Proteomic analysis reveals that COP9 signalosome complex subunit 7A (CSN7A) is essential for the phase transition of migratory locust

Xi-Wen Tong1,2,*, Bing Chen2,*, Li-Hua Huang1, Qi-Li Feng1 & Le Kang2

The migratory locust displays a reversible, density-dependent transition between the two phases of gregaria and solitaria. This phenomenon is a typical kind of behavior plasticity. Here, we report that COP9 signalosome complex subunit 7A (CSN7A) is involved in the regulation of locust phase transition. Firstly, 90 proteins were identified to express differentially between the two phases by quantitative proteomic analysis. Gregaria revealed higher levels in proteins related to structure formation, melanism and energy metabolism, whereas solitaria had more abundant proteins related to digestion, absorption and chemical sensing. Subsequently, ten proteins including CSN7A were found to reveal differential mRNA expression profiles between the two phases. The CSN7A had higher mRNA level in the gregaria as compared with the solitaria, and the mRNA amount in the gregaria decreased remarkably during the 32 h-isolation. However, the mRNA level in the solitaria kept constant during the crowding rearing. Finally and importantly, RNA interference of CSN7A in gregaria resulted in obvious phase transition towards solitaria within 24 h. It suggests that CSN7A plays an essential role in the transition of gregaria towards solitaria in the migratory locust. To our knowledge, it’s the first time to report the role of CSN in behavior plasticity of animals.

The migratory locust (Locusta migratoria) is an important pest insect in Asia. When locust disaster breaks out, swarms of locusts gather at very high population densities, and then trigger the migration of whole population towards new areas with more food. The aggregation and migration of locusts definitely result in broader damage. In 1966, Uvarov brought forward the concepts of gregaria and solitaria to describe locust phases with high and low population densities, respectively1. The two phases distinguish each other in many aspects including morphology, behavior, coloration, reproduction, development, endocrine and immunity2. Their behavioral distinction is prominent: the gregaria is more active and easier to be attracted by other individuals, whereas the solitaria exhibits to be more isolated. These differences are usually used as key markers in behavioral assay to distinguish the two phases3-6. Locust phase can shift from one state to another in response to density changes. The phase transition is a continuous, cumulative, and easily reversible process7, and it can take place within a short period (from 4 h to 32 h) in both the migratory locust1 and the desert locust, Schistocerca gregaria8-10.

1Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China. 2State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 China. *These authors contributed equally to this work. Correspondence and requests for materials should be addressed to L.-H.H. (email: huanglh@scnu.edu.cn) or L.K. (email: lkang@ioz.ac.cn)
In recent years, many fruitful studies have been carried out to elucidate the intrinsic molecular mechanisms of phase transition in locusts from various aspects such as genomics, transcriptomics and metabolomics. A large scale of transcriptomic sequencing was carried out in the migratory locust using an expressed sequence tag (EST) technique in 2004\(^1\), and 532 differentially expressed unigenes were identified between the two phases. The transcriptome dynamics in the same species were further analyzed in 2010 based on a newly emerged next-generation sequencing technology\(^2\). A lot of genes related to neural pathway, such as dopamine receptor, adipokinetic hormone, neurotransmitter synthetase were found to be up-regulated in the gregarious locusts. Another transcriptomic analysis was performed in the desert locust\(^3\). The solitary locusts up-regulate genes related to antioxidant systems, detoxification and anabolic renewal, whereas gregarious locusts have a greater abundance of transcripts for genes involved in sensory processing and nervous system development and plasticity. After monitoring and comparing transcript profiles between the two phases at various developmental stages, Chen et al. found that a sharp rise in phase differences appeared during the 4th instar and the high level difference was maintained in all the following stages. Therefore, the 4th instar stage seems to be a turning point in the process of forming the phase differences in the migratory locust\(^4\). Some neuronal signaling and sensory activity related genes, such as dopamine receptor\(^5\), chemosensory protein (CSP) and takeout\(^6\) were proved to play roles during the phase transition. The successful assembly of the migratory locust genome is a milestone in the study of phase transition of locust\(^7\). The genome is 6.5 giga base pairs (Gb), the largest animal genome sequenced so far. Significant expansion of gene families associated with energy consumption and detoxification were found in the locust genome\(^8\). Besides, small RNA\(^9\) and metabolomics\(^10\) analysis also disclosed a lot of regulators contributing for the phase transition.

Proteomic researches have also been carried out, but few significant progresses have been made till now. In 1999, polypeptide maps were generated from hemolymph of the desert locust and twenty differential spots were identified between the two phases. However, detailed information about these peptides was not available\(^11\). Two proteins, a 6-kDa peptide and a serine protease inhibitor were identified to have different expression patterns between the two phases in the desert locust using a combined approach of high-performance liquid chromatography (HPLC) with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)\(^12\). These proteomic studies moved very slowly because of the lack of locust genome information at that time.

The behavior plasticity makes locusts to be a good model in the epigenetic researches\(^13,14\). Two DNA methyltransferase genes were shown to be phase-specific in certain tissues of the desert locust\(^15\). Further analysis revealed that the methylome of the gregarious desert locust was characterized by CpG- and exon-specific methylation, and the overall methylation levels were substantially higher than other invertebrates\(^16\). These findings suggest that DNA methylation may be involved in the regulation of locust phase transition. Besides, a cAMP-dependent protein kinase (PKA) was reported to play a role in the transition from solitary to gregarious behavior in the desert locust\(^17\). Except for these reports, few studies have been further performed in recent years.

In general, large progresses have been made in exploring the mechanisms of phase transition in the migratory and desert locusts. A lot of differentially expressed genes and pathways have been identified based on DNA sequencing techniques. However, the researches in protein areas, such as protein identification and protein modification, have been largely lagged. One of the most key reasons is the lack of genome sequence information. Fortunately, the genome assembly of the migratory locust was just finished\(^18\), which provides much convenience for protein identification and will do great help for exploring the complex mechanism of phase transition in another viewpoint.

In the present study, we identified 90 differentially expressed proteins between the two phases in the migratory locust by a quantitative proteomic technique. Among them, CSN7A was found to play an essential role in the transition of gregaria towards solitaria.

Results

Proteins identified in the locust head. A total of 4, 895 peptides were identified by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) from the locust head, and they were finally assembled into 1, 387 proteins. After COG classification, 1, 104 proteins were assigned to 25 COG categories, and the "R" cluster (General function predication) and "O" cluster (Posttranslational modification, protein turnover, chaperones) represent the largest two groups, and their amounts are 18% and 15% of the total identified proteins, respectively (Fig. 1). The "O" cluster proteins are mainly heat shock protein chaperones, ubiquitin-dependent proteins, proteasome-related proteins, peptidase activity-related proteins, glutathione S-transferase, protein disulfide-isomerase, and COP9 signalosome complex subunits (Supplementary Table S1). The top 70 most abundant proteins are listed in Table 1 and Supplementary Table S2. Most are the proteins related to structural construction, such as twitchin, spectrin alpha chain-like and microtubule-actin cross-linking factor 1. Many proteins, including pyruvate kinase (EC 2.7.1.40), malate dehydrogenase (EC 1.1.1.37), aconitate hydratase (EC 4.2.1.3), citrate synthase 2 (EC 2.3.3.1), succinyl-CoA ligase (EC 6.2.1.4), 2-oxoglutarate dehydrogenase E1 component (EC 1.2.4.2), and ATP-citrate synthase (EC 2.3.3.8), revealed high abundance. These proteins are involved in tricarboxylic acid cycle (TCA). It suggests that TCA is very active in the locust head. Besides, several heat shock proteins and hexamerins were also identified to be abundant in the locust head.
Differentially expressed proteins between the two phases. Among the 1,387 identified proteins, 90 proteins were shown to have different expression levels between the two phases. Sixty-four were up-regulated in the gregaria (as compared with the solitaria), and twenty-six were down-regulated (Table 2, Supplementary Table S3). Most of the up-regulated proteins are involved in the processes of structure formation (such as cuticle protein, beta-1 tubulin, profiling, and troponin), energy metabolism (electron transfer flavoprotein subunit alpha [ETFA], dehydrogenase/reductase SDR family member 11-like, 3-ketoacyl-CoA thiolase, V-type proton ATPase subunit B and isocitrate dehydrogenase

Figure 1. COG classification of identified proteins. Based on sequence homology, 1,104 proteins were classified into 25 COG (Clusters of orthologous groups) categories (A). The “R” and “O” clusters represent the largest two groups. Proteins classified in the “O” cluster (Posttranslational modification, protein turnover, chaperones) were further assigned to different categories according to their molecular functions (B). Detailed information about these “O” cluster proteins can refer to Supplementary Table S1.
No.	ID number in the locust genome database (version 2.0)	Protein name	Species	Accession No.	Peptide
1	LMI_GLEAN_10128031	twitchin	Cerapachys biroi	EZA52953	166
2	LMI_GLEAN_10163232	apolipophorin II	Locusta migratoria	Q9U943	103
3	LMI_GLEAN_10136968	myosin heavy chain, muscle-like	Apis florea	XP_003695415	77
4	LMI_GLEAN_10142035	spectrin alpha chain-like	Apis mellifera	XP_006558458	50
5	LMI_GLEAN_10142824	muscle M-line assembly protein unc-89	Cerapachys biroi	EZA59129	49
6	LMI_GLEAN_10088460	filamin-A isoform X3	Tribolium castaneum	XP_008199793	48
7	LMI_GLEAN_10187850	microtubule-actin cross-linking factor 1 isoform X6	Nasonia vitripennis	XP_008203191	45
8	LMI_GLEAN_10135516	alpha-actinin, sarcomeric isoform X2	Tribolium castaneum	XP_972324	36
9	LMI_GLEAN_10062054	paramyosin, long form	Zootermopsis nevadensis	KDR08790	33
10	LMI_GLEAN_10137418	spectrin beta chain	Zootermopsis nevadensis	KDR16227	31
11	LMI_GLEAN_10140538	titin	Harpegnathos saltator	EFN83273	28
12	LMI_GLEAN_10134774	elongation factor 2	Schistocerca gregaria	AEV89753	26
13	LMI_GLEAN_10126855	pyruvate kinase	Zootermopsis nevadensis	KDR19430	26
14	LMI_gi_37993866	heat shock protein 70	Locusta migratoria	AAP57337	25
15	LMI_GLEAN_10160912	glycogen phosphorylase-like	Apis florea	XP_003690485	25
16	LMI_GLEAN_10157178	staphylococcal nucleosome domain-containing protein 1	Tribolium castaneum	XP_974879	23
17	LMI_GLEAN_10153094	coracle, partial	Blattella germanica	CCI09964	23
18	LMI_gi_93278396	heat shock protein 90	Locusta migratoria	AAS45246	21
19	LMI_gi_99867354	arginine kinase	Locusta migratoria manilensis	ABF68036	20
20	LMI_GLEAN_10097368	ATP-citrate synthase	Zootermopsis nevadensis	KDR07798	20
21	LMI_GLEAN_10043824	clathrin, partial	Locusta migratoria	AHC70342	19
22	LMI_GLEAN_10164084	heat shock 70 kDa protein cognate 5	Zootermopsis nevadensis	KDR08641	18
23	LMI_gi_241997152	ER protein gp78	Locusta migratoria	ACS57353	18
24	LMI_gi_256368118	hexamerin-like protein 2	Locusta migratoria	ACU78069	18
25	LMI_GLEAN_10109513	tropomyosin-1	Nasonia vitripennis	XP_001599008	17
26	LMI_GLEAN_10065878	60 kDa heat shock protein, mitochondrial	Zootermopsis nevadensis	KDR14060	17
27	LMI_GLEAN_10001937	myosin heavy chain, non-muscle-like isoform 2	Bombus terrestris	XP_003394420	17
28	LMI_gi_225194719	pro-phenoloxidase 2	Locusta migratoria	ACN81829	17
29	LMI_GLEAN_10141796	vinculin-like isoform 1	Bombus impatiens	XP_003493644	17
30	LMI_GLEAN_10143564	hexamerin-like protein 2	Locusta migratoria	ACU78069	17
31	LMI_GLEAN_10196247	beta-actin	Diabolocatantops pinguis	ACV32627	16
32	LMI_GLEAN_10097173	tropomyosin-1, isoforms 9A/A/B	Camponotus floridanus	EFN72212	16

Continued
No.	ID number in the locust genome database (version 2.0)	Protein name	Species	Accession No.	Peptide
33	LMI_GLEAN_10021933	tubulin beta-1 chain	Tribolium castaneum	XP_967267	16
34	LMI_GLEAN_10170791	fructose 1,6-bisphosphate aldolase	Schistocerca gregaria	AEV89754	16
35	LMI_GLEAN_10123052	malate dehydrogenase, mitochondrial	Nasonia vitripennis	XP_001600547	16
36	LMI_GLEAN_10097518	alpha tubulin	Schistocerca gregaria	AEV89775	16
37	LMI_GLEAN_10142607	alpha tubulin	Schistocerca gregaria	AEV89775	16
38	LMI_GLEAN_10096450	alpha tubulin	Schistocerca gregaria	AEV89775	16
39	LMI_GLEAN_10111205	aconitate hydratase, mitochondrial-like	Megachile rotundata	XP_003705474	16
40	LMI_GLEAN_10170835	nesprin-1	Zootermopsis nevadensis	KDR09330	16
41	LMI_GLEAN_10104518	pyruvate carboxylase, mitochondrial	Zootermopsis nevadensis	KDR22588	16
42	LMI_GLEAN_10168000	annexin-B9	Zootermopsis nevadensis	KDR08631	15
43	LMI_GLEAN_10143558	hexamerin-like protein 1	Locusta migratoria	ACU78068	15
44	LMI_GLEAN_10126189	citrate synthase 2, mitochondrial	Zootermopsis nevadensis	KDR22581	15
45	LMI_GLEAN_10189307	ubiquitin-like modifier-activating enzyme 1	Zootermopsis nevadensis	KDR20513	15
46	LMI_GLEAN_10113091	ATPase	Homo sapiens	AAA35578	15
47	LMI_GLEAN_10165425	glycogen debranching enzyme, partial	Zootermopsis nevadensis	KDR16306	15
48	LMI_GLEAN_10136778	neither inactivation nor afterpotential protein C	Zootermopsis nevadensis	KDR20620	15
49	LMI_GLEAN_10056004	cytoplasmic A3a	Helicoverpa armigera	Q25010	14
50	LMI_GLEAN_10156223	transitional endoplasmic reticulum ATPase TER94	Zootermopsis nevadensis	KDR08983	14
51	LMI_GLEAN_10085205	transferrin	Romalea microptera	AAQ62963	14
52	LMI_GLEAN_10071372	14-3-3 protein zeta	Zootermopsis nevadensis	KDR15025	13
53	LMI_GLEAN_10081307	glutamate dehydrogenase, mitochondrial, partial	Zootermopsis nevadensis	KDR15400	13
54	LMI_GLEAN_10127881	tubulin alpha-3 chain, partial	Anas platyrhynchos	EOQ8266	13
55	LMI_GLEAN_10183379	14-3-3 protein epsilon	Schistocerca gregaria	AEV8977	13
56	LMI_GLEAN_10181426	2-oxoglutarate dehydrogenase E1 component, mitochondrial	Zootermopsis nevadensis	KDR11185	13
57	LMI_GLEAN_10042900	mitochondrial F1-ATP synthase alpha subunit	Locusta migratoria manilensis	AGOS9887	13
58	LMI_GLEAN_10122197	bifunctional purine biosynthesis protein PURH	Zootermopsis nevadensis	KDR19778	13
59	LMI_GLEAN_10154078	hexamerin-like protein 2	Locusta migratoria	ACU78069	13
60	LMI_GLEAN_10173735	phosphoglycerate mutase 2	Zootermopsis nevadensis	KDR20387	13
61	LMI_GLEAN_10053226	Rab GDP dissociation inhibitor alpha	Zootermopsis nevadensis	KDR21130	13
62	LMI_GLEAN_10105168	titin	Tribolium castaneum	XP_008191512	13

Continued
Table 1. Top 70 most abundant proteins identified in the locust head. Note: Detailed information about these proteins can refer to Supplementary Table S2.

No.	ID number in the locust genome database (version 2.0)	Protein name	Species	Accession No.	Peptide
63	LMI_gi_329564865	glutathione S-transferase delta	Locusta migratoria	ADR30117	12
64	LMI_GLEAN_10096104	calcium-transporting ATPase sarcoplastic/endoplasmic reticulum type-like	Megacile rotundata	XP_003707160	12
65	LMI_GLEAN_10109919	Hrp65 protein	Zootermops nevadensis	KDR15347	12
66	LMI_GLEAN_10123367	protein disulfide-isomerase	Schistocerca gregaria	AEY89748	12
67	LMI_GLEAN_10192650	moesin/exrin/radixin homolog 1	Riptortus pedestris	BAN21261	12
68	LMI_GLEAN_10051280	malate dehydrogenase, putative	Pediculas humanus corporis	XP_002424808	12
69	LMI_GLEAN_10154080	hexamerin-like protein 2	Locusta migratoria	ACU78069	12
70	LMI_GLEAN_10108970	succinyl-CoA ligase [ADP-forming] subunit beta, mitochondrial	Tribolium castaneum	XP_970725	12

NAD subunit beta), and environmental stress response (heat shock protein 60 [Hsp60] and heat shock protein 20.6 [Hsp20.6]). Besides, four hexamerin-like proteins are also abundant in the gregaria. The down-regulated proteins are mainly related to the processes of digestion and absorption (carboxypeptidase A-like, serine protease-like protein, and 1,4-alpha-glucan-branching enzyme-like) and chemical sensing (takeout-like). In addition, the differentially expressed proteins are also enriched in the class of “Regulation of gene expression” in both the gregaria and solitaria (Table 2). For example, wingless protein, 3′-phosphoadenosine 5′-phosphosulfate synthase (PAPSS), COP9 signalosome complex subunit 7A (CSN7A), and juvenile hormone binding protein (JHBP) were highly expressed in the gregaria, and splicing factor 3B subunit, ubiquitin-conjugating enzyme E2 variant 2-like isoform 1, proteasome subunit alpha type-4, and arginine/serine-rich-splicing factor RSP31 (RSP31) showed higher levels in the solitaria.

Differential expression at mRNA levels. To validate the differential expression, fourteen representative proteins were selected according to their function categories in Table 2. Their mRNA expression profiles were examined in the whole head of the two-phase locusts. Nine protein genes, including CSN7A, JHBP, PAPSS, choline transporter-like protein 4 (CTL-4), two hexamerin-like protein 2 (Hexa2 and Hexa2*), cytoplasmic actin A3a (actinA3a), ETF and Arylphorin revealed higher mRNA level in gregaria (Fig. 2). It was in consistent with the protein profiles in Table 2. The brain tissues, the most important part of head, were also studied. Four genes, such as CSN7A, JHBP, PAPSS, CTL-4 and takeout-like, showed similar expression patterns between the mRNA and protein levels. There were still four genes, including V-ATPase subunit B (V-ATPase), ATPsyn-d, RSP31, and NADPH--cytochrome P450 (P450) revealed constant mRNA levels between the two phases (Supplementary Fig. S1).

Time-dependent mRNA expression during phase transition. In order to further narrow target proteins that may play a role in the regulation of locust phase transition, CSN7A was chosen and time-dependent mRNA expression dynamics were examined in brain during the phase transition process. The CSN7A had higher mRNA level in the gregaria (Figs 2, 3), the level decreased significantly at 4, 16 and 32h isolation and was as low as that in the solitaria at 32h (Fig. 3). However, the mRNA level did not change during the crowding of solitary locusts (Fig. 3).

RNA interference (RNAi) and behavioral assay. To validate the function of CSN7A in locust phase transition, RNAi and behavioral assay were carried out. The mRNA level was suppressed by injection of CSN7A dsRNA in the gregaria (Fig. 4A), and the behavioral state shifted from gregaria (dsGFP population) to solitaria (dsCSN7A population) (Fig. 4B). The phase difference between two populations was highly significant \(P_{\text{Mann-Whitney U test}} = 1.61 \times 10^{-12} \). For example, 60% and 0% individuals fall into the \(P_{\text{ggreg}} \) interval of 0.8–1.0 in the dsGFP and dsCSN7A population, respectively. In addition, significant difference existed in the three key behavioral parameters (attraction index, total distance moved, and total duration of movement) between the two populations (Fig. 4C). These results revealed that phase transition did happen by RNAi of CSN7A in the gregarious locust.
No.	ID number in the locust genome database (version 2.0)	G/S (protein level of gregaria over solitaria)	Protein name	Accession No.	Species	Function category
1	LMI_GLEAN_10019610	16.62 cuticle protein 1	XP_970381	Tribolium castaneum		
2	LMI_GLEAN_10050722	5.56 cuticular protein 49Ae	XP_002033546	Drosophila melanogaster		
3	LMI_GLEAN_10021933	4.48 similar to beta1-tubulin	XP_967267	Tribolium castaneum		
4	LMI_GLEAN_10107594	4.45 cuticular protein RR-1 motif 45 precursor	BAB32485	Bombyx mori		
5	LMI_GLEAN_10196247	4.30 beta-actin	ACV32627	Diabolocatantops pinguis		
6	LMI_GLEAN_10170245	4.18 similar to Cuticular protein 62Bc CG1919-PA	XP_967979.1	Tribolium castaneum		
7	LMI_GLEAN_10056604	3.53 cytoplasmic actin A3b	AAL89657	Helicoverpa zea		
8	LMI_GLEAN_10105042	3.00 Endocuticle structural glycoprotein SpAbd-3	Q7M4E9	Apis florea		
9	LMI_GLEAN_10140130	2.31 profilin	NP_001011626	Apis mellifera		
10	LMI_GLEAN_10061897	2.11 actin-interacting protein 1-like isoform 1	XP_001943831	Acyrthosiphon pisum		
11	LMI_GLEAN_10172557	1.97 lambda-crystallin homolog	XP_001601340	Nasonia vitripennis		
12	LMI_GLEAN_10074080	1.51 Troponin I	EFN61242	Camponotus floridanus		
13	LMI_GLEAN_10124366	1.65 troponin t, invertebrate	XP_001655223	Aedes aegypti		
14	LMI_GLEAN_10123370	4.61 electron transfer flavoprotein subunit alpha, mitochondrial-like	XP_003700429	Megachile rotundata		
15	LMI_GLEAN_10127658	3.53 dehydrogenase/reductase SDR family member 11-like	XP_001947617	Manduca sexta		
16	LMI_GLEAN_10164303	3.28 3-ketoacyl-CoA thiolase, mitochondrial-like	XP_003488365	Bombyx mori		
17	LMI_GLEAN_10124634	2.8 V-type proton ATPase subunit B	P31401	Acyrthosiphon pisum		
18	LMI_GLEAN_10106737	2.26 probable isocitrate dehydrogenase [NAD] subunit beta, mitochondrial-like	XP_001607423	Nasonia vitripennis		
19	LMI_GLEAN_10137288	1.71 H+ transporting ATP synthase subunit e	ABF51335	Bombus impatiens		
20	LMI_GLEAN_10120585	1.55 ATP synthase, subunit d	XP_002096273	Bombus terrestris		
21	LMI_GLEAN_10088301	1.53 probable pyruvate dehydrogenase E1 component subunit alpha, mitochondrial-like isoform 1	XP_003399781	Drosophila yakuba		
22	LMI_GLEAN_10187224	2.02 wingless protein	EDS27053	Culex quinquefasciatus		
23	LMI_GLEAN_10002441	2.02 nucleoplasmn isoform 1-like protein	ABM55590	Macanellisocus hirsutus		
24	LMI_GLEAN_10160841	1.93 Four and a half LIM domains protein 2	EGI61543	Acromyrmex echinatior		
25	LMI_GLEAN_10099967	1.77 3′-phosphoadenosine 5′-phosphosulfate synthase	XP_970563	Tribolium castaneum		
26	LMI_GLEAN_10172624	1.75 Putative beta-carotene-binding protein	P82886	Drosophila willistoni		
27	LMI_GLEAN_10131973	1.68 COP9 signalosome complex subunit 7A	EEB19483	Pediculus humanus corporis		
28	LMI_gi_1710156	1.66 juvenile hormone binding protein	AAC47391	Locusta migratoria		
29	LMI_gi_85816368	6.21 heat shock protein 20.6	ABC84493	Locusta migratoria		

Continued
No.	ID number in the locust genome database (version 2.0)	G/S (protein level of gregaria over solitaria)	Protein name	Accession No.	Species	Function category
30	LMI_GLEAN_10065877	3.37	heat shock protein 60	ACO57619.	Pteromalus puparum	Digestion and absorption
31	LMI_GLEAN_10110738	1.54	heat shock protein 60	AEV89752	Schistocerca gregaria	
32	LMI_GLEAN_10190806	3.43	aspartate aminotransferase	EEB15916	Pediculus humanus corporis	
33	LMI_GLEAN_10095175	1.80	aspartate ammonia-lyase	EAT40064	Aedes aegypti	
34	LMI_GLEAN_10116472	1.56	alpha-amylase	ABC68516	Blattella germanica	
35	LMI_GLEAN_10043969	1.54	aspartate aminotransferase	AEX97005	Anopheles stephensi	
36	LMI_GLEAN_10078839	1.65	chemoactive protein	CAJ01464	Locusta migratoria	Chemical sensing
37	LMI_gi_484000	4.23	choline transporter-like protein 4	NP_001086000	Xenopus laevis	Transporter
38	LMI_GLEAN_10154078	9.96	hexamerin-like protein 2	ACU78069	Locusta migratoria	
39	LMI_GLEAN_10057778	8.50	hypothetical protein TcasGA2_TC001323	EEE98759	Tribolium castaneum	
40	LMI_GLEAN_10164915	5.57	predicted protein	EEE9602	Mammal	
41	LMI_GLEAN_10175054	5.32	similar to ribosomal protein S28e	CAJ01883	Tribolium castaneum	
42	LMI_GLEAN_10098678	5.30	hypothetical protein	XP_00242276	Pediculus humanus corporis	
43	LMI_GLEAN_10126245	4.82	arylphorin hexamerin-like protein 2	AAX14951	Romalea microptera	
44	LMI_GLEAN_10154080	4.09	hexamerin-like protein 2	ACU78069	Locusta migratoria	
45	LMI_GLEAN_10025235	3.63	peroxiredoxin-like protein	ABV44727	Phlebotomus papatasi	
46	LMI_GLEAN_10042129	3.50	similar to conserved hypothetical protein	XP_970222	Tribolium castaneum	
47	LMI_GLEAN_10102266	3.24	AGAP0006260-PD	EDO63843	Anopheles gambiae str. PEST	
48	LMI_GLEAN_10042900	2.80	similar to AGAP005134-PA isoform 1	EPA00742	Tribolium castaneum	
49	LMI_GLEAN_10080939	2.43	GOK3357	EDW79295	Drosophila willistoni	Others
50	LMI_GLEAN_10061914	2.16	46 kDa FK506-binding nuclear protein, putative	EEB13519	Pediculus humanus corporis	
51	LMI_GLEAN_10097536	2.09	acidic ribosomal protein	CAA72658	Ceratitis capitata	
52	LMI_GLEAN_10118445	2.08	major allergen Bla g 1.02	AAD13531	Blattella germanica	
53	LMI_GLEAN_10113524	2.06	c-1-tetrahydrofolate synthase, cytoplasmic-like	XP_00370207	Megachile rotundata	
54	LMI_GLEAN_10147206	2.00	hypothetical protein LOCI00160882	XP_001951692	Acerosiphon pisum	
55	LMI_GLEAN_10095481	1.98	myosin 1 light chain	AAV91412	Lononma obliqua	
56	LMI_GLEAN_10124558	1.82	GF22728	EDV32005	Drosophila ananassae	
57	LMI_GLEAN_10130423	1.72	maternal protein exaperantia-like	XP_003697468	Apis florea	
58	LMI_GLEAN_10154252	1.61	transketolase-like protein 2-like isoform 1	XP_003493512	Bombus impatiens	
59	LMI_GLEAN_10119040	1.57	pentatricopeptide repeat-containing protein 2-like	XP_001946785	Acerosiphon pisum	

Continued
No.	ID number in the locust genome database (version 2.0)	G/S (protein level of gregaria over solitaria)	Protein name	Accession No.	Species	Function category
60	LMI_GLEAN_10073596	1.56	hypothetical protein	CAJ01469	Locusta migratoria	
61	LMI_GLEAN_10181062	1.55	hypothetical protein LOC100169018	XP_001946070	Acyrthosiphon pisum	
62	LMI_GLEAN_10135691	1.54	putative leukotriene A4 hydrolase	EFX86132	Daphnia pulex	
63	LMI_GLEAN_10071089	1.51	hexamerin 4 precursor	NP_001164245	Tribolium castaneum	
64	LMI_GLEAN_10187958	1.51	conserved hypothetical protein	XP_002416013	Ixodes scapularis	
65	LMI_GLEAN_10143558	0.106	hexamerin-like protein 1	ACU78068	Locusta migratoria	
66	LMI_GLEAN_10175495	0.459	ubiquitin carboxyl-terminal hydrolase isozyme L5	XP_002431967	Pediculus humanus corporis	Digestion and absorption
67	LMI_GLEAN_10051974	0.468	similar to putative carboxypeptidase A-like	EFA05749	Tribolium castaneum	
68	LMI_GLEAN_10120545	0.557	serine protease-like protein	CAA70820	Schistocerca gregaria	
69	LMI_GLEAN_10054296	0.567	beta-1,4-endoglucanase 1	AAF80584	Panesthia cribrota	
70	LMI_GLEAN_10109880	0.617	similar to cathepsin b	XP_974220	Tribolium castaneum	
71	LMI_GLEAN_10192264	0.653	1,4-alpha-glucan-branching enzyme-like	XP_00370245	Megachile rotundata	
72	LMI_GLEAN_10099118	0.513	similar to pre-mRNA-splicing helicase BRR2	XP_9705541	Tribolium castaneum	
73	LMI_GLEAN_10170704	0.588	Splicing factor 3B subunit	EEB16979	Pediculus humanus corporis	
74	LMI_GLEAN_10196136	0.599	ubiquitin-conjugating enzyme E2 variant 2-like isoform 1	XP_003398336	Apis mellifera	Regulation of gene expression
75	LMI_GLEAN_10002265	0.660	Proteasome subunit alpha type-4	EFN87452	Harpegnathos saltator	
76	LMI_GLEAN_10081266	0.666	Arginine/serine-rich-splicing factor RSP31	EEB16084	Pediculus humanus corporis	
77	LMI_GLEAN_10133889	0.464	takeout-like	BAH71589	Acyrthosiphon pisum	Chemical sensing
78	LMI_gi_311063281-D1	0.490	protein takeout-like	XP_00194737	Acyrthosiphon pisum	
79	LMI_GLEAN_10133888	0.562	protein takeout-like	XP_001950706	Acyrthosiphon pisum	
80	LMI_GLEAN_10109545	0.479	NADPH--cytochrome P450, putative	EEB11242	Pediculus humanus corporis	Immunity and defense
81	LMI_GLEAN_10117209	0.593	glutathione S-transferase sigma 1	AEB91973	Locusta migratoria	
82	LMI_GLEAN_10042954	0.638	similar to DNA-damage inducible protein	XP_969775	Tribolium castaneum	Transporter
83	LMI_GLEAN_10138023	0.663	importin subunit beta-1-like isoform 1	XP_001599381	Nasonia vitripennis	
84	LMI_GLEAN_10082913	0.663	similar to vesicle docking protein P115	EFA08682	Tribolium castaneum	
85	LMI_GLEAN_10168539	0.663	Reticulon-1	EFN73447	Camponotus floridanus	Structure formation
86	LMI_gi_159434	0.370	conserved hypothetical protein	EEB10389	Pediculus humanus corporis	Others
87	LMI_GLEAN_10002280	0.558	40S ribosomal protein S17	EEB10115	Pediculus humanus corporis	
88	LMI_GLEAN_10066930	0.565	similar to eukaryotic translation initiation factor 3	EFA00209	Tribolium castaneum	

Continued
Discussion

The “O” cluster proteins are extremely abundant in the locust head. This phenomenon was also found in the antennae of *Battocera horsfieldi* based on cDNA library analysis. However, similar phenomenon did not exist in the whole insect bodies. It seems that “O” cluster proteins are mainly abundant in the head as compared with the other parts of insects. It suggests that the proteins related to post-translational modification, protein turnover and chaperone folding are highly involved in the regulation of head function in insects. Locust phase polyphenism is a typical phenomenon of epigenetics. The existence of high abundant “O” cluster proteins suggests that post-translational modification may play important roles in the locust phase transition.

The two locust phases differ in many aspects, especially in the body color and behavioral activity. The gregaria is darker and more active, while the solitaria is shallower and quieter. The proteomic analysis revealed that proteins related to structure formation, melanism and energy metabolism have significantly higher expression level in the gregaria. This is consistent with the facts that gregarious locusts have stronger muscles, darker color and more frequent activity. As compared with the gregaria, the solitaria owns more abundant proteins related to digestion, absorption and chemical sensing. It’s apparently that the former two characteristics provide the solitary locusts with higher abilities in digestion and absorption, and the latter one gives them stronger olfactory sensation. This makes them have an advantage over the gregarious locusts in feeding and mating, and then results in higher reproductive capacity.

In the present study, hexamerins and JHBP are abundant in the head of gregarious locust. Similar results have been revealed by EST library analysis in the same species. Both hexamerin and JHBP have been suggested to play a role as juvenile hormone (JH) transporters, and even as regulators of JH levels and action. This explains the involvement of hexamerins in JH-dependent differentiation of caste phenotype in some social insects, including termite *Reticulitermes flavipes*, honey bee *Apis mellifera* and wasp *Polistes metricus*. Besides caste-related polyphenism in social insects, JH was also reported to mediate plasticity of aggregation behavior in adult desert locusts. Surgical removal of the corpora allata to terminate JH secretion increased aggregation index and behavioral activity of adult locust. This effect was caused by repressing the responsiveness of olfactory interneurons in the antennal lobe to aggregation pheromone. Thus, hexamerins and JHBP can be involved in the phase plasticity of locust by mediating JH action.

Heat shock proteins (Hsps) are a kind of stress-induced proteins that can be synthesized rapidly in response to various environmental stress signals. Hsps usually function as molecular chaperones and participate in numerous cellular functions such as folding, assembly, intracellular localization, secretion, regulation and degradation of proteins. Gregarious locusts live at high population density. Population density can alter the expression of Hsps. For example, the mRNA levels of five Hsps (*Hsp20.5, Hsp20.6, Hsp20.7 and Hsp90*) are significantly higher in the gregarious locust head as compared with those in the solitaria. The mRNA levels were up-regulated by crowding of the solitary locusts (for 32 h), and down-regulated by isolation of the gregarious locusts. In the present study, *Hsp60* and *Hsp20.6* were identified to have higher protein levels in the gregarious locust head. The over-expression of Hsps in gregaria seems to be a direct response to high-population gather of locust. It’s hard to distinguish whether Hsps play a role to control the phase transition.

In the desert locusts, two phase populations display different sensitivity to aggregation pheromone. Chemosensory protein (CSP) and takeout are important proteins for olfactory sensing. RNA interference combined with olfactory behavioral experiments confirmed that six CSP genes and one takeout gene, *LmigTO1*, are responsible for the formation of gregarious and solitary behaviors, respectively. In our study, another CSP (CSP-7) and three new takeout proteins (TO 4 to 6) were identified from the head of *Locust migratoria* (SupplementaryFig. S2), and the CSPs revealed higher protein level in the gregaria, while the TOs showed higher protein levels in the solitaria. These protein expression patterns are consistent with the early report at mRNA levels, and further confirm that both CSP and takeout are involved in the phase plasticity of locust.
Figure 2. The mRNA expression profiles in the two-phase locusts. The mRNA expression profiles were examined by qRT-PCR in both the head and brain tissues. The mRNA levels were quantified by standard curves generated with serial (10 ×) dilutions of plasmid DNAs. The relative expression level of each target gene was normalized against a house-keeping gene (RP49). Differences between treatments were compared by Student’s t-test, and two levels (P < 0.05 or 0.01) were adopted to judge the significance of difference. Abbreviations: “G”, gregaria; “S”, solitaria. The abbreviation for gene names can refer to Table 3.
The CSN, an eight protein complex (CSN1-8)\(^{48}\) was originally discovered as an essential regulator in light-induced development in *Arabidopsis thaliana*\(^{49}\). In *Drosophila melanogaster*, it also plays an essential role for development. Disruption of one of the subunits caused lethality at the late larval or pupal stages\(^ {50}\). This role of CSN is partly due to its regulation on Hedgehog signaling by mediating proteolysis of some transcription factors\(^ {51}\). In the same species, CSN was also reported to be involved in circadian rhythms by controlling the degradation of two clock proteins\(^ {52}\). Interestingly, our study showed that CSN7A played a role in the phase transition from gregaria to solitaria in the migratory locusts. RNAi of CSN7A triggered the phase shift from gregaria to solitaria within 24 h (Fig. 4). Isolation (gregaria to solitaria) and crowding (solitaria to gregaria) may have different regulation mechanisms. The former takes place within 4 h in the migratory locusts, whereas the latter cannot finish until 32 h\(^ {3}\). In the present study, the mRNA amount of CSN7A in gregaria decreased during the isolation, however, the mRNA level remained constant during the crowding of solitaria (Fig. 3). It suggests that CSN7A may be only involved in one direction transition from gregaria to solitaria rather than in its reverse process.

It is the first time to disclose the role of CSN in behavior plasticity of animals. CSN has been reported to be involved in neural development, and regulates dendritic morphogenesis in *Drosophila* brain through Cullin-mediated protein degradation\(^ {53}\). More and more evidences revealed that CSN plays an important role in protein degradation through Cullin-ubiquitin-proteasome pathway\(^ {54-56}\). Therefore, CSN might be involved in the phase transition of locust by mediating ubiquitin-dependent proteolysis. Further studies need to be carried out to explore the detailed mechanism of CSN in the regulation of phase transition.

In conclusion, a total of 1,387 proteins were identified in the locust head in the present study, and a large proportion of proteins are involved in post-translational modification, especially in protein folding, phosphorylation and ubiquitylation. Ninety proteins were identified to differentially express between two phases in the head of the migratory locust. Gregaria reveals higher expression in proteins related to structure formation, melanism and energy metabolism, whereas solitaria owns more abundant proteins related to digestion, absorption and chemical sensing. This is consistent with their differentiation in morphology and physiology. JHBP, hexamerin, Hsp, CSP and takeout are suggested to play a role in behavior formation according to their differential expression profiles between two phases. The most interestingly, RNAi of CSN7A in gregaria made the behavior shift towards solitaria within 24 h. It is the first time to disclose the role of CSN in behavior plasticity of animals. These results provide important information for further exploration of the complex mechanism of locust phase transition, as well as for the study of behavior plasticity of animals.

Methods

Animals. The gregarious and solitary populations of the migratory locust are long-term maintained in our laboratory as the early reported method\(^ {5}\). Briefly, gregarious nymphs were cultured in large boxes (40 × 40 × 40 cm\(^3\)) at a density of 500–1000 insects per container. Solitary nymphs were obtained from the gregarious colony and cultured alone in white metal boxes (10 × 10 × 25 cm\(^3\)) supplied with charcoal-filtered compressed air. The gregarious and solitary colonies were maintained under a 14 h light/10 h dark cycle at 30 ± 2 °C and fed on fresh wheat seedlings and bran.
Sample preparation and iTRAQ labeling. When the locusts developed into the second day of 4th instar, the heads of 3 to 5 gregarious or solitary nymphs were collected and thoroughly homogenized in 500 μL cold PBS buffer including 1 mM PMSF, 2 mM EDTA and 10 mM DTT. The samples were centrifuged for 20 min at 25,000 × g, and the supernatant was collected. A total of 100 μg of protein per sample was reduced, alkylated, and then digested by adding 2 μg trypsin (1 μg/μL) at 37 °C overnight. The digested samples were lyophilized and re-suspended in 100 μL of 0.5 M TEAB (triethylammonium bicarbonate). The method of isobaric tags for relative and absolute quantitation (iTRAQ) was adopted for sample labelling according to the protocol of iTRAQ® Reagents—4plex Applications Kit (AB Sciex Pte. Ltd., Foster City, USA). Each sample was labeled with an isobaric tag. The iTRAQ-labeled peptide mixtures were pre-separated by strong cation exchange (SCX) column. For SCX chromatography, the LC-20AB HPLC Pump system (Shimadzu Corporation, Chiyoda-ku, Tokyo, Japan) was used, the peptide sample was reconstituted with 4 mL buffer A (25 mM NaH₂PO₄ in 25% ACN, pH 2.7) and then loaded onto a 4.6 × 250 mm Ultremex SCX column containing 5-μm particles (Phenomenex, Torrance, CA, USA). The peptides was eluted at a flow rate of 1 mL/min with a gradient of buffer A for 10 min, 5–35% buffer B (25 mM NaH₂PO₄, 1M KCl in 25% ACN, pH 2.7) for 11 min, 35–80% buffer B for 1 min. The system was then maintained in 80% buffer B for 3 min before equilibrating with buffer A for 10 min prior to the next injection. Elution was monitored by measuring absorbance at 214 nm, and fractions were collected every 1 min. The eluted peptides were pooled as 12 fractions, desalted by Strata X C18 column (Phenomenex, Torrance, CA, USA) and vacuum-dried. Each fraction was resuspended in certain volume of buffer A (2% ACN, 0.1% FA).

LC-MS/MS Analysis. A total of 5 μg of the above solution was loaded on a LC-20AD nanoHPLC (Shimadzu Corporation, Chiyoda-ku, Tokyo, Japan) equipped with a 2 cm C18 trap column, and the peptides were then eluted onto a resolving 10 cm analytical C18 column. The MS data acquisition was performed with Triple TOF 5600 System (AB SCIEX, Concord, ON) fitted with a Nanospray III source (AB SCIEX, Concord, ON) and a pulled quartz tip as the emitter (New Objectives, Woburn, MA). Data was acquired using an ion spray voltage of 2.5 kV, curtain gas of 30 PSI, nebulizer gas of 15 PSI, and an interface heater temperature of 150°C. The MS was operated with a resolving power of greater than...
or equal to 30,000 FWHM (full width at half maximum). The MS/MS data collection and processing was done on Analyst® software (version 1.6, AB SCIEX, Concord, ON) with the method of Information Dependent Acquisition (IDA) according to the manual.

Database searching for protein identification. The resulting MS/MS spectra were searched against the locust protein database generated from the newly assembled genome with MASCOT software (Matrix Science, London, UK; version 2.3.02). The carbamidomethylation of cysteine was considered a fixed modification, and the conversion of N-terminal glutamine to pyroglutamic acid and methionine oxidation were considered variable modifications. The minimal peptide length was seven amino acids, and a single missed cleavage maximum was used. A peptide mass tolerance of 10 ppm was allowed for intact peptide masses and 0.05 Da for fragmented ions. A stringent 0.01 false discovery rate (FDR) threshold was used to filter the candidate peptide and protein. Two thresholds were set up to filter the candidate proteins whose abundances were significantly different from others: <0.05 for a two-tailed P-value test and >1.5 (or <1/1.5) for the fold-change. For gene ontology (GO, http://www.geneontology.org/) mapping, BLAST2GO software (version 2.5.0, http://www.blast2go.org) was employed to deal with the BLASTx results and then to perform the functional annotation by GO vocabularies, enzyme classification codes, KEGG metabolism pathways. The default settings of BLAST2GO were used in every annotation step.

Quantitative real-time PCR (qRT-PCR). Total RNAs were extracted from the whole head and dissected brain tissues, respectively using an RNAeasy mini kit (QIAGEN, Hilden, Germany). Three heads or eight brains were used for each RNA isolation, and five biological repeats were performed during sampling. PCR reactions were performed in a 20 μL volume and the final concentration of primers was 250 nM. PCR amplification was conducted on a Roche Light Cycler® 480 system (Roche Applied Science, Fenzberg, Germany) using SYBR green master mix (Roche Diagnostics Ltd. Shanghai, China). The PCR was initiated with a 10-min incubation at 95 °C, followed by 45 cycles of 10 s at 95 °C, 20 s at 58 °C and 20 s at 72 °C. Five biological replicates were performed for each sample. The standard curves for target genes and reference genes (ribosomal protein 49, RP49) were generated with serial (10×) dilutions of plasmid DNAs. Efficiency of qRT-PCR and correlation coefficients were determined for the primers of each gene. The relative expression level of each target gene was normalized against the housekeeping gene RP49. The specificity of amplification was ensured by both melting curve analysis and sequencing of PCR product. The primers for qRT-PCR were listed in Table 3.

RNAi. Double-strand RNA (dsRNA) of the target gene and a negative control gene (green fluorescent protein, gfp) were prepared using the T7 Ribomax Express RNAi system (Promega, Madison, USA) according to the manufacturer’s instruction. The primers for dsRNA preparation were listed in Table 3. A total of 35 ng dsRNA was injected directly into eight brains of the 4th instar nymphs using Nanoject II nanoliter injector (Warner Instruments, Hamden, CT, USA). Twenty four hours later, the effects of RNAi on mRNA level were detected by qRT-PCR and behavioral assay. Four biological repeats were performed for qRT-PCR. Four biological repeats were performed for qRT-PCR. For behavioral assay, the same injection was carried out in gregaria, and 30 and 36 individuals were used for dsGFP and dsCSN7A, respectively.

Phase Transition. To make gregarious behavior change towards solitaria, the 4th instar gregarious nymphs were individually reared at the same condition as solitary ones. After 2, 4, 8, 16 and 32 h of isolation, the brains were dissected and immediately placed in RNAlater Solution (Ambion, Austin, USA) for qRT-PCR analysis. The gregarious nymphs maintained in normal situation (high population density) were used as controls. To avoid the influences of circadian rhythm and sexual difference, all samples were collected at the same time point of a day with a sex ratio of 1:1. Each treatment included five biological replicates. To make a reverse phase transition (solitaria towards gregaria), ten solitary nymphs were marked and moved into an optic perplex-made box (10 × 10 × 10 cm³), and 20 gregarious individuals were then added to maintain high population density. The sampling, mRNA level detecting and other methods were as same as the isolation of gregaria.

Behavioral assay. The behavioral assay was performed in a rectangular arena (40 × 30 × 10 cm³). The wall of the arena is opaque plastic and the top is clear. One of the separated chambers (7.5 × 30 × 10 cm³) contained 20 4th instar gregarious locusts as the stimulus group, and the other end of the chamber with the same dimensions was kept empty. Both ends of the chamber were illuminated equally to prevent the formation of mirror images. The floor of the open arena was covered with filter paper during the behavioral assay. The locust nymphs were gently transferred by a tunnel to the arena. Each individual was recorded for 6 min using EthoVision system (Noldus Inc. Wageningen, the Netherlands). Eleven behavioral parameters (such as attraction index, total distance moved, total duration of movement, etc.) were collected to calculate the possibility of gregaria (Pgreg), which was used for criterion of phase type. Detailed information can refer to the early reported methods. Differences between mRNA levels were compared by Student’s t-test. The relative mRNA levels were presented as mean ± SEM (standard error of the mean). Behavioral data
Gene name	ID number in the locust genome database (version 2.0)	Primer sequence (5′→3′)	Product length (bp)
qRT-PCR
CSN7A | LMI_GLEAN_10131973 | AGAATCGTGGGCTGAAACATAA | 184
JHBP | LMI_gi_1710156 | AAAGTATTCTGACAGGCAAC | 148
PAPSS | LMI_GLEAN_10099907 | CATCACAAGAGGACACCTTTACA | 135
CTLA4 | LMI_gi_484000 | CTCACAACACAGCTCCAGCAG | 118
Hexa2 | LMI_GLEAN_10154078 | CAAAGGCCTGCACACCTTC | 151
Hexa2* | LMI_GLEAN_10154080 | AGAGGAGATCAGGGACGC | 294
actinA3a | LMI_GLEAN_10056004 | TGAGCGATTCAGGTGCCC | 283
ETFA | LMI_GLEAN_10123370 | ACCTATAACGCAAAATGCCAA | 166
Arylphorin | LMI_GLEAN_10126245 | ACCCCTGTGCGTGCTGAAG | 257
takeout-like | LMI_GLEAN_10133888 | ACTCCGCCAAGACGAAATACA | 166
V-ATPase | LMI_GLEAN_10124634 | TTGCCATCACTCAGTCGTCTCA | 115
ATPsyn-d | LMI_GLEAN_10120585 | AGAAAATCCGCCAATAGGAA | 253
RSP31 | LMI_GLEAN_10081266 | TGCCAGGCTTCAAGTTGAGG | 141
P450 | LMI_GLEAN_10109545 | TGACGAGCCTAAAAAGCATCC | 159
rp49 | LMI_GLEAN_10126536 | CGTAAACCGAAGGGAATTGA | 209

RNAi
CSN7A | LMI_GLEAN_10131973 | GCACCCCTACTACCGTTAATGA | 316
GFP | LMI_GLEAN_10131973 | CAGCGGTTGATGTTCT | 420

Table 3. Primers used for qRT-PCR and RNAi. Full names: CSN7A, COP9 signalosome complex subunit 7A (GenBank accession NO. KM396884); JHBP, juvenile hormone binding protein; PAPSS, 3′-phosphoadenosine 5′-phosphosulfate synthase; CTLA4, choline transporter-like protein 4; Hexa2, hexamerin-like protein 2; actinA3a, cytoplasmic A3a actin; ETFA, mitochondrial-like electron transfer flavoprotein subunit alpha; Arylphorin, arylphorin hexamerin-like protein 2; V-ATPase, V-ATPase subunit B; ATPsyn-d, ATP synthase, subunit d; RSP31, Arginine/serine-rich-splicing factor RSP31; P450, NADPH—cytochrome P450; rp49, ribosomal protein 49; GFP, green fluorescent protein (cloned from pEGFP-N1 plasmid vector, Clontech, Mountain View, CA, USA; GenBank accession NO. U557622)

were analyzed by the Mann-Whitney U test. Two levels of significance (P < 0.05 or 0.01) were adopted to judge the significance of difference. All the statistics was analyzed using SPSS 15.0 (SPSS Inc., Chicago, USA).
References

1. Uvarov, B. P. Grasshoppers and Locusts: A Handbook of General Acridology, Vol. 1. (Cambridge Univ. Press, London, 1966).
2. Penter, M. P. & Simpson, S. J. Locust phase polyphenism: An update. Adv. Insect Physiol. 36, 1–272 (2009).
3. Guo, W. et al. CSP and Takeout genes modulate the switch between attraction and repulsion during behavioral phase change in the migratory Locust. PloS Genet. 7, e1001291 (2011).
4. Wi, R. et al. Metabolomic analysis reveals that carnivines are key regulatory metabolites in phase transition of the locusts. Proc. Natl. Acad. Sci. USA. 109, 3259–3263 (2012).
5. Ma, Z. Y., Guo, W., Guo, X. J., Wang, X. H. & Kang, L. Modulation of behavioral phase changes of the migratory locust by the catecholamine metabolic pathway. Proc. Natl. Acad. Sci. USA. 108, 3882–3887 (2011).
6. Roessingh, P., Simpson, S. & James, S. Analysis of phase-related changes in behavior of desert locust nymphs. Proc R Soc B. 252, 43–49 (1993).
7. Wang, X. & Kang, L. Molecular mechanisms of phase change in locusts. Annu. Rev. Entomol. 59, 225–244 (2014).
8. Simpson, S. J., Despland, E., Hagele, B. F. & Dodgson, T. Gregarious behavior in desert locusts is evoked by touching their back legs. Proc. Natl. Acad. Sci. USA. 98, 3895–3897 (2001).
9. Anstey, M. L., Rogers, S. M., Ott, S. R., Burrows, M. & Simpson, S. J. Serotonin mediates behavioral gregarization underlying swarm formation in desert locusts. Science 323, 627–630 (2009).
10. Rogers, S. M. et al. Mechanosensory-induced behavioural gregarization in the desert locust Schistocerca gregaria. J. Exp. Biol. 206, 3991–4002 (2003).
11. Kang, L. et al. The analysis of large-scale gene expression correlated to the phase changes of the migratory locust. Proc. Natl. Acad. Sci. USA. 101, 17611–17615 (2004).
12. Chen, S. et al. De novo analysis of transcriptome dynamics in the migratory locust during the development of phase traits. PloS one 5, e15633 (2010).
13. Badisco, L. et al. Transcriptome analysis of the desert locust central nervous system: production and annotation of a Schistocerca gregaria EST database. PloS one 6, e17274 (2011).
14. Wang, X. H. et al. The locust genome provides insight into swarm formation and long-distance flight. Nat. Commun. 5, 1–9 (2014).
15. Wedekind-Hirschberger, S., Sickold, S. & Dorn, A. Expression of phase-specific haemolymph polypeptides in a laboratory strain and field catches of Schistocerca gregaria. J. Insect Physiol. 45, 1097–1103 (1999).
16. Rahman, M. M. et al. Search for peptidic molecular markers in haemolymph of crowd-(gregarious) and isolated-reared (solitary) desert locusts, Schistocerca gregaria. Peptides 23, 1907–1914 (2002).
17. Burrows, M., Rogers, S. M. & Ott, S. R. Epigenetic remodelling of brain, body and behaviour during phase change in locusts. Neuro. Syst. Circuits 1, 11 (2011).
18. Maeno, K. & Tanaka, S. Epigenetic transmission of phase in the desert locust, Schistocerca gregaria: the stage sensitive to crowding for the maternal determination of progeny characteristics. J. Insect Physiol. 56, 1883–1888 (2010).
19. Boerjan, B. et al. Locust phase polyphenism: Does epigenetic precede endocrine regulation? Gen. Comp. Endocr. 173, 120–128 (2011).
20. Falckenhayn, C. et al. Characterization of genome methylation patterns in the desert locust Schistocerca gregaria. J Exp Biol 216, 1423–1429 (2013).
21. Ott, S. R. et al. Critical role for protein kinase A in the acquisition of gregarious behavior in the desert locust. Proc. Natl. Acad. Sci. USA. 109, E381–387 (2012).
22. Zhang, T., Gu, S., Wu, K., Zhang, Y. & Guo, Y. Construction and analysis of cDNA libraries from the antennae of male and female cotton bollworms Helicoverpa armigera (Hubner) and expression analysis of putative odorant-binding protein genes. Biochem. Biophys. Res. Commun. 407, 393–399 (2011).
23. Bao, Y. Y. et al. De novo intestine-specific transcriptome of the brown planthopper Nilaparvata lugens revealed potential functions in digestion, detoxification and immune response. Genomics 99, 256–264 (2012).
24. Gu, J. et al. De novo characterization of transcriptome and gene expression dynamics in epidermis during the larval-pupal metamorphosis of common cutworm. Insect Biochem. Mol. Biol. 45, 794–808 (2013).
25. Liu, B. et al. Analysis of transcriptome differences between resistant and susceptible strains of the citrus red mite Panonychus citri (Acari: Tetranychidae). PloS one 6, e28516 (2011).
26. Wang, X. W. et al. De novo characterization of a whitely transcriptome and analysis of its gene expression during development. BMC genomics 11, 400 (2010).
27. Braun, R. P. & Wyatt, G. R. Sequence of the hexameric juvenile hormone-binding protein from the hemolymph of Locusta migratoria. J. Biol. Chem. 271, 31756–31762 (1996).
28. Ismail, S. M. & Gällott, C. Identification, characterization, and developmental profile of a high molecular weight, juvenile hormone-binding protein in the hemolymph of the migratory grasshopper, Melanoplus sanguinipes. Arch. Insect Biochem. Physiol. 29, 415–430 (1995).
29. Koopmanschap, A. B. & De Kort, C. A. D. Isolation and characterization of a high molecular weight JH-III transport protein in the hemolymph of Locusta migratoria. Arch. Insect Biochem. Physiol. 7, 103–118 (1988).
30. Zalewska, M. et al. Juvenile hormone binding protein traffic—Interaction with ATP synthase and lipid transfer proteins. Biochim. Biophys. Acta. 1788, 1695–1705 (2009).
31. Zhou, X., Oi, F. M. & Scharf, M. E. Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites. Proc. Natl. Acad. Sci. USA. 103, 4499–4504 (2006).
32. Zhou, X., Tarver, M. R., Bennett, G. W., Oi, F. M. & Scharf, M. E. Two hexamerin genes from the termite Reticulitermes flavipes: Sequence, expression, and proposed functions in caste regulation. Gene 376, 47–58 (2006).
33. Zhou, X., Tarver, M. R. & Scharf, M. E. Hexamerin-based regulation of juvenile hormone-dependent gene expression underlies phenotypic plasticity in a social insect. Development 134, 601–610 (2007).
34. Scharf, M. E., Buckspan, C. E., Gryzmal, T. L. & Zhou, X. Regulation of polyphenic caste differentiation in the termite Reticulitermes flavipes by interaction of intrinsic and extrinsic factors. J. Exp. Biol. 210, 4390–4398 (2007).
35. Martins, J. R., Nunes, F. M., Cristino, A. S., Simoes, Z. L. & Bitondi, M. M. The four hexamerin genes in the honey bee: structure, molecular evolution and function deduced from expression patterns in queens, workers and drones. BMC Mol. Biol. 11, 23 (2010).
36. Hunt, J. H. et al. A diapause pathway underlies the gyne phenotype in Polistes wasps, revealing an evolutionary route to caste-containing insect societies. Proc. Natl. Acad. Sci. USA. 104, 14020–14025 (2007).
37. Igelg, R., Coullaud, F. & Anton, S. Juvenile-hormone-mediated plasticity of aggregation behaviour and olfactory processing in adult desert locusts. J. Exp. Biol. 204, 249–259 (2001).
38. Feder, M. E. & Hofmann, G. E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243–282 (1999).
39. Sorensen, J. G., Kristensen, T. N. & Loeuschke, V. The evolutionary and ecological role of heat shock proteins. Ecol. Lett. 6, 1025–1037 (2003).
subunit 7A (CSN7A) is essential for the phase transition of migratory locust. Sci. Rep.

Proteomic analysis reveals that COP9 signalosome complex

Author Contributions
L.K., L.H.H. and B.C. designed the study. X.W.T performed the experiments. B.C. and L.H.H. analyzed the data. L.K. and Q.L.F. reviewed the paper. L.H.H. wrote the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Tong, X.-W. et al. Proteomic analysis reveals that COP9 signalosome complex subunit 7A (CSN7A) is essential for the phase transition of migratory locust. Sci. Rep. 5, 12542; doi: 10.1038/srep12542 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/