Colistin Resistance in Acinetobacter baumannii MDR-ZJ06 Revealed by a Multiomics Approach

Xiaoting Hua\(^1,2\), Lilin Liu\(^1,2\), Youhong Fang\(^3\), Qiucheng Shi\(^1,2\), Xi Li\(^4\), Qiong Chen\(^5\), Keren Shi\(^1,2\), Yan Jiang\(^1,2\), Hua Zhou\(^6\) and Yunsong Yu\(^1,2,7\)*

\(^1\)Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China, \(^2\)Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China, \(^3\)The Children’s Hospital, College of Medicine, Zhejiang University, Hangzhou, China, \(^4\)Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, Hangzhou, China, \(^5\)Hangzhou First People’s Hospital, Hangzhou, China, \(^6\)Department of Respiratory, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China, \(^7\)State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China

Acinetobacter baumannii has emerged as an important opportunistic pathogen due to its ability to acquire resistance to most currently available antibiotics. Colistin is often considered as the last line of therapy for infections caused by multidrug-resistant A. baumannii (MDRAB). However, colistin-resistant A. baumannii strain has recently been reported. To explore how multiple drug-resistant A. baumannii responded to colistin resistance, we compared the genomic, transcriptional and proteomic profile of A. baumannii MDR-ZJ06 to the induced colistin-resistant strain ZJ06-200P5-1. Genomic analysis showed that lpxC was inactivated by IS\(_{Aba1}\) insertion, leading to LPS loss. Transcriptional analysis demonstrated that the colistin-resistant strain regulated its metabolism. Proteomic analysis suggested increased expression of the RND efflux pump system and down-regulation of FabZ and β-lactamase. These alterations were believed to be response to LPS loss. In summary, the lpxC mutation not only established colistin resistance but also altered global gene expression.

Keywords: Acinetobacter baumannii, colistin, whole-genome sequencing, transcriptome, proteome

INTRODUCTION

Acinetobacter baumannii has emerged as an important opportunistic pathogen due to its ability to acquire resistance to most currently available antibiotics (Peleg et al., 2008; Howard et al., 2012; Antunes et al., 2014). Since current treatment options for multi-drug resistant (MDR) A. baumannii are extremely limited, colistin is often considered as the last line of the therapy for infections caused by MDR A. baumannii (Bae et al., 2016; Cheah et al., 2016b). However, colistin-resistant A. baumannii strain has recently been reported (Cai et al., 2012).

Colistin is a polycationic antimicrobial peptide that targets the polyanionic bacterial lipopolysaccharide (LPS) of Gram-negative bacteria. Two different colistin resistance mechanisms have previously been reported (Beceiro et al., 2014). The first mechanism inactivates the lipid A biosynthesis pathway, leading to the complete loss of surface LPS. Mutations in lpxC, lpxA, or lpxD are involved in the first mechanism. The pmrAB two-component system mediates the second resistance mechanism. Mutations in pmrA and pmrB induce the activity of pmrC, which adds...
phosphoethanolamine (PEtn) to the hepta-acylated form of lipid A (Beceiro et al., 2011). Further mutations in vacJ, pldA, ttg2C, pheS and a conserved hypothetical protein were reported to involve in reduced colistin susceptibility through novel resistance mechanisms (Thi Khanh Nhu et al., 2016). Four putative colistin resistant genes: A1S_1983, hepA, A1S_3026, and rsfS were also identified in our previous study (Mu et al., 2016).

The response to LPS alteration has been investigated via transcriptional analysis. In response to LPS alteration, A. baumannii alters the expression of critical transport and biosynthesis systems associated with modulating the composition and structure of the bacterial surface (lpxA; Henry et al., 2012) or alters the expression of genes associated with outer membrane structure and biogenesis (pmrB; Cheah et al., 2016a). Moreover, the response to colistin is highly similar to the transcriptional alteration observed in an LPS-deficient strain (Henry et al., 2015). Colistin resistance was also explored using proteomic methods. There were 35 differentially expressed proteins. Most differentially expressed proteins were down-regulated in the colistin resistant strain, including outer membrane proteins, chaperones, protein biosynthesis factors, and metabolic enzymes (Fernandez-Reyes et al., 2009). However, the combination of genomic, transcriptomic, and proteomic methods to examine the colistin resistance mechanism in A. baumannii has rarely been reported. Furthermore, the strain used in this study was an MDR strain, but not laboratory strains (ATCC 19606, ATCC 17978) that do not represent clonal lineages in a clinical environment. Here, we used genome, transcriptome, and proteome to elucidate the colistin resistance mechanism in MDR A. baumannii. There was an ISAba1 insertion in lpxC (ABZJ_03720) in ZJ06-200P5-1 compared with the genome sequence of MDR-ZJ06, where lpxC encoded an UDP-3-O-acetyl-N-acetylgalactosamine deacetylase.

Bacterial Strains, Media, and Antibiotics

Restriction enzymes, T4 ligase, and Taq DNA polymerase were purchased from TaKaRa (Otsu, Shiga, Japan). The A. baumannii strain MDR-ZJ06 was isolated from the bloodstream of a patient in Hangzhou, China, in 2006. All A. baumannii cultures were grown at 37 °C in Mueller-Hinton (MH) agar and cation-adjusted MH broth (CAMHB) (Oxoid, Basingstoke, UK). Colistin was purchased from Sigma (Shanghai, China).

Generation of Colistin-Resistant Mutant

A colistin-resistant mutant was generated in A. baumannii MDR-ZJ06 by a previously described method (Li et al., 2006). Briefly, first, MDR-ZJ06 was cultured in CAMHB containing colistin at 8 × minimum inhibitory concentration (MIC). After overnight incubation, the culture was diluted 1:1000 with CAMHB containing colistin at 64 × MIC and then incubated at 37 °C overnight. Finally, the culture was diluted 1:100 with CAMHB containing colistin at 200 × MIC. After overnight incubation, the culture was plated on plates containing 10 μg of colistin at an appropriate dilution, and then one of colistin resistant colonies was collected for further experiments and designated as ZJ06-200P5-1. MICs for colistin and tigecycline were determined by E-test (bioMérieux, France) on MH agar, and the antimicrobial activities of the other antimicrobial agents were detected by disk diffusion. The results were interpreted according to CLSI or EUCAST breakpoints.

Whole Genome DNA Sequencing and Analysis

ZJ06-200P5-1 cells were cultured from a single colony overnight at 37 °C in MH broth. The genomic DNA was extracted via a QIAamp DNA minikit (Qiagen, Valencia, CA) following the manufacturer’s protocol. Agarose gel and a NanoDrop spectrophotometer were used to determine the quality and quantity of extracted genomic DNA. The 300 bp library for Illumina paired-end sequencing was constructed from 5 μg of genome DNA of ZJ06-200P5-1 by staff at Zhejiang Tianke (Hangzhou, China). Mapping and SNP detection were performed via Bresq (Deatherage and Barrick, 2014). The regions containing the detected SNPs were amplified by PCR. The PCR products were sent to Biosune (Biosune, Hangzhou, China) for Sanger sequencing.

TABLE 1 | Antibiotic susceptibility of A. baumannii MDR-ZJ06 and its colistin resistant mutant ZJ06-200P5-1.

Strains	CO (μg/mL)	TGC (μg/mL)	IPM (μg/mL)	MEM (μg/mL)	FEP (μg/mL)	CAZ (μg/mL)	CTX (μg/mL)	ATM (μg/mL)	PRL (μg/mL)	TZP (μg/mL)	SCF (μg/mL)	SAM (μg/mL)	CN (μg/mL)	AK (μg/mL)	TE (μg/mL)	MH (μg/mL)	CIP (μg/mL)	CT (μg/mL)	
MDR-ZJ06	0.38	4.0	22	22	15	15	19	10	16	26	9	6	6	6	6	10	6	14	6
ZJ06-200P5-1	>256	0.5	22	6	6	6	6	6	6	6	8	6	2	1	1	1	1	1	1
Synonym	Product	logFC	logCPM	P-value	FDR														
--------------	--	----------	----------	-------------	-----------														
ABZJ_00055	hypothetical protein	8.308068	13.717	1.26E-78	4.54E-76														
ABZJ_00068	hypothetical protein	6.4488	9.203574	2.14E-67	4.61E-65														
ABZJ_00037	hypothetical protein	4.368332	9.669037	3.48E-68	9.36E-66														
ABZJ_00056	hypothetical protein	4.349519	12.2059	6.03E-65	1.08E-62														
ABZJ_00332	hypothetical protein	4.264896	9.455077	2.39E-53	2.86E-51														
ABZJ_00036	hypothetical protein	3.449637	9.968726	9.61E-27	9.36E-25														
ABZJ_01879	hypothetical protein	2.810666	6.769621	9.95E-35	7.65E-33														
ABZJ_01880	putative transposase	2.758133	6.676606	5.52E-27	3.13E-25														
ABZJ_01079	hypothetical protein	2.585295	6.001793	4.14E-10	6.55E-09														
ABZJ_03753	hypothetical protein	2.318997	9.492231	2.51E-21	1.08E-19														
ABZJ_00033	hypothetical protein	2.314205	5.437541	2.36E-11	4.53E-10														
ABZJ_01133	transposase component	2.25458	8.338274	9.50E-21	3.93E-19														
ABZJ_01881	transposase component	2.20889	13.35847	1.03E-25	5.06E-24														
ABZJ_01180	putative phage-like protein	2.066152	3.22126	4.47E-06	3.56E-05														
ABZJ_03752	hypothetical protein	1.978774	6.779815	5.27E-15	1.62E-13														
ABZJ_00054	hypothetical protein	1.77044	10.25589	3.24E-20	1.27E-18														
ABZJ_01151	hypothetical protein	1.634908	3.574211	4.88E-06	3.84E-05														
ABZJ_03714	hypothetical protein	1.61859	8.500912	1.39E-08	1.85E-07														
ABZJ_01900	hypothetical protein	1.527437	6.102611	2.98E-06	2.49E-05														
ABZJ_01222	hypothetical protein	1.516854	2.111384	0.011897	0.034227														
ABZJ_01191	hypothetical protein	1.48009	2.033525	0.011349	0.032877														
ABZJ_01872	hypothetical protein	1.423713	7.613403	1.64E-08	2.10E-07														
ABZJ_01187	hypothetical protein	1.423595	5.112417	2.82E-07	2.81E-06														
ABZJ_01857	hypothetical protein	1.411761	2.566001	0.010144	0.029905														
ABZJ_01829	hypothetical protein	1.402255	6.594396	4.45E-06	3.56E-05														
ABZJ_01150	hypothetical protein	1.321675	3.205499	0.000936	0.003799														
ABZJ_00028	hypothetical protein	1.296752	10.96489	3.46E-14	9.79E-13														
ABZJ_00876	hypothetical protein	1.295003	5.552053	1.48E-07	1.57E-06														
ABZJ_01855	hypothetical protein	1.290522	2.587494	0.016132	0.044395														
ABZJ_01186	hypothetical protein	1.249298	2.481015	0.013475	0.038054														
ABZJ_00978	hypothetical protein	1.218859	3.038132	0.00684	0.021395														
ABZJ_00977	hypothetical protein	1.209422	3.887522	0.000222	0.001118														
ABZJ_00102	hypothetical protein	1.170013	8.813908	1.91E-10	3.15E-09														
ABZJ_01149	hypothetical protein	1.165232	3.314522	0.003302	0.011138														
ABZJ_00053	hypothetical protein	1.143156	6.421362	5.15E-06	3.99E-05														
ABZJ_01275	hypothetical protein	1.122845	8.385252	1.31E-08	1.76E-07														
ABZJ_03838	hypothetical protein	1.119324	7.088388	1.84E-08	2.33E-07														
ABZJ_01901	hypothetical protein	1.105826	6.349341	5.58E-05	0.000323														
ABZJ_01899	hypothetical protein	1.083338	4.583472	0.003397	0.011422														
ABZJ_00360	hypothetical protein	1.076106	8.065171	1.34E-07	1.46E-06														
ABZJ_01210	hypothetical protein	1.065917	3.456549	0.011028	0.032156														
ABZJ_01160	hypothetical protein	1.048988	3.144467	0.012194	0.034895														
ABZJ_01148	hypothetical protein	1.048966	5.540519	1.77E-05	0.001122														
ABZJ_00999	hypothetical protein	1.044891	10.0835	8.49E-08	9.61E-07														
ABZJ_00901	hypothetical protein	1.016944	9.235389	1.47E-08	1.91E-07														
ABZJ_01775	hypothetical protein	1.014549	10.17374	3.05E-12	6.84E-11														
ABZJ_03786	hypothetical protein	1.00000	6.133241	3.35E-06	2.73E-05														
ABZJ_01269	hypothetical protein	1.00222	4.702232	0.000305	0.001408														

(Continued)
Synonym	Product	logFC	logCPM	P-value	FDR
ABZJ_00120	hypothetical protein	-1.00591	7.042084	6.25E-07	5.85E-06
ABZJ_00896	nucleoside-diphosphate sugar epimerase	-1.0079	7.57903	9.80E-07	8.66E-06
ABZJ_01258	hypothetical protein	-1.01127	4.48134	0.002855	0.009692
ABZJ_01260	metal ion ABC transporter substrate-binding protein/surface antigen	-1.01249	9.488595	2.29E-08	2.86E-07
ABZJ_01120	urease accessory protein UreE	-1.01439	6.914944	6.34E-07	5.88E-06
ABZJ_01873	hypothetical protein	-1.01999	5.846082	1.89E-05	0.000128
ABZJ_03812	hypothetical protein	-1.02082	4.567471	0.001409	0.005227
ABZJ_01101	hypothetical protein	-1.03046	5.533439	0.001752	0.006282
ABZJ_01008	Zn-dependent hydrolase, including glyoxylase	-1.03588	9.460654	2.53E-10	4.12E-09
ABZJ_03819	hypothetical protein	-1.05745	9.905586	6.08E-11	1.11E-09
ABZJ_00345	hypothetical protein	-1.06443	6.560939	2.47E-07	2.53E-06
ABZJ_01907	response regulator	-1.07682	6.813752	2.94E-07	2.90E-06
ABZJ_00922	hypothetical protein	-1.07943	8.19838	3.71E-05	0.000227
ABZJ_01960	isochorismate hydrolase	-1.08366	6.638487	0.000162	0.000822
ABZJ_01110	putative acyltransferase	-1.08726	6.61739	7.17E-08	8.25E-07
ABZJ_03744	hypothetical protein	-1.09533	9.60736	9.04E-09	1.25E-07
ABZJ_01250	outer membrane receptor protein	-1.10665	7.442322	0.000193	0.000966
ABZJ_00946	hypothetical protein	-1.11395	8.476819	9.04E-09	1.25E-07
ABZJ_01265	hypothetical protein	-1.12706	10.45721	4.03E-13	9.42E-12
ABZJ_01257	Zn-dependent protease with chaperone function	-1.13229	6.680195	1.30E-05	9.11E-05
ABZJ_01862	2-polyprenyl-6-methoxyphenol hydroxylase	-1.13951	7.602932	1.74E-11	3.54E-10
ABZJ_00942	hypothetical protein	-1.14429	8.585885	1.05E-05	7.52E-05
ABZJ_01917	putative acyl carrier protein phosphodiesterase (ACP phosphodiesterase)	-1.17363	8.78327	3.19E-05	0.000202
ABZJ_01874	hypothetical protein	-1.17434	5.208346	2.41E-05	0.00159
ABZJ_00944	hypothetical protein	-1.18991	7.048516	5.55E-08	6.50E-07
ABZJ_01861	membrane-fusion protein	-1.20577	6.002924	1.77E-07	1.87E-06
ABZJ_03859	putative acyl carrier protein phosphodiesterase (ACP phosphodiesterase)	-1.22668	10.80427	1.20E-16	3.79E-15
ABZJ_00388	hypothetical protein	-1.23888	6.603402	1.01E-10	1.79E-09
ABZJ_01929	Aspartate ammonia-lyase (Aspartase)	-1.21837	11.63816	9.24E-14	2.31E-12
ABZJ_00924	hypothetical protein	-1.24233	8.484578	1.01E-10	1.79E-09
ABZJ_01155	hypothetical protein	-1.2668	10.80427	1.20E-16	3.79E-15
ABZJ_00388	hypothetical protein	-1.26695	7.901741	1.19E-09	1.81E-08
ABZJ_03744	hypothetical protein	-1.27715	6.94382	4.78E-09	6.86E-08
ABZJ_00944	hypothetical protein	-1.28276	5.658916	2.33E-08	2.88E-07
ABZJ_01156	hypothetical protein	-1.28415	8.332979	5.92E-11	1.10E-09
ABZJ_01826	AraC-type DNA-binding domain-containing protein	-1.29289	5.11387	5.57E-07	5.26E-06
ABZJ_00388	hypothetical protein	-1.29678	8.720087	1.08E-08	1.47E-07
ABZJ_00940	hypothetical protein	-1.30269	10.28829	3.31E-20	1.27E-18
ABZJ_01218	hypothetical protein	-1.30837	6.280622	2.75E-07	2.79E-06
ABZJ_00061	hypothetical protein	-1.31564	7.634988	1.87E-10	2.80E-09
TABLE 2 | Continued

Synonym	Product	logFC	logCPM	P-value	FDR
ABZJ_01887	hypothetical protein	-1.3281	6.449578	1.02E-07	1.14E-06
ABZJ_01025	homocysteine/selenocysteine methylase	-1.33719	7.528478	3.07E-10	4.93E-09
ABZJ_00110	GNAT family acetyltransferase	-1.33942	4.887681	1.06E-06	9.50E-06
ABZJ_01242	hypothetical protein	-1.3506	7.369014	2.45E-09	3.61E-08
ABZJ_00895	hypothetical protein	-1.35351	6.693904	7.37E-12	1.56E-10
ABZJ_03712	putative flavoprotein	-1.38598	6.6067	2.04E-09	3.04E-08
ABZJ_00048	transcriptional regulator	-1.40027	7.755295	9.36E-11	1.68E-09
ABZJ_03785	glutamate racemase	-1.40496	7.417511	7.08E-12	1.52E-10
ABZJ_00938	hypothetical protein	-1.40799	6.629998	1.09E-10	1.88E-09
ABZJ_01230	hypothetical protein	-1.41279	10.19585	3.47E-19	1.20E-17
ABZJ_001124	glycine/D-amino acid oxidase (deaminating)	-1.46015	13.3987	8.58E-14	2.20E-12
ABZJ_03791	histidine ammonia-lyase (Histidase)	-1.49736	9.748038	2.37E-08	2.90E-07
ABZJ_03739	hypothetical protein	-1.49749	13.98113	3.54E-13	8.47E-12
ABZJ_00881	glutamine amidotransferase	-1.51327	8.144142	5.09E-14	1.37E-12
ABZJ_00988	hypothetical protein	-1.54819	6.1234	7.44E-09	1.06E-07
ABZJ_01840	putative fimbria siderophore receptor protein	-1.55785	9.806018	9.74E-10	1.52E-09
ABZJ_00997	hypothetical protein	-1.58106	5.257799	3.12E-08	3.77E-07
ABZJ_00339	HSP90 family molecular chaperone	-1.6168	41.15864	7.57E-23	3.54E-21
ABZJ_00373	Type II secretory pathway, ATPase/PuE/Tfp plus assembly pathway, ATPase PiB	-1.6419	6.706339	3.45E-14	9.79E-13
ABZJ_01845	phosphatase/phosphohexomutase	-1.68301	7.222507	3.67E-12	8.06E-11
ABZJ_03793	urocarnate hydratase	-1.69627	10.89127	1.13E-07	1.25E-06
ABZJ_03754	Rhs element Vgr family protein	-1.69953	8.757228	5.86E-18	1.97E-16
ABZJ_00945	hypothetical protein	-1.72533	5.192791	2.02E-11	4.03E-10
ABZJ_01002	putative ABC oligo/dipeptide transport, ATP-binding protein	-1.73182	6.627909	4.32E-14	1.19E-12
ABZJ_01259	hypothetical protein	-1.75565	7.198513	1.30E-12	2.98E-11
ABZJ_00114	short chain dehydrogenase family protein	-1.76754	7.176594	1.03E-13	2.52E-12
ABZJ_01177	hypothetical protein	-1.8053	8.135964	6.06E-15	1.81E-13
ABZJ_03792	hypothetical protein	-1.82418	6.284478	3.56E-06	2.88E-05
ABZJ_01219	hypothetical protein	-1.86448	9.22858	7.68E-22	3.45E-20
ABZJ_01088	carbonic anhydrase	-1.94984	9.430551	1.08E-27	6.83E-26
ABZJ_00348	hypothetical protein	-2.03948	6.219886	1.15E-16	3.73E-15
ABZJ_01207	hypothetical protein	-2.1746	7.126199	6.11E-20	2.27E-18
ABZJ_01866	hypothetical protein	-2.23548	5.458495	1.05E-11	2.18E-10
ABZJ_03766	putative secretory lipase precursor	-2.38284	9.073946	1.11E-31	7.47E-30
ABZJ_01206	hypothetical protein	-3.28101	9.194837	2.48E-45	2.42E-43
ABZJ_03736	thiol/disulfide interchange protein	-3.9361	9.872762	6.64E-41	5.50E-39

Transcriptome Analysis and Real-Time Quantitative PCR Verification

A. baumannii MDR-ZJ06 and ZJ06-200P5-1 were grown overnight at 37 °C in LB broth. Strains were subcultured 1/100 into fresh LB broth and grown at 37 °C for 2 h (OD600: 0.29 ± 0.02 for MDR-ZJ06, 0.26 ± 0.02 for ZJ06-200P5-1). The cells were collected at 4 °C, and the RNA was extracted using TRIZOL Reagent (Invitrogen, Carlsbad, CA, USA) after liquid nitrogen grinding. For RNA sequencing, wild type and mutants were sampled in triplicate. The subsequent RNA extraction, bacteria mRNA sequence library construction, transcriptome analysis and real-time quantitative PCR verification were performed by staff at Zhejiang Tianke (Hangzhou, China) as described previously in reference (Hua et al., 2014). Sequenced reads were mapped to the MDR-ZJ06 genome (CP001937-8) using Rockhopper (McClure et al., 2013). The output data was analyzed by edgeR (McCarthy et al., 2012). Data generated by RNA sequencing were deposited to the NCBI Sequence Read Archive with accession number SRR5234544 (the wild type) and SRR5234545 (the colistin resistant strain).

Proteomic Analysis

A. baumannii MDR-ZJ06 and ZJ06-200P5-1 were grown overnight at 37 °C in LB broth. Strains were subcultured 1/100 into fresh LB broth and grown at 37 °C for 2 h (OD600: 0.29 ± 0.02 for MDR-ZJ06, 0.26 ± 0.02 for ZJ06-200P5-1). The cells were collected at 4 °C and sent to Shanghai Applied Protein Technology Co. Ltd. The cell pellets were washed twice with PBS, and 500 µl SDT lysis buffer (4% SDS, 100 mM Tris-HCl, 1 mM DTT, pH 7.6) was added. After being sonicated for 2 mins on ice,
the cells were centrifuged at 14,000 × g for 30 min at 4 °C. The protein concentration in the supernatant was determined by the BCA method.

In brief, 300 µg protein was added to 200 µl UA buffer (8 M urea, 150 mM Tris-HCl pH 8.0) and ultrafiltered (Sartorius, 10 kD) with UA buffer. To block reduced cysteine residues, 100 µl iodoacetamide (IAA) buffer (50 mM IAA in UA buffer) was added, centrifuged at 600 rpm for 1 min, and incubated for 30 min in the dark. The filter was washed twice with 100 µl UA buffer and twice with 100 µl Dissolution buffer (50 mM triethylammonium bicarbonate, pH 8.5). Finally, the proteins were digested with 2 µg trypsin (Promega) in 40 µl Dissolution buffer at 37 °C for 16–18 h. The peptides were collected as a filtrate, and its content was estimated at OD_{280}.

For iTRAQ labeling, the peptides were labeled with the 4-plex iTRAQ reagent following the manufacturer’s instructions (AB SCIEX). The peptides from MDR-ZJ06 were labeled with 114 and 116 isobaric reagents, and the peptides from ZJ06-200P5-1 were labeled with 115 and 117 isobaric reagents.

RP-HPCL online-coupled to MS/MS (LC-MS/MS) analysis of the iTRAQ-labeled peptides was performed on an EASY-nLC nanoflow LC system (Thermo Fisher Scientific) connected to an Orbitrap Elite hybrid mass spectrometer (Thermo Fisher Scientific). After the samples were reconstituted and acidified with buffer A (0.1% (v/v) formic acid in water), a set-up involving a pre-column and analytical column was used. The pre-column was a 2 cm EASY-column (100, 5 µm C18; Thermo Fisher Scientific), while the analytical column was a 10 cm EASY-column (75, 3 µm, C18; Thermo Fisher Scientific). The 120 min linear gradient from 0 to 100% buffer B (0.1% (v/v) formic acid and 80% acetonitrile) at a constant flow rate of 250 nl/min was as follows: 0–100 min, 0–35% buffer B; 100–108 min, 35–100% buffer B; 108–120 min, 100% buffer B. MS data were acquired using a data-dependent top 10 method, dynamically choosing the most abundant precursor ions from the survey scan (300–180 m/z) for HCD fragmentation. The Dynamic exclusion was set to a repeat count of 1 with a 30 s duration. Survey scans were acquired at a resolution of 30,000 at m/z 200, and the resolution for HCD spectra was set to 15,000 at m/z 200. The normalized collision energy was 35 eV, and the underfill ratio was defined as 0.1%.

The MS/MS spectra were searched using the MASCOT engine (Matrix Science, London, UK; version 2.2) against the A. baumannii MDR-ZJ06 FASTA database. False discovery rates (FDR) were calculated via running all spectra against the FASTA database using the MASCOT software. The following options were used to identify proteins: peptide mass tolerance = 20 ppm, fragment mass tolerance = 0.1 Da, Enzyme = Trypsin, Max missed cleavages = 2, Fixed modification: Carbamidomethyl (C), iTRAQ 4plex (N-term), iTRAQ 4plex (K), Variable modification: Oxidation (M). Quantification was performed based on the peak intensities of the reporter ions in the MS/MS spectra. The proteins were considered overexpressed when the iTRAQ ratio was above 1.5 and underexpressed when the iTRAQ ratio was lower than 0.67 (Wang et al., 2016). Functional classification of differentially expression genes were annotated using the KEGG databases. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Vizcaino et al., 2016) partner repository with the dataset identifier PXD005265 and 10.6019/PXD005265. Reviewer account details: Username: reviewer54242@ebi.ac.uk; Password: zR8mE9wu.

Growth Rate Determination

Four independent cultures per strain were grown overnight, diluted to 1:1000 in MH and aliquots placed into a flat-bottom 100-well plate in four replicates. The plate was incubated at 37 °C.
with agitation. The OD_{600} of each culture was determined every 5 min for 16 h using a Bioscreen C MBR machine (Oy Growth Curves Ab Ltd., Finland). The growth rate was estimated based on OD_{600} curves using an R script (Fang et al., 2016).

RESULTS

Whole Genome Sequencing, Minimum Inhibitory Concentration and Growth Rate
The colistin-resistant mutant ZJ06-200P5-1 generated from the culture in CAMHB containing colistin was sent for whole genome sequencing. There was an ISAbal insertion in lpxC in ZJ06-200P5-1 compared with the genome sequence of MDR-ZJ06 (Figure 1). The MIC of MDR-ZJ06 and ZJ06-200P5-1 were detected and listed in Table 1. The MIC for colistin increased from 0.38 mg/L (MDR-ZJ06) to >256 mg/L (ZJ06-200P5-1). However, ZJ06-200P5-1 showed higher sensitivity to multiple antibiotics: β-lactams, carbapenem, tetracycline, and ciprofloxacin, but not aminoglycosides. Furthermore, ZJ06-200P5-1 showed a lower growth rate (0.81 ± 0.05) than wild type.

Transcriptome Analysis
The transcriptome analysis of ZJ06-200P5-1 and MDR-ZJ06 was performed by Illumina RNA deep sequencing technology. Cells of the two strains were collected in the early exponential phase. A total of 137 genes showed significant differential expression [log2(FoldChange) > 1 or log2(FoldChange) < -1], among which 48 genes were upregulated and 89 were downregulated (Table 2). Sixteen selected genes, three upregulated and thirteen down-regulated genes, were well-validated by RT-qPCR (Figure 2). After mapping the differentially expressed genes into the KEGG pathway, we observed that genes involved in Energy metabolism and Amino acid metabolism were down-regulated, while Carbohydrate metabolism was up-regulated.

iTRAQ
A total of 1582 proteins were identified in the iTRAQ experiment. A protein ratio >1.5 or <0.67 (p < 0.05) was considered to be differentially expressed. After filtration, 82 differentially expressed proteins were identified between ZJ06-200P5-1 and MDR-ZJ06. The detailed information is shown in Table 3.

The expression of AdeABC was up-regulated in the LPS-loss ZJ06-200P5-1 strain. The AdeABC efflux pump confers resistance to various antibiotics classes. The expression of AdeABC genes was increased approximately two-fold in ZJ06-200P5-1 (Figure 3A). However, ZJ06-200P5-1 showed higher susceptibility to multiple antibiotics than MDR-ZJ06 (Table 1).

The fatty acid biosynthesis pathway was down-regulated in the ZJ06-200P5-1 strain (Figure 3B). The expression of FabZ was decreased by approximately two-fold in ZJ06-200P5-1. The β-lactamases blax_{OXA-23} and blax_{ADC-25} were decreased two- to four-fold in ZJ06-200P5-1.

Common Genes Altered Expression in Both Transcriptome and Proteome
A total of 15 differentially expressed genes (or proteins) were identified in both transcriptome and proteome (Table 4). Among them, three genes were both up-regulated, and nine genes were both down-regulated. Although there was correlation between transcriptome and proteome data, the absolute expression difference values in transcriptome data was higher than those in proteome data. In addition, the result of three gene/proteins were contradictory (highlighted in red letters in Table 4). The contradictory result might be caused by post-transcriptional regulation.

DISCUSSION
Due to the limitation of antimicrobial agents in clinical use, it is urgent to extend our understanding of the emergence of colistin resistance in A. baumannii. A. baumannii MDR-ZJ06, a multidrug-resistant clinical strain isolated from bloodstream, has been sequenced and was considered an ideal strain for examining the colistin-resistant mechanism in A. baumannii (Zhou et al., 2011). In this study, colistin-resistant strain was rapidly obtained, and its resistance mechanism was LPS loss caused by ISAbal insertion in lpxC. This result confirmed a previous finding (Moffatt et al., 2010). The rapid isolation of colistin-resistant mutant from multiple drug-resistant A. baumannii indicated a high risk of A. baumannii evolving resistance to colistin in clinical use.

We successfully detected the whole transcriptional profile of A. baumannii strain MDR-ZJ06 and its colistin-resistant mutant ZJ06-200P5-1 via Illumina RNA-sequencing. In another transcriptome study (Henry et al., 2012), A. baumannii ATCC 19606 and its lpxA mutant were used. Although both the lpxC and lpxA mutation lead to LPS loss, the different transcriptional response may be due to differences in the strain genetic background and the resistant mutation. In transcriptional analysis, we observed that genes involved in Energy metabolism and Amino acid metabolism were down-regulated, while Carbohydrate metabolism was up-regulated.

The expression of AdeABC was up-regulated in the LPS-loss ZJ06-200P5-1 strain. Similar results were also observed in all polymyxin-treated samples (Cheah et al., 2016a). In addition, the expression levels of adelJK and macAB-tolC were up-regulated in the LPS loss mutant (Henry et al., 2012). Increased expression of the RND efflux pump system (AdeABC) was a common finding across all experiments in colistin exposure. The up-regulation of AdeABC indicated the diminished integrity and barrier function of the outer membrane in colistin-resistant A. baumannii (Henry et al., 2015; Cheah et al., 2016a). However, ZJ06-200P5-1 showed higher susceptibility to multiple antibiotics than MDR-ZJ06. The higher susceptibility might result from the higher outer membrane permeability of ZJ06-200P5-1 due...
TABLE 3 | Genes changed significantly in proteome.

Protein number	NCBInr accession	Gene tag	Protein description	Pep Count	Unique PepCount	Coverage (%)	MW	pI	log2 of ratio (ZJ06-200P5-1 vs. MDR-ZJ06)	p-value
233	384144952	ABZJ_003706	hypothetical protein	75	12	66.27	27649.89	4.59	1.65184	2.90E-20
1280	384143756	ABZJ_003510	hypothetical protein	1	1	10.18	17233.79	10.09	1.49121	8.79E-17
756	384144562	ABZJ_003516	hypothetical protein	27	4	34.13	13938.65	9.67	1.49075	8.99E-17
1032	384144568	ABZJ_003522	hypothetical protein	7	2	15.75	15550.26	10.03	1.39649	6.82E-15
567	384143988	ABZJ_003552	hypothetical protein	23	6	54.76	13282.22	8.99	1.15312	1.36E-10
594	384144140	ABZJ_003584	hypothetical protein	14	6	32.66	22273.87	4.56	1.1311	3.05E-10
1241	384144185	ABZJ_003604	dehydrogenase	1	1	5.13	3013.71	8.79	1.11427	5.57E-10
1188	384144157	ABZJ_003633	hypothetical protein	5	1	10.66	11110.55	9.66	1.09399	1.18E-09
1076	384144375	ABZJ_003659	hypothetical protein	4	2	31.91	13701.31	10.29	1.09014	1.31E-09
147	384144182	ABZJ_003677	membrane-fusion protein	59	17	45.29	48231.1	9.44	0.95655	4.28E-08
1209	384144231	ABZJ_003685	dihydrodipicolinate synthase	2	1	2.89	33837.12	5.46	0.956837	1.05E-07
175	384144325	ABZJ_003695	membrane-fusion protein	50	15	47.22	43835.8	7.75	0.91158	4.13E-07
1281	384144760	ABZJ_003714	glycosyltransferase	1	1	3.37	48412.32	9.23	0.889123	7.92E-07
454	384144182	ABZJ_003735	hypothetical protein	18	8	21.57	54556.06	8.52	0.886277	8.60E-07
1009	384144157	ABZJ_003762	hypothetical protein	26	2	32.23	11005.53	9.93	0.859413	1.84E-06
1216	384144370	ABZJ_003772	hypothetical protein	2	1	25.58	4520.08	5.45	0.848157	2.51E-06
201	384144350	ABZJ_003782	cation/multidrug efflux pump	26	14	15.64	11274.48	7.6	0.801368	8.82E-06
885	384144201	ABZJ_003790	Outer membrane lipoprotein	12	3	18.75	21087.72	6.9	0.801241	8.85E-06
323	384144423	ABZJ_003807	hypothetical protein	97	10	50.81	26505.22	4.8	0.770322	1.96E-05
1029	384144182	ABZJ_003818	peptide ABC transporter permease	7	2	3.77	71261.81	6.24	0.753391	2.98E-05
164	384144912	ABZJ_003826	NAD-dependent aldehyde dehydrogenase	41	16	43.15	51846.55	5.11	0.751721	3.11E-05
655	384144155	ABZJ_003833	hypothetical protein	27	5	33.48	26172.15	7.85	0.733875	4.80E-05
812	384142146	ABZJ_003840	multidrug resistance secretion protein	8	4	9.14	40956.99	6.56	0.691132	0.000131
852	384145008	ABZJ_003852	hypothetical protein	6	4	17.24	31854.29	9.26	0.688359	0.000139
539	384144680	ABZJ_003860	hypothetical protein	10	7	15.52	55720.24	9.12	0.685088	0.00015
150	384144913	ABZJ_003867	4-aminobutyrate aminotransferase	55	17	50.23	45976.96	5.81	0.679784	0.000169
1306	384144561	ABZJ_003873	kinase sensor component of a two component signal transduction system	1	1	3.07	62690.76	6.3	0.672652	0.000198
600	384144948	ABZJ_003881	xenobiotic reductase	14	6	21.02	38725.16	5.08	0.608194	0.000783

(Continued)
Protein number	NCBInr accession	Gene tag	Protein description	Pep Count	Unique PepCount	Coverage (%)	MW	pI	log2 of ratio (ZJ06-200P5-1 vs. MDR-ZJ06)	p-value
315	3841449300	ABZJ_03684	hypothetical protein	322	10	47.37	32732.07	4.71	0.602647	0.000876
603	3841435411	ABZJ_02935	UDP-glucose 4-epimerase	13	6	28.06	38064.02	5.53	0.599175	0.000939
384	384142564	ABZJ_01318	Zn-dependent protease with chaperone function	35	9	48.66	27572.18	9.44	0.592971	0.001063
680	384143417	ABZJ_02171	hypothetical protein	14	5	40.65	17046.41	8.79	-0.59205	0.000855
996	384143886	ABZJ_02340	hypothetical protein	3	3	10.61	29941.63	6.85	0.60757	0.000626
1007	384145105	ABZJ_03859	putative RND type efflux pump involved in aminoglycoside resistance (AdeT)	3	3	10.48	38641.56	9.71	-0.60779	0.000623
667	384144990	ABZJ_03744	hypothetical protein	18	5	21.99	27747.62	4.62	-0.60878	0.00061
820	384143138	ABZJ_00072	FKBP-type 22KD peptidyl-prolyl cis-trans isomerase	7	4	21.65	25217.38	9.06	-0.61264	0.000964
767	384141553	ABZJ_03007	hypothetical protein	17	4	48.31	10746.92	5.3	-0.61297	0.00056
163	384144907	ABZJ_03661	hypothetical protein	47	16	39.91	49757.27	8.16	-0.61374	0.000551
865	384144338	ABZJ_03092	Zn-dependent hydrolase, including glyoxylase	5	4	15.00	35333.86	8.91	-0.62839	0.000407
780	384141775	ABZJ_00529	gluconate kinase	12	4	30.59	18924.48	4.88	-0.63552	0.000353
1259	384142716	ABZJ_01470	hypothetical protein	1	1	2.52	36304.38	9.04	-0.63588	0.000348
424	384142064	ABZJ_00818	3-oxoacyl-ACP reductase	42	8	45.90	26098.39	6.1	-0.64296	0.000299
825	384141812	ABZJ_00066	hypothetical protein	7	4	36.11	15329.44	9.46	-0.64431	0.00029
381	384141306	ABZJ_00060	Thiol-disulfide isomerase and thioredoxin	37	9	42.44	22825.09	9.58	-0.65529	0.000229
963	384142833	ABZJ_01587	dehydrogenase	4	3	9.93	31970.72	5.16	-0.68271	0.000125
645	384141583	ABZJ_00337	putative outer membrane protein W	52	5	28.64	22680.64	5.9	-0.69549	9.35E-05
329	384142063	ABZJ_00817	malonyl-CoA-[acyl-carrier-protein] transacylase	59	10	43.15	35339.2	5.22	-0.69971	8.49E-05
941	384142271	ABZJ_01025	homocysteine/selenocystine methylase	5	3	12.33	32062.1	4.82	-0.71762	5.59E-05
716	384144502	ABZJ_03256	protein-disulfide isomerase	9	5	23.31	26361.06	9	-0.72106	5.15E-05
232	384144545	ABZJ_03299	acetyl-CoA carboxylase subunit beta	76	12	44.63	32971.73	5.85	-0.72297	4.93E-05
836	384144135	ABZJ_02889	hypothetical protein	7	4	38.57	15413.52	8.43	-0.72309	4.91E-05
207	384141892	ABZJ_00646	Acetyl-CoA carboxylase alpha subunit	87	13	75.09	29640.53	5.6	-0.72798	4.37E-05
1053	384144131	ABZJ_02885	LysR family transcriptional regulator	5	2	6.80	34516.26	6.26	-0.74843	2.67E-05
Protein number	NCBInr accession	Gene tag	Protein description	Pep Count	Unique PepCount	Coverage (%)	MW (Da)	pI	log2 of ratio	p-value
---------------	------------------	----------	---------------------	-----------	-----------------	-------------	---------	----	---------------	---------
883	384142465	ABZL_01219	hypothetical protein	14	3	384142465	14	17986.93	9.08	1.66E-05
791	384142700	ABZL_01454	hypothetical protein	20	6	384142700	20	19166.5	5	1.47E-05
573	384144158	ABZL_00524	hypothetical protein	19	5	384144158	19	17.03	9.39	0.058
633	384144167	ABZL_00427	hypothetical protein	57	5	384144167	57	37.27	5.41	0.058
261	384141776	ABZL_00530	hypothetical protein	79	5	384141776	79	60150.9	6.04	0.058
166	384144728	ABZL_03482	hypothetical protein	91	11	384144728	91	12047.21	5.41	0.058
917	384141497	ABZL_00730	hypothetical protein	16	6	384141497	16	21011.63	9.2	0.058
122	384141482	ABZL_00765	hypothetical protein	37	11	384141482	37	12451.23	4.7	0.058
633	384144159	ABZL_02913	hypothetical protein	57	5	384144159	57	94767.51	9.38	0.058
560	384142976	ABZL_00428	hypothetical protein	38	14	384142976	38	44199.03	8.79	0.058
192	384144009	ABZL_00534	hypothetical protein	63	14	384144009	63	44063.98	8.79	0.058
423	384144427	ABZL_00995	hypothetical protein	43	14	384144427	43	43500.17	6.2	0.058
188	384142709	ABZL_00094	hypothetical protein	90	14	384142709	90	46.19	8	0.058
448	384144899	ABZL_00633	hypothetical protein	22	8	384144899	22	8	0.058	
656	384144159	ABZL_03513	hypothetical protein	23	9	384144159	23	73135.96	9.45	0.058
359	384143515	ABZL_00269	hypothetical protein	39	7	384143515	39	384143515	7	0.058
489	384142626	ABZL_03515	hypothetical protein	40	14	384142626	40	384142626	14	0.058
586	384143810	ABZL_00964	hypothetical protein	83	16	384143810	83	37.59	9.52	0.058
114	384143526	ABZL_01910	hypothetical protein	181	18	384143526	181	87187.82	10.58	0.058
359	384143517	ABZL_00999	hypothetical protein	18	10	384143517	18	73135.96	9.45	0.058
606	384143431	ABZL_00060	hypothetical protein	95	20	384143431	95	60.69	11.21	0.058
959	384142974	ABZL_00660	hypothetical protein	96	3	384142974	96	34966.98	4.65	0.058
1289	384144499	ABZL_00758	hypothetical protein	268	18	384144499	268	55.05	9.28	0.058
to LPS-loss. The increased expression of the efflux pump was thought to be a response to toxic substances that accumulated in the cells due to the increased membrane permeability (Henry et al., 2012).

The fatty acid biosynthesis pathway was down-regulated in the ZJ06-200P5-1 strain. In E. coli, it is important to balance LPS and fatty acid biosynthesis to maintain cell integrity. FabZ, which dehydrates R-3-hydroxymyristoyl-acyl carrier protein in fatty acid biosynthesis, plays an important role in rebalancing lipid A and fatty acid homeostasis (Bojkovic et al., 2016). The decrease in FabZ was considered to be a response to LPS-loss in ZJ06-200P5-1. The β-lactamases bla$_{OXA-23}$ and bla$_{ADC-25}$ were down-regulated in the ZJ06-200P5-1 strain. Decreased expression levels of bla$_{OXA-23}$ and bla$_{ADC-25}$ were also observed in A. baumannii MDR-ZJ06 under a subinhibitory concentration of tigecycline (Hua et al., 2014). Meanwhile, the strain under tigecycline stress showed a lower MIC of ceftazidime (Hua et al., 2014). The decrease in bla$_{OXA-23}$ and bla$_{ADC-25}$ might contribute to the increased sensitivity to β-lactam antimicrobial agents.

A multi-omics approach was adopted to obtain a more global view of colistin-resistant A. baumannii. Genomic analysis showed that lpxC was inactivated by IS$_{Aba1}$ insertion, leading to LPS loss. Transcriptional analysis demonstrated that the colistin-resistant strain regulated its metabolism. Metabolic change and LPS loss were concomitant. Proteomic analysis suggested increased expression of the RND efflux pump system and the down-regulation of FabZ and β-lactamase. These alterations are believed to be responses to LPS loss. Together, the lpxC mutation not only confirmed colistin resistance but also altered global gene expression.

Nucleotide Sequence Accession Numbers

The whole-genome shotgun sequencing results for A. baumannii ZJ06-200P5-1 have been deposited at DDBJ/EMBL/GenBank under the accession number MIFW0000000.

AUTHOR CONTRIBUTIONS

XH and YY conceived and designed the study. XH, LL, YF, QS, XL, QC, KS, YJ, and HZ performed the experiments. XH and YY performed data analysis and drafted the manuscript. All authors reviewed and approved the final manuscript.
ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (81230039, 31670135, 81378158), the 973 Preliminary Research Program (2014CB560707), the Natural Science Foundation of Zhejiang province, China (LY15H190004, Y16H190013) and the Zhejiang Province Medical Platform Backbone Talent Plan (2016DTA003).

REFERENCES

Antunes, L. C., Visca, P., and Towner, K. J. (2014). Acinetobacter baumannii: evolution of a global pathogen. Pathog. Dis. 71, 292–301. doi: 10.1111/2049-632X.12125

Bae, S., Kim, M. C., Park, S. J., Kim, H. S., Sung, H., Kim, M. N., et al. (2016). In vitro synergistic activity of antimicrobial agents in combination against clinical isolates of colistin-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 60, 6774–6779. doi: 10.1128/AAC.00839-16

Beceiro, A., Llobet, E., Aranda, J., Bengoechea, J. A., Doumith, M., Hornsey, M., et al. (2011). Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob. Agents Chemother. 55, 3370–3379. doi: 10.1128/AAC.00079-11

Beceiro, A., Moreno, A., Fernandez, N., Vallejo, J. A., Aranda, J., Adler, B., et al. (2014). Biological cost of different mechanisms of colistin resistance and their impact on virulence in Acinetobacter baumannii. Antimicrob. Agents Chemother. 58, 518–526. doi: 10.1128/AAC.01597-13

Bojkovic, J., Richie, D. L., Six, D. A., Rath, C. M., Sawyer, W. S., Hu, Q., et al. (2016). Characterization of an Acinetobacter baumannii lptD deletion strain: permeability defects and response to inhibition of lipopolysaccharide and fatty acid biosynthesis. J. Bacteriol. 198, 731–741. doi: 10.1128/JB.00639-15

Cai, Y., Chai, D., Wang, R., Liang, B., and Bai, N. (2012). Colistin resistance of Acinetobacter baumannii: clinical reports, mechanisms and antimicrobial strategies. J. Antimicrob. Chemother. 67, 1607–1615. doi: 10.1093/jac/dks084

Cheah, S. E., Johnson, M. D., Zhu, Y., Tsuji, B. T., Forrest, A., Bulitta, J. B., et al. (2016a). Polymyxin resistance in Acinetobacter baumannii: genetic mutations and transcriptomic changes in response to clinically relevant dosage regimens. Sci. Rep. 6:26233. doi: 10.1038/srep26233

Cheah, S. E., Li, J., Tsuji, B. T., Forrest, A., Bulitta, J. B., and Nation, R. L. (2016b). Colistin and polymyxin B dosage regimens against Acinetobacter baumannii: differences in activity and the emergence of resistance. Antimicrob. Agents Chemother. 60, 3921–3933. doi: 10.1128/AAC.02927-15

Deatherage, D. E., and Barrick, J. E. (2014). Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol. Biol. 1151, 165–188. doi: 10.1007/978-1-4939-0554-6_12

Fang, L., Chen, Q., Shi, K., Li, X., Shi, Q., He, F., et al. (2016). Step-Wise increase in tigecycline resistance in Klebsiella pneumoniae associated with Mutations in ramR, lon and rpsJ. PLoS ONE 11:e0165019. doi: 10.1371/journal.pone.0165019

Fernandez-Reyes, M., Rodriguez-Falcon, M., Chiva, C., Pachon, J., Andreu, D., and Rivas, L. (2009). The cost of resistance to colistin in Acinetobacter baumannii: a proteomic perspective. Proteomics 9, 1632–1645. doi: 10.1002/pmic.200800434

Henry, R., Crane, B., Powell, D., Deveson Lucas, D., Li, Z., Aranda, J., et al. (2015). The transcriptomic response of Acinetobacter baumannii to colistin and doripenem alone and in combination in an in vitro pharmacokinetics/pharmacodynamics model. J. Antimicrob. Chemother. 70, 1303–1313. doi: 10.1093/jac/dku536

Henry, R., Vithanage, N., Harrison, P., Seemann, T., Coutts, S., Moffatt, J. H., et al. (2012). Colistin-resistant, lipopolysaccharide-deficient Acinetobacter baumannii responds to lipopolysaccharide loss through increased expression of genes involved in the synthesis and transport of lipoproteins, phospholipids, and poly-beta-1,6-N-acetylglosamine. Antimicrob. Agents Chemother. 56, 59–69. doi: 10.1128/AAC.05191-11

Howard, A., O’Donoghue, M., Feeney, A., and Sleator, R. D. (2012). Acinetobacter baumannii: an emerging opportunistic pathogen. Virulence 3, 243–250. doi: 10.4161/viru.19700

Hua, X., Chen, Q., Li, X., and Yu, Y. (2014). Global transcriptional response of Acinetobacter baumannii to a subinhibitory concentration of tigecycline. Int. J. Antimicrob. Agents 44, 337–344. doi: 10.1016/j.ijantimicag.2014.06.015

Li, J., Rayner, C. R., Nation, R. L., Owen, R. J., Spelman, D., Tan, K. E., et al. (2006). Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 50, 2946–2950. doi: 10.1128/AAC.00103-06

McCarthy, D. J., Chen, Y., and Smyth, G. K. (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297. doi: 10.1093/nar/gks402

Moffatt, J. H., Harper, M., Harrison, P., Hale, J. D., Vinogradov, E., Seemann, T., et al. (2010). Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob. Agents Chemother. 54, 4971–4977. doi: 10.1128/AAC.00834-10

Mu, X., Wang, N., Li, X., Shi, K., Zhou, Z., Yu, Y., et al. (2016). The Effect of Colistin Resistance-Associated Mutations on the Fitness of Acinetobacter baumannii. Front. Microbiol. 7:1715. doi: 10.3389/fmicb.2016.01715

Peleg, A. Y., Seifert, H., and Paterson, D. L. (2008). Acinetobacter baumannii: emergence of a successful pathogen. Clin. Microbiol. Rev. 21, 538–582. doi: 10.1128/CMR.00058-07

Thi Khanh Nhu, N., Riordan, D. W., Do Hoang Nhu, T., Thanh, D. P., Thwaites, G., Huong Lan, N. P., et al. (2016). The induction and identification of novel Colistin resistance mutations in Acinetobacter baumannii and their implications. Sci. Rep. 6:28291. doi: 10.1038/srep28291

Vizcaino, J. A., Csordas, A., Del-Toro, N., Dianes, J. A., Griss, J., Lavidas, I., et al. (2016). 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, D447–D456. doi: 10.1093/nar/gkw880

Wang, S., Yang, Z., Zhao, Y., Zhao, H., Bai, J., Chen, J., et al. (2016). Sub-MIC tyllosin inhibits Streptococcus suis biofilm formation and results in differential protein expression. Front. Microbiol. 7:384. doi: 10.3389/fmicb.2016.00384

Zhou, H., Zhang, T., Yu, D., Pi, B., Yang, Q., Zhou, J., et al. (2011). Genomic analysis of the multidrug-resistant Acinetobacter baumannii strain MDR-ZJ06 widely spread in China. Antimicrob. Agents Chemother. 55, 4506–4512. doi: 10.1128/AAC.01134-10

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Hua, Liu, Fang, Shi, Li, Chen, Shi, Jiang, Zhou and Yu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.