Luteolin suppresses UVB-induced photoageing by targeting JNK1 and p90RSK2

Sung H. Lima, Sung K. Jung, Sanguine Byun, Eun J. Lee, Jung A. Hwang, Sang G. Seo, Yeong A. Kim, Jae G. Yu, Ki W. Lee, Hyong J. Lee

Abstract

Multiple lines of evidence suggest that natural compounds can prevent skin ageing induced by ultraviolet light. Luteolin, a bioactive compound found in chilli, onion, broccoli, celery and carrot, has been reported to exhibit anti-photoageing effects in vitro. However, the molecular targets and mechanisms of luteolin are still poorly understood. In this study, we sought to investigate the effects of luteolin on UVB-induced photoageing and the molecular mechanisms involved, using HaCaT human keratinocytes and SKH-1 hairless mice. Luteolin was found to inhibit UVB-induced MMP-1 expression in HaCaT cells, as well as UVB-induced activation of AP-1, a well-known transcription factor targeting the MMP-1 promoter region, as well as c-Fos and c-Jun, which comprise the AP-1 complex. In contrast, Western blot data showed that UVB-induced phosphorylation of JNK, ERK and p90RSK was not inhibited by luteolin. In vitro kinase assay data revealed that luteolin significantly suppressed JNK1 and p90RSK activity, but not that of JNK2 and ERK2. Pull-down assays showed that luteolin binds JNK1 in an ATP-competitive manner and p90RSK2 in an ATP-independent manner. Luteolin also inhibited UVB-induced wrinkle formation and MMP-13 expression, a rodent interstitial collagenase in mouse skin, in vivo. Taken together, our observations suggest that luteolin exhibits anti-photoageing effects in vitro and in vivo and may have potential as a treatment for the prevention of skin ageing.

Keywords: JNK1, RSK2, photoageing, luteolin, ultraviolet B (UVB)

Introduction

Skin, the most exposed organ of the body and in direct contact with sources of environmental stress including ultraviolet light (UV) [1]. UV causes many detrimental physiological changes in the skin including epidermal inflammation, immunosuppression, hyperpigmentation, cancer and photoageing [2–5]. UV can be divided into three types, according to wavelength; UVA (320–400 nm), UVB (280–320 nm) and UVC (200–280 nm). Although UVC has the highest energy, it is almost absorbed by the ozone layer, while UVA and UVB can reach the Earth’s surface. UVB is the most biologically damaging UV type and significantly affects the epidermal layer of the skin, causing various skin disorders including premature skin ageing [6, 7]. Although UV-induced skin ageing (photoageing) is a cumulative process and in part shares the same mechanisms as intrinsic ageing, photoageing relies entirely on the extent of UV exposure [1, 8].

The matrix metalloproteinases (MMPs) are a family of enzymes that can degrade components of the extracellular matrix (ECM). MMPs play important roles in morphogenesis, angiogenesis, arthritis, tumour invasion and photoageing [2, 9–11]. MMP-1 (interstitial collagenase) plays the most prominent role in degrading native Type-1
and Type-3 collagen, major components of the skin dermis, while MMP-8 (neutrophil collagenase) and MMP-13 (collagenase-3) can cleave collagen to some extent. The cleavage of collagen by collagenases and the further degradation of cleaved collagen into gelatin and small peptides by gelatinases (MMP-2 and MMP-9) causes ECM breakdown, which is a major factor responsible for wrinkle formation [1, 4, 8]. UVB irradiation-induced overexpression of MMP-1 is considered a biomarker, and its inhibition has been proposed to prevent wrinkle formation by stabilizing a balance between collagen degradation and synthesis [8, 12].

Previous studies have uncovered some of the molecular mechanisms underlying UV-induced MMP expression. UV activates growth factor receptors on the cell surface, including EGFR, followed by receptor-coupled signal transduction through pathways involving mitogen-activated protein kinases (MAPKs), Jak/STAT, protein kinase-C and PI3kinase/Akt [13–16]. Activated kinases, including extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), then induce activation and expression of c-Jun and c-Fos, which are core components of the activator protein-1 (AP-1) complex. Jun proteins (c-Jun, Jun B and Jun D) and Fos proteins (c-Fos, Fos B, Fra-1 and Fra-2) homodimerize or heterodimerize to form the AP-1 complex, which is a transcription factor that binds to various target gene promoters including cyclin D1, cyclooxygenase-2 (COX-2) and MMPs including MMP-1. Increased AP-1 activity induced by UV plays a major role in the degradation of the ECM by activating transcription of MMP genes [2, 17–20].

Luteolin (3, 4, 5, 7-tetrahydroxyflavone) is a flavonoid found in diverse fruits and vegetables such as chilli, onion, broccoli, celery and carrot (Fig. 1A) [21]. It has been reported to exhibit antioxidant [22, 23], anti-cancer [24, 25], anti-inflammatory and anti-allergenic [26] effects. Moreover, recent studies have shown inhibitory effects of luteolin on UVA-induced MMP activation in human dermal fibroblasts [27] and on DMBA/TPA-induced skin tumorigenesis in a murine model [28]. However, the molecular mechanisms and targets of luteolin in the prevention of photoageing remain poorly understood. Our objective was to examine the effects of luteolin on UVB-induced photoaging in vitro and in vivo, using HaCaT human keratinocytes and a mouse model of skin ageing.

Materials and methods

Materials

Luteolin (98%) was purchased from Indofine Chemical (Hillsborough, NJ, USA). Anti-human MMP-1 and antimonouse MMP-13 antibodies were purchased from Epitomics (Burlingame, CA, USA) and Chemicon (Billerica, MA, USA) respectively. Antibodies to detect phosphorylated JNK (Thr183/Tyr185), total JNK, phosphorylated p90RSK (Thr359/Ser363), total p90RSK and phosphorylated c-Jun (Ser63) were purchased from Cell Signaling Biotechnology (Beverly, MA, USA). Antibodies against phosphorylated ERK1/2 (Thr202/Tyr204), total ERK, total c-Jun were obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Recombinant active JNK1 and JNK2 proteins were obtained from Upstate Biotechnology (Lake Placid, NY, USA) and recombinant active RSK2 was obtained from Signalchem (Richmond, BC, Canada). CNBr-Sepharose 4B, [γ-32P]ATP and the chemiluminescence detection kit were purchased from GE Healthcare (Piscataway, NJ, USA), and the protein assay kit was obtained from Bio-Rad Laboratories (Hercules, CA, USA). G418 and the luciferase assay substrate were purchased from Promega (Madison, WI, USA).

Cell culture

The HaCaT human keratinocyte cell line was cultured in monolayers at 37°C in a 5% CO2 incubator in 10% FBS–DMEM with 2 mM L-glutamine.
and 25 μg/ml gentamicin. The HaCaT human keratinocyte cell line was stably transfected with the AP-1 and c-Fos luciferase reporter plasmid and maintained in 10% FBS–DMEM containing 200 μg/ml G418 [29, 30].

Animals

SKH-1 hairless mice (5 weeks of age; mean body weight, 25 g) were purchased from the Institute of Laboratory Animal Resources at Seoul National University (Seoul, Korea). Animals were acclimated for 1 week prior to the study and had free access to food and water. The animals were housed in climate-controlled quarters (24°C at 50% humidity) with a 12-hrs light/12-hrs dark cycle.

Luciferase assay for AP-1 and c-Fos transactivation

Confluent monolayers of HaCaT cells stably transfected with the AP-1 or c-Fos luciferase plasmid were harvested, and 8 × 10^5 viable cells were suspended in 100 μl of 10% FBS/DMEM and added to each well of a 96-well plate. Plates were incubated at 37°C in a 5% CO2 incubator. When cells reached 80–90% confluence, they were starved by culturing in serum-free FBS-DMEM for another 24 hrs. The cells were treated for 1 hr with luteolin (5 and 10 μM) before exposure to UVB (0.01 J/cm²), and then incubated for 5 or 3 hrs respectively. The cells were disrupted with 100 μl lysis buffer [0.1 M potassium phosphate buffer (pH 7.8), 1% Triton X-100, 1 mM diithiothreitol (DTT) and 2 mM ethylenediamine tetraacetic acid (EDTA)] and luciferase activity was measured using a luminometer (Lumineskan Ascent; Thermo Electron, Helsinki, Finland).

Western blot assays

Western blotting was performed as described previously [31]. Cells were disrupted with lysis buffer [10 mM Tris (pH 7.5), 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 1 mM DTT, 0.1 mM PMSF, 10% glycerol and a protease inhibitor cocktail tablet] and the supernatant fractions were boiled for 5 min. Lysate protein (40 μg) was subjected to 10% sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to a polyvinylidene difluoride (PVDF) membrane (Amersham Pharmacia Biotech, Piscataway, NJ, USA). After transfer, the membrane was incubated with the specific primary antibodies at 4°C overnight. Protein bands were visualized using a chemiluminescence detection kit (Amersham Pharmacia Biotech) after incubation with a horseradish peroxidase (HRP)-conjugated secondary antibody.

For in vivo Western blotting, mice received topical application of luteolin (10 and 40 nmol) dissolved in 200 μl acetone on their backs 1 hr before UVB (0.18 J/cm²) irradiation. To isolate protein from mouse skin, the treated dorsal skin region of each mouse was excised and placed on ice. Fat was removed and the skin was placed in liquid nitrogen and immediately pulverized with a mortar and pestle. The pulverized skin was blended on ice with a homogenizer (IKA T10 basic; IKA Laboratory Equipment, Staufen, Germany), and skin lysates were centrifuged at 16,128 × g for 20 min. After the protein content was determined using a Bio-Rad protein assay kit, 100 μg of mouse skin lysate was subjected to 10% SDS-PAGE and transferred to a PVDF membrane (Amersham Pharmacia Biotech). Membranes were processed and proteins were analysed as described for the in vitro Western blot assay.

Kinase assays

The in vitro JNK1 and JNK2 kinase assays were performed in accordance with the instructions provided by Millipore (Billerica, MA, USA). About 3 mM of the ATF2 substrate peptide was included. A 2.5 μl aliquot was removed from the reaction mixture containing 2.5 μl of each substrate and 10 μl diluted [γ-32P]ATP solution, and incubated at 30°C for 10 min. Fifteen microlitre aliquots were then transferred onto p81 paper and washed three times with 0.75% phosphoric acid for 5 min. per wash and once with acetone for 5 min. For RSK2, every reaction solution contained 25 μl of assay reaction buffer and a magnesium-ATP cocktail buffer. A 2.5 μl aliquot was removed from the reaction mixture containing 2.5 μl of each substrate and 10 μl diluted [γ-32P]ATP solution, and incubated at 30°C for 10 min.; then 15 μl aliquots were transferred onto p81 paper and washed three times with 0.75% phosphoric acid for 5 min. per wash and once with acetone for 5 min. The in vitro ERK2 kinase assays were performed in accordance with the instructions provided by Upstate Biotechnology. A total of 0.33 mg/ml of myelin basic protein substrate peptide was included. Four microlitre aliquots were removed after incubating the reaction mixture at 30°C for 15 min., to which 10 μl of diluted [γ-32P]ATP solution was added. This mixture was incubated for 10 min. at 30°C, and then 25 μl aliquots were transferred onto p81 paper and washed three times. The radioactive incorporation was determined using a scintillation counter. Each experiment was performed three times.

Preparation of luteolin–Sepharose 4B

Luteolin–Sepharose 4B freeze-dried powder (0.3 g) was suspended in 1 mM HCl and coupled solution [0.1 M NaHCO₃ (pH 8.3) and 0.5 M NaCl] was mixed. The mixture was rotated at 4°C overnight. The medium was transferred to 0.1 M Tris–HCl buffer (pH 8.0) and rotated over end at 4°C overnight. The medium was washed three times with 0.1 M acetate buffer (pH 4.0) containing 0.5 M NaCl followed by a wash with 0.1 M Tris–HCl (pH 8.0) containing 0.5 M NaCl.

Pull-down assays

Recombinant JNK1, JNK2 or RSK2 (0.1 μg) was incubated with luteolin–Sepharose 4B (or Sepharose 4B alone as a control) beads (100 μl, 50% slurry) in reaction buffer [50 mM Tris (pH 7.5), 5 mM EDTA, 150 mM NaCl, 1 mM DTT, 0.01% Nonidet P-40, 2 μg/ml bovine serum albumin. 0.02 mM PMSF and 1 μg protease inhibitor mixture]. After incubation with gentle rocking overnight at 4°C, the beads were washed five times with buffer [50 mM Tris (pH 7.5), 5 mM EDTA, 150 mM NaCl, 1 mM DTT, 0.01% Nonidet P-40 and 0.02 mM PMSF], and proteins bound to the beads were analysed by Western blotting.

Mouse skin photoageing analysis

The animal experimental protocol (SNU-060512-1) was approved and experimental animals were maintained under specific pathogen-free...
conditions based on the guidelines established by the Animal Care and Use Committee of Seoul National University. Skin photoageing was induced in mice utilizing a UVB irradiation system. The UVB radiation source (Bio-Link crosslinker; Vilber Lourmat, Torcy, France) emitted at wavelengths of 254, 312 and 365 nm, with peak emission at 312 nm. SKH-1 mice were divided into four groups of three animals each. In the control group, the dorsal skin of the mice was topically treated with 200 μl acetone alone. In the UVB group, the dorsal skin of the mice was topically treated with 200 μl acetone 1 hr before UVB (0.18 J/cm²) irradiation. The mice in the third and fourth groups received topical application of luteolin (10 or 40 nmol) in 200 μl acetone 1 hr before UVB (0.18 J/cm²). These treatments were performed three times per week for 15 weeks.

Grading of wrinkle formation

The evaluation of wrinkle formation was based on the method developed by Bissett et al., [32] with some modification. At 15 weeks after initiation of repeated UVB irradiation, the dorsal area of mice was photographed and three assessors (SHL, SKJ and SGB) blinded to the treatment conditions individually characterized the degree of wrinkle formation from the photographs of each animal, according to the grading scale described in Table 1.

Statistical analysis

Where necessary, data are expressed as means ±SD, and student’s t-test was used for statistical comparisons. A probability value of P < 0.05 and P < 0.01 was used as the criteria for statistical significance.

Results

Luteolin inhibits UVB-induced AP-1 transactivation and c-Fos promoter activation in human keratinocytes

UVB is known to induce Activator Protein-1 (AP-1) and MMP-1 is a target gene with an AP-1 binding site in its promoter region [33, 34]. The pretreatment of cells with luteolin inhibited UVB-induced AP-1 transactivation in HaCaT cells stably transfected with an AP-1 luciferase plasmid (Fig. 2A). We next investigated the effect of luteolin on UVB-induced c-Fos promoter activation. Pretreatment of cells with luteolin reduced UVB-induced c-Fos gene expression in HaCaT cells that were stably transfected with c-Fos luciferase plasmid (Fig. 2B).

Luteolin suppresses UVB-induced phosphorylation of c-Jun in HaCaT human keratinocytes

In addition to c-Fos, activation of the AP-1 complex is dependent on phosphorylation of c-Jun, and we investigated whether luteolin has an effect on UVB-induced c-Jun phosphorylation. Pretreatment with luteolin significantly inhibited UVB-induced phosphorylation of c-Jun in HaCaT cells (Fig. 3A). However, luteolin exhibited no effect on UVB-induced phosphorylation of JNK (Fig. 3A), which is responsible for c-Jun phosphorylation. We then assessed the effect of luteolin on UVB-induced phosphorylation of ERK and p90RSK, the upstream kinases of c-Fos [35, 36]. Pretreatment with luteolin had no effect on UVB-induced ERK and p90RSK phosphorylation in HaCaT cells (Fig. 3B).

Luteolin inhibits JNK1 and p90RSK activities, but not JNK2 and ERK2 activities in vitro

Due to the fact that luteolin inhibited c-Jun phosphorylation, but not JNK phosphorylation (Fig. 3A), we suggested that luteolin might reduce c-Jun phosphorylation by inhibiting JNK activity through a direct interaction with JNK. In vitro kinase assay data shows that JNK activity was significantly suppressed by luteolin, but there was no significant change in JNK2 activity (Fig. 4A and B). Moreover, we investigated the effect of luteolin on p90RSK2 and ERK2 activity. The in vitro kinase assay data reveals that luteolin inhibits p90RSK2 activity, but has no effect on ERK2 activity (Fig. 4C and D).

Luteolin binds JNK1 in an ATP-competitive manner and p90RSK2 in an ATP-independent manner

In vitro and ex vivo pull-down assay indicates that JNK1 binds luteolin-Sepharose 4B beads (Fig. 5A, upper and middle panels).
We further investigated the binding activity of luteolin with JNK1 in the presence of ATP. The binding activity of luteolin with JNK1 was reduced by ATP in a dose-dependent manner, suggesting that luteolin competes with ATP to bind JNK1 (Fig. 5A, lower panel). In vitro and ex vivo pull-down assays indicated that p90RSK2 binds JNK–Sepharose 4B beads (Fig. 5B, upper and middle panels) and the binding activity of luteolin with p90RSK2 was not affected by the presence of ATP (Fig. 5B, lower panel), suggesting that luteolin suppresses p90RSK activity in an ATP-independent manner.

Luteolin inhibits UVB-induced skin wrinkle formation in an SKH-1 hairless mouse model

To further evaluate the anti-photoageing effects of luteolin in vivo, we examined the outcome of treatment using a well-developed SKH-1 hairless mouse model [32]. The dorsal skin of the mice
was exposed to UVB (0.18 J/cm²) 1 hr after luteolin treatment, three times per week for 15 weeks. Representative photographs of the mice at the conclusion of the treatment duration show that luteolin inhibits UVB-induced wrinkle formation (Fig. 6A). The grade of wrinkle formation was quantified using a modification of the method proposed by Bissett et al., [32] (Fig. 6B). To investigate the levels of collagenase in mice skin, we examined the expression of MMP-13, a rodent interstitial collagenase, using Western blotting of tumour cell lysates. Chronic UVB exposure induced MMP-13 overexpression, which was attenuated by luteolin treatment (Fig. 6C).

Discussion

Our results demonstrate that luteolin suppresses UVB-induced MMP-1 expression in HaCaT cells, which may be a result of the direct inhibition of JNK1 and p90RSK2 activity. Luteolin also attenuated wrinkle formation induced by chronic UVB irradiation in SKH-1 hairless mice.

Skin ageing can be divided into two basic processes, intrinsic ageing and extrinsic ageing (photoageing) [8]. While intrinsic ageing is characterized by smooth, dry, pale and finely wrinkled skin, photoageing is characterized by deep wrinkling and pigmenary changes, generally appearing on sun-exposed areas such as the face, neck and forearm [8]. Ultraviolet radiation, especially UVB, is a major cause of photoageing and is known to induce MMP-1 expression in human dermal epidermis in vivo [2], as well as in cultured epidermal keratinocytes [37]. MMP-1, an interstitial collagenase, also plays an important role by cleaving fibrillar collagens, which normally function to maintain skin elasticity and resilience. 3/4 N-terminal and 1/4 C-terminal triple-helical fragments are generated after cleavage reactions by collagenases (including MMP-1), which denature spontaneously into gelatin at body temperature and can be further degraded into smaller peptides by other MMPs [38]. Therefore, the prevention or inhibition of MMP-1 overexpression induced by UVB could represent a novel strategy to reduce photoageing [12].

A number of previous studies have reported that natural compounds including luteolin exhibit anti-photoageing effects [18, 39, 40]. However, the molecular mechanisms and targets of luteolin have not been clearly elucidated. Our result demonstrates that luteolin suppresses UVB-induced MMP-1 (Fig. 1C), as well as expression of AP-1, a well-known transcription factor that regulates MMP-1 gene transcription [41] and activation (Fig. 2A) in HaCaT cells. Because UVB-induced AP-1 activation was found to be inhibited by luteolin, we
further investigated the phosphorylation and activation of c-Fos and c-Jun, which are core components of the AP-1 complex [33], using Western blotting and a luciferase reporter assay. UVB induced c-Fos promoter activation and c-Jun phosphorylation (Figs 2B and 3A), and these effects were inhibited by luteolin treatment. JNK, ERK and RSK are upstream kinases that regulate the transcription factors c-Fos and c-Jun [13, 35, 36]. In contrast, UVB induced JNK, ERK and RSK phosphorylation, which was not inhibited by luteolin (Fig. 3A and B). We therefore hypothesized that luteolin could be directly inhibiting their kinase activity after phosphorylation. Our in vitro kinase assay results indicate that luteolin significantly inhibits JNK1 and p90RSK2 activity, but not that of JNK2 and ERK2. Furthermore, pull-down assays indicated that luteolin bound directly to JNK1 (in an ATP-competitive manner), but not JNK2 (Fig. 5A and B). Luteolin also bound RSK2 in an ATP-independent manner (Fig. 5C and D). Finally, we also determined that luteolin suppresses chronic UVB-induced wrinkle formation in SKH-1 hairless mice (Fig. 6A and B). UVB induced the expression of MMP-13, a rodent interstitial collagenase, in mouse skin lysates, an effect that was significantly reduced by luteolin treatment (Fig. 6C).

AP-1 is a well-known transcription factor that binds to the TPA-response element (TRE) with the consensus sequence TGACTCA and activates the transcription of target genes including MMP-1, MMP-3 and MMP-9 [33, 34]. The AP-1 complex consists of Jun and Fos family proteins that are known to be regulated by MAPKs [13, 29, 35]. Phosphorylation of the c-Jun activation domain by JNK, a direct upstream kinase of c-Jun, activates its transcription activity [42]. Together with c-Jun, c-Fos gene expression correlates with AP-1 activity [29] and is regulated by ERK, p90RSK and p38 [35, 36]. In this study, UVB irradiation was found to induce c-Jun phosphorylation and c-Fos activation, which was suppressed by luteolin, via direct inhibition of their upstream kinases (JNK1 and p90RSK2). p38 has also been reported to regulate UVB-induced c-Fos gene expression in HaCaT cells [13], but we saw no effect of luteolin on p38 phosphorylation (data not shown).

The c-Jun N-terminal kinases (JNKs) are members of the MAPK family and are heavily involved in apoptosis, cell survival and proliferation [43]. JNKs can phosphorylate various AP-1 components, including c-Jun, JunD and activating transcription factor 2 (ATF2), and can also phosphorylate Elk1, c-Myc, p53, MLK2, tau and histone H3 [43]. In many cases, c-Jun has been reported to be phosphorylated only by JNKs. JNK1, JNK2 and JNK3 genes encode 10 isoforms of JNK, which are produced through alternative splicing of the genes [44]. The role of JNKs in c-Jun phosphorylation

expression of MMP-13, a rodent interstitial collagenase, in mouse skin lysates, an effect that was significantly reduced by luteolin treatment (Fig. 6C).
remains controversial. Sabapathy et al. have reported that JNK2 is a negative regulator of c-Jun [45], whereas Jaeschke et al. contend that JNK2 is a positive regulator of c-Jun [46]. Nevertheless, a consensus has been reached that JNK1 is a positive regulator of c-Jun [45, 46]. In this study, we found that suppression of JNK1 activity by luteolin (Fig. 4A) is closely tied to inhibition of UVB-induced AP-1 activation. Further investigation into how luteolin differentially affects JNK1 and JNK2 is needed.

In summary, we have evaluated the preventive effects of luteolin on UVB-induced photoageing. Luteolin potently inhibited UVB-induced MMP-1 expression and wrinkle formation in vitro and in vivo. Our observations indicate that JNK1 and p90RSK2 are novel molecular targets of luteolin for the inhibition of UVB-induced signal transduction, leading to MMP-1 up-regulation (Fig. 7). We therefore conclude that luteolin may be useful as an agent for the prevention of UVB-induced skin ageing.

Acknowledgements

This work was supported by grants from the Next-Generation BioGreen 21 Program (Plant Molecular Breeding Center No. PJ008187), the Rural Development Administration, Republic of Korea, National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2010-0029233), the World Class Universities Program [Grant R31-2008-00-10056-0], and High Value-added Food Technology Development Program (311035-3), Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea. We thank Lee Farrand for editing of the manuscript.

Conflicts of interest

The authors declare no conflicts of interest.

References

1. Fisher GJ, Kang S, Varani J, et al. Mechanisms of photoaging and chronological skin aging. Arch Derm. 2002; 138: 1462–70.
2. Fisher GJ, Datta SC, Talwar HS, et al. Molecular basis of sun-induced premature skin aging and retinoid antagonism. Nature. 1998; 379: 335–9.
3. Gilchrest BA, Park HY, Eller MS, et al. Mechanisms of ultraviolet light-induced pigmentation. Photochem Photobiol. 1996; 63: 1–10.
13. Klotz LO, Briviba K, Sies H.
12. Birkedal-Hansen H.
11. Goihman-Yahr M.
10. Kim HH, Shin CM, Park CH, et al.
9. Fisher GJ, Voorhees JJ, Fisher GJ.
8. Cawston TE.
7. Beissert S, Schwarz T.
6. Fisher GJ, Wang ZQ, Datta SC, et al.
5. Horvathova K, Novotny L, Vachalkova A.
4. Bode AM, Dong Z.
3. Fisher GJ, Talwar HS, Lin J, et al.
2. Chen W, Bowden GT.
1. Huang C, Li J, Chen N, et al.

expression in human dermal fibroblasts. J Lipid Res 2005; 46: 1712–20.

Fisher GJ, Wang ZQ, Datta SC, et al. Pathophysiology of premature skin aging induced by ultraviolet light. New Engl J Med. 1997; 337: 1419–28.

Beissert S, Schwarz T. Mechanisms involved in ultraviolet light-induced immunosuppression. J Investig Dermatol Symp Proc 1999; 4: 61–4.

Alaq F, Adhami VM, Mukhtar H. Photochemoprevention of ultraviolet B signaling and photocarcinogenesis. Mutat Res 2005; 571: 153–73.

Golmman-Yahr M. Skin aging and photoaging: an outlook. Clin Dermatol. 1996; 14: 153–60.

Chung JH. Photoaging in Asians. Photodermatol Photoimmun Photomed. 2003; 19: 109–21.

Cawston TE. Metalloproteinase inhibitors and the prevention of connective tissue breakdown. Pharmacol Ther. 1996; 70: 163–82.

Nelson AR, Fingleton B, Rothenberg ML, et al. Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol. 2000; 18: 1135–49.

Birkedal-Hansen H. Proteolytic remodeling of extracellular matrix. Curr Opin Cell Biol. 1995; 7: 728–35.

Brennan M, Bhatti H, Nerusu KG, et al. Matrix metalloproteinase-1 is the major collag enolytic enzyme responsible for collagen damage in UV-irradiated human skin. Photochem Photobiol. 2003; 78: 43–8.

Chen W, Bowden GT. Activation of p38 MAP kinase and ERK are required for ultraviolet-B induced c-fos gene expression in human keratinocytes. Oncogene. 1999; 18: 7469–76.

Klotz LO, Briviba K, Sies H. Singlet oxygen mediates the activation of JNK by UVA radiation in human skin fibroblasts. FEBS Lett. 1997; 408: 289–91.

Huang C, Li J, Chen N, et al. Inhibition of atypical PKC blocks ultraviolet-B-induced AP-1 activation by specifically inhibiting ERKs activation. Mol Carcinog. 2000; 27: 65–75.

Aragane Y, Kulms D, Luger T, et al. Down-regulation of interferon-gamma-activated STAT1 by UV light. Proc Natl Acad Sci USA. 1997; 94: 11490–5.

Fisher GJ, Voorhees JJ. Molecular mechanisms of photoaging and its prevention by retinoic acid: ultraviolet irradiation induces MAP kinase signal transduction cascades that induce Ap-1-regulated matrix metalloproteinases that degrade human skin in vivo. J Investig Dermatol Symp Proc. 1998; 3: 61–8.

Kim HH, Shin CM, Park CH, et al. Eicosapentaenoic acid inhibits UV-induced MMP-1