Long-term evidence for ecological intensification as a pathway to sustainable agriculture

Chloe MacLaren1,2✉, Andrew Mead3, Derk van Balen4, Lieven Claessens5,6, Ararso Etana6, Janjo de Haan4, Wiepie Haagsma4, Orttrud Jäck7, Thomas Keller5,6, Johan Labuschagne9, Åsa Myrbeck6,10, Magdalena Necpalova11,12, Generose Nziguheba13, Johan Six1,12, Johann Strauss2,9, Pieter Andreas Swanepoel12, Christian Thierfelder14, Cairistiona Topp15, Flackson Tshuma12, Harry Verstegen4,4, Robin Walker16, Christine Watson7,16, Marie Wesselink4 and Jonathan Storkey1

Ecological intensification (EI) could help return agriculture into a ‘safe operating space’ for humanity. Using a novel application of meta-analysis to data from 30 long-term experiments from Europe and Africa (comprising 25,565 yield records), we investigated how field-scale EI practices interact with each other, and with N fertilizer and tillage, in their effects on long-term crop yields. Here we confirmed that EI practices (specifically, increasing crop diversity and adding fertility crops and organic matter) have generally positive effects on the yield of staple crops. However, we show that EI practices have a largely substitutive interaction with N fertilizer, so that EI practices substantially increase yield at low N fertilizer doses but have minimal or no effect on yield at high N fertilizer doses. EI practices had comparable effects across different tillage intensities, and reducing tillage did not strongly affect yields.

Agriculture is a leading cause of global environmental change, while also being highly vulnerable to that change1. Human activities, including agriculture, have increased GHG emissions, nutrient bioavailability, habitat loss and species extinctions towards ‘planetary boundaries’, where Earth’s environment is at high risk of shifting to a less hospitable state2,3. This in turn threatens agriculture through increasing the likelihood of extreme weather events, resource depletion and pest outbreaks4–6. Agriculture must address these environmental challenges while also meeting the needs of a growing global population. Although many political and societal changes could limit future food demand (such as fairer food distribution and reduced animal-product consumption7), it must also be assumed that yields of the world’s staple crops will, at the very least, need to be maintained1.

Ecological intensification (EI) is one pathway proposed to sustain yields while reducing adverse impacts of agriculture on the environment (and consequently reducing threats posed to agriculture by the environment). EI is defined as the enhancement of ecosystem services to complement or substitute for the role of anthropogenic inputs in maintaining or increasing yields8,9. Anthropogenic inputs have underpinned necessary gains in productivity and food security since the Green Revolution, but their widespread over-use has incurred substantial environmental costs10. EI seeks to retain productivity while mitigating environmental impacts and is a strategy that could be implemented under various sustainable agriculture paradigms, such as agroecology11, sustainable intensification12 and climate-smart agriculture13. Managing farmland to provide ecosystem services that support productivity can also encourage farmers to avoid environmentally degrading practices, leading Titttonell1 to describe EI as both ‘sustained by nature and sustainable in nature’.

In this article, we investigate the extent to which crop yields can be supported by field-scale EI practices targeted at enhancing the ecosystem services of nutrient cycling and regulating weeds, pests and diseases. Input-based, field-scale practices to achieve high yields involve regular and intensive inputs of tillage, synthetic fertilizers and pesticides, which together can lead to increased carbon emissions and the release of pollutants and soil particulates into surrounding habitats14,15. Identifying and upscaling farming practices that decouple high yields from high use of these inputs would therefore facilitate returning to a global ‘safe operating space’16. There is promising evidence that many field-scale EI practices could contribute to this decoupling17, such as using legumes to fix nitrogen18, diversifying crops to better regulate weeds, pests and diseases19, recycling manures to fertilize crops20 and managing crop residues to improve soil quality21.

Realizing the full potential for EI, however, requires knowledge of the relative yield response to different EI practices and inputs and the extent to which this response is context dependent.

1Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK. 2Department of Agronomy, Stellenbosch University, Matieland, South Africa. 3Intelligent Data Ecosystems, Rothamsted Research, Harpenden, UK. 4Field Crops, Wageningen University and Research, Lelystad, The Netherlands. 5International Institute of Tropical Agriculture (IITA), Duluti, Arusha, Tanzania. 6Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden. 7Department of Crop Production Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden. 8Department of Agroecology and Environment, Agroscope, Zürich, Switzerland. 9Western Cape Department of Agriculture, Elsenburg, South Africa. 10Department of Agriculture and Food, Research Institutes of Sweden (RISE), Borås, Sweden. 11Environnement et Ressources en Matières Agroalimentaires (ERMAD), University of Agricultural Sciences (SLU), Uppsala, Sweden. 12Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland. 13International Institute of Tropical Agriculture (IITA), Nairobi, Kenya. 14Southern Africa Regional Office, International Maize and Wheat Improvement Centre (CIMMYT), Harare, Zimbabwe. 15SRUC Edinburgh, Edinburgh, UK. 16SRUC Aberdeen, Aberdeen, UK. 17e-mail: chloe.maclaren@rothamsted.ac.uk
Table 1 | Detail on each EI practice and input investigated

EI or input variable	Hypothesis*	Focal variable(s) and treatment pairs*	Levels when a context variable
CD (EI practice)	Shifting from a monoculture to a crop rotation or an intercrop will increase yields, and this increase will depend on how diverse the rotation or intercrop is, whether or not legumes are included. It will also depend on the levels of NF, OM and TI in which this change in diversity is implemented.	Yield ratios were calculated between a monoculture reference treatment with a Simpson’s diversity index of 1 and a comparison treatment consisting of a rotation or an intercrop. The comparison treatment was characterized by whether it was a rotation or an intercrop, by whether it included legumes or not and by its Simpson’s index of diversity (see Supplementary Part 2).	(1) Monoculture (2) Diverse with legumes (3) Diverse without legumes
OM (EI practice)	Adding OM, by either retaining crop residues or adding manure or plant materials (raw or composted), will increase yields. This increase will depend on the type of OM added and on the levels of CD, NF and TI in which this addition occurs.	Yield ratios were calculated between treatment pairs that described the addition of OM amendments, a change in the type of OM amendment and/or a change in crop residue management from residue removal to residue retention. OM amendments considered: none, plant-based, manure or plant-based + manure (no plant-based amendments are living; all are cuttings, plant residues, compost or biochar).	(1) None (2) Plant-based OM added (3) Manure added
TI (input)	Reducing tillage will increase yields, and this increase will depend on the initial type of tillage and the type of tillage to which it is reduced. It will also depend on the levels of CD, NF and OM.	Yield ratios were calculated for treatment pairs describing a reduction in TI, so the reference treatment tillage type always consisted of a more intensive practice than the comparison treatment tillage type. Tillage types were considered to rank in intensity in the following order: Deep (15–25 cm) inversion tillage (for example, mouldboard plough); Ridge-furrow planting (soil dug over and shaped into ridges and furrows); Deep (15–25 cm) non-inversion tillage (for example, subsoling); Shallow (5–10 cm) non-inversion tillage (for example, tine harrow); Infrequent tillage (tillage less than once per year); Basins (soil dug within confined areas to create planting basins; also known as ‘zai’); No-till (no tillage but some soil disturbance caused by planting implement, for example, tine openers or rip-line seeding); Zero-till (no tillage and no soil disturbance caused by planting implements, for example, disc openers, dibble sticks or jab planters).	(1) Deep inversion tillage (2) Reduced tillage (includes ridge furrows, non-inversion tillage, shallow tillage, basin and infrequent tillage*) (3) No-till (includes no-till and zero-till)
NF (input)	Reducing nitrogen fertilization will affect yields, and this effect will depend on the initial amount of nitrogen applied and by how much it is reduced. It will also depend on the levels of CD, OM and TI in which this reduction is implemented.	Yield ratios were calculated from treatment pairs describing a reduction in N fertilization in the reference treatment and the comparison treatment, measured as the amount of N fertilizer applied to the reference treatment in kg ha⁻¹ N, and proportion by which N was reduced in the comparison treatment. All yield ratios were calculated within levels of CD, FC, OM and TI.	(1) Zero N (2) Between 1 and 100 kg ha⁻¹ N (3) More than 100 kg ha⁻¹ N

The first column contains the hypotheses tested in each meta-analysis, and the second column describes the treatment pairs used to calculate the yield ratios for each. All yield ratios compare a reference treatment, which is either a lower level of EI or a higher level of input, with a comparison treatment, which is a higher level of EI or a lower level of input. The final column indicates the reduced number of levels used to describe the EI practice or input when it was a context variable in a meta-analysis with a different focal variable. Bold text describes the change between the reference and comparison treatments (tested in the null model), italicized text describes focal variables included as moderators (tested in the base model) and normal text describes the effects of the management context in which the EI practice or input reduction is implemented (tested in the intermediate and full models; Supplementary Table 3). Bold text indicates which characteristics of the reference and comparison treatments were included as focal moderator variables. *We define a monoculture as the same crop in a plot in every year (neither an intercrop nor a rotation). *A fertility crop is defined as a crop with distinct properties from the test crops that can be added to a rotation with the aim of increasing yield through increasing the functional diversity of a system. We use this variable to explore the effects of adding nitrogen-fixing legumes, crops with different harvest procedures (cutting or grazing) and multi-annual legys, each of which could be expected to influence test crop yields via different mechanisms. **This means that these practices are reduced relative to deep inversion tillage, not necessarily reduced compared with local conventional practices.
The aim of EI may differ depending on the context; for example, in a high-input, high-yield scenario, EI practices may be intended to reduce inputs and thus environmental impacts while sustaining yields, to bring cropping systems back within a global safe operating space. In low-yield, low-input systems, EI practices might improve food security by complementing inputs to increase yields in the face of low input accessibility or adverse local conditions. However, it is important to understand whether different EI practices have different effects in these different contexts so that the optimal combinations of EI practices and inputs can be used to achieve the desired aim.

The overarching picture of the relative effects of and interactions between EI practices and inputs has so far remained unclear because it is challenging for individual experiments to test more than one or two practices or inputs in concert (given the need for enough area to replicate multiple treatments). Meta-analyses can compare relative effects across multiple experiments but have not yet been applied to explore whether different EI practices and inputs interact in their effects on yield. Previous research in EI has also been limited by the short-term focus of many studies that address effects on a single crop over one or two years, while the true impacts of different agronomic practices may become apparent only over long timescales when the effects of interannual variability, short-term perturbations and transitional dynamics can be accounted for.

To address this knowledge gap, this study collated data across 30 long-term experiments (LTEs) in Europe and Africa (with a minimum age of nine years) to investigate the relative yield effects of different EI practices and inputs. Analyses of multiple LTEs have previously been used to quantify the effect of crop diversification (CD) on yields and to compare different soil management practices but not yet to explore interactions among multiple EI practices and inputs. Together, the LTEs in our dataset assess three different EI practices: (1) CD from a monoculture, (2) addition of ‘fertility’ crops (FC) to an arable rotation and (3) organic matter (OM) management (including soil amendments and crop residues) (Table 1). Each of these offers opportunities to increase ecological functioning by increasing diversity and/or connecting resource flows within and/or between farmed fields. Many LTEs tested EI practices alongside different synthetic nitrogen fertilizer (NF) application rates and levels of tillage intensity (TI), allowing us to investigate the effects of EI practices (and combinations thereof) at different levels of these inputs. We consider TI to be an anthropogenic input of energy and disturbance, which incurs fuel use and soil degradation. Other inputs of high potential interest in relation to field-scale EI practices are phosphorus and pesticides, but we had insufficient data to assess these.

In total, our dataset consisted of 25,565 plot-by-year yield records. While individual results have been published for most LTEs, here we further realize the potential of these LTEs by synthesising data across experiments to test overarching hypotheses. To combine evidence for multiple practices across multiple LTEs with contrasting cropping systems and treatment structures, it was necessary to develop a new meta-analysis procedure to directly quantify the association between the relative yields and differences in each EI practice and input. Our specific objectives for this analysis were to (1) quantify the relative yield response to different EI practices and inputs in different combinations and (2) use these results to assess the potential for EI practices to increase crop yields for a given level of inputs or to sustain yields at reduced levels of inputs.

Exploring EI via meta-analysis of multiple LTEs

To explore the relative effects of different EI practices on yield across the 30 LTEs (Supplementary Table 1.1), we used a new three-step procedure to integrate data from experiments with different crops and different treatment levels in mixed-effect meta-analysis models. First, we defined each treatment in each LTE according to common indices (scales or categories) of our identified EI practices and inputs (Table 1 and Supplementary Table 1.2). Second, we estimated the mean yields and variances for the ‘test crops’ in each treatment in each LTE separately, using linear mixed models to account for the appropriate treatment and blocking structure. Test crops were crops present in all treatments of an LTE: spring or winter wheat (Triticum aestivum), maize (Zea mays), oats (Avena sativa), barley (Hordeum vulgare), sugar beet (Beta vulgaris) or potato (Solanum tuberosum). We then calculated response ratios between the mean yields of each treatment within each LTE (‘yield ratios’). Finally, mixed-effect meta-analysis models were applied to assess whether yield ratios responded consistently to particular EI practices or inputs across multiple cropping systems and locations and whether the yield response to each EI practice or input was dependent on input levels or other parallel EI practices.
Supporting information for the results presented in this Article is provided in the Supplementary Information: Supplementary Part 1 details each LTE and the treatments therein, Supplementary Part 2 explains the use of Simpson's index as a metric for cropping system diversity and Supplementary Part 3 provides information on the meta-analysis models to support the interpretation of each result and the extent to which it is generalizable (including model selection metrics, significance tests for parameters and tables and forest plots illustrating the contribution of each LTE to each model and treatment estimate).

CD and FC
Both diversifying from a monoculture and adding FC to an arable rotation usually increased test crop yields (Fig. 1). However, NF interacted with legumes to moderate the effect of diversification. For CD, diversification with legumes resulted in a yield increase when NF was low (≤100 kg ha⁻¹ N) but not when NF was high (>100 kg ha⁻¹ N), while diversification with non-legumes resulted in a greater yield increase under high NF than under low NF (Fig. 1a). These results suggest different ecological functions are provided by different crop types: legumes contributed to test crop yields via biological nitrogen fixation when NF was low, whereas non-legumes probably contributed via regulation of weeds, pests and diseases (which becomes more important at high NF). FC also generally had the highest benefit when leguminous FCs were added under low NF (Fig. 1b). Under high NF, no FC crops significantly increased yields, and we observed a yield decrease when grain legumes were added to a ploughed arable rotation under high N, suggesting a possible antagonism between applied N and legumes in this context (although as only two European LTEs tested FC in this context (Supplementary Fig. 3.2), the results may not be generalizable). There was also little benefit of adding annual FCs to a rotation that already contained legumes and received NF, indicating that the additional biological nitrogen fixation function was redundant in this context. However, multi-annual FCs, whether leguminous or grass leys, had benefits under low NF regardless of whether legumes were already present. This suggests leys provide additional functionality compared with annual FCs, although leys still did not significantly increase yields under high NF.

OM
The OM amendments were usually beneficial to long-term yields (Fig. 2), although adding manure was associated with a larger yield increase than adding plant-based OM. It is possible this difference was due to greater quantities of manure compared with plant-based OM applied on average across our LTEs or a higher nutrient content in the manure. Our assessment of the effects of different amendments was limited to the simple qualitative distinction of whether they were of plant or animal origin (Table 1) because the quantity, nutrient content and type (for example, plant species/fresh/composted) of OM varied too much between LTEs to explore more detailed effects in this study. We recommend further research using LTEs with more consistent OM treatments to compare different amendments more rigorously.

The yield benefit of OM amendments was greater under low NF and in systems without legumes (Fig. 2), suggesting that nutrient input was an important contribution of OM to yields. In combination with our finding that diversifying with legumes is more beneficial under low NF (Fig. 1), this suggests that N supply is an important aspect of the contribution of both legumes and OM to yields, but that multiple sources of N are not necessarily more
Figure 3: Estimated mean yield ratios for shifting from a reference tillage treatment to a reduced tillage comparison treatment. Points indicate the effect of changing from a reference treatment identified on the x axis to a comparison treatment identified in the panel label. For example, the yield ratio comparing deep inversion tillage with deep non-inversion tillage is just over 1 (leftmost panel), while most yield ratios between more-intensive tillage systems and zero-till systems are negative, with the exception of shifting from a ridge–furrow system to zero-till (rightmost panel). Yield ratios were always calculated for reducing tillage, that is, comparing the effect of shifting to a less-intensive tillage treatment from a more-intensive tillage treatment.

The horizontal dashed line marks a yield ratio of 1, or no change. Points are coloured to visually distinguish reference treatments. Error bars indicate 95% confidence intervals for the mean yield ratio. The model results and forest plots of treatment contrasts underlying these predictions are shown in detail in Supplementary Part 3.

In contrast to reducing TI, reducing NF had a strong but context-specific effect on yields (Supplementary Table 3.3). Our results show the standard asymptotic N response curve typically seen in staple crops, but in reverse, because we tested the effect of incrementally reducing NF on yield ratios (Fig. 4). This curve is modified by different context variables representing different EI practices. The OM amendments and legumes both prevent the end of the curve where all N is removed from falling as low as it would in the absence of EI practices, showing that OM and legumes partly support yields when N fertilizer is low or absent. Manure had the strongest effect in this regard: if a system received manure applications, then most or all of the N fertilizer could be removed without seeing a yield reduction. In this study, reduced tillage may also have mitigated the effects of N removal (Fig. 4), but too few LTEs tested different NF levels under reduced tillage to be certain, and other studies have suggested the opposite effect.

Overall, our results suggest an optimal level of NF that differs between contexts but is generally lower in the presence of EI practices. On average across all LTEs in our study, optimal NF was effective than a single source. However, unlike legumes, adding OM under high NF does still have a small additional yield benefit, perhaps related to other nutrients such as phosphorus and potassium and their rate of release or to increasing soil carbon and improving soil structure.

We did not observe a significant effect of retaining rather than removing crop residues on crop yields (Supplementary Table 3.3). This contradicts other research suggesting that residues can benefit yields through suppressing weeds, supporting beneficial biodiversity, improving water infiltration and conserving soil moisture. Possibly, residues have very site-specific effects, relating to residue type and local pedoclimatic conditions, so our analysis could not identify a consistent dataset-wide effect (Supplementary Fig. 3.3). This result was supported by the analysis, which showed that residue type or local pedoclimatic conditions, so our analysis could not identify a consistent dataset-wide effect (Supplementary Table 3.3). Overall, this suggests that residues have very site-specific effects, relating to residue type and local pedoclimatic conditions, so our analysis could not identify a consistent dataset-wide effect (Supplementary Table 3.3).
around 100 kg ha\(^{-1}\) N. Figure 4 demonstrates that reducing NF to this amount from higher NF rates did not reduce yields. Slightly more N could be removed without reducing yields if legumes were present, and more still if OM was present (especially manure), suggesting a lower optimal NF alongside these practices. Optimal N will also vary among different crops, climates and soils (the 100 kg ha\(^{-1}\) figure given here is an average for our specific dataset and is not generalizable).

EI and inputs are substitutive or additive depending on function

A key finding of our study is that all EI practices assessed (CD, FC and OM) increased long-term yields in most contexts, but the effects of EI practices and NF input on yields were partially substitutive: the benefits of EI practices were generally reduced at higher NF, and the requirement for NF was reduced when EI practices were employed. This indicates that N supply explains much of the contribution of the studied EI practices to crop yields. When crop demand for N is already met through fertilizer, only a relatively small additive benefit of EI practices was observed, for example, small yield increases from some forms of CD (Fig. 1) and OM amendments (Fig. 2) when NF was high. These additive benefits probably indicate functions unique to different EI practices, such as 'break crop' functions of diversification or nutrient cycling and soil structure improvements resulting from OM amendments. These effects of different EI practices in different NF contexts are summarized in Fig. 5. When NF is low (top panel), most EI practices increase yields whether they are applied separately or in combination, but especially if these EI practices have an N provisioning function (adding legumes or OM). By contrast, when NF is high (lower panel), then only EI practices that have functions distinct from N provisioning can increase yields.

In contrast to NF, tillage did not have a strong interaction with the EI practices, indicating that farmers may be able to make decisions about tillage and EI practices independently. We found the effect of reducing tillage to be small relative to the background variance in yield differences, but possibly slightly negative. This may not, however, be consistent among all forms of reduced tillage (Fig. 3) and may be influenced by environmental factors not assessed in this study, for example, refs. 40,42,43 observed greater benefits in warmer, drier climates (suggesting the optimal TI for yield must balance a clean seedbed with soil-water conservation). Furthermore, a small yield decrease may be acceptable in cases where reduced tillage offers non-yield benefits, either economic in terms of reduced fuel or labour costs or environmental in terms of decreased soil erosion, increased water infiltration or carbon sequestration.

Combining different EI practices was more likely to result in positive effects than combining EI practices with anthropogenic inputs. The effect of diversification did not depend on whether OM was applied, indicating an additive benefit, while the effect of adding OM to diversified systems without legumes could be greater than the effect of adding OM to a monoculture, suggesting a possible synergistic effect. However, Fig. 4 indicates that the absolute yield of systems containing combinations of only EI practices does tend to be lower than that of systems containing combinations of EI practices and moderate NF doses (compare yield ratios in the lower two rows where all NF is removed to where only some NF is removed). Thus, using EI in combination with some NF may best
EI as a pathway to sustainable agriculture

In practical terms, a substitutive relationship between EI practices and N fertilizer means there is potential to (1) use EI to increase yields when NF availability is low, (2) use EI to sustain a given yield while reducing NF levels or (3) use EI to reduce the NF required to increase yields. However, combining high levels of NF with most EI practices does not increase yields. We also observed that antagonistic interactions between EI practices and high NF are possible; in particular, diversifying a highly fertilized system with legume crops may risk a yield decrease.

Widespread uptake of EI practices could therefore contribute to a more equitable global distribution of fertilizer. Currently, average NF rates in Africa are a small fraction of those in Europe, with smallholders in particular using much less than their fair share. References 62, 67 both suggest that if fertilizer use is reduced where it is currently high, then fertilizer use could be increased where it is currently low without exceeding planetary boundaries. EI practices could support this redistribution through sustaining yields while reducing fertilizer in current high-input, high-yielding systems and by enhancing yields in combination with moderate fertilizer inputs in currently low-yielding systems.

Future assessments of EI should include a wider analysis of farming systems and externalities. By focusing only on test crop yields, our study has not attempted to quantify implications for overall nutritional value or farm profitability. Currently, it is difficult to use LTEs to assess whole-system performance as too few LTEs rigorously measure yields of diverse crop types; nor do many collect measures of ecological function and socioeconomic outcomes. EI can have benefits beyond yield by reducing the environmental and economic input costs to achieve a given yield.64,65. Diversifying with legumes can increase profits and decrease pollution potential by both increasing yields and reducing the fertilizer requirement of the whole rotation (assuming little or no fertilizer is applied to the legumes and that fertilization of subsequent crops is reduced) while also providing an additional potentially high-value, protein-rich product.66 Crop diversity can confer resilience to weather variability,67,68 increase biodiversity69 and suppress weeds, pests and pathogens.69

However, some practices that increase yields via ecological function (and that are thus considered EI in this study) may not necessarily avoid environmental impacts. For example, manures and composts reconnect resource flows between crops and livestock, but both can cause nutrient leaching and GHG emissions and so may not be objectively more environmentally friendly than NF. If manures and composts are available as waste products, however, their use as amendments at least recycles the nutrients therein and avoids further impacts from new synthetic fertilizer creation and use.61

Socioeconomic factors can also limit the adoption of EI practices by farmers. These factors can include a lack of markets and infrastructure that can receive diverse products at viable prices and limited access to necessary resources, including land, seed and OM sources.70 Upscaling EI practices will thus require policymakers and society to create a more conducive socioeconomic context. Nonetheless, our results demonstrate that EI could play an important role in the development of future sustainable farming systems. Agricultural researchers could help to advance EI by further investigating which practices work best together in which contexts to provide priorities for farmers and policymakers. We recommend that future LTEs place the development of a robustly ecologically functioning agroecosystem at the heart of their design and then explore what level of inputs are necessary to optimize the performance of these systems. Such LTEs would assist progress towards sustainable agriculture that remains within safe planetary boundaries while meeting human needs for food, fuel and fibres.

Methods

LTEs included in this study contained at least one CD, FC, OM, NF or TI treatment and were located in either Europe or Africa. We defined an LTE as an ‘experiment assessing the effect of treatments over decadal timescales’, and thus all LTEs included were at least ten years old, with the exception of two nine-year-old LTEs in sub-Saharan Africa included to increase representation of smallholder farming systems. This minimum age ensured that the mean yield estimates for each treatment were unlikely to be driven by unusual weather in just one or two years. Suitable LTEs were identified and contacted via the Global Long-Term Experiment Network (GLTEN, www.glten.org) and authors’ personal research networks. All LTEs that we could contact, that agreed to share their data and that fit our criteria were included in this study.

The LTEs were located in England, Kenya, Malawi, Mozambique, the Netherlands, Nigeria, Scotland, South Africa, Sweden, Zambia and Zimbabwe (Supplementary Fig. 1.1). More details on each LTE, including the crop types, number of replicates and the number of years of data included can be found in Supplementary Part 1.

Data analysis overview. We used a three-step analysis procedure to jointly interrogate the 30 LTEs in our dataset:

1. We first described each treatment in each LTE in terms of common EI and input indices that represented all treatments in all LTEs on comparable scales or in comparable categories.
2. We then estimated the yield mean and variance for each treatment in each LTE using a different linear mixed model for each LTE to account for the appropriate experimental design.
To estimate yield means and variances for each treatment in each LTE, a separate linear mixed model was constructed for each LTE. Models were fitted in R version 4.0.2 using function lmer in package lme4. All models followed the formula:

\[\text{yield} \sim \text{treatment} + (\text{blocking structure}) + (\text{year}) \]

where ‘treatment’ was a factor with each of the LTEs’ distinct treatments and/or treatment combinations as a different factor level. For example, if an LTE had three treatments consisting of (a) a ploughed monoculture, (b) a ploughed rotation and (c) a no-till rotation, then the treatment factor for this model had three levels (a, b, and c). Treatment was included as a fixed effect while the physical blocking structure and year were included as random terms.

Blocking structures were specified as appropriate for each LTE to account for the repeated crops grown in the same plot in multiple years (for example, sub-plot nested in main plot nested in block for a split-plot design). A random term for year was included as a factor to allow for variation between years and over time to be partitioned out, including if more recent years tended to have higher yields than past years, or vice versa. We did not account for additional temporal correlations between yields from the same plot in different years: in rotations of annual crops, the yield of a crop in one year is not strongly influenced by the yield of the same crop in previous years, with variation in weather likely to have a dominant impact.

Some initial models resulted in singular fits due to very low variance estimates for some random terms. Where this occurred, the models were modified by including blocks as a fixed effect; this is often recommended for random terms with few levels (for example, three blocks in an experiment) and does not change the model estimates and variances for each treatment. Average mean yields for each treatment across all blocks were estimated and their standard errors were calculated on the basis of the pooled between-plot variability after allowing for any fixed block effects. If including blocks as a fixed effect did not suffice to avoid singularity, then we reduced the complexity of the random model by removing highly nested terms such as sub-plots nested within plots within blocks for which variances were estimated to be zero or very close to zero.

The models included a weighting term to allow for the fact that the variance in the yields tended to increase as mean yield increased. Weights were obtained by running an unweighted model, obtaining the fitted values for each data point and then taking the inverse of the squared fitted values in a second order polynomial model. Plots of residuals were inspected to ensure this weighting was adequate to meet the assumption of homoscedasticity. Weights were not used for two models where the weights led to a non-convergence or singular result, and a plot of residuals indicated that weights were not needed to achieve homoscedasticity.

Where multiple test crops appeared in an LTE, a separate model was fitted for each treatment combination from all years (where otherwise the same plot was grown in different years). Years before 1970 were excluded to avoid introducing variability related to historical crop protection practices and crop cultivars (all LTEs had stopped using long-straw cereal varieties by 1970). For LTEs that had more than one cropping season in a year (the four International Institute of Tropical Agriculture/ETH LTEs in Kenya), both seasons were included, and the random term for ‘year’ in the model was substituted by ‘season,year’ (each season in each year was treated as a separate event). Where crop failures occurred in some treatments but not others, these were included as zero yields for those treatments to capture the treatment-related variability. However, we made an exception for the complete crop failures that occurred across all treatments in all five South African LTEs in 2018 due to strong winds just before harvest dislodging the grain. For these LTEs in this year, yields were estimated on the basis of samples from small plots shortly before harvest. This provided information on treatment differences, whereas including the whole year’s yields or rotations with or without legumes, these were considered to be different treatments, and data from transition periods were excluded to only data from established cropping systems. For example, if an LTE began in 1980 but underwent substantial changes phased in between 1998 and 2002 (for example, a change to the crop rotation or fertilizer treatments), an LTE could use treatments A, B and C in 1980–1989 and treatments D, E and F (on the same plots) after 2002, while the years 1998–2002 were discarded. These changes are detailed for each LTE in Supplementary Table 1.2.

Multi-LTE meta-analyses. The treatment means and their standard errors were extracted from the individual LTE models using function emmeans in package emmeans41, then were summed up to establish a single dataset containing all pairwise contrasts of treatment combinations within each LTE (no pairs between LTEs). Each pair was labelled with the appropriate EI and input variables describing the reference treatment and comparison treatment, and with the LTE and crop type. Separate meta-analyses were conducted on this collated dataset to explore the effect of each EI and input focal variable in turn, accounting for the context variables in which the treatment contrasts occurred. Each meta-analysis model was fitted to the subset of the data that included only the treatment contrasts relevant to the specific hypothesis for that focal variable (Table 1). Information on the treatment comparisons included from each LTE can be found in Supplementary Tables 3.4–3.10. It was not possible to fit a single meta-analysis model including all five EI and input variables as detailed variables because there was insufficient replication of treatment combinations across the different LTEs.

All meta-analysis models were fitted in R (version 4.0.2) using package metafor42. Initially, the escalc function was used to calculate log response ratios and the associated variances for each treatment contrast in the combined dataset. In our study, the response is always crop yield, and thus we term the response ratio the yield ratio for clarity. These log yield ratios (weighted by their associated variances) formed the responses in a mixed-effects meta-analysis model fitted using the function rma.mv. Both the focal and context variables were specified as moderators with fixed effects, and the LTE from which the focal contrast originated was specified as a random effect to account for potential reduced independence among treatment contrasts from the same LTE. Where multiple test crops were present within an LTE, crop type was included as an additional random effect nested within LTE (not enough LTEs tested the same crops to include crop type as a fixed effect, or even a crossed random effect, which might have allowed more heterogeneity to be accounted for).

To identify the most appropriate meta-analysis model for each focal variable, several models of different complexities were fitted. This model selection process addressed the questions of (1) whether yield was affected by any directional change in the focal variable affected yield (null model, without any moderators), (2) whether the effect of the focal variable in the specific change in the focal variable was important (base model, focal variable moderators only), (3) whether the effect of the focal variable depended on each of the context variables (intermediate model) and (4) whether the effects of different context variables on the effect of the focal variable on yield varied with the levels of the other context variables (full model) (see Supplementary Table 3.1). This approach did not consider all possible models but did allow assessment of the relative importance of different levels of complexity of the combinations of moderators. The best model was selected using the Akaike information criterion (AIC) and the QM and QE test statistics. The AIC describes goodness of fit (heterogeneity explained by the model penalized by the complexity of the model), while the QM and QE test assess the level of heterogeneity explained by the fixed and random components in the model and the level of random heterogeneity, respectively. The QM and QE test statistics are compared with the critical values of the appropriate chi-square distributions to calculate associated P values.

A final model selection step was performed for the two continuous focal variables, crop diversity (Simpson's index) and NF reduction (reference nitrogen levels and proportion by which nitrogen differed between treatments). Initial
models were fitted with second-order polynomials for each continuous variable, then equivalent models with only first-order polynomials. Models containing second-order polynomial terms were selected if these were significant as either main effects or interactions and when removing the second-order polynomial terms increased the model AIC (Supplementary Table 3.2). The second-order polynomials were not intended to precisely describe the shape of the response curve to these focal variables, but simply to allow the model to identify if a curved relationship better described the data than a linear relationship.

When the model with the best-fitting level of complexity had been identified, a QM test was conducted on each moderator main effect and interaction term included in the model to identify those that significantly influenced the mean yield ratio between treatments (Supplementary Table 3.3). The anova.rma function in metafor with the btt argument was used to specify each main effect or interaction separately. The importance of each term was assessed by comparing the QM test statistic with the critical values of the appropriate chi-square distribution. These tests assess the marginal contribution of each term to explain the heterogeneity in the response variable while allowing for the effects of all other terms included in the model.

Meta-analyses that include multiple comparisons with a common control (or reference treatment, in the context of this study) can suffer bias due to a lack of independence between contrasts. However, this would have been at most a minor issue in this study, for the following reasons: (1) we extracted the contrasts directly from the full analysis of each LTE and have already accounted for any design-related non-independence; (2) we included LTE as a random term in the meta-analytic analyses meaning that accounting for the fact that yield ratios within the same LTE are more related than yield ratios from different LTEs (and thus more likely to have a common reference treatment); and (3) all contrasts with common reference treatments in the intermediate and full models have different values of the moderator variables describing the comparison treatments, avoiding bias because these yield ratios are not pooled. A small amount of non-independence would not have been accounted for in the null models, and not always fully in the base models, due to the use of fewer moderators. This would not, however, have affected the model selection process (which is based on how well the moderators describe variation in the yield ratio), and so the only possible influence of non-independence would have occurred in our TI model. It may have slightly biased the overall estimate of the mean effect on yield of reducing tillage. However, as we emphasize in the main text, no strong conclusions should be drawn from this estimate anyway, given that the QE and QM values (Supplementary Table 3.3) indicate only a small effect of tillage relative to background variability in yields among the LTEs.

To plot the results for significant variables in each final meta-analysis model (Figs. 1–4), the predict.rma function was used to calculate predictions and confidence intervals, interpolated within the range of each focal variable at each level of the context variables in the combined LTE dataset. Care was taken not to present predictions extrapolating beyond the range of the variables in the combined LTE dataset, given the use of polynomials for the CD and NF terms included in the models. Plots were constructed in package ggplot2. Forest plots were also constructed to illustrate the contribution of each LTE to the meta-analysis estimates (Supplementary Figs. 3.1–3.5). These show best linear unbiased predictions that combine the fixed-effect and random-effect estimates for each LTE from the selected meta-analysis model for each EI theme (Supplementary Table 3.3). These are the mean yield ratio estimates from each LTE extrapolated into each LTE for a given treatment comparison. The plots also show standard errors for these mean yield ratio estimates, as estimates with a larger associated variance are given less weight in the meta-analysis model.

Classifying EI and input interactions. A key aim of this article was to explore the interaction effects among the different EI practices and inputs to identify optimal combinations that maximized yield while minimizing input use. We therefore classified interactions according to the following three established definitions (in which A and B represent different EI practices or inputs): antagonistic, where the combined effect of A and B is less than the effect of either A or B alone; additive, where the combined effect of A and B is equal to the sum of the separate effects of A and B and synergistic, where the combined effect of A and B is greater than the sum of the separate effects of A and B. We also included a fourth class of interaction that is less common in ecological and agricultural literature, substitutive, which we define as an interaction where the combined effect of A and B is the same as the maximum effect of either A or B alone, so that when A is reduced, the effect of B increases, and vice versa.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The datasets analysed during the current study are available from the authors on reasonable request. Please contact the corresponding author for assistance. Data from LTEs belonging to Rothamsted Research are available on reasonable request via the e-RA platform (www.era.rothamsted.ac.uk). We have refrained from depositing data into a public repository due to the need for guidance to correctly interpret LTE designs and datasets and the need to ensure that the substantial investments by each institute in maintaining LTEs do not go unacknowledged when data are used.

Code availability

R scripts used in the analyses are also available from the corresponding author on reasonable request.

Received: 13 August 2021; **Accepted:** 6 May 2022; **Published online:** 27 June 2022

References

1. Rockström, J. et al. Sustainable intensification of agriculture for human prosperity and global sustainability. *Ambio* **46**, 4–17 (2017).
2. Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. *Science* **347**, 1259807 (2015).
3. Campbell, B. M. et al. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. *Ecol. Soc.* **22**, 8 (2017).
4. Hazell, P. & Wood, S. Drivers of change in global agriculture. *Physlos. Trans. R. Soc. B* **363**, 495–518 (2008).
5. Lehmann, P. et al. Complex responses of global insect pests to climate warming. *Front. Ecol. Environ.* **18**, 141–150 (2020).
6. Foley, J. A. et al. Solutions for a cultivated planet. *Nature* **478**, 337–342 (2011).
7. Springmann, M. et al. Options for keeping the food system within environmental limits. *Nature* **562**, 519–528 (2018).
8. Hunter, M. C., Smith, R. E., Esenwein, M. E., Atwood, L. W. & Mortensen, D. A. Agriculture in 2050: recalibrating targets for sustainable intensification. *Bioscience* **67**, 386–391 (2017).
9. Ecosystems and Human Well-being: Synthesis (Millennium Ecosystem Assessment, Assessment, 2005); http://www.millenniumassessment.org/documents/356.pdf.
10. Bonmarchon, R., Kleinj, D. & Potts, S. G. Ecological intensification: harnessing ecosystem services for food security. *Trends Ecol. Evol.* **28**, 230–238 (2013).
11. Kleinj, D. et al. Ecological intensification: bridging the gap between science and practice. *Trends Ecol. Evol.* **34**, 154–166 (2018).
12. Pingali, P. L. Green revolution: impacts, limits, and the path ahead. *Proc Natl Acad. Sci. USA* **109**, 12308–12308 (2012).
13. Wezel, A. et al. Agroecology as a science, a movement and a practice. *Sustain. Agric.* **27**, 43–49 (2009).
14. Garnett, T. et al. Sustainable intensification in agriculture: premises and policies. *Science* **341**, 33–34 (2013).
15. Lipter, L. et al. Climate-smart agriculture for food security. *Nat. Clim. Change* **4**, 1068–1072 (2014).
16. Tittonell, P. Ecological intensification of agriculture—sustainable by nature. *Curr. Opin. Environ. Sustain.* **8**, 53–61 (2014).
17. Jenkinson, D. S. The impact of humans on the nitrogen cycle, with focus on temperate arable agriculture. *Plant Soil* **230**, 3–15 (2001).
18. Verheijen, F. G. A., Jones, R. J. A., Rickson, R. J. & Smith, C. J. Tolerable versus actual soil erosion rates in Europe. *Earth Sci. Rev.* **94**, 23–38 (2009).
19. Peoples, M. B. et al. in Agroecosystem Diversity: Reconciling Contemporary Agriculture and Environmental Quality (eds Lemaire, G. et al.) 123–142 (Academic Press, 2019); https://doi.org/10.1016/B978-0-12-811050-8.00008-X.
20. Stoneley, J. et al. in Agroecosystem Diversity: Reconciling Contemporary Agriculture and Environmental Quality (eds Lemaire, G. et al.) 199–209 (Academic Press, 2019); https://doi.org/10.1016/B978-0-12-811050-8.00012-1.
21. Schröder, J. Revisiting the agronomic benefits of manure: a correct assessment and exploitation of its fertilizer value spares the environment. *Bioresour. Technol.* **96**, 253–261 (2005).
22. Mhlanga, B., Ercoli, L., Pellegrino, E., Onofri, A. & Thierfelder, C. The crucial role of mulch to enhance the stability and resilience of cropping systems in southern Africa. *Agron. Sustain. Dev.* **41**, 29–43 (2021).
23. Barrett, C. B. & Bevis, L. E. M. The self-reinforcing feedback between low soil fertility and chronic poverty. *Nat. Geosci.* **8**, 907–912 (2015).
24. Tittonell, P. & Giller, K. E. When yield gaps are poverty traps: the paradigm of ecological intensification in African smallholder agriculture. *Field Crops Res.* **143**, 76–90 (2013).
25. Sandén, T. et al. European long-term field experiments: knowledge gained about alternative management practices. *Soil Use Manage.* **34**, 167–176 (2018).
26. Stoneley, J. et al. The unique contribution of Rothamsted to ecological research at large temporal scales. *Adv. Ecol. Res.* **55**, 3–42 (2016).
27. Johnston, A. E. & Poulton, P. R. The importance of long-term experiments in agriculture: their management to ensure continued crop production and soil fertility; the Rothamsted experience. *Eur. J. Soil Sci.* **69**, 113–125 (2018).
28. Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. *One Earth* **2**, 284–293 (2020).
29. Marini, L. et al. Crop rotations sustain cereal yields under a changing climate. Environ. Res. Lett. 15, 124011 (2020).
30. Lal, R. Carbon emission from farm operations. Environ. Int. 30, 981–990 (2004).
31. Cordell, D., Drentr, J. O. & White, S. The story of phosphorus: global food security and food for thought. Glob. Environ. Change 19, 292–305 (2009).
32. Lechene, M., Dessaint, F., Py, G., Makowski, D. & Munier-Jolain, N. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat. Plants 3, 17008 (2017).
33. Bedoussac, L. et al. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron. Sustain. Dev. 35, 911–935 (2015).
34. Steward, P. R. et al. The adaptive capacity of maize-based conservation agriculture systems to climate stress in tropical and subtropical environments: a meta-regression of yields. Agric. Ecosyst. Environ. 35, 105, 217–227 (2009).
35. Thierfelder, C. & Wall, P. C. Effects of conservation agriculture techniques on infiltration and soil water content in Zambia and Zimbabwe. Soil Tillage Res. 105, 217–227 (2009).
36. Gentile, R., Vanlauwe, B., Chivenge, P. & Six, J. Interactive effects from combining fertilizer and organic residue inputs on nitrogen transformations. Soil Biol. Biochem. 40, 2375–2384 (2008).
37. Mapangwa, W. et al. Maize yields from rotation and intercropping systems with different legumes under conservation agriculture in contrasting agro-ecologies. Agric. Ecosyst. Environ. 306, 107170 (2021).
38. Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368 (2015).
39. Steward, P. R. et al. The adaptive capacity of maize-based conservation agriculture systems to climate stress in tropical and subtropical environments: a meta-regression of yields. Agric. Ecosyst. Environ. 251, 194–202 (2018).
40. Thierfelder, C. M. et al. When does no-till yield more? A global meta-analysis. Field Crops Res. 183, 156–168 (2015).
41. Sun, W. et al. Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture. Glob. Change Biol. 26, 3325–3335 (2020).
42. Kirkegaard, J. A. et al. Sense and nonsense in conservation agriculture: principles, pragmatism and productivity in Australian mixed farming systems. Agric. Ecosyst. Environ. 187, 133–145 (2014).
43. Thierfelder, C. et al. Complementary practices supporting conservation agriculture in southern Africa. A review. Agron. Sustain. Dev. 38, 16–37 (2018).
44. Aligier, A. et al. Configurational crop heterogeneity increases within-field plant diversity. J. Appl. Ecol. 57, 654–663 (2020).
45. Liebman, M. et al. Ecologically sustainable weed management: how do we get from proof-of-concept to adoption? Ecol. Appl. 26, 1352–1369 (2016).
46. Giller, K. E. The food security conundrum of sub-Saharan Africa. Glob. Food Sec. 26, 100431 (2020).
47. Gates, D., MacEachler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using ImeR. J. Stat. Softw. 67, 1–48 (2015).
48. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
49. Addy, J. W. G., Ellis, R. H., Macdonald, A. J., Semenov, M. A. & Mead, A. Changes in agricultural climate in South-Eastern England from 1892 to 2016 and differences in cereal and permanent grassland yield. Agric. For. Meteorol. 308–309, 108560 (2021).
50. Bates, D., Kliegl, R., Vasishth, S. & Baayen, H. Parsimonious mixed models. Preprint at https://arXiv.org/abs/1506.04967v2 (2018).
51. MacLaren, C., Glendinning, M., Poulton, P., Macdonald, A. & Clark, S. Why is Wheat as First Test Crop, 1976–2018 (e-RA Rothamsted, 2022). https://doi.org/10.23637/wrm3-wheat7618-01 .
52. Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means: R package version 1.7.2 https://CRAN.R-project.org/package=emmeans (2020).
53. Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).
54. Lajunenese, M. J. On the meta-analysis of response ratios for studies with correlated and multi-group designs. Ecology 92, 2049–2055 (2011).
55. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).
56. Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).

Acknowledgements

The authors thank everyone who has been involved in designing, maintaining, funding, and collecting and managing data from all LTIs included in this study. We are grateful to the GLTEN (https://glten.org/), funded by the Thirty Percy Foundation for providing meta-data on the LTES. The Rothamsted Long-term Experiments National Capability (LTE-NC) is supported by the UK BBSRC (BBS/E/C/00010300) and the Lawes Agricultural Trust. LTES belonging to SRUC are supported through Scottish Government RESAS Strategic Research Programme. C.M., J. Storkey, A.M. and L.C. were supported by the GLTEN-Africa project (BB/R020663/1) funded by the Global Challenges Research Fund - programme of the Biotechnology and Biological Sciences Research Council (BBSRC), and J. Six and A.M. also by the BBSRC Soils to Nutrition project (BBS/E/C/00010320). For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising.

Author contributions

C.M., J. Storkey, A.M. and L.C. conceptualized this study. D.v.B., A.E., J.d.H., W.H., O.J., T.K., I.L., A.M., M.N., G.N., J. Six, J. Strauss, P.A.S., C. Thierfelder, C. Topp, F.T., H.V., R.W., M.W. and C.W. were involved in the management and collection of data from LTES included. C.M. and A.M. undertook the analysis with input from J. Storkey. C.M. wrote the manuscript with input from all authors.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41493-022-00911-x.

Correspondence and requests for materials should be addressed to Chloe MacLaren.

Peer review information Nature Sustainability thanks Michael Beckmann, Timothy Bowles, Sileshi Wedelesemayat and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2022
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- **n/a** Confirmed
- [x] The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- [x] A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- [x] The statistical test(s) used AND whether they are one- or two-sided
 - Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- [x] A description of all covariates tested
- [x] A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- [x] A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
 - Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

- **Data collection** No software was used during data collection for this study.
- **Data analysis** All data analysis was undertaken in R version 4.0.3, using existing packages and functions.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

The datasets analysed during the current study are available from the authors on reasonable request. Please contact the lead author for assistance. Data from LTEs belonging to Rothamsted Research are available on reasonable request via the e-RA platform (www.era.rothamsted.ac.uk). R scripts used in the analyses are available from the corresponding author on reasonable request. We have refrained from depositing data and code into a public repository due to the need for guidance to correctly interpret LTE designs and datasets, and the need to ensure that the substantial investments by each institute in maintaining LTEs do not go unacknowledged when data is used.
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- Life sciences
- Behavioural & social sciences
- Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

ECological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

- **Study description**: This study used a novel application of meta-analysis to data from 30 long-term experiments (LTEs) from Europe and Africa (comprising 25,565 yield records), to investigate the effects of field-scale ecological intensification practices and inputs of N fertiliser and tillage on long-term crop yields. Our meta-analysis approach differed from a standard meta-analysis by comparing multiple treatments with one another, rather than comparing a control with one or more treatments.

- **Research sample**: This study analysed crop yield data from LTEs that were at least nine years old and located within Europe or Africa, and that included treatments testing different levels of at least one ecological intensification practice considered in the study (crop diversification, fertility crops, and organic matter management). Yield data was used from crops that were found within all treatments of a given LTE (the "test" crops). Yield data from before 1970 was not included. Original data were obtained from the custodians of each LTE, who were also invited to contribute to the study and are consequently listed as co-authors.

- **Sampling strategy**: Data for this study were collated across a series of LTEs from previously collected yield responses for each LTE. The LTEs included in this study were selected to provide a sufficient breadth of information about different EI practices to enable the study to draw robust conclusions.

- **Data collection**: Crop yield data was collected from each LTE by staff of each participating institute, under the management of the LTE custodians (who are included as co-authors). Yields were measured according to standard assessment procedures and protocols, as defined for each LTE.

- **Timing and spatial scale**: This study analysed crop yield data from LTEs that were at least nine years old and located within Europe or Africa, and that were considered to have adequate layouts, plot sizes and management to provide robust results. Yield data were used for each instance that a given test crop was planted in each plot; for example if the LTE included a crop rotation in which wheat was planted once every three years, then data from each wheat harvest was included. Only yield data from after 1970 was included.

- **Data exclusions**: Data from plots in LTEs for treatments that were not relevant to this study were excluded, and the blocking structures suitably modified. This may have slightly inflated the variances associated with treatment estimates from these experiments due to not including all information about between-plot variability across the whole experiment, and this may have thus slightly increased Type II error rates (the probability of not detecting a true difference between treatments), but substantially streamlined the data collation process from these LTEs. We also excluded years from periods of substantial changes (i.e. transitions from long leys to short leys, or rotations with or without legumes), in order to use data from only established cropping systems. The decision to use only established and relevant treatments was taken in advance of receiving the data from any LTEs.

- **Reproducibility**: Due to their long-term nature, LTEs are well established experimental systems that account for interannual variability through repeated measurements over time. Multiple measurements in different years provide data on background variability in the system against which consistent treatment effects can be identified. Therefore, we would consider the results from each LTE to be reliable and reproducible within its specific context (environmental conditions and farming systems). Our study is itself an assessment of reproducibility between LTEs, comprising an analysis of data from different LTEs in different environments, in which we use appropriate statistical tools to identify whether trends are consistent across multiple LTEs or not. In our manuscript, we explore where trends were reproduced and where they were not.

- **Randomization**: Most LTEs were laid out in randomised, replicated designs, with the exception of three older LTEs that were started before the advent of modern statistical methods. For one LTE that began in the 1970s, only annual treatment means were available so this was treated similarly to the unreplicated LTEs. Whilst the lack of randomisation could be seen as a flaw in a short-term experiment, the long-term duration of LTEs means that any systematic environmental patterns will have been superseded by treatment effects over time, while repetition across multiple years provides information on within-treatment variability. Furthermore, our analysis combining multiple LTEs means that individual LTEs provide replicate information about the effects of the different treatment variables of interest.

- **Blinding**: Blinding was not necessary as none of the data used in this study was subjective nor could be influenced by researcher biases. Grain yields are harvested mechanically following well-defined protocols (e.g. a consistent, pre-defined strip down the centre of each plot to avoid edge effects).

- **Did the study involve field work?**: Yes

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems	Methods
n/a	n/a
☒ Involved in the study	☒ Involved in the study
Antibodies	ChIP-seq
Eukaryotic cell lines	Flow cytometry
Palaeontology and archaeology	MRI-based neuroimaging
Animals and other organisms	
Human research participants	
Clinical data	
Dual use research of concern	