Supplementary Materials

Table S1. Summary of the *lpa* mutants isolated in different species. nd, not determined; OE, overexpression; RNAi, RNA interference.

Gene Function	Species	Locus	Origin of Mutation	Mutant (Ecotype)	Seed PA Reduction	Metabolites and/or Genes DOWN Regulated	Metabolites and/or Genes UP Regulated	Other Phenotypic Alterations	Ref.
MIPS1	*Arabidopsis thaliana*	At4g39800	T-DNA insertion	atips1-1 (Col), atips1-2 (Ws)	nd	phytic acid, myo-inositol and galactinol in leaves		reduced cell proliferation in seedling causing strong modification of the root cap and shorter seedling; abnormal cotyledons; leaf lesions on adult plants modulated by light intensity and developmental stages, due to SA-dependent PCD (increase in SA content); increased resistance to oomycete	[1,2]
MIPS1	*Arabidopsis thaliana*	At4g39800	T-DNA insertion	mips1-2 (Col), mips1-4 (C-24), mips1-5 (Col)	nd			defects in: embryogenesis, cotyledon vein patterning, epidermal cell division, root growth and gravitropism, root cap cell patterning, apical dominance, auxin response	[3]
MIPS1	*Arabidopsis thaliana*	At4g39800	T-DNA insertion	mips1-2 (Col), mips1-3 (Col)	nd	myo-inositol, ascorbic acid, phosphatidyl inositol, ceramides		smaller plants, curly leaves, spontaneous lesions, increased sensitivity to ABA and NaCl in germination	[4]
MIPS2	*Arabidopsis thaliana*	At2g22240	T-DNA insertion	atips2 (Col)	none	phytic acid in leaves		increased susceptibility to viruses, fungi, bacteria	[1,5,6]
MIPS3	*Arabidopsis thaliana*	At5g10170	T-DNA insertion	atips3 (Col)	none		lethal		[2,5,6]
MIPS1	*Glycine max*	Glyma18g02210	γ-rays	Gm-lpa-TW75-1	50%	myo-inositol, galactinol, raffinose, stachyose, galactopinitol A, galactopinitol B, fagopyritol B1, galactinol, sucrose, glycerol, sorbitol		reduced field emergence (seeds produced in subtropical environment)	[7–9]
MIPS1	*Glycine max*	Glyma18g02210	N-nitroso-N-methylurea	LR33	50%	myo-inositol, raffinose, stachyose	sucrose	reduced field emergence (seeds produced in subtropical environment)	[10,11]
Table S1. Cont.

Gene Function	Species	Locus	Origin of Mutation	Mutant (Ecotype)	Seed PA Reduction	Metabolites and/or Genes DOWN Regulated	Metabolites and/or Genes UP Regulated	Other Phenotypic Alterations	Ref.
MIPS1	Glycine max	Glyma18g02211	V99-5089	50%	sucrase	Phytic acid in tubers, \(\text{myo-}			
						inositol (leaf and tuber), galactinol, raffinose (leaf), sucrase, starch (tuber)		reduced apical dominance, delayed flowering, increased leaf thickness, precocious leaf senescence, mini tubers, no anthocyanins in tuber skin, increased susceptibility to virus	[12,13]
MIPS1	Glycine max	Glyma18g02212	RNAi ΔGmMIPS	35%–95%	sucrase, starch (leaf)				[14]
MIPS	Solanum tuberosum		antisense	antisense StIPS	nd				[1,15]
MIPS	Oryza sativa	Os03g09250	antisense	antisense RINO1 under olesin 18kDa promoter (Ole18)	75%				[16]
IMP	Arabidopsis thaliana	A3g02870	T-DNA insertion	vtc4	nd	myo-inositol, ascorbic acid	galactose		[17]
IMT from M. crystallinum	Brassica napus		over-expression	pNIMT (IMT under napin promoter) and pPhIMT (IMT under phaseolin promoter)	20%–30%	galactinol, raffinose	galactose, stachyose, sucrose		[18]
MIK	Arabidopsis thaliana	At5g58730	T-DNA insertion	atmk-1	62%	IPK2β, ITPK1, ITPK4, MRP, 2PGK		reduced germination on NaCl, mannitol, \(\text{H}_{2}\text{O}_{2}\)	[5]
MIK	Arabidopsis thaliana	At5g58730	T-DNA insertion	atmk-2	66%				[5]
MIK	Zea mays	GRMZM2G361593	Mu insertion	lpa3	45%	lower InsPs	myo-inositol		[19]
MIK + ITPK	Zea mays	GRMZM2G361593	Mu insertion	lpa2-lpa3	66%	molar increase of lower InsPs			[19]
MIK	Oryza sativa	Os03g52760	γ-rays + sodium azide	Os-lpa-XS110-1	64%	InsP	myo-inositol, raffinose, galactose, galactinol, fructose, glucose		
MIK	Oryza sativa	EMS	lpa N15-186	75%	myo-inositol				[24]
Gene Function	Species	Locus	Origin of Mutation	Mutant (Ecotype)	Seed PA Reduction	Metabolites and/or Genes DOWN Regulated	Metabolites and/or Genes UP Regulated	Other Phenotypic Alterations	Ref.
2-PGK	Arabidopsis thaliana	At5g60760	T-DNA insertion	Oslpa1 like	66%	MIK, ITPK1, ITPK4, MRP	IPK2β, IPK1	reduced germination on NaCl, mannitol, H₂O₂	[25,5]
2-PGK	Oryza sativa	Os02g57400	γ-rays	XQZ-1	40%	molar increase of lower InsPs		seed dry weight reduction, low grain yield, reduced germination (particularly after aging)	[22]
2-PGK	Oryza sativa	Os02g57400	γ-rays	KBNT lpa1-1	40%	molar increase of lower InsPs		normal plants, reduced size of globoïds	[24]
IPK2β	Arabidopsis thaliana	At5g61760	T-DNA insertion	ipk2β-1	35%	MIK, 2PGK	IPK1, MRP	reduced germination on NaCl, mannitol, H₂O₂	[5]
IPK2β	Arabidopsis thaliana	At5g61760	ipk2β-2		48%	MIK, ITPK1, ITPK4, 2PGK	IPK1, MRP	reduced germination on NaCl, mannitol, H₂O₂	[5]
ITPK1	Arabidopsis thaliana	At5g16760	T-DNA insertion	atitpk1	46%	MIK, 2PGK	IPK1, MRP	reduced germination on NaCl, mannitol, H₂O₂	[5]
ITPK4	Arabidopsis thaliana	At2g43980	T-DNA insertion	atitpk4-1	51%	MIK, 2PGK	IPK1, MRP	reduced germination on NaCl, mannitol, H₂O₂	[5]
ITPK4	Arabidopsis thaliana	At2g43980	T-DNA insertion	atitpk4-2	40%				
ITPK	Zea mays	GRMZM2G456626	Mu insertion	lpa2	30%	molar increase of lower InsPs		seed dry weight reduction	[27,28]
ITPK	Oryza sativa	Os09g34300	EMS	itpk	46%–68%			seed dry weight reduction, low grain yield, reduced germination	[29]
IPK1	Arabidopsis thaliana	At5g42810	T-DNA insertion	ipk1-1	83%			altered Pi homeostasis (smaller leaves and epinasty at standard Pi concentration, longer roots at lower Pi concentration, attenuated ability to sense Pi increase)	[26]
IPK1	Arabidopsis thaliana	At5g42810	T-DNA insertion	ipk1-1	49%	MIK	IPK2β, ITPK1, ITPK4, MRP, 2PGK	reduced germination on NaCl, mannitol, H₂O₂	[5]
IPK1	Arabidopsis thaliana	At5g42810	T-DNA insertion	ipk1-1	nd	phytic acid in leaves		increased susceptibility to viruses, fungi, bacteria	[1]
Table S1. Cont.

Gene Function	Species	Locus	Origin of Mutation	Mutant (Ecotype)	Seed PA Reduction	Metabolites and/or Genes DOWN Regulated	Metabolites and/or Genes UP Regulated	Other Phenotypic Alterations	Ref.
IPK1	Arabidopsis thaliana	At5g42810	T-DNA insertion	ipk1-1	nd	increased Pi uptake and increased root to shoot translocation, Pi deficiency-like root system architecture		[30]	
IPK1	Arabidopsis thaliana	At5g42810	T-DNA insertion	ipk1-1	nd	early flowering, seed yield 52% of wt, reduced sensitivity to salt stress		[31]	
IPK1	Arabidopsis thaliana	At5g42810	T-DNA insertion	ipk1-2	nd	not viable		[30]	
IPK1	Glycine max	Glyma14g07880	γ-rays	Gm-lpa-ZC-2-46%		myo-inositol, syringic acid, total isoflavones, molar increase of lower InsPs	shorter plants, but no yield reduction	[7]	
IPK1	Zea mays	GRMZM2G067299	ZFN-DNA editing	ipk1-50%				[32]	
IPK1	Oryza sativa	Os04g56580	RNAi under Oleosin	ipk1-70%		unchanged levels of myo-inositol		[33]	
MRP	Arabidopsis thaliana	At1g04120	T-DNA insertion	atmrp5-1 (Ws)	nd	on 0.5 × MS decreased root growth and increased lateral root formation, on 1 × MS reverse phenotype, increased level of auxin in root, no effect of sulfonylurea glibenclamide on stomatal opening		[34]	
Gene Function	Species	Locus	Origin of Mutation	Mutant (Ecotype)	Seed PA Reduction	Metabolites and/or Genes DOWN Regulated	Metabolites and/or Genes UP Regulated	Other Phenotypic Alterations	
---------------	---------	-------	--------------------	------------------	------------------	---	-------------------------------------	----------------------------	
MRP	Arabidopsis thaliana	At1g04120	T-DNA insertion	atmrp5-1 (Ws)	nd			more resistant to drought stress, increased water use efficiency, stomata closer under light, no sensitivity to Ca2+ and ABA on stomatal closure, no sensitivity to auxin for opening under darkness, reduced ABA sensitivity during germination [35]	
MRP	Arabidopsis thaliana	At1g04120	T-DNA insertion	atmrp5-1 (Ws)	nd			impairment in activation of slow S-type anion channels in the plasma membrane of GCs [36]	
MRP	Arabidopsis thaliana	At1g04120	T-DNA insertion	atmrp5-2 (Ws)	nd			hypersensitivity to salt stress [37]	
MRP	Arabidopsis thaliana	At1g04120	T-DNA insertion	mpr5-1 (Ws), mpr5-2 (Col)	73%–80%	34%–37% reduction in total P, reduction in Na, Mg, Ca, K content		reduced germination on NaCl, mannitol, H2O2 [5]	
MRP	Arabidopsis thaliana	At1g04120	T-DNA insertion	atmrp5-1 and 5-2 (Col)	73%–80%	MIK, IPK2βITPK1, ITPK4, 2PGK	IPK1	reduced germination on NaCl, mannitol, H2O2 [5]	
MRP	Arabidopsis thaliana	At1g04120	T-DNA insertion	atmrp5 (Col)	nd			enhanced lateral roots and root hair growth [30]	
MRP	Arabidopsis thaliana	At1g04120	T-DNA insertion	atmrp5 (Col)	nd			increase in InsP5, InsP7 and InsP8 in siliques [39]	
MRP	Glycine max	Glyma03g32500, Glyma19g35230	EMS	CX1834	80%	palmitate, stearate, oil		reduced seedling and field emergence (seeds produced in subtropical environment) [12,13, 40–43]	
MRP	Phaseolus vulgaris	Phvul001g165500	EMS	lpa1	90%	myo-inositol, raffinosaccharides, MIPS, IMP, IPK2, ITPKα, IPK1		down-regulation of genes (MIPS, IMP, IPK2, ITPKα, IPK1) for PA biosynthetic pathway, germination hypersensitivity to ABA [44]	
Gene Function	Species	Locus	Origin of Mutation	Mutant (Ecotype)	Seed PA Reduction	Metabolites and/or Genes DOWN Regulated	Metabolites and/or Genes UP Regulated	Other Phenotypic Alterations	Ref.
---------------	---------	-------	-------------------	------------------	-----------------	---	--------------------------------	----------------------------------	------
MRP	Zea mays	GRMZM5G820122	EMS	lpa1-241, lpa1-7	90%	myo-inositol, MIPS	Mg, K	seed dry weight reduction, down-regulation of MIPS, altered morphology of globoids (number and size), altered embryo development, size, germination, seedling growth rate, ear size, increased susceptibility to oxidative stress	[45–50]
MRP	Zea mays	GRMZM5G820123	EMS	lpa1-1	66%	MIPS	myo-inositol	reduced germination, reduced vigour under stress conditions, altered morphology of globoids (number and size)	[27,32, 51–53]
MRP	Oryza sativa	Os03g04920	γ-rays + sodium azide	Os-lpa-XS110-2	20%	myo-inositol, raffinose, galactose	24-methylencycloartanol (steroid)	seed dry weight reduction, low grain yield, reduced germination (particularly after aging), reduced field emergence.	[20–22, 54]
MRP	Oryza sativa	Os03g04920	γ-rays + sodium azide	Os-lpa-XS110-3	100%	myo-inositol	(lethal)	(lethal)	[20,54]
PAP	Arabidopsis thaliana	At3g07130	over-expression	OE-PAP15	nd	phytic acid in leaves	ascorbic acid	altered salt, osmotic stress, and ABA sensitivities, enhanced salt tolerance, and decreased abscisic acid sensitivity	[55]
Sultr3;3	Hordeum vulgare	sodium azide	lpa1-1 (M422)	50%	IMP	Increase in free Pi and small increases in Ins(1,2,3,4,6)Py	reduced test weight and percentage plump kernels, mutation affects only aleurone. Breeding can abolish/reduce negative traits	[56–60]	
Sultr3;3	Oryza sativa	Os04g0652400	γ-rays	MH86-1	44%	molar increase in free Pi	seed dry weight reduction, low grain yield, reduced germination (particularly after aging)	[20,22]	
Gene Function	Species	Locus	Origin of Mutation	Mutant (Ecotype)	Seed PA Reduction	Metabolites and/or Genes DOWN Regulated	Metabolites and/or Genes UP Regulated	Other Phenotypic Alterations	Ref.
---------------	--------------	----------------	--------------------	------------------	------------------	---	---------------------------------------	----------------------------------	------
unknown	Pisum sativum	unknown	EMS	1-150-81; 1-2347-144	60%–65%	molar increase in free Pi	decreased seed weight, decreased yield	[61,62]	
unknown	Hordeum vulgare	unknown	sodium azide	lpa3-3 (M635)	65%	IMP, MIPS	myo-inositol, galactinol	reduced test weight and percentage plump kernels, reduced yield. Breeding can abolish/reduce negative traits	[56–59]
unknown	Hordeum vulgare	unknown	sodium azide	M955	90%	IMP, MIPS	myo-inositol, raffinose, galactinol, sucrose	reduced test weight and percentage plump kernels, reduced yield. Breeding can abolish/reduce negative traits	[56,57, 59,63]
unknown	Oryza sativa	unknown	γ-rays	Z9B-1	45%	low increase in free Pi	seed dry weight reduction, low grain yield, reduced germination (particularly after aging)	[20,22]	
References

1. Murphy, A.; Otto, B.; Brearley, C.; Carr, J.; Hanke, D. A role for inositol hexakisphosphate in the maintenance of basal resistance to plant pathogens. Plant J. 2008, 56, 638–652.
2. Meng, P.; Raynaud, C.; Tcherkez, G.; Blanchet, S.; Massoud, K.; Domenichini, S.; Henry, Y.; Soubigou-Taconnat, L.; Lelarge-Trouverie, C.; Saindrenan, P.; et al. Crosstalks between myo-inositol metabolism, programmed cell death and basal immunity in Arabidopsis. PLoS ONE 2009, 4, doi:10.1371/journal.pone.0007364.
3. Chen, H.; Xiong, L. Myo-inositol-1-phosphate synthase is required for polar auxin transport and organ development. J. Biol. Chem. 2010, 285, 24238–24247.
4. Donahue, J.; Alford, S.; Torabinejad, J.; Kerwin, R.; Nourbakhsh, A.; Ray, W.; Hernick, M.; Huang, X.; Lyons, B.; Hein, P.; et al. The Arabidopsis thaliana myo-inositol 1-phosphate synthase1 gene is required for myo-inositol synthesis and suppression of cell death. Plant Cell 2010, 22, 888–903.
5. Kim, S.; Tai, T. Identification of genes necessary for wild-type levels of seed phytic acid in Arabidopsis thaliana using a reverse genetics approach. Mol. Genet. Genom. 2011, 286, 119–133.
6. Luo, Y.; Qin, G.; Zhang, J.; Liang, Y.; Song, Y.; Zhao, M.; Tsuge, T.; Aoyama, T.; Liu, J.; Gu, H.; et al. D-myo-inositol-3-phosphate affects phosphatidylinositol-mediated endomembrane function in Arabidopsis and is essential for auxin-regulated embryogenesis. Plant Cell 2011, 23, 1352–1372.
7. Yuan, F.; Zhao, H.; Ren, X.; Zhu, S.; Fu, X.; Shu, Q. Generation and characterization of two novel low phytate mutations in soybean (Glycine max L. Merr.). Theor. Appl. Genet. 2007, 115, 945–957.
8. Frank, T.; Nörenberg, S.; Engel, K.H. Metabolite profiling of two novel low phytic acid (lpa) soybean mutants. J. Agric. Food Chem. 2009, 57, 6408–6416.
9. Yuan, F.; Zhu, D.; Deng, B.; Fu, X.; Dong, D.; Zhu, S.; Li, B.; Shu, Q. Effects of two low phytic acid mutations on seed quality and nutritional traits in soybean (Glycine max L. Merr). J. Agric. Food Chem. 2009, 57, 3632–3638.
10. Hitz, W.; Carlson, T.; Kerr, P.; Sebastian, S. Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Plant Physiol. 2002, 128, 650–660.
11. Meis, S.; Fehr, W.; Schnebly, S. Seed source effect on field emergence of soybean lines with reduced phytate and raffinose saccharides. Crop Sci. 2003, 43, 1336–1339.
12. Maupin, L.; Rosso, M.; Rainey, K. Environmental effects on soybean with modified phosphorus and sugar composition. Crop Sci. 2011, 51, 642–650.
13. Gao, Y.; Biyashev, R.; Maroof, M.; Glover, N.; Tucker, D.; Buss, G. Validation of low-phytate qtls and evaluation of seedling emergence of low-phytate soybeans. Crop Sci. 2008, 48, 1355–1364.
14. Nunes, A.; Vianna, G.; Cuneo, F.; Amaya-Farfan, J.; de Capdeville, G.; Rech, E.; Aragao, F. RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta 2006, 224, 125–132.
15. Keller, R.; Brearley, C.; Trethewey, R.; Muller-Rober, B. Reduced inositol content and altered morphology in transgenic potato plants inhibited for 1D-myoinositol 3-phosphate synthase. Plant J. 1998, 16, 403–410.

16. Kuwano, M.; Mimura, T.; Takaiwa, F.; Yoshida, K. Generation of stable “low phytic acid” transgenic rice through antisense repression of the 1D-myoinositol 3-phosphate synthase gene (RINO1) using the 18-kDa oleosin promoter. Plant Biotechnol. J. 2009, 7, 96–105.

17. Torabinejad, J.; Donahue, J.; Gunasekera, B.; Allen-Daniels, M.; Gillaspy, G. VTC4 is a bifunctional enzyme that affects myo-inositol and ascorbate biosynthesis in plants. Plant Physiol. 2009, 150, 951–961.

18. Dong, J.; Yan, W.; Bock, C.; Nokhrina, K.; Keller, W.; Georges, F. Perturbing the metabolic dynamics of myo-inositol in developing brassica napus seeds through in vivo methylation impacts its utilization as phytate precursor and affects downstream metabolic pathways. BMC Plant Biol. 2013, 13, 84, doi:10.1186/1471-2229-13-84.

19. Shi, J.; Wang, H.; Hazebroek, J.; Ertl, D.; Harp, T. The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Plant J. 2005, 42, 708–719.

20. Liu, Q.; Xu, X.; Ren, X.; Fu, H.; Wu, D.; Shu, Q. Generation and characterization of low phytic acid germplasm in rice (Oryza sativa L.). Theor. Appl. Genet. 2007, 114, 803–814.

21. Frank, T.; Meuleye, B.; Miller, A.; Shu, Q.; Engel, K. Metabolite profiling of two low phytic acid (lpa) rice mutants. J. Agric. Food Chem. 2007, 55, 11011–11019.

22. Zhao, H.; Liu, Q.; Fu, H.; Xu, X.; Wu, D.; Shu, Q. Effect of non-lethal low phytic acid mutations on grain yield and seed viability in rice. Field Crop. Res. 2008, 108, 206–211.

23. Emami, K.; Morris, N.J.; Cockell, S.J.; Golebiowska, G.; Shu, Q.Y.; Gatehouse, A.M. Changes in protein expression profiles between a low phytic acid rice (Oryza sativa L. Ssp. Japonica) line and its parental line: A proteomic and bioinformatic approach. J. Agric. Food Chem. 2010, 58, 6912–6922.

24. Kim, S.; Andaya, C.; Newman, J.; Goyal, S.; Tai, T. Isolation and characterization of a low phytic acid rice mutant reveals a mutation in the rice orthologue of maize MIK. Theor. Appl. Genet. 2008, 117, 1291–1301.

25. Kim, S.; Tai, T. Genetic analysis of two OsLpa1-like genes in Arabidopsis reveals that only one is required for wild-type seed phytic acid levels. Planta 2010, 232, 1241–1250.

26. Stevenson-Paulik, J.; Bastidas, R.; Chiou, S.; Frye, R.; York, J. Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proc. Natl. Acad. Sci. USA 2005, 102, 12612–12617.

27. Raboy, V.; Gerbasi, P.; Young, K.; Stoneberg, S.; Pickett, S.; Bauman, A.; Murthy, P.; Sheridan, W.; Ertl, D. Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiol. 2000, 124, 355–368.

28. Shi, J.; Wang, H.; Wu, Y.; Hazebroek, J.; Meeley, R.; Ertl, D. The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol. 2003, 131, 507–515.

29. Kim, S.; Tai, T. Identification of novel rice low phytic acid mutations via TILLING by sequencing. Mol. Breed. 2014, 34, 1717–1729.
30. Kuo, H.; Chang, T.; Chiang, S.; Wang, W.; Ching, Y.; Chiou, T. *Arabidopsis* inositol pentakisphosphate 2-kinase, AtIPK1, is required for growth and modulates phosphate homeostasis at the transcriptional level. *Plant J.* 2014, 80, 503–515.

31. Lee, H.; Lee, D.; Cho, H.; Kim, S.; Auh, J.; Pai, H. InsP_6-sensitive variants of the Gle1 mRNA export factor rescue growth and fertility defects of the ipk1 low-phytic-acid mutation in *Arabidopsis*. *Plant Cell* 2015, 27, 417–431.

32. Shukla, S.; VanToai, T.; Pratt, R. Expression and nucleotide sequence of an ins (3) p-1 synthase gene associated with low-phytate kernels in maize (*Zea mays* L.). *J. Agric. Food Chem.* 2004, 52, 4565–4570.

33. Ali, N.; Paul, S.; Gayen, D.; Sarkar, S.; Datta, K.; Datta, S. Development of low phytate rice by rna mediated seed-specific silencing of inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene (*IPK1*). *PLoS ONE* 2013, 8, doi:10.1371/journal.pone.0068161.

34. Gaedeke, N.; Klein, M.; Kolukisaoglu, U.; Forestier, C.; Muller, A.; Ansorge, M.; Becker, D.; Mannun, Y.; Kuchler, K.; Schulz, B.; *et al*. The *Arabidopsis thaliana* ABC transporter AtMRP5 controls root development and stomata movement. *EMBO J.* 2001, 20, 1875–1887.

35. Klein, M.; Perfus-Barbeoch, L.; Frelet, A.; Gaedeke, N.; Reinhardt, D.; Mueller-Roeber, B.; Martinoia, E.; Forestier, C. The plant multidrug resistance ABC transporter AtMRP5 is involved in guard cell hormonal signalling and water use. *Plant J.* 2003, 33, 119–129.

36. Suh, S.J.; Wang, Y.F.; Frelet, A.; Leonhardt, N.; Klein, M.; Forestier, C.; Mueller-Roeber, B.; Cho, M.H.; Martinoia, E.; Schroeder, J.I. The ATP binding cassette transporter AtMRP5 modulates anion and calcium channel activities in *Arabidopsis* guard cells. *J. Biol. Chem.* 2007, 282, 1916–1924.

37. Lee, E.; Kwon, M.; Ko, J.; Yi, H.; Hwang, M.; Chang, S.; Cho, M. Binding of sulfonylurea by AtMRP5, an *Arabidopsis* multidrug resistance-related protein that functions in salt tolerance. *Plant Physiol.* 2004, 134, 528–538.

38. Nagy, R.; Grob, H.; Weder, B.; Green, P.; Klein, M.; Frelet-Barrand, A.; Schjoerring, J.; Brearley, C.; Martinoia, E. The *Arabidopsis* ATP-binding cassette protein AtMRP5/AtABCC5 is a high affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage. *J. Biol. Chem.* 2009, 284, 33614–33622.

39. Steger, D.; Haswell, E.; Miller, A.; Wente, S.; O’Shea, E. Regulation of chromatin remodeling by inositol polyphosphates. *Science* 2003, 299, 114–116.

40. Wilcox, J.; Premachandra, G.; Young, K.; Raboy, V. Isolation of high seed inorganic P, low-phytate soybean mutants. *Crop Sci.* 2000, 40, 1601–1605.

41. Oltmans, S.; Fehr, W.; Welke, G.; Raboy, V.; Peterson, K. Agronomic and seed traits of soybean lines with low-phytate phosphorus. *Crop Sci.* 2005, 45, 593–598.

42. Hulke, B.; Fehr, W.; Welke, G. Agronomic and seed characteristics of soybean with reduced phytate and palmitate. *Crop Sci.* 2004, 44, 2027–2031.

43. Pilu, R.; Panzeri, D.; Cassani, E.; Cerino Badone, F.; Landoni, M.; Nielsen, E. A paramutation phenomenon is involved in the genetics of maize low phytic acid1-241 (*lpa1-241*) trait. *Heredity* 2009, 102, 236–245.

44. Panzeri, D.; Cassani, E.; Doria, E.; Tagliabue, G.; Forti, L.; Campion, B.; Bollini, R.; Brearley, C.A.; Pilu, R.; Nielsen, E.; *et al*. A defective ABC transporter of the MRP family, responsible for the
bean lpa1 mutation, affects the regulation of the phytic acid pathway, reduces seed myo-inositol and alters aba sensitivity. New Phytol. 2011, 191, 70–83.

45. Pilu, R.; Panzeri, D.; Gavazzi, G.; Rasmussen, S.; Consonni, G.; Nielsen, E. Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241). Theor. Appl. Genet. 2003, 107, 980–987.

46. Pilu, R.; Landoni, M.; Cassani, E.; Doria, E.; Nielsen, E. The maize lpa241 mutation causes a remarkable variability of expression and some pleiotropic effects. Crop Sci. 2005, 45, 2096–2105.

47. Cerino Badone, F.; Amelotti, M.; Cassani, E.; Pilu, R. Study of low phytic acid1-7 (lpa1-7), a new ZmMRP4 mutation in maize. J. Hered. 2012, 103, 598–605.

48. Doria, E.; Galleschi, L.; Calucci, L.; Pinzino, C.; Pilu, R.; Cassani, E.; Nielsen, E. Phytic acid prevents oxidative stress in seeds: Evidence from a maize (Zea mays L.) low phytic acid mutant. J. Exp. Bot. 2009, 60, 967–978.

49. Cerino Badone, F.; Cassani, E.; Landoni, M.; Doria, E.; Panzeri, D.; Lago, C.; Mesiti, F.; Nielsen, E.; Pilu, R. The low phytic acid1-241 (lpa1-241) maize mutation alters the accumulation of anthocyanin pigment in the kernel. Planta 2010, 231, 1189–1199.

50. Landoni, M.; Cerino Badone, F.; Haman, N.; Schiraldi, A.; Fessas, D.; Cesari, V.; Toschi, I.; Cremona, R.; Delogu, C.; Villa, D.; et al. Low phytic acid 1 mutation in maize modifies density, starch properties, cations, and fiber contents in the seed. J. Agric. Food Chem. 2013, 61, 4622–4630.

51. Shi, J.; Wang, H.; Schellin, K.; Li, B.; Faller, M.; Stoop, J.; Meeley, R.; Ertl, D.; Ranch, J.; Glassman, K. Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat. Biotech. 2007, 25, 930–937.

52. Liu, Z.; Cheng, F.; Cheng, W.; Zhang, G. Positional variations in phytic acid and protein content within a panicle of japonica rice. J. Cereal Sci. 2005, 41, 297–303.

53. Naidoo, R.; Tongoona, P.; Derera, J.; Laing, M.; Watson, G. Combining ability of low phytic acid (lpa-1) and quality protein maize (qpm) lines for seed germination and vigour under stress and non-stress conditions. Euphytica 2012, 185, 529–541.

54. Xu, X.; Zhao, H.; Liu, Q.; Frank, T.; Engel, K.; An, G.; Shu, Q. Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds. Theor. Appl. Genet. 2009, 119, 75–83.

55. Zhang, W.; Gruszewski, H.; Chevone, B.; Nessler, C. An arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiol. 2008, 146, 431–440.

56. Bregitzer, P.; Raboy, V. Effects of four independent low-phytate mutations on barley agronomic performance. Crop Sci. 2006, 46, 1318–1322.

57. Raboy, V.; Peterson, K.; Jackson, C.; Marshall, J.; Hu, G.; Saneoka, H.; Bregitzer, P. A substantial fraction of barley (Hordeum vulgare L.) low phytic acid mutations have little or no effect on yield across diverse production environments. Plants 2015, 4, 225–239.

58. Karner, U.; Peterbauer, T.; Raboy, V.; Jones, D.; Hedley, C.; Richter, A. Myo-inositol and sucrose concentrations affect the accumulation of raffinose family oligosaccharides in seeds. J. Exp. Bot. 2004, 55, 1981–1987.

59. Dorsch, J.; Cook, A.; Young, K.; Anderson, J.; Bauman, A.; Volkmann, C.; Murthy, P.; Raboy, V. Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. Phytochemistry 2003, 62, 691–706.
60. Ye, H.; Zhang, X.; Broughton, S.; Westcott, S.; Wu, D.; Lance, R.; Li, C. A nonsense mutation in a putative sulphate transporter gene results in low phytic acid in barley. *Funct. Integr. Genom.* 2011, 11, 103–110.

61. Rehman, A.; Shunmugam, A.; Arganosa, G.; Bett, K.; Warkentin, T. Inheritance of the low-phytate trait in pea. *Crop Sci.* 2012, 52, 1171–1175.

62. Shunmugam, A.S.K.; Bock, C.; Arganosa, G.C.; Georges, F.; Gray, G.R. and Warkentin, T.D. Accumulation of phosphorus-containing compounds in developing seeds of low-phytate pea (*Pisum sativum* L.) mutants. *Plants* 2015, 4, 1–26.

63. Raboy, V. *Myo*-inositol-1,2,3,4,5,6-hexakisphosphate. *Phytochemistry* 2003, 64, 1033–1043.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).