Identification of miRNA/mRNA-Negative Regulation Pairs in Nasopharyngeal Carcinoma

C 1 Minglei Liu*
E 2 Kangru Zhu*
B 1 Xinmei Qian
A 1 Wei Li

* These authors contributed to the work equally

Corresponding Author: Wei Li, e-mail: liweijnn@163.com
Source of support: Departmental sources

Background: Nasopharyngeal carcinoma (NPC) is a common malignancy in South-East Asia. NPC is characterized by distant metastasis and poor prognosis. The pathophysiological mechanism of nasopharyngeal carcinoma is unknown. This study aimed to identify the crucial miRNAs in nasopharyngeal carcinoma and their target genes, and to discover the potential mechanism of nasopharyngeal carcinoma development.

Material/Methods: Microarray expression profiling of miRNA and mRNA from the Gene Expression Omnibus database was downloaded, and we performed a significance analysis of differential expression. An interaction network of miRNAs and target genes was constructed. The underlying function of differentially expressed genes was predicted through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. To validate the microarray analysis data, significantly different expression levels of miRNAs and target genes were validated by quantitative real-time polymerase chain reaction.

Results: We identified 27 differentially expressed miRNAs and 982 differentially expressed mRNAs between NPC and normal control tissues. 12 miRNAs and 547 mRNAs were up-regulated and 15 miRNAs and 435 mRNAs were down-regulated in NPC samples. We found a total of 1185 negative correlation pairs between miRNA and mRNA. Differentially expressed target genes were significantly enriched in pathways in cancer, cell cycle, and cytokine-cytokine receptor interaction signaling pathways. Significantly differentially expressed miRNAs and genes, such as hsa-miR-205, hsa-miR-18b, hsa-miR-632, hsa-miR-130a, hsa-miR-34b, PIGR, SMPD3, CD22, DTX4, and CDC6, may play essential roles in the development of nasopharyngeal carcinoma.

Conclusions: hsa-miR-205, hsa-miR-18b, hsa-miR-632, hsa-miR-130a, and hsa-miR-34b may be related to the development of nasopharyngeal carcinoma by regulating the genes involved in pathways in cancer and cell cycle signaling pathways.

MeSH Keywords: Gene Regulatory Networks • MicroRNAs • Nasopharyngeal Neoplasms • Real-Time Polymerase Chain Reaction

Full-text PDF: http://www.medscimonit.com/abstract/index/idArt/896047
Background

Nasopharyngeal carcinoma is a head and neck cancer characterized as highly malignancy and regional selection [1,2]. NPC is a rare cancer in Western countries, but it is common in Asian countries [3]. NPC frequently occurs in southern China, including Guangdong, Fujian, Hong Kong and Southeast Asia, including Malaysia, Indonesia, and Singapore.

The incidence rate of NPC is 2 per 100 000 worldwide [4]. The NPC incidence in southern China is 20–50 times higher than in Western countries [5]. Radiotherapy is the main curative treatment for NPC to extend patient survival time [6,7]. NPC presents highly malignant recurrence with local tissue invasion and distant metastasis, which is the dominant reason for radiotherapy failure [8].

Currently, the major etiological factors of NPC are reported to be genetic susceptibility, environmental factors, and Epstein-Barr virus (EBV) infection. Familial and large-scale case-control studies report that HLA class I genes in the MHC locus at chromosome 6p21 are notably associated with high risk of NPC. In addition, CDK5, TEL2, CELF2, and IKKB [9–12] are also reported to be associated with NPC pathogenesis. Environmental risk factors include eating salt-preserved food [13], insufficient intake of fresh vegetables and fruits [14], alcohol consumption [15], and tobacco smoking [13,16]. Epstein-Barr virus (EBV) infection is an extensively researched etiological factor for NPC. EBV belongs to the gamma herpes virus family, persistently infects B lymphocytes in more than 90% of adults, and is related to NPC tumorigenesis [17].

In addition to the above-mentioned etiological factors of NPC, mounting evidence shows that microRNAs (miRNAs) may play essential roles in NPC tumorigenesis by regulating target genes. miRNAs are small (20–25 nucleotides) non-coding RNAs that negatively regulate expression level of target gene [18]. Numerous studies have reported that miRNAs are associated with NPC cell proliferation, migration, invasion, metastasis, and irradiation sensitivity by suppressing their target genes. miR-142-3p promotes NPC cell proliferation via suppressing SOCS5 expression [19]. miR-4649-3p inhibits NPC cell proliferation by targeting protein tyrosine phosphatase SHP-1 [20]. miR-29a/b regulates SPARC and COL3A1 gene expression to promote NPC cell migration and invasion [21]. miR-23a targets IL-8/Stat3 pathway results in radio-sensitivity in NPC [22], while miR-504 down-regulates nuclear respiratory factor 1 resulting in radio-resistance in NPC [23]. However, the mechanism of pathogenesis in NPC remains unclear.

In this study we used bioinformatics methods to integrate miRNA and mRNA expression data, which are available in the GEO database, to identify differentially expressed miRNAs and target genes between NPC and normal control tissues, aiming to provide valuable information for use in defining the mechanism of pathogenesis in NPC.

Material and Methods

Gene expression datasets

We searched the Gene Expression Omnibus database (GEO, http://www.ncbi.nlm.nih.gov/geo) for mRNA and miRNA expression profiling of NPC, and downloaded the raw expression data. GEO is a public repository for high-throughput gene expression data [24]. We only retained the microarray studies between tumor and normal tissues. The following information was extracted from each identified study: GEO accession number, platform, number of cases and controls, time, and author.

Data processing

Different sequencing platforms and clinical samples commonly cause the heterogeneity among different microarray datasets, and make it difficult to compare microarray datasets directly. We downloaded the raw expression dataset and preprocessed it by log2 transformation and Z-score normalization.

Analysis of differentially expressed miRNA and mRNA

The miRNAs and mRNA differentially expressed between the NPC and normal control samples were identified using the limma method, which is a linear model for microarray data analysis [25]. We selected differentially expressed miRNAs as false discovery rate (FDR) <0.05, and selected differentially expressed mRNA as FDR <0.001.

Identification of miRNA target genes

To obtain the target genes of miRNAs, the selected miRNAs were integrated into the miRWalk database (http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/) [26], in which the correlation between target genes and miRNAs have been confirmed. miRWalk is a comprehensive database that provides predicted and experimentally validated miRNA-target interactions for humans, mice, and rats. It combines the predicted and validated information with a comparison of binding sites resulting from 12 existing miRNA-target prediction programs [26,27]. In our study, we used 6 algorithms: DIANAmT, miRanda, miRDB, miRWalk, PICTAR, and TargetScan to predict target genes of miRNA; if more than 4 of 6 algorithms predicted the same gene of miRNA, the gene was considered as a target gene of the miRNA [26]. Reverse correlations of miRNA-target gene interacting pairs were subject to construct miRNA-mRNA interaction network analysis.
miRNA-target gene network

Differentially expressed miRNA and differentially expressed target genes were used to construct the interaction network by using Cytoscape software (http://cytoscape.org) [28]. In the miRNA-gene network, a circular node represented the mRNA and a diamond node represented the miRNA, and their association was represented by a line.

Functional enrichment analysis

The underlying function of differentially expressed target genes was predicted by the Gene Ontology (GO) [29] function and Kyoto Encyclopedia of Genes and Genomes (KEGG) [30] pathway enrichment analysis using the DAVID tool (Database for Annotation, Visualization, and Integrated Discovery) (http://www.david.niaid.nih.gov) [31]. We set p<0.05 and FDR <0.05 as the cut-off for selecting significantly enriched functional GO terms and KEGG pathway, respectively.

Quantitative real-time polymerase chain reaction (qRT-PCR)

Total RNA of fresh frozen tissues was extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. The SuperScript III Reverse Transcription Kit (Invitrogen, Carlsbad, CA, USA) was used to synthesize the cDNA according to the manufacturer’s instructions. qRT-PCR reactions were performed using Power SYBR Green PCR Master Mix [32] (Applied Biosystems, Foster City, CA) on the Applied Biosystems 7500 (Applied Biosystems, Foster City, CA). The miRcute miRNA First-Strand cDNA Kit (Tiangen, Beijing, China) and miRcute miRNA qPCR Detection Kit (Tiangen, Beijing, China) were used for miRNA expression level detection. U6 and β-actin were used as internal control for miRNA and mRNA detected. The relative expression of target genes was calculated using the 2^(-ΔΔCT) equation. The PCR primers were used as shown in Table 1.

Statistical analysis

At least 3 independent experiments were performed for statistical evaluation. qRT-PCR experimental data were expressed as means ±SD. The statistical significance was evaluated using the Student’s t-test and p<0.05 was considered as a significant difference.

Results

Differentially expressed miRNAs and mRNAs in the NPC

In this work, we collected a total of 3 mRNA expression profiles including 74 NPC and 31 normal control (NC) samples and

Table 1. Genes and primers for qRT-PCR.

miRNA/mRNA	Primer sequence (5’to3’)	
SMPD3	Forward-CCAACAAGTGTAACGACGATGCC	Reverse-CGCTGGACGAGGAGTTAGATTTC
CD22	Forward-ATGCGATTCGAGAAGGACAC	Reverse-CCACGAGCACCACATTACAAGG
DTX4	Forward-AGAAAGGTAAAACCCAGAGGAAGT	Reverse-ATGGCAAACCAAGCAGATGTTG
CDC6	Forward-TTAGGCAAAGAGGAGCACAAGATT	Reverse-CCTCCAAGAGCGCTGAAAGTGAC
PIGR	Forward-AGGGGTCACTCTGCTTTCG	Reverse-TCTGCTCCCATGGCTTGA
β-actin	Forward-CTCTGACTGTTGACGTTTCTT	Reverse-CTCTGACTGTTGACGTTTCTT
hsa-Mir-205	Forward-TCCCTTACCTCAGCGGAGTCTG	
hsa-Mir-18b	Forward-TAAGGTGCATCTATGTGTTGAGAA	
hsa-Mir-632	Forward-GTGCTGTCCCTCGTGGG	
hsa-Mir-34b	Forward-CAATCACTAATCTCACCGCAT	
U6	Forward-CTGCCCTCGGGCCAGCACA	Reverse-AAACCTCAAGAAATTTGCTG

This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
miRNA expression profiling including 402 NPC and 38 NC samples, as shown in Table 2. After normalization of the raw microarray data, significantly differentially expressed genes including 27 miRNA and 982 mRNA were identified in NPC compared to normal nasopharyngeal tissues; 27 miRNAs consisted of 12 up-regulated and 15 down-regulated miRNAs; 982 mRNA consisted of 547 up-regulated and 435 down-regulated mRNAs (Supplementary Table 1). hsa-miR-205, hsa-miR-196b, and hsa-miR-632 was the most significantly up-regulated miRNAs, while hsa-miR-130a, hsa-let-7a, and hsa-miR-34b were the most significantly down-regulated miRNAs in NPC compared with the normal control (Table 3).

The interaction network of miRNAs and target genes

Based on the identified miRNA-target gene interaction pairs of reverse association, we compared the interaction network between miRNAs and target genes in NPC and visualized them with Cytoscape software. We used 1185 miRNA-target gene pairs of reverse correlation, including 316 pairs of up-regulated and 735 down-regulated miRNAs, to construct the miRNA-target genes interaction network. The target predictions of hsa-miR-376a* and hsa-miR-18a* are not available in miRWalk databases.

In this network, the significantly differentially expressed hsa-miR-632, hsa-miR-205, hsa-miR-18b, hsa-miR-34b, and hsa-miR-130a were targeted in significantly differentially expressed PIGR, CDC6, CD22, SMPD3 and DTX4, respectively, as shown in Figure 1.

GO classification of miRNA target genes

To obtain insights into the biological roles of differentially expressed miRNA target genes, we analyzed the predicted target gene of miRNAs using GO annotation. The threshold of GO terms was p-value<0.05. Nuclear division (GO:0000280, p=3.05E-05) and cell cycle G2/M phase transition (GO:0044839, p=4.02E-05) were the most significant enrichments of targets genes biological process. Intracellular organelle part (GO:0044446, p=1.95E-05) and organelle part (GO:0044422, p=3.62E-05) were the highest enrichments of cellular component. Catalytic activity (GO:0003824, p=1.09E-04) and hydrolase activity (GO:0016787, p=1.75E-04) were the highest enrichments of molecular function, as shown in Table 4.

Pathway analysis of miRNA target genes

We performed the KEGG pathway enrichment analysis for differentially expressed miRNA-target genes. FDR <0.05 was used as the criteria for pathway detection. The highest enrichment of pathways in our analysis was the pathway in cancer (FDR=1.78E-11) and cell cycle (FDR=1.48E-07) (Table 5).

qRT-PCR validation of differentially expressed miRNAs and target genes

To validate the microarray analysis data, the levels of significantly differentially expressed miRNAs (hsa-miR-632, hsa-miR-34b, hsa-miR-130a, hsa-miR-205, and hsa-miR-18b) and target genes (CD22, CDC6, DTX4, PIGR, and SMPD3) were quantified.

Table 2. Characteristics of mRNA and miRNA expression profiling of the nasopharyngeal carcinoma.

GEO ID	Platform	Samples (N:P)	Time	Author
mRNA expression profiling:				
GSE53819	GPL6480Agilent-014850 Whole Human Genome Microarray 4x44K G4112F (Probe Name version)	18:18	2014	Qian CN
GSE13597	GPL96(HG-U133A) Affymetrix Human Genome U133A Array	3:25	2009	Wei W
GSE12452	GPL570(HG-U133_Plus_2) Affymetrix Human Genome U133 Plus 2.0 Array	10:31	2008	Ahlquist P
miRNA expression profiling:				
GSE32906	GPL11350 Illumina Custom Prostate Cancer DASL Panel miRNA	6:16	2014	Luo Z
GSE46172	GPL16770Agilent-031181 Unrestricted_Human_miRNA_V16.0_Microarray (miRBase release 16.0 miRNA ID version)	4:4	2013	Bethony JM
GSE22587	GPL8933Illumina Human Beta-version microRNA expression BeadChip	4:8	2012	YANG S
GSE32960	GPL14722microRNA array	18:312	2012	Ma J
GSE36682	Human miRNA 1K	6:62	2012	Wei R

N – normal samples; P – patients' samples.

Table 2. Characteristics of mRNA and miRNA expression profiling of the nasopharyngeal carcinoma.
by qRT-PCR in 2 NPC samples and 2 normal control samples. As shown in Figure 2A–2C, the expression levels of hsa-miR-632, hsa-miR-205, and hsa-miR-18b were significantly up-regulated and the respective target genes CD22, PIGR, and SMPD3 were significantly down-regulated in NPC samples (p<0.01). The expressions of hsa-miR-34b and hsa-miR-130a were significantly down-regulated and the respective target genes CDC6 and DTX4 were significantly up-regulated in NPC samples (p<0.01), as shown in Figure 2D, 2E. In conclusion, the qRT-PCR validation of differentially expressed miRNAs and target genes between NPC and normal control samples was in accordance with results of our microarray data bioinformatics analysis.

Table 3. Significantly dysregulated miRNAs.

miRNAs	p-value	FDR
Up-regulated miRNAs		
hsa-miR-205	0.00E+00	0.00E+00
hsa-miR-196b	1.58E-05	1.85E-03
hsa-miR-632	8.13E-05	3.56E-03
hsa-miR-18b	7.37E-05	3.56E-03
hsa-miR-93	3.81E-04	9.52E-03
hsa-miR-326	3.78E-04	9.52E-03
hsa-miR-210	3.18E-04	9.52E-03
hsa-miR-376a*	1.19E-03	2.46E-02
hsa-miR-200c	1.64E-03	3.02E-02
hsa-miR-18a*	2.26E-03	3.77E-02
hsa-miR-542-3p	2.60E-03	4.09E-02
hsa-miR-9*	3.47E-03	4.49E-02
Down-regulated miRNAs		
hsa-miR-130a	2.02E-11	3.54E-09
hsa-let-7a	3.18E-05	2.78E-03
hsa-miR-34b	4.60E-05	3.22E-03
hsa-let-7e	7.38E-05	3.56E-03
hsa-let-7d	1.46E-04	5.67E-03
hsa-miR-30d	2.24E-04	7.83E-03
hsa-miR-146a	3.31E-04	9.52E-03
hsa-miR-98	1.09E-03	2.46E-02
hsa-miR-10b	1.18E-03	2.46E-02
hsa-miR-138	1.45E-03	2.83E-02
hsa-miR-31	1.75E-03	3.05E-02
hsa-miR-363	2.69E-03	4.09E-02
hsa-miR-564	2.90E-03	4.23E-02
hsa-let-7g	3.09E-03	4.33E-02
hsa-miR-29a	3.31E-03	4.45E-02

FDR – false discovery rate.

The table above shows the significantly dysregulated miRNAs. The p-values and FDRs indicate the statistical significance of the expression changes. The up-regulated miRNAs showed significant up-regulation in NPC samples, while the down-regulated miRNAs showed significant down-regulation in NPC samples compared to normal control samples.
Figure 1. miRNA-mRNA interaction network of NPC. (A) Down-regulation miRNA and up-regulation mRNA interaction network. The green and blue diamond nodes represent down-regulation, and red and blue circular nodes represent up-regulation. (B) Up-regulation miRNA and down-regulation mRNA interaction network. The green and blue circular nodes represent down-regulation, and the red and blue diamond nodes represent up-regulation. Circular nodes represent mRNAs and diamond nodes represent miRNAs. Solid lines indicate interaction associations between the miRNAs and mRNAs. The blue diamond nodes and blue circular nodes represent verified miRNA and mRNA through qRT-PCR.
miRNAs play essential roles in many fundamental biological processes, including cell proliferation, migration, invasion, and metastasis. miRNAs can function as oncogenes or oncosuppressor, depending on the targets suppressed.

In our study, we found that hsa-miR-205, hsa-miR-632, hsa-miR-196b, hsa-miR-18b, and hsa-miR-93 are the top 5 up-regulated miRNAs and we found that hsa-miR-130a, hsa-let-7a, hsa-miR-34b, hsa-let-7e, and hsa-let-7d are the top 5 down-regulated miRNAs in NPC patients. hsa-miR-205 and hsa-miR-18a are significantly up-regulated, and hsa-miR-34b is significantly down-regulated in NPC biopsy tissues [33,34], which is in accordance with our bioinformatics analysis and further was validated through qRT-PCR (Table 3, Figure 2D). Moreover, hsa-miR-205 and hsa-miR-34b expression level influence the development of NPC [33]. Functions of hsa-miR-632 up-regulation and hsa-miR-130a down-regulation in NPC are not reported.

Table 4. GO function enrichment analysis of differentially expressed miRNA target genes (top 15).

GO ID	GO Term	Count	P-value	FDR
GO: 0000280	Nuclear division	7	3.05E-05	1.48E-01
GO: 0044839	Cell cycle G2/M phase transition	6	4.02E-05	9.76E-02
GO: 0000086	G2/M transition of mitotic cell cycle	6	4.02E-05	6.50E-02
GO: 0007067	Mitotic nuclear division	6	7.71E-05	9.37E-02
GO: 002617	Extracellular matrix disassembly	6	8.75E-05	8.50E-02
GO: 003074	Collagen catabolic process	6	8.75E-05	7.08E-02
GO: 0044243	Multicellular organismal catabolic process	6	8.75E-05	6.07E-02
GO: 0048285	Organelle fission	7	9.46E-05	5.74E-02
GO: 0051301	Cell division	9	1.45E-04	7.83E-02
GO: 004463	Single-organism cellular process	191	1.87E-04	9.08E-02
GO: 1903047	Mitotic cell cycle process	12	2.80E-04	1.24E-01
GO: 0044772	Mitotic cell cycle phase transition	9	2.84E-04	1.15E-01
GO: 0044770	Cell cycle phase transition	9	2.84E-04	1.06E-01
GO: 0051726	Regulation of cell cycle	41	2.92E-04	1.01E-01
GO: 0032963	Collagen metabolic process	6	3.49E-04	1.13E-01

FDR – false discovery rate.

Discussion

miRNAs play essential roles in many fundamental biological processes, including cell proliferation, migration, invasion, and metastasis. miRNAs can function as oncogenes or oncosuppressor, depending on the targets suppressed.

In our study, we found that hsa-miR-205, hsa-miR-632, hsa-miR-196b, hsa-miR-18b, and hsa-miR-93 are the top 5 up-regulated miRNAs and we found that hsa-miR-130a, hsa-let-7a, hsa-miR-34b, hsa-let-7e, and hsa-let-7d are the top 5 down-regulated miRNAs in NPC patients. hsa-miR-205 and hsa-miR-18a are significantly up-regulated, and hsa-miR-34b is significantly down-regulated in NPC biopsy tissues [33,34], which is in accordance with our bioinformatics analysis and further was validated through qRT-PCR (Table 3, Figure 2D). Moreover, hsa-miR-205 and hsa-miR-34b expression level influence the development of NPC [33]. Functions of hsa-miR-632 up-regulation and hsa-miR-130a down-regulation in NPC are not reported.
Tang et al. reported that miR-205-5p has significant diagnostic value as a novel candidate biomarker in NPC. They performed a comprehensive analysis of microRNA expression patterns of 3 NPC biopsies and 3 normal nasopharyngeal epithelium specimens, then validated the differentially expressed miRNAs in 67 NPC and 25 normal tissues with qRT-PCR, finding that miR-205-5p is 1 of 5 significantly differentially expressed miRNAs in NPC [35]. In addition, miR-205 is related to radio-resistance of NPC, and miR-205 up-regulation results in radio-resistance of NPC through suppressing the PTEN pathway [36,37]. In our work, PIGR was predicted as target gene of miR-205, and this was validated in NPC tissues by qRT-PCR (Figure 2B). PIGR had significantly lower expression in NPC specimens, but was frequently expressed in non-tumor controls [38], which is consistent with our results (Figure 2B).

Target CDC6 was up-regulated by hsa-miR-34b in NPC tissues, as Figure 2D shows. miR-34b/c and TP-53 polymorphisms may contribute to the risk of NPC, and gene-gene interaction of miR-34b/c rs4938723 and TP-53 Arg72-Pro increases the risk of NPC [39]. It is reported that CDC6 is associated with cancer prognosis and proliferation, while CDC6 functions in NPC are not reported. CDC6 is significantly up-regulated by miR-26a/b in lung cancer specimens compared with the adjacent normal tissues, suggesting that CDC6 is associated with poor prognosis of lung cancer [40]. Knockdown of CDC 6 effectively inhibits proliferation of tongue squamous cell carcinoma Tca8113 cells [41]. In our work, CDC6 was enriched in cell cycle, which is the top 2 KEGG enrichment pathway of differentially expressed miRNA target genes (Table 5).

hsa-miR-18b was up-regulated and consequently caused significant down-regulation of target genes ABLIM1 and SMDP3.
miRNA-mRNA interaction network in nasopharyngeal carcinoma

Liu M. et al.

© Med Sci Monit, 2016; 22: 2215-2234

Figure 2. miRNA and mRNA expression level in NPC and control tissues by qRT-PCR. (A) hsa-miR-632 and CD22; (B) hsa-miR-205 and PIGR; (C) hsa-miR-18b and SMPD3; (D) hsa-miR-34b and CD6; (E) hsa-miR-130a and DTX4. Control tissues mean adjacent cancer tissues of NPC.

(miRNA-mRNA interaction network in nasopharyngeal carcinoma)

The high expression level of hsa-miR-632 is reportedly associated with breast cancer tumorigenesis through using immunohistological detection [48]. hsa-miR-632, hsa-miR-130a, PIGR, CDC6, CD22, SMPD3, and DTX4 were down-regulated by both of hsa-miR-632 and hsa-miR-130a in NPC patients. hsa-miR-632 influences cancer cell proliferation, growth, and metastasis, while hsa-miR-130a up-regulation is mediated by loss of connective tissue growth factor through PI3K/AKT/C-Jun and C-Myc signaling to promote cell growth and cell proliferation of NPC [42]. Oxidative stress modulates NSMASE2 sub-cellular localization in plasma membranes to generate ceramide and induces apoptosis of lung carcinoma A549 cell line [43]. NSMASE2 regulates exosomal miRNA secretion and promotes angiogenesis within the tumor microenvironment, as well as in metastasis [44].

Deltex 4, E3 ubiquitin ligase is the official name of DTX4; it functions as a negative regulator of Notch signaling [45], which is crucial for the T-cell development in early stages and angiogenesis during carcinogenesis [46,47]. Dysregulation of Notch and Wnt promotes cell differentiation and tumorigenesis. In our study, DTX4 was up-regulated by hsa-miR-130a, hsa-miR-7a, hsa-miR-7g, hsa-miR-7d, and hsa-miR-7e in NPC patients. CD22 was down-regulated by both of hsa-miR-632 and hsa-miR-210. CD22 was enriched in B cell receptor and hematopoietic cell lineage signaling pathway via KEGG pathway analysis (Table 5). It is reported that pan-B lymphocytes have scant peri-tumoral areas and are absent in 29 out of 50 NPC biopsies through using immunohistological detection [48]. hsa-miR-632 is reportedly associated with breast cancer tumorigenesis, and high expression level of hsa-miR-632 down-regulates DNAIB6, leading to significantly increased invasive and metastatic ability of breast cancer cells compared to mammary epithelial cells [49].

Pathway in cancer was identified as the most significantly enriched pathway in NPC (Table 5). Pathway in cancer is related to pathogenesis of various cancer types, such as colorectal, pancreatic, thyroid, and lung cancer [50–54], indicating that pathways in cancer may play an important role in NPC pathogenesis.

There are limitations in our work. We have constructed the regulatory network of miRNAs and mRNA inverse correlations pairs, and the pathogenesis of key miRNAs and mRNAs in NPC need to be elucidated through in vivo and in vitro experiments.

Conclusions

We identified 27 differentially expressed miRNAs and 982 differentially expressed mRNAs between NPC and normal tissues. We used 1185 miRNA-target gene pairs of inverse correlations to construct an interaction network. In this network, we found several miRNAs and genes that may play important roles in NPC, such as hsa-miR-205, hsa-miR-34b, hsa-miR-18b, hsa-miR-632, hsa-miR-130a, PIGR, CDC6, CD22, SMPD3, and DTX4. The pathway in cancer may be involved in the pathogenesis mechanism of NPC. Our findings may provide an important contribution to further elucidate the pathogenesis mechanisms of NPC.
Genes	FDR	Up/down regulation
LMNB2	1.00E-11	Up
HDGFRP3	2.32E-11	Up
FIX1	2.89E-11	Up
RBBP8	4.91E-11	Up
LHX2	5.18E-11	Up
TNFAIP6	8.16E-11	Up
ECT2	1.02E-10	Up
C1orf48	1.74E-10	Up
CHAF1B	2.93E-10	Up
VRK2	4.51E-10	Up
NFRC1	8.20E-10	Up
TRC	1.08E-09	Up
NR4A1	1.08E-09	Up
FAM64A	1.42E-09	Up
GALNT11	2.59E-09	Up
TNFSF4	2.98E-09	Up
GPSM2	3.06E-09	Up
MAD2L1	4.03E-09	Up
GAD1	4.59E-09	Up
CDC6	5.29E-09	Up
PFDN4	5.31E-09	Up
ATF5	6.91E-09	Up
MRPL42	7.85E-09	Up
ZWILCH	8.93E-09	Up
FOXM1	9.38E-09	Up
COLA1	1.31E-08	Up
OIP5	1.99E-08	Up
COP1	2.17E-08	Up
DAP1	2.17E-08	Up
MINPP1	2.56E-08	Up
SEC61A2	3.30E-08	Up
CCNA2	3.30E-08	Up
C12orf11	4.54E-08	Up
ARNT2	4.54E-08	Up
RIF1	4.86E-08	Up
RCN2	5.33E-08	Up
DTX4	6.03E-08	Up
RAD54B	7.31E-08	Up
CLASP1	7.31E-08	Up
KIF14	7.46E-08	Up
GNPD1A	7.46E-08	Up
EXO1	7.66E-08	Up
KCTD12	1.10E-07	Up
GRB10	1.31E-07	Up
GINS3	1.63E-07	Up
FAP	1.69E-07	Up
PUS7	1.82E-07	Up
XOT1	2.00E-07	Up
PLATG3	2.04E-07	Up
PALB2	2.20E-07	Up
PRMT3	2.36E-07	Up
SAC3D1	2.45E-07	Up
VCAN	2.52E-07	Up
FGF1	2.78E-07	Up
ESM1	2.78E-07	Up
C12orf11	2.86E-07	Up
P4HA1	3.59E-07	Up
C1orf48	3.94E-07	Up
RB10	3.94E-07	Up
CHAF1B	3.99E-07	Up
TBCE	4.26E-07	Up
UBE2S	4.33E-07	Up
COL5A1	4.39E-07	Up
NOX4	4.49E-07	Up
GAPDH	4.52E-07	Up
EIF4E2	4.52E-07	Up
DTL	4.52E-07	Up
STK3	4.94E-07	Up
PSMD14	4.94E-07	Up
DSG2	4.94E-07	Up
CENPF	5.08E-07	Up
PTG3P	5.15E-07	Up
FANCL	5.15E-07	Up
PPIF	5.15E-07	Up
PSMA4	5.15E-07	Up
HDAC2	6.06E-07	Up
MCM4	6.38E-07	Up
CKS1B	6.38E-07	Up
UCG2	6.89E-07	Up
EIF2S2	6.90E-07	Up
TIPIN	7.68E-07	Up
FSCN1	7.68E-07	Up
HSP1	7.86E-07	Up
MMP12	8.05E-07	Up
TME194A	8.19E-07	Up
KIF18A	8.22E-07	Up
INS1M	8.24E-07	Up
RAI14	8.77E-07	Up
UNG	9.44E-07	Up
PIK3CB	1.12E-06	Up
TRIP6	1.15E-06	Up
MTX2	1.21E-06	Up
CEP132	1.21E-06	Up
STAR	1.27E-06	Up
PLAU	1.37E-06	Up
HOMER3	1.47E-06	Up
ME3	1.39E-06	Up
RIC8B	1.40E-06	Up
ZFP64	1.56E-06	Up
NUP155	1.58E-06	Up
TOMM40	1.65E-06	Up

Supplementary Table 1. Full list of differentially expressed mRNA in nasopharyngeal carcinoma.
Genes	FDR	Up/down regulation
PGAP1	1.67E-06	Up
ITGAV	1.88E-06	Up
KIF4A	1.90E-06	Up
SRD5A1	2.03E-06	Up
ZNF124	2.17E-06	Up
RAD51AP1	2.17E-06	Up
PTTG1	2.26E-06	Up
BRC32	2.31E-06	Up
GGC1	2.35E-06	Up
ANX4	2.41E-06	Up
AOA1	2.41E-06	Up
TMEM14A	2.77E-06	Up
PAK1IP1	3.08E-06	Up
HSPA1	3.11E-06	Up
USP11b	3.12E-06	Up
OSR2	3.17E-06	Up
SLC39A1	3.20E-06	Up
HSPA10	3.30E-06	Up
GSTO1	3.30E-06	Up
TPI1	3.30E-06	Up
IL15RA	3.30E-06	Up
HOX8A4	3.30E-06	Up
SETD2	3.30E-06	Up
C1Q8	3.30E-06	Up
IFRD1	3.30E-06	Up
NT5M	3.30E-06	Up
PITPNB	3.30E-06	Up
CENPN	3.30E-06	Up
GPR137B	3.30E-06	Up
HXK1	3.30E-06	Up
TEMPP1	3.30E-06	Up
SULF1	3.30E-06	Up
ERC6G	3.30E-06	Up
DENR	3.30E-06	Up
CSorf13	3.30E-06	Up
ATP2C1	3.30E-06	Up
STAT1	3.30E-06	Up
TTK	3.30E-06	Up
SS18L1	3.30E-06	Up
GABP1b	3.30E-06	Up
BIRC5	3.30E-06	Up
WNT2	3.30E-06	Up
HRSP12	3.30E-06	Up
SNRPG	3.30E-06	Up
PFDN2	3.30E-06	Up
POLR3D	3.30E-06	Up
ARID2	3.30E-06	Up
GJB1	3.30E-06	Up
POGLUT1	3.30E-06	Up
BID	3.30E-06	Up
STC1	3.30E-06	Up
BRI1p	3.30E-06	Up
TMEM155	4.21E-06	Up
NUP10	4.50E-06	Up
DSC2	4.61E-06	Up
CCL4	4.74E-06	Up
MED21	4.88E-06	Up
NOV	5.14E-06	Up
SUMO1	5.21E-06	Up
CPOX	5.30E-06	Up
COL7A1	5.30E-06	Up
CAT	5.39E-06	Up
STIL	5.84E-06	Up
CCT2	5.93E-06	Up
DNM1L	5.95E-06	Up
SLC25A13	6.29E-06	Up
IMPACT	6.52E-06	Up
CACBG	6.61E-06	Up
COX2	6.61E-06	Up
PDE14	7.02E-06	Up
IC2	7.10E-06	Up
ENO1	7.10E-06	Up
TNEFS15	7.34E-06	Up
EPHB4	7.34E-06	Up
ATP6V1B2	7.34E-06	Up
OAS3	7.83E-06	Up
GSTO1	7.93E-06	Up
TPI1	7.99E-06	Up
IL15RA	8.23E-06	Up
HOX8A7	8.40E-06	Up
SETD2	8.66E-06	Up
C1Q8	8.95E-06	Up
IFRD1	9.15E-06	Up
NT5M	9.26E-06	Up
PITPNB	9.28E-06	Up
CENPN	9.28E-06	Up
GPR137B	9.28E-06	Up
HXK1	9.28E-06	Up
TEMPP1	9.28E-06	Up
SULF1	9.28E-06	Up
ERC6G	9.28E-06	Up
DENR	9.28E-06	Up
CSorf13	9.28E-06	Up
ATP2C1	9.28E-06	Up
STAT1	9.28E-06	Up
TTK	9.28E-06	Up
SS18L1	9.28E-06	Up
GABP1b	9.28E-06	Up
BIRC5	9.28E-06	Up
WNT2	9.28E-06	Up
HRSP12	9.28E-06	Up
SNRPG	9.28E-06	Up
PFDN2	9.28E-06	Up
POLR3D	9.28E-06	Up
ARID2	9.28E-06	Up
GJB1	9.28E-06	Up
POGLUT1	9.28E-06	Up
BID	9.28E-06	Up
STC1	9.28E-06	Up
BRI1p	9.28E-06	Up
TMEM155	9.28E-06	Up
NUP10	9.28E-06	Up
DSC2	9.28E-06	Up
CCL4	9.28E-06	Up
MED21	9.28E-06	Up
NOV	9.28E-06	Up
SUMO1	9.28E-06	Up
CPOX	9.28E-06	Up
COL7A1	9.28E-06	Up
CAT	9.28E-06	Up
STIL	9.28E-06	Up
CCT2	9.28E-06	Up
DNM1L	9.28E-06	Up
SLC25A13	9.28E-06	Up
IMPACT	9.28E-06	Up
CACBG	9.28E-06	Up
COX2	9.28E-06	Up
PDE14	9.28E-06	Up
IC2	9.28E-06	Up
ENO1	9.28E-06	Up
TNEFS15	9.28E-06	Up
EPHB4	9.28E-06	Up
ATP6V1B2	9.28E-06	Up
Genes	FDR	Up/down regulation
----------	----------	---------------------
FG6	2.75E-05	Up
FNDC3B	2.76E-05	Up
LHFPL2	2.81E-05	Up
CDC25A	2.90E-05	Up
CD70	2.97E-05	Up
TOMM70A	3.03E-05	Up
COSP2	3.12E-05	Up
CCND2	3.12E-05	Up
MARCO	3.17E-05	Up
WDR41	3.40E-05	Up
TAF5	3.40E-05	Up
AP3M2	3.49E-05	Up
TMEM39A	3.55E-05	Up
TMEM185B	3.55E-05	Up
PLK4	3.64E-05	Up
COL10A1	3.64E-05	Up
C11orf41	3.68E-05	Up
KITLG	3.70E-05	Up
PLOD1	3.79E-05	Up
NFKBIA	3.79E-05	Up
CORO1C	3.85E-05	Up
MORC4	3.95E-05	Up
HOXA10	3.98E-05	Up
MRPL13	4.11E-05	Up
GINS1	4.17E-05	Up
ZFP112	4.20E-05	Up
EXT1	4.23E-05	Up
KIF13A	4.25E-05	Up
TMEM197	4.31E-05	Up
PIK3CD	4.44E-05	Up
IFT1	4.59E-05	Up
SCAPD2	4.64E-05	Up
ANGPT2	4.83E-05	Up
SNRPD1	5.10E-05	Up
NDUF9	5.24E-05	Up
TMPO	5.33E-05	Up
CD14	5.38E-05	Up
CDK5	5.44E-05	Up
DKC1	5.55E-05	Up
ASB9	5.76E-05	Up
TRMT61B	5.82E-05	Up
C1QB	5.91E-05	Up
WRN	5.97E-05	Up
TMEM106C	5.97E-05	Up
SYNE1	6.22E-05	Up
ICAM1	6.27E-05	Up
FAM86A	6.41E-05	Up
SRSF9	6.72E-05	Up
NUP98	6.81E-05	Up
GN2L2	6.80E-05	Up
PSMB2	6.94E-05	Up
ASPN	7.03E-05	Up

Genes	FDR	Up/down regulation
YRDC	7.17E-05	Up
KPNA2	7.25E-05	Up
TYROBP	7.30E-05	Up
EXOSC5	7.33E-05	Up
TNFRSF9	7.34E-05	Up
GAS8	7.37E-05	Up
TBCA	7.38E-05	Up
FAM162A	7.38E-05	Up
MAPKAPK5	7.41E-05	Up
POSTN	7.82E-05	Up
SSTR2	7.89E-05	Up
SUPV3L1	8.01E-05	Up
RSAD2	8.05E-05	Up
RFC2	8.05E-05	Up
H2AFZ	8.05E-05	Up
MFHAS1	8.29E-05	Up
SYNCRIP	8.60E-05	Up
C17orf75	8.72E-05	Up
WDR47	8.75E-05	Up
FASTKD3	8.81E-05	Up
NAA50	8.85E-05	Up
ITGB1	8.94E-05	Up
CAND1	9.04E-05	Up
PTPN12	9.22E-05	Up
MAT2A	9.40E-05	Up
DERA	9.71E-05	Up
KIAA0146	9.90E-05	Up
EPCAM	9.97E-05	Up
C17orf49	1.05E-04	Up
PYCARD	1.06E-04	Up
MDK	1.07E-04	Up
BMP3	1.07E-04	Up
RAB17	1.08E-04	Up
PLAUR	1.08E-04	Up
FASTKD2	1.09E-04	Up
AIMP2	1.12E-04	Up
WDR12	1.13E-04	Up
ABC1	1.13E-04	Up
SERPIN1	1.15E-04	Up
DEPDC1	1.16E-04	Up
CYC1	1.18E-04	Up
ITGB6	1.22E-04	Up
PSMA7	1.23E-04	Up
ZNF74	1.24E-04	Up
SMO2	1.24E-04	Up
SCO2	1.24E-04	Up
DNMX2	1.24E-04	Up
BST2	1.26E-04	Up
XPO1	1.27E-04	Up
ENOPH4	1.29E-04	Up
SPC5	1.30E-04	Up
PAICS	1.29E-04	Up
WASSF1	1.31E-04	Up
BCL2A1	1.32E-04	Up

This work is licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0).
Genes	FDR	Up/down regulation
LGALS1	1.32E-04	Up
RAXB	1.32E-04	Up
RRM1	1.34E-04	Up
PXDN	1.37E-04	Up
PTHR2	1.38E-04	Up
JMD1D	1.38E-04	Up
MBDS	1.39E-04	Up
RNF19B	1.40E-04	Up
PRC1	1.43E-04	Up
PRDM4	1.46E-04	Up
NPM3	1.48E-04	Up
UBE2C	1.48E-04	Up
CTSN1	1.55E-04	Up
ZNFS12	1.68E-04	Up
WBP5	1.59E-04	Up
PIGA	1.59E-04	Up
IL13RA2	1.60E-04	Up
GTF3C3	1.60E-04	Up
ARM1C	1.63E-04	Up
NOL10	1.64E-04	Up
COL4A5	1.65E-04	Up
GADD45A	1.65E-04	Up
FOXK2	1.71E-04	Up
C3T3	1.71E-04	Up
IDH1	1.72E-04	Up
ADIPOR2	1.72E-04	Up
PSMD4	1.72E-04	Up
FGR1B	1.73E-04	Up
ROBO1	1.72E-04	Up
CST1	1.74E-04	Up
CSTN2	1.75E-04	Up
UPP3B	1.81E-04	Up
URB2	1.81E-04	Up
TPT1	1.81E-04	Up
FAH	1.81E-04	Up
B4GALT2	1.82E-04	Up
PPIA	1.82E-04	Up
NME1	1.89E-04	Up
AQP9	1.95E-04	Up
UQCRH	1.96E-04	Up
UBE2C	1.96E-04	Up
MRPS35	1.97E-04	Up
ADAM9	1.97E-04	Up
DKK3	2.00E-04	Up
HSL	2.00E-04	Up
DDX60	2.07E-04	Up
ZBTB39	2.09E-04	Up
FAM10A	2.11E-04	Up
LOC754997	2.13E-04	Up
SCMH1	2.15E-04	Up
CUEDC2	2.17E-04	Up
2NF140	2.17E-04	Up
LOC440177	2.18E-04	Up
TAP1	2.18E-04	Up
E2F6	2.20E-04	Up
PA2G4	2.26E-04	Up
BMP2	2.29E-04	Up
DIABLO	2.35E-04	Up
PSMOD1	2.37E-04	Up
CAP5	2.41E-04	Up
PRR5	2.43E-04	Up
PRN5	2.45E-04	Up
PINIL1	2.45E-04	Up
TLN2	2.47E-04	Up
SRRP1	2.49E-04	Up
SOKSS1	2.49E-04	Up
CCR1	2.51E-04	Up
CEP76	2.58E-04	Up
SCARB2	2.60E-04	Up
MRPL12	2.65E-04	Up
ISYNA1	2.66E-04	Up
RPL32	2.70E-04	Up
PKD2	2.70E-04	Up
KAT2B	2.71E-04	Up
TRIB1	2.80E-04	Up
KDSR	2.84E-04	Up
IFI44L	2.84E-04	Up
UGCG	2.86E-04	Up
POLR3G	2.89E-04	Up
THBS2	2.97E-04	Up
ICSF6	2.97E-04	Up
STRAP	3.12E-04	Up
EIF2AK2	3.14E-04	Up
ADAM12	3.14E-04	Up
SNX27	3.14E-04	Up
KREMCN2	3.15E-04	Up
CEP192	3.15E-04	Up
PPP6C	3.21E-04	Up
LOC730101	3.23E-04	Up
PSMA6	3.25E-04	Up
TGFBI	3.25E-04	Up
PSTPIP2	3.25E-04	Up
CCL8	3.28E-04	Up
RPS29	3.29E-04	Up
PLA2G7	3.30E-04	Up
PNO1	3.32E-04	Up
RARB	3.35E-04	Up
CLIP2	3.45E-04	Up
LAMP2	3.45E-04	Up
CCT7	3.45E-04	Up
TIB2	3.45E-04	Up
ABCA3	3.45E-04	Up
NCK1	3.45E-04	Up
CD86	3.59E-04	Up
WSB2	3.62E-04	Up
DNMT3B	3.63E-04	Up

Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System] [ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica] [Chemical Abstracts/CAS] [Index Copernicus]
Genes	FDR	Up/down regulation
EVL	3.69E-04	Up
PTPLAD1	3.74E-04	Up
GLA	3.81E-04	Up
ADH5	3.88E-04	Up
CDK4	3.94E-04	Up
UMP5	3.99E-04	Up
UCP2	3.99E-04	Up
PTGES3	4.01E-04	Up
LOC100127972	4.01E-04	Up
FZD7	4.01E-04	Up
TUBGCP4	4.04E-04	Up
PPA1	4.07E-04	Up
ARPC1A	4.08E-04	Up
PDZK17	5.12E-04	Up
CBX1	4.17E-04	Up
KCNE1	4.22E-04	Up
PMP2	4.24E-04	Up
IL15	4.28E-04	Up
PCSK7	4.33E-04	Up
PRPF40A	4.34E-04	Up
MLLT1	4.34E-04	Up
MKKS	4.52E-04	Up
NIPSNAP1	4.57E-04	Up
TSR2	4.59E-04	Up
LDHA	4.62E-04	Up
CHCHD3	4.76E-04	Up
NCAPH	4.82E-04	Up
R3HD1	4.98E-04	Up
SPS1	4.98E-04	Up
PDHX	5.01E-04	Up
CYP17	5.07E-04	Up
NCOA2	5.07E-04	Up
C3AR1	5.23E-04	Up
ANAPC1O	5.24E-04	Up
CCN1	5.25E-04	Up
TARS	5.41E-04	Up
ATP5G3	5.49E-04	Up
HSPA13	5.52E-04	Up
TCF12	5.54E-04	Up
EIF1AX	5.59E-04	Up
CBX5	5.75E-04	Up
YBX1	5.79E-04	Up
CTSI1	5.82E-04	Up
RFWD1	5.83E-04	Up
ZNF473	5.84E-04	Up
POGD1	5.86E-04	Up
TGIF2	5.86E-04	Up
GSTK1	5.90E-04	Up
MTHFD2	5.90E-04	Up
JAG2	5.97E-04	Up
DIAPH1	5.99E-04	Up
GJA1	6.03E-04	Up

Genes	FDR	Up/down regulation
KCNM82	6.13E-04	Up
ACOT7	6.15E-04	Up
TMEM66	6.15E-04	Up
REP1N	6.18E-04	Up
TRAP1	6.28E-04	Up
SPDEF	6.32E-04	Up
YTHDF3	6.46E-04	Up
TNFAIP3	6.63E-04	Up
SNRPE	6.63E-04	Up
WDVYH1	6.64E-04	Up
FNBP1L	6.64E-04	Up
C6orf211	6.65E-04	Up
ATP5B	6.83E-04	Up
SEH1L	7.96E-04	Up
EFNB2	8.17E-04	Up
C1orf109	8.17E-04	Up
SOX12	6.84E-04	Up
SCA1	7.20E-04	Up
ISG15	7.29E-04	Up
RTF1	7.30E-04	Up
ANKR5D	7.35E-04	Up
AURKB	7.40E-04	Up
DARS	7.52E-04	Up
SUMO2	7.58E-04	Up
WDR1	7.68E-04	Up
LRP4	7.68E-04	Up
MYO1B	7.73E-04	Up
MCM10	7.73E-04	Up
BSYL	7.73E-04	Up
MMP1	7.85E-04	Up
CCNE2	7.91E-04	Up
AOR1	7.99E-04	Up
MTCH2	7.99E-04	Up
CHEK1	8.00E-04	Up
XAF1	8.22E-04	Up
LRP12	8.42E-04	Up
PAFAH1B3	8.43E-04	Up
STAMB8	8.44E-04	Up
NRAS	8.54E-04	Up
GHR	8.54E-04	Up
ATP5J2	8.68E-04	Up
HMGCR	8.75E-04	Up
SENP2	8.78E-04	Up
SLC35E3	9.08E-04	Up
ORC1	9.19E-04	Up
C5orf30	9.42E-04	Up
GSTM2	9.49E-04	Up
RSR1	9.49E-04	Up
DEGS1	9.66E-04	Up
RPS6KC1	9.88E-04	Up
RFC3	9.90E-04	Up
ESP1	9.96E-04	Up
FBXO11	9.98E-04	Up
EHB1	9.98E-04	Up
Genes	FDR	Up/down regulation
---------	----------	---------------------
COL1A1	9.98E-04	Up
DNAL1	0.00E+00	Down
ALDH1L1	1.36E-12	Down
SPAG8	4.00E-11	Down
SCR1N	4.64E-11	Down
FOX1I	4.64E-11	Down
CLU	4.64E-11	Down
KLF2	1.91E-10	Down
SCGB1A1	2.34E-10	Down
SCGB2A1	2.93E-10	Down
FOXJ1	4.64E-11	Down
CLU	4.64E-11	Down
SCR1N	4.64E-11	Down

Genes	FDR	Up/down regulation
FCRL2	4.33E-07	Down
FAM17B	4.33E-07	Down
DPEP2	4.52E-07	Down
CLMN	4.87E-07	Down
RNASE4	5.08E-07	Down
PPP3CA	5.08E-07	Down
GNG7	5.18E-07	Down
AGR2	5.39E-07	Down
GLTSCR2	5.44E-07	Down
GALNT12	5.54E-07	Down
ABHD14A	6.19E-07	Down
KLHDC2	6.65E-07	Down
C6orf103	7.80E-07	Down
CD72	9.76E-07	Down
AK1	8.20E-07	Down
RNASE4	5.08E-07	Down
PPP3CA	5.08E-07	Down
GNG7	5.18E-07	Down
AGR2	5.39E-07	Down
GLTSCR2	5.44E-07	Down
GALNT12	5.54E-07	Down
ABHD14A	6.19E-07	Down
KLHDC2	6.65E-07	Down
C6orf103	7.80E-07	Down
CD72	9.76E-07	Down
AK1	8.20E-07	Down
RNASE4	5.08E-07	Down
PPP3CA	5.08E-07	Down
GNG7	5.18E-07	Down
AGR2	5.39E-07	Down
GLTSCR2	5.44E-07	Down
GALNT12	5.54E-07	Down
ABHD14A	6.19E-07	Down
KLHDC2	6.65E-07	Down
C6orf103	7.80E-07	Down
CD72	9.76E-07	Down
AK1	8.20E-07	Down

Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System] [ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica] [Chemical Abstracts/CAS] [Index Copernicus]
Genes	FDR	Up/down regulation
ANG	4.04E-06	Down
GPR110	4.04E-06	Down
SERHL2	4.17E-06	Down
ACA1	4.21E-06	Down
KAT5	4.62E-06	Down
TBC1D22A	4.74E-06	Down
FZD4	5.30E-06	Down
ATP1A2	5.30E-06	Down
KCN16	5.30E-06	Down
HSPB8	5.99E-06	Down
CCDC69	6.02E-06	Down
CYB561D2	6.59E-06	Down
TINF2	7.58E-06	Down
ST6GAL5	7.74E-06	Down
SELNB1P1	9.03E-06	Down
CRY2	9.09E-06	Down
DUSP26	9.93E-06	Down
MPP	1.01E-05	Down
COX7A1	1.02E-05	Down
SWAP70	1.05E-05	Down
MS4A1	1.05E-05	Down
IFT88	1.09E-05	Down
DND1	1.12E-05	Down
KCNQ1	1.16E-05	Down
CH25H	1.21E-05	Down
LYL1	1.22E-05	Down
SRPX	1.24E-05	Down
NME5	1.30E-05	Down
CEBP8	1.30E-05	Down
PLA2G16	1.32E-05	Down
ZNF516	1.34E-05	Down
ITGA2	1.35E-05	Down
RAD51	1.54E-05	Down
BEX4	1.63E-05	Down
C3	1.71E-05	Down
SMPD1	1.75E-05	Down
CLCF1	1.76E-05	Down
PRK12	1.77E-05	Down
SGS5M2	1.79E-05	Down
CAND2	2.00E-05	Down
WDHD1	2.10E-05	Down
ARMCK6	2.10E-05	Down
FG2D	2.18E-05	Down
FMO2	2.21E-05	Down
C9	2.35E-05	Down
LMRD1	2.39E-05	Down
AK2	2.53E-05	Down
ABCA2	2.71E-05	Down
MPRD	2.80E-05	Down
DNAH5	2.84E-05	Down
CTDSP1	2.86E-05	Down
PLAC8	2.97E-05	Down

Genes	FDR	Up/down regulation
BCA4	3.03E-05	Down
BAALC	3.03E-05	Down
GTF2F2	3.05E-05	Down
VILL	3.12E-05	Down
POLD4	3.17E-05	Down
ITIH5	3.17E-05	Down
DAZAP2	3.17E-05	Down
SIGIRR	3.22E-05	Down
EPHB6	3.30E-05	Down
MEIS2	3.35E-05	Down
ICAM3	3.35E-05	Down
CCR6	3.35E-05	Down
PS4D	3.49E-05	Down
EFCAB1	3.64E-05	Down
TGFB3	3.78E-05	Down
SPATA6	3.85E-05	Down
CRLF1	3.95E-05	Down
CLDN8	4.17E-05	Down
ADCY2	4.30E-05	Down
PIGH1	4.32E-05	Down
TFF1	4.33E-05	Down
TSPAN1	4.55E-05	Down
SITD1	4.63E-05	Down
PHF1	4.65E-05	Down
ARHGAP44	4.76E-05	Down
TMEM121	4.97E-05	Down
C11orf71	5.02E-05	Down
SRPX	5.02E-05	Down
APOM	5.07E-05	Down
FUC1	5.18E-05	Down
NEIL1	5.19E-05	Down
LPAR1	5.20E-05	Down
PSMA2	5.25E-05	Down
LRG1	5.25E-05	Down
SRSF5	5.44E-05	Down
ZFP106	5.54E-05	Down
CRIP1	5.64E-05	Down
MAST3	5.82E-05	Down
DHX38	5.82E-05	Down
PRKCB	6.01E-05	Down
MRPL19	6.11E-05	Down
ABCD4	6.37E-05	Down
HSD17B8	6.72E-05	Down
GPR18	6.72E-05	Down
DNAH3	6.72E-05	Down
ADAMTS3	6.72E-05	Down
INHBB	6.72E-05	Down
NCR3	6.76E-05	Down
CLDN3	6.82E-05	Down
RNAS1	6.90E-05	Down
CCNA1	6.96E-05	Down
GOLGABA	6.96E-05	Down
PDZD2	7.03E-05	Down
CCDC19	7.03E-05	Down
EIF1B	7.25E-05	Down
Genes	FDR	Up/down regulation
------------	-------	--------------------
DLEC1	7.32E-05	Down
EIF3J	7.41E-05	Down
S1PR4	7.82E-05	Down
ACTR10	7.96E-05	Down
CHL1	7.99E-05	Down
PPRC1	8.05E-05	Down
TSPAN32	8.06E-05	Down
LRC23	8.06E-05	Down
CGRRF1	8.29E-05	Down
EFCAB6	8.32E-05	Down
LAMB2	8.40E-05	Down
CAP2	8.51E-05	Down
DUSP22	8.73E-05	Down
ADAM28	8.76E-05	Down
LMAN1	8.77E-05	Down
AEC5	9.04E-05	Down
VNN2	9.22E-05	Down
NUCB2	9.22E-05	Down
TIMP4	9.25E-05	Down
TLE2	9.39E-05	Down
PROS1	9.40E-05	Down
EPHX1	9.74E-05	Down
PGK1	9.76E-05	Down
CLCN4	9.78E-05	Down
YPELS	9.90E-05	Down
ERCC1	1.01E-04	Down
TMC6	1.01E-04	Down
RASGRF2	1.05E-04	Down
SERPINB7	1.05E-04	Down
ZFYVE21	1.05E-04	Down
CAN1	1.09E-04	Down
ARHGP11A	1.09E-04	Down
MAGI6	1.08E-04	Down
SPAG6	1.16E-04	Down
LRMP	1.17E-04	Down
FLI1	1.18E-04	Down
SNED1	1.21E-04	Down
PPOX	1.24E-04	Down
UBA7	1.24E-04	Down
BASP1	1.24E-04	Down
IGI	1.27E-04	Down
C5orf4	1.32E-04	Down
CTNS	1.34E-04	Down
TEX264	1.35E-04	Down
ABHD6	1.36E-04	Down
TIMM13L	1.39E-04	Down
CDC26A	1.42E-04	Down
P4HTM	1.40E-04	Down
CYP4F2	1.40E-04	Down
TRIM14	1.46E-04	Down
ATP7A	1.46E-04	Down
STAG3	1.54E-04	Down

Genes	FDR	Up/down regulation
ZNF137P	1.56E-04	Down
ZNF528	1.57E-04	Down
TMEM9B	1.57E-04	Down
PACRG	1.57E-04	Down
DEPDC5	1.63E-04	Down
CCDC81	1.65E-04	Down
PRIM2	1.70E-04	Down
RPS6KA1	1.72E-04	Down
C14orf1	1.73E-04	Down
CDT1	1.74E-04	Down
NLRP1	1.76E-04	Down
LPPR3	1.77E-04	Down
ANKH1	1.77E-04	Down
CDS14	1.79E-04	Down
TCTT	1.79E-04	Down
ERCC5	1.79E-04	Down
RNASET2	1.81E-04	Down
KRT7	1.81E-04	Down
FAM184A	1.81E-04	Down
TMEM132A	1.81E-04	Down
C11orf16	1.82E-04	Down
CAMTA1	1.82E-04	Down
HDC	1.93E-04	Down
NIPSNAP3B	1.96E-04	Down
LMD2	1.98E-04	Down
BAP1	2.02E-04	Down
ZNF821	2.06E-04	Down
ZBBX	2.09E-04	Down
ZCNWP1	2.18E-04	Down
TNCC2	2.18E-04	Down
CALM1	2.27E-04	Down
MAPK14	2.29E-04	Down
SEL13	2.36E-04	Down
VTI1B	2.36E-04	Down
P2RX5	2.28E-04	Down
CHAF1A	2.29E-04	Down
SGTA	2.30E-04	Down
MNS1	2.35E-04	Down
FYCO1	2.35E-04	Down
IL33	2.35E-04	Down
SCUBE2	2.38E-04	Down
TRIM24	2.41E-04	Down
HSD17B2	2.42E-04	Down
RASAL1	2.42E-04	Down
ANXA11	2.44E-04	Down
B3GNT3	2.44E-04	Down
GLT8D1	2.45E-04	Down
BCA3	2.59E-04	Down
ZBTB16	2.47E-04	Down
ADRA2A	2.48E-04	Down
USP19	2.48E-04	Down
RARR52	2.50E-04	Down
SLC46A5	2.60E-04	Down
MAGOHB	2.62E-04	Down
SIRT3	2.63E-04	Down
Genes	FDR	Up/down regulation
-----------	---------	--------------------
C9orf9	5.92E-04	Down
SLC15A2	6.00E-04	Down
FAIM3	6.20E-04	Down
VAV1	6.20E-04	Down
CHK3	6.24E-04	Down
CP	6.41E-04	Down
PAF1	6.53E-04	Down
MAGED2	6.58E-04	Down
RRAD	6.58E-04	Down
TXNIP	6.64E-04	Down
PTGER2	6.81E-04	Down
SATB1	6.82E-04	Down
PRR51	6.82E-04	Down
TRADD	6.83E-04	Down
SLC1A1	6.88E-04	Down
CHD7	7.19E-04	Down
CRYM	7.20E-04	Down
C7	7.20E-04	Down
RBM38	7.34E-04	Down
WWP2	7.40E-04	Down
DTYMK	7.48E-04	Down
OR7E47P	7.52E-04	Down
NIP7	7.54E-04	Down
FAM50B	7.57E-04	Down
XPA	7.58E-04	Down
KLHL7	7.73E-04	Down
ZNF839	7.81E-04	Down
SLC3A41	7.85E-04	Down
FBXL2	7.85E-04	Down
PTGER4	7.85E-04	Down
PRP1I1	7.85E-04	Down
PLSCR4	7.85E-04	Down
PBXIP1	7.85E-04	Down
NAT6	7.85E-04	Down
PPL2	7.97E-04	Down
KLHL36	8.19E-04	Down
MAN2B2	8.24E-04	Down
EHD1	8.42E-04	Down
GPR183	8.75E-04	Down
MFAP4	8.84E-04	Down
HCLS1	8.99E-04	Down
APEH	9.01E-04	Down
LOC100129973	9.17E-04	Down
DAPG1	9.23E-04	Down
T Rex1	9.39E-04	Down
PPP3CC	9.39E-04	Down
ATG4A	9.44E-04	Down
LYP	9.49E-04	Down
TERF2IP	9.63E-04	Down
HSPA9	9.63E-04	Down
ITGA7	9.63E-04	Down
CAPNS1	9.63E-04	Down

FDR: false discovery rate
References:

1. Chin D, Boyle GM, Porceddu S et al: Head and neck cancer: Past, present and future. Expert Rev Anticancer Ther, 2006; 6: 1111–18
2. Kukkar P, Saxena U: Head and neck cancers, the neglected malignancies: Present and future treatment strategies. Expert Opin Ther Targets, 2014; 18: 351–54
3. Torre LA, Bray F, Siegel RL et al: Global cancer statistics, 2012. Cancer J Clin, 2013; 65: 87–108
4. Chang ET, Adami HO: The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev, 2006; 15(10): 1765–77
5. Tsao SW, Yip YL, Tsang CM et al: Etiological factors of nasopharyngeal carcinoma. Oral Oncol, 2014; 50: 330–38
6. Yang W, Lan X, Li U et al: MiR-233 targeting MAFB suppresses proliferation and migration of nasopharyngeal carcinoma cells. BMC Cancer, 2015; 15: 461
7. Wei WI, Sham JS: Nasopharyngeal carcinoma. Lancet, 2005; 365: 2041–54
8. Ren XY, Zhou G-Q, Jiang W et al: Low SFRP1 expression correlates with poor prognosis and promotes cell invasion by activating the Wnt/beta-catenin signalling pathway in NPC. Biomed Res Int, 2015; 2015: 87678–90
9. Zhang X, Zhong T, Dang Y et al: Aberrant expression of CDK5 infers poor outcomes for nasopharyngeal carcinoma patients. Int J Clin Exp Pathol, 2015; 8(7): 8066–74
10. Sang Y, Chen MY, Luo D et al: DEL2 suppresses metastasis by down-regulating SERPINE1 in nasopharyngeal carcinoma. Oncotarget, 2015; 6(30): 29420–53
11. Guo YM, Sun MX, Li J et al: Association of CELF2 polymorphism and the prognosis of nasopharyngeal carcinoma in southern Chinese population. Oncotarget, 2015; 6(29): 27176–86
12. Phoon, Y.P., A.K. Cheung, F.M. Cheung, et al. IKKbeta tumor suppressive role in nasopharyngeal carcinoma. Oral Oncol, 2014; 50: 330–38
13. Jia WH, Qin HD: Non-viral environmental risk factors for nasopharyngeal carcinoma. Asian Pac J Cancer Prev, 2015; 16: 1153–63
14. Jia WH, Luo XY, Feng BJ et al: Traditional Cantonese diet and nasopharyngeal carcinoma risk: A large-scale case-control study in Guangdong, China. BMC Cancer, 2010; 10: 446
15. Ji X, Zhang W, Xie N et al: Nasopharyngeal carcinoma risk by histologic type in central China: Impact of smoking, alcohol and family history. Int J Cancer, 2011; 129: 724–32
16. Hsu WL, Chen J-Y, Chien Y-C et al: Independent effect of EBV and cigarette smoking on nasopharyngeal carcinoma: A 20-year follow-up study on 9,622 males without family history in Taiwan. Cancer Epidemiol Biomarkers Prev, 2009; 18: 1218–26
17. Young LS, Rickinson AB: Epstein-Barr virus: 40 years on. Nat Rev Cancer, 2004; 4: 757–68
18. Zhao L, Tang M, Hu Z et al: miR-504 mediated down-regulation of nuclear respiratory factor 2 and polymeric immunoglobulin receptor genes in nasopharyngeal carcinoma. Head Neck, 2005; 27: 873–82
19. Chang Y, Lee TC, Li JC et al: Differential expression of osteoblast-specific factor 2 and polymeric immunoglobulin receptor genes in nasopharyngeal carcinoma. Head Neck, 2005; 27: 873–82
20. Levy M, Castillo SS, Goldkorn T: nSMase2 activation and trafficking are modulated by oxidative stress to induce apoptosis. Biochem Biophys Res Commun, 2006; 348: 900–9
21. Kosaka N, Ighichi H, Hagawara K et al: Neutral sphingomyelinase 2 (Nem2) dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem, 2013; 288: 10849–59
22. Cui J, Li Y, Zhu L et al: NLRP4 negatively regulates type I interferon signalling in both radiosensitive and radioresistant NPC cells through the miR-205-PTEN-Akt pathway. Oncol Rep, 2013; 29: 2341–47
23. Zhang X, Xiao D, Wang Z et al: MicroRNA-26a/b regulate DNA replication licensing, tumorigenesis, and prognosis by targeting CDC6 in lung cancer. Mol Cancer Res, 2014; 12: 1535–46
24. Cui J, Lu X, Luo D et al: Knockdown of Cdc6 inhibits proliferation of tongue squamous cell carcinoma Tca8113 cells. Technol Cancer Res Treat, 2013; 12: 173–81
25. Yang W, Chen MY, Luo D et al: miR-233 targeting MAFB suppresses proliferation and migration of nasopharyngeal carcinoma cells. BMC Cancer, 2015; 15: 461
26. Dwek H, Sticht C, Pandey P, Gretz N: miRWalk-database: Prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform, 2011; 44: 839–47
27. Dwek H, Gretz N: miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods, 2015; 12: 697
28. Shannon P, Markiel A, Ozier O et al: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003; 13: 2498–504
29. Hulsegge I, Kommadath A, Smits MA: Globaltest and GOEAST: Two different approaches for Gene Ontology analysis. BMC Proc, 2009; 3(Suppl 6): 510
30. Kaneshia M: The KEGG database. Nat Reviews Cancer symposium 2002. 2002; 247: 91–101; discussion 103, 119–28, 244–52
31. Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 2008; 3: 415–27
32. Min W, Wang B, Li J et al: The expression and significance of five types of miRNAs in breast cancer. Med Sci Monit Basic Res, 2014; 20: 97–104
33. Lu Z, Zhan L, Li Z et al: An in silico analysis of dynamic changes in microRNA expression profiles in stepwise development of nasopharyngeal carcinoma. BMC Med Genomics, 2012; 5: 3
34. Li T, Chen JX, Fu XP et al: microRNA expression profiling of nasopharyngeal carcinoma. Oncol Rep, 2011; 25: 1533–63
35. Tang J-F, Yu Z-H, Liu T et al: Five miRNAs as novel diagnostic biomarker candidates for primary nasopharyngeal carcinoma. Asian Pac J Cancer Prev, 2013; 15: 7557–81
36. Qu C, Liang Z, Huang J et al: MiR-205 determines the radioreistance of human nasopharyngeal carcinoma by directly targeting PTEN. Cell Cycle, 2012; 11: 785–96
37. Wang D, Wang S, Liu Q et al: Yang. SZ-685C exhibits potent antivabetic activity in both radiosensitive and radioresistant NPC cells through the miR-205-PTEN-Akt pathway. Oncol Rep, 2013; 29: 2341–47
38. Chang Y, Lee TC, Li JC et al: Differential expression of osteoblast-specific factor 2 and polymeric immunoglobulin receptor genes in nasopharyngeal carcinoma. Head Neck, 2005; 27: 873–82
39. Li L, Wu J, Sima X et al: Interactions of miR-34b/c and TP-53 polymorphisms on the risk of nasopharyngeal carcinoma. Tumour Biol, 2013; 34: 1919–23
40. Zhang X, Xiao O, Wang Z et al: MicroRNA-26a/b regulate DNA replication licensing, tumorigenesis, and prognosis by targeting CDC6 in lung cancer. Mol Cancer Res, 2014; 12: 1535–46
41. Feng C, Lu XW, Luo DY et al: Knockdown of Cdc6 inhibits proliferation of tongue squamous cell carcinoma Tca8113 cells. Technol Cancer Res Treat, 2013; 12: 173–81
42. Yu X, Zhen Y, Yang H et al: Loss of connective tissue growth factor as an unfavorable prognosis factor activates miR-18b by PI3K/AKT/C-Jun and C-Myc and promotes cell growth in nasopharyngeal carcinoma. Cell Death Dis, 2013; 4: e634
43. Levy M, Castillo SS, Goldkorn T: nSMase2 activation and trafficking are modulated by oxidative stress to induce apoptosis. Biochem Biophys Res Commun, 2006; 344: 900–9
44. Kosaka N, Ighichi H, Hagawara K et al: Neutral sphingomyelinase 2 (Nem2) dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem, 2013; 288: 10849–59
45. Cui J, Li Y, Zhu L et al: NLRP4 negatively regulates type I interferon signalling by targeting the kinase TBK1 for degradation via the ubiquitin ligase DTX4. Nat Immunol, 2012; 13: 387–95
46. Radtke F, Wilson A, Mancini SJ, MacDonald HR: Notch regulation of lymphocyte development and function. Nat Immunol, 2004; 5: 247–53
47. Katoh M: Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis. Stem Cells, 2007; 6: 30–38
48. Poe JC, Fujimoto Y, Hasegawa M et al: CD22 regulates B lymphocyte development and function. Nat Immunol, 2004; 5: 247–53
49. Mita R, Rostas JW, Dyess DL et al: MiR-632 downregulates DNAJB6 and promotes cell invasion by activating the Wnt/beta-catenin signaling pathway in NPC cells. Oral Oncol, 2014; 50: 330–38
51. DeArmond D, Brattain MG, Jessup JM et al: Autocrine-mediated ErbB-2 kinase activation of STAT3 is required for growth factor independence of pancreatic cancer cell lines. Oncogene, 2003; 22: 7781–95

52. Reddi HV, McIver B, Grebe SK, Eberhardt NL: The paired box-8/peroxisome proliferator-activated receptor-γ oncogene in thyroid tumorigenesis. Endocrinology, 2007; 148: 932–95

53. Aviel-Ronen S, Blackhall FH, Shepherd FA, Tsao MS: K-ras mutations in non-small-cell lung carcinoma: a review. Clin Lung Cancer, 2006; 8: 30–38

54. Tascedda F, Malagoli D, Accorsi A et al: Molluscs as models for translational medicine. Med Sci Monit Basic Res, 2015; 21: 96–99