MINIMAL FACTORIZATIONS OF PERMUTATIONS INTO STAR TRANSPOSITIONS

J. IRVING AND A. RATTAN

Abstract. We give a compact expression for the number of factorizations of any permutation into a minimal number of transpositions of the form \((1 \, i)\). This generalizes earlier work of Pak in which substantial restrictions were placed on the permutation being factored. Our result exhibits an unexpected and simple symmetry of star factorizations that has yet to be explained in a satisfactory manner.

1. Introduction

It is well known that the symmetric group \(S_n\) is generated by various sets of transpositions, and it is natural to ask for the number of decompositions of a permutation into a minimal number of factors from such a set. For instance, a famous paper of Dénes [2] addresses this question when the generating set is taken to consist of all transpositions. Stanley [9] has also considered the problem for the set of Coxeter generators \(\{(i \, i+1) : 1 \leq i < n\}\).

More recently, Pak [8] considered minimal decompositions of permutations relative to the generating set \(S = \{(1 \, i) : 2 \leq i \leq n\}\). The elements of \(S\) are called star transpositions because the labelled graph on vertex set \([n] = \{1, \ldots, n\}\) obtained from them by interpreting \((a \, b)\) as an edge between vertices \(a\) and \(b\) is star-shaped. Pak proves that any permutation \(\pi \in S_n\) that fixes 1 and has \(m\) cycles of length \(k \geq 2\) admits exactly

\[
\frac{k^m(mk + m)!}{n!}
\]

decompositions into the minimal number \(n + m - 1\) of star transpositions. He leaves open the problem of extending (1) to more general target permutations \(\pi\), and it is the purpose of this paper to answer this question.

Our result is best expressed in terms of minimal transitive star factorizations, which we now define. A star factorization of \(\pi \in S_n\) of length \(r\) is an ordered list \(f = (\tau_1, \ldots, \tau_r)\) of star transpositions \(\tau_i\) such that \(\tau_1 \cdots \tau_r = \pi\). We say \(f\) is minimal if \(\pi\) admits no star factorization of length less than \(r\), and transitive if the group generated by its factors acts transitively on \([n]\).

Observe that a permutation \(\pi = (1 \, b_2 \, \cdots \, b_{\ell_1})(a_1^2 \cdots a_{\ell_2}^2) \cdots (a_1^m \cdots a_{\ell_m}^m) \in S_n\) with \(m\) cycles admits the transitive star factorization

\[
\pi = (1 \, b_2 \cdots b_{\ell_1})(1 \, b_{\ell_1-1}) \cdots (1 \, b_2)(a_1^2 \cdots a_{\ell_2}^2)(1 \, b_{\ell_2-1}) \cdots (1 \, a_1^2) \cdots (1 \, a_1^m)(1 \, a_{\ell_m}^m)(1 \, a_{\ell_m-1}) \cdots (1 \, a_1^m) = (a_1^m \cdots a_{\ell_m}^m)
\]

We multiply permutations in the usual order, so \(\rho \sigma(j) = \rho(\sigma(j))\).
of length $\ell_1 - 1 + \sum_{i=2}^{m}(\ell_i + 1) = n + m - 2$. Moreover, it is well known [5, Proposition 2.1] that any transitive star factorization of π requires at least this many factors. Thus a transitive star factorization of π of length exactly $n + m - 2$ is said to be minimal transitive.

Our main result is the following:

Theorem 1.1. Let $\pi \in S_n$ be any permutation with cycles of lengths ℓ_1, \ldots, ℓ_m. Then there are precisely

$$\frac{(n + m - 2)!}{n!} \ell_1 \cdots \ell_m$$

minimal transitive star factorizations of π.

Notice that Pak’s formula (1) is recovered from Theorem 1.1 by setting $\ell_1 = 1$ and $\ell_2 = \cdots = \ell_{m+1} = k$ and observing that a star factorization of a permutation with no fixed points other than (possibly) 1 must be transitive, since $\pi(a) \neq a$ means any star factorization of π involves the factor $(1a)$.

Given the special role played by the symbol 1 in star factorizations, the lack of bias towards this symbol in the enumerative formula of Theorem 1.1 is quite surprising. Indeed, this symmetry is a very compelling aspect of the theorem, and it is not yet understood.

Consider now a permutation π having fixed points i_1, \ldots, i_k and possibly 1. A minimal (though not transitive) star factorization of π should certainly not contain any of the factors $(1i_1), \ldots, (1i_k)$. Indeed, π naturally induces a permutation π' on $[n] \setminus \{i_1, \ldots, i_k\}$ having no fixed points other than (possibly) 1, and minimal star factorizations of π are simply minimal transitive star factorizations of π'. Since π' has $m - k$ cycles when π has m cycles, we obtain the following result by setting $n = n - k$ and $m = m - k$ in Theorem 1.1.

Corollary 1.2. Let $\pi \in S_n$ be any permutation with cycles of lengths ℓ_1, \ldots, ℓ_m including exactly k fixed points not equal to 1. Then there are

$$\frac{(n + m - 2(k + 1))!}{(n - k)!} \ell_1 \cdots \ell_m$$

minimal star factorizations of π.

We prove Theorem 1.1 in two stages. In Section 2, we begin by giving a complete characterization of minimal transitive star factorizations (Lemma 2.3). We then use this characterization in Section 3 to build a correspondence between star factorizations and certain restricted words, finally using the cycle lemma to count these words and hence prove Theorem 1.1.

This path to Theorem 1.1 is deliberately similar to that followed in [8]. However, in Section 4 we briefly describe an elegant graphical approach to this problem that employs the well-known connection between factorizations of permutations and embeddings of graphs on surfaces (i.e. maps). Finally, Section 5 contains some brief comments on recent extensions of Theorem 1.1 and its curious symmetry.

2. Characterizing Star Factorizations

Throughout this section we have in mind a fixed permutation $\pi \in S_n$ and a minimal transitive star factorization $f = (\tau_1, \ldots, \tau_r)$ of π.

2In fact, this holds true when arbitrary transposition factors are allowed.
Our arguments are best understood with a concrete example at hand. For this purpose, we will often refer to the factorization

$$(1\,9)(1\,1\,1\,2)(1\,10)(1\,5)(1\,3)(1\,3)(1\,4)(1\,7)(1\,6)(1\,6)(1\,1\,0)(1\,8)$$

of

$$\pi = (1\,8\,2)(3)(4\,5\,10\,7)(6)(9\,11) \in S_{11}.$$

Let us say that a transposition $(1\,i)$ meets a cycle σ (and vice versa) if σ contains the symbol i. We say a factor τ_i is to the left of τ_j if $i < j$, and to the right if $j > i$. So, in the example above, $(1\,5)$ meets $(4\,5\,10\,7)$, and $(1\,2)$ is to the left of $(1\,7)$. Clearly every star transposition meets exactly one cycle of π.

Our goal here is to characterize minimal transitive star factorizations of π.

Lemma 2.1. Let σ be a cycle of π.

1. If $\sigma = (a_1\,a_2 \ldots a_r)$, where $a_i \neq 1$ for all i, then some transposition $(1\,a_j)$ appears exactly twice in f, while all transpositions $(1\,a_i)$ with $i \neq j$ appear exactly once.

2. If $\sigma = (1\,b_2 \ldots b_r)$, then each transposition $(1\,b_i)$ appears only once in f.

Moreover, in the first case, if $(1\,a_1)$ appears twice, then the factors of f meeting σ appear in left-to-right order $(1\,a_1), (1\,a_2), \ldots, (1\,a_q), (1\,a_1)$. In the second case, the factors meeting σ appear in left-to-right order $(1\,b_{\ell}), (1\,b_{\ell-1}), \ldots, (1\,b_2)$.

Proof. Suppose $\sigma = (a_1\,a_2 \ldots a_r)$ with $a_i \neq 1$. It is clear that for f to be transitive every transposition $(1\,a_j)$ must appear at least once as a factor. Let $(1\,a_j)$ be the leftmost (last in order of multiplication) factor of f that meets σ. If $(1\,a_j)$ appeared only this once, then we would have $\pi = \pi_1(1\,a_j)\pi_0$, where π_0 fixes a_j and π_1 fixes all a_i. In particular, $\sigma(a_j) = \pi(a_j) = \pi_1(1) \neq a_i$ for any i, a contradiction.

On the other hand, if $\sigma = (1\,b_2 \ldots b_r)$ then again transitivity requires that f contain factors $(1\,b_2), \ldots, (1\,b_{\ell})$. So if the cycles of π are $\sigma_1, \ldots, \sigma_m$, where σ_1 contains symbol 1, then σ_i meets at least $\ell_i + 1$ factors of f for $i \neq 1$, while σ_1 meets at least $\ell_1 - 1$ factors. That is, f has at least $(\ell_1 - 1) + \sum_{i=2}^{m}(\ell_i + 1) = n + m - 2$ factors. But since f is minimal transitive, it has exactly this many factors. Hence all factors are accounted for and parts (1) and (2) of the lemma follow. It remains to determine the relative ordering of the factors meeting σ.

We return to the case $\sigma = (a_1\,a_2 \ldots a_r)$ with $a_i \neq 1$, and assume without loss of generality that $(1\,a_1)$ appears twice in f. The proof given above identified $(1\,a_1)$ as the leftmost factor of f meeting σ. However, reading the factors of f in reverse order yields a factorization $f' = \pi^{-1}$, and the same logic now identifies $(1\,a_1)$ as the leftmost factor of f' meeting σ. Thus $(1\,a_1)$ appears in f in the leftmost and rightmost positions amongst all factors meeting σ. Finally, note that for $1 \leq i < \ell$ the factor $(1\,a_{i+1})$ is to the left of the rightmost occurrence of $(1\,a_i)$ in f, as otherwise we would have $\pi = \pi_1(1\,a_i)\pi_0$, where π_0 fixes a_i and π_1 fixes a_{i+1}, and this gives the contradiction $\sigma(a_i) = \pi(a_i) = \pi_1(1) \neq a_{i+1}$. It follows that the factors meeting σ appear in order $(1\,a_1), (1\,a_2), \ldots, (1\,a_2), (1\,a_1)$.

If instead $\sigma = (1\,b_2 \ldots b_r)$, then the same logic just applied shows that for $2 \leq i < \ell$, the factor $(1\,b_{i+1})$ appears to the left of $(1\,b_i)$ in f. Thus the factors meeting σ appear in order $(1\,b_2), (1\,b_{\ell-1}), \ldots, (1\,b_2)$, as claimed.

The next lemma asserts that the factors of a minimal transitive star factorization are nested in a well defined manner. This “non-crossing” property makes it unsurprising that
such factorizations can be encoded as trees. (See Section 4 for details.) Note that one immediate consequence of the lemma is that there exists some cycle of \(\pi \) such that all the factors meeting this cycle appear consecutively in \(f \).

Lemma 2.2. Let \(\sigma \) and \(\hat{\sigma} \) be distinct cycles of \(\pi \). Suppose there exist \(s < v < t \) such that factors \(\tau_s \) and \(\tau_t \) of \(f \) meet \(\sigma \) while \(\tau_v \) meets \(\hat{\sigma} \). Then \(\hat{\sigma} \) does not contain the symbol 1, and all \(\tau_j \) that meet \(\hat{\sigma} \) have \(s < j < t \).

Proof. Without loss of generality we may assume that indices \(s \) and \(t \) are “extremal”, in the sense that if \(s' < v < t' < t \), then this common cycle is \(\hat{\sigma} \). (If not, simply restart by letting \(\sigma \) be the common cycle and replacing \(s \) and \(t \) with \(s' \) and \(t' \).)

Let \(\tau_s = (1\ b) \) and \(\tau_t = (1\ a) \). Since \(\tau_s \) and \(\tau_t \) are assumed to meet the same cycle of \(\pi \), Lemma 2.1 implies \(\tau_s \) is the leftmost copy of \((1\ b) \) in \(f \). Hence \(\tau_t \) is the rightmost copy of \((1\ a) \) in \(f \), and \(\pi(a) = b \). It follows from these criteria that the permutation \(\tau_{s+1} \cdots \tau_{t-1} \) fixes 1, and therefore

\[
i := \max\{ k : k \leq v \text{ and } \tau_k \cdots \tau_{t-1} \text{ fixes 1} \}
\]

is well defined. Say \(\tau_i = (1\ c) \). Notice that this factor must occur twice amongst those of \(\gamma = \tau_i \cdots \tau_{t-1} \), as otherwise \(\gamma(c) = 1 \) and hence \(\gamma \) does not fix 1, contrary to the definition of \(i \).

Suppose \(\tau_j = \tau_i = (1\ c) \) for some \(j > i \). Then Lemma 2.1 implies \(c \) cannot appear in any factor between \(\tau_i \) and \(\tau_j \), so the permutation \(\tau_i \cdots \tau_j \) fixes 1. But since \(\tau_i \cdots \tau_{t-1} \) fixes 1, it follows that \(\tau_{j+1} \cdots \tau_{t-1} \) also fixes 1. Thus the maximality of \(i \) forces \(j \geq v \). However, if \(j > v \) then we have two identical factors \(\tau_i \) and \(\tau_j \), with \(s < i < v < j < t \), that meet the same cycle of \(\pi \), and by hypothesis this common cycle must be \(\hat{\sigma} \). In this case, Lemma 2.1 rules out the possibility of \(\hat{\sigma} \) containing symbol 1 (because no transposition meeting the cycle containing 1 can appear twice in \(f \)), and also implies any other factor of \(f \) that meets \(\hat{\sigma} \) lies between \(\tau_i \) and \(\tau_j \), as desired. The remaining case is \(j = v \), in which \(\tau_v \) occurs twice between \(\tau_s \) and \(\tau_t \). Again the result follows from Lemma 2.1. \(\square \)

The statements of Lemmas 2.1 and 2.2 are crafted with the implicit assumption that \(f = (\tau_1, \ldots, \tau_r) \) is a minimal transitive star factorization of \(\pi \). We now show that this can, in fact, be deduced from the conditions on \(f \) established by the lemmas. That is to say, if \(f \) is a star factorization whose factors are related to the permutation \(\pi \) in the manner described by the lemmas above, then \(f \) is necessarily a minimal transitive star factorization of \(\pi \).

Lemma 2.3. The conditions on \(f \) guaranteed by Lemmas 2.1 and 2.2 characterize minimal transitive star factorizations of \(\pi \).

Proof. Let \(f' = (\tau_1', \ldots, \tau_r') \) be an \(r \)-tuple of star transpositions that satisfies the conditions described by Lemmas 2.1 and 2.2. For brevity we shall refer to these conditions as C1 and C2, respectively. Suppose the cycles of \(\pi \) are \(\sigma_1, \ldots, \sigma_m \), with \(\sigma_1 \) containing symbol 1. We wish to show \(f' = \pi \), where \(\pi : = \tau_1' \cdots \tau_r' \). (Note that the transitivity and minimality of \(f' \) are then immediately implied by C1.)

If \(\pi \) has only one cycle, say \(\pi = (1\ b_2 \cdots b_n) \), then C1 implies \(\pi' = \tau_1' \cdots \tau_r' = (1\ b_n)(1\ b_{n-1}) \cdots (1\ b_2) = \sigma_1 \). Hence \(\pi = \pi' \) in this case. Otherwise, by C2 there exists some cycle \(\sigma_j = (a_1 \cdots a_k) \neq \sigma_1 \) of \(\pi \) such that the factors \(\tau_i' \) that meet \(\sigma_j \) occur contiguously in \(f' \). By C1 this means that for some \(s \) we have

\[
\tau_{s+k}' = (1\ a_1)(1\ a_k) \cdots (1\ a_1) = (a_1 \cdots a_k),
\]

\[
\tau_{s+k}' = (1\ a_1)(1\ a_k) \cdots (1\ a_1) = (a_1) \cdots (a_k),
\]

and therefore \(\pi = \pi' \) as desired. \(\square \)
and no factors of \(f' \) other than \(\tau'_s, \ldots, \tau'_{s+k} \) meet \(\sigma_j \). Thus \(\pi' \) agrees with \(\pi \) on \(S := \{a_1, \ldots, a_k\} \), and \(f'' = (\tau'_1, \ldots, \tau'_{s-1}, \tau'_{s+k+1}, \ldots, \tau'_r) \) is a star factorization of \(\pi'' := \pi'|_{[n]\setminus S} \). But \(f'' \) satisfies C1 and C2 relative to the permutation \(\pi'|_{[n]\setminus S} \), so we can iterate this argument to see that \(\pi' \) agrees with \(\pi \) on all of \([n]\). \(\square \) \(\square \)

3. Counting Star Factorizations

Let \(\pi \in \mathfrak{S}_n \) be a permutation with cycles \(\sigma_1, \ldots, \sigma_m \), listed in increasing order of least element (in particular, \(\sigma_1 \) contains symbol 1). Set \(r := n + m - 2 \), and let \(f = (\tau_1, \ldots, \tau_r) \) be a minimal transitive star factorization of \(\pi \). Define the word \(w = w_1 \cdots w_r \in [m]^r \) by setting \(w_i = j \) if \(\tau_i \) meets \(\sigma_j \). Moreover, for \(2 \leq j \leq m \), define \(k_j \) by the condition that the rightmost factor of \(f \) meeting \(\sigma_j \) is \((1 k_j)\).

Example 3.1. Consider \(f \) and \(\pi \) as defined in (2) and (3). Under each factor \(\tau_i \), we write the unique value of \(j \) such that \(\tau_i \) meets \(\sigma_j \), and we distinguish the rightmost occurrence of each symbol \(j \geq 2 \):

\[
\begin{align*}
(19)(111)(19)(12)(110)(15)(13)(14)(17)(16)(16)(110)(18) \\
5 \quad 5 \quad 5 \quad 1 \quad 3 \quad 3 \quad 2 \quad 2 \quad 3 \quad 3 \quad 4 \quad 4 \quad 3 \quad 1
\end{align*}
\]

This yields the word

\[
w = 5 \hspace{1pt} 5 \hspace{1pt} 5 \hspace{1pt} 1 \hspace{1pt} 3 \hspace{1pt} 3 \hspace{1pt} 2 \hspace{1pt} 2 \hspace{1pt} 3 \hspace{1pt} 3 \hspace{1pt} 4 \hspace{1pt} 4 \hspace{1pt} 3 \hspace{1pt} 1,
\]

while the transpositions in the distinguished positions give the values of \(k_j \), in this case \((k_2, k_3, k_4, k_5) = (3, 10, 6, 9)\).

Let \(W_\pi \subset [m]^r \) be the set of words such that

- \(1 \) appears \(\ell_1 - 1 \) times,
- \(j \) appears \(\ell_j + 1 \) times for \(2 \leq j \leq m \), and
- there are no occurrences of the subwords \(abab \) or \(a1a \) for distinct \(a, b \neq 1 \).

If \(O_1, \ldots, O_m \) are the orbits of \(\pi \), listed in increasing order of least element, then the correspondence described above is clearly one-one between tuples \((w, k_2, \ldots, k_m) \in W_\pi \times O_2 \times \cdots \times O_m \) and star factorizations of \(\pi \) satisfying the conditions of Lemmas 2.1 and 2.2. Lemma 2.3 then establishes that this is, in fact, a bijection between such tuples and the set \(F_\pi \) of all minimal transitive star factorizations of \(\pi \). Thus we have

\[
|F_\pi| = |W_\pi| \cdot |O_2| \cdots |O_m|.
\]

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1 Assume the notation above, and for convenience let \(\ell_j = |O_j| \), for \(j = 1, \ldots, m \). Consider the set of sequences \((d_0, d_1, \ldots, d_r)\) whose entries \(d_i \) are either 1 or \(-\ell_j^{(j)}\) for some \(j \geq 2 \), where the exponent \((j) \) is considered to be a decoration. Of these, let \(D_\pi \) be the subset satisfying the following properties:

- \(-\ell_j^{(j)}\) appears exactly once, for \(2 \leq j \leq m \), and
- all partial sums (ignoring decorations) are positive.

Thus \(D_\pi \) describes a type of decorated Dyck sequence.

Define \(\Psi_\pi : W_\pi \to D_\pi \) by the following rule. The image \((d_0, d_1, \ldots, d_r)\) of the word \(w_1 \cdots w_r \in W_\pi \) is given by

\[
(1) \ d_0 = 1,
\]
(2) if \(w_i = 1\) then \(d_i = 1\),
(3) if \(w_i = j\), for \(j \geq 2\), then
 (a) \(d_i = -\ell_j^{(j)}\) when \(w_i\) is the rightmost occurrence of \(j\) in \(w\)
 (b) \(d_i = 1\) otherwise.

For example, with \(\pi\) defined by (3) and \(w\) given by (1), we have
(6) \[\Psi_\pi(w) = (1, 1, 1, -2^{(5)}, 1, 1, 1, -1^{(2)}, 1, 1, 1, -1^{(4)}, -4^{(3)}, 1).\]

Clearly \(\Psi_\pi\) is well defined. It is also easily seen to be bijective. Indeed, suppose \(d = (d_0, d_1, \ldots, d_r) \in \mathcal{D}_\pi\), and let \(d_i = -\ell_j^{(j)}\) be the first negative entry of \(d\). Note that the value of \(j\) is known via the decoration. Remove \(d_i\) and the previous \(\ell_j\) 1s from \(d\) to obtain a new sequence \(d'\). Inductively, \(d' = \Psi_{\pi'}(w')\) for a unique word \(w' \in \mathcal{W}_{\pi'}\), where \(\pi'\) is the permutation obtained from \(\pi\) by removing cycle \(\sigma_j\). Adding \(\ell_j + 1\) copies of \(j\) after \(w'_{i-\ell_j-1}\) gives the unique desired preimage \(w = \Psi_{\pi}^{-1}(\{d\})\).

Thus we have \(|\mathcal{W}_\pi| = |\mathcal{D}_\pi|\). So we now turn to enumerating \(\mathcal{D}_\pi\). Our main tool is the cycle lemma of Dvoretzky and Motzkin [3], one version of which states that any sequence with integral entries \(\leq 1\) and total sum \(s \geq 0\) has exactly \(s\) cyclic rotations with all partial sums positive.

Any sequence in \(\mathcal{D}_\pi\) has terms \(-\ell_2^{(2)}, \ldots, -\ell_m^{(m)}\) along with \(r + 1 - (m - 1) = n\) entries equal to 1. Note that there are \((n + m - 1)!/n!\) sequences with exactly these terms. The sequences \((d_0, d_1, \ldots, d_r) \in \mathcal{D}_\pi\) we wish to count are characterized by having total sum (ignoring decorations)
\[\sum_{i=0}^{r} d_i = n \cdot 1 - (\ell_2 + \cdots + \ell_m) = n - (n - \ell_1) = \ell_1\]
with all partial sums positive. Since a sequence of length \(n + m - 1\) admits \(n + m - 1\) cyclic rotations, the cycle lemma implies that
\[|\mathcal{D}_\pi| = \frac{(n + m - 1)!}{n!} \cdot \frac{\ell_1}{n + m - 1}.\]

Theorem 1.1 now follows from identity (5), since \(|\mathcal{W}_\pi| = |\mathcal{D}_\pi|\) and \(|\mathcal{O}_j| = \ell_j\).

4. A Graphical Approach

Transitive factorizations in the symmetric group are well known to be in correspondence with certain classes of labelled maps, and our characterization of star factorizations (Lemmas 2.1, 2.2, and 2.3) can be derived elegantly through this connection. We now briefly describe how this is done, using a version of the factorization-map correspondence introduced in [7]. Indeed, it was by this method that Theorem 1.1 was originally discovered. We elected to frame our proof in Pak’s techniques to demonstrate how they generalize and to keep this paper self contained. We note that an alternative formulation of the factorization-map correspondence, developed with great effect in [1], can be applied here with equal ease.

Let \(f = (\tau_1, \ldots, \tau_r)\) be a transitive factorization of \(\pi \in \mathfrak{S}_n\), where the factors \(\tau_i\) are arbitrary transpositions. Then \(f\) naturally induces a graph \(G_f\) on \(n\) labelled vertices and \(r\) labelled edges, as follows: the vertex set of \(G_f\) is \([n]\), and there is an edge with label \(i\) between vertices \(a\) and \(b\) whenever \(\tau_i = (a \, b)\). The transitivity of \(f\) ensures \(G_f\) is connected, so \(G_f\) admits a 2-cell embedding in an orientable surface of minimal genus.
The planar map corresponding to $(1234567) = (37)(36)(27)(35)(17)(34)$.

The planar map corresponding to a star factorization, and its reduced form.

A unique such map M_f is determined by insisting that the edge labels encountered on anticlockwise traversals of small circles around the vertices are cyclically increasing.

Example 4.1. The factorization $(1234567) = (25)(36)(27)(35)(17)(34)$ is minimal transitive. Its corresponding planar map is shown in Figure 1.

As described in [7], faces of M_f correspond with the cycles of π. In particular, let F be a face of M_f, and let (e_0, \ldots, e_m) be the cyclic list of edge labels encountered along a counterclockwise traversal of the boundary of F. If i_1, \ldots, i_k index the ascents of this list (that is, $e_i \leq e_{i+1}$ if and only if $i \in \{i_1, \ldots, i_k\}$), then π contains the cycle $(a_1 a_2 \cdots a_k)$, where a_j is the label of the vertex at the corner of M_f formed by edges e_{i_j} and e_{i_j+1}.

With this correspondence, the Euler-Poincaré formula implies M_f is planar precisely when f is minimal transitive. Indeed, the maps corresponding to minimal transitive star factorizations are particularly simple. This is illustrated in Figure 2 where the planar map associated with our primary example factorization (2) is drawn.

Since such a map must be planar with edge labels increasing clockwise around the central vertex 1, no edge $\{1, a\}$ can appear more than twice. When two copies of $\{1, a\}$ are present they enclose a face of the map. It is this face that is associated with the cycle of the target permutation containing symbol a, and a vertex b of degree one lies within it precisely when b belongs to this same cycle. Translated from the language of maps to that of factorizations, these observations are equivalent to Lemmas 2.1 and 2.2.

The canonical labelling of edges around the central vertex makes all but label 1 superfluous. Moreover, the labels of all vertices of degree 1 may be deduced from the target permutation and the labels of the other vertices. Thus all maps corresponding to minimal
transitive star factorizations may be reduced in the manner demonstrated on the right of Figure 2.

From this reduced form, create a rooted plane tree as follows. Begin by placing a root vertex with label 1 in the outer face. Every labelled vertex is now naturally associated with one face of the map. Then draw an edge between each labelled vertex and all (non-central) vertices lying within with its associated face. One of these edges will join vertex 1 to the endpoint of the map edge with label 1. This is to be considered the root edge of the tree. See Figure 3 for an example.

This transition from factorization to map to tree is reversible. A minimal transitive factorization of a permutation \(\pi \in S_n \) with orbits \(O_1, \ldots, O_m \) (listed, as usual, in increasing order of least element) corresponds with a tree on \(m \) labelled white vertices and \(n - m \) black vertices in which

1. the root is white with label 1,
2. the non-root white vertices are labelled \(\{a_2, \ldots, a_m\} \), where \(a_j \in O_j \),
3. the white vertex with label \(a_j \) has \(|O_j| - 1 \) black children, for \(j = 1, \ldots, m \).

Such trees can be encoded using Dyck-type sequences, as follows: traverse the boundary, beginning at the root and proceeding clockwise along the root edge, writing 1 whenever a vertex is encountered for the first time, and \(-i(j) \) when a white vertex with label \(j \geq 2 \) and \(i - 1 \) black children is encountered for the last time. For instance, the tree in Figure 3 yields the following sequence (compare with (6)):

\[(1, 1, 1, -2^{(0)}, 1, 1, 1, -1^{(3)}, 1, 1, 1, -1^{(6)}, -4^{(10)}, 1)\].

These sequences are counted as in Section 3 to yield Theorem 1.1.

5. Further Questions

Notice that Theorem 1.1 asserts that the number of minimal transitive star factorizations of a permutation \(\pi \) depends only on the conjugacy class of \(\pi \) (that is, the length of its cycles). This is not obvious from the formulation of the problem, since one would certainly expect that the length of the cycle of \(\pi \) containing symbol 1 would play a special role.

Moreover, while this article was being refereed, Goulden and Jackson [6] extended Theorem 1.1 to compute the number of transitive star factorizations of any permutation into an arbitrary number of factors (that is, minimality is not assumed). Interestingly, they...
witness the same symmetry in their results: the number of transitive star factorizations of π of length r is dependent only on the conjugacy class of π.

Finding a simple combinatorial explanation for this curious symmetry remains an interesting open problem. Further open questions regarding star factorizations and their role in the general interplay between factorizations and geometry are discussed in [6].

Acknowledgements

Both authors would like to thank Ian Goulden for some useful discussions, and an anonymous referee for a number of helpful comments. AR is supported by a Natural Sciences and Engineering Research Council of Canada Postdoctoral Fellowship.

References

[1] M. Bousquet-Mélou and G. Schaeffer, Enumeration of planar constellations, Adv. in Appl. Math. 24 (2000), 337–368.
[2] J. Dénes, The representation of a permutation as the product of a minimal number of transpositions and its connection with the theory of graphs, Publ. Math. Institute Hung. 4 (1959), 63–70.
[3] A Dvoretzky and T. Motzkin, A problem of arrangements, Duke Math. J. 14 (1947), 305-313.
[4] I.P. Goulden and D.M. Jackson, Combinatorial Enumeration, Wiley Interscience, New York, 1983.
[5] I.P. Goulden and D.M. Jackson, Transitive factorizations and holomorphic mappings of the sphere, Proc. Amer. Math. Soc. 125 (1997), 51–60.
[6] I.P. Goulden and D.M. Jackson, Transitive powers of Young-Jucys-Murphy elements are central, arXiv:0704.1100 (2007).
[7] J. Irving, Minimal transitive factorizations of permutations into cycles, Canad. J. Math (to appear).
[8] I. Pak, Reduced decompositions of permutations in terms of star transpositions, generalized catalan numbers and k-ary trees, Discrete Math. 204 (1999), 329–335.
[9] R.P. Stanley, On the number of reduced decompositions of elements of coxeter groups, Europ. J. Combin. 5 (1984), 359–372.

Department of Mathematics and Computing Science, St. Mary’s University, Halifax, NS, B3H 3C3, Canada

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA