Medicinal uses, phytochemistry and pharmacology of Bauhinia racemosa lam

Memona Fatima, Salman Ahmed, Maaz Uddin Ahmed Siddiqui and Muhammad Mohtasheem ul Hasan

DOI: https://doi.org/10.22271/phyto.2021.v10.i2b.13972

Abstract

Bauhinia racemosa Lam. is a tall sized tree growing throughout Srilanka, China, India and Pakistan. Various parts of the plant have great medicinal potential in folklore medicine and used in diarrhoea, fever, skin diseases, cough, malaria etc. Analgesic, anti-inflammatory, antipyretic, antispasmodic, antialcer, cytotoxicity and hypotensive activities of Bauhinia racemosa have been reported. Different parts of this plant contain β-amyrin, β-sitosterol, kaempferol, quercetin, scopoletin, scopolin and tannins.

Keywords: Bauhinia racemosa, medicinal uses, phytochemistry, pharmacology

Introduction

Plants have always played a major role in the prevention and cure of diseases in human worldwide. The use of medicinal plants is increasing day by day in both developed and developing countries due to increase in recognition of natural products [1]. Genus Bauhinia has played a significant role in human civilization since ancient times. Genus Bauhinia is comprised of trees and shrubs which grow in warm climate. About 300 species of Bauhinia are found in tropical regions with 5-7 m tall tree in deciduous forests. It is generally planted in gardens and along the roadsides for its beautiful white flowers. Many species are widely planted in the tropics as orchid trees, particularly in northern India, southeastern China and Vietnam. Bauhinia racemosa Lam. is widely distributed in Pakistan, India, Srilanka, Burma and China. It is a useful species for filling blanks in forest plantings and helps in preventing soil erosion. In the United States of America, the trees grow in coastal California, Florida, Hawaii, Louisiana and Texas [2].

Table 1: Name of Bauhinia racemosa Lam. in different languages [2, 3]

Bengali	Banraji
English	Mountain ebony
Gujarati	Asundro
Hindi	Ashta, Jhinjeri, Katmauli, Kachnal
Punjabi	Koshandra
Sanskrit	Yugmapatra, Yamalapratakah, Ashmantaka, Kanchini
Tamil	Atti, Kokku mandarai, Tataki
Telugu	Tella arechettu
Urdu	Kachnaar

Table 2: Taxonomy [4]

Kingdom	Plantae
Division	Magnoliophyta
Class	Magnoliopsida
Order	Fabales
Family	Caesalpiniaceae (Gulmohar family)
Genus	Bauhinia
Species	Racemosa
Table 3: Botanical description [5, 6]

Parts	Characteristics
Plant	Small bushy, deciduous tree with a short unbranched trunk, drooping branches grows in warm climate.
Stem	Bluish black rough, pinkish red inside turning brown on exposure. Rough with vertical cracks, young twigs hairy. Longitudinally fissured.
Leaves	Green in colour, broader than long and compound. leaflet, ovate, rounded at apex, pubescent beneath when young. 2.5-7.5 cm broad, divided half way down into two lobes, glabrous above, hairy below, base usually cordate, 7-9 nervet, petiole 7.0-18 mm long.
Flowers	White or pale yellow in colour, terminal or leaf-opposed racemes. Small flowers are borne in loose racemes, 5 - 10 cm long. Flowers are 7.5-12.5 cm in diameter, white in colour, petals are 5, narrow lance like, stamens 10, all fertile, filaments hairy at the base. Ovary hairy, stigma sessile. Pedicel 5-10 mm long, hairy, jointed near the middle, bracts short, linear, acute, hypanthis very short. Calyx c. 6.0-8.0 mm long, spathaceous, reflexed.
Pods	Pods 12.5 - 25 cm by 1.7 - 2.5 cm in size curved, swollen, rigid.
Seeds	Seeds 12 to 20 glabrous dark reddish brown or black, compressed 7-8 mm long.

Fig 1: Bauhinia racemosa Lam.

Nutritional importance

The seeds of *Bauhinia racemosa* are rich in calcium, potassium, magnesium, zinc, manganese and iron. Glutelins is predominated whereas albumins and globulins are less in seed protein of *Bauhinia racemosa*. Essential amino acids like isoleucine, lysine, phenylalanine and tyrosine are high where as the contents of sulphur amino acids are limiting in the seed proteins. The fatty acids, linoleic, oleic and palmitic acid are relatively higher in the seed lipids [7, 8, 9].

Economic importance

The leaves of *Bauhinia racemosa* are used for making bidis, thus the plant is commonly known as Bidi leaf tree. *Bauhinia racemosa* is planted for its value as well as for its extreme beauty. The tree is staggeringly beautiful when in bloom and it blooms for several months. The flowers can be found in white colour and the flowers of the plant are of much importance in apiculture and also as a pot herb in curries and made into pickle. The plant is used as fodder for goats, sheep and cattle. The tree also yields useful fibers and gum. The bark is used for tanning and dyeing. The wood is hard and heavy, thus used for making plough and yokes and also used as fuel [8, 10].

Table 4: Ethnomedicine

Parts	Uses
Bark	Headache, malaria, dysentery, diarrhea, fever, skin diseases, tumors, wash abscesses, warts, wound, skin disorders, diarrhea and dysentery [11, 12].
Leaves	Thirst, urinary discharges, quartan fever, headache, skin diseases, tumors, troubles, diseases of the blood, diarrhea [13, 14].
Flower	Cough, bronchitis [13].
Fruit	Astringent to the bowels [11].
Fiber	To stitch wounds. [11].

Table 5: Phytochemistry

Parts	Compounds
Heartwood	Resveratrol (3,5,4’-trihydroxy trans-stilbene), Phytoalexin [15]; Pacharin (1,7-Dihydroxy-3-Methoxy-2-methyl-Dibenzo (2, 3-6, 7) Oxeine) [16, 17]; Coumarins, Flavonoids, Alkaloids, Steroids, Triterpenoids, Tetracyclic phenol, Tannin, Carbohydrates, Racemosol [17, 18].
Stem bark	Luteolin, Octacosane [2], β-amyrin, β-sitosterol [15]; Oleic acid, Ursolic acid, Ellagic acid, Gallic acid Quercetin, 3-O-β-gluco-side, Myricetin 3-O-β-glucoside [18].
Leaves	Kaempferol, Galactolipid [16]; Hydroquinone, Catechol, 4-nitrophenol [19]; Scopolin, Scopoletin and Quercetin [18](2S)-1,2-di-O-linolenoyl-3-O-a-galactopyranosyl-(1/6)-Ob-galactopyranosyl glycerol : (2S)-1-O-linolenoyl-2-O-palmitoyl-3-O-a-galactopyranosyl-(1/6)-O-b-galactopyranosyl glycerol : (2S)-1-O-oleoyl2-O-palmitoyl-3-O-a-galactopyranosyl-(1/6)-O-
b galactopyranosyl glycerol, (-)epiafzelechin, (-)epicatechin, (-)catechin, Protocatechuic acid [19].

Flower	Seed	Seed oil
		Lipid [21], Crude protein [11, 18], Flavonoids, Phosphatidylinositol [21].

Table 6: Pharmacology

Part	Extract	Pharmacological activity
	Petroleum ether, chloroform, ethylacetate, methanol	Anthelmintic [26], Antimicrobial [27].
Leaves	Ethanol, n-hexane, chloroform, n-Butanol	Antiulcer [15], Antihistaminic [9].
	Aqueous, methanol	Antiulcer [15], Antihistaminic [9].
	Ethanol	Antihyperglycaemic [29].
Bark	Alcohol	Antipyretic [15].
	Aqueous and alcoholic	Antitumor [9].
	Methanol	Analgesic [15].
		Anti-inflammatory [33].
		Anti-HIV activity [14].
		Antioxidant, Hepatoprotective [35].
Fruit	Aqueous, alcoholic	Antulcer [15].
Whole plant	Petroleum ether, ethanol, aqueous	Antihistaminic [9].
	Aqueous, alcoholic	Antihyperglycaemic [26].
	Ethanol	Antihelminic [26].
	Methanolic	Antioxidant [37].

Table 7: Bioactive phytochemicals present in various parts of Bauhinia racemosa Lam

Parts	Constituents	Pharmacological activity
Aerial parts	Methyl gallate, Gallic acid, Kaempferol, Quercetin, Quercetin 3–O–α–rhamnosside, Kaempferol 3–O–β–glucose, Myricetin–3–O–β–glucose, Quercetin 3–O–rutinoside (Rutin)	Anti-microbial [38].
Stem bark	Quercetin, Naringin, Silymarin, Anthocyanosides, Sophoradin, Saponins, Tannins	Anti-ulcer [15, 32].
Leaves	Phenol,2,4-bis(1,1-dimethylethyl)-, mome inositol, Neophytadiene, 6-octen-1-ol,3,7-dimethyl Propanoate, 16-heptadecenal, citronellyl butyrate	Anti-filarial [15, 28].
Roots	Racemosol, de-o-methyl racemosol	Anti-bacterial, anti-fungal, anti-viral [2].

Conclusion

The traditional medicinal uses, phytochemistry and pharmacology of Bauhinia racemosa presented in this review could be helpful for future studies and research. The plant has good future prospective for discovery of new molecules and pharmacological activities.

References

1. Pandey M, Debnath M, Gupta M, Chikara SK. Phyto medicine: An ancient approach turning into future potential source of therapeutics. J Pharmacognosy and Phytotherapy 2011;3:27-37.
2. Panda P, Das D, Dash P, Ghosh G. Therapeutic potential of Bauhinia racemosa-a mini review. Int J Pharm Sci Rev Res 2015;32(2):169-179.
3. Rastogi RP, Mehrotra BN. Compendium of Indian Medicinal Plants. Vol.3. (New Delhi, India: Central Drug Research Institute, Lucknow and National Institute of Science Communication) 1993, 188-189.
4. Khare CP. Indian Medicinal Plants. (New Delhi, India: An Illustrated Dictionary Springer publication) 2007, 90.
5. Anonymous. Flora of Maharashtra State, Monocotyledones. Sharma BD ed. (Calcutta, India: Botanical Survey of India) 1996, 412.
6. Ali SI. Caesalpiniaeae. Flora of west Pakistan. Fascicle 1973, 54.
7. Davey MS, Atlee C, Ashok SRS, Bharathi Mohamed F. Antianxiety effect of methanolic extract of B. racemosa (jamuk) stems bark in mice. Int J Pharma and Bio Sci. 2011;2:217-224.
8. Gupta M, Mazumder UK, Kumar RS, Kumar TS. Antitumor activity and antioxidant role of B. racemosa against Ehrlich ascites carcinoma in Swiss albino mice. Acta Pharmacol Sin 2004;25(8):1070-1076.
9. Nirmal SA, Laware RB, Rathi RA, Dhasade VV, Kuchekar BS. Antihistaminic effect of Bauhinia racemosa leaves. J Young Pharm 2011;3(2):129-131.
10. Kuma T, Alexander AA, Dewangan, Junaid DK, Sharma Mukesh. Investigation of in-vitro anthelmintic activity of B. racemosa linm. J Applied Pharmaceutical Sci 2011;1:73-75.
13. Anonymous. The Wealth of India. (New Delhi, India: National Institute of Science Communications and Information Resources, Council of Scientific and Industrial Research) 1985, 114.

14. Nadkarni KM, Nadkarni AK. Indian Material Medica. 3rd ed. (Bombay, U.K.: Popular Prakashan, Pvt. Ltd) 2000;1:435.

15. Alex AM, Joghee S. Phytochemistry and Therapeutic potential of Bauhinia racemosa Lam. - A Concise Review, International Journal of Research in Pharmaceutical Sciences 2020;11(1):1045-1050.

16. Jain R, Alam S, Saxena U. A new tetracyclic phenol and other constituents from the roots of Bauhinia racemosa. Indian Journal of Chemistry- Section B Organic and Medicinal Chemistry 2002.

17. Anjaneyulu ASR, Reddy AVR, Reddy DSK, Ward RS, Adhikesavalu D, Cameron TS. A new dibenzo (2,3-6,7) oexiphen derivative from Bauhinia racemosa. Tetrahedron. 1984;40:4245-4252.

18. El-Hossary GA, Selim MA, Sayed AE, Khaleel AE. Study of the flavonoid content of Bassia muricata and Bauhinia racemosa, Bulletin of the Faculty of Pharmacy-Cairo University 2000;38:93-97.

19. Koneni VS, Singh SP, Misra S, Gupta J, Misra BS. Galactolipids from Bauhinia racemosa as a new class of antifilarial agents against human lymphatic filarial parasite Brugia malayi, European Journal of Medicinal Chemistry 2012;50:230-235.

20. Mulik MB, Katekhaye SD, Laddha KS. Quantification of β amyrin in Bauhinia racemosa Lam. flower buds using HPTLC. Indian Drugs 2015;52(3):34-36.

21. Iribarren AM, Pomilo AB. Phytochemical Studies on Bauhinia racemosa Lam. Bauhinia purpurea Linn. and Hardwickia binata Roxb. J Chemistry 2007;4(1):21-31.

22. Kumar G, Karthik L, Rao KVB. Phytochemical composition and in vitro antimicrobial activity of Bauhinia racemosa lamk (caesalpiniaeae). Int J Pharma Sci Res 2010, 151-58.

23. Sharanabasappa GK, Santosh MK, Shaila D, Seetharam YN, Sanjeevarao I. Phytochemical Studies on Bauhinia racemosa Lam. Bauhinia purpurea Linn. and Hardwickia binata Roxb. EJournal of Chemistry 2007;4(1):21-31.

24. Jain R, Yadava N, Bhagchandania T, Jain SC. A new pentacyclic phenol and other constituents from the root bark of Bauhinia racemosa Lamk, Natural Product Research 2013;27(20):1870-1876.

25. Prabhakar P, Gandhidasan R, Raman PV, Krishnasamy NR, Nanduri S. De-ethylracemosol - a tetracyclic 2,2-dimethylchroman from the roots of Bauhinia racemosa, Phytochemistry 1994;36(3):817-818.

26. Girija B, Bhalke RD, Lodha KR, Karmase BC, Londhe CG. Phytochemical investigation and in vitro anthelmintic activity of Bauhinia racemosa linn (leguminaceae), Pharmacologyonline 2009;1:300-303.

27. Dahikar SB, Bhatada SA, Tambekar DH. In-vitro antibacterial efficacy of solvent extracts of leaves of Bauhinia racemosa Lam. (Caesalpiniaeae) against enteric bacterial pathogens, International Journal of Pharmaceutical Sciences and Drug Research 2011;3(1):32-34.

28. Sashidhara KV, Singh SP, Misra S, Gupta J, Misra-Bhattacharya S. Galactolipids from Bauhinia racemosa as a new class of anti filarial agents against the human lymphatic filarial para-site, Brugiamalayi. European Journal of Medicinal Chemistry 2012;50:230-235.

29. Vidwanathaswamy AHM. Antihyperglycemic and antihyperlipidemic activity of Plectranthus amboinicusin normal and alloxan induced diabetic rats. Indian J Pharmacutical Sci 2011;73:139-145.

30. Kesavan D, Chellaram C. Pharmacological properties of Bauhinia racemosa Lam. International journal of biometrics and bioinformatics 2011;3(11):520-522.

31. Kokate CK, Purohit AP, Gokhale SB. Pharmacognosy. 31st edition. Nirali Prakashan 2005, 810.

32. Borikar VI, Jangde CR, Philip P, Rekke DS. Study of antipyretic activity of Bauhinia racemosa Lam. in rats, Veterinary World 2009;2(6):217-218.

33. Gupta M. Anti-inflammatory, analgesic and antipyretic effects of methanol extract from Bauhinia racemosa stem bark in animal models, Journal of Ethnopharmacology. 2005;98(3):267-273.

34. Khaled R, Meng-TL, Lin TZ, Yong TZ. Anti-HIV-1 potential of B. racemosa Lam. (Caesalpiniaeae) and Phytochemical profile. Topclass J Herbal Med. 2013;2:95-102.

35. Gupta M, Mazumder UK, Siva KT, Gomathi P, Kumar RS. Antioxidant and Hepatoprotective Effects of Bauhinia racemosa against Paracetamol and Carbon Tetrachloride Induced Liver Damage in Rats, International Journal of Pharmacy and Technology 2004;3:12-20.

36. Prusty KB, Rao JV, Subudhi SK, Reddy PA, Raj KJ. Anti hyperglycemic activity of extracts of leaves of Bauhinia racemosa Lamk (Family-Caesalpiniaeae) on normal and alloxan-induced diabetic rats, International journal of Pharmaceutical Research and Allied Sciences 2012;1:94-99.

37. Kumar RS, Sunderam RS, Sivakumar T. Effect of Bauhinia racemosa stem bark on N-nitrosodimethylamine-induced hepatocarcinogenesis in rats, American Journal of Chinese Medicine 2007;35(1):103-114.

38. Rashe K, Butnariu M. Antimicrobial and antioxidant activities of Bauhinia racemosa Lam. and chemical content. Iran. J. Pharm. Res 2014;13(3):1073-1080.

39. Gawade B, Farooqui M. Screening of phytochemicals and in vitro anti diabetic activity of bauhinia racemosa lam. Leaves, Asian J Pharm Clin Res 2018;11(6):190-193.