IMBEDDINGS OF FREE ACTIONS ON HANDLEBODIES

Darryl McCullough

Abstract. Fix a free, orientation-preserving action of a finite group G on a 3-dimensional handlebody V. Whenever G acts freely preserving orientation on a connected 3-manifold X, there is a G-equivariant imbedding of V into X. There are choices of X closed and Seifert-fibered for which the image of V is a handlebody of a Heegaard splitting of X. Provided that the genus of V is at least 2, there are similar choices with X closed and hyperbolic.

Introduction

Any finite group acts (smoothly and) freely preserving orientation on some 3-dimensional handlebody, and the number of inequivalent actions of a fixed G on a fixed genus of handlebody can be arbitrarily large [6]. Consequently, the following imbedding property of such actions may appear surprising at first glance:

Theorem 1. Let G be a finite group acting freely and preserving orientation on two handlebodies V_1 and V_2, not necessarily of the same genus. Then there is a G-equivariant imbedding of V_1 into V_2.

In fact, this result is almost a triviality, as is the following theorem of which it is a special case:

Theorem 2. Let G be a finite group acting freely and preserving orientation on a handlebody V and on a connected 3-manifold X. Then there is a G-equivariant imbedding of V into X.

By a result of D. Cooper and D. D. Long [1], any finite group acts freely on some hyperbolic rational homology 3-sphere. So theorem 2 shows that a free G-action on a handlebody always has an extension to an action on such a 3-manifold. Also, by a result of S. Kojima [4], for any finite G there is a closed hyperbolic 3-manifold whose full isometry group is G, and Kojima’s construction actually produces a free action. So there is an extension to a free action on a closed hyperbolic 3-manifold whose full isometry group is G.
One might ask for a more natural kind of extension, to a free G-action on a closed 3-manifold M, for which V is one of the handlebodies in a G-invariant Heegaard splitting of M. Simply by forming the double of V and taking an identical action on the second copy of V, one obtains such an extension with M a connected sum of $S^2 \times S^1$'s. A better question is whether V is an invariant Heegaard handlebody for a free action on an irreducible 3-manifold. Our main result answers this affirmatively.

Theorem 3. Let G be a finite group acting freely and preserving orientation on a handlebody V. Then the action is the restriction of a free G-action on a closed irreducible 3-manifold M, which has a G-invariant Heegaard splitting with V as one of the handlebodies. One may choose M to be Seifert-fibered. Provided that V has genus greater than 1, one may choose M to be hyperbolic. In both cases, there are infinitely many choices of M.

We remark that any orientation-preserving action of a finite group on a closed 3-manifold, free or not, has an invariant Heegaard splitting. For the quotient is a closed orientable 3-orbifold with 1-dimensional (possibly empty) singular set. One may triangulate the quotient so that the singular set is a subcomplex of the 1-skeleton. Then, the preimage of a regular neighborhood of the 1-skeleton is invariant and is one of the handlebodies in a Heegaard splitting.

In the remaining sections of this paper, we prove theorems 2 and 3. In [6], a number of results about free G-actions on handlebodies are obtained using more algebraic methods.

1. **Proof of Theorem 2**

Recall that two G-actions on spaces X and Y are equivalent if there is a homeomorphism $j: X \to Y$ such that $h(x) = j^{-1}(h(j(x)))$ for all $x \in X$ and all $h \in G$. If G acts properly discontinuously and freely on a path-connected space X, then the quotient map $X \to X/G$ is a regular covering map, so by the theory of covering spaces the action determines an extension

$$1 \longrightarrow \pi_1(X) \longrightarrow \pi_1(X/G) \overset{\phi}{\longrightarrow} G \longrightarrow 1.$$

Since we have not specified basepoints, the homomorphism ϕ is well-defined only up to an inner automorphism of G.

Suppose now that G is finite and acts freely and preserving orientation on a handlebody V. The quotient manifold V/G is orientable and irreducible with nonempty boundary, so $\pi_1(V/G)$ is torsionfree. A torsionfree finite extension of a finitely generated free group is free (by [3] any finitely generated virtually free group is the fundamental group of a graph of groups with finite vertex groups, and if the group is torsionfree, the vertex groups must be trivial). So $\pi_1(V/G)$ is free, and theorem 5.2 of [2] shows that V/G is a handlebody. In this context, we obtain a simple algebraic criterion for equivalence.

Lemma 4. Suppose that G acts freely and preserving orientation on handlebodies V_1 and V_2, with quotient handlebodies W_1 and W_2, determining
homomorphisms $\phi_i: \pi_1(W_i) \to G$. The actions are equivalent if and only if there is an isomorphism $\Psi: \pi_1(W_1) \to \pi_1(W_2)$ for which $\phi_2 \circ \Psi = \phi_1$.

Proof. An equivalence of the actions $j: V_1 \to V_2$ induces a homeomorphism $\overline{j}: W_1 \to W_2$ for which $\phi_2 \circ \overline{j}_\# = \phi_1$. Conversely, suppose Ψ exists. Since both W_1 and W_2 are orientable, there is a homeomorphism $f: W_1 \to W_2$. Using well-known constructions of homeomorphisms of W_2 (as for example in [5]), all of Nielsen’s generators of the automorphism group of the free group $\pi_1(W_2)$ can be induced by homeomorphisms, so f may be selected to induce Ψ. The condition that $\phi_2 \circ \Psi = \phi_1$ then shows that f lifts to a homeomorphism of covering spaces $j: V_1 \to V_2$, and moreover ensures that $h(x) = j^{-1}(h(j(x)))$.

Now we prove theorem 2. Let W be the quotient handlebody of the action on V, let $Y = X/G$, and let $\phi: \pi_1(W) \to G$ and $\psi: \pi_1(Y) \to G$ be the homomorphisms determined by the actions.

There is an imbedding $k: W \to Y$ so that $\psi \circ k_\# = \phi$. For we can regard W as a regular neighborhood of a 1-point union K of circles, so that $\pi_1(K) = \pi_1(W)$, and construct a map k_0 of K into Y for which $\psi \circ (k_0)_\# = \phi$. Since K is 1-dimensional, k_0 is homotopic to an imbedding, and since W and Y are orientable, this imbedding extends to an imbedding k of W into Y. Since $\psi \circ k_\# = \phi$, the preimage of $k(W)$ in X is connected, and by lemma 4 the restricted G-action on it is equivalent to the original action on V.

Theorem 2 extends to the case when some elements of G reverse the orientation. The equivariant imbedding exists if and only if the subgroups of elements of G that reverse orientation on V and on X are identical. The proof is affected only at the step when the imbedding of K into Y is extended to an imbedding of W into Y. The equality of the orientation-reversing subgroups is precisely the condition needed for the extension to exist.

2. PROOF OF THEOREM 3

If the genus of V is 0, then G is trivial and we take $M = S^3$. If the genus of V is 1, so that $V = D^2 \times S^1$, then (using lemma 4) every free G-action is equivalent to a cyclic rotation in the S^1-factor. Regarding V as a trivially fibered solid torus in the Hopf fibering of S^3, the action extends to a free action on S^3 with V an invariant Heegaard splitting (it also extends to free actions on infinitely many lens spaces containing V as a fibered Heegaard torus). So we may assume that the genus of V is greater than 1. The quotient handlebody $W = V/G$ has genus at least 2 (since V and consequently W have negative Euler characteristic).

We first construct the Seifert-fibered extension. As in section 2, there is a homomorphism $\phi: \pi_1(W) \to G$ that determines the action. Let g be the genus of W, and let n be any positive integer divisible by the orders of all the elements of G. We consider a collection of simple closed curves C_1, \ldots, C_g in the boundary ∂W, as shown in figure 1 for the case when $g = 3$ and
$n = 4$. Each C_i winds n times around one of the handles of W. Let C'_i be the image of C_i under the n^{th} power of a Dehn twist of ∂W about the curve C. The union of the C_i does not separate ∂W, so neither does the union of the C'_i. So we can obtain a closed 3-manifold Y with W as a Heegaard handlebody by attaching 2-handles along the C'_i and filling in the resulting 2-sphere boundary component with a 3-ball.

Let x_1, \ldots, x_g be a standard set of generators of $\pi_1(W)$, where x_i is represented by a loop that goes once around the i^{th} handle. In $\pi_1(W)$, C_i represents x_i^n (up to conjugacy), and C'_i represents $x_i^n (x_1 \cdots x_g)^{-n}$. Since every element of G has order dividing n, it follows that ϕ carries each C'_i to the trivial element of G, so induces a homomorphism $\psi: \pi_1(Y) \rightarrow G$. If $k: W \rightarrow Y$ is the inclusion, then $\psi \circ k\# = \phi$. The covering space M of Y has a free G-action and an invariant Heegaard splitting, one of whose handlebodies is the covering space of W corresponding to the kernel of ϕ, that is, V.

We will show that Y is Seifert-fibered, from which it follows that M is Seifert-fibered. Choose imbedded loops in the interior of W: L near and parallel to C, and L_1, \ldots, L_g near and parallel to loops ℓ_i in ∂W with each ℓ_i going once around the i^{th} handle, meeting C_i in one point. The loop ℓ_1 appears in figure 1. By a standard procedure, as explained for example on pp. 275-278 of [9], whose notation we follow, we may change the attaching curves for the discs by Dehn twists about C and the ℓ_i, at the expense of performing Dehn surgery on L and the L_i. First we twist n times along C, introducing a $1/n$ coefficient on L and moving each C'_i back to C_i. Then, $n-1$ twists along each ℓ_i move C_i to a loop C''_i in ∂W that looks like C_i except it goes only once around the handle. This creates surgery coefficients of $-1/(n-1)$ on the L_i. We may change the attaching homeomorphism of the Heegaard splitting by any homeomorphism of ∂W that extends over W, without changing Y. In particular, we may perform left-hand twists in the meridional 2-discs of the 2-handles to move the C''_i to the ℓ_i. This subtracts 1 from the surgery coefficients of the L_i, and subtracts g from the coefficient of L, yielding the diagram in figure 2. The ℓ_i are the attaching curves for
the discs of a Heegaard description of S^3, so Y is obtained from S^3 by Dehn surgery using the diagram.

We can already see a Seifert fibering, but we will work out the exact Seifert invariants. The complement of a regular neighborhood of L is a solid torus T, for which the L_i are fibers of a product fibering. A cross-sectional surface in this fibering contained in a meridian disc of T meets the boundary of a regular neighborhood of each L_i in a meridian circle and meets the boundary of a regular neighborhood of L in the negative of the longitude, while the fiber meets them in longitude circles and a meridian circle respectively.

A surgery coefficient a/b means that a solid torus is filled in so that $a \cdot m + b \cdot \ell$ becomes contractible, where m and ℓ are a meridian-longitude pair for a boundary torus of a regular neighborhood of the link component. A Seifert invariant (α, β) determines a filling in which $\alpha \cdot q + \beta \cdot t$ becomes contractible, where q is the cross-section and t is the fiber. So the surgery coefficients of our link produce one exceptional fiber with Seifert invariant $(n, 1-n)$ for each L_i, and one with Seifert invariants $(n, gn-1)$ for L. In the notation of [8], the unnormalized Seifert invariants of Y are \{0; (o_1, 0); (n, 1-n), \ldots, (n, 1-n), (n, gn-1)\}, where there are $g+1$ exceptional orbits. The normalized invariants are \{-1; (o_1, 0); (n, 1), \ldots, (n, 1), (n, n-1)\}.

Now, we will construct the extension of the G-action on V to a hyperbolic 3-manifold. As before, let n be any positive integer divisible by the orders of all the elements of G. Assume for the time being that $g = 2$. We take the same curves C_1 and C_2 as in the Seifert-fibered construction, but for C we take the image of the loop C_0 shown in figure 3 under the homeomorphism of W which is a right-hand twist in a meridinal disc in each of the two 1-handles.
As before, we take the images of the C_i under the n^{th} power of a Dehn twist about C as the attaching curves, form the closed manifold Y, and use the induced homomorphism ψ to obtain the original G-action as an invariant Heegaard handlebody of a free G-action on a covering space M of Y. Let ℓ_1, ℓ_2, L_1, L_2 and L be as before. We choose the L_i to lie closer to the boundary of W than L. Again, change the attaching curves first by the inverse of the n Dehn twists about C, introducing a surgery coefficient of $1/n$ on L, then by the $n-1$ twists about the ℓ_i, introducing surgery coefficients $-1/(n-1)$ on the L_i. Applying left-hand twists in the meridian discs of the two 1-handles of W, we move the attaching curves to the ℓ_i, obtaining the surgery description of Y shown in figure 4. This time, the coefficient of L is still $1/n$, because L has algebraic intersection 0 with each of the meridian discs of the handles of Y where the left-hand twists were performed. The complement of this link is a 2-fold covering of the complement of the Whitehead link, so is hyperbolic. By [10], Dehn surgery on the link produces a hyperbolic 3-manifold, provided that one avoids finitely many choices for the coefficients of each component. So all but finitely many choices for n yield a hyperbolic 3-manifold for Y, and hence for M.

Finally, to adapt the construction to arbitrary genus, one simply adds more components to C_0 to obtain the $g-1$ circles shown in figure 5. In the surgery description for Y, the chain $L \cup L_1$ in figure 4 is replaced by a chain of length $2g-2$, in which L_1, \ldots, L_{g-1} alternate with components from C_0, and the component L_g links the chain as did L_2 in figure 4. The L_i have surgery coefficients $-1-1/(n-1)$ as before, and the components coming from C_0 have coefficient $1/n$, since each had algebraic intersection 0 with the union of the meridian discs. The link complement is the $(2g-2)$-fold covering of the Whitehead link complement, so is hyperbolic, and the argument is completed as before.

REFERENCES

1. D. Cooper and D. D. Long, Free actions of finite groups on rational homology 3-spheres, *Topology Appl.* 101 (2000), 143-148.
Figure 5. The loops C_0 for the general hyperbolic construction.

2. J. Hempel, 3-Manifolds, Ann. of Math. Studies, No. 86, Princeton University Press, Princeton, N. J., (1976).
3. A. Karrass, A. Pietrowski, and D. Solitar, Finite and infinite cyclic extensions of free groups, J. Australian Math. Soc. 16 (1972), 458-466.
4. S. Kojima, Isometry transformations of hyperbolic 3-manifolds, Topology Appl. 29 (1988), 297-307.
5. D. McCullough and A. Miller, Homeomorphisms of 3-manifolds with compressible boundary, Mem. Amer. Math. Soc. 344 (1986), 1-100.
6. D. McCullough and M. Wanderley, Free actions on handlebodies, preprint available at http://arxiv.org/abs/math.GT/0109166
7. J. Nielsen, Die Isomorphismengruppe der freien gruppe, Math. Ann. 91 (1924), 169-209.
8. P. Orlik, Seifert manifolds, Lecture Notes in Mathematics, Vol. 291, Springer-Verlag, Berlin-New York (1972).
9. D. Rolfsen, Knots and Links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, California (1976).
10. W. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 357-381.

Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019, USA
E-mail address: dmccullough@math.ou.edu
URL: www.math.ou.edu/~dmccullo/
This figure "Dehn.png" is available in "png" format from:

http://arxiv.org/ps/math/0110078v1
This figure "Heegaard.png" is available in "png" format from:

http://arxiv.org/ps/math/0110078v1
This figure "Whitehead.png" is available in "png" format from:

http://arxiv.org/ps/math/0110078v1
This figure "hyperbolic.png" is available in "png" format from:

http://arxiv.org/ps/math/0110078v1
This figure "hyperbolic2.png" is available in "png" format from:

http://arxiv.org/ps/math/0110078v1