A quad-band branch line coupler with high frequency ratio

Guoan Wu¹, Shihao Qi¹, Wenguang Li¹, Baoquan Hu¹, and Lamin Zhan¹

Abstract In this paper, a novel quad-band branch line coupler with high ratio (from 6.27 to 14.96) of the largest operating frequency to the smallest operating frequency is presented. To realize quad-band operations, a combination of coupled lines and open stubs is proposed which can make the design flexible. By using analysis of even and odd modes, the equivalent equations for the quad-band operation are obtained. Compared to the existing quad-band branch line coupler, the proposed quad-band coupler has the highest ratio of the largest operating frequency to the smallest operating frequency, which is valuable for wideband and ultra wideband application. For practical applications, a quad-band coupler operating at 0.7, 1.64, 4.09, and 5.03 GHz which can be used for the long term evolution (LTE) and Wi-Fi is designed, fabricated, and measured. The simulated and measured results agree well with the design theory.

Key words: Branch line coupler, quad-band, coupled lines, operating frequency ratio

Classification: Microwave and millimeter wave devices, circuits, and hardware

1. Introduction

With the development of wireless communication systems, the demand for versatile devices which can cover multiple frequency application bands is increasing constantly[1-3]. The branch line couplers are essential components for constructing various microwave circuits such as modulators, balanced amplifiers, phase shifters and wireless transceivers[4-10]. Many methods for designing multi-band branch line couplers have been proposed in the past few years[10-37]. The quad-band operations have been reported including the combination of coupled lines and transmission lines[33], the T shaped coupled line sections[34], the open stubs added to the conventional branch line coupler’s ports[35], adopting to fulfill satisfactory matching within each operating band based on the single-band branch line coupler[36], and the generalized negative refractive index transmission line unit cells[37].

In this paper, a novel quad-band branch line coupler is proposed. To realize the quad-band operation, coupled lines and open stubs replacing the quarter-wave-length transmission lines are applied. For verification purposes, a quad-band branch line coupler operating at 0.7, 1.64, 4.09, and 5.03 GHz has been designed, fabricated, and measured. The schematic diagrams of the conventional single-band branch line coupler and the proposed quad-band branch line coupler are shown in Fig. 1. Here, \(Z_{E1} \), \(Z_{E2} \), \(Z_{O1} \), and \(Z_{O2} \) are the characteristic impedances of the even and odd modes of the coupled lines respectively. \(Z_{C} \), \(Z_{R1} \), and \(Z_{R2} \) are the characteristic impedances of the transmission lines and \(Z_{C} \) is 50 \(\Omega \). \(\theta \) is the electrical length of coupled lines and open stubs.

![Schematic of branch line couplers](image)

Fig. 1 Schematic of branch line couplers. (a) Conventional single-band branch line coupler. (b) Proposed quad-band branch line coupler.

2. Proposed quad-band structure

The schematics of the conventional quarter-wave-length transmission line and the proposed quad-band structure are shown in Fig. 2. The mathematical analysis of the even, odd modes and the operation of quad-band is

¹School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
²Aviation industry Shaanxi Aircraft Industry Group Co., Ltd, Hanzhong 723213, China

a) laminzhan@163.com

DOI: 10.1587/elex.18.20210487
Received November 15, 2021
Accepted December 13, 2021
Publicized December 23, 2021
explained.

![Diagram](image)

Fig. 2 Schematic of basic structure. (a) Conventional quarter-wavelength transmission line. (b) Proposed quad-band structure.

2.1 Even mode analysis

The even mode equivalent circuit of the half conventional transmission line is an open stub with electrical length 45° and characteristic impedance \(Z_c \) as shown in Fig. 3a. The even mode equivalent circuit of the half quad-band structure is two parallel open stubs connected with a transmission line as shown in Fig. 3b. The impedances \(Z_{IN1}, Z_{IN2} \) of Fig. 3 can be illustrated respectively as follow:

\[
Z_{IN1} = \pm jZ_c \\
Z_{IN2} = j -Z_c Z_R \cot \theta + Z_E (Z_E + Z_R) \tan \theta \\
Z_{IN2} = j \frac{Z_c Z_R \tan \theta + Z_E (Z_E + Z_R) \tan \theta}{Z_E + 2Z_R} \\
\]

(1)

(2)

Considering that both of the two circuits are equivalent, Eq. (3) is obtained.

\[
Z_{IN1} = Z_{IN2} \tag{3}
\]

When negative and positive signs are taken in Eq. (1), \(Z_{E1} \) and \(Z_{E2} \) are respectively derived as:

\[
Z_{E1} = -\frac{Z_c \tan \theta + Z_R - Z_R \tan^2 \theta + \sqrt{-8Z_c Z_R \tan^2 \theta + (Z_c \tan \theta - Z_R + Z_R \tan^2 \theta)^2}}{2 \tan^2 \theta} \pm \frac{\sqrt{8Z_c Z_R \tan^2 \theta + (-Z_c \tan \theta - Z_R + Z_R \tan^2 \theta)^2}}{2 \tan^2 \theta} \\
Z_{E2} = Z_c \tan \theta + Z_R - Z_R \tan^2 \theta \\
\]

(4)

(5)

2.3 Quad-band Operation

It is obvious that even and odd mode impedances \(Z_E, Z_O \) are determined by the open stub impedance \(Z_R \) and the electrical length \(\theta \). By selecting a suitable value of \(Z_R \), the \(Z_{E1}, Z_{O1}, Z_{E2}, Z_{O2} \) calculated respectively at \(\theta_1 \) and \(\theta_2 \) within 90° satisfy Eq. (11) and (12).

\[
Z_{E1} = Z_{E2} = Z_E \tag{11} \\
Z_{O1} = Z_{O2} = Z_O \tag{12}
\]

It means that when these values of \(Z_E, Z_O, \) and \(Z_R \) are taken, Eq. (3) and (8) are satisfied at \(\theta_1 \) and \(\theta_2 \). \(\theta_1 \) and \(\theta_2 \) are the electrical lengths at the first two operating frequencies \(f_1 \) and \(f_2 \). After \(\theta_1 \) is determined, \(\theta_2 \) can be obtained by selecting an appropriate \(Z_R \) to achieve two operating frequencies, as shown in Fig. 4.
Fig. 4 Calculated values of Z_E, Z_O, θ_2, and Z_R for different θ_1. (a) $\theta_1 = 12^\circ$, $Z_R = 21.9\Omega$. (b) $\theta_1 = 16^\circ$, $Z_R = 35.8\Omega$. (c) $\theta_1 = 20^\circ$, $Z_R = 62.9\Omega$. (d) $\theta_1 = 24^\circ$, $Z_R = 151.6\Omega$.

To realize the quad-band operation, the electrical lengths θ_1 and θ_2 at the third and fourth operating frequencies f_3 and f_4 are obtained as:

\[
\begin{align*}
\theta_3 &= 180^\circ - \theta_2 \\
\theta_4 &= 180^\circ - \theta_1
\end{align*}
\]

And there is

\[
\frac{f_3}{\theta_1} = \frac{f_2}{\theta_2} = \frac{f_3}{\theta_3} = \frac{f_4}{\theta_4}
\]

(15)

So the operating frequencies f_3 and f_4 are calculated as:

\[
\begin{align*}
f_3 &= f_2 \frac{180^\circ - \theta_2}{\theta_2} \\
f_4 &= f_1 \frac{180^\circ - \theta_1}{\theta_1}
\end{align*}
\]

(16) (17)

In the design, θ_1 can be obtained by selecting f_1 and f_4 from Eq. (17). And Z_E, Z_O, θ_2, and Z_R can be calculated by solving Eq. (1-3, 6-8) through computer calculation.

The Fig. 5 shows the variations of Z_E, Z_O, θ_1, and θ_2 against Z_R. It should be noted that θ_2 is determined by θ_1 and cannot be adjusted. Under the condition of $20 \Omega < Z_R < 200 \Omega$, the range of θ_1 is 11.28°-24.76° and the range of θ_2 is 27.33°-57.33°, which results in the ratio of the first two operating frequencies f_1 and f_2 to 2.31-2.41 as calculated in Eq. (15). The ranges of f_3 / f_1 and f_4 / f_1 can be obtained as 4.96-13.55 and 6.27-14.96 respectively from Eq. (15-17).

3. Application and results

For further demonstration, a proposed quad-band branch line coupler operating at 0.7, 1.64, 4.09 and 5.03 GHz has been fabricated and measured. The prototype and layout of the proposed coupler is shown in Fig. 6.

The coupler has been designed and simulated with Advanced Design System and Ansys HFSS, and fabricated on a Taconic TLY-5 substrate with a thickness...
of 0.762 mm and a dielectric constant of 2.2. The component values and dimensions of the fabricated coupler are shown in Table I. The simulated and measured results of the designed coupler are shown in Fig. 7 and summarized in Table II.

The operating frequencies shift slightly due to parasitic effects and discontinuity at the component connections and the fabrication errors. For the first two operating frequencies, the amplitude imbalance ($\Delta A = |S_{21}| - |S_{11}|$) is < 0.7 dB and the phase difference between the two output ports is $< 3^\circ$ compared with $\pm 90^\circ$. Meanwhile, for the third and fourth operating frequencies, the amplitude imbalance ($\Delta a = |S_{21}| - |S_{11}|$) is < 1 dB and the phase difference between the two output ports is $< 7^\circ$ compared with $\pm 90^\circ$. The insertion losses are high for the upper frequencies because the measurement is in an open space which results in high radiation loss. Generally, it is observed that the simulated and measured results are in good agreement.

Table I. Component values and dimensions of the coupler.

Components	Impedance (Ω)	Width (mm)	Length (mm)	Space (mm)
$Z_{13}, Z_{23}/\theta$	88.55, 48.51/21.99	1.26	19.76	0.25
Z_{3}/θ	62.62, 34.3/21.99	2.16	19.51	0.14
Z_{2}/θ	91.06/21.99	0.78	19.74	-
Z_{1}/θ	64.39/21.99	1.53	19.38	-

![Fig. 7 Simulated and measured results of the designed coupler. (a) Return loss S_{11}. (b) Insertion loss S_{21}. (c) Coupling coefficient S_{12}. (d) Isolation S_{11}. (e) Phase difference between S_{21} and S_{31}.](image)

The comparison between the proposed coupler and the previous multi-band branch line couplers is shown in Table III. Compared with the coupler from reference [33-36], the proposed quad-band structure has the highest ratio of the largest operating frequency (f_{MAX}) to the smallest operating frequency (f_{MIN}) which can reach by 14.96.

Table III. Comparison with previous works.

Reference	[33]	[34]	[35]	[36]	This work
Tactic	Coupled lines and transmission lines	Coupled lines	Open stubs	Matching circuitry	Coupled lines and open stubs
Frequency (GHz)	0.7/1.7/2.6/	0.66/1.52/	0.7/2.1/	1.5/2.4/	0.7/1.6/
S_{11} (dB)	$< -11.2^\circ$	$< -11.0^\circ$	-	$< -16.2^\circ$	$< -18.18^\circ$
S_{21} (dB)	$> -3.9^\circ$	$> -3.71^\circ$	-	> -3.71	> -4.83
S_{31} (dB)	$> -3.91^\circ$	$> -3.84^\circ$	-	> -4.00	> -4.09
$f_{\text{MAX}} / f_{\text{MIN}}$ range	8.1-11	1.95-7	5.7-9	-	6.27-14.96

* Max S_{11}, Min S_{21}, Min S_{31}, Max S_{11} for the operating band.
Simulation results.
^ Calculated from the figure.

4. Conclusion

A novel quad-band structure consists of coupled lines and open stubs has been proposed. The ratio of the largest operating frequency to the smallest operating frequency ranges from 6.27 to 14.96. The high frequency ratio supports that the coupler can be used in devices and systems with a wide frequency range, which is valuable for wideband application. For the purpose of verification, a quad-band coupler working at 0.7, 1.64, 4.09, and 5.03 GHz which can be used for LTE and Wi-Fi is designed and implemented. The simulated and measured results match well with the design theory.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant No. 61001012).

References

[1] N. M. Jizat, et al.: "Dual Band Beamforming Network Integrated
with Array Antenna," 2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation (2010) 561 (DOI: 10.1109/AMS.2010.113).

[2] C. Zhou, et al.: "A novel compact dual-band butter matrix design," Proceedings of 2014 3rd Asia-Pacific Conference on Antennas and Propagation (2014) 1327 (DOI: 10.1109/APCAP.2014.6992767).

[3] S. Velan, et al.: "Quadrant-Band Rat-Race Coupler With Suppression of Spurious Pass-Bands," IEEE Microwave and Wireless Components Letters 26 (2016) 490 (DOI: 10.1109/LMWC.2016.2575017).

[4] D. Titz, et al.: "New Wideband Miniature Branch Line Coupler on IPD Technology for Beamforming Applications," IEEE Transactions on Components, Packaging and Manufacturing Technology 4 (2014) 911 (DOI: 10.1109/TCPMT.2014.2311092).

[5] P. Chi and T. Hsu: "Novel dual-band and arbitrary output-phase crossover based on two-section couplers," 2015 Asia-Pacific Microwave Conference (APMC) (2015) 1 (DOI: 10.1109/APMC.2015.7411624).

[6] A. Kosuge, et al.: "Analysis and Design of an 8.5-Gb/s/Link Multi-Drop Bus Using Energy-Equalized Transmission Line Couplers," IEEE Transactions on Circuits and Systems I: Regular Papers 62 (2015) 2122 (DOI: 10.1109/TCSI.2015.2437515).

[7] I-Hsiang Lin, et al.: "Arbitrary dual-band components using composite right/left-handed transmission lines," IEEE Transactions on Microwave Theory and Techniques 52 (2004) 1142 (DOI: 10.1109/TMTT.2004.825747).

[8] J. Bonache, et al.: "Application of Composite Right/Left Handed (CRLH) Transmission Lines based on Complementary Split Ring Resonators (CSRRs) to the Design of Dual-Band Microwave Components," IEEE Microwave and Wireless Components Letters 18 (2008) 524 (DOI: 10.1109/LMWC.2008.2010111).

[9] X. Y. Zhang, et al.: "High-Efficiency Broadband Rectifier With Wide Ranges of Input Power and Output Load Based on Branch-Line Coupler," IEEE Transactions on Circuits and Systems I: Regular Papers 64 (2017) 731 (DOI: 10.1109/TCSI.2016.2614331).

[10] W. Feng, et al.: "Dual-/Tri-Band Branch Line Couplers With High Power Division Isolation Using Coupled Lines," IEEE Transactions on Circuits and Systems II: Express Briefs 65 (2018) 461 (DOI: 10.1109/TCSII.2017.2739751).

[11] K.-K. M. Cheng and Fai-Leung Wong: "A novel approach to the design and implementation of dual-band compact planar 90 deg branch-line coupler," IEEE Transactions on Microwave Theory and Techniques 52 (2004) 2458 (DOI: 10.1109/TMTT.2004.837151).

[12] B. S. Elesela and Y. Chiang: "Design of reconfigurable dual-band branch-line coupler," 2016 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM) (2016) 1 (DOI: 10.1109/iWEM.2016.7504932).

[13] E. E. Djourmessi, et al.: "Varactor-Tuned Dual-Band Quadrature Hybrid Coupler," IEEE Microwave and Wireless Components Letters 16 (2006) 603 (DOI: 10.1109/LMWC.2006.884905).

[14] H. Zhang and K. J. Chen: "A Stub Tapped Branch-Line Coupler for Dual-Band Operations," IEEE Microwave and Wireless Components Letters 17 (2007) 106 (DOI: 10.1109/LMWC.2006.890330).

[15] K.-S. Chin, et al.: "Compact Dual-Band Branch-Line and Rat-Race Couplers With Stepped-Impedance-Stub Lines," IEEE Transactions on Microwave Theory and Techniques 58 (2010) 1213 (DOI: 10.1109/TMTT.2010.2046064).

[16] L. Zhan, et al.: "Miniaturized dual-band coupler using three-branch-line structure and dual transmission lines." IEICE Electronics Express 14 (2017) 20170834 (DOI: 10.1587/elex.14.20170834).

[17] C. Gai, et al.: "Compact Dual-Band Branch-Line Coupler With Dual Transmission Lines," IEEE Microwave and Wireless Components Letters 26 (2016) 325 (DOI: 10.1109/LMWC.2016.2549099).

[18] C. Yu and Y. Pang: "Dual-Band Unequal-Power Quadrature Branch-Line Coupler With Coupled Lines," IEEE Microwave and Wireless Components Letters 23 (2013) 10 (DOI: 10.1109/LMWC.2012.2234087).

[19] S. A. Imam, et al.: "A quad band quadrature branch line coupler using coupled line sections," 2017 2nd IEEE International Conference on Integrated Circuits and Microsystems (ICICM), (2017) 120 (DOI: 10.1109/ICAM.2017.8242151).

[20] A. M. Zaidi, et al.: "A Dual Band Branch Line Coupler With Wide Frequency Ratio," IEEE Access 7 (2019) 25046 (DOI: 10.1109/ACCESS.2019.2896646).

[21] M. Mirzaee and M. Nosrati: "A novel design approach to the miniaturization of dual-band branch-line coupler." IEICE Electronics Express 8 (2011) 2029 (DOI: 10.1587/elex.8.2029).

[22] C. Collado, et al.: "Dual-band planar quadrature hybrid with enhanced bandwidth response," IEEE Transactions on Microwave Theory and Techniques 54 (2006) 180 (DOI: 10.1109/TMTT.2005.860306).

[23] K. M. Cheng and S. Yeung: "A Novel Dual-Band 3-dB Branch-Line Coupler Design With Controllable Bandwidths," IEEE Transactions on Microwave Theory and Techniques 60 (2012) 3055 (DOI: 10.1109/TMTT.2012.2210437).

[24] Myun-Joo Park and Byungie Lee: "Dual-band, cross coupled branch line coupler," IEEE Microwave and Wireless Components Letters 15 (2005) 655 (DOI: 10.1109/LMWC.2005.856683).

[25] L. Zhan, et al.: "Dual-band branch-line coupler with orthogonal coupled branches," 2018 IEEE 19th Wireless and Microwave Technology Conference (WAMICON) (2018) 1 (DOI: 10.1109/WAMICON.2018.8363901).

[26] S. Wang, et al.: "A miniaturized 10/24-GHz rat-race coupler using synthetic transmission lines on glass substrate," IEICE Electronics Express 8 (2011) 1425 (DOI: 10.1587/elex.8.1425).

[27] M. Yousefi, et al.: "Dual band planar hybrid coupler with enhanced bandwidth using particle swarm optimization technique," IEICE Electron Express 9 (2012) 1030 (DOI: 10.1587/elex.9.1030).

[28] P. Liu and D. Yang: "A dual-band compact branch line coupler based on F-shaped transformer," 2016 17th International Conference on Electronic Packaging Technology (ICEPT) (2016) 1476 (DOI: 10.1109/ICEPT.2016.7583402).

[29] M. Park: "Dual-Band, Unequal Length Branch-Line Coupler With Center-Tapped Stubs," IEEE Microwave and Wireless Components Letters 19 (2009) 617 (DOI: 10.1109/LMWC.2009.2029734).

[30] H. Kim, et al.: "Dual-Band Branch-Line Coupler With Port Extensions," IEEE Transactions on Microwave Theory and Techniques 58 (2010) 651 (DOI: 10.1109/TMTT.2010.2040342).

[31] X. Lin et al.: "Realization of arbitrary dual-band components using an improved CRLH transmission-line model," 2005 Asia-Pacific Microwave Conference Proceedings (2005) 4 (DOI: 10.1109/APMC.2005.1606276).

[32] R. Keshavarz, et al.: "A compact dual-band branch-line coupler based on the interdigital transmission line," 2011 19th Iranian Conference on Electrical Engineering (2011) 1.

[33] A. M. Zaidi, et al.: "Hexa-Band Branch Line Coupler and Wilkinson Power Divider for LTE 0.7 GHz, LTE 1.7 GHz, LTE 2.6 GHz, 3.9 GHz, Public Safety Band 4.9 GHz, and WLAN 5.8 GHz Frequencies," IEEE Transactions on Circuits and Systems II: Express Briefs 67 (2020) 275 (DOI: 10.1109/TCSII.2019.2903001).
[34] S. A. Imam, et al.: "A quad band quadrature branch line coupler using coupled line sections," 2017 2nd IEEE International Conference on Integrated Circuits and Microsystems (ICIMC) (2017) 120 (DOI: 10.1109/ICAM.2017.8242151).

[35] C. Tang and M. Chen: "Design of Multipassband Microstrip Branch-Line Couplers With Open Stubs," IEEE Transactions on Microwave Theory and Techniques 57 (2009) 196 (DOI: 10.1109/TMTT.2008.2008982).

[36] L. Piazzon, et al.: "Branch-Line Coupler Design Operating in Four Arbitrary Frequencies," IEEE Microwave and Wireless Components Letters 22 (2012) 67 (DOI: 10.1109/LMWC.2011.2181349).

[37] A. C. Papanastasiou, et al.: "A quad-band rat-race coupler based on the Generalized Negative Refractive-Index Transmission-Line concept," 2013 European Microwave Conference (2013) 302 (DOI: 10.23919/EuMC.2013.6686651).