REPRESENTATION GROWTH OF THE HEISENBERG GROUP OVER $O[x]/(x^n)$

DUONG HOANG DUNG

Abstract. We present a conjectured formula for the representation zeta function of the Heisenberg group over $O[x]/(x^n)$ where O is the ring of integers of some number field. We confirm the conjecture for $n \leq 3$ and raise several questions.

1. Introduction

Let G be a finitely generated torsion-free nilpotent group (or a T-group for short). Two complex representations ρ and σ of G are called twist-equivalent if there exists a 1-dimensional representation λ of G such that $\rho = \lambda \otimes \sigma$. Twist-equivalence is an equivalence relation on the set of finite dimensional irreducible complex representations of G and its classes are called twist-isoclasses. The numbers $r_n(G)$ of twist-isoclasses of dimension n are finite for all n, cf. [3, Theorem 6.6]. The representation zeta function of G is defined to be the Dirichlet generating function $\zeta_G(s) := \sum_{n=1}^{\infty} \frac{r_n(G)}{n^s}$, where s is a complex variable. The sequence $(r_n(G))$ grows polynomially and thus $\zeta_G(s)$ converges on a complex half-plane $\text{Re}(s) > \alpha$, cf. [8, Lemma 2.1]. The infimum of such α is the abscissa of convergence $\alpha(G)$ of $\zeta_G(s)$ which gives the precise degree of polynomial growth; i.e., $\alpha(G)$ is the smallest value such that $\sum_{n=1}^{N} r_n(G) = O(N^{\alpha(G)+\epsilon})$ for every $\epsilon \in \mathbb{R}_{>0}$.

Let H be the Heisenberg group scheme associated to the Heisenberg \mathbb{Z}-Lie lattice of strict upper-triangular 3×3 matrices. For every ring R, the group $H(R)$ is isomorphic to the group of upper-unitriangular 3×3 matrices over R. If R is torsion-free finitely generated over \mathbb{Z}, then $H(R)$ is a T-group of nilpotency class 2 and Hirsch length $3 \cdot \text{rk}_\mathbb{Z}(R)$. When $R = O$ is the ring of integers of a number field K, the zeta function of $H(O)$ is

\begin{equation}
\zeta_{H(O)}(s) = \frac{\zeta_K(s-1)}{\zeta_K(s)} = \prod_{\mathfrak{p} \in \text{Spec}(O)} \frac{1 - |O/\mathfrak{p}|^{-s}}{1 - |O/\mathfrak{p}|^{1-s}},
\end{equation}

where $\zeta_K(s)$ is the Dedekind zeta function of K, \mathfrak{p} ranges over the nonzero prime ideals of O. This is proved in [4] for $K = \mathbb{Q}$, in [2] for quadratic number fields, and in [8, Theorem B] for arbitrary number fields. The zeta function $\zeta_{H(O)}(s)$ has abscissa of convergence $\alpha(H(O)) = 2$, which is independent of K, and may be meromorphically continued to the whole complex plane.

\textit{Date:} August 17, 2015.
\textit{2010 Mathematics Subject Classification.} 20F18, 20E18, 22E55, 20F69, 11M41.
\textit{Key words and phrases.} Finitely generated nilpotent groups, representation zeta functions, Kirillov orbit method, p-adic integrals.
In this paper, we consider the Heisenberg group over rings of the form $\mathcal{O}[x]/(x^n)$. If $n = 1$ then it is the Heisenberg group over \mathcal{O}. The zeta function of $H(\mathcal{O}[x]/(x^2))$ was computed in [7] Example 6.5. We compute the zeta function of $H(\mathcal{O}[x]/(x^n))$ for $n = 3$.

Organization and notation. In Section 2, we recall formulae of local representation zeta functions in terms of p-adic integrals. The zeta function for the case $n = 3$ is computed in Section 3. We conclude in Section 4 with several questions and conjectures.

Acknowledgements. We acknowledge support from the DFG Sonderforschungsbereich 701 at Bielefeld University. We thank Tobias Rossmann and Christopher Voll for several helpful discussions.

2. Preliminaries

2.1. Local representation zeta functions. The group $H(\mathcal{O}[x]/(x^n))$ is a T-group of nilpotency class 2 and Hirsch length $3n \cdot \text{rk}_Z(\mathcal{O})$. The zeta function $\zeta_{H(\mathcal{O}[x]/(x^n))}(s)$ has an Euler factorization (cf. [8] Proposition 2.2)

$$
\zeta_{H(\mathcal{O}[x]/(x^n))}(s) = \prod_{p \in \text{Spec}(\mathcal{O})} \zeta_{H(\mathcal{O}_p[x]/(x^n))}(s),
$$

where p ranges over the nonzero prime ideals in \mathcal{O} and \mathcal{O}_p is the completion of \mathcal{O} at p. The local factors $\zeta_{H(\mathcal{O}_p[x]/(x^n))}$ are rational in $|\mathcal{O}/p|^{-s}$ and almost all of them satisfy a functional equation (cf. [8] Theorem A).

The \mathcal{O}-lattice associated to $H(\mathcal{O}[x]/(x^n))$ has the following presentation; see [8] Section 2.4:

$${\langle} x_0, x_1, \cdots, x_{n-1} \mid y_0, y_1, \cdots, y_{n-1} \mid z_0, z_1, \cdots, z_{n-1} \rangle = \begin{cases}
 z_{i+j} & \text{if } i + j < n, \\
 0 & \text{otherwise}.
\end{cases}$$

The associated commutator matrix with respect to the chosen \mathcal{O}-basis is defined by

$$
\mathcal{R}_n(Y) = \begin{pmatrix}
0 & Q_n(Y) \\
-Q_n(Y)^t & 0
\end{pmatrix},
$$

where

$$
Q_n(Y) = \begin{pmatrix}
Y_1 & Y_2 & Y_3 & \cdots & Y_{n-1} & Y_n \\
Y_2 & Y_3 & \cdots & Y_n & 0 \\
Y_3 & \cdots & \cdots & \cdots & \cdots & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
Y_{n-1} & Y_n & \cdots & \cdots & \cdots & 0 \\
Y_n & 0 & \cdots & \cdots & \cdots & 0
\end{pmatrix} \in \text{Mat}_n(\mathcal{O}[Y_1, \cdots, Y_n]).
$$

Fix a nonzero prime ideal p and denote $\mathcal{O} := \mathcal{O}_p$. Let $q := |\mathcal{O}/p|$ be the residue field cardinality and p its characteristic. Let $W_n(\mathcal{O}) = \mathcal{O}^n \setminus p^n$. Set

$$
(2.1) \quad \mathcal{Z}_p(\rho, \tau) := \int_{(u,\gamma) \in p \times W_n(\mathcal{O})} |u|^\tau \prod_{j=1}^n \frac{||F_j(\gamma) \cup F_{j-1}(\gamma)u^2||^\rho}{||F_{j-1}(\gamma)||^\rho} d\mu,
$$
where the additive Haar measure μ on \mathfrak{o}^{n+1} is normalized such that $\mu(\mathfrak{o}^{n+1}) = 1$, and

$$F_j(Y) = \{ f \mid f = f(Y) \text{ a principal } 2j \times 2j \text{ minor of } R_n(Y) \},$$

$$\|H(X,Y)\| = \min\{ v_p(h(X,Y)) \mid h \in H \}$$

for a finite set $H \subset \mathfrak{o}[X,Y]$.

The local factor $\zeta_{H_2([x]/(x^n))}(s)$ can be expressed in terms of the p-adic integral \[2.1\] as the following (cf. [8, Corollary 2.11]):

$$\zeta_{H_2([x]/(x^n))}(s) = 1 + (1 - q^{-1})^{-1}Z_p(-s/2, ns - n - 1).$$

2.2. Auxiliary lemmas.

Lemma 2.1. The following identities hold in the field of formal Laurent series $\mathbb{Q}((a, b, c))$.

1. $$\sum_{(X,Y)\in\mathbb{N}^2} a^X b^Y c^{\min\{X,Y\}} = \frac{abc(1-ab)}{(1-abc)(1-a)(1-b)}.$$
2. $$\sum_{(X,Y)\in\mathbb{N}^2} a^X b^Y c^{\min\{X,2Y\}} = \frac{abc(1-a+ac-a^2bc)}{(1-a)(1-b)(1-a^2bc^2)}.$$
3. $$\sum_{(X,Y)\in\mathbb{N}^2} a^X b^Y c^{\min\{X,Y\}+\min\{X,2Y\}} = \frac{abc^2(1-a+ac-abc-a^2bc+3)bc^3}{(1-a)(1-b)(1-a^2bc^2)(1-a^4bc^2)}.$$
4. $$\sum_{(X,Y,Z)\in\mathbb{N}^3} a^X b^Y c^Z d^{\min\{X,Y+2Z\}} e^{\min\{X,2Y+4Z\}} = \frac{1}{1-abd^2} \frac{1}{1-b} \frac{1}{1-c}.$$

Proof. The identity (1) is from [9, Lemma 2.2]. We present the proofs of (2) and (3) while (4) is proven similarly.

For (2), consider the case $X \leq Y$ and let $Y = X + Y'$ with $Y' \in \mathbb{N}_0$. Then

$$\sum_{(X,Y)\in\mathbb{N}^2} a^X b^Y c^{\min\{X,Y\}} = \sum_{(X,Y')\in\mathbb{N}^2} a^{X+Y'} b^{Y'} c^{X} = \frac{abc}{1-abc} \frac{1}{1-b}.$$

Consider the case $X > Y$ and let $X = Y + X'$ with $X' \in \mathbb{N}$. Then

$$\sum_{(X,Y)\in\mathbb{N}^2} a^X b^Y c^{\min\{X,2Y\}} = \sum_{(X',Y)\in\mathbb{N}^2} a^{X'+Y} b^Y c^{\min\{X'+2Y\}}$$

$$= \sum_{(X',Y)\in\mathbb{N}^2} a^{X'} (abc)^Y c^{\min\{X',Y\}}$$

$$= \frac{a^{2bc^2}(1-a^2bc)}{(1-a^2bc^2)(1-a)(1-abc)}$$

by (1). Hence

$$\sum_{(X,Y)\in\mathbb{N}^2} a^X b^Y c^{\min\{X,2Y\}} = \frac{abc}{1-abc} \frac{1}{1-b} + \frac{a^{2bc^2}(1-a^2bc)}{(1-a^2bc^2)(1-a)(1-abc)}.$$

$$= \frac{abc(1-a+ac-a^2bc)}{(1-a)(1-b)(1-a^2bc^2)}.$$
For (3), first consider the case \(X \leq Y \) and let \(Y = X + Y' \) with \(Y' \in \mathbb{N}_0 \). Then

\[
\sum_{(X,Y) \in \mathbb{N}^2} a^X b^Y c^{\min(X,Y)} c^{\min(X,2Y)} = \sum_{(X,Y) \in \mathbb{N} \times \mathbb{N}_0} a^X b^{X+Y'} c^X = \frac{abc^2}{1 - abc^2} \frac{1}{1 - b}.
\]

Consider now the case \(X > Y \) and let \(X = X' + Y \) with \(X' \in \mathbb{N} \). Then, by (1)

\[
\sum_{(X,Y) \in \mathbb{N}^2} a^X b^Y c^{\min(X,Y)} c^{\min(X,2Y)} = \sum_{(X',Y) \in \mathbb{N}^2} a^{X'} b^{X'} c^{\min(X'+Y,2Y)} = \sum_{(X',Y) \in \mathbb{N}^2} a^{X'} (abc^2)^{\min(X',Y)} = \frac{a^2 bc^3 (1 - a^2 bc^2)}{(1 - a^2 bc^3)(1 - a)(1 - abc^2)}.
\]

Hence

\[
\sum_{(X,Y) \in \mathbb{N}^2} a^X b^Y c^{\min(X,Y)} c^{\min(X,2Y)} = \frac{abc^2}{1 - abc^2} + \frac{a^2 bc^3 (1 - a^2 bc^2)}{(1 - a^2 bc^3)(1 - a)(1 - abc^2)} = \frac{abc^2(1 - a + ac - abc - a^2 bc^3 + a^3 b^2 c^3)}{(1 - a)(1 - b)(1 - abc^2)(1 - a^2 bc^3)}.
\]

\(\square \)

Lemma 2.2.

\[
I := \int_{x,y \in \mathfrak{p}} |x|^{3s-4} |x, y^3|^{-s} d\mu = (1 - q^{-1}) \frac{q^2 t^2 (1 + q^3 t^2 - q^3 t^3 + q^6 t^4 - q^6 t^5 - q^8 t^7)}{(1 - q^3 t^3)(1 - q^8 t^8)},
\]

where \(t := q^{-s} \).

Proof. Write \(I = I_1 + I_2 \) where

\[
I_1 := \int_{x, y \in \mathfrak{p}} |x|^{3s-4} |x, y^3|^{-s} d\mu,
\]

\[
I_2 := \int_{x, y \in \mathfrak{p}} |x|^{3s-4} |x, y^3|^{-s} d\mu.
\]

Computation of I₁. Let \(y = xy_1 \) with \(y_1 \in \mathfrak{o} \). Then

\[
I_1 = \int_{x \in \mathfrak{p}} |x|^{3s-4} |x|^{-s+1} d\mu = (1 - q^{-1}) \frac{q^2 t^2}{1 - q^2 t^2}.
\]

Computation of I₂. Let \(x = xy_1 \) with \(x_1 \in \mathfrak{p} \). Then

\[
I_2 = \int_{x_1, y \in \mathfrak{p}} |x_1|^{3s-4} |y|^{2s-3} |x_1, y^2|^{-s} d\mu.
\]
Since $\mu(\{(x, y) \in \mathbb{P}^2 \mid v(x_1) = X, v(y) = Y\}) = (1-q^{-1})^2q^{-X-Y}$, one has by Lemma 2.1 (2)

\[
I_2 = (1-q^{-1})^2 \sum_{(X, Y) \in \mathbb{N}^2} q^{-X-Y}q^{(-3s+4)X}q^{(-2s+2)Y}q^{s \min\{X, Y\}}
\]

\[
= (1-q^{-1})^2 \sum_{(X, Y) \in \mathbb{N}^2} q^{(-3s+3)X}q^{(-2s+2)Y}q^{s \min\{X, Y\}}
\]

\[
= (1-q^{-1})^2 q^{-3s+3-2s+2+2s}(1-q^{-3s+3}+q^{-3s+3+s}-q^{-6s+6-2s+2+2s})
\]

\[
= (1-q^{-1})^2 q^{5t^2(1-q^3t^3+q^4t^4-q^6t^5-q^8t^7)}
\]

\[
= (1-q^{-1})^2 \frac{q^{5t^2(1+q^3t^2-q^3t^3+q^6t^4-q^5t^4-q^8t^7)}}{(1-q^3t^3)(1-q^8t^8)}.
\]

Hence

\[
I = I_1 + I_2 = (1-q^{-1})^2 \frac{q^{2t^2(1+q^3t^2-q^3t^3+q^6t^4-q^6t^5-q^8t^7)}}{(1-q^3t^3)(1-q^8t^8)}.
\]

\[
\square
\]

2.3. The zeta function of $H(O[x]/(x^2))$. In this case $\tau = vs - 2 - 1 = 2s - 3$ and $F_0(Y) = 1, F_1(Y) = \{X^2, Y^2\}, F_2(Y) = \{Y^4\}$. We have

\[
Z := Z_p(-s/2, 2s - 3) = \int_{y=(x,y)\in W_2(o)} |u|^{2s-3}||u, x, y||^{-s}|ux, uy, y^2||^{-s}d\mu.
\]

It is computed in [7, Example 6.5] that

\[
\zeta_{H(O[x]/(x^2))}(s) = 1 + (1-q^{-1})^{-1}Z = \frac{(1-t)(1-q^2t^2)}{(1-qt)(1-q^4t^2)}, \text{ where } t := q^{-s}.
\]

Hence

\[
(2.3) \quad \zeta_{H(O[x]/(x^2))}(s) = \frac{\zeta_{K}(s-1)\zeta_{K}(2s-3)}{\zeta_{K}(s)\zeta_{K}(2s-2)}.
\]

3. The zeta function of $H(O[x]/(x^3))$

In this case, $\tau = 3s - 4$ and

\[
F_0(Y) = 1,
\]

\[
F_1(Y) = \{X^2, Y^2, Z^2\},
\]

\[
F_2(Y) = \{Z^4, Y^2Z^2, (XZ - Y^2)^2\},
\]

\[
F_3(Y) = \{Z^6\}.
\]

Set

\[
A := \|z^2, yz, xz - y^2\|^{-s},
\]

\[
B := \|z^2, yz, xz - y^2, xu, yu, uz\|^{-s},
\]

\[
C := \|z^3, z^2u, yzu, (xz - y^2)u\|^{-s}.
\]

Then

\[
\zeta_{H(O[x]/(x^3))}(s) = 1 + (1-q^{-1})^{-1}Z(s),
\]

\[
\square
\]
where
\[Z := Z_p(-s/2, 3s - 4) = \int_{u \in \mathfrak{p}, y \in W_3(\mathfrak{o})} |u|^{3s-4} ABC d\mu. \]

Write \(Z = Z_1 + Z_2 + Z_3 \) where
\[Z_1 := \int_{u \in \mathfrak{p}, z \in W_1(\mathfrak{o})} |u|^{3s-4} ABC d\mu, \]
\[Z_2 := \int_{u, z \in p} |u|^{3s-4} ABC d\mu, \]
\[Z_3 := \int_{u, y, z \in \mathfrak{p}} |u|^{3s-4} ABC d\mu. \]

3.1. Computation of \(Z_1 \). Since \(z \in W_1(\mathfrak{o}) \), it follows that \(A = B = C = 1 \). Hence
\[Z_1 = (1 - q^{-1}) \int_{u, z \in \mathfrak{p}} |u|^{3s-4} d\mu = (1 - q^{-1})^2 \frac{q^{3s-1}}{1 - q^{s+1}}. \]

3.2. Computation of \(Z_2 \). Since \(y \in W_1(\mathfrak{o}) \) and \(z \in \mathfrak{p} \), it follows that \(xz - y \in W_1(\mathfrak{o}) \) and \(A = 1, B = 1, C = \|u, z^3\|^{-s} \). Thus
\[Z_2 = (1 - q^{-1}) \int_{u, z \in \mathfrak{p}} |u|^{3s-4} \|u, z^3\|^{-s} d\mu. \]

It follows from Lemma 2.32 that
\[Z_2 = (1 - q^{-1})^2 \frac{q^{2t^2}(1 + q^3 t^2 - q^3 t^3 + q^6 t^4 - q^6 t^5 - q^8 t^7)}{(1 - q^3 t^3)(1 - q^8 t^5)}. \]

3.3. Computation of \(Z_3 \). In this case, \(x \in W_1(\mathfrak{o}), y, z \in \mathfrak{p} \), whence
\[A = \|z^2, yz, xz - y^2\|^s, \]
\[B = \|u, z^2, yz, xz - y^2\|^{-s}, \]
\[C = \|z^3, z^2u, yzu, (xz - y)^2 u\|^{-s}. \]

Write \(Z_3 = Z_{31} + Z_{32} \), where
\[Z_{31} := \int_{u, y, z \in \mathfrak{p}} |u|^{3s-4} ABC d\mu, \]
\[Z_{32} := \int_{u, y, z \in \mathfrak{p}} |u|^{3s-4} ABC d\mu. \]

3.3.1. Computation of \(Z_{31} \). Let \(y = zy_1 \) with \(y_1 \in \mathfrak{p} \). Then
\[A = \|z^2, xz - y_1^2 z^2\|^s = |z|^s \|z, x - y_1^2 z\|^s = |z|^s \text{ (since } x - y_1^2 z \in W_1(\mathfrak{o})\), \]
\[B = \|u, z\|^s, \]
\[C = |z|^{-s} \|u, z^2\|^{-s}. \]

Thus
\[Z_{31} = q^{-1} (1 - q^{-1}) \int_{u, z \in \mathfrak{p}} |z| |u|^{3s-4} \|u, z\|^{-s} \|u, z^2\|^{-s} d\mu. \]
Since $\mu\{ (u, z) \in p \mid v(u) = X, v(z) = Y \} = (1 - q^{-1})^2 q^{-X-Y}$, Lemma 2.1 (3) implies that

$$Z_{31} = q^{-1}(1 - q^{-1}) \int_{u, z \in p} |u|^{3s-4} |z| \|u, z\|^{-s} \|u, z^2\|^{-s} d\mu$$

$$= q^{-1}(1 - q^{-1})^3 \sum_{(X,Y) \in \mathbb{N}^2} q^{-X-Y} q^{(-3s+4)X} q^{-Y} q^{s \min(X,Y)} q^{s \min(X,2Y)}$$

$$= q^{-1}(1 - q^{-1})^3 \sum_{(X,Y) \in \mathbb{N}^2} q^{(-3s+3)X} q^{-2Y} q^{s \min(X,Y)} q^{s \min(X,2Y)}$$

$$= (1 - q^{-1})^3 t(1 - q^2 t^3 + q^4 t^2 - qt^4 - q^2 t^5 + q^3 t^6)$$

$$= (1 - q^{-2})(1 - q t)(1 - q^3 t^3)(1 - q^4 t^3).$$

3.3.2. Computation of Z_{32}. Let $z = yz_1$ with $z_1 \in o$. We have

$$A = |y|^s \|yz_1, xz_1 - y\|^s,$$

$$B = \|u, y^2 z_1, y(xz_1 - y)\|^{-s},$$

$$C = |y|^{-s} \|y^2 z_1, yz_1 u, u(xz_1 - y)\|^{-s}.$$

Thus

$$Z_{32} = \int_{x \in W_1(o)} |u|^{3s-4} |y| A_1 BC_1 d\mu.$$

Write $Z_{32} = Z_{321} + Z_{322}$, where

$$Z_{321} := \int_{x \in W_1(o)} |u|^{3s-4} |y| A_1 BC_1 d\mu,$$

$$Z_{322} := \int_{x \in W_1(o)} |u|^{3s-4} |y| A_1 BC_1 d\mu.$$

Computation of Z_{321}. Since $z_1 \in W_1(o)$, it follows that $xz_1 - y \in W_1(o)$ and so

$$Z_{321} = (1 - q^{-1})^2 \int_{u, y \in p} |u|^{3s-4} |y| \|u, y\|^{-s} \|u, y^2\|^{-s} d\mu = (q - 1) Z_{31}.$$

Computation of Z_{322}. Write $Z_{322} = Z_{322a} + Z_{322b}$, where

$$Z_{322a} := \int_{x \in W_1(o)} |u|^{3s-4} |y| A_1 BC_1 d\mu,$$

$$Z_{322b} := \int_{x \in W_1(o)} |u|^{3s-4} |y| A_1 BC_1 d\mu.$$

Computation of Z_{322a}. Let $y = z_1 y_1$ with $y_1 \in p$. We have

$$A_1 = |z_1|^s \quad \text{(since } x - y_1 \in W_1(o)),$$

$$B = \|u, y_1 z_1^2\|^{-s},$$

$$C_1 = |z_1|^{-s} \|y_1^2 z_1, u\|^{-s}.$$
Thus
\[Z_{322a} = (1 - q^{-1}) \int_{u,y,z} |u|^3 s - 4 |y_1| |z_1| ^2 BC_2 d\mu. \]

Since \(\mu \{ (u, y_1, z_1) \in S \mid v(u) = X, v(y_1) = Y, v(z_1) = Z \} = (1 - q^{-1})^3 q^{-X - Y - Z}, \) one has
\[Z_{322a} = (1 - q^{-1})^4 \sum_{(X,Y,Z) \in \mathbb{N}^3} q^{-X - Y - Z} q^{|-3s+4|X} q^{-Y} q^{-2Z} q^s \min \{X,Y+2Z\} q^s \min \{X,2Y+4Z\} \]
\[= (1 - q^{-1})^4 \sum_{(X,Y,Z) \in \mathbb{N}^3} q^{(-3s+3)X} q^{-2Y} q^{-3Z} q^s \min \{X,Y+2Z\} q^s \min \{X,2Y+4Z\}. \]

One now can apply Lemma 2.1 (4) with \(a = q^{-3s+3}, b = q^{-2}, c = q^{-3} \) and \(d = q^s \) to obtain \(Z_{322a}. \) We record the result in the Appendix.

Computation of \(Z_{322b}. \) Let \(z_1 = y_{22} \) with \(z_2 \in o. \) We have
\[A_1 = |y|^s \langle y_{22}, y_{22} - 1 \rangle^s, \]
\[B = \|u, y^3 z_2, y^2 (y_{22} - 1)\|^s, \]
\[C_1 = |y|^{-s} \| y^4 z_2^2, y^2 u, u(y_{22} - 1)\|^s. \]

Thus
\[Z_{322b} = \int_{x \in W_1} |u|^{3s-4} |y|^2 A_2 BC_2 d\mu = Z_{322b_1} + Z_{322b_2}, \]

where
\[Z_{322b_1} := \int_{x \in W_1} |u|^{3s-4} |y|^2 A_2 BC_2 d\mu, \]
\[Z_{322b_2} := \int_{x \in W_1} |u|^{3s-4} |y|^2 A_2 BC_2 d\mu. \]

Computation of \(Z_{322b_1}. \) Since \(z_2 \in p, \) it follows that \(x z_2 - 1 \in W_1. \) Thus \(A_2 = 1, B = \|u, y^2\|^s \) and \(C_2 = \|y^4 z_2^2, u\|^s. \) It's now easy to compute
\[Z_{322b_1} = (1 - q^{-1}) \int_{u,y,z} |u|^{3s-4} |y|^2 BC_2 d\mu. \]

Since \(\mu \{ (u, y, z_2) \in p^3 \mid v(u) = X, v(y) = Y, v(z_2) = Z \} = (1 - q^{-1})^3 q^{-X - Y - Z}, \) one has
\[Z_{322b_1} = (1 - q^{-1})^4 \sum_{(X,Y,Z) \in \mathbb{N}^3} q^{-X - Y - Z} q^{(-3s+4)X} q^{-2Y} q^s \min \{X,Y+2Z\} q^s \min \{X,4Y+3Z\} \]
\[= (1 - q^{-1})^4 \sum_{(X,Y,Z) \in \mathbb{N}^3} q^{(-3s+3)X} q^{-3Y} q^{-2Z} q^s \min \{X,Y+2Z\} q^s \min \{X,4Y+3Z\}. \]

One needs first to compute \(\sum_{(X,Y,Z) \in \mathbb{N}^3} q^X b^Y c^Z d^{X+2Y+3Z} \) similarly to Lemma 2.1 (4) and then apply to \(a = q^{-3s+3}, b = q^{-3}, c = q^{-1} \) and \(d = q^s \) to obtain \(Z_{322b_1}. \) The result is recorded in the Appendix.
Computation of Z_{322b2}. The equation $xz_2 \equiv 1 \mod p$ has $q - 1$ roots $(a_1, a_2) \in (F_q^*)^2$. We have

$$Z_{322b2} = \int_{x, y \in p} (u, y) \in p |u|^{3s-4} |y|^2 A_2 B C_2 d\mu$$

$$= \sum_{(a_1, a_2) \in (F_q^*)^2} \int_{x, y \in p} (a_1, a_2 + p \cdot a) |u|^{3s-4} |y|^2 A_2 B C_2 d\mu$$

$$= (q - 1)(q - 2)J_1 + (q - 1)J_2,$$

where

$$J_1 := \int_{x, y \in p} (a_1, a_2 + p \cdot a) |u|^{3s-4} |y|^2 A_2 B C_2 d\mu,$$

$$J_2 := \int_{x, y \in p} (a_1, a_2 + p \cdot a) |u|^{3s-4} |y|^2 A_2 B C_2 d\mu.$$

In computing J_1, notice that in this case $xz_1 \not\equiv 1 \mod p$, and so $A_2 = 1, B = \|u, y^2\|^{-s}$ and $C_2 = \|u, y^2\|^{-s}$, and thus we have

$$J_1 = q^{-2} \int_{u, y \in p} |u|^{3s-4} |y|^2 B C_2 d\mu.$$

Since $\mu\{u, y \in p^2 | v(u) = X, v(y) = Y\} = (1 - q^{-1})q^{-X-Y}$, one has

$$J_1 = q^{-2} (1 - q^{-1})^2 \sum_{(X, Y) \in \mathbb{N}^2} q^{-X-Y} q^{(-3s+4)X - 2Y} q^s \min\{X, 2Y\} q^{s \min\{X, 4Y\}}$$

$$= q^{-2} (1 - q^{-1})^2 \sum_{(X, Y) \in \mathbb{N}^2} q^{(-3s+3)X - 3Y} q^s \min\{X, 2Y\} q^{s \min\{X, 4Y\}}.$$

We first need to compute $\sum_{(X, Y) \in \mathbb{N}^2} a X^p B^Y c^{\min\{X, 2Y\}} d^{\min\{X, 4Y\}}$ similarly to Lemma 2.11 (3) and then apply with $a = q^{-3s+3}$, $b = q^{-3}$ and $c = q^s$ to obtain J_1. We record J_1 in the Appendix.

In computing J_2, notice that in this case, on each coset $(a_1, a_2) + p^2$ we have $xz_2 \equiv 1 \mod p$. We change variable $v = xz_2 - 1 \in p$. Then $A_2 = \|y, v\|^2, B = \|u, y^2, y^2 v\|^{-s}$, $C_2 = \|y^4, yu, uv\|^{-s}$ and

$$J_2 = q^{-1} \int_{u, y, v \in p} |u|^{3s-4} |y|^2 A_2 B C_2 d\mu.$$

Since $\mu\{u, y, v \in p | v(u) = X, v(y) = Y, v(v) = Z\} = (1 - q^{-1})^3 q^{-X-Y-Z}$, one has

$$J_2 = q^{-1} (1 - q^{-1})^3 \sum_{(X, Y, Z) \in p} q^{(-3s+3)X - 3Y - Z} q^{-s \min\{Y, Z\}}$$

$$\times q^{s \min\{X, 3Y + 2Z\}} q^{s \min\{X + Y, X + Z, 4Y\}}.$$

Again computing $\sum_{(X, Y, Z) \in \mathbb{N}^3} a X^p B^Y c^{Z} d^{\min\{X, Z\}} e^{\min\{X, 2Y + Z\}} d^{\min\{X, 3Y + 2Z\}} e^{\min\{X + Y, X + Z, 4Y\}}$ and then applying for $a = q^{-3s+3}, b = q^{-3}, c = q^{-1}$ and $d = q^s$ yields J_2 which we record in the Appendix.
obtain the residue field cardinality, we get
\[
\zeta_{H(x^3)}(s) = 1 + (1 - q^{-1})^{-1} \mathcal{Z} = \frac{(1 - t)(1 - q^2t^2)(1 - q^3t^3)}{(1 - qt)(1 - q^4t^2)(1 - q^5t^3)}.
\]
Hence
\[
(3.1) \quad \zeta_{H(O[x]/(x^n))}(s) = \frac{\zeta_K(s - 1)}{\zeta_K(s)} \cdot \frac{\zeta_K(2s - 3)}{\zeta_K(2s - 2)} \cdot \frac{\zeta_K(3s - 5)}{\zeta_K(3s - 4)}.
\]

4. Open questions

4.1. Heisenberg group scheme. Formulae (1.1), (2.3) and (3.1) agree in the following conjectured formula.

Conjecture 4.1. The representation zeta function of $H(O[x]/(x^n))$ is
\[
(4.1) \quad \zeta_{H(O[x]/(x^n))}(s) = \prod_{i=1}^{n} \frac{\zeta_K(is - 2i + 1)}{\zeta_K(is - 2i + 2)}.
\]

If Conjecture (1.1) holds, then the zeta functions $\zeta_{H(O[x]/(x^n))}(s)$ shares uniform analytic properties with $\zeta_{H(O)}(s)$ as suggested by the following conjecture.

Conjecture 4.2. Let R be a ring which is torsion-free finitely generated over \mathbb{Z}. Then the representation zeta function $\zeta_{H(R)}(s)$ has the following properties:

1. Its abscissa of convergence is $\alpha(H) = 2$.
2. It can be analytically continued to the whole complex plane. The continued zeta function has no singularities on the line $\text{Re}(s) = 2$, apart from a simple pole at $s = \alpha(H)$.

Recall that the representation zeta function of $H(\mathbb{Z}_p)$ is
\[
\zeta_{H(\mathbb{Z}_p)}(s) = 1 + (1 - p^{-1})^{-1} \int_{x \in \mathbb{Z}_p, \|x\|_p \leq 1} |x|^{s-2} d\mu = \frac{1 - p^{-s}}{1 - p^{1-s}}.
\]

When computing the zeta function for $H(O_p)$, one just needs to replace p by $q = |O/p|$ the residue field cardinality, \mathbb{Z}_p by O_p, and replace p-adic norm $\|.|$ by p-adic norm $\|.|_p$ to obtain
\[
\zeta_{H(O_p)}(s) = 1 + (1 - q^{-1})^{-1} \int_{x \in O_p} |x|^{s-2} d\mu = \frac{1 - q^{-s}}{1 - q^{1-s}}.
\]

Question 4.3. Can one define the domain W, a valuation and norm $\|.|_n$ on $O_p[x]/(x^n)$ compatible with the p-adic norm $\|.|_p$ such that the zeta function of $H(O_p[x]/(x^n))$ can be computed as follows
\[
\zeta_{H(O_p[x]/(x^n))}(s) = 1 + (1 - q^{-1})^{-1} \int_{W} |x|_n^{s-2} d\mu?
\]

By expanding the conjectured formula (4.1) for the local zeta function, we get
\[
(4.2) \quad \zeta_{H(O_p[x]/(x^n))}(s) = \sum_{I \subseteq [n-1]} f_I(q^{-1}) \prod_{i \in I} \frac{q^{2n-2i-1-(n-i)s}}{1 - q^{2n-2i-1-(n-i)s}},
\]
where I runs over all subsets of $[n - 1]_0 := \{0, 1, \ldots, n - 1\}$ and $f_I(q^{-1}) = (1 - q^{-1})^{\left|I\right|}$. The formula (4.2) looks similar to [8, (1.12)]. However, we have been unable to mimic the inductive proof of [8, Theorem C] to yield (4.2).
4.2. **Unipotent group schemes.** Once we understand the zeta function of $H(O_p[x]/(x^n))$, the next step is the following.

Let $Λ$ be a finitely generated free and torsion-free O-Lie lattice of nilpotency class c and O-rank h. If $c > 2$ we assume that $Λ' := [Λ, Λ] ⊆ cΛ$. This enables us to associate to $Λ$ a unipotent group scheme $G := G_Λ$ (cf. [8, Section 2.1.2]). The group $G(O)$ is a T-group of nilpotency class c and Hirsch length $h \cdot [K : Q]$. The Heisenberg group scheme H is an example of such a unipotent group scheme.

The zeta function $ζ_{G(O)}(s)$ is the Euler product

$$ζ_{G(O)}(s) = \prod_{p \in \text{Spec}(O)} ζ_{G(O_p)}(s)$$

ranging over all nonzero prime ideals p of O; cf. [8]. There exists a finite set S of prime ideals such that for each $p \notin S$, the local zeta function $ζ_{G(O_p)}(s)$ is a rational function in q^{-s} and satisfies a functional equation upon inversion of q; see [8, Theorem A]. Moreover, each such local representation zeta function can be expressed in terms of a p-adic integral; cf. [8, Corollary 2.11].

It is tempting to investigate the zeta function of $G(O[x]/(x^n))$ when n tends to $∞$. As we have seen for the Heisenberg group scheme, if Conjecture 4.1 holds then

$$\lim_{n \to ∞} ζ_{H(O[x]/(x^n))}(s) = \prod_{i=1}^{∞} ζ_K((is - 2i + 1)/(is - 2i + 2)).$$

It is natural to ask the following.

Question 4.4. Let G be a unipotent group scheme as above.

1. Is $G(O[[x]])$ twist-rigid, that is, is $r_n(G(O[[x]]))$ finite for every $n \in \mathbb{N}$? Does $G(O[[x]])$ have polynomial representation growth?

2. If (1) has positive answers then is it true that

$$ζ_{G(O[[x]])}(s) := \sum_{n=1}^{∞} r_n(G(O[[x]]))n^{-s} = \lim_{n \to ∞} ζ_{G(O[x]/(x^n))}(s)?$$

It is proved in [11, Theorem A] that the zeta function $ζ_{G(O)}(s)$ has rational abscissa of convergence $α(G)$, which is independent on the number field K, and can be analytically continued to $\text{Re}(s) > α(G) − δ(G)$ for some $δ(G) > 0$. In the spirit of Conjecture 4.2, we formulate the following.

Conjecture 4.5. Let R be a ring which is finitely generated torsion-free O-module. Then the representation zeta function of $G(R)$ has the following properties:

1. The abscissa of convergence $α(G)$ of $ζ_{G(R)}(s)$ is independent of R.

2. It can be meromorphically continued to the half-plane $\text{Re}(s) > α(G) − δ(G)$ for some $δ(G) > 0$, where $δ(G)$ is independent of K.

4.3. **Topological representation zeta functions.** Topological zeta functions offer a way to define a limit as $p \to 1$ of families of p-adic zeta functions. Let G be a unipotent group scheme defined as in Section 4.2. In [1], Rossmann introduces and studies topological representation zeta functions associated to unipotent group schemes G. Informally, we define the topological representation zeta function $ζ_{G,\text{top}}(s)$ to be the constant term of $ζ_{G(\mathbb{Z}_p)}(s)$ as a series in p^{-1}.
Example 4.6. Consider the Heisenberg group scheme H. Expanding $p^z = (1 + (p - 1))z$ into a series in $p - 1$, we obtain $\zeta_{H}(\mathbb{Z}_p)(s) = \frac{s}{s - 1} + O(p - 1)$ and hence $\zeta_{H,\text{top}}(s) = \frac{s}{s - 1}$.

Let $\mathbb{Q}[\varepsilon_n] = \mathbb{Q}[x]/(x^n)$ and for a \mathbb{Q}-algebra \mathfrak{g}, let $\mathfrak{g}[\varepsilon_n] = \mathfrak{g} \otimes_{\mathbb{Z}} \mathbb{Q}[\varepsilon_n]$ regarded as a \mathfrak{g}-Lie lattice. Let $H[\varepsilon_n]$ denote the group attached to $\mathfrak{g}[\varepsilon_n]$; cf. [6, Section 7]. Then $H[\varepsilon_n](\mathbb{Z}_p) = H(\mathbb{Z}_p[x]/(x^n))$. Hence

$$\zeta_{H[\varepsilon_2],\text{top}}(s) = \frac{s(2s - 2)}{(s - 1)(2s - 3)} = \frac{2s}{2s - 3},$$

$$\zeta_{H[\varepsilon_3],\text{top}}(s) = \frac{s(2s - 2)(3s - 4)}{(s - 1)(2s - 3)(3s - 5)} = \frac{2s(3s - 4)}{(2s - 3)(3s - 5)}.$$ (4.3) (4.4)

An algorithm to compute topological representation zeta functions is implemented in [5]. Notice that Rossmann’s method computes topological representation zeta function directly without first computing the corresponding p-adic representation zeta function. Formulae (4.3) and (4.4) are consistent with computation results in [5]. Notice also that [5] can only compute the topological representation zeta function of $H[\varepsilon_n]$ up to $n = 3$ as we have done here for their p-adic representation zeta functions. Conjecture 4.1 suggests the following analogue for topological representation zeta functions of $H[\varepsilon_n]$.

Conjecture 4.7. The topological representation zeta function of $H[\varepsilon_n]$ is

$$\zeta_{H[\varepsilon_n],\text{top}}(s) = \prod_{i=1}^{n} \frac{is - 2i + 2}{is - 2i + 1}.$$ (4.7)

Remark 4.8. All Questions in [6, Section 7], except Question 7.3 which is not yet known, have positive answers for $G = H[\varepsilon_n]$ with $n \leq 3$.

References

[1] Duong Hoang Dung and Christopher Voll. Uniform analytic properties of representation zeta functions of finitely generated nilpotent groups. Preprint arXiv:1503.06947, 2015.
[2] Shannon Ezzat. Counting irreducible representations of the Heisenberg group over the integers of a quadratic number field. J. Algebra, 397:609–624, 2014.
[3] Alexander Lubotzky and Andy R. Magid. Varieties of representations of finitely generated groups. Mem. Amer. Math. Soc., 58(336):xi+117, 1985.
[4] Charles Nunley and Andy Magid. Simple representations of the integral Heisenberg group. In Classical groups and related topics (Beijing, 1987), volume 82 of Contemp. Math., pages 89–96. Amer. Math. Soc., Providence, RI, 1989.
[5] Tobias Rossmann. Zeta, version 0.2, 2015. See http://www.math.uni-bielefeld.de/~rossmann/Zeta/, 2015.
[6] Tobias Rossmann. Topological representation zeta functions of unipotent groups. Preprint arXiv:1503.01942, 2015.
[7] Robert Snocken. Zeta functions of groups and rings. PhD thesis, University of Southampton, 2014.
[8] Alexander Stasinski and Christopher Voll. Representation zeta functions of nilpotent groups and generating functions for Weyl groups of type B. Amer. J. Math., 136(2):501–550, 2014.
[9] Alexander Stasinski and Christopher Voll. Representation zeta functions of some nilpotent groups associated to prehomogenous vector spaces. Preprint arXiv:1505.06837, 2015.
5. Appendix

\[Z_{322a} = \frac{(1 - q^{-1})^4}{q^{15}} \left(\frac{q^{-2t}}{(1-q^{-2})(1-q^{-4})(1-t)(1-q^t)} + \frac{pt^2}{q^{10t^7}} + \frac{q^4t^3}{q^{13t^9}} \right) + \frac{(1-q^t)(1-q^{2t^2})(1-q^{4t^3})}{q^{15t^5}} \]

\[Z_{322b} = \frac{(1 - q^{-1})^4}{q^{36}} \left(\frac{t}{(q-1)(1-q^{-5})(1-t)} + \frac{q^{2t^2}}{(1-q^{-1})(1-t)(1-t^2)(1-t^6)} + \frac{q^7t^4}{q^{11t^6}} + \frac{1}{(1-q^{-1})(1-t^2)(1-q^t)q^{10t^2}} \right) + \frac{(1-q^{-1})(1-q^{2t^2})(1-q^{4t^3})(1-q^{6t^4})}{q^{5t^7}} + \frac{(1-q^t)(1-q^{2t^2})(1-q^{4t^3})(1-q^{6t^4})}{q^{15t^15}} \]

\[J_1 = \frac{q^{-2}(1 - q^{-1})^2}{(1-q^{-1})(1-t) + \frac{q^{3t^2}}{(1-t)(1-t^2)q^4} + \frac{q^6t^4}{(1-q^t)(1-t^2)q^8} + \frac{q^{10t^6}}{(1-q^t)(1-q^2t^4)q^{12t^9}} \]

\[J_2 = \frac{q^{-1}(1 - q^{-1})^3}{(1-q^{-1})(1-q^{-1})(1-q^{-1}) + \frac{q^{-2t^2}}{(1-q^{-1})(1-q^{-1})q^{-1}} + \frac{q^2t^2}{q^{10t^5}} + \frac{q^{-4t}}{q^{14t^9}}} + \frac{(1-q^t)(1-q^{2t^2})(1-q^{4t^3})(1-q^{6t^4})}{q^{15t^7}} + \frac{(1-q^t)(1-q^{2t^2})(1-q^{4t^3})(1-q^{6t^4})}{q^{12t^5}} + \frac{(1-q^t)(1-q^{2t^2})(1-q^{4t^3})(1-q^{6t^4})}{q^{12t^5}} \]

Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany.

E-mail address: dhoang@math.uni-bielefeld.de