ON SHATTERING, SPLITTING AND REAPING PARTITIONS

Lorenz Halbeisen
Université de Caen
France

Keywords: Cardinal invariants, partition properties, dual-Mathias forcing.
MS-Classification: 03E05, 03E35, 03C25, 04A20, 05A18.

Abstract

In this article we investigate the dual-shattering cardinal \(\mathcal{H} \), the dual-splitting cardinal \(\mathcal{S} \) and the dual-reaping cardinal \(\mathcal{R} \), which are dualizations of the well-known cardinals \(h \) (the shattering cardinal, also known as the distributivity number of \(P(\omega)/\text{fin} \)), \(s \) (the splitting number) and \(r \) (the reaping number). Using some properties of the ideal \(\mathcal{J} \) of nowhere dual-Ramsey sets, which is an ideal over the set of partitions of \(\omega \), we show that \(\text{add}(\mathcal{J}) = \text{cov}(\mathcal{J}) = \mathcal{H} \). With this result we can show that \(\mathcal{H} > \omega_1 \) is consistent with ZFC and as a corollary we get the relative consistency of \(\mathcal{H} > t \), where \(t \) is the tower number. Concerning \(\mathcal{S} \) we show that \(\text{cov}(\mathcal{M}) \leq \mathcal{S} \) (where \(\mathcal{M} \) is the ideal of the meager sets). For the dual-reaping cardinal \(\mathcal{R} \) we get \(p \leq \mathcal{R} \leq r \) (where \(p \) is the pseudo-intersection number) and for a modified dual-reaping number \(\mathcal{R}' \) we get \(\mathcal{R}' \leq d \) (where \(d \) is the dominating number). As a consistency result we get \(\mathcal{R} < \text{cov}(\mathcal{M}) \).

1 The set of partitions

A partial partition \(X \) (of \(\omega \)) consisting of pairwise disjoint, nonempty sets, such that \(\text{dom}(X) := \bigcup X \subseteq \omega \). The elements of a partial partition \(X \) are called the blocks of \(X \) and \(\text{Min}(X) \) denotes the set of the least elements of the blocks of \(X \). If \(\text{dom}(X) = \omega \), then \(X \) is called a partition. \(\{\omega\} \) is the partition such that each block is a singleton and \(\{\{\omega\}\} \) is the partition containing only one block. The set of all partitions containing infinitely (resp. finitely) many blocks is denoted by \((\omega)^{\omega} \) (resp. \((\omega)^{<\omega} \)). By \((\omega)^{\omega} \) we denote the set of all infinite partitions such that at least one block is infinite. The set of all partial partitions with \(\text{dom}(X) \in \omega \) is denoted by \((\mathbb{N}) \).

Let \(X_1, X_2 \) be two partial partitions. We say that \(X_1 \) is coarser than \(X_2 \), or that \(X_2 \) is finer than \(X_1 \), and write \(X_1 \subseteq X_2 \) if for all blocks \(b \in X_1 \) the set \(b \cap \text{dom}(X_2) \) is the union of some sets \(b_i \cap \text{dom}(X_1) \), where each \(b_i \) is a block of \(X_2 \). (Note that if \(X_1 \) is coarser than \(X_2 \), then \(X_1 \) is in a natural way also contained in \(X_2 \).) Let \(X_1 \cap X_2 \) denotes the finest partial partition which is coarser than \(X_1 \) and \(X_2 \) such that \(\text{dom}(X_1 \cap X_2) = \text{dom}(X_1) \cup \text{dom}(X_2) \). Similarly \(X_1 \sqcup X_2 \) denotes the coarsest partial partition which is finer than \(X_1 \) and \(X_2 \) such that \(\text{dom}(X_1 \sqcup X_2) = \text{dom}(X_1) \cup \text{dom}(X_2) \).

1 The author wishes to thank the Swiss National Science Foundation for supporting him.
If f is a finite subset of ω, then $\{f\}$ is a partial partition with $\text{dom}(\{f\}) = f$. For two partial partitions X_1 and X_2 we write $X_1 \sqsubseteq^* X_2$ if there is a finite set $f \subseteq \text{dom}(X_1)$ such that $X_1 \cap \{f\} \subseteq X_2$ and say that X_1 is coarser* than X_2. If $X_1 \sqsubseteq^* X_2$ and $X_2 \sqsubseteq^* X_1$ then we write $X_1 \equiv X_2$. If $X \equiv \{\omega\}$, then X is called trivial.

Let X_1, X_2 be two partial partitions. If each block of X_1 can be written as the intersection of a block of X_2 with $\text{dom}(X_1)$, then we write $X_1 \preceq X_2$. Note that $X_1 \preceq X_2$ implies $\text{dom}(X_1) \subseteq \text{dom}(X_2)$.

We define a topology on the set of partitions as follows. Let $X \in (\omega)^\omega$ and $s \in (\mathbb{N})$ such that $s \subseteq X$, then $(s,X)^\omega := \{Y \in (\omega)^\omega : s \preceq Y \land Y \subseteq X\}$ and $(X)^\omega := (\emptyset,X)^\omega$. Now let the basic open sets on $(\omega)^\omega$ be the sets $(s,X)^\omega$ (where X and s as above). These sets are called the dual Ellentuck neighborhoods.

The topology induced by the dual Ellentuck neighborhoods is called the dual Ellentuck topology (cf. [CS]).

2 On the dual-shattering cardinal \mathfrak{f}

Four cardinals

We first give the definition of the dual-shattering cardinal \mathfrak{f}.

Two partitions $X_1, X_2 \in (\omega)^\omega$ are called almost orthogonal ($X_1 \perp_* X_2$) if $X_1 \cap X_2 \notin (\omega)^\omega$, otherwise they are compatible ($X_1 \parallel X_2$). If $X_1 \cap X_2 = \{\omega\}$, then they are called orthogonal ($X_1 \perp X_2$). We say that a family $A \subseteq (\omega)^\omega$ is maximal almost orthogonal (mao) if A is a maximal family of pairwise almost orthogonal partitions. A family \mathcal{H} of mao families of partitions shatters a partition $X \in (\omega)^\omega$, if there are $H \in \mathcal{H}$ and two distinct partitions in H which are both compatible with X. A family of mao families of partitions is shattering if it shatters each member of $(\omega)^\omega$. The dual-shattering cardinal \mathfrak{f} is the least cardinal number κ, for which there exists a shattering family of cardinality κ.

One can show that $\mathfrak{f} \leq \mathfrak{f}$ and $\mathfrak{f} \leq \mathfrak{D}$ (cf. [CMW]), (where \mathfrak{D} is the dual-splitting cardinal).

Two cardinals related to the ideal of nowhere dual-Ramsey sets

Let $C \subseteq (\omega)^\omega$ be a set of partitions, then we say that C has the dual-Ramsey property or that C is dual-Ramsey, if there is a partition $X \in (\omega)^\omega$ such that $(X)^\omega \subseteq C$ or $(X)^\omega \cap C = \emptyset$. If the latter case holds, we also say that C is dual-Ramsey0. If for each dual Ellentuck neighborhood $(s,Y)^\omega$ there is an $X \in (s,Y)^\omega$ such that $(s,X)^\omega \subseteq C$ or $(s,X)^\omega \cap C = \emptyset$, we call C completely dual-Ramsey. If for each dual Ellentuck neighborhood the latter case holds, we say that C is nowhere dual-Ramsey.

REMARK 1: In [CS] it is proved, that a set is completely dual-Ramsey if and only if it has the Baire property and it is nowhere dual-Ramsey if and only if it is meager with respect to the dual Ellentuck topology. From this it follows, that a set is nowhere dual-Ramsey if and only if the complement contains a dense and open subset (with respect to the dual Ellentuck topology).
Let \mathcal{J} be set of partitions which are completely dual-Ramsey. The set $\mathcal{J} \subseteq \mathcal{P}(\omega^\omega)$ is an ideal which is not prime. The cardinals $\text{add}(\mathcal{J})$ and $\text{cov}(\mathcal{J})$ are two cardinals related to this ideal.

$\text{add}(\mathcal{J})$ is the smallest cardinal κ such that there exists a family $\mathcal{F} = \{ J_\alpha \in \mathcal{J} : \alpha < \kappa \}$ with $\bigcup \mathcal{F} \not\in \mathcal{J}$.

$\text{cov}(\mathcal{J})$ is the smallest cardinal κ such that there exists a family $\mathcal{F} = \{ J_\alpha \in \mathcal{J} : \alpha < \kappa \}$ with $\bigcup \mathcal{F} = (\omega)^\omega$.

Because $(\omega)^\omega \not\in \mathcal{J}$, it is clear that $\text{add}(\mathcal{J}) \leq \text{cov}(\mathcal{J})$. Further it is easy to see that $\omega_1 \leq \text{add}(\mathcal{J})$. In the next section we will show that $\text{add}(\mathcal{J}) = \text{cov}(\mathcal{J})$.

The distributivity number $d(\mathcal{W})$

A complete Boolean algebra $\langle B, \leq \rangle$ is called κ-distributive, where κ is a cardinal, if and only if for every family $\langle u_{\alpha i} : i \in I_\alpha, \alpha < \kappa \rangle$ of members of B the following holds:

$$\prod_{\alpha < \kappa} \sum_{i \in I_\alpha} u_{\alpha i} = \sum_{f \in \prod_{\alpha < \kappa} I_\alpha} \prod_{\alpha < \kappa} u_{\alpha f(\alpha)}.$$

It is well known (cf. [Je2]) that for a forcing notion $\langle P, \leq \rangle$ the following statements are equivalent:

- $\text{r.o.}(P)$ is κ-distributive.
- The intersection of κ open dense sets in P is dense.
- Every family of κ maximal anti-chains of P has a common refinement.
- Forcing with P does not add a new subset of κ.

Let \mathcal{J} be the ideal of all finite sets of ω and let $\langle (\omega)^\omega / \mathcal{J}, \leq \rangle =: \mathcal{W}$ be the partial order defined as follows:

$$p \in \mathcal{W} \iff p \in (\omega)^\omega,$$

$$p \leq q \iff p \subseteq^* q.$$

The distributivity number $d(\mathcal{W})$ is defined as the least cardinal κ for which the Boolean algebra $\text{r.o.}(\mathcal{W})$ is not κ-distributive.

The four cardinals are equal

Now we will show, that the four cardinals defined above are all equal. This is a similar result as in the case when we consider infinite subsets of ω instead of infinite partitions (cf. [P] and [BPS]).

FACT 2.1 If $T \subseteq (\omega)^\omega$ is an open and dense set with respect to the dual Ellentuck topology, then it contains a mao family.

PROOF: First choose an almost orthogonal family $\mathcal{A} \subseteq T$ which is maximal in T. Now for an arbitrary $X \in (\omega)^\omega$, $T \cap (X)^\omega \neq \emptyset$. So, X must be compatible with some $A \in \mathcal{A}$ and therefore \mathcal{A} is mao. -
LEMMA 2.2 $\mathfrak{h} \leq \text{add}(\mathcal{J})$.

Proof: Let $\langle S_\alpha : \alpha < \lambda < \mathfrak{h} \rangle$ be a sequence of nowhere dual-Ramsey sets and let $T_\alpha \subseteq (\omega) \setminus S_\alpha$ ($\alpha < \lambda$) be such that T_α is open and dense with respect to the dual Ellentuck topology (which is always possible by the Remark 1). For each $\alpha < \lambda$ let

$$T^*_\alpha := \{ X \in (\omega) : \exists Y \in T_\alpha (X \sqsubseteq^* Y \land \neg(X \neq^* Y)) \}.$$

It is easy to see, that for each $\alpha < \lambda$ the set T^*_α is open and dense with respect to the dual Ellentuck topology.

Let $U_\alpha \subseteq T^*_\alpha$ ($\alpha < \lambda$) be mao. Because $\lambda < \mathfrak{h}$, the set $\langle U_\alpha : \alpha < \lambda \rangle$ can not be shattering. Let for $\alpha < \lambda U^*_\alpha := \{ X \in (\omega) : \exists Z_\alpha \in U_\alpha (X \sqsubseteq^* Z_\alpha) \}$, then $U^*_\alpha \subseteq T_\alpha$ and $\bigcap_{\alpha < \lambda} U^*_\alpha$ is open and dense with respect to the dual Ellentuck topology:

$\bigcap_{\alpha < \lambda} U^*_\alpha$ is open: clear.

$\bigcap_{\alpha < \lambda} U^*_\alpha$ is dense: Let $(s,Z)^\omega$ be arbitrary. Because $\langle U_\alpha : \alpha < \lambda \rangle$ is not shattering,

there is a $Y \in (s,Z)^\omega$ such that $\forall \alpha < \lambda \exists X_\alpha \in U_\alpha (Y \sqsubseteq^* X_\alpha)$. Hence, $Y \in \bigcap_{\alpha < \lambda} U^*_\alpha$.

Further we have by construction

$$\bigcap_{\alpha < \lambda} U^*_\alpha \cap \bigcup_{\alpha < \lambda} S_\alpha = \emptyset,$$

which completes the proof. \dashv

LEMMA 2.3 $\mathfrak{h} \leq d(\mathfrak{d})$.

Proof: Let $\langle T_\alpha : \alpha < \lambda < \mathfrak{h} \rangle$ be a sequence of open and dense sets with respect to the dual Ellentuck topology. Now the set $\bigcap_{\alpha < \lambda} U^*_\alpha$, constructed as in Lemma 2.2, is dense (and even open) and a subset of $\bigcap_{\alpha < \lambda} T_\alpha$. Therefore $\mathfrak{h} \leq d(\mathfrak{d})$. \dashv

LEMMA 2.4 $\text{add}(\mathcal{J}) \leq \mathfrak{h}$.

Proof: Let $\langle R_\alpha : \alpha < \mathfrak{h} \rangle$ be a shattering family and $P_\alpha := \{ X : \exists Y \in R_\alpha (X \sqsubseteq^* Y) \}$.

For each $\alpha < \mathfrak{h}$, P_α is dense and open with respect to the dual Ellentuck topology:

P_α is open: clear.

P_α is dense: Let $(s,Z)^\omega$ be arbitrary and $X \in (s,Z)^\omega$. Because R_α is mao, there is a $Y \in R_\alpha$ such that $X' := X \sqcup Y \in (\omega)^\omega$. Now let $X'' := X'$ such that $X'' \in (s,Z)^\omega$, then $X'' \sqsubseteq^* Y$.

Now we show that $\bigcap_{\alpha < \mathfrak{h}} P_\alpha = \emptyset$ and therefore $\bigcup_{\alpha < \mathfrak{h}} (\omega)^\omega \setminus P_\alpha = (\omega)^\omega$. Assume there is an $X \in \bigcap_{\alpha < \mathfrak{h}} P_\alpha$, then $\forall \alpha < \mathfrak{h} \exists Y_\alpha \in R_\alpha (X \sqsubseteq^* Y_\alpha)$. But this contradicts that $\langle R_\alpha : \alpha < \mathfrak{h} \rangle$ is shattering. \dashv
LEMMA 2.5 $d(\mathcal{W}) \leq \mathfrak{f}$.

PROOF: In the proof of Lemma 2.4 we constructed a sequence $\langle P_\alpha : \alpha < \mathfrak{f} \rangle$ of open and dense sets with an empty intersection. Therefore $\bigcap_{\alpha<\mathfrak{f}} P_\alpha$ is not dense. \hfill ⊣

COROLLARY 2.6 $\text{cov}(\mathfrak{f}) \leq \mathfrak{f}$.

PROOF: In the proof of Lemma 2.4 in fact we proved that $\text{cov}(\mathfrak{f}) \leq \mathfrak{f}$. \hfill ⊣

COROLLARY 2.7 $\text{add}(\mathfrak{f}) = \text{cov}(\mathfrak{f}) = d(\mathcal{W}) = \mathfrak{f}$.

PROOF: It is clear that $\text{add}(\mathfrak{f}) \leq \text{cov}(\mathfrak{f})$. By the Lemmas 2.3 and 2.5 we know that $\mathfrak{f} = d(\mathcal{W})$. Further by the Lemma 2.2 and the Corollary 2.6 it follows that $\mathfrak{f} \leq \text{add}(\mathfrak{f}) \leq \text{cov}(\mathfrak{f}) \leq \mathfrak{f}$. Hence we have $\text{add}(\mathfrak{f}) = \text{cov}(\mathfrak{f}) = d(\mathcal{W}) = \mathfrak{f}$. \hfill ⊣

COROLLARY 2.8 The union of less than \mathfrak{f} completely dual-Ramsey sets is dual-Ramsey, but the union of \mathfrak{f} completely dual-Ramsey sets can be a set, which does not have the dual-Ramsey property.

PROOF: Follows from Remark 1 and Corollary 2.7. \hfill ⊣

On the consistency of $\mathfrak{f} > \omega_1$

First we give some facts concerning the dual-Mathias forcing. The conditions of dual-Mathias forcing are pairs $\langle s, X \rangle$ such that $s \in (\mathbb{N})$, $X \subseteq (\omega)^\omega$ and $s \subseteq X$, stipulating $\langle s, X \rangle \leq \langle t, Y \rangle$ if and only if $(s,X)^\omega \subseteq (t,Y)^\omega$. It is not hard to see that similar to Mathias forcing, the dual-Mathias forcing can be decomposed as $\mathcal{W} \ast P_\mathcal{D}$, where \mathcal{W} is defined as above and $P_\mathcal{D}$ denotes dual-Mathias forcing with conditions only with second coordinate in \mathcal{D}, where \mathcal{D} is an \mathcal{W}-generic object.

Further, because dual-Mathias forcing has pure decision (cf. [CS]), it is proper and has the Laver property and therefore adds no Cohen reals.

If we make an ω_2-iteration of dual-Mathias forcing with countable support, starting from a model in which the continuum hypothesis holds, we get a model in which the dual-shattering cardinal \mathfrak{f} is equal to ω_2.

Let V be a model of CH and let $P_{\omega_2} := \langle P_\alpha, \hat{Q}_\beta : \alpha \leq \omega_2, \beta < \omega_2 \rangle$ be a countable support iteration of dual-Mathias forcing, i.e. $\forall \alpha < \omega_2 : \models_{P_\alpha} \text{"Q}_\alpha \text{ is dual-Mathias forcing"}$. In the sequel we will not distinguish between a member of \mathcal{W} and its representative. In the proof of the following theorem, a set $C \subseteq \omega_2$ is called ω_1-club if C is unbounded in ω_2 and closed under increasing sequences of length ω_1.

THEOREM 2.9 If G is P_{ω_2}-generic over V, where $V \models \text{CH}$, then $V[G] \models \mathfrak{f} = \omega_2$.

5
PROOF: In $V[G]$ let $\langle D_\nu : \nu < \omega_1 \rangle$ be a family of open dense subsets of \mathcal{W}. Because dual-Mathias forcing is proper and by a standard Löwenheim-Skolem argument, we find a ω_1-club $C \subseteq \omega_2$ such that for each $\alpha \in C$ and every $\nu < \omega_1$ the set $D_\nu \cap V[G_\alpha]$ belongs to $V[G_\alpha]$ and is open dense in $\mathcal{W}^{\mathcal{M}[G_\alpha]}$. Let $A \in \mathcal{W}^{\mathcal{M}[G_\alpha]}$ be arbitrary. By properness and genericity and because P_{ω_2} has countable support, we may assume that $A \in G(\alpha)'$ for an $\alpha \in C$, where $G(\alpha)'$ is the first component according to the decomposition of Mathias forcing of the $Q_\alpha[G_\alpha]$-generic object determined by G. As $\alpha \in C$, $G(\alpha)'$ clearly meets every D_ν ($\nu < \omega_1$). But now X_α, the Q_α-generic partition (determined by $G(\alpha)''$) is below each member of $G(\alpha)'$, hence below A and in $\bigcap_{\nu < \omega_1} D_\nu$. Because A was arbitrary, this proves that $\bigcap_{\nu < \omega_1} D_\nu$ is dense in \mathcal{W} and therefore $d(\mathcal{W}) > \omega_1$.

Again by properness of dual-Mathias forcing $V[G] \models 2^{\omega_0} = \omega_2$ and we finally have $V[G] \models \mathfrak{f} = \omega_1$.

In the model constructed in the proof of Theorem 2.9 we have $\mathfrak{f} > t$, where t is the well-known tower number (for a definition of t cf. [vDo]). Moreover, we can show

COROLLARY 2.10 The statement $\mathfrak{f} > \text{cov}(\mathcal{M})$ is relatively consistent with ZFC, (where \mathcal{M} denotes the ideal of meager sets).

PROOF: Because dual-Mathias forcing is proper and does not add Cohen reals, also forcing with P_{ω_2} does not add Cohen reals. Further it is known that $t \leq \text{cov}(\mathcal{M})$ (cf. [PV] or [BJ]). Now because forcing with P_{ω_2} does not add Cohen reals, in $V[G]$ the covering number $\text{cov}(\mathcal{M})$ is still ω_1 (because each real in $V[G]$ is in a meager set with code in V). This completes the proof.

REMARK 2: In [vDo] Theorem 3.1.(c) it is shown that $\omega \leq \kappa < t$ implies that $2^\kappa = 2^{\omega_0}$. We do not have a similar result for the dual-shattering cardinal \mathfrak{f}. If we start our forcing construction P_{ω_2} with a model $V \models \text{CH} + 2^{\omega_1} = \omega_3$, then (again by properness of dual-Mathias forcing) $V[G] \models \mathfrak{f} = \omega_2 = 2^{\omega_0} < 2^{\omega_1} = \omega_3$, so that G is P_{ω_2}-generic over V.

Remark: Recently Spinas showed in [Sp], that $\mathfrak{f} < \mathfrak{b}$ is consistent with ZFC. But it is still open if MA+\negCH implies that $\omega_1 < \mathfrak{b}$.

3 On the dual-splitting cardinals \mathcal{G} and \mathcal{G}'

Let X_1, X_2 be two partitions. We say X_1 splits X_2 if $X_1 \parallel X_2$ and it exists a partition $Y \subseteq X_2$, such that $X_1 \perp Y$. A family $\mathcal{S} \subseteq (\omega)^\omega$ is called splitting if for each non-trivial $X \in (\omega)^\omega$ there exists an $S \in \mathcal{S}$ such that S splits X. The dual-splitting cardinal \mathcal{G} (resp. \mathcal{G}') is the least cardinal number κ, for which there exists a splitting family $\mathcal{S} \subseteq (\omega)^\omega$ (resp. $\mathcal{S} \subseteq (\omega)^{\mathcal{M}}$) of cardinality κ.

It is obvious that $\mathcal{G} \leq \mathcal{G}'$.

First we compare the dual-splitting number \mathcal{G}' with the well-known bounding number \mathfrak{b} (a definition of \mathfrak{b} can be found in [vDo]).

THEOREM 3.1 $\mathfrak{b} \leq \mathcal{G}'$.

6
The page contains a mathematical proof and corollaries about set theory. The proof involves constructing a function and partition to show consistency with ZFC. The corollaries provide additional consistency results. The text is presented in a readable format with proper symbols and notation.
if and only if \(t \preceq s \) and \(B \sqsubseteq A \). (\(s \) is called the stem of the condition.) If \(\langle s, A_1 \rangle, \langle s, A_2 \rangle \) are two \(\mathcal{Q} \)-conditions, then \(\langle s, A_1 \sqcup A_2 \rangle \preceq \langle s, A_1 \rangle, \langle s, A_2 \rangle \). Hence, two \(\mathcal{Q} \)-conditions with the same stem are compatible and because there are only countably many stems, the forcing notion \(\mathcal{Q} \) is \(\sigma \)-centered.

Now we will see, that forcing with \(\mathcal{Q} \) adds an infinite partition which is compatible with all old infinite partitions but is not contained in any old partition. (So, the forcing notion \(\mathcal{Q} \) is in a sense like the dualization of Cohen forcing.)

Lemma 3.5 If \(G \) is \(\mathcal{Q} \)-generic over \(V \), then \(G \in (\omega)\forall \) and \(V[G] \models \forall X \in (\omega)\forall \cap V(G \parallel X \wedge \neg (X \sqsubseteq^* G)) \).

Proof: Let \(X \in V \) be an arbitrary, infinite partition. The set \(D_n \) of \(\mathcal{Q} \)-conditions \(\langle s, A \rangle \), such that

(i) at least one block of \(s \) has more than \(n \) elements,

(ii) at least \(n \) blocks of \(X \) are each the union of blocks of \(A \),

(iii) there are at least \(n \) different blocks \(b_i \in X \), such that \(\bigcup b_i \in s \cap X \),

is dense in \(\mathcal{Q} \) for each \(n \in \omega \). Therefore, at least one block of \(G \) is infinite (because of (i)), \(G \) is compatible with \(X \) (because of (ii)) and \(X \) is not coarser* than \(G \) (because of (iii)). Now, because \(X \) was arbitrary, the \(\mathcal{Q} \)-generic partition \(G \) has the desired properties.

Because the forcing notion \(\mathcal{Q} \) is \(\sigma \)-centered and each \(\mathcal{Q} \)-condition can be encoded by a real number, forcing with \(\mathcal{Q} \) does neither collapse any cardinals nor change the cardinality of the continuum and we can prove the following

Lemma 3.6 It is consistent with ZFC that \(\mathcal{G}' < \mathfrak{c} \).

Proof: [CMW] If make an \(\omega_1 \)-iteration of \(\mathcal{Q} \) with finite support, starting from a model in which we have \(\mathfrak{c} = \omega_2 \), then the \(\omega_1 \) generic objects form a splitting family.

Even if a partition does not have a complement, for each non-trivial partition \(X \) we can define a non-trivial partition \(Y \), such that \(X \perp Y \).

Let \(X = \{ b_i : i \in \omega \} \in (\omega)^\omega \) and assume that the blocks \(b_i \) are ordered by their least element and that each block is ordered by the natural order. A block is called trivial, if it is a singleton. With respect to this ordering define for each non-trivial partition \(X \) the partition \(X^\prec \) as follows.

If \(X \in (\omega)\exists \) then

\[
n \text{is in the } i \text{th block of } X^\prec \iff n \text{ is the } i \text{th element of a block of } X,
\]

otherwise
\(n, m\) are in the same block of \(X^\perp\)

\(n, m\) are both least elements of blocks of \(X\).

It is not hard to see that for each non-trivial \(X \in (\omega)^\omega\), \(X \perp X^\perp\).

A family \(\mathcal{W} \subseteq (\omega)^\omega\) is called \textit{weak splitting}, if for each partition \(X \in (\omega)^\omega\), there is a \(W \in \mathcal{W}\) such that \(W\) splits \(X\) or \(W\) splits \(X^\perp\). The cardinal number \(w\mathfrak{S}\) is the least cardinal number \(\kappa\), for which there exists a weak splitting family of cardinality \(\kappa\). (It is obvious that \(w\mathfrak{S} \leq \mathfrak{S}'\).)

A family \(U\) is called a \(\pi\)-base for a free ultra-filter \(\mathcal{F}\) over \(\omega\) provided for every \(x \in \mathcal{F}\) there exists \(u \in U\) such that \(u \subseteq x\). Define

\[\pi u := \min\{|U| : U \subseteq [\omega]^\omega\ \text{is a \(\pi\)-base for a free ultra-filter over} \ \omega\}\].

In \([\text{BS}]\) it is proved, that \(\pi u = r\) (see also \([\text{Va}]\) for more results concerning \(r\)).

Now we can give an upper and a lower bound for the size of \(w\mathfrak{S}\).

Theorem 3.7 \(w\mathfrak{S} \leq r\).

Proof: We will show that \(w\mathfrak{S} \leq \pi u\). Let \(U := \{u_i \in [\omega]^\omega : i < \pi u\}\) be a \(\pi\)-basis for a free ultra-filter \(\mathcal{F}\) over \(\omega\). W.l.o.g. we may assume, that all the \(u_i \in U\) are co-infinite. Let \(U = \{Y_u \in (\omega)^\omega : u \in U \land Y_u = \{u_i : u_i = u \lor (u_i = \{n\} \land n \not\in u)\}\}\). Now we take an arbitrary \(X = \{b_i : i \in \omega\} \in (\omega)^\omega\) and define for every \(u \in U\) the sets \(I_u := \{i : b_i \cap u \neq \emptyset\}\) and \(J_u := \{j : b_j \cap u = \emptyset\}\). It is clear that \(I_u \cup J_u = \omega\) for every \(u\).

If we find a \(u \in U\) such that \(|I_u| = |J_u| = \omega\), then \(Y_u\) splits \(X\). To see this, define the two infinite partitions

\[Z_1 := \{a_k : a_k = \bigcup_{i \in I_u} b_i \lor \exists j \in J_u a_k = b_j\}\]

and

\[Z_2 := \{a_k : a_k = \bigcup_{j \in J_u} b_j \lor \exists i \in I_u a_k = b_i\}\.\]

Now we have \(X \cap Y_u = Z_1\) (therefore \(Z_1 \subseteq X, Y_u\)) and \(Z_2 \subseteq X\) but \(Z_2 \perp Y_u\).

(If each block of \(b_i\) is finite, then we are always in this case.)

If we find an \(x \in \mathcal{F}\) such that \(|I_x| < \omega\) (and therefore \(|J_x| = \omega\)), then we find an \(x' \subseteq x\), such that \(|I_x| = 1\) and for this \(i \in I_x\), \(|b_i \setminus x'| = \omega\). (This is because \(\mathcal{F}\) is a free ultra-filter.) Now take a \(u \in U\) such that \(u \subseteq x'\) and we are in the former case for \(X^\perp\). Therefore, \(Y_u\) splits \(X^\perp\).

If we find an \(x \in \mathcal{F}\) such that \(|J_x| < \omega\) (and therefore \(|I_x| = \omega\)), let \(I(n)\) be an enumeration of \(I_x\) and define \(y := x \cap \bigcup_{k \in \omega} b_{I(2k)}\). Then \(y \subseteq x\) and \(|x \setminus y| = \omega\).

Hence, either \(y\) or \(\omega \setminus y\) is a superset of some \(u \in U\). But now \(|J_u| = \omega\) and we are in a former case.

A lower bound for \(w\mathfrak{S}\) is \(\text{cov}(\mathcal{M})\).

Theorem 3.8 \(\text{cov}(\mathcal{M}) \leq w\mathfrak{S}\).
PROOF: Let $\kappa < \text{cov}(M)$ and $W = \{W_i : i < \kappa\} \subseteq (\omega)^{\omega}$. Assume for each $W_i \in W$ the blocks are ordered by their least element and each block is ordered by the natural order. Further assume that $b_{i(i)}$ is the first block of W_i which is infinite. Now for each $i < \kappa$ the set D_i of functions $f \in \omega^{\omega}$ such that

$$\forall n, m, k \in \omega \, \exists h \in \omega t_1 \in b_n, t_2 \in b_m, t_3, t_4 \in b_k \exists s \in b_{i(i)}$$

$$f(t_1) = f(t_3) \wedge f(t_2) = f(t_4) \wedge \{s' \leq s : f(s') = f(s)\} = k + 1.$$

is the intersection of countably many open dense sets and therefore the complement of a meager set. Because $\kappa < \text{cov}(M)$, we find an unbounded function $g \in \omega^{\omega}$ such that $g \in \bigcap_{i < \kappa} D_i$. The partition $G = \{g^{-1}(n) : n \in \omega\} \subseteq (\omega)^{\omega}$ is orthogonal with each member of W and for each $W_i \in W$ and each $k \in \omega$, there exists an $s \in b_{i(i)}$, such that s is the kth element of a block of G. Hence, W can not be a weak splitting family. \hfill \dashv

4 On the dual-reaping cardinals R and R'

A family $R \subseteq (\omega)^{\omega}$ is called reaping (resp. reaping'), if for each partition $X \in (\omega)^{\omega}$ (resp. $X \in (\omega)^{\omega}$) there exists a partition $R \in R$ such that $R \perp X$ or $R \subseteq X$. The dual-reaping cardinal R (resp. R') is the least cardinal number κ, for which there exists a reaping (resp. reaping') family of cardinality κ.

It is clear that $R' \leq R$. Further by finite modifications of the elements of a reaping family, we may replace \subseteq^* by \subseteq in the definition above.

If we cancel in the definition of the reaping number the expression “$R \subseteq^* X$”, we get the definition of an orthogonal family.

A family $O \subseteq (\omega)^{\omega}$ is called orthogonal (resp. orthogonal'), if for each non-trivial partition $X \in (\omega)^{\omega}$ (resp. for each partition $X \in (\omega)^{\omega}$) there exists a partition $O \in O$ such that $O \perp X$. The dual-orthogonal cardinal O (resp. O') is the least cardinal number κ, for which there exists an orthogonal (resp. orthogonal') family of cardinality κ. (It is obvious that $O' \leq O$.) Note, that $\sigma = c$, where c is the cardinality of $P(\omega)$ and c is defined like \mathfrak{D} but for infinite subsets of ω instead of infinite partitions. (Take the complements of a maximal antichain in $[\omega]^\omega$ of cardinality c. Because an orthogonal family must avoid all this complements, it has at least the cardinality of this maximal antichain.) It is also clear that each orthogonal family is also a reaping family and therefore $\mathfrak{R}(\sigma) \leq \mathfrak{O}(\sigma)$. Further one can show that \mathfrak{R} is uncountable (cf. [CMW]).

Now we show that $\mathfrak{D}' \leq \mathfrak{D}$, where \mathfrak{D} is the well-known dominating number (for a definition cf. [Dd]), and that $\text{cov}(M) \leq \mathfrak{D}'$.

Lemma 4.1 $\mathfrak{D}' \leq \mathfrak{D}$.

Proof: Let $\{d_i : i < \omega\}$ be a dominating family. Then it is not hard to see that the family $\{D_i : i < \kappa\} \subseteq (\omega)^{\omega}$, where each D_i is constructed from d_i like D from d in the proof of Theorem 1, is an orthogonal family. \hfill \dashv

Let i be the least cardinality of an independent family (a definition and some results can be found in [K]), then
Lemma 4.2 \(D \leq i \).

Proof: Let \(I \subseteq [\omega]^\omega \) be an independent family of cardinality \(i \). Let \(I' := \{ r \in [\omega]^\omega : r \trianglerighteq \cap A \setminus \bigcup B \} \), where \(A, B \in [I]^\omega \), \(A \neq \emptyset \), \(A \cap B = \emptyset \) and \(r \trianglerighteq x \) means \(|(r \setminus x) \cup (x \setminus r)| < \omega \). It is not hard to see that \(|I'| = |I| = i \). Now let \(I = I_1 \cup I_2 \) where \(I_1 := \{ X_r \in (\omega)^\omega : r \in I' \land X_r = \{ b_i : b_i = r \lor (b_i = \{ n \} \land n \notin r) \} \} \) and \(I_2 := \{ Y_r : \exists X_r \in I_1 (Y_r = X_r^c) \} \). We see, that \(I \subseteq (\omega)^\omega \) and \(|I| = i \). It leave to show that \(I \) is an orthogonal family.

Let \(Z \in (\omega)^\omega \) be arbitrary and let \(r := \text{Min}(Z) \). If \(r \in I' \), then \(X_r \perp Z \) (where \(X_r \in I_1 \)). And if \(r \notin I' \), then there exists an \(r' \in I' \) such that \(r \cap r' = \emptyset \). But then \(Y_{r'} \perp Z \) (where \(Y_{r'} \in I_2 \)).

Because \(\mathcal{R} \leq D \), the cardinal number \(i \) is also an upper bound for \(\mathcal{R} \). But for \(\mathcal{R} \), we also find another upper bound.

Lemma 4.3 \(\mathcal{R} \leq r \).

Proof: Like in Theorem 3.7 we show that \(\mathcal{R} \leq \pi u \). Let \(U := \{ u_i \in [\omega]^\omega : i < \pi u \} \) be as in the proof of Theorem 3.7 and let \(\mathcal{U} = \{ Y_u \in (\omega)^\omega : u \in U \land Y_u = \{ u_i : u_i = \omega \setminus u \lor (u_i = \{ n \} \land n \notin u) \} \} \). Take an arbitrary partition \(X \in (\omega)^\omega \).

Let \(r := \text{Min}(X) \) and \(r_1 := \{ n \in r : \{ n \} \in X \} \). If we find a \(u \in U \) such that \(u \subset r_1 \), then \(Y_u \subset X \). Otherwise, we find a \(u \in U \) such that either \(u \subset \omega \setminus r \) or \(u \subset r \setminus r_1 \) and in both cases \(Y_u \perp X \).

Now we will show, that it is consistent with ZFC that \(D \) can be small. For this we first show, that a Cohen real encode an infinite partition which is orthogonal to each old non-trivial infinite partition. (This result is in fact a corollary of Lemma 5 of [CMW].)

Lemma 4.4 If \(c \in \omega^\omega \) is a Cohen real over \(V \), then \(C := \{ c^{-1}(n) : n \in \omega \} \in (\omega)^{\omega} \cap V[c] \) and \(\forall X \in (\omega)^\omega \cap V (\neg (X \trianglerighteq \{ \omega \}) \rightarrow C \perp X) \).

Proof: We will consider the Cohen-conditions as finite sequences of natural numbers, \(s = \{ s(i) : i < n < \omega \} \). Let \(X = \{ b_i : i \in \omega \} \in \mathcal{V} \) be an arbitrary, non-trivial infinite partition. The set \(D_{n,m} \) of Cohen-conditions \(s \), such that

1. \(|\{ i : s(i) = 0 \}| \geq n \),
2. \(\exists k > n \exists i (s(i) = k) \),
3. \(\exists a_n \in b_n \exists a_m \in b_m \exists \exists b_1, a_2 \in b_i (s(a_n) = s(a_1) \land s(a_m) = s(a_2)) \),

is a dense set for each \(n, m \in \omega \). Now, because \(X \) was arbitrary, the infinite partition \(C \) is orthogonal to each infinite partition which is in \(\mathcal{V} \). (Note that because of (i), \(C \in (\omega)^{\omega} \) \)

Now we can show, that \(D \) can be small.

Lemma 4.5 It is consistent with ZFC that \(D < \text{cov}(\mathcal{M}) \).
PROOF: If make an \(\omega_1\)-iteration of Cohen forcing with finite support, starting from a model in which we have \(c = \omega_2 = \text{cov}(\mathcal{M})\), then the \(\omega_1\) generic objects form an orthogonal family. Now because this \(\omega_1\)-iteration of Cohen forcing does not change the cardinality of \(\text{cov}(\mathcal{M})\), we have a model in \(\omega_1 = \mathcal{D} < \text{cov}(\mathcal{M}) = \omega_2\) holds.

Because \(R \leq \mathcal{D}\) we also get the relative consistency of \(R < \text{cov}(\mathcal{M})\). Note that this is not true for \(r\).

As a lower bound for \(R'\) we find \(p\), where \(p\) is the pseudo-intersection number (a definition of \(p\) can be found in [vDo]).

LEMMA 4.6 \(p \leq \mathcal{R}'\).

PROOF: In [Be] it is proved that \(p = m\)-centered, where

\[
m_{\text{\sigma\text{-centered}}} = \min\{\kappa : \text{"MA(\kappa) for \sigma\text{-centered posets" fails}\}.
\]

Let \(\mathcal{R} = \{R_\iota : \iota < \kappa < p\}\) be a set of infinite partitions. Now remember that the forcing notion \(Q\) (defined in section 3) is \(\sigma\)-centered and because \(\kappa < p\) we find an \(X \in (\omega)^{<\omega}\) such that \(\mathcal{R}\) does not reap \(X\).

As a corollary we get

COROLLARY 4.7 If we assume MA, then \(\mathcal{R}' = c\).

PROOF: If we assume MA, then \(p = c\).

5 What’s about towers and maximal (almost) orthogonal families?

Let \(\kappa_{\text{mao}}\) be the least cardinal number \(\kappa\), for which there exists an infinite \(\text{mao}\) family of cardinality \(\kappa\). And let \(\kappa_{\text{tower}}\) be the least cardinal number \(\kappa\), for which there exists a family \(F \subseteq (\omega)^{<\omega}\) of cardinality \(\kappa\), such that \(F\) is well-ordered by \(\sqsupset^*\) and \(\neg \exists Y \in (\omega)^{<\omega} \forall X \in F(Y \sqsupset^* X)\).

Now Krawczyk proved that \(\kappa_{\text{mao}} = c\) (cf. [CMW]) and Carlson proved that \(\kappa_{\text{tower}} = \omega_1\) (cf. [Ma]). So, these cardinals do not look interesting. But what happens if we cancel the word “almost” in the definition of \(\kappa_{\text{mao}}\)?

A family \(F \subseteq (\omega)^{<\omega}\) (resp. \(F \subseteq (\omega)_{\omega}\)) is a maximal anti-chain in \((\omega)^{<\omega}\) (resp. \((\omega)_{\omega}\)), if \(F\) is a maximal infinite family of pairwise orthogonal partitions. Let \(\kappa_A\) (resp. \(\kappa_{A'}\)) be the least cardinality of a maximal anti-chain in \((\omega)^{<\omega}\) (resp. \((\omega)_{\omega}\)).

Note that the corresponding cardinal for infinite subsets of \(\omega\) would be equal to \(\omega\).

First we know that \(\text{cov}(\mathcal{M}) \leq \kappa_A, \kappa_{A'}\) (which is proved in [CMW]) and \(b \leq \kappa_{\mathcal{R}'}\) (which one can prove like Theorem [3.1]). Further it is not hard to see that \(\kappa_A \leq \kappa_{A'}\).

But these results concerning \(\kappa_A\) and \(\kappa_{A'}\) are also not interesting, because Spinas showed in [Sp] that \(\kappa_A = \kappa_{A'} = c\).
6 The diagram of the results

Now we summarize the results proved in this article together with other known results.

splitting:

\[
\begin{array}{cccccc}
\text{b} & \mathcal{S}' & \text{c} \\
\text{h} & & \\
\text{h'} & \mathcal{S} & \\
\omega_1 & \text{cov}(\mathcal{M}) & \omega \mathcal{S} & \tau \\
\end{array}
\]

reaping:

\[
\begin{array}{cccccc}
\text{d} & \text{i} & \text{c} \\
\mathcal{O}' & \mathcal{O} & \\
\text{p} & \mathcal{R}' & \mathcal{R} & \tau \\
\end{array}
\]

(In the diagrams, the invariants grow larger, as one moves up or to the right.)

Consistency results:

- \(\text{cov}(\mathcal{M}) < \text{h} ; \text{h} < \text{h} ; \text{h} < \text{cov}(\mathcal{M})\) (this is because \(\text{h} < \text{cov}(\mathcal{M})\) is consistent with ZFC)
- \(s < \mathcal{S} ; \mathcal{S}' < c\)
- \(\mathcal{O} < \text{cov}(\mathcal{M})\)

Note added in proof: Recently, Jörg Brendle informed me that he has proved, that \(\text{MA} + \mathcal{S} < 2^{\aleph_0}\) is consistent with ZFC.

References

[BPS] B. Balcar, J. Pelant and P. Simon: The space of ultrafilters on \(N\) covered by nowhere dense sets. Fund. Math. 110(1980), 11–24.

[BS] B. Balcar and P. Simon: On minimal \(\pi\)-character of points in extremally disconnected compact spaces. Topology and its Applications 41(1991), 133–145.

[BJ] T. Bartoszyński and H. Judah: “Set Theory: the structure of the real line.” A.K. Peters, Wellesley 1995.
[Be] M. G. Bell: On the combinatorial principle $P(\omega)$. Fund. Math. 114 (1981), 149–157.

[CS] T. J. Carlson and S. G. Simpson: A Dual Form of Ramsey’s Theorem. Adv. in Math. 53 (1984), 265–290.

[CMW] J. Cichon, B. Majcher and B. Weglorz: Dualizations of van Douwen diagram, (preprint).

[Je1] T. Jech: “Multiple Forcing.” Cambridge University Press, Cambridge 1987.

[Je2] T. Jech: “Set Theory.” Academic Press, London 1978.

[Ku] K. Kunen: “Set Theory, an Introduction to Independence Proofs.” North Holland, Amsterdam 1983.

[Ma] P. Matet: Partitions and Filters. J. Symbolic Logic 51 (1986), 12–21.

[PV] Z. Piotrowski and A. Szymański: Some remarks on category in topological spaces. Proc. Amer. Math. Soc. 101 (1987), 156–160.

[Pl] S. Plewik: On completely Ramsey sets. Fund. Math. 127 (1986), 127–132.

[Sh] S. Shelah: On cardinal invariants of the continuum Cont. Math. 31 (1984), 183–207.

[Sp] O. Spinas: Partition numbers, (preprint).

[vDo] E. K. van Douwen: The integers and topology, in “Handbook of set-theoretic topology,” (K. Kunen and J. E. Vaughan, Ed.), pp. 111–167, North-Holland, Amsterdam 1990.

[Va] J. E. Vaughan: Small uncountable cardinals and topology, in “Open problems in topology,” (J. van Mill and G. Reed, Ed.), pp. 195–218, North-Holland, Amsterdam 1990.

Lorenz Halbeisen
Departement Mathematik
ETIH-Zentrum
8092 Zürich
Switzerland
E-mail: halbeis@math.ethz.ch