THE CONTINUING SLOW DECLINE OF AG PEGASI

SCOTT J. KENYON
Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138; skenyon@cfa.harvard.edu

DANIEL PROGA
Laboratory for High Energy Astrophysics, Code 662, NASA Goddard Space Flight Center, Greenbelt, MD 20771; proga@sobolev.gsfc.nasa.gov

AND

CHARLES D. KEYES
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218; keyes@stsci.edu

Received 2000 December 21; accepted 2001 March 26

ABSTRACT

We analyze optical and ultraviolet observations of the symbiotic binary AG Pegasi acquired during 1992–1997. The bolometric luminosity of the hot component declined by a factor of 2–3 from 1980–1985 to 1997. Since 1992, the effective temperature of the hot component may have declined by 10%–20%, but this decline is comparable to the measurement errors. Optical observations of H\beta and He i emission show a clear illumination effect, where high-energy photons from the hot component ionize the outer atmosphere of the red giant. Simple illumination models generally account for the magnitude of the optical and ultraviolet emission-line fluxes. High-ionization emission lines—[Ne v], [Mg v], and [Fe vII]—suggest mechanical heating in the outer portions of the photoionized red giant wind. This emission probably originates in a low-density region ~30–300 AU from the central binary.

Key words: novae, cataclysmic variables — stars: evolution — stars: individual (AG Pegasi)

1. INTRODUCTION

The symbiotic binary AG Peg began a slow nova eruption in the mid-1850s, rising from 9th magnitude to 6th magnitude in about one decade or less (Lundmark 1921). Although spectra at optical maximum are not available, later spectra revealed a peculiar Be-type spectrum with strong P Cygni–like emission lines and additional absorption from He i and TiO (Fleming 1907; Payne-Gaposchkin 1957; Merrill 1916, 1929a, 1929b, 1959). Since the 1920s, the hot component of the binary has slowly evolved from a Be-type star to a Wolf-Rayet star (WN6 spectrum) to a hot “subdwarf” with an effective temperature exceeding 10^4 K (Gallagher et al. 1979; Kenyon et al. 1993, and references therein). The red giant companion to the eruptive star has an M3 spectral type, does not fill its tidal lobe, and loses mass in a low-velocity wind (Kenyon & Fernández-Castro 1987; Kenyon et al. 1991; Mürset & Schmid 1999).

The eruption of the hot component in AG Peg may be the slowest classical nova outburst ever recorded (Gallagher et al. 1979; Kenyon & Truran 1983; Nussbaumer 1992; Kenyon et al. 1993). Historical data—together with ultraviolet (UV) spectra acquired with the International Ultraviolet Explorer (IUE) and other UV satellite missions—indicate that the hot component maintained a roughly constant bolometric luminosity from about 1850 to about 1980. The last few pairs of IUE spectra suggest that the luminosity of the hot component began to decline as the intensity of the broad emission lines weakened considerably (Kenyon et al. 1993; Vogel & Nussbaumer 1994; Nussbaumer, Schmutz, & Vogel 1995). At about the same time, the source of strong emission lines may have shifted from an H II region surrounding the hot component to the illuminated hemisphere of the red giant (e.g., Proga, Kenyon, & Raymond 1998). Radio, X-ray, and other satellite data show features indicative of colliding winds, where material ejected from the hot component interacts with the slow-moving wind of the red giant (Kenny et al. 1991; Mürset et al. 1995; Nussbaumer et al. 1995; Contini 1997). If these analyses are correct, the hot component may be slowly transforming from a slow classical nova at maximum into a nova remnant.

To elucidate further the slow decline of the hot component in AG Peg, we analyzed new optical spectra and UV spectra acquired with the Hubble Space Telescope (HST). The optical spectra demonstrate that most of the low-ionization emission lines, such as H i and He i, arise in the photoionized wind of the red giant. Some high-ionization emission from He ii is also produced in this region. Although more spectra are required to follow the evolution of the hot component in detail, the UV data provide further evidence for a decline in the bolometric luminosity of the hot component. The forbidden and intercombination emission lines indicate that an ionized nebula with a wide range of densities, ~10^2 to 10^10 cm^-3, surrounds the binary system. Lines of low-ionization potential, e.g., [O iii], suggest a low-density, photoionized nebula with an electron temperature, T_e ~ 10^4 K; lines of higher ionization potential, e.g., [Ne v] and [Fe vII], are formed at higher electron density, n_e ~ 10^7 cm^-3, in gas mechanically heated to electron temperatures of at least 10^5 K.

We describe the HST and new optical data in § 2, analyze these data in § 3, and conclude with a brief summary in § 4.

2. OBSERVATIONS

We acquired high-quality ultraviolet and optical spectra of AG Peg with the Faint Object Spectrograph (FOS) on
board the *Hubble Space Telescope*. These data were taken as part of a calibration program to evaluate the absolute FOS wavelength scale and to measure the throughput for the small apertures and the amount of internal "out-of-band" grating scatter recorded in FOS exposures. The spectra cover 1150–4800 Å at a resolution of R = 1300 over the entire spectrum. To attain the best photometric accuracy, the most precise target acquisition and centering procedure was used. The centering accuracy should be roughly 0.025 for all of the data, with a 1 σ uncertainty in the *HST* guiding and orbit-to-orbit recentering of 0.007. Most of the observations were taken in RAPID mode, which yields several individual readouts of the spectrum. We averaged all readouts to produce a final spectrum for each wavelength region. We acquired observations with both FOS detectors, FOS/BL and FOS/RD, through several apertures, $4^\prime \times 4^\prime$, $1^\prime \times 1^\prime$, 0.5 round, and 0.3 round. Observations with the largest apertures should have the best photometric accuracy. In practice, line fluxes derived from different apertures agreed to 5% or better; we thus averaged the line and continuum fluxes described below.

We reduced the data using the standard CALFOS pipeline routines in STSDAS using the STScI-recommended reference files and calibration procedures appropriate to each epoch of observation. Thus, the FOS calibration closeout reference file suite, as described in the *HST Data Handbook* (Keyes 1997), was used for all data.

P. Berlind, D. Koranyi, and T. Lappin acquired low-resolution optical spectra of AG Peg with the FAST spectrograph mounted at the Fred L. Whipple Observatory 1.5 m telescope on Mount Hopkins, Arizona. FAST is a high-throughput slit spectrograph equipped with a thinned, back-side illuminated 320 × 2704 Loral CCD (Fabricant et al. 1998). These spectra cover 3800–7500 Å at a resolution of ~ 3 Å with a 3" slit. We calibrated the FAST spectra on the Hayes & Latham (1975) flux scale using observations of standards from Barnes & Hayes (1982). Repeat observations of several standards and a comparison of photoelectric B and V magnitudes with those derived from the spectra indicate the calibration has an uncertainty of ± 0.10 mag.

We acquired additional optical spectrophotometry of AG Peg on 1992 November 5–11 with the white spectrograph and GoldCam CCD Dewar (WhiteCam) at the Kitt Peak National Observatory (KPNO) 0.9 m telescope. Grating 26 and a 7.5 slit resulted in a resolution of ~ 10 Å on a Ford 3K × 1K CCD. Roughly 200–300 pixels at each end of the CCD are vignette with WhiteCam, which reduced our free spectral range to 3500–6200 Å at 1.25 Å pixel$^{-1}$. This interval includes most of the strong emission lines detected on the FAST spectra but misses Hz and several He I lines. We reduced these data to the Hayes & Latham (1975) flux scale using observations of standard stars from Barnes & Hayes (1982) and estimate our flux calibration has an uncertainty of ± 0.05 mag.

Figure 1 shows a composite FOS spectrum. The data shown in this figure and all subsequent figures have not been corrected for interstellar extinction. The spectrum has a Rayleigh-Jeans tail from a hot continuum for $\lambda < 2000$ Å, a flat nebular continuum for $\lambda \approx 2000–3646$ Å, and a red continuum from the cool giant for $\lambda \gtrsim 4000$ Å. Strong emission lines from a wide range of ionization states are superposed on these continua. FAST spectra show a red continuum, strong TiO absorption bands and more emission lines at longer wavelengths (see Fig. 1 of Kenyon et al. 1993). The overall appearance of the spectrum has changed slightly since the early 1990s: the Rayleigh-Jeans tail and the nebular continuum are more prominent on the FOS spectra than on earlier *IUE* spectra.

To quantify the spectral changes of AG Peg, we measured continuum magnitudes and emission-line fluxes on all of the spectra. We define narrowband continuum magnitudes in 30 Å bandpasses as

$$m_i = -2.5 \log F_i - 21.1,$$

where F_i is the average flux in the bandpass. Tables 1 and 2 list continuum magnitudes and 1 σ errors derived from the FOS and the FAST/WhiteCam observations. We measured emission line fluxes using interactive Gaussian fitting routines. Simple Gaussians produce good fits for all emission lines except Hz, which has a broad wing superposed on a

Table 1

UV Continuum Magnitudes from HST Data

JD	Phase	m_{1300}	m_{1500}	m_{1700}	m_{2225}	m_{2700}	m_{3275}
2,449,304 ...	8.07	7.95 ± 0.02	8.01 ± 0.02	8.36 ± 0.02	8.63 ± 0.03	8.89 ± 0.03	8.71 ± 0.02
2,449,516 ...	8.33	8.37 ± 0.03	8.38 ± 0.03	8.77 ± 0.03	9.05 ± 0.04	9.75 ± 0.04	9.65 ± 0.04
2,450,293 ...	9.27	8.35 ± 0.03	8.36 ± 0.03	8.80 ± 0.03	9.09 ± 0.04	9.77 ± 0.04	9.67 ± 0.04
2,450,429 ...	9.44	8.44 ± 0.03	8.44 ± 0.03	8.87 ± 0.03	9.15 ± 0.04	9.99 ± 0.04	9.95 ± 0.04

Note.—Phases are computed according to eq. (2).
narrow Gaussian feature. We used two Gaussians to fit this feature. Tables 3–5 list emission-line fluxes for the FOS and the FAST/WhiteCam observations. The typical error for FAST measurements in Table 5 is 5% for strong lines and 10% for weak lines, based on repeat FAST observations acquired on the same night and a comparison of contemporaneous FAST and FOS observations. The FOS line fluxes in Tables 3–4 have accuracies of 5% or better.

TABLE 3

HST Ultraviolet Emission-Line Fluxes

Line ID	JD 49,304 $\phi = 8.07$	JD 49,516 $\phi = 8.33$	JD 50,293 $\phi = 9.27$	JD 50,429 $\phi = 9.44$
N v $\lambda 1240$	20.51	6.96	6.60	3.48
O i $\lambda 1305$	1.23	0.18	0.27	0.09
O iv $\lambda 1371$	0.66	0.42	0.23	0.20
Si iv $\lambda 1394$	1.49	0.29	0.35	0.13
Si iv, O iv $\lambda 1403$	5.11	3.52	2.09	1.53
S iv $\lambda 1417$	0.10	0.04	0.03	0.02
N iv $\lambda 1486$	5.20	1.78	1.80	1.48
C iv $\lambda 1550$	25.26	6.65	7.01	3.23
[Ne v] $\lambda 1574$	0.12	0.10	0.11	0.12
N v $\lambda 1619$	0.55	0.29	0.22	0.34
He ii $\lambda 1660$	15.83	9.03	9.12	8.49
O iii $\lambda 1664$	4.56	1.71	1.63	1.34
N iv $\lambda 1719$	1.29	0.71	0.61	0.41
N iii $\lambda 1750$	1.29	0.61	0.60	0.45
Si iii $\lambda 1892$	1.37	0.42	0.39	0.26
C iii $\lambda 1908$	1.20	0.68	0.65	0.53
[Fe v] $\lambda 2015$	0.05	0.03	0.04	0.03
He ii $\lambda 2306$	0.29	0.14	0.13	0.12
C ii $\lambda 2325$	0.16	0.04	0.05	0.04
He ii $\lambda 2385$	0.34	0.17	0.16	0.14
He ii $\lambda 2511$	0.45	0.49	0.57	0.51
He ii $\lambda 2733$	0.50	0.55	0.58	0.56
[Mg v] $\lambda 2783$	0.37	0.30	0.32	0.33
Mg ii $\lambda 2793$	0.74	0.19	0.19	0.11
Mg ii $\lambda 2802$	0.39	0.11	0.10	0.05
O iii $\lambda 2832$	0.18	0.09	0.10	0.09
[Mg v] $\lambda 2930$	0.23	0.08	0.10	0.09
[Ne v] $\lambda 2976$	0.12	0.05	0.05	0.04
N iii $\lambda 2983$	0.15	0.05	0.04	0.03
O iii $\lambda 3023$	0.12	0.06	0.08	0.05
O iii $\lambda 3047$	0.31	0.14	0.16	0.12
O iii $\lambda 3116$	0.27	0.14	0.10	0.07
O iii $\lambda 3133$	1.87	0.98	0.92	0.71
He ii $\lambda 3203$	1.51	0.87	0.92	0.87

Note: Dates are JD $-2,400,000$. Fluxes are in units of 10^{-11} ergs cm$^{-2}$ s$^{-1}$. Phases are computed according to eq. (2).
The behavior of the lines and continuum in AG Peg continue to support the phenomenological model developed by Belyakina (1968a, 1968b, 1970), Boyarchuk (1966, 1967), and Gallagher et al. (1979). The overall decrease in the optical and UV line and continuum fluxes results from the continuing slow nova-like decline of the hot component. Kenyon et al. (1993) showed that the bolometric luminosity of the hot component has remained roughly constant for nearly a century (see also Gallagher et al. 1979). As the photospheric radius contracted, the effective temperature of the hot component increased. The optical and UV continua faded. Fluxes from low-ionization lines also declined; fluxes from the highest-ionization lines increased. Because high-energy photons from the hot component ionize the outer atmosphere of the red giant, the system displays photometric maxima in phase with the orbit. The nebular continuum and recombination lines of H I and He I are strongest when we see the heated hemisphere and weakest when we see the opposite, unheated hemisphere. Prior to 1990, the nebular continuum decline with time. Except for small rises at integral photometric phases, the 1350 Å and the 3275 Å continua decline with time.

Figure 2 shows the continuing slow decline of the far ultraviolet (far-UV) and near-ultraviolet (near-UV) continuum. We adopt the Fernie (1985) photometric ephemeris to time maximum light in the system, when the hot component lies in front of the red giant:

\[
\text{Max}(V) = JD 2,442,710.1 + 816.5E. \tag{2}
\]

Data in Figure 2 and subsequent figures for photometric phases less than 7 are from Keyes (1981) and Kenyon et al. (1993). In addition to the 2.0–2.5 mag decline at 1300–3300 Å, there are obvious maxima in the near-UV continuum at \(\phi = 2, 7, \) and 8. These maxima have amplitudes of 0.5–1.0 mag and are weak or absent in the far-UV.

Figures 3 and 4 show that several emission lines vary in step with the near-UV continuum. The N IV] \(\lambda 1486 \) line rises by a factor of two at \(\phi = 2 \) and has a weaker rise at \(\phi = 8 \). He II \(\lambda 1640 \) displays the opposite behavior, with a weak rise at \(\phi = 2 \) followed by a stronger variation at \(\phi = 8 \). Both lines were saturated on IUE spectra at \(\phi = 7 \). The optical lines shown in Figure 4 have more obvious variations correlated with photometric phase. The H I and He I lines are roughly a factor of 2 more intense at \(\phi = 8 \) and \(\phi = 9 \) than at photometric minima. Higher ionization optical lines, such as He II \(\lambda 4686 \), have a weak maximum. Both sets of lines are a factor of 2–3 weaker at \(\phi = 8–9 \) compared with data at \(\phi = 2–4 \).

3. ANALYSIS

The behavior of the lines and continuum in AG Peg continue to support the phenomenological model developed by Belyakina (1968a, 1968b, 1970), Boyarchuk (1966, 1967), and Gallagher et al. (1979). The overall decrease in the optical and UV line and continuum fluxes results from the continuing slow nova-like decline of the hot component. Kenyon et al. (1993) showed that the bolometric luminosity of the hot component has remained roughly constant for nearly a century (see also Gallagher et al. 1979). As the photospheric radius contracted, the effective temperature of the hot component increased. The optical and UV continua faded. Fluxes from low-ionization lines also declined; fluxes from the highest-ionization lines increased. Because high-energy photons from the hot component ionize the outer atmosphere of the red giant, the system displays photometric maxima in phase with the orbit. The nebular continuum and recombination lines of H I and He I are strongest when we see the heated hemisphere and weakest when we see the opposite, unheated hemisphere. Prior to 1990, the nebular continuum decline with time. Except for small rises at integral photometric phases, the 1350 Å and the 3275 Å continua decline with time.

TABLE 4

Line ID	JD 49,304	JD 49,516	JD 50,293	JD 50,429
[O iii] 3329	0.05	0.04	0.03	0.03
[O iii] 3341	0.34	0.15	0.09	0.11
[Ne v] 33346	0.10	0.20	0.11	0.22
[Ne v] 3426	0.72	0.64	0.21	0.66
[O iii] 3444	0.64	0.23	0.18	0.18
[Fe v] 3586	0.12	0.07	0.08	0.07
H I 3750	0.25	0.06	0.05	0.04
[Fe v] 3758	0.35	0.24	0.21	0.18
H I 3771	0.27	0.08	0.06	0.06
H I 3798	0.28	0.05	0.04	0.04
H I 3835	0.35	0.21	0.19	0.21
H I 3888	0.38	0.20	0.16	0.14
[Fe v] 3905	0.05	0.04	0.04	0.03
H i 3968	0.05	0.02	0.02	0.02
H i 3970	0.14	0.04	0.02	0.02
H i 4009	0.06	0.04	0.03	0.02
H i 4026	0.15	0.08	0.07	0.06
H i 4101	1.14	0.44	0.31	0.35
He i 4121	0.05	0.02	0.02	0.02
He i 4144	0.07	0.03	0.03	0.02
H i 4340	2.02	0.63	0.47	0.52
He i 4388	0.17	0.09	0.05	0.06
He i 4471	0.15	0.07	0.05	0.05
He II 4541	0.16	0.11	0.07	0.08
He II 4686	2.17	1.55	1.35	1.29
He i 4713	0.13	0.06	0.06	0.05

Note: Dates are JD – 2,400,000. Fluxes are in units of \(10^{-11} \) ergs cm\(^{-2}\) s\(^{-1}\). Phases are computed according to eq. (1).
Line ID	JD 8,755	JD 9,542	JD 9,609	JD 9,694	JD 9,726	JD 9,844	JD 9,892	JD 9,926	JD 10,019	JD 10,078	JD 10,108	JD 10,229	JD 10,255	JD 10,284
[Fe VII] j3586...	0.13
[Fe VII] j3759...	0.34	0.20	0.16	0.17	0.15	0.33	0.38	0.47	0.51	0.48	0.52	0.78	0.53	0.19
H I j3835	0.21	0.17	0.15	0.33	0.38	0.47	0.51	0.48	0.52	0.78	0.53	0.19	0.20	0.19
H I j3888	0.22	0.20	0.23	0.34	0.40	0.77	0.81	0.98	0.89	0.85	0.55	0.21	0.21	0.21
H I j3970	0.05	0.03	0.06	0.06	0.05	0.05	0.09	0.11	0.07	0.11	0.09	0.07	0.05	0.03
He I j4009	0.13	0.07	0.09	0.08	0.12	0.14	0.15	0.15	0.12	0.10	0.08	0.07	0.08	0.06
He II j4026	0.66	0.45	0.40	0.43	0.46	0.51	0.61	0.72	0.90	1.34	1.17	0.83	0.40	0.36
H I j4340	0.82	0.71	0.74	0.78	0.73	0.91	1.07	1.15	1.41	2.18	1.88	1.69	1.38	0.55
He I j4388	0.11	0.09	0.07	0.08	0.11	0.11	0.13	0.22	0.12	0.22	0.10	0.06	0.05	0.05
He I j4471	0.14	0.11	0.08	0.08	0.08	0.07	0.07	0.06	0.05	0.05	0.07	0.06	0.07	0.08
He II j4686	2.14	1.76	1.72	1.81	1.70	1.51	1.91	1.67	1.77	2.13	2.03	2.23	2.44	1.30
He I j4713	0.15	0.07	0.06	0.05	0.06	0.07	0.07	0.08	0.05	0.05	0.06	0.06	0.05	0.06
H I j4861	2.28	1.70	1.39	1.45	1.72	2.25	2.69	3.16	3.94	5.25	5.01	4.69	3.21	1.42
He I j4922	0.17	0.15	0.11	0.12	0.18	0.20	0.33	0.37	0.47	0.51	0.29	0.25	0.20	0.15
He I j5015	0.21	0.16	0.13	0.14	0.23	0.32	0.30	0.38	0.33	0.34	0.31	0.19	0.09	0.09
[Fe VII] j5721...	0.36	0.37	0.47	0.48	0.45	0.56	0.64	0.85	1.02	1.21	1.01	1.15	0.81	0.31
H I j6087	0.21	0.20	0.15	0.16	0.15	0.13	0.17	0.14	0.11	0.19	0.18	0.17	0.20	0.20
H I j6563	10.20	8.53	9.17	9.02	11.3	13.00	12.90	15.70	21.50	21.80	22.50	15.40	8.70	9.25
He II j6678	0.67	0.64	0.67	0.65	0.68	0.84	0.99	1.20	1.82	1.62	1.84	0.93	0.55	0.60
He I j7065	0.51	0.44	0.47	0.43	0.41	0.49	0.51	0.61	1.13	1.20	1.09	0.49	0.44	0.37
He I j7282	0.21	0.22	0.23	0.22	0.23	0.28	0.31	0.32	0.37	0.39	0.41	0.25	0.19	0.16

Note: Dates are JD − 2,440,000.
higher ionization lines formed closer to the hot component; the fluxes of these lines thus were only weakly modulated by the orbit.

The high-quality FOS and FAST data yield new tests of this picture. Based on an analysis of IUE data, Kenyon et al. (1993) suggested that AG Peg might be evolving toward lower luminosities along a white dwarf cooling curve. They proposed that the transition from a Wolf-Rayet spectrum with broad emission lines to a nebular spectrum with narrow emission lines marked the start of this evolution. At the same time, the source of the strong high-ionization emission lines moved from an H II region surrounding the hot component to the illuminated hemisphere of the red giant. Contini (1997) and several other studies suggest that some emission features form in an interaction region between the two stars, where the low-velocity wind of the red giant collides with the higher velocity wind from the hot component.

To test these proposals in more detail, we first consider the evolution of the hot component in § 3.1. We then analyze emission lines produced in the illuminated red giant atmosphere (§ 3.2) and in shocked gas in the outer portions of the red giant wind (§ 3.3). We conclude this section with some comments on colliding winds in the AG Peg binary (§ 3.4).

3.1. Evolution of the Hot Component

To understand the evolution of the hot component, we follow previous studies and derive the time variation of luminosity L_h and effective temperature T_h. Because the complete energy distribution of the hot component cannot be observed directly, we need accurate proxies for L_h and T_h. Three techniques have been proposed in previous studies. Kenyon & Webbink (1984) adopted a blackbody model for the hot component and predicted UV color indices for sources surrounded by a photoionized nebula; Kenyon (1985) generalized this approach and derived L_h and T_h from fits to the UV spectral energy distribution (see also Kenyon et al. 1993). Fernández-Castro et al. (1988) developed a UV Zanstra temperature to derive T_h from measurements of the He II $\lambda 1640$ emission line and the continuum flux at 1400 Å. Mürset et al. (1991; see also Keyes 1981; Mürset & Nussbaumer 1994) estimated L_h and T_h from He II $\lambda 1640$ and the UV spectral energy distribution. Following Iijima (1981), Kenyon (1986) inferred L_h and T_h from the optical H I and He II lines, which are less sensitive to uncertainties in the interstellar extinction to the source.

Figure 5 shows results for the time variation of L_h and T_h in AG Peg from these three techniques. We used data from Keyes (1981), Kenyon et al. (1993), and this paper, corrected for $E_{B-V} = 0.10$ using the Mathis (1990) extinction curve for an adopted distance of 800 pc. We estimate L_h and T_h from (1) the UV continuum fits of Kenyon (1985), (2) the UV Zanstra temperature of Fernández-Castro et al. (1988), and (3) the optical Zanstra temperature of Kenyon (1986). The formal uncertainties are ± 0.1 in $\log L_h$ and ± 0.05 in $\log T_h$. The uncertain distance adds a systematic uncertainty to the luminosity but not to the effective temperature. In the top panel, the luminosity derived from the UV Zanstra temperature monotonically decreases from $\phi = 1$ to $\phi = 9$ (filled circles). The luminosity derived from the UV continuum is roughly constant with time and may decline some at $\phi \geq 7$–8 (plus signs). As expected, the luminosity derived from optical data follows the illumination effect (open circles): L_h is largest at photometric maxima and smallest at photometric minima. The average luminosity is comparable to the L_h derived from UV data and shows the same overall trend: a roughly constant L_h for $\phi = 1$–7 followed by a decline.

The time evolution of T_h is shown in the bottom panel of Figure 5. The T_h derived from the optical emission lines is always 25% to 50% larger than the T_h estimated from the UV lines. This difference is easily understood. Because the H I line fluxes change by factors of 2–3 with orbital phase, the flux ratio $F(\lambda 4861)/F(\lambda 4866)$ is largest at photometric minima and smallest at photometric maxima. The T_h derived from this ratio thus varies with phase, as shown by the open circles in Figure 5. The L_h derived from the optical line fluxes is anticorrelated with T_h. For much of the evolution, the T_h derived from the UV continuum is 25% to 50% smaller than the T_h estimated from the UV lines (plus signs). AG Peg resembled a Wolf-Rayet star during this period; its UV energy distribution was similar to the energy distribution of the luminous Wolf-Rayet star HD 50896. Assuming that the Hillier (1987) models for HD 50896 also fit AG Peg, Kenyon et al. (1993) derived a luminosity for the hot component in AG Peg from the observed Voyager spectrum. This estimate is $\sim 50\%$ larger than derived from UV continuum fits. To produce a larger luminosity from the same continuum flux, the T_h implied by this analysis must also be $\sim 50\%$ larger. Broad Wolf-Rayet emission lines began to disappear from low-resolution UV spectra of AG Peg at $\phi \geq 6$. The UV continuum data then begin to yield a T_h similar to that derived from the UV Zanstra temperature.

This analysis suggests that the results for L_h and T_h from the UV Zanstra temperature are more reliable indicators of the evolution of the hot component in AG Peg. We conclude that L_h was roughly constant during $\phi = 1$–3, when T_h rose by $\sim 20\%$. As T_h remained roughly constant at $\phi = 3$–
8, L_h declined by a factor of 2–3. The HST data suggest that T_h may have declined by $\sim 10\%$ to 20\% during $\phi = 8.0–9.5$, but this decline is comparable to the size of the uncertainties in the temperature estimates.

3.2. Illumination of the Red Giant

Since the 1930s, the ionization of the red giant atmosphere by the hot component has been an important feature of the AG Peg binary (see Merrill 1959; Belyakina 1970, and references therein). Merrilies’ observations demonstrated that fluxes of low-ionization emission lines vary in phase with the orbital motion of the red giant. Belyakina (1970) interpreted these variations as the reflection effect, where the hot component heats the outer red giant atmosphere. She showed that the observed amplitude and the relative phasing of the variation were consistent with model predictions. The observed variations in He II and other high-ionization lines, however, were not consistent with the reflection effect. The radial velocity variations and the broad widths—about 1000 km s$^{-1}$—of these features were more consistent with line formation in the outer atmosphere of the hot component.

Evolution of the emission-line fluxes in 1985–1990 suggests a modest change in this picture. The broad WN-type emission lines from He II, N V, and other species faded to reveal narrow emission features with profiles similar to those of low-ionization lines (Kenyon et al. 1993). Although the phase coverage of the UV data is poor after about 1990, our optical data show a weak modulation of He II with orbital phase (Fig. 4). This behavior suggests that at least some He II emission is produced in the ionized red giant atmosphere.

To investigate the illumination of the red giant atmosphere in more detail, Proga et al. (1996, 1998) developed a non-LTE photoionization model. They showed that the spectrum of an illuminated red giant atmosphere is too weak to explain the strong line spectrum observed in AG Peg and other symbiotic stars. A normal red giant does not intercept enough radiation from the hot component to produce prominent emission lines (Proga et al. 1996). However, a red giant wind can intercept enough high-energy photons from the hot component if the optical depth in the wind is large (Proga et al. 1998). Winds with mass-loss rates of $10^{-7} M_\odot \text{yr}^{-1}$ can generally account for the observations of symbiotics such as AG Peg. These models reproduce observed fluxes of metallic lines if the O/N and C/N abundances are similar to those of field red giants. Predicted fluxes for H and He lines fall below the observations.

Proga et al. (1998) summarized the simplifications and weaknesses of their calculations. They derived an accurate solution for illumination along the line of centers connecting the two stars and assumed that the total flux from the illuminated atmosphere F_{tot} is

$$ F_{\text{tot}} = r_{cs} F_{1D}, $$

(3)

where F_{1D} is the flux derived from a unit area along the line of centers and r_{cs} is the geometric cross section of the red giant wind. This simplification ignores any wind from the hot component, the complex geometry of the red giant wind, and any interaction region between the two winds. Proga et al. noted that this simplified approach was a first step in understanding complex systems such as AG Peg and many other symbiotics. They suggested several ways to reconcile the model with the observations and commented that better observations of weaker UV and optical lines might allow a choice to be made between different models.

As a further guide to understanding illumination in AG Peg, we compare our new data with the theoretical results of Proga et al. (1996, 1998). Figure 6 indicates line fluxes for wind models and observations of AG Peg (the lines are Hβ, He I $\lambda 5876$, O III $\lambda 1664$, C IV $\lambda 1550$, He II $\lambda 4686$, and N V $\lambda 1240$). We use the data from this paper (filled triangles, $\phi \approx 9$) and from Kenyon et al. (1993), open circles, $\phi \approx 7–8$. The solid and dashed lines indicate model predictions of Proga et al. (1996, 1998). We adopt $T_h = 10^4 K$ and $L_h = 620 L_\odot$ for the hot component, and we use red giant parameters for Vogel’s velocity law (Vogel 1991) with red giant mass-loss rates of $M = 10^{-8}$ and $10^{-6} M_\odot \text{yr}^{-1}$ (see also Fig. 12 in Proga et al. 1998). Solid curves show predictions for $r_{cs} = R_2^2$; dashed curves show predictions for $r_{cs} = 3^2 R_2^2$. The line fluxes increase with M for each set of models. Because the emission measure of the ionized wind increases linearly with M, the predicted line fluxes vary approximately linearly with M at high M. At lower mass-loss rates, the line fluxes are limited by the amount of material in the static red giant atmosphere. This material provides a lower limit to the emission measure—for a particular hot component luminosity—the line fluxes vary little for $M \lessgtr 10^{-8} M_\odot \text{yr}^{-1}$.

Figure 6 shows that the fluxes of all emission lines decreased by a factor of 1.5–3 during $\phi = 7–9.5$. This decline in the fluxes coincides with the appearance of a modest orbital modulation of the He II line fluxes (see Figs. 3–4). We interpret this behavior as a change in the location of high-ionization emission lines. Prior to $\phi = 7$, nearly all of the high-ionization lines formed in a compact H I region surrounding the hot component (see Fig. 11 of Kenyon et al. 1993). These lines were broad and diffuse, as expected for material in an outflowing wind from a hot, luminous white dwarf star. After $\phi = 7$, the lines are narrow; the illuminated red giant atmosphere produces some of the high-ionization line emission. Thus, the illumination model can better account for observations at $\phi \approx 9$ than at $\phi \approx 7$. Observed fluxes at $\phi = 7$ lie above optimistic model predictions (dashed lines); data for $\phi = 9$ generally lie below these predictions. Although the illumination models are still crude, it is encouraging that as the wind from the hot component weakens and AG Peg becomes a less complex
system, the models can better explain the observations with reasonable input parameters.

3.3. High-Ionization Forbidden Lines

The ionized nebula surrounding AG Peg consists of several distinct components. The 1–20 cm VLA data are consistent with an unresolved central source embedded in several extended shells of gas (Kenyon et al. 1991; Seaquist & Taylor 1992; Taylor & Seaguest 1984). The unresolved radio source is probably optically thick, free-free emission from the photoionized wind of the red giant (Kenyon et al. 1991; Seaquist & Taylor 1992; Kenyon et al. 1993). Kenyon et al. (1993) suggested that most of the [O III] and [Ne III] emission observed in 1980–1993 is also produced in this volume (see also Kenyon et al. 1991). These lines have continued to decline in intensity since 1993; their flux ratios are consistent with an electron density, \(n_e \lesssim 10^7 \text{ cm}^{-3} \), for an electron temperature, \(T_e \sim 10^4 \text{ K} \) (Ferland & Shields 1978). This evolution suggests an overall decrease in the electron density during the past decade.

Kenyon et al. (1993) noted that results for high-ionization forbidden lines were uncertain because the lines were not very prominent on their relatively low signal-to-noise spectra. The new FAST and HST data allow us to make more progress on this region. We have accurate UV and optical fluxes for several [Fe VII], [Mg VII], and [Ne VII] lines, which yield more information on the ionized nebula.

We begin with the [Fe VII] lines, which have remained roughly constant in intensity since their first appearance in 1984–1986. Several [Fe VII] intensity ratios, \(I(\lambda 3721)/I(\lambda 6807) \) and \(I(\lambda 3586)/I(\lambda 3727) \), do not depend on \(n_e \) or \(T_e \). Our result for \(I(\lambda 3721)/I(\lambda 6807) \), 0.6–0.8, brackets the predicted value of 0.65; our result for \(I(\lambda 3586)/I(\lambda 3727) \), 0.3, is significantly smaller than the predicted value of 0.75. The small observed value of the \(I(\lambda 3586)/I(\lambda 3727) \) ratio suggests that the \(\lambda 3758 \) line is blended with an [O III] Bowen fluorescence line. The relative intensities of other O III lines suggest that O III \(\lambda 3758 \) should contribute about two-thirds to three-fourths of the \(\lambda 3758 \) flux. If so, the [Fe VII] \(I(\lambda 3586)/I(\lambda 3727) \) ratio is then close to the predicted value (see Tables 3–4 and Saraph & Seaton 1980).

With this correction to the \(I(\lambda 3727) \) flux, the reddening-corrected [Fe VII] intensity ratios sensitive to density and temperature are \(I(\lambda 2205)/I(\lambda 3727) \approx 0.4–0.6 \) and \(I(\lambda 3727)/I(\lambda 6087) \approx 1.1–1.4 \). Both intensity ratios are consistent with \(T_e \lesssim 3 \times 10^4 \text{ K} \) if \(n_e \gtrsim 10^6 \text{ cm}^{-3} \) and \(T_e \gtrsim 5 \times 10^5 \text{ K} \) if \(n_e \lesssim 10^6 \text{ cm}^{-3} \) (Nussbaumer & Storey 1982; Keenan & Norrington 1987, 1991). Weak detections of [Fe VII] \(\lambda 4942, 5159 \) favor \(n_e \sim 10^5 \text{ cm}^{-3} \) over other values.

To better constrain the physical conditions in the Fe\(^{+6} \) region, we also consider data for [Ne VII]. The ionization potential of Ne\(^{+4} \) (126 eV) is comparable to Fe\(^{+6} \) (128 eV); [Ne VII] and [Fe VII] should form in similar physical conditions. The intensity ratio for \(I(\lambda 3346)/I(\lambda 3426) \) is 0.3–0.5, which brackets the predicted value of 0.36 (Nussbaumer & Rusca 1979). The \(I(\lambda 3426)/I(\lambda 3427) \) intensity ratio is sensitive to \(n_e \) and \(T_e \) (Kafatos & Lynch 1980). We measured ratio of \(I(\lambda 3426)/I(\lambda 2976) \approx 17 \) requires \(n_e \lesssim 10^7 \text{ cm}^{-3} \) for \(T_e \gtrsim 10^5 \text{ K} \).

The critical densities for all of the [Fe VII] and [Ne VII] lines on our spectra are \(10^7 \text{ cm}^{-3} \) to \(10^8 \text{ cm}^{-3} \) (Kafatos & Lynch 1980; Nussbaumer & Storey 1982; Keenan & Norrington 1987, 1991). Although there are some uncertainties in the atomic physics for both ions, the line ratios strongly imply line formation in a very hot, low-density gas. This result favors mechanical heating over photoionization as the energy source for this emission. To place a better limit on the electron density and on the origin of the highly ionized forbidden lines, we can estimate the forbidden line fluxes expected from a photoionized gas. The volume \(V \) for the [Fe VII] Strömgren sphere is

\[
V = N_i/n_e n_e \alpha_r ,
\]

where \(N_i \) is the number of Fe\(^{+5} \)-ionizing photons, \(n_e \) is the number density of Fe atoms, and \(\alpha_r \) is the recombination rate. The luminosity in a single [Fe VII] emission line is

\[
L_{\text{Fe VII}} = x_i n_e A_i h\nu_{ij} V ,
\]

where \(x_i \) is the fraction of Fe VII ions in the jth level, \(n_e \) is the number density of Fe VII ions, \(A_i \) is the transition probability, and \(\nu_{ij} \) is the line frequency. If we assume that all of the Fe in the nebula is in the form of Fe VII, we substitute our expression for the volume into equation (5) and adopt the appropriate coefficients (Woods, Shull, & Sarazin 1981; Nussbaumer & Storey 1982; Keenan & Norrington 1987; Arnaud & Raymond 1992), the luminosity in the \(\lambda 6087 \) line is

\[
L_{\lambda 6087} \approx 0.1 L_\odot \left(\frac{N_i}{10^4 \text{ s}^{-1}} \right) \left(\frac{10^8 \text{ cm}^{-3}}{n_e} \right). \tag{6}
\]

The coefficient in equation (6) varies by a factor of 2–3 for \(T_e = 10^4 \text{ K} \) to \(10^5 \text{ K} \) if the hot component has an effective temperature of \(10^5 \text{ K} \) and emits as a blackbody. This result—together with similar expressions for other [Fe VII] and [Ne VII] lines—suggests that photoionization can account for the observed optical and ultraviolet line fluxes, \(L_\odot \leq 0.05–0.10 L_\odot \) for \(n_e \lesssim 10^8 \text{ cm}^{-3} \). Although photoionization rarely produces the large electron temperatures, \(T_e \sim 10^5 \text{ K} \), implied by the intensity ratios of the forbidden lines, this limit on the electron density is consistent with the electron density derived from the flux ratios of the [Ne VII] and [Fe VII] lines, \(n_e \lesssim 10^7 \text{ cm}^{-3} \).

We conclude that the [Fe VII] and [Ne VII] emission comes from a region with a low electron density, \(n_e \lesssim 10^7 \text{ cm}^{-3} \), and a relatively high electron temperature, \(T_e > 10^5 \text{ K} \). These regions have considerable emission measures, \(n_e^2 V \sim 10^8 \text{ cm}^{-3} \), for \(T_e \sim 10^5 \text{ K} \) and \(n_e \sim 10^8 \text{ cm}^{-3} \). The size of the spherical Ne\(^{+4} \)–Fe\(^{+6} \) zone is \(\sim 10 \text{ AU} \). Although the hot component emits enough high-energy photons to produce large [Ne VII] and [Fe VII] emission regions, the large electron temperature indicates that mechanical heating also is an important energy source. If the high-ionization gas forms in a thin shell with a thickness of \(\lesssim 1 \text{ AU} \), the shell lies \(\gtrsim 30 \text{ AU} \) from the central binary.

The [Mg VII] features are the last set of useful high-ionization forbidden lines in AG Peg. The ionization potential of Mg\(^{+4} \) (141 eV) is larger than for Ne\(^{+4} \) and Fe\(^{+6} \). The critical density for both \(\lambda 2278 \) and \(\lambda 2290 \) is \(n_e = 10^8 \text{ cm}^{-3} \). The intensity ratio, \(I(\lambda 2278)/I(\lambda 2290) = 3.4 \), is very close to the predicted value of 3.7 (Kafatos & Lynch 1980). The \(I(\lambda 2278)/I(\lambda 2417) \) intensity ratio is sensitive to \(n_e \) and \(T_e \) (Kafatos & Lynch 1980). Our measured ratio of \(I(\lambda 2278)/I(\lambda 2247) = 10 \) requires \(n_e \lesssim 10^9 \text{ cm}^{-3} \) for \(T_e > 10^5 \text{ K} \). This density is close to the critical density for \(\lambda 2417 \). Thus, this emission forms in denser material than the [Ne VII] and [Fe VII] lines. The emission measure for [Mg VII] suggests a shell that is factor of 10 or more thinner than the Ne\(^{+4} \)–Fe\(^{+6} \) zone.
3.4. Colliding Winds and-Shocks

Colliding winds have become a popular explanation for high-energy phenomena in symbiotic and other interacting binary systems (e.g., Wallerstein & Brugel 1988; Nussbaumer & Walder 1993; Mürset et al. 1995; Formiggini, Contini, & Leibowitz 1995; Contini 1997; Contini & Formiggini 1999). First developed by Kwok & Leahy (1984) and Wallerstein et al. (1984; see also Willson et al. 1984), these models use the kinetic energy in the winds from the red giant and the hot component—instead of photoionization—to power X-rays and high-ionization emission lines observed in many systems (Girard & Willson 1987; Nussbaumer & Vogel 1989). The momenta in the two winds roughly balance in an interaction region, where shocks produce X-ray emission and lead to the formation of highly ionized atomic species. The bow shape of the interaction region also naturally produces emission-line profiles similar to those observed in some systems.

The intensity ratios of the high-ionization forbidden lines in AG Peg suggest that some of the ionized nebula in this system is mechanically heated (see also Contini 1997). For the hot component effective temperatures and bolometric luminosities observed in most symbiotic stars, photoionization yields much smaller electron temperatures, \(\sim 1 - 3 \times 10^4 \, \text{K} \), for \(n_e \sim 10^5 \, \text{cm}^{-3} \) (e.g., Mürset & Nussbaumer 1994; SchwANK et al. 1997; Proga et al. 1996, 1998). We showed in § 3.3 that photoionization can explain the observed line fluxes for \(n_e \lesssim 10^8 \, \text{cm}^{-3} \). Shocks from colliding winds are a natural mechanism to produce high-temperature gas. We now consider whether colliding winds in the system can also power the line fluxes.

Two sources of mechanical energy can potentially power the forbidden line emission in AG Peg: (1) an interaction region between the two stars, where material recently lost by the hot component collides with matter recently ejected by the red giant (see Contini 1997; Nussbaumer & Walder 1993), or (2) the “inner nebula” of Kenny et al. (1991), where material ejected throughout the outburst compresses gas lost by the red giant prior to the outburst.

The outer atmosphere of the red giant is a promising source of mechanically heated gas in AG Peg (see Contini 1997 and references therein). This region has the required density and emission measure. From Figure 1a of Proga et al. (1998), the density in the red giant wind is \(n_e \sim 10^4 \, \text{cm}^{-3} \) at distances of \(\sim 10 \, \text{AU} \) from the central binary. The density falls to \(n_e \sim 3 \times 10^4 \, \text{cm}^{-3} \) at \(\sim 30 \, \text{AU} \). The shock velocity needed to reach electron temperatures exceeding \(10^5 \, \text{K} \), is \(\sim 10 - 20 \, \text{km s}^{-1} \), compared with the red giant wind velocity of \(30 - 60 \, \text{km s}^{-1} \) (Kenny et al. 1991). As envisioned in the Wallerstein et al. (1984) picture, the colliding winds of the red giant and the hot component might yield this shock velocity if the collision is oblique. Achieving the proper forbidden line energy from this region, however, may be difficult. For a shock velocity of \(10 - 20 \, \text{km s}^{-1} \), the mechanical energy in the wind is \(\sim 0.001 - 0.004 \, L_\odot \) for a red giant mass-loss rate of \(\sim 10^{-7} \, M_\odot \, \text{yr}^{-1} \). This energy is small compared with the luminosity in a single [Ne v] forbidden line, \(\sim 0.05 - 0.10 \, L_\odot \). Much larger mass-loss rates are ruled out by the radio data; much larger shock velocities imply higher ionization emission lines such as [Fe x] not detected on our spectra. The wind from the hot component does not help this problem significantly: the mass-loss rate is now probably smaller than that of the giant (Kenyon et al. 1993; Nussbaumer et al. 1995) and the wind velocity of \(1000 \, \text{km s}^{-1} \) is much larger than the needed shock velocity unless we have considerably underestimated the electron temperature of the forbidden line region.

The inner radio nebula of Kenny et al. (1991) is also a potential location for shocked gas in AG Peg. The compressed inner shell of this nebula is an ideal location for shocks. The apparent gas velocity of \(\sim 60 \, \text{km s}^{-1} \) is close to the \(10 - 20 \, \text{km s}^{-1} \) shock velocity required for \(10^5 \, \text{K} \) gas. The emission measure of this material, \(n_e^2 \tau \sim 10^{57} \, \text{cm}^{-3} \) (Kenny et al. 1991), is identical to our estimate for the Ne\(^{+4}\)-Fe\(^{+6}\) zone. However, there is an important problem associating the high-ionization forbidden lines with this region. From fits to the radio spectral index and flux from the inner nebula, Kenny et al. (1991) estimate \(n_e \approx 2 \times 10^4 \, \text{cm}^{-3} \) for the compressed shell. This density is a factor of \(\sim 10^3 \) smaller than our estimate from the [Ne v] and [Fe v] line ratios. The luminosity of the compressed shell is also insufficient to power the forbidden lines. Kenny et al. (1991) derive a rate \(3 \pm 1 \times 10^{-6} \, M_\odot \, \text{yr}^{-1} \) for spherical mass loss, which implies a mechanical luminosity of \(\sim 0.2 \, L_\odot \) for a \(20 \, \text{km s}^{-1} \) shock. The observed luminosity in the [Ne v] and [Fe v] lines exceeds this estimate by a factor of \(\sim 2 \).

Both explanations for shocked gas in the AG Peg wind are sensitive to the adopted distance. For a given radio flux, the mass-loss rate is linearly proportional to the distance. The optical emission-line luminosity depends on the square of the distance. Better agreement between observations and theory requires a smaller distance than our adopted value of 800 pc. Either of our explanations for the shocked gas requires a distance of 400 pc or less to allow the mechanical energy in the wind to match the energy needed for the high-ionization forbidden lines. Such a small distance seems ruled out by Kenny et al. (1991), who prefer a 600 pc distance to reconcile the size of the inner nebula with proper motion data.

We thus conclude that neither colliding wind picture for the formation of high-ionization forbidden lines can account for the observed line fluxes in AG Peg. If the hot component emits enough high-energy photons to account for the forbidden line fluxes, mechanical heating from the colliding winds may explain the high electron temperatures. A detailed photoionization calculation which includes shock excitation would test this proposal.

Making more progress on the high-ionization forbidden lines also requires new observations to constrain the geometry of the ionized nebula. At a distance of more than \(0.5 \) from the central binary, the inner nebula of Kenny et al. (1991) can be resolved with the Space Telescope Imaging Spectrograph on board HST. These observations would test the notion that the forbidden emission lines form well outside the red giant atmosphere. Resolving the nebula at \(30 \, \text{AU} \), \(\sim 0.05 \) from the central binary, is more difficult but may be possible with ground-based interferometers or future space missions. Higher spectral resolution UV or optical observations would yield line profiles for the high-ionization lines and provide better constraints on the shock velocity and geometry.

4. SUMMARY

Our analysis of new optical and UV data demonstrates that the AG Peg binary continues to evolve. The optical data show clear evidence for a more pronounced reflection
effect, where high-energy photons from the hot component ionize the wind and outer atmosphere of the red giant (Boyarchuk 1966; Belyakina 1970; Kenyon & Gallagher 1983). Many low-ionization optical lines, such as H I and He I form in this region. Some high-ionization optical emission lines, such as He II, also form in the ionized wind. We do not have enough UV phase coverage to verify that higher ionization UV lines such as C IV or N V are also produced in the ionized wind.

Detailed illumination models generally account for the observed fluxes of the low- and moderate-ionization emission lines. The H I and He I fluxes imply larger mass-loss rates in the red giant wind than the fluxes of other emission lines. Because the H II and He II recombination regions in the red giant atmosphere are difficult to model accurately, Proga et al. (1996, 1998) noted that their illumination models underestimate the fluxes of these lines. The illumination models thus imply a mass-loss rate of $10^{-7} M_\odot$ yr$^{-1}$ if the red giant wind has a geometric cross section of $\sim 2^2 - 3^2 R_2^2$. This mass-loss rate is comparable to mass-loss rates derived for the red giants in AG Peg and other symbiotic stars (see Kenny et al. 1991; Seaquist & Taylor 1992; Seaquist, Krogulec, & Taylor 1993; Ivison et al. 1995).

The UV data imply that the hot component continues to decline in luminosity. Figure 7 summarizes the evolution of the optical and bolometric magnitude M_{bol} of the hot component since its eruption in the mid 1800s. The dashed line indicates the evolution of the optical continuum. The symbols indicate the evolution of M_{bol}. Data shown as filled symbols without boxes adopt bolometric corrections to estimate M_{bol} from optical spectra (Kenyon et al. 1993); data shown as filled symbols inside boxes use UV data from this paper and Kenyon et al. (1993). As described by Gallagher et al. (1979) and Kenyon et al. (1993), the hot component maintained a roughly constant M_{bol} from 1900–1980 and then began to decline. Our new data suggest a factor of 2–3 decline in luminosity and a 10%–20% decline in effective temperature. Further UV observations are necessary to follow the evolution of the hot component to quiescence.

The high-ionization forbidden lines indicate that some portion of the nebula is mechanically heated to temperatures of 10^4 K or larger. This region has a density of $\lesssim 10^7$ cm$^{-3}$ and lies at least 10–30 AU from the central binary. If our estimates for the effective temperature and luminosity of the hot component are correct, the hot component emits enough high-energy photons to produce the observed level of emission from high-ionization forbidden lines. Shocks in the red giant wind are a potential excitation mechanism for this gas, but the kinetic energy in the winds from the hot component and the red giant is smaller than the emitted energy by a factor of ~10 or more. Because it has a very low density, a compressed shell in the inner radio nebula also seems an unlikely source of forbidden line emission in AG Peg. However, this region has an emission measure and gas velocity close to our estimates for the Ne$^{+4}$–Fe$^{+6}$ zone. Additional high-resolution imaging and spectroscopic observations are needed to understand this emission. Detailed photoionization calculations of shocked gas are necessary to see whether a combination of photoionization and mechanical heating can explain the large amount of emission from high-ionization forbidden lines in this system.

We acknowledge support from an archival grant from the Space Telescope Science Institute, AR-08369-01-A, and from the Smithsonian Astrophysical Observatory. This work was performed while D. P. held a National Research Council Research Associateship at NASA/GSFC. We thank J. Raymond for advice and comments on our analysis of the high-ionization forbidden lines.

REFERENCES

Arnaud, M., & Raymond, J. 1992, ApJ, 398, 394
Barnes, J. V., & Hayes, D. S. 1982, IRS Standard Star Manual (Tucson: NOAO)
Belyakina, T. S. 1968a, Izv. Krymskoi Astrofiz. Obs., 38, 171
———. 1970, Astron. Zh., 45, 139
Boyarchuk, A. A. 1966, Astron. Zh., 43, 976
Boyarchuk, A. A. 1966, Astron. Zh., 45, 139
Contini, M. 1997, ApJ, 483, 887
Contini, M., & Formiggini, L. 1999, ApJ, 517, 925
Fabricant, D. G., Cheimets, P., Caldwell, N., & Geary, J. 1998, PASP, 110, 79
Ferland, G. J., & Shields, G. A. 1978, ApJ, 226, 172
Fernández-Castro, T., Cassatella, A., Giménez, A., & Viotti, R. 1988, ApJ, 324, 1016
Fernie, J. D. 1985, PASP, 97, 653
Fleming, W. P. 1907, Ann. Harv. Coll. Obs., 47, 1
Formiggini, L., Contini, M., & Leibowitz, E. M. 1995, MNRAS, 277, 1071
Gallagher, J. S., Holm, A. V., Anderson, C. M., & Webbink, R. F. 1979, ApJ, 229, 994
Girard, T., & Willson, L. A. 1987, A&A, 183, 247
Hayes, D., & Latham, D. 1975, ApJ, 197, 593
Hillier, D. J. 1987, ApJS, 63, 965
Iijima, T. 1981, in Photometric and Spectroscopic Binary Systems, edited by E. B. Carling & Z. Kopal (Dordrecht: Reidel), 517
Ivison, R. J., Seaquist, E. R., Schwarz, H. E., Hughes, D. H., & Bode, M. F. 1995, MNRAS, 273, 517
Kafatos, M., & Lynch, J. C. 1980, ApJS, 42, 611
Keenan, F. P., & Novotny, P. H. 1987, A&A, 181, 370
Kenny, H. T., Taylor, A. R., & Seaquist, E. R. 1991, ApJ, 368, 496
Kenny, H. T., Taylor, A. R., & Seaquist, E. R. 1991, ApJ, 368, 549
Kenyon, S. J., & Gallagher, J. S. 1983, AJ, 88, 666
Kenyon, S. J., & Gallagher, J. S. 1983, AJ, 88, 666
Kenyon, S. J., & Gallagher, J. S. 1983, ApJ, 273, 324
Kenyon, S. J., & Gallagher, J. S. 1983, ApJ, 279, 252
Keyes, C. D. 1981, Ph.D. thesis, UCLA
———. 1997, Hubble Space Telescope Data Handbook, Version 3, Volume 2 (Baltimore: STScI)
Kwok, S., & Leary, D. A. 1984, ApJ, 283, 675

Fig. 7.—Variation of optical (dashed line) and bolometric luminosity (symbols) of the hot component with time. The open circles are luminosities from Kenyon et al. (1993) using bolometric corrections estimated from optical spectra. The cross indicates a typical error bar for these estimates. The open boxes surrounding filled circles are luminosities derived from UV data in this paper and Kenyon et al. (1990).
Lundmark, K. 1921, Astron. Nachr., 213, 93
Mathis, J. S. 1990, ARA&A, 28, 37
Merrill, P. W. 1916, Publ. Michigan Obs., 2, 71
———. 1929a, PASP, 41, 55
———. 1929b, ApJ, 69, 330
———. 1959, ApJ, 129, 44
Müürset, U., Jordan, S., & Walder, R. 1995, A&A, 297, L87
Müürset, U., & Nussbaumer, H. 1994, A&A, 282, 586
Müürset, U., Nussbaumer, H., Schmid, H. M., & Vogel, M. 1991, A&A, 248, 458
Müürset, U., & Schmid, H. M. 1999, A&AS, 137, 473
Nussbaumer, H. 1992, in IAU Symp. 151, Evolutionary Processes in Interacting Binary Stars, ed. Y. Kondo, R. F. Sistero, & R. S. Polidan (Dordrecht: Kluwer), 429
Nussbaumer, H., & Rusca, C. 1979, A&A, 72, 129
Nussbaumer, H., Schmutz, W., & Vogel, M. 1995, A&A, 293, L13
Nussbaumer, H., & Storey, P. J. 1982, A&A, 115, 205
Nussbaumer, H., & Vogel, M. 1989, A&A, 213, 137
Nussbaumer, H., & Walder, R. 1993, A&A, 278, 209
Payne-Gaposchkin, C. 1957, The Galactic Novae (Amsterdam: North Holland)
Proga, D., Kenyon, S. J., & Raymond, J. 1998, ApJ, 501, 339
Proga, D., Kenyon, S. J., Raymond, J., & Mikolajewska, J. 1996, ApJ, 471, 930
Proga, D., Mikolajewska, J., & Kenyon, S. J. 1994, MNRAS, 268, 213
Saraph, H. E., & Seaton, M. J. 1980, MNRAS, 193, 617
Schwank, M., Schmutz, W., & Nussbaumer, H. 1997, A&A, 319, 166
Seaquist, E. R., Krogulec, M., & Taylor, A. R. 1993, ApJ, 410, 260
Seaquist, E. R., & Taylor, A. R. 1992, ApJ, 387, 624
Taylor, A. R., & Seaquist, E. R. 1984, ApJ, 286, 263
Vogel, M. 1991, A&A, 249, 173
Vogel, M., & Nussbaumer, H. 1994, A&A, 284, 145
Wallerstein, G., & Brugel, E. 1988, A&A, 197, 182
Wallerstein, G., Willson, L. A., Salzer, J., & Brugel, E. 1984, A&A, 133, 137
Willson, L. A., Wallerstein, G., Brugel, E. W., & Stencel, R. E. 1984, A&A, 133, 154
Woods, D. T., Shull, J. M., & Sarazin, C. 1981, ApJ, 249, 399