Counting isolated singularities in germs of applications $\mathbb{C}^n, 0 \rightarrow \mathbb{C}^p, 0 \ n < p$

V. H. Jorge Pérez*

Abstract

In this paper we give a formula for counting the number of isolated stable singularities of a stable perturbation of corank 1 germs $f : \mathbb{C}^n, 0 \rightarrow \mathbb{C}^p, 0$ with $n < p$ that appear in the image $f(\mathbb{C}^n)$. We also define a set of A-invariants and show that their finiteness is a necessary and sufficient condition for the A-finiteness of the germ f.

Key words: Isolated stable singularities, Finite determinacy.

1 Introduction

Let $f : \mathbb{C}^n, 0 \rightarrow \mathbb{C}^p, 0$, be a germ of a map with a finite number of isolated stable singularities or zero-dimensional stable types in the discriminant of f. For example, if $n = 2, p = 3$, the isolated stable singularities in the hypersurface $f(\mathbb{C}^2)$ are the cross-caps and triple points. The main problem is to find an algebraic formula for counting the number of isolated singularities of f.

When $n = 2, p = 3$, D. Mond shows in [10] that the number of cross-cap ($C(f)$) and the number of triple points ($T(f)$) are given by the dimensions of local algebras associated to f.

When $n = 2, p = 2$ J. Rieger [12] shows that the number of cusps is given by the dimension of a local algebra associate to f in the case where f is of corank 1. T. Gaffney and D. Mond [2] give formulae for both the number of cusps and the number of double points for a general finitely-determined map-germ $\mathbb{C}^2, 0 \rightarrow \mathbb{C}^2, 0$.

When $n = p$ W. Marar, J. Montaldi and M.Ruas [8] give formulae for calculating the isolated stable singularities associated to f in the case when f is weighted homogeneous and of corank 1.

*Work partially supported CAPES-PROCAD
In this work we consider the analogous problem for map-germs \(f : \mathbb{C}^n, 0 \rightarrow \mathbb{C}^p, 0 \) with \(n < p \) and give a formula for counting the number of all isolated stable singularities. In particular, if \(f \) is weighted homogeneous, we give a formula for these numbers in terms of the weights of the variables and the degrees of each component of \(f \).

We also define a set of \(\mathcal{A} \)-invariants and show that their finiteness is a necessary and sufficient conditions for the \(\mathcal{A} \)-finiteness of the germ \(f \).

2 Stable types

Our notation are standard in singularity theory. We denote by \(\mathcal{A} \) the group \(\text{Diff}(\mathbb{C}^n, 0) \times \text{Diff}(\mathbb{C}^p, 0) \); this acts on \(\mathcal{O}(n, p) \) the space of germs \(\mathbb{C}^n, 0 \rightarrow \mathbb{C}^p, 0 \), by composition on the right and on the left.

A \(d \)-parameter unfolding of a map-germ \(f_0 \in \mathcal{O}(n, p) \) is a germ \(F \in \mathcal{O}(n+d, p+d) \) of the form \(F(x, u) = (f(x, u), u) \), with \(f(x, 0) = f_0 \). A \(c \)-parameter unfolding \(F' \) de \(f_0 \) is induced from a \(d \)-parameter unfolding \(F \) by a germ \(h : \mathbb{C}^c, 0 \rightarrow \mathbb{C}^d, 0 \) if \((f'(x, v), v) = (f(x, h(v)), v) \). An unfolding \(F \) of \(f_0 \) is \(\mathcal{A} \)-versal if every other unfolding of \(f_0 \) is \(\mathcal{A} \)-equivalent to an unfolding induced from \(F \). An \(\mathcal{A} \)-versal unfolding of \(f_0 \) contains, up to \(\mathcal{A} \)-equivalence, every other unfolding of \(f_0 \).

A map-germ \(f : \mathbb{C}^n, 0 \rightarrow \mathbb{C}^p, 0 \) is \(k \)-\(\mathcal{A} \)-determined if, whenever \(g : \mathbb{C}^n, 0 \rightarrow \mathbb{C}^p, 0 \) and \(j^k f(0) = j^k g(0) \), \(g \) is \(\mathcal{A} \)-equivalent to \(f \), and \(\mathcal{A} \)-finite if it is \(k \)-\(\mathcal{A} \)-determined for some \(k < \infty \). In this paper we shall refer almost exclusively to \(\mathcal{A} \)-finite. We say \(f \) is a stable germ if every nearby germ is \(\mathcal{A} \)-equivalent to \(f \).

Let \(F \) be versal unfolding of \(f \). We say that a stable type \(\mathcal{Q} \) appears in \(F \) if, for any representative \(F = (id, f_s) \) of \(F \), there exists a point \((s, y) \in \mathbb{C}^s \times \mathbb{C}^p \) such that the germ \(f_s : \mathbb{C}^n, S \rightarrow \mathbb{C}^p, y \) is a stable germ of type \(\mathcal{Q} \), where \(S = f^{-1}(y) \cap \Sigma(f_s) \). We call \((s, y) \) and the points \((s, x) \) with \(x \in S \) points of stable type \(\mathcal{Q} \) in the target and in the source, respectively. If \(f \) is stable, we denote the set of points in \(\mathbb{C}^s \times \mathbb{C}^p \) of type \(\mathcal{Q} \) by \(\mathcal{Q}(f) \) and set \(\mathcal{Q}_S(f) = f^{-1}(\mathcal{Q}(f)) - \mathcal{Q}_\Sigma(f) \), where \(\mathcal{Q}_\Sigma(f) \) denotes \(f^{-1}(\mathcal{Q}(f)) \cap \Sigma(f) \).

If \(f \) is \(\mathcal{A} \)-finite, we denote \(\overline{\mathcal{Q}(f)} = (\{0\} \times \mathbb{C}^p) \cap \overline{\mathcal{Q}(F)} \) and \(\overline{\mathcal{Q}_S(f)} = (\{0\} \times \mathbb{C}^n) \cap \overline{\mathcal{Q}_S(F)} \).

We say that \(\mathcal{Q} \) is a zero-dimensional stable type or isolated stable singularity for the pair \((n, p) \) if \(\mathcal{Q}(f) \) has dimension 0 where \(f \) is a representative of the stable type \(\mathcal{Q} \). We observe that \(\mathcal{Q}(F) \) is a close analytic set since \(\overline{\mathcal{Q}(F)} = \cap F((p^{p+1})F^{-1}(\overline{\mathcal{A}z_i})) \), where \(z_i \) is the \(p+1 \) jet of the stable type \(\mathcal{Q} \) and \(\mathcal{A}z_i \) is the \(\mathcal{A} \)-orbit of \(z_i \).
An \mathcal{A}-finite germ f has a discrete stable type if there exist a versal unfolding F of f in which only a finite number of stable types appear. An \mathcal{A}-finite germ f has a discrete stable type if the pair (n, p) is in the nice dimensions (\cite{[7]})

In the next sections we define explicitly the zero-dimensional stable types or stable isolated singularities, that is, we define the ideal that defines each zero dimensional stable type of f.

3 Stable isolated singularities

Consider a versal unfolding F of f with base $\mathbb{C}^d, 0$,

$$F : \mathbb{C}^{n-1} \times \mathbb{C} \times \mathbb{C}^d, 0 \to \mathbb{C}^p \times \mathbb{C}^d, 0$$

$$F(x, y, u) = (x, h_1(x, y, u), ..., h_{p-n+1}(x, y, u), u)$$

For each f we associate a partition $\mathcal{P} = (r_1, ..., r_\ell)$ of k where $p - k(p - n + 1) + \ell = 0$ and consider $\tilde{V}(\mathcal{P}) \subset \mathbb{C}^{n-1} \times \mathbb{C}^\ell \times \mathbb{C}^d, 0$ defined by

$$\tilde{V}(\mathcal{P}) = \text{clos} \left\{ (x, \mathbf{z}, u) \in \mathbb{C}^{n-1} \times \mathbb{C}^\ell \times \mathbb{C}^d \mid \begin{array}{ll}
\mathbf{z} = (z_1, \cdots, z_\ell), & z_i \neq z_j \\
F(x, z_i, u) = F(x, z_j, u) \\
F_u \text{ has a } \mathcal{Q} \text{ 0-dimensinal} \\
\text{stable singularity at}(x, z_j)
\end{array} \right\}$$

where 'clos' means the analytic closure in $\mathbb{C}^{n-1} \times \mathbb{C}^\ell \times \mathbb{C}^d$. The varieties $\tilde{V}(\mathcal{P})$ are called zero-schemes and are related to the 0-stable types (see \cite{[3]}).

Let $\pi_\mathcal{P} : \tilde{V}(\mathcal{P}) \to \mathbb{C}^d$ be the restriction to $\tilde{V}(\mathcal{P})$ of the cartesian projection $\mathbb{C}^{n-1} \times \mathbb{C}^\ell \times \mathbb{C}^d \to \mathbb{C}^d$. For a generic $u \in \mathbb{C}^d$, the fiber $\pi_\mathcal{P}^{-1}(u)$ consists of the multiple points where F_u has a $\mathcal{Q}(f, \mathcal{P})$ multi-germ that defines a zero dimensional stable type. We are thus interested in the degree of $\pi_\mathcal{P}$.

Let $\mathcal{P} = (r_1, \cdots, r_\ell)$ be a partition of $m \leq n$ with $r_1 \geq r_2 \geq \cdots r_\ell \geq 1$. Define $N(\mathcal{P})$ to be the order of the sub group of S_ℓ which fixes \mathcal{P}. Here S_ℓ acts on \mathbb{R}^ℓ by permuting the coordinates. For example, if $\mathcal{P} = (4, 4, 4, 2, 2, 1, 1)$ we have $N(\mathcal{P}) = (3!)^2 2!$.

Proposition 3.1. If $\mathcal{P} = (r_1, ..., r_\ell)$ is a partition of k, then

$$\sharp \mathcal{Q}(f, \mathcal{P}) = \frac{1}{N(\mathcal{P})} \deg(\pi_\mathcal{P}).$$
Proof Let \(y = (x, y_1, ..., y_\ell, u) \in \tilde{V}(\mathcal{P}) \) and \(\sigma \in S_\ell \). We have
\[y_\sigma = (y_{\sigma(1)}, ..., y_{\sigma(\ell)}, u) \in \tilde{V}(\mathcal{P}) \]
if and only if \(r_{\sigma(j)} = r_j \) for each \(j = 1, ..., \ell \). There are \(N(\mathcal{P}) \) such \(\sigma \). The points \(y \) and \(y_\sigma \) are distinct, but the corresponding sets \(\{x, y_1, ..., y_\ell\} \) are the same, and it is the contribution of the multiple points that are counted in \(\sharp \mathbb{Q}(f, \mathcal{P}) \).

Let \(I(\tilde{f}, \mathcal{P}) \) be the ideal in \(\mathcal{O}_n^{-1+\ell+d} \) that defines \(\tilde{V}(\mathcal{P}) \), and let
\[I(f, \mathcal{P}) = \frac{(I(\tilde{f}, \mathcal{P}) + <u_1, ..., u_d>)}{<u_1, ..., u_d>} \subset \mathcal{O}_n^{-1+\ell} \]
be the ideal corresponding to the intersection of \(\tilde{V}(\mathcal{P}) \) with \(\mathbb{C}^{n-1+\ell} \times \{0\} \).

It follows from the definition of \(I(\tilde{f}, \mathcal{P}) \) that, at generic points of \(\tilde{V}(\mathcal{P}) \) with \(z_i \neq z_j \), \(I(\tilde{f}, \mathcal{P}) = ((\{\frac{\partial f}{\partial z_i} \circ \pi_i(\mathcal{P})\} | j = 1, ..., p-n+1, 1 \leq s \leq r_i-1, 1 \leq i \leq m\}) + ((\{\tilde{f}_j \circ \pi_i(\mathcal{P}) - \tilde{f}_j \circ \pi_i(\mathcal{P})\} | j = 1, ..., p-n+1, 2 \leq i \leq m\}) \) in \(\mathcal{O}_n^{-1+\ell+d} \), \((x, z)\), where \(\pi_i(\mathcal{P}) : \mathbb{C}^{n-1+\ell} \to \mathbb{C}^{n}, 1 \leq i \leq m \), are given by \(\pi_i(\mathcal{P})(x, z_1, ..., z_\ell) = (x, z_{r_1} + ... + z_{r_i}+1) \). In particular, at generic point of \(\tilde{V}(\mathcal{P}) \), we have
\[\frac{\mathcal{O}_n^{-1+\ell+d}}{(m_d, I(f, \mathcal{P}))} \cong \frac{\mathcal{O}_n^{-1+\ell}}{I(f, \mathcal{P})} \]
where \(m_d \) is the maximal ideal of \(\mathbb{C}^d \).

Proposition 3.2. Suppose that \(\tilde{V}(\mathcal{P}) \) is non-empty. Then

1. \(\tilde{V}(\mathcal{P}) \) is smooth of dimension \(d \);
2. \(\pi_\mathcal{P} : \tilde{V}(\mathcal{P}) \to \mathbb{C}^d \) is finite and \(\pi_\mathcal{P}^{-1}(\pi_\mathcal{P}(0)) = \{0\} \);
3. The degree of \(\pi_\mathcal{P} \) coincides with \(\dim_{\mathbb{C}} \frac{\mathcal{O}_n^{-1+\ell}}{I(f, \mathcal{P})} \).

Proof 1. Since \(F \) is a versal unfolding, it is stable, and the proof follows by Propositions 2.13 in \([\text{II}]\).

2. The projection \(\pi_\mathcal{P} : \tilde{V}(\mathcal{P}) \to \mathbb{C}^d \) is finite. In fact, for \(u \in \mathbb{C}^d \) generic, the fiber \(\pi_\mathcal{P}^{-1}(u) \) is finite and consists of those multi-points where \(f_u \) has a \(\mathbb{Q}(f_u, \mathcal{P}) \) multi germ. The germ \(f_0 = f \) is \(\mathcal{A} \)-finite, so using the geometric criterion of Mather-Gaffney (\([\text{II}], [\text{II}3]\)), it is stable away from zero. Thus \(\pi_\mathcal{P}^{-1}(\pi_\mathcal{P}(0)) = \{0\} \).

3. Since \(\tilde{V}(\mathcal{P}) \) is smooth and it is Cohen-Macaulay at zero, the degree of \(\pi_\mathcal{P} \) coincides with \(\dim_{\mathbb{C}} \frac{\mathcal{O}_n^{-1+\ell}}{I(f, \mathcal{P})} \) (see Proposition 5.12 in \([\text{II}]\)). \(\square \)
Propositions 3.1 and 3.2 (3) give a formula for computing the multiplicities of \(\mathcal{Q}(f, \mathcal{P}) \) even in the case when \(f \) is not weighted homogeneous. We have

\[
\sharp \mathcal{Q}(f, \mathcal{P}) = \frac{1}{\dim \mathcal{P}} \dim_c \frac{\mathcal{O}_{n-1+\ell}}{I(f, \mathcal{P})}.
\]

The \(\dim_c \frac{\mathcal{O}_{n-1+\ell}}{I(f, \mathcal{P})} \) is not difficult to calculate, when \(I(f, \mathcal{P}) \) can be computed. The calculation can be done using computer algebra package such as Singular [5] or Macaulay.

Example 3.3. Let \(f : \mathbb{C}^2, 0 \to \mathbb{C}^3, 0 \) be the \(\mathcal{A} \)-finite germ given by

\[
f(x, y) = (x, x^2 y + y^6 + y^7, xy^2 + y^4 + y^6 + y^9).
\]

We choose the partition \(\mathcal{P} \) of \(k \) such that \(k = \frac{3+\ell}{2} \in \mathbb{Z}^+ \). Then \(\mathcal{P} \) has two elements \((1, 1, 1)\) and \((2)\). We have

\[
I(f, (2)) = (x^2 + 6y^5 + 7y^6, 2xy + 4y^3 + 6y^5 + 9y^8) \quad \text{and} \quad I(f, (1, 1, 1)) = (-5z_1^6 + x^2 - 4z_1^2 z_3^2 - 4z_1^4 z_3^4 - 2z_1 z_3^3 - 8z_1^2 z_3^3 - 8z_1^4 z_3^3 - 4z_1^5 - 6z_1^3 z_3^2 - 2z_1 z_3^3 - 10z_3 z_1^5 + 3z_1^2 z_3^2 + 3z_1^4 z_3^4 + 2z_1 z_3^3 + 5z^4 z_3 + 2z_1 z_3^5 + 6z_1^3 z_3^3 + 4z_1^5 z_3^3 + z_3^3 + 5z_1^4 + z_3^3 - 2z_1^4 + 3z_1 - 7z_1^3 - 6z_1^5 z_3^3 - 10z_3^2 z_1^5 - 8z_1^3 z_3^4 - 4z_1^3 z_3^3 - 2z_1 z_3^3 - 8z_1^4 z_3^3 - 4z_1^5 z_3^3 - 2z_1 z_3^2 - 14z_3 z_1^4 - 4z_1^3 z_3^2 - 4z_1^5 z_3^2 - 12z_3 z_1^5 z_3 + x + 8z_1^5 + 4z_1^3 + 4z_1^5 + 3z_1^3 + z_3^2 + 2z_1 z_3^6 + 7z_3 z_1^6 + 2z_1 z_3^6 + 4z_3 z_3^3 + 6z_3 z_3^3 + 2z_1 z_3 + 3z_1^3 + z_3^3 + 5z_3 z_3^4 + z_3^3 + 3z_1^4 + 5z_1^3 + z_3^4).
\]

Using Theorem 3.2 and Singular we have \(\sharp \mathcal{Q}(f, (2)) = 6 \) and \(\sharp \mathcal{Q}(f, (1, 1, 1)) = 14 \).

4 Multiple points

We need the following definition. Given a continuous mapping \(f : X \to Y \) between analytic spaces, we define the \(k^{th} \) multiple point space of \(f \) as

\[
D_k(f) = \text{clos}\{(x_1, x_2, ..., x_k) \in X^k : f(x_1) = ... = f(x_k) \text{ for } x_i \neq x_j, i \neq j\}.
\]

Suppose \(f : \mathbb{C}^n, 0 \to \mathbb{C}^n, 0 \) is of corank 1 and is given in the form

\[
f(x_1, ..., x_{n-1}, z) = (x_1, ..., x_{n-1}, h_1(x, z), ..., h_{p-n+1}(x, z)).
\]

If \(g : \mathbb{C}^n, 0 \to \mathbb{C}, 0 \) is an analytic function then we define \(V_k^i(g) : \mathbb{C}^{n+k-1}, 0 \to \mathbb{C}, 0 \) to be

\[
\begin{pmatrix}
1 & z_1 & \cdots & z_1^{i-1} & g(x, z_1) & z_1^{i+1} & \cdots & z_1^{k-1} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & z_k & \cdots & z_k^{i-1} & g(x, z_k) & z_k^{i+1} & \cdots & z_k^{k-1}
\end{pmatrix}
\]

and

\[
\begin{pmatrix}
1 & z_1 & \cdots & z_1^{i-1} & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & z_k & \cdots & z_k^{i-1}
\end{pmatrix}
\]
Theorem 4.1. \((\mathbb{R})\) \(D^k(f, \mathcal{P}) = D^k(f)\) is defined in \(\mathbb{C}^{n+k-1}\) by the ideal \(\mathcal{I}^k(f)\) generated by \(V^i(\pi_j(x, z))\) for all \(i = 1, \ldots, k-1\), \(\mathcal{P} = (1, \ldots, 1)\)-\(k\) times and \(j = 1, \ldots, p-n+1\).

In what follows we take coordinates in \(\mathbb{C}^{n+k-1} = \mathbb{C}^{n-1} \times \mathbb{C}^k\) to be \((x, z) = (x_1, \ldots, x_{n-1}, z_1, \ldots, z_k)\).

Example 4.2. For a corank 1 map-germ \(f : \mathbb{C}^n, 0 \to \mathbb{C}^p, 0\), \(D^2(f)\) is defined by \(\frac{h_i(x, z_1) - h_i(x, z_2)}{z_1 - z_2}\), \(i = 1, \ldots, p-n+1\).

Definition 4.3. Let \(\mathcal{P} = (r_1, r_2, \ldots, r_\ell)\) be a partition of \(k\) where \(p-k(p-n+1) + \ell = 0\), that is, \(r_1 + r_2 + \ldots + r_\ell = k\). Let \(\mathcal{I}(\mathcal{P})\) be the ideal in \(\mathcal{O}_{n-1+k}\) generated by the \(k-\ell\) elements \(z_i - z_{i+1}\) for \(r_1 + r_2 + \ldots + r_j - 1, 1 \leq j \leq \ell\), and let \(\Delta(\mathcal{P}) = V(\mathcal{I}(\mathcal{P}))\). Define

\[
\mathcal{J}_\Delta(f, \mathcal{P}) = \mathcal{I}^k(f) + \mathcal{I}(\mathcal{P}) \text{ and } D^\ell(f, \mathcal{P}) = V(\mathcal{J}_\Delta(f, \mathcal{P})),
\]

equipped with the sheaf structure in \(\mathcal{O}_{n-1+k}/\mathcal{J}_\Delta(f, \mathcal{P})\).

Example 4.4. For an \(A\)-finite of corank 1 map germ \(f \in \mathcal{O}(2, 3)\), the stable types of \(f(\mathbb{C}^2)\) are \(D^2_1(f, (1, 1)) = D^2(f)\) (the set of double points), \(f(D^1_1(f, (2)))\) (the set of cross-cap points) and \(D^3(f, (1, 1, 1)) = D^3(f)\) (the set of triple points).

The geometric significance of \(D^\ell(f, \mathcal{P})\) is given in Lemma 2.7 [6] by W. Marar and D. Mond. Given a partition \(\mathcal{P} = (r_1, \ldots, r_\ell)\) of \(k\), define the projections \(\pi_i(\mathcal{P}) : \mathbb{C}^{n-1+k} \to \mathbb{C}^n\), for \(1 \leq i \leq m\), by \(\pi_i(\mathcal{P})(x, z_1, \ldots, z_k) = (x, z_{r_1+\ldots+r_{i-1}+1})\).

Lemma 4.5. \((\mathbb{R})\) Let \(\mathcal{P} = (r_1, \ldots, r_\ell)\) be a partition of \(k\). At a generic point \((x, z)\) of \(\Delta(\mathcal{P})\) we have

\[
\mathcal{J}_\Delta(f, \mathcal{P}) = \mathcal{I}(\mathcal{P}) + \left\{\frac{\partial^s f_j}{\partial z_i^s} \circ \pi_i(\mathcal{P}) | j = 1, \ldots, p-n+1, 1 \leq s \leq r_i - 1, 1 \leq i \leq \ell\right\} + \left\{f_j \circ \pi_1(\mathcal{P}) - f_j \circ \pi_i(\mathcal{P}) | j = 1, \ldots, p-n+1, 2 \leq i \leq \ell\right\},
\]

in \(\mathcal{O}_{n-1+k}(x, z)\).

In view of Lemma 4.3, a generic point of \(V(\mathcal{J}_\Delta(f, \mathcal{P}))\) is of the form \((x, z_1, \ldots, z_1, z_2, \ldots, z_2, \ldots, z_\ell, \ldots, z_\ell)\) with \(x \in \mathbb{C}^{n-1}\), \(z^i \in \mathbb{C}, z^i\) iterated \(r_i + 1\) times, \(z^i \neq z^j\) for \(i \neq j\), \(f(x, z^1) = \cdots = f(x, z^\ell)\). The local algebra of \(f\) at \((x, z^i)\) is isomorphic to \(\mathbb{C}[z^i]/(z^i)^{r_i+1}\).

In Corollary 2.15 in [6] is obtained the following result. If \(f\) is \(A\)-finite then for each partition \(\mathcal{P} = (r_1, \ldots, r_\ell)\) of \(k\) satisfying \(p-k(p-n+1) + \ell \geq 0\), the germ of \(D^k(f, \mathcal{P})\) at 0 is either an ICIS of dimension \(p-k(p-n+1) + \ell\) or is empty.
Proposition 4.6. Let \(F = (u, f) \) be a versal unfolding of an \(A \)-finite germ of corank 1. Then for each partition \(P \) of \(k \) where \(p - k(p - n + 1) + \ell = 0 \), we have the following.

1. \(D^\ell(F, P) \) is smooth of dimension \(s \) or is empty.
2. \(J_\Delta(f, P) \) is an ICIS.
3. Let \(j_\ell : C^{n-1} \times C^\ell \to C^{n-1} \times C^k \) be the embedding with image \(\Delta(P) \). Then the surjection \(j_\ell^* : O_{n-1+k} \to O_{n-1+\ell} \) satisfies \(j_\ell^*(J_\Delta(f, P)) = I(f, P) \) and consequently induces an isomorphism

\[
j_\ell^* : \frac{O_{n-1+k}}{J_\Delta(f, P)} \to \frac{O_{n-1+\ell}}{I(f, P)}.
\]

Proof The items 1 and 2 follow from \([6]\).

3. It follows from Lemma 2.7 \([6]\) (see also Lemma 4.5 above) that at generic points of \(\Delta(P) \) one has,

\[
J_\Delta(f, P) = I(P) + \{ \frac{\partial f_j}{\partial z_s} \circ \pi_i(P) | j = 1, \ldots, p - n + 1, 1 \leq s \leq r_i - 1, 1 \leq i \leq \ell \} + \{ f_j \circ \pi_1(P) - f_j \circ \pi_i(P) | j = 1, \ldots, p - n + 1, 2 \leq i \leq \ell \}.
\]

So generically \(j_\ell^*(J_\Delta(f, P)) = I(f, P) \) and as the two are reduced complete intersection ideals coincide we have,

\[
\frac{O_{n-1+k}}{J_\Delta(f, P)} \cong \frac{O_{n-1+\ell}}{I(f, P)}.
\]

\(\square \)

5 The weighted homogeneous case

In what follow we consider weighted homogeneous germs \(f : C^n, 0 \to C^p, 0 \). and write \(f = (f_1, f_2, \ldots, f_p) \) The germ \(f \) is weighted homogeneous if there exist positive integers \(w_1, w_2, \ldots, w_n \), (the weights) and positive integers \(d_1, d_2, \ldots, d_p \) (the degrees) such that for each \(f_i \) we have

\[
f_i(t^{w_1}x_1, \ldots, t^{w_n}x_n) = t^{d_i} f_i(x_1, \ldots, x_n),
\]

or equivalently

\[
\sum_{j=1}^n w_j \alpha_j = d_i,
\]

for each monomial \(x_1^{\alpha_1} \cdots x_n^{\alpha_n} \) of \(f_i \).

We give below a formula for calculating the number of isolate singularities in the case of a weighted homogeneous germ of corank 1.
Theorem 5.1. Let $f = (x, f_1, \ldots, f_{p-n+1}) : \mathbb{C}^n, 0 \to \mathbb{C}^p, 0$ be an \mathcal{A}–finite germ de
corank 1, with weighted w_i and degree d_i of f_i. Then

$$\dim_{\mathbb{C}} \mathcal{O}_{\mathbb{C}^{n-1+\ell}} = \frac{1}{w^\ell w_n} \prod_{j=1}^{p-n+1} \prod_{i=1}^{r_i-1} (d_j - iw_n) \prod_{m=2}^{\ell} \prod_{j=1}^{p-n+1} (d_j - mw_n)$$

where $w = w_1, w_2, \ldots, w_{n-1}$.

Proof According to Proposition 4.6 (3) and Lemma 4.5 it is enough to compute

$$\dim_{\mathcal{J}_k(f, \mathcal{P})}$$

using Bezout’s theorem since f is weighted homogeneous, this dimension can be computed

The generators of $\mathcal{J}_k(f, \mathcal{P})$ are $h_{ij} = \frac{\partial f_j}{\partial x_i} \circ \pi_i(\mathcal{P})$, $z_i - z_{i+1}$ and $g_{ij} = f_j \circ \pi_1(\mathcal{P}) - f_j \circ \pi_1(\mathcal{P})$ for each $j = 1, \ldots, n-p+1, i = 1, \ldots, \ell$ and $s = 1, \ldots, r_i - 1$. The degree of h_{ij} is $d_j - sw_n$, the degree of $z_i - z_{i+1} = w_n$ for all i and the degree of g_{ij} is $d_j - mw_n$, where $m = 2, \ldots, \ell$. The product of all the degrees of the generators is therefore

$$\prod_{j=1}^{n-p+1} \prod_{i=1}^{r_i-1} (d_j - iw_n) \prod_{m=2}^{\ell} \prod_{j=1}^{p-n+1} (d_j - mw_n).w_n^{k-\ell}.$$

Since $\mathcal{J}_k(f, \mathcal{P})$ is a weighted homogeneous complete intersection, we can apply

Bezout’s Theorem, hence its colength is given by

$$\frac{1}{w^k \cdot w} \prod_{j=1}^{p-n+1} \prod_{i=1}^{r_i-1} (d_j - iw_n) \prod_{m=2}^{\ell} \prod_{j=1}^{p-n+1} (d_j - mw_n).w_n^{k-\ell}$$

as required.

Example 5.2. Let $f : \mathbb{C}^2, 0 \to \mathbb{C}^3, 0$ be an \mathcal{A}–finite germ given by $f(x, y) =
(x, xy + y^3, y^4)$ (see [10]). Then the partition \mathcal{P} is $(1, 1, 1)$ and (2) and the weights and
degrees are $d_1 = 3, d_2 = 4$ and $w_1 = 2, w_2 = 1$. Therefore $\sharp \mathcal{Q}(f, (1, 1, 1)) = 1,$
$\sharp \mathcal{Q}(f, (2)) = 2$, that is f has 1 triple point and 2 cross caps (see [10]).

Let $f : \mathbb{C}^4, 0 \to \mathbb{C}^4, 0$ be an \mathcal{A}–finite germ given by $f(x, y, z) = (x, y, yz + z^4, xz + z^3)$. The partition \mathcal{P} is $(1, 1, 1)$ and $(2, 1)$ and the weights and degrees are $d_1 = 4, d_2 = 3$ and $w_1 = 2, w_2 = 3, w_3 = 1$. Therefore

$$\sharp \mathcal{Q}(f, (2, 1)) = \frac{(4 - 3)(3 - 1)(4 - 1)(3 - 1)}{2.3.1^2} = 2$$

and $\sharp \mathcal{Q}(f, (1, 1, 1, 1)) = 0$, that is f has 2 singularities of type $\mathcal{Q}(f, (2, 1))$ and
has not quadruple points. In particular applying Theorem 5.1 or the method of
Example 3.3 all corank-1 simple germs \(f : \mathbb{C}^3, 0 \to \mathbb{C}^4, 0 \) classified by Houston and Kirk in \([9]\) satisfy

\[\sharp \mathcal{Q}(f, (1, 1, 1, 1)) = 0. \]

Observe that if \(\mathcal{P} = (2, 1) \) and \(f : \mathbb{C}^3, 0 \to \mathbb{C}^4, 0, V(\mathcal{J}_\Delta(f, (2, 1))) \subset \mathbb{C}^5 \) and \(V(I(f, (2, 1))) \subset \mathbb{C}^4 \) are isomorphic. Hence \(\mu(V(\mathcal{J}_\Delta(f, (2, 1)))) = \mu(V(I^3(f) + \mathcal{I}(2, 1))) = \mu(D^3(f)|H) \) where \(H = V(\mathcal{I}(2, 1)) \), therefore as \(V(\mathcal{J}_\Delta(f, (2, 1))) \) is ICIS zero-dimensional, we have

\[\mu(D^3(f)|H) = \dim_\mathbb{C} \frac{\mathcal{O}_5}{(I^3(f) + \mathcal{I}(2, 1))} - 1 = \dim_\mathbb{C} \frac{\mathcal{O}_4}{I(f, (2, 1))} - 1 = \sharp \mathcal{Q}(f, (2, 1)) - 1, \]

as Houston and Kirk compute \(\mu(D^3(f)|H) \), we calculate \(\sharp \mathcal{Q}(f, (2, 1)) \) in the table below.

| Label | Singularity | \(\mu(D^3(f)|H) \) | \(\sharp \mathcal{Q}(f, (2, 1)) \) |
|-------|--------------------------------------|----------------------|----------------------------------|
| \(P_1 \) | \((x, y, yz + z^4, xz + z^3)\) | 1 | 2 |
| \(P_2 \) | \((x, y, yz + z^5, xz + z^3)\) | 2 | 3 |
| \(P_3^k \) | \((x, y, yz + z^6 + z^{3k+2}, xz + z^3)\) | 3 | 4 |
| \(P_4^1 \) | \((x, y, yz + z^7 + z^8, xz + z^3)\) | 4 | 5 |
| \(P_4 \) | \((x, y, yz + z^7, xz + z^3)\) | 4 | 5 |
| \(Q_k \) | \((x, y, xz + y^2 z^2, y^k z + z^3)\) | 1 | 2 |
| \(R_k \) | \((x, y, xz + z^3, yz^2 + z^4 + z^{2k-1})\) | 2 | 3 |
| \(S_{j,k} \) | \((x, y, xz + y^j z^2 + z^{3j+2}, z^3 + y^k z)\) | 3 | 4 |

6 Necessary and sufficient conditions for \(\mathcal{A} \)-finiteness of map-germs

In this section we define new numerical invariants associated to each partition \(\mathcal{P} \) of \(k \) with \(p - k(p - n + 1) + \ell \geq 0 \). We show that a germ \(f \) is \(\mathcal{A} \)-finite if and only if these invariants are finite.

For any partition \(\mathcal{P} \) of \(k \), \(p - k(p - n + 1) + \ell \geq 0 \), denote by \(H_{\mathcal{P}} \) the map defined by

\[H_{\mathcal{P}} : \mathbb{C}^{n-1+\ell} \to \mathbb{C}^{(p-n+1)(k-\ell)} \]

with components \(\frac{\partial f_j}{\partial z_s} \circ \pi_i(\mathcal{P}) \) for \(j = 1, \ldots, p - n + 1, 1 \leq s \leq r_i - 1, 1 \leq i \leq \ell \) and

\[G_{\mathcal{P}} : \mathbb{C}^{n-1+\ell} \to \mathbb{C}^{(p-n+1)(\ell-1)} \]

with components \(f_j \circ \pi_1(\mathcal{P}) - f_j \circ \pi_i(\mathcal{P}) \) for \(j = 1, \ldots, p - n + 1, 2 \leq i \leq \ell \).
Let

$$F_P = (G_P, H_P) : \mathbb{C}^{n-1+\ell} \to \mathbb{C}^{(p-n+1)(k-1)},$$

and define the following number

$$N(f, \mathcal{P}) = \dim_{\mathbb{C}} \frac{\mathcal{O}_{n-1+\ell}}{F_P^*(\mathcal{M}_{(p-n+1)(k-1)}) + J(F_P)}$$

where $J(F_P)$ denotes the ideal of $(p-n+1)(k-1) \times (p-n+1)(k-1)$ minors and $\mathcal{M}_{(p-n+1)(k-1)}$ is the maximal ideal in $\mathcal{O}_{(p-n+1)(k-1)}$.

We first show that $N(f, \mathcal{P})$ is \mathcal{A}-invariant.

Proposition 6.1. Let f_1 and f_2 be corank 1, \mathcal{A}-finite and \mathcal{A}-equivalent maps germs. Then $N(f_1, \mathcal{P}) = N(f_2, \mathcal{P})$.

Proof It is sufficient to prove that if f_1 is \mathcal{A}-equivalent to f_2, then the germs defined above, F_{1P} associated to f_1 and F_{2P} associated to f_2, are \mathcal{K}-equivalent. The last statement follows from [10].

Theorem 6.2. Let $f : \mathbb{C}^n, 0 \to \mathbb{C}^p, 0, n < p$ be a corank 1 germ. Then following statements are equivalent:

1. f is an \mathcal{A}-finite.

2. $N(f, \mathcal{P}) < \infty$, where \mathcal{P} is $(1, 1, \ldots, 1, 1)$-times and $\sharp \mathcal{Q}(f, \mathcal{P}) < \infty$ for each partition \mathcal{P} of k where $p - k(p - n + 1) + \ell \geq 0$.

Proof (1) \implies (2) f is \mathcal{A}-finite if and only if for any representative of f there exist neighborhoods U of 0 in \mathbb{C}^n and V of 0 in \mathbb{C}^p, with $f(U) \subset V$, such that for all $y \neq 0$ in V, the multi germ $f : (U, f^{-1}(y) \cap \Sigma(f)) \to (V, y)$ is stable. If follows from Proposition 2.13 in [6] that if f is of type $\Sigma^1_{r, 0}$ in (x, y_i), with $y_i \in f^{-1}(y) \cap \Sigma(f)$ then F_P defining $V(J_{\Delta}(f, \mathcal{P}))$ is a submersion at (x, y_1, \ldots, y_k). Then at every point of $V(J_{\Delta}(f, \mathcal{P}))$, distinct from 0, the $(p-n+1)(k-1)$ functions generating $J_{\Delta}(f, \mathcal{P})$ define a submersion, and so $V(J_{\Delta}(f, \mathcal{P}))$ is ICIS. Therefore $V(F_P^*(\mathcal{M}_{(p-n+1)(k-1)}) + J(F_P))$, for each partition k where $p - k(p - n + 1) + \ell \geq 0$, is zero in $\mathbb{C}^{n-1+\ell}$. Hence $V(F_P^*(\mathcal{M}_{(p-n+1)(k-1)}) + J(F_P)) \subset \{0\}$ and by Nullstellensatz we have $N(f, \mathcal{P}) < \infty$.

(1) \iff (2) if $N(f, \mathcal{P}) < \infty$ we have $V(F_P^*(\mathcal{M}_{(p-n+1)(k-1)}) + J(F_P)) \subset \{0\}$, that is $V(F_P^*(\mathcal{M}_{(p-n+1)(k-1)}))$ have isolated singularities in $\{0\}$ for each partition \mathcal{P}, in particular for $(1, 1, \ldots, 1, 1)-k - 1$ times and for all partition \mathcal{P} of k where, $p - k(p - n + 1) + \ell = 0$. We choose representative $f : U \subset \mathbb{C}^n \to V \subset \mathbb{C}^p,$
such that the representatives induced by the germs of $F_{\mathcal{P}}^{-1}(0)$ are differentiable. With this we have the multi germ $f : (U, S) \to (V, z)$, where $S = f^{-1}(z)$, which is stable for $z \neq 0$. The result follows then by the geometric criterion of Mather and Gaffney [4].

Example 6.3. Let $f : (\mathbb{C}^3, 0) \to (\mathbb{C}^4, 0)$ be given by

$$f(x, y, z) = (x, y, xz + z^3, yz^2 + g(z))$$

where $g(z) = \Sigma_{i=1}^{k} a_i z^i$. Then f is A-finite for all a_i. The partitions \mathcal{P} are $(1, 1, 1, 1), (1, 1, 1), (1, 1), (2, 1)$ and (2) and the stable types of f are: $D^1(f, (1, 1, 1, 1))$ which is empty, the triple points curve $D^3(f, (1, 1, 1))$, the types 2-dimensional $D^2(f, (1, 1))$, the types 1-dimensional $D^1(f, (2))$ and the zero-dimensional types $D^2(f, (2, 1))$. We compute the maps $F_{\mathcal{P}}$ for all partitions \mathcal{P} using Maple.

If $\mathcal{P} = (1, 1, 1)$, then $F_{\mathcal{P}}(x, y, z, v, w) = (x - (zw + zv + vw), zv + w, V_1^3(g), y + V_2^3(g))$ where $V_i^k(g)$ is computed using the Definition given in the section [4]

If $\mathcal{P} = (1, 1)$, then $F_{\mathcal{P}}(x, y, z, v) = (x + z^2 + zv + v^2, y(z + v) + V_1^2(g))$.

Using the software Singular [5] we have

$$N(f, (1, 1, 1)) = \dim_{C}\frac{\mathcal{O}_{\mathbb{C}^3}(\{x-(zw+zw+vw), z+v+w, V_1^3(g), y+V_2^3(g), F(P)\})}{0 \text{ if } a_1 = a_2 = 0 \quad 2 \text{ if } \ell(g) = 3 \quad 5 \text{ if } \ell(g) = 4 \quad 20 \text{ if } \ell(g) = 5 \quad 17 \text{ if } \ell(g) = 6 \quad 26 \text{ if } \ell(g) = 7}$$

where $\ell(g)$ denote the lowest degree in g.

$$N(f, (1, 1)) = \begin{cases} \ell(g) - 1 & \text{if } \ell(g) \text{ is odd} \\ \ell(g) & \text{if } \ell(g) \text{ is even.} \end{cases}$$

The ideal that defines $D^2(f, (2, 1))$ is given by $\mathcal{I}^3(f) + \mathcal{I}(\mathcal{P})$ where $\mathcal{I}^3(f)$ defines $D^3(f) = D^3(f, (1, 1, 1))$ and $\mathcal{I}(\mathcal{P}) = v - w$. Then $D^2(f, (2, 1)) = D^3(f, (1, 1, 1)) \cap H$, and $D^2(f, (2, 1)) = V(x - (zv + zw + vw), z + v + w, V_1^3(g), y + V_2^3(g), v - w) \subset \mathbb{C}^2 \times \mathbb{C}^3$. If $\mathcal{P} = (2, 1)$, we have $F_{\mathcal{P}}(x, y, z, v) = (x - (zv + zv + v^2), z + 2v, V_1^3(g)(z, v), y + V_2^3(g)(z, v))$, then $N(f, (2, 1)) < \infty$.

The ideal $\mathcal{I}^2(f) + \mathcal{I}(\mathcal{P})$ defines $D^1(f, (2))$ where $\mathcal{I}^2(f)$ defines $D^2(f) = D^2(f, (1, 1))$ and $\mathcal{I}(\mathcal{P}) = v - z$. We have $D^1(f, (2)) = D^2(f, (1, 1)) \cap H$, where $H = V(v - w) \subset \mathbb{C}^2 \times \mathbb{C}^2$ is a hyperplane. Therefore $D^1(f, (2)) = V(x + z^2 + zv + v^2, y(z + v) + \ldots$
\[V^2_1(g), v - z \subset \mathbb{C}^2 \times \mathbb{C}^2. \] If \(\mathcal{P} = (2) \) we have \(F_\mathcal{P}(x, y, z) = (x + 3z^2, 2zy + V^2_1(g)(z, z)) \), and therefore \(N(f, (2)) < \infty \) for all \(a_i \).

Remark 6.4. Observe that if \(g(z) = z^2 + z^7 \) and \(g(z) = z^5 + z^6 + z^7 \), then the germs

\[
\begin{align*}
 f_1(x, y, z) &= (x, y, xz + z^3, yz^2 + z^2 + z^7) \\
 f_2(x, y, z) &= (x, y, xz + z^3, yz^2 + z^5 + z^6 + z^7)
\end{align*}
\]

are not \(\mathcal{A} \)-equivalent as \(N(f_1, (1, 1)) \neq N(f_2, (1, 1)) \).

The number of invariants above involved depends on the dimensions \((n, p)\), and this number is large when \(n \) and \(p \) are large. It is then natural to ask: Fixing a pair \((n, p)\), what is the minimum number of invariants \(N(f, \mathcal{P}) \) are necessary and sufficient to ensure \(\mathcal{A} \)-finiteness of the germ \(f \)? Then we have the following.

Problem: Fixing a pair \((n, p)\), The numbers of invariants \(N(f, \mathcal{P}) \) where \(\mathcal{P} \) is the partition of \(k \) such that \(p - k(p - n + 1) + \ell = 0 \), are necessary and sufficient to ensure \(\mathcal{A} \)-finiteness of the germ \(f \)?

This question has been answered for the cases:

Remark 6.5. when \(n = 2 \) and \(p = 3 \), the answer is given by D. Mond in [10]. Then \(f \) is \(\mathcal{A} \)-finite if and only if the number of cross caps \(C(f) \), the number triple points \(T(f) \) and \(N(f) < \infty \) are finites. It turns out that \(N(f) = N(f, (1, 1)) \).

In the case \(n = p = 2 \) Gaffney and Mond [1] showed that \(f \) is \(\mathcal{A} \)-finite if and only if the number of cusps number \(c(f) \), the number double folds points \(d(f) \) are finite.

Acknowledgements. I would like to thanks to Farid Tari for discussions and numerous remark on mathematics and English usage of the paper.

References

[1] T. Gaffney and D.M.Q. Mond, Cusps and double folds germs of analytic maps \(\mathbb{C}^2 \to \mathbb{C}^2 \), J. London Math. Soc. (2) 43 (1991), 185-192.

[2] T. Gaffney D. Mond, Weighted homogeneous maps from the plane to the plane Math. Proc. Camb. Phil. Soc. vol.109 (1991), 451-470.

[3] T. Gaffney, Multiple points and associated ramification loci., Proceedings of A.M.S. Symposia in Pure Mathematics, 40:I (1983), 429-437
[4] T. Gaffney, Properties of finitely determind germs. Ph.D thesis, Brandeis University, 1976.

[5] G. M. Greuel, G. Pfister, H. Schonemann, SINGULAR. A computer algebra system for polynomial computations. University of Kaiserlautern (2001), http://www.singular.uni-kl.de.

[6] W.L. Marar, D. Mond, Multiple point schemes for corank 1 maps, J. London math. soc.,(2) vol. 39 (1989), 553-567.

[7] J. Mather, Stability of C^∞ mappings: IV classification of stable germs by \mathbb{R} algebras, Publ. Math. IMES, 37 (1970), 223-248.

[8] W.L. Marar, J. A. Montaldi, M.A.S. Ruas, Multiplicities of zero-schemes in quasihomogeneous corank 1 singularities $\mathbb{C}^n \to \mathbb{C}^n$, L.M.S. Lecture Notes Series 263, Cambridge University Press. 1999, 353-367.

[9] K. Houston and N. P. Kirk, On the classification and geometry of coarank 1 map-germs from tree-space to four-space, in singularity Theory (London Math. Soc. Lecture Notes Series 263) (1999), 325-351.

[10] D. Mond, Some remarks on the geometry and classificatin of germs of maps from surfaces to 3-space Topology vol.26 3 (1987), 361-383

[11] E.J.N. Looijenga, Isolated singular points on complete intersections, London Mathematical Soc. Lecture Note Series 77 (1984).

[12] J.H. Rieger, Families of maps from the plane to the plane, J. London Math. Soc. (2) 36 (1987), 351-369.

[13] C.T.C. Wall, Finite determinacy of smooth map-germs, Bull. London Math. Soc. 13 (1981), 481-539.

Address: Instituto de Ciências Matemática e de Computação ICMC-USP
Av. do Trabalhador São-Carlene, 400 - Centro - Cx. Postal 668
São Carlos - São Paulo - Brasil CEP 13560-970
E-mail: vhjperez@icmc.usp.br