Cyberwellness Learning Resources (CLR) Access Content Filter As Dangerous and Learning Network On the Internet

To cite this article: A Sumarno and S C Wibawa 2018 IOP Conf. Ser.: Mater. Sci. Eng. 288 012017

View the article online for updates and enhancements.
Cyberwellness Learning Resources (CLR) Access Content Filter As Dangerous and Learning Network On the Internet

A Sumarno1* and S C Wibawa2
1Education Technology Department, Universitas Negeri Surabaya
2Information Technology Education, Universitas Negeri Surabaya

*alimsumarno@unesa.ac.id

Abstract. Educating the use of information and communication technology (ICT) to improve the teaching has become a commitment and an important goal in all courses at the State University of Malang. The era of innovative and ICT-based learning has changed the way teachers and students interact, and now teaches the method in one direction, with non-Internet learning resources cannot provide maximum learning outcomes for student learning. Application cyberwellness learning resources have the ability to learn resource management filter harmful content on student access and replace them with learning resources specific to students in the Educational Technology State University of Malang. Learning model using management information system with the concept of continuous, convergence, and concentric. Method development model CLR development using models Davidson-Shivers and Rasmussen (2007) and selected based on suitability to the needs of development characteristics.

1. Introduction
Educating students in the use of information and communication technology (ICT) to enhance teaching and commitment has become an important goal in all educational programs in the Department of Educational Technology, State University of Malang. Commitment teaching the use of ICT in the Department of Educational Technology, the State University of Malang in tune with the policy of the Ministry of Education and Culture on the use of information and communication technology (ICT) in the Open, Distance, and e-learning (ODEL). Technology that allows reaching the learners in a variety of conditions, is to use information and communication technology (ICT) in the Open, Distance, and e-learning (ODEL). Ministry of Education and Culture of the Republic of Indonesia, explains that the use of ICT very important role to reach all learners throughout Indonesia, which has a diversity of geographical conditions [1]. ODEL very relevant and strategies the challenge of the development of educators. According to Adi, Department of Educational Technology researchers explained that ICT-based learning media can be realized by improving the ability of lecturer’s campus courses [2]. Era innovative and ICT-based learning has changed the way teachers and students interact, and now teaches the method in one direction, it cannot provide the maximum learning outcomes for student learning. Currently, the use of digital learning resources, the internet, and virtual media allows the integration of technology and educational resources to help shape the learners in the learning environment. Reform education for students performed Educational Technology Department, State University of Malang aims to improve the effectiveness of learning in the subjects that will be taught by students. Chen explained that the reforms need to be supported by combining the use of ICT with the preparation of student characteristics, curriculum, and learning environment [3]. Yan, Lo and Wang [4] explained that the
teaching of blended combines e-learning and face-to-face teaching with a curriculum combining virtual and classroom curriculum, and focused guidance and autonomous learners, will obtain optimum benefit in learning. According Sigh [5], in spite of the advantages and effectiveness of learning, the use of time in the online learning provides a natural and flexible means of acquiring knowledge. ICT is the most logical means to develop the ability of students when accompanied by the preparation of the learning model which has the concept of superior education.

Mastery of knowledge and procedures the use of ICT has been recognized as a significant and fundamental factor contributing to the implementation of ICT in learning. In order to effectively improve student learning outcomes through ICT, students need to understand the interaction between the use of ICT, pedagogy of teaching, student characteristics, and features source study abroad, so that every use of ICT can successfully require a comprehensive understanding of the mutually reinforcing relationship between technological knowledge, pedagogical knowledge, and knowledge content [6,7,8]. The application of ICT in learning have a procedure that must be understood by students, namely: 1) how the subject matter may be established by the ICT (knowledge of content and technology), 2) how teaching and learning can be transformed by ICT (pedagogical knowledge and technological characteristics), and 3) how to represent and communicate the specific concepts and topics of the subject matter to the students (pedagogical content knowledge).

Lecturer competency standards in the modern digital era are must know how to utilize ICT to improve the planning of learning, teaching, assessment, and classroom management. The concept underlying the development of students are the values of education, culture and the leadership of the Indonesian community in an integrated manner with the concept of Continuous, Convergent and Concentric [9]. Utilization of ICT basically 1) agreed on the cultural exchange should be carried out continuously by student cultural nature, 2) learn to do the convergence of the cultures were obtained to realize the universal culture, 3) build a synergistic community and together embody culture concentric with diverse cultural realms. Continuous utilization of ICT without concept, Convergent and Concentric will result in the student losing basic foundation values the development of education, culture and the leadership of the Indonesian people.

1.1 Concept (continuous, convergent and concentric)

The nature of information and communication technology for teaching and learning has become increasingly easy, accommodating, technology since the advent of Web 2.0 (a web site that is designed to realize the 2-way communication) and technology "cloud" of Internet. According to So & Kim [10], the learning program and only partial use of ICT-based skills course not possible to prepare a student to learn how to deal with the complex issues of pedagogy, content management, and technology [10]. This shows the urgent need to revisit the assumptions that underlie what we mean by ICT competencies necessary for the lecturer within the Department of Educational Technology, State University of Malang, and subsequent, related to redesign learning models involving ICT in education program students from the Department of Education Technology University Malang.

The debate on the essential and fundamental requirement for students in order to refocus the lecturer who has the capacity of ICTs is from the perspective of expertise and acceptance of the technology. According to Bransford and Schwartz [11], the expertise can be used to explain the differences between novice learners with learners who have an expert. It can measure the progress and the importance of developing how the transfer of knowledge and skills. Hammerness, Darling-Hammond and Bransford [12] showed that the development of expertise involves two dimensions of expertise, namely 1) the dimensions of efficiency and 2) the dimensions of innovation. Dimensional efficiency means greater ability to perform certain tasks without having to devote too much attention resources to achieve the goal. Dimensions of innovation involve moving beyond the existing routine and often involves a rethinking of the ideas, practices, and even values in order to change what they do. Two dimensions are complementary but can be an antagonist when both run potential to create conflict. To realize the students who have the expertise it needs to develop a disposition to understand the initial experience of the candidate, not as a failure but as a valuable and productive process of learning that can be said to be a continuous activity.
Step convergence of science that can be taken is how to help students discover the culture of learning and teaching. Hammerness and colleagues [12] showed that help faculty become an expert requires three aspects of preparation. First, teachers need to help students see teaching and learning process in a way that is fundamentally different from what they might have learned as a student. One of the important goals for education faculty is to help students see teaching as more than just implementing a routine practice. In certain cases, meaning that students need to reconstruct their perceptions of teaching and learning in order to learn and adopt new ideas. Second, help teach students more effectively means not only think like a teacher but also know to both understanding and set. Students often face problems. Effective enforcement beyond the ability to apply routine practices. Instead, students need to engage in reflective practice where they have the opportunity to practice and reflect on their own implementation in various contexts [13]. Problem-based learning, case-based learning or micro-teaching is an example of pedagogical approaches that help students become better prepared to effectively legalized. A final aspect involves what they call "the problem of complexity", where teaching is seen as a process of developing the habit of thinking and practice.

Step concentric to the students is to strive to adopt a more focused dimension dimensional efficiency and innovation expertise. The common learning model is based on the competence of lecturers and more emphasis on the efficiency rather than creating space for innovative ideas to grow and mature. As mentioned earlier, the typical model of integration competence but seldom used ICT use is the development of adaptive skills (easily accept changes), while the model can hold certain values to teach efficiently and diagnostic purposes. The new direction of the integration of ICT in education for students lies in the development of a set of knowledge of how students receptive to change and can also easily transferable so that lecturers are better able to adapt. Therefore, the assumptions underlying the epistemic and pedagogical design of learning models to integrate ICT for students should be revisited a) to focus on understanding where the students better understand the complexities of teaching and learning with technology, and b) to develop systematic and creative thinking skills to growing innovative ideas.

1.2 Cyberwellness

Cyberwellness is a condition in a particular community to use the on-line well and obtain optimum benefits. Cyberwellness marked with Web 2.0 is emerging as an important technology [14]. The existence of this technology allows web into social media interaction, collaboration, knowledge sharing and creation, web 2.0 examples include Facebook, wikis and blogs. Studies have shown that adopting Web 2.0 tools in the learning can improve interaction and communication between faculty and students [15,16]. Therefore, to integrate Web 2.0 tools in the learning of students need to be more emphasized. In addition, web 2.0 tools need to be implemented on strengthening the profession of students in the areas of learning in order to improve the effectiveness of teaching in the Department of Educational Technology, State University of Malang.

The concept of continuous education, convergent and concentric used to mitigate the adverse effects that accompany technological culture. Refers to the views Ki Hadjar Dewantara, Continuous means sustained the nation to develop a genuine culture [17]. Convergent, means selectively and adaptively combine our culture with foreign culture which is necessary for the progress of the nation. Concentric, means toward unity with the world of culture continue to have the personality traits of each nation in the world.

Some studies have reported that in the education of students who use Web 2.0 and its application in the classroom teaching and learning on-line, still visible frustration and anxiety on the context of Web 2.0 as a learning tool. This is a problem cyberwellness. For example, Sharples et al. surveyed 206 lecturers at the time of taking professional education faculty who teach children aged 11-16. The professors analysed their reactions about internet security issues that used children with Web 2.0 [18]. Researchers found that about half of the faculty has involved students in the use of Web 2.0 activities. However, 42% of faculty-teacher never taught students about safety online and only 11% do the teaching on-line security. In addition, 46% of the teachers reported that they had negative experiences caused by students using Web 2.0. Thus, some teachers and school administrators are still
not aware of the problem cyberwellness as a culture on secure on-line wisely. Students mostly do not receive any support or sufficient condition to obtain knowledge cyberwellness through the concept of education in the Department of Educational Technology, State University of Malang far.

The educational concept that conditioned culture cyberwellness need to be grafted on the education of students. Web 2.0 has been recognized as an efficient technology to support and enhance collaborative learning strategies in learning [19]. But in fact, the integration of Web 2.0 into classroom teaching and learning on-line can be further enhanced if the student is guided to address concerns culture cyberwellness in Web 2.0 environments. Conditions learning environment at the Department of Educational Technology, State University of Malang that produces students need to overhaul the collaborative web-based learning has been done and repaired with a design appropriate to the characteristics of the students within the scope cyberwellness.

Problems cyberwellness actually carry a moral message culture wise and safe. This was shown in the study, the lecturers at the age of 16 years of education received training model of e-learning to feel more comfortable about choosing and utilizing Web resources for their learning, and have a positive attitude in guiding students to use security information in their learning activities and learning materials in web-based environments [20]. These results imply that the issue concerns cyberwellness in the context of Web 2.0 depends on actual practice can influence the effectiveness of teachers and curriculum design that uses Web 2.0 technology. In short, research has made it clear that technological development on-line for students is very important and should be effectively integrated into ICT-based media using Web 2.0. This condition is needed to help students in their teaching practices. Various studies have also shown that the use and integration of Web 2.0 in the ICT knowledge are influenced by understanding cyberwellness students. Cultural use of the on-line by integrating ICT resources is an important variable that must be considered by the Department of Education Technology, the State University of Malang in order to produce students who excel.

2. Methods

2.1. Integrated ICT learning development model
Integrated Learning Model Design Development of ICT Davidson-Shivers and Rasmussen were selected based on suitability to the needs of development characteristics. Learning development needs be done is the development of learning that combines face-to-face learning with the characteristics and main characteristics on the activities of on-line base on web. Overall the model of Davidson-Shivers and Rasmussen is a development method that has the dominant characteristic in the development of web-based.

Design Development Method Web-Based Learning Model Davidson-Shivers and Rasmussen have phases of development among other things: 1). Analysis; 2). Evaluation Plan 3) Phase Unison which includes design, system development, testing and implementation and evaluation Formative. This phase can be done Arm-times until the time limit is not specified; 4). Thorough implementation; 5). Summative Evaluation and Research.

2.2. Stage of development
Stages of development are the stage adapted to the model of Davidson-Shivers Development Model and Rasmussen. But with the limited time, the development phase of the mesh only be done one time so that the Davidson-Shivers Model Development and Rasmussen modified into 8 stages of development [21].

2.3. Mechanical analysis
In this study using design analysis model with front-end analysis (wiliem w. Lee) design include:
 a) Analysis of audience (learners), this analysis describes the target audience using Web-Based Learning Design. Depictions of learning subjects such as the user population.
 b) Analysis of technology and media. Technology analysis describing the technology development of web-based learning of the appropriate technology. The description of the technology relating to hardware, software and interconnection. describe media analysis media used in learning.
Description based media include text, image, audio, video and web on subjects Subject TEP S-1 Department of Educational Technology, State University of Malang

c) Analysis of situation (context). This analysis describes the environment in which web-based learning is implemented. The description describes the majors TEP S-1 Department of Educational Technology, State University of Malang.

d) Analysis of Objectives (content), this analysis is to describe learning objects used in the development of web-based learning. The description is the description that will be made subject TEP S-1 Department of Educational Technology, State University of Malang.

2.4. Instrument validation
At the stage of examining the results of the test in accordance with the design of formative evaluation. In the formative conducted using questionnaires with respondents as follows: 1) Expert software (AS); 2). Expert Hardware (AH) 3). Expert Content and Learning (AMP); 4). Expert Communications (AK); 5). Web users (PW) which are students taking courses for the academic year 2007/2008, the data in the form of qualitative and quantitative.

3. Results and discussion
Education technology development team to develop applications cyberwellness learning resources specific to students in the Department of Educational Technology, State University of Malang. Applications using the device integration of Information and Communication Technology to the concept of continuous, convergence, and concentric. To divert and filter out harmful content carried by students and replace them with specific learning resources and useful to the network access the Internet in the department of Educational Technology.

Results of development in the form of application cyberwellness learning resources specifically valid for students in the Department of Educational Technology, State University of Malang. Applications using the device integration of Information and Communication Technology to the concept of continuous, convergence, and concentric. The result of the development of applications cyberwellness learning resources specifically valid for students in the Department of Educational Technology, State University of Malang and publish finding.

Learning model developed is the bridge a distinctive perspective on the education of students learning methods with the use of information technology and communication media. The concept of continuous education, convergent and concentric used to mitigate the adverse effects that accompany technological culture. Student and manager of the Department of Educational Technology, State University of Malang is still not aware of the culture cyberwellness as a culture on-line community that is able to use ICT integration wisely adan safe. Students mostly do not receive any support or sufficient condition to obtain knowledge cyberwellness through the concept of education in the Department of Educational Technology, State University of Malang far.

Acknowledgments
I would like to express my sincere gratitude to Vice Rector of Academics Universitas Negeri Surabaya, Yuni Rahayu for the support of funding.

References
[1] Ministry of Education and Culture of the Republic of Indonesia 2012 Towards Expanding Access to Education ICT (On-line) http://www.kemdiknas.go.id/kemdikbud/berita/895
[2] Adi E P 2007 Increased capacity SD lecturer Educational Technology Laboratory Department of State University of Malang on the development of multimedia-based teaching media (On-line). http://library.um.ac.id/free-contents/download/pub/download-print5.php/32404.pdf
[3] Chen S Y 2004 Web-based teaching activities in the prospective teacher education courses Curriculum & Instruction Quarterly 7 1 123-138
[4] Yan X L, Lou S J and Wang Y Y 2009 The advantages of incorporating blended learning into situational composition for vocational high school students 2009 Globalization, Industrial
Change, and Development of Technical and Vocational Education Conference Pingtung County

[5] Singh H 2003 Building effective blended learning programs *Educational Technology* **43** 6 51-54
[6] Chang C Y 2003 Teaching earth sciences: Should we implement teacher-directed or student-controlled CAI in the secondary classroom *International Journal of Science Education* **25** 4 427-438
[7] Chang C Y and Tsai C 2005 The interplay between different forms of CAI and students’ preferences of learning environment in the secondary science class *Science Education* **89** 5 707-724
[8] Chien Y T and Chang C Y 2012 Comparison of different multimedia instructional designs for improving student learning science-process skills *Journal of Science Education and Technology* **21** 1 106-113
[9] Kuswandi D 2009 Building a nation’s character is based on the core values of education, culture and community leadership Indonesia Values: Study of Theory, Practice and teachings became the Department of Educational Technology, State University of Malang **1** 17 25
[10] So HJ and Kim B 2009 Learning about problem-based learning: Student teachers integrating technology, pedagogy, and content knowledge *Australasian Journal of Educational Technology* **25** 1 101-116
[11] Bransford J D and Schwartz D L 1999 Rethinking transfer: A simple proposal with multiple implications *Review of Research in Education* **24** 1 61-101
[12] Hammerness K, Darling-Hammond L and Bransford J 2005 *How teachers learn and develop* San Francisco: Jossey-Bass
[13] Schön D 1983 *The reflective practitioner* Basic Books: New York
[14] Grosseck G 2009 To use or not to use Web 2.0 in higher education *Procedia Social and Behavioural Sciences* **1** 1 478-482
[15] Cheon J, Song J, Jones R D and Nam K 2010 Influencing preservice teachers' intention to adopt Web 2.0 services *Journal of Digital Learning in Teacher Education* **27** 2 53-64
[16] Hartshorne R and Ajjan H 2009 Examining student decisions to adopt Web 2.0 technologies: theory and empirical tests *Journal of Computing in Higher Education* **21** 3 183-198
[17] Kuswandi D 2005 embodiments concepts Ki Hadjar Dewantara Education in Environmental Education Mrs. Pawiyatan Tamansiswa Yogyakarta.Dissertation: PPS Department of Educational Technology, State University of Malang
[18] Sharples M, Graber R, Harrison C and Logan K 2009 E-safety and Web 2.0 for children aged 11-16 *Journal of Computer Assisted Learning* **25** 1 70-84
[19] Wang Q and Woo HL 2009 Exploring the use of Web 2.0 tools to support collaborative learning *Journal of Education Research* **3** 3 191-202
[20] Chou C and Peng H 2011 Promoting awareness of Internet safety in Taiwan in-service teacher education: A ten-year experience *The Internet and Higher Education* **14** 1 44-53
[21] Davidson-Shivers GV, Rasmussen KL. Designing instruction for the WWW: A model. InEdMedia: World Conference on Educational Media and Technology 1999 (pp. 1292-1293). Association for the Advancement of Computing in Education (AACE).