Betonarme Yapılarında Farklı Kat Sayıları için Dolgu Duvarların Deprem Davranışına Etkisi

Tuba DEMİR*
Fırat Üniversitesi, Teknoloji Fakültesi, İnşaat Mühendisliği Bölümü, Elazığ,
t.demir@firat.edu.tr ORCID: 0000-0003-2092-1029, Tel: (424) 237 00 00 (4262)

Erkut SAYIN
Fırat Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü, Elazığ
esayin@firat.edu.tr ORCID: 0000-0003-0266-759X

Geliş: 19.07.2018, Revizyon: 20.11.2018, Kabul Tarihi: 13.02.2019

Öz
Bu çalışmada, dolgu duvarların betonarme binalara olan katkıları değerlendirilmiştir. Bu amaçla 3, 5 ve 7 katlı betonarme binalar modellenmiştir. Bu modeller kendi içinde üç farklı şekilde yeniden tasarlanmıştır. Birinci model tüm katların tamamen dolgu duvarsız olduğu çerçeve modelidir. İkinci model ilk katında dolgu duvarların olmadığı, diğer katlarında ise dolgu duvarların olduğu çerçeve modelidir. Üçüncü model ise tüm katlarında dolgu duvarlarının olduğu modeldir. Dolgu duvarlı olarak tasarlanan modellerdeki duvarlar, eşdeğer basınç çıbuğu şeklinde modellenmiştir. Tüm modeller için doğrusal elastik hesap yöntemi kullanarak analizler yapılmıştır. Analiz sonucunda yapıların görelı kat öteleme değerleri, yer değiştirme değerleri belirlenmiş ve tüm modeller için ayrı ayrı kıyaslama yapılarak grafikler çizilmiştir. Ayrıca bu modellernin etki/kapasite oranları belirlenmiş ve hasar bölgeleri tespit edilmiştir. Dolgu duvarlı ve dolgu duvarsız yapılarla kat sayısını değiştirdiğimiz, yapıya olan etkisi belirlenmiştir. Kat sayısının artmasıyla yer değiştirme ve göreli kat öteleme değerlerinin daha arttığı gözlenmiştir. Elde edilen sonuçlar göre dolgu duvarların sistemin rüjetliğine ve dayanımı olumlu katkı sağladığı görülmüştür.

Anahtar Kelimeler: Betonarme binalar; dolgu duvarlar; eşdeğer basınç çubuğu

*Yazışmaların yapılacağı yazar

DOI: 10.24012/dumf.446126
Giriş

Yapı sistemlerinin iç kısımlarının kullanım şeklini belirlemek için düşey düzlemde çeşitli şekillerde dolgu duvarlar kullanılmaktadır. Betonarme yapılarda iç kısımların ve dış bölümlerde kullanılan dolgu duvarlar, yapının dış ortama bağlanışını kesen yapı elemanların olup, farklı mekanların da oluşturulmasına olanak sağlamaktadır. Ülkemizde yapılan projelerde çoğullukla dolgu duvarların yapısı davranışına olan etkisi göz ardı edilir. Dolgu duvarların bu etkisinin ihmal edilmesinin nedeni; bu duvarların katkısını analiz eden ve çözümlenen modellerin oluşturulmasının karmaşık ve zor olması, öte yandan dolgu duvarların yapının enerji yıutmaya ve dayanımına olan katkısının bilinmesine rağmen, çözümleme için emniyetli tarafta kalınmak istenmesidir.

Yapı sistemlerinin deprem anındaki davranışlarını incelemek ve bu davranışlar karşısında karşı alınacak önlemlere hakkında çeşitli çalışmalar yapılmıştır. Dolgu duvar ile ilgili yapılan bu çalışmalarla ilk kat, 1956’da Polyakov tarafından ortaya koyulmuştur. Sonraki dönemlerde ise Mallick ve diğerleri (1967) dolgu duvarlı çerçevelerin yatay rıjitliğini belirleme amacıyla solunu elemanların momentumunu kullanmışlardır. Solunu elemanlar yöntemiyle, yapmış oldukları deneyler ve analitik çalışmaları arasında iyi bir uyum elde etmişlerdir. Ersoy ve diğerleri (1971) dolgu duvara sahip çerçevelerin davranışını ve dayanımını incelemeler amacıyla, farklı yükler altında doku defteri adet betonarme dolgulu çerçeve modellemişlerdir. Yapmış oldukları deneylerde bu çerçevein yapının yük taşımak kapasitesine ve rıjitliğini olan etkisini araştırmışlardır. Ayrıca çerçeve açıklığının çerçeve yüksekliğine oranı, dolgu kalınlığı, dolgu ile çerçeve arasındaki aderanın mevcut olup olmaması, çerçeve üzerinde etkileri yatay yükün düşey yöne girip değişikleri de incelemişlerdir. Dhanasekar ve Page (1986) çalışmalarında tuğla dolgu duvar özelliklerinin dolgu duvarlı çerçeve davranışına etkilerini solunu elemanlar metodunu kullanarak incelemişlerdir. Modelde dolgu duvarın lineer olmayan deformasyon özelliklerinin ve harç bağlantılarının dolgu duvar davranışına etkilerini göz önune almışlardır. Dolgu duvarlı çerçevein deneySEL davranışıyla solunu elemanlar modeli ile başarılı olarak temsil edilebildiğini tespit ettiklerdir. Govindan ve diğerleri (1986) yedi katlı dolgu duvarlı ve dolgu duvarlı çerçeve modelleyip, bu iki yapı sisteminin davranışlarını karşılaştırmışlardır. Sanejad ve diğerleri (1995) çalışmalarında yatay yüklere maruz kalan yapılarda, dolgu duvarlarının gerçek dayanım ve rıjitliği etkinin önemli olduğunu belirtmişlerdir. Negro ve diğerleri (1997) dolgu duvarın yapısı sistemine olan etkisini belirlemek için dört katlı bir yapı modelleyip, bu model üzerinde çeşitli testler yapmışlardır. Bu yapıyı dolgu duvarlı çerçeve, dolgu duvarlı çerçeve ve ilk kat yüksekliğine artırmış olan model şeklinde tasarlayıp, her bir modele testler uygulamıştır. Dolgu duvarın varlığı ve dağılımı düzeni, yapının davranışını ve yarında değiştirmesini farklı etkilemiştir. İrtem ve diğerleri (2004), betonarme binaların performansına dolgu duvarın katkısını belirleme için çeşitli çalışmalar yapmışlardır. Bunun için DBYYHY 2007 (Deprem Bölgesinde Yapılacak Binalar Hakkında Yönetmelik)’ye uygun bina tasarlayıp, bu yapıyı dolgu duvarlı ve dolgu duvarlı çerçeve analizler yapmışlardır. Dolgu duvarı fiktif çubuklarla tanımlanmıştır. Ayrıca, dolgu duvarların basınç değerleri ve dayanımıトラバー."
davranışını etkilediğini göstermişlerdir. Celep ve diğerleri (2009), beş katlı yapı modellerek, taşıyıcı sistemde dolgu duvarların, binanın yatay yük davranışına olan etkisi üzerinde çalışmalar yapmışlardır. Bu çalışma sonucunda, dolgu duvarların kat kesme kuvvetinin büyük bir kısmını karşıladığı gözlemlemiştir.

Taşlıgedik ve diğerleri (2011), dolgu duvarların betonarme binaların deprem performansı üzerindeki etkinliğini inceledikleri çalışmalarda, taşıyıcı sistemde göz ardı edilen dolgu duvarların önemli etkilere neden olduğunu vurgulamışlardır.

Tekeli ve diğerleri (2015) yapmış oldukları çalışmalarında bina açıklık sayısı 5, kat adetleri 3 ve 5 olan modeller tasarlanmışlardır. Bu binaları önce dolgu duvarsız olarak incelemişlerdir. Daha sonra oluşturdukları bu modeller kullanarak, dolgu duvarları bu yapının farklı farklı yerlerine yerleştirilmişdir ve dolgu duvar yerleşiminin ve miktarının, binanın davranışına olan etkisini değerlendirmiştir.

Amaç ve Kapsam

Dolgu duvarların bina davranışına olan etkisi kabul görece, deprem yönetmelikleri bu durumu hesaplalamada ihmal edip, genellikle duvarların yerleşimi ile ilgili kısıtlamalar getirmektedir. Bu çalışmada, dolgu duvarların betonarme çerçeve davranışını, hangi açılardan etkilediğini saptamak amacıyla, dolgu duvarlı çerçeve, ilk katlı dolgu duvarlı çerçeve ve dolgu duvarlı çerçeveveden oluşan üç farklı yapı sistemi modellenmiştir. Önceki çalışmalarda yapıların kolon ve kiriş elemanlarına ait donatılar hesaplanıp, bulunan değerler manuel olarak programla girilmişdir. Daha sonra kat sayılıyı üç, beş ve yedi katlı olarak şekilde düzenleme yapılmıştır. Modellenen yapılar, performans değerlendirmesinde yapmak için kat sayıları farklı olan her model için ayrı ayrı analizler yapılmıştır. Ayrıca duvarların katlardaki buharlaştırma süreçleri ve yerine göre yeniden analizler yapılabilecek, bu durumu duvarların yapıya olan katkıları araştırılmıştır. Bu nedenle birlikte dolgu duvarlarının olumsuz etkisi olan yuvaşak kat etkisi de belirlenmiştir.

Dolgu duvarların yapı taşıyıcı sistemde dahil edilmesinde eşdeğer basınç çubuğu ile modellenmesi üzerinde yapılan çok sayıda çalışma mevcuttur. Bu çalışmada dolgu duvarlar, Mainstone ve Stafford-Smith tarafından önerilen yakınlık dikkate alınarak, eşdeğer basınç çubuğu şeklinde tanımlanmıştır. Bu modellene yakınlığında, betonarme çerçeve içindeki dolgu duvarların, kat hizalarına tesir eden yatay kuvvetler altında, kuvvetin tesir ettiği düğüm noktası ile diyagonaldeki düğüm noktası arasında bir basınç çubuğu gibi davranışlı varsayımaktadır. Daha önce yapılan deneyler ve sonlu elemanlar teorik olarak uygulanması, ilgili kısıtlamalar getirmektedir. Dolgu duvarlar, Mainstone ve Stafford-Smith tarafından önerilen yakınlık genel deprem yönetmeliklerine uygun olarak modellenmiştir.

Çerçeve modellerinin etki/kapasite oranları belirlenmiştir ve yönetmelikteki sınır değerler dikkate alınarak, bulunan bu değerlerle karşılaştırılmıştır. Bu değerlendirmeler sonucunda, dolgu duvarlarının, yapıdaki mevcut duruma göre yer değiştirme, göreli kat ötelemesi gibi özellikleri farklı değerler aldığı belirlenmiştir. Ayrıca kat sayısının da yapıya olan etkisi gösterilmiştir.

Binaların Modellenmesi

Performans değerlendirmesi yapmak amacıyla, üç, beş ve yedi katlı betonarme çerçeve binalar Şekil 1’inde gösterildiği gibi modellenmiştir. Modellenen binaların kat yükseklikleri 3 m açıklıkları ise x yönünde 4 m, y yönünde ise 5 m olarak dikkate alınmıştır.
Modellemekte binalar üç farklı şekilde düzenlenmiştir. Birinci tip model, dolgu duvarlı çerçeveden oluşan yapı sistemidir. İkinci tip model, ilk katlı dolgu duvarlı, diğer katları dolgu duvarlı olarak modellenmiştir. Üçüncü tip model ise tüm katlarında dolgu duvarların olduğu yapı sistemidir. Bu bina modelleri Şekil 2, Şekil 3 ve Şekil 4 de verilmiştir. Binalar, SAP2000 sonlu eleman programı ile modellemiştir. Çalışmada, betonarme düzlem çerçeve binaların beton sınıfı C25, çelik sınıfı ise S420 olarak seçilmiştir. Modellenen binaların 2.‘deprem bölgesinde \(A_o = 0.30 \), bina önem katsayısının I = 1 ve Z2 zemin sınıftında \(T_A = 0.15 \) s ve \(T_B = 0.40 \) s olduğunu kabul edilmiştir. Taşıyıcı sistem davranış katsayısı R ise 8 olarak dikkate alınmıştır.

Kolon boyutları 40x40 cm, kiriş boyutları ise 25x50 cm dir (Şekil 5). Ayrıca kolonların boyutlandırılmasında etriye aralıkları değeri, yönetmelikteki esaslar dikkate alınarak, kolon orta bölgesi ve sarılma bölgesi için ayrı ayrı hesaplanıp, programına girilmiştir.

Şekil 1. Kat planı

Şekil 2. Üç katlı betonarme çerçeve modelleri

Şekil 3. Beş katlı betonarme çerçeve modelleri

Şekil 4. Yedi katlı betonarme çerçeve modelleri

Şekil 5. Kolon ve kiriş kesitleri

Modellenen tüm yapılar için doğrusal elastik hesap yöntemiyle analizler yapılmıştır. Analiz sonuçlarından alınan değerler doğrultusunda kolon ve kirişlerin çatlamış kesit eit eğilme rijitlikleri, moment kapasiteleri hesaplanmış ve bu moment kapasite değerleri kullanılarak etki/kapasite(r) oranları belirlenmiştir. DBYHY’deki (2007), etki/kapasite oranları sınır değerleri dikkate alınarak, dolgu duvarlı ve
dolgu duvarlı modellerin hasar sınırları karşılaştırılması yapılmıştır. Tablo 1 ve Tablo 2'de üç katlı modele ait hasar sınırları karşılaştırılması verilmiştir.

Tablo 1. Kolonlar için hasar bölgelerinin karşılaştırılması

Kolonlar	r	Hasar sınırı	r	Hasar sınırı
SA11	2.25	MN	3.104	GV
SB11	2.75	MN	1.645	MN
SC11	2.25	MN	3.268	GV
SA21	2.08	MN	2.671	MN
SB21	2.37	MN	1.371	MN
SC21	2.08	MN	2.813	MN
SA31	2.05	MN	2.542	MN
SB31	2.75	MN	1.645	MN
SC31	2.25	MN	3.268	GV

Kolonlar için hasar bölgelerinin karşılaştırılmasında, dolgu duvarlı çerçeve modelinde kolonların % 77.8’i minimum hasar bölgesinde, % 14.8’i ileri hasar bölgesinde, % 7.4’ü belirgin hasar bölgesinde, dolgu duvarlı modelde ise kolonların % 77.8’i minimum hasar bölgesi, % 22.2’si belirgin hasar bölgesinde kalmıştır.

Tablo 2. Kirişler için hasar bölgelerinin karşılaştırılması

Kirişler	r	Hasar sınırı	r	Hasar sınırı
KX11 sol uç	6.563	GÇ	1.807	MN
KX11 sağ uç	2.180	MN	2.462	MN
KX12 sol uç	5.279	GÇ	0.722	MN
KX12 sağ uç	1.835	MN	1.006	MN
KX13 sol uç	2.578	MN	0.389	MN
KX13 sağ uç	0.823	MN	0.513	MN
KX21 sol uç	7.392	GÇ	1.826	MN
KX21 sağ uç	2.089	MN	2.464	MN
KX22 sol uç	5.958	GÇ	0.777	MN
KX22 sağ uç	1.757	MN	0.99	MN
KX23 sol uç	2.883	MN	0.363	MN
KX23 sağ uç	0.79	MN	0.642	MN
KX31 sol uç	6.563	GÇ	1.807	MN
Kirişler için hasar bölgelerinin karşılaştırılmasında, her iki modelin hasar sınırlarında farklılıklar görülmüştür. Dolgu duvarsız çerçeve modelinde kirişlerin % 66.7’si minimum hasar bölgesinde, % 33.3’ü belirgin hasar bölgesinde kalmıştır. Dolgu duvarlı modelde ise kirişlerin tamamı minimum hasar bölgesinde kalmıştır.

Bina Modellerinin Yer Değiştirme Değerlerinin Karşılaştırılması

Üç katlı dolgu duvarlı, ilk katlı dolgu duvarlı ve dolgu duvarlı çerçeve ait yer değiştirme değerleri Tablo 3’de, bu değerlerin grafiksel karşılaştırılması ise Şekil 6’da verilmiştir.

Tablo 3. Üç katlı betonarme çerçeve modellerine ait yer değiştirme değerleri

Katlar	Birinci model (cm)	İkinci model (cm)	Üçüncü model (cm)
1.kat	0.031	0.020	0.017
2.kat	0.068	0.034	0.034
3.kat	0.092	0.051	0.052

Şekil 6. Üç katlı betonarme çerçeve modellerinin yer değiştirme değerlerinin karşılaştırılması

Beş katlı dolgu duvarlı, ilk katlı dolgu duvarlı ve dolgu duvarlı çerçeve ait yer değiştirme değerleri Tablo 4’de, bu değerlerin grafiksel karşılaştırılması ise Şekil 7’de verilmiştir.
Tablo 4. Beş katlı betonarme çerçeve modellerine ait yer değiştirme değerleri

Katlar	Birinci model (cm)	İkinci model (cm)	Üçüncü model (cm)
1.kat	0.144	0.177	0.084
2.kat	0.343	0.221	0.187
3.kat	0.523	0.312	0.279
4.kat	0.653	0.377	0.343
5.kat	0.720	0.415	0.376

![Yer Değiştirme Değerleri Grafikleri](image)

Şekil 7. Beş katlı betonarme çerçeve modellerinin yer değiştirme değerlerinin karşılaştırılması

Tablo 4'deki verilerin grafiksel karşılaştırması Şekil 7'de görülmektedir. Biçimsel ve grafiksel karşılaştırması, beş katlı betonarme çerçeve modellerine ait yer değiştirme değerlerinin karşılaştırılabilmesini sağlar.

Yedi katlı dolgu duvarlı, ilk katı dolgu duvarlı ve dolgu duvarlı çerçeve modellerine ait yer değiştirme değerleri Tablo 5'te verilmiştir.

Tablo 5. Yedi katlı betonarme çerçeve modellerine ait yer değiştirme değerleri

Katlar	Birinci model (cm)	İkinci model (cm)	Üçüncü model (cm)
1.kat	0.263	0.221	0.151
2.kat	0.635	0.420	0.341
3.kat	0.996	0.602	0.523
4.kat	1.308	0.758	0.678
5.kat	1.543	0.876	0.796
6.kat	1.694	0.952	0.871
7.kat	1.770	0.998	0.917
Şekil 8. Yedi katlı betonarme çerçeve modellerinin yer değiştirmeye değerlerinin karşılaştırılması

Yer değiştirme ile ilgili yukarıda yapılan analizler sonucunda, dolgu duvarlı çerçevedeki yer değiştirme değeri, dolgu duvarsız çerçeveeye göre daha az olmuştur. İlk katı dolgu duvarsız olan modelin yer değiştirme değeri ise dolgu duvarlı modelin yer değiştirme değerinden daha büyük değerde elde edilmiştir.

Bina Modellerinin Göreli Kat Öteleme Oranlarının Karşılaştırılması

Üç katlı, beş katlı ve yedi katlı dolgu duvarlı, dolgu duvarsız ve ilk katı dolgu duvarsız çerçeveyle ait göreli kat ötelemesi oranları Tablo 6, Tablo 7, Tablo 8’de, bu değerlerin grafiksel karşılaştırılması ise Şekil 9, Şekil 10, Şekil 11’de verilmiştir.

Tablo 6. Üç katlı betonarme çerçeve modellerine ait göreli kat ötelemesi oranları

	1	2	3
Birinci model	0.0065	0.0047	0.0048
İkinci model	0.0065	0.0047	0.0058
Üçüncü model	0.0056	0.0054	0.0048
Şekil 9. Üç katlı betonarme çerçeve modellerinin göreli kat ötelemesi oranlarının karşılaştırılması

Tablo 7. Beş katlı betonarme çerçeve modellerine ait göreli kat ötelemesi oranları

Katlar	1	2	3	4	5
Birinci model	0.048	0.068	0.058	0.043	0.022
İkinci model	0.039	0.034	0.030	0.021	0.013
Üçüncü model	0.027	0.034	0.031	0.021	0.011

Şekil 10. Beş katlı betonarme çerçeve modellerinin göreli kat ötelemesi oranlarının karşılaştırılması

Tablo 8. Yedi katlı betonarme çerçeve modellerine ait göreli kat ötelemesi oranları

Katlar	1	2	3	4	5	6	7
Birinci model	0.087	0.124	0.120	0.104	0.078	0.050	0.025
İkinci model	0.073	0.066	0.060	0.052	0.039	0.025	0.015
Üçüncü model	0.050	0.063	0.060	0.051	0.039	0.025	0.015
Şekil 11. Yedi katlı betonarme çerçeve modellerinin görelı kat ötelemesi oranlarının karşılaştırılması

Göreli kat ötelemeleri karşılaştırıldığında en büyük değerin dolgu duvarsız modellerde meydana geldiği bu değeri ilk katı dolgu

Sonuçlar ve Tartışma

Bu çalışmada, farklı kat sayısına sahip betonarme yapılarda dolgu duvarların, yapının rijitliğine olan katkısı araştırılmıştır. Dolgu duvarlar eşdeğer basınç çubuğu yöntemi ile modellenmiştir. Farklı kat sayılarına sahip tüm katları dolgu duvarlardan oluşan, ilk katı dolgu duvarlı diğer katları dolgu duvarlı olan ve tüm yapının tamamen dolgu duvarsız olduğu modeller hazırlanmıştır. Bu modeller üzerinde yapılan analizler ve hesaplamalar sonucunda aşağıdaki veriler elde edilmiştir.

- Dolgu duvarlı çerçevedeki yer değiştirme değeri, dolgu duvarsz çerçeveeye göre daha az olmuştur.
- İlk katı dolgu duvarsız olan modiın yer değiştirme değeri ise dolgu duvarlı modiın yer değiştirme değerinden daha büyük değerde, dolgu duvarsız modelin yer değiştirme değerinden ise daha küçük değerde elde edilmiştir.
- Dolgu duvarlı çerçeve daha rijit davranmış göstermiştir.
- Analizleri yapılan tüm modellerin göreli kat öteleme değerleri de karşılaştırılmıştır. En büyük kat öteleme değeri dolgu duvarsız çerçeve modellinde görülmüştür. Bu modelli sırasıyla ilk katı dolgu duvarsız çerçeve modeli ve dolgu duvarlı çerçeve modeli takip etmiştir.
- Birincı katın öteleme değerleri kıyaslandığında, ilk katı dolgu duvarsız çerçeve modelinin kat öteleme değeri, dolgu duvarlı çerçeve modelinin kat öteleme değerinden daha büyük çıkmıştır. Dolgu duvarsız çerçeve modelinin öteleme değeri ise ilk katı dolgu duvarsız modelin kat ötelemesi değerinden daha fazla olmuştur.
- Dolgu duvarların sisteme katılmasıyla, yapı sisteminde daha az yer değiştirme olduğu gözlenmiştir.

- Kolonlar için yapılan hasar bölgelerinin karşılaştırılmasında, dolgu duvarsız ve dolgu duvarlı çerçeve modellerinde kolonların % 77.8’i minimum hasar bölgesinde kalmıştır. Diğer hasar bölgelerini karşılaştırıldığımızda, dolgu duvarsız modele kolonların % 7.4’ü belirgin hasar bölgesinde, %14.8’i ise ileri hasar bölgesinde kalırken, dolgu duvarlı modelde ise kolonların % 22.2’si belirgin hasar bölgesinde kalmıştır.
- Kirişler için yapılan hasar bölgelerinin karşılaştırılmasında dolgu duvarsız çerçeve modelinde kirişlerin % 66.7’si minimum hasar bölgesinde, % 33.3’ü ise belirgin hasar bölgesinde kalmıştır. Dolgu duvarlı modelde ise kirişlerin tamamı minimum hasar bölgesinde kalmıştır.

Elde edilen analizler sonucunda dolgu duvarlarından yapı parametrelerinde meydana getirdiği değişiklikler elde edilmiştir. Dolgu duvarların etkisi sistem çözümlemesinde dikkate alınmasa da yapı sisteminin yatay rijitliğini arttırmasından dolayı tercih edilmelidir. Yapı sistemleri projelendirilirken, dolgu duvarlı ve dolgu duvarsız olarak ayrı ayrı hesaplamalar ve analizler yapılmalıdır. Her iki durum için en elverişsiz koşullar altında eleman boyutlandırılması ve donatı seçimi yapılmalıdır.
Kaynaklar

Celep, Z., (2009). “Betonarme yapılar”, Beta dağıtım, 5. baskı, İstanbul.

Celep, Z., (2014). “Betonarme taşıyıcı sistemlerde doğrusal olmayan davranış ve çözümleme”, Beta dağıtım, İstanbul.

Celep, Z. ve Kumbasar, N., (2004). “Deprem mühendisliğinde giris ve depreme dayanıklı yapı tasarım”, Beta Dağıtım, İstanbul.

Chopra, A. K., (2001). Dynamics of Structures: Theory and applications to earthquake engineering, Englewood Cliffs, NJ.

DBYYHY (2007). “Deprem Bölgeblerinde Yapılacak Binalar Hakkında Yönetmelik. Ankara”.

Dhanasekar, M., and Page, A.W., (1986). The Influence of Brick Masonary Infll Properties on the Behavior of Infilled Frames. Proc. Instn. Civ. Engrs, Part 2, pp. 593-605.

Ersoy, U., ve Uzsoy, S., (1971). The Behaviour and Strength of Infilled Frames, Report No. MAG-205, TÜBİTAK, Ankara, Turkey.

Govindan, P., Lakshmıpaty, M., Santhakumar, A. R., (1986). “Ductility of infilled frames”, A.C.I. Journal, pp. 567-576.

İrtem E., Türk K. ve Hasgül U., (2004). “Türk deprem yönetmeliğinin performans hedeflerinin lineer olmayan statik analiz yöntemleri ile değerlendirilmesi”, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 4 (4), 3-13.

İlki, A. ve Celep, Z., (2011). Betonarme Yapıların Deprem Güvenliği, ODTÜ, Ankara.

Korkmaz, A., Uçar T. ve İrtem E., (2006). “Yumuşak kat düzenizliğinin ve dolgu duvarların betonarme binaların deprem davranışına etkileri”, IMO Teknik Kongre, Antalya.

Mallick, D.V. and Severn, R.T., (1967). The Behaviour of infilled Frames under static loading. Institution of Civil Engineering. Vol 38 pp 639-956.

Negro, P., Colombo, A., (1997). “Irregularities induced by nonstructural masonry panels in framed buildings”, Engineering Structures, 17(7), 576-585.

Öztebe, G., Yakut, A., Binici, B. ve Demirel, İ.O., (2013). Dolgu Duvarların Deprem Davranışına Etkisi, 2. Deprem Mühendisliği ve Sismoloji Konferansı, Hatay.

Polyakov, S. V., (1956). “Masonry in Framed Buildings: An Investigation into the Strength and Stiffness of Masonry Infilling (English Translation)”, Moscow, 1957.

Saneinejad, A., and Hobbs, B.,(1995). Inelastic Design of Infilled Frames. Journal of Structural Engineering 121: 4, 634-650.

SAP 2000 v15, “Structural analysis program, Computers and Structures, Berkeley, California”

Sivri, M., Demir, F. ve Kuyucular, A., (2006). “Dolgu duvarlarının çerçeve yapının deprem davranışına ve göçme mekanizmasına etkisi”, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10 (1), 109-115.

Stafford-Smith, B.,(1962). “Lateral Stiffness of Infilled Frames,” Journal of the Structural Division, ASCE, Vol. 88.

Taşlıgedik, A.S., Pampanin, S., and Palermo, A. (2011). Damage Mitigation Strategies of ‘Non-Structural’ Infll Walls: Concept and Numerical-Experimental Validation Program. Proceedings of the Ninth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society, Auckland, New Zealand, pp.120-127.

Tekeli, H., Demir, F. ve Akyürek, O., (2015). “Betonarme bina performansı dolgu duvarların etkisi”, 8. ulusal deprem mühendisliği konferansı 11-15 Mayıs, İstanbul (s.275-285).

TS500 (2000), “Betonarme Yapıların Hesap ve Yapım Kuralları”, TSE, Ankara.

Zarnic, R., and Tomasevic, M., (1995). “Modelling of response of masonry infilled frame, 10th European Conference on Earthquake Engineering, Rotterdam”.

1059
Effect of infill walls on earthquake behavior of reinforced concrete structures with different floors

Extended abstract

In this study, it is evaluated the contribution of infill walls to reinforced concrete buildings. For this purpose, three-storey, five-storey and seven-storey reinforced concrete buildings are modeled. These buildings have two spans on both directions; 4 m in the x direction and 5 m in the y direction. C25 concrete class and S420 reinforcing steel class was selected. It is assumed that the buildings are located on second degree earthquake zone. The building importance factor and local site class is considered as I = 1.0 and Z2, respectively. The structural system behavior factor R was taken as 8.

These models are redesigned in three different type in itself. The first model is a bare frame model. The second model is the frame model which is absence of infill walls on the first floor and have infill walls on other floors. The third model is the frame model having infill walls on all floors. Also, the column and beam dimensions were selected as 40x40 cm and 25x50 cm, respectively. The values of the stirrup spacing were calculated separately for the mid zone and the confinement zone of the columns. In the models, the infill walls are designed as equivalent compression strut.

Linear analysis method is used for analyses of the models. As a result of the analysis, interstory drifts, displacement values are determined and graphics are drawn for all models according to obtained values.

When the analysis results were examined, it was seen that displacement values of the third model was less than the first model. In addition to this, the displacement value of the second model was smaller than the displacement value of the first model, and it was larger than the displacement value of the third model.

Also, interstory drift ratios were compared. According to the obtained results, maximum interstory drift ratios were acquired for the first model. The results of the interstory drift ratios of the second and third model are close to each other for three and five-storey buildings.

In addition, demand/capacity ratios of these models were calculated and damage zones were determined. And the effect of the change in the number of floors on the structure with infill wall and without infill wall was determined too. With the increase in the number of floors, the displacement and interstory drifts values increased in direct proportion.

As a result of this study, the effect of infill walls in reinforced concrete structures were investigated in terms of displacement and interstory drifts. And the analysis results demonstrated that the infill walls reduce the displacement and interstory drifts values. Also, infill walls contributed positively to the rigidity and strength of the models.

Keywords: reinforced concrete building, infill walls, equivalent compression strut