AN APPLICATION OF A THEOREM OF G. ZWIRNER TO A CLASS OF NON-LINEAR ELLIPTIC SYSTEMS IN DIVERGENCE FORM

GIOVANNI CIMATTI

Abstract. A theorem on the solutions of the problem $U'(w) = \gamma F(U(w), w), \quad U(w_1) = u_1, U(w_2) = u_2$ is applied for finding the functional solutions of the system of partial differential equations

$$\nabla \cdot (a(u, w)\nabla u) = 0, \quad u = u_1 \text{ on } \Gamma_1, \quad u = u_2 \text{ on } \Gamma_2, \quad \frac{\partial u}{\partial n} = 0 \text{ on } \Gamma_3$$

$$\nabla \cdot (b(u, w)\nabla w) = 0, \quad w = w_1 \text{ on } \Gamma_1, \quad w = w_2 \text{ on } \Gamma_2, \quad \frac{\partial w}{\partial n} = 0 \text{ on } \Gamma_3.$$

The problem of existence and uniqueness of solutions is considered.

1. Introduction

The problem of finding the solutions of the ordinary differential equation

$$U'(w) = \gamma F(U(w), w)$$

which satisfy the two conditions

$$U(w_1) = u_1, \quad U(w_2) = u_2, \quad w_2 > w_1$$

was the object of several papers mainly of the Italian and Japanese school. We quote in particular [4], [8], [1], [7], [9], [6], [10]. In this paper we show that the theorem given by G. Zwirner in [9] on the existence and uniqueness for problem (1.1), (1.2) can be used to find a class of solutions, physically relevant, of the boundary value problem

$$\nabla \cdot (a(u, w)\nabla u) = 0 \quad \text{in } \Omega$$

$$u = u_1 \text{ on } \Gamma_1, \quad u = u_2 \text{ on } \Gamma_2, \quad \frac{\partial u}{\partial n} = 0 \text{ on } \Gamma_3$$

$$\nabla \cdot (b(u, w)\nabla w) = 0 \quad \text{in } \Omega$$

$$w = w_1 \text{ on } \Gamma_1, \quad w = w_2 \text{ on } \Gamma_2, \quad \frac{\partial w}{\partial n} = 0 \text{ on } \Gamma_3, \quad w_2 > w_1$$

2010 Mathematics Subject Classification. 34L99, 35J66.

Key words and phrases. Existence and uniqueness, two-point problem for O.D.E., systems of P.D.E in divergence form.
where Ω is an open and bounded subset of \mathbb{R}^N with boundary Γ divided into three parts Γ_1, Γ_2 and Γ_3. u_1, u_2 are arbitrary constants, whereas w_1, w_2 are constants with the restriction $w_2 > w_1$.

When $N = 3$ the problem (1.3)-(1.6) has a simple physical interpretation. For, let $u(x)$, $x \in \Omega$ represent the temperature and $w(x)$ the concentration of a substance in a liquid at rest which occupies Ω. Suppose that on Γ_1 and Γ_2 the temperature u and the concentration w are kept fixed at the two constant values u_1, u_2 and w_1, w_2 respectively, whereas Γ_3 is the part of the boundary of Ω which is thermally insulated and impermeable to the substance dissolved in the fluid. By the Fourier’s law we have for the density of heat flow $q = -a(u, w)\nabla u$ and for the density of molecular mass flow $J = -b(u, w)\nabla w$.

In absence of sources of heat and mass we have $\nabla \cdot q = 0$, $\nabla \cdot J = 0$ i.e. (1.3) and (1.5).

2. Existence and uniqueness of functional solutions

We assume that the boundary of Ω has a degree of regularity which makes solvable the mixed problem

\[\Delta z = 0, \quad z = 0 \text{ on } \Gamma_1, \quad z = 1 \text{ on } \Gamma_2, \quad \frac{\partial z}{\partial n} = 0 \text{ on } \Gamma_3. \]

We are interested in the functional solutions of problem (1.3)-(1.6) according to the following

Definition 2.1. A classical solution $(u(x), w(x))$ of problem (1.3)-(1.6) is termed functional if a function $U(t) \in C^1([w_1, w_2])$ exists such that $u(x) = U(w(x))$.

Example 2.2. Let us consider the special case of (1.3)-(1.6) in which

\[a(u, w) = b(u, w), \quad a(u, w) \geq a_0 > 0. \]

We claim that every classical solution $(u(x), w(x))$ of (1.3)-(1.6) is a functional solution with respect to the function

\[U(t) = \alpha t + \beta, \quad \alpha = \frac{u_2 - u_1}{w_2 - w_1}, \quad \beta = \frac{u_1 w_2 - u_2 w_1}{w_2 - w_1}. \]

For, let $(u(x), w(x))$ be any solution of (1.3)-(1.6) and define $\zeta(x) = u(x) - (\alpha w(x) + \beta)$. We have

\[\nabla \cdot (a(u, w)\nabla \zeta) = 0 \text{ in } \Omega, \quad \zeta = 0 \text{ on } \Gamma_1, \quad \zeta = 0 \text{ on } \Gamma_2, \quad \frac{\partial \zeta}{\partial n} = 0 \text{ on } \Gamma_3. \]

Multiplying (2.3) by ζ and integrating by parts over Ω we have, in view of (2.2), $\zeta(x) = 0$. Hence $(u(x), w(x))$ is a functional solution since we have $u(x) = U(w(x))$. For other applications of the functional solutions of systems of partial differential equations in divergence form we refer to [2] and [3].

\footnote{The assumption $w_2 > w_1$, (or, more generally, $w_2 \neq w_1$) is essential to make problem (1.1), (1.2) meaningful. On the other hand, if we assume $w_1 = w_2 = w$ the problem (1.3)-(1.6) is immediately uncoupled. In fact, from (1.5) and (1.6) we have $w(x) = \bar{w}$, under the sole assumption $b(u, w) > 0$. Substituting this value of w in (1.3), the problem (1.6) can be solved using the Kirchhoff transformation.}

\footnote{In certain situations the dependence of a and b on u, w can be quite strong.}
Associated with the problem \[1.3\]-\[1.6\] we consider the two-point problem

\[\text{(2.4)}\]
\[U'(w) = \gamma \frac{b(U(w), w)}{a(U(w), w)},\]

\[\text{(2.5)}\]
\[U(w_1) = u_1, \quad U(w_2) = u_2, \quad w_2 > w_1.\]

To this problem we can apply the following theorem (see [9] for the proof).

Theorem 2.3. Let \(F(U, w)\) be measurable with respect to \(w\) and continuous with respect to \(U\) in the rectangle \(R = \{w_1 \leq w \leq w_2, \ u_1 \leq U \leq u_2\}, \ w_1 < w_2\). Assume that there exist two functions \(q(w), p(w) \in L^1(w_1, w_2)\) such that

\[p(w) \leq F(U, w) \leq q(w)\]

\[p(w) \geq 0, \quad \int_{w_1}^{w_2} p(t) dt > 0.\]

Then the problem

\[\text{(2.6)}\]
\[U'(w) = \gamma F(U(w), w), \quad U(w_1) = u_1, \quad U(w_2) = u_2,\]

in the unknown \(\gamma\) (a real number) and \(U(w)\), has at least one solution absolutely continuous in \([w_1, w_2]\). If \(F(U, w) \in C^k(R)\) then \(u(t) \in C^{k+1}([w_1, w_2])\). Moreover, if \(F(U, w)\) satisfies a Lipschitz condition in \(R\) with respect to \(U\) the solution of \(\text{(2.6)}\) is unique. \(^3\)

The link between the problem \((1.3)-(1.6)\) and the problem \((2.4), (2.5)\) is established in the theorems below using the following elementary

Lemma 2.4. Let \(w(x) \in C^0(\bar{\Omega})\) and

\[\min_{\bar{\Omega}} w(x) = w_1 \leq w(x) \leq w_2 = \max_{\bar{\Omega}} w(x).\]

Assume \(\mathcal{F}(t), \mathcal{G}(t) \in C^0([w_1, w_2])\), then, if

\[\text{(2.7)}\]
\[\mathcal{F}(w(x)) = \mathcal{G}(w(x)), \quad x \in \bar{\Omega},\]

we have, for all \(w \in [w_1, w_2]\),

\[\mathcal{F}(w) = \mathcal{G}(w).\]

Proof. Assume \(w^* \in [w_1, w_2]\). There exists \(x^* \in \bar{\Omega}\) such that \(w(x^*) = w^*\). Hence, by \(\text{(2.7)}\),

\[\text{(2.8)}\]
\[\mathcal{F}(w^*) = \mathcal{F}(w(x^*)) = \mathcal{G}(w(x^*)) = \mathcal{G}(w^*).\]

\[\square\]

\(^3\)Other criteria which guarantee the uniqueness of the solution can be found in [9].
Theorem 2.5. Let \(w_2 > w_1 \) and \(R = \{(u, w); \ u_1 \leq u \leq u_2, \ w_1 \leq w \leq w_2 \} \).

Assume \(b(u, w) \in C^0(\Omega) \) and

\[
\begin{align*}
(2.9) \quad a(u, w), \ b(u, w) & > 0 \quad \text{in} \quad R. \\
\end{align*}
\]

Let \((u(x), w(x)) \) be a functional solution of the problem

\[
\begin{align*}
(2.10) \quad \nabla \cdot (a(u, w)\nabla u) &= 0 \quad \text{in} \quad \Omega \\
(2.11) \quad u = u_1 \quad \text{on} \quad \Gamma_1, \quad u = u_2 \quad \text{on} \quad \Gamma_2, \quad \frac{\partial u}{\partial n} = 0 \quad \text{on} \quad \Gamma_3 \\
(2.12) \quad \nabla \cdot (b(u, w)\nabla w) &= 0 \quad \text{in} \quad \Omega \\
(2.13) \quad w = w_1 \quad \text{on} \quad \Gamma_1, \quad w = w_2 \quad \text{on} \quad \Gamma_2, \quad \frac{\partial w}{\partial n} = 0 \quad \text{on} \quad \Gamma_3,
\end{align*}
\]

then the function \(U(w) \) entering in the definition of functional solution solves the two point-problem

\[
\begin{align*}
(2.14) \quad U'(w) &= \frac{b(U(w), w)}{a(U(w), w)} \\
(2.15) \quad U(w_1) = u_1, \quad U(w_2) = u_2, \quad w_2 > w_1.
\end{align*}
\]

Proof. Let \((u(x), w(x)) \) be a functional solution of \((2.10)-(2.13) \). By \((2.12) \) the maximum principle \([5]\) implies

\[
\begin{align*}
(2.16) \quad w_1 \leq w(x) \leq w_2.
\end{align*}
\]

Moreover, by assumption \(u(x) = U(w(x)) \). Define

\[
\begin{align*}
(2.17) \quad \theta(w) &= \int_{u_1}^{w} a(U(t), t)U'(t)dt, \quad \psi(w) = \int_{u_1}^{w} b(U(t), t)dt
\end{align*}
\]

and

\[
\begin{align*}
(2.18) \quad \Theta(x) &= \theta(w(x)), \quad \Psi(x) = \psi(w(x)).
\end{align*}
\]

We have \(\nabla \Theta = a(u, w)\nabla u, \quad \nabla \Psi = b(u, w)\nabla w. \) On the other hand, \((u(x), w(x)) \) solves \((2.10)-(2.13) \), thus we have

\[
\begin{align*}
\Delta \Theta &= 0 \quad \text{in} \quad \Omega, \quad \Theta = 0 \quad \text{on} \quad \Gamma_1 \\
\Theta &= \theta(w_2) \quad \text{on} \quad \Gamma_2, \quad \frac{\partial \Theta}{\partial n} = 0 \quad \text{on} \quad \Gamma_3 \\
\Delta \Psi &= 0 \quad \text{in} \quad \Omega, \quad \Psi = 0 \quad \text{on} \quad \Gamma_1
\end{align*}
\]
\[\Psi = \psi(w_2) \text{ on } \Gamma_2, \quad \frac{\partial \Theta}{\partial n} = 0 \text{ on } \Gamma_3. \]

By \((2.9) \) we have \(\psi(w_2) \neq 0 \). Let \(z(x) \) be the solution of the problem \((2.1) \). We obtain \(\Theta(x) = \theta(w_2)z(x) \) and \(\Psi(x) = \psi(w_2)z(x) \). Hence

\[(2.19) \quad \Theta(x) = \gamma \Psi(x), \quad \gamma = \frac{\theta(w_2)}{\psi(w_2)}. \]

From \((2.17), (2.18) \) and \((2.19) \) we have

\[(2.20) \int_{w_1}^{w(x)} a(U(t), t)U'(t)dt = \gamma \int_{w_1}^{w(x)} b(U(t), t)dt. \]

Applying Lemma 1.4 with

\[\mathcal{F}(t) = \int_{w_1}^{t} a(U(\eta), \eta)U'(\eta)d\eta, \quad \mathcal{G}(t) = \int_{w_1}^{t} b(U(\eta), \eta)d\eta \]

by \((2.20) \) we have

\[\int_{w_1}^{w} a(U(t), t)U'(t)dt = \gamma \int_{w_1}^{w} b(U(t), t)dt. \]

Hence

\[a(U(w), w)U'(w) = \gamma b(U(w), w) \]

and \((2.14) \) holds. Moreover, also the boundary conditions \((2.15) \) are verified. \(\square \)

Vice-versa we have

Theorem 2.6. Assume \((2.4) \), then to every solution \(U(w) \) of class \(C^1([w_1, w_2]) \) of the problem

\[(2.21) \quad U'(w) = \frac{b(U(w), w)}{a(U(w), w)}, \quad U(w_1) = u_1, \quad U(w_2) = u_2, \quad w_2 > w_1 \]

there corresponds a functional solution of the problem \((2.11)-(2.13) \).

Proof. Let \(U(t) \) be a solution of \((2.21) \) and consider the non-linear elliptic problem

\[(2.22) \quad \nabla \cdot (b(U(w), w)\nabla w) = 0 \quad \text{in } \Omega \]

\[(2.23) \quad w = w_1 \text{ on } \Gamma_1, \quad w = w_2 \text{ on } \Gamma_2, \quad \frac{\partial w}{\partial n} = 0 \text{ on } \Gamma_3. \]

There exists one and only one solution of \((2.22), (2.23) \). For, let us define

\[\psi(w) = \int_{w_1}^{w} b(U(t), t)dt. \]

By \((2.9) \) \(\psi \) maps one-to-one \([w_1, w_2]\) onto \([0, \psi(w_2)]\). Hence, if we define \(\varphi(x) = \psi(w(x)) \), the problem \((2.22), (2.23) \) can be restated as
\[(2.24) \quad \Delta \varphi = 0 \quad \text{in} \quad \Omega, \quad \varphi = 0 \quad \text{on} \quad \Gamma_1 \]

\[(2.25) \quad \varphi = \psi(w_2) \quad \text{on} \quad \Gamma_2, \quad \frac{\partial \varphi}{\partial n} = 0 \quad \text{on} \quad \Gamma_3. \]

By \((2.1)\) the solution of \((2.24)\) and \((2.25)\) exists and is unique and \(w(x) = \psi^{-1}(\varphi(x))\) gives the unique solution of \((2.22), (2.23)\). Define now

\[u(x) = U(w(x)). \]

Thus \((2.22)\) can be written

\[\nabla \cdot (b(u, w) \nabla w) = 0 \quad \text{in} \quad \Omega. \]

Setting \(w = w(x)\) in \((2.21)\) we obtain

\[a(U(w(x)), w(x))U'(w(x)) = \gamma b(U(w(x)), w(x)) \]

and also

\[a(U(w(x)), w(x))U'(w(x))\nabla w = \gamma b(U(w(x)), w(x))\nabla w \]

and, by \((2.22)\),

\[\nabla \cdot (a(u, w) \nabla u) = 0 \quad \text{in} \quad \Omega. \]

On the other hand, the functions \((u(x), w(x))\) just defined satisfies also the boundary conditions \((2.11)\) and \((2.13)\). \(\square\)

This proof shows that the problem \((2.10)-(2.13)\) is solvable (i) if we can solve the linear problem \((2.24), (2.25)\), which in turn is immediately reducible to \((2.1)\) which contains the “geometric” part, (ii) a solution of problem \((2.14), (2.15)\) is known. This last solution contains the non-linear features of the original problem \((1.3)-(1.6)\) if we limit ourselves to consider functional solutions.

The uniqueness of the functional solutions of problem \((1.3)-(1.6)\) is also a consequence of the uniqueness for problem \((1.1), (1.2)\). In fact we have

Theorem 2.7. Let \((2.4)\) hold. If the problem

\[(2.26) \quad U'(w) = \gamma \frac{b(U(w), w)}{a(U(w), w)}, \quad U(w_1) = u_1, \quad U(w_2) = u_2 \]

has a unique solution also the corresponding functional solution of

\[(2.27) \quad \nabla \cdot (a(u, w) \nabla u) = 0 \quad \text{in} \quad \Omega \]

\[(2.28) \quad u = u_1 \quad \text{on} \quad \Gamma_1, \quad u = u_2 \quad \text{on} \quad \Gamma_2, \quad \frac{\partial u}{\partial n} = 0 \quad \text{on} \quad \Gamma_3 \]

\[(2.29) \quad \nabla \cdot (b(u, w) \nabla w) = 0 \quad \text{in} \quad \Omega \]
is unique in the class of functional solutions.

Proof. Let, by contradiction, \((u^*, w^*)\), \((u^{**}, w^{**})\) be two functional solutions of problem (2.27)-(2.30). We have

\[u^*(x) = U^*(w^*(x)), \quad u^{**}(x) = U^{**}(w^{**}(x)). \]

\(U^*(w)\) and \(U^{**}(w)\) are both solutions of the problem (2.26). Thus \(U^*(w) = U^{**}(w)\).

Let us define

\[\psi^*(w) = \int_{w_1}^{w} b(U^*(t), t) \, dt, \quad \psi^{**}(w) = \int_{w_1}^{w} b(U^{**}(t), t) \, dt \]

and

\[\Psi^*(x) = \psi^*(w^*(x)), \quad \Psi^{**}(x) = \psi^{**}(w^{**}(x)). \]

We have \(\psi^*(w_2) = \psi^{**}(w_2)\), therefore \(\Psi^*(x)\) and \(\Psi^{**}(x)\) are both solutions of the problem

\[\Delta \varphi = 0 \quad \text{in} \quad \Omega, \quad \varphi = 0 \quad \text{on} \quad \Gamma_1, \]

\[\varphi = \psi^*(w_2) \quad \text{on} \quad \Gamma_2, \quad \frac{\partial \varphi}{\partial n} = 0 \quad \text{on} \quad \Gamma_3 \]

which has a unique solution. Hence \(\Psi^*(x) = \Psi^{**}(x)\) and we have \(\psi^*(w) = \psi^{**}(w)\) by Lemma 1.3. This in turn implies

\[w^*(x) = (\psi^*)^{-1}(\varphi(x)) = (\psi^{**})^{-1}(\varphi(x)) = w^{**}(x) \]

and

\[u^*(x) = U^*(w^*(x)) = U^{**}(w^{**}(x)) = u^{**}(x). \]

We summarize our results in the following

Theorem 2.8. Let \(\frac{b(U, w)}{a(U, w)}\) be of class \(C^1\) in the rectangle \(R = \{w_1 \leq w \leq w_2, u_1 \leq U \leq u_2\}, w_1 < w_2\). Assume (2.9) and that there exist two functions \(q(w), p(w) \in L^1(w_1, w_2)\) such that

\[0 \leq p(w) \leq \frac{b(U, t)}{a(U, t)} \leq q(w), \quad \int_{w_1}^{w_2} p(t) \, dt > 0. \]

Then the problem (1.3)-(1.6) has at least one functional solution. Moreover, if \(\frac{b(U, w)}{a(U, w)}\) satisfies a Lipschitz condition in \(R\) with respect to \(U\) the solution of (1.3)-(1.6) is unique in the class of functional solutions.
Compliance with ethical standard

Conflict of interest. The author declares that he has no conflicts of interest.

REFERENCES

1. F. Cafiero, Su un problema ai limiti relativo all’equazione \(y' = f(x, y, \lambda) \), Giorn. Mat. Battaglini, \textbf{77}, (1947), 145-163.
2. G. Cimatti, Remark on the existence, uniqueness and semi-explicit solvability of systems of autonomous partial differential equations in divergence form with constant boundary conditions, Proc. Roy. Soc. Edinburgh., \textbf{141}, (2011), 481-495.
3. G. Cimatti, On the functional solutions of a system of partial differential equations relevant in mathematical physics, Riv. Mat. Univ. Parma, \textbf{14}, (2010), 423-439.
4. H. Hikosaka-Noboru, Untersuchung Ueber die Unität der Lösung der Differentialgleichung \(\frac{du}{dx} = \xi f(x, y) \) Proc. Phys. Math. Japan, \textbf{2}, (1929), 72-83.
5. M. H. Protter, H. F. Weinberger, \textit{Maximum Principles in Differential Equations}, Prentice-Hall, Englewood Cliffs, (1967).
6. G. Sansone, Equazioni differenziali nel campo reale, Zanichelli editore, Bologna, (1941) Cap. VIII, 105-109.
7. G. Stampacchia, Sulle condizioni che determinano gli integrali di un sistema di due equazioni differenziali ordinarie del primo ordine, Rend. Acc. Naz. Lincei, \textbf{6}, (1947), 411-418.
8. K. Zawischa. Ueber die Differentialgleichung \(y = \lambda f(x, y) \) deren Lösungskurve durch zwei gegebene Punkte hindurchgehen soll, Monatsh. Math. Phys., \textbf{37}, (1930), 103-124.
9. G. Zwirner, Sull’equazione \(y' = \lambda f(x, y) \), Rend. Sem. Mat. Univ. Padova, \textbf{15}, (1946), 33-39.
10. G. Zwirner, Alcuni teoremi sulle equazioni differenziali dipendenti da un parametro, Ann. Univ. Trieste, \textbf{2}, (1946-1947), 145-150.

Department of Mathematics, Largo Bruno Pontecorvo 5, 56127 Pisa Italy
E-mail address: cimatti@dm.unipi.it