The Fixed wing UAV usage on Land use Mapping for gazetted Royal land in Malaysia

Norzailawati Mohd Noor*1, Norzalina Harun2 and Alias Abdullah1

1Department of Urban and Regional Planning, Kulliyah of Architecture and Environmental Design, International Islamic University Malaysia, Jalan Gombak 53100 Kuala Lumpur, Malaysia
2Institut Alam dan Tamadun Melayu (ATMA), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi,Selangor Darul Ehsan, Malaysia.
*Corresponding Author/Email: norzailawati@iium.edu.my

Abstract. The study deals with the usage of fixed wing unmanned aerial vehicle (UAV) in verifying boundary for gazetted royal land, which the other sight of efficacy of UAV has been tested in area of urban planning. The specific flight planning had been arranged and tested to royal land of Pekan in order to identify the settlement (kampongs) boundaries. Royal land in Pekan was the significant land that existed since 1919, which established under the Royal land Enactment 1919. It accommodated more five thousand residents in the 919 hectares of area with five villages (kampongs). The combination method of aerial mapping and vector digitization in structured a spatial database have been conducted by combining both output from UAV and GIS. The finding shows the royal land boundary was clearly identified in UAV orthophoto; further refine output of its database in GIS data. The additional info building footprints in 5 kampongs land lots also appeared very well in final output. Result shows that, the simple conclusion on the efficacy of fixed wing UAV in managing a land in urban planning, it also proved the dependency of decision makers should oriented more on geospatial applications since it was reliable and able to be used in many planning aspects in order to ensure a sustainability and resiliency of living.

Keywords: UAV, fixed wing, GIS, royal Land and urban planning

1. Introduction

Unmanned Aerial Vehicles (UAVs) are to be understood as unhabitated reusable motorized aerial vehicles [9,18]. It remotely controlled, semi-autonomous, autonomous or have a combination of these capabilities. UAV can be classified into two groups: rotary wing and fixed wing. Among the gigantic number of fixed wing’s applications, surveillance seems to be the most common [16]. A fixed-wing drone is generally composed of a central body, which houses all the drone's electronics, and two wings. The aerodynamic profile of the wings enables the drone, once in flight, to generate lift that compensates for the weight of the aircraft. The recognition of UAVs as a powerful geospatial information acquisition tool is ubiquitous. Furthermore, the main benefit using UAVs that it can be used in high risk situation without endangering human life in inaccessible area. Moreover, it has the real time capability and ability for fast data acquisition. In addition, due to low operating altitude, UAVs achieve a very high resolution, in terms of ground sampling [5]. Fixed wing UAVs are used in numerous very huge number of fields consist of archeology, architecture, land surveying, land registry and many types of applications in urban planning [18,11,1]. Every mapping project is unique; even within the same industry, each project will have its own distinct challenges. Selecting the right equipment is therefore key to getting
the job done. Unmanned aerial vehicles (UAVs) or drone have emerged as a solution for many mapping and surveying projects including giving a solution for land use matters. The utilization of UAV in urban planning become more important in recent. Not only subject to bird eyes observation on video capturing, but it goes beyond mapping to the advance analysis of pairing with digital photogrammetry such laser scanning and GIS technologies [18].

Royal land or crownland or demesne in certain countries is territorial area belong to monarch, who personifies the crown [25,19,14]. Specifically, Malay royal land related to royal town, which is royal town has been described as a town that has a strong relationship between the community, defense fortress and the king fort where by the royal administrative district are located [22,23,12]. The Malay royal town are scattered around peninsula Malaysia consist of Arau (Perlis), Anak Bukit (Kedah), Kuala Kangsar (Perak), Klang (Selangor), Sri Menanti (Negeri Sembilan), Muar (Johor), Pekan (Pahang), Kuala Terengganu (Terengganu) and Kota Bharu (Kelantan) [23,22]. The component of land use for royal town includes a king”s palace, traditional Malay settlements and fortification systems; with, commonly having eight (8) prominent physical character namely, royal palace complex, fortress, mosque, public open space, marketplace, settlement, gateway, river and jetty. Royal town has been described as a historic town that has a good quality of cultural, historical significance and have a good relation between the community and the development of the urban setting. The settlement becoming residential district; market place and jetty farming commercial districts. Therefore, this study attempts to use of fixed wing unmanned aerial vehicle (UAV) in mapping a land lot boundary for gazette royal land settlement, which the other sight of efficacy of UAV has been tested in area of urban planning. Prospective site was identified based on oral tradition, written record and inspection using images [7,13,12]. In this study, the specific flight planning had been arranged and tested to royal land of Pekan in order to identify the settlement (kampongs) boundaries. The combination method of aerial mapping and vector digitization in structured a spatial database have been conducted by combining both output from UAV and GIS. This is expected able to assist the palace administration in order to manage their geospatial databases efficiently.

2. study Area

The study area was approximately 1849.09 acres in size and was conducted in Pekan, Pahang. Its name comes from a flower, the *Bunga Pekan*. The royal land of Pekan is situated nearest Pahang river at the coordinate location of 3.48395 latitude and 103.385010 longitude, 70km from its capital city of Pahang which is Kuantan (Figure 1).

![Figure 1: The study area located in specific geographical coordinates.](image_url)
Buluh, iv) Kg.Pekan lama and vi) Kg.Padang Polo (Bernama,2019). The royal land was existed a hundred years ago under the Royal Land enactment 1919 (Enakmen Tanah Kesultanan, 1919). The rule of settlement commonly was rewarded by the King to their selected citizens that give their services to the palace and kingdom. The land tenants are required to pay a low land tax to the king upon their settlement.

3. Material and Methods

The general mapping process shows the outlines of main stages in our study. The three main stages consisted of data preparation, data pre-processing, and post processing. In data preparation, we have collected and used three types of data that obtained from the source of fixed wing UAVs, cadastral royal land lot, and additional GIS vector data for recent land use information in study area. The vector also contain cadastral sheet of royal land was obtained from Palace office and Pekan Local Authority. The used flight system used for mapping was a fixed wing radius by Shengzen Joyton Technology. This smallest and lighter professional hand-launched mapping drone which guarantee good flight stability with wind resistance < 6 force 6 wind. Flight times of up to 85 min with a maximum payload capacity of 200g are possible. The maximum takeoff weight should not exceed 0.98kg (Table 1).

Table 1: Specification of UAV data acquisition for study area

Types of Data	Radius Fixed Wing
Aircraft weight	0.98kg
Endurance	85 minutes
Maximum Payload	200g
Battery	11.1V, 6400mAh Li-on Battery
Wingspan	920mm
Max.Flight height	3500m AMSL
Camera Model	DSC-WX220
Cadastral Sheet for Royal Land from Palace office	
Land use vector database Pekan Municipal Authority	

For position determination, the UAV is equipped with a GNSS, a barometric height sensor, a compass and an inertial measurement unit (IMU). While flying on the path that has been defined during the flight planning, the device can hold its own position via GPS (Global Positioning System) information. For this project, the UAV was equipped with a DSC-WX220 RGB sensor model. The camera can be tilted to any angle along the vertical and horizontal axis.

Table 2: Specification of Radius Fixed wing data acquisition information for study area

Parameters	Specification
Number of images	1903
Projection	WGS 84
Number of Take off	3 Take off
Timing (morning)	2.30 hours
Sensor Types	RGB
Ground resolution (GSD)	9.19cm/pixel
Coverage area	16.3 sqkm
Flying altitude	378m
Overlapped (Side/front)	70/60
With the provided flight planning software of Joyton, flight missions are planned for autonomous flights with the specific parameters as in table 2. The flight planning process was obtained based on few planning steps such as i) defined the mission area, resolution and overlap, ii) generate 3D flight planning, iii) Define take-off and landing points, iv) monitor and adapt during flight v) Launching drone and vi) in flight monitoring. This fixed wing UAV is therefore suitable for aerial photography, verification and mapping from the air. The transmission time for live view is instantaneous. However, the images are stored on the flash-card of the camera mounted on the UAV for further processing at the later stage. The UAV method for the acquisition of geodata is based on good and appropriate flight planning. In this project, a set of flight mission flown according the specific parameters to suit the purpose of output. The waypoint has been established covers the specific area of study and extended about 5km in radius. The flight was flown at the altitude of 350meters with 3 times take off in duration of 2.5 hours. Additionally, the front and side lap were used: 70/60 and the desire spatial resolution of digital maps (ground sampling distance) for this study was determined based on ground covered by one pixel (p) in the image and is a function of the resolution of the camera sensor, the focal length (f) of the camera and the flying height (H = the distance between camera and ground) (Barnes et al., 2014). The formula is:

\[
\frac{\text{GSD}}{p} = \frac{H}{f}
\]

In figure 2 (b) the waypoint that established in flight planning for the study area is shown, using the Joyton provided the UAV manufacturer.

Figure 2: Data preparation and pre-processing stage a) Waypoint that established for the site and b) mosaicking process that combined 1903 images that obtained from the UAV.

In the pre-processing stage, the UAV flight output was processed without ground control points (GCPs). In the former case, GCPs and the georeferenced information registered by the UAV’s autopilot were used in the aerial triangulation phase to accurately place the photogrammetric block into a coordinate reference system (CRS). The main photogrammetry process is divided into 3 main stages: aerial triangulation, Digital Surface Modeling (DSM) and orthomosaicking that involved 1903 images of UAV captured in earlier stage (Fig. 2b). The post processing stage is involved royal land digitization and extracting the building footprint for the land lot. The individual land lot within the royal land boundary was digitized and the orthophoto was performed the semi-automatic building footprint process in order to extract the building footprint for every settlement in that royal land. Then further were being overlapped to get the final result of complete geospatial mapping of royal land and its settlements.

4.0 Result and Discussion

A total one mission was flown, with a specific procedure has been determined during flight planning setup. Result of preprocessing stage has produced the digital surface model (DSM) and orthophoto after mosaicking 1903 images of the site. Figure 3 shows the output of orthophoto and DSM, from the point
of view of image interpretation, a good spatial resolution of ±9cm per pixel (GSD) has been obtained and the image shows clearly the location of site and its component of land uses (road, building, palace, field and mosque) and DSM result shows the acceptable resolution per pixel and cloud point density per square meter as stated in caption.

![Figure 3: a) The result of orthophoto and b) Digital surface model for Pekan; resolution of 18.4cm/pixel; and point density of 29.621 points per square meter (Sqm).](image)

The further result obtained in the post processing stage are the data acquisition process that involve the digitization and extracting building footprint for the settlement building in study area (Figure 4).

![Figure 4: Result of post processing showing the result of digitization for royal land of Pekan a) Overlaid with Orthophoto; b) Overlaid with vector map.](image)

The final result of mapping is assembling data with building footprint. Building footprint was performed in ArcScan functions generated vector (line of building) from orthomosaic raster file. The output of vectorization is sufficient in order to extract building settlement in royal land area. The building able to extract settlement boundaries from aerial image; based on image contrast and its textures.
Figure 5: Result of land verification – royal that has been overlaid with land based on Orthophoto output

Figure 6: The final map for gazette Royal land showing land lot and building footprint that cover five villages.
The result indicated that the efficacy of fixed wing orthophoto in extracting building footprint can easily assimilate by virtual analysis. The clarity of element of royal town and location of each settlements within the land lot boundaries was clearly depicted on the map. It clearly shows the evidence in previous findings that’s stated the royal town has a strong relationship with community on their finest connection with the settlers and surrounding urban growth. The result also proved that, the theories on Malay royal town settings that basically from form a single center district that centralized between field, mosque and palace complex. The settlement area that commonly located at the back and surrounding of king palace was clearly presented in the figure 5 and 6. The settlement area was the supporting character that make identity of Malay royal town highlighted.

5. Conclusion

This study has shown that UAV system are useful complements for heritage mapping. In this study, we have presented a result of the efficacy of UAVs approach in mapping royal land lot in Pekan Pahang. Specifically, the UAV mapping technique was used based on a few stages of preparation that involve the data preparation, procedure step in flight planning, pre-processing and post processing in determining the desire output for this study. The result indicate the UAVs approach coupled with advanced geospatial technology of GIS could quickly achieve the detail mapping for gazette royal land. Concerning spatial resolution, an appropriate flight planning procedure considered as an important parameter because of the degree detail achieved in the orthomosaic image to be used to for analysis and study in detailed mapping context. Additionally, adequate values of altitude, front and side overlap and GSD settings have to be applied because of their impact on flight duration and positional accuracy of absolute and relative accuracy obtained. Whenever possible, higher percentages of forward and side overlap are recommended for UAV flights. It also shows that the UAV approach with appropriate photogrammetric evaluation methods offers a great potential to gain information from the captured data that are useful for cadastral applications and this case the gazette royal land. These derivates from UAV measurements can present a great additional benefit to users of cadastral data, such as urban planners, architectures and conservators.

Acknowledgement: This research was funded by Ministry of Higher Education (MOHE) on Trans-Disciplinary Research Grant Scheme (TRGS16-03-002-00002). We also gratefully acknowledge the anonymous reviewers for their valuable comments that helped to considerably improve the manuscript

References:

[1] Agüera, F., Carvajal, F., Pérez, M., (2011). Measuring sunflower nitrogen status from an unmanned aerial vehicle-based system and an on the ground device. ISPRS Annals. Photogramm. Remote Sens. Spatial Inform. Sci. XXXVIII-1/C22, 33–37.
[2] Atheiardi, I.; Chiabrand, F.; Maria Lingua, A.; Noardo, F. Recent trends in cultural heritage 3D survey: The photogrammetric computer vision approach. J. Cult. Herit. 2018, 32, 257–266.
[3] Barnes G., Volkman W., Sherko R., Kelm K. (2014). Design and Testing of a UAV based Cadastral Surveying and Mapping Methodology in Albania. World bank conf. Land and Poverty, The World Bank - Washington DC, March 24-27.
[4] Bendig, J., Bolten, A., Bareth, G., 2012. Introducing a low-cost mini-DRONE for thermal and multispectral-imaging. ISPRS – Int. Arch. Photogramm. Remote Sens. Spatial Inform. Sci. XXXIX-B1, 345–349.
[5] Bertozzi M., Broggi A., & Fascioli A. 2000 Vision-Based intelligent Vehicles: State of the Art and Perspectives. Robotics and Autonomous Systems, vol. 32, 1 - 16.
[6] Ben,Chetha.and Gonder N (2019) .Property rights : Principals of Customary land and urban development in Fiji. Land use policy 87 (2019) 104089.
[7] Bernama (2019). Beri Identiti baharu Lambang Pekan Bandar Diraja-al-Sultan Abdullah. Berita Timur : Retrieved : 22/02/2018.
[8] Çağub, A., Deveci A. & Ergincan F. 2007. *Improving Heritage Documentation*. GIM International 21, 9, September 2007

[9] Cabreira T.M, Brisota L.B and Paulo F.R Jr (2019). Survey on coverage of path planning with unmanned Aerial Vehicles, Drones, MDPI.

[10] Heng L, Xiao F, Chao L, Longuo L, Naiwan L and Lei M (2018). Land use information Quick mapping based on UAV Low attitude Remote sensing technology and transfer learning In-Tech open, pp 119 – 13

[11] Gruen, A.; Huang, X.; Qin, R.; Du, T.; Fang, W.; Boavida, J.; Oliveira, A. Joint processing of UAV imagery and terrestrial mobile mapping system data for very high resolution city modeling. *Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.* 2013, 175–182

[12] Ismail W.N.W, Jaafar N, Arabi F and Husin E.H (2018). Character of traditional street: an overview of physical Component Associated building, Landscape and street Patten. In Royal Town. 2nd International conference on architecture and civil engineering (ICACE 2018). IOP Conf. Series: Materials Science and engineering) (2018) 012019

[13] Ismail W.NW, Jaafar H and Harun N (2018) street of Royal Town : Exploring the physical character of Traditional street in the Malay Royal Town. The Journal of Social Sciences Research. Special issue 6 pp : 991 – 996

[14] Hoisen H.B.V and Johnson C (1925). A Lease of crown land on Papyrus. Transaction and proceedings of American Philological Association. Vol.56, pp 213-228.

[15] Lai L.W.C, chua M.H and Lorne T.F (2014) The cause theorem and squatting on crown Land and water : A Hong Kong comparative study of the difference between the state allocation of property rights . Habitat international 4. Volume 44, pp 247 – 25

[16] Kayacan,E, Khansar M.A, Hervas J.R and Reyhanoglu (2017). Learning Control of fixed wing unmanned Aerial Vehicles Using Fuzzy Neural Networks. International Journal of Aerospace Engineering. Volume 2017. Article ID 5402809.

[17] Manyoky M, Theiler P, Steudler D and Eisenbess (2011). Unmanned aerial vechicle in cadastral applications. International archives of photogrammetry, Remote sensing and Spatial information sciences, volume XXXVIII-1/C22, ISPRS Zurich, Switzerland.

[18] Mohd Noor.N, Ibrahim I, Abdullah A and Abdullah A.A.A (2020). Information fusion for cultural heritage three-dimensional modelling of Malay Cities. ISPRS Int.Geo. Inf. Special Issue on Information based on GIS. 9 (3), 177.

[19] Munro A (1998). Melbourne’s Royal Park- Where Crown land makers easy Picking. Landscape Australia, Volume 20, No.4, pp350-353.

[20] Samsudin, N. A. (2018). Preserving the characteristics of urban heritage: An insight into the concept of Malaysian royal towns. Environment-Behaviour Proceedings Journal, 3(7): 277-83.

[21] Shukri S.M, Wahab M.H, Aawat R.C, Taib I, Rozaly M.Z. M (2018) . Definition and physical attribute that characterize settings of Malay Royal towns in Malaysia. International journal of Engineering & Technology, 7 (3.9), pp 55 – 58

[22] Shukri S.M, Mantegi G, Wahab M.H, Amat C.R and Ming H.W (2018). Preserving and conserving malay royal town identity in Malaysia, special issue, 6, pp 852 – 860

[23] Thwaites H, Santano D, Esmaeili and See Z S (2019). A Malaysian Cultural Heritage Compendium. Chapter in book: Digital Application in Archeology and Cultural Heritage. Volume 15, Dec 2019, E00116.

[24] Wyndham (1980). Crown Land and Royal patronage in Mid- Sixteenth Century, England. Journal of British Studies. Vol.19, No.2. pp 18-34.