BEST PAPER AWARD
PREISTRÄGER
»IMPACT ON SCIENCE«
Brunton, Alan (Fraunhofer IGD) Abu Rmaileh, Lubna (Fraunhofer IGD / NTNU, Norway)

»Displaced Signed Distance Fields for Additive Manufacturing«

ACM Transactions on Graphics (TOG) 40, no. 4 (2021): 1-13
PROBLEM

- Displacement maps are a compact well established method for modeling meso-scale surface details.
- For 3D-printing details have to be modeled explicitly resulting in excessive storage, transmission and processing costs.
- How to efficiently integrate Displacement Maps into the 3D printing process in order to
 - produce highly detailed surfaces from low-polygon meshes with an attached displacement map
 - produce smooth surfaces from low-polygon meshes of higher order primitives?
RESULT

- Novel unified implicit representation for displacement maps
- Novel algorithmic framework for printing 3D objects represented using displacement maps
- Fully integrated into existing 3D printer driver (Cuttlefish®)

USP

- The novel implicit representation
 - supports unbounded displacement and performs no further tessellation or refinement
 - robustly handles incomplete, non-manifold and self-overlapping input
 - algorithmically efficient