Systematic Review of Prevalence of Antepartum Depression during the Trimesters of Pregnancy

Hilary I. Okagbue*, Patience I. Adamu, Sheila A. Bishop, Pelumi E. Oguntunde, Abiodun A. Opanuga, Elvir M. Akhmetshin

Department of Mathematics, College of Science and Technology, Covenant University, Ota, Nigeria

Abstract

BACKGROUND: Depression is prevalent during antenatal and postnatal stages of pregnancy. The effect of depression can be seen in complications during and after pregnancy, fetal growth retardation, abortions and preterm births. The literature abounds on postpartum depression (PD) while few studies are on antepartum depression (AD).

AIM: The systematic review aims to compute the prevalence of AD from published articles.

MATERIAL AND METHODS: The published articles (26) used in this review were obtained from the search of the search keywords “Depressive conditions in pregnancy AND trimesters”. All the articles were considered irrespective of language and their citation status as of the time of the query. Only articles that presented the prevalence mean and sample size were included. Articles on questionnaires filled by nonpregnant women and men were excluded. Articles that presented the prevalence of depression for the postpartum period only were excluded but were included if they addressed depression at both postpartum and trimester(s) of pregnancy. P-value of less than or equal to 0.05 was considered significant.

RESULTS: Analysis of the 26 articles showed that 4,303 subjects tested positive for depression in a sample of 28,248 pregnant mothers, giving the prevalence rate as 15%. Confounding was removed, and the sample size was adjusted to be 25,771 and 4,223 were screened to have depressive symptoms, thereby giving a new prevalence rate of 16.4%. It was also revealed that AD is most prevalent in the last trimester of pregnancy and least in the second trimester. Pregnancy duration and PD are not correlated with AD. This implies that AD can be observed in any period of the pregnancy and cannot predict the incidence of PD.

CONCLUSION: Efforts must be intensified to monitor pregnant women during the third trimester to reduce the incidence of maternal depression during pregnancy, thereby reducing the prevalence.

Introduction

The onset of pregnancy can temporarily alter the hormonal balance in women which predispose them to a different form of affective disorders such as depression [1]. Depression is one of the medical and psychological conditions in pregnancy [2]. Maternal depression is often considered to be a predictor of increased incidence of preterm births, miscarriages, retarded fetal growth which can manifest as low birthweight and so on. Depression can occur in the first, second and third trimesters of pregnancy and can be measured using different scientific instruments. Furthermore, antidepressant medications [2] and psychotherapeutic interventions [3] are the available treatments for depressive disorders in pre-natal and post-natal stages of pregnancy. However, it has been found that the use of antidepressant is linked to cardiac malfunctions [4] and affects treatment response especially in the cases of severe depression [5].

It appears that most available research done on depression is focused on postpartum depression.
which is prevalent among pregnant women [6, 7]. This review is to present evidence of the prevalence of depression during trimesters of pregnancy and its implications to healthcare management, although, the second trimester is the period of intense depression which also is subject of debate [8].

Depression occurs in varying degrees for a different form of child delivery such as vaginal delivery, Cesarean Section Delivery and assisted vaginal delivery [9]. Some psychiatric, physiological and socioeconomic variables have been attributed as risk factors or predictors of antepartum depression. They are listed as: sleep deprivation [10], [11], sexual function during pregnancy [12], weak social structure [13], lack of support from family and loved ones [14], obesity [15], trauma, anxiety and violence [16] and unplanned pregnancies [17]. Summary of some factors associated with the prevalence of depressive symptoms in pregnant women is given in Table 1.

Table 1: Major Factors Associated with Antepartum Depression

Authors	Factors
[18]	Socioeconomic problems such as financial problems, lack of family support and inadequate housing contribute to depressive disorders.
[19]	Negative psychosocial factors contribute to depression.
[20]	Psychological factors observed during pregnancy can predict postpartum depression.
[21]	Depression is associated with poverty.
[22]	Antenatal/ antepartum depression and anxiety are prevalent in pregnant women.
[23]	Antepartum depression is prevalent among Latinas in the U.S. and Mexico.
[24]	Unintended or unplanned pregnancy is associated with depression.
[25]	Psychiatric disorders are associated with depression.
[26]	Lower socioeconomic status is associated with depression.
[27]	Antepartum depression is a predictor of perceived disability in women.
[28]	The reliability of the self-reported version of the Inventory of Depressive Symptomatology (IDS-SR), as a tool for measuring depression, was investigated.
[29]	The prevalence of depressive symptoms in teenage pregnancies was investigated.
[30]	Supplementary selenium intake is associated with depression.
[31]	Prevalence of antepartum depression in Eastern Europe.
[32]	The link between cognitive behaviour and depression during pregnancy.
[33]	Depression is associated with the economic status of pregnant women.
[34]	Immigrant pregnant women are at high risk of depressive disorders.
[35]	Prevalence of anxiety and depression in the antepartum stage of pregnancy.
[36]	Pathophysiology of depression is associated with antepartum depression.
[37]	Gestational diabetes is positively correlated with depression.
[38]	Depression is associated with the previous history of nausea, abortions and poor housing conditions.
[39]	Lack of social support in the workplace is associated with depression.
[40]	Co-morbidity of antepartum depression with other mental illness were studied.
[41]	Smoking cessation is associated with antepartum depression.
[42]	Some psychosocial risks associated with depression were stated.
[43]	Prevalence of antepartum and postpartum depression in Portuguese women.

Material and Methods

Data Collection

A search of the articles was done on the Scopus database using the search keywords; “Depressive conditions in pregnancy AND trimesters”. Four hundred and seventy (470) articles were initially obtained from the keyword “Depressive conditions in pregnancy”, and the search results were narrowed down to one hundred and thirteen (113) articles using the keyword “trimesters”. All the articles were considered irrespective of language and their citation status as of the time of query which is 14th February 2019.

Inclusion and Exclusion Criteria

Only articles that presented the prevalence mean and sample size were included. Articles on questionnaires filled by nonpregnant women and men were excluded. Articles that presented prevalence of depression for postpartum period only were excluded but are included if they addressed depression at both postpartum and trimester(s) of pregnancy. A total of twenty-six (26) articles [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43] were selected and included in the review. The main findings are presented in Table 1.

Survey of the Data Collection Instruments

Scaled questionnaires are the widely form of data collection for investigating both antepartum and postpartum depression. The questionnaires are designed to identify depressive symptoms which are assessed using the final score. The questionnaires are of different variants and are designed to achieve the aim of a screening tool for depression. Prominent among them is the Edinburgh Postnatal Depressive Scale (EPDS). The list of all the sixteen (16) tools used in the 26 articles for data collection is presented in Table 2.

Table 2: Data Collection Tools Used in the Screening of depression in Pregnant Women

Instrument	Acronym	Description
Beck Depression Inventory	BDI	Center for Epidemiological Studies Depression Scale
Beck Depression Inventory II	BDI-II	Alcohol Use Disorder and Associated Disabilities Interview Schedule - DSM-IV version.
Questionnaire	Q	Patient Health Questionnaire depression module
The anticipation of Childbirth Questionnaire	ACQ	General Anxiety Scale
Edinburgh Depression Scale	EDS	Inventory of Depressive Symptomatology
Edinburgh Postnatal Depression Scale	EPDS	International Neuropsychiatric Interview
Schedule for Clinical Assessment in Neuro-psychiatry	SCAN	National Institute of Child Health and Human Development Fetal Growth Studies Singleton cohort (2009–2013),
Hospital Anxiety and Depression Scale	HADS	Postpartum Depression Predictors Inventory Revised

Statistical Analysis

The prevalence of antepartum depression was presented using exploratory and inferential statistics. Correlation, regression and logistic regression were applied to obtain the result. Similar
applications of the tools can be found in [44], [45], [46], [47], [48], [49], [50].

Results

The data obtained from the 26 articles are presented in Table 3. The data is the summary of the trimesters, postpartum considered, the instrument used in data collection (questionnaire types), sample sizes, varying mean prevalence and the subjects observed to be depressed (assessed using the questionnaires). The trimester can be first, second or third or the depression may be observed throughout the antenatal period. Postpartum depression may be studied alongside antepartum depression. Often, the later is used to predict the former.

Table 3: The Summary of the Data Collected from the 26 Articles

Author	Trimester	Postpartum	Data Inst	Sample size	Prevalence %	+ve depression
[18]	3	No	BDI	98	47%	46
[18]	3	No	SCID	17	24%	27
[22]	All	Yes	HADS	25771	100	15%
[22]	All	Yes	SCAN	791	20.2%	160
[23]	All	No	CES-D	108	32.4%	35
[23]	All	No	CES-D	117	36.8%	43
[24]	All	Yes	BDI-II	215	10.2%	22
[25]	All	Yes	AUDADIS	14549	12.4%	1804
[26]	3	Yes	EPDS	609	24.3%	146
[27]	3	Yes	PHQ-9	1030	29%	299
[28]	3	No	IDS-SR	543	11%	60
[29]	All	No	INI	828	17.8%	147
[30]	All	Yes	EPDS	475	12%	57
[31]	All	No	BDI	503	19.9%	100
[32]	All	Yes	EPDS	74	28.4%	21
[33]	2	No	EPDS	74	86.5%	64
[34]	3	No	EPDS	228	37%	84
[35]	3	No	CES-D	207	73.5%	152
[36]	1	Yes	PHQ-9	944	27.6%	260
[37]	1	Yes	NICH	2477	3.7%	94
[37]	2	Yes	NICH	2477	3.3%	80
[38]	3	Yes	PHQ-9	225	31.1%	70
[39]	3	No	EPDS	153	13.7%	21
[40]	All	Yes	EDS	99	13%	13
[41]	All	Yes	BDI	253	41.5%	105
[42]	All	Yes	EPDS	44	22.3%	10
[43]	2	Yes	PDPI-R	140	15.4%	22

Estimation of Prevalence of Antepartum Depression

The prevalence of depression is computed using the data in Table 3. The prevalence in percentage is the ratio of the numbers of those screened to be depressed using the various questionnaires to the total number of subjects available for the respective researches. The prevalence of antepartum depression is:

\[
\% \text{ Prevalence} = \frac{4303}{28248} = 0.1523 \times 100 = 15\%
\]

Out of 28,248 pregnant women screened for depression, 4303 were diagnosed to have depression.

The result is further refined to remove confounding contributed by [37]. The new prevalence of antepartum depression is:

\[
\% \text{ Prevalence} = \frac{4223}{25771} = 0.1639 \times 100 = 16.4\%
\]

Generally, out of 25,771 pregnant women screened for depressive symptoms, 4223 (16.4%) were found to be positive for depression.

Distribution of Antepartum Prevalence across the Trimesters

The prevalence of antepartum depression was computed to determine how depression is observed in the 3 trimesters and when it is observed throughout the gestation period.

Table 4: Distribution of Antepartum Depression across the Pregnancy Trimesters

Number of articles	Trimester	Sample size	+ve depression %	% prevalence
2	1	3421	354	15.05
4	2	2888	190	6.58
10	3	3921	1047	26.70
13	All	18018	2712	15.05

It can be seen from Table 4, that AD is most prevalent in the last trimester of pregnancy and least in the second trimester. The prevalent throughout the gestation is quite close to the mean prevalent obtained without confounding. Confounding is not an issue here because the authors considered more than a trimester. This increased the number of articles to 29 as shown in Table 4.

Ante-Postpartum Depression

The prevalence is obtained when postpartum depression is studied along with the antepartum. It is always important to show if the antepartum depression is a predictor of postpartum depression. This is presented in Table 5.

Table 5: Antepartum and Postpartum Depress across the trimesters

Trimester	Postpartum	Sample size	+ve depression
1	No	Y	R
2	No	Y	3421
2	Yes	74	64
3	No	2617	102
3	Yes	1177	326
All	No	2646	675
All	Yes	1952	487

The prevalence for each case was not computed because of the small sample sizes. However, it can be seen from Table 5 that antepartum depression is usually studied with postpartum depression.
Distribution of Prevalence as Measured with Various Data Instruments

Sixteen (16) different questionnaires were used as an instrument of data collection by the articles. The instruments were divided into three (EDPS, BDI and others) and their corresponding AD prevalence was obtained. The frequencies of the use of EDPS, BDI and other questionnaires in the 26 articles are 8, 5 and 16 respectively, assuming that confounding remains constant. This is shown in Table 6, and it can be seen that the use of other data instruments shown in Table 2 presents lower AD prevalence (14.2%) than the duo of EDPS (23.8%) and BDI (25.3%).

Table 6: Prevalence, as Measured with Various Data Instruments, Grouped into Three

Data instrument	N	Sample size	% prevalence	
EDPS	8	1197	476	23.8
BDI	5	1115	282	25.3
OTHERS	16	25386	3605	14.2

Correlation between Pregnancy Duration and the Antepartum Depression

The correlation between the pregnancy duration (trimesters) and AD was obtained using three (3) correlation coefficients. The result is presented in Table 7, where it is observed that there is no correlation between pregnancy duration and antepartum depression at 0.05 level of significance.

Table 7: Correlation coefficient for the Relationship between Pregnancy Duration and AD

Correlation Coefficient	Value	P value
Pearson (Product moment)	0.128	0.615
Spearman’s rank	-0.065	0.739
Kendall’s tau	-0.054	0.715

Correlation between Data Instrument and the Antepartum Depression

The correlation between the data collection instrument used in the articles and AD was obtained using three (3) correlation coefficients, and the result is presented in Table 8. It is observed that there is a significant intermediate positive correlation between data collection instrument and antepartum depression at 0.05 level of significance. However, Pearson correlation showed a weak positive correlation and no association.

Table 8: Correlation coefficient for the Relationship between Data Instrument and AD

Correlation Coefficient	Value	P value
Pearson (Product moment)	0.248	0.195
Spearman’s rank	0.492	0.007
Kendall’s tau	0.389	0.010

Correlation between Postpartum and the Antepartum Depression

There was no correlation at 0.05 level of significance between the Postpartum and AD. This is presented in Table 9 where it can be seen that the near-zero value of the three (3) correlation coefficients connotes no association.

Table 9: Correlation coefficient for the Relationship between PD and AD

Correlation Coefficient	Value	P value
Pearson (Product moment)	0.187	0.332
Spearman’s rank	0.096	0.619
Kendall’s tau	0.080	0.611

Discussion

The review has systematically identified 26 articles that investigated the prevalence of antepartum depression. Nonpregnant women were excluded. Furthermore, sixteen [16] data collection tools used in the screening of depression in pregnant mothers were identified. These are variants of questionnaires constructed to detect depressive symptoms in pregnant women.

Analysis of the 26 articles showed that 4,303 subjects tested positive for depression in a sample of 28,248 pregnant mothers, giving the prevalence rate as 15%. Confounding was removed, and the sample size was adjusted to be 25,771 and 4,223 were screened to have depressive symptoms, thereby giving a new prevalence rate as 16.4%. The prevalent rate is higher than 10% obtained by [2].

It was also revealed that AD is most prevalent in the last trimester of pregnancy and least in the second trimester. The prevalent throughout the gestation is quite close to the mean prevalent obtained without confounding. This may be connected with the advanced hormonal changes in the perinatal stages and anxiety over the delivery process, psychosocial, socioeconomic and psychological variables. Efforts must be intensified to monitor pregnant women at the third semester to reduce the trio of depression, anxiety and suicide ideation. Moreover, the intervention which can come in a different form can prove decisive in ensuring unhindered fetal development and prevention of postpartum depression.

Pregnancy duration is not correlated with antepartum depression at 0.05 level of significance. This implies that a pattern that showed how the two variables are related cannot be obtained. Technically, AD can occur at any trimesters or throughout the pregnancy. Depression can occur at any duration of pregnancy based on the unfortunate combinations of some psychosocial, socioeconomic and psychological factors.

Finally, the presence of AD is not correlated with PD, which means that depression can occur at any trimesters of pregnancy and also in the postpartum period. The prevalence is not domiciled in
any period but can manifest in the three (3) trimesters, throughout the antepartum and postpartum periods.

Acknowledgement

The authors appreciate the efforts of the anonymous reviewers toward this publication. The financial support from Covenant University, Nigeria is also deeply appreciated.

References

1. Gawlik S, Reck C. Fatigue and depression during pregnancy. Background and therapeutic treatment. Psychotherapeut. 2011; 56(3):224-230. https://doi.org/10.1007/s00278-011-0820-9

2. Eke AC, Saccone G, Berghella V. Selective serotonin reuptake inhibitor (SSRI) use during pregnancy and risk of preterm birth: a systematic review and meta-analysis. BJOG: An Int. J. Obstet. Gynaecol. 2016; 123(12):1900-1907. https://doi.org/10.1111/1471-0528.14144

3. Spinelli MG, Endicott J, Leon AC, Goetz RR, Kalish RB, Brustman LE, Carmona YR, Meyreles Q, Vega M, Schulick C. Fatigue and depression during pregnancy versus parenting education program: Initial severity of depression as a predictor of treatment outcome. J. Clin. Psych. 2016; 77(4):535-540. https://doi.org/10.4088/JCP.15m07877

4. Nosé SC, Macedo A, Marques M, Pereira AT, Maia BR, Soares MJ, Valente J, Gomes AA, Azevedo MH. Is positive affect in pregnancy protective of postpartum depression? Rev. Brasil. Psiquiat. 2013; 35(1):5-12. https://doi.org/10.1590/S0101-07402013000500001

5. Sylven SM, Elmenis E, Michelakos T, Larsson A, Olovsson M, Poromaa IS, Skalkidou A. Thyroid function tests at delivery and risk for postpartum depressive symptoms. Psychoneuroendocrinology. 2013, 38(7):1007-1013. https://doi.org/10.1016/j.psyneuen.2012.10.004

6. Lau Y, Htun TP, Kwong HKD. Sociodemographic, obstetric characteristics, antenatal morbidities, and perinatal depressive symptoms: A three-wave prospective study. PLoS ONE. 2018; 13(2):e0188365. https://doi.org/10.1371/journal.pone.0188365

7. Weisman O, Granat A, Gilboa-Schechtman E, Singer M, Gordon I, Azulay H, Kuint J, Feldman A. The experience of labor, maternal perception of the infant, and the mother's postpartum mood in a low-risk community cohort. Arch. Women Mental Health. 2010; 13(6):505-513. https://doi.org/10.1007/s00737-010-0169-z

8. Derheime SK, Bondevik GT, Eberhard-Gran M, Bjorvatn B. Sleep and depression in postpartum women: A population-based study. Sleep. 2009; 32(7):847-855. https://doi.org/10.1093/sleep/32.7.847

9. Okun ML, Luther JF, Wnisiewski SR, Wisner KL. Disturbed sleep and inflammatory cytokines in depressed and nondepressed pregnant women: An exploratory analysis of pregnancy outcomes. Psychosomatic Med. 2013; 75(7):670-681. https://doi.org/10.1097/PSY.0b013e3182b9c3e7

10. Chang SR, Ho HN, Chen KH, Shyu MK, Huang LH, Lin WA. Depressive Symptoms as a Predictor of Sexual Function during Pregnancy. J Sex Med. 2012; 9(1):252-259. https://doi.org/10.1111/j.1743-6109.2012.02874.x

11. Giurgescu C, Zenk SN, Templin TN, Engeland CG, Dancy BL, Park CG, Kavanaugh K, Dieber W, Misra DP. The Impact of Neighborhood Environment, Social Support, and Avoidance Coping on Depressive Symptoms of Pregnant African-American Women. Women’s Health Issues. 2015; 25(3):294-302. https://doi.org/10.1016/j.whi.2015.02.001

12. Li T, Guo N, Jiang H, Eldadah M, Zhuang W. Social support and second trimester depression. Midwifery. 2019; 69:158-162. https://doi.org/10.1016/j.midw.2018.11.012

13. Steinig J, Nagl M, Linde K, Zietlow G, Kersting, A. Antenatal and postnatal depression in women with obesity: a systematic review. Arch. Women’s Mental Health. 2017; 20(4):569-585. https://doi.org/10.1007/s00737-017-0739-4

14. Pedersen C, Leserman J, Garcia N, Stansbury M, Meltzer-Brody S, Johnson J. Late pregnancy thyroid-binding globulin predicts perinatal depression. Psychoneuroendocrinology. 2016; 65-84-93. https://doi.org/10.1016/j.psyneuen.2015.12.001

15. Steinig J, Nagl M, Linde K, Zietlow G, Kersting, A. Antenatal and postnatal depression in women with obesity: a systematic review. Arch. Women’s Mental Health. 2017; 20(4):569-585. https://doi.org/10.1007/s00737-017-0739-4

16. Pedersen C, Leserman J, Garcia N, Stansbury M, Meltzer-Brody S, Johnson J. Late pregnancy thyroid-binding globulin predicts perinatal depression. Psychoneuroendocrinology. 2016; 65-84-93. https://doi.org/10.1016/j.psyneuen.2015.12.001

17. Gariepy AM, Lundsberg LS, Miller D, Stanwood NL, Yonkers K. Are pregnancy planning and pregnancy timing associated with maternal psychiatric illness, psychological distress and support during pregnancy? J Affect Disorders. 2016; 205:87-94. https://doi.org/10.1016/j.jad.2016.06.058

18. Séguin L, Potvin L, St.-Denis M, Loïselle J. Chronic stressors, social support, and depression during pregnancy. Obst Gynecol. 1995; 85(4):583-589. https://doi.org/10.1097/00006788-199508040-00049

19. Paarlberg KM, Vingerhoets AJJM, Passchier J, Heinen AGJ, Dekker GA, Van Geijn HP. Psychosocial factors as predictors of maternal well-being and pregnancy-related complaints. J Psycho Obst Gynaecol. 1996; 17(2):93-102. https://doi.org/10.1016/01674826(96)000566

20. Costa R, Pacheco A, Figueiredo BA. Prevalence and predictors of depressive symptoms after childbirth. Rev Psiqui Clinica. 2007; 34(4):157-165. https://doi.org/10.1590/S0101-60832007000400001

21. Rahman A, Creed F. Outcome of prenatal depression and risk factors associated with persistence in the first postnatal year: Prospective study from Rawalpindi, Pakistan. J Affect Disorders. 2007; 100(1-3):115-121. https://doi.org/10.1016/j.jad.2006.10.004

22. Lee AM, Lam SK, Sze Mun Lau SM, Chong CSY, Chui HW, Fong DY. Prevalence, course, and risk factors for antenatal anxiety and depression. Obst Gynecol. 2007; 110(5):1102-1112. https://doi.org/10.1097/01.AOG.0000287065.59491.70

23. Lara MA, Le RN, Lettechipia G, Hochhausen L. Prenatal depression in Latinas in the U.S. and Mexico. Mater. Child Health. 2009; 13(4):567-576. https://doi.org/10.1007/s10995-008-0379-4

24. Christensen AL, Stuart EA, Perry DF, Le HN. Unintended Pregnancy and Perinatal Depression Trajectories in Low-Income, High-Risk Hispanic Immigrants. Prevent Sci. 2011; 12(3):289-299. https://doi.org/10.1007/s10995-011-0213-x

25. Le Strat Y, Dubertret C, Le Foll B. Prevalence and correlates of major depressive episode in pregnant and postpartum women in the United States. J Affect Disorders. 2011; 135(1-3):128-138. https://doi.org/10.1016/j.jad.2011.07.004

26. Melo Jr EF, Cecatti JG, Pacagnella RC, Leite DFB, Vulcani DE, Makuch MY. The prevalence of perinatal depression and its associated factors in two different settings in Brazil. J. Affect Disorders. 2012; 136(3):1204-1208. https://doi.org/10.1016/j.jad.2011.11.023

27. Bindt C, Appiah-Poku J, Te Bonle M, Schoppen S, Feldt T, Barkmann C, Kofli M, Baum J, Nghua SB, Taghor H, Guo N, N’Goran E, Erhardt S. Antepartum Depression and Anxiety...
Associated with Disability in African Women: Cross-Sectional Results from the CDS Study in Ghana and Côte d'Ivoire. PLoS ONE. 2012; 7(10):e48396. https://doi.org/10.1371/journal.pone.0048396

28. Brunoni AR, Benute GRG, Fraguas R, Santos NO, Francisco RPV, De Lucía MCS, Zugaib MV. The self-rated inventory of Depressive Symptomatology for screening prenatal depression. Int. J Gynecol Obst. 2013; 121(3):243-246. https://doi.org/10.1016/j.ijigo.2013.01.011

29. Coelho FMC, Pinheiro RT, Silva RA, Quevedo LÁ, Souza LDM, Castelli RD, de Matos MB, Pinheiro KAT. Major depressive disorder during teenage pregnancy: Socio-demographic, obstetric and psychosocial correlates. Rev Brasil Psiquia. 2013; 35(1):51-56. https://doi.org/10.1016/j.rbp.2013.03.006

30. Leung BMY, Kaplan BJ, Field CJ, Tough S, Eliasziw M, Gomez MF, McCargar LJ, Gagnon L, Dewey D, Bell RC, Bernier RPV, De Lucia MCS, Zugaib MV. Prevalence of anxiety symptoms and depression emerging during the first trimester of pregnancy: Data from a Hungarian population-based sample. Psychiatry Danubina. 2013; 25(4):352-358.

31. Bödecs T, Szilágyi E, Cholnoky P, Sándor J, Gonda X, Rhimer Z, Horváth B. Prevalence and psychosocial background of anxiety and depression emerging during the first trimester of pregnancy: Data from a Hungarian population-based sample. Psychiatry Danubina. 2013; 25(4):352-358.

32. Bittner A, Peukert J, Zimmermann C, Junge Hoffmeister J, Parker LS, Stöbel K. Early intervention in pregnant women with elevated anxiety and depressive symptoms: Efficacy of a cognitive-behavioral group program. J Perinat Neonatal Nurs. 2014; 28(3):185-195. https://doi.org/10.1097/JPN.0000000000000027

33. Carolan-Olah M, Barry M. Antenatal stress: An Irish case study. Midwifery. 2014; 30(3):310-316. https://doi.org/10.1016/j.midw.2013.03.014

34. Ratcliff BG, Sharapova A, Suardi F, Borel F. Factors associated with antenatal depression and obstetric complications in immigrant women in Geneva. Midwifery. 2015; 31(9):871-876. https://doi.org/10.1016/j.midw.2015.04.010

35. Ferreira CR, Orsini MC, Vieira CR, do Amarante Paffaro A, Silva RR. Prevalence of anxiety symptoms and depression in the third gestational trimester. Arch Gynecol Obst. 2015; 291(5):999-1003. https://doi.org/10.1007/s00404-014-3508-x

36. Yang N, Gelaye B, Zhong Q, Rondon MB, Sanchez SE, Williams MA. Serum brain-derived neurotrophic factor (BDNF) concentrations in pregnant women with post-traumatic stress disorder and comorbid depression. Arch Women’s Mental Health. 2016; 19(6):579-586. https://doi.org/10.1007/s00737-016-0636-8

37. Hinkle SN, Buck Louis GM, Rawal S, Zhu Y, Albert PS, Zhang C. A longitudinal study of depression and gestational diabetes in pregnancy and the postpartum period. Diabetologia. 2016; 59(12):2594-2602. https://doi.org/10.1007/s00125-016-4086-1

38. Di Venanzio C, Pacitti F, Rossetti MC, Santarelli V, Gregori E, D’Alfonso A, Carta G, Rossi A. Perinatal depression screening and early treatment. J Psychopathology. 2017; 23(3):99-104.

39. Tsai SY. Relationship of perceived job strain and workplace support to antenatal depressive symptoms among pregnant employees in Taiwan. Women and Health. 2019; 59(1):55-67. https://doi.org/10.1080/03630242.2018.1434590

40. Van Ravesteyn LM, Kamperman AM, Schneider TAJ, Raats ME, Sleeegers EA, Tiemeier H, Hoogendijk WJG, Lambregts-van den Berg MP. Group-based multicomponent treatment to reduce depressive symptoms in women with co-morbid psychiatric and psychosocial problems during pregnancy: A randomized controlled trial. J Affect Disorders. 2018; 226:36-44. https://doi.org/10.1016/j.jad.2017.09.019

41. Zvorsky I, Skelly JM, Higgins ST. Effects of financial incentives for smoking cessation on mood and anxiety symptoms among pregnant and newly postpartum women. Nicot Tobacco Res. 2018; 20(5):620-627. https://doi.org/10.1093/ntr/ntx111

42. Vergel J, Gaviria SL, Duque M, Restrepo D, Rondon M, Colonia A. Gestation-related psychosocial factors in women from Medellín, Colombia. Rev Colomb Psiqui. 2019; 48(1):26-34. https://doi.org/10.1016/j.rcp.2017.06.003

43. Alves SE, Fonseca A, Canavarro MC, Pereira M. Predictive validity of the Postpartum Depression Predictors Inventory-Revised (PDI-R): A longitudinal study with Portuguese women. Midwifery. 2019; 69:113-120. https://doi.org/10.1016/j.midw.2018.11.006

44. Oguntunde PE, Adejumo AO, Okagbue HI. Breast Cancer Patients in Nigeria: Data exploration approach. Data in Brief. 2017; 15:47-57. https://doi.org/10.1016/j.dib.2017.08.038

45. Adamu PI, Oguntunde PE, Okagbue HI, Agboola OO. Statistical data analysis of cancer incidences in insurgency affected states in Nigeria. Data in Brief. 2018; 18:2029-2046. https://doi.org/10.1016/j.dib.2018.04.135

46. Adejumo AO, Ikoba NA, Suleiman EA, Oguntunde PE, Okagbue HI, Oguntunde PE, Odetunmbi OA. Statistical data analysis of cancer incidences in insurgency affected states in Nigeria. Data in Brief. 2018; 18:2029-2046. https://doi.org/10.1016/j.dib.2018.04.135

47. Adamu PI, Adamu MO, Oguntunde PE, Okagbue HI. Data in support of high rate of pregnancy related deaths in Maiduguri, Borno State, Northeast Nigeria. Data in Brief. 2018; 18:409-414. https://doi.org/10.1016/j.dib.2018.03.038

48. Adejumo AO, Suleiman EA, Okagbue HI, Oguntunde PE, Odetunmbi OA. Quantitative Evaluation of Pregnant Women Delivery Status’ Records in Akure, Nigeria. Data in Brief. 2018; 16:127-134. https://doi.org/10.1016/j.dib.2017.11.041

49. Adamu PI, Oguntunde PE, Okagbue HI, Agboola OO. Data in support of high rate of pregnancy related deaths in Maiduguri, Borno State, Northeast Nigeria. Data in Brief. 2018; 18:409-414. https://doi.org/10.1016/j.dib.2018.03.038