CRUCIAL WORDS FOR ABELIAN POWERS

AMY GLEN, BJARNI V. HALLDÓRSSON, AND SERGEY KITAEV

Abstract. A word is crucial with respect to a given set of prohibited words (or simply prohibitions) if it avoids the prohibitions but it cannot be extended to the right by any letter of its alphabet without creating a prohibition. A minimal crucial word is a crucial word of the shortest length. A word W contains an abelian k-th power if W has a factor of the form $X_1 X_2 \ldots X_k$ where X_i is a permutation of X_1 for $2 \leq i \leq k$. When $k = 2$ or 3, one deals with abelian squares and abelian cubes, respectively.

Evdokimov and Kitaev have shown that a minimal crucial word over an n-letter alphabet $A_n = \{1, 2, \ldots, n\}$ avoiding abelian squares has length $4n - 7$ for $n \geq 3$. In this paper, we show that a minimal crucial word over A_n avoiding abelian cubes has length $9n - 13$ for $n \geq 5$, and it has length 2, 5, 11, and 20 for $n = 1, 2, 3,$ and 4, respectively. Moreover, for $n \geq 4$ and $k \geq 2$, we give a construction of length $k^2(n - 1) - k - 1$ of a crucial word over A_n avoiding abelian k-th powers. This construction gives the minimal length for $k = 2$ and $k = 3$. For $k \geq 4$ and $n \geq 5$, we provide a lower bound for the length of crucial words over A_n avoiding abelian k-th powers.

1. Introduction

Let $A_n = \{1, 2, \ldots, n\}$ be an n-letter alphabet and let $k \geq 2$ be an integer. A word W over A_n contains a k-th power if W has a factor of the form $X^k = XX \ldots X$ (k times) for some non-empty word X. A k-th power is trivial if X is a single letter. For example, the word $V = 1324323243$ contains the (non-trivial) 4-th power $(32)^4 = 32323232$. A word W contains an abelian k-th power if W has a factor of the form $X_1 X_2 \ldots X_k$ where X_i is a permutation of X_1 for $2 \leq i \leq k$. The cases $k = 2$ and $k = 3$ give us (abelian) squares and cubes, respectively. For instance, the preceding word V contains the abelian square 4323232324 and the word 123312213 is an abelian cube. A word is (abelian) k-power-free if it avoids (abelian) k-th powers. For example, the word 1234324 is abelian cube-free, but not abelian square-free since it contains the abelian square 234324.

A word W over A_n is crucial with respect to a given set of prohibited words (or simply prohibitions) if W avoids the prohibitions, but Wx does not avoid the prohibitions for any $x \in A_n$. A minimal crucial word is a crucial word of the shortest length. For example, the word $W = 21211$ (of length 5) is crucial with respect to abelian cubes since it is abelian cube-free and the words $W1$ and $W2$ end with the abelian cubes 111 and 21212, respectively.

Date: December 25, 2008.

2000 Mathematics Subject Classification. 05D99; 68R05; 68R15.

Key words and phrases. combinatorics on words; pattern avoidance; abelian square-free word; abelian cube-free word; abelian power; crucial word; Zimin word.
respectively. Actually, W is a minimal crucial word over $\{1, 2\}$ with respect to abelian cubes. Indeed, one can easily verify that there does not exist any crucial abelian cube-free words over $\{1, 2\}$ of length less than 5.

Abelian squares were first introduced by Erdős [4], who asked whether or not there exist words of arbitrary length over a fixed finite alphabet that avoid factors of the form XX' where X' is a permutation of X. This question has since been solved in the affirmative; see for instance [2, 5, 7, 9] for work in this direction. Problems of this type were also considered by Zimin [10], who used the following sequence of words as a key tool.

The Zimin word Z_n over A_n is defined recursively as follows:

$$X_1 = 1, \quad X_2 = 121, \quad X_3 = 1213121, \quad X_4 = 121312141213121.$$

The k-generalised Zimin word $Z^k_n = X_n$ is defined as

$$X_1 = 1^{k-1} = 11 \ldots 1, \quad X_n = (X_{n-1})^{k-1}X_{n-1} = X_{n-1}nX_{n-1} \ldots nX_{n-1},$$

where the number of 1’s, as well as the number of n’s, is $k-1$. Thus $Z_n = Z^2_n$. It is easy to see that Z^k_n avoids (abelian) k-th powers and it has length $k^n - 1$. Moreover, it is known that Z^k_n gives the length of a minimal crucial word avoiding k-th powers.

However, in the case of abelian powers the situation is not as well studied. Crucial abelian square-free words (also called left maximal abelian square-free words) of exponential length are given in [3] and [6], and it is shown in [6] that a minimal crucial abelian square-free word over an n-letter alphabet has length $4n - 7$ for $n \geq 3$.

In this paper, we extend the study of crucial abelian k-power-free words to the case of $k > 2$. In particular, we provide a complete solution to the problem of determining the length of a minimal crucial abelian cube-free word (the case $k = 3$) and we conjecture a solution in the general case. More precisely, we show that a minimal crucial word over \mathcal{A}_n avoiding abelian cubes has length $9n - 13$ for $n \geq 5$ (Corollary 8), and it has length 2, 5, 11, and 20 for $n = 1, 2, 3, \text{ and } 4$, respectively. For $n \geq 4$ and $k \geq 2$, we give a construction of length $k^2(n - 1) - k - 1$ of a crucial word over \mathcal{A}_n avoiding abelian k-th powers (see Theorem 10). This construction gives the minimal length for $k = 2$ and $k = 3$, and we conjecture that this is also true for any $k \geq 4$ and sufficiently large n. We also provide a rough lower bound for the length of minimal crucial words over \mathcal{A}_n avoiding abelian k-th powers, for $n \geq 5$ and $k \geq 4$ (see Theorem 11).

We let $\ell_k(n)$ denote the length of a minimal crucial abelian k-power-free word over \mathcal{A}_n and we denote by $|W|$ the length of a word W. For a crucial word X over \mathcal{A}_n, we let $X = X_i\Delta_i$, where Δ_i is the minimal factor such that Δ_i is a prohibition. Note that we can rename letters, if needed, so we can assume that for any minimal crucial word X, one has

$$\Delta_1 \subset \Delta_2 \subset \cdots \subset \Delta_n = X$$
where “⊂” means (proper) right factor (or suffix). In other words, \(\Delta_i = Y_i \Delta_{i-1} \) for each \(i = 2, 3, \ldots, n \) and \(Y_i \) is not empty. In what follows we will use \(X_i \) and \(Y_i \) as stated above. We note that the definitions imply:
\[
X = X_i \Delta_i = X_i Y_i \Delta_{i-1} = X_{n-1} Y_{n-1} Y_{n-2} \ldots Y_2 \Delta_1,
\]
for any \(i = 2, 3, \ldots, n-1 \). Furthermore, assuming we consider \(k \)-th powers, we write \(\Delta_{i} = \Omega_{i,1} \Omega_{i,2} \ldots \Omega_{i,k} \), where the \(k \) blocks \(\Omega_{i,j} \) are equal up to permutation, and we denote by \(\Omega'_{i,k} \) the block \(\Omega_{i,k} \) without the rightmost \(i \).

2. Crucial words for abelian cubes

2.1. An upper bound for \(\ell_3(n) \). The fact that the 3-generalised Zimin word \(Z_3^n \) is crucial with respect to abelian cubes already gives us an upper bound of \(3^n - 1 \) for \(\ell_3(n) \). In Theorem 1 below we improve this upper bound to \(3 \cdot 2^{n-1} - 1 \). We then discuss a further improvement of the bound using a greedy algorithm, which gives asymptotically \(O((\sqrt{3})^n) \). This greedy algorithm provides minimal crucial abelian cube-free words over \(\mathcal{A}_n \) for \(n = 3 \) and \(n = 4 \), while the construction in Theorem 1 is optimal only for \(n = 3 \).

We also provide a construction of a crucial word of length \(9n - 10 \) which exceeds our lower bound by only 3 letters, for \(n \geq 5 \). Finally, we end this section with a construction of a crucial abelian cube-free word over \(\mathcal{A}_n \) of length \(9n - 13 \), which coincides with the lower bound given in Theorem 7 of Section 2.2 for \(n \geq 5 \).

Theorem 1. One has that \(\ell_3(n) \leq 3 \cdot 2^{n-1} - 1 \).

Proof. We construct a crucial abelian cube-free word \(X = X_n \) iteratively as follows. Set \(X_1 = 11 \) and assume \(X_{n-1} \) has been constructed. Then do the following:

1. Increase all letters of \(X_{n-1} \) by 1 to obtain \(X_{n-1}^{+} \).
2. Insert 1 after (to the right of) each letter of \(X_{n-1}^{+} \) and adjoin one extra 1 to the right of the resulting word to get \(X_n \).

For example, \(X_2 = 21211, X_3 = 31213121211, \) etc. It is easy to verify that \(|X_n| = 3 \cdot 2^{n-1} - 1 \). We show by induction that \(X_n \) avoids abelian cubes, whereas \(X_n x \) does not avoid abelian cubes for any \(x \in \mathcal{A}_n \). Both claims are trivially true for \(n = 1 \). Now take \(n \geq 2 \). If \(X_n \) contains an abelian cube, then removing 1’s from it, we would deduce that \(X_{n-1} \) must also contain an abelian cube, contradicting the fact that \(X_1 \) contains no abelian cubes.

It remains to show that extending \(X_n \) to the right by any letter \(x \) from \(\mathcal{A}_n \) creates an abelian cube. If \(x = 1 \) then we get 111 from the construction of \(X_n \). On the other hand, if \(x > 1 \) then we swap the rightmost 1 with the rightmost \(x \) in \(X_n x \), thus obtaining a word where every other letter is 1; removing all 1’s and decreasing each of the remaining letters by 1, we have \(X_{n-1}(x - 1) \), which contains an abelian cube (by the induction hypothesis).

As a further improvement of Theorem 1 we sketch here, without providing all the details, the work of a greedy algorithm. Here, “greedy” means that we assume (by induction) that an “optimal” crucial abelian cube-free word \(X_{n-1} \) over \(\mathcal{A}_n-1 \) has been constructed. Next (for the greedy step) we add just two \(n \)'s (the minimum possible), and then we add as few of the other
letters as possible to build a crucial abelian cube-free word X_n over A_n. More precisely, we set $\Delta_1 = 11$ and assuming that Δ_{i-1} is built, we consider the minimum set T_i of letters we must add (forming Y_i and possibly updating Δ_{i-1} by permuting letters in Y_{i-1}) to build Δ_i, for $i = 2, 3, \ldots, n$, which can then be turned into a construction of a crucial abelian cube-free word X_n over A_n. It is easy to see from the definitions of an abelian cube and a crucial word that T_2 must contain at least two 2’s and at least one 1. Then T_3 must contain at least two 3’s, at least one 2, and at least three 1’s (the last statement follows from the fact that the two 3’s in Δ_3 are supposed to be accompanied by at least one 1 in $\Omega_{3,1}$ and $\Omega_{3,2}$ in $\Delta_33 = \Omega_{3,1}\Omega_{3,2}\Omega_{3,3}$, but without extra 1’s, whose number of occurrences must be divisible by 3, we cannot manage it). Running this type of argument, one can come up with the following list of minimal requirements for T_i for initial values of i:

\[
T_2 = \{1, 2, 2\}, T_3 = \{1, 1, 2, 3, 3\}, T_4 = \{1, 1, 1, 2, 2, 2, 3, 4, 4\}, \\
T_5 = \{1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5, 5\}, \\
T_6 = \{1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 6, 6\}, etc.
\]

In particular, we observe that $(|T_n|)_{n \geq 1} = 2, 3, 6, 9, 18, 27, \ldots$ where

\[
|T_{2i+1}| = 2 \cdot 3^i \quad \text{and} \quad |T_{2i+2}| = 3^i \quad \text{for all } i \geq 0.
\]

Hence, these considerations lead to a crucial abelian cube-free word over an n-letter alphabet of length

\[
\sum_{j=0}^{\lfloor \frac{n-1}{3} \rfloor} 2 \cdot 3^j + \sum_{j=1}^{\lfloor \frac{n}{2} \rfloor} 3^j.
\]

Initial values for the lengths are 2, 5, 11, 20, 38, 65, \ldots. Furthermore, by observing that $\sum_{j=0}^{m} 3^j = \frac{3^{m+1}-1}{2}$ for any integer $m \geq 0$ (which can be easily proved by induction), we deduce that the length of a crucial abelian cube-free word obtained in this way is asymptotically $O((\sqrt{3})^n)$. Even though this length is exponential, we do in fact obtain optimal values for $n \leq 4$. Below we list optimal abelian cube-free crucial words over A_n for $n = 1, 2, 3, 4$ of lengths 2, 5, 11, and 20, respectively:

\begin{align*}
11; \quad & 21211; \\
11231321211; \quad & 42131214231211321211.
\end{align*}

A construction giving the best possible upper bound for $n \geq 5$ can be easily described by examples, and we do this below (for $n = 4, 5, 6, 7$; the construction does not work for $n \leq 3$). We also provide a general description.

The pattern in the construction is easy to recognise.

An almost optimal construction for crucial abelian cube-free words.

The construction of the word W_n for $n = 4, 5, 6, 7$ is shown below. We use spaces to separate the blocks $\Omega_{n,1}$, $\Omega_{n,2}$, and $\Omega_{n,3}$ in $W_n = \Delta_n$ for a more pleasing visual representation.
In general, the block $\Omega_{n,1}$ in $W_n = \Delta_n = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3}$ is built by adjoining the factors $i(i+1)(i+1)$ for $i = n-1, n-2, \ldots, 1$. The block $\Omega_{n,2}$ is built by adjoining together the following factors: n, xx for $n - 1 \geq x \geq 2$, and $n(n-1) \ldots 2$. Finally, the block $\Omega'_{n,3}$ is built by adjoining the factors $(n-1)(n-2) \ldots 1, xx$ for $2 \leq x \leq n - 1$, and finally n.

It is easy to see that $|W_n| = 9n - 10$. We omit the details of showing that W_n is crucial with respect to abelian cubes since this can be shown in a similar manner for the construction below (see the proof of Theorem 10).

An optimal construction for crucial abelian cube-free words. The construction of the word E_n for $n = 4, 5, 6, 7$ works as follows. As above, we use spaces to separate the blocks $\Omega_{n,1}, \Omega_{n,2}$, and $\Omega'_{n,3}$ in $E_n = \Delta_n$.

- $E_4 = 34423311 34231134 3233411$
- $E_5 = 45534423311 45342311345 432334511$
- $E_6 = 56645534423311 56453423113456 54323445611$
- $E_7 = 67756645534423311 67564534231134567 65432344556711$

In general, the block $\Omega_{n,1}$ in $E_n = \Delta_n = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3}$ is built by adjoining the factors $i(i+1)(i+1)$ for $i = n-1, n-2, \ldots, 2$, followed by two 1’s. The block $\Omega_{n,2}$ is built by adjoining the following factors: $i(i+1)$ for $i = n-1, n-2, \ldots, 2$, followed by 11, and then the factor $34 \ldots (n-1)n$. Finally, the block $\Omega'_{n,3}$ is built by adjoining the factors $(n-1)(n-2) \ldots 32$, then xx for $3 \leq x \leq n - 1$, followed by n, and finally two 1’s.

By construction, we have

$$E_n = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3}$$

where $\Omega_{n,3} = \Omega'_{n,3} n$ and each $\Omega_{n,i}$ contains two 1’s, one 2, two n’s, and three x’s for $x = 3, \ldots, n - 1$. Hence, it is easy to see that $|E_n| = 9n - 13$. The fact that E_n is crucial with respect to abelian cubes is proved in Theorem 10 where one needs to set $k = 3$. Thus, a minimal crucial word avoiding abelian cubes has length at most $9n - 13$ for $n \geq 4$. That is:

Theorem 2. For $n \geq 4$, we have $\ell_3(n) \leq 9n - 13$.

Proof. See the proof of Theorem 10 where one needs to set $k = 3$ (in view of Remark 3 later). \qed
2.2. A lower bound for \(\ell_3(n) \). If \(X = \Delta_n \) is a crucial word with respect to abelian cubes, then clearly the number of occurrences of each letter except \(n \) must be divisible by 3, whereas the number of occurrences of \(n \) is 2 modulo 3. We sort in non-decreasing order the number of occurrences of the letters \(1, 2, \ldots, n-1 \) in \(X \) to get a non-decreasing sequence of numbers \((a_1 \leq a_2 \leq \ldots \leq a_{n-1}) \). Notice that \(a_i \) does not necessarily correspond to the letter \(i \).

We denote by \(a_0 \) the number of occurrences of the letter \(n \). Also note that \(a_0 \) can be either larger or smaller than \(a_1 \). By definitions, \(|X| = \sum_{i=0}^{n-1} a_i \).

The word \(E_n \) of length \(9n-13 \) in Subsection 2.1 has the following sequence of \(a_i \)'s: \((a_0, a_1, \ldots, a_{n-1}) = (5,3,6,9,\ldots,9) \). In this subsection, we prove that this sequence cannot be improved for \(n \geq 5 \), meaning that, e.g., 5 cannot be replaced by 2, and/or 6 cannot be replaced by 3, and/or 9('s) cannot be replaced by 3('s) or 6('s), no matter what construction we use to form a crucial word. This is a direct corollary to the following four lemmas and is recorded in Theorem 7. In the next four lemmas we use, without explanation, the following facts that are easy to see from the definitions.

For any letter \(x \) in a crucial abelian cube-free word \(X \):

- the number of occurrences of \(x \) in \(\Delta_x \) is 2 modulo 3 and the number of occurrences of any other letter, if any, in \(\Delta_x \) is divisible by 3;
- if \(x+1 \) exists, then \(Y_{x+1} \) in \(\Delta_{x+1} = Y_x \Delta_x \) contains 2 modulo 3 copies of \(x+1 \) and 1 modulo 3 occurrences of \(x \), whereas the number of occurrences of any other letter, if any, in \(Y_{x+1} \) is divisible by 3.

Abusing notions, we think sometimes of words as sets, and use “\(\in \)” and “\(\subseteq \)” for “occur(s)” when the relative order of letters is not important in the argument.

Lemma 3. For a crucial abelian cube-free word \(X \), \(|X| \geq 3 \), the sequence of \(a_i \)'s cannot contain 3,3. That is, \((a_1,a_2) \neq (3,3) \).

Proof. Suppose that \(x \) and \(y \), with \(x < y < n \), are two letters occurring in \(X \) exactly 3 times (each). We let \(A_1 = Y_n Y_{n-1} \ldots Y_{y+1} \) and \(A_2 = Y_y Y_{y-1} \ldots Y_{x+1} \) so that we have \(X = A_1 A_2 \Delta_x \). We must have the following distribution of \(x \)'s and \(y \)'s: \(y \in A_1 \), \(\{x,y,y\} \subseteq A_2 \), and \(\{x,x\} \subseteq \Delta_x \). However, we get a contradiction, since each of the blocks \(\Omega_{n,2} \) and \(\Omega'_{n,3} \) in \(X = \Delta_n = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3} \) must receive one copy of \(x \) and one copy of \(y \), which is impossible (no \(x \) can exist between the two rightmost \(y \)'s).

Lemma 4. For a crucial abelian cube-free word \(X \), \(|X| \geq 4 \), the sequence of \(a_i \)'s cannot contain 6,6,6.

Proof. We first prove the following fact.

A useful fact. If \(x \) and \(y \), with \(x < y < n \), are two letters occurring in \(X \) exactly 6 times (each), then \(\Delta_x \) cannot contain 5 copies of \(x \). Indeed, if this were the case, then assuming \(A_1 = Y_n Y_{n-1} \ldots Y_{y+1} \) and \(A_2 = Y_y Y_{y-1} \ldots Y_{x+1} \) giving \(X = A_1 A_2 \Delta_x \), we have that \(A_1 A_2 \) has exactly one \(x \) and at least three \(y \)'s, contradicting the fact that each of the blocks \(\Omega_{n,1}, \Omega_{n,2} \), and \(\Omega'_{n,3} \) must receive two \(x \)'s and two \(y \)'s.

Suppose that \(x, y, \) and \(z \), with \(x < y < z < n \), are three letters occurring in \(X \) exactly 6 times (each). We let \(A_1 = Y_n Y_{n-1} \ldots Y_{z+1}, A_2 = Y_z Y_{z-1} \ldots Y_{x+1} \) giving \(X = A_1 A_2 \Delta_x \). We have that \(A_1 A_2 \) has exactly one \(x \) and at least three \(y \)'s, contradicting the fact that each of the blocks \(\Omega_{n,1}, \Omega_{n,2} \), and \(\Omega'_{n,3} \) must receive two \(x \)'s and two \(y \)'s.
Proof. Suppose that x, y, z occur exactly $3, 6, 6$ times (each) in X. We consider three cases covering all the possibilities up to renaming y and z.

Case 1: $z < y < x < n$. One can see that Δ_y does not contain x, but it contains at least 3 z's contradicting the fact that each of $\Omega_{n,1}$, $\Omega_{n,2}$, and $\Omega'_{n,3}$ must receive 1 x and 2 z's.

Case 2: $x < z < y < n$. We let $A = Y_n Y_{n-1} \ldots Y_{1}$ so that $X = A \Delta_z$. All three x's must be in Δ_z, while A must contain at least 3 y's contradicting the fact that each of the blocks $\Omega_{n,1}$, $\Omega_{n,2}$, and $\Omega'_{n,3}$ must receive 1 x and 2 y's.

Case 3: $z < x < y < n$. We let $A_1 = Y_n Y_{n-1} \ldots Y_{1}$, $A_2 = Y_y Y_{y-1} \ldots Y_{y+1}$, and $A_3 = Y_x Y_{x-1} \ldots Y_{x+1}$ so that $X = A_1 A_2 A_3 \Delta_x$. The minimal requirements on the A_i and Δ_x are as follows: $y \in A_1$, $\{x, y, y\} \subseteq A_2$, $\{z, z, x\} \subseteq A_3$, and $\{z, z\} \subseteq \Delta_x$. The remaining 3 y's cannot be in Δ_x so as not to contradict the structure of Δ_x (it would not be possible to distribute x's and y's in a proper way). However, if the remaining 3 y's are in A_3 then, not to contradict the structure of Δ_x (no proper distribution of y's and z's would exist), the remaining 3 z's must be in Δ_x, which contradicts to the structure of $X = \Delta_n = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3}$ (no proper distribution of y's and z's would exist among the blocks $\Omega_{n,1}$, $\Omega_{n,2}$, and $\Omega'_{n,3}$, each of which is supposed to have exactly 2 copies of y and 2 copies of z). Thus, there are no y's in Δ_x, contradicting the structure of Δ_n (no proper distribution of y's and x's would exist among the blocks $\Omega_{n,1}$, $\Omega_{n,2}$, and $\Omega'_{n,3}$).

□
Lemma 6. For a crucial abelian cube-free word X, $|X| \geq 5$,

$$(a_0, a_1, a_2, a_3, a_4) \neq (2, 3, 6, 9, 9).$$

Proof. Suppose that n occurs twice in X and assume that a letter t occurs exactly 3 times. If $t \neq n - 1$, then all three occurrences of t are in Δ_{n-1} whereas the two occurrences of n are in Y_n (recall that $X = \Delta_n = Y_n \Delta_{n-1}$). This contradicts the fact that $\Omega_{n,1}$ must contain 1 copy of n and 1 copy of t. Thus, the letter $n - 1$ occurs exactly 3 times.

Now, assuming x, y, and z, with $x < y < z < n - 1$, are three letters occurring in $X \{6, 9, 9\}$ times (we do not specify which letter occurs how many times), we have, similar to the proof of Lemma 6, that Δ_z entirely belongs to $\Omega'_{n,3}$. Moreover, the block $\Omega'_{n,3}$ has 2,3,3 occurrences of letters x, y, z (in some order). However, if x or y occur twice in $\Omega'_{n,3}$, they occur twice in Δ_z leading to a contradiction with Δ_z’s structure. Thus z must occur twice in $\Omega'_{n,3}$, and x and y occur 3 times (each) in $\Omega'_{n,3}$. But then it is clear that x and z must occur 3 times (each) in Δ_z, contradicting the fact that x and z cannot be distributed properly in Δ_z. □

Theorem 7. For $n \geq 5$, we have $\ell_3(n) \geq 9n - 13$.

Proof. This is a direct corollary to the preceding four lemmas, which tell us that any attempt to decrease numbers in the sequence $(5, 3, 6, 9, 9, \ldots)$ corresponding to E_n will lead to a prohibited configuration. □

Corollary 8. For $n \geq 5$, we have $\ell_3(n) = 9n - 13$.

Proof. The result follows immediately from Theorems 2 and 7. □

Remark 1. Recall from Section 2.1 that $\ell_3(n) = 2, 5, 11, 20$ for $n = 1, 2, 3, 4$, respectively. For instance, the word 42131214231211321211 is an optimal abelian cube-free crucial word of length 20 ($= 2 + 3 + 6 + 9$). This can be proved using similar arguments as in the proofs of the Lemmas 3–6.

3. Crucial words for abelian k-th powers

3.1. An upper bound for $\ell_k(n)$ and a conjecture. The following theorem is a direct generalisation of Theorem 1 and is a natural approach to obtaining an upper bound that improves $k^n - 1$ given by the k-generalised Zimin word Z^k_n.

Theorem 9. For $k \geq 3$, we have $\ell_k(n) \leq k \cdot (k - 1)^{n-1} - 1$.

Proof. We proceed as in the proof of Theorem 1, with the only difference being that we put $k - 2$ 1’s to the right of each letter and one extra 1 as the rightmost one. □

We skip here analysis of the work of a greedy algorithm, and proceed directly with the construction of a crucial abelian k-power-free word $W_{n,k}$ before describing the construction of a similar word $D_{n,k}$ that we believe to be optimal.

A construction of a crucial abelian k-power-free word $W_{n,k}$, where $n \geq 4$ and $k \geq 3$. We illustrate each step of the algorithm by example, letting $k = n = 4$.
The construction can be explained directly, but we introduce it recursively, obtaining, for \(n \geq 4 \), \(W_{n,k} \) from \(W_{n,k-1} \) and using the abelian cube case \(W_{n,3} = W_n \) as the basis. For \(n = 4 \),
\[
W_{4,3} = \Omega_{4,1} \Omega_{4,2} \Omega'_{4,3} = 344233122 433221432 32122334.
\]
Assume that \(W_{n,k-1} = \Omega_{n,1} \Omega_{n,2} \cdots \Omega'_{n,k-1} \) is constructed and implement the following steps to obtain \(W_{n,k} \):

1. Duplicate \(\Omega_{n,1} \) in \(W_{n,k-1} \) to obtain the word
 \[
 W'_{n,k-1} = \Omega_{n,1} \Omega_{n,1} \Omega_{n,2} \cdots \Omega'_{n,k-1}.
 \]
 For \(n = k = 4 \),
 \[
 W'_{4,3} = 344233122 344233122 433221432 32122334.
 \]
2. Append to the second \(\Omega_{n,1} \) in \(W'_{n,k} \) the factor \(n(n-1) \cdots 2 \) (in our example, 432) to obtain \(\Omega_{n,2} \) in \(W_{n,k} \), and in each of the remaining blocks \(\Omega_{n,i} \) in \(W'_{n,k-1} \), duplicate the rightmost occurrence of each letter \(x \), where \(2 \leq x \leq n \), to obtain \(W_{n,k} \). For \(n = k = 4 \),
 \[
 W_{4,4} = 344423331222 344233122432 43322144332 32122233344.
 \]
We provide two more examples here, namely \(W_{5,4} \) and \(W_{4,5} \), respectively, so that the reader can check their understanding of the construction:
\[
4555344423331222 4553442331225432 5443332215544332 4321222334455;
3444423333122234423331224323443332243322144433322232122223334444.
\]

It is easy to see that \(|W_{n,k}| = k^2(n-1) - 1 \). We omit the proof that \(W_{n,k} \) is crucial with respect to abelian \(k \)-th powers since it is similar to the proof for the following word \(D_{n,k} \), which is \(k \) letters shorter than \(W_{n,k} \) (see Theorem 10).

A construction of a crucial abelian \(k \)-power-free word \(D_{n,k} \), where \(n \geq 4 \) and \(k \geq 2 \). As we shall see, the following construction of the word \(D_{n,k} \) is optimal for \(k = 2, 3 \). We believe that it is also optimal for any \(k \geq 4 \) and sufficiently large \(n \) (Conjecture 1).

As our basis for the construction of the word \(D_{n,k} \), we use the following word \(D_{n,2} = D_n \), which is constructed as follows, for \(n = 4, 5, 6, 7 \). (As previously, we use spaces to separate the blocks \(\Omega_{n,1} \) and \(\Omega'_{n,2} \) in \(D_n = \Delta_n \).)

\[
D_4 = 34231 3231
\]
\[
D_5 = 4534231 432341
\]
\[
D_6 = 564534231 54323451
\]
\[
D_7 = 67564534231 6543234561
\]

In general, the first block \(\Omega_{n,1} \) in \(D_n = \Delta_n = \Omega_{n,1} \Omega'_{n,2} \) is built by adjoining the factors \(i(i+1) \) for \(i = n-1, n-2, \ldots, 2 \), followed by the letter 1. The second block \(\Omega'_{n,2} \) is built by adjoining the factors \((n-1)(n-2) \cdots 432 \), then \(34 \cdots (n-2)(n-1) \), and finally the letter 1.
Remark 2. The above construction coincides with the construction given in [6, Theorem 5] for a minimal crucial abelian square-free word over A_n of length $4n - 7$. In fact, the word D_n can be obtained from the minimal crucial abelian cube-free word E_n (defined in Section 2.1) by removing the second block in E_n and deleting the rightmost copy of each letter except 2 in the first and third blocks of E_n.

Now we illustrate each step of the construction for the word $D_{n,k}$ by example, letting $n = 4$ and $k = 3$. The construction is very similar to that of $W_{n,k}$ and can be explained directly, but we introduce it recursively, obtaining $D_{n,k}$ from $D_{n,k-1}$ for $n \geq 4$. Our basis is $D_{n,2} = D_n$. For $n = 4$,

$$D_{4,2} = \Omega_{4,1}\Omega_{4,2}' = 342313231.$$

Assume that $D_{n,k-1} = \Omega_{n,1}\Omega_{n,2} \ldots \Omega_{n,k-1}'$ is constructed and implement the following steps to obtain $D_{n,k}$:

1. Duplicate $\Omega_{n,1}$ in $D_{n,k-1}$ to obtain the word
 $$D'_{n,k-1} = \Omega_{n,1}\Omega_{n,2} \ldots \Omega_{n,k-1}'.$$
 For $n = 4$ and $k = 3$,
 $$D'_{4,3} = 34231342313231.$$

2. Append to the second $\Omega_{n,1}$ in $D'_{4,3}$ the factor $134 \ldots n$ (in our example, 134; in fact, any permutation of $\{1, 3, 4, \ldots, n\}$ would work at this place) to obtain $\Omega_{n,2}$ in $D_{n,k}$. In each of the remaining blocks $\Omega_{n,i}$ in $D'_{n,k-1}$, duplicate the rightmost occurrence of each letter x, where $1 \leq x \leq n - 1$ and $x \neq 2$. Finally, in the last block of $D'_{n,k}$ insert the letter n immediately before the leftmost 1 to obtain the word $D_{n,k}$. For $n = 4$ and $k = 3$, we have
 $$D_{4,3} = 344233113423113432334111.$$

We provide five more examples here, namely $D_{5,3}$, $D_{5,4}$, $D_{4,4}$, $D_{4,5}$, and $D_{6,4}$, respectively, so that the reader can check their understanding of the construction:

$$45534423311145342313453233445111;$$
$$4555344423311114553442331113453423111334455323334455111;$$
$$3444233311134423311134342331113344543233344445532333444556111;$$
$$344423331111344423331113434233111334443233344441111;$$
$$5666455344423331115664553442331113456564534233111334455654323334455566111.$$

Remark 3. By construction, $D_{n,3} = E_n$ for all $n \geq 4$.

Theorem 10. For $n \geq 4$ and $k \geq 2$, we have $\ell_k(n) \leq k^2(n - 1) - k - 1$.

Proof. Fix $n \geq 4$ and $k \geq 2$. By construction, we have

$$D_{n,k} = \Omega_{n,1}\Omega_{n,2} \ldots \Omega_{n,k-1}\Omega_{n,k}'$$

where $\Omega_{n,k} = \Omega_{n,k}'n$ and each $\Omega_{n,i}$ contains $(k-1)$ occurrences of the letter 1, one occurrence of the letter 2, $(k-1)$ occurrences of the letter n, and k occurrences of the letter x for $x = 3, 4, \ldots, n - 1$. Hence, it is easy to see that $|D_{n,k}| = k^2(n - 1) - k - 1$. We prove that $D_{n,k}$ is crucial with respect
to abelian k-th powers; whence the result. The following facts, which are easily verified from the construction of $D_{n,k}$, will be useful in the proof.

Fact 1: In every block $\Omega_{n,i}$, the letter 3 has occurrences before and after the single occurrence of the letter 2.

Fact 2: In every block $\Omega_{n,i}$, all $(k-1)$ of the 1’s occur after the single occurrence of the letter 2 (as the factor $1^{k-1} = 11\ldots 1$).

Fact 3: For all i with $2 \leq i \leq k-1$, the block $\Omega_{n,i}$ ends with $n^{i-1} = nn\ldots n$ ($i - 1$ times) and the other $(k - 1 - i + 1)$ n’s occur (together as a string) before the single occurrence of the letter 2 in $\Omega_{n,i}$. In particular, there are exactly $k - 2$ occurrences of the letter n between successive 2’s in $D_{n,k}$.

Freeness: First we prove that $D_{n,k}$ is abelian k-power-free. Obviously, by construction, $D_{n,k}$ is not an abelian k-th power (as the number of occurrences of the letter n is not a multiple of k) and $D_{n,k}$ does not contain any trivial k-th powers, i.e., k-th powers of the form $x^k = xx\ldots x$ (k times) for some letter x. Moreover, each block $\Omega_{n,i}$ is abelian k-power-free. For if not, then according to the frequencies of the letters in the blocks, at least one of the $\Omega_{n,i}$ must contain an abelian k-th power consisting of exactly k occurrences of the letter x for all $x = 3, 4, \ldots, n - 1$ and no occurrences of the letters 1, 2, and n. But, by construction, this is impossible because, for instance, the letter 3 has occurrences before and after the letter 2 in each of the blocks $\Omega_{n,i}$ in $D_{n,k}$ (by Fact 1).

Now suppose, by way of contradiction, that $D_{n,k}$ contains a non-trivial abelian k-th power, P say. Then it follows from the preceding paragraph that P overlaps at least two of the blocks $\Omega_{n,i}$ in $D_{n,k}$. We first show that P cannot overlap three or more of the blocks in $D_{n,k}$. For if so, then P must contain at least one of the blocks, and hence P must also contain all k of the 2’s. Furthermore, all of the 1’s in each block occur after the letter 2 (by Fact 2), so there are $(k - 1)^2 = k^2 - 2k + 1$ occurrences of the letter 1 between the leftmost and rightmost 2’s in $D_{n,k}$. Thus, P must contain all $k(k - 1) = k^2 - k$ of the 1’s. Hence, since $\Omega'_{n,k}$ ends with $1^{k-1} = 11\ldots 1$ ($k - 1$ times), we deduce that P must end with the word

$$W = 23^{k-1}1^{k-1}\Omega_{n,2}\ldots\Omega_{n,k-1}\Omega'_{n,k},$$

which contains k of the n’s, $k(k - 1) + (k - 1) = k^2 - 1$ of the 3’s, and $k(k - 1)$ occurrences of the letter x for $x = 4, \ldots, n - 1$. It follows that P must contain all k^2 of the 3’s. But then, since

$$D_{n,k} = (n - 1)n^{k-1}\ldots 34^{k-1}W$$

(by construction), we deduce that P must contain all k^2 of the 4’s that occur in $D_{n,k}$, and hence all k^2 of the 5’s, and so on. That is, P must contain all k^2 occurrences of the letter x for $x = 3, \ldots, n - 1$; whence, since $D_{n,k}$ begins with the letter $n - 1$, we have $P = \Omega_{n,1}\Omega_{n,2}\ldots\Omega_{n,k} = D_{n,k}$, a contradiction.

Thus, P overlaps exactly two adjacent blocks in $D_{n,k}$, in which case P cannot contain the letter 2; otherwise P would contain all k of the 2’s, and hence would overlap all of the blocks in $D_{n,k}$, which is impossible (by the preceding arguments). Hence, P lies strictly between two successive occurrences of the letter 2 in $D_{n,k}$. But then P cannot contain the letter n
as there are exactly \(k - 2 \) occurrences of the letter \(n \) between successive 2’s in \(D_{n,k} \) (by Fact 3). Therefore, since the blocks \(\Omega_{n,i} \) with \(2 \leq i \leq k - 1 \) end with the letter \(n \), it follows that \(P \) overlaps the blocks \(\Omega_{n,1} \) and \(\Omega_{n,2} \). Now, by construction, \(\Omega_{n,1} \) ends with \(1^{k-1} = 11 \ldots 1 \) (\(k - 1 \) times), and hence \(P \) contains \(k \) of the \(2(k-1) = 2k - 2 \) occurrences of the letter 1 in \(\Omega_{n,1} \Omega_{n,2} \). But then \(P \) must contain the letter 2 because \(\Omega_{n,1} \) contains exactly \((k - 1)\) occurrences of the letter 1 (as a suffix) and all \((k - 1)\) of the 1’s in \(\Omega_{n,2} \) occur after the letter 2 (by Fact 2); a contradiction.

We have now shown that \(D_{n,k} \) is abelian \(k \)-power-free. It remains to show that \(D_{n,k}x \) ends with an abelian \(k \)-th power for each letter \(x = 1, 2, \ldots, n \).

Cruciality: By construction, \(D_{n,k}1 \) is clearly an abelian \(k \)-th power. It is also easy to see that \(D_{n,k}1 \) ends with the (abelian) \(k \)-th power \(\Delta_11 := 11 \ldots 1 \) \((k \) times). Furthermore, for all \(m = n, n - 1, \ldots, 4, 3 \), we deduce from the construction that

\[
\Omega_{m,1} = (m-1)m^{k-1}\Omega_{m-1,1}, \\
\Omega_{m,2} = (m-1)m^{k-2}\Omega_{m-1,2m}, \\
\vdots \\
\Omega_{m,k-2} = (m-1)m^2\Omega_{m-1,k-2}m^{k-3}, \\
\Omega_{m,k-1} = m(m-1)\Omega_{m-1,k-1}m^{k-2}, \\
\Omega_{m,k} = (m-1)\Omega_{m-1,k}1^{k-1} = (m-1)m^{k-2}1^{k-1}, \\
\Omega_{m-1,k}[1^{k-1}]^{-1} \text{ indicates the deletion of the suffix } 1^{k-1} \text{ of } \Omega_{m-1,k}.
\]

Consequently, for \(x = n - 1, n - 2, \ldots, 3, 2 \), the word \(D_{n,k}x \) ends with the abelian \(k \)-th power \(\Delta_x \) given by

\[
\Delta_{x+1} = x(x+1)^{k-1}\Delta_x \quad \text{where } \Delta_n = D_{n,k}.
\]

Observe that \(|D_{n,2}| = 4n - 7 \) and \(|D_{n,3}| = 9n - 13 \). Hence, since \(D_{n,k} \) is a crucial abelian \(k \)-power-free word (by the proof of Theorem 10), it follows from [8, Theorem 5] and Corollary [3] that the words \(D_{n,2} \) and \(D_{n,3} \) are minimal crucial words over \(A_n \) avoiding abelian squares and abelian cubes, respectively. That is, for \(k = 2, 3 \), the word \(D_{n,k} \) gives the length of a minimal crucial word over \(A_n \) avoiding abelian \(k \)-th powers. In the case of \(k \geq 4 \), we make the following conjecture.

Conjecture 1. For \(k \geq 4 \) and sufficiently large \(n \), the length of a minimal crucial word over \(A_n \) avoiding abelian \(k \)-th powers is given by \(k^2(n-1) - k - 1 \).

3.2. A lower bound for \(\ell_k(n) \)

A trivial lower bound for \(\ell_k(n) \) is \(nk - 1 \) as all letters except \(n \) must occur at least \(k \) times, whereas \(n \) must occur at least \(k - 1 \) times. We give here the following slight improvement of the trivial lower bound, which must be rather imprecise though.

Theorem 11. For \(n \geq 5 \) and \(k \geq 4 \), we have \(\ell_k(n) \geq k(3n - 4) - 1 \).

Proof. Notice that in proving Lemmas [3, 6] we do not use the fact that one deals with abelian cube-free words, which we use to obtain a lower bound for \(\ell_k(n) \). Indeed, assuming that \(X \) is a crucial word over the \(n \)-letter alphabet
A_n with respect to abelian k-th powers ($k \geq 4$), we see that adjoining any letter from A_n to the right of X must create a cube as a factor from the right. In particular, adjoining n from the right side leads to creating a cube of length at least $9n - 13$ (by Lemmas 3–6). This cube will be $\Omega_{n,k-2} \Omega_{n,k-1} \Omega_{n,k}'$ in X and thus $|\Omega_{n,i}|$, for $1 \leq i \leq k - 1$, will have length at least $3n - 4$, whereas $|\Omega_{n,k}'|$ has length at least $3n - 5$, which yields the result. \hfill \Box

4. Further research

(1) Prove or disprove Conjecture 1. Notice that the general construction uses a greedy algorithm for going from $k - 1$ to k, which does not work for going from $n - 1$ to n for a fixed k. However, we believe that the conjecture is true.

(2) A word W over A_n is maximal with respect to a given set of prohibitions if W avoids the prohibitions, but xW and Wx do not avoid the prohibitions for any letter $x \in A_n$. A maximal word of the shortest length is called a minimal maximal word. Clearly, the length of a minimal crucial word with respect to a given set of prohibitions is at most the length of a minimal maximal word. Thus, obtaining the length of a minimal crucial word we get a lower bound for the length of a minimal maximal word.

Can we use our approach to tackle the problem of finding minimal maximal words? In particular, Korn [8] proved that the length $\ell(n)$ of a shortest maximal abelian square-free word over A_n satisfies $4n - 7 \leq \ell(n) \leq 6n - 10$ for $n \geq 6$, while Bullock [1] refined Korn’s methods to show that $6n - 29 \leq \ell(n) \leq 6n - 12$ for $n \geq 8$. Can our approach improve this result (probably too much to ask when taking into account how small the gap is), or can it provide an alternative solution to Bullock’s result?

References

[1] E.M. Bullock, Improved bounds on the length of maximal abelian square-free words, Electron. J. Combin. 11 (2004) #R17.
[2] A. Carpi, On the number of abelian square-free words on four letters, Discrete Appl. Math. 81 (1998) 155–167.
[3] L.J. Cummings, M. Mays, A one-sided Zimin construction, Electron. J. Combin. 8 (2001), #R27.
[4] P. Erdös, Some unsolved problems, Magyar Tud. Akad. Mat. Kutató Int. Közl. 6 (1961) 221–254.
[5] A.A. Evdokimov, Strongly asymmetric sequences generated by a finite number of symbols, Dokl. Akad. Nauk SSSR 179 (1968) 1268–1271; Soviet Math. Dokl. 9 (1968) 536–539.
[6] A. Evdokimov, S. Kitaev, Crucial words and the complexity of some extremal problems for sets of prohibited words, J. Combin. Theory Ser. A 105 (2004) 273–289.
[7] V. Keränen, Abelian squares are avoidable on 4 letters, in: Automata, languages and programming (Vienna, 1992), 41–52; Lecture Notes in Comput. Sci., vol. 623, Springer, Berlin, 1992.
[8] M. Korn, Maximal abelian square-free words of short length, J. Combin. Theory Ser. A 102 (2003) 207–211.
[9] P.A.B. Pleasants, Non-repetitive sequences, Proc. Cambridge Philos. Soc. 68 (1970) 267–274.
[10] A. Zimin, Blocking sets of terms, *Mat. Sb. (N.S.)* 119 (161) (1982) 363–375, 447; *Math. USSR Sbornik* 47 (1984) 353–364.

E-mail address, A. Glen: amy.glen@gmail.com

E-mail address, B.V. Halldórsson: bjarnivh@ru.is

E-mail address, S. Kitaev: sergey@ru.is

The Mathematics Institute, Reykjavík University, Kringlan 1, 103 Reykjavík, Iceland