ON THE DIFFERENTIABLE VECTORS FOR
CONTRAGREDIENT REPRESENTATIONS

INGRID BELTITĂ AND DANIEL BELTITĂ

Abstract. We establish a few simple results on contragredient repre-
sentations of Lie groups, with a view toward applications to the abstract charac-
terization of some spaces of pseudo-differential operators. In particular, this
method provides an abstract approach to J. Nourrigat’s recent description of
the norm closure of the pseudo-differential operators of order zero.

1. Introduction

In this note we study the abstract characterization of some spaces of pseudo-
differential operators by using a few simple results on the contragredients of Banach
space representations of Lie groups. The applicability of the method based on a
contragredient representation is due to the fact that such a representation may
be discontinuous even if the original representation is continuous; see for instance
the representation (3.1) below, which is discontinuous if \(r = \infty \). In particular,
we provide an abstract approach to J. Nourrigat’s recent description \[No12\] of the
norm closure of the pseudo-differential operators of order zero (see Example 3.3
below) and we also bring additional information on some results from the earlier
literature.

Preliminaries. For any complex Banach space \(Y \) we denote by \(Y^* \) its topological
dual and by \(B(Y)^\times \) the group of invertible elements in the Banach algebra \(B(Y) \) of
all bounded linear operators. If \(G \) is any group, then a Banach space representation
of \(G \) is a group homomorphism \(\pi : G \to B(Y_\pi)^\times \), where \(Y_\pi \) is a complex Banach
space. The contragredient representation of \(\pi \) is the representation
\[
\pi^*: G \to B(Y^*_\pi)^\times, \quad \pi^*(g) := (\pi(g^{-1}))^*,
\]
so that \(Y_{\pi^*} := Y^*_\pi \). If \(\sup_{g \in G} \|\pi(g)\| < \infty \), then we say that \(\pi \) is uniformly bounded,
and in this case also \(\pi^* \) is uniformly bounded.

Now assume that \(G \) is a topological group and for the uniformly bounded rep-
resentation \(\pi : G \to B(Y_\pi)^\times \) define \(Y_{\pi_0} := \{ x \in Y_\pi \mid \pi(\cdot)x \in C(G, Y_\pi) \} \), where \(C \)
indicates the space of continuous mappings. Then \(Y_{\pi_0} \) is a closed linear subspace
of \(Y \) since \(\pi \) is uniformly bounded, and moreover \(Y_{\pi_0} \) is invariant under \(\pi \). Hence
we obtain a strongly continuous representation \(\pi_0 : G \to B(Y_{\pi_0}) \), \(\pi_0(g) := \pi(g)|_{Y_{\pi_0}} \).

By using this construction for the contragredient representation, we define
\[
Y_{\pi^*_0} := \{ \xi \in Y^*_\pi \mid \pi^*(\cdot)\xi \in C(G, Y^*_\pi) \} = \{ \xi \in Y^*_\pi \mid \lim_{g \to 1} \|\pi^*(g)\xi - \xi\| = 0 \}
\]

Date: June 22, 2013.

2010 Mathematics Subject Classification. Primary 22E45; Secondary 47G30, 47B10.

Key words and phrases. contragredient representation; differentiable vector; commutator.
and

\[\pi_0^*: G \to \mathcal{B}(\mathcal{Y}_{\pi_0})^\times, \quad \pi_0^*(g) := \pi^*(g)|_{\mathcal{Y}_{\pi_0}}. \]

If moreover \(G \) is a Lie group, then we also define \(\mathcal{Y}_k := \{ y \in \mathcal{Y} | \pi(\cdot)y \in C^k(G, \mathcal{Y}) \} \) for every integer \(k \geq 0 \), so in particular \(\mathcal{Y}_0 = \mathcal{Y}_{\pi_0} \). Moreover, if the representation \(\pi \) is strongly continuous, that is, \(\mathcal{Y} = \mathcal{Y}_{\pi_0} \), then for every \(k \geq 1 \) and every basis \(\{ X_1, \ldots, X_m \} \) in the Lie algebra \(g \) of \(G \) we have

\[\mathcal{Y}_k = \bigcap_{1 \leq j_1, \ldots, j_k \leq m} D(\pi(X_{j_1})^* \cdots \pi(X_{j_k})^*) \tag{1.1} \]

(see for instance [Ne10, Th. 9.4]). Here and in what follows we denote by \(D(T) \) the domain of any unbounded operator \(T \).

2. The main abstract results

The following theorem can be regarded as a version of (1.1) for some discontinuous representations of Lie groups, namely for the contragredient of any uniformly bounded and strongly continuous representation.

Theorem 2.1. Let \(G \) be a Lie group with a strongly continuous representation \(\pi : G \to \mathcal{B}(\mathcal{Y}) \) which is also assumed to be uniformly bounded. If \(\{ X_1, \ldots, X_m \} \) is any basis in the Lie algebra \(g \) of \(G \), then

\[\mathcal{Y}_k \subseteq \bigcap_{1 \leq j_1, \ldots, j_k \leq m} D(\pi(X_{j_1})^* \cdots \pi(X_{j_k})^*) \subseteq \mathcal{Y}_{k-1} \]

for every integer \(k \geq 1 \), and the above inclusions could simultaneously be strict.

For proving the theorem it will be convenient to use the notation

\[C^k(\pi^*) := \bigcap_{1 \leq j_1, \ldots, j_k \leq m} D(\pi(X_{j_1})^* \cdots \pi(X_{j_k})^*) \]

for an arbitrary integer \(k \geq 1 \). It is clear that \(C^1(\pi^*) \supseteq C^2(\pi^*) \supseteq \cdots \).

The proof will be based on the following auxiliary result, which should be thought of as an embedding lemma on abstract Sobolev spaces.

Lemma 2.2. We have \(C^1(\pi^*) \subseteq \mathcal{Y}_{\pi_0^*} \).

Proof. For every \(X \in g \) let us denote \(\gamma_X : \mathbb{R} \to G, \gamma_X(t) := \exp_G(tX) \). It follows by [vNe92, Th. 1.3.1] that

\[D(\pi(X)^*) \subseteq \mathcal{Y}_{\pi^* \circ \gamma_X} = \{ \xi \in \mathcal{Y}^* | \pi^*(\gamma_X(\cdot))\xi \in C(\mathbb{R}, \mathcal{Y}^*) \} \tag{2.1} \]

for arbitrary \(X \in g \). On the other hand, we have

\[\mathcal{Y}_{\pi^*} = \bigcap_{j=1}^m \mathcal{Y}_{\pi^* \circ \gamma_{X_j}} \tag{2.2} \]
since the inclusion ⊆ is obvious while the inclusion ⊇ holds true for the following reason. For all $t_1, \ldots, t_m \in \mathbb{R}$ and $\xi \in \mathcal{Y}^\pi$ we have

$$\|\pi^* (\gamma_{X_1}(t_1) \cdots \gamma_{X_m}(t_m)) \xi - \xi\|$$

$$\leq \sum_{j=1}^{m} \|\pi^* (\gamma_{X_1}(t_1) \cdots \gamma_{X_{j-1}}(t_{j-1})) (\pi^* (\gamma_{X_j}(t_j)) \xi - \xi)\|$$

$$\leq M \sum_{j=1}^{m} \|\pi^* (\gamma_{X_j}(t_j)) \xi - \xi\|$$

where $M := \sup_{g \in G} \|\pi(g)\|$. Since $\{X_1, \ldots, X_m\}$ is a basis in the Lie algebra \mathfrak{g}, it follows that the mapping $\mathbb{R}^m \rightarrow G$, $(t_1, \ldots, t_m) \mapsto \gamma_{X_1}(t_1) \cdots \gamma_{X_m}(t_m)$, is a local diffeomorphism at $0 \in \mathbb{R}^m$, and then the above estimate shows that for every $\xi \in \bigcap_{j=1}^{m} \mathcal{Y}_{\pi^* \gamma_{X_j}}$, we have $\lim_{g \rightarrow 1} \|\pi^*(g) \xi - \xi\| = 0$, hence $\xi \in \mathcal{Y}_{\pi^*}$. This completes the proof of (2.2).

Now, since $D(d\pi(X_1)^*) \cap \cdots \cap D(d\pi(X_m)^*) = C^1(\pi^*)$, the assertion follows by (2.1) and (2.2).

Proof of Theorem 2.1. By using Lemma 2.2 and [Po72, Lemma 1.1] we obtain

$$\mathcal{C}^k(\pi^*) \subseteq \bigcap_{1 \leq j_1, \ldots, j_{k-1} \leq m} D(d\pi_0^*(X_{j_1}) \cdots d\pi_0^*(X_{j_{k-1}})) = \mathcal{Y}_{\pi^*}^{k-1}$$

where the latter equality follows by using (1.1) for the strongly continuous representation π_0^*. The inclusion $\mathcal{Y}_{\pi^*}^{k} \subseteq \mathcal{C}^k(\pi^*)$ can be easily proved by using (1.1) and the fact that for every $X \in \mathfrak{g}$ we have $D(d\pi_0^*(X)) \subset D(d\pi(X)^*)$ and $d\pi(X)^* |_{D(d\pi_0^*(X))} = d\pi_0^*(X)$.

We now prove by example that the inclusion in the statement can be strict for $k = 1$. To this end let $G = \mathbb{R}$, \mathcal{Y} be the space of trace-class operators on $L^2(\mathbb{R})$, and consider the regular representation $\rho: \mathbb{R} \rightarrow \mathcal{B}(L^2(\mathbb{R}))$, $\rho(t)f = f(.-t)$. Then define $\pi: \mathbb{R} \rightarrow \mathcal{B}(\mathcal{Y})$, $\pi(t)A = A \rho(t)A \rho(t)^{-1}$ and for every $\phi \in L^\infty(\mathbb{R})$ denote by $\phi(Q)$ the multiplication-by-ϕ operator on $L^2(\mathbb{R})$, so that $\phi(Q) \in \mathcal{B}(L^2(\mathbb{R})) \simeq \mathcal{Y}^\pi$. It was noted in [ABC96] Ex. 6.2.7 that $\phi(Q) \in \mathcal{Y}_{\pi^*}^k$, if and only the first k derivatives of ϕ exist, are bounded, and the k-th derivative is also uniformly continuous on \mathbb{R}.

On the other hand, if we denote by $P = -i\frac{d}{dt}$ the infinitesimal generator of ρ, then it is easily checked that $\phi(Q) \in C^1(\pi^*)$ if and only if the commutator $[\phi(Q), P]$ belongs to $\mathcal{B}(L^2(\mathbb{R}))$, hence by using also [ABC96] Prop. 5.1.2(b) and again [ABC96] Ex. 6.2.7 we see that the latter commutator condition is equivalent to the fact that ϕ is bounded and satisfies the Lipschitz condition globally on \mathbb{R}. Therefore there exist $\phi, \psi \in L^\infty(\mathbb{R})$ such that $\phi(Q) \in C^1(\pi^*) \setminus \mathcal{Y}_{\pi^*}^2$, and $\psi(Q) \in \mathcal{Y}_{\pi^*}^2 \setminus C^1(\pi^*)$. This completes the proof.

Corollary 2.3. In the setting of Theorem 2.1 the linear subspace

$$\bigcap_{k \geq 1} \bigcap_{1 \leq j_1, \ldots, j_k \leq m} D(d\pi(X_{j_1})^* \cdots d\pi(X_{j_k})^*)$$

is dense in $\mathcal{Y}_{\pi^*}^\infty$.

Proof. It follows by Theorem 2.1 that this linear subspace is equal to the space of smooth vectors for the strongly continuous representation \(\pi_0 \), hence it is dense in the representation space \(Y_0 \) (see [Ga47]).

3. Applications

In this section we will develop a more general version of the example used in the proof of Theorem 2.1. Let \(G \) be a Lie group with a continuous unitary representation \(\rho: G \to B(\mathcal{H}) \). If \(1 \leq p < \infty \), denote by \(\mathcal{S}_p(\mathcal{H}) \) the \(p \)-th Schatten ideal, and let \(\mathcal{S}_\infty(\mathcal{H}) := B(\mathcal{H}) \) and \(\mathcal{S}_0(\mathcal{H}) \) be the ideal of all compact operators on \(\mathcal{H} \). It is well known that if \(p, q \in \{0\} \cup [1, \infty] \) with \(\frac{1}{p} + \frac{1}{q} = 1 \) and \(p \neq \infty \), then there exists an isometric linear isomorphism \(\mathcal{S}_p(\mathcal{H})^* \cong \mathcal{S}_q(\mathcal{H}) \) defined by the duality pairing

\[
\langle \cdot, \cdot \rangle: \mathcal{S}_q(\mathcal{H}) \times \mathcal{S}_p(\mathcal{H}) \to \mathbb{C}, \quad \langle Y, V \rangle := \text{Tr}(YV).
\]

The representation \(\rho(q) \) can thus be regarded as the contragredient representation of the strongly continuous representation \(\rho(r) \), where

\[
(\forall r \in \{0\} \cup [1, \infty]) \quad \rho(r): G \to B(\mathcal{S}_r(\mathcal{H})), \quad \rho(r)(g)Y = \rho(g)Y \rho(g)^{-1} \quad (3.1)
\]

(see also [BB10]).

Here is a consequence of the results from the previous section. In the special case of the Heisenberg group, this establishes a direct relationship between the classical characterizations of pseudo-differential operators from [Be77] and [Co79].

Corollary 3.1. In the above setting, pick any basis \(\{X_1, \ldots, X_m\} \) in the Lie algebra \(\mathfrak{g} \) of \(G \). Assume \(1 \leq q \leq \infty \) and denote

\[
\Psi_q(\rho) := \{Y \in \mathcal{S}_q(\mathcal{H}) \mid \rho(q)(\cdot)Y \in C^\infty(G, \mathcal{S}_p(\mathcal{H}))\}.
\]

Then the following assertions hold:

1. The linear subspace \(\Psi_q(\rho) \) is precisely the set of all \(Y \in \mathcal{S}_q(\mathcal{H}) \) for which

\[
[d\rho(X_{j_1}), \ldots, [d\rho(X_{j_k}), Y] \ldots] \in \mathcal{S}_q(\mathcal{H})
\]

for arbitrary \(k \geq 1 \) and \(j_1, \ldots, j_k \in \{1, \ldots, m\} \).

2. If \(1 \leq q < \infty \), then \(\Psi_q(\rho) \) is dense in \(\mathcal{S}_q(\mathcal{H}) \). If \(q = \infty \), then \(\Psi_q(\rho) \) contains the ideal of compact operators on \(\mathcal{H} \) and is dense in the norm-closed subspace \(\{Y \in B(\mathcal{H}) \mid \rho(q)(\cdot)Y \in C(G, B(\mathcal{H}))\} \) of \(B(\mathcal{H}) \).

Proof. We have that

\[
C^1(\rho(q)) = \{Y \in \mathcal{S}_q(\mathcal{H}) \mid [d\rho(X_j), Y] \in \mathcal{S}_q(\mathcal{H}) \text{ for } j = 1, \ldots, m\}.
\]

Then both assertions are special cases of Theorem 2.1 and Corollary 2.3.

We can now prove a corollary which shows that the first two conditions in [Mc00, Th. 1] are equivalent irrespective of the unitary representation involved therein. This also shows that the \(C^\infty \) part of the relation between differentiability and existence of commutators suggested after [Co95, Eq. (8.4)] holds true although the \(C^1 \) part of that suggestion fails to be true, since the following corollary would be false with the class \(C^\infty \) replaced by \(C^k \) for any \(k < \infty \). In fact, recall from the proof of Theorem 2.1 that the corresponding inclusions are strict in a special instance of the present setting, which is precisely the special instance referred to in [Co95].

Corollary 3.2. If \(Y \in B(\mathcal{H}) \) then the above mapping \(\rho(\infty)(\cdot)Y: G \to B(\mathcal{H}) \) is of class \(C^\infty \) with respect to the norm operator topology on \(B(\mathcal{H}) \) if and only if it is \(C^\infty \) with respect to the strong operator topology.
Proof. The mapping $\rho^{(\infty)}(\cdot)Y: G \to B(\mathcal{H})$ is smooth with respect to any topology on $B(\mathcal{H})$ if and only if it is smooth on any neighborhood of $1 \in G$. On the other hand, just as in the proof of [ABG96 Prop. 5.1.2(b)], one can see that this mapping is smooth with respect to the strong operator topology on $B(\mathcal{H})$ if and only if the iterated commutator condition in Corollary 3.1 is satisfied, hence the conclusion follows by Corollary 3.1, where the smoothness of $\rho^{(\infty)}(\cdot)Y$ is understood with respect to the norm operator topology on $\mathcal{S}_\infty(\mathcal{H}) = B(\mathcal{H})$. □

Example 3.3. Let $G = \mathbb{H}_{2n+1}$ be the $(2n + 1)$-dimensional Heisenberg group with the Schrödinger representation $\rho: G \to B(\mathcal{H})$. As recalled in [No12] for $1 \leq p \leq \infty$, the set $\Psi_p(\rho)$ of the above Corollary 3.1 is precisely the set of pseudo-differential operators on $L^2(\mathbb{R}^n)$ corresponding to the space of symbols $\{a \in C^\infty(\mathbb{R}^{2n}) \mid (\forall \alpha \in \mathbb{N}^{2n}) \partial^\alpha a \in L^p(\mathbb{R}^{2n})\}$ (see also [BB12] for similar results on more general nilpotent Lie groups). Thus our Corollary 3.1 leads to the main results of [No12].

Example 3.4. The above Corollary 3.1 also provides additional information in the setting of pseudo-differential operators on a compact manifold acted on by a Lie group, as studied for instance in [Ta97] and [Me00]. Thus, it follows that the notions of U-smoothness and A-smoothness from [Ta97 Sect. 2] actually coincide.

Remark 3.5. It would be interesting to extend the above result of Ex. 3.3 to the setting of the magnetic Weyl calculus of [IMP10]. Such an extension is likely to require infinite-dimensional Lie groups.

Acknowledgment. This research has been partially supported by the Grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-11-ID-PCE-2011-3-0131.

References

[ABG96] W.O. Amrein, A. Boutet de Monvel, V. Georgescu, C_0-groups, commutator methods and spectral theory of N-body Hamiltonians. Progress in Mathematics, 135. Birkhäuser Verlag, Basel, 1996.

[Be77] R. Beals, Characterization of pseudodifferential operators and applications. Duke Math. J. 44 (1977), no. 1, 45–57.

[BB10] I. Beltiţă, D. Beltiţă, Smooth vectors and Weyl-Pedersen calculus for representations of nilpotent Lie groups. An. Univ. Bucureşti Mat. 58 (2010), no.1, 17–46.

[BB12] I. Beltiţă, D. Beltiţă, Boundedness for Weyl-Pedersen calculus on flat coadjoint orbits. Preprint [arXiv:1203.0974v1 [math.AP], 2012.

[Co79] H.O. Cordes, On pseudo-differential operators and smoothness of special Lie-group representations. manuscr. math. 28 (1979), nos. 1-3, 51-69.

[Co95] H.O. Cordes, The technique of pseudodifferential operators. London Mathematical Society Lecture Note Series 202. Cambridge University Press, Cambridge, 1995.

[Gå47] L. Gårding, Note on continuous representations of Lie groups. Proc. Nat. Acad. Sci. U.S.A. 33 (1947), 331–332.

[IMP10] V. Iftimie, M. Măntoiu, R. Purice, Commutator criteria for magnetic pseudodifferential operators. Comm. Partial Differential Equations 35 (2010), no. 6, 1058–1094.

[Me00] S.T. Melo, Smooth operators for the regular representation on homogeneous spaces. Studia Math. 142 (2000), no. 2, 149–157.

[Ne10] K.-H. Neeb, On differentiable vectors for representations of infinite dimensional Lie groups. J. Funct. Anal. 259 (2010), no. 11, 2814–2855.

[vNe92] J. van Neerven, The adjoint of a semigroup of linear operators. Lecture Notes in Mathematics, 1529. Springer-Verlag, Berlin, 1992.
[No12] J. Nourrigat, Closure of the set of pseudodifferential operators. *C. R. Math. Acad. Sci. Paris* **350** (2012), no. 7-8, 355–358.

[Po72] N.S. Poulsen, On C^∞-vectors and intertwining bilinear forms for representations of Lie groups. *J. Functional Analysis* **9** (1972), 87–120.

[Ta97] M.E. Taylor, Beals-Cordes-type characterizations of pseudodifferential operators. *Proc. Amer. Math. Soc.* **125** (1997), no. 6, 1711–1716.

Institute of Mathematics “Simion Stoilow” of the Romanian Academy, P.O. Box 1-764, Bucharest, Romania

E-mail address: Ingrid.Beltita@imar.ro, ingrid.beltita@gmail.com

E-mail address: Daniel.Beltita@imar.ro, beltita@gmail.com