Research article

Vibrational spectroscopy, quantum computational and molecular docking studies on 2-chloroquinoline-3-carboxaldehyde

A. Sarala a, P. Sudhab, S. Muthuc,d,*, S. Sevvanthic, P. Sangeethae, S. Selvakumari e

a PG and Research Department of Chemistry, Thiru. vi. ka. Government Arts College, Affiliated to Bharathidasan University, Thiruvurar, Tiruchirappalli, 610003, Tamilnadu, India
b PG & Research Department of Chemistry, Thiru. vi. ka. Government Arts College, Thiruvurar, 610003, Tamilnadu, India
c Department of Physics, Arignar Anna Govt. Arts College, Cheyyar, 604407, Tamilnadu, India
d Puratchi Thalaivar Dr. MGR. Govt. Arts and Science College, Department of Physics, Uthiramerur, 603406, Tamilnadu, India
e Department of Physics, Panimalar Institute of Technology, Chennai, 600123, Tamilnadu, India

ARTICLE INFO

Keywords:
Vibrational spectra
DFT
NBO
NLO
Molecular docking

ABSTRACT

The quantum mechanical density functional theory (DFT) approach was used to analyze vibrational spectroscopy for the title compound 2-chloroquinoline-3-carboxaldehyde, and the observations were compared to experimental results. B3LYP with the 6–311++G (d, p) basis set produces the optimized molecular structure and vibrational assignments. The charge delocalization and hyper conjugative interactions were studied using NBO analysis. Fukui functions were used to determine the chemical reactivity of the examined molecule. The linear polarizability, first order polarizability, NLO and Thermodynamic properties are calculated. Additionally, Molecular electrostatic potential (MEP) and HOMO-LUMO are reported. Multi wavefunction analysis like ELF (Electron Localization Function) and LOL (Localized Orbital Locator) are analyzed. For the headline compound, drug-likeness properties were examined. Molecular docking analysis on the examined molecule are done to understand the biological functions of the headline molecule and the minimum binding energy, hydrogen bond interactions, are analyzed.

1. Introduction

Quinoline is widely occurred in natural products and its annulated skeletons is more significant in medicinal chemistry, polymer chemistry [1, 2, 3, 4], electronics for their admirable mechanical properties [5, 6, 7]. Quinoline and its derivatives have their own impact in the antibacterial [10, 11], antioxidant, antiprotozoal [12, 13, 14], anti-inflammatory [15], antituberculous [16, 17], antimalarial, antidepressant, antiproliferative, anti-inflammatory and antimicrobial activities. Quinoline compounds are effective antagonist [18, 19, 20, 21]. 2-chloroquinoline-3-carbaldehyde have great chemical reactivity due to the occurrence of two effective moieties chloro and aldehyde functions [22].

2-Chloroquinoline-3-carboxaldehyde (2CQ3CALD) has the molecular formula C10H6ClNO and molecular mass as191.61 g/mol literature survey reveals that many researches have been done to derive quinoline derivatives. There were no details in quantum chemical calculations and biological activities.

* Corresponding author.
E-mail address: mutgee@gmail.com (S. Muthu).

https://doi.org/10.1016/j.heliyon.2021.e07529
Received 13 April 2021; Received in revised form 2 May 2021; Accepted 6 July 2021

2405-8440/© 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
The theoretical bond length of C-O is 1.206 Å - 1.487Å and C–O bond lengths. The peak bond distance for C2–CI3 (1.7519Å) is found experimentally and 1.751Å in theoretically. The measured bond lengths for C-C range from 1.375Å -1.487Å and C–H range from 1.083Å -1.112Å by basis set which is close to the experimental data. The theoretical bond length of C-O is 1.206 Å which coincides with experimental bond length. Since C-C is homonuclear it has a longer bond length and the bond length of heteronuclear bonds, such as C–H is shorter.

3.2. Vibrational spectral study

The examined compound contains nineteen atoms, as it is nonlinear and has fifty-one vibrational modes by 3N-6. Theoretical spectral data of FT-IR and FT-Raman with the experimental results is presented in Figure 2 and Figure 3 respectively. Separate correlation graphs for FT-IR and FT-Raman with experimental and theoretic wavenumbers are given in Figure 4. The corresponding R² values are 0.9971 and 0.9982 which also shown in graph. The calculated IR intensities, scaled vibrational frequencies and Raman intensity with PED are shown in Table.2. The following expression Eq. (1) [31] was used to convert the theoretical Raman scattering activity (S) into relative Raman intensity (I_Raman)

\[I_R = \frac{f(\nu_0 - \nu_i)^4 S_i}{\nu_i \left[1 - \exp \left(-\frac{h \nu_i}{kT} \right) \right]} \]

where \(\nu_0 \) the laser-excited wavenumber and \(\nu_i \) is the normal mode vibrational wavenumber (cm\(^{-1}\)); the constant \(f = 10^{-12} \) is normalization factor for all peak intensities; \(c, T, k & h \) are the light velocity, temperature in Kelvin and Boltzmann & Planck constants correspondingly. The vibrational frequencies are scaled with 0.961 [26]. VEDA software was used to do vibrational assignments. The rms deviation between experimental and computed scaled frequencies calculated as 45.47cm\(^{-1}\) [33]. Theoretical data differ slightly from experimental data because theoretic wavenumbers obtained from gaseous state and experimental wavenumbers are obtained from the solid state [34].

3.2.1. Carbon–Carbon vibrations

The Carbon–Carbon stretching vibration occurs in 1650–1100cm\(^{-1}\) [35] range. The same vibrations were seen in FT-IR spectrum at 1612, 1577, 1489, 1454, 1332, 1212, 1165, 1131, 939cm\(^{-1}\) and in the FT-Raman spectrum at 1611, 1612, 1579, 1490, 1456, 1383, 1329, 1143, 1016cm\(^{-1}\) Between 1590 and 874 cm\(^{-1}\), theoretical C–C stretching vibrations were observed. It demonstrates that both theoretical and experimental results correlate well with PED contributions of 57, 32, 23, 10, 19, 14, 26 and 54 percent, respectively.

3.2.2. Carbon–Hydrogen vibrations

Hetero aromatics Carbon–Hydrogen (C–H) vibrations were observed in 3100–3000cm\(^{-1}\) [56,57] range. C–H stretching vibrations were found experimentally at 3107, 3058, 3041, 2928, 2870, 2750 cm\(^{-1}\) in FT-IR and 3062, 3040, 3020, 2873, 2767cm\(^{-1}\) in FT-Raman spectra. Theoretically, this vibration was observed at the frequencies 3078, 3067, 3052, 3043, 3030, 2757cm\(^{-1}\) with 88–100% PED. For 3067 and 2757 shows 100% PED.

3.2.3. Nitrogen–Carbon vibrations

Nitrogen–Carbon (N–C) vibration occurs in the area 1400–1200 cm\(^{-1}\) [38] as mixed band. The title molecule N–C vibrations were observed at 1577,1489,1332,1212,1165cm\(^{-1}\) in FT-IR and 1612,1579,1495,1383, 1218,1143cm\(^{-1}\) in FT-Raman spectra. Theoretical peaks are observed in 1625–1247cm\(^{-1}\) range. The PED contribution is 18,13,11,22 and 20%, respectively.

3.2.4. Carbon–Oxygen vibration

The stretching vibration of carbonyl group is noted in 1850–1550cm\(^{-1}\) [39] range. In FT-IR and Raman, the compound exhibits a strong absorption peak at 1685cm\(^{-1}\) and 1682cm\(^{-1}\) respectively. Theoretically, frequency was obtained at 1717cm\(^{-1}\) with 90% PED.
3.2.5. Carbon–Chlorine(C–Cl) vibration

The C–Cl vibration appears in the range 710–505 cm$^{-1}$ [40,41]. Theoretical C–Cl vibration is obtained at 644 and 576 cm$^{-1}$. Experimental FT-IR and Raman peaks observed at 621 and 600 cm$^{-1}$ correspondingly with 11 percent PED.

3.3. Natural bond orbital

The NBO method provides evidence of interactions in both occupied orbital and virtual orbital areas, which improves the investigation of intra and inter molecule interactions. The interaction is evaluated using the fock matrix [42]. NBO analysis on 2CQ3CALD is carried out with B3LYP/6–311++G (d, p) method [43]. Donor-acceptor pairings and donor-acceptor stabilization energy values are computed [44, 45] and presented in Table 3. The orbital overlap between σ(C–C) and σ*(C–C) bond orbitals induce intramolecular contact, which leads in intra-molecular charge transfer (ICT) and system stabilisation [46]. Due to the conjugative interactions, electrons from σ(C3–C4) delocalize to anti-bonding σ*(C2–C13), σ*(C5–C6), σ*(C2–C3), σ*(C4–C5), σ*(C11–O12), σ*(C3–C11), σ*(C4–H14) with the stabilisation energies 3.49,2.99,2.66,2.15,1.09,1 and 0.68 kcal/mol respectively. π bond electron from π(C3–C4) to anti-bonding π*(N1–C2), π*(C5–C10), π*(C11–O12) with moderate stabilisation energy 19.01,13.27,11.79 kcal/mol and σ*(C2–C13), σ*(N1–C2), σ*(C11–H19), σ*(C11–O12) with low stabilisation energy 1.46,1.21,0.95,0.4 kcal/mol respectively. The delocalisation of π electron from π(C5–C10) distribute the anti-bonding π*(C3–C4), π*(C6–C7), π*(N1–C2), π*(C8–C9) with stabilisation energy 20.03,17.7,14.52,14.21 kcal/mol respectively. A strong interaction was observed as a result of the delocalisation of π*(N1–C2) to the π*(C5–C10) with high stabilisation energy 37.68 kcal/mol. On the other hand, lone pair of C113 (LP3) π*(N1–C2), lone pair of O12 (LP2) π*(C11–H19), σ*(C3–C11), lone pair of N1 (LP1) σ*(C2–C3) with the stabilisation energy 27.21,21.37,19.93,10.04 correspondingly.

3.4. MEP

Molecular electrostatic potential (MEP) is associated to the electron density and is an excellent descriptor for locating reactive binding locations and donor acceptor regions [47]. Electrostatic potential of the molecule is illustrated by MEP surface with different colours. Nature of the chemical bond may also be identified by this electrostatic surface [48]. The three-dimensional MEP plot of the examined compound is shown in Figure 5. These maps are colour coded between -5.158e$^{-2}$ and +5.158e$^{-2}$, with blue suggesting nucleophilic reactivity and red indicating electrophilic reactivity [49]. The present compound has negative regions (minimum electrostatic potential) primarily

| Table 1. Geometrical parameters of 2-chloroquinoline-3-carboxaldehyde: bond length (Å) and bond angle (°). |
|---------------------------------|---------------------------------|
| Parameter | Experimental* | B3LYP/6–311++G (d,p) | Parameter | Experimental* | B3LYP/6–311++G (d,p) |
| Bond Length | | | Bond Angle | | |
| N1–C2 | 1.288 | 1.297 | N1–C1–C10 | 117.48 | 119.4 |
| N1–C10 | 1.372 | 1.365 | N1–C2–C3 | 126.15 | 124.2 |
| C2–C3 | 1.423 | 1.436 | N1–C2–C13 | 115.14 | 115.7 |
| C2–C11 | 1.7519 | 1.751 | N1–C10–C5 | 121.83 | 121.8 |
| C3–C4 | 1.367 | 1.381 | N1–C10–C9 | 118.45 | 119 |
| C5–C11 | 1.479 | 1.487 | C3–C2–C13 | 118.71 | 120.1 |
| C4–C5 | 1.406 | 1.41 | C2–C3–C4 | 116.22 | 116.3 |
| C4–H14 | 0.93 | 1.087 | C2–C3–C11 | 123.62 | 127.2 |
| C5–C6 | 1.411 | 1.418 | C4–C3–C11 | 120.14 | 116.5 |
| C5–C10 | 1.418 | 1.427 | C3–C4–C5 | 120.74 | 121.5 |
| C6–C7 | 1.36 | 1.375 | C3–C4–H14 | 119.6 | 119 |
| C6–H15 | 0.93 | 1.085 | C3–C11–O12 | 123.76 | 127.7 |
| C7–C8 | 1.409 | 1.415 | C3–C11–H19 | 118.1 | 111.9 |
| C7–H16 | 0.93 | 1.084 | C5–C4–H14 | 119.6 | 119.5 |
| C8–C9 | 1.363 | 1.376 | C5–C5–C6 | 123.22 | 123.8 |
| C8–H17 | 0.93 | 1.084 | C4–C5–C10 | 117.52 | 116.7 |
| C9–C10 | 1.409 | 1.414 | C5–C5–C10 | 119.24 | 119.5 |
| C9–H18 | 0.93 | 1.083 | C5–C6–C7 | 120.07 | 120.1 |
| C11–O12 | 1.196 | 1.206 | C5–C6–H15 | 120 | 119.2 |
| C11–H19 | 0.93 | 1.112 | C5–C10–C9 | 119.71 | 119.2 |
| C7–C6–H15 | 120 | 120.7 |
| C6–C7–C8 | 120.28 | 120.3 |
| C6–C7–H16 | 119.9 | 120.1 |
| C8–C7–H16 | 119.9 | 119.6 |
| C7–C8–C9 | 121.46 | 120.9 |
| C7–C8–H17 | 119.3 | 119.3 |
| C9–C8–H17 | 119.3 | 119.7 |
| C8–C9–C10 | 119.23 | 120 |
| C8–C9–H18 | 120.4 | 121.9 |
| C10–C9–H18 | 120.4 | 118.1 |
| O12–C11–H19 | 118.1 | 120.4 |

* Ref [32].
confined on oxygen, which is more reactive site for electrophilic attack, and positive sections (maximum electrostatic potential) mainly confined on nitrogen and hydrogen, which is a highly active centre for nucleophilic attack.

3.5. Frontier molecular orbitals analysis

The interaction of highest occupied and lowest unoccupied orbital (HOMO and LUMO) resulting in electronic transitions [50]. The visual

![Figure 2. Compared theoretical and experimental FT-IR spectrum.](image1)

![Figure 3. Compared theoretical and experimental FT-Raman spectrum.](image2)
image of orbital diagram is presented in Figure 6. Table 4 displays the relevant energy values and energy gap (ΔE = 4.430eV), which describes the overall reactivity of the headline compound. The compound has chemical softness 0.226, chemical hardness 2.215, electron affinity 2.762, electron negativity 4.977 and ionization potential 7.193. The above-mentioned values, especially the electrophilicity (5.592) value of the present compound 2CQ3CALD, supports its biologically activity [51, 52].

3.6. Hyper polarizability

The energy of a system in the presence of an applied electric field is a function of the electric field. The first hyperpolarizabilities (βtot), polarizability α, electric dipole moment μ and the hyperpolarizability β of 2CQ3CALD are evaluated using force field process with B3LYP and tabulated in Table 5, which govern the NLO activity of the system [53, 54]. Urea is often considered as a standard reference when describing an organic NLO molecule. The computed values for β (first order hyperpolarizability), μ(D) (dipole moment) and α (polarizability) are 5.52 × 10⁻²⁹esu, 1.797 Debye and 2.32 × 10⁻²³esu respectively. The β value is 15 times greater than that of Urea (βtot = 0.372 × 10⁻²⁹) [55,56], indicating that title molecule has the potential to be a strong NLO material.

The total static μ(D) dipole moment of the head compound is 0.779 Debye. In the future, the investigated compound will be considered for NLO.

3.7. Thermodynamic properties

The determination of thermodynamic properties at various temperatures aids in determining the reactivity of material at high temperatures. The thermodynamic functions are attained by THERMO. PL [30] and tabulated in Table 6. Temperature increases (100K – 1000 K) would increase the functions shown in correlation graph Figure 7, such as heat capacity, entropy and enthalpy. This is due to an increase in molecular vibration with the temperature [57, 58]. The quadratic fit of functions with temperature is described by the relationships shown below. S, Cp and H have the fitting factor (R²) of 0.99999, 0.99949 and 0.99926, respectively [59],

\[
S = 231.81386 + 0.67365T - 1.60359 \times 10^{-4} T^2 \quad (R^2 = 0.99999)
\]

Table 2. Observed and calculated vibrational frequency of 2-chloroquinoline-3-carboxaldehyde at B3LYP with 6–311+g (d,p) basis set.

Sl. No	Experimental Frequency (cm⁻¹)	Theoretical Frequencies (cm⁻¹)	IR Intensity	Raman Activity	Raman Intensity (lRaman)	Assignments					
	FT-IR	FT-Raman	Unscaled	scaled	Relative	Absolute					
1	3107(w)	3062 (vs)	3203	3078	5	1	202	57	0.399	uCH(95)	
2	3058(w)	3040 (vw)	3192	3067	13	3	216	61	0.433	uCH(100)	
3	3041(m)	3176	3052	7	2	115	32	0.235	uCH(88)		
4	2928(m)	3020 (vw)	3167	3043	2	0	56	16	0.116	uCH(90)	
5	2870(s)	2873(s)	3153	3030	4	1	65	18	0.137	uCH(99)	
6	2750 (vw)	2767(m)	2869	2757	108	30	137	39	0.411	uCH(100)	
7	1685(s)	1682 (vs)	1786	1717	367	100	212	60	2.952	uC(90)	
8	1612(s)	1661(m)	1654	1590	79	21	106	30	1.831	uCC(57)	
9	1577(vs)	1612 (vs)	1625	1561	165	45	42	12	0.764	uC(18)+uCC(32)+uHCC(13)	
10	1489(s)	1579 (vs)	1593	1530	80	22	46	13	0.878	uC(13)+uCC(23)+uPCC(10)	
11	1454(m)	1490(s)	1522	1463	19	5	10	3	0.222	uCC(11)+uHCC(11)	
12	1456(m)	1485	1427	12	3	7	2	0.158	uC(11)+uCC(10)+uHCC(36)		
13	1437(w)	1413(w)	1450	1394	8	2	40	11	0.987	uHCO(57)	
14	1332(s)	1383 (vs)	1423	1367	41	11	355	100	9.278	uCC(10)+uCC(11)+uHCO(10)+uPCC(11)	
15	1329(m)	1383	1329	15	4	36	10	1.000	uCC(19)+uHCO(16)		
16	1370	1317	39	11	39	11	1.134	uCC(22)+uCC(33)+uHCC(16)			

(continued on next page)
Sl. No	Experimental FT-IR Frequency (cm⁻¹)	Theoretical Frequencies (cm⁻¹)	IR Intensity (scaled)	Raman Activity (scaled)	Raman Intensity (I_Raman)	Assignments (continued)
17	1212(m)	1218(w)				
18	1167(m)	1274	10	10	0.084	
19	1143(m)	1247	3	3	0.141	
20	1131(s)	1192	12	12	1.111	
21	1171	1171	2	2	0.479	
22	1045(vs)	1156	9	9	0.115	
23	970(m)	1060	41	41	0.116	
24	939(m)	1037	0	0	1.789	
25	80(s)	80	0	0	0.005	
26	80(s)	80	0	0	0.005	
27	767	767	10	10	0.014	
28	678(m)	696	0	0	0.072	
29	621(w)	671	51	51	0.794	
30	592(s)	621	2	2	0.304	
31	550(vw)	599	3	3	0.653	
32	486(w)	492	0	0	0.052	
33	450(w)	456	4	4	1.435	
34	410(w)	424	2	2	0.825	
35	320(s)	378	1	1	10.85	
36	348	348	5	5	3.733	
37	250(w)	298	0	0	0.422	
38	249(w)	271	1	1	0.680	
39	200(m)	227	1	1	1.728	
40	118(s)	145	1	1	0.177	
41	80(s)	98	0	0	4.771	
42	48	48	2	2	100.0	

a Scaling factor: 0.961 for B3LYP/6–311+–G (d,p).
b Relative absorption intensities normalized with higher peak absorption equal to 100.
c Relative Raman activities normalized to 100. Relative Raman intensities calculated by Eq. (1) and normalized to 100.
d v-Stretching β-in-plane bending ω-out plane pending τ-torsion.

Table 3. Second order perturbation theory analysis of Fock matrix in NBO basis of 2CQ3CALD.

Donor	Type	ED/e (qi)	Acceptor	Type	ED/e (qi)	E (2) kcal/mol	E(j)-E(i) a.u.	F(Ij) a.u.
N 1 - C 2	σ	1.98622	N 1 - C 10	σ	0.02673	0.85	1.32	0.03
			C 5 - C 10	σ	0.49095	0.56	0.85	0.022
			C 9 - C 10	σ	0.22448	3.19	1.37	0.059
N 1 - C 2	π	1.76831	N 1 - C 10	σ	0.393	1.38	0.26	0.018
			C 3 - C 4	σ	0.01935	0.54	0.82	0.02
			C 5 - C 10	σ	0.49095	24.82	0.33	0.087
N 1 - C 10	σ	1.97414	N 1 - C 2	σ	0.0315	1.09	1.28	0.033
			C 2 - Cl 13	σ	0.05625	3.24	0.95	0.05
			C 5 - C 10	σ	0.49095	1.13	0.83	0.031
			C 8 - C 9	σ	0.01168	1.16	1.35	0.035

(continued on next page)
Donor Type	Type	ED/e (qi)	Acceptor Type	ED/e (qi)	E (2)	E(2)-E(1)	F(I)	
					kcal/mol	a.u.	a.u.	
C2 - C3	σ	1.97329	N1 - C2	σ	0.0315	0.91	1.18	0.029
			N1 - O12	σ	0.0768	0.53	0.73	0.018
C2 - Cl13	σ	1.98474	N1 - C2	σ	0.393	1.57	0.67	0.032
			Cl2 - Cl13	σ	0.01935	2.18	1.23	0.046
C3 - C4	σ	1.97244	C4 - H14	σ	0.01435	0.68	1.1	0.024
			Cl11 - O12	σ	0.00357	1.09	1.29	0.034
C3 - C4	π	1.71236	N1 - C2	σ	0.0315	1.21	0.76	0.029
			N1 - C2	σ	0.393	19.01	0.23	0.061
			Cl2 - Cl13	σ	0.05625	1.46	0.42	0.024
C3 - Cl11	σ	1.9814	N1 - C2	σ	0.393	0.75	0.62	0.021
			Cl2 - Cl13	σ	0.01969	1.91	1.2	0.043
C4 - C5	σ	1.97415	C3 - C11	σ	0.06547	2.49	0.16	0.054
			C5 - C6	σ	0.02123	3.17	1.24	0.056
C4 - C10	σ	1.97768	C2 - C3	σ	0.04983	3.34	0.98	0.052
			C5 - C10	σ	0.04367	4.14	1.07	0.06
C5 - C6	σ	1.9363	N1 - C10	σ	0.02673	2.92	1.18	0.052
			Cl2 - Cl13	σ	0.04367	3.54	1.23	0.059
C5 - C10	σ	1.9676	N1 - C10	σ	0.02673	1.47	1.19	0.037
			Cl2 - Cl13	σ	0.01969	3.24	1.22	0.056
C5 - C10	π	1.50101	N1 - C2	σ	0.393	14.52	0.2	0.05
			N1 - C10	σ	0.02673	1.4	0.74	0.033
C6 - C4	σ	1.98163	C2 - C3	σ	0.27314	20.03	0.27	0.07
			C3 - C4	σ	0.01969	3.26	1.21	0.056
C6 - C7	σ	1.71569	C5 - C10	σ	0.49095	16.21	0.27	0.063
			C6 - H15	σ	0.01196	2.05	1.11	0.043
C6 - H15	σ	1.98145	C7 - C8	σ	0.014	3.37	1.04	0.053
C7 - C8	σ	1.98194	C6 - C7	σ	0.01217	1.85	1.22	0.042
			C6 - H15	σ	0.01262	2.4	1.1	0.046
C7 - H16	σ	1.98211	C5 - C6	σ	0.02123	3.51	1.05	0.054
C8 - C9	σ	1.97956	N1 - C10	σ	0.02673	3.68	1.18	0.059
			C7 - C8	σ	0.014	1.72	1.21	0.041
C8 - C10	σ	1.97373	N1 - C2	σ	0.0315	2.68	1.16	0.05
			N1 - C2	σ	0.393	0.77	0.64	0.022
C8 - H17	σ	1.97913	N1 - C10	σ	0.02673	0.55	1	0.021
C9 - H18	σ	1.97857	C2 - C3	σ	0.04983	10.04	0.78	0.081
			C5 - C10	σ	0.04367	9.23	0.87	0.082
C11 - O12	σ	1.99642	C3 - C4	σ	0.01935	1.25	1.58	0.04
			C2 - C3	σ	0.04983	0.81	0.85	0.024
C11 - O12	π	1.98331	C3 - C4	σ	0.27314	3.47	0.42	0.037
C11 - H19	σ	1.98586	C3 - C4	σ	0.27314	0.97	0.57	0.022
N1		1.87257	C2 - C3	σ	0.04983	10.04	0.78	0.081
O12		1.87741	C3 - C11	σ	0.06547	19.93	0.66	0.104
CI13		1.99151	N1 - C2	σ	0.0315	0.92	1.4	0.032
			C2 - C3	σ	0.04983	0.94	1.37	0.032
Table 3 (continued)

Donor	Type	ED/e (qi)	Acceptor	Type	ED/e (qi)	E (2)\(^a\)	E(j)-E(i)\(^b\)	F(I,j)\(^c\)
Cl 13	LP (2)	1.95141	C 3 - C 4	σ*	0.27314	0.79	0.32	0.015
Cl 13	LP (3)	1.86398	N 1 - C 2	σ*	0.393	27.21	0.29	0.085
			C 2 - Cl 13	σ	0.05625	0.74	0.48	0.017
N 1 - C 2	π*	0.393	N 1 - C 10	σ*	0.02673	2.44	0.54	0.071
			C 2 - Cl 13	σ*	0.05625	9.57	0.19	0.088
			C 3 - C 11	σ*	0.06547	0.76	0.43	0.034
			C 5 - C 10	π*	0.49095	37.68	0.07	0.069
C 3 - C 4	π*	0.27314	C 2 - Cl 13	σ*	0.05625	1.11	0.12	0.025
			C 3 - C 4	σ*	0.01935	2.48	0.49	0.081

\(^a\) E2 means energy of hyper conjugative interaction (stabilization energy).

\(^b\) E(j)-E(i) is the energy difference between donor i and acceptor j.

\(^c\) F (i,j) is the Fock matrix element between i and j NBO orbital's.

Figure 5. Molecular electrostatic potential (MEP) of 2-chloroquinoline-3-carboxaldehyde obtained by B3LYP/6-311++G (d,p) method.

Figure 6. The atomic orbital arrangements of the frontier molecular orbital of the title compound.
\[C_p = 9.23558 + 0.62752T - 2.75045 \times 10^{-4} T^2 \quad (R^2 = 0.99946) \]
\[H = -7.41764 + 0.07927T + 1.62853 \times 10^{-4} T^2 \quad (R^2 = 0.99926) \]

3.8. Fukui function and dual descriptor

Mulliken charges computed by B3LYP [60] aid in understanding the headline compound's condensed Fukui function \(f_r \) and dual descriptor values. Table 7 displays the fukui functions and dual descriptor values for 2CQ3CALD. Carbon atoms have atomic charges ranging from -2.180 to 2.152 as shown in Figure 8. The atomic charge of C5 is the highest. This is due to the highly negative C10 atom. Chlorine and nitrogen are also positively charged atoms. The intermolecular interaction could be formed by negatively charged oxygen and positively charged hydrogen. This type of interaction promotes the hydrogen bond.

Fukui function is calculated [61, 62] in terms of electron density [63, 64, 65]. Table 7 shows the electrophilic reactivity order as Cl13 > N1 > C5 > C6. The calculated \(f_r^+ \) values of C10 and C9 indicate a
potential site for nucleophilic attack. The values of local softness are at maximum for C10 = 0.037. Except C3 and C10, all remaining atoms are preferable for electrophilic reactions. The dual descriptor is more exact than the Fukui function. Positive values for the atoms 9C, 10C, 6C, 13Cl, 11C, 15H, 16H, 12O, 1N, 17H and 7C explains which atoms are for nucleophilic attack. Positive descriptor values for atoms 18H, 8C, 14H, 19H, 3C, 5C, 2C and 4C indicates that these atoms are for electrophilic attack.

3.9. ELF and LOL

ELF and LOL are surface investigations done on the base of covalent bonds to estimate the electron pair density. This topological character was found using the Multiwave function program [66]. The electron localization function, which is based on electron pair density and the Localized orbital locator, is concerned with the localized electron cloud. Colored maps of 2CQ3CALD Multiwave functions are displayed in Figure 9 (a, a’ and b, b’). The ELF value ranged from 0.0 to 1.0, where >0.5 indicating bonding and non-bonded localized electrons and <0.5 describing delocalized electrons [67, 68]. The LOL attain a high value of >0.5, describing how electron localization overcomes electron density. Because of covalent bond, electrons are highly localized [69].

The red color (high region) around hydrogen atoms in the ELF diagram is shows the presence of high localized electrons. The blue color around C, N and O indicates the presence of a delocalized electron cloud. The white color around the hydrogen atom shows that the electron density is approaching the upper limit of the color scale, according to the LOL diagram. The covalent areas between carbon, hydrogen, and nitrogen atoms are indicated by the red color (high LOL value) in the diagram. The electron depletion region is represented by blue circles enclosing a few carbons, nitrogen, and oxygen.

3.10. Drug likeness

The studied drug likeness parameters such as number of HBD (hydrogen bond donors), HBA (hydrogen bond acceptor), rotatable bonds, A logP and Topological (TPSA) polar surface area values are summarized in Table 8. The values of 2CQ3CALD obeys Lipinski’s rule of five [70, 71]. As a result, HBD is 0 and HBA is 2, both of which are less than the onset value 5 and 10. There are one rotatable bond for the compound. The AlogP value is 2.68, which is less than the threshold value of 5. TPSA for the compound is less than threshold value. These drug likeness parameters lead to the conclusion that the headline compound is pharmaceutically efficient.

3.11. Molecular docking

Auto-Dock 4.2.6 is a tool for analyzing the molecular mechanism of docking and generating a three-dimensional structure. A review of the literature reveals that quinoline derivatives have strong antagonist behavior. The examined compound is docked with antagonist proteins 2BJ4, 1IRA and 1IYH, which are taken from RCBS-PDB [72, Table 7. Condensed Fukui function f and new descriptor (s f) for 2CQ3CALD.

Atom	Mulliken atomic charges	Fukui functions	dual descriptor	local softness						
	0, 1 (N)	N +1 (1, 2)	N-1 (1,2)	fr	fr	fr^2	Δfr	sr+ f+	sr f-	sr0 f0
1 N	0.226	0.086	0.371	-0.140	-0.146	-0.143	0.006	-0.032	-0.033	-0.032
2 C	0.261	0.195	0.278	-0.066	-0.017	-0.041	0.049	-0.015	-0.004	-0.009
3 C	0.257	0.234	0.250	-0.023	0.007	-0.008	-0.030	-0.005	0.001	-0.002
4 C	-0.381	-0.503	-0.354	-0.121	-0.027	-0.074	-0.094	-0.027	-0.006	-0.017
5 C	2.152	2.017	2.251	-0.135	-0.100	-0.117	-0.035	-0.030	-0.022	-0.026
6 C	-0.154	-0.211	-0.057	-0.057	-0.097	-0.077	0.041	-0.013	-0.022	-0.017
7 C	-0.299	-0.335	-0.259	-0.036	-0.040	-0.038	0.003	-0.008	-0.009	-0.009
8 C	-0.298	-0.322	-0.284	-0.024	-0.014	-0.019	-0.010	-0.006	-0.003	-0.004
9 C	-0.297	-0.293	-0.233	0.004	-0.064	-0.030	0.068	0.001	-0.014	-0.007
10 C	-2.180	-2.014	-2.300	0.166	0.120	0.143	0.046	0.037	0.027	0.032
11 C	-0.314	-0.345	-0.268	-0.030	-0.046	-0.038	0.016	-0.007	-0.010	-0.009
12 O	-0.185	-0.214	-0.144	-0.029	-0.041	-0.035	0.011	-0.007	-0.009	-0.008
13 Cl	0.209	0.062	0.383	-0.148	-0.173	-0.161	0.026	-0.033	-0.039	-0.036
14 H	0.190	0.124	0.245	-0.066	-0.055	-0.061	-0.011	-0.015	-0.013	-0.014
15 H	0.141	0.089	0.206	-0.052	-0.065	-0.059	0.012	-0.012	-0.015	-0.013
16 H	0.174	0.113	0.246	-0.060	-0.072	-0.066	0.012	-0.014	-0.016	-0.015
17 H	0.168	0.116	0.225	-0.053	-0.057	-0.055	0.004	-0.012	-0.013	-0.012
18 H	0.218	0.150	0.282	-0.068	-0.064	-0.066	-0.004	-0.015	-0.014	-0.015
19 H	0.113	0.052	0.162	-0.061	-0.049	-0.055	-0.012	-0.014	-0.011	-0.012
For 2BJ4, 1IRA and 1IYH, the molecular docking binding energies are -5.51, -5.16 and -5.17 respectively, while the inhibition constants are 91.51, 163.73 and 161.10 and intermolecular energy is -5.81, -5.46 and -5.47. Table 9 presents the molecule’s docking parameters with regards to the targeted protein. 2BJ4 showed the least binding energy among the proteins, at -5.51 kcal mol\(^{-1}\), and the most of inhibitors interacted with the ligand in the 2BJ4 bonding site. They had four hydrogen bonds involving LEU 387, ARG 394,

![Figure 8. The histogram of calculated Mulliken charge of 2-chloroquinoline-3-carboxaldehyde.](image)

![Figure 9. ELF (a, a') and LOL (b, b') coloured diagram and contour maps.](image)
GLU 353 and GLU353 with an inhibition constant of 91.51 μm and a RMSD of 53.257 Å. The ligand interacts with three diverse receptors are exposed in Figures 10, 11, and 12.

4. Conclusion

Vibrational spectra and quantum simulations are calculated for the headline compound. The geometrical variables (bond distance and bond angle) match the XRD data very well. Theoretical FT-IR and FT-Raman vibrational spectra of 2CQ3CALD were computed and compared to experimental results, which revealed a high level of agreement. The electron density transfer from $\pi^*(N1-C2)$ to $\pi^*(C5-C10)$ resulted in a strong interaction with a high stabilisation energy 37.68 kcal/mol. The charges of atoms are shown by MEP surface of the headline compound. The charge-transfer within the molecule is supported by low energy gap (4.430eV) of HOMO-LUMO. Furthermore, its biological activity is defined by its high electrophilicity value 5.592. The compound's hyperpolarizability is fifteen times that of urea, showing that the head

Table 8. Drug like parameters calculated for the title molecule.

Descriptor	Value
Hydrogen Bond Donor (HBD)	0
Hydrogen Bond Acceptor (HBA)	2
AlogP1	2.68
Topological polar surface area (TPSA) [Å²]	29.96
Number of atoms	13
Number of rotatable bonds	1
Molecular weight	191.62

Table 9. Molecular docking of title compound with antagonist protein target.

Protein (PDB ID)	Bonded residues	Bond distance (Å)	Estimated inhibition constant (μm)	Binding energy (kcal/mol)	Intermolecular energy (kcal/mol)	Reference RMSD(Å)
2BJ4	LEU 387	3.1	91.51	-5.51	-5.81	53.257
	ARG 394	2.1				
	GLU 353	3.6				
	GLU 353	3.5				
1IRA	LEU 78	2.4	163.73	-5.16	-5.46	55.427
	VAL 131	3.3				
1IYH	ILE 155	3.0	161.10	-5.17	-5.47	93.592

Figure 10. Docking the hydrogen bond interactions of 2CQ3CALD with 2BJ4 protein.
molecule is a potent NLO substance. Thermodynamic gradients with temperature reveal that the molecular vibration is enhanced. The electron density grounded local reactivity descriptors were analysed. Besides that, topological analyses ELF and LOL are proposed. Furthermore, the least binding energy for 2CQ3CALD is -5.51 kcal/mol, and the most docked inhibitors interacted with the ligand within the 2BJ4 binding site, according to the molecular docking results.

Declarations

Author contribution statement

A. Saral, P. Sudha: Conceived and designed the experiments; Contributed reagents, materials, analysis tools or data; Wrote the paper. S. Muthu, S. Sevvanthi: Performed the experiments.
P. Sangeetha, S. Selvakumar: Analyzed and interpreted the data.

Funding statement
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Data availability statement
Data included in article SUPPLEMENTARY MATERIAL/REMARKED IN ARTICLE

Declaration of interests statement
The authors declare no conflict of interest.

Additional information
No additional information is available for this paper.

References

[1] Y. Morimoto, F. Matsuoka, Total synthesis of (-)-vincristine and determination of its stereochemistry, Synlett (1991) 202–203.
[2] P. Joseph Michael, Quinoline, quinazoline and acridine alkaloids, Nat. Prod. Rep. 14 (1997) 605–618.
[3] G.M. Dieter, C.D. Virgini, Dewey, W.E. George, Antiprotioxy-4-aroyl-2-aminquinolinoles and related compounds, J. Med. Chem. 33 (12) (1990) 3214–3226.
[4] S. Simon, J. Campbell, H. David, J. Michael, Palam, 2-Diamino-6,7-dihydroquinolinoles derivatives as aloha, 1-adrenocceptor antagonists and antioxidant agents, J. Med. Chem. 31 (5) (1988) 1031–1035.
[5] A. Samson, Jenevke, L. Liangde, M. Maksud, New conjugated polymers with donor-acceptor architectures: synthesis and photo physics of carbazole-quinoline and phenothiazine-quinoline copolymer and oligomers exhibiting large donor-acceptor architectures, Macromolecules 34 (2001) 7315–7324.
[6] K.A. Ashvin, A. Samson, Synthesis and processing of heterocyclic polymers as electronic, optoelectronic, and nonlinear optical materials. 3. New conjugated polynucleinyls with electron-donor or acceptor side groups, J. Mater. Chem. 5 (1995) 653–660.
[7] J. Govenaele, A.J. Samson, Highly fluorescent poly (arylene ethynylene) containing quinoline and 3-alkylithiophene, Macromolecules 34 (2001) 7926–7928.
[8] W.S. Hamama, A.E. Hassanien, M.G. Eldefawy, H.H. Zoorob, Synthesis, PM3 semiempirical, and biological evaluation of pyrrolo[4,3-C]quinolines, J. Heterocycl. Chem. 53 (2016) 945.
[9] J.A. Makawana, M.P. Patel, R.G. Patel, Synthesis and in vitro antimicrobial activity of 4-n-arylnitroquinoline derivatives bearing 2-morpholinooquinoline moiety, Chin. J. Chem.. 21 (2012) 427–430.
[10] N. Parekh, K. Maheria, P. Patel M. Rathod, Study on antibacterial activity for multidrug resistant strain by using phenyl pyrazolones substituted 3-aminopyrazole-4-pyrazoline (4,4) quinoline derivative in vitro condition, Int. J. Pharm. Tech. Res. 11 (2011) 540–548.
[11] N.D. Jayana, H.M. Vagdevi, J.C. Dharshan, R. Raghavendra, Sandeep B. Telkar, N. Parekh, K. Maheria, P. Patel M. Rathod, Study on antibacterial activity for multidrug resistant strain by using phenyl pyrazolones substituted 3-aminopyrazole-4-pyrazoline (4,4) quinoline derivative in vitro condition, Int. J. Pharm. Tech. Res. 11 (2011) 540–548.
[12] F. Hayat, E. Moseley, A. Sabauhde, R.L. Van Zyl, A. Azeem, Antiprotozoal activity of chloroquine-based chalcophs, Eur. J. Med. Chem. 46 (2011) 1897–1905.
[13] A.A. Bekhit, O.A. El-Sayed, E. Abuelmagd, J.Y. Park, Tetrazolo[1,5-alpha](1H)quinoline as a potential promising new scaffold for the synthesis of novel anti-inflammatory and antibacterial agents, Eur. J. Med. Chem. 39 (2004) 249–255.
[14] B. Sureshkumar, Y. Sheena Mary, K.S. Resmi, C. Yohannan Panicker, S. Suma, Spectroscopic analysis of 1-chloroquinoline-5-sulphonic acid and investigation of its reactive properties by DFT and molecular dynamics simulations, J. Mol. Struct. 1150 (2017) 540–548.
[15] B. Sureshkumar, Y. Sheena Mary, K.S. Resmi, C. Yohannan Panicker, S. Suma, Spectroscopic analysis of 1-chloroquinoline-5-sulphonic acid and investigation of its reactive properties by DFT and molecular dynamics simulations, J. Mol. Struct. 1150 (2017) 540–548.
[16] B. Sureshkumar, Y. Sheena Mary, C. Yohannan Panicker, K.S. Resmi, S. Suma, Stevan Armakovic, S. Suma, Spectroscopic analysis of 2-chloroquinoline-3-carbaldehyde and investigation of its reactive properties by DFT and molecular dynamics simulations, J. Mol. Struct. 1150 (2017) 540–548.
[17] N.B. Colhup, L.H. Daly, S.E. Wiberley, Introductory to Infrared and Raman Spectroscopy, Academic Press, New York and London, 1964, pp. 298–302.
[18] M.J. Frisch, W.G. Trucks, H. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Heaseem, J. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, M.J. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Peter, H. Nakatsuji, M. Hada, S. Ehara, K. Toyota, R. Fukuda, J. Hagino, M. Ishida, J.V. Ortiz, J. Cui, A.G. Baboul, S. Clioldi, B.B. Stenavi, G. Liu, A. Liashenko, P. Pirko, L. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.V. Peng, A. Nanayakkara, H. Cioabacence, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C02, Gaussian Inc, Wallingford, CT, 2009.
[19] M.H. Jamroz, Vibrational Energy Distribution Analysis 2004 VEDA 4, Warsaw.
[20] M. Raj, R. Jay Mah, S. Muthu, M. Suresh, Synthesis, spectroscopic (FT-IR, FT-Raman) and solid state structure of 2-Chloroquinoline-3-carbaldehyde and investigation of its reactive properties by DFT calculations and molecular dynamics simulations, J. Mol. Struct. 2153 (2016) 219–225.
