Excitation-Wavelength Dependence of Photoinduced Charge Injection at the Semiconductor-Dye Interface: Evidence for Electron Transfer from Vibrationally Hot Excited States\textsuperscript{a)a)

Jacques-E. Moser* and Michael Grätzel

Abstract. Heterodyad systems composed of a redox photosensitizer adsorbed on the surface of a wide band gap semiconductor were designed in a way that the $v' = 0$ energy level of the electronically excited state of the dye lies below the bottom of the conduction band of the solid. Under these conditions, the quantum yield of the charge injection from the sensitizer into the conduction band of the solid was found to depend upon the excitation photon energy. This observation provides an evidence that interfacial charge transfer is occurring prior to nuclear relaxation of the sensitizer’s excited state. It allows the use of a simplified kinetic model and offers an easy experimental path to the determination of the electronic coupling that controls the rate of the ultrafast injection process.

Introduction

Dye sensitization of wide band gap semiconductors \textit{via} photoinduced interfacial electron transfer is at the basis of technologically important processes in photography and xerography. In the last decade, redox sensitization of oxide nanocrystals has found additional applications in photoelectrochemical solar-energy conversion [1].

Charge injection from an electronically excited molecular state S^\ast into a wide continuum of acceptor levels constituting the conduction band of a semiconductor (SC) is one of the simplest photochemical surface reactions (Eqn. 1). It is, however, a rather special process, where no defined free energy is associated with the electron transfer. The reaction can, in fact, choose its energetic path to yield electrons within the band that are characterized by various kinetic energies.

\begin{equation}
S + SC \rightarrow S^\ast + SC \overset{k_{ij}}{\rightarrow} S^\ast (e^-) + SC
\end{equation}

Absorption of photons, whose energy $h\nu$ is larger than the electronic excitation energy $\Delta E_{0,0}$ of the dye, leads to the population of higher vibronic levels $S^\ast (v') > 0). Relaxation of those vibrationally excited intramolecular states (Eqn. 2) and of the whole system along the classical reaction coordinate are expected to compete with the electron-transfer process [2]. Under these conditions, the occurrence of the charge transfer from undefined donor energy levels prevents the description of the reaction by a general kinetic model.

Results and Discussion

\textit{cis-}[\text{Bis(4,4'-dicarboxy-2,2'-bipyridyl)]bis(thiocyanato)]ruthenium(II)} (I) is an efficient redox sensitizer of titanium dioxide, a 3.2-eV-bandgap semiconductor. Carboxylic groups carried by the ligands provide a good anchoring of the dye on the acidic surface of TiO$_2$. Absorption of visible light by the complex is due to a $d-\pi^\ast$ metal-to-ligand charge-transfer (MLCT) transition that causes in the excited state an increase of the electronic population of the ligand that is linked to the surface. An optimum electronic coupling is thus ensured between the dye excited state and the acceptor levels manifold of the semiconductor. Upon irradiation, the adsorbed dye has been found to inject an electron into the solid with a quantum yield approaching unity [3]. Recently, ultrafast laser flash photolysis was applied to dye-sensitized, transparent, nanocrystalline TiO$_2$ films. Experimental results showed that electron injection from the MLCT excited state of I into the conduction band of TiO$_2$ occurs within 130 fs ($k_{ij} = 8 \cdot 10^{12}$ s$^{-1}$) [4]. The lifetime of the dye excited state in solution being $\tau \approx 50$ ns, the charge-separation reaction (Eqn. 1) appeared to be more than five orders of magnitude faster than the competing natural decay of S^\ast (Eqn. 3).

\begin{equation}
S^\ast (v' > 0) \rightarrow SC \rightarrow S^\ast (v' = 0) \rightarrow SC + heat
\end{equation}

\begin{equation}
S^\ast + SC \rightarrow S + SC + energy
\end{equation}

\begin{equation}
S^\ast (e^-) + SC \rightarrow S + SC
\end{equation}

\textsuperscript{a)a) These results were presented as a poster at the Autumn Meeting of the New Swiss Chemical Society (NSCS) in Lausanne, Switzerland, on October 15, 1997.
Similar very high rate constants for interfacial electron-transfer processes were observed for other efficient redox sensitizers of TiO₂ [5]. In all cases, the absorption spectrum of the dye was not affected by surface adsorption onto the semiconductor. Formation of a ground-state charge-transfer complex and resonant electron injection upon light excitation could therefore be ruled out. In complex 1, vibrational relaxation of the excited state is expected to take place within a few picoseconds (κ ≈ 10³ s⁻¹). The observed ultrafast kinetics for interfacial electron transfer would thus preclude complete nuclear relaxation of the dye excited state prior to reaction.

In the same medium, the conduction band of niobium pentoxide (Nb₂O₅) is ca. 0.2-0.3 eV higher in energy than that of TiO₂ [6]. As a consequence, the ν' = 0 level of the MLCT excited state of compound 1 lies below the bottom edge of the conduction band of this material. On Nb₂O₅, no electron transfer to the solid can thus take place from the vibrationally relaxed excited state of the dye. However, if electron injection from a hot vibronic excited state of the sensitizer is able to compete successfully with its vibrational relaxation (κᵣₑₓ ≥ κᵥ), charge injection should become possible for λ ≤ 650 nm (Fig. 1).

An excitation-wavelength dependence of the quantum yield for charge injection would be expected in this case.

Monitoring of the sensitizer’s ground state bleaching signal upon nanosecond laser flash photolysis of the Ru²⁺ complex clearly showed biphasic kinetic behavior. Excited dye molecules that do not inject in the solid produce a recovery of the ground-state absorption within a few tens of nanoseconds (Eqn. 2). On the other hand, the dye cation S⁺, produced by the photoinduced electron-transfer process, recaptures the injected electron (Eqn. 4) in the microsecond time domain. Both kinetic steps are easily separated. Quantitative evaluation of their respective amplitudes allows for the determination of the injection quantum yield Φᵣₑₓ at any wavelength, independently of the absorption spectrum of the dye. Results reported in Fig. 2, a show a strong excitation-wavelength dependence of Φᵣₑₓ between λ = 650 nm, the onset of injection, and λ = 500 nm, where the charge-transfer quantum yield reached a plateau value of 50%. This yield reflects the kinetic competition between electron transfer and vibrational relaxation of the excited state:

Φᵣₑₓ = kᵣₑₓ / (kᵣₑₓ + kᵥ).

The maximum value obtained thus indicates that the injection rate constant kᵣₑₓ in this case is at most comparable to κᵥ. Measurements conducted under identical conditions with dye 1 adsorbed on TiO₂ gave an injection quantum yield close to unity that was independent of the excitation wavelength (Fig. 2, b).

Another ruthenium complex, [(4,4'-dicarboxy-2,2'-biquinoline)(2,6-bis(1'-methylbenzimidazol-2'-yI)pyridine)(thiocyanato)ruthenium(II)] (2) is characterized by an oxidation potential 0.5 V higher compared to that of the Ru(II)(dcbpy)₂(NCS)₂ (I) dye [7]. Upon adsorption onto TiO₂, carboxylic groups provide a good coupling between the biquinoline ligand, that carries the LUMO of the molecule, and the empty acceptor levels of the solid. The thermodynamic situation prevailing in this case is similar to that of 1/Nb₂O₅, as much as the ν' = 0 level of the sensitizer’s excited state lies lower than the bottom of the semiconductor conduction band. Comparable results were indeed obtained with the 2/TiO₂ system: Although light absorption of the dye extends well above 700 nm, charge injection decreases at excitation photon energy below 1.8 eV. Above that threshold, Φᵣₑₓ increases steeply to reach unity at 2.1 eV (λ = 580 nm). The subsequent decrease of the injection quantum yield at shorter wavelengths is probably due to the excitation of a differ-
In Eqn. 5, the actual density of acceptor states is approximated by the reciprocal.

\[k_{\text{inj}} = \frac{2\pi}{\hbar} |H|^2 \frac{1}{\hbar \omega} \]

(5)

In Eqn. 5, the actual density of acceptor states is approximated by the reciprocal.

The authors are grateful to Dr. M.K. Nazeeruddin and Marcus Wolf for the preparation of both dye sensitizers and nanocrystalline \(\text{Nb}_2\text{O}_5 \) films, respectively. Financial support of this work by the Swiss National Science Foundation (FNRS) is gratefully acknowledged.

1. A. Hagfeldt, M. Grätzel, *Chem. Rev.* 1995, 95, 49; b) J.E. Moser, P. Bonhöte, L. Walder, M. Grätzel, *Chimia* 1997, 51, 28.
2. Y.H. Meyer, P. Plaza, *Chem. Phys.* 1995, 200, 235.
3. M.K. Nazeeruddin, A. Kay, J. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, *J. Am. Chem. Soc.* 1993, 115, 6382.
4. Y. Tachibana, J.-E. Moser, M. Grätzel, D.R. Klug, J.R. Durrant, *J. Phys. Chem.* 1996, 100, 20056.
5. a) J.M. Rehm, G.L. McLendon, Y. Nagasawa, K. Yoshihara, J.-E. Moser, M. Grätzel, *J. Phys. Chem.* 1996, 100, 9577; b) B. Burfeindt, T. Hannapel, W. Storek, F. Willig, *ibid.* 1996, 100, 16463; c) N.J. Cherybov, G.P. Sminstal, M. Grätzel, J.Z. Zhang, *ibid.* B 1997, 101, 9342; d) T. A. Heimer, E. J. Heilweil, *ibid.* B 1997, 101, 10990.
6. M. Wolf, Y. Athanassov, M. Grätzel, *Chem. Mater.* 1998, submitted. The band gap and flat-band potential of \(\text{Nb}_2\text{O}_5 \) depends upon the crystalline phase and the size of the nanoparticles. Results of this study have been found to be quite sensitive to the preparation method used to produce transparent films of this material.
7. a) M.K. Nazeeruddin, E. Müller, R. Humphry-Baker, N. Vlachopoulos, M. Grätzel, *J. Chem. Soc., Dalton Trans.* 1997, 4571; b) S. Ruile, O. Kohle, P. Péchy, M. Grätzel, *Inorg. Chim. Acta* 1997, 261, 129.
8. a) J.M. Lanzafame, S. Palese, D. Wang, R.J.D. Miller, A.A. Muenler, *J. Phys. Chem.* 1997, 101, 10990; b) J.E. Moser, P. Plaza, *Chem. Phys.* 1995, 200, 235; c) A. Hagfeldt, M. Grätzel, *Chem. Rev.* 1995, 95, 49; d) S. Raupach, O. Kohle, P. Péchy, M. Grätzel, *Inorg. Chim. Acta* 1997, 261, 129; e) T.A. Heimer, E.J. Heilweil, *ibid.* B 1997, 101, 10990.