Comments on ”Controlling Discrete and Continuous Symmetries in Superradiant Phase Transitions with Circuit QED Systems”

Recently, the authors in Ref.[1] presented the $N = \infty$ solution of the $U(1)/Z_2$ Dicke model [2]. Here we point out that (1) The authors missed an important transformation relating the two parameter regimes, so their separate discussions on the two regimes is redundant. Most importantly: (2) Both $N = \infty$ classical limit and $1/N$ quantum fluctuations have been achieved in [2, 3]. It is the $1/N$ quantum fluctuations which lead to non-trivial new quantum phenomena. In view of only a few $N = 2 \sim 9$ qubits inside a circuit QED microwave cavity, they can be tested in near future experiments.

(3) Several possible experimental implementations of the $U(1)/Z_2$ Dicke model have been proposed before and recently experimentally realized.

1. The authors in [1] claimed there are different physics in two different regimes $\Omega_E > \Omega_M$ and $\Omega_E < \Omega_M$. In fact, there is a transformation (see below) establishing the relation $\Omega_E \leftrightarrow \Omega_M$. So their separate discussions on the two regimes are redundant.

In the Eqn.1 called $U(1)/Z_2$ Dicke model in our work [2], g stands for the Rotating Wave (RW) term, and g' stands for the Counter-Rotating Wave (CRW) term. It is straightforward to see that under $a \rightarrow e^{\pi/2a}a_-, \sigma_- \rightarrow e^{\pi/2}\sigma_-$, the CRW term $g' \rightarrow -g'$. So in [2], we only focused on $0 < g' < g$ case. Obviously, $g' = 0$ is the $U(1)$ symmetry point, any $g' \neq 0$ breaks the $U(1)$ down to Z_2. The authors in Ref.[1] re-wrote the Eqn.1 in [2] as their Eqn.1 with the straightforward relations $g = \Omega_E + \Omega_M, g' = \Omega_E - \Omega_M$. Under the same transformation, $\Omega_E \leftrightarrow \Omega_M$, so one only need to focus on $\Omega_E > \Omega_M$ at both $N = \infty$ and finite N. Below Eqn.13 in [2], we found the critical strength $g + g' = g_c = \sqrt{\omega \omega_b}$ which implies $\Omega_E = \sqrt{\omega \omega_b}/2$ shown in Fig.1 and 2 in [1].

2. The results shown in Fig.1-5 in [1] are just the $N = \infty$ (classical) limit of the effective action Eqn.12 at the order $1/N$ in [2]. It holds for any g and g'. Because the classical limit is technically trivial and not useful in any practical circuit QED system, it was only briefly mentioned below Eqn.13 in [2]. For example, the Fig.5c in [1] corresponds to $g' = 0$ in [2], namely, the $U(1)$ Dicke model. The Goldstone mode at $N = \infty$ is just the flat zero mode [2, 3], the amplitude model is nothing but the Higgs mode. Both modes are explicitly stressed in the title of [2].

The most important value of Eqn.12 is that it can be used to calculate quantum fluctuations at $1/N$ at any g and g'. In [2, 3], we computed the quantum fluctuations at order $1/N$ at the $U(1)$ limit $g' = 0$ and near the $U(1)$ limit $g'/g = \beta$ not too far away from the QCP. It is these quantum fluctuations which lead to highly interesting quantum phenomena. For example, they lift the flat zero (Goldstone) mode at $N = \infty$ to the oscillating shape shown in Fig.3a with the corresponding spectral weights shown in Fig. 3b in [2]. The crucial Berry phase effects only show up at a finite N. It is the Berry phase which leads to the oscillating shape of the Goldstone mode shown in Fig.3a in [2]. All these important quantum effects get quenched in the $N = \infty$ (classical) limit. For example, the Goldstone mode is quenched to the flat zero mode [2, 3]. The amplitude mode shown in Fig.5b in [1] is nothing but the Higgs mode stressed in the title of and also fully discussed in [2]. We also computed the $1/N$ quantum fluctuations to the Higgs mode shown in Fig.5a and it spectral weight in Fig.5b in [2]. Our $1/N$ quantum fluctuation results in Fig.3-4 match nearly perfectly well with the Exact diagonalization (ED) results for N gets as small as $N = 2$.

In a recent preprint [4], using Eqn.12, we investigated the quantum fluctuations at order $1/N$ at any $0 \leq g'/g = \beta \leq 1$ and full interaction strength.

3. The last part (about 1/10 of the paper) of Ref.[1] sketched a circuit QED implementation (Fig.6) of the $U(1)/Z_2$ Dicke model studied in [2]. In fact, the experimental implementations using both cold atoms inside a cavity and superconducting qubits inside a microwave cavity have been briefly discussed in [2, 3]. A recent experiment [3] realized the open version of the $U(1)/Z_2$ Dicke model by using cavity-assisted Raman transitions with cold atoms inside a cavity. We expect that the $U(1)/Z_2$ Dicke model can also be realized in superconducting qubits inside a microwave cavity. Then all the results on Goldstone and Higgs modes shown in Fig. 1-5 at and near the $U(1)$ limit in [2] and many other novel phenomena demonstrated in [4] at generic β can be detected for a few $N = 2 \sim 9$ qubits.

We acknowledge supports from NSF-DMR-1161497 and NSFC-11174210.

Yu Yi-Xiang1,2, Jinwu Ye2,3, W.M. Liu1 and CunLin Zhang3

1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2Department of Physics and Astronomy, Mississippi State University, P. O. Box 5167, Mississippi State, MS, 39762
3Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048, China

[1] Alexandre Baksic and Cristiano Ciuti, Phys. Rev. Lett. 112, 173601 (2014).
[2] Yu Yi-Xiang, Jinwu Ye and W.M. Liu, Scientific Reports 3, 3476 (2013). It was cited in [1] as Ref.18.
[3] Jinwu Ye and CunLin Zhang, Phys. Rev. A 84, 023840 (2011).
[4] Yu Yi-Xiang, Jinwu Ye, W.M. Liu and CunLin Zhang, arXiv:1506.07030, version 2.
[5] M. P. Baden, et.al, Phys. Rev. Lett. 113, 020408 (2014).