FUJITA’S CONJECTURE FOR QUASI-ELLIPTIC SURFACES

YEN-AN CHEN

ABSTRACT. We show that Fujita’s conjecture is true for quasi-elliptic surfaces. Explicitly, for any quasi-elliptic surface X and an ample line bundle A on X, we have $K_X + tA$ is base point free for $t \geq 3$ and is very ample for $t \geq 4$.

1. Introduction

Let X be a smooth projective variety and A be an ample line bundle. One of the crucial classical problems is understanding under what conditions the adjoint linear system $K_X + A$ is base point free or very ample. Thanks to Serre’s theorem, we know that $K_X + tA$ is very ample for t sufficiently large, and there is great interest in understanding the smallest value of t for which this holds. The following conjecture is due to Fujita in [Fuj88].

Conjecture 1.1 (Fujita). Let X be a smooth projective variety of dimension n and A be an ample line bundle. Then $K_X + tA$ is base point free (resp. very ample) whenever $t \geq n + 1$ (resp. $t \geq n + 2$).

This conjecture for curves follows from the Riemann-Roch theorem. In characteristic zero, the conjecture is entirely proved for surfaces by Reider’s theorem [Rei88]. For the base point freeness part of this conjecture in characteristic zero, it has been proved up to dimension five in [EL93], [Hel97], [Kaw97], and [YZ20]. In positive characteristic, Shepherd-Barron showed in [SB91] that the conjecture is true for surfaces that are neither quasi-elliptic (see Definition 2.2) nor of general type. Recently, Gu, Zhang, and Zhang claimed in [GZZ20] that there are counterexamples to the conjecture for surfaces. Those examples are of general type.

In this paper, we show that Fujita’s conjecture is true for quasi-elliptic surfaces.

Theorem 1.2 (=Theorem 3.2). Fujita’s conjecture is true for quasi-elliptic surfaces X. (See Definition 2.2.) That is, given a quasi-elliptic surface X and any ample line bundle A on X, we have

1. $K_X + tA$ is base point free for $t \geq 3$; and
2. $K_X + tA$ is very ample for $t \geq 4$.

To prove this result, we follow the ideas of [DCF15] and make a careful case-by-case study. Note that, in [DCF15], it is proved that, when $p = 3$, $K_X + tA$ is base point free for $t \geq 4$ and it is very ample for $t \geq 8$; and when $p = 2$, $K_X + tA$ is base point free for $t \geq 5$ and it is very ample for $t \geq 19$.

2010 Mathematics Subject Classification. Primary 14C20, Secondary 14G17.

The author was partially supported by NSF research grants no: DMS-1801851, DMS-1840190 and by a grant from the Simons Foundation; Award Number: 256202.
Acknowledgements. The author would like to thank his advisor Christopher D. Hacon for many helpful suggestions and encouragement.

2. Preliminaries

In this section, we recall some definitions and results which will be used later. We will always assume the base field k is algebraically closed and of positive characteristic p.

Lemma 2.1. Let X be a smooth projective surface over k and N a nef divisor on X. Then for any divisor D on X, we have

$$N^2D^2 \leq (N.D)^2.$$ Moreover, if N is ample, then the equality holds only when D is numerically proportional to N.

Proof. Since we can approximate nef divisors by ample \mathbb{Q}-divisors and the desired inequality is homogeneous, we can reduce to the case when N is ample.

Now we consider $E = (N.D)N - N^2D$. Notice that $E.N = 0$. Then, by the Hodge index theorem, we have $E^2 \leq 0$, and we get the desired inequality. Moreover, the equality holds only when $E \equiv 0$, that is, D is numerically proportional to N. □

Definition 2.2. A smooth projective surface X over k is said to be quasi-elliptic if there is a fibration $f : X \to C$ where C is a smooth curve such that $f_*\mathcal{O}_X = \mathcal{O}_C$ and such that the general fibers of f are rational curves with one (ordinary) cusp. Such $f : X \to C$ is called a quasi-elliptic fibration.

Remark 2.3. The general fibers of f have arithmetic genus 1. Moreover, by a result of Tate in [Tat52], quasi-elliptic surfaces exist only when $p = 2$ or 3.

Definition 2.4 ([SB91], [DCF15]). A rank-two vector bundle \mathcal{E} on X is unstable if it fits into a short exact sequence, which will be called a de-stabilizing sequence for \mathcal{E},

$$
0 \longrightarrow \mathcal{O}_X(D_1) \longrightarrow \mathcal{E} \longrightarrow \mathcal{I}_Z \cdot \mathcal{O}_X(D_2) \longrightarrow 0
$$

where D_1 and D_2 are Cartier divisors, \mathcal{I}_Z is the ideal sheaf of a finite subscheme Z of X, and $D_1 - D_2 \in C_{++}(X)$, the positive cone of $\text{NS}(X)$. Notice that Z could be empty, and by convention, $\mathcal{I}_Z = \mathcal{O}_X$ when Z is empty. We also recall that

$$C_{++}(X) = \{x \in \text{NS}(X)|x^2 > 0 \text{ and } x.H > 0 \text{ for some ample divisor } H\} = \{x \in \text{NS}(X)|x^2 > 0 \text{ and } x \text{ is big}\}.$$

Definition 2.5 ([DCF15]). A big divisor D on a smooth surface X with $D^2 > 0$ is m-unstable for a positive integer m if $h^1(X, \mathcal{O}_X(-D)) \neq 0$ and there exists a nonzero effective divisor E such that $mD - 2E$ is big and $(mD - E).E \leq 0$.

In [Bog78], Bogomolov showed that, in characteristic zero, every rank-two vector bundle \mathcal{E} on a smooth surface with $c_1^2(\mathcal{E}) > 4c_2(\mathcal{E})$ is unstable. Also, in positive characteristic, there is a result related to the unstability of vector bundles.

Theorem 2.6 ([SB91] Theorem 1]). Let \mathcal{E} be a rank-two vector bundle on a smooth projective surface X over an algebraically closed field k of positive characteristic $p > 0$ such that $c_1^2(\mathcal{E}) > 4c_2(\mathcal{E})$. Then there exists an integral surface Y contained in the ruled threefold $\mathbb{P}(\mathcal{E})$ such that

(1) the composition $\rho : Y \to X$ is purely inseparable of degree p^e for some $e > 0$; and
(2) \((F^e)^*\mathcal{E}\) is unstable where \(F : X \to X\) is the absolute Frobenius morphism.

Moreover, we have

\[K_Y \equiv \rho^* \left(K_X - \frac{p^e - 1}{p^e}(D_1 - D_2) \right) \]

where

\[
\begin{array}{ccccccccc}
0 & \to & \mathcal{O}_X(D_1) & \to & F^e*\mathcal{E} & \to & \mathcal{I}_Z \cdot \mathcal{O}_X(D_2) & \to & 0
\end{array}
\]

is a de-stablizing sequence for \((F^e)^*\mathcal{E}\).

We recall the construction of \(Y\) in Theorem 2.6. Assume we have shown that \((F^n)^*\mathcal{E}\) is unstable for some positive integer \(n\). Let \(e\) be the smallest one such that \(\tilde{E} := (F^e)^*\mathcal{E}\) is unstable. We have the following cartesian diagram

\[
\begin{array}{ccc}
\mathbb{P}(\tilde{E}) & \xrightarrow{\psi} & \mathbb{P}(E) \\
\downarrow \tilde{\pi} & & \downarrow \pi \\
X & \xrightarrow{F^n} & X.
\end{array}
\]

From a de-stablizing sequence for \((F^e)^*\mathcal{E}\), we have a surjection \((F^e)^*\mathcal{E} \to \mathcal{I}_Z \cdot \mathcal{O}_X(D_2)\), which gives a quasi-section \(Y' \subset \mathbb{P}(\tilde{E})\). Then \(Y\) is the schematic image of \(Y'\) in \(\mathbb{P}(E)\).

Lemma 2.7. If \(D\) is big with \(D^2 > 0\) and \(h^1(X, \mathcal{O}_X(-D)) \neq 0\), then \(D\) is \(p^e\)-unstable for some \(e > 0\).

Proof. Indeed, this is contained in [SB91, Lemma 16]. The reader can also see [DCF15, Remark 2.10]. For the reader’s convenience, we include the proof.

Since \(h^1(X, \mathcal{O}_X(-D)) \neq 0\), there exists a non-split short exact sequence

\[
\begin{array}{ccccccccc}
0 & \to & \mathcal{O}_X & \to & \mathcal{E} & \to & \mathcal{O}_X(D) & \to & 0
\end{array}
\]

given by a nonzero element of \(\text{Ext}^1(\mathcal{O}_X(D), \mathcal{O}_X) \cong H^1(X, \mathcal{O}_X(-D))\), where \(\mathcal{E}\) is a vector bundle of rank two. Note that \(c_1^2(\mathcal{E}) - 4c_2(\mathcal{E}) = D^2 > 0\). By Theorem 2.6, we have the following diagram.

\[
\begin{array}{ccccccccccc}
0 & \to & \mathcal{O}_X(D_1) & \xrightarrow{f_1} & (F^e)^*\mathcal{E} & \xrightarrow{f_2} & \mathcal{I}_Z \cdot \mathcal{O}_X(D_2) & \to & 0 \\
\downarrow g_1 & & \downarrow \tau & & \downarrow g_2 & & \downarrow & & \downarrow 0 \\
0 & & \mathcal{O}_X(p^e D) & & & & & & 0
\end{array}
\]

We claim that \(\tau = g_2 \circ f_1\) is not zero. Indeed, if \(\tau = 0\), then \(f_1 = g_1 \circ \tau'\) where \(\tau'\) is a nonzero map from \(\mathcal{O}_X(D_1)\) to \(\mathcal{O}_X\). That means \(-D_1\) is linearly equivalent to an effective...
divisor. Now notice that \(D_1 + D_2 \equiv c_1((F^e)^*\mathcal{E}) \equiv p^eD \) is big and, for any ample divisor \(H \), we have
\[
0 < p^eD.H = (D_1 + D_2).H = -(D_1 - D_2).H - (2D_2).H < 0, \text{ which is impossible.}
\]

Hence, we have \(\tau \neq 0 \) and so \(D_2 \equiv c_1((F^e)^*\mathcal{E}) - D_1 \equiv p^eD - D_1 \) is effective. So \(p^eD - 2D_2 \equiv D_1 - D_2 \) is big and
\[
(p^eD - D_2).D_2 = D_1.D_2 = c_2((F^e)^*\mathcal{E}) - \deg Z = -\deg Z \leq 0.
\]

Also \(D_2 \neq 0 \) since otherwise the vertical exact sequence
\[
0 \longrightarrow \mathcal{O}_X \longrightarrow \mathcal{E} \longrightarrow \mathcal{O}_X(D) \longrightarrow 0
\]
splits, which is a contradiction.

To sum up, \(D \) is \(p^e \)-unstable. \(\square \)

Proposition 2.8. Let \(\pi : Y \to X \) be a birational morphism between two smooth surfaces and let \(\widetilde{D} \) be a big Cartier divisor on \(Y \) such that \(\widetilde{D}^2 > 0 \). Assume there is a non-zero effective divisor \(\widetilde{E} \) such that \(\widetilde{D} - 2\widetilde{E} \) is big and \((\widetilde{D} - \widetilde{E}).\widetilde{E} \leq 0 \).

Set \(D = \pi_*\widetilde{D} \), \(E = \pi_*\widetilde{E} \) and \(\alpha = D^2 - \widetilde{D}^2 \). If \(D \) is nef and \(E \) is a non-zero effective divisor, then \(0 \leq D.E < \alpha/2 \) and \(D.E - \alpha/4 \leq E^2 \leq (D.E)^2/D^2 \).

Proof. For a reference, see [Sak90, Proposition 2].

Corollary 2.9. Let \(\pi : Y \to X \) be a birational morphism between two smooth surfaces and let \(\widetilde{D} \) be a big Cartier divisor on \(Y \) such that \(\widetilde{D}^2 > 0 \). Assume that \(h^1(X, \mathcal{O}_X(-\widetilde{D})) \neq 0 \) and \(\widetilde{D} \) is \(m \)-unstable for some \(m > 0 \). That is, there exists a non-zero effective divisor \(\widetilde{E} \) such that \(m\widetilde{D} - 2\widetilde{E} \) is big and \((m\widetilde{D} - \widetilde{E}).\widetilde{E} \leq 0 \).

Set \(D = \pi_*\widetilde{D} \), \(E = \pi_*\widetilde{E} \) and \(\alpha = D^2 - \widetilde{D}^2 \). If \(D \) is nef and \(E \) is a non-zero effective divisor, then \(0 \leq D.E < m\alpha/2 \) and \(mD.E - m\alpha^2/4 \leq E^2 \leq (D.E)^2/D^2 \).

Proof. Write \(\widetilde{B} = m\widetilde{D} \). Since \(\widetilde{D} \) is \(m \)-unstable, \(\widetilde{B} \) is \(1 \)-unstable. Thus, we can use Proposition 2.8 above. Note that \(\alpha_B = B^2 - \widetilde{B}^2 = m(D^2 - \widetilde{D}^2) = m^2\alpha_D \). \(\square \)

3. Fujita’s Conjecture for Quasi-Elliptic Surfaces

From now on, \(X \) and \(Y \) are quasi-elliptic surfaces, and \(A \) is an ample divisor on \(X \). We first improve [DCF15, Proposition 4.3].

Proposition 3.1. Let \(X \) be a quasi-elliptic surface with a quasi-elliptic fibration \(f : X \to C \) and \(D \) be a big divisor on \(X \) with \(D^2 > 0 \) and \(h^1(X, \mathcal{O}_X(-D)) \neq 0 \). Then \(D \) is \(p \)-unstable.

Moreover, let \(F \) be a general fiber of the fibration \(f \) and \(E \) be a non-zero effective divisor whose existence is guaranteed by \(p \)-unstability of \(D \) (see Definition 2.8). Then we have \((3D - 2E).F = 1 \) when \(p = 3 \) and \((D - E).F = 1 \) when \(p = 2 \).

Proof. Since \(h^1(X, \mathcal{O}_X(-D)) \neq 0 \), there exists a non-split short exact sequence
\[
0 \longrightarrow \mathcal{O}_X \longrightarrow \mathcal{E} \longrightarrow \mathcal{O}_X(D) \longrightarrow 0
\]
given by a non-zero element of \(\text{Ext}^1(\mathcal{O}_X(D), \mathcal{O}_X) \cong H^1(X, \mathcal{O}_X(-D)) \), where \(\mathcal{E} \) is a vector bundle of rank two. Note that \(c_2(\mathcal{E}) = 4c_2(\mathcal{E}) = D^2 > 0 \). By Theorem 2.6 we have
(\(F^e\))∗\(E\) is unstable for some \(e > 0\) and \(\rho : Y \to X\) is a purely inseparable morphism of degree \(p^e\). Let

\[
0 \to \mathcal{O}_X(D_1) \to (\mathcal{F}^e)^*\mathcal{E} \to \mathcal{I}_Z \cdot \mathcal{O}_X(D_2) \to 0
\]

be a de-stabilizing sequence for \((\mathcal{F}^e)^*\mathcal{E}\).

By Lemma 2.7 and its proof, \(D\) is \(p^e\)-unstable. Let \(E\) be a non-zero effective divisor whose existence is guaranteed by \(p^e\)-unstability of \(D\), \(F\) be a general fiber of \(f : X \to B\), and \(C = \rho^*F\). Note that

\[
-K_Y.C = \rho^*\left(\frac{p^e-1}{p^e}(D_1 - D_2) - K_X\right).C
\]

\[
= \rho^*\left(\frac{p^e-1}{p^e}(p^eD - 2E) - K_X\right).C
\]

\[
= p^e\left(\frac{p^e-1}{p^e}(p^eD - 2E) - K_X\right).F
\]

\[
= (p^e - 1)(p^eD - 2E).F > 0
\]

where

1. the first equality follows from Theorem 2.6
2. the second equality follows from

\[
D_1 - D_2 = (D_1 + D_2) - 2D_2 \equiv c_1(\mathcal{F}^e\mathcal{E}) - 2E \equiv p^eD - 2E,
\]

3. the third equality follows from projective formula,
4. the fourth equality follows since \(F\) has arithmetic genus one, and
5. the last inequality follows since \(p^eD - 2E\) is big and \(F\) is a general fiber of \(f\).

Notice that \(Y\) is a local complete intersection since \(Y\) is a divisor in a smooth variety.

Then by [DCF15, Corollary 2.14], we have \(-K_Y.C \leq 3\). This gives

\[
3 \geq -K_Y.C = (p^e - 1)(p^eD - 2E).F.
\]

When \(p = 3\), we have \((p^e - 1)(p^eD - 2E).F \geq 3^e - 1 \geq 8\) if \(e \geq 2\), which is impossible.

When \(p = 2\), we have \((p^e - 1)(p^eD - 2E).F = 2(2^e - 1)(2^{e-1}D - E).F \geq 2(2^e - 1) \geq 6\) if \(e \geq 2\), which is impossible.

Thus, \(e\) must be 1 and \(D\) is \(p\)-unstable.

Moreover, when \(p = 3\), we have

\[
(p^e - 1)(p^eD - 2E).F = 2(3D - 2E).F
\]

which is a positive even integer less than 3. So we have \((3D - 2E).F = 1\). When \(p = 2\), we have

\[
(p^e - 1)(p^eD - 2E).F = 2(D - E).F
\]

which is a positive even integer less than 3. So we have \((D - E).F = 1\).

\(\square\)

Now we are ready to prove

Theorem 3.2. Fujita’s conjecture is true for quasi-elliptic surfaces \(X\). That is, given a quasi-elliptic surface \(X\) and any ample line bundle \(A\) on \(X\), we have

1. \(K_X + tA\) is base point free for \(t \geq 3\); and
2. \(K_X + tA\) is very ample for \(t \geq 4\).
Proof. We divide the proof into several steps. We first prove that $K_X + tA$ is base point free for $t \geq 3$.

(Step 1) (Preparation.) Let $D = tA$ and assume that $|K_X + D|$ has a base point at $x \in X$. Let $\pi : Y \to X$ be the blow-up at x. Since x is a base point, we have that

$$h^1(Y, \mathcal{O}_Y(K_Y + \pi^* D - 2E_x)) = h^1(X, \mathcal{O}_X(K_X + D) \otimes \mathfrak{m}_x) \neq 0$$

where E_x is the exceptional divisor of π. Let $\widetilde{D} = \pi^* D - 2E_x$.

In order to apply Proposition 3.1 we need to check that \widetilde{D} is big and $\widetilde{D}^2 > 0$. Note that

$$h^0(Y, \mathcal{O}_Y(t\widetilde{D})) = h^0(Y, \mathcal{O}_Y(\ell(\pi^* D - 2E_x)))$$

$$= h^0(X, \mathcal{O}_X(\ell D) \otimes \mathfrak{m}_x^{2\ell})$$

$$\geq \frac{D^2}{2} \ell^2 + O(\ell) - \left(\frac{2\ell + 1}{2}\right)$$

$$= \frac{t^2A^2 - 4}{2} \ell^2 + O(\ell).$$

So \widetilde{D} is big whenever $t \geq 3$. Also note that $\widetilde{D}^2 = D^2 - 4 = t^2A^2 - 4 \geq 5$ when $t \geq 3$.

Applying Proposition 3.1 on Y and \widetilde{D}, we have that \widetilde{D} is p-unstable. So there is a nonzero effective divisor \tilde{E} such that $p\tilde{D} - 2\tilde{E}$ is big and $(p\tilde{D} - \tilde{E}).\tilde{E} \leq 0$. Let $E = \pi_*\tilde{E}$. Note that E is an effective divisor. If $E = 0$, then $\tilde{E} = bE_x$ for $b > 0$. Thus, $(p\tilde{D} - \tilde{E}).\tilde{E} = b(b + 2p) > 0$, which is a contradiction. Therefore, E is non-zero.

Also $\pi_*\tilde{D} = D = tA$ is ample and $\alpha = D^2 - \tilde{D}^2 = 4$. Hence, by Corollary 2.9 we have

$$0 < tA.E < 2p \leq 6 \text{ and } ptA.E - p^2 \leq E^2 \leq (A.E)^2/A^2.$$

So we have $0 < A.E < \frac{6}{t} \leq 2$ and thus, $A.E = 1$ and E is an irreducible curve. The second inequality in (1) becomes

$$pt - p^2 \leq E^2 \leq 1/A^2 \leq 1.$$

(Step 2) If $p = 2$, then $2 \leq 2t - 4 \leq E^2 \leq 1$, which is impossible.

(Step 3) If $p = 3$, then $3t - 9 \leq E^2 \leq 1$. This happens only when $t = 3$ and $E^2 = 0$ or 1.

Now, by Proposition 3.1 we have

$$1 = (3\tilde{D} - 2\tilde{E}).\pi^*F = (9A - 2E).F.$$

Since F is nef and A is ample, we get $9A.F \geq 9$ and so, by equality (3), we have

$$E.F \geq 4.$$

Note that $E + F$ is nef since $(E + F).E \geq 0 + F,E \geq 4$ and $(E + F).F = E.F \geq 4$.

(Step 4) If $E^2 = 1$, then $A^2 = 1$ by inequality (2) and A is numerically equivalent to E by Hodge inequality. Thus, by equality (3), we have $7A.F = 1$, which is impossible.

(Step 5) So we have $E^2 = 0$. Applying Lemma 2.11 to $9A - 2E$ and $E + F$, we have

$$(9A - 2E)^2(E + F)^2 \leq ((9A - 2E).E + F)^2.$$
Thus, we have
\[(81A^2 - 36)(2F.E) \leq (9A.E + (9A - 2E).F)^2 = 100\]
since \(A.E = 1\) and \((9A - 2E).F = 1\) by equality (3). Thus,
\[5 \leq 9A^2 - 4 \leq \frac{100}{18(F.E)} \leq \frac{100}{18 \times 4} \leq 2,\]
which is impossible.

Hence, we have shown that \(K_X + tA\) is base point free whenever \(t \geq 3\).

Now we prove \(K_X + tA\) is very ample when \(t \geq 4\).

(Step 1) (Preparation.) Let \(D = tA\). It suffices to show \(|K_X + D|\) separates points and tangents. (For a reference, see [Har77, Proposition II.7.3].) Assume that \(|K_X + D|\) does not separate points \(x\) and \(y\) (resp. does not separate tangents at \(x\)). Then we have
\[h^1(Y, \mathcal{O}_Y(K_Y + \pi^*D - 2E_x - 2E_y)) = h^1(X, \mathcal{O}_X(K_X + D) \otimes \mathfrak{m}_x \otimes \mathfrak{m}_y) \neq 0\]
(resp. \(h^1(Y, \mathcal{O}_Y(K_Y + \pi^*D - 3E_x)) = h^1(X, \mathcal{O}_X(K_X + D) \otimes \mathfrak{m}_x^2) \neq 0\))
where \(\pi : Y \rightarrow X\) is the blow-up of \(X\) at \(x, y\) and \(E_x, E_y\) are the exceptional divisor (resp. \(\pi : Y \rightarrow X\) is the blow-up of \(X\) at \(x\) and \(E_x\) is the exceptional divisor.)

Now let \(\widetilde{D} = \pi^*D - 2E_x - 2E_y\) (resp. \(\widetilde{D} = \pi^*D - 3E_x\)). By the similar argument as above, \(\widetilde{D}\) is big and \(\widetilde{D}^2 > 0\) whenever \(t \geq 4\).

Applying Proposition 3.1 to \(Y\) and \(\widetilde{D}\), we have that \(\widetilde{D}\) is \(p\)-unstable. So there is a nonzero effective divisor \(\widetilde{E}\) such that \(p\widetilde{D} - 2\widetilde{E}\) is big and \((p\widetilde{D} - \widetilde{E}).\widetilde{E} \leq 0\). Let \(E = \pi_*\widetilde{E}\). Note that \(E\) is a non-zero effective divisor by the similar argument as above. Also we have \(\pi_*\widetilde{D} = D = tA\) is ample and \(\alpha = D^2 - \widetilde{D}^2 = 8\) (resp. 9).

Hence, by Corollary 2.9 we have
\[0 < tA.E < ptA.E = p^2\alpha/4 \leq E^2 \leq (A.E)^2/A^2.\]

(Step 2) When \(p = 3\), by Proposition 3.1, we have
\[(3\widetilde{D} - 2\widetilde{E}).\pi^*F = 1\]
and thus
\[(3tA - 2E).F = 1.\]
If \(t\) is even, then the left hand side is an even integer, which is impossible.

(Step 3) So \(t\) is odd. From inequalities (3), we have
\[0 < tA.E < \frac{3 \alpha}{2} \leq \frac{27}{2} \text{ and } 3tA.E - \frac{9}{4}\alpha \leq E^2 \leq (A.E)^2/A^2.\]
Then we have \(A.E = 1\) or 2 since \(A.E < \frac{27}{2t} \leq \frac{27}{10} < 3\). If \(A.E = 2\), then we have
\[9 < 6t - \frac{81}{4} \leq 6t - \frac{9}{4}\alpha \leq E^2 \leq 4/A^2 \leq 4,\]
which is impossible.

Thus \(A.E = 1\) and so \(E\) is an irreducible curve. Also, from the second inequality in (7), we have
\[3t - \frac{81}{4} \leq 3t - \frac{9}{4}\alpha \leq E^2 \leq \frac{1}{A^2} \leq 1.\]
Hence t is 5 or 7 and

$$-5 \leq E^2 \leq 1.$$

Using equality (6), we have $1 + 2E.F = 3tA.F \geq 15$. So

$$E.F \geq 7$$

and $E + F$ is nef since $(E + F).E \geq -5 + 7 = 2$ and $(E + F).F \geq 7$.

Applying Lemma 2.1 to $3tA - 2E$ and $E + F$, we have

$$(3tA - 2E)^2(E + F)^2 \leq ((3tA - 2E).(E + F))^2.$$

Note that the left hand side

$$(3tA - 2E)^2(E + F)^2 = (9t^2A^2 - 12t + 4E^2)(E^2 + 2E.F) \geq (4E^2 + 141)(E^2 + 2E.F) \geq (4E^2 + 141)(E^2 + 14)$$

where

(a) the first inequality follows from $A^2 \geq 1$, $5 \leq t \leq 7$, and nefness of $E + F$; and

(b) the second inequality follows from inequalities (8) and (9).

Also the right hand side

$$(3tA - 2E).(E + F)^2 = (1 + 3t - 2E^2)^2 \leq (22 - 2E^2)^2$$

where

(a) the equality follows from equality (6); and

(b) the inequality follows from inequality (8) and $t \leq 7$.

To sum up, we have $(4E^2 + 141)(E^2 + 14) \leq (22 - 2E^2)^2$ and thus $E^2 \leq -6$, which contradicts to inequality (8).

(Step 4) Now we deal with $p = 2$. The inequalities (5) becomes

$$0 < tA.E < \alpha \leq 9 \text{ and } 2tA.E - \alpha \leq E^2 \leq (A.E)^2/A^2.$$

Hence, $A.E = 1$ or 2 since $A.E < \frac{3}{4} \leq \frac{2}{4}$. If $A.E = 2$, then we have $7 \leq 4t - \alpha \leq E^2 \leq 4/A^2 \leq 4$, which is impossible.

(Step 5) Thus, we have $A.E = 1$, and so E is an irreducible curve. Then, from the second inequality in (10), we have

$$2t - 9 \leq 2t - \alpha \leq E^2 \leq 1/A^2 \leq 1.$$

So $t = 5$ and $E^2 = 1$; or $t = 4$ and $-1 \leq E^2 \leq 1$. By Proposition 3.1 we have $(\widetilde{D} - \widetilde{E}).\pi^*F = 1$ and thus

$$tA - E).F = 1.$$

So we have

$$E.F = tA.F - 1 \geq 3.$$

Therefore, $E + F$ is nef since $(E + F).E \geq -1 + 3 = 2$ and $(E + F).F \geq 3$.

(Step 6) If $t = 5$, then we have $E^2 = 1$ and thus $A \equiv E$ by Lemma 2.1. But, from equality (11), we have

$$1 = (5A - E).F = 4A.F,$$

which is impossible.
(Step 7) Thus \(t = 4 \). Applying Lemma 2.1 to \(4A - E \) and \(E + F \), we have

\[
(13) \quad (4A - E)^2(E + F)^2 \leq ((4A - E)(E + F))^2 = (1 + 4 - E^2)^2 = (5 - E^2)^2.
\]

(Step 8) When \(E^2 = 1 \), we have \(A \equiv E \) by Lemma 2.1. Thus, from equality (11), we have

\[
1 = (4A - E).F = 3A.F,
\]

which is impossible.

(Step 9) When \(E^2 = 0 \), we have, from inequality (13),

\[
(16A^2 - 8)(2E.F) \leq 25
\]

and thus, by inequality (12),

\[
1 \leq 2A^2 - 1 \leq \frac{25}{16(E.F)} \leq \frac{25}{16 \times 3} < 1,
\]

which is impossible.

(Step 10) When \(E^2 = -1 \), from inequality (13), we have

\[
(16A^2 - 9)(2E.F - 1) \leq 36
\]

and thus, by inequality (12),

\[
7 \leq 16A^2 - 9 \leq \frac{36}{2E.F - 1} \leq \frac{36}{5} < 8.
\]

Therefore, \(A^2 = 1 \) and \(E.F = 3 \). Moreover, by equality (11), we have \(A.F = 1 \). Now applying Lemma 2.1 to \(A \) and \(E + F \), we have

\[
5 = A^2(E + F)^2 \leq (A.(E + F))^2 = 4,
\]

which is impossible.

Hence, we have shown that \(K_X + tA \) is very ample whenever \(t \geq 4 \).

\[\square \]

References

[Bog78] F. A. Bogomolov, Holomorphic tensors and vector bundles on projective manifolds, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), no. 6, 1227–1287, 1439. MR 522939

[DCF15] Gabriele Di Cerbo and Andrea Fanelli, Effective Matsusaka’s theorem for surfaces in characteristic \(p \), Algebra Number Theory 9 (2015), no. 6, 1453–1475. MR 3397408

[EL93] Lawrence Ein and Robert Lazarsfeld, Global generation of pluricanonical and adjoint linear series on smooth projective threefolds, J. Amer. Math. Soc. 6 (1993), no. 4, 875–903. MR 1207013

[Fuj88] Takao Fujita, Problems, Birational Geometry of Algebraic Varieties: Open Problems; the 23rd International Symposium, Division of Mathematics, the Taniguchi Foundation; August 22-27, 1988, Katata (1988), 42–45.

[GZZ20] Yi Gu, Lei Zhang, and Yongming Zhang, Counterexamples to Fujita’s conjecture on surfaces in positive characteristic, arXiv preprint arXiv:2002.04584 (2020).

[Har77] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977, Graduate Texts in Mathematics, No. 52. MR 0463157

[Hel97] Stefan Helmke, On Fujita’s conjecture, Duke Math. J. 88 (1997), no. 2, 201–216. MR 1455517

[Kaw97] Yujiro Kawamata, On Fujita’s freeness conjecture for 3-folds and 4-folds, Math. Ann. 308 (1997), no. 3, 491–505. MR 1457742

[Rei88] Igor Reider, Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. of Math. (2) 127 (1988), no. 2, 309–316. MR 932299

[Sak90] Fumio Sakai, Reider-Serrano’s method on normal surfaces, Algebraic geometry (L’Aquila, 1988), Lecture Notes in Math., vol. 1417, Springer, Berlin, 1990, pp. 301–319. MR 1040564

[SB91] Nicholas J. Shepherd-Barron, Unstable vector bundles and linear systems on surfaces in characteristic \(p \), Invent. Math. 106 (1991), no. 2, 243–262. MR 1128214
[Tat52] John Tate, *Genus change in inseparable extensions of function fields*, Proc. Amer. Math. Soc. *3* (1952), 400–406. MR 47631

[YZ20] Fei Ye and Zhixian Zhu, *On Fujita’s freeness conjecture in dimension 5*, Adv. Math. *371* (2020), 107210, 56.

Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA

Email address: yachen@math.utah.edu