On the number of edges of separated multigraphs

Andrew Suk (UC San Diego)

September 16, 2021
Multigraph drawings

- Loops
- Multiple edges
Multigraph drawings

- Loops
- Multiple edges
Multigraph drawings

- Loops
- Multiple edges
Theorem (Euler)

Every n-vertex planar multigraph with edge multiplicity at most m has at most $(3n - 6)m$ edges.
Every n-vertex planar multigraph with edge multiplicity at most m has at most $(3n - 6)m$ edges.
Theorem

Every n-vertex planar multigraph with edge multiplicity at most m has at most $(3n - 6)m$ edges.

Theorem

Let G be an n-vertex multigraph with e edges and edge multiplicity at most m. Then

$$\text{cr}(G) \geq \Omega \left(\frac{e^3}{m \cdot n^2} \right) - O(m^2 n).$$
Theorem

Every n-vertex planar multigraph with edge multiplicity at most m has at most $(3n - 6)m$ edges.

Theorem

Let G be an n-vertex multigraph with e edges and edge multiplicity at most m. Then

$$\text{cr}(G) \geq \Omega \left(\frac{e^3}{m \cdot n^2} \right) - O(m^2 n).$$

Question (Kaufmann) Can we improve this crossing lemma for multigraphs with no empty lenses?
Crossing lemma for multigraphs

Theorem

Every n-vertex planar multigraph with edge multiplicity at most m has at most $(3n - 6)m$ edges.

Theorem

Let G be an n-vertex multigraph with e edges and edge multiplicity at most m. Then

$$\text{cr}(G) \geq \Omega \left(\frac{e^3}{m \cdot n^2} \right) - O(m^2 n).$$

Question (Kaufmann) How many edges can there be in a multigraph with no empty lenses?
Question (Kaufmann) How many edges can there be in a multigraph with no empty lenses?
Question (Kaufmann) How many edges can there be in a multigraph with no empty lenses?
Multigraph drawings

- No loops
- Multiple edges
- No two parallel edges cross
Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- No empty lenses
Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- no empty lenses
Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- no empty lenses

\[
\binom{n}{2} \cdot (n - 1) = O(n^3).
\]
Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- No empty lenses
Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- No empty lenses

{i} {j}
Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- No empty lenses
Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- no empty lenses
Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- No empty lenses

Andrew Suk (UC San Diego)

On the number of edges of separated multigraphs
Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- no empty lenses

Any two edges cross at most twice. $\Omega(n^3)$.
Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- No empty lenses
- Two edges cross at most once.
Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- No empty lenses
- Two edges cross at most once. Trivial: $O(n^3)$
Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- no empty lenses
- Two edges cross at most once.
- Dependent edges are non-crossing

Theorem (Pach-Tóth, 2018)

The maximum number of edges in an n-vertex multigraph that can be drawn in the plane with the rules above is $O(n^2)$
Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- no empty lenses
- Two edges cross at most once. Trivial: $O(n^3)$
- Dependent edges are non-crossing
Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- No empty lenses
- Two edges cross at most once.
- Dependent edges are non-crossing

Theorem (Pach-Tóth, 2018)

The maximum number of edges in an n-vertex multigraph that can be drawn in the plane with the rules above is $O(n^2)$.
Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- no empty lenses
- Two edges cross at most once.
- Dependent edges are non-crossing

Theorem (Pach-Tóth, 2018)

The maximum number of edges in an n-vertex multigraph that can be drawn in the plane with the rules above is $O(n^2)$

Proof. Probabilistic Method + Thrackles
Concluding remarks

- Multiple edges
- No two parallel edges cross
- No empty lenses
- Two edges cross at most once (including dependent edges).

Theorem (Fox-Pach-Suk)

Every n-vertex multigraph that can be drawn in the plane with the properties described above has at most $O(n^2 \log n)$ edges.

Corollary (Fox-Pach-Suk)

Let G be an n-vertex multigraph with e edges that can be drawn in the plane with the properties described above. Then

$$cr(G) \geq \Omega \left(\frac{e^3}{n^2 \log n} \right) - O(n)$$
Concluding remarks

- Multiple edges
- No two parallel edges cross
- no empty lenses
- Two edges cross at most once (including dependent edges).

Theorem (Fox-Pach-Suk)

Every n-vertex multigraph that can be drawn in the plane with the properties described above has at most $O(n^2 \log n)$ edges.

Open problem: Is the log factor necessary?
Thank you!