Draft Genome Sequence of *Halomonas elongata* MH25661 Isolated from a Saline Creek in the Andes of Peru

J. Ilucion Mamani, a, Kevin B. Pacheco, a, Paola Elorrieta, a Pedro Romoacca, b Hugo Castelan, c Sonia Davila, c Jose L. Sierra, d Maria A. Quispe-Ricalde a

a Departamento de Biología, Facultad de Ciencias, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
b Departamento de Farmacia y Bioquímica, Facultad de Ciencias de la Salud, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
c Centro de Investigaciones en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
d Escuela de Postgrado, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru

ABSTRACT *Halomonas elongata* strain MH25661, a moderate halophile, was isolated from a saline creek in the Andes of Peru. Genome annotation analyses revealed genes that respond to osmotic stress and oxidative stress, genes that are involved in sporulation, and genes that are involved in transport systems and resistance to antibiotics and toxic compounds.

The strain MH25661 was obtained from a saline creek in the Andes of Peru. The isolation of the MH25661 strain was carried out through filtering the water from the saline creek and culturing the filter in sea water (SW) medium with 25% NaCl (wt/vol) for 96 h at 37°C. The DNA was isolated with the GenElute genomic DNA bacteria kit (Sigma-Aldrich). A paired-end library with average insert size of 300 bp was prepared with the Nextera XT DNA library kit (Illumina Inc.) using 1 ng of DNA as the initial genomic sample. The sequencing was executed on a MiSeq System (Illumina Inc.; GeneLab del Perú SAC), with 375,660 reading sequences and a read size of 2 to 231 bp.

Assembly of the genome was made with the A5 assembler version MiSeq Linux 20160825 (6). The quality analysis of the assembly was carried out with the QUAST program (7). The genome contains 3,552,403 bp in 117 contigs \(N_{50}, 82,628 \text{ bp}\), and the longest is 210,370 bp. The maximum \(21 \times \) coverage was obtained. In both cases, default settings for the software programs were used.

The functional annotation was performed with the Rapid Annotation using Subsystem Technology (RAST) server from contigs (8) (http://rast.nmpdr.org), which produced 3,247 protein-coding sequences. The genome draft has a G+C content of 64.3%, which is similar to other *Halomonas* species. In this study, the 16S rRNA gene of *H. elongata* was obtained with RAST annotation, and the similarity with a BLAST search was 99%.

The functional analysis showed 463 subsystems, which indicated important genes,
among them the ectoine gene, which is responsible for the osmotic stress response; the glutathione gene, which is responsible for oxidative stress response; the CspA proteins, which are responsible for cells adapting to cold temperatures; the hemin and siderophores (aerobactin) transport systems, which are responsible for the assimilation and metabolism of metals; and numerous genes in charge of transport systems, as aromatic compounds. In addition, this strain contains several genes involved in resistance to antibiotics and toxic compounds.

Data availability. This whole-genome project for *H. elongata* strain MH25661 has been deposited at GenBank under the accession number QJUB00000000. The version described in this paper is accession number QJUB01000000. The SRA accession number is SRR7973874.

ACKNOWLEDGMENTS

This investigation was supported by the Fondo Nacional de Desarrollo Científico y Tecnológico e Innovación Tecnológica (FONDECYT), Peru (grant number 227-2015-FONDECYT), sanctioned by resolution number CU-005-2016-UNSAAC. The funders had no role in study design, data collection, and interpretation or the decision to submit the work for publication.

REFERENCES

1. Vreeland RH, Litchfield CD, Martin EL, Elliot E. 1980. *Halomonas elongata*, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30:485–495. https://doi.org/10.1099/00207713-30-2-485.

2. Franzmann PD, Wehmeyer U, Stackebrandt E. 1988. *Halomonadaceae fam. nov.,* a new family of the class *Proteobacteria* to accommodate the genera *Halomonas* and *Deleya*. Syst Appl Microbiol 11:16–19. https://doi.org/10.1016/S0723-2020(88)80043-2.

3. Ye J, Ren C, Shan X, Zeng R. 2016. Draft genome sequence of aldehyde strain *Halomonas axialensis* ACH-L-8. Microbiol Resour Announc 4:e00287-16. https://doi.org/10.1128/genomeA.00287-16.

4. Menes RJ, Viera CE, Farias ME, Seufferheld MJ. 2011. *Halomonas vilamensis* sp. nov., isolated from high-altitude Andean lakes. Int J Syst Evol Microbiol 61:1211–1217. https://doi.org/10.1099/ijs.0.023150-0.

5. Dyall-Smith ML. 2008. The Halohandbook. Protocols for haloarchaeal genetics, version 7.0.

6. Coil D, Jospin G, Darling AE. 2015. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 31:587–589. https://doi.org/10.1093/bioinformatics/btu661.

7. Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. https://doi.org/10.1093/bioinformatics/btt086.

8. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsmma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST server: Rapid Annotations using Subsystems Technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75.