Fig. 1.
Fig. 2.
Fig. 3.

$T = 0.30 J / K_B$

$h_0 = 2.0 J$
Fig. 4.
Fig. 5.
Fig. 6.

U_L vs $T[J/K_B]$ for $h_0 = 0.3J$.

The graph shows a sharp decrease in U_L as T increases, followed by a slight increase before leveling off.
Nonequilibrium phase transition in the kinetic Ising model:
Existence of tricritical point and Stochastic resonance

Muktish Acharyya+

Theoretische Physik, Gerhard-Mercator-Universität Duisburg, 47048 Duisburg, Germany

(October 16, 2018)

Abstract

The dynamic phase transition has been studied in the two dimensional kinetic Ising model in presence of a time varying (sinusoidal) magnetic field by Monte Carlo simulation. The nature (continuous or discontinuous) of the transition is characterized by studying the distribution of the order parameter and the temperature variation of the fourth order cumulant. For the higher values of the field amplitude the transition observed is discontinuous and it is continuous for lower values of the field amplitude, indicating the existence of a tricritical point (separating the nature of transition) on the phase boundary. The transition is observed to be a manifestation of stochastic resonance.

PACS: 05.50.+q
I. INTRODUCTION

The kinetic Ising model in presence of an oscillating magnetic field gives rise to various interesting dynamical responses [1]. The dynamic phase transition, hysteresis [2] and stochastic resonance [3] are most important dynamic responses of recent interest. Tome and Oliveira [4] first observed and studied the dynamic transition in the kinetic Ising model in presence of a sinusoidally oscillating magnetic field. They solved the mean field (MF) dynamic equation of motion (for the average magnetization) of the kinetic Ising model in presence of a sinusoidally oscillating magnetic field. By defining the order parameter as the time averaged magnetization over a full cycle of the oscillating magnetic field they showed that the order parameter vanishes depending upon the value of the temperature and the amplitude of the oscillating field. In the field amplitude and temperature plane they have drawn a phase boundary separating dynamic ordered (nonzero value of the order parameter) and disordered (order parameter vanishes) phases. They [4] have also predicted a tricritical point (TCP), separating the nature (discontinuous/continuous) of the transition on the phase boundary line. However, such a transition, observed [4] from the solution of mean field dynamical equation, is not dynamic in true sense. This is because, for the field amplitude less than the coercive field (at temperature less than the transition temperature without any field), the response magnetization varies periodically but asymmetrically even in the zero frequency limit; the system remains locked to one well of the free energy and cannot go to the other one, in the absence of noise or fluctuation.

Lo and Pelcovits [5] first attempted to study the dynamic nature of this phase transition (incorporating the effect of fluctuation) in the kinetic Ising model by Monte Carlo (MC) simulation. In this case, the transition disappears in the zero frequency limit; due to the presence of fluctuations, the magnetization flips to the direction of the magnetic field and the dynamic order parameter vanishes. However, they [5] have not reported any precise phase boundary. Acharyya and Chakrabarti [2] studied the nonequilibrium dynamic phase transition in the kinetic Ising model in presence of oscillating magnetic field by extensive
MC simulation. They have successfully drawn the phase boundary for the dynamic transition and predicted a tricritical point on it. It was also noticed by them that this dynamic phase transition is associated with the breaking of the symmetry of the dynamic hysteresis loop. In the dynamically disordered (value of order parameter vanishes) phase the corresponding hysteresis loop is symmetric, and loses its symmetry in the ordered phase (giving nonzero value of dynamic order parameter).

Recent studies which reveal the thermodynamic nature of the dynamic transition are on the temperature variations of ac susceptibility, on the relaxation behavior of dynamic order parameter and divergence of time scale (critical slowing down), on the scaling of the distribution of dynamic order parameter and the divergence of length scale, and on the temperature variation of the dynamic correlation.

Although the existence of a TCP has been predicted from the temperature variations of the average order parameter, a detailed and systematic study has not yet been performed to detect the nature (continuous/discontinuous) of the dynamic transition along the dynamic phase boundary. In this paper, the statistical distribution of the dynamic order parameter has been studied to detect the nature of the transition, by Monte Carlo simulation in a two dimensional kinetic Ising model in presence of an oscillating magnetic field. The temperature variation of the fourth order cumulant (of the distribution of dynamic order parameter) has also been studied to characterize the transition. The relation between stochastic resonance and dynamic transition is also discussed. The paper is organized as follows: in section II the model and the MC simulation scheme are discussed, section III contains the simulational results, the paper ends with a summary of the work in section IV.

II. DESCRIPTION OF THE MODEL AND THE SIMULATION SCHEME

The Hamiltonian, of an Ising model (with ferromagnetic nearest neighbor interaction) in presence of a time varying magnetic field, can be written as
\[H = -J \sum_{ij} s_i s_j - h(t) \sum_i s_i. \] (2.1)

Here, \(s_i(= \pm 1) \) is the Ising spin variable, \(J > 0 \) is the ferromagnetic spin-spin interaction strength and \(h(t) \) is the sinusoidally oscillating (in time but uniform in space) magnetic field.

The time variation of \(h(t) \) can be expressed as

\[h(t) = h_0 \cos(\omega t) \] (2.2)

where \(h_0 \) is the amplitude and \(\omega (= 2\pi f) \) is the angular frequency of the oscillating field.

The system is in contact with an isothermal heat bath at temperature \(T \).

A square lattice (with periodic boundary condition) of linear size \(L (= 100) \) is considered. The initial condition is that randomly 50% of all spins are up (+1). At any finite temperature \(T \), the dynamics of this system has been studied here by Monte Carlo simulation using Metropolis single spin-flip dynamics [9]. The transition rate is specified as

\[W(s_i \rightarrow -s_i) = \text{Min} \left[1, \exp\left(-\Delta H/K_B T \right) \right] \] (2.3)

where \(\Delta H \) is the change in energy due to spin flip \((s_i \rightarrow -s_i) \) and \(K_B \) is the Boltzmann constant. Any lattice site is chosen randomly and the spin variable \((s^z_i) \) is updated according to the Metropolis probability. \(L^2 \) such updates constitute the time unit (Monte Carlo step per spin or MCSS) here. The magnitude of the field \(h(t) \) changes after every MCSS following equation 2.2. The instantaneous magnetization (per site), \(m(t) = (1/L^2) \sum_i s^z_i \) has been calculated.

The time averaged (over the complete cycle of the oscillating magnetic field) magnetization \(Q = \frac{1}{\tau} \oint m(t) dt \) defines the dynamic order parameter [4]. The frequency is \(f = 0.001 \) (kept fixed throughout the study). So, one complete cycle of the oscillating field takes 1000 MCSS (time period \(\tau = 1000 \) MCSS). A time series of magnetization \(m(t) \) has been generated up to \(10^6 \) MCSS. This time series contains \(10^3 \) (since \(\tau = 1000 \) MCSS) number of cycles of the oscillating field. The dynamic order parameter \(Q \) has been calculated for each such cycle. So, the statistics (distribution of \(Q \)) is based on \(N_s = 10^3 \) different values of \(Q \).

The fourth order cumulant [4] (dynamic order parameter) is defined as
\[U_L = 1.0 - \frac{\langle Q^4 \rangle}{(3 \langle Q^2 \rangle^2)} \] \hspace{1cm} (2.4)

where, \(\langle Q^n \rangle = \int Q^n P(Q) dQ \) and \(P(Q) \) is the normalized (\(\int P(Q) dQ = 1 \)) distribution of \(Q \).

The computational speed recorded is 1.42 MUPS (Million Updates Per Second) in RS6000/43p of IBM cluster.

III. RESULTS

The statistical distribution \(P(Q) \) of dynamic order parameter \(Q \) and its temperature dependence have been studied close to the phase boundary to detect the nature of the transition. Figure 1 shows the distributions (at fixed value of the field amplitude) for three different values of temperature. Below, the transition (Fig. 1a) the distribution shows only two equivalent peaks centered around \(\pm 1 \). Close to the transition point (Fig. 1b), a third peak centered around zero is developed. As the temperature increases slightly (Fig. 1c), the strength of the third peak increases in cost of that of two other (equivalent) peaks. Above the transition (Fig. 1d), only one peak is observed centered around zero. This indicates that the transition is first order or discontinuous.

What is the origin of this kind of first order transition? To get the answer of this question, the time variation of the magnetization \(m(t) \) is studied (in Fig. 2) for several cycles of the oscillating magnetic field \(h(t) \), close to the transition. From fig. 2 it is clear that sometimes, the system likes to stay in the positive well (of the double well form of the free energy) and sometimes it likes to stay in other. It is obvious that the best time for the system to switch from one well to the other one, is when the value of the field is optimum (“good opportunity”) \[\text{[3]} \]. So, if the system misses one “good opportunity” (first half period of the oscillating field) to jump to the other well it has to wait for a new chance (another full period of the oscillating field). Consequently, it shows that the residence time (staying time in a particular well) can only be nearly equal to an odd integer multiple of the half-period (half of the time period of the oscillating field) \[\text{[3]} \]. This leads to two consequences:
(1) The distribution of the dynamic order parameter Q would be peaked around three values (i) $Q \approx 0$, when the system utilizes "good opportunity" and goes from one well to the other (marked 'A' in Fig. 2), (ii) $Q \approx -1$, when the system misses the "good opportunity" to go from negative well to the positive well and it stays for one (or more) full period in the negative well (marked 'B' in Fig. 2), (iii) $Q \approx +1$, when the system misses the "good opportunity" to go from positive well to negative well and spends one (or more) full period in the positive well (marked 'C' in Fig. 2). As a result, the distribution of Q would give three distinct peaks centered at +1, -1 and 0.

(2) The other consequence of this kind of time variation, of magnetization $m(t)$, is the "stochastic resonance". This can be detected from the distribution of residence time (the time system spends in a particular well). From Fig. 2 it is clear that, the distribution (P_r) of residence time (τ_r) will be peaked multiply around the odd integer multiple of half-period. One such distribution is shown in Fig. 3. The distribution shows multiple peaks around the odd integer values (500, 1500, 2500, 3500, 4500 and 5500 MCSS) of half-period ($\tau/2=500$ MCSS, of the driving fields). The heights of the peaks decreases exponentially (dotted line in Fig. 3) with the peak positions. This is the fingerprint of stochastic resonance.

The fourth order cumulant U_L has been plotted against the temperature. In the case of discontinuous transition, the simultaneous appearance of three peaks (of the distribution of dynamic order parameter), is responsible for very high value of $<Q^4>$ (compared to the value of $3 <Q^2>^2$) at the transition point. This will lead to a deep minimum (with large negative value) of fourth order cumulant U_L at the transition point. So, the deep minimum corresponds to the first order transition and the position of minimum is related to the transition point (Fig.4). From the above observations it is clear that the transition (across the upper part of the dynamic phase boundary) is first order and a manifestation of stochastic resonance.

Figure 5 shows the distributions of the dynamic order parameter Q for three different values of the temperature. Here, the field amplitude h_0 is quite low in comparison with that used in the earlier case (Fig. 1). It shows that, in the ordered region, this gives two
(equivalent) peaks (Fig. 5(a)) and as the temperature increases these two peaks come close to each other continuously (Fig. 5(b)) and close to the transition (and also above it) (Fig. 5(c)) only one peak (centered around zero) is observed. This feature reveals the continuous or second order transition [9]. The second order transition is also characterized by the temperature variation of the fourth order cumulant U_L Eq. (2.4). Figure 6 shows that U_L continuously decreases from 2/3 to zero revealing the second order phase transition [9]. It should be mentioned here that the temperature variation of the cumulant and the finite size study (in the continuous transition region) has been made by Sides et al [7], here it has been reexamined for completeness. It is important to note that they [7] studied the dynamic transition by varying the frequency (keeping the temperature and field amplitude fixed), whereas, the present study has been done by varying the temperature (fixing frequency and amplitude of the field). However, it is believed that the results are qualitatively invariant under the choice of tunable parameter.

IV. SUMMARY

The nonequilibrium dynamic phase transition has been studied in the kinetic Ising model in presence of a time varying (sinusoidal) magnetic field by Monte Carlo simulation. The nature of the transition is characterized by studying the distribution of order parameter and the temperature variation of fourth order cumulant. For the higher values of the field amplitude the transition observed is discontinuous and it is continuous for lower values of the field amplitude. This indicates that there is a tricritical point [separating the nature (continuous/discontinuous) of the dynamic transition] located on the dynamic phase boundary. These observations supports the earlier predictions [24] of a TCP on the phase boundary. The residence time distribution shows that the transition is a manifestation of stochastic resonance. A lengthy computational effort is required to find the precise location of the tricritical point. It would be interesting to know whether the TCP can act as a limit of stochastic resonance (along the first order line) or not. An extensive investigation is going
on towards this direction and the results will be reported elsewhere.

The detailed finite size study has been performed by Sides et al.\cite{7} and they have not observed any discontinuous transition. They studied the dynamic transition in very high frequency range. For very high frequency, the tricritical point will shift towards the zero temperature \cite{10} (the region of first order transition on the phase boundary will be very short). For this reason Sides et al. overlooked the part of dynamic phase boundary corresponding to first order transition. The first order region of the dynamic phase boundary can be observed clearly in low frequency range.

The experimental evidence \cite{11} of the dynamic transition has been found recently. Dynamical symmetry breaking (associated with the dynamic transition) of the hysteresis loop across the transition point has been observed in highly anisotropic (Ising like) and ultra thin Co/Cu(001) ferromagnetic films by the surface magneto optic Kerr effect. Dynamical symmetry breaking of the hysteresis loop has also been observed \cite{12} in ultra thin Fe/W(110) films. However, the detailed investigation has not yet been made to study the dynamic phase boundary and the nature (continuous/discontinuous) of the transition.

ACKNOWLEDGMENTS

Graduiertenkolleg for ”Structure and Dynamics of heterogeneous systems” is gratefully acknowledged for financial support. Author would like to thank B. K. Chakrabarti, S. Lübeck, U. Nowak and K. Usadel for careful reading of the manuscript and comments.
REFERENCES

* E-mail: muktish@thp.uni-duisburg.de

[1] S. W. Sides, P. A. Rikvold and M. A. Novotny, Phys. Rev. E, 57, 6512 (1998)

[2] M. Acharyya and B. K. Chakrabarti, Phys. Rev. B 52, 6550 (1995)

[3] L. Gammaitoni, P. Hänggi, P. Jung and F. Marchesoni, Rev. Mod. Phys., 70, 223 (1998) and the references therein.

[4] T. Tome and M. J. de Oliveira, Phys. Rev. A 41, 4251 (1990)

[5] W. S. Lo and R. A. Pelcovits, Phys. Rev. A 42, 7471 (1990)

[6] M. Acharyya, Phys. Rev. E, 56, 2407 (1997); ibid Phys. Rev. E, 56, 1234 (1997);

[7] S. W. Sides, P. A. Rikvold and M. A. Novotny, Phys. Rev. Lett., 81, 834 (1998)

[8] M. Acharyya, Phys. Rev. E, 58, 179 (1998)

[9] K. Binder, K. Vollmayr, H-P Deutsch, J. D. Reger and M. Scheucher, Int. J. Mod. Phys. C, 3, 1025 (1992); See also, K. Binder and D. Heermann, Monte Carlo Simulation in Statistical Physics: An Introduction (Springer, Berlin 1992)

[10] The tricritical point on the phase boundary appears because of the failure to relax within the time period (2π/ω). This intrinsic relaxation time in the ferromagnetic phase decreases as the temperature decreases and below T_{TCP}(h_0, ω), the effective relaxation time (τ_{eff}) is less than 2π/ω. The TCP will be located at the temperature where τ_{eff} ≈ 2π/ω. This indicates that TCP will shift towards low temperature as the frequency increases. For detailed discussion see Ref. [2].

[11] Q. Jiang, H. N. Yang and G. C. Wang, Phys. Rev. B 52, 14911 (1995)

[12] J S Suen and J L Erskine, Phys. Rev. Lett., 78, 3567 (1997)
FIGURES

FIG. 1. The histograms of the normalized distributions of the dynamic order parameter Q for different temperatures ($T = 0.20J/K_B$, $0.28J/K_B$, $0.30J/K_B$ and $0.40J/K_B$) and for the fixed value of field amplitude h_0. All the figures are plotted in the same scales.

FIG. 2. Time variation of the magnetic field $h(t)$ (solid line) and magnetization $m(t)$ (dotted line) close to the transition ($T = 0.3J/K_B$ and $h_0 = 2.0J$).

FIG. 3. The histogram of normalized ($\int P_r(\tau_r)d\tau_r = 1$) distribution ($P_r(\tau_r)$) of the residence time (τ_r). The dotted line is the exponential best fit of the envelope of the distribution.

FIG. 4. Temperature (T) variation of the fourth order Binder cumulant. Deep minimum indicates the transition is first order and the position of minimum is the transition point.

FIG. 5. The normalized distributions of the dynamic order parameter Q (in the 2nd order and close to the transition region) for three different temperatures ($T = 1.48J/K_B$, $1.50J/K_B$, $1.55J/K_B$) and fixed field amplitude $h_0 = 0.3J$.

FIG. 6. Temperature (T) variation of the fourth order cumulant (U_L) for a fixed value of field amplitude ($h_0 = 0.3J$).