The extended moduli space of special Lagrangian submanifolds

S.A. Merkulov

Department of Mathematics, University of Glasgow

Abstract

It is well known that the moduli space of all deformations of a compact special Lagrangian submanifold X in a Calabi-Yau manifold Y within the class of special Lagrangian submanifolds is isomorphic to the first de Rham cohomology group of X. Reinterpreting the embedding data $X \subset Y$ within the mathematical framework of the Batalin-Vilkovisky quantization, we find a natural deformation problem which extends the above moduli space to the full de Rham cohomology group of X.

§1. Introduction

Let Y be a Calabi-Yau manifold of complex dimension m with Kähler form ω and a nowhere vanishing holomorphic m-form Ω. A compact real m-dimensional submanifold $X \hookrightarrow Y$ is called special Lagrangian if $\omega|_X = 0$ and $\text{Im } \Omega|_X = 0$. According to McLean [5], the moduli space of all deformations of X inside Y within the class of special Lagrangian submanifolds is a smooth manifold whose tangent space at X is isomorphic to the first de Rham cohomology group $H^1(X, \mathbb{R})$.

Moduli spaces of special Lagrangian submanifolds are playing an increasingly important role in quantum cohomology and related topics. On physical grounds, Strominger, Yau and Zaslow argued [10] that whenever a Calabi-Yau manifold Y has a mirror partner \hat{Y}, then Y admits a foliation $\rho : Y^{2m} \rightarrow B^m$ by special Lagrangian tori T^m and \hat{Y} is the compactification of the family of dual tori \tilde{T}^m along the fibres of the projection ρ (for the mathematical account of this construction see [7]).

Recently, the mirror conjecture has been extended by Vafa [13], also on physical grounds, to Calabi-Yau manifolds \hat{Y} equipped with stable vector bundles W. According to Vafa, the mirror partner of such a pair (\hat{Y}, W) must be a triple (Y, X, L) consisting of a Calabi-Yau manifold Y, a compact special Lagrangian submanifold $X \hookrightarrow Y$ and a flat unitary line bundle L on X together with an isomorphism between the moduli space (with typical tangent space $H^1(\hat{Y}, \text{End } W)$) of all deformations of the holomorphic vector bundle $W \rightarrow \hat{Y}$, and the moduli space (with typical tangent space $H^1(X, \mathbb{R}) \otimes \mathbb{C}$) associated with McLean’s deformations of the embedding $X \hookrightarrow Y$ and deformations of the flat unitary line bundle L on X. Actually, Vafa conjectures that much more must be true:

$$H^*(\hat{Y}, \text{End } W) = H^*(X, \mathbb{R}) \otimes \mathbb{C}.$$
This raises a problem of finding a geometric interpretation of the full de Rham co-
homology group of a special Lagrangian submanifold $X \hookrightarrow Y$. Its solution is the main
theme of the present paper. By moving into the mathematical realm of Batalin-Vilkovisky
quantization, we devise, out of the same data $X \hookrightarrow Y$, a deformation problem whose
moduli space has the typical tangent space isomorphic to $H^*(X, \mathbb{R})$ thereby extending
McLean’s moduli space to the full de Rham group. The idea is very simple.

First, out of Y we construct a real $(2m|2m)$-dimensional supermanifold $\mathcal{Y} := \Pi \Omega^1 Y$,
where $\Omega^1 Y$ is the real cotangent bundle and Π denotes the parity change functor. The
supermanifold \mathcal{Y} comes equipped with a complex structure and a nowhere vanishing ho-
morphic section, $\hat{\Omega} \in \Gamma(\mathcal{Y}, \text{Ber}_{\text{holo}}(\mathcal{Y}))$, of the holomorphic Berezinian bundle induced by
the holomorphic m-form form Ω on Y. We note that if $\mathcal{X} \subset \mathcal{Y}$ is an $(m|m)$-dimensional
real slice, then $\hat{\Omega}$ restricts to \mathcal{X} as a global no-where vanishing section of the bundle
$\mathbb{C} \otimes \text{Ber}(\mathcal{X})$.

Second, we construct a real $(2m|2m + 1)$-dimensional supermanifold $\hat{\mathcal{Y}} := \mathcal{Y} \times \mathbb{R}^{0|1}$
and note that it comes canonically equipped with an odd exact contact structure repre-
sented by a 1-form $\hat{\theta}$. We also note that the Kähler form ω on Y gives rise to an even
smooth function $\hat{\omega}$ on $\hat{\mathcal{Y}}$ and call an $(m|m)$-dimensional sub-supermanifold $\mathcal{X} \hookrightarrow \hat{\mathcal{Y}}$ special
Legendrian if the following conditions hold

$$
\hat{\theta}|_{\mathcal{X}} = 0, \quad \hat{\omega}|_{\mathcal{X}} = 0, \quad \text{Im}(\hat{\Omega}|_{p(\mathcal{X})}) = 0,
$$

where p denotes the natural projection $\hat{\mathcal{Y}} \rightarrow \mathcal{Y}$.

If $\mathcal{X} \hookrightarrow \hat{\mathcal{Y}}$ is special Legendrian, then $\mathcal{X}_{\text{red}} \hookrightarrow Y$ is special Lagrangian. If $X \hookrightarrow Y$ is
special Lagrangian (with normal bundle denoted by N), then the associated superman-
ifold $\mathcal{X} := \Pi N^*$ is a special Legendrian sub-supermanifold of $\hat{\mathcal{Y}}$. However, the corre-
spondence between the special Lagrangian sub-supermanifolds $X \hookrightarrow Y$ and special Legendrian
sub-supermanifolds $\mathcal{X} \hookrightarrow \hat{\mathcal{Y}}$ is not one-to-one — passing from the Calabi-Yau manifold
Y to the associated contact supermanifold $\hat{\mathcal{Y}}$ brings precisely the right amount of new
degrees of freedom to extend McLean’s moduli space $H^1(X, \mathbb{R})$ to the full de Rham group
$H^*(X, \mathbb{R})$.

Main theorem. Let $X \hookrightarrow Y$ be a compact special Lagrangian submanifold of a
Calabi-Yau manifold and let $\mathcal{X} = \Pi N^* \hookrightarrow \hat{\mathcal{Y}}$ be the associated special Legendrian sub-
supermanifold of the contact supermanifold. The maximal moduli space \mathcal{M} of deforma-
tions of \mathcal{X} inside \mathcal{Y} within the class of special Legendrian sub-supermanifolds is a smooth
supermanifold whose tangent superspace at \mathcal{X} is canonically isomorphic to $\Pi H^*(X, \mathbb{R})$.

In view of Vafa’s conjectures, it is important to study geometric structures induced
on \mathcal{M} from the original data $X \hookrightarrow Y$ (cf. [3, 11]). It should be also noted that

The paper is organised as follows. In §2 and 3 we study extended moduli spaces of
general compact submanifolds X in a manifold Y. In §4 we specialize to the case
when the ambient manifold Y has a symplectic structure and the submanifolds $X \hookrightarrow Y$

\footnote{This also raises much easier problems of extending the moduli space of holomorphic vector bundles W on Y with typical tangent space $H^1(\hat{Y}, \text{End} W)$ to a supermanifold with typical tangent superspace $H^1(\hat{Y}, \text{End} W)$, and extending the moduli space of flat unitary line bundles on X with typical tangent space $H^1(X, \mathbb{R})$ to a supermanifold with typical tangent superspace $H^*(X, \mathbb{R})$; the latter two extensions are very straightforward within the Batalin-Vilkovisky formalism and will be discussed elsewhere.}
are Lagrangian. In §5 we consider another special case when Y is a complex manifold equipped with a nowhere-vanishing holomorphic volume form Ω and $X \hookrightarrow Y$ is a real slice of Y satisfying $\text{Im} \Omega|_X = 0$. Finally, in §6 we combine all the previous results to prove the Main Theorem.

§2. Extended Kodaira moduli spaces

2.1. Families of compact submanifolds. Let Y and M be smooth manifolds and let $\pi_1 : Y \times M \longrightarrow Y$ and $\pi_2 : Y \times M \longrightarrow M$ be the natural projections. A family of compact submanifolds of the manifold Y with the moduli space M is a submanifold $F \hookrightarrow Y \times M$ such that the restriction, ν, of the projection π_2 on F is a proper regular map. Thus the family F has the structure of a double fibration

$$Y \overset{\mu}{\hookleftarrow} F \overset{\nu}{\longrightarrow} M,$$

where $\mu \equiv \pi_1 \mid_F$. For each $t \in M$, there is an associated compact submanifold X_t in Y which is said to belong to the family F. Sometimes we use a more explicit notation $\{X_t \hookrightarrow Y \mid t \in M\}$ to denote the family F of compact submanifolds. The family F is called maximal if for any other family $\tilde{F} \hookrightarrow Y \times \tilde{M}$ such that $\mu \circ \nu^{-1}(t) = \tilde{\mu} \circ \tilde{\nu}^{-1}(\tilde{t})$ for some points $t \in M$ and $\tilde{t} \in \tilde{M}$, there is a neighbourhood $U \subset \tilde{M}$ of the point \tilde{t} and a smooth map $f : \tilde{U} \rightarrow M$ such that $\tilde{\mu} \circ \tilde{\nu}^{-1}(\tilde{t}') = \mu \circ \nu^{-1}((f(\tilde{t}'))) \text{ for every } \tilde{t}' \in \tilde{U}$.

Similar definitions can be made in the category of complex manifolds, category of (complex) (super)manifolds and category of analytic (super)spaces.

2.2. The Kodaira map. Consider a 1-parameter family, $F \hookrightarrow Y \times M$, of compact sub(super)manifolds in a (super)manifold Y, where $M = \mathbb{R}^{1|0}$ or $\mathbb{R}^{0|1}$ with the natural coordinate denoted by t (such a family is often called a 1-parameter deformation of the sub(super)manifold $X = \mu \circ \nu^{-1}(0)$). There is a finite covering $\{U_i\}$ of F such that the restriction to each U_i of the ideal sheaf J_F of $F \hookrightarrow Y \times M$ is finitely generated, say $J_{F|U_i} = \langle f^\alpha_i \rangle$, $\alpha = 1, \ldots, \text{codim } F$. It is easy to see that the family $\{\frac{\partial f^\alpha_i}{\partial t} \mod J_F\}$ defines a global section of the normal bundle, N_F, of the embedding $F \hookrightarrow Y \times M$ and hence gives rise to a morphism of sheaves,

$$k : \quad TM \longrightarrow \quad \nu_\ast N_F$$

$$\frac{\partial}{\partial t} \quad \longrightarrow \quad \{\frac{\partial f^\alpha_i}{\partial t} \mod J_F\}.$$

This morphism, or rather its restriction

$$k_t : T_t M \longrightarrow H^0(X_t, N_t),$$

where $N_t \simeq N_{F|\nu^{-1}(t)}$ is the normal bundle of $X_t \hookrightarrow Y$, is called the Kodaira map.

If M is the 1-tuple point $\mathbb{R}[t]/t^2$, then the family F is called an infinitesimal deformation of $X = \mu \circ \nu^{-1}(0)$ in Y. The Kodaira map establishes a one-to-one correspondence between all possible infinitesimal deformations of X inside Y and the vector superspace $H^0(X, N)$. Often in this paper we shall be interested in deformations of X inside Y within
a class of special (say, complex, Lagrangian, Legendrian, etc.) submanifolds. The associated set of all possible infinitesimal deformations of X is a vector subspace of $H^0(X,N)$ called the Zariski tangent space at X to the moduli space of (special) compact submanifolds. Note that we do not require that any element of the Zariski tangent space at X necessarily exponentiates to a genuine 1-parameter deformation of X. Put another way, the Zariski tangent space to the moduli space M makes sense even when M does not exist as a smooth manifold!

2.3. From manifolds to supermanifolds. Given a compact submanifold, $X \hookrightarrow Y$, of a smooth manifold Y. The associated exact sequence

$$0 \rightarrow TX \rightarrow TY|_X \rightarrow N \rightarrow 0$$

implies the canonical map

$$\Lambda^*TY|_X \rightarrow \Lambda^*N \rightarrow 0$$

which in turn implies the canonical embedding, $\mathcal{X} \hookrightarrow \mathcal{Y}$, of the associated supermanifolds $\mathcal{X} := (X, \Lambda^*N)$ and $\mathcal{Y} := (Y, \Lambda^*TY)$ (cf. [8, 9]). In more geometrical terms, $\mathcal{X} \simeq \Pi N^*$, $\mathcal{Y} \simeq \Pi\Omega^1 Y$ and $\mathcal{X} \hookrightarrow \mathcal{Y}$ corresponds just to the natural inclusion, $\Pi N^* \subset \Pi\Omega^1 M|_X$. The supermanifold \mathcal{Y} comes equipped canonically with an even Liouville 1-form θ defined, in a natural local coordinate system $(x^a, \psi_a \simeq \Pi \partial/\partial x^a)$ on \mathcal{Y}, as follows

$$\theta = \sum_{a=1}^n dx^a \psi_a, \quad n = \dim Y.$$

The odd two-form

$$\eta := d\theta = -\sum_{a=1}^n dx^a \wedge d\psi_a$$

is non-degenerate and hence equips \mathcal{Y} with an odd symplectic structure.

A $(p,n-p)$-dimensional sub-supermanifold $\mathcal{X} \hookrightarrow \mathcal{Y}$ is called Lagrangian if $\eta|_X = 0$ (this implies, in particular, that $\theta|_X$ is closed). It is called exact Lagrangian if $\theta|_X$ is an exact 1-form on \mathcal{X}.

2.3.1. Lemma. For any submanifold $X \hookrightarrow Y$, the associated sub-supermanifold $\mathcal{X} \hookrightarrow \mathcal{Y}$ is exact Lagrangian.

Proof. Assume $\dim X = p$. We can always choose a local coordinate system (U, x^a) in a tubular neighbourhood U of (a part of) X inside Y in such a way that $X \cap U = \{x^a = 0, \ a = p+1, \ldots, n\}$. Then the normal bundle N of $X \hookrightarrow Y$ is locally generated by $\partial/\partial x^a$ with $a = p+1, \ldots, n$. Hence $\mathcal{X} \hookrightarrow \mathcal{Y}$ is locally given by the equations $x^a = 0, \psi_b = 0$ where $a = p+1, \ldots, n$ and $b = 1, \ldots, p$. It is now obvious that $\theta|_X = 0$. Finally, $\dim \mathcal{X} = (p, n-p)$. \square

2.3.2. Remark. It also follows from the above proof that, for any submanifold $X \hookrightarrow Y$ with the normal bundle N_X, $\theta|_{\Pi N_X} = 0$. It is not hard to check that the reverse is also true: if $\mathcal{X} \hookrightarrow \mathcal{Y}$ is an $(p|n-p)$-dimensional sub-supermanifold such that $\theta|_X = 0$, then $\mathcal{X} = \Pi N^* X$ for some submanifold $X \hookrightarrow Y$.

2.4. The extended Kodaira map. Let \mathcal{X} be a Lagrangian sub-supermanifold of a supermanifold \mathcal{Y} equipped with an odd symplectic structure η. Then, as usually, one
gets an odd isomorphism \(j : \Omega^1 \mathcal{X} \xrightarrow{\eta^{-1}} \mathcal{N} \), where \(\mathcal{N} \) is the normal bundle of \(\mathcal{X} \hookrightarrow \mathcal{Y} \). In particular, there is a monomorphism of sheaves,

\[
i : \mathcal{O}_{\mathcal{X}}/\mathbb{R} \xrightarrow{j_{od}} \mathcal{N},
\]

where \(d \) is the exterior derivative.

Consider now a one (even or odd) parameter family of compact exact Lagrangian sub-supermanifolds of the supermanifold \(\mathcal{Y} = \Pi \Omega^1 \mathcal{Y} \), i.e., a double fibration

\[
\mathcal{Y} \leftarrow^\mu \mathcal{F} \twoheadrightarrow^\nu M,
\]

with \(\nu \) being a proper submersion and \(\mathcal{X}_t := \mu \circ \nu^{-1}(t) \) being a compact exact Lagrangian sub-supermanifold of \((\mathcal{Y}, \eta) \) for every \(t \in M \subset \mathbb{R}^{1|0} \) or \(\mathbb{R}^{0|1} \).

2.4.1. Lemma. For the family \(\{ \mathcal{X}_t \hookrightarrow \mathcal{Y} | t \in M \} \) as above the Kodaira map \(k_t : T_t M \rightarrow H^0(\mathcal{X}_t, \mathcal{N}_t) \) factors as follows

\[
k_t : T_t M \xrightarrow{k'} H^0(\mathcal{X}_t, \mathcal{O}_{\mathcal{X}_t})/\mathbb{R} \xrightarrow{i} H^0(\mathcal{X}_t, \mathcal{N}_t).
\]

Proof. Since \(\mu^*(\eta)|_{\mathcal{X}_t} = 0 \), we have

\[
\mu^*(\eta) = A \wedge dt
\]

for some 1-form \(A \) on \(\mathcal{F} \) whose restriction to \(\nu^{-1}(t) \) represents, under the isomorphism \(j : \Omega^1 \mathcal{X}_t \xrightarrow{\eta^{-1}} \mathcal{N}_t \), the normal vector field \(k_t(\partial/\partial t) \). On the other hand,

\[
\mu^*(\theta) = \Psi dt + dB,
\]

for some smooth functions \(\Psi \) and \(B \) on \(\mathcal{F} \) with parities \(\tilde{\Psi} = \tilde{t} + 1 \) and \(\tilde{B} = 1 \). Thus \(A = d\Psi \) completing the proof. \(\square \)

2.4.2. Corollary. Let \(\mathcal{X} \) be a compact exact Lagrangian sub-supermanifold of an odd symplectic supermanifold \(\mathcal{Y} \). Then the Zariski tangent space at \(\mathcal{X} \) to the moduli space of all deformations of \(\mathcal{X} \) within the class of exact Lagrangian sub-supermanifolds is isomorphic to \(H^0(\mathcal{X}, \mathcal{O}_{\mathcal{X}})/\mathbb{R} \).

2.4.3. **Definition.** If \(\mathcal{Y} = \Pi \Omega^1 \mathcal{Y} \) and \(\mathcal{X}_t \simeq \Pi N^*_t \), where \(N_t \) is the normal bundle of some submanifold \(\mathcal{X}_t \hookrightarrow \mathcal{Y} \), then \(H^0(\mathcal{X}_t, \mathcal{O}_{\mathcal{X}_t})/\mathbb{R} \simeq H^0(\mathcal{X}_t, \Lambda^* N_t)/\mathbb{R} \). The associated map \(k' : T_t M \rightarrow H^0(\mathcal{X}_t, \Lambda^* N_t)/\mathbb{R} \) is called the extended Kodaira map.

2.5. **Extended Kodaira moduli space.** Kodaira \([\text{I}]\) proved that if \(\mathcal{X} \hookrightarrow \mathcal{Y} \) is a compact complex submanifold of a complex manifold with \(H^1(\mathcal{X}, \mathcal{N}) = 0 \), then there exists a maximal moduli space \(M \) parametrizing all possible deformations of \(\mathcal{X} \) inside \(\mathcal{Y} \) whose tangent space at the point \(\mathcal{X} \) is isomorphic to \(H^0(\mathcal{X}, \mathcal{N}) \).

\(^{2}\)Here and elsewhere \(\tilde{\text{stands for the parity of the kernel symbol.}} \)
With the same data $X \hookrightarrow Y$ one associates a pair $\mathcal{X} = \Pi N^* \hookrightarrow \mathcal{Y} = \Pi \Omega^1 Y$ and asks for all possible holomorphic deformations of \mathcal{X} inside (\mathcal{Y}, η) within the class of complex exact Lagrangian sub-supermanifolds.

2.5.1. Theorem. Let $X \hookrightarrow Y$ be a compact complex submanifold of a complex manifold and $\mathcal{X} \hookrightarrow \mathcal{Y}$ the associated compact complex exact Lagrangian sub-supermanifold. If $H^1(X, \Lambda^k N) = 0$ for all $k \geq 1$, then there exists a maximal moduli space \mathcal{M}, called the extended Kodaira moduli space, which parametrizes all possible deformations of \mathcal{X} inside (\mathcal{Y}, η) within the class of complex exact Lagrangian sub-supermanifolds. Its tangent space at the point X is canonically isomorphic to $\sum_{k \geq 1} H^0(X, \Lambda^k N)$, with the following \mathbb{Z}_2-grading: $[T_X \mathcal{M}]_0 = \sum_{k \in 2\mathbb{Z}+1} H^0(X, \Lambda^k N)$ and $[T_X \mathcal{M}]_1 = \sum_{k \in 2\mathbb{Z}} H^0(X, \Lambda^k N)$.

Proof is routine, cf. [4, 6].

2.5.2. Example. Let X be a projective line \mathbb{CP}^1 embedded into a complex 3-fold Y with normal bundle $N = \mathcal{O}(1) \oplus \mathcal{O}(1)$. In this case the Kodaira moduli space is a complex 4-fold \mathcal{M} canonically equipped, according to Penrose, with a self-dual conformal structure, while the extended Kodaira moduli space \mathcal{M} is a $(4|3)$-dimensional supermanifold isomorphic to $\Pi \Omega^2_+ M$, where $\Omega^2_+ M$ is the bundle of self-dual 2-forms on M.

§3. Restoring the lost constants

3.1. Odd contact structure. Let X be a compact submanifold of a manifold Y. It is shown in §2 that the Zariski tangent space to the extended moduli space of Lagrangian deformations of $X = \Pi N^*$ inside $\mathcal{Y} = \Pi \Omega^1 Y$ is $\Pi H^0(X, \Lambda^* N)/\mathbb{R}$. One can easily restore the lost constants \mathbb{R} by extending \mathcal{Y} to an odd contact supermanifold $\hat{\mathcal{Y}}$ and studying Legendrian families of compact sub-supermanifolds in $\hat{\mathcal{Y}}$.

Consider $\hat{\mathcal{Y}} := \mathcal{Y} \times \mathbb{R}^{01}$ and define a 1-form on $\hat{\mathcal{Y}}$

$$\hat{\theta} = d\varepsilon + p^*(\theta),$$

where $p : \hat{\mathcal{Y}} \rightarrow \mathcal{Y}$ is the natural projection and ε is the standard coordinate on \mathbb{R}^{01}. The form $\hat{\theta}$ defines an odd contact structure on $\hat{\mathcal{Y}}$.

3.1.1. Lemma. For any submanifold $X \hookrightarrow Y$, the associated sub-supermanifold $\mathcal{X} = \Pi N^* \hookrightarrow \hat{\mathcal{Y}}$ is Legendrian with respect to the odd contact structure θ.

Proof. $\hat{\theta}|_{\mathcal{X}} = d\varepsilon|_{\mathcal{X}} + p^*(\theta)|_{\mathcal{X}} = 0 + 0 = 0$. \square

Thus one can associate with data $X \hookrightarrow Y$ the moduli space \mathcal{M} of all possible deformations of \mathcal{X} inside $\hat{\mathcal{Y}}$ within the class of Legendrian sub-supermanifolds.

3.1.2. Proposition. The Zariski tangent space to \mathcal{M} at \mathcal{X} is $\Pi H^0(X, \Lambda^* N)$.

Proof. If $\hat{\mathcal{Y}} \xleftarrow{\hat{\mu}} \mathcal{F} \xrightarrow{\nu} M \subset \mathbb{R}^{10}$ or \mathbb{R}^{01} is a 1-parameter family of compact Legendrian sub-supermanifolds, then

$$\hat{\mu}^*(\hat{\theta}) = \Psi dt$$
for some $\Psi \in \Gamma(\mathcal{F}, \mathcal{O}_F)$ with $\bar{\Psi} = \tilde{t} + 1$ (compare this with $\mu^\ast(\eta) = d\Psi \wedge dt$ in 2.4.1). The restriction of Ψ to $\nu^{-1}(t)$ represents the image of $\partial / \partial t$ under the extended Kodaira map. □

3.2. Remark. If $\{\mathcal{X}_t \hookrightarrow \hat{Y} | t \in \mathcal{M}\}$ is a family of compact Legendrian sub-supermanifolds, then $\{p(\mathcal{X}_t) \hookrightarrow Y | t \in \mathcal{M}\}$ is a family of exact Lagrangian sub-supermanifolds.

3.3. An important observation. If (Y, ω) is a symplectic manifold and $X \hookrightarrow Y$ a Lagrangian submanifold with respect to ω, then the normal bundle N is canonically isomorphic to $\Omega^1 X$. Thus the associated extended Zariski tangent space is isomorphic to $\Omega^* X$.

§ 4. Even + odd symplectic structures

4.1. Isotropic Lagrangian sub-supermanifolds. In this section we assume that Y is an even $2m$-dimensional symplectic manifold. The symplectic 2-form ω on Y gives rise to a global even function $\hat{\omega}$ on the associated odd symplectic supermanifold $\hat{Y} = \Pi \Omega^1 Y$ (and hence on $\hat{\mathcal{Y}} = \mathcal{Y} \times \mathbb{R}^{0|1}$) defined, in a natural local coordinate system $(x^a, \psi_a = \Pi \partial / \partial x^a)$, as follows

$$\hat{\omega} = \sum_{a,b=1}^{2m} \omega^{ab}(x) \psi_a \psi_b,$$

where $\omega^{ab}(x)$ is the matrix inverse to the matrix $\omega_{ab}(x)$ of components of ω in the basis dx^a. The latter function gives rise to an odd Hamiltonian vector field Q on \hat{Y} (or a contact vector field Q on $\hat{\mathcal{Y}}$) defined by

$$Q \downarrow \eta = d\hat{\omega},$$

and is given, in a natural local coordinate system, by

$$Q = \sum_{a,b} \omega^{ab} \psi_b \frac{\partial}{\partial x^a} + \sum_{a,b,c,d,e} w^{ad} \frac{\partial \omega_{bc}}{\partial x^a} \omega^{ce} \psi_c \psi_e \frac{\partial}{\partial \psi_b}.$$

Differentials forms on Y can be identified with smooth functions on the supermanifold ΠTY, $\Gamma(Y, \Omega^* Y) = \Gamma(\Pi TY, \mathcal{O}_{\Pi TY})$. Under this identification the de Rham differential $d : \Omega^* Y \rightarrow \Omega^* Y$ corresponds to an odd vector field d on ΠTY satisfying $d^2 = 0$. The even symplectic form ω establishes an isomorphism $\phi : \Pi TY \rightarrow \mathcal{Y}$ and hence maps d into an odd vector field $\phi_* d$ on Y which, as it is not hard to check, coincides precisely with Q. This observation implies, in particular, that $Q^2 = 0$ and $Q \bar{\omega} = 0$.

4.1.1 Definition. A Lagrangian (resp. Legendrian) sub-supermanifold of (\mathcal{Y}, η) (resp. $(\hat{\mathcal{Y}}, \hat{\theta})$) is called ω-isotropic if $\hat{\omega} |_{\mathcal{X}} = 0$ (resp. $\hat{\omega} |_{p(\mathcal{X})} = 0$).

If $\mathcal{X} \hookrightarrow \mathcal{Y}$ is ω-isotropic, then $Q |_{\mathcal{X}} \in \Gamma(\mathcal{X}, T\mathcal{X})$.

4.1.2 Lemma. Let (Y, ω) be a symplectic manifold and let $\mathcal{Y} := \Pi \Omega^1 Y$.

(i) If \mathcal{X} is a compact $(m|m)$-dimensional ω-isotropic Lagrangian submanifold (\mathcal{Y}, η), then \mathcal{X}_{red} is a compact Lagrangian submanifold of (Y, ω).
(ii) Let \(X \) be a compact Lagrangian submanifold of \((Y, \omega)\). Then the associated compact \((m|m)\)-dimensional sub-supermanifold \(\mathcal{X} := \Pi N^*_X \hookrightarrow Y \) is \(\omega \)-isotropic. Moreover, under the isomorphism \(\Gamma(\mathcal{X}, \mathcal{O}_X) = \Gamma(X, \Omega^*X) \) the vector field \(Q|_X \) goes into the usual de Rham differential \(d \) on \(X \).

Proof is very straightforward when one uses Darboux coordinates.

4.2 Normal exponential map. Let \(X \) be an \(r \)-dimensional compact manifold of an \(n \)-dimensional manifold \(Y \) and let \(\mathcal{X} = \Pi N^*_X \) be the associated Lagrangian sub-supermanifold of the odd symplectic supermanifold \((Y = \Pi \Omega^1Y, \eta) \).

4.2.1. Lemma. There exist

- a tubular neighbourhood \(U \) of \(\mathcal{X} \) in \(Y \),
- a tubular neighbourhood \(\mathcal{V} \) of \(0_{\mathcal{X}} \) in \(\Pi \Omega^1\mathcal{X} \), where \(0_{\mathcal{X}} \simeq \mathcal{X} \) is the zero section of the bundle \(\Pi \Omega^1\mathcal{X} \to \mathcal{X} \),
- a diffeomorphism \(\exp : \mathcal{V} \to U \),

such that

(i) \(\exp|_{0_{\mathcal{X}}} : \mathcal{X} \to \mathcal{X} \) is the identity map, and

(ii) \(\exp^*(\theta) - \theta_0 = dF \) for some \(F \in \Gamma(\mathcal{X}, \mathcal{O}_X) \), where \(\theta \) is the Liouville form on \(\Pi \Omega^1Y \) and \(\theta_0 \) is the Liouville form on \(\Pi \Omega^1\mathcal{X} \). In particular, \(\exp^*(\eta) = \eta_0 \), where \(\eta_0 \) is the natural odd symplectic structure on \(\Pi \Omega^1\mathcal{X} \).

Proof. There is a tubular neighbourhood \(U \) of \(\mathcal{X}_{red} \) in \(Y \) which can be identified via the normal exponential map with a tubular neighbourhood \(V \subset N \) of the zero section of the normal bundle \(N \) of \(X \) in \(Y \). These neighbourhoods and the exponential map have a canonical extension to the map \(\exp : U \to \mathcal{V} \) which has the property (i). We only have to check the validity of (ii). Let \((x^\alpha, x^{\dot{\alpha}})\), \(\alpha = 1, \ldots, r, \dot{\alpha} = r + 1, \ldots, n \) be a local trivialisation of \(N \), where \(x^\alpha \) are local coordinates on the base of \(N \) and \(x^{\dot{\alpha}} \) are the fibre coordinates. In the associated local coordinate system \((x^\alpha, x^{\dot{\alpha}}, \psi_\alpha := \Pi \partial/\partial x^\alpha, \psi_{\dot{\alpha}} := \Pi \partial/\partial x^{\dot{\alpha}})\) on \(V \subset \Pi \Omega^1\mathcal{X} \) the zero section \(0_{\mathcal{X}} \) is given by the equations \(x^{\dot{\alpha}} = \psi_\alpha = 0 \). We have

\[
\exp^*(\theta) = dx^\alpha \Pi \frac{\partial}{\partial x^\alpha} + dx^{\dot{\alpha}} \Pi \frac{\partial}{\partial x^{\dot{\alpha}}} = dx^\alpha \psi_\alpha + dx^{\dot{\alpha}} \psi_{\dot{\alpha}},
\]

and

\[
\theta_0 = dx^\alpha \Pi \frac{\partial}{\partial x^\alpha} + d\psi_\alpha \Pi \frac{\partial}{\partial \psi_\alpha} = dx^\alpha \psi_\alpha - d\psi_{\dot{\alpha}} x^{\dot{\alpha}}.
\]

Hence \(\exp^*(\theta) - \theta_0 = d(\psi_{\dot{\alpha}} x^{\dot{\alpha}}) \). Since \(\psi_{\dot{\alpha}} x^{\dot{\alpha}} \) is an invariant, the statement follows. \(\Box \)

4.2.2. Remark. The above Lemma establishes a one-to-one correspondence between nearby to \(\mathcal{X} \) exact Lagrangian sub-supermanifolds and global exact differential forms on \(\mathcal{X} \). Note, however, that this correspondence is not canonical but depends on the choice of the normal exponential map \(\exp : \mathcal{V} \to U \). If \(f \) is a global odd section of \(\mathcal{O}_\mathcal{X} \) (such that
\(df \in V \subset \Pi \Omega^1 \mathcal{X} \) and \(\mathcal{X}_{df} \to \mathcal{Y} \) is the associated Lagrangian sub-supermanifold, then we have a diffeomorphism

\[
\exp_{df} : \mathcal{X} \xrightarrow{df} V \xrightarrow{\exp} \mathcal{X}_{df}.
\]

Consider now a particular case when \(\mathcal{Y} \) is a \(2m \)-dimensional symplectic manifold \((\mathcal{Y}, \omega)\) and \(X \hookrightarrow \mathcal{Y} \) is a compact Lagrangian submanifold with respect to \(\omega \). In this case the normal bundle \(N \) of \(X \) in \(Y \) is isomorphic to \(\Omega^1 X \) and hence the total space of \(N \) is naturally a symplectic manifold implying that \(\Pi \Omega^1 \mathcal{X} \) (with \(\mathcal{X} = \Pi N^* \)) comes canonically equipped with an odd vector field \(Q_0 \) such that \(Q_0^2 = 0 \) (cf. subsection 4.1). Since the normal exponential map \(N \supset V \xrightarrow{\exp} U \subset \mathcal{Y} \) can be chosen to be a symplectomorphism, the associated extended exponential map \(\Pi \Omega^1 \mathcal{X} \supset V \xrightarrow{\exp} U \subset \Pi \Omega^1 \mathcal{Y} \) can be chosen to satisfy the additional property

\[
\exp_*(Q_0) = Q.
\]

Note also that the isomorphism \(N = \Omega^1 X \) implies \(\mathcal{X} = \Pi T X \) which in turn implies \(\Gamma(\mathcal{X}, \mathcal{O}_\mathcal{X}) = \Omega^* X \). Then we have

4.2.3. Lemma. For any \((\mathcal{U}, \mathcal{V}, \exp)\) as above and any exact Lagrangian submanifold \(\mathcal{X}_{df} \hookrightarrow \mathcal{U} \), the function \(\exp_{df}^* (\tilde{\omega} |_{\mathcal{X}_{df}}) \in \Gamma(\mathcal{X}, \mathcal{O}_\mathcal{X}) = \Omega^* X \) defines a closed (non-homogeneous, in general) differential form on \(\mathcal{X} \).

Proof. Let \(\phi_{df} : \Pi \Omega^1 \mathcal{X} \to \Pi \Omega^1 \mathcal{X} \) be a translation by \(df \) along the fibres of the projection \(\Pi \Omega^1 \mathcal{X} \to \mathcal{X} \). In the natural coordinates on \(\Pi \Omega^1 \mathcal{X} \) we have

\[
[Q_0 - (\phi_{df})_* Q_0] \exp^*(\tilde{\omega}) = \left[\sum_{\alpha} \left(\frac{\partial f}{\partial x^\alpha} + \sum_{\beta} \psi_{\beta} \frac{\partial^2 f}{\partial x^\beta \partial \psi_\alpha} \right) \frac{\partial}{\partial x^\alpha} - \sum_{\alpha, \beta} \psi_{\beta} \frac{\partial^2 f}{\partial x^\alpha \partial x^\beta} \frac{\partial}{\partial \psi_\alpha} \right] \sum_{\gamma} \psi_\gamma \psi_\sigma = 0,
\]

and hence

\[
Q_0 |_X \left(\exp_{df}^* (\tilde{\omega} |_{\mathcal{X}_{df}}) \right) = Q_0 |_X \left(\phi_{df}^* \circ \exp^* (\tilde{\omega}) \right) |_X = [\phi_{df}^* \circ (Q_0 \exp^* (\tilde{\omega}))] |_X = [\phi_{df}^* \circ \exp^* (\tilde{\omega})] |_X = 0.
\]

Then the statement follows from the fact that under the isomorphism \(\Gamma(\mathcal{X}, \mathcal{O}_\mathcal{X}) = \Omega^* X \) the vector field \(Q_0 |_X \in \Gamma(\mathcal{X}, T \mathcal{X}) \) goes into the de Rham differential on \(\Omega^* X \) (cf. Lemma 4.1.2(ii)). \(\square \)

4.3. Moduli space of isotropic sub-supermanifolds. Given a compact Lagrangian submanifold \(\mathcal{X} \) of a symplectic manifold \((\mathcal{Y}, \omega) \). With these data one may associate the extended moduli space \(\mathcal{M} \) of all possible deformations of \(\mathcal{X} = \Pi N^* \) inside \(\mathcal{Y} \) within the class of Legendrian, \(\omega \)-isotropic sub-supermanifolds.
4.3.1. Theorem. The Zariski tangent space to M is $\Pi H^0(X, \Omega^\ast X_{\text{closed}})$, where $\Omega^\ast X_{\text{closed}}$ is the sheaf of closed differential forms on X.

Proof. Let $\{X_t \hookrightarrow \hat{Y}| t \in M\}$ be a 1-parameter family of ω-isotropic Legendrian submanifolds, and let

$$\hat{Y} \leftarrow^\mu F \to^\nu M,$$

be an associated 1-parameter family of Lagrangian, ω-isotropic sub-supermanifolds. The vector field V_f on \hat{Y} gives rise to a vector field on $\hat{Y} \times M$ (denoted by the same letter) which is tangent to $F \hookrightarrow \hat{Y} \times M$. We have

$$V_f \upharpoonright F \mu^\ast(\eta) = (V_f \upharpoonright F \Psi \upharpoonright d) \wedge dt,$$

implying

$$\mu^\ast(df) = (V_f \upharpoonright F \Psi)dt.$$

Since $\mu^\ast(df) = d(f \upharpoonright F) = 0$, we get $V_f \upharpoonright F \Psi = 0$. Finally, the required statement follows 4.1.1(ii) which says that $V_f \upharpoonright F$ is essentially the de Rham differential. \square

§5. Moduli spaces of special real slices

5.1. Batalin-Vilkovisky structures. Let \mathcal{Y} be an $(n|n)$-dimensional compact supermanifold equipped with an odd symplectic form η and an even nowhere-vanishing section μ of the Berezinian bundle $\text{Ber}(\mathcal{Y})$. Such data have been extensively studied by A.S. Schwarz in [8, 9] in the context of Batalin-Vilkovisky quantization.

The volume form μ induces the Berezin integral, $\int_\mu f$, on smooth functions f on \mathcal{Y}. In particular, μ gives rise to a divergence operator $\text{div} \, V$ on smooth vector fields V on \mathcal{Y} which can be characterized by the formula [2]

$$\int (\text{div} \, V) f \mu = - \int V(f) \mu.$$

If x^a is a local coordinate system on \mathcal{Y} and $D^a(dx^a)$ the associated local basis of $\text{Ber}(\mathcal{Y})$, then $\mu = \rho(x) D^a(dx^a)$ for some even nowhere-vanishing even function $\rho(x)$ and

$$\text{div} \, V = \frac{1}{\rho} (-1)^{\tilde{a}(1+\tilde{V})} \frac{\partial (V^a \rho)}{\partial x^a},$$

where \tilde{a} is the parity of x^a and V^a are the components of V in the basis $\partial/\partial x^a$. Another possible definition, which also works in the holomorphic category, is

$$\text{div} \, V = \frac{L_V \mu}{\mu},$$

where L_V stands for the Lie derivative along the vector field V.

In particular, if V_f is the hamiltonian vector field on \mathcal{Y} associated to a smooth function $f \in \Gamma(\mathcal{Y}, \mathcal{O}_Y)$, then one defines a second order operator,

$$\Delta f := \frac{1}{2} \text{div} \, V_f.$$
Note that this operator depends solely on \(\mu \) and \(\eta \). The situations when \(\Delta^2 = 0 \) are of special interest in the context of Batalin-Vilkovisky quantization. The data \((\mathcal{Y}, \eta, \mu)\) with property \(\Delta^2 = 0 \) are sometimes called \(SP \)-manifolds [3, 4] or Batalin-Vilkovisky supermanifolds [5]. The structure \((\mathcal{Y}, \eta, \mu)\) which arises in the context of Calabi-Yau manifolds does actually satisfy the requirement \(\Delta^2 = 0 \), see §6.

5.2. Integration on Lagrangian sub-supermanifolds. Let \(\mathcal{Y} \) again be an \((n|n)\)-dimensional compact oriented supermanifold equipped with an odd symplectic form \(\eta \) and an even nowhere-vanishing section \(\Omega \) of the Berezinian bundle \(\text{Ber}(\mathcal{Y}) \), and let \(\mathcal{X} \hookrightarrow \mathcal{Y} \) be a compact \((r|n-r)\)-dimensional Lagrangian sub-supermanifold. Then the extension

\[
0 \longrightarrow \mathcal{T}\mathcal{X} \longrightarrow \mathcal{T}\mathcal{Y}|_{\mathcal{X}} \longrightarrow \mathcal{N} \longrightarrow 0
\]

and the isomorphism \(\mathcal{N} \cong \Pi \Omega^1 \mathcal{X} \) imply

\[
\text{Ber}(\mathcal{Y})|_{\mathcal{X}} = \text{Ber}(\mathcal{X})^{\otimes 2}.
\]

Thus the volume form \(\widehat{\Omega} \) on \(\mathcal{Y} \) induces a volume form on \(\mathcal{X} \) which we denote by \(\widehat{\Omega}^{1/2} \). A possible problem with taking the square root is overcome with the assumption that \(\mathcal{Y} \) is oriented; a clear and explicit construction of \(\widehat{\Omega}^{1/2} \) is given by A.S. Schwarz in [8].

As an example, let us consider the case when \(\mathcal{Y} = \Pi \Omega^1 \mathcal{Y} \), where \(\mathcal{Y} \) is an \(n \)-dimensional compact manifold equipped with a nowhere-vanishing \(n \)-form \(\Omega \). The latter gives rise, via the isomorphism \(\text{Ber}(\mathcal{Y}) \cong \text{Det}(\mathcal{Y})^{\otimes 2} \), to a volume form \(\widehat{\Omega} \) on \(\mathcal{Y} \). If \(x^a \) is a local coordinate system in which \(\Omega = \alpha(x) dx^1 \wedge \ldots \wedge dx^n \), then, in the associated local coordinate system \((x^a, \psi_a := \Pi \partial/\partial x^a)\) on \(\mathcal{Y} \),

\[
\widehat{\Omega} = \alpha^2(x) D^*(dx^a, d\psi_a).
\]

In particular, if \(\mathcal{X} \hookrightarrow \mathcal{Y} \) is a Lagrangian sub-supermanifold given locally by the equations \(x^b = 0, \psi_e = 0, b = r + 1, \ldots, n, e = 1, \ldots, r \), then \(\widehat{\Omega}^{1/2} = \alpha(x)|_{\mathcal{X}} \Pi \partial/\partial x^a \).

There is a natural morphism of sheaves,

\[
F : \Omega^* \mathcal{Y} \longrightarrow \mathcal{O}_\mathcal{Y}
\]

\[
\sum w_{a_1 \ldots a_k} dx^{a_1} \wedge \ldots \wedge dx^{a_k} \longrightarrow \sum \alpha(x)^{-1} w_{a_1 \ldots a_k} \varepsilon^{a_1 \ldots a_k a_{k+1} \ldots a_n} \psi_{a_{k+1}} \ldots \psi_n,
\]

where \(\varepsilon^{a_1 \ldots a_k a_n} \) is the antisymmetric tensor with \(\varepsilon^{1 \ldots n} = 1 \). One has [12, 3, 4],

\[
F(dw) = \Delta F(w),
\]

where \(\Delta \) is the Batalin-Vilkovisky operator on \((\mathcal{Y}, \widehat{\Omega}, \eta)\).

5.2.1. Lemma Let \(\mathcal{Y} \) be a manifold \(\mathcal{Y} \) equipped with a nowhere vanishing volume form \(\Omega \) and let \(\mathcal{Y} = \Pi \Omega^1 \mathcal{Y} \). If, for any compact submanifold \(X \hookrightarrow \mathcal{Y} \), the function \(\Phi \in \Gamma(\mathcal{Y}, \mathcal{O}_\mathcal{Y}) \) is such that

\[
\int_{\Pi \mathcal{X}} \Phi \widehat{\Omega}^{1/2} = 0,
\]

then \(\Phi = \Delta \Psi \) for some \(\Phi \in \Gamma(\mathcal{Y}, \mathcal{O}_\mathcal{Y}) \).
Proof. We may assume for simplicity that Φ is homogeneous in odd coordinates ψ_a, i.e. that $\Phi = F(w)$ for some k-form on Y. According to A.S. Schwarz $[8]$,

$$\int_{\Pi N^*} \Phi \hat{\Omega}^{1/2} = \int_X w.$$

Since this vanishes for any compact submanifold $X \hookrightarrow Y$, $w = ds$ for some $(k-1)$-form s on Y. Then $\Phi = F(w) = F(ds) = \Delta F(s)$. \square

5.3. Holomorphic volume forms

Let Y be an m-dimensional complex manifold equipped with a nowhere-vanishing holomorphic m-form Ω. Then the associated $(m|m)$-dimensional complex supermanifold $\mathcal{Y} = \Pi \Omega^1_c Y$ comes equipped with two natural odd symplectic structures. The first one is holomorphic and is represented, in a natural local coordinate system $(z^\alpha, \zeta^\alpha := i\Pi \partial/\partial x^\alpha)$, $\alpha = 1, \ldots, m$, by the odd holomorphic 2-form

$$\eta_c = d \left(\sum_\alpha d\bar{z}^\alpha \zeta_\alpha \right) = - \sum_\alpha d(x^\alpha + ix^\bar{\alpha}) \wedge d(\psi_{\bar{\alpha}} + i\psi_\alpha),$$

where $z^\alpha = x^\alpha + ix^\bar{\alpha}$, $\psi_\alpha = \Pi \partial/\partial x^\alpha$ and $\psi_{\bar{\alpha}} = \Pi \partial/\partial x^{\bar{\alpha}}$. The second one is real and comes from the identification of the real $(2m|2m)$-dimensional supermanifold underlying \mathcal{Y} (which we denote by the same letter \mathcal{Y}) with the real cotangent bundle $\Pi \Omega^1 Y$. It is given by

$$\eta = d \sum_\alpha (dx^\alpha d\psi_\alpha + dx^{\bar{\alpha}} \psi_{\bar{\alpha}}).$$

Clearly, $\eta = \text{Im} \eta_c$.

The holomorphic m-form Ω induces, via the isomorphism

$$\text{Ber}_c(\mathcal{Y}) = [\Omega^m_c Y]^{\otimes 2},$$

a holomorphic volume form $\hat{\Omega}$ on \mathcal{Y}.

A compact real $(m|m)$-dimensional sub-supermanifold $\mathcal{X} \hookrightarrow \mathcal{Y}$ is called a real slice if the sheaf $\mathbb{C} \otimes \mathcal{T} \mathcal{X}$ is isomorphic to the sheaf of smooth sections of $\mathcal{T}_c \mathcal{Y}|_X$. In this case $\hat{\Omega}$ induces $[1]$ a smooth section, $\hat{\Omega}|_X$, of the complexified Berezinian bundle $\mathbb{C} \otimes \text{Ber}(\mathcal{X})$. A real slice $\mathcal{X} \hookrightarrow \mathcal{Y}$ is called special if $\text{Im}(\hat{\Omega}|_X) = 0$. In this case $\text{Re}(\hat{\Omega}|_X)$ is a nowhere-vanishing real volume form on \mathcal{X}. If $\mathcal{X} \hookrightarrow \mathcal{Y}$ is also Lagrangian with respect to the real odd symplectic structure η, then $\eta_c|_X$ is non-degenerate and hence makes \mathcal{X} into an odd symplectic manifold. According to 5.1, the data $(\text{Re}(\hat{\Omega}|_X), \eta_c|_X)$ induces on the structure sheaf of \mathcal{X} a second-order differential operator Δ. Note that if $X \hookrightarrow Y$ is real slice of the manifold Y such that $\text{Im} \Omega|_X = 0$, then the associated sub-supermanifold $\mathcal{X} := \Pi N^* \hookrightarrow \mathcal{Y}$ is a special Lagrangian real slice.

5.3.1. Theorem

Let Y be a complex manifold Y equipped with a nowhere-vanishing holomorphic m-form Ω, X a compact real slice of Y such that $\text{Im} \Omega|_X = 0$, and $\mathcal{X} = \Pi N^*$ the associated special Lagrangian real slice in $\mathcal{Y} = \Pi \Omega^1 Y$. Then the Zariski tangent space

In this and the next sections the subscript c is used to distinguish holomorphic objects from the real ones. In particular, $\Omega^1_c Y$ denotes the bundle of holomorphic 1-forms on Y as opposite to $\Omega^1 Y$ which denotes the bundle of real smooth 1-forms on the real manifold underlying Y.

12
to the moduli space of all possible deformations of X inside Y within the class of special Lagrangian real slices is isomorphic to the kernel of the operator $\Delta : \Gamma(X, \mathcal{O}_X)/\mathbb{R} \to \Gamma(X, \mathcal{O}_X)$.

Proof. Consider a 1-parameter family, $\{X_t \hookrightarrow Y \mid t \in \mathbb{R}\}$, of special Lagrangian real slices in Y such that $X_{t=0} = X$. Let $z^\alpha = x^\alpha + i\dot{x}^\alpha$ be a local coordinate system on Y in which X is given by $\dot{x}^\alpha = 0$. Then in the associated local coordinate system $(z^\alpha, \zeta_\alpha := i\partial/\partial z^\alpha - \psi_\dot{\alpha} + i\psi_\alpha)$ on Y, the equations of $X_t \hookrightarrow Y$ are

$$x^\dot{\alpha} = \frac{\partial \Phi}{\partial \psi_\dot{\alpha}}, \quad \psi_\alpha = -\frac{\partial \Phi}{\partial x^\alpha}$$

for some 1-parameter family of smooth functions $\Phi = \Phi(x^\alpha, \psi_\dot{\alpha}, t)$ satisfying the boundary condition $\Phi(x^\alpha, \psi_\dot{\alpha}, 0) = 0$. The image of $\partial/\partial t$ under the extended Kodaira map is represented by the function (see Lemma 2.4.1)

$$k_{t=0} \left(\frac{\partial}{\partial t} \right) = \frac{\partial \Phi}{\partial t} \bigg|_{t=0} = \Psi.$$

If $\hat{\Omega} = \rho(z^\alpha, \zeta_\alpha)D^*(dz^\alpha, d\zeta_\alpha)$ for some holomorphic function $\rho(z^\alpha, \zeta_\alpha)$, then

$$\hat{\Omega}|_{X_t} = \rho \left(x^\alpha + i\frac{\partial \Phi}{\partial \psi_\dot{\alpha}}, \psi_\dot{\alpha} - i\frac{\partial \Phi}{\partial x^\alpha} \right) D^* \left(d(x^\alpha + i\frac{\partial \Phi}{\partial \psi_\dot{\alpha}}), d(\psi_\dot{\alpha} - i\frac{\partial \Phi}{\partial x^\alpha}) \right) = \rho \left(x^\alpha + i\frac{\partial \Phi}{\partial \psi_\dot{\alpha}}, \psi_\dot{\alpha} - i\frac{\partial \Phi}{\partial x^\alpha} \right) \text{Ber} \left(\delta_\beta^\alpha + i\frac{\partial^2 \Phi}{\partial x^\alpha \partial \psi_\dot{\beta}} - \delta_\beta^\alpha \frac{\partial^2 \Phi}{\partial x^\alpha \partial \psi_\dot{\beta}} \right) D^*(dx^\alpha, d\psi_\dot{\alpha}).$$

Hence,

$$\frac{d\text{Im}(\hat{\Omega}|_{X_t})}{dt} \bigg|_{t=0} = \frac{1}{\rho_0} \sum_\alpha \left(\frac{\partial \Psi}{\partial x^\alpha} \frac{\partial \rho_0}{\partial x^\alpha} - \frac{\partial \Psi}{\partial x^\alpha} \frac{\partial \rho_0}{\partial \psi_\dot{\alpha}} + \rho_0 \frac{\partial^2 \Psi}{\partial x^\alpha \partial \psi_\dot{\alpha}} \right) \rho_0 D^*(dx^\alpha, d\psi_\dot{\alpha}) = (\text{div } H_\Psi) \text{ Re } \hat{\Omega}|_{X_t} = (\Delta \Psi) \text{ Re } \hat{\Omega}|_{X_t},$$

where $\rho_0 = \text{Re } \rho(x_\alpha, \psi_\dot{\alpha})$. Hence $\Delta \Psi = 0$. \square

§6. Existence of the extended moduli space of special Lagrangian submanifolds

6.1. Initial data. Let X be a compact special Lagrangian submanifold of a Calabi-Yau manifold Y equipped with the Kähler form ω and a holomorphic volume form Ω, and let $X = \Pi N^* \hookrightarrow \hat{Y}$ be the associated special Legendrian sub-supermanifold of the contact supermanifold \hat{Y} (see §1). With these data one naturally associates the moduli superspace \mathcal{M} of all deformations of X inside \hat{Y} within the class of special Legendrian sub-supermanifolds.
6.2. Proposition. The Zariski tangent superspace to \mathcal{M} at \mathcal{X} is canonically isomorphic to $\Pi H^1(X, \mathbb{R})$.

Proof. It is not hard to check that under the isomorphism $\mathcal{O}_X = \Omega^* \mathcal{X}$ the Batalin-Vilkovisky operator $\Delta : \mathcal{O}_X \to \mathcal{O}_X$ goes into $2d^*d*$, where d is the de Rham differential and $*$ is the Hodge duality operator. Then Theorems 4.3.1 and 5.3.1 imply that the Zariski tangent superspace is isomorphic to

$$
\Pi \Gamma(X, \Omega^* X_{closed}) \cap \Pi \Gamma(X, \Omega^* X_{c_closed}) = \Pi H^1(X, \mathbb{R}).
$$

6.3. Theorem. \mathcal{M} is a smooth supermanifold.

Proof (after McLean [3]). Let \mathcal{V} be a tubular neighbourhood of the zero section in $\Pi \Omega^1 \mathcal{X}$, \mathcal{U} a tubular neighbourhood of \mathcal{X} in $\hat{\mathcal{Y}}$ and $\exp : \mathcal{V} \to \mathcal{U}$ the normal exponential map constructed as in section 4.2. This map identifies nearby (to \mathcal{X}) special Legendrian sub-supermanifolds \mathcal{X}_f of $\hat{\mathcal{Y}}$ with global odd sections f of $\Gamma(\mathcal{X}, \mathcal{O}_X)$ and induces a diffeomorphism $\exp_f : \mathcal{X} \to \mathcal{X}_f$. Let \mathcal{V}' be an open subset in $\Gamma(\mathcal{X}, \mathcal{O}_X)$ lying in the preimage of \mathcal{V} under the map $d : \mathcal{O}_X \to \Omega^1 \mathcal{X}$. We define a non-linear map

$$
\phi : \mathcal{V}' \subset \Gamma(\mathcal{X}, \mathcal{O}_X) \to \Omega^* \mathcal{X} \bigoplus \Omega^* \mathcal{X}
$$

as follows

$$
\phi(f) = \left(\exp_f^*(\hat{\omega}), \quad \text{Im} \left(\frac{(p \circ \exp_f)^* (\hat{\Omega})_{|p(X_f)}}{\text{Re} (\hat{\Omega})_{|p(X_f)}} \right)^{1/2} \right),
$$

where $p : \hat{\mathcal{Y}} \to \mathcal{V} = \Pi \Omega^1 \mathcal{Y}$ is the natural projection. The square root in the above formula always exists (cf. section 5.2). Note that $\phi^{-1}(0, 0) = \mathcal{M}$.

It follows from Lemma 4.2.3 that $\exp_f^*(\hat{\omega}) \in \Omega^* \mathcal{X}$ is a closed differential form. Replacing f with tf, we see that the map $\exp_f : \mathcal{X} \to \hat{\mathcal{Y}}$ is homotopic to the inclusion $\mathcal{X} \to \hat{\mathcal{Y}}$. Therefore, denoting by $[\]$ the cohomology class, we get $[\exp_f^*(\hat{\omega})] = [\hat{\omega}]_{|X} = 0$ and conclude that $\exp_f^*(\hat{\omega})$ is an exact differential form on \mathcal{X}.

Since $\hat{\Omega}$ is holomorphic, the integral $\int_{p(X_f)} \hat{\Omega}_{|p(X_f)}$ depends only on the homology class of \mathcal{X}_{red} in Y [4]. Analogously, for any compact $(r|m-r)$-dimensional Lagrangian sub-supermanifold $\mathcal{Z} \subset \mathcal{X}_f$, the integral $\int_{\mathcal{Z}} \hat{\Omega}^{1/2}$ (and hence its real and imaginary parts) depends only on the homology class of \mathcal{Z}_{red} in Y. Since \mathcal{Z}_{red} is homologous to an r-dimensional cycle in \mathcal{X} and $\text{Im} (\hat{\Omega}^{1/2})$ vanishes, we conclude that $\int_{\mathcal{Z}} \text{Im} (\hat{\Omega}^{1/2}) = 0$ for any such \mathcal{Z}. Thus, for any smooth cycle $\mathcal{Z} \hookrightarrow X \subset Y$, we have

$$
0 = \int_{\mathcal{Z}} \text{Im} (\hat{\Omega}^{1/2})
= \int_{\Pi \mathcal{Z}} \left(\frac{(p \circ \exp_f)^* \text{Im} (\hat{\Omega}^{1/2})_{|\mathcal{Z}}}{\text{Re} (\hat{\Omega})_{|\Pi \mathcal{Z}}^{1/2}} \right) \text{Re} (\hat{\Omega})_{|\Pi \mathcal{Z}}^{1/2}
= \int_{\Pi \mathcal{Z}} \text{Im} \left(\frac{(p \circ \exp_f)^* (\hat{\Omega})_{|\mathcal{Z}}}{\text{Re} (\hat{\Omega})_{|\Pi \mathcal{Z}}} \right)^{1/2} \text{Re} (\hat{\Omega})_{|\Pi \mathcal{Z}}^{1/2},
$$

with respect to the odd symplectic structure induced on $p(X_f)$ from the holomorphic odd symplectic structure on \mathcal{Y}, see section 5.2.
where \(Z_f := p \circ \exp_f(\Pi N_f^*) \) and we used the fact that \(Z \) and \((Z_f)_{red} \) are homologous in \(Y \).

By Lemma 5.2.1 and the fact that in our case \(\Delta = *d* \), the integrand of the last integral is a coexact differential form in \(\Omega^*X \).

Thus we proved that \(\phi \) maps \(\mathcal{V}' \subset \Omega^*X \) into the subset

\[
\Omega^*X_{exact} \bigoplus \Omega^*X_{coexact} \subset \Omega^*X \bigoplus \Omega^*X.
\]

Put another way, as a map from \(C^{1, \alpha} \) differential forms on \(X \) to exact and coexact \(C^{0, \alpha} \) differential forms, \(\phi \) is surjective. Then, by the Banach space implicit function theorem and elliptic regularity, the extended moduli space \(\mathcal{M} = \phi^{-1}(0, 0) \) is smooth with tangent space at 0 canonically isomorphic to the kernel of the following operator (see the proofs of Theorems 4.3.1 and 5.3.1),

\[
\frac{d}{dt}\phi(tf) \bigg|_{t=0} = (d, *d) : \Omega^*X \to \Omega^*X \bigoplus \Omega^*X
\]

which is precisely \(\Pi H^*(X, \mathbb{R}) \).

\(\square \)

Acknowledgement. It is a pleasure to thank A.N. Tyurin for valuable discussions.
References

[1] M. Alexandrov, M. Kontsevich, A. Schwarz and O. Zabolonsky, The geometry of the master equation and topological quantum field theory, Int. J. Mod. Phys. A12 (1997), 1405-1430; hep-th/9502010.

[2] E. Getzler, Batalin-Vilkovisky algebras and two-dimensional topological field theories, Commun. Math. Phys. 159 (1994), 265-285; hep-th/9212043.

[3] N.J. Hitchin, The moduli space of special Lagrangian submanifolds, dg-ga/9711002.

[4] K. Kodaira, A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds, Ann. Math. 75 (1962), 146-162.

[5] R.C. McLean, Deformations of calibrated submanifolds, Duke University preprint, January 1996.

[6] S.A. Merkulov, Existence and geometry of Legendre moduli spaces, Math. Z. 226 (1997), 211-265.

[7] D.R. Morrison, The geometry underlying mirror symmetry, In Proc. European Algebraic Geometry Conf. (Warwick, 1996); alg-geom/9608006.

[8] A. Schwarz, Geometry of Batalin-Vilkovisky quantization, Commun. Math. Phys. 155 (1993) 249-260; hep-th 9205088.

[9] A. Schwarz, Semiclassical approximation in Batalin-Vilkovisky formalism, Commun. Math. Phys. 158 (1994) 265-285; hep-th/9210115.

[10] A. Strominger, S.-T. Yau and E. Zaslow, Mirror symmetry is T-duality, Nucl. Phys. B 479 (1996), 243-259.

[11] A.N. Tyurin, Special Lagrangian geometry and slightly deformed algebraic geometry, math.AG/9806000.

[12] E. Witten, A note on the antibracket formalism, Mod. Phys. Lett. A5 (1990), 487.

[13] C. Vafa, Extending mirror conjecture to Calabi-Yau with bundles, hep-th/9804131.

Department of Mathematics, Glasgow University
15 University Gardens, Glasgow G12 8QW, UK
e-mail: sm@maths.gla.ac.uk