The following full text is a publisher's version.

For additional information about this publication click this link.
https://hdl.handle.net/2066/226460

Please be advised that this information was generated on 2021-04-28 and may be subject to change.
Genetic pathways involved in human speech disorders
Joery den Hoed\(^1,2\) and Simon E Fisher\(^1,3\)

Rare genetic variants that disrupt speech development provide entry points for deciphering the neurobiological foundations of key human capacities. The value of this approach is illustrated by FOXP2, a transcription factor gene that was implicated in speech apraxia, and subsequently investigated using human cell-based systems and animal models. Advances in next-generation sequencing, coupled to de novo paradigms, facilitated discovery of etiological variants in additional genes in speech disorder cohorts. As for other neurodevelopmental syndromes, gene-driven studies show blurring of boundaries between diagnostic categories, with some risk genes shared across speech disorders, intellectual disability and autism. Convergent evidence hints at involvement of regulatory genes co-expressed in early human brain development, suggesting that etiological pathways could be amenable for investigation in emerging neural models such as cerebral organoids.

Addresses
1 Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
2 International Max Planck Research School for Language Sciences, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
3 Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands

Corresponding author: Fisher, Simon E (simon.fisher@mpi.nl)

Molecular perspectives on speech - the example of FOXP2

FOXP2 was the first gene for which rare variants could be implicated in a monogenic speech disorder (primarily characterized by childhood apraxia of speech; CAS; Table 1). Since the initial report describing a causative point mutation in a multigenerational family, as well as a translocation disturbing the gene in an independent case [3], different genetic disruptions of FOXP2 have been identified in multiple cases of speech/language disorder, both inherited and de novo [4,5]. The discovery of FOXP2 led to an array of studies of its functions in the brain (Figure 1) [2,5].

FOXP2 encodes a transcription factor with a high degree of evolutionary conservation (both for protein sequences and neural expression patterns), facilitating functional analyses in animal models [6]. Conditional knockout and targeted knockdown/overexpression strategies in mice and birds are being used to dissect roles of FoxP2 in different parts of the brain (Figure 1). Studies of mouse models build on a well-established genetic toolkit, as well as rich literature on brain development, and can therefore teach us about gene function for conserved molecular mechanisms and behaviors. Mice are known to produce sequences of ultrasonic vocalizations, but their abilities to learn these appear limited, and the relevance of such behaviors for gaining insights into biology of human speech is much debated [7]. In contrast, although birds are more distantly related to humans than are mice, some species of songbird have sophisticated skills for auditory-guided vocal learning, which involves integration of auditory processing and motor learning, showing parallels to processes underlying speech. Moreover, there is evidence that birdsong and speech are coded in somewhat analogous brain circuitries [8].

Recent work in murine and avian models has largely (though not exclusively) centered on neuronal subpopulations of the cortex, striatum and cerebellum, three key sites where the gene is expressed [9**], which have been independently highlighted by neuroimaging of humans with FOXP2-related speech disorder [10,11]. Although it is an established marker of deep cortical layers, selective Foxp2 deletion from the developing mouse cortex does not disturb lamination [12,13]. Even so, mice lacking...
Table 1

| Disorder                        | Description                                                                 |
|--------------------------------|-----------------------------------------------------------------------------|
| Childhood apraxia of speech (CAS) | Developmental deficits in speech motor planning and programming. Diagnostic symptoms include inconsistent speech errors, difficulties in speech sequencing that worsen with increased complexity of the utterance, and disrupted rhythm and intonation. Also known as developmental verbal dyspraxia (DVD). |
| Stuttering                      | Speech fluency disorder that involves interruptions in the flow of speaking, characterized by involuntary repetitions (of individual sounds, syllables, words, or phrases), sound prolongations, blocks, interjections, and revisions. |
| Developmental language disorder (DLD) | Delayed or impaired acquisition and use of language in the absence of a clear biomedicai cause, with a poor prognosis and interfering with daily life (according to CATALISE-2 definition from 2017 [39]). Before CATALISE-2 study, other terms were commonly used to classify these kinds of problems, in particular Specific Language Impairment (SLI). Heterogeneous group of disorders involving general cognitive impairments that significantly affect both intellectual (learning, problem solving, judgement) and adaptive functioning (communication, independent living). |
| Intellectual disability (ID)    | Range of developmental conditions characterized by impaired skills for communication/interaction with others, and restricted interests and repetitive behaviors, impacting on the ability to function in everyday life contexts (school, work etc.) |

Cortical FoXP2 show abnormalities in tests of social behavior and cognitive flexibility [13,14]. Single-cell transcriptomics in cortical-specific mouse knockouts suggests that the gene contributes to development and function of dopamine-receptor expressing neurons [13].

Within the rodent striatum, FoXP2 is predominantly expressed in D1-receptor-positive medium spiny neurons; studies of global heterozygous knockout mice revealed effects on inhibitory presynaptic strength of these cells, implicating the gene in excitation/inhibition balance of pathways underlying motor skill learning [15]. Striatalspecific FoXP2 knockouts show increased variability in skilled motor behaviors, assessed via operant lever-pressing tasks [9**]. Viral-based manipulations (knockdown versus overexpression) of this brain region in adult mice demonstrate post-developmental roles of FoXP2 in regulating corticostriatal synapse functions and associated behaviors [16]. Moreover, knockdown/overexpression experiments targeting Area X (a striatal nucleus involved in vocal production learning of male zebra finches) underline the importance of this gene for learning of song by juvenile birds [17**, and its maintenance in adulthood [18]. Regarding cerebellar functions, mice with Purkinje-cell specific knockouts of FoXP2 display slower sequencing in lever-pressing tasks, and reduced performance on tests of skilled locomotion. In vivo electrophysiology indicates that FoXP2-deficient Purkinje cells have increased intrinsic excitability, and show abnormal firing properties during limb movement [9**].

According to the latest human cell-based studies (Figure 1), FoXP2 is part of a broader interacting network of brain-expressed transcription factors [19], promoting pathways for neuronal maturation via chromosomal remodeling, while repressing genes that would maintain a neural progenitor state [20]. Of the molecules known to be regulated by and/or interact with FOXP2, many are themselves associated with brain-related disorders [19*,20]. Therefore, the FOXP2 interactome could provide useful inroads for defining and characterizing neurobiological pathways involved in speech development. An example is the close parologue FOXP1, which is co-expressed with FOXP2 in a subset of brain structures, where the transcription factors can heterodimerize to potentially co-regulate targets. Rare variants disrupting human FOXP1 cause a phenotype that is broader and more severe than FOXP2-related disorder, including features of autism and/or intellectual disability (ID) [21]. Human cell-based analyses of an etiological missense variant in the DNA-binding domain of FOXP1, equivalent to the most studied mutation of FOXP2, showed comparable functional effects, suggesting that it is the differences in neural expression patterns of the two paralogues that account for distinctive phenotypes of the associated disorders [22].

Taken together, these molecular studies uncover distinct roles for FOXP2 in different brain regions that implicate the gene in development and function of cortico-striatal and cortico-cerebellar circuits [9**,10–16,17**,18,19*,20], converging with identification of subtle cortical, striatal and cerebellar abnormalities in patients with FOXP2 disruptions [10,11]. For example, integrating data from different model systems, a recurrent finding is that striatal FoxP2 helps modulate neuronal plasticity involved in complex motor skills of various kinds (locomotor behaviors, manual skills and/or vocalizations) [9**,15,16], consistent with cell-based studies showing roles of this transcription factor in neuronal differentiation and maturation [20]. Hence, the development, plasticity and maturation of the relevant circuits may be crucial for proficient speech, not only during early development [9**,15,17**], but also at post-developmental stages [16,18]. Of note, FoxP2 is also expressed in other brain structures where its roles have been less well studied, including the thalamus [23] and amygdala [24]. Moreover, the demonstration that this transcription factor belongs within a strongly interconnected network...
of brain-expressed regulatory proteins [19] underscores the complexity of pathways underlying human speech, emphasizing that we can only reach a better understanding by taking other genes into account.

With links to human speech disorder, and high conservation throughout the animal kingdom, FOXP2 has also received attention from the field of evolutionary biology. One prominent focus has been on two amino-acid substitutions which occurred on the human lineage after splitting from the chimpanzee, and which are reported to affect striatal-dependent neurophysiology and behaviors when introduced into transgenic mice [25]. However, initial evidence of positive selection acting on intronic regulatory sequences of FOXP2 in recent hominin evolution [26] was not supported by subsequent systematic next-generation sequencing of global populations [27]. The details are beyond the scope of the current article, but are discussed further elsewhere (e.g. Ref. [28]).

**Genomic screening of disorder cohorts identifies novel risk variants**

As illustrated by FOXP2, initial insights into the roles of rare DNA variants in developmental speech disorders came from analyses of pedigrees with multiple affected relatives across successive generations [3]. In another example of this strategy, genetic mapping in families with multiple cases of persistent stuttering (Table 1) has implicated variants in genes involved in intracellular trafficking [29] followed up further using animal models [30].

The past decade has seen emergence of another way to identify high-penetrance variants disrupting human brain development, relying not on multiplex pedigrees, but instead based around affected probands with a normal family history. Large-scale genomic screening revealed that de novo mutations (disruptive DNA variants found in an affected child, but absent from unaffected parents) account for a substantive proportion of cases of severe undiagnosed developmental disorders, ID, and autism spectrum disorders (ASD), among other major human disease phenotypes [31,32]. For speech/language traits, progress has lagged behind, in part because challenges for disorder ascertainment and diagnosis have precluded systematic recruitment of large well-phenotyped cohorts [2]. Lack of consistency in criteria for detecting and classifying childhood language disorders led to establishment of a special initiative, CATALISE, in which experts worked toward consensus for the field [33]. However, issues continue to be debated by some researchers/practitioners, for example over relevance of information on general cognitive performance when diagnosing language difficulties. For disorders severely affecting speech production, like CAS, best-practice diagnostic guidelines are available from professional societies, like the American Speech-Language Hearing Association (e.g. https://www.asha.org/Practice-Portal/Clinical-Topics/Childhood-Apraxia-of-Speech/) but there remains considerable variation in how such terms are applied in practice, both
clinically and for research. Identification of rare causal DNA variants could also be enhanced incorporating data from quantitative phenotyping, as has proved effective for other developmental disorders [34].

So far, a handful of phenotype-driven genome-screening studies reported rare variants in speech/language disorder cohorts, including developmental language disorder (DLD, previously often referred to as SLI) and CAS (Table 1; Figure 2). With modest sample sizes, the number of causal variants identified is small. For example, the SLI consortium performed whole exome sequencing (WES) in 43 unrelated DLD probands from the UK, identifying a de novo missense variant in GRIN2A, inherited co-segregating stop-gain variants in OXR1 and MUC6, and putative pathogenic variants in a few other genes, including SRPX2 and ERC1, previously implicated in speech-related disorders [35]. WES was applied only to probands, not parents; testing for de novo/inherited status was performed post-hoc using Sanger sequencing. An earlier study of this cohort used SNP-array data to investigate copy number variants (CNVs) in 127 cases, 385 first-degree relatives and 269 population controls. DLD cases carried more CNVs than controls, and the CNVs were of higher average size, but this overall increased burden was mainly driven by common events [36]. Subsequent array-based analyses of 58 severe DLD probands, 159 relatives and 76 controls, from Sweden, found that rare CNVs tended to be larger in probands, and that (both for probands and siblings) more coding genes were affected [37]. 4.8% of cases (2 of 42 tested) carried de novo CNVs, and 6.9% (4 of 58) had clinically significant rearrangements [37], including two cases of 16p11.2 deletion, a CNV originally identified in ASD, which has since been linked to speech/language deficits [38].

The first whole genome sequencing (WGS) study of a speech disorder investigated nineteen probands from the USA with a primary diagnosis of CAS [39]. For nine probands, WGS could also be carried out for unaffected parents, leading to identification of de novo single-nucleotide variants disrupting CHD3, SETD1A and WDR5 in three cases. In the other ten probands (for whom parental DNA was unavailable) novel loss-of-function variants were found in KAT6A, SETBP1, ZFHX4, TNRC6B and MKL2. Through analyses of Brainspan RNA-sequencing data these CAS-related genes were found to belong to a co-expression module with high expression during early human brain development (Figure 2) [39]. More recently, WES and WGS in 34 Australian probands ascertained for CAS identified twelve rare high-confidence etiological variants, nine of which were de novo [40]. In co-expression analyses using Brainspan, the ten genes highlighted in this later study (DDX3X, EBF3, GNB1, MEIS2, SETBP1, UPF2, ZNF142, GNAO1, CDK13, POGZ) showed

![Figure 2](image-url)

1. Genomic screening studies
   Sequencing of cohorts with speech/language disorder

2. Gene-driven studies
   Neurodevelopmental disorders with overlapping phenotypes

3. Regulatory networks in early brain development

Speech/language impairments

Expression

Human development

Genes

Neurobiological pathways

Brain development

Genetic studies to identify the contribution of rare variants disrupting single genes in human developmental speech disorders.
strong overlap with the early brain-expressed gene network from the earlier WGS study of CAS, consistent with a shared pathway [39**,40**].

**Insights from gene-driven studies**

Genome screening of CAS/DLD cohorts uncover novel genetic disruptions linked to speech disorders, but initial evidence implicating a particular gene may come from one or perhaps a few index cases. Such findings are followed-up with a gene-first approach, using information-sharing across global networks of clinical geneticists to identify independent high-risk variants in that gene, ideally regardless of routes used for proband recruitment. These efforts increase understanding of the consequences of gene disruption, evaluating variant pathogenicity through in silico analyses and lab-based experiments (e.g. in cellular models), and gathering data on phenotypic profiles observed in people who carry them (Figure 2).

Often when a mutation is found in an index case with a speech disorder, analyses of additional etiological variants through gene-driven studies reveal a variable spectrum of phenotypic consequences in different individuals, including those with more severe impairments affecting multiple cognitive domains, evidence of both heterogeneity and pleiotropy (Table 2). For instance, following identification of a de novo microdeletion spanning BCL11A in a child with severe speech impairments and mild intellectual delays [41], heterozygous missense, nonsense, and frameshift variants were shown to cause a distinct syndrome involving ID (mild to severe; most cases showing moderate dysfunction) and global developmental delays, with persistence of hemoglobin representing a non-neutral biomarker [42]. More recently, a de novo missense variant of POU3F3 in a child with severe developmental speech/language disorder, ASD, and mild ID, led to a gene-driven study of 19 mutation cases, who showed a wide range of functioning, most having borderline-to-moderate levels of ID and/or developmental delays [43]. All had delayed expressive language, and almost all had received speech therapy; oral motor problems, word-finding difficulties, and social communication issues were common.

Variants uncovered in WGS/WES screens of CAS cohorts [39**,40**] have facilitated subsequent gene-driven studies defining novel syndromes that were not previously described. Identification of a missense variant disrupting the helicase domain of CHD3 in a proband from the first WGS screen of CAS [39**] led researchers to gather 34 other individuals with de novo variants in the gene; overlapping features included global developmental delay and/or ID, with many showing macrocephaly and a distinctive facial phenotype [44]. Speech/language problems were common, but occurred against a wide background of levels of general cognitive dysfunction, without an obvious relationship between the specific mutation and severity.

Next-generation sequencing of CAS cohorts also identified variants in genes already investigated in earlier gene-driven studies, for which loss-of-function variants had been linked to an array of neurodevelopmental disorders, such as SETD1A [45]. Etiological variants found in probands ascertained for CAS thus expand the phenotypic spectrum associated with several known neurodevelopmental disorder genes. These observations are in line with a broad consensus that single-gene disorders often show variable co-occurrence of diverse neurodevelopmental features, and that pleiotropy is a major theme, with the same gene being implicated across multiple different syndromes, in ways that are not yet fully understood [46]. Curiously, FOXP2 appears to stand out somewhat; while new cases have expanded the profile of deficits and range of severity associated with rare disruptions [4,5], disproportionate effects on speech and language skills are consistently noted. We argue that valuable insights about speech neurobiology can be gleaned from an integrated approach — one that not only focuses on the most specific cases of disorder, but also considers data from genes linked to distinct speech phenotype profiles in only a subset of the affected people, and/or genes in shared neuromolecular pathways. Table 2 gives selected examples from the literature, with explanations of why each gene could be of interest, including evidence of known interactions with FOXP transcription factors [3,21,22,35,39**,40**,41,43,44,45,47–57].

**Effects of speech-related regulatory genes on early brain development**

The number of genes implicated in developmental speech disorders is still too low for comprehensive enrichment analysis, but it is intriguing that unbiased screening of CAS cohorts converged on regulatory genes co-expressed during early brain development [39**,40**], with transcription factors and chromatin remodelers being prominent in gene-driven studies in this area [42–45,50,53]. Moreover, proteomic analyses of FOXP transcription factors identified protein-protein interactions with other brain-expressed regulatory molecules linked to neurodevelopmental diseases [19]. Involvement of regulatory genes is a common theme in etiology of brain-related disorders, including ID [58], and experimental studies show that chromatin remodeling is crucial for differentiation and maturation of the developing brain [59–61]. So far, searches for rare gene disruptions underlying speech disorders have mainly focused on protein-coding variants, but the field could benefit from newly emerging deep-learning tools to help identify potential risk variants affecting chromatin state (DeepSEA [62]; ExPecto [63]).
Table 2

| Gene          | Gene function                                                | Phenotypic profile associated with gene disruptions | Reason for highlighting                                           |
|---------------|--------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|
| BCL11A (MIM *606557) | Transcriptional regulator – BAF complex member              | ID, variable dysmorphic features including microcephaly, persistence of fetal hemoglobin (MIM #617101) | Gene disruption initially identified in a case of speech-sound disorder [41] |
| CHD3 (MIM *602120) | Chromatin remodeler – NuRD complex member                   | Mild to severe ID, dysmorphic features, macrocephaly (MIM #618020) | Index case identified in genome-wide screening of a CAS cohort [39**,44]. CHD3 is part of the FOXP2 interactome [47] |
| DDX3X (MIM *300160) | DEAD-box RNA helicase – involved in transcription, splicing, RNA transport, and translation | Mild to severe ID, variable dysmorphic features including microcephaly and polymicrogyria (MIM #300958) | Disruptions well established as one cause of ID [48]. A mutation case recently identified in unbiased screening of a CAS cohort [40**] |
| ERC1 (MIM *607127) | RIM-binding protein – regulating neurotransmitter release | CAS, ID, psychiatric phenotypes                    | Cases of overlapping 12p13.33 microdeletions involving ERC1 identified, with variable phenotype that includes CAS [49] |
| FOXP1 (MIM *605515) | Transcription factor                                         | Mild to severe ID, dysmorphic features, speech delay, ASD (MIM #613670) | Close paralogue of FOXP2, with partially overlapping neural co-expression and potential to form heterodimers [21,22] |
| FOXP2 (MIM *605317) | Transcription factor                                         | CAS, developmental delay (MIM #602081)              | First gene to be implicated in a monogenic speech disorder [5] |
| GATA2B (MIM *614998) | Transcriptional regulator – NuRD complex member              | ID, dysmorphic features, severe speech delay (MIM #615074) | Clinical features of mutation cases include CAS [50]. Interaction partner of CHD3 [50] and FOXP proteins [51] |
| GRIN2A (MIM *138253) | N-methyl-D-aspartate (NMDA) receptor subunit – expressed in excitatory synapses | Focal epilepsy with speech disorder with or without ID (MIM #245570) | Putative risk variant identified in a DLD cohort study [59]. Speech disruptions described by gene-driven studies [52] |
| POU3F3 (MIM *602480) | Transcription factor                                         | Mild to moderate ID, dysmorphic features, impaired speech and language acquisition (MIM #618604) | Index case identified with a severe developmental speech/language disorder [43]. Binds a regulatory region of the FOXP2 locus [43] |
| SATB2 (MIM *608148) | Transcription factor                                         | Mild to severe ID, dysmorphic features, teeth abnormalities, severe speech delay (MIM #612313) | Disruptions well established as one cause of ID [53]. Gene-driven studies have described speech deficits [54]. Part of the FOXP2 interactome [19] |
| SCN3A (MIM *182391) | Voltage-gated sodium channel subunit – expressed in central nervous system | Familial focal epilepsy (MIM #617935), Infantile-onset refractory epilepsy, polymicrogyria (MIM #617938), prominent speech and oral motor dysfunction | Variants identified in cases with prominent speech problems [55] |
| SETBP1 (MIM *611060) | DNA-binding regulatory protein                               | Mild to severe ID with speech delay (MIM #616078), or severe ID with multiple congenital malformations (MIM #269150) | Variants identified in two independent genome-wide CAS cohort screens [39**,40**] |
| SETD1A (MIM *611052) | H3K4 methyl transferase – HMT complex member                | Range of neurodevelopmental disorders including severe developmental problems and neuropsychiatric phenotypes, including schizophrenia | Implicated in developmental disorder with a broad phenotype [45]. A mutation case identified in unbiased screening of a CAS cohort [39**] |
| SLC6A8 (MIM *300036) | Creatine transporter – creatine transport into the brain and muscle Regulating nonsense-mediated decay – Exon Junction Complex member | Mild to severe ID, severe speech delay, seizures (MIM #300352) | Described in a case of mild ID with severely affected speech [56] |
| UPF2 (MIM *605529) | Transcription factor                                         | Mild to severe ID, varied speech and language deficits | A mutation case identified in unbiased screening of a CAS cohort [40**]. Speech phenotypes further described in a recent gene-driven study [57] |

As shown for FOXP2, animal models and cellular assays can increase understanding of gene (dys)function. Nonetheless, for disorders disturbing human capacities like speech, and that involve regulatory genes with impacts on early brain development, it could be especially valuable to also adopt more physiologically relevant models. Brain organoids [64], grown in the lab from human stem cells, display species-specific developmental programs [65] and...
capture the complex cellular diversity of the developing human cortex [66], although see [67] for important limitations. Applying such methods to patient-derived cells is illuminating pathogenic mechanisms in neurodevelopmental disorders, including idiopathic autism [68]. Long-term and pre-patterned cultures can model complex events, including neuronal activity and cellular migration [69,70], with recent studies demonstrating neuronal network formation [71,72]. Ever more sophisticated gene-editing technologies (CRISPR and beyond) allow researchers to insert causal variants into isogenic cell lines and/or repair mutations in patient-derived tissue, while single-cell transcriptomics facilitates systematic analyses of molecular and cellular consequences. Application of this powerful new tool-kit to rare variants implicated in developmental speech disorders could shed light on fundamental neurogenetic pathways underlying unique aspects of human biology.

Conflict of interest statement
Nothing declared.

Acknowledgements
We thank Lot Snijders Blok for valuable discussions. This work was supported by the Max Planck Society.

References and recommended reading
Papers of particular interest, published within the period of review, have been highlighted as:

● of special interest
●● of outstanding interest

1. Graham SA, Fisher SE: Understanding language from a genomic perspective. Annu Rev Genet 2015, 49:131-160.

2. Deriziotis P, Fisher SE: Speech and language: translating the genome. Trends Genet 2017, 33:42-52.

3. Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP: A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 2001, 413:519-523.

4. Reuter MS, Riess A, Moog U, Briggs TA, Chandler KE, Rauch A, Stammer M, Steinl K, Glaser D, Joset P et al.: FOXP2 variants in 14 individuals with developmental speech and language disorders broaden the mutational and clinical spectrum. J Med Genet 2017, 54:64-72.

5. Morgan A, Fisher SE, Scheffer I, Hildebrand M: FOXP2-related speech and language disorders. In GeneReviews. Edited by Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A. University of Washington, Seattle, 2016, [updated 2017].

6. Fisher SE, Scharff C: FOXP2 as a molecular window into speech and language. Trends Genet 2009, 25:166-177.

7. French CA, Fisher SE: What can mice tell us about Foxp2 function? Curr Opin Neurobiol 2014, 28:72-79.

8. Scharff C, Adam I: Neurogenetics of birdsong. Curr Opin Neurobiol 2013, 23:29-36.

9. French CA, Vicuña Veloz MF, Zhou K, Peter S, Fisher SE, Costa RM, De Zeeuw CI: Differential effects of Foxp2 disruption in distinct motor circuits. Mol Psychiatry 2019, 24:447-462

10. Argyropoulos GP, Watkins KE, Belton-Pagamenti E, Liegeois F, Saleem KS, Mishkin M, Vargha-Khadem F: Neocerebellar Crus I abnormalities associated with a speech and language disorder due to a mutation in FOXP2. Cerebellum 2019, 18:309-319.

11. Liegeois FJ, Hildebrand MS, Bonthone A, Turner SJ, Scheffer IE, Bahlo M, Connelly A, Morgan AT: Early neuroimaging markers of FOXP2 intragenic deletion. Sci Rep 2016, 6:35192.

12. Kast RJ, Lanjewar AL, Smith CD, Levitt P: FOXP2 exhibits projection neuron class specific expression, but is not required for multiple aspects of cortical histogenesis. eLife 2019, 8:e41202.

13. Co M, Hickey SL, Kulkarni A, Harper M, Konopka G: Cortical Foxp2 supports behavioral flexibility and developmental dopamine D1 receptor expression. Cereb Cortex 2019, 30:1855-1870.

14. Medvedeva VP, Rieger MA, Vieth B, Mombereau C, Ziegenhain C, Ghosh T, Cressant A, Enard W, Grannon S, Dougherty JD et al.: Altered social behavior in mice carrying a cortical Foxp2 deletion. Hum Mol Genet 2018, 27:701-717.

15. van Rhijn JR, Fisher SE, Vernes SC, Nadif Kasri N: Foxp2 loss of function increases striatal direct pathway inhibition via increased GABA release. Brain Struct Funct 2018, 223:4211-4226.

16. Hachigian LJ, Carmona V, Fenster RJ, Kulicke R, Heilbut A, Sittler A, Pereira de Almeida L, Mesirov JP, Gao F, Kolaczyk ED et al.: Control of Huntington’s disease-associated phenotypes by the striatum-enriched transcription factor Foxp2. Cell Rep 2017, 21:2688-2695.

17. Norton P, Barschke P, Scharff C, Mendoza E: Differential song deficits after lentivirus-mediated knockdown of Foxp1, Foxp2 or Foxp4 in Area X of juvenile zebra finches. J Neurosci 2019, 2012:21-1218.

18. Day NF, Hobbs TG, Heston JB, White SA: Beyond critical period learning: striatal Foxp2 affects the active maintenance of learned vocalizations in adulthood. eNeuro 2019, 6:ENEURO.0071-0019.2019.

19. Estruch SB, Graham SA, Quevedo M, Vino A, Dekkers DWH, Deriziotis P, Soliss E, Demmers J, Poot RA, Fisher SE: Proteomic analysis of FOXP proteins reveals interactions between cortical transcription factors associated with neurodevelopmental disorders. Hum Mol Genet 2018, 27:1212-1227.

Affinity purification and mass spectrometry study elucidating an interaction network of brain-expressed transcription factors centred on the FOXP proteins.

20. Hickey SL, Berto S, Konopka G: Chromatin deconditioning by FOXP2 promotes human neuron maturation and expression of neurodevelopmental disease genes. Cell Rep 2019, 27:1699-1711.e1699

Study in human neurons using a combination of ATAC-seq and RNA-seq to identify gene networks regulated by FOXP2 during neuronal differentiation.

21. Soliss E, Graham SA, Vino A, Froehlich H, Vreeburg M, Dimitropoulou D, Gilissen C, Pfundt R, Rappold GA, Brunner HG et al.: Identification and functional characterization of de novo FOXP1 variants provides novel insights into the etiology of neurodevelopmental disorder. Hum Mol Genet 2016, 25:546-557.

22. Soliss E, Deriziotis P, Saitisu H, Miyake N, Matsumoto N, Hoffer MJV, Ruivenkamp CAL, Alders M, Okamoto N, Biljsma EK et al.: Equivalent missense variant in the FOXP2 and FOXP1 transcription factors causes distinct neurodevelopmental disorders. Hum Mutat 2017, 38:1542-1554.

23. Ebisu H, Iwal-Takekoshi L, Fujita-Jimbo E, Momoi T, Kawasaki H: Foxp2 regulates identities and projection patterns of thalamic nuclei during development. Cereb Cortex 2017, 27:3648-3659.

24. Kuerbitz J, Arnett M, Ehrman S, Williams MT, Vorhees CV, Fisher SE, Garratt AN, Muglia LJ, Waclaw RR, Campbell K: Loss of
intercalated cells (ITCs) in the mouse amygdala of Tshz1 mutants correlates with fear, depression, and social interaction phenotypes. J Neurosci 2018, 38:1160-1177.

25. Schreiweis C, Irinopoulos T, Vieth B, Laddada L, Oury F, Burgiüere E, Enard W, Groszer M: Mice carrying a humanized Foxp2 knock-in allele show region-specific shifts of striatal Foxp2 expression levels. Cortex 2019, 118:212-222.

26. Maricic T, Günther V, Georgiev O, Gehre S, Curiń M, Schreiweis C, Naumann R, Burbano HA, Meyer M, Lalusea-Fox C et al.: A recent evolutionary change affects a regulatory element in the human Foxp2 gene. Mol Biol Evol 2013, 30:844-852.

27. Atkinson EG, Audejes AJ, Palacios JA, Bobo DM, Webb AE, Ramachandran S, Henn BM: No evidence for recent selection at FOX2 among diverse human populations. Cell 2018, 174:1424-1435.e1415.

28. Fisher SE: Human genetics: the evolving story of FOXP2. Curr Biol 2019, 29:R65-R67.

29. Frigerio-Domingues C, Drayna D: Genetic contributions to stuttering: the current evidence. Mol Genet Genomic Med 2017, 5:95-102.

30. Han TU, Root J, Reyes LD, Hutchinson EB, Hoffmann JD, Lee WS, Barnes TD, Drayna D: Human GNPTAB stuttering mutations engineered into mice cause vocalization deficits and astrocyte pathology in the corpus callosum. Proc Natl Acad Sci U S A 2019, 116:17515-17524.

31. Deciphering Developmental Disorders S, McRae JF, Clayton S, Fitzgeral TD, Kapanis J, Prigome E, Rajan D, Sfririm A, Atken S, Akawi N et al.: Prevalence and architecture of de novo mutations in developmental disorders. Nature 2017, 542:437-440.

32. Turner TN, Coe B, Dicke DE, Hoelzkema K, Nelson BJ, Zody MC, Kronenberg ZN, Hormozdian F, Raja A, Pennacchio LA et al.: Genomic patterns of de novo mutation in simplex autism. Cell 2017, 171:710-722.e712.

33. Bishop DVM, Snowling MJ, Thompson PA, Greenhalgh T, the c-c: Phase 2 of CATALISE: a multinational and multidisciplinary Delphi consensus study of problems with language development: terminology. J Child Psychol Psychiatry 2017, 58:1088-1090.

34. Atken S, Firth HV, McRae J, Halachev M, Kini U, Parker MJ, Lees MM, Lachlan K, Sarkar A, Joss S et al.: Finding diagnostically useful patterns in quantitative phenotypic data. Am J Hum Genet 2019, 105:933-946.

35. Chen XS, Reader RH, Hoiachen A, Veltman JA, Simpson NH, Francks C, Newbury DF, Fisher SE: Next-generation DNA sequencing identifies novel gene variants and pathways involved in specific language impairment. Sci Rep 2017, 7:46105.

36. Simpson NH, Ceroni F, Reader RH, Coville LE, Knight JC, Nudel R, Monaco AP, Simonoff E, Bolton PF, Pickles A et al.: Genome-wide analysis identifies a role for common copy number variants in specific language impairment. Eur J Hum Genet 2015, 23:1370-1377.

37. Kalnik N, Stamouli S, Peyrard-Janvid M, Rabkina I, Becker M, Klingberg T, Kere J, Forsberg H, Tamminies K: Enrichment of rare copy number variation in children with developmental language disorder. Clin Genet 2018, 94:313-320.

38. Analyses of data in a cohort of severe developmental language disorder (DLD) cases finds evidence of a contribution from rare copy number variants (c.f. Ref [36]).

39. Mei C, Fredorenko E, Amor DJ, Boys A, Hoeflin C, Carew P, Burgess T, Fisher SE, Morgan AT: Deep phenotyping of speech and language skills in individuals with 16p2 deletion. Eur J Hum Genet 2018, 26:676-686.

40. Eising E, Carion-Castillo A, Vino A, Strand EA, Jakielski KJ, ** Scerri TS, Hildebrand MS, Webster R, Ma A, Mazoyer B et al.: A set of regulatory genes co-expressed in embryonic human brain is implicated in disrupted speech development. Mol Psychiatry 2019, 24:1065-1078.

41. First whole genome sequencing study of a cohort recruited based on CAS diagnosis, identifying de novo and rare causative variants in several genes important for neurodevelopment.

42. Hildebrand MS, Jackson VE, Scarni TS, Van Reyk O, Coleman M, ** Braden RO, Turner S, Right KA, Bock A, Barton S et al.: Severe childhood speech disorder: Gene discovery highlights transcriptional dysregulation. Neurology 2020, 94:e2148-e2167.

43. Screening of exomes/genomes of 34 children ascertained for CAS revealed likely pathogenic variants in a third of cases, implicating regulatory genes in co-expression networks shared with Ref [39].

44. Peter B, Matsushita M, Oka K, Raskind W: De novo microdeletion of BCL11A is associated with severe speech sound disorder. Am J Med Genet A 2014, 164:2091-2096.

45. Dias C, Estruch SB, Graham SA, McRae J, Sawai SJ, Hurst JA, Joss SK, Holder SE, Morton JE, Turner C et al.: BCL11A haploinsufficiency causes an intellectual disability syndrome and dysregulates transcription. Am J Hum Genet 2016, 99:253-274.

46. Snijders Blok L, Kleefstra T, Venselaar H, Maas S, Kroes HV, Lachmeijer AM, van Gassen KLI, Firth HV, Tomkinds S, Bodek S et al.: De novo variants disturbing the transactivation capacity of Pou3f3 cause a characteristic neurodevelopmental disorder. Am J Hum Genet 2019, 105:403-412.

47. Snijders Blok L, Rousseau J, Twist J, Ehresmann S, Takaku M, Venselaar H, Rodan LH, Nowak CB, Douglas J, Swoboda KJ et al.: CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language. Nat Commun 2018, 9:4619.

48. Singh T, Kurki M, Curtis D, Purcell SM, Crooks L, McRae J, Suvisaari J, Chhedha H, Blackwood D, Breen G et al.: Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nat Neurosci 2016, 19:571-577.

49. Sanders SJ, Sahin M, Hostyk J, Thurm A, Jacquemont S, Avillac P, Douard E, Martin CL, Modi ME, Moreno-De-Luca A et al.: A framework for the investigation of rare genetic disorders in neuropsychiatry. Nat Med 2019, 25:1477-1487.

50. Estruch SB, Graham SA, Deriiziotis P, Fisher SE: The language-related transcription factor FOXP2 is post-translationally modified with small ubiquitin-like modifiers. Sci Rep 2016, 6:20911.

51. Lennox AL, Hovey ML, Jiang R, Johnson–Kemler BL, Sult LA, Venkataramanan S, Sheehan CJ, Alinsa FC, Freguea B, Aldinger KA et al.: Pathogenic DDX3X mutations impair RNA metabolism and neurogenesis during fetal cortical development. Neuron 2020, 106:404-420.e8.

52. Thivenon J, Callier P, Andreix J, Delobelle B, David A, Sukno S, Minot D, Mosca Anne L, Marie N, Sanlaville D et al.: 12p33 microdeletion including ELKS/ERC1, a new locus associated with childhood apraxia of speech. Eur J Hum Genet 2013, 21:82-88.

53. Shieh C, Jones N, Vanile B, Au M, Huang AY, Silva APG, Lee H, Douine ED, Otero MG, Choi A et al.: QATAD2B-associated neurodevelopmental disorder (GAND): clinical and molecular insights into a NuRD-related disorder. Genet Med 2020, 22:878-888.

54. Chokas AL, Trivedi CM, Lu MM, Tucker PW, Li S, Epstein JA, Morrissey EE: Foxp1/2/4-NuRD interactions regulate gene expression and epithelial injury response in the lung via regulation of interleukin-8. J Biol Chem 2010, 285:13304-13313.

55. Turner SJ, Mayes AK, Verhoeven A, Mandelstam SA, Morgan AT, Scheffer IE: GRIN2A: an aplyt named gene for speech dysfunction. Neurology 2015, 84:386-393.

56. Bengali H, Handley M, Alvi M, Ibitoye R, Lees M, Lynch SA, Lam W, Fannemel M, Nordgren A, Malikran H et al.: Clinical and molecular consequences of disease-associated de novo mutations in SATB2. Genet Med 2017, 19:900-908.

57. Thomason A, Pankey E, Nutt B, Caffrey AF, Zarate YA: Speech, language, and feeding phenotypes of SATB2-associated syndrome. Clin Genet 2019, 96:485-492.

58. Smith RS, Kenny CJ, Ganesh V, Jang A, Borges-Monroy R, Partlow JH, Hill RS, Shin T, Chen AY, Doan RN et al.: Sodium channel SCNBA(VaN1.3) expression and regulation of human cerebral cortical folding and orbital motor development. Neuron 2018, 99:305-913.e607.
56. Battini R, Chilos AM, Casarano M, Moro F, Comparini A, Alessandri MG, Leuzzi V, Tosetti M, Cioni G. Language disorder with mild intellectual disability in a child affected by a novel mutation of SLC6A8 gene. Mol Genet Metab 2011, 102:153-156.

57. Johnson JL, Stoica L, Liu Y, Zhu PJ, Bhattacharya A, Buffington SA, Huo R, Eissa NT, Larsson O, Porse BT et al. Inhibition of Upf2-dependent nonsense-mediated decay leads to behavioral and neurophysiological abnormalities by activating the immune response. Neuron 2019, 104:665-679.e8.

58. Kochinke K, Zweier C, Nijhof B, Fencкова M, Cizek P, Honti F, Keerthikumar S, Oortveld Merel AW, Kleefstra T, Kramer Jamie M et al. Systematic phenomics analysis deconvolutes genes mutated in intellectual disability into biologically coherent modules. Am J Hum Genet 2016, 98:149-164.

59. Nord AS, Pattabiraman K, Visel A, Rubenstein JLR. Genomic perspectives of transcriptional regulation in forebrain development. Neuron 2015, 85:27-47.

60. de la Torre-Ubieta L, Stein JL, Won H, Opland CK, Liang D, Lu D, Geschwind DH. The dynamic landscape of open chromatin during human cortical neurogenesis. Cell 2018, 172:289-304. e218.

61. Ronan JL, Wu W, Crabtree GR. From neural development to cognition: unexpected roles for chromatin. Nat Rev Genet 2013, 14:347-359.

62. Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods 2015, 12:931-934.

63. Zhou J, Theesfeld CL, Yao K, Chen KM, Wong AK, Troyanskaya OG. Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nat Genet 2018, 50:1171-1179.

64. Marton RM, Pasca SP. Organoid and assembloid technologies for investigating cellular crosstalk in human brain development and disease. Trends Cell Biol 2020, 30:133-143.

65. Kanton S, Boyle MJ, He Z, Santel M, Weigert A, Sanchis-Calleja F, Guijarro P, Sidow L, Fleck JS, Han D et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 2019, 574:418-422.

66. Velasco S, Kedaigle AJ, Simmons SK, Nash A, Rocha M, Quadrato G, Paulsen B, Nguyen L, Adiconis X, Regev A et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature 2019, 570:523-527.

67. Bhaduri A, Andrews MG, Mancia Leon W, Jung D, Shin D, Allen D, Jung D, Schmunk G, Haeussler M, Salma J et al. Cell stress in cortical organoids impairs molecular subtype specification. Nature 2020, 578:142-148.

68. Schafer ST, Paquola ACM, Stern S, Gosselin D, Ku M, Pena M, Kuret TJM, Liyanage M, Mansour AA, Jaeger BN et al. Pathological priming causes developmental gene network heterochronicity in autistic subject-derived neurons. Nat Neurosci 2019, 22:243-253.

69. Quadrato G, Nguyen T, Macosko EZ, Sherwood JL, Min Yang S, Berger DR, Maria N, Scholvin J, Goldman M, Kinney JP et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 2017, 545:48-53.

70. Birey F, Andersen J, Makinson CD, Islam S, Wei W, Huber N, Fan HC, Metzler KRC, Panagiotakos G, Thorn N et al. Assembly of functionally integrated human forebrain spheroids. Nature 2017, 545:54-59.

71. Trujillo CA, Gao R, Negraes PD, Gu J, Buchanan J, Preisli S, Wang A, Wu W, Haddad GG, Chaim IA et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell 2019, 25:588-599, e557.

72. Sakaguchi H, Ozaki Y, Ashida T, Matsubara T, Oishi N, Kihara S, Takahashi J. Self-organized synchronous calcium transients in a cultured human neural network derived from cerebral organoids. Stem Cell Rep 2019, 13:458-473.