Comparable efficacy in ischemic and non-ischemic ICD recipients for the primary prevention of sudden cardiac death

Andreea Maria Ursaru 1, Irina Iuliana Costache 1,2*, Antoniu Octavian Petris1,2*, Nicolae Dan Tesloianu1

1 Department of Cardiology, Emergency Clinical Hospital “Sf. Spiridon”, Iași, Romania; andreea_ursaru@yahoo.com; dan_tesloianu@yahoo.com
2 “Grigore. T. Popa” University of Medicine and Pharmacy, Iași, Romania; ii.costache@yahoo.com; antoniu.petris@yahoo.ro
* Correspondence: ii.costache@yahoo.com (I.I.C.) antoniu.petris@yahoo.ro (A.O.P) andreea_ursaru@yahoo.com (A.M.U.) +40 753 731 523

Abstract:

(1) Background: In patients suffering from heart failure, the main causes of death are either hemo-
dynamic failure, or ventricular arrhythmias. The only tool to significantly reduce arrhythmic sud-
den death is the implantable cardioverter defibrillator (ICD), but not all patients benefit to the same
extend of these devices.

(2) Methods: The primary outcome of this single center study was defined as cardiovascular death
in patients with ischemic and non-ischemic heart failure who have benefited from ICD therapy. The
secondary outcomes were death from any cause, sudden cardiac death, ICD-
related therapies (ap-
propriate antitachycardia pacing or shock therapy for ventricular tachycardia or fibrillation) and
recurrences of ventricular tachyarrhythmias.

(3) Results: A total of 403 consecutive ICD recipients – symptomatic heart failure patients with ICD
for the primary prevention of sudden cardiac death – were included retrospectively: 59% ischemic
cardiomyopathy (ICMP) and 41% non-ischemic cardiomyopathy (NICMP). Within a median fol-
low-up period of 36 months, the incidence of cardiovascular mortality was not significantly differ-
ent in patients with NICMP and ICMP: the primary outcome had occurred in 9 patients (5.4%) in
the NICMP group and in 14 patients (5.9%) in the ICMP group (hazard ratio 1; 95% confidence in-
terval [CI] 0.45 to 2.28; p =0.97). All-
cause mortality occurred in 14 of 166 patients (8.4%) in NICMP
and 18 of 237 patients (7.6%) in ICMP group. Sudden cardiac death occurred in 2 patients
(1.2%) in the NICMP group and in 4 patients (1.7%) in the ICMP group (hazard ratio 0.71; 95% CI,
0.13 to 3.88; P=0.69). The rate of appropriate device therapies was comparable in both groups.

(4) Conclusion: In this study, ICD implantation for primary prevention of sudden cardiac death in
patients with symptomatic systolic heart failure was associated with similar rates of cardiovascular
and all-cause mortality in patients with ischemic heart disease, and in patients with heart failure
from other causes. NICMP and ICMP showed comparable rates of recurrent ventricular tach-
yarrhythmias and appropriate ICD therapies.

Keywords: primary prevention of sudden cardiac death; non-ischemic cardiomyopathy; ischemic
cardiomyopathy; appropriate ICD therapy; mortality rate comparison

1. Introduction

In patients with heart failure and reduced left ventricular ejection fraction (LVEF <
35%), there is an increased risk of sudden cardiac death (SCD) due to ventricular arrhyth-
mias, with the highest risk in those who survived an episode of ventricular fibrillation
(VF) or sustained ventricular tachycardia (VT). [1] In subjects with secondary prevention
of SCD, where no reversible cause such as an acute myocardial infarction can be identified, an implantable cardioverter defibrillator (ICD) is recommended with a class IA indication according to European Society of Cardiology (ESC) guidelines. [2,3] The situation is more complex in patients with ICD therapy for the primary prevention of SCD. In the new 2021 ESC Heart Failure Guidelines, primary prevention of SCD in patients with symptomatic systolic non-ischemic heart failure was downgraded from a 1B recommendation class in the 2016 ESC Heart Failure Guidelines, to a IIaB recommendation, as opposed to the class 1A recommendation for patients with ischemic heart failure, which remained a constant indication. [2, 3] In the American Heart Association Guidelines, on the other hand, ICD implantation for primary prevention of SCD in patients with symptomatic systolic heart failure is a class 1A recommendation, with no differentiation between patients with ischemic and non-ischemic cardiomyopathy. [4] This difference arises from the trials on which the guidelines are based: while the American Heart Association Guidelines refer to the Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT) trial, the 2016 European Guidelines consider the Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation (DEFINITE), while the latest ESC Guidelines version grounds its recommendations on DANISH study. SCD-HeFT trial was a randomized trial which included over 2500 patients, half of whom had non-ischemic systolic heart failure. It is the first large trial which proved the benefit of ICD implantation in patients with non-ischemic heart failure, with regard to all-cause mortality. [5] With opposite results, the more recent randomized Danish Study to Assess the Efficacy of ICDs in Patients with Non-ischemic Systolic Heart Failure on Mortality (DANISH) trial investigated the role of primary prevention ICDs exclusively in patients with symptomatic systolic heart failure not caused by coronary artery disease; it demonstrated a significant reduction in SCD in patients with LVEF ≤ 35%, but without a significantly lower long-term rate of death from any cause when compared to usual clinical care. [6] Subgroup analyses of the DANISH trial have though shown contrasting results: the association between ICD and survival decreased linearly with increasing age - in patients under 70 years of age or those with less severe heart failure (as indicated by lower NT-proBNP levels), reduction in all-cause mortality was demonstrated. [7] Contrary to the DANISH trial results, there are meta-analyses showing a significant survival benefit due to implantation of ICD in NICMP patients. [8,9,10]

Considering the available literature data, it is justifiable to ask whether we need to rethink the indication for ICD therapy in primary prevention in the entire non-ischemic population. In the current study, we aim to explore the association between ICD implantation in patients with non-ischemic heart failure and the reduction in arrhythmogenic deaths and all-cause mortality (cardiovascular death and non-cardiovascular death) and compare it with the data in the ischemic cardiomyopathy group.

2. Materials and Methods

Study Design and Patients

This retrospective study was conducted at a single academic center in a consecutive series of patients. It included patients with „de novo” ICD implant between January 2017 and January 2021, with a median follow-up time of 36 months (range, 7 months to 55 months). Patients of either sex who were more than 18 years of age (there was no upper age limit) with clinical heart failure and left ventricular ejection fraction equal to or below 35% despite optimal medical therapy were included. Patients with previous conventional pacemakers and CRT-P were also included. Permanent atrial fibrillation with no upper rate limit and end-stage renal failure (dialysis) were not exclusion criteria, in contrast to the majority of the previous studies.

The patients were divided into 2 groups: patients with ischemic cardiomyopathy (ICMP) and patients with non-ischemic cardiomyopathy (NICMP). For the ICMP group, patients with a history of previous myocardial infarction documented by the finding of an abnormal Q wave on electrocardiography, elevated cardiac-enzyme levels on laboratory testing during hospitalization for acute coronary syndrome, localized akinesia on
echocardiography, with evidence of obstructive coronary disease on angiography, and an ejection fraction of 35% or less within three months before entry, as assessed by angiography or echocardiography, were included. In patients with non-ischemic systolic heart failure with LVEF ≤ 35%, the exclusion of myocardial ischemia was done by coronary angiography (the majority of patients) and computed tomography angiography. All patients were primarily in New York Heart Association (NYHA) functional class II, III or ambulatory class IV. Patients with ICD therapy indication, NYHA class II or III and native QRS complex greater than or equal to 150 milliseconds were implanted with a CRT-D. NYHA functional class IV patients received cardiac resynchronization therapy with defibrillation therapy (CRT-D), the cutoff value for the duration of the native QRS complex being 130 milliseconds.

Cardiovascular deaths were subclassified as sudden or non-sudden. Sudden cardiac deaths were defined by World Health Organization criteria, for which no obvious non-arrhythmic cause of death was found, including death occurring unexpectedly in a previously stable patient, sudden unexpected death within 1 hour of acute symptom onset or worsening of symptoms (if witnessed), or within 24 hours of the last observation at baseline (if unwitnessed), such as when the patient was found in bed.[11] Sudden deaths were further evaluated through device interrogation to determine whether a device concern was present (hardware failures, device algorithm issues, device programming issues). This was not the case in neither of the deceased. Non-cardiovascular deaths were defined as all deaths not adjudicated as cardiovascular death. Cardiovascular deaths classified as non-sudden and all non-cardiovascular deaths were categorized together as non-sudden deaths.

ICD therapy

ICD therapy was selected to consist of antitachycardia pacing (ATP) therapies and shocks. Single and dual-chamber ICDs and biventricular devices were implanted. The defibrillation leads were single coil leads. The goal was to treat only rapid, sustained ventricular tachycardia or ventricular fibrillation, and to minimize excessive interventions, so the devices were uniformly programmed according to the MADIT-RIT delayed therapy arm (170-199 bpm with 60 seconds delay; 200-249 bpm with 12 seconds delay; ≥ 250 bpm with 2.5 seconds delay) and ADVANCE III trial, with longer delay, 30 of 40 instead of the conventional 18 of 24. A “monitor only” ventricular tachycardia detection interval was set at 150 bpm for all patients.[12,13] Because of the potential of pacing to worsen CHF, the minimal pacing rate was set to 40 beats per minute. No rate-responsive pacing was allowed.[14,15,16]

In general, two or three therapy zones (mainly one VT zone, one VF zone and possibly an additional fast VT (FVT) zone) were programmed. VT was primarily treated with ATP and possibly consecutive ICD shocks. VF was primarily treated with ICD shock with ATP during charging. Over time changes in programming routines have occurred, consisting of further prolongation of the tachycardia duration criteria or an increase of cut-off rates in detection zones, in order to avoid repetitive inappropriate shocks.

Appropriate therapy was defined as shock or ATP for real VT or VF following analysis of the intracardiac electrograms.

Statistical analysis

The cumulative survival plots were estimated according to the Kaplan-Meier method. Survival in groups was compared with the log rank test. Univariate Cox regression analysis was performed to identify significant independent predictors of outcome. Results are reported as the adjusted hazard ratio (HR) with 95% confidence interval (CI). A two-sided p-value < 0.05 was considered statistically significant. Statistical analyses were performed using the Survival R package.
Drug Therapy and Follow-up

Follow-up was performed at 1 month and 3 months after discharge, and then every six months. The visits consisted of clinical and paraclinical examinations, including interrogation of the devices. Clinical surveillance involved monitoring of the patients and anticipated visits in case of worsening of the clinical status and occurrence of symptoms, including internal electrical shocks. The medication and, where necessary, reprogramming of the device were adapted.

The patients were receiving chronic optimal medical therapy (Table 1), including novel drug therapy for heart failure (Angiotensin Receptor-Nephrilysin Inhibitor, sodium-glucose cotransporter-2 inhibitors).

3. Results

Baseline characteristics, demographic, clinical and paraclinical data of the patients with ischemic and non-ischemic cardiomyopathy are presented in Table 1. A total of 403 patients, with a median follow-up time of 36 months, were divided into 2 groups: 166 patients in the NICMP group and 237 patients in the ICMP group, with no significant differences regarding baseline characteristics noticeable between the 2 groups ($P > 0.1$). Median age of the study population was 65 years (range, 19 – 83 years). The great majority of the subjects received heart failure drug therapy available at the time of implant, in accordance with the ESC guidelines. 19% of the patients in NICMP group (32 patients) and 17% (40 patients) in the ICMP group received CRT-D. Amiodarone was initiated in a significant number of patients (55 patients – 33% in NICMP group, respectively 97 patients – 41% in ICMP group), in order to avoid unnecessary shocks.
Table 1. Baseline characteristic of patients with ICD*
* There were no significant differences (P >0.1)

Characteristic	NICMP Group (n= 166)	ICMP Group (n=237)
Median Age – years	66(19-81)	65(35-83)
Male sex, n (%)	119 (72)	161 (68)
Median NT-proBNP level - pg/ml	1698 (498-2705)	1765 (399-2967)
Median left ventricular ejection fraction, %	26 +/- 10	24 +/- 10
Median estimated GFR – ml/min/ 1.73	55 (12-96)	59 (15-98)
NSVT (%)	75 (45)	114 (48)
Medication, n (%)		
Amiodarone	55 (33)	97 (41)
ACE I/ ARB	138 (83)	194 (82)
Beta-blocker	151 (91)	228 (96)
Loop-diuretics	159 (96)	230 (97)
Mineralocorticoid-receptor antagonist	158 (95)	228 (96)
ARNI	25(15)	38 (16)
Dapagliflozin	13 (8)	16 (7)
Coexisting conditions, n (%)		
Hypertension	106 (64)	161(68)
Permanent atrial fibrillation	42(25)	66(28)
Smoker, n (%)	32(19)	59 (25)
Diabetes mellitus, n (%)	23 (14)	43 (18)
Dyslipidemia, n (%)	115 (69)	187 (79)
CRT-D patients (%)	32 (19)	40 (17)

NICMP = Non-ischemic cardiomyopathy; ICMP = Ischemic cardiomyopathy; ACE-I = Angiotensin-converting enzyme; ARB =Angiotensin-receptor blocker; GFR = glomerular filtration rate; NT-pro BNP = N-terminal pro-brain natriuretic peptide; NSVT =Non-sustained Ventricular Tachycardia (defined as more than 3 consecutive beats originating below the AV node); ARNI =Angiotensin Receptor-Neprilysin Inhibitor
Table 2 shows the incidence of death from any cause, cardiovascular death, with subgroups: sudden cardiac death and other cardiovascular death (represented by congestive heart failure and fatal myocardial infarction), non-cardiovascular death, non-sudden deaths, appropriate and inappropriate ICD therapy.

Outcome	NICMP Group	ICMP Group	HR (95% CI)	P value
n of patients/total n (%)				
Death from any cause	14 (8.4)	18 (7.6)	1.1 (95% CI 0.54 - 2.21)	0.78
Cardiovascular death	9 (5.4)	14 (5.9)	1 (95% CI 0.45 - 2.28)	0.97
Sudden cardiac death	2 (1.2)	4 (1.7)	0.71 (95% CI 0.13 - 3.88)	0.69
Other cardiovascular death	7 (4.2)	10 (4.2)	1.1 (95% CI 0.44 - 2.87)	0.79
Non-cardiovascular death	4 (2.4)	3 (1.26)	1.2 (95% CI 0.24 - 2.98)	0.55
Non-sudden deaths	11 (6.6)	13 (5.4)	1 (95% CI 0.41 - 2.62)	0.67
Appropriate shock or ATP (%)	16 (9.6)	24 (10.1)	1.2 (95% CI 0.62 - 2.03)	0.8
Inappropriate shock or ATP (%)	7 (4.2)	7 (3)	0.72 (95% CI 0.42 - 2.93)	0.52
Sustained VT requiring medical intervention/electrical conversion	2 (1.2)	1 (0.42)	1.3 (95% CI 0.1 - 4.01)	0.74
NSVT/NSVF	130 (78.3)	192 (81)	0.68 (95% CI 0.94 - 1.1)	0.9
Device infection*	2 (1.2)	2 (0.84)	1.2 (95% CI 0.12 - 3.96)	0.48

Table 2. Outcomes and adverse events
*Device infection requiring lead extraction or causing death

NICMP = Non-ischemic cardiomyopathy; ICMP = Ischemic cardiomyopathy; VT = Ventricular Tachycardia; NSVT = Non-sustained Ventricular Tachycardia (defined as more than 3 consecutive beats originating below the AV node); ATP = Anti-tachycardia pacing

The primary outcome, cardiovascular death, occurred in 9 patients (5.4%) in NICPM group and in 14 patients (5.9%) in ICMP group. The hazard ratio for cardiovascular death in the NICMP group, as compared with the ICMP group was 1 (95%confidence interval [CI] 0.45 to 2.28; P=0.97).

Death from any cause occurred in 14 patients (8.4%) in the NICMP group and in 18 patients (7.6%) in the ICMP group (hazard ratio, 1.1; 95% CI, 0.54. to 2.21 P=0.78). Sudden cardiac death occurred in 2 patients (1.2%) in the NICMP group and in 4 patients (1.7%) in the ICMP group (hazard ratio, 0.71; 95% CI, 0.13 to 3.88; P=0.69). Non-sudden cardiovascular death occurred in 7 patients (4.2%) in NICMP group and in 10 patients (4.2%) in
the ICMP group (hazard ratio, 1.1; 95% CI, 0.44 to 2.87; P=0.79). The clinical outcome of non-sustained ventricular tachycardia/ventricular fibrillation was registered with similar frequency in the two groups: 130 patients (78.3%) in NICMP group and in 192 patients (81%) in the ICMP group (hazard ratio, 0.68; 95% CI, 0.94 to 1.1; P = 0.9); termination of ventricular tachyarrhythmia by antitachycardia pacing or/appropriate shock was observed in 16 patients in NICMP group (9.6 %), and 24 patients (10.1%) in the ICMP group (hazard ratio, 1.2; 95% CI, 0.62 to 2.03; P = 0.8). Inappropriate shocks were all due to atrial fibrillation with rapid ventricular conduction, with the exception of one, due to electromagnetic interference (4.2% in NICMP group and 3% in ICMP group – hazard ratio, 0.72; 95% CI, 0.42 to 2.93; P= 0.52). Serious complications related to defibrillator therapy were infrequent. Device infection requiring lead extraction was present in 4 patients. No deaths occurred during implantation.

4. Discussion

Although ICD is an established treatment option in patients with both ischemic and non-ischemic heart failure, it is speculated whether the underlying etiology of the cardiomyopathy might have an essential impact on the future prognosis of ICD recipients. Identification of the patient subgroup that might prognostically benefit from ICD implant is an increasingly debated issue, the conducted studies having contradictory results. The controversy regarding adequate risk prediction of patients suffering from cardiomyopathies, especially the indication for ICD implantation in NICMP patients has been questioned. [6, 17]

The present study comparatively evaluates the prognostic impact of cardiomyopathy type (NICMP and ICMP) on the primary endpoint of cardiovascular mortality, as well as on secondary endpoints including death from any cause, sudden cardiac death, ICD-related therapies (appropriate antitachycardia pacing or shock therapy for ventricular tachycardia or fibrillation) and recurrences of ventricular tachyarrhythmias. This “primary prevention” study comparing ICD recipients of the two groups shows comparable rates of cardiovascular mortality, all-cause mortality and ICD-related therapies.

There are three main studies that preponderantly influenced the practice in ICD implant in patients with primary prevention and NICMP over time. Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT) trial included 2521 patients with New York Heart Association (NYHA) class II or III congestive heart failure and a LVEF of 35% or less that were randomly assigned to placebo (847 patients), to amiodarone (845 patients), and to ICD therapy (829 patients). The study included both ischemic and non-ischemic subjects, 52% of the patients had ischemic cardiomyopathy and 48% non-ischemic cardiomyopathy and the median follow-up time was 45.5 months. The trial proved that shock-only ICD therapy reduces overall mortality by 23 percent irrespective of the heart failure etiology, whereas amiodarone had no favorable effect on survival. [5]

Given the well documented benefit of ICD in patients with symptomatic heart failure caused by coronary artery disease [5,18], the Danish Study to Assess the Efficacy of ICDs in Patients with Non-ischemic Systolic Heart Failure on Mortality (DANISH) trial, included patients with symptomatic systolic heart failure not caused by coronary artery disease: 556 assigned to ICD implant and 560 assigned to usual clinical care. In contrast with the results of the present analysis, DANISH study found that implantation of an ICD in patients with NICMP did not provide an overall survival benefit, although the risk of sudden cardiac death was halved [6]. However, a post hoc analysis of the study, revealed that ICD implantation was associated with reduced all-cause mortality in patients ≤70 years of age, and that the benefit of ICD implantation decreased with older age, considering the fact that older patients were more likely to die of causes other than sudden cardiac death compared with younger patients, which might be a reason for the
diminishing association between ICD implantation and all-cause mortality with advancing age. [19, 20]

The contrasting results between DANISH trial and the present analysis might be explained by several differences. DANISH study included a large number of CRT recipients (CRT was implanted in 58% of the patients and in 68% of patients >70 years of age in DANISH study) when compared to only 19% of the patients with NICMP which received CRT in our study. As an indication for CRT, we chose to include only patients with Class I and IIA indication in ESC guidelines and native QRS complex duration greater than or equal to 150 milliseconds for patients with NYHA functional class II and III, while for patients with ambulatory class IV NYHA, a native QRS complex duration greater than or equal to 130 milliseconds was accepted. As it is well known, patients with non-ischemic cardiomyopathy have shown higher response rates to CRT compared with patients with ischemic cardiomyopathy, differences explained partly by the myocardial substrate. CRT improves heart failure symptoms and prognosis, induces left ventricle reverse remodeling and increases its systolic function, but it has also demonstrated that it reduces the rate of onset of new ventricular arrhythmias detected by ICDs in patients without a history of prior ventricular arrhythmias, effect that was not observed in the subjects implanted for secondary prophylaxis. [21, 22, 23] The large proportion of patients with CRT in DANISH trial, which may have lowered the overall mortality by disease modification, diminishes the chance of observing any effect of ICD on top of CRT, so this may be considered an a priori limitation of the study concerning ICD only effect in NICMP.

Another worth-mentioning difference between the two studies, is the discrepancy of the analyzed groups: unlike the DANISH study, which compared non-ischemic heart failure patients assigned to ICD implant with non-ischemic heart failure patients assigned only to drug therapy, we have analyzed ICMP and NICMP patients, both groups assigned to ICD implant.

A significant distinction resides in the severity of the disease: the population of DANISH study consisted predominantly of outpatients who were in stable condition, while the patients in our study were patients with severe symptomatic heart failure, including ambulatory Class IV NYHA (CRT-recipients), with a median NT-proBNP of 1698 pg/ml.

DEFINITE trial is an older study that influenced the guidelines recommendations: 458 patients with NICMP, LVEF of less than 36% and premature ventricular complexes or non-sustained VT were enrolled, of which 229 patients were randomly assigned to receive standard medical therapy, and 229 were assigned to standard medical therapy plus a single-chamber ICD. In patients with severe NICMP, the implantation of a defibrillator significantly reduced the risk of sudden death from arrhythmia, and reduced the risk of death from any cause to an extend that approached, but did not reach statistical significance. Patients were followed for a mean of 29 months. As in the case of DANISH trial, DEFINITE trial compared ICD patients with non-ICD patients. 25.3% of the ICD recipients were asymptomatic patients (NYHA class I), a group of patients for which there are currently no controlled, randomized studies demonstrating the value of an ICD, regardless of the etiology of the cardiomyopathy. [24]

Summarizing, both of the above-mentioned studies, which apparently laid the groundwork against ICD therapy in NICMP, found a reduction in sudden death from arrhythmia and a benefit of ICD in reducing death of all cause in subgroup analyses. Moreover, the affiliation to the newer evidences in programming added to the evolution of device technology that has resulted in greater patient safety and fewer complications with the newer generation devices, with antitachycardia pacing (ATP was not available in DEFINITE trial) and low energy shocking capabilities for treatment of VT, are all
factors that lead to different outcomes in our study when compared with older trials as DEFINITE and DANISH, besides the differences between the groups that were compared.

It is acknowledged that the effect of ICD therapy in patients with chronic heart failure may differ substantially depending on the programming of the device and the concomitant medication. Considering the potential harm from inappropriate shocks and the realization that long episodes of VT can self-terminate, a strategy of long detection was adopted in the present study. Our event rate of ICD therapy was lower than observed in older studies, which reflects the programming with increasing intervals to detect (high rate detection and delayed therapy) and the fact that our study population were treated medically in accordance with the guidelines, with almost every patient receiving beta-blockers, inhibitors of the renin–angiotensin system and mineralocorticoid-receptor antagonists. Just under a quarter of the patients in both groups received also new drugs for heart failure: ARNI (angiotensin receptor neprilysin inhibitor) and sodium-glucose co-transporter-2 (SGLT2) inhibitors. A consistent segment of our population, representing the majority of patients with NSVT, had received Amiodarone. Since 2005, Amiodarone or an Implantable Cardioverter–Defibrillator for Congestive Heart Failure (SCD-HeFT) demonstrated the superiority of shock-only ICD therapy, with an overall reduction in mortality of 23 percent in ischemic and non-ischemic NYHA class II or III heart failure and LVEF of 35 percent or less compared to amiodarone. However Optimal Pharmacological Therapy in Implantable Cardioverter Defibrillator Patients (OPTIC) trial, which represents the largest randomized trial (412 subjects) comparing the antiarrhythmic drugs amiodarone, sotalol and β-blockers for ICD shock reduction, showed that the use of amiodarone with a beta blocking agent dramatically reduced shocks from an ICD by 73% compared to the use of sotalol or a beta blocker alone. The fact that patients who receive ICD shocks experience reduced quality of life is well known, and this has been a consistent finding in the published studies, that was already evident from data in the first available trials, such as the Antiarrhythmics Versus ICDs (AVID) trial. This is another reason why we chose to administer amiodarone to an increased number of patients in our study. As a result of the above mentioned, the rate of ICD therapies (ATP and shocks) was lower in the present analysis when compared to older studies.

Another major difference to the majority of the studies, is the fact that almost all analysis compared NICMP patients receiving ICD with NICMP patients receiving standard medical therapy, instead of comparing NICMP patients with ICMP patients with ICD implant. Exceptions comparing ischemic and non-ischemic heart disease patients treated with primary prophylactic ICDs (Smith et al), found similar rates with respect to mortality and appropriate ICD shocks at 30 months of follow-up. [27] Rusnak et al in his 387 consecutive ICD recipients study showed that NICMP was associated with even higher rates of recurrent VT/VF and appropriate ICD therapies compared to ICMP at one year of follow-up, whereas the rates of rehospitalization and all-cause mortality were comparable. These findings were confirmed in a retrospective analysis by Verhagen et al., which also included only patients with ICD for primary prevention, with a median LVEF of 24% - within 40 months of follow-up, the rates of appropriate ICD therapies due to sustained VT / VF and mortality rates were comparable in ICMP and NICMP. Considering these data, we wonder if DANISH study would have also included a comparison between ICMP and NICMP patients receiving ICD, could it still firmly state that ICD does not have a vital role in non-ischemic heart failure with reduced ejection fraction? Meta-analyses including data from all studies over the past 20 years in ICD primary prevention, including the DANISH trial, have confirmed a significant reduction of all-cause mortality associated with ICD use in patients with NICMP. This might be a confirmation that DANISH trial was not sufficiently powered to test its “death from any cause” primary end point over a long follow-up period. Excepting the inclusion of the DANISH trial, these meta-analyses mainly included trials performed more than 1 decade ago and thus mainly reflect older heart failure treatment
options. We believe that one of the advantages of our study derives from the maximal optimal medical therapy that the majority of the patients were receiving, thus generalizing the study’s results to the actual modern treatment of heart failure with reduced ejection fraction.

Limitations

One limitation of the study was the medium follow-up period of 36 months. Patients were included in the period between January 2017 and January 2021, so follow-up of the last included patients was only 7 months while some patients have a follow-up of up to 55 months. Within this period of time, new heart failure medications have become available, but the device-based therapy criteria have remained the same. This may have affected the outcome through the heterogeneity caused in the study population, but this limitation did not influence the aim of the study, since this limitation applies to both ICMP and NICMP patients.

The present results need to be confirmed within larger and more representative multi-center registry data.

5. Conclusions

The present study shows that the rate of cardiovascular death, death from any cause, sudden cardiac death and the occurrence of ICD-related therapies (appropriate and inappropriate ICD interventions), as also the recurrences of ventricular tachyarrhythmias in a “real-world” population are similar after primary prophylactic ICD implantation for both ischemic and non-ischemic cardiomyopathy patients.

Author Contributions: Conceptualization, N.D.T. and A.M.U; methodology A.O.P; software, A.M.U.; validation, N.D.T., I.I.C. and A.O.P.; formal analysis, I.I.C.; resources, N.D.T.; data curation, A.M.U.; writing—original draft preparation, A.M.U.; writing—review and editing, N.D.T.; visualization, I.I.C. and A.M.U.; supervision, N.D.T; project administration, N.D.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Ethics Committee of “Sf. Spiridon” Hospital (protocol code no. 43 / 24.06.2021).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Conflicts of Interest: “The authors declare no conflict of interest.”

References

1. Connolly SJ, Hallstrom AP, Cappato R. Meta-analysis of the implantable cardioverter defibrillator secondary prevention trials. AVID, CASH and CIDS studies. Antiarrhythmics vs Implantable Defibrillator study. Cardiac Arrest Study Hamburg. Canadian Implantable Defibrillator Study. Eur Heart J. 2000 Dec, 21, 2071-8.
2. McDonagh TA, Metra M, Adamo M. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021,00,1-128. doi:10.1093/eurheartj/ehab368.
3. Ponikowski P, Voors AA, Anker SD. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2016, 37, 2129-2200.
4. Yancy CW, Jessup M, Bozkurt B, et al. American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013 Oct, 128, e240-327.
5. Bardy GH, Lee KL, Mark DB, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005, 352, 225-237.
6. Keber L, Thune JJ, Nielsen JC, et al. Defibrillator Implantation in Patients with Nonischemic Systolic Heart Failure. N Engl J Med. 2016, 375:1221-1230. DOI: 10.1056/NEJMoa1608029.
7. Thune JJ, Pehrson S, Nielsen JC, et al. Rationale, design, and baseline characteristics of the DANish randomized, controlled, multi-center study to assess the efficacy of cardioverter defibrillators in patients with non-ischemic Systolic Heart failure on mortality (DANISH). *Am Heart J.* 2016, 179, 136–141. doi: 10.1016/j.ahj.2016.06.016.

8. Beggs SAS, Jhund PS, Jackson CE, McMurray JJV, Gardner RS. Non-ischaemic cardiomyopathy, sudden death and implantable defibrillators: a review and meta-analysis. *Heart.* 2018 Jan, 104, 144–150. doi: 10.1136/heartjnl-2016-310850.

9. Desai AS, Fang JC, Maisel WH, Baughman KL. Implantable defibrillators for the prevention of mortality in patients with non-chamatic cardiomyopathy: a meta-analysis of randomized controlled trials. *JAMA.* 2004 Dec, 292, 2874–9. doi: 10.1001/jama.292.23.2874.

10. Stavrakis S, Asad Z, Reynolds D. Implantable cardioverter defibrillators for primary prevention of mortality in patients with non-ischemic cardiomyopathy: a meta-analysis of randomized controlled trials. *J Cardiovasc Electrophysiol.* 2017, 28, 659–665.

11. Working Group on the Establishment of Ischaemic Heart Disease Registers, World Health Organization Regional Office for Europe. Report of the working group, parts I and II. Copenhagen, Denmark: World Health Organization Regional Office for Europe. 1969.

12. Moss AJ, Schuger C, Beck CA. Reduction in Inappropriate Therapy and Mortality through ICD Programming. *N Engl J Med.* 2012 December, 367, 2275–2283. DOI: 10.1056/NEJMoA1211107.

13. Gasparini M, Proclemer A, Klersy C, et al. Effect of Long-Detection Interval vs Standard-Detection Interval for Implantable Cardiac-Defibrillators on Antitachycardia Pacing and Shock Delivery: The ADVANCE III Randomized Clinical Trial. *JAMA.* 2013, 309, 1903–1911. doi:10.1001/jama.2013.4598.

14. Wilkoff BL, Cook JR, Epstein AE et al. Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the Dual Chamber and VVI Implantable Defibrillator (DAVID) trial. *JAMA.* 2002, 288, 3115–23.

15. Sweeney MO, Hellkamp AS, Ellenbogen KA et al. Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. *J Am Coll Cardiol.* 2003 Jun, 107, 2932–7. doi: 10.1016/S0735-1097(03)00225-6.

16. Sweeney MO, Bank AJ, Nsah E, Koullick M, Zeng QC, Hettrick D, Sheldon T, Lamas GA. Search AV Extension and Managed Ventricular Pacing for Promoting Atrioventricular Conduction (SAVE PACE) Trial. Minimizing ventricular pacing to reduce atrial fibrillation in sinus-node disease. *N Engl J Med.* 2007 Sep, 357, 1000-8. doi:10.1056/NEJMoA071880. PMID: 17804844.

17. Strickberger SA, Hummel JD, Bartlett TG, Frumin HI, Schuger CD, Beau SL, Bifar C, Morady F, AMIOVIRT Investigators. Amiodarone versus implantable cardioverter-defibrillator: randomized trial in patients with nonischemic dilated cardiomyopathy and asymptomatic nonsustained ventricular tachycardia--AMIOVIRT. *J Am Coll Cardiol.* 2003 May, 41, 1707–12. doi: 10.1016/s0735-1097(03)00297-3.

18. Moss AJ, Zareba W, Hall WJ, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. *N Engl J Med.* 2002, 346, 877-83.

19. Elming MB, Nielsen JC, Haarlo J, Videbaek L, Korup E, Signorovitch J, Olesen LL, Hildebrandt P, Steffensen FH, Bruun NE, Eskjær H, Brande A, Thøgersen AM, Gustafsson F, Esgtrup K, Videbaek R, Hassager C, Svendsen JH, Høfsten DE, Torp-Pedersen C, Pehrson S, Køber L, Thune JJ. Age and Outcomes of Primary Prevention Implantable Cardioverter-Defibrillators in Patients With Nonischemic Systolic Heart Failure. *Circulation.* 2017 Nov, 136, 1772-1780. doi:10.1161/CIRCULATIONAHA.117.028829.

20. Saba S, Adelstein E, Wold N, Stein K, Jones P. Influence of patients’ age at implantation on mortality and defibrillator shocks. *Europace.* 2017 May, 19, 802-807. doi:10.1093/europace/euw085.

21. Sapp JL, Parkash R, Wells GA, Yetisir E, Gardner MJ, Healey JS, Thibault B, Sterns LD, Nery PB, Sivakumaran S, Essebag V, Dorian P, Tang AS. Cardiac Resynchronization Therapy Reduces Ventricular Arrhythmias in Primary but Not Secondary Prophylactic Implantable Cardiac Defibrillator Patients: Insight From the Resynchronization in Ambulatory Heart Failure Trial. *Circ Arrhythm Electrophysiol.* 2017 Mar, 10, e004875. doi:10.1161/CIRCEP.116.004875.

22. Naqvi SY, Jawaid A, Vermilye K, Biering-Sørensen T, Goldenberg I, Zareba W, McNitt S, Polonsky B, Solomon SD, Kutyifa V. Left Ventricular Reverse Remodeling in Cardiac Resynchronization Therapy and Long-Term Outcomes. *JACC Clin Electrophysiol.* 2019 Sep, 5, 1001-1010. doi: 10.1016/j.jaecp.2019.07.012.

23. Spartalis M, Nakajima K, Zweiker D, Spartalis E, Iliopoulos DC, Siasos G. Contemporary ICD Use in Patients with Heart Failure. *Cardiol Ther.* 2021 Jun. doi: 10.1007/s40119-021-00225-7. Epub ahead of print.

24. Kadish A, Dyer A, Daubert JP, Quigg R, Estes NA, Anderson KP, Calkins H, Hoch D, Goldberger J, Shalaby A, Sanders WE, Schaechter A, Levine JH; Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation (DEFINITE) Investigators. Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy. *N Engl J Med.* 2004 May, 350, 2151-8. doi: 10.1056/NEJMoa033088.

25. Connolly SJ, Dorian P, Roberts RS, Optimal Pharmacologic Therapy in Cardioperder Defibrillator Patients (OPTIC) Investigators. *JAMA.* 2006 Jan, 295, 165–71.

26. Hallstrom AP, Greene HL, Wyse DG, Zipes DP, Epstein AE, Domanski MJ, Schron EB; AVID Investigators. Antiarrhythmics Versus Implantable Defibrillators (AVID)--rationale, design, and methods. *Am J Cardiol.* 1995 Mar, 75, 470-5.

27. Smith T, Theuns DA, Caliskan K, Jordens L. Long-term follow-up of prophylactic implantable cardioverter-defibrillator-only therapy: comparison of ischemic and non-ischemic heart disease. *Clin Cardiol.* 2011 Dec, 34, 761–7. doi: 10.1002/clc.20970.

28. Rusnak J, Behnes M, Weiß C, Nienaber C, Reiser L, Schupp T, Bollow A, Tatton G, Reichelt T, Ellguth D, Engelke N, Weidner K, Akin M, Mashayekhi K, Borggrefe M, Akin I. Non-ischemic compared to ischemic cardiomyopathy is associated with increasing recurrent ventricular tachyarrhythmias and ICD-related therapies. *J Electrocardiol.* 2020 Mar-Apr, 59, 174–180. doi: 10.1016/j.jelectrocard.2020.02.009.
29. Verhagen MP, van Boven N, Ruiter JH, Kimman GJ, Tahapary GJ, Umans VA. Follow-up of implantable cardioverter-defibrillator therapy: comparison of coronary artery disease and dilated cardiomyopathy. *Neth Heart J*. 2014 Oct, 22, 431-7. doi: 10.1007/s12471-014-0595-z.

30. Shun-Shin MJ, Zheng SL, Cole GD, Howard JP, Whinnett ZI, Francis DP. Implantable cardioverter defibrillators for primary prevention of death in left ventricular dysfunction with and without ischaemic heart disease: a meta-analysis of 8567 patients in the 11 trials. *Eur Heart J.* 2017, 38, 1738–1746. doi: 10.1093/eurheartj/ehx028.

31. Al-Khatib SM, Fonarow GC, Joglar JA, Inoue LYT, Mark DB, Lee KL, Kadish A, Bardy G, Sanders GD. Primary prevention implantable cardioverter defibrillators in patients with nonischemic cardiomyopathy: a meta-analysis. *JAMA Cardiol.* 2017, 2, 685–688.