Molecular detection of CTX-M extended spectrum beta-lactamase among carbapenem-resistant Klebsiella pneumoniae from Al-Hillah Teaching Hospital environment, Babylon Province, Iraq

Fatima Moeen Abbas

Department of Biology, College of Sciences for Women, University of Babylon, Iraq

Email: fatima.abas99@yahoo.com

Abstract. This study analyze the prevalence of bla_{CTX-M} containing Klebsiella pneumoniae. During the period from October, 2017 to the end of January, 2018, a total of one hundred swab samples were collected from environment of Al-Hillah Teaching Hospital / Hillah city. Thirteen (13%) isolates were identified as K. pneumoniae. All K. pneumoniae isolates were subjected to antibiotic susceptibility testing using Kirby-Bauer disk diffusion method. Higher resistance rates were observed for penicillin antibiotics (ampicillin and cloxacillin) with resistance rate of (84.61%) and (69.23%), respectively. Extended spectrum beta-lactamase (ESBL) production was assayed phenotypically using disk combination method. Five (38%) isolates were screen-positive. Carbapenem resistance was detected in 2 isolates of K. pneumoniae, these were checked further by Polymerase Chain Reaction (PCR) method for the presence of bla_{CTX-M} gene, 1 (50%) isolate gave positive result.

Keywords: Klebsiella pneumoniae, Carbapenem resistance, ESBL, bla_{CTX-M} gene, PCR.

Introduction

Resistance to beta-lactam antibiotics is associated with production of beta-lactamases which mainly inserted into plasmid, transposons or integron and rapidly spread among different clinical isolates [1]. One of the most common types of beta-lactamases are extended spectrum beta-lactamases (ESBLs) which are mutant forms of broad spectrum beta-lactamases such as TEM-1, TEM-2 and SHV-1 enzymes [2].

Nowadays, microbial resistance through ESBL has been documented worldwide and pose a serious threat for public health since infections caused by these agents are associated with high morbidity, mortality and healthcare costs [3,4]. Recently, non TEM (Temoneira) or/and SHV (sulphydryl variable) plasmid mediated ESBLs have been recognized mainly of the CTX-M (cefotaxime-hydrolysing beta-lactamase) enzyme [5]. CTX-M enzyme was detected for the first time in Germany in 1989 and documented in Escherichia coli and Klebsiella pneumoniae as well as other genera of Enterobacteriaceae family [3,6]. Until now, over 69 different types of enzyme have been characterized worldwide [7].
This study was performed to determine the prevalence of *K. pneumoniae* isolated from environment of Al-Hillah Teaching Hospital / Hillah city, detect their resistance profiles and identify *blaCTX-M* gene by phenotypic and genotypic, Polymerase Chain Reaction (PCR) method among carbapenem-resistant isolates.

Materials and Methods

Bacterial isolates

Over a period of four months from October, 2017 to end of January, 2018, a total of 100 swabs were taken from environment of Al-Hillah Teaching Hospital / Hillah city including: floors, walls, doors, beds, tables, windows, sink, medical equipment and cleaning tools. All samples were cultured on different selective and differential media such as Blood agar, MacConkey agar (Himedia, India) and Eosin methylene blue agar (Biolife, Italy). The species identification was performed following the standard methods described by Holt *et al.* [8], Collee *et al.* [9] and MacFaddin [10].

Antimicrobial susceptibility assay

The antibiotic susceptibility testing of bacterial isolates was done against a range of 11 antibiotics from 6 different classes using the standard, Kirby-Bauer disk diffusion method on Mueller-Hinton agar plates (Oxoid, England) [11]. The following antibiotic disks were tested: ampicillin (10 µg), cloxacillin (10 µg), amoxicillin-clavulanic acid (10 µg), ceftotaxime (30 µg), ceftazidime (30 µg), ceftriaxone (30 µg), cefoxitin (30 µg), aztreonam (30 µg), imipenem (10 µg), meropenem (10 µg), and levofloxacin (5 µg). After 18 hrs of incubation at 37°C, the zones of inhibition were measured and compared with the Clinical and Laboratory Standards Institute (CLSI) guidelines [12]. *Escherichia coli* ATCC 25922 (College of Medicine, University of Kufa) was used as quality control.

Phenotypic detection of extended spectrum β-lactamase production, Recommended by CLSI [12]

Detection of ESBL producing isolates was assayed phenotypically by disk combination method as previously described [13].

Molecular analyses of CTX-M gene

DNA preparation

DNA of cultured bacterial isolates was prepared following the protocol described by Pospiech and Neuman [14] with some modifications and used directly for PCR as DNA template.

PCR amplification

PCR assay was used for detection *blaCTX-M* gene using the following sets of primers (Bioneer, Korea) CTX-M/F (5′- CGCTTTGCGATGTGCAG 3′) and CTX-M/R (5′- ACCCGATCGTGTGCTG 3′) (550bp), in a 25 µl reaction volume using 12.5 µl Go Taq Green Master Mix 2X (Promega, USA), 5 µl DNA template, 2.5 µl of 10 pmol/µl of specific up stream primers and, 2.5 µl of 10 pmol/µl of specific down stream primers and 2.5 µl nuclease-free water. The cycling parameters consisted of: an initial denaturation at 94°C for 30 sec, followed by 35 cycles of denaturation at 94°C for 30 sec, annealing at 60°C for 1 min, extension at 72°C for 1 min and a final extension step of 72 at 10 min [15]. The PCR product was analyzed by electrophoresis at 70 volts for 2-3 hrs in 1.5% agarose gel containing ethidium bromide 0.5 µg/ml, the product was visualized under UV-Transilluminator, then
photographed with Gel documentation system. 100 bp DNA Ladder (Bioneer, Korea) was used to assess PCR product size.

Results and Discussion

Over the period of four months, from October, 2017 to end of January, 2018, a total of 100 swabs were taken from environment of Al-Hilla Teaching Hospital / Hillah city. Thirteen (13%) isolates were identified as K. pneumoniae, 6(6%) isolates were obtained from floors, 4(4%) isolates from tables and 3(3%) isolates from beds. (Table-1). In lines with other studies, Tan et al. [16] recorded 14 isolates as K.pneumoniae recovered from door handle of hospital environment. One study documented 4 K. pneumoniae isolates from sink of burn unit in a tertiary care hospital [17]. Also, previous studies conducted in Hillah city reported the presence of K.pneumoniae from different environmental and clinical samples [18,19].

Table(1): Numbers and percentages of K.pneumoiae isolates recovered from environment of Al-Hilla Teaching Hospital.

Sample source	No. of samples	No. (%) of K.pneumoiae isolates
Floors	20	6(6%)
Walls	15	0(0%)
Doors	5	0(0%)
Beds	13	3(3%)
Tables	12	4(4%)
windows	3	0(0%)
Sink	5	0(0%)
Medical equipment	17	0(0%)
Cleaning tools	10	0(0%)
Total	100	13(13%)

The detection rates for walls, doors, windows, sink, medical equipment and cleaning tools were 0(0%). (Table-1). This may be explained by contamination with other type of microorganism. However, most nosocomial infections result from transmission of pathogenic bacteria from one person to person, from hospital environment, equipment and materials to patient or may be from the endogenous flora of the patient [20]. It has been suggested that the hands of the nurses were more frequently contaminated by coliform bacteria like Escherichia coli and Klebsiella and seems to be the major sources for epidemic strain transmission in clinical settings [21].

Results of antibiotics susceptibility testing revealed higher resistance for penicillin antibiotics (ampicillin and cloxacillin) with resistance rate (84.61%) and (69.23%), respectively (Table-2). Similar results were documented by Al-Hilli [22] who found (81%) and (100%) resistance rate for penicillin antibiotics by Klebsiella spp. isolated from Merjan hospital environment, Hillah city.

However, the lowest rates of resistance were observed for meropenem (15.38%) and imipenem (7.69%) (Table-2). Mohapatra et al[17] detected zero resistance for imipenem, meropenem and ertapenem antibiotics among K.pneumoniae isolated from tertiary care hospital.
Table 2: Antibiotics resistance profile of *K. pneumoniae* isolates against different antibiotics (*n* =13).

Antibiotic class	Agent used	No. (%) of resistant isolates
Penicillins	ampicillin	11 (84.61%)
	cloxacillin	9 (69.23%)
β–lactams/β-lactamase inhibitor combinations	amoxicillin-clavulanic acid	6 (46.15%)
Cephems	cefotaxime	8 (61.53%)
	ceftazidme	7 (53.84%)
	ceftriaxone	7 (53.84%)
	cefoxitin	6 (46.15%)
Monobactams	azteronam	5 (38.46%)
Penems	imipenem	2 (15.38%)
	meropenem	1 (7.69%)
Quinolones	levofloxacin	3 (23.07%)

ESBL production was determined by disk combination method, 5 (38%) isolates were screen positive, (Table-3). One study carried out by Veena Krishnamurthy et al. [5] identified 28 *K. pneumoniae* isolated from clinical specimen as ESBL producers by this method.

Phenotypic tests can be used for primary screening, However molecular methods such as PCR are more reliable techniques for detection β-lactamase producing isolates [23].

Table (3): Frequency of ESBLs producing *K. pneumoniae* using disk combination method.

No. of *K. pneumoniae* isolates	No. (%) of ESBL-positive isolates	No. (%) of ESBL-negative isolates
13	5 (38%)	8 (62%)

According to PCR assay, 1(50%) carbapenem-resistant *K. pneumoniae* isolate containing *bla*_{CTX-M} gene. (Fig-1). The existence of *bla*_{CTX-M} gene among *K. pneumoniae* isolates was proved by Al-Hilli [22] in Merjan hospital environment. Pérez-Etayo *et al* [24] identified *bla*_{CTX-M} genes among *E. coli* isolated from different environmental sources in Navarra, Spain.
Figure (1): Agarose gel electrophoresis for bla$_{CTX,M}$ gene (550bp) in carbapenem-resistant *Klebsiella pneumoniae* isolates. Lane (L), DNA molecule size marker (100-bp Ladder).
Lane (1) of *K. pneumoniae* isolate showing positive result for bla$_{CTX,M}$ gene.

Conclusions

This study report the existence of *K.pneumoniae* harboring CTX-M β-lactamase gene in environment of Al-Hilla Teaching Hospital. This finding emphasize the need for careful disinfection and implementation of surveillance and effective infection control programs to prevent dissemination of resistant isolates.

Acknowledgement

The author grateful to all medical staff in Al-Hilla Teaching Hospital for their support to complete this research.

References

[1] Rupp, M.E. and Fey, P.D. (2003) Extended spectrum beta-lactamase ESBL-producing *Enterobacteriaceae*: considerations for diagnosis, prevention and drug treatment. Drugs. 63:353-365.

[2] Mohammed, Y.; Gadzama, G.B.; Zailani, S.B. and Aboderin, A.O. (2016). Characterization of extended-spectrum Beta-lactamase from *Escherichia coli* and *Klebsiella* species from North Eastern Nigeria. J Clin Diagn Res. ; 10(2): DC07–DC10.

[3] Bradford, P. A. (2001). Extended spectrum β - lactamases in the 21th century: characterization, epidemiology, and detection this important resistance threat. Clin. Microbiol. Rev. 14: 933-951.

[4] Pitout, J.D. and Laupland, K.B. (2008) Extended spectrum beta-lactamase producing *Enterobacteriaceae* : an emerging public-health concern. Lancet Infect Dis 8: 159-166.

[5] Veena Krishnamurthy; Vijaykumar, G.S.; Sudeepa Kumar, M.; Prashanth, H.V.; Prakash R.; and Nagaraj, E.R (2013). Phenotypic and genotypic methods for detection of extended spectrum β-lactamase producing *Escherichia coli* and *Klebsiella pneumoniae* isolated from Ventilator Associated Pneumonia. J. Clin. Diag. Res. 7(9): 1975-1978.

[6] Rasmussen, J.W and Hoiby .N.(2004) Cefotaximases (CTX-M-ases), an expanding family of extended-spectrum β-lactamases. Can J Microbiol. 50:137-165.
[7] Al-Algamy, M.H.M.; Shibl, A.M and Tawfik, A.F.(2009). Prevalence and molecular characterization of extended-spectrum β-lactamase-producing *Klebsiella pneumoniae* in Riyadh, Saudi Arabia. Ann Saudi Med. 29(4):253–07.

[8] Holt, J. G.; Krieg, N. R.; Sneath, H. A.; Stanley, J. T. and Williams, S. T. (1994). Bergeys manual of determinative bacteriology. 9th Ed., Baltimore; Williams and Wilkins, USA.

[9] Collee, J. G.; Fraser, A. G.; Marmiom, B. P.; and Simmon, A. (1996). Mackie and McCartney Practical Medical Microbiology. 4th ed. Churchill Livingstone Inc., USA.

[10] MacFaddin, J. F. (2000). Biochemical tests for identification of medical bacteria. 3rd ed. Lippincott Williams and Wilkins, USA.

[11] Bauer, A. W.; Kirby, W.M.M.; Sherris, J.C and Track, M. (1966). Antibiotic susceptibility testing by standardized single disc method. Am.J. Clin.Pathol. 45: 493-496.

[12] Clinical and Laboratory Standards Institute (CLSI). (2010). Performance standards for antimicrobial susceptibility testing; 20th. Informational Supplement. Approved standard M07-A8. Clinical and Laboratory Standards Institute.

[13] Wadekar,M.D.;Anuradha,K.and Venkatesh,D.(2013). Phenotypic detection of ESBL and MBL in clinical isolates of *Enterobacteriaceae*. Int. J. Curr. Res. Aca . Rev. 1 (3):89-95.

[14] Pospiech, T. and Neumann, J. (1995). In genomic DNA isolation Kieser eds. John Innes Center. Norwich NR4 7UH. U.K.

[15] Paterson, L. D.; Hujer, K. M.; Hujer, A. M.; Yeiser, B. and Michael, D. (2003). Extended-spectrum β - lactamases in *Klebsiella pneumoniae* bloodstream isolates from seven countries: dominance and widespread prevalence of SHV and CTX-M type β - lactamases. J. Antimicrob. Agents Chemother. 47: 3554-3560.

[16] Tan, T.Y.; Tan, J.S.M.; Tay, H.; Chua, G.H.; Ng,L.S.Y.; and Syahidah,N. (2013).Multidrug-resistant organisms in a routine ward environment: differential propensity for environmental dissemination and implications for infection control. J.Med. Microbiology 65:766-772.

[17] Mohapatra,S.; Deb,M.; Agrawal,K.; Chopra,S. and Gaind,R.(2017).Bacteriological profile of patients and environmental samples in burn intensive care hospital: pilot study from tertiary care hospital.Indian. J.Burns.22:62-66.

[18] Al-Charrakh,A.H.;Yousif,S.Y.and Al-Janabi,H.S.(2011).Occurrence and detection of extended spectrum β-lactamases in *Klebsiella pneumoniae* isolates in Hilla,Iraq. Afri.J.Biotechnology.10(4):657-665.

[19] AL-A’ammary,M.A; Al-Khafaji,J.K. and Al-Shibly,I.K.(2017).Genotypic and phenotypic detection of some virulence genes of *Klebsiella pneumonia* in Hilla city. W. J. Pharm. Research.6:180-192.

[20] Wang, F. D.; Lin, M. L. and Liu, C. Y. (2005). Bacteraemia in patients with hematological malignancies. Chemotherapy. 51: 147-153.

[21] Goetz, A. M.; Rihs, J. D.; Chow, J. W.; Singh, N.; and Muder, R. R. (1995). An outbreak of infusion-related *Klebsiella pneumoniae* bacteremia in a liver transplantation unit. Clin. Infect. Dis. 21: 1501-1503.

[22] Al-Hilli, Z. B. (2010). Dissemination of β-lactamases in *Escherichia coli* and *Klebsiella* spp. isolated from Merjan teaching hospital in Hilla city. M. Sc. Thesis. College of Sciences, Kufa University.

[23] Bajpai,T.; Pandey,M.; Varma, M. G. and Bhatambare, S. (2017). Prevalence of TEM, SHV, and CTX-M Beta-Lactamase genes in the urinary isolates of a tertiary care hospital. Avic.J. Med. 7:12-16.

[24] Pérez-Etayo J.; Berzosa, M.; González, D and Vitas,A.I. (2018).Prevalence of Integrons and Insertion Sequences in ESBL-Producing *E. coli* Isolated from Different Sources in Navarra, Spain. Int. J. Environ. Res. Public Health. 15, 2308.