ASSESSING THE IMPACT OF TECHNOLOGY ADOPTION ON PRODUCTIVITY OF PLANTAIN FARMERS IN NIGERIA

Afodu, O.J*., Akinboye, O.E., Akintunde, A.O., Ndubuisi-Ogbonna, L.C., Shobo, B.A., Oyewumi, O.S.
Department of Agriculture and Industrial Technology, Babcock University, Nigeria
*corresponding author: afodu@babcock.edu.ng

Abstract: Sub-Saharan Africa has been plaque with food insecurity due to lack of adoption of modern technology to improve their productivity. Technology is the systematic application of scientific or other organized body of knowledge to practical purposes. This includes new ideas, inventions, innovations, techniques, methods and materials. Since increasing agricultural productivity is critical to meeting the continues rise in demand for food, agricultural technologies will play immense role in increasing the production of food. As a result, it is useful to examine the adoption of technologies among farmers. A multistage sampling technique was used for the selection of five hundred and fifty-six plantain farmers. The data were collected through the administration of a well-structured questionnaire on a cross-section surveyed of plantain farmers. The result of the study shown that educating the plantain farmers in Nigeria will enable them adopt new technologies which will enhance their productivity.

Keywords: Adoption; Multistage; Plantain; Productivity; Technology

http://dx.doi.org/10.21776/ub.agrise.2021.021.4.8
Received 5 April 2021
Accepted 3 October 2021
Available online 31 October 2021

INTRODUCTION
Economic policies depend heavily on the agricultural sector in the Sub-Saharan Africa (SSA). According to the report of World Bank (2014), agricultural growth has led to Food security and income growth which creates spill over effects to the remaining sectors. The declining rate of African population living in poverty has dropped drastically from 50% in 1981to 45% in 2012, African Development Bank/AFDB, (2014), but in Sub-Saharan country’s 48% of the populations were found to be food insecure.

Abraham, et al; (2014) suggested that boosting the agricultural sector can be a solution for reducing the abject food insecurity in the Sub-Sahara Africa. Some studies shows that production and productivity of the agricultural sector in SSA is low due to low technological adoption and techniques among others (Abraham et al., 2014; Berihun et al., 2014; Gashaw et al., 2014; Tsegaye and Bekele, 2012; Lulit et al., 2012; MoFED, 2012).

Akubuilo et al., (2007) defines adoption as a decision made by an individual or group to use an innovation in a continuous manner. They also went further to define technology as the systematic application of scientific or other organized body of knowledge to practical purposes.

Meeting the demand and supply gap of food in the SSA is depended on increase in agricultural productivity which can be achieved through the adoption of agricultural productivity. Agricultural technologies have been found to include all forms of improved techniques and practices which increases the growth of agricultural output (Jain, et al; 2009).

The finding of Loevinsohn, et al; (2013) shows that there are common areas of technology development and promotion for crops which include new varieties and management regimes; soil as well as soil fertility management; weed and pest management; irrigation and water management.

Food and Agricultural Organisation (FAO, 2011) reported that Nigeria is one of the largest plantain producers in West Africa with an annual output of about 2.74 million metric tons. In Nigeria, plantain is one of the major foods containing about 35 – 40% of carbohydrate. Plantain has been found to be left in the hands of subsistence farmers who account for about 80 percent of Nigerian agricultural output.

Plantain (Musa paradisiaca) belong to the family Musaceae which is a common horticultural crop cultivated in Nigeria, and its production requires an optimum temperature of 300C, mean

CITATION: Afodu, O.J., Akinboye, O.E., Akintunde, A.O., Ndubuisi-Ogbonna, L.C., Shobo, B.A., Oyewumi, O.S., (2021). Assessing The Impact of Technology Adoption on Productivity of Plantain Farmers in Nigeria. Agricultural Socio-Economics Journal, 21(4), 319-324 DOI: http://dx.doi.org/10.21776/ub.agrise.2021.021.4.8
monthly rainfall of 100mm, soil pH of 4.5-7.5 and a partly drained sandy-loam soil (Ajiboye, 2016). The report of IITA (2009) shows that plantain is among the primary sources of carbohydrates in humid tropical Africa as it contains about 35% carbohydrate, 0.2 to 0.5% fats, 1.2% protein, and 0.8% ash. This report implies that plantain can serve as source of food for the plantain farming households. According to the study of Adejoro et al., (2010) noted that plantains if properly cultivated have the potential to contribute to reduce food insecurity and also minimized rural poverty. In the world ranking of crops, plantain has been ranked fourth after rice, wheat, and maize, as the most important food crop in the world (IITA, 2014). Plantain is an important staple food crop for both rural and urban areas and occupies a strategic position for rapid food production in Nigeria. This study thereby assessed how the impact of technology adoption by plantain farmers can improve their productivity and profitability thereby reducing the food insecurity of the farmers.

MATERIALS AND METHODS
This study was conducted out in the southwest region of Nigeria which consists of Lagos, Ogun, Oyo, Osun, Ondo and Ekiti States. The area lies between longitudes 20 311 and 60 001East and latitudes 60 211 and 80 371N, with a total land area of about 77,818 km2. It is bounded in the east by Edo and Delta State in the north by Kwara and Kogi States, in the west by the Republic of Benin and in the south by the Gulf of Guinea. The climate of Southwest Nigeria is tropical in nature and is characterized by wet and dry seasons. The mean temperature ranges between 210 C and 340 C, it has an annual rainfall range between 150mm and 3000mm. The wet season is associated with the southwest monsoon wind from the Atlantic Ocean while the dry season is associated with the northeast trade wind from the Sahara-desert, Ojo et al; (2019). Multistage sampling technique was used for the selection of the plantain farmers. The first stage involves purposive selection of three states (Ogun, Oyo and Osun), the second stage involves a purposive selection of two Agricultural Development Programme (ADP) zones from each of the state. The third stage was the purposive selection of two blocks per zone based on the concentration of plantain farmers. The fourth stage consist the random selection of five farming cells from each of the block making a total of sixty (60) farming cells. Lastly, ten plantain farmers were randomly selected from each farming cell giving a total sample size of 600 plantain farmers. The data were collected through the administration of a well-structured questionnaire on a cross-section surveyed of plantain farmers in the study area.

METHOD OF DATA ANALYSIS
Descriptive, adoption index and inferential statistics were adopted for analysing the data for the study. The descriptive statistical tools used were frequency and percentages. Adoption index was computed for technologies adopted, while Logit regression models was used to analysed the impact of technology adoption on the farmers’ productivity.

Estimation of the Adoption index
Adoption index was used in capturing the various technologies adopted by the farmers in the study area, and it is specified in equation 1 following Mihiretu (2008), Ayalew (2011) and Obayelu et al., (2016), was used to measure the extent of technology adoption at the time of the survey for multiple practices, which shows to what extent the respondent has adopted the most set of technology.

\[Adj = \frac{\text{Total number of practices adopted}}{\text{Number of practices}} \]

Where:
\(Adj \) = Adoption index i of respondents (which ranges between 0 and 1)
\(N \) = Number of practices.

Descriptive, adoption index and inferential statistics were adopted for analysing the data for the study. The descriptive statistical tools used were frequency and percentages. Adoption index was computed for technologies adopted, while Logit regression models was used to analyse the impact of technology adoption on the farmers’ productivity.

Y = number of practices adopted
\(Y = \gamma_0 + \gamma_1 \text{age} + \gamma_2 \text{sex} + \gamma_3 \text{hhs} + \gamma_4 \text{edu} + \gamma_5 \text{farsize} + \gamma_6 \text{coopmem} + \gamma_7 \text{accesstocre} + \gamma_8 \text{marital} + \gamma_9 \text{extvisit} + \epsilon_i \)
RESULTS AND DISCUSSIONS

Table 1 shows the demographic characteristics of the respondents. The farmers from table 1 age of shows that most of the plantain farmers are vibrant and still in their active age, which is within the age range of 30 – 39 years had the highest (33.9) percent. This suggest that most of the respondents are likely to adopt most technologies used in plantain production this will translate to increase in their productivity. The study of Tang (2005) found that older workers are on average, less productive than younger workers and that labor force aging has a modest negative direct impact on productivity growth in Canada.

It was observed that the population of the respondents in the area of study were more of male with about 86.5 percent. This could be due to fact that agriculture has been viewed to be labor intensive and the female folks are mostly involving in the processing aspect of the venture rather than in the production aspect.

Table 1 shows that a large (52.9) percent of the farming households were between the ranges of 5 – 8 persons. This implies that there is likely to be enough man power to implement the available technologies.

Majority (40.5%) of the respondents were found to be literate with a minimum of secondary school certification. It has been noticed in literature that education is succent in technology adoption.

A larger number (46.6%) of the plantain farmers had plot size ranging from 4 – 6 hectares of farm land. This implies that the farmers had enough space to adopt or try new technologies.

Being a member of farming cooperative has been linked to a higher rate of technology adoption. 73 percent of the plantain farmers in the study were found to belong at least a farming cooperative.

Table 1 also shows that 52.9% of the farmers had access to credit facilities. The credit facilities will enable the farmers have access to new technologies in plantain production and hence increase their productivity.

Table 1

Variable	Frequency	Percent
Age		
20 – 29	38	6.8
30 – 39	189	33.9
40 – 49	146	26.3
50 – 59	144	25.9
60 and above	39	7.1
Total	556	100.0
Sex		
Male	481	86.5
Female	75	13.5
Total	556	100.0
Household Size (in Persons)		
1 - 4	113	20.3
5 – 8	294	52.9
9 and above	146	26.8
Total	556	100.0
Education		
Non – Formal Education	183	32.9
Primary	112	20.1
Secondary	225	40.5
Tertiary	36	6.5
Total	556	100.5
Farm Size		
1 – 3	184	33.1
4 – 6	256	46.5
7 and above	116	20.4
Total	556	100.0
Cooperative		
YES	406	73.0
NO	150	27.0
Total	556	100.0
The age of the had significant coefficient but with negative signs for some of the technologies such as land clearing, land preparation, improved sucker, organic fertilizer and harvester adopted by the farmers except for the herbicides which had a positive sign. This result shows that age has an indirect relationship to the technologies with negative coefficients. This also implies that age can affect the productivity of farmers, owing that young farmers may tend to be more productive. This result is in line with the findings of Afodu et al. (2019) who observed that the older household heads were, less diversified in the sources of livelihood they pursue. This shows that the younger farmers the more chances of adopting modern technologies on plantain production thereby increases their productivity. The regression shows that the household size had a positive coefficient for land clearing, land preparation, herbicide, inorganic fertilizer and harvester. This shows that a larger household size may lead to more adoption of the modern technologies in plantain production which could translate into increased productivity of the plantain farmers. The finding is in line with the findings of Olumba, (2014) who found that the household size influences farming decision on management practices. Fasina (2005) and Nwachukwu (2008) also noticed that the larger household size had a direct relationship with the productivity of the farmers.

Education of the respondents was found to be significant with positive coefficient for all the technologies adopted by the farmers. This could be due to the importance of education that has been found by different researchers to be an important tool in improving the productivity of the farmers. According to the findings of Oduro-Ofori, et al; (2014), education has a positive effect on agricultural productivity. This finding is also in accordance with the result of John et, al; (2020) who found that an increase farmers level of education, will lead to increase in the adoption of production technologies and this will further better the farmers productivity.

Access to Credit

	YES			NO			Total			100.0
Access to Credit	294		52.9	262		47.1	556		100.0	

Source: Field survey, 2020
CONCLUSION
Plantain is one the major food crops with a high level of vitamin K and highly productive in Nigeria. Technology adoption in plantain production is critical to productivity, food security, poverty reduction and improved vitamins in the country. This study examined assessing the impact of technology adoption on productivity of plantain farmers in Nigeria. Educational status of the respondents was found to be a very important variable as it was significant with positive coefficient in all the technologies adopted by plantain farmers in Nigeria. Edu coefficient in all the technologies adopted by respondents was found to be a very important variable as it was significant with positive coefficient in all the technologies adopted by plantain farmers in Nigeria to acquire technologies from the study that access to credit will enable plantain farmers in Nigeria to acquire technologies that will enhance their productivity. Farm size was also a notable factor to the adoption of technologies needed for plantain production in Nigeria.

Recommendations
The following are the recommendations from this study:
1. The government should enforce the Land Use Act to enable plantain farmers in Nigeria get access to land, so as to encourage more commercial plantain production.
2. Educating the plantain farmers on modern technologies in the production of the crop should be encouraged.
3. The plantain farming households should be encouraged and assisted by providing the necessary technologies needed for plantain production.

REFERENCES
Abraham B, Araya H, Berhe T, Edwards S, Gujja B, Khadka R, Sen D, Koma Y, Sharif A, Styrer E, Uphoff N, Verma A (2014). The system of crop intensification: Reports from the field on improving agricultural production, food security, and resilience to climate change for multiple crops. Addis Ababa, Ethiopia. Available at http://www.agriculture and food security.com/content/3/1/4.
Adejoro, M.A, Odubanjo A.O., and Fagbola B.O. (2010). Research Focus on Banana and Plantain (Musa spp.): Nigerian Perspectives. Acta Horticulturae 879. DOI: 10.17660/ActaHortic.2010.879.95 ADB (2014). African Development Group. Tracking Africa’s Progress in Figures
Afoedu, O.I., Afolami, C. A., Akinboye, O. E., Ndubuisi-Ogbonna, L. C., Ayo-Bello, T. A., Shobo, B. A and Ogumnowo, D. M. 2019. Livelihood diversification and its determinants on rice farming households in Ogun State, Nigeria. African Journal of Agricultural Research, 14 (35): 2104 – 2111
Aina, O.S., Aijjola, M.T. Bappah, I. Ibrahim, and I.A. Musa. 2012. Economic analysis of plantain marketing in Odigbo local government area of Ondo State, Nigeria. Global Adv. Res. J. Agr. Sci. 1(5):104–109.
Ajiiboje G. A. and Olaniyan J. O (2016). Characteristics and suitability evaluation of the “white soils” of Etung local government area for oil palm and plantain production. Department of Soil Science and Land Management, College of plant Science and Crop Production, Federal University of Agriculture Abeokuta, Abeokuta, Ogun State Nigeria. Agrosearch 16(2): 25-40
Akubilo, C. J. C., E. E. Umebali., Mgbada, D. S. Ugwu., W. E. Egwu and M.U. Awoke, (2007) “Readings in Agricultural Economics and Extension”, Computer Edge Publishers, Enugu,pp.45-89
Ayalew A.M. (2011). Factors Affecting Adoption of Improved Haricot Bean Varieties and Associated Agronomic Practices in Dale Woreda, SNNPRS. Unpublished M.Sc.

Table: 2 Factors affecting the rate of adoption of some production technology

land clearing	land preparation	improved sucker	herbicide	organic fertilizer	inorganic fertilizer	pesticides	spray	harvester	
Age	-0.18**	-0.065**	-0.029**	0.042**	-0.033**	0.361	0.019	-0.004	-0.051**
Sex	0.02	0.026	-0.003	-0.301	0.009	0.018	0.022	0.063	0.092
Hhs	0.011***	0.014**	-0.052	0.026**	-0.094	0.115**	0.061	-0.185	0.031**
Edu	0.031**	0.035**	0.029**	0.062**	0.0045***	0.002**	0.017***	0.025*	0.110*
Farm Size	0.040*	0.012	0.036***	0.041*	-0.076***	0.044**	0.080**	0.019	0.069**
Coop	0.033***	0.013	0.018	0.083	0.013**	0.072**	0.051	-0.023	0.070
Accestocre	0.049**	0.080**	0.056**	0.055**	0.010*	0.033**	0.066**	0.024*	0.043**
Farmex	0.005*	0.062	0.030	0.035	-0.038	-0.009	0.011	-0.020	0.017
Ext. Visit	0.044**	0.071***	0.003**	0.059*	0.009**	0.008**	0.030**	0.098	0.031**
Const.	0.757***	0.193**	0.514**	0.110*	0.333*	0.307**	0.552**	0.701*	0.612**

R² = 0.71 Adj. R² = 0.47. df = 10Source: Field survey (2020). *** significant at 1%, **significant at 5%, *significant at 10%. Number of observations = 556.
Thesis submitted to the Department of Plant and Horticultural Sciences, College of Agriculture, Hawassa University, Hawassa, Ethiopia. Accessed online Jan. 10, 2016 https://cgspace.cgiar.org/bitstream/handle/10568/10291/FinalThesis_AlemuMulugeta.pdf?sequence=1&isAllowed=y

Berihun KH, Bihon KA, Kibrom AW (2014). Adoption and impact of agricultural technologies on farm income: evidence from Southern Tigray, Northern Ethiopia. Int. J. Food Agric. Econ. 2(4):91-106.

Challa, Merga (2013). Determining Factors and Impacts of Modern Agricultural Technology Adoption in West Wollega, Munich, GRIN Publishing GmbH, book/280336/determining-factors-and-impacts-of-modern-agricultural-technology-adoption.

Food and Agriculture Organization (2011): Plantain Production Quantity in Nigeria 1961-2009. Food and Agriculture Organization of the United Nations. FAO Rome.

Gashaw T, Alan B, Nicholas M, Tanguy B (2014). The impact of the use of new technologies on farmers’ wheat yield in Ethiopia. International Food Policy Research Institute (IFPRI). Washington, DC

International Institute for Tropical Agriculture (2009): Banana and Plantain Systems, R4D Fact Sheet.

International Institute of Tropical Agriculture (2014). A reference manual on Plantain Cultivation in West Africa.

Jain R. Arora A & Raju S. (2009). A Novel Adoption Index of Selected Agricultural Technologies: Linkages with Infrastructure and Productivity: Agricultural Economics Research Review 22: pp 109-120

John, A., O., Afolake, A., C., Lawrence, B., O. (2020). Effect of Livelihood Diversification and Technology Adoption on Food Security Status of Rice Farming Households in Ogun State. Nigeria, Agricultural SocioEconomics Journal, 20(3), 233-244 DOI: http://dx.doi.org/10.21776/ub.agrise.2020.020.3.7

Loevinsohn, M., Sumberg, M., Diagne, A., and Whitfield, S. (2013), Under What Circumstances and Conditions Does Adoption of Technology Result in Increased Agricultural Productivity? A Systematic Review, IDS, Brighton.

Lulit, M., Ermias, E., Zelalem, H. (2012). Public investment in irrigation and training for an agriculture-led development: a CGE approach for Ethiopia. Addis Ababa, Ethiopia. Mihiret, T. A. (2008). Farmers Evaluation and Adoption of Improved Onion Production Package in Fogera District, South Gondar, Ethiopia. Unpublished M.Sc. Thesis Presented to The School of Graduate Studies Haramaya University, Ethiopia. Accessed online Jan. 10, 2016 https://cgspace.cgiar.org/bitstream/handle/10568/6683/Thesis_AdgoFarmers.pdf?sequence=1&isAllowed=y

MoFED (2012). Ethiopia’s progress towards eradicating poverty: An interim report on poverty analysis study. Addis Ababa, Ethiopia.

Obayelu, A. E., Okuneye, P. A., Shittu, A. M., Afolami, C. A. and Dipeolu, A. O. (2016). ‘Determinants and the Perceived Effects of Adoption of Selected Improved Food Crop Technologies by Smallholder Farmers along the Value Chain in Nigeria.’ Journal of Agriculture and Environment for International Development. 110 (1):155–172

Oduro-Ofori, E., Aboagye, A.P., and Agyeaye N.A. (2014). Effect of Education on the Agricultural Productivity of Farmers in the Offinso Municipality. International Journal of Development Research 4(9): 1951-1960.

Ojo, T.O., Baiyegunhi, L.S.J., and Salami, A.O. 2019. Impact of credit demand on the productivity of rice farmers in South West Nigeria J. Econ. Beh. Stud., 11 (1), pp. 166-180

Olumba, C. C., Rahji, M. A. Y. (2014). An Analysis of the Determinants of the Adoption of Improved Plantain Technologies in Anambra State, Nigeria. Journal of Agriculture and Sustainability, 5(2), 232-245.

Tang, Jianmin, and Weimin Wang (2005) ‘Product market competition, skill shortages and productivity: evidence from Canadian manufacturing firms,’ Journal of Productivity Analysis 23, 317–39

Tsegaye M, Bekele H (2012). Impacts of Adoption of Improved Wheat Technologies on Households’ Food Consumption in Southeastern Ethiopia. Selected Poster prepared for presentation at the International Association of Agricultural Economists (IAAE) Triennial Conference, Foz do Iguaçu, Brazil, 18-24 August, 2012.

Ugwoke, F.O., Adesope, O.M. & Ibe, F.C. (2005). Youths participation in farming activities in rural areas of Imo State, Nigeria: implications for extension. J. Agricultural Extension, 8, 136-141.

World Bank Group (2014). Ethiopia poverty assessment. Document of the WB for official use only

Agricultural Socio-Economics Journal

Volume 21, Number 4 (2021): 319-324