Peroxisome proliferator-activated receptor Pro12Ala polymorphism and the risks of gestational diabetes mellitus

An updated meta-analysis of 12 studies

Lihong Wang, MD, PhD1,∗, Wenting Xu, MD, MSc2, Xu Wang, PhD3

Abstract

Background: Peroxisome proliferator-activated receptors-λ (PPAR-λ) is a member of nuclear receptor superfamily and acts as a ligand-dependent transcription factor often found in the adrenal gland, the spleen, and adipose tissue. The Pro12Ala polymorphism of PPAR-λ has been associated with the risks of gestational diabetes mellitus (GDM); however, association studies have provided conflicting results. The aim of this Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) compliant meta-analysis is to reach a more up-to-date and accurate estimation of the relationship between Pro12Ala genetic polymorphisms and the risks of GDM.

Methods: Eligible studies were retrieved by searching PubMed, EMBASE, Web of Science, Ovid, WanFang, and Chinese National Knowledge Databases and selected according to a pre-defined inclusion criterion. The risk of bias was assessed using the Newcastle-Ottawa quality assessment scale. The per-allele odds ratio (OR) of risk allele proline (Pro) was compared between cases and controls in each study to describe the association between the Pro allele and an individual’s risk of GDM. The ORs were pooled using both the random-effects model (the DerSimonian and Laird method) and the fixed-effects model (the Mantel-Haenszel method) and the 95% confidence interval (95% CI) was calculated using Woolf method.

Results: The final meta-analysis included a total of 11 articles of 12 data sets consisting of 7054 controls and 2980 GDM cases. Our results demonstrate that the Pro allele is not associated with GDM (OR: across multiple populations, 95% CI: 0.98–1.24; P|Z| = 0.01; P(Q) = 0.003). In the stratified analysis by ethnicity, significantly increased risks were found for the Chinese (OR = 2.36; 95% CI: 1.47–3.78) and Korean (OR = 1.39; 95% CI: 1.00–1.93) populations.

Conclusion: These data suggest the potential role of Pro allele in the pathogenesis of GDM in Asian populations. Although the funnel plot of included studies showed asymmetry, the results using the “trim and fill” method did not alter the conclusion of this study.

Abbreviations: Ala = alanine, BMI = body mass index, CI = confidence Interval, GDM = gestational diabetes mellitus, HWE = Hardy–Weinberg equilibrium, OR = odds ratio, PPAR-λ = peroxisome proliferator-activated receptors-λ, Pro = Proline.

Keywords: genetic polymorphism, gestational diabetes mellitus, gestational diabetes, meta-analysis, peroxisome proliferator-activated receptors, Pro12Ala

1. Introduction

Gestational diabetes mellitus (GDM) is defined as the intolerance of glucose that was not present or detected before pregnancy11 and often occurs when a woman’s pancreatic function is not sufficient to overcome the diabetogenic environment of pregnancy.2 GDM is the most common metabolic disorder during pregnancy,3 and its frequency has further increased in the past decade, with increases ranging from 10% to 100% in different groups of patients and ethnicities.4–6 Recent trends such as the decrease in physical activity,7 an epidemic of obesity,8 and adoption of unhealthy lifestyles may all contribute to the increasing prevalence of GDM.9

Although the exact disease etiology of GDM is still very much unknown, evidence to date suggests that it is a careful interplay between environmental factors and genetic background.10 Considerable research has been devoted to identifying potential genetic factors that contribute to GDM, and many genome-wide association studies have been conducted.11–12 The list of variants associated includes polymorphism within genes such as CDKAL1, IGF2BP2, KCNQ1, KCNF11, MTR1B, TCF7L2, PPARG, etc.13–18

Peroxisome proliferator-activated receptors-λ (PPAR-λ) is a member of nuclear receptor superfamily and acts as a ligand-
dependent transcription factor often found in the adrenal gland, the spleen, and adipose tissue.[19–21] PPAR-\(\lambda\) forms heterodimers with the retinoid X receptors and regulates various genes involved in metabolism and adipocyte differentiation.[22,23] Furthermore, PPAR-\(\lambda\) has been shown to have diverse functions such as negatively regulates macrophage activation,[24] inhibits the production of monocytes inflammatory cytokines,[25] adipogenesis, and insulin desensitization.[26] Mutations in the PPAR-\(\lambda\) gene have been associated with obesity and diabetes-related phenotypes, such as improved insulin sensitivity and plasma leptin levels.[27–29] The polymorphism of a proline (Pro) substituted with an alanine (Ala) at Amino acid 12 is a common polymorphism. The Ala allele is associated with reduced activity of PPAR-\(\lambda\).[27] The Pro12Ala has been heavily researched for its role in obesity and type 2 diabetes and is considered one of the most common genetic risk factors for human diabetes.[30–32] However, studies have found conflicting results in Pro12Ala’s role in GDM. For example, some studies have reported such a correlation, while other studies have found otherwise. To clarify the in-conflict findings reported so far as well as heterogeneity and publication bias that exists between studies, we have conducted a meta-analysis of genetic association studies of the PPAR-\(\lambda\) Pro12Ala polymorphism to assess its effect on the risk of GDM.

Table 1
The Newcastle–Ottawa quality assessment scale for studies included in this meta-analysis.

Ref.	Adequacy of case definition	Representative of the cases	Selection of controls	Definition of controls	Comparability of cases/controls	Ascertainment of exposure	Same method of ascertainment
Cheng et al[35]							NA
Cho et al[36]							NA
Chon et al[39]							NA
Du et al[30]							NA
Heude et al[41]							NA
Lauenborg et al[42]							NA
Pappa et al[43]							NA
Shaat et al[43]							NA
Shaat et al[42]							NA
Tok et al[44]							NA
Zhu et al[37]							NA

Figure 1. PRISMA flowchart of study selection.
Table 2

Ref.	Year	Ethnicity	Genotyping method	Diagnostic criteria	Number of cases/control	Genotype distribution	Mean age of cases/control	Mean BMI of cases/control	P (HWE) for controls	Number of controls
Wang et al. Medicine (2016) 95:44 www.md-journal.com										
ref1	2010	Chinese	PCR-RFLP	OGTT confirmed	55/173	52/3/0	157/16/0	27.0/29.6	NA/NA	0.52
ref2	2010	Korean	TaqMan	OGTT confirmed	94/41	89/5/0	34/7/0	32.6/34.2	26.77/29.2	0.55
ref3	2012	Chinese	PCR-RFLP	GDM per WHO criteria	66/69	59/7/0	57/12/0	29.24/28.2	NA/NA	0.43
ref4	2011	French	TaqMan	OGTT confirmed	148/107	143/5/0	100/7/0	32.5/26.7	26.0/24.3	0.73
ref5	2009	Danish	TaqMan	OGTT confirmed	265/2383	201/60/4	1790/542/51	43.1/46.2	28.9/25.0	0.19
ref6	2004	Arabian	PCR-RFLP	OGTT confirmed	400/428	286/111/3	317/105/6	32.4/NA	28.9/NA	0.41
ref7	2007	Swedish	TaqMan	OGTT confirmed	637/1232	468/158/11	918/298/16	32.3/30.5	NA/NA	0.13
ref8	2009	Turkish	PCR-RFLP	OGTT confirmed	100/122	91/9/0	106/15/1	31.9/NA	30.9/NA	0.57
ref9	2004	Scandinavian	TaqMan	OGTT confirmed	179/180	165/14/0	155/20/5	28.1/27.4	24.6/23.4	0.00

OGTT = oral glucose tolerance testing, PCR = polymerase chain reaction, RFLP = restriction fragment length polymorphism.
The χ^2 test was used to evaluate whether there is a significant deviation from HWE among the control subjects of the study. The per-allele OR of risk allele proline (Pro) was compared between cases and controls in each study to quantitatively describe the presence of the Pro allele and an individual’s risk of GDM. The ORs were pooled using both the random-effects model (the DerSimonian and Laird method) and the fixed effects model (the Mantel–Haenszel method) as previously described,\(^\text{[45,46]}\) and 95% CI was calculated using Woolf method.\(^\text{[47]}\) The results of the random effects model were reported in this article because it takes into consideration the variation between studies. A prespecified stratified analysis was conducted to explain the heterogeneity between each study and to investigate the relationship present in a subgroup. Stratified analysis was performed for ethnicity (Caucasian, Chinese, Korean, and Middle Eastern).

Heterogeneity across individual studies was examined using Cochran χ^2 Q test.\(^\text{[48]}\) Q test was also performed to detect the heterogeneity within each subgroup. Publication bias was assessed using the linear regression approach to measure funnel plot asymmetry on the natural logarithm of OR, as described by Egger et al.\(^\text{[49]}\) All statistical analysis were carried out with Stata statistical software version 13.0 (Stata Corporation, College Station, TX). Type I error rate was set at 0.05, and all P values were for 2-sided analysis.

3. Results

3.1. Study characteristics

The search yielded a combined 69 references. Study selection process is shown in Fig. 1. The final meta-analysis included a total of 11 articles of 12 data sets,\(^\text{[14,35–44]}\) The 12 data sets included 7054 controls and 2980 GDM cases. The detailed characteristics of included studies are summarized in Table 2. Of the GDM cases, 300 were Chinese, 959 were Korean, 1559 were Caucasian, and 162 were Middle Eastern.

3.2. Meta-analysis results

Overall, there was no evidence of an association between the Pro12Ala variant and increased risks of GDM when all data sets were combined. The forest plot of GDM risk associated with the Pro allele at amino acid position 12 is shown in Figure 2. The forest plot included a total of 12 data sets with 2980 cases and 7054 controls. The OR and 95% CI for each subgroup are presented in Table 3.

Table 3

Total/Subgroup	Number of data sets	Number of cases/controls	OR (95% CI)	P (Z)	P (Q)
Total	12	2980/7054	1.10 (0.98–1.24)	0.10	0.003
Chinese	3	300/422	2.36 (1.47–3.70)	0.01	0.22
Korean	2	959/673	1.39 (1.00–1.93)	0.05	0.12
Caucasian	5	1559/5737	1.00 (0.88–1.14)	0.99	0.41
Middle Eastern	2	162/222	1.11 (0.63–1.97)	0.71	0.25

95% CI = 95% confidence interval, OR = odds ratio.
were pooled together. The per-allele OR of Pro using the random
effects models was 1.10 [95% CI: 0.98–1.24; P(Z)=0.01; P(Q)=
0.003; Fig. 2]. The main results of the meta-analysis are listed in
Table 3.

In the stratified analysis by ethnicity, significantly increased
risks were found for the Chinese (OR = 2.36; 95% CI: 1.47–3.78)
and Korean (OR = 1.39; 95% CI: 1.00–1.93) population (See Fig.
2). However, no significant associations were detected for the
Caucasian (OR = 1.00; 95% CI: 0.88–1.14) and Middle Eastern
(OR = 1.11; 95% CI: 0.63–1.97) populations.

3.3. Sensitivity analysis

Sensitivity analyses using single-study omission demonstrated
that this meta-analysis was stable (Fig. 3). Statistical signifi-
cance of the summary ORs was not modi-
cated (data not shown). Therefore, the results of this study are stable.

3.4. Publication bias

Begg’s and Egger’s funnel plots were constructed using the
standard error and compared against the OR of each study (Figs.
4 and 5). The plots suggest the possibility of publication bias
toward positive findings in smaller studies. The Duval and
Egger’s test using nonparametric “trim and fill” method was utilized to adjust for publication bias[50] and its results did show different
conclusions (data not shown). Thus, this indicates that this meta-
analysis is statistically robust.

4. Discussion

PPAR-α is a ligand-dependent transcription factor involved in
many body functions, including adipogenesis and also regulates
immune responses.[20,25] The substitution of a Pro to Ala at site
12 is associated with reduced PPAR-α activities[27] and has been
identified as a possible polymorphism involved obesity and type 2
diabetes.[30–32]

Our up-to-date meta-analysis summarizes the evidence to
date regarding the association between PPAR-α Pro12Ala and
GDM using a total of 7054 controls and 2980 GDM cases. Our
study suggests that Pro12Ala is not associated with the risks of
GDM.

In our stratified analysis by ethnicity, a strong association was
observed for both the Chinese (OR: 2.36, 95% CI: 1.47–3.78)
and Korean (OR: 1.39, 95% CI: 1.00–1.93) population but not
for the Caucasian (OR = 1.00, 95% CI = 0.88–1.14) and Middle Eastern
(OR = 1.11, 95% CI = 0.63–1.97) populations. These
results indicate that the association of the polymorphism has a
genetic and possibly environmental background factor in
contributing to the pathology of GDM. Other factors such as
differences in matching criteria and selection bias could also play
a role in the difference between ethnic groups. It should also be
noted that the analysis only included 3 Chinese studies and 2
Korean studies. This suggests the possibility that the observed
differences may be due to chance. Thus, additional studies are
required to increase the statistical power and validate the racial
difference of the Pro12Ala polymorphism and GDM risk.

The preferential publication of studies with positive results is a
significant source of bias in many meta-analyses. However, the
included studies in our meta-analysis also consist of studies with
negative conclusions. Although our funnel plots showed
asymmetry, the results using the “trim and fill” method did not alter the conclusion of this study. This suggests that the bias
may not be caused by publication bias but by potential
difference between each study’s population, language bias,
citation bias, or simply by chance.
Several limitations should be noted in interpreting our results. We were not able to adjust for potential confounding effects conferred by gender, environmental factors, and lifestyle due to the lack of data. Our results were based on unadjusted estimates—a more precise analysis could be conducted if all raw data were available. The lack of individual health and metabolic data, such as fasting plasma glucose levels, β-cell function, and indices for insulin sensitivity also forbid us from performing a more sensitive analysis.

In conclusion, the pooled results of our meta-analysis indicate that Pro12Ala is not associated with the risks of GDM. However, in the Chinese and Korean populations, the Pro allele is strongly associated with the risks for GDM. Larger association studies with strict selection criteria are required to validate this result.

References

[1] Buchanan TA, Xiang AH. Gestational diabetes mellitus. J Clin Invest 2005;115:485–91.
[2] Gilmartin ABH, Ural SA, Reppke JT. Gestational diabetes mellitus. Rev Obstet Gynecol 2008;1:129–34.
[3] Metzger BE, Coustan DR. Summary and recommendations of the Fourth International Workshop-Conference on Gestational Diabetes Mellitus. The Organizing Committee. Diabetes Care 1999;21(Suppl 2):B161–7.
[4] Ferrara A, Kamai HS, Queensby CP, et al. An increase in the incidence of gestational diabetes mellitus: Northern California, 1991-2000. Obstet Gynecol 2004;103:526–33.
[5] Dabelea D, Snell-Bergeon JK, Hartsough JT, et al. Frequency of diabetes mellitus in children and adolescents of various racial and ethnic groups in the United States, 1980-2012. Diabetes 2015;64:180–9.
[6] Ferrara A. Increasing prevalence of gestational diabetes mellitus: a public health perspective. Diabetes Care 2007;30(Suppl 2):S141–2.
[7] Wee F-Y, Nagashima K, Ohshima T, et al. Cdk5-dependent regulation of glucose-stimulated insulin secretion. Nat Med 2005;11:1104–8.
[8] Tontonoz P, Hu F, Graves RA, et al. miPPAR gamma 2: tissue-specific negative regulator of an adipocyte enhancer. Genes Dev 1994;8:1224–34.
[9] Lemberger T, Desvergne B, Wahli W. Peroxoxome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology. Annu Rev Cell Dev Biol 1996;12:335–63.
[10] Khewer SA, Forman BM, Blumberg B, et al. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Sci U S A 1994;91:7355–9.
[11] Mulherjee R, Jow L, Croston GE, et al. Identification, characterization, and tissue distribution of human peroxisome proliferator-activated receptor (PPAR) isoforms PPAR 2 versus PPAR 1 and activation with retinoid X receptor agonists and antagonists. J Biol Chem 1997;272:8071–6.
[12] Dubuquoy L, Dharancy S, Nutten S, et al. Role of peroxisome proliferator-activated receptor gamma and retinoid X receptor heterodimer in hepatogastroenterological diseases. Lancet (London, England) 2002;360:1410–8.
[13] Ricote M, Li AC, Willson TM, et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998;391:79–82.
[14] Jang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 1998;391:82–6.
[15] Fajas L, Debril MB, Auwerx J. PPAR gamma: an essential role in metabolic control. Nutr Metab Cardiovases. Dis 2001;11:64–9.
[16] Deeb SS, Fajas L, Nemoto M, et al. A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet 1998;20:234–7.
[17] Doney ASF, Fischer B, Cecil JE, et al. Association of the Pro12Ala and C1431T variants of PPARγ and their haplotypes with susceptibility to Type 2 diabetes. Diabetologia 2004;47:535–8.
[18] Meirhaeghe A, Fajas L, Helbecque N, et al. A genetic polymorphism of the peroxisome proliferator-activated receptor gamma gene influences plasma leptin levels in obese humans. Hum Mol Genet 1998;7:435–40.
[19] Altschuler D, Hirschhorn JN, Klannemark M, et al. The common Pro12Ala polymorphism of PPARγ2 is associated with decreased risk of type 2 diabetes. Nat Genet 2000;26:76–80.
[20] Lohmueller KE, Pearce CL, Pike M, et al. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 2003;33:177–82.
[21] Tönjes A, Scholz M, Loefler M, et al. Association of Pro12Ala polymorphism in peroxisome proliferator-activated receptor gamma gene with pre-diabetic phenotypes: meta-analysis of 37 studies on nondiabetic individuals. Diabetes Care 2006;29:2489–97.
[22] Wells G, Shea B, O’connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Available from: http://www.ohri.ca/programs/clinical_epidemiology/nosmanual.pdf.
[23] Lo CK-L, Mertz D, Loeb M, et al. The Newcastle-Ottawa Scale: comparing reviewers’ to authors’ assessments. BMC Med Res Methodol BioMed Central. 2014;14:45.
[24] Cheng Y, Ma Y, Peng T, et al. [Genotype discrepancy between maternal and fetal Pro12Ala polymorphism of PPARγ gene and its association with gestational diabetes mellitus]. Zhonghua Fu Chan Ke Za Zhi 2010;45:170–3.
[25] Du J, Xie F, Xie X, et al. [Study on the correlation between PPARγ gene polymorphisms with gestational diabetes mellitus in Han Chinese population]. PLoS One 2011;6:e26953.
[26] Groenewoud MJ, Dekker JM, Fritsche A, et al. Variants of CDKAL1 and IGF2BP2 affect first-phase insulin secretion during hyperglycaemic clamps. Diabetologia 2008;51:1659–63.
[27] Lauzenberg J, Grapow N, Damm P, et al. Common type 2 diabetes risk gene variants associate with gestational diabetes. J Clin Endocrinol Metab 2009;94:145–50.
[28] Steinhoffdottir V, Thorleifsson G, Reynisdottir I, et al. A variant in Cdk5 influences insulin response and risk of type 2 diabetes. Nat Genet 2007;39:770–7.
[29] Grapow N, Rose CS, Andersson EA, et al. Studies of association of variants near the HHEX, CDKNA2/B, and IGF2BP2 genes with type 2 diabetes and impaired insulin release in 10,705 Danish subjects: validation and extension of genome-wide association studies. Diabetes 2007;56:3105–11.
[30] Tam CHT, Ho JSK, Wang Y, et al. Common polymorphisms in MTNR1B, G6PC2 and GCK are associated with increased fasting plasma glucose and impaired beta-cell function in Chinese subjects. PLoS One 2010;5:e11428.
[31] Wang et al. Medicine (2016) 95:44
[32] Tontonoz P, Hu F, Graves RA, et al. miPPAR gamma 2: tissue-specific negative regulator of an adipocyte enhancer. Genes Dev 1994;8:1224–34.
[42] Shaat N, Lernmark A, Karlsson E, et al. A variant in the transcription factor 7-like 2 (TCF7L2) gene is associated with an increased risk of gestational diabetes mellitus. Diabetologia 2007;50:972–9.

[43] Shaat N, Ekelund M, Lernmark A, et al. Genotypic and phenotypic differences between Arabian and Scandinavian women with gestational diabetes mellitus. Diabetologia 2004;47:878–84.

[44] Tok EC, Erunc D, Bilgin O, et al. PPAR-gamma2 Pro12Ala polymorphism is associated with weight gain in women with gestational diabetes mellitus. Eur J Obstet Gynecol Reprod Biol 2006;129:25–30.

[45] DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177–88.

[46] Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 1959;22:719–48.

[47] Woolf B. On estimating the relation between blood group and disease. Ann Hum Genet 1955;19:251–3.

[48] Cochran WG. The combination of estimates from different experiments. Biometrics 1954;10:101–29.

[49] Egger M, Smith GD, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629–34.

[50] Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000;56:455–63.