Bad Metals from Fluctuating Density Waves

Blaise Goutéraux

NORDITA, Stockholm

Tuesday August 22, 2017

Asia Pacific Center for Theoretical Physics

Workshop on Geometry and Holography for Quantum Criticality
Acknowledgments

Based on
‘Bad Metals from Fluctuating Density Waves’, [arXiv:1612.04381], and
‘Hydrodynamic transport in phase-disordered charge density wave states’,
[arXiv:1702.05104]
together with Luca Delacrétaz, Sean Hartnoll and Anna Karlsson

My research is supported by a Marie Curie International Outgoing Fellowship, Seventh European Community Framework Programme.
Central motivation: bad metallic transport

Two experimental challenges for theorists [Hussey, Takenaka & Takagi’04]:

- T-linear resistivity violating the MIR bound: no quasiparticles

$$\ell k_F \gtrsim \hbar \quad \Rightarrow \quad \rho \equiv \sigma^{-1} = \frac{m}{ne^2 \tau_{tr}} \lesssim \rho_{MIR} \sim 150 \, \mu\Omega.\text{cm}$$

- Optical conductivity: far IR peak ($\sim 10^2 \text{cm}^{-1}$) moving off axis as T increases to room temperature.
Planckian dynamics

\[\rho = \frac{m}{ne^2\tau_{tr}} \sim T \quad \Rightarrow \quad \tau_{tr} = \tau_P \equiv \frac{\hbar}{k_B T} \]

[Bruin et al, Science 339 804 (2013)]
The Planckian timescale

Universal scale in all systems at finite temperature which follows from dimensional analysis

\[
[\hbar] = J \cdot s, \quad [k_B] = J \cdot K^{-1}, \quad [T] = K \quad \Rightarrow \quad \tau_P = \frac{\hbar}{k_B T}
\]

In strongly-coupled, quantum systems, expected to be the **fastest equilibration time** allowed by Nature and Quantum Mechanics [Sachdev,Zaanen]. At room temperature

\[
\tau_P \sim 25 \text{fs}
\]
Off-axis peaks in optical conductivity data (1)

\(\text{Bi}_2\text{Sr}_2\text{CuO}_6 \)
[PRB 55 14152 (1997)]

\(\text{Ca}_2\text{RuO}_3 \)
[PRB 66 041104 (2002)]

\(\text{La}_{1.9}\text{Sr}_{0.1}\text{CuO}_4 \)
[Phil Mag 84 2847 (2004)]

\(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta} \)
[J. of Phy: Cond Mat 19 125208 (2007)]

\(\text{Na}_{0.7}\text{CoO}_2 \)
[PRL 93 237007 (2004)]

\(\text{Ti}_2\text{Ba}_2\text{CuO}_6+\delta \)
[PRB 51 3312 (1995)]
Off-axis peaks in optical conductivity data (2)

La$_2$126
[PRB 67 134526 (2003)]

θ-(BEDT-TTF)$_2$I$_3$ (a)
[PRL 95 227801 (2005)]

θ-(BEDT-TTF)$_2$I$_3$ (c)
[PRL 95 227801 (2005)]

YBa$_2$(Cu$_{1-x}$Zn$_x$)$_3$O$_{7-\delta}$
[PRB 57 081 (1998)]

V$_2$O$_3$
[PRL 75 105 (1995)]

LiV$_2$O$_4$
[PRL 99 167402 (2007)]
Planckian dynamics in the optical conductivity

\[\hbar \omega_{\text{peak}} \sim k_B T, \quad \hbar \Delta \omega \sim k_B T,\]
- These observations suggest that **Planckian dynamics** is a defining feature of both **ac and dc transport** in bad metals.

- Planckian dynamics also emerge in the **low energy effective description** of strongly-coupled (holographic) quantum matter.

- **Universal** low energy effective theory?
I will offer a theory based on hydrodynamics and spontaneous translation symmetry breaking which
- leads to **small dc conductivities**;
- accounts for the **far IR off-axis peak** in $\sigma(\omega)$;
- naturally **relates** the dc and ac transport timescales.

Disclaimer: effective low energy theory of transport, not a microscopic theory.
Spontaneous translation symmetry breaking

![Diagram showing the phase diagram for spontaneous translation symmetry breaking.]

- **Temperature, T (K)**
 - T_N, T^*
 - Pseudogap
 - Strange metal
 - Charge order
 - Fermi liquid

- **Hole doping, p**
 - p_{min}, p_{c1}, p_{c2}, p_{max}

- **Co concentration, x**
 - T_{SDW}, T_c
 - SDW, SC

- **Pressure, P (kbar)**
 - T_{SDW}, T_c
 - SDW, SC
 - (TMTSF)$_2$PF$_6$
Hydrodynamics

Short-lived quasiparticles: conserved quantities are more fundamental for late-time transport

\[\partial_t \epsilon + \vec{\nabla}\vec{\pi} = 0 \]
\[\partial_t \pi^i + \nabla_k \tau^{ik} = 0 \]
\[\partial_t \rho + \vec{\nabla} j = 0 \]

Hydrodynamics: long wavelength description of the system

[credit: Beekman et al’16]
We also wish to include a CDW:

\[\rho(x) = \rho_0 \cos [Qx + \phi(x, t)] \]

The phase \(\phi(x, t) \) is a new dof coming from the SSB of translations (Goldstone): ‘phonon’ of the electronic crystal.
Constitutive relation for the current and the Goldstone

\[j = nev + \ldots, \quad \dot{\phi} = v + \ldots \]

Standard procedure to extract retarded Green’s functions [Kadanoff & Martin’63].

Weak disorder: finite momentum lifetime \(1/\Gamma_\pi\)

\[\partial_t \pi^i + \nabla_k \tau^{ik} = -\Gamma_\pi^i \]

and pins the Goldstone \(\phi\) with a small mass \(k_0\):

\[f = \frac{\kappa}{2} \phi \left(-\partial^2 + k_0^2 \right) \phi \]
Conductivity of a pinned CDW [Grüner’88]

- Conductivity

\[\sigma = \frac{ne^2}{m} \frac{-i\omega}{(-i\omega)(\Gamma_\pi - i\omega) + \omega_0^2} \]

- Peak at \(\omega_0 = k_0 \sqrt{\kappa/\chi_{\pi\pi}} \),
 width \(\Gamma_\pi \).

- **Dc insulator** due to Galilean invariance.
We wish to describe conducting CDWs. Two mechanisms

1. Relax Galilean symmetry;
2. Introduce phase disordering by mobile dislocations.
Modified constitutive relation for the current

\[j = qv - \sigma_o \nabla \mu + \ldots, \quad \dot{\phi} = v + \ldots \]

\(\sigma_o \) is a **diffusive** transport coefficient encoding charge transport **without momentum drag**.

Conductivity

\[\sigma = \sigma_o + \frac{q^2}{\chi_{\pi\pi}} \frac{-i\omega}{(-i\omega)(\Gamma_\pi - i\omega) + \omega_o^2} \]

Non-zero dc conductivity

\[\sigma_{dc} = \sigma_o + O(\Gamma_\pi) \]

Can be **small** even for weak momentum relaxation: **bad metal**.
However, recall that $\omega_{peak}, \Delta \omega \sim O(1/\tau_P)$: quantum!

Quantum fluctuating cdws in underdoped cuprates [Kivelson et al’03].

Quantum fluctuating cdws in the bad metallic regime?
In 2d, crystals can **melt by proliferation of topological defects** in the crystalline structure [Nelson & Halperin’79].

At \(T = 0 \): quantum melting [Kivelson et al’98, Beekman et al’16].

The phase gets disordered (\(\sim \) BKT) at a rate \(\Omega \): **flow of mobile dislocations**, ‘flux-flow’ formula [arXiv:1702.05104].
Now the conductivity reads

\[
\sigma = \frac{ne^2}{m} \frac{(\Omega - i\omega)}{(\Omega - i\omega)(\Gamma_\pi - i\omega) + \omega_o^2}, \quad \sigma_{dc} = \frac{ne^2}{m} \frac{1}{\Gamma_{CDW}}
\]

\[
\Gamma_{CDW} = \Gamma_\pi + \frac{\omega_o^2}{\Omega}
\]

New transport inverse timescale, **non-zero** even if \(\Gamma_\pi \sim 0\).

Off-axis peak for sufficiently small \(\Omega\) or large pinning \(\omega_o\)

\[
\omega_o \geq \frac{\Omega^3}{\Gamma_\pi + 2\Omega}
\]
Bad metallic transport from fluctuating CDWs

- Neglect momentum relaxation $\Gamma_\pi \ll \omega_0, \Omega$:

$$\sigma_{dc} = \frac{n e^2 \Omega}{m \omega_0^2}$$

- The width and position of the peak are controlled by Ω, ω_0. The data shows $\Omega \sim \omega_0 \sim k_B T/\hbar$

$$\Rightarrow \rho_{dc} = \frac{1}{\sigma_{dc}} \sim \frac{m}{n e^2} \frac{k_B T}{\hbar}$$

T-linear resistivity!

- Hydrodynamics of fluctuating CDWs provide a natural mechanism whereby the ac and dc conductivities are controlled by the same Planckian timescale.
Experimental signatures: spectrum
Experimental signatures: spatially resolved conductivity

\[\sigma_1(\omega, k) \]

\[\omega \]
Resistivity upturns from fluctuating cdws

\[\rho = \frac{m}{ne^2} \Gamma_{CDW}, \quad \Gamma_{CDW} = \Gamma_\pi + \frac{\omega_o^2}{\Omega} \]

An upturn occurs as \(\Omega \) decreases and phase fluctuations dominate \(\Gamma_{CDW} \): relation to underdoped cuprates and static charge order?

Violation of the Wiedeman-Franz law: \(\rho / T \sim 1/\Omega \gg L_o \).
Some open questions

- Typical frequency scales of order T: at the edge of validity of hydrodynamics $\omega \ll T$.

- The role played by the Planckian timescale is indicative of quantum criticality \cite{Sachdev}: quantum critical computation.

- Work in progress: use Gauge/Gravity duality to compute non-hydrodynamic transport in a metallic phase with spontaneously broken translation symmetry.