Title	Tailored adsorption of His6-tagged protein onto nickel(II)–cyclam grafted mesoporous silica
Authors(s)	Gaffney, Darragh A., O'Neill, Sarah, O'Loughlin, Mary C., Hanefeld, Ulf, Cooney, Jakki C., Magner, Edmond
Publication date	2010-02-21
Publication information	Gaffney, Darragh A., Sarah O’Neill, Mary C. O’Loughlin, Ulf Hanefeld, Jakki C. Cooney, and Edmond Magner. “Tailored Adsorption of His6-Tagged Protein onto nickel(II)–cyclam Grafted Mesoporous Silica” 46, no. 7 (February 21, 2010).
Publisher	RSC publications
Item record/more information	http://hdl.handle.net/10197/2839
Publisher’s version (DOI)	10.1039/b915169a
Tailored Adsorption of His$_6$-tagged Protein onto Nickel(II) Cyclam Grafted Mesoporous Silica

Darragh A. Gaffneya,b, Sarah O’Neilla, Mary O’Loughlinb, Ulf Hanefeldc, Jakki Cooneyb, Edmond Magnera

The specific immobilisation of a histidine tagged protein, Spi, onto mono-anchored nickel(II) cyclam functionalised SBA-15 is reported.

Enzymes have the capacity to catalyse reactions with high regio- and chemoselectivity while operating under mild conditions, properties which have led to a surge in the use of biocatalysts. However, the application of biocatalysts in many industrial applications is restricted as the process of removing the enzyme from the reaction mixture can cause denaturation of the biocatalyst. Immobilized enzymes can display activities superior to that of the free enzyme$^{1-4}$ while remaining stable and exhibiting significant catalytic activity in harsh media such as non-aqueous solvents5,6. However, more often than not immobilized enzymes display activities significantly less than free enzyme7. Mesoporous silicates (MPS) have been extensively studied as supports for enzymes8. Some of the properties which make MPS attractive as solid supports include narrow pore size distributions, large surface areas (up to 1500 m2/g), chemical and thermal stability, the ability to chemically functionalise the surface, and pore dimensions capable of accommodating enzymes. While a wide range of proteins have been immobilised on to MPS9,10, in many cases the immobilised enzyme displays reduced activity in comparison to the free enzyme and can not be efficiently recycled due to leaching of the enzyme from the support.

Mesoporous organic-inorganic hybrid materials11,14 possess co-ordination binding sites and hydrophobic/hydrophilic binding patches. Among the possibilities offered by this class of solids is the ability to strongly chelate metal cations which can remain chemically accessible. Previous reports of silicates functionalised with cationic metal salts have been used for electroconductive15, biocatalytic16,17 and optical18 applications. Tailoring the surface of a mesoporous silicate and the surface of a protein can enable specific anchoring of the protein. This can negate consideration of the many variables involved when immobilising a protein onto MPS19. The approach taken here utilises a technique in widespread use in recombinant protein purification; immobilised metal affinity chromatography (IMAC). Adsorption of histidine-tagged proteins on to Ni or Co functionalised surfaces has been demonstrated previously3,16,20. Here we present a method for the generation of a supported biocatalyst in which SBA-15 is functionalised with Ni$^{2+}$ and used as a host material for the specific adsorption of a model protein, His$_6$-tagged Spi.

SBA-15 is a mesoporous silicate generated from a non-ionic surfactant template and displays a hexagonally ordered array of mesopores with microporous interconnections, resulting in a unique 3-D micro-mesoporous network. Cyclam (1,4,8,11-tetraazacyclotetradecane) can bind to a range of transition metals, including nickel. Ni-cyclam complexes have been extensively studied21, in particular the tetra-N-substituted complexes22,23. Cyclam which is mono-tethered to the surface of SBA-15 displays a greater degree of metal uptake than di- or tetra-tethered cyclams24. In this study, a mono-N-substituted Ni$^{2+}$ cyclam complex was attached to the surface of a mesoporous silicate in a stepwise manner (Scheme 1). The protein used as a model system, Spi25, is a small protease inhibitor from the human pathogen Streptococcus pyogenes. The His$_6$-tagged form was chosen due to its small size (14.7 kDa) and favorable pI (5.4). Spi does not possess a high surface charge, ensuring that electrostatic interactions with the carrier will be minimized.

SBA-15-Ni-cyclam$^+$ was prepared26 from SBA-15 with a pore diameter of 8.5 nm. SBA-15 was functionalised with 3-iodo-trimethoxypropylsilane to provide an iodo-functionality on the surface. Unfunctionalised SBA-15 was used as the control material. The synthesis can be monitored from the colour changes which occur, depending on the functional groups present. The silicate itself is a white powder and upon attachment of the iodo functionality it turned a green colour. This green colour faded as the iodo functionality was removed and attachment of the cyclam occurred, yielding a white powder once again. Upon complexion of nickel with the cyclam ring the final material remained a pale yellow colour indicating that nickel cyclam had been formed27. SBA-15 showed a pore diameter of 8.5 nm, estimated from condensation relative pressure28, and a BET surface area of 742 m2/g (Table 1). Low-angle XRD analysis displayed a very
intense diffraction peak and two weaker peaks, assigned to the 100, 110 and 200 planes respectively, which are characteristic of the material. The procedure required for the surface functionalisation of the silicate had a notable effect on the organic environment. While TEM images of SBA-15-Ni-cyclam displayed a N/Ni molar ratio of 6:1, close to the 4:1 ratio expected for complete nickel-cyclam coordination. A nickel/protein excess ensures availability of the metal for protein binding as well as compensating for the presence of micropores in the SBA-15 scaffold which are inaccessible to the protein. Thermal gravimetric analysis of SBA-15, SBA-15-cyclam and SBA-15-Ni-cyclam, displayed a sharp weight loss at 50°C, corresponding to the evaporation of physisorbed water. Above 50°C, the as-synthesised SBA-15 did not display any further significant reduction in weight, as expected. However, SBA-15-cyclam and SBA-15-Ni-cyclam both display weight losses from 300 – 400 °C with SBA-15-Ni-cyclam displaying a markedly greater loss than SBA-15-cyclam (29 and 17% respectively). These weight losses can be attributed to the loss of Ni-cyclam and cyclam, respectively.

The functionalised silicate, SBA-15-Ni-cyclam and the unfunctionalised silicate, SBA-15 were examined for specific adsorption of His₆-Spi. The dimensions of His₆-Spi were calculated to be 3.7 x 3.3 x 2.4 nm³. SBA-15-Ni-cyclam has a pore of 5.5 nm, large enough to accommodate the protein. SBA-15 and SBA-15-Ni-cyclam were incubated in a solution of the protein in 25 mM TRIS buffer pH 7.4. Performing the immobilisation at neutral pH ensures that the surface of His₆-Spi (pI 5.4) and SBA-15 (pI 3.9) both possess an overall negative charge, conditions which should prevent favourable electrostatic interactions between the protein and the silicate as well as directing interactions through the His₆-tag and the nickel on the silicate surface. However, when both SBA-15 and SBA-15-Ni-cyclam were incubated with the protein solution, they displayed close to complete uptake of the His₆-Spi, with SBA-15 and SBA-15-Ni-cyclam adsorbing 7.2 µmole g⁻¹ (91% of protein) and 6.7 µmole g⁻¹ (85% of protein), respectively (Table 2).

To optimise the interaction and increase the binding specificity between Ni²⁺ and His₆-tag, pH was adjusted to 9, increasing the overall surface charges of the silicate and the protein. The incubation was also performed at varying ionic strengths, 50 mM, 500 mM and 1 M. At low ionic strength (50 mM), there was approximately 50% reduction in protein uptake onto SBA-15 and SBA-15-Ni-cyclam (3.76 µmole g⁻¹ for both silicates). As the ionic strength increased, the amount of protein adsorbed increased correspondingly, to ~5.35 µmole g⁻¹ (SBA-15 and SBA-15-Ni-cyclam) on incubation at 500 mM and 6.45 and 6 µmole g⁻¹ at an ionic strength of 1 M.

In determining the type of interaction between protein and silicate (ionic, hydrophobic, nickel coordination) the adsorption behaviour observed indicated that the interaction between protein and support was not electrostatic. Such interactions between protein and support would have resulted in a reduction of protein uptake as the ionic strength increased, due to the shielding effect of the increased ion content on both the protein and silicate surfaces. However, the opposite occurred, indicating that adsorption was likely to be occurring either through hydrophobic interactions or nickel coordination. As adsorption occurred on both nickel functionalised material and the unfunctionalised material on exposure to high ionic strength, it is reasonable to conclude that adsorption is occurring through the hydrophobic patches on the Spi surface and not through nickel co-ordination as desired. PEG₄₀₀ (2%v/v) was added, essentially abolishing

Table 1 Physicochemical properties obtained from nitrogen adsorption analysis for the mesoporous materials used in this study.

Material	BET Surface Area (m²/g)	Pore Volume (cm³/g)	Pore Diameter (nm)
SBA-15	742	0.9	8.5
SBA-15-Ni-cyclam	138	0.13	5.5

*a estimated from condensation relative pressure³⁸"
non-specific binding of His6-Spi to unfuctionalised SBA-15. After pre-incubation of His6-Spi in 2% PEG400, SBA-15-Ni-cyclam displayed a protein uptake of 2.73 µmole g⁻¹ (79% of protein), whereas the unfuctionalised SBA-15 displayed a protein uptake of only 0.13 µmole g⁻¹ (4%). Specific binding of His6-Spi to SBA-15-Ni-cyclam in the presence of PEG is lower due to the lower initial concentration of protein (17.4 vs. 39.3 µM). Leaching studies of His6-Spi immobilised onto SBA-15-Ni-cyclam displayed no desorption of the protein. To further confirm the specific nature of the interaction of the histidine tag and the Ni(II)-cyclam complex, SBA-15 and SBA-15-Ni-cyclam were exposed to Spi from which the His6-tag had been removed by proteolysis. SBA-15 displayed no protein uptake and SBA-15-Ni-cyclam displayed a negligible protein uptake of only 0.13 µmole g⁻¹. This result provides strong evidence that the interaction between His6-Spi and SBA-15-Ni-cyclam in the presence of 2% PEG400 is as a result of coordination of the Ni²⁺ by the imidazole rings of the His6-tag.

As protein uptake occurred primarily on the nickel functionalised material, we conclude that adsorption occurred through the His6-tag on available nickel sites. These results open up the possibility of immobilising any His6-tagged protein/enzyme for use as a stable and reusable biocatalyst as well as obviating the necessity of an often laborious search for ideal immobilisation conditions for specific proteins/enzymes.

Notes and references

*Materials and Surface Science Institute, SFI-SRC in Solar Energy Conversion, Department of Chemical and Environmental Science, University of Limerick, Limerick, Ireland. Tel: +353-61-202629 Email: Edmond.Magner@ul.ie

+Gebouw voor Scheikunde, Afdeling Biotechnologie, Julianalaan 136, 2628 BL Delft, The Netherlands. Tel: +31-15-2789304 Email: U.Hanefeld@tudelft.nl

†Electronic Supplementary Information (ESI) available: [Synthesis of SBA-15-Ni-cyclam, Synthesis of His6-Spi and Spi, Enzyme adsorption procedure, Leaching experiments, Characterization data; Nitrogen adsorption analysis, Low-angle XRD, XPS]. See DOI: 10.1039/b000000c.

The assistance of Dr Fathima Laffir (XPS) and of Dr. Sarah Hudson for general discussions are gratefully acknowledged. This work was funded by Science Foundation Ireland (RF06/CHE001).

1 U. Hanefeld, L. Gardossi, and E. Magner, Chemical Society Review, 2009, 38, 453.
2 J. Deere, E. Magner, J. G. Wall, and B. K. Hodnett, Chemical Communications, 2001, 5, 465-466.
3 M. Miyazaki, I. Kaneno, S. Yamau, T. Honda, M. P. P. Briones, M. Uehara, K. Arina, K. Kanno, K. Yamashita, Y. Yamaguchi, H. Nakamura, H. Yonezawa, M. Fujii, and H. Maeda, Protein & Peptide Letters, 2005, 12, 207-210.
4 W. Tischer and V. Kasche, Trends in Biotechnology, 1999, 17, 326-335.
5 A. M. Klibanov, Nature, 2001, 409, 241-246.
6 M. Petkar, A. Lali, P. Caimi, and M. Daminati, J. of Mol. Catal. B: Enzymatic, 2006, 39, 83-90.
7 J. Aburto, M. Ayala, I. Bustoam-Jaimes, C. Montiel, E. Terres, J. M. Dominguez, and E. Torres, Microporous and Mesoporous Materials, 2005, 83, 193-200.
8 Y. Yan and D. Y. Zhao, Chem. Rev., 2007, 107, 2821-2860.
9 M. Hartmann, Chem. Mater., 2005, 17, 4577-4593.
10 H. H. P. Yiu and P. A. Wright, J. Mater. Chem., 2005, 15, 3690-3700.
11 A. Sayari and M. Jaroniec, eds., Recent developments in the synthesis and chemistry of periodic mesoporous organosilicas, Elsevier, 2002.
12 S. Guan, S. Inagaki, T. Oh uma, and O. Terasaki, Microporous and Mesoporous Materials, 2001, 44-45, 165-172.
13 K. Tsuji, C. W. Jones, and M. E. Davis, Microporous and Mesoporous Materials, 1997, 29, 339-349.
14 C. P. Jaroniec, M. Kruk, M. Jaroniec, and A. Sayari, J. Phys. Chem. B, 1998, 102, 5503-5510.
15 J. F. Diaz, K. J. Balkus, F. Bedioui, V. Kurchev, and L. Kevan, Chemistry of Materials, 1997, 9, 61-67.
16 K. E. Cassimjee, T. Martin, B. Cecilia, and B. Per, Biotechnology and Bioengineering, 2008, 99, 712-716.
17 Y. S. Cho, J. C. Park, B. Lee, Y. Kim, and J. Yi, Catalysis Letters, 2002, 81, 89-96.
18 R. J. P. Corriu, A. Mehdi, C. Reyne, and C. Thieuleux, Chemical Communications, 2003, 1564-1565.
19 S. Hudson, J. Cooney, and E. Magner, Angewandte Chemie International Edition, 2004, 47, 8582-8594.
20 E. Kang, J.-W. Park, S. J. McClellan, J.-M. Kim, D. P. Holland, G. U. Lee, E. I. Fraumes, K. Park, and D. H. Thompson, Langmuir, 2007, 23, 6281-6288.
21 T. K. Haden, H. Kemira, and B. C. Acta, 1970, 53, 617-622.
22 M. Meyer, V. Dahaoui-Gindrey, C. Lecomte, and R. Guiard, Coordination Chemistry Reviews, 1998, 178-180, 1313-1405.
23 C. Bucher, E. Duval, J.-M. Barbe, J.-N. Verpeaux, C. Amatore, R. Guillard, L. Le Pape, J.-M. Latour, S. Dahaoui, and C. Lecomte, Inorganic Chemistry, 2001, 40, 5722-5726.
24 M. Etienne, Stephanie Goubert-Renaudin, Yoann Rousselin, Claire Marichal, Franck Denat, Benedicte Lebeau, and A. Walcarius, Langmuir, 2009, 25, 3137-3145.
25 T. F. Kagawa, P. W. O’Toole, and J. C. Cooney, Molecular Microbiology, 2005, 57, 650-666.
26 G. Dubois, Robert J. P. Corriu, Catherine Reyet, Stéphane Brandès, Franck Denat, and R. Guiard, Chemical Communications, 1999, 2283.
27 J. Lalitham and V. R. Vijayaraghavan, Proceedings Indian Academy of Science (Chem. Sci.), 2000, 112, 507-514.
28 M. Kruk and M. Jaroniec, Chemistry of Materials, 2001, 13, 3169-3183.
29 D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky, J. Am. Chem. Soc., 1998, 120, 6024-6036.
30 NIST X-ray Photoelectron Spectroscopy Database, Version 3.5, National Institute of Standards and Technology, Gaithersburg, 2003.