Effect of a short-term intermittent exercise-training programme on the pulse wave velocity and arterial pressure: a prospective study among 71 healthy older subjects

T. Vogel, P.-M. Lepître, P.-H. Brechat, E. Lonsdorfer-Wolf, G. Kaltenbach, J. Lonsdorfer, A. Benetos

SUMMARY

Aims of the study: Stiffening of large arteries has been associated with increased cardiovascular outcomes among older subjects. Endurance exercises might attenuate artery stiffness, but little is known about the effects of intermittent training programme. We evaluate the effect of a short Intermittent Work Exercise Training Program (IWEP) on arterial stiffness estimated by the measure of the pulse wave velocity (PWV).

Methods and subjects: Seventy-one healthy volunteers (mean age: 64.6 years) free of symptomatic cardiac and pulmonary disease performed a 9-week IWEP that consisted of a 30-min cycling twice a week over a 9-week period. Each session involved six 5-min bouts of exercise, each of the latter separated into 4-min cycling at the first ventilatory threshold alternated with 1-min cycling at 90% of the pretraining maximal tolerated power. Before and after the IWEP, the following measurements were made: carotid–radial PWV and carotid–femoral PWV with a tonometer and systolic and diastolic blood pressure.

Results: Training resulted in a non-significant decrease of the carotid–radial PWV, a significant decrease of the carotid–femoral PWV from 10.2 to 9.6 m/s (p < 0.001) (that was no longer significant after adjustment for mean arterial pressure) and a significant decrease in both systolic and diastolic blood pressure, respectively, from 129.6 ± 14.9 mmHg to 120.1 ± 14.1 mmHg (p < 0.001) and from 77.2 ± 8.8 mmHg to 71.4 ± 10.1 mmHg (p < 0.001).

Conclusion: The present results support the idea that a short-term intermittent aerobic exercise programme may be an effective lifestyle intervention for reducing rapidly blood pressure and probably central arterial stiffness among older healthy subjects.

What’s known
- Regular endurance training prevents arterial stiffening and decreases blood pressure among older healthy subjects.
- There are some concerns about the effects of resistance training on arterial stiffness.
- Little is known about the effect of intermittent endurance training programmes on arterial stiffening.

What’s new
- A 9-week intermittent endurance programme with only 18 sessions of cycling decreases significantly blood pressure among healthy community-dwelling older subjects.
- A 9-week intermittent endurance programme seems to have a favourable effect on carotid–femoral pulse wave velocity (that reflects arterial stiffness), i.e. in part, mediated by a decrease of the mean blood pressure.

Introduction

Large elastic artery stiffness increases with age in both sexes, whereas stiffness of muscular arteries changes little with age (1,2). Central arterial stiffness leads to systolic hypertension, left ventricular hypertrophy, impaired coronary perfusion and is increasingly recognised as an independent predictor of cardiovascular morbidity and mortality in general population and in older subjects (3–5). Arterial pulse wave velocity (PWV) provides a robust estimate of arterial stiffness (6). PWV is measured as the velocity of the pressure wave between two remote portions of the arterial tree. The stiffer the vessel is, the faster the pulse pressure moves along the vessel. The recent joint guidelines for the management of arterial hypertension of the European Society of Hypertension recognise PWV as a marker of subclinical target-organ damage (7).

Arterial stiffness may be reduced with an optimal control of the usual cardiovascular risk factors including physical activity (8–10). Nevertheless, the relationship between physical activity and arterial stiffness is complex, as aerobic exercise has been shown to reduced central arterial stiffness among healthy older subjects (11) and in contrast, some randomised intervention studies have reported unfavourable effects of high-intensity resistance exercises on central arterial stiffness (12,13). Furthermore, there is a huge debate concerning which type of
aerobic exercise (continuous vs. intermittent) has a greater effect on arterial stiffness (14). Using an intermittent exercise-training programme derived from the Square-Wave Endurance Exercise Test (SWEET) proposed by Gimenez (15), Tordi et al. observed a significant decrease in PWV among young subjects after an acute exercise (16). In our geriatric department, we have developed and validated, since few years, an Intermittent Work Exercise Training Program (IWEP) also derived from the SWEET and similar to Tordi’s protocol (17,18). We previously demonstrated that the IWEP improves significantly after 18 training sessions maximal cardio-respiratory function and endurance parameters among healthy ‘young seniors’ in both genders (19) and among ‘older seniors’ (20).

In view of these considerations, this study was designed to assess, first of all, the effect of our tailored-made IWEP on both central and peripheral arterial stiffness using the measurement of PWV, and secondly to evaluate the effect of IWEP on both systolic and diastolic pressure.

Materials and methods

Subjects

The initial cohort was consisted of more than 400 elderly community-dwelling volunteers from the Strasbourg University Hospital geriatric department (see for details reference 20). Briefly, they first completed a personal interview as well as a physical examination including an ECG, and received instructions about the study protocol. All the subjects were free from symptomatic cardiac or pulmonary disease and participated in the study after giving their written informed consent. Among this cohort, 123 subjects aged over 50 years accepted an initial measurement and the supra-sternal notch. All the distance from the measurement sites divided by transit time delay. We note here that for the carotid–femoral PWV values were the mean of two successive measurements performed before and after the 9-week IWEP. PWV and blood pressure assessment

PulsePen device (DiaTecne srl, Milan, Italy), was used for measuring carotid–radial PWV, which reflects upper limb arterial stiffness and carotid–femoral PWV corresponding to aortic stiffness (23). The procedure has been detailed previously in detail (24). Briefly, the PulsePen device is a validated, easy-to-use, high-fidelity tonometer. PWV was calculated as the distance between the measurement sites divided by transit time delay. We note here that for the carotid–femoral measurements, distance of the pulse wave transit represents the difference between the distance from the supra-sternal notch to the femoral point of application of the tonometer and the distance from the carotid point of tonometer application and the supra-sternal notch. All the measurements were preceded by a preliminary 15-min supine rest in quiet and temperature controlled room at 21 °C. Carotid–radial PWV and carotid–femoral PWV values were the mean of two successive assessments.

Systolic and diastolic blood pressure measured with an oscillometric sphygmomanometer at the site of the brachial artery after 20 min of rest were also introduced in the PulsePen software and were used for the calibration of pressure wave assessed with the PulsePen. Pulse pressure was defined as the difference between systolic and diastolic blood pressure.
The intermittent work exercise programme

The IWEP was performed on the same upright electronically braked cycle ergometer and consisted of a 30-min cycling workout twice a week over a 9-week period. Each session involved six 5-min bouts of exercise, each of the latter separated into 4-min cycling at the measured pretraining VT1 workload (called ‘BASE’), alternated with 1-min cycling at 90% of the pretraining MTP (called ‘PEAK’) sustained during the IWEP. During this exercise, HR was continuously recorded with a heart rate monitor (Suunto T6c, Vantaa, Finland). The HR measured at the 28th and 30th min were taken as the ‘target values’ for the entire training programme. As exercise tolerance improves with training, each HR decrease of 10 beats⁄min led to a 10% increase in the ‘BASE’ and ‘PEAK’ workload values (Figure 1).

Analysis

To determine the effects of the IWEP on cardiorespiratory function, PWV and blood pressure, the following comparisons were made: (i) pre and post IET maximal parameters: MTP, VO2peak, MMV, HRmax; (ii) endurance parameters: relative intensity at VT1, HR at absolute intensity of pre-IWEP VT1 and lactate at absolute intensity of pre-IWEP MTP; (iii) carotid–radial PWV and carotid–femoral PWV [including a crude analysis firstly, and secondly an analysis with adjustment for mean arterial pressure (defined as diastolic pressure + 1⁄3 pulse pressure)]; (iv) systolic, diastolic and pulse blood pressure.

Statistical analysis

After testing for data distribution normality (Kolmogorov–Smirnov test) and homogeneity of variance (Levene test), IET, PWV and blood pressure differences were evaluated using a two-way analysis of variance for repeated measures. A Fisher’s test was carried out when appropriate. Analysis was performed using Sigma Stat for windows (ver. 14.0; SPSS, Chicago, IL, USA). The level of significance was taken as p < 0.05. Data were expressed in terms of means and standard deviation (± SD) and per cents of variation after vs. before IWEP.

Results

The IWEP adherence rate for the 71 participants amounted 100% with no training-related injuries reported. No changes in their medication occurred during the study period.

Regarding the pretraining spirometric parameters, the measured VC/theoretical VC ratio and the measured FEV1/theoretical FEV1 ratio were both higher than 99% in all groups. For the measured pretraining MTP and pretraining VO2peak the values were, respectively, at 83% and 88% of the theoretical values (Table 1).

Effects of IWEP

Maximal parameters

The training programme resulted in a significant increase in MTP, VO2peak, MMV and lactate concentration at absolute posttraining MTP, respectively, by

![Figure 1 Protocol design of the IWEP](image-url)
19.6% (p < 0.05), 19.5% (p < 0.05), 31.7% (p < 0.05) and 16.4%. HR posttraining peak values at exhaustion were similar to those at pretraining values (Table 2).

Endurance parameters
The endurance parameters improved considerably after the exercise programme. VT1 improved by 21.4% (p < 0.05). After the IWEP when subjects were cycling at a power output corresponding to their pretraining VT1, a significant decrease of HR (5 beats/min) was observed (Table 2). The subjects presented a significant lower blood lactate value after training at the same absolute intensity as that of pretraining MTP, with a decrease of 1.7 mmol/l (p < 0.05) (Table 2).

Pulse wave velocity
The relationships between PWV and age among our study population are reported in Figure 2 (PWV carotid–radial) and Figure 3 (PWV carotid–femoral). It appeared that carotid–femoral PWV had a strongest relationship with advancing age (correlation coefficient: 0.52; p < 0.001) compared with carotid–radial PWV (correlation coefficient: 0.22; p = 0.05).

Training resulted in a non-significant decrease in the carotid–radial PWV from 8.5 ± 1.2 m/s to 8.4 ± 1.3 m/s (p = 0.6) and a significant decrease in the carotid–femoral PWV from 10.2 ± 2.8 m/s to 9.6 ± 2.5 m/s (p < 0.001) (Figure 2). After adjustment for mean arterial pressure, the decrease in carotid–femoral PWV was not statistically significant (p = 0.15) (Figure 4).

Blood pressure
After training, both systolic and diastolic blood pressure decreased significantly, respectively, from 129.6 ± 14.9 mmHg to 120.1 ± 14.1 mmHg (p < 0.001) and from 77.2 ± 8.8 mmHg to 71.4 ± 10.1 mmHg (p < 0.001). Pulse pressure decreased significantly after the IWEP from 52.4 ± 12.6 mmHg to 48.6 ± 9.8 mmHg (p = 0.02) (Figure 5).

Discussion
To the best of our knowledge, this is the first study to investigate the effect of a short-term interval training programme on PWV among older subjects. Primary findings of this study are as followed. Fitness, endurance parameters, systolic blood pressure,

| Table 2 Cardio-respiratory responses during IET before and after training session (n = 71) |
|---|---------------------------------|-----------------|-----------------|
| Values | Pretraining | Post-training | p |
| Maximal tolerated power (watts ± SD) | 108.3 ± 52.7 | 129.4 ± 55.4 | < 0.001 |
| Peak of oxygen uptake (ml/min/kg ± SD) | 18.9 ± 5.9 | 22.6 ± 6.3 | < 0.001 |
| Maximal minute ventilation (l/min ± SD) | 55.8 ± 22.7 | 73.5 ± 25.0 | < 0.001 |
| Peak heart rate value (beats/min ± SD) | 136 ± 24 | 141 ± 25 | 0.39 |
| Lactate at rest (mmol 100/ml ± SD) | 0.9 ± 0.4 | 0.9 ± 0.5 | 0.97 |
| Lactate at Maximal tolerated power (mmol 100/ml ± SD) | 5.5 ± 2.2 | 6.4 ± 2.2 | 0.01 |
| First ventilatory threshold (watts ± SD) | 66.2 ± 29.8 | 80.4 ± 35.2 | < 0.001 |
| Heart rate at pretraining first ventilatory threshold (beats/min ± SD) | 113 ± 18 | 108 ± 17 | 0.03 |
| Lactate at pretraining maximal tolerated power (mmol 100/ml ± SD) | 5.5 ± 2.2 | 3.8 ± 1.8 | < 0.001 |

IET, incremental exercise test.
diastolic blood pressure and PWV are improved after a 9-week interval exercise-training programme.

The favourable effects of intermittent aerobic exercises on maximal cardio-respiratory function and endurance parameters among older subjects are already known, but usually in other studies, the older subjects underwent usually more than 9 weeks training. Three main reasons may explain the short-term benefit of the IWEP. First of all, IWEP is an individualised programme, at baseline and during the training period, depending on the HR evolution. Secondly, IWEP is supervised with an optimal adherence rate and a supportive role played by supervision in a positive environment. At last, the specific design of our training programme, which included intermittent rather than continuous exercise, may contribute towards the improvement of both cardio-respiratory and endurance parameters. The IWEP decreased significantly systolic blood pressure, diastolic blood pressure and pulse pressure.

Benefits of aerobic activity on blood pressure value are robust evidences in general population as reported by Whelton et al. in a meta-analysis (25). Benefits of physical activity on blood pressure in older subjects are less consistent and usually involve study using long-term week training period (26). In a small-randomised trial including 44 sedentary healthy normotensive subjects aged 60–79 years, Braith et al. reported after 6 months a significant decrease in both systolic (−9 mmHg) and diastolic blood pressure (−8 mmHg) in a moderate intensity exercise group (70% VO$_{2\max}$) compared with a control group (27). Jessup et al. showed, in a randomised study including 31 older subjects (68.5 years old), a significant benefice of physical activity on 24-h systolic blood pressure (−7.9 mmHg) and 24-h diastolic blood pressure (−3.6 mmHg) in the active group compared with the control group (28).

In contrast, Vaitkevicius et al. reported, in a small-pilot study including 22 older subjects (mean age of 84 years), a significant reduction only in resting systolic blood pressure (146 ± 18 mmHg vs. 133 ± 14 mmHg, p = 0.01) without significant effects on resting diastolic blood pressure, after 6 months of aerobic exercise training (at 60–80% of maximal heart rate) (29).

In our study, the improvement of PWV after training is consistent with other findings, such as Tanaka et al. study’s using a 3-month aerobic exercise intervention among 20 middle-aged subjects (8). Recently, Kawano et al. reported that habitual rowing exercise in older men is associated with high muscle power and aerobic capacity, and favourable blood lipid profile without affecting arterial stiffness indices (carotid β-stiffness and cardio-ankle vascular index) (30). Figueroa et al. showed, in a small-randomised trial among healthy postmenopausal women, that a combined resistance and endurance 12-week training programme reduced the brachial–ankle PWV (31). Nevertheless, to our best knowledge, this study is the first that reported after a short period of 9-week training a decreased in PWV among older subjects.

Our finding that the relationship between carotid–femoral PWV and advancing age is stronger compared with the relationship between carotid–radial PWV and ageing is in accordance with other findings (32). The stiffness process of the arterial wall affects essentially the large central elastic arteries and that relatively spares the peripheral muscular arteries (33).

Furthermore, we observed a significant interaction effect of the exercise training on PWV and the arterial site. The 18 sessions of IWEP were associated
with a significant decrease in the central arterial stiffness (estimated by the carotid–femoral PWV) without effect on the peripheral arterial stiffness (estimated by the carotid–radial PWV). Such findings are in accordance with other study results. Hayashi et al. reported in a small study including 17 sedentary middle-aged men a significant decrease in aortic PWV and not legs PWV after a 16-week moderate intensity-training period (34). The differential effects of ageing on central and peripheral arterial stiffness may explain the present results.

Little is known about the mechanisms by which regular aerobic exercise may decrease large elastic artery stiffness. In some animal models, aerobic exercise has been associated with an increase in elastin content in arterial wall and a decrease in calcium content (35). Nevertheless, it appears unlikely that such favourable changes occur after a short training period of 9 weeks.

In our study, the decrease in the carotid–femoral PWV after exercise was no more statistically significant after adjustment for the mean blood pressure. Such finding means that the decrease in PWV may be in part, mediated by a decrease in blood pressure. In a post hoc analysis focused among hypertensive subjects, the carotid–radial PWV was similar before and after training, 8.5 ± 1.4 m/s and 8.7 ± 1.5 m/s respectively. Compare with the whole population, the carotid–femoral PWV was higher among hypertensive at baseline, without significant effect of training (before and after training 10.9 ± 3 m/s and 10.8 ± 2.8 m/s respectively).

Our study has some limitations. Older population was selected. They all were volunteers, well-educated, from middle to upper socioeconomic status with a good medical follow-up, living all independently and most of them practised physical activity. Taking into account the poor level of physical activity in the whole population, we could expect a higher benefit of the IWEP on maximal cardio-respiratory function and endurance parameters. In contrast, arterial stiffness may be greater in some specific older subject’s sub-groups, especially those with cardio-vascular diseases, those with many comorbidities or those living in institution. In addition, the study was not randomised to compare programmes. Therefore, potential confounding by unmeasured factors related to the high socioeconomic status, such as motivation, as well as dietary changes may influence, in part, the effects of IWEP. However, the homogeneity and the size of our study sample strengthen the internal validity of the results. Therefore, it appears unlikely that confounding factors may explain all of the improvement of physiological parameters and arterial stiffness observed after the IWEP.

Conclusion

The present results support the idea that a short-term intermittent aerobic exercise programme may be an effective lifestyle intervention for reducing rapidly blood pressure and probably central arterial stiffness among older healthy subjects. The specificity of our tailored IWEP, including a structured, personalised and supervised interval exercise-training programme, contributes largely to the short-term benefits. A further large randomised controlled study is needed to confirm the positive effects of the IWEP on arterial stiffness and to evaluate the clinical relevance of a carotid–femoral PWV decrease.

Acknowledgements

Acknowledgments to the CAMES (Centre Alsacien du Mieux Etre du Senior) and to the ARPEGE-REUNICA group for their technical and administrative assistances.

Author contributions

All the authors mentioned meet the criteria for authorship and give final approval of this manuscript to be published. Furthermore, they have been involved in: The conception of the study and the acquisition of data: Thomas Vogel, Evelyne Lonsdorfer-Wolf, Jean Lonsdorfer, Georges Kaltenbach, Athanase Benetos. The conduct of the analysis: Thomas Vogel, Pierre-Marie Lepreˆtre, Pierre-Henri Bréchat, Evelyne Lonsdorfer-Wolf, Athanase Benetos. The writing and the reviewing of the manuscript: Thomas Vogel, Georges Kaltenbach, Athanase Benetos.

References

1 Benetos A, Laurent S, Hoeks AP, Boutouyrie PH, Safar ME. Arterial alterations with aging and high blood pressure. A noninvasive study of carotid and femoral arteries. *Arterioscler Thromb* 1993; 13: 90–7.

2 Sell DR, Monnier VM. Molecular basis of arterial stiffening: role of glycation. *Gerontology* 2012; 58: 223–37.

3 Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. *J Am Coll Cardiol* 2010; 55: 1318–27.

4 Maldonado J, Pereira T, Polônia J, Silva JA, Morais J, Marques M. Participants in the EDIVA Project. Arterial stiffness predicts cardiovascular outcome in a low-to-moderate cardiovascular risk population: the EDIVA (Estudo de Dîstensibilidade Vascular) project. *J Hypertens* 2011; 29: 669–75.
5 Proctorgerous AD, Safar ME, Papaionannou TG et al. The combined effect of aortic stiffness and pressure wave reflections on mortality in the very old with cardiovascular disease: the PROTEGER Study. Hypertens Res 2011; 34: 803–8.

6 Blacher J, Asmar R, Djane S, London GM, Safar ME. Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension 1999; 33: 1111–7.

7 Mancia G, Laurent S, Agabiti-Rosei E et al. European Society of Hypertension. Reappraisal of European guidelines on hypertension management: a European Society of Hypertension Task Force document. J Hypertens 2009; 27: 2121–58.

8 Tanaka H, Dinenno FA, Seals DR, Aging, habitual exercise, and dynamic arterial compliance. Circulation 2008; 102: 1270–5.

9 Edwards DG, Schofield RS, Magrari PM, Nichols WW, Braith RW. Effect of exercise training on central aortic pressure wave reflection in coronary artery disease. Am J Hypertens 2004; 17: 540–3.

10 Seals DR, Desouza CA, Donato AJ, Tanaka H. Habitual exercise and arterial aging. J Appl Physiol 2008; 105: 1323–32.

11 Ohta M, Hirao N, Mori Y et al. Effects of bench step exercise on arterial stiffness in post-menopausal women: contribution of IGF-1 bioactivity and nitric oxide production. Growth Horm IGF Res 2012; 22: 36–41.

12 Miyachi M, Kawano H, Sugawara J et al. Unfavorable effects of resistance training on central arterial compliance: a randomized intervention study. Circulation 2004; 110: 2858–63.

13 Miyachi M. Effects of resistance training on arterial stiffness: a meta-analysis. Br J Sports Med. 2012 [Epub ahead of print].

14 Rakobowchuk M, Tanguay S, Burgomaster KA, Howarth KR, Gibala MJ, MacDonald MJ. Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans. Am J Physiol Regul Integr Comp Physiol 2008; 295: R236–42.

15 Gimenez M, Servera E, Salinas W. Square-wave endurance exercise test (SWEET) for training and assessment in trained and untrained subjects. Eur J Appl Physiol Occup Physiol 1982; 49: 359–68.

16 Tordi N, Mourot L, Colin E, Regnard J. Intermittent versus constant aerobic exercise: effects on arterial stiffness. Eur J Appl Physiol 2010; 108: 801–9.

17 Brechet PH, Lonsdorfer T, Vogel T. [Sports medicine for the over-50s: testing and training]. Presse Med 2006; 35: 268–9.

18 Brechet PH, Lonsdorfer T, Vogel T. [Health promotion by safe, individualized, and accessible physical activities and sports]. Presse Med 2007; 36: 379–80.

19 Lepître P-M, Vogel T, Dufour S et al. Impact of short term aerobic interval training on maximal exercise in sedentary aged subjects. Int J Clin Pract 2009; 63: 1472–8.

20 Vogel T, Lepître PM, Brechet PH et al. Effects of a short-term personalized Intermittent Work Exercise Program (IWEP) on maximal cardio-respiratory function and endurance parameters among healthy young and older seniors. J Nutr Health Aging 2011; 15: 905–11.

21 Howley ET, Bassett DR Jr, Welch HG. Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc 1995; 27: 1292–301.

22 Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 1986; 60: 2020–7.

23 Laurent S, Cockcroft J, Van Bortel L et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 2006; 27: 2588–605.

24 Salvi P, Lio G, Labat C, Ricci E, Pannier B, Benetos A. Validation of a new non-invasive portable tonometer for determining arterial pressure wave and pulse wave velocity: the PulsePen device. J Hypertens 2004; 22: 2285–93.

25 Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med 2002; 136: 493–503.

26 Vogel T, Brechet P-H, Lepître P-M, Kalenbach G, Berthel M, Lonsdorfer J. Health benefits of physical activity in older patients: a review. Int J Clin Pract 2009; 63: 303–20.

27 Braith RW, Pollock ML, Lowenthal DT, Graves JE, Limacher MC. Moderate- and high-intensity exercise lowers blood pressure in normotensive subjects 60 to 79 years of age. Am J Cardiol 1994; 73: 1124–8.

28 Jessup IV, Lowenthal DT, Pollock ML, Turner T. The effects of endurance exercise training on ambulatory blood pressure in normotensive older adults. Geriatr Nephrol Urol 1998; 8: 103–9.

29 Vaitkevicius PV, Ebersold C, Shah MS et al. Effects of aerobic exercise training in community-based subjects aged 80 and older: a pilot study. J Am Geriatr Soc 2002; 50: 2009–13.

30 Kawano H, Iemitsu M, Gando Y et al. Habitual rowing exercise is associated with high physical fitness without affecting arterial stiffness in older men. J Sports Sci 2012; 30: 241–6.

31 Figueroa A, Park SY, Soo DY, Sanchez-Gonzalez MA, Baek YH. Combined resistance and endurance exercise training improves arterial stiffness, blood pressure, and muscle strength in postmenopausal women. Menopause 2011; 18: 980–4.

32 Benetos A, Buatois S, Salvi P et al. Blood pressure and pulse wave velocity values in the institutionalized elderly aged 80 and over: baseline of the PAR-TAGE study. J Hypertens 2010; 28: 41–50.

33 Zieman SJ, Meloveny V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol 2005; 25: 932–43.

34 Hayashi K, Sugawara J, Komine H, Maeda S, Yokoi T. Effects of aerobic exercise training on the stiffness of central and peripheral arteries in middle-aged sedentary men. Jpn J Physiol 2005; 55: 235–9.

35 Seals DR, Walker AE, Pierce GL, Lesniewski LA. Habitual exercise and vascular ageing. J Physiol 2009; 587: 5541–9.

Paper received March 2012, accepted August 2012