Fuzzyfication of supplier–retailer inventory coordination with credit term for deteriorating item with time-quadratic demand and partial backlogging in all cycles

Sanjay Mishra¹, Nitin Kumar Mishra²,∗, Vikramjeet Singh³, Pushpinder Singh⁴ and Seema Saxena⁵

¹,²,⁵Department of Mathematics, Lovely Professional University, Phagwara, Punjab(India) 144 411
³Department of Mathematics, IKGPTU Campus, Batala, Punjab(India) 143506
⁴Department of civil engineering University of windsor, Windsor, Canada
E-mail: ¹drsanjaymishra1@gmail.com, ²snitinmishra@gmail.com ³, ³Vikram31782@gmail.com, ⁴pushpindersnl@gmail.com, ⁵mseemamishra@gmail.com

Abstract. A finite planning horizon supply chain model is discussed for materials substances such as metals, ceramics, or plastics manufactured which is deteriorating in nature. Parameter such as holding cost and all the other cost are fuzzyfied. Triangular fuzzy numbers are used for the fuzzyfication of parameters. Defuzzyfication of the model is done using total -integral value. We also have used Graded Mean Representation method to defuzzify the model. Later the comparison between the two defuzzyfied model is presented and conclusion is drawn.

Keywords: Inventory, Triangular fuzzy number, Green supply chain management.

1. Introduction

There are several products which can be remanufactured such as electronic goods, plastic materials, furniture, etc. As discussed by [15] green supply chain management is the desperate need of the 21st century. Industries are quickly moving to sustainable, reliable environment-friendly methods of supply chain management. A good supply chain policy would be to have a positive impact on Ecology without compromising quality was stated by [15]. There are different ways suppliers and retailers cooperate with each other such as by sharing detailed information of the storage of inventory and thereby increasing their profit and profit sharing [16]. For greening of the model remanufacturing was introduced by [16] after different levels in the process of finding remanufacturable/repairable products. [5] studied remanufacturing in a supply chain model for a short life cycle product. The behaviour of their model including different process such as JIT delivery and remanufacturing was explained with a diagramatic approach. Optimal values using the hessian matrix were derived.

Taking into account the importance of rework, minimal repair [8] discussed the economic production quantity for their model.

¹ *Corresponding Author
Many retail giant has adopted the concept of the green supply chain by recycling of the plastic, repairing of the electronic goods thereby reducing of the scrap or plastic waste [13]. Also, [13] found that retailer profits with regular investment in green operations. Recently, [14] considered Weibull deteriorated items in the greening of the supply chain by remanufacturing.

To fuzzify the model, [17] took order and shortage as triangular fuzzy numbers. Authors using triangular fuzzy numbers for parameters value are [18, 3, 4, 2, 1, 12] and others.

[9] discussed a bifuzzy model and have used λ integral value for crisp representation. An economic production model with two parameter weibull deterioration using λ integral value for crisp representation [12] analysed a model using fuzzyfication by triangular fuzzy number.

A fuzzy inventory model three parameter weibull distribution pattern along with the permissible delay in payment introducing credit period [10] found optimum solution defuzzifying using total λ integral value for symmetric triangular fuzzy parameters.

Graded Mean Representation method is used by [11] to defuzzify the total cost function and find its minimum value where the parameters are pentagonal fuzzy numbers. Graded Mean Representation along with Signed Distance and Centroid methods were used to defuzzify the total cost function by [6]. Our present model thus fills the gap for the fuzzy green inventory model by remanufacturing in a finite planning horizon. The paper is further divided into 4 more sections. Section 2 is for assumptions and notations. Section 3 is for the conceptualization of the proposed model. The last section 5 comprises of conclusions.

2. Assumptions and notations
The initial demand(\tilde{a}), holding cost(\tilde{H}_o), cost of lost sale(\tilde{L}_o) and shortage cost(\tilde{S}_o) are considered to be a triangular fuzzy number.

Except for the fact that the total cost is fuzzified, the present model is an extension of [14] therefore assumptions and notations are same as [14]. The present model is fuzzified using λ integral value and Graded mean representation method.

3. Proposed model
The model is represented by the following equation:-

\[
\frac{dI_{i+1}^D(t)}{dt} + (\theta_1 + \theta_2) I_{i+1}^D(t) = -f(t), \{i=1, 2 \ldots n_2^D\}
\]

Figure 1. Graphical representation of Inventory Model
Supplier’s fuzzy total cost after coordination with the supplier = $TC^C_s(t_j, s_j, n^2_C) =$

$$\sum_{j=1}^{n^2_C} \{S_s * n + P_s * (I_{o3} + S_j) + (T_c + p + DsAsm * p + Rem * p + \tilde{H}o * p) * I_{o3}\} + \tilde{TC}^C_r(t_j, s_j, n^2_C) - \tilde{TC}^C_r(t_{o3}, s_{o3}, n_{o3})$$

Where, $TC^C_s(t_j, s_j, n^2_C)$ = Total cost of the retailer during a planning horizon = Purchase cost + Holding cost + Deterioration cost + Shortage cost + cost of Lost sale + Screening Cost =

$$\sum_{j=1}^{n^2_C} \{P_s [I_{o3} + S_j] + \tilde{H}o \left[\int_{t_j}^{t_j} j_{1j}(t) dt + \int_{t_j}^{t_j} j_{2j}(t) dt + \int_{t_j}^{t_j} j_{3j}(t) dt \right] + Dc_{o3} \beta \left[\int_{t_j}^{t_j} t^{\beta-1} j_{1j}(t) dt + \int_{t_j}^{t_j} t^{\beta-1} j_{2j}(t) dt + \int_{t_j}^{t_j} t^{\beta-1} j_{3j}(t) dt \right] + \tilde{S}_o \int_{s_j}^{s_j} \frac{(t_j - t) (\tilde{a} + bt + ct^2)}{1 + \delta (t_j - t)} dt + \tilde{L}_o \int_{s_j}^{s_j} \frac{\delta (t_j - t) (\tilde{a} + bt + ct^2)}{1 + \delta (t_j - t)} dt + S_c * \tilde{r}_{o3} \}$$

4. Numerical Example

Same numerical example’s solution is discussed as in [14] for the comparison without changing the value of parameters except that \tilde{a}, H_0, L_0, S_0 are fuzzyfied and there fuzzy triangular values are $\tilde{a} = (1500 - \psi_1, 1500, 1500 + \psi_1)$, $H_0 = (1 - \psi_2, 1, 1 + \psi_2)$, $L_0 = (600 - \psi_3, 600, 600 + \psi_3)$, $S_0 = (290 - \psi_4, 290, 290 + \psi_4)$ where $\psi_1 = 0.02, \psi_2 = 0.002, \psi_3 = 0.02, \psi_4 = 0.02$.

Table 1 gives for different number of replenishment cycles and 5 different values of \tilde{a} the total cost of retailer with optimal cost of supplier in a decentralized case. Convexity for retailers total cost when $\tilde{a} = (1500 - \psi_1, 1500, 1500 + \psi_1)$ can be seen from 2. Table 2 shows its optimal schedule for optimal replenishment cycles ie 3 and 5 different values of \tilde{a}. Table 3 shows the obtained total cost of supplier in a centralized case for different number of replenishment cycles and 5 different values of \tilde{a}. Convexity for suppliers total cost when $\tilde{a} = (1500 - \psi_1, 1500, 1500 + \psi_1)$ can be seen from 3. Table 4 shows the optimal schedule for optimal replenishment cycles ie 2 and 5 different values of \tilde{a} when coordination exist. Table 5 gives defuzzy total improved cost in case of existing coordination by with λ–integral value. Table 6 defuzzy percentage improved cost in case of existing coordination with λ–integral value. Similarly Table 7 gives defuzzy total improved cost in case of existing coordination by with graded mean representation method and table 8 shows defuzzy percentage improved cost in case of existing coordination with graded mean representation method along with graphical representation of convexity in graph 4 and 5.
Figure 2. Convex graph for total cost of retailer when $\tilde{a} = (1500 - \psi_1, 1500, 1500 + \psi_1)$ with λ–integral value
Table 1. For different number of replenishment cycles and 5 different values of \(\tilde{a} \) the total cost of retailer with optimal cost of supplier in a decentralized case

\(\tilde{a} \)	\(n_1 \)	\(T_{C^D} \)	\(T_{C^D} \)					
\(\tilde{a} \)	1	2	3	4	5	6	7	8
1499.99	52674.7	48809.6	48652.3	49934.9	52141.3	55095.8	58724.9	62993.2
1499.995	52675.8	48810.2	48652.7	49935.1	52141.3	55095.8	58724.8	62993.1
1500	52676.9	48810.9	48653.1	49935.2	52141.4	55095.7	58724.7	62993.
1500.005	52678.1	48811.5	48653.4	49935.4	52141.4	55095.7	58724.6	62992.8
1500.01	52679.2	48812.2	48653.8	49935.6	52141.5	55095.7	58724.5	62992.7

Table 2. Optimal schedule for optimal replenishment cycles ie 3 and 5 different values of \(\tilde{a} \)

\(\tilde{a} \)	\(s_1 \)	\(s_2 \)	\(s_3 \)	\(s_4 \)	\(\tilde{a} \)	\(t_1 \)	\(t_2 \)	\(t_3 \)
1499.99	0	0.823114	1.97992	4.	1499.99	0.000208968	0.823715	1.98039
1499.995	0	0.823577	1.98016	4.	1499.995	0.000209054	0.823878	1.98064
1500	0	0.823741	1.98041	4.	1500	0.000209141	0.824042	1.98088
1500.005	0	0.823904	1.98066	4.	1500.005	0.000209227	0.824205	1.98113
1500.01	0	0.824067	1.9809	4.	1500.01	0.000209314	0.824369	1.98137
Table 3. In a centralized case For different number of replenishment cycles and 5 different values of \(\tilde{a} \) the total cost of supplier

\(\tilde{a} \rightarrow n_1 \)	1	2	3	4
1499.99	33589.1	23742.6	27719.8	38861.4
1499.955	33604.1	23743.6	27721.2	38863.1
1500	33604.9	23744.5	27722.6	38864.6
1500.005	33605.8	23745.5	27724.1	38866.2
1500.01	33606.6	23746.4	27725.4	38867.7

Figure 3. Convex graph of total cost of supplier when \(\tilde{a} = (1500 - \psi_1, 1500, 1500 + \psi_1) \) with \(\lambda \)-integral value

Table 4. Optimal schedule for optimal replenishment cycles ie 2 and 5 different values of \(\tilde{a} \)

\(\tilde{a} \)	\(s_1 \)	\(s_2 \)	\(s_3 \)	\(\tilde{a} \)	\(t_1 \)	\(t_2 \)
1499.99	0	2.15319	4.	1499.99	0.00120329	2.15445
1499.995	0	2.15317	4.	1499.995	0.00120347	2.15442
1500	0	2.15314	4.	1500	0.00120364	2.1544
1500.005	0	2.15312	4.	1500.005	0.00120381	2.15437
1500.01	0	2.15309	4.	1500.01	0.00120398	2.15435
Table 5. Defuzzy total improved cost in case of existing coordination with λ–integral value

\tilde{a}	\tilde{H}_0	\tilde{L}_0	\tilde{S}_0	\tilde{T}_C^{DO}	T_C^{DO}	n_1^{DO}	\tilde{Q}^{DO}	n_2^{CO}	\tilde{Q}^{CO}	T_C^{COP}	T_C^{COP}
1499.99	0.999	599.99	289.99	48652.3	35585.9	3	6734.9	2	6737.09	37353.4	27078.7
1500.0	0.9995	599.995	289.995	48652.7	35584.7	3	6734.92	2	6737.11	37351.3	27079.8
1500.0	1.00	600.0	290.	48653.1	35583.4	3	6734.94	2	6737.13	37349.3	27081.0
1500.01	1.0005	600.005	290.005	48653.4	35582.2	3	6734.96	2	6737.15	37347.2	27082.2
1500.01	1.001	600.01	290.01	48653.8	35580.9	3	6734.98	2	6737.17	37345.1	27083.3

Table 6. Defuzzy percentage improved cost in case of existing coordination with λ–integral value

\tilde{a}	\tilde{H}_0	\tilde{L}_0	\tilde{S}_0	Systems improved cost	Percentage improvement in retailer’s cost	Percentage improvement in supplier’s cost
1499.99	0.999	599.99	289.99	19806.2	44.3425	44.3425
1500.0	0.9995	599.995	289.995	19806.2	44.3405	44.3405
1500.0	1.00	600.0	290.	19806.2	44.3386	44.3386
1500.01	1.0005	600.005	290.005	19806.3	44.3366	44.3366
1500.01	1.001	600.01	290.01	19806.3	44.3346	44.3346
Figure 4. Convex graph for total cost of retailer when \(\tilde{a} = (1500 - \psi_1, 1500, 1500 + \psi_1) \) with Graded Mean Representation method

Table 7. Defuzzy total improved cost in case of existing coordination by with Graded Mean representation method

\(\tilde{a} \)	\(\tilde{H}_o \)	\(\tilde{L}_o \)	\(\tilde{S}_o \)	\(\tilde{T}_{C^D_1} \)	\(\tilde{T}_{C^D_2} \)	\(n_1^{DO} \)	\(\tilde{Q}_{DO} \)	\(n_2^{CO} \)	\(\tilde{Q}^{CO} \)	\(\tilde{T}_{C^C_1} \)	\(\tilde{T}_{C^C_2} \)
1470	0.98	588.2	284.2	47827.3	35326.8	3	6614.74	2	6616.83	37024.9	26531.9
1485	0.99	594.1	287.1	48240.1	35455.2	3	6674.84	2	6676.98	37187.1	26806.3
1515	1.01	606.2	292.9	49066.4	35711.5	3	6795.04	2	6797.28	37511.5	27356.1
1530	1.02	612.2	295.8	49480.1	35839.5	3	6855.13	2	6857.43	37673.8	27631.7
1500	1	600.1	290	48653.1	35583.4	3	6734.94	2	6737.13	37349.3	27081.

5. Conclusion
Crisp solution for a fuzzy green supply chain model given by [14] is obtained and shown in tables 5, 6, 7 and 8 by \(\lambda \)–integral value and graded mean representation method. When compared [14]
Figure 5. Convex graph of total cost of supplier when $\tilde{a} = (1500 - \psi_1, 1500, 1500 + \psi_1)$ with Graded Mean Representation method

Table 8. Defuzzy total improved cost in case of existing coordination with Graded Mean representation method

\tilde{a}	\tilde{H}_0	\tilde{L}_0	\tilde{S}_0	Systems improved cost	Percentage improvement in retailer’s cost	Percentage improvement in supplier’s cost
1470.0	0.98	588.0	284.2	19597.3	44.5256	44.5256
1485.0	0.99	594.0	287.1	19701.9	44.4315	44.4315
1515.0	1.01	606.0	292.9	19910.3	44.2467	44.2467
1530.0	1.02	612.0	295.8	20014.2	44.156	44.156
1500.0	1.00	600.0	290.0	19806.2	44.3386	44.3386

it has been observed that the value of the total cost and the profit percentage differs with that of the present model. The fact that uncertainty looms and fuzzy parameters cannot be avoided [11] besides our present model justifies the same. Therefore for the generalization, fuzzy parameters cannot be ignored as shown in our present model. The present model can be extended by taking
all the parameters as fuzzy or considering multi item as in [7].

References

[1] Bag S and Chakraborty D 2014 An inventory model for deteriorating items with fuzzy random planning horizon. Advanced Modeling and Optimization, 16(1) 185-197.

[2] Bera U K, Maiti M K, and Maiti M 2012 Inventory model with fuzzy lead-time and dynamic demand over finite time horizon using a multi-objective genetic algorithm. Computers Mathematics with Applications, 64(6):1822-1838.

[3] Chang H C 2004 An application of fuzzy sets theory to the eoq model with imperfect quality items. Computers Operations Research, 31(12):2079-2092.

[4] Chen L H and Ouyang L Y 2006 Fuzzy inventory model for deteriorating items with permissible delay in payment. Applied Mathematics and Computation, 182(1):711-726.

[5] Chung C J and Wee H M 2011 Short life-cycle deteriorating product remanufacturing in a green supply chain inventory control system. International Journal of Production Economics, 129(1):195-203.

[6] Jaggi C K, Pareek S, Sharma A, and Nidhi 2012 A Fuzzy inventory model for deteriorating items with time varying demand and shortages. American Journal of Operational Research, 2(6):81-92.

[7] Lesmono D and Limansyah T 2017 A multi item probabilistic inventory model. In Journal of Physics: Conference Series, volume 893, page 012024. IOP Publishing.

[8] Lin Y h, Chen Y c, and Wang W y 2016 Optimal production model for imperfect process with imperfect maintenance, minimal repair and rework. 2674(June), doi:10.1080/23302674.2016.1160452.

[9] Liu Y and Xu J 2006 A class of bifuzzy model and its application to single-period inventory problem. World Journal of Modelling and Simulation, 2(2):109-118.

[10] Mahapatra G, Adak S, and Kaladhar K A fuzzy inventory model with three parameter weibull deterioration with reliable holding cost and demand incorporating reliability. Journal of Intelligent Fuzzy Systems, (Preprint):1-14.

[11] Nagar H and Surana P 2015 Fuzzy inventory model for deteriorating items with fluctuating demand and using inventory parameters as pentagonal fuzzy numbers. Journal of Computer and Mathematical Sciences, 6(2):55-66.

[12] Pal S, Mahapatra G, and Samanta G 2015 A production inventory model for deteriorating item with ramp type demand allowing in ation and shortages under fuzziness. Economic modelling, 46:334-345.

[13] Saha S, Nielsen, I and Moon I 2016 Optimal retailer investments in green operations and preservation technology for deteriorating items. J. Clean. Prod. ISSN 0959-6526. doi:10.1016/j.jclepro.2016.09.229. URL http://dx.doi.org/10.1016/j.jclepro.2016.09.229.

[14] Singh V, Mishra N K, Mishra S, Singh P, and Saxena S, 2019 A green supply chain model for time quadratic inventory dependent demand and partially backlogging with weibull deterioration under the finite horizon. In AIP Conference Proceedings, volume 2080, page 060002. AIP Publishing.

[15] Srivastava 2007 S K Green supply-chain management : A state-of- the-art literature review. 9 (1):53-80, doi: 10.1111/j.1468-2370.2007.00202.x.

[16] Wee H M and Chung C J 2009 Optimising replenishment policy for an integrated production inventory deteriorating model considering green component-value design and remanufacturing. International Journal of Production Research, 47(5):1343-1368.
[17] Wu K and Yao J S 2003 Fuzzy inventory with backorder for fuzzy order quantity and fuzzy shortage quantity. European Journal of Operational Research, 150(2):320-352.

[18] Yao J S and Chiang J 2003 Inventory without backorder with fuzzy total cost and fuzzy storing cost defuzzified by centroid and signed distance. European Journal of Operational Research, 148(2):401-409.