1 Introduction

Lightweight metal borohydrides are promising candidates for efficient mobile hydrogen storage devices because of their high gravimetric hydrogen density.\(^1\)\(^-\)\(^3\) For industrial applications such as fuel cell powered cars, a highly cyclable, relatively cheap, and safe hydrogen storage medium is necessary. However, conditions suitable for re-hydrogenation of metal borohydrides are often difficult to achieve in practice and the hydrogen cycling is hindered due to the formation of stable boron phases such as elemental boron or, even more severe, \(\text{B}_{12}\) species.\(^4\) The identification of these (intermediate) reaction products in the decomposition pathway during hydrogen release is difficult as they often form in amorphous phases.\(^4\)\(^5\) Despite continuous efforts, to date no practical mobile hydrogen storage system has been discovered and therefore new ways to investigate and elucidate the reaction pathways these metal borohydrides follow are essential for the development of potential future applications.\(^6\)

\(\text{Ca(BH}_4\text{)}_2\) has a gravimetric hydrogen density of 11.6 mass\% (or 124.1 kg m\(^{-3}\))\(^2\)\(^7\)\(^8\) and thus is a promising candidate for use as a reversible hydrogen storage medium. For this material, different desorption pathways under various experimental conditions are vividly discussed and researchers suggest different (amorphous) intermediates and final decomposition products such as \(\text{CaB}_2\text{H}_x\)-species,\(^5\)\(^8\)\(^-\)\(^10\) amorphous \(\text{CaB}_{12}\text{H}_{12}\),\(^9\)\(^11\)\(^-\)\(^13\) and amorphous boron (a-B).\(^8\)\(^-\)\(^10\)\(^13\) Marketable technical applications demand storage media free of these stable phases e.g. by yielding only \(\text{CaB}_6\) after hydrogen release, which would make complete cycling feasible. Two competing reaction pathways are mainly discussed for \(\text{Ca(BH}_4\text{)}_2\), one leading to \(\text{CaB}_6\) as a favorable end product (1), and the other one resulting in \(\text{CaB}_{12}\text{H}_{12}\) (2):

\[
\text{Ca(BH}_4\text{)}_2 \rightarrow \text{(amorphous) intermediate}
\]

\[
\rightarrow \text{CaB}_2\text{H}_x + (4-x/2)\text{H}_2
\]

\[
\rightarrow 1/3\text{CaB}_6 + 2/3\text{CaH}_2 + (x/2 - 2/3)\text{H}_2
\]

(1)

and

\[
\text{Ca(BH}_4\text{)}_2 \rightarrow \text{(amorphous) intermediate}
\]

\[
\rightarrow 1/6\text{CaB}_{12}\text{H}_{12} + 5/6\text{CaH}_2 + 13/6\text{H}_2.
\]

(2)

The formation of \(\text{CaB}_6\) was critically discussed, see e.g. ref. 14, 15 and 16. Riktor et al. assigned this intermediate to be crystalline \(\text{CaB}_6\) with an orthorhombic unit cell and either a \(\text{Pnna}\) or a \(\text{Pnma}\) space group using X-ray diffraction (XRD).\(^5\)

A structure with an orthorhombic unit cell was also found by Aoki et al.\(^17\) for this intermediate without reporting the stoichiometry. Recently, based on NMR studies, Yan et al. did not observe \(\text{CaB}_{12}\text{H}_{12}\) among the decomposition products and identified the intermediate to be \(\text{CaB}_6\) for decomposition between 320 °C and 350 °C.\(^10\)
In a temperature range close to the melting point of Ca(BH₄)₂ at 370 °C,¹⁹ reaction paths (1) and (2) might compete. Partial and almost complete reversibility of the process was achieved under moderate reaction conditions (ca. 345 °C and 90–185 bar H₂).⁹,¹⁰ At decomposition temperatures of 400 °C and 450 °C, amorphous boron has been identified as the major boron containing species, suggesting a third decomposition pathway along¹⁹

\[\text{Ca(BH}_4)_2 \rightarrow 2\text{B} + \text{CaH}_2 + 3\text{H}_2. \]

(3)

The identification of both amorphous end-products and intermediates is challenging and thus the occurrence of different reaction pathways and possible intermediate reaction products is controversially discussed. Establishing reaction conditions that prevent the formation of B sinks, such as CaB₁₂H₁₂ or elemental B, is the key for the development of efficient boron-metal hydride hydrogen storage media. Hence, the determination of unwanted phases and intermediates is of utmost relevance. So far, experimental findings are often ambiguous and are obtained only indirectly e.g. by X-ray diffraction (XRD) identifying broad amorphous features or by nuclear magnetic resonance studies of hydrolysed decomposition products.

Here, we report how we used a combination of high resolution powder XRD and X-ray Raman scattering (XRS) spectroscopy at both the K-edge of B and the L₂,₃-edges of Ca to analyze the thermal decomposition products of Ca(BH₄)₂. XRD provides accurate information about the crystalline reaction products and yields boundary conditions for a detailed quantitative analysis of the XRS spectra in order to identify the nanocrystalline and/or amorphous decomposition products of the material after hydrogen desorption and thus validate the reaction paths (1), (2), and (3), the suggested decomposition pathways around 400 °C.

2 Methods

The native Ca(BH₄)₂ sample (Sigma Aldrich) was decomposed using dynamical vacuum conditions at 350 °C in a stainless steel autoclave for 50 h. A second set of samples was decomposed under the same vacuum conditions at 400 °C for 0.5, 2, and 15 h, respectively. For reference compounds we used partially amorphous B, CaB₆, CaB₁₂H₁₂, CaO, Ca(OH)₂, and H₄B₂O₇, H₂B₂O₄, CaB₅O₆, CaO, Ca(OH)₂, and B were purchased from Sigma Aldrich, whereas CaB₁₂H₁₂ was obtained from Katchem. We used a purified Ar filled glove box (H₂O and O₂ content below 0.1 ppm) to fill the sample powders into quartz glass capillaries (1 mm diameter/0.01 mm wall thickness) for the measurements.

XRD is a well established and accurate structural analysis probe and is routinely used for the study of hydrogen storage materials; for XRD studies on Ca(BH₄)₂, see e.g. ref. 5, 8, 9, 13, 17 and 20. XRS, on the other hand, is less known, but is an emerging technique to probe soft X-ray absorption edges using hard X-rays.²¹ XRS enables us to study lightweight elements with bulk sensitivity even when contained in a matrix of heavier elements. Consequently, XRS allows for in situ studies of chemical reactions under realistic reaction conditions, i.e. of samples inside chemical reaction cells under realistic reaction atmospheres. Thus, this inelastic X-ray scattering technique combines the sensitivity of absorption spectroscopy to reveal information about the local atomic and electronic structures with the unique properties of hard X-rays. XRS can be employed for the analysis of low Z-element containing samples, both crystalline and amorphous, under in situ conditions.

XRS was used to study e.g. chemical reactions²²–²⁴ or to investigate low-Z materials under extreme pressure and temperature conditions.²⁵,²⁶ This method was applied to analyze the B K-edge e.g. in MgB₂, BN, CaB₁₀H₁₂, B₃O₅, and Li₂B₄O₇.²⁵,²⁷–²⁰ The Ca L₂,₃-edges were studied so far using only electron energy loss spectroscopy or soft X-ray absorption spectroscopy e.g. to characterize materials of geological and biological relevance.²¹,²² This method was applied to analyze the B K-edge e.g. in MgB₂, BN, CaB₁₀H₁₂, B₃O₅, and Li₂B₄O₇.²⁵,²⁷–²⁰ The Ca L₂,₃-edges were studied so far using only electron energy loss spectroscopy or soft X-ray absorption spectroscopy e.g. to characterize materials of geological and biological relevance.²¹,²² This method was applied to analyze the B K-edge e.g. in MgB₂, BN, CaB₁₀H₁₂, B₃O₅, and Li₂B₄O₇.²⁵,²⁷–²⁰ The Ca L₂,₃-edges were studied so far using only electron energy loss spectroscopy or soft X-ray absorption spectroscopy e.g. to characterize materials of geological and biological relevance.²¹,²² This method was applied to analyze the B K-edge e.g. in MgB₂, BN, CaB₁₀H₁₂, B₃O₅, and Li₂B₄O₇.²⁵,²⁷–²⁰ The Ca L₂,₃-edges were studied so far using only electron energy loss spectroscopy or soft X-ray absorption spectroscopy e.g. to characterize materials of geological and biological relevance.²¹,²² This method was applied to analyze the B K-edge e.g. in MgB₂, BN, CaB₁₀H₁₂, B₃O₅, and Li₂B₄O₇.²⁵,²⁷–²⁰ The Ca L₂,₃-edges were studied so far using only electron energy loss spectroscopy or soft X-ray absorption spectroscopy e.g. to characterize materials of geological and biological relevance.²¹,²² This method was applied to analyze the B K-edge e.g. in MgB₂, BN, CaB₁₀H₁₂, B₃O₅, and Li₂B₄O₇.²⁵,²⁷–²⁰ The Ca L₂,₃-edges were studied so far using only electron energy loss spectroscopy or soft X-ray absorption spectroscopy e.g. to characterize materials of geological and biological relevance.²¹,²² This method was applied to analyze the B K-edge e.g. in MgB₂, BN, CaB₁₀H₁₂, B₃O₅, and Li₂B₄O₇.²⁵,²⁷–²⁰
3 Results

3.1 X-ray diffraction

The high-resolution powder XRD patterns are shown in Fig. 1 together with the Rietveld refinements (black dashed lines). All refinements were achieved using the TOPAS program package.\(^{18}\) The overall agreement between the refinement and the measured powder diffraction patterns is satisfactory (5.76% < R_{wp} < 8.55%). The quantitative analysis yields the values summarized in Fig. 4a and in the ESI\(^+\) in a tabular form. The diffraction patterns indicate significant contributions from oxides (violet) and hydroxides (gray) in the samples (Fig. 4a). Ca(BH\(_4\))\(_2\) is highly sensitive to contamination (see e.g. ref. 5, 17 and 39) and the formation of oxides and hydroxides could not be completely avoided. We assume that the formation of the oxides occurred during initial sample treatment, and that their contribution does not affect the decomposition process due to their high thermal stability. As we will show later, the independent analysis of the B K-edge supports this assumption.

For all annealing conditions with the exception of 400 °C and 0.5 h, we find nanocrystalline contributions from CaB\(_6\). The averaged size of the CaB\(_6\) nanocrystals is the smallest at 350 °C and increases at higher annealing temperatures (compare the table in the ESI\(^+\)). This supports the improved cycling capabilities when Ca(BH\(_4\))\(_2\) is decomposed at 350 °C compared to 400 °C due to the increased crystallinity at 400 °C.\(^{16}\) We could not identify crystalline CaB\(_{12}\)H\(_{12}\) or crystalline B in any of the samples. CaH\(_2\) is found to be a constituent in all samples and its amount increases with annealing time. For the sample annealed at 400 °C for 0.5 h, we can identify a crystalline intermediate with a diffraction pattern that resembles the one observed earlier.\(^{5,17}\)

It has to be noted that according to pathway (1), the ratio between CaH\(_2\) and CaB\(_6\) should be 2:1. Instead, based on XRD, we observe a higher ratio in favor of CaH\(_2\). This can be ascribed to amorphous contributions from CaB\(_6\) or to the formation of amorphous B. Thus, we cannot exclude the competing pathways (2) and (3) because XRD is not sensitive to extract and distinguish possible amorphous contributions from CaB\(_{12}\)H\(_{12}\), CaB\(_6\), and B in such complex systems. These amorphous contributions can be accessed by XRS spectroscopy.

3.2 X-ray Raman scattering at the Ca L\(_{2,3}\)-edges

With the quantitative Rietveld refinement of the crystalline phases of the different decomposed samples, we can analyze the XRS spectroscopy results using spectral fingerprinting. Fig. 2a shows the Ca L\(_{2,3}\)-edges of the native Ca(BH\(_4\))\(_2\) sample and the different spectra of the sample after decomposition at 350 °C and 400 °C. Using spectra of the reference compounds CaB\(_6\), CaH\(_2\), CaO, and Ca(OH)\(_2\) (shown in part (b) of the same figure) and the spectrum of the native sample, we found the best component fits shown as dashed black lines in Fig. 2a. For all linear combination fits, we used the CaO/Ca(OH)\(_2\)/CaH\(_2\) ratio revealed by the Rietveld refinement of the XRD data. References for pure intermediate phases are not available so far. Allowing also for CaB\(_{12}\)H\(_{12}\) in the fit routine, we find a contribution of less than 2% in all spectra. Only at 400 °C after 15 h of annealing time a contribution of 6% of CaB\(_{12}\)H\(_{12}\) was found. As the formation of CaB\(_{12}\)H\(_{12}\) is expected to occur in the first stages of decomposition we conclude that within the limits of the experimental error CaB\(_{12}\)H\(_{12}\) is not contained in our samples. Consequently, we have not considered this compound in the final fitting procedure.

At 400 °C after annealing for only 0.5 h, we find a strong contribution of native Ca(BH\(_4\))\(_2\) to the Ca L\(_{2,3}\)- and B K-edge spectra. For all other annealing conditions this native compound is not observed. As we verified a crystalline intermediate by XRD, it is likely that this compound exhibits a similar spectral shape to the native reference samples. Consequently, the Ca(BH\(_4\))\(_2\) content at 400 °C after 0.5 h might indicate the amount of intermediate present in the sample. However, we have no access to a pure reference sample of the intermediate so that we cannot draw a final conclusion here. It is also possible that Ca(BH\(_4\))\(_2\) melts at 370 °C\(^{18}\) and occurs in the amorphous state after partial solidification as no signal of Ca(BH\(_4\))\(_2\) was observed by XRD. As both, the intermediate and the native sample, have the same Ca:B ratio, we are still able to use the results for a stoichiometric analysis. We would like to note that we cannot identify CaB\(_6\) in the first annealing phase at 400 °C (0.5 h) as proposed in reaction path (1). All fit results are summarized in Fig. 4b (see the ESI\(^+\) for error bars of the fit results).

At this point, we can conclude that the fit results obtained at 400 °C for 2 h and 15 h point toward reaction path (1) but the ratio of CaH\(_2\)::CaB\(_6\) indicates that a minor part of the reaction follows pathway (3). Consequently, we expect some contribution from amorphous boron. We can exclude reaction pathway (2) as we find no formation of CaB\(_{12}\)H\(_{12}\). The situation changes

![Fig. 1 High resolution XRD patterns of annealed samples (colored solid lines) and the corresponding best fits (dashed lines) from Rietveld refinement. The incident X-ray wavelength was $\lambda = 0.40$ Å for the sample annealed at 350 °C and for the sample annealed at 400 °C for 0.5 h, the X-ray wavelength used to measure the diffraction pattern of the samples annealed at 400 °C for 2 h and 15 h was $\lambda = 0.32$ Å.](image)
remarkably when the composition of the sample annealed at 400 °C for only 0.5 h is considered. Here, we clearly observe an intermediate state. Surprisingly, no CaB₆ is observed and we have identified CaH₂ together with CaB₂Hₓ/Ca(BH₄)₂. Thes a m p l e annealed for 50 h at 350 °C resembles closely the composition of the sample annealed for 2 h at 400 °C due to the lower activation temperature.

We have no direct evidence for B from the fits of the Ca L₂,3'-edges, but based on the amount of CaH₂ from the Ca L₂,3'-edges and the reactions (1) and (3), we can estimate the amount of B contained in the samples in the form of CaB₆ and elemental B, respectively, by assigning all excess CaH₂ from pathway (1) to the partial decomposition occurring via pathway (3).

These values are reported in Fig. 4d and we can confront them with the values derived from a multi-component fit of the B K-edge as follows.

3.3 X-ray Raman scattering at the B K-edge

Fig. 3 shows the XRS spectra of the measured B K-edges of the native and decomposed samples in part (a) and the spectra of the reference compounds CaB₁₂H₁₂, CaB₆, B, and H₃BO₃ in part (b). Again, the dashed black lines in Fig. 3a represent the best fits of the multi-component fit. Based on the fitting results of the Ca L₂,3'-edges, we used B and CaB₆ as components of the fit and considered contributions from the native sample only.

Fig. 2 (a) XRS spectra of the Ca L₂,3'-edges for the native Ca(BH₄)₂ sample and the sample after thermal decomposition at different temperatures and annealing durations. The component fits are shown as thin dashed black lines, the largest deviations between the best fits and spectra are indicated by arrows. The solid line of the spectrum recorded at 400 °C and 0.5 h indicates a composition as inferred from the B K-edge data (see text for details), which does not resemble the shape of the Ca L-edge spectrum. (b) XRS spectra of the Ca L₂,3'-edges of the reference compounds CaB₁₂H₁₂, CaB₆, CaO, Ca(OH)₂, and CaH₂. The Ca L₂,3'-edges show distinctly different shapes and different features for the different reference compounds.

Fig. 3 (a) XRS spectra of the B K-edge for the native Ca(BH₄)₂ sample and the sample after decomposition at different temperatures and annealing durations. The component fits are shown as dashed black lines (combination of CaB₆, B, and Ca(BH₄)₂), a thin grey line represents the results from a linear combination of reference spectra (B and Ca(BH₄)₂) according to the fit results of the Ca L₂,3'-edges and the subsequent estimation of the boron containing phases. (b) XRS spectra of the B K-edge of the reference compounds CaB₁₂H₁₂, CaB₆, B, and H₃BO₃. As the Ca L₂,3'-edges, the B K-edge shows distinctly different shapes and different features for the different reference compounds.
for annealing conditions of 400 °C and 0.5 h. We found no evidence of boron oxidation using the H₂BO₃ as a reference for oxides.

The results of this fit procedure are shown in Fig. 4c and are compiled in a tabular form in the ESI.† In general, all experimental spectra are well reproduced by the results of the component fits. Larger differences can be observed around 200 eV where the structure related to CaB₆ is less pronounced and for the energy loss above 205 eV where the spectra are less structured than the respective best fits. This can be related to the fact that all boron containing decomposition products occur in amorphous or nanocrystalline form, whereas the reference spectra are recorded from crystalline or partly amorphous samples.

Except for the sample annealed at 400 °C for 0.5 h we find very good agreement between the fit results with respect to the content B and CaB₆ and the compositions derived from the Ca L₂,₃-edges via reaction pathways (1) and (3) (compare Fig. 4c and d). The composition estimated for the sample in the intermediate state (400 °C, 0.5 h) disagrees with the fit results of the B K-edge as the estimate based on the Ca L₂,₃-edges suggests no contribution from CaB₆. We used these B K-edge fit results (marked with an asterisk in the ESI†) to model the shape of the corresponding Ca L-edge shown as a solid line in Fig. 3a. It deviates significantly from the shape found experimentally. As the fit of the boron K-edge might be less sensitive to distinguish between elemental B and CaB₆ due to the similar spectral shape, as can be inferred from the error bars of the fit (see the table in the ESI†), we repeated the fit of this spectrum by neglecting the CaB₆ contribution, i.e. considering only B and Ca(BH₄)₂. The results of this fit (see the hatched bar in Fig. 4c and ESI† tables) are in line with the estimated boron content using stoichiometric considerations (Fig. 4d and ESI† tables) and the shape of the fitted spectrum deviates from the measured spectrum around the edge onset but agrees well with the experiment at a slightly higher energy loss.

4 Discussion

Using a combination of high resolution X-ray powder diffraction and X-ray Raman scattering spectroscopy at the B K-edge and Ca L₂,₃-edges, we analysed the thermally induced decomposition of Ca(BH₄)₂. The reaction conditions (dynamic vacuum, 350 °C and 400 °C) were chosen to compare with ref. 10. The long annealing time of 50 h at 350 °C was chosen to guarantee complete decomposition. Under these conditions the decomposition into CaB₆ and CaH₂ as solid reaction products could be verified. The annealing series at 400 °C was intended to clarify the observation of amorphous boron. Here, the combined XRD and XRS results, together with the findings of ref. 10, suggest that at temperatures of 400 °C and short annealing times (0.5 h) there is a competition between the decomposition along pathways (1) and (3). The observation of the crystalline intermediate CaB₂H₄ indicates that the decomposition partially proceeds along pathway (1). The XRS spectra, on the other hand, indicate that Ca(BH₄)₂ also decomposes along pathway (3), resulting in amorphous B as the major boron containing species.

Longer annealing times of up to 15 h initiate the formation of CaB₆ from CaH₂ and B. This is supported by the increase of the CaB₆ proportion at the expense of CaH₂ and the B content as observed after longer thermal treatment. Comparing the standard enthalpy of formation of CaH₂ (ΔH₀ = 186 kJ mol⁻¹) and CaB₆ (ΔH₀ = 121 kJ mol⁻¹), CaH₂ is found to be more stable. However, with increasing temperature the entropy gain from the release of gaseous H₂ (TΔS ≈ 90 kJ mol⁻¹, at T = 400 °C and ΔS(H₂) = 135 J mol⁻¹ K⁻¹) supports the formation of CaB₆ in line with our observations. The degree of crystallinity of CaB₆, as observed by XRD, could be the key for the reversibility of the hydrogen release reaction, i.e. the rehydrogenation of the decomposition products. Yan et al. observed that the rehydrogenation conditions degrade with respect to the initial decomposition temperature.¹⁰ Here, we see that the crystallite size together with the amorphous contribution of CaB₆ may be an indicator to tune the material for improved reversibility at lower temperatures.

5 Summary and outlook

The presented results show that XRS, especially in combination with complementary techniques such as XRD, is a powerful tool
for the spectroscopic identification and quantification of solid phases, thereby unveiling the chemical reaction pathways and the role of intermediates. Once fully established, this method will be a useful tool beyond the hydride research. In the case of the thermal hydrogen release and decomposition of Ca(BH$_4$)$_2$ we could show that the formation of unwanted intermediates and products that restrict the re-hydrogenation and thereby the application as a hydrogen storage material, can be avoided (e.g. CaB$_{12}$H$_{23}$) or can be converted (e.g. elemental B) by appropriate choice of the dehydrogenation conditions. Decomposition under dynamic vacuum at $350 \, ^\circ C$ results in CaH$_2$ and nano-crystalline CaB$_6$ as residual solid phases that favor rehydrogenation. At higher temperatures, elemental B, resulting from the decomposition, can be further converted into CaB$_6$ by a prolonged heating process. The resulting grain size of CaB$_6$ seems to be unfavorably large for decomposition at $400 \, ^\circ C$ compared to the grain size obtained at $350 \, ^\circ C$. The discussion so far had not involved any additives or catalysts that may increase the kinetics of the reaction or act as grain refiners, leaving vast space for further improvement in order to develop a technologically usable borohydride-based hydrogen storage material.

Acknowledgements

We thank the European Synchrotron Radiation Facility for providing synchrotron radiation and the technical and scientific staff of ESRF beamlines ID20 and ID22 for support and valuable discussions. We are further grateful for synchrotron radiation provided by PetraIII. We thank H. Yavas and the P01 beamline staff for support during the measurements. This work was supported by RESOLV (EXC 1069) and BMBF (Project No. 05K13PE2) within FSP-302. Y. Yan and A. Remhof acknowledge financial support during the measurements. This work was supported by ESRF beamlines ID20 and ID22 for support and valuable discussions. This work was supported by the European Union.

References

1 L. Schlapbach and A. Züttel, Nature, 2001, 414, 353–358.
2 H.-W. Li, Y. Yan, S. Orimo, A. Züttel and C. Jensen, Energies, 2011, 4, 185–214.
3 P. Jena, J. Phys. Chem. Lett., 2011, 2, 206–211.
4 E. Rönnebro, Curr. Opin. Solid State Mater. Sci., 2011, 15, 44–51.
5 M. Riktor, M. Sorby, K. Chlopek, M. Fichtner and B. Hauback, J. Mater. Chem., 2009, 19, 2754–2759.
6 M. Ley, L. Jepsen, Y.-S. Lee, Y. Cho, J. Von Colbe, M. Dornheim, M. Rokni, J. Jensen, M. Sloth and Y. Filinichuk, et al., Mater. Today, 2014, 17, 122–128.
7 K. Miwa, M. Aoki, T. Noritake, N. Ohba, M. Nakamori, S. Towata, A. Züttel and S. Orimo, Phys Rev. B: Condens. Matter Mater. Phys., 2006, 74, 155122.
8 J.-H. Kim, S.-A. Jin, J.-H. Shim and Y. Cho, J. Alloys Compd., 2008, 461, L20–L22.
9 Y. Kim, S.-J. Hwang, J.-H. Shim, Y.-S. Lee, H. Han and Y. Cho, J. Phys. Chem. C, 2012, 116, 4330–4334.
10 Y. Yan, A. Remhof, D. Rentsch, A. Züttel, S. Giri and P. Jena, Chem. Commun., 2015, 51, 11008–11011.
11 L.-L. Wang, D. Graham, I. Robertson and D. Johnson, J. Phys. Chem. C, 2009, 113, 20088–20096.
12 A. Kulkarni, L.-L. Wang, D. Johnson, D. Sholl and J. Johnson, J. Phys. Chem. C, 2010, 114, 14601–14605.
13 C. Bonatto Minella, S. Garroni, C. Pistidda, R. Gosalawit-Utke, G. Barkhordarian, C. Rongeit, I. Lindemann, O. Gutleisch, T. Jensen, Y. Cerenius and J. Christensen, J. Phys. Chem. C, 2011, 115, 2497–2504.
14 T. Frankcombe, J. Phys. Chem. C, 2010, 114, 9503–9509.
15 P. Vajeeston, P. Ravindran, B. Hauback and H. Fjellvåg, Int. J. Hydrogen Energy, 2011, 36, 10149–10158.
16 I. Llamas-Jansa, O. Friedrichs, M. Fichtner, E. Bardaji, A. Züttel and B. Hauback, J. Phys. Chem. C, 2012, 116, 13472–13479.
17 M. Aoki, K. Miwa, T. Noritake, N. Ohba, M. Matsumoto, H.-W. Li, Y. Nakamori, S. Towata and S. Orimo, Appl. Phys. A: Mater. Sci. Process., 2008, 92, 601–605.
18 M. Paskevicius, M. Ley, D. Sheppard, T. Jensen and C. Buckley, Phys. Chem. Chem. Phys., 2013, 15, 19774–19789.
19 Y. Yan, A. Remhof, D. Rentsch and A. Züttel, Chem. Commun., 2015, 51, 700–702.
20 Y. Kim, S.-J. Hwang, Y.-S. Lee, J.-Y. Suh, H. Han and Y. Cho, J. Phys. Chem. C, 2012, 116, 25715–25720.
21 W. Schülke, Electron dynamics by inelastic X-ray scattering, OUP Oxford, 2007.
22 W. Mao, H.-k. Mao, Y. Meng, P. Eng, M. Hu, P. Chow, Y. Cai, J. Shu and R. Hemley, Science, 2006, 314, 636–638.
23 P. Miedema, P. Ngeve, A. van der Eerden, T.-C. Weng, D. Nordlund, D. Sokaras, R. Alonso-Mori, A. Juhiin, P. de Jongh and F. de Groot, Phys. Chem. Chem. Phys., 2012, 14, 5581–5587.
24 J. Inkinen, J. Niskanen, T. Talka, C. Sahle, H. Müller, L. Khiachtchev, J. Hashemi, A. Akbari, M. Hakala and S. Huotari, Sci. Rep., 2015, 5, 15851.
25 S. Lee, J.-F. Lin, Y. Cai, N. Hiraoka, P. Eng, T. Okuchi, H.-k. Mao, Y. Meng, M. Hu and P. e. a. Chow, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 7925–7929.
26 C. Sahle, C. Sternemann, C. Schmidt, S. Lehtola, S. Jahn, L. Simonelli, S. Huotari, M. Hakala, T. Pykkänen and A. e. a. Nyrow, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 6301–6306.
27 A. Mattila, J. Soininen, S. Galambosi, S. Huotari, G. Vankó, N. Zhigadlo, J. Karpinski and K. Hämäläinen, Phys. Rev. Lett., 2005, 94, 247003.
28 S. Lee, P. Eng, H.-k. Mao, Y. Meng, M. Newville, M. Hu and J. Shu, Nat. Mater., 2005, 4, 851–854.
29 Y. Feng, J. Soininen, A. Ankudinov, J. Cross, G. Seidler, A. Macrander, J. Rehr and E. Shirley, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, 77, 165202.
30 T. Fister, V. Fila, G. Seidler, L. Svec, J. Linehan and J. Cross, J. Am. Chem. Soc., 2008, 130, 925–932.
31 S. Naftel, T. Sham, Y. Yiu and B. Yates, J. Synchrotron Radiat., 2001, 8, 255–257.
32 Y. Politi, R. Metzler, M. Abrecht, B. Gilbert, F. Wilt, I. Sagì, L. Addadi, S. Weiner and P. Gilbert, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 17362–17366.
33 S. Lee, P. Eng and H.-k. Mao, *Rev. Mineral. Geochem.*, 2014, 78, 139–174.
34 P. Miedema, P. Ngene, A. Van Der Eerden, D. Sokaras, T.-C. Weng, D. Nordlund, Y. Au and F. De Groot, *Phys. Chem. Chem. Phys.*, 2014, 16, 22651–22658.
35 C. Sahle, S. Kujawski, A. Remhof, Y. Yan, N. Stadie, A. Al-Zein, M. Tolan, S. Huotari, M. Krisch and C. Sternemann, *Phys. Chem. Chem. Phys.*, 2016, 18, 5397.
36 H. Sternemann, C. Sternemann, G. Seidler, T. Fister, A. Sakko and M. Tolan, *J. Synchrotron Radiat.*, 2008, 15, 162–169.
37 C. Sahle, A. Mironc, J. Niskanen, J. Inkinen, M. Krisch and S. Huotari, *J. Synchrotron Radiat.*, 2015, 22, 400–409.
38 A. Coelho, *General Profile and Structure Analysis Software for Powder Diffraction Data, version*, 2007, vol. 4.
39 Y. Kim, D. Reed, Y.-S. Lee, J. Lee, J.-H. Shim, D. Book and Y. Cho, *J. Phys. Chem. C.*, 2009, 113, 5865–5871.