INTRODUCTION

The heart undergoes adaptive changes in response to long-term overload, namely myocardial hypertrophy. Physiological hypertrophy usually happens to pregnant women or athletes. However, pathological cardiac hypertrophy is usually induced by stress stimulation or disease and is a typical pathological stage of diseases such as cardiomyopathy, myocardial infarction and diabetes. Therefore, pathological cardiac hypertrophy is a predictor of many cardiovascular diseases and death in humans. Extensive research in the last decade has revealed that post-translational modifications (PTMs), including phosphorylation, ubiquitination, SUMOylation, O-GlcNAcylation, methylation and acetylation, play important roles in pathological cardiac hypertrophy pathways. These PTMs potently mediate myocardial hypertrophy responses via the interaction, stability, degradation, cellular translocation and activation of receptors, adaptors and signal transduction events. These changes occur in response to pathological hypertrophy stimuli. In this review, we summarize the roles of PTMs in regulating the development of pathological cardiac hypertrophy. Furthermore, PTMs are discussed as potential targets for treating or preventing cardiac hypertrophy.

KEYWORDS
cardiac hypertrophy, heart failure, post-translational modifications (PTMs)
were reported to play essential roles in myocardial hypertrophy pathways. These signalling pathways include Ca\(^{2+}\)/calmodulin, mitogen-activated protein kinase (MAPK), JAK-STAT, protein kinase C, phosphatidylinositol 3-kinase (PI3K)/Akt, inflammation, nuclear factor-κB (NF-κB) and adenosine-activated protein kinase (AMPK). Therefore, comprehensive knowledge of PTMs involved in the development of myocardial hypertrophy will provide a better understanding of the molecular regulatory mechanism of pathological hypertrophy. This, in turn, will greatly benefit rational drug utilization and provide new treatment strategies for heart failure.

2 | PHOSPHORYLATION

MAPKs, consisting of extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs) and p38 MAPKs, are well known to play important roles in mediating overload or pathological insult-induced cardiac hypertrophy.\(^6\) For example, cardiomyocyte-specific expression of MEK-1 significantly induced ventricular concentric hypertrophy by phosphorylating ERK1/2 in the heart (Table 1).\(^7\) ERK5 was also shown to play an essential role in the development of cardiac hypertrophy.\(^8\) The Ca\(^{2+}\)/calmodulin signalling pathway reportedly plays an important role in the occurrence of ventricular arrhythmias in hypertrophic cardiomyopathy and cardiac hypertrophy.\(^9\) Ersilia et al showed that the CaMKII-ERK pathway was essential for developing cardiac hypertrophy and the impairment of their interaction provided a promising therapeutic modality to attenuate myocardial hypertrophy.\(^10\) Recently, activation of ERK/glycogen synthase kinase-3(GSK3) induced by angiotensin II was shown to phosphorylate heat shock factor 1 (HSF1), resulting in degradation of RNF126, which promoted the expression of insulin-like growth factor II receptor (IGF-IIIR) and ultimately induced myocardial hypertrophy (Table 1).\(^11\) Thus, targeting HSF1 could be a promising strategy to prevent pathological cardiac hypertrophy.

Kojonazarov et al showed that inhibition of p38 MAPK activity improved heart function in response to pressure-loaded right ventricular hypertrophy by suppressing transcriptional pathways, including serum response factor and myocardin-related transcription factor A.\(^12\) Regulator of G protein signalling 6 (RGS6) was reported to promote cardiac hypertrophy by activating apoptosis signal-regulating kinase1/p38 MAPK/JNK1/2 signalling.\(^13\) A deficiency of JNK-interacting protein 3 could alleviate cardiac hypertrophy through inactivating the JNK pathway and might become a promising therapeutic target for treating cardiac hypertrophy and heart failure.\(^14\)

AKT, a serine/threonine kinase, is activated and phosphorylated by PDK1 and PDK2 at residues Thr308 and Ser473 respectively.\(^15\) As a key molecule for cardiac hypertrophy, AKT activation can further phosphorylate many downstream proteins and thereby positively and negatively regulate diverse signalling pathways. AKT has been shown to promote cardiac hypertrophy through regulating several signalling pathways, such as PI3K/AKT/GSK3β, PI3K/AKT/mTOR and the FAK/AKT signalling.\(^16,17\) Knockdown of protein kinase D (PKD) was shown to attenuate pressure overload-induced cardiac hypertrophy by promoting autophagy via AKT/mTOR pathway.\(^19\) Dimethyl fumarate, a methyl ester of fumaric acid, is approved by the Food and Drug Administration for the treatment of relapsing/remitting multiple sclerosis and psoriasis. Dimethyl fumarate was shown to protect against ISO-induced cardiac hypertrophy by decreasing the levels of p-ERK1/2 and increasing the level of p-AKT.\(^20\)

AMPK, a serine/threonine kinase, is activated and phosphorylated by LKB1 at residue Thr172 (Table 1).\(^21,23\) AMPK activation can further phosphorylate numerous downstream proteins and

Name	Target	Result	Role in heart	Reference
MEK1	ERK1/2	Activation	Induced pathological cardiac hypertrophy	7
MEK5	ERK5	Activation	Exacerbated pathological cardiac hypertrophy	8
CaMKII	ERK1/2	Activation	Induced pathological cardiac hypertrophy	10
ERK/GSK3	HSF1	Inactivation	Exacerbated pathological cardiac hypertrophy	11
RGS6	ASK1	Activation	Exacerbated pathological cardiac hypertrophy	13
PI3K	AKT	Activation	Induced pathological cardiac hypertrophy	16
MEK3 and MEK6	p38	Activation	Contributed to cardiac hypertrophy	13
MEK4 and MEK7	JNK	Activation	Contributed to cardiac hypertrophy	14
FAK	AKT	Activation	Contributed to cardiac hypertrophy	17
LKB1	AMPK	Activation	Inhibited cardiomyocyte hypertrophy	21,23

TABLE 1 Roles of phosphorylation in myocardial hypertrophy
Together, the above-mentioned findings suggest that phosphorylation is essential for promoting or attenuating cardiac hypertrophy in various signal pathways.

3 | DUAL-SPECIFICITY MAPK PHOSPHATASES

A previous study has shown that DUSPs act as critical regulators of cardiac growth and remodelling by dynamically regulating the MAPK signalling pathway (Table 2). DUSP14 ameliorates cardiac hypertrophy via inhibiting JNK1/2 activity. DUSP8 is involved in cardiac ventricular remodelling by activating ERK1/2 signalling. Cardiac-specific overexpression of DUSP8 causes spontaneous eccentric remodelling and ventricular dilation with heart failure. DUSP14 prevents cardiac hypertrophy and dysfunction induced by aortic banding by inactivating the TAK1/p38MAPK/JNK1/2 signalling pathway. In addition, heat shock protein 90 regulates cardiac ventricular hypertrophy through the activation of MAPK pathway.

In brief, phosphorylation modifications play important roles in the regulation of cardiac hypertrophy and may prove to be promising targets for therapeutic development.

4 | UBQUITINATION

Ubiquitination, a widely distributed PTM of proteins, regulates the timely functions of proteins. Recently, ubiquitin-proteasome system (UPS) proteins, E3 ligases and deubiquitylation enzymes (DUBs) were found to play important roles in the development of cardiac hypertrophy (Figure 1; Table 3). Studies found that K63-linked polyubiquitination of TAK1 triggered by the E3 ligase, TRIM8, leads to pathological hypertrophy. Thus, suppression of cardiac TRIM8 expression could attenuate the induction of cardiac hypertrophy. Li et al reported that the level of TRAF6 in hypertrophic human and mouse hearts was increased. Furthermore, heart-specific overexpression of TRAF6 aggravated myocardial hypertrophy in response to pressure overload or stimulation with angiotensin II. In terms of the mechanism, auto-ubiquitination of TRAF6 triggered by reactive oxygen species promoted TAK1

TABLE 2 Role of DUSPs in myocardial hypertrophy

DUSP	Target	Role in heart	Reference
DUSP1	ERK1/2, JNK1/2, p38	Attenuated cardiac hypertrophy	42
DUSP4	ERK1/2	Positively regulated cardiac hypertrophy	43
DUSP8	ERK1/2, JNK1/2, p38	Positively regulated cardiac hypertrophy	39
DUSP12	JNK1/2	Attenuated cardiac hypertrophy	38
DUSP14	JNK1/2, p38	Attenuated cardiac hypertrophy	40
ubiquitination, which induced cardiac hypertrophy.45 Recent studies reported that DUB was involved in regulating the development of cardiac hypertrophy through the TAK1 signalling pathway.46 For example, ubiquitin-specific protease 4 (USP4) inhibited pathological cardiac hypertrophy and dysfunction by hydrolysing the K63 ubiquitination of TAK1, resulting in the suppression of TAK1-JNK1/2/p38 signalling.47 In addition, Ying et al reported that ubiquitin-specific protease 18 (USP18) attenuated cardiac hypertrophy by specifically removing the K63-linked polyubiquitination of TAK1, bringing about inactivation of TAK1-JNK1/2/p38 signalling.48 USP14, a DUB of the 19S proteasome subunit, was shown to promote cardiac hypertrophic responses through enhancing GSK-3β phosphorylation, suggesting that USP14 may be a potential therapeutic target to treat cardiac hypertrophy.49 Previous studies have shown that UPS plays an important role in quality control mechanisms of protein production and UPS insufficiency may lead to heart failure.50,51 Notably, whether UPS regulates heart failure by activating or inhibiting the autophagy pathway remains controversial.52 Recently, proteasome inhibitors, MG132 and bortezomib, were shown to attenuate cardiac hypertrophy induced by cholesterol through inhibiting the activation of ERK and Akt signalling.53 Rapamycin, an inhibitor of mTOR, was shown to protect against cardiac hypertrophy by promoting myocardial autophagy through the MEK/ERK/Beclin-1 pathway.54

Cardiac fibrosis-induced pressure overload is an important step of maladaptive hypertrophy and ubiquitination of TRAF6 and RIP1, mediated by ligase E3 Pellino1, contributes to the activation of NF-κB and AP-1, resulting in increased expression of transforming growth factor-β1 in cardiac fibroblasts (Figure 1).55 In addition, pressure overload-induced cardiac maladaptive remodelling and dysfunction were mediated by deubiquitinating enzyme CYLD, which contributes to interrupt the ERK- and p38-AP-1 and c-Myc pathways, resulting in suppressing expression of Nrf2 and Nrf2-operated antioxidative capacity.56 Furthermore, deubiquitinating enzyme

\begin{figure}
\centering
\includegraphics[width=\textwidth]{FIGURE1.png}
\caption{Ubiquitination-mediated signalling pathways of cardiac hypertrophy. Ubiquitination plays an important role in cardiac hypertrophy by regulating the TAK1-JNK1/2/p38, NF-κB signalling, Ca²⁺/calmodulin, oxidation stress, ERK signalling pathways. In these pathways, pressure overload or other hypertrophic stimuli can induce E3 ligases or DUBs to activate MAPKs or other signalling pathways, ultimately regulating nuclear transcription factors to promote growth.}
\end{figure}
USP14 suppressed the progression of cardiac hypertrophy by increasing phosphorylation of glycogen synthase kinase-3β. 49

Recently, the E3 ubiquitin ligase, Muscle-specific RING finger protein-1 (MuRF1), was reported to mono-ubiquitinate thyroid hormone receptor α (TRα) to enhance its interaction with CAP350 and transcriptional activity in the nuclear compartment. 57 MuRF1 was also reported to attenuate pathological cardiac hypertrophy via promoting degradation of calcineurin A. 58 In addition, TCAP, which is down-regulated by the E3 ubiquitin ligase, MDM2, is involved in cardiac hypertrophy (Figure 1). 59 Moreover, Hauck et al observed that cardiac-specific knockout of MDM2 resulted in spontaneous cardiac hypertrophy and early death in mice through the generation of reactive oxygen species (ROS). 60 Consistent with this, cardiomyocyte hypertrophy induced by therapy with the alpha-agonist, phenylephrine or endothelin-1, was attenuated by overexpression of MDM2. 61 Therefore, MDM2 may be a promising and effective target for treating heart failure. Likewise, E3 ligase tripartite motif 32 (TRIM32) has a protective role in aortic banding-induced pathological cardiac hypertrophy by interrupting Akt signalling pathways. 62 TRIM32 attenuates cardiomyocyte hypertrophy by regulating dysbindin protein levels, whereas the effect of TRIM24 is the opposite (Table 3). 63

Overall, these findings show that ubiquitination modifications play an essential role in the development of cardiac hypertrophy progress and have important implications for the development of antihypertrophy drugs targeting E3 ligases and DUBs.

5 | SUMOYLATION

The small ubiquitin-like modifier (SUMO) system catalyses classical ubiquitin-like post-translational protein modifications that are universally involved in cellular activities such as cell cycle regulation, genome stabilization, chromatin remodelling and transcription. 64 SUMOylation is also involved in cardiovascular diseases including cardiac hypertrophy. 65 For example, SUMO-1 is involved in heart failure by specifically mediating SUMOylation of SERCA2a (Table 4). Interestingly, SUMO-1 is significantly reduced in mice and human patients with heart failure and heart failure was observed in mice following the deletion of cardiomyocyte-specific SUMO-1. As a result, the SUMOylation of cardiac SERCA2a was significantly decreased (Figure 2). Studies have also shown that cardiomyocyte-specific overexpression of SUMO-1 with AAV9 reduced the cardiac hypertrophy phenotype. 66 Targeting SERCA2a with adeno-associated vector type 1 encoding SERCA2a (AAV1.SERCA2a) is considered as a new therapeutic target to treat heart failure. 67 The initial Phase II of the Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID) trials delivering the SERCA2a gene for treatment of heart failure has shown potential clinical benefits. Although subsequent CUPID-2 studies did not meet the primary or any secondary endpoints, overexpression of SERCA2a via gene transfer continues to be a promising therapeutic strategy for the treatment of heart failure. 68 It is to be noted that SUMOylation
of SERCA2a was shown to be reduced along with low SUMO1 expression in the failing heart. Thus, SUMOylation of SERCA2a activated via small molecules or enforced expression of SUMO1 with gene transfer may be a new therapeutic approach to treat heart failure.

The SUMOylation of HSF2 mediated by SUMO-1 was reported to attenuate myocardial hypertrophy. The expression of MEL-18 is up-regulated in response to treatment with angiotensin II, resulting in the deSUMOylation of HSF2 by the removal of SUMO-1. This increases the expression of IGF-IIR and induces hypertrophy (Table 4). In addition, Wang et al reported that the overexpression of myofibrillogenesis regulator 1(MR-1) directly induced myocardial hypertrophy by enhancing the SUMOylation of myomesin-1 (Figure 2).

In contrast to these findings, the activation of calcineurin/nuclear factor of activated T cell (NFAT) signalling, and cardiomyocyte hypertrophy induced by SUMO2, are independent of...
SUMOylation. SUMO2 tethers calcineurin activation to the nucleus in cardiomyocyte, facilitating the activation of NFAT to induce higher expression levels of hypertrophy-related genes and significantly increase the cell surface area (Figure 2). Recently, Kim et al demonstrated that the SUMO2-3 conjugation promoted the degradation of calpain-calpastatin in failing human hearts (Table 4). Calpain mediates myocardial hypertrophy and remodeling mainly through two signaling pathways: hydrolysing calcineurin (CaN) to generate its active fragments or hydrolysing the CaN endogenous inhibitor, Cain/Cabinl, to activate the CaN signaling pathway and cleavage of 3-kB to activate myocardial NF-κB (Figure 2). UBC9 and SUMO E2 ligase play important roles in enhancing the expression of several proteins that reside in the endoplasmic reticulum. Furthermore, the cardiomyocyte-specific expression of UBC9 significantly improves cardiac function by increasing SUMOylation and autophagic flux in transgenic mice. In general, SUMOylation is essential for cardiac function and E3 SUMO-protein ligases and SUMO conjugating enzymes are potential antihypertrophy drug targets.

O-GlcNAcylation is the O-linked attachment of the monosaccharide, β-linked N-acetyl-glucosamine (O-GlcNAc), to cytoplasmic, nuclear and mitochondrial proteins. It is a PTM that regulates cardiovascular disease. O-GlcNAcylation induced by high glucose is essential for the progression of cardiac hypertrophy via increased expression of ERK1/2 and cyclin D2. The activation of AMPK pathway inhibits cardiac hypertrophy by reducing O-GlcNAcylation in vivo. Global cardiac protein O-GlcNAc signalling is increased in various aetiologies of cardiac hypertrophy and failure.

Olson et al showed that overexpression of c-Myc promoted cardiac hypertrophy and increased O-GlcNAc levels. While c-Myc knockout repressed pressure overload-induced cardiac hypertrophy and decreased O-GlcNAc levels. O-GlcNAcylation stabilized c-Myc and thus increased its transcriptional activity, consequently activating the foetal gene program to induce cardiac hypertrophy. Sp1, a transcription factor involved in the development of myocardial hypertrophy, has multiple O-GlcNAcylation sites. It has also

![FIGURE 3](image-url)

FIGURE 3 Acetylation- and methylation-mediated signalling pathways of cardiac hypertrophy. Chromatin modifications are essential for regulating gene expression. Gene transcription can be regulated by acetylation and methylation of chromatin histones. Through remodelling the structure of chromatin, epigenetic modifications mediate the accessibility of DNA to regulate gene expression.
been shown that insulin-induced O-GlcNAcylation of Sp1 triggers its nuclear translocation where it is partially or wholly deglycosylated, then phosphorylated to activate foetal gene expression.85 O-linked-\(\beta\)-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an enzyme that catalyses O-GlcNAc to various cellular proteins. Cardiomyocyte-specific deletion of OGT is characterized by cardiac hypertrophy in adult mice, suggesting that decreasing O-GlcNAcylation induces hypertrophy development.86 However, emerging studies show that an increase in O-GlcNAc levels was observed in pathological cardiac hypertrophy in the mice hearts induced by phenylephrine treatment.87,88 Therefore, according to current reports, we cannot get a definite conclusion whether O-GlcNAcylation induces or attenuates hypertrophy development and heart failure. Taken together, these findings further support our conclusion that O-GlcNAcylation plays an important role in cardiac function and may be a therapeutic target.

7 | ACETYLATION AND METHYLATION

Emerging evidence suggests that epigenetic modifications of histones, such as acetylation and methylation, are essential for the regulation of gene expression during the progression of cardiac hypertrophy.89 The correct expression of genes in cardiomyocyte is the basis for normal cardiac function. Thus, abnormal gene expression may cause heart dysfunction. Papait et al found that histone methyltransferase G9a regulated key epigenetic changes during the progression of cardiac hypertrophy (Figure 3). Hence, methylation was essential for cardiomyocyte homeostasis and hypertrophy.90 Likewise, the histone trimethyllysine demethylase, JMJD2A, promoted cardiac hypertrophy in response to hypertrophic stimulation in mice and induced an increase in the expression of hypertrophy markers including B-type natriuretic peptide and natriuretic peptide A in pluripotent stem cell-derived cardiomyocyte (Table 5).91,92 The histone demethylase, PHF8, was also observed to attenuate cardiac hypertrophy upon cardiac overload93 (Figure 3).

In the following section, we focus on the roles of acetylation in the development of cardiac hypertrophy progression (Figure 3). Previous studies reported the key function of histone deacetylases (HDACs) in the regulation of pathological heart growth. Class II HDACs maintain normal cardiac function and size by mediating the expression of MEF2 transcription factors and other factors.94 Recent studies reported that Class II HDACs were essential for vascular smooth muscle cell hypertrophy and hyperplasia through the CaMKII\(\alpha\)/protein kinase D1/HDAC4/GATA6 pathway.56 In addition, cardiomyocyte hypertrophy was attenuated by transcription factor 3 (ATF3), binding with the Map2K3 promoter, resulting in recruiting HDAC1 and suppressing MAP2K3-p38 Signalling.95 Furthermore, the class III HDAC, sirtuin 1 (SITR1), reportedly prevented cardiomyocyte hypertrophy by negatively regulating the acetylation and phosphorylation levels of protein kinase C\(\zeta\) (Table 5).96 Likewise, Class I HDACs attenuated cardiac hypertrophy by repressing the TSC2-dependent mammalian target of rapamycin pathway.97,98 Besides

TABLE 5

Name	Target and site	Role in heart	Mechanism	Role in cardiac hypertrophy
G9a	H3K27 and H3K9	Inactivated chromatin	Repressed antihypertrophic genes via H3K9me2 and H3K27me3 deposition	Contributed to pathological cardiac hypertrophy
JMJD2A	H3K9me3	Activated chromatin	Inhibited Akt-mTOR pathway	Promoted pathological cardiac hypertrophy
PHF8	H3K9me3 and H4K20me	Activated chromatin	Activated transcription of cardiac fetal genes	Activated ANP gene
HDAC4	Histone	Reduced TSC2 abundance	Depressed H3K9, dissociated HP1 and activated ANP gene	Promoted pathological cardiac hypertrophy
HDAC1/2	Histone	Activated LKB1	Activated AMPK signalling pathway	Inhibited ageing- and stress-induced cardiac hypertrophy
SITR1	Phosphatase	Activated LKB1	Activated LKB1	Inhibited cardiac hypertrophy
SITR2	Pink1/ Parkin	Activated MAPKs signalling pathway	Inhibited cardiac hypertrophy	
SIRT3	Pink1/ Parkin	Induced mTOR pathway	Inhibited cardiac hypertrophy	
SIRT6	H3K9	Activated chromatin	Suppressed activity of NF-κB, ERK1/2 and ERK5	Suppressed phenylephrine-induced hypertrophic response
SIRT7	H3K9	Inactivated chromatin	Suppressed activity of c-Jun	Inhibited cardiac hypertrophy
that, histone 3 at Lys9 (H3K9) was hyperacetylated upon ethanol exposure, inducing cardiac hypertrophy and ethanol-induced cardiac hypertrophy was attenuated by an acyclic acid in mice. As the most abundant cells in mammalian heart tissue, cardiac fibroblasts contribute to cardiac remodelling and heart failure. In recent reports, HDAC inhibitors, in particular Class I HDAC inhibitors, were shown to attenuate pathological cardiac fibroblasts and ameliorate heart failure. For example, MGCD0103, a Class I HDAC inhibitor, was shown to inhibit cardiac fibrosis induced with angiotensin II via repression of ERK1/2 signalling. HDAC inhibitors were also shown to attenuate pathological cardiac hypertrophy. These reports suggest that HDAC inhibitors may be the promising therapeutic drugs to treat heart failure. Although several reports show that pre-clinical HDAC inhibitors are efficient in animal models of heart failure, no clinical trials using HDAC inhibitors are ongoing in heart failure patients. Four HDAC inhibitors (vorinostat, romidepsin, belinostat and panobinostat) have been approved by the FDA to treat cancer. In a recent systematic review, cancer patients treated with pan-HDAC inhibitors exhibited mild cardiac side effects. Therefore, future work in this field is needed to delineate global cardiovascular safety of treatment with HDAC inhibitors in cancer patients.

SIRT2 was reported to act as a cardioprotective deacetylase by deacetylating liver kinase B1 (LKB1) in pathological cardiac hypertrophy, resulting in activating AMPK signalling pathway. In addition, SIRT2 attenuated agonist-induced cardiac hypertrophy by deacetylating NFATc2 transcription factor, leading to transcriptional suppression of hypertrophic genes. Recently, hypertension-induced cardiac hypertrophy was reported to be protected by sirtuin 6 (SIRT6), deacetylating Pink1/Parkin, resulting in mitophagy and reduction of ROS production. Notably, sirtuin 6 (SIRT6) regulated the progression of cardiac hypertrophy by deacetylating H3K9 to inhibit IGF-Akt signalling pathway (Table 5). SIRT6 also reported to prevent cardiomyocyte hypertrophy by inhibiting the expression of transcription 3 (STAT3). Finally, in SIRT6-deficient hearts, SIRT1 was observed to be deacetylated and activated Akt signalling pathways.

In conclusion, these findings highlight the critical role of both methylation and acetylation in the initiation, progression and outcome of maladaptive cardiac remodelling and dysfunction and HDAC inhibitors are promising drugs to target cardiac hypertrophic signalling for heart failure treatment.

8 | THE MULTIFACETED CONTROL OF PTM

It is well recognized that cardiac hypertrophy is mediated at several levels, including gene transcription, processing and translation of mRNAs and PTMs. PTMs act as key regulators of proteins, occurring as a modification at a single residue or combining effects over multiple sites undergoing the same or different modifications. Cells need to be connected to various PTM signals and coordinated with each other to properly regulate cardiac hypertrophy. Furthermore, emerging evidence has highlighted important roles for crosstalk between different pairs of PTMs, such as ubiquitylation-phosphorylation, SUMOylation-phosphorylation, acetylation-phosphorylation, O-linked glycosylation-phosphorylation, and acetylation-methylation. For example, TAK1, an important signal transmitter, transmits the upstream signal from the receptor complex to the downstream signalling molecules. Recently, phosphorylation of TAK1 activated by NF-κB was reported to contribute to further K63-linked polyubiquitination modulated by TRIM8 in pathological hypertrophy (Figure 1). SUMO-1 is involved in heart failure by specifically mediating SUMOylation of SERCA2a. However, phosphorylation of SERCA2a is essential for SUMOylation of SERCA2a mediated by SUMO-1 in mice and human patients with heart failure (Figure 2). AMPK is a hetero-trimeric complex, which is activated by phosphorylation on the residue Thr172. In addition, AMPK inhibits O-GlcNAcylation by mainly regulating phosphorylation of GFAT and AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation of proteins such as troponin T. Acetylation and trimethylation on H3K27 play opposing roles at the promoter regions of genes involved in cardiac hypertrophy. A previous study has shown that SIRT1 attenuated the PKC-ζ activity via mediating the interplay of acetylation and phosphorylation in cardiac hypertrophy (Figure 3). In conclusion, these findings suggest that crosstalk between different pairs of PTMs is essential for cardiac function. Future work in this field is needed to determine the global mechanistic actions of these PTMs in the heart.

9 | CONCLUSIONS AND PERSPECTIVES

A considerable number of studies have shown that myocardial hypertrophy is a phenomenon in which cardiac cells transform from a mature ‘contractile state’ to an ‘embryonic synthesis state’ and is the primary pathophysiological process in the development of heart failure. Myocardial hypertrophy can lead to reduced blood pressure, cardiac cell hypertrophy and apoptosis, decreased ventricular compliance and impaired ejection function, resulting in a vicious cycle of worsening cardiac functions. Overall, myocardial hypertrophy has become an increasingly important factor in the field of cardiovascular disease. Therefore, it is particularly important to explore its mechanism.

As reported in the studies reviewed in this article, myocardial hypertrophy is connected with various cellular signalling pathways and PTMs. PTMs of proteins can precisely regulate and improve the stability and activity of diverse signalling pathways. PTMs are closely related to the occurrence and developmental process of cardiac hypertrophy, but their molecular mechanisms and regulatory network still remain elusive and require further investigations. Therefore, a thorough investigation of the regulatory mechanisms of PTMs in the process of cardiac hypertrophy can help us better understand the basis of myocardial hypertrophy and develop improved drugs to prevent or reverse this disorder.
ACKNOWLEDGEMENTS

This work was funded by National Natural Science Foundation of China (31701175), China Postdoctoral Science Foundation (2017M612188), Natural Science Foundation of Shandong Province (ZR2017BC003).

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

ORCID

Kaowen Yan https://orcid.org/0000-0002-4234-5571

REFERENCES

1. Li L, Xu J, He L, et al. The role of autophagy in cardiac hypertrophy. Acta Biochim Biophys Sin. 2016;48(6):491-500.
2. Frieler RA, Mortensen RM. Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling. Circulation. 2015;131(11):1019-1030.
3. Harvey PA, Leinwand LA. The cell biology of disease: cellular mechanisms of cardiomyopathy. J Cell Biol. 2011;194(3):355-365.
4. Oka T, Akazawa H, Naito AT, Komuro I. Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure. Circ Res. 2014;114(3):565-571.
5. Khoury GA, Baliban RC, Floudas CA. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep. 2011;1:90.
6. Rose BA, Force T, Wang Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev. 2010;90(4):1507-1546.
7. Kehat I, Davis J, Tiburcy M, et al. Extracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth. Circ Res. 2011;108(2):176-183.
8. Kimura TE, Jinn J, Zi M, et al. Targeted deletion of the extracellular signal-regulated protein kinase 5 attenuates hypertrophic response and promotes pressure overload-induced apoptosis in the heart. Circ Res. 2010;106(5):961-970.
9. Gomez AM, Ruiz-Hurtado G, Benitah JP, Dominguez-Rodriguez A. Ca(2+) fluxes involvement in gene expression during cardiac hypertrophy. Curr Vasc Pharmacol. 2013;11(4):497-506.
10. Cipolletta E, Rusciano MR, Malone AS, et al. Targeting the CaMKII/ERK interaction in the heart prevents cardiac hypertrophy. PLoS ONE. 2015;10(6):e0130477.
11. Huang CY, Lee FL, Peng SF, et al. HSF1 phosphorylation by ERK/GSK3 suppresses RNF126 to sustain IGF-IIIR expression for hypertension-induced cardiomyocyte hypertrophy. J Cell Physiol. 2018;233(2):979-989.
12. Kojonazarov B, Novoyateleva T, Boehm M, et al. p38 MAPK inhibition improves heart function in pressure-loaded right ventricular hypertrophy. Am J Respir Cell Mol Biol. 2017;57(5):603-614.
13. Huang Z, Shu J, Jiang W, et al. Regulator of G protein signaling 6 facilitates cardiac hypertrophy by activating apoptosis signal-regulating kinase 1-P38/c-JUN N-terminal kinase 1/2 signaling. J Am Heart Assoc. 2018;7(19):e009179.
14. Ma Q, Liu Y, Chen L. JIP3 deficiency attenuates cardiac hypertrophy by suppression of JNK pathway. Biochem Biophys Res Comm. 2018;503(1):1-7.
15. Chan TO, Rittenhouse SE, Tischls PN. AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem. 1999;68:965-1014.
16. Wang HB, Huang SH, Xu M, et al. Galangin ameliorates cardiac remodeling via the MEK1/2-ERK1/2 and PI3K-AKT pathways. J Cell Physiol. 2019. [Epub ahead of print]. https://doi.org/10.1002/jcp.28216
17. Xiang M, Luo H, Wu J, et al. ADAM23 in cardiomyocyte inhibits cardiac hypertrophy by targeting FAK - AKT signaling. J Am Heart Assoc. 2018;7(18):e008604.
18. Pei H, Wang W, Zhao D, Su H, Su G, Zhao Z. G Protein-coupled estrogen receptor 1 inhibits angiotensin II-induced cardiomyocyte hypertrophy via the regulation of PI3K-Akt-mTOR signalling and autophagy. Int J Biol Sci. 2019;15(1):81-92.
19. Zhao D, Wang W, Wang H, et al. PKD knockdown inhibits pressure overload-induced cardiac hypertrophy by promoting autophagy via AKT/mTOR pathway. Int J Biol Sci. 2017;13(3):276-285.
20. Ahmed AA, Ahmed A, El Morsy EM, Nofal S. Dimethyl fumarate interferes with MyD88-dependent toll-like receptor signalling pathway in isoproterenol-induced cardiac hypertrophy model. J Pharm Pharmacol. 2018;70(11):1521-1530.
21. Hawley SA, Boudeau J, Reid JL, et al. Complexes between the LBK1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol. 2003;24(2).
22. Ai F, Chen M, Yu B, et al. Berberine regulates proliferation, collagen synthesis and cytokine secretion of cardiac fibroblasts via AMPK-mTOR-p70S6K signaling pathway. J Clin Exp Pathol. 2015;8(10):12509-12516.
23. Chen BL, Ma YD, Meng RS, et al. Activation of AMPK inhibits cardiomyocyte hypertrophy by modulating of the FOXO1/MurF1 signaling pathway in vitro. Acta Pharmacol Sin. 2010;31(7):798-804.
24. Chen LL, Zhu TB, Yin H, et al. Inhibition of MAPK signaling by eNOS gene transfer improves ventricular remodeling after myocardial infarction through reduction of inflammation. Mol Biol Rep. 2010;37(7):3067-3072.
25. Meng R, Pei Z, Zhang A, et al. AMPK activation enhances PPARalpha activity to inhibit cardiac hypertrophy via ERK1/2 MAPK signaling pathway. Arch Biochem Biophys. 2011;511(1-2):1-7.
26. Daskalopoulos EP, Dufeyes C, Bertrand L, Beauloye C, Horman S. AMPK in cardiac fibrosis and repair: actions beyond metabolic regulation. J Mol Cell Cardiol. 2016;91:188-200.
27. Feng Y, Zhang Y, Xiao H. AMPK and cardiac remodelling. Sci China Life Sci. 2018;61(1):14-23.
28. Grahame Hardie D. Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm Sin B. 2016;6(1):1-19.
29. Hayden MS, Ghosh S. NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 2012;26(3):203-234.
30. Peterson JM, Wang DJ, Shettigar V, et al. NF-kappaB inhibition rescues cardiac function by remodeling calcium genes in a Duchenne muscular dystrophy model. Nat Commun. 2018;9(1):3431.
31. Hong HQ, Lu J, Fang XL, et al. G3BP2 is involved in isoproterenol-induced cardiac hypertrophy through activating the NF-kappaB signaling pathway. Acta Pharmacol Sin. 2018;39(2):184-194.
32. Hu M, Zhang Z, Liu B, et al. Deubiquitinase inhibitor auranofin attenuated cardiac hypertrophy by blocking NF-kappaB activation. Cell Physiol Biochem. 2018;45(6):2421-2430.
33. Li TY, Lin SY, Lin SC. Mechanism and physiological significance of growth factor-related autophagy. Physiology. 2013;28(6):423-431.
34. Szatmari Z, Sass M. The autophagic roles of rab small GTPases and their upstream regulators: a review. Autophagy. 2014;10(7):1154-1166.
35. Xu X, Hua Y, Nair S, Bucala R, Ren J. Macrophage migration inhibitory factor deletion exacerbates pressure overload-induced cardiac hypertrophy through mitigating autophagy. *Hypertension*. 2014;63(3):490-499.

36. Zhu H, Tannous P, Johnstone JL, et al. Cardiac autophagy is a maladaptive response to hemodynamic stress. *J Clin Investig*. 2007;117(7):1782-1793.

37. Liu R, Molkentin JD. Regulation of cardiac hypertrophy and remodeling through the dual-specificity MAPK phosphatases (DUSPs). *J Mol Cell Cardiol*. 2016;101:44-49.

38. Li WM, Zhao YF, Zhu GF, et al. Dual-specific phosphatase 12 ameliorates cardiac hypertrophy in response to pressure overload. *Clin Sci*. 2017;131(2):141-154.

39. Liu R, van Berlo JH, York AJ, Vagnozzi RJ, Maillet M, Molkentin JD. DUSP8 regulates cardiac ventricular remodeling by altering ERK1/2 signaling. *Circ Res*. 2016;119(2):249-260.

40. Li CY, Zhou Q, Yang LC, et al. Dual-specificity phosphatase 14 protects the heart from aortic banding-induced cardiac hypertrophy and dysfunction through inactivation of TAK1-P38MAPK/JNK1/2 signaling pathway. *Basic Res Cardiol*. 2016;111(2):19.

41. Tamura S, Marunouchi T, Tanonaka K. Heat-shock protein 90 modulates cardiac ventricular hypertrophy via activation of MAPK pathway. *J Mol Cell Cardiol*. 2018;127:134-142.

42. Gupta I, Varshney NK, Khan S. Corrigendum: emergence of members of TRAF and DUB of ubiquitin proteasome system in the regulation of hypertrophic cardiomyopathy. *Front Genet*. 2018;9:409.

43. Li Q, Yang J, Mao AP, et al. Tripartite motif 8 (TRIM8) modulates TNFalpha- and IL-1beta-triggered NF-kappaB activation by targeting TAK1 for K63-linked polyubiquitination. *Proc Natl Acad Sci USA*. 2011;108(48):19341-19346.

44. Chen L, Huang J, Ji YX, et al. Tripartite Motif 8 contributes to pathological cardiac hypertrophy through enhancing transforming growth factor beta-activated kinase 1-Dependent signaling pathways. *Hypertension*. 2017;69(2):249-258.

45. Ji YX, Zhang P, Zhang XJ, et al. The ubiquitin E3 ligase TRAF6 exacerbates pathological cardiac hypertrophy via TAK1-dependent signalling. *Nat Commun*. 2016;7:11267.

46. Yan K, Ponnusamy M, Xin Y, Wang Q, Li P, Wang K. The role of K63-linked polyubiquitination in cardiac hypertrophy. *J Cell Mol Med*. 2018;22(10):4558-4567.

47. He B, Zhao YC, Gao LC, et al. Ubiquitin-specific Protease 4 is an endogenous negative regulator of pathological cardiac hypertrophy. *Hypertension*. 2016;67(6):1237-1248.

48. Ying X, Zhao Y, Yao T, et al. Novel protective role for ubiquitin-specific protease 18 in pathological cardiac remodeling. *Hypertension*. 2016;68(5):1160-1170.

49. Liu N, Chai R, Liu B, et al. Ubiquitin-specific protease 14 regulates cardiac hypertrophy progression by increasing GSK-3beta phosphorylation. *Biochem Biophys Res Comm*. 2016;478(3):1236-1241.

50. Su H, Wang X. The ubiquitin-proteasome system in cardiac proteinopathy: a quality control perspective. *Cardiovasc Res*. 2010;85(2):253-262.

51. Dantuma NP, Lindsten K. Stressing the ubiquitin-proteasome system. *Cardiovasc Res*. 2010;85(2):263-271.

52. Depre C, Powell SR, Wang X. The role of the ubiquitin-proteasome pathway in cardiovascular disease. *Cardiovasc Res*. 2010;85(2):251-252.

53. Lee H, Park J, Kim EE, Yoo YS, Song EJ. Proteasome inhibitors attenuated cholesterol-induced cardiac hypertrophy in H9c2 cells. *BMB Rep*. 2016;49(5):270-275.

54. Gu J, Hu W, Song ZP, Chen YG, Zhang DD, Wang CQ. Rapamycin inhibits cardiac hypertrophy by promoting autophagy via the MEK/ERK/Beclin-1 pathway. *Front Physiol*. 2016;7:104.

55. Song J, Zhu Y, Li J, et al. Pellino1-mediated TGF-beta1 synthesis contributes to mechanical stress induced cardiac fibroblast activation. *J Mol Cell Cardiol*. 2015;79:145-156.

56. Wang H, Lai Y, Mathis BJ, et al. Deubiquitinating enzyme CYLD mediates pressure overload-induced cardiac maladaptive remodeling and dysfunction via downregulating Nr2f. *J Mol Cell Cardiol*. 2015;84:143-153.

57. Wadosky KM, Berthiaume JM, Tang W, et al. MuRF1 mono-ubiquitinates TRalpha to inhibit T3-induced cardiac hypertrophy in vivo. *J Mol Endocrinol*. 2016;56(3):273-290.

58. Maejima Y, Utsi S, Zhai P, et al. Muscle-specific RING finger 1 negatively regulates pathological cardiac hypertrophy through down-regulation of calcineurin A. *Circ Heart Fail*. 2014;7(3):479-490.

59. Tian LF, Li HY, Jin BF, et al. MDM2 interacts with and downregulates a sarcomeric protein, TCAP. *Biochem Biophys Res Commun*. 2006;345(1):355-361.

60. Hauck L, Stanley-Hasania S, Fung A, et al. Cardiac-specific ablation of the E3 ubiquitin ligase Mdml2 leads oxidative stress, broad mitochondrial deficiency and early death. *PloS ONE*. 2017;12(12):e018961.

61. Toth A, Nickson P, Qin LL, Erhardt P. Differential regulation of cardiomyocyte survival and hypertrophy by MDM2, an E3 ubiquitin ligase. *J Biol Chem*. 2006;281(6):3679-3689.

62. Chen L, Huang J, Ji Y, et al. Tripartite motif 32 prevents pathological cardiac hypertrophy. *Clin Sci*. 2016;130(10):813-828.

63. Borleapawar A, Rangez AY, Bernt A, et al. TRIM24 protein promotes and TRIM32 protein inhibits cardiomyocyte hypertrophy via regulation of dysbindin protein levels. *J Biol Chem*. 2017;292(24):10180-10196.

64. Garea JR, Lima CD. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. *Nat Rev Mol Cell Biol*. 2010;11(12):861-871.

65. Kho C, Lee A, Jeong D, et al. SUMO1-dependent modulation of SERCA2a in heart failure. *Nature*. 2011;477(7366):601-605.

66. Tilemann L, Lee A, Ishikawa K, et al. SUMO-1 gene transfer improves cardiac function in a large-animal model of heart failure. *Sci Transl Med*. 2013;5(211):211ra159.

67. Kairouz V, Lipskaia I, Hajjar RJ, Chemaly ER. Molecular targets in heart failure gene therapy: current controversies and translational perspectives. *Ann N Y Acad Sci*. 2012;1254:42-50.

68. Penny WF, Hammond HK. Randomized clinical trials of gene transfer for heart failure with reduced ejection fraction. *Hum Gene Ther*. 2017;28(5):378-384.

69. Lee A, Oh JG, Gorski PA, Hajjar RJ, Kho C. Post-translational modifications in heart failure: small changes, big impact. *Heart Lung Circ*. 2016;25(4):319-324.

70. Huang CY, Kuo CH, Pai PY, et al. Data supporting the angiotensin II type 1 receptor antagonist losartan for heart failure with reduced ejection fraction. *Am J Physiol Heart Circ Physiol*. 2015;309(1):H833-H843.

71. Hu Y, Tomizawa K, Oda Y, et al. Critical role of calpain-mediated cleavage of calcineurin in excitotoxic neurodegeneration. *J Biol Chem*. 2004;279(6):4929-4940.
Gupta MK, Gulick J, Liu R, Wang X, Molkentin JD, Robbins J. Sumo E2 enzyme UBC9 is required for efficient protein quality control in cardiomyocyte. Circ Res. 2014;115(8):721–729.

Gupta MK, McDonon PM, Gulick J, James J, Khalli K, Robbins J. UBC9-mediated sumoylation favorably impacts cardiac function in compromised hearts. Circ Res. 2016;118(12):1894–1905.

Wright JN, Collins HE, Wende AR, Chatham JC. O-GlcNAcylation and cardiovascular disease. Biochem Soc Trans. 2017;45(2):545–553.

Ding F, Yu L, Wang M, Xu S, Xia Q, Fu G. O-GlcNAcylation involvement in high glucose-induced cardiac hypertrophy via ERK1/2 and cyclin D2. Amino Acids. 2014;43(2):339–349.

Chen J, Liu J, Huang J, Lu J, et al. Histone deacetylase and GATA-4 repress inflammatory cardiac fibrosis. Am J Physiol Heart Circ Physiol. 2013;305(1):H142–153.

Cannon MV, Stille HH, Sibbesen JW, et al. Cardiac LXRalpht protects against pathological cardiac hypertrophy and dysfunction by enhancing glucose uptake and utilization. EMBO Mol Med. 2015;7(9):e015326.

Facundo HT, Brainard RE, Watson LJ, et al. O-GlcNAc signaling is essential for postnatal viability. Am J Physiol Heart Circ Physiol. 2014;306(1):H1-153.

Greco CM, Condorelli G. Epigenetic modifications and noncoding RNAs in cardiac hypertrophy and failure. Nat Rev Cardiol. 2015;12(8):488–497.

Papait R, Serio S, Pagiatkas C, et al. Histone methyltransferase G9a is required for cardiomyocyte homeostasis and hypertrophy. Circulation. 2017;136(13):1233–1246.

Zhang QJ, Chen HZ, Wang L, Liu DP, Hill JA, Liu ZP. The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice. J Clin Investig. 2011;121(6):2447–2456.

Rosales W, Lizcano F. The histone demethylase JMJD2A modulates the induction of hypertrophy markers in iPSC-derived cardiomyocyte. Front Genet. 2017;8:9.

Liu X, Wang X, Bi Y, Bu P, Zhang M. The histone demethylase PHF8 represses cardiac hypertrophy upon pressure overload. Exp Cell Res. 2015;335(1):123–134.

Olson EN, Backs J, McKinsey TA. Control of cardiac hypertrophy and heart failure by histone acetylation/deacetylation. Novartis Found Symp. 2006; 274:3-12; discussion 13–19, 152–155, 272–156.

Li Y, Li Z, Zhang C, et al. Cardiac fibroblast-specific activating transcription factor 3 protects against heart failure by suppressing MAP2K3-p38 signaling. Circulation. 2017;135(21):2041–2057.

Ding F, Yu L, Wang M, Xu S, Xia Q, Fu G. O-GlcNAc-activated AMPK signaling controls cardiac myocyte hypertrophy through MAPK3 and FLI1. Circulation. 2017;135(21):2041–2057.

Papait R, Serio S, Pagiatakis C, et al. Histone methyltransferase G9a represses cardiac hypertrophy upon pressure overload. Am J Physiol Heart Circ Physiol. 2011;301(1):257–266.

Olson EN, Backs J, McKinsey TA. Control of cardiac hypertrophy and heart failure by histone acetylation/deacetylation. Novartis Found Symp. 2006; 274:3-12; discussion 13–19, 152–155, 272–156.

Li Y, Li Z, Zhang C, et al. Cardiac fibroblast-specific activating transcription factor 3 protects against heart failure by suppressing MAP2K3-p38 signaling. Circulation. 2017;135(21):2041–2057.

Li J, Huang J, Lu J, et al. Sirtuin 1 represses PKC-zeta activity through regulating interplay of acetylation and phosphorylation in cardiac hypertrophy. Br J Pharmacol. 2019;176(3):416–435.

Kim GR, Cho SH, Kim HS, et al. Histone deacetylase and GATA-binding factor 6 regulate arterial remodeling in angiotensin II-induced hypertension. J Hypertens. 2016;34(11):2206–2219.

Morales CR, Li DL, Pedrozo Z, et al. Inhibition of class I histone deacetylases blunts cardiac hypertrophy through TSC2-dependent mTOR repression. Sci Signal. 2016;9(422):ra34.

Peng C, Luo X, Li S, Sun H. Phenylephrine-induced cardiac hypertrophy is attenuated by a histone acetylase inhibitor anacardic acid in mice. Mol BioSyst. 2017;13(4):714–724.

Peng C, Zhang W, Zhao W, Zhu J, Huang X, Tian J. Alcohol-induced histone H3K9 hyperacetylation and cardiac hypertrophy are reversed by a histone acetylases inhibitor anacardic acid in developing murine hearts. Biochimie. 2015;113:1–9.

Biernacka A, Frangogiannis NG. Aging and cardiac fibrosis. Aging Dis. 2011;2(2):158–173.

Nural-Guvener H, Zakharaova L, Feehery L, Sljukic S, Gaballa M. Anti-fibrotic effects of class I HDAC inhibitor, mocetinostat is associated with IL-6/Stat3 signaling in ischemic heart failure. Int J Mol Sci. 2015;16(5):11482–11499.

Nural-Guvener HF, Zakharaova L, Nimlos M, Popovic S, Mastroeni D, Gaballa MA. HDAC class I inhibitor, Mocetinostat, reverses cardiac fibrosis in heart failure and diminishes CD90+ cardiac myofibroblast activation. Fibrogenesis Tissue Repair. 2014;7:10.

Williams SM, Golden-Mason L, Ferguson BS, et al. Class I HDACs regulate angiotensin II-dependent cardiac fibrosis via fibroblasts and circulating fibrocytes. J Mol Cell Cardiol. 2014;67:112–125.

Jeong MY, Lin YH, Wenersten SA, et al. Histone deacetylase activity governs diastolic dysfunction through a nongenomic mechanism. Sci Transl Med. 2018;10(427).

Schiaffarella GG, Sannino A, Toscano E, et al. Cardiovascular effects of histone deacetylase inhibitors epigenetic therapies: systematic review of 62 studies and new hypotheses for future research. Int J Cardiol. 2016;219:396–403.

Tang X, Chen XF, Wang NY, et al. SIRT2 acts as a cardioprotective deacetylase in pathological cardiac hypertrophy. Circulation. 2017;136(21):2051–2067.

Sarikhani M, Maity S, Mishra S, et al. SIRT2 deacetylase represses NFAT transcription factor to maintain cardiac homeostasis. J Mol Cell Cardiol. 2017;114(2):368–378.

Wei T, Huang G, Gao J, et al. Sirtuin 3 deficiency accelerates hypertensive cardiac remodeling by impairing angiogenesis. J Am Heart Assoc. 2017;6(8).

Sundaresan NR, Vasudevan P, Zhong L, et al. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med. 2012;18(11):1643–1650.

Zhang X, Li W, Shen P, et al. STAT3 suppression is involved in the protective effect of SIRT6 against cardiomyocyte hypertrophy. J Cardiovasc Pharmacol. 2016;68(3):204–214.

Pillai VB, Sundaresan NR, Gupta MP. Regulation of Akt signaling by sirtuins: its implication in cardiac hypertrophy and aging. Circ Res. 2014;114(2):368–378.

Pejaver V, Hsu WL, Xin F, Dunker AK, Uversky VN, Radivoyc P. The structural and functional signatures of proteins that undergo multiple events of post-translational modification. Protein Sci. 2014;23(6):1077–1093.

Habibian J, Ferguson BS. The crosstalk between acetylation and phosphorylation: emerging new roles for HDAC inhibitors in the heart. Int J Mol Sci. 2018;20(1):102.

Hawley SA, Davison M, Woods A, et al. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it
phosphorylates AMP-activated protein kinase. J Biol Chem. 1996;271(44):27879–27887.

116. Wang Z, Zhang XJ, Ji YX, et al. The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med. 2016;22(10):1131–1139.

117. Mao ZJ, Zhang QL, Shang J, Gao T, Yuan WJ, Qin LP. Shenfu Injection attenuates rat myocardial hypertrophy by up-regulating miR-19a-3p expression. Sci Rep. 2018;8(1):4660.

How to cite this article: Yan K, Wang K, Li P. The role of post-translational modifications in cardiac hypertrophy. J Cell Mol Med. 2019;23:3795–3807. https://doi.org/10.1111/jcmm.14330