CDKL5 gene
cyclin dependent kinase like 5

Normal Function
The CDKL5 gene provides instructions for making a protein that is found in cells and tissues throughout the body. However, it is most active in the brain and is essential for normal brain development and function. There are five versions (isoforms) of the CDKL5 protein. These isoforms vary in length and in the tissues in which they are most abundant.

Studies suggest that the CDKL5 protein is involved in the formation, growth, and movement (migration) of nerve cells (neurons), as well as cell division. It also plays a role in the transmission of chemical signals at the connections (synapses) between neurons.

The CDKL5 protein acts as a kinase, which is an enzyme that changes the activity of other proteins by adding a cluster of oxygen and phosphorus atoms (a phosphate group) at specific positions. It is possible that one of the proteins targeted by the CDKL5 protein is MeCP2, which is produced from the MECP2 gene. The MeCP2 protein plays important roles in the function of neurons and other brain cells and in the maintenance of neuronal synapses. Researchers have not determined which other proteins are targeted by the CDKL5 protein.

Health Conditions Related to Genetic Changes

CDKL5 deficiency disorder
At least 150 mutations in the CDKL5 gene have been found to cause CDKL5 deficiency disorder. This rare condition is characterized by seizures that begin in infancy, followed by significant delays in many aspects of development. Affected individuals have severe intellectual disability and most do not walk independently. About 90 percent of people diagnosed with CDKL5 deficiency disorder are female.

CDKL5 deficiency disorder was previously classified as an atypical form of Rett syndrome. However, CDKL5 deficiency disorder is now considered a separate condition. Rett syndrome, which affects development in girls and women, results from mutations in the MECP2 gene. Because the CDKL5 and MeCP2 proteins may interact in the brain, the two disorders might be caused by a similar mechanism.

Mutations in the CDKL5 gene reduce the amount of functional CDKL5 protein or alter its activity in neurons. A shortage (deficiency) of CDKL5 or impairment of its function disrupts brain development, but it is unclear how these changes cause the specific features of CDKL5 deficiency disorder.
Most CDKL5 gene mutations change single protein building blocks (amino acids) in the CDKL5 protein. This type of mutation occurs most often in a region of the protein called the kinase domain, which is essential for the protein's kinase function. Mutations in the kinase domain disrupt the ability of CDKL5 to add phosphate groups to other proteins. Compared with other types of mutation, these mutations are associated with more severe signs and symptoms of CDKL5 deficiency disorder.

Other CDKL5 gene mutations alter different regions of the CDKL5 protein or lead to the production of an abnormally short version of the protein. Research has shown that mutations affecting parts of the protein other than the kinase domain tend to cause less severe signs and symptoms of CDKL5 deficiency disorder than other types of mutations.

Chromosomal Location

Cytogenetic Location: Xp22.13, which is the short (p) arm of the X chromosome at position 22.13

Molecular Location: base pairs 18,425,605 to 18,653,629 on the X chromosome (Homo sapiens Updated Annotation Release 109.20200522, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- CDKL5_HUMAN
- CFAP247
- cyclin-dependent kinase-like 5
- serine/threonine kinase 9
- STK9
Additional Information & Resources

Educational Resources

- International Foundation for CDKL5 Research: What is CDKL5?
 https://www.cdkl5.com/about-cdkl5/

- Jasper's Basic Mechanisms of the Epilepsies (Fourth Edition, 2012): The Monogenic Forms of Early Infantile Epileptic Encephalopathies
 https://www.ncbi.nlm.nih.gov/books/NBK98182/#depienne.s1

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28CDKL5%5BTI%5D%29+OR+%28cyclin-dependent+kinase-like+5%5BTI%5D%29%29+OR+%28STK9%5BTI%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22+AND%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- CYCLIN-DEPENDENT KINASE-LIKE 5
 http://omim.org/entry/300203

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_CDKL5.html

- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=CDKL5%5Bgene%5D

- HGNC Gene Symbol Report
 https://www.genenames.org/data/gene-symbol-report/#l/hgnc_id/HGNC:11411

- International CDKL5 Disorder Output Database
 https://www.cdkl5.com/

- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:6792

- NCBI Gene
 https://www.ncbi.nlm.nih.gov/gene/6792

- UniProt
 https://www.uniprot.org/uniprot/O76039
Sources for This Summary

- Bahi-Buisson N, Bienvenu T. CDKL5-Related Disorders: From Clinical Description to Molecular Genetics. Mol Syndromol. 2012 Apr;2(3-5):137-152. Epub 2011 Sep 13.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22670135
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3366705/

- Bahi-Buisson N, Villeneuve N, Caietta E, Jacquette A, Maurey H, Matthijs G, Van Esch H, Delahaye A, Moncla A, Milh M, Zufferey F, Diebold B, Bienvenu T. Recurrent mutations in the CDKL5 gene: genotype-phenotype relationships. Am J Med Genet A. 2012 Jul;158A(7):1612-9. doi: 10.1002/ajmg.a.35401. Epub 2012 Jun 7.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22678952

- Barbiero I, Valente D, Chandola C, Magi F, Bergo A, Monteonofrio L, Tramarin M, Fazzari M, Soddu S, Landsberger N, Rinaldo C, Kilstup-Nielsen C. CDKL5 localizes at the centrosome and midbody and is required for faithful cell division. Sci Rep. 2017 Jul 24;7(1):6228. doi: 10.1038/s41598-017-05875-z.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28740074
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5524905/

- Fehr S, Wilson M, Downs J, Williams S, Murgia A, Sartori S, Vecchi M, Ho G, Polli R, Psoni S, Bao X, de Klerk N, Leonard H, Christodoulou J. The CDKL5 disorder is an independent clinical entity associated with early-onset encephalopathy. Eur J Hum Genet. 2013 Mar;21(3):266-73. doi: 10.1038/ejhg.2012.156. Epub 2012 Aug 8.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22872100
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3573195/

- Hector RD, Dando O, Landsberger N, Kilstup-Nielsen C, Kind PC, Bailey ME, Cobb SR. Characterisation of CDKL5 Transcript Isoforms in Human and Mouse. PLoS One. 2016 Jun 17;11(6):e0157758. doi: 10.1371/journal.pone.0157758. eCollection 2016.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27315173
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4912119/

- Hector RD, Kalscheuer VM, Hennig F, Leonard H, Downs J, Clarke A, Benke TA, Armstrong J, Pineda M, Bailey MES, Cobb SR. CDKL5 variants: Improving our understanding of a rare neurologic disorder. Neurol Genet. 2017 Dec 15;3(6):e200. doi: 10.1212/NXG.0000000000000200. eCollection 2017 Dec.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29264392
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5732004/

- Valli E, Trazzi S, Fuchs C, Erriquez D, Bartesaghi R, Perini G, Ciani E. CDKL5, a novel MYCN-repressed gene, blocks cell cycle and promotes differentiation of neuronal cells. Biochim Biophys Acta. 2012 Nov-Dec;1819(11-12):1173-85. doi: 10.1016/j.bbamcr.2012.08.001. Epub 2012 Aug 19.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22921766
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787793/

Reprinted from Genetics Home Reference: https://ghr.nlm.nih.gov/gene/CDKL5

Reviewed: January 2020
Published: July 7, 2020
