Toward layered MoS$_2$ anode for harvesting superior lithium storage†

Ying Zhang, H. Ponnuru, Q. Jiang, H. Shan, H. Maleki, K. Sari, W. Li, J. Wang, J. Hu, J. Peng and X. Li

As a typical transition metal dichalcogenide (TMD), molybdenum disulphide (MoS$_2$) has become one of the most promising anode materials for lithium-ion batteries (LIBs) due to its desirable electrochemical properties. However, the production of commercial MoS$_2$ is limited by the problem of agglomeration. Thus, several methods have been developed to prepare the MoS$_2$ nanosheets with the assistance of ultrasonics. Simultaneously, the as-prepared MoS$_2$ nanosheets and commercial bulk MoS$_2$ were analysed under multiple spectroscopic techniques and a series of electrochemical tests to understand the dependence of electrochemical performance on structural properties. When used as anode materials for LIBs, the obtained MoS$_2$ nanosheets provide a reversible capacity of 716 mA h g$^{-1}$ at 100 mA g$^{-1}$ after 285 cycles, and demonstrated an excellent capacity retention rate of up to 80%. Compared with that of commercial MoS$_2$ (14.8%), the capacity retention rate of our MoS$_2$ nanosheets has a significant improvement. This work explored the ability of few-layered MoS$_2$ nanosheets in the field of LIBs while suggesting the commercialization of MoS$_2$ by an ultrasonicated ball milling exfoliation technique.

Introduction

Lithium-ion batteries (LIBs) have become the most indispensable item of energy storage to substitute for electronic devices and automobile industries. Accompanying the people’s continuing demand for high energy and power densities and a keen motive to lower the environmental impact, the components and commercialization of LIBs have turned out to be a topic of extensive scientific research for a couple of decades. Of late, numerous LIB anode materials, ranging from carbonaceous material like graphite to transition metal-based two-dimensional materials (TMDs) like molybdenum disulphide (MoS$_2$), molybdenum selenide (MoSe$_2$), molybdenum trioxide (MoO$_3$) and tungsten disulphide (WS$_2$), are being investigated due to their exceptional crystal structures that contribute to remarkable electrochemical, electrical and optical properties. As conventional graphite anodes produced a considerably lower theoretical capacity of 372 mA h g$^{-1}$, the latest TMDs have portrayed a higher capacity of over 500 mA h g$^{-1}$ exceeding those of the bulk equivalents. MoS$_2$ has been verified as one of the most assuring anode materials by exhibiting a theoretical capacity of over 669 mA h g$^{-1}$ with a low reaction potential. These unique properties could potentially be applicable in fields such as capacitors, lubricants, catalysts and even as an extraordinary anode material for LIBs. The morphology of MoS$_2$ nanosheets comprises covalently bonded sulphur–molybdenum–sulphur atoms which are weakly stacked by van der Waals forces in order to form layers of two dimensions. The interaction of these layers enables the lithium ions to diffuse between the layers through intercalation without an obvious expansion in volume. These reported insights of MoS$_2$ have aided us to understand the influence of morphology on electrochemical properties, the intercalation capacity of lithium, and the lithiation and delithiation cycle of LIB.

Furthermore, a minimal layering of MoS$_2$ nanosheets has demonstrated an extended reversibility capacity while supporting a faster Li ion intercalation process compared with that of bulk MoS$_2$. This excellent storage response with a negligible Li ion diffusion limit is due to the surface area offered by
nanosheets of fewer than 10 layers with adequate interlayer and interplanar spacing. Nevertheless, agglomeration of the nanosheets has been shown to compromise the electrochemical performance of the cell in numerous cases. Thus, an effective synthesis is essential for fabricating high performance MoS2 anodes.

There are various bottom-up and top-down approaches to produce MoS2 but attaining a few layers of nanosheets continued to be a massive challenge through the years. Generally, the bottom-up approach requires an extreme energy intensive post-treatment under stringent conditions, making it a least preferred process. In spite of low yields, the top-down approach is commonly preferred on account of the bulk material abundance. Liquid phase exfoliation (LPH), mechanical exfoliation (ME), ball milling (BM) and alkali-ion intercalation (AI) are a few processes chosen to create desirable layers, but there are advantages and disadvantages associated with these techniques in terms of process conditions and quality of nanosheets. All of the mentioned techniques, ball milling was recognized as the most scalable and commercialized method of nanosheet production. However, the pure ball milling method cannot give full play to the advantages of the layered structure of MoS2. Additionally, ball milling has the ease of coupling with numerous auxiliary methods to obtain nanostructure-like sheets and flakes of the desired dimensions and composition by altering the process conditions. Therefore, we proposed ultrasonic-assisted ball milling. The preparation method reduces the size of MoS2 by ball milling on the one hand, and obtains few-layer MoS2 by ultrasonic peeling on the other hand. The corresponding discussion is later in the paper.

Therefore, this paper aims to report the potential of minimal-layered MoS2 nanosheets, fabricated from a simple ultrasonicated ball milling exfoliation method, over commercial bulk MoS2. The as-prepared MoS2 material was demonstrated to be composed of only 4-8 layers and investigated under multiple spectroscopic techniques to understand the structural and morphological properties in comparison with those of commercial bulk MoS2. Benefiting from the non-agglomerated lamella structure, the electrochemical performance of the MoS2 anode is significantly improved by the controllable exfoliation of MoS2 compared with that of commercial MoS2. Besides, the mechanism involved in the synthesis of MoS2 nanosheets is illustrated to show the impact of the selected approach on structural properties and the ease of fabrication. Collectively, this provides an effective strategy for the exfoliation of other bulk materials, which has great significance for future material design and applications in energy conversion and storage devices.

Experimental

Exfoliation of MoS2

Firstly, 500 mg of commercial bulk MoS2 with a 325 mesh was dispersed in 5 mL of anhydrous ethanol solvent. The mixture was ball-milled continuously for 12 h at a speed of 450 rpm on a planetary mill with zirconia grinding balls and vials. The obtained dispersion was then ultrasonicated at ambient temperature for 5 h to produce a colloidal suspension of MoS2 nanosheets. The suspension was subjected to centrifugation at 5000 rpm for 15 min to remove any large particles, including partially exfoliated bulk MoS2 and unexfoliated residual bulk MoS2.

Fabrication of MoS2 anode electrode

According to previous reports, a vacuum filtration method was employed to obtain the MoS2 nanosheet anode on Celgard 2400 as a LIB polypropylene separator. Following the mentioned procedure, the as-prepared suspension was filtered through a porous filter paper, Celgard 2400 polypropylene separator, forming the MoS2 film. Subsequently, the film was dried in a vacuum chamber at 80 °C for 72 h, and the MoS2 anode electrode was obtained. In parallel, for comparison, the commercial MoS2 anode electrode was prepared by slurry-casting on Cu foils that served as current collectors. The slurry contained 80 wt% bulk MoS2, 10 wt% carbon black (CB) and 10 wt% poly(vinylidene) fluoride (PVDF) binder in a N-methylpyrrolidinone (NMP) solvent. The obtained electrode was dried in a vacuum at 90 °C overnight. The electrodes were then subjected to material characterization techniques.

Material characterization

The morphology of the bulk and prepared MoS2 was analysed in a field emission scanning electron microscope (FE-SEM, Hitachi S-4800), transmission electron microscope (TEM, Hitachi H-7000), and high-resolution transmission electron microscope (HRTEM, JEOL 2010F). The powder X-ray diffraction (XRD) pattern was recorded by a Rigaku RU-200BVH diffractometer using a Co-Kα source (λ = 1.7892 Å).

Electrochemical measurements

Coin-type electrochemical half-cells were used; the working electrode was the prepared anode electrode and the counter electrode was a lithium foil. The electrolyte for the system consisted of 1 M LiPF6 salt dissolved in ethylene carbonate (EC) : diethyl carbonate (DEC) : ethyl methyl carbonate (EMC) with a volume ratio of 1 : 1 : 1. The CR-2032 button battery was assembled in a dry glove box filled with argon (moisture and oxygen concentration < 1 ppm). A Princeton ParSTAT MC 2000A was utilized to perform cyclic voltammetry (CV) at a potential of 0.01 to 3.0 V (vs. Li/Li+) at a scan rate of 0.1 mV s⁻¹. The charging and discharging characteristics were tested using a Neware CT-4000 battery tester at room temperature and constant current between 0.01 and 3.0 V (vs. Li/Li⁺).
(002) and confirms the well-stacked layered structure formation.21,54–56 Additionally, the larger peak widths clearly convey that the obtained MoS\textsubscript{2} has a smaller particle size compared with that of bulk MoS\textsubscript{2}.21,55

Raman spectra of the bulk and as-prepared MoS\textsubscript{2} are compared in Fig. 1b, in which the spectra show the same set of peaks. The two typical Raman active modes located at 380 cm-1 and 406 cm-1 can be attributed to \(E_{1g}^2\) and \(A_{1g}\), resulting from the inlayer vibration of molybdenum and sulphur atoms along with the vibration of sulphides in the out-of-plane direction.58–61 Furthermore, Fig. 1c–h depict the elemental mappings of the bulk and as-prepared MoS\textsubscript{2}, where Fig. 1c and f are the overall images of the bulk and as-prepared MoS\textsubscript{2}. In the following images, it is worth noting that the atoms of Mo and S are evenly distributed in the two samples. The energy dispersive X-ray spectroscopy (EDX) associated with the functioning of HRTEM (Fig. S1†) shows that the as-prepared MoS\textsubscript{2} consists only of Mo and S, which further confirms the Mo : S atomic ratio of 1 : 2, as agreed with the elemental composition of MoS\textsubscript{2}.65

Moreover, SEM was employed to observe the morphology of the bulk MoS\textsubscript{2} (shown in Fig. S2†). The random-shaped MoS\textsubscript{2} displayed a sheet-like morphology with a thickness of ca. 1 \(\mu\)m. The as-prepared MoS\textsubscript{2}, as shown in Fig. 2a, exhibits a different morphology from that of the bulk one (Fig. S2†) signifying the essence of ball milling that decreased the size of MoS\textsubscript{2} nanosheets dramatically. Similarly, the TEM image of the as-prepared MoS\textsubscript{2} in Fig. 2b confirms the presence of thin MoS\textsubscript{2} nanosheets. HRTEM (Fig. 2c) showcases the lateral view of a few lamellae structures with visible lattice fringes. Evidently, each film is composed of 4–8 MoS\textsubscript{2} layers, that is, significantly reduced compared with those in the bulk MoS\textsubscript{2} structure or any MoS\textsubscript{2} nanosheet structures reported earlier. A characteristic peak that belongs to the [002] direction of the MoS\textsubscript{2} nanosheets is demonstrated in Fig. 2d. The interlayer spacing is measured to be \(\sim 0.66\) nm and is consistent with the (002) plane of a layered hexagonal MoS\textsubscript{2}. This result reveals that each molybdenum atom layer is sandwiched between two sulphur atom layers. In addition to the interlayer spacing, the HRTEM image in Fig. 2e clearly illustrates the lattice fringes of MoS\textsubscript{2} nanosheets with an elaborative crystal structure, in which the interplanar distances were measured to be 0.27 nm, corresponding to the (100) plane of MoS\textsubscript{2}.47,62 The several bright rings in Fig. 2f, as shown by Selected Area Electron Diffraction (SAED), coincide with the hexagonal MoS\textsubscript{2} structure’s diffraction pattern by further indicating the good stacking of MoS\textsubscript{2} nanosheets with different crystallographic orientations.63,64 Additionally, the diffraction dots within the diffraction rings were identified as (002), (100), (103), (105), and (110) planes, which confirms the high crystallinity of the MoS\textsubscript{2} nanosheets.65

Through the above material characterization techniques and analysis, it can be deduced that the observations that emerged from the exfoliated MoS\textsubscript{2} nanosheets via ultrasonic assisted ball milling process are admirable and satisfactory for commercial usage in LIBs. The desirable structural characteristics are possible due to the approach proposed and employed in this study to synthesize MoS\textsubscript{2} nanosheets (as displayed in Fig. 3). After stage I, the layered MoS\textsubscript{2} was dispersed into ethanol and ball-milled for 12 h. That the shear force from ball milling is superior to that of the weak van der Waals interactions between the MoS\textsubscript{2} layers resulted in the easy exfoliation of some MoS\textsubscript{2} layers during the process of ball milling.66 In the case of un-exfoliated MoS\textsubscript{2}, the ethanol solvent intercalated between the MoS\textsubscript{2} layers, resulting in an increased layer distance. The
Figure 3 Schematic illustration for MoS2 nanosheet synthesis: (I) ball milling; (II) ultrasonic exfoliation; (III) untreated.

Exfoliation of MoS2 inevitably occurred when ultrasounds was employed (stage II). However, commercial MoS2 layers were stacked together via relatively weak van der Waals interactions, as represented in stage III.

Lithium storage properties of bulk and as-prepared MoS2 were studied by a series of electrochemical tests, such as cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) testing. Fig. 4 shows the voltage range from 0.01 V to 3.00 V. First, the CV of bulk MoS2 and the prepared MoS2 under a scan rate of 0.1 mV s⁻¹ were evaluated. The CV curves of the two samples were performed and evaluated as for the first scan. Firstly, in the first cathodic scan, the two peaks at 0.89 and 1.08 V correspond to the insertion of Li⁺ with the formation of LiₓMoS₂ (MoS₂ + xLi⁺ + xe⁻ = LiₓMoS₂) for the bulk and as-prepared MoS₂, respectively. Inclusively, another obvious reduction peak (positioned at 0.35 and 0.52 V for bulk and as-prepared MoS₂, respectively) indicates the existence of an electrochemical reduction that originates from a conversion reaction (LiₓMoS₂ + 4Li⁺ + 4e⁻ = 2Li₂S + Mo/Li), in which the formation of Mo metal along with the Li₂S from LiₓMoS₂ occurs. In the opposite process (anodic scan), one obvious oxidation peak due to the oxidation of Li₂S into sulphur shows a similar reaction potential at ~2.30 V for two anodes. If a comparative analysis is carried out of the second and third CV curves of bulk MoS2, a big difference can be observed, which reveals a poor cyclic performance. In the case of the as-prepared MoS2, these two CV curves nearly overlap, verifying superior cyclic performances.

For good measure, the lithium storage behaviour of the MoS2 anode was further measured by GCD testing via a CR-2032 coin. Fig. 4c and d illustrate the bulk and as-prepared charge–discharge curves of MoS₂, respectively. The first discharge curves reveal two insertion plateaus, which shift in the subsequent cycles. In the subsequent charging curve, an obvious plateau due to delithiation was noticed, which corresponds to the CV curve.

Although the charge/discharge profiles of the as-prepared MoS₂ have not considerably changed through cycling (as depicted in Fig. 4e), those of the bulk MoS₂ anode were altered after 10 cycles. In the first cycle, the bulk MoS₂ anode reported charge and discharge capacities of 581 mA h g⁻¹ and 777 mA h g⁻¹, respectively, while those values of the as-prepared MoS₂ were 925 mA h g⁻¹ and 657 mA h g⁻¹. It is noteworthy that the irreversible capacity in the first cycle is high, which may arise from two aspects: (1) a solid electrolyte intermediate phase (SEI) is formed on the anode surface due to the electrolyte’s decomposition; (2) during the lithium insertion in MoS₂ nanosheets, lithium ions trapped in the nanoclusters or defect sites/intratubal sites cause the irreversible capacity.

According to Fig. 4e, at a current density of 100 mA g⁻¹, the cycle performances of the bulk and the as-prepared MoS₂ are different. Noticeably, the as-prepared MoS₂ still delivers a remarkable specific energy capacity after 100 cycles, while the bulk MoS₂ anode shows an obvious capacity decay over 100 cycles. It is evident that the bulk MoS₂ shows a much lower capacity retention (14.8%) than the as-prepared MoS₂ (80.0%). The as-prepared MoS₂ still maintained a high capacity of 716 mA h g⁻¹ in the 285th cycle (see the inset of Fig. 4e) with an average of 0.030% capacity loss per cycle, suggesting its excellent cycling performance compared with those of other MoS₂ based anode materials (Table S1†). Inclusively, the excellent cycle performance of the as-prepared MoS₂ composed of 4–8 layers is attributed to the more facilitated diffusion in the liquid phase.
electrolyte and an increase in the electrolyte–electrode contact area compared with that of the bulk one.73–75 Moreover, the presence of only a few layers decreases the solid-state transport length of the lithium diffusion.76,77 Considering the results shown in Fig. 4, the as-prepared MoS\textsubscript{2} achieves an outstanding reversible synthesis method on MoS\textsubscript{2} nanosheets for both the structural cycles. This lead to an understanding of the effective ultra-thin layered anodes with a promising performance for LIB application.

Conclusions

The MoS\textsubscript{2} nanosheets we obtained through a simple ball milling approach are only a few (4–8) layers. As an anode of LIBs, the as-prepared MoS\textsubscript{2} achieves an outstanding reversible capacity of 716 mA h g−1 after 285 cycles, which reveals an improved cyclic performance and higher energy capacity compared with those of the bulk material with a measured specific capacity of only 94 mA h g−1 after observation for 100 cycles. This lead to an understanding of the effect of the synthesis method on MoS\textsubscript{2} nanosheets for both the structural properties and the electrochemical performance. The proposed simple exfoliation process in this study can be potentially used for other layered materials, such as WS\textsubscript{2}, SnS\textsubscript{2}, MoSe\textsubscript{2}, etc. Moreover, this research can be of great importance to create cost-effective ultra-thin layered anodes with a promising performance for LIB application.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors gratefully acknowledge the financial support from the Natural Science Foundation of Qinghai Province of China (2020-ZJ-910), the National Natural Science Foundation of China (52072298 and 51802261), and the Natural Science Foundation of Shaanxi Province (2020JC-41).

References

1 V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, Energy Environ. Sci., 2011, 4, 3243–3262.
2 C. Wang, C. Zhan, X. Ren, R. Lv, W. Shen, F. Kang and Z.-H. Huang, RSC Adv., 2019, 9, 42316–42323.
3 Y. Li, X. Yin, X. Huang, X. Liu and W. Wu, Int. J. Hydrogen Energy, 2020, 45, 16489–16499.
4 Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman and M. S. Strano, Nat. Nanotechnol., 2017, 12, 699–712.
5 K.-A. N. Duerloo, Y. Li and E. J. Reed, Nat. Commun., 2014, 5, 1–9.
6 W. Zhao, J. Pan, Y. Fang, X. Che, D. Wang, K. Bu and F. Huang, Chem. Eur. J., 2018, 24, 15942–15954.
7 L. Jiang, B. Lin, X. Li, X. Song, H. Xia, L. Li and H. Zeng, ACS Appl. Mater. Interfaces, 2016, 8, 2680–2687.
8 J. R. Dahn, T. Zheng, Y. Liu and J. Xue, Science, 1995, 270, 590–593.
9 T. Stephenson, Z. Li, B. Olsen and D. Mitlin, Energy Environ. Sci., 2014, 7, 209–231.
10 H. Zhao, H. Zeng, Y. Wu, S. Zhang, B. Li and Y. Huang, J. Mater. Chem. A, 2015, 3, 10466–10470.
11 G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee and L. Colombo, Nat. Nanotechnol., 2014, 9, 768–779.
12 F. Xia, H. Wang, D. Xiao, M. Dubey and A. Ramasubramaniam, Nat. Photonics, 2014, 8, 899–907.
13 O. V. Yazyev, Rep. Prog. Phys., 2010, 73, 056501.
14 D. Deng, K. Novoselov, Q. Fu, N. Zheng, Z. Tian and X. Bao, Nat. Nanotechnol., 2016, 11, 218–230.
15 F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff and V. Pellegrini, Science, 2015, 347, 1246501.
16 J. Xiao, D. Choi, L. Cosimbescu, P. Knoch, J. Liu and J. P. Lemmon, Chem. Mater., 2010, 22, 4522–4524.
17 J. Yuan, J. Zhu, R. Wang, Y. Deng, S. Zhang, C. Yao, Y. Li, X. Li and C. Xu, Chem. Eng. J., 2020, 125592.
18 H. Tan, Y. Feng, X. Rui, Y. Yu and S. Huang, Small Methods, 2020, 4, 1900563.
19 X. Man, P. Liang, H. Shu, L. Zhang, D. Wang, D. Chao, Z. Liu, X. Du, H. Wan and H. Wang, J. Phys. Chem. C, 2018, 122, 24600–24608.
20 M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demšar, P. Stadelmann, F. Lévy and D. Mihailovic, Science, 2001, 292, 479–481.
21 M. Chhowalla and G. A. Amaratunga, Nature, 2000, 407, 164–167.
22 E. Pomerantseva and Y. Gogotsi, Nat. Energy, 2017, 2, 1–6.
23 C. Feng, J. Ma, H. Li, R. Zeng, Z. Guo and H. Liu, Mater. Res. Bull., 2009, 44, 1811–1815.
24 Q. Su, S. Wang, M. Feng, G. Du and B. Xu, Sci. Rep., 2017, 7, 1–10.
25 J. Kong, C. Zhao, Y. Wei and X. Lu, ACS Appl. Mater. Interfaces, 2015, 7, 24279–24287.
26 C. Liang, X. Sui, A. Wang, J. Chang, W. Zhang, Z. Chen, W. Jiang, Y. Ma, J. Zhang and X. Liu, Adv. Mater. Interfaces, 2020, 7, 2001130.
27 X. Li, J. Yang, Y. Hu, J. Wang, Y. Li, M. Cai, R. Li and X. Sun, J. Mater. Chem., 2012, 22, 18847–18853.
28 G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Berglin, R. Menzel, M. S. Shaffer and J. N. Coleman, ACS Nano, 2012, 6, 3468–3480.
29 J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De and R. J. Smith, Science, 2011, 331, 568–571.
30 H. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati and C. Rao, Angew. Chem., Int. Ed., 2010, 49, 4059–4062.
31 Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey and H. Zhang, Angew. Chem., 2011, 123, 11289–11293.
32 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, Nat. Nanotechnol., 2011, 6, 147–150.
33 C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone and S. Ryu, ACS Nano, 2010, 4, 2695–2700.
34 R. Liu, D. Wu, X. Feng and K. Müllen, J. Am. Chem. Soc., 2011, 133, 15221–15223.
35 A. Ciesielski and P. Samori, Chem. Soc. Rev., 2014, 43, 381–398.
36 X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang and A. Pan, Nat. Nanotechnol., 2014, 9, 1024–1030.
37 M.-Y. Li, Y. Shi, C.-C. Cheng, L.-S. Lu, Y.-C. Lin, H.-L. Tang, M.-L. Tsai, C.-W. Chu, K.-H. Wei and J.-H. He, Science, 2015, 349, 524–528.
38 V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano and J. N. Coleman, Science, 2013, 340, 1226419.
39 H. Liu, L. Liu, M. Yi, Z. Shen, S. Liang, X. Zhang and S. Ma, Chem. Eng. J., 2017, 311, 293–301.
40 H. Li, J. Wu, Z. Yin and H. Zhang, Acc. Chem. Res., 2014, 47, 1067–1075.
41 G. S. Bang, K. W. Nam, J. Y. Kim, J. Shin, J. W. Choi and S.-Y. Choi, ACS Appl. Mater. Interfaces, 2014, 6, 7084–7089.
42 A. Jawaid, D. Nepal, K. Park, M. Jespersen, A. Qualley, P. Mirau, L. F. Drummy and R. A. Vaia, Chem. Mater., 2016, 28, 337–348.
43 A. Gupta, V. Arunachalam and S. Vasudevan, J. Phys. Chem. Lett., 2016, 7, 4884–4890.
44 X. Zhang, Z. Lai, C. Tan and H. Zhang, Angew. Chem., Int. Ed., 2016, 55, 8816–8838.
45 G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen and M. Chhowalla, Nano Lett., 2011, 11, 5111–5116.
46 D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda and M. Chhowalla, Nano Lett., 2013, 13, 6222–6227.
47 Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang and L. J. Li, Adv. Mater., 2012, 24, 2320–2325.
48 J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen, J. Xia, H. Wang, Y. Xie, H. Yu and J. Lei, Nature, 2018, 556, 355–359.
49 C. Han, Y. Zhang, P. Gao, S. Chen, X. Liu, Y. Mi, J. Zhang, Y. Ma, W. Jiang and J. Chang, Nano Lett., 2017, 17, 7767–7772.
50 S. Mateti, M. M. Rahman, P. Cizek and Y. Chen, RSC Adv., 2020, 10, 12754–12758.
51 F. Yang, X. Feng, P.-A. Glans and J. Guo, APL Mater., 2021, 9, 050903.
52 S. Kim, W. Park, D. Kim, J. Kang, J. Lee, H. Y. Jang, S. H. Song, B. Cho and D. Lee, Nanomaterials, 2020, 10, 1045.
53 A. Tayebi, N. Ogino, T. Hayashi and N. Komatsu, Nanotechnology, 2019, 31, 075704.
54 D. He, Y. Yang, Z. Liu, J. Shao, J. Wu, S. Wang, L. Shen and N. Bao, Nano Res., 2020, 13, 1029–1034.
55 Y. Teng, H. Zhao, Z. Zhang, Z. Li, Q. Xia, Y. Zhang, L. Zhao, X. Du, Z. Du and P. Lv, ACS Nano, 2016, 10, 8526–8535.
56 X. L. Li, J. P. Ge and Y. D. Li, Chem.–Eur. J., 2004, 10, 6163–6171.
57 J. I. Langford and A. Wilson, J. Appl. Crystallogr., 1978, 11, 102–113.
58 J. Wang, Z. Shen and M. Yi, New J. Chem., 2020, 44, 15887–15894.
59 G. Ke, H. Chen, J. He, X. Wu, Y. Gao, Y. Li, H. Mi, Q. Zhang, C. He and X. Ren, Chem. Eng. J., 2021, 403, 126251.
60 Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan and J. Lou, Small, 2012, 8, 966–971.
61 V. Koroteev, L. Bulusheva, A. Okotrub, N. Yudanov and D. Vyalikh, Phys. Status Solidi B, 2011, 248, 2740–2743.
62 F. Chen, D. Shi, M. Yang, H. Jiang, Y. Shao, S. Wang, B. Zhang, J. Shen, Y. Wu and X. Hao, Adv. Funct. Mater., 2020, 2007132.
63 Z. Deng, H. Jiang, Y. Hu, Y. Liu, L. Zhang, H. Liu and C. Li, Adv. Mater., 2017, 29, 1603020.
64 A. Zak, Y. Feldman, V. Lyakhovitskaya, G. Leitus, R. Popovitz-Biro, E. Wachtel, H. Cohen, S. Reich and R. Tenne, J. Am. Chem. Soc., 2002, 124, 4747–4758.
65 C. M. Zelenskii and P. K. Dorhout, J. Am. Chem. Soc., 1998, 120, 734–742.
66 W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang and G. Chen, J. Mater. Chem., 2010, 20, 5817–5819.
67 B. Cook, H. S. Kim, Y. Yan, J. S. Ko, S. Robbennolt, B. Dunn and S. H. Tolbert, Adv. Energy Mater., 2016, 6, 1501937.
68 R. Zhao, Y. Han, W. Li, J. Li, M. Chen and L. Chen, Chem. Commun., 2020, 56, 3007–3010.
69 Q. Wang and J. Li, J. Phys. Chem. C, 2007, 111, 1675–1682.
70 X. Fang, X. Yu, S. Liao, Y. Shi, Y.-S. Hu, Z. Wang, G. D. Stucky and L. Chen, Microporous Mesoporous Mater., 2012, 151, 418–423.
71 C. Chen, X. Xie, B. Anasori, A. Sarycheva, T. Makaryan, M. Zhao, P. Urbankowski, L. Miao, J. Jiang and Y. Gogotsi, Angew. Chem., Int. Ed., 2018, 57, 1846–1850.
72 J. Li, S. Du, H. Tao and X. Yang, I onics, 2020, 1–10.
73 X. Cao, C. Tan, X. Zhang, W. Zhao and H. Zhang, Adv. Mater., 2016, 28, 6167–6196.
74 Z. Li, N. Liu, X. Wang, C. Wang, Y. Qi and L. Yin, J. Mater. Chem., 2012, 22, 16640–16648.
75 C. Yuan, L. Yang, L. Hou, L. Shen, X. Zhang and X. W. D. Lou, Energy Environ. Sci., 2012, 5, 7883–7887.
76 A. Pan, J.-G. Zhang, G. Cao, S. Liang, C. Wang, Z. Nie, B. W. Arey, W. Xu, D. Liu and J. Xiao, J. Mater. Chem., 2011, 21, 10077–10084.
77 L. Li, X. Yin, S. Liu, Y. Wang, L. Chen and T. Wang, Electrochim. Commun., 2010, 12, 1383–1386.