Dôležitou úlohou železníc v súčasnej dobe je zvyšovanie rýchlosti osobnej dopravy. Táto úloha vyplýva jednak z medzinárodných dohovorov, jednak z potreby zachovania konkurencieschopnosti železnice na dopravnom trhu. V príspevku je uvedená možnosť zvyšovania cestovnej rýchlosti osobnej dopravy na ŽSR, a to použitím vozidiel s naklápacími skriňami. Pre vybrané úseky trati ŽSR boli vypočítané dosiahateľné jazdné doby pre vozidlá klasické konštrukcie a pre vozidlá s naklápacími skriňami. Z ich porovnania vyplýva výrazné skrátenie dosiahateľných jazdných časov. Ďalej je posúdená energetická náročnosť porovnateľných súprav klasickej konštrukcie voči jednotke typu Pendolino na existujúcej trati pri súčasných rýchlostných obmedzeniach a teoretickom obmedzení rýchlosti pri prejazde vlaku s naklápacou technológiou.

1. Úvod

Veľmi zaujímavú problematikou, ktorou sa v súčasnej dobe zaoberá takmer každá európska a svetová železnica, je zvyšovanie rýchlosti železničnej dopravy. Zvyšovanie rýchlosti je možné zabezpečiť výstavbou nových tratí, alebo radikálnou prestavbou starých trát. Ale budovanie nových vysokorychlostných tratí je veľmi náročná úloha, zvlášť v krajinách, ktoré majú vysoko ťažký terén, respektíve ich prostriedky sú značne obmedzené. Preto si Talianske železnice FS a Švédske železnice SJ ako jedny z prvých objednali vozidlá, ktoré boli schopné dosahovať vysoké rýchlosti aj na doterajších tratiach s malými polomernými oblúkmi – vozidlá s naklápacími skriňami. Tieto vozidlá, podľa skúseností viacerých európskych krajín, sú schopné, aj na doterajších tratiach určených pre osobnú aj nákladnú dopravu, dosahovať vysoké rýchlosti a tým podstatnou miernou znižiť jazdné doby.

2. Vysokorychlostná doprava v Európe a Japonsku

Podľa štatistík v ostatnom polstoročí od konca druhej svetovej vojny zaoberal takmer každá európska a svetová železnica, je zvyšovanie rýchlosti železničnej dopravy. Zvyšovanie rýchlosti je možné zabezpečiť výstavbou nových tratí, alebo radikálnou prestavbou starých trát. Ale budovanie nových vysokorychlostných tratí je veľmi náročná úloha, zvlášť v krajinách, ktoré majú vysoko ťažký terén, respektíve ich prostriedky sú značne obmedzené. Preto si Talianske železnice FS a Švédske železnice SJ ako jedny z prvých objednali vozidlá, ktoré boli schopné dosahovať vysoké rýchlosti aj na doterajších tratiach s malými polomernými oblúkmi – vozidlá s naklápacími skriňami. Tieto vozidlá, podľa skúseností viacerých európskych krajín, sú schopné, aj na doterajších tratiach určených pre osobnú aj nákladnú dopravu, dosahovať vysoké rýchlosti a tým podstatnou miernou znižiť jazdné doby.

1. Introduction

An important problem, which almost every European railway has to cope with at present, is increasing the speed of railway transport. Train speed can be increased by building new railway lines, or by the radical reconstruction of old ones. However, building of new high-speed lines is a very demanding task, especially in countries that have very mountainous terrain or their finances are strictly limited. That is why the Italian Railways FS and Swedish Railways SJ had ordered vehicles that were capable to reach high speed even on existing lines with small curve radii – vehicles with tilting bodies. These vehicles, referring to the experience of several European countries, are able, even on existing tracks used for both passenger and freight traffic, to reach high speed and by that remarkably reduce travel times.

2. High-speed transport in Europe and Japan

According to statistics most of railways within the last half of the century since the end of World War II have experienced real...
z explozívneho nárastu nákladnej a osobnej dopravy si pripísal železničníkového konkurenta – cesta a lietadlo. Avšak výlučný nárast týchto druhov dopravy naráža dnes na ich obmedzenia. V skutočnosti, ako trendy v sektoroch cestnej a leteckej dopravy zotravujú, môžu mať za nasledok zvýšenie znečistenia životného prostredia a rozpory, ktoré provokujú obranné reakcie pozorované v niektorých miestach hlavne na alpských tranzitních cestách vo Švájciansku, Nemecku a Rakúsku. Na relativný pokles železničnej dopravy, zaznamenaný v ostatných päťdesiatych rokoch odpovedali železnice rozvojom vysokorychlostnej dopravy. V októbri roku 1964, pri príležitosti Olympijských hier v Tokiu, bola v Japonsku otvorená prva vysokorychlostná trať z Tokia do Osaky (515 km). Jazdna rýchlosť 210 km/h, dosahovaná u prvých súprav, zavedením vozidiel novej generácie postupne sa zvýšila na 270 km/h. Napriek neprerušenému komerčnému úspechu, ktorý táto trať zaznamenala, musela Európa čakať až do roku 1981, kedy sa začala prevádzka na oboch vysokorychlostných tratiach – „Direttissima“ z Rim a Florencie a trať TGV z Paríza do Lyonu vo Francúzsku. Prednosti osobnej dopravy vo vysokorychlostných vlakoch sú už teraz dobre známé a sú cestujúcimi ako aj spoločnosťou všeobecne uznávané. Vysoká rýchlosť nie je samozrejmé, pretože je otázkou, či uskutočníť vysoký technický výkon: umožňuje skrátiť jazdný čas po železničnej trati takmer na polovicu a tým jazdný čas od domu po dom (vrátane konečných tratej) podstatne skrátiť, čo je v očiach zákazníka podstatného faktoru pri rozhodovaní. Pre schopnosť konkurencie voči osobnému automobilu, ktorý ponúka úplné spojenie od domu po dom a môže jazdiť na diaľnici rýchlosťou až 130 km/h, je potrebná priemernej rýchlosť vlakov zo stanice do stanice 200 km/h - s vysokými rýchlostami od 250 do 300 km/h.

Rozšírenie existujúcich trati pre rozsah rýchlosti 200 až 220 km/h je možné, ak trasa nevykazuje trateové oblúky s polomerom menším než 1500 m. Rozšírenie zahŕňa zvýšenie kolajnice a trakčného vedenia, odstránenie železničných úrovňových priecestí a zmenu signálizácnej zariadenia. V niektorých prípadoch je úprava úzkych tratejových oblúkov v ohraničenom rozsahu možná, najmä v západe Európy sa stáva toto riešenie často iluzórne, ale najmä v západe Európy sa stáva toto riešenie často iluzórne, ale najmä v západe Európy sa stáva toto riešenie často iluzórne, ale najmä v západe Európy sa stáva toto riešenie často iluzórne. Rozšírenie zahŕňa skutočné úpravy úzkych tratejových oblúkov v ohraničenom rozsahu, ktoré provokujú obranné reakcie pozorované v niektorých miestach vo Švájciansku, Nemecku a Rakúsku. Na relativný pokles železničnej dopravy, zaznamenaný v ostatných päťdesiatych rokoch odpovedali železnice rozvojom vysokorychlostnej dopravy. V októbri roku 1964, pri príležitosti Olympijských hier v Tokiu, bola v Japonsku otvorená prva vysokorychlostná trať z Tokia do Osaky (515 km). Jazdna rýchlosť 210 km/h, dosahovaná u prvých súprav, zavedením vozidiel novej generácie postupne sa zvýšila na 270 km/h. Napriek neprerušenému komerčnému úspechu, ktorý táto trať zaznamenala, musela Európa čakať až do roku 1981, kedy sa začala prevádzka na oboch vysokorychlostných tratiach – „Direttissima“ z Rim a Florencie a trať TGV z Paríza do Lyonu vo Francúzsku. Prednosti osobnej dopravy vo vysokorychlostných vlakoch sú už teraz dobre známé a sú cestujúcimi ako aj spoločnosťou všeobecne uznávané. Vysoká rýchlosť nie je samozrejmá, pretože je otázkou, či uskutočníť rýchlost vysokého technického výkonu: umožňuje skrátiť jazdný čas po železničnej trati takmer na polovicu a tým jazdný čas od domu po dom (vrátane konečných tratej) podstatne skrátiť, čo je v očiach zákazníka podstatným faktorom pri rozhodovaní. Pre schopnosť konkurencie voči osobnému automobilu, ktorý ponúka úplné spojenie od domu po dom a môže jazdiť na diaľnici rýchlosťou až 130 km/h, je potrebná priemernej rýchlosť vlakov zo stanice do stanice 200 km/h - s vysokými rýchlostami od 250 do 300 km/h.

3. Aktivity na zvýšenie rýchlostí železnič OSŽD

OSŽD zahŕňa v súčasnosti 25 členských krajín – železnice z Európy a Ázie - od České republiky a Polska na západ od Čínu na východ a Íran na juhu. OSŽD podporuje kooperáciu v medzinárodnej železničnej preprave medzi krajinami Európy a Ázie. Pretože v jednotlivých krajinách oboch týchto kontinentov vládnu rozdielne podmienky, musel byť vás zvýšenie jazdných rýchlostí a zavedenie vysokorychlostnej dopravy najprv analizovaná objem pravým a musela byť vytvorená prognoza. Na základe uskutočnených príslušných príslušných podkladov UIC ako aj rozhodnutia panačie neprerušeného spojení miestnych dopravy. Konferencia ministrov OSŽD schválila tento plán trati na svojom zasadani
v roku 1996 v Bratislave. Bolo stanovených deväť hlavných relácii rýchlych a vysokorychlostných trati osobnej prepravy, ktoré berú ohľad na budúcu vysokorychlostnú sieť EÚropy a tieto sieti predlžujú v smere do Ázie.

Bolo dalej rozhodnuté, že podmienky stanovené v dohode AGC pre najdôležitejšie projekty železničnej infraštruktúry v Európe, budú vo veľkom rozsahu zohľadnené. Rovnako boli stanovené aj cieľové najvýšie rýchlosti na jednotlivých traťových úsekoch ako aj časové rozpätie pre dosiahnutie týchto rýchlostí. Z podkladov vyplýva, že európski členovia OSŽD majú v unyse zvýšiť jazdnú rýchlosť modernizáciou a výstavbou nových železničných trati na celkovú dĺžku okolo 18 000 traťových kilometrov. Najprv je plánované hlavne rozšírenie trati na jazdnú rýchlosť 160 km/h, v budúcniosti aj výstavba nových trati na 200 km/h. V dalekom horizonte sa predpokladá v jednotlivých krajinách novovybudované trate pre jazdné rýchlosti od 300 do 350 km/h. Toto sa týka predovšetkého trate Berlin – Kunowice – Varšava – Minsk – Moskva, ako aj novej trate Sankt Petersburg – Moskva na území Ruskej Federácie. Zhrnuté zámery pre európsku časť železnic OSŽD sú zobrazené na obr. 1.

Druhým ťažiskom pri výstavbe budúcej rýchlostnej železničnej siete Európa – Ázia je čínска železnica. Rozvoj národného hospodárstva v Číne má pozitívny vplyv aj na železničnú prepravu: vo výhľade sú výstavba nových trati, zdvojkoľajnenie trati, elektrifikácia a iné druhy rozšírenia. Rozsah tohto rozvoja je možné rozpoznať z plánov pre časové obdobie 1998 – 2002, kedy má byť realizovaná výstavba 5340 nových traťových kilometrov, 2580 kilometrov trate má byť zdvojkolajnený a 4400 kilometrov novoelektrifikovaných trati. Súčasne zavádzajú Čínske železnice (KŽD) postupné rýchlostné dopravu v osobnej preprave. Na konci roku 1997 dosiahla dĺžka železničných trati s dovolenou rýchlosťou 140 km/h 5500 kilometrov, a na traťovom úseku o dĺžke 587 kilometrov dosiahla dovolená rýchlosť 160 km/h. Do konca roku 2000 mala dĺžka týchto trati presiahnuť 8 100 km.

4. Súčasný stav techniky vozidiel s naklápacími skriňami vo svete

V súčasnosti sa viaceré krajiná sa zaoberajú vozidlami s naklápacími skriňami, nakoľko je to veľmi efektívny systém modernnej dopravy. Rozlišujeme dva druhy naklápania skrine: prirodzene a nútené. Medzi vlaky s prirodzenným naklápáním skrine patria španielske jednotky RENFE nazvané Talgo. Do skupiny vozidiel s núteným naklápáním skrine patria napríklad talianske jednotky FS Pendolino (obr. 2), z neho odvozene nemecké DB – VT 610, a na inom principe švédské vozidlo SJ – X 2000. V súčasnej dobe provedl plan his präsentation during its session in 1996 v Bratislave. Nine main relations of rapid and very high-speed lines for passenger traffic had been determined, which consider the future high-speed lines network in Europe, and this network is extended towards Asia.

Further, it had been decided that conditions stated in AGC agreement for the most important project of railway infrastructure in Europe, would be respected to a great extent. Similarly, target highest speeds on the individual line sections as well as the time periods for reaching these speeds had been set up. From the materials adopted it results that the European members of OSŽD intend to increase running speed by modernisation and construction of new railway lines with total length of about 18,000 track kilometres. In the first step upgrading of lines to running speed of 160 km/h is planned, in future building of new lines for 200 km/h is planned. On far horizon newly built lines for speed from 300 to 350 km/h are expected in the individual countries. This especially concerns Berlin – Kunowice – Warsaw – Minsk – Moscow line and new line Sankt Petersburg – Moscow in the Russian federation territory. Summarised plans for European part of OSŽD railways are shown in the figure 1.

Second centre for building of future high-speed railway network Europe – Asia is the Chinese railway. Development of Chinese economy has positive influence on railway transport: there are plans for building new lines, construction of double-track lines, electrification and other methods of upgrading. Extent of this development can be seen from plans for the time period 1998 – 2000 when construction of 5,340 km new lines is to be realised, 2,580 km of single track lines should be upgraded to double track and 4,400 km tracks should be electrified. At the same time the Chinese railways (KŽD) are introducing rapid transport in passenger traffic. In the end of the year 1997 length of railway tracks with speed limit of 140 km/h was 5,500 km and 587 km track section has speed limit of 160 km/h. By the end of the year 2000 length of these lines should exceed 8,100 km.

4. Current state of tilting body technology in the world

At present a couple of countries are dealing with tilting body railway vehicles as they consider it a very effective system of modern transport. There are principally two kinds of body tilting: natural and forced. Trains with natural body tilting include Spanish train units RENFE called Talgo. The group with forced body tilting include, for example, Italian train sets FD Pendolino, German DB – VT 610 derived from Pendolino, another train set concept Swedish SJ – X 2000. Nowadays, a trend towards the use of trains with tilting technology is starting to grow rapidly, and there is vir-
trend používania vlakov s naklápací technologií začíná prudko rást a nes pomaly krajin v Európe, ktorá by s takýmto projektom nevažovala. Nemožno nespomenúť ČD, kde naprieč tážkostiam, jednotky radu 680 by mali byť v dohľadnej dobe uvedené do prevádzky pre rýchle spojenie na osi Berlin – Praha – Brno – Viedeň.

4.1 Porovnanie jazdy klasických vlakov s vozidlami s naklápacími skriňami

V súpravách s naklápacími skriňami sa pre zvýšenie rýchlosti naklápa vozová skriňa v úzkých traťových oblúkoch, aby kompenzovala účinok odstredovej sily na cestujúcich. Nasledujúce obrázky ukazujú efekt z naklopenia skrine u systému s prirodzeným naklápaním (obr. 3) a núteným naklápaním (obr. 4). Z obrázkov jasne vidieť, že nútené naklápanie prináša väčší efekt ako prirodzené, vyžaduje však zložitejšiu konštrukciu a riadiaci systém naklápania.

4.1 Comparison of conventional trains with tilting body trains running in curve

Train sets with tilting bodies do not require reconstruction of curves as the train body tilts in small track radii to compensate effects of centrifugal force on passengers. The following pictures show effect from body tilt for system with natural tilting (figure 3) and with forced tilting (figure 4). The pictures clearly show that forced tilting brings higher effect than the natural one, but it requires more complicated mechanism and control system for body tilting.

U klasických vozidiel bez naklápania sa na kompenzáciu odstredovej sily pôsobí na vozidlo pri prechode oblúkom prevyšuje vonkajšie kolajnícový pás voči vnútornému. Toto prevýšenie sa pri plne kompenzovanej odstredovej sile nazýva teoretické prevýšenie. Silové pomery, respektive pôsobiací zrychlenia pri pohybe vozidla v oblúku možno znázorniť na nasledovnom diagrame, kde g predstavuje gravitačné zrychlenie, a priečne zrychlenie vyvolané tualny no country in Europe that would not deal with such a project. We have to mention Czech railways CD where, in spite of difficulties, the train unit series 680 are expected to be introduced into operation for rapid connection on the Berlin – Prague – Brno – Vienna line.

Obr. 2. Vlak Talianskych drah „Pendolino“, radu ETR 460.
Fig. 2. Italian railways train-set “Pendolino”, series ETR 460.

Obr. 3. Princip prirodzeného naklápania skrine – vlak Španielských železníc „Talgo Pendular“.
Fig. 3. Principle of natural body tilting – Spanish railways train “Talgo Pendular”.

Obr. 4. Princip núteného naklápania skrine – vlak Švédských železníc „X 2000“: (1 – vypruženie, 2 – hydraulický valec, 3 – naklopený priečník, 4 – zaves, 5 – rám podvozku)

Fig. 4. Principle of forced body tilting – Swedish railways train “X 2000”: (1 – air spring, 2 – hydraulic actuator, 3 – tilting bolster, 4 – pendulum, 5 – bogie frame)

To compensate for centrifugal force acting on a vehicle during run in curve the outer rail is superelevated against the inner one (rail cant). This superelevation is called in case of fully compensated centrifugal force a theoretical superelevation. Acting forces or accelerations acting during a run of vehicle in curve are shown in the following diagram, where g stands for gravitation acceleration, a stands for acceleration by centrifugal force, p is a rail supe-
odstredivou silou, \(p \) prevyšenie koľaje a \(e \) vzdialenosť stúčnych kružíkov dvojkolesia (pre normálny rozchod trate 1435 mm je \(e = 1500 \text{ mm} \)).

 Platia nasledovné vzťahy:

\[
a = \frac{v^2}{R} \quad (\text{m.s}^{-2}; \text{m.s}^{-1}; \text{m}),
\]

pričom:

\[
v = \frac{V}{3.6} \quad (\text{m.s}^{-1}; \text{km.h}^{-1})
\]

Z rovnosti uhlov platí pomera: \(\frac{a}{p} = \frac{e}{g} \)

Odtiaľ pre prevyšenie dostaneme:

\[
p = \frac{e}{g} \cdot a \quad (\text{m; m, m.s}^{-2})
\]

Pre normálny rozchod koľaje 1435 mm, rýchlosť jazdy \(V \) a polomer oblúka \(R \) sa teda teoretické prevyšenie vypočíta podľa:

\[
p_t = \frac{1000 \cdot 1.5(m)}{9.8(m \cdot s^{-2})} \cdot \frac{v^2}{3.6} = 11.8 \cdot \frac{v^2}{R} \quad (\text{mm; km.h}^{-1}; \text{m})
\]

Na železnici sa nepoužíva plne kompenzované teoretické prevyšenie, ale sa pripušťa určitá voľnosť nevyrovnaného ostredívého zrychlenia, čo je reprezentované tzv. nedostatkom prevyšenia \((p_{nd}) \). Základným typom prevyšenia u ŽSR je prevyšenie nižšie - \(p_n \), znižené o 70 mm od teoretického. Ďalšími typmi prevyšenia sú prevyšenie znižene, (znižené o 85 mm) a najmenej, znižené o 100 mm od teoretického.

Pre výpočet prejazdu vozidla s naklápacom skriňou potrebujeme určiť maximálnu dovolenú rýchlosť \((V_{dm}) \). Vzorec pre jej výpočet môžeme odvodiť nasledovne:

1. Vzorec pre výpočet maximálnej dovolenej rýchlosti pri jazde obľúkom o polomeru \(R \), s maximálnym prevyšením \(p_m \) a nedostatkom prevyšenia \(p_{nd} \) je:

\[
V = \sqrt{\frac{R}{11.8}} \cdot (p_m + p_{nd}) \quad (\text{km.h}^{-1}; \text{m, mm})
\]

2. Ďalšie zvýšenie rýchlosti pri nezohorenom pohodlou cestujúceho \((\alpha_m = 0.457 \text{ m.s}^{-2}) \) prínáša naklónenie skrine do obľúka o určitý uhlov \(\alpha \), ktorý reprezentuje dodatočné prevyšenie \(p_d \). Dostávame dovolenú rýchlosť vozidla pri naklonení skrine:

\[
V = \sqrt{\frac{R}{11.8}} \cdot (p_m + p_{nd} + p_d) \quad (\text{km.h}^{-1}; \text{m, mm})
\]

Toto však nie je úplné riešenie, lebo zvýšená rýchlosť jazdy, okrem kompenzácie priecnej sily pôsobiacej na cestujúceho, prínáša aj zvýšenie účinku vozidla na trať.

3. Silové pôsobenie vozidla v obľúku na trať, teda hľadisko bezpečnosti proti vykoladeniu, až vplyv na stabilitu koľaje, sa stava dominantným kriteriom. Zahranie železničné správy vyhádzajú pri zavádzaní vozidiel s naklápacom skriňami do prevýšky z Proud'hommových vzorcov. Vyplýva z nich relevation a \(e \) je a distance of wheel-rail contact points on the wheel set (for standard rail gauge of 1435 mm \(e = 1500 \text{ mm} \)).

Following equations are valid:

\[
a = \frac{v^2}{R} \quad (\text{m.s}^{-2}; \text{m.s}^{-1}; \text{m}),
\]

while:

\[
v = \frac{V}{3.6} \quad (\text{m.s}^{-1}; \text{km.h}^{-1})
\]

And from that after substitution:

\[
p = \frac{e}{g} \cdot a \quad (\text{m; m, m.s}^{-2})
\]

For the standard rail gauge of 1435 mm, train velocity \(V \) and curve radius \(R \) the theoretical supererelevation can be calculated from:

\[
p_t = \frac{1000 \cdot 1.5(m)}{9.8(m \cdot s^{-2})} \cdot \frac{V^2}{3.6} = 11.8 \cdot \frac{V^2}{R} \quad (\text{mm; km.h}^{-1}; \text{m})
\]

Railway does not use fully compensated theoretical supererelevation, but certain unbalanced lateral force is permitted, which is represented by so called lack of supererelevation \((p_{ld}) \). The basic type of supererelevation on ŽSR is lower supererelevation - \(p_s \), lowered by 70 mm from the theoretical one. Other types of supererelevation are lowered supererelevation, (lowered by 85 mm) and the least, lowered by 100 mm from the theoretical one.

For calculation of tilting body vehicle running in curve, we need to determine the maximum permitted velocity \((V_{dm}) \). For its calculation we can be derived as:

1. Formula for calculation of maximum permissible velocity at curve with radius \(R \), maximum supererelevation \(p_m \) and cant deficiency \(p_{nd} \):

\[
V = \sqrt{\frac{R}{11.8}} \cdot (p_m + p_{nd}) \quad (\text{km.h}^{-1}; \text{m, mm})
\]

2. A further increase of speed without reducing passenger ride comfort \((\alpha_m = 0.457 \text{ m.s}^{-2}) \) can be gained by tilting the car body towards the curve by certain angle \(\tau \), which represents additional supererelevation \(p_d \). We get the permissible velocity with use of tilted body:

\[
V = \sqrt{\frac{R}{11.8}} \cdot (p_m + p_{nd} + p_d) \quad (\text{km.h}^{-1}; \text{m, mm})
\]

This is not a complete solution because increasing of velocity, besides balancing the centrifugal force effecting passengers, brings increase of vehicle effects on the track.

3. Vehicle forces acting in a curve on the track, that is safety against derailment and track stability, become a dominant criterion. Foreign railways use the Proud'hom's formula when they prepare operation of tilting body vehicles. These formulae give limit of maximum transversal force between wheel
obmedzenie maximálnej priečnej sily z dvojkolesia na kofaj, ku ktoréj môže dôjsť pri nevyrovnanom zrychlení vozidla $a_{\text{vm}} = 1.65 \pm 1.8 \, \text{m.s}^{-2}$ a len výnimne $a_{\text{vm}} = 2.0 \, \text{m.s}^{-2}$. Maximálna dovolená rýchlosť pri celkovom priečnom zrychlení a_c bude

$$V_{\text{dm}} = 3.6 \cdot \sqrt{a_c \cdot R} \quad (\text{km/h}^{-1}; \text{m.s}^{-2}, \text{m})$$

Najvýraznejšou výhodou vozidla s naklápacími skriňami, oproti obyčajnému koľajovému vozidlú je, že oblúkmi môže prechádzať podstatne vyššou rýchlostou a tým výrazne znížiť jazdnú dobu vlaku. Ak budeme uvažovať oblúky s jednotným prevýšením $p = 150 \, \text{mm}$ a nedostatkom prevýšenia 70 mm, resp. 100 mm, môžeme vytvoriť graf závislosti maximálnej rýchlosti prechodu oblúkom od polomeru oblúka, pre vozidlo s naklápacími skriňami a pre obyčajné vozidlo (obr. 5).

Z grafu vidíme, že vozidlo s naklápacími skriňami môže už pri malých polomerech oblúkov dosahovať výrazne vyššiu rýchlosť, oproti obyčajným vozidlám. Obmedzenie rýchlosti v oblúku je tu dané spomenutými Proud’homovými vzoriečami, z ktorých vyplýva obmedzenie maximálnej priečnej sily pôsobiacej z dvojkolesia na kofaj.

5. Možnosti využitia vozidiel s naklápacími skriňami na ŽSR

Slovenská republika, ako štát stredoeurópskeho regiónu, bude musieť tiež uvažovať o zvyšovaní rýchlosti železničnej dopravy, aby udržala krok s ostatnými krajinami západnej Európy, a to tiež s cieľom využívania rýchlejšej železničnej dopravy

and rail, which results in unbalanced centrifugal acceleration of vehicle $a_{\text{vm}} = 1.65 \pm 1.8 \, \text{m.s}^{-2}$ and only exceptionally $a_{\text{vm}} = 2.0 \, \text{m.s}^{-2}$. The maximum permissible speed at total transversal acceleration a_c will be then:

$$V_{\text{dm}} = 3.6 \cdot \sqrt{a_c \cdot R} \quad (\text{km/h}^{-1}; \text{m.s}^{-2}, \text{m})$$

The most important benefit of a tilting body vehicle compared with a conventional one is that it can negotiate curves at substantially higher speed and by that remarkably reduce travel time of a train. If we consider curves with same rail cant (super-elevation) of $p = 150 \, \text{mm}$ and cant deficiency of 70 mm, respectively 100 mm, we can draw a diagram showing relation between maximum speed in curve and curve radius for a tilting body vehicle and for conventional one (see figure 5).

From the graph one can see that vehicle with tilting body can run at substantially higher velocity in even small curve radii than conventional vehicles. Speed limit in curve is given by already mentioned Proud’hom formulae, from which limit on maximum transversal force acts between wheel and rail.

5. Possibilities in using the tilting body vehicles with ŽSR

Slovak republic as a country of the Central European region will have to consider the increase of the rail traffic speed to keep pace with countries of Western Europe.

Run of the express trains used on ZSR is constrained by maximum track speed, which is very low comparing it with
Jazda expresných vlakov používaných na ŽSR je limitovaná maximálnou traťovou rýchlostou, ktorá je oproti západným krajinám nízka. Pre vnutroštátnu dopravu je pre ŽSR najdôležitejší tráfový úsek Bratislava – Žilina – Košice. Na tomto úseku boli porovnané súčasné a dosiahnutelné tráfové rýchlosti (pozri obr. 6.).

Dosiahnutelné rýchlosti boli stanovené podľa teoreticky možnej maximálnej rýchlosti prejazdu obličkom, ale dĺžky úsekov s obmedzením rýchlosti boli uvažované podľa v súčasnosti existujúcich úsekov, pričom v jednotlivom úseku je rýchlosť stanovená zaokrúhlením najnižšie teoretickej tráfovej rýchlosti v danom úseku trate.

Pre vybrané tráfové úseky na základe zjednodušeného vypočtu dosiahnutelného tráfového doby (použitím spresnejnej statickej metódy vypočtu jazdných dôb, bez zastávok) dostaneme výsledky uvedené v nasledujúcej tabuľke (tab. 1). Vybrané tráfové úseky sú vozidlá s naklápácimi skriňami schopné prekonať oveľa rýchlejšie a tým výrazne zvýšiť dopravu medzi významnými mestami u nás, ako aj spojenia so zahraničím (prepojenie na ČR, Poľsko, Rakúsko, Maďarsko). Vypočítané jazdné doby sú teoreticky dosiahnutelné, neuvažujú s technologickými časmi a ďalšími časmi, ktoré sa vyskytujú v reálnej prevádzke. Skutočný prínos skrátenia jazdného doby býva menší ako teoreticky.

Porovnanie dosiahnutelných jazdných dôb Tab. 1 na vybraných tratiach ŽSR

Traťový úsek	Dosiahnutelná jazd. doba ohýbaného koľajového vozidla	Dosiahnutelná jazd. doba vozidla s nakláp. skriňami
Bratislava – Žilina – Košice	4 h 19 min	3 h 02 min
Košice – Žilina – Čadca štátna hranica	2 h 52 min	2 h 02 min

5.1 Skracovanie jazdných dôb a energetická náročnosť

V dôsledkom je na vybraných tráfových úsekoch uvažované aj so spotreboiu elektrickej energie, nakol’ko týto hrá dôležitú úlohu pri výsnych rýchlostiach. Spotreba energie bude najmä v budúcnosti predstavovať významnú položku prevádzkových nákladov a preto je nezbytné zvierať sa s nakládaním s konštrukčnými potenciálmi, ktoré sa vyskytujú v rôznych prevádzkách. Skutočné využitie elektrickej energie býva menší ako teoreticky.

Pre presnejšie vypočet jazdných dôb a spotreby energie bol použitý počítačový program Dynamika. Porovnané boli hmotnosťou, šírky a konštrukcie vozidiel, pričom v rôznych úsekoch s porovnáním rýchlosti bolo možné považovať za reálnu hodnotu.

Spotreba energie pre ETR 470 bola počítaná s tržníctvom práce s uvažovaním 90 % účinnosťou premeny prívádzanej energie, čo je v súčasnosti možné. Výsledky využívajú rôzne úseky, pričom v jednotlivých úsekoch je rýchlosť stanovená s rôznymi úžitками. Výsledky v tabuľke (tab. 1) sú porovnané súčasné a dosiahnutelné rýchlosti v danom úseku trate.

Line	Accessible travel time of conventional railway vehicle	Accessible travel time of tilting body vehicle
Bratislava – Žilina – Košice	4 h 19 min	3 h 02 min
Košice – Žilina – Čadca border crossing	2 h 52 min	2 h 02 min

5.1 Reduction of travel times and energy demands

In the following we consider also trains' energy consumption on the selected lines as this plays an important role when running at high speed. Energy consumption will, especially in future, represent a major part of operational costs, and that's why it cannot be omitted in primary analysis of planned increasing speed.

For more precise calculation of travel times and energy consumption computer program Dynamika has been used. We have compared trains of roughly same weights:

- conventional – electric locomotive series 163 plus passenger coaches of total weight 400 t, all together 484 t.
- tilting body train – unit series ETR 470, total weight of 490 t, permanent power 5880 kW, maximum tractive effort 258 kN

Energy consumption for ETR 470 was calculated from traction work considering 90 % efficiency of input energy conversion, which is a realistic value in case of modern vehicles. More detailed data for energy consumption was not available as the manu-
nakoľko si výrobcovia strážia bližšie technické údaje. Napriek tomu je výpočet dostatočne vypovedajúci a odráža skutočnosť.

Aj keď výkon rušňa radu 163 je výrazne nižší, pre maximálnu rýchlosť 120 km/h v súčasnosti dosahovanú na uvedených tratíach, je tento rušň výpočta vedľa všetkého postačujúci. Vypočítané jazdné doby pri použití klasického lokomotívného vlaku a vlaku typu Pendolino radu ETR 470 na tratíach so súčasnými rýchlostnými obmedzeniami sa nelišili o viac ako 1 % v prospech Pendolino, čo je nevýznamný rozdiel.

Prírodné výsledky zo zvyszenia rýchlosti pri prejazde oblúk bol po pôvodnom výpočte o niekoľko menší. Navše, pri výpočtoch bolo uvažované jednak s rýchlostnými obmedzeniami v rovnakých úsekoch ako sú v súčasnosti, ale aj s teoretickými limitmi pre každý oblúk, pričom samozrejme nemohlo dôjsť k prekročeniu maximálnej konštrukčnej rýchlosti ETR 470, teda 260 km/h. Vypočítané jazdné doby je v tabuľke 2.

V prípade teoretických rýchlostných limitov pre každý oblúk sa však zreteľne prejavila zvýšená energetická náročnosť, nakoľko dochádzalo k častejším zmenám rýchlosti (zrýchľovanie v miestach s vyššou prípustnou rýchlosťou). Porovnanie pre úsek Košice - Žilina je v grafoch na obr. 7 a obr. 8, kde v prípade teoreticky dosiahnutých maximálnych rýchlostí v oblúkoch by sa dosiahla jazdná doba 101,8 min a spotreba energie by činila 3172 kWh, ale pri jazde s obmedzeniami maximálnej rýchlosti v úsekoch ako pri súčasnom stave by súčasná doba bola 110,3 min, ale spotreba energie len 2188 kWh, čo je zhruba dve tretiny pri predĺžení času o cca 8 %.

Tento výsledok zároveň vypovedá o potrebe optimalizovať dĺžku úsekov, resp. maximálnu stavanú rýchlosť, z hľadiska čo najmenej spotreby energie, samozrejme pri zachovaní najkratšej jazdnej doby. Už pri zbetónnom pohľade na rýchlostné obmedzenia aj pri úseky v dĺžke podľa súčasného stavu je zrejmé, že niektoré sú príliš krátke, aby v nich dochádzalo ku krátkodobému zvyšovaniu rýchlostí s jej následným znížovaním. Takáto analýza si však vyžaduje detailné skúmanie tratových pomerov, reálnych možností úprav oblúkov v miestach, kde sú najkritickejšie miesta, a pod.

Porovnanie jazdných dôb a spotreby energie na vybraných tratíach ŽSR

Track sections	Existing sections for tilting body vehicles	Theoretical sections for tilting body vehicles					
	min	kWh	Min	kWh			
Bratislava - Žilina	163 + 400 t express	120.2	2206	–	–		
Žilina - Košice	ETR 470	120.1	1275	83.54	1782	79.5	2278
Žilina - Čadca border crossing	163 + 400 t express	154.1	2374	–	–		
ETR 470	153.6	1626	110.7	1879	102.3	2776	

Porovnanie jazdných dôb a spotreby energie na vybraných tratíach ŽSR Tab. 2

Comparison of travel times and energy consumption on chosen ŽSR lines Tab. 2

However, in the case of theoretical speed limits for each curve, increased energy consumption has remarkably gone up, as there were frequent changes in velocity (acceleration in sections with higher permissible speed). Comparison for Košice - Žilina line is in diagrams on figure 7 and 8, where in the case of theoretically permissible velocities in curves the travel time would be 101.8 min and energy consumption would be 3,172 kWh, but in the case of run with maximum speed limits in sections as they exist at present, the travel time would be 110.3 min. However, energy consumption is only 2188 kWh, which is approximately two-thirds while travel time would grow by about 8 %.

This result also shows the necessity to optimise length of the sections or the maximum speed on sections, from the minimum energy consumption point of view, certainly with respect to keep the shortest travel time. When looking at the speed limits for sections with lengths according to the existing state it is clear that some of them are too short for short-time speed increase with consequent deceleration. Such analysis requires more detailed study of track, i.e. real possibilities of curve modifications in sections with the most critical situation, etc.
6. Záver

Cieľom štúdie bolo poukázať na možnosti zvýšenia rýchlosti v existujúcich traťových pomernoch bez výstavby, resp. väčšej rekonštrukcie existujúcich trati. Zároveň poukázať na energetickú náročnosť.

6. Conclusion

Aim of the study was to present possibilities for increasing the travel speed in the current situation without construction, or without major reconstruction of existing lines. At the same time,
nosť vozí by vyššími rýchlosťami, ktorá tvori výraznú položku prevádzkových nákladov. Výsledky potvrdzujú možnosť výrazného skrátenia jazdných dôb, zároveň poukazujú na nutnosť venovať pozornosť voľbe úsekov s rýchlostnými obmedzeniami z hľadiska energetiky verzus jazdné doby.

to show the energy consumption of trains running at a higher speed, which compose a significant part of the operational costs. The results prove that there is a potential for remarkable shortening of travel times, while at the same time it is necessary to pay attention to selection of track sections with speed limits from the energy consumption versus a travel times point of view.

7. Literatúra – References

[1] KLINKO, M.: Možnosti použitia vozidiel s naklápacími skriňami na ŽSR. Diplomová práca, SjF, ŽU Žilina, 1997
[2] GRENCÍK, J., KLINKO, M.: „Výhody použitia železničných kolajových vozidiel s naklápacími skriňami na ŽSR.“, s.27-29, Horizonty dopravy 1/99
[3] KRATZ, G.: Vysokorýchlostné vlaky budúcnosti. 3. Svetový kongres vysokých rýchlostí EURAILSPEED 98, Berlin 1998
[4] ŠIMAN, P., PETRAŠ, J.: Program „SP Dynamika“ pre výpočet jazdných dôb a spotreby energie, 1998