Statistical Mechanics of Covariant Systems with Multi-fingered Time

Goffredo Chirco1 © · Thibaut Josset2

Received: 25 June 2020 / Accepted: 27 November 2020 / Published online: 1 February 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
In recent previous work, the authors proposed a new approach extending the framework of statistical mechanics to reparametrization-invariant systems with no additional gauges. In this paper, the approach is generalized to systems defined by more than one Hamiltonian constraint (multi-fingered time). We show how well-known features as the Ehrenfest–Tolman effect and the Jüttner distribution for the relativistic gas can be consistently recovered from a covariant approach in the multi-fingered framework. Eventually, the crucial role played by the interaction in the definition of a global notion of equilibrium is discussed.

Keywords
Statistical mechanics · Reparametrization-invariant systems · Multi-fingered time

1 Introduction

Thermodynamics and general relativity are well understood essential pillars of modern physics. Individually, these theories provides an extremely accurate description of nature. However, when considered together, their interplay raises unexpected questions: Why are the laws of black holes mechanics equivalent to the laws of thermodynamics [1]? Why is Hawking radiation thermal [2]? What are the degrees of freedom contributing to black hole entropy [3]? Is the Einstein equation an equation of state [4]? Is gravity an entropic force [5]?

Despite much effort, the nature of the interplay between thermodynamics and general relativity remains obscure. In particular, a fully (general) relativistic formulation for statistical mechanics—taking spacetime’s degrees of freedom into

1 INFN - Sezione di Napoli, Complesso Universitario di Monte S. Angelo Edificio 6, via Cintia, 80126 Napoli, Italy
2 Aix Marseille Université, Université de Toulon, CNRS, CPT, UMR 7332, 13288 Marseille, France

© Springer
account—is missing. One of the main obstacles in this sense is due to the central role played by time in statistical mechanics. General relativity has forced us to reconsider the basic notions used in mechanics such as space, time, observable, reference frame. In particular, in a general covariant framework, the notion of time is considerably weakened.\(^1\) This necessarily leads to a serious modification of the notion of thermodynamic equilibrium.

In [8], the authors discussed a relational reformulation of the notion of statistical state and equilibrium, for systems characterised by reparametrization invariance with no extra gauge symmetry. Such systems, defined by a vanishing Hamiltonian, have one-dimensional orbits, with no preferred parametrization. In other words, the time parameter appearing in the equation of motions is unphysical. In this context, the notion of statistical state was shown to rely on a suitable split of the system into two parts, one on which measurements are performed, and one used as a clock. From a relational perspective, the ideal Newtonian time of classical mechanics turned out to be just a peculiar example of “clock system”.

In this paper, we move a step forward along the same line, by considering the case of reparametrization invariant systems defined by more than one vanishing constraint, hence with multi-dimensional orbits, their parametrization being still unphysical. For instance, a field theory like general relativity has one Hamiltonian constraint per point in space, and thus as many (unphysical) time parameters. Such systems are typically referred to as multi-fingered time systems.

We investigate the statistical mechanics of systems with multi-fingered time, making use of the formal approach defined in [8] on single constraint systems. More precisely, we will argue for the crucial role of interaction in the construction of the statistical mechanics of these systems.

The paper is organized as follows. Section 2 reviews the Hamiltonian formulation of relativistic mechanics and the statistical mechanics deduced from it, in the case of a single constraint. Section 3 probes a simple system with a two-fingered time, and derive the Ehrenfest–Tolman effect. Section 4 recovers the statistical mechanics of a gas of special relativistic particles, starting from a completely covariant mechanical description. Finally, Sect. 5 summarizes our results and briefly discusses the possible implications for gravity.

2 Relativistic Systems

Classical mechanics provides a very good description of the evolution of observables in Newtonian time, but it becomes inappropriate for relativistic systems. Therefore, generalized Hamiltonian mechanics has been developed by Dirac [9]. Following [10], we give here a brief summary of the formalism of generalized Hamiltonian mechanics, which will then be used throughout the paper.

\(^1\) The “problem of time” has played a central role for several distinct issues [6, 7], from the choice of an internal time variable in quantum gravity, to the emergence of a directional global time in cosmology.
2.1 Mechanics

Let us consider a relativistic system described in a n-dimensional configuration space C, coordinatized by partial observables q^a, whose dynamics is induced by a reparametrization invariant action $\int L(q^a, \dot{q}^a) d\tau$. Any such singular Lagrangian leads to a vanishing Hamiltonian, relating the different conjugate momenta $p_a = \partial L / \partial \dot{q}^a$. In presence of extra gauge symmetries, one gets a set of constraints $\{C^i = 0, 1 \leq i \leq k\}$. We call extended phase space the $2n$-dimensional symplectic space $X = T^*C = \{(q^a, p_a)\}$, equipped with $\omega_X = dp_a \wedge dq^a$, and presymplectic surface the $2n - k$ subspace Σ defined by the constraints.

A new action principle encoding the constraints can be cast in the Hamiltonian form as

$$\int (p_a \dot{q}^a - N_i C^i(q^a, p_a)) d\tau,$$

where $\{N_i\}$ are Lagrange multipliers. The orbits are then given by the Hamilton equations

$$\frac{dq^a}{d\tau} = N_i(\tau) \frac{\partial C^i}{\partial p_a}, \quad \frac{dp_a}{d\tau} = -N_i(\tau) \frac{\partial C^i}{\partial q^a}.$$

Different choices for the functions $\{N_i\}$ corresponds to gauge-equivalent representations of the same k-dimensional motion. Finally, the physical phase space Γ is given by the set of motions modulo gauge, and it has dimension $2n - 2k$ (see Fig. 1).

2.2 Statistical Mechanics of Reparametrization Invariant Systems

The possibility of doing statistical mechanics of reparametrization invariant systems, with a single gauge constraint ($k = 1$), was recently proposed in [8], starting from a
covariant formulation of the ergodic hypothesis, without any reference to Newtonian time. In particular, this work showed that, for a reparametrization invariant system made of two non-interacting subsystems

\[X = X^a \times X^b \]

(2)

with \(\omega_X = \omega_{X^a} + \omega_{X^b} \), and \(C = C^a + C^b = 0 \), the microcanonical ensemble for one subsystem (say \(S^b \)), using the other one (here \(S^c \)) as a clock, is well defined and simply reads\(^2\)

\[\frac{\delta(C^b - I) \, d\mu_{X^b}}{\int \delta(C^b - I) \, d\mu_{X^b}}. \]

(3)

where \(d\mu_{X^b} \) is the Liouville measure on \((X^b, \omega_{X^b})\) and \(I \) indicates the value of the function \(C^b \), which plays the role of a generalised conserved energy and label the phase space shell.\(^3\) It is important to remark that (3) does not depend on any specific choice of clock in \(S^a \), nor of its dynamics (given by \(C^a \)). Given a well defined notion of microcanonical ensemble, it is then possible to apply the standard tools of statistical mechanics. More precisely, if the subsystem of interest in turn splits into weakly interacting components

\[X = X^a \times X^b \times X^c, \quad \omega_X = \omega_{X^a} + \omega_{X^b} + \omega_{X^c}, \]

and \(C = C^a + C^b + C^c + V^{bc} = 0 \),

(4)

one can generalize the notions of entropy and temperature, respectively [8]

\[S^a(I^a) \overset{\text{def}}{=} \log \int \delta(C^a - I^a) \, d\mu_{X^a}, \]

\[\frac{1}{T^a_I} \overset{\text{def}}{=} \frac{dS^a}{dI^a}. \]

The equilibrium between \(S^b \) and \(S^c \), with respect to \(S^a \), is then given by the (generalized) zeroth law

\[T^b_I = T^c_I. \]

(5)

\(^2\) If \(C^b \) is not the only conserved quantity for \(S^b \), the statistical state should include additional “\(\delta \)-functions”.

\(^3\) The split \(C = C^a + C^b = 0 \) determines a foliation of the presymplectic surface

\[\Sigma = \bigsqcup_{p \in \Sigma^a} \Sigma^a \times \Sigma^b_{\mu^a}, \]

where \(X^a = \bigsqcup_{p \in \Sigma^a} \Sigma^a \times \Sigma^b_{\mu^a} \) and \(I^a \) is the value of \(C^a \) on the leaf. Each \(\left(\Sigma^a_{\mu^a}, \omega_{X^a}|_{\Sigma^a_{\mu^a}} \right) \) is the presymplectic space that would describe the subsystem \(S^a \) if it was isolated. The existence of the split implies the existence of the conserved quantity \(I = I^b = -I^c \), defined up to clock reparametrization \(I \rightarrow f(I) \). See cf. [8] for full details.
In brief, the existence of absolute Newtonian time and energy can be reformulated in a relational way, by means of a suitable split of the whole system into subsystems. Doing so naturally extends statistical mechanics and thermodynamics to reparametrization invariant systems (cf. [8] for more details). Let us explore how this approach could be extended to systems with more than one constraint.

3 Ehrenfest–Tolman Effect

In 1930, Tolman jointly applied the mass-energy equivalence (special relativity) and the equivalence principle (general relativity) to heat [11]. He found that, for a fluid at equilibrium in a non-uniform gravitational field, the (proper) temperature is not constant. In a second paper [13], Tolman and Ehrenfest gave the following characterization of thermodynamical equilibrium, in a static spacetime:

\[T(x) \sqrt{-g_{00}(x)} = \text{const}, \]

(6)

where \(T \) is the temperature measured by a local observer at rest and \(\sqrt{-g_{00}} \) is the norm of the timelike Killing vector field in stationary coordinates. Equation (6) is now called Ehrenfest–Tolman effect, and has been re-derived in various manners [14–17].

Despite the apparent conflict between (5) and (6), we will see that our formalism, when applied to multi-fingered time systems, naturally leads to Ehrenfest–Tolman effect.

3.1 Two Non-relativistic Systems

Let us consider two non-relativistic systems \(S^a \) and \(S^b \) in some small regions of a stationary spacetime. Let us denote \(\tau^a \) and \(\tau^b \) the (local) proper times. Assuming for the time being that \(S^a \) and \(S^b \) do not interact, the global system is described in the extended phase space

\[X = X^a \times X^b = \{ \tau^a, p^\tau_a, q^a, p_a, \tau^b, p^\tau_b, q^b, p_b \}, \]

\[\omega = dp^\tau_a \wedge d\tau^a + dp_a \wedge dq^a + dp^\tau_b \wedge d\tau^b + dp_b \wedge dq^b, \]

by the two constraints

\[\left\{ \begin{array}{l}
C^a = p^\tau_a + H^a(q^a, p_a) = 0 \\
C^b = p^\tau_b + H^b(q^b, p_b) = 0
\end{array} \right. \]

(7)

Denoting \(n^a + 1 \) (resp. \(n^b + 1 \)) the dimension of the configuration space of \(S^a \) (resp. \(S^b \)), the orbits of the global system are two-dimensional surfaces, and the physical phase space \(\Gamma \) has dimension \(2(n^a + n^b) \), as expected from Newtonian mechanics.

4 This fact was actually glimpsed by Einstein [12], even before General Relativity was completed!
5 So that the local gravitational field is approximately uniform.
3.2 Gauge Choices

It may seem unusual to describe the dynamics of a non-relativistic system by the mean of two time observables. Let us pick a single variable t: without loss of generality, $t^a = t$ and $t^b = f(t)$. The symplectic form simply reads

$$\tilde{\omega} = d(p_{\tau^a} + f'(t)p_{\tau^b}) \wedge dt + dp_a \wedge dq^a + dp_b \wedge dq^b.$$

Denoting $p_t = p_{\tau^a} + f'(t)p_{\tau^b}$ the conjugate momentum to t, the reduced system is then described in the extended phase space

$$\tilde{X} = \{t, p_t, q^a, p_a, q^b, p_b\},$$

by the single constraint

$$\tilde{C} = p_t + H^a(q^a, p_a) + f'(t)H^b(q^b, p_b) = 0.$$

(8)

From the point of view of mechanics, any such gauge choice is leading to a well defined constrained system. In particular, the $2(n^a + n^b)$-dimensional physical phase space remains unchanged, no information has been lost. On the other hand, the affine gauge choice

$$f(t) = \alpha t + \beta$$

(9)

is the only one leading to a time-independent Hamiltonian in (8). In relational terms, it is the only choice leading to a split of the system between a (Newtonian) clock component, and the other partial observables. Thus, it is preferred from a statistical mechanics perspective, to satisfy requirement (2). However, the rate α is still arbitrary. In other words, time and energy scales can still be chosen independently for the two systems S^a and S^b, thus it would be meaningless to compare their temperatures. In the next paragraph, we illustrate how the interaction between S^a and S^b selects a preferred gauge choice.

3.3 Interaction and Statistical State

Let us consider the modified constraint

$$C^a = p_{\tau^a} + H^a(q^a, p_a) + V(q^a, q^b, \tau^a, \tau^b) = 0$$

$$C^b = p_{\tau^b} + H^b(q^b, p_b) = 0$$

with the potential $V(q^a, q^b, \tau^a, \tau^b)$ playing the role of an instantaneous contact interaction allowing for exchange of generalised energy among the subsystems S^a and S^b.

In Newtonian spacetime, it would be natural to assume that the instantaneous interaction V depends on the time variables only through the difference $\tau^a - \tau^b$.

In a stationary spacetime, accordingly, V depends only on $(\tau^a/\sqrt{-g^{00}_a}) - (\tau^b/\sqrt{-g^{00}_b})$, where g^{a}_{00} (resp. g^{b}_{00}) is the gravitational field seen by the subsystem S^a (resp. S^b), in stationary coordinates (see Fig. 2).
In order to get a good definition of clock, a gauge choice such that \((\tau^a / \sqrt{-g_{00}^a}) = (\tau^b / \sqrt{-g_{00}^b})\) is preferred, as it makes the interaction time independent.

Given the affine gauge fixing in (9), then the single constraint (8) splits if and only if \(\alpha = \sqrt{-g_{00}^b} / \sqrt{-g_{00}^a}\), and in that case
\[
\tilde{C} = p_i + H^a(q^a, p_a) + \frac{\sqrt{-g_{00}^b}}{\sqrt{-g_{00}^a}} H^b(q^b, p_b) + V(q^a, q^b) = 0.
\]

Thus we see that while enforcing the splitting in (4) to be satisfied, the interaction plays a key role in selecting a preferred gauge. Within a standard *weak* interaction condition, one can now write the zeroth law (5) in terms of generalised temperatures. Indeed, by setting
\[
P^a = H^a, \quad p^b = \sqrt{-g_{00}^b} / \sqrt{-g_{00}^a} H^b,
\]
and using the definition of generalised \(I\)-temperature
one gets the Ehrenfest–Tolman relation

\[T^a \sqrt{-g^a_{00}} = T^b \sqrt{-g^b_{00}} \]

for the proper temperatures.

To summarize, it is clear that there is no way to define a temperature for the global system without considering the interaction. Ehrenfest–Tolman effect is due to the change in the weight of energy that is moved in space, from one subsystem to the other one.

\section{Relativistic Gas}

After a long controversy about the correct statistical mechanics and thermodynamics in special relativity, the generalization of Maxwell distribution initially proposed by Jüttner in 1911 \cite{18},

\[\gamma(v)^5 e^{-m\gamma(v)/k_B T}, \]

where \(\gamma(v) = 1/\sqrt{1 - v^2} \), seems to be confirmed by recent numerical simulations \cite{19}. Using the momentum \(p = m\gamma(v)v \), the probability distribution reads

\[\frac{1}{Z} e^{-\beta^\mu p_\mu} d^3 p d^3 x, \] (10)

where \(\beta^\mu \) is a time-like 4-vector, reducing to \((1/k_B T, 0, 0, 0) \) in the center of mass frame.

\subsection{Free Special Relativistic Particles}

The generalized Hamiltonian formalism presented in Sect. 2 is very convenient to keep manifest the symmetries of special relativistic systems. In particular, a free particle of mass \(m \) is characterized by \(p_\mu p^\mu + m^2 = 0 \). A gas of non-interacting \(N \) such particles is simply described in the \(8N \)-dimensional extended phase space

\[X = \times_a \{ x^{(a)\mu}, p^{(a)\mu} \}, \]

by the set of constraints

\[C^{(a)} = p^{(a)\mu} p_{(a)\mu} + m^2 = 0, \quad 1 \leq a \leq N. \] (11)

Motions are \(N \)-dimensional surfaces, and the physical phase space has dimension \(6N \).
4.2 Gauge Choices

Let us choose a single time-like variable \(t \), related to the coordinates of each particle by

\[
 t = f_a(x^{(a)}), \quad 1 \leq a \leq N.
\]

As in Sect. 3, a generic gauge choice would lead to a time-dependent Hamiltonian (i.e. a constraint that does not split), and requirement (2) for statistical mechanics would not be satisfied.

As long as there is no interaction, it is possible to choose different Lorentz frames for different particles: \(t = x^{(a)i} \), where \(x^{(a)} = A(\alpha)x^{(\alpha)} \). In that case, the single constraint is

\[
\tilde{C} = p_t + \sum_a \sqrt{(p^{(a)})^2 + m^2} = 0, \tag{12}
\]

where \(p^{(a)} = [A(\alpha)]^\mu p_\mu^{(a)} \) is the conjugate momentum to \(x^{(a)i} \). The constraint (12) splits into a clock part and a time-independent Hamiltonian. However, as the Lorentz transformations \(\{ A(\alpha) \} \) can be chosen arbitrarily, the temperature of the gas is ill-defined.

4.3 Gas of Weakly Interacting Particles

Though, the picture changes when a coupling between the particles is turned on. Let us consider a (scattering) interaction term\(^6\) of the form

\[
V \left[\left(x^{(\alpha)\mu} - x^{(\beta)\mu} \right) \left(x^{(\alpha)\mu} - x^{(\beta)\mu} \right) \right].
\]

It is clear that the interaction part of the Hamiltonian constraint is time-independent only if one chooses the same Lorentz frame for all the particles. So, without loss of generality, let us take \(A(\alpha) = I \). Then, (12) reduces to the classical formulation of special relativistic particles:

\[
\tilde{C} = p_t + \sum_a \sqrt{(p^{(a)})^2 + m^2} + \sum_{\alpha \neq \beta} V[\|x(\alpha) - x(\beta)\|] = 0,
\]

where \(V \) insures thermalization of the gas, but remains small compared to the kinetic energy. For any value of \(p_t = -E \) (and total 3-momentum\(^7\) \(P \)), one can write the microcanonical state (3), and deduce Jüttner distribution (10).

\(^6\) \(V \) can be thought as an effective potential coming from a (Lorentz invariant) interaction with an (relativistic) ambient field.

\(^7\) In the absence of an external potential, the total 4-momentum is conserved, insuring Lorentz covariance of the statistical state.
The equilibrium statistical state is not selected by the Lorentz invariance of each free constraint (11), but rather by the Lorentz invariance of the interaction term V.

5 Discussion

It is known since Boltzmann’s work that a weak, mixing, interaction is necessary for reaching equilibrium. However, in general, the details of the interaction do not matter much, and its analysis is often relegated to the ergodic hypothesis. In the case of relativistic systems described by several constraints, the role of the interaction is dramatically enhanced, as it entails whether the constraint can be split or not. Therefore, the interaction determines the subsystems for which it is meaningful to talk about equilibrium, and the corresponding clock systems. This led us to recover well known features (Ehrenfest–Tolman and Jüttner distribution) from a covariant approach.

The interplay between interaction and gauge has been studied in [20], and its implications for statistical mechanics were suggested in the context of thermal time hypothesis [21]. In this work, we have taken a step further by showing how equilibrium states are selected in the whole set of possible statistical states.

Trying to apply this formalism to general relativity, one faces a technical problem: how to find a nice gauge and identify a split of the system. This issue is very similar to the problem of time in quantum gravity. However, in the context of statistical mechanics one may relax requirement (4) into

$$C = C^a + C^b + C^c + V^{bc} + V^{abc} = 0,$$

where $V^{abc} \ll V^{bc}$. In other words, the only physically reasonable assumption is that the different components are “thermalizing” faster than exchanging “energy” with the clock system.

Acknowledgements The authors are grateful to Carlo Rovelli for careful reading of the draft and useful comments, and to the Quantum Gravity Group at the Centre de Physique Théorique de Luminy, where this project was started. G.C. is grateful to Daniele Oriti and Hermann Nicolai for the support at the Max Planck Institute for Gravitational Physics in Potsdam, where the work was partially completed.

References

1. Bardeen, J.M., Carter, B., Hawking, S.W.: The four laws of black hole mechanics. Commun. Math. Phys. 31(2), 161–170 (1973)
2. Hawking, S.W.: Black hole explosions? Nature 248(5443), 30–31 (1974)
3. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973)
4. Jacobson, T.: Thermodynamics of spacetime: the Einstein equation of state. Phys. Rev. Lett. 75, 1260–1263 (1995)
5. Verlinde, E.: On the origin of gravity and the laws of Newton. J. High Energy Phys. 2011(4), 1–27 (2011)
6. Kuchař, K.V.: Time and interpretations of quantum gravity. In: G. Kunstatter, D.E. Vincent, and J.G. Williams (eds.), Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics, p. 211 (1992)
7. Rovelli, C.: Analysis of the distinct meanings of the notion of time, in different physical theories. Il Nuovo Cimento B Series 11 110(1), 81–93 (1995)
8. Chirco, G., Josset, T., Rovelli, C.: Statistical mechanics of reparametrization-invariant systems. It takes three to tango. Class. Quant. Gravity 33(4), 045005 (2016)
9. Dirac, P. A. M.: Generalized hamiltonian mechanics. Can. J. Maths. Phys. 2 (1950)
10. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)
11. Tolman, R.: On the weight of heat and thermal equilibrium in general relativity. Phys. Rev. 35, 904–924 (1930)
12. Einstein, A.: Zur theorie des statischen gravitationsfeldes. Ann. Phys. 38, 443–458 (1912)
13. Tolman, R., Ehrenfest, P.: Temperature equilibrium in a static gravitational field. Phys. Rev. 36, 1791–1798 (1930)
14. Balazs, N., Dawson, J.: On thermodynamic equilibrium in a gravitational field. Physica 31(2), 222–232 (1965)
15. Ebert, R., Göbel, R.: Carnot cycles in general relativity. Gen. Relat. Gravit. 4(5), 375–386 (1973)
16. Rovelli, C., Smerlak, M.: Thermal time and the Tolman–Ehrenfest effect: temperature as the speed of time. Class. Quant. Gravit. 28, 075007 (2011)
17. Haggard, H.M., Rovelli, C.: Death and resurrection of the zeroth principle of thermodynamics. Phys. Rev. D 87, 084001 (2013)
18. Jüttner, F.: Das maxwellsche gesetz der geschwindigkeitsverteilung in der relativtheorie. Ann. Phys. 339(5), 856–882 (1911)
19. Cubero, D., Casado-Pascual, J., Dunkel, J., Talkner, P., Hänggi, P.: Thermal equilibrium and statistical thermometers in special relativity. Phys. Rev. Lett. 99, 170601 (2007)
20. Rovelli, C.: Why Gauge? Found. Phys. 44, 91–104 (2014)
21. Chirco, G., Haggard, H.M., Rovelli, C.: Coupling and thermal equilibrium in general-covariant systems. Phys. Rev. D 88, 084027 (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.