INTRODUCTION

In the past decade, the amount of research related to lignocellulosic ethanol (second generation ethanol) has increased extensively in the scientific community. Several bacteria and fungi species have been studied in terms of the intra and extracellular enzymatic complexes involved in the deconstruction of the polymeric components that make up the lignocellulosic biomass. On the other year a novel or modified pretreatment technology becomes available with the aim of improving yields during the saccharification of the lignocellulosic materials. However, we are still far away from producing economically competitive lignocellulosic bioethanol (Mohanram, Amat, Choudhary, Arora, & Nain, 2013), largely because the lack of microbial enzymatic cocktails that break down the recalcitrant lignocellulosic biomass in an efficient manner (Gupta, 2016). Since the amount of plant biomass has been estimated to be of 180 billions of...
tons only above the ground and near 40 millions tons in the ocean (Chen, 2014), the exploitation of these materials for production of biofuels and value-added products is a great alternative to reduce the fossil fuels dependence that as a society we have.

This review focuses on the unexploited and enormous biotechnological potential of the basidiomycete fungus Schizophyllum commune for the production of novel enzymes that could boost the biofuel and biomass derived product research. Also, this work summarizes the research that has been conducted in the last two decades and that supports the use of S. commune as a current aspirant for white, green and gray biotechnology applications.

2 | GENERAL ASPECTS OF SCHIZOPHYLLUM COMMUNE

Schizophyllum commune is an agarical mushroom-forming fungus, able to complete its life cycle in about 10 days and is one of the most commonly found fungi, whose distribution covers all continents with the exception of Antarctica (Ohm, de Jong, Lugones, et al., 2010). Schizophyllum commune has been successfully genetically modified and used as molecular tool for studying cell wall biogenesis (Wessels, 1986), hyphal fusion and development (Ahmad & Miles, 1970; Van Wetter, Schuren, Schuurs, & Wessels, 1996), mating type (Kothe, 1999; Yang, Shen, Park, Novotny, & Ullrich, 1995), heterologous expression of genes (Schuren & Wessels, 1998), gene deletions (De Jong, Ohm, De Bekker, Wösten, & Lugones, 2010; Ohm, de Jong, Berends, et al., 2010), among others. Although it has been detected causing illness in animals and humans, its lifestyle is mainly saprobic by causing white rot. Actually, it has been reported that at least 150 genera of woody plants are substrates for S. commune, but it also colonizes softwood and grass silage (Ohm, de Jong, Lugones, et al., 2010). This feature is one of the most interesting points in a biotechnological sense about this fungus, since it allows S. commune to colonize a vast diversity of lignocellulosic substrates, expanding the range of possibilities and biotechnological products (e.g., enzymes (phytase, lipase, holocellulase, etc.) (Arboleda Valencia et al., 2011; Salmon et al., 2012; Singh, Singh, Kumar, & Thakur, 2015), bioethanol (Horisawa, Ando, Ariga, & Sakuma, 2015), biosurfactants (Wessels, de Vries, Asgeirsdottir, & Springer, 1991), industrial cleaning-in-place (CIP) agents (Boyce & Walsh, 2012), polysaccharides (Singh, Kumar, & Thakur, 2017), polymers (Jayakumar, Kanth, Chandrasekaran, Raghava Rao, & Nair, 2010), etc.) that can be obtained with this microbe (Figure 1). As a matter of fact, S. commune has the potential to degrade all components of the lignocellulosic biomass, since its genome contain 240 gene candidates for glycoside hydrolases (89 account for plant polysaccharides degradation, see Figure 2), 75 for glycosyl transferases, 16 for polysaccharide lyases, 17 for expasin-related proteins, 30 for carbohydrate esterases, and 16 for lignin-degrading oxidoreductases (Ohm, de Jong, Lugones, et al., 2010). This extensive repertoire of plant cell wall degrading and modifying enzymes makes S. commune an outstanding candidate for studies regarding the mechanism by which this fungus degrades biomass in order to exploit its potential and improve the efficiency of industrial processes such as the lignocellulosic ethanol production, bioconversion of agricultural by-products or biodegradation of xenobiotics and pollutants (Table 1).

3 | PROTEINS INVOLVED IN CELLULOSE DECONSTRUCTION BY SCHIZOPHYLLUM COMMUNE

The subject of cellulose deconstruction by fungi leads us to think immediately of organisms like Trichoderma reesei, Neurospora crassa, and various Aspergillus species, considering the ascomycetes group, and mainly in Phanerochaete chrysosporium when referring to the basidiomycetes group, leaving out of study a significant group of basidiomycetes with the same or even greater potential to degrade cellulose. One of these basidiomycetes is the “split gill” fungus S. commune, whose genome sequence was published in 2010 (Ohm, de Jong, Lugones, et al., 2010). Its genome revealed that it contains 240 candidate genes belonging to glycoside hydrolases from different families, almost 80 more GH genes than those reported for P. chrysosporium.
The study of the hydrolytic machinery in organisms like S. commune is attractive mainly for the lignocellulosic biofuels industry, since the number of published works is still growing year by year in this subject, but is not limited to this area. Something remarkable is that the amount and diversity of published work related with the S. commune’s cellulosolytic system is scarce (Table 2) when compared with published work (in this area) of fungi like T. reesei, N. crassa or P. chrysosporium, despite the fact that studies such as those carried out by Arboleda Valencia et al. (2011), Lee et al. (2014), Zhu et al. (2016) have demonstrated that S. commune has an important potential in the lignocellulose biocconversion field, even exhibiting cellulosolytic and xylanolytic activities comparable with those obtained using an enzymatic commercial preparation of Trichoderma longibranchiatum.

The cellulose degradation mechanisms by ascomycetes and basidiomycetes have been revised by Glass, Schmoll, Cate, and Coradetti (2013) and Baldrian and Valásková (2008). However, although the role of the classic enzymes involved in cellulose deconstruction such as endoglucanases, cellobiohydrolases, cellobiose dehydrogenases and beta glucosidases is well documented in fungi, the role of the termed “amorphogenic proteins” or plant cell wall remodeling proteins (expansins and expansin-related proteins) in cellulose deconstruction is not well understood in both, ascomycetes and basidiomycetes. These amorphogenic proteins cause swelling of cellulose fibers and fragmentation of cellulose aggregations at the beginning of the enzymatic hydrolysis of cellulose before any detectable amount of reducing sugars is released (Gourlay et al., 2013). From these latter proteins, the swollenin from T. reesei is the most studied, and after its discovering it was suggested as the C₆ factor of the cellulose enzymatic degradation mechanism originally proposed by Mandels and Reese (1999) and Reese, Siu, and Levinson (1950). Nevertheless, that hypothesis has been rejected by the work of Elbinger et al. (2016), who demonstrates that swollenin is not an amorphogenesis factor when acting on pure cellulose. Nonetheless, the possibility that one or more of these plant cell wall remodeling proteins may be acting as the Cᵦ factor is yet to be proven. Indeed, the genome of S. commune contains at least 17 expansin-related proteins, one of which has already been cloned and expressed in Pichia pastoris, showing a 23% increment in avicel hydrolysis when used as pretreatment before the addition of a cellulase mixture (Tovar-Herrera et al., 2015). However, the study of this type of proteins is relatively new in microbes, and there is a lot of information yet to be obtained from them.

Another group of proteins with great importance and also involved in biomass deconstruction is the group of enzymes known as lytic polysaccharide monooxygenases (LPMOs) classified in auxiliary activity families 9 (AA9), 10 (AA10), 11 (AA11), and 13 (AA13) in the CAZy database (Frandsen et al., 2016; Frommhagen et al., 2015; Hemsworth, Henrißat, Davies, & Walton, 2013; Silveira & Skaf, 2016; Vaaje-Kolstad et al., 2010). From these families, AA9 corresponds to fungal proteins involved in cellulose deconstruction (some of them are also active in hemicellulose), while AA10 belongs to a bacterial group of LPMOs active on cellulose and chitin, and AA11 and AA13 are fungal proteins active on chitin and starch, respectively. AA9 proteins have been studied in N. crassa (Tian et al., 2009), T. reesei (Tanghe et al., 2015), P. chrysosporium (Westereng et al., 2011), Chaetomium globosum (Kim et al., 2015) and Myceliophthora thermophile (Frommhagen et al., 2015), and have been reported to improve the release of glucose and oligosaccharides.
Enzyme	Inducer substrate	References
β-Glucosidase	Cellulose	Desrochers, Jurasek, and Paice (1981)
Endoglucanase β-glucosidase	Thioceollobiose	Rho, Desrochers, and Jurasek (1982)
Xylanase	Cellulose	Willick and Seligy (1985)
Endoglucanase	Cellulose	Clarke and Adams (1987)
Xylanase	Avicel	Steiner, Lafferty, Gomes, and Esterbauer (1987)
Endoglucanase	Bacteria cellulose	Haltrich, Sebesta, and Steiner (1996)
Acetylxylanesterase	Unknown	Biely et al. (1996)
Cellulase GH5	Unknown	Clarke, Drummelsmith, and Yaguchi (1997)
α-Glucuronidase	Cellulose	Tenkanen and Siika-Aho (2000)
Xylanase	Cellulose	Kolenová, Vršanská, and Biely (2005)
Glucuronyl esterase	Cellulose	Špániková and Biely (2006)
Xylanase	Bamboo fibers	Arboleda Valencia et al. (2011)
Mannanase	Banana stem	
Polygalacturonase	Sugarcane bagasse	
Endoglucanase	Cellulose	
Fpase	Recombinant	Chong et al. (2011)
α-Glucuronidase	Recombinant	
Xylanase	Cellulose	Tsujiyama and Ueno (2011)
CMCase	Rice straw	
β-Glucosidase	Wood	
Acetylersterase		
Cinnamic acid esterase		
β-Glucosidase	Cellulose	Lee et al. (2014)
Avicelase	Avicel	Luziatelli et al. (2014)
FPase	Tamarix leaves	
β-Glucosidase		
α-Amylase		
Expansin	Recombinant	Tovar-Herrera et al., (2015)
Endoglucanase	Jerusalem artichoke stalks	Zhu et al. (2016)
Cellobiohydrolase		
β-Glucosidase		
α-Glucuronidase	Recombinant	McKee et al. (2016)
β-Glucosidase	Cellulose	Lee et al. (2017)
Feruloyl esterase	Recombinant	Nieter, Kelle, Linke, and Berger (2016)
from avicel, regenerating amorphous cellulose and lignocellulosic substrates even at a level of 150 fold increase (Frommhaen et al., 2015).

Three recent works have reported the presence of AA9 proteins in the secretomes of *S. commune* when cultured in avicel (one protein) (Sornlake et al., 2017), Jerusalem artichoke stalks (nine proteins) (Zhu et al., 2016), and Leucaena leucocephala wood chips (Singh et al., 2017) (3 proteins). This fact indicates that similar to the classic hydrolytic cellulase system, the expression of AA9 proteins in fungi is dependent on the substrate. Further analyses are necessary to evaluate the biochemical features and the position of the oxidative cleavages (C1 oxidation, C4 oxidation, or both) performed by these enzymes, since understanding the action mechanism of fungal LPMOs and gaining information about the transcriptional regulation of LPMO genes in fungi and bacteria would help to decipher how microbes fully deconstruct lignocellulosic biomass.

4 PROTEINS INVOLVED IN HEMICELLULOSE DECONSTRUCTION BY SCHIZOPHYLLUM COMMUNE

Hemicelluloses are heteropolysaccharides from the plant cell walls that constitute the second most abundant component of lignocellulosic biomass. Their complex structure is dependent on the source and mainly contains pentoses (xylose and arabinose), hexoses (glucose, galactose, and mannose) and, to a lesser extent, glucuronic and galacturonic acid. The bioconversion of hemicellulose to obtain ethanol or other value-added products, such as chemicals and biopolymers, is a well-researched topic. Through a pretreatment process, the hemicelluloses are degraded or broken down in the biomass, releasing fermentable sugars such as xylose, arabinose and glucose, and rendering the cellulose more accessible to cellulytic enzymes (Lavarack, Griffin, & Rodman, 2002). Pretreatment of hemicellulose (usually chemically treated) is one of the most expensive steps of biomass processing, thus, studies to decrease the cost are of main interest from an economic point of view (Canam et al., 2013). The poor sustainability of the currently used acid/base-catalyzed processes has highlighted the need for a more environmentally friendly and mild pretreatment of the hemicellulosic biomass, such as biological ones, that also encompasses a high efficiency (Canam et al., 2013). Another disadvantage of chemical processes is that byproducts may potentially act as microbial inhibitors during the subsequent fermentation steps (Peng, Xu, & Sun, 2012). Therefore, enzymatic pretreatment and bioconversion have arisen as a suitable alternative that could be coupled to subsequent fermentation and might enhance the industrial processing of biomass. The main drawback of enzymatic processing is that high efficiency has not been achieved to date. New enzyme cocktails that can increase the yields of fermentable products and other value-added chemicals are currently under study (Zhu et al., 2016).

Hemicellulases are a generic family of proteins that catalyze the degradation of hemicellulosic polymers from which xylanases have been intensely researched. Xylan is the most abundant type of hemicellulose found on hardwoods and its structure is mainly (1→4)-linked β-D-xylan residues that are substituted with glucuronosyl and 4-O-methylglucuronosyl residues by β-(1→2) linkages. Other substituent like acetyl, feruloyl, coumaroyl groups and α-L-arabinofuranosyl can also be of relative importance to produce the complete breakdown of hemicellulose. Generally, xylanases refer to a large group of enzymes comprising endo-1, 4-β-xylanase (EC 3.2.1.8) and β-xylanosidase (EC 3.2.1.37), and several accessory enzymes with debranching activity (Peng et al., 2012). Endo-xylanases degrade xylan at internal sites, producing xyloooligosaccharides of varying length. Complementary, β-xylanosidase removes xylose residues from the end of these short oligosaccharides. Esteras are among the most studied enzymes with debranching activity on hemicellulose. Acetylxylan esterase (EC 3.1.1.72) removes the O-acetyl of acetyl xylan, while feruloyl and coumaroyl esterases (EC 3.1.1.73) hydrolyse the phenolic compounds

CAZyme family	No. Genes	Carbohydrate target	Enzyme name	No. enzymes
GH5	1	Hemicellulose	β-mannanase	1
GH10	5	Hemicellulose	β-1,4-endoxylanase	5
GH11	1	Hemicellulose	β-1,4-endoxylanase	1
GH26	1	Hemicellulose	Glycosidase related	1
GH43	19	Pectin + hemicellulose	Exo-b-1,3-galactanase	2
			α-L-arabinofuranosidases	12
			Glycosidase related	5
GH51	2	Pectin + hemicellulose	α-L-arabinofuranosidases	2
GH53	1	Pectin + hemicellulose	Endo-β-1,4-galactanase	1
GH62	1	Hemicellulose	α-L-arabinofuranosidases	1
GH93	2	Hemicellulose	Exo-1,5-α-L-arabinanase	1
			Glycosidase related	1
GH115	2	Hemicellulose	Xylan α-1,2-glucuronidase	2
TABLE 4 Granted and applied patents related with S. commune

Technical and industrial fields of the patents (applied for or granted)	Applicant(s) and year	References
Selective and oriented enzyme production and preparation		
Preparation of glucoamylase	TAX ADM Agency (Japan, 1984)	Shimazaki and Sato (1984)
Production of bilirubin-oxidase	Takara Shuzo Co. Ltd (Japan, 1986; 1984)	Matsui, Sato, and Nakajima (1986) and Susumu, Satou, and Takako (1984)
Production of cholesterol oxidase and its use in modification of natural occurring spirostanes	Toejepast Natuur Ondersoek, (Netherland, 1988); Ono Pharmaceutical Co., Ltd. (Osaka, Japan, 1977)	Kerkenar Anthonius inventor, NO voor TNO (1988) and Suguri, Shimizu, Sugiyama, Kuratsu, and Hirata (1977)
Production of xylolglycan endo-transglycosylases	Novozymes A/S (Europe, 2000)	Ilum (2000)
Production of cholesterol esterase	Toyobo Co. Ltd. (Japan, 1978)	Aisui, Nakagiri, and Otawara (1976)
Production of pantolactone hydrolase	Fuji Yakuin Kogyo Kabushiki Kaisha (Japan, 1996)	Sakamoto, Yamada, and Shimizu (1996)
Production of xylanase and laccases for treatment of wood pulp and lignin decomposition	Mercian Corp. Japan Bioindustry Association Agency of Ind. Science & Technol (Japan, 2000); Clariant Finance (bvi) Limited Sandoz (Europe, 1997)	Behrendt, Blanchette, Farrell, and Iverson (1997) and Hitoshi, Watanabe, Yoshio, and Takeo (2000)
Production of thermostable xylanases	National Research Council of Canada (Canada, 2001)	Wing (2001)
Production of thermo-resistant trehalose phosphorylase	Kureha Chem. Ind. Co. Ltd (Japan, 2004)	Eiaki, Eiichi, Yasutake, and Toshiihiko (2004)
Multifunctional cellulases	Dyadic International (USA, 2013) Ltd. (USA); Novozymes A/S (2014).	Emalfarb et al., (2013) and Kuiderd, Wu, Li, and Zhou (2014)
Enzymatic complex with chlorogenic acid esterase activity and feruloyl esterase activity	Stern Enzym GmbH & Co. KG (Denmarck, 2014)	Nieter et al. (2016)
Obtaining and preparation of secondary metabolites and derivatives with great added value		
Preparation and use of β-glucans	Birch Stewart Kolasch & Birch (USA, 2009)	Kim, Park, and Sang-Rin (2009)
Preparation of neoschizophyllan	Taito Co., Ltd. (Tokyo, Japan, 1978) & Kaken Chemical Co., Ltd. (Tokyo, Japan, 1978)	Kikumoto, Yamamoto, Komatsu, Kobayashi, and Kamasuka (1978)
Preparation of trehalose	Kureha Chem. Ind. Co. Ltd (Japan, 1994)	Takashi and Eisaku (1994)
Preparation of schizostatin	Sankyo Co. Ltd (Japan, 1995)	Yoshih, Kiyoshi, Tomoyuki, Tatsu, and Takeshi (1995)
Preparation of stachyose	Infinitus (China, 2017)	Meng, Zhang, Zhou, Gao, and Duan (2017)
Obtention of ergothioneine	Mitsubishi Shoji Foodtech Co Ltd (Japan, 2015)	Tokumits (2015)
Preparation of schizophyllan	Ningbo Xiuuoya Marine Biotechnology Co. Ltd (China, 2016)	Hui (2016)
Production of huperzine A	Univ. Fujian Traditional Chinese Medicine (China, 2014)	Yaxuan (2014)
Processes and prototypes		
Cosmetic creams for topical use	MAX FUAKUTAA KK (Japan)	Fukada, Kobayashi, Matsuda, Kato, Toshinori, and Kojima (1993)
Oxidative dyeing process of keratin fibers	Casalonga Axel Bureau (Europe, 2002)	Gregory (2002)
Endoglucanase treatment of lignocellulosic materials and selective degradation of resin acids and triterpenes	Novozymes, A/S (USA, 2002)	Schülein et al. (2002)
Production of II generation biofuels from vegetable biomass via cellulolytic enzymes	IFP (France, 2009)	Margeot Antoine (2009)
Process for degradation of lignin and dioxin derivatives in field conditions	Idemitsu Kosan Co. Ltd (Japan, 2001)	Yuki Junishiro (2001)

(Continues)
linked to arabinofuranoside residues. α-L-Arabinofuranosidase (EC 3.2.1.55) and α-L-glucuronidase (EC 3.2.1.139) are also responsible for the cleavage of branching structures.

The reduced capacity of \textit{S. commune} to degrade the lignin components from lignocellulose has been previously reported (Floudas et al., 2015; Horisawa et al., 2015; Zhu et al., 2016) in agreement with the lack of genes encoding class II peroxidases from the AA2 family (Ohm, de Jong, Lugones, et al., 2010). Interestingly, the main enzymatic activity detected in culture supernatants from \textit{S. commune} grown in lignocellulosic substrates is hemicellulolytic (Zhu et al., 2016). Nevertheless, the production of xylanase activity in this fungus is under the regulatory control of cellulosic degradation byproducts (Haltrich & Steiner, 1994). Xylan or galactomannan do not induce xylanase or mannanase activities when provided as sole carbon source. Instead, cellulose, cellobiose, lactose, and l-sorbose induce, altogether, xylanase, cellulase, as well as mannanase activities indicating a common regulatory control in this fungus (Haltrich & Steiner, 1994).

The analysis of the genome of \textit{S. commune} has shown that non-cellulosic polysaccharide-degrading enzymes are more abundant when compared to other model of lignocellulose decomposers (Ohm, de Jong, Lugones, et al., 2010). This fungus contains an extensive repertoire of xylan and pectin glycoside hydrolases as shown in Table 3, indicating a great potential for hemicellulose deconstruction. When compared with other basidiomycete fungi (the white-rot \textit{Phanerochaete chrysosporium} and \textit{Ceriporiopsis subvermispora} and the brown-rot \textit{Gloeophyllum trabeum}), \textit{S. commune} achieved the highest xylanase activity when growing on a lignocellulosic substrate (Zhu et al., 2016). Similarly, a crude enzymatic cocktail obtained from a solid-state fermentation of \textit{S. commune} was more effective than a commercial enzyme cocktail from \textit{Trichoderma longibrachiatum} in terms of reducing sugar release from pretreated lignocellulosic biomass (Zhu et al., 2016). In this case, while cellulolytic activities where similar, the level of xylanases was significantly higher in the \textit{S. commune} enzymatic cocktail.

5 LINNIN DEGRADING ENZYMES AND ALTERNATIVE BIOTECHNOLOGICAL APPLICATIONS OF \textit{SCHIZOPHYLLUM COMMUNE}

In addition to the cellulases and xylanases studied in \textit{S. commune} (Table 1), the lignin-degrading enzymes of this fungus have also been evaluated for different biotechnological applications. According to the CAZy database, lignin-degrading enzymes are grouped in some of the families with auxiliary activity. From these, \textit{S. commune} produces only members of the AA1 (laccases; 2 genes), AA3 (cellobiose dehydrogenases: 1 gene; glucose oxidase: 4 genes; aryl alcohol oxidase: 1 gene; pyranose oxidase: 1 gene; alcohol oxidase: 1 gene) AA5 (glyoxal oxidase: 2 genes) and AA6 (benzoquinone reductase: 4 genes) families, lacking the production of lignin peroxidases (LiP), manganese peroxidases (MnP) and versatile peroxidases (VP), that belong to the AA2 family (Ohm, de Jong, Lugones, et al., 2010). Intriguingly, although \textit{S. commune} does not produce MnP nor LiP as stated above, there are a variety of studies which mention that the Lip and MnP enzymes from \textit{S. commune} are involved in the decolorization ofazoand textile dyes or that the LiP and MnP from \textit{S. commune} are useful enzymes for lignin removal of a variety of lignocellulosic substrates (Asgher, Wahab, Bilal, & Nasir Iqbal, 2016). It is likely that instead
of MnP and LiP, the enzymes involved in the decolorization and delignification effects are members of the multi-copper oxidases and the hydroxyl radical generation system, among others (Ohm, de Jong, Lugones, et al., 2010).

The evaluation of extracellular laccases from S. commune date to 1986 (De Vries, Kooistra, & Wessels, 1986). These enzymes are proteins with a great versatility, since they can oxidize a variety of organic and inorganic compounds, phenolic and non-phenolic substrates, including, mono, di, polyphenols, aminophenols, and metoxyphenols (Upadhyay, Shrivastava, & Agrawal, 2016). Current laccase investigations are focused on bio-oxidation and biotransformation processes, biosensor development, enzymatic synthesis of organic compounds, biopulping and biobleaching, textile dye transformation, removal of phenolic compounds from must and wine, waste effluent treatment, fossil fuel desulfurization, biosolubilization of coal, degradation of herbicides, food treatments, medicinal applications through the synthesis of novel compounds and delignification and biografting of lignocellulosics (Singh Arora & Kumar, 2010; Upadhyay et al., 2016). However, the search for industrial applications of S. commune’s laccases is scarce, and is limited to dye decolorization experiments, the study of the three-dimensional model of one of the laccases from S. commune and the activity related to delignification of lignocellulosic substrates. This lack of industrial applications of laccases from S. commune leaves open areas of studies to be exploited from various points of view.

![FIGURE 3 Europe Patent Office patents (1990–2017). Distribution by technological application fields](image)

6 | PATENTS RELATED TO THE POTENTIAL OF SCHIZOPHYLLUM COMMUNE IN INDUSTRIAL APPLICATIONS

Patent databases (United States Patent Office (USPO), World Intellectual Property Organization (WIPO), European Patent Office (EPO), etc.) show an overview on technological and industrial state of the art as well as conceptual and methodological advances in the field of molecular biology and biotechnological applications (applied mycobiotechnology and myco-remediation technology) of fungi.

In this context, there is an increase in the biotechnological significance of S. commune in the last 15 years. Related to its genome, its enzymatic complexes and its biological versatility, more than 6,000 patent application documents and technological reports have been registered between 1995 and 2017 worldwide, which support S. commune as a biotechnologically functional microorganism, relevant in different technological, agricultural, environmental and pharmaceutical fields. At the EPO, Espacenet, more than 170 patent documents have been registered during 2000–2017, directly linked to technological and industrial applications of S. commune. The fields of innovation-patentability-biotechnology where the versatility of S. commune is currently being applied are summarized in Table 4.

In the field of lignocellulosic biomass, more than 1,100 patents (altogether applied and granted) related to the use of S. commune were reported in the last two decades (Gupta, 2016), including biofuel’s production and biomass derivatives. As stated before, it is recognized that economic utilization of widely distributed lignocellulosic biomass as a feedstock for the eco-sustainable production of biocarburants, biodiesel, molecular scaffolds, biomaterials, fuels, and chemicals with high-added value would represent a conceptual and methodological change in the strategic utilization of natural raw materials, allowing sustainable resources to be substituted for, and compete with, petroleum-based products.

In other research areas, S. commune has also been a subject of interest. For example, a nematidal and bacteriostatic fungimant formulation has been prepared from an S. commune strain where the main bioactive component is β-bisabolol. This composition is environmentally friendly and shows a very wide spectrum of action (Kaiyin, 2017). Cozen Co. Ltd reported a hot water-extracted thrombotic dissolving enzyme (9–10 kDa) from S. commute fruiting bodies, capable of being used effectively as health supplement food or a treatment agent for thrombus-related disease (Choi Nack Shick, 2015).

The patent database study (EPO base, 150–170 documents from 1990 to 2017) reveals that the main technological-industrial application fields for S. commune in the last two decades were: nutritional additives for humans and animals with economic significance; agricultural biotechnology; pharmaceutical and cosmetic industry; generation of secondary metabolites with great-added value; biotechnological application of enzyme complexes; biomass processing and bio-refineries; and environmental issues. Some results are shown in Figure 3.

Taking this information into account, it must be highlighted that nutritional additives (nutrient feed, fermented functional beverages, forage, healthcare formulations, tonifying compositions, etc.) correspond to 20% of the overall patents reported for that period. In the case of the pharma-cosmetic field (bioactive antibacterial-nematocide components, pharma compositions, extracts with selective pharmaceutical properties, anticancer and antiviral formulations, skin treatment creams, ophthalmic solutions, bio-adhesives, anti-oxidant and anti-wrinkle formulations, nano-liposomes, etc.) it corresponds to 27%. Regarding to biomass bioprocessing and related processes (bio-pretreatment of agrowastes, biological saccharification, gelatin production, obtention of biofuels and bio-derivatives at the bio-refinery level, generation
of enzymatic complexes for treatment of lignocellulosic materials and wastes, functional biofibers and bio-oligomers, solid fermentation, pith and lignin degradation, bio-oriented decomposition, etc.) the patents correspond to 22%, and, in the field of applied secondary metabolites, with great-added value, and utilization of enzymatic complexes (laccases, cellulases, xylanases, esterases, oxidases, production of glucans and polysaccharides with different molecular weights, ergothioneine, schizophyllan, glucosone, xylitols, trehalose, pantolactone, retinoids, organic acids, etc.), the patents number account for 31% of the total. It is noteworthy that the observed application-development trends will be maintained in the next 2–5 years, which supports the biotechnological versatility and applicability of this basidiomycete.

7 | CONCLUSIONS

Schizophyllum commune is a fungus that has a quite complete enzymatic set that can be used for diverse areas in the biotechnological field. Its genome description as well as the recently published works and patents related to this fungus, demonstrates part of the biotechnological potential that S. commune possess. This review is the first to concentrate most of the work that has been done with S. commute in the subject of plant biomass exploitation and the enzymes involved in its degradation, with a view to its future implementation in bio-refineries, pollutant degradation, formulation of enzymatic cocktails, bioconversion of agricultural by-products, as an example. Additionally, S. commune is a good source for hydrolytic, non-hydrolytic and oxidative enzymes which can help to understand the processes by which this fungus is capable of using the carbohydrates and phenolic compounds in the vast diversity of woods it can colonize, since classical genetics and genetic engineering techniques are available for S. commute.

ACKNOWLEDGMENTS

We are thankful to the National Council for Science and Technology (CONACyT) since OETH received a scholarship during the elaboration of this work. We also thank the financial support received from SEP-PRODEP-UAEMOR-PITC-381. RABG received a post-doctoral fellowship from the Quebec Government.

CONFLICT OF INTEREST

Authors declare that there are no conflicts of interest.

REFERENCES

Ahmad, S., & Miles, P. (1970). Hyphal fusions in Schizophyllum commune. Effects of environmental and chemical factors. Mycologia, 62, 1008–1017. https://doi.org/10.2307/3757614

Aisui, S., Nakagiri, S., & Otawara, S. (1976). Preparation of cholesterol esterase. Japan; JPS539391 A.

Akiyuni, Y., & Takashi, S. (2000). Anticancer Composition. WO 01/54724 A1.

Amna, J., Bajwa, R., & Javaid, A. (2010). Biosorption of heavy metals using a dead macro fungus Schizophyllum commune fris; Evaluation of equilibrium and kinetic models. The Pakistan Journal of Botany, 42(3), 2105–2118.

Arboleda Valencia, J. W., Valencia Jiménez, A., Gonzáles De Siqueira, A., Dussan Medina, K., Restrepo Franco, G. M., Ibarra, E. X. F., ... Grossi-de-Sa, M. F. (2011). Holocellulose activity from Schizophyllum commune grown on bamboo: A comparison with different substrates. Current Microbiology, 63(6), 581–587. https://doi.org/10.1007/s00284-011-0023-1

Asgher, M., Wahab, A., Bilal, M., & Nasir Iqbal, H. M. (2016). Lignocellulose degradation and production of lignin modifying enzymes by Schizophyllum commune IBL-06 in solid-state fermentation. Biocatalysis and Agricultural Biotechnology, 6, 195–201.

Asgher, M., Yasmeen, Q., & Iqbal, H. M. N. (2013). Enhanced decolorization of Solar brilliant red 80 textile dye by an indigenous white rot fungus Schizophyllum commune IBL-06. Saudi Journal of Biological Sciences, 20(4), 347–352. https://doi.org/10.1016/j.sjbs.2013.03.004

Baldrion, P., & Valásková, V. (2008). Degradation of cellulose by basidiomycetous fungi. FEMS Microbiology Reviews, 32(3), 501–521. https://doi.org/10.1111/j.1574-6976.2008.00106.x

Behrendt, C., Blanchette, R., Farrell, R., & Iverson, S. (1997). Method for improving the efficiency of chemical pulping processes by pretreating wood or pulpwod with white rot fungi. WO 1997/013025 A1.

Bhatti, H. N., Akram, N., & Asgher, M. (2008). Optimization of culture conditions for enhanced decolorization of cibacron red FN-2BL by Schizophyllum commune IBL-6. Applied Biochemistry and Biotechnology, 149(3), 255–264. https://doi.org/10.1007/s12010-007-8123-x

Biely, P., Côté, G. L., Kremnický, L., Greene, R. V., Dupont, C., & Kluepfel, D. (1996). Substrate specificity and mode of action of acetylxylan esterase from Streptomyces lividans. FEBS Letters, 396(2–3), 257–260. https://doi.org/10.1016/0014-5793(96)01080-0

Boyce, A., & Walsh, G. (2012). Identification of fungal proteases potentially suitable for environmentally friendly cleaning-in-place in the dairy industry. cheesphere, 88(2), 211–218. https://doi.org/10.1016/j.chemosphere.2012.03.022

Canam, T., Town, J., Iroba, K., Tabil, L., & Dumonceaux, T. (2013). Sustainable degradation of lignocellulolic biomass - techniques, applications and commercialization. In A. K. Chandel & S. S. da Silva (Eds.), Sustainable degradation of lignocellulolic biomass - techniques, applications and commercialization (pp. 207–247). New York: Intech.

Chen, H. (2014). Biotechnology of lignocellulose. Theory and practice. In Biotechnology of lignocellulose theory and practice (p. 510). 1st ed. Beijing: Springer Netherlands. https://doi.org/10.1007/978-94-007-6898-7

Choi Nack Shick, K. Y. H. (2015). Thrombotic dissolving enzyme extracted from Schizophyllum commune. Europe; KR20150053323A.

Chong, S. L., Battaglia, E., Coutinho, P. M., Henrissat, B., Tenkanen, M., & Here, J. (2012). Identification of fungal proteases potentially suitable for environmentally friendly cleaning-in-place in the dairy industry. Chemosphere, 88(2), 211–218. https://doi.org/10.1016/j.chemosphere.2012.03.022

Ito, K., & Tabib, L. (2013). Sustainable degradation of lignocellulolic biomass - techniques, applications and commercialization. In A. K. Chandel & S. S. da Silva (Eds.), Sustainable degradation of lignocellulolic biomass - techniques, applications and commercialization (pp. 207–247). New York: Intech.

Clarke, A. J., & Adams, L. S. (1987). Irreversible inhibition of Schizophyllum commune cellulase by divalent transition metal ions. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 916(2), 213–219. https://doi.org/10.1016/0167-4838(87)90111-7

Clarke, A. J., Drummonds, J., & Yakuglu, M. (1997). Identification of the catalytic nucleophile in the cellulase from Schizophyllum commune and assignment of the enzyme to Family 5, subtype 5 of the glycosidases. FEBS Letters, 414(2), 359–361.

De Jong, J. F., Ohm, R. A., De Bekker, C., Wösten, H. A. B., & Lugones, L. G. (2010). Inactivation of ku80 in the mushroom-forming fungus

TOVAR-HERRERA ET AL.
Schizophyllum commune increases the relative incidence of homologous recombination. FEMS Microbiology Letters, 310(1), 91–95. https://doi.org/10.1111/j.1574-6968.2010.02052.x

De Vries, O. M., Kooistra, W. H., & Wessels, J. G. H. (1986). Formation of an Extracellular Laccase by a Schizophyllum commune Dikaryon. Microbiology, 132(10), 2817–2826. https://doi.org/10.1099/00221287-132-10-2817

Desrochers, M., Jurasek, L., & Paice, M. G. (1981). High Production of beta-Glucosidase in Schizophyllum commune: Isolation of the Enzyme and Effect of the Culture Filtrate on Cellulose Hydrolysis. Applied and Environment Microbiology, 41(1), 222–228.

Eibinger, M., Sigl, K., Sattelkow, J., Ganner, T., Ramoni, J., Seiboth, B., ... Nidetzky, B. (2016). Functional characterization of the native swolle- nin from Trichoderma reesei: Study of its possible role as C1 factor of enzymatic lignocellulose conversion. Biotechnology for Biofuels, 9(1), 178. https://doi.org/10.1186/s13068-016-0590-2

Eisaki, T., Etichi, T., Yasukata, S., ... & Toshihiko, W. (2016). Lobster feed capable of enhancing immunity. Bioresource Technology, 197, 37–41. https://doi.org/10.1016/j.biortech.2015.08.031

Haltrich, D., & Steiner, W. (1994). Formation of xylanase by Schizophyllum commune: Effect of medium components. Enzyme and Microbial Technology, 16(3), 229–235. https://doi.org/10.1016/0141-0229(94)90047-7

Hemsworth, G. R., Henrissat, B., Davies, G. J., & Walton, P. H. (2013). Discovery and characterization of a new family of lytic polysaccharide monoxygenases. Nature Chemical Biology, 10(2), 122–126.

Hitoshi, U., Watanabe, J., Yoshio, H., & Takeo, Y. (2000). Lignin decomposition using laccase and lignin decomposition agent. Japan; JP2000064185 A.

Horisawa, S., Ando, H., Ariga, O., & Sakuma, Y. (2015). Direct etha- nol production from cellulosic materials by consolidated biologi- cal processing using the wood rot fungus Schizophyllum commune. Bioresource Technology, 197, 37–41. https://doi.org/10.1016/j.biortech.2015.08.031

Hui, T. J. Z. (2016). Screening and application of marine Schizophyllum commune strain. Europe; CN105886408 A.

Ilum, N. (2000). Microbial xyloglucan endo-transglycosylases. Europe; EP 1005536 B1.

Javed, A., & Bajwa, R. (2008). Biosorption of electroplating heavy metals by some basidioymcetes. Mycopath, 6, 1–6.

Jayakumar, G. C., Kanth, S. V., Chandrasekaran, B., Raghava Rao, J., & Nair, B. U. (2010). Preparation and antimicrobial activity of scleralde- hyde from Schizophyllum commune. Carbohydrate Research, 345(15), 2213–2219. https://doi.org/10.1016/j.carres.2010.07.041

Kaiyin, Y. D. W. (2017). Schizophyllum commune strain for generating vol- atile bacteriostatic and nematocidal active component and applica- tion thereof. Europe; CN106350459 A.

Kerkenan Anthonius inventor, NO voor TNO. (1988). Process for preparing steroids. Europe; EP 0274147 A2.

Kikumoto, S., Yamamoto, O., Komatsu, N., Kobayashi, H., & Kamasuka, T. (1978). Method of producing neoschizophyllan having novel pharma- cological activity. United States; US4098661.

Kim, I. J., Nam, K. H., Yun, E. J., Soun, Y. H., Lee, J. H., ... Kim, K. H. (2015). Optimization of synergism of a recombinant auxiliary activity 9 from Chaetomium globosum with cellulase in cellulose hydrolysis. Applied Microbiology and Biotechnology, 99(20), 8537–8547. https://doi.org/10.1007/s00253-015-6592-3

Kim, M. S., Park, Y. D., & Sang-Rin, L. E. E. (2009). Method of using beta-glucan from Schizophyllum commune. United States; 20090023681 A1.

Kolenová, K., Vršanská, M., & Biely, P. (2005). Purification and charac- terization of two minor endo-1,4-α-xylosanases of Schizophyllum commune. Enzyme and Microbial Technology, 36(7), 903–910. https://doi.org/10.1016/j.enzmictec.2005.01.006

Kothe, E. (1999). Mating types and pheromone recognition in the Homobasidiomycete Schizophyllum commune. Fungal Genetics and Biology, 27(2–3), 146–152. https://doi.org/10.1006/fgbi.1999.1129

Kul, L. J., Kim, S., Sadashiv, S., Cha, M., Lee, J., & Roh, H. (2017). Biological saccharification method using biomass from heavy metal contami- nated soil purifying plant. Europe; KR20160114772 A.

Kumar, N. S., & Min, K. (2011). Phenolic compounds biosorption onto Schizophyllum commune fungus: FTIR analysis, kinetics and adsorp- tion isotherms modeling. Chemical Engineering Journal, 168(2), 562–571. https://doi.org/10.1016/j.cej.2011.01.023

Kumar, M., Survase, S. A., & Singh, R. S. (2008). Production of schizophyllan using Schizophyllum commune NRCM. Bioresource Technology, 99(5), 1036–1043. https://doi.org/10.1016/j.biortech.2007.02.029

Lavarrack, B. P., Griffin, G. J., & Rodman, D. (2002). The acid hydrolysis of sugarcane bagasse cellulose to produce xylose, arabinose,
system. Desalination, 265(1-3), 22-27. https://doi.org/10.1016/j.desal.2010.07.024

Tanghe, M., Danneels, B., Camattari, A., Glieder, A., Vandenberghe, I., Devreese, B., ... Desmet, T. (2015). Recombinant Expression of Trichoderma reesei Cel61A in Pichia pastoris: Optimizing Yield and N-terminal Processing. Molecular Biotechnology, 57(11-12), 1010-1017. https://doi.org/10.1007/s12033-015-9887-9

Tenkanen, M., & Siika-Aho, M. (2000). An beta-glucuronidase of Trichoderma reesei Cel61A in Pichia pastoris: Optimizing Yield and N-terminal Processing. Molecular Biotechnology, 78(2), 149–161. https://doi.org/10.1016/S0168-1656(99)00240-0

Tian, C., Beeson, W. T., Iavarone, A. T., Sun, J., Marletta, M. A., Cate, J. H., & Tokumitsu, H. C. T. S. S. F. M. (2015). Ergothioneine-containing compositions from Schizophyllum commune acting on polymeric xylan. European Journal of Biochemistry, 212, 1617-1622. https://doi.org/10.1010/jpas.0906810106

Tokumits, H. C. T. S. F. M. (2015). Ergothioneine-containing composition. Europe; JP 2015116173 A.

Tovar-Herrera, O. E., Batista-García, R. A., Sánchez-Carbente, M. D. R., Iracheta-Cárdenas, M. M., Arévalo-Niño, K., & Folch-Mallol, J. L. (2015). A novel expansin protein from the white-rot fungus Schizophyllum commune. PlOS ONE, 10(3), e0122296. https://doi.org/10.1371/journal.pone.0122296

Tsujiyama, S., & Ueno, H. (2011). Production of cellulolytic enzymes containing cinnamic acid esterase from Schizophyllum commune. Journal of General and Applied Microbiology, 57(6), 309-317. https://doi.org/10.2323/ijgam.57.309

Upadhyay, P., Shrivastava, R., & Agrawal, P. K. (2016). Bioprospecting and biotechnological applications of fungal laccase. Biotechnology, 61(1), 15.

Vaaje-Kolstad, G., Westereng, B., Horn, S. J., Liu, Z., Zhai, H., Sorlie, M., & Eijrink, V. G. H. (2010). An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science, 330(6001), 219-222. https://doi.org/10.1126/science.1192231

Van Wetter, M. A., Schuren, F. H. J., Schuurs, T. A., & Wessels, J. G. H. (1996). Targeted mutation of the SC3 hydrophobin gene of Schizophyllum commune affects formation of aerial hyphae. FEMS Microbiology Letters, 140(2-3), 265-269. https://doi.org/10.1111/j.1574-6968.1996.tb08347.x

Wessels, J. G. H. (1986). Cell wall synthesis in apical hyphal growth. International Review of Cytology, 104, 37-79. https://doi.org/10.1016/S0074-7696(86)81923-3

Wessels, J. G., de Vries, O. M., Asgeirsdottir, S. A., & Springer, J. (1991). The thn mutation of Schizophyllum commune, which suppresses formation of aerial hyphae, affects expression of the Sc3 hydrophobin gene. Journal of General Microbiology, 137(10), 2439-2445.

Westereng, B., Ishida, T., Vaaje-Kolstad, G., Wu, M., Eijrink, V. G. H., Igarashi, K., ... Sandgren, M. (2011). The putative endoglucanase pCGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. PloS ONE, 6(11), e27807. https://doi.org/10.1371/journal.pone.0027807

Willick, G. E., & Selig, V. L. (1985). Multiplicity in cellulosomes of Schizophyllum commune: Derivation partly from heterogeneity in transcription and glycosylation. European Journal of Biochemistry, 151(1), 89-96. https://doi.org/10.1111/j.1432-1033.1985.tb09072.x

Wing, L. (2001). Thermostable xylanases. Europe; EP 1 131 447 B1.

Wu, J., Yang, X., Ge, J., Zhang, Y., Wu, L., Liu, J., et al. (2012). Biotransformation of sophoricoside in Fructus sophorae by the fungus Schizophyllum commune. Bioresource Technology, 2012(111), 496–499.

Xiume, Z. (2016). Milk cow forage. Europe; CN106071100 A.

Yang, H. L., Shen, G. P., Park, D. C., Novotny, C. P., & Ullrich, R. C. (1995). The a-alpha mating-type transcripts of Schizophyllum commune. Experimental Mycology, 19(1), 16-25. https://doi.org/10.1006/emyc.1995.1003

Yao, J., Jia, R., Zheng, L., & Wang, B. (2013). Rapid decolorization ofazo dyes by crude manganese peroxidase from Schizophyllum sp. F17 in solid-state fermentation. Biotechnol. Bioprocess Engineering, 18(5), 868–877. https://doi.org/10.1007/s12257-013-0357-6

Yaxuan, W. S. L. H. Z. F. Z. (2014). Phleghmarius phlegeriae minge-gens mycorrhizal fungi, method for production of huperzine A from the same, and application. Europe; CN 103834577 A.

Yoshio, T., Kiyoishi, H., Tomoyuki, F., Tatsu, T., & Takeshi, H. (1995). Schizostatin of new physiologically active substance and its production. Japan; JPH0741454 A.

Yuki Junishiro, S. M. (2001). Mold capable of degrading dioxin, degradation of dioxin with the use of the same, method for producing composts capable of degrading dioxin and method for growing plants. Europe; EP 1074611 A1.

Zhu, N., Liu, J., Yang, J., Lin, Y., Yang, Y., Ji, L., ... Yuan, H. (2016). Comparative analysis of the secretomes of Schizophyllum commune and other wood-decay basidiomycetes during solid-state fermentation reveals its unique lignocellulose-degrading enzyme system. Biotechnology for Biofuels, 9(1), 42. https://doi.org/10.1186/s13068-016-0461-x

How to cite this article: Tovar-Herrera OE, Martha-Paz AM, Pérez-LLano Y, et al. Schizophyllum commune: An unexploited source for lignocellulose degrading enzymes. MicrobiologyOpen. 2018;7:e637. https://doi.org/10.1002/mbo3.637