Lis, Marcin
Phase transition free regions in the Ising model via the Kac-Ward operator.
(English)
Commun. Math. Phys. 331, No. 3, 1071-1086 (2014).

Summary: We provide an upper bound on the spectral radius of the Kac-Ward transition matrix for a general planar graph. Combined with the Kac-Ward formula for the partition function of the planar Ising model, this allows us to identify regions in the complex plane where the free energy density limits are analytic functions of the inverse temperature. The bound turns out to be optimal in the case of isoradial graphs, i.e., it yields criticality of the self-dual Z-invariant coupling constants.

MSC:
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B27 Critical phenomena in equilibrium statistical mechanics

Keywords:
Kac-Ward transition matrix; Kac-Ward formula; Ising model

Full Text: DOI arXiv

References:

[1] Aizenman, M.; Barsky, D.J.; Fernández, R., The phase transition in a general class of Ising-type models is sharp, J. Stat. Phys., 47, 343-374, (1987) · doi:10.1007/BF01007515
[2] Baxter, R.J., Free-fermion, checkerboard and Z-invariant lattice models in statistical mechanics, Proc. Roy. Soc. Lond. Ser. A, 404, 1-33, (1986) · doi:10.1098/rspa.1986.0016
[3] Baxter R.J.: Exactly solved models in statistical mechanics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London (1982) · Zbl 0538.60093
[4] Boutillier, C.; Tilière, B., The critical Z-invariant Ising model via dimers: the periodic case, Probab. Theory Relat. Fields, 147, 379-413, (2010) · Zbl 1195.82011 · doi:10.1007/s00440-009-0210-1
[5] Boutillier, C.; Tilière, B., The critical Z-invariant Ising model via dimers: locality property, Comm. Math. Phys., 301, 473-516, (2011) · Zbl 1245.05027 · doi:10.1007/s00220-010-1151-3
[6] Burgeoyne, P.N., Remarks on the combinatorial approach to the Ising problem, J. Math. Phys., 4, 1320-1326, (1963) · Zbl 0151.46602 · doi:10.1063/1.1703907
[7] Chelkak, D.; Smirnov, S., Universality in the 2D Ising model and conformal invariance of fermionic observables, Invent. Math., 189, 515-580, (2012) · Zbl 1257.82020 · doi:10.1007/s00222-011-0371-2
[8] Cimasoni, D.: A generalized Kac-Ward formula. J. Stat. Mech. Theory E. (2010JUL), P07023 · Zbl 0027.28505
[9] Cimasoni, D.; Duminil-Copin, H., The critical temperature for the Ising model on planar doubly periodic graphs, Electron. J. Probab., 18, 1-18, (2013) · Zbl 1281.82004
[10] Dobrushin, R.L.; Einay, A.; trimmed, A.S.; Shlosman, S.; Shlosman, S., The two-dimensional Ising model and the Kac-Ward determinant, Izv. Ross. Akad. Nauk Ser. Mat., 63, 79-100, (1999) · Zbl 0990.82003 · doi:10.4213/im251
[11] Duffin, R.J., Potential theory on a rhombic lattice, J. Comb. Theory, 5, 258-272, (1968) · Zbl 0217.31003 · doi:10.1016/0021-9800(68)90072-9
[12] Fisher, M.E., Critical temperatures of anisotropic Ising lattices. II. general upper bounds, Phys. Rev., 162, 480-485, (1967) · doi:10.1103/PhysRev.162.480
[13] Ising, E., Beitrag zur theorie des ferromagnetismus, Z. Physik, 31, 253-258, (1925) · doi:10.1007/BF02980577
[14] Kac, M.; Ward, J.C., A combinatorial solution of the two-dimensional Ising model, Phys. Rev., 88, 1332-1337, (1952) · Zbl 0048.45904 · doi:10.1103/PhysRev.88.1332
[15] Kager, W.; Lis, M.; Meester, R., The signed loop approach to the Ising model: foundations and critical point, J. Stat. Phys., 152, 353-387, (2013) · Zbl 1276.82009 · doi:10.1007/s10955-013-0767-z
[16] Kramers, H.A.; Wannier, G.H., Statistics of the two-dimensional ferromagnet, I. Phys. Rev. (2), 60, 252-262, (1941) · Zbl 0027.28505 · doi:10.1103/PhysRev.60.252
[17] Lenz, W., Beitrag zum verständnis der magnetischen eigenschaften in festen Körperrn, Phys. Zeitschr., 21, 613-615, (1920)
[18] Lis, M.: The Fermionic Observable in the Ising Model and the Inverse Kac-Ward Operator, Annales Henri Poincaré. Available at doi:10.1007/s00023-013-0295-z (2013) · Zbl 1195.82011

[19] Mercat, C., Discrete Riemann surfaces and the Ising model, Comm. Math. Phys., 218, 177-216, (2001) · Zbl 1043.82005 · doi:10.1007/s002200000348

[20] Onsager, L., Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev. (2), 65, 117-149, (1944) · Zbl 0066.46001 · doi:10.1103/PhysRev.65.117

[21] Peierls, R., On ising’s model of ferromagnetism, Proc. Cambridge Phil. Soc., 32, 477-481, (1936) · Zbl 0014.33601 · doi:10.1017/S0305004100019174

[22] Schiff J.L.: Normal families. Springer, New York (1993) · Zbl 0770.30002 · doi:10.1007/978-1-4612-0907-2

[23] Sherman, S., Combinatorial aspects of the Ising model for ferromagnetism. I. A conjecture of Feynman on paths and graphs, J. Math. Phys., 1, 202-217, (1960) · Zbl 0123.45501 · doi:10.1063/1.1703653

[24] Smirnov, S., Conformal invariance in random cluster models. I. holomorphic fermions in the Ising model, Ann. Math. (2), 172, 1435-1467, (1960) · Zbl 1200.82011

[25] Vdovichenko, N.V., A calculation of the partition function for a plane dipole lattice, Soviet Phys. JETP, 20, 477-488, (1965)

[26] Vdovichenko, N.V., Spontaneous magnetization of a plane dipole lattice, Soviet Phys. JETP, 21, 350-352, (1965)

[27] Yang, C.N., The spontaneous magnetization of a two-dimensional Ising model, Phys. Rev. (2), 85, 808-816, (1952) · Zbl 0046.45304 · doi:10.1103/PhysRev.85.808

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.