Complete genome sequence of *Vibrio anguillarum* strain NB10, a virulent isolate from the Gulf of Bothnia

Kåre Olav Holm, Kristina Nilsson, Erik Hjerde, Nils-Peder Willassen and Debra L. Milton

Abstract

Vibrio anguillarum causes a fatal hemorrhagic septicemia in marine fish that leads to great economical losses in aquaculture world-wide. *Vibrio anguillarum* strain NB10 serotype O1 is a Gram-negative, motile, curved rod-shaped bacterium, isolated from a diseased fish on the Swedish coast of the Gulf of Bothnia, and is slightly halophilic. Strain NB10 is a virulent isolate that readily colonizes fish skin and intestinal tissues. Here, the features of this bacterium are described and the annotation and analysis of its complete genome sequence is presented. The genome is 4,373,835 bp in size, consists of two circular chromosomes and one plasmid, and contains 3,783 protein-coding genes and 129 RNA genes.

Keywords: *Vibrio anguillarum*, Fish pathogen, Vibriosis, Marine fish, Genome comparisons

Introduction

Vibrio anguillarum is a marine pathogen that causes a fatal hemorrhagic septicemia, termed vibriosis, in cultured and wild fish as well as in mollusks and crustaceans [1, 2]. *Vibrio anguillarum* is also known under the name *Listonella anguillarum* [3], which is a later heterotypic synonym [4]. Twenty-three serotypes of *V. anguillarum* are reported and of these, only serotypes O1, O2, and to a lesser extent O3, are the main causes of vibriosis in fish [5–7]. Although vaccines and other preventive measures are in use, vibriosis still has a devastating economical impact on the contemporary larviculture and aquaculture industry worldwide [1, 2].

Despite a significant body of research, our understanding of the virulence mechanisms of *V. anguillarum* is far from complete [2, 8]. A recent assessment of 15 serotypes O1, O2, and O3 isolates in a sea bass larvae model indicated that the virulence of *V. anguillarum* is highly complex requiring multiple instead of a few crucial virulence determinants [9]. Whole genome sequencing of different isolates will further our research to elucidate the vital factors this pathogen utilizes to cause disease.

Recently, the complete genome sequences of two *V. anguillarum* serotype O1 strains have been determined. Strain 775 is an isolate from Coho salmon (*Oncorhynchus kisutch*) in the United States Pacific coast and strain M3 was isolated in China from Japanese flounder (*Paralichthys olivaceus*) [10, 11]. In this study, the complete genome sequence of *V. anguillarum* NB10, a virulent, serotype O1 strain, isolated from diseased fish on the Swedish coast of the Gulf of Bothnia, is presented [12].

Organism information

Classification and features

Vibrio anguillarum strain NB10 belongs to the class of Gammaproteobacteria as part of the Vibrionaceae family (Table 1 and Additional file 1: Table S1). The cells display the characteristic curved, rod-shaped morphology of the *Vibrio* genus (Fig. 1) and possess a single polar, sheathed flagellum that is required for colonization of rainbow trout [13–15]. Cells are typically 1-2 microns long and 0.5 microns in width. Colony morphology on tryptone soy agar containing 0.5 % NaCl is a cream-colored, round colony that may sector into translucent and opaque colony types, which may be due to alterations in the expression of outer membrane proteins [16]. The bacterium forms yellow colonies on the...
vibrio-selective medium thiosulfate-citrate-bile-sucrose agar indicating the fermentation of sucrose. This strain grows at 15-30 °C but does not survive at 37 °C; in 0.5-4 % NaCl with optimum growth occurring at 1 % NaCl in rich media (unpublished data, D.L. Milton). Strain NB10 is highly virulent for at least two species of fish: rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar) [13, 17]. Numerous genetically encoded virulence factors have been identified, such as iron transport systems, flagellum/motility, hemolysins, metalloproteases, lipopolysaccharides, exopolysaccharides, repeat toxins, outer membrane proteins, and a type IV pilus [1, 8]. Figure 2 shows the phylogenetic neighborhood of V. anguillarum NB10 in a 16S ribosomal RNA based tree.

Table 1 Classification and general features of Vibrio anguillarum NB10 according to MIGS recommendations [54]

MIGS ID	Property	Term	Evidence code*	
	Classification	Domain Bacteria	TAS [55]	
		Phylum Proteobacteria	TAS [56]	
		Class Gammaproteobacteria	TAS [57, 58]	
		Order ‘Vibrionales’	TAS [56]	
		Family Vibrionaceae	TAS [59–61]	
		Genus Vibrio	TAS [59, 60, 62–64]	
		Species Vibrio anguillarum	TAS [4, 60, 64]	
		Strain: NB10	TAS [12, 18]	
		Serotype O1	IDA	
	Gram stain	Negative	IDA	
	Cell shape	Curved rod (vibroid)	TAS [13]	
	Motility	Motile	TAS [13]	
	Sporulation	Non-sporeforming	IDA	
	Temperature range	Mesophile 15-30 °C	IDA	
	Optimum temperature	24 °C	IDA	
	pH range; Optimum	pH 6 - pH 9; pH 7	NAS	
	Carbon source	Highly diverse	NAS	
	MIGS-6	Habitat	Marine fish	TAS [12, 18]
	MIGS-6.3	Salinity	Slightly halophilic, optimum 1 % NaCl	IDA
	MIGS-22	Oxygen requirement	Aerobe and facultative anaerobe	IDA
	MIGS-15	Biotic relationship	Parasitic	TAS [12, 18]
	MIGS-14	Pathogenicity	Pathogen, marine fish	TAS [18]
		Biosafety level	1	NAS
		Isolation	Diseased fish	TAS [12]
	MIGS-4	Geographic location	Gulf of Bothnia, Norrbyn, Sweden	TAS [12, 18]
	MIGS-5	Sample collection	1986	TAS [12, 18]
	MIGS-4.1	Latitude	63° 34' 0" N	TAS [12, 18]
	MIGS-4.2	Longitude	19° 49' 0" E	TAS [12, 18]
	MIGS-4.4	Altitude	3 m	TAS [12, 18]

*Evidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [65].

Genome sequencing information

Genome project history

Vibrio anguillarum strain NB10 is highly virulent for marine fish and was isolated from the Gulf of Bothnia, a brackish sea off the coast of Norrbyn, Sweden [12, 18]. Genome sequencing was performed by Eurofins MWG GmbH and the Norwegian Sequencing Centre. Finishing and annotation of the genome was performed at the Department of Molecular Biology at Umeå University and at the Department of Chemistry at UiT: The Arctic University of Tromsø, respectively. The genome project has been deposited at the European Nucleotide Archive under the ID number 251627 and accession number PRJEB5701. The accession number for plasmid p67-NB10 is LK021128, for
Fig. 2 Phylogenetic tree of 16S RNA sequences highlighting the V. anguillarum NB10 position relative to other Vibrio strains. Type strains are indicated with a superscript “T”. The tree uses sequences aligned by the RDP aligner, and uses the Jukes-Cantor corrected distance model to construct a distance matrix based on alignment model positions without the use of alignment inserts, and uses a minimum comparable position of 200. The tree is built with RDP Tree Builder, which uses Weighbor [52] with an alphabet size of 4 and length size of 1000. The building of the tree also involves a bootstrapping process repeated 100 times to generate a majority consensus tree [53]. Bar equals 1% sequence difference. Only significant bootstrap values are indicated.
chromosome 1 is LK021130, and for chromosome 2 is LK021129. A summary of the project information is shown in Table 2 and Table S1.

Growth conditions and genomic DNA preparation

Vibrio anguillarum NB10 was grown in tryptone soy broth containing 1% sodium chloride with shaking at 24°C overnight. For the Roche 454 and PacBio genomic sequencing, genomic DNA was extracted using the Qiagen DNeasy blood and tissue kit according to the manufacturer’s instructions. For gap closures, the genomic DNA, which was used as template for Sanger sequencing, was extracted using the Qiagen Blood and Cell Culture Midi Kit according to the manufacturer’s instructions.

Genome sequencing and assembly

The genome was sequenced using the Roche/454 GS FLX system equipped with Data Analysis Software Modules v.2.3 [19]. A total of 442,045 reads representing 20-fold coverage of the genome were assembled using the Roche genome assembler Newbler. The assembly resulted in 112 contigs >500 bp. Custom primers were designed to anneal to the ends of the contigs. Gaps between contigs were closed by PCR amplification followed by fragment sequencing. Several gaps could not be closed using this method due to long stretches of repeated sequences. Consequently, the total genome was sequenced a second time using the Pacific Biotechnologies PacBio RS II single-molecule, real-time sequencing technology. Library construction, which contains >10-kb fragments, and sequencing using the PacBio RS II system were performed according to Pacific Biosciences instructions, which may be found on their website [20]. A total of 60,000 reads with a genome coverage of 60-fold were obtained. The sequence reads were assembled using a hierarchical genome-assembly process module from Pacific Biosciences [21]. The HGAP module utilizes the Smrtanalysis, version 2.0.1 to assemble the raw sequence reads and corrects the longest reads utilizing the smaller reads to find a consensus sequence. The corrected reads were then assembled using the Celera Assembler and Quiver softwares resulting in two large contigs associating with chromosome 1 and 2 as well as one small contig representing the plasmid. Error rate of the completed genome sequence using the PacBio RS II system is less than 17 in 50,000 base pairs and the error rate for the Roche/454 GS FLX system is less than 1 in 100,000 base pairs.

Genome annotation

Coding sequences were predicted using the Glimmer3 program [22]. The numbering of CDSs for each chromosome follows clockwise from the end of the predicted origins of replication at 367 nt and 366 nt for chromosome 1 and 2, respectively. These CDSs were translated, and used to search the National Center for Biotechnology Information nonredundant database as well as the Uniprot and InterPro databases followed by manual curation to assign functional annotation. Using the Basic Local Alignment Search Tool [23], homology searches of all CDSs were done against the Clusters of Orthologous Groups database [24] enabling the assignment of COG functional categories to the CDSs. The tRNAscan-SE 1.21 tool [25, 26] was used to identify tRNA genes; the RNAmmer 1.2 program [27] was used to identify rRNA genes; and the Rfam database [28] and manual curation was used to identify other non-coding RNAs.

MIGS ID	Property	Term
MIGS 31	Finishing quality	Completed
MIGS-28	Libraries used	400-600-bp fragments (454), >10-kb fragments (PacBio)
MIGS 29	Sequencing platforms	Roche 454 Life Sciences
MIGS 30	Assemblers	Pacific Biotechnologies PacBio
MIGS 31.2	Fold coverage	60 x
MIGS 32	Gene calling method	Glimmer3, tRNAscan-SE 1.21, Rfam, RNAmmer
Locus Tags	VANGcI, VANGcII, VANGp67	
Genbank ID	GCA000786425	
GenBank Date of Release	September 1, 2014	
GOLD ID	gp1002007	
BIOPROJECT	PRIEB5701	
MIGS 13	Source Material Identifier	NB10
Project relevance	Aquaculture, fish pathogen	
SignalP server versions 3.0 and 4.0 [29, 30] were used to predict proteins that have signal peptides utilized to target proteins for secretion. The TMHMM server version 2.0 [31] was used to predict transmembrane helices in the proteins. The PHAge Search Tool [32] was used to detect prophage sequences within the genomes. Potential genomic islands were identified using the IslandViewer web server [33] and putative insertion sequences were identified using ISFinder [34]. Putative chromosomal origins of replication were located using the Ori-Finder program [35] followed by manual curation with the help of V. cholerae studies that characterized the origins of replication for chromosome 1 [36–38] and chromosome 2 [36, 39, 40] in this organism.

Genome properties

The complete genome of *V. anguillarum* NB10 includes two circular chromosomes totaling 4,307,037 bp and one circular plasmid p67-NB10 totaling 66,798 bp, which together give a total genome size of 4,373,835 bp with an average GC content of 44.4 %. Putative oriC origins of replication were identified for both chromosomes. For chromosome 1, an oriCI region similar to that found in other γ-proteobacteria was found and spans 481 nucleotides (3,119,582 - 367 nt) [36–38]. For chromosome 2, an oriCII region similar to that of *V. cholerae* and other *Vibrio* species [36, 39, 40] was found and spans 366 nucleotides (1-366 nt). In addition, an incII incompatibility region similar to that of *V. cholerae* was found upstream of the oriCII region (1,186,667 - 1,187,342 nt). In *V. cholerae*, incII negatively regulates chromosome II replication [36, 39]. Of the 3,912 genes predicted, 3,783 encode proteins, 25 encode rRNAs, 91 encode tRNAs, and at least 13 encode ncRNAs. Fifty-five pseudogenes were found with 33 located on chromosome 1, 21 located on chromosome 2, and 1 located on p67-NB10. Of the predicted CDSs, a functional prediction was made for 84.8 % whereas a putative COG function with the remaining annotated as hypothetical proteins. The plasmid is a pJM1-like virulence plasmid that contains 58 protein-coding genes. Four new insertion sequences, named ISVa3, ISVa4, ISVa5, and ISVa6, were identified in this strain and were

Table 3 Summary of genome: two chromosomes and one plasmid

Label	Size (Mb)	Topology	INSDC identifier	RefSeq ID
Chromosome 1	3.12	Circular	LK021130	NZ_LK021130.1
Chromosome 2	1.19	Circular	LK021129	NZ_LK021129.1
Plasmid p67-NB10*	0.07	Circular	LK021128	NZ_LK021128.1

This plasmid is a pJM1-like virulence plasmid [42]

Table 4 Genome statistics

Attribute	Value	% of Total
Genome size (bp)	4,373,835	100.0
DNA coding (bp)	3,762,570	86.0
DNA G + C (bp)	1,940,626	44.4
DNA scaffolds	3	1.4
Total genes	3,912	100.0
Protein coding genes	3,783	96.7
RNA genes	129	3.3
Pseudo genes	55	1.4
Genes in internal clusters	447	11.4
Genes with function prediction	3,317	84.8
Genes assigned to COGs	2,620	66.9
Genes with Pfam domains	3,317	84.8
Genes with signal peptides	592	15.1
Genes with transmembrane helices	1,037	26.5
CRISPR repeats	0	0.0

The total is based on either the size of the genome in base pairs or the total number of protein coding genes in the annotated genome.

Table 5 Number of genes associated with general COG functional categories

Code	Value	% of Total	Description
J	180	4.8	Translation, ribosomal structure and biogenesis
A	1	0.0	RNA processing and modification
K	219	5.8	Transcription
L	157	4.2	Replication, recombination and repair
B	0	0.0	Chromatin structure and dynamics
D	34	0.9	Cell cycle control, cell division, chromosome partitioning
V	47	1.2	Defense mechanisms
T	197	5.2	Signal transduction mechanisms
M	161	4.3	Cell wall/membrane biogenesis
N	117	3.1	Cell motility
U	87	2.3	Intracellular trafficking and secretion
O	126	3.3	Posttranslational modification, protein turnover, chaperones
C	170	4.5	Energy production and conversion
G	189	5.0	Carbohydrate transport and metabolism
E	272	7.2	Amino acid transport and metabolism
F	77	2.0	Nucleotide transport and metabolism
H	138	3.6	Coenzyme transport and metabolism
I	78	2.1	Lipid transport and metabolism
P	155	4.1	Inorganic ion transport and metabolism
Q	57	1.5	Secondary metabolites biosynthesis, transport and catabolism
R	332	8.8	General function prediction only
S	234	6.2	Function unknown
-	1163	30.7	Not in COGs

The total is based on the total number of protein coding genes in the genome.
Fig. 3 (See legend on next page.)
submitted to ISfinder database [41]. A total of 78 insertion elements were found: 34 on chromosome 1, 31 on chromosome 2, and 13 on p67-NB10. A putative 44.1-kb intact prophage was identified on chromosome 1 and this region is predicted to encode 69 proteins, of which most are phage-related proteins and 33 are hypothetical or uncharacterized proteins. In addition, one questionable prophage was found on chromosome 2 and an incomplete prophage was also found on chromosome 1. The properties and the statistics of the genome are summarized in Tables 3, 4 and 5 and in Figs. 3 and 4.

Insights from the genome sequence
Comparison to other fully sequenced V. anguillarum serotype O1 strains

The genome of *V. anguillarum* strain NB10 was compared to the published genomes of *V. anguillarum* serotype O1 strains 775 and M3 [10, 11]. The results are summarized in Table 6. The origin of replication for chromosome 1 oriC1 is identical in all three strains and for chromosome 2, the NB10 oriC1 is 99 % identical to that of the 775 and M3. For NB10, we chose to start both chromosomes at their respective origins of replication. The compositional symmetry reflected in the chromosomal GC skews shown in Fig. 3 supports correct trimming of the NB10 replicons. The plasmids in all three strains differ by only a few hundred base pairs, are highly identical with each other, and encode a siderophore-based iron-utilization system that is required for virulence [42, 43]. Compared to strains 775 and M3, the NB10 chromosome 1 is larger by about 56,000 bp and chromosome 2 is increased by about 199,000 bp. To determine if the extra 255,000 bp is unique to the NB10 strain, a BLAST comparison of the three genomes using the BRIG (Blast Ring Image Generator) program [44] and using NB10 as the reference strain was done (Fig. 3). Since horizontal transfer of DNA is a common method for acquiring new DNA in strains, we also screened the three genomes using similar parameters for genomic islands and prophages using the IslandViewer and PHAST search tools and the presence of integrons was determined by identifying *attC* sites, a feature of small mobile gene cassettes that are captured by integrons [45]. These data are summarized in Table 6 and predict that NB10 contains two prophages, a 44.1-kb intact and 45.7-kb questionable, that are not found in strains 775 and M3 and more GIs, of which many are unique, compared to strains 775 and M3. Table 7 presents the location, size, and predicted CDSs for each of the predicted prophages, GIs, and gaps of sequences that are missing in strain 775 and M3. These genomic differences are discussed in detail below.

Prophage regions

Prophages are bacteriophages that are integrated into the genome and that are diverse mobilizable elements that play a role in horizontal gene transfer. Three putative prophage regions were identified (Table 7 and Fig. 3). Chromosome 1 contains a partial 8.7-kb prophage (Phage_Bacill_G) that is also found in the 775 and M3 genomes and an intact prophage (Phage_Pseudo_vB_PaeS_PMG1) with a size of 44.1 kb that is unique to strain NB10 and that encodes 43 phage-related and 33 hypothetical proteins. Chromosome 2 contains a questionable 45.7-kb prophage (Phage_Stx2) that is also unique to strain NB10. In comparison, strain 775 contains no additional prophages; while, strain M3 contains a second partial 27.5-kb prophage (Phage_Enetero_M13) on chromosome 2.

Genomic Islands (GIs)

Genomic islands (GIs) are clusters of genes, typically >8 kb in size, that likely originate from horizontal gene transfers and that often play a role in the adaptation of bacteria to their environment or host [46]. GIs impact bacterial evolution significantly and the identification of GIs within genomes provides insight into differences between bacterial species and strains. For strain NB10, 29 putative GIs that range from 4.2 kb to 41.9 kb were detected using the IslandViewer tool (Table 7). Of these, 19 are localized to chromosome 1 and 10 to chromosome 2 (Fig. 4). Twenty GIs contain genes that are often associated with the islands, such as tRNAs, transposases, integrases, and phage-related genes. Of the nine that do not contain these typifying genes, GI-4 contains CDSs encoding ribosomal proteins, while GIs-8,14-17 contain CDSs involved in O-antigen biosynthesis. Nineteen of the GIs are found in strains 775 and M3; while, 10 GIs are unique to strain NB10 and their genomic locations are shown in Fig. 3. Overall analyses of the CDSs within all GIs indicate that most encode hypothetical proteins. No obvious virulence genes were detected; however, 7 GIs carried CDSs for toxin-antitoxin systems, in particular that of *hipAB*, which plays a role in antibiotic tolerance and persistence [47].
Integrons

Integrons are genetic units that contain and disseminate small mobile elements called gene cassettes and thus contribute to genomic diversity [45]. Gene cassettes carry a gene, any gene, and an attC site, which is recognized by an integrase enabling it to splice cassettes into its integration site. The integration of gene cassettes may occur over and over creating a string of gene cassettes. A consensus V. anguillarum NB10 attC site sequence repeat was predicted (5'-TAACAAACGnnTCAAGAGGGAnnGnCAACGC-3', unpublished data, K.O. Holm) [48] and used to identify integrons by localizing attC sites in the three different genomes. In all strains, attC sites were localized only in chromosome 2 and the number of attC sites did not differ much. However, in NB10, the location of the attC sites were all found within a 154.4-kb region, which represents 3.5 % of the genome and lends support to this location representing a putative superintegron with highly diverse gene cassettes of mostly unknown functions. In particular, this putative superintegron is highly similar to that characterized in the V. cholerae strain N16961 since the NB10 integrase shares identity with the V. cholerae VchIntIA integrase [48]. In contrast, for strains 775 and M3, the attC sites were found at 5 different locations distributed throughout chromosome 2. Whether this difference reflects putative geographical and/or different ancestral characteristics needs further investigation.

Genomic regions unique to strain NB10

The NB10 genome is around 255,000 bp larger than the genomes of strains 775 and M3. A comparative analysis using BRIG was performed to identify CDSs unique to NB10. Figure 3 indicates the location of 10 genomic gaps ranging from 1.9 kb to 74.2 kb in strains 775 and M3 compared to strain NB10. Table 7 gives the base pair coordinates for each gap. All but one genomic gap (GG-G), which was found on chromosome 1 of strains 775 and M3, contained CDSs unique to strain NB10. The majority of these CDSs encode hypothetical proteins. However, a few CDSs were identified that may provide strain NB10 an advantage either in its host or in its aquatic environment. The GG-A contains a CDS for a haem peroxidase that may play a role in oxidative stress aiding colonization of the host [49]. Numerous CDSs encode putative toxin-antitoxin systems, which have been reported to play a role in antibiotic tolerance, persistence, stress response, and virulence in some bacteria [50]. Many of the CDSs within these genomic gaps may be genes with not yet known functions, as they were not found within other bacterial species using a BLAST search.

Table 6 Genome comparisons of sequenced V. anguillarum serotype O1 strains

Strain	NB10	775	M3
Chromosome 1 (bp)	3,119,695	3,063,912	3,063,587
Chromosome 2 (bp)	1,187,342	988,135	988,134
Plasmid (bp)	66,798	65,009	66,164
Total CDSs	3,782	3,880	3,824
Prophage			
intact	44.1 kb	0	0
incomplete	8.3 kb	8.3 kb	25.7 kb
questionable	45.7 kb	0	0
Genomic Islands			
Chr1	19 (208.2 kb)	18 (209.5 kb)	17 (211.6 kb)
Chr2	10 (147.0 kb)	8 (74.3 kb)	5 (62.5 kb)
Number of attC sites	65	64	68

*Annotation of the NB10 strain included fewer CDSs under 200 bp than that of strains 775 and M3

Numbers represent all genomic islands detected by the IslandViewer tool irrespective of their size or content

Numbers indicate attC sites found with a consensus sequence of *5'-TAACAAACGnnTCAAGAGGGAnnGnCAACGC-3*. This sequence makes up a repeat region at the 5'end of the 126-127-bp attC sites within the NB10 strain, (unpublished data, K.O. Holm) and indicates the number of integron-associated gene cassettes found in each strain [48]. The attC sites occur solely within chromosome 2 but are distributed differently in the three strains.

Conclusions

In this study, the complete genome sequence of the V. anguillarum strain NB10 serotype O1, a virulent isolate from the Gulf of Bothnia, Norrbyn, Sweden, is presented. Genome comparisons were done with the complete genomes of two other virulent, O1 serotype V. anguillarum strains, M3 and 775. Although the genomes of M3 and 775 strains are quite similar in size, the genome from the NB10 strain was shown to contain an extra 255,000 bp that are unique to this strain. The extra DNA is predicted to contain two putative prophages as well as a number of GIs and genomic gaps, all of which are predicted to encode mostly hypothetical proteins with no obvious roles in virulence. The roles of the extra genomic sequences found in the V. anguillarum strain NB10 compared to strains 775 and M3 remain to be determined. However, a few genes were found in the extra DNA regions that may be

![Genome comparisons of sequenced V. anguillarum serotype O1 strains](image-url)
predicted to aid the survival of strain NB10 in its host or its natural habitat, the brackish Baltic Sea, which contains both salty and fresh water [12]. Thus, in comparison to the M3 and 775 strains, which were isolated from different types of geographical regions [10, 11], it is tempting to speculate that the CDSs within the extra sequences may play a role in the ecology of strain NB10.

Additional file

Additional file 1: Table S1. Associated MIGS record. (DOC 70 kb)

Abbreviations

BRIG: Blast ring image generator; GG: Genomic gaps; GI: Genomic islands; HAMAP: High-quality automated and manual annotation of proteins; HGAP: Hierarchical genome-assembly process; IS: Insertion elements; Pfam: Protein families; PHAST: Phage search tool; PROSITE: Protein domains families and functional sites; TMHMM: Tied mixture hidden markov model.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

KOH, KN, and EH assembled contigs into a final genome sequence. KOH and EH annotated the genome and performed genomic comparisons and analyses. NPW and DLM conceived of and designed and coordinated the study. DLM and KOH drafted the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We would like to acknowledge Per Hörstedt for performing the scanning electron microscopy techniques. This work was performed within the Umeå Centre for Microbial Research and within the Centre of Bioinformatics, Faculty of Science and Technology of UiT: Arctic University of Norway. These studies were supported by funding provided to DLM from the Swedish Council for Environment, Agricultural Sciences and Spatial Planning (221-2010-577), from the Swedish Research Council, and from the Natural Science Faculty of Umeå University and by funding from UIT: Arctic University of Norway and by support from The ELIXIR.NO project.

Author details

1. Department of Chemistry, Faculty of Science and Technology, UIT: The Arctic University of Norway, 9037 Tromsø, NO, Norway. 2. Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Department of Molecular Biology, 901 87 Umeå, SE, Sweden.

Received: 16 October 2014 Accepted: 17 August 2015
Published online: 02 September 2015

References

1. Frans I, Michiels CW, Bossier P, Willems KA, Lievens B, Rediers H. Vibrio anguillarum as a fish pathogen: virulence factors, diagnosis and prevention. J Fish Dis. 2011;34:643–61.

2. Actis LA, Tolmasky ME, Crosa JH. Vibriosis. In: Woo PTK, Bruno DW, editors. Fish Diseases and Disorders, vol. 3. Oxfordshire, UK: CAB International; 2011. p. 570–605.

Table 7 Unique sequences in V. anguillarum NB10 identified by genome comparisons

Genome region	Chromosome 1	Prophage	Genomic Islands	Genomes gaps a
	Intact	Partial	GI-1	GG-A
	1,891,762...1,935,924	2,964,881...2,973,261	34,299...47,256	820,080...832,800
			GI-2	GG-B
	104,658...109,015		108,956...147,914	1,888,140...1,934,940
			GI-3	GG-C
	288,556...298,943		445,355...487,284	2,938,440...2,951,880
			GI-4	
	494,899...502,274		681,585...709,820	
			GI-5	
	942,447...952,116			
			GI-6	
	1,572,019...1,589,186			
			GI-7	
	1,891,012...1,937,302			
			GI-8	
	2,864,895...2,925,178			
			GI-9	
	2,938,796...2,955,240			
			GI-10-13	
	2,994,229...3,011,196			
			Genome gaps a	
	GG-A		GG-B	
820,080...832,800			1,888,140...1,934,940	
	GG-C		Genome gaps a	
2,938,440...2,951,880				

Table 7 Unique sequences in V. anguillarum NB10 identified by genome comparisons (Continued)

Genome region	Chromosome 2	Prophage	Genomic Islands	Genome gaps a
	Questionable		GI-20	GG-D
	286,348...292,555		392,736...414,906	292,140...294,360
			GI-21	GG-E
	431,537...439,839		396,120...417,780	396,120...417,780
			GI-22	GG-F
	464,750...469,836		489,780...500,880	489,780...500,880
			GI-23	GG-G
	473,125...479,299		557,580...571,320	557,580...571,320
			GI-24	
	546,066...578,220			
			GI-25	
	639,559...674,888			
			GI-26	
	682,155...688,431			
			GI-27	
	711,800...720,165			
			GI-28	
	738,270...755,649			
			Genome gaps a	
	GG-D		GG-E	
292,140...294,360			396,120...417,780	
	GG-F		Genome gaps a	
489,780...500,880				
	GG-G			
557,580...571,320				

a Gaps indicate regions of the NB10 genome that are not found in the genomes of strains 775 and M3 as detected by BLAST searches using the BRIG program [44].
1. MacDonell MT, Colwell RR. Phylogeny of the Vibrionaceae, and recommendation of two new genera, Listonella and Shewanella. Syst Appl Microbiol. 1985;8(1):71-82.

2. Thompson FL, Thompson CC, Dias GM, Naka H, Dubay C, Croze JH. The genus Listonella. MacDonell and Colwell 1986 is a later heterotypic synonym of the genus Vibrio Pacini 1854 (Approved Lists 1980) – a taxonomic opinion. Int J Syst Evol Microbiol. 2011;61:3023-7.

3. Pedersen K, Graser L, van Houdt R, Tienau T, Ollevier F, Larsen JL. Extended serotyping scheme for Vibrio anguillarum with the definition and characterization of seven provisional O-antigens. Curr Microbiol. 1999;38:183–9.

4. Sorensen UB, Larsen JL. Serotyping of Vibrio anguillarum. Appl Environ Microbiol. 1986;51:933–4.

5. Tienau T, Larsen J, Pekkonen S. Characterization of Vibrio anguillarum strains isolated from diseased fish in Finland. Acta Vet Scand. 1994;35:355–62.

6. Naka H, Croze JH. Genetic determinants of virulence in the marine fish pathogen Vibrio anguillarum. Fish Pathol. 2011;46:1-10.

7. Frans I, Dierckens S, Vansasse A, Leisner J, Larsen MH, et al. Does virulence assessment of Vibrio anguillarum using sea bass (Dicentrarchus labrax) larvae correspond with genotypic and phenotypic characterization? PLoS One. 2013;8, e70477.

8. Li G, Mo Z, Li J, Xiao P, Hao B. Complete genome sequence of Vibrio anguillarum M3, a serotype O1 strain isolated from Japanese flounder in China. Genome Announc. 2013;1:5.

9. Rehnstam AS, Norqvist A, Wolf-Watz H, Hagstrom A. Identification of Vibrio anguillarum in fish by using partial 16S rRNA sequences and a specific 16S rRNA oligonucleotide probe. Appl Environ Microbiol. 1998;65:1997–10.

10. Milton DL, O’Toole R, Horstedt P, Wolf-Watz H. Flagellin A is essential for the virulence of Vibrio anguillarum. J Bacteriol. 1996;178:1310–9.

11. Ormonde P, Horstedt P, O’Toole R, Milton DL. Role of motility in adherence to and invasion of a fish cell line by Vibrio anguillarum. J Bacteriol. 2000;182:2326–8.

12. McGee K, Horstedt P, Milton DL. Identification and characterization of additional flagellin genes from Vibrio anguillarum. J Bacteriol. 1996;178:186–88.

13. Wang SY, Laurnitz J, Jass J, Milton DL. Role for the major outer membrane protein from Vibrio anguillarum in bile resistance and biofilm formation. Microbiol. 2003;149:1061–71.

14. Denkin SM, Nelson DR. Regulation of Vibrio anguillarum empA metalloprotease expression and its role in virulence. Appl Environ Microbiol. 2004;70:199–204.

15. Norqvist A, Hagstrom A, Wolf-Watz H. Protection of rainbow trout against Vibrio anguillarum using sea bass (Dicentrarchus labrax) larvae. J Bacteriol. 2005;187:6529–38.

16. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and genomic DNA: a new approach for computationally efficient gene finding. Nucleic Acids Res. 2002;30:77–84.

17. Chin CS, Alexander DH, Marks P, Klammer AA, Heinrich C, et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods. 2013;10:563–9.

18. Atchley AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and genomic DNA: a new approach for computationally efficient gene finding. Nucleic Acids Res. 2002;30:77–84.

19. Roche 454 FLX system equipped with Data Analysis Software Modules v2.3 [http://454.com/products/gs-xfx-system/index.asp].

20. PacBio RS II system [http://www.pacificbiosciences.com/products/]

21. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heinrich C, et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods. 2013;10:563–9.

22. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and genomic DNA: a new approach for computationally efficient gene finding. Nucleic Acids Res. 2002;30:77–84.

23. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

24. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and genomic DNA: a new approach for computationally efficient gene finding. Nucleic Acids Res. 2002;30:77–84.

25. Lindsay K, Hafglen A, Hjerde E, Willassen NF, Fallman M, Milton DL. Lipo polysaccharide O-antigen prevents phagocytosis of Vibrio anguillarum by rainbow trout (Oncorhynchus mykiss) skin epithelial cells. PLoS One. 2012;7, e51127.

26. Jung M, Stork M, Tołoskowska ME, Adams LA, Farrell D, Welch TJ, et al. Complete sequence of virulence plasmid pJ1 from the marine fish pathogen Vibrio anguillarum strain 775. J Bacteriol. 2003;185:5822–30.

27. Croza JH. A plasmid associated with virulence in the marine fish pathogen Vibrio anguillarum specifies an iron-sequestering system. Nature. 1980;284:566–8.

28. Alikhan NF, Petty NK, Ben Zakour NL, Beason SA. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 2011;12:402.

29. Petersen TN, Brunak S, von Hejne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–6.

30. Egan ES, Waldor MK. Distinct replication requirements for the two Vibrio cholerae chromosomes. Cell. 2003;114:451–30.

31. Rajewska M, Wegrzyn K, Konieczny I. AT-rich region and repeated sequences - the essential elements of replication origins of bacterial replicons. FEBS Microbiol Rev. 2012;36:408–34.

32. Saha A, Haralalika S, Bhukra RD. A naturally occurring point mutation in the oriC function of the large chromosome of Vibrio cholerae O1 classical biotype. Arch Microbiol. 2004;182:421–7.

33. Kambray G, Guerout AM, Mazel D. Integrons. Ann Rev Genet. 2010;44:141–64.

34. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. Isfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34:D332–6.

35. Gao F, Zhang CT. Ori-Finder: a web-based system for finding oriC in unannotated bacterial genomes. BMC Bioinformatics. 2008;9:79.

36. Egan ES, Waldor MK. Distinct replication requirements for the two Vibrio cholerae chromosomes. Cell. 2003;114:451–30.

37. Germain E, Castro-Roa D, Zenkin N, Gerdes K. Molecular mechanism of bacterial persistence by HipA. Mol Cell. 2013;52:679–84.

38. Grimes J, Huita L, Stoolman LM. Integrons: a versatile mechanism for expediting antibiotic resistance. Microbiol. 2008;154:2197–208.

39. Holm CA. Standards in Genomic Sciences. 2005:112 pages. 10.1155/2015/1060

40. Alikhan NF, Petty NK, Ben Zakour NL, Beason SA. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 2011;12:402.
57. Garrity GM, Bell JA, Lilburn T. Class III. Gammaproteobacteria class. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. *Bergey’s Manual of Systematic Bacteriology*, vol. 2. Part B. 2nd ed. New York: Springer; 2005. p. 1.

58. List-Editor. Validation of publication of new names and new combinations previously effectively published outside the IJSEM. List no. 106. *Int J Syst Evol Microbiol.* 2005;55:2295–8.

59. Skerman VBD, McGowan V, Sneath PHA. Approved lists of bacterial names. *Int J Syst Bacteriol.* 1980;30:225–420.

60. Skerman VBD, McGowan V, Sneath PHA. Approved lists of bacterial names amended. In: Skerman VBD, McGowan V, Sneath PHA, editors. *Approved Lists of Bacterial Names (Amended).* Washington DC: ASM Press; 1989.

61. Veron M. The taxonomic position of *Vibrio* and certain comparable bacteria. Comptes rendus hebdomadaires des seances de l’Academie des sciences Serie D: Sciences naturelles. 1965;261:5243–6.

62. Pacini F. Osservazione microscopiche e deduzioni patologiche sul cholera asiatico. Gazette Medica de Italiana Toscano Firenze. 1854;6:405–12.

63. Shewan J, Veron M: Genus I. *Vibrio* Pacini 1854, 411. In: Buchanan RE, Gibbons NE, editors. *Bergey’s Manual of Determinative Bacteriology.* 8th ed. Baltimore: The Williams and Wilkins Co; 1974.

64. Bergman AM. Die rote Beulenkrankheit des Aals. Bericht aus der Königlichen Bayerischen Versuchsstation. 1909;2:10–54.

65. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium Nat Genet. 2000;25:25–9.