Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Factors associated with survival in older patients affected by COVID-19: A retrospective cohort study

Erkin Saeed Saifia,b,c,*, Matteo Giorgi-Pierfranceschic, Massimo Salvettia,b, Letizia Maninettic, Ilaria Cavallic, Maria L. Muiesana,b

a Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
b II Medicina Generale, ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25125, Brescia, Italy
c Division of Internal Medicine, Cremona Hospital, Viale Concordia 1, 26100 Cremona, Italy

\section{ARTICLE INFO}

Keywords:
COVID-19
Older patients
Anti-thrombotic therapy
Beta-blockers
Low molecular weight heparin

\section{ABSTRACT}

\textbf{Aim:} Mortality is high in Coronavirus disease 2019 patients with pre-existing comorbidities and advanced age. Associated complications have added to the negative prognosis. Nevertheless, many have fully recovered, even among the most fragile. Factors associated with their survival was investigated.

\textbf{Methods:} Retrospective study of patients aged \(\geq 90 \) years admitted for COVID-19 to the Internal Medicine wards of two hospitals in Lombardy, Italy.

\textbf{Results:} Among 34 patients with SARS-CoV-2 pneumonia, 33 (97.1\%) had respiratory failure. Eighteen patients (52.9\%) survived and 16 (47.1\%) died during hospital stay. Survivors compared to deceased had a significantly longer hospitalization (19 vs. 10 days respectively; \(p = 0.02 \)), a better PaO\textsubscript{2}:FiO\textsubscript{2} ratio (241 vs. 171 respectively; \(p = 0.003 \)), higher lymphocyte counts (\(p = 0.003 \)) and lower serum LDH levels (\(p < 0.001 \)) at admission. At multivariate analysis only higher PaO\textsubscript{2}:FiO\textsubscript{2} was associated with survival (OR 1.06 [95\% CI 1.0–1.03]; \(p = 0.02 \)).

Kaplan-Meier analysis showed a significant difference in event-free survival between patients treated or not with LMWH (\(p < 0.0001 \)) and between those treated or not with beta-blockers (\(p = 0.008 \)). Cox regression, performed in the subgroup of patients who received LMWH, did not show significant difference for sex (HR 2.7 [95\% CI 0.53–14.3], \(p = 0.23 \)), CCI (HR 0.7 [95\% CI 0.37–1.45], \(p = 0.38 \)), PaO\textsubscript{2}/FiO\textsubscript{2} ratio (HR 0.98 [95\% CI 0.97–1.0], \(p = 0.07 \)), corticosteroid therapy (HR 0.99 [95\% CI 0.22–4.5], \(p = 0.99 \)) and beta-blocker therapy (HR 2.8 [95\% CI 0.56–14.7], \(p = 0.21 \)).

\textbf{Conclusions:} Despite higher mortality in elderly, treatment with LMWH and beta-blockers might be associated with better survival. Dedicated studies are required to confirm our result.

\section{1. Introduction}

The SARS-CoV2 infection has affected around 96 million people and has claimed more than 2 million lives worldwide so far (\textit{World Health Organization}, 2021). Advanced age and the presence of comorbidities, including dementia, have been reported to contribute significantly to the worst outcome (Hariyanto, Putri, Arisa, Situmeang, & Kurniawan, 2020; Iaccarino, Grassi, & Borghi, 2020; Wu & McGoogan, 2020). The process of healing is further hindered by the limited capacity of elderly to deal with stressful events in forced isolation for the sake of public health (Chen, 2020). In Italy, the death rate in patients affected by COVID-19 was higher in the older people reaching about 33\% in the 90-year-old age group (\textit{COVID-19 integrated surveillance: key national data as of 15 September 2020, 2020}). Shengmei et al. described the clinical characteristics of a small number of patients aged \(\geq 80 \) years confirming the age-related high fatality rate (Niu, Tian, & Lou, 2020). Therefore, it seems worthwhile to identify the characteristics, and more specifically the modifiable factors, associated with favorable outcome for a better clinical management. Hence our study aimed at identifying factors associated with survival among older people, focusing on 90 years age group.

* Corresponding author at: II Medicina Generale, ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25125, Brescia, Italy.

E-mail address: erkin.safi@asst-spedalicivili.it (E.S. Saifi).
2. Methods

2.1. Study design and participants

We retrospectively studied consecutive patients \(\geq 90 \) years of age with confirmed and/or probable COVID-19 infection admitted from 24/02/2020 to 23/04/2020 to the Internal Medicine Wards of two tertiary hospitals (“Spedali Civili di Brescia” and “Ospedale di Cremona”) located in Lombardy, Italy. SARS-CoV-2 infection was defined according to the laboratory and/or imaging diagnostic criteria of the European Centre for Disease Prevention and Control (Case definition for coronavirus disease 2019 (COVID-19), as of 29 May 2020, 2020). Patients aged < 90 years and without SARS-CoV-2 infection were excluded from this study.

In-hospital survival, defined by discharging the patient alive, was the outcome of interest. The difference in demographic and clinical characteristics such as age, gender, body mass index (BMI), comorbidities, symptoms, complications, laboratory findings, and in-hospital therapy was evaluated and compared between survivors and deceased patients.

2.2. Data collection

All data were collected from medical records. In most cases, family members of the patients were contacted by telephone to elucidate some unclear and missing data as far as the comorbidities and chronic treatment were concerned. Ethical clearance for epidemiological studies was obtained from local ethics committee. The collected data were handled as per hospital privacy regulations and informed consent was obtained for off label treatments.

2.3 Statistical methods

Descriptive data are summarized as mean, median, and interquartile range (IQR) for continuous variables. The frequency of categorical variables is expressed in percentages. Student’s T-test with Fisher’s exact correction and Pearson’s Chi-squared test were used to calculate p-values for continuous and categorical variables, respectively. Odds ratio was calculated using crosstabs for categorical variables and binary logistic for continuous variables. Multivariate analysis was performed with logistic regression. The Kaplan-Meier method was used to analyze event-free survival in patients who received treatments with significant difference, and the groups were compared using the Mantel-Cox and Breslow tests. The relative importance of each prognostic factor, adjusted for the others, was assessed using the Cox proportional hazards model. All the statistical tests were 2 tailed. A value of \(p \leq 0.05 \) was considered statistically significant. All analyses were carried out with the SPSS statistical package (IBM SPSS Statistics 25). Kaplan Meier survival curves were drawn using GraphPad Prism 8.4.3.

3. Results

3.1 Study population

A total of 870 patients were admitted to the Internal Medicine Wards of two tertiary hospitals from 24/02/2020 to 23/04/2020. Among them, 34 patients were included in the study according to the eligibility criteria of age and diagnosis (26 from Cremona and 8 from Brescia). Out of 34 patients included, 29 (85.3%) were positive for RT-PCR for SARS-CoV-2 on throat swab, 4 (11.8%) had only the typical changes for a viral infection on chest X-ray and CT-scans, and 1 (2.8%) had a positive RT-PCR for SARS-CoV-2 identified from bronchoalveolar lavage. 18 patients (52.9%) discharged from the hospitals were defined as survivors while 16 patients (47.1%) who died during hospitalization were defined as non-survivors.

3.1.1 Demographic characteristics

The median age was 93 years in both groups of patients (survivors and non-survivors) (\(p = 0.98 \)). The proportion of male and female was 50% in both groups and the mean BMI did not differ between the two study sub-populations (Table 1).

3.1.2 Pre-existing comorbidities

Most of the patients in both groups suffered from hypertension (83.3% survivors and 81.3% non-survivors, respectively); chronic heart failure, chronic kidney disease, and chronic obstructive pulmonary disease were more frequent in survivors than in non-survivors, despite the differences did not reach statistical significance.

No difference between the two groups was observed in the rate of arrhythmias (predominantly atrial fibrillation), coronary artery disease, diabetes mellitus, and dyslipidemia. Charlson Comorbidity Index median value was high in both groups, without any statistically significant difference (\(p = 0.5 \)).

Only 22.2% of the survivors had venous thromboembolism. None of the non-survivors had a pre-hospital diagnosis of pulmonary embolism and/or deep vein thrombosis (Table 1).

3.1.3 Chronic home therapy

About half of the survivors (55.6%) were on beta-blocker therapy while fewer non-survivors (18.8%) were treated with a beta-blocker (\(p = 0.03 \)). Other pharmacological drugs’ use, including ACE-inhibitor or an Angiotensin II receptor blocker, was not different between the two groups (Table 1).

3.1.4 Symptoms at presentation

Most patients presented with fever (72.2% survivors vs 87.5% non-survivors, \(p = 0.41 \)), dyspnea (50% survivors vs 81.3% non-survivors, \(p = 0.06 \)) and cough (22.2% survivors vs 18.8% non-survivors, \(p = 1 \)) respectively. In survivors, atypical symptoms like falls, pre-syncope, and syncpe were reported in 16.7%, 11.1%, and 5.6% respectively, while none of such symptoms were referred by non-survivors at presentation. Vomiting was reported only by 3 survivors, and few patients complained

Table 1: Demographic characteristics and clinical background.	Survivors, \(n = \) 18	Non-survivors, \(n = \) 16	\(P \)-value
Male (%) /Female (%)	9 (50.0) / 9 (50.0)	8 (50.0) / 8 (50.0)	0.98
Age, years (range)	93 (90–99)	93 (90–101)	0.22
BMI, kg/m² (IQR)	23.2 (19.5–25.5)	25.2 (22.4–27.6)	0.22
Comorbidities:			
Hypertension (%)	15 (83.3)	13 (81.3)	0.26
Chronic heart failure (%)	9 (50.0)	5 (31.3)	0.26
Chronic kidney disease (%)	9 (50.0)	5 (31.3)	0.26
COPD (%)	5 (27.8)	1 (6.3)	0.18
Arrhythmias (%)	5 (27.8)	5 (31.3)	0.82
Dementia (%)	5 (27.8)	5 (31.3)	0.82
Venous thromboembolism (%)	4 (22.2)	0 (0.0)	0.12
Dyslipidemia (%)	4 (22.2)	2 (12.5)	0.66
Ischemic heart disease (%)	2 (11.1)	2 (12.5)	1
Diabetes mellitus (%)	2 (11.1)	3 (18.8)	0.63
Cerebrovascular event (%)	2 (11.1)	3 (18.8)	0.63
Charlson Comorbidity index (QIK)	5 (4.7–6.0)	5.5 (4.0–6.7)	1
Chronic home treatment:			
Beta-blockers (%)	10 (55.6)	3 (18.8)	0.03
Anti-platelet agents (%)	8 (44.4)	11 (68.8)	0.15
Diuretics (%)	7 (38.9)	7 (43.8)	0.77
Calcium channel blockers (%)	6 (33.3)	4 (25.0)	0.29
ARBs (%)	4 (22.2)	2 (12.5)	0.66
Anticoagulant therapy (%)	6 (33.3)	1 (6.3)	0.09
ACE-inhibitors (%)	2 (11.1)	4 (25.0)	0.38
COPD (chronic obstructive pulmonary disease), ARBs (angiotensin II receptor blockers), ACE (angiotensin converting enzyme), IQR (Inter-quartile range).			
of diarrhea in both groups. Anosmia and dysgeusia were also reported in a few survivors (Fig. 1).

3.1.5 Clinical course and complications

The mean duration of hospital stay was 19 days (range 4–49) for survivors and 10 days (range 0–37) for non-survivors (p = 0.02).

Causes of death were respiratory failure (14/16, 87.5%) and acute coronary syndrome (2/16, 12.5%). A higher median PaO2/FIO2 ratio value was measured in patients who survived as compared to those who died (241 and 171 respectively, p = 0.003) indicating a more severe respiratory failure in the latter group. No difference was observed for the median baseline SOFA score or the maximum QTc interval (correction by Bazett formula) recorded during the hospital stay.

The clinical course was accompanied by several complications in both groups with no statistically significant difference. Acute kidney injury (AKI) according to KDIGO (Kidney Disease Improving Global Outcomes) criteria for AKI was the most common complication observed in about a third of patients in both groups. New-onset atrial fibrillation was almost similar in both survivors and deceased (5.6% and 6.3%, respectively). Acute coronary syndrome, indicated by ischemic changes on ECG and rise above 99th percentile upper reference limit in troponin I levels, complicated and resulted in a fatal outcome in 2 (12.5%) of the patients who died, while none of the survivors suffered by myocardial ischemia, but 2 (11.1%) of them were treated for acute heart failure. Only 1 (5.6%) patient among survivors had a pulmonary embolism and deep vein thrombosis which was not further investigated for pulmonary embolism. A diagnosis of sepsis, based on a SOFA score ≥ 2 with or without positive blood cultures, was identified in 1 survivor and in 2 non-survivors (Table 2).

3.1.6 Laboratory findings

Lymphocyte absolute count was significantly higher, and serum LDH level was significantly lower in the group of patients who survived, while no other significant differences were observed between the 2 groups (Table 2).

3.1.7 In hospital treatment

Most of the patients were treated with a combination of intravenous glucocorticoids (47%), hydroxychloroquine (82.4%), antivirals (50%), and antibiotic (94%) therapy. All survivors (n = 18) were treated with Low Molecular Weight Heparin (LMWH) at prophylactic (n = 13) or therapeutic dose (n = 5) as compared to 11 (68.8%) in the group of non-survivors (p = 0.02). Among the non-survivors five patients who did not receive anti-thrombotic prophylaxis were either on a palliative care regimen or had been judged to be at high bleeding risk by attending physician. The number of patients treated with a beta-blocker during the hospitalization was significantly higher among survivors than non-

![Fig. 1. Symptoms referred by patients at presentation to emergency department.](image-url)
survivors (55.6% and 12.5%, respectively, \(p = 0.01 \)). Oxygen therapy was delivered by rebreather mask, Venturi mask, or nasal cannula. Only two patients who died (12.5%) were treated with non-invasive ventilation, while one patient in the survivor group (5.6%) did not require oxygen therapy (Table 2).

3.2 Survival analysis

At univariate analysis odds of survival was significantly associated with longer hospital stay, higher PaO2:FiO2 ratio, higher lymphocyte counts, lower LDH levels, use of beta-blockers at home and during the hospital stay. Multivariate analysis performed with logistic regression confirmed better survival only for higher PaO2:FiO2 ratio. Lymphocyte counts and LDH levels were excluded from the model because of the missing data issue (Table 3).

Univariate analysis did not yield results for LMWH most probably because of a complete separation issue (all patients in the survivors group received LMWH). To investigate the effect of LMWH we performed survival analysis by Kaplan Meier which showed a significant difference in event-free survival between patients treated or not with LMWH (\(p < 0.0001 \) by the Mantel-Cox test, \(p < 0.0001 \) by the Breslow test). The effect of in hospital beta-blockers alone was also evaluated with Kaplan Meier which showed a significant difference between those treated and those who did not receive it (\(p = 0.008 \) by the Mantel-Cox test, \(p = 0.015 \) by the Breslow test) however with notable overlap of confidence intervals (Fig. 2).

The relative importance on survival of other prognostic factors, including sex, Charlson Comorbidity Index, PaO2:FiO2 as a parameter of respiratory failure severity, treatment with corticosteroids and beta-blockers was evaluated in the subgroup of patients treated with LMWH. The association with death was assessed by the Cox proportional hazard model which did not show significant difference for sex (HR 2.7 [95% CI 0.53–14.3], \(p = 0.23 \)), CCI (HR 0.7 [95% CI 0.37–1.45], \(p = 0.38 \)), PaO2:FiO2 ratio (HR 0.98 [95% CI 0.97–1.0], \(p = 0.07 \)), corticosteroid therapy (HR 0.99 [95% CI 0.22–4.5], \(p = 0.99 \)) and beta-blocker therapy (HR 2.8 [95% CI 0.56–14.7], \(p = 0.21 \)). Patients who did not receive LMWH were excluded from the multivariate analysis as for the noticeably short duration of hospital stay, they could not be compared with all the others.

4. Discussion

In this study, we examined the characteristics of a group of patients at an exceedingly high risk of death for their age and comorbidities, managed within an intermediate intensity ward of Internal Medicine. This decision was made because of extremely limited resources respecting the ethical guidance for Intensive Care Unit (ICU) admission proposed by the Italian Society of Anesthesia, Analgesia, Resuscitation, and Intensive Care (Ethical guidance for ICU admission & suspension in conditions of exceptional imbalance between resources needed & those available. Italian Society of Anesthesia, Analgesia, Resuscitation & Intensive Care, 2020). Appropriate palliative care was also set up whenever it was necessary (Ethical guidance for ICU admission & suspension in conditions of exceptional imbalance between resources needed & those available. Italian Society of Anesthesia, Analgesia, Resuscitation & Intensive Care, 2020). Alongside advanced age, chronic diseases are identified as predictors of death among COVID-19 patients (Li, Huang, & Wang, 2020). In a report published by Italy’s National Statistics Institute, death charts of 4942 confirmed COVID-19 cases, which represented 15.6% of all deaths notified as of 25 May 2020, showed that 71.8% had at least one comorbidity. Hypertensive heart disease (~19%), diabetes mellitus (~14%), and ischemic heart disease (~13%) were the most common conditions associated with fatal outcome in advanced age (Impact of COVID-19 epidemic on mortality: causes of death in COVID-19 laboratory confirmed cases. Istat, 2020). In our study, we could not identify any statistically significant difference in comorbidities, including traditional CVD risk conditions like diabetes, cerebrovascular disease, and hyperlipidemia, between survivors and non-survivors. Hypertension was the most common comorbidity among both survivors and non-survivors. The prevalence of chronic heart failure was also higher in patients who survived, and most of them were receiving optimal medical therapy; however, we cannot exclude the presence of undiagnosed chronic heart disease among patients who died, taking into consideration their longstanding history for hypertension. Impaired immunity secondary to aging and to associated conditions like...
hyperlipidemia and diabetes may influence susceptibility to severe forms of COVID-19 (Andersen, Murphy, & Fernandez, 2016; Liu, van der Zijst, Boog, & Soethout, 2011). A balanced presence of these factors in both groups raises the question if the severity of respiratory failure might have depended on different mutated forms of SARS-CoV-2 (Becerra-Flores & Cardozo, 2020). In fact, patients who survived presented a milder respiratory failure indicated by higher PaO2:FIO2 values.

Except for atypical presentations like falls, presyncope, and syncope among survivors, other predominant symptoms like fever, cough, and dyspnea were already known in hospitalized patients (Huang, Wang, & Li, 2020; International Severe Acute Respiratory and Emerging Pandemic. European Society of Cardiology, 2020; Priori, Blomström-Lundqvist, & Mazzanti, 2015), however studies focusing on the effect of beta-blockers in COVID-19 patients are still lacking. In the absence of continuous heart rhythm monitoring in our study population we could not exclude cardiac arrhythmias other than atrial fibrillation.

4.1 Limitations

The study represents a real-life description of results obtained in a peculiar subpopulation of very frail patients, and it should be read in the light of several limitations, including the small sample size, the retrospective analysis, missing laboratory data and lack of information on exact timing of onset of symptoms before hospitalization.

4.2 Conclusions

These new data in the elderly can give insight to do further study with larger sample size focusing on this population. The severity of respiratory failure and the use of anti-thrombotic and beta-blockers seemed to affect the outcome of the older patients. Treatment with LMWH and beta-blockers prevent the thrombotic and arrhythmic complications described in Covid-19 patients. Since the risks of bleeding and bradyarrhythmia might not be negligible in the elderly, the role of anti-thrombotic and beta-blockers should be further investigated in randomized studies.

Author contribution

All authors contributed equally to the preparation of this manuscript.

Funding

This study did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declaration of Competing Interest

The authors have declared no conflicts of interest for this article.

Acknowledgments

All authors contributed equally to development of this study from data collection to statistical analysis and in writing this manuscript.

References

Andersen, C. J., Murphy, K. E., & Fernandez, M. L. (2016). Impact of obesity and metabolic syndrome on immunity. Advances in nutrition (Bethesda, Md.), 7(1), 66–75. https://doi.org/10.3945/an.115.010207. Published 2016 Jan 15.

Becerra-Flores, M., & Cardozo, T. (2020). SARS-CoV-2 viral spike G614 mutation exhibits higher case fatality rate [published online ahead of print, 2020 May 6]. The International Journal of Clinical Practice, 13525. https://doi.org/10.1111/ipc.13525

Bhatia, A., Mayer, M. M., Adusumalli, S., Hyman, M.C., Eric, Oh., Tienney, A., Deo, R., et al. (2020). COVID-19 and cardiac arrhythmias. Heart Rhythm : The Official Journal of the Heart Rhythm Society, 17(9), 1439-1444. https://doi.org/10.1016/j.hrthm.2020.06.016

Case definition for coronavirus disease 2019 (COVID-19), as of 29 May 2020. European center for disease control (2020). Available At: https://www.ecdc.europa.eu/en/ covid-19/surveillance/case-definition Accessed September 27, 2020.

Chen, L. K. (2020). Older adults and COVID-19 pandemic: Resilience matters. Archives of Gerontology and Geriatrics, 49, Article 104124. https://doi.org/10.1016/j.archger.2020.104124

COVID-19 integrated surveillance: Key national data as of 15 September 2020. Available at: https://www.epicentro.iss.it/coronavirus/bollettino/bollettino-sorveglianza-iterata-COVID-19-15-settembre-2020.pdf Accessed September 27, 2020.

Driggin, E., Madhavan, M. V., Bickeli, B., Ghuch, T., Laracy, J., Biondi-Zoccai, G., Parikh, S.A., et al. (2020). Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. Journal of the American College of Cardiology, 75(18), 2352-2371. https://doi.org/10.1016/j.jacc.2020.03.031

ESC Guidance for the Diagnosis and Management of CV Disease during the COVID-19 Pandemic. European Society of Cardiology, 2020; Priori, Blomström–Lundqvist, & Mazzanti, 2015), however studies focusing on the effect of beta-blockers in COVID-19 patients are still lacking. In the absence of continuous heart rhythm monitoring in our study population we could not exclude cardiac arrhythmias other than atrial fibrillation.

E.S. Staff et al.
