Temporal variations of Cu in Jiaozhou Bay 1982—1986

Dongfang Yang1, 2, 3, a, Sixi Zhu1, 2, Zhikang Wang1, 2, Chunhua Su1, 2, Qiang Wang1, 2

1Research Center for Karst Wetland Ecology, Guizhou Minzu University, Guiyang 550025, China;
2College of Chemistry and Environmental Science, Guizhou Minzu University, Guiyang 550025, China;
3North China Sea Environmental Monitoring Center, SOA, Qingdao 266033, China.
a dfyang_dfyang@126.com

Abstract. This paper analyzed the temporal variations of Cu in Jiaozhou Bay during 1982—1986. Results showed that Cu contents in study years were 0.15—5.31 μg L⁻¹, 0.77—20.60 μg L⁻¹, 0.11—4.00 μg L⁻¹, 0.10—0.43 μg L⁻¹ and 0.18—0.77 μg L⁻¹, respectively. The Cu pollution level in this bay was moderate during 1982—1983, yet for temporal variations Cu contents in surface waters were showing decreasing trend. Cu contents in spring, summer and autumn were 0.11—20.60 μg L⁻¹, 0.10—4.86 μg L⁻¹ and 0.11—3.56 μg L⁻¹, respectively. This bay was moderate pollution in spring in 1982—1983, while in other seasons in study years was still slight. These indicated that the temporal variations of Cu pollution in this bay should be taken in to account in decision-making of pollution control practice.

1. Introduction
The industry was increasing rapidly after the reform and opening-up, and a large amount of pollutants were generating and discharging to the environment. Cu pollution in marine bays has been one of the critical environmental issues since ocean is the sink of pollutant [1-6]. Hence, understanding the temporal variations of Cu in marine bay is essential to marine environment protection and the maintaining of ecological sustainable development.

Jiaozhou Bay is a semi-closed marine bay in Shandong Province China, in where the pollution issue has been arising after the reform and opening-up [7-14]. This paper analyzed the temporal variations of Cu in Jiaozhou Bay during 1982—1986, and provided information for scientific research and pollution control and environmental remediation.

2. Study area and data collection
Jiaozhou Bay is located in the south of Shandong Province, eastern China (35°55′-36°18′ N, 120°04′-120°23′ E). The total area, average water depth and bay mouth width are 446 km², 7 m and 3 km, respectively. This bay is a typical of semi-closed bay which is connected to the Yellow Sea in the south. There are a dozen of rivers, and the majors are Dagu River, Haibo River, Licun River, and Loushan River etc., all of which are seasonal rivers [15-16].

The investigation on Cd in Jiaozhou Bay was carried on in different seasons in during 1982—1986 (Fig. 1 and Table 1). Cu in waters was sampled and monitored follow by National Specification for
Table 1 Sampling time of Cd in Jiaozhou Bay

Month	April	May	June	July	August	September	October
1982	√		√				
1983	√		√	√			
1984	√		√	√			
1985	√		√	√			
1986	√		√				

Fig. 1 Geographic location and sampling sites in Jiaozhou Bay

3. Results and discussion

Contents and pollution levels of Cu. The contents of Cu in different months during 1982—1986 were listed in Table 2. In according to the guide line of Cu in National Sea Water Quality Standard (GB 3097-1997) (Table 2), and the contents of Cu in different months during 1982—1986 (Table 3), the pollution levels of Cu in different months during 1982—1986 were listed in Table 4. It could be found that the highest values of Cu contents in June 1982 and May 1983 were Grade II and Grade III, respectively, indicated that Cu pollution level in this bay was moderate during 1982—1983. However, Cu contents in different months during 1982—1986 were still relative low and were Grade I. In general, the pollution levels of Cu in Jiaozhou Bay could be considered as still slight during 1982—1986.

Table 2 Guide line of Cu in National Sea Water Quality Standard (GB 3097-1997)

Grade	I	II	III	IV
Content/μg L⁻¹	5.00	10.00	50.00	
Table 3 Cu contents in surface waters in different months during 1982－1986 in Jiaozhou bay/μg L⁻¹

Month	April	May	June	July	August	September	October
1982	0.86-5.31	0.15-2.33	2.22-3.56				
1983	2.47-20.60	0.86-4.86	0.77-3.00				
1984	0.28-1.88	1.60-4.00	0.11-2.00				
1985	0.10-0.38	0.18-0.39					
1986	0.18-0.77						

Table 4 Pollution levels of Cu in surface waters in different months during 1982－1986 in Jiaozhou bay/μg L⁻¹

Month	April	May	June	July	August	September	October
1982	I	I	I	I	I	I	I
1983	I	I	I	I	I	I	I
1984	I	I	I	I	I	I	I
1985	I		I	I	I	I	I
1986	I		I	I	I	I	I

Seasonal variation of Cd. For seasonal division in study area, April, May and July are spring, July, August and September are summer, October, November and Decemder are autumn. The contents of Cu in different seasons during 1982－1986 were listed in Table 5. For seasonal variations, Cu contents in spring, summer and autumn were 0.11－20.60 μg L⁻¹, 0.10－4.86 μg L⁻¹ and 0.11－3.56 μg L⁻¹, respectively. It could be found that this bay was moderate pollution in spring in 1982－1983, while the pollution levels in other seasons during 1982－1986 were still slight. These indicated that the seasonal variations of Cu pollution in this bay should be taken in to account in decision-making of pollution control and environmental remediation practice.

Table 5 Cu contents in surface waters in different seasons during 1982－1986 in Jiaozhou bay/μg L⁻¹

Month	Spring	Summer	Autumn
1982	0.86-5.31	0.15-2.33	2.22-3.56
1983	2.47-20.60	0.77-4.86	
1984	0.11-0.43	0.10-0.38	0.18-0.39
1985			
1986	0.18-0.77		

Annual change of Cu. Cu contents in study years during 1982－1986 were 0.15－5.31 μg L⁻¹, 0.77－20.60 μg L⁻¹, 0.11－4.00 μg L⁻¹, 0.10－0.43 μg L⁻¹ and 0.18－0.77 μg L⁻¹, respectively. In according to the highest values of Cu contents in different seasons during 1982－1986 (Table 5). It could be found that the Cu pollution level in this bay was moderate during 1982－1983, yet for temporal variations during 1982－1986 Cu contents in surface waters were showing decreasing trend. Objectively speaking, the inputs of Cu to Jiaozhou Bay were increasing along with time since the industry was developing rapidly after reform and opening-up. The reason was that the changes of Cu in marine bay waters were strongly impacted by many factors including water exchange, and the response of Cu contents in waters in marine bay was lagging to the inputs of Cu.

4. Conclusions

Cu contents in Jiaozhou Bay during 1982－1986 were 0.15－5.31 μg L⁻¹, 0.77－20.60 μg L⁻¹, 0.11－4.00 μg L⁻¹, 0.10－0.43 μg L⁻¹ and 0.18－0.77 μg L⁻¹, respectively. The Cu pollution level in this bay was moderate during 1982－1983. Cu contents in spring, summer and autumn were 0.11－20.60 μg L⁻¹, 0.10－4.86 μg L⁻¹ and 0.11－3.56 μg L⁻¹, respectively. This bay was moderate pollution in spring in 1982－1983, while in other seasons in study years was still slight. The seasonal variations of Cu pollution in this bay should be taken in to account in decision-making of pollution control and environmental remediation practice.
Acknowledgment
This research was sponsored by the China National Natural Science Foundation (31560107), Doctoral Degree Construction Library of Guizhou Nationalities University, Education Ministry's New Century Excellent Talents Supporting Plan (NCET-12-0659) and (31500394), Research Projects of Guizhou Nationalities University ([2014]02), Research Projects of Guizhou Province Ministry of Education (KY [2014] 266), Research Projects of Guizhou Province Ministry of Science and Technology (LH [2014] 7376).

References
[1] Yang DF, Miao ZQ, Song WP, et al.: Advanced Materials Research, Vol.1092-1093 (2015), p. 1013-1016.
[2] Yang DF, Miao ZQ, Cui WL, et al.: Advances in intelligent systems research, (2015), p. 17-20.
[3] Yang DF, Wang FY, Zhu SX, et al.: Advances in Engineering Research, Vol. 31(2015): p. 1284-1287.
[4] Yang DF, Zhu SX, Wu YJ, et al.: Advances in Engineering Research, Vol. 31(2015): p. 1288-1291.
[5] Yang DF, Wang FY, Zhu SX, et al.: Materials Engineering and Information Technology Application, Vol. 2015, p. 554-557.
[6] Yang DF, Zhu SX, Zhao XL, et al.: Advances in Engineering Research, Vol. 40 (2015), p. 770-775.
[7] Yang DF, Zhu SX, Wang FY, et al.: Advances in Computer Science Research, Vol. (2015), p. 1765-1769.
[8] Yang DF, Zhu SX, Wang FY, et al.: Advances in Engineering Research, Vol. 60(2016), p. 408-411.
[9] Yang DF, Zhu SX, Wang M, et al.: Advances in Engineering Research, Vol. 67(2016), p. 1311-1314.
[10] Yang DF, Yang DF, Wang M, et al.: Advances in Engineering Research, Vol. (2016), Part G, p. 1917-1920.
[11] Yang DF, Yang DF, He HZ, et al.: Advances in Engineering Research, Vol. 84 (2016), p. 852-856.
[12] Yang DF, He HZ, Wang FY, et al.: Advances in Materials Science, Energy Technology and Environmental Engineering, Vol. (2017), p. 291-294.
[13] Yang DF, Zhu SX, Yang DF, et al.: Computer Life, Vol. 4 (2016), p. 579-584.
[14] Yang DF, Yang DF, Tao XZ, et al.: World Scientific Research Journal, Vol. 22 (2016), p. 69-73.
[15] Yang DF, Chen Y, Gao ZH, et al.: Chinese Journal of Oceanology and Limnology, Vol. 23(2005), p. 72-90. (in Chinese)
[16] Yang DF, Wang FY, Gao ZH, et al. Marine Science, Vol. 28 (2004), p. 71-74. (in Chinese)
[17] China's State Oceanic Administration: The specification for marine monitoring (Ocean Press, Beijiang 1991), p.1-300. (in Chinese)