Magnetoplasmons of the tilted-anisotropic Dirac cone material $\alpha-(\text{BEDT-TTF})_2\text{I}_3$

Judit Sári1,2, Csaba Tőke2 and Mark O. Goerbig3

1Institute of Physics, University of Pécs, H-7624 Pécs, Hungary
2BME-MTA Exotic Quantum Phases “Lendület” Research Group, Budapest Univ. of Technology and Economics, Institute of Physics, Budafoki út 8., H-1111 Budapest, Hungary and
3Laboratoire de Physique des Solides, CNRS UMR 8502, Univ. Paris-Sud, F-91405 Orsay Cedex, France

(Dated: June 30, 2014)

We study the collective modes of a low-energy continuum model for the quasi-two-dimensional electron liquid in the layered organic compound $\alpha-(\text{BEDT-TTF})_2\text{I}_3$ in a perpendicular magnetic field. As testified by zero magnetic field transport experiments and \textit{ab initio} theory, this material hosts both massless and massive low-energy carriers, the former being described by tilted and anisotropic Dirac cones. The polarizability of these cones is anisotropic, and two sets of magnetoplasmon modes occur between any two cyclotron resonances. We show that the tilt of the cones causes a unique intervalley damping effect: the upper hybrid mode of one cone is damped by the particle-hole continuum of the other one in generic directions. We analyse how the presence of massive carriers affects the response of the system, and demonstrate how doping can tune $\alpha-(\text{BEDT-TTF})_2\text{I}_3$ between regimes of isotropic and anisotropic screening.

PACS numbers: 73.20.Mf, 73.61.Ph

I. INTRODUCTION

The layered organic conductor $\alpha-(\text{BEDT-TTF})_2\text{I}_3$, an intensively investigated member of the (BEDT-TTF)$_2$I$_3$ family recently enjoys renewed interest due to the presence of Dirac cones in the low-energy band structure under high hydrostatic pressure (above 15 kbar)2 or under uniaxial strain (above 3 kbar along the b-axis)2. For reviews, see Refs. 4 5 6 8 and 7. This material is a bulk crystal with a quasi-two-dimensional (2D) character, as it consists of weakly coupled conductive BEDT-TTF [bis(ethylenedithio)-tetrathiakvalene] layers and insulating I$_3$ anion layers.

The existence of the gapless conical valleys at the Fermi energy under sufficiently high hydrostatic pressure or uniaxial strain is testified by three experimental findings: (i) The conductivity parallel to the layers is roughly constant from room temperature down to about 2 K, while both the density of states and the Landau level spectrum also predict a quadratic band maximum at the X point of the first Brillouin zone, and transport measurements by Monteverde et al.24,26 have identified carrier densities $\rho_L \approx 2 \times 10^8$ cm$^{-2}$ (electrons) and $\rho_p \approx 8 \times 10^9$ cm$^{-2}$ (holes) in the linear and the quadratic pockets, respectively, which indicates an accidental overall hole-doping of their samples. The presence of a hole-doped quadratic band maximum is, at first glance, at odds with the findings (iii) above.29 and difficult to reconcile with (i), although the smaller mobility of the massive carriers may be important in this connection. Hence we believe a discussion of properties that can in principle probe the presence of massive carriers is timely.

Recent theoretical surveys by Mori22,33 have identified several other potential massless Dirac materials among layered organic conductors. In some of them, e.g., $\theta-(\text{BEDT-TTF})_2\text{I}_3$, there might be a tiny gap29,30 and difficult to reconcile with (i), although the smaller mobility of the massive carriers is timely.

Here, we study the particle-hole and collective excitations of a continuum model of the quasi-2D electron gas in $\alpha-(\text{BEDT-TTF})_2\text{I}_3$ in a magnetic field. The elec-
tronic Coulomb interaction is taken into account within the random phase approximation (RPA). Our continuum model includes both generic massless Dirac valleys and a massive one, such as those that are expected in the vicinity of the Fermi energy from the topmost two bands in α-(BEDT-TTF)$_2$I$_3$. We restrict our attention to the low-energy and low-momentum features of the density-density response, for which the structure of the highest two bands beyond these valleys is inessential. To be specific, we will use the band parameters of α-(BEDT-TTF)$_2$I$_3$ under high pressure from the literature, and focus on the qualitative features that stem from the anisotropy and the tilt of the Dirac cones and the presence of massive low-energy carriers. Thus we extend the zero magnetic field analysis by Nishine et al. who, neglecting the massive carriers, have found two plasmon modes, and interpreted the appearance of the second mode as a consequence of plasmon filtering.

Our work generalizes analogous theoretical studies of plasmonic excitations in graphene in a perpendicular magnetic field, apart from the upper hybrid mode (UHM), which is the zero-field plasmon mode modified by the magnetic field one can readily identify linear magnetoplasmons, which run parallel to the boundary that separates the intra- and interband excitations in the frequency-momentum plane. Although the latter mode is essentially the coalescence of broadened interband excitations, its huge spectral weight justifies its identification as a distinct collective mode of massless Dirac electrons. The UHM starts in the forbidden region at low momenta and merges into the linear magnetoplasmon mode in the interband particle-hole excitation region.

We are particularly interested in the effects of the anisotropy and the tilt of the Dirac cones, and include the massive holes to assess the relative importance of the two carrier types in the response. Indeed, the valley degeneracy of the plasmonic modes and the UHM in the presence of a magnetic field is lifted due to the tilt of the Dirac cones in opposite directions, in contrast to graphene, which has isotropic and upright Dirac cones. Most saliently, the Coulomb coupling between the different UHMs, which we investigate in the RPA, reveals a particular intervalley damping that we discuss in contrast to a single-valley approximation, where Coulomb interaction is taken into account only within a single cone and the plasmonic excitations can be associated to a particular valley. The same mechanism must be present in other 2D systems with valleys of tilted dispersion relations.

The article is structured as follows. In Sec. II we review the low-energy band structure of α-(BEDT-TTF)$_2$I$_3$, introduce the three-valley model, and discuss the structure of the Landau states for all carriers. In Sec. III we briefly comment on the interaction coupling in the distinct valleys. In Sec. IV we describe the methods and approximations involved in the calculation of the density-density response and the dielectric function. Section V discusses the results. We provide a summary and discuss the possibly relevant experimental probes in Sec. VI. Details of the calculation are delegated to the Appendices.

II. CONTINUUM MODEL FOR ELECTRONS IN α-(BEDT-TTF)$_2$I$_3$

α-(BEDT-TTF)$_2$I$_3$ has a triclinic crystal structure with strongly pressure-dependent lattice parameters. Regarding one layer as a 2D crystal, the unit cell is oblique, with the primitive vectors enclosing an angle γ ≈ 90.8°. The length of the primitive vectors change monotonically from a ≈ 9.1 Å and b ≈ 10.8 Å to a ≈ 8.6 Å and b ≈ 10.35 Å as the pressure is increased from ambient pressure to 17.6 kbar. See Fig. 1(a) for a sketch of the first Brillouin zone with the distinguished points we refer to later.

![FIG. 1. Schematic view of the first Brillouin zone of α-(BEDT-TTF)$_2$I$_3$. The high symmetry points, the location of the massive valley (squares), and that of the Dirac cones (dots) are indicated.](image-url)

The low-energy band structure can be derived from a tight-binding model that involves the four relevant highest occupied molecular orbitals of the four different BEDT-TTF molecules in the unit cell. Among the four bands, only the upper two play a role as the filling is 3/4 at charge neutrality. These two bands may have contact points only in the absence of a stripe charge order. At ambient pressure the stripe charge order occurs up to a phase transition around 135 K but it is suppressed by pressure or strain. In the non-stripe phase two tilted massless Dirac cones form in the vicinity of the contact points at low-symmetry time-reversal related points L and R [see Fig. 1(a)]. At even higher pressure or strain, the Dirac points coalesce at the Γ point where a gap opens. In addition to the linear valleys, there is a band maximum at the time-reversal symmetric point X on the edge of the first Brillouin zone, which may host massive holes.
In the present work we use a three-valley model that keeps a pair of generic massless Dirac cones of opposite tilt and a massive valley with appropriate momentum/energy cutoffs. Naturally, this approach is justified only as long as we study low-momentum and low-energy features. We show that this assumption is justified for our purposes because both the UHM and the linear magnetoplasmons occur within this range.

A. The linear valleys

The massless Dirac carriers are suitably described by the minimal Weyl Hamiltonian10,41 using four parameters:

\[\hat{H}_\xi(\mathbf{q}) = \xi \hbar \left(v_0^x q_x + v_0^y q_y \quad v_x q_x - i \xi v_y q_y \right) \],

where \(\xi = + (\xi = -) \) represents the cone at \(R \) (\(L \)). This Hamiltonian obviously respects time-reversal symmetry, \(\hat{H}_\xi(\mathbf{q}) = \hat{H}_\xi^*(-\mathbf{q}) \).

Hamiltonian \(\hat{H}_\xi \) has spin-degenerate bands, but the dispersions in valleys \(\xi = \pm \) differ. The inclination of the Dirac cone is determined by the combined effect of the tilt and the anisotropy. By the anisotropy of the Dirac cone we mean the difference between \(v_x \) and \(v_y \), and we characterize it by parameter

\[\alpha = \sqrt{v_x/v_y} \].

By its tilt we mean that the constant energy slices are not concentric because \((v_0^x, v_0^y) \neq (0,0) \). For convenience, we will also use a rescaled and rotated coordinate system16 defined by the transformation

\[\tilde{q}_x = q_x \cos \theta + \frac{v_y}{v_x} \sin \theta \]
\[\tilde{q}_y = -q_x \sin \theta + \frac{v_y}{v_x} \cos \theta \].

Rescaling the \(q_y \) coordinate removes the anisotropy. The rotation brings the \(\tilde{q}_x \) coordinate in the tilt direction if we choose

\[\cos \theta = \cos \theta_{\text{tilt}} \equiv \frac{v_y}{\sqrt{(v_0^x v_x)^2 + (v_0^y v_y)^2}}. \]

After some straightforward algebra and a unitary transformation16 the Weyl Hamiltonian can be written as

\[\hat{H}_\xi(\tilde{q}_x, \tilde{q}_y) = \xi \hbar v_x \left(\eta \tilde{q}_x + i \xi \tilde{q}_y \quad \tilde{q}_x - i \xi \tilde{q}_y \right) \],

where we have introduced the dimensionless parameters

\[\eta = \sqrt{(v_0^x/v_x)^2 + (v_0^y/v_y)^2} \quad \text{and} \quad \lambda = \sqrt{1 - \eta^2} \]

to quantify the tilt. Notice \(0 \leq \eta \leq 1 \), and that \(\eta = 0 \) corresponds to the case of graphene.

To be specific, we will use Kobayashi \textit{et al.}'s estimate of the velocity parameters15:

\[\begin{align*}
 v_0^x &= -9.4 \times 10^4 \text{ m/s}, & v_0^y &= -8.32 \times 10^4 \text{ m/s}, \\
 v_x &= 3.45 \times 10^5 \text{ m/s}, & v_y &= 2.45 \times 10^5 \text{ m/s}
\end{align*} \]

which yield \(\eta = 0.437 \), \(\alpha = 1.18 \), \(\lambda = 0.89 \), and \(\theta_{\text{tilt}} = 51.14^\circ \). Various other velocity values are available in the literature11,13 and they change considerably under pressure.13 We emphasize that we will focus on qualitative features that hardly depend on this particular choice.

The Landau levels (LLs) of Weyl bands have been derived both semiclassically41 and from a full quantum mechanical treatment.16 The spectrum is reminiscent of graphene, albeit with a reduced effective Fermi velocity:

\[\epsilon_{L,n} = \text{sgn}(n) \frac{\hbar}{\ell} \sqrt{2 v_x v_y \lambda^3 n}, \]

where \(\ell = \sqrt{\hbar/eB} \) is the magnetic length, \(B \) is the applied magnetic field, and \(n \) is an integer. The corresponding orbirals in the Landau gauge are given in Appendix A.

We consider the linear approximation valid around each of the Dirac points separately in a circular region, whose radius is chosen as about 1/8 of the side of the first Brillouin zone \([\approx 2\pi/(1 \text{ nm})] \), consistently with the band structure obtained in Refs. 26, 24 and 11. Using the velocities in Eq. (7), the energy cutoff \(E_{\text{L}}^* \) and the number of available LLs \(n_{\text{L}}^* \) are

\[E_{\text{L}}^* \approx 0.16 \text{ eV}, \]
\[n_{\text{L}}^* \approx 320/B \text{ [T]} \].

Based on Monteverde \textit{et al.}'s electron density data27 the Fermi wave vector in the linear valleys is tiny, \(k_{\text{L}}^F = 3.85 \pi a_B/|g_L| \approx 2 \times 10^6 \text{ m}^{-1} \), using \(g_L = 4 \) for valley and spin degeneracy. See Fig. 2 for a schematic view of the Landau level structure. Notice that, while the massive valley breaks the particle-hole symmetry, the Landau levels of the linear valleys are particle-hole symmetric. The restoration of particle-hole symmetry for the (tilted) massless carriers is due to the magnetic field, and it arises because the cyclotron motion covers the complete isoenergy contours of the dispersion relation. The effect of the tilt is therefore only to decrease the level spacing by the factor \(\lambda^{3/2} \) in Eq. (8)16,41

B. The massive valley

The massive valley is centered around the X point at the Brillouin zone edge (see Fig. 1). It is taken as isotropic with an effective mass37

\[m_Q \approx 0.3m_0 \]
in terms of the free electron mass m_0. The valley is hole-like, a paraboloid of revolution open from below. The Hamiltonian of the massive band is

$$
\hat{H}_Q = E_{\text{offset}} - \frac{(-i\hbar\nabla + eA)^2}{2m_Q},
$$

(12)

and the Landau level spectrum is given by

$$
\epsilon_{Q,n} = E_{\text{offset}} - \hbar\omega_c \left(n + \frac{1}{2}\right),
$$

(13)

where $\omega_c = eB/m_Q$ is the appropriate cyclotron frequency and $n \geq 0$ is an integer. (Notice that these nonnegative integers actually number hole LLs.) Combining the carrier densities measured by Monteverde et al.22 with Eqs. (7) and (11), the top of the massive band is about

$$
E_{\text{offset}} \approx 0.46 \text{ meV}
$$

(14)

above the Dirac point of the massless valleys. The corresponding eigenstates in the Landau gauge $A = (-yB, 0, 0)$ are

$$
\zeta_{n,q}(r) = \frac{e^{iqz}}{\sqrt{\pi 2^n n! l 2\pi}} e^{-\frac{1}{2}(\frac{x}{r}-q)^2} H_n \left(\frac{y}{l} - qL\right),
$$

(15)

where $H_n(x)$ is a Hermite polynomial.

The quadratic approximation is valid in a circle around point X in momentum space, with a radius that is estimated as 17.5 % of the side of the first Brillouin zone. This yields the cutoff energy E_Q and the number of LLs is n_Q^c as

$$
E_Q \approx 0.15 \text{ eV},
$$

(16)

$$
n_Q^c \approx 390/B \ [\text{T}].
$$

(17)

The Fermi momentum k_{Q}^F of the massive band22 is $k_{Q}^F = \sqrt{4\pi\rho_Q/g_Q} \approx 2 \times 10^7 \text{ m}^{-1}$, using $g_Q = 2$ for spin degeneracy.

III. THE INTERACTION STRENGTH

The relative strength of the interaction for each carrier type is characterized by the ratio between the interaction energy scale $E_{\text{int}} = \epsilon^2/(4\pi\epsilon_\epsilon_0l)$ and the kinetic energy scale E_{kin} at the characteristic length scale $l \approx 1/k_{Q}^F$. Here, ϵ_r is the relative dielectric constant of the material. The kinetic energy scale depends on the carrier type.

For the massive carriers, $E_{\text{kin}} \propto l^{-2}$, and the ratio r_s depends on the Fermi wave vector,

$$
r_s = \frac{m_Q}{a_0 \epsilon_r m_{\text{Hg}} k_{Q}^F} \approx \frac{300}{\epsilon_r},
$$

(18)

where a_0 is the Bohr radius. For the last number we have used the Fermi momentum as estimated for a specific sample in Subsec. II B. This ratio is traditionally called the Wigner-Seitz radius r_s.

In contrast to the parabolic bands, the kinetic energy of massless Dirac carriers scales in the same manner as the interaction energy, $E_{\text{int}} \propto l^{-1}$, hence there is no characteristic length such as the Bohr radius. Indeed, the ratio between interaction and kinetic energy is independent of the electron density, and it may be characterized by a “fine structure constant of $\alpha = (\text{BEDT-TTF})_2I_3$”

$$
\alpha_{\alpha-(\text{BEDT-TTF})_2I_3} = \frac{\alpha c}{\sqrt{v_x v_y} \epsilon_r} \approx 20, \frac{1}{\epsilon_r},
$$

(19)

where $\alpha \approx 1/137$ is the fine structure constant of quantum electrodynamics, and c is the speed of light. Notice that the average Fermi velocity $\sqrt{v_x v_y} \approx 10^5 \text{ m/s}$ is an order of magnitude smaller than the corresponding velocity in graphene19 This is the origin of the rather large value of the ratio between the interaction and the kinetic energy.

In view of this high value of the energy ratio for both the massless and massive carriers in $\alpha = (\text{BEDT-TTF})_2I_3$, one may expect the formation of correlated phases, such as the Wigner crystal. For the conventional 2D electron gas (2DEG), $r_s \gtrsim 37$ is required to reach the Wigner crystal phase.32 This would require in turn a dielectric constant $\epsilon_r < 10$. To the best of our knowledge there is no available experimental value for ϵ_r in $\alpha = (\text{BEDT-TTF})_2I_3$, but we expect it to be such as to rule out the Wigner crystal. In the linear valleys, the high value of the dielectric constant compensates for the small Fermi velocity, in which case, just like in graphene, one would not expect an instability of the semimetallic phase.33 Throughout the article we assume that the Wigner crystal can be discarded, and use $\epsilon_r = 10$.

IV. METHODS

We identify the collective modes in the random phase approximation. Assuming all but the topmost two bands are inert, the density-density response $\chi^{\text{RPA}}(q, \omega)$ is determined by the bare polarizability $\chi^{(0)}(q, \omega)$ as

$$
\chi^{\text{RPA}}(q, \omega) = \frac{\chi^{(0)}(q, \omega)}{\epsilon^{\text{RPA}}(q, \omega)},
$$

(20)

$$
\epsilon^{\text{RPA}}(q, \omega) = 1 - v(q) \chi^{(0)}(q, \omega),
$$

(21)

$$
\chi^{(0)}(q, \omega) = -i\text{Tr} \int \frac{dE}{2\pi} \int \frac{d^2p}{(2\pi)^2} \mathcal{G}^{(0)}(p, E) \times \mathcal{G}^{(0)}(p + q, E + \omega).
$$

(22)

Here $v(q) = \epsilon^2/2\epsilon_{\epsilon_0} q$ is the bare Coulomb interaction, and the bare propagator $\mathcal{G}^{(0)}(p, E)$ is a 4×4 matrix related to the amplitudes on the four BEDT-TTF molecules in the primitive cell. Reliable band structure information, however, is only available near the contact
points of the topmost two bands. Hence we use the three-valley model introduced in Sec. 11 and approximate the polarizability accordingly.

In Eq. 22, \(\chi^{(0)}(\mathbf{q}, \omega) \) picks up a contribution only if \((\mathbf{p}, E)\) and \((\mathbf{q} + \mathbf{p}, \omega + E)\) specify one filled and one empty state. As we will restrict our attention to \(|\omega| < \min(E^{0}_{Q}, E^{0}_{F}) \approx 0.15 \text{ eV} \), we can ignore the cases when both of these points are outside the vicinities of the \(L\), \(R\) and \(X\) points, respectively, assuming that the Fermi energy is near the contact points. We can also ignore the cases where the states \((\mathbf{p}, E)\) and \((\mathbf{q} + \mathbf{p}, \omega + E)\) are in distinct valleys, as long as we focus on small momenta \(|\mathbf{q}| < K \equiv \min(k^{0}_{Q}, k^{0}_{F})\). This approximation is justified because the Coulomb interaction intervenes in the dielectric function \(\epsilon_{RPA}(\mathbf{q}, \omega)\), and suppresses intervalley contributions in comparison to intravalley contributions at fixed \(\omega\) by a factor \(v(K)/v(k_{F}) = k_{F}/K \ll 1\) near the characteristic Fermi momentum \(k_{F}\). Furthermore, for small doping \(|\mu| \ll \min(E^{0}_{Q}, E^{0}_{F})\), we can also ignore the transitions that involve a state in the range of validity of the linear/quadratic approximations (Subsecs. II A and II B) and a state outside of this domain.

Thus we can safely approximate the bare polarizability for our limited purposes as the sum of the contributions of intravalley particle-hole pairs:

\[
\chi^{(0)}(\mathbf{q}, \omega) \approx \chi^{(0)}_{L}(\mathbf{q}, \omega) + \chi^{(0)}_{R}(\mathbf{q}, \omega) + \chi^{(0)}_{Q}(\mathbf{q}, \omega),
\]

where \(\chi^{(0)}_{V}(\mathbf{q}, \omega)\) is the polarizability contribution from intravalley transitions in valley \(V\). Further, when studying features of a wave length much larger than the unit cell, the distribution of amplitudes in the unit cell can be ignored. Using the wave functions in Eq. (15) for massive carriers, their contribution \(\chi^{(0)}_{Q}(\mathbf{q}, \omega)\) is \(\equiv \frac{1}{2\pi^{2}} \sum_{n' \leq n_{Q}^{0}, n > n_{Q}^{0}} \sum_{n' \leq n_{Q}^{0}, n > n_{Q}^{0}} \left(\frac{|F_{n,n'}(\mathbf{q})|^{2}}{|\omega - \epsilon_{n} + \epsilon_{n'} + i\delta|} + \frac{|F_{n',n}(\mathbf{q})|^{2}}{|-\omega - \epsilon_{n} + \epsilon_{n'} - i\delta|} \right) \),

where we have used the form factors of the 2DEG,

\[
F_{n',n}(\mathbf{q}) = \sqrt{\frac{n!}{n'!}} \left(\frac{q_{x} - i q_{y}}{\sqrt{2}} \right)^{n'-n} L_{n' - n}^{2} \left(\frac{|q|^{2} \ell^{2}}{2} \right) e^{-|q|^{2} \ell^{2}/4}
\]

for \(n' \geq n\), whereas for \(n' < n\),

\[
F_{n,n'}(\mathbf{q}) = F_{n',n}^{*}(\mathbf{q}).
\]

Similarly, using the wave functions in Eqs. (A2-A5) for massless carriers, the contribution from valley \(\xi = \pm\) is

\[
\chi^{(0)}_{\pm}(\hat{q}_{x}, \hat{q}_{y}, \omega) = \frac{1}{2\pi a^{2} \ell^{2}} \sum_{n' \leq n_{\xi}^{0}, n > n_{\xi}^{0}} \sum_{n' \leq n_{\xi}^{0}, n > n_{\xi}^{0}} \left(\frac{|F^{\xi}_{n,n'}(\hat{q}_{x}, \hat{q}_{y})|^{2}}{|\omega - \epsilon_{n} + \epsilon_{n'} + i\delta|} + \frac{|F^{\xi}_{n',n}(\hat{q}_{x}, \hat{q}_{y})|^{2}}{|-\omega - \epsilon_{n} + \epsilon_{n'} - i\delta|} \right).
\]

The corresponding form factors \(F_{n,n'}^{\xi}(\hat{q}_{x}, \hat{q}_{y})\) are defined in Appendix B. Using the expressions of the form factors, one can check that \(\chi^{(0)}_{L}(\mathbf{q}, \omega)\) and \(\chi^{(0)}_{R}(\mathbf{q}, \omega)\) are related by the change of the sign of the tilt \(\eta\).

For illustration purposes, we consider occasionally the polarizability, the dielectric function and the density-density response functions stemming from only one or two valleys, even if such model systems are unphysical. Thus \(\epsilon_{RPA}(\mathbf{q}, \omega)\) and \(\chi_{RPA}(\mathbf{q}, \omega)\) are defined in terms of \(\chi^{(0)}_{L, L}(\mathbf{q}, \omega)\) in an obvious manner, where \(\nu\) is either \(L\), \(R\), or \(Q\) for the respective valley. Moreover, we also consider cases with only two valleys taken into account. Sometimes this is a physically relevant situation, e.g., when the system is electron-doped or charge-neutral and the magnetic field is large, sometimes a theoretical contrast. Then we define \(\chi^{(0)}_{L, L}(\mathbf{q}, \omega) = \chi^{(0)}_{V}(\mathbf{q}, \omega) + \chi^{(0)}_{R}(\mathbf{q}, \omega)\) and again \(\epsilon_{RPA}(\mathbf{q}, \omega)\) and \(\chi_{RPA}(\mathbf{q}, \omega)\) follow in analogy to Eqs. (20) and (21).

V. RESULTS AND DISCUSSION

The particle-hole excitation spectrum (PHES) and the collective modes of \(\alpha-(BEDT-TTF)_{2}I_{3}\) at low energies are determined by the two massless Dirac cones and the massive hole pocket. The way the three valleys contribute to the density-density response of a layer depends on the doping and the perpendicular magnetic field. For significant electron doping the massive band is full at zero temperature and only the massless carriers contribute to the transport (c.f. Subsec. V A).

At charge neutrality, the chemical potential is between the Dirac point and the top of the massive band in zero magnetic field. By turning on the magnetic field, the central four-fold degenerate \(n = 0\) LL of the massless valleys is fixed at the Dirac points, but the energy \(E_{\text{offset}} - \hbar \omega_{c}/2\) of the \(n = 0\) LL of the massive valley decreases. Let \(B_{\text{m}}\) be the field when the \(m\)-th LL of the massive valley coincides with the \(n\)-th LL of the conical valleys. For \(B > B_{00}\), the \(n = 0\) LL of the Dirac valleys is half-filled and the completely electron-filled massive valley is inert, c.f. Fig. 2 a). The response is entirely due to the massless valleys, similarly to the electron-doped case (Subsec. V A). In the interval \(B_{11} < B < B_{00}\) the chemical potential lies between the \(n = 0\) LL of the band and the \(n = 0\) LL of the massive band (\(n^{0}_{L} = 0, n^{0}_{Q} = 1\)), c.f. Fig. 2b). The excess electrons in the massless valleys (two for flux quanta) exactly compensate for the excess holes in the massive pocket. Now all valleys contribute to the density-density response (Subsec. V B).

For \(B \lesssim B_{11}\), the \(n = 1\) LL of the massive valley becomes empty and the four-fold degenerate \(n = 1\) LL of the massless Dirac valleys is half-filled; the chemical potential is set somewhere in the (naturally broadened) \(n = 1\) LL of the massless Dirac fermions, c.f. Fig. 2c). Combining Refs. [27] and [10] we estimate \(B_{11} \approx 0.06\) T and \(B_{00} \approx 2.5\) T.
FIG. 2. Schematic view of the Landau level structure of the two Dirac cones and the massive valley, with the chemical potential at charge neutrality indicated. (a) $B > B_{00} \approx 2.5$ T, (b) $B_{11} < B < B_{00}$, and (c) $B \lesssim B_{11} \approx 0.06$ T.

In significantly hole-doped samples all valleys contribute.

A. The response of massless carriers

With a significant electron-doping in mind, we set $n_F^L = 2$, for which $n_Q^F = 0$, i.e., the massive band is full and inert for all realistic values of the magnetic field B.

1. The response of a single cone

To highlight the direction-dependent effects, we first consider the response of a single tilted massless Dirac cone, as described by the Weyl Hamiltonian in Eqs. [11] and [15]. Although this model is not directly related to a concrete physical situation, it reveals some basic phenomena associated with the tilt of the Dirac cones, such as the direction-dependent plasmonic dispersions and the characterization of the different regions of allowed and forbidden particle-hole excitations. This preliminary analysis within the single-cone approximation thus helps us understand the effect of the Coulomb coupling between the two different valleys, discussed in Sec. [V A 2].

Regarding the possibility of particle-hole excitations, the (ω, q) plane can be divided into several regions. Here we follow the notation Nishine et al. [32] have introduced for the PHES in zero magnetic field. The regions of possible intraband (A-region) and interband (B-region) particle-hole excitations are separated by the boundary line ω_{res}. Due to the opposite tilt, the various regions and their boundaries differ for the two cones in any general direction. Both regions are divided into subregions, as explained below.

FIG. 3. (Color online) The regions and subregions of the (ω, q) plane from the point of view of (a) cone R, and (b) cone L in a particular direction $\theta = \theta_{\text{tilt}}$. (c,d) Cuts of cones R and L in the same direction. In the direction $\theta = \theta_{\text{tilt}} + \pi$, panels (a,c) corresponds to cone L and (b,d) to cone R. The distinguished energies $t, u, \text{momentum } k$, and asymptotes As_1, As_2 are indicated.

Figures [3]a) and (b) depict the (ω, q) plane in the direction $\theta = \theta_{\text{tilt}}$, where $\theta = \tan(q_x/q_y)$ is the angle of the momentum. In this direction the steepness of cone R is minimal, while that of cone L is maximal.

First consider cone R in this direction. Zero-energy excitations must have a momentum transfer less than the major axis k of the ellipsoidal Fermi surface. Excitations with higher momenta require a minimal energy, which defines the upper boundary $\omega_+ \leq \omega_{\text{res}}$ of the forbidden subregion $3A$ [c.f. Fig. [3]a,b], where $\text{Im} \chi_{\text{R}}(0) = 0$.

Excitations with zero momentum transfer must be interband. For $q = 0$, there are two special energies. The smallest one is denoted t in Fig. [3]. Below this energy no $q = 0$ excitation is possible. If we increase the total momentum of the particle-hole pair in the positive manner, we must move the hole in the $-q$ direction. Then the excitation energy increases, which explains the rise of the
boundary line ω_A for small momenta. By thus decreasing the hole’s wave vector, one follows the asymptote $A\dot{s}1$, which ultimately merges into the boundary line ω_B.

Starting from u, one can increase the excitation energy with positive total momentum; this branch corresponds to ω_B. For higher momenta, it follows asymptote $A\dot{s}2$, which merges into ω_A in the intraband region. The reason why the boundaries ω_A and ω_B deviate from the asymptotes $A\dot{s}1, A\dot{s}2$ and do not intersect each other is due to the 2D nature of the excitations, i.e., one needs to consider transitions outside of the one-dimensional cut examined so far. Between ω_A and ω_{res} no particle-hole excitations exist, thus region 1B is forbidden, just like 3A for intraband excitations.

If one considers excitations of cone L in the same momentum direction, the shapes of boundaries $\omega_{R}B$ and ω_{A} differ considerably. The smallest energy of a $q = 0$ excitation is still t. It is possible to decrease the energy from t by moving the hole in the $-q$ direction; this branch defines boundary ω_A. Starting from u, however, one can increase the excitation energy only with a negative total momentum; this branch corresponds to ω_B, which is increasing. Naturally, the two cones are related by time-reversal symmetry, which also changes the sign of q; thus in the $\theta_{tilt} + \pi$ direction the regions of cone R (L) are those in Fig. 3(b,d) [Fig. 3(a,c)].

These zero-field considerations correctly describe the regions of allowed transitions also for non-zero magnetic fields since the wave vector in the PHES is that of (neutral) electron-hole pairs. It therefore remains a good quantum number also in the presence of a magnetic field. Figures 4(a) and (b) show χ_{RPA}^L and χ_{RPA}^R in the direction of R’s smallest velocity $\theta = \theta_{tilt}$. Notice that we consider a finite broadening (inverse quasiparticle lifetime) $\delta = 0.1 \hbar \sqrt{\epsilon_p / \ell}$. Whereas treating δ as an energy-independent constant is a crude approximation, we use it here only as a phenomenological parameter that renders the structure of the PHES more visible.

The UHM is present with a considerable spectral weight in region 1B of both cones, or, for a fixed cone, in opposite directions. After leaving region 1B, the UHM merges into the linear magnetoplasmon mode in region 2B. The concentration of the spectral weight near ω_{res} is in accordance with the $B = 0$ limit and the $B \neq 0$ behavior of graphene. Recall that the UHM arises due to the modification of the classical plasmons by cyclotron motion; it does not require interband excitations, thus it forms by a transfer of spectral weight from the intraband PHES.

To summarize, the density-density response of a generic massless Dirac cone in a perpendicular magnetic field exhibits an upper hybrid mode and linear magnetoplasmons with anisotropic velocities, as a plausible generalization of the graphene case.

FIG. 4. (Color online) The imaginary part of the density-density response of massless carriers, divided by the density of states at the Fermi energy. The topmost filled Dirac Landau level is $n_F^L = 2$, the other parameters are $B = 4$ T and $\epsilon_i = 10$. The first two panels consider the cones individually; (a) shows χ_{RPA}^R in the direction of its maximal tilt θ_{tilt} (or χ_{L}^L in the direction θ_{tilt}), and (b) χ_{RPA}^R in the direction θ_{tilt} (or χ_{L}^L in the direction $\theta_{tilt} + \pi$). Panel (c) shows χ_{L}^R in direction θ_{tilt}, which is the response of the total system for electron doping, or for $B > B_{00} \approx 2.5$ T at charge neutrality.

2. Both cones considered

Fig. 4(c) shows χ_{L}^R for both cones in a fixed direction $\theta = \theta_{tilt}$ of the momentum plane. Notice that for the electron-doped case this is actually the total density-density response.
The UHM of cone R disappears, though it was the most dominant part of the response in the single-cone approximation. The UHM of cone L is still present, though with a reduced spectral weight in its own forbidden region. Its linear magnetoplasmon mode manifests itself, although at high energies (R’s region 2B) it is surrounded by the interband particle-hole excitations of cone R, which have a modest spectral weight in the single cone approximation. Both modes are approximately in the same place as when only one cone was considered. For interpretation, compare Fig. 3(c), where we sketch the (ω, q) plane in a fixed direction $\theta = \theta_{\text{tilt}}$. The forbidden region of cone L lies entirely in that of cone R, hence no damping results from particle-hole excitations of either cones here. The picture is dramatically different for cone R: its forbidden region overlaps with the damped region of cone L, i.e., the UHM of cone R is strongly damped by particle-hole excitations in cone L. For this reason, the UHM of cone R disappears entirely. In the opposite direction the roles of L and R are, of course, interchanged. Therefore, the interaction of the two cones leads to a strong direction-dependent damping, which results in the complete suppression of the UHM of one cone where the other has particle-hole excitations of high spectral weight. This phenomenon, which we refer to as inter-valley damping, is also visible in the imaginary part of the dielectric function (results not shown).

The linear magnetoplasmons of each cone are situated in the particle-hole continuum of their own PHES respectively, where they are already damped. They do not overlap with each other in the (ω, q) plane in the shown direction $\theta = \theta_{\text{tilt}}$. Therefore, we expect the dominance of the one with higher spectral weight at a particular (ω, q). Figure 4(c) testifies the dominance of the linear magnetoplasmon mode of cone R in this direction, in agreement with its higher spectral weight in the single cone model. This explains the reappearance of the linear magnetoplasmons at larger momenta, and the disappearance of the linear magnetoplasmons of cone L for intermediate momenta.

Figure 5 shows the density-density response in the direction $\theta = \theta_{\text{tilt}} + \pi/2$, i.e., perpendicular to the direction of the minimal steepness of cone R (maximal steepness of cone L). The response of the individual cones are almost identical [panels (a) and (b)], and their forbidden regions practically coincide (perfect coincidence occurs at a nearby angle). Intervall valley damping is therefore absent in this direction. The UHM and the linear magnetoplasmon mode of the two-valley system [panel (c)] are where they would be for a single cone; albeit with an increased amplitude.

In order to illustrate the phenomenon of intervall valley damping in a more precise and quantitative manner, consider the bare polarizability \([23]\) of a multivalley model, which is generically written as

\[
\chi^{(0)}(q, \omega) = \sum_V \chi^{(0)}_{V}(q, \omega),
\]

where the sum runs over all different valleys. One may thus rewrite the RPA dielectric function \([21]\) as

\[
\epsilon^{\text{RPA}}(q, \omega) = \epsilon_{V_0}^{\text{RPA}}(q, \omega) - v(q) \sum_{V \neq V_0} \chi^{(0)}_{V}(q, \omega), \tag{29}
\]

where \(\epsilon_{V_0}^{\text{RPA}}(q, \omega)\) is the RPA dielectric function within a single-valley model, where only the valley V_0 is taken into account. The single-valley model therefore yields a good approximation for the collective modes [given by the zeros of \(\epsilon^{\text{RPA}}(q, \omega)\)] if

\[
v(q) \sum_{V \neq V_0} \chi^{(0)}_{V}(q, \omega) \simeq 0 \tag{30}
\]

in the region of interest, i.e. for $\omega = \omega_{pl}(q)$ obtained from the solution \(\epsilon_{V_0}^{\text{RPA}}(q, \omega_{pl}) = 0\). This precisely means that the spectral weight for particle-hole excitations in the other valleys $V \neq V_0$ vanishes in this region, or else that the collective modes of V_0 survive in the forbidden regions of the other cones, as observed in our calculations.

Notice that the phenomenon of intervall valley damping is absent if all individual polarizabilities $\chi^{(0)}_{V}(q, \omega)$ are identical, e.g., in the absence of a tilt of the (albeit anisotropic) Dirac cones. In this case, the RPA dielectric function \([29]\) simply becomes

\[
\epsilon^{\text{RPA}}(q, \omega) = 1 - N v(q) \chi^{(0)}_{V}(q, \omega), \tag{31}
\]

for N identical valleys. Therefore, $\epsilon^{\text{RPA}}(q, \omega)$ has only a single zero, at a slightly larger frequency as compared to the single-valley approximation because of the enhanced coupling $v(q) \rightarrow N v(q)$. This situation is encountered, e.g., when one takes into account the spin degeneracy in conventional electron systems ($N = 2$) or in graphene with non-tilted Dirac cones with a fourfold spin-valley degeneracy ($N = 4$). The tilt of the Dirac cones, or more generally the broken $q \rightarrow -q$ symmetry in a single valley, is thus the basic ingredient for the mechanism of intervall valley damping.

Finally, we note that Nishine et al. saw the effect of intervall valley damping at zero magnetic field, interpreted it as plasmon filtering and offered a detailed analysis of the angular dependence of strength of the lower-lying plasmon mode. The two mechanisms are essentially the same, despite the slightly different formulations.

B. Three-valley model

Undoped samples with $B < B_{\text{B0}}$ and hole-doped samples allow us to study the contribution of the quadratic band. Fig. 6 shows the density-density response at $n_L^C = 0$ and $n_Q^C = 1$, which is adequate at charge neutrality when $B_{11} < B < B_{\text{B0}}$; c.f. Fig. 2(b). The direction in momentum space is $\theta = \theta_{\text{tilt}}$, for which the difference between the velocities in the two cones is the most pronounced. The particle-hole continuum of the massive
FIG. 5. (Color online) We show (a) χ_{R}^{RPA}, (b) χ_{L}^{RPA}, (c) χ_{L+R}^{RPA} in a fixed direction $\theta = \theta_{\text{tilt}} + \pi/2$ on the momentum plane. $B = 4$ T, $n_{F}^{L} = 2$, $\epsilon_{r} = 10$.

valley lies below the linear magnetoplasmon mode of the massless Dirac carriers in both cones, as apparent in panels (a) and (b), where one of the cones are disregarded for visibility reasons. Thus the particle-hole excitations of the massive carriers are not damped by the Dirac valleys, and its spectral weight is comparable to the dominant linear magnetoplasmon modes of the latter. The UHM of the massive holes is not additionally damped either, as it lies below the cyclotron frequency of the massless carriers. The actual density-density response, in Fig. 6(c), indicates that the response of $\alpha-(\text{BEDT-TTF})_{2}\text{I}_{3}$ at low frequencies is determined by the massive carriers; in the higher frequency range the Dirac carriers dominate, with intervalley-damped collective modes, as discussed in §V A 2 above. The reason is the separation of energy scales at low momenta, and not any difference in the density of states.

FIG. 6. (Color online) The density-density response in direction $\theta = \theta_{\text{tilt}}$ in momentum space. The topmost filled band is $n_{F}^{L} = 0$ in the massless valleys and $n_{Q}^{L} = 1$ in the massive valley. Other parameters are $B = 2$ T and $\epsilon_{r} = 10$. Panel (a) shows the χ_{R}^{RPA} of an imaginary system that omits cone L, (b) shows χ_{L}^{RPA} omits cone R, while (c) shows the complete χ^{RPA}. The units are s/m2; normalization by the density of states is not applied. The straight line is the boundary between the interlayer and intralayer excitations of massless carriers, and the curved ones would demarcate the particle-hole continuum of massive carriers for $B = 0$.

As the separation of the LLs scale as $\epsilon_{L,1} \propto \sqrt{B}$ and $\hbar\omega_{c} \propto B$ for the massless and the massive carriers, respectively, the LLs of the quadratic valley are much
denser that those of the Dirac cones, for magnetic fields that are not too small.

Figure 7 shows a strongly hole-doped situation with \(n_F^L = -2 \) and \(n_F^Q = 13 \). Now the UHM of the massive carriers lies in the particle-hole continuum of the massless Dirac fermions and it is strongly damped, similarly to the UHM of cone \(R \) by the excitations of cone \(L \) as discussed in Sec. V A 2. Figure 7(a) shows that the UHM of cone \(R \) is also damped by the particle-hole continuum of the massive valley. The UHM of the massive valley is in the forbidden region of cone \(R \), therefore it is undamped. Fig. 7(b) shows that the UHMs of cone \(L \) and the massive valley coincide; linear magnetoplasmons are less prominent as they have less spectral weight than the massive valley. Fig. 7(c) we also indicates that the spectral weight is mostly concentrated on the massive valley, although the linear magnetoplasmon of cone \(R \) is also visible at large momenta.

C. Static screening

The interplay between massless carriers in tilted anisotropic Dirac cones and massive holes in a roughly isotropic pocket gives rise to a remarkable doping-dependent anisotropy in screening properties of the highest two bands. Fig. 8 shows the real-part of the static bare polarizability \(\Re \chi^{(0)}(\mathbf{q}, 0) \), and the dielectric function \(\Re \epsilon_{\text{RPA}}(\mathbf{q}, 0) \) in the RPA, respectively. For electron-doping or charge neutrality at \(B > B_{00} \approx 2.5 \) T, screening is entirely due to the linear bands, and it shows an anisotropy with twofold symmetry; c.f. Fig. 8(a,b). If the magnetic field is reduced, \(B < B_{00} \), however, massive carriers also contribute to screening. Due to their higher density of states at low momenta, their contribution is predominant and screening is therefore almost isotropic; c.f. Fig. 8(c,d). This effect naturally becomes stronger in hole-doped samples.

VI. CONCLUSION

In this work we have studied the low-energy magnetic excitations of the quasi-2D electron gas in a three-valley system of two tilted and anisotropic massless Dirac cones and a massive hole pocket, with an emphasis on direction-dependent effects and the properties for which massive carriers are relevant. This model is a realistic representation of a layer of the organic conductor \(\alpha-(\text{BEDT-TTF})_2\text{I}_3 \) at high pressure or uniaxial strain, but there is some ambiguity regarding the band parameters and even the presence of massive carriers. We have found that the tilt of the cones causes a direction-dependent intervalley damping of the upper hybrid modes of the Dirac valleys, while the linear magnetoplasmons are less affected. The magnetoplasmons of the massive band may coexist with those of the massless ones, depending on doping and the strength of the magnetic field. The latter also tunes the system between isotropic and anisotropic screening regimes.

The experimental study of the collective modes in ribbon samples\(^{46} \) or by local probes\(^{47} \), successfully applied for graphene, may be challenging under high pressure, but grating couplers might be usable. On the other hand, the layered structure of these organic conductors recommends itself to inelastic light scattering experiments\(^{48} \), which have successfully clarified the intrasubband plasmon modes of multilayer GaAs-(AlGa)As heterostructures. The elaboration of collective modes in the presence of interlayer coupling is delegated to future work.
For \(n \neq 0 \) in cone \(L \), the orbitals are
\[
\Phi_{L,n,k}(\tilde{r}) = \frac{1}{\sqrt{4(1+\lambda)}} \left[\left(\frac{1+\lambda}{1+\lambda} \right) \phi_{L,n,k}(\tilde{r}) + \left(\frac{-\eta}{1+\lambda} \right) \text{sgn}(n)\phi_{L,n-1,k}(\tilde{r}) \right],
\]
while for the \(n = 0 \),
\[
\Phi_{L,0,k}(\tilde{r}) = \frac{1}{\sqrt{2(1+\lambda)}} \left(-\frac{1-\lambda}{\eta} \right) \phi_{L,0,k}(\tilde{r}).
\]
We have used the subformulas (\(\xi \in \{ R, L \} \))
\[
\phi_{\xi,n,k}(\tilde{r}) = \frac{\lambda^{1/4}}{\sqrt{2\pi}} \frac{e^{ik\tilde{r}}}{(2^n-1)!} \frac{e^{-\lambda n^2\tilde{r}^2/2}}{\sqrt{\pi \alpha}} H_{|n|}(\eta \phi_{\xi,n,k}),
\]
and
\[
\phi_{\xi,n-1,k}(\tilde{r}) = \frac{\lambda^{1/4}}{\sqrt{2\pi}} \frac{e^{ik\tilde{r}}}{(2^n-1)!} \frac{e^{-\lambda n^2\tilde{r}^2/2}}{\sqrt{\pi \alpha}} H_{|n-1|}(\eta \phi_{\xi,n,k}),
\]
with the argument
\[
Y_{n,R/L} = \sqrt{\eta} / \alpha \ell - \sqrt{\lambda} \alpha \ell / \eta - \sqrt{2} \eta |\text{sgn}(n)|.
\]
Notice that \(Y_{n,\xi} \) depends on both the LL index (including its sign) and the cone \(\xi \). Also, it is identical for the \(\phi_{\xi,n,k} \) and \(\phi_{\xi,n-1,k} \) parts of \(\phi_{\xi,n,k} \) in Eqs. (A2) and (A4).

Appendix B: Bare polarizability of the linear valleys

Here we calculate the bare polarizability of the linear valleys by standard methods, using the orbitals that Eqs. (A2) to (A5) specify in the rotated, rescaled coordinate system, c.f. Eqs. (2) and (A1).

The field operators are (\(\xi \in \{ R, L \} \)):
\[
\Psi_{\xi}(\mathbf{r}, t) = \sum_{n} \int dq \phi_{\xi,n,k}(\mathbf{r}) e^{-i t \epsilon_{L,n} \xi_{n,q}}.
\]

Suppressing spin to avoid clutter, the (gauge-dependent) bare Green’s function has a matrix structure,
\[
\xi_{\xi}^{(0)}(\mathbf{R}, \Delta \mathbf{r}, t) = \langle 0 | T \Psi_{\xi} \left(\mathbf{R} + \frac{\Delta \mathbf{r}}{2}, t \right) \otimes \Psi_{\xi}^\dagger \left(\mathbf{R} - \frac{\Delta \mathbf{r}}{2}, 0 \right) | 0 \rangle,
\]
where \(\mathbf{R} = (\mathbf{r} + \mathbf{r}) / 2 \) and \(\Delta \mathbf{r} = \mathbf{r} - \mathbf{r}' \). By Fourier-transformation,
\[
\xi_{\xi}^{(0)}(\mathbf{R}, p, E) = \sum_{n} \int d q \int d^2 \Delta r e^{i p \Delta r} \times \phi_{\xi,n,q}(\mathbf{R} + \frac{\Delta \mathbf{r}}{2}) \phi_{\xi,n,q}^\dagger(\mathbf{R} - \frac{\Delta \mathbf{r}}{2})
\]
\[
\times E - \epsilon_{L,n} + i \eta \text{sgn}(\epsilon_{L,n} - \epsilon_{L}^{P}).
\]

ACKNOWLEDGEMENTS

This research was funded by the Hungarian Scientific Research Funds No. K105149. C. T. was supported by the Hungarian Academy of Sciences. Supercomputer facilities was provided by National Information Infrastructure Development Institute, Hungary. J. S. was supported by Campus France and acknowledges hospitality from Laboratoire de Physique des Solides.

Appendix A: Linear valleys in a magnetic field

Here follow the Morinari et al.’s Ref. [16] merely fixing some apparent bugs in the formulas. We use the Landau gauge \(\mathbf{A} = (-\eta B, 0, 0) \), and work in the coordinate system introduced in Eq. (3). The transformed real-space coordinates \(\tilde{r} = (\tilde{x}, \tilde{y}) \) are
\[
\tilde{x} = x \cos \theta + \alpha^2 y \sin \theta \quad \tilde{y} = -x \sin \theta + \alpha^2 y \cos \theta
\]
\(\quad \)
\(\)
Now we can evaluate the bare polarizability in Eq. (22), involving the matrix structure of the Green’s functions in the trace. We obtain Eq. (27), with the form factors $F^{\xi}_{n',n'}$, defined as

$$F^{\xi}_{n',n'}(\tilde{q}) = \frac{1}{2} F^{n',n',\xi}_{n',n'}(\tilde{q}) + \frac{1}{2} \text{sgn}(n) \text{sgn}(n') F^{n',n',\xi}_{n'-1,n'-1}(\tilde{q})$$

$$+ \frac{\xi \eta}{2} \text{sgn}(n) F^{n',n',\xi}_{n',n'-1}(\tilde{q}) + \frac{\xi \eta}{2} \text{sgn}(n') F^{n',n',\xi}_{n'-1,n'}(\tilde{q})$$

(B4)

for $n, n' \neq 0$. Similarly for $n \neq 0 = n'$,

$$F^{\xi}_{0,n}(\tilde{q}) = \frac{1}{2} F^{0,n,\xi}_{0,n}(\tilde{q}) + \frac{\xi \eta}{\sqrt{2}} \text{sgn}(n) F^{0,n,\xi}_{0,n-1}(\tilde{q})$$

(B5)

and finally, for $n = n' = 0$,

$$F^{\xi}_{0,0}(\tilde{q}) = F^{0,0,\xi}_{0,0}(\tilde{q}).$$

(B6)

Here we have introduced the functions $F^{n',n',\xi}_{n',n'}(\tilde{q})$, of $\tilde{q} = (\tilde{q}_x, \tilde{q}_y)$. For $|n'| \geq |n|$ they are defined as

$$F^{n',n',\xi}_{n',n}(\tilde{q}) = \sqrt{\frac{|n|!}{|n'|!}} \sqrt{2^{n'-|n|}} (-iP + Q_{n',n',\xi})^{n'-|n|}$$

$$\times L^{n'-|n|}_{|n|} \left(2(Q_{n',n',\xi}^2 + P^2)e^{-Q_{n',n',\xi}^2 + P^2}\right)$$

Similarly, for $|n| > |n'|$ the definition is

$$F^{n',n',\xi}_{n,n'}(\tilde{q}) = \sqrt{\frac{|n|!}{|n'|!}} \sqrt{2^{n'-|n'|}} \left(-iP - Q_{n',n',\xi}\right)^{|n|-|n'|} \times$$

$$\times L^{n'-|n'|}_{|n'|} \left(2(Q_{n',n',\xi}^2 + P^2)\right)e^{-Q_{n',n',\xi}^2 + P^2}\right)$$

In the above definitions

$$Q_{n',n',\xi} = \frac{\tilde{q}_x \sqrt{\alpha \ell} - \xi \eta \sqrt{2} |n'| \text{sgn}(n')} + \xi \eta \sqrt{2} |n| |\text{sgn}(n)|,$$

$$P = \frac{\alpha \ell}{2 \sqrt{\lambda} \tilde{q}_y}.$$

It is easy to check that $F^{n',n',\xi}_{n',n'}(\tilde{q}) = \left[F^{n',n',\xi}_{n',n'}(-\tilde{q})\right]^*$.

References:

1. K. Bender, Mol. Cryst. Liq. Cryst. 108, 359 (1984).
2. K. Kajita, T. Ojiro, H. Fujiy, Y. Nishio, H. Kobayashi, A. Kobayashi, and R. Kato, J. Phys. Soc. Jpn. 61, 23 (1992); N. Tajima, M. Tamura, Y. Nishio, K. Kajita, and Y. Iye, J. Phys. Soc. Jpn. 69, 543 (2000); N. Tajima, S. Sugawara, R. Kato, Y. Nishio, and K. Kajita, Phys. Rev. Lett. 102, 176403 (2009).
3. N. Tajima, A. Ebina-Tajima, M. Tamura, Y. Nishio, and K. Kajita, J. Phys. Soc. Jpn. 71, 1832 (2002).
4. N. Tajima, S. Sugawara, M. Tamura, Y. Nishio, and K. Kajita, J. Phys. Soc. Jpn. 75, 051010 (2006).
5. N. Tajima and K. Kajita, Sci. Technol. Adv. Mater. 10, 024308 (2009).
6. H. Fukuyama, A. Kobayashi, and Y. Suzumura, arXiv:1103.4899 (2011).
7. K. Murata, S. Kato, M. Tamura, Y. Nishio, and K. Kajita, J. Phys. Soc. Jpn. 79, 113704 (2010).
8. M. Sato, K. Miura, S. Endo, S. Sugawara, N. Tajuma, K. Murata, Y. Nishio, and K. Kajita J. Phys. Soc. Jpn 80, 023706 (2011).
9. T. Morinari, T. Himura, and T. Tohyama, J. Phys. Soc. Jpn. 78, 023704 (2009).
10. T. Osada, J. Phys. Soc. Jpn. 77, 084711 (2008); T. Osada, J. Phys. Soc. Jpn. 80, 033708 (2011).
11. N. Tajima, T. Yamauchi, T. Yamaguchi, M. Suda, Y. Kawasugi, H. M. Yamamoto, R. Kato, Y. Nishio, and K. Kajita, Phys. Rev. B 88, 075315 (2013).
12. P. R. Wallace, Phys. Rev. 71, 622 (1947); J. W. McClure, Phys. Rev. 108, 612 (1957); J. C. Slonczewski and P. R. Weiss, Phys. Rev. 109, 272 (1958); K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005); Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
13. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
14. Notice that there are four BEDT-TTF molecules and two Γ_7^3 ions in a unit cell. The latter capture two out of the eight electrons in the highest occupied molecular orbitals of the BEDT-TTF’s, which comprise the conducting layer.
15. T. Morinari, T. Himura, and T. Tohyama, J. Phys.: Condens. Matter 23, 464202 (2011).
Notice the tension arises because the quadratic valley has a maximum near the Fermi energy, thus it has little effect if the sample is electron-doped, but as its set of Landau levels is denser than that of the linear valleys, several of its LLs are emptied for hole-doping before the first LLs of the linear valleys are affected.

K. Miyagawa, M. Hirayama, M. Tamura, and K. Kanoda, J. Phys. Soc. Jpn. 79, 063703 (2010).

N. Tajima, A. Tajima, M. Tamura, R. Kato, Y. Nishio, and K. Kajita, J. Phys. IV (Paris) 114, 263 (2004).

T. Choji, A. Kobayashi, and Y. Suzumura, J. Phys. Soc. Jpn. 80, 074712 (2011).

T. Nishine, A. Kobayashi, and Y. Suzumura, J. Phys. Soc. Jpn. 79 114715 (2010); T. Nishine, A. Kobayashi, and Y. Suzumura, J. Phys. Soc. Jpn. 80 114713 (2011).

S. M. Badalyan, A. Matos-Abiague, G. Vignale, and J. Fabian, Phys. Rev. B 79, 205305 (2009).

K. W. K. Shung, Phys. Rev. B 34, 979 (1986); T. Ando, J. Phys. Soc. Jpn. 75, 074716 (2006); B. Wunsch, T. Stauber, F. Sols, and F. Guinea, New J. Phys. 8, 318 (2006); H. Hwang and S. Das Sarma, Phys. Rev. B 75, 205418 (2007).

R. Roldán, J.-N. Fuchs, and M. O. Goerbig, Phys. Rev. B 80, 085408 (2009).

M. O. Goerbig, Rev. Mod. Phys. 83, 1193 (2011).

K. W. Chiu and J. J. Quinn, Phys. Rev. B 9, 4724 (1974).

R. Kondo, S. Kagoshima, N. Tajima, and R. Kato, J. Phys. Soc. Jpn. 78, 114714 (2009).

H. Seo, J. Phys. Soc. Jpn. 69, 805 (2000); Y. Takano, K. Hiraki, H. M. Yamamoto, T. Nakamura, and T. Takahashi, J. Phys. Chem. Solids, 62, 393 (2001); R. Wojciechowski, K. Yamamoto, K. Yakushi, M. Inokuchi, and A. Kawamoto, Phys. Rev. B 67, 224105 (2003); Y. Takano, K. Hiraki, Y. Takada, H. M. Yamamoto, and T. Takahashi, J. Phys. Soc. Jpn. 79, 104704 (2010); M. Hirata, K. Ishikawa, K. Miyagawa, K. Kanoda, and M. Tamura, Phys. Rev. B 84, 125133 (2011).

G. Montambaux, F. Pichon, J.-N. Fuchs, and M. O. Goerbig, Eur. Phys. J. B 72, 509 (2009); G. Montambaux, F. Pichon, J.-N. Fuchs, and M. O. Goerbig, Phys. Rev. B 80, 153412 (2009).

S. M. Badalyan, A. Matos-Abiague, G. Vignale, and J. Fabian, Phys. Rev. B 79, 205305 (2009).

K. W. K. Shung, Phys. Rev. B 34, 979 (1986); T. Ando, J. Phys. Soc. Jpn. 75, 074716 (2006); B. Wunsch, T. Stauber, F. Sols, and F. Guinea, New J. Phys. 8, 318 (2006); H. Hwang and S. Das Sarma, Phys. Rev. B 75, 205418 (2007).

R. Roldán, J.-N. Fuchs, and M. O. Goerbig, Phys. Rev. B 80, 085408 (2009).