The adiabatic instability on cosmology’s dark side

Rachel Bean\(^1\), Éanna É Flanagan\(^2\) and Mark Trodden\(^3\)

\(^1\) Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
\(^2\) Laboratory for Elementary Particle Physics, Cornell University, Ithaca, NY 14853, USA
\(^3\) Department of Physics, Syracuse University, Syracuse, NY 13244, USA

E-mail: trodden@physics.syr.edu

New Journal of Physics \textbf{10} (2008) 033006 (8pp)
Received 20 November 2007
Published 4 March 2008
Online at http://www.njp.org/
doi:10.1088/1367-2630/10/3/033006

Abstract. We consider theories with a nontrivial coupling between the matter and dark energy sectors. We describe a small scale instability that can occur in such models when the coupling is strong compared to gravity, generalizing and correcting earlier treatments. The instability is characterized by a negative sound speed squared of an effective coupled dark matter/dark energy fluid. Our results are general, and applicable to a wide class of coupled models and provide a powerful, redshift-dependent tool, complementary to other constraints, with which to rule many of them out. A detailed analysis and applications to a range of models are presented in a longer companion paper.

Contents

1. Class of models 2
2. Adiabatic regime 2
3. Adiabatic instability 4
4. Examples of models 5
Acknowledgments 7
References 7
In order for our cosmological models to provide an accurate fit to current observational data, it is necessary to postulate two dramatic augmentations of the assumption of baryonic matter interacting gravitationally through Einstein’s equations—dark matter and dark energy. A logical possibility is that these dark sectors interact with each other or with the normal matter [1]–[3]. A number of models have been proposed that exploit this possibility to address, for example, the coincidence problem.

Such models face a range of existing constraints arising from both particle physics and gravity. In this paper, we consider perturbations around the cosmological solution and demonstrate the existence of a dynamical instability which we term the adiabatic instability. This instability is characterized by a negative sound speed squared of the effective coupled fluid [4, 5] and was first discovered [6] in a context slightly different to that considered here—the mass varying neutrino model of dark energy. Our aim here is to give a general treatment of the instability, applicable to a wide class of models, to identify the regimes in which the instability occurs, and to delineate the resulting redshift-dependent constraints.

1. Class of models

We begin from the following action

\[
S[g_{\mu \nu}, \phi, \Psi_j] = \int d^4 x \sqrt{-g} \left[\frac{1}{2} m_p^2 R - \frac{1}{2} (\nabla \phi)^2 - V(\phi) \right] + \Sigma_j S_j [e^{2\alpha_j(\phi)} g_{\mu \nu}, \Psi_j],
\]

(1)

where \(g_{\mu \nu} \) is the Einstein frame metric, \(\phi \) is a scalar field which acts as dark energy and \(\Psi_j \) are the matter fields. Here, we have adopted a signature \((-+, +, +, +)\) and defined the reduced Planck mass by \(m_p^2 \equiv (8\pi G)^{-1} \). The functions \(\alpha_j(\phi) \) are couplings to the \(j \)th matter sector. This general action encapsulates many models studied in the literature [7]. The field equations are:

\[
m_p^2 G_{\mu \nu} = \nabla_\mu \nabla_\nu \phi - \frac{1}{2} g_{\mu \nu}(\nabla \phi)^2 - V(\phi) g_{\mu \nu} + \sum_j e^{4\alpha_j(\phi)} \left[(\bar{\rho}_j + \bar{p}_j) u_{j,\mu} u_{j,\nu} + \bar{p}_j g_{\mu \nu} \right],
\]

(2)

\[
\nabla_\mu \nabla^\mu \phi - V'(\phi) = \sum_j \alpha'_j(\phi) e^{4\alpha_j(\phi)} (\bar{\rho}_j - 3 \bar{p}_j),
\]

(3)

where we have treated the matter field(s) in the \(j \)th sector as a fluid with density \(\bar{\rho}_j \) and pressure \(\bar{p}_j \) as measured in the frame \(e^{2\alpha_j} g_{\mu \nu} \), and with 4-velocity \(u_{j,\mu} \) normalized according to \(g^{\mu \nu} u_{j,\mu} u_{j,\nu} = -1 \).

We consider models with a baryonic sector \((\alpha_b(\phi)) \) and a composite dark matter sector, with one coupled species with density \(\rho_c \) and coupling \(\alpha_c(\phi) = \alpha(\phi) \), and another uncoupled species with density \(\rho_{co} \) and coupling \(\alpha_{co} = 0 \). Neglecting the gravitational effect of the baryons, using \(\bar{\rho}_c = \bar{\rho}_{co} = 0 \), and defining \(\rho_j = e^{2\alpha_j} \bar{\rho}_j \) gives

\[
m_p^2 G_{\mu \nu} = \nabla_\mu \phi \nabla_\nu \phi - \frac{1}{2} g_{\mu \nu}(\nabla \phi)^2 - V(\phi) g_{\mu \nu} + e^{\alpha(\phi)} \rho_c u_{c,\mu} u_{c,\nu} + \rho_{co} u_{co,\mu} u_{co,\nu},
\]

(4)

and \(\nabla_\mu \nabla^\mu \phi - V'_{\text{eff}}(\phi) = 0 \), where we have defined an effective potential by \(V_{\text{eff}}(\phi) = V(\phi) + e^{\alpha(\phi)} \rho_c \). The fluid obeys \(\nabla_\mu (\rho_c u^\mu_{c}) = 0 \), and \(u^\nu_{c} \nabla_\nu u^\mu_{c} = - (g_{\mu \nu} + u^\mu_{c} u^\nu_{c}) \nabla_\nu \alpha \).

2. Adiabatic regime

The effective potential \(V_{\text{eff}}(\phi) \) may have a minimum resulting from the competition between the two distinct terms. If the timescale or lengthscale for \(\phi \) to adjust to the changing position of
the minimum of V_{eff} is shorter than that over which the background density changes, the field ϕ will adiabatically track this minimum [2]. In this case, the cold dark matter (CDM) component together with ϕ together act as a single fluid with an effective energy density ρ_{eff} and effective pressure p_{eff}:

$$
\rho_{\text{eff}}(\rho_c) = \rho + V[\phi_m(\rho_c)],
$$

$$
p_{\text{eff}} = -V[\phi_m(\rho_c)].
$$

Here, $\phi_m(\rho_c)$ is the solution of the algebraic equation

$$
V_{\text{eff}}' = V(\phi_m) + \alpha'(\phi)\rho_c e^{\alpha(\phi)} = 0
$$

for ϕ. Eliminating ρ_c between equations (5) and (6) gives the equation of state $p_{\text{eff}} = p_{\text{eff}}(\rho_{\text{eff}})$.

For cosmological background solutions, we assume that the coupled fluid acts as the source of the cosmic acceleration. In the adiabatic approximation, the effective fluid description is valid for the background cosmology and for linear and nonlinear perturbations. Therefore, the equation of state of perturbations is the same as that of the background cosmology, and the matter and scalar field evolve as one effective fluid, obeying the usual fluid equations of motion with the given effective equation of state.

A necessary condition for the validity of the adiabatic approximation is that the lengthscales or timescales \mathcal{L} over which the density ρ_c varies are large compared to the inverse of the effective mass

$$
m_{\text{eff}}(\rho_c)^2 = \left. \frac{\partial^2 V_{\text{eff}}}{\partial \phi^2} \right|_{\phi=\phi_m(\rho_c)}
$$

of the scalar field. More precisely, we can show that the condition is [8]

$$
\frac{d \ln V[\phi_m(\rho_c)]}{d \ln \rho_c} \left(\frac{1}{m_{\text{eff}}^2 \mathcal{L}^2} \right) \ll 1;
$$

this condition is necessary to justify dropping the terms involving the gradient of ϕ from the fluid and Einstein equations. In most situations the logarithmic derivative factor is of the order of unity and can be neglected. In [8], we also derive a non-local sufficient condition for the validity of the approximation, which generalizes conditions in the literature for the chameleon (thin-shell condition) [9, 10] and $f(R)$ modified gravity [12] models. Condition (9) is not very stringent; many dark energy models admit regimes where it is satisfied for the background and for linearized perturbations over a range of scales.

In the adiabatic regime, the inferred dark energy equation of state parameter in the case $\alpha_b = 0$ is

$$
w = \frac{-1}{1 - (1 - e^{(\alpha_0 - \alpha)})d \ln V/d\alpha},
$$

with $\alpha_0 \equiv \alpha(\phi_0)$ the value today. Thus, w is precisely -1 today, and generically satisfies $w < -1$ in the past [2, 8].
3. Adiabatic instability

We write the potential $V(\phi)$ as a function $V(\alpha)$ of the coupling function $\alpha(\phi)$ by eliminating ϕ. This gives, from equations (5) and (7),

$$\rho_{\text{eff}} = V + e^\alpha \rho_c = V - \frac{dV/d\phi}{d\alpha/d\phi} = V - \frac{dV}{d\alpha}. \quad (11)$$

The square of the adiabatic sound speed, $c_a^2 = \frac{\dot{P}}{\dot{\rho}}$ is then given by

$$\frac{1}{c_a^2} = \frac{d\rho_{\text{eff}}}{dp_{\text{eff}}} = \frac{d\rho_{\text{eff}}/d\alpha}{dp_{\text{eff}}/d\alpha} = -1 + \frac{d^2V/d\alpha^2}{dV/d\alpha}. \quad (12)$$

In the adiabatic regime the effective sound speed, relating to local perturbations in pressure and density, $c_a^2(k, a) \equiv \delta P(k, a)/\delta \rho(k, a)$, tends towards the adiabatic sound speed and is always negative, since $dV/d\alpha$ must be negative so that equation (7) admits a solution, and $d^2V/d\alpha^2$ must be positive so that (8) yields a positive m_{eff}^2. From here on, we consider the regime in which this adiabatic limit has been reached and take $c_a^2 = c_s^2$.

Consider now, a perturbation with lengthscale \mathcal{L}. In order to be in the adiabatic regime we require $\mathcal{L} \gg m_{\text{eff}}^{-1}$. The negative sound speed squared will cause an exponential growth of the mode, as long as the growth timescale $\sim \mathcal{L}/\sqrt{|c_s^2|}$ is short compared to the local gravitational timescale $m_p/\sqrt{\rho_{\text{eff}}(\rho_c)}$. Combining equations (5), (7) and (8) yields $c_a^2 m_{\text{eff}}^2 = (\alpha')^2 V_\alpha = (\alpha')^2 \rho_{\text{eff}}/(V/V_\alpha - 1)$, and therefore the instability will operate in the range of lengthscales given by

$$\frac{1}{m_{\text{eff}}(\rho_c)} \ll \mathcal{L} \ll \frac{m_p |\alpha'[\phi_n(\rho_c)]|}{m_{\text{eff}}(\rho_c)} \sqrt{\frac{1}{1 - (1/d \ln V/(d\alpha))}}. \quad (13)$$

Here, the quantity $d \ln V/d\alpha(\alpha)$ on the right hand side is expressed as a function of ϕ using $\alpha = \alpha(\phi)$, and then as a function of the density using $\phi = \phi_n(\rho_c)$. In order for this range of scales to be non-empty, the dimensionless coupling $m_p |\alpha'|$ must be large compared to unity, i.e. the scalar mediated interaction between the dark matter particles must be strong compared to gravity (see also [13, 14, 15]).

There are two different ways of describing and understanding the instability, depending on whether one thinks of the scalar-field mediated forces as ‘gravitational’ or ‘pressure’ forces. In the Einstein frame, the instability is independent of gravity, since it is present even when the metric perturbation due to the fluid can be neglected. In the adiabatic regime the acceleration due the scalar field is a gradient of a local function of the density, which can be thought of as a pressure. The net effect of the scalar interaction is to give a contribution to the specific enthalpy $h(\rho_c) = \int dp/\rho_c$ of any fluid which is independent of the composition of the fluid. If the net sound speed squared of the fluid is negative, then there exists an instability in accord with our usual hydrodynamic intuition.

In the Jordan frame description, however, the instability involves gravity. The effective Newton’s constant describing the interaction of dark matter with itself is

$$G_{cc} = G \left[1 + \frac{2 m_p^2 \alpha'(\phi)^2}{1 + (m_{\text{eff}}^2/K^2)} \right], \quad (14)$$
where k is a spatial wavevector [8]. At long lengthscales the scalar interaction is suppressed and $G_{cc} \approx G$. At short lengthscales, the scalar field is effectively massless and G_{cc} asymptotes to a constant. However, when $m_p |\alpha'| \gg 1$ there is an intermediate range

$$m_{\text{eff}} (m_p |\alpha'|)^{-1} \ll k \ll m_{\text{eff}}$$

over which the effective Newton’s constant increases like $G_{cc} \propto k^2$. This interaction behaves just like a (negative) pressure in the hydrodynamic equations. This explains why the effect of the scalar interaction can be thought of as either pressure or gravity in the range of scales (15). Note that the range of scales (15) coincides with the range (13) derived above, up to a logarithmic correction factor.

From this second, Jordan-frame point of view, the instability is simply a Jeans instability. In a cosmological background, the CDM fractional density perturbation traditionally exhibits power-law growth on subhorizon scales because Hubble damping competes with the exponential (Jeans) instability one might expect on a timescale of $1/\sqrt{G \rho}$. In our case, however, the gravitational self-interaction of the mode is governed by $G_{cc}(k)$ instead of G, and consequently in the range (15) where $G_{cc} \gg G$ the timescale for the Jeans instability is much shorter than the Hubble damping time. Therefore, the Hubble damping is ineffective and the Jeans instability causes approximate exponential growth.

4. Examples of models

For single component dark matter models, one can find coupled models in the adiabatic regime [2, 12]. However, in the strong coupling limit $m_p |\alpha'| \gg 1$ of interest here, they typically do not yield acceptable background cosmologies. Therefore, we focus on composite dark matter models.

As a first example, we consider a constant coupling function and an exponential potential

$$\alpha(\phi) = -\beta C \frac{\phi}{m_p}, \quad V = V_0 e^{-\lambda \phi/m_p},$$

where $\beta \equiv \sqrt{2}/3$ and, $C < 0$ and λ are constants. The Friedmann equation in the adiabatic limit is then $3m_p^2 H^2 = V + e^\alpha \rho_{\text{co}} + \rho_c$, in which the first two terms on the right hand side act like a fluid that, for $|C| \gg 1$, approaches a cosmological constant. Thus, the background cosmology is close to ΛCDM for large enough $|C|$. Since the fraction of coupled dark matter is $\Omega_{\text{co}} = e^\alpha \rho_{\text{co}}/(3m_p^2 H^2)$, in the asymptotic adiabatic regime, $\Omega_{\text{co}} = \lambda (1 - \Omega_c)/(\lambda - \beta C)$, and $\Omega_c \approx 0.3$ today, Ω_{co} must be small for large coupling, $|C| \gg 1$. If the parameters of the model are chosen so that $\Omega_c \approx 1$ today, then the maximum and minimum lengthscales for the instability are $L_{\text{max}} \sim H_0^{-1}$ and $L_{\text{min}} \sim (H_0 |\beta C|)^{-1}$. Taking the Jeans view, it is then possible to show [8] that the instability should operate whenever modes are inside the horizon and in this range.

These expectations are confirmed (figure 1) by a numerical analysis of a two component coupled model. We use $\lambda = 2, C = -20, H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}$, baryon fractional energy density, $\Omega_b = 0.05$, uncoupled CDM component, $\Omega_c = 0.2$, coupled component, $\Omega_{\text{co}} = 0.05$, and potential fractional energy density, $\Omega_V = 0.7$. We fix initial conditions of $\phi/m_p = 10^{-10}$ and $\dot{\phi} = 0$ at $a = 10^{-10}$ (initial conditions at least within $\phi/m_p = 10^{-30} - 1$ give the same evolution because of a scalar dynamical attractor), and assume that the CDM components have the same initial fractional density perturbations $\delta = \delta_{\text{co}}$, fixed by the usual adiabatic initial conditions. As shown in the bottom panel of figure 1, the background evolution is consistent with a
Figure 1. Bottom panel: the two component coupled dark energy (CDE) model, with \(\lambda = 2 \) and coupling \(C = -20 \) with \(H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}, \Omega_b = 0.05, \Omega_c = 0.2, \Omega_{co} = 0.05, \) and \(\Omega_{\Lambda} = 0.70 \). At late times the scalar field finds the adiabatic minimum with asymptotic equation of state, and sound speed \(c_s^2 = \frac{\dot{P}_{\text{tot}}}{\dot{\rho}_{\text{tot}}} \) (blue long dashed line) and effective speed of sound \(c_s^2 = \frac{\delta P_{\text{tot}}}{\delta \rho_{\text{tot}}} \) at \(k = 0.01 \text{ Mpc}^{-1} \) (red dot-dashed line). The effective equation of state for a comparable \(\Lambda \text{CDM} \) model with \(\Omega_c = 0.25, \Omega_b = 0.05 \) and \(\Omega_{\Lambda} = 0.7 \) is also shown (black dashed line). Top panel: the growth of the fractional over-density \(\delta = \delta \rho/\rho \) for \(k = 0.01 \text{ Mpc}^{-1} \) for the coupled CDM component, \(\delta_{\text{co}} \), (red long dashed line) and uncoupled component, \(\delta_{\text{c}} \), (black full line) in comparison to the growth for the \(\Lambda \text{CDM} \) model (black dashed line). At late times the adiabatic behavior triggers a dramatic increase in the rate of growth of both uncoupled and coupled components, leading to structure predictions inconsistent with observations.

\(\Lambda \text{CDM} \) like scenario, with \(w_{\text{eff}} = -0.69 \) today, approaching \(w_{\text{eff}} \sim -0.89 \) asymptotically. In the top panel, we see that once the scalar field has entered the adiabatic regime, giving rise to accelerative expansion, the density perturbations undergo significantly increased growth, in stark contrast to the \(\Lambda \text{CDM} \) scenario in which accelerative expansion is typically associated with late-time suppression of growth.

In summary, these models provide a class of theories for which the background cosmology is compatible with observations, but which are ruled out by the adiabatic instability of the perturbations.
Another interesting class is the chameleon models \cite{Carroll98, Uzan99} for which the adiabatic regime has been previously demonstrated in static solutions for macroscopic bodies like the Earth, and also in cosmological models \cite{Amendola00}. One well-studied example of these has inverse power law potentials, together with the constant coupling function in (16), for which the effective potential is then

\[
V_{\text{eff}}(\phi, \rho_c) = \lambda M^4 \left(\frac{M}{\phi} \right)^n + e^{-\beta C \phi/m_p} \rho_c,
\]

where \(M \) is a mass scale and, \(n > 0 \) and \(\lambda \) are constants. The existence of a local minimum, and hence an adiabatic regime, in (17) requires \(C < 0 \). We shall restrict attention to the regime \(\rho_c \gg \rho_{\text{crit}} \equiv n \lambda M^4 (-\beta C M / m_p)^n \). The sound speed squared is

\[
\frac{1}{c_s^2} = -1 + \frac{n+1}{\beta C} \frac{m_p}{\phi},
\]

which is always negative as expected.

The range of spatial scales \(\mathcal{L} \) over which the instability operates for a given density \(\rho_c \gg \rho_{\text{crit}} \) is non-empty for \(|\beta| |C| \gg 1 \), and is given by

\[
1 \ll \frac{(n+1)(\beta C)^2 \rho_{\text{crit}}}{m_p^2} \left(\frac{\rho_c}{\rho_{\text{crit}}} \right)^{(n+2)/(n+1)} \mathcal{L}^2 \ll \beta^2 C^2.
\]

If \(\phi \) behaves as dark energy, we require \(\rho_{\text{crit}} \sim H_0^2 m_p^2 \). Then for \(\rho_c \sim \rho_{\text{crit}} \), the maximum lengthscale is of order \(H_0^{-1} \), and the minimum is \(\sim (H_0 \beta |C|)^{-1} \). Thus, a large set of cosmological models are in the unstable regime at \(\rho_c \sim \rho_{\text{crit}} \) (if \(|\beta| |C| \gg 1 \)), ruling them out in this regime.

In this paper, we have demonstrated the existence and broad applicability of the adiabatic instability—operating in models in which there exists a nontrivial coupling between dark matter and dark energy. We have presented general expressions for the conditions under which the adiabatic instability is relevant, and, when so, the lengthscales over which it operates. This work provides a new way to constrain interactions in the dark sector, and heavily restricts the class of models consistent with cosmic acceleration.

In a companion paper \cite{Inyo}, we derive in detail the results presented in this letter, and apply the results to a wide class of coupled models including couplings to both CDM and neutrinos.

Acknowledgments

We thank Ole Bjaelde, Anthony Brookfield, Steen Hannestad, Carsten Van der Bruck, Ira Wasserman and Christoph Wetterich for useful discussions. RB’s work is supported by National Science Foundation grants AST-0607018 and PHY-0555216, EF’s by NSF grants PHY-0457200 and PHY-0555216, and MT’s by NSF grant PHY-0354990 and by Research Corporation.

References

\cite{Damour90, Carroll98, Uzan99, Amendola00, Bean01}

\textit{New Journal of Physics} \textbf{10} (2008) 033006 (\texttt{http://www.njp.org/})
Bean R 2001 *Phys. Rev.* D *64* 123516
Majerotto E, Sapone D and Amendola L 2004 *Preprint* astro-ph/0410543
Fardon R, Nelson A E and Weiner N 2004 *J. Cosmol. Astropart. Phys.* JCAP10(2004)005
Fardon R, Nelson A E and Weiner N 2006 *J. High Energy Phys.* JHEP03(2006)042
Lee S, Liu G-C and Ng K-W 2006 *Phys. Rev.* D *73* 083516
Tsujikawa S 2007 *Phys. Rev.* D *76* 023514 (*Preprint* 0705.1032)
Agarwal N and Bean R 2007 *Preprint* 0708.3967

[2] Das S, Corasaniti P S and Khoury J 2006 *Phys. Rev.* D *73* 083509 (*Preprint* astro-ph/0510628)
[3] Kesden M and Kamionkowski M 2006 *Preprint* astro-ph/0608095
[4] Kaplinghat M and Rajaraman A 2006 *Preprint* astro-ph/0601517
[5] Bjaelde O E, Brookfield A W, van de Bruck C, Hannestad S, Mota D F, Schrempp I and Tocchini-Valentini D 2007 *Preprint* 0705.2018
[6] Afshordi N, Zaldarriaga M and Kohri K 2005 *Phys. Rev.* D *72* 065024
[7] Capozziello S, Carlton S and Troisi A 2003 *Preprint* astro-ph/0303041
 Carroll S M, Duvvuri V, Trodden M and Turner M S 2004 *Phys. Rev.* D *70* 043528
 Chiba T 2003 *Phys. Lett.* B *575* 1
 Carroll S M, Sawicki I, Silvestri A and Trodden M 2006 *New J. Phys.* *8* 323
 Amendola L, Polarski D and Tsujikawa S 2007 *Phys. Rev. Lett.* *98* 131302
 Agarwal N and Bean R 2007 *Preprint* 0708.3967
[8] Bean R, Flanagan E E and Trodden M 2007 *Preprint* 0709.1128
[9] Khoury J and Weltman A 2004 *Phys. Rev. Lett.* *93* 171190
[10] Khoury J and Weltman A 2004 *Phys. Rev.* D *69* 044026
[11] Brax P, van de Bruck C, Davis A C, Khoury J and Weltman A 2004 *Preprint* astro-ph/0408415
[12] Sawicki I and Hu W 2007 *Preprint* astro-ph/0702278
[13] Mota D F and Shaw D J 2006 *Phys. Rev. Lett.* *97* 151102 (*Preprint* hep-ph/0606204)
[14] Mota D F and Shaw D J 2007 *Phys. Rev.* D *75* 063501 (*Preprint* hep-ph/0608078)
[15] Lewis A and Bridle S 2002 *Phys. Rev.* D *66* 103511 (*Preprint* astro-ph/0205436)