Human African trypanosomiasis cases diagnosed in non-endemic countries (2011–2020)

Jose R. Franco1,*, Giuliano Cecchi2, Gerardo Priotto1, Massimo Paone2, Augustin Kadima Ebeja3, Pere P. Simarro4, Abdoulaye Diarra3, Dieudonné Sankara1, Weining Zhao2, Daniel Argaw Dagne1

1 World Health Organization, Control of Neglected Tropical Diseases, Prevention, Treatment and Care, Geneva, Switzerland, 2 Food and Agriculture Organization of the United Nations, Animal Production and Health Division, Rome, Italy, 3 World Health Organization, Regional Office for Africa, Brazzaville, Congo, 4 World Health Organization Consultant

* francoj@who.int

Abstract

Background
Sleeping sickness, or human African trypanosomiasis (HAT), is transmitted by tsetse flies in endemic foci in sub-Saharan Africa. Because of international travel and population movements, cases are also occasionally diagnosed in non-endemic countries.

Methodology/Principal findings
Antitrypanosomal medicines to treat the disease are available gratis through the World Health Organization (WHO) thanks to a public-private partnership, and exclusive distribution of the majority of them enables WHO to gather information on all exported cases. Data collected by WHO are complemented by case reports and scientific publications. During 2011–2020, 49 cases of HAT were diagnosed in 16 non-endemic countries across five continents: 35 cases were caused by *Trypanosoma brucei rhodesiense*, mainly in tourists visiting wildlife areas in eastern and southern Africa, and 14 cases were due to *T. b. gambiense*, mainly in African migrants originating from or visiting endemic areas in western and central Africa.

Conclusions/Significance
HAT diagnosis in non-endemic countries is rare and can be challenging, but alertness and surveillance must be maintained to contribute to WHO’s elimination goals. Early detection is particularly important as it considerably improves the prognosis.

Author summary
Human African trypanosomiasis, also known as sleeping sickness, is a parasitic disease transmitted by tsetse flies. The infection can be contracted in several endemic areas in
sub-Saharan Africa and, unless correctly diagnosed and properly treated, the disease is usually fatal. While the vast majority of cases of sleeping sickness are detected in endemic countries, a few are diagnosed in non-endemic ones, notably in travellers or migrants who have visited or resided in the transmission areas. An accurate and early diagnosis of these exported cases is crucial to improve their prognosis. In this study we reviewed cases of trypanosomiasis detected in non-endemic countries in 2011–2020. The data were gathered by the World Health Organization (WHO) thanks to its exclusive distribution of antitrypanosomal medicines.

A total of 49 exported cases of sleeping sickness were detected in the 10 years we studied. Half of them were diagnosed in Europe, 22% in South Africa—a non-endemic country, 14% in North America and 12% in Asia. Only one case was detected in South America. Despite its rarity, travel medicine must maintain alertness on this disease, especially in patients with a history of exposure in endemic areas, with febrile and neuro-psychiatric syndromes and without a clear alternate diagnosis.

Background

Human African trypanosomiasis (HAT) or sleeping sickness is a neglected tropical disease (NTD) transmitted by tsetse flies (Genus: *Glossina*) and is considered to be endemic in 36 countries of sub-Saharan Africa [1]. Travellers from non-disease endemic countries (non-DEC) who visit areas of HAT transmission are at risk of being infected. At the same time, people living in endemic areas and already infected can travel to non-DEC. Both groups can be diagnosed with the disease. Cases diagnosed in non-DEC are sometimes defined as “exported cases”.

Areas in which HAT can be transmitted are well-known and accurately mapped in disease endemic countries (DEC) thanks to information provided by the national sleeping sickness control programmes (NSSCP). This information is regularly compiled in the Atlas of HAT [2,3], an initiative of the World Health Organization (WHO) in collaboration with the Food and Agriculture Organization of the United Nations (FAO) in the framework of the Programme Against African Trypanosomosis (PAAT). HAT cases can be caused by two different subspecies of pathogen: *Trypanosoma brucei gambiense*, characterized by a more chronic course and transmitted in western and central Africa, and *T. b. rhodesiense*, which presents a more acute clinical evolution and occurs in eastern and southern Africa [4]. Both forms of the disease are considered lethal, if untreated [5], although long-term latent infections [6,7] and individuals clearing their infections without treatment have been described for gambiense HAT [8]. Given the severity and high case fatality of the disease, all detected cases should receive adequate treatment as early as possible after diagnosis. Manufacturers of anti-HAT medicines (i.e. Sanofi and Bayer) have signed agreements with WHO and are committed to producing all the medicines needed to treat HAT cases. The medicines are donated exclusively to WHO for distribution free of charge to DEC and—when needed—non-DEC in which exported cases are diagnosed. The donation agreement between pharmaceutical companies and WHO was first signed in 2001 and has been extended since then, to ensure the availability of HAT medicines until 2025. Through this arrangement anti-HAT medicines are freely available to all who need them, and WHO is the sole distributor. These medicines are not commercially available, with the exception of pentamidine, which is also produced and distributed for the treatment and prevention of other diseases including *Pneumocystis jiroveci* pneumonia in high-risk patients and leishmaniasis.
Anti-HAT medicines are provided to NSSCPs in DEC on the basis of regular forecasts jointly made with WHO, and according to previously reported cases and planned activities. Distribution is supported by Médecins Sans Frontières Logistique (Bordeaux, France), which provides storage, assemblage of treatment kits, packing and shipment services.

In non-DEC, pharmacy services in health facilities that have diagnosed HAT address their requests to WHO for the quantities of medicines needed to treat cases. WHO keeps a stock of medicines at its headquarters in Geneva, which ensures their rapid delivery. In addition, to enable prompt initiation of treatment, which can be critical in some cases of rhodesiense HAT, a few health facilities in non-DEC are supplied with small stocks of antitrypanosomal medicines to act as prepositioned repositories (Table 1).

A review of the data on HAT cases diagnosed and treated in non-DEC during 2000–2010 was published in 2012 [9]. The present paper is a follow-up and focuses on the HAT cases diagnosed in non-endemic countries in 2011–2020.

Methods
The fact that anti-HAT medicines are not commercially available but obtainable solely from WHO through request allows the Organization to collect epidemiological data on almost all HAT cases diagnosed in non-DEC.

Upon requesting the medicines, health institutions in non-DEC commit to providing WHO with basic epidemiological and clinical data about the patient. Institutions keeping prepositioned repositories are also required to inform WHO of any use of these medicines. The information provided for each HAT case includes: (i) areas of the DEC that the patient visited or where he/she was living; (ii) areas of perceived contacts with tsetse flies; (iii) presumed geographical location of the infection in the opinion of the patient; (iv) laboratory findings, including parasitological and biological tests; (v) main clinical signs and symptoms observed; (vi) treatment administered, adverse events and outcome; and (vii) contact details of the hospital and medical officer in charge of treatment. This information is fully anonymized and does not include any identification of the patient. Such close communication also allows WHO to provide technical advice on HAT case management at the request of the responsible medical officer. The most likely place of infection is inferred from the areas visited and the time spent in them, the reported contacts with tsetse flies, the opinion of the patient about the presumed geographical location of the infection, the onset of clinical signs and symptoms and the existing epidemiological knowledge.

The information received from the non-DEC is shared with the NSSCP of the country where the patient is presumed to have been infected, with a view to reinforcing control and surveillance activities in transmission areas. The cases reported in non-DEC are also included by the NSSCP in their national reports and statistics, and they are taken into account when the DEC is evaluating the possible elimination of the disease.

The reporting arrangement described herein is linked to the exclusive distribution of antihat medicines by WHO, which since 2001 has allowed an exhaustive database of HAT cases diagnosed and treated in non-DEC to be compiled. The information is also integrated in the WHO Atlas of HAT and these cases are included in the statistics of the country where the patient was infected. The present paper provides updated information for 2011–2020. Information provided to WHO by health facilities in non-DEC was complemented through a literature review.

Results
During 2011–2020, 49 HAT cases were diagnosed and reported in 16 non-DEC (mean of 4.9 cases/year): 71% (35/49) were caused by the rhodesiense form of the disease (Table 2) and 29%
Country	Location	Institution	Address
Belgium	Antwerp	Universitair Ziekenhuis Antwerpen (UZA)	UZA Drie Eikenstraat 655 2650 Edegem Belgium
Germany	Würzburg	Department of Tropical Medicine, Missioklinik	Department of Tropical Medicine, Missioklinik Klinikum Würzburg Mitte gGmbH Salvadorstr. 7 D—97074 Würzburg Germany
	Düsseldorf	Universitätsklinikum, Zentralapotheke	Universitätsklinikum Düsseldorf Zentralapotheke, Arzneimittelausgabe (Geb. 18.23 01.32) Moorstr. 5 40225 Düsseldorf Germany
Norway	Oslo	Medisinsk klinikk, Oslo universitetssykehus	Sykehospoteket Oslo, Ullevål Kirkeveien 166 0450 Oslo Norway
Spain	Barcelona	Hospital Clinic	Servei de Farmacia Hospital Clinic Barcelona C/ Villarroel, 170 08036 Barcelona Spain
Switzerland	Basel	FMH Innere Medizin und Tropen- und Reisemedizin, Schweizerisches Tropen- und Public Health Institut (STPHI)	Swiss Tropical and Public Health Institute attn. Ambulatorium Socinstrasse 57 4051 Basel Switzerland
United Kingdom of Great Britain and Northern Ireland	Liverpool	Liverpool University Hospital / NHS Foundation Trust	Royal Liverpool Hospital Prescot Street Liverpool L7 88XP United Kingdom
	London	University College London Hospital / NHS Foundation Trust	Pharmacy Department Mortimer Market Centre off Capper Street London WC1E 6JB United Kingdom
United States of America (USA)	Atlanta	Centers for Disease Control and Prevention	Parasitic Diseases Branch Center for Global Health Centers for Disease Control and Prevention 1600 Clifton Road, NE Atlanta, GA 30329 USA
China	Shanghai	National Institute of Parasitic Diseases, China CDC	Department of Vector transmission Tropical Disease National Institute of Parasitic Diseases, China CDC 207 Rui Jin Er Road Shanghai 200025 China
Japan	Tokyo	National Center for Global Health and Medicine	Disease Control and Prevention Center International Health Care Center National Center for Global health and Medicine 1-21-1 Toyama, Shinjuku-ku Tokyo 162–8655 Japan

(Continued)
were due to the gambiense form (Table 3). These figures correspond to a 44% reduction from 2001–2010 during which period a mean of 8.8 cases/year was detected in non-DEC (Fig 1). In the same period, the total reduction of HAT cases diagnosed worldwide was 79% (from 155,961 cases to 33,096 cases) [3].

Non-endemic countries of diagnosis

Some 49% (24/49) of the HAT cases detected in non-DEC were diagnosed in Europe, 22% (11/49) in one African non-DEC (South Africa), 14% (7/49) in North America, 12% (6/49) in Asia and one case in South America (Fig 2).

As in 2000–2010, South Africa was the non-DEC diagnosing the highest number of cases, all of them being rhodesiense HAT. This results from the country’s proximity to endemic areas and the frequency of medical evacuations to South Africa from other sub-Saharan African countries. Since 2004 the National Institute for Communicable Diseases in Johannesburg has served as a centre for HAT surveillance, while also monitoring the supply and distribution of medicines; it also provides technical advice on case management, not only within South Africa but also to other countries [10].

After South Africa, the other non-DEC reporting the highest numbers of HAT cases were France (14%, 7/49, six of which were gambiense HAT) and the United States of America (10%, 5/49, three of which were rhodesiense HAT). Other European countries accounted for another 35% (17/49) of cases: Germany (3), the Netherlands (3), United Kingdom of Great Britain and Northern Ireland (3), Belgium (2), Sweden (2), Italy (1), Norway (1), Portugal (1) and Spain (1). The remaining cases were diagnosed in China (3), India (3), Canada (2) and Argentina (1). Of note is that there was no previous record of HAT diagnosed in China [11]. The three cases included in the present study were all Chinese nationals, two of them workers infected with T. b. gambiense and one a tourist infected with T. b. rhodesiense. These cases can be linked to the recent growth in investment in and exchanges between China and African countries that has resulted in increases in imported NTDs in China [12–14]. Recommendations have been made to ensure adequate treatment of future possible cases of HAT and other NTDs in China [15].

Endemic countries of infection

For rhodesiense HAT cases diagnosed in non-DEC during 2011–2020 (Table 2), the country of infection accounting for most cases was Zambia, with 37% (13/35) or 19% of the total number of HAT cases reported in the country during the same period (i.e. 13/69 [3]). The United Republic of Tanzania accounted for another 35% (17/49) of cases: Germany (3), the Netherlands (3), United Kingdom of Great Britain and Northern Ireland (3), Belgium (2), Sweden (2), Italy (1), Norway (1), Portugal (1) and Spain (1). The remaining cases were diagnosed in China (3), India (3), Canada (2) and Argentina (1). Of note is that there was no previous record of HAT diagnosed in China [11]. The three cases included in the present study were all Chinese nationals, two of them workers infected with T. b. gambiense and one a tourist infected with T. b. rhodesiense. These cases can be linked to the recent growth in investment in and exchanges between China and African countries that has resulted in increases in imported NTDs in China [12–14]. Recommendations have been made to ensure adequate treatment of future possible cases of HAT and other NTDs in China [15].
Year	Month	Place of diagnosis	Place of infection	Sex	Age	Activity	Diagnosis	Stage	Chancre	Treatment	Reference
2011	Feb	London United Kingdom	Mana Pools NP Zimbabwe	M	Tourist	Blood smear	1	Suramin			
2012	Jan	Frankfurt Germany	Masai Mara NR Kenya	M	61	Tourist	Blood smear	Yes	Suramin [25,42,43]		
Feb	Antwerp Belgium	Masai Mara NR Kenya	M	Tourist	Blood smear	Yes Suramin	[44,45]				
Jul	Buenos Aires Argentina	North Luangwa NP Zambia	M 65	Hunter	Blood smear	Yes Pentamidine / Suramin [59]					
Oct	Minneapolis, MN USA	Lake Kariba Zimbabwe	F 64	Tourist	Blood smear	1 Pentamidine [60]					
Oct	Houston, TX USA	North Luangwa NP Zambia	M 57	Hunter	Blood smear	No Suramin					
Dec	Eskilstuna Sweden	Ngorongoro CA United Republic of Tanzania	F 55	Tourist	Blood smear	No Pentamidine / Suramin [61]					
Dec	Johannesburg South Africa	Kazumbe (Petauke) Zambia	M 37	Hunter	Blood smear	Yes Suramin [62]					
Dec	Chambery France	Kasanka NP Zambia	M 22	Pilot (tourist company)	Blood smear	No Suramin [63]					
2013	Jan	Johannesburg South Africa	Kasanka NP Zambia	M 42	Conservation worker	Blood smear	No Suramin [64]				
Jan	Johannesburg South Africa	Mkomazi NP United Republic of Tanzania	M 42	Conservation worker	Blood smear	No Suramin					
2014	Nov	London United Kingdom	South Luangwa NP Zambia	M 53	Tour operator	Blood smear	No Suramin				
Nov	Pretoria South Africa	Murchison Falls NP Uganda	M 52	Missionary	Blood smear	Yes Suramin [64]					
2015	Jan	Mumbai India	Kafue NP Zambia	M 46	Local tourist* CSF	2 No Melarsoprol [65]					
Jul	Ottawa Canada	Lower Zambezi NP Zambia	F 59	Tourist	Blood smear	No Pentamidine / Suramin [66]					
Sept	Barcelona Spain	Serengeti NP United Republic of Tanzania	F 49	Tourist	Blood smear	Yes Pentamidine / Suramin [67,68]					
Oct	Antwerp Belgium	Queen Elizabeth NP Uganda	F 53	Tourist	Blood smear	Yes Suramin [69,70]					
2016	Jan	Ancona Italy	Serengeti NP United Republic of Tanzania	M 37	Tourist	Blood smear	No Pentamidine / Suramin				
Apr	Bergen Norway	Murchison Falls NP Uganda	M 64	Humanitarian worker	Blood smear	No Pentamidine / Suramin					
Oct	Leiden, The Netherlands	Serengeti NP United Republic of Tanzania	F 56	Tourist	Blood smear	No Pentamidine / Suramin [71]					
Dec	Baltimore (MD) USA	South Luangwa NP Zambia	M 48	Tourist	Blood smear	No Pentamidine / Suramin [72,73]					
2017	May	Amsterdam The Netherlands	Serengeti NP United Republic of Tanzania	M 58	Tourist	Blood smear	Yes Suramin [74,75]				

(Continued)
some of these protected areas accounted for several cases, such as South Luangwa NP (4 cases), North Luangwa NP (2), Kasanka NP (2) and West Petauke GMA (2) in Zambia, Serengeti NP in the United Republic of Tanzania (5), Murchison Falls NP in Uganda (5), Vwaza WR in Malawi (4) and Masai Mara NR in Kenya (2). The cases in Malawi were linked in time and space to a general outbreak of the disease [3].

For gambiense HAT, exported cases reported during the study period were infected in the Democratic Republic of the Congo (4), Gabon (3), Guinea (3), Cameroon (2), Angola (1) and Nigeria (1).

Diagnosis

Rhodesiense HAT was diagnosed in non-DEC by demonstrating the presence of parasites. In 32 cases (91%), trypanosomes were found in blood smears, in three cases they were detected...
through examination of cerebrospinal fluid (CSF), and in two instances through bone marrow and buffy coat examination (one each). Trypanosomal chancre was present in around half of the rhodesiense HAT cases (18); information on the possible presence of chancre was not available in two cases.

Table 3. Cases of gambiense HAT diagnosed in non-DEC, 2011–2020.

Year	Month	Place of diagnosis	Place of infection	Sex	Age	Activity	Diagnosis	Stage	Chancre	Treatment	Reference
2012	Sep	Porto Portugal	Quiçama (Bengo)	M	41	Construction worker	PCR	2	No	Melarsoprol	[87]
2013	Jan	Paris France	Libreville Gabon	M	29	Trader	PCR / IFAT / CATT	2	Yes	NECT	[88]
	Jun	Tours France	Kinshasa	F	22	Immigrant	CSF	2	No	Efornithine	[89,90]
	Jun	Tours France	Kinshasa	M	1	Immigrant	CSF	2	No	Efornithine	[90]
2014	Sep	Nanjing China	Port Gentil Gabon	M	45	Timber worker	Blood smear	2	No	Efornithine	[11,91–93]
2016	Aug	Limoges France	Bandundu	F	21	Immigrant	CSF	2	No	NECT	[94,95]
	Sep	London United Kingdom	Warri (Delta State) Nigeria	F	58	Immigrant (missionary)	PCR / IFAT	2	No	NECT	[53]
	Dec	Meaux France	Dubréka Guinea	M	55	Immigrant	PCR	2	No	NECT	[96,97]
2017	Aug	Shanghai China	Libreville Gabon	M	59	Rural worker	Blood smear	2	Yes	NECT	[55,98]
2018	May	Cretel France	Dubréka Guinea	F	45	Immigrant	Blood smear	2	No	NECT	[99]
2019	Sept	Dallas (TX) USA	Mamfé Cameroon	M	51	Immigrant (missionary)	Bone marrow	2	No	NECT	[100]
	Jun	Berlin Germany	Dubréka Guinea	M	26	Immigrant (musician)	CTC	2	No	Efornithine	
	Sep	Baltimore (MD) USA	Mamfé Cameroon	F	49	Immigrant	PCR	2	No	NECT	[54]

CATT: card agglutination test for trypanosomiasis; CSF: cerebrospinal fluid; CTC: Capillary tube centrifugation; IFAT: immunofluorescent antibody test; NECT: nifurtimox-eflornithine combination therapy; PCR: polymerase chain reaction.

https://doi.org/10.1371journal.pntd.0010885.t003
The time lag between exposure and diagnosis was well described in 21 cases of rhodesiense HAT (60%). In seven cases it was around one week, in 10 cases it was around 2 weeks, in three cases it was around 3 weeks and in one case it was more than 1 month.

Gambiense HAT cases were diagnosed by combining parasitological, serological and molecular investigations. Parasites were found through parasitological tests in nine cases (64%); in particular, the parasites were observed in blood smear examination (3 cases), cerebrospinal fluid (3), capillary tube centrifugation of blood (2) and bone marrow aspirate (1). In five cases diagnosis relied on polymerase chain reaction (PCR) [16] in combination with serological tests [i.e. immunofluorescent antibody test (IFAT) [17], card agglutination trypanosomiasis test (CATT) [18], rapid diagnostic test (RDT) [19–20], immunotrypanolysis (TL) [21] and enzyme-linked immunosorbent assay (ELISA) [22,23]]. The WHO collaborating centre for HAT diagnosis at the Institute of Tropical Medicine Antwerp (Belgium) plays a key role in supporting HAT diagnosis in non-DEC by performing some of these more specific tests in referred samples. The probable time of infection was clearly established in 10 of the gambiense HAT cases (71%): in four cases it was less than 1 year before diagnosis (between 3 and 10 months), in three cases it was around 1 year, in two cases diagnosis occurred about 2 years after exposure and in one case more than 4 years after exposure. Chancre was described in only two of the 14 gambiense HAT cases.

Fig 1. Cases of HAT detected in non-DEC. 2000–2020.
https://doi.org/10.1371/journal.pntd.0010885.g001
Regarding the stage of the disease, 91% (32/35) of rhodesiense HAT cases were diagnosed in first stage and 9% (3/35) were diagnosed in second stage. For gambiense HAT, 7% of cases (1/14) were diagnosed in first stage and 93% (13/14) in second stage.

Activity

All 35 rhodesiense HAT cases diagnosed in non-DEC were linked to exposure to the wildlife reservoir in protected areas: 20 cases were in tourists visiting these areas for short periods, five of whom were hunters, one a fisherman and seven were working in the protected areas for long periods (five as conservationists or researchers, one as an aircraft pilot for tourism and one as a tour operator); the remaining two were missionary or humanitarian workers who occasionally travelled to protected areas for rest and recreation.

Of the 14 gambiense HAT cases diagnosed, 10 were people originally from DEC currently living in non-DEC, of whom seven had settled in non-DEC several years earlier and who visited their country of origin for short periods (e.g. holidays, family visits, business); two had recently established in non-DEC. One case was a 1-year-old child who had never been in any DEC but whose mother originated from one and was diagnosed with HAT at the same time; in this case vertical transmission is assumed.
Four of the gambiense HAT cases were nationals from non-DEC who had been working in DEC for extended periods, one for business (a trader), one as a river sailor in a timber enterprise, one in agriculture and another in construction.

Treatment and outcome

Of the 14 cases of gambiense HAT, only one that was detected in first stage was treated with pentamidine. Cases diagnosed in second stage were treated with either nifurtimox-eflornithine combination therapy (8 cases), eflornithine monotherapy (4) or melarsoprol (1). No death was reported among these cases.
Of the 35 cases of rhodesiense HAT, 32 were diagnosed in first stage of which 31 were treated with suramin and one with pentamidine. In nine cases treated with suramin, treatment was initiated with pentamidine while the supply of suramin was being dispatched. This approach is warranted because of the fast progression and acute presentation of the disease, as it allows parasitaemia to be rapidly reduced [24–25]. Two of the three rhodesiense HAT cases diagnosed in second stage were treated with melarsoprol; the third received initial treatment with suramin to clear parasitaemia and died before treatment with melarsoprol could be started. Three cases of rhodesiense HAT died during treatment, showing a case-fatality rate of 8.6%: one fatality could be ascribed to a terminal stage of the disease linked to a late diagnosis following misdiagnosis in different health facilities, a second to the toxicity of melarsoprol (encephalitic reaction) and the third to severe acute disease complications.

Cases published in scientific journals

Of the 49 HAT cases diagnosed in non-DEC during 2011–2020, 19 (39%) were published in scientific journals. These publications usually focus on clinical aspects and travel medicine issues and contribute also to raising awareness of this unusual diagnosis. Scientific publications were more frequent for gambiense HAT (9/14) than for rhodesiense HAT cases (10/35). Of the 35 rhodesiense HAT cases diagnosed, 22 (63%) were reported via epidemiological networks including the Communicable Diseases Communiquè of the National Health Laboratory Services, South Africa (http://www.nicd.ac.za), ProMed (http://www.promedmail.org), GeoSentinel (http://www.geosentinel.org) and Eurosurveillance (https://www.eurosurveillance.org/). No case of gambiense HAT was reported in these networks.

In 2012, a gambiense HAT case was diagnosed in the United Kingdom [7] in a patient originally from Sierra Leone. It is assumed that this individual had been infected at least 29 years earlier, because their last visit to a DEC was in 1983. Given the time lag between detection and probable infection for this case of at least 29 years, the case was neither included in the statistics of HAT occurrence kept by WHO since 1990 [3,26] nor in Table 2. Of note is that the last autochthonous case from Sierra Leone was reported in 1982 [27–28].

During 2011–2020, 11 additional papers were published (5 in 2012, 1 in 2013, 2 in 2014 and 3 in 2016) concerning cases diagnosed during 2000–2010; therefore they were not considered for this paper [28–39].

Discussion

Agreements between WHO and the producers of antitrypanocidal medicines ensure access to adequate treatment for all cases of HAT diagnosed in both DEC [40] and non-DEC. WHO ensures availability, distribution and use of these medicines. As an important added value, the exclusive distribution system allows systematic collection of valuable epidemiological information. This information is integrated with the bulk of the data collected on monitoring of transmission patterns, which informs targeted surveillance in DEC. In some instances, information from non-DEC can highlight “grey areas” where reports of autochthonous cases are rare or absent (e.g. Murchison Falls NP in Uganda, South Luangwa Valley NP and Kafue NP in Zambia). This provides important information on the risk of transmission in these areas and on the possible exposure of local populations, triggering reinforced control and surveillance measures. On a few occasions, cases in non-DEC reflect the occurrence of epidemic outbreaks of rhodesiense HAT in particular areas (e.g. Vwaza Marsh NP in 2019–2020 [25,41–44], Masai Mara NR in 2012 [45–49] and Serengeti WR in earlier periods [50]).

The present review confirmed that, owing to international travel and the movement of human populations, HAT can be detected across the globe. This is despite the fact that disease
Transmission has dramatically abated in endemic areas over the past two decades [3]. Epidemiological information on exported cases of HAT can help to maintain awareness about this differential diagnosis in travellers. It is also valuable as a sentinel within the global HAT surveillance system.

Treatment was ensured for all cases of HAT in non-DEC that were reported to WHO. As opposed to the general pattern in DEC, the majority of exported cases in non-DEC are due to *T. b. rhodesiense* from exposure to the wildlife reservoir in protected areas that are frequented by foreigners for leisure or professional activities. Transmission generally occurs from infected wild animals to humans through the tsetse fly and, given the high density of flies in many of these areas, even brief exposure can carry a risk. Conversely, transmission of *T. b. gambiense* occurs in remote rural areas that foreigners rarely visit and do not usually reside in for extended periods.

During 2011–2020, a total of 33 096 HAT cases were reported globally, of which 32 275 (97.5%) were gambiense HAT and 821 (2.5%) were rhodesiense HAT [3]. Cases detected in non-DEC represent only 0.15% of the number of cases reported globally, but they constitute 4% of all rhodesiense HAT cases.

As rhodesiense HAT is an acute disease with high parasitaemia that can be clearly linked to travel to DEC, cases are diagnosed quickly and relatively easily by blood smear a few weeks after infection. Diagnosis of gambiense HAT is more complex because of typically low parasitaemia and non-specific, chronic symptoms which resemble many other pathologies. Recently, however, new molecular methods have simplified the diagnosis of gambiense HAT in sophisticated laboratories. Nevertheless, molecular diagnosis remains laborious and time-consuming, requires expertise and is often done only when cases have already reached the second stage. Epidemiological elements of clinical anamnesis (e.g. geographical tracking of the patient’s travel history and wanderings, exposure to tsetse fly bites), together with adequate laboratory tests not only to look for parasites but also to check antibodies and the presence of parasite DNA or RNA, can play a key role in the differential diagnosis of HAT [10,51,52]. Early diagnosis and availability of appropriate treatment are the main elements to ensure a full recovery.

Interestingly, HAT diagnosis in countries with more sophisticated technology that is not always available in DEC generates useful information on the clinical and pathogenicity aspects of the disease. These more advanced tools include imaging techniques (e.g. Magnetic Resonance Imaging (MRI) [53] and computed tomography (CT) scan [54,55]) and the analysis of biochemical parameters.

Overall, as previously documented [56], a contrast is observed in exported HAT cases: rhodesiense HAT usually affects more affluent populations of non-DEC, whereas gambiense HAT is normally detected in African migrants with limited economic means. In some cases, these people are in precarious situations and may not be covered effectively by the health system in non-DEC, which can contribute to a delayed diagnosis.

This paper focuses on cases that fit the classical definition of HAT, and it does not include sporadic cases of atypical trypanosomiasis in humans [57,58]. Atypical cases can be due to species of trypanosomes that are different from those usually affecting human beings, the latter being *T. b. gambiense* and *T. b. rhodesiense*, as well as *T. cruzi* as the cause of Chagas disease.

Conclusions

Despite the rarity of sleeping sickness in non-DEC, it is important that travel medicine services in non-DEC maintain awareness of HAT risk among travellers and migrants presenting with a history of exposure in endemic areas, with febrile and neuro-psychiatric syndromes and without a clear alternate diagnosis. Descriptions of tsetse bites or even the presence of cutaneous
lesions (chancre) can aid diagnosis, mainly for rhodesiense HAT. Early detection is particularly important as it considerably improves the prognosis.

The availability of HAT medicines through WHO guarantees timely access to treatment in non-DEC and should therefore be sustained. This exclusive distribution arrangement also ensures notification of cases to WHO, thus providing valuable epidemiological information for action in DEC and contributing to ongoing efforts to eliminate the disease.

Acknowledgments

The authors would like to thank all health staff from different health facilities in non-DEC who contributed reports to inform this paper.

The Food and Agriculture Organization of the United Nations (FAO) supported this study in the framework of the WHO/FAO collaboration within the Programme Against African Trypanosomiasis (PAAT).

Disclaimers

The authors alone are responsible for the views expressed in this article and they do not necessarily represent the views, decisions or policies of the institutions with which they are affiliated.

The boundaries and names shown and the designations used on the map(s) presented in this paper do not imply the expression of any opinion whatsoever on the part of WHO and FAO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers and boundaries. Dashed lines on maps represent approximate border lines for which there may not yet be full agreement. Dotted lines represent approximately the Line of Control in Jammu and Kashmir agreed upon by India and Pakistan. The final status of Jammu and Kashmir has not yet been agreed upon by the parties. The final boundary between Sudan and South Sudan has not yet been determined. A dispute exists between the governments of Argentina and the United Kingdom of Great Britain and Northern Ireland concerning sovereignty over the Falkland Islands (Malvinas).

Author Contributions

Conceptualization: Jose R. Franco, Giuliano Cecchi, Gerardo Priotto, Pere P. Simarro.

Data curation: Jose R. Franco, Giuliano Cecchi, Gerardo Priotto, Massimo Paone, Augustin Kadima Ebeja, Pere P. Simarro, Abdoulaye Diarra.

Formal analysis: Jose R. Franco, Giuliano Cecchi, Massimo Paone.

Funding acquisition: Jose R. Franco, Dieudonné Sankara, Weining Zhao, Daniel Argaw Dagne.

Investigation: Jose R. Franco, Giuliano Cecchi, Gerardo Priotto, Pere P. Simarro.

Methodology: Jose R. Franco, Giuliano Cecchi, Gerardo Priotto, Pere P. Simarro.

Project administration: Jose R. Franco, Dieudonné Sankara, Weining Zhao, Daniel Argaw Dagne.

Resources: Jose R. Franco, Gerardo Priotto, Augustin Kadima Ebeja, Abdoulaye Diarra.

Software: Giuliano Cecchi, Massimo Paone.

Supervision: Dieudonné Sankara, Weining Zhao, Daniel Argaw Dagne.

Validation: Gerardo Priotto, Pere P. Simarro.
Visualization: Jose R. Franco, Giuliano Cecchi, Gerardo Priotto, Massimo Paone.

Writing – original draft: Jose R. Franco, Giuliano Cecchi.

Writing – review & editing: Jose R. Franco, Giuliano Cecchi, Gerardo Priotto, Massimo Paone, Pere P. Simarro.

References

1. World Health Organization & WHO Expert Committee on the Control and Surveillance of Human African Trypanosomiasis. Control and surveillance of human African trypanosomiasis: Report of a WHO expert committee. World Health Organization. Geneva, Switzerland: 2013. https://apps.who.int/iris/handle/10665/95732

2. Simarro PP, Cecchi G, Paone M, Franco JR, Diarra A, Ruiz JA, et al. The Atlas of human African trypanosomiasis: a contribution to global mapping of neglected tropical diseases. Int J Health Geogr. 2010; 9: 57. https://doi.org/10.1186/1476-072X-9-57 PMID: 21040558

3. Franco JR, Cecchi G, Paone M, Diarra A, Grout L, Kadima Ebeja A, et al. The elimination of human African trypanosomiasis: Achievements in relation to WHO road map targets for 2020. PLoS Negl Trop Dis. 2022; 16(1): e0010047. https://doi.org/10.1371/journal.pntd.0010047 PMID: 35041668

4. Büscher P, Cecchi G, Jamonneau V, Priotto G. Human African trypanosomiasis. Lancet. 2017; 390 (10110): 2397–2409. https://doi.org/10.1016/S0140-6736(17)31510-6 PMID: 28673422

5. Brun R, Blum J, Chappuis F, Burri C. Human African trypanosomiasis. Lancet 2010; 375: 148–159. https://doi.org/10.1016/S0140-6736(09)60829-1 PMID: 19833383

6. Informal Expert Group on Gambian HAT Reservoirs (Büscher P, Bart JM, Boelart M, Bucheton B, Cecchi G, Chitnis N, et al.). Do Cryptic Reservoirs Threaten Gambian-Sleeping Sickness Elimination? Trends Parasitol. 2018; 34(3): 197–207. https://doi.org/10.1016/j.pt.2017.11.008 PMID: 29396200

7. Sudarshi D, Lawrence S, Pickrell WO, Eligar V, Walters R, Quaderi S, et al. Human African Trypanosomiasis Presenting at Least 29 Years after Infection—What Can This Teach Us about the Pathogenesis and Control of This Neglected Tropical Disease? PLoS Negl Trop Dis. 2014; 8(12): e3349. https://doi.org/10.1371/journal.pntd.0003349 PMID: 25922322

8. Jamonneau V, Ilboudo H, Kabore J, Kaba D, Koffi M, Solano P, et al. Untreated Human Infections by Trypanosoma brucei gambiense Are Not 100% Fatal. PLoS Negl Trop Dis. 2012; 6(6): e1691. https://doi.org/10.1371/journal.pntd.0001691 PMID: 22720167

9. Simarro PP, Franco JR, Cecchi G, Paone M, Diarra A, Ruiz Postigo JA, et al. Human African Trypanosomiasis in Non-Endemic Countries (2000–2010), J Travel Med. 2012; 19(1): 44–53, https://doi.org/10.1111/j.1708-8305.2011.00576.x PMID: 22221811

10. Frean J, Seling W, Pahad H, Shoul E, Blumberg L. Clinical management of East African trypanosomiasis in South Africa: Lessons learned. Int J Infect Dis. 2018; 75: 101–108. https://doi.org/10.1016/j.ijid.2018.08.012 PMID: 30153486

11. Chen N, Jin K, Xu J, Zhang J, Weng Y. Human African trypanosomiasis caused by Trypanosoma brucei gambiense: The first case report in China. Int J Infect Dis. 2019; 79: 34–36. https://doi.org/10.1016/j.ijid.2018.11.004 PMID: 30423460

12. Gao J-M, Qian Z-Y, Hide G, Lai D-H, Lun Z-R, Wu Z-D. Human African trypanosomiasis: the current situation in endemic regions and the risks for nonendemic regions from imported cases. Parasitology 2020; 147: 922–931. https://doi.org/10.1017/S0031182020000645 PMID: 32338292

13. Zhou XN, Qian MB, Priotto G, Franco JR, F, Guo JG. Tackling imported tropical diseases in China. Emerg Microbes Infect. 2018; 7: 12. https://doi.org/10.1013/e11426-018-0022-4 PMID: 29410397

14. Wang L, Zou Y, Zhu X, Bottazzi ME, Hotez PJ, Zhan B. China’s shifting neglected parasitic infections in an era of economic reform, urbanization, disease control, and the Belt and Road Initiative. PLoS Negl Trop Dis. 2019; 13(1): e0008946. https://doi.org/10.1371/journal.pntd.0008946 PMID: 30677027

15. Hao YW, Wang Q, Cao CL, Tian T, Zhu ZL, Xu J, et al. Construction and application of surveillance and response systems for parasitic diseases in China, led by NIPD-CTDR. Adv Parasitol. 2020; 110: 349–371. https://doi.org/10.1016/bs.apar.2020.04.001 PMID: 32563331

16. Büscher P, Deborgraeve S. How can molecular diagnostics contribute to the elimination of human African trypanosomiasis? Expert Rev Mol Diagn. 2015; 15(5): 607–15. https://doi.org/10.1586/14737159.2015.1027195 PMID: 25786994
17. Wery M, Wery-Paskoff S, Van Wettere N. The diagnosis of human African trypanosomiasis (T. gambiense) by the use of fluorescent antibody test. I. Standardization of an easy technique to be used in mass surveys. Ann Soc Belges Med Trop Parasitol Mycol. 1970; 50: 613–634. PMID: 4935397

18. Magnus E, Vervoort T, Van Meirvenne N. A Card Agglutination Test with stained trypanosomes (CATT) for the serological diagnosis of T. b. gambiense trypanosomiasis. Ann. Soc. belge Méd. trop. 1978; 58: 169–176.

19. Büscher P, Gillemann Q, Lejon V. Rapid diagnostic test for sleeping sickness. N Engl J Med. 2013; 368 (11): 1069–70. https://doi.org/10.1056/NEJM1210373 PMID: 23484849

20. Lumbala C, Biéler S, Kayembe S, Makabuza J, Ongarello S, Ndung’u JM. Prospective evaluation of a rapid diagnostic test for Trypanosoma brucei gambiense infection developed using recombinant antigens. PLoS Negl Trop Dis. 2018; 12(3): e0006386. https://doi.org/10.1371/journal.pntd.0006386 PMID: 29590116

21. Van Meirvenne N, Magnus E, Büscher P. Evaluation of variant specific trypanosomiasis tests for serodiagnosis of human infections with Trypanosoma brucei gambiense. Acta Trop. 1995; 60: 189–199.

22. Lejon V, Büscher P, Magnus E, Moons A, Wouters I, Van Meirvenne N. A semi-quantitative ELISA for detection of Trypanosoma brucei gambiense specific antibodies in serum and cerebrospinal fluid of sleeping sickness patients. Acta Trop. 1998; 69(2): 151–64. https://doi.org/10.1016/s0001-706x(97)00137-x

23. Geerts M, Van Reet N, Leyten S, Berghmans R, Rock KS, Coetzer THT, et al. Trypanosoma brucei gambiense-IELISA: A Promising New Test for the Post-Elimination Monitoring of Human African Trypanosomiasis. Clin Infect Dis. 2021; 73(9): e2477–e2483. https://doi.org/10.1093/cid/ciaa1264 PMID: 32856049

24. Paul M, Stefaniak J, Smuszkiewicz P, Van Esbroeck M, Geysen D, Clerinx J. Outcome of acute East African trypanosomiasis in a Polish traveller treated with pentamidine. BMC Infect Dis. 2014; 14: 111 https://doi.org/10.1186/1471-2334-14-111 PMID: 24571399

25. van Genderen PJJ, Nouwen JL, De Mendonça Melo M, Rijnders BJA, van Hellemond JJ. Single-dose pentamidine substantially reduces viability of trypanosomes in human East African trypanosomiasis. J Travel Med. 2021; 28(6): taab080. https://doi.org/10.1093/jtm/taab080 PMID: 34008033

26. WHO. Global health observatory. Number of new reported cases (T. b. gambiense) by country. https://apps.who.int/gho/data/node.main.A16367?lang=en Accessed 28/02/2022.

27. WHO. Control and surveillance of African trypanosomiasis. Report of a WHO Expert Committee. (WHO Technical Report Series, No 881) Geneva, World Health Organization, 1998.

28. Courtin F, Jamonneau V, Duvallet G, Garcia A, Coubilay B, Doumenge JP, et al. Sleeping sickness in West Africa (1906–2006): changes in spatial repartition and lessons from the past. Trop Med Int Health. 2008; 13(3): 334–44. https://doi.org/10.1111/j.1365-3156.2008.02007.x PMID: 18397396

29. Simon F, Mura M, Pagès F, Morand G, Truc P, Louis F, et al. Urban transmission of human African trypanosomiasis, Gabon. Emerg Infect Dis. 2012; 18(1): 165–7. https://doi.org/10.3201/eid1801.111384 PMID: 22261276

30. Richter J, Göbel S, Göbel T, Westenfeld R, Müller-Stöver I, Häussinger D. A returning traveller with fever, facial swelling, and skin lesions. BMJ. 2012; 344: e2092. https://doi.org/10.1136/bmj.e2092 PMID: 22442353

31. Cottle LE, Peters JR, Hall A, Bailey JW, Noyes HA, Rimington JE, et al. Multiorgan dysfunction caused by travel-associated African Trypanosomiasis. Emerg Infect Dis. 2012; 18: 287–289. https://doi.org/10.3201/eid1802.111479 PMID: 22305185

32. Meltzer E, Lesher M, Steinlauf S, Michaeli S, Sidi Y, Schwartz E. Human African Trypanosomiasis in a traveler: diagnostic pitfalls. Am J Trop Med Hyg. 2012; 87: 264–266. https://doi.org/10.4269/ajtmh.2012.11-0512 PMID: 22855756

33. Wise E, Eason N, Watson J, Bailey R, Brown M. A psychiatric diagnosis overturned by a blood film. Clin Med 2012; 12(3): 295–296; https://doi.org/10.7861/clinmedicine.12-3-295

34. Pasternak J, Wey SB, Silveira PA, Camargo TZ. An African visitor in Brazil. Einstein (Sao Paulo) 2013; 11: 261–262. https://doi.org/10.1590/s1679-45082013000200022 PMID: 23843072

35. Wengert O, Kopp M, Siebert E, Stenzel W, Hegasy G, Suttorp N, et al. Human African trypanosomiasis with 7-year incubation period: clinical, laboratory and neuroimaging findings. Parasitol Int. 2014; 63 (3): 557–60. https://doi.org/10.1016/j.parint.2014.02.003 PMID: 24613272

36. Elliott I, Patel T, Shah J, Venkatesan P. West-African trypanosomiasis in a returned traveller from Ghana: an unusual cause of progressive neurological decline. BMJ Case Rep. 2014; bcr2014204451.

37. Abril V, Ramos JL. West African Trypanosomiasis with Central Nervous System Involvement. Am J Trop Med Hyg. 2016; 95(3): 499. Epub 2016/09/02. https://doi.org/10.4269/ajtmh.16-0117 PMID: 27582522
38. Denny MC, Lai LL, Laureno R. Human African Trypanosomiasis Encephalitis in the United States: Serial Magnetic Resonance Imaging. Neurohospitalist. 2016; 6(4): 170–173. https://doi.org/10.1177/1941874416637403 PMID: 27695600

39. Streit JA, Matsumoto E. African Trypanosomiasis. N Engl J Med. 2016;15; 375(24): 2380. https://doi.org/10.1056/NEJMicm1604333 PMID: 27974038

40. Simarro PP, Franco J, Diarra A, Postigo JA, Jannin J. Update on field use of the available drugs for the chemotherapy of human African trypanosomiasis. Parasitology. 2012; 139(7): 842–6. https://doi.org/10.1017/S0031182012000169 PMID: 22309684

41. ProMED-mail. Trypanosomiasis–Netherlands: ex Malawi. Archive Number 20181124.6162718. 24 November 2018. https://promedmail.org/promed-post/?id=6162718.

42. ProMED-mail. Trypanosomiasis–South Africa: ex Zambia, ex Malawi. Archive Number 20181224.6221997. 24 December 2018. https://promedmail.org/promed-post/?id=6221997.

43. ProMED-mail. Trypanosomiasis, African–South Africa (04): ex Malawi (Vwaza Marsh Game Reserve). Archive Number 20191018.6734681. 18 October 2019. https://promedmail.org/promed-post/?id=6734681.

44. ProMED-mail. Trypanosomiasis, African–South Africa (03): ex Malawi (Vwaza Marsh Game Res). Archive Number 20191016.6730249. 16 October 2019. https://promedmail.org/promed-post/?id=6730249.

45. Wolf T, Wichelhaus T, Götting S, Kleine C, Brodt HR, Just-Nuebling G. Trypanosoma brucei rhodesiensis infection in a German traveller returning from the Masai Mara area, Kenya. Euro Surveill. 2012; 17(10): pii = 20114. https://doi.org/10.2807/ese.17.10.20114-en.

46. ProMED-mail. Trypanosomiasis-Human Germany ex Kenya: Masai Mara. Archive number: 20120222.1049305. 2 Feb 2012. Available from: http://www.promedmail.org/direct.php?id=20120222.1049305.

47. Gobbi F, Bisoffi Z. Human African trypanosomiasis in travellers to Kenya. Euro Surveill. 2012; 17(10): pii = 20109. https://doi.org/10.2807/ese.17.10.20109-en. PMID: 22433593

48. Clerinx J, Vlieghe E, Asselman V, Van de Casteele S, Maes MB, lejon V. Human African trypanosomiasis in a Belgian traveller returning from the Masai Mara area, Kenya, February 2012. Euro Surveill. 2012; 17(10): pii = 20111. https://doi.org/10.2807/ese.17.10.20111-en. PMID: 22433595

49. ProMED-mail. Trypanosomiasis-Belgium ex Kenya: (Masai Mara). Archive number: 20120222.1049305. 22 Feb 2012. Available from: http://www.promedmail.org/direct.php?id=20120222.1049305.

50. Jelinek T, Bisoffi Z, Bonazzi L, van Thiel P, Bronner U, de Frey A, et al. Cluster of African trypanosomiasis in travellers to Tanzanian national parks. Emerg Infect Dis. 2002; 8: 634–635.

51. Sudarshi D, Brown M. Human African trypanosomiasis in non-endemic countries. Clin Med. (Lond). 2015; 15(1): 70–3. https://doi.org/10.7861/clinmedicine.15-1-70 PMID: 25650203

52. Migchelsen SJ, Büscher P, Hoepelman AI, Schallig HD, Adams ER. Human African trypanosomiasis: a review of non-endemic cases in the past 20 years. Int J Infect Dis. 2011; 15(8): e517–24. https://doi.org/10.1016/j.ijid.2011.03.018 PMID: 21683638

53. Patel NK, Clegg A, Brown M, Hyare H. MRI findings of the brain in human African trypanosomiasis: a case series and review of the literature. BJR Case Rep. 2018; 4(4): 20180039. https://doi.org/10.1259/bjrccr.20180039 PMID: 30931144

54. Luna LP, Meleki Z, Shanechi AM, Yedavalli V, Civelek AC. Correlation of PET/CT and Brain MRI Findings in Human African Trypanosomiasis Encephalitis. Clin Nucl Med. 2022;1; 47(1): e26-e28. https://doi.org/10.1097/RLU.0000000000003801 PMID: 34284471

55. Xiao Z, Dong A, Wang Y. FDG PET/CT in a Case of Human African Trypanosomiasis (Sleeping Sickness). Clin Nucl Med. 2018; 43(8): 619–622. https://doi.org/10.1097/RLU.0000000000002149 PMID: 29863573

56. Neuberger A, Meltzer E, Leshem E, Dickstein Y, Stienlauf S, Schwartz E. The Changing Epidemiology of Human African Trypanosomiasis among Patients from Nonendemic Countries –1902–2012. PLoS ONE 2014; 9(2): e88647. https://doi.org/10.1371/journal.pone.0088647 PMID: 24588363

57. Truc P, Büscher P, Cuny G, Gonzatti MI, Jannin J, Joshi P, Juyal P, et al. Atypical human infections by animal trypanosomes. PLoS Negl Trop Dis. 2013 Sep 12; 7(9):e2256. https://doi.org/10.1371/journal.pntd.0002256 eCollection 2013. PMID: 24069464

58. Kumar R, Gupta S, Bhutia WD, Vaid RK, Kumar S. Atypical human trypanosomiasis: Potentially emerging disease with lack of understanding. Zoonoses Public Health. 2022 Jun; 69(4):259–276. https://doi.org/10.1111/zph.12945 PMID: 35355422

59. Pale CA, Vigna L. Images in clinical medicine. African trypanosomiasis in Argentina. N Engl J Med. 2013; 369(8): 763. https://doi.org/10.1056/NEJMcm1211777 PMID: 23964938
60. ProMED-mail. Trypanosomiasis–USA ex Zimbabwe. Archive Number 20121013.1341050. 13 Oct 2012. https://promedmail.org/promed-post/?id=20121013.1341050.

61. ProMED-mail. Trypanosomiasis–Sweden ex Tanzania. Archive number: 20121222.1465181. 22 Dec 2012. http://www.promedmail.org/direct.php?id=20121222.1465181.

62. National Institute for Communicable diseases. East African Trypanosomiasis. Communicable Diseases Communiqué. 2012; 11(12): 3. https://www.nicd.ac.za/assets/files/NICD-NHLS%20Communicable%20Disease%20Communique%C3%A9_December%202012(1).pdf.

63. National Institute for Communicable diseases. East African Trypanosomiasis. Communicable Diseases Communiqué 2013; 12(2): 3–4. https://www.nicd.ac.za/assets/files/NICD-NHLS%20Communicable%20Disease%20Communique%C3%A9_February%202013(2).pdf.

64. National Institute for Communicable Diseases. Imported East African Trypanosomiasis. Communicable diseases Communiqué 2014; 13(12): 7–8. https://www.nicd.ac.za/assets/files/NICD-NHLS%20Communicable%20Disease%20Communique%C3%A9_DECEMBER%202014.pdf.

65. Aggarwal A, Singhal T, Borade P, Hachaambwa L, Munshi M, Sanghvi D, et al. Parkinsonism in Human African Trypanosomiasis: Clinical course, imaging findings and treatment-related challenges. [abstract]. Mov Disord. 2017; 32(suppl 2). https://www.mdsabstracts.org/abstract/parkinsonism-in-human-african-trypanosomiasis-clinical-course-imaging-findings-and-treatment-related-challenges/.

66. ProMED-mail. Trypanosomiasis, African–Canada ex Zambia. Archive Number 20150904.3625005. 04 September 2015. https://promedmail.org/promed-post/?id=3625005.

67. Gómez-Junyent J, Pinazo MJ, Castro P, Fernández S, Mas J, Chaguaceda C, et al. Human African Trypanosomiasis in a Spanish traveler returning from Tanzania. PLoS Negl Trop Dis. 2017; 11(3): e0005324. https://doi.org/10.1371/journal.pntd.0005324 PMID: 28358876

68. Basíldas G, Merino A. Human African trypanosomiasis diagnosis by peripheral blood smear review in a Spanish traveler. Blood. 2016; 126: 167.

69. Geosentinel. 23 October 2015: East African Trypanosomiasis Belgium ex Uganda.

70. Huits R, De Ganck G, Clerinx J, Buescher P, Bottieu E. A veterinarian with fever, rash and chancre after holidays in Uganda. J Travel Med. 2018; 25(1). https://doi.org/10.1093/jtm/tay104 PMID: 29688491

71. Liu Q, Chen XL, Chen MX, Xie HG, Liu Q, Chen ZY, et al. Trypanosoma brucei rhodesiense infection in a Chinese traveler returning from the Serengeti National Park in Tanzania. Infect Dis Poverty. 2018; 7(1): 50. https://doi.org/10.1186/s40249-018-0432-5 PMID: 29779491

72. Sun LH. Medical detectives raced to save a man from a rare, ‘universally lethal’ disease. The Washington Post December 22, 2016. https://www.washingtonpost.com/news/to-your-health/wp/2016/12/22/medical-detectives-raced-to-save-a-man-from-a-rare-universally-lethal-disease/.

73. Geosentinel. 24 May 2017 ALERT—Trypanosomiasis—The Netherlands ex Tanzania.

74. ProMED-mail. Trypanosomiasis Netherlands: ex Tanzania. Archive Number 20161226.4723752. 26 December 2016. https://promedmail.org/promed-post/?id=4723752.

75. Liu Q, Chen XL, Chen MX, Xie HG, Liu Q, Chen ZY, et al. Trypanosoma brucei rhodesiense infection in a Chinese traveler returning from the Serengeti National Park in Tanzania. Infect Dis Poverty. 2018; 7(1): 50. https://doi.org/10.1186/s40249-018-0432-5 PMID: 29779491

76. Geosentinel. 18 January 2018 ALERT—Trypanosoma brucei rhodesiense ex Zambia (South Luangwa National Park).

77. Kumar C. Uttar Pradesh: When veterinary doctors came to the rescue of a human being. Hindustan Times Jan 24, 2018. https://www.hindustantimes.com/lucknow/uttar-pradesh-when-veterinary-doctors-came-to-the-rescue-of-a-human-being/story-MTlnjaPdzXoGWU9koJQzL.html.

78. ProMED-mail. Trypanosomiasis, African–South Africa: ex Zambia. Archive Number 20190320.6377064. 20 March 2019. https://promedmail.org/promed-post/?id=6377064.
83. National Institute for Communicable Diseases. East African Trypanosomiasis. Communicable diseases Communiqué 2019; 18(6): 2. https://www.nicd.ac.za/wp-content/uploads/2019/06/NICD-Communicable-Diseases-Communique_June2019_final.pdf.

84. ProMED-mail. Trypanosomiasis, African–Malawi: (Nkhotakota Wildlife Reserve). Archive Number 20190621.6531757. 21 June 2019. https://promedmail.org/promed-post/?id=6531757.

85. ProMED-mail. Trypanosomiasis, African–South Africa (02): ex Uganda. Archive Number 20191002.6704899. 2 September 2019. https://promedmail.org/promed-post/?id=6704899.

86. Shah VV, Patel VM, Vyas P. Human African Trypanosomiasis–A rare case report from India. Indian Journal of Medical Microbiology. 2021. https://doi.org/10.1016/j.ijmmb.2021.06.012 PMID: 34238635

87. Boodman C, Libman M, Ndao M, Yansouni CP. Case Report: Trypanosoma brucei gambiense Human African Trypanosomiasis as the Cause of Fever in an Inpatient with Multiple Myeloma and HIV-1 Coinfection. Am J Trop Med Hyg. 2019; 101(1): 123–125 https://doi.org/10.4269/ajtmh.18-0889 PMID: 31074413

88. Boukobza M, Lariven S, Houze S, Laisssy JP. 3 Tesla serial magnetic resonance imaging of human African trypanosomiasis (Trypanosoma brucei gambiense) and review of the literature. Rev Neurol (Paris). 2021; 177(9): 1166–1182. https://doi.org/10.1016/j.neurol.2020.11.002 PMID: 33648780

89. De Kyvon MALC, Maakaroun-Vermesse Z, Lanotte P, Priotto G, Perez-Simarro P, Guennoc AM, et al. Congenital Trypanosomiasis in Child Born in France to African Mother Emerg Infect Dis. 2016; 22(5): 935–937. https://doi.org/10.3201/eid2205.160133 PMID: 27088460

90. Gaillot K, Lauvin MA, Cottier JP. Vertical transmission of human African trypanosomiasis: Clinical evolution and brain MRI of a mother and her son. PLoS Negl Trop Dis. 2017; 11(7): e0005642. https://doi.org/10.1371/journal.pntd.0005642 PMID: 28750004

91. Sun Y, Huang W, Niu Z, Wang H, Guo J, Hu X, et al. Pathogen identification for an imported case with African trypanosomiasis. Chin J Parasitol Parasit Dis. 2016; 34: 350–354 (in Chinese, abstract in English). PMID: 30148317

92. Hu X, Sun Y, Xia X, Xu L, Min B, Zhou D, Wang L, et al. Photo Quiz: A Man with Lymphadenopathy and Lethargy. J Clin Microbiol. 2016; 54(11): 2631. https://doi.org/10.1128/JCM.03285-14 PMID: 27935830

93. Zhang TT. Nursing care of a case of imported African trypanosomiasis. Chin Nurs Res. 2015; 29(11): 3965–3967.

94. Labriffe M, Roubertou S, David V, Jamme T, Douat-Beyries C, Genet C, et al. La trypanosomose humaine africaine à Limoges: ça fait 40 ans qu’on l’attend. Un cas de Trypanosoma brucei gambiense à Limoges. Poster PP78. Congres Société Française de Parasitologie et la Société Française de Micologie Medicale, Toulouse 2017. https://doi.org/10.13140/RG.2.2.10855.60326 Accessed at https://www.researchgate.net/publication/316754114_Un_cas_de_trypansomose_humaine_africaine_THA_a_Trypanosoma_brucei_gambiense_a_Limoges.

95. Luintel A, Lowe P, Cooper A, MacLeod A, Büscher P, Brooks T, et al. Case of Nigeria-Acquired Human African Trypanosomiasis in United Kingdom, 2016. Emerg Infect Dis. 2017; 23(7): 1225–1227. https://doi.org/10.3201/eid2307.170695 PMID: 28628444

96. Calligaris C, Klapczynski F, Cung H, Grégoire V, Améri A. Meningoencephalite parasitaire: à propos d’un cas de trypanosomose humaine africaine. Pratique Neurologique-FMC. 2018; 9(1): 48–52. https://doi.org/10.1016/j.praneu.2018.01.007

97. Boukobza M, Lariven S, Houze S, Laissy JP. Unusual MRI Findings in African Trypanosoma brucei gambiense Trypanosomiasis: Dentate Nuclei and Hypothalamic Lesions. Am J Trop Med Hyg, 2020; 102(1): 5–6. https://doi.org/10.4269/ajtmh.19-0204 PMID: 31971136

98. Wang X, Ruan Q, Xu B, Gu J, Qian Y, Chen M, et al. Human African Trypanosomiasis in Emigrant Returning to China from Gabon, 2017. Emerg Infect Dis. 2018; 24(2): 400–404. https://doi.org/10.3201/eid2402.171583 PMID: 29350158

99. Morbieu C, Rollin G, Saada N, Botterel F, Limal N, Lepeule R, et al. Un très mauvais voyage. Confusion in a 45-year-old woman. La Rev Médecine Interne 2019; 40: 553–556. https://doi.org/10.1016/j.revmed.2019.05.004 PMID: 31128857

100. Yagnik KJ, Pezo-Salazar A, Rosenbaum D, Jaso JM, Cavuoti D, Nelson B, et al. A Wandering Missionary’s Burden: Persistent Fever and Progressive Somnolence in a Returning Traveler. Open Forum Infect Dis. 2020; 8(8): ofab377. https://doi.org/10.1093/ofid/ofab377 PMID: 34381849