‘Hardness’ of Samples Need to be Quantified for a Reliable Evaluation System: Exploring Potential Opportunities with a New Task

Swaroop Mishra Anjana Arunkumar Chris Bryan Chitta Baral
Arizona State University

Abstract

Evaluation of models on benchmarks is unreliable without knowing the degree of sample hardness; this subsequently overestimates the capability of AI systems and limits their adoption in real world applications. We propose a Data Scoring task that requires assignment of each unannotated sample in a benchmark a score between 0 to 1, where 0 signifies easy and 1 signifies hard. Use of unannotated samples in our task design is inspired from humans who can determine a question difficulty without knowing its correct answer. This also rules out the use of methods involving model based supervision (since they require sample annotations to get trained), eliminating potential biases associated with models in deciding sample difficulty. We propose a method based on Semantic Textual Similarity (STS) for this task; we validate our method by showing that existing models are more accurate with respect to the easier sample-chunks than with respect to the harder sample-chunks. Finally we demonstrate five novel applications.

1 Introduction

Empirical justification of model superiority without theoretical proof can be unreliable. Suppose model M_1 has higher accuracy than model M_2 on a dataset D_1. In order to confirm if we should choose M_1 over M_2, we can train and evaluate both models on D_2, D_3 and D_4. Even if M_1 has higher accuracy than M_2 on all the three datasets, we cannot say that M_1 is always better; we may then evaluate both models on Out of Distribution (OOD) (Quionero-Candela et al., 2009) datasets (usually done zero-shot (Bras et al., 2020)) D_5 and D_6 to find their generalization performance. Suppose that M_1 still performs better than M_2 in D_5 and D_6. Is that enough to justify the superiority of M_1, or do we need further experimentation on a wider range of datasets? Often, M_1 will not be a clear winner in all six datasets, making this evaluation even harder.

Justifying superiority as above requires analysis of ‘hardness’ of questions that models are answering. For instance, D_1-D_4 may contain ‘easy’ questions on which M_1 excels and ‘hard’ questions on which it fails. It is also possible that M_2 answers more ‘hard’ questions than M_1, while the overall count of correctly answered questions for M_2 is lower, so M_1 has better accuracy. In that case, zeroshot OOD performance can help identify the winner, assuming that OOD samples are harder samples that diverge from the training set.

Consequently, a clear definition of the ‘hardness’ of data items is useful in better analyzing empirical results. It will help in the design of a futuristic testbed consisting of a hierarchy of question sets with increasing levels of difficulty, similar to hierarchical testbeds used in software engineering (Barreiros et al., 2011) and in competitive examinations such as GRE. This will further allow us to quantify the weightage assigned to each question based on its hardness and assign weighted score to models based on their performance across various datasets, instead of the average sample performance typically calculated within a dataset and average dataset performance calculated in a benchmark (e.g. GLUE score (Wang et al., 2018)). Additionally, defining OOD in terms of ‘hardness’ allows for the representation of such samples as extensions of IID (independent and identically distributed)–‘very hard’ samples– and also for the implicit identification of OOD.

Swayamdipta et al. (2020) uses annotated datasets to find sample hardness with a model-dependent method; however knowledge of correct answers is not a prerequisite for humans to decide on question ‘hardness’ (and subsequent distribution shift). Also, a model based and annotation dependent method can contain artifact as a sample which is easy for this model may be difficult for
another model. To the best of our knowledge, we do not have a measure to find hardness of unannotated data. This motivates us to propose a Data Scoring Task and a STS based method that assigns each unannotated sample a score between 0 (‘easy’) and 1 (‘hard’), and explains distribution shift, thus quantifying the degree of OOD characteristics. Here, ‘hardness’ is considered to be inversely proportional to model predictability. For instance, if question q_1 is a random sample from set s_1, and q_2 is a random sample from set s_2 such that s_2 is harder than s_1, then the probability that q_1 will be correctly answered by a model M is higher than for q_2, i.e., model predictability of q_1 is higher than that of q_2.

Contributions: In summary, the contribution of this work are as follows: (i) We propose a Data Scoring task realizing the need for quantification of ‘hardness’ of samples to build a reliable evaluation system, (ii) We propose an STS based approach that gives strong results, specially on recent transformers, (iii) We demonstrate five novel applications and opportunities associated with this task.

2 Our Approach:

First, we propose an annotation-agnostic measure that quantifies a sample’s relative predictability (‘hardness’), and explains relative distribution shift.

We experiment with ten models across an IID-OOD dataset pair, using STS (Semantic Textual Similarity) of test samples with respect to the training set for our task, and find it a strong indicator of predictability in regular/zero shot OOD settings.

We analyze several recent works (Hendrycks et al., 2020; Bras et al., 2020; Hendrycks and Dietterich, 2019; Talmor and Berant, 2019) involving datasets that have been paired with an OOD counterpart. Identification of OOD datasets as well as how to break ties if M_1 and M_2 excel on equal numbers of the OOD datasets used for evaluation, have remained unanswered. To address this, we divide the datasets into several hierarchies, based on STS. We can therefore reasonably identify samples within a dataset, which have higher OOD characteristic levels. This allows the same dataset to be used to evaluate OOD. STS can thus be used to draw a boundary between IID and OOD, and to control the degree of OOD characteristics in a dataset.

Next, we formulate an equitable evaluation metric Weighting Out of Distribution Score (WOOD Score), that weights each test sample in proportion to its degree of OOD characteristics (‘hardness’) and penalizes incorrect answers, such that ‘hard’ samples are both ‘high risk’ and ‘high gain’. This compels a model to solve ‘hard’ questions and thus generalize in order to dominate leaderboards.

Models that surpass human performance are often found to depend on spurious bias—unintended correlation between input and output, (Bras et al., 2020)– instead of truly learning the task (Gururangan et al., 2018; Kaushik and Lipton, 2018), and thus fail to generalize on OOD data (Eykholt et al., 2018; Jia and Liang, 2017), leading to overestimation of AI (Sakaguchi et al., 2019; Hendrycks et al., 2019). WOOD Score shows a decrease in model performance, thus addressing model inflation.

Conventionally, MaxProb is used as a strong baseline (Hendrycks and Gimpel, 2016a) for misclassification and OOD detection. However, it requires data annotation/running models; thus it cannot be used in our model/annotation-agnostic task. We find that STS indicates relative distribution of MaxProb across a dataset, and can therefore be used instead of MaxProb in various tasks e.g. selective answering (Kamath et al., 2020; Varshney et al., 2020).

Our task also allows for the selection of question subset for annotation–’hard’ questions require explicit annotation– to maintain a desired data quality level. This drastically reduces heavy resource investment in annotating and wastage (Bras et al., 2020; Mishra and Sachdeva, 2020) due to sample deletion (to get rid of spurious bias). This also allows for the recommendation of ‘hard’ question creation by experts, if such questions are found to be lacking in scored datasets. This can be further extended to potentially create a hierarchical testbed, where samples from different datasets are pooled and ranked based on their hardness, leading to a new demarkation of dataset boundaries. This will ensure reliable and standardized model evaluation.

3 Data Scoring with STS

We use two movie review datasets: SST-2 (Socher et al., 2013) and IMDB (Maas et al., 2011), which contain succinct expert reviews and full length general reviews respectively. We utilize IMDB as the IID dataset and SST-2 as the OOD dataset, and evaluate them using ten models: Bag-of-words (BoW) model (Harris, 1954), word embedding - word2vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014) encoded with three models.
-word averages (Wieting et al., 2015), LSTM (Hochreiter and Schmidhuber, 1997) and CNN (LeCun et al., 1995), and pretrained transformer models -BERT Base and Large (Devlin et al., 2018) along with GELU (Hendrycks and Gimpel, 2016b) and RoBERTA (Liu et al., 2019), following a recent work on OOD Robustness (Hendrycks et al., 2020).

Implementation: We use Spacy’s (Honnibal and Montani, 2017) BERT STS implementation to find the similarity between every pair of train-test set samples. We sort samples of the test set in a descending order, based on the average STS value with varying percentages of the SST-2 train set samples. We consider the top 1% – 100% of the training data (obtained by sorting train set samples in descending order of STS against each test set sample) with nine total steps 1, as similarity between the train and test sets is a task dependent hyperparameter, that trades off between inductive bias and spurious bias (Mishra et al., 2020). We train models on the IID data (IMDB) and evaluate on both the IID test set (IMDB) and the OOD test set (SST-2). We compare model predictions with the average STS value for each sample.

Results: We find three broad patterns: (i) Sample-chunks with higher average STS (‘easier samples’) have fewer percentage of incorrect predictions (Figure 1); in Figure 2, we show that for transformer models (in both datasets) and word2vec embedding models (in IMDB) exhibit this behavior. Our observation of STS accurately explaining predictability of transformers may indicate that Transformers are better at leveraging training data for memorization. (ii) IID sample-chunks have higher average STS than OOD (Figure 8); STS therefore helps in drawing a boundary between IID and OOD, and (iii) Samples with higher average STS value are classified correctly with higher confidence, and incorrectly with lower confidence (Figure 7).2

Figure 1: Percentage of incorrect classifications using BERT-Base model across test samples of SST-2 and IMDB in decreasing order of train (IMDB)-test similarity. Monotonic increase in slope is desirable.

Figure 2: Percentage of incorrect classifications across test samples of SST-2 and IMDB in decreasing order of train (IMDB)-test similarity.

4 WOOD Score for Equitable Evaluation

We propose *equitable data evaluation* using WOOD Score, in lieu of a conventional evaluation metric (e.g. accuracy) that weights all samples uniformly.

Formalization: Let X represent a dataset where X_{Test} is the test set spanned by i and X_{Train} is the train set. E represents the evaluation metric (which depends on the application– here we consider +1 for correct answers and a -1 penalty for incorrect answers). p is the degree of OOD characteristics (i.e., data score) a sample has, and S represents STS. a allows for the control of p based on S, b is the number of train samples considered that have higher similarity values than rest of the dataset. W_{opt} represents our proposed metric in generic form, and W_{acc} is the proposed accuracy metric in this paper. We divide the dataset into three sample-chunks, c_1, c_2, c_3 having the highest, moderate, and lowest degrees of OOD characteristics respectively.

\[
W_{opt} = \frac{\sum_{X_{Test}} E_i p_i}{\sum p_i} \\
p = \frac{\alpha}{\sum_{X_{Train}} \max_b S}
\]

11%,5%,10%,25%,30%,40%,50%,75%,100%

2More details in Supplementary Material
Figure 3: Accuracy and WOOD Score of SST-2 and IMDB across models. **WOOD Score** is significantly lower than accuracy for both datasets, with greater decrease seen for OOD data. Ranking changes for 9/10 models in IMDB (IID) and 3/10 models in SST-2 (OOD).

\[W_{\text{acc}} = \frac{\sum X_{\text{test}} E_i p_i}{\sum p_i} \text{, where (based on max } S) \]

\[p_i = \begin{cases}
3 & \text{if } i \in c_1 \\
2 & \text{if } i \in c_2 \\
1 & \text{if } i \in c_3
\end{cases} \]

Controlling Benchmark Accuracy Using Hyperparameters: Benchmark accuracy can be controlled using \(a \) and \(b \) appropriately. \(E \) controls penalties imposed for incorrect answers (e.g. safety critical applications require higher penalties). Using \(W_{\text{acc}} \) for both datasets across ten models has resulted in a significant reduction in accuracy, thus addressing model performance inflation (Table 3, where \(a \) is 1 and \(b \) is taken as 0.1; however similar observations are noted for all hyperparameters). We also note that the WOOD score rankings significantly differ from that with accuracy.

5 Discussion

Data Annotation and Creation: Figure 5 shows the distribution of STS values across both datasets, and hierarchical testbed creation. Assuming that these data are unannotated, authors can decide to annotate only the hard samples (e.g. below
Figure 5: Percentage of samples in IMDB and SST-2 with STS value within threshold bins, with hierarchical testbed formation, from ‘easy’ (B1) to ‘hard’ (B7).

STS threshold of 0.7) as easy samples won’t be really help to increase performance of a model already trained with varieties of dataset of the same task (sentiment analysis). Similarly, authors may decide to manually create hard samples (e.g. STS <0.5) since they are limited in both datasets. This technique can be helpful in the learning from instruction paradigm (Mishra et al., 2022b; Wei et al., 2021; Sanh et al., 2021; Ouyang et al., 2022; Mishra et al., 2022a; Parmar et al., 2022) because of the implicit setting which is low resource with annotated data.

6 Conclusion

We propose a Data Scoring measure that quantifies the hardness of each sample in an unannotated dataset based on STS, and show its applications in various domains. We further show that STS sometimes fails to appropriately indicate model predictability, demonstrating room for future research on this unexplored task.

7 Limitations

Augmenting STS: STS may not follow monotonic behavior with model performance for certain cases, as illustrated in Figure 6. Similarity across several granularities – such as word, bigram, and trigram – can be used to augment STS and increase the robustness of ‘hardness’ evaluation.

Strengthening ‘in-house’ IID (acting OOD): We further observe that, IID data, even with STS calibration, may not represent many properties of an OOD data sample – such as variations in writing style, topic, vocabulary, sentence length, and number of sentences. We recommend that dataset creators go beyond the common patterns found in a dataset, and draw patterns from other datasets intended for the same task, while creating contrast sets (Gardner et al., 2020), to address this.

References

Emanoel Barreiros, Adauto Almeida, Juliana Saraiva, and Sergio Soares. 2011. A systematic mapping study on software engineering testbeds. In 2011 International Symposium on Empirical Software Engineering and Measurement, pages 107–116. IEEE.

Ronan Le Bras, Swabha Swayamdipta, Chandra Bhagavatula, Rowan Zellers, Matthew E Peters, Ashish Sabharwal, and Yejin Choi. 2020. Adversarial filters of dataset biases. arXiv preprint arXiv:2002.04108.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. 2018. Robust physical-world attacks on deep learning visual classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1625–1634.

Matt Gardner, Yoav Artzi, Victoria Basmova, Jonathan Berant, Ben Bogin, Sihao Chen, Pradeep Dasigi, Dheeru Dua, Yanai Elazar, Ananth Gottumukkala, et al. 2020. Evaluating nlp models via contrast sets. arXiv preprint arXiv:2004.02709.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson Liu, Matthew Peters, Michael Schmitz, and Luke Zettlemoyer. 2018. Alenlmip: A deep semantic natural language processing platform. arXiv preprint arXiv:1803.07640.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel R Bowman, and Noah A Smith. 2018. Annotation artifacts in natural language inference data. arXiv preprint arXiv:1803.02324.

Zellig S Harris. 1954. Distributional structure. Word, 10(2-3):146–162.

Dan Hendrycks and Thomas Dietterich. 2019. Benchmarking neural network robustness to common corruptions and perturbations. arXiv preprint arXiv:1903.12261.

Dan Hendrycks and Kevin Gimpel. 2016a. A baseline for detecting misclassified and out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136.
Dan Hendrycks and Kevin Gimpel. 2016b. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415.

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam Dziedzic, Rishabh Krishnan, and Dawn Song. 2020. Pretrained transformers improve out-of-distribution robustness. arXiv preprint arXiv:2004.06100.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. 2019. Natural adversarial examples. arXiv preprint arXiv:1907.07174.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735–1780.

Matthew Honnibal and Ines Montani. 2017. spacy 2: Natural language understanding with bloom embeddings, convolutional neural networks and incremental parsing. To appear, 7(1).

Robin Jia and Percy Liang. 2017. Adversarial examples for evaluating comprehension systems. arXiv preprint arXiv:1707.07328.

Amita Kamath, Robin Jia, and Percy Liang. 2020. Selective question answering under domain shift. arXiv preprint arXiv:2006.09462.

Divyansh Kaushik and Zachary C Lipton. 2018. How much reading does reading comprehension require? a critical investigation of popular benchmarks. arXiv preprint arXiv:1808.04926.

Yann LeCun, Yoshua Bengio, et al. 1995. Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks, 3361(10):1995.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts. 2011. Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies-volume 1, pages 142–150. Association for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of words and phrases and their compositional-ity. In Advances in neural information processing systems, pages 3111–3119.

Swaroop Mishra, Anjana Arunkumar, Bhavdeep Sachdeva, Chris Bryan, and Chitta Baral. 2020. Dqi: A guide to benchmark evaluation. arXiv preprint arXiv:2008.03964.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, Yejin Choi, and Hannaneh Hajishirzi. 2022a. Reframing instructional prompts to GPT’s language. In Findings of the Association for Computational Linguistics: ACL 2022, pages 589–612, Dublin, Ireland. Association for Computational Linguistics.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. 2022b. Cross-task generalization via natural language crowdsourcing instructions. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 3470–3487.

Swaroop Mishra and Bhavdeep Singh Sachdeva. 2020. Do we need to create big datasets to learn a task? In Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing, pages 169–173.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022. Training language models to follow instructions with human feedback. Preprint.

Mihir Parmar, Swaroop Mishra, Mirali Purohit, Man Luo, M Hassan Murad, and Chitta Baral. 2022. Inboxbart: Get instructions into biomedical multi-task learning. arXiv preprint arXiv:2204.07600.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pages 1532–1543.

Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D Lawrence. 2009. Dataset shift in machine learning. The MIT Press.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-vatula, and Yejin Choi. 2019. Winogrande: An adversarial winograd schema challenge at scale. arXiv preprint arXiv:1907.10641.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. 2021. Multitask prompted training enables zero-shot task generalization. arXiv preprint arXiv:2110.08207.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 conference on empirical methods in natural language processing, pages 1631–1642.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi, Noah A Smith, and Yejin Choi. 2020. Dataset cartography: Mapping and diagnosing datasets with training dynamics. arXiv preprint arXiv:2009.10795.
Alon Talmor and Jonathan Berant. 2019. Multiqa: An empirical investigation of generalization and transfer in reading comprehension. *arXiv preprint arXiv:1905.13453*.

Neeraj Varshney, Swaroop Mishra, and Chitta Baral. 2020. It’s better to say “I can’t answer” than answering incorrectly: Towards safety critical nlp systems. *arXiv preprint arXiv:2008.09371*.

Neeraj Varshney, Swaroop Mishra, and Chitta Baral. 2022. Investigating selective prediction approaches across several tasks in iid, ood, and adversarial settings. In *Findings of the Association for Computational Linguistics: ACL 2022*, pages 1995–2002.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. 2018. Glue: A multi-task benchmark and analysis platform for natural language understanding. *arXiv preprint arXiv:1804.07461*.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M Dai, and Quoc V Le. 2021. Finetuned language models are zero-shot learners. *arXiv preprint arXiv:2109.01652*.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. 2015. Towards universal paraphrastic sentence embeddings. *arXiv preprint arXiv:1511.08198*.
A Analysis

Figure 7: Average MaxProb of correct classifications using BERT-Base model across test sample-chunks of SST-2 and IMDB in decreasing order of train (IMDB)-test similarity. Monotonic slope decrease is desirable.

D STS’s correlation with MaxProb Across Models

Similar to our observation in Figure 2 of the main paper, here also we see that, in transformers, STS better correlates with MaxProb in comparison with other classes of models. This may further indicate the effectiveness of transformers in utilizing training data. Als, this observation opens up opportunity for further research as MaxProb has its own limitations and is not the ideal indicator of model confidence (Kamath et al., 2020; Varshney et al., 2022).

B Infrastructure Used

All the experiments were conducted on “TeslaV100-SXM2-16GB”; CPU cores per node 20; CPU memory per node: 95,142 MB; CPU memory per core: 4,757 MB. This configuration is not a necessity for these experiments as we ran our operations with NVIDIA Quadro RTX 4000 as well with lesser memory. We used AllenNLP (Gardner et al., 2018) for our implementations.

C Another Case of STS Failure:

Similar to Figure 6 of the main paper, we show a case for RoBERTA-Large where STS does not monotonically correlate with accuracy.
Figure 6: The top \(b\% \) of training samples is obtained by sorting in descending order of STS with each test set sample; test set samples are then divided into seven splits, based on decreasing STS averaged over the top \(b\% \) of training samples considered, for BERT-BASE over the SST-2 dataset.

Figure 9: The top \(b\% \) of training samples is obtained by sorting in descending order of STS with each test set sample; test set samples are then divided into seven splits, based on decreasing STS averaged over the top \(b\% \) of training samples considered, for BERT-BASE over the SST-2 (top) and IMDB (bottom) datasets.
Figure 10: The top $b\%$ of training samples is obtained by sorting in descending order of STS with each test set sample; test set samples are then divided into seven splits, based on decreasing STS averaged over the top $b\%$ of training samples considered, for ROBERTA-LARGE over the SST-2 (top) and IMDB (bottom) datasets.

Figure 11: Confidence of incorrect classifications across test samples of SST-2 and IMDB in decreasing order of train (IMDB)-test similarity.