Pretraining Sentiment Classifiers with Unlabeled Dialog Data

Jul. 18, 2018

Toru Shimizu*¹, Hayato Kobayashi*¹,*², Nobuyuki Shimizu*¹
*¹Yahoo Japan Corporation, *²RIKEN AIP
Problem

• The amount of labeled training data
 – You will need at least 100k training records to surpass classical approaches (Hu+ 2014, Wu+ 2014)
 – Large-scale labeled datasets of document classification

Dataset	training	validation	test	total
Stanford Sentiment Tree Bank	8,544	1,101	2,210	11,855
Large Movie Review Dataset	25,000	-	25,000	50,000
SemEval 2014 Task 9 Subtask B	9,684	1,654	5,666	17,004
Previous Work

- Semi-supervised approaches
 - Language model

```
how are you </s>
LSTM-RNN
<s> how are you
pretraining

LSTM-RNN

congratulations!
positive
fine-tuning
```
Previous Work

• Semi-supervised approaches
 – Sequence autoencoder (Dai and Le 2015)
Our Contributions

• Pretraining strategy with *unlabeled dialog data*
 – Pretrain an encoder-decoder model for sentiment classifiers

• Outperform other semi-supervised methods
 – Language model
 – Sequence autoencoder
 – Distant supervision with emoji and emoticons

• Case study based on...
 – Costly labeled sentiment dataset of 99.5K items
 – Large-scale unlabeled dialog dataset of 22.3M utterance-response pairs
Key Idea

- Emotional conversations in a dialog dataset

Utterance	Response
Good luck	Thank you!
I won't forgive you, never	°・(ノД`)・°・° (crying emoticon)
I got home really tired	Good job today!

- Implicitly learn sentiment-handling capabilities through learning a dialog model
Overview of the Proposed Method

• Datasets
 – Large-scale dialog corpus: a set of a large number of unlabeled utterance-response tweet pairs
 – Labeled dataset: a set of a moderate number of tweets with a sentiment label

• Pretraining

• Fine-tuning
Data Preparation

• Dialog data
 – Extract 22.3M pairs of an utterance tweet and its response tweet from Twitter Firehose data

	training	validation	test	total
Dialog data	22,300,000	10,000	50,000	22,360,000

• Sentiment data
 – Positive: 15.0%, Negative: 18.6%, Neutral 66.4%

	training	validation	test	total
Sentiment data	80,591	4,000	15,000	99,591
Model: Dialog Model

- Dialog model
 - One-layer LSTM-RNN encoder-decoder
 - Embedding layer: 4000 tokens, 256 elements
 - LSTM: 1024 elements
 - Representation which encoder gives: 1024 elements
 - Decoder's readout layer: 256 elements
 - Decoder's output layer: 4000 tokens
 - LSTMs of the encoder and decoder share the parameter
Model: Dialog Model

Encoder

- ϕ^{enc}
- Recurrent layer h_t^{enc}
- Embedding layer
- Token ID u_t

Decoder

- ψ^{dec}
- Output layer o_t
- Readout layer
- Recurrent layer h_t^{dec}
- Embedding layer
- Token ID x_t

- α^{dec}

Network Structure

- Encoder RNN
- Decoder RNN
Classification model

- The architecture of the encoder RNN part is identical to that of the dialog model
- Produce a probability distribution over sentiment classes by a fully-connected layer and softmax function
Training: Dialog Model

- Model pretraining with the dialog data
 - MLE training objective
 - 1 GPU (7 TFLOPS)
 - 5 epochs = 15.9 days
 - Batch size: 64
 - Optimizer: ADADELTA
 - Apply gradient clipping
 - Evaluate validation costs 10 times per epoch and pick up the best model
 - Theano-based implementation
Training: Classification Model

• Classifier model training with the sentiment data
 – Apply 5 different data sizes for each method
 • 5k, 10k, 20k, 40k, 80k (all)
 – 5 runs for each method/data size with varying random seeds
 – Evaluate the results by the average of f-measure scores
 – Adjust the duration so that the cost surely converges
 • Pretrained models converge very quickly but those trained from scratch converge slowly
 – The other aspects are the same with pretraining
Proposed Method

• The proposed method: Dial

[Diagram showing a sequence of steps involving LSTM-RNNs:
- Transfer learning from dialog data (how are you)
- Pretraining
- Fine-tuning with sentiment data (congratulations!)]
Baselines with LSTM-RNNs

- **Default**
 - No pretraining
 - Directly trained by the sentiment data

![Diagram](image.png)
Baselines with LSTM-RNNs

- **Lang**
 - Pretrain an LSTM-RNNs as a language model

```
I'm great! </s>

LSTM-RNN

<s> I'm great

transfer

pretraining

LSTM-RNN

congratulations!

positive

fine-tuning

unpaired tweet data

sentiment data
```
• **SeqAE**
 - Pretrain an LSTM-RNNs as a sequence autoencoder (Dai and Le 2015)
• Emoji and emoticon-based distant supervision
 – Prepare large-scale datasets utilizing emoticons or emoji as pseudo labels (Go+ 2009)
 – Positive emoticon examples
 • 😊😊😊😊😊❤️👍❤️❤️❤️✨ (^_^) (∩_∩) (.DrawLine) o(^-^)o
 – Negative emoticon examples
 • 😞😡😢😭😢😢😢❤️❤️❤️(ТДТ) (‘^ ’ *) (／--) (．шло) (‘ △ ’) orz
Baselines with LSTM-RNNs

- **Emo2M** and **Emo6M**
 - Pretrain models as classifier models using pseudo-labeled data

![Diagram showing pretraining and fine-tuning stages for LSTM-RNNs]

- **I'm tired 😞**
 - Transfer learning
 - Pretraining

- **congratulations!**
 - Fine-tuning

- **negative**
- **positive**
- **pseudo-labeled data**
- **sentiment data**
Baselines with Linear Models

- **Data**
 - Use only the sentiment data

- **Preprocessing**
 - Segment text with a defact-standard morphological analyzer, MeCab
 - 50,000 unigrams and 50,000 bigrams
 - +233 emoji and emoticons

- **LogReg**
 - Logistic regression (LIBLINEAR)

- **LinSVM**
 - Linear SVM (LIBLINEAR)
Results: F-measure

![Graph showing F-measure vs. number of training records for different models. The graph includes lines for Default, Dial, Lang, SeqAE, Emo2M, Emo6M, LogReg, and LinSVM. The x-axis represents the number of training records ranging from 5000 to 80000, and the y-axis represents the F-measure ranging from 0.45 to 0.75. Each model has a distinct line color and marker.](image-url)
Source tweet	Generated reply	Source tweet	Generated reply
明日は待ちに待ったコンサートだよ	いいね！	Tomorrow I have a concert I’ve been really looking forward to	That’s nice!
私もっと（'∀`)人（'∀`) (%)♪	(*^__^*)	Me too ♪ (high five emoticon) ♪	:)
残念だったね	(’・ω・`)	I’m sorry to hear that	:(
後でそっちに行くよ	おっけー！	I’m coming later	OK!
頭痛いよ	うそ、お大事に…	I have a headache	Really? Take care of yourself...
アメトーク見たかった～	おもろいよね～	I missed Ame Talk (a TV program)	Watching it is fun
もう、ごめんじゃ済まされないだろう、呆れる	それはそれで困る。。	Sorry doesn’t cut it anymore. I gave up on you.	That’s too bad...
大学合格したよ！	おめでとう！！	I was admitted by the university!	Congratulations!!
もうだめだ	そんなことないよ（’・ω・’）	It’s all over for me	I don’t think so :(
嘘つきめ。	ひどい	You liar.	You nasty
ちょうどいいね	まじかーありがとう！！！	That’s just right	Really? Thanks!!!
それ、すごい好き	うん、きっかけよいね	I really like it	Yeah, it’s so cool

Replies generated by the pretrained encoder-decoder model
Conclusion

• Effectiveness of the pretraining strategy using paired dialog data for sentiment analysis
 – Even more effective in extremely low-resource situations
 – Character-based processing

• Future work
 – Explore combinations of a large-scale unlabeled dataset and a supervised task
 – Exploit other kinds of structures