Cumulative Risk Effect on Unintentional Injury for Chinese Rural Children: A Nested case-control study

Hui Zhang
School of Nursing, Harbin Medical University

Fengxin Bai
Liming Community Health Service Center of Daqing People’s Hospital

Hongling Song
English Department, Harbin Medical University(Daqing)

Jun Yang
School of Nursing, Harbin Medical University

Xinlong Wang
School of Nursing, Harbin Medical University

Qingfang Ye
School of Nursing, Harbin Medical University

Yuqiu Zhou
✉️ 82323627@qq.com
Harbin Medical University

Research article

Keywords: unintentional injury, rural children, risk factors, cumulative effect, nest case-control

DOI: https://doi.org/10.21203/rs.3.rs-79332/v1

License: ☕️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Childhood unintentional injuries are the leading cause of death and disability for children. Despite the risk factors that lead to injury occurrence have been identified, the relationship between cumulative risk effect of risk/protection factors on unintentional injuries are unclear. The aim of this study was to explore the cumulative risk effect on unintentional injury of rural children.

Methods: We used a nested case-control study design from a cohort database. Cases were children aged 6 to 14 with unintentional injury recorded, including 1,696 children which comprised 424 unintentional injury cases and matched on 1,272 control children. Risk factor index (RFI) and protection factor index (PFI) were used as dependent variables. Binary logistic regressions was used to estimate RFI, PFI and cumulative effect odds ratios (OR) with 95% confidence intervals (CI) for childhood unintentional injury. The linear regression was performed to estimate the effect between RFI, PFI, interactive effect on unintentional injury.

Results: The RFI had a significant difference between the two groups (p <0.01). After controlling the significant sociodemographic variables, the risk of unintentional injury increased with the RFI from 1 to 3 (OR$_{RFI(1)}$ = 0.978, 95% CI 0.739-1.296), (OR$_{RFI(2)}$ = 1.720, 95% CI 1.233-2.397), (OR$_{RFI(3)}$ = 5.162, 95% CI 3.129-8.517). While inversely it decreased with PFI increased/increasing. The linear regression indicated RFI, PFI and interactive effect were significant in the regression model, and the interactive effect of RFI\timesPFI could be used to explain 32.2% the severity of unintentional injury.

Conclusions: The cumulative risk effect on unintentional injury could regulate the unintentional injury in childhood. Pediatric care providers should consider a multifactorial interventions especially for the cumulative effect of risk/protection factors for childhood unintentional injury.

Background

Childhood unintentional injuries are the leading cause of death and disability for children aged 0 to 14 in the world [1]. In 2017 the Global Burden of Diseases project estimates over 2 million children died from injury in the whole world, equivalent to 5,581 child deaths per day and almost four per minute[2]. Over 95% of global child injury deaths occur in low- and middle-income countries [3]. In China, thousands of children die from unintentional injury each year; the incidence rate of injury is from 19.4 to 64.3%, which is the leading cause of mortality for children between the ages 1 and 14[4]. In the United States, unintentional injury killed over 11,000 children in 2017, the equivalent of 32 child deaths per day. Over 6.7 million children were treated in the emergency department, equal to 18,603 per day and almost 13 children per minute. The financial toll of child injuries exceeded $96 billion annually [5]. Unintentional injuries threat children's health and life, and bring heavy economic and psychological burden on families and the whole society. Fang reported the overall economic burden of Chinese childhood injury was 1,014,649.1 RMB (148,666.5 USD) total, 3,348.7 RMB (490.65 USD) per capita, and 2,779.9 RMB (407.31
USD) per incident [6]. Thus, childhood unintentional injuries have become a hot and concern topic in the field of public health.

Childhood unintentional injuries are more prominent in rural areas. The unintentional injury risk of death in rural was approximately 1.95 times that compare to the urban areas [7, 8]. In Chinese rural areas, there is a special group called left-behind children whose parents has left the hometown for work in the urban while their children stay with their grandparents in rural hometown. There are 104 million children living in rural area, and 60 million of them are left behind children [9]. Studies revealed that left-behind children had higher incidence suffered from unintentional injury in China because of they had vulnerable exposure to the hazard factors [10]. Many researches indicated that the risk of unintentional injury in children is affected by children’s personal attributes (gender, the number of siblings, personnel, behavior problems), family environment (economic status and environmental facility, education of primary caregiver and supervision, the knowledge and skills for preventing injury primary care giver), as well as other factors with child’s social environment [11, 12]. Boys, with schizoid behavior problem, anxiety/depression and hyperactive, risk-taking behaviors are more likely to suffer from unintentional injury [12, 13]. Primary caregivers with low supervision, lacking knowledge or skills for preventing injuries could increase the children's risk of injury [11, 14].

Previous studies had only focused on risk factors of unintentional injuries in childhood, but few had concerned the relationship between cumulative risk effect of risk/protection factors on unintentional injuries. The occurrence of an injury event is resulted by multiple factors, not only risk factors. Rutter proposed the cumulative effect of risk factors which presented a “threshold effect”, and with the increase number of risk factors, the health problems trends a quadratic geometric multiple growth [15]. The risk cumulative effect of risk/protection factors are widely used in developmental psychology to consider the power of multiple risk factor exposure effects. Some researchers adopted the Risk Factor Index (RFI) and Protective Factor Index (PFI) to measure the cumulative effect of risk and protection factors, and their interactive effect to influence the health [16, 17]. Hence, the current study aimed to determine the relationship between cumulative risk effect of risk/protection factors and unintentional injury in rural children aged 6 to 14. We hope that our study will contribute to the understanding of the cumulative risk effect in childhood unintentional injury which take us a new point to design the effective injury prevention and intervention for childhood.

Methods

Study Design, Setting and Participants

We used prospectively collected longitudinal data from database “PCUI-Protective for Childhood unintentional injury in rural areas in Hei Longjiang Province in China” project. The PCUI project included a baseline census in 2017 conducted at 3 rural regions from Hei Longjiang Province according to the economic development level: Daqing region, Qiqihar region and Jia Musi region. Random cluster sampling was used to select 12 elementary and junior schools from these regions. The census were included sociodemographic, risk and protective factors, injury outcome data on total 3,163 children. The
data in the baseline and the second wave (12 month after the baseline) from The PCUI were used in this study.

The cases selected for our study were children aged 6 to 14 years old. In the second wave, children who had a record of unintentional injury were recruited in the case group, and the controls were similarly aged children who didn't suffer from unintentional injury over the same period. To ensure homogeneity of subjects, controls were selected from the same region and the same class. Three controls were selected from the cohort database for each case to yield a matching ratio of 3:1. Our case-control study included 424 cases of unintentional injury children in the last 12 months prior to the census. The total sample size for our study was 1696 (424 cases and 1272 controls).

Measures

Both sociodemographic (age, gender, father and mother's ages and education, primary caregiver's education and health status, left-behind children) and the characteristics of childhood unintentional injury were collected. Unintentional injury was defined as an injury that (a) was diagnosed as a non-fatal injury by physicians and received medical treatment or (b) received emergency medical treatment or assistance from teachers, parents, classmates or others, and (c) required the child to rest for more than half a day [18]. The type of injuries were classified according to ICD-10, which included fall, accidental injury, burn, cut injury, animal bite injury, injury by blunt object, poisoning, and others (drowning, electrocution, suffocation, suicide and frostbite). The severity of the injury was also collected through the numerical assessment (0 = none to 10 = extremely serious).

Risk and protection factors were identified for childhood unintentional injury in the previous study [19]. Measurement of the risk factors included strengths and Difficulties Questionnaire (SDQ) [20], injury Behavior Checklist (IBC) [21], and perceptions of risks and hazards [22]. While protection factors included parent Supervision Attributes Profile Questionnaire (PSAPQ) [23], home Observation for Measurement of the Environment (HOME) [24], and knowledge, attitude and skills for children unintentional injury (KAP) [19] were used in the census. Binary independent variables were used to analyze the risk factors and protection factors. The continuous variables were dichotomized according to the 75th percentile. Binary variables were coded as 0 when there was no risk and protective effect were coded as 1 according to the dichotomized principle [19, 25]. All dimidiate risk factors added up to the risk factor index (RFI), and protective factors formed the protection factor index (PFI) [11, 26]. The RFI and PFI was performed to centralization which was minus the standard deviation of RFI and PFI [27]. Then, the interactive effect (RFI × PFI) was conducted after the centralization of the RFI and PFI.

Statistical analysis

SPSS version 25.0 was used for the statistical analysis. Characteristics of cases and controls were described using mean value (standard deviation, SD) or frequencies and percentages. Independent sample's t-test, Chi-square and spearman correlation analyses were conducted to test univariate and
bivariate significance, and p value < 0.05 was considered a statistical significance. After centralization of PFI and RFI, binary logistic regressions was used to estimate RFI, PFI and cumulative effect odds ratios (OR) with 95% confidence intervals (CI) for childhood unintentional injury associated with risk factors, protection factors and cumulative effect. The severity of unintentional injury was normal distribution, then the linear regression was performed to estimate the effect between RFI, PFI, interactive effect on unintentional injury.

Results

Characteristics of samples

The mean age of the children were 11.03 (SD 1.95). The incidence rate of childhood unintentional injury was 20.1%. Overall, there were 116 (26.9%) children had experienced fall, 76 (17.9%) had accidental injury, 68 (16%) had animal bite injury, 58 (13.7%) had burn, 44 (10.4%) had cut injury, 35 (8.3%) had injury by blunt object, 15 (3.5%) had poisoning and 12 (3.3%) had experienced other type of injury. The severity of the injury was 2.82 (SD 2.35). The characteristics of cases and controls are presented in Table 1.
Characteristics	Case group (n = 424)	Control group (n = 1272)	Statistics
Age (year) M (SD)	10.93 (1.76)	11.07 (2.02)	$t = 1.353$
Gender (%)			$\chi^2 = 2.216$
Boy	213 (50.2%)	586 (46.1%)	
Girl	211 (49.8%)	686 (53.9%)	
Left behind children (%)	220 (51.9%)	453 (35.6%)	$\chi^2 = 35.185^{**}$
Primary caregiver (%)			$F = 35.255^{**}$
Mother	157 (37.0%)	908 (71.4%)	
Father	21 (5.0%)	115 (9.0%)	
Grandparents	235 (55.4%)	235 (18.5%)	
Baby sister or others	11 (2.6%)	14 (1.1%)	
Primary caregiver's education			$F = 6.008^*$
Illiteracy	27 (6.4%)	39 (3.1%)	
Elementary school	100 (23.6%)	278 (21.9%)	
Junior high school	233 (54.9%)	754 (59.3%)	
Senior high school	57 (13.4%)	152 (11.9%)	
Above college	7 (1.7%)	49 (3.9%)	
Health of primary caregiver	8.68 (2.47)	9.14 (3.99)	$t = 2.232^*$
Mother's age	36.56 (6.00)	37.51 (6.00)	$t = 2.977^*$
Mother's education			$F = 0.050$
Illiteracy	21 (5.0%)	56 (4.4%)	
Elementary school	81 (19.1%)	291 (22.9%)	
Junior high school	255 (60.1%)	711 (55.9%)	
Senior high school	53 (12.5%)	164 (12.9%)	

Note: * means $p < 0.05$, ** means $p < 0.01$.
Characteristics	Case group (n = 424)	Control group (n = 1272)	Statistics
Above college	14 (3.3%)	50 (3.9%)	
Father’s age	38.19 (6.07)	39.18 (5.60)	t = 2.944*
Father’s education			F = 110.423**
Illiteracy	5 (1.2%)	3 (0.2%)	
Elementary school	87 (20.5%)	30 (2.3%)	
Junior high school	275 (64.9%)	953 (74.9%)	
Senior high school	46 (10.8%)	220 (17.3%)	
Above college	11 (2.6%)	66 (5.2%)	
Household income (per person per month in yuan)			F = 7.892**
< 1000	50 (11.8%)	83 (6.5%)	
1000–3000	241 (56.8%)	442 (34.7%)	
3001–5000	97 (22.9%)	569 (44.7%)	
> 5000	33 (7.8%)	178 (14.0%)	

Note: * means p < 0.05, ** means p < 0.01.

Risk factors, protection factors and cumulative risk effect in unintentional injury

The number and percentage of **RFI and PFI** in the case group and control group were presented in Table 2. The RFI had a significant difference between the two groups (p < 0.01), however, the PFI had no significant differences (p > 0.05). Unintentional injury had a positive significant correlation with RFI ($r_s = 0.181, p < 0.01$) and had a negative significant correlation with PFI ($r_s = -0.051, p < 0.05$) and RFI \times PFI ($r_s = -0.113, p < 0.01$). In Table 3, after controlling the significant sociodemographic variables (mother’s education, father’s education, primary caregiver, and left-behind children), the cumulative risk effect was geometric multiples in the unintentional injury occurs. The risk of unintentional injury increased with the RFI from 1 to 3 ($OR_{RFI(1)} = 0.978$, 95% CI 0.739–1.296), ($OR_{RFI(2)} = 1.720$, 95% CI 1.233–2.397), ($OR_{RFI(3)} = 5.162$, 95% CI 3.129–8.517). While inversely it decreased with PFI increasing.
Table 2
RFI and PFI in the case and control group

Factors	Case group (n = 424)	Control group (n = 1272)	Statistics
RFI (%)			
0	119 (18.1%)	608 (47.8%)	F = 85.706**
1	150 (35.4%)	454 (35.7%)	
2	87 (20.5%)	175 (13.8%)	
3	68 (16.0%)	35 (2.8%)	
PFI (%)			
0	282 (66.5%)	762 (59.9%)	
1	82 (19.3%)	344 (27.0%)	
2	60 (14.2%)	166 (13.1%)	

Note: ** means p < 0.01.

Table 3
The unintentional injury and cumulative effect of risk factors and protection factors (n = 1696)

	B	df	β	95%CI	p	
				Low	High	
RFI	3					
RFI(1)	-0.022	1	0.978	0.739	1.296	0.878
RFI(2)	0.542	1	1.720	1.233	2.397	0.001
RFI(3)	1.641	1	5.162	3.129	8.517	<0.01
PFI	2					
PFI(1)	-0.293	1	0.746	0.555	1.003	0.052
PFI(2)	0.202	1	1.224	0.865	1.733	0.254

The severity of unintentional injury and RFI, PFI and interactive effect

In Table 4, both RFI, PFI and interactive effect were significant in the regression model. With the more increased of RFI, the more severity of childhood unintentional injury had. The effect of RFI × PFI could be used to explain 32.2% the severity of unintentional injury.
Table 4
The severity of unintentional injury and RFI, PFI and interactive effect (n = 424)

	Step 1		Step 2		Step 3				
	B	β	p	B	β	p	B	β	p
Constant	3.925	0.013		3.908	< 0.01		3.930	< 0.01	
RFI	1.163	0.278	< 0.01	0.526	0.269	< 0.01	0.502	0.256	< 0.01
PFI	-0.131	-0.053	0.009	-0.175	-0.071	0.001			
PFI × RFI		-0.216	-0.074			< 0.01			
F	178.277	< 0.01		92.826	< 0.01		66.448	< 0.01	
ΔR²	0.072	0.075	0.080						
Adjusted R²	0.316	0.318	0.322						

Discussion

Results from this study showed that the incidence of unintentional injury in rural children was 20.1%, which is higher than the early reports for rural children aged 5 to 16 and left behind children in China [28, 29]. Perhaps one reason is that in the case group 55.4% primary caregiver are grandparents who have poor health status and they are not suitable for supervising children. They also lacked knowledge and skills on prevention for injury. Once children suffered unintentional injury, they couldn’t respond and take correct first aid on time [29, 30]. Another reason is that different regions have different social and economic development levels. The gross domestic product (GDP) of Hei Longjiang Province is low in China [31]. The environmental facilities are not safe and the travel transport of rural areas mainly rely on the electric vehicles and agricultural locomotives [32], the fall and accidental injury are the most common unintentional injury in this study. Rural household prefer to keep animals (e.g. dog, cat, goose) protecting their courtyards, so the animal bites injury in childhood are usual. Hei Longjiang province is located in the northeast of China and its winter season is too long. the rural households need to make fires for heating, drinking water, cooking and other daily activities, so children are prone to burns [33]. Previous studies showed that boys were more likely to experience injury than girls in all age groups [34, 35]; however, there was no significant difference between boys (50.2% %) and girls (49.8%) in the case group in this study. This could be the result of different parenting patterns between boys and girls because boys are more often punished by their parents when they had risk-taking behaviors, whereas these mistakes or risk-taking behaviors would be tolerated in girls [36, 37].

Findings from this study indicated that the number of risk factor index in the case group was more than the control group. The most distribute RFI in the case group were 1(35.4%) and 2 (20.5%), while there were 0 (47.8%) and 1 (35.7%) in the control group. Among rural children, the RFI of unintentional injury is greater than the PFI, while the lack of protection factor is the cause of unintentional injury. The aim of this
research is to explore the single effect and cumulative effect of risk factors (children's behavior, parents' risk perception) and protection factors (parental supervision, parents' first aid knowledge, attitudes and skills, family environment) on the occurrence of unintentional injuries. The more prominent the children's behavioral problems and harm behaviors have, the greater parents perceived of injury risk, the more severity of childhood injury. Moreover, the children's behavioral problems and risk-taking behaviors can predict the occurrence of unintentional injury [38]. Children with behavioral problems have a high incidence of unintentional injuries. Children's behavioral problems have predictive effects on children's unintentional injuries, especially those with behavioral problems such as antisocial, aggression, anxiety/depression, hyperactivity and discipline violation [13]. The results of binary logistic regressions found that with the increased number of RFI, the risk of unintentional injury didn't add up simply, but emerged multiple growth, for example, the risk occurrence of unintentional injury was 1.76 times when RFI was 2 than RFI was 1, the risk of unintentional injury was 3 times when RFI was 3 than 2. What's more, the protective factors were found to lead to the occurrence of unintentional injury. The cumulative effect on co-occurring and multiple risk or protection factors have been concluded in children and adolescent's behavior problems which indicate the more risk factors they are exposed to, the worse the outcome is [15, 40, 41]. The cumulative effect of risk factors and protection factors played an important role in childhood unintentional injury. The linear regression analysis indicated that risk factors and protection factors had interactive effect to each other, protection factors could regulate the effect of risk factors, and with the increased number of protection factors, the effect of risk factors will be weakened.

The current study is the first to describe the relationship between exposure to cumulative effects of multiple risk/protection factors and unintentional injury in rural children through the nested case-control study. It contributes to a new view point to the risk factors and prevention strategies for the occurrence of rural childhood unintentional injury in China. Specifically, it reveals significant cumulative effect of risk and protection factors in the rural childhood injury. However, the findings still have several limitations. First, all the data were came from a longitudinal database, only a few risk factors and protection factors were investigated, some more important factors may be missed. More protection factors should be found as the cumulative effect in the future study. Second, the data were collected from primary caregivers, but social bias and recall bias would be existed when filling out the questionnaires, which could not stand for the real condition of the primary caregivers and the children. Third, the children mainly suffered from minor injury in this study who were assessed by the primary caregiver themselves. They may overestimate or underestimate the injury. Thus, the severity of injury should be recorded by medical workers or refer to the standard degree for further study. Last, the participants were all from elementary and junior schools in 3 rural regions of Hei Longjiang Province, the findings might not be generalizable to other areas of China.

Conclusion

The findings of this study suggest that fall, accidental injury, animal bite injury and burn are common unintentional injuries in northeast rural of China. Children's problem behavior, injury behavior and caregivers’ perceptions of risks and hazards are risk factors for childhood unintentional injury, while the
supervision of primary caregivers, home environment, the knowledge and skills of prevention injury of caregivers are the protection factors. The risk occurrence of unintentional injury is geometric multiple increase with the number of RFI, and with the increase of protection factors, the effect of risk factors will be weakened. The cumulative risk effect could regulate the unintentional injury in childhood. Pediatric care providers should understand the characteristics of unintentional injuries of children in different rural areas, so as to develop targeted interventions. Furthermore, multiple-factors interventions especially for the cumulative risk effect of risk/protection factors should be considered to increase the protection factors of childhood unintentional injury. Safety education on supervision, knowledge of prevention injury, retrofitting hazardous environment, and the first aid skills training should be adapted in the school through children to primary caregivers.

Abbreviations

RFI: Risk factor index; PFI: Protection factor index; RFI×PFI: interactive effect of RFI and PFI; OR: odds ratios; CI: confidence interval; PCUI: Protective for Childhood unintentional injury; PSAPQ: Parent Supervision Attributes Profile Questionnaire; SDQ: strengths and Difficulties Questionnaire; IBC: injury Behavior Checklist; HOME: home Observation for Measurement of the Environment; KAP: knowledge, attitude and skills for children unintentional injury

Declarations

Ethics approval and consent to participate

This study procedure was approved by the Committee of Harbin Medical University. All participants provided written informed consent. The questionnaire was treated as confidential and anonymous.

Declarations

Ethics approval and consent to participate

The study had approved by the Ethics Committee of Harbin Medical University (Daqing) and the informal consent had obtained from all the primary caregivers of the children.

Consent to publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Funding
This study was funded by National Natural Science Foundation of China (NSFC, NO.71603064) and was also supported by the Health Committee of Hei Longjiang Province (NO.2019-079)

Availability of data and materials

The datasets used and/or analyzed during this study are available from the corresponding author on reasonable request. The datasets represented in the additional supporting files.

Authors’ contributions

YQ contributed to the study design. HZ collected the data and wrote the first draft of the manuscript, FX HL and JY collected, managed the data. HL revised the manuscript for grammars. XL and QF analyzed the data. All authors have read and approved the final version of the manuscript.

Acknowledgments

We would like to thank all participants for their contributions to this study. The authors are also thankful for the help receive from Bo Zhang, XL Wang, RC Cai, Jin Yu and teachers of schools.

Authors’ Information

1. School of Nursing, Harbin Medical University, Hei Longjiang Province, China. 2. Liming Community Health Service Center of Daqing People’s Hospital, Hei Longjiang Province, China. 3. English Department, Harbin Medical University (Daqing), Hei Longjiang Province, China.

References

1. Peden M, Oyegbite K, Ozanne-Smith J, Hyder A A, Branche C, Rahman AKM F, Rivara F, Bartolomeos K. World Report on Child Injury Prevention. Geneva, Switzerland: World Health Organization; 2008.
2. Schwebel DC. Why "accidents" are not accidental: Using psychological science to understand and prevent unintentional child injuries. American Psychologist, 2019, 74(9):1137-47.
3. Schwebel, DC . Remembering the victims. Inj Prev, 2008, 14(3):212.
4. Yang HU, Xiang YU, Liao ZG. Incidence rate of unintentional-injury among leftover children in rural China: a meta-analysis. Modern Preventive Medicine. 2015; 42(23): 4240-3.(In Chinese)
5. Centers for Disease Control. Welcome to WISQARS. https://www.cdc.gov/injury/wisqars/index.html(2019).Accessed 31 Dec 2019.
6. Fang Y, Zhang X, Chen W, Lin F, Yuan MQ, Geng Z, Yu P, Dai L. Epidemiological characteristics and burden of childhood and adolescent injuries: a survey of elementary and secondary students in
Xiamen, China. BMC Public Health. 2015;15:357-67.

7. Yao MH, Wu GH, Zhao ZL, Luo M, Zhang JY. Unintentional injury mortality among children under age five in urban and rural areas in the Sichuan province of west China, 2009–2017. Scientific Reports, 2019, 9(1).

8. Yin XL, Li DY, Zhu KJ, Liang XD, Peng SX, Tan AJ, Du YK. Comparison of intentional and unintentional injuries among Chinese children and adolescents. Journal of epidemiology. 2019;9.

9. Li Y, Ren JT. Current situation and Suggestions of family education guidance service for migrant and left-behind children in China. Journal of Capital Normal University (Social Science edition). 2013;5:152-6. (In Chinese)

10. Ma S, Jiang M, Wang F, et al. Left-Behind Children and Risk of Unintentional Injury in Rural China - A Cross-Sectional Survey. International Journal of Environmental Research and Public Health, 2019, 16(3).

11. Paul S, Mehra S, Prajapati P, Malhotra V, Sidhu TK. Unintentional injury and role of different predictors among 1–5 years children: a community based cross sectional study in a rural population of a developing country. International Journal of Injury Control and Safety Promotion, 2019, 26(3):1-7.

12. Aditya M, Love M, Vishal D, Ashish P. Unintentional Childhood Injuries in Urban and Rural Ujjain, India: A Community-Based Survey. Children, 2018, 5(2):23-32.

13. Zhang H, Li Y, Cui YX, Song HL, Lee SY. Unintentional childhood injury: a controlled comparison of behavioral characteristics. BMC Pediatrics. 2016; 1:16-21.

14. Zhang H, Li Y, Cui YX, Xu Y. Correlation between occurrence of child injury and parental injury cognition in Daqing City, School Health in China. 2015;36(3): 427-9. (In Chinese)

15. Rutter M. Protective factors in children’s responses to stress and disadvantage. Ann Acad Med Singapore. 1979; 8(3): 324-38.

16. Musaad SMA, Donovan SM, Fiese BH. The Independent and Cumulative Effect of Early Life Risk Factors on Child Growth: A Preliminary Report. Childhood Obesity. 2016; 12(3):193-201. DOI: 10.1089/chi.2016.0018

17. Sun Y, Wang S, Qi M, Wu M, Zhang S. Psychological distress in patients with chronic atrophic gastritis: the risk factors, protection factors, and cumulative effect. Psychology Health & Medicine, 2018, 23(3):1-7.

18. Wang SY. The epidemiology of injuries. In: People’s Medical Publishing House. Beijing;2003. P.11–3. (In Chinese)

19. Yang LY, Cui YX, Yin F, Yang J, Ye QF, Wang XL, Zhang H. Cumulative effects of children unintentional injury in rural area of Hei Longjiang Province. School Health in China. 2020;41(04):576-9. (In Chinese) DOI: 10.16835/j.cnki.1000-9817.2020.04.025

20. Goodman R. The strengths and difficulties questionnaire: a research note. Journal of Child Psychology and Psychiatry and Allied Disciplines, 1997,38 (5): 581-6.
21. Speltz M, Gonzales N, Quan L. Assessment of injury risk in young children: a preliminary study of the Injury Behavior Checklist. J Pediatr Psychol 1990, 15(3): 373–83.

22. Glik D, Kronenfeld J, Jackson K. Predictors of risk perceptions of childhood injury among parents of preschoolers. Health Educ Q, 1991, 18(3): 285-301.

23. Morrongiello BA, House K. Measuring parent attributes and supervision behaviors relevant to child injury risk: examining the usefulness of questionnaire measures. Inj Prev, 2004, 10(2): 114-8.

24. Bradley RH, Caldwell BM, Rock SL, Hamrick HM, Harris P. Home Observation for Measurement of the Environment: Development of a Home Inventory for Use with Families Having Children 6 to 10 Years Old. Contemporary Educational Psychology, 1988, 13(1): 58-71.

25. Dekovic M. Risk and protective factors in the development of problem behavior during adolescence. J Youth Adolesc, 1999, 28: 667-85.

26. Fang H, Cui NX, Guo CH, Cao FL. Cumulative effect of risk and protective factors of depression symptom in female medical college students. Chinese Mental Health Journal, 2013; 27(12): 949-54. (In Chinese) DOI: 10.3969/j.issn.1000-6729.2013.12.012

27. Wen ZL, Hou JT, Zhang L. Comparison and application of regulating effect and mediating effect. Acta Psychologica Sinica. 2005; 37(2): 268-74. (In Chinese)

28. Ye PP, Wang Y, Er YL, Deng X, Duan LL. Occurrence of injuries among left-behind children from 27 poor rural areas in 12 provinces of China. Zhonghua Liu Xing Bing Xue Za Zhi, 2019; 40(11): 1369-75. DOI: 10.3760/cma.j.issn.0254-6450.2019.11.006

29. Deng FM, Gong XM, Cui HY, Yang YJ, Hu PC. Risk factors for unintentional injury among children in rural areas of Liling, Hunan Province, China. Zhongguo Dang Dai Er Ke Za Zhi, 2014; 16(5): 524-8. DOI: 10.7499/j.issn.1008-8830.2014.05.016

30. Yang XL, Li XM, Luo YX, Tang M, Huang Y. Analysis on the Cognitive Status and Influencing Factors of Accidental Injury among Primary and Secondary School Students in Yunnan Province. Chinese Primary Health Care. 2018; 32(6): 59-61. (In Chinese)

31. National Bureau of statistics. http://www.stats.gov.cn/was5/web/search?channelid =288041& andsen=GDP. Accessed 27 Aug 2020.

32. Cao YR. Causes and countermeasures of frequent traffic accidents in rural areas at present. Travel Safely In Countryside. 2017;(3): 120-1. (In Chinese) DOI: CNKI: SUN:QCAQ.0.2015-05-031

33. Li Yan, Zhang AL. Unintentional injuries among school-age children in a village of Shanxi province: status quo and influence factors. Chinese Rural Health Service Administration. 2017; 37(11): 1361-3. (In Chinese) DOI: CNKI:SUN:ZNWS.0.2017-11-030

34. Jiang X, Zhang Y, Wang Y, Wang B, Xu Y, Shang L. An analysis of 6215 hospitalized unintentional injuries among children aged 0-14 in northwest China. Accid Anal Prev. 2010, 42: 320-6.

35. Qin ZD, Jiang ZL, Yang Q. Evaluation of the psychological characters of normal children and children with accidental injury. Chin J Clin Rehabil. 2005; 9: 223-5. (In Chinese) DOI: 10.3321/j.issn:1673-8225.2005.16.036
36. Morrongiello BA, Matheis S. Determinants of children's risk-taking in different social-situational contexts: the role of cognitions and emotions in predicting children's decisions. J Appl Dev Psychol. 2004;25:303–26.

37. Wang L, Fu JZ. The research on parenting patterns and children's development in China. Adv Psychol Sci. 2005;21:116–20. (In Chinese) DOI: 10.3969/j.issn.1671-3710.2005.03.007

38. Yang XW, Zha WT, Zhang GC, Liang R, Liang WJ. Multilevel model study on status and influencing factors of accident injury among rural school-age children in Hu-nan Province. Chin J Dis Control Prev. 2016;20(3):266-270. (In Chinese) DOI: 10.16462/j.cnki.zhjbkz.2016.03.013

39. Dekovic M. Risk and protective factors in the development of problem behavior during adolescence. Journal of Youth and Adolescence, 1999, 28(6), 667–85.

40. Gutman LM, Sameroff AJ, Cole R. Academic growth curve trajectories from 1st grade to 12th grade: Effects of multiple social risk factors and preschool child factors. Developmental Psychology, 2003, 39:111-90.

41. Luster T, McAdoo HP. Factors related to the achievement and adjustment of young African American children. Child Development. 1994, 65:1080-94.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- supplymaterialdata.rar