The Overall Equipment Effectiveness (OEE) analysis in minimizing the Six Big Losses: An effort to green manufacturing in a wood processing company

M Rusman, S M Parenreng, I Setiawan, S Asmal and I Wahid
The Department of Industrial Engineering, Engineering Faculty, Universitas Hasanuddin, Makassar, Indonesia
Email: rusman@tiunhas.net

Abstract. A company needs an appropriate maintenance management system to conduct production process effectively and efficiently. However in reality, the maintenance actions that have been taken result in losses because employees who carry out maintenance actions do not know with certainty the factors causing damage to the machine. This study was conducted to measure the level of effectiveness and analyze the factors that cause the low effectiveness of NC-Router machines. The aim is to provide recommendations for improvements in the maintenance so that six big losses can be reduced. The method used for this research was the Overall Equipment Effectiveness (OEE), which focuses on measuring the effectiveness level to prevent the loss of production time caused by breakdown on the machine. After OEE has been implemented, the overall equipment effectiveness on NC-Router machines at PT. Maruki International Indonesia, a wood processing company, for twenty periods production was 61%. The main factors causing the low OEE value on the machine were the reduce speed factor of 61.21%, as well as the idle and minor stoppages of 31.03%.

1. Introduction
The level of effectiveness of the equipment that is available on the average manufacturing industry is about half of the actual capability of the machine [1]. The main problem in engine maintenance is known as the Six Big Losses [2]. Six Big Losses are six categories of losses that must be avoided by every company because those losses can reduce the level of effectiveness of machines. Six Big Losses are usually categorized into three main categories based on aspects of their losses, namely downtime, speed losses, and defects [3].

Performance measurement methods that are widely used by companies, which can overcome the above problems, are the Overall Equipment Effectiveness (OEE) [4][5]. This method is a major part of the Total Productive Maintenance (TPM) maintenance system that is widely applied by Japanese companies. TPM itself is a philosophy from Japan that aims to maximize the effectiveness of each facility owned by the industry [6]. TPM is applied by analyzing the problems that occur in each equipment and machine using the OEE calculation method. Therefore, OEE can be regarded as a comprehensive measure that identifies the level of machine/equipment productivity from performance in theory. This measurement is
critical to know which areas need to be increased productivity or efficiency of the machine/equipment. In addition, OEE can also show the bottleneck area contained in a production process. OEE is also a measuring tool to evaluate and improve the right way to ensure increased productivity of the use of machinery/equipment.

OEE seeks to identify lost production and other indirect and hidden costs that have a significant contribution to the total cost of production. These losses are formulated as a function of a number of mainly related components, namely: availability, performance, and quality. OEE reliability with its ability to measure the effectiveness of the total (complete, inclusive, whole) of the performance of equipment in carrying out a work that has been planned, and measured from the actual data related to the availability, performance efficiency, and quality of a product. Information from OEE is used to identify and classify the causes of the low performance of equipment.

OEE solutions can help producers obtain world-recognized status. To be able to utilize the OEE method as a measurement system to monitor and improve process efficiency, a company must design a specific OEE size system that starts from identifying the causes of loss, setting targets for each OEE factor and determining the scale of priorities in achieving OEE World-Class [7]. The OEE World-Class value is 85%, with the composition of the availability element at 90%, performance element at 95%, and quality element at 99.9% [8].

Two tools generally used to help in determining the OEE value. First is Fishbone Diagrams or also known as cause-effect diagrams, that help to show the relationship between effects on various possible causes. It also illustrates the possible causes of a problem by highlighting and linking causes based on classification [9]. In general, the goal is to analyze the impact that causes a phenomenon to occur. The cause and effect diagram method is used as a supporting method to describe the causal factors that result in the low effectiveness of the machine being studied based on the 4 M's category: Machine, Method, Material, And Manpower.

The second tool is Failure mode and effect analysis (FMEA). FMEA is an analysis technique that combines the technology and experience of a person in identifying possible failures of a product or process and planning to be eliminated [5]. FMEA is used to identify failure modes, failure modes included in defects or failures in the design, conditions outside the specification limits, or changes in the product that interfere with product functionality.

PT Maruki Internasional Indonesia (MII) is a wood processing company. One of the main machines used for their production process is the NC-Router machine, which used to create the thread on the wood surface. Based on observations, it appears that preventive maintenance activities at this company are still lacking. As a result, the factors that are at the root of the problem of the occurrence of six big losses in the production process are left untouched. This study aimed to measure the level of effectiveness and analyze the factors that cause the low effectiveness of NC-Router machines.

2. Methods
This study used 20 periods’ production data from December 2018 – January 2019 at MII. The methods used for data collecting process are interview, documentary study, discussion, and brainstorming.

3. Result and discussion

3.1. Overall Equipment Effectiveness (OEE)
The data of working time NC-Router machine during 20 production periods are presented in table 1.
Table 1. The working time data of NC-Router machine

Period	Working Days	Planned Production (pcs)	Planned Downtime (minutes)	Breakdown time (minutes)	Failure Equipment(s)	Set Up & Adjustment
Period 1	3	18	180	0	100	
Period 2	3	16	180	10	100	
Period 3	4	30	240	0	150	
Period 4	2	10	120	0	100	
Period 5	2	6	120	0	100	
Period 6	3	24	180	0	100	
Period 7	3	20	180	10	150	
Period 8	3	16	180	0	50	
Period 9	3	20	180	0	50	
Period 10	4	38	240	0	150	
Period 11	2	20	120	0	100	
Period 12	3	38	180	0	200	
Period 13	2	20	120	0	100	
Period 14	3	20	180	0	50	
Period 15	3	16	180	15	100	
Period 16	3	28	180	0	100	
Period 17	3	20	180	15	100	
Period 18	3	28	180	0	150	
Period 19	3	16	180	0	50	
Period 20	3	36	180	10	100	

Working days shows the number of days in a certain period for finishing the planned production in NC-Router machine, where one working day equal to nine working hours. Planned downtime shows the stop time of the machine, while breakdown time shows when the machine abruptly stops from the operation because of the defect or adjustment time. The production amounts of NC-Router machine during 20 periods are presented in table 2.

Table 2. The production data of NC-Router machine

Period	Planned Production (pcs)	Broken (pcs)	Product Amount (pcs)	
	Scrap & Rework	Startup Losses		
Period 1	18	0	0	18
Period 2	16	0	0	16
Period 3	30	0	0	30
Period 4	10	0	0	10
Period 5	6	0	0	6
Period 6	24	0	0	24
Period 7	20	0	0	20
Period 8	16	0	0	16
Period 9	20	0	0	20
Period 10	38	0	0	38
Period 11	20	0	0	20
Period 12	38	0	0	38
Period 13	20	0	0	20
Period 14	3	0	0	3
Period 15	16	0	0	16
Period 16	28	0	0	28
Period 17	20	0	0	20
Period 18	28	0	0	28
Period 19	16	0	0	16
Period 20	36	0	0	36
The OEE calculation of NC-Router machine during 20 periods is presented in table 3.

Period	Availability Rate (%)	Performance Rate (%)	Quality Rate (%)	OEE (%)
Period 1	93%	54%	100%	50%
Period 2	92%	48%	100%	44%
Period 3	92%	68%	100%	63%
Period 4	90%	47%	100%	42%
Period 5	90%	28%	100%	25%
Period 6	93%	72%	100%	67%
Period 7	89%	63%	100%	56%
Period 8	97%	46%	100%	44%
Period 9	97%	58%	100%	56%
Period 10	92%	86%	100%	79%
Period 11	90%	93%	100%	83%
Period 12	86%	94%	100%	81%
Period 13	90%	93%	100%	83%
Period 14	97%	58%	100%	56%
Period 15	92%	48%	100%	44%
Period 16	93%	84%	100%	78%
Period 17	92%	60%	100%	56%
Period 18	90%	87%	100%	78%
Period 19	97%	46%	100%	44%
Period 20	92%	93%	100%	86%
Average	92%	66%	100%	61%

The recapitulation of the time losses averages ratio during 20 periods of production is presented in table 4.

Losses Type	Six Big Losses	Time Losses (%)	Cumulative
Availability Ratio	Equipment Failure	0.22%	1%
	Set Up & Adjustment	7.54%	9%
Speed Losses	Idle & Minor Stoppages	31.03%	43%
	Reduce Speed	61.21%	96%
Quality Losses	Scrap & Rework	0%	98%
	Startup Losses	0%	100%

3.2. The Fish Bone Diagram

Base on the six big losses calculation, there were two potential factors of the loss: Time losses at NC-Router machine and divided by reducing speed, and idle and minor stoppages. Both diagrams for those two potential factors of the loss are presented in figure 1 and 2.
Figure 1. The Ishikawa diagram of reducing speed losses on NC-Router machine

Figure 2. The Ishikawa diagram of idle and minor stoppages on NC-Router machine
3.3. Failure Mode and Effect Analysis (FMEA)

The rank of Risk Priority Number (RPN) based on the cause of failure presented in table 5. The highest RPN value from each factor must be analyzed to determine the suggested improvement.

Table 5. The Risk Priority Number rank based on the cause of failure

Failure Category	Cause of Failure	RPN
Machine	Machine abruptly stop	112
	Electricity interruption	112
	Machine idle	84
	Unclean working station	70
	Total	**378**
Material	Unavailable material	210
	Set-up process re-do	70
	Material damaged	28
	Inappropriate material specification	14
	Total	**308**
Manpower	Prolonged working hours	112
	Prolonged working period	63
	The operator not available	63
	Loss focus of the manpower	56
	Total	**294**

4. Conclusion

After OEE had been implemented, the overall equipment effectiveness on NC-Router machines at MII, a wood processing company, for twenty periods production was 61%. The main factors causing the low OEE value on the machine were the reduce speed factor of 61.21%, as well as the idle and minor stoppages of 31.03%. From the Ishikawa Diagram, the main problems in NC-Router machines at MII such as machine abruptly stop, electricity interruption, unavailable material, and prolonged working hours must be analyze deeply to determine the proper suggested improvement.

References

[1] Muchiri P and Pintelon L 2008 Performance measurement using overall equipment effectiveness (OEE): literature review and practical application discussion *Int. J. Prod. Res.* 46 3517–35
[2] Badiger A S and Gandhinathan R 2008 A proposal: evaluation of OEE and impact of six big losses on equipment earning capacity *Int. J. Process Manag. Benchmarking* 2 234–48
[3] Sowmya K and Chetan N 2016 A review on effective utilization of resources using overall equipment effectiveness by reducing six big losses *Int. J. Sci. Res. Sci. Eng. Technol.* 2 2394–4099
[4] Dal B, Tugwell P and Greatbanks R 2000 Overall equipment effectiveness as a measure of operational improvement—a practical analysis *Int. J. Oper. Prod. Manag.* 20 1488–502
[5] Stamatis D H 2017 *The OEE primer: understanding overall equipment effectiveness, reliability, and maintainability* (New York: CRC Press)
[6] Nakajima S 1989 *TPM development program: implementing total productive maintenance*
(Productivity press Cambridge, MA)

[7] Krzysztof K 2018 The Impact of Performance Improvement Achieved by the Closing Machine up to the Level of World-Class OEE on the Results of the Production Process Terotechnology: 10th Conference on Terotechnology vol 5 (Materials Research Forum LLC) p 117

[8] Willmott P and McCarthy D 2000 TPM-A Route to World Class Performance: A Route to World Class Performance (Elsevier)

[9] Ilie G and Ciocoiu C N 2010 Application of fishbone diagram to determine the risk of an event with multiple causes Manag. Res. Pract. 2 1–20