Manipulating spin polarization of titanium dioxide for efficient photocatalysis

Lun Pan1,2,7, Minhua Ai1,2,7, Chenyu Huang1,7, Li Yin3, Xiang Liu3, Rongrong Zhang1,2, Songbo Wang1,4, Zheng Jiang5,6, Xiangwen Zhang1,2, Ji-Jun Zou1,2* & Wenbo Mi3*

Photocatalysis has been regarded as a promising strategy for hydrogen production and high-value-added chemicals synthesis, in which the activity of photocatalyst depends significantly on their electronic structures, however the effect of electron spin polarization has been rarely considered. Here we report a controllable method to manipulate its electron spin polarization by tuning the concentration of Ti vacancies. The characterizations confirm the emergence of spatial spin polarization among Ti-defected TiO2, which promotes the efficiency of charge separation and surface reaction via the parallel alignment of electron spin orientation. Specifically, Ti0.936O2, possessing intensive spin polarization, performs 20-fold increased photocatalytic hydrogen evolution and 8-fold increased phenol photodegradation rates, compared with stoichiometric TiO2. Notably, we further observed the positive effect of external magnetic fields on photocatalytic activity of spin-polarized TiO2, attributed to the enhanced electron-spin parallel alignment. This work may create the opportunity for tailoring the spin-dependent electronic structures in metal oxides.
Photocatalysis has been regarded as one of the best strategies for hydrogen energy production (from water), environmental remediation (degradation) and synthesis of high value-added chemicals, for which titanium dioxide (TiO₂) serves as the primary photocatalyst owing to its low cost, inertness, nontoxicity, and strong reducing/oxidizing capabilities. The generation of abundant photo-induced electron-hole pairs and their rapid transfer/separation are crucial to maximize the photocatalytic efficiency. To achieve this goal, various strategies have been explored, such as doping with impurity atoms, manipulating exposed facet, introducing vacancies and controlling the morphology and crystal phase. By these means, the electronic structure of TiO₂ is tuned to either extend the light absorption range or accelerate the charge separation. However, in many cases, the intrinsic mechanism behind these results is still unclear, especially the spin degree of electronic freedom is rarely considered.

The intrinsic characteristics of electrons, such as electron spin properties, could dominate the performance of photocatalyst, so the electronic configuration with different spin states may greatly affect the photocatalytic behaviors. Actually, recent work has shown that the performance of some catalysts can be improved by modulating the spin states. For example, the structural distortion in atomically thin nanosheets of Co₃S₄, NiSe₂, and NiS C motifs is dependent on the on the description of Mn₃⁺ in volcano-type shape with a summit at ca. 0.95. Notably, the induced spin polarization by chiral molecules or chiral films (on TiO₂, Fe₃O₄, CuO, etc.) can improve the performances of photocatalytic and photoelectrochemical (PEC) water splitting. Also, it has been consolidated that the OER kinetics photocatalyzed by Mn-N-C motifs is dependent on the of Mn₃⁺ in volcano-type shape with a summit at ca. 0.95. Notably, the induced spin polarization by chiral molecules or chiral films (on TiO₂, Fe₃O₄, CuO, etc.) can improve the performances of photocatalytic and photoelectrochemical (PEC) water splitting. Generally, both electrocatalysis and photocatalysis require rapid charge transfer and long lifetime of intermediated species for redox reactions, so the electron spin property is expected to be an intrinsic factor affecting the performance of photocatalyst.

TiO₂ commonly is a nonmagnetic semiconductor due to the lack of unpaired electrons. However, recent researches show that semiconductors like TiO₂ and ZnO with abundant metal vacancies exhibit obvious room-temperature ferromagnetism, suggesting the appearance of asymmetric spin-up and spin-down channels in these metal-defected oxides. Also, these photocatalysts show considerably improved activity, but the intrinsic mechanism is still unclear. Fortunately, the above results hint a possible way to modulate the electron spin polarization of metal oxides.

Therefore in this work, we regulate the spin polarization of electrons by controlling the content of metal vacancies and clarify the relationship between the spin polarization and photocatalytic performance. The results imply that the best photocatalytic performance of defected TiO₂ is closely related to the high degree of spatial spin polarization, via enhancing the processes of charge separation and surface reaction. Furthermore, we observe the positive effect of the external magnetic field on the photocatalytic performance of spin-polarized TiO₂. This work may provide a reliable way for tailoring the spin-dependent electronic structures in metal oxides.

Results

Manipulating metal vacancies in TiO₂

Previously, we have found that the encapsulation of –CH₂-OH groups on Ti-O-Ti skeleton can terminate the crystallization along a-axis and lead to the formation of lamellar organometallic compounds (LOC, such as metal glycerolate). Importantly, the thermal oxidation of LOC will remove the surface bonding carbon and hydrogen atoms in the form of CO₂ and H₂O, leaving the original oxygen atoms linking with skeleton Ti atom and causing the oxygen-rich environment, which finally form the inherent Ti defects during the thermal assembly of Ti-O-Ti parallel lattice chains (Supplementary Fig. 1). Accordingly, we expect that the concentration of metal vacancies might be tuned by adjusting the numbers of glycerol groups in glycerolates (the precursor of defected TiO₂).

Therefore, we synthesized a series of glycerolates (G-m) via solvothermal treatment of tetrabutyl titanate (TBT) with glycerol/ethanol through changing the content of glycerol (m refers to the volume of glycerol added, mL). During solvothermal synthesis, the glycerol groups replace the butoxy groups of TBT through transesterification reaction. Each glycerol group may share an O atom to connect two adjacent Ti atoms to form parallel chain, and accordingly the chain length and layer spacing will change with the number of glycerol groups. XRD analysis (Fig. 1a and Supplementary Figure 2) shows that all glycerolates have the strongest peak at ca. 2θ = 10.8° referring to the lamellar peak of metal-based glycerolate. However, the single lamellar peak gradually splits into three peaks with two smaller layer spacings with the increase of m. For G-5, the lowest concentration of glycerol groups exists and there are the shortest chain length and largest layer spacing in the unit cell. Then, the chain length becomes longer and the layer spacing becomes smaller with the increase of glycerol dosage from G-5 to G-30, resulting in the better crystallization.

As shown in FT-IR spectra (Fig. 1b and Supplementary Fig. 3), the glycerol C=O stretching vibration bands at 1114 and 1039 cm⁻¹ shift to lower wavenumber from G-5 to G-30, indicating that the glycerol groups coordinate to Ti cations. And Raman spectra (Fig. 1c and Supplementary Fig. 4) show an obvious growth of peak at 723 cm⁻¹ and a decrease of peak at 1077 cm⁻¹, also indicating a structure transition in glycerolates. Importantly, the solid-state CP/MAS ¹³C NMR spectra (Fig. 1d) show three well resolved peaks between 70 and 90 ppm (labeled 5) corresponding to the three carbons in glycerolates, in accordance with previous reports. Notably, for G-5 there are two small peaks at 20 and 65 ppm (labeled 1 and 3) corresponding to the (–CH₃, –CH₃) and –O:–CH₂– in butoxy groups, in form of terminal groups due to the insufficient transesterification. With the increase of m, the peak at 69 ppm (labeled 4) arises gradually, ascribed to more –CH₂–O– groups in glycerol connecting to the edge Ti atom of glycerolates. The small peak at 58 ppm (labeled 2) belongs to the –O–CH₂– in butoxy groups, which is only observed for G-5. The specific locations of carbon peaks in ¹³C NMR spectrum (labeled 1–5) are marked in the molecular structure in Supplementary Fig. 5. The above characterizations confirm the gradual improved crystallization of glycerolates from G-5 to G-30.

The glycerolates (G-m) were then converted to Ti-defected TiO₂ (TiO₂-m) upon pyrolysis at 470°C. Thermogravimetric analysis (Supplementary Fig. 6) shows the weight loss gradually increases from G-5 to G-30, due to the increased amount of glycerol bonding with Ti atoms. XRD patterns (Supplementary Fig. 7) and Raman spectra (Supplementary Fig. 8) confirm that all calcined samples can be identified as anatase TiO₂ (JCPDS No. 21-1272) without any impurities. What’s more, we used standard periclate to calibrate the XRD patterns, and observed a gradual shift of diffraction peaks at 25.31° to a higher degree (with the c axis being gradually narrowed) from TiO₂-0 to TiO₂-30 (Fig. 2a, and the
Fig. 1 Crystal structures of as-synthesized titanium glycerolates (G-5, G-10, G-20, and G-30). a Enlarged XRD patterns (with 2θ in the range of 5°–30°), b Fourier-transform infrared spectroscopy (FT-IR), c Raman spectra, and d solid-state CP/MAS 13C-NMR spectra.

Fig. 2 Defect characterizations of metal-defected TiO$_2$. a Enlarged XRD patterns (with 2θ in the range of 24°–45°); b Vacancy concentration of TiO$_2$ in bulk and surface (determined by chemical titration and XPS analysis, respectively); c Intensity of monovacancies from positron annihilation lifetime spectra (PALS), in which I_1 is the relative intensity of τ_1 (metal monovacancies); d X-ray absorption near edge structure (XANES) and e Fourier transforms of k-space oscillations of Ti K edge; f high-resolution O1s XPS spectra (fitted); g The positions of flat-band potential and UV-photoelectron spectroscopy (UPS) VB (valance band) binding energy.
The Ti/O molar ratios in bulk and surface of TiO$_2$ were determined by chemical titration and XPS analysis (the lattice oxygen is fitted from O1s XPS spectra in Supplementary Fig. 11), respectively, and the molar ratio in bulk is very close to that at the surface, indicating the homogenous and uniform composition of defective TiO$_2$. As expected, TiO$_2$-0 contains almost no Ti vacancies while other samples (m = 5–30) possess considerable Ti vacancies, with V$_{\text{Tl}}$ concentration increasing from 2.8% (TiO$_2$-5) to 10.6% (TiO$_2$-30) (Fig. 2b and Supplementary Table 1). The defects in TiO$_2$ were also determined by positron annihilation lifetime spectra (PALS, Supplementary Table 3). The presence of monovacancies can reduce the surrounding electron density and increase the shortest lifetime component of τ_2.32,33 All defected TiO$_2$ exhibit a longer lifetime than TiO$_2$-0 (264 ps), confirming the existence of a large amount of metal monovacancies. What’s more, the relative intensity (I_2/I_1) of τ_2 provides the relative concentration of metal monovacancies.34 It can be seen that the concentration of monovacancies increases from TiO$_2$-5 to TiO$_2$-10, then decreases for TiO$_2$-20 and TiO$_2$-30 (Fig. 2c). Correspondingly the intensity of longer lifetime component (I_2 and I_3) referring to positrons captured by larger size defects (such as dual-, tri-defects) or even large voids,32,33 are increased for the latter two samples. This result means that TiO$_2$-10 has the highest concentration of monovacancies, while vacancy clusters are in form of vacancy clusters at a high V_{Tl} concentration (>9%, TiO$_2$-20, and TiO$_2$-30).

Furthermore, XANES spectra at the Ti K-edge were recorded at room temperature. As shown in Fig. 2d, the defected TiO$_2$-m samples exhibit similar characteristic lineshape with stoichiometric TiO$_2$-0 (anatase), in both regions of pre-edge peaks (4964–4980 eV) and white line peaks (4983–5003 eV), indicating a high phase purity.35 However, a gradual intensity increase of the pre-edge peak at 4981 eV from TiO$_2$-0 to TiO$_2$-30 can be observed. Since this peak represents the transition of core electron toward O2p states hybridizing with the empty Ti4p states,35 the electron numbers of O2p-Ti4p hybrid orbitals should be increased gradually from TiO$_2$-0 to TiO$_2$-30, which indicates the presence of lattice O atoms with unsaturated coordination. Without other impurities, this kind of O atoms should be caused by the presence of nearby Ti vacancies. Therefore, the intensity of pre-edge peak (at 4981 eV) is correlated with the Ti vacancies, which rises gradually from TiO$_2$-0 to TiO$_2$-30.

Meanwhile, the interatomic distances are compared through the Fourier transformed Ti K-edge EXAFS data (Fig. 2e), and all the fitting parameters used by three paths of Ti K-edge EXAFS curves are shown in Supplementary Table 4. A gradual decrease of coordination numbers bonding Ti atoms for Ti$_4$ is observed from TiO$_2$-0 to TiO$_2$-30 as reflected by the amplitude of R space (Supplementary Table 4), which verifies the appearance of more Ti vacancies. However, the mean-square disorder of Ti-Ti distance increases first and then decrease, and TiO$_2$-10 owns the highest mean-square disorder, owing to the uniform distribution of monovacancies. The monovacancies will transfer into vacancy clusters in a high defect concentration (such as TiO$_2$-30), as confirmed by the decreased mean-square disorder of Ti-Ti distance and PALS results.

Additionally, XPS spectra show that the Ti2p peak is symmetrical (Supplementary Fig. 12), without either shoulder peak appearing at 457.9 eV associated with Ti$^{3+}$ defects or peak at 457.3 eV from Ti–H bonds.7,8 Moreover, the high-resolution O1s spectra (Fig. 2f) reveal the gradual increase of binding energy from TiO$_2$-5 to TiO$_2$-30 because the neighbor O atoms of Ti vacancies get less electrons as compared with those on normal sites. Similarly, the DFT calculation shows that the increase of V$_{\text{Tl}}$ content leads to slight increase of oxygen valence (Supplementary Fig. 13). Moreover, the high-resolution Cls spectra (Supplementary Fig. 14) exclude any C-doped impurities.

Besides, all TiO$_2$ samples exhibit similar optical absorption edge at ca. 400 nm, with the band gap of ca. 3.1 eV (indicated by UV-vis diffuse reflection spectra, Supplementary Figs. 15, 16). Meanwhile, the valence band (VB) (UPS spectra, Fig. 2g and Supplementary Fig. 17) shows a gradual shift from 1.45 eV of TiO$_2$-5 to 1.18 eV of TiO$_2$-30 (below the Fermi level), much lower than the case of TiO$_2$-0 (3.03 eV). The results indicate the energy gap between the Fermi level and VB energy level gradually narrows with the increase of Ti vacancies, which is a p-type characteristic.36 Similarly, a negative slope for defected TiO$_2$ in Mott-Schottky plots (Supplementary Fig. 18) also confirms their p-type conductivity, while TiO$_2$-0 (Supplementary Fig. 19) possessing a normal n-type conductivity.8,26 The position of flat-band potential (E_{FB}, approximate to the Fermi level)37 was further calculated, which shifts from -0.22 V (TiO$_2$-0), to 1.61 V (TiO$_2$-5) and finally to 1.75 V (TiO$_2$-30) vs. NHE (Fig. 2g), similar to UPS VB results. These results confirm the Ti vacancy is a quadruple shallow acceptor that can push down the Fermi level.38 Moreover, the carrier density was calculated by means of the Mott-Schottky formula (Supplementary Table 5), and the hole density increases from TiO$_2$-5 to TiO$_2$-30.

Metal-vacancy-dependent spin polarization of TiO$_2$. The above results show that the concentration of metal vacancies in TiO$_2$ can be rationally controlled by adjusting the crystal structure of glycerolate precursors, which provides the possibility to manipulate the electron spin polarization and further the photocatalysis. We applied the Ti L-edge XAS measurements to reveal the complementary electronic properties of Ti compounds, which reflect the transition from Ti2p orbitals into Ti3d and 4s orbitals in the conduction band.39,40 Importantly, the Ti L edge spectra contain two sets of peaks, L$_1$ and L$_2$, respectively corresponding to the spin-orbit coupling splitting of initial 2p states into 2p$_{3/2}$ (L$_3$) and 2p$_{1/2}$ (L$_2$)39, which directly refer to the electrons in spin-up (spin quantum number $m_s=+1/2$) and spin-down ($m_s=-1/2$) states, respectively. As shown in Fig. 3a, b, the Ti$_2$-m samples show similar L$_3$ peak intensity (spin-up electrons), while the L$_2$ peak intensity (spin-down electrons) first increases from TiO$_2$-5 to TiO$_2$-10, and decreases gradually for TiO$_2$-20 and TiO$_2$-30. The results indicate the increase of Ti vacancies can raise the amount of electrons in spin-down state (or electron polarization), but too much Ti vacancies (like TiO$_2$-20 and TiO$_2$-30) lead to gradual decrease of electron polarization, may owing to the formation of Ti-vacancies clusters. Notably, the electron polarization of the samples decreases in the order of TiO$_2$-10 > TiO$_2$-20 > TiO$_2$-30 > TiO$_2$-5.

In addition, we calculated the spin polarization properties of Ti-defected Ti$_3$O$_{12}$, since its defect concentration is similar to TiO$_2$-10. As shown in Fig. 3c, the DOS of electron spin-up state is much lower than that of spin-down state around the Fermi level, leading to obvious electron polarization that can provide more spin-down photoinduced electrons under light irradiation. As shown in 3D spatial distributions of spin polarization (Fig. 3d), Ti$_3$O$_{12}$ shows a large area of negative spatial spin polarization (SSP) in the supercell, which indicates a small possibility of spin polarization reversal in the real space.41 However, for the defected Ti$_{35}$O$_{72}$ with lower Ti vacancies (2.78%), it shows much lower...
Importantly, TiO2-10 owns the highest photoactivity, whose the same activity order as that of the hydrogen generation. (DOS) and normal TiO2-0. Notably, the order of activity is TiO2-10 > TiO2-20 > TiO2-30 > TiO2-5 > TiO2-0, and especially TiO2-10 exhibits a 20-fold higher H2 generation rate and quantum efficiency than electrolyte redox level, resulting in electrons transfer from electrolyte to TiO2 with upward band bending (Supplementary Table 5). Accordingly, n-type TiO2-0, with upward band bending at the interface and abundant free electrons, works as the photoanode, while p-type TiO2 (like TiO2-10), with downward band bending and abundant free holes, can work as photocathode. Moreover, in electrochemical impedance spectroscopy (EIS) under light irradiation (Supplementary Fig. 26), the radius gradually becomes smaller with the increase of Ti vacancies, suggesting that more Ti vacancies (with the majority carrier of holes) will enhance the electrical conductivity, which agrees with the Mott-Schottky results (Supplementary Table 5).

As described above, the photocatalytic activity of defected TiO2 is in the order of TiO2-10 > TiO2-20 > TiO2-30 > TiO2-5 > TiO2-0, which is the same as that of their electron spin polarizations (Fig. 3). Specifically, with the highest spatial spin polarization, TiO2-10 shows the best photocatalytic activity. The reason for the positive effect of spin polarization on photocatalysis should be dependent on two aspects: the charges separation and surface reaction.

First, the highly spin-polarized electrons can reduce the recombination of photoinduced electrons and holes during the charge transfer process. When a spin-down electron is excited (to CB), the remaining hole (in VB) also exhibits the same spin-down characteristic and keeps this spin direction unchanged. During the electron transfer, the original spin direction of electrons will lose due to spin-orbital coupling, hyperfine interaction, etc. Consequently, the recombination will be inhibited because of the lack of spin-up holes under the environment of high spatial spin polarization, which is similar to the giant magnetoresistance effect. Therefore, TiO2 to electrolyte with upward band bending, while the E_F of p-type TiO2 (like TiO2-10) is lower than electrolyte redox level, resulting in electrons transfer from electrolyte to TiO2 with downward band bending.

Spin-polarization-dependent photocatalysis. We evaluated the photocatalytic activity of all defected TiO2 samples in hydrogen generation and pollutant degradation under simulated solar light irradiation. As shown in Fig. 4a, the defected samples show much higher H2 generation rate and quantum efficiency (QE) than normal TiO2-0. Notably, the order of activity is TiO2-10 > TiO2-20 > TiO2-30 > TiO2-5 > TiO2-0, and especially TiO2-10 exhibits a 20-fold higher H2 generation rate and 18-fold higher QE than TiO2-0. Moreover, TiO2-10 exhibits high stability without obvious loss in photoactivity after circling experiments (Supplementary Fig. 21). Further for the photodegradation of several organic pollutants, the first-order rate constants (k) of all samples are determined and shown in Fig. 4b and Supplementary Figs. 22–25. As expected, the photodegradation rates also show the same activity order as that of the hydrogen generation. Importantly, TiO2-10 owns the highest photoactivity, whose photoreaction rate (degradation of phenol) is 8-fold higher than TiO2-0.

Besides, TiO2-m (with $m = 5–30$) with p-type conductivity show high cathodic photocurrent in photoelectrochemical (PEC) water splitting and the activity trend is the same with photocatalysis (Fig. 4c), while n-type TiO2-0 can be only applied as photoanode. For n-type TiO2-0, the Fermi level (E_F) is higher than electrolyte redox level, leading to electrons transfer from

Fig. 3 Spin-dependent electronic structures of metal-defected TiO2. a Ti L-edge and high-resolution L2 XAS spectra. c Calculated total density of states (DOS) and d (001)-Planar 3D spatial distributions of spin polarization (with the energy interval of [E_F-0.2 eV, E_F]) of metal-defected Ti15O32 model (6.25% V_{Ti}). The specific iso-surface SSP value for d is -95%.

Fig. 4 Spin-dependent photocatalytic activity of all defected TiO2 samples in hydrogen generation with photoanode (n-type TiO2) and as cathode (p-type TiO2). a Photocatalytic activity of all defected TiO2 samples in hydrogen generation under simulated solar light irradiation (Supplementary Table 5). First, the defected samples show much higher H2 generation rate and quantum efficiency (QE) than normal TiO2-0. **b** Conductivity of all samples is determined via impedance spectroscopy (EIS) under light irradiation (Supplementary Fig. 26). The radius gradually becomes smaller with the increase of Ti vacancies, suggesting that more Ti vacancies (with the majority carrier of holes) will enhance the electrical conductivity, which agrees with the Mott-Schottky results (Supplementary Table 5).
at $V_{T} = 6.4\%$, with a highest spin polarization (Fig. 3), can inhibit the recombination of photinduced carriers to the greatest extent. However, for the stoichiometric TiO$_2$ without spin polarization, the excited electron and holes have random spin orientations, and the possibility for one excited electron to recombine with one hole with the same spin orientation is high. As confirmed in the time-resolved transient photoluminescence decay (Fig. 4d and Supplementary Table 6), not surprisingly, TiO$_2$-10 possesses the longest fluorescent lifetime, while other samples show relatively short fluorescent lifetime. Especially, the order of fluorescent lifetime changes in the same order of spin polarization, i.e. TiO$_2$-10 > TiO$_2$-20 > TiO$_2$-30 > TiO$_2$-5.

Meanwhile for the surface reaction, the spin-polarized electrons play an important role in inhibiting the recombination of active species (free radical) such as hydroxyl radicals. Oxygen-containing species like hydroxyl radicals (·OH) are important active species for photocatalysis, which are formed by donating an electron to the hole of TiO$_2$. As discussed above, the spin direction of holes is correlated to the spatial spin polarization, i.e., higher spatial spin polarization leads the higher alignment of hole spin polarization. Therefore, for TiO$_2$-10 with wide spatial spin polarization, the spin-polarized holes (note that the SSP at surface is the same as that in the bulk, Supplementary Fig. 27) can only accept the electrons of OH$^-$ (from aqueous solution) with the same spin polarization direction (e.g., spin down), leaving the parallel spin alignment among the ·OH species (e.g., spin up). When the single electrons in different ·OH species are in different spin directions, the hydroxyl radical will combine easily to generate H$_2$O$_2$17,22, which will reduce the effective proportion of ·OHs to take part in the surface oxidation reaction. On the
contrary, OHs with single electrons in the same spin direction are not easy to combine7,23,46, thus promoting the surface recombination of water splitting and degradation (especially for the case of TiO2-10).

It is worth noting that, the above spin-restricted merits can be further enhanced by external magnetic field24. Therefore, a magnetic field (easily by the electromagnet) was applied to investigate its effect on the photocatalytic activity of defected TiO2. From Fig. 4e and Supplementary Fig. 28a–c, it can be seen that the magnetic field does enhance the activity of TiO2-5, TiO2-10, and TiO2-20, which may be attributed to the inhibition of the combination between -OH species with anti-parallel spin directions7. And the effect of magnetic field is most significant for TiO2-10, with the reaction constant increased by 54% (RhB degradation) at a magnetic field of 8000 Oe, which is related to its best magnetic feature (0.2 μB/unit cell or 3.2 μB/supercell, Supplementary Figs. 29–31, similar to the previous result25) as well as the widest distribution of spin-polarized electrons4. Moreover, for TiO2-10, the degree of photocatalytic enhancement increases with the strength of magnetic field [Fig. 4f and Supplementary Fig. 28d–f], further confirming the significant positive effect by magnetic field. However, the photocatalytic activity of TiO2-30 is suppressed at an external magnetic field, because the spatial spin polarization reversal (caused by the abundant defects clusters) may appear on the surface, which facilitates the combination of -OH species.

Discussion

In summary, we regulated the spin polarization in TiO2 by modulating the content of metal vacancies and illustrated that the increase of spatial spin polarization shows positive effect on the photocatalysis. Especially, the introduced ca. 6.4% Ti vacancies (TiO2-10) leads to intensive spatial spin polarization with wide distribution, which promotes the efficiencies of charge separation and surface reaction via the parallel alignment of electron spin polarizations, and results in significantly promoted photocatalytic activities. Meanwhile, the positive effect of external magnetic fields on Ti-defected TiO2 is also observed, attributed to the enhanced electron-spin parallel alignment. This reliable spin-polarization-modulation strategy via defects tuning gives us inspiration to tailor the spin-dependent electronic structures for highly effective catalysts.

Methods

Density functional theory calculations. The density functional theory (DFT) calculations were implemented in Vienna Ab initio Simulation Package48. DFT with generalized gradient approximation (GGA) provides accurate lattice constants in anatase TiO2, however, the band gap of anatase TiO2 is underestimated by GGA49. In order to improve the band gap, the effective Hubbard U of 7.2 eV is applied for the Ti 3d states49 (see the influence of U values on the spatial spin polarization results in Supplementary Fig. 32). Based on the GGA + U method, the calculated band gap of anatase TiO2 is 3.3 eV, which is very close to the experimental value of 3.2 eV. The supercell size and atomic numbers of normal and state CP/MAS13C-NMR spectrum were tested using In<sub>7</sub> standard ferric ammonium sulfate solution to the sharp color change from violet to red. Ammonium thionocyanate solution (NH4SCN, 300 g L<sup>−1</sup>) was used as the indicator of the end-point. The titration was repeated at least 3 times for each sample, with the experimental error less than 0.5%. The TiO2 ratio on the surface was calculated according to the surface concentration of Ti and O detected by XPS analysis.

Photocatalytic tests. Photocatalytic hydrogen production was carried out in a top-irradiation Pyrex reaction vessel connected to closed glass system. 10 mg catalyst were dispersed in 100 mL aqueous solution containing methanol (30 vol %). 0.5% Pt was introduced as cocatalyst by in situ photo deposition. The temperature of reaction solution was maintained at 0.5 °C ± 0.1 °C and the light source is a 300 W high-pressure xenon lamp (100 mW cm<sup>−2</sup> PSL-300UV3). The produced hydrogen was analyzed using an online gas chromatography (Bruker 450- GC, thermal conductor detector, 5 Å molecular sieve column, and N2 as carrier.
Crossland, E. J. et al. Mesoporous TiO2 single crystals delivering enhanced photocatalytic activity. J. Am. Chem. Soc. 139, 2794–2798 (2017).

Fujishima, A., Zhang, X. & Tryk, D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008).

Chen, X. B., Liu, L., Yu, P. Y. & Mao, S. S. Increasing solar adsorption for p-type TiO2 is used as photocatalyst (see the details in Supplementary Fig. 3). J. Phys. Chem. C. 112, 20037–20045 (2018).

Shimadzu Ltd.

Photodegradation of organic pollutants was conducted in an opening quartz cuvette (50 mL) vertically irradiated by a 300 W high-pressure xenon lamp located on the upper position. The light density was controlled at 100 mW cm−2. The irradiation area was ca. 50 cm². Reaction conditions: temperature, 25 ± 0.2°C; Cl2(MO) = 120 μmol L−1; Cl2(Phenyl) = 400 μmol L−1; Cl2(BrPh) = 20 μmol L−1; Cl2(Rose Bengal) = 20 μmol L−1 and TiO2:2gL = 0.2 g L−1; no acid or alkaline reagents were added. Reaction was conducted by magnetic stirring under atmosphere after stirring for 20 min in darkness to achieve adsorption equilibrium. Samples were withdrawn, centrifuged, and analyzed using UV–vis spectrometer (UV-2600, Shimadzu Ltd.).

Data availability

The source data underlying Figs. 1–4 and Supplementary Figs. 2–4, 6–8, 11–19, 21–26, 28, 29, 31 are provided as a Source Data file.

Received: 31 July 2019; Accepted: 30 December 2019.

Published online: 21 January 2020

References

1. Fujishima, A., Zhang, X. & Tryk, D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008).

2. Chen, X. & Mao, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2957 (2007).

3. Crossland, E. J. et al. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 495, 215–219 (2013).

4. Chen, X. B., Liu, L., Yu, P. Y. & Mao, S. S. Increasing solar adsorption for p-type TiO2 is used as photocatalyst (see the details in Supplementary Fig. 3). J. Phys. Chem. C. 112, 20037–20045 (2018).

5. Pan, L. et al. Controlling chemical selectivity in electrocatalysis with exposed {001} facets. J. Phys. Chem. C. 119, 6478–6486 (2015).

6. Wang, S. et al. Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. J. Am. Chem. Soc. 137, 2975–2983 (2015).

7. Pan, L. et al. Undoped ZnO abundant with metal vacancies. Nano Energy 9, 71–79 (2014).

8. Wu, S. M. et al. Homojunction of oxygen and titanium vacancies and its interfacial p-n effect. Adv. Mater. 30, 1802173 (2018).

9. Das, J., Freitas, F. S., Evans, I. R., Nogueira, A. F. & Khushalani, D. A facile nonaqueous route for fabricating titania nanorods and their viability in quasi-solid-state dye-sensitized solar cells. J. Mater. Chem. 20, 4425–4431 (2010).

10. Chen, Y. et al. Solvothermal synthesis, characterization, and formation mechanism of a single-layer anatase TiO2 nanosheet with a porous structure. Eur. J. Inorg. Chem. 2011, 754–760 (2011).

11. Thushara, K. S. et al. MgCl2·4(CH3)2CHOH: A new molecular adduct and its role in boosting carrier transport. J. Phys. Chem. C. 113, 8556–8559 (2009).

12. Pei, D. N. et al. Defective titanium dioxide single crystals exposed by high-energy ion irradiation. Nat. Comm. 6, 8066 (2015).

13. Jiang, X. et al. Characterization of oxygen vacancy associated with hydrogenated TiO2: a positron annihilation study. J. Phys. Chem. C. 116, 22619–22624 (2012).

14. Li, X., Guo, Z. & He, T. The doping mechanism of Cr into TiO2 and its influence on the photocatalytic performance. Phys. Chem. Chem. Phys. 15, 20037–20045 (2013).

15. Kong, M. et al. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. J. Am. Chem. Soc. 133, 16414–16417 (2011).

16. Angelomé, P. C. et al. Mesoporous anatase TiO2 films: use of Ti K XANES for the quantification of the nanocrystalline character and substrate effects in the photocatalysis behavior. J. Phys. Chem. C. 111, 10886–10893 (2007).

17. Cao, J., Zhang, Y., Liu, L. & Ye, J. A p-type Cr-doped TiO2 photoelectrode for photo-reduction. Chem. Commun. 49, 3440–3442 (2013).

18. Tian, B. et al. Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency. Nat. Commun. 6, 8066 (2015).

19. Na–Phattalung, S. et al. First-principles study of native defects in anatase TiO2. Phys. Rev. B 73, 125205 (2006).

20. Ohtomo, A., Muller, D. A., Grazul, J. L. & Hwang, H. Y. Artificial charge modulation in atomic-scale perovskite titanate superlattices. Nature 419, 378–380 (2002).

21. Jiang, B. et al. Enhanced photocatalytic activity and electron transfer mechanisms of graphene/TiO2 with exposed (001) facets. J. Phys. Chem. C. 115, 23718–23725 (2011).

22. Caffrey, N. M., Ferriani, P., Marocchi, S. & Heinze, S. Atomic-scale inversion of spin polarization at an organic-antiferromagnetic interface. J. Phys. Chem. C. 111, 5520 (2007).

23. Zhang, Z. & Yates, J. T. Band bending in semiconductors: chemical and orbital principles. J. Mater. Chem. 23, 754–768 (2013).

24. Peng, H., Li, J., Li, S.-S. & Xia, J.-B. Possible origin of ferromagnetism in undoped anatase TiO2. Phys. Rev. B 79, 092411 (2009).
48. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
49. Meng, Q. et al. Understanding electronic and optical properties of anatase TiO2 photocatalysts co-doped with nitrogen and transition metals. Phys. Chem. Chem. Phys. 15, 9549–9561 (2013).
50. Schneider, J. & Bahnemann, D. W. Undesired role of sacrificial reagents in photocatalysis. J. Phys. Chem. Lett. 4, 3479–3483 (2013).

Acknowledgements
The authors appreciate the support from the National Natural Science Foundation of China (21978200, 21676193, 51661145026) and the Scientific Research Projects of the Ministry of Education of China (6141A0203352). The authors also appreciate the help of XAFS analysis from Beijing Synchrotron Radiation, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.

Author contributions
Z.J. conceived the idea and designed this study. P.L., A.M. and H.C. contributed equally to this work, and synthesized the samples and conducted characterizations. M.W., Y.L. and Z.R. conducted computations. P.L., H.C., A.M., L.X. and W.S. performed photocatalytic reactions. P.L., Z.J. and I.Z. analyzed the XAS tests. Z.J., P.L., H.C., A.M., M.W. and Z.X. wrote the paper. All authors discussed the results and edited the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-14333-w.

Correspondence and requests for materials should be addressed to J.-J.Z. or W.M.

Peer review information Nature Communication thanks Detlef Bahnemann, Nuala Caffrey, and Ron Naaman for their contributions to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020