Nucleus-acoustic solitary waves in self-gravitating degenerate quantum plasmas

D M S Zaman1,\dagger, M Amina2, P R Dip1, and A A Mamun1

1Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
2Department of EEE, Bangladesh University of Business and Technology (BUBT), Mirpur-2, Dhaka-1216, Bangladesh

(Received 24 October 2017; revised manuscript received 23 December 2017; published online 29 March 2018)

Nucleus-acoustic (NA) solitary waves (SWs) propagating in a self-gravitating degenerate quantum plasma (SDQP) system (containing non-relativistically degenerate heavy and light nuclei, and non-/ultra-relativistically degenerate electrons) have been theoretically investigated. The modified Korteweg–de Vries (mK-dV) equation has been derived for both planar and non-planar geometry by employing the reductive perturbation technique. It is shown that the NA SWs exist with positive (negative) electrostatic (self-gravitational) potential. It is also observed that the effects of non-/ultra-relativistically degenerate electron pressure, dynamics of non-relativistically light nuclei, spherical geometry, etc. significantly modify the basic features (e.g., amplitude, width, speed, etc.) of the NA SWs. The applications of our results, which are relevant to astrophysical compact objects, like white dwarfs and neutron stars, are briefly discussed.

Keywords: self-gravitational potential, solitary waves

PACS: 04.40.–b, 05.45.Yv

1. Introduction

Plasma physics is very often regarded to be an entirely classical field. Plasma may be quantum when the quantum nature of its particles appreciably affects its macroscopic properties. Renewed interest on plasma system has been grown in the last decade when the quantum effects in plasmas are important. Quantum plasmas have a very high electron number density in comparison with classical plasmas. Recently, quantum plasmas have been considerably investigated due to their potential applications in dense astrophysical compact environments (viz white dwarfs and neutron stars), nanowires, quantum dots, semiconductor devices, and high gain free electron lasers.[1–7]

Nowadays, astrophysics deals with massive compact objects (e.g., white dwarfs, neutron stars, other exotic dense stars, cometary tails, black holes, etc.), and also tiny constituents of microscopic world.[8] The density of the degenerate matter in astrophysical compact objects is extremely high (viz. degenerate plasma particle number density is the order of 10^{30} cm$^{-3}$ in white dwarfs, and order of 10^{36} cm$^{-3}$ in neutron stars). These extremely dense compact objects have ceased burning thermonuclear fuel, and are stabilized against gravitational collapse by the degenerate Fermi pressure instead of thermal pressure. Therefore, astrophysical compact objects have gained enormous attention in understanding their constituents and basic properties of extremely dense (degenerate) matter in them.[9–13] Chandrasekhar described in his ground-breaking work that the degenerate pressure of plasma particles creates the outward pressure in astrophysical compact objects, which is counter-balanced by the inward pull of their gravity.[9] Chandrasekhar[14] contributed significantly to the understanding of degenerate electrons and gave two limits, named the non-relativistic limit and the ultra-relativistic limit due to the combination of the ideas of relativity and quantum mechanics. The degenerate pressure P_j associated with plasma species j (where $j = e$ for the electrons, and $j = n$ for nuclei) can be expressed as $P_j = K_j \gamma_j$[9,10,15–22] where $\gamma_j = 5/3$, and $K_j \approx 3\Lambda_j \bar{h}/5$ (with $\Lambda_j = \pi \hbar/m_j c$) for non-relativistic limit,[7,15–20,23,24] whereas $\gamma_j = 4/3$, and $K_j \approx 3\hbar c/4$ for ultra-relativistic limit.[7,15–18,23–25] It is to be noted that m_e (m_n) is the mass of electrons (nuclei), \hbar is the Planck’s constant divided by 2π, and c is the speed of light in vacuum. The subscript j on γ, and K (in ultra-relativistic limit) has been used so that any of the two limits for any degenerate plasma species can be used. However, studies of relativistic degeneracy of plasmas have gained massive attention because of its vital role in different astrophysical situations.[26–29]

Furthermore, white dwarfs contain mainly oxygen, carbon, and helium with a covering of hydrogen gas,[9,12,17] and the electron species are relativistically degenerate not only within the inner core of the white dwarfs but also these are non-relativistically degenerate in their outer mantle.[12,30,31] Garcia-Berro \textit{et al.}[13] studied that the main constituents of compact objects (e.g., white dwarfs, neutron stars, and black holes, etc.) are degenerate electrons, and nuclei of light as well as heavy elements. However, the complete understanding of the formation of astrophysical objects is a big challenge in astrophysics and cosmology. The formation of asteroids, comets, planets, and stars has been revealed from the gravita-

\dagger Corresponding author. E-mail: saadzamanshaon@gmail.com

© 2018 Chinese Physical Society and IOP Publishing Ltd

DOI: 10.1088/1674-1056/27/4/040402
tional collapse of astrophysical objects, such as nebulae, etc. Jeans explained the gravitational collapse of astrophysical objects for the formation of stars and galaxies in his prominent theory which describes the condition of self-gravitational instability between the neutral fluids.[32] The Jeans instability occurs when internal pressure could not compete with gravitational collapse.

Various authors have studied the gravitational instability of a plasma on various conditions.[33–37] Mamun and Schlickeiser[37,38] studied the propagation of dust-acoustic (DA) solitary (shock) waves in a weakly (strongly) coupled opposite polarity dust-plasma medium by taking the effect of self-gravitational field into account. Mamun et al.[39] also studied nucleus–acoustic shock structures in a strongly coupled self-gravitational degenerate quantum plasma consisting of strongly-coupled non-degenerate heavy nuclei, weakly-coupled degenerate non-relativistically light nuclei, and non-ultra-relativistically degenerate electrons. But both heavy and light nuclei should be either relativistic or non-relativistic in the case of compact objects like white dwarfs or neutron stars. One dimensional (1D) planar geometry cannot be applied in some cases and so non-planar geometry is more appropriate than 1D planar geometry. Mamun et al. [39] have another work on heavy nucleus acoustic (HNA) spherical solitons (SSs) associated with HNA waves in self-gravitational degenerate (super-dense) quantum plasmas (SGDPQ). They considered non-planar (spherical) geometry instead of 1D planar geometry and that work contained non-degenerate heavy and light nuclear species. But in case of self-gravitational degenerate (super-dense) quantum plasma system, both heavy and light nuclei may be degenerate.[40–42] Recently Zaman et al. [43] have studied the basic features of both planar and non-planar shock structures (SSs) associated with nucleus-acoustic (NA) waves in a strongly coupled self-gravitating degenerate quantum plasma (SCSGDPQ) system.

To the best of our knowledge, no theoretical investigation has been made to study the NA SWs in a self-gravitating degenerate quantum plasma (SDQP) system, which contains both non-relativistically degenerate heavy and light nuclei [12] and non-ultra-relativistically degenerate electrons [10] for both planar and non-planar (spherical and cylindrical) geometry. However, in our investigation, the nonlinear propagation of NA waves (where the inertia comes mainly from the mass density of the heavy nuclei, and the restoring force is mainly provided by the degenerate pressure of electrons) is considered, and we study 1D planar and non-planar NA SWs in such a realistic astrophysical plasma system.

2. Governing equations

We demonstrate the existence of the NA SWs in our considered SDQP system. The perturbed state of this SDQP system is described by

\[\partial_t n_i + \partial_x u_i + \frac{1}{r^2} \partial_r (r^2 n_i u_i) = 0, \quad \tag{1} \]

\[(\partial_t + u_i \partial_r) u_i = -\partial_x \phi - \partial_x \psi - \frac{\alpha^2_i}{1 + n_i} \partial_r (1 + n_i)^{\alpha - 1}, \quad \tag{2} \]

\[y \partial_t u_n + \beta y \partial_t \phi + y \partial_t \psi = - \frac{\alpha_n}{1 + n_n} \partial_r (1 + n_n)^{\alpha - 1}, \quad \tag{3} \]

\[\partial_t \phi = \frac{\alpha^2_i}{1 + n_i} \partial_r (1 + n_e)^{\alpha - 1}, \quad \tag{4} \]

\[\frac{1}{r^2} \partial_r (r^2 \partial_r \phi) = (1 + \mu) n_e - \mu n_n - n_i, \quad \tag{5} \]

\[\frac{1}{r^2} \partial_r (r^2 \partial_r \psi) = \sigma (n_i + \beta n_n), \quad \tag{6} \]

where \(s = n \) (i) for heavy (light) nuclei, and \(y = 1 + n_i, \partial_t = \partial / \partial t; \nu = 0 \) for planar geometry,[36] \(\nu = 1 \) (2) for non-planar cylindrical (spherical) geometry,[43] \(\partial_r = \partial / \partial r, n_i = n_i + \alpha_k \partial_t, n_n (n_i) \) is the perturbed part of electron (nuclear species) number density normalized by its equilibrium value \(n_{i0} \) (\(n_{n0} \)), \(u_s \) is the fluid speed normalized by \(C_i = (Z_m e^2/\hbar m_i)^{1/2} \) [where \(m_e (m_i) \) is the mass of electron (light nucleus)]; \(\psi \) is the electrostatic wave potential normalized by \(m_e c^2/e \) (with \(e \) being the magnitude of an electron charge). \(\psi \) is the perturbed part of the self-gravitational potential normalized by \(C_i^2, r \) is the space variable normalized by \(\lambda_D = (m_e c^2/4 \pi \hbar n_{i0} Z^2)^{1/2} \), \(t \) is the time variable normalized by \(\omega_{pi}^{-1}, \beta = Z_m m_i / Z_m n_i = Z m_i / Z n_i \) and \(\mu = \omega_{pi}^{n_i0}/\omega_{pi}^{n_n0} \sigma = \omega_{pi}^{n_i0}/\omega_{pi}^{n_n0} \) [with \(\omega_{pi} = (4 \pi e^2 n_i0 m_i)^{1/2} \) being the Jeans frequency for the light nuclei, and \(G \) being the universal gravitational constant]. We have defined \(\alpha^i = Kn_i0^{-1}/m_e c^2, \alpha^n = Kn_n0^{-1}/m_e c^2, \) and \(\alpha' = K n_l0^{-1}/m_e c^2. \]

Note that equation (1) represents the continuity equation for light/heavy nuclei; equation (2) [(3)] represents the momentum equation for degenerate light (heavy) nuclei including the effects of electrostatic and self-gravitational forces; equation (4) represents the momentum equation for degenerate electrons where electrostatic and gravitational pressures are balanced by the degenerate pressure of electron species; equation (5) [(6)] represents the Poisson’s equation for the electrostatic (self-gravitational) potential.

We further note that (i) the self-gravitational potential depends on the mass density \((m_i,n_i)\) of the particles in astrophysical compact objects; (ii) the self-gravitational potential is sometimes so important that in some astrophysical compact objects, the degenerate pressure (which also only depends on the particle density) is balanced by the pressure associated with the self-gravitational force;[9] (iii) however, the degenerate pressure is, in general, balanced by the pressure associated with the combined electrostatic and gravitational forces into account.
3. Derivation of mK-dV equation

We now construct a weakly nonlinear theory for the nonlinear propagation of the NA waves by using the reductive perturbation method. Thus, we first introduce the stretched coordinates

\[\xi = \epsilon^{1/2}(r - V_p t), \]
\[\tau = \epsilon^{3/2}t, \]
and expand the perturbed quantities (dependent variables, viz \(n_i, u_i, \phi, \) and \(\psi \)) in power series of \(\epsilon \):

\[n_i = \epsilon n_i^{(1)} + \epsilon^2 n_i^{(2)} + \cdots, \]
\[u_i = \epsilon u_i^{(1)} + \epsilon^2 u_i^{(2)} + \cdots, \]
\[\phi = \epsilon \phi^{(1)} + \epsilon^2 \phi^{(2)} + \cdots, \]
\[\psi = \epsilon \psi^{(1)} + \epsilon^2 \psi^{(2)} + \cdots, \]

where \(V_p \) is the phase speed of the NA waves normalized by \(C_i \), \(\xi (\tau) \) normalized by \(\lambda_{\text{DS}} (\alpha_p^{-1}) \), and \(\epsilon \) is a smallness parameter measuring the weakness of the dispersion (\(0 < \epsilon < 1 \)). We now develop equations in various powers of \(\epsilon \) by using Eqs. (7) and (8) in Eqs. (1)–(6). To the lowest order in \(\epsilon \) [i.e., keeping the terms containing \(\epsilon^{3/2} \) from Eqs. (1)–(4), and \(\epsilon \) from Eqs. (5) and (6)], a set of equations are obtained from Eqs. (1)–(6) as

\[n_i^{(1)} = \frac{\mu(1 - \beta)}{\mu(V_p^2 - a_i) + \beta(V_p^2 - a_n)} \phi^{(1)}, \]
\[n_n^{(1)} = \frac{\beta_1(1 - \beta)}{\mu(V_p^2 - a_i) + \beta(V_p^2 - a_n)} \phi^{(1)}, \]
\[\psi^{(1)} = \frac{\beta(V_p^2 - a_n) + \beta \mu(V_p^2 - a_i)}{\beta(V_p^2 - a_n) + \mu(V_p^2 - a_i)} \phi^{(1)}, \]
\[V_p = \left[\frac{1 + \mu(a_n \beta + a_n \mu) + (1 + \beta)\mu a_n^2}{(1 + \mu)(a_n \beta + a_n \mu)} \right]^{1/2}, \]

where \(a_i = \gamma a_i', a_n = \gamma a_n', \) and \(\alpha_c = \gamma \alpha_c'. \) Equation (12), i.e., \(V_p = \omega / kC_i \), where \(\omega \) is the frequency (propagation constant), represents the linear dispersion relation for the NA SWs propagating in an SDQP system under consideration. We have graphically shown how the NA wave phase speed \(V_p \) varies with degenerate plasma particle number densities \((n_{e0}) \) for non-relativistically as well as ultra-relativistically degenerate electron species (DES). This is displayed in Fig. 1, which implies that the the phase speed \(V_p \) of the NA waves is zero for \(n_{e0} \leq 0.9 \times 10^{30} \), and then it increases rapidly with \(n_{e0} \) up to \(n_{e0} \leq 2 \times 10^{30} \), but decreases with \(n_{e0} \) for \(n_{e0} > 2 \times 10^{30} \) in both limits of non-relativistically as well as ultra-relativistically DES. The sharp linearly increasing region \((n_{e0} \leq 2 \times 10^{30}) \) represents the linear dispersion relation for the NA waves in which the restoring force (inertia) is mainly provided by the pressure of DES (mass density of heavy nuclear species), while the slightly decreasing region (at \(n_{e0} > 2 \times 10^{30} \)) is due to the effect of the dynamics and degenerate pressure of light nuclei. We note that the restoring force (which in our case is degenerate pressure), and inertial heavy particles (which in our case is heavy nucleus) make the NA wave mode significantly different from other wave modes like ion-acoustic, electron-acoustic, etc. It is also observed that the effect of ultra-relativistically DES reduces the NA wave phase speed \((V_p) \). This is due to the fact that the restoring force provided by the ultra-relativistically DES is less than that provided by the non-relativistically DES because of the lower values of both \(K_c \) and \(V_p \) in ultra-relativistic limit. We note that \(\beta = Z_m n_i / Z_m n_n = 0.5 \) for nuclei of any heavy element being as heavy nuclear species, and nuclei of hydrogen (protons) being as light nuclear species.

![Fig. 1](color online) The variation of \(V_p \) with \(n_{e0} \) for non-relativistically (solid curve), and ultra-relativistically (dotted curve) DES.

Now, to the next higher order in \(\epsilon \) [i.e., keeping the terms containing \(\epsilon^{5/2} \) from Eqs. (1)–(4), and \(\epsilon^2 \) from Eqs. (5) and (6)], we have a set of equations containing nonlinear terms. The new set of equations along with Eqs. (9)–(12), allow us to eliminate \(u_i^{(2)}, n_i^{(2)}, \phi^{(2)}, \) and \(\psi^{(2)} \). This elimination finally reduces to the modified Korteweg-de Vries (mK-dV) equation in the form

\[\partial_t \phi^{(1)} + \frac{V_p \phi^{(1)}}{2\tau} + A \phi^{(1)} \partial_x \phi^{(1)} + B \partial_x^3 \phi^{(1)} = 0, \]

where \(A \) and \(B \) denote the nonlinear coefficient, and dispersion coefficient, respectively, given by

\[A = \frac{N(LR G^2 - \mu^2 \alpha_c^2 OF)H + \mu RS_a \alpha_c^2 FH}{2\epsilon S_1 \epsilon G \alpha_c^2 [\sigma(M - \sigma(a_n - a_c))]}, \]
\[B = \frac{(G_1 - \sigma G) PR H}{2V_p S_1 \sigma [\sigma M - \sigma(a_n - a_c)]}, \]

in which

\[E = V_p^2 (\mu + 1) - (\mu a_n + a_n), \]
\[M = V_p^2 (\beta - 1) + (a_n - \beta a_n), \]
\[F = 3V_p^2 + a_n (\gamma - 2), \]
\[F_i = 3V_p^2 + a_n (\gamma_n - 2), \]
\[G = \beta (V_p^2 - \alpha_s) + \mu (V_p^2 - \alpha_s), \]
\[G_1 = (V_p^2 - \alpha_s) + \mu (V_p^2 - \alpha_s), \]
\[H = V_p^2 (\beta + \mu) - \sigma (\beta \alpha_s + \mu \alpha_s), \]
\[S_1 = \mu (1 - \beta), \quad S_2 = \mu (1 - \beta^2), \]
\[P = (V_p^2 - \alpha_s), \quad R = (V_p^2 - \alpha_s), \]
\[L = (1 + \mu) (\gamma_s - 2), \quad O = \beta^2 (\beta - 1)^2. \]

We note that equation (13) represents the mKdV equation for the electrostatic potential \(\phi^{(1)} \). However, it also represents the mKdV equation for the self-gravitational potential \(\psi^{(1)} \) just by substituting Eq. (11) into Eq. (13) and we will gain the opposite polarity.

An exact analytic solution of Eq. (13) is not possible. We now consider two special cases, namely 1D planar \((v = 0)\) and cylindrically \((v = 1)\) and spherically \((v = 2)\) symmetric non-planar NA SWs in the following two subsections.

3.1. 1D planar \((v = 0)\) NA SWs

We have already mentioned that \((v = 0)\) corresponds to a 1D planar geometry which reduces Eq. (13) to a standard K-dV equation \([44]\) in the form

\[\partial_t \phi^{(1)} + A \phi^{(1)} \partial_x \phi^{(1)} + B \partial_x^3 \phi^{(1)} = 0. \]

(16)

Thus the stationary solitary wave solution of this standard K-dV equation (16) can be expressed as a moving frame \(\zeta = \xi - U_0 t \), where \(\zeta (U_0) \) is normalized by \(\lambda_{Dh} (C_1) \), and introducing the appropriate boundary conditions, viz. \(\phi^{(1)} \to 0, \partial_x \phi^{(1)} \to 0, \partial_x^2 \phi^{(1)} \to 0 \) at \(\zeta \to \infty \). These allow us to write the stationary solitary wave solution of Eq. (16) as

\[\Phi^{(1)} = \Phi_0^{(1)} \frac{\sech^2 \left(\frac{\zeta}{\Delta} \right)}{\Delta}, \]

(17)

where \(\Phi_0^{(1)} \) (height normalized by \(m_e c^2 / e \)), and \(\Delta \) (thickness normalized by \(\lambda_{Dh} \)) are given by

\[\Phi_0^{(1)} = \frac{3U_0}{A}, \quad \Delta = \sqrt{\frac{3B}{U_0^2}} \]

(18)

The solitary waves are steady nonlinear waves,\([45,46]\) and are formed due to the balance between nonlinearity and dispersion. The degree of nonlinearity is proportional to the potential of the plasma system and a highly nonlinear medium causes high electrostatic potential. It is observed from Eq. (18) that the height of the amplitude of the solitary structures is directly proportional to the solitary speed moving with \(U_0 \), and inversely proportional to the nonlinear coefficient \(A \). On the other hand, the width of these solitary structures is directly proportional to the dispersive constant \(B \), and inversely proportional to the solitary speed moving with \(U_0 \). It is clear from Eqs. (17) and (18) that the NA SWs exist in the SDQP since \(V_p, A, \) and \(B \) are numerically found (not directly shown here).
of self-gravitational SWs. It is well known that as the phase speed \(V_p\) of the acoustic type of waves increases, the amplitude of the SWs increases. This means that the amplitude of the NA SWs increases (decreases) with \(n_{e0}\) for \(n_{e0} < 2 \times 10^{30}\) \((n_{e0} > 2 \times 10^{30})\). The effects of \(n_{e0}\) and ultra-relativistically DES on the NA SWs can be interpreted as we did it on \(V_p\).

3.2. Non-planar NA SWs

The SWs are illustrated in Figs. 3 and 4, which are modified by the effects of non-planar geometries \(v = 1\) (2). It is noted that \(v = 1\) (2) corresponds to cylindrical (spherical) geometry. We have numerically analyzed Eq. (13) for \(v = 1\) (2), \(\sigma = 4\), \(\eta = 0.4\), \(\mu = 1.4\), and \(U_0 = 0.1\). Figures 3 and 4 represent the NA SWs associated with positive electrostatic potential (a) and negative self-gravitational potential (b) for both non-relativistically (upper surface), and ultra-relativistically (lower surface) DES. Figures 3 and 4 also indicate how NA SWs evolve with time \((\tau)\).

From Figs. 3 and 4, it is seen that for a very large value of \(\tau\), the cylindrical and spherical NA SWs are similar to 1D planar ones. This is due to the fact that for a very large value of \(\tau\), the contribution of the term \(\phi/\tau\), which is due to the effect of the non-planar (cylindrical and spherical) geometry, becomes insignificant. However, as the value of \(\tau\) decreases, the contribution of the term \(\phi/\tau\) becomes more and more significant, and the non-planar (cylindrical and spherical) NA SWs differ from 1D planar ones. It is found that with the decrease of the value of \(\tau\), the amplitude of the NA SWs increases. It is also found that the amplitude of the non-planar (cylindrical and spherical) NA SWs is larger than that of the 1D planar ones.

4. Discussion

We have considered an SDQP containing non-relativistically degenerate heavy (light) nuclei, and both non/ultra-relativistically degenerate electrons. Using the reductive perturbation method, the mK-dV equation has been derived, and that equation has been numerically analyzed, and the basic features of the NA SWs have been studied. The results, which have been found from this theoretical investigation, can be summarized as follows:

(i) The phase speed \(V_p\) of the NA waves is zero for \(n_{e0} \leq 0.9 \times 10^{30}\), and linearly increases with \(n_{e0}\) for \(n_{e0} < 2 \times 10^{30}\), but slightly decreases with \(n_{e0}\) for \(n_{e0} > 2 \times 10^{30}\) in both non-relativistically and ultra-relativistically DES. The linearly increasing region \((at\ n_{e0} < 2 \times 10^{30})\) is quite sensible for any kind of acoustic waves, while the slightly decreasing region \((at\ n_{e0} > 2 \times 10^{30})\) is due to the combined effect of the dynamics and degenerate pressure of light nuclear species.

(ii) The phase speed \(V_p\) of the NA SWs in the case of ultra-relativistically DES is smaller than that of non-relativistically DES. This occurs due to the fact that the restoring force provided by ultra-relativistically DES is less than that
provided by non-relativistically DES because of the lower values of both γ and K_0 in the ultra-relativistic limit.

(iii) The NA SWs with positive (negative) electrostatic (self-gravitational) potential is formed due to the strong interaction among heavy nuclei which acts as a source of dispersion.

(iv) The height of the NA SWs is directly proportional to the speed (U_0) and inversely proportional to the nonlinear coefficient A. On the other hand, the thickness of the NA SWs is inversely proportional to the speed (U_0) and directly proportional to the dissipative constant B.

(v) The height and thickness of the NA SWs associated with both electrostatic and self-gravitational potentials are less in the case of ultra-relativistically DES than in the case of non-relativistically DES. The effect of ultra-relativistically DES reduces (enhances) the height (thickness) of the NA SWs since i) the NA wave phase speed (V_0) is decreased by lower values of both γ and K_0 of ultra-relativistically DES, and ii) the height (thickness) of SWs always increases (decreases) with the increase of the wave phase speed.

(vi) For a very large value of τ, the spherical NA SWs are identical to 1D planar ones. This is because of the very large value of τ, the term ϕ/τ, which is due to the effect of the spherical geometry, is no longer significant. However, as the value of τ decreases, the term ϕ/τ becomes significant, and the non-planar (cylindrical and spherical) NA SWs differ from 1D planar ones.

(vii) The height (thickness) of NA SWs decreases (increases) as the value of τ increases. The height of the cylindrical NA SWs is smaller than that of the spherical ones but larger than that of 1D planar ones. The thickness of the cylindrical NA SWs is always larger than that of the spherical ones but smaller than that of 1D planar ones.

It may be also noted that our basic equations (1)–(6), which are valid for the perturbed quantities involved, cannot explain the equilibrium state of the phase speed under consideration. To explain the equilibrium state of this phase speed, one has to rewrite the basic equations, which can be valid for $n_{\eta 0}(x)$, i.e., for $\phi_0(x)$ and $\psi_0(x)$, where $\phi_0(x)$ and $\psi_0(x)$ are, respectively, the electrostatic and self-gravitational potential at equilibrium. This means that $n_{\eta 0}$, ϕ_0 and ψ_0 are not constant, but are the function of x so that at equilibrium, the force associated with electrostatic and degenerate pressures are balanced by the self-gravitational force. However, if we neglect the net surface charge density of plasma species, at equilibrium, the force associated with the degenerate pressure is balanced by the gravitational force.$^{[9,10]}$ This is the common scenario for the most astrophysical compact objects, e.g., white dwarfs and neutron stars.$^{[9]}$

The astrophysical compact objects like black holes emit gravitational waves$^{[47]}$ and this recent discovery lets us dream that in near future an identical or slightly identical waves (like NA waves) and associated nonlinear structures like solitons, shocks, etc., will be discovered from other astrophysical compact objects like white dwarfs and neutron stars. We may hope that this investigation will directly or indirectly be able to verify the future signature of the existence of solitonic signals observed by space experiments as well as to understand the localized electrostatic or gravitational disturbances in astrophysical compact objects like white dwarfs and neutron stars. We finally stress that our present investigation could be very helpful for understanding the nonlinear structures which may be formed in some astrophysical compact objects (e.g., white dwarfs and neutron stars).

References

[1] Shukla P K and Eliasson B 2006 Phys. Rev. Lett. 96 245001
[2] Shukla P K 2008 J. Plasma Phys. 74 107
[3] Mamun A A and Shukla P K 2001 Phys. Lett. A 290 173
[4] Hossen M A, Hossen M R and Mamun A A 2014 J. Korean Phys. Soc. 65 1883
[5] Hossen M R and Mamun A A 2015 Braz. J. Phys. 45 200
[6] Hossain M M and Mamun A A 2012 J. Phys. A: Math. Theor. 45 125501
[7] Ema S A, Hossen M R and Mamun A A 2015 Contrib. Plasma Phys. 55 551
[8] Shapiro S L and Teukolsky A A 1983 Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects (New York: John Wiley and Sons)
[9] Chandrasekhar S 1931 Phil. Mag. 11 592
[10] Chandrasekhar S 1931 Astrophys. J. 74 81
[11] Koester D and Channugam G 1990 Rep. Prog. Phys. 53 837
[12] Koester D 2002 Astron. Astrophys. 11 33
[13] Garcia-Berro E, Torres S, Althaus L G, Reneo I, Loren-Aguilart P, et al. 2010 Nature 465 194
[14] Chandrasekhar S 1935 Mon. Notices Royal Astron. Soc. 170 405
[15] Mamun A A and Shukla P K 2010 Phys. Plasmas 17 104504
[16] Mamun A A and Shukla P K 2010 Phys. Lett. A 374 4238
[17] Shukla P K, Mamun A A and Mendis D A 2011 Phys. Rev. E 84 026405
[18] Mamun A A, Shukla P K and Mendis D A 2012 J. Plasma Phys. 78 143
[19] Roy N 2012 Phys. Plasmas 19 064704
[20] Hossen M R, Hossen M A, Sultana S and Mamun A A 2015 Astrophys. Space Sci. 357 34
[21] Shah M G, Hossen M R, Sultana S and Mamun A A 2015 Chin. Phys. Lett. 32 085203
[22] Chowdhury N A, Hasan M M, Mannan A and Mamun A A 2018 Vacuum 147 31
[23] Hossen M R, Nahar L and Mamun A A 2014 Phys. Scr. 89 105603
[24] Hasan M M, Hossen M A, Rafat A and Mamun A A 2016 Chin. Phys. B 25 105203
[25] El-Taibany W F and Mamun A A 2017 Phys. Rev. E 85 026406
[26] Dip P R, Hossen M A, Salahuddin M and Mamun A A 2017 Eur. Phys. J. D 71 52
[27] Hossen M R, Nahar L, Sultana S and Mamun A A 2014 High Energy Density Phys. 13 13
[28] Hosen B, Shah M G, Hossen M R and Mamun A A 2016 Eur. Phys. J. Plus 131 81
[29] Dip P R, Hossen M A, Salahuddin M and Mamun A A 2017 J. Korean Phys. Soc. 70 777
[30] Shukla P K and Eliasson B 2011 Phys.-Usp. 53 51
[31] Shukla P K and Eliasson B 2011 Rev. Mod. Phys. 83 885
[32] Jeans J H 1902 Philos. Trans. R. Soc. A 199 1
[33] Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability (Oxford, London: Clarendon Press)
[34] Shaikh S, Khan A and Bhatia P K 2007 Astrophys. Space Sci. 312 35
[35] Kaethekar S, Soni G D, Prajapati R P and Chhajlani R K 2016 Astrophys. Space Sci. 361 204
[36] Mamun A A, Amina M and Schlickeiser R 2016 Phys. Plasmas 23 094503
[37] Mamun A A and Schlickeiser R 2016 Phys. Plasmas 23 034502
[38] Mamun A A and Schlickeiser R 2015 Phys. Plasmas 22 103702
[39] Mamun A A, Amina M and Schlickeiser R 2017 Phys. Plasmas 24 042307
[40] Hossen M R, Nahar L, Sultana S and Mamun A A 2014 Astrophys. Space Sci. 353 123
[41] Hossen M R, Nahar L and Mamun A A 2014 J. Korean Phys. Soc. 65 1863
[42] Shah M G, Mamun A A and Hossen M R 2015 J. Korean Phys. Soc. 66 1239
[43] Zaman D M S, Amina M, Dip P R and Mamun A A 2017 Eur. Phys. J. Plus 132 457
[44] Washimi H and Taniuti T 1996 Phys. Rev. Lett. 17 996
[45] Hong-Wei Y., Bao-Shu Y., Yao-Deng C, et al. 2015 Chin. Phys. B 24 090205
[46] Li J, Fang N, Wang X, et al. 2016 Chin. Phys. B 25 040202
[47] Abbott B P, Abbott R, Abbott T D, et al. 2016 Phys. Rev. Lett. 116 061102