An Explicit Formula of the Intrinsic Metric on the Sierpinski Gasket via Code Representation

Mustafa Saltan∗, Yunus Ozdemir†‡ and Bunyamin Demir§

Abstract

The computation of the distance between any two points of the Sierpinski Gasket with respect to the intrinsic metric has already been investigated by several authors. In the literature there is not an explicit formula using the code space of the Sierpinski Gasket. In this paper, we give an explicit formula for the intrinsic metric on the Sierpinski Gasket via code representations of its points.

Keywords: Sierpinski Gasket, Code space, Intrinsic metric.

2000 AMS Classification: 28A80, 51F99

1. Introduction

The Sierpinski Gasket was described by W. Sierpinski in 1915, and then it became one of the typical examples of fractals. Sierpinski Gasket has been studied in fractal geometry for years (see for example [1, 7] for more information). It is well known that S is the attractor of the iterated function system $\{\mathbb{R}^2; f_0, f_1, f_2\}$ where

- $f_0(x, y) = \left(\frac{1}{2}x, \frac{1}{2}y\right)$
- $f_1(x, y) = \left(\frac{1}{2}x + \frac{1}{2}, \frac{1}{2}y\right)$
- $f_2(x, y) = \left(\frac{1}{2}x + \frac{1}{4}, \frac{1}{2}y + \frac{\sqrt{3}}{4}\right)$.

\begin{figure}[h]
\centering
\includegraphics[width=0.2\textwidth]{sierpinski_gasket.png}
\caption{The Sierpinski Gasket as an attractor of an IFS.}
\end{figure}

*Department of Mathematics, Anadolu University, Turkey, E-mail: mustafasaltan@anadolu.edu.tr
†Department of Mathematics, Anadolu University, Turkey, E-mail: yunuso@anadolu.edu.tr
‡Corresponding Author.
§Department of Mathematics, Anadolu University, Turkey, E-mail: bdemir@anadolu.edu.tr
In [5, 6], the authors define S as follows: Let $P_0 = (0, 0), P_1 = (0, 1)$ and $P_2 = (\frac{1}{2}, \frac{\sqrt{3}}{2})$. Assume that $i_1 i_2 \ldots i_n$ is the word of length n over the alphabet $X = \{0, 1, 2\}$ for any $i_1, i_2, \ldots, i_n \in X$. For every such word, it is denoted the elementary sub-triangle of level n with vertices $f_{i_1}(P_0) \circ f_{i_2}(P_0) \circ \ldots \circ f_{i_n}(P_0)$, $f_{i_1}(P_1) \circ f_{i_2}(P_1) \circ \ldots \circ f_{i_n}(P_1)$ and $f_{i_1}(P_2) \circ f_{i_2}(P_2) \circ \ldots \circ f_{i_n}(P_2)$ by $T_{i_1 i_2 \ldots i_n}$. Then they define the Sierpinski Gasket as

$$S = \bigcup_{n \geq 0} T_n \text{ where } T_n = \bigcup_{s \in \{0, 1, 2\}^n} T_s.$$

As known, it can be constructed several metric structures on a set. But, a metric which is not taken into consideration its internal structure is far from being applicable. For example, consider the restriction of Euclidean metric to S. According to this metric, the distance between a and b is l (see Figure 2). However, there is not any path between a and b on S with length l. For this reason, this metric is not meaningful on this special set. The intrinsic metric which is obtained by taking into account the paths on the structure, eliminates this discrepancy.

![Figure 2. Distance between two points on S with respect to the Euclidean metric.](image)

One can define the intrinsic metric on S such that

$$d(x, y) = \inf \{\delta \mid \delta \text{ is the length of a rectifiable curve in } S \text{ joining } x \text{ and } y\}$$

for $x, y \in S$ (for details see [2]).

In the several works, the intrinsic metric on the Sierpinski Gasket was constructed and defined in different ways since there exist different ways to construct (or define) the Sierpinski Gasket (for details see [3, 5, 6, 7]). For example in [5], it is given an alternative definition of the intrinsic metric on S as follows: Let $x, y \in S$ and let $\Delta_n(x), \Delta_n(y)$ be two elementary sub-triangles of level n where $x \in \Delta_n(x)$ and $y \in \Delta_n(y)$ for all $n \geq 0$. For every $n \geq 0$, the left lower vertices of $\Delta_n(x)$ and $\Delta_n(y)$ respectively. Then the authors define the intrinsic metric as

$$d(x, y) = \lim_{n \to \infty} \frac{d_n(x_n, y_n)}{2^n}$$

where $x, y \in S$.

R. Strichartz also defines the intrinsic metric in a different way by using barycentric coordinates (for details see [9]).

In [8], Romik tackle the discrete Sierpinski Gasket and define the metric giving the shortest distance on the points of this set using by the code spaces. Romik then compute the average distance between points on the Sierpinski Gasket using
the connection between the Tower of Hanoi problem and the discrete Sierpinski Gasket.

In this paper, we use code representations of the points of the Sierpinski Gasket to define the intrinsic metric. We note that the junction points of the Sierpinski Gasket have two different code representations. In this work, we give an explicit formula for the intrinsic metric on S such that the formula does not depend on the choice of the representations of the junction points as mentioned in Proposition 3.4.

2. Code representation on the Sierpinski Gasket

We first give a small brief about the coding process.

Let us denote the left-bottom part, the right-bottom part and the upper part of the Sierpinski Gasket by S_0, S_1 and S_2 respectively (see Figure 3).

![Figure 3](image1.png)

Figure 3. The sub-triangles S_0, S_1 and S_2 of S.

As shown in Figure 3, $S = S_0 \cup S_1 \cup S_2$, $S_0 \cap S_1 = \{p\}$, $S_1 \cap S_2 = \{q\}$ and $S_0 \cap S_2 = \{r\}$. Let $a_1 \in \{0, 1, 2\}$. Now similarly we denote the left-bottom part, the right-bottom part and the upper part of S_{a_1} by S_{a_10}, S_{a_11} and S_{a_12} respectively (see Figure 4).

![Figure 4](image2.png)

Figure 4. The sub-triangles S_{a_10}, S_{a_11} and S_{a_12} of S_{a_1} for $a_1 = 1$.

With the same argument, let $S_{a_1a_2...a_k}$ denote the smaller triangular pieces of S where $a_i \in \{0, 1, 2\}$ and $i = 1, 2, \ldots, k$. For the sequence

$S_{a_1}, S_{a_1a_2}, S_{a_1a_2a_3}, \ldots, S_{a_1a_2...a_n}, \ldots$
it is obvious that \(S_{a_1} \supset S_{a_1a_2} \supset S_{a_1a_2a_3} \supset \ldots \supset S_{a_1a_2\ldots a_n} \supset \ldots \) and the infinite intersection

\[
\bigcap_{k=1}^{\infty} S_{a_1a_2\ldots a_k}
\]

is a singleton, say \(\{a\} \) where \(a \in S \). We denote the point \(a \in S \) by \(a_1a_2\ldots a_n \ldots \) where \(a_n \in \{0,1,2\} \) and \(n = 1,2,\ldots \). Note that, if \(a \in S \) is the intersection point of any two sub-triangles of \(S_{a_1a_2\ldots a_k} \) (such a point is called a junction point of \(S \)) then \(a \) has two different representations such that \(a_1a_2\ldots a_k\beta\alpha\alpha\alpha\alpha\ldots \) and \(a_1a_2\ldots a_k\alpha\beta\beta\beta\beta \ldots \) where \(\alpha, \beta \in \{0,1,2\} \) (see Figure 5). Otherwise, \(a \) has a unique representation.

(For an alternative code space representation of the points of \(S \), see [4].)

\[\text{Figure 5. The point } a \text{ for } \alpha = 0 \text{ and } \beta = 1.\]

3. Construction of the intrinsic metric on \(S \)

Let \(a \) and \(b \) be two different points of \(S \) whose representations are \(a = a_1a_2\ldots a_n \ldots \) and \(b = b_1b_2\ldots b_n \ldots \) respectively. Then there exists a natural number \(s \) such that \(a_s \neq b_s \). Let

\[
(3.1) \quad k = \min\{s \mid a_s \neq b_s, \quad s = 1,2,3,\ldots\}.
\]

We then have \(a \in S_{a_1a_2\ldots a_{k-1}a_k} \) and \(b \in S_{a_1a_2\ldots a_{k-1}b_k} \). Without lost of generality, we assume that \(a_k = 0 \) and \(b_k = 1 \) which means \(a \in S_{a_1a_2\ldots a_{k-1}0} \) and \(b \in S_{a_1a_2\ldots a_{k-1}1} \) as seen in Figure 6 (we use the abbreviation \(\sigma = a_1a_2\ldots a_{k-1} \) for simplicity). Note also that, in the other cases, i.e. \(a \) and \(b \) are in another sub-triangle of \(S_{a_1a_2\ldots a_{k-1}} \), similar procedures would be valid.

Let \(p_\sigma, r_\sigma, q_\sigma \) be the intersection points of the sub-triangles \(S_{\sigma_0} \) and \(S_{\sigma_1}, S_{\sigma_0} \) and \(S_{\sigma_2}, S_{\sigma_1} \) and \(S_{\sigma_2} \) respectively. The shortest paths between \(a \) and \(b \) must pass through either the point \(p_\sigma \) or the line \(r_\sigma q_\sigma \) (see Figure 6).

We now investigate these two different ways as follows:

Case 1: First consider the shortest path passing through the point \(p_\sigma \). Any path between \(a \) and \(b \) can be expressed as the union of a path between \(a \) and \(p_\sigma \) and a path between \(p_\sigma \) and \(b \). We first look at the shortest paths between \(a \) and \(p_\sigma \) (The paths between \(p_\sigma \) and \(b \) can be obtained using similar argument).
Figure 6. The sub-triangle \(S_\sigma \) where \(\sigma = a_1 a_2 \ldots a_{k-1} \) and the points \(a \in S_{\sigma 0} \) and \(b \in S_{\sigma 1} \).

• If \(a \in S_{a_1 a_2 \ldots a_{k-1} 00} \) or \(a \in S_{a_1 a_2 \ldots a_{k-1} 02} \) then we must compute the length of the line segment \(p_\sigma r_\sigma \) or the length of the line segment \(q_\sigma r_\sigma \) where \(p_\sigma, q_\sigma \) are the intersection points of the sub-triangles \(S_{\sigma'0} \) and \(S_{\sigma'1} \) and \(S_{\sigma'2} \) respectively where \(\sigma' = a_1 a_2 \ldots a_{k-1} 0 \) (see Figure 7). In the both cases, the length of the shortest paths between \(a \) and \(p_\sigma \) is

\[
\mu = \frac{1}{2^{k+1}} + \varepsilon,
\]

for some \(\varepsilon \geq 0 \).

For the case \(a = r_\sigma' \), where \(r_\sigma' \) is the intersection point of the sub-triangles \(S_{\sigma'0} \) and \(S_{\sigma'2} \), there exist obviously two shortest paths between \(a \) and \(p_\sigma \) (see Figure 7). These paths are the union of the line segments \(r_\sigma' p_\sigma \) and \(q_\sigma' p_\sigma \) or the union of the line segments \(r_\sigma' q_\sigma' \) and \(q_\sigma' p_\sigma \). The length of these paths can be easily computed as \(\mu = \frac{1}{2^k} \).

Figure 7. The sub-triangle \(S_{\sigma'0} \) where \(\sigma' = a_1 a_2 \ldots a_{k-1} 0 \) and the points \(a \in S_{\sigma'0} \) or \(b \in S_{\sigma'2} \).

• Suppose that \(a \in S_{a_1 a_2 \ldots a_{k-1} 01} \).

If \(a \in S_{a_1 a_2 \ldots a_{k-1} 010} \) or \(a \in S_{a_1 a_2 \ldots a_{k-1} 012} \), then we must compute the length of the line segment \(p_\sigma' r_\sigma \) or the length of the line segment \(q_\sigma' r_\sigma \) where \(p_\sigma', q_\sigma' \)
are the intersection points of the sub-triangles $S_{\sigma''0}$ and $S_{\sigma''1}$, $S_{\sigma''1}$ and $S_{\sigma''2}$ respectively where $\sigma'' = a_1a_2\ldots a_{k-1}01$ (see Figure 8).

In the both cases, we get

$$\mu = \frac{1}{2^{k+2}} + \varepsilon,$$

for some $\varepsilon \geq 0$.

For the case $a = r_{\sigma''}$, where $r_{\sigma''}$ is the intersection point of the sub-triangles $S_{\sigma''0}$ and $S_{\sigma''2}$, there are two paths giving the distance of the shortest paths between a and p_{σ} as were before. These paths are the union of the line segments $r_{\sigma''}p_{\sigma''}$ and $p_{\sigma''}p_{\sigma}$ or the union of the line segments $r_{\sigma''}q_{\sigma''}$ and $q_{\sigma''}p_{\sigma}$. The length of these two paths is $\mu = \frac{1}{2^{k+1}}$.

![Figure 8](image-url)

Figure 8. The sub-triangle $S_{\sigma''}$ where $\sigma'' = a_1a_2\ldots a_{k-1}01$.

Using similar procedure for smaller triangles, we can determine the shortest paths between a and b and the length of these paths. Similarly one can determine the shortest paths between p_{σ} and b. Then by splicing these shortest paths, between “a and p_{σ}” and “p_{σ} and b”, one can compute the length of the shortest paths between a and b passing through the point p_{σ}.

Case 2: Let us consider the shortest paths passing through the line segment $r_{\sigma}q_{\sigma}$. In a similar way, we can obtain the shortest paths (thus the corresponding length) between “a and r_{σ}” and between “b and q_{σ}”. As we add $\frac{1}{2^k}$ (that is, the length of the path $r_{\sigma}q_{\sigma}$) to these length, we obtain the length of the shortest path passing through $r_{\sigma}q_{\sigma}$.

Consequently, the length of the shortest paths between a and b is the minimum of the lengths obtained from Case 1 and Case 2. We can formulate this length (so the metric) as follows:

3.1. Definition. Let $a_1a_2\ldots a_{k-1}a_k a_{k+1}\ldots$ and $b_1b_2\ldots b_{k-1}b_kb_{k+1}\ldots$ be two representations respectively of the points $a \in S$ and $b \in S$ such that $a_i = b_i$ for $i = 1, 2, \ldots, k-1$ and $a_k \neq b_k$. We define the distance $d(a, b)$ between a and b as

$$d(a, b) = \min \left\{ \sum_{i=k+1}^{\infty} \frac{\alpha_i + \beta_i}{2^i}, \frac{1}{2^k} + \sum_{i=k+1}^{\infty} \frac{\gamma_i + \delta_i}{2^i} \right\}$$

where
\[\alpha_i = \begin{cases} 0, & a_i = b_k \\ 1, & a_i \neq b_k \end{cases}, \]

\[\beta_i = \begin{cases} 0, & b_i = a_k \\ 1, & b_i \neq a_k \end{cases}, \]

\[\gamma_i = \begin{cases} 0, & a_i \neq a_k \text{ and } a_i \neq b_k \\ 1, & \text{otherwise} \end{cases}, \]

\[\delta_i = \begin{cases} 0, & b_i \neq b_k \text{ and } b_i \neq a_k \\ 1, & \text{otherwise} \end{cases}. \]

3.2. Remark. Note that the first value \(\sum_{i=k+1}^{\infty} \alpha_i + \frac{\beta_i}{2^i} \) is the length of the shortest paths passing through the point \(p_\sigma \) and the second value \(\frac{1}{2^k} + \sum_{i=k+1}^{\infty} \gamma_i + \frac{\delta_i}{2^i} \) is the length of the shortest paths passing through the line segment \(r_\sigma q_\sigma \) where \(\frac{1}{2^k} \) is the length of the line segment \(r_\sigma q_\sigma \).

3.3. Proposition. The distance function \(d \) defined in Definition 3.1 is strictly intrinsic metric on \(S \).

Proof. It is obvious from the fact that \(d(a, b) \) is defined as the minimum of the lengths of the admissible paths connecting the points \(a \) and \(b \) in \(S \). \(\square \)

3.4. Proposition. The metric \(d \) defined in Definition 3.1 does not depend on the choice of the code representations of the points.

Proof. Let \(a \) be a junction point whose code representations are of the form \(a_1a_2a_2\ldots a_2a_2a_2\ldots \) and \(a_2a_1a_1\ldots a_1a_1a_1\ldots \) such that \(a_1 \neq a_2 \) (in the general case, i.e. if the code representation of \(a \) is of the form \(a_1a_2\ldots a_k a_{k+1} a_{k+1} a_{k+1} \ldots \), the claim can be proven similarly).

Let \(x_1 \) be an arbitrary point of \(S \) which has the code representation \(x_1x_2\ldots x_{k-1}x_kx_{k+1}x_{k+2}x_{k+3} \ldots \).

Assume that \(x_1 \neq a_1 \). In this case, it must be \(x_1 \neq a_2 \) or \(x_1 = a_2 \).

Case 1: We first take \(x_1 \neq a_2 \). We now investigate the distance between the points \(x_1x_2\ldots x_kx_{k+1}x_{k+2}x_{k+3} \ldots \) and \(a_1a_2a_2\ldots a_2a_2a_2 \ldots \).

Due to the definition of \(d \), we have the following equations:

\[\alpha_i = \begin{cases} 0, & x_i = a_1 \\ 1, & x_i \neq a_1 \end{cases}, \]

\[\beta_i = \begin{cases} 0, & a_2 = x_1 \\ 1, & a_2 \neq x_1 \end{cases}, \]

\[\gamma_i = \begin{cases} 0, & x_i \neq x_1 \text{ and } x_i \neq a_1 \\ 1, & \text{otherwise} \end{cases}. \]
\[\delta_i = \begin{cases}
0, & a_2 \neq a_1 \text{ and } a_2 \neq x_1 \\
1, & \text{otherwise}
\end{cases} \]

We thus get \(\beta_i = 1 \) for all \(i \geq 2 \) owing to the fact that \(x_1 \neq a_2 \). Moreover, \(\alpha_i \) can change according to the value of \(x_i \) and \(a_1 \) for each \(i \geq 2 \). It is also easily seen that \(\delta_i = 0 \) for every \(i \geq 2 \) since \(a_2 \neq a_1 \) and \(a_2 \neq x_1 \). It follows that

\[
\sum_{i=2}^{\infty} \frac{\alpha_i + \beta_i}{2^i} = \frac{1}{2} + \sum_{i=2}^{\infty} \frac{\alpha_i}{2^i}
\]

and

\[
\frac{1}{2} + \sum_{i=2}^{\infty} \frac{\gamma_i + \delta_i}{2^i} = \frac{1}{2} + \sum_{i=2}^{\infty} \frac{\gamma_i}{2^i}.
\]

Now we compute the distance between the points

\[x_1x_2 \ldots x_kx_{k+1}x_{k+2}x_{k+3} \ldots \text{ and } a_2a_1a_1 \ldots a_1x_1 \ldots. \]

Thanks to the definition of \(d \), we have the following equations:

\[\alpha_i' = \begin{cases}
0, & x_i = a_2 \\
1, & x_i \neq a_2
\end{cases}, \]

\[\beta_i' = \begin{cases}
0, & a_1 = x_1 \\
1, & a_1 \neq x_1
\end{cases}, \]

\[\gamma_i' = \begin{cases}
0, & x_i \neq x_1 \text{ and } x_i \neq a_2 \\
1, & \text{otherwise}
\end{cases}, \]

\[\delta_i' = \begin{cases}
0, & a_2 \neq a_1 \text{ and } a_1 \neq x_1 \\
1, & \text{otherwise}
\end{cases}. \]

Similarly, we have \(\beta_i' = 1 \) for all \(i \geq 2 \) owing to the fact that \(x_1 \neq a_1 \). Moreover, \(\alpha'_i \) can change according to the value of \(x_i \) and \(a_2 \) for each \(i \geq 2 \). It is also obviously seen that \(\delta'_i = 0 \) for every \(i \geq 2 \) since \(a_1 \neq a_2 \) and \(a_1 \neq x_1 \). This shows that

\[
\sum_{i=2}^{\infty} \frac{\alpha_i' + \beta_i'}{2^i} = \frac{1}{2} + \sum_{i=2}^{\infty} \frac{\alpha_i'}{2^i}
\]

and

\[
\frac{1}{2} + \sum_{i=2}^{\infty} \frac{\gamma_i' + \delta_i'}{2^i} = \frac{1}{2} + \sum_{i=2}^{\infty} \frac{\gamma_i'}{2^i}.
\]

Finally we show that \(\alpha_i = \gamma_i' \) and \(\alpha_i' = \gamma_i \) for all \(i \geq 2 \) respectively. We have already known that \(a_1 \neq a_2, x_1 \neq a_1 \) and \(x_1 \neq a_2 \).

Assume that \(\gamma_i = 0 \) for a fixed \(i \). In this case, we have \(x_i \neq a_2 \) and \(x_i \neq x_1 \). We thus have \(x_i = a_1 \). Namely, it is \(\alpha_i = 0 \). Let \(\gamma_i' = 1 \) for a fixed \(i \). Hence it must be \(x_i = a_2 \) or \(x_i = x_1 \). This shows that \(x_i \neq a_1 \). That is we obtain \(\alpha_i = 1 \).

Suppose that \(\gamma_i = 0 \) for a fixed \(i \). We thus have \(x_i \neq x_1 \) and \(x_i \neq a_1 \) and this shows that \(x_i = a_2 \). So we get \(\alpha_i' = 0 \). Let \(\gamma_i' = 1 \) for a fixed \(i \). Therefore it must be \(x_i = x_1 \) or \(x_i = a_1 \). It follows that \(x_i \neq a_1 \) and thus we get \(\alpha_i' = 1 \).

This concludes the proof in Case 1.

Case 2: Let \(x_1 = a_2 \). The assertion can be proved similarly as above. \(\square \)
4. Some Examples

In this section we give two examples in which we compute the distance between two kinds of pair of points in S.

4.1. Example. Let a and b be the points in S whose representations are $\overline{012} = 012012012 \cdots$ and $\overline{T} = 111 \cdots$ respectively (see Figure 9 for the place of the points).

![Figure 9](image)

Figure 9. The points a and b coded by $\overline{012}$ and \overline{T} respectively.

To compute $d(a, b)$ we need the natural number k defined in (3.1). Since the first term of the representations are different, we get $k = 1$. Easy calculations give us $\beta_i = 1$, $\delta_i = 1$, $\alpha_i = \begin{cases} 0 & i \equiv 2 \pmod{3} \\ 1 & \text{otherwise} \end{cases}$, and $\gamma_i = \begin{cases} 0 & i \equiv 0 \pmod{3} \\ 1 & \text{otherwise} \end{cases}$ for all $i \geq k + 1 = 2$. We then obtain

$$\sum_{i=3}^{\infty} \frac{\alpha_i + \beta_i}{2^i} = \sum_{m=1}^{\infty} \left(\frac{1}{2^{3m-1}} + \frac{2}{2^{3m}} + \frac{2}{2^{3m+1}} \right) = \frac{5}{7},$$

and

$$\frac{1}{2} + \sum_{i=2}^{\infty} \frac{\gamma_i + \delta_i}{2^i} = \frac{1}{2} + \sum_{m=1}^{\infty} \left(\frac{2}{2^{3m-1}} + \frac{1}{2^{3m}} + \frac{2}{2^{3m+1}} \right) = \frac{1}{2} + \frac{6}{7},$$

which says that $d(a, b)$ is the minimum value $\frac{5}{7}$.

4.2. Example. Let a and b be the points in S whose representations are $000\overline{2} = 000222222 \cdots$ and $012\overline{0} = 0122000000 \cdots$ respectively (see Figure 10 for the place of the points).

Since the second term of the representations are different, we get $k = 2$. One can obtain $\alpha_i = 1$ for $i \geq k + 1 = 3$, $\beta_3 = \beta_4 = 1$ and $\beta_i = 0$ for $i \geq 5$, $\gamma_3 = 1$ and $\gamma_i = 0$ for $i \geq 4$, $\delta_3 = \delta_4 = 0$ and $\delta_i = 1$ for $i \geq 5$. We then obtain

$$\sum_{i=3}^{\infty} \frac{\alpha_i + \beta_i}{2^i} = \frac{2}{2^3} + \frac{2}{2^4} + \sum_{i=5}^{\infty} \frac{1}{2^i} = \frac{7}{16},$$

and
Figure 10. The points a and b coded by $000\overline{2}$ and $012\overline{7}$ respectively.

and

$$\frac{1}{2^2} + \sum_{i=3}^{\infty} \frac{\gamma_i + \delta_i}{2^i} = \frac{1}{4} + \sum_{i=5}^{\infty} \frac{1}{2^i} = \frac{7}{16}$$

which says that $d(a, b)$ is the value $\frac{7}{16}$. Notice that two values are equal and it means that there exist at least two shortest paths between the points.

Indeed, since it is a junction point, the point $000\overline{2}$ has two code representations and one can take the representation of this point as $002\overline{0}$. In this case the computation yields $k = 2$, $\alpha_i = 1$ for $i \geq 3$, $\beta_3 = \beta_4 = 1$ and $\beta_i = 0$ for $i \geq 5$, $\gamma_3 = 0$ and $\gamma_i = 1$ for $i \geq 4$, $\delta_3 = \delta_4 = 0$ and $\delta_i = 1$ for $i \geq 5$. We then get by easy calculation $d(a, b) = \frac{7}{16}$ again as mentioned in Proposition 3.4.

References

[1] Barnsley, M. Fractals Everywhere (Academic Press, San Diego, 1988).
[2] Burago, D., Burago, Y. and Ivanov, S. A Course in Metric Geometry (AMS, USA, 2001).
[3] Cristea, L.L. and Steinsky, B. Distances in Sierpinski graphs and on the Sierpinski gasket, Aequationes mathematicae 85(3), 201-219, 2013.
[4] Deniz, A., Saltan, M. and Demir, B. A classification of points on the Sierpinski gasket, Applied Sciences 10, 73-80, 2008.
[5] Grabner, P. and Tichy, R.F. Equidistribution and Brownian motion on the Sierpinski gasket, Monatshefte fur Mathematik 125, 147-164, 1998.
[6] Hinz, A.M., Schief, A. The average distance on the Sierpinski gasket, Prob. Theory Rel. Fields 87, 129-138, 1990.
[7] Yamaguti, M., Hata, M. and Kigami, J. Mathematics of Fractals (Translations of Mathematical Monographs (167), American Mathematical Society, Providence, 1997).
[8] Romik, D. Shortest paths in the Tower of Hanoi graph and finite automata, SIAMJ. Discrete Math. 20(3), 610-622, 2006.
[9] Strichartz, R.S. Isoperimetric estimates on Sierpinski gasket type fractals, Trans. Amer.Math. Soc. 351(5), 1705-1752, 1999.