Model of Make in India Possibilities: An Indian Operations Dream

S. C. Sivasundaram Anushan*, P. Anbarasu, A. Naveen Jose Antony and K. Selva Pandi
School of Management, SASTRA University, Thanjavur - 613401, Tamil Nadu, India; sivasundaramanushan@mba.sastra.edu, anbuirttit@gmail.com, naveenjoseantony@gmail.com, selvapandi7@gmail.com

Abstract

Objectives: To know the opinion about possibilities of Make in India program and to study the awareness of Logistics, Quality Management and Production Planning and control concepts among respondents. Methods/Analysis: Descriptive research design was used. The primary data was collected from Urban and Rural areas around Thanjavur city from 390 respondents using structured questionnaire adopting simple random sampling technique. The data was analyzed using descriptive statistics, one-way Analysis of variance and Multiple Regression. Findings: Only 31.53 % of the respondents believe it is possible to make in India. This shows that the study respondents feel that it is impossible to make in India with the present knowledge about the modern manufacturing concepts. Adequate knowledge about the concepts of Logistics Quality Management and Production planning and Control were not found among the respondents. The respondents were also not much aware about the adoption of production concepts in the Indian manufacturing industries. The study revealed that there is no significant difference in the knowledge about the manufacturing concepts between the Rural and Urban people. Applications/Improvements: The novelty lies in estimation of Make in India Possibilities from the awareness towards Production Planning and Control, Logistics and Quality concepts by building Multiple regression model.

Keywords: Logistics, Make in India, Multiple Regression, One-way ANOVA, PPC, Quality Concepts

1. Introduction

Manufacturing system is an open system that gets its inputs from the external environment and provides its output to the external environment for consumption after using a conversion process. India has never given manufacturing sector its due importance and has been predominantly an agrarian country that promotes agricultural sector. Indian Government after decades of neglecting manufacturing sector has realised the importance of it in nation’s growth. The new slogan of the government is “Make in India” an initiative of the Government of India to encourage companies to manufacture their products in India. The three pillars to bring about a positive transformation in manufacturing are improved regulatory climate, enabling manufacturing and opening Foreign Direct Investment (FDI) in key sectors. An interface between entrepreneurs and the government, both central and state, has been made. Having this dream in mind some of the objectives of production and operations management which can be quantified are such as quality management techniques, production planning control techniques and logistics techniques. However, other objectives for the production and operations management systems may be more difficult to quantify such as responsiveness, flexibility and quality of service. A brief review of past literature has been made and is presented.

5S is an approach in the work place for the improvement of various aspects such as efficiency, productivity through an organized manner. 5S denotes: seiri (sort), seiton (set in order), seiso (shine), seiketsu (standardize), and shitsuke (sustain)1. The concept of just-in-time (JIT) production system comprises of continuous improvement by waste elimination. Just in time is apart of Japanese
manufacturing systems. It was used by the legendary automaker Toyota. Competitive nature of the market is the reason for various organizations are being forced to improve their capacity in supplying, distribution of goods and production in order to meet the customer requirements at the minimum cost and time where cross docking strategy place a significant role in the distribution cycle of many organization. The models for Aggregate Production Planning mostly omit the dynamics of the underlying production system due to assumptions of fixed capacity buffers and predetermined lead times. Process waste and instability are the major reasons for the high cost of logistics.

The next destination of a work-in progress from the previous destination can be identified through some temporal criteria: the time needed to reach the destination, the load of the workstation to reach, the duration of the operation to be completed in the destination station, the irresponsibility of product components in this station. The core processes of Six Sigma involve reduction in quality variation and Performance before and after Six Sigma designs had a significant effect on quality. Two structural equation models (SEM) were used to assess the impact of JIT elements related to the final product over JIT benefits obtained. The 13 of JIT variable elements were reduced to two major categories using factor analysis. The impact of 5S in the assembly can be of four study factors in a manufacturing process: quality, productivity, industrial security and organizational climate.

The reduction of total flow time in both inbound and outbound jobs is a serious problem in Cross-docking was noticed. The problem of scheduling is formulated in two-stages and proposes heuristics relating to the least case performance analysis under parallel, uniform and open-shop machines. The utilization of Information and Communication Technology along with innovative business approach in enhancing supply chain efficiency to study the evolution of various business models of business actors was stressed.

Functions and roles of Information and Communication Technology in logistics are important. Various Information Systems that are used in Green Logistics along with their potential to solve various unsolved logistics research problems was identified. Implementation model for automobile service quality management was constructed and achieved excellent results in the service quality improvement. The combinatorial complexity of the Traveling Salesman Problem results in approximate or heuristic solution procedures are almost always employed in practice. The number of production that are needed for each month are depend on different factors such as sales forecasting, primary inventory, safety stock, the cost of the products, etc. The conventional style of checking and approving the engines based on the value pattern of Specific Fuel Consumption (SFC) which uses the design specification comparison with the actual data generally yields very minimal scope for the improvement of product quality in the perspective of design. Safety and reliability of the product because of the adherence of the same design specifications of the part drawings supplied by various suppliers.

As a first step towards Make in India, it is imperative to know the level of awareness towards various production and operations concepts and the opinion of the people about adoption of these concepts. It is difficult to study level of awareness towards all of the production and operations concepts, so a sample of concepts such as Logistics, Production Planning and Control and Quality has been taken into consideration. This forms the importance of the present study.

The objectives of the study based on the need for the study are as follows:
1. To test whether the opinion of Make in India possibilities vary between rural and urban respondents; and
2. To estimate the Make in India possibilities from the awareness towards
 a. Logistics techniques,
 b. Production planning and control techniques, and
 a. Quality Management concepts.

2. Methodology

The study has used a descriptive research design, using a structured questionnaire to collect information from 390 respondents selected conveniently from the districts of Trichy and Thanjavur, analyzing using percentage analysis, mean, standard deviation, one-way ANOVA, and Multiple Regression and presenting them through univariate and multivariate tables.

3. Results and Discussions

Results and discussions revolve around the characteristics of the selected sample, their perception towards make in India possibilities, influence of demographic character-
istics on make in India possibilities, Model of make in India formed from awareness towards PPC, Logistics, and Quality concepts.

3.1 Characteristics of Respondents

The respondents of the present study possess the following characteristics. The characteristic mainly falls into gender, age, religion, education and residing place. This table portrays the characteristics of the respondents. [Table 1] Among the 390 respondents, the age of 42 respondents forming 10.8% lies between 18 to 20 years, 72 respondents forming 20% lies between 21 to 22 years, 120 respondents forming 30.8% lies between 23 to 24 years, 72 respondents forming 18.5% lies between 25 to 26 years and the rest of the 78 respondents forming 20% were above 26 years. This shows that a respondent whose age lies between 23 to 24 years forms a larger category. 165 respondents forming 42.3% were ruralites and the rest of the 225 respondents forming 57.7% were urbanites. This shows that 49.2% of the respondents were Hindus.

3.2 Make in India

The Government elected at the centre wants to Make in India. Lot of publicity has been carried out in this regard. Many programmes have been jointly sponsored by Make in India mission with CII, ASCHOM, SIAM, etc., The Prime Minister of the country is continuously inviting industries from the developed countries to manufacture in India. How far a common man perceives the possibilities of making in India really matters. This part of the analysis presents the opinion of the respondents in this regards. The results of three models built using multiple regression are discussed.
3.2.1 Perception about Possibilities for Make in India

When the respondents were enquired about the possibility of Make in India the responses were as follows: [Table 2] Out of the 390 respondents 180 forming 46.2% felt that it is impossible to Make in India, 6 respondents forming 1.5% felt it is highly impossible. On the other hand, 162 respondents forming 41.5% felt that it is neither possible nor impossible, 33 respondents forming 8.5% felt that it is possible and the rest of the 9 respondents forming 2.3% felt that it is highly possible. Only 31.53 % of the respondents believe it is possible to make in India. This signifies that the study respondents feel it is impossible to make in India.

3.2.2 Influence of Demographic Characteristics on the Possibilities of Make in India

[Table 3] The significance of 'F' is more than 0.05 for the demographic characteristics such as age, gender and nature of residing place. So it is concluded that the opinion regarding the possibility of Make in India do not vary with the demographic characteristics such as age, gender and nature of residing place at 5% it is further concluded that opinion regarding the possibility of Make in India do vary with the demographic characteristics such as, education, religion at 5%.

[Chart 1] The summary of all models show that the highest explanation of 95.10% for make in India possibilities is exhibited by awareness level towards Quality concepts.

3.2.3 Descriptive Statistics of Awareness towards Basic Logistics Concepts for Make in India

[Table 4] The highest awareness is exhibited for the logistics concepts ‘Catalogue Hubs’ with a mean agreement score of 3.5615, followed by ‘Continuous Replenishment’ with a mean agreement score of 3.5538; and the third highest agreement is observed for the variable ‘Pre-sourcing’ with a mean agreement score of 3.5000. The lowest awareness is exhibited for the logistics concepts ‘Just-in-time delivery’ with a mean agreement score of 2.7769, followed by ‘Inventory Management’ with a mean agreement score of 2.8154; and the third highest agreement is observed for the variable ‘Preassembled systems’ with a mean agreement score of 2.9154. The highest variation in awareness is exhibited for the logistics concepts ‘Catalogue Hubs’ with a standard deviation of 1.15843, followed by ‘Value
Analysis’ with a standard deviation of 1.15214; and the third highest agreement is observed for the variable ‘Forward Placement’ with a standard deviation of 1.10397. The lowest variation in awareness is exhibited for the logistics concepts ‘Continuous Replenishment’ with a standard deviation of .88746, followed by ‘Preassembled systems’ with a standard deviation of .92134; and the third highest agreement is observed for the variable ‘Cross docking’ with a standard deviation of .93324.

Table 4. Descriptive statistics of awareness towards basic logistics concepts

Basic logistics concepts	Mean	Std. Deviation
Just-in-time delivery	2.7769	.98000
Demand smoothing	3.2385	1.04503
On-site market place	3.1846	1.03748
Reusable packaging	3.2615	1.01318
Preassembled systems	2.9154	.92134
ICT systems	3.1615	.95237
Inventory Management	2.8154	.99188
Third party logistics	3.4846	1.09146
Reverse Logistics	3.4000	1.04353
Cross docking	3.1769	.93324
Continuous Replenishment	3.5538	.88746
Value Analysis	3.4462	1.15214
Forward Placement	3.2769	1.10397
Soul Sourcing	3.4231	1.08174
Catalogue Hubs	3.5615	1.15843
Pre-sourcing	3.5000	1.07734

Source: Computed from Primary data

3.2.4 Model of Make in India Possibilities from the Awareness towards basic Logistics Concepts

A model of Make in India possibilities is formed from the awareness towards basic logistics concepts. The model also helps us to identify the significant concepts that build the opinion towards Make in India possibilities [Table 5]. The r^2 value of 0.811, shows that the independent variables are able to explain 81.1% of the variance on the estimate or dependent variable and the significance of F being less than 0.05 signify that the model is a good fit [Table 6].

Make in India possibilities = $a+b_1x_1 + b_2x_2+…….+ b_{16}x_{16}$

Demand smoothing, Reusable packaging, Cross docking, and Forward Placement are significant in the estimation of Make in India possibilities. Just-in-time delivery, on-site market place, Preassembled systems, ICT systems, inventory management, third party logistics, reverse logistics, continuous replenishment, value analysis, soul sourcing, catalogue hubs, and pre-sourcing are insignificant in the estimation of Make in India possibilities. On-site market place, reusable packaging, inventory management, third party logistics, reverse logistics, continuous replenishment, value analysis, soul sourcing, catalogue hubs, and pre-sourcing were inversely proportional in varying levels with the estimator Make in India possibilities. Just-in-time delivery, Demand smoothing, forward placement, cross docking, preassembled systems, and ICT systems, were directly proportional in varying degrees with the estimator Make in India possibilities.

3.2.5 Descriptive Statistics of Awareness towards basic PPC Concepts for Make in India

[Table 7] The highest awareness is exhibited for the PPC concepts ‘Loading’ with a mean agreement score of 3.35462, followed by ‘Line of balance’ with a mean agreement score of 3.3231; and the third highest agreement is observed for the variable ‘Dispatching’ with a mean agreement score of 3.3000. The lowest awareness is exhibited for the PPC concepts ‘CAD’ with a mean agreement score of 2.8692, followed by ‘Preventive maintenance’ with a mean agreement score of 2.8462; and the third highest agreement is observed for the variable ‘Flow process chart’ with a mean agreement score of 2.8308.

The highest variation in awareness is exhibited for the PPC concepts ‘Breakdown maintenance’ with a standard deviation of 1.244350, followed by ‘CAM’ with a standard deviation of 1.18728; and the third highest agreement is observed for the variable ‘Flow process chart’ with a

Table 5. Model summary possibilities from the awareness towards basic logistics concepts

r^2	Source of variation	Sum of Squares	df	Mean Square	F	Sig.
0.811	Regression	25.516	16	1.595	3.027	.000
	Residual	196.507	373	.527		
	Total	222.023	389			
standard deviation of 1.16596. The lowest variation in awareness is exhibited for the PPC concepts 'Selective inventory control' with a standard deviation of .98157, followed by 'Motion study' with a standard deviation of 0.99855; and the third highest agreement is observed for the variable 'Material requirement planning' with a standard deviation of 1.01893.

3.2.6 Model of Make in India Possibilities from the Awareness towards basic PPC Concepts

A model of Make in India possibilities is modeled from the awareness towards basic PPC concepts. [Table 8] The r^2 value of 0.825, shows that the independent variables are able to explain 82.5% of the variance on the estimate or dependent variable and the significance of F being less than 0.05 signify that the model is a good fit [Table 9].

Make in India possibilities = $a + b_1x_1 + b_2x_2 + \ldots + b_{19}x_{19}$

Scheduling, Dispatching, Gantt chart, Time study and Group technology are significant in the estimation of Make in India possibilities. Loading, Routing, Material requirement planning, aggregate planning, assembly line balancing, Line of balancing, Selective inventory control,
Table 8. Model summary from the awareness towards basic PPC concepts

r²	Source of variation	Sum of Squares	Df	Mean Square	F	Sig.
0.825	Regression	25.809	19	1.358	2.561	.000
	Residual	196.214	370	.530		
	Total	222.023	389			

Table 9. Coefficients of the awareness towards basic PPC concepts and their significance

Predictors	Unstandardized Coefficients	Standardized Coefficients	t	Sig.	
	B	Std. Error	Beta		
(Constant)	2.088	.265	.001	7.894	.000
Loading	.001	.039	.001	.020	.984
Scheduling	.101	.041	.145	2.472	.014*
Dispatching	-.091	.039	-.134	-2.309	.021*
Routing	.006	.037	.008	.149	.881
Gantt chart	-.092	.039	-.136	-2.386	.018*
MRP	-.035	.044	-.048	-.797	.426
Aggregate planning	.054	.044	.078	1.241	.215
Assembly line balancing	-.072	.037	-.106	-1.932	.054
Line of balancing	.095	.047	.134	2.044	.042
Selective inventory control	-.008	.045	-.010	-.170	.865
Time study	.173	.038	.248	4.533	.000*
Motion Study	.019	.042	.024	.443	.658
Flow process chart	.020	.042	.030	.470	.639
Man machine chart	.025	.055	.035	.459	.647
Group technology	-.045	.022	-.118	-2.031	.043*
CAD	.028	.045	.040	.629	.530
CAM	.036	.050	.056	.722	.471
Preventive maintenance	-.047	.048	-.066	-.975	.330
Breakdown Maintenance	-.001	.041	-.002	-.031	.975

* Significant at 5% level

Motion study, Flow process chart, Man machine chart, CAD, CAM, Preventive maintenance and Breakdown maintenance are insignificant in the estimation of Make in India possibilities.

Techniques such as Scheduling dispatching, Gantt chart, Time study, and group technology are significant. Dispatching, Gantt chart, Material requirement planning, Assembly line balancing, Selective inventory control, Group technology, Preventive maintenance and Breakdown maintenance were inversely proportional in varying levels with the estimator Make in India possibilities. Loading, Scheduling, Routing, Aggregate planning, Line of balance, Time study, Motion study, Flow process chart, Man machine chart, CAD and CAM were directly proportional in varying degrees with the estimator Make in India possibilities.

3.2.7 Descriptive Statistics of Awareness towards basic Quality Management Concepts for Make in India

[Table 10] The highest awareness is exhibited for the Quality managements concepts ‘KAIZEN’ with a mean agreement score of 3.9000, followed by ‘Control charts’ with a mean agreement score of 3.6462; and the third highest agreement is observed for the variable ‘Zero
defects’ with a mean agreement score of 3.4923. The lowest awareness is exhibited for the Quality management concepts ‘Pareto charts’ with a mean agreement score of 2.5462, followed by ‘ISO’ with a mean agreement score of 2.9615; and the third highest agreement is observed for the variable ‘Cause & effect’ with a mean agreement score of 3.0385.

Table 10. Descriptive statistics for awareness towards basic Quality management concepts

Basic Quality management	Mean	Std. Deviation
Control charts	3.6462	1.13052
Acceptance planning	3.3154	1.14525
Zero defects	3.4923	1.13314
KAIZEN	3.9000	1.10978
Six sigma	3.1154	1.30039
PDCA	3.0846	1.21707
Quality cycle	3.1385	1.04466
ISO	2.9615	1.14773
Pareto chart	2.5462	1.14576
Cause and effect diagram	3.0385	1.09265
SS Housekeeping	3.1385	1.13659
Deming	3.3538	1.02309
FMEA	3.2538	1.08492
SPC	3.1692	1.11870
Computer aided manufacturing	3.2154	1.05371
Benchmarking	3.3615	1.08983
Scheduling	3.2000	1.05674
Queuing theory	3.4077	1.15638
Flexible manufacturing	3.3846	1.11349
JIT	3.3231	1.06991
Packaging	3.3615	1.08983
Labeling	3.4462	1.12505
Assembly line	3.2000	1.19381

Source: Computed from Primary data

The highest variation in awareness is exhibited for the Quality management concepts ‘Six sigma’ with a standard deviation of 1.30039, followed by ‘PDCA’ with a standard deviation of 1.21707; and the third highest agreement is observed for the variable ‘Assembly line’ with a standard deviation of 1.19381. The lowest variation in awareness is exhibited for the Quality management concepts ‘Deming principle’ with a standard deviation of 1.0239, followed by ‘Quality cycle’ with a standard deviation of 1.04466; and the third highest agreement is observed for the variable ‘Scheduling’ with a standard deviation of 1.05674.

3.2.8 Model of Make in India Possibilities from the Awareness towards basic Quality Management Concepts

A model of Make in India possibilities is estimated from the awareness towards basic Quality management concepts. [Table 11] The r^2 value of 0.951, shows that the independent variables are able to explain 95.1% of the variance of the estimate or dependent variable and the significance of F being less than 0.05 signify that the model is a good fit [Table 12].

Make in India possibilities = $a + b_1 x_1 + b_2 x_2 + \ldots + b_{23} x_{23}$

Zero defects, Six sigma, Pareto chart, FMEA, SPC, Scheduling, Queuing theory and JIT are significant in the estimation of Make in India possibilities. Control chart, Acceptance planning, KAIZEN, PDCA, Quality cycle, ISO, Cause & effect diagram, Housekeeping, Deming principle, CAM, Benchmarking, Flexible manufacturing, Packaging, Labelling and Assembly line are insignificant in the estimation of Make in India possibilities. Six sigma, PDCA, Queuing theory, Scheduling, SPC, Cause and effect diagram, Benchmarking, Packaging, Labelling and Assembly line were inversely proportional in varying levels with the estimator Make in India possibilities. JIT, FMEA, Pareto chart, Zero defects, Control charts, Acceptance planning, KAIZEN, Quality cycle, ISO, Housekeeping, Deming principle, CAM, Flexible manufacturing were directly proportional in varying degrees with the estimator Make in India possibilities.

4. Conclusion

Those manufacturing concepts having direct influence over Make in India possibilities are Just-in-time delivery, Demand smoothing, forward placement, cross docking, Preassembled systems, ICT systems, inventory management, Reverse logistics, Cross docking, Value analysis, Forward placement, Pre-sourcing, Loading, Scheduling, Routing, Aggregate planning, Line of balance, Time study, Motion study, Flow process chart, Man machine
Table 11. Model summary from the awareness towards basic Quality management concepts

Source of variation	Sum of Squares	df	Mean Square	F	Sig.
Regression	50.473	23	2.194	4.682	.000
Residual	171.550	366	.469		
Total	222.023	389			

Table 12. Coefficients of the predictors and their significance

Predictors	Unstandardized Coefficients	Standardized Coefficients	t	Sig.	
(Constant)	1.442	.360	4.007	.000	
Control charts	.031	.035	.047	.890	.374
Acceptance planning	.067	.037	.102	1.830	.068
Zero defects	.098	.038	.147	2.584	.010*
KAIZEN	.049	.042	.072	1.160	.247
Six sigma	-.095	.035	-.163	-2.685	.008*
PDCA	-.066	.034	-.107	-1.961	.051
Quality cycle	.061	.039	.084	1.562	.119
ISO	.005	.035	.008	.149	.882
Pareto chart	.100	.041	.151	2.404	.017*
Cause and effect	-.031	.042	-.045	-.736	.462
SS Housekeeping	.001	.038	.002	.030	.976
Deming	.080	.043	.108	1.839	.067
FMEA	.123	.042	.177	2.936	.004*
SPC	-.119	.041	-.177	-2.908	.004*
Computer aided manufacturing	.063	.043	.087	1.460	.145
Benchmarking	-.028	.041	-.041	-.692	.490
Scheduling	-.127	.043	-.177	-2.972	.003*
Queuing theory	-.132	.037	-.201	-3.565	.000*
Flexible manufacturing	.083	.040	.123	2.069	.039
JIT	.237	.047	.335	4.990	.000*
Packaging	-.025	.038	-.036	-.661	.509
Labeling	-.017	.039	-.025	-.429	.668
Assembly line	-.003	.037	-.004	-.076	.939

Significant at 5% level

chart, CAD, CAM, Dispatching, Material requirement planning, Aggregate planning, Line of balance, Selective inventory control, Flow process chart, Preventive maintenance, FMEA, Pareto chart, Zero defects, Control charts, Acceptance planning, KAIZEN, Quality cycle, ISO, Housekeeping, Deming principle, CAM, Flexible manufacturing, Pareto chart, Deming principle, FMEA, SPC, Scheduling and Packaging. Indian manufacturing dream is based on the above concepts. The manufacturers, the Government and the people overall should develop high level of knowledge about these concepts as a beginning step for Make in India.

The paper has made an attempt to identify the key operational concepts in the areas of logistics, PPC and
Quality management that would enable Mother India to make her dream of Make in India a virtual reality. It throws open those operational concepts that are significant and have direct influence on the opinion of Make in India.

5. References

1. Jain A, Bhatti R, Singh H. Productivity Improvement through 5S implementation in Indian manufacturing industries; 2014. p. 535–45.
2. Ebrahimpour A. The impact of just-in-time implementation and ISO 9000 certification on total quality management, Dreyfus LP, Ahire SL, Ebrahimpour M, editors; 2004. p. 125–41.
3. Kheirkhah A, Rezaei S. Production engineering, using cross-docking operations in a reverse logistics network design: a new approach; 2015. p. 175–84.
4. Hahn GJ, Kaiser C, Kuhn H, Perdu L, Vandaele NJ. Enhancing aggregate production planning with an integrated stochastic queuing model; 2012. p. 451–56.
5. Chen J-L, Wang L-L, Mu Y-F, Wang J-X. An application study of lean six sigma in logistic service quality management; 2013. p. 843–50.
6. Bourrieres JP, Shin OK, Lhote F. Real time production scheduling and dynamic parts routing for flexible assembly lines; 1991. p. 361–8.
7. Lee K-S, Wang K-J. Using six sigma to improve design quality; 2013. p. 3953–6.
8. Oropesa-Vento M, García-Alcaraz JL, Rivera L, Manotas DF. Effects of management commitment and organization of work teams on the benefits of Kaizen: Planning stage; 2015. p. 76–84.
9. Sanchez PM, Ballesteros NR, Olaya DF. Enhancing synergies in a collaborative environment. Lecture Notes in Management and Industrial Engineering (Pablo Cortés, Elvira Maeso-González, Alejandro Escudero-Santana); 2015. p. 247–55.
10. Chen R, Fan B, Tang G. Scheduling problems in cross docking; 2009. p. 421–9.
11. Boschian V, Paganelli P. Business models for advanced ICT. Logistics in sustainable logistics and supply chains pp- XIV 185; 2016. p. 15–51.
12. Frehe V, Teuteberg F, Mehmann J. The role of ICT in Green. Logistics & Conference Paper: Crowd Logistics, A Literature Review and Maturity Model; 2013. p. 1–13.
13. Bo X-P, Wang Y-Y, Zou J-F. Implementation of six sigma to service quality management in auto after-sale; 2013. p. 1163–71.
14. Sathya N, Muthukumaravel A. A review of the optimization algorithms on traveling salesman problem. 2015 Nov; 8(29). DOI: 10.17485/ijst/2015/v8i1/84652.
15. Pasha N. Production and material planning in the push and pull integrated system for routine products and customers orders. 2015; 8(11). DOI: 10.17485/ijst/2015/v8i11/71793.
16. Shankar R, Sundararajan M. Manufacturing quality improvement with data mining outlier approach against conventional quality measurements. 2015 Jul; 8(15). DOI: 10.17485/ijst/2015/v8i15/73109.