Next-to-leading-order QCD corrections to $Z \to \eta_c(\eta_b) + g + g$

Zhan Sun, Xuan Luo, and Ying-Zhao Jiang

Department of Physics, Guizhou Minzu University,
Guiyang 550025, People’s Republic of China.

(Dated: December 2, 2021)

Abstract

In this paper, we carry out the next-to-leading-order (NLO) studies of $Z \to \eta_c(\eta_b) + g + g$ (labeled as “gg”) through the color-singlet (CS) state of $c\bar{c}(b\bar{b})[^1S^0_0]$, with the aim of assessing the impact of this process on Z decaying into inclusive $\eta_c(\eta_b)$. We find the newly-calculated QCD corrections to the gg process can notably enhance its leading-order (LO) results. To be specific, with the renormalization scale varying in $[m_{c,b}, m_Z]$, $\Gamma_{\eta_c gg}$ is increased by about 8-14 times, and about 1.5-2.0 times for η_b production. Consequently, $\Gamma^{NLO}_{Z \to \eta_c + g + g}$ can reach up to about 40 – 70% of the LO results given by the CS dominant process $Z \to \eta_c + c + \bar{c}$, and about 30 – 40% for the η_b case. Moreover, with the significant QCD corrections, the gg process would exert crucial influence on the CS predictions of the $\eta_c(\eta_b)$ energy distributions. In conclusion, in the CS studies of $Z \to \eta_Q + X$ ($Q = c, b$), besides $Z \to \eta_Q[^1S^0_0] + Q + \bar{Q}$, the process $Z \to \eta_Q[^1S^0_0] + g + g$ can as well provide phenomenologically indispensable contributions.

PACS numbers: 12.38.Bx, 12.39.Jh, 13.38.Dg, 14.40.Pq

*Electronic address: zhansun@cqu.edu.cn
I. INTRODUCTION

Due to the experimental reconstruction difficulties, the observation of η_c meson is scant comparing to that of J/ψ. For example, HERA, LEP II, and B factories have accumulated copious J/ψ yield data, while have not yet detected any evident event of inclusive η_c production. In 2014, the LHC (LHCb group), which runs with a large center-of-mass proton-proton collision energy and a high luminosity, achieved the first measurement of inclusive η_c yield [1]. Comparing to the theoretical results [2–13], the LHCb measured cross sections seem to almost be saturated by the color-singlet (CS) predictions alone, leaving very limited room for the color-octet contributions and thus posing a serious challenge to the nonrelativistic QCD (NRQCD) factorization [15]; however, Refs. [5, 6] pointed out NRQCD is still valid in describing the LHCb data. Note that, there are large uncertainties in the LHCb released data [1]. Therefore, more studies of inclusive η_c yield in other processes and experiments with better precision are required to further assess the validity of NRQCD in η_c production.

Heavy-quarkonium production in Z boson decay, which has triggered extensive studies [16–41], provide a good chance for the study of η_c production mechanism. At the LHC, large number of Z events ($\sim 10^9$/year [34]) can be generated in one running year, with which the study of Z decaying into heavy quarkonium has been an increasingly important area [44–46]. Furthermore, the upgrades of HE(L)-LHC will give birth to a higher collision energy (luminosity), largely improving the accumulated Z yield events. In addition, the proposed future e^+e^- collider, CEPC [47], equipped with “clean” background and enormous Z production events ($\sim 10^{12}$/year), would also be beneficial to hunt η_c yield through Z decay. From these perspectives, precise measurements of Z boson decay into inclusive η_c look promising, and studying $Z \rightarrow \eta_c + X$ through the CS mechanism could help to explore whether there still holds the compatibility of the CS predictions with the future measurements.

In $Z \rightarrow \eta_c + X$, there exist two CS processes contributing at LO in α_s, i.e., $Z \rightarrow \eta_c[^1S_0^1] + c + \bar{c}$ and $Z \rightarrow \eta_c[^1S_0^1] + g + g$. We can learn from Ref. [19], that $Z \rightarrow \eta_c + c + \bar{c}$ plays a leading role in the CS LO predictions because of the c-quark fragmentation; while, owing to the suppression of m_c^2/m_Z^2 [19], $Z \rightarrow \eta_c + g + g$ contributes just slightly at LO (less than 5% of the results of $Z \rightarrow \eta_c + c + \bar{c}$). However, considering the advent of the gluon-fragmentation

\footnote{η_c is always established by its decaying into multiple hadrons, such as $p\bar{p}$, which is more difficult than the J/ψ detection.}
structures at the next-to-leading-order (NLO) level, i.e., $Z \rightarrow q + \bar{q} + g^*; g^* \rightarrow \eta_c + g$ ($q = u, d, s$) and the loop-induced process $Z \rightarrow g + g^*; g^* \rightarrow \eta_c + g$, the uncalculated QCD corrections to $Z \rightarrow \eta_c + g + g$ are expected to provide considerable contributions, subsequently making the gg process comparable with $Z \rightarrow \eta_c + c + \bar{c}$. Moreover, the η_c energy distributions in $Z \rightarrow \eta_c + g + g$ and $Z \rightarrow \eta_c + c + \bar{c}$ may thoroughly be different. This can be understood by that the former process, together with the QCD corrections, are strongly suppressed by the factor $\frac{M_{\eta_c}^2}{E_{\eta_c}^2}$ for large z [27, 42, 43], and thereby the z value corresponding to the largest $\frac{d\Gamma}{dz}$ should be small; however, as a result of the c-quark fragmentation, the dominant contributions in $Z \rightarrow \eta_c + c + \bar{c}$ exist in the large z region [19]. In view of these points, $Z \rightarrow \eta_c[1S_0^{[1]}] + g + g$ would be phenomenologically crucial for the decay of Z boson into inclusive η_c, deserving a separate and precise investigation.

In contrast with η_c, the larger mass of η_b would result in smaller typical coupling constant and relative velocity (v) between the constituent $b\bar{b}$ quarks, subsequently leading to better convergent results over the expansion in α_s and v. While, on the experimental side, η_b has so far been observed only in e^+e^- annihilation [48–51]. Taken together, in this article we will carry out the first NLO studies of $Z \rightarrow \eta_c(\eta_b)[1S_0^{[1]}] + g + g$, so as to provide a deeper insight into the $\eta_c(\eta_b)$ production mechanism.

The rest of the paper is organized as follows: In Sec. II, we give a description on the calculation formalism. In Sec. III, the phenomenological results and discussions are presented. Section IV is reserved as a summary.

II. CALCULATION FORMALISM

Within the NRQCD framework [15 52], the decay width of $Z \rightarrow \eta_c(\eta_b) + g + g$ can be factorized as

$$\Gamma = \hat{\Gamma}_{Z\rightarrow c\bar{c}(b\bar{b})[n] + g + g} \langle O_{\eta_c(\eta_b)}(n) \rangle,$$

where $\hat{\Gamma}_{Z\rightarrow c\bar{c}(b\bar{b})[n] + g + g}$ is the perturbative calculable short distance coefficients (SDCs), representing the production of a configuration of the $c\bar{c}(b\bar{b})[n]$ intermediate state. The universal nonperturbative long distance matrix element $\langle O_{\eta_c(\eta_b)}(n) \rangle$ stands for the probability of $c\bar{c}(b\bar{b})[n]$ into $\eta_c(\eta_b)$. In this paper, we focus only on the CS contributions, and accordingly n takes on $^{1S_0^{[1]}}$.

3
FIG. 1: Representative Feynman diagrams for the NLO QCD corrections to $Z \rightarrow c\bar{c}(b\bar{b})[1^{1}S_{0}^{1}] + g + g$. “$q$” denotes the light quarks (u,d,s).

Up to NLO in α_{s}, the SDC in Eq. (1) comprises three contributing components,

$$\hat{\Gamma}^{NLO}_{Z \rightarrow c\bar{c}(b\bar{b})[1^{1}S_{0}^{1}] + g + g} = \hat{\Gamma}_{\text{Born}} + \hat{\Gamma}_{\text{Virtual}} + \hat{\Gamma}_{\text{Real}},$$

where

$$\hat{\Gamma}_{\text{Virtual}} = \hat{\Gamma}_{\text{Loop}} + \hat{\Gamma}_{\text{CT}},$$

$$\hat{\Gamma}_{\text{Real}} = \hat{\Gamma}_{S} + \hat{\Gamma}_{HC} + \hat{\Gamma}_{H'C}.$$ \hspace{1cm} (3)

$\hat{\Gamma}_{\text{Virtual}}$ is the virtual corrections composed of the contributions from the one-loop diagrams ($\hat{\Gamma}_{\text{Loop}}$) and the counter terms ($\hat{\Gamma}_{\text{CT}}$). $\hat{\Gamma}_{\text{Real}}$ stands for the real corrections, containing the soft terms ($\hat{\Gamma}_{S}$), hard-collinear terms ($\hat{\Gamma}_{HC}$), and hard-noncollinear terms ($\hat{\Gamma}_{H'C}$). $\hat{\Gamma}_{\text{Real}}$ consists of two processes,

$$Z \rightarrow c\bar{c}(b\bar{b})[1^{1}S_{0}^{1}] + g + g + g,$$

$$Z \rightarrow c\bar{c}(b\bar{b})[1^{1}S_{0}^{1}] + g + q + \bar{q} \ (q = u, d, s).$$ \hspace{1cm} (4)

The diagrams for $\hat{\Gamma}_{\text{Born}}$, $\hat{\Gamma}_{\text{Virtual}}$, and $\hat{\Gamma}_{\text{Real}}$ are representatively shown in Fig. [1]. Note that, in calculating $Z \rightarrow c\bar{c}(b\bar{b})[1^{1}S_{0}^{1}] + g + g + g$, we apply the physical polarization tensor, $P_{\mu\nu}$,\footnote{$P_{\mu\nu} = -g_{\mu\nu} + \frac{k_{\mu}\eta_{\nu} + k_{\nu}\eta_{\mu}}{k \cdot \eta}$, where k is the momentum of one of the three final gluons and η is conveniently set as the momentum of one of the other two gluons in the final state.} for the polarization summation of the final gluons, thereby avoiding the considerations of the ghost diagrams.

To isolate the ultraviolet (UV) and infrared (IR) divergences, we adopt the dimensional regularization with $D = 4 - 2\epsilon$. The on-mass-shell (OS) scheme is employed to set the
FIG. 2: Cancellation of the divergences involved in the η_c production. The superscripts “(2)” and “(1)” denote the ϵ^{-2}- and ϵ^{-1}-order terms, respectively.

renormalization constants for the heavy quark mass (Z_m), heavy quark filed (Z_2), and gluon filed (Z_3). The modified minimal-subtraction (\(\overline{\text{MS}}\)) scheme is used for the QCD gauge coupling (Z_g). The renormalization constants read ($Q = c, b$)

$$
\delta Z_m^{\text{OS}} = -3C_F \frac{\alpha_s N_c}{4\pi} \left[\frac{1}{\epsilon_{\text{UV}}} - \gamma_E + \ln \frac{4\pi \mu^2}{m_Q^2} + \frac{4}{3} \right],
$$

$$
\delta Z_2^{\text{OS}} = -C_F \frac{\alpha_s N_c}{4\pi} \left[\frac{1}{\epsilon_{\text{UV}}} + \frac{2}{\epsilon_{\text{IR}}} - 3\gamma_E + 3\ln \frac{4\pi \mu^2}{m_Q^2} + 4 \right],
$$

$$
\delta Z_3^{\text{OS}} = \frac{\alpha_s N_c}{4\pi} \left[(\beta'_0 - 2C_A) \left(\frac{1}{\epsilon_{\text{UV}}} - \frac{1}{\epsilon_{\text{IR}}} \right) - \frac{4}{3} T_F \left(\frac{1}{\epsilon_{\text{UV}}} - \gamma_E + \ln \frac{4\pi \mu^2}{m_Q^2} \right) \right],
$$

$$
\delta Z_g^{\overline{\text{MS}}} = -\frac{\beta_0}{2} \frac{\alpha_s N_c}{4\pi} \left[\frac{1}{\epsilon_{\text{UV}}} - \gamma_E + \ln(4\pi) \right],
$$

(5)

where γ_E is the Euler’s constant, $N_c = \Gamma[1 - \epsilon]/(4\pi \mu^2/(4m_{c,b}^2))$, $\beta_0 = \frac{11}{3} C_A - \frac{4}{3} T_F m_f$, $\beta'_0 = \frac{11}{3} C_A - \frac{4}{3} T_F n_f$, $n_f = 5$, and $n_f = n_f - 2$ are the numbers of active quark flavors and light quark flavors, respectively. In SU(3), the color factors are given by $T_F = \frac{1}{2}$, $C_F = \frac{4}{3}$, and $C_A = 3$. In treating Γ_{Real}, we utilize the two-cutoff slicing strategy \cite{53} to subtract the IR divergences.

In our calculations, we adopt our Mathematica-Fortran package with the implementation of FeynArts \cite{54}, FeynCalc \cite{55}, FIRE \cite{56}, and Apart \cite{57} to deal with $\hat{\Gamma}_{\text{Virtual}}, \hat{\Gamma}_S$, and $\hat{\Gamma}_{\text{HC}}$; the FDC package \cite{58} is used to evaluate the hard-noncollinear part $\hat{\Gamma}_{\text{HC}}$. Taking η_c for example, we visualize the cancellation of the $\epsilon^{-2(-1)}$-order divergences and the independence...
FIG. 3: The verification of the independence of the η_c’s SDCs on the cutoff parameters δ_s and δ_c. The superscript “(0)” denotes the ϵ^0-order terms. In the left diagram, $\delta_c = 2 \times 10^{-7}$, and $\delta_s = 1 \times 10^{-3}$ for the right one.

III. PHENOMENOLOGICAL RESULTS

The input parameters involved in the calculations are taken as

$$\alpha = 1/128, \quad m_c = 1.5 \text{ GeV}, \quad m_b = 4.7 \text{ GeV},$$
$$m_Z = 91.1876 \text{ GeV}, \quad m_{q\bar{q}} = 0 \ (q = u, d, s),$$
$$\sin^2(\theta_W) = 0.23116. \quad (6)$$

To determine $\langle \mathcal{O}_{\eta_c(\eta_b)}(1S_0^{[1]}) \rangle$, we employ the relations to the radial wave functions at the origin,

$$\langle \mathcal{O}_{\eta_c(\eta_b)}(1S_0^{[1]}) \rangle = \frac{1}{2N_c} |R_{\eta_c(\eta_b)}(0)|^2, \quad (7)$$

where $|R_{\eta_c(\eta_b)}(0)|^2$ reads [14]

$$|R_{\eta_c}(0)|^2 = 1.16 \text{ GeV}^3,$$
$$|R_{\eta_b}(0)|^2 = 6.477 \text{ GeV}^3. \quad (8)$$

We summarize the predicted total decay widths of $Z \rightarrow \eta_c + g + g$ and $Z \rightarrow \eta_b + g + g$ in Tables. I and II respectively. For comparisons, the LO results of $Z \rightarrow \eta_c(\eta_b) + c\bar{c}(b\bar{b})$ are also included. Inspecting the two tables, one can observe
TABLE I: The total decay widths of $Z \rightarrow \eta_c + g + g$ (in units of KeV). “NLO” represents the sum of the contributions of LO terms and that of the QCD corrections. “K” and “R” refer to the ratios of $\Gamma_{gg}^{NLO}/\Gamma_{gg}^{LO}$ and $\Gamma_{c\bar{c}}^{NLO}/\Gamma_{c\bar{c}}^{LO}$, respectively, with “$gg(c\bar{c})$” denoting the process of $Z \rightarrow \eta_c + gg(c\bar{c})$.

μr (GeV)	m_c (GeV)	Γ_{gg}^{LO}	Γ_{gg}^{NLO}	K	$\Gamma_{c\bar{c}}^{LO}$	R
1.4	1.4	5.720	94.95	16.60	130.6	0.727
2m_c	1.5	4.828	67.32	13.94	99.90	0.674
	1.6	4.122	48.89	11.86	77.80	0.628

$\mu r m_c$ (GeV) Γ_{gg}^{LO} Γ_{gg}^{NLO} K $\Gamma_{c\bar{c}}^{LO}$ R

$\mu r m_c$ (GeV) Γ_{gg}^{LO} Γ_{gg}^{NLO} K $\Gamma_{c\bar{c}}^{LO}$ R

TABLE II: The total decay widths of $Z \rightarrow \eta_b + g + g$ (in units of KeV). “NLO” represents the sum of the contributions of LO terms and that of the QCD corrections. “K” and “R” refer to the ratios of $\Gamma_{gg}^{NLO}/\Gamma_{gg}^{LO}$ and $\Gamma_{b\bar{b}}^{NLO}/\Gamma_{b\bar{b}}^{LO}$, respectively, with “$gg(b\bar{b})$” denoting the process of $Z \rightarrow \eta_b + gg(b\bar{b})$.

μr (GeV)	m_b (GeV)	Γ_{gg}^{LO}	Γ_{gg}^{NLO}	K	$\Gamma_{b\bar{b}}^{LO}$	R
4.6	4.6	2.515	3.717	1.478	13.35	0.278
4.7	2.383	3.441	1.444	12.23	0.281	
4.8	2.260	3.193	1.413	11.23	0.284	
4.6	1.052	2.080	1.976	5.584	0.372	
4.7	1.007	1.964	1.950	5.172	0.380	
4.8	0.965	1.857	1.925	4.796	0.387	

i) $\Gamma_{Z \rightarrow \eta_c + g + g}^{LO}$ is less than 5% of $\Gamma_{Z \rightarrow \eta_c + c + \bar{c}}^{LO}$, implying that the $c\bar{c}$ process dominates over the gg process at the LO accuracy in α_s. However, after including the QCD corrections, the LO results of gg would be enhanced to a large extent, as shown in the first figure of Fig. 4. This striking enhancement, which is attributed partially to the gluon-fragmentation structure ($g^* \rightarrow \eta_c + g$) occurring first at NLO, would lead to the comparableness of the gg process with the $c\bar{c}$ one. (See the ratios in the “R” column of Tab. I.)

ii) As to η_b, $\Gamma_{Z \rightarrow \eta_b + g + g}^{LO}$ accounts for about 20% of $\Gamma_{Z \rightarrow \eta_b + b + \bar{b}}^{LO}$; the QCD corrections to the
FIG. 4: The total decay widths of $Z \to \eta_Q + g + g$ ($Q = c, b$) as a function of the renormalization scale μ_r. $m_c = 1.5$ GeV and $m_b = 4.7$ GeV. “NLO” represents the sum of the contribution of the LO terms and that of the QCD corrections.

gg process would enhance its LO results by about 1.5-2.0 times, then increasing the “20%” ratio up to about $30 - 40\%$. In addition, $\Gamma^{NLO}_{Z \to \eta_b + g + g}$ exhibits a more steady dependence than $\Gamma^{LO}_{Z \to \eta_b + g + g}$ on the renormalization scale μ_r, as displayed in the second figure of Fig. 4.

In Fig. 3, the $\eta_c(\eta_b)$ energy distributions are drawn with z defined as $\frac{2E_{\eta_c(\eta_b)}}{m_Z}$. It can be seen that,

i) The dominant contributions in $\Gamma^{LO}_{Z \to \eta_c + c + \bar{c}}$ arise from the region of $z \approx 0.7$, while the peak of $\frac{d\Gamma^{LO}_{Z \to \eta_c + g + g}}{dz}$ lies in the vicinity of $z \approx 0.2$. By incorporating the QCD corrections, $\frac{d\Gamma^{LO}_{Z \to \eta_c + g + g}}{dz}$ is notably enhanced, especially at the small- and mid-z regions. As a result, adding the gg contributions will greatly increase the z distributions of η_c in $Z \to \eta_c + c + \bar{c}$, which can be clearly seen by the huge discrepancy between the two lines referring to $c\bar{c}_{LO}$ with or without gg_{NLO} in the two figures above of Fig. 5.

ii) Regarding η_b, there also exists an evident peak of $\frac{d\Gamma^{LO}_{Z \to \eta_b + b + \bar{b}}}{dz}$ around $z \approx 0.7$; in $Z \to \eta_b + g + g$ at LO, the mid-z regions ($z \approx 0.5$) contribute dominantly. With the QCD corrections, which impose significant impacts on $\frac{d\Gamma^{LO}_{Z \to \eta_b + g + g}}{dz}$, the gg process would evidently enhance the predicted η_b-energy distributions given by $Z \to \eta_b + b + \bar{b}$, as

3 The impacts of the gluon-fragmentation structure, $g^* \to \eta_b + g$, are moderate due to the large mass of η_b; thus, the QCD corrections to $Z \to \eta_b + g + g$ appears milder than the η_c case.
FIG. 5: The η_Q ($Q = c, b$) energy distributions with z defined as $\frac{2E_{\eta_Q}}{m_Z}$; “$gg(\bar{Q}Q)$” denotes the process of $Z \to \eta_Q + gg(\bar{Q}Q)$. $m_c = 1.5$ GeV and $m_b = 4.7$ GeV. “NLO” represents the sum of the contribution of the LO terms and that of the QCD corrections.

manifested by the large difference in height of the line of $\bar{b}b_{LO}$ and that of $\bar{b}b_{LO} + gg_{NLO}$ in the lower two figures in Fig. 5.

To summarize, our newly-calculated QCD corrections to $Z \to \eta_Q[^1S_0^{[1]}] + g + g$ ($Q = c, b$) could enormously enhance its LO results, and then greatly elevate the phenomenological significance of the gg process by significantly increasing the CS predictions.

IV. SUMMARY

In this article, we achieve the first NLO studies of $Z \to \eta_Q + g + g$ ($Q = c, b$) through the CS state of $Q\bar{Q}[^1S_0^{[1]}]$. We find the newly-calculated QCD corrections can noticeably enhance its LO predictions of the total decay width, following which the gg process would contribute comparably comparing to the CS dominant process $Z \to \eta_Q[^1S_0^{[1]}] + Q\bar{Q}$. Moreover, the NLO corrections would also to a large extent increase $\frac{d\Gamma_{Z \to \eta_Q + g + g}^{LO}}{dz}$, profoundly influencing the CS predictions of the η_Q energy distribution. Therefore, to arrive at a strict CS prediction of
\[Z \rightarrow \eta_Q + X, \text{ besides } Z \rightarrow \eta_Q[1S_0^{[1]}]+Q+\bar{Q}, \text{ it appears mandatory to take } Z \rightarrow \eta_Q[1S_0^{[1]}]+g+g \text{ into consideration as well.} \]

V. ACKNOWLEDGMENTS

Acknowledgments: This work is supported in part by the Natural Science Foundation of China under the Grant No. 12065006, and by the Project of GuiZhou Provincial Department of Science and Technology under Grant No. QKHJ[C2019]1160. and No. QKHJ[C2019]1167.

[1] R. Aaij et al. [LHCb], “Measurement of the $\eta_c(1S)$ production cross-section in proton-proton collisions via the decay $\eta_c(1S) \rightarrow p\bar{p}$,” Eur. Phys. J. C75 (2015) no.7, 311. doi:10.1140/epjc/s10052-015-3502-x.

[2] S. S. Biswal and K. Sridhar, “η_c production at the Large Hadron Collider,” J. Phys. G39 (2012), 015008. doi:10.1088/0954-3899/39/1/015008.

[3] A. K. Likhoded, A. V. Luchinsky and S. V. Poslavsky, “Production of η_Q meson at LHC, Mod. Phys. Lett. A30 (2015) no.07, 1550032. doi:10.1142/S0217732315500327.

[4] M. Butenschoen, Z. G. He and B. A. Kniehl, “η_c production at the LHC challenges nonrelativistic-QCD factorization, Phys. Rev. Lett. 114 (2015) no.9, 092004. doi:10.1103/PhysRevLett.114.092004.

[5] H. Han, Y. Q. Ma, C. Meng, H. S. Shao and K. T. Chao, “η_c production at LHC and indications on the understanding of J/ψ production, Phys. Rev. Lett. 114 (2015) no.9, 092005. doi:10.1103/PhysRevLett.114.092005.

[6] H. F. Zhang, Z. Sun, W. L. Sang and R. Li, “Impact of η_c hadroproduction data on charmonium production and polarization within NRQCD framework,” Phys. Rev. Lett. 114 (2015) no.9, 092006. doi:10.1103/PhysRevLett.114.092006.

[7] J. P. Lansberg, H. S. Shao and H. F. Zhang, “η'_c Hadroproduction at Next-to-Leading Order and its Relevance to ψ' Production,” Phys. Lett. B786 (2018), 342-346. doi:10.1016/j.physletb.2018.10.009.
[8] S. P. Baranov and A. V. Lipatov, “Are there any challenges in the charmonia production and polarization at the LHC?,” Phys. Rev. 100 (D2019) no.11, 114021. doi:10.1103/PhysRevD.100.114021.

[9] I. Babiarz, R. Pasechnik, W. Schäfer and A. Szczurek, “Prompt hadroproduction of $\eta_c(1S, 2S)$ in the kT-factorization approach,” JHEP 02 (2020), 037. doi:10.1007/JHEP02(2020)037.

[10] Y. Feng, J. He, J. P. Lansberg, H. S. Shao, A. Usachov and H. F. Zhang, “Phenomenological NLO analysis of η_c production at the LHC in the collider and fixed-target modes, Nucl. Phys. B945 (2019), 114662. doi:10.1016/j.nuclphysb.2019.114662.

[11] J. P. Lansberg, “New Observables in Inclusive Production of Quarkonia,” Phys. Rept. 889 (2020), 1-106. doi:10.1016/j.physrep.2020.08.007.

[12] Tichouk, H. Sun and X. Luo, “Hard diffractive $\eta_{c,b}$ hadroproduction at the LHC,” Phys. Rev. D101 (2020) no.5, 054035. doi:10.1103/PhysRevD.101.054035.

[13] J. P. Lansberg and M. A. Ozcelik, “Curing the unphysical behaviour of NLO quarkonium production at the LHC and its relevance to constrain the gluon PDF at low scales,” Eur. Phys. J. C81 (2021) no.6, 497. doi:10.1140/epjc/s10052-021-09258-7.

[14] E. J. Eichten and C. Quigg, “Quarkonium wave functions at the origin,” Phys. Rev. D52 (1995) 1726. doi:10.1103/PhysRevD.52.1726.

[15] G. T. Bodwin, E. Braaten and G. P. Lepage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” Phys. Rev. D51 (1995) 1125. Erratum: [Phys. Rev. D55 (1997) 5853]. doi:10.1103/PhysRevD.55.5853, 10.1103/PhysRevD.51.1125.

[16] B. Guberina, J. H. Kuhn, R. D. Peccei and R. Ruckl, “Rare Decays of the Z0,” Nucl. Phys. B174 (1980) 317. doi:10.1016/0550-3213(80)90287-4.

[17] W. Y. Keung, “Off Resonance Production of Heavy Vector Quarkonium States in e^+e^- Annihilation,” Phys. Rev. D23 (1981) 2072. doi:10.1103/PhysRevD.23.2072.

[18] V. D. Barger, K. m. Cheung and W. Y. Keung, “Z Boson Decays To Heavy Quarkonium,” Phys. Rev. D41 (1990) 1541. doi:10.1103/PhysRevD.41.1541.

[19] E. Braaten, K. m. Cheung and T. C. Yuan, “Z0 decay into charmonium via charm quark fragmentation,” Phys. Rev. D48 (1993) 4230. doi:10.1103/PhysRevD.48.4230.

[20] S. Fleming, “Electromagnetic production of quarkonium in Z0 decay,” Phys. Rev. D48 (1993) R1914. doi:10.1103/PhysRevD.48.R1914.

[21] K. m. Cheung, W. Y. Keung and T. C. Yuan, “Color octet quarkonium production at the Z
pole,” Phys. Rev. Lett. 76 (1996) 877. doi:10.1103/PhysRevLett.76.877.

[22] S. Baek, P. Ko, J. Lee and H. S. Song, “Color octet heavy quarkonium productions in Z0 decays at LEP,” Phys. Lett. B389 (1996) 609. doi:10.1016/S0370-2693(96)01313-5.

[23] P. L. Cho, “Prompt upsilon and psi production at LEP,” Phys. Lett. B368 (1996) 171. doi:10.1016/0370-2693(95)01484-5.

[24] P. Ernstrom, L. Lonnblad and M. Vanttinen, “Evolution effects in Z0 fragmentation into charmonium,” Z. Phys. C76 (1997) 515. doi:10.1007/s002880050574.

[25] E. M. Gregores, F. Halzen and O. J. P. Eboli, “Prompt charmonium production in Z decays,” Phys. Lett. B395 (1997), 113-117. doi:10.1016/S0370-2693(97)00040-3.

[26] C. f. Qiao, F. Yuan and K. T. Chao, “A Crucial test for color octet production mechanism in Z0 decays,” Phys. Rev. D55 (1997), 4001-4004. doi:10.1103/PhysRevD.55.4001.

[27] C. G. Boyd, A. K. Leibovich and I. Z. Rothstein, “J / psi production at LEP: Revisited and resummed,” Phys. Rev. D59 (1999) 054016. doi:10.1103/PhysRevD.59.054016.

[28] L. C. Deng, X. G. Wu, Z. Yang, Z. Y. Fang and Q. L. Liao, “Z0 Boson Decays to Bc(s) Meson and Its Uncertainties,” Eur. Phys. J. C70 (2010), 113-124. doi:10.1140/epjc/s10052-010-1450-z.

[29] R. Li and J. X. Wang, “The next-to-leading-order QCD correction to inclusive J/ψ(Υ) production in Z0 decay,” Phys. Rev. D82 (2010) 054006. doi:10.1103/PhysRevD.82.054006.

[30] Z. Yang, X. G. Wu, L. C. Deng, J. W. Zhang and G. Chen, “Production of the P-Wave Excited Bc-States through the Z0 Boson Decays,” Eur. Phys. J. C71 (2011), 1563. doi:10.1140/epjc/s10052-011-1563-z.

[31] C. F. Qiao, L. P. Sun and R. L. Zhu, “The NLO QCD Corrections to Bc Meson Production in Z0 Decays,” JHEP 08 (2011), 131. doi:10.1007/JHEP08(2011)131.

[32] T. C. Huang and F. Petriello, “Rare exclusive decays of the Z-boson revisited,” Phys. Rev. D92 (2015) no.1, 014007. doi:10.1103/PhysRevD.92.014007.

[33] J. Jiang, L. B. Chen and C. F. Qiao, “QCD NLO corrections to inclusive Bc production in Z0 decays,” Phys. Rev. D91 (2015) no.3, 034033. doi:10.1103/PhysRevD.91.034033.

[34] Q. L. Liao, Y. Yu, Y. Deng, G. Y. Xie and G. C. Wang, “Excited heavy quarkonium production via Z0 decays at a high luminosity collider,” Phys. Rev. D91 (2015) no.11, 114030. doi:10.1103/PhysRevD.91.114030.

[35] G. T. Bodwin, H. S. Chung, J. H. Ee and J. Lee, “Z-boson decays to a vector quarkonium
plus a photon,” Phys. Rev. D97 (2018) no.1, 016009. doi:10.1103/PhysRevD.97.016009.

[36] A. K. Likhoded and A. V. Luchinsky, “Double Charmonia Production in Exclusive Z Boson Decays,” Mod. Phys. Lett. A33 (2018) no.14, 1850078. doi:10.1142/S0217732318500785.

[37] Z. Sun and H. F. Zhang, “Next-to-leading-order QCD corrections to the decay of Z boson into $\chi_c(\chi_b)$,” Phys. Rev. D99 (2019) no.9, 094009. doi:10.1103/PhysRevD.99.094009.

[38] H. S. Chung, J. H. Ee, D. Kang, U. R. Kim, J. Lee and X. P. Wang, “Pseudoscalar Quarkonium+gamma Production at NLL+NLO accuracy,” JHEP 10 (2019), 162. doi:10.1007/JHEP10(2019)162.

[39] Z. Sun, “The studies on $Z \to \Upsilon(1S) + g + g$ at the next-to-leading-order QCD accuracy,” Eur. Phys. J. C80 (2020) no.4, 311. doi:10.1140/epjc/s10052-020-7873-2.

[40] Z. Sun and H. F. Zhang, “Comprehensive studies of Υ inclusive production in Z boson decay,” JHEP 06 (2021), 152. doi:10.1007/JHEP06(2021)152.

[41] X. C. Zheng, C. H. Chang, X. G. Wu, X. D. Huang and G. Y. Wang, “Inclusive production of heavy quarkonium ηQ via Z boson decays within the framework of nonrelativistic QCD,” Phys. Rev. D104 (2021) no.5, 054044. doi:10.1103/PhysRevD.104.054044.

[42] J. H. Kuhn and H. Schneider, “Inclusive J/ψ's in e^+e^- Annihilations,” Phys. Rev. D24 (1981), 2996. doi:10.1103/PhysRevD.24.2996.

[43] J. H. Kuhn and H. Schneider, “Testing QCD Through Inclusive J/ψ Production in e^+e^- Annihilations,” Z. Phys. C11 (1981), 263. doi:10.1007/BF01545683.

[44] G. Aad et al. [ATLAS], “Search for Higgs and Z Boson Decays to $J/\psi\gamma$ and $\Upsilon(nS)\gamma$ with the ATLAS Detector,” Phys. Rev. Lett. 114 (2015) no.12, 121801. doi:10.1103/PhysRevLett.114.121801.

[45] M. Aaboud et al. [ATLAS], “Searches for exclusive Higgs and Z boson decays into $J/\psi\gamma$, $\psi(2S)\gamma$, and $\Upsilon(nS)\gamma$ at $\sqrt{s} = 13$ TeV with the ATLAS detector,” Phys. Lett. B786 (2018), 134-155. doi:10.1016/j.physletb.2018.09.024.

[46] A. M. Sirunyan et al. [CMS], “Search for rare decays of Z and Higgs bosons to J/ψ and a photon in proton-proton collisions at $\sqrt{s} = 13$ TeV,” Eur. Phys. J. C79 (2019) no.2, 94. doi:10.1140/epjc/s10052-019-6562-5.

[47] J. B. Guimarães da Costa et al. [CEPC Study Group], “CEPC Conceptual Design Report: Volume 2 - Physics & Detector,” arXiv:1811.10545 [hep-ex]]

[48] B. Aubert et al. [BaBar], “Observation of the bottomonium ground state in the decay $\Upsilon_{3S} \to$
γη_b,” Phys. Rev. Lett. 101 (2008), 071801, [erratum: Phys. Rev. Lett. 102 (2009), 029901]. doi:10.1103/PhysRevLett.101.071801.

[49] B. Aubert et al. [BaBar], “Evidence for the η_b(1S) Meson in Radiative Upsilon(2S) Decay,” Phys. Rev. Lett. 103 (2009), 161801. doi:10.1103/PhysRevLett.103.161801.

[50] G. Bonvicini et al. [CLEO], “Measurement of the η_b(1S) mass and the branching fraction for Upsilon(3S) \rightarrow \gamma \eta_b(1S),” Phys. Rev. D81 (2010), 031104. doi:10.1103/PhysRevD.81.031104.

[51] R. Mizuk et al. [Belle], “Evidence for the η_b(2S) and observation of h_b(1P) \rightarrow \eta_b(1S)\gamma \text{ and } h_b(2P) \rightarrow \eta_b(1S)\gamma,” Phys. Rev. Lett. 109 (2012), 232002. doi:10.1103/PhysRevLett.109.232002.

[52] A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, “NLO production and decay of quarkonium,” Nucl. Phys. B514 (1998), 245-309. doi:10.1016/S0550-3213(97)00801-8.

[53] B. W. Harris and J. F. Owens, “The Two cutoff phase space slicing method,” Phys. Rev. D 65 (2002) 094032. doi:10.1103/PhysRevD.65.094032.

[54] T. Hahn, “Generating Feynman diagrams and amplitudes with FeynArts 3,” Comput. Phys. Commun. 140 (2001), 418-431. doi:10.1016/S0010-4655(01)00290-9.

[55] R. Mertig, M. Bohm and A. Denner, “FEYN CALC: Computer algebraic calculation of Feynman amplitudes,” Comput. Phys. Commun. 64 (1991), 345-359. doi:10.1016/0010-4655(91)90130-D.

[56] A. V. Smirnov, “Algorithm FIRE – Feynman Integral REduction,” JHEP 10 (2008), 107. doi:10.1088/1126-6708/2008/10/107.

[57] F. Feng, “Apart: A Generalized Mathematica Apart Function,” Comput. Phys. Commun. 183 (2012), 2158-2164. doi:10.1016/j.cpc.2012.03.025.

[58] J. X. Wang, “Progress in FDC project,” Nucl. Instrum. Meth. A534 (2004) 241. doi:10.1016/j.nima.2004.07.094.