Extraterrestrial artificial photosynthetic materials for in-situ resource utilization

ABSTRACT

Aerospace milestones in human history, including returning to the moon and manned Martian missions, have been implemented in recent years. Space exploration has become one of the global common goals, and to ensure the survival and development of human beings in the extraterrestrial extreme environment has been becoming the basic ability and technology of manned space exploration. For the purpose of fulfilling the goal of extraterrestrial survival, researchers in Nanjing University and the China Academy of Space Technology proposed extraterrestrial artificial photosynthesis (EAP) technology. By simulating the natural photosynthesis of green plants on the Earth, EAP converts CO\textsubscript{2}/H\textsubscript{2}O into fuel and O\textsubscript{2} in an in-situ, accelerated and controllable manner by using waste CO\textsubscript{2} in the confined space of spacecraft, or abundant CO\textsubscript{2} resources in extraterrestrial celestial environments, e.g. Mars. Thus, the material loading of manned spacecraft can be greatly reduced to support affordable and sustainable deep space exploration. In this paper, EAP technology is compared with existing methods of converting CO\textsubscript{2}/H\textsubscript{2}O into fuel and O\textsubscript{2} in the aerospace field, especially the Sabatier method and Bosch reduction method. The research progress of possible EAP materials for in-situ utilization of extraterrestrial resources are also discussed in depth. Finally, this review lists the challenges that the EAP process may encounter, which need to be focused on for future implementation and application. We expect to deepen the understanding of artificial photosynthetic materials and technologies, and aim to strongly support the development of manned spaceflight.

Keywords: solar energy, extraterrestrial survival, artificial photosynthesis, CO\textsubscript{2} reduction, oxygen evolution
space spacecraft, etc. Furthermore, it also makes use of abundant in-situ resources such as CO₂ and H₂O in the extraterrestrial atmospheric environments of the moon or Mars to meet the material demand. Through EAP, human beings can survive in extraterrestrial environments in the long term.

In recent decades, for solving the key problems of supply demand for human space stations and deep space exploration, the USA, Japan and other countries have continuously carried out research on CO₂ conversion technology as one of the crucial parts of in-situ resource utilization, developed a series of CO₂ conversion systems based on the Sabatier method [6] and Bosch reduction method [7], and carried out experimental verification of CO₂ reduction and O₂ production on the International Space Station (ISS) [8,9]. In 2005, the National Aeronautics and Space Administration (NASA) in the USA proposed the Resource Prospector mission, planning to carry out in-situ utilization experiments for producing O₂ from water in lunar surface soil in 2022. Russia raised a series of plans for lunar exploration and will launch a lander named Moon 27 in 2025 for in-situ lunar resource utilization. However, existing CO₂ conversion devices adopting high-temperature and high-pressure reaction conditions always have high energy consumption. On the other hand, the extraterrestrial microgravity environment obviously promotes the formation of supersaturated layers of dissolved gas molecules near the electrode surface. These layers accelerate the formation and evolution of bubbles at the interface between electrode and electrolyte, and hinder the material transport rate at the microscopic scale [10–12]. The electrode reaction kinetics are thus significantly reduced, resulting in less than one-third of the working efficiency on the Earth. Furthermore, due to the lack of experimental data and related theoretical research, key scientific and technical challenges, such as in-situ preparation of photoelectrocatalytic materials, the heterogeneous catalytic process and the working parameters of materials and systems, have become major problems in CO₂ conversion.

The ability to harvest light energy through artificial photosynthesis may create an essential foundation for technologies used in many areas, such as global carbon neutralization [13]. Thus, it is reasonable to expect the further development of EAP for human extraterrestrial survival. With regard to this, one example is demonstrated by an EAP device, developed by Qian Xuesen Laboratory of Space Technology, which reduces CO₂ with water into a carbonaceous compound and produces O₂. The feasibility of the reactor in CO₂/H₂O photo-conversion into carbonaceous compound and O₂ was verified by ground experiment, which may provide a theoretical and practical foundation for subsequent device optimization, carbon dioxide conversion into variable hydrocarbon products with high selectivity, and in-orbit testing of artificial photosynthesis devices [14].

The research into artificial photosynthesis began in 1972 when Honda and Fujishima reported that H₂ was produced by photolysis of water over titanium dioxide electrodes under ultraviolet light [4]. Then during the following few decades, numerous scientists carried out a series of research works on this specific area. In 2001, Zhigang Zou proposed a new theory and method to regulate the band structure of photocatalytic materials, and broadened the response range of photocatalytic materials. He realized visible-light-induced complete water decomposition [2] and CO₂ reduction [15] under visible light, thus developing a new-generation visible-light-responsive photocatalytic material. In 2015, NASA started to focus on artificial photosynthesis and proposed the concept of microbial-assisted artificial photosynthesis. In 2016, Daniel G. Nocera devised a biocompatible-inorganic catalyst system to decompose water to get H₂ and O₂ at low voltages [16] (Fig. 1f). He utilized low concentrations of CO₂ in the presence of O₂ and H₂ to generate biomass, fuel or chemical products. A 10% energy efficiency of CO₂ reduction could be obtained when coupling this device with a photovoltaic system. Peidong Yang combined light-absorbing semiconductor nanomaterials with bacteria to produce biological-inorganic hybrid systems for CO₂ fixation [17,18] (Fig. 1g and h). In 2017, Nanjing University and Qian Xuesen Laboratory at the China Academy of Space Technology carried out research into EAP materials and systems for the first time, aiming to resolve the requirements with regard to basic materials and energy during human extraterrestrial survival, and they have preliminarily completed the verification of materials and systems. This research progress provides the technical foundation for human survival during spaceflight missions and deep space exploration.

EXTRATERRESTRIAL ENVIRONMENTAL IMPACT

Space exploration activities are faced with various special environments, such as microgravity, strong radiation, extreme temperature and high vacuum, which bring about a series of challenges for realizing CO₂/H₂O conversion in outer space. Only through long-term and effective experiments, combined with ground simulation and in-orbit verification, can we investigate the mechanistic and process influences of outer space on EAP in the process of space exploration. However, it can be speculated that the
Figure 1. Mechanism schemes of (a) EAP, (b) photocatalysis, (c and d) photoelectrocatalysis and (e) photovoltaic electrocatalysis. (f) A biocompatible inorganic water-splitting catalyst system (adapted from ref. [16] with permission from American Association for the Advancement of Science (AAAS)). (g) Scheme of CO$_2$ reduction of the bacteria/semiconductor hybrid artificial photosynthetic system (adapted from ref. [17] with permission from AAAS). (h) Illustrations of a nanowire-bacteria hybrid system and the reaction mechanism (adapted from ref. [18] with permission from Elsevier).

external factors that mainly affect CO$_2$ and H$_2$O conversion may be, and are not limited to, the following aspects:

(i) Microgravity. Under microgravity, the key problems of bubble formation, evolution and detachment at the reaction interface need to be solved urgently.

(ii) Cosmic radiation. Materials, especially semiconductors, on the lunar surface or in Earth orbit would be strongly affected by the impact of rays or particles such as electrons, protons, heavy ions and plasma. Material properties will be changed by electromagnetic radiation and charged particles, including X-rays, electrons, protons and heavy ions, mainly due to the internal interactions in materials during the bombardment caused by cosmic rays or high energy particles. These internal interactions are divided into coulomb interactions and electromagnetic effects.
Coulomb interactions include three cases: Coulomb scattering, bremsstrahlung and inelastic collision between particles and electrons. Coulomb scattering refers to the elastic collision process in which charged particles are incident to matter, then deflected and dispersed by the Coulomb electric field force of the atomic nucleus. When materials are incident by high-energy electrons, the high-speed electron suddenly slows down and produces the bremsstrahlung, which is an important process for charged particles to act on materials in space. When particles or electrons inelastically collide with material, the electron in the material is ionized or excited from the outer layer to the inner layer, causing primary ionization to produce a large number of secondary electrons. The total kinetic energy before and after collision is not equal.

Electromagnetic interaction mainly refers to the interaction between high-energy rays and materials. The whole, or part, of the initial energy of the high-energy ray can be transferred to electrons in the materials, and the incident particles disappear or scatter. Electromagnetic effects include the photoelectric effect, electron pair effect and Compton effect. The dominant effect of electromagnetic action is related to photon energy and atomic coefficient of absorbing material.

After the incident particles enter the material, the energy of the incident particles decreases and the velocity slows down. Finally, the incident particles are blocked or scattered. The charged particles enter the material and lose energy through two ways: the displacement effect and ionization effect. The displacement effect is when charged particles collide with the nucleus, making atoms leave their original positions; or the incident particles fill in the lattice gaps to form vacancies and interstitial atoms, leading to the corresponding changes in material structure and properties. Collision between incident high-energy particles and material atoms is the main source of energy loss. Further, a large number of recoil atoms are produced after collision, and the secondary reactions of recoil atoms with the surrounding atoms form a large number of Frenkel defects. Most of these defects are semi-permanent, leading to great damage to semiconductor materials and devices. The ionization effect is when the radiation of charged particles with a certain energy excites electrons outside the nucleus of materials to form free electrons. Material atoms thus become positive ions, forming electron-hole pairs. When electrons transition from valence band to conduction band, the electrical, chemical, physical and mechanical properties of materials can be affected. Small-dose and long-term steady-state radiation in space often leads to a cumulative ionization damage effect.

(iii) Extreme temperature. Extraterrestrial space, including the lunar surface, produces a huge temperature difference between day and night. During daytime, when the sun shines vertically, the temperature rises as high as 127°C; at night, the temperature can be as low as −183°C. As water evaporates or freezes easily, this poses a great challenge to CO₂ reduction in aqueous systems. Furthermore, the thermal expansion and contraction caused by temperature switching generally accelerates the fatigue and aging of materials, which brings a series of system durability and reliability problems.

In addition, there are other problems caused by the atmospheric pressure and special atmospheric environments of extraterrestrial planets, although some of them, e.g. extreme temperatures and ultra-vacuums, can be resolved by aerospace engineering methods. For example, the Environmental Control and Life Support System (ECLSS) used on the ISS by NASA can maintain the space capsule pressure, temperature and humidity. Extreme conditions have brought great challenges for researchers in selecting and designing materials, and it will also become difficulties in our research of extraterrestrial artificial photosynthesis.

RECENT PROGRESS ON EXTRATERRESTRIAL CO₂ AND H₂O CONVERSION FOR SPACECRAFT

Since the 1960s, the Sabatier method [6] and Bosch reduction method [7] have been the main approaches in CO₂ reduction technology. H₂O electrolysis for H₂ and O₂ has also been widely anticipated [19]. Recently, the EAP technology proposed by Nanjing University and Qian Xuesen Laboratory realized CO₂/H₂O photo-conversion under mild conditions with low energy consumption (Fig. 2a and b).

For solving the key problems of manned space stations and deep space exploration, the USA and other countries carried out research on CO₂ and H₂O conversion based on traditional ground technology, e.g. by using H₂O electrolysis to supply...
O₂ for astronauts in the ISS. To realize the recycling of CO₂ released by astronauts, NASA and Japan Aerospace Exploration Agency (JAXA) have developed a set of CO₂ reduction and O₂ evolution devices, in which CO₂ reduction is obtained by converting CO₂ and H₂ into methane with H₂ obtained by H₂O electrolysis. The Sabatier reactor contains a gas-solid two-phase process with a core unit temperature of 250–450°C and a minimum gas pressure of 55 kPa. The mass of the ground experimental unit is around 41 kg and the total power is >100 W. The in-orbit test was completed for this system in October 2010 (Fig. 2c and d) [6,20]. The water electrolyzer developed by JAXA has also been tested in orbit [8,9]. This device was obtained by modifying the more technically mature proton exchange membrane electrolytic cell, which consists of an electrolytic unit and a gas-liquid separation unit [9,21] (Fig. 2e and f). In the ISS, a combination of the above two devices was tested to support the ECLSS to convert CO₂ into O₂ and methane by in-orbit reaction (Fig. 2g) [9]. JAXA researchers used parabolic flight and drop tower tests to make a series of research and improvement works on the water electrolysis device, including tests on the working temperature of the electrolytic cells, the pressure of the gas-liquid separation membranes, the electrolyte component, and the working voltage and current. However, even after various optimizations, the water electrolytic device’s efficiency under microgravity was less than a third of that under usual gravity environments. The supersaturated layers of dissolved gas molecules formed by the aggregation of over-dissolved gas on the electrode highly hindered the transport rate and reaction efficiency of electrolyte [10] (Fig. 2h and i). Matsushima et al. found that the interaction between electrodes and electrolytes in the microgravity environment has a significant impact on the formation and evolution of bubbles, and the electrolytic performance [12]. In order to improve the material transport rate and reaction efficiency under microgravity, Nanjing University and Qian Xuesen Laboratory used liquid shearing force to compel the generated gas from the electrode surface, to prevent bubble gathering near the electrode surface under microgravity conditions [14].

For the more challenging manned deep space exploration missions, the USA first proposed the scheme of producing O₂ and fuel by using in-situ resources such as water and carbon dioxide on the moon or Mars. NASA proposed a Mars in-situ-propellant-production precursor (MIP) plan in 2001 to deoxidize carbon dioxide into O₂ using high-temperature electrolysis (Fig. 2j) [22]. In 2013, NASA also proposed a Mars in-situ resource utilization landing mission, MARCO POLO [23], which would utilize Mars’s atmospheric and soil resources to produce H₂, O₂ and CH₄ by the Sabatier method and water electrolytic technology. They further proposed the Mars Oxygen ISRU Experiment (MOXIE) load in 2014 to deoxidize carbon dioxide in the Martian atmosphere to generate O₂ with a solid oxide electrolytic cell at 800°C to achieve 10 g h⁻¹ O₂ production (Fig. 2k) [24]. The load project was launched in 2020, with about 2 h of experiments on Mars. If this in-situ resource utilization technology is validated, NASA will plan to follow up with a 100-fold magnified scale device to support the 2033 manned Mars mission. In 2018, NASA supported a plan named the CO₂ Conversion Challenge to develop novel synthesis technologies that use carbon dioxide to generate molecules that can be used to manufacture a variety of products. However, the selected projects have remained at the laboratory stage and do not show feasibility for application to spacecraft. The USA is extracting O₂ from the Martian atmosphere as part of the ‘Mars 2020’ rover project (Fig. 2l) [24]. Generally, the American space mission in CO₂ utilization and transformation mainly uses the relatively mature thermal or electrical chemical conversion technology found in industry. Although the technical route has high maturity and stability, it needs to be carried out under extremely high temperature conditions (900–1600°C), with harsh operating conditions and large energy consumption, which is not conducive to manned deep space exploration. In 2020, Qian Xuesen Laboratory developed a demo of an EAP device for reducing carbon dioxide with water into carbonaceous compound and producing O₂ [14]. The feasibility of the reactor in reducing carbon dioxide to O₂ and carbonaceous compound was verified by ground experiment, which may provide a theoretical and practical foundation for subsequent device optimization, carbon dioxide conversion to variable hydrocarbon products with high selectivity, and on-orbit testing of artificial photosynthesis devices.

MATERIALS FOR EAP

Even on the moon or Mars, the energy provided by the sun is considerable. The light intensity on the moon approximates 1.4 times that of the Earth. Recent research shows that the permanent light area on the moon is adjacent to the ice area, which may be an ideal place for human beings to set up bases on the moon [25]. Solar power on Mars’s surface is nearly 40% of that found on Earth. Because there is no atmospheric absorption, the solar spectrum on the surface of the moon is similar to that in Earth orbit, which is about equal to AM0
Figure 2. (a) Space exploration experiment device using in-situ resources to produce O2. (b) Partial enlargement of (a). (c) Sabatier reaction system loaded into the ISS (adapted from ref. [6] with permission from American Institute of Aeronautics and Astronautics (AAIA)). (d) The core unit of the reactor (adapted from ref. [20] with permission from AIAA). (e) The principle of the reactor (adapted from ref. [21] with permission from AIAA) and (f) exterior feature of the JAXA water electrolyzer (adapted from ref. [9] with permission from AIAA). (g) New conceptual ECLSS in space station (adapted from ref. [9] with permission from AIAA). (h) Comparison of electrode in the environments of normal gravity on Earth (adapted from ref. [10] with permission from Elsevier). (i) Microgravity during the water electrolyzing process (adapted from ref. [11] with permission from Elsevier). (j) MIP CO2 converting system (adapted from ref. [22] with permission from AIAA). (k) MOXIE CO2 converting system (adapted from ref. [24] with permission from Elsevier). (l) Set-up diagram of ‘Mars2020’ (adapted from ref. [24] with permission from Elsevier).

(1366.1 W m⁻²). The transmitted sunlight wavelength on the surface of Mars increases with the increase of solar zenith angle and optical depth, and the energy at shorter wavelengths is more easily exhausted, because the cross section of dust particles suspended in the atmosphere at shorter wavelengths is larger. The 60-degree spectrum of sunlight on the surface of Mars is reduced to one-sixth of AM0, and further reduced in the blue part of the spectrum [26]. The moon has no atmosphere, thus there is no CO₂ on the moon. It is conservatively estimated that 0.3% to 1% of the water on the moon is buried in the form of ice under 40 cm of dry regolith [27]. On Mars, 95% of the atmosphere (the average pressure is < 1% of one atmosphere) is CO₂. It has been estimated that Martian meteorites contain carbonates in low abundances (< 1 vol.%) [28], and calcium carbonate has been identified in the soils at the Mars Phoenix landing site [29]. Thus, it is important to evaluate the feasibility of utilizing such mineralized carbon in future research. At this stage this review mainly focuses on the EAP process of CO₂/H₂O. Moreover, ground ice and hydration water exist at the near-surface subsurface of Mars [27]. The above preconditions are propitious to EAP in extraterrestrial environments such as the moon and Mars.

Most of the practical applications of EAP are based on photocatalytic materials. Photocatalysts are an important component to support artificial photosynthesis. Catalysts suitable for EAP are herein classified as photocatalysts, photoanodes, photocathodes and photovoltaic-electrochemical catalysts. The evaluation parameters for the performance assessment of the above catalysts mainly contain product rate, catalytic current density (for photoelectrocatalysts), turnover number and turnover frequency (evaluating the activity of catalytic active sites), quantum yield (assessing the performance of photocatalysts) and faradaic efficiency (assessing the selectivity for photoelectrocatalysts). In the
following text, we will mainly analyze photocatalytic/photoelectrocatalytic materials for EAP.

EAP processes mainly involve the conversion of CO$_2$ and H$_2$O into hydrocarbon fuel and O$_2$, and water splitting to produce H$_2$ and O$_2$. CO$_2$/H_2O photo-conversion involves two parts of the half reaction, including CO$_2$ reduction by photo-generated electrons, and H$_2$O oxidation by photo-generated holes, respectively. The standard chemical potentials required in thermodynamics for these processes are shown in the following reactions (1–8), respectively:

$$ \text{2H}_2\text{O} + 2e^- \rightarrow \text{H}_2 \quad (E = 0 \text{ V vs. SHE}), $$

(1)

$$ \text{2H}_2\text{O} + 4h^+ \rightarrow 4\text{H}^+ + \text{O}_2 \quad (E = +1.23 \text{ V vs. SHE}), $$

(2)

$$ \text{CO}_2 + e^- \rightarrow \text{CO}_2^{-} \quad (E = -1.90 \text{ V vs. SHE}), $$

(3)

$$ \text{CO}_2 + 2\text{H}^+ + 2e^- \rightarrow \text{CO} + \text{H}_2\text{O} \quad (E = -0.53 \text{ V vs. SHE}), $$

(4)

$$ \text{CO}_2 + 2\text{H}^+ + 2e^- \rightarrow \text{HCOOH} \quad (E = -0.61 \text{ V vs. SHE}), $$

(5)

$$ \text{CO}_2 + 4\text{H}^+ + 4e^- \rightarrow \text{HCHO} + \text{H}_2\text{O} \quad (E = -0.48 \text{ V vs. SHE}), $$

(6)

$$ \text{CO}_2 + 6\text{H}^+ + 6e^- \rightarrow \text{CH}_3\text{OH} + \text{H}_2\text{O} \quad (E = -0.38 \text{ V vs. SHE}), $$

(7)

$$ \text{CO}_2 + 8\text{H}^+ + 8e^- \rightarrow \text{CH}_4 + 2\text{H}_2\text{O} \quad (E = -0.24 \text{ V vs. SHE}). $$

(8)

In consideration of the extreme environmental conditions that EAP materials would be applied in, EAP materials should meet the following requirements: (i) an appropriate band structure, which is conducive for extraterrestrial sunlight absorption with different spectra and higher intensity, and reaches the chemical potentials needed to achieve the corresponding photo-redox reaction; (ii) adequate surface catalytic active sites to support effective photo-redox reaction; (iii) fast carrier transport and separation at the interface; (iv) stable activity under intense cosmic radiations; (v) excellent survivability under intense cosmic radiations; (vi) great capability of resisting impact during take-off and landing; (vii) low cost. Additionally, CO$_2$/H$_2$O photocatalysts require excellence in reactant adsorption, product desorption and product selectivity. During CO$_2$/H$_2$O photo-conversion, H$_2$ production is the major competitive side reaction. Therefore, avoiding H$_2$ production is also one of the key points in improving CO$_2$/H$_2$O photo-conversion. A major way to hinder the H$_2$ production is to adjust the surface adsorption behavior of protons during the EAP process. Typical methods [30] include adjusting adsorption properties of the catalyst surface on carbon intermediate species, realizing proper surface modification and hydrating or alloying the surface with cocatalysts.

EAP materials for overall photo-conversion

Most of the reported photocatalytic materials are thermodynamically unfavorable to complete both the reductive half reaction (CO$_2$ reduction) and the oxidative half reaction (O$_2$ production), since the overall CO$_2$ conversion reaction generally needs a band gap of over 3.1 eV when taking account of the CO$_2$ adsorption on the electrode surface (reaction (3)). Catalysts with suitable band structure supporting overall CO$_2$/H$_2$O conversion are mainly TiO$_2$, ZnO, CdS, ZnS, ZnIn$_2$S$_4$, Ta$_2$N$_5$, TaON, graphitic carbon nitride (g-C$_3$N$_4$), SrTiO$_3$ [31–35] (in which TiO$_2$, ZnO and ZnS can only use ultraviolet light). SrTiO$_3$ and CdS can theoretically carry out full conversion under visible light, however, their intrinsic properties are restricted by low carrier separation rate. Thus, modification by cocatalysts or construction of composite materials is needed for the practical application of overall CO$_2$/H$_2$O conversion. Most of the cocatalysts in photocatalysis are derived from electrocatalysts. The role of cocatalysts is to reduce the activation energy required for surface reactions. Cocatalysts for oxygen evolution reaction (OER) mainly include cobalt phosphate (CoPi) [36], iron hydroxide oxide (FeOOH) [37], nickel oxide (NiO$_x$) [38], ceria (CeO$_2$) [39], RuO$_2$ [40], cobalt oxide (CoO$_x$) [41] and manganese oxide (MnO$_x$) [42]. Highly active cocatalysts for CO$_2$ reduction reaction (CO$_2$RR) primarily contain Au [43], Ag [44], Cu [45], Mn [46], MoS$_2$ [47] and CdS [48]. Moreover, adjusting the composition and ratio of metals, metallic alloy or other composite cocatalysts can be helpful in improving the selectivity of CO$_2$ reduction products [49–51].

At present, EAP materials are restricted by the low efficiency of photo-generated charge separation, the slow surface reaction rate and the serious inverse reaction of the products. A variety of
methods have been developed to regulate the charge separation and surface reaction performance, as well as restrain the inverse reaction of the artificial photosynthetic catalysts, including crystal engineering, built-in electric field, polarization effect, effective mass reduction of photo-generated carriers, a single crystal with low structural defects, molecular composites, the Z-scheme strategy and surface modification with co-catalysts. Conformation of solid solution is one of the effective means of regulating the electronic structure of catalysts and promoting photosynthetic performance. Zhigang Zou’s group showed in their theoretical calculation results that Zn$_2$GeO$_4$ phase transformation from pseudo-cubic phase into cubic phase can effectively narrow the band gap. This is because the introduction of s and p orbitals of Ge enhances the repulsion of p-d (O 2p-Zn 3d) and raises the valence band position, while the s orbitals of Ge with low energy effectively lower the conduction band position. The solid solution photocatalysts composed of cubic ZnGa$_2$O$_4$ and pseudo-cubic Zn$_2$GeO$_4$ have light hole effective mass, and higher hole mobility. A narrow band gap is beneficial for absorbing sunlight with a wider wavelength, and high hole mobility is beneficial for improving the reaction rate of water oxidation. Therefore, the solid solution photocatalytic materials show higher photocatalytic performance with regard to reducing CO$_2$ to hydrocarbon fuel [52].

Based on a similar mechanism, Kazunari Domen’s group also reported that (Ga$_{1-x}$Zn$_x$N$_{1-x}$O$_x$) has excellent performance for visible-light-driven complete water splitting [53].

It is an effective method to separate photo-generated charges by forming a built-in electric field on the interface of materials. Commonly, the built-in electric field exists between two different semiconductor materials or between different phase structures of the same semiconductor. The electrons and holes in this type of built-in electric field separate to opposite directions under the electric field, thus improving the separation efficiency. Zhigang Zou et al. synthesized a CeO$_2$ octahedral structure with vertical growth of hexahedron prism [54] (Fig. 3a). By adjusting the length and number of CeO$_2$ prisms with exposed surface of $\{100\}$ facets on octahedron with surface of $\{111\}$ facets, the separation and transmission efficiency of photo-generated carriers were improved, leading to the highly improved efficiency of photocatalytic CO$_2$ reduction to produce CH$_4$. Theoretical calculation showed that for CeO$_2$, the effective mass of electrons on $\{100\}$ facet is much larger than that on $\{111\}$ facet, while the effective mass of holes on $\{111\}$ facet is larger than that on $\{100\}$ facet. Therefore, photo-generated electrons easily migrate to the $\{111\}$ facets, while photo-generated holes easily migrate to the $\{100\}$ facets, which is conducive to the separation of photo-generated e$^-$ and h$^+$. Thus, the CeO$_2$ homojunction materials achieved the overall CO$_2$/H$_2$O photo-conversion efficiency with 0.86 μmol h$^{-1}$ g$^{-1}$ CH$_4$ yield, and 0.2% quantum yield at 380 nm. The O$_2$ yield was also detected in accord with \sim2:1 molar ratio to CH$_4$.

Polar semiconductors with asymmetric positive and negative electron centers can induce the polarization effect for effective separation of photo-generated charges. Zhigang Zou et al. proposed that single crystals growing along the polarization axis of a polar semiconductor could maximize the polarization field effect of the polar semiconductor, and efficiently separate photo-generated charges [55]. Because of the periodic potential field, the photo-generated charges are separated effectively along the polarization axis. And the photo-generated electrons are transmitted preferentially along the direction perpendicular to the polarization axis, forming a specific two-dimensional transport path, which greatly reduced the e$^-$–h$^+$ recombination probability. Thus, the activity and selectivity of reducing CO$_2$ to CH$_4$ are greatly improved. Li’s group also found that the surface electric field induced by intrinsic polarity of GaN nanoarrays can effectively enhance carriers’ spatial separation and greatly promote the photocatalytic overall water splitting. Based on the photo-generated charge separation effect between polar and non-polar surfaces, the quantum efficiency was improved from 0.9% to 6.9% with the redox co-catalysts constructed on polar and non-polar surfaces, respectively [56].

Carbon dots synthesized by microwave can quickly extract holes from carbon nitride and prevent the surface adsorption of methanol, which is beneficial to water oxidation and improves the ability of selective CO$_2$ reduction to alcohols. Tang and Guo’s group found that the carbon dots synthesized by microwave method have unique hole-accepting properties, which can extend the electron lifetime of carbon nitride 6-fold [57]. It is thus beneficial to the stable production of stoichiometric O$_2$ and methanol from water and CO$_2$, respectively. The selectivity of CH$_3$OH is close to 100% and the inherent quantum efficiency is 2.1% under visible light. This work paves the way for the sustainable production of metal-free catalytic methanol, providing a unique strategy that can efficiently and selectively reduce CO$_2$ to high-value chemicals via artificial synthesis.

Nanostructured single-crystal photocatalysts with few structural defects and the appropriate co-catalysts were shown to be excellent in overall solar water splitting. For example, although Ta$_3$N$_5$
Figure 3. (a) Schematic illustration of CO2 photoreduction into CH4 over hexahedron prism anchored octahedral CeO2 (adapted from ref. [54] with permission from ACS Publications). (b) An overall CO2/H2O photo-conversion system with the CoP@Pd-loaded SrTiO3:La,Rh|Au|RuO2-BiVO4:Mo photocatalysts (adapted from ref. [58] with permission from Springer Nature). (c) Sketch map of Z-scheme model and light-induced charge transfer path over SiC@MoS2 photocatalyst (adapted from ref. [59] with permission from ACS Publications). (d) CO2/H2O photo-conversion reaction route of the heterometallic cluster-based organic frame photocatalyst (adapted from ref. [60] with permission from Wiley-VCH). (e) Diagrammatic sketch of water splitting on Pt nanoparticle (gray) decorated CoS (yellow) (adapted from ref. [31] with permission from Springer Nature).

Photocatalysts have excellent visible light absorption and almost ideal energy band structure, non-single crystal or haploid Ta3N5 can barely achieve overall water splitting due to the strong charge recombination at defects. Domen’s group fabricated Ta3N5 nanorods growing on lattice-matched cubic KTaO3 particles, combined with the Rh/Cr2O3 cocatalyst. Since the single-crystal Ta3N5 nanorod crystals had few grain boundaries, the materials presented high water-splitting efficiency under simulated sunlight [33].

Molecular composites are also effective photocatalytic materials for achieving scalable and sustainable carbon dioxide reduction. Reisner’s group prepared a photocatalytic sheet by integrating La and Rh co-doped SrTiO3, Mo-doped BiVO4, phosphonated Co(iii) bis(terpyridine) and RuO2 catalysts onto a gold layer [58] (Fig. 3b). This device achieves a solar energy conversion (from CO2 to formate) efficiency of 0.08 ± 0.01% and a selectivity of 97 ± 3%, respectively. When the device was exposed to simulated sunlight, e−-h+ pairs were produced in both SrTiO3:La,Rh and BiVO4:Mo. Electrons were transformed from BiVO4:Mo conduction band to the SrTiO3:La,Rh donor level through the Au layer. With the aid of molecular compounds, e− in SrTiO3:La,Rh reduced CO2 into HCOO−, simultaneously h+ in the BiVO4:Mo oxidized H2O to O2 with RuO2 cocatalyst for O2 generation.

The Z-scheme heterojunction can be propitious to the transfer balance of photogenerated e−-h+ pairs. Li’s group realized the overall CO2/H2O conversion through marigold-like SiC@MoS2 nanoflower materials with 323 μL g−1 h−1 methane yield and 620 μL g−1 h−1 O2 release under λ ≥ 420 nm visible light irradiation. This photocatalytic performance can be ascribed to the following aspects: (i) the direct Z-scheme heterostructure with negative SiC conduction band for CO2 reduction and positive MoS2 valence band for O2 evolution, (ii) the high e− mobility of SiC and high h+ mobility of MoS2, (iii) the marigold flower-like microstructure of SiC@MoS2 making the surface of catalyst completely exposed to reactants and (iv) the gas–solid reaction beneficial to adsorption/desorption behavior on the Z-scheme heterostructure surface [39] (Fig. 3c).

Through reasonable material design, appropriate doping modification and deposition of cocatalysts, the feasibility of free charge recombination losses for efficient overall water splitting can be achieved. Domen’s group demonstrated overall water splitting, evolving H2 and O2 in a 2:1 stoichiometric ratio at an external quantum efficiency up to 96% (350 nm < λ < 360 nm), using Al doped SrTiO3 photocatalysts [35]. By selectively photo-depositing the cocatalysts Rh/Cr2O3 for H2 evolution and cobalt hydroxide oxide (CoOOH) for O2 generation respectively, the H2 and O2 evolution could be enhanced separately by anisotropic charge transport on different crystallographic planes of the catalyst particles.

A system with clear structure to clarify the relationship between structure and photosynthesis is very important in promoting the development of artificial photosynthesis. Lan and Liu synthesized metal organic framework (MOF) photocatalysts based on heterometallic Fe2M clusters. The catalysts converted carbon dioxide and water into formate and O2 without additional sacrificial agents and photosensitizers. Visible light excited heterometallic clusters and photosensitive ligands to produce photo-generated electron-hole pairs. Low-cost metals accepted electrons to reduce carbon dioxide,
while high-price metals used holes to oxidize water [60] (Fig. 3d). Lan and Liu’s work proposed a novel strategy of designing crystalline catalysts for overall artificial photosynthesis.

The combination of catalysts that are of nanometer and molecular scale is of great significance in visible-light-induced overall artificial photosynthesis. Stolarczyk’s group put forward the design idea of ‘all in one’. Spatial separation of oxidation and reduction sites respectively on CdS nanorods and the co-modification parts of the both sites, i.e. Pt nanoparticles and Ru(tpy)(bpy)Cl2-based molecules, was realized [31] (Fig. 3e). Pt nanoparticles at the tip of CdS nanorods acted as electron receptors and were responsible for H2 production (20 μmol gcat⁻¹ h⁻¹). Ru(tpy)(bpy)Cl2-based molecular cocatalysts were fixed to the periphery of CdS nanorods and are responsible for O2 production (170 μmol gcat⁻¹ h⁻¹). The catalyst has both reduction and oxidation catalytic functions, so that visible light can drive the total water splitting without sacrificial agents.

Generally speaking, in the last decade, great progress has been made on photocatalytic CO2RR. The solar energy conversion efficiency of photocatalytic materials has gradually improved; the methods to improve the photocatalytic reaction efficiency tend to be clear; the understanding of the photocatalytic mechanism has gradually deepened; the characterization methods are developing rapidly; and photocatalytic materials based on novel physical mechanisms are emerging. However, in order to achieve the practical goals of EAP, the research on CO2RR still needs a leap forward. First of all, one of the key problems is how to greatly improve the photocatalytic CO2RR performance. In addition to the requirement to develop new materials, how to match the band gap of photocatalytic materials with the extraterrestrial solar spectrum, how to match the conduction/valence band position of EAP materials with the potential of reactants, how to reduce electron-hole recombination and improve quantum efficiency, and how to improve the stability of photocatalytic materials are still key scientific issues that must be solved in this field. Secondly, existing characterization techniques cannot fully facilitate an understanding of the catalytic mechanism. Thus, some advanced in-situ and/or atomic level characterization methods are still required to reveal the key factors affecting the photocatalytic reaction process. As for realizing efficient and stable EAP, researchers need to deepen the understanding of the photocatalytic reaction mechanism from a macroscopic and qualitative description to microscopic and quantitative research, to comprehensively study the process of light absorption, electron-hole excitation and transport, and interface dynamics, and to clarify the mechanism of energy transfer and conversion. These approaches can guide researchers when it comes to developing EAP materials with high quantum efficiency, by breaking through the existing theoretical framework and actively promoting the cross-integration of photochemistry and other disciplines.

Photoelectrocatalysis materials for EAP

Photocatalytic overall CO2/H2O conversion materials are mainly in the form of powders. There are problems such as the undesirable recombination of photo-generated electron-hole pairs in the particles and difficult separation of products from the system. Thus, photoelectrocatalysis, especially non-biased photoelectrocatalysis, in which the catalysts are in the form of film, is more beneficial to the practical applications of EAP.

Photoelectrochemical artificial photosynthesis is generally carried out by photoelectrodes composed of conductive substrates, semiconductors and cocatalysts in the aqueous environment. In this system, the excited photoelectrodes generate electrons or holes that migrate to the surface of the photocathodes or photoanodes for a reductive or oxidative reaction, respectively. Compared with the fact that the charge separation driving force of photocatalysts is the built-in electric field, charge separation in photoelectrocatalytic systems is promoted not only by a built-in electric field but also through external bias. Therefore, some thermodynamically insufficient catalytic reactions can be carried out under photoelectrocatalytic systems with proper bias. In addition, photoelectrocatalysis realizes the spatial separation of the reduction reaction and oxidation reaction to avoid the inverse reaction. According to the module composition of each part of the system, the photoelectrocatalysis system can be divided into a photocathode-to-electrode system, photoanode-to-electrode system, photocathode-photoanode system and photovoltaic coupled photoelectrocatalysis system.

A photocathode usually consists of p-type semiconductors. The conductive band of a p-type semiconductor bends downward at the interface of semiconductor and solution. This band bending allows photo-generated electrons to migrate to the electrode/solution interface and the electrons participate in the CO2 reduction reaction to produce hydrocarbon fuel. According to the thermodynamic requirements, the main photocathode materials are Cu2O [49], Cu2ZnSnS4 [50], Co2P and p-Si [51].

Correspondingly, a photoanode usually consists of n-type semiconductors. The valence band of an n-type semiconductor bends upward at the semiconductor/solution interface, allowing
photo-generated holes to transfer to the electrolyte for O₂ evolution. The main photoanode materials are TiO₂, Fe₂O₃, WO₃, ZnO, BiVO₄, Ta₃N₅ and n-Si [3,61–66].

It is usually difficult to construct a device that has an individual photoelectrode and can achieve both CO₂ reduction and water oxidation conversion for overall artificial photosynthesis (Fig. 1d). The construction of a dual photoelectrode system with both the photocathode and photoanode is beneficial for realizing the full conversion of artificial photosynthesis without bias. The difference in Fermi level between two photoelectrodes determines the theoretical maximum of the photo-generated voltage between them [58,59], which should be larger than the thermodynamic and kinetic requirements.

The photovoltaic coupling system is also used to couple photovoltaic cells to the photoelectrocatalytic system to make effective artificial photosynthetic systems, in which the photovoltaic cell provides bias to assist in driving electrocatalytic reactions. This kind of system includes photovoltaic-photocathode, photovoltaic-photoanode and photovoltaic-electrocatalytic coupling systems (Fig. 1e).

As mentioned above, the photocathode catalysts, photoanode catalysts and photovoltaic electrodes together form the most important material basis in photo-electrocatalytic systems for EAP. Thus, the research progress of photocathode catalysts, photoanode catalysts and photovoltaic electrodes appropriate for EAP will be discussed as follows.

Photocathode materials

Numerous p-type semiconductors have been exploited and investigated for photocathodes, including p-type silicon [67], oxides [68–73], sulﬁdes [74], phosphides [67] and selenides [75]. Tellurides [76] have been investigated for CO₂ reduction or H₂O reduction. In addition, profiting from remarkable CO₂/H₂O molecular adsorption and activation, cocatalysts (e.g. Pd, Au, Ag and Cu) [77] usually serve as photocathodes. However, their performance is still limited by high overpotential, low selectivity and long-term operational instability [78]. Rational design is needed to optimize the material interface to achieve efﬁcient charge transfer at low overpotential while maintaining high selectivity.

P-Si is one of the most popular materials for photocathodes, not only because of its high earth reservation, but more importantly, Si has a proper valence band position, with a 1.1 eV band gap. However, its CO₂ reduction activity is low, and it lacks a suitable cocatalyst to improve the effect. For planar Si electrodes, the overpotential of CO₂ reduction on the surface is mainly reduced by loading metal cocatalysts [79,80]. Recently, the loading of non-noble metal cocatalysts such as MoS₂ [81] reduced graphene oxide (rGO) [82], NiOₓ [83] and Al₂O₃ [84] has been found to further improve the stability of Si in the water decomposition process of photoelectrochemical cells (PECs). For example, Bench et al. deposited a MoS₂ thin layer on the surface of an Si photocathode with n⁺p planar structure, and the photocathode could be stable in electrolyte for >100 h [81]. Si nanowires are also widely used in the construction of photocathodes. The main reason is that Si is a typical indirect band gap semiconductor, and its high light absorption efficiency can be ensured when the penetration depth of light reaches 200 μm. The nanowire structure can reduce the migration distance of minority carriers, and multiple reflections of light can ensure the effective absorption of light by Si [85]. Photolithography technology was used to etch and form Si nanopillar arrays on Si wafers, which increased the contact area between photocathode and electrolyte. After Mo₃S₄ nanoclusters were deposited on the surface of p-Si, the light absorption range of the material was widened to over 620 nm, and reached a highly increased current density [86]. Recently, Chen et al. modified MoS₂ with band gap position matching p-Si arrays as the cocatalyst, and used it to collect photo-generated electrons to reduce carrier recombination. Therefore, the initial H₂ evolution potential of an Si@MoS₂ photocathode is positively shifted to 0.122 V vs. reversible hydrogen electrode (RHE). The researchers further doped MoS₂ with metal atoms to construct an Si@MMoSₓ (M = Fe, Co, Ni) photocathode. It was found that the initial H₂ evolution potential of the material moved positively to 0.192 V vs. RHE after Co doping, and the current density at 0 V vs. RHE reached −17.2 mA cm⁻² [87]. Jin et al. supported a transparent NiCoSe₂ thin layer on the surface of a bamboo-shoot-like Si nano-array by photo-assisted electrodeposition (Fig. 4a) [88]. Under 100 mW cm⁻² sunlight intensity, the current density of the catalyst at 0 V vs. RHE reached −37.5 mA cm⁻². In addition, Hu Xile’s research group combined Mo₂C with amorphous Si and tested it as photocathode in 1 M KOH and 0.1 M H₂SO₄. The stable photocurrent density of this material in both electrolytes can reach −11 mA cm⁻². This is the first time that the Si-based photocathode has been used in strong alkaline electrolyte, and is also the Si-based photocathode material with the widest pH range so far [89]. Besides, n-type doping on the surface can control the band bending of p-Si and form an n⁺p depletion layer, thus
increasing the photovoltage of the p-Si photocathode. However, the direct contact between n+p-Si and metal catalysts generally causes serious surface recombination and reduced photovoltage. Inserting a metal oxide layer between the Si and catalysts to form a heterojunction can effectively adjust the charge transfer from semiconductor to cocatalysts. CO2 reduction in a silicon photocathode was reported to be realized by depositing TiO2 through p+ implantation and n+ implantation on the illumination side, and then loading the Ag/dendritic Cu catalyst. A self-powered CO2 reduction device is formed by tandemly coupling the silicon photocathode with two series of translucent CH3NH3PbI3 perovskite solar cells, and the conversion efficiency from sunlight to hydrocarbon and oxygen-containing compounds is 1.5%. Under simulated sunlight conditions, the efficiency of photocathode to hydrocarbons and oxygenated compounds (mainly ethylene, ethanol and propanol) is kept above 60%, which can last for more than several days (Fig. 4b) [90].

Metal oxide semiconductors (such as binary oxide Cu2O (2.0 eV)) and ternary oxides (for instance, CaFe2O4 (1.9 eV), CuNb2O6 (1.5 eV), CuFeO2 (1.5 eV) and LaFeO3) are typical p-type semiconductors due to metal vacancies in the structure. Metal oxide semiconductors are extensively utilized for the design and synthesis of photocathode materials because of their easy preparation and low cost. However, their unsatisfactory optical absorption coefficient, carrier mobility and stability make the energy conversion efficiency of oxide photocathodes relatively low [68–73]. Cu2O is a typical representative of this type of material and considered as a promising photocathode material to replace Si [91–93]. However, poor stability is the main problem for Cu2O-based photocathodes (Fig. 4c) [94]. Grätzel’s group has done a series of work to improve the stability of Cu2O-based photocathodes. They used MoS2+x film as a hydrogen evolution reaction (HER) catalyst on the TiO2-protected Cu2O photocathode, and the current density of the composite electrode could reach ~5.7 mA cm−2 (0 V vs. RHE) [95]. After that, they deposited a double layer Al2O3/ZnO/TiO2 film on the Cu2O surface and its improved activity was mainly attributed to the matched conduction band position of Cu2O, ZnO and TiO2, leading to quick electron migration from electrode to electrolyte [96]. As the best-performing oxide photocathode, the Cu2O photocathode’s activity surpasses that of many photocathodes after continuous research and development. However, Cu2O photocathodes employing Au as the back contact generally caused considerable e−–h+ recombination. By employing CuSCN as the h+ transport material, h+ transport between Cu2O and CuSCN is expedited by band-tail states, delivering a 4.55% solar-to-hydrogen (STH) efficiency (Fig. 4d) [97].

p-NiO is also a type of electrode material for CO2 reduction PECs. DuChene et al. investigated the light-induced modulation of catalytic selectivity over Cu/p-type NiO photocathodes. According to their analysis, the optical excited hot e− of Cu nanoparticles were mainly used for CO2 reduction, while hot h+ injection from Cu nanoparticles into p-type NiO leads to charge separation. Thus, the optical excitation of plasmonic Cu/p-type NiO photocathodes enhanced CO2 reduction and inhibited H2 evolution, driving increased production of CO and HCOOH. This work demonstrated a plasmon-driven photocathode for CO2 reduction PECs (Fig. 4e) [98].

CuInxGa1−xSe2 (CIGS, 1.0–1.68 eV) and Cu2ZnSnS4 (CZTS, 1.0–1.5 eV) perform outstandingly in the field of solar cells due to their high light absorption coefficient (~105 cm−1) and adjustable direct band gap. The modulation of chemical composition (I = Cu, Ag; II = Al, In, Ga; VI = S, Se, Te) makes the band gap of such a semiconductor adjustable within 1.0–2.4 eV. Furthermore, because of the inherent metal defects (such as Cu vacancy), this type of semiconductors are typical p-type semiconductors, which can be used as a photocathode material. CIGS photocathodes with high current density, such as CuGaSe2 (1.7 eV), CuGa3Se5 (1.8 eV) and CuInS2 (1.5 eV), have also been reported in recent years. However, the lattice mismatch at the interface limits the energy conversion efficiency of this kind of material. CdS film prepared by chemical bath deposition (CBD) is one of the best n-type semiconductors reported to compound CIGS to form a p–n junction. However, these materials were difficult in terms of application because of their slow surface reaction process and poor stability in aqueous solution [99]. Therefore, depositing a protective layer on the surface is the most important means to solve the above problems. Sb2Se3 can also be a promising material for artificial photosynthesis. Yang et al. reported an Sb2Se3 photocathode material with low cost, small band gap and good photoelectric properties and photocorrosion stability, which also showed a high current density of almost 30 mA cm−2 at 0 V vs. RHE. The optimized Sb2Se3 photocathode achieved 1.5% solar-to-hydrogen efficiency for unassisted water splitting under the condition of 1 sun simulation when combined with a BiVO4 photoanode, and the stability exceeded 10 hours (Fig. 4f) [100].

Some traditional cocatalysts (like Ag) are great electrocatalysts for CO2-to-CO conversion. However, high overpotential limits the efficiency and...
Figure 4. (a) Schematic diagram of the construction process of the p-Si/ NiCoSe₂ photocathode (adapted from ref. [88] with permission from the Royal Society of Chemistry). (b) Left: schematic of the Si/TiO₂/Ag/Cu photocathode. Right: schematic of the membrane-separated photoelectrochemical cell (PEC) for overall CO₂/H₂O conversion (adapted from ref. [90] with permission from the Royal Society of Chemistry). (c) Diagrammatic sketch of the Cu₂O nanofiber electrode with a Cu₂O underlayer and a TiO₂ passivation layer and its CO₂ photo-reduction performance (adapted from ref. [94] with permission from ACS Publications). (d) A photovoltaic (PV)-PEC system based on CuSCN/Cu₂O photocathode and perovskite solar cell/IrO₃ anode for overall H₂O splitting (adapted from ref. [97] with permission from Springer Nature). (e) Plasmonic Cu/p-NiO photocathodes for CO₂/H₂O conversion (adapted from ref. [98] with permission from ACS Publications). (f) Scheme of the NiFeOₓ/Mo: BiVO₄/FTO/Pr/TiO₂/CdS/Sb₂Se₃/Au/FTO cell for total water splitting (adapted from ref. [100] with permission from Springer Nature). (g) Spatial decoupling of CO₂ reduction from light absorption and charge separation over CuFe@GaN NWs/Si (adapted from ref. [101] with permission from the National Academy of Sciences, USA). (h) Schematic diagram of selective CO₂-to-syngas on AgP₂₃ (211) (adapted from ref. [102] with permission from Springer Nature).
the lack of efficient and highly selective cocatalysts restricts the PEC performance of photocathode catalysts. To solve the problem of unsatisfied efficiency resulted from high overpotential, a few ingenious cocatalysts have been designed and present a promising avenue for photocathode catalysts, such as CuFe alloy and AgP2. The designed CuFe was reported to exhibit a -38.3mA cm^{-2} current density with CH4 faradaic efficiency up to 51%, resulting in a 2176h^{-1} turnover frequency using silicon as photocathode under one sun illumination (AM 1.5G) (Fig. 4g) [101]. Integrating AgP2 nanocrystal cocatalysts on $p^+\text{Si}$ to construct an $n^+\text{Si}/\text{Al}_2\text{O}_3/\text{AgP}_2$ hybrid photocathode and separating the $n^+\text{Si}$ and AgP2 by the Al2O3 layer led to a highly improved CO2 conversion efficiency. Compared with the Ag cocatalyst, the overpotential of AgP2 nanocrystals for CO2 reduction to CO is reduced by 0.3 V, and the maximum faradaic efficiency is 82% (Fig. 4h) [102].

Photoanode materials

Generally, the anodic reaction is an OER in a PEC, which is a vital reaction in extraterrestrial space for human respiration. The photoanode OER is a four-electron transfer process with slow reaction kinetics, which is the rate control step of the artificial synthesis process. Therefore, photoanode materials with high activity and stability are indispensable in improving the energy conversion efficiency of PEC systems for EAP. Numerous n-type semiconductors have been exploited and investigated, including n-type silicon [66], oxides [61–64], nitrides [103] and sulfides [104], as photoanodes for O2 production. In addition, finely dispersed cocatalyst nanoparticles (e.g. Co [61], Fe [66]), phosphides [105] and hydroxyapatite [106], or conformal thin layers of cocatalysts (e.g. oxyhydroxide, sulfides) [107] on the photoanode surface are also an effective approach for remarkable O2 generation. Among the diverse catalysts, TiO2, WO3, Fe2O3 and BiVO4 with befitting band structure and plummy stability of aqueous solution, are good n-type semiconductors, with befitting band structure and plummy stability to the water oxidation [108]. Heterojunction construction of the g-C3N4 film on the TiO2 nanorod array exhibits obvious advantages in PEC performance (Fig. 5a) [103].

The design of heterojunction and oxygen vacancy defects is demonstrated to be a synergetic method of producing a high performance in photoanodes. Integration of Fe,S and the synchronous generation of interfacial oxygen vacancies (V_O) synergistically reduced the carrier recombination, increased the number of active sites and facilitated the participation of photo-generated holes in water oxidation for the Fe3O4 photoanode (Fig. 5b) [104]. Lianzhou Wang et al. reported a synergetic BiVO4 film rich in $in-situ$-formed oxygen vacancy defects converted from Bi2S3 precursor films through a sulfur oxidation method, in which the electron-hole separation rate of the bulk phase was significantly improved. NiFeOx O2-evolution cocatalysts were supported on the photocatalyst surface to facilitate surface O2 evolution. A 5.54 mA cm$^{-2}$ photocurrent density was obtained under 1.23 V vs. RHE and simulated sunlight (AM 1.5), with a stability over 80 h. A 6.24 mA cm$^{-2}$ photocurrent density can be obtained by stacking two BiVO4/NiFeOx electrodes, and the photoelectric conversion efficiency reaches 2.76% [109]. Bi et al. also enhanced the O2 production activity of the BiVO4 photoanode under a similar mechanism by depositing a 2 nm β-Fe OOH film with abundant oxygen vacancies (Fig. 5c) [110].

In addition, for most of the photoanode materials, ingenuity in cocatalyst design has been proven to ameliorate the OER. The selective growth of FeNi cocatalysts on the BiVO4 photoanode surface obviously raised the photocurrent density to 5.8 mA cm$^{-2}$ under 1.23 V vs. RHE and simulated sunlight (AM 1.5) (Fig. 5d) [111]. The selective formation of interfacial bonds between Fe, Ni in FeNi cocatalysts and Bi, V on the surface of the BiVO4 implied that after optical excitation, Fe-O-Bi interface bonding can effectively transfer the photo-induced holes from BiVO4 to Fe active sites. The photoinduced electronic injection will be delivered from Ni atoms to V sites through the Ni-O-V, thus effectively avoiding the V^{5+} ion dissolution. The introduction of Fe species can significantly improve its water-oxidation activity, while Ni can effectively enhance its photoelectric catalytic stability. Inserting black phosphorene (BP) between the OER cocatalyst (NiOOH, MnO2, or CoOOH) and BiVO4 was reported to improve the PEC performance by 1.2–1.6-fold [112], and a 4.48 mA cm$^{-2}$ photocurrent density at 1.23 V vs. RHE was achieved by
the NiOOH/BP/BiVO₄ photoanode. The intrinsic p-type BP can enhance h⁺ extraction and the h⁺ trapping lifetime on the BiVO₄ surface, while the OER cocatalyst overlayer can suppress catalyst self-oxidation for achieving a high durability. This research presents an advantageous nexus between cocatalyst and semiconductor. AgOₓ/NiOₓ composite cocatalysts can be exploited to hoist the H₂O oxidation kinetics, as well as the carrier separation of BiVO₄ photoanodes, because of the high-valence-state stabilization of the metal ions, the formation of H₂O oxidation active sites and the extension of the band bending region induced by AgOₓ/NiOₓ (Fig. 5e) [113].

Photovoltaic (photo)electrocatalytic materials

Compared with powder photocatalysis, photoelectrocatalysis constructs the macro-space separation of oxidation and reduction half reactions, which is beneficial to the separation of catalytic products. However, for higher catalytic performance, photoelectrocatalysis depends on the input of external electric energy. Recently, photovoltaic cells have been applied for photoelectric conversion, and the photovoltaic-electrocatalytic CO₂/H₂O conversion technology has also been greatly developed. Photovoltaic (photo)electrocatalytic overall CO₂/H₂O conversion with high efficiency provides an effective avenue for storing solar energy, which can greatly benefit EAP.

Solar cells are mainly categorized into silicon-based, III–V-based or perovskite-based photovoltaic electrocatalytic devices [114]. As high operational current densities are demanded in photovoltaic electrocatalytic devices, high-quality electrocatalysts (e.g. Au, Pt, IrOₓ) are preferred. Commercial noble-metal-based electrodes such as IrOₓ (for O₂ evolution) and Au (for CO₂ reduction) [115] were successfully used for overcoming the sluggish kinetics of CO₂ reduction and O₂ evolution, respectively, which hinder the extensive implementation of overall CO₂/H₂O conversion. However, the moderate performance limits the total
energy-carbon monoxide photoelectric conversion efficiency and 63% electric energy efficiency under one sun intensity (Fig. 6a) [116]. Park et al. constructed a WO$_3$ photoanode and Cu$_2$O photocathode system coupled with a dye-sensitized solar cell for driving CO$_2$ reduction on Cu$_2$O and water oxidation on WO$_3$ with zero external bias. In this dual-light-absorbing cell, the solar-to-chemical energy efficiency of CO$_2$ reduction for CO is 2.5%, while it is 0.7% for H$_2$ and 0.25% for HCOOH, respectively (Fig. 6b) [117]. By using Cu-based catalysts at both anode and cathode coupled with a perovskite photovoltaic mini-module, Fontecave et al. reported a 21% energy efficiency and a 2.3% solar-to-hydrocarbon efficiency of CO$_2$ reduction to CH$_4$=CH$_2$ and CH$_3$CH$_3$ (Fig. 6c) [118]. By using CoO$_2$FeO$_4$ nanosheet arrays for both cathode and anode, driven by a GaInP$_2$/GaAs/Ge photovoltaic cell, Cao et al. showed a complete overall CO$_2$/H$_2$O conversion system with 13.1 mA cm$^{-2}$ photocurrent density, corresponding to 15.5% solar-to-CO efficiency (Fig. 6d) [119]. The dual functional attributes can be attributed to the formation of *COOH and *O intermediates that originated from the Co sites in Co$_2$FeO$_4$. Lee et al. reported an enzyme—W-containing formate dehydrogenase (FDH) from Clostridium ljungdahlii (ClFDH)-conjugated direct electron transfer-type biocathode based on TiN nanoshell—and applied it to a PV-PEC system with free bias, which showed promising and stable solar-driven CO$_2$-to-HCOOH conversion at a rate of 0.78 μmol h$^{-1}$ for 24 h and a 77.3% faraday efficiency (Fig. 6e) [120].

Although the research history of the photoelectrocatalytic CO$_2$ reduction reaction has been developed over tens of years with great progress, there are still many problems and challenges. Because of the low catalytic efficiency, it is far from meeting the requirements of EAP application:

(i) The selectivity of high carbon products is still very low. In CO$_2$RR, although the faraday efficiency of CO and HCOOH can reach $>90\%$, the highest faraday efficiencies of other reduction products, which are much more desired for EAP technology, such as CH$_4$, CH$_3$OH, C$_2$H$_5$OH, CH$_3$COOH and C$_2$H$_4$, are only at the level of $\sim50\%$.

(ii) The catalysts have poor stability. Stability is an important parameter to characterize the advantages and disadvantages of a catalyst material, and it is also a problem that must be overcome to realize EAP in harsh extraterrestrial environments. Although some catalytic materials remain stable for hundreds of hours, they are still far from the

Figure 6. (a) Schematic and photograph of the redox-medium-assisted CO$_2$ photovoltaic electrocatalytic reduction system containing a nickel-iron hydroxide electrode and a zinc/zincate redox with a gold nanocatalyst (adapted from ref. [116] with permission from Springer Nature). (b) Illustration of a WO$_3$ (photoanode)/Cu$_2$O (photo-cathode) system coupling with a dye-sensitized solar cell (adapted from ref. [117] with permission from Elsevier). (c) Schematic view of the dendritic nanostructured CuO material before (top) and after (bottom) CO$_2$ photovoltaic electrocatalytic reduction in 0.1 M CsHCO$_3$ (adapted from ref. [118] with permission from the National Academy of Sciences, USA). (d) Illustration of the solar-driven overall CO$_2$ splitting system with CoO$_2$FeO$_4$ nanoarrays both as anode and cathode (adapted from ref. [119] with permission from Wiley-VCH). (e) Schematic illustration of the BiVO$_4$/perovskite/3D TiN-CIFDH biocatalytic tandem PEC system for unbiased, solar-driven formate production (adapted from ref. [120] with permission from Wiley-VCH).
Table 1. More specific and detailed information about the example references.

Method	Catalyst	Reactant	Light source/intensity	Current densities	Product/selectivity	TOF	Efficiency	Ref.
Photocatalysis	4.5(ZnGa$_2$O$_4$):(Zn$_2$GeO$_4$)	CO$_2$, 0.4 mL deionized water	A UV-enhanced (200 to 350 nm) 300 W xenon arc lamp	-	0.5 μmol h$^{-1}$ CH$_4$, 3 μmol h$^{-1}$ O$_2$	-	-	[52]
CeO$_2$ octahedron textured with nanorods	CO$_2$, 0.4 mL deionized water	300 W Xe lamp (full spectrum)	-	0.86 μmol h$^{-1}$ g$^{-1}$ CH$_4$, \sim2 : 1 molar ratio of O$_2$ to CH$_4$	-	CH$_4$ quantum efficiency (%) = 0.2% at 380 nm	[54]	
Rh-CoO$_x$/GaN nanorod arrays	Pure aqueous solution	300 W Xe lamp (full spectrum)	-	H$_2$ and O$_2$ in stoichiometric ratio (2 : 1)	-	OER quantum efficiency (incident light wavelength range of 250–400 nm) reaches 81.1%, quantum efficiency of overall water splitting reaches 6.9%	[56]	
Microwave-synthesized carbon-dots decorated carbon-nitride	CO$_2$, 10 mL water	300 W Xe lamp ($\lambda > 420$ nm)	-	Methanol 13.9 μmol h$^{-1}$ g$^{-1}$, CO 0.05 μmol h$^{-1}$ g$^{-1}$, O$_2$ to methanol is \sim1.45 : 1, 99.6% selectivity from CO$_2$ to methanol	-	Internal quantum efficiency (IQY) of 2.1% in the visible region	[57]	
CotppyP-loaded SrTiO$_3$:La,Rh/Al	CO$_2$-saturated 0.1 M KHCO$_3$	AM 1.5 G (1 sun) illumination (100 mW cm$^{-2}$)	-	O$_2$ 1.3 μmol h$^{-1}$ cm$^{-2}$, HCOO$^-$. 16.1 μmol in 5 h	TON for HCOO$^-$ was 305 after 4 h	A solar-to-formate conversion efficiency of 0.08 ± 0.01% with a selectivity for formate of 97 ± 3%	[58]	
SrTiO$_3$:Al photo-deposited with Rh/Cr$_2$O$_3$/CoOOH	Xe lamp (300 W, full arc)	-	Overall water splitting, evolving H$_2$ and O$_2$ in a 2 : 1 stoichiometric ratio	-	An IQE of 100% and an external quantum efficiency (EQE) > 50%	[35]		
Table 1. Continued.

Method	Catalyst	Reactant	Light source/intensity	Current densities	Product/selectivity	TOF	Efficiency	Ref.	
Photoelectrochemical cells	Si@CoMoS$_x$ photocathode	0.5 M H$_2$SO$_4$	500 W xenon lamp equipped with an AM 1.5 filter (100 mW cm$^{-2}$)	-17.2 mA cm^{-2} at 0 V$_\text{RHE}$	H$_2$ 3.86 μmol min$^{-1}$	-	Faradic efficiency 81.0%	[87]	
	p-Si/NiCoS$_x$ core/shell NP arrays	0.5 M H$_2$SO$_4$	AM 1.5G illumination (100 mW cm$^{-2}$)	-37.5 mA cm^{-2} at 0 V$_\text{RHE}$	H$_2$ - -	-	[88]		
	a-Si/Mo$_2$C	0.1 M H$_2$SO$_4$ and 1.0 MKOH	AM 1.5G illumination (100 mW cm$^{-2}$)	-11.2 mA cm^{-2} at 0 V$_\text{RHE}$	H$_2$ - -	-	[89]		
	An Si photocathode with two series-connected CH$_3$NH$_3$PbI$_3$ perovskite solar cells	0.1–0.5 M	CsHCO$_3$	AM 1.5G illumination (100 mW cm$^{-2}$)	No bias	Ethylene, ethanol and 1-propanol	-	Total solar-to-chemical conversion efficiency of 3.5% to all products and 1.5% to hydrocarbons and oxygenates	[90]
	MoS$_2$+x film as the HER catalyst on TiO$_2$-protected Cu$_2$O photocathode	1 M Na$_2$SO$_4$ buffered with 0.1 M K$_3$PO$_4$ (pH = 5.0)	AM 1.5G illumination (100 mW cm$^{-2}$)	-5.7 mA cm^{-2} at 0 V$_\text{RHE}$ (pH 1.0)	-	-	7% STH efficiency in a tandem cell configuration	[91]	
	Cu$_2$O photocathode using solution-processed CuSCN as hole transport material	0.5 M Na$_2$SO$_4$ (pH = 5.0)	AM 1.5G illumination (100 mW cm$^{-2}$)	6.4 mA cm^{-2} at 0 V$_\text{RHE}$	-	-	STH efficiency of 4.5%	[97]	
	Sb$_2$Se$_3$ photocathode with a BiVO$_4$ photoanode	0.5M KPi buffer + 0.01 M V$_2$O$_5$ (pH = 7.0)	AM 1.5G illumination (100 mW cm$^{-2}$)	-	-	STH efficiency of 1.5% with stability over 10 h	[100]		
	CuFe catalyst coupled with GaN nanowires on n$^+$-p silicon wafer	CO$_2$-purged 0.5 M KHCO$_3$ aqueous solution (pH = 8.0)	AM 1.5G illumination (100 mW cm$^{-2}$)	-38.3 mA cm^{-2} at $-1.2 \text{ V}_{\text{RHE}}$	CH$_4$ 88.8 μmol h$^{-1}$ cm$^{-2}$ 2176 h$^{-1}$	Faradic efficiency of 51%	[101]		
	A photocathode consisting of a n$^+$-p-Si wafer coated with ultrathin Al$_2$O$_3$ and AgP$_2$ nanocrystals	CO$_2$-saturated 0.5 M KHCO$_3$ solution	AM 1.5G illumination (100 mW/cm2)	-3.2 mA cm^{-2} at $-0.11 \text{ V}_{\text{RHE}}$	-	-	FE$_{\text{CO2}}$ of 67% at -0.2 V vs. RHE	[102]	

Page 18 of 26
Method	Catalyst	Reactant	Light source/intensity	Current densities	Product/selectivity	TOF	Efficiency	Ref.
	BiVO₄/NiFeOₓ	1 M borate buffer electrolyte containing 0.2 M Na₂SO₃	AM 1.5 G (100 mW cm⁻²)	5.54 mA cm⁻² at 1.23 V_RHE	-	-	Photon-to-current efficiency of 2.76%	[109]
	Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO₄ photoanode	0.2 M Na₂SO₄ (pH = 7.0)	AM 1.5 G illumination (100 mW cm⁻²)	4.3 mA cm⁻² at 1.23 V_RHE	H₂ 92.3 μmol after 120 min	-	-	[110]
	BiVO₄/FeₓNi₁₋ₓOOH photoanode	0.5 M K₃BO₃ electrolyte (pH = 9.5)	AM 1.5 G (100 mW cm⁻²)	5.8 mA cm⁻² at 1.23 V_RHE	H₂ 388 μmol, O₂ 172 μmol after 3 h	-	The average incident photon to current efficiency (IPCE) of 90% at 420 nm	[111]
	NiOOH/BP/BiVO₄ photoanode	0.5 M phosphate buffer (KPi, pH = 7.1)	AM 1.5 G (100 mW cm⁻²)	4.48 mA cm⁻² at 1.23 V_RHE	-	-	-	[112]
	BiVO₄/AgOₓ/NiOₓ photoanode	0.2 M KBi aqueous solution (pH = 9.25)	AM 1.5 G illumination (100 mW cm⁻²)	1.24 mA cm⁻² at 0.6 V_RHE	-	-	The average IPCE values in the 380–450 nm range increased from 22.4% to 49.3%.	[113]
	Photovoltaic cell + electrocatalysis	A photovoltaic and electrocatalytic system consisting of GaAs solar cell, nano-Au catalyst cathode and NiFe hydroxide anode and Zn/Zn(II) redox medium	0.5 M CO₂-saturated KHCO₃ (pH = 7.2)	AM 1.5 G illumination (100 mW cm⁻²)	10 mA cm⁻² at 1.96 V_RHE	-	FE₉₀ of ~92%, a solar-to-CO₂ photo-conversion efficiency of 15.6%, and an electric energy efficiency of 63%	[116]
	A PEC composed of WO₃/dye-sensitized solar cell and Cu₃O (x = 1 and 2) wire arrays as a dual-absorber photoanode and cathode	CO₂-purged 0.1 M bicarbonate aqueous solution	AM 1.5 G illumination (100 mW cm⁻²)	-	CO₂, H₂ and formate	-	The primary CO₂ conversion product is CO₂ with a solar-to-chemical energy efficiency of ~2.5%; H₂ and formate are obtained with energy efficiencies of 0.7% and 0.25%, respectively in 5 h (overall efficiency ~3.45%)	[117]
Table 1. Continued.

Method	Catalyst	Reactant	Light source/intensity	Current densities	Product/selectivity	TOF	Efficiency	Ref.
A system coupling a photovoltaic cell to an electrochemical cell using the dendritic nanostructured copper oxide material at both the anode and cathode	Cathodic electrolyte; 0.1 M CO₂-saturated CaHCO₃ (pH = 6.8); anodic electrolyte: 0.2 M Cs₂CO₃ (pH = 11)	Without external bias and AM 1.5 G (1 sun) illumination (100 mW cm⁻²)	A stable current of 6.0 ± 0.2 mA and a potential of 2.8 ± 0.02 V	-	C₂H₄, C₂H₆, CO, HCOOH, H₂	-	C₂H₄ and C₂H₆ as the main products with an average faradaic yield (FY) of 40.5% (34% for C₂H₄ and 6.5% for C₂H₆), together with CO and HCOOH in 4.8% and 6.4% FY, respectively Concomitant H₂ production was 42.2% FY	[118]
GaInP/GaAs/Ge/CO₂FeO₄ driven by a triple junction GaInP₂/GaAs/Ge photovoltaic cell	0.1 M CO₂-saturated KHCO₃	AM 1.5 G illumination (100 mW cm⁻²) at −1.2 V_RHE	13.1 mA cm⁻²	-	CO	Solar-to-CO efficiency of 15.5%	[119]	
W-containing formate dehydrogenase from Clostridium ljungdahlii (ClFDH) on the 3D TiN nanoshell	CO₂ saturated phosphate buffer	Xe lamp (photon energy flux of 100 mW cm⁻², 420 nm cut-off filter)	Bias-free	Formate 0.78 μmol h⁻¹	-	Faradaic efficiency 77.3%	[120]	
EAP goals. In the field of photoelectrocatalysis especially, due to the complex structure of photocatalysts/cocatalysts, high-energy radiation corrosion and other factors, the stability of photoelectrocatalytic \(\text{CO}_2 \text{RR} \) is a great challenge to overcome.

(iii) The reaction process of (photo)electrocatalytic \(\text{CO}_2 \text{RR} \) requires a deeper understanding. Light absorption, charge separation and interfacial reaction in the process of (photo)electrocatalytic \(\text{CO}_2 \text{RR} \) not only have differences on the time scale, but are also often localized at the atomic or molecular level on the spatial scale. Therefore, for observing the (photo)electrocatalytic \(\text{CO}_2 \text{RR} \) process in order to provide a reference for future theoretical analysis, transient, microregion and in-situ analysis methods should be utilized and developed.

With regard to the selection of the most suitable EAP technology, photocatalysis, photoelectrocatalysis and photovoltaic electrocatalysis have their individual advantages and disadvantages. EAP based on photocatalysis without an external complex device system is portable and easy to work, and therefore more adaptable to the complex extraterrestrial environment. However, its low reaction efficiency leads to low concentration of the products, with difficulties in separation and enrichment for \(\text{CO}_2 \text{RR} \) and OER products. Photoelectrocatalysis with two-electrode systems has the obvious advantage of efficient product separation. However, the very low stability of semiconductor photoelectrocatalysts under high-energy radiation makes the photoelectrocatalytic process difficult to adopt currently. In comparison, the photovoltaic coupled with electrocatalysis process can realize energy storage by separating photoelectric conversion and energy-to-chemical conversion, thus being more suitable for application in the extraterrestrial environment in recent times. With the further development of semiconductor/cocatalyst materials, we believe that composite technology with two or more systems will be the trend of EAP applications. More specific and detailed information for each system can be seen in Table 1.

CONCLUSION AND PERSPECTIVE

In summary, the development of EAP materials is highly prospected. Looking at the future of space science and technology, how to achieve extraterrestrial survival and affordable and sustainable deep space exploration through EAP technology under extreme conditions, has become the common pursuit of humanity. On this frontier, there are still a series of concomitant scientific problems, such as low concentrations of \(\text{CO}_2/\text{H}_2\text{O} \), different solar radiation intensities, ultrahigh gravity or microgravity, extreme temperatures, intense cosmic radiation, extreme pressure and ultimate vacuums. The problems that urgently need to be resolved are listed below:

(i) \(\text{CO}_2/\text{H}_2\text{O} \) photo-conversion materials with normal working ability at low atmospheric density are the linchpin for EAP. At present, research into \(\text{CO}_2/\text{H}_2\text{O} \) photo-conversion mainly focuses on atmospheric conditions with a high concentration of, or pure, \(\text{CO}_2 \). However, the concentration of \(\text{CO}_2 \) or \(\text{H}_2\text{O} \) in the extraterrestrial environment or the enclosed space inside the capsule is usually at an ultralow level or unstable state. Therefore, how to realize the enrichment and further utilization of \(\text{CO}_2 \) is one of the critical problems. Development of artificial photosynthetic materials in low \(\text{CO}_2 \) concentration environments or \(\text{CO}_2 \) collection technology may be considered as the solutions.

(ii) It is necessary to develop a photocatalytic material system suitable for withstanding different solar radiation intensities, strong cosmic radiation and Frenkel defects under extraterrestrial conditions. Due to the difference in solar radiation intensity and spectral distribution between outer space and the Earth’s surface, photocatalytic materials developed for the solar spectral conditions on Earth may not work effectively and stably in the outer space environment. Therefore, it is necessary to develop new artificial photosynthetic materials suitable for cosmic radiation with a long working life, high stability, wide spectrum and responsiveness to AM0 spectra, to meet the requirements of long-term space exploration tasks. Ceramics or composites can be selected to achieve thermostability and thermal shock resistance. Metal oxides such as PbO, BaO and Bi\(_2\)O\(_3\) with a high atomic number, or rare metallic elements, can be added to the material for radiation resistance [121].

(iii) Research into the effects of extreme temperature, ultra-vacuum and microgravity on the photochemical reaction, as well as multi-photon processes in the photochemical reaction, will give clues as to how to plan the EAP process. The increase of interfacial resistance (ohmic drop) caused by bubbles produced in the photocatalytic process will severely affect the surface coverage of electrodes. The mass transfer
process under microgravity will become more difficult, greatly reducing the energy efficiency of the system. Supersaturated gas layers formed by gas reactants and products gathered near the three-phase interfaces of electrodes have a very important negative influence on the reaction process, material transport and reaction efficiency. Therefore, it is necessary to deeply explore the diffusion and transfer process of reaction media in electrolyte under microgravity, as well as the key mechanisms of bubble nucleation, growth, interface separation, gas-liquid two-phase flow and gas-liquid separation and their influence on photocatalytic processes. In addition, the state-of-the-art technologies of ECLSS architecture as a subsystem typical of a crewed space vehicle, which provides all the necessary conditions, can be used for the control of steady temperature and pressure inside the space capsule to support the artificial photosynthetic material, devices or systems.

(iv) The photo/thermo/electric coupling catalysis mechanism needs to be deeply understood and realized by utilizing the full spectrum of solar energy, 99.9% of which is in the infrared region (43%), visible region (50%) and ultraviolet region (7%). The band gap of existing photocatalytic materials is extensively large, and most of them absorb the ultraviolet or near-ultraviolet spectrum. As a result, the utilization rate of solar energy is not high and the overall efficiency of photocatalysis is relatively low. It is necessary to explore the mechanism of solar photo/thermo/electric coupling catalysis, develop a composite photocatalytic system with multi-spectral absorption and full-spectral utilization, and improve the reaction rate of photosynthesis and photochemical conversion efficiency.

(v) Recently, many new artificial photosynthesis processes by microorganism/semiconductor composite systems have been developed. The core problem of the artificial photosynthesis system based on microorganisms is the interaction between microorganisms and inorganic materials, the key of which lies in the transfer of energy and charge at the interface. The interface interaction not only affects the expression of microorganisms, but also has an important impact on the properties of materials. Therefore, it is very important to improve the solar energy to chemical energy conversion efficiency of artificial photosynthesis systems based on microorganisms by increasing the interface charge transfer rate.

(vi) Advanced in-situ and atomic-scale analysis, and computational simulation techniques will play an important role in EAP. Through advanced in-situ micro-analysis and computational simulation, scientists can fully understand the complex reaction process and intermediate products in CO$_2$/H$_2$O photoconversion, and thus help overcome the obstacles in energy efficiency, reaction selectivity and total conversion rate.

How to convert CO$_2$ from human respiration into O$_2$? How to use CO$_2$/H$_2$O on Mars or in other extraterrestrial atmospheric environments to generate O$_2$ and fuel? These are the core missions of human beings with regard to achieving extraterrestrial survival and sustainable exploration. In recent years, driven by sustainable development on Earth, the technology of artificial photosynthesis has rapidly developed. In space exploration activities, it will become a core ability to in-situ transform CO$_2$/H$_2$O at room temperature into the basic material needed for human beings to survive outside the Earth. Chinese scientists put forward the concept of EAP, took the lead in developing artificial photosynthesis devices and space experiments that will greatly promote the development of this field, and will guide research in the fields of materials, physics, chemistry, energy, aerospace science and technology.

FUNDING

This work was supported primarily by the National Key Research and Development Program of China (2020YFA0710302 and 2018YFE0208500), the Major Research Plan of the National Natural Science Foundation of China (91963206), the National Natural Science Foundation of China (52072169, 51627810, 51972164 and 51972167), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2019ZT08L101), the Natural Science Foundation of Jiangsu Province (SBK2018022120), the open fund of Wuhan National Laboratory for Optoelectronics (2018WNL.04K020), the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX19_0043), the Fundamental Research Funds for the Central Universities (14380180), the Civil Aerospace Technology Research Project (B0108), and the Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory.

Conflict of interest statement. None declared.

REFERENCES

1. Tu W, Zhou Y and Zou Z. Photocatalytic conversion of CO$_2$ into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. *Adv Mater* 2014; 26: 4607–26.
2. Zou ZG, Ye JH and Sayama K et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001; 414: 625–7.
3. Kim TW and Choi KS. Nanoporous BiVO₄ photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014; 343: 390–4.
4. Inoue T, Fujishima A and Konishi S et al. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979; 277: 637–8.
5. Han H and Li C. Photocatalysis in solar fuel production. Natl Sci Rev 2015; 2: 145–7.
6. Junaedi C, Hawley K and Walsh D et al. Compact and lightweight sabatier reactor for carbon dioxide reduction. In: 41st International Conference on Environmental Systems (ICES), Portland, OR, USA, 17–21 July 2011.
7. Chevalier F, Feng L and Bösch H et al. On the impact of transport model errors for the estimation of CO₂ surface fluxes from GOSAT observations. Geophys Res Lett 2010; 37: L21803.
8. Sakurai M, Oguchi M and Yoshihara S et al. Water electrolysis cell that are free liquid-gas separation system for microgravity conditions in order to establish circulated life support system. J Jpn Soc Microgravity Appl 2008; 25: 653–6.
9. Sakurai M, Terao T and Sone Y. Development of water electrolysis system for oxygen production aimed at energy saving and high safety. In: 45th International Conference on Environmental Systems (ICES), Bellevue, USA, 12–16 July 2015.
10. Matsushima H, Fukunaka Y and Kuribayashi K. Water electrolysis under microgravity: part II. Description of gas bubble evolution phenomena. Electrochim Acta 2006; 51: 4190–8.
11. Matsushima H, Nishida T and Konishi Y et al. Water electrolysis under microgravity: part 1. Experimental technique. Electrochim Acta 2003; 48: 4119–25.
12. Kiuchi D, Matsushima H and Fukunaka Y et al. Ohmic resistance measurement of bubble froth layer in water electrolysis under microgravity. J Electrochem Soc 2008; 153: 138–43.
13. Hammarstrom L and Hammes-Schiffer S. Artificial photosynthesis and solar fuels. Acc Chem Res 2009; 42: 1859–60.
14. Feng DQ, Zhang C and Jiang WJ et al. Design and trial of extraterrestrial artificial photosynthesis device. Chinese Space Sci Technol 2020; 40: 13–22.
15. Yan SC, Duyang SX and Gao J et al. A room-temperature reactive-template route to mesoporous ZnGa₂O₄ with improved photocatalytic activity in reduction of CO₂. Angew Chem Int Ed 2010; 49: 6400–4.
16. Liu C, Colon BC and Ziesack M et al. Water splitting-biosynthetic system with CO₂ reduction efficiencies exceeding photosynthesis. Science 2016; 352: 1210–3.
17. Sakimoto KK, Wong AB and Yang PD. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 2016; 351: 74–7.
18. Su YD, Cestellos-Blanco S and Kim JM et al. Close-packed nanowire-bacteria hybrids for efficient solar-driven CO₂ fixation. Joule 2020; 4: 800–11.
19. Tong W, Forster M and Dionigi F et al. Electrolysis of low-grade and saline surface water. Nat Energy 2020; 5: 367–77.
20. Sampatsky DJ, Grosk K and Edean M et al. Development and integration of the flight sabatier assembly on the ISS. In: 41st International Conference on Environmental Systems (ICES), Portland, OR, USA, 17–21 July 2011.
21. Sakurai M, Oguchi M and Hoshino T et al. Water electrolysis cells designed for microgravity conditions in order to establish a revitalization system. In: 35th International Conference on Environmental Systems (ICES), Rome, Italy, 11–14 July 2005.
22. Kaplan D, Baird R and Flynn H et al. The 2001 Mars in-situ-propellant-production precursor (MIP) flight demonstration-project objectives and qualification test results. In: Space 2000 Conference and Exposition, Long Beach, USA, 19–21 September 2000.
23. Interbartolo MA, Sanders GB and Orzychyn L et al. Prototype development of an integrated Mars atmosphere and soil-processing system. J Aerosp Eng 2013; 26: 57–66.
24. Hinterman E and Hoffman JA. Simulating oxygen production on Mars for the Mars oxygen in-situ resource utilization experiment. Acta Astronaut 2020; 170: 678–85.
25. NASA Space Science Data Coordinated Archive. Ice on the Moon: A Summary. https://nssdc.gsfc.nasa.gov/planetary/icemoon.html (10 December 2012, date last accessed).
26. Edmondson K, Joslin D and Fetzer C et al. Simulation of the Mars surface solar spectra for optimized performance of triple junction solar cells. In: 19th Space Photovoltaic Research and Technology Conference, Brookpark, OH, USA, 20–22 September 2005.
27. Rapp D. Use of Extraterrestrial Resources for Human Space Missions to Moon or Mars. New York: Springer, 2018.
28. Niles PB, Catling DC and Berger G et al. Geochemistry of carbonates on Mars: implications for climate history and nature of aqueous environments. Space Sci Rev 2013; 174: 301–28.
29. Boyton WV, Ming DW and Kounaves SP et al. Evidence for calcium carbonate at the Mars Phoenix landing site. Science 2009; 325: 61–4.
30. Fu J, Jiang K and Gao X et al. Product selectivity of photocatalytic CO₂ reduction reactions. Mater Today 2020; 32: 222–43.
31. Wolff CM, Frischmann PD and Schulze M et al. All-in-one visible-light-driven water splitting by combining nanoparticle and molecular co-catalysts on CuS nanorods. Nat Energy 2018; 3: 862–9.
32. Wang J, Lin S and Tian N et al. Nanostructured metal sulfides: classification, modification strategy, and solar-driven CO₂ reduction application. Adv Funct Mater 2021; 31: 2008008.
33. Wang Z, Inoue Y and Hisatomi T et al. Overall water splitting by Ta₂N₆ nanorod single crystals grown on the edges of KTaO₃ particles. Nat Catal 2018; 1: 756–63.
34. Zhang W, Mohamed AR and Ong WJ. Z-scheme photocatalytic systems for carbon dioxide reduction: where are we now? Angew Chem Int Ed 2020; 59: 22894–915.
35. Takata T, Jiang JZ and Sakata Y et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020; 581: 411–4.
36. Chen LF, Wang Z and Kang P. Efficient photocatalytic CO₂ reduction by cobalt complexes at silicon electrode. Chin J Catal 2018; 39: 413–20.
37. Zhong Z, Li R and Lin W et al. One-dimensional nanocrystals of cobalt perylene diimide polymer with in-situ generated Fe₃O₄ for efficient photocatalytic water oxidation. Appl Catal B 2020; 260: 118135.
38. Melo MA, Centurion HA and Lucas TTA et al. Pseudobrookite Fe₁₋ₓTiₓO₃ nanoparticles loaded with earth-abundant nanosized NiO and Co₃O₄ cocatalysts for photocatalytic O₂ evolution via solar water splitting. ACS Appl Nano Mater 2020; 3: 9303–17.
39. Ahmed MG, Zhang MY and Tay YF et al. Surface modification of hematite photoanodes with CeO₂ cocatalyst for improved photoelectrochemical water oxidation kinetics. ChemSusChem 2020; 13: 5489–96.
40. Zhang GW, Wang B and Li L et al. Tailoring the electronic structure by constructing the heterointerface of RuO₂-NiO for overall water splitting with ultralow overpotential and extra-long lifetime. J Mater Chem A 2020; 8: 18945–54.
51. Ran J, Jaroniec M and Qiao S Z. Cocatalysts in semiconductor-based photocatalysis. *Appl Catal B* 2020; 267: 118644.

52. Yan S C, Wang J J and Gao H L *et al.* Calcite zincronate photocatalyst and silver cocatalyst for reduction of carbon dioxide with water. *Appl Catal B* 2020; 277: 118192.

53. Li Y, Li B H and Zhang D N *et al.* Crystalline carbon nitride supported copper single atoms for photocatalytic CO$_2$ reduction with nearly 100% CO selectivity. *ACS Nano* 2020; 14: 10552–61.

54. Yang J, Wang Z Y and Jiang J C *et al.* In-situ polymerization induced atomically dispersed manganese sited as cocatalyst for CO$_2$ photoreduction into synthesis gas. *Nano Energy* 2020; 76: 105059.

55. Li K, Lin Y Z and Wang K *et al.* Rational design of cocatalyst system for improving the photocatalytic hydrogen evolution activity of graphite carbon nitride. *Appl Catal B* 2020; 268: 118402.

56. Jian G Y, Hao X Q and Jin Z L *et al.* Amorphous tungsten phosphosulphide-modified CdS nanorods as a highly efficient electron-cocatalyst for enhanced photocatalytic hydrogen production. *Phys Chem Chem Phys* 2020; 22: 1382–43.

57. Lee I, Kim W J and Lee D C. Design of metallic cocatalysts in heterostructured nanoparticles for photocatalytic CO$_2$-to-hydrocarbon conversion. *J Phys D: Appl Phys* 2020; 53: 123001.

58. Li P, Liu L and An W W *et al.* Ultrathin porous g–C$_2$N$_4$ nanosheets modified with AuCu alloy nanoparticles and C–C coupling photothermal catalytic reduction of CO$_2$ to ethanol. *Appl Catal B* 2020; 266: 118618.

59. Ran J, Jaroniec M and Giao S Z. Cocatalysts in semiconductor-based photocatalytic CO$_2$ reduction: achievements, challenges, and opportunities. *Adv Mater* 2018; 30: 1704649.

60. Yan S C, Wang J J and Gao H L *et al.* Zinc gallogermanate solid solution: a novel photocatalyst for efficiently converting CO$_2$ into solar fuels. *Adv Funct Mater* 2013; 23: 1839–45.

61. Maeda K, Teramura K and Lu D L *et al.* Photocatalyst releasing hydrogen from water. *Nature* 2006; 440: 295.

62. Li P, Zhou Y and Zhao Z *et al.* Hexahedron prism-anchored octahedral Co$_2$O$_4$: crystal facet-based homojunction promoting efficient solar fuel synthesis. *J Am Chem Soc* 2015; 137: 9547–50.

63. Zhou P, Wang X and Yan S C *et al.* Solid solution photocatalyst with spontaneous polarization exhibiting low recombination toward efficient CO$_2$ photoreduction. *ChemSusChem* 2016; 9: 2064–8.

64. Li Z, Zhang L and Liu Y *et al.* Surface polarity-induced spatial charge separation boosts photocatalytic overall water splitting on GaN nanorod arrays. *Angew Chem Int Ed* 2020; 59: 935–42.

65. Wang Y, Liu X and Han X *et al.* Unique hole-accepting carbon-dots promoting selective carbon dioxide reduction nearly 100% to methanol by pure water. *Nat Commun* 2020; 11: 2531.

66. Wang Q, Warnan J and Rodríguez-Jiménez S *et al.* Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water. *Nat Energy* 2020; 5: 703–10.
78. Zhang N, Long R and Gao C et al. Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Sci China Mater 2018; 61: 771–805.
79. Maier C, Specht M and Bilger G. Hydrogen evolution on platinum-coated p-silicon photocathodes. Int J Hydrogen Energy 1996; 21: 859–64.
80. Feng J, Gong M and Kenney MJ et al. Nickel-coated silicon photocathode for water splitting in alkaline electrolytes. Nano Res 2015; 8: 1577–83.
81. Benck JD, Lee SC and Fong KD et al. Designing active and stable silicon photocathodes for solar hydrogen production using molybdenum sulfide nanomaterials. Adv Energy Mater 2014; 4: 1400739.
82. Zhong X, Wang G and Papandrea B et al. Reduced graphene oxide/silicon nanowire heterostructures with enhanced photoactivity and superior photo-electrochemical stability. Nano Res 2015; 8: 2850–8.
83. Kargar A, Cheung JS and Liu C-H et al. NiOx–Fe2O3-coated p-Si photocathodes for enhanced solar water splitting in neutral pH water. Nanoscale 2015; 7: 4900–5.
84. Choi MJ, Jung J-Y and Park M-J et al. Highly active oxide photocathode for photoelectrochemical water splitting. Energy Environ Sci 2016; 9: 6506–10.
85. Stelzner T, Pietsch M and Andr ¨a G et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat Mater 2011; 10: 434–8.
86. Chen CJ, Yang KC and Liu CW et al. Silicon microwire arrays decorated with amorphous heterometal-doped molybdenum sulfide for water photoelectrolysis. Nano Energy 2017; 32: 422–32.
87. Zhang H, Ding Q and He D et al. A p-Si/NiCoSx core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production. Energy Environ Sci 2016; 9: 3113–9.
88. Morales-Guió CG, Thorwarth K and Niessen B et al. Solar hydrogen production by amorphous silicon photocathodes coated with a magnetron sputter deposited MoO3 catalyst. J Am Chem Soc 2015; 137: 7035–8.
89. Gurudayal, Beeman JW and Bullock J et al. Si photocathode with Ag-supported dendritic Cu catalyst for CO2 reduction. Energy Environ Sci 2019; 12: 1068–77.
90. Lin CY, Lai YH and Mersch D et al. Cu2O/Co3O4 nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting. Chem Sci 2012; 3: 3482–7.
91. Yang C, Tran PD and Boix PP et al. Engineering a Cu2O/NiO/Cu2O/MoS2 hybrid photocathode for H2 generation in water. NanoEnergy 2014; 6: 6506–10.
92. Yang Y, Xu D and Wu Q et al. Cu2O/CuO bilayered composite as a high-efficiency photocathode for photoelectrochemical hydrogen evolution reaction. Sci Rep 2016; 6: 35158.
93. Stepk A, Cao T and Koetmann A et al. Antibiotic discovery with synthetic fermentation: library assembly, phenotypic screening, and mechanism of action of beta-peptides targeting penicillin-binding proteins. ACS Chem Biol 2019; 14: 1030–40.
94. Morales-Guió CG, Tilley SD and Vrubel H et al. Hydrogen evolution from a copper(II) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat Commun 2015; 5: 3059.
95. Parachinco A, Laporte V and Sivula K et al. Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 2011; 10: 456–61.
96. Pan L, Liu Y and Yao L et al. Cu2O photocathodes with band-tail states assisted hole transport for standalone solar water splitting. Nat Commun 2020; 11: 318.
116. Wang Y, Liu J and Wang Y et al. Efficient solar-driven electrocatalytic CO$_2$ reduction in a redox-medium-assisted system. *Nat Commun* 2018; *9*: 5003.

117. Nath NCD, Choi SY and Jeong HW et al. Stand-alone photoconversion of carbon dioxide on copper oxide wire arrays powered by tungsten trioxide/dye-sensitized solar cell dual absorbers. *Nano Energy* 2016; *25*: 51–9.

118. Huan TN, Corte DAD and Lamaison S et al. Low-cost high-efficiency system for solar-driven conversion of CO$_2$ to hydrocarbons. *Proc Natl Acad Sci USA* 2019; *116*: 9735–40.

119. Mi Y, Qiu Y and Liu Y et al. Cobalt–iron oxide nanosheets for high-efficiency solar-driven CO$_2$-H$_2$O coupling electrocatalytic reactions. *Adv Funct Mater* 2020; *30*: 2003438.

120. Kuk SK, Ham Y and Gopinath K et al. Continuous 3D titanium nitride nanoshell structure for solar-driven unbiased biocatalytic CO$_2$ reduction. *Adv Energy Mater* 2019; *9*: 1900029.

121. Shen Z, Xia Y and Yang Y et al. Protection of materials and structures from space radiation environments on spacecraft. *Aerosp Mater Technol* 2020; *50*: 1–7.