High transmissibility of norovirus among infants and school children during the 2016/17 season in Osaka, Japan

Sakon, Naomi; Komano, Jun; Tessmer, Heidi L.; Omori, Ryosuke

Eurosurveillance, 23(6), 2-6
https://doi.org/10.2807/1560-7917.ES.2018.23.6.18-00029

2018-02-08

http://hdl.handle.net/2115/70852

https://creativecommons.org/licenses/by/4.0/

article
eurosurv-23-6-1.pdf
High transmissibility of norovirus among infants and school children during the 2016/17 season in Osaka, Japan

Naomi Sakon¹, Jun Komano², Heidi L. Tessmer³, Ryosuke Omori⁴

¹. Department of Microbiology, Osaka Institute of Public Health, Japan
². Department of Clinical Laboratory, Nagoya Medical Center, Japan
³. Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
⁴. JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan

Correspondence: Ryosuke Omori (omori@czc.hokudai.ac.jp)

Citation style for this article:
Sakon Naomi, Komano Jun, Tessmer Heidi L., Omori Ryosuke. High transmissibility of norovirus among infants and school children during the 2016/17 season in Osaka, Japan. Euro Surveill. 2018;23(6):pii=18-00029. https://doi.org/10.2807/1560-7917.ES.2018.23.6.18-00029

The number of person-to-person transmitted norovirus cases (n = 4,712) in school children in Osaka, Japan, during 2016/17 was the largest since 2012/13. Norovirus outbreaks were reported by 101 schools including 53 nursery schools (1,927 cases), 18 kindergartens (1,086 cases) and 30 elementary schools (1,699 cases). The dominant genotype among outbreaks was GII.P16-GII.2 (57.4%; 58/101), followed by GII.P2-GII.2 (8.9%; 9/101) and GII.P7-GII.6 (5.9%; 6/101). GII.4 was not detected despite dominance in previous years.

The Osaka prefecture, Japan, has a complete and continuous norovirus surveillance programme in the prefecture’s schools [1]. Norovirus outbreaks were investigated between April 2012 and March 2017 using the viral acute gastroenteritis (AGE) surveillance system established in the prefecture with the exception of the cities of Osaka (since inception), Hirakata (April 2014 onwards), and Sakai, Takatsuki, and Toyonaka (April 2013 onwards). The Osaka prefecture norovirus surveillance system has been described previously [1]. Norovirus outbreaks were investigated between April 2012 and March 2017 using the viral acute gastroenteritis (AGE) surveillance system established in the prefecture with the exception of the cities of Osaka (since inception), Hirakata (April 2014 onwards), and Sakai, Takatsuki, and Toyonaka (April 2013 onwards). The Osaka prefecture norovirus surveillance system has been described previously [1].

In 2016/17, a large number of children attending schools or nurseries were affected by norovirus in the Osaka prefecture. During this time, the GII.2 genotype dominated in contrast to the GII.4 genotype, which had been majorly detected in previous years. To alert on these school/nursery outbreaks coinciding with a genotype shift before the next upcoming norovirus season, we hereby characterise the 2016/17 epidemic in the prefecture and compare it to previous seasons in the 2012 to 2016 period.

Estimation of incidence rate and effective reproduction number per school

To compare the norovirus transmission potential by sampling season we estimated the incidence rate and the effective reproduction number, \(R_e \). These values were estimated using the number of students per school where norovirus outbreaks were detected. The incidence rate was estimated by maximum likelihood estimation assuming a binomial sampling process. \(R_e \) was estimated by fitting a mathematical model, the individual-based susceptibles, exposed, infectious, recovered (SEIR) model [2], describing the norovirus transmission process in each school to the observed outbreak size per school. We assumed a constant latent period (24 hours) and infectious period (3.35 days) [2]. In estimating \(R_e \), approximate Bayesian computation was conducted using the following summary statistic (S) [3]:

\[
S = ((\text{Incidence rate from simulation}) - (\text{Incidence rate from data})) / (\text{Incidence rate from data})
\]

For each school, 1,000,000 simulation runs were conducted to construct the posterior distributions for \(R_e \).
and each simulation run used a different parameter value sampled from the non-informative prior for R_e (uniform distributions with a range of: 0–6).

Comparisons across the 2012/13–2016/17 seasons

During the 2016/17 season, the number of norovirus cases in school children was the largest since the 2012/13 season (Figure 1 and Table). The most frequently genotype detected was GII.P16-GII.2 (57.4%; 58/101), followed by GII.P2-GII.2 (8.9%; 9/101) and GII.P7-GII.6 (5.9%; 6/101). Due to lack of genotype data classified by RNA-dependent RNA polymerase (RdRp) for 2012/13–16/17, genotype data classified by capsid was used for all comparisons between 2012 and 2017. In contrast to 2016/17 when GII.2 dominated, over the 2012/13–2015/16 period, GII.4 was the major genotype affecting infants and school children (Figure 2). In the same period, GII.6 was also consistently identified but at low frequency in each season, especially in 2015/16 when it was barely detected. In addition, from 2014/15 onwards GII.17 also occurred but also at low frequency in each season.

Comparing the number of cases in the 2016/17 season to the average number of cases per season from 2012/13–2015/16, the number of cases was higher at 193% (1,927 vs 659), 539% (1,086 vs 170), and 149% (1,699 vs 683) in nursery schools, kindergartens, and elementary schools, respectively. Comparing the 2016/17 season to each of the seasons from 2012/13–2015/16, the number of cases was higher with a range of 158.3–229.4%, 297.8–1,067.7%, 117.2–205.0%, in nursery schools, kindergartens, and elementary schools, respectively.

Comparing the proportion of schools reporting outbreaks in the 2016/17 season to the average proportion

Figure 1

Number of norovirus infections among school children in Osaka prefecture, Japan, 2012/13–2016/17 seasons

Figure 2

Time trend of frequencies of specific genotypes detected in norovirus infections among school children in Osaka prefecture, Japan, 2012/13–2016/17 seasons

ND: non-determined genotype.

The numbers above the chart bars (e.g. n = 32, n = 30 etc.) are the numbers of norovirus outbreaks.
per season from 2012/13–2015/16, the proportion was higher at 221% (18/367 vs 26/1,700) and 69% (30/485 vs 78/2,126) in kindergartens and elementary schools, respectively (Table). The proportion for nursery schools was not calculated as the total number of schools in the prefecture was not available. Comparing the 2016/17 season to each of the seasons from 2012/13–2015/16, the proportions were higher with a range of 97.4–885.8% and 53.7–104.1%, respectively (Table).

During the 2016/17 season, a significantly higher incidence rate and effective reproduction number, R_e, were observed in nursery schools and elementary schools compared with other seasons (Table) (Wilcoxon rank sum test with Holm-Bonferroni correction, $p<0.05$). Conversely, no significant differences were found among the norovirus seasons between 2012/13 and 2015/16. Similar trends for the school-specific number of cases, incidence rate, and R_e over multiple seasons were observed among kindergartens, and

Description of the schools and outbreaks	Season	Nursery school	Kindergarten	Elementary school	Junior high school	All
Number of outbreaks (total number of schools)						
2012/13	2013/14	2014/15	2015/16	2016/17	All	
Nursery school	32 (NA)	30 (NA)	28 (NA)	26 (NA)	53 (NA)	169 (NA)
Total reported cases	585	746	693	611	1,927	4,562
Incidence (95% CI)	0.16 (0.15–0.17)	0.20 (0.19–0.21)	0.21 (0.19–0.22)	0.18 (0.17–0.20)	0.31 (0.30–0.33)	0.24 (0.23–0.24)
R_e (95% CI)	1.11 (0.54–3.34)	1.14 (0.60–2.48)	1.15 (0.60–2.43)	1.15 (0.61–2.40)	1.24 (0.69–2.62)	1.18 (0.61–2.71)
Kindergarten	12 (483)	7 (439)	2 (402)	5 (376)	18 (367)	44 (1,691)
Total reported cases	273	131	93	181	1,086	1,764
Incidence (95% CI)	0.19 (0.17–0.22)	0.23 (0.20–0.27)	0.12 (0.10–0.15)	0.22 (0.19–0.25)	0.30 (0.28–0.31)	0.24 (0.23–0.25)
R_e (95% CI)	1.12 (0.60–3.00)	1.18 (0.59–2.76)	1.07 (0.63–2.25)	1.16 (0.64–2.24)	1.24 (0.67–2.44)	1.19 (0.63–2.62)
Elementary school	22 (589)	21 (545)	20 (497)	15 (495)	30 (485)	108 (2,611)
Total reported cases	702	690	782	557	1,699	4,430
Incidence (95% CI)	0.05 (0.05–0.06)	0.06 (0.05–0.06)	0.06 (0.06–0.06)	0.06 (0.06–0.07)	0.11 (0.10–0.12)	0.07 (0.07–0.07)
R_e (95% CI)	1.03 (0.56–2.48)	1.04 (0.57–2.12)	1.04 (0.59–2.12)	1.04 (0.65–1.77)	1.05 (0.59–2.12)	
Junior high school	2 (306)	1 (286)	0 (266)	0 (263)	0 (259)	3 (1,380)
Total reported cases	54	41	0	0	0	95
Incidence (95% CI)	0.04 (0.03–0.05)	0.07 (0.05–0.09)	NA	NA	NA	0.05 (0.04–0.06)
R_e (95% CI)	1.02 (0.56–2.08)	1.01 (0.64–1.72)	NA	NA	NA	1.02 (0.58–1.96)
All	68 (NA)	59 (NA)	50 (NA)	46 (NA)	101 (NA)	324 (NA)
Total reported cases	1,614	1,608	1,568	1,349	4,712	10,851
Incidence (95% CI)	0.08 (0.08–0.09)	0.10 (0.09–0.10)	0.09 (0.09–0.09)	0.11 (0.11–0.12)	0.19 (0.18–0.19)	0.12 (0.12–0.12)
R_e (95% CI)	1.07 (0.55–3.02)	1.10 (0.59–2.44)	1.08 (0.59–2.34)	1.10 (0.61–2.36)	1.16 (0.67–2.43)	1.11 (0.61–2.53)

CI: confidence interval; NA: not applicable; R_e: effective reproduction number at the initial phase of an outbreak.

* The total number of nursery schools is not available.
the differences between all pairs of seasons were not significant. In junior high schools both incidence and R_e tended to decrease over seasons, and no outbreaks were observed from the 2014/15 to 2016/17 seasons.

Over all seasons, nursery schools showed the largest number of outbreaks, reported cases, incidence rate, and R_e, followed by elementary schools, kindergartens, and junior high schools (Table).

Discussion

Previous population-based surveys estimated the reproduction number of norovirus to be in the range of 0.14 to 17.98 [4-9]. Our estimated reproduction number range, 0.54 to 3.34 in school children, was similar to those previously found in England and Wales (0.89 for people over 5 years of age) [4] and Japan (0.14 to 4.15 for all age groups) [5].

Various norovirus genotypes circulate among infants and children at schools and the dominant genotypes change almost every year, as shown in Figure 2 [1]. The norovirus genotype most frequently detected in 2016/17 was GII.P16-GII.2 (55.4%), followed by GII.P2-GII.2 (8.9%) and GII.P7-GII.6 (5.9%), which is similar to other countries in 2016/17 [10,11]. Comparing available genotype data classified by capsid between 2012 and 2017, indicated that GII.2 sampled during the 2016/17 season had significantly higher transmissibility than GII.2 sampled during the 2012/13–2015/16 seasons both in terms of incidence rate and R_e (Wilcoxon rank sum test with Holm-Bonferroni correction, p<0.05). A significant increase in transmissibility was also observed in GII.6. In contrast, GII.4 was not detected in school children during the 2016/17 season despite having been present throughout the 2012/13 to 2015/16 seasons with overall similar incidence rates and R_es. A statistically significant difference was not observed in comparisons of GII.4 incidence rates and R_es across pairs of seasons from 2012/13 to 2015/16, except between 2012/13 and 2015/16 (Wilcoxon rank sum test with Holm-Bonferroni correction, p<0.05). It is notable that although detected in the Osaka Prefecture surveillance programme in adults (91.1% of cases) (data not shown), norovirus GII.17 was detected infrequently in infants and children in the 2016/17 season (2.9% of cases).

Norovirus transmissibility in school children during 2016/17, when the dominant genotype was GII.2, was significantly higher than the transmissibility during 2012/13–15/16, when the dominant genotype was GII.4. During the 2016/17 season, a significant increase in transmissibility was also observed for GII.6. It is plausible that the high transmissibility of both GII.2 and GII.6 is correlated with a genotype shift of norovirus in infants and children. Two primary factors could contribute to make this happen: a naive population and viral mutations. Firstly, among all kindergartens, nursery schools, and elementary schools, GII.2 and GII.6 had been rare in the four seasons preceding the 2016/17 season, so it is likely that a large population naive to GII.2 and GII.6 had accumulated due to student turnover. Secondly, norovirus mutant strains of GII.2 and GII.6, with increased epidemic potential and/or ability to overcome infants and children herd immunity may have been selected. While genetic analysis of GII.6 strains remains to be performed in depth, a greater number of mutation were found in GII.2 during the 2016/17 season compared with previous seasons [11,12,13]. Although these mutations were positioned at non-B-cell epitopes, such mutations could possibly yield novel properties leading to epidemics [13,14]. These two factors, in combination, may have contributed to the infants and children of the 2016/17 season being predisposed to infection by norovirus GII.2 and GII.6.

While the above two factors may have contributed to the increased transmissibility of GII.6, other factors may explain why the number of outbreaks with this genotype remained small despite the increasing effective reproduction number, such as (hypothetically) epidemiological interference (possibly due to some cross immunity) between GII.6 and GII.2. The latter conjecture, however, remains to be investigated.

Conclusion

The number of cases, incidence rate, and R_e in school children in Osaka, Japan, during 2016/17 were significantly higher than 2012/13–2015/16. During the 2016/17 season, compared with the 2012/13–2015/16 seasons, the number of cases increased by 193%, 539%, and 149% in nursery schools, kindergartens, and elementary schools, respectively. The proportion of kindergartens and elementary schools reporting outbreaks also increased by 221% and 69% respectively. Despite being rare in the 2012/13–2015/16 seasons, the dominant genotype in 2016/17 was GII.2 (66.3%; 67/101). In addition to the significant increase in incidence rate and R_e for GII.2, a significant increase was also observed for GII.6.

Acknowledgements

The authors gratefully acknowledge Professor Laith J. Abu-Raddad from the Weill Cornell Medical - Qatar, for reviewing this study. Ryoosuke Omori acknowledges the support of Precursory Research for Embryonic Science and Technology (PRESTO) grant number JPMJPR15E1 from the Japan Science and Technology (JST) agency. The funder of the study had no role in the study design, data collection, data analysis, data interpretation, writing of the report, or the decision to publish. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Conflict of interest

None declared.
Authors’ contributions
NS collected the epidemiological data. RO conceived this study, and analysed the epidemiological data. NS, JK, RO contributed to data interpretation. JK, HLT, RO wrote the manuscript. All authors read and approved the final report.

References
1. Sakon N, Yamazaki K, Nakata K, Kanbayashi D, Yoda T, Mantani M, et al. Impact of genotype-specific herd immunity on the circulatory dynamism of norovirus: a 10-year longitudinal study of viral acute gastroenteritis. J Infect Dis. 2015;211(6):879-88. https://doi.org/10.1093/infdis/jiu496 PMID: 25210139
2. O’Dea EB, Pepin KM, Lopman BA, Wilke CO. Fitting outbreak models to data from many small norovirus outbreaks. Epidemics. 2014;6:18-29. https://doi.org/10.1016/j.epidem.2013.12.002 PMID: 24593918
3. Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MP. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J Soc Interface. 2009;6(31):187-202. https://doi.org/10.1098/rsif.2008.0172 PMID: 19205679
4. Simmons K, Gambhir M, Leon J, Lopman B. Duration of immunity to norovirus gastroenteritis. Emerg Infect Dis. 2013;19(8):1260-7. https://doi.org/10.3201/eid1908.130472 PMID: 23876612
5. Matsuyama R, Miura F, Nishiura H. Transmission of noroviruses: Statistical modeling of outbreak events with known route of transmission in Japan. PLoS One. 2017;12(3):e0173996. https://doi.org/10.1371/journal.pone.0173996 PMID: 28296972
6. Sukhrie FH, Teunis P, Vennema H, Copra C, Thijs Beersma MF, Bogaerman J, et al. Nosocomial transmission of norovirus is mainly caused by symptomatic cases. Clin Infect Dis. 2012;54(7):931-7. https://doi.org/10.1093/cid/cir971 PMID: 22291099
7. Heijne JC, Teunis P, Morroy G, Wijkmans C, Oostveen S, Duizer E, et al. Enhanced hygiene measures and norovirus transmission during an outbreak. Emerg Infect Dis. 2009;15(1):24-30. https://doi.org/10.3201/eid1501.080299 PMID: 19116045
8. Heijne JC, Rondy M, Wallinga J, Kretzschmar M, Low N, et al. Quantifying transmission of norovirus during an outbreak. Epidemiology. 2012;23(2):277-84. https://doi.org/10.1097/EDE.0b013e3182456e66 PMID: 22317811
9. Vanderpas J, Louis J, Reynolds M, Mascart G, Vandenberg O. Mathematical model for the control of nosocomial norovirus. J Hosp Infect. 2008;71(1):214-22. https://doi.org/10.1016/j.jhin.2008.11.024 PMID: 19162373
10. Kwok K, Niendorf S, Lee N, Hung TN, Chan LY, Jacobsen S, et al. Increased detection of Emergent Recombinant Norovirus GII.P6-GII.2 Strains in Young Adults, Hong Kong, China, 2016-2017. Emerg Infect Dis. 2017;23(11):1852-5. https://doi.org/10.3201/eid2311.170561 PMID: 29048294
11. Niendorf S, Jacobsen S, Faber M, Eis-Hübinger AM, Hofmann J, Zimmermann O, et al. Steep rise in norovirus cases and emergence of a new recombinant strain GII.P6-GII.2, Germany, winter 2016. Euro Surveill. 2017;22(4):30447. https://doi.org/10.2807/1560-7917.ES.2017.22.4.30447 PMID: 2818902
12. Thongprasuchum A, Okitsu S, Khamrin P, Maneekarn K, Hayakawa S, Ushijima H. Emergence of norovirus GII.2 and its novel recombination during the gastroenteritis outbreak in Japanese children in mid-2016. Infect Genet Evol. 2017;51:86-8. https://doi.org/10.1016/j.meegid.2017.03.020 PMID: 28313628
13. Tohma K, Lepore CJ, Ford-Siltz LA, Parra GI. Phylogenetic Analyses Suggest that Factors Other Than the Capsid Protein Play a Role in the Epidemic Potential of GII.2 Norovirus. mSphere. 2017;2(3):e00187. https://doi.org/10.1128/mSphereDirect.00187-17 PMID: 28529975
14. Mizukoshi F, Nagasawa K, Doan YH, Haga K, Yoshizumi S, Ueki Y, et al. Molecular Evolution of the RNA-Dependent RNA Polymerase and Capsid Genes of Human Norovirus Genotype GII.2 in Japan during 2004-2015. Front Microbiol. 2017;8:705. https://doi.org/10.3389/fmicb.2017.00705 PMID: 28487679

License and copyright
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) Licence. You may share and adapt the material, but must give appropriate credit to the source, provide a link to the licence, and indicate if changes were made.

This article is copyright of the authors, 2018.