Wetzel:
Formalisation of an Undecidable Problem Linked to the Continuum Hypothesis
Lawrence C Paulson FRS

Supported by the ERC Advanced Grant ALEXANDRIA (Project GA 742178).
Background
Suppose that F is a family of analytic functions on \mathbb{C} such that for each z the set $\{f(z) : f \in F\}$ is countable. (Call this property P_0.) Then is the family F itself countable?

Posed by John E Wetzel; settled by Paul Erdős, who discovered it in a problem book at Ann Arbor University.

The answer is yes iff the Continuum Hypothesis is false.

Can we formalise something that requires both complex analysis and transfinite constructions?
The Continuum Hypothesis (CH)

- Asserts that there is no cardinal between \aleph_0 and 2^{\aleph_0} (between the cardinalities of the integers and the reals)
- Or: every subset of $S \subseteq \mathbb{R}$ can be embedded into \mathbb{N}, or else \mathbb{R} can be embedded into S
- One of the most celebrated questions in mathematics, it’s independent of the axioms of set theory.
Isabelle and Set Theory

- **Isabelle/ZF** is a possible basis for ambitious set theory developments, but lacks vital automation and libraries.

- **Isabelle/HOL** has those, but higher-order logic (HOL) is *much* weaker than Zermelo-Fraenkel set theory.

- Fortunately, it’s easy to add set theory to HOL, thanks to prior work by Gordon and Obua.

- HOL+ZF is stronger than ZF; weaker than ZF+Con(ZF).
The ZFC-in-HOL Library

- The usual ZF axioms, with \(\mathcal{V} \) as the type of all sets

Integration with Isabelle/HOL:
- *overloading* the lattice symbols \(\sqcap, \sqcup, \leq, \) etc.
- type \(\mathcal{V} \text{ set} \) as the type of ZF classes
- identifying “small” sets and types
- defining cardinality, etc., for *all* small sets
- associating ZF sets with small types, e.g. complex
Formalisation
Wetzel: The \(\neg CH\) Case

Defining Wetzel's property \(P_0\)

definition Wetzel :: "(complex \(\Rightarrow\) complex) set \(\Rightarrow\) bool"

where "Wetzel \(\equiv\) \(\lambda\) F. (\(\forall\) f \(\in\) F. f analytic_on UNIV) \& (\(\forall\) z. countable((\(\lambda\) f. f z) \` F))"

The theorem statement, assuming \(\neg CH\)

proposition Erdos_Wetzel_nonCH:

assumes W: "Wetzel F" and NCH: "C_continuum > \(\aleph_1\)"

shows "countable F"

It's enough to show the contrapositive:

have "\(\exists\) z \(\theta\). gcard ((\(\lambda\) f. f z\(\theta\)) \` F) \(\ge\) \(\aleph_1\)" if "uncountable F"
The \negCH Case (Continued)

F is uncountable, so obtain a subset F' of cardinality \aleph_1 and an enumeration $\phi : \omega_1 \to F'$

```plaintext
have "gcard F ≥ \aleph_1"
  using that uncountable_gcard_ge by force
then obtain F' where "F' ⊆ F" and F': "gcard F' = \aleph_1"
  by (meson Card_Aleph subset_smaller_gcard)
then obtain ϕ where ϕ: "bij_betw ϕ (elts ω1) F'"
  by (metis TC_small eqpoll_def gcard_eqpoll)
```

We define $S(\alpha, \beta)$, the set of points where ϕ_α and ϕ_β agree, and show it’s countable for ordinals $\alpha < \beta < \omega_1$

```plaintext
define S where "S ≡ ∀α, β. {z. ϕ α z = ϕ β z}"
have "gcard (S α β) ≤ \aleph_0" if "α ∈ elts β" "β ∈ elts ω1" for α β
```

(Holomorphic functions that agree on an uncountable set are equal)
The \negCH Case (Finish)

Now define the **union** of all $S(\alpha, \beta)$ for $\alpha < \beta < \omega_1$. Clearly $SS \subseteq \mathbb{C}$

```plaintext
define SS where "SS = \bigsqcup \beta \in \text{elts } \omega_1. \bigsqcup \alpha \in \text{elts } \beta. S(\alpha, \beta)"
```

We can show $|SS| \leq \aleph_1$. Since \negCH there exists some $z_0 \notin SS$.

```plaintext
finally have "gcard SS \leq \aleph_1" .
with NCH obtain z0 where "z0 \notin SS"
   by (metis Complex_gcard UNIV_eq_I less_le_not_le)
```

∴ the uncountably many functions in F' return distinct values for z_0

And that’s basically it! The whole proof is 50 lines.
The Case Where CH Holds

Since $|\mathbb{C}| = \aleph_1$, write $\mathbb{C} = \{\zeta_\alpha : \alpha < \omega_1\}$, indexing the complex numbers

Consider the rational complex numbers $D = \{p + iq : p, q \in \mathbb{Q}\}$.

Construct distinct functions $\{f_\beta : \beta < \omega_1\}$ such that $f_\beta(\zeta_\alpha) \in D$ if $\alpha < \beta$

Any such uncountable family contradicts P_0

We construct each f_γ from its predecessors by transfinite induction, assuming that distinct functions $\{f_\beta : \beta < \gamma\}$ already exist
The Key Construction

The ordinal γ is countable, so we can enumerate
\[\{f_\beta : \beta < \gamma\} \] as \[\{g_0, g_1, \ldots\} \] and \[\{\zeta_\alpha : \alpha < \gamma\} \] as \[\{w_0, w_1, \ldots\}. \]

Then define
\[f_\gamma(z) := \epsilon_0 + \epsilon_1(z - w_0) + \epsilon_2(z - w_0)(z - w_1) + \cdots \]

for suitable $\epsilon_0, \epsilon_1, \epsilon_2, \ldots$ chosen sequentially.

In the easy case, γ is finite and f_γ is just a polynomial. Otherwise, care is needed to make it converge—to suitable values!
Formalising the CH Case

We define D, which is countable, infinite and dense in \mathbb{C}

```
proposition Erdos_Wetzel_CH: 
  assumes CH: "C_continuum = \aleph_1"
  obtains F where "Wetzel F" and "uncountable F"
```

define D where "$D \equiv \{z. \text{Re } z \in \mathbb{Q} \land \text{Im } z \in \mathbb{Q}\}"
have Deq: "D = (\bigcup x \in \mathbb{Q}. \bigcup y \in \mathbb{Q}. \{\text{Complex } x \times y\})"
 using complex.collapse by (force simp: D_def)
with countable_rat have "countable $D"
 by blast
then have cloD: "closure $D = \text{UNIV}"
 by (auto simp: D_def closure_approachable dist_complex_def)

Here we index the complex numbers as $\{\zeta_\alpha : \alpha < \omega_1\}$

```
obtain \zeta where \zeta: "bij_betw \zeta (elts \omega_1) (UNIV::\text{complex } set)"
  by (metis Complex_gcard TC_small assms eqpoll_def gcard_eqpoll)
```
The transfinite construction

We are given \(\{f_\beta : \beta < \gamma\} \), a family of distinct analytic functions

```plaintext
have f: "\( \forall \beta \in \text{elts } \gamma. \ f \beta \text{ analytic on UNIV } \land \text{inD } \beta (f \beta)\)"
  using that by (auto simp: \( \Phi \)_def)
have inj: "\(\text{inj on f (elts } \gamma)\)"
  using that by (simp add: \( \Phi \)_def inj_on_def) (meson Ord_\( \omega 1 \) Ord_in Ord Ord_linear)
```

In the finite case, \(\gamma \) is some natural number \(n \). The construction of \(f_\gamma \) (called here \(h \)) involves a nested induction on \(n \). It almost fits on a slide!
old h by induction hyp

new $d \in D$ for $w_{n'}$, diagonalising

new h' agrees with h on w_i, $i < n$

$h'(w_i)$ is correct for $i < n + 1$
If $\gamma \geq \omega$, define an infinite sum

The ordinals below γ indexed as $\eta_0, \eta_1, \eta_2, \ldots$

```plaintext
case False
then obtain \( \eta \) where \( \eta: \text{bij_betw} \ \eta \ \text{(UNIV::nat set)} \ \text{(elts } \gamma) \)
by (meson \( \gamma \ \text{countable_infiniteE} \ \text{less_}\omega1\_imp\_countable)"
```

The f and ζ sequences similarly indexed by natural numbers

```plaintext
define g where "g \equiv f \circ \eta"
define w where "w \equiv \zeta \circ \eta"
```

From those, we start setting up a summable series:

```plaintext
define p where "p \equiv \lambda n\ z. \ \Pi_{i<n}.\ z - w\ i"
define q where "q \equiv \lambda n. \ \Pi_{i<n}.\ 1 + \text{norm} \ (w\ i)"
define h where "h \equiv \lambda n \ \epsilon\ z. \ \Sigma_{i<n}.\ \epsilon\ i \ast p\ i\ z"
define BALL where "BALL \equiv \lambda n \ \epsilon. \ \text{ball} \ (h\ n\ \epsilon\ (w\ n))\ (\text{norm} \ (p\ n\ (w\ n)) \ / \ (\text{fact} \ n \ * \ q\ n))"
```

We ensure membership in D; freshness will be by diagonalisation

```plaintext
define DD where "DD \equiv \lambda n \ \epsilon. \ D \cap \text{BALL} \ n\ \epsilon\ - \ \{g\ n\ (w\ n)\}"
define dd where "dd \equiv \lambda n \ \epsilon. \ \text{SOME} \ x. \ x \in DD \ n\ \epsilon"
```
Recursive defn of ϵ_0, ϵ_1, ϵ_2, ...,

Well-founded recursion, where ϵ will be replaced by `coeff`

```lean
define coeff where "coeff ≡ wfrec less_than (λε n. (dd n ε - h n ε (w n)) / p n (w n))"
```

Recursive unfolding allows `dd` and `h` to refer to earlier coefficients

```lean
have coeff_eq: "coeff n = (dd n coeff - h n coeff (w n)) / p n (w n)" for n
  by (simp add: def_wfrec [OF coeff_def])
```

We need to show that the ϵ_i decrease rapidly

```lean
have norm_coeff: "norm (coeff n) < 1 / (fact n * q n)" for n
```
Finally: the “next” function

hh denotes $f_{\gamma}(z)$ which is $\epsilon_0 + \epsilon_1(z - w_0) + \epsilon_2(z - w_0)(z - w_1) + \cdots$, and it’s holomorphic because it’s the uniform limit of polynomials.

```
define hh where "hh ≡ λz. suminf (λi. coeff i * p i z)"
have "hh holomorphic_on UNIV"
```

This claim is the required $f_{\gamma}(\zeta_\alpha) \in D$ if $\alpha < \gamma$

```
then have "hh (w n) ∈ D" for n
  using DD_def dd_in_DD by fastforce
```

This claim is that f_{γ} is fresh, so that the family will be large enough.

```
then show "∀β∈elts γ. hh ≠ f β"
  by (metis η bij_betw_imp_surj_on imageE)
```
That completes the transfinite construction. We need another 50 lines of boilerplate and routine checks to wind up the proof.

The formalisation has a de Bruijn factor < 3
Discussion
Machine proofs: a timeline

2003: relative consistency of AC
2005: four-colour theorem
2012: odd-order theorem
2013: incompleteness theorems
2014: Kepler conjecture
2014: central limit theorem

2019: perfectoid spaces
2021: schemes (in Lean and Isabelle/HOL)
2022: Liquid Tensor Experiment

A shift from long proofs about simple objects to attempting to work with sophisticated objects
So what do we get from Wetzel?

- 360 lines: a short proof and no “sophisticated objects”
- but a nontrivial interplay between
 - *set theory*: cardinal numbers, transfinite recursion
 - *analysis*: holomorphic functions, Weierstrass M-test
- no difficulty combining the two vernaculars
The future

- How about some harder problems combining these two domains?
- And did this exercise decrease my Erdős number?