not included because there was no information about the assessment of the conditional independence assumption (explained in the Criteria for considering studies for this review and in Appendix 1).

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		
Cota 2013 - composite 1 (Continued)

DOMAIN 2: Index Test All tests	Low	High
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes	

DOMAIN 3: Reference Standard	Low	Low
Is the reference standards likely to correctly classify the target condition?	Yes	
Were the reference standard results interpreted without knowledge of the results of the index tests?	No	

DOMAIN 4: Flow and Timing	High	Low
Was there an appropriate interval between index test and reference standard?	Yes	
Did all patients receive the same reference standard?	Yes	
Were all patients included in the analysis?	Yes	
Did all patients receive a reference standard?	Yes	

Cota 2013 - composite 2

Study characteristics

Patient sampling	Consecutive and prospective enrolment of patients with suspected VL
Patient characteristics and setting	**Sample size:** 113
Age (VL cases): mean 41.0 years (standard deviation 10.8)
Age (non-VL cases): mean 40.0 years (standard deviation 9.8)
Sex (VL cases): 24% men (11 men out of 46)
Sex (non-VL cases): 42% men (28 men out of 67)
Presenting signs and symptoms: clinical suspicion of VL, ie more than 14 days of fever or splenomegaly or cytopenia |
Previous VL diagnosis: 24 out of 113 participants had a previous history of VL

Frequency of VL: 37%

HIV: 100%

Clinical setting: HIV cohort in reference hospital in Belo Horizonte (Eduardo de Menezes Hospital, Fundação Hospitalar do Estado de Minas Gerais)

Country: Brazil

Endemic Leishmania species: *L. infantum*

Index tests

Type	Brand	Sample
rK39 immunochromatographic test	Kalazar Detect, InBios International, Washington, USA	serum

Target condition and reference standard(s)

Target condition	Samples	Techniques	Reference standard category
clinical VL	bone marrow aspirate	direct smear and culture	parasitology not including spleen aspirate - no serology

Flow and timing

Two patients were not included in the analysis because bone marrow aspiration was not done

Comparative

Notes

Another estimate of Se and Sp based on latent class analysis in the same study population was not included because there was no information about the assessment of the conditional independence assumption (explained in the Criteria for considering studies for this review and in Appendix 1).

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes	Low	High
Was a case-control design avoided?	Yes	Low	Low
Did the study avoid inappropriate exclusions?	Yes		
DOMAIN 2: Index Test All tests			
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes		
DOMAIN 3: Reference Standard			
Domain 4: Flow and Timing

Question	Yes/No
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes
Did all patients receive a reference standard?	Yes

Low

Cota 2013 - composite 2 (Continued)

- **Is the reference standards likely to correctly classify the target condition?** No
- **Were the reference standard results interpreted without knowledge of the results of the index tests?** Yes

Domain 4: Flow and Timing

- **Was there an appropriate interval between index test and reference standard?** Yes
- **Did all patients receive the same reference standard?** Yes
- **Were all patients included in the analysis?** Yes
- **Did all patients receive a reference standard?** Yes

Low

Diro 2007

Study characteristics

- **Patient sampling**: Consecutive and prospective enrolment of patients with suspected VL
- **Sample size**: 38
- **Age**: median 25 years; range 16-49. No children ≤ 12 years
- **Sex**: 95% men
- **Presenting signs and symptoms**: fever of 2 weeks or more, and splenomegaly or lymphadenopathy or both
- **Pregnant women and people with a previous history of VL treatment were not included. Patients with a thick-film-positive malaria episode were excluded.**
- **Frequency of VL**: 61%
- **HIV**: not tested
- **Clinical setting**: university hospital (Kahsay Abera Hospital in Humera and Gondar College of Medical Sciences)
- **Country**: Ethiopia
- **Endemic Leishmania species**: L. donovani

Index tests

- **Type**: rK39 immunochromatographic test; **Brand**: Kalazar Detect, InBios International, Washington, USA; **Sample**: serum
- **Type**: Latex agglutination test in urine; **Brand**: KAtex, Kalon Biologicals Ltd, Guildford, UK; **Sample**: fresh urine
Target condition and reference standard(s)

Target condition: clinical VL
Sample: spleen or lymph node aspirate
Technique: parasitology: culture or direct smear (Giemsa stain)
Reference standard category: parasitology including spleen aspirate - no serology

Flow and timing

Comparative

Notes

Findings in context of active case detection were not included in this review. Same study as Boelaert 2008 - Ethiopia but different analysis.

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		Low
Was a case-control design avoided?	Yes		Low
Did the study avoid inappropriate exclusions?	Yes		
DOMAIN 2: Index Test All tests			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		Low
DOMAIN 3: Reference Standard			
Is the reference standard likely to correctly classify the target condition?	Yes		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		Low
DOMAIN 4: Flow and Timing			
Was there an appropriate interval between index test and reference standard?	Yes		
Did all patients receive the same reference standard?	Yes		
Were all patients included in the analysis?	Yes		
Study characteristics

Patient sampling

Consecutive and prospective enrolment of patients with suspected VL

Patient characteristics and setting

Sample size: 103
Age: not reported
Sex: not reported
Presenting signs and symptoms: fever for 2 weeks or more and splenomegaly

Not clear whether VL relapse suspects were excluded
Frequency of VL: 51% (45/89)
HIV: not tested
Clinical setting: health centres in rural northern Ethiopia (Humera and Gondar)
Country: Ethiopia

Endemic Leishmania species: *L. donovani*

Index tests

Type: FAST; **Brand:** not applicable; **Sample:** not reported

Target condition and reference standard(s)

Target condition: clinical VL
Sample: lymph node or spleen
Technique: direct smear (Giemsa stain) or culture
Reference standard category: parasitology including spleen aspirate - no serology

Flow and timing

Fourteen patients were excluded, probably because the FAST results could not be read under field conditions.

Comparative

Notes

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			

Rapid tests for the diagnosis of visceral leishmaniasis in patients with suspected disease (Review)
Copyright © 2014 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Hailu 2006 (Continued)

Was a consecutive or random sample of patients enrolled? Yes

Was a case-control design avoided? Yes

Did the study avoid inappropriate exclusions? Yes

Low	Low

DOMAIN 2: Index Test All tests

Were the index test results interpreted without knowledge of the results of the reference standard? Unclear

Unclear	Low

DOMAIN 3: Reference Standard

Is the reference standard likely to correctly classify the target condition? Yes

Were the reference standard results interpreted without knowledge of the results of the index tests? Unclear

Unclear	Low

DOMAIN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard? Yes

Did all patients receive the same reference standard? Yes

Were all patients included in the analysis? Yes

Did all patients receive a reference standard? Yes

Low

Kilic 2008

Study characteristics

Patient sampling Consecutive enrolment of patients with suspected VL

Patient characteristics and setting

Sample size: 59

Age (data available for 24 VL patients): median age 7 years; 22/24 cases <14 years

Sex: 71% men

Presenting signs and symptoms: prolonged fever + splenomegaly or hepatomegaly + anaemia/pancytopenia

Frequency of VL: 41%
Kilic 2008 (Continued)

HIV: not reported

Clinical setting: tertiary care centre

Country: Turkey

Endemic Leishmania species: *L. infantum*

Index tests

Type: FAST; **Brand:** not applicable; **Sample:** serum

Target condition and reference standard(s)

Target condition: clinical VL

Sample: bone marrow

Technique: direct smear (Giemsa stain) and culture

Reference standard category: parasitology not including spleen aspirate - no serology

Flow and timing

No information about exclusion

Comparative

Notes

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection		Low	
Was a consecutive or random sample of patients enrolled?	Unclear		Low
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Unclear		
DOMAIN 2: Index Test All tests			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	No		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		
DOMAIN 4: Flow and Timing			
		High	Low
Kilic 2008 (Continued)

Question	Response
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Unclear
Did all patients receive a reference standard?	Yes

Machado de Assis 2011

Study characteristics

Patient sampling	Consecutive and prospective enrolment of patients with suspected VL
Patient characteristics and setting	**Sample size:** 332
Age: median 13 years; range 1 month - 76 years
Sex: 58% men
Presenting signs and symptoms: fever + coming from endemic area + one of the following: splenomegaly, hepatomegaly, anaemia, leucopenia, and thrombocytopenia
Frequency of VL: 64%
HIV: people with known immunodeficiency were excluded
Clinical setting: two university hospitals and two research centres in four different states
Country: Brazil
Endemic Leishmania species: *L. infantum* |

| Index tests | **Type:** rK39 immunochromatographic test; **Brand:** IT-LEISH, DiaMed Latino-America S.A, Cressier sur Morat, Switzerland; **Sample:** blood |

| Target condition and reference standard(s) | **Target condition:** clinical VL
Sample: bone marrow
Technique: culture or direct smear (Giemsa stain); at least 2 smears per patient
Definition of VL: positive parasitological test
Definition of non-VL: negative parasitological test and firm diagnosis of another disease
Reference standard category: parasitology not including spleen aspirate - no serology |

| Flow and timing | People with missing data or uncertain diagnosis were not mentioned |

| Comparative | |

Rapid tests for the diagnosis of visceral leishmaniasis in patients with suspected disease (Review)

Copyright © 2014 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Machado de Assis 2011 (Continued)

Notes
Same study as Machado de Assis 2012 but different analysis. Same study as Pe-ruhype-Magalhaes 2012 but different brand of index test.

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Unclear		
Did the study avoid inappropriate exclusions?	Unclear		
DOMAIN 2: Index Test All tests			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		Low
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	Unclear		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		Low
DOMAIN 4: Flow and Timing			
Was there an appropriate interval between index test and reference standard?	Yes		
Did all patients receive the same reference standard?	Yes		
Were all patients included in the analysis?	Unclear		
Did all patients receive a reference standard?	Yes		

Machado de Assis 2012

Study characteristics
Machado de Assis 2012 (Continued)

Patient sampling
Consecutive and prospective enrolment of patients with suspected VL

Patient characteristics and setting

- **Sample size:** 404
- **Age:** median 13 years; range 1 month - 77 years; standard deviation 17 years
- **Sex:** 58% men
- **Presenting signs and symptoms:** fever + coming from endemic area + one of the following: splenomegaly, hepatomegaly, anaemia, leucopenia, and thrombocytopenia
- **Frequency of VL:** 67%
- **HIV:** people with known immunodeficiency were excluded
- **Clinical setting:** two university hospitals and two research centres in four different states
- **Country:** Brazil
- **Endemic Leishmania species:** L. infantum

Index tests

- **Type:** rK39 immunochromatographic test; **Brand:** IT-LEISH, DiaMed Latino-America S.A, Cressier sur Morat, Switzerland; **Sample:** finger prick sample of blood

Target condition and reference standard(s)

- **Target condition:** clinical VL
- **Sample:** bone marrow
- **Approach:** latent class analysis
- **Tests included in latent class analysis:** rK39 immunochromatographic test, rK39-ELISA, IFAT, DAT, microscopy of bone marrow sample

Flow and timing
People with missing data or inconclusive test results were not mentioned

Comparative

Notes
Same study as Machado de Assis 2011 but different analysis. Same study as Peruhype-Magalhaes 2012 but different brand of index test.

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Unclear		
Did the study avoid inappropriate exclusions?	Unclear	Low	

DOMAIN 2: Index Test All tests | | | |
Machado de Assis 2012 (Continued)

Question	Type of Evidence
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear

DOMAIN 3: Reference Standard

Question	Type of Evidence
Is the reference standards likely to correctly classify the target condition?	Yes
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear

DOMAIN 4: Flow and Timing

Question	Type of Evidence
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Unclear
Did all patients receive a reference standard?	Yes

Mbui 2013

Study characteristics

Patient sampling	Consecutive and prospective enrolment of patients with suspected VL ≥ 5 years with suspected VL and presenting at outpatient department

Patient characteristics and setting

- **Sample size**: 249 (total number of participants)
- **Age (VL cases)**: median 16 years (interquartile range 10-25 years)
- **Age (non-VL cases)**: median 16.5 years (interquartile range 11-25 years)
- **Sex (VL cases)**: 66.4% men
- **Sex (non-VL cases)**: 79.6% men
- **Presenting signs and symptoms**: fever for 2 weeks or more + clinical splenomegaly + malaria ruled out by a negative rapid test (Paracheck)
- **Frequency of VL**: 59.8%
- **HIV**: 0.5% (195 participants were tested; 1 non-VL case was HIV positive)
- **Clinical setting**: Kimalel Health Centre, Baringo district and Kacheliba Kala-azar Treatment Centre, Pokot North district
Mbui 2013 (Continued)

Country:	Kenya
Endemic *Leishmania* species:	*L. donovani*

Index tests

| Type: rK39 immunochromatographic test; Brand: | DiaMed-IT LEISH, DiaMed AG, Switzerland; Sample: serum |
| Type: rKE16 immunochromatographic test; Brand: | Signal KA, Span Diagnostics Ltd, India; Sample: serum |

Target condition and reference standard(s)

Target condition:	clinical VL
Sample:	spleen aspirate
Technique:	direct smear examination (Giemsa stain)
Definition of VL:	positive splenic aspirate
Definition of non-VL:	negative splenic aspirate
Reference standard category:	parasitology including spleen aspirate - no serology

Flow and timing

Thirty participants were excluded: 27 had contra-indications for spleen aspiration and 3 had an inconclusive smear reading.

Comparative

Notes

Unclear if study population includes people with previous history of VL.

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes	Low	Low
Was a case-control design avoided?	Yes	Low	Low
Did the study avoid inappropriate exclusions?	Yes	Low	Low
DOMAIN 2: Index Test All tests			
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes	Low	Low
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	Yes	Low	Low
Mbui 2013 (Continued)

Were the reference standard results interpreted without knowledge of the results of the index tests?
Yes

DOMAIN 4: Flow and Timing

Question	Status
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Yes
Did all patients receive a reference standard?	Yes

Low

Peruhype-Magalhaes 2012

Study characteristics

Patient sampling	Consecutive and prospective enrolment of patients with suspected VL
Patient sampling and setting	Sample size: 278
Age: mean 12 years; range 1 month - 77 years	
Sex: 58% (161/278) men	
Presenting signs and symptoms: fever + coming from endemic area + one of the following: splenomegaly, hepatomegaly, anaemia, leucopenia, and thrombocytopenia	
Frequency of VL: 69% (193/278)	
HIV: people with known immunodeficiency were excluded	
Clinical setting: two university hospitals and two research centres in four different states	
Country: Brazil	
Endemic Leishmania species: *L. infantum*	
Index tests	**Type:** rK39 immunochromatographic test; **Brand:** Kalazar Detect, InBios International, Washington, USA; **Sample:** stored serum
Target condition and reference standard(s)	**Target condition:** clinical VL
 Sample: bone marrow
 Technique: culture or direct smear (Giemsa stain); at least 2 smears per patient
 Definition of VL: positive parasitological test |
Peruhype-Magalhaes 2012 (Continued)

Definition of non-VL: negative parasitological test and firm diagnosis of another disease

Reference standard category: parasitology not including spleen aspirate - no serology

Flow and timing
Unclear why there are 54 participants less than in Machado de Assis 2011

Comparative

Notes
Same study population as Machado de Assis 2011 and Machado de Assis 2012. Evaluation of a new index test on stored serum samples.

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Unclear		
Did the study avoid inappropriate exclusions?	Unclear		Low
DOMAIN 2: Index Test All tests			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	Unclear		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Yes		
DOMAIN 4: Flow and Timing			
Was there an appropriate interval between index test and reference standard?	Unclear		
Did all patients receive the same reference standard?	Yes		
Were all patients included in the analysis?	No		
Did all patients receive a reference standard? Yes

High

Peruhype-Magalhaes 2012 (Continued)

Rijal 2004

Study characteristics

Patient sampling
Consecutive and prospective enrolment of patients with suspected VL

Patient characteristics and setting

Sample size: 269
Age (155 VL patients): median age 23 (interquartile range 13-26)
Age (77 non-VL patients): median age 20 (interquartile range 10-30)
Sex: not reported
Presenting signs and symptoms: fever for 2 weeks or more and clinical splenomegaly
Frequency of VL: 67%
HIV: done but not reported; at least 3 HIV-positive participants among non-VL patients
Clinical setting: tertiary care centre (B.P. Koirala Institute of Health Sciences in Dharan)
Country: Nepal
Endemic Leishmania species: L. donovani

Index tests
Type: latex agglutination test in urine; Brand: KAtex, Kalon Biological Ltd, Aldershot, UK; Sample: frozen urine

Target condition and reference standard(s)
Target condition: clinical VL
Combination of parasitology (direct smear, Giemsa stain) of bone marrow or spleen aspirate and serology (DAT)
Definition of VL: parasitology positive
Definition of non-VL: parasitology negative and DAT ≤1:3200
Reference standard category: combination of parasitology and serology

Flow and timing
Thirty-seven patients were not included: the urine samples of 8 patients were lost; 1 person left against medical advice; and 28 had an uncertain diagnosis (parasitology negative and DAT positive)

Comparative

Notes
Not clear whether VL relapse suspects were excluded

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
Rijal 2004 (Continued)

DOMAIN 1: Patient Selection

Question	Yes/No
Was a consecutive or random sample of patients enrolled?	Yes
Was a case-control design avoided?	Yes
Did the study avoid inappropriate exclusions?	Yes

DOMAIN 2: Index Test All tests

Question	Yes/No
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes

DOMAIN 3: Reference Standard

Question	Yes/No
Is the reference standards likely to correctly classify the target condition?	Yes
Were the reference standard results interpreted without knowledge of the results of the index tests?	Yes

DOMAIN 4: Flow and Timing

Question	Yes/No
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	No
Did all patients receive a reference standard?	Yes

Ritmeijer 2006

Study characteristics

Attribute	Value
Patient sampling	Consecutive and prospective enrolment of patients with suspected VL
Patient characteristics and setting	Sample size: 356
	Age: not reported
	Sex: not reported
Presenting signs and symptoms: fever for more than 2 weeks + malaria ruled out + wasting + splenomegaly or lymphadenopathy

Frequency of VL: 67% (228/341)

HIV: not reported

Clinical setting: three Kala-azar treatment centres in eastern and southern Sudan, supported by Médecins sans frontières

Country: Sudan

Endemic Leishmania species: *L. donovani*

Index tests

Type	Brand
rK39 immunochromatographic test	DiaMed-IT Leish, DiaMed AG, Cressier sur Morat, Switzerland

Sample
blood

Target condition and reference standard(s)

Target condition: clinical VL

Combination of parasitology (direct smear, Giemsa stain) of lymph node or spleen aspirate sample and serology (DAT)

Definition of VL: parasitology positive or DAT positive ≥1:6400

Definition of non-VL: DAT≤1/400 or borderline DAT with negative aspirate

Reference standard category: combination of parasitology and serology

Flow and timing

Fifteen patients were excluded because of an uncertain diagnosis

Comparative

Notes

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns

DOMAIN 1: Patient Selection

- Was a consecutive or random sample of patients enrolled? | Yes |
- Was a case-control design avoided? | Yes |
- Did the study avoid inappropriate exclusions? | Yes |

Risk of bias | Low |

Applicability concerns | Low |

DOMAIN 2: Index Test All tests

- Were the index test results interpreted without knowledge of the results of the reference standard? | Unclear |

Risk of bias | Unclear |

Applicability concerns | Low |

DOMAIN 3: Reference Standard

- Is the reference standards likely to correctly classify the target condition? | Yes |
Ritmeijer 2006 (Continued)

Were the reference standard results interpreted without knowledge of the results of the index tests?
Unclear

DOMA IN 4: Flow and Timing

Was there an appropriate interval between index test and reference standard?
Yes

Did all patients receive the same reference standard?
Yes

Were all patients included in the analysis?
Yes

Did all patients receive a reference standard?
Yes

Low

Study characteristics

Patient sampling
Consecutive and prospective enrolment of patients with suspected VL

Patient characteristics and setting
Sample size: 323

Age: mean age of VL patients: 25 years (standard error 1);
among non-VL patients, age is reported in subgroups: 73 patients with documented other infections: mean age 26 (standard error 2); 83 patients with presumed other infections: mean age 23 (standard error 2); and 40 patients without final diagnosis: mean age 25 years (standard error 2)

Sex: 69% men

Frequency of VL: 39%

Presenting signs and symptoms: persistent fever with or without splenomegaly and suspected VL

Some patients had been empirically treated with antimalarial or antibacterial agents before referral, without response

HIV: not reported

Clinical setting: kala-azar units in Varanasi and Muzaffarpur, linked to research centre

Country: India

Endemic Leishmania species: L. donovani

Index tests
Type: rK39 immunochromatographic test; Brand: not applicable; Sample: blood

Target condition and reference standard(s)
Target condition: clinical VL

Combination of parasitology (direct smear Giemsa stain) of spleen aspirate sample and diagnosis of other diseases

Sundar 1998
Sundar 1998 (Continued)

Reference standard category: parasitology including spleen aspirate - no serology

Flow and timing

Reference standard was conditional on result of index test.

Comparative

Notes

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes	Low	Low
Was a case-control design avoided?	Yes	Low	Low
Did the study avoid inappropriate exclusions?	Yes	Low	Low
DOMAIN 2: Index Test All tests			
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes	Low	Low
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	Yes	Low	Low
Were the reference standard results interpreted without knowledge of the results of the index tests?	Yes	Low	Low
DOMAIN 4: Flow and Timing			
Was there an appropriate interval between index test and reference standard?	Yes		
Did all patients receive the same reference standard?	No		
Were all patients included in the analysis?	Yes	High	
Study characteristics

Patient sampling
Consecutive and prospective enrolment of patients with suspected VL

Patient characteristics and setting

Characteristic	Value
Sample size	352
Age	median 15 years; interquartile range 2-65
Sex	55% men
Presenting signs and symptoms	fever for 2 weeks or more and splenomegaly
No children < 1 year old; no pregnant women; no people with past kala-azar history	
Frequency of VL	80%
HIV	known HIV infection exclusion criterion
Clinical setting	two research centres, in Muzaffarpur and Patna
Country	India
Endemic Leishmania species	L. donovani

Index tests

Test Type	Brand	Sample
rK39 immunochromatographic test	InBios International, Washington, USA;	serum or blood
rK26 immunochromatographic test	InBios International, Washington, USA;	serum or blood
Latex agglutination test in urine	KAtex, Kalon Biologicals, Aldershot, UK;	fresh urine

Target condition and reference standard(s)

Condition/Standard	Definition of VL	Definition of non-VL
Target condition	Clinical VL	Clinical VL
Combination of parasitology (direct smear, Giemsa stain) of spleen aspirate sample and serology (DAT) and clinical diagnosis / follow-up / response to therapy		
Definition of VL	(1) spleen parasitology positive; or (2) clinical diagnosis and DAT positive ≥ 1:3200 and response to anti-leishmanial therapy	
Definition of non-VL	spleen parasitology negative and alternative diagnosis and no VL during follow-up of six months	

Flow and timing
No withdrawals explained.

Notes
Same study as Boelaert 2008 - India but different analysis and additional test (rK26 immunochromatographic test). Group of 100 healthy endemic controls not included in this review.

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Sundar 2007 (Continued)

Question	Answer	Low	Low
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Did the study avoid inappropriate exclusions?	Yes		

DOMAIN 2: Index Test All tests

Question	Answer	Low	Low
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes		

DOMAIN 3: Reference Standard

Question	Answer	Low	Low
Is the reference standard likely to correctly classify the target condition?	Yes		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Yes		

DOMAIN 4: Flow and Timing

Question	Answer	Low
Was there an appropriate interval between index test and reference standard?	Yes	
Did all patients receive the same reference standard?	Yes	
Were all patients included in the analysis?	Yes	
Did all patients receive a reference standard?	Yes	

Study characteristics

Patient sampling	Consecutive and prospective enrolment of patients with suspected VL
Patient characteristics and setting	**Sample size**: 179
	Age: reported for larger population (n = 699): mean age is 25.4 (standard deviation 10.1)
Sex: reported for larger population (n = 699): ratio men:women is 15:1

Presenting signs and symptoms: clinical VL case definition (not specified)

No patients with previous history of VL treatment.

Frequency of VL: 94%

HIV: all HIV negative

Clinical setting: kala-azar treatment centre supported by Médecins sans frontières (Kahsay Abera Hospital in Humera)

Country: Ethiopia

Endemic Leishmania species: *L. donovani*

Index tests

Type: rK39 immunochromatographic test; **Brand:** DiaMed AG, Switzerland; **Sample:** blood

Target condition and reference standard(s)

Target condition: clinical VL

Combination of parasitology (direct smear, Giemsa stain) of spleen aspirate sample and serology (DAT)

Definition of VL: (1) spleen parasitology positive; or (2) DAT positive ≥ 1:3200

Definition of non-VL: (1) DAT ≤ 1:400; or (2) DAT ≤ 1:3200 and spleen parasitology negative

Reference standard category: combination of parasitology and serology

Flow and timing

Many patients with unknown HIV status were not included.

Comparative

Notes

Methodological quality

Item	Authors’ judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes	Low	Low
Was a case-control design avoided?	Yes	Low	Low
Did the study avoid inappropriate exclusions?	Yes	Low	Low
DOMAIN 2: Index Test All tests			
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes	Low	Low
Domain 3: Reference Standard

Question	Answer
Is the reference standards likely to correctly classify the target condition?	Unclear
Were the reference standard results interpreted without knowledge of the results of the index tests?	Yes

Domain 4: Flow and Timing

Question	Answer
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Unclear
Were all patients included in the analysis?	No
Did all patients receive a reference standard?	Yes

High

Patient sampling

- **Sample size:** 71
- **Age:** reported for larger population (n = 699): mean age is 25.4 (standard deviation 10.1)
- **Sex:** reported for larger population (n = 699): ratio men:women is 15:1

Presenting signs and symptoms: clinical VL case definition (not specified)

No patients with previous history of VL treatment.

- **Frequency of VL:** 92%
- **HIV:** all HIV positive

Clinical setting: kala-azar treatment centre supported by Médecins sans frontières (Kahsay Abera Hospital in Humera)

Country: Ethiopia

Endemic Leishmania species: L. donovani

Index tests

- **Type:** rK39 immunochromatographic test; **Brand:** DiaMed AG, Switzerland; **Sample:** blood

Target condition and reference standard(s)

- **Target condition:** clinical VL
Combination of parasitology (direct smear, Giemsa stain) of spleen aspirate sample and serology (DAT)

Definition of VL: (1) spleen parasitology positive; or (2) DAT positive ≥ 1:3200

Definition of non-VL: (1) DAT ≤ 1:400; or (2) DAT ≤ 1:3200 and spleen parasitology negative

Reference standard category: combination of parasitology and serology

Flow and timing

Many patients with unknown HIV status were not included.

Comparative

Notes

Not included in meta-analysis because this is the only evaluation of the rK39 immunochromatographic test in a population of HIV-positive patients.

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes	Low	Low
Was a case-control design avoided?	Yes	Low	Low
Did the study avoid inappropriate exclusions?	Yes		
DOMAIN 2: Index Test All tests			
Were the index test results interpreted without knowledge of the results of the reference standard?	Yes	Low	Low
DOMAIN 3: Reference Standard			
Is the reference standards likely to correctly classify the target condition?	Unclear		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Yes	Unclear	Low
DOMAIN 4: Flow and Timing			
Was there an appropriate interval between index test and reference standard?	Yes		
Did all patients receive the same reference standard?	Unclear		
Study characteristics			
----------------------	---		
Patient sampling	Consecutive enrolment of patients with suspected VL		
Patient characteristics and setting			
Sample size:	58		
Age:	only reported for 13 cases with all tests positive: 12 children between 1 and 15 years and 1 adult of 48 years		
Sex:	not reported		
Frequency of VL:	28%		
Presenting signs and symptoms:	≥1 of the following signs: fever, anaemia, thrombocytopenia, leucopenia, splenomegaly, hepatomegaly, and weight loss		
HIV:	not reported		
Clinical setting:	various regional hospitals		
Country:	Turkey		
Endemic Leishmania species:	L. infantum		
Index tests			
Type:	rK39 immunochromatographic test; Brand: InBios International, Washington, USA; Sample: serum or plasma		
Target condition and reference standard(s)			
Target condition:	clinical VL		
Combination of parasitology (direct smear, Giemsa stain) of lymph node or bone marrow aspirate sample and serology (IFAT)			
Definition of VL:	(1) lymph node or bone marrow parasitology positive; or (2) IFAT positive ≥ 1:128		
Definition of non-VL:	parasitology and IFAT negative		
Reference standard category:	combination of parasitology and serology		
Flow and timing	No information about excluded patients.		
Comparative			
Notes			
Methodological quality			
Item	Authors' judgement	Risk of bias	Applicability concerns
ter Horst 2009 - HIV pos (Continued)			
Were all patients included in the analysis?	No		
Did all patients receive a reference standard?	Yes		
	High		
Toz 2004 (Continued)

DOMAIN 1: Patient Selection

Question	Weight
Was a consecutive or random sample of patients enrolled?	Unclear
Was a case-control design avoided?	Yes
Did the study avoid inappropriate exclusions?	Unclear

Unclear Low

DOMAIN 2: Index Test All tests

Question	Weight
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear

Unclear Low

DOMAIN 3: Reference Standard

Question	Weight
Is the reference standards likely to correctly classify the target condition?	Yes
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear

Unclear Low

DOMAIN 4: Flow and Timing

Question	Weight
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Unclear
Did all patients receive a reference standard?	Yes

Unclear

Veeken 2003 - composite

Study characteristics

Question	Value
Patient sampling	Retrospective selection of patients with suspected VL
Patient characteristics and setting	
Sample size: 77	
Age: median 11; range 4-66 years	
Sex: 53% men	
Presenting signs and symptoms: fever, and splenomegaly or wasting	
Veeken 2003 - composite (Continued)

Frequency of VL: 70%
HIV: not reported

Clinical setting: kala-azar treatment centre at Um el Kher supported by Médecins sans frontières

Country: Sudan

Endemic Leishmania species: *L. donovani*

Index tests	Type:	rK39 immunochromatographic test; Brand: Amrad ICT, Brookdale, Australia; Sample: serum

| Target condition and reference standard(s) | Target condition: clinical VL

- Combination of parasitology (direct smear, Giemsa stain) of spleen aspirate sample and serology (DAT)
- **Definition of VL:** spleen parasitology positive or DAT positive ≥ 1:6400
- **Definition of non-VL:** all other patients

Reference standard category: combination of parasitology and serology

| Flow and timing | Only people with stored serum and available results of DAT and parasitological test of spleen aspirate were included. According to the protocol by Médecins sans frontières, splenic aspiration was done in patients with suspected VL who were critically ill and in those with borderline DAT titres. |

| Comparative | |

| Notes | Same study as Veeken 2003 - spleen but different analysis. |

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns

DOMAIN 1: Patient Selection

Was a consecutive or random sample of patients enrolled?	No	High	High

Was a case-control design avoided?	Yes	

Did the study avoid inappropriate exclusions?	Unclear	

DOMAIN 2: Index Test All tests

Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear

| | Unclear | Low |
| | Uns certain | |

DOMAIN 3: Reference Standard

Rapid tests for the diagnosis of visceral leishmaniasis in patients with suspected disease (Review)

Copyright © 2014 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Veeken 2003 - composite (Continued)

Question	Response
Is the reference standards likely to correctly classify the target condition?	Yes
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
DOMAIN 4: Flow and Timing	
 Was there an appropriate interval between index test and reference standard? | Yes |
 Did all patients receive the same reference standard? | Unclear |
 Were all patients included in the analysis? | No |
 Did all patients receive a reference standard? | Unclear |

Veeken 2003 - spleen

Study characteristics

Patient sampling	Retrospective selection of patients with suspected VL

Patient characteristics and setting	Sample size: 77
Age: median 11; range 4-66 years	
Sex: 53% men	
Presenting signs and symptoms: fever, and splenomegaly or wasting	
Frequency of VL: 65%	
HIV: not reported	
Clinical setting: kala-azar treatment centre at Um el Kher supported by Médecins sans frontières	
Country: Sudan	
Endemic Leishmania species: L. donovani	

Index tests

| Type: rK39 immunochromatographic test; Brand: Amrad ICT, Brookdale, Australia; Sample: serum |

Target condition and reference standard(s)

| Target condition: clinical VL |
| Sample: spleen |
| Technique: parasitology (direct smear, Giemsa stain) |
Veeken 2003 - spleen (Continued)

Reference standard category: parasitology including spleen aspirate - no serology

Flow and timing
Only people with stored serum and available results of DAT and parasitological test of spleen aspirate were included. According to the protocol by Médecins sans frontières, splenic aspiration was done in patients with suspected VL who were critically ill and in those with borderline DAT titres.

Comparative

Notes
Same study as Veeken 2003 - composite but different analysis.

Methodological quality

Item	Authors' judgement	Risk of bias	Applicability concerns
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	No		High
Was a case-control design avoided?	Yes		High
Did the study avoid inappropriate exclusions?	Unclear		
DOMAIN 2: Index Test All tests			
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear		Low
DOMAIN 3: Reference Standard			
Is the reference standard likely to correctly classify the target condition?	Yes		
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear		Low
DOMAIN 4: Flow and Timing			
Was there an appropriate interval between index test and reference standard?	Yes		
Did all patients receive the same reference standard?	Unclear		
Were all patients included in the analysis?	No		
Did all patients receive a reference standard?	Unclear		
Study characteristics			
-------------------------	--------------------------------		
Patient sampling	Consecutive enrolment of patients with suspected VL		
Patient characteristics and setting			
Sample size:	89		
Age:	not reported		
Sex:	not reported		
Presenting signs and symptoms:	not specified (suggestive clinical signs and symptoms of VL)		
Frequency of VL:	14% (12/85)		
HIV:	100% of cases and 91% of non-cases		
Clinical setting:	not reported		
Country:	Spain		
Endemic Leishmania species:	L. infantum		

Index tests	
Type:	latex agglutination test in urine; **Brand:** KAtex, Kalon Biological Ltd, Aldershot, UK

Target condition and reference standard(s)	
Target condition:	clinical VL
Sample:	bone marrow
Technique:	parasitology; culture or direct smear (Giemsa stain)
Reference standard category:	parasitology not including spleen aspirate - no serology

| **Flow and timing** | Three patients are not included in the analysis |

Comparative	
Notes	Not included in meta-analysis because only evaluation of latex agglutination test in population with mainly HIV-positive patients.

Methodological quality			
Item	**Authors’ judgement**	**Risk of bias**	**Applicability concerns**
DOMAIN 1: Patient Selection			
Was a consecutive or random sample of patients enrolled?	Yes		
Was a case-control design avoided?	Yes		
Vilaplana 2004 (Continued)

Did the study avoid inappropriate exclusions?	Unclear
DOMAIN 2: Index Test All tests	
Were the index test results interpreted without knowledge of the results of the reference standard?	Unclear
DOMAIN 3: Reference Standard	
Is the reference standards likely to correctly classify the target condition?	Unclear
Were the reference standard results interpreted without knowledge of the results of the index tests?	Unclear
DOMAIN 4: Flow and Timing	
Was there an appropriate interval between index test and reference standard?	Yes
Did all patients receive the same reference standard?	Yes
Were all patients included in the analysis?	Unclear
Did all patients receive a reference standard?	Yes

DAT: direct agglutination test
ELISA: enzyme-linked immuno-sorbent assay
FAST: fast agglutination screening test
IFAT: indirect fluorescence antibody test
LCA: latent class analysis
PCR: polymerase chain reaction
Se: sensitivity
Sp: specificity
VL: visceral leishmaniasis

Characteristics of excluded studies [ordered by study ID]

Study	Reason for exclusion
Abeijon 2013	index test is not a rapid test
Ahsan 2010	not phase III diagnostic accuracy study
Akhoundi 2010	not phase III diagnostic accuracy study
Al-Nahhas 2003	target condition is not clinical visceral leishmaniasis
Study	Reason for exclusion
-------------------	---
Al-Nahhas 2008	not phase III diagnostic accuracy study
Alam 2008	not phase III diagnostic accuracy study
Alborzi 2006	not phase III diagnostic accuracy study
Amato 2009	not phase III diagnostic accuracy study
Arya 1997	not original research article
Arya 2001	not original research article
Attar 2001	not phase III diagnostic accuracy study
Azazy 2004	not phase III diagnostic accuracy study
Bagchi 1998	not phase III diagnostic accuracy study
Bern 2000	not phase III diagnostic accuracy study
Brandonisio 2002	not phase III diagnostic accuracy study
Canavate 2011	not phase III diagnostic accuracy study
Carvalho 2003	not phase III diagnostic accuracy study
Cruz 2006	not phase III diagnostic accuracy study
de Assis 2008	publication of the same study in more than one record
Delgado 2001	not phase III diagnostic accuracy study
Edrissian 2003	not phase III diagnostic accuracy study
El-Safi 2003	not phase III diagnostic accuracy study
Ferreira Dourado 2007	not original research article
Gavgani 2008	not phase III diagnostic accuracy study
Goswami 2003	not phase III diagnostic accuracy study
Goswami 2007	not phase III diagnostic accuracy study
Goswami 2012	not phase III diagnostic accuracy study
Gupta 1994	not phase III diagnostic accuracy study
Hatam 2009	not phase III diagnostic accuracy study
Hommel 2001	not original research article
Iqbal 2002	not phase III diagnostic accuracy study
Jelinek 1999	target condition is not clinical visceral leishmaniasis
Study	Reason for exclusion
---------------------------	-----------------------------------
Khan 2009	not phase III diagnostic accuracy study
Khan 2010	not phase III diagnostic accuracy study
Kumar 2006	not phase III diagnostic accuracy study
Lemos 2003	not phase III diagnostic accuracy study
López Corbalán 2012	not phase III diagnostic accuracy study
Mandal 2008	reference standard is not according to criteria
Mansour 2009	not phase III diagnostic accuracy study
Marty 2007	not phase III diagnostic accuracy study
Mathur 2005	not phase III diagnostic accuracy study
Matlashewski 2013	reference standard is not according to criteria
Mbu 2011	publication of the same study in more than one record
Mohapatra 2010	not phase III diagnostic accuracy study
Monno 2009	not phase III diagnostic accuracy study
Moura 2013	reference standard is not according to criteria
Mueller 2013	not phase III diagnostic accuracy study
Ozerdem 2009	reference standard is not according to criteria
Ozkan 2008	not phase III diagnostic accuracy study
Pappas 1983	not phase III diagnostic accuracy study
Pappas 1984	not phase III diagnostic accuracy study
Pappas 1984a	not phase III diagnostic accuracy study
Pattabhi 2010	not phase III diagnostic accuracy study
Qu 1987	target condition is not clinical visceral leishmaniasis
Qu 2000	not phase III diagnostic accuracy study
Riera 2004	not phase III diagnostic accuracy study
Rouf 2009	not phase III diagnostic accuracy study
Saghrouni 2009	not phase III diagnostic accuracy study
Saha 2011	not phase III diagnostic accuracy study
Salam 2008	not phase III diagnostic accuracy study
Study	Reason for exclusion
--------------------	---
Salam 2011	target condition is not clinical visceral leishmaniasis
Salotra 2005	not original research article
Sarkari 2005	not phase III diagnostic accuracy study
Sarker 2003	not phase III diagnostic accuracy study
Schallig 2002	not phase III diagnostic accuracy study
Schoone 2001	not phase III diagnostic accuracy study
Scott 1991	not phase III diagnostic accuracy study
Senaldi 1996	not phase III diagnostic accuracy study
Shamsuzzaman 2003	not phase III diagnostic accuracy study
Sharma 2009	target condition is not clinical visceral leishmaniasis
Silva 2005	not phase III diagnostic accuracy study
Singh 2009	not phase III diagnostic accuracy study
Singh 2010	not phase III diagnostic accuracy study
Sinha 2008	not phase III diagnostic accuracy study
Srivastava 1988	not phase III diagnostic accuracy study
Sundar 2002	reference standard is not according to criteria
Sundar 2002a	not phase III diagnostic accuracy study
Sundar 2002b	not original research article
Sundar 2005	not phase III diagnostic accuracy study
Sundar 2005a	publication of the same study in more than one record
Sundar 2006	not phase III diagnostic accuracy study
Sundar 2006a	not phase III diagnostic accuracy study
Teran-Angel 2010	not phase III diagnostic accuracy study
Walton 1986	not phase III diagnostic accuracy study
Walton 1987	publication of the same study in more than one record
Welch 2008	not phase III diagnostic accuracy study
Zijlstra 2001	not phase III diagnostic accuracy study
DATA

Presented below are all the data for all of the tests entered into the review.

Table Tests. Data tables by test

Test	No. of studies	No. of participants
1 rK39 immunochromatographic test	26	5544
2 KAteX	9	1848
3 FAST	2	148
4 rK26 immunochromatographic test	1	352
5 rK39 Primary Analysis	16	3574
6 rKE16 immunochromatographic test	1	219

Test 1. rK39 immunochromatographic test.

Test 2. KAteX.

Test 3. FAST.

Test 4. rK26 immunochromatographic test.

Test 5. rK39 Primary Analysis.

Test 6. rKE16 immunochromatographic test.

ADDITIONAL TABLES

Table 1. Studies on rK39 ICT presenting two sets of Se and Sp estimates based on different reference standards: estimates included in primary analysis and sensitivity analysis

Study	Selected for primary analysis	Selected for sensitivity analysis
Table 1. Studies on rK39 ICT presenting two sets of Se and Sp estimates based on different reference standards: estimates included in primary analysis and sensitivity analysis (Continued)

Study and Reference	Methodology	Reference Standards
Boelaert 2004 - LCA & Boelaert 2004 - classic	LCA	Parasitology including spleen aspirate – no serology
Boelaert 2008 - Ethiopia & Diro 2007	LCA	Parasitology including spleen aspirate – no serology
Boelaert 2008 - India & Sundar 2007	LCA	Parasitology and serology
Cota 2013 - composite 1 & Cota 2013 - composite 2 *	Parasitology and serology	Parasitology not including spleen aspirate - no serology
Machado de Assis 2012 & Machado de Assis 2011	LCA	Parasitology not including spleen aspirate - no serology
Veeken 2003 - composite & Veeken 2003 - spleen	Parasitology and serology	Parasitology including spleen aspirate – no serology

* Cota 2013 describes HIV-infected patients only and is not included in the formal meta-analysis

Table 2. Overall Analysis Summary

Test	Number of studies	Se (95% CI)	Sp (95% CI)
rK39 immunochromatographic test			
Overall	18	91.9 (84.8 to 96.5)	92.4 (85.6 to 96.8)
Indian subcontinent	6	97.0 (90.0 to 99.5)	90.2 (76.1 to 97.7)
East Africa	9	85.3 (74.5 to 93.2)	91.1 (80.3 to 97.3)
Latex agglutination test			
Overall	6	63.6 (40.9 to 85.6)	92.9 (76.7 to 99.2)

Table 3. Heterogeneity assessment of the rK39 ICT meta-analysis

Sensitivity	Specificity
Estimate (95% CI)	Estimate (95% CI)
Geographic region	
Indian subcontinent	
97.0 (90.0 to 99.5)	90.2 (76.1 to 97.7)
East Africa	
85.3 (74.5 to 93.2)	91.1 (80.3 to 97.3)
Commercial brand	
DiaMed	
86.4 (70.7 to 95.9)	94.4 (80.5 to 99.2)
InBios	
91.3 (83.8 to 96.3)	91.2 (83.1 to 96.3)
Table 3. Heterogeneity assessment of the rK39 ICT meta-analysis (Continued)

Disease prevalence in sample	Sensitivity	Specificity
Low (< 65%)	91.0	94.4
High (≥ 65%)	92.4	89.8

Study size	Sensitivity	Specificity
Small (< 250)	91.5	89.8
Large (≥ 250)	92.3	94.5

QUADAS-2: risk of bias

Sensitivity	Specificity	
Low	89.5	96.0
Unclear	91.9	92.0
High	93.0	87.8

Reference standard	Sensitivity	Specificity
Parasitology - no serology *	95.6	89.1
Parasitology and serology	89.6	94.6
Latent class analysis	91.0	91.5

* The categories “parasitology including spleen aspirate - no serology” and “parasitology not including spleen aspirate - no serology” were combined because the latter category contained only one study.

Table 4. Sensitivity analysis results of the rK39 ICT meta-analysis

Sensitivity	Specificity			
Estimate	(95% CI)	Estimate	(95% CI)	
Main Analysis				
Indian subcontinent	97.0	(90.0 to 99.5)	90.2	(76.1 to 97.7)
East Africa	85.3	(74.5 to 93.2)	91.1	(80.3 to 97.3)

Alternative Analysis Set				
Indian subcontinent	96.1	(88.9 to 99.2)	86.7	(69.2 to 99.2)
East Africa	85.2	(75.0 to 92.7)	90.1	(77.0 to 97.4)

| Bayesian analysis allowing for imperfect reference standards: expert priors - using main analysis set | | |
| Indian subcontinent | 97.3 | (91.9 to 99.5) | 93.7 | (74.9 to 99.7) |
Table 4. Sensitivity analysis results of the rK39 ICT meta-analysis (Continued)

Geographic region	Sensitivity Estimate (95% CI)	Specificity Estimate (95% CI)
Indian subcontinent	97.3 (91.9 to 99.5)	93.0 (77.8 to 99.3)
East Africa	86.1 (77.2 to 93.3)	94.3 (83.8 to 99.6)

Bayesian analysis allowing for imperfect reference standards: vague priors - using main analysis set

Geographic region	Sensitivity Estimate (95% CI)	Specificity Estimate (95% CI)
Indian subcontinent	97.3 (91.9 to 99.5)	93.0 (77.8 to 99.3)
East Africa	86.1 (77.2 to 93.3)	94.3 (83.8 to 99.6)

Table 5. Heterogeneity assessment of the Latex agglutination test meta-analysis

Geographic region	Sensitivity Estimate (95% CI)	Specificity Estimate (95% CI)
Indian subcontinent	50.8 (34.1 to 69.3)	95.3 (73.6 to 99.8)
East Africa	77.9 (58.2 to 92.3)	88.6 (59.5 to 92.3)

Study size	Sensitivity Estimate (95% CI)	Specificity Estimate (95% CI)
Small (< 200)	52.9 (27.6 to 84.1)	86.2 (52.5 to 99.2)
Large (≥ 200)	68.5 (45.2 to 88.2)	94.5 (49.0 to 100.0)

Table 6. Sensitivity analysis results of the Latex agglutination test meta-analysis

Analysis	Sensitivity Estimate (95% CI)	Specificity Estimate (95% CI)
Main Analysis	63.6 (40.9 to 85.6)	92.9 (76.7 to 99.2)
Alternative Analysis Set	63.4 (40.8 to 85.4)	92.8 (76.3 to 99.2)

A P P E N D I C E S

Appendix 1. Statistical methods

A short summary of some less common statistical methods used in this review is given below. A more extensive description of the model used to correct for imperfect reference standards can be found in Menten 2013.

1) Latent class analysis (LCA)

LCA is a modelling technique that can be used in situations in which there is no good reference standard. It assumes that the true disease status in a study population is unknown (or latent). The LCA model estimates the sensitivity and specificity of a set of diagnostic tests (A, B, C, …) on the basis of observed frequencies in test patterns (ABC++, ABC++, ABC++, …). As such, the LCA model provides a model-based estimate of the gold standard classification; ie the best way to group study participants in diseased or non-diseased.
The basic latent class model assumes that the observed variables are conditionally independent. This means that there should be no associations between the results of the diagnostic tests within each category of the latent variable (disease status). If this assumption does not hold, more advanced techniques (e.g., based on Bayesian statistical methodology) can be used. To be selected for this review, studies using LCA had to assess the conditional independence assumption between the diagnostic tests, and if conditional dependence was expected, they had to use appropriate statistical methods to take this into account. If a study was selected, the sensitivity and specificity estimates derived from the final LCA model were included in this review.

More information can be found in Hui 1980, Black 2002, Branscum 2005, and Baughman 2008 among other references.

2) The complementary Log-Log function

In the bivariate model a "link" function \(g(y) \) is used to allow the use of the Normal (Gaussian) distribution to model the underlying study-specific sensitivity (Se) and specificity (Sp) of each study included in the meta-analysis. The standard link function used in the bivariate model is the logit link:

\[
g(y) = \log \left(\frac{y}{1-y} \right)
\]

An alternative link function is the complementary log log (cloglog) link:

\[
g(y) = \log(-\log(1-y))
\]

Both link functions transform Se and Sp, which are in the interval [0,1], to any real number between minus infinity and plus infinity.

The advantage of the cloglog link with our data is that it approaches infinity less quickly when \(y \) approaches 1 and consequently it mitigates the influence of studies that report 100% Se or Sp. This also reduces the inflation of the random-effects standard deviations as is apparent from comparison of Figure 6 and Figure 10. With the logit link, the prediction region extends to below the line of no diagnostic value (Se + Sp < 1), while the study which reports the lowest diagnostic value has Se = 0.75 and Sp = 0.70 (Figure 10). On the other hand, some observed data with high Se and Sp are not contained within the prediction region. The prediction region of the model with the cloglog link contains all observed data points, while not extending far beyond the studies with lowest observed Se and Sp (Figure 6). This is reflected in a lower deviance information criterion (DIC), a measure of model fit, for the cloglog model formulation compared to the logit formulation. The model with the lowest DIC shows the best fit to the data.

3) WinBUGS code for the primary model

WinBUGS is a statistical software for Bayesian analysis using Markov chain Monte Carlo methods. WinBUGS (or its recent open-source version OpenBUGS) provides a flexible Bayesian framework for model fitting. It can be used to fit both the bivariate and HSROC models.

Below is the code to fit the basic bivariate model, allowing for data from studies that use a reference standard and for studies that use latent class analysis.

Assuming there are \(N = N_1 + N_2 \) studies:

- for the \(N_1 \) studies that use a reference standard, the data extracted is:
 - \(N_{\text{Diseased}[i]} \) and \(N_{\text{NotDiseased}[i]} \): the (true) number of diseased and non-diseased subjects in study \(i \)
 - \(TP[i], TN[i] \): the number of true positives and true negatives in study \(i \)
- for the \(N_2 \) studies that use latent class analysis, the data extracted is:
 - \(Y_1[i] \) and \(Y_2[i] \): the estimates of \(g(Se) \) and \(g(Sp) \) obtained from the results of the LCA reported in the publication for study \(i \)
 - \(W_1[i] \) and \(W_2[i] \): the estimates of the standard error of \(Y_1[i] \) and \(Y_2[i] \) for study \(i \)
 - with \(g() \) the link function (logit or cloglog)

The code is as follows:

```
model{
    # Binomials for Studies that Use a Reference Standard
    # (where the reference standard is presumed to be perfect)
    for(i in 1:N1){
        TP[i] ~ dbin(SE[i],N Diseased[i])
        TN[i] ~ dbin(SP[i],N NotDiseased[i])
    }

    # (Review)
    Copyright © 2014 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
# Normals for Studies that Use LCA

```r
for(i in 1:N2){
Y1[i] ~ dnorm(alpha[i+N1,1],W1[i])
Y2[i] ~ dnorm(alpha[i+N1,2],W2[i])
}
```

# Bivariate normals for g(Se) and g(Sp)

```r
for(i in 1:N){

Implement the link function g()

If logit is used
logit(SE[i]) <- alpha[i,1]
logit(SP[i]) <- alpha[i,2]

OR

If cloglog is used
SE[i] <- 1-exp(-exp(alpha[i,1]))
SP[i] <- 1-exp(-exp(alpha[i,2]))

Specify the bivariate normal
alpha[i,1:2] ~ dmnorm(mu[,R[,,]]

}
```

# Specify Non-Informative Priors

```r
for means:
mu[1] ~ dnorm(0.0,.37)
mu[2] ~ dnorm(0.0,.37)

for variance-covariance matrix
R[1:2,1:2] ~ dwish(Omega[,], 2)
```

Note: Prior for Omega are provided as data:

Omega = matrix(c(.001,0,0,.001),nrow=2,byrow=T)

### Appendix 2. Search strategy

#### Detailed search strategy

Search set	MEDLINE	EMBASE
1	Exp Leishmaniasis, visceral [MeSH]	Exp Visceral leishmaniasis [Emtree]
2	Exp Leishmania donovani [MeSH]	Exp Leishmania donovani [Emtree]
3	Exp Leishmania infantum [MeSH]	Exp Leishmania infantum [Emtree]

**Rapid tests for the diagnosis of visceral leishmaniasis in patients with suspected disease (Review)**

Copyright © 2014 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
4. Kala azar OR kala-azar ti, ab
5. Leishmania chagasi ti, ab
6. Visceral leishmaniasis* ti, ab
7. 1-6/OR
8. Rapid diagnostic test* ti, ab
9. RDT ti, ab
10. Antigen* detect* ti, ab
11. Antibod* detect* ti, ab
12. Latex Fixation Tests [MeSH]
13. Lateral flow test ti, ab
14. Enzyme-Linked Immunosorbent Assay [MeSH]
15. Serodiagnostic test* ti, ab
16. ELISA ti, ab
17. Direct agglutination test* ti, ab
18. Dipstick* ti, ab
19. K39 antigen, Leishmania [Substance Name]
20. K26 antigen, Leishmania [Substance Name]
21. K39 Or rK39 ti, ab
22. Strip test* ti, ab
23. Reagent kits, diagnostic [MeSH]
24. Immunoblotting [MeSH]
25. Serological tests [MeSH]
26. 8-25/OR
27. T AND 26
28. Limit 27 to humans
29. Limit 27 to humans

Rapid tests for the diagnosis of visceral leishmaniasis in patients with suspected disease (Review)

Copyright © 2014 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Appendix 3. Interpretation of the clinical relevance of the findings of this review - predictive values and likelihood ratios

What follows is an interpretation of the clinical relevance of the findings of this review regarding the rK39 immunochromatographic test (ICT) when it is used to diagnose visceral leishmaniasis (VL) among patients with febrile splenomegaly and no previous history of VL.

Indian subcontinent

When the rK39 ICT is used in the Indian subcontinent, in a setting where the prior probability of VL among clinical suspects is 40%, which is typically seen in a peripheral health centre in an endemic area, the positive predictive value of the test is 87%. This means that out of 100 patients with a positive rK39 result, 87 would have VL (true positive result) and 13 would have another disease (false positive). The negative predictive value is 88%, meaning that out of 100 patients with a negative rK39 ICT result, 98 would have another disease (true negative) and 2 would have VL (false negative).

When the same test is used in a setting with a prior probability of VL of 60%, which is more typical for a referral centre in an endemic area, the positive predictive value is 94% and the negative predictive value is 95%.

A likelihood ratio is another way of expressing how informative a diagnostic test is: it indicates to what extent the rK39 ICT result changes the odds that a patient has VL. The likelihood ratio of a positive rK39 ICT result is 9.90, and the likelihood ratio of a negative test result is 0.03. This means that in the Indian subcontinent, a positive rK39 ICT result is a strong argument in favour of VL (ruling in) and that a negative rK39 ICT result is a strong argument against VL (ruling out).

East Africa

When the rK39 ICT is used in east Africa, in a setting where the prior probability of VL is 40%, which is typically seen in a peripheral health centre in an endemic area, the positive predictive value of the test is 86%. This means that out of 100 patients with a positive rK39 ICT result, 86 would have VL (true positive result) and 14 would have another disease (false positive). The negative predictive value is 90%, meaning that out of 100 patients with a negative rK39 ICT result, 90 would have another disease (true negative) and 10 would have VL (false negative).

When the same test is used in a setting with a prior probability of VL of 60%, which is more typical for a referral centre in an endemic area, the positive predictive value is 93% and the negative predictive value is 81%.

In east Africa, the likelihood ratio of a positive rK39 ICT result is 9.58, and the likelihood of a negative rK39 ICT result is 0.16. This means that a positive rK39 ICT result is strong argument in favour of VL (ruling in), and that a negative rK39 ICT result is not an absolute argument against VL (does not allow to rule out VL completely).

CONTRIBUTIONS OF AUTHORS

Marleen Boelaert, Joris Menten, François Chappuis and Suman Rijal performed previous work that was the foundation of the current study. Marleen Boelaert, Joris Menten and Temmy Sunyoto conceived and designed the review. Marleen Boelaert, Temmy Sunyoto, Kristien Verdonck and Johan van Griensven screened the retrieved papers against the inclusion criteria. Marleen Boelaert, Johan van Griensven and Kristien Verdonck extracted data and appraised the quality of the papers. Data management for the review was carried out by Joris Menten, Kristien Verdonck and Temmy Sunyoto. Joris Menten did the statistical analysis. Marleen Boelaert, Joris Menten, Temmy Sunyoto and Kristien Verdonck wrote the first draft of the review. All authors contributed to the final manuscript. Marleen Boelaert is the guarantor of the review.

DECLARATIONS OF INTEREST

Marleen Boelaert, Joris Menten, François Chappuis and Suman Rijal are authors of studies included in this review. There are no other known conflicts of interest.

SOURCES OF SUPPORT

Internal sources

- Institute of Tropical Medicine, Antwerp, Belgium.

External sources

- Belgian Development Cooperation, Belgium.
  - Grant to Temmy Sunyoto
- Department of Economy, Science and Innovation of the Flemish Government, Belgium.
  - Funding for the Clinical Trials Unit at the Institute of Tropical Medicine, Antwerp
DIFFERENCES BETWEEN PROTOCOL AND REVIEW

For the assessment of the quality of the included records, we planned and started to work with QUADAS. When QUADAS-2 became available, we switched to this new tool (Whiting 2011). In the review, we only report the information obtained using QUADAS-2.

In order to avoid loss of information, we used a somewhat wider interpretation of the composite reference standard. For the sake of clarity, we slightly reformulated the accepted reference standards in the section Criteria for considering studies for this review.

In the statistical modelling, we used a complementary log-log, rather than a logit link function in the bivariate model. The choice was based on an improved fit of the model to the data as described in the findings section.

INDEX TERMS

Medical Subject Headings (MeSH)

*Asymptomatic Infections; Africa, Eastern; Agglutination Tests [*methods]; Antigens, Protozoan [*analysis]; Biomarkers [analysis]; Chromatography, Affinity [*methods]; Clinical Trials, Phase III as Topic; India; Latex Fixation Tests [methods]; Leishmaniasis, Visceral [*diagnosis]; Nepal; Protozoan Proteins [*analysis]; Sensitivity and Specificity

MeSH check words

Humans