Studying the properties of oils from secondary raw materials

I A Sorokina, A A Kolobaeva and E V Panina

Voronezh State Agrarian University named after Emperor Peter the Great, 1, Michurina st. Voronezh, 394087, Russia
E-mail: amet02@mail.ru

Abstract. The article analyzes the properties of wild rose and black current oils, received from wastages of fruit and berry processing. Oils from secondary materials are usually used as food and processing additives. We suggest their utilization as functional additives to cosmetic soap. Functional properties of oils are conditioned by fatty acid composition, which was determined with Gas Chromatography. It has been noted that both types of oil contain linoleic, oleate, alpha-linolenic acid, and some medium-chain-length fatty acids. Besides, black currant oil has high content of gamma-linolenic acid. The recommended dosage of additives has been determined with the account of interaction with other components of soap by Delphi method. The best ratio is 1.5…2.0 % of wild rose or black current oils to the mass of the soap base.

1. Introduction

Plant oils are the source of essential substances necessary for normal functioning of the human organism. They have high content of fat-soluble vitamins, sterine and other biologically active components and essential fatty acids [1, 2].

Besides oilseeds and fruit, the source for plant oils for food and industrial use can be secondary oil containing products received during processing of plant agricultural raw material. Fruit and berry stones and press residues have a special role among the wastes formed when jam, confiture, puree, juice and syrups with flesh or without it are produced.

Wild rose and black currant oils have been used as food additives or cosmetic substances. Their application as functional components of soaps has not been estimated yet.

Due to the tendency to use super-fatted soap formulas a consumer is interested in natural additives. Due to this, it is important to develop formulas of soaps with strong softening, hydrating and protective attributes [3, 4, 5].

To determine the functional attributes of wild rose and black currant oils we studied their oil-acid composition and peculiarities of their interaction with other components of the soap.

2. Materials and methods

Wild rose and currant oils after press processing of fruit-berry raw material were used as objects of the study.

As application of black currant oil in soap production is conditioned by the peculiarities of triglyceride composition, gas chromatography method of studies was applied.

Components separation and identification has been conducted with the system of chromatography-mass spectrometry by Agilent. It includes a gas chromatograph HP6890 Plus and a mass-spectrum detector MSD 5973N.
The samples for analysis were prepared by converting fatty acids into methyl ether [6, 7, 8]. Chromatographic conditions: capillary bolster DB-5ms (5% biphenyl and 95% dimethylpolyorganosiloxiane, film thickness 0.25 mkm) 30 m × 0.25 mm in size. The initial temperature of the column heating oven is 40°C; execution time at the initial temperature is 1 min; temperature programming is from 40 to 210 °C at the speed 15 °C/min, from 210 to 280 °C at the speed 5°C/min. Execution time at the finite temperature is 20 min. Carrier-gas is helium, 1 cm³/min (constant flow). The test portion is 0.2 mcl without split ration (liner HP5062-3587 splitless), evaporation is 280 °C. The evaporator temperature and the interface detector is 280 °C.

Optimum oil dose with the account of interaction with other components of the soap were determined by Delphi method with a number scale.

3. Study of triglyceride composition of the wild rose and black current oils with gas chromatography.

Acid name in basic nomenclature	Fatty acid designation	Mass content, % from the total of fatty acids
Linolic	C₁₈:2 n6c (cis)	55.146
Oleic	C₁₈:1 n9c (μ)	30.39
Palmitic	C₁₆:0	7.7684
Stearic	C₁₸:0	3.3559
Gondoinic	C₂₀:1	1.0482
Behenic	C₂₂:0	0.62907
Hamma-linolenic	C₁₀₁:0 n5	0.43109
Arachic	C₂₀:1	0.26504
Ligiocerinic	C₂₄:0	0.21589
Linolenic	C₁₈:3 n9	0.20884
Myristic	C₁₄:0	0.14373
Palmitoleic	C₁₂:0	0.12298
Linolenelaidic	C₁₈:2 n3f (Iwusw)	0.074771
Heptadecolic	C₁₇:0	0.051411
Tricoseric	C₂₃:0	0.040457
Margaroelic	C₁₇:1	0.030134
Pentadecolic	C₁₈:0	0.023365
Dodecolic	C₁₂:0	0.019169
Eicosadienoic	C₂₀:2 (μ)	0.012848
Heiekozanoic	C₂₁:0	0.007994
Arachidonionic	C₂₀:4 n6	0.006587
Myristoleic	C₁₄:1	0.004362
Eicosatrienoic	C₂₃:3 n8 (μ)	0.001499
Erucic	C₂₁:1 n9	0.001284
Cis-pentadecenic	C₁₃:1	0.000982

Fatty acids are in the triglyceride composition of natural oil and fats. The functional ingredients are medium-chain-fatty acids, mono- and polyunsaturated fatty acids, including some omega-6 and
omega-3 [9, 10].

Fatty acid composition of wild rose and black currant oil is in tables 1, 2.

Acids name in basic nomenclature	Fatty acid designation	Mass content, % from the total of fatty acids
Linolic	\(C_{18:2 \text{ n-6}} \)	64.864
Oleic	\(C_{18:1 \text{ n-9}} \)	21.704
Palmitic	\(C_{16:0} \)	6.8502
Stearic	\(C_{18:0} \)	4.1499
Gondoinic	\(C_{22:0} \)	0.67121
Behenic	\(C_{20:1} \)	0.41016
Hamma-linolenic	\(C_{20:3} \)	0.2651
Arachic	\(C_{16:0} \)	0.24758
Ligoesteric	\(C_{24:0} \)	0.18695
Linolenic	\(C_{20:3} \)	0.10543
Myristic	\(C_{18:1 \text{ n-9}} \)	0.081947
Palmitoleic	\(C_{16:1} \)	0.049024
Linolenelaidic	\(C_{12:0} \)	0.047972
Heptadecoic	\(C_{20:0} \)	0.04464
Tricosoic	\(C_{17:0} \)	0.030776
Margaroelic	\(C_{15:0} \)	0.027196
Pentadecoic	\(C_{17:1} \)	0.02327
Dodecoic	\(C_{18:1 \text{ n-trans}} \)	0.012935
Eicosadienoic	\(C_{18:2 \text{ n-6}} \)	0.011776
Heiokozanoic	\(C_{20:2 \text{ n-6}} \)	0.0081502
Arachidonic	\(C_{20:4 \text{ n-6}} \)	0.0056897
Myristoleic	\(C_{16:1} \)	0.0046407
Eicosatrienoic	\(C_{21:0} \)	0.0015169

Analyzing the data we can note that both kinds of oil mostly contain linolenic and oleic acids, alpha-linolenic acid, and some amount of medium-chain fatty acids. Besides, black currant oil has a high content of hamma-linolenic acid compared with other oils.

This composition determines lipid barrier support, skin elasticity and hydration, and compensates irritating effect of soap surface active agents [11].

The fatty acid composition of soap influences homogeneity, solvability, consumption rate, foaming and detergency efficiency, level of skin irritation.

4. Determining the optimal oil dose

It is important that additives were in effective amount, considering not only usefulness, but combination with surface active agents. Optimum dose of black currant oil was determined with Delphi method with a number scale (table 3).
Table 3. The scale of organoleptic estimation of soap

Quality parameter	Numerical value of quality levels	Characteristic of quality levels
External view	5 Smooth surface, unbroken, without lines, sweat, spots	4 Smooth or slightly roughened surface, unbroken, with minor lines, sweat, spots
	3 Rough surface, unbroken, without sweat, with minor lines, spots	2 Rough surface, unbroken, without sweat, with minor lines, spots
	1 Rough surface, unbroken, without sweat, with minor lines, spots	5 Hard to the touch. Uniform across
	4 Hard to the touch, lines of different structure across	
Texture	3 Not very hard or a little fragile, lines of different structure across	2 Not very soft and hard, nonuniform across
	1 too gentle or fragile, nonuniform	5 10…20
	4 21…25	3 26…30
	2 31…35	1 36…40
	1 Unbroken	5 Unbroken
	4 Easy splitting (Small amount of surface cracks)	
Soaking per 1 hour, %	3 Average splitting (large amount of surface cracks or cracks of mean depth)	2 Good foaming behaviour, sense of “clean hands”
	1 Great	5 Medium foaming behaviour, sense of “clean hands”
	2 Medium foaming behaviour, medium washing off	4 Poor foaming behaviour, medium washing off
	1 Poor foaming behaviour, poor washing off	5 Does not irritate the skin, softens and hydrates well
	5 Level of skin irritation	4 Does not irritate the skin, softens moderately
	3 No irritation, moderate dry feeling	3 Strong skin dryness
	2 Strong skin irritation	1 Strong skin irritation

Some samples of soap have been done by the conventional recipe with black currant oil of different dosage.

Evaluation of organoleptic indicators is subjective as done with sense and vision organs. The basic characteristics are: appearance, form, color, smell, texture. It is necessary to introduce some specific quality attributes for the soap with functional additives. At the first stage of the experiment the dosage of natural oils is determined without introduction of flavorings and coloring agents, to exclude heir possible influence on the opinion of experts. Such attributes as “color” and “smell” were excluded.
from the scale of organoleptic estimation of soap samples.

When estimating the product by several attributes it is necessary to decide what aspects to take into account, that is, to determine the importance of each of them. Ten experts were invited. They enumerated the most important aspects which they took into account when estimating soap.

After that the estimations were ranked with the help of calculating the sum of ranks and constructing the ranks matrix [12].

Experts’ conformance has been estimated with concordance coefficient which was equal 0.24. Significance of concordance coefficient when number of factors is less than seven is proved with F-ratio test. Experts’ opinions are conformed.

According to the expert estimation, the main criteria of soap quality had coefficients of significance, further; the estimation of soap by points was done. The samples had different dosage of wild rose and black currant oils.

The best characteristics in reducing skin irritation were with high dosage of functional additives, but the appearance, foam formation and washing ability of soap samples worsened. The best complex parameter of quality was in samples with oil dosage 1.5…2.0 %.

5. Conclusions

The results prove that wild rose and black currant oils received from wastages of fruit-berry processing can be used as functional additives in soap technology.

High quality organic oils with cosmetic properties are a perspective group of products. Such properties of the oils under study as compensation of fatting off, softening, reducing skin dryness after washing – are proved by studies of fatty-acid composition.

The range of domestic goods in this group is rather wide, but there is no balance between the basic soap attributes for consumers and announced cosmetic effect. We have determined the optimal dosage of additives with the account of additional consumer parameters with the method of expert estimation. The most effective is introduction of 1.5…2.0 % wild rose or black currant oils relative to the mass of the soap basis.

References

[1] Dolgoluk I V, Tereshuk L V, Trubnikova M A and Starovoitova K V 2014 Oils as nutraceuticals Food processing: techniques and technology 2 122-125
[2] S N Butova, V A Salnikova, L A Ivanova, I D Schegoleva and L A Churmasova 2018 Scientific substantiation and the release of saponins from plant raw material for food and cosmetic cream technology International Journal of Engineering and Technology(UAE) 7(2) 297-300
[3] Amelchenko V E, Fleischer V L and Boltovskii V S 2014 Soap production with enhanced consumer properties Works of BSTU. Chemistry, technology of organic matters and biotechnology 4 74-76
[4] V S Thibane, A R Ndhlala, H A Abdelgadir, J F Finnie and J Van Staden 2019 The cosmetic potential of plants from the Eastern Cape Province traditionally used for skincare and beauty South African Journal of Botany 122 475-483
[5] L Hennessy-Ramos, W Murillo-Arango and G T Guayabo 2019 Evaluation of a colorant and oil extracted from avocado waste as functional components of a liquid soap formulation Revista Facultad Nacional de Agronomia Medellin 72(2) 8855-8862
[6] Mondello L, Casilli A, Tranchida P, Costa R, Chiofalo B, Dugo P and Dugo G 2004 Evaluation of fast gas chromatography mass spectrometry in the analysis of lipids Journal of chromatography 1035(2) 237-247
[7] Thi H T, Le B A, T Le H N, Luu B V and Maeda Y 2018 Screening of fatty acids, saccharides, and phytochemicals in Jatropha curcas seed kernel as their trimethylsilyl derivatives using gas chromatography/mass spectrometry Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 1102-1103 66-73
[8] A V Velikorodov, V B Kovalev, S B Nosachev, A G Tyrkov and L V Morozova 2018 Fatty-oxygen composition of seeds oils of some wild-growing and cultivated plants of the Astrakhan Region Obtained by the supercritical fluid extraction method Khimiya Rastitel’nogo Syr’ya (2) 153-158
[9] J Golijan, D D Milinčić, R Petronijević, S Lekić and A.Ž Kostić 2019 The fatty acid and triacylglycerol profiles of conventionally and organically produced grains of maize, spelt and buckwheat Journal of Cereal Science 90 102845
[10] Y Z Mateyev, D B Shalginbayev, S Z Mateyeva, A V Terekhina and M V Kopylov 2019 Environmental study of fatty acid composition of safflower oil received by cold pressing method Eurasian Journal of BioSciences 13(1) 385-391
[11] E O A Oluwalana 2018 Effects of Physico-chemical attributes of forest-based herbal soap on human skin in southwestern Nigeria IOP Conference Series: Earth and Environmental Science 173(1) 012035
[12] Derkanosova N M, Zhuravlev A A and Sorokina I A 2011 Model analysis and process optimization of food production (Voronezh: Voronezh state technological university)