School on the Cloud: Towards Unity not Uniformity in Education

K. C. Koutsopoulos¹ and Vassilis Economou²

¹National Technical University of Athens (NTUA), Doukas School Associate, Greece.
²Department of IT, Doukas School, Athens, Greece.

Authors' contributions
This work was carried out in collaboration between both authors. Author KCK provided the idea and wrote the first draft of the paper. Author VE contributed to the content, formatted, designed the figures, edited and wrote the final text of the manuscript. Both authors read and approved the final manuscript.

Article Information
DOI: 10.9734/BJESBS/2016/25818
Editor(s):
(1) Alina Georgeta Mag, Department of Private Law and Educational Science, University of Sibiu, Romania.
Reviewers:
(1) Ajay Auddy, The University of Burdwan, India.
(2) P. Swarnalatha, VIT University, India.
(3) Hasni Neji, University of Carthage, Tunisia.
Complete Peer review History: http://sciencedomain.org/review-history/14588

Received 21st March 2016
Accepted 2nd May 2016
Published 12th May 2016

ABSTRACT
This paper, in examining the issues that underline the reality of the European pedagogical system, shows that in order for the system to provide the two fundamental concepts in today's education, namely unity (all schools to have equal opportunities, recourses and possibilities) without uniformity (avoiding "typical" common teaching and learning practices), there is: a need to work within a susceptible to present conditions educational paradigm; to have an appropriate instrument to be able to do so; and a suitable educational environment to apply these concepts. The solutions for fulfilling these needs are presented in the form of three unconventional, but necessary propositions for education to move forward. The first suggests that we are in an era of a new network-centred education paradigm. The second is that Cloud Computing is the main instrument of this new paradigm. The third one proposes a new School, the School on the Cloud.

Keywords: Cloud based education; school on the cloud; cloud computing.

*Corresponding author: E-mail: koutsop@survey.ntua.gr;
1. INTRODUCTION

The purpose of education is to successfully prepare students for the future, and therefore we cannot continue educating them in ways that address education needs of the past [1]. As Wellman has said "At this point we appear to have a 19th century curriculum, 20th century buildings and organizations and 21st century students facing an undefined future". That is, the world has changed in ways that we have not always been able to understand and accept, but nevertheless we need to prepare students to face these changes. Thus, a new, fresh, authentic and unbounded educational approach is required to educate students for the complex and challenging future [2]. This implies that there is a need for changes in the ways of teaching and learning, which can be expressed in two clear and unambiguous questions: what education system should there be? And how can we go about determining it?

The right approach in answering these questions, it is necessary to understand the issues that underline the reality of the European pedagogical system. This suggests there is a need to firstly discern the existing education system in order to detect the important issues requiring attention and then provide answers as well as suggest possible solutions. This approach will be followed in this paper.

In examining the European educational system the first issue that needs to be considered is: which are the basic concepts related to teaching and learning, in order to address the required changes. Even a cursory review of the innumerable reports and policy decisions, including those by the European Commission, which has adopted a strategy for "Unleashing the Potential of Cloud Computing in Europe", shows: on the one hand there is a need to find a way in designing an environment of engagement with creativity and innovation, which should be the educational norm for all educational institutions, or on the other hand provide the necessary educational unity so that all schools will have equal treatment. In this respect all academic institutions have to be provided with equal educational opportunities and experiences in order for the education process to shift in ways that can catalyze innovative approaches to learning. In other words, we should design a system that has a norm of what should be available to all education institutions or creates a form of pedagogic unity in order for the European educational environment to become efficient.

This position is based on the notion that the way to the future and progress in education is only achieved through an efficient educational system determined and operating within a global neoliberal economy [3]. And it is towards this economic theory that the European Union exhorts education stakeholders, mobilize them, justifies investment in new technologies as well as rationalizes curriculum decisions. There are two forms of discourse to that position: from those who accept the neo-liberal economy and consider technology-enhanced learning as an essential modernizing tool for education [4-6] but who themselves are subject to critique from the sociology of the future [7,8] from critical studies in education [9,10], and from economists [11].

The other and more important criticism comes from those who are concerned with resisting the uniformity of imperialism leading to inevitable and universal educational approaches to the present and the future. That is to say, the idea of a uniform, singular and inevitable trajectory in the face of which education stakeholders in association with local conditions have no role to play, has been the subject of critique from various fields. By testifying to the need of diverse alternative trajectories (the end goal remains common, but the way to achieve it changes) now and in the future, many researchers who contribute to the field of educational technology are arguing for non-uniform approaches in the future [12].

On the other hand, there is a need to create an educational system which can inspire all school units to develop the means to transform their own identity into a powerful tool for designing their teaching and learning practices or curriculum structures. This will be an identity which is expressed by each educational institution’s own needs and expectations and is determined by the language, the culture, the particular conceptual structures of education and other factors which can be found among the diverse ethnic, cultural and regional groups that inhabit the European continent. In other words, there is a need to find the ways to design the individuals’ personal and communal learning space based on their identity, in order to move away from homogenization and an ineffective educational environment. An environment that represents the driving force that presently shapes (actually it is intensified with policies such
as the Bologna accord), the European university, for the time been, education scheme.

Therefore, the idea of education, as a singular, inevitable trajectory in the face of which educational stakeholders including identity factors have no role, is not acceptable by a growing number of scientists working on present and future education studies. Moreover, the notion of empowering education stakeholders and communities to envisage and take action to build alternative and identity desirable futures, has started to have many supporters. A characteristic example is the initiative of the Massachusetts Institute of Technology Fab Lab (http://fab.cba.mit.edu/) that aims to create the means to build new educational futures in the hands of communities, learners and educators. This position can become clear by paraphrasing Abraham Lincoln that "the best way to predict the future is to invent it, by taking into account identity factors".

The second issue is: what is the conceptual basis upon which these two fundamental needs and their attendant changes can be attained. In response to that, it should pointed out that nowadays the Networked Information Society, which has been interposed in education in the form of the Network Centered Knowing paradigm [13], is unleashing two powerful forces on teaching and learning. Both of these are available to practically every educational institution and are related to their access to high-speed networks. The first force empowers education stakeholders of any school, anywhere, to have easy access to and use of ICT in the form of Cloud Computing. As a result, all education stakeholders can discover, consume and produce information, resources and services and thus the educational system can provide the necessary unity in teaching and learning. The second force provides ubiquitous access to open content and standards as well as techniques for virtualization, making it possible to leverage education through identity-related programs in unprecedented ways. What appears to be emerging is an education system where its stakeholders have at their disposal teaching techniques, learning practices and many educational related services which allow them to design their own programs, negating the need for educational uniformity.

The third issue is related to the means required to achieve, within the networked information society and educational paradigm, the proposed concept of unity without uniformity. It is suggested that Cloud Computing, which is the fundamental instrument in a Cloud based educational environment, can fulfill all the earlier mentioned educational requirements. Indeed Cloud Computing represents a fundamental change in the way computing power is generated and distributed. The literature [14] indicates that this technology can be a powerful way to apply a new educational approach. Moreover, as IBM [15] has declared "with cloud computing in education, you get powerful software and massive computing resources where and when you need them (and we may add in any way you desire), in order to apply new educational approaches ... Cloud services can be used to combine on-demand computing and storage, familiar experience with on-demand scalability and online services for anywhere, anytime access to powerful web-based tools". This suggests it can support an educational system providing Cloud based-education to educational stakeholders, with all the attendant benefits.

Finally, the last issue raised is: what is the educational environment within which to work or how to practically apply to the classroom the concepts presented previously? The results of several Cloud based education projects [16-17] indicate that these objectives are achievable in a new school, the School on Cloud (SoC). The reason is that as learning becomes increasingly digital, online access becomes the necessary vehicle for the emerging Cloud-based developments [18] and thus offers an educational system, which is not only efficient (provides unity), but also effective (evades uniformity) way to access and administer education. That is to say, the new School on the Cloud provides an approach that aligns with the way we should think, share, learn and collaborate as it is determined by a networked information approach that nowadays determines many aspects of our activities including education. In other words, the new School on the Cloud offers an opportunity to transform the role of education stakeholders, as they help young people to access any learning at any place and any time from any teacher with the right expertise, but within an identity determined framework.

From this examination it should be evident that in order to achieve the major goals of education, namely unity without uniformity, there is: a need to work within a susceptible to present educational paradigm; to have the appropriate instrument to be able to do so; and the suitable
educational setting to apply them. These needs and their characteristics (shown schematically on Fig. 1) are examined in the next sections of this paper.

1.1 The Network Centered Knowing Paradigm

At the onset, it should be declared that today the concept of *unity without uniformity* should be at the centre of the pedagogic approach towards teaching and learning. But this leads to the position [19] that not only is the traditional *Teacher Centred instructing paradigm* representing an instructing approach, as well as the much herald present approaches to education, defined as the *Student Centered learning paradigm* focused on a constructivism based learning, are now absolute. We thus find ourselves in the period of the *Network Centred knowing paradigm* where knowledge is achieved through integration and is based on Cloud Computing. It is therefore suggested that in the last few years teaching and learning has, through two parallel changes in the way education is perceived and is investigated, gone through two paradigm shifts (Fig. 2), as considered by Kuhn [20]. These are briefly examined next.

For a long time the traditional *Teacher Centred instructing paradigm* was the exclusive environment within which the education system operated. This paradigm was characterized by a *monodisciplinary* environment (education was the exclusive realm of educators) within which a “fragmented” approach to educational needs and obligations was prevalent and where the teacher alone transmitted information to students who passively listened and acquired facts from the simple transmission of an *instruction* based curriculum.

This paradigm has been replaced (the first paradigm shift) by a *Student Centered learning paradigm*, representing today’s prevailing educational environment. In this paradigm learning is expressed in the form of a set of separate relations, interdependences and interactions leading to a *multidisciplinary* framework in education, which is focused, as previously, in a *descriptive* way on both individual learners and on learning itself. But this notion of a descriptive-multidimensional education requires computer technology which is based in a world of computers and interactive software [21] leading to a *constructivist* approach in practicing teaching and learning.

Fig. 1. The education system
Both these approaches cannot satisfy the complex and challenging conditions prevailing in the present day education environment [13]. As a result, nowadays a new Network Centered knowing approach is needed (the second paradigm shift), which requires an interdisciplinary approach leading towards the integration of all possible learning actors and approaches in order to overcome the compartmentalization of knowledge. However, such a vision of teaching and learning establishes a holistic education that implies prescriptive learning (the way students should learn) as well as encompasses all stakeholders in different ways, with the use of Cloud Computing.

This necessary conditions for today’s Network Centered knowing paradigm, which promotes Cloud based education, represents a framework which can successfully serve and support with the same resources and the same opportunities as well as provide the means to design all education institutions according to local needs and conditions. Therefore, it qualifies as an ideal environment for educational unity without uniformity.

1.2 Cloud Computing

In order to appreciate the Network centered knowing paradigm’s contribution towards unity without uniformity in education the concept of cloud computing needs to be to fully understood as well as realize how its components can be utilized in the operation of such an educational approach. There seems to be many definitions of Cloud Computing around. The global management consulting firm, McKinsey, found that there are 22 possible separate definitions of Cloud Computing, none of them dealing with educational concerns. In fact, no common standard or definition for Cloud Computing seems to exist [22]. However, despite the many definitions and the various terms suggested by computer experts and Cloud users, the concept of Cloud Computing can be described as an ICT technology that can be fully represented as a three dimensional space consisting of the characteristics axis, that includes: On demand service, Network access, Resource pooling, Rapid elasticity and Measured service; the type of service axis, that includes: Infrastructure, Platform and Software; and the form of deployment axis, that includes: Private, Community, Public and Hybrid. (NIST, U.S Department of Commerce) (Fig. 3). Creating in this way a framework whose axes are an integral part of an educational system which can be designed to offer unity without the constraints of uniformity, as they are briefly presented next.

1.2.1 Cloud computing provides unity

Cloud Computing represents an instrument which can successfully serve and support: multitasking, flexibility, the ability to handle a large number of applications and to meet changing demands, as
well as access to stored files, e-mails, databases and other applications from anywhere at request. It represents a familiar and appropriate tool for today's education participants (the first generation to grow up within the digital technology era). Moreover, it can support with the same resources as well as provide the same opportunities to all major education stakeholders (students, teachers and administrators) no matter where they are located, thus qualifying as an ideal environment for educational unity.

1.2.2 Cloud computing avoids uniformity

Cloud Computing offers unimaginable capacity, among others, in using technology to connect people across vast distances and store and share information in ways that provide access virtually from anywhere [23,15]. This paper in examining Cloud Computing, without ignoring the existence of sizeable attendant issues (i.e. cost, security, law issues etc.) that must be addressed, it focuses on the issue of location as it relates to education.

More specifically, the fact that “the Cloud” refers to machines located in large data centers, raises a host of interesting questions about the role of location in shaping the impact of Cloud Computing and the level of services available to education stakeholders located at any education institution (either in a school at the centre of a city, in a remote village or in a Roma reservation area). Cloud Computing, by centralizing information and computing resources (quite contrary to the imagery that the name “Cloud” evokes), transcends location constraints imposed by users on the Cloud itself. Moreover, Cloud-based educational though situated on the opposite end of the distance education spectrum with Moore's Theory of Transactional Distance [24], and avoids most of its shortcomings [25], it shares the basic principle that cognitive space, functioning to overcome physical distance between learners and instructors, or teaching/learning methods or materials, or curriculum etc. is an acceptable and beneficial approach to education. As a result, the unusual combination of the great abilities offered by Cloud Computing and the ubiquity in providing Cloud based education, negates the necessity for physical closeness of the educational factors and the need for locally available educational resources, thus raising serious questions about the universal value and utility of location in education.

For a balanced approach, however, the issue of location in education should be considered in terms of the dictum "Geography matters but not Distance". More specifically, on the one hand as ICT developments, in the form of Cloud Computing, are diminishing the "need for presence" in remote interactions and

![Cloud computing framework](image-url)
such interactions are developing not only between families, friends and co-workers, but also between education stakeholders. The notion of being “together apart” is becoming a familiar aspect of working, interacting and entertaining as well as in educating ourselves. That is to say, the separation of “information resources” from physical locations with the coming of Cloud computing has become “natural”, resulting in the diminution of the importance of location.

On the other hand, Geography still matters because Geography will continue to influence the access of individuals and groups to digital networks, for location will continue to determine in most cases their pricing, infrastructure, legal constraints and regulation. Moreover, the “face to face” interaction will retain its importance, especially in terms of the social aspects of our lives, because physical proximity is paramount for most of us. For example, people will continue to use “place” and physical location as a marker for identity, which as it was shown it plays an important role in education among other areas of human endeavors.

To summarize, when someone familiar with Cloud Computing will be asked a question about the role of location in education, he will surely chuckle and reply something akin to: “The location of the Cloud user and of the Cloud itself are irrelevant. Anyone is able to tap into the power of the cloud, located at any place, from anywhere”. This answer, while technically and empirically accurate, misses an important issue, namely: Cloud Computing negates the necessity of considering location as a factor to reckon with, at least when considering “non-typical” (i.e. rural and remote schools) and consequently the need to impose upon them a uniformity in teaching and learning practices or curriculum structures that developed centrally and applied in “typical” urban schools.

1.3 The School on the Cloud

The basic principle that “Technology changes, Education survives” signifies the role of education as a societal necessity and the need to explore their potential implications to education. It has shown that ICT changes, in the form of Cloud-based technologies, provide the power to fundamentally change how education should be approached and practiced, substantiating the effort to institute unity without uniformity in education.

As a result, in order to achieve such goals, the new School on the Cloud has to address the following two key questions: How should education respond to cloud-based technologies? What is the impact, now and in the future, on education stakeholders and teachers? Results from applications of Cloud technologies in the classroom, including the most recent ones [15] indicate that in answering these two questions in essence their work reaffirms the need for the proposed concept of unity without conformity and create the foundations in applying it. The reason is simple: The School on the Cloud educational approach brings many benefits to education as well as accelerating trends and developments at the interface of Cloud Computing and education [26]. This in turn increases the ability of stakeholders to adjust or alter their educational objectives. In this way, the benefits to education substantiate the existence and need for unity and the trends emerging from developments in society, in technology and mainly in education highlight the ability of innovations to eliminate the need for uniformity in education.

1.3.1 School on the cloud characteristics supporting a unifying education system

Experience and the literature shows that there is a range of resources and services available to enable Cloud based education, among which are: infrastructure, services, solutions, the introduction of new processes etc. The School on the Cloud, as a Cloud-based approach, provides the conditions for every educational institution to have equal opportunities, resources and possibilities (norms in education). In other words, the much sought unity can be easily achieved, because the School on the Cloud provides the following unifying promoting conditions:

1.3.1.1 Affordability

Cloud based processes promote in general and in education in particular a cost effective use of ITC resources, thus reduce their cost and make them affordable to all units and all stakeholders (equalize possibilities).

1.3.1.2 Flexibility

Cloud-based teaching and learning can prevent individual investments in equipment, programs etc., because the infrastructures of Cloud Computing are centralized and thus promote
flexibility in various ways [27] (equalizes resources).

1.3.1.3 Efficiency
Cloud based approaches by promoting the exchange between teachers and students and the participation of their social networks and the parents, leads to creating educational norms by determining: firstly, the appropriate to the stage of education information and tools and secondly the appropriate and efficient learning and teaching process [27] (equalizes treatment).

1.3.1.4 Sharing
Cloud-based techniques provide the means in every institution to avoid the duplication of resources that exist elsewhere. Hence skills, good practices, applications, teaching content and infrastructures can be pooled and shared, thus avoiding educational inequalities between institutions (equalizes opportunities).

1.3.2 School on the cloud characteristics

1.3.2.1 Intelligent classroom
Cloud-based education, by providing the recourses for a set of tools and applications (access to courses, syllabus subject contents, etc.) can contribute in creating a classroom with accepted quality and effectiveness of teaching that can be considered intelligent, but which avoid the pitfalls of uniformity.

1.3.2.2 Virtual classroom
Cloud based education, by providing the necessary communication and collaboration tools, can help bring down the walls of the classroom and give rise to the virtual classroom, which enables:

- Students of the same age located in distant institutions, towns or countries to share in the experience of any class being taught online.
- Teachers in a certain location to teach classes in a different school, town, country or even continent, complete with the required material.
- Researchers can have instant access to research and discoveries from any parallel or linked center around the world.

That is, it allows education stakeholders to achieve unity by breaking all forms of barrier or without the problems of uniformity.

1.3.2.3 Virtual Lab
Cloud-based education by offering the resources for processing, calculating and simulating can contribute in creating virtual labs. More specifically, students and teachers can carry out, in a virtual form, the simulations or experiments they need or want in any subject (chemistry, physics, social sciences, economics, etc.), and with any degree of difficulty (from the simplest to the most complex), all in accordance to their specific design and requirements, overcoming any uniformity constrains.

1.3.2.4 Virtual content
Cloud-based education by providing Digital IWB's (Interactive Whiteboards), it can help create a virtual reference system of content that remains in the public domain and thus avoiding the pitfalls of using nothing but the costly commercial content. But mainly such a system can provide teachers with the choice of using a content as is, alter it to meet their needs, adapt it to the local conditions, or finally use it to supplement their own and in general avoid uniformity.

As a result, the School on the Cloud offers to its students a series of very important competences which allows them to face the concepts of unity without uniformity:

1.3.2.5 Digitalization

Refers to their ability to efficiently, confidently and critically use the new ICT technologies in order to search, sift, organize, manage and
evaluate information in an efficient and targeted to their individual needs.

1.3.2.6 Learning

Is related to students' ability for learning to learn. That is, students are motivated to pursue their own learning progress and knowing how to process information, assigning meaning to it and converting it into knowledge.

1.3.2.7 Understanding

Is associated with students' global understanding. That is, by overcoming uniformity constraints they can acquire the competence of understanding in order to be able to analyze the surrounding world, be social and part of the universal society.

1.3.2.8 Collaborating

Corresponds to a crucial skill that needs to be learned and practiced from early on in education, and Cloud based education can support it. That is, students need to learn to: listen, respect, negotiate and even accept ideas expressed by others, understand and work in teams and different roles, and finally participate in communal activities.

1.3.2.9 Updating

This skill refers to the ability of students to use the recourses of the Cloud in order to be better prepared or the continuous changes and developments, as well as continued updating of such skills as: autonomy, lifelong learning, flexibility, innovation, creativity etc.

1.3.2.10 Communicating

The use of Cloud Computing in terms of learning and practicing foreign languages helps students put an emphasis on using it as a means for communication with other people and not on grammatical or syntactical correctness per se.

In closing, it should be noted that the proposed School on the Cloud is not anymore a novice application of Cloud Computing to education, which promises to deliver many exciting things. It is already a reality and there are many successful implementations of it [28,15,16]. The School on the Cloud is a new and different school that has been born, is partly operating now and is going to stay with us at least in the foreseeable future, for it is characterized by unity without uniformity.

2. CONCLUSIONS

The way education is perceived and is practiced nowadays does not correspond to the needs and their very nature of the education stakeholders. On the contrary, the education paradigm in use can only create confusion and difficulties to students. As a result, the existing system:

- Deprives many students of the tools they need most to master the necessary skills and dexterities (the necessary unity in the education system)
- Forces all of them to follow a predetermined path to achieve them (not avoiding the barriers of uniformity).

Contrary to these, this paper has demonstrated that we should move towards the new network centered paradigm, which in essence forces Cloud Computing to be the main educational tool. An instrument which provides to the present day, generation Z (students born in the 21st century) not only the required skills and dexterities, but in a uniformity free environment.

The final question, which is related and to the issues posed in the beginning of this paper, has to be: is the School on the Cloud just another education fad or the only way to deal with the basic issues facing education? Considering them merely either as a fad or the ultimate education truth, however, misses the deeper contribution of the School on the Cloud as the true base upon which to develop, construct and apply the new Network centered knowing paradigm in educating students in a holistic way for the complex and challenging future.

In conclusion, the proposed School on the Cloud is creating a unified education system (all schools to have equal opportunities, recourses and possibilities), avoiding at the same time uniformity (the need to follow "typical" teaching and learning practices). Thus, leading to the dictum, which it is about time for all of us to embrace and wholeheartedly support:

*In education all flowers (schools) can bloom as long as they can find the appropriate "cloud" to grow upon.*
COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Fullan M, Langworthy M. Towards a new end: New pedagogies for deep learning; 2013. Available: http://www.newpedagogies.info/wpcontent/uploads/2014/01/New_Pedagogies_for_Deep%20Learning_Whitepaper.pdf (Accessed 4 Jan. 2016)

2. Gialamas S, Pelonis P, Medeiros S. Metamorphosis: A collaborative leadership model to promote educational change, thoughtful mind. Institute for Innovation and Creativity, ACS, Athens; 2013. Available: http://issuu.com/acsathens/docs/final_publicity_book_2012/23 (Accessed 4 Jan. 2016)

3. Friedman T. The world is flat: A brief history of the twenty-first century. Farrar, Straus and Giroux, New York; 2005.

4. Negroponte N, Foreword. In Papert S, editor. The connected family: Bridging the digital generation. Longstreet Press, Atlanta, GA; 1996.

5. Prensky C. Don’t bother me, Mom – I’m learning. Paragon House, New York; 2005.

6. Heppell S. Towards a new media literacy. In 8 Essays –The Knowledge Exchange Programme: A collaboration between BBC R&D and the Arts and Humanities Research Council, BBC/AHRB; 2009.

7. Bell S, et al. Quantitative estimates of the demand for cloud computing in Europe and the likely barriers to up-take. Final Report, IDC Analyze the Future; 2012. Available: http://ec.europa.eu/digital-agenda/futurium/en/content/quantitative-estimates-demand-cloud-computing-europe-and-likely-barriers-take (Accessed 4 march 2016)

8. Adam B, Groves C. Future matters: Action, knowledge and ethics. Brill and Leiden Boston, MA; 2007.

9. Gough N. Locating curriculum studies in the global village. Journal of Curriculum Studies. 2000;32:329–342.

10. Robertson S, et al. Globalization, education and development: Ideas, Actors and Dynamics, DFID, London; 2007.

11. Stiglitz J. Making globalization work. W.W Norton and Co., New York and London; 2006.

12. Gee Jim, et al. A pedagogy of multiliteracies: Designing social future. Harvard Educational Review. 1996;66(1): 60-74.

13. Koutsopoulos CK. Changing paradigms of geography. European Journal of Geography. 2011;2(1):54-75.

14. Johnson L, Adams S, Cummins M. The NMC horizon report: Higher education edition; 2012. Austin, TX.

15. IBM Global Technology Services. Applying the cloud in education: An innovative approach to IT; 2013. Available: http://www-935.ibm.com/services/be/en/cloud-computing/cloud_edu_en.pdf (Accessed 4 Jan. 2016)

16. Donert K, Bonanou H, editors. Education on the cloud 2014: State of the art. Report, Deliverable 2.1 for The School on Cloud: Connecting education to the Cloud for digital citizenship network (SoC); 2014. Accessed.

17. Malmierca RM, et al. Teaching and learning in the cloud. Report, Deliverable for Rural School Cloud: Cloud Computing for School Networking; 2015. Available: http://rsc-project.eu/index.php/products/ (Accessed 4 Jan. 2016)

18. Koutsopoulos CK, Kotsanis Y. School on cloud: Towards a paradigm shift. Themes in Science and Technology Education. 2014;7(1):47-62.

19. Donert K. Lifelong learning Programme Application Form, KA3_MN_EL_SoC. Brussels: European Commission; 2013

20. Kuhn ST. The structure of scientific revolutions. Chicago. University of Chicago Press; 1962.

21. Koutsopoulos CK, Papoutsis P. School on cloud: Transforming education. Journal of Elementary Education. 2015;4(2):16-24.

22. Dede CA. Seismic shift in epistemology. EDUCAUSE Review. 2008;43(3):80–81. Available: http://net.educause.edu/ir/library/pdf/ERM0837.pdf (Accessed 4 Jan 2016)

23. Ferrari S, et al. Needs Analysis Report, Deliverable for rural school cloud: Cloud computing for school networking.
Available: http://rscproject.eu/index.php/products/ (Accessed 4 Jan 2016)

24. Moore MG. Distance education theory. The American Journal of Distance. 1996;5(3): 13-19

25. Hill JR, Song L, West RE. Social learning theory and web-based learning environments: A review of research and discussion of implications. American Journal of Distance Education. 2009;23(2):88-103.

26. Armbrust M, et al. A view of cloud computing communications. Association for Computing Machinery. 2010:539(40): 50-58.

27. Tuncay E. Effective use of cloud computing in educational institutions. Procedia Social and Behavioral Sciences. 2010;2:938–942.

28. Johnson L, Adams S, Cummins M. The NMC Horizon Report: Higher education edition; 2012. Austin, TX.