DYNAMICS AND ‘ARITHMETICS’ OF HIGHER GENUS SURFACE FLOWS

CORINNA ULCIGRAI

ABSTRACT. We survey some recent advances in the study of (area-preserving) flows on surfaces, in particular on the typical dynamical, ergodic and spectral properties of smooth area-preserving (or locally Hamiltonian) flows, as well as recent breakthroughs on linearization and rigidity questions in higher genus. We focus in particular on the Diophantine-like conditions which are required to prove such results, which can be thought of as a generalization of arithmetic conditions for flows on tori and circle diffeomorphisms. We will explain how these conditions on higher genus flows and their Poincaré sections (namely generalized interval exchange maps) can be imposed by controlling a renormalization dynamics, but are of more subtle nature than in genus one since they often exploit features which originate from the non-uniform hyperbolicity of the renormalization.

1. Introduction.

Flows on surfaces are one of the most basic and most fundamental examples of dynamical systems. First of all, they are among the lowest possible dimensional smooth systems; furthermore, many models of systems of physical origin are described by flows on surfaces, starting from celestial mechanics, up to solid state physics or statistical mechanics models. The beginning of the study of surface flows can be dated back to Poincaré [Poi87] at the end of the 19th century, and coincides with the birth of dynamical systems as a research field. Poincaré was in particular interested in the study of flows on tori, or surfaces of genus one. Several famous systems in physics lead naturally to the study of flows on surfaces of higher genus, which, in this survey, will mean genus $g \geq 2$. Examples include the Ehrenfest model in statistical mechanics (related to a linear flow on a translation surface of genus five), or the Novikov model in solid state physics, which is described by locally Hamiltonian flows, a class which will be one of the central themes of this survey (see §3.1).

There is a rich history of results on the topological and qualitative behavior of trajectories (see for example [NZ99] and the references therein), as well as on the ergodic theory of certain well-studied classes of flows (for example in genus one, in relation with KAM theory, see §2, and linear flows on translation surfaces, whose study is intertwined with Teichmüller dynamics, see §3). Many fundamental problems, though, in particular on the mathematical characterization of chaos (such as dynamical, spectral and rigidity questions) in various natural classes of surface flows, in particular smooth flows preserving a smooth measure, were only recently understood and many others are still open (see §3.1).

One of the reasons for this late development is perhaps that, in order to investigate fine chaotic or rigidity properties of flows in higher genus, one needs to impose quite delicate assumptions on the behavior of orbits on different scales. To capture these multi-scale features, the concept of renormalization plays a crucial role (see §4). In the case of genus one, the type of assumptions on the flow often take the form of Diophantine conditions or, more in general, of arithmetic conditions on the rotation number (see §5) and control how well the flow orbits are approximated by periodic orbits. The renormalization point of view on these conditions is that they can be described in terms of continued fraction theory and therefore studying the dynamics of the Gauss map, or, equivalently, geometrically, studying the geodesic flow on the modular surface, both of which are classically well understood.

In higher genus, on the other hand, one had to wait for the development of the rich and fruitful theory of renormalization in Teichmüller dynamics (see §4). This theory provides a renormalization framework (initially developed to study ergodic properties of rational billiard, interval exchange transformations and translation flows), which can be exploited to understand when a surface flow is renormalizable (see §3.2 and §4) and when it preserves a smooth invariant measure; in the latter case, then, it allows to impose conditions on a (smooth) surface flows to guarantee the
presence of particular chaotic properties (see § 3.1). The type and the nature of what we refer to as Diophantine-like conditions in higher genus, which is much more delicate than in genus one and often involves assumptions on hyperbolicity or uniform hyperbolicity of the renormalization, will be the leading theme of this survey. These conditions are sometimes also called arithmetic conditions, by analogy with the genus one case, even though the relation with classical arithmetic and Diophantine equations is lost when the genus is greater than one.

In what follows, we first start in the next § 2 with the classical case of flows on genus one surfaces, recalling some of the classical results on the linearization problem and ergodic properties and discussing the related arithmetic conditions. Then, in § 3 we will briefly overview some of the rapid developments in our understanding of ergodic, spectral and disjointness properties of (smooth) area-preserving flows on higher genus surfaces (see § 3.1), as well as linearization and rigidity problems in higher genus (in § 3.2). After having introduced the notion of renormalization in this setting (see § 4), we then focus in § 5 on the Diophantine-like conditions behind these results.

2. Flows on surfaces of genus one and classical arithmetic conditions.

A central idea introduced by Poincaré was that the study of a surface flow can be often reduced to the study of a one-dimensional discrete dynamical system, by taking what we nowadays call a Poincaré section and considering the Poincaré first return map of the flow to the section (when and where it is defined). If we start from a flow \(\varphi_t := (\varphi_t)_t \in \mathbb{R} \) on a torus, i.e. on a compact, orientable surface \(S \) of genus one and assume that it does not have fixed points, nor closed orbits (or more generally, nor Reeb components, see [NZ99]), there is a (global) section given by a closed transverse curve and the Poincaré first return map to it is a diffeomorphism \(f : S^1 \to S^1 \) of the circle \(S^1 \cong \mathbb{R}/\mathbb{Z} \).

The simplest example of circle diffeomorphism (or circle diffeo for short) is a (rigid) rotation, i.e. the map \(R_\alpha(x) = x + \alpha \mod 1 \) on \(\mathbb{R}/\mathbb{Z} = [0, 1]/\sim \). A key concept associated to circle diffeomorphisms is that of rotation number: if \(\mu \) is an invariant probability measure for the circle diffeo \(f \) (which always exists by Krylov-Bogolyubov theorem), the rotation number \(\rho(f) \) of \(f \) can be seen as an average displacement of points, namely \(\rho(f) = \int_0^1 (F(x) - x) \, d\mu(x) \mod 1 \) where \(F : \mathbb{R}/\mathbb{Z} \to \mathbb{R} \) is a lift of \(f \). The rotation \(R_\alpha \) can be seen as the linear model of a circle diffeo with rotation number \(\alpha \).

The topological behavior of trajectories of \((\varphi_t)_t \in \mathbb{R} \) can be completely understood and classified exploiting the rotation number (this is essentially the content of Poincaré classification theorem, see [KH95] for an expository account): when \(\rho(f) \in \mathbb{Q} \), there exist periodic orbits (which either foliate the surface \(S \), or are attracting or repelling). On the other hand, when \(\rho(f) \not\in \mathbb{Q} \), the dynamics of \((\varphi_t)_t \in \mathbb{R} \) is either minimal on the whole surface (i.e. all orbits are dense), or minimal when restricted to a Cantor-like invariant limit set (locally product of a Cantor set with \(\mathbb{R} \)). In the latter case, we speak of Denjoy-counterexamples; their existence is ruled out when the diffeo (and the flow) is sufficiently smooth, for example \(C^2 \) in view of Denjoy’s work [Den32] (less regularity, in particular \(C^1 \) with bounded variation derivative, suffices, see e.g. [KH95] for more details).

Arithmetic conditions for linearization of circle diffeomorphisms. To gain a finer understanding of the dynamics and describe the ergodic behavior of almost-every trajectory with respect to a smooth measure, one has to address the linearization problem, a classical question which is at the heart of the theory of circle diffeomorphisms. Namely, one wants to understand when a circle diffeomorphism \(T \) is linearizable, i.e. conjugate to a rigid rotation \(R_\alpha \) (i.e. when there exists a homeomorphism \(h : S^1 \to S^1 \), called the conjugacy, such that \(h \circ T = R_\alpha \circ h \)) and, if it is linearizable, what is the regularity of the conjugacy \(h \). To address this question, one needs to put further assumptions both on the regularity of the diffeo and, in relation to it, the irrationality of the rotation number.

We recall that arithmetic conditions are conditions that prescribe how well (or how badly) the irrational rotation number \(\alpha \in \mathbb{R} \) is approximated by rational numbers and morally control how well the flow orbits are approximated by periodic orbits. The best known such condition is perhaps the (classical) Diophantine condition (or for short, DC): \(\alpha \in \mathbb{R}\setminus\mathbb{Q} \) is said to be Diophantine (of
exponent $\tau \geq 0$) iff there exists $C > 0$ such that

$$|\alpha - \frac{p}{q}| \geq \frac{C}{q^{2+\tau}}, \quad \text{for all } p, q \in \mathbb{Z}, \ q \neq 0.$$

If the above condition holds for $\tau = 0$, we say that α is **badly approximable** or **bounded-type**. Equivalently, the DC can be rephrased in terms of the continued fraction expansion $[a_0, a_1, \ldots, a_n, \ldots]$ of α: if q_n denotes the **convergents** of α, namely the denominators of the partial approximations $p_n/q_n := [a_0, a_1, \ldots, a_n]$, the DC is equivalent to the growth control $a_{n+1} = O(q_n^\tau)$, while α is of bounded type iff a_n are uniformly bounded.

The **local theory** of linearization of circle diffeos, which treats the case of diffeos $f : S^1 \to S^1$ which are C^∞-close (or analytically, or C^r close) to a circle rotation R_α, where $\alpha = \rho(f)$, is a rather classical application of KAM theory. The prototype result is the **local rigidity** theorem of Arnold [Arn63], who showed that if α is Diophantine, circle diffeos which are a sufficiently small analytic deformations of R_α and have rotation number equal to α, must be **analytically** conjugate to R_α. Among the few global results (which do not assume that f is close to a rotation), we recall the celebrated theorem by Michael Herman [Her79] and Jean-Christophe Yoccoz [Yoc84], answering a question by Arnold, that shows that if f is C^∞ (or analytic) and its rotation number $\rho(f)$ satisfies the DC, the conjugacy is C^∞ (resp. analytic). Furthermore, the DC turns out to be the optimal arithmetic condition for global smooth linearization. Another, more subtle arithmetic condition, called ‘condition H’ in honor of Herman, was introduced by Yoccoz as the optimal condition for **global analytic** linearization of analytic diffeos, see [Yoc02].

Another famous arithmetic condition is the **Roth-type** condition, which is satisfied by irrationals $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ such that $a_n = O(\epsilon q_n^\tau)$ for all $\epsilon > 0$. A crucial step in the KAM approach developed by Arnold for circle diffeomorphisms is to solve a **linearized** version of the conjugacy equation $R_\alpha \circ h = h \circ T$, namely the **cohomological equation**: given a smooth $\phi : I \to \mathbb{R}$, one looks for a smooth solution $\varphi : I \to \mathbb{R}$ to the equation $\varphi \circ R_\alpha - \varphi = \phi$. The Roth-type condition turns out to be the optimal one needed to solve this cohomological equation with optimal loss of differentiability: for any $r > s + 1 \geq 1$, one can find a solution $\varphi \in C^s$ for any $\phi \in C^r$ as long as $\phi = 0$ (which is a trivial necessary condition), if and only if α is Roth-type: this equivalent characterization provides a remarkable connection between dynamical and arithmetical properties.

We remark that the Diophantine condition, the H condition and the Roth type condition can all be proved to have full measure, namely they hold for a set of $\alpha \in [0, 1]$ of Lebesgue measure one (the set of badly approximable $\alpha \in [0, 1]$, on the other hand, has Lebesgue measure zero, although full Hausdorff dimension). While full measure of the Diophantine and Roth conditions can be proved in an elementary way, it is an instructive exercise to derive it from the properties of the Gauss map $G : [0, 1] \to [0, 1]$ and of the Gauss invariant measure $dx / \log 2(1 + x)$, since this point of view can be applied to show full measure of other arithmetic conditions as well and it can be furthermore generalized to higher genus (see §4 and §5).

In view of this remark, we conclude this section with a reinterpretation of Herman’s linearization theorem in the language of foliations into flow trajectories.

Theorem 2.1 (reformulation of Herman’s global theorem [Her79]). For a full measure set of real numbers α, a foliation on a genus one surface which is topologically conjugate to the foliation given by a linear flow with rotation number α, is also C^∞ conjugate to it.

Ergodic properties in genus one and exceptional behavior. From the existence (and abundance) of smooth (or at least continuously differentiable, i.e. C^1) linearizations, one can infer many of the smooth measure theoretical ergodic properties of flows in genus one. In particular, one sees that, for a full measure set of rotation numbers, flows in genus one are **ergodic** (since irrational rotations are) with respect to a **smooth** invariant measure of full support (the C^1-regularity of the conjugacy allows indeed to transport the Lebesgue invariant measure to obtain the invariant measure for the diffeo, which in turns give a transverse measure for the flow). Furthermore, they are **uniquely ergodic** (in view of Kronecker-Weyl theorem for rotations, e.g. [CFS80]), i.e. this natural invariant measure is the unique invariant measure (up to scaling).

We remark that **exceptional** ergodic behaviors in genus one (smooth) surface flows, can be constructed for flows whose rotation numbers are irrational but not Diophantine, i.e. so called
Liouville (rotation) numbers. When α is Liouville, exploiting the abundance of good rational approximations p_n/q_n to α, for example using the method of periodic approximations pioneered by Anosov and Katok and later revived by Fayad, Katok et al (see [KH95] or the survey [FK04]), one can construct many examples with pathological behavior, for example flows with a singular invariant measures and time-reparametrizations (also called time-changes) which are weakly mixing or which have mixed spectrum (see [FK04] and the references therein).

Finally, before moving to higher genus, we remark that another possible way to introduce interesting dynamical features for typical rotation numbers, is to consider flows on tori with singularities. The simplest type of singularity is a stopping point. Already such a simple perturbation, which is only a time-reparametrization of the flow, can lead to flows which are typically mixing (see [Koc75]) and even to flows with Lebesgue spectrum (see [FKP21]). Smooth measure preserving flows on a torus with one center and one simple saddle (see Figure 1a) were first studied by Arnold in [Arn91] and constitute one of the most studied examples in the class of flows known as locally Hamiltonian: we return to them and to their typical ergodic properties in §3.1.

3. Dynamics of flows on surfaces of higher genus.

Let us now consider the higher genus case, namely consider now a (smooth) flow $\varphi_R := (\varphi_t)_{t \in \mathbb{R}}$ on a compact, connected orientable (closed) surface S of genus $g \geq 2$. Notice that in this case, by Euler characteristic restrictions, the flow always has fixed points (see Figure 2 for some examples). We require that singularities be isolated (so that in particular, by compactness, the set $Fix(\varphi_R)$ of fixed points is finite).

Topological dynamics and quasi-minimal sets. The topological classification of the possible behavior of trajectories of a flow on a surface (and more in general of surface foliations which are not necessarily orientable) has been a topic of research in the 20th century (starting from the 1930s-40s, up to the 1970s). In particular, through the works of Maier, Levitt, Gutierrez, Gardiner et al (see [NZ99] for references) one could obtain results on what are possible orbit closures, as well as a classification of quasi-minimal sets, which can be defined as possible ω-limit sets of non-trivial recurrent trajectories, i.e. set of accumulation points of trajectories different from a fixed point or a closed, periodic orbit. Quasi-minimal sets can be the whole surface, subsurfaces with boundary, or a Cantor-like invariant sets. Moreover, one can prove decomposition theorems that shows that one can cut the surface S into subsurfaces each of which contains at most one quasi-minimal set (see in particular the work by Levitt [Lev87]). We do not enter here in the details of these topological results, but refer the interested reader for example to the monograph [NZ99] and the references therein.

Interval exchanges and generalized IETs as Poincaré sections. As in the case of genus one, an essential tool to study a higher genus flow is to consider a (local) transversal $I \subset S$ to the flow and the Poincaré first return map T of the flow on I (when it is defined, for example almost everywhere when the flow preserves a finite measure with full support; see more generally [NZ99]). Such first return maps $T : I \to I$ are one-to-one piecewise diffeomorphisms known as generalized interval exchange transformations: a map $T : I \to I$ is a generalized interval exchange transformations or, for short, a GIEt, if one can partition I into intervals I_1, \ldots, I_d (finitely many since we are assuming that φ_R has finitely many fixed points) so that the restriction T_i of T to I_i, for each $1 \leq i \leq d$, is a diffeomorphism onto its image which extends to a diffeo of the closure $\overline{I_i}$ (see e.g. [MSY12]). We say in this case that T is a d-GIET. We say furthermore that T is of class C' if the restriction of T to each I_i extends to a C'-diffeomorphism onto the closed interval $\overline{I_i}$. The adjective generalized is used to distinguish them from the more commonly studied (standard) interval exchange transformations (or simply IETs), which are one-to-one piecewise isometries, namely GIEtS such that the derivative T_i' of each branch is constant and equal to one.

Standard IETs are a generalization of circle rotations (since a IET is a rotation when $d = 2$) and play an analogous role in higher genus, providing the natural linear model of a GIET (see §3.2). Furthermore, as rotations are Poincaré maps of linear flows on the torus $\mathbb{R}^2/\mathbb{Z}^2$ (i.e. flows which arise as solutions of $(\dot{x}_1, \dot{x}_2) = (\theta_1, \theta_2)$, which move points with unit speed along lines of
slope θ_2/θ_1). IETs arise naturally as Poincaré maps of linear flows on translation surfaces (see the ICM proceeding [CW] for an introduction to the latter).

3.1. Locally Hamiltonian flows. We will be mostly concerned with flows which preserve a (probability) measure μ of full support, for example an area-form, since this is a natural setup for ergodic theory. Given a surface S with a fixed smooth area form ω, a smooth area preserving flow $\varphi = (\varphi_t)_{t \in \mathbb{R}}$ on S is a smooth flow on S which preserves the measure μ given integrating a smooth density with respect to ω. The interest in the study of these flows and, in particular, in their ergodic and mixing properties, was revived by Novikov [Nov82] in the 1990s, in connection with problems arising in solid-state physics as well as in pseudo-periodic topology (see e.g. the survey [Zor99] by A. Zorich). Smooth area-preserving flows are also called locally Hamiltonian flows or multi-valued Hamiltonian flows in the literature, in view of their interpretation as flows locally given by Hamiltonian equations: one can find local coordinates (x_1,x_2) on S in which φ is given by the solution to the equations:

$$
\begin{cases}
 \dot{x}_1 = \partial H/\partial x_2, \\
 \dot{x}_2 = -\partial H/\partial x_1,
\end{cases}
$$

where H is a real-valued (local) Hamiltonian. For simplicity we will assume here that H is infinitely differentiable, even though for several results C^3 (or also $C^{2+\epsilon}$ for every $\epsilon > 0$) suffices. It turns out that such smooth area preserving flows on S are in one-to-one correspondence with smooth closed real-valued differential 1-forms: given such a 1-form η, we can associate to it the integral flow φ^η of the vector field X such that $\eta = i_X \omega$, where i_X denotes the contraction operator. Since η is closed, φ^η is area-preserving; conversely, every smooth area-preserving flow can be obtained in this way.

![Figure 1. Pictorial representation of locally Hamiltonian flows on a surfaces: in (a) an Arnold flow ($g = 1$) and in (b) a flow in $g = 3$ with two minimal components and 3 periodic components.](image)

Topology and measure class. Let $Fix(\varphi_\mathbb{R})$ denote the set of fixed points (also called singularities) of the flow $\varphi_\mathbb{R}$. Remark that when $g \geq 2$, $Fix(\varphi_\mathbb{R})$ is always non-empty; we require the singularities to be isolated (so that in particular, by compactness, $Fix(\varphi_\mathbb{R})$ is a finite set) and denote by \mathcal{F} the set of smooth closed 1-forms on S with isolated zeros. On \mathcal{F} (which we can think of as the space of locally Hamiltonian flows) one can define a topology as well as a measure class. The topology is obtained by considering perturbations of closed smooth 1-forms by (small) closed smooth 1-forms. We will often restrict our attention to the subset $\mathcal{M} \subset \mathcal{F}$ of Morse closed 1-forms, (i.e. forms which are locally the differential of a Morse function), which is open and dense in \mathcal{F} with respect to this topology (see e.g. [Rav17]). Locally Hamiltonian flows corresponding to forms in \mathcal{M} have only non-degenerate fixed points, i.e. centers and simple saddles (as in Figures 2a and 2b), as opposed to degenerate multi-saddles (as in Figure 2c).

A measure-theoretical notion of typical can be defined using the Katok fundamental class (introduced by Katok in [Kal73], see also [NZ99]), i.e. the cohomology class of the 1-form η which defines the flow. More explicitly, if we fix a base $\gamma_1, \ldots, \gamma_n$ of the relative homology $H_1(S, Fix(\varphi_\mathbb{R}), \mathbb{R})$ (where $n = 2g + k - 1$ if k denotes the cardinality of $Fix(\varphi_\mathbb{R})$) and consider the period map Per given by $Per(\eta) = (\int_{\gamma_1} \eta, \ldots, \int_{\gamma_n} \eta) \in \mathbb{R}^n$, we say that a property holds for a typical locally
Hamiltonian flow in F, if it holds for all η such that $Per(\eta)$ belongs to a full measure set with respect to the Lebesgue measure on \mathbb{R}^n.

Minimal components and ergodicity. To describe (typical) chaotic behavior in locally Hamiltonian flows, it is crucial to distinguish between two open sets (complementary, up to measure zero, see [Ulc21] or [Rav17] for more details): in the first open set, which we will denote by U_{min}, the typical flow is **minimal** (the term **quasi-minimal** is also used in the literature), in the sense that the orbits of all points which are not fixed points are dense in S; flows in U_{min} have only saddles, since the presence of centers prevents minimality. On the other open set, that we call $U_{\neg \text{min}}$, the flow is not minimal (there are saddle loops homologous to zero which disconnect the surface), but one can decompose the surface into a finite number of subsurfaces with boundary S_i, $i = 1, \ldots, N$ such that for each i either S_i is a periodic component, i.e. the interior of S_i if foliated into closed orbits of φ_η (in Figure 1 (b) one can see three periodic components, namely two disks and one cylinder), or S_i is such that the restriction of φ_η to S_i is minimal in the sense above, as pictured in the remaining two subsurfaces in Figure 1 (b). These are called **minimal components** and there are at most g of them (where g is the genus of S), see § 3.1.

Notice that minimality and ergodicity of a (minimal component of a) locally Hamiltonian flow are equivalent to minimality or respectively ergodicity of an (and hence any) interval exchange transformation which appears as the Poincaré map. Classical results proved in the 1980s guarantee that almost every IET (with respect to the Lebesgue measure on the interval lengths, assuming that the permutation is irreducible) is minimal (as showed by Keane [Kea75], see also [Kat73]) and (uniquely) ergodic (as proved in the works by Masur [Man87] and Veech [Vee82], considered early milestones of the successful application of Teichmüller dynamics to the study of IETs and translation surfaces, see the ICM proceeding [CW] or the survey [Zor06]). It then follows from definition of Katok measure class that a typical local Hamiltonian flow in U_{min} is minimal and ergodic and, given a typical local Hamiltonian flow in $U_{\neg \text{min}}$, its restriction on each minimal component is ergodic.

Classification of mixing properties. Finer chaotic features of locally Hamiltonian flows, in particular mixing and spectral properties, change according to the type of singularities and depend crucially on the locally Hamiltonian parametrization of saddle points. For a (non-generic) locally Hamiltonian flow with at least one degenerate saddle (e.g. as in Fig. 2c), mixing (see for the definition (3.1) for $n = 2$) was proved in the 1970s by Kochergin [Koc73]. When on the other hand $\eta \in M$ is a Morse-one form, so that all saddles are simple, one has a dichotomy: inside the open set U_{min} in which the typical flow is minimal, almost every locally Hamiltonian flow is weakly mixing, but it is not mixing in view of work by the author [Ulc09, Ulc11]; on the other hand, for a full measure set of flows in $U_{\neg \text{min}}$, the restriction to each of minimal components is mixing (as proved by Ravotti [Rav17] extending previous work by the author [Ulc07b]).

The question of mixing in higher genus was raised by V. Arnold in the 1990s, when he conjectured (see [Arn91]) that the restriction of a typical smooth flow on a torus with one center and one simple saddle to its minimal component (namely for what we nowadays call an Arnold flow) was indeed mixing. His conjecture was proved shortly after by Khanin and Sinai in [SK92], who showed mixing under the assumption that the rotation number α is such that the entries a_n of the continued
fraction expansion of α do not grow too fast, namely there exists a power $1 < \tau < 2$ and $C > 0$ such that $|a_n| \leq C n^\tau$. One can show (for example exploiting the Gauss map G and the finiteness of $\int_0^1 a_0(x) \, d\mu_G(x)$, where μ_G is the Gauss measure, via a standard Borel-Cantelli argument) that this arithmetic condition holds for a full measure set of α. The condition was later improved by Kocergin, see [Koc01]. Also in the case of absence of mixing, a prototype result for flows over a full measure set of rotation numbers was proved by Kocergin [Koc72] already in the 1970s (and much more recently extended in [Koc07] to all irrational rotation numbers), much earlier than results in higher genus [Sch09, Ulc07a, Ulc11].

In higher genus, the above mentioned results on mixing/absence of mixing require the introduction of Diophantine-like conditions, which describe the full measure set of locally Hamiltonian flows for which the results hold. In [Ulc07b], for example, we introduced a condition on a IET (see § 5 for more details) called Mixing Diophantine Condition (or MDC for short). Let us say that the restriction of a locally Hamiltonian flow φ_R to one of its minimal components S_i satisfies the MDC if one can find a section $I \subset S_i$ (in good position in the sense of [MMY12]) such that the IET which arise as Poincaré map of φ_R to I satisfies the MDC. One can then prove:

Theorem 3.1 (Ulcigrai [Ulc07b], Ravotti [Rav17]). Let φ_R be a flow in U_{min} and let S_i be a minimal component. If the restriction of φ_R to S_i satisfies the Mixing Diophantine Condition, then φ_R restricted to S_i is mixing.

We then show in [Ulc07b] (exploiting results from [AGY06], see § 5) that the MDC is satisfied by a full measure set of IETs. Similarly, to prove that a typical flow in U_{min} is not mixing, a Diophantine-like condition, which is later proved to be of full measure, is introduced in [Ulc11]. Special cases of the absence of mixing result for surfaces with $g = 2$ and two isometric saddles were proved in [Ulc07a] and by Scheglov in [Sch09]. We remark that in U_{min} there exist nevertheless exceptional mixing flows, as shown by the work by [CW19], which produces sporadic examples in $g = 5$.

Parabolic dynamics and slow chaos. Smooth, area-preserving flows on surfaces also provide one of the fundamental classes of parabolic, or slowly chaotic, dynamical systems (see e.g. the survey [Ulc21]). In systems which display sensitive dependence on initial conditions (the so-called butterfly effect), one can find many nearby initial conditions whose trajectories diverge with time. Contrary to hyperbolic systems, where this divergence happens (infinitesimally) at exponential speed, in parabolic systems the divergence speed is slow, namely sub-exponential and in all known examples polynomial or sub-polynomial. Slow divergence in locally Hamiltonian flows is created by Hamiltonian saddles, which create different deceleration rates of nearby trajectories and produce a form of (local) shearing, by tilting in the flow direction the image under the flow of arcs initially transverse to the dynamics, as illustrated in Figure 2d. Shearing happens not only locally, near a saddle, but globally for typical flows in U_{min}, which (in view of the presence of saddle loops) display a global asymmetry in the prevalent direction of shearing. It is this geometric mechanism which is behind the proof of mixing (in this setting, but also for many other classes of parabolic flows, see the survey [Ulc13] and the references therein). Under the assumption that the restriction of φ_R to a minimal component S_i satisfies the Mixing Diophantine Condition, one can produce quantitative estimates on shearing of transverse arcs and, as shown by Ravotti in [Rav17], prove quantitative mixing estimates, which show that mixing happens (at least) at sub-polynomial speed, i.e. for any two smooth observables $f, g : S_i \to \mathbb{R}$ supported outside the saddles in $Fix(\varphi_R) \cap S_i$,

$$\left| \int_{S_i} f(\varphi_t(x))g(x) \, d\mu - \int_{S_i} f \, d\mu \int_{S_i} g \, d\mu \right| \leq \frac{C_{fg}}{(\log t)^\gamma}, \quad t \geq 0.$$

This is expected to be also the optimal nature of the estimates, namely the decay is not expected to be polynomial or faster in this setting, but no lower bounds on the decay of correlations are currently available.

Ratner’s forms of shearing. Striking consequences of shearing (such as measure and joining rigidity) were proved for another famous class of parabolic flows, namely horocycle flows on hyperbolic surfaces and their time-changes, by exploiting a quantitative shearing property introduced by Marina Ratner and nowadays known as Ratner property (or RP). In view of its importance in the
study of horocycle flows and more generally unipotent flows in homogeneous dynamics, it is natural to ask whether this property can be proved and exploited in other parabolic (non homogeneous) settings. For locally Hamiltonian flows, which are natural candidates, the original Ratner property is believed to fail due to the presence of singularities (see [FK16]). Nevertheless, a variant of the RP which has the same dynamical consequences, called Switchable Ratner Property (or SRP for short), was introduced by B. Fayad and A. Kanigowski in [FK16] and showed to hold for typical Arnold flows (as well as some flows in genus one with one degenerate singularity). As an abstract consequence of the SRP property, one can conclude that typical Arnold flows are not only mixing, but mixing of all orders, namely for any \(n \geq 2 \) and any \(n \)-tuple \(A_0, \ldots, A_{n-1} \) of measurables sets,

\[
\mu \left(A_0 \cap \varphi_{t_1}(A_1) \cap \cdots \cap \varphi_{t_1 + \cdots + t_{n-1}}(A_{n-1}) \right) \to_t \mu(A_0) \cdots \mu(A_{n-1}).
\]

Notice that this definition reduces to the classical definition of mixing in the special case \(n = 2 \); whether mixing implies mixing of all orders in general is still an open problem, known as Rohlin conjecture.

To prove the SRP property, one needs to assume that the rotation number \(\alpha = [a_0, a_1, \ldots, a_n, \ldots] \) satisfies an ad-hoc arithmetic condition, namely, if \(q_n \) are the denominators of \(\alpha \), one requires that, for some \(0 < \xi, \eta < 1 \) (taken to be \(\xi = \eta = 7/8 \) in [FK16]) the following series is finite:

\[
\sum_{k \notin K(\alpha)} \frac{1}{(\log q_n)^\eta} < +\infty,
\]

where \(K(\alpha) := \{ k \in \mathbb{N}, \ a_{k+1} \leq C(\log q_k)^\xi \} \).

In joint work with A. Kanigowski and J. Kulaga-Przymus [KKPU19], we were able to generalize this result to higher genus. To do so, it is once again crucial to introduce a suitable Diophantine-like condition, which we called in [KKPU19] the Ratner Diophantine Condition (or RDC) and we describe in §5. The main result we prove is the following.

Theorem 3.2 (Kanigowski, Kulaga-Przymus, Ulcigrai [KKPU19]). If the restriction of \(\varphi_R \in \mathcal{U}_{\text{min}} \) to a minimal component \(S_i \) satisfies the Ratner Diophantine Condition, \(\varphi_R : S_i \to S_i \) satisfies the Switchable Ratner Property and is mixing of all orders.

We then show that the RDC is satisfied by almost every IET and therefore can conclude that, for a full measure set of locally Hamiltonian flows in \(\mathcal{U}_{\text{min}} \), each restriction to a minimal component is mixing of all orders.

Quantitative estimates on slow, Ratner-type shearing were recently used (in the joint work [KLU20] with A. Kanigowski and M. Lemańczyk) to study disjointness of rescalings, a property that has recently received a revival of attention in view of its role as possible tool to prove Sarkovskii-Möbius orthogonality conjecture (see the ICM proceedings survey [Lem] and the references therein). In [KLU20] we introduce a disjointness criterium based on Ratner shearing and use it (as one of the applications) to show that, in genus one, typical Arnold flows have disjoint rescalings and satisfy Möbius orthogonality. Disjointness of rescalings seem to be an important feature of parabolic dynamics: while specific parabolic flows may fail to be disjoint from their rescalings (in prims the horocycle flow on a hyperbolic surface), several recent results seem to indicate that this property is indeed widespread among parabolic flows (see e.g. the results in [KLU20] on time-changes of horocycle flows). In the context of surface flows, disjointness of rescalings has been verified in [BK21] for von Neumann flows (which can be realized as translation flows on surfaces with boundary). Whether one can extend the disjointness result proved in [KLU20] for Arnold flows to higher genus smooth flows, remains an open problem and is likely to require a delicate control of Diophantine-like properties.

Polynomial deviations of ergodic averages. Slow chaotic behavior manifests itself not only through slow mixing, but also through slow convergence of ergodic integrals: given an ergodic area-preserving flow \(\varphi_R \) (or its restriction to an ergodic minimal component \(S' \subset S \)) and a real valued observable \(f \) with zero-mean, the ergodic integrals \(I_T(f, x) := \int_0^T f(\varphi_t(x)) \, dt \) decay to zero polynomially with some exponent \(0 < \nu < 1 \) for almost every initial point, i.e. \(|I_T(f, x)| \sim O(T^\nu) \) in the sense that \(\limsup_{T \to \infty} \log |I_T(f, x)|/\log T = \nu \). This phenomenon, known as polynomial deviations of ergodic averages, was discovered experimentally in the 1990s by A. Zorich and explained (for linear flows on translation surfaces and observables corresponding to cohomology classes) in
seminal work by Kontsevich and Zorich relating power deviations to Lyapunov exponents of renormalization (see §4). Forni in [For02b] could extend this result to integrals of sufficiently regular functions over translation flows and show that ergodic integrals can display a power spectrum of behaviors, i.e. there are exactly g positive exponents $0 < \nu_g \leq \cdots \leq \nu_2 < \nu_1 := 1$ (which correspond to the positive Lyapunov exponents of renormalization) and, for each, a subspace of finite codimension of smooth observables that present polynomial deviations as above with exponent $\nu = \nu_i$. A finer analysis of the behavior of Birkhoff sums or integrals, beyond the size of oscillations, appears in the works Bufetov in [Bu14] shows in particular that (for typical translation flows and sufficiently regular observables) the asymptotic behavior of ergodic integrals can be described in terms of g (where g is the genus of the surface) cocycles $\Phi_i(t, x)$, $1 \leq i \leq g$ (also called Bufetov functionals): each $\Phi_i : \mathbb{R} \times S' \to \mathbb{R}$ is a cocycle over the flow φ_{t} (in the sense that $\Phi_i(t + s, x) = \Phi_i(t, x) + \Phi_i(s, \varphi_t(x))$ for any $x \in S'$ and $t \in \mathbb{R}$), $\Phi_1(T, x) \equiv T$ and each Φ_i has power deviations $|\Phi_i(T, x)| \sim O(T^{\nu_i})$ with exponent ν_i. Together, the cocycles encode the asymptotic behavior of the ergodic integrals up to sub-polynomial behavior, in the sense that, for some constants $c_i = c_i(f)$,

$$
\int_{0}^{T} f(\varphi_t(x)) \, dt = c_1 T + c_2 \Phi_2(T, x) + \cdots + c_g \Phi_g(T, x) + Err(f, T, x),
$$

where for almost every $x \in S'$ the error term $Err(f, T, p)$ is sub-polynomial, i.e. for any $\epsilon > 0$ there exists $C_\epsilon > 0$ such that $|Err(f, T, p)| \leq C_\epsilon T^\epsilon$. In joint work with Frączek, we recently gave a new proof of this result in [FU] which extends the result to the setting of smooth observables over locally Hamiltonian flows with Morse singularities (in \mathcal{U}_{min} as well as in $\mathcal{U}_{\text{-min}}$) and also shows that the set of locally Hamiltonian flows for which the result holds can be described in terms of a Diophantine-like condition. More precisely, we define in [FU] the Uniform Diophantine Condition (or UDC for short, see §5) and show that it has full measure. We then prove the following.

Theorem 3.3 (Frączek-Ulcigrai [FU]). If the restriction of the locally Hamiltonian flow $\varphi_\mathbb{R} \in \mathcal{M}$ on a minimal component S' satisfies the Uniform Diophantine Condition, for each C^3 observable $f : S' \to \mathbb{R}$, there exists g exponents ν_i and corresponding cocycles Φ_i such that the expansion (3.3) holds.

Spectral theory. The study of the spectrum of the unitary operators acting on $L^2(S, \mu)$ given by $f \mapsto f \circ \varphi_t$ can shed further light on the chaotic features of the dynamics of the flow $\varphi_\mathbb{R} := (\varphi_t)_{t \in \mathbb{R}}$ and is at the heart of spectral theory (see [Lem] or [Ulc21] and the references therein). While the classification of mixing properties of locally Hamiltonian flows is essentially complete, very little is known on their spectral properties beyond the case of genus one (and some sporadic examples, such as Blokhin examples, essentially built gluing genus one flows, see the work [FL04]). The recent result [FKP21] by Fayad, Forni and Kanigowski for genus one suggests that it may be possible to prove that the spectrum is countable Lebesgue also in higher genus when in presence of degenerate, sufficiently strong (multi-saddle) singularities. In the non-degenerate case, though, we recently proved in joint work with Chaika, Frączek and Kanigowski [CFKU21] that a typical locally Hamiltonian flow on a genus two surface with two isomorphic simple saddles has purely singular spectrum. This result does not use explicit Diophantine-like conditions, but rather geometry and in particular a special symmetry (the hyperelliptic involution) that surfaces in genus two are endowed with: Liouville-type Diophantine conditions are here imposed by requesting the presence on the surface of large flat cylinders close to the direction of the flow, whose existence for typical flows is then proved by a Borel-Cantelli type of argument (see [CFKU21] for details). Extending this result beyond genus two, though, will probably require the use of Rauzy-Veech induction (see §4) and the introduction of new Diophantine-like conditions, which impose some controlled form of degeneration. The nature of the spectrum of minimal components of locally Hamiltonian flows in $\mathcal{U}_{\text{-min}}$ (even in genus one, i.e. for Arnold flows) is a completely open problem.

3.2. Linearization and rigidity in higher genus.

A different line of problems in which Diophantine-like conditions in higher genus play a crucial role are conjectures concerning linearization and rigidity properties of higher genus flows and their Poincaré sections, GIETs (defined in §3). In analogy with the case of circle diffeos, we say that a GIET T is *linearizable* if it is topologically conjugate to a linear model, namely to a (standard) IET T_0.

Topological conjugacy and wandering intervals. To generalize Poincaré and Denjoy work, one needs first of all a combinatorial invariant which extends the notion of rotation number. Such an invariant can be constructed by recording the combinatorial data of a renormalization process, as we explain in §4. One of the crucial differences between GIETs and circle diffeomorphisms, though, is the failure of a generalization of Denjoy theorem: there are smooth GIETs that are semi-conjugate to a minimal IET for which the semi-conjugacy is not a conjugacy, in other words they have wandering intervals (see the examples found in [CG97] [BHM10] in the class of periodic-type (affine) IETs and, more generally, [MMY10]). It is important to stress that this is not a low-regularity phenomenon, nor it is related to special arithmetic assumptions: as shown by the key work [MMY10] by Marmi, Moussa and Yoccoz, wandering intervals exist even for piecewise affine (hence analytic) GIETs (called AIETs), for almost every topological conjugacy class. The presence of wandering intervals is on the contrary expected to be typical (see e.g. the conjectures in [MMY12, Gha]) and it is closely interknit with the absence of a Denjoy Koksma inequality and more in general a priori bounds for renormalization, see [GU].

Local obstructions to linearization. As an important first step towards local linearization, we already mentioned the cohomological equation \(\varphi \circ T - \varphi = \phi \) in §2 where \(T = R_\alpha \) was a rotation. Whether the cohomological equation could be solved when \(T \) is a IET, under suitable assumptions, was unknown until the pioneering work of Forni [For97], who brought to light the existence of a finite number of obstructions to the existence of a (piecewise finite differentiable) solution. We remark that obstructions to solve the cohomological equation have been since then discovered to be a characteristic phenomenon in parabolic dynamics (e.g. their existence have been proved by Flaminio and Forni for horocycle flows [FF03] and nilflows on nilmanifolds [FF07], see also the ICM talk [For02a]). Forni’s work is a breakthrough that paved the way for the development of a linearization theory in higher genus.

Another breakthrough, which put the stress on the arithmetic aspect of linearization in higher genus, was achieved by Marmi-Moussa-Yoccoz in their work [MMY12] (and related works [MMY05, MMY10]). In [MMY05], in particular, they reproved and extended Forni’s result using the IETs renormalization described in §5 and introduced the Roth-type condition (see also §5), as an explicit Diophantine-like condition on the IET needed to solve the cohomological equation \(\varphi \circ T - \varphi = \psi - \xi \), where \(\xi \) is a piecewise constant function which embodies the finite dimensional obstructions. This result, combined with a generalization of Herman’s Schwarzian derivative trick, then led to the proof in [MMY12] by the same authors that, for any \(r \geq 2 \), the \(C^r \) local conjugacy class of almost every IET \(T \) (more precisely, of any \(T \) of restricted Roth-type, see §5) is a submanifold of finite codimension. Marmi, Moussa and Yoccoz also conjectured that for \(r = 1 \) it is a submanifold of codimension \((d-1)+(g-1) \), where \(d \) is the number of exchanged intervals and \(g \) the genus of the surface of which \(T \) is a Poincaré section. For the measure zero class of IETs of hyperbolic periodic type (see §5), this conjecture has recently been proved by Ghazouani in [Gha21]. The proof of this result for almost every IET will require the introduction of a new suitable Diophantine-like condition on IETs.

Rigidity of GIETs. We say that a class of (dynamical) systems is geometrically rigid (or also \(C^1 \)-rigid), if the existence of a topological conjugacy between two objects in the class automatically imply that the conjugacy is actually \(C^1 \). The global linearization results by Herman and Yoccoz recalled in §2 shows that the class of (smooth, or at least \(C^3 \)) circle diffeomorphisms with Diophantine rotation number is geometrically rigid (and actually \(C^\infty \)-rigid, i.e. if a smooth circle diffeo is conjugated via a homeomorphism \(h \) to \(R_\alpha \) with \(\alpha \) satisfying the DC, then \(h \) is \(C^\infty \)). We already saw that this can be reinterpreted as a rigidity result for flows on surfaces of genus one (see Theorem 2.1). In joint work with S. Ghazouani, we recently proved a generalization of this result to genus two.

Theorem 3.4 (Ghazouani, Ulcigrai [GU]). Under a full measure Diophantine-like condition, a foliation on a genus two surface which is topologically conjugate to the foliation given by a linear flow with Morse saddles, is also \(C^1 \) conjugate to it.
Here full measure refers to the Katok measure class on the linear flow models (see the definition given earlier in this section). For simplicity, we stated the result for flows with simple, Morse-type saddles; degenerate saddles can also be considered, but then one has to further assume that the foliations are locally C^1 conjugated in a neighborhood of the multi-saddle. Both these results can be reformulated at level of Poincaré sections: we introduce more precisely a rather subtle Diophantine-like conditions on (irreducible) IETs of any number of intervals $d \geq 2$, that we call the Uniform Diophantine Condition, or UDC (we comment on it in §§ and show that it is satisfied by almost every (irreducible) IET on d. We then prove:

Theorem 3.5 (Ghazouani, Ulcigrai [GU]). If an irreducible d-IET T_0 with $d = 4$ or $d = 5$ satisfies the UDC, then any C^1-generalized interval exchange map T which is topologically conjugate to T_0, and whose boundary $B(T)$ vanishes, is actually conjugated to T_0 via a C^1 diffeomorphism.

The boundary operator $B(T)$ which appears in this statement is a C^1-conjugacy invariant introduced in [MMY12]; it encodes the holonomy at singular points of the surface of which T is a Poincaré section. Requesting that $B(T)$ vanishes is therefore a necessary condition for the existence of a conjugacy of class C^1. Theorem 3.5 solves for $d = 4,5$ one of the open problems suggested by Marmi, Moussa and Yoccoz in [MMY12], where they conjecture the result to hold also for any other larger d. The result which is missing to prove the conjecture in its generality is a generalization of an estimate used in [MMY10] to show existence of wandering intervals in affine IETs. The main result in [GU], on the other hand (namely a dynamical dichotomy for the orbit of T under renormalization) is already proved for IETs which satisfy the UDC for any $d \geq 2$.

4. Renormalization and cocycles

In this section we introduce the renormalization dynamics which is used as main tool to impose Diophantine-like conditions in higher genus. Renormalization in dynamics is a powerful tool to study dynamical systems which present forms of self-similarity (exact or approximate) at different scales. A map $T : I \to I$ of the unit interval which is (infinitely) renormalizable is such that one can find a (finite) sequence of nested subintervals $I_{n+1} \subset I_n \subset \cdots \subset I$ such that the induced dynamics $T_n : I_n \to I_n$ (obtained by considering the first return map of T on I_n) is well defined and, up to rescaling, belongs to the same class of dynamical systems of the original T. Here, the rescaling, which is done so that the rescaled (or renormalized) map acts again on an interval of unit length, is given by the map $x \mapsto T_n([I_n(x)]/|I_n|)$. We will now describe renormalization in the context of rotations first and then IETs. In both cases, at the level of (minimal) flows (or equivalently orientable foliations) on surfaces, the inducing process corresponds to taking shorter and shorter Poincaré sections of a given surface flow (on the torus or on a higher genus surface).

Renormalization algorithms. If $T = R_\alpha$ is a rotation by an irrational α and $q_n, n \in \mathbb{N}$, are the denominators of the convergents p_n/q_n of α, then one can consider as sequence $(I_n)_{n \in \mathbb{N}}$ the shrinking arcs on S^1 which have as endpoints $R_\alpha^{q_n}(0)$ and $R_\alpha^{q_n+1}(0)$, that correspond dynamically to consecutive closest returns of the orbit of 0 (see Figure 3a). The induced map T_n is then again a rotation R_{α_n}, with rotation number $\alpha_n = G^n(\alpha)$, where G is the Gauss map $G(x) = \{1/x\}$.

![Figure 3](image)

Figure 3. Renormalization algorithms for rotations and IETs.

Similarly, for a d-IET T, one wants to choose the nested sequence $(I_n)_{n \in \mathbb{N}}$ of inducing intervals so that the induced maps T_n are all IETs of the same number d of subintervals. Given any
Rohlin towers and induction and then renormalizing the induced map to act on $[0, 1]$. After Rohlin towers and matrices. Their union is called a Rohlin tower of step n and each of them is called a floor (see Figure 3b). Given an infinitely renormalizable T, for any n one can see $[0, 1]$ as a union of d Rohlin towers of step n, as shown in Figure 3b. Rohlin towers thus produce a sequence of partitions of $[0, 1]$ (into floors of towers of step n).

Renormalization produces also a sequence of $d \times d$ matrices A_n, $n \in \mathbb{N}$, with integer entries, which should be thought of as multi-dimensional continued fraction digits and describe intersection numbers of Rohlin towers. The matrices $(A_n)_{n \in \mathbb{N}}$ are defined so that the entries of the product $A^n := A_n \cdots A_1$ have the following dynamical meaning: the (i,j) entry $(A^n)_{ij}$ is the number of visits of the orbit of any point $x \in I_0^n$ to the initial subinterval I_0^n until its first return time r^n_i; in other words, $(A^n)_{ij}$ is the number of floors of the jth tower of level n which are contained in I^n_i. These entries generalize the classical continued fraction digits: for $d = 2$, indeed, the matrices $(A_n)_{n \in \mathbb{N}}$ associated to R_0, for n of alternate parity, have respectively the form

$$
\begin{pmatrix}
1 & a_n \\
0 & 1
\end{pmatrix}
or
\begin{pmatrix}
1 & 0 \\
a_n & 1
\end{pmatrix},
$$

where a_n are the entries of the continued fraction expansion $\alpha = [a_0, a_1, \ldots, a_n, \ldots]$. Diophantine-like conditions for IETs are defined by imposing conditions on these matrices, on their growth as well as on their hyperbolicity, see in §5. The matrices $(A_n)_{n \in \mathbb{N}}$ are produced by the renormalization dynamics: for rotations, the entries $(a_n)_{n \in \mathbb{N}}$ of the continued fraction expansion of α satisfy $a_n = a_0(G^n(\alpha))$, where $a_0(\cdot)$ is an integer valued function on $[0, 1]$. Similarly, one has now that $A_n = A_0(R^n(T))$, where $A_0 : \mathcal{I}_d \to SL(d, \mathbb{Z})$ is a matrix valued function on the space \mathcal{I}_d of d-IETs, i.e. a cocycle (known as the Rohzy-Veech cocycle, or Zorich cocycle if considering the Zorich acceleration).

Positive and balanced accelerations. It turns out though, that Zorich acceleration is often not sufficient (see for example [KML] and [Kim14] where it is shown that the classical Diophantine notions of bounded-type [KML] and Diophantine-type [Kim14] do not generalize naturally when using Zorich acceleration). Two accelerations which play a key role in Diophantine-like conditions are the positive and the balanced acceleration. By accelerations we mean here an induction which is obtained by considering only a subsequence $(n_k)_{k \in \mathbb{N}}$ of Rauzy-Veech times. The associated (accelerated) cocycle is then obtained considering products

$$A(n_k, n_{k+1}) := A_{n_{k+1}} \cdots A_{n_k} A_{n_k}.$$

The positive acceleration appears in the works by Marmi, Moussa and Yoccoz [MMY05], [MMY12] and [Miy16]. They showed that if T satisfies the Keane condition, for any n there exists $m \geq n$ such that $A(n, m)$ is a strictly positive matrix. The accelerated algorithm then corresponds to choosing the sequence $(n_k)_{k \in \mathbb{N}}$ setting $n_0 := 0$ and then, for $k \geq 1$, choosing n_k to be the smallest integer $n > n_{k-1}$ such that $A(n_{k-1}, n)$ is strictly positive. On the other hand, to define the balanced acceleration, one considers a subsequence $(n_k)_{k \in \mathbb{N}}$ of Rauzy-Veech times n for which the
corresponding Rohlin towers are balanced, in the sense that ratios of widths $|T_{n}|/|T_{i}|$ and heights r_{n}/r_{i} are uniformly bounded above and below. We will return to these accelerations and some instances in which they are helpful in § 5.

Combinatorial rotation numbers. We remark that the definition of Rauzy-Veech induction can be extended also to a GIET T (under the Keane condition, which guarantees that $\mathcal{R}^{n}(T)$ can be defined for every $n \in \mathbb{N}$) and then exploited to give a combinatorial notion of rotation number as well as a definition of irrationality in higher genus (following [MMY12, MY16], see also [Yoc10]). As one computes the induced maps $(T_{n})_{n \in \mathbb{N}}$, one can indeed record the sequence $(\pi_{n})_{n \in \mathbb{N}}$ of permutations of the GIETs $(T_{n})_{n \in \mathbb{N}}$: this sequence provides the desired combinatorial rotation number for $d > 2$. We say that a GIET is irrational if the sequence of matrices $(A_{n})_{n \in \mathbb{N}}$ has a positive acceleration (or equivalently, in the terminology introduced by Marmi, Moussa and Yoccoz, the path described by $(\pi_{n})_{n \in \mathbb{N}}$ is infinitely complete). One can then show that two irrational GIETs with the same rotation number are semi-conjugated (see e.g. [Yoc10]), a result that generalizes a property of rotations numbers and circle diffeos and hence explains the choice of calling this higher genus combinatorial object the ‘rotation number’ of a GIET.

Renormalization of Birkhoff sums. Given $T : I \to I$ and a function $f : I \to \mathbb{R}$, we denote by $S_{n}f := \sum_{k=0}^{n-1} f \circ T^{k}$ the nth-Birkhoff sum (of the function f under the action of T). When $T = R_{a}$ is a rotation (or a circle diffeo), it is standard to study first Birkhoff sums of the form $S_{q_{n}}f$ for q_{n} convergent of a, corresponding to closest returns, and then use them to decompose more general Birkhoff sums. Similarly, renormalization for (G)IETs can be exploited to produce special Birkhoff sums, namely Birkhoff sums of a special form that can be understood first, exploiting renormalization, and then used to decompose and study general Birkhoff sums. For each $n \in \mathbb{N}$, if $T_{n} : I_{n} \to I_{n}$ is the induced map after n steps of renormalization, the nth special Birkhoff sum is the induced function $S(n)f : I_{n} \to I_{n}$, defined by $S(n)f(x) := S_{r_{n}}f(x)$ if $x \in I_{n}$. Thus, since r_{n} is the height of the Rohlin tower over I_{n}, the value $S(n)f(x)$ is obtained summing the orbit along the tower which has x in the base, see Figure [3]. Notice that for $d = 2$, when considering Zorich acceleration, these reduce to sums of the form $S_{q_{n}}f(x)$. The associated special Birkhoff sums operators $S(n)$, $n \in \mathbb{N}$, map $f : I \to \mathbb{R}$ to $S(n)f : I_{n} \to \mathbb{R}$. When f is piecewise constant and takes a constant value f_{i} on each I_{k}, $S(n)$ can be identified with a linear operator given by the (studied acceleration of the) Rauzy-Veech cocycle $A^{n} = A_{n} \cdots A_{1}$ as follows: one can show that $S(n)f$ takes constant values f_{i}^{n} on each I_{i} and the column vectors $f_{i}^{n} := (f_{i})_{i=1}^{d}$ are related by $f_{i}^{n} = A^{n} f_{i}$. Thus, special Birkhoff sums operators can be seen as infinite dimensional extensions of the Rauzy-Veech cocycle (and its accelerations).

When considering a rotation R_{a}, to decompose $S_{q_{n}}f(x)$ into Birkhoff sums of the form $S_{q_{k}}f(x_{j})$, one can write $n = \sum_{k=0}^{k_{0}} b_{k} a_{k}$, where k_{0} is the largest integer k such that $q_{k} < n$ and b_{k} are integers such that $0 \leq b_{k} \leq a_{k}$, (a factorization sometimes known as Ostrowsky decomposition). Correspondingly, recalling that $S_{q_{k}}f(x_{j}) = S(k)f(x_{j})$ when $x_{j}^{k} \in I_{k}$, we can write

\begin{equation}
S_{n}f(x) = \sum_{k=0}^{k_{0}} \sum_{j=0}^{b_{k}-1} S(k)f(x_{j}^{k}), \quad \text{where } x_{j}^{k} \in I_{k}, \quad \text{for all } 0 \leq j < b_{k}.
\end{equation}

For IETs one can also get an analogous decomposition of any Birkhoff sums $S_{n}f(x)$ into special Birkhoff sums, which has the same form \[(4.1)\], but where $0 \leq b_{k} \leq \|A^{n}\| : = \sum_{i,j} (A^{n})_{ij}$ and the decomposition is obtained dynamically, by decomposing the orbit of x until time n into blocks, each of which is contained in a tower and hence corresponds to a special Birkhoff sums.

Renormalization in moduli spaces. We conclude this section mentioning that these renormalization algorithms (for rotations and IETs) describe a discretization of a renormalization dynamics on the moduli space of surfaces. In genus one, the Gauss map is well known to be related to the geodesic flow on the modular surface (which can be seen as the moduli space of flat tori), see e.g. [Ser85]. Similarly, (an extension of) Rauzy-Veech induction can be obtained as Poincaré map of the Teichmüller geodesic flow on the moduli space of translation surfaces (see e.g. [Zor06]).
The full measure Diophantine-like conditions that we discuss in this survey are satisfied by (Poincaré maps of) linear flows in almost every direction on almost every translation surface in these moduli space (with respect to the Lebesgue, or Masur-Veech measure, see [CW]). A different question is whether these properties hold for a given surface in almost every direction, in particular if the surface has special properties, for example is a torus cover (i.e. it is a square-tiled surface), or has special symmetries (e.g. it is a Veech surface or it belongs to a n SL(2, R)-invariant locus, see [CW]). In these settings, while some results can be obtained by general measure-rigidity techniques (in particular from the work [CE14] by Chaika and Eskin, see also the ICM proceedings [CW] and the references therein), to describe explicit Diophantine-like conditions it is often helpful to exploit or develop ad-hoc renormalization algorithms (for example one can use finite extensions of the Gauss map to study square-tiled surfaces, see e.g. [MMY15], or construct Gauss-like maps for some Veech surfaces, see e.g. [SU10]).

5. Diophantine-like conditions in higher genus

We finally describe in this section some of the Diophantine-like conditions which were introduced to prove some of the results on typical ergodic and spectral properties of smooth area-preserving flows on surfaces (see §3.1) and on linearization (such as solvability of the cohomological equation and rigidity questions in higher genus, see §3.2).

5.1. Bounded-type IETs and Lagrange spectra. We start with two important classes of IETs, namely periodic-type and bounded-type IETs, both of which have measure zero in the space I_d of IETs (although full Hausdorff dimension in the case of bounded-type IETs), but often constitute an important class of IETs in which dynamical and ergodic properties can be tested.

One of the simplest requests on a (G)IET is that its orbit under renormalization is periodic, so that the sequence of Rauzy-Veech cocycle matrices $(A_n)_{n \in \mathbb{N}}$ introduced in the previous section §3 is periodic, i.e. there exists $p > 0$ such that $A_{n+p} = A_n$ for every $n \in \mathbb{N}$. We will furthermore request that the period matrix $A := A_p \cdots A_1$ is strictly positive. These IETs are called in the literature periodic-type IETs (see e.g. [SU05]), in analogy with periodic-type rotation numbers (quadratic irrationals like the golden mean $(\sqrt{5} - 1)/2 = [1, 1, \ldots]$ which have a periodic continued fraction expansion). By construction they are self-similar and one can also show that they arise as Poincaré section of foliations which are fixed by a pseudo-Anosov surface diffeomorphism. Notice that d-IETs of periodic type form a measure zero set in I_d (they are actually countable). One can show (in view of a Perron-Frobenius argument, e.g. following [VeeS2]) that periodic-type IETs are always uniquely ergodic with respect to the Lebesgue measure.

Periodic-type IETs are often the very first type of IETs used to construct explicit examples: see e.g. the explicit examples of weak mixing periodic-type IETs in [SU05] or the explicit examples of Roth-type IETs build in the Appendix of [MMY05]. On the other hand, among periodic-type IETs one can also find examples with exceptional behavior. A further request, that is used to guarantee that a periodic-type T display features similar to those of typical (in the measure theoretical sense) IETs, is that T is of hyperbolic periodic-type: this means that the periodic matrix A has g eigenvalues of modulus greater than 1, where g is the genus of the surface of which T is a Poincaré section. Notice that g is the largest possible number of such eigenvalues, as it can be shown by either geometric or combinatorial arguments (in particular exploiting the symplectic features of the cocycle matrices, which come from their interpretation as action of renormalization on the relative homology $H_1(S, Fix(\varphi), \mathbb{R})$, one can show that A has also g eigenvalues of modulus less than 1, while the transpose A^T acts as a permutation on a subspace of dimension $k := d - 2g$ which gives rise to a k-dimensional central space).

Bounded-type IETs equivalent characterizations. Periodic-type IETs are a special case of so called bounded-type IETs: we say that a (Keane) IET T is of bounded-type if the matrices of the positive acceleration $P_k := A(n_k, n_{k+1})$ are uniformly bounded, i.e. there exists a constant $M > 0$ such that $\|P_k\| \leq M$ for every $k \in \mathbb{N}$. From this point of view, bounded-type IETs can be seen as a generalization of bounded-type rotation numbers (which, recalling §2 are $\alpha = [a_0, a_1, \ldots, a_d, \ldots]$ such that for some $M > 0$ we have $|a_n| \leq M$). It turns out that this renormalization-based definition characterizes a natural class of IETs (and corresponding surfaces) from the combinatorial
and geometric point of view: bounded-type IETs are linearly recurrent (i.e. satisfy an important notion of low complexity in word-combinatorics) and surfaces which have a bounded-type IET as a section give rise to bounded Teichmuller geodesics in the moduli space of translation surfaces (see e.g. [HMU15] for the proof of the equivalences). These natural characterizations show once more how the positive acceleration (and not simply Zorich acceleration) is the good one to use in this setting (see also [KM14] where it is shown that asking that Zorich matrices are bounded leads to a different, strictly larger class).

Furthermore, from the point of view of renormalization, the uniform bounds on the norm of the matrices P_k imply that the partitions into Rohlin towers produced by Rauzy-Veech renormalization are all balanced (see §4). From a purely dynamics perspective, the orbits of a bounded-type IET are well-spaced: there are uniform constants $c,C > 0$ such that, for any point x and any n, the gaps (i.e. the distances between closest point) of the orbit $\{T^nx, 0 \leq i < n\}$ are all comparable to n, i.e. are bounded below by c/n and above by C/n. Yet another characterization is in terms of orbits of discontinuities: if $\delta_n(T)$ denotes the smallest length of a continuity interval for T_n, $\liminf_{n \in \mathbb{N}} n\delta_n(T) > 0$, see [HMU15] and the reference therein.

Several results in the literature were proved first assuming bounded-type (for example absence of mixing for flows in \mathcal{U}_{min}, see [Ulc07a], preceding [Ulc11]) and some properties are currently known only under the assumption of being bounded-type, for example absence of partial rigidity and mild-mixing (see [Kul12] and [KKP16] respectively) for flows in \mathcal{U}_{min} (it is possible, but an open question, that these two properties fail without assuming that a Poincaré section is of bounded-type), or ergodicity of typical skew-product extensions of IETs by piecewise constant cocycles (see [CRI19]).

Bounded-type uniform contraction and deviations estimates. One of the way in which the bounded-type assumption can be exploited is the following. It is well known that iterates of a positive $d \times d$ matrix $A > 0$ act on the positive cone \mathbb{R}^d_+ as a strict contraction (e.g. with respect to the Hilbert projective metric): this is the phenomenon behind the proof of Perron-Frobenius theorem, that shows that A has a unique (positive) eigenvector with maximal eigenvalue. More generally, the projective action of any matrix A_i with $\|A_i\| \leq M$ has a contraction rate which depends on M only; this, in view of the connection between the entries of the cocycle products $A^n := A_n \ldots A_1$ and (special) Birkhoff sums (see §4), can be used, given a bounded-type IET, to prove unique ergodicity and to give uniform estimates on the rate of convergence of ergodic averages: one can for example show that there is a uniform constant (which can be taken to be 1) and a uniform exponent γ_M such that, for any bounded-type IET with $\|P_k\| \leq M$ and any mean zero (piecewise) smooth $f : I \to \mathbb{R}$, $|S_n f(x)| \leq n^{\gamma_M}$ for all $x \in I$ (see the Appendix of [CRI19]).

The role of bounded-type in the study of Lagrange spectra. Periodic-type and bounded-type rotation numbers play a central role in the study of the Lagrange spectrum $\mathcal{L} \subseteq \mathbb{R} \cup \{+\infty\}$, a classical object in both number theory and dynamics (see for example [HMU15] or [Mat18] and the reference therein). It is defined as the set $\mathcal{L} := \{L(\alpha), \alpha \in \mathbb{R}\}$ where $L(\alpha) := \limsup_{q,p \to \infty} 1/q|qa - p|$; one can show that $L(\alpha) < \infty$ exactly when α is of bounded-type, in which case $L(\alpha)^{-1}$ provides the smallest constant such that $|\alpha - p/q| < L(\alpha)^{-1}/q^2$ has infinitely many integer solutions $p,q \in \mathbb{Z}$, $q \neq 0$ (and it has also an interpretation in terms of depths of excursions into the cusp of hyperbolic geodesics on the modular surface). Among the many geometric and dynamical extensions of the notion of Lagrange spectrum (see some of the references in [HMU15]), a natural generalization to higher genus leads to Lagrange spectra of IETs and translation surfaces, which we introduced in joint work with Hubert and Marchese in [HMU15]. The finite values of these spectra are achieved exactly by bounded-type IETs and can be computed using renormalization. We show furthermore in [HMU15] that these spectra can be obtained as the closure of the values achieved by periodic-type IETs.

5.2. **Roth-like conditions and type.** The Roth-type condition, to the best of our knowledge, was historically the first full measure ‘arithmetic’ condition to be defined and exploited in higher genus.
Roth-type condition. In the seminal paper \cite{MMY05}, Marmi, Moussa and Yoccoz show first of all that (a predecessor of) the positive acceleration of Rauzy-Veech induction (refer to \S \ref{section:positiveacceleration}) is well defined for all Keane IETs and use this acceleration to define the Roth-type condition and prove that it has full measure; they then show that this condition is sufficient to solve the cohomological equation after removing obstructions (see \S \ref{section:cohomological}). Since bounded-type IETs have measure zero, to describe a full measure set of IETs one needs to allow the norms $\|P_k\|$ of the matrices $(P_k)_k$ of the positive acceleration to grow. Marmi, Moussa and Yoccoz show in \cite{MMY05} that, for almost every d-IETs in L_d, the matrices $(P_k)_k$ grow sub-polynomially, i.e. for any $\epsilon > 0$ there exists $C_\epsilon > 0$ such that

$$\|P_k\| \leq C_\epsilon \|Q_k\|^\epsilon, \quad \text{where } Q_k := P_{k-1} \ldots P_0.$$

This condition should be seen as a higher genus generalization of the classical Roth-type condition, see \S \ref{section:roth}. A d-IETs is called Roth-type if it satisfies \eqref{eq:roth} (which is equivalent to condition (a) in \cite{MMY05}, see \cite{MY16}), and two additional conditions, which concern the contraction properties of the cocycle (condition (b) in \cite{MMY05} impose that the operators $S(k)$ act as contractions on mean zero functions and guarantees unique ergodicity and the existence of a spectral gap, while the last one, condition (c) or coherence, concerns the contraction rate of the stable space and its quotient space). The presence of additional requests that concern not only the growth of the matrices but also their hyperbolicity properties seems to be an important and new feature of several Diophantine-like conditions in higher genus, see \S \ref{section:higher_genus}. While the proof that the last two conditions are satisfied by almost every IET is a simple consequence of Forni’s work \cite{For02b} and Oseledets theorem (which can be applied in view of the work by Zorich \cite{Zor96}), the proof that the growth condition \eqref{eq:roth} is typical takes a large part of \cite{MMY05}; a simpler proof can be now deduced (as explained in \cite{MMM18}) from a later result by Avila-Gouezel-Yoccoz \cite{AGY06}.

Variations of the Roth-type condition. In a similar way in which one can refine the periodic-type condition by defining hyperbolic periodic-type, one may further request, given a Roth-type IET T, that the stable space, i.e. the space $\Gamma_s(T)$ of vectors $v \in \mathbb{R}^d$ such that $A^n v \to 0$ exponentially as n grows (which, in the case of a periodic-type IET with period matrix A, is generated by the eigenvectors of the eigenvalues of A which have modulus greater than 1) has maximal dimension, namely g. The condition that one gets was called restricted Roth-type in \cite{MMY12}; it has full measure in view of \cite{For02b} and was used to study the structure and codimension of local C^r conjugacy class of a (G)IET for $r > 2$. In the joint work \cite{MUY20} with Marmi and Yoccoz, we introduced a further weakening of the (restricted) Roth-type condition, the absolute (restricted) Roth type condition, expressed only in terms of the cocycle action on a $2g$ dimensional subspace which can be identified with the absolute homology $H_1(S,\mathbb{R})$ of the surface S of which T is section (in contrast, the original condition involves the whole cocycle, which describes the action on the relative homology $H_1(S,Fix(\phi_\beta),\mathbb{R}))$. Exploiting \cite{CE15}, one can also show that this absolute (restricted) Roth type condition holds on every translation surface for almost every direction (see \cite{CE15} and \cite{MUY20}). A generalization of the restricted Roth type condition, the quasi-Roth type condition, was introduced in \cite{FMM} to extend the results of \cite{MMY05} and \cite{MMY12} to Poincaré maps of surfaces for which the stable space has dimension less than g (see \cite{FMM} for details). Let us also mention that a Roth-type condition can also be imposed on the backward rotation number (of a translation flow), requesting a growth rate similar to \eqref{eq:roth} for the dual cocycle. The corresponding dual Roth-type condition was used in \cite{MUY20} to study the asymptotic oscillations of the error term in \eqref{eq:recurence} (which we describe in terms of a distributional cocycle- or distributional limit shape, see \cite{MUY20} for details).

Type and recurrence for IETs. It is not surprising that Diophantine-like conditions can also be used to study recurrence questions. While for rotations these reduce to Diophantine properties in the classical arithmetic sense (namely how well a number can be approximated by rationals), given an IET T one can study either how frequently the successive iterates $(T_n(x))_{n \in \mathbb{N}}$ return close to x (see e.g. \cite{BC13}), or how close the iterates of a discontinuity come to other discontinuities, see e.g. \cite{Mar11}. The (Diophantine) type η of a rotation R_α is defined to be $\eta := \sup \{ \beta \text{ s. t. } \liminf_{n \to \infty} n^\beta \{na\} = 0 \}$. Bounded-type and Roth-type numbers have type $\eta = 1$ (while Liouville ones have type $\eta = \infty$). One can show (see \cite{Kim14} and \cite{MMY12}) that requesting that...
an IET T is Roth-type is equivalent to asking that $\sup \{ \beta \ s.t. \ \liminf n^\beta \delta_n(T) = 0 \} = 1$, where here $\delta_n(T)$ is the minimum spacing between discontinuities of T_n. It also implies (but without equivalence) that the first return time $\tau_r(x)$ of x to a ball of radius $r > 0$ satisfies the logarithmic law $\lim_{r \to 0} \log \tau_r(x) / \log(1/r) = 1$ for almost every $x \in [0, 1]$ (see [Kim14]).

5.3. Controlled growth Diophantine-like conditions. Any balanced acceleration of Rauzy-Veech induction (as defined in § 4), produces, given a typical IET T, a sequence of times $(n_k)_k$ which correspond to occurrences of positive matrices A_{n_k} whose norm $\|A_{n_k}\| \leq M$ is uniformly bounded (these are furthermore return times to a compact subset K of the parameter space for the natural extension). As for bounded-type IETs, occurrences of these positive bounded matrices give very good control of the convergence of (special) Birkhoff sums of characteristic functions χ_{I_j} (see the end of § 5.1). More generally, if $x_0 \in I_n^d$ belongs to the inducing interval I_n of a balanced return time $n := n_k$ and $q := r_n^k$ is the height of the corresponding tower, the orbit $\{x_0, T(x_0), \cdots, T^{n-1}(x_0)\}$ along a tower is so regularly spaced that one can get good estimates of the Birkhoff sums $S_qf(x_0)$ also for other classes of observables f. In order to estimate Birkhoff sums $S_qf(x)$ for other times $n \in \mathbb{N}$ and points $x \in [0, 1]$, one can then interpolate these estimates by using the decomposition (4.1) into special Birkhoff sums. It is clear now that for this interpolation to provide good estimates for any time $n \in \mathbb{N}$, one needs to impose that the balanced times $(n_k)_k$ are sufficiently frequent so that $\|A(n_k, n_{k+1})\|$ grows in a controlled way. Notice that by balance the tower heights r_n^k for $1 \leq j \leq d$ are all comparable and if we set $q_n := \max_j r_n^j$, the norm $\|A(n_k, n_{k+1})\|$ is proportional to $q_{n_{k+1}}/q_{n_k}$.

Mixing Diophantine Condition. The main requirement of the Mixing Diophantine condition introduced in [Ulc07b] is that there exists a (good) positive acceleration and $C > 0$ s.t.

$$\|A(n_k, n_{k+1})\| \leq Ck^\tau, \quad \forall k \in \mathbb{N}, \text{ for some } 1 < \tau < 2.$$ (5.2)

This condition should be seen as a higher genus generalization of the Khanin-Sinaï condition $|a_k| \leq Ck^\tau$ for mixing of Arnold flows, see § 2. The proof that it is satisfied by a full measure set of IETs follows from a Borel-Cantelli argument analogous to the one that can be used in genus one, but the input in higher genus are the highly non-trivial integrability estimates for balanced acceleration proved by Avila, Gouezel and Yoccoz (which the authors proved to show in [AGY06] that the Teichmüller geodesic flow is exponentially mixing): it is proved in [AGY06] that for any $0 < \nu < 1$, there exists a suitable compact set K such that $\int_K \|A_K\|^{\nu} d\mu$ is finite (where A_K is the accelerated cocycle and μ the Zorich measure).

In order to prove mixing of (minimal components of) locally Hamiltonian flows in U_{min} (i.e. Theorem 3.1), one needs good quantitative estimates on shearing: these are given by estimates of Birkhoff sums S_nf over an IET which arise as Poincaré map, for a particular observable f (namely, f is taken to be the derivative of the roof function in the special flow representation of $\varphi_{\mathbb{R}}$), which turns out not to be in L^1 (indeed the function f has singularities of type $1/x$, which are not integrable). When $n = n_k$ is a balanced time, one can control the corresponding special Birkhoff sums $S(n_k)f$ and show that each Birkhoff sum along a tower $S_qf(x)$ where $q = q_{n_k}$ and $x \in I_{n_k}^d$ can be controlled after removing the closest point contribution that, in this case, is simply $1/x$. One can indeed show that the trimmed Birkhoff sum $S_qf(x) - 1/x$ is asymptotical to $Cq \log q$. The Mixing Diophantine Condition allows to interpolate these estimates and show that, also for any other $n \in \mathbb{N}$, $S_nf(x)$ grows asymptotically $Cn \log n$ for all points x with the exception of points which belong to a set $\Sigma_n \subset [0, 1]$ of measure going to zero. The set Σ_n of points which needs to be removed to get the desired control contains points whose orbits may be resonant, in the sense that it may contain a close-to-arithmetic progression near one of the singularities of f, with step $q_{n_k}/q_{n_{k+1}}$ (which can be a very small step if $q_{n_{k+1}}$ is much larger than q_{n_k}).

Ratner Diophantine condition. In order to prove that (minimal components of) locally Hamiltonian flows in U_{min} have the Switchable Ratner property (e.g. Theorem 3.2), see § [3], one needs more delicate quantitative shearing estimates. Such estimates are proven assuming first of all the Mixing Diophantine Condition, but the MDC is not sufficient. While mixing is an asymptotic condition and therefore it is sufficient, for all large n, to prove estimates for the Birkhoff sums $S_nf(x)$ (introduced in the previous subsection) on sets of measure tending to 1 (and hence one can remove a set Σ_n
whose measure goes to zero), the (Switchable) Ratner Property requires estimates on arbitrarily large sets of initial points, for all large times \(n \geq n_0 \). If the series \(\sum_{n \in \mathbb{N}} \text{Leb}(\Sigma_n) \) were finite, the tail sets of the form \(\bigcup_{n \geq n_0} \Sigma_n \) would have arbitrarily small measures and thus one could throw away these unions for \(n_0 \) large. Unfortunately, one can check that the measures \(\{\text{Leb}(\Sigma_n)\}_{n \in \mathbb{N}} \) are not summable. Instead, we consider a subset \(K \subset \mathbb{N} \) such that \(\sum_{n \notin K} \text{Leb}(\Sigma_n) < +\infty \) and exploit the additional freedom given by the switchable Ratner condition to deal with points \(x \in \Sigma_n \) when \(n \in K \). This requires the introduction of a suitable Diophantine-like condition.

We say that an IET \(T \) satisfies the Ratner Diophantine condition (RDC) if \(T \) satisfies the Mixing DC along the sequence \((n_k)_{k \in \mathbb{N}} \) of balanced induction times and if there exists \(0 < \xi, \eta < 1 \) such that, if \(B_k := A(n_k, n_{k+1}) \) are the matrices of the accelerated cocycle and \(q_k := \max_j r_{nk}^j \) the maximum height of the corresponding towers, we have

\[
\sum_{k \notin K} 1/ (\log q_k)^\nu < +\infty, \quad \text{where } K := \{ k \in \mathbb{N} \text{ s.t. } \|B_k\| \leq k^\xi \}.
\]

The assumption (5.3) guarantees in particular the summability of \(\sum_{n \notin K} \text{Leb}(\Sigma_n) \), so that tail sets of this series can be removed. When \(k \in K \), using that \(n_k \) is a balanced time and \(q_k/q_{k-1} \leq \|B_k\| \) is not too large, one can show that an arbitrarily large set of points \(x \) do not get close of order \(c/q_{k-1} \) to a singularity twice in time of order \(q_k \), so either going forward or backward in time one can avoid getting \(O(q_k^{-1}) \) close to singularities. This suffices to provide the control of \(S_n(f)(x) \) (and therefore of shearing) required by the Switched Ratner property for all times.

Notice that if an IET \(T \) is of bounded type (so \(\|B_k\| \) are bounded) then the RDC is automatically satisfied (since the complement of \(K \) in \(\mathbb{N} \) is finite and therefore the series is a sum of finitely many terms). The Ratner DC imposes that the times \(k \) for which \(\|B_k\| \) is large are not too frequent: in a sense if an IET satisfies the RDC, it behaves like an IET of bounded type modulo some error with small density (as a subset of \(\mathbb{N} \)), but this relaxation allows the property to hold for almost every IETs: we prove indeed in [KKPU19] that, for suitable choices of \(\xi \) and \(\eta \) the RDC is satisfied by a full measure set of IETs. Formally (when using the suitable acceleration), the assumption (5.3) looks like the Diophantine Condition for rotations introduced by Kanigowski and Fayad in [FK16, see (3.2)]. The proof of full measure of the RDC is modeled on the proof of full measure of the arithmetic condition (3.2), with the role of the Gauss map played by the renormalization operator in parameter space corresponding to the balanced acceleration. Key ingredients to make this proof work are once more the integrability estimates from Avila-Gouezel-Yoccoz [AGY06], as well as a quasi-Bernoulli property of the balanced acceleration, see [KKPU19] for details.

Backward growth condition for absence of mixing. The Diophantine-like condition to prove absence of mixing of typical locally Hamiltonian flows in \(U_{\text{min}} \) (see § 3.1) is not explicitly stated in [Ulc11], but, from the proof, one can see that one needs the existence of a suitable acceleration of the balanced evaluation, whose matrices will be denoted by \((B_k)_{k \in \mathbb{N}} \), of a subsequence \((k_l)_l \) and of a constant \(M > 0 \) such that

\[
\sum_{k=0}^{k_l} \|B_{k_l-k}\|^{\nu k_l-k} = \sum_{j=0}^{k_l} \|B_{k_l-j}\|^{\nu j} \leq M < +\infty, \quad \text{for all } k \in \mathbb{N},
\]

where \(\nu \) is some constant with \(\nu > 1 \). This type of condition has two interesting features: it requires a backward control of the growth of the matrices of an accelerated cocycle, which has to happen infinitely often. Indeed, for the series (5.4) to converge and be uniformly bounded by \(M \), one needs to ask that the norms \(\|B_k\| \) when \(k \) belongs to the sequence \((k_l)_l \) are uniformly bounded; furthermore, it is sufficient to then impose that, going backward in time, they grow less fast than the denominator, namely that \(\|B_{k_l-j}\| \leq C e^{\delta j} \) for \(0 \leq j \leq k_l \) where \(\delta \) is chosen so that \(e^{\delta} < \nu \). These conditions can be shown to be of full measure by exploiting Oseledets integrability (for the dual cocycle).

These type of backward conditions seem to appear naturally when one wants to provide good control of the deviations of the points in a finite segment \(\{x, T(x), \ldots, T_N(x)\} \) of an IET orbit from an arithmetic progression: one would like to show for example that, if we relabel the points in the orbit segment so that \(0 < x_1 < x_2 < \cdots < x_N < 1 \), the points \(x_i \) display polynomial deviations from an arithmetic progression, i.e. there exists \(C > 0 \) and \(0 < \gamma < 1 \) such that \(|x_i - i/N| \leq C(i/N)^\gamma \).
These estimates (which are used in [Ulc07a, Ulc11] to show, through a cancellations mechanism, that there is a subsequence of times with no shearing and, as a consequence, that mixing fails) can be proved for all times for bounded type IETs (see [Ulc07a]), but, for typical IETs, even for orbits along a balanced tower of some renormalization level n_{k_0}, it may not be possible to choose a constant C uniformly on i. Heuristically, the reason for this is that to estimate the location of x_i one can use a spatial decomposition of the interval $[0, x_i]$ into floors of renormalization towers which involves the entries of backward cocycle matrices (a decomposition similar to the one in (4.1), but with the role of time now played by space; geometrically this can also be interpreted as swapping the role of the horizontal and vertical flows on a translation surface). The presence of an exceptionally large $\|A_k\|$, even if k is much smaller than k_0, can still spoil the deviations control, since it may correspond in the spatial decomposition to a clustering of points, close to an arithmetic progression of a very small step.

We point out that phenomena of similar nature, where the whole backward history of the continued fraction entries matters to control orbits, appears also in genus one, in the theory of circle diffeomorphisms. In the paper [KT09], in which Herman’s theory of linearization (see §2) is revisited through renormalization following [KS87] and optimal results are achieved for low regularity, the arithmetic condition required on $\alpha = [a_0, a_1, \ldots]$ is a condition involving a series, namely the finiteness of $\sum_{n=0}^{\infty} q_{n+1} \sum_{i=0}^{n} \frac{l_n}{l_{n-1}} (l_{n-1})^\eta$, where $l_n := |q_n \alpha - p_n|$ and $0 < \eta < 1$. This condition is then also in [KS87] to control the spatial decomposition of orbit segments. It would be interesting to know if the analogy, which at this level is only formal and on the nature of the conditions, hides a more profound similarity.

5.4. Effective Oseledets Diophantine-like conditions. To conclude, we briefly describe the Regular and Uniform Diophantine-like conditions (RDC and UDC for short), introduced and used to prove Theorem 3.3 and Theorem 3.5 respectively (see §3.1 and §3.2). Both these conditions present a novel aspect: not only they impose a controlled growth of cocycle matrices of a suitable acceleration (as all the conditions we have seen in §§3.1 and 3.2), but they also impose quantitative forms of hyperbolicity, by asking for effective bounds on the convergence rates in the conclusion of Oseledets theorem, as we now detail.

Effective Oseledets control and the UDC. Let us say that a sequence of balanced return times $(n_k)_{k \in \mathbb{N}}$ satisfies an effective Oseledets control if one can find a sequence of invariant splittings $\mathbb{R}^d = E^s_k \oplus E^c_k \oplus E^u_k$, with $\dim E^s_k = g$, such that, for some $\theta > 0$ and any $k \in \mathbb{N}$

\begin{align}
\|A(n_k, n_{k+l})|e^t\|_{\infty} &\leq C e^{-\theta(n_{k+l}-n_k)} & \text{for every } n \geq n_k; \\
\|A(n, n_k)^{-1}|e^t\|_{\infty} &\leq C e^{-\theta(n_{k+l}-n)} & \text{for every } 0 \leq n \leq n_k.
\end{align}

Thus, the cocycle contracts the stable space E^s_k in the future and the unstable space E^u_k in the past with a uniform rate θ and a uniform constant C. These times can be produced for example considering returns to a set (for the natural extension) where the conclusion of Oseledets theorem (for the cocycle and its inverse) can be made uniform. An IET satisfies the Uniform Diophantine Condition (UDC) if there exists balanced times $(n_k)_{k \in \mathbb{N}}$ with effective Oseledets control and furthermore, for every $\epsilon > 0$ there exists $C, c > 0, \lambda > 0$ and a subsequence $(k_l)_{l \in \mathbb{N}}$ which is linearly growing (i.e. such that $\lim_{l \to \infty} k_l/l > 0$) for which

\begin{align}
\|A(n_k, n_{k+l})\| &\leq C e^{\epsilon|k-k_l|} & \text{for all } k \geq 0 \text{ and } l \geq 0; \\
\epsilon e^{\lambda k} &\leq \|A(0, n_k)\| \leq C e^{(\lambda+\epsilon) k} & \text{for all } k \geq 0.
\end{align}

One can show that assuming that T satisfies the UDC implies in particular that T is of (restricted) Roth-type (see [FU]); on the other hand, (5.5) and (5.6) are assumptions of a new nature, and furthermore (5.8) clearly excludes IETs of bounded type; thus this is a more restrictive Diophantine-like condition, although still full measure (see [FU]).

The RDC and conditions on Diophantine series. In the Regular Diophantine Condition (used to study rigidity of GIETs in [GU] and in particular to prove Theorem 3.5) we assume that T is Oseledets generic and require the existence of a special sequence of balanced times $(n_k)_{k}$ such
that the two following forward and backward series (involving the accelerated matrices $B_k := A(n_k, n_{k+1})$, their products $B(k, l) := B_{l-1} \cdots B_k$, as well as the projections Π_k^c and Π_k^c to E_k^n and E_k^c respectively) are uniformly bounded by some constant $M > 0$ along a linearly growing subsequence $(k_l)_{l \in \mathbb{N}}$, namely, for every $l \in \mathbb{N}$,

\begin{equation}
(5.9) \sum_{k=1}^{k_l} \|B(k, k_l)\|_{E_k^n} \|\Pi_k^c\| \|B_k\| \leq M, \quad \sum_{k=k_l+1}^{\infty} \|B(k_l, k_l+1)\|_{E_k^n} \|\Pi_k^c\| \|B_k\| \leq M.
\end{equation}

We also require a uniform lower bound on the angles between the subspaces E_k^n, E_k^c and E_k^c of the splitting along the subsequence $(n_k)_l$ and sub-exponential growth of $B(k_l, k_{l+1})$. The convergence of these series can be proved assuming that the sequence $(n_k)_l$ provides effective Oseledets control; the subsequence $(k_l)_l$ is then selected so that the uniform upper bound holds. Also the UDC can be used to prove the convergence and uniform boundedness (along a linearly growing subsequence) of some series of similar (although simpler) nature (that we call Diophantine series, see [FU] for details). Notice also the similarity between the backward series in (5.9) and the series (5.4) used to prove absence of mixing, even though the latter involves only the norm of the matrices and not their hyperbolic properties.

Examples of arithmetic conditions on classical rotation numbers which do not depend only on the asymptotic behavior of the continued fraction entries (as Diophantine or Roth-type conditions) but instead depend on values or finiteness of series involving continued fraction entries include the Brjuno-condition (see e.g. [Yoc95]) and the Perez-Marco condition [PM93]. Conditions which require recurrence to a set of rotation numbers with this type of control in the theory of circle diffeos seem to appear in global rigidity results, see for example the Condition (H) defined by Yoccoz (see [Yoc02]).

Final remarks and questions. We saw that advancements in our understanding of both chaotic properties and linearization and rigidity questions in the context of surface flows in higher genus depend crucially on sometimes delicate Diophantine-like conditions, imposed to control the renormalization dynamics. While some of these resembles the classical counterparts, others are of new nature, in particular involving hyperbolicity features which become visible only in higher genus. A downside of this new aspect is that conditions that requires Oseledets genericity assumptions are not easily checkable. If there is a way of producing explicit examples with such properties which are not of periodic type, even within a locus, remains a challenge. Since many developments are still quite recent, it is possible that some conditions can be simplified or weakened and still yield the same results; furthermore, the interdependence or inclusions between the various conditions have not been fully investigated. Finally, even though, all the conditions we described, with the only exception of bounded-type conditions, are of full measure, they are likely not to be the optimal ones required for the results for which they were introduced (we know this for example for the absence of mixing condition, in view of [CW19]). Finding optimal conditions for each of these problems is certainly interesting but probably very difficult.

Acknowledgements. I would like to acknowledge Selim Ghazouani, Giovanni Forni and Stefano Marmi for many interesting discussions, as well as for their useful feedback on an earlier version of this text. A thank goes also to Stefan Kurz for allowing me to use Figure 3 and to P. Berk, K. Frączek, D. H. Kim, F. Trujillo and T. Kappeler for reading and commenting this text.

References

[AGY06] Artur Avila, Sébastien Gouëzel, and Jean-Christophe Yoccoz. Exponential mixing for the Teichmüller flow. Publ. Math. Inst. Hautes Études Sci., (104):143–211, 2006.

[Arn63] Vladimir I. Arnold. Small denominators and problems of stability of motion in classical and celestial mechanics. (Russian) Uspekh Matematicheskikh Nauk, 18(6):91–192, 1963. Capitolo 6, §2 (Translated in: Russian Mathematical Surveys, 18 No 6:85–191, 1963).

[Arn91] Vladimir I. Arnold. Topological and ergodic properties of closed 1-forms with incommensurable periods. Funktsional'nyi Analiz i Ego Prilozheniya, 25(2):1–12, 1991. (Translated in: Functional Analyses and its Applications, 25:2:81–90, 1991).

[BC13] Michael Boshernitzan and Jon Chaika. Diophantine properties of IETs and general systems: quantitative proximality and connectivity. Invent. Math., 192(2):375–412, 2013.
DYNAMICS AND 'ARITHMETICS' OF SURFACE FLOWS

[SK92] Yakov G. Sinai and Konstantin M. Khanin. Mixing for some classes of special flows over rotations of the circle. Funktsional’nyi Analiz i Ego Prilozheniya, 26(3):1–21, 1992. (Translated in: Functional Analysis and its Applications, 26:3:155–169, 1992).

[SU05] Ya. G. Sinai and C. Ulcigrai. Weak mixing in interval exchange transformations of periodic type. Lett. Math. Phys., 74(2):111–133, 2005.

[SU10] John Smillie and Corinna Ulcigrai. Geodesic flow on the Teichmüller disk of the regular octagon, cutting sequences and octagon continued fractions maps. In Dynamical numbers—interplay between dynamical systems and number theory, volume 532 of Contemp. Math., pages 29–65. Amer. Math. Soc., Providence, RI, 2010.

[Ulc07a] Corinna Ulcigrai. Ergodic properties of some area-preserving flows. Princeton University, 2007. Ph.D. thesis, Princeton University, Princeton, 2007.

[Ulc07b] Corinna Ulcigrai. Mixing of asymmetric logarithmic suspension flows over interval exchange transformations. Ergodic Theory Dynam. Systems, 27(3):991–1035, 2007.

[Ulc09] Corinna Ulcigrai. Weak mixing for logarithmic flows over interval exchange transformations. J. Mod. Dyn., 3(1):35–49, 2009.

[Ulc11] Corinna Ulcigrai. Absence of mixing in area-preserving flows on surfaces. Ann. of Math. (2), 173(3):1743–1778, 2011.

[Ulc13] Corinna Ulcigrai. Shearing and mixing in parabolic flows. In European Congress of Mathematics, pages 691–705. Eur. Math. Soc., Zürich, 2013.

[Ulc21] Corinna Ulcigrai. Slow chaos in surface flows. Boll. Unione Mat. Ital., 14(1):231–255, 2021.

[Sk92] Yakov G. Sinai and Konstantin M. Khanin. Mixing for some classes of special flows over rotations of the circle. Funktsional’nyi Analiz i Ego Prilozheniya, 26(3):1–21, 1992. (Translated in: Functional Analysis and its Applications, 26:3:155–169, 1992).

[SU05] Ya. G. Sinai and C. Ulcigrai. Weak mixing in interval exchange transformations of periodic type. Lett. Math. Phys., 74(2):111–133, 2005.

[SU10] John Smillie and Corinna Ulcigrai. Geodesic flow on the Teichmüller disk of the regular octagon, cutting sequences and octagon continued fractions maps. In Dynamical numbers—interplay between dynamical systems and number theory, volume 532 of Contemp. Math., pages 29–65. Amer. Math. Soc., Providence, RI, 2010.

[Ulc07a] Corinna Ulcigrai. Ergodic properties of some area-preserving flows. Princeton University, 2007. Ph.D. thesis, Princeton University, Princeton, 2007.

[Ulc07b] Corinna Ulcigrai. Mixing of asymmetric logarithmic suspension flows over interval exchange transformations. Ergodic Theory Dynam. Systems, 27(3):991–1035, 2007.

[Ulc09] Corinna Ulcigrai. Weak mixing for logarithmic flows over interval exchange transformations. J. Mod. Dyn., 3(1):35–49, 2009.

[Ulc11] Corinna Ulcigrai. Absence of mixing in area-preserving flows on surfaces. Ann. of Math. (2), 173(3):1743–1778, 2011.

[Ulc13] Corinna Ulcigrai. Shearing and mixing in parabolic flows. In European Congress of Mathematics, pages 691–705. Eur. Math. Soc., Zürich, 2013.

[Ulc21] Corinna Ulcigrai. Slow chaos in surface flows. Boll. Unione Mat. Ital., 14(1):231–255, 2021.

[Vee82] William A. Veech. Gauss measures for transformations on the space of interval exchange maps. Annals of Mathematics, 115:201–242, 1982.

[Yoc84] J.-C. Yoccoz. Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition Diophantienne. Ann. Sci. École Norm. Sup. (4), 17(3):333–359, 1984.

[Yoc95] Jean-Christophe Yoccoz. Théorème de Siegel, nombres de Bruno et polynômes quadratiques. In Petits diviseurs en dimension 1, number 231 in Astérisque, pages 3–88. SMF, 1995.

[Yoc02] Jean-Christophe Yoccoz. Analytic linearization of circle diffeomorphisms. In Dynamical systems and small divisors (Cetraro, 1998), volume 1784 of Lecture Notes in Math., pages 125–173. Springer, Berlin, 2002.

[Yoc09] Jean-Christophe Yoccoz. Échanges d’intervalles et surfaces de translation. In Séminaire Bourbaki 2007/2008, Astérique, Société Mathématique De France, 2009.

[Zor96] Anton Zorich. Finite Gauss measure on the space of interval exchange transformation. Lyapunov exponents. Ann. Inst. Fourier, Grenoble, 46:325–370, 1996.

[Zor97] Anton Zorich. Deviation for interval exchange transformations. Ergodic Theory Dynam. Systems, 17(6):1477–1499, 1997.

[Zor99] Anton Zorich. How do the leaves of a closed 1-form wind around a surface? In Pseudoperiodic topology, volume 197 of Amer. Math. Soc. Transl. Ser. 2, pages 135–178. Amer. Math. Soc., Providence, RI, 1999.

[Zor06] Anton Zorich. Flat surfaces. In Frontiers in number theory, physics, and geometry. I, pages 437–583. Springer, Berlin, 2006.

Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Schweiz

Email address: corinna.ulcigrai@math.uzh.ch