Experimental Models of Chronic Focal Epilepsy:
A Critical Review of Four Models

ELAN D. LOUIS, B.A., PETER D. WILLIAMSON, M.D.,
AND TERRANCE M. DARCEY, Ph.D.

Department of Neurology, Yale University School of Medicine, New Haven,
Connecticut, and Veterans Administration Medical Center, West Haven, Connecticut

Received October 15, 1986

A number of experimental (i.e., animal) models have been developed to induce chronic focal
epilepsy. Three of the most commonly employed are the alumina cream, kainic acid, and the
electrical kindling techniques. A fourth approach involving the application of minute quantities of
tetanus toxin to discrete brain sites, although relatively under-utilized, may be favorably
compared to the aforementioned models.

INTRODUCTION

It has been estimated that focal epilepsy affects approximately 0.4 percent to 0.5
percent of the population in the United States [1,2] or about one million people [3].
Experimental (i.e., animal) models are essential for a thorough study of the develop-
ment and expression of focal epilepsy, as well as the preclinical evaluation of new therapeutic approaches. Over the past 45 years, a variety of such models have been
developed. These models may be divided into those which produce an acute epilepto-
genic focus and those which produce a chronic epileptogenic focus. Herein, the terms
"acute" and "chronic" will be used to describe epileptiform syndromes which prevail
for several hours to several days, and several days to several months, respectively.
While the acute models have contributed to our knowledge of the convulsive state and
have been instrumental in single-cell studies as well as the investigation of phenomena
such as status epilepticus, the chronic models are probably more appropriate tools for
the study of naturally occurring epilepsy, which is essentially chronic. Other models
with some characteristics of a chronic nature such as the cobalt [4-6], tungstic acid
[7,8], zinc sulfate [9,10], freezing [11], and blood-brain barrier [12,13] methods are
not discussed here. These models are disadvantageous and not commonly used for the
following reasons: their limited ability to induce chronic epileptogenic foci, their
production of diffuse and/or crater-like lesions, and the great length of time they
require to produce an epileptiform syndrome. The more effective and commonly used
chronic models are those involving alumina cream [14], kainic acid [15], and kindling
[16]. Since a comparative review has not been written in fourteen years [17], we
present here an updated, critical review of the alumina cream, kainic acid, kindling,
and tetanus toxin methods, the latter being a potentially superior but relatively
under-utilized model.

THE ALUMINA MODEL

In 1942, L.M. Kopeloff was the first investigator to produce chronic, focal
epileptogenic lesions in experimental animals [14]. While studying the effects of
various chemical agents on the pre-central cortex of monkeys and rabbits, Kopeloff found that the application of alumina cream resulted in the experimental induction of spontaneous recurrent seizures [14]. In the past 45 years, the alumina cream technique has become a widely used experimental model for focal epilepsy, as it creates foci which remain active for several months [18] to several years [19] and produces seizures which may increase in frequency until treatment with anticonvulsants becomes necessary [20]. Table 1 presents the major alumina cream studies conducted since 1942 [14,21–50]. A number of points deserve further attention. First, while some techniques produce epileptogenic foci in a wide variety of mammalian, reptilian, and amphibian species, the alumina cream technique has had limited success when applied to animals other than the cat and rhesus monkey. Attempts to produce foci in the cebus monkey, rabbit, and rat have had very limited success.

Alumina cream can be criticized as crude [45], since it creates lesions which are quite large and difficult to reproduce precisely [21,35–40], averaging on the order of 9 mm in diameter in some instances [49,50]. It is also a matter of dispute as to whether the alumina may diffuse away from its site of application. While some investigators have maintained that the lesion stabilizes quickly and that diffusion is limited [40], others have noted the "frequent diffusion of the active substance" [48], its spread to adjacent regions of cortex [32,35], or a progressive increase in the size of the lesion over time [37].

Another drawback of the alumina technique is the long and somewhat unpredictable latency period prior to the clinical and electrographic onset of spontaneous seizures. Table 1 shows that delays of four to eight weeks are not uncommon in cats, while delays of six to twelve weeks are fairly common in rhesus monkeys. Furthermore, a number of authors have noted that results are frequently inconsistent [45]. For example, Stercova was unable to produce an epileptogenic focus in the rat cortex [37] despite the success of others [34]. In addition, individual animals may react to alumina quite differently [14,32,30].

Table 1 also shows that the majority of studies using alumina cream have been restricted to the sensorimotor cortex. It has been observed that other regions of the telencephalon are less susceptible to alumina cream [14,19,20]. For example, Soper et al. [44] found that large amounts of bilaterally administered alumina cream are needed to produce temporal lobe seizures in monkeys. Other investigators have also noted the need for bilateral administration of alumina when dealing with areas outside of the sensorimotor cortex [22,30,33]. It is questionable whether a model which requires large bilateral lesions is a good representation of the human disease process.

In summary, while the alumina cream model may have been the first experimental model developed to produce chronic epileptogenic foci, a number of factors limit its applicability. For this reason, the alumina model has become less favored relative to other, more recently developed techniques such as kindling and kainic acid.

THE KAINIC ACID MODEL

In 1970, Shinozaki and Konishi showed that kainic acid (KA), an analog of the neuro-excitatory amino acid glutamate, had a potent excitatory effect upon rat cortical neurons [15]. In the late 1970s and early 1980s, investigators became aware of the potential use of kainic acid in experimental models of focal epilepsy. Hence, kainic acid was applied to a variety of cortical and subcortical regions in various mammals.
TABLE 1
Major Alumina Model Studies, 1942–1985

Study	Brain Site	Species	No. of Animals	Latency to First Seizure	Size of Lesion
Kopeloff et al., 1942	Precentral cerebral cortex	Monkey	26	4.5–6 weeks in 18 animals	
Kopeloff et al., 1942	Motor cortex	Rabbit	8	Three and seven weeks in two animals. No seizures in six animals.	
Barrera et al., 1944	Precentral cerebral cortex	Rhesus monkey		Post-operatively to eight weeks. No seizures in some.	
Sloan et al., 1953	Amygdala—unilateral and bilateral	Monkey		Eight weeks (EEG abnormalities)	
Chusid et al., 1953	Eight sites in the sensorimotor cortex	Rhesus monkey	7	Three to four weeks.	
Kopeloff et al., 1954	Sensorimotor cortex	Rhesus monkey	4	4.5, 7, 9 weeks	
Faeth et al., 1955	Motor cortex	Rhesus monkey	24	6–12 weeks	
Kopeloff et al., 1955	Sensorimotor cortex, primarily. Some parietal cortex as well.	Rhesus monkey	196	>2.5 weeks in 182 animals	
Youmans, 1956	Temporal lobe	Rhesus monkey	5	One day, one week, seven weeks +. No seizures	
Morrell et al., 1956	Primary sensory cortex and amygdaloid-hippocampal region	Rhesus monkey	9	16–24 weeks	
Faeth and Walker, 1957	Thalamus, amygdala, putamen, globus pallidus, pons, nucleus basalis—bilateral	Rhesus monkey, cebus monkey	16	No seizures	
Gastaut et al., 1958	Amygdala, hippocampus, pyriform cortex—unilateral and bilateral	Cat	14	Three to five weeks in 12 animals. 24 weeks in one animal. One day in one animal.	
Servit and Sterc, 1958	Motor and acoustic area—unilateral and bilateral	Rat	75	2 days–11 weeks in 25 animals	
Study	Brain Site	Species	No. of Animals	Latency to First Seizure	Size of Lesion
------------------------------	---	-------------	----------------	--------------------------	-----------------------------
Gastaut et al., 1959 [32]	Amygdala, hippocampus, pyriform cortex, adjacent to the thalamostriatal region	Cat	14	Four, five, one, one, six, six, five weeks in seven animals. One day in one animal. No seizures in six.	
Stamm and Pribram, 1961 [33]	Inferotemporal cortex—bilateral	Rhesus monkey	12	8–14 weeks (EEG abnormalities)	
Sterc, 1962 [34]	Acoustic and motor cortex	Rat		4.5 weeks—audiogenic seizures	
Westrum et al., 1964 [35]	Sensorimotor cortex	Rhesus monkey	8	Four to six weeks	2–3 mm in diameter
Mayman et al., 1965 [36]	Sensorimotor cortex	Cat	16	Three weeks in one animal. Six to eight weeks in 15 animals.	Large (see Fig. 1)
Stercova, 1966 [37]	Motor and acoustic cortex	Rat		No seizures observed	Large (see Fig. 1)
Velasco et al., 1973 [38]	Sensorimotor cortex	Cat	18	5.5 weeks	~1.0–2.5 mm in diameter
Velasco et al., 1973 [39]	Sensorimotor cortex	Cat	16	4.5–6 weeks	3.2–4.3 mm in diameter
Harris, 1973 [40]	Cortex	Rhesus monkey	32	Eight to ten weeks	
Mayanagi and Walker, 1974 [41]	Temporal neocortex	Rhesus monkey	12	$\bar{x} = 8$ weeks	
Mayanagi, 1976 [42]	Temporal cortex, amygdala, hippocampus	Rhesus monkey	12	6–12 weeks	Large (see Figs. 1, 2)
Lockard et al., 1976 [43]	Sensorimotor cortex	Rhesus monkey	13	6–11 weeks	
Soper et al., 1978 [44]	Hippocampus—unilateral and bilateral	Monkey	16	Three to ten weeks	
Mayanagi, 1979 [45]	Lateral neocortex or deep structures of the temporal lobe	Rhesus monkey	12	~8 weeks	
Feria-Velasco et al., 1980 [46]	Motor cortex	Cat	24	Five to six weeks	
Harris and Lockard, 1981 [47]	Sensorimotor cortex	Rhesus monkey	15	8–12 weeks	
Beaumanoir et al., 1982 [48]	Peri-amygdaloid region	Cat		Three to six weeks	
Table 1—continued

Study	Brain Site	Species	No. of Animals	Latency to First Seizure	Size of Lesion
Velasco et al.,	Motor cortex	Cat	63	4.5–5 weeks	5.3 ± 1.0 mm–9.3 ± 1.1 mm in diameter
1984 [49]					
Velasco et al.,	Motor cortex	Cat	8	4.5–5 weeks	5.3 ± 1.0 mm–9.3 ± 1.1 mm in diameter
1985 [50]					

Table 2 provides a representative list of studies in which kainic acid has been applied to a variety of structures including the amygdala [51–57], hippocampus [58–67], striatum [68–72], and substantia nigra [69]. In addition, KA has been administered subcutaneously [73–75], intravenously [76–80], and intraventricularly [56,70,81]. Its primary site of action seems to be the CA3 cells of the hippocampus [53,59,61,64,65,70,71,73,77,79,81–85]. While few primary epileptogenic foci have been successfully created outside of the temporal lobe and/or limbic regions, the KA model has emerged as a model for temporal lobe epilepsy [59,61,65,77–79,82], since the resulting clinical signs [69] and pathology [64,72,82] are similar to those seen in patients with temporal lobe disease.

An important drawback of this model is the common but somewhat disputed observation that the effects of KA are not restricted to the site or anatomical structure into which the KA is injected [50–53,55–57,62,64,68,70,72–75,81]. For instance, Zaczek showed that intrastratal applications of 3H-labeled KA resulted in the spread of KA to the following distant sites: ipsilateral frontal cortex, ipsilateral olfactory cortex, ipsilateral lateral cortex, ipsilateral hippocampus, ipsilateral diencephalon, ipsilateral medulla, ipsilateral pons, contralateral striatum, and contralateral olfactory cortex [71]. Even iontophoretic application has had variable success in eliminating distant damage [63,68]. On the other hand, Scherer-Singler and McGeer reported little diffusion of 3H-labeled KA away from injection sites in the substantia nigra, cerebellum, and neostriatum [86]. While some authors have implicated the direct diffusion of KA [65], it appears that diffusion alone cannot explain the inhomogeneous distribution of distant/secondary lesions [55,82], so that some form of neuronal transport is likely to be involved. It has also been suggested that the lesion at the site of injection may be the result of KA's toxicity, whereas distant lesions may be related to the epileptogenic effects of the drug [50,51,55,62,80,83,86], since pretreatment with anticonvulsants appears to limit distant damage [83].

While KA has been applied to the brains of a number of different species including the baboon [55,57], rabbit [60], cat [58,62], and mouse [75], the large majority of studies have been conducted in the rat (i.e., 29 of 35 studies listed in Table 2). The majority of studies have considered the acute epileptogenic effects of KA administration [52,53,61,66,67,72,74,75,80,82,87]. It appears, however, that KA administration may also result (after a variable silent period following the acute stage) in spontaneous recurrent seizures of a chronic nature [62,65].

To summarize, when KA is applied to the brains of various animals, it produces predominantly limbic seizures which appear within a matter of minutes [52,53,55] and remit after hours or days, but which may reappear spontaneously after a silent period.
Study	Region or Method of KA Administration	Species	Latency to First Seizure	Last Observed Seizure	Comments	Locations of Distant Lesions
Ben-Ari et al., 1979 [53]	Amygdala	Rat	12 minutes	Several hours	Focal seizures followed by generalized seizures	Ipsilateral hippocampus
Menini et al., 1979 [55]	Amygdala	Baboon	Four to eight minutes	15–150 hours		Ipsilateral hippocampus and neocortical regions
Ben-Ari et al., 1980 [56]	Amygdala	Rat	5–60 minutes	Two to six hours		Lateral septum, claustrum, contralateral cortical regions, ipsilateral hippocampus
Ben-Ari et al., 1980 [52]	Amygdala	Rat	5–60 minutes	Two to six hours		Hippocampus, contralateral amygdala, bilaterally in midline thalamic nuclei, contralateral claustrum, cortical regions, lateral septum
Olney et al., 1981 [54]	Amygdala	Rat				Limbic seizures
Cepeda et al., 1982 [57]	Amygdala	Baboon		48–72 hours	Status epilepticus	Bilateral hippocampus, cortical regions, thalamus
Tremblay et al., 1983 [51]	Amygdala	Rat				
Zaczek et al., 1978 [67]	Hippocampus	Rat		Two to six hours	Tonic-clonic seizures	
TABLE 2—continued

Study	Region or Method of KA Administration	Species	Latency to First Seizure	Last Observed Seizure	Comments	Locations of Distant Lesions
Schwarcz et al., 1978 [61]	Hippocampus	Rat	12 hours			
Kohler et al., 1978 [64]	Hippocampus	Rat	30–50 minutes			Overlying cortex, thalamus, amygdala, piriform cortex
Nelson et al., 1980 [66]	Hippocampus	Rat	30–50 minutes		Iontophoretic application	No damage at distant sites
Munoz and Grossman, 1980 [63]	Hippocampus	Rat	30–50 minutes			
Tanaka et al., 1981 [58]	Hippocampus	Cat	30–50 minutes			
Smialowski and Smialowska,	Hippocampus	Rabbit	30–50 minutes			
French et al., 1982 [59]	Hippocampus	Rat	30–50 minutes			
Cavalheiro et al., 1982 [65]	Hippocampus	Rat	Three to five hours	48–72 hours; 22–46 days	Silent period from day 2 or 3 until day 21	Silent period from day 2 or 3 until day 21
Tanaka et al., 1982 [62]	Hippocampus	Cat	17–45 minutes	Two to four days	Small doses	Small doses
Tanaka et al., 1982 [62]	Hippocampus	Cat	Approximately 10.8 days	Approximately 21.6 days	Large doses	Both amygdalas and piriform cortex
Schwarcz and Coyle, 1977 [69]	Striatum	Rat	Six to eight hours	Three to five days	Silent period on days 1 and 2	Cortical overlying striatum
Schwob et al., 1980 [70]	Striatum	Rat	6–72 minutes	22–46 days		
Zaczeck et al., 1980 [71]	Striatum	Rat	Immediate	Four to five days	Clonic jerking	Piriform cortex, hippocampus, frontal cortex
Pisa et al., 1980 [72]	Striatum	Rat	Immediate	Four to five days	Clonic jerking	Piriform cortex, hippocampus, frontal cortex
Study	Region or Method of KA Administration	Species	Latency to First Seizure	Last Observed Seizure	Comments	Locations of Distant Lesions
-------	--------------------------------------	---------	--------------------------	-----------------------	----------	-----------------------------
Pisa et al., 1980	Striatum	Rat	35–77 days	Generalized seizures	Piriform cortex, hippocampus, frontal cortex	
Ruth, 1982	Striatum	Rat		Iontophoretically applied	Hippocampi are not damaged. Damage found in substantia nigra, ventral thalamus, pars reticulata.	
Schwob et al., 1980	Intracerebrally	Rat			Widespread distant damage	
Schwarz and Coyle, 1977	Substantia nigra	Rat	Immediate	Five days		
Schwob et al., 1980	Intravenously	Rat	30–90 minutes			
Lothman and Collins, 1981	Intravenously	Rat	One to two hours	Limbic seizures		
Lothman et al., 1981	Intravenously	Rat		Limbic seizures		
Tremblay et al., 1984	Intravenously	Rat		Limbic seizures		
Nitecka et al., 1984	Intravenously	Rat				
Olney et al., 1974	Subcutaneously	Mice	15 minutes	Two to three hours	Arcuate nucleus and hypothalamus	
Olney et al., 1979	Subcutaneously	Rat	Five minutes, 15–30 minutes, two hours	Five hours	Hippocampus	
Sperk et al., 1983	Subcutaneously	Rat		Staring, Myoclonic twitching, Tonic-clonic seizures	Amygdala, piriform and entorhinal cortices, olfactory areas	
vulsive electrical activity, culminating in a generalized seizure over which the animal becomes totally unresponsive. Seizure susceptibility is defined as the number of weeks required to produce a generalized seizure following the first administration of KA. The most susceptible species used in the kindling technique is the cat, and rats are also sensitive. In addition, species such as frog [97, 98], lizard [102, 103], and mouse [96] can be used in the kindling technique.

TABLE 2—continued

Study	Region or Method of Administration	Species	Latency to First Seizure	Last Observed Seizure	Comments	Locations of Distant Lesions
Nadler et al., 1978 [81]	Intravenously	Rat				Hippocampus
Ben-Ari et al., 1980 [56]	Intravenously	Rat			Seizures	Pyriform cortex, claustrum, hippocampus, contralateral cortex

The pathological, clinical, and electrographic characteristics of the resulting seizure syndrome strongly resemble those seen in human temporal lobe epilepsy. However, the production of numerous lesions outside of the injection site, as well as the overall high susceptibility of temporal lobe structures, limit the use of the KA model.

THE ELECTRICAL KINDLING MODEL

In 1961, Delgado and Sevillano observed that repeated electrical stimulation of the cat hippocampus resulted in seizure activity [88]. In 1967 [16] and again in 1969 [89], Goddard et al. reported that the repeated administration of low levels of electrical current to subcortical regions in rats, cats, and rhesus monkeys resulted in localized seizure discharges, automatisms, and, eventually, clonic convulsions. He coined the term “kindling” to refer to the aforementioned phenomenon [89]. “Kindling” may be defined as “the phenomenon whereby repeated administration of an initially subconvulsive electrical or chemical stimulus results in progressive intensification of seizure activity, culminating in a generalized seizure” [88]. In the past several decades, a multitude of papers have been published on the kindling technique, as it is probably the most widely employed experimental model of chronic focal epilepsy in use today. Table 3 provides the reader with a representative list of electrical kindling technique studies conducted in the past twenty-five years [16, 89–107]. Some of the advantages of this technique are as follows. The kindling technique may be employed on a wide variety of species, including frog [97, 98], lizard [102, 103], rat [90, 91, 105], mouse [96], rabbit [92], dog [101, 104], cat [93, 100], rhesus monkey [89], and baboon [94, 99]. In addition, kindling does not produce destructive pathologies such as those associated with most other experimental models [108]. Rather, it has been suggested that kindling may be associated only with the structural modification of pre-existing synapses [109]. Finally, the kindling technique is applicable to numerous cortical regions [109].

Despite the advantages offered by the kindling technique, there are a number of problems associated with it. First, there seems to be a hierarchy of sensitivity in various brain sites to the kindling technique. The amygdala and globus pallidus appear to be the most sensitive structures, while the hippocampus appears to be relatively less sensitive [89, 95]. It may require as long as 8.5 weeks of daily electrical stimulation to kindle seizures in the rat hippocampus [95], 13 weeks to kindle seizures in the cat prefrontal cortex [100], 21 weeks to kindle seizures in the baboon mesial frontal cortex
Table 3
Representative Electrical Kindling Studies, 1967–1985

Study	Region of Brain	Species of Experimental Animal	Number of Experimental Animals	Time Elapsed Prior to First Tonic-Clonic Seizure	% of Animals Which Progressed Through All Stages of Kindling	Were Seizures Spontaneous?
Goddard, 1967 [16]	Amygdala, septal area caudate, putamen, globus pallidus	Rat	77	4–136 days	58	No
Goddard et al., 1969 [89]	Subcortical structures, dorsal cortex, entorhinal cortex, olfactory bulb	Rat	294	22–77 days	No	
	Amygdala	Cat	Several	30–60 days	No	No
	Amygdala	Rhesus monkey	Six	Six months	No	
Racine, 1972 [90]	Amygdala, hippocampus, mesencephalon, reticular formation	Rat	140			
Racine, 1972 [91]	Amygdala	Rabbit				
Tanaka, 1972 [92]	Amygdala	Cat	21	5–36 days	100	Sometimes
Wada et al., 1974 [93]	Amygdala	Baboon	Four	100	Yes	
Wada et al., 1975 [94]	Amygdala	Rat	80	6–60 days	No	
Burnham, 1976 [95]	Amygdala, septal region, hippocampus	Amygdala—piriform area	Mice	37		
Leech and McIntyre, 1976 [96]	Hippocampus	Frog	60		Sometimes	
Morrell and Tsuru, 1976 [97]	Hippocampus	Frog	60		Sometimes	
Morrell et al., 1976 [98]	Pre-frontal cortex	Baboon	Two	318 days in one animal	No	
Wada et al., 1976 [99]	Amygdala	Cat	14	15–36 days	100	No
Wake and Wada, 1976 [100]	Cortical regions	Cat	Eight	8–91 days	100	No
Wauquier et al., 1976 [101]	Amygdala, hippocampus	Dog				
TABLE 3—continued

Study	Region of Brain	Species of Experimental Animal	Number of Experimental Animals	Time Elapsed Prior to First Tonic-Clonic Seizure	% of Animals Which Progressed Through All Stages of Kindling	Were Seizures Spontaneous?
Rial and Gonzalez, 1977	Telencephalon	Lizard	80	17 days	No	
Rial and Gonzalez, 1978	Dorsal telencephalic cortex	Lizard	80	17 days	No	
Wauquier et al., 1979	Amygdala	Dog	Eight	2–14 days	100	Sometimes
Le Gal La Salle, 1981	Amygdala	Rat	83	15–45 days	97	No
Araki et al., 1983	Amygdala, frontal cortex, reticular formation, hippocampus	Rat	83	15–45 days	97	No
Wada et al., 1985	Mesial frontal cortex	Monkey	Six	62–147	50	Sometimes
	Orbital cortex	Monkey	Three	0	0	No

[107], and 45.5 weeks to kindle seizures in the baboon prefrontal cortex [99]. It has also been suggested that kindling becomes increasingly difficult in phylogenetically more advanced experimental animals. It is unclear whether this is a problem inherent in either of the aforementioned models.

Second, while the kindling technique may induce recurrent focal seizures, these seizures are not consistently spontaneous. Often, they must be triggered by electrical stimulation [99,107]. In addition, it is frequently observed that all animals placed under identical experimental conditions do not fully progress through all five stages of kindling. More important, numerous animals fail to develop any seizure activity [16,107].

THE TETANUS TOXIN MODEL

Tetanus toxin is a potent neurotoxin-protein which is produced by the gram-positive bacillus Clostridium tetani [110]. After binding to the gangliosides GD1b and GT1b [111], the toxin is transported up axons in a retrograde fashion [112] until it reaches the synapses, where it seems to act by blocking the presynaptic release of inhibitory neurotransmitters, especially GABA and glycine [112,113].

Tetanus toxin was first used to create chronic epileptiform events in 1962 [114], when Carrea and Lanari applied it to the cerebral cortex of 63 dogs. The toxin induced epileptogenic foci which were present for up to two months [114]. Mellanby and George write that “because of its potency, its large molecular size and the fact that it is rapidly bound to receptors, tetanus toxin would appear to be an ideal agent for
producing highly localized 'pharmacological lesions' after local injection into specified brain regions" [110]. Table 4 provides the reader with a list of the major studies involving the direct application of tetanus to the brain. Several points should be emphasized. First, despite the fact that tetanus toxin was first used 25 years ago to create epileptogenic foci in laboratory animals, the tetanus toxin model is still very much in its developmental stages and is utilized in few laboratories. Second, after the local application of tetanus toxin to the brains of experimental animals, there seems to be a relatively short latency period prior to the clinical and electrographic onset of chronic seizures. This latency period varies from several hours to several weeks [110,114–118]. Recently, we have observed the onset of spontaneous and recurrent focal seizures in the cat hippocampus, orbital frontal cortex, and motor cortex within two to three weeks. In addition, tetanus toxin induces seizure foci which may remain chronically active. Mellanby et al. have induced foci in the rat hippocampus which remain active for up to two months [117]. Epileptogenic foci in the cat hippocampus may remain active indefinitely [119].

Tetanus toxin appears to produce a relatively small lesion [117]. Our own observations of the lesions produced in the cat hippocampus confirm that the lesions are relatively small areas of necrosis and reactive gliosis. In addition, the lesions are well confined [117]. A study by Mellanby et al. using small amounts of radioactively labeled tetanus toxin indicated that the toxin remains confined to the site of injection

Study	Region of Brain	Species of Experimental Animal	Number of Experimental Animals	Time Elapsed Prior to Onset of First Seizure	Last Observed Seizure	Size of Lesion
Carrea and Lannari, 1962 [114]	Cerebral cortex	Dog	63	Two to seven days, 34 animals	Two months	Small
Brooks and Asanuma, 1962 [115]	Motor cortex	Cat	Two to six hours			
Glaser and Yu, 1977 [116]	Dorsal hippocampus	Cat	Two hours	26 hours		
Mellanby et al., 1977 [117]	Hippocampus	Rat	>7 days	Two months	Small	
Mellanby and George, 1979 [110]	Hippocampus	Rat	Approximately three days	Five weeks		
MeGeer et al., 1980 [118]	Substantia nigra and thalamus	Rat	>8	Immediately	Three to five days (death)	
McGeer et al., 1980 [118]	Caudate	Rat	>4	Three to five days	Ten days (death)	
McGeer et al., 1980 [118]	Hippocampus	Rat	None observed			
Darcey and Williamson, 1985 [121]	Hippocampus	Cat	Eight	Two to five weeks		

Table 4
Major Tetanus Toxin Model Studies, 1962–Present
Characteristic of Particular Model	Alumina Model	Kainate Model	Kindling Model	Tetanus Toxin Model
Short latency period prior to onset of first seizure	No	Yes	No	Yes
Creates a small lesion	No	Yes	No	Yes
Creates a confined lesion	Yes	No	Yes	Yes
Applicable to numerous telencephalic regions	Yes	Yes	Yes	Yes
Equally applicable to different regions	No	No	No	Yes
Produces a chronic focus	Yes	Yes	Yes	Yes
May be employed on a wide variety of species (Number of species which have successfully developed epileptogenic foci)	(3–4)	(4)	(9)	(3)
Seizures are always spontaneous	Yes	Yes	No	Yes

Entries in italics imply that the particular characteristic which is not present is important.

(i.e., the hippocampus) [120]. Our own observations of H and E and cresyl violet stained cat hippocampi confirm that the lesion is well confined.

In addition, tetanus toxin is applicable to numerous telencephalic regions, as evidenced by its successful application to the hippocampus [110,116,117,121], substantia nigra [118], thalamus [118], caudate [118], orbital frontal cortex [119], cerebral cortex (region unspecified) [114], and motor cortex [115]. It also seems that many of the aforementioned regions are equally sensitive to the effects of tetanus toxin. For example, we have observed that similar doses of tetanus toxin are required to induce epileptogenic foci in the cat hippocampus, orbital frontal cortex, and motor cortex.

It should be emphasized that the amount of experience with tetanus toxin is relatively limited compared to the other models and that additional work must be conducted in order to better define the model. For example, the toxin has not been applied to very many species. In addition, the optimal schedule of toxin administration has not been established, and the histopathological changes are not well documented. Despite these drawbacks, it is apparent that when tetanus toxin is applied to different regions of the brain in various experimental animals, it induces a chronic epileptogenic focus in a relatively short time. These features make it an attractive and potentially superior experimental model of focal epilepsy.

DISCUSSION

We have reviewed four chronic experimental models of focal epilepsy. Table 5 combines much of the data in a more compact form. We would like to emphasize a number of points. First, it is quite apparent that both the alumina model and the kainate model are associated with drawbacks (see italicized entries in Table 5). With alumina gel, the precise extent of the lesion is difficult to control, which is problematic for studies requiring a very discrete anatomical focus. Kainate may create numerous secondary lesions in spite of great care in its initial application.

The kindling model is associated with fewer flaws than either the alumina or kainate
models. Probably for this reason, the kindling model is more widely used than either of these two models. Kindling does not always result in spontaneous seizures, however, and all regions of the brain are not equally susceptible to this technique.

In so far as it has been studied to date, the tetanus toxin model compares quite favorably with the kindling model and possesses a number of positive features which are not present in the kindling model, such as the short latency prior to onset of seizures, the consistent spontaneity of seizures, and the comparable applicability of the toxin to different telencephalic regions. In short, the tetanus toxin model seems to be an excellent model for the rapid and relatively non-destructive creation of spontaneous recurrent seizures in numerous pre-selected foci of the mammalian brain.

REFERENCES

1. Hauser WA, Kurland LT: The epidemiology of epilepsy in Rochester, Minnesota, 1935 through 1967. Epilepsia 16:1–66, 1975
2. Rayport M: Role of neurosurgery in the management of medication-refractory epilepsy. Commission for the Control of Epilepsy and Its Consequences, Plan for Nationwide Action on Epilepsy. DHEW Publication No. (NIH):314–343, 1978
3. Soloway S, Williamson PD, Spencer D, et al: Surgery for epilepsy: role of depth electroencephalography. Conn Med 44:70–75, 1980
4. Kopeloff LM: Experimental epilepsy in the mouse. Proceedings of the Society for Experimental Biology and Medicine 104:500–504, 1960
5. Mutani R: Cobalt experimental amygdaloid epilepsy in the cat. Epilepsia 8:73–92, 1967
6. Mutani R: Cobalt experimental hippocampal epilepsy. Epilepsia 8:223–240, 1967
7. Blum B, Liban E: Experimental baso-temporal epilepsy in the cat. Discrete epileptogenic lesions produced in the hippocampus or amygdaloid by tungstic acid. Neurology 10:546–554, 1960
8. Blum B, Magnes J, Bental E, et al: Electroencephalographic studies in cats with experimentally produced hippocampal epilepsy. Electroenceph clin Neurophysiol 13:340–353, 1961
9. Papavasiliou PS, Kutt H, Miller S, et al: Seizure disorders and trace metals: manganese tissue levels in treated epileptics. Neurology 29:1466–1473, 1979
10. Pei Y, Zhao D, Huang T, et al: Zinc-induced seizures: a new experimental model of epilepsy. Epilepsia 24:169–176, 1983
11. Morrell F, Bradley W, Ptashne M: Effects of drugs on discharge characteristics of chronic epileptogenic lesions. Neurology 9:492–498, 1959
12. Remler M, Marcussen W: Chronic epileptogenesis in rats by systemic convulsant and focal blood brain barrier lesion method. Epilepsia 25:670–671, 1984
13. Remler M, Marcussen W: Systemic focal epileptogenesis. Epilepsia 27:35–42, 1986
14. Kopeloff LM, Barrera SE, Kopeloff N: Recurrent convulsive seizures in animals produced by immunologic and chemical means. Am J Psych 98:881–902, 1942
15. Shinozaki H, Konishi S: Actions of several anthelmintics and insecticides on rat cortical neurones. Brain Res 24:368–371, 1970
16. Goddard G: Development of epileptic seizures through brain stimulation at low intensity. Nature 214:1020–1021, 1967
17. Purpura DP, Penry JK, Tower D, Woodbury DM, Walter R: Experimental Models of Epilepsy. New York, Raven Press, 1972
18. Kopeloff N, Whittier JR, Pacella BL, et al: The epileptogenic effect of subcortical alumina cream in the rhesus monkey. Electroenceph clin Neurophysiol 2:163–168, 1950
19. Kopeloff LM, Chusid JG, Kopeloff N: Chronic experimental epilepsy in macaca mulatta. Neurology 4:218–227, 1954
20. Ward AA: Topical convulsant metals. In Experimental Models of Epilepsy. Edited by DP Purpura, JK Penry, D Tower, DM Woodbury, R Walter. New York, Raven Press, 1972
21. Barrera SE, Kopeloff LM, Kopeloff N: Brain lesions associated with experimental "epileptiform" seizures in the monkey. Am J Psych 100:727–737, 1944
22. Sloan N, Ransohoff J, Pool JL: Clinical and EEG seizures following chronic irritative lesions of the medial temporal region in monkeys. Electroenceph clin Neurophysiol 5:320–321, 1953
23. Chusid JG, Kopeloff LM, Kopeloff N: Experimental chronic epilepsy in the monkey following intracerebral injections of aluminum hydroxide cream. Electroenceph clin Neurophysiol 5:321, 1953
24. Kopeloff N, Chusid JG, Kopeloff LM: Epilepsy produced in macaca mulatta with commercial aluminum hydroxide. Electroenceph clin Neurophysiol 6:303–306, 1954
25. Faeth WH, Walker AE, Kaplan AD, et al: Threshold studies on production of experimental epilepsy with alumina cream. Proceedings of the Society of Experimental Biology and Medicine 88:329–331, 1955
26. Kopeloff LM, Chusid JG, Kopeloff N: Epilepsy in macaca mulatta after cortical or intracerebral alumina. AMA Arch Neurol Psych 74:522–526, 1955
27. Youmans JR: Experimental production of seizures in the macaque by temporal lobe lesions. Neurology 6:179–186, 1956
28. Morrell F, Roberts L, Jasper HH: Effect of focal epileptogenic lesions and their ablation upon conditioned electrical responses of the brain in the monkey. Electroenceph clin Neurophysiol 8:217–236, 1956
29. Faeth WH, Walker AE: Studies on effect of the injection of alumina (aluminum oxide) cream into the basal ganglia. AMA Arch Neurol Psych 78:562–567, 1957
30. Gastaut H, Naquet R, Meyer A, et al: Clinical, electroencephalographic and anatomo-pathological study of “psychomotor” epilepsy induced in the cat by injection of alumina cream. In Temporal Lobe Epilepsy. Edited by M Baldin, P Bailey. Springfield, IL, Charles Thomas Publisher, 1958, pp 240–242
31. Servit ZD, Sterc J: Audiogenic epileptic seizures evoked in rats by artificial epileptogenic foci. Nature 181:1475–1476, 1958
32. Gastaut H, Naquet R, Meyer A, et al: Experimental psychomotor epilepsy in the cat. Electro-clinical and anato-pathological correlations. J Neuropath Exp Neurol 18:270–293, 1959
33. Stamm JS, Pribram KH: Effects of epileptogenic lesions of inferotemporal cortex on learning and retention in monkeys. J Comp Physiol Psych 6:614–618, 1961
34. Sterc J: Experimental reflex epilepsy (audiogenic epilepsy). Epilepsia 3:252–273, 1962
35. Westrum LE, White LE, Ward AA: Morphology of the experimental epileptic focus. J Neurosurg 21:1033–1046, 1964
36. Mayman CI, Manlapaz JS, Ballantine HT, et al: A neuropathological study of experimental epileptogenic lesions in the cat. J Neuropath Exp Neurol 24:502–511, 1965
37. Stercova A: Dynamics of neurohistopathological changes in an epileptogenic focus produced by alumina cream in the rat. In Comparative and Cellular Pathophysiology in Epilepsy. Edited by Z Servit. Amsterdam, Excerpta Medica Foundation, 1966, pp 247–257
38. Velasco M, Velasco F, Lozoya A, et al: Alumina cream-induced focal motor epilepsy in cats. Part 2. Thickness and cellularity of cerebral cortex adjacent to epileptogenic lesions. Epilepsia 14:15–27, 1973
39. Velasco M, Velasco F, Estrada-Villaneuva F, et al: Alumina cream-induced focal motor epilepsy in cats. Part 1. Lesion size and temporal course. Epilepsia 14:3–14, 1973
40. Harris AB: Ultrastructure and histochemistry of alumina in the cortex. Exp Neurol 38:33–63, 1973
41. Mayanagi Y, Walker AE: Experimental temporal lobe epilepsy. Brain 97:423–446, 1974
42. Mayanagi Y: Experimental studies on the pathogenesis of temporal lobe epilepsy. Fol Psych Neurol Jap 30:415–424, 1976
43. Lockard J, Congdon WC, DuCharme L, et al: Prophylaxis with diphenylhydantoin and phenobarbital in alumina-gel monkey model. 1. Twelve months of treatment: seizure, EEG, blood and behavioral data. Epilepsia 17:37–47, 1976
44. Soper HV, Strain GM, Babb TL, et al: Chronic alumina temporal lobe seizures in monkeys. Exp Neurol 62:99–121, 1978
45. Mayanagi Y: Alumina cream-induced temporal lobe epilepsy in the monkey as an experimental model. Fol Psych Neurol Jap 33:457–462, 1979
46. Feria-Velasco A, Olivares N, Rivas F, et al: Alumina cream-induced focal motor epilepsy in cats. IV. Thickness and cellularity of layers in the perilesional motor cortex. Arch Neurol 37:287–290, 1980
47. Harris AB, Lockard JS: Absence of seizures or mirror foci in experimental epilepsy after excision of alumina astrogliotic scar. Epilepsia 22:107–122, 1981
48. Beaumanoir A, Naquet R, Vigouroux R: Temporal lobe epilepsy: experimental reproduction. In Henri Gastaut and the Marseilles School's Contribution to the Neurosciences (EEG Suppl Number 35). Edited by RJ Broughton. Amsterdam, Elsevier Biomedical Press, 1982, pp 159–170
49. Velasco M, Velasco F, Pacheco M, et al: Alumina cream-induced focal motor epilepsy in cats. Part 5. Excision and transplant of epileptogenic granuloma. Epilepsia 25:752–758, 1984
50. Velasco M, Velasco F, Marquez I, et al: Alumina cream induced focal motor epilepsy in cats. VI. Excision of the perilesional cortex. Electroenceph clin Neurophysiol 60:548–557, 1985
51. Tremblay E, Ottersen OP, Rovira C, et al: Intra-amygdaloid injections of kainic acid: regional metabolic changes and their relation to the pathological alterations. Neuroscience 8:299–315, 1983
52. Ben-Ari Y, Tremblay E, Ottersen OP: Injections of kainic acid into the amygdaloid complex of the rat: an electrographic, clinical and histological study in relation to the pathology of epilepsy. Neuroscience 5:515–528, 1980
53. Ben-Ari Y, Lagowska J, Tremblay E, et al: A new model of focal status epilepticus: intra-amygdaloid application of kainic acid elicits repetitive secondary generalized convulsive seizures. Brain Res 163:176–179, 1979
54. Olney JW, Fuller TA, de Gubareff T: Kainate-like neurotoxicity of folates. Nature 292:165–167, 1981
55. Menini C, Meldrum BS, Riche D, et al: Sustained limbic seizures induced by intraamygdaloid kainic acid in the baboon: symptomatology and neuropathological consequences. Ann Neurol 8:501–509, 1980
56. Ben-Ari Y, Tremblay E, Ottersen OP, et al: The role of epileptic activity in hippocampal and 'remote' cerebral lesions induced by kainic acid. Brain Res 191:79–97, 1980
57. Cepeda C, Tanaka T, Riche D, et al: Limbic status epilepticus: behavior and sleep alterations after intra-amygdaloid kainic acid microinjections in papio papio baboons. Electroenceph clin Neurophysiol 54:603–613, 1982
58. Tanaka T, Riche D, Kajjima M, et al: Experimental status epilepticus induced by a micro-injection of kainic acid to the dorsal hippocampus in freely moving cats. Electroenceph clin Neurophysiol 52:S132–S133, 1981
59. French ED, Aldinio C, Schwarz R: Intrahippocampal kainic acid, seizures and local neuronal degeneration: relationships assessed in unanesthetized rats. Neuroscience 7:2525–2536, 1982
60. Smialowski A, Smialowska M: The effect of epileptiform discharges evoked by intrahippocampal injection of kainic acid on cholinergic and catecholaminergic hippocampal afferents. Neuroscience 6:2510–2528, 1981
61. Schwarz R, Zaczek R, Coyle JT: Microinjection of kainic acid into the rat hippocampus. European J Pharmacol 50:209–220, 1978
62. Tanaka T, Kajjima M, Daita G, et al: Electroclinical features of kainic acid-induced status epilepticus in freely moving cats. Microinjection into the dorsal hippocampus. Electroenceph clin Neurophysiol 54:288–300, 1982
63. Munoz C, Grossman S: Some behavioral effects of selective neuronal depletion by kainic acid in the dorsal hippocampus of rats. Physiology and Behavior 25:581–587, 1980
64. Kohler C, Schwarz R, Fuxe K: Perforant path transactions project hippocampal cells from kainate lesion. Neuroscience Letters 10:241–246, 1978
65. Cavalheiro EA, Riche DA, Le Gal La Salle G: Long-term effects of intrahippocampal kainic acid injection in rats: a method for inducing spontaneous recurrent seizures. Electroenceph clin Neurophysiol 53:581–589, 1982
66. Nelson MF, Zaczek R, Coyle JT: Effects of sustained seizures produced by intrahippocampal injection of kainic acid on noradrenergic neurons: evidence for local control of norepinephrine release. J Pharmacol Exp Therapeutics 214:694–702, 1980
67. Zaczek R, Nelson MF, Coyle JT: Effects of anaesthetics and anticonvulsants on the action of kainic acid in the rat hippocampus. European J Pharmacol 52:323–327, 1978
68. Ruth RE: Kainate (KA) iontophoresis and remote damage. Anatomical Record 202:164A, 1982
69. Schwarz R, Coyle JT: Neurochemical sequelae of kainate injections in corpus striatum and substantia nigra of the rat. Life Sciences 20:431–436, 1977
70. Schwob JE, Fuller T, Price JL, et al: Widespread patterns of neuronal damage following systemic or intracerebral injections of kainic acid; a histological study. Neuroscience 5:991–1014, 1980
71. Zaczek R, Simonton S, Coyle JT: Local and distant neuronal degeneration following intrastriatial injection of kainic acid. J Neurophysiol Exp Neurol 39:245–264, 1980
72. Pisa M, Sanberg PR, Corcoran ME, et al: Spontaneously recurrent seizures after intracerebral injections of kainic acid in rat: a possible model of human temporal lobe epilepsy. Brain Res 200:482–487, 1980
73. Olney JW, Fuller T, De Gubareff T: Acute dendrotoxic changes in the hippocampus of kainate treated rats. Brain Res 176:91–100, 1979
74. Sperk G, Lassmann H, Baran H, et al: Kainic acid induced seizures: Neurochemical and histopathological changes. Neuroscience 10:1301–1315, 1983
75. Olney JW, Rhee V, Lan Ho O: Kainic acid: a powerful neurotoxic analogue of glutamate. Brain Res 77:507–512, 1974
76. Ben-Ari Y, Tremblay E, Riche D, et al: Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazole: metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy. Neuroscience 6:1361–1391, 1981
77. Lothman EW, Collins RC, Ferrendelli JA: Kainic acid-induced limbic seizures: electrophysiologic studies. Neurology 31:806–812, 1981
78. Tremblay E, Nitecka L, Berger ML, et al: Maturation of kainic acid seizure-brain damage syndrome in the rat. I. Clinical electrographic and metabolic observations. Neuroscience 13:1051–1072, 1984
79. Nitecka L, Tremblay E, Charton G, et al: Maturation of kainic acid seizure-brain damage syndrome in the rat. II. Histopathological sequelae. Neuroscience 13:1073–1094, 1984
80. Lothman EW, Collins RC: Kainic acid induced limbic seizures: metabolic, behavioral, electroencephalographic and neuro-pathological correlates. Brain Res 218:299–318, 1981
81. Nadler JV, Perry BW, Cotman CW: Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells. Nature 271:676–677, 1978
82. Nadler JV: Minireview: kainic acid as a tool for the study of temporal lobe epilepsy. Life Sciences 29:2031–2042, 1981
83. Ben-Ari Y, Tremblay E, Ottersen OP, et al: Evidence suggesting secondary epileptogenic lesions after kainic acid: pretreatment with diazepam reduces distant but not local brain damage. Brain Res 165:362–365, 1979
84. Ben-Ari Y: Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14:375–403, 1985
85. Nadler JV, Shelton DL, Perry BW, et al: Regional distribution of <3H> kainic acid after intraventricular injection. Life Sciences 26:133–138, 1980
86. Scherer-Singler U, McGeer EG: Distribution and persistence of kainic acid in brain. Life Sciences 24:1015–1022, 1979
87. Wuerthele SM, Lovell KL, Jones MZ, et al: A histological study of kainic acid-induced lesions in the rat brain. Brain Res 149:489–497, 1978
88. Delgado JMR, Sevillano M: Evolution of repeated hippocampal seizures in the cat. Electroenceph clin Neurophysiol 13:722–733, 1961
89. Goddard GV, McIntyre DC, Leech CK: A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25:295–330, 1969
90. Racine RJ: Modification of seizure activity by electrical stimulation: I. After-discharge threshold. Electroenceph clin Neurophysiol 32:269–279, 1972
91. Racine RJ: Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroenceph clin Neurophysiol 32:281–294, 1972
92. Tanaka A: Progressive changes of behavioral and electroencephalographic responses to daily amygdaloid stimulation in rabbits. Fukuoka Act Med 63:152–163, 1972
93. Wada JA, Sato M, Corcoran ME: Persistent seizure susceptibility and recurrent spontaneous seizures in kindled cats. Epilepsia 15:465–478, 1974
94. Wada JA, Osawa T, Jung E: Spontaneous recurrent generalized seizure state induced by daily amygdaloid stimulation in Sengalese baboon, papio papio. Electroenceph clin Neurophysiol 38:545, 1975
95. Burnham W: Primary and “transfer” seizure development in the kindled rat. In Kindling. Edited by JA Wada. New York, Raven Press, 1976, pp 61–83
96. Leech CK, McIntyre DC: Kindling rates in inbred mice: an analog to learning? Behavioral Biology 16:439–452, 1976
97. Morrell F, Tsuru N: Kindling in the frog: development of spontaneous epileptiform activity. Electroenceph clin Neurophysiol 40:1–11, 1976
98. Morrell F, Tsuru N, Hoeppner TJ, Morgan D, Harrison WH: Secondary epileptogenesis in frog forebrain: effect of inhibition of protein synthesis. In Kindling. Edited by JA Wada. New York, Raven Press, 1976, pp 41–60
99. Wada JA, Osawa T, Mizoguchi T: Recurrent spontaneous seizure state induced by prefrontal kindling in sengalese baboons, papio papio. In Kindling. Edited by JA Wada. New York, Raven Press, 1976, pp 173–202
100. Wake A, Wada JA: Frontal cortical kindling in cats. In Kindling. Edited by JA Wada. New York, Raven Press, 1976, pp 203–214
101. Wauquier A, Melis W, Desmedt LKC, Sadowski B: Self stimulation in dogs: behavioral effects of anterior basal forebrain, amygdala and lateral hypothalamus implantations. In Brain Stimulation Record. Edited by A Wauquier, ET Rolls. Amsterdam, North-Holland, 1976, pp 427–430
102. Rial RV, Gonzalez J: The effect of diphenylhydantoin in the prevention of the threshold descents in the electroshock on the reptilian telencephalon. In Post-traumatic Epilepsy. Edited by J Majkowski. Warsaw, Polish Chapter of the ILAE, 1977, pp 203–208
103. Rial RV, Gonzalez J: Kindling effect in the reptilian brain: motor electrographic manifestations. Epilepsia 19:581–589, 1978
104. Wauquier A, Ashton D, Melis W: Behavioral analysis of amygdaloid kindling in beagle dogs and the effects of clonazepam, phenobarbital, diphenylhydantoin, and flunarizine on seizure manifestation. Exp Neurol 64:579–586, 1979
105. Le Gal La Salle G: Amygdaloid kindling in the rat: regional differences and general properties. In Kindling 2. Edited by JA Wada. New York, Raven Press, 1981, pp 31–47
106. Araki H, Aihara H, Watanabe S, Ohta H, Yamamoto T, Veki S: The role of noradrenergic and serotonergic systems in the hippocampal kindling effect. Jap J Pharmacol 33:57–64, 1983
107. Wada JA, Mizoguchi T, Komai S: Kindling epileptogenesis in orbital and mesial frontal cortical areas of subhuman primates. Epilepsia 26:472–479, 1985
108. Wada JA, Osawa J, Mizoguchi T: Recurrent spontaneous seizure state induced by prefrontal kindling in sengalese baboons, papio papio. In Kindling. Edited by JA Wada. New York, Raven Press, 1976, pp 173–202
109. McNamara JO, Byrne MC, Dasheiff RM, et al: The kindling model of epilepsy: a review. Progr Neurobiol 15:139–159, 1980
110. Mellanby J, George G: Tetanus toxin and experimental epilepsy in rats. Adv Cytopharmacol 3:401–408, 1979
111. Svennerholm L: Chromatographic separation of human brain gangliosides. J Neurochem 10:613–623, 1963
112. Van Heyningen S: Tetanus Toxin. Pharmac Ther 11:141–157, 1980
113. Curtis DR, Felix D, Game CJA, McGulloch RM: Tetanus toxin and the synaptic release of GABA. Brain Res 51:358–362, 1973
114. Carrea R, Lanari A: Chronic effect of tetanus toxin applied locally to the cerebral cortex of the dog. Science 137:342–343, 1962
115. Brooks VB, Asanuma H: Action of tetanus toxin in the cerebral cortex. Science 137:674–676, 1962
116. Glaser GH, Yu RK: A model of hippocampal epilepsy produced by tetanus toxin. Neurology 27:337, 1977
117. Mellanby J, George G, Robinson A, Thompson P: Epileptiform syndrome in rats produced by injecting tetanus toxin into the hippocampus. J Neurol Neurosurg Psychiat 40:404–414, 1977
118. McGeer PL, McGeer EG, Campbell JJR: Rotary effects of intra-cerebral tetanus toxin injections. Exp Neurol 67:363–367, 1980
119. Darcey T, Williamson P: Personal communication
120. Mellanby J, Hawkins C, Mellanby H, Rawlins J, Impey ME: Tetanus toxin as a tool for studying epilepsy. J Physiol (Paris) 79:207–215, 1984
121. Darcey TM, Williamson PD: Tetanus toxin model for focal epilepsy. In Proceedings of the XVIth Epilepsy International Congress. New York, Raven Press, 1985