Spectroscopy of 7He in the reactions of stopped pion absorption by 12,14C nuclei

B Chernyshev, Yu Gurov, S Lapushkin, V Karpukhin, V Sandukovsky and T Schurenkova
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409, Russia
E-mail: chernyshev@mephi.ru

Abstract. The production of the 7He states was studied in the reactions of stopped pion absorption by carbon isotopes: 12C(π^-, p^4He)7He, 12C(π^-, d3He)7He and 14C(π^-, t3He)7He. Measurements were performed using two-arm multilayer semiconductor spectrometer. The ground and excited states were observed in all three reactions. Narrow ($\Gamma \leq 2$ MeV) state with the high excitation energy $= 16$ MeV was observed in the 14C(π^-, t3He)7He reaction.

1. Introduction
Interest in the study of heavy helium isotopes is due to their exotic properties. Information about nucleon-stable isotopes 6He and 8He is quite extensive. At the same time, experimental results on nucleon-unstable nuclei 7,9,10He are very limited.

The ground state of 7He ($J^P = 3/2^+$) is unbound with respect to decay into 4He and a neutron, and has the resonance parameters $E_x = 0.410(8)$ MeV and $\Gamma = 0.15(2)$ MeV [1]. Note that the latest experimental results [2–4] indicate a lower resonance energy $E_{x0} = 0.35 \pm 0.40$ MeV.

For the first time excited state of 7He ($J^P = 5/2^+$) with the parameters $E_x = 2.9 \pm 0.3$ MeV, $\Gamma = 2.2 \pm 0.3$ MeV was observed in the $p(^4$He, d)7He reaction at a energy of 50.4 MeV [5]. Note that the excitation energy E_x and the resonance energy E_r are related by the ratio $E_x = E_r - E_{x0}$. This state decays into 4He and three neutrons. The observed level was interpreted as a system of 4He in the first excited state ($J^P = 2^+$) and a neutron in $1p_{1/2}$ orbit. This state was also observed in works [6, 7]. The more bound excited state with the parameters $E_x = 2.9 \pm 0.3$ MeV, $\Gamma = 2.2 \pm 0.3$ MeV was found in the $d(^4$He, p)7He reaction at a beam energy of 69 MeV [8]. This state ($J^P = 1/2^+$) decays into ground state of 4He and neutron.

The more excited states were observed in the ion reaction [6, 7, 9-11] (see table 1). All these states have large widths ($\Gamma \geq 5$ MeV) and these results have insufficient statistics.

Recently, the level structure of 7He was studied by us in the reactions of stopped pion absorption by boron isotopes B: 11B(π^-, p)7He, 12B(π^-, dd)7He and 10B(π^-, pd)7He [12]. The existence of three narrow states with excitation energies $E_x = 3.1(1)$, 4.90(15), and 6.65(15) MeV has been proven. Highly excited states with $E_x = 16.9(5)$ MeV, $\Gamma = 1.0(3)$ MeV, $E_x = 19.8(3)$ MeV, $\Gamma = 1.5(3)$ MeV, and $E_x = 24.8(4)$ MeV, $\Gamma = 4.6(7)$ MeV have been identified. The widths of these levels are much narrower than the results obtained in the ion reactions.

Thus the experimental information on the level structure of 7He is quite limited and contradictory. In this paper, the excitation spectra of this isotope are studied in the reactions of stopped pion absorption carbon isotopes: 12C(π^-, p^4He)7He, 12C(π^-, d3He)7He and 14C(π^-, t3He)7He.
2. Experiment
Experiment was performed with a low energy pion beam from LANL accelerator using the two arm semiconductor spectrometer [13].

The beam of negatively charged pions with energy of 30 MeV passed through the beryllium moderator and stopped in the thin target (≈ 24 mg·cm⁻²).

In one experimental run the measurements were carried out on the isotope-pure targets ⁹Be and ¹²C, targets ¹⁰B (contribution of the ¹¹B impurity was 15%), ¹¹B (contribution of the ¹²C impurity was 8%) and ¹⁴C “radioactive” target (76% is ¹³C, 23% is ¹²C). The contribution of uncontrolled impurities in all targets was ≤ 1%.

Charged particles emitted after pion absorption in the targets were detected by two multi-layer semiconductor telescopes located at an angle of 180° with respect to each other. The energy resolution (FWHM) was better than 0.5 MeV for single-charged particles (p, d, t) and about 2 MeV for double-charged particles (³He) [13]. The error of absolute energy calibration did not exceed 100 keV [14].

A search for the ³He excited states was carried out on the peaks in the missing mass spectrum (MM). In detecting the pairs of single- and double-charged particles the MM resolution amounts to 3 MeV [13]. The error of the MM absolute calibration (δMM) did not exceed 100 keV [14].

The spectrometer and experimental technique are described in more detail in [13, 14].

3. Results
A missing mass (MM) spectrum in the ¹²C(π⁻, p⁴He)X reaction is shown in figure 1. Missing masses were measured from the sum of the masses of the ground state of ⁴He and a neutron.

![Figure 1](image_url)

Figure 1. The MM spectrum for the π⁻ + ¹²C → p + ⁴He + X reaction. Histogram denotes the experimental data. 1 – the summary spectrum; peaks are the Breit – Wigner distributions for the ground and excited states. Distributions over phase volumes: 2 – π⁻ + ¹²C → p + ⁴He + ⁵He₂⁺ + n, 3 – π⁻ + ¹²C → p + ⁴He + ⁶He₃⁺ + 2n, 4 – π⁻ + ¹²C → p + ⁴He + ⁴He + 3n.
The method of least squares was used to separate the 7He states in describing the experimental spectrum by a sum of Breit–Wigner distributions and n-particle ($n > 3$) distributions over phase volumes. A satisfactory description can be achieved by introducing three 7He states: the ground state with resonance parameters $E_{r0} = 0.410(8) \text{ MeV}$ and $\Gamma = 0.15(2) \text{ MeV}$ [1] and two excited states with parameters $(E_r, \Gamma): (2.9 \pm 0.3 \text{ MeV}, < 2 \text{ MeV})$ and ($\approx 7 \text{ MeV}, < 1 \text{ MeV}$). However, it should be noted that in these measurements insufficient MM resolution does not allow to distinguish reliably the states with resonance energy 2.6 and 2.9 MeV.

A missing mass (MM) spectrum in the 12C($^\pi^-$, 3He)X reaction is shown in figure 2.

Figure 2. The MM spectrum for the $^\pi^- + ^{12}$C $\rightarrow d + ^3$He$+X$ reaction. Histogram denotes the experimental data. 1 – the summary spectrum; peaks are the Breit–Wigner distributions for the ground and excited states. Distributions over phase volumes: 2 – $^\pi^- + ^{12}$C $\rightarrow d + ^3$He +4He$_{g.s.} +n$, 3 – $^\pi^- + ^{12}$C $\rightarrow d + ^3$He +4He +3n. The arrow indicates the position of the level with $E_r = 7 \text{ MeV}$.

The method of description of spectrum is similar to the previous case. Due to the low statistics of measurements, only two states could be identified in this reaction: ground state and excited state with $E_r \approx 2.9 \text{ MeV}$, $\Gamma < 2 \text{ MeV}$. The structure in the spectrum indicated by the arrow could not be interpreted.

The MM spectrum obtained in the correlation measurements of tHe pairs on the radioactive target 14C is shown in figure 3a. The contribution of 14C impurity is clearly seen. We note that the spectrum was calculated in the kinematics of the reaction 14C($^\pi^-$, tHe)X, therefore peaks due to three-body channels of 12C($^\pi^-$, tHe)5He reaction are in the region of negative MM.

The contribution of the background caused by 12C impurity was determined using the results from correlation measurements tHe pairs on the 12C target. MM spectrum for the reaction 12C($^\pi^-$, tHe)X was normalized to the relative impurity contribution (23%) and was subtracted from the spectra in figure 3a. The subtracted contribution is shown by shaded histogram. The spectrum after impurity subtraction is shown in figure. 3. The small background in the region of negative MM is due to several
causes, i.e., the statistical errors of the subtraction procedure, accidental coincidence background and the contribution of uncontrolled impurities.

Figure 3. The MM spectrum obtained in the correlation measurements of \(^4\)He pairs on the radioactive target \(^{14}\)C (a). Dots with error bars are the experimental data. Shaded histogram is MM spectrum obtained in measurements on target \(^{12}\)C and normalized to 23\%. The spectrum after impurity subtraction (b). Histogram denotes the experimental data. 1 – the summary spectrum; peaks are the Breit – Wigner distributions for the ground and excited states. Distributions over phase volumes: 2 – \(\pi^+\)^{14}\)C \(\rightarrow t + ^4\)He + \(^6\)He, + \(n\), 3 – \(\pi^+\)^{14}\)C \(\rightarrow t + ^4\)He + \(^4\)He + \(3n\).

A statistically satisfactory description of the experimental spectrum can be achieved by introducing ground and two excited states of \(^7\)He with the following resonance parameters \((E_x, \Gamma)\): \((\approx 2.9\) MeV, \(< 2\) MeV) and \((16\) MeV, \(< 2\) MeV). The bump observed in the spectrum near 7 MeV (marked by an arrow) can be an indication on the existence of a level with \(E_x \approx 7\) MeV.

4. Discussion

The results for the \(^7\)He level structure obtained in the present work presented in table 1 together with the data obtained in the reactions of stopped pion absorption by boron isotopes [12] and the results of other authors.

In the energy region \(E_x \approx 3\) MeV, we observed excited state in all studied reactions. Unfortunately, the insufficient energy resolution does not allow us to make an unambiguous conclusion that this state has energy \(E_x \approx 2.9\) MeV. The hypothesis that this state has energy \(E_x \approx 2.6\) or \(3.1\) MeV (see table 1) can't be excluded.

The excited state with \(E_x \approx 7\) MeV is close to narrow state with \(E_x \approx 6.8\) MeV. This coincidence confirms the existence of narrow highly excited states in \(^7\)He. Also, the states with \(E_x \approx 16\) MeV and 16.8 MeV are close in energy. These coincidences confirm the existence of narrow highly excited states in \(^7\)He. The nature of the observed states is unclear. Note that the second of the observed levels is above the decay threshold \(^7\)He into \(t + t + n\) (12.3 MeV). Therefore, it is possible that this state is a cluster resonance \(t + ^4\)H. Similar resonances in the system of two tritons are observed in the excited states of \(^6\)He [15]. At the same time, in the reactions with stopped pions there are not observed the wide states (\(\Gamma > 7\) MeV), information about the existence of which was obtained in the reactions on ion beams (see table 1).
Table 1. Energies and widths of the excited states of ^7He.

E_x, MeV	Γ, MeV	Our measur.	Work
≈2.6	≈2		[8]
2.9a	2.0a	this work	[5–7]
3.1(1)	≤0.5		[12]
4.9(2)	≤0.5		[12]
≈5.3	~5		[11]
5.8(3)	4(1)		[6]
6.7(2)	≤0.5		[12]
≈7	≤2	this work	
≈8.0	~7		[11]
≈16	≤2	this work	
16.9(5)	1.0(3)		[12]
$\approx18^a$	~8a		[10, 11]
19.8(3)	1.5(3)		[12]
20(1)	9(2)		[9]
24.8(4)	4.6(7)		[12]

a – Average values.

5. Conclusion

The excited states of heavy helium isotope ^7He were studied in stopped pion absorption on $^{12,14}\text{C}$ nuclei. Narrow highly excited states were observed with $E_x \approx 6$ MeV in reaction $^{12}\text{C}(\pi^- , p)^7\text{He}$, and $E_x \approx 18$ MeV in reaction $^{14}\text{C}(\pi^- , t)^7\text{He}$.

This work was supported by the Russian Ministry of High Education and Science (RMHES) grant N3.4911.2017/6.7 and by program of increasing the competitive ability of NRNU MEPhI (agreement with RMHES of August 27, 2013, project no. 02.a03.21.0005).

References

[1] Tilley D R, Cheves C M, Godwin J L, Hale G M, Hofmann H M, Kelley J H, Sheu C G and Weller H R 2002 Nucl. Phys. A 708 3
[2] Aksyutina Yu et al 2009 Phys. Lett. B 679 191
[3] Denby D H et al 2009 Phys. Rev. C 78 044303
[4] Cao Z H et al 2012 Phys. Lett. B 707 46
[5] Korshennikov A A et al 1999 Phys. Rev. Lett. 82 3581
[6] Bohlen H G, Kalpakchieva R, Blaevi A, Gebauer B, Massey T N, von Oertzen W and Thummerer S et al 2001 Phys. Rev. C 64 024312
[7] Wuosma A H et al 2009 Phys. Rev. C 78 041302(R)
[8] Wuosma A H et al 2005 Phys. Rev. C 72 061301(R)
[9] Brady F, Needham G A, Romero J L, Kastaneda C M, Ford T D, Ullmann J L and Webb M L 1983 Phys. Rev. Lett. 51 1320
[10] Yamagata T et al 2004 Phys. Rev. C 69 044313
[11] Frekers D 2004 Nucl. Phys. A 731 204
[12] Gurov Yu B, Korotkova L Yu, Lapushkin S V, Pritula R V, Sandukovsky V G, Tel’kushev M V and Chernyshev B A 2015, JETP Lett. 101 69
[13] Gurov Yu B, Lapushkin S V, Chernyshev B A and Sandukovsky V G 2009 Phys. Part. Nucl. 40 558

[14] Gurov Yu B, Lapushkin S V, Sandukovsky V G and Chernyshev B A 2018 Phys. Part. Nucl. 49 249

[15] Gurov Yu B, Karpukhin V S, Lapushkin S V, Laukhin I V, Pechkurov V A, Poroshin N O, Sandukovsky V G, Tel’Kushev M V and Chernyshev B A, 2006 JETP Lett. 84 3.