Regulation of Amyloid β-Protein Precursor by Phosphorylation and Protein Interactions

Published, JBC Papers in Press, July 23, 2008, DOI 10.1074/jbc.R800003200

Toshiharu Suzuki1 and Tadashi Nakaya
From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan

Amyloid β-protein precursor (APP), a type I membrane protein, is cleaved by primary α- or β-secretase and secondary γ-secretase. Cleavage of APP by β- and γ-secretases generates amyloid β-protein, the main constituent of the cerebrovascular amyloid that accompanied Alzheimer disease. The generation and aggregation of amyloid β-protein in the brain are believed to be a primary cause of Alzheimer disease pathogenesis, and indeed, early onset Alzheimer disease is genetically linked to APP and also to presenilins 1 and 2, which are components of γ-secretase. Proteolytic cleavage of APP has been investigated as a candidate target for Alzheimer disease therapy, but the mechanisms regulating APP metabolism are still unclear. APP is a type I membrane protein with a short cytoplasmic region consisting of 47 amino acids. Recent research has elucidated the significance of the cytoplasmic region in the metabolism, trafficking, and physiological function of APP. The structure and function of the APP cytoplasmic domain can be modified by phosphorylation and through interaction with cytoplasmic proteins. This minireview summarizes a large body of recent information on the regulation of APP by phosphorylation and protein interaction, along with some of the physiological functions of APP. Recent findings regarding the regulation of APP processing contribute to the development of novel drugs and/or therapies for Alzheimer disease.

Characterization of APP and Its Metabolites in Brain and Amino Acid Sequence of the Cytoplasmic Domain of APP

APP has three major isoforms of 695, 751, and 770 amino acids, all of which are derived from alternative splicing of a single gene product (reviewed in Ref. 1). In neurons, APP695 is the predominantly expressed form and is subject to N- and O-glycosylation within its extracellular/luminal domain. The other two isoforms, APP751 and APP770, are expressed mainly in non-neuronal cells, especially in glial cells in the brain. The N-glycosylated form of APP is localized to the endoplasmic reticulum and early Golgi; thus, “core” N-glycosylated APP is designated imAPP and is not subject to cleavage by secretases (2). N-Glycosylated APP is further trafficked within the Golgi and subjected to O-glycosylation, after which it is designated mAPP. Both “complex” N- and O-glycosylated mAPPs then reach the trans-Golgi network and enter into the late secretory pathway. During the late secretory pathway, APP is subjected to consecutive cleavage events in the primary extracellular/luminal juxtamembrane region by α-secretase (ADAM10 and ADAM17) or β-secretase (BACE1) and in the secondary transmembrane region by γ-secretase (reviewed in Ref. 3). As a consequence of this APP trafficking, neurons express two mAPP695 species with different types of O-glycosylation and one imAPP695 species (Fig. 1, upper middle panel). In contrast, glial cells express two mAPP isoforms (mAPP770 and mAPP751) and two imAPP isoforms (imAPP770 and imAPP751) (Fig. 1, upper right panel) (4, 5). Therefore, any metabolic analysis of APP must carefully distinguish mAPP from imAPP. The complement of APP isoforms detected in whole brain does not differ significantly from the neuronal complement (Fig. 1, upper left panel), indicating that the majority of APP expressed in the brain is neuronal and also that brain Aβ is secreted largely from neurons, but not from non-neuronal cells.

Aβ is generated from mAPP during the late secretory pathway, especially in the endosomal-lysosomal pathway, in which active β-secretases are highly concentrated (reviewed in Ref. 3). Therefore, it appears that Aβ generation is closely related to APP trafficking in the cell, especially in neurons, because terminally differentiated neurons have developed well-organized systems for protein secretion and vesicular transport. The short cytoplasmic region of APP contains a phosphorylation site and functional motifs that play an important role in the regulation of its metabolism, trafficking, and function.

Phosphorylation of APP

APP is a phosphoprotein carrying several phosphorylatable amino acid residues in its cytoplasmic (6, 7) and luminal (8, 9) regions. The physiological phosphorylation state of APP has been investigated in brain, post-mitotic differentiating neuronal cells, and dividing cells (4, 10–13). The phosphorylated forms of APP present in each tissue are mAPP in neurons and imAPP in dividing cells. In either case, Thr668 (numbering for the APP695 isomor) in the cytoplasmic region of APP is the phosphorylatable amino acid (Fig. 2). CDK5 (cyclin-dependent kinase-5) and GSK-3β (glycogen synthase kinase-3β) are thought to phosphorylate mAPP at Thr668 in neurons, whereas CDK1/CDC2 kinase phosphorylates imAPP at Thr668 in dividing cells (4, 10, 11, 14, 15). When cells are subjected to a stress stimulus, JNK also phosphorylates APP at Thr668 (13, 16, 17). Thus, Thr668 is the sole or at least the major phosphorylation site within the APP molecule, although other amino acids in the APP cytoplasmic domain might be phosphorylated in patho-

© 2008 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A.
logical brain states (18) or in cells overexpressing tyrosine-protein kinases such as Ab1 and Fyn, which phosphorylate Tyr682 (19, 20).

In mouse and human brains, two mAPP695 species with different types of O-glycosylation have been found to be phosphorylated by Western blot analysis with Thr668 phosphorylation state-specific antibodies, whereas imAPP695 is not phosphorylated (Fig. 1), indicating that a fixed population of mAPP is constitutively phosphorylated in neurons (4).

Three CTFs of APP (C99, C89, and C83; numbers indicate amino acid number) are generated from mAPP in brain. Both C99 and C89 are products of cleavage by β-secretase (and thus are designated CTFβ and CTFβ'), whereas C83 is a product of cleavage by α-secretase (CTFα) (21). Some APP CTFs are phosphorylated at Thr668 and detected as phosphopeptides pC99, pC89, and pC83 (22). Using Western blot analysis, typical APP CTFα/β species in brain appear as five CTF bands: pC99, pC99, pC89, a mixture of C89 plus pC83, and C83 (5). Treatment of CTFs with phosphatase is effective to identify respective species (Fig. 1) (5, 22). These APP CTFα/β are further cleaved by γ-secretase at the intramembranous γ/ε-site to generate the AICD fragment (CTFγ/ε; C50 and C51). The ε-cleavage sites are located several amino acids toward the C termini of γ-cleavage sites (22–25). It is thought that sequential γ-secretase cleavages initiate at the ε-site and move progressively toward the γ-site at every three residues (26). The majority of the CTFγ/ε in the brain remains tethered within the membrane fraction by an unknown mechanism, whereas some is translocated into the nucleus. A fixed amount of CTFγ/ε in the brain is also phosphorylated at Thr668 to form pCTFγ/ε (pAICD) (Fig. 1) (27).

Thr668 is located within the motif 667VTPEER672, which forms a type I β-turn and N-terminal helix-capping box structure to stabilize its C-terminal helix structure (28, 29). Phosphorylation of Thr668 induces significant conformational change in the cytoplasmic region of APP, affecting its interaction with FE65, a neuron-specific adaptor protein (30). APP is phosphorylated not only in mAPP but also in APP CTFs (Fig. 1) (5, 27). Thus, one function of Thr668 phosphorylation is to alter the overall cytoplasmic structure of mAPP, APP CTFα/β, and APP CTFγ/ε (AICD) and to regulate the interaction with FE65 as a molecular switch (27, 30, 31). The physiological role of FE65 is not yet well understood, but FE65 may function within the nucleus to influence gene expression and/or DNA repair in cooperation with or regulation by CTFγ/ε (32, 33). A proportion of FE65 is tethered at the membrane by association with transmembrane proteins such as APP (31, 34). Phosphorylation of APP liberates FE65 into the cytoplasm from the membrane, allowing FE65 to translocate into the nucleus.
controls Aβ levels in brain. Reliable and quantitative analyses for APP phosphorylation state in the brains of AD patients, if possible using biopsy samples, would facilitate our understanding of the degree to which APP phosphorylation is related to the pathogenic state of APP in AD.

Cytoplasmic Regulators of APP

In addition to the 667VTPEER672 motif, which contains the phosphorylatable amino acid Thr668, the cytoplasmic region of APP contains a 681GYENPTY687 motif containing an NPxP element, a typical internalization signal for membrane proteins (40, 41). In the case of APP, Tyr667 within the 681GYENPTY687 motif is not phosphorylated in brain. However, several cytoplasmic adaptor proteins bind to this motif through a PI or PTB domain (reviewed in Ref. 42). The binding of these proteins to APP does not require tyrosine phosphorylation within the 681GYENPTY687 motif. The phosphorylation of APP at Thr668 located 14 amino acids toward the N-terminal end from the 681GYENPTY687 motif, affects the conformation of the 681GYENPTY687 motif (30). This conformational change suppresses the interaction of FE65 with the 681GYENPTY687 motif (30). However, other APP-binding partners such as X11s and JIPs, which also interact with the 681GYENPTY687 motif, are largely unaffected by Thr668 phosphorylation (Fig. 2) (17, 43–45). Both X11s and JIPs play an important role in the regulation of the metabolism and trafficking of APP.

Proteins of the X11 family, such as X11 (X11α), X11-like (X11L/ X11β), and X11-like 2 (X11L2/ X11γ), stabilize intracellular APP metabolism and suppress Aβ production (43, 44, 46, 47). Expression of X11 and X11L is brain-specific; X11 is expressed largely in inhibitory neurons, and X11L is expressed predominantly in excitatory pyramidal neurons, whereas X11L2 is expressed ubiquitously (48). Thus, the interaction of APP with both X11 and X11L has significant effects upon the regulation of APP metabolism. Indeed, transgenic Tg2576 mice carrying the APP Swedish mutation and also overexpressing X11 or X11L exhibit decreased levels of cerebral Aβ and a reduction of Aβ plaques in the cortex and hippocampus (49, 50). In addition to APP, X11 and X11L are known to associate with several other membrane and cytoplasmic proteins (reviewed in Ref. 51).

Interactions of X11 and X11L with other proteins can result in the formation of functional complexes, which can regulate APP metabolism and/or function. Alcadein (Alc), a type I membrane protein, associates with the cytoplasmic domain of APP via X11 or X11L, and the metabolism of both APP and Alc is stable upon formation of a tripartite complex composed of APP, X11, and Alc (52, 53). In contrast, X11L-deficient mice exhibit enhanced amyloidogenic cleavage of APP in the hippocampus, indicating the importance of X11L function in APP metabolism in brain and a possible role for X11L in AD pathogenesis (54). X11L and X11L2 are shuttled between the cytoplasm and nucleus, and both proteins are detected in the nucleus of mouse brain tissues (55), suggesting that the function of X11L and X11L2 in the nucleus might be similar to that of FE65.

The binding of X11L to APP elevates the JNK-mediated phosphorylation of APP (45). This may be mediated by the association of X11L with the 681GYENPTY687 motif, causing increased exposure of threonyl residues within the 667VTPEER672 motif. Therefore, the two 667VTPEER672 and 681GYENPTY687 motifs might have closely related roles in phosphorylation and protein interaction in the context of APP regulation (Fig. 2).

JIPs are JNK-interacting proteins containing Src homology 3 and PI/PTB domains. Mammalian JIPs are composed of JIP1a, JIP1b, and JIP2 (56), all of which display scaffold functions in the JNK signaling pathway. JIP1a and JIP2 bind weakly to APP,
phosphorylation may be discovered. Finally, there is no obvious evidence that the phosphorylation state of APP at Thr668 plays a significant role in regulating the amyloidogenic processing of APP directly.

REFERENCES
1. Selkoe, D. J. (2001) Physiol. Rev. 81, 741–766
2. Tomita, S., Kirino, Y., and Suzuki, T. (1998) J. Biol. Chem. 273, 6277–6284
3. Small, S. A., and Gandy, S. (2006) Neuron 52, 15–31
4. Iijima, K., Ando, K., Takeda, S., Satoh, Y., Seki, T., Itohara, S., Greengard, P., Kirino, Y., Nairn, A. C., and Suzuki, T. (2000) J. Neurochem. 75, 1085–1091
5. Sano, Y., Nakaya, T., Pedrini, S., Takeda, S., Iijima-Ando, K., Iijima, K., Mathews, P. M., Itohara, S., Gandy, S., and Suzuki, T. (2006) PLoS ONE 1, e51
6. Gandy, S., Czernik, A. J., and Greengard, P. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 6218–6221
7. Oltersdorf, T., Ward, P. I., Henriksen, T., Beattie, E. C., Neve, R., Lieberburg, I., and Fritz, L. C. (1990) J. Biol. Chem. 265, 4492–4497
8. Knops, J., Gandy, S., Greengard, P., Lieberburg, I., and Sinha, S. (1993) Biochem. Biophys. Res. Commun. 197, 380–385
9. Hung, A. Y., and Selkoe, D. J. (1994) EMBO J. 13, 534–542
10. Suzuki, T., Oishi, M., Marshak, D. R., Czernik, A. J., Nairn, A. C., and Greengard, P. (1994) EMBO J. 13, 1114–1122
11. Oishi, M., Nairn, A. C., Czernik, A. J., Lim, G. S., Isohara, T., Gandy, S., Greengard, P., and Suzuki, T. (1997) Mol. Med. 3, 111–123
12. Ando, K., Oishi, M., Takeda, S., Iijima, K., Isohara, T., Nairn, A. C., Kirino, Y., Greengard, P., and Suzuki, T. (1999) J. Neurosci. 19, 4421–4427
13. Kimberly, W. T., Zheng, J. B., Town, T., Flavel, R. A., and Selkoe, D. J. (2005) J. Neurosci. 25, 5533–5543
14. Aplin, A. E., Gibb, G. M., Jacobsen, J. S., Gallo, J. M., and Anderton, B. H. (1996) J. Neurochem. 67, 699–707
15. Liu, F., Su, Y., Li, B., Zhou, Y., Ryder, J., Gonzalez-DeWhitt, P., May, P. C., and Ni, B. (2003) FEBS Lett. 547, 193–196
16. Standen, C. L., Brownlee, J., Gregson, A. J., Kesavapany, S., Lau, K. F., McLoughlin, D. M., and Miller, C. C. (2001) J. Neurochem. 76, 316–320
17. Taru, H., Iijima, K., Hase, M., Kirino, Y., Yagi, Y., and Suzuki, T. (2002) J. Biol. Chem. 277, 20070–20078
18. Lee, M. S., Kao, S. C., Lemere, C. A., Xia, W., Tseng, H. C., Zhou, Y., Neve, R., Ahlijianian, M. K., and Tsai, L.-H. (2003) J. Cell Biol. 163, 83–95
19. Zambrano, N., Bruni, P., Minopoli, G., Mosca, R., Molino, D., Russo, C., Schettin, G., Sudol, M., and Russo, T. (2001) J. Biol. Chem. 276, 19787–19792
20. Hoe, H.-S., Minami, S. S., Makarova, A., Lee, J., Hyman, B. T., Matsuoka, Y., and Rebeck, G. W. (2008) J. Biol. Chem. 283, 6288–6299
21. Liu, K., Doms, R. W., and Lee, V. M. (2002) Biochemistry 41, 3128–3136
22. Buxbaum, J. D., Thinakaran, G., Kossils, V., O’Callahan, J., Slunt, H. H., Price, D. L., and Sidossis, S. S. (1998) J. Neurosci. 18, 9629–9637
23. Weidemann, A., Eggert, S., Reinhard, F. B., Vogel, M., Paliga, K., Baier, G., Masters, C. L., Beyreuther, K., and Evin, G. (2002) Biochemistry 41, 2825–2835
24. Sastre, M., Steiner, H., Fuchs, K., Capelli, A., Multhaup, G., Condron, M. M., Teplow, D. B., and Haass, C. (2001) EMBO Rep. 2, 835–841
25. Saito, T., Dohmae, N., Qi, Y., Katuda, N., Misonou, H., Mitsumori, R., Maruyama, H., Koo, E. H., Haas, C. A., Takio, K., Morishima-Kawashima, M., Ishiura, S., and Iyara, H. (2003) J. Biol. Chem. 278, 24294–24301
26. Qi-Takahara, Y., Morishima-Kawashima, M., Tanimura, Y., Dolios, G., Hirotani, N., Horikoshi, Y., Kametani, F., Maeda, M., Saido, T. C., Wang, R., and Iyara, Y. (2005) J. Neurosci. 25, 436–445
27. Nakaya, T., and Suzuki, T. (2006) Genes Cells 11, 633–645
28. Ramelot, T. A., Gentile, L. N., and Nicholson, L. K. (2000) Biochemistry 39, 2714–2725
29. Ramelot, T. A., and Nicholson, L. K. (2001) J. Biol. Chem. 276, 6545–6550
30. Ando, K., Iijima, K., Elliott, J. I., Kirino, Y., and Suzuki, T. (2001) J. Biol. Chem. 276, 40353–40361
31. Minopoli, G., de Candia, P., Bonetti, A., Faraonio, R., Zambrano, N., and Russo, T. (2001) J. Biol. Chem. 276, 6545–6550
32. Cao, X., and Sudhof, T. C. (2001) Science 293, 115–120
33. Minopoli, G., Stante, M., Napolitano, F., Telese, F., Aloia, L., Del Felice, M., Di Lauro, R., Pacelli, R., Brunetti, A., Zambrano, N., and Russo, T. (2007) J. Biol. Chem. 282, 831–835
34. Cao, X., and Sudhof, T. C. (2004) J. Biol. Chem. 279, 24601–24611
35. Nakaya, T., Kawai, T., and Suzuki, T. (2008) J. Biol. Chem. 283, 19119–19131
36. Vingted eux, V., Hamdane, M., Gompel, M., Begard, S., Drobeq, H.,
Ghestem, A., Grosjean, M.-E., Kostanjevecki, V., Grogné, P., Vannemelchen, E., Buee, L., Delacourte, A., and Sergeant, N. (2005) Neurobiol. Dis. 2, 625–637
40. Chen, W. J., Goldstein, J. L., and Brown, M. S. (1990) J. Biol. Chem. 265, 3116–3123
41. Norstedt, C., Caporaso, G. L., Thyberg, J., Gandy, E., and Greengard, P. (1993) J. Biol. Chem. 268, 608–612
42. Suzuki, T., Araki, Y., Yamamoto, T., and Nakaya, T. (2006) J. Biochem. (Tokyo) 139, 949–955
43. Borg, J.-P., Yang, Y., De Taddeo-Borg, M., Malgolis, B., and Turner, R. S. (1998) J. Biol. Chem. 273, 14761–14766
44. Tomita, S., Ozaki, T., Taru, H., Oguchi, S., Takeda, S., Yagi, Y., Sakiyama, S., Kirino, Y., and Suzuki, T. (1999) J. Biol. Chem. 274, 2243–2254
45. Taru, H., and Suzuki, T. (2004) J. Biol. Chem. 279, 21628–21636
46. McLoughlin, D. M., Irving, N. G., Brownlees, J., Brion, J. P., Leroy, K., and Miller, C. C. (1999) Eur. J. Neurosci. 11, 1988–1994
47. Tanahashi, H., and Tabira, T. (1999) Biochem. Biophys. Res. Commun. 255, 663–667
48. Ho, A., Morishita, W., Hammer, R. E., Malenka, R. C., and Sudhof, T. C. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 1409–1414
49. Lee, J. H., Lau, K. F., Perkinton, M. S., Standen, C. L., Rogeli, B., Falinska, A., McLoughlin, D. M., and Miller, C. C. (2004) J. Biol. Chem. 279, 49099–49104
50. Lee, J. H., Lau, K. F., Perkinton, M. S., Standen, C. L., Sheh, S. J., Mercerken, L., Cooper, J. D., McLoughlin, D. M., and Miller, C. C. (2003). J. Biol. Chem. 278, 47025–47029
51. Miller, C. C., McLoughlin, D. M., Lau, K. F., Tennant, M. E., and Togeli, B. (2006) Trends Neurosci. 29, 280–285
52. Araki, Y., Tomita, S., Yamaguchi, H., Miyagi, N., Sumioka, A., Kirino, Y., and Suzuki, T. (2003) J. Biol. Chem. 278, 49448–49458
53. Araki, Y., Miyagi, N., Kato, N., Yoshida, T., Wada, S., Nishimura, M., Komano, H., Yamamoto, T., De Strooper, B., Yamamoto, K., and Suzuki, T. (2004) J. Biol. Chem. 279, 24343–24354
54. Sano, Y., Syuzo-Takabatake, A., Nakaya, T., Saito, Y., Tomita, S., Itohara, S., and Suzuki, T. (2006) J. Biol. Chem. 281, 37853–37860
55. Sumioka, A., Saito, Y., Sakuma, M., Araki, Y., Yamamoto, T., and Suzuki, T. (2008) Exp. Cell Res. 314, 1155–1162
56. Dickens, M., Rogers, J. S., Cavannagh, J., Raitano, A., Xia, Z., Halpern, J. R., Greenberg, M. E., Sawyers, C. L., and Davis, R. J. (1997) Science 277, 693–696
57. Taru, H., Kirino, Y., and Suzuki, T. (2002) J. Biol. Chem. 277, 27567–27574
58. Verhey, K. J., Meyer, D., Deehan, R., Blenis, J., Schnapp, B., Rapport, T., and Margolis, B. (2001) J. Cell Biol. 152, 959–970
59. Araki, Y., Kawano, T., Taru, H., Saito, Y., Wada, S., Miyamoto, N., Kobayashi, H., Ishikawa, H. O., Ohsumi, Y., Yamamoto, T., Matsuno, K., Kinjo, M., and Suzuki, T. (2007) EMBO J. 26, 1475–1486
60. Inomataa, H., Nakamura, Y., Hayakawa, A., Takata, H., Suzuki, T., Miyazawa, K., and Kitamura, N. (2003) J. Biol. Chem. 278, 22946–22955
61. Muresan, Z., and Muresan, V. (2005) J. Neurosci. 25, 3741–3751
62. Stokin, G. B., Lillo, C., Falzone, T. L., Brusch, R. G., Rockenstein, E., Mount, S. L., Raman, R., Davies, P., Masliah, E., Williams, D. S., and Goldstein, L. S. B. (2005) Science 307, 1282–1288