Enigmatic Histamine Receptor H4 for Potential Treatment of Multiple Inflammatory, Autoimmune, and Related Diseases

Pakhuri Mehta 1, Przemysław Misztą 1, Przemysław Rzodkiewicz 2, Olga Michalak 3, Piotr Krzeczyński 3 and Sławomir Filipek 1, *

1 Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland; pmehta@chem.uw.edu.pl or pakhurimehta@gmail.com (P.M.); pmiszta@chem.uw.edu.pl (P.M.)
2 Department of General and Experimental Pathology, Medical University of Warsaw, 02-091 Warsaw, Poland; przemyslaw.rzodkiewicz@wum.edu.pl
3 Łukasiewicz Research Network-Pharmaceutical Research Institute, 01-793 Warsaw, Poland; o.michalak@ifarm.eu (O.M.); p.krzeczyński@ifarm.eu (P.K.)

* Correspondence: sfilipek@chem.uw.edu.pl

Received: 31 March 2020; Accepted: 20 April 2020; Published: 24 April 2020

Abstract: The histamine H4 receptor, belonging to the family of G-protein coupled receptors, is an increasingly attractive drug target. It plays an indispensable role in many cellular pathways, and numerous H4R ligands are being studied for the treatment of several inflammatory, allergic, and autoimmune disorders, including pulmonary fibrosis. Activation of H4R is involved in cytokine production and mediates mast cell activation and eosinophil chemotaxis. The importance of this receptor has also been shown in inflammatory models: peritonitis, respiratory tract inflammation, colitis, osteoarthritis, and rheumatoid arthritis. Recent studies suggest that H4R acts as a modulator in cancer, neuropathic pain, vestibular disorders, and type-2 diabetes, however, its role is still not fully understood.

Keywords: histamine H4 receptor; G protein-coupled receptors; allergic diseases; inflammatory diseases; autoimmune disorders; neuropathic pain; cancer

1. Introduction

Histamine action via distinct receptors (H1R–H4R) modulates diverse physiological as well as pathological processes. Due to their differential receptor pharmacology and signal transduction properties, histamine has characteristic effects dependent upon the histamine receptor subtype it is bound to. Histamine receptors H1–H4 are widespread throughout the body but there is limited knowledge about the H4R. The role of H4R in neuropathic pain transmission and other diseases is still controversial after nearly 20 years since its discovery. This may be due to biased signaling of histamine and H4 receptor agonists and differential effects on multiple signaling pathways in central and peripheral parts of the sensory nervous system. However, in the last two decades, there was a particular increment in evidence supporting participation of H3R and H4R in neuropathic pain modulation [1]. Histamine has also been identified to be responsible for a vascular type headache, e.g., migraine, hence the antihistamines are regarded as a possible treatment [2]. The proper action of particular subtypes of histamine receptors is of special importance as it has been shown for instance for the delirium syndrome in which H1R and H2R antagonists have pro-delirium potential, while H3R antagonists have proved to be beneficial in combating delirium. The H4R may also play an indirect role requiring further intensive exploration [3].
Pulmonary fibrosis is the most frequent form of interstitial lung disease. Unavailability of effective therapies has led to the urge of exploiting novel curative approaches. Histamine receptor H₄ has been recognized as a new target for inflammatory and immune diseases, and H₄R ligands reduced inflammation and oxidative stress in lung tissue. It has been shown that poly(ADP-ribose) polymerase (PARP-1) and H₄R are both involved in inflammatory and fibrotic responses. Treatment with H₄R antagonist JNJ7777120 ((5-chloro-1H-indol-2-yl)(4-methyl-1-piperazinyl)-methanone; CAS Number 459168-41-3; Molecular Weight: 277.8) in a condition of PARP-1 inhibition, provides anti-inflammatory and anti-fibrotic effects, causing reduction in airway remodeling and bronchoconstriction. Its synergistic effect with selective PARP-1 inhibitors could be of potential use for the treatment of pulmonary fibrosis [4]. Viral infections can be important contributors to development of asthma and chronic obstructive pulmonary disease. Pulmonary fibrosis is the main factor leading to pulmonary dysfunction and quality of life decline in SARS survivors. Gaining a deeper understanding of the interaction between Coronaviruses and the innate immune system of the host may shed light on the development and persistence of inflammation in the lungs and can possibly reduce the risk of lung inflammation caused by CoVs [5].

2. The Histamine Receptors—Localization and Function

Histamine receptors, numbered in the order of their discovery H₁R-H₄R, are G protein-coupled receptors (GPCRs) that constitute the largest family of cell surface receptors in humans and play a key role in cellular signaling. In the central nervous system (CNS), the histaminergic system is mainly modulated by histamine, an inflammatory biogenic amine involved in wide range of pathophysiological effects through interaction with histamine GPCRs which belong to class A (rhodopsin-like) GPCRs. These GPCRs differ in localization and cellular signaling mechanisms and they even differ in the level of constitutive activity, i.e., the ability to adopt an active conformation independent of ligand binding [6,7]. H₁R and H₂R are found in the brain and periphery, H₃R is abundant in the CNS, while H₄R has low expression, if any, in the CNS and is predominantly expressed on a variety of peripheral immune cells such as eosinophils, dendritic cells, mast cells (HMC-1, LAD-2, and primary cord blood derived CD34+ human mast cells), leukocytes, and T-cells (including γδT, T helper 1, 2, Th17, and CD8 cells) [6,8–12]. The presence and role of H₄R in brain nervous tissue is yet elusive and not fully known but the presence of H₂R in non-neuronal cells in the brain has been confirmed [13,14]. Functional H₄ receptors that increase [³⁵S]-GTPγS binding and/or decrease noradrenaline release have not been identified in human, guinea pig, and mouse cortex [15]. In human mast cells, H₄R mediates release of cytokines, leukotrienes, and chemokines (TGF-β1, TNF-α, TNF-β, PDGF-BB, TIMP-2, M-CSF, IP-10, IL-16, IL-6, IL-3, IL-10, MIP-1α, IL-1α, ICAM-1, Eotaxin-2, RANTES, IL-8, MCP-1, and IL-6sR) [10].

Being a member of the most populated class A of the GPCR superfamily, human H₄R also contains seven transmembrane helices and a short amphipathic helix that possibly runs parallel to the cytosolic membrane surface. It consists of 390 amino acid residues possessing all of the highly conserved sequence motifs [16,17] of the class A GPCRs including the most evolutionary conserved residues in each of the transmembrane helices: N1.50, D2.50, R3.50, W4.50, P5.50, P6.50, and P7.50 (Ballesteros–Weinstein numbering [18]) indicating the same activation mechanism of H₄R as that of the other receptors in class A GPCRs [19]. The Ballesteros–Weinstein numbering scheme of GPCRs provides information about the relative positions of amino acids present in seven transmembrane helices. Each residue of the receptor is recognized by two numbers separated by a dot; the first number (1–7) indicates the number of the transmembrane helix where the residue is located while the second number indicates its position in relation to the most conserved residue, assigned number 50, of the same helix. The prominent residues such as D3.32 and W7.40, specific for amine-activated GPCRs, are also present in the H₄R [20]. It has been observed that the two agonists (histamine and OUP-16) exhibit complementary interactions with residues D3.32, E5.46, and T6.55, while the reference antagonist JNJ7777120 exhibits interactions with D3.32 and E5.46 only (Figure 1), implicating a differentiating role of T6.55 in ligand binding and receptor activation [21,22]. There are also striking complementarities
Additionally, various substituted histamine derivatives such as R-(α)-methylhistamine have significant H4R binding in addition to H3R [6]. Istyastono et al. have shown that the E5.46Q mutation impaired the binding strength of clobenpropit and its derivatives in both those receptors [26]. Moreover, the L5.39V and E5.46Q mutations resulted in a decrease of binding of the reported ligands to H4R. This finding emphasized the importance of the E5.46 residue which provides a crucial interaction with antagonists [27].

A plethora of studies have related the heterogenic and complex pharmacology of histamine receptors to various diseases: H1R to the allergic inflammation, anaphylaxis, and motion sickness

Among the histamine receptors, H1R and H4R possess 40% amino acid identity in the transmembrane region and they recognize the same endogenous ligand that is histamine. Due to such similarity the crystal structure of H1R has been used by many researchers for building the homology models of H4R. However, there are substantial differences in histamine receptor binding sites. For instance, N4.57 in H4R is equivalent to W4.56, L5.39 to K5.39, E5.46 to N5.46, and Q7.42 to G7.42 in H1R. Additionally, the mutations of residues N4.57 and E5.46 resulted in significant alteration of inhibition constants of JNJ7777120 which was the first reported H4R antagonist [23] and the homology model of H4R featured two specific hydrogen bonds and ionic interactions of JNJ7777120 to D3.32 and E5.46 [24]. H4R has the highest sequence homology with H3R as it possesses 37% amino acid identity in protein sequence and 58% identity in the transmembrane region. It is evident that a number of ligands of H4R also have a high affinity for H3R due to the identical amino acids within the binding site of both receptors, including E5.46, Y3.33, and Y6.51, involved in ligand binding [25]. These amino acids residues contribute to the similarity between the binding sites of hH3R and hH4R forcing similar conformations of ligands. This explains the number of ligands which are antagonists of both receptors. Additionally, various substituted histamine derivatives such as R-(α) cyanahistamine, R-(-)cyanahistamine, R-(-)dimethylhistamine and R-(-)-methylhistamine have significant H4R binding in addition to H3R [6]. Istyastono et al. have shown that the E5.46Q mutation impaired the binding strength of clobenpropit and its derivatives in both those receptors [26]. Moreover, the L5.39V and E5.46Q mutations resulted in a decrease of binding of the reported ligands to H4R. This finding emphasized the importance of the E5.46 residue which provides a crucial interaction with antagonists [27].

A plethora of studies have related the heterogenic and complex pharmacology of histamine receptors to various diseases: H3R to the allergic inflammation, anaphylaxis, and motion

Figure 1. The homology model of H4R with docked JNJ7777120 antagonist. The specific ligand–receptor interactions are shown on the right panel. D3.32 forms both a hydrogen bond and an ionic interaction with the charged amine group of the ligand.
sickness [28,29], H₂R to the stimulation of gastric acid secretion leading to peptic ulcer, GERD and aspiration pneumonitis [30,31], H₃R to the neurotransmission controlling sleep, cognitive processes, schizophrenia, epilepsy, and pain [32–37], and H₄R to the immune responses (cancers, myocarditis) and inflammation [38–42] (Figure 2). The H₃ and H₄ receptors have relatively high affinity for histamine (5–10 nM) compared to the low affinity of H₁R and H₂R which is in the μM range [6,43]. Hence, the biological response has been linked directly with the local tissue histamine concentration and functional expression of different receptors [6].

![Figure 2. Classification of histamine receptors (H₁R–H₄R) in relation to their functions. H₁R–H₃R transduce extracellular signals via Gα₁₁, Gα₁₆, and Gα₂₆ respectively, while H₄R acts through Gα₁₂, and β-arrestin. H₁R and H₂R are low-affinity receptors while H₃R and H₄R are high-affinity receptors towards histamine. Ligands of H₁R–H₄R have therapeutic applications in allergic inflammation, gastric acid secretion, neurotransmission, and immunomodulation, respectively. The information in the figure is partially based on [44].](image)

3. Species Differences of H₄R

Following the identification of the human H₄R (UniProt id: Q9H3N8), various sequences of mouse, rat, guinea pig, pig, dog, and monkey H₄R have been reported and functionally expressed [38]. Eighty-five protein sequences of H₄R orthologues from different species have been extracted from the UniProt database and aligned to draw the phylogenetic relationship between H₄R orthologues (Scheme 1). The H₄ receptors of the chimpanzee, gorilla, and orangutan show the highest sequence homology (98–99%) with the human orthologue (hH₄R). H₄ receptors of some species are highly homologous to hH₄R with sequence homology between 78% and 94%, specifically those of macaques, baboon, drill, Angolan colobus, mangabey, Cebus capucinus imitator, marmoset, and Philippine tarsier (Table 1). Orthologues in some species were only moderately homologous to hH₄R with sequence homology between 54% and 73% while the least homologous showed homology ranging from 10% to 47%. Pig, mouse, smooth cauliflower coral, Japanese scallop, turbot, and pig have each two H₂R orthologues while sea cucumber has three orthologues. However, these orthologues, show only 10–36% homology to hH₂R while all others show a substantially higher homology (>50%). As some of the sequences are still incomplete, changes in the phylogenetic tree are to be expected. Within these GPCR sequences, the typical aminergic GPCR features (D3.32 in TM3 and E5.46 in TM5) can often be
found. Detailed analysis of most of these species variants is however lacking even though it could provide useful tools to dissect receptor–ligand binding. Using site-directed mutagenesis Wifling et al. have proved that the F169, located in the second extracellular loop ECL2, is a crucial amino acid for differential interactions, affinities, and potencies of certain agonists with the human and mouse H₄R orthologues [45]. Receptor sequence differences have implications even for ligand function as the JNJ7777120 ligand acts as a partial inverse agonist at the human H₄R, but as a partial agonist at the rat and mouse H₄R which possess lower constitutive activity than their human counterpart. Therefore, differences in pharmacological activities of H₄R ligands between different species might hamper preclinical development of future H₄R drugs [46].

Scheme 1. Phylogenetic tree of H₄R orthologues. The sequences were obtained from UniProt [47] and the sequences were aligned with ClustalW and the cladogram was created with Clustal Omega service [48].
Table 1. Sequence similarities of species specific H4R to the human orthologue.

Species	Scientific Name	UniProt ID	Similarity to hH4R
1 Human	Homo sapiens	Q9H1N8	99%
2 Chimpanzee	Pan troglodytes	HEQED2	98%
3 Gorilla	Gorilla	G3QS38	98%
4 Pygmy chimpanzee	Pan paniscus	A0A2IR9QY6	98%
5 Orangutan	Pongo abelii	HE2ZW7	98%
6 Crab-eating macaque	Macaca fascicularis	Q8W9C8	94%
7 Pig-tailed macaque	Macaca nemestrina	A0A2KD1G7	94%
8 Rhesus macaque	Macaca mulatta	G7NH19	94%
9 Olive baboon	Papio anubis	A0A066CN9	94%
10 Drill	Mandrillus leucophaeus	A0A2SKYBZ5	94%
11 Angolan colobus	Colobus angolensis palliatus	A0A2K3HHL6	93%
12 Sooty mangabey	Cercocerus atys	A0A2K5Q7LQ7	93%
13 Black snub-based monkey	Rhinopithecus bieti	A0A2KD1G7	93%
14 Golden snub-based monkey	Rhinopithecus roxellana	A0A2SKYBZ5	93%
15 White-tufted ear marmoset	Callithrix jacchus	F8TJ13	93%
16 Olive baboon	Aotus nancymaa	A0A3Q7WBT8	93%
17 Cebus capucinus	Colobus angolensis palliatus	A0A2K3HHL6	93%
18 Dog	Canis lupus familiaris	J9P1C3	91%
19 Golden hamster	Mesocricetus auratus	A0A2Q7Q7T1	91%
20 Grizzly bear	Ursus arctos horribilis	A0A3Q7WBT8	91%
21 Small-eared galago	Otocolobus alleni	P11315	91%
22 Thirteen-lined ground squirrel	Lipotomys tridecemlineatus	IMCG71	91%
23 Elephant	Loxodonta africana	G3STF1	69%
24 Chinese hamster	Rhinopithecus roxellana	A0A2SKYBZ5	69%
25 Horse	Equus caballus	F6Z8L3	69%
26 Hedgehog	Erinaceus europaeus	A0A2Y9GRV4	69%
27 European domestic ferret	Mustela putorius	M3Y4H4	69%
28 Pig	Sus scrofa	Q8WNY9(Pig 1)	67%
29 Red fox	Vulpes vulpes	A0A3Q7SYT7	67%
30 Black flying fox	Pteropus alecto	L5K5C7	67%
31 African elephant	Loxodonta africana	G3STF1	67%
32 Giant panda	Ailuropoda melanoleuca	G1M6D3	67%
33 Asian elephant	Ailuropoda melanoleuca	G1M6D3	67%
34 American mink	Neovison vison	A0A452Q6Z	67%
35 Sperm whale	Odobenus rosmarus divergens	A0A2KD1G7	67%
36 Dog	Canis lupus familiaris	J9P1C3	67%
37 Rabbit	Orctolagus cuniculus	G1M6D3	67%
38 Rat	Rattus norvegicus	Q91ZY1	67%
39 Red fox	Vulpes vulpes	A0A3Q7SYT7	67%
40 Black flying fox	Pteropus alecto	L5K5C7	67%
41 Kangaroo rat	Dipodomys ordi	A0A1S3F27	67%
42 Hawaiian monk seal	Neomomus schausiani	A0A2Y9GRV4	67%
43 Giant panda	Ailuropoda melanoleuca	G1M6D3	67%
44 Eastern chipmunk	Tamias striatus	A0A2Y9GRV4	67%
45 Squirrel monkey	Saimiri sciureti	A0A2Y9GRV4	67%
46 Dog	Canis lupus familiaris	J9P1C3	67%
47 European domestic ferret	Mustela putorius	M3Y4H4	67%
48 Mouse	Mus musculus	B2ZCH2(Mouse 2)	67%
49 Goat	Capra hircus	A0A452DK10	67%
50 Sheep	Ovis aries	W5PBL0	67%
51 Black bear	Canis lupus familiaris	J9P1C3	67%
52 Groundhog	Erinaceus europaeus	A0A1S3F27	67%
53 Black bear	Canis lupus familiaris	J9P1C3	67%
54 Yangtze river dolphin	Lipotes vexillifer	A0A2Y9GRV4	67%
55 American mink	Saimiri sciureti	A0A2Y9GRV4	67%
56 Hybrid cattle	Lipotes vexillifer	A0A2Y9GRV4	67%
57 Black bear	Canis lupus familiaris	J9P1C3	67%
58 Yangtze river dolphin	Lipotes vexillifer	A0A2Y9GRV4	67%
59 American mink	Saimiri sciureti	A0A2Y9GRV4	67%
60 Yangtze river dolphin	Lipotes vexillifer	A0A2Y9GRV4	67%
61 American mink	Saimiri sciureti	A0A2Y9GRV4	67%
62 Indio-pacific humpbacked dolphin	Saimiri sciureti	A0A2Y9GRV4	67%
63 Narwhal	Monodon monoceros	A0A452Q6Z	67%
64 Atlantic bottle-nosed dolphin	Tursiops truncatus	A0A2U3Y3K5	67%
65 Gray short-tailed dolphin	Monodelphis domestica	F6G6B5	67%
66 South-Pacific minke whale	Balaenoptera acutaenotnata sacmmoni	A0A252C640	67%
67 Tasmanian devil	Sarcophilus harris	G3X3P1	45%
68 Weddel seal	Leptonychotes weddelii	A0A2U3Y3K5	42%
69 Atlantic bottle-nosed dolphin	Tursiops truncatus	A0A2U3Y3K5	42%
70 White-tailed sea-eagle	Haliaeetus albicilla	A0A91N2C4	41%
71 Ibis	Apladneria citoitum	A0A91N2C4	41%
72 American mink	Saimiri sciureti	A0A2Y9GRV4	40%
73 Turbot	Scophthalmus maximus	A0A2U9B2J1	40%
74 Atlantic bottle-nosed dolphin	Tursiops truncatus	A0A2U3Y3K5	40%
4. The Pharmacological Effects of H₄R Ligands

Although the pharmacology of H₄R ligands is yet not fully elucidated H₄R has been widely studied and reviewed since its characterization and cloning in 2000 [25,49]. The vast body of accumulating knowledge on physiological and pathophysiological functions associated with H₄R modulation can be exploited for therapeutic purposes [11]. The properties of H₄R make this amine receptor and its ligands of interest to specialists in the field of allergology, neurobiology, gastroenterology, endocrinology, and also to researchers of cardiovascular functions [6,50]. The results of research on the role of H₄R in various pathophysiological and immunological processes indicate its association with the development and course of many diseases including a crucial role of H₄R in airway and dermal inflammation (Figure 3), pruritus, ocular inflammation, arthritis, systemic lupus erythematosus, Sjogren’s syndrome, multiple sclerosis, gastric ulcer, cancer, and pain [12,51].
4.1. Allergic Diseases

Inflammatory conditions were for a long time thought to be mediated by activation of the histamine receptor subtype 1. However, the discovery and pharmacological characterization of H_{4}R ligands especially antagonists, (and, to a lesser extent H_{3}R and even H_{2}R ligands) on mast cells, eosinophils, and T cells demonstrates the possibility of its involvement in inflammatory conditions/symptoms such as atopic dermatitis (AD), asthma, allergic rhinitis, rheumatoid arthritis (RA), and pruritus in humans. This is evident from the results obtained in diverse experimental models of inflammation including hepatic ischemia-reperfusion, colitis, atopic dermatitis, in which H_{4}R antagonists (JNJ7777120, JNJ10191584, thioperamide) proved to be efficient anti-inflammatory agents with reduced neutrophil recruitment and release of cytokines [51,52]. Preclinical and clinical data strongly suggest the regulatory involvement of H_{4}R in the calcium influx and cellular chemotaxis [53,54], hence establishing a link between the potential therapeutic application of selectively acting H_{4}R ligands to inflammatory conditions while also indicating involvement of H_{4}R in diseases accompanied by itch and pain [55]. The investigations of histamine in the inflammation process have led to a development of the first highly potent and selective non-imidazole H_{4}R antagonist JNJ7777120, followed by reexamination and synthesis of a plethora of H_{4}R-targeted compounds [50,51].

Currently, many H_{4}R ligands are known, synthesized, and evaluated [56,57]. Studies using selective H_{4}R ligands in animal models of pruritus revealed a role for H_{4}R in mediating chronic pruritus associated with conditions such as atopic dermatitis [51,58]. Antagonists of H_{4}R (JNJ7777120, JNJ39758979, INCB38579, and others) reduced pruritus in a number of animal studies [59] as well as itching sensation in different conditions in human patients. Alcaftadine, a topical ophthalmic drug indicated for the prevention of itching associated with allergic conjunctivitis, is a potent H_{1}R and H_{2}R antagonist (in fact, inverse agonist) with weak inverse agonistic activity also towards H_{4}R [60]. Administration of H_{1}R/H_{4}R antagonists or co-administration of H_{1}R and H_{4}R antagonists will probably be effective also in humans. Such antagonists are more efficacious as compared to olopatadine (H_{1}R antagonist without H_{4}R activity) [61]. Consequently, these studies indicate that H_{4}R is involved in mediating pruritic responses in humans, and that H_{4}R antagonists are ought to be effective in the treatment of pruritic histamine-mediated conditions, such as AD, acute urticaria, allergic rhinitis, or allergic conjunctivitis.

The histamine receptor H_{4}R was also found on cartilage cells–chondrocytes [62,63]. As the presence of the histamine triggering protein (HRF) has been identified in the joints of people with RA, it seems very likely that H_{4}R antagonists will be used in the future in the treatment of RA [64]. This receptor may also be important in the pathogenesis of Sjögren’s syndrome, erythematosus lupus erythematosus, and atopic dermatitis [65]. H_{4}R activation not only results in phosphorylation of ERK and PI3K in a time dependent manner but it also leads to enhanced synthesis of inflammatory mediators associated with allergic reactions. It leads to inflammatory conditions as well as contributes to postinflammatory visceral hypersensitivity, thus, making H_{4}R antagonists important for reducing inflammation and normalizing postinflammatory visceral hypersensitivity [66].

4.2. Asthma

H_{4}R seems to be an interesting pharmacological target in the treatment of asthma [6]. Asthma is a condition typically characterized by involvement of eosinophils and mast cells [67–69]. Extensive studies have provided evidence detailing the functional profile of H_{4}R in eosinophil biology [70] and in the chemotaxis and differentiation of other immune cell types. In experiments carried out on animal models of inflammation of the airways, it was observed that in mice lacking the H_{4}R gene, there was a significant reduction in the allergic reaction caused by the administration of a chicken protein-ovalbumin [71]. Chemotaxis of eosinophils was shown to be blocked by H_{4}R selective antagonists (JNJ7777120, JNJ39758979, or JNJ10191584) in animal asthma models due to priming and T cell activation [51,72] while induced by histamine and selective H_{4}R agonists (e.g., 4-methylhistamine) [72]. Some selective H_{4}R antagonists in animal models of asthma proved beneficial
by mediating lung function and inflammation [51,73]. In asthma animal models, H4R antagonists act either directly by reducing the number of T cells at the site of inflammation [74] or indirectly when it is involved in dendritic cell function driving the response [51]. However, none of the H4R antagonists have been introduced to treat the above disorders.

4.3. Diabetes

The histamine receptor H4 may also be a therapeutic target in diseases not directly related to inflammation. For instance, H4R is suggested to be important in the pathogenesis of diabetes. In streptozotocin-induced diabetic rats H4R is overexpressed in tubular epithelial cells [75], and administration of a H4R antagonist resulted in a decreased blood sugar [76]. H4R participates in diabetic nephropathy progression through both a direct effect on tubular reabsorption and an indirect action on renal tissue architecture via inflammatory cell recruitment. Therefore, H4R antagonism emerges as a possible new multi-mechanism therapeutic approach to counteract development of diabetic nephropathy [77].

4.4. Parkinson’s and Alzheimer’s Diseases

Evidence about the H4R antagonist JNJ7777120 inhibiting propagation of microglial inflammation by attenuating the release of M1 microglial cells and largely preventing the pathological progression of Parkinson’s disease-like pathology and motor dysfunction has been provided by the latest research [78]. These findings support H4R as a promising novel therapeutic target for Parkinson’s disease. For Alzheimer’s disease the precise mechanism of histamine-induced Alzheimer’s pathology is not well known although the increased levels of histamine in plasma and in some areas of the brain are seen in Alzheimer’s dementia brain [79]. It is known that H3R can regulate cognitive and memory functions in the hippocampus so it could be involved in Alzheimer’s pathology [80]. Since H4R is also present in the brain and its stimulation regulates neuronal functions, then stimulating H4 receptors may have some beneficial effects in the brain of Alzheimer’s disease patients. Recently, it has been found that clobenpropit, a selective H3R antagonist with partial H4R agonist property, caused a significant reduction in amyloid-β deposits in a rat model of Alzheimer-like brain pathology. This effect was accompanied by marked reduction in neuronal or glial reactions so such dual-action compounds may have neuroprotective properties [81].

High similarity between H3R and H4R entails considerable similarity in ligand affinities and facilitates simultaneous activation of both receptors. Dual-acting H3R/H4R ligands may exhibit therapeutic potential in diverse pathological conditions, such as neuropathic pain, cancer, Parkinson’s, and inflammatory diseases [7,82]. Dual H3R/H4R imidazole containing ligands used so far includes compounds such as imetit, immepip, clobenpropit, and thioperamide [7].

4.5. Autoimmune Diseases

The characterization of a histamine receptor H4R with putative immunomodulating properties encouraged new hopes for the translational exploitation of this new therapeutic target for the still unmet medical needs, specifically asthma, autoimmune diseases, and a host defense. Rheumatoid arthritis (RA), which is a systemic autoimmune disorder, is characterized by chronic synovitis of peripheral joints, cartilage and bone destruction followed by joint disability. It was found that histamine and Th17 cytokines induced osteoclast differentiation from monocytes and JNJ7777120 decreased the osteoclastogenesis and the osteoclastogenic role of H4R has been evident in patients with RA [83]. Studies in the animal model of RA have shown that the H4R antagonist JNJ7777120 reduces the degree and severity of joint damage and reduces the number of cells producing IL-17 in the joint, thus, significantly inhibiting the inflammatory process in joints [84]. H4R involvement has been also confirmed in several types of cancers: melanoma [85], breast cancer [86], pancreatic cancer [87], and colorectal cancer [88]. H4R can regulate the aging and apoptosis of cancer cells and blocking H4R by antagonists inhibits tumor cell proliferation [86]. Histamine receptors play also an important role in
the pathogenesis of multiple sclerosis. It turned out that H1R and H2R play a propathogenic role while H3R and H4R may reduce the risk of the disease [89].

5. Clinical Trials of Drug Candidates Targeting H4R

Recently, H4R research has been gaining a lot of importance and the clinical studies were initiated for the putative therapeutic exploitation in inflammatory and allergic disorders [38] such as atopic dermatitis (AD) [59,90], pruritus, asthma, rheumatoid arthritis (RA), as well as in vestibular disease (Table 2) [91]. Toreforant (JNJ38518168), the first oral H4R antagonist, has been explored for the treatment of RA patients with active disease despite concomitant methotrexate therapy (phase 2 trials, ClinicalTrials.gov database entry NCT01862224 and dose range finding study NCT01679951) [92,93]. Both studies were prematurely terminated in 2014 because of the lack of efficacy. The similar phase 2 clinical studies for the same compound evaluating efficacy and safety of toreforant in patients with symptomatic uncontrolled, persistent eosinophilic asthma (NCT01823016) [94], and in patients with moderate to severe plaque-type psoriasis (NCT02295865) [95] were completed in 2015 and 2016. In the former study toreforant (at the dose tested) failed to provide any therapeutic benefit [96]. Preclinical toxicity studies of another H4R antagonist, JNJ39758979, provided sufficient evidence of an excellent safe profile encouraging the clinical level testing [72]. JNJ39758979 was observed to mitigate RA in the collagen-induced arthritis models (CIAM) [59]. The completed phase 2 clinical trial demonstrating its safety and effectiveness in human volunteers with persistent asthma (NCT00946569) whereas several phase 1 studies stating its safety and pharmacokinetics, as well as its effect on histamine-induced itch (pruritus) (NCT01068223) in healthy male volunteers have successfully been accomplished [97,98]. Simultaneously, the two phase 2 clinical studies were initiated to find a dose range of JNJ39758979 in patients with RA despite concomitant methotrexate therapy (NCT01480388) and patients with uncontrolled asthma (NCT01493882) but they were withdrawn in 2014 and 2015, respectively, due to the same reasons [99,100]. This adverse effect was predicted to be related with reactive metabolites of JNJ39758979 and not with H4R antagonism. Hence, the significant reduction in the pruritus after JNJ39758979 administration can be concluded in the way that drug-induced agranulocytosis can be most likely an off-target effect and other H4R antagonists could be beneficial in the treatment of AD, particularly pruritus, without serious adverse effects [101]. In the similar clinical studies, another oral, potent, and selective H4R antagonist ZPL3893787 has completed phase 2 clinical trials determining its safety, efficacy, and tolerability on pruritus in adult subjects with moderate to severe AD (NCT02424253) [102] and in patients with plaque psoriasis (NCT02618616) [103] in 2016 but no results for both these studies were posted on ClinicalTrials.gov. Results showed that ZPL3893787 improved inflammatory skin lesions in patients with AD, confirming H4R antagonism as a novel therapeutic option [90]. Additionally, in two different phase 2 trials, there is an evaluation safety and efficacy of ZPL3893787 in patients with moderate to severe AD (NCT03517566) [104] and the impact of its concomitant use along with topical corticosteroids (TCS) and/or topical calcineurin inhibitors (TCI) in patients with AD (NCT03948334) [105]. The efficacy of Seliforant (SENS-111) in patients suffering from acute unilateral vestibulopathy is currently under evaluation in Phase 2 trial (NCT03110458) [106]. The above-mentioned observations indicate a wide range of potential clinical applications of H4R ligands.
Conceptualization, P.M. (Pakhuri Mehta) and S.F.; writing—original draft preparation, P.M. (Pakhuri Mehta); writing—review and editing, P.M. (Pakhuri Mehta), P.M. (Przemyslaw Misztal), P.R., O.M., P.K. and S.F.; visualization, P.M. (Pakhuri Mehta); supervision, S.F.; funding acquisition, S.F., P.R. and O.M.

Author Contributions: Conceptualization, P.M. (Pakhuri Mehta) and S.F.; writing—original draft preparation, P.M. (Pakhuri Mehta); writing—review and editing, P.M. (Pakhuri Mehta), P.M. (Przemyslaw Misztal), P.R., O.M., P.K. and S.F.; visualization, P.M. (Pakhuri Mehta); supervision, S.F.; funding acquisition, S.F., P.R. and O.M. All authors have read and agreed to the published version of the manuscript.
Funding: This research was funded by NATIONAL SCIENCE CENTRE, POLAND, grant OPUS 2017/25/B/NZ7/02788.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

1. Obara, I.; Telezhkin, V.; Alrashdi, I.; Chazot, P.L. Histamine, histamine receptors, and neuropathic pain relief. *Br. J. Pharmacol.* 2020, 177, 580–599. [CrossRef]

2. Worm, J.; Falkenberg, K.; Olesen, J. Histamine and migraine revisited: Mechanisms and possible drug targets. *J. Headache Pain* 2019, 20, 30. [CrossRef]

3. Chazot, P.L.; Johnston, L.; McAuley, E.; Bonner, S. Histamine and Delirium: Current Opinion. *Front. Pharmacol.* 2019, 10, 299. [CrossRef]

4. Durante, M.; Sgambellone, S.; Lanzi, C.; Nardini, P.; Pini, A.; Moroni, F.; Masini, E.; Lucarini, L. Effects of PARP-1 Deficiency and Histamine H4 Receptor Inhibition in an Inflammatory Model of Lung Fibrosis in Mice. *Front. Pharmacol.* 2019, 10, 525. [CrossRef]

5. Li, G.; Fan, Y.; Lai, Y.; Han, T.; Li, Z.; Zhou, P.; Pan, P.; Wang, W.; Hu, D.; Liu, X.; et al. Coronavirus infections and immune responses. *J. Med. Virol.* 2020, 92, 424–432. [CrossRef]

6. Panula, P.; Chazot, P.L.; Cowart, M.; Gutzmer, R.; Leurs, R.; Liu, W.L.; Stark, H.; Thurmond, R.L.; Haas, H.L. International union of basic and clinical pharmacology. XCVIII. Histamine receptors. *Pharmacol. Rev.* 2015, 67, 601–655. [CrossRef]

7. Corrêa, M.F.; Fernandes, J.P.d.S. Histamine H4 receptor ligands: Future applications and state of art. *Chem. Biol. Drug Des.* 2015, 85, 461–480. [CrossRef]

8. Cataldi, M.; Borriello, F.; Granata, F.; Annunziato, L.; Marone, G. Histamine receptors and antihistamines: From discovery to clinical applications. *Chem. Immunol. Allergy* 2014, 100, 214–226. [CrossRef]

9. Cowden, J.M.; Yu, F.; Banie, H.; Farahani, M.; Ling, P.; Nguyen, S.; Riley, J.P.; Zhang, M.; Zhu, J.; Dunford, P.J.; et al. The histamine H4 receptor mediates inflammation and Th17 responses in preclinical models of arthritis. *Ann. Rheum. Dis.* 2014, 73, 600–608. [CrossRef]

10. Jemima, E.A.; Prema, A.; Thangam, E.B. Functional characterization of histamine H4 receptor on human mast cells. *Mol. Immunol.* 2014, 62, 19–28. [CrossRef]

11. Schneider, E.H.; Seifert, R. The histamine H4-receptor and the central and peripheral nervous system: A critical analysis of the literature. *Neuropharmacology* 2016, 106, 116–128. [CrossRef]

12. Sadek, B.; Stark, H. Cherry-picked ligands at histamine receptor subtypes. *Neuropharmacology* 2016, 106, 56–73. [CrossRef]

13. Haas, H.L.; Panula, P.P. Histamine receptors. *Neuropharmacology* 2016, 106, 1–2. [CrossRef]

14. Zhu, J.; Qu, C.; Lu, X.; Zhang, S. Activation of microglia by histamine and substance P. *Cell. Physiol. Biochem.* 2014, 34, 768–780. [CrossRef]

15. Feliszek, M.; Speckmann, V.; Schacht, D.; von Lehe, M.; Stark, H.; Schlicker, E. A search for functional histamine H4 receptors in the human, guinea pig and mouse brain. *Naunyn Schmiedebergs Arch. Pharmacol.* 2015, 388, 11–17. [CrossRef]

16. Filipek, S. Molecular switches in GPCRs. *Curr. Opin. Struct. Biol.* 2019, 55, 114–120. [CrossRef]

17. Zhou, Q.; Yang, D.; Wu, M.; Guo, Y.; Guo, W.; Zhong, L.; Cai, X.; Dai, A.; Jang, W.; Shakhnovich, E.I.; et al. Common activation mechanism of class A GPCRs. *eLife* 2019, 8, e50279. [CrossRef]

18. Ballesteros, J.A.; Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. *Methods Neurosci.* 1995, 25, 366–428.

19. Zhu, Y.; Michalovich, D.; Wu, H.-L.; Tan, K.B.; Dytko, G.M.; Mannan, I.J.; Boyce, R.; Alston, J.; Tierney, I.L.; Li, X.; et al. Cloning, Expression, and Pharmacological Characterization of a Novel Human Histamine Receptor. *Mol. Pharmacol.* 2001, 59, 434–441. [CrossRef]

20. Huang, E.S. Construction of a sequence motif characteristic of aminergic G protein–coupled receptors. *Protein Sci.* 2003, 12, 1360–1367. [CrossRef]
21. Pappalardo, M.; Shachaf, N.; Basile, L.; Milardi, D.; Zeidan, M.; Raiyn, J.; Guccione, S.; Rayan, A. Sequential application of ligand and structure based modeling approaches to index chemicals for their hH4R antagonism. *PLoS ONE* 2014, 9, e109340. [CrossRef]

22. Kiss, R.; Noszal, B.; Racz, A.; Falus, A.; Eros, D.; Keseru, G.M. Binding mode analysis and enrichment studies on homology models of the human histamine H4 receptor. *Eur. J. Med. Chem.* 2008, 43, 1059–1070. [CrossRef]

23. Lim, H.D.; de Graaf, C.; Jiang, W.; Sadek, P.; McGovern, P.M.; Istyastono, E.P.; Bakker, R.A.; de Esch, I.J.; Thurmond, R.L.; Leurs, R. Molecular determinants of ligand binding to H4R species variants. *Mol. Pharmacol.* 2010, 77, 734–743. [CrossRef]

24. Kuhnle, S.; Kooistra, A.J.; Bosma, R.; Bortolato, A.; Wijtmans, M.; Vischer, H.F.; Mason, J.S.; de Graaf, C.; de Esch, I.J.; Leurs, R. Identification of Ligand Binding Hot Spots of the Histamine H1 Receptor following Structure-Based Fragment Optimization. *J. Med. Chem.* 2016, 59, 9047–9061. [CrossRef]

25. Liu, C.; Ma, X.-J.; Jiang, X.; Wilson, S.J.; Hofstra, C.L.; Blevitt, J.; Pyati, J.; Li, X.; Chai, W.; Carruthers, N. Cloning and pharmacological characterization of a fourth histamine receptor (H4) expressed in bone marrow. *Mol. Pharmacol.* 2001, 59, 420–426. [CrossRef]

26. Istyastono, E.P.; Kooistra, A.J.; Vischer, H.F.; Kuiper, M.; Roumen, L.; Nijmeijer, S.; Smits, R.A.; de Esch, I.J.P.; Leurs, R.; de Graaf, C. Structure-based virtual screening for fragment-like ligands of the G protein-coupled histamine H4 receptor. *Med. Chem. Commun.* 2015, 6, 1003–1017. [CrossRef]

27. Schultes, S.; Kooistra, A.J.; Vischer, H.F.; Nijmeijer, S.; Haaksma, E.E.J.; Leurs, R.; de Esch, I.J.P.; de Graaf, C. Combinatorial Consensus Scoring for Ligand-Based Virtual Fragment Screening: A Comparative Case Study for Serotonin 5-HT3A, Histamine H1, and Histamine H4 Receptors. *J. Chem. Inf. Model.* 2015, 55, 1030–1044. [CrossRef]

28. Jie, Q.; Kodithuwakkul, N.D.; Yuan, X.; He, G.; Chen, M.; Xu, S.; Wu, Y. Anti-allergic and anti-inflammatory properties of a potent histamine H1 receptor antagonist, desloratadine citrate disodium injection, and its anti-inflammatory mechanism on EA.hy926 endothelial cells. *Eur. J. Pharmacol.* 2015, 754, 1–10. [CrossRef]

29. Thangam, E.B.; Jemima, E.A.; Singh, H.; Baig, M.S.; Khan, M.; Mathias, C.B.; Church, M.K.; Saluja, R. The role of histamine and histamine receptors in mast cell-mediated allergy and inflammation: the hunt for new therapeutic targets. *Front. Immunol.* 2018, 9, 1873. [CrossRef]

30. Shim, Y.K.; Kim, N. The Effect of H2 Receptor Antagonist in Acid Inhibition and Its Clinical Efficacy. *Korean J. Gastroenterol. Taehan Sohwaig Hakhoe Chi* 2017, 70, 4–12. [CrossRef]

31. van Wering, H.M.; Benninga, M.A. Histamine-2 Receptor Antagonist in the Treatment of Gastroesophageal Reflux Disease; Springer: Berlin/Heidelberg, Germany, 2017; pp. 987–994. [CrossRef]

32. Mohsen, A.; Yoshikawa, T.; Miura, Y.; Nakamura, T.; Naganuma, F.; Shibuya, K.; Iida, T.; Harada, R.; Okamura, N.; Watanabe, T.; et al. Mechanism of the histamine H(3) receptor-mediated increase in exploratory locomotor activity and anxiety-like behaviours in mice. *Neuropharmacology* 2014, 81, 188–194. [CrossRef] [PubMed]

33. Jarskog, L.F.; Lowy, M.T.; Grove, R.A.; Keefe, R.S.; Horrigan, J.P.; Ball, M.P.; Breier, A.; Buchanan, R.W.; Carter, C.S.; Csernansky, J.G.; et al. A Phase II study of a histamine H (3) receptor antagonist GSK239512 for cognitive impairment in stable schizophrenia subjects on antipsychotic therapy. *Schizophr. Res.* 2015, 164, 136–142. [CrossRef] [PubMed]

34. Sadek, B.; Saad, A.; Latacz, G.; Kuder, K.; Olejarz, A.; Karcz, T.; Stark, H.; Kiec-Kononowicz, K. Non-imidazole-based histamine H3 receptor antagonists with anticonvulsant activity in different seizure models in male adult rats. *Drug Des. Dev. Ther.* 2016, 10, 3879–3898. [CrossRef] [PubMed]

35. Sadek, B.; Saad, A.; Subramanian, D.; Shafiuullah, M.; Lazewska, D.; Kiec-Kononowicz, K. Anticonvulsant and proconvulsive properties of the non-imidazole histamine H3 receptor antagonist DL77 in male adult rats. *Neuropharmacology* 2016, 106, 46–55. [CrossRef]

36. Sadek, B.; Schwed, J.S.; Subramanian, D.; Weizel, L.; Walter, M.; Adem, A.; Stark, H. Non-imidazole histamine H3 receptor ligands incorporating antiepileptic moieties. *Eur. J. Med. Chem.* 2014, 77, 269–279. [CrossRef]

37. Eissa, N.; Khan, N.; Ojha, S.K.; Lazewska, D.; Kiec-Kononowicz, K.; Sadek, B. The Histamine H3 Receptor Antagonist DL77 Ameliorates MK801-Induced Memory Deficits in Rats. *Front. Neurosci.* 2018, 12, 42. [CrossRef]

38. Liu, W.L. Histamine H4 receptor antagonists for the treatment of inflammatory disorders. *Drug Discov. Today* 2014, 19, 1222–1225. [CrossRef]
39. Corrêa, M.F.; Varela, M.T.; Ballino, A.M.; Torrecilhas, A.C.; Landgraf, R.G.; Troncone, L.R.P.; Fernandes, J.P.d.S.
 1-(2,3-Dihydro-1-benzofuran-2-yl) piperazines as novel anti-inflammatory compounds: Synthesis and evaluation on H3R/H4R.
 Chem. Biol. Drug Des. 2017, 90, 317–322. [CrossRef]

40. Sterle, H.A.; Nicoud, M.B.; Massari, N.A.; Táquez Delgado, M.A.; Herrero Ducloux, M.V.; Cremaschi, G.A.;
 Medina, V.A. Immunomodulatory role of histamine H4 receptor in breast cancer. Br. J. Cancer 2019, 120,
 128–138. [CrossRef]

41. Lazewska, D.; Mogilski, S.; Hagenow, S.; Kuder, K.; Gluch-Lutwin, M.; Siwek, A.; Wiecek, M.; Kaleta, M.;
 Seibel, U.; Buschauer, A.; et al. Alkyl derivatives of 1,3,5-triazine as histamine H4 receptor ligands. Bioorg.
 Med. Chem. 2019, 27, 1254–1262. [CrossRef]

42. Stasiak, A.; Gola, J.; Kraszewska, K.; Mussur, M.; Kobos, J.; Mazurek, U.; Stark, H.; Fogel, W.A. Experimental
 autoimmune myocarditis in rats and therapeutic histamine H1–H4 receptor inhibition. J. Physiol. Pharmacol.
 2018, 69, 889–900. [CrossRef]

43. Alexander, S.P.; Christopoulos, A.; Davenport, A.P.; Kelly, E.; Marrion, N.V.; Peters, J.A.; Facenda, E.;
 Harding, S.D.; Pawson, A.J.; Sharrman, J.L. The Concise Guide to PHARMACOLOGY 2017/18: G protein-coupled receptors.
 Br. J. Pharmacol. 2017, 174, S17–S129. [CrossRef] [PubMed]

44. Tiligada, E.; Ennis, M. Histamine pharmacology: From Sir Henry Dale to the 21st century. Br. J. Pharmacol.
 2020, 177, 469–489. [CrossRef] [PubMed]

45. Wifling, D.; Bernhardt, G.; Dove, S.; Buschauer, A. The Extracellular Loop 2 (ECL2) of the Human Histamine
 H4 Receptor Substantially Contributes to Ligand Binding and Constitutive Activity. PLoS ONE 2015, 10,
 e0117185. [CrossRef]

46. Wifling, D.; Löffel, K.; Nordemann, U.; Strasser, A.; Bernhardt, G.; Dove, S.; Seifert, R.; Buschauer, A.
 Molecular determinants for the high constitutive activity of the human histamine H4 receptor: Functional
 studies on orthologues and mutants. Br. J. Pharmacol. 2015, 172, 785–798. [CrossRef]

47. UniProt Database. Available online: https://www.uniprot.org/ (accessed on 23 April 2020).

48. Clustal Omega Service. Available online: https://www.ebi.ac.uk/Tools/msa/clustalo/ (accessed on 23 April 2020).

49. Nakamura, T.; Itadani, H.; Hidaka, Y.; Ohta, M.; Tanaka, K. Molecular Cloning and Characterization of a
 New Human Histamine Receptor, HH4R. Biochem. Biophys. Res. Commun. 2000, 279, 615–620. [CrossRef]

50. Thurmond, R.L.; Venable, J.; Savall, B.; La, D.; Snook, S.; Dunford, P.J.; Edwards, J.P. Clinical Development of
 Histamine H4 Receptor Antagonists. In Histamine and Histamine Receptors in Health and Disease; Hattori, Y.,
 Seifert, R., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 301–320.

51. Thurmond, R.L. The histamine H4 receptor: From orphan to the clinic. Front. Pharmacol. 2015, 6, 65. [CrossRef]

52. Deiteren, A.; De Man, J.G.; Pelckmans, P.A.; De Winter, B.Y. Histamine H(4) receptors in the gastrointestinal
 tract. Br. J. Pharmacol. 2015, 172, 1165–1178. [CrossRef]

53. Ehling, S.; Rossbach, K.; Dunston, S.M.; Stark, H.; Baumer, W. Allergic inflammation is augmented via
 histamine H4 receptor activation: The role of natural killer cells in vitro and in vivo. J. Dermatol. Sci. 2016,
 83, 106–115. [CrossRef]

54. Grosicki, M.; Kiec-Kononowicz, K. Human eosinophils potential pharmacological model applied in human
 histamine H4 receptor research. Curr. Med. Chem. 2015, 22, 2087–2099. [CrossRef]

55. De Benedetto, A.; Yoshida, T.; Fridy, S.; Park, J.E.; Kuo, I.H.; Beck, L.A. Histamine and Skin Barrier: Are
 Histamine Antagonists Useful for the Prevention or Treatment of Atopic Dermatitis? J. Clin. Med. 2015, 4,
 741–755. [CrossRef] [PubMed]

56. Levoin, N.; Labeuwu, O.; Billot, X.; Calmels, T.; Danvy, D.; Krief, S.; Berrebi-Bertrand, I.; Lecomte, J.M.;
 Schwartz, J.C.; Capet, M. Discovery of nanomolar ligands with novel scaffolds for the histamine H4 receptor
 by virtual screening. Eur. J. Med. Chem. 2017, 125, 565–572. [CrossRef]

57. Labeuwu, O.; Levoin, N.; Billot, X.; Danvy, D.; Calmels, T.; Krief, S.; Ligneau, X.; Berrebi-Bertrand, I.; Robert, P.;
 Lecomte, J.M.; et al. Synthesis and evaluation of a 2-benzothiazolylphenylmethyl ether class of histamine H4
 receptor antagonists. Bioorg. Med. Chem. Lett. 2016, 26, 5263–5266. [CrossRef] [PubMed]

58. Ohsawa, Y.; Hirasa, N. The Role of Histamine H1 and H4 Receptors in Atopic Dermatitis: From Basic
 Research to Clinical Study. Allergol. Int. 2014, 63, 533–542. [CrossRef]

59. Savall, B.M.; Chavez, F.; Tays, K.; Dunford, P.J.; Cowden, J.M.; Hack, M.D.; Wolin, R.L.; Thurmond, R.L.;
 Edwards, J.P. Discovery and SAR of 6-alkyl-2,4-diaminopyrimidines as histamine H(4) receptor antagonists.
 J. Med. Chem. 2014, 57, 2429–2439. [CrossRef]
60. Chigbu, D.I.; Coyne, A.M. Update and clinical utility of alcaftadine ophthalmic solution 0.25% in the treatment of allergic conjunctivitis. *Clin. Ophthalmol.* 2015, 9, 1215–1225. [CrossRef] [PubMed]

61. McLaurin, E.B.; Marsico, N.P.; Ackerman, S.L.; Ciolino, J.B.; Williams, J.M.; Villanueva, L.; Hollander, D.A. Ocular itch relief with alcaftadine 0.25% versus olopatadine 0.2% in allergic conjunctivitis: Pooled analysis of two multicenter randomized clinical trials. *Adv. Ther.* 2014, 31, 1059–1071. [CrossRef] [PubMed]

62. Grzybowska-Kowalczyk, A.; Maslinska, D.; Wojciechowska, M.; Szuikiewicz, D.; Wojtecka-Lukasik, E.; Paradowska, A.; Maldyk, P.; Maslinski, S. Expression of histamine H4 receptor in human osteoarthritic synovial tissue. *Inflamm. Res.* 2008, 57 (Suppl. 1), S63–S64. [CrossRef] [PubMed]

63. Grzybowska-Kowalczyk, A.; Maslinska, D.; Wojciechowska, M.; Szuikiewicz, D.; Wojtecka-Lukasik, E.; Rzodkiewicz, P.; Wojtecka-Łukasik, E.; Masliński, S. Role of histamine in rheumatoid diseases. *Inflamm. Res.* 2010, 56, 599–606. [CrossRef] [PubMed]

64. Rzodkiewicz, P.; Wojtecka-Lukasik, E.; Masliński, S. Role of histamine in rheumatoid diseases. *Reumatol. Rheumatol.* 2010, 48, 49–53.

65. Yu, B.; Shao, Y.; Li, P.; Zhang, J.; Zhong, Q.; Yang, H.; Hu, X.; Chen, B.; Peng, X.; Wu, Q.; et al. Copy number variations of the human histamine H4 receptor gene are associated with systemic lupus erythematosus. *Br. J. Dermatol.* 2016, 175, 393–400. [CrossRef] [PubMed]

66. Deiteren, A.; De Man, J.G.; Ruysers, N.E.; Moreels, T.G.; Pelckmans, P.A.; De Winter, B.Y. Histamine H4 and H1 receptors contribute to postinflammatory visceral hypersensitivity. *Gut* 2014, 63, 1873–1882. [CrossRef] [PubMed]

67. Andersson, C.; Tufvesson, E.; Diamant, Z.; Bjørner, L. Revisiting the role of the mast cell in asthma. *Curr. Opin. Pulm. Med.* 2016, 22, 10–17. [CrossRef] [PubMed]

68. George, L.; Brightling, C.E. Eosinophilic airway inflammation: Role in asthma and chronic obstructive pulmonary disease. *Ther. Adv. Chronic Dis.* 2016, 7, 34–51. [CrossRef] [PubMed]

69. Metcalfe, D.D.; Pawankar, R.; Ackerman, S.J.; Akin, C.; Clayton, F.; Falcone, F.H.; Gleich, G.J.; Irani, A.M.; Johansson, M.W.; Klion, A.D.; et al. Biomarkers of the involvement of mast cells, basophils and eosinophils in asthma and allergic diseases. *World Allergy Organ. J.* 2016, 9, 7. [CrossRef] [PubMed]

70. Grosicki, M.; Wojcik, T.; Chlopicki, S.; Kiec-Kononowicz, K. In vitro study of histamine and histamine receptor ligands influence on the adhesion of purified human eosinophils to endothelium. *Eur. J. Pharmacol.* 2016, 777, 49–59. [CrossRef]

71. Rosa, A.C.; Pini, A.; Lucarini, L.; Lanzi, C.; Veglia, E.; Thurmond, R.L.; Stark, H.; Masini, E. Prevention of bleomycin-induced lung inflammation and fibrosis in mice by naproxen and JNJ7777120 treatment. *J. Pharmacol. Exp. Ther.* 2014, 351, 308–316. [CrossRef] [PubMed]

72. Thurmond, R.L.; Chen, B.; Dunford, P.J.; Greenspan, A.J.; Karlsson, L.; La, D.; Ward, P.; Xu, X.L. Clinical and preclinical characterization of the histamine H(4) receptor antagonist JNJ-39758979. *J. Pharmacol. Exp. Ther.* 2014, 349, 176–184. [CrossRef]

73. Hartwig, C.; Munder, A.; Glage, S.; Wedekind, D.; Schenk, H.; Seifert, R.; Neumann, D. The histamine H4-receptor (H4R) regulates eosinophilic inflammation in ovalbumin-induced experimental allergic asthma in mice. *Eur. J. Immunol.* 2015, 45, 1129–1140. [CrossRef]

74. Mahapatra, S.; Albrecht, M.; Behrens, B.; Jirmo, A.; Behrens, G.; Hartwig, C.; Neumann, D.; Raap, U.; Bahre, H.; Herrick, C.; et al. Delineating the role of histamine-1- and -4-receptors in a mouse model of Th2-dependent antigen-specific skin inflammation. *PLoS ONE* 2014, 9, e87296. [CrossRef]

75. Veglia, E.; Grange, C.; Pini, A.; Moggio, A.; Lanzi, C.; Camussi, G.; Chazot, P.L.; Rosa, A.C. Histamine receptor expression in human renal tubules: A comparative pharmacological evaluation. *Inflamm. Res.* 2015, 64, 261–270. [CrossRef] [PubMed]

76. Rosa, A.C.; Grange, C.; Pini, A.; Katebe, M.; Benetti, E.; Collino, M.; Miglio, G.; Bani, D.; Camussi, G.; Chazot, P. Overexpression of histamine H4 receptors in the kidney of diabetic rat. *Inflamm. Res.* 2013, 62, 357–365. [CrossRef] [PubMed]

77. Pini, A.; Grange, C.; Veglia, E.; Argenziano, M.; Cavalli, R.; Guasti, D.; Calosi, L.; Ghè, C.; Solarino, R.; Thurmond, R.L.; et al. Histamine H4 receptor antagonism prevents the progression of diabetic nephropathy in male DBA2J mice. *Pharmacol. Res.* 2018, 128, 18–28. [CrossRef] [PubMed]

78. Zhou, P.; Homberg, J.R.; Fang, Q.; Wang, J.; Li, W.; Meng, X.; Shen, J.; Luan, Y.; Liao, P.; Swaab, D.F.; et al. Histamine-4 receptor antagonist [N]7777120 inhibits pro-inflammatory microglia and prevents the progression of Parkinson-like pathology and behaviour in a rat model. *Brain. Behav. Immun.* 2019, 76, 61–73. [CrossRef]
79. Nuutinen, S.; Panula, P. Histamine in neurotransmission and brain diseases. *Adv. Exp. Med. Biol.* 2010, 709, 95–107. [CrossRef]

80. Medhurst, A.D.; Roberts, J.C.; Lee, J.; Chen, C.P.; Brown, S.H.; Roman, S.; Lai, M.K. Characterization of histamine H3 receptors in Alzheimer’s Disease brain and amyloid over-expressing TASTPM mice. *Br. J. Pharmacol.* 2009, 157, 130–138. [CrossRef]

81. Patnaik, R.; Sharma, A.; Skaper, S.D.; Muresanu, D.F.; Lafuente, J.V.; Castellani, R.J.; Nozari, A.; Sharma, H.S. Histamine H3 Inverse Agonist BF 2649 or Antagonist with Partial H4 Agonist Activity Clobenpropit Reduces Amyloid Beta Peptide-Induced Brain Pathology in Alzheimer’s Disease. *Mol. Neurobiol.* 2018, 55, 312–321. [CrossRef]

82. Shan, L.; Bao, A.M.; Swaab, D.F. The human histaminergic system in neuropsychiatric disorders. *Trends Neurosci.* 2015, 38, 167–177. [CrossRef]

83. Kim, K.W.; Kim, B.M.; Lee, K.A.; Lee, S.H.; Firestein, G.S.; Kim, H.R. Histamine and Histamine H4 Receptor Promotes Osteoclastogenesis in Rheumatoid Arthritis. *Sci. Rep.* 2017, 7, 1197. [CrossRef]

84. Abd-Allah, A.R.; Ahmad, S.F.; Alrashidi, I.; Abdel-Hamied, H.E.; Zoheir, K.M.; Ashour, A.E.; Bakheet, S.A.; Attia, S.M. Involvement of histamine 4 receptor in the pathogenesis and progression of rheumatoid arthritis. *Int. Immunol.* 2014, 26, 325–340. [CrossRef]

85. Massari, N.A.; Medina, V.A.; Lamas, D.J.M.; Cricco, G.P.; Cricoi, M.; Sambuco, L.; Bergoc, R.M.; Rivera, E.S. Role of H4 receptor in histamine-mediated responses in human melanoma. *Mol. Neurobiol.* 2018, 55, 312–321. [CrossRef] [PubMed]

86. Medina, V.A.; Brenzoni, P.G.; Lamas, D.J.; Massari, N.; Mondillo, C.; Nunez, M.A.; Pignataro, O.; Rivera, E.S. Role of histamine H4 receptor in breast cancer cell proliferation. *Front. Biosci.* 2011, 3, 1042–1060. [CrossRef] [PubMed]

87. Crisco, G.P.; Mohamad, N.A.; Sambuco, L.A.; Genre, F.; Croci, M.; Gutiérrez, A.S.; Medina, V.; Bergoc, R.; Rivera, E.; Martin, G. Histamine regulates pancreatic carcinoma cell growth through H3 and H4 receptors. *Inflamm. Res.* 2008, 57, 23–24. [CrossRef] [PubMed]

88. Boer, K.; Helinger, E.; Helinger, A.; Pocza, P.; Pos, Z.; Demeter, P.; Baranyai, Z.; Dede, K.; Darvas, Z.; Falus, A. Decreased expression of histamine H1 and H4 receptors suggests disturbance of local regulation in human colorectal tumours by histamine. *Eur. J. Cell Biol.* 2008, 87, 227–236. [CrossRef] [PubMed]

89. Saligrama, N.; Noubade, R.; Case, L.K.; del Rio, R.; Teuscher, C. Combinatorial roles for histamine H1-H2 and H3-H4 receptors in autoimmune inflammatory disease of the central nervous system. *Eur. J. Immunol.* 2012, 42, 1536–1546. [CrossRef] [PubMed]

90. Werfel, T. Novel systemic drugs in treatment of atopic dermatitis: Results from phase II and phase III studies published in 2017/2018. *Curr. Opin. Allergy Clin. Immunol.* 2018, 18, 432–437. [CrossRef] [PubMed]

91. Attali, P.; Gomeni, R.; Wersinger, E.; Poli, S.; Venail, F. The effects of SENS-111, a new H4R antagonist, on vertigo induced by caloric test in healthy volunteers (HV) is related to plasma concentrations. *Clin. Ther.* 2016, 38, e4. [CrossRef]

92. A Synovial Biopsy Study of JNJ-38518168 in Participants with Active Rheumatoid Arthritis Despite Methotrexate Therapy (TERMINATED), Database Entry NCT01862224. Available online: https://www.clinicaltrials.gov/ (accessed on 24 May 2013).

93. A Dose Range Finding Study of JNJ-38518168 in Patients with Active Rheumatoid Arthritis in Spite of Treatment with Methotrexate (TERMINATED), Database Entry NCT01679951. Available online: https://www.clinicaltrials.gov/ (accessed on 6 September 2012).

94. A Study of JNJ-38518168 in Symptomatic Adult Participants with Uncontrolled, Persistent Asthma (COMPLETED), Database Entry NCT01823016. Available online: https://www.clinicaltrials.gov/ (accessed on 4 April 2013).

95. Riddy, D.M.; Cook, A.E.; Diepenhorst, N.A.; Bosnyak, S.; Brady, R.; la Cour, C.M.; Mocaer, E.; Summers, R.J.; Charman, W.N.; Sexton, P.M. Isoform-specific biased agonism of histamine H3 receptor agonists. *Mol. Pharmacol.* 2017, 91, 87–99. [CrossRef]
96. Kollmeier, A.; Greenspan, A.; Xu, X.; Silkoff, P.; Barnathan, E.; Loza, M.; Jiang, J.; Zhou, B.; Chen, B.; Thurmond, R. Phase 2a, randomized, double-blind, placebo-controlled, multicentre, parallel-group study of an H4R-antagonist (JNJ-39758979) in adults with uncontrolled asthma. *Clin. Exp. Allergy* 2018, 48, 957–969. [CrossRef]

97. Kollmeier, A.; Francke, K.; Chen, B.; Dunford, P.J.; Greenspan, A.J.; Xia, Y.; Xu, X.L.; Zhou, B.; Thurmond, R.L. The histamine H(4) receptor antagonist, JNJ 39758979, is effective in reducing histamine-induced pruritus in a randomized clinical study in healthy subjects. *J. Pharmacol. Exp. Ther.* 2014, 350, 181–187. [CrossRef] [PubMed]

98. Kiss, R.; Keseru, G.M. Novel histamine H4 receptor ligands and their potential therapeutic applications: An update. *Expert Opin. Ther. Pat.* 2014, 24, 1185–1197. [CrossRef] [PubMed]

99. A Dose Range Finding Study of JNJ-39758979 in Patients with Active Rheumatoid Arthritis Currently Treated with Methotrexate (WITHDRAWN), Database Entry NCT01480388. Available online: https://www.clinicaltrials.gov (accessed on 28 November 2011).

100. Study of JNJ-39758979 in Symptomatic Adult Patients with Uncontrolled Asthma (WITHDRAWN), Database Entry NCT01493882. Available online: https://www.clinicaltrials.gov (accessed on 16 December 2011).

101. Murata, Y.; Song, M.; Kikuchi, H.; Hisamichi, K.; Xu, X.L.; Greenspan, A.; Kato, M.; Chiou, C.F.; Kato, T.; Guzzo, C. Phase 2a, randomized, double-blind, placebo-controlled, multicenter, parallel-group study of a H4R-antagonist (JNJ-39758979) in Japanese adults with moderate atopic dermatitis. *J. Dermatol.* 2015, 42, 129–139. [CrossRef] [PubMed]

102. A Study to Determine the Efficacy of ZPL-3893787 in Subjects with Atopic Dermatitis (COMPLETED), Database Entry NCT02424253. Available online: https://www.clinicaltrials.gov (accessed on 23 April 2015).

103. A Study to Determine the Efficacy of ZPL-3893787 in Subjects with Plaque Psoriasis (COMPLETED), Database Entry NCT02618616. Available online: https://www.clinicaltrials.gov (accessed on 1 December 2015).

104. A Study to Assess the Safety and Efficacy of ZPL389 in Patients with Moderate to Severe Atopic Dermatitis (RECRUITING), Database Entry NCT03517566. Available online: https://www.clinicaltrials.gov (accessed on 7 May 2018).

105. A Study to Assess the Safety and Efficacy of ZPL389 with TCS/TCI in Atopic Dermatitis Patients (ZESTExt) (RECRUITING), Database Entry NCT03948334. Available online: https://www.clinicaltrials.gov (accessed on 13 May 2019).

106. Efficacy of SENS-111 in Patients Suffering From Acute Unilateral Vestibulopathy (RECRUITING), Database Entry NCT03110458. Available online: https://www.clinicaltrials.gov (accessed on 12 April 2017).

107. Rosethorne, E.M.; Charlton, S.J. Agonist-biased signaling at the histamine H4 receptor: JNJ7777120 recruits β-arrestin without activating G proteins. *Mol. Pharmacol.* 2011, 79, 749–757. [CrossRef] [PubMed]

108. Strasser, A.; Wittmann, H.J.; Buschauer, A.; Schneider, E.H.; Seifert, R. Species-dependent activities of G-protein-coupled receptor ligands: Lessons from histamine receptor orthologs. *Trends Pharmacol. Sci.* 2013, 34, 13–32. [CrossRef]

109. Seifert, R.; Strasser, A.; Schneider, E.H.; Neumann, D.; Dove, S.; Buschauer, A. Molecular and cellular analysis of human histamine receptor subtypes. *Trends Pharmacol. Sci.* 2013, 34, 33–58. [CrossRef]

110. Monczor, F.; Fernandez, N. Current knowledge and perspectives on histamine H1 and H2 receptor pharmacology: Functional selectivity, receptor crosstalk, and repositioning of classic histaminergic ligands. *Mol. Pharmacol.* 2016, 90, 640–648. [CrossRef]

111. Kenakin, T. Signaling bias in drug discovery. *Expert. Opin. Drug Discov.* 2017, 12, 321–333. [CrossRef]

112. Tiligada, E.; Ishii, M.; Riccardi, C.; Spedding, M.; Simon, H.U.; Teixeira, M.M.; Landys Chovel Cuervo, M.; Holgate, S.T.; Levi-Schaffer, F. The expanding role of immunopharmacology: IUPHAR Review 16. *Br. J. Pharmacol.* 2015, 172, 4217–4227. [CrossRef]

113. Riccardi, C.; Levi-Schaffer, F.; Tiligada, E. *Immunopharmacology and Inflammation*; Springer: Berlin/Heidelberg, Germany, 2018.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).