Lepton flavor violating processes in the minimal 3-3-1 model with singlet sterile neutrinos

A. C. B. Machado, J. Montaño and V. Pleitez
Instituto de Física Teórica–Universidade Estadual Paulista
R. Dr. Bento Teobaldo Ferraz 271, Barra Funda
São Paulo - SP, 01140-070, Brazil

(Dated: 11/21/2016)

Abstract

We consider the minimal 3-3-1 model with three sterile neutrinos transforming as singlet under the SU(3) L \otimes U(1) X symmetry. This model, with or without sterile neutrinos, predicts flavor violating interactions in both quark and lepton sectors, since all the charged fermions mass matrices cannot be assumed diagonal in any case. Here we accommodate the lepton masses and the Pontecorvo-Maki-Nakagawa-Sakata matrix at the same time, and as consequence the Yukawa couplings and the unitary matrices which diagonalize the mass matrices are not free parameters anymore. We study some phenomenological consequences, i.e., l_i \to l_j l_k \bar{l}_k and l_i \to l_j \gamma which are induced by neutral and doubly charged particles present in the model. In particular we find that if the decay \mu \to eee is observed in the future, the only particle in the model that could explain this decay is the doubly charged vector bilepton.

PACS numbers: 12.60.Fr 12.15.-y 14.60.Pq

I. INTRODUCTION

It is well known that models with 3-3-1 gauge symmetries predict flavor violating interactions in both quark and lepton sectors, since all the charged fermions mass matrices cannot be assumed diagonal in any case. On the other hand, it has been confirmed that neutrinos are massive particles and that there is mixing in the leptonic charged current. In the context of the standard model (SM), the massive neutrinos imply that the charged currents are non-diagonal and they are parametrized by the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, which has been measured in several neutrino oscillation experiments. Nevertheless, in the SM there is no mechanism for generating neutrino masses neither the PMNS matrix. Hence, it is necessary to search extensions of the SM that implement a mechanism for solving both issues, keeping at the same time compatibility with the data of lepton flavor violating (LFV) processes.

Here we will implement a mechanism for generating lepton masses and the PMNS matrix in the context of the minimal 3-3-1 (m331) model in which the lepton sector transforms as triplets \Psi = (\eta^{(1)}, \psi^{(2)}, \psi^{(3)}) \sim (3, 0) under the SU(3) L \otimes U(1) X symmetry. We will also study the phenomenological effects of such mechanism in some LFV processes like \mu \to eee, where \mu, \tau, l_{23} = e, \mu, l_i \to l_j \gamma and \eta \to l_i l_j.

Moreover, we will work in the context of the non-trivial SM limit of our model obtained when we impose \rho_0 = 1, where \rho_0 = m_W^2/c_W^2 m_{Z_1}^2, being m_{Z_1} and m_W the masses of the respective lightest Z_1 neutral and W charged vector bosons, corresponding to the Z and W gauge bosons in the SM. Under this condition, all of the known fermions to Z_1 are the same as the respective couplings of these fermions to Z in the SM, and the exotic quarks couplings to Z_1 and Z_2 depend only on the electroweak angle \theta_W. In the m331 model, in which the lepton sector includes only the known leptons, this condition fixes the vacuum expectation values (VEVs) in terms of \theta_W:

\begin{equation}
\begin{aligned}
v_\rho^2 &= \frac{1 - 4 s_W^2}{2 c_W^2} v_W^2, \\
v_\eta^2 + 2 v_s^2 &= \frac{1 + 2 s_W^2}{2 c_W^2} v_W^2,
\end{aligned}
\end{equation}

only \chi_v remains free. Here v_W^2 is related to the standard electroweak scale, and v_s is the VEV of the neutral component of the sextet which contributes to the charged lepton masses, v_\rho and v_\eta are the VEVs of the triplets that contribute to the quark masses, but \eta also may contribute to the charged lepton masses. Analysis of the quark sector assuming was done in Ref. [7], there was assumed that the VEVs of the triplets \eta and \rho satisfy \eta^2 + \rho^2 \approx (246 \text{ GeV})^2. Hence,

*Electronic address: ana@ift.unesp.br
1Electronic address: montano@ift.unesp.br
2Electronic address: vicente@ift.unesp.br
\(v_{s_2}\) was considered negligible and for this reason the sextet is not enough, as we will show below, to give the correct mass to the charged leptons using only renormalizable Yukawa interactions. Notice that this fixes three otherwise almost arbitrary VEVs (in GeV): \(v_0 \sim 240, v_p \sim 54,\) and \(2v_p^2 < 246^2 - v_p^2 - v_0^2\). However, since the degrees of freedom of the sextet are still there and may be heavy, they can induce the dimension five effective operator given in Ref. 3. For these reasons it is necessary to add to the m331 model, three sterile neutrinos. See more details in Sec. III.

The m331 model has doubly charged vector and scalar bileptons, generically denoted by \(X^{--}\), with interactions that violate the individual lepton flavor number by single or two units, for instance \(X^{--} \to \mu e^-\) and \(X^{--} \to e^- e^-\), respectively. Hence, in this models the decays \(\tau \to \mu \mu \mu, eee\) (the three leptons may be all different) and \(\mu \to eee, e\gamma, \ldots\) are allowed and can be used to constraint the masses of the bileptons once the unitary matrices, \(V_L^\mu_R\) and \(V_L^\nu\), needed to diagonalize the lepton matrices, are fixed. In fact, these processes are prediction of this sort of model 11.

These flavor violation processes in the m331 model were considered many years ago by Liu and Ng 10. However, at that time almost nothing was known about the lepton mixing and neutrino masses. Here we will take into account this new information and also consider the effects of the neutral Higgs bosons which in this model have non-diagonal interactions in the flavor space. We stress that even if neutrinos were massless (at tree level) the lepton flavor number is not conserved in this model. Here we will not consider neither CP violation, however see 11.

Generally, in models with FCNC the unitary matrices, \(V_L^\mu_R\) and \(V_L^\nu\), that are needed to diagonalize the mass matrix in each charged sector, survive in different places of the Lagrangian when it is written in terms of the mass eigenstates fields. For instance, in the present model, besides the \(V_{PMNS} = V_L^\mu_R V_L^\nu\) matrix in the lepton sector we have interactions with the doubly charged vector bilepton field that involve \(V_L = (V_R^\mu)^T V_L\), and with doubly charged scalars with \(K_L = (V_R^\nu)^G V_R^\nu\) where \(G^\mu\) is a symmetric matrix of Yukawa couplings. For this reason, we first fit all of these unitary matrices by getting the known masses and mixing matrices in the interactions with \(W_{331}\), and only then study the phenomenological consequences constraining the masses of the extra particles in the model.

In the absence of a compelling model new physics effects can be parametrized by using effective interactions in which all operators of a given dimension are classified. For instance, effective operators which violate flavor, baryon and lepton numbers can be used in a model independent way. These operators depends on the unitary matrices above and on an energy scale, \(\Lambda\), which characterizing the new physics and is larger than the electroweak scale 12–14. However, in the present case, we have a well behaved model and all new interactions are formulated using only renormalizable interactions, since even the effective interactions used for generating the charged lepton masses arising as a consequence of fundamental Yukawa interactions of leptons with the sextet. Moreover, even if effective operators are used to fit the unitary matrices and the \(\Lambda\) scale, eventually we have to verify if these unitary matrix entries obtained in this way, do correctly diagonalize the respective fermion masses.

Our main result, using the strategy discussed above, i.e., first fit all unitary matrices, is that the strongest constraint on the doubly charged vector bilepton \(U^{++}\), comes from \(\mu \to eee\). We will show that unlike processes in the quark sector 8, 10 in leptonic processes the scalar contributions are suppressed. This sort of models predict also flavor changing neutral currents (FCNC) in the scalar sector, thus we consider also \(h^0 \to \ell \ell\), at tree level, in a situation in which there is no more free parameters in the Yukawa coupling since all of them are already fixed when we obtain the matrices \(V_L^\mu_R, V_L^\nu\), the PMNS mixing matrix and lepton masses.

The structure of the article is as follows, in Sec. II we review briefly the m331 model plus three sterile (under the 3-3-1 gauge symmetry) neutrinos. In Sec. III we present the mass matrices of the lepton sector, as well a numerical parametrization for the \(V_L^\mu_R, V_L^\nu\) matrices that will be used in the present study. The interactions with the doubly charged vector bosons are presented in Sec. IV A and the interactions with the doubly charged and neutral scalars are presented in Sec. IV B. In Sec. V we present the phenomenological consequences of our analysis. The last section VI is devoted to our conclusions. We comment three other numerical parametrization for the matrices \(V_L^\mu_R\) in the Appendix A this is done just to show how the constraints on \(m_{U^{++}}\) depend on those matrices. Finally, in Appendix B we give samples of the amplitudes of the vector doubly charged bilepton contribution.

II. THE M331 WITH SINGLET RIGHT-HANDED NEUTRINOS

In the m331 model the scalar sector is conformed by \(\eta = (\eta^0, \eta^-_1, \eta^+_2)^T \sim (3, 0),\) \(\rho = (\rho^+, \rho^0, \rho^{++})^T \sim (3, 1),\) \(\chi = (\chi^-, \chi^{--}, \chi^0)^T \sim (3, -1),\) and the sextet \((6, 0)\)

\[
S = \begin{pmatrix}
\frac{s_1}{\sqrt{2}} & \frac{s_2}{\sqrt{2}} & \frac{s_1}{\sqrt{2}} \\
\frac{s_1}{\sqrt{2}} & \frac{s_2}{\sqrt{2}} & \frac{s_1}{\sqrt{2}} \\
\frac{s_1}{2} & \frac{v_1}{\sqrt{2}} & \frac{v_1}{\sqrt{2}}
\end{pmatrix},
\]

(2)
where the numbers between parentheses denote the transformation properties under \(SU(3)_L \otimes U(1)_X\), respectively. In this model there are only left-handed neutrinos and they are naturally Majorana particles. The sextet \((6,0)\), in principle, gives mass to both the charged leptons and neutrinos. The Yukawa interactions are given by

\[
-\mathcal{L}_l = \epsilon_{ijk}(\Psi)_i^{\alpha} G^{\alpha}_{ab} \Psi_{bj} \eta_k + (\Psi)_i^{\alpha} G^{\alpha}_{ab} S^a S_i^{a*} + H.c.,
\]

and we obtain the following mass matrices in the lepton sector

\[
M^l = \frac{v_1}{\sqrt{2}} G^l + \frac{v_2}{2} G^s, \quad M^\nu = \frac{v_3}{\sqrt{2}} G^s.
\]

Note that the matrix for the charged leptons has two contributions, one from a symmetric matrix \(G^s\) and other from an antisymmetric matrix \(G^l\). An \(3 \times 3\) antisymmetric matrix has the eigenvalues \(\{0, -m, m\}\), therefore, to adjust the mass of charged leptons, the largest contribution would have to come from the symmetric matrix, plus a minor contribution from the antisymmetric matrix. This could be possible if \(v_1 \ll v_2\), however, as we said above that \(v_1 \sim 240\) GeV, hence \(v_1 \gg v_2\), condition which is incompatible with the SM limit discussed in the Introduction. At first sight this problem could be avoided if the interaction with \(\eta\) is forbidden. However, if we avoid this interaction, the mass matrix of the charged lepton is proportional to the neutrino mass matrix and, for this reason, both mass matrices are diagonalized by the same unitary matrix and it is not possible to obtain a realistic PMNS matrix defined as \(V_{\text{PMNS}} = V_{\text{T}l}^T V_{\nu}^l\) since in this case \(V_{\text{PMNS}} = I\).

One possibility for generating a realistic lepton mass spectra could be generated by radiative corrections if there are interactions in the scalar sector that violates explicitly the conservation of \(L\). The assignment of the total lepton number \(L\) is:

\[
L(\eta_2, \chi^-, \chi^0, \rho^-, V^-_\mu, U^-_\mu, s_1^-, s_0^-, S_1^-, S_2^+, S_3^+) = +2,
\]

only \(\eta_1, \eta_0, \rho^+, \rho_0, \chi^0, s_1^+, S_0^+\) carry \(L = 0\).

Another way, that we will use here, is introducing right-handed neutrinos, singlet of \(SU(3)_L \otimes U(1)_X\) implementing a type-I seesaw mechanism. The only source of total lepton number violation is the Majorana mass term for the right-handed neutrinos. In this case the lepton masses are generated by the triplets \(\eta, \rho\) and \(\chi\) and a dimension five operator induced by the heavy sextet as in Ref. [8]. Hence, the Yukawa interactions are

\[
-\mathcal{L}_{\nu}^{\text{lep}} = -\frac{\epsilon_{ijk}}{\Lambda_s} (\Psi)_i^{\alpha} G^{\alpha}_{ab} \Psi_{bj} \eta_k + \frac{1}{2\Lambda_s} (\Psi)_i^{\alpha} G^{\alpha}_{ab} (\chi^0 + \rho^0) \Psi_b + H.c.
\]

where \(\Lambda_s\) is a mass scale generated by the effective interactions induced by the heavy scalar. It means that FCNC processes in the lepton and quark sector are predictions of this model. The scalar contributions can not, in general, be neglected anymore. At least this is the case in the quark sector [8 10].

III. THE LEPTON MASS MATRICES

From [9] the lepton mass matrices are given by

\[
M^\nu_{ab} \approx -\frac{v_2^2}{2} G^\nu M R G^{\nu T}, \quad M^l_{ab} = G^l_{ab} \frac{v_3}{\sqrt{2}} + \Lambda_s G^s_{ab} v_\rho v_\chi.
\]

where \(M_R\) is a mass scale generated by the violation of the lepton number \(L\). An interesting possibility is when \(M\) is diagonal and \(M_3 = M_R \gg M_1, M_2\). Defining \(r_i = M_i/M_R\), \(i = 1, 2\), we have \(M = M_R \text{diag}(r_1, r_2, 1)\) that \(M^{-1} = (1/M_R)M\) where \(M = \text{diag}(r_1, r_2, 1)\) and \(r_i = M_i/M_R\). For the sake of simplicity we will assume that all right-handed neutrinos are mass degenerated and \(M^{-1} = (1/M_R)I\). Moreover, in the following we assume \(v_\chi \approx \Lambda_s\) and, as in Ref. [8], \(v_\rho \approx 54, v_3 \approx 240\) GeV, and \(M_R \approx 1\) TeV.

The mass matrices in the charged sector \(M^l\) and in the neutrino sector \(M^\nu\) are diagonalized as \(M^\nu = V_{\nu}^T M^\nu V_{\nu}\) and \(M^l = V_{l}^T M^l V_{l}\), where \(M^\nu = \text{diag}(m_1, m_2, m_3)\) and \(M^l = \text{diag}(m_\mu, m_\mu, m_\tau)\). The relation between symmetry eigenstates (primed) and mass (unprimed) fields are \(V_{l,R}^{l, R} = V_{l,R}^{\nu} V_{l,R}^{\nu}\), where \(V_{l,R}^{l, R} = (e^l, \mu^l, \tau^l, \nu^l)_{l,R}\) and \(V_{\nu}^{l, R} = (V_{l}^{l, R}, V_{\nu}^{l} V_{\nu}^{l}, V_{\nu}^{l} V_{\nu}^{l})_{l,R}\), \(V_{l,R}^{l, R} = (e^l, \mu^l, \tau^l)_{l,R}\) and \(V_{\nu}^{l, R} = (V_{l}^{l, R}, V_{\nu}^{l} V_{\nu}^{l}, V_{\nu}^{l} V_{\nu}^{l})_{l,R}\).

We will solve simultaneously the equations

\[
V_{l,R}^{l, R} M^l V_{l,R}^{l, R} = (M^l)^2 (a), \quad M^\nu = (V_{\nu}^{l, R})^T M^\nu V_{\nu}^{l, R} (b),
\]

\[
V_{l,R}^{l, R} M^l V_{l,R}^{l, R} = (M^l)^2 (a), \quad M^\nu = (V_{\nu}^{l, R})^T M^\nu V_{\nu}^{l, R} (b),
\]
in order to obtain the matrices $V_{L,R}^I$ and $V_{L,R}^\nu$, and at the same time the PMNS matrix defined as $V_{PMNS} = V_{L}^I V_{L}^\nu$. For that we must assign values to the Yukawas, G_{ab}^ν, G_{ab}^ν, and G_{ab}^ν, using a computational routine in Mathematica program that solves simultaneously the Eqs. (3b) and $V_{PMNS} = V_{L}^I V_{L}^\nu$. First, let us consider the charged lepton masses in Eq. (8a). As a result the we obtain the following values for the Yukawa couplings: the symmetric matrix V_L and the antisymmetric matrix V_R. how the constraint on the mass of the vector bilepton ν_{μ}, coming from the decay $\mu \rightarrow e e \bar{e}$, is affected when other parametrizations are used.

Next, to solve the Eqs. (8b) and $V_{PMNS} = V_{L}^I V_{L}^\nu$ we assume that the latter matrix, taken from Eq. (2.1) of Ref. [3], can vary within the 3σ experimental error range, resulting in the following values for the Yukawa couplings ($\times 10^{-9}$): $G_{11}^\nu = 0.001475 - 0.001601, G_{12}^\nu = -(0.002994 - 0.00096), G_{13}^\nu = -0.00452 - 0.001169, G_{22}^\nu = 0.008987 - 0.004015, G_{23}^\nu = -(0.003125 - 0.00944), G_{33}^\nu = 0.01833 - 0.02317. With them we obtain

$$V_L^\nu \approx \begin{pmatrix}
0.85 - 0.89 & 0.42 - 0.52 & 0.11 - 0.19 \\
0.40 - 0.49 & 0.69 - 0.91 & 0.14 - 0.53 \\
0.20 - 0.23 & 0.05 - 0.51 & 0.84 - 0.97
\end{pmatrix},$$

where we assume the normal mass hierarchy $\nu^\nu = (0, \sqrt{m_{12}}, \sqrt{m_{23}})$ for the central values in PDG. Thus from V_L^ν in (9) and V_L^ν in (10):

$$|V_{PMNS}| \approx \begin{pmatrix}
0.81 - 0.86 & 0.51 - 0.53 & 0.07 - 0.23 \\
0.46 - 0.53 & 0.54 - 0.82 & 0.54 - 0.65 \\
0.23 - 0.23 & 0.26 - 0.65 & 0.54 - 0.72
\end{pmatrix},$$

note that these range of values overlap those given in Ref. [3]. If in contrast we assume the inverse mass hierarchy $\nu^\nu = (\sqrt{m_{23}}, \sqrt{m_{12}}, 0)$ we have to interchange in the Eq. (10) the first and the third column as a consequence we will obtain a totally different Eq. (9) in order to obtain Eq. (11).

The phenomenology of the model depends strongly on the numerical values of the matrices in Eq. (9), (10) and (11). To show this, in the Appendix A we present other parametrizations of the matrices and we discuss in the Conclusions how the constraint on the mass of the vector bilepton U_{μ}^{++}, from the decay $\mu \rightarrow e e \bar{e}$, is affected when other parametrizations are used.

IV. INTERACTIONS

The matrices $V_{L,R}^I$ in (9) will appear in the leptonic interactions. In Sec. [IV A] we consider these interactions with doubly charged vector bosons and in Sec. [IV B] with doubly charged and neutral scalars.

A. Interaction with the doubly charged vector bosons

The interactions of leptons with the doubly charged vector boson U_{μ}^{++} are obtained from the Lagrangian

$$\mathcal{L}_{\text{leptons}} = \frac{1}{2} \overline{\Psi}^\nu \gamma^\mu D_\mu \Psi + \overline{\Psi}^\nu \gamma^\mu D_\mu \Psi^c,$$

where the covariant derivatives for leptons $\Psi \sim (3, 0)$ are defined in the m331 model as

$$D_\mu = \partial_\mu 1 + i g M_\mu, \quad D^c_\mu = \partial_\mu 1 - i g M_\mu^c,$$

with $M_\mu \equiv \mathcal{W}_\mu \cdot \mathcal{T}$ we get

$$M_\mu = \begin{pmatrix}
W_\mu^3 + \frac{1}{\sqrt{3}} W_\mu^8 & \frac{\sqrt{2}}{\sqrt{3}} W_\mu^m & \frac{\sqrt{2}}{\sqrt{3}} U_\mu^- + \frac{2}{\sqrt{3}} W_\mu^8 \\
\frac{\sqrt{2}}{\sqrt{3}} W_\mu^m & -W_\mu^3 + \frac{1}{\sqrt{3}} W_\mu^8 & \frac{\sqrt{2}}{\sqrt{3}} U_\mu^- - \frac{2}{\sqrt{3}} W_\mu^8 \\
\frac{\sqrt{2}}{\sqrt{3}} U_\mu^- + \frac{2}{\sqrt{3}} W_\mu^8 & \frac{\sqrt{2}}{\sqrt{3}} U_\mu^- - \frac{2}{\sqrt{3}} W_\mu^8 & 0
\end{pmatrix},$$

(14)
where the non hermitian gauge bosons are defined as

\[W_\mu^+ = (W_\mu^1 - iW_\mu^2)/\sqrt{2}, \quad V_\mu^+ = (W_\mu^1 + iW_\mu^2)/\sqrt{2}, \quad U_\mu^{++} = (W_\mu^6 + iW_\mu^7)/\sqrt{2}. \]

(15)

In this case the charged current coupled to the doubly charged vector boson as

\[
L^U = -\frac{g}{2\sqrt{2}} \left[\left(U^R \right)_{aL} \gamma^\mu V_{Uab} b_L - \left(U^L \right)_{aR} \gamma^\mu V_{Uab} b_R \right] U_\mu^{++} + H.c.
\]

\[
= -\frac{g}{2\sqrt{2}} \bar{\ell}_a \gamma^\mu \left(V_{Uab} P_L - V_{Uab} P_R \right) b_L U_\mu^{++} + H.c.
\]

\[
= -\frac{g}{2\sqrt{2}} \bar{\ell}_a \gamma^\mu \left(V_{Vab} - V_{Aab} \gamma_5 \right) b_L U_\mu^{++} + H.c.,
\]

(16)

with \(P_{R,L} = \left(1 \pm \gamma_5 \right) / 2 \) and \(V_U \equiv V_{R,L}^T V_L^I \), where \(V_{R,L}^I \) given in Eq. (2) are the matrices that diagonalize the charged lepton matrices. The second line shows that the interactions can be split in left- and right-handed currents, as first noted by Liu and Ng [10]. In the third line we have split the interaction in vector and axial vector currents via the introduction of an antisymmetric matrix \(V_V = (V_U - V_U^T) / 2 \) and a symmetric one \(V_A = (V_U + V_U^T) / 2 \). Notice that the diagonal family couplings are purely axial vector. However, in our calculations we will only use left-handed currents, see the discussion in the Appendix B.

Using the numerical values of the matrices \(V_{L,R}^I \) in [9] we get

\[
V_U \approx \begin{pmatrix}
0.999997 & 0.00237676 & 0.000243717 \\
-0.00237672 & 0.999997 & -0.000185706 \\
-0.000243612 & 0.000185128 & 1
\end{pmatrix},
\]

(17)

and

\[
V_V = \begin{pmatrix}
0 & 0.00237674 & 0.000243391 \\
-0.00237674 & 0 & -0.000185417 \\
-0.000243391 & 0.000185417 & 0
\end{pmatrix}, \quad V_A = \begin{pmatrix}
0.999997 & 10^{-8} & -10^{-7} \\
10^{-8} & 0.999997 & -10^{-7} \\
-10^{-7} & -10^{-7} & 1
\end{pmatrix}.
\]

(18)

Notice that this parametrization of \(V_U \) is almost a diagonal matrix, and this characteristic will impact in the bilepton mass prediction derived from the \(\mu \rightarrow eee \) experimental upper limit. This behaviour will be discussed in detail in Sec. V B. Moreover, we can see from [13] that \(V_V \), which is antisymmetric by construction, has its off-diagonal entries very small in this parametrization. However, we stress that unlike Refs. [17, 18], we cannot assume \(V_V \) in the third line in (10) to be exactly zero because in that case \(V_U \) would be a diagonal matrix, which is not possible by the definition \(V_U \equiv V_{R,L}^T V_L^I \), and notice also that from \(M^T \) in (7) we cannot assume such matrices to be diagonal since the beginning.

B. Interactions with the doubly charged and neutral scalars

From Eq. (6) we obtain the interactions with the mass eigenstate leptons with the doubly charged scalar bosons:

\[
L^V_{CC} = -\frac{1}{\Lambda} \left(\frac{2v_{\chi}}{\sqrt{2}} \bar{\ell}_a \gamma^\mu K_{Lab} b_L \chi^{++} + \frac{2v_{\chi}}{\sqrt{2}} \bar{\ell}_a \gamma^\mu K_{Rab} b_R \rho^{--} \right)
\]

\[
+ \frac{2v_{\chi}}{\sqrt{2}} \bar{\ell}_a \gamma^\mu K_{Lab} \bar{b}_L \chi^{--} + \frac{2v_{\chi}}{\sqrt{2}} \bar{\ell}_a \gamma^\mu K_{Rab} \bar{b}_R \rho^{++} \right) + H.c.
\]

\[
\approx -\frac{\sqrt{2}v_{\chi}}{\Lambda} \left((\bar{a}_R K_{Rab} b_R \rho^{--} + (\bar{a}_L K_{Rab} b_R \rho^{++}) \right)
\]

(19)

where in the third line only the interactions proportional to \(v_{\chi} \) were kept, and we have defined

\[
K_L = V_{L,R}^T G^* V_{L,R}, \quad K_R = V_{R,L}^T G^* V_{R,L}^*. \]

(20)

Since \(G^* \) is a symmetric matrix, \(K_L \) and \(K_R \) are symmetric matrices. For the sake of simplicity we will consider the contribution of just one of the four physical doubly charged scalars, here denoted by \(Y_1^{++} \), and we assume that the
other three are, heavy enough or suppressed by the matrix elements, hence \(\rho^{++} \approx O_{\rho^{1}}Y_{1}^{++} \) and \(\chi^{++} \approx O_{\chi^{1}}Y_{1}^{++} \). Using the Yukawa couplings in Sec. [III] and the the matrices in [I] we obtain:

\[
K_{L} \approx \begin{pmatrix}
0.949736 & 0.23483 & -0.395744 \\
-195.657 & 0.321939 & 3290.41
\end{pmatrix} \times 10^{-5}, \quad K_{R} \approx \begin{pmatrix}
0.949744 & -0.232454 & 0.404881 \\
-195.657 & -0.324448 & 3290.41
\end{pmatrix} \times 10^{-5}.
\] (21)

The charged current of interest for our phenomenology studies are

\[
L_{CC}^{Y} = -\frac{2}{\Lambda} O_{\rho 1} \left(\frac{y_{a}}{a} K_{LRab} \eta_{a}^{*} \eta_{b}^{l} Y_{1}^{++} + \frac{y_{a}}{a} K_{LRab}^{*} l_{b} Y_{1}^{++} \right).
\] (22)

There are also FCNC interactions of lepton with neutral scalars and pseudo-scalars given by

\[
L^{h} = -\frac{y_{a}}{a} \left(\frac{y_{a}}{a} K_{LRab}^{T} \eta_{a}^{*} Y_{R}^{0} + \frac{1}{2} \frac{y_{a}}{a} (K_{LRab}^{T} + K_{LRab}^{T}) \chi_{ab}^{0} \rho_{0a}^{0a} \right) l_{b} + H.c.
\]

\[
\approx -\frac{y_{a}}{a} \left(\frac{y_{a}}{a} K_{LRab}^{T} \eta_{a}^{*} Y_{R}^{0} + \rho_{0a}^{0a} \right) l_{b} + H.c.
\]

\[
= -\frac{y_{a}}{a} H_{ab} c_{b}^{l_{i}} + i a \frac{\gamma_{5} A_{ab} c_{b}^{l_{i}}}{0},
\] (23)

where

\[
K_{LR}^{T} = \eta_{a}^{*} Y_{R}^{0} \approx \begin{pmatrix}
-0.0143978 & -7.36525 & 12.7554 \\
7.36525 & -0.0158071 & -9.11514 \\
-12.7351 & 9.14364 & 0.00479483
\end{pmatrix} \times 10^{-6},
\]

\[
K_{LR}^{T} \approx \begin{pmatrix}
9.50195 & 2.32646 & -3.95932 \\
-2.30121 & -1956.57 & 2.85661 \\
4.05155 & -2.8817 & 3290.41
\end{pmatrix} \times 10^{-6}.
\] (24)

and we have used \(x^{0} = \text{Re} x^{0} + i \text{Im} x^{0} \) with \(\text{Re} x^{0} = \sum_{i=1}^{5} U_{h}^{T} h_{i}^{l} \) and \(\text{Im} x^{0} = \sum_{i=1}^{5} U_{h} A_{i}^{0} \), where \(h_{i}^{l} (A_{i}^{0}) \) are scalar (pseudo-scalar) mass eigenstates, and \(U_{h} A_{i}^{0} \) are 4 \(\times \) 4 orthogonal matrices, also

\[
H_{i} \equiv U_{h}^{T} K_{LR}^{T} + U_{h}^{T} (K_{LR}^{T} + K_{LR}^{*}), \quad A_{i} \equiv U_{h}^{A} K_{LR}^{T} - U_{h}^{A} (K_{LR}^{T} + K_{LR}^{*}),
\] (25)

where we have omitted flavor indices.

V. PHENOMENOLOGICAL CONSEQUENCES

The obtained matrices parametrizations allow us now to study the physical consequences of the m331 model. For that purpose we are going to compute some processes involving lepton flavor number violation \(\Delta F \). Hence for this lepton

\[
U_{h}^{T} K_{LR}^{T} + U_{h}^{T} (K_{LR}^{T} + K_{LR}^{*}) \approx \frac{g_{a}}{2m_{W}} = 9.9 \times 10^{-3},
\] (26)

\[
h^{0} \rightarrow l_{i} \bar{l}_{j}
\]

We start our analysis by tuning our \(h_{i}^{l} \) scalar with the Higgs \(h^{0} \) of the SM, for that purpose we must set the diagonal Yukawas in [25] in such a way that it matches with the SM coupling given by \(\frac{g_{a}}{2m_{W}} \) with \(a = e, \mu, \tau \). The well measured coupling is the \(\tau \)-lepton, hence for this lepton

\[
U_{h}^{T} K_{LR}^{T} + U_{h}^{T} (K_{LR}^{T} + K_{LR}^{*}) \approx \frac{g_{a}}{2m_{W}} = 9.9 \times 10^{-3},
\]

hence from (26) we get

\[
U_{h}^{T} \approx 0.107734 - 7.28607 \times 10^{-8} U_{h}^{T} \sim 0.107734,
\] (27)
and, because of the suppression factor, it is independent of the value of $U_{\mu 1}^h$. On the other hand, experimentally the $h^0 \rightarrow \tau \bar{\tau}$ is the best known of the three leptonic Higgs decays \[2\], we use it for estimating the matrix element $U_{\mu 1}^h$ by comparing

$$R_{\mu \tau}^{m331} = \frac{\Gamma(h^0 \rightarrow \tau \bar{\tau})_{m331}}{\Gamma(h^0 \rightarrow \tau \bar{\tau})_{SM}},$$

(28)

with $R_{\mu \tau}^{Exp} = 0.79 \pm 0.26$ from PDG \[2\], here $\Gamma_{h^0}^{SM} = 0.00407$ GeV with $m_{h^0} = 125$ GeV, where we derive the central value

$$U_{\mu 1}^h = 0.096,$$

(29)

see Fig.\[1\] and Table\[1\] for details. Replacing \[29\] in \[25\] with $i = 1$ we obtain the symmetric mixing matrix:

$$H_1 = \begin{pmatrix}
1.82437 & 0.00242367 & 0.00085405 \\
-375.661 & -0.00240858 & 6317.58
\end{pmatrix} \times 10^{-6}.$$

(30)

Now we can predict the branching ratio of the lepton flavor violating tree level processes $h^0 \rightarrow l_i\bar{l}_j = h^0 \rightarrow l_i\bar{l}_j + \bar{l}_i l_j$. The width decay is

$$\Gamma(h^0 \rightarrow l_i\bar{l}_j)_{m331} = \frac{m_{h^0}}{8\pi} (|H_{1ij}|^2 + |H_{1ji}|^2) \sqrt{\left[1 - \frac{(m_{li} + m_{lj})^2}{m_{h^0}^2}\right]^3 - \left[1 - \frac{(m_{li} - m_{lj})^2}{m_{h^0}^2}\right]},$$

(31)

and the branching ratio

$$Br(h^0 \rightarrow l_i\bar{l}_j)_{m331} \approx \frac{1}{\Gamma_{h^0}^{SM} \cdot 4\pi} |H_{1ij}|^2.$$

(32)

Using \[30\], from \[32\] we obtain

$$Br(h^0 \rightarrow \mu \bar{\tau})_{m331} = 1.42 \times 10^{-14},$$

(33)

and we see that it is highly suppressed compared with the value in \[34\]. The experimental data for $h^0 \rightarrow \mu \bar{\tau}$ from CMS \[19\] and ATLAS \[20\] have reported a very large signal, whose average value is \[21\]:

$$Br(h^0 \rightarrow \mu \bar{\tau})_{Exp} = 8.26^{+0.33}_{-0.32} \times 10^{-3}.$$

(34)

Our complete estimations for $h^0 \rightarrow e\bar{\mu}$, $e\bar{\tau}$, $\mu \bar{\tau}$ are given in the Table\[1\].

Worth to mention that the $h^0 \rightarrow \mu \bar{\tau}$ process can also be generated beyond tree level topologies, i.e. virtual exchange of new scalars at one-loop level, among others, which could larger than the considered tree level contributions. We will consider this processes elsewhere.

B. $l_i \rightarrow l_j k \bar{l}_k$

Among the possible tree level decays $l_i \rightarrow l_j k \bar{l}_k$, we will see that in the m331 model the channel $\mu \rightarrow e e \bar{e}$ provides a crucial test on the lepton number violating phenomenology. These processes have been studied previously in the 3-3-1 models \[10, 22, 23\], or in extended models via vector FCNC interactions \[24\], but in those papers the authors do not give solution to the mixing matrices, instead they estimate bounds on the ratio of entries of the mixing matrix and the mass of the extra particles of the model.

Although the model has several neutral scalars and pseudoscalars, here we will chose just one in each neutral sector, this means that we are considering that the other scalars are very heavy or suppressed by the matrix elements which relate the symmetry and the mass eigenstates in these sectors. Hence, here we will consider that $l_i \rightarrow l_j k \bar{l}_k$ occurs only via the virtual interaction of the doubly charged vector $U_{\tau \tau}^{++}$, the doubly charged scalar Y^{++}, the neutral scalar h^0, and from the neutral pseudoscalar A_0^0, denoted simply by A^0, see in Fig.\[2\] the generic diagram.

The decay has the configuration $l_i(p_4) \rightarrow l_j(p_1) k(p_2)\bar{l}_k(p_3)$, and the kinematics $p_1^2 = m_{l_j}^2$, $p_2^2 = p_3^2 = m_k^2$, $p_1.p_2 = m_{l_i}^2(-1 + x + y - m_{l_j}^2/m_{l_i}^2)/2$, $p_1.p_3 = m_{l_i}^2(1 - y - m_{l_j}^2/m_{l_i}^2)/2$, $p_2.p_3 = m_{l_i}^2(1 - x + m_{l_j}^2/m_{l_i}^2 - 2m_k^2/m_{l_i}^2)/2$ \[25\].
The total amplitude is conformed by four sub-amplitudes
\[\mathcal{M} = \mathcal{M}_{U^+} + \mathcal{M}_{Y^+} + \mathcal{M}_{h^0} + \mathcal{M}_{A^0}. \] (35)

In the Appendix [31] we present the example of the bilepton gauge vector contribution. The decay width is
\[\Gamma(l_i \to l_j l_k \bar{l}_k)^{m_{331}} = \frac{m_{li}^3}{256\pi^3} \int_{x_{\text{fin}}}^{x_{\text{ini}}} \int_{y_{\text{fin}}}^{y_{\text{ini}}} |\mathcal{M}|^2 dy dx, \] (36)
where the mean square amplitude for the unpolarized decaying lepton \(|\mathcal{M}|^2 = \frac{1}{2} \sum_{\text{spin}} |\mathcal{M}|^2\), here \(x\) and \(y\) are dimensionless scaling variables \(x = 2E_j/m_{li}, y = 2E_k/m_{li}\) \[22\]. For this process mediated by heavy virtual particles the final lepton masses can be safely neglected without affecting the numerical results, we have verified the case with massive final leptons and the results are equivalent, thus \(x_{\text{ini}} = 0, y_{\text{ini}} = 1, y_{\text{fin}} = 1\). The resulting decay width is
\[\Gamma(l_i \to l_j l_k \bar{l}_k)^{m_{331}} = \Gamma_{U^+} + \Gamma_{Y^+} + \Gamma_{h^0} + \Gamma_{A^0} + \Gamma_{U^{++}\rightarrow Y^{++}} + \Gamma_{U^{++}\rightarrow h^0} + \Gamma_{U^{++}\rightarrow A^0} + \Gamma_{Y^{++}\rightarrow h^0} + \Gamma_{Y^{++}\rightarrow A^0} + \Gamma_{h^0\rightarrow A^0}, \] (37)
where the partial widths \(\Gamma_X\) in terms of the leading contributions are
\[\Gamma_{U^+} = \frac{g^4 m_{li}^5}{3 \cdot 2^{11} \pi^3} (|V_{U_{ij}}|^2 + |V_{U_{ij}}|^2)|V_{U_{kk}}|^2 m_{U^+}^4, \]
\[\Gamma_{Y^+} = \frac{m_{li}^5}{3 \cdot 2^7 \pi^3} \left(\frac{v \cdot O_{p_1}}{\Lambda} \right)^4 |K_{R_{ij}} + K_{R_{ij}}|^2 |K_{R_{kk}}|^2 m_{Y^+}^4, \]
\[\Gamma_{h^0} = \frac{m_{li}^5}{3 \cdot 2^9 \pi^3} \left(|H_{1_{ij}} + H_{1_{ij}}|^2 |H_{1_{kk}}|^2 \right) m_{h^0}^4, \]
\[\Gamma_{A^0} = \frac{m_{li}^5}{3 \cdot 2^9 \pi^3} \left(|A_{1_{ij}} + A_{1_{ij}}|^2 |A_{1_{kk}}|^2 \right) m_{A^0}^4, \]
\[\Gamma_{Y^{++}\rightarrow h^0} = 0, \quad \Gamma_{U^{++}\rightarrow h^0} = 0, \quad \Gamma_{U^{++}\rightarrow A^0} = 0, \]
\[\Gamma_{Y^{++}\rightarrow A^0} = 0, \quad \Gamma_{h^0\rightarrow A^0} = 0, \]
where \(V_{U}\) is given in Eq. (17), \(K_R\) in Eq. (24), and \(H_i\) and \(A_i\) in (25).

The branching ratio is
\[\text{Br}(l_i \to l_j l_k \bar{l}_k)^{m_{331}} = \frac{\Gamma(l_i \to l_j l_k \bar{l}_k)^{m_{331}}}{\Gamma_{l_i}^{\text{SM}}}, \] (39)
where the total width of the decaying lepton is obtained from its timelife \(\Gamma_{l_i}^{\text{SM}} = 1/\tau_{l_i}\). For the \(\mu\), case \(\tau_{\mu} = 2.1969811 \times 10^{-6}\text{s} = 3.34 \times 10^{18}\text{GeV}^{-1}\), then \(\Gamma_{\mu}^{\text{SM}} = 2.99 \times 10^{-19}\text{GeV}\), where 1s=1.52×10^{24}\text{GeV}^{-1}; and for the \(\tau\) case \(\tau_{\tau} = 2.903 \times 10^{-13}\text{s} = 4.41 \times 10^{11}\text{GeV}^{-1}\), then \(\Gamma_{\tau}^{\text{SM}} = 2.27 \times 10^{-12}\text{GeV}\). In the numerical analysis the input values are \(m_e = 0.000511\text{GeV}, m_\mu = 0.105658\text{GeV}, m_\tau = 1.77682\text{GeV}\), 0.01 \(\leq v \cdot O_{p_1}/\Lambda \leq 1, U_{\eta^1}^h = 0, U_{\eta^1}^l = 0.966, U_{\phi^1}^4 = 0.2, \) and \(U_{\phi^1}^4 = 0.2\) already estimated in [8]. For the new heavy particles masses we are going to follow the experimental bounds given in PDG [2], for the doubly charged scalar we are going to use \(m_{Y^{++}} \geq 322\text{GeV}\), and for the pseudoscalar \(m_{A^0} \geq 100\text{GeV}\).

The experimental upper limit for the channel \(\mu \rightarrow e e \bar{e}\) is \(\text{Br}(\mu \rightarrow e e \bar{e})^{\text{Exp}} < 10^{-12}\), see Table[III] The Fig.[3] shows the decay \(\mu \rightarrow e e \bar{e}\) where we are showing only the partial contributions of the \(U^{++}, Y^{++}, h^0\) and \(A^0\) to the Br, we vary simultaneously the three masses of \(U^{++}, Y^{++}\) and \(A^0\) in the same interval and for that we set them as \(m_X\).

We see from that figure the bilepton \(U^{++}_\mu\) dominates entirely the process while the rest of the virtual particles are suppressed, this means that \(\Gamma(\mu \rightarrow e e \bar{e})^{m_{331}} \approx \Gamma_{U^{++}}\), but it must fulfill the experimental upper limit; to show this explicitly: using the elements \(V_{U_{\mu e}}, V_{U_{e e}}\) and \(V_{U_{e e}}\) from [17] in the first line of (35), we get
\[\text{Br}(\mu \rightarrow e e \bar{e})^{m_{331}} \approx \frac{\Gamma_{I_{U^+}}}{\Gamma_{\mu}^{\text{SM}}} = \frac{441.61 m_{U^{++}}^{44}}{10^{-12}} \text{ GeV}^4 < \text{Br}(\mu \rightarrow e e \bar{e})^{\text{Exp}} = 10^{-12}, \] (40)
which demands $m_{U^{++}} > 4.584$ TeV. Worth to mention that the lower the values of $V_{U\mu\nu}$ and $V_{U\mu\mu}$, the lighter $m_{U^{++}}$ could be. Any other decay $l_i \rightarrow l_j \ell_k$ apart from the $\mu \rightarrow eee$ does not impose restrictions on any of the virtual particle masses, all those channels respect the experimental upper limits. In all the evaluations we have used $v_X O_{\mu\nu}/\Lambda = 1$, the largest possible value for this parameter related to Y^{++}. Therefore, taking advantage that in all the processes $l_i \rightarrow l_j l_k$ the U^{++}_μ bilepton absolutely domains the signal, we can neglect all the other virtual particle contributions and just focus on the $m_{U^{++}}$ dependence given in the first expression of the Eq. (16), which allow us to realise that after the numerical evaluation of the diverse matrix elements it results that for the tau decays $\text{Br}(\tau \rightarrow eee)_{m331} \approx \text{Br}(\tau \rightarrow \mu\mu\mu)_{m331}$ and $\text{Br}(\tau \rightarrow \mu\mu\mu)_{m331} \simeq \text{Br}(\tau \rightarrow \mu\mu\mu)_{m331}$, this can be appreciated in the Table [2]. In the decay $\mu \rightarrow eee$, besides the matrix in Eq. (17), we have also tested the three parame- trizations of the matrix V_U given in Appendix [A]. See also the discussion in the Conclusions.

C. \(l_i \rightarrow l_j \gamma \)

In the m331 model this process is one-loop induced by the known W_μ & ν_l with massive neutrinos \[26, 27\] and by new heavy virtual particles interacting with both virtual neutrinos and leptons. We expect that the signals coming from the virtual interaction of new particles with leptons could be larger by several orders of magnitude than the pure SM estimation, because the leptonic GIM suppression factor is $m_l^2/m_X^2 \gg m_l^2/m_W^2$, where X denotes a new heavy bosonic particle which $m_X > m_W$.

The decay $l_i(p_i) \rightarrow l_j(p_j) \gamma(q)$ with on-shell final states is a magnetic transition represented by a dimension five operator \[27\], depicted in the Fig. [4], it has the amplitude

$$
\mathcal{M} = \mathcal{M}^\mu \epsilon_\mu^*(\vec{q}, \lambda) ,
$$

with kinematics $p_i = q + p_j$, $p_i^2 = m_i^2$; $q^2 = 0$, $p_j^2 = m_j^2 - (m_i^2 - m_j^2)/2$, $p_i \cdot p_j = (m_i^2 + m_j^2)/2$, and the photon transversality condition $q^\mu \epsilon_\mu^*(\vec{q}, \lambda) = 0$. The Lorentz structure is

$$
\mathcal{M}^\mu = \bar{u}_j(p_j) \sigma^{\mu\nu} q_\nu (F_M + F_E \gamma^5) u_i(p_i)
$$

$$
= \bar{u}_j(p_j) \left\{2 p^\mu_i (F_M + F_E \gamma^5) - \gamma^\mu [(m_{li} + m_{lj}) F_M - (m_{li} - m_{lj}) F_E \gamma^5] \right\} u_i(p_i) ,
$$

where $\sigma^{\mu\nu} \equiv \frac{i}{2} [\gamma^\mu, \gamma^\nu]$, F_M is the transition magnetic dipole moment and F_E is the transition electric dipole moment. The tensor amplitude satisfies the Ward identity $q_\mu \mathcal{M}^\mu = 0$ [27]. The decay width is

$$
\Gamma(l_i \rightarrow l_j \gamma) = \frac{1}{16\pi m_i} \left(1 - \frac{m_j^2}{m_i^2}\right) |\mathcal{M}|^2 = \frac{m_i^3}{8 \pi} \left(1 - \frac{m_j^2}{m_i^2}\right)^3 \left(|F_M|^2 + |F_E|^2\right) ,
$$

with the mean squared amplitude

$$
|\mathcal{M}|^2 = \frac{1}{2} \sum_{\text{spin}} |\mathcal{M}|^2 = 2m_i^4 \left(1 - \frac{m_j^2}{m_i^2}\right)^2 \left(|F_M|^2 + |F_E|^2\right) .
$$

In the m331 the branching ratio is given by

$$
\text{Br}(l_i \rightarrow l_j \gamma)_{m331} = \frac{\Gamma(l_i \rightarrow l_j \gamma)_{m331}}{\Gamma_{l_i}^M} .
$$

Specifically, in the m331 model this process is induced by eight virtual contributions, where W_μ, V_μ^+ and $Y_{1,2}^+$ interact with neutrinos, and where $U_{\mu,\mu}^+$, Y^{++}, h^0 and A^0 interact with leptons. Nevertheless, as already mentioned, the leptonic GIM suppression factors are $m_l^2/m_X^2 \gg m_l^2/m_W^2 \gg m_l^2/m_X^2$, with X denoting a new heavy particle of the m331 model which $m_X > m_W$, in other words, any contribution due to X & ν_l is more suppressed than W & ν_l, for that reason we are going to omit the new cases involving neutrinos. Then, the resulting amplitude is conformed by five sub-amplitudes

$$
\mathcal{M} = \mathcal{M}_W + \mathcal{M}_{U^{++}} + \mathcal{M}_{Y^{++}} + \mathcal{M}_{h^0} + \mathcal{M}_{A^0} .
$$

In the Appendix [B2] we present the sample of the $U^{++}_\mu \& \ell$ contribution. In the loop integrals we neglect the final lepton mass, thus

$$
\Gamma(l_i \rightarrow l_j \gamma) = \frac{m_i^3}{8\pi} \left(|F_M|^2 + |F_E|^2\right) ,
$$
with the transition dipole moments

$$F_{M,E} = \sum_X F_{M,E}^X,$$

(48)

here $X = W_+, U^{++}, Y^{++}, h^0$, A^0, they are expressed in terms of the GIM suppression factors m_l^2/m_X, with k denoting in general the virtual neutrino ν_k for the W_+ case or the virtual lepton l_k which interacts with the new heavy particles, this fraction of masses is also known as the Inami-Lim terms. Keeping only the linear mass term m_{li} they are: the known W_+ & ν_k

$$F_{M,E}^W = - \frac{i e g m_{li}}{256 \pi^2 m_W} \sum_{k=1}^3 V_{ik} V_{jk} \frac{m_{\nu_k}}{m_W},$$

(49)

where the matrix V_U is that in [17]; the doubly charged vector U^{++} & l_k

$$F_{M,E}^{U^{++}} = - \frac{i e g m_{li}}{64 \pi^2 m_{U^{++}}} \sum_{k=1}^3 (V_{Uki} V_{Ukj} \pm V_{Uik} V_{Ujk}) \frac{m_{\nu_k}}{m_{U^{++}}};$$

(50)

the doubly charged scalar Y^{++} & l_k

$$F_{M,E}^{Y^{++}} = \pm \frac{i e m_{li}}{16 \pi^2 m_{Y^{++}}} \left(\frac{v_X O_{pl}}{\Lambda} \right)^2 \sum_{k=1}^3 (K_{Rki} K_{Rkj} + K_{Rki} K_{Rjk}) \frac{m_{\nu_k}}{m_{Y^{++}}} \left[1 + \log \left(\frac{m_{\nu_k}^2}{m_{Y^{++}}^2} \right) \right],$$

(51)

where K_R is given in [21]; the neutral scalar h^0 & l_k

$$F_{M,E}^{h^0} = \frac{i e m_{li}}{32 \pi^2 m_{h^0}} \sum_{k=1}^3 (H_{kki} H_{kjh} + H_{ikh} H_{hkj}) \frac{m_{\nu_k}}{m_{h^0}} \left[1 + \log \left(\frac{m_{\nu_k}^2}{m_{h^0}^2} \right) \right],$$

(52)

$$F_{E}^{h^0} = 0;$$

and, finally, the pseudoscalar A^0 & l_k

$$F_{M,E}^{A^0} = - \frac{i e m_{li}}{32 \pi^2 m_{A^0}} \sum_{k=1}^3 (A_{kki} A_{kjh} + A_{ikh} A_{hkj}) \frac{m_{\nu_k}}{m_{A^0}} \left[1 + \log \left(\frac{m_{\nu_k}^2}{m_{A^0}^2} \right) \right],$$

(53)

$$F_{E}^{A^0} = 0,$$

where the matrices H and A are given in [20], and the matrix in the W_+ & ν_k case is the PMNS.

For the numerical analysis we first take into account the result of $m_{U^{++}} > 4.584$ TeV derived from $\mu \rightarrow ee\bar{\nu}$, therefore in the following we will use $m_{U^{++}} = 4590$ GeV. In the previous analyzed processes $l_i \rightarrow l_j l_k \bar{l}_k$ all of them were absolutely dominated by the U^{++} bilepton mass, and therefore there was not necessary to consider the other heavy virtual particle masses, but for $l_i \rightarrow l_j \gamma$ that is not the case, in fact here the U^{++} bilepton has more suppressed contribution than other particles. As in the analysis of $l_i \rightarrow l_j l_k \bar{l}_k$, we use $m_{Y^{++}} = 322$ GeV, $m_{A^0} \geq 100$ GeV and $m_{h^0} = 125$ GeV. The other important variable present in the decay comes from the $\bar{e}_{\nu_k} Y^{++}$ interaction, which we are going to explore in the range $0.01 \leq v_\chi O_{pl}/\Lambda \leq 1$.

The Fig. 4 shows the behaviour of the three decays $\mu \rightarrow e\gamma$, $\tau \rightarrow e\gamma$ and $\tau \rightarrow \mu\gamma$ in this model, the signals of all of them are quite suppressed respect to the current experimental upper limits shown in Table VI but a lot of orders of magnitude greater than the SM estimation. In all these plots the total curves include also the interference among the different virtual particle contributions, but we do not plot explicitly the interference in order not to overwhelm with many curves. Specifically, the channel $\mu \rightarrow e\gamma$ is presented in the Fig. 4(a) with $m_{A^0} = 100$ GeV as function of $0.01 \leq v_\chi O_{pl}/\Lambda \leq 1$, where $Br_{331}^{m_{331}} \sim 10^{-30}$ is due entirely to the pseudoscalar A^0 (that is why the total contribution is the same and overlaps the A^0 signal), the participation of the rest of the particles are suppressed, and in the Table VI can be appreciated some values in detail for given scenarios, being noticeable that our prediction is quite far from the SM estimation of $Br_{331}^{SM} \sim 10^{-48}$; the Fig. 4(b) shows $m_{A^0} = 250$ GeV, here the signal diminishes to $Br_{331}^{m_{331}} \sim 10^{-33}$ when $v_\chi O_{pl}/\Lambda \lesssim 0.3$ due to the pseudoscalar A^0, and up to $Br_{331}^{m_{331}} \sim 10^{-31}$ when $v_\chi O_{pl}/\Lambda = 1$ but the signal is now holded by the scalar Y^{++}. For $\tau \rightarrow e\gamma$ the Fig. 4(c) shows that when $m_{A^0} = 100$ GeV its branching ratio can goes from 10^{-24} to 10^{-27}, but here the signal in the region $v_\chi O_{pl}/\Lambda \lesssim 0.1$ is constant due to the pseudoscalar
and when $0.1 > v_\chi O_{\mu l}/\Lambda = 1$ the signal grows dominated by Y^{++}, see Table VII for specific values; the case $m_{A^0} = 250$ GeV is presented in the Fig. 5(d) where $\text{Br}^{m_{331}} \sim 10^{-28}$ due to h^0 when $v_\chi O_{\mu l}/\Lambda \lesssim 0.07$, but can reach up to $\text{Br}^{m_{331}} \sim 10^{-24}$ because of Y^{++} if $v_\chi O_{\mu l}/\Lambda = 1$. Finally, for $\tau \rightarrow \mu \gamma$ in the Fig. 5(e) we can see that the signal varies from $\text{Br}^{m_{331}} \sim 10^{-28}$ due to A^0 when $v_\chi O_{\mu l}/\Lambda < 0.05$, up to $\text{Br}^{m_{331}} \sim 10^{-25}$ owing to Y^{++} if $v_\chi O_{\mu l}/\Lambda = 1$; for $m_{A^0} = 250$ GeV the Fig. 5(f) shows that h^0 is responsible for $\text{Br}^{m_{331}} \sim 10^{-30}$ if $v_\chi O_{\mu l}/\Lambda \lesssim 0.04$, and after $v_\chi O_{\mu l}/\Lambda \gtrsim 0.04$ the signal grows rapidly because of Y^{++} being able to reach $\text{Br}^{m_{331}} \sim 10^{-25}$ when $v_\chi O_{\mu l}/\Lambda = 1$.

Summarizing, our predictions for $l_i \rightarrow l_j \gamma$ are several orders of magnitude larger than the respective estimations within the pure SM due to $W_K v_\chi$, this behavior is possible thanks to the presence of the virtual charged leptons coupling with the new heavy content of the m331 model.

VI. CONCLUSIONS

After adjusting the masses and the unitary matrices $V_{L,R}^l$ and V_{L}^{ν} in (9) and (10), respectively, we are left with the following free parameters, Λ_ν, which is related with the mass scale of the scalar sextet and the matrices relating the mass and symmetry eigenstates in the scalar sectors: O appearing in (22) in the doubly charged sector, U^A in the CP even sector, and U^A in the CP odd sector both appearing in (23). Next, we were able to identify the SM Higgs h^0 from (22) and (27), which from the experimental data for $h^0 \rightarrow \tau \tau$ [2] allowed us to determine $U_{\mu l}^h = 0.096$, while the parameter $U^h_{\nu l}$ is not important, see (27). Hence, the tree level flavor number violating Higgs decays are $\text{Br}(h^0 \rightarrow e\mu, \mu\tau)^{m_{331}} \sim 10^{-14}$ and $\text{Br}(h^0 \rightarrow e\tau)^{m_{331}} \sim 10^{-13}$, being highly suppressed respect to the reported data of $\text{Br}(h^0 \rightarrow \tau\tau)^{\text{Exp}} \sim 10^{-3}$ [13,21]. This decay also could be generated via loop interactions of the SM Higgs with new possible virtual scalars.

In the flavor number violating processes $l_i \rightarrow l_j l_k \bar{l}_k$, the channel $\mu \rightarrow eee$ imposed the bound $m_{U^{++}} > 4.584$ TeV respecting the experimental upper limit of $\text{Br}(\mu \rightarrow eee)^{\text{Exp}} < 10^{-12}$, hence if in future experiments this channel is observed with a branching ratio in the range $10^{-14} - 10^{-12}$ our vector bilepton $U^{\pm \pm}$ could explain it. For the tau decays we estimate for all of the reactions $\text{Br}(\tau \rightarrow l_j l_k \bar{l}_k)^{m_{331}} \sim 10^{-15}$ using $m_{U^{++}} = 4590$ GeV, which have resulted 7 orders of magnitude suppressed respect to the experimental upper limits.

Regarding to the one-loop level processes $l_i \rightarrow l_j \gamma$, the $\text{Br}(\mu \rightarrow e\gamma)^{m_{331}} \sim 10^{-33} - 10^{-30}$, this is up to 18 orders of magnitude larger than the SM estimation but 17 orders of magnitude below the experimental upper limit; and similar behaviour for the tau decays being $\text{Br}(\tau \rightarrow e\gamma)^{m_{331}} \sim 10^{-29} - 10^{-24}$ and $\text{Br}(\tau \rightarrow \mu\gamma)^{m_{331}} \sim 10^{-31} - 10^{-25}$, and in contrast to the channels $l_i \rightarrow l_j l_k \bar{l}_k$ where the U^{++}_μ vector bilepton was responsible for the signals, in these one-loop processes the vector bilepton provided, in most of the cases, the more suppressed contribution of the considered new particles interacting with leptons.

In order to verify how these predictions depend on the numerical values for the entries of those unitary matrices, we have considered in the decay $\mu \rightarrow eee$ different parametrizations of the matrix V_{ν} given in Appendix A. With the first of them in Eq. (A2), we obtain the lower limit $m_{U^{++}} > 51.8$ TeV; the second parametrization in Eq. (A6), also adjusts the lepton masses and the PMNS and predicts a $m_{U^{++}} > 16.49$ TeV; the third parametrization in Eq. (A10), predicts $m_{U^{++}} > 3.34$ TeV, although in this case we were not able to fit a respective V_{L}^{ν} that adjust a realistic PMNS. However, since the matrix V_{L}^{ν} does not participate in the decay $\mu \rightarrow eee$, we have included this parametrization to exemplify how lower bound on the vector bilepton mass can be obtained. Notice that, the more diagonal V_{ν}, the lighter $m_{U^{++}}$. It worth noting that the matrix in Eq. (17), which implies a lower bound on the vector bilepton mass of $m_{U^{++}} > 4.584$ TeV, it is enough to be produced at LHC, although to the best of our knowledge there has not been searches for this kind of particle. Notwithstanding, searches for quarks with exotic charges has been done at CMS [23].

The decays $\mu \rightarrow eee$ and $\mu \rightarrow e\gamma$ can also be considered in the 3-3-1 model with right-handed neutrinos (331RN by short) of the sort proposed in Refs. [29,30], i.e., when the leptons are in triplets $\psi_L = (v_l, l, l^c) \sim (3, -1/3)$. In the latter model only three triplets as η, ρ, ρ' are needed to break the gauge symmetry and give correct masses to all fermions in the model. However, it was shown in Ref. [30] that in this model the processes above are suppressed as in the standard model unless a sextet is added giving also a natural small masses for neutrinos. We note that in that model there is no doubly charged vector boson and the lepton flavor violating processes are mediated only by the doubly charged Higgs scalar in the sextet.

In the present model the $(\beta\beta)_{0v}$ may be induced by three mechanism: i) the Majorana mass of the light active neutrinos; ii) the Majorana mass of the heavy neutrinos, and iii) by the lepton number (L) violating interactions in the scalar potential. In case i) the effective mass parameter to which the amplitude of the decay is proportional is given by

$$m_{\beta\beta} = |(V_{PMNS})_{ek}^2 m_k|,$$

(54)
where the V_{PMNS} used is the one in the Eq. (11) and we obtain, ignoring Majorana phases, $m_{\beta\beta} = 2.5 - 5.05$ meV for the case of normal mass hierarchy, and $34 - 39$ meV when the inverse mass hierarchy is used. This occurs in other 3-3-1 models [31]. These values are compatible with the experimental upper limit 140-380 meV [32]. For heavy neutrinos their effects on the decay is suppressed by the large masses ~ 1 TeV, and also by the small mixing angles in their interactions with charged leptons. In principle the decay can be induced by terms like $f_3 \eta^-_1 \eta^-_1 S^+_{1}$ in the scalar potential [33]. This sort of interactions breaks explicitly the total lepton number L by two units and induce a contribution to the $(\beta\beta)_{0\nu}$ decay. However, we are working in the context of Ref. [4] in which terms violating L are forbidden by discrete symmetries. In this case the VEV of the sextet which would induce a Majorana mass to the active neutrinos vanishes and it is stable under quantum corrections. However, even if we allow those interactions to be present in the scalar potential, their contributions to $(\beta\beta)_{0\nu}$ according to [34, 35] are negligible. However, the arguments in these references assume that neutrinos gain mass from the VEV of the triplet, while in our model they are light because of the type-I seesaw mechanism. Besides the m331 model is intrinsically a multi-Higgs model and the situation is also different from that when there are a doublet and a triplet of $SU(2)$. In particular, if the vertex $f_3 \eta^-_2 \eta^-_2 S^+_{2}$, where S^+_{2} is a singlet of $SU(2)$, is allowed, and CP violated the mixing $\eta^-_1 - \eta^+_2$ induce a contribution to the $(\beta\beta)_{0\nu}$ decay like the doubly charged scalar singlet of Ref. [34] which is not suppressed and may be of the order of the standard diagram which is proportional to $g^4 m_\nu / M^4_W (p^2)$. The fact that when neutrinos have Dirac and Majorana masses may evade the suppressions in the one doublet and one triplet model was pointed out in Ref. [36]. This model has also contributions to $\mu - e$ conversion [37, 38], and muonium-antimuonium conversions [39, 40]. In the latter case the lower limit for the vector bilepton mass is 850 GeV [41]. These issues will be consider elsewhere.

Acknowledgments

ACBM thanks CAPES for financial support. JM thanks to FAPESP for financial support under the process number 2013/09173-5. VP thanks CNPq for partial support.
Appendix A: Matrices

In Sec. [IV A] we presented in Eq. (17) one parametrization of V_U, and as we said in the Conclusions, this allows a $m_{U^{++}}$ from $\mu \rightarrow ee\bar{e}$ that is sufficiently small to be produced at the LHC. Below we present three more parametrizations and their impact on the lower bound of $m_{U^{++}}$ from the same decay.

1. First parametization

It has been shown in Ref. [4] that assuming the following Yukawa couplings $G^s_{11} = -0.0453, G^s_{12} = -0.0076, G^s_{13} = -0.0008, G^s_{22} = 0.0015, G^s_{23} = 0.0001, G^s_{33} = 1.84 \times 10^{-5}$, and $G^p_{12} = G^p_{13} = G^p_{13} = -0.00001$, it is possible to obtain the appropriate masses for charged leptons, neutrinos and the PMNS matrix. They give the following numerical values for the unitary matrices that diagonalize the mass matrices $[4]:$

$$V_L^{'} \approx \begin{pmatrix} 0.9145 & 0.6455 & 0.7077 \\ 0.0480978 & 0.6793 & 0.3502 \\ 0.0203754 & 0.3457 & 0.3502 \end{pmatrix}, \quad |V_{PMNS}| \approx \begin{pmatrix} 0.82 & 0.55 & 0.17 \\ 0.13 & 0.62 & 0.74 \end{pmatrix}.$$

From $V_U = V_R^{T}V_L^{'}$ we get

$$V_U \approx \begin{pmatrix} 0.946981 & -0.320728 & -0.190221 \\ -0.000163733 & 0 & -0.0203754 \\ 0.00335856 & 0.0203754 & 0 \end{pmatrix},$$

and from $V_V = (V_U - V_U^{T})/2$ and $V_A = (V_U + V_U^{T})/2$, see the third line in Eq. (16), we have

$$V_V \approx \begin{pmatrix} -0.000163733 & -0.0035856 \\ -0.00335856 & 0.0203754 \end{pmatrix}, \quad V_A \approx \begin{pmatrix} 0.946981 & -0.328982 & -0.0156636 \\ -0.320728 & 0 & -0.0177935 \\ -0.012305 & 0.0228973 & -0.998661 \end{pmatrix}.$$

Using these matrices in $\mu \rightarrow ee\bar{e}$ we obtain the lower limit $m_{U^{++}} > 51.8$ TeV.

For the neutrinos Yukawa couplings are the following: $G^s_{\nu11} = 0.0029, G^s_{\nu12} = -0.0019, G^s_{\nu13} = 0.0009, G^s_{\nu22} = 0.002, G^s_{\nu23} = -0.0013, G^s_{\nu33} = 0.0009$, and considering $V_{PMNS} = V_L^{'}V_L^{'}$ we obtain:

$$V_L^{'} \approx \begin{pmatrix} 0.983908 & 0.156151 & 0.0868391 \\ 0.077852 & 0.0631974 & -0.0599465 \\ -0.160853 & 0.985709 & 0.0500342 \end{pmatrix}, \quad |V_{PMNS}| \approx \begin{pmatrix} 0.978756 & 0.186555 & 0.0850452 \\ 0.0741444 & 0.0633254 & -0.095215 \end{pmatrix}.$$

2. Second parametrization

We have found another parametrization for the matrices that diagonalize the charged lepton masses with the following values for the Yukawa couplings $G^s_{11} = 5 \times 10^{-8}, G^s_{12} = 0.000198, G^s_{13} = 5 \times 10^{-8}, G^s_{22} = 5 \times 10^{-8}, G^s_{23} = 0.0113, G^s_{33} = 0.04376$, and $G^p_{12} = G^p_{13} = G^p_{13} = 5 \times 10^{-8}$, we obtain

$$V_L^{'} \approx \begin{pmatrix} 0.983908 & 0.156151 & 0.0868391 \\ 0.077852 & 0.0631974 & -0.0599465 \\ -0.160853 & 0.985709 & 0.0500342 \end{pmatrix}, \quad V_R^{'} \approx \begin{pmatrix} 0.978756 & 0.186555 & 0.0850452 \\ 0.0741444 & 0.0633254 & -0.095215 \end{pmatrix}, \quad V_A \approx \begin{pmatrix} 0.999525 & -0.0037812 & 0.0013956 \\ 0.0307783 & 0.099523 & 0.0022472 \\ -0.0014647 & -0.00220327 & 0.999997 \end{pmatrix}.$$

and

$$V_V = \begin{pmatrix} 0 & -0.0037798 & 0.00142299 \\ 0.0307783 & 0 & 0.00222528 \\ -0.0014647 & -0.00220327 & 0.999997 \end{pmatrix}, \quad V_A = \begin{pmatrix} 0.999525 & -10^{-6} & -10^{-5} \\ -10^{-5} & 0.999523 & 10^{-5} \end{pmatrix}.$$

With this parametrization we obtain the lower limit $m_{U^{++}} > 16.49$ TeV from $\mu \to eee$.

For the neutrinos Yukawa couplings are the following ($\times 10^{-9}$): $G_{11}^\nu = 0.00677$, $G_{12}^\nu = -0.008366$, $G_{13}^\nu = -0.0070139$, $G_{22}^\nu = 0.011457$, $G_{23}^\nu = 0.0067482$, $G_{33}^\nu = 0.01056$, and from $V_{PMNS} = V_L^\dagger V_L^\nu$ we obtain:

$$V^\nu \approx \begin{pmatrix} 0.85 & 0.09 & 0.52 \\ 0.46 & 0.62 & 0.63 \\ 0.27 & 0.78 & 0.57 \end{pmatrix} , \ |V_{PMNS}| \approx \begin{pmatrix} 0.83 & 0.51 & 0.17 \\ 0.47 & 0.59 & 0.65 \\ 0.27 & 0.61 & 0.73 \end{pmatrix}. \quad (A8)$$

3. Third parametrization

The third parametrization yields the following values for the Yukawa couplings $G_{11}^s = 2.191 \times 10^{-5}$, $G_{12}^s = -0.0003$, $G_{13}^s = -0.0001$, $G_{22}^s = -0.03094$, $G_{23}^s = 0.00801$, $G_{33}^s = -10^{-5}$, and $G_{12}^\eta = -10^{-6}$, $G_{13}^\eta = -10^{-6}$, $G_{23}^\eta = -0.0001$. With them we obtain $\hat{M}_l = \{0.000599394, 0.105448, 1.77642\}$ GeV and the diagonalization matrices are:

$$V_L \approx \begin{pmatrix} -0.99614 & -0.08739 & -0.00826 \\ 0.01357 & 0.24625 & -0.96691 \\ 0.08672 & 0.96526 & 0.24649 \end{pmatrix} , \ V_R \approx \begin{pmatrix} 0.99624 & -0.08629 & -0.00801 \\ 0.01179 & 0.226594 & -0.97392 \\ 0.08586 & 0.97016 & 0.22676 \end{pmatrix}. \quad (A9)$$

$$V_U \approx \begin{pmatrix} 0.999997 & -0.00127907 & 0.00150715 \\ 0.00124841 & 0.999794 & 0.0202514 \\ -0.00153271 & -0.020248 & 0.999795 \end{pmatrix}, \quad (A10)$$

and

$$V_V = \begin{pmatrix} 0 & -0.00126374 & 0.00151993 \\ 0.00126374 & 0 & 0.0202497 \\ -0.00151993 & -0.0202497 & 0 \end{pmatrix} , \ V_A = \begin{pmatrix} 0.999997 & -10^{-5} & -10^{-5} \\ -10^{-5} & 0.999794 & 10^{-6} \\ -10^{-5} & 10^{-6} & 0.999795 \end{pmatrix}. \quad (A11)$$

Using V_U in Eq. (A10) in the decay $\mu \to eee$ we obtain the lower limit $m_{U^{++}} > 3.34$ TeV.
Appendix B: Amplitudes of the decays

For the computing of the amplitudes involving fermion number violating interactions we have follow the algorithm of Refs.\[42, 43\] which allows the great advantage of constructing amplitudes with Feynman rules without the explicit charge conjugation matrix C, we only need the common Dirac propagator and less vertices than in the conventional treatment\[14-17\]. The algorithm is summarized as: given the lagrangian $\mathcal{L} = \chi \Gamma \chi = g_{abc} \bar{\chi} a \Gamma_i \chi b \phi_c$, with χ a Dirac or Majorana fermion, Γ represents a generic fermionic interaction including Dirac matrices $\Gamma = 1, i \gamma_5, \gamma_\mu \gamma_5, \gamma_\mu, g_{\mu \nu}$, coupling constants g_{abc}, and ϕ_c denotes scalar and vector bosonic fields. Each process diagram must be constructed twice because for every fermionic vertex two Feynman rules arise: the direct one (\(\Gamma\) from χ's corresponding Hermitian conjugate: $\bar{\chi}$) and the one corresponding to its Hermitian conjugate (\(\bar{\chi} \Gamma \chi\)). Hence, from the first term in the first line of Eq. (16) and the interactions in terms of left- and right-handed currents in our calculations we will use all currents as left-handed in the treatment\[44–47\]. The algorithm is summarized as: given the lagrangian \mathcal{L}, we have solved the amplitudes with the help of Mathematica and FeynCalc\[49, 50\].

Below we are going to present the samples of the vector gauge boson $U^{\pm \pm}_\mu$ contributions in each studied process. The interactions of the $U^{\pm \pm}_\mu$ bileptons with chiral leptons were given in Eq. (16), and although we have split the interactions in terms of left- and right-handed currents in our calculations we will use all currents as left-handed in order to use the unitary gauge, see for instance Ref.\[48\]. Hence, from the first term in the first line of Eq. (16) and its corresponding Hermitian conjugate:

$$\mathcal{L} = - \frac{g}{\sqrt{2}} \left(\overline{U}^{\dagger}_{ab} \gamma^\mu V_{ab} b_L U^{\mu \pm \pm}_\mu + \overline{U}^{\dagger}_{ab} \gamma^\mu U_{ab} b_L U^{\pm \pm \mu}_\mu \right),$$

$$= - \frac{g}{\sqrt{2}} \left(\overline{U}^{\dagger}_{ab} \gamma^\mu P_L V_{ab} b_L U^{\pm \pm \mu}_\mu + \overline{U}^{\dagger}_{ab} \gamma^\mu P_L U_{ab} b_L U^{\pm \pm \mu}_\mu \right),$$

where $V_{ab} \equiv (U^\dagger V^\dagger)_{ab} = \overline{V}_{ba}$, and accordingly with the algorithm\[42, 43\], if $\Gamma = \gamma^\mu P_L$ then $\Gamma' = C T^\dagger C^{-1} = -\gamma^\mu P_R$, which give rise to two Feynman rules for each interaction, see Fig. (a)-(d). The photon interaction with leptons is

$$\mathcal{L} = -e Q_i \overline{\chi}^\dagger a \gamma^\mu l_a A_\mu = -e Q_i \overline{\chi}^\dagger a \gamma^\mu e_a A_\mu ,$$

with $Q_l = -1$ and $Q_e = +1$, if $\Gamma = \gamma^\mu$ then $\Gamma' = C T^\dagger C^{-1} = -\gamma^\mu$, whose Feynman rules are in Fig. (e)-(f). The tensor definition of the vertex $\gamma^\mu U^{\pm \pm \mu}$ in the unitary gauge, given in the Fig. (g) with $Q_{U^{\pm \pm}} = +2$, is

$$T^{\alpha \alpha + \alpha - \alpha -}_{\gamma U^{\pm \pm \mu}} (p_0, p_+, p_-) \equiv (p_+ - p_0)^\alpha g^{\alpha - \alpha +} + (p_0 - p_-)^\alpha g^{\alpha + \alpha -} + (p_+ - p_0)^\alpha g^{\alpha - \alpha +}.$$

The vector gauge boson and fermion propagators are

$$i S_{\alpha \beta}^V (k) = \frac{i}{k^2 - m_V^2} \left(-g_{\alpha \beta} + \frac{k_{\alpha} k_{\beta}}{m_V^2} \right),$$

$$i S_{\alpha}^F (k) = \frac{i}{k^2 - m_F^2}.$$

1. **Vector U^{++}_μ contribution to $l_i \rightarrow l_j l_k \tilde{l}_k$**

The contribution of the U^{++}_μ bilepton to the decay $l_i \rightarrow l_j l_k \tilde{l}_k$ is illustrated in the Fig. where the red line denotes the choosen fermion flow required by the algorithm, it has the subamplitude

$$\mathcal{M}_{U^{++}} = \left[\bar{u}_j(p_1) \left(-\frac{ig}{\sqrt{2}} V_{ij} \gamma^{\alpha_1} P_L \right) u_i(p_4) \right] \left[i S_{\alpha_1 \alpha_2}^U (p_2 + p_3) \right] \left[\bar{u}_k(p_2) \left(-\frac{ig}{\sqrt{2}} V_{kk}^* \gamma^{\alpha_2} P_L \right) v_k(p_3) \right]$$

$$\times \left[\bar{u}_j(p_1) \left(\frac{ig}{\sqrt{2}} V_{ij} \gamma^{\alpha_1} \right) u_i(p_4) \right] \left[i S_{\alpha_2}^U (p_2 + p_3) \right] \left[\bar{u}_k(p_2) \left(\frac{ig}{\sqrt{2}} V_{kk}^* \gamma^{\alpha_2} P_L \right) v_k(p_3) \right]$$

$$= -\frac{ig^2}{2} V_{ij} V_{kk}^* \left[\bar{u}_j(p_1) \gamma^{\alpha_1} P_L u_i(p_4) \right] \left[\bar{u}_k(p_2) \gamma^{\alpha_2} P_L v_k(p_3) \right] \left[\frac{1}{(p_2 + p_3)^2 - m_{U^{++}}^2} \right] \left[-g_{\alpha_1 \alpha_2} + \frac{(p_2 + p_3)_{\alpha_1} (p_2 + p_3)_{\alpha_2}}{m_{U^{++}}^2} \right]$$

$$\times \left[\bar{u}_j(p_1) \gamma^{\alpha_1} P_L u_i(p_4) \right] \left[\bar{u}_k(p_2) \gamma^{\alpha_2} P_L v_k(p_3) \right] \left[\frac{1}{(p_2 + p_3)^2 - m_{U^{++}}^2} \right] \left[-g_{\alpha_1 \alpha_2} + \frac{(p_2 + p_3)_{\alpha_1} (p_2 + p_3)_{\alpha_2}}{m_{U^{++}}^2} \right].$$

We have solved the amplitudes with the help of Mathematica and FeynCalc\[49, 50\].
2. Vector U^{++}_μ contribution to $l_i \rightarrow l_j \gamma$

The one-loop decay $l_i \rightarrow l_j \gamma$ calculated in a renormalizable theory has finite transition magnetic and electric dipole moments, F_M and F_E respectively, because there are no counterterms at the tree level Lagrangian that may cancel out ultraviolet divergencies. These transition dipole form factors arise directly from triangle topologies, they can be determined from the contributions proportional to p_i^μ in Eq. (12), therefore is sufficient to consider only these topologies to obtain the transition dipole moments. Nevertheless, to prove the electromagnetic gauge invariance and the finiteness of the process as a whole the bubbles must be considered [27, 51–53]. In general, the one-loop decay with on-shell final states mediated by charged bosons has triangle and bubble contributions, characterized by their respective form factors F_M and F_B which give rise to the amplitude

$$\mathcal{M}^\mu = \bar{u}_j(p_j) \left(F_{T1} p_{1\mu} + F_{T2} p_{1\mu}^2 \gamma^5 + (F_{T3} + F_{B3}) \gamma^\mu + (F_{T4} + F_{B4}) \gamma^{\mu+5} \right) u_i(p_i)$$

$$= \bar{u}_j(p_j) \left(F_{T1} p_{1\mu} + F_{T2} p_{1\mu}^2 \gamma^5 - \frac{m_{li} + m_{lj}}{2} F_{T1} \gamma^\mu + \frac{m_{li} - m_{lj}}{2} F_{T2} \gamma^{\mu+5} \right) u_i(p_i)$$

$$= \bar{u}_j(p_j) \left\{ 2p_{1\mu} \left(\frac{F_{T1}}{2} + \frac{F_{T2}}{2} \gamma^5 \right) + \gamma^\mu \left[- (m_{li} + m_{lj}) \frac{F_{T1}}{2} + (m_{li} - m_{lj}) \frac{F_{T2}}{2} \gamma^5 \right] \right\} u_i(p_i)$$

$$= \bar{u}_j(p_j) i\sigma^{\mu\nu} q_{\nu} \left(\frac{F_{T1}}{2} + \frac{F_{T2}}{2} \gamma^5 \right) u_i(p_i) ,$$

(B7)

noticing that the last two lines are precisely the Eq. (12) with $F_{T1}/2 = F_M$ and $F_{T2}/2 = F_E$, besides $F_{B1}, B2 = 0$ and $F_{T3}, B3, T4, B4$ are divergent while $F_{T3} + F_{B3} = -(m_{li} + m_{lj}) F_{T1}/2$ and $F_{T4} + F_{B4} = (m_{li} - m_{lj}) F_{T2}/2$ do not. The bubble contribution is canceled by factors coming from the triangle and all remains in terms of pure triangle information $F_{T1,2}$. When $m_{lj} = 0$ occurs that $F_{T1} = F_{T2}$, then $F_M = F_E$:

$$\mathcal{M}^\mu = F_M \bar{u}_j(p_j) (1 + \gamma^5)(2p_{1\mu} - m_{li} \gamma^\mu) u_i(p_i).$$

(B8)

Back to our model, in the virtual contribution $\mathcal{M}_{U+} & l_k$ we consider the complete set of topologies to fully prove finiteness and the Ward identity of the process, which has been crucial to us to confirm the correct application of the algorithm. The amplitude \mathcal{M}_{U+} of Eq. (16) is conformed by the four diagrams depicted in the Fig. 8 in the unitary gauge, the red line indicates the chosen fermion flow. We have crosschecked the vector gauge contributions using the Feynman-'t Hooft gauge and the non-linear gauge, see [54] and Lee-Shrock in [26], proving that the transition dipole moments $F_{M,E}$ for the vector contributions are independent respect to the renormalization procedure, just as showed in [27] for the SM case, that accordingly as [48] this is true for pure left-handed couplings which is our case. One set of diagrams, lets denote it as A, is constructed with the direct Feynman rules (Γ from $\chi \Gamma \chi$), and the other set B with the reverse ones ($\Gamma' = CT^C \Gamma^{-1}$ from $\chi^2 \Gamma' \chi$). We first compute the amplitude with $m_{lj} \neq 0$, the final massless case will be performed later. The tensor amplitude is

$$\mathcal{M}_{U+} = \sum_{n=1}^{4} \mathcal{M}_{An} + \sum_{n=1}^{4} \mathcal{M}_{Bn} ,$$

(B9)

where the set A is

$$\mathcal{M}_{A1} = \int \frac{d^Dk}{(2\pi)^D} \bar{u}_j(p_j) \left(\frac{-i\alpha}{\sqrt{2}} V_{Ukj} \gamma^\alpha P_L \right) \left[iS_{k}(k) \left(\frac{-i\alpha}{\sqrt{2}} V_{Uki} \gamma^\alpha P_L \right) u_i(p_i) \right] iS_{U+}^{\mu} \left(k - p_j \right)$$

$$= \frac{g^2}{2} Q_{U+} e T_{U+}^{\alpha\alpha_2 \alpha_3 \alpha_4} \left[\bar{u}_j(p_j) \gamma^\alpha_1 P_L \left(k + m_{lk} \right) \gamma^\alpha_2 P_L u_i(p_i) \right]$$

$$\times \left[T_{U+}^{\alpha\alpha_2 \alpha_3 \alpha_4} \left(-q, k - p_j, -k + q + p_j \right) \right] \left[iS_{U+}^{\mu} \left(k - q - p_j \right) \right]$$

$$\times \left[\bar{u}_j(p_j) \gamma^\alpha_1 P_L \left(k + m_{lk} \right) \gamma^\alpha_2 P_L u_i(p_i) \right]$$

$$= \frac{g^2}{2} Q_{U+} e \sum_{k=1}^{3} V_{Uki} V_{Ukj} \int \frac{d^Dk}{(2\pi)^D} \frac{\bar{u}_j(p_j) \gamma^\alpha_1 P_L \left(k + m_{lk} \right) \gamma^\alpha_2 P_L u_i(p_i)}{(2\pi)^D \left(k - m_{lk} \right)^2 \left(k + m_{lk} \right)^2 \left((k - q - p_j)^2 - m_{U+}^2 \right) \left((k - q - p_j)^2 - m_{U+}^2 \right) \left((k - q - p_j)^2 - m_{U+}^2 \right)}$$

$$\times \left[T_{U+}^{\alpha\alpha_2 \alpha_3 \alpha_4} \left(-q, k - p_j, -k + q + p_j \right) \right]$$

$$\times \left[T_{U+}^{\alpha\alpha_2 \alpha_3 \alpha_4} \left(-q, k - p_j, -k + q + p_j \right) \right] ,$$

(B10)
\[M_{A_2} = \int \frac{d^D k}{(2\pi)^D} \bar{u}_j(p_3) \left(-\frac{ig}{\sqrt{2}} V^*_j k \gamma^\alpha \alpha \gamma P_L \right) [i S_{ik}(k - p_3)] (-i Q_i e^\alpha \mu) [i S_{ik}(k - q - p_j)] \left(-\frac{ig}{\sqrt{2}} V_{Uk} \gamma^\alpha \alpha P_L \right) u_i(p_i) \times \left[i S_{\alpha_1 \alpha_2}(k) \right] \]

\[= \frac{g^2}{2} Q_i e \sum_{k=1}^{3} V_{Uk} V_{Ukj} \int \frac{d^D k}{(2\pi)^D} \bar{u}_j(p_3) \gamma_{\alpha_1 \alpha_2} P_L \left(\frac{k - p_3 + m_{ik}}{m_{ti}} \right) \gamma^\mu \left(\frac{k - q - p_j + m_{ik}}{m_{ti}} \right) \gamma^2 P_L u_i(p_i) \times \left[-g_{\alpha_1 \alpha_2} + \frac{k_{\alpha_1} k_{\alpha_2}}{m_{ti}^2} \right], \quad (B11) \]

\[M_{A_3} = \int \frac{d^D k}{(2\pi)^D} \bar{u}_j(p_3) \left(-\frac{ig}{\sqrt{2}} V^*_j k \gamma^\alpha \alpha \gamma P_L \right) [i S_{ik}(k)] \left(-\frac{ig}{\sqrt{2}} V_{Uk} \gamma^\alpha \alpha P_L \right) [i S_{ij}(p_j)] (-i Q_i e^\alpha \mu) u_i(p_i) \left[i S_{\alpha_1 \alpha_2}(k - p_j) \right] \]

\[= \frac{g^2}{2} Q_i e \sum_{k=1}^{3} V_{Uk} V_{Ukj} \int \frac{d^D k}{(2\pi)^D} \bar{u}_j(p_3) \gamma_{\alpha_1 \alpha_2} P_L \left(\frac{k + m_{ik}}{m_{ti}} \right) \gamma^2 P_L \left(\frac{p_j + m_{ik}}{m_{ti}} \right) \gamma^\mu u_i(p_i) \times \left[-g_{\alpha_1 \alpha_2} + \frac{(k - p_j)_{\alpha_i} (k - p_j)_{\alpha_2}}{m_{ti}^2} \right], \quad (B12) \]

\[M_{A_4} = \int \frac{d^D k}{(2\pi)^D} \bar{u}_j(p_3) (-i Q_i e^\alpha \mu) [i S_{ij}(q + p_j)] \left(-\frac{ig}{\sqrt{2}} V^*_j k \gamma^\alpha \alpha \gamma P_L \right) [i S_{ik}(k)] \left(-\frac{ig}{\sqrt{2}} V_{Uk} \gamma^\alpha \alpha P_L \right) u_i(p_i) \times \left[i S_{\alpha_1 \alpha_2}(k - q - p_j) \right] \]

\[= \frac{g^2}{2} Q_i e \sum_{k=1}^{3} V_{Uk} V_{Ukj} \int \frac{d^D k}{(2\pi)^D} \bar{u}_j(p_3) \gamma_{\alpha_1 \alpha_2} P_L \left(\frac{q + k + m_{ij}}{m_{ti}} \right) \gamma_{\alpha_1 \alpha_2} P_L \left(\frac{k + m_{ik}}{m_{ti}} \right) \gamma^2 P_L u_i(p_i) \times \left[-g_{\alpha_1 \alpha_2} + \frac{(k - q - p_j)_{\alpha_i} (k - q - p_j)_{\alpha_2}}{m_{ti}^2} \right], \quad (B13) \]

and the set B results

\[M_{B_1} = M_{A_1}(V^*_j k j, V_{Uk i} \rightarrow V_{Uk j}, V_{Uk i} \rightarrow V_{Uk j}, P_L \rightarrow P_R) \]

\[M_{B_2} = M_{A_2}(V^*_j k j, V_{Uk i} \rightarrow V_{Uk j}, V_{Uk i} \rightarrow V_{Uk j}, P_L \rightarrow P_R) \]

\[M_{B_3} = M_{A_3}(V^*_j k j, V_{Uk i} \rightarrow V_{Uk j}, V_{Uk i} \rightarrow V_{Uk j}, P_L \rightarrow P_R) \]

\[M_{B_4} = M_{A_4}(V^*_j k j, V_{Uk i} \rightarrow V_{Uk j}, V_{Uk i} \rightarrow V_{Uk j}, P_L \rightarrow P_R) \]

Each set \(M_{A,B} \) is finite because the ultraviolet term \(\Delta \equiv 2/(4-D) - \gamma_E + \log 4\pi = 1/e - \gamma_E + \log 4\pi, D = 4 - 2\epsilon \), is canceled out, it arise from the Passarino-Veltman functions \(B_0 \) given below, and the electromagnetic gauge invariances is also satisfied \(q_{\mu} M_{A,B} = 0 \).

Now we turn to consider the approximation \(m_{ij} = 0 \) in \(B_0 \), we get

\[F_{M,E}^{\mu,\nu} = \frac{-m_{ik}^2 (m_{ik}^2 - 2m_{U++}^2) + m_{ik}^4 - 2m_{U++}^2 + 2m_{U++}^4 \left[B_0^{U++}(1) - B_0^{U++}(2) \right]}{64m_{ti}^4} \]

\[+ \frac{m_{U++}^2 (-2m_{ik}^2 + m_{ik}^4 + 2m_{U++}^2) C_0^{U++} \left(1 + \frac{m_{ik}^2 (-m_{ik}^2 + m_{ik}^4 + 2m_{U++}^2) C_0^{U++}}{64m_{ti}^2} \right)}{32m_{ti}^2} \]

\[+ \frac{3 (m_{ik}^2 + 2m_{U++}^2)}{128m_{ti}^2} \]. \quad (B18) \]

We obtain the analytical solutions of the Passarino-Veltman scalar functions with the help of Package-X [53], considering the approximation \(m_{ik} \approx 0 \) in \(B_0(1) \) and \(B_0(2) \) and \(C_0(1) \), because \(m_{ik} \ll m_X \), but in \(C_0(2) \) we have set just one \(m_{ik} \) to zero, later we Taylor expand each result around \(m_{ik}^2/m_X^2 \ll 1 \), and also a second expansion in \(C_0(2) \) around \(m_{ik}^2/m_X^2 \ll 1 \). Proceeding in this way we have also reproduced the known result for the SM case due to W&K \(\nu_l \) given
in Eq. (49), see [27]. The approximations of the Passarino-Veltman functions are

\[B^{X}_0(1) \equiv B_0(0, m^2_{l_k}, m^2_X) = -i16\pi^2\mu^{2\epsilon} \int \frac{d^Dk}{(2\pi)^D (k^2 - m^2_{l_k})[(k - p_j)^2 - m^2_X]} \]
\[\approx \Delta + \log \left(\frac{\mu^2}{m^2_X} \right) + 1 , \] (B19)

\[B^{X}_0(2) \equiv B_0(m^2_{l_i}, m^2_{l_k}, m^2_X) = -i16\pi^2\mu^{2\epsilon} \int \frac{d^Dk}{(2\pi)^D (k^2 - m^2_{l_k})[(k - q - p_j)^2 - m^2_X]} \]
\[\approx \Delta + \log \left(\frac{\mu^2}{m^2_X} \right) + 2 + \left(1 - \frac{m^2_X}{m^2_{l_i}} \right) \log \left(\frac{m^2_{l_k}}{m^2_{l_k} - m^2_X} \right) \]
\[\approx \Delta + \log \left(\frac{\mu^2}{m^2_X} \right) + 1 + \frac{m^2_{l_k}}{2m^2_X} , \] (B20)

\[C^{X}_0(1) \equiv C_0(0, 0, m^2_{l_i}, m^2_{l_k}, m^2_X, m^2_X) = -i16\pi^2\mu^{2\epsilon} \int \frac{d^Dk}{(2\pi)^D (k^2 - m^2_{l_k})[(k - p_j)^2 - m^2_X][(k - q - p_j)^2 - m^2_X]} \]
\[\approx \frac{1}{2m^2_X} \left[2\text{Li}_2 \left(\frac{m^2_{l_i}}{m^2_{l_i} - m^2_X} \right) + \log^2 \left(\frac{m^2_{l_k}}{m^2_{l_k} - m^2_X} \right) \right] \]
\[\approx -\frac{1}{m^2_X} \left[1 - \frac{m^2_{l_k}}{4m^2_X} \right] , \] (B21)

\[C^{X}_0(2) \equiv C_0(0, 0, m^2_{l_i}, m^2_X, m^2_{l_k}, m^2_{l_k}) = -i16\pi^2\mu^{2\epsilon} \int \frac{d^Dk}{(2\pi)^D (k^2 - m^2_{l_k})[(k - p_j)^2 - m^2_{l_k}]][(k - q - p_j)^2 - m^2_{l_k}]} \]
\[\approx \frac{1}{2m^2_{l_i}} \left[2\text{Li}_2 \left(\frac{m^2_{l_i} + m^2_{l_k} - m^2_X}{m^2_{l_i} - m^2_X} \right) + \log^2 \left(\frac{-m^2_{l_k}}{m^2_{l_i} - m^2_X} \right) + 2\text{Li}_2 \left(1 - \frac{m^2_X}{m^2_{l_k}} \right) \right] \]
\[\approx \frac{1}{m^2_X} \left[\frac{m^2_{l_i}}{2m^2_X} - \frac{m^2_{l_k}m^2_{l_i}}{2m^2_X} + \left(1 - \frac{m^2_{l_k}}{2m^2_X} - \frac{m^2_{l_i}}{m^2_X} \right) \log \left(\frac{m^2_{l_k}}{m^2_{l_k} - m^2_X} \right) \right] . \] (B22)

We have crosschecked these results with the numerical software \texttt{LoopTools} [56] and they are in very good agreement. Finally, considering in [B18] the GIM leptonic mechanism \(\sum_{k=1}^{3} V_{U_{ak}} V_{U_{bk}}^* = 0 \), the leading contribution proportional to the linear mass term \(m_{l_i} \) leads to the Eq. (50).
[1] S. M. Boucenna, J. W. F. Valle and A. Vicente, Predicting charged lepton flavor violation from 3-3-1 gauge symmetry, Phys. Rev. D 92, no. 5, 053001 (2015); [arXiv:1502.07536 [hep-ph]].

[2] K. A. Olive et al. [Particle Data Group Collaboration], Review of Particle Physics, Chin. Phys. C 38, 090001 (2014) and 2015.

[3] M. C. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 1212, 123 (2012); [arXiv:1209.3023 [hep-ph]].

[4] F. Pisano and V. Pleitez, $SU(3)_L \otimes U(1)_X$ model for electroweak interactions, Phys. Rev. D 46, 410 (1992); hep-ph/9206242.

[5] F. H. Frampton, Chiral dilepton model and the flavor question, Phys. Rev. Lett. 69, 2889 (1992).

[6] R. Foot, O. F. Hernandez, F. Pisano and V. Pleitez, Lepton masses in an SU(3)-L x U(1)-N gauge model, Phys. Rev. D 47, 4158 (1993); hep-ph/9207264.

[7] A. G. Dias, J. C. Montero and V. Pleitez, Closing the $SU(3)_L \otimes U(1)_X$ symmetry at electroweak scale, Phys. Rev. D 73, 113004 (2006); hep-ph/0605051.

[8] A. C. B. Machado, J. C. Montero and V. Pleitez, FCNC in the minimal 3-3-1 model revisited, Phys. Rev. D 88, 113002 (2013); arXiv:1305.1921 [hep-ph].

[9] G. De Conto, A. C. B. Machado and V. Pleitez, Minimal 3-3-1 model with a spectator sextet, Phys. Rev. D 92, no. 7, 075031 (2015); arXiv:1505.01343 [hep-ph].

[10] J. T. Liu and D. Ng, Lepton flavor changing processes and CP violation in the 331 model, Phys. Rev. D 50, 548 (1994); hep-ph/9401228.

[11] G. De Conto and V. Pleitez, Electron and neutron electric dipole moment in the 3-3-1 model with heavy leptons, Phys. Rev. D 91, 015006 (2015); arXiv:1408.6551 [hep-ph].

[12] I. Chakraborty, A. Datta and A. Kundu, Electron and neutron electric dipole moment in the 3-3-1 model with heavy leptons, Phys. Rev. D 91, 015006 (2015); arXiv:1408.6551 [hep-ph].

[13] W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 31 (1986).

[14] J. M. Cabarcas, J. Duarte and J. A. Rodriguez, Charged lepton mixing processes in 331 Models, Int. J. Mod. Phys. A 29, 1450015 (2014); arXiv:1310.4683 [hep-ph].

[15] J. M. Cabarcas, J. Duarte and J. A. Rodriguez, Charged lepton mixing processes in 331 Models, Int. J. Mod. Phys. A 29, 1450015 (2014); arXiv:1310.4683 [hep-ph].

[16] W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 31 (1986).

[17] J. M. Cabarcas, J. Duarte and J. A. Rodriguez, Charged lepton mixing processes in 331 Models, Int. J. Mod. Phys. A 29, 1450015 (2014); arXiv:1310.4683 [hep-ph].

[18] F. C. Correia and V. Pleitez, Vector-bilepton Contribution to Four Lepton Production at the LHC, Phys. Rev. D 88, 035016 (2013); arXiv:1307.4683 [hep-ph].

[19] V. Khachatryan et al. [CMS Collaboration], Search for lepton-flavour-violating Decays of the Higgs Boson, Phys. Lett. B 749, 337 (2015); arXiv:1502.07400 [hep-ex].

[20] G. Aad et al. [ATLAS Collaboration], Search for lepton-flavour-violating $H \rightarrow \mu \tau$ decays of the Higgs boson with the ATLAS detector, JHEP 1511, 211 (2015); arXiv:1508.03372 [hep-ex].

[21] I. Chakraborty, A. Datta and A. Kundu, Lepton flavor violating Higgs boson decay $h \rightarrow \mu \tau$ at the ILC, arXiv:1603.06681 [hep-ph].

[22] I. Cortes Maldonado, A. Moyotl and G. Tavares-Velasco, Lepton flavor violating decay $Z \rightarrow l l l_j$ in the 331 model, Int. J. Mod. Phys. A 26, 4171 (2011); arXiv:1109.0661 [hep-ph].

[23] J. M. Cabarcas, J. Duarte and J. A. Rodriguez, Charged lepton mixing processes in 331 Models, Int. J. Mod. Phys. A 29, 1450015 (2014); arXiv:1310.1407 [hep-ph].

[24] J. I. Aranda, J. Montano, F. Ramirez-Zavaleta, J. J. Toscano and E. S. Tututi, Study of the lepton flavor-violating $Z' \rightarrow \mu \tau$ decay, Phys. Rev. D 86, 035008 (2012); arXiv:1202.6288 [hep-ph].

[25] V. D. Barger and R. J. N. Phillips, Collider Physics, Updated Edition, ADDISON-WESLEY (1996) 592 P. (FRONTIERS IN PHYSICS, 71)

[26] S. T. Petcov, The Processes $\mu \rightarrow e\gamma, \mu \rightarrow eee, \nu' \rightarrow e\gamma$ in the Weinberg-Salam Model with Neutrino Mixing, Sov. J. Nucl. Phys. 25, 340 (1977) [Yad. Fiz. 25, 641 (1977)] Erratum: [Sov. J. Nucl. Phys. 26, 698 (1977)] Erratum: [Yad. Fiz. 25, 1336 (1977)]. T. P. Cheng and L. F. Li, Nonconservation of Separate μ-Lepton and e-Lepton Numbers in Gauge Theories with $v + a$ Currents, Phys. Rev. Lett. 38, 381 (1977). B. W. Lee and R. E. Shrock, Natural Suppression of Symmetry Violation in Gauge Theories: Muon - Lepton and Electron Lepton Number Nonconservation, Phys. Rev. D 16, 1444 (1977). W. J. Marciano and A. I. Sanda, Exotic Decays of the Muon and Heavy Leptons in Gauge Theories, Phys. Lett. B 67, 303 (1977). G. Altarelli, L. Baulieu, N. Cabibbo, L. Maiani and R. Petronzio, Muon Number Nonconserving Processes in Gauge Theories of Weak Interactions, Nucl. Phys. B 125, 285 (1977). Erratum: [Nucl. Phys. B 130, 516 (1977)].

[27] T. P. Cheng and L. F. Li, Gauge Theory of Elementary Particle Physics, Oxford University Press, New York (1984).

[28] S. Chatrchyan et al. [CMS Collaboration], Search for top-quark partners with charge $5/3$ in the same-sign dilepton final state, Phys. Rev. Lett. 112, no. 17, 171801 (2014); arXiv:1312.2301 [hep-ex].

[29] J. C. Montero, F. Pisano and V. Pleitez, Neutral currents and GIM mechanism in $SU(3)_L \times U(1)_N$ models for electroweak interactions, Phys. Rev. D 47, 2918 (1993); hep-ph/9212271.
Deviation	$U^h_{\rho_1}$	$R^{m_{331}}_{\tau\tau}$	$\text{Br}(h^0 \to \tau\bar{\tau})^{m_{331}}$
$+2\sigma$ | 0.123 | 1.31 | 0.080
$+1\sigma$ | 0.110 | 1.05 | 0.064
0σ | 0.096 | 0.79 | 0.048
-1σ | 0.078 | 0.53 | 0.033
-2σ | 0.056 | 0.27 | 0.017

TABLE I: Comparison of the m_{331} model with the experimental data, $R^{m_{331}}_{\tau\tau} = R^{\text{Exp}}_{\tau\tau} = 0.79 \pm 0.26$ from PDG \cite{2}. $\text{Br}(h^0 \to \tau\bar{\tau})^{\text{SM}} = 0.061$. See also Fig. \ref{fig:1}.

Decay	$B^{m_{331}}$
$h^0 \to e\mu$	1.44×10^{-14}
$h^0 \to e\tau$	1.92×10^{-13}
$h^0 \to \mu\tau$	1.42×10^{-14}

TABLE II: Lepton flavor violating tree level decays $h^0 \to l_il_j$, with $U^h_{\rho_1} = 0.096$ fitted from the experimental data of $h^0 \to \tau\bar{\tau}$.

Decay	Br^{Exp}	$\Gamma^{\text{Exp}} [\text{GeV}]$
$\mu^- \to e^- e^+ e^-$	$< 10^{-12}$	$< 2.99 \times 10^{-31}$
$\tau^- \to e^- e^+ e^-$	$< 2.7 \times 10^{-8}$	$< 6.12 \times 10^{-20}$
$\tau^- \to e^- \mu^+ \mu^-$	$< 2.7 \times 10^{-8}$	$< 6.12 \times 10^{-20}$
$\tau^- \to \mu^- e^+ e^-$	$< 1.8 \times 10^{-8}$	$< 4.08 \times 10^{-20}$
$\tau^- \to \mu^- \mu^+ \mu^-$	$< 2.1 \times 10^{-8}$	$< 4.76 \times 10^{-20}$

TABLE III: $l_i \to l_j l_k \bar{l}_k$ experimental upper limits from PDG \cite{2}.

Decay	$B^{m_{331}}$
$\tau \to e e \gamma$	1.85×10^{-15}
$\tau \to \mu e \gamma$	1.08×10^{-15}

TABLE IV: Decays $\tau \to l_j l_k \bar{l}_k$ considering $m_{U^{++}} = 4.59$ TeV, the minimal bound for $m_{U^{++}}$ from $\mu \to e e \gamma$.

Decay	Br^{Exp}	$\Gamma^{\text{Exp}} [\text{GeV}]$	Br^{SM}	$\Gamma^{\text{SM}} [\text{GeV}]$
$\mu \to e \gamma$	$< 5.7 \times 10^{-13}$	$< 1.70 \times 10^{-31}$	10^{-49}	10^{-67}
$\tau \to e \gamma$	$< 3.3 \times 10^{-8}$	$< 7.49 \times 10^{-20}$	10^{-49}	10^{-61}
$\tau \to \mu \gamma$	$< 4.4 \times 10^{-8}$	$< 9.99 \times 10^{-20}$	10^{-49}	10^{-61}

TABLE V: $l_i \to l_j \gamma$, experimental upper limits [PDG] and SM predictions.
TABLE VI: $\text{Br}(\mu \rightarrow e\gamma)^{m331}$ with $m_{U^{++}} = 4590$ GeV and $m_{Y^{++}} = 322$ GeV, see Figs. 5(a) and (b).

TABLE VII: $\text{Br}(\tau \rightarrow e\gamma)^{m331}$ with $m_{U^{++}} = 4590$ GeV and $m_{Y^{++}} = 322$ GeV, see Figs. 5(c) and (d).

TABLE VIII: $\text{Br}(\tau \rightarrow \mu\gamma)^{m331}$ with $m_{U^{++}} = 4590$ GeV and $m_{Y^{++}} = 322$ GeV, see Figs. 5(e) and (f).

FIG. 1: $R_{\tau\tau}^{m331}$ of the decay $h^0 \rightarrow \tau\bar{\tau}$, $R_{\tau\tau}^{m331} \equiv R_{\tau\tau}^{\text{Exp.}} = 0.79 \pm 0.26$ from PDG [2]. See specific values in Table I.
FIG. 2: Decay \(l_i \rightarrow l_j l_k l_k \) due to the virtual particles \(X \equiv U^{++}, Y^{++}, h^0, \) and \(A^0. \)

FIG. 3: \(\text{Br}(\mu \rightarrow e e e)^{m_{331}} \) showing only the partial contributions of the \(U^{++}, Y^{++}, h^0 \) and \(A^0, \) varying simultaneously the three masses of \(U^{++}, Y^{++} \) and \(A^0 \) in the same interval and for that we set them as \(m_X. \) The decay imposes that the mass of the \(U^{++} \) vector boson must be \(m_{U^{++}} > 4.584 \text{ TeV} \) to fulfil the experimental upper limit, the green area indicates the allowed region for \(m_{U^{++}}. \)

FIG. 4: Decay \(l_i \rightarrow l_j \gamma \) due to the couple of virtual particles \(W_{\mu} & \nu_k, U^{++} & l_k, V^{+} & \nu_k, Y^{++} & l_k, h^0 & l_k, \) and \(A^0 & l_k. \)
FIG. 5: $\text{Br}(l_{i} \rightarrow \ell_{j} \gamma)^{m_{331}}$ with $m_{U^{++}} = 4590$ GeV, $m_{Y^{++}} = 322$ GeV, with $m_{A^{0}}$ fixed cases and as a function of $0.01 \leq v_{\chi} O_{\rho_{1}} / \Lambda \leq 1$.

\[
U_{\mu}^+ = \frac{ig}{\sqrt{2} V_{ub}\gamma^\mu P_L} l_b \rightarrow l'_a
\]

(a)

\[
U_{\mu}^- = \frac{ig}{\sqrt{2} V_{ub}\gamma^\mu P_L} l_b \rightarrow l_a
\]

(b)

\[
U_{\mu}^- = \frac{ig}{\sqrt{2} V_{ub}\gamma^\mu P_L} l'_b \rightarrow l_a
\]

(c)

\[
U_{\mu}^+ = \frac{ig}{\sqrt{2} V_{ub}\gamma^\mu P_L} l'_b \rightarrow l'_a
\]

(d)

\[
\gamma \mu
\]

\[
= -iQ_\mu e^\gamma^\mu
\]

(e)

\[
= -iQ_\mu e^\gamma^\mu
\]

(f)

\[
U_{\alpha_+}^{++}(p_+) U_{\alpha_-}^{--}(p_-) = -iQ_{U^{++}} e T_{\alpha_+}^{\alpha_-} \epsilon_0(p_0, p_+, p_-)
\]

(g)

FIG. 6: Feynman rules involved in the loops of the Fig. 7 and 8. In the leptonic rules the left-hand side lepton is incoming and the right-hand side lepton is outgoing.

FIG. 7: Decay \(l_i \rightarrow l_j l_k \bar{l}_k \) with the \(U^{++} \) contribution.

FIG. 8: Decay \(l_i \rightarrow l_j \gamma \), sample of the \(U^{++} \& l_k \) contribution.