Bacterial Strategies to Maintain Zinc Metallostasis at the Host-Pathogen Interface*

Published, JBC Papers in Press, July 26, 2016, DOI 10.1074/jbc.R116.742023
Daiana A. Capdevila‡§, Jiefei Wang‡, and David P. Giedroc*†‡
From the Departments of Chemistry and Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405-7102 and the ‡Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina

* This work was supported by National Institutes of Health Grants GM042569 and GM118157 (to D. P. G.). This work was also supported by the Pew Latin American Fellows Program in the Biomedical Sciences (to D. A. C.). This is the third article in the Thematic Minireview series “Metals in Biology 2016: Molecular Basis of Selection of Metals by Enzymes.” The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
† To whom correspondence should be addressed: Dept. of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47405-7102. Tel.: 812-856-3178; Fax: 812-856-5710; E-mail: giedroc@indiana.edu.

Among the biologically required first row, late d-block metals from MnII to ZnII, the catalytic and structural reach of ZnII ensures that this essential micronutrient touches nearly every major metabolic process or pathway in the cell. Zn is also toxic in excess, primarily because it is a highly competitive divalent metal and will displace more weakly bound transition metals in the active sites of metalloenzymes if left unregulated. The vertebrate innate immune system uses several strategies to exploit this “Achilles heel” of microbial physiology, but bacterial evolution has responded in kind. This review highlights recent insights into transcriptional, transport, and trafficking mechanisms that pathogens use to “win the fight” over zinc and thrive in an otherwise hostile environment.

Zinc is an essential micronutrient for all living organisms (1). Zinc is stable in the 2+ oxidation state (ZnII) with a 3d^10 outer electronic configuration and plays a wide variety of catalytic, regulatory, and structural roles in biology. Biological oxidation-reduction (redox) functions requiring reversible electron transfer are performed by other divalent metal ions of the late 3d-block series, from MnII (3d^5) to CuII (3d^9). As such, ZnII (Zn) is nature’s foremost Lewis acid, catalyzing a wide variety of hydrolytic reactions, and more generally, any reaction that requires activation of an otherwise poor nucleophile. Zn is incorporated into about 10% of all human proteins, and well over 300 enzymes are known to require ZnII for catalytic or structural functions (1). The percentage of Zn-binding proteins in the bacterial proteome is lower (about 5–6%), largely due to the absence of canonical zinc finger transcription factors (1). Zn in bacteria is primarily used as a metalloenzyme cofactor with a total concentration in the 0.1–1.0 mM range (2–4). ZnII acquisition, distribution, and efflux by pathogenic bacteria play central roles in the survival, pathogenesis, and virulence of these organisms in the vertebrate host.

Earth-abundant ZnII is not readily accessible to the invading bacterium in the vertebrate host because during an infection, the host attempts to restrict the availability of essential micronutrients. This has long been known for iron (Fe) (5), but has been more recently established for ZnII and MnII in a process generally termed “nutritional immunity” that is governed by sophisticated metal chelation strategies (6, 7). Some microbial pathogens, particularly those in an intracellular environment, e.g. following engulfment or persistence in macrophages, must, on the other hand, adapt to host-imposed zinc toxicity (8). Indeed, the relative importance of these mechanisms may be dependent on the site of bacterial colonization, e.g. Group A Streptococcus is suggested to face Zn toxicity during colonization of the nasopharynx, but Zn deprivation on the skin (8). Thus, the successful pathogen must have evolved ways to minimize the deleterious impact of metal ion excess (9) as well as metal deprivation during an infection.

This review describes the mechanistic principles that form the basis of our understanding of how bacterial pathogens counteract host-imposed zinc scarcity in acquiring the metal, while limiting the potential collateral damage of Zn toxicity (Fig. 1). Host-imposed zinc starvation is mediated by myriad innate immune system proteins that have evolved to coordinate transition metals with high thermodynamic and/or kinetic stabilities, thus effectively sequestering these essential metals from the bacterium. Many of the known chelators are derived from the S100 superfamily of CaII-binding proteins, and include the well studied neutrophil-derived S100 A8, A9, heterotetramer, calprotectin (CP)2 (6). CP is known to withhold Zn and/or MnII from the bacterial invaders, depending on the physiology of the organism and microenvironmental niche (10). CP has evolved transition metal-binding sites that feature unprecedented coordination chemistries and plasticities, which are activated by CaII binding to EF-hand type sites and are thus tuned to function as potent, host-derived extracellular chelators (11–13). CP also binds FeII with high affinity, hinting at a broader anti-bacterial function of this protein (14). S100 A7 (psoriasisin) and A12 (calgranulin C) are other well studied members of this class of proteins with metal-sequestering antimicrobial activity (15, 16).

The response of the bacterial pathogen to host-imposed zinc starvation or poisoning can be grouped into three distinguishable strategies: 1) transcriptional regulation by metal-sensing metalalloregulatory proteins; 2) Zn efflux and acquisition across cell membranes; and 3) Zn sparing and allocation of Zn to Zn-requiring enzymes, processes that are governed by Zn speciation in the cytoplasm. These will be discussed in turn.
Transcriptional Regulation by Metal Sensor Proteins

The Set-point Model

The set-point model is the simplest possible model that explains how bacteria maintain a characteristic total metal quota and metal bioavailability in the cell. This model is dictated by the sensitivity (K_{metal}) of the metalloregulatory or metal sensor protein, which transcriptionally regulates the expression of genes that encode metal transporters and other resistance proteins (17–19) (Fig. 2). In most cells, Zn homeostasis is maintained by pairs of Zn sensors that function collaboratively as uptake or efflux repressors. In this model, Zn bioavailability is maintained by these Zn sensors whose DNA operator binding or transcription activation functions are allosterically modulated by the direct binding of the metal ion. The affinities (K_{metal}) will therefore define a window of “free” or “bioavailable” transition metal concentration [metallo]free in the cell, where $1/K_{metal} \sim [metallo]_{free}$ (20, 21). Thus, the higher the regulator affinity for the cognate metal under the prevailing intracellular conditions, the lower the concentration of bioavailable metal in the cell (21). As the metal concentration rises above $1/K_{metal}$, changes in transcription result, with transporters enlisted to re-establish homeostasis by repressing uptake and activating efflux.

In most bacteria, the zinc uptake repressor (Zur) controls the expression of a small number of genes required to adapt to conditions of severe zinc depletion. When the intracellular zinc...
MINIREVIEW: Zinc Metallostasis in Microbial Pathogens

A

[Graph showing relative repressor activities against metal concentrations]

B

CzrA

C

CzrA

D

Zur

E

AdcR

F

ZntR

Metal quotas Ni, Co, Cu, Mn, Zn, Fe

E107 C30 E41

E108 H112 site 1

E107 E41 site 2

D111 H96 H77 C103 C88 C146 C143 C106

H86 H77

D84 H100 H97

site B

site A

More competitive metals

Less competitive metals

1/K_{Zn(II)}

1E-20 1E-18 1E-16 1E-14 1E-12 1E-10 1E-8 1E-6 1E-4

0.0

0.2

0.4

0.6

0.8

1.0

Uptake regulator (Ec Zur)

Efflux regulator (Ec ZntR)

CzrA

AdcR

ZntR

Metal quotas Ni, Co, Cu, Mn, Zn, Fe

E107 C30 E41

E108 H112 site 1

E107 E41 site 2

D111 H96 H77 C103 C88 C146 C143 C106

H86 H77

D84 H100 H97

site B

site A

More competitive metals

Less competitive metals

1/K_{Zn(II)}

1E-20 1E-18 1E-16 1E-14 1E-12 1E-10 1E-8 1E-6 1E-4

0.0

0.2

0.4

0.6

0.8

1.0

Uptake regulator (Ec Zur)

Efflux regulator (Ec ZntR)

CzrA

AdcR

ZntR
concentration is far below a critical threshold, $[\text{metal}]_{\text{free}} < 1/K_{\text{metal}}$, the zinc-free form of Zur has low affinity for the DNA operator, which overlaps the promoter, thus allowing unfettered access by RNA polymerase to transcribe the genes encoding a high affinity Zn uptake system(s) (Fig. 2). In addition, genes encoding the efflux system are transcriptionally repressed by the apo form of the Zn efflux repressor, ZntR in *Escherichia coli*, under these conditions. As levels of bioavailable Zn rise to $[\text{metal}]_{\text{free}} > 1/K_{\text{metal}}$ (zinc-replete conditions), the zinc-bound form of Zur binds tightly to the operator site, thus preventing transcription (22). Likewise, the efflux regulator, ZntR in *E. coli*, binds Zn and allosterically activates transcription of *zntA*, encoding a Zn-specific P-type ATPase efflux transporter, by converting a suboptimal promoter to an optimal one (23). In other bacteria, the Zn efflux regulator is a repressor whose DNA binding affinity is negatively regulated by Zn binding, thus driving transcriptional depression of downstream genes under conditions of excess Zn (24). In still others, e.g. *Streptococcus pneumoniae*, the efflux regulator is an allosteric activator of transcription (25), which may involve a metal-mediated physical interaction with RNA polymerase. In any case, the difference in K_{metal} between uptake and efflux regulators in the DNA-bound state thus defines the “window” of bioavailable Zn (Fig. 2A) (26).

Allostery

The zinc specificity of these “allosteric switches” (26) is defined largely by the metal coordination environment; however, metal sensors tend to bind divalent metals with a rank order of affinity that matches the Irving-Williams series for divalent metal-nitrogen/oxygen (N/O) chelates, regardless of which metal(s) is detected in the cell (17, 19, 21, 27). This raises questions about how a subset of sensors can detect weaker binding metals *in vivo* (21). One explanation is that metal binding kinetics rather than the thermodynamics dictate the sensor response, catalyzed by transient interactions with metallochaperones or other small molecules (see below). An alternative, earlier hypothesis implicates a metal-selective allosteric mechanism, i.e. formation of only the “correct” or “cognate” coordination geometry is capable of driving allosteric activation or inhibition of DNA operator binding (28). This by and large remains true, but the relative rank order of “set points” for individual transition metal sensors essentially enforces metal specificity in the cell (Fig. 2) (29, 30). Recent studies of the entire collection of *Salmonella enterica* metal sensors suggest that DNA binding occupancy of the apo (repressing) form of a particular efflux regulator can be tuned by taking into account its absolute concentration in the cell, coupled with knowledge of the allosteric coupling free energy (ΔG_c) (26) and relative affinities of the apo and metallated states (21). This *tour de force* reveals that experimental approaches that directly measure metal occupancy, DNA operator-promoter occupancy, and transcriptional regulation (repression, de-repression, or activation), as a sensitive function of $[\text{metal}]_{\text{free}}$ *in the cell*, will shed significantly more light on these processes.

How allosteric communication propagates from the metal-binding site(s) to influence DNA binding affinity, and thus impact biological regulation, is also of considerable interest. There are a number of mechanisms of transcriptional regulation that have been described for a variety of Zn sensors. For example, the zinc efflux repressor *Staphylococcus aureus* CzrA is characterized by strong negative allosteric linkage between the binding of metal and the binding of operator DNA, with an allosteric coupling free energy, $\Delta G_c \sim 6.5$ kcal mol$^{-1}$ (pH 7.0, 25 °C). The molecular origins of this negative coupling have proven enigmatic, partly due to the lack of a large structural change in the CzrA homodimer upon Zn binding (31). The apo and Zn-bound states adopt very similar “open” conformations, whereas DNA-bound CzrA adopts a more “closed” conformation, allowing the N terminus of the αR reading heads to reach into successive major grooves of the operator (32) (Fig. 2, B and C).

Zn$^\text{II}$ binding to the regulatory site(s) in Zur induces an allosteric global conformational change that increases (ΔG_c) the binding affinity of Zur for the DNA operator (29, 33). Structural insights into this conformational change and operator recognition have been recently been revealed for a member of Zur family (22) (Fig. 2D). Molecular recognition of the DNA operator by Zn-Zur is also based, as it is for CzrA, on protein conformational plasticity (22). In addition to allostery, the roles that multiple metal-binding sites play in multi-domain repressors have been suggested to impact differential set points, thus expanding the dynamic range of sensing Zn$^\text{II}$ in the cell in both *Streptomyces coelicolor* Zur (33) and *Bacillus subtilis* Zur (29).

The MarR (multiple antibiotic resistance) family zinc uptake repressor AdcR (competence regulator) from *S. pneumoniae* is another example where Zn binding to two distinct metal sites activates DNA binding, but to varying degrees (34). AdcR shares the winged-helix DNA-binding fold of CzrA (Fig. 2E), but possesses an additional C-terminal α helix in the dimer interface, giving rise to an extended, triangularly shaped homodimer. In Zn-replete conditions, AdcR represses the expression of the Zn uptake system and contributes to streptococcal virulence (35). For all other members of the MarR superfamily, ligand binding attenuates DNA binding; for AdcR, the
Zinc Efflux and Acquisition

The cellular demand for bioavailable ZnII while limiting Zn toxicity by this highly competitive metal is governed by the relative rates of Zn acquisition by ATP-binding cassette (ABC) transporters and cytoplasmic efflux via P-type ATPases or proton-coupled antiporters (37–39). More recently, other transporters have been shown to function in Zn uptake in \textit{S. enterica} and \textit{Vibrio cholerae} (40, 41). As discussed above, host strategies to limit bacterial infection exploit both zinc toxicity, perhaps best understood for intracellular niches (3, 42), and severe zinc limitation (starvation) (43).

Zinc Efflux

In the model system \textit{E. coli}, the efflux regulator ZntR (Fig. 2F) regulates transcription of genes encoding three types of exporters: a P-type ATPase ZntA (Fig. 1), cation diffusion facilitator (CDF) family transporters ZitB, which augments zinc tolerance mediated by ZntA (44), and YiiP (discussed further below), and the periplasm-spanning “efflux guns” CzcD and CzcBCA (for a recent review, see Ref. 45). The CDFs constitute a large family of divalent metal, proton-coupled antiporters that play important roles in global intracellular metal homeostasis in all three kingdoms of life (46). The most extensively structurally characterized bacterial CDF to date is \textit{E. coli} YiiP, an established Zn/Cd transporter (38), which is also known to efflux FeII (44, 47) (Fig. 3). An alternating access model of transport where the exchange between ZnII and H+ leads to a conformational change enables Zn to move through the membrane (48). Despite an extensive characterization of YiiP, how metal selectivity is achieved for the CDFs in general remains unclear. The functional and structural diversity of CDFs may well be significant (49), thus motivating efforts to solve the structures of other CDFs to obtain a clearer understanding of how metal selectivity is achieved. A recent \textit{in vivo} study that compares the metal selectivity of \textit{E. coli} YiiP and \textit{S. pneumoniae}-specific Zn and Mn CDFs (CzcD and MntE, respectively) shows that the first coordination shell of A (membrane)-site coordination ligands, e.g. an Asn in Mn-specific CDFs, is a primary specificity determinant that enhances the transport of cognate versus non-cognate or competing metal ions (50) (Fig. 3). Similar findings characterize the Mn-specific human CDF, ZnT10 (SLC30A10) (51), mutations in which cause parkinsonism and related neurological and liver dysfunction (52).

The P-type ATPases, like the CDFs, are a large family of integral membrane proteins that include those from the P\textsubscript{1B} clade that mediate ZnII efflux from the cytoplasm in bacteria and plants (45). The physiological functions of these pumps are not restricted to ZnII efflux and include CuI (53), CoII/NiII (54), FeII (55), and MnII (56) effluxers, while also mediating resistance to toxic metals PbII and CdII (57) and AgI (58). Metal selectivity has been shown to be dictated by the metal coordination geometry, which impacts overall rates of translocation. Some experimental details concerning the mechanism of Zn transport by P\textsubscript{1B}-type ATPases have recently been unraveled. The crystallographic structure of ZntA from \textit{Shigella sonnei} in its Zn-free E2 conformation reveals a negatively charged funnel and a candidate extracellular metal release pathway (37) (Fig. 3). It is thought that a conformational change in the transmembrane helices as part of a canonical Post-Albers cycle, where the ATP hydrolysis is coupled to interconversion between E1 and E2 states, prevents the reverse flow of the transported ion(s); however, a detailed mechanism of metal transport remains to be elucidated (37). The mode of Zn coordination is of course not defined by this structure, but a tetrahedral S\textsubscript{4}(O/N)\textsubscript{2} model involving the Cys-Pro-Cys (CPC) motif in transmembrane helix 4 (TM4) emerges from the biochemical and x-ray absorption studies of \textit{E. coli} ZntA (59, 60). These studies of ZntA complement parallel studies of the bacterial CuI-specific P\textsubscript{1B}- ATPase CopA, for which an enhanced structural and mechanistic understanding of the CuI capture, transport, and efflux is emerging (61–63). Additional work is clearly required to fully understand metal specificity and transport by this ubiquitous family of transporters.

Zinc Uptake

Nearly all bacteria employ tripartite, high affinity ABC Zn transporters consisting of a periplasmic or extracellular solute-binding (lipo)protein (subunit A; solute-binding protein; SBP), a transmembrane-spanning permease (subunit B), and a cytoplasmic ATPase (subunit C) (Fig. 3). ABC transporters are two-fold pseudosymmetric and typically adopt an AB\textsubscript{2}C\textsubscript{2} stoichiometry; in some cases, the two B-subunits and two C-subunits are encoded by different genes as a result of gene duplication. The prototypical bacterial Zn-specific ABC transporter is encoded by \textit{znuABC}. A significant body of structural work reveals that the SBP subunit harbors all significant features required for metal (ligand) specificity of Zn-dependent ABC transporters (64, 65). In contrast, there is comparatively little known about how ATP hydrolysis is coupled to ZnII transport by an intact transporter, with most models based on high resolution structures of the \textit{E. coli} vitamin B\textsubscript{12} (cobalamin) and related transition metal transporters (66, 67). These models generally involve an alternating access mechanism driven by ATP binding, hydrolysis, and product release (Fig. 3). Targeting the SBP (ZnuA) may represent an excellent strategy to identify new antibiotics against Gram-negative bacteria (68).

In Gram-negative bacteria, the \textit{ZnuABC} system is essential for zinc uptake, but its expression does not necessarily promote competitive advantages over the host microbiome (41). In these cases, bacteria use alternative or additional Zn capture systems that function alongside \textit{ZnuABC}, whereas others express a “supercharged” ZnuA that harbors additional Zn-coordinating residues, e.g. poly(His)-rich sequences and/or a second soluble domain, e.g. ZnT, appended onto ZnuA. Alternatively, the expression of other zinc-binding proteins is up-regulated under extreme zinc deficiency, e.g. ZnT/ZitB (Fig. 1) (69) or polyhistidine triad (Pht) proteins (70) that likely aid in Zn capture in both Gram-positive and Gram-negative organisms (68, 71).

There is now strong evidence that metal-specific outer membrane (OM) receptors, reminiscent of OM porins that transport FeIII- siderophore complexes or cobalamin in a TonB-dependent fashion, also function in Zn uptake in Gram-negative bacteria (65, 72). The nature of the specific Zn species that is trans-
ported by these systems is generally not known, although for *Neisseria* ZnuD, it has been argued on the basis of structural and computational studies that free, hydrated ZnII is the transport substrate (72) (Fig. 3). In an escalation in the Zn acquisition “arms race” between microbe and host, an OM porin designated CbpA, a candidate bacterial receptor for CP-Zn complexes (73), is thought to capture this CP-bound Zn, consistent with a direct role in zinc piracy analogous to iron piracy practiced by many bacterial pathogens (74).

More recent work reveals that the general strategy that bacteria use to acquire Fe, as FeIII-siderophore (or more generally, chelator) complexes, may not be limited to Fe, but is used to capture other transition metal ions, including Cu, Zn, Co, and Ni, as zincophores or more generally, metallophores (75). In addition, previously characterized Fe siderophores likely have moonlighting functions, a notable example of which is yersiniabactin, which binds CuII and protects uropathogenic *E. coli* from extracellular reactive oxygen species (76).

MINIREVIEW: Zinc Metallostasis in Microbial Pathogens
known to harbor a gene cluster, \textit{cntKLM}, that encodes the biosynthetic pathway for a broad-spectrum metallophore, staphylopine from \textit{L}-histidine, the core structure of which is chemically similar to the plant chelator nicotianamine (77) (Fig. 4A).

Although absolute metal affinities and the impact on cellular metal quota have not yet been measured for \textit{cnt} mutants, staphylopine appears to be a \textit{bona fide} metallophore that is capable of coordinating a wide range of divalent transition met-
als. This suggests an important function in the competition between the infected host and microbe for nutrient metals.

Zinc Sparing and Zn Allocation under Conditions of Extreme Zinc Limitation

Zinc is so integral to much of metabolism that a number of specialized Zn-specific adaptations have evolved to ensure that critical processes run smoothly under conditions of extreme host-mediated Zn scarcity, beyond that which can be overcome via increased transcription of the Zn uptake machinery (Fig. 1). This is particularly true for bacterial pathogens where Zn availability is tightly restricted by the innate immune system (see above).

One mechanism is termed Zn sparing, commonly used in bacteria to increase the expression of non-Zn-requiring proteins to replace essential Zn-dependent enzymes and proteins, which was first described for ribosomal proteins (78, 79). This strategy ensures that the metabolic functions of key Zn-dependent enzymes are maintained under conditions of Zn scarcity. A well established example is the replacement of Zn-containing ribosomal subunits L31 and S14 with non-Zn-containing subunits (80). Zn sparing involves the use of often structurally distantly related enzymes or proteins that either show a relaxed metal specificity or dispense with the metal cofactor altogether. Enzymes involved in this process include threonyl-tRNA synthetase, GTP cyclohydrolase I (FoE), porphobilinogen synthase (PBGS), and DksA (81–84). In the case of the GTP cyclohydrolases, the Zn-requiring (Ia) enzyme is a better catalyst with a very high affinity for Zn; the 1b enzyme, on the other hand, has modest affinity for many divalent metal ions, each of which support variable levels of activity (82). In this case, Zn sparing is clearly a “workaround” to access a crucial metabolic process, *i.e.* folate biosynthesis, under extreme cellular zinc limitation. It seems possible that there are other examples of Zn sparing yet to be discovered in bacteria.

Another strategy to retain critical metabolic functions under extreme Zn limitation is to ensure that those enzymes that are obligatorily Zn-dependent can be metallated under these conditions. One might anticipate that this role might be played by a zinc chaperone(s), reminiscent of Cu chaperones that metallate Cu-requiring enzymes under conditions of extreme Cu limitation (85); however, this area of zinc metabolism remains poorly understood. A number of Zn chaperones have been proposed, with most recent efforts focused on candidate G3 family GTPases from the COG0523 subfamily, whose expression is under the transcriptional control of Zur (86, 87). An unbiased mutant screen of *Acinetobacter baumannii* stressed with CP-induced Zn¹¹ limitation identified components of the Zur regulon (10), which was found to include a gene encoding a COG0523 protein, denoted ZigA (43) (Fig. 4B). Several other G3E family GTPases play roles in metallocenter assembly consistent with the hypothesis that the Zur-regulated COG0523 GTPases may function as Zn chaperones (88–90). *A. baumannii* ZigA and *E. coli* YeiR have been biochemically characterized, and both possess intrinsically low GTPase activity that is only modestly stimulated by Zn binding (43, 91). The conjecture is that this activity will be strongly stimulated upon physical, even transient, association with an apo enzyme target or client protein, thus providing a driving force for intermolecular Zn transfer. Although there is as yet little direct support for this hypothesis, recent work in *A. baumannii* reveals clearly that ZigA impacts the labile Zn pool by stimulating histidine degradation under conditions of CP-induced Zn limitation (Fig. 4B) (see below) (43).

Zinc Speciation in the Bacterial Cytoplasm

As discussed above, although the total cell-associated Zn concentration in bacterial cells is in the millimolar range (Fig. 2A), the bioavailable or “buffered” Zn concentration in the bacterial cytoplasm is predicted to be in the pico- to nanomolar range, largely as estimated by the metal sensitivities (1/\(K_{metal}\)) of the uptake and efflux regulators (92) (Fig. 2). This 10⁶-fold difference in concentration establishes that the cell has an over-capacity to chelate Zn and that access to the metal might be restricted by the specific nature of these poorly defined “buffering” components. Unfortunately, detailed chemical insights into Zn speciation and how this might change under different environmental conditions are largely lacking, and this remains a significant analytical challenge given the lability of small molecule-metal complexes.

Glutathione (GSH) and bacillithiol (BSH) (Fig. 4C) are low molecular weight (LMW) thiols established as important players in redox homeostasis. Recently, a new role for the cell-abundant reduced forms of these LMW thiols in buffering transition metals has been uncovered (93, 94). Although the deletion of glutathione biosynthetic genes has no effect on Zn tolerance in *E. coli*, GSH was shown to become important when Zn efflux systems are not expressed (93). Similarly, BSH, as the most abundant LMW thiol in *B. subtilis* (95), serves as a major component of the labile Zn pool in that organism (94). In addition to these thiols, histidine has recently been shown to contribute to the labile Zn pool in *A. baumannii* (Fig. 4B) (43). Histidine is a formidable Zn chelator, forming complexes with ~10 µM affinity (43) with high intracellular histidine concentrations potentially tying up the metal. The histidine utilization operon (*hut*) is slightly up-regulated in *A. baumannii* strains lacking Zur (10) with the resultant expression of the major histidine transporter HutT contributing not only to the cytoplasmic histidine pool, but also to the cellular Zn status by transporting His₂-Zn complexes (Fig. 4B) (43). The fact that histidine protects *A. baumannii* against Zn toxicity, as found previously in eukaryotic organisms (96), and Zn scarcity in a way that is linked to ZigA-stimulated histidine catabolism, reflects the demand for a highly dynamic pool of labile Zn that can be rapidly altered to meet cellular needs (43). Clearly, other small molecules such as other LMW thiols, amino acids, nucleotides, inorganic phosphate, and citrate are all candidates as contributors to Zn speciation of a labile Zn pool, which remains undefined for most bacteria.

Finally, in some bacteria, including the cyanobacteria and *Mycoabacterium tuberculosis*, Zn/Cd- or Cu-binding LMW cysteine-rich polypeptides termed metallothioneins (MTs) are found, where they generally play roles in resistance to Zn¹¹ or Cu²⁺ toxicity (97). Extensive studies of the vertebrate and plant MTs reveal that the redox chemistry of Cys and a high degree of conformational plasticity enable MTs to dynamically (dis)asso-
dicate multiple Zn ions; as a result, MTs are believed to play roles in Zn storage and delivery to metalloproteins, as well as buffering cytosolic Zn in these systems (98). The full extent to which bona fide Zn-specific MTs contribute to Zn speciation and homeostasis in bacteria remains unclear, although they appear to have physical properties consistent with such a function (97).

Conclusions

In this Minireview, we summarize recent efforts to understand the degree to which important human bacterial pathogens adapt to host efforts to remodel the transition metal landscape and thus limit the impact of a bacterial infection. Zn acquisition and efflux play central roles in this “fight over metals” due to the tremendous footprint of Zn on cellular metabolism, coupled with its toxicity that derives from its position near the top of the Irving-Williams series (27). A more sophisticated understanding of the structure and dynamics of cellular small molecule and proteome Zn speciation is the next frontier, and will depend on significant analytical advances in mass spectrometry (21, 43, 77) and related techniques. These advances, coupled with detailed mechanistic and physicochemical understanding of Zn sensing, uptake, efflux, and allocation, promise exciting discoveries to come in zinc metallostatics at the host-pathogen interface. This knowledge, in turn, will be leveraged to identify new molecular targets for the development of anti-microbial agents as alternatives to traditional antibiotics.

Acknowledgment—We thank Prof. Eric Skaar for comments on the manuscript.

References

1. Andreini, C., Banci, L., Bertini, I., and Rosato, A. (2006) Counting the zinc-proteins encoded in the human genome. J. Proteome Res. 5, 196–201
2. Outten, C. E., and O’Halloran, T. V. (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292, 2488–2492
3. Begg, S. L., Eijkelkamp, B. A., Luo, Z., Couriago, R. M., Morey, J. R., Maher, M. J., Ong, C. L., McEwan, A. G., Kobe, B., O’Mara, M. L., Paton, J. C., and McDevitt, C. A. (2015) Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae. Nat. Commun. 6, 6418
4. Jacobsen, F. E., Kazmierczak, K. M., Lisher, J. P., Winkler, M. E., and Giedroc, D. P. (2011) Interplay between manganese and zinc homeostasis in the human pathogen Streptococcus pneumoniae. Metallomics 3, 38–41
5. Weinberg, E. D. (1975) Nutritional immunity. Host’s attempt to withhold iron from microbial invaders. JAMA 231, 39–41
6. Corbin, B. D., Seeley, E. H., Raab, A., Feldmann, J., Miller, M. R., Torres, V. I., Anderson, K. L., Dattilo, B. M., Dunman, P. M., Gerads, R., Caprioli, R. M., Nacken, W., Chazin, W. J., and Skaar, E. P. (2008) Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319, 962–965
7. Kehl-Fie, T. E., and Skaar, E. P. (2010) Nutritional immunity beyond iron: a role for manganese and zinc. Curr. Opin. Chem. Biol. 14, 218–224
8. Ong, C. L., Gillen, C. M., Barnett, T. C., Walker, M. J., and McEwan, A. G. (2014) An antimicrobial role for zinc in innate immune defense against group A streptococcus. J. Infect. Dis. 209, 1500–1508
9. Neyrolles, O., Mintz, E., and Catty, P. (2013) Zinc and copper toxicity in host defense against pathogens: Mycobacterium tuberculosis as a model example of an emerging paradigm. Front Cell Infect. Microbiol. 3, 89
10. Hood, M. I., Mortensen, B. L., Moore, J. L., Zhang, Y., Kehl-Fie, T. E., Sugitani, N., Chazin, W. J., Caprioli, R. M., and Skaar, E. P. (2012) Identi-
fication of an Acinetobacter baumannii zinc acquisition system that facilitates resistance to colistin- mediated zinc sequestration. PLoS Pathog. 8, e1003068
11. Damo, S. M., Kehl-Fie, T. E., Sugitani, N., Holt, M. E., Rathi, S., Murphy, W. I., Zhang, Y., Betz, C., Hench, L., Fritz, G., Skaar, E. P., and Chazin, W. J. (2013) Molecular basis for manganese sequestration by colistin and roles in the innate immune response to invading bacterial pathogens. Proc. Natl. Acad. Sci. U.S.A. 110, 3841–3846
12. Gagnon, D. M., Brophy, M. B., Bowman, S. E., Stich, T. A., Drennan, C. L., Britt, R. D., and Nolan, E. M. (2015) Manganese binding properties of human calprotectin under conditions of high and low calcium: x-ray crystallographic and advanced electron paramagnetic resonance spectroscopic analysis. J. Am. Chem. Soc. 137, 3004–3016
13. Stephan, J. R., and Nolan, E. M. (2016) Calcium-induced tetramerization and zinc chelation shield human calprotectin from degradation by host and bacterial extracellular proteins. Chem. Sci. 7, 1962–1975
14. Nakashige, T. G., Zhang, B., Krebs, C., and Nolan, E. M. (2015) Human calprotectin is an iron-sequestering host-defense protein. Nat. Chem. Biol. 11, 765–771
15. Haley, K. P., Delgado, A. G., Piazzauolo, M. B., Mortensen, B. L., Correa, P., Damo, S. M., Chazin, W. J., Skaar, E. P., and Gaddy, J. A. (2015) The human antimicrobial protein calgranulin C participates in control of Helicobacter pylori growth and regulation of virulence. Infect. Immun. 83, 2944–2956
16. Cunden, L. S., Gaillard, A., and Nolan, E. M. (2016) Calcium ions tune the zinc-sequestering properties and antimicrobial activity of human S100A12. Chem. Sci. 7, 1338–1348
17. Reyes-Caballero, H., Campanello, G. C., and Giedroc, D. P. (2011) Metalloregulatory proteins: metal selectivity and allosteric switching. Biophys. Chem. 156, 103–114
18. Foster, A. W., Patterson, C. J., Pernil, R., Hess, C. R., and Robinson, N. J. (2012) Cytosolic Ni(II) sensor in cyanobacterium: nickel detection follows nickel affinity across four families of metal sensors. J. Biol. Chem. 287, 12142–12151
19. Foster, A. W., Osman, D., and Robinson, N. J. (2014) Metal preferences and metalation. J. Biol. Chem. 289, 28095–28103
20. Waldron, K. J., Rutherford, J. C., Ford, D., and Robinson, N. J. (2009) Metalloproteins and metal sensing. Nature 460, 823–830
21. Osman, D., Piergentili, C., Chen, J., Chakrabarti, B., Foster, A. W., Lurie-Luke, E., Huggins, T. G., and Robinson, N. J. (2015) Generating a metal-responsive transcriptional regulator to test what confers metal sensing in cells. J. Biol. Chem. 290, 19806–19822
22. Gilston, B. A., Wang, S., Marcus, M. D., Canalizo-Hernández, M. A., Swindell, E. P., Yue, Y., Mondragón, A., and O’Halloran, T. V. (2014) Structural and mechanistic basis of zinc regulation across the E. coli Zur regulon. PLoS Biol. 12, e1001987
23. Philips, S. J., Canalizo-Hernandez, M., Yildirim, I., Schatz, G. C., Mondragón, A., and O’Halloran, T. V. (2015) AllostERIC transcriptional regulation via changes in the overall topology of the core promoter. Science 349, 877–881
24. Ma, Z., Jacobson, F. E., and Giedroc, D. P. (2009) Coordination chemistry of bacterial metal transport and sensing. Chem. Rev. 109, 4644–4681
25. Kloomsterman, T. G., van der Kooi-Pol, M. M., Bijlsma, J. J., and Kuipers, O. P. (2007) The novel transcriptional regulator SczA mediates protection against Zn2+ stress by activation of the Zinc2+ resistance gene czcZD in Streptococcus pneumoniae. Mol. Microbiol. 65, 1049–1063
26. Giedroc, D. P., and Arunkumar, A. I. (2007) Metal sensor proteins: nature’s metalloregulated allosteric switches. Dalton Trans. 30, 3107–3120
27. Waldron, K. J., and Robinson, N. J. (2009) How do bacterial cells ensure that metalloproteins get the correct metal? Nat. Rev. Microbiol. 7, 25–35
28. Pennella, M. A., Shokes, J. E., Cosper, N. J., Scott, R. A., and Giedroc, D. P. (2003) Structural elements of metal selectivity in metal sensor proteins. Proc. Natl. Acad. Sci. U.S.A. 100, 3713–3718
29. Ma, Z., Gabriel, S. E., and Helmann, J. D. (2011) Sequential binding and sensing of Zn(II) by Bacillus subtilis Zur. Nucleic Acids Res. 39, 9130–9138
30. Ma, Z., Faulkner, M. J., and Helmann, J. D. (2012) Origins of specificity and cross-talk in metal ion sensing by Bacillus subtilis Fur. Mol. Microbiol. 86, 1144–1155
MINIREVIEW: Zinc Metallostasis in Microbial Pathogens

69. Petrarca, P., Amundola, S., Pasquali, P., and Battistoni, A. (2010) The Zur-regulated ZnT protein is an auxiliary component of the high-affinity ZnuABC zinc transporter that facilitates metal recruitment during severe zinc shortage. *J. Bacteriol.* 192, 1553–1564

70. Bersch, B., Bougault, C., Roux, L., Favier, A., Vernet, T., and Dumort, C. (2013) New insights into histidine triad proteins: solution structure of a *Streptococcus pneumoniae* PhtD domain and zinc transfer to AdcAII. *PLoS ONE* 8, e81168

71. Handali, M., Roychowdhury, H., Neupane, D. P., and Yuki, E. T. (2015) AzT, a periplasmic zinc metallochaperone to an ATP-binding cassette (ABC) transporter system in *Paracoccus denitrificans*. *J. Biol. Chem.* 290, 29984–29992

72. Calmettes, C., Ing, C., Buckwalter, C. M., El Bakkouri, M., Devos, N., Poolman, J. T., Chazin, W. J., and Tommassen, J. (2013) Zinc piracy as a mechanism of *Neisseria meningitidis* for evasion of nutritional immunity. *PLoS Pathog.* 9, e1003733

73. Stork, M., Grijpstra, J., Bos, M. P., Mañas Torres, C., devos, N., Poolman, N. J., and Luque, I. (2012) Characterization of the response to zinc deficiency in the cyanobacterium *Anabaena*. *Mol. Microbiol.* 52, 273–283

74. Noinaj, N., Easley, N. C., Oke, M., Mizuno, N., Gumbart, J., Boura, E., Steere, A. N., Zak, O., Aisen, P., Tjakshorid, E., Evans, R. W., Gorringe, A. R., Mason, A. B., Steven, A. C., and Buchanan, S. K. (2012) Structural basis for iron piracy by pathogenic *Neisseria*. *Nature* 483, 53–58

75. Johnstone, T. C., and Nolan, E. M. (2015) Beyond iron: non-classical biological functions of bacterial siderophores. *Dalton Trans.* 44, 6320–6339

76. Chaturvedi, K. S., Hung, C. S., Crowley, J. R., Stapleton, A. E., and Henderson, J. P. (2012) The siderophore versiniabactin binds copper to protect pathogens during infection. *Nat. Chem. Biol.* 8, 731–736

77. Ghisein, G., Brutesco, C., Ouerdane, L., Fojck, C., Izaute, A., Wang, S., Hajar, C., Lobinski, R., Lemaire, D., Richaud, P., Voulhoux, R., Espaillat, A., Cava, F., Pignol, D., Borezée-Durant, E., and Arnoux, P. (2016) Biosynthesis of a broad-spectrum nicotianamine-like metallophore in *Staphylococcus aureus*. *Science* 352, 1105–1109

78. Nanamiya, H., Akanuma, G., Natori, Y., Murayama, R., Kosono, S., Kudo, H., Ghssein, G., Brutesco, C., Ouerdane, L., Fojcik, C., Izaute, A., Wang, S., Robinson, N. J., and Luque, I. (2012) Zinc is a key factor in controlling alternation of two types of L31 ribosomal proteins to growth under zinc starvation conditions. *J. Bacteriol.* 194, 2426–2436

79. Sankaran, B., Bonnett, S. A., Shah, K., Gabriel, S., Reddy, R., Schimmel, P., Rodionov, D. A., de Crécy-Lagarde, V., Helmann, J. D., Iwata-Reuy, D., and Swarup, M. A. (2009) Zinc-independent folate biosynthesis: genetic, biochemical, and structural investigations reveal new metal dependence for GTP cyclohydrolase IB. *J. Bacteriol.* 191, 6936–6949

80. Jaffe, E. K. (2003) An unusual phylogenetic variation in the metal ion binding sites of porphobilinogen synthase. *Chem. Biol.* 10, 25–34

81. Blaby-Haas, C. E., Furman, R., Rodionov, D. A., Artsimovich, I., and de Crécy-Lagarde, V. (2011) Role of a Zn-independent DksA in Zn homeostasis and stringent response. *Mol. Microbiol.* 79, 700–715

82. Raë, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C., and O’Halloran, T. V. (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. *Science* 284, 805–808

83. Gabriel, S. E., Miyagi, F., Gaballa, A., and Helmann, J. D. (2008) Regulation of the *Bacillus subtilis* yciC gene and insights into the DNA-binding specificity of the zinc-sensing metalloregulator Zur. *J. Bacteriol.* 190, 3482–3488

84. Blaby-Haas, C. E., Flood, J. A., de Crécy-Lagarde, V., and Zamble, D. B. (2012) A subset of the diverse COG0523 family of putative metal chaperones is linked to zinc homeostasis in all kingdoms of life. *BMC Genomics* 10, 470

85. Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C., and O’Halloran, T. V. (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. *Science* 284, 805–808

86. Gabriel, S. E., Miyagi, F., Gaballa, A., and Helmann, J. D. (2008) Regulation of the *Bacillus subtilis* yciC gene and insights into the DNA-binding specificity of the zinc-sensing metalloregulator Zur. *J. Bacteriol.* 190, 3482–3488

87. Haas, C. E., Rodionov, D. A., Kropat, J., Malasarn, D., Merchant, S. S., and de Crécy-Lagarde, V. (2009) A subset of the diverse COG0523 family of putative metal chaperones is linked to zinc homeostasis in all kingdoms of life. *BMC Genomics* 10, 470

88. Farrugia, M. A., Macomber, L., and Hausinger, R. P. (2013) Biosynthesis of the urease metallocenter. *J. Biol. Chem.* 288, 13178–13185

89. Lacasse, M. J., and Zamble, D. B. (2016) [NiFe]-Hydrogenase maturation. *Biochemistry* 55, 1689–1701

90. Padovani, D., and Banerjee, R. (2009) A G-protein editor gates coenzyme B12 loading and is corrupted in methylmalonic aciduria. *Proc. Natl. Acad. Sci. U.S.A.* 106, 21567–21572

91. Blaby-Haas, C. E., Flood, J. A., de Crécy-Lagarde, V., and Zamble, D. B. (2012) YeIR: a metal-binding GTPase from *Escherichia coli* involved in metal homeostasis. *Metallomics* 4, 488–497

92. Osman, D., and Cavet, J. S. (2011) Metal sensing in *Salmonella*: implications for pathogenesis. *Adv. Microb. Physiol.* 58, 175–232

93. Hehlig, K., Bleuel, C., Krauss, G. J., and Nies, D. H. (2008) Glutathione and transition-metal homeostasis in *Escherichia coli*. *J. Bacteriol.* 190, 5431–5438

94. Ma, Z., Chandran, B., Helmann, T. C., Romsang, A., Gaballa, A., and Helmann, J. D. (2014) Bacillithiol is a major buffer of the labile zinc pool in *Bacillus subtilis*. *Microbiol. Mol. Biol. Rev.* 78, 745–770

95. Newton, G. L., Rawat, M., Klaas, C., Brusniak, V. K., Budiarto, T., Hamilton, C. J., Claiborne, A., Helmann, J. D., and Fahey, R. C. (2009) Bacillithiol is an antioxidant thiol produced in *Bacilli*. *Nat. Chem. Biol.* 5, 625–627

96. Murphy, I. T., Bruni, C., Schneider, D. L., Collier, S., Guthrie, J., Chinwalla, A., Robertson, J. D., Mardis, E. R., and Kornfeld, K. (2011) Histidine protects against zinc and nickel toxicity in *Caenorhabditis elegans*. *PLoS Genet.* 7, e1002013

97. Blundauer, C. A., Harrison, M. D., Robinson, A. K., Parkinson, J. A., BowRank, P. W., Saddler, P. J., and Robinson, N. I. (2002) Multiple bacteria encode metallothioneins and SmtA-like zinc fingers. *Microbiol. Mol. Biol. Rev.* 65, 1421–1432

98. Maret, W., and Krezel, A. (2007) Cellular zinc and redox buffering capacity of metallothionein/thionein in health and disease. *Mol. Med.* 13, 371–375

99. Gaballa, A., Newton, G. L., Antelmann, H., Parsonage, D., Upton, H., Rawat, M., Claiborne, A., Fahey, R. C., and Helmann, J. D. (2010) Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in Bacilli. *Proc. Natl. Acad. Sci. U.S.A.* 107, 6482–6486