Excitonic gap formation and condensation in the bilayer graphene structure

V Apinyan and T K Kopeć

Institute for Low Temperature and Structure Research, Polish Academy of Sciences PO Box 1410, 50-950 Wroclaw 2, Poland

E-mail: v.apinyan@int.pan.wroc.pl

Received 9 May 2016, revised 30 June 2016
Accepted for publication 21 July 2016
Published 8 August 2016

Abstract
We have studied the excitonic gap formation in the Bernal Stacked, bilayer graphene (BLG) structures at half-filling. Considering the local Coulomb interaction between the layers, we calculate the excitonic gap parameter and we discuss the role of the interlayer and intralayer Coulomb interactions and the interlayer hopping on the excitonic pair formation in the BLG. Particularly, we predict the origin of excitonic gap formation and condensation, in relation to the furthermost interband optical transition spectrum. The general diagram of excitonic phase transition is given, explaining different interlayer correlation regimes. The temperature dependence of the excitonic gap parameter is shown and the role of the chemical potential, in the BLG, is discussed in details.

Keywords: graphene, bilayers, excitons, electronic gap

(Some figures may appear in colour only in the online journal)

1. Introduction

The bilayer graphene (BLG) structure represents a remarkable interest in modern solid state physics, providing an interesting construction of a material with semiconducting properties [1]. Namely, it is well known that the semiconducting gap of BLG can be tuned by applying the external perpendicular electric field [2–15]. Namely, a tunable bandgap, up to 20 meV, has been obtained experimentally [7], using a BLG field effect transistor. Meanwhile, an unbiased BLG is a zero-gap semiconductor, characterized by four parabolic bands, where two of them touching each other at zero energy.

The excitonic effects in the BLG structures represent another interesting physical phenomenon [16–26]. Recently, the optical response of isolated single- and bilayer intrinsic graphene has been calculated [17], and the photo-excited states with optical absorption spectra are obtained, using the Gutzwiller–Bethe–Salpeter equation approach. Particularly, the formation of resonant excitons is shown in the two-dimensional (2D) semi-metallic limit. The first principle calculations, based on the many-electron Green’s function approach, have predicted also the existence of bound excitons in one-dimensional (1D) metallic carbon nanotubes [18, 19], which, subsequently, has been verified experimentally [20] using metallic single-walled carbon’s nanotubes as a model system. It is demonstrated that the optical transitions, in this 1D metallic systems, are dominated by the excitons with binding energies as large as 50 meV, which significantly exceed that of excitons in most bulk semiconductors [27]. The binding energy of Wannier–Mott excitons and optical conductivity spectrum of BLG is investigated recently in [21]. The authors used the simple tight-binding model in the presence of the external gate voltage (extrinsic BLG). Particularly, the effects of excitonic formations on the absorption spectrum are discussed in details, using the Hartree–Fock approximation, and the optical conductance spectrum is calculated, for different values of the external electric field. Another, more recent microscopic study of the optical properties of Bernal–Stacked (BS) BLG structure is given in [23], where the influence of the total energy renormalized Coulomb interaction effects on the optical selection rules is determined, and the allowed crossing and non-crossing optical interband transitions are discussed in details. On the other hand, a strong suppression of screening of the interlayer Coulomb interaction, in the case of multiband Cooper pairing, which takes place in a BLG at strong coupling, is discussed in [28].

On the other hand, a great experimental and theoretical effort has been dedicated in order to obtain the excitonic
condensation in the BLG [29–45]. It is interesting to mention about controversial results, given in [39, 42, 43] on the possibilities to obtain the room-temperature excitonic condensate in BLG. Namely, motivated by the large-N limit, and considering the weak-coupling Bardeen–Cooper–Schrieffer (BCS) gap equation, the authors in [42, 43] construct the low energy theory, which gives a negligibly small value of the critical temperature of the excitonic superfluid phase transition. The opposite result is obtained in [39], where it has been shown the existence of four independent superfluid orders with the very high transition critical temperatures, when considering the unscreened interlayer coupling interaction.

It appears a natural question, if it is possible to construct a theory, which can unify the obtained previous results for the weak and strong interlayer coupling limits in BLG. The present paper gives a detailed recipe how this type of theory could be done. We consider the problem of the excitonic pair formation, in the BLG structures, using the bilayer Hubbard model. By considering the on-site, local interlayer Coulomb interaction, we calculate the excitonic gap parameter in different limits of the interlayer and intralayer Coulomb interactions. We show that, similar to the usual semiconducting systems, an excitonic pairing state is present in the BLG systems, when varying the interlayer Coulomb interaction parameter, from small up to very high values. The principal difference for BLG is that the gap function remains finite up to very large values of the interlayer interaction (this is the limit when the interlayer screening is negligibly small [46]). This is not the case for the intermediate valent semiconductor [47–50], or transition metal compounds [51], where the excitonic insulator state is due to the interband Coulomb interaction. We have calculated the excitonic gap for different values of the interlayer hopping amplitude \(\gamma_i \). In accordance with the previous mean-field results, we show that the intralayer repulsive interaction is completely unimportant for the considered problem, and we show that it conducts only to a linear self-consistent (SC) solution of the chemical potential. The obtained results here are related to the excitonic pair formation and condensation in the BLG, and represent a significant interest, when treating different interlayer screening regimes in the BLG system, due to the presence of screening medium between the layers of the BLG structure. Particularly, from our theory, we get both limiting results, discussed above, and we did not found any contradiction between the theories, given in [39, 42, 43].

The paper is organized as follows: in the section 2, we describe the model for treating the BLG system. In the section 3, we discuss our theoretical formalism and we obtain the general form of the fermionic action in the intrinsic BLG system at half-filling. In the section 4, we derive the SC equations for the excitonic gap parameter and chemical potential. The numerical results are given in the section 5. In the section 6, we discuss our results in touch with the experimental accessibilities, for the BLG structures, and in the section 7 we will give a short conclusion for our paper.

2. The model

We consider a minimal model for the BLG structure with on-site interaction. The BLG is composed of two coupled honeycomb layers with sublattices \(A \) and \(\bar{A} \), \(\bar{B} \) placed in the bottom layer and top layer respectively. In the \(z \)-direction, the layers are arranged according to Bernal Stacking order [34], i.e. the atoms on the sites \(\bar{A} \) of the top monolayer lie just above the atoms on the sites \(B \) of the bottom monolayer graphene, and each monolayer is composed of two interpenetrating triangular lattices (see the BLG structure, given in figure 1). We define the bilayer Hubbard Hamiltonian, for the unbiased BLG structure at half-filling, in the form

\[
H = - \gamma_0 \sum_{i,j=1,2} (X_{i,j}^\dagger Y_{i,j} + \text{h.c.)}) \\
- \gamma_1 \sum_{i,\sigma} (b_{i,\sigma}^\dagger \tilde{a}_{i,\sigma} + \text{h.c.)} = - \sum_{i,\sigma} \mu_i n_{i,\sigma} \\
+ U \sum_i \sum_{\eta=\bar{X},\bar{Y}} \sum_{l=1,2} \left[(n_{i,\eta} - 1/2)(n_{i,\eta+1} - 1/2) - 1/4\right] \\
+ W_\perp \sum_{\eta,\sigma,\sigma'} \left[(n_{i,\eta,\sigma} - 1/2)(n_{i,\eta,\sigma'} - 1/2) - 1/4\right].
\]

(1)

Here, we have used the graphite nomenclature [52–54] for the hopping amplitudes \(\gamma_0 \) and \(\gamma_1 \). Namely, they corresponds to \(\gamma_0 = t \) (the intraplane hopping amplitude) and \(\gamma_1 = t_1 \) (the interlayer hopping amplitude) in the usual tight-binding notations. The summation \(\langle i, j \rangle \), in the first term in equation (1), denotes the sum over the nearest neighbors lattice sites in the separated honeycomb layers. The index \(l = 1, 2 \) mentions the numbers of single layers in the BLG structure. Particularly, we use \(l = 1 \) for the bottom layer, and \(l = 2 \) for the top layer. The symbol \(\sigma \) denotes the spin variables with two possible directions \((\sigma = \uparrow, \downarrow) \). The electron operators \(X \) and \(Y \) in the Hamiltonian are defined in such a way that \(X = a, Y = b \), for the bottom layer with
l = 1, and X = \tilde{a}, Y = \tilde{b}, for the top layer with l = 2.

We keep the small letters a, b and \tilde{a}, \tilde{b} for the electrons on the lattice sites A, B and \tilde{A}, \tilde{B} respectively, and the notation with tilde is referred to the top layer. Furthermore, U, in the Hubbard term in equation (1), parametrizes the intralayer Coulomb interaction, and Wl is the local interlayer Coulomb repulsion. Furthermore, in what follows, we choose γb = 1, as the unit of energy, and we set kb = 1, \hbar = 1.

Next, n_{l,\sigma} = n_{l,\sigma}^X + n_{l,\sigma}^Y is the total electron density on site \(i\), in the layer l, where n_{l,\sigma}^X and n_{l,\sigma}^Y are electron density operators for different sublattices, defined as n_{l,\sigma}^X = X_{l,\sigma}^a, n_{l,\sigma}^Y = Y_{l,\sigma}^b.

For a simple treatment, at equilibrium, we suppose the balanced BLG structure with the chemical potentials in both layers that are equal \(\mu_1 = \mu_2 \equiv \mu\). Thus, we do not suppose the initial hole doping in the bottom layer and we consider the BLG structure with pure electronic layers. We will study the excitonic effects in the BLG system with respect to the half-filling condition assumption in each layer, \(\langle n_i \rangle = 1\), for \(l = 1, 2\). In order to estimate the energy scales (the excitonic gap, the chemical potential, and the energy bandgaps), related to the excitonic condensation in the BLG, we will discuss in details a particular realistic parameterization for the hopping amplitudes γ0 and γ1 (in accordance with [23]).

3. The fermionic action of the BLG system

Next, we will pass to the Grassmann’s representation for the fermionic variables, and we write the partition function of the system, by employing the imaginary time fermion path integral method [55]. For this, we introduce imaginary time variables \(\tau\), at each lattice site \(i\). The time variables \(\tau\) vary in the interval (0, \beta), where \(\beta = 1/T\) with T being the temperature. Then, the grand canonical partition function of the system is

\[
Z = \int [D\tilde{X}DX][D\tilde{Y}DY]e^{-S[\tilde{X}, X, \tilde{Y}, Y]},
\]

where, the action, in the exponent, is expressed as

\[
S[\tilde{X}, X, \tilde{Y}, Y] = \sum_{l=1,2} S^{(l)}_B[\tilde{X}, X] + \sum_{l=1,2} S^{(l)}_B[\tilde{Y}, Y] + \int_0^\beta d\tau H(\tau).
\]

The first two terms in equation (3), are the fermionic Berry-terms for the layers with indices \(l = 1, 2\). They are given as follows

\[
S^{(l)}_B[\tilde{X}, X] = \sum_{l,\sigma} \int_0^\beta d\tau \tilde{X}_{l,\sigma}(\tau) \frac{\partial}{\partial \tau} X_{l,\sigma}(\tau),
\]

\[
S^{(l)}_B[\tilde{Y}, Y] = \sum_{l,\sigma} \int_0^\beta d\tau \tilde{Y}_{l,\sigma}(\tau) \frac{\partial}{\partial \tau} Y_{l,\sigma}(\tau).
\]

Here, again, we keep the notations X_{l,\sigma} = a_{l,\sigma}, X_{2l,\sigma} = \tilde{a}_{2l,\sigma}, Y_{l,\sigma} = \tilde{b}_{l,\sigma} and Y_{2l,\sigma} = b_{2l,\sigma}. The Hamiltonian of the BLG system, in the last term in equation (3), is given in equation (1), in the section 2, and here we will write \(H\) in a more convenient form, in terms of the Grassmann’s variables a, b and \(\tilde{a}, \tilde{b}\), corresponding to the layers with \(l = 1\) and \(l = 2\), respectively. Namely, within the path integral formalism, we have

\[
H = -\gamma_0 \sum_{\langle i,j\rangle, \sigma}(a_{i,\sigma}(\tau)b_{j,\sigma}(\tau) + h.c.)
\]

\[
-\gamma_0 \sum_{\langle i,j\rangle, \sigma}(\tilde{a}_{i,\sigma}(\tau)\tilde{b}_{j,\sigma}(\tau) + h.c.)
\]

\[
-\gamma_1 \sum_{i,\sigma}(\tilde{b}_{i,\sigma}(\tau)a_{i,\sigma}(\tau) + h.c.)
\]

\[
+ U \sum_{\eta=\tilde{X}Y} \left(\frac{n_{\eta,\sigma}(\tau)^2}{4} - (S_{\eta,\sigma}^l(\tau))^2 \right)
\]

\[
= \mu_1 \sum_{l,\sigma} n_{l,\sigma}^a(\tau) - \mu_2 \sum_{l,\sigma} n_{l,\sigma}^b(\tau)
\]

\[
- \mu_2 \sum_{l,\sigma} n_{l,\sigma}^\ddagger(\tau)
\]

\[
= \mu_1 \sum_{l,\sigma} n_{l,\sigma}^\ddagger(\tau) - W_l \sum_{l,\sigma,\sigma'} |\chi_{l,\sigma\sigma'}(\tau)|^2.
\]

We have introduced in equation (6) the z-component of the generalized spin operator \(S_{l,\sigma}^z(\tau) = 1/2 \sum_{\alpha,\beta=1}^2 \eta_{l,\alpha}(\tau) \partial_{\beta,\alpha} \eta_{l,\alpha}(\tau)\), for different sublattices, in the layers of BLG. It is defined as \(S_{l,\sigma}^z(\tau) = 1/2(\eta_{l,\uparrow}(\tau) - \eta_{l,\downarrow}(\tau))\). The chemical potentials \(\mu_1\) and \(\mu_2\) are the shifted chemical potentials in the system \(\mu_1 = \mu + U/2, \mu_2 = \mu + U/2 + W_l\). It is noteworthy to mention here that the chemical potentials of electrons on the nonequivalent sublattice sites in the given layer, gets different shifts, in different layers, due to the stacking ordering of the BLG (see in figures 1 and 2). The new complex variables \(\chi_{l,\sigma\sigma'}(\tau)\) and their complex conjugates \(\tilde{\chi}_{l,\sigma\sigma'}(\tau)\) are introduced in the last interaction term in equation (6), and \(\chi_{l,\sigma\sigma'}(\tau) = b_{l,\sigma}a_{2l,\sigma}\). The Hamiltonian, in the form given in equation (6), is more suitable for decoupling of four fermionic terms within the Hubbard-Stratanovich type linearisation procedure. Furthermore, we perform the real-space linearization of four-fermionic terms in equation (6). As an example, we give this procedure for the sublattice-a, in the
layer-1 of the BLG structure, given in figure 1. Namely, we have
\[e^{-U/2 \sum_{\mathbf{r}} \int_0^{\beta} dr \left(n^i_\mathbf{r}(r) - \frac{u^i_\mathbf{r}}{U} \right)^2 } \]
\[\sim \int [DV^\mathbf{r}_{\mathbf{r}}] e^{\sum_{\mathbf{r}} \int_0^{\beta} dr \left(\frac{V^\mathbf{r}_{\mathbf{r}}(r)}{U} + \frac{V^\mathbf{r}_{\mathbf{r}}(r)}{2U} \right)} . \]
(7)

The path integral, in the right-hand side (rhs) in equation (7), is taken over the decoupling field-variables \(V^\mathbf{r}_{\mathbf{r}}(r) \), coupled to the density term. They are introduced at each site position \(i \) of the given sublattice and at each time variable \(\tau \). The field integral, in rhs, in equation (7), can be evaluated by the steepest descent method. We get
\[\int [DV^\mathbf{r}_{\mathbf{r}}] e^{\sum_{\mathbf{r}} \int_0^{\beta} dr \left(\frac{V^\mathbf{r}_{\mathbf{r}}(r)}{U} + \frac{V^\mathbf{r}_{\mathbf{r}}(r)}{2U} \right)} \]
\[\sim e^{-U/2 \sum_{\mathbf{r}} \int_0^{\beta} dr \left(n^i_\mathbf{r}(r) - \frac{u^i_\mathbf{r}}{U} \right)^2 } . \]
(8)

Here, in order to obtain the rhs, in equation (8), we have replaced the field integration over \(V^\mathbf{r}_{\mathbf{r}}(r) \), by using the saddle-point value of the decoupling potential, namely, \(\bar{\nu}^i_\mathbf{r} = U/2(n^i_\mathbf{r} - 2\mu_1/U) \), and the density average \(\bar{n}^i_\mathbf{r} \) is defined with the help of the total action of the system, given in equation (3), we have \(\bar{n}^i_\mathbf{r} = \langle n^i_\mathbf{r} \rangle = \langle n_{\mathbf{r}1}^i + n_{\mathbf{r}2}^i \rangle \). The same procedure could be repeated also for the nonlinear density terms, on the other sublattices in the BLG, which contain the density terms \(n_{\mathbf{r}1}^i \) and \(n_{\mathbf{r}2}^i \).

The decoupling of the nonlinear density-difference term, in equation (6), is also straightforward. Namely, for the \(l \)-layer and \(\eta \)-type sublattice variable, we have
\[e^{U \sum_{\mathbf{r}} \int_0^{\beta} dr \left(\delta^i_{\mathbf{r}}(r)^2 \right)} = e^{U/4 \sum_{\mathbf{r}} \int_0^{\beta} dr \left(n^i_{\mathbf{r}1} - n^i_{\mathbf{r}2} \right)^2 } \]
\[\sim \int [D\delta^i_{\mathbf{r}}] e^{\sum_{\mathbf{r}} \int_0^{\beta} dr \left(\frac{\delta^i_{\mathbf{r}}}{U} + \Delta^i_{\mathbf{r}}(n^i_{\mathbf{r}1} - n^i_{\mathbf{r}2}) \right)} . \]
(9)

The saddle-point values of the variables \(\Delta^i_{\mathbf{r}} \) are given by \(\delta^i_{\mathbf{r}} = U/2(n^i_{\mathbf{r}1} - n^i_{\mathbf{r}2}) \). Thus, they are proportional to the difference between the average electron densities, with the opposite spin directions. For the simplicity, we suppose the case of the spin-balanced BLG layers, with equal average densities (thus, reflecting the initial, antiferromagnetic ground state of BLG [56]) and for each spin orientation, i.e. \(\langle n^i_{\mathbf{r}1} \rangle = \langle n^i_{\mathbf{r}2} \rangle \), and the mean values \(\delta^i_{\mathbf{r}} \) disappear in the problem. For the case of the half-filling, considered here, we put \(\langle n^i_{\mathbf{r}1} \rangle = 1/2 \), for each spin direction \(\sigma = \uparrow, \downarrow \), at the equilibrium state.

Next, we will decouple the last four fermion density term, in equation (6). In this case, we apply the complex form of the Hubbard–Stratanovich transformation [55] for the one-component fermionic-field
\[e^{\sum_{l,\sigma} \int_0^{\beta} dr \chi^\dagger_{\mathbf{r}l,\sigma}(r) \chi_{\mathbf{r}l,\sigma}(r)} \]
\[= \int [DDD^\dagger] e^{\sum_{l,\sigma} \int_0^{\beta} dr \left(\mu_{l,\sigma}(r)^2 \right)/2} \]
\[\times e^{\sum_{l,\sigma} \int_0^{\beta} dr \left(\chi_{\mathbf{r}l,\sigma}(r)^2 + \chi_{\mathbf{r}l,\sigma}(r)^2 \right)}. \]
(10)

It is not difficult to see that the saddle-point value of the decoupling field variable \(\Gamma_{l,\sigma,l'} \), introduced in equation (10) is related directly to the excitonic gap parameter. Indeed, we have
\[\Delta_{l,\sigma} = W_{\mathbf{r}l} \langle \delta_{l,\sigma} \rangle \langle \delta_{l,\sigma} \rangle \].
(11)

For the next, we will consider the homogeneous BLG structure, when the pairing is with the same orientation of the spin variables, i.e. \(\Delta_{l,\sigma} = \Delta_{l,\sigma,\delta} \), excluding the other possibilities of the pairing with the spin inversion (i.e. the spin–flip pairing mechanism [57]).

Then, we can write the total action of the system in the Fourier representation, given by the transformations
\[\eta_{l,\sigma}(\tau) = \frac{1}{\beta N} \sum_{k,l} \eta_{k,\sigma} (\nu_{k,l}) e^{i(k \mathbf{r} - \nu_{k,l} \mathbf{r})}, \]
(12)
where \(\nu_{k,l} = (2n + 1)/\beta \) with \(n = 0, \pm 1, \pm 2, \ldots \) are the Matsubara fermion frequencies [58], and \(N \) is the total number of sites on the \(\eta \)-type sublattice, in the layer \(l \). We four-component BLG spinors at each discrete state \(\mathbf{k} \) in the reciprocal space and for each spin orientation \(\sigma = \uparrow, \downarrow \)
\[\psi_{k,\sigma} (\nu_{k,l}) = [a_{k,\sigma}, b_{k,\sigma}, \bar{a}_{2k,\sigma}, \bar{b}_{2k,\sigma}]^T. \]
(13)

Then, the action of the system, in the reciprocal space, reads as
\[S[\tilde{\psi}, \psi, \tilde{\Delta}, \Delta] = \frac{1}{\beta N} \sum_{k,\sigma} \psi_{k,\sigma} (\nu_{k,l}) G_{k,\sigma} (\nu_{k,l}) \psi_{k,\sigma} (\nu_{k,l}). \]
(14)
Here, \(G_{k,\sigma}^{-1} (\nu_{k,l}) \), is the inverse Green’s function matrix, of size \(4 \times 4 \). It is defined as
\[G_{k,\sigma}^{-1} (\nu_{k,l}) = \begin{pmatrix} E_1 (\nu_{k,l}) - \gamma_{k1} & 0 & 0 \\ -\gamma_{k1} & E_2 (\nu_{k,l}) - \gamma_1 - \tilde{\Delta} & 0 \\ 0 & -\gamma_1 - \tilde{\Delta} & E_2 (\nu_{k,l}) - \gamma_{k2} \\ 0 & 0 & -\gamma_{k2} & E_1 (\nu_{k,l}) \end{pmatrix}. \]
(15)

The diagonal elements of the matrix in equation (15) are the energy parameters, given by
\[E_1 (\nu_{k,l}) = -i \nu_{k,l} - \mu_{1,eff} \]
\[E_2 (\nu_{k,l}) = -i \nu_{k,l} - \mu_{2,eff} \]
(16)
where, the effective chemical potentials \(\mu_{1,eff} \) and \(\mu_{2,eff} \), are introduced in the problem
\[\mu_{1,eff} = \mu + U/4, \]
\[\mu_{2,eff} = \mu + U/4 + W_c. \]
(17)
(18)
The parameters \(\gamma_{k1} \), in equation (15), \(l = 1, 2 \), are the renormalized (nearest neighbors) hopping amplitudes \(\tilde{\gamma}_{k1} = \gamma_{k1} t \), where the \(k \)-dependent parameters \(\gamma_{k1} \) and \(\gamma_{k2} \) are the energy dispersions for the BLG layers with \(l = 1 \) and \(l = 2 \), respectively. We have \(\gamma_{k1} = 1/\zeta \sum_{k} \epsilon^{-ikd} \) (and \(\gamma_{k2} = 1/\zeta \sum_{k} \epsilon^{-ikd} \) for the layer with \(l = 2 \)). The parameter \(\zeta \), in equation (15), is the number of the nearest neighbors lattice sites on the given honeycomb layer, for a given
sublattice variable and \(z = 3 \) for each monolayer (see in the left picture in figure 2). The nearest-neighbors vectors \(\delta_i \) in the real space, for the bottom-layer-1, (see in the left picture in figure 2) are given by \(\delta_1 = a/2(1, \sqrt{3}), \delta_2 = a/2(1, -\sqrt{3}) \) and \(\delta_3 = -a(1, 0) \). For the layer-2, we have abudounously, \(\delta_1' = a(1, 0), \delta_2' = -a/2(1, \sqrt{3}), \) and \(\delta_3' = -a/2(1, -\sqrt{3}) \). Then, for the function \(\gamma_{ik} \), we have \(\gamma_{ik} = 1/3 \left(e^{i\mathbf{k} \cdot \mathbf{a}} + 2e^{i\mathbf{k} \cdot a \cos \sqrt{3}/2} \right) \), where \(a \) is the carbon–carbon interatomic distance. By the convention, we put \(a \equiv 1 \), for both layers. For a given geometry, in figure 2, it is not difficult to realize that \(\gamma_{2k} = \gamma_{k}^x \equiv \gamma_{k}^x \) and, for the renormalized hopping amplitudes, we have \(\tilde{\gamma}_{3k} = \gamma_{3k}^x \equiv \gamma_{k}^x \), where we have omitted the layer indexes \(l \).

Next, according to the supposition of the spin-balanced BLG structure (remember, that we do not suppose the presence of inhomogeneities or the applied electric field), we can assume that the pairing gap is real, \((\Delta_x \equiv \Delta = \tilde{\Delta}) \) and it is not spin-dependent. Therefore, the structure of the matrix is not changing, for the opposite spin directions, i.e. \(\tilde{G}_{k,1}^{-1}(\nu_{ik}) \equiv \tilde{G}_{k,1}^{-1}(\nu_{ik}) \). In the next section, we will use the form of the fermionic action, given in equation (14), in order to derive the SC equations, which determine the excitonic gap parameter and the chemical potential in the system.

4. The excitonic gap parameter

By basing on the results obtained in the previous section, we will derive here the excitonic gap parameter for the BLG system, under consideration. We use the condition of half-filling, for each layer, in order to find the solution for the chemical potential in the BLG system. For the layer-1, this condition holds, that \((\tilde{n}_k^a + \tilde{n}_k^b) = 1 \), where \(\tilde{n}_k^a \) and \(\tilde{n}_k^b \) are the electron densities for \(a \) and \(b \) type fermions, respectively. The excitonic gap parameter, as it is discussed previously, in the section 3, is given as the statistical average \(\Delta = \langle W, \langle \hat{b}_{1l} \hat{a}_{2l} \rangle \rangle \), where, just for spin-symmetry’s reasons of the matrix, given in equation (15), we have restricted to case \(\sigma = \uparrow \) and we have omitted the spin indexes for the fermion operators.

Here, we present only the final results, in the form of the coupled, nonlinear SC equations, for the chemical potential \(\mu \) and the excitonic pairing gap parameter \(\Delta \). Then, after performing the Matsubara frequency summations, we get

\[
\Delta = \frac{4}{N} \sum_{k = 1, \ldots, 4} \alpha_{ik} n_F(\epsilon_{ik}) = 1, \tag{19}
\]

\[
\Delta = \frac{W_1(\gamma_1 + \tilde{\Delta})}{N} \sum_{k = 1, \ldots, 4} \beta_{ik} n_F(\epsilon_{ik}), \tag{20}
\]

where the dimensionless coefficients \(\alpha_{ik} \), in equation (19), with \(i = 1, \ldots, 4 \), are given as

\[
\alpha_{ik} = (-1)^{i+1} \left\{ \begin{array}{ll}
\frac{p^{\alpha}(\epsilon_{ik})}{(\epsilon_{ik} - \nu_i^k)} \prod_{j=1,2} \frac{1}{(\epsilon_{ik} - \nu_j^k)}, & \text{if } i = 1, 2, \\
\frac{p^{\alpha}(\epsilon_{ik})}{(\epsilon_{ik} - \nu_i^k)} \prod_{j=3,4} \frac{1}{(\epsilon_{ik} - \nu_j^k)}, & \text{if } i = 3, 4,
\end{array} \right. \tag{21}
\]

with the coefficients \(\alpha_{ik}, i = 1, \ldots, 3 \), given as

\[
\alpha_{ik} = -\mu_{-}^{\alpha} - \mu_{+}^{\alpha},
\]

\[
a_{2k} = \mu_{1}^{\alpha} (\mu_{2}^{\alpha} + 2\mu_{1}^{\alpha} - \Delta^2 - |\gamma_{k}|^2)
\]

and

\[
a_{3k} = -\mu_{1}^{\alpha} (\mu_{2}^{\alpha} + 2\mu_{1}^{\alpha} - \Delta^2 - 2|\gamma_{k}|^2).
\]

Next, the coefficients \(\beta_{ik} \), in equation (20) with \(i = 1, \ldots, 4 \) are given by the relations

\[
\beta_{ik} = (-1)^{i+1} \left\{ \begin{array}{ll}
\frac{p^{\alpha}(\epsilon_{ik})}{(\epsilon_{ik} - \nu_i^k)} \prod_{j=1,2} \frac{1}{(\epsilon_{ik} - \nu_j^k)}, & \text{if } i = 1, 2, \\
\frac{p^{\alpha}(\epsilon_{ik})}{(\epsilon_{ik} - \nu_i^k)} \prod_{j=3,4} \frac{1}{(\epsilon_{ik} - \nu_j^k)}, & \text{if } i = 3, 4,
\end{array} \right. \tag{26}
\]

where \(p^{\alpha}(\nu_{ik}) \) is given as

\[
p^{\alpha}(\nu_{ik}) = (\nu_{ik} + \mu_{1}^{\alpha} \mu_{2}^{\alpha}).
\]

The function \(n_F(x) \), in equations (19) and (20), is the Fermi–Dirac distribution function \(n_F(x) = 1/(e^{x} + 1) \). The energy parameters \(\nu_{ik} \), in equations (19), (20) and (21), (26) with \(i = 1, \ldots, 4 \), define the band structure of the BLG system, with the excitonic pairing interaction therein. They are given by the following relations

\[
\nu_{1,2k} = \frac{1}{2} \left[\Delta + \gamma_1 \pm \sqrt{(W_1 - \Delta - \gamma_1)^2 + 4|\gamma_{k}|^2} \right] - \frac{1}{2} (\mu_{1}^{\alpha} + \mu_{2}^{\alpha}),
\]

\[
\nu_{3,4k} = \frac{1}{2} \left[-\Delta - \gamma_1 \pm \sqrt{(W_1 + \Delta + \gamma_1)^2 + 4|\gamma_{k}|^2} \right] - \frac{1}{2} (\mu_{1}^{\alpha} + \mu_{2}^{\alpha}).
\]
system, in the presence of the excitonic pairing, are discussed in the next section of the present paper.

5. Numerical results

5.1. Gap parameter and chemical potential

Here, we present the numerical results obtained by solving the SC equations for the excitonic pairing gap parameter in the BLG system. First of all, let’s mention that the electronic band structure given by the band energies κ_{ik} in equations (28) and (29), for the case of the zero pairing gap, is given in figure 3. We see that for the particular case of the zero interlayer interaction $W_\perp/\gamma_0 = 0$ and electron-hole pairing $\Delta/\gamma_0 = 0$, the theory, evaluated here, gives the usual four-band result for the BLG, with two parabolic energy bands κ_2 and κ_3 (for the convenience, hereafter, we will omit the wave vectors near of the band-energy notations), by touching each to the other at the Dirac’s points K and K' and corresponding to the $\kappa_3 \to \kappa_2$ optical interband transitions in the BLG system, and two other bands κ_1 and κ_4 that are separated by an energy bandgap E_{g} of order $E_{\text{g}}/\gamma_0 = 2\gamma_1/\gamma_0 = 0.256$, in well agreement with the previous results for that case [21, 23]. This finite bandgap, for the noninteracting BLG system, corresponds to the non-crossing optical interband transitions $\kappa_4 \to \kappa_1$. Nevertheless, the similarity with the noninteracting BLG band structure, the physics, related to the BLG here, is more complicated. As our recent calculations show [59], the BLG system is in the weak-coupling BCS like pairing state, even for the negligibly small values of the interlayer Coulomb interaction. This is consistent with the weak-coupling results, given in [42, 43]. The case $W_\perp/\gamma_0 = 0$ will be discussed separately furthermore, in this section, in relation with the bar chemical potential appearing in the system and zero momentum interlayer Fulde Ferrell Larkin Ovchinnikov (FFLO) pairing states at the Dirac’s neutrality points.

In figure 4, (see in both panels (a) and (b)) we have presented the exact numerical solution for the excitonic pairing gap parameter in the BLG system. The finite-difference approximation method is used in numerical evaluations, which retains the fast convergence of the Newton’s algorithm [60]. The convergence of the numerical solution procedure is assumed to be achieved, if all quantities (Δ and μ) are determined with a relative error of order 10^{-7}. In the upper panel (a), in figure 4, the solution for the excitonic gap parameter is presented, as a function of the interlayer Coulomb interaction parameter W_\perp/γ_0, for a fixed value of the interlayer hopping amplitude $\gamma_1/\gamma_0 = 0.128$. A very wide range of the interaction parameter is considered that includes both weak and strong interlayer coupling limits, which, in turn, correspond to different screening regimes in the BLG. The weak interlayer interaction region, in figure 4, would correspond to the strong screening effects of the interlayer medium in BLG (after the results in [42–45], this region of the interlayer interaction is very tiny). The higher values of W_\perp/γ_0 (including the value at which the unscreened gap parameter Δ/γ_0 is maximal) correspond to the unscreened interaction regime. The dynamic screening effects are out of the scope of the present paper (see in [61], for more details). We see that the behavior of the excitonic pairing gap, versus the interlayer interaction, demonstrates a usual excitonic-insulator type behavior, typical to the case of usual intermediate-valent semiconductor systems [47–49], where the same state is present, when considering the variation of the pairing gap parameter as a function of the intralayer interaction parameter U. Different values of the temperature (see in the top panel (a)), and different interlayer hopping amplitudes (see in the bottom panel (b)) are considered.

![Figure 4](image-url)

Figure 4. The excitonic pairing gap parameter Δ/γ_0, as a function of the interlayer Coulomb interaction W_\perp/γ_0. Different values of temperature (see in the top panel (a)), and different interlayer hopping amplitudes (see in the bottom panel (b)) are considered.
interaction strength, shown in figure 4, is in good agreement with the strong coupling theories, given recently in the [41, 62]. Especially, in the last reference, the strong screening is suggested in the BCS limit of the excitonic phase transition, while in the mixed phase (free excitonic pair $+ \text{BEC}$) and pure BEC phase, the screening has been shown as completely unimportant and the presence of the excitonic gap parameter strongly suppresses the anomalous screening polarization function, in that case.

In the lower panel (b), in figure 4, the solution for the excitonic gap parameter is given, for different values of the interlayer hopping amplitude γ_{1}/γ_{0}. We see here, that the amplitude of the pairing gap parameter is decreasing more drastically (in comparison with its temperature dependence, given in the upper panel (a), in figure 4), when decreasing the interlayer hopping amplitude γ_{1}/γ_{0}. We presume that the behavior of the excitonic gap, obtained in figure 4, corresponds well with the $\kappa_{4} \rightarrow \kappa_{1}$ non-crossing absorption spectrum, discussed in [23], where it is shown that the absorption spectrum, corresponding to the non-crossing band transitions, vanishes in the near-infrared region, by reflecting a small bandgap in the energy spectrum.

5.2. The bar chemical potential and charge neutrality point

As the numerical calculations show, the excitonic gap is unchanged when one varies the intralayer Coulomb interaction parameter U/γ_{0}, and only the chemical potential gets modified in that case, as it is presented in figure 5. We see, in figure 5 hereafter, (see in the panels (a)–(c), in figure 5) that with the change of the intralayer Coulomb interaction parameter U/γ_{0}, the chemical potential μ/γ_{0}, obtained from the system of SC equations, is decreasing linearly, for the fixed value of the parameter γ_{1}/γ_{0}. When one changes the values of γ_{1}/γ_{0}, the chemical potential gets the parallel translations in the plane $(\mu/\gamma_{0}, U/\gamma_{0})$. Furthermore, the linear result for the chemical potential solution, as a function of the intralayer Coulomb interaction U/γ_{0}, could be understood after the form of equations (17) and (18), given in the section 3. Indeed, if we sum those equations, we get an important equation for the BLG system, namely

$$\mu = -\kappa U + \bar{\mu} - \frac{W_{l}}{2}, \quad (30)$$

where $\bar{\mu}$ is the bar chemical potential in the BLG system, defined as

$$\bar{\mu} = \frac{\mu_{1}^{\text{eff}} + \mu_{2}^{\text{eff}}}{2}. \quad (31)$$

It is the average effective chemical potential in the system. The form of the chemical potential, in equation (30), implements, well, the exact numerical result for μ, shown in figure 5. The linear slope of the function, given in equation (30) above, is equal to $\kappa = 1/4$ and corresponds exactly to the slope of exact μ, in figure 5. Let’s mention also that after the exact result of μ in figure 5, we are able now to calculate the bar chemical potential $\bar{\mu}$, given in equation (31), for a given W_{l} and U. The bar chemical potential of BLG,
calculated in this way, reflects correctly the particle-hole symmetry in the excitonic pairing region presented in figure 4. In figure 6, we have shown the bar chemical potential variation with the interlayer electron–electron interaction parameter. Different values of temperature are considered in figure 6. We see that there is a finite jump of the chemical potential at \(T/\gamma_0 = 0 \), while for higher temperatures this jump of \(\bar{\mu}/\gamma_0 \) is smeared. A very similar behavior of the bilayer chemical potential is observed recently, in [63], by direct measurement of the chemical potential of BLG as a function of its carrier density. For this purpose, a double-BLG heterostructure has been built, and the bottom bilayer chemical potential has been mapped along the charge neutrality line of the top bilayer. The critical values of the interlayer interaction parameter has been determined recently, in [63], by direct measurement of the chemical potential as well as the experiments on the double BLG system. The signs of the bar chemical potential are shown in figure 6, which could be reached at the back gate voltages of order \(V_{\text{BG}} \sim -17 \text{ V} \), in the Coulomb drag measurements of massless fermions in the BLG [64]. It has been shown that the charge neutrality point for the bottom bilayer is achieved in the electron–electron type bilayer regime, in the Coulomb drag measurements, where the drag resistivity is shown as negative (see in [64]). Note, that the mentioned back gate potential value, is larger than \(W_{\text{ef}}/\gamma_0 = 1.3 \) by about one order of magnitude, and induces the same effect for the chemical potential of BLG. On the other hand, it has been indicated in [65] that the interlayer interaction is much weaker in the double BLG constructions compared with the double monolayer graphene and the reason for this is the effect of finite carrier density \(n_f \) induced in the top BLG, when gating the bottom BLG at \(V_{\text{BG}} \approx 0 \). Consequently, the observed dependence of the BLG’s chemical potential on the carrier density, in [63], is much lower in intensities than the similar effect in our case of a single BLG, when considering the dependence on the electron–electron interaction strength. Note, that the interlayer electron-electron interaction could be modified either, by applying a finite gate voltage to the bottom layer of BLG, or by applying a finite interlayer gate to the top layer. It is important to note that the applied gate to the bottom layer induces the carrier density also in the top layer (see in [63], on the example of the double BLG).

Surprisingly, the change of the bar chemical potential’s sign, presented in figure 7, corresponds well to the similar effect of \(\mu \) in [63], when passing through the charge neutrality point \(n_B = 0 \) of the BLG. Therefore, we can conclude that the theory here for the BLG system could describe the effect of the chemical potential as well as the experiments on the double BLG systems, when considering the charge density variation and the neutrality point. The value \(W_{\text{ef}}/\gamma_0 = 1.3 \) corresponds to the optimal value of interlayer electron–electron interaction, at which the BLG is unstable with respect to the interlayer exciton formation and condensation. Indeed, if the excitonic gapped state occurs in a system (not especially in BLG), one would expect to see a sharp increase in the resistivity, because, in this case, there are less carriers that occupy the conduction band [66]. This type of behavior has been observed in the narrow-gap semiconductors [67, 68].

Turning to the BLG and [64], the bottom and top layer resistivities have been measured at the finite, sufficiently high temperatures (in order to escape the mesoscopic coherence effects, which manifest at low temperatures), as a function of layer charge densities. As the results show there, both resistivity curves exhibit sufficiently large maximums at the charge neutrality points in both layers. Thus, we can expect an enhancement of the strong gapped state at this regime. Note that the simultaneous charge neutrality (double
neutrality point, NDP) in both layers in BLG has been achieved recently in [63], when considering the double BLG heterostructures with the applied interlayer gate at the top bilayer and by considering the BLG resistances and bottom BLG chemical potential along the charge neutrality of the top BLG. The measured bottom bilayer resistance along the charge neutrality of the top BLG shows again large maximum, indicating about the gapped state in the BLG. When changing the additional carrier densities in graphene monolayers in BLG, the interlayer electron–electron Coulomb interaction gets strongly modified. It is very important to mention that the problem of the half-filling BLG, considered here with different interlayer electron–electron interaction regimes, is alternatively equivalent to the problem of gating the initially neutral BLG, and by inducing the variable charge densities in both layers, which, in turn, lead to the modification of the interlayer Coulomb potential, until the next charge equilibrium. Thus, we have tried to model the system as simple as possible, but, simultaneously, we kept the essential physics therein. Although we have an explicit analytical dependence of \(\vec{\mu} \) on the intralayer Coulomb interaction parameter \(U \), the numerical values of bar chemical potential, calculated along the linear solutions of the chemical potential, are independent with respect to the variation of \(U \), for a given value of the electron–electron interaction parameter \(W_\perp \). Therefor, we can deduce that the intralayer interaction parameter induces a constant screening, in the BLG, by defining the bar chemical potential, which, furthermore, is unchanged when varying \(U/\gamma_0 \). The sign of \(\vec{\mu} \), at the vicinity of the critical value \(W^\perp_/\gamma_0 = 1.3 \), for \(T/\gamma_0 = 0 \), reflects correctly the electron–hole pair formation and condensate region, as it is indicated in figure 7 here. In addition, we have shown, in figure 7, the possible pairing regions: BCS, mixed (free, uncorrelated pairing+BEC), and BEC in the BLG system.

5.3. The case \(W_\perp_/\gamma_0 \): FFLO–BCS limit

Here, we would like to discuss the result presented in figure 3, in relation with the bar chemical potential, obtained above. Let’s mention that the bands dispersions \(V_3 \) and \(V_2 \) are touching each other at the Dirac’s points \(K \) and \(K' \), in the BZ, as it should be for the case of the noninteracting BLG systems [38], meanwhile a finite Fermi level solution is given in figure 3, at the Dirac’s crossing point, coinciding exactly with the bar chemical potential at \(W_/\gamma_0 = 0 \), presented in figure 6 (see the value of \(\vec{\mu}/\gamma_0 \), at \(W_/\gamma_0 = 0 \), for the case \(T_/\gamma_0 = 0 \)). Thus, the bar chemical potential \(\vec{\mu} \) controls the position of the Fermi level in the BLG system. Furthermore, if we calculate the shift of the Fermi energy, caused by the effective bar chemical potential for the noninteracting BLG, we get \(\vec{\mu} = -3.562 \text{ eV} \), which is quite higher than the known results for the undoped neutral BLG [69] (where \(\epsilon_F \sim \epsilon_D \sim -\gamma_1 \sim -0.4 \text{ eV} \)). This fact is related to the presence of strong correlation effect in the BLG, even in the case of absence of the interlayer interactions (unbiased case).

Then, by considering the meaningful value for the intralayer hopping amplitude \(\gamma_0 \), \(\gamma_0 = 2.6 \text{ eV} \) [70], we calculate the Fermi velocity at the Dirac’s crossing points in our BLG. Namely, \(v_F = \vec{\mu}/\hbar |k_F| \), where \(|k_F| \) is the normalized Fermi wave vector at the crossing point (for our case, we have exactly \(|k_F| = 2.418/a \text{ Å}^{-1} \), and \(a \) is the lattice constant in the separated graphene monolayers, we choose \(a = 2.46 \text{ Å} \), according to [70]). We get \(v_F = 0.551 \times 10^8 \text{ cm s}^{-1} \), which is nearly 50% smaller than the Fermi velocity of the gated BLG system [64, 71] (with \(v_F = 1.1 \times 10^8 \text{ cm s}^{-1} \)) and about 35% smaller than the Fermi energy for the noninteraction in-plane graphene velocity [63, 70]. This effect is related to the FFLO electron-hole cross-pairing with a zero momentum at the Dirac’s points \(K \) and \(K' \), between the opposite layers in BLG. For a simple graphene monolayer this type of cross-pairing between the electrons and holes in different layers of is shown in diagrammatically figure 8. In figure 9, we have shown the similar possible cross-pairing scenario realization in the reciprocal space, for a simple monolayer graphene sheet.

Another important aspect interpretation of the finite bar chemical potential solution at \(W_/\gamma_0 \) has been given recently

![Figure 8](image8.png) **Figure 8.** Band diagram across the noninteracting and unbiased BLG heterostructure. The FFLO pairing state formation with zero center of mass momentum, for the unbiased and noninteracting BLG system.

![Figure 9](image9.png) **Figure 9.** The excitonic FFLO cross-pairing state formation with zero center of mass momentum, for the single layer graphene.
5.4. Condensate transition scenario

In figure 10, we have shown the solution for the chemical potential, after the SC equations, given in equations (19) and (20), and discussed in the previous section. In both panels, in figure 10, the solution of the chemical potential is presented as a function of the interlayer Coulomb interaction parameter W_c/γ_0. In the top panel (a), in figure 10, we have shown also the temperature dependence of the chemical potential, for a fixed value of the interlayer hopping parameter $\gamma_0/\gamma_0 = 0.128$. In the bottom panel (b), different values of the parameter γ_0/γ_0 are considered, for the case of zero temperature $T/\gamma_0 = 0$. We see, in figure 10, (see in the top panel (a), in figure 10) that the difference, between lower and upper bounds of the chemical potential, decreases when increasing the temperature. This effect is related to the dependence of temperature of the single-particle excitation gap in the system, defined as

$$\Delta_\varepsilon = \mu_{\text{max}} - \mu_{\text{min}}.$$ \hspace{1cm} (32)

The behavior of Δ_ε as a function of temperature is analogous to the temperature dependence of Δ/γ_0, given in figure 4. The similar temperature dependence of the single-particle excitation gap Δ_ε has been observed for the usual intermediate valent semiconductors discussed recently in [47, 48]. The function Δ_ε controls, indeed, the pairing interaction in the BLG system, acting as a Clogstone-Zeeman field, similar to the case of superconducting pairing [72]. This is quite analog with the similar effect, given in [44], where the imbalance between the chemical potentials in the layers acts as the splitting field. We see clearly in figure 10 that there are two extreme upper bounds, for the chemical potential solutions: one corresponds to the limit of the strong screening upper bound μ_{usc} ($\mu_{\text{usc}} = -1.87\gamma_0$, i.e. $\mu_{\text{usc}} = -4862$ meV, for the case $T/\gamma_0 = 0$ and for $\gamma_0 = 2.6$ eV), i.e. when the interlayer interaction parameter $W_c/\gamma_0 \in (0, 0.5)$, while the other upper extreme bound of μ_{usc} is situated in the unscreened limit of the interlayer interaction parameter and $\mu_{\text{usc}} = -0.34\gamma_0$, i.e. $\mu_{\text{usc}} = -884$ meV. The value of the single-particle excitation gap determines the amplitude and the coherence of the excitonic state at any temperature and at any interlayer hopping (remember that when speaking about the upper and lower bounds of μ at $T = 0$, we should not coincide them with the Fermi levels in different layers, as they are initially supposed the same. These extreme bounds appear when considering the full bandwidth of the interlayer Coulomb interaction W_c/γ_0, as it is presented in figure 10). This is in good agreement with the general statements, given in [61], concerning of the ‘constant gap approximation’, where the wave vector and frequency dependent self-energy has been calculated and then the center of the wave-vector-energy region has been approximated. This becomes more apparent in figure 11, where the solutions of the chemical potential are shown as a function of excitonic gap parameter. We see in figure 11 that the chemical potential shows a ‘hysteresis’-like behavior, as a function of Δ/γ_0. The strong screening effects are important here, along the lower bound of the hysteresis curve (when considering the increasing low values of the excitonic gap). The upper bound corresponds to the
unscreened case. We see also that the excitonic gap parameter reaches its maximal unscreened value ($\Delta_{\text{max}}/\gamma_0 = 0.233$, i.e. $\Delta_{\text{max}} = 0.605$ eV), for the case $T/\gamma_0 = 0$ and $\Delta_{\text{max}}/\gamma_0 = 0.182$, i.e $\Delta_{\text{max}} = 0.473$ eV, for the case $T/\gamma_0 = 0.1$ when the gap Δ_0 collapses ($\Delta_{\text{gg}}/\gamma_0 = 0$). The excitonic pairing and the condensate transition scenarios, given in figures 4 and 11, have been verified recently [59] after a detailed analyses of the anomalous momentum distribution functions and are converging, completely, with the main results, given in [62], where the excitonic superfluidity is discussed properly, in two coupled electron-hole armchair-edge graphene nanoribbons, separated by a thin insulating barrier. It is remarkable to note that for the BLG, at half-filling in each monolayer, we have found the excitonic gap parameter nearly in the same order as in the case of BLG nanoribbons, given in [62] (where $\Delta \gg 100$ meV). It is worth to mention that the recent results for the excitonic condensation in the BLG [59], show that for the strongly unscreened regime of the interlayer interaction, the excitonic BEC state separates completely from the free excitonic pairing region, in the form of a perfect condensate nesting in the special triangular pockets, in the reciprocal space, while, in the strongly screened case, the system behaves like weakly coupled BCS state, thus confirming completely the condensate transition scenario, given here, in figures 7 and 11.

5.5. High interlayer interaction: unscreened case

In figures 12 and 13, the band structure of the BLG system is shown, for the case of finite interlayer Coulomb interaction. In figure 12, the interlayer interaction parameter is fixed at the value $W_c/\gamma_0 = 1.3$, which corresponds to the maximum value of the excitonic pairing gap parameter (see in figure 4, where $\Delta_{\text{max}}/\gamma_0 = 0.233$ at $W_c/\gamma_0 = 1.3$ and for $T/\gamma_0 = 0$). We see that, due to the excitonic effects in the BLG system, there is a finite bandgap E_g in the electronic band structure of BLG, even for the non-crossing interband transitions $\kappa_3 \rightarrow \kappa_2$. The band structure, illustrated in figure 12, shows the band structure modifications (in comparison with the zero interaction limit, given in figure 3), due the interlayer interaction, and the excitonic pair formations. In this case, a sufficiently large bandgap is opening at the Dirac’s points, for the non-crossing subbands $\kappa_3 \rightarrow \kappa_2$ of order $E_g/\gamma_0 = 0.939$ (at the place of $E_g/\gamma_0 = 0.256$, for the noninteracting case). The other, $\kappa_4 \rightarrow \kappa_1$ non-crossing interband transition bandgap is obtained as $E_g/\gamma_0 = 1.661$. Furthermore, the energy bandgap is very sensible also to the changes of the interlayer hopping parameter γ_1/γ_0. We see, in the bottom panel, in figure 12 that, when increasing the parameter γ_1/γ_0, the non-crossing energy gap E_g/γ_0 for the interband transitions $\kappa_4 \rightarrow \kappa_1$ is increasing, and for $\gamma_1/\gamma_0 = 0.5$, we have $E_g/\gamma_0 = 2.195$, while the bandgap, for the transitions $\kappa_3 \rightarrow \kappa_2$, is decreasing and $E_g/\gamma_0 = 0.405$. Thus, we have shown in figures 13 that the interlayer hopping amplitude has an opposite effect on the energy bandgaps, corresponding to the non-crossing optical transition $\kappa_3 \rightarrow \kappa_2$ and $\kappa_4 \rightarrow \kappa_1$. In figure 13, we have considered the electronic band structure in the strong interlayer

![Figure 11. The chemical potential, as a function of the excitonic gap parameter.](image)

![Figure 12. The electronic band structure of BLG with interacting layers. The interlayer interaction parameter is fixed at $W_c/\gamma_0 = 1.3$. The interlayer hopping amplitude is set at $\gamma_1/\gamma_0 = 0.128$ (see in the top panel) and $\gamma_1/\gamma_0 = 0.5$ (see in the bottom panel). The zero temperature limit is considered for both cases.](image)
changing the interlayer hopping parameter (see in the upper panel (a), in figure 4), we can suppose that the pairing gap \(\Delta / \gamma_0 \) corresponds well to the non-crossing interband transitions \(\kappa_4 \rightarrow \kappa_1 \), for both, weak and strong interlayer coupling limits.

6. Discussion

We will discuss shortly the effects of the excitonic pairing on the non-crossing optical transitions in the BLG system, and we will estimate the energy scales related to the excitonic pairing gap, chemical potential\(^1\) [73], and the bandgaps. Turning to the results, given in the section 5, let’s consider a concrete realistic value for the nearest neighbors hopping amplitude \(\gamma_0 \) in the layers. According to the work, in [23], we will consider the tight-binding value for intralayer hopping amplitude \(\gamma_0 = 2.6 \text{ eV} \). For this case, we have \(\gamma_1 = 0.128 \gamma_0 = 0.33 \text{ eV} \), corresponding to the plot of the energy bands, presented in figure 3, where we have supposed the zero pairing interaction in the BLG system, with the zero pairing gap parameter \(\Delta / \gamma_0 = 0 \), as it follows from the exact numerical results, presented in figure 4, in the section 5. There is a finite gap, in figure 3, between the non-crossing subbands \(\kappa_4 \) and \(\kappa_1 \), of order \(2 \gamma_1 = 0.256 \gamma_0 = 0.665 \text{ eV} \), corresponding to the \(\kappa_4 \rightarrow \kappa_1 \) interband optical transitions. This value is very close to the value, given in [23]. The intensity in the absorption spectrum corresponding to the energetically higher transition \(\kappa_4 \rightarrow \kappa_1 \), is lower, as it has been discussed in [23], due to the strong overlap of the low-energy edges of the \(\kappa_4 \rightarrow \kappa_1 \) interband transition. Additionally, there is no pronounced absorption peak in the near infrared region, but only a small bandgap appears, of order \(2 \gamma_1 \), in that region of the photon energy spectrum.

For a finite value of the interlayer Coulomb interaction parameter \(W_i / \gamma_0 = 1.3 \), chemical potential \(\mu \) and excitonic bandgap \(E_g \) at the Dirac’s points \(K, K' \). These important physical parameters in the system, calculated in the frames of our theoretical model, are given in table 1 below, for the case \(T / \gamma_0 = 0 \). We do not discuss here the crossing bandgaps, corresponding to the crossing interband transitions \(\kappa_3 \rightarrow \kappa_1 \) and \(\kappa_4 \rightarrow \kappa_2 \), because they do not contribute to the

\[\begin{array}{c|cc}
\text{BLG's parameters} & \gamma_1 = 0.33 \text{ eV} & \gamma_1 = 1.3 \text{ eV} \\
\hline
\Delta (\text{eV}) & 0.605 & 1.027 \\
\mu (\text{eV}) & -5.6 & -6.11 \\
E_g (\kappa_3 \rightarrow \kappa_2) (\text{eV}) & 2.44 & 1.053 \\
E_g (\kappa_4 \rightarrow \kappa_1) (\text{eV}) & 4.31 & 5.707 \\
\end{array} \]

\(^1\) From the discussions in the sections 4 and 5 it follows that, according to the general principles of the BEC, well described in the work by [73] the chemical potential is a valid thermodynamic variable and we can estimate its values for different interaction strengths.

Figure 13. The electronic band structure of BLG with the interacting layers, for the high interlayer interaction parameter, fixed at \(W_i / \gamma_0 = 6.0 \). The interlayer hopping amplitude is set at \(\gamma_i / \gamma_0 = 0.128 \) (see in the top panel) and \(\gamma_i / \gamma_0 = 0.5 \) (see in the bottom panel). The zero temperature limit is considered for both cases.

Table 1. The values of the important physical parameters, calculated for the BLG system. The interlayer Coulomb interaction parameter is fixed at \(W_i / \gamma_0 = 1.3 \), and the zero temperature limit is considered.
absorption spectrum, due to the vanishing of corresponding optical matrix elements, away from the Dirac’s nodal points (see the discussion on that subject, given in [23]). We see that, for the case of the finite interlayer interaction parameter, corresponding to the maximum of the excitonic gap $\Delta = 1.3 \gamma_0 = 3.38$ eV (see in figure 4), and for the high value of the interlayer hopping amplitude $\gamma_1 = 0.5 \gamma_0 = 1.3$ eV, the difference, between two values of the bandgap, is of order ~ 4.65 eV, which is quite larger, in comparison with the value ~ 1.87 eV, obtained for the smaller value of the hopping $\gamma_1 = 0.128 \gamma_0 = 0.33$ eV. This observation is in good agreement with the results given in [21]. The excitonic pair formation, discussed here, survives for the values of the interlayer Coulomb interaction, given over the full bandwidth, and can persist up to a very high values of temperature (see the temperature dependence of the excitonic gap parameter, given in the upper panel (a) in figure 4, in the section 5).

We would like also to discuss here the displacement of the Fermi level when varying the interlayer Coulomb interaction parameter. It is well known that the BLG system keeps the Fermi liquid properties when including the self-energy renormalization effects on the quasiparticle spectrum, caused by the many-body interactions in the system (see also the discussion, in [74]). Thus, at $T/\gamma_0 = 0$, the chemical potential is a good approximation for the Fermi level. We can estimate now the Fermi energy, for a given value of the interlayer Coulomb interaction parameter and the effective particle mass, at the large momentum $[k]$. The fact that in the BLG we have the massive fermionic particles is related to the finite interlayer hopping amplitude γ_1, which is the energy, needed for the particle transitions $b \rightarrow \tilde{a}$, from the bottom to top layer in BLG. It is known that, at the low energy bands and at the large momentum, the quasiparticle energy spectrum in the BLG system can be interpolated, approximately, to the linear dispersion, [75], as in the case of the monolayer graphene, i.e. $\epsilon \sim v_F [k]$, where v_F is the Fermi velocity in the monolayer graphene sheets, in the BLG. The recent measurements of the Fermi energy in graphene, using a double-layer heterostructure [76], suggests that we have $v_F = 1.15 \times 10^5$ cm s$^{-1}$. In this limit, the effective particle mass [75, 76] is given by: $m^* = k_F/v_F$ (here, and in the previous formula, we keep the convention, where $\hbar = 1$). Let’s now consider the case of the zero interlayer interaction. By putting the realistic value for the intralayer hopping amplitude $\gamma_0 = 3.43 \pm 0.01$ eV [71, 77], we get within our theory $\epsilon_F = \mu_{\gamma_0 = 0} = -6.41$ eV, and the Fermi level lies at the vicinity of the upper edge of the valence band, i.e. below of Dirac’s crossing energy (see in figure 3, in the previous section 5). We get for the effective mass $m^* = -0.851 m_0$, where m_0 is the free electron mass. Similarly, we can calculate the effective mass for other values of the interlayer Coulomb interaction parameter W_i/γ_0. In general, when calculating the effective mass, at the large momentum, we can use the following expression for the effective mass $m^* = 0.132 r_0^2 m_{el}$, where a_0 is the numerical solution for the chemical potential (see, for details, in figure 7 in the section 5). In table 2, we present the numerical results for the coefficient a, and for the renormalized effective mass m^*/m_{el}. A set of the specific values [59] of the interlayer Coulomb interaction parameter W_i/γ_0 is considered.

![Figure 14](image)

Figure 14. The effective hole mass in the BLG, in the large momentum limit, as a function of the interlayer Coulomb interaction parameter W_i/γ_0. The zero temperature limit is considered.

W_i/γ_0	1.45	2	4	6
a (eV)	−0.494	−0.389	−0.345	−0.372
m^*/m_{el}	−0.223	−0.176	−0.156	−0.168

W_i/γ_0	0	0.8	1.2	1.3
a (eV)	1.87	−2.102	−2.181	−2.154
m^*/m_{el}	−0.851	−0.952	−0.987	−0.975
BLG, i.e. when \(W_i/\gamma_0 = 0 \), suggests that in this limit there are bound electron–hole pairs in the BLG system, as it is suggested in the section 5. In fact, in this limit, the BLG system is in the weak correlated BCS regime \([59]\), and also the zero momentum FFLO cross-pairing is present in the BLG (see the discussion in the section 5, and in figures 8 and 9).

As far as the results in \([77]\) suggest, the interlayer hopping parameters \(\gamma_3 \) and \(\gamma_4 \) (according to the notation of the model of Slonczewski–Weiss–McClure \([78]\), are unimportant for treating the excitonic properties in the BLG. The first parameter \(\gamma_3 \), describing the hopping \(a \rightarrow b \), leads to an effective trigonal warping, and for the BLG, this effect is strong, only at the low-energy part of the spectrum. The parameter \(\gamma_4 \), in turn, describes the interlayer hopping between the lattice sites \(a \rightarrow \bar{a} \) or \(b \rightarrow \bar{b} \). This parameter has no influence on the intensity patterns (see the discussion in \([48]\)). In contrast, the substrate-induced asymmetry, and the interlayer asymmetry (obtained by the anisotropy of the constant energy-maps) could alter the experimental interference patterns and, furthermore, could make an important modification to the single-particle spectral properties. The asymmetry inclusion in the considered problem is out of the subject of the present work.

Another important experimental aspect, that should be mentioned here, is the influence of the interlayer medium on the interlayer-exciton formation and, especially, the screening effect of it, on the interlayer Coulomb interaction parameter \(W_i/\gamma_0 \). For this, the insulating dielectrics have been largely applied, which are thinned to the point, where charge build up and crosstalk adversely affect the performance of the electronic devices. On the other hand, the direct experimental measurement of the excitonic gap parameter is extremely difficult, due to the very short lifetime of excitonic quasiparticles and fast electron-hole recombination effects. In this sense, a replacement of the medium substrate (between the layers, in the BLG) from insulator (such as the porous SiO\textsubscript{2}, or carbon doped SiO\textsubscript{2}) by a doped semiconductor (playing the role of the excitonic bath, and then by stabilizing the states with excitonic quasiparticles), could help to improve experimental measurements on the excitonic effects. Especially, such a semiconducting medium will provide additional donor trap levels in two different layers of the BLG and will improve the excitonic effects considerably. In this case, the BLG will probably exhibit photoluminescence. Specifically, for the intrinsic BLG, such in our treatment, the bandgap, tuned by the interlayer interaction (which could be controlled by varying the interlayer medium transparency, for example), would allow, even for the unbiased BLG, for logic and optoelectronic applications. At the end, we would like to emphasize on the behavior of the hole effective mass in the BLG, as a function of the interlayer interaction parameter. Although the half-filling condition in each layer of BLG, the \(W_i/\gamma_0 \)-dependence of the effective mass is a direct consequence of the Fermi level SC solutions at \(T/\gamma_0 = 0 \) (see the SC solutions of the chemical potential at \(T/\gamma_0 = 0 \), in figure 8, in the section 5).

7. Concluding remarks

Summarizing the obtained results, we would like to emphasize the principal achievements in the present paper. We have studied the problem of the exciton formation in the BLG systems. The main accent of the presented theory is put on the effect of the interlayer Coulomb interaction, which could be fully controlled by switching on and off the interlayer screening by applying the gate voltage to the BLG structure. The excitonic gap parameter, chemical potential and bar chemical potential of the BLG system have been calculated numerically, as a function of the interlayer interaction potential. Particularly, at \(T/\gamma_0 = 0 \), the Fermi energy solutions have been obtained, corresponding to different interlayer interaction regimes in the BLG structure, by supposing that the Fermi liquid picture is valid for the BLG. It is remarkable to note, that in the limits of weak and strong interlayer interaction potential the theory, evaluated here, permits to obtain the previous results \([39, 42, 43]\) on the same subject, and in this sense it is more general.

Meanwhile, we have reconstructed the interacting band energy curves of the BLG with the excitonic pairing interaction. We have shown that a significant bandgap appears in the energy spectrum when switching the interlayer Coulomb interaction, and we have examined the variation of the band energy curves corresponding to different optical transitions in the system, by varying the interlayer interaction parameter and the temperature. Namely, we have shown that the excitonic pairing and condensation is significant especially in the vicinity of the absorption edges corresponding to the farthest interband optical transition boundaries in the band energy distribution spectrum. Similar to the usual semiconducting or rare-Earth compounds, we have obtained an excitonic insulator region, driven by the interlayer Coulomb interaction parameter in the BLG system. In difference with the mentioned materials, this state in the BLG persists up to very high values of the interaction parameter and very high temperatures and is well pronounced in the narrow region of the interlayer interaction straight \(W_i/\gamma_0 \in (1, 1.4) \). The theory evaluated here permits to clearly distinguish the effects of three different interlayer interaction regimes: weak-coupling BCS regime+FFLO cross-pairing, where the excitonic gap parameter is negligibly small due to the strong screening effects \([40, 42, 43]\), the mixed state consisting of the free excitonic pairs + the BEC of excitons, and the excitonic BEC state corresponding the robustness of the excitonic gap parameter (the unscreened case \([41, 44, 45, 62]\)). The principal distinguishing feature of our work is that it is not addressed to the specific limit of the interlayer correlations and we treat the excitonic effects in the BLG as general as possible. The further calculations of the momentum distribution functions and the excitonic density of states in the BLG, within the same theoretical approach \([59]\), have confirmed of the existance of the phase diagram, presented in figure 7. As far, as the results, shown here, the theory strongly suggests the possibility of the excitonic condensate states, even at room temperatures.
We hope that our results will form a solid background to examine furthermore the excitonic effects in the BLG structures. Especially, the context of the excitonic condensation in the intrinsic bilayer structures represents actually a hot research topic for the future. In our opinion, the further analysis of the excitonic density of states and spectral properties will, undoubtedly, confirm the possibility of the excitonic condensation phenomenon in the BLG systems. In the wide prospect, of quantum information and quantum computation, it would be essential to apply the obtained results here, for the double BLG system [79, 80] and to examine the biexciton formations in that case and since the exciton–exciton interactions can be manipulated in such double BLG, in order to produce an accurate and efficient degree of control for quantum logic.

References

[1] Abergel D S L, Apalkov V, Berashevich J, Ziegler K and Chakraborty T 2010 Adv. Phys. 59 261
[2] McCann E and Fal’ko V I 2006 Phys. Rev. Lett. 96 086805
[3] Geim A K and Castro N A H 2007 Phys. Rev. Lett. 99 216802
[4] Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2006 Science 313 951
[5] Guinea F, Castro N A H and Peres N M R 2006 Phys. Rev. B 73 245426
[6] McCann E 2006 Phys. Rev. B 74 161403(R)
[7] Zhang Y et al 2009 Nature 459–820
[8] Brey L and Fertig H A 2006 Phys. Rev. B 73 235411
[9] Gundra K and Shukla A 2011 Phys. Rev. B 85 075413
[10] Giūliā A D, Potasz P and Hawrylak P 2010 Phys. Rev. B 82 155455
[11] Prezzi D, Varsano D, Ruini A, Marini A and Molinari E 2008 Phys. Rev. B 77 041404(R)
[12] Pedersen T G, Jauho A P and Pedersen K 2009 Phys. Rev. B 79 113406
[13] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[14] Tiwari R P and Stroud D 2009 Phys. Rev. B 79 205435
[15] Kuzmenko A B, Crassee I, van der Marel D, Blake P and Novoselov K S 2009 Phys. Rev. B 80 165406
[16] Yang L 2011 Phys. Rev. B 83 085405
[17] Yang L, Deslippe J, Park C H, Cohen M L and Louie S G 2009 Phys. Rev. Lett. 103 186802
[18] Spataru C D, Ismail-Beigi S, Benedict L X and Louie S G 2004 Phys. Rev. Lett. 92 077402
[19] Deslippe J, Spataru C D, Prendergast D and Louie S G 2007 Nano Lett. 7 1626
[20] Wang F et al 2007 Phys. Rev. Lett. 99 227401
[21] Mohammadzadeh L, Shojaei S, Ahmadib E and Asgari A 2013 Optik 124 6126
[22] Mohammadzadeh L, Asgari A, Shojaei S and Ahmadib E 2011 Eur. Phys. J. B 84 249
[23] Kadi F and Malic E 2014 Phys. Rev. B 89 045419
[24] Dillenschneider R and Han J H 2008 Phys. Rev. B 78 045401
[25] Yang L 2011 Nano Lett. 11 3844
[26] Nandkishore R and Levitov K 2010 Phys. Rev. Lett. 104 156803
[27] Feng Z C (ed) 1992 Semiconductor Interfaces and Microstructures (Singapore: World Scientific)
[28] Kotov V N, Uchoa B and Castro N A H 2008 Phys. Rev. B 78 035119
[29] Seamos J A, Tibbetts D R, Reno J L and Lilly M P 2008 Appl. Phys. Lett. 90 052103
[30] Das Gupta K, Thangaraj M, Croxall A F, Beere H E, Nicoll C A, Ritchie D A and Pepper M 2008 Physica E 40 1693
[31] Champagne A R, Eisenstein J P, Pfeiffer L N and West K W 2008 Phys. Rev. Lett. 100 096801
[32] Spielman I B, Eisenstein J P, Pfeiffer L N and West K W 2000 Phys. Rev. Lett. 84 5808
[33] Spielman I B, Eisenstein J P, Pfeiffer L N and West K W 2001 Phys. Rev. Lett. 87 036803
[34] Eisenstein J P and MacDonald A H 2004 Nature 432 691
[35] Jung-Jung S and MacDonald A H 2008 Nat. Phys. 4 799
[36] Register L F et al 2012 ECS Trans. 45 3
[37] Fischetti M V 2014 J. Appl. Phys. 115 163711
[38] Phan V-N and Fehske H 2012 New J. Phys. 14 075007
[39] Zhang C H and Joglekar Y N 2008 Phys. Rev. B 77 233405
[40] Min H, Bistritzer R, Su J J and MacDonald A H 2008 Phys. Rev. B 78 121401
[41] Lozovik Y E and Sokolik A A 2008 JETP Lett. 87 55
[42] Lozovik Y E, Ogarkov S L and Sokolik A A 2012 Phys. Rev. B 86 045429
[43] Kharitonov M Y and Efetov K B 2008 Phys. Rev. B 78 241401(R)
[44] Kharitonov M Y and Efetov K B 2010 Semicond. Sci. Technol. 25 035004
[45] Abergel D S L, Sensarma R and Das S S 2012 Phys. Rev. B 86 161412(R)
[46] Abergel D S L, Rodriguez-Vega M, Enrico R and Das S S 2013 Phys. Rev. B 88 235402
[47] Schüler M, Rösner M, Wehling T O, Lichtenstein A I and Katsnelson M I 2013 Phys. Rev. Lett. 111 036601
[48] Seki K, Eder R and Ohta Y 2011 Phys. Rev. B 84 245106
[49] Apinyan V and Kopec T K 2014 J. Low Temp. Phys. 176 27
[50] Zenker B, Ihle D, Bronofski F X and Fehske H 2012 Phys. Rev. B 85 121102(R)
[51] Bucher B, Steiner P and Wachter P 1991 Phys. Rev. Lett. 67 2717
[52] Monney C et al 2010 New J. Phys. 12 125019
[53] Dresselhaus M S and Dresselhaus G 2002 Adv. Phys. 51 1
[54] Jorio A, Dresselhaus M S, Saito R and Dresselhaus G 2011 Raman Spectroscopy in Graphene Related Systems (New York: Wiley)
[55] Brandt N B, Chudnov S M and Ponomarev Y G 1988 Modern Problems in Condensed Matter Sciences (vol 20.1) ed V M Agranovich and A A Maradudin (Amsterdam: North-Holland)
[56] Negele J W and Orland H 1988 Quantum Many-Particle Systems (Reading, MA: Addison-Wesley)
[57] Wang Y, Wang H, Gao J H and Zhang F C 2013 Phys. Rev. B 87 195413
[58] Gantmakher V F and Levinson Y B 1987 Carrier Scattering in Metals and Semiconductors Modern Problems in Condensed Matter Sciences vol 19 (Amsterdam: North-Holland)
[59] Abrikosov A A, Gorkov L P and Dzyaloshinski I E 1965 Methods of Quantum Field Theory in Statistical Physics (Oxford: Pergamon Press)
[60] Apinyan V and Kopec T K unpublished
[61] Powell M J D 1970 A hybrid method for nonlinear equations Numerical Methods of Nonlinear Algebraic Equations ed P Rabinowitz (New York: Gordon and Breach)
[62] Sodemann I, Pesin D A and MacDonald A H 2012 Phys. Rev. B 85 195136
[63] Zarenia M, Perali A, Peeters F M and Neilson D 2016 Sci. Rep. 6 24860
[64] Lee K, Fallahazar B, Xue J, Dillen D C, Kim K, Taniguchi T, Watanabe K and Tutuc E 2014 Science 345 58
[65] Kim S, Jo I, Nah J, Yao Z, Banerjee S K and Tutuc E 2011 Phys. Rev. B 83 161401(R)
[66] Abergel D S L, Rodriguez-Vega M, Rossi E and Das S S 2013 Phys. Rev. B 88 235402
[66] Moskalenko S A and Snoke D W 2005 Bose–Einstein Condensation of Excitons and Biexcitons (Cambridge: Cambridge University Press)
[67] Bucher B, Steiner P and Wachter P 1991 Phys. Rev Lett. 67 2717
[68] Wachter P, Jung A and Steiner P 1995 Phys. Rev. B 51 5542
[69] Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2006 Science 951 4
[70] Min H, Sahu B, Banerjee S K and MacDonald A H 2007 Phys. Rev. B 75 155115
[71] Kim S, Jo I, Dillen D C, Ferrer D A, Fallahazad B, Yao Z, Banerjee S K and Tutuc E 2012 Phys. Rev. Lett. 108 116404
[72] Clogston A M 1962 Phys. Rev. Lett. 9 266
[73] Blatt J M, Böer K W and Brandt W 1962 Phys. Rev. 126 1691
[74] Sensarma R, Hwang E H and Das S S 2011 Phys. Rev. B 84 041408(R)
[75] McCann E and Koshino M 2013 Rep. Prog. Phys. 76 056503
[76] Zou K, Hong X and Zhu J 2011 Phys. Rev. B 84 085408
[77] Mucha-Kruczyński M, Tsyplyatyev O, Grishin A, McCann E, Falcko V I, Bostwick A and Rotenberg E 2008 Phys. Rev. B 77 195403
[78] Slonczewski J C and Weiss P R 1958 Phys. Rev. 109 272
McClure J 1957 Phys. Rev. 108 612
McClure J 1960 Phys. Rev. 119 606
[79] Lee R M, Drummond N D and Needs R J 2009 Phys. Rev. B 79 125308
[80] Perali A, Neilson D and Hamilton A R 2013 Phys. Rev. Lett. 110 146803