A real-time heat strain index using foot temperature and heart rate while wearing personal protective equipment in hot environments

Joo-Young Lee1*, Siyeon Kim1, Joonhee Park1, Yutaka Tochihara2

From 15th International Conference on Environmental Ergonomics (ICEE XV)
Portsmouth, UK. 28 June - 3 July 2015

Introduction
Over the past century, a number of indices to assess heat stress and strain in hot environments have been developed, but there are few non-invasive indices to evaluate the heat strain of workers wearing personal protective equipment. ISO 7933 [1] presents an analytical method to determine heat stress using calculation of the predicted heat strain but the calculation is complicated to apply for real-time monitoring. Moran and colleagues [2,3] derived a simple and useful index based on rectal temperature (T_{re}) and heart rate (HR) (Physiological Strain Index, PSI) but the index is limited at work in fields because of the direct measurement of rectal temperature. The purpose of this study was to present a non-invasive method to monitor heat strain in real-time using foot temperature (T_{foot}) and HR of workers wearing personal protective equipment with protective boots in hot environments.

Methods
Three experimental dataset were used in this study. [Series A] Eight male students [48.0 ± 16.7 ml.kg$^{-1}$.min$^{-1}$ in VO$_{2peak}$ and 193 ± 8 bpm in HR$_{max}$] participated in 12 experimental conditions: two activities × three clothing levels × two air temperatures (25°C and 32°C with 50%RH). Three types of experimental ensembles were employed: Control (total clothing mass of 590 g except running shoes, 62 % covered of BSA, CBSA [4]), Tyvek condition (787 g, 98 % CBSA), and plastic coverall condition (1,245 g, 98 % CBSA, no evaporation except the face). Two levels of metabolic activities were assigned at 60-min rest and exercise on the treadmill at 6~8 km.h$^{-1}$.

[Series B] Eight male students different to those in Series A participated in Series B [49.2 ± 6.6 ml.kg$^{-1}$.min$^{-1}$ in VO$_{2peak}$ and 193 ± 7 bpm in HR$_{max}$]. Experimental conditions consisted of an eight conditions: four firefighter’s protective equipment conditions (three types of self-contained breathing apparatus (SCBA) conditions were employed with no SCBA condition) × two air temperatures (T_a of 22°C and 32°C with 50%RH). Participants conducted a 30 min exercise on the treadmill at 6 km.h$^{-1}$.

[Series C] Twelve male firefighters [45.6 ± 7.6 ml.kg$^{-1}$.min$^{-1}$ in VO$_{2peak}$ and 189 ± 7 bpm in HR$_{max}$] participated in two exercise conditions (exercise on the treadmill at 5.5 km.h$^{-1}$ with/without break) at T_a of 32°C with 43% RH. T_{re}, eight skin temperatures including T_{foot}, HR, total sweat rate, subjective perceptions were recorded in all experiments (96 trials in Series A + 64 trials in Series B + 24 trials in Series C = 184 trials). We modified the PSI [2] using T_{foot} and HR, and the modified PSI showed a significant relationship with the original PSI ($r = 0.756$, $P<0.05$) while exercise wearing PPE at T_a of 32°C.

Results
T_{foot} of 38.0°C and 38.5°C were determined as Alarm and Danger criteria, respectively. The Alarm level was set at the point that T_{foot} reached T_{re} during exercise. This level was limited to the conditions of wearing full personal protective equipment (98 % CBSA) at T_a of 32°C. The Danger level was determined at the moments that extreme subjective perceptions (very uncomfortable, very hot, and very hard) were given. The original PSI [2,3] was modified using T_{foot} and HR, and the modified PSI showed a significant relationship with the original PSI ($r = 0.756$, $P<0.05$) while exercise wearing PPE at T_a of 32°C.

* Correspondence: leex3140@snu.ac.kr
1College of Human Ecology, Seoul National University, Seoul, Republic of Korea
Full list of author information is available at the end of the article

© 2015 Lee et al; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Conclusion

The modified PSI using non-invasive variables are valid to predict heat strain for workers wearing full protective equipment including protective boots in hot environments, but cannot be applied to workers wearing light work wear in thermal neutral or cool environments.

Authors’ details

1College of Human Ecology, Seoul National University, Seoul, Republic of Korea. 2Faculty of Design, Kyushu University, Fukuoka, Japan.

Published: 14 September 2015

References

1. ISO 7933: Ergonomics of the thermal environment - Analytical determination and interpretation of heat stress using calculation of the predicted heat strain. International Organization for Standardization 2004.
2. Moran DS, Shitzer A, Pandolf KB: A physiological strain index to evaluate heat stress. Am J Physiol 1998a, 275:R129-R134.
3. Moran DS, Montain SJ, Pandolf KB: Evaluation of different levels of hydration using a new physiological strain index. Am J Physiol 1998b, 275:R854-R860.
4. Lee JY: A study on the body surface area of Korean adults. PhD dissertation, Seoul National University, 2005, 191-207.

doi:10.1186/2046-7648-4-S1-A104

Cite this article as: Lee et al: A real-time heat strain index using foot temperature and heart rate while wearing personal protective equipment in hot environments. Extreme Physiology & Medicine 2015 4(Suppl 1):A104.

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit