Covariant central extensions of gauge Lie algebras

Bas Janssens* and Karl-Hermann Neeb†

October 14, 2018

Abstract
Motivated by positive energy representations, we classify those continuous central extensions of the compactly supported gauge Lie algebra that are covariant under a 1-parameter group of transformations of the base manifold.

1 Introduction
Let \(\pi: K \to M \) be a locally trivial bundle of finite dimensional Lie groups, with corresponding Lie algebra bundle \(\mathfrak{R} \to M \). We assume that the fibres \(\mathfrak{R}_x \) are semisimple. The group \(G = \Gamma_c(K) \) of compactly supported sections, called the (compactly supported) gauge group, is a locally convex Lie group with Lie algebra \(\mathfrak{g} = \Gamma_c(\mathfrak{R}) \), the (compactly supported) gauge Lie algebra.

In representation theory, one often wishes to impose positive energy conditions derived from a distinguished 1-parameter group \(\gamma_M: \mathbb{R} \to \text{Diff}(M) \) of transformations of the base. A lift \(\gamma: \mathbb{R} \to \text{Aut}(K) \) of \(\gamma_M \) induces a 1-parameter family \(\alpha: \mathbb{R} \to \text{Aut}(G) \) of automorphisms of the gauge group. If \(D \in \text{der}(\mathfrak{g}) \) is the derivation \(D(\xi) := \frac{d}{dt} \big|_{t=0} \alpha_t(\xi) \) induced by \(\alpha \), then the semidirect product

\[
G \rtimes \alpha \mathbb{R}
\]

is a locally convex Lie group with Lie algebra

\[
\mathfrak{g} \rtimes D \mathbb{R}.
\]

Since \([0 \oplus 1, \xi \oplus 0] = D(\xi)\), we will identify \(0 \oplus 1 \) with \(D \) and write \(\mathfrak{g} \rtimes D \mathbb{R} = \mathfrak{g} \rtimes \mathbb{R}D \) accordingly. In this note, we give a complete classification of the continuous 1-dimensional central extensions \(\widehat{g} \) of \(\mathfrak{g} \rtimes D \mathbb{R} \). In other words, we determine the continuous second Lie algebra cohomology \(H^2(\mathfrak{g} \rtimes D \mathbb{R}, \mathbb{R}) \).

In order to describe the answer, write \(v \in \mathcal{V}(K) \) for the vector field on \(K \) that generates the flow of \(\gamma \), and write \(\pi_*v \in \mathcal{V}(M) \) for its projection to \(M \),

\[\text{B.J. acknowledges support from the NWO grant 613.001.214 “Generalised Lie algebra sheaves”}\]

\[\text{K.-H. Neeb acknowledges support from the Centre Interfacultaire Bernoulli (CIB) and the NSF (National Science Foundation) for a research visit at the EPFL.}\]
which generates the flow of γ_M. Identifying $\xi \in \Gamma_c(\mathfrak{g})$ with the corresponding vertical left invariant vector field Ξ_ξ on K, the action of the derivation D on $\mathfrak{g} = \Gamma_c(\mathfrak{g})$ is described by $D\xi = L_\xi \mathfrak{g}$. For each fibre \mathfrak{g}_x, the universal invariant bilinear form κ takes values in the K-representation $V(\mathfrak{g}_x)$, and $V := V(\mathfrak{g})$ is a flat bundle over M. In the (important!) special case that \mathfrak{g}_x is a compact simple Lie algebra, κ is simply the Killing form with values in $V(\mathfrak{g}_x) = \mathbb{R}$, and V is the trivial real line bundle over M. Given a Lie connection ∇ on \mathfrak{g} and a closed $\pi_*\mathcal{V}$-invariant current $\lambda \in \Omega^1_c(M, \mathcal{V})$, there is a unique 2-cocycle $\omega_{\lambda, \mathcal{V}}$ on $\mathfrak{g} \rtimes \mathbb{R}D$ with

$$\omega_{\lambda, \mathcal{V}}(\xi, \eta) = \lambda(\kappa(\xi, \nabla\eta)), \quad \omega_{\lambda, \mathcal{V}}(D, \xi) = \lambda(\kappa(L_\xi \nabla, \xi)) \quad \text{for} \quad \xi, \eta \in \mathfrak{g}.$$

The class $[\omega_{\lambda, \mathcal{V}}] \in H^2(\mathfrak{g} \rtimes_D \mathbb{R}, \mathbb{R})$ is independent of the choice of ∇. One of our main results (Theorem 5.3) asserts that the map $\lambda \mapsto [\omega_{\lambda, \mathcal{V}}]$ is a linear isomorphism from the space of closed, $\pi_*\mathcal{V}$-invariant, \mathcal{V}-valued currents on M to the continuous Lie algebra cohomology $H^2(\mathfrak{g} \rtimes_D \mathbb{R}, \mathbb{R})$.

Our motivation for classifying these central extensions comes from the theory of projective positive energy representations. If G is a Lie group with locally convex Lie algebra \mathfrak{g}, and $\alpha : \mathbb{R} \to \text{Aut}(G)$ is a homomorphism defining a smooth \mathbb{R}-action on G, then the semidirect product $G \rtimes_\alpha \mathbb{R}$ is again a Lie group, with Lie algebra $\mathfrak{g} \rtimes \mathbb{R}D$. For every smooth projective unitary representation $\pi : G \rtimes_\alpha \mathbb{R} \to \text{PU}(\mathcal{H})$ of $G \rtimes_\alpha \mathbb{R}$, there exists a central Lie group extension \hat{G} of $G \rtimes_\alpha \mathbb{R}$ by the circle group \mathbb{T} for which π lifts to a smooth linear unitary representation $\rho : \hat{G} \to \text{U}(\mathcal{H})$ (see [JN15] for details). The Lie algebra $\hat{\mathfrak{g}}$ can then be written as

$$\hat{\mathfrak{g}} = \mathbb{R}C \oplus_\omega (\mathfrak{g} \rtimes \mathbb{R}D),$$

where ω is a Lie algebra 2-cocycle of $\mathfrak{g} \rtimes \mathbb{R}D$. The Lie bracket is

$$[zC + x + tD, z'C + x' + t'D] = \omega(x + tD, x' + t'D)C + [x, x'] + tD(x') - t'D(x),$$

and $d\rho(C) = i1$ by construction. We say that π is a positive energy representation if the selfadjoint operator $H := id\rho(D)$ has a spectrum which is bounded below.

In [JN16] we address the problem of classifying the projective positive energy representations of the gauge group $G = \Gamma_c(K)$, for the smooth action $\alpha : \mathbb{R} \to \text{Aut}(G)$ induced by a smooth 1-parameter group $\gamma : \mathbb{R} \to \text{Aut}(K)$ of bundle automorphisms. We break this problem into the following steps:

(PE1) Classify the 1-dimensional central Lie algebra extensions $\hat{\mathfrak{g}}$ of $\mathfrak{g} \rtimes_D \mathbb{R}$.

(PE2) Determine which central extensions $\hat{\mathfrak{g}}$ fulfill natural positivity conditions imposed by so-called Cauchy–Schwarz estimates required for cocycles coming from positive energy representations (cf. [JN16]).

(PE3) For those $\hat{\mathfrak{g}}$, classify the positive energy representations that integrate to a representation of a connected Lie group \hat{G}_0 with Lie algebra $\hat{\mathfrak{g}}$.

2
In the present note we completely solve (PE1) for semisimple structure algebras \(\mathfrak{r}_e \), thus completing the first step in the classification of projective positive energy representations.

To proceed with (PE2), we assume in [JN16] that the vector field \(\pi \ast v \) on \(M \) has no zeros and generates a periodic flow, hence defines an action of the circle group \(T \) on \(M \). Under this assumption we then show that for every projective positive energy representation \(\rho \) of \(\mathfrak{g} \oplus R \mathfrak{D} \), there exists a locally finite set \(\Lambda \subseteq M/T \) of orbits such that the \(\mathfrak{g} \)-part of \(d\rho \) factors through the restriction homomorphism

\[
\mathfrak{g} = \Gamma_c(\mathfrak{r}) \to \Gamma_c(\mathfrak{r}|_{\Lambda_M}) \cong \bigoplus_{\lambda \in \Lambda} \mathcal{L}_\psi(\mathfrak{t}),
\]

where \(\Lambda_M \subseteq M \) is the union of the orbits in \(M \), and

\[
\mathcal{L}_\psi(\mathfrak{t}) = \{ \xi \in C^\infty(\mathbb{R}, \mathfrak{t}) : (\forall t \in \mathbb{R}) \xi(t+1) = \psi^{-1}(\xi(t)) \}
\]

is the loop algebra twisted by a finite order automorphism \(\psi \in \text{Aut}(\mathfrak{t}) \). As the positive energy representations of covariant loop algebras and their central extensions, the Kac–Moody algebras ([Ka85]), are well understood ([PS86]), this allows us to solve (PE3). This result contributes in particular to “non-commutative distribution” program whose goal is a classification of the irreducible unitary representations of gauge groups ([A-T93]).

The structure of this paper is as follows. After introducing gauge groups, their Lie algebras and one-parameter groups of automorphism in Section 2, we describe in Section 3 a procedure that provides a reduction from semisimple to simple structure Lie algebras, at the expense of replacing \(M \) by a finite covering manifold \(\hat{M} \). In Section 4 we introduce the flat bundle \(V \), which is used in a crucial way in Section 5 for the description of the natural 2-cocycles on the gauge algebra. The first step (PE1) is completely settled in Section 5 where Theorem 5.3 describes all 1-dimensional central extensions of the gauge algebra.

Contents

1 Introduction 1

2 Gauge groups and gauge algebras 4

3 Reduction to simple Lie algebras 6
 3.1 From semisimple to simple Lie algebras 6
 3.2 Compact and noncompact simple Lie algebras 8

4 Universal invariant symmetric bilinear forms 9
 4.1 Universal invariant symmetric bilinear forms 9
 4.2 The flat bundle \(V = V(\mathfrak{r}) \) 10

5 Central extensions of gauge algebras 10
 5.1 Definition of the 2-cocycles 11
 5.2 Classification of central extensions 12
2 Gauge groups and gauge algebras

Let $\mathcal{K} \to M$ be a smooth bundle of Lie groups, and let $\mathfrak{K} \to M$ be the associated Lie algebra bundle with fibres $\mathfrak{K}_x = \text{Lie}(\mathcal{K}_x)$. If M is connected, then the fibres \mathcal{K}_x of $\mathcal{K} \to M$ are all isomorphic to a fixed structure group K, and the fibres \mathfrak{K}_x of \mathfrak{K} are isomorphic to its Lie algebra $\mathfrak{k} = \text{Lie}(K)$.

Definition 2.1. (Gauge group) The gauge group is the group $\Gamma(\mathcal{K})$ of smooth sections of $\mathcal{K} \to M$, and the compactly supported gauge group is the group $\Gamma_c(\mathcal{K})$ of smooth compactly supported sections.

Definition 2.2. (Gauge algebra) The gauge algebra is the Fréchet-Lie algebra $\Gamma(\mathfrak{K})$ of smooth sections of $\mathfrak{K} \to M$, equipped with the pointwise Lie bracket. The compactly supported gauge algebra $\Gamma_c(\mathfrak{K})$ is the LF-Lie algebra of smooth compactly supported sections.

The compactly supported gauge group $\Gamma_c(\mathcal{K})$ is a locally convex Lie group, whose Lie algebra is the compactly supported gauge algebra $\Gamma_c(\mathfrak{K})$.

Proposition 2.3. There exists a unique smooth structure on $\Gamma_c(\mathcal{K})$ which makes it a locally exponential Lie group with Lie algebra $\Gamma_c(\mathfrak{K})$ and exponential map $\exp: \Gamma_c(\mathfrak{K}) \to \Gamma_c(\mathcal{K})$ defined by pointwise exponentiation.

Proof. It suffices to prove this in the case that M is connected. Let $V_t, W_t \subseteq \mathfrak{k}$ be open, symmetric 0-neighbourhoods such that the exponential $\exp: \mathfrak{k} \to K$ restricts to a diffeomorphism of W_t onto its image, V_t is contained in W_t, and $\exp(V_t) \cdot \exp(V_t) \subseteq \exp(W_t)$.

Choose a locally finite cover $(U_i)_{i \in I}$ of M by open trivialising neighbourhoods for $\mathcal{K} \to M$, which possesses a refinement $(C_i)_{i \in I}$ such that $C_i \subset U_i$ is compact for all $i \in I$. Fix local trivialisations $\varphi_i: K \times U_i \to \mathcal{K}|_{U_i}$ of \mathcal{K}, which gives rise to local trivialisations $d\varphi_i: \mathfrak{k} \times U_i \to \mathfrak{K}|_{U_i}$ for \mathfrak{K}. Define $W_i := d\varphi_i(U_i \times W_K)$, and set

$$W_{\Gamma_c(\mathfrak{K})} := \{ \xi \in \Gamma_c(\mathfrak{K}) : \xi(C_i) \subseteq W_i \ \forall \ i \in I \}.$$

Similarly, $V_{\Gamma_c(\mathfrak{K})}$ is defined in terms of preimages over C_i of $V_i := d\varphi_i(U_i \times V_K)$, and both $V_{\Gamma_c(\mathfrak{K})}$ and $W_{\Gamma_c(\mathfrak{K})}$ are open in $\Gamma_c(\mathfrak{K})$. Since the pointwise exponential $\exp: \Gamma_c(\mathfrak{K}) \to \Gamma_c(\mathcal{K})$ is a bijection of $W_{\Gamma_c(\mathfrak{K})}$ onto its image $W_{\Gamma_c(\mathcal{K})} := \exp(W_{\Gamma_c(\mathfrak{K})})$, the latter inherits a smooth structure. The same goes for its subset $V_{\Gamma_c(\mathcal{K})} := \exp(V_{\Gamma_c(\mathfrak{K})})$.

Inversion $W_{\Gamma_c(\mathcal{K})} \to W_{\Gamma_c(\mathcal{K})}$ and multiplication $V_{\Gamma_c(\mathcal{K})} \times V_{\Gamma_c(\mathcal{K})} \to W_{\Gamma_c(\mathcal{K})}$ are smooth, and for every $\sigma \in \Gamma_c(\mathcal{K})$, there exists an open 0-neighbourhood $W_\sigma \subseteq W_{\Gamma_c(\mathfrak{K})}$ such that $\text{Ad}_\sigma: W_\sigma \to W_{\Gamma_c(\mathfrak{K})}$ is smooth. It therefore follows from [[1833] p.14] (which generalises to locally convex Lie groups, cf. [[Ne06] Thm. II.2.1]), that $\Gamma_c(\mathcal{K})$ possesses a unique Lie group structure such that for some open 0-neighbourhood $U_{\Gamma_c(\mathfrak{K})} \subseteq W_{\Gamma_c(\mathfrak{K})}$, the image $\exp(U_{\Gamma_c(\mathfrak{K})}) \subseteq \Gamma_c(\mathcal{K})$ is an open neighbourhood of the identity. \square
Example 2.4. If $\mathcal{K} \to M$ is a trivial bundle, then the gauge group is $\Gamma(\mathcal{K}) = C^\infty(M, K)$, and the gauge algebra is $\Gamma(\mathfrak{k}) = C^\infty(M, \mathfrak{k})$. Similarly, we have $\Gamma_c(\mathcal{K}) = C^\infty_c(M, K)$ and $\Gamma_c(\mathfrak{k}) = C^\infty_c(M, \mathfrak{k})$ for their compactly supported versions. One can thus think of gauge groups as ‘twisted versions’ of the group of smooth K-valued functions on M.

The motivating example of a gauge group is the group $\text{Gau}(P)$ of vertical automorphisms of a principal fibre bundle $\pi: P \to M$ with structure group K.

Example 2.5. (Gauge groups from principal bundles) A vertical automorphism of a principal fibre bundle $\pi: P \to M$ is a K-equivariant diffeomorphism $\alpha: P \to P$ such that $\pi \circ \alpha = \alpha$. The group $\text{Gau}(P)$ of vertical automorphisms is called the gauge group of P. It is isomorphic to the group

$$C^\infty(P, K)^K := \{ f \in C^\infty(P, K); (\forall p \in P, k \in K) f(pk) = k^{-1}f(p)k \},$$

with isomorphism $C^\infty(P, K)^K \isom \text{Gau}(P)$ given by $f \mapsto \alpha_f$ with $\alpha_f(p) = pf(p)$.

In order to interpret $\text{Gau}(P)$ as a gauge group in the sense of Definition 2.1, we construct the bundle of groups $\text{Conj}(P) \to M$ with typical fibre K. For an element $k \in K$, we write $c_k(g) = kgk^{-1}$ for the induced inner automorphism of K, and also $\text{Ad}_k \in \text{Aut}(\mathfrak{k})$ for the corresponding automorphism of its Lie algebra \mathfrak{k}. Define the bundle of groups $\text{Conj}(P) \to M$ by

$$\text{Conj}(P) := P \times K / \sim,$$

where \sim is the relation $(pk, h) \sim (p, c_k(h))$ for $p \in P$ and $k, h \in K$. We then have isomorphisms

$$\text{Gau}(P) \isom C^\infty(P, K)^K \isom \Gamma(\text{Conj}(P)),$$

where $f \in C^\infty(P, K)^K$ corresponds to the section $\sigma_f \in \Gamma(\text{Conj}(P))$ defined by $\sigma_f(\pi(p)) = [p, f(p)]$ for all $p \in P$. The bundle of Lie algebras associated to $\text{Conj}(P)$ is the adjoint bundle $\text{Ad}(P) \to M$, defined as the quotient

$$\text{Ad}(P) := P \times_{\text{Ad}} \mathfrak{k}$$

of $P \times \mathfrak{k}$ modulo the relation $(pk, X) \sim (p, \text{Ad}_k(X))$ for $p \in P$, $X \in \mathfrak{k}$ and $k \in K$. The compactly supported gauge group $\text{Gau}_c(P) \subseteq \text{Gau}(P)$ is the group of vertical bundle automorphisms of P that are trivial outside the preimage of some compact set in M. Since it is isomorphic to $\Gamma_c(\text{Conj}(P))$, it is a locally convex Lie group with Lie algebra $\mathfrak{gau}_c(P) = \Gamma_c(\text{Ad}(P))$.

Remark 2.6. Gauge groups arise in field theory, as groups of transformations of the space of principal connections on P (the gauge fields). If the space-time manifold M is not compact, then one imposes boundary conditions on the gauge fields at infinity. Depending on how one does this, the group $\text{Gau}(P)$ may be too big to preserve the set of admissible gauge fields. One then expects the group of remaining gauge transformations to at least contain $\text{Gau}_c(P)$, or perhaps even some larger Lie group of gauge transformations specified by a decay condition at infinity (cf. [Wa10, Go04]).
An automorphism of \(\pi: \mathcal{K} \rightarrow M \) is a pair \((\gamma, \gamma_M) \in \text{Diff}(\mathcal{K}) \times \text{Diff}(M)\) with \(\pi \circ \gamma = \gamma_M \circ \pi\), such that for each fibre \(K_x\), the map \(\gamma|_{K_x}: K_x \rightarrow K_{\gamma_M(x)}\) is a group homomorphism. Since \(\gamma_M\) is determined by \(\gamma\), we will omit it from the notation. We denote the group of automorphisms of \(K\) by \(\text{Aut}(K)\).

Definition 2.7. (Geometric \(\mathbb{R}\)-actions) In the context of gauge groups, we will be interested in \(\mathbb{R}\)-actions \(\alpha: \mathbb{R} \rightarrow \text{Aut}(\Gamma(K))\) that are of geometric type. These are derived from a 1-parameter group \(\gamma: \mathbb{R} \rightarrow \text{Aut}(K)\) by

\[
\alpha_t(\sigma) := \gamma_t \circ \sigma \circ \gamma_{-1}^M. \tag{4}
\]

Remark 2.8. If \(K\) is of the form \(\text{Ad}(P)\) for a principal fibre bundle \(P \rightarrow M\), then a 1-parameter group of automorphisms of \(P\) induces a 1-parameter group of automorphisms of \(K\). If we think of the induced diffeomorphisms \(\gamma_M(t) \in \text{Diff}(M)\) as time translations, then the automorphisms of \(P\) encode the time translation behaviour of the gauge fields.

The 1-parameter group \(\alpha: \mathbb{R} \rightarrow \text{Aut}(\Gamma(K))\) of group automorphisms differentiates to a 1-parameter group \(\beta: \mathbb{R} \rightarrow \text{Aut}(\Gamma(\mathfrak{g}))\) of Lie algebra automorphisms given by

\[
\beta_t(\xi) = \frac{\partial}{\partial \varepsilon} \bigg|_{\varepsilon=0} \gamma_t \circ e^{\varepsilon \xi} \circ \gamma_{-1}^M. \tag{5}
\]

The corresponding derivation \(D := \frac{\partial}{\partial \varepsilon} \bigg|_{\varepsilon=0} \beta_t\) of \(\Gamma(\mathfrak{g})\) can be described in terms of the infinitesimal generator \(v \in \mathfrak{k}(\mathcal{K})\) of \(\gamma\), given by \(v := \frac{\partial}{\partial \varepsilon} \bigg|_{\varepsilon=0} \gamma_t\). We identify \(\xi \in \Gamma(\mathfrak{g})\) with the vertical, left invariant vector field \(\Xi_\xi \in \mathfrak{k}(\mathcal{K})\) defined by \(\Xi_\xi(k_x) = \frac{\partial}{\partial \varepsilon} \bigg|_{\varepsilon=0} k_x e^{-\varepsilon \xi(x)}\). Using the equality \([v, \Xi_\xi] = \Xi_{D(\xi)}\), we write

\[
D(\xi) = L_v \xi. \tag{6}
\]

For \(\mathfrak{g} = \Gamma_c(\mathfrak{g})\), the Lie algebra \(\mathfrak{g} \rtimes_D \mathbb{R}\) then has bracket

\[
[\xi + t, \xi' + t'] = \left([\xi, \xi'] + (t L_v \xi' - t' L_v \xi) \right) \oplus 0. \tag{7}
\]

3 Reduction to simple Lie algebras

In this note, we will focus attention on the class of gauge algebras with a semisimple structure group, not only because they are more accessible, but also because they are relevant in applications. We now show that every gauge algebra with a semisimple structure group can be considered as a gauge algebra of a bundle with a simple structure group which need not be the same for all fibers. Accordingly, the base manifold \(M\) is replaced by a not necessarily connected finite cover.

3.1 From semisimple to simple Lie algebras

Let \(\mathfrak{g} \rightarrow M\) be a smooth locally trivial bundle of Lie algebras with semisimple fibres. We construct a finite cover \(\hat{M} \rightarrow M\) and a locally trivial bundle of Lie algebras \(\hat{\mathfrak{g}} \rightarrow \hat{M}\) with simple fibres such that \(\Gamma(\hat{\mathfrak{g}}) \simeq \hat{\Gamma}(\hat{\mathfrak{g}})\) and \(\Gamma_c(\mathfrak{g}) \simeq \Gamma_c(\mathfrak{g})\).
Because one can go back and forth between principal fibre bundles and bundles of Lie algebras, this shows that every gauge algebra for a principal fibre bundle with semisimple structure group is isomorphic to one with a simple structure group. Indeed, every principal fibre bundle \(P \to M \) with semisimple structure group \(K \) gives rise to the bundle \(\text{Ad}(P) \to M \) of Lie algebras. Conversely, every Lie algebra bundle \(\mathfrak{g} \to M \) with semisimple structure algebra \(k \) over the connected component \(M_i \) of \(M \) gives rise to a principal fibre bundle \(P_{\mathfrak{g}} \to M \) with semisimple structure group \(\text{Aut}(k_i) \) over \(M_i \) defined, for \(x \in M_i \), by \(P_{\mathfrak{g},x} := \text{Iso}(k_i, \mathfrak{g}_x) \) for \(x \in M_i \).

Theorem 3.1. (Reduction from semisimple to simple structure algebras) If \(\mathfrak{g} \to M \) is a smooth locally trivial bundle of Lie algebras with semisimple fibres, then there exists a finite cover \(\tilde{M} \to M \) and a smooth locally trivial bundle of Lie algebras \(\tilde{\mathfrak{g}} \to \tilde{M} \) with simple fibres such that there exist isomorphisms \(\Gamma(\mathfrak{g}) \simeq \Gamma(\tilde{\mathfrak{g}}) \) and \(\Gamma_c(\mathfrak{g}) \simeq \Gamma_c(\tilde{\mathfrak{g}}) \) of locally convex Lie algebras.

The finite cover \(\tilde{M} \to M \) is not necessarily connected, and the isomorphism classes of the fibres of \(\tilde{\mathfrak{g}} \to \tilde{M} \) are not necessarily the same over different connected components of \(\tilde{M} \).

Proof. For a finite dimensional semisimple Lie algebra \(\mathfrak{k} \), we write \(\text{Spec}(\mathfrak{k}) \) for the finite set of maximal ideals of \(\mathfrak{k} \), equipped with the discrete topology. We now define the set

\[
\tilde{M} := \bigcup_{x \in M} \text{Spec}(\mathfrak{g}_x)
\]

with the natural projection \(\text{pr}_{\tilde{M}} : \tilde{M} \to M \). Local trivialisations \(\mathfrak{g}|_U \simeq U \times \mathfrak{k} \) of \(\mathfrak{g} \) over open connected subsets \(U \subseteq M \) induce compatible bijections between \(\text{pr}_{\tilde{M}}^{-1}(U) \) and the smooth manifold \(U \times \text{Spec}(\mathfrak{k}) \). This provides \(\tilde{M} \) with a manifold structure for which \(\text{pr}_{\tilde{M}} : \tilde{M} \to M \) is a finite covering \(\Box \) We define

\[
\tilde{\mathfrak{g}} := \bigcup_{I_x \in \tilde{M}} \mathfrak{g}_x/I_x
\]

with the natural projection \(\pi : \tilde{\mathfrak{g}} \to \tilde{M} \). Local trivialisations \(\mathfrak{g}|_U \simeq U \times \mathfrak{k} \) of \(\mathfrak{g} \) yield bijections between \(\mathfrak{g}|_U \) and the disjoint union

\[
\bigcup_{I \in \text{Spec}(\mathfrak{k})} U_I \times (\mathfrak{k}/I),
\]

where \(U_I \simeq U \) is the connected component of \(\text{pr}_{\tilde{M}}^{-1}(U) \) corresponding to the maximal ideal \(I \subseteq \mathfrak{k} \) in the particular trivialisation. Since different trivialisations differ by Lie algebra automorphisms of the fibres, which permute the ideals in

\footnote{Note that non-isomorphic maximal ideals of \(\mathfrak{g}_x \) are always in different connected components of \(\tilde{M} \), whereas isomorphic maximal ideals may or may not be in the same connected component, depending on the bundle structure.}
and alike, the projection $\pi: \hat{\mathcal{R}} \to \hat{M}$ becomes a smooth locally trivial bundle of Lie algebras over \hat{M}.

The morphism $\Phi: \Gamma(\hat{\mathcal{R}}) \to \Gamma(\hat{\mathcal{K}})$ of Fréchet Lie algebras defined by

$$\Phi(\sigma)(x) := \sigma(x) + I_x$$

is an isomorphism; because the fibres are semisimple, the injection $\mathcal{R}_x/I_x \hookrightarrow \mathcal{R}_x$ allows one to construct the inverse

$$\Phi^{-1}(\tau)(x) = \sum_{I_x \in \text{Spec}(\mathcal{R}_x)} \tau(I_x).$$

Since the projection $\text{pr}_\hat{M}: \hat{M} \to M$ is a finite cover, this induces an isomorphism $\Phi: \Gamma_c(\hat{\mathcal{R}}) \to \Gamma_c(\hat{\mathcal{K}})$ of LF-Lie algebras.

Clearly, a smooth 1-parameter family of automorphisms of $\hat{\mathcal{R}} \to M$ acts naturally on the maximal ideals, so we obtain a smooth action on $\hat{M} \to M$ and on $\hat{\mathcal{K}} \to \hat{M}$. The action on \hat{M} is locally free or periodic if and only if the action on M is, and then the period on \hat{M} is a multiple of the period on M.

Example 3.2. If \mathfrak{k} is a simple Lie algebra, then $\hat{\mathcal{M}} = \mathcal{M}$.

Example 3.3. If $P = M \times K$ is trivial, then $\hat{\mathcal{M}} = M \times \text{Spec}(\mathfrak{k})$ and all connected components of \hat{M} are diffeomorphic to M.

Example 3.4. If \mathfrak{k} is a semisimple Lie algebra with r simple ideals that are mutually non-isomorphic, then $\hat{\mathcal{M}} = \bigsqcup_{i=1}^r M$ is a disjoint union of copies of M.

Example 3.5. (Frame bundles of 4-manifolds) Let M be a 4-dimensional Riemannian manifold. Let $P := \text{OF}(M)$ be the principal $O(4, \mathbb{R})$-bundle of orthogonal frames. Then $\mathfrak{f} = \mathfrak{so}(4, \mathbb{R})$ is isomorphic to $\mathfrak{su}(2, \mathbb{C}) \oplus \mathfrak{su}(2, \mathbb{C})$. The group $\pi_0(K)$ is of order 2, the non-trivial element acting by conjugation with $T = \text{diag}(-1, 1, 1, 1)$. Since this permutes the two simple ideals, the manifold \hat{M} is the orientable double cover of M. This is the disjoint union $\hat{M} = M_L \sqcup M_R$ of two copies of M if M is orientable, and a connected twofold cover $\hat{M} \to M$ if it is not.

3.2 Compact and noncompact simple Lie algebras

A semisimple Lie algebra \mathfrak{k} is called compact if its Killing form is negative definite. Every semisimple Lie algebra \mathfrak{k} is a direct sum $\mathfrak{k} = \mathfrak{k}_{\text{cpt}} \oplus \mathfrak{k}_{\text{nc}}$, where $\mathfrak{k}_{\text{cpt}}$ is the direct sum of all compact ideals of \mathfrak{k} (or, alternatively, its maximal compact quotient), and \mathfrak{k}_{nc} is the direct sum of the noncompact ideals. Since the decomposition $\mathfrak{k} = \mathfrak{k}_{\text{cpt}} \oplus \mathfrak{k}_{\text{nc}}$ is invariant under $\text{Aut}(\mathfrak{k})$, every Lie algebra bundle bundle $\mathcal{R} \to M$ can be written as a direct sum

$$\mathcal{R} = \mathcal{R}_{\text{cpt}} \oplus \mathcal{R}_{\text{nc}}$$

(8)
of Lie algebra bundles over M. Correspondingly, we have the decomposition
\[\hat{M} = \hat{M}_{cpt} \sqcup \hat{M}_{nc} \] (9)
of \hat{M} into disjoint submanifolds, \hat{M}_{cpt} and \hat{M}_{nc}, containing the maximal ideals $I_x \subset \mathfrak{A}_x$ with \mathfrak{A}_x/I_x compact and noncompact, respectively. Writing $\hat{\mathfrak{A}}_{cpt}$ for the restriction of $\hat{\mathfrak{A}}$ to \hat{M}_{cpt} and $\hat{\mathfrak{A}}_{nc}$ for its restriction to \hat{M}_{nc}, we find Lie algebra bundles $\hat{\mathfrak{A}}_{cpt} \to \hat{M}_{cpt}$ and $\hat{\mathfrak{A}}_{nc} \to \hat{M}_{nc}$ with compact and noncompact simple fibres respectively, and Fréchet Lie algebra isomorphisms
\[\Gamma(\hat{\mathfrak{A}}_{cpt}) \simeq \Gamma(\hat{\mathfrak{A}}_{cpt}) \quad \text{and} \quad \Gamma(\hat{\mathfrak{A}}_{nc}) \simeq \Gamma(\hat{\mathfrak{A}}_{nc}) . \] (10)

4 Universal invariant symmetric bilinear forms

In Section 5 we will undertake a detailed analysis of the 2-cocycles of $\mathfrak{g} \rtimes_D \mathfrak{R}$ for compactly supported gauge algebras $\mathfrak{g} := \Gamma_c(\mathfrak{K})$ with semisimple structure group \mathfrak{K}. In order to describe the relevant 2-cocycles, we need to introduce universal invariant symmetric bilinear forms on the Lie algebra \mathfrak{k} of the structure group. In the case that \mathfrak{k} is a compact simple Lie algebra, this is simply the Killing form.

4.1 Universal invariant symmetric bilinear forms

Let \mathfrak{t} be a finite dimensional Lie algebra. Then its automorphism group $\text{Aut}(\mathfrak{t})$ is a closed subgroup of $\text{GL}(\mathfrak{g})$, hence a Lie group with Lie algebra $\text{der}(\mathfrak{t})$. Since $\text{der}(\mathfrak{t})$ acts trivially on the quotient $V(\mathfrak{k}) := S^2(\mathfrak{k})/\text{der}(\mathfrak{t}) \cdot S^2(\mathfrak{k})$ of the twofold symmetric tensor power $S^2(\mathfrak{k})$, the the $\text{Aut}(\mathfrak{t})$-representation on $V(\mathfrak{t})$ factors through $\pi_0(\text{Aut}(\mathfrak{t}))$. The universal $\text{der}(\mathfrak{t})$-invariant symmetric bilinear form is defined by
\[\kappa: \mathfrak{t} \times \mathfrak{t} \to V(\mathfrak{t}), \quad \kappa(x, y) := [x \otimes y] = \frac{1}{2} [x \otimes y + y \otimes x] . \]

We associate to $\lambda \in V(\mathfrak{t})^*$ the \mathbb{R}-valued, $\text{der}(\mathfrak{t})$-invariant, symmetric, bilinear form $\kappa_\lambda := \lambda \circ \kappa$. This correspondence is a bijection between $V(\mathfrak{t})^*$ and the space of $\text{der}(\mathfrak{t})$-invariant symmetric bilinear forms on \mathfrak{t}.

For the convenience of the reader, we now list some properties of $V(\mathfrak{t})$ for (semi)simple Lie algebras \mathfrak{t}, in which case $\text{der}(\mathfrak{t}) = \mathfrak{t}$. These results will be used in the rest of the paper. We refer to [NW09, App. B] for proofs and a more detailed exposition.

For a simple real Lie algebra \mathfrak{t}, we have $V(\mathfrak{t}) \simeq \mathbb{K}$, with $\mathbb{K} = \mathbb{C}$ if \mathfrak{t} admits a complex structure, and $\mathbb{K} = \mathbb{R}$ if it does not, i.e., if \mathfrak{t} is absolutely simple. The universal invariant symmetric bilinear form can be identified with the Killing form of the real Lie algebra \mathfrak{t} if $\mathbb{K} = \mathbb{R}$ and the Killing form of the underlying
complex Lie algebra if $K = \mathbb{C}$. In particular, in the important special case that \mathfrak{k} is a compact simple Lie algebra, the universal invariant bilinear form $\kappa: \mathfrak{k} \times \mathfrak{k} \to \mathbb{R}$ is simply the negative definite Killing form $\kappa: \mathfrak{k} \times \mathfrak{k} \to \mathbb{R}$, $\kappa(x, y) = \text{tr}(\text{ad} x \text{ad} y)$.

For a semisimple real Lie algebra $\mathfrak{t} = \bigoplus_{i=1}^{r} \mathfrak{t}_{i}^{m_{i}}$, where the simple ideals \mathfrak{t}_{i} are mutually non-isomorphic, one finds $V(\mathfrak{t}) \simeq \bigoplus_{i=1}^{r} V(\mathfrak{t}_{i})^{m_{i}}$ with $V(\mathfrak{t}_{i})$ isomorphic to \mathbb{R} or \mathbb{C}. The action of $\pi_{0}(\text{Aut}(\mathfrak{t}))$ on $V(\mathfrak{t})$ leaves invariant the subspaces $V(\mathfrak{t}_{i})^{m_{i}}$ coming from the isotypical ideals $\mathfrak{t}_{i}^{m_{i}}$. If $V(\mathfrak{t}_{i}) \simeq \mathbb{R}$, then the action of $\pi_{0}(\text{Aut}(\mathfrak{t}))$ on $V(\mathfrak{t}_{i})^{m_{i}}$ factors through the homomorphism $\pi_{0}(\text{Aut}(\mathfrak{t})) \to S_{m_{i}}$ that maps $\alpha \in \text{Aut}(\mathfrak{t})$ to the permutation it induces on the set of ideals isomorphic to \mathfrak{t}_{i}. If $V(\mathfrak{t}_{i}) \simeq \mathbb{C}$, then the action on $\mathbb{C}^{m_{i}}$ factors through a homomorphism $\pi_{0}(\text{Aut}(\mathfrak{t})) \to (\mathbb{Z}/2\mathbb{Z})^{m_{i}} \times S_{m_{i}}$, where the symmetric group $S_{m_{i}}$ acts by permuting components and $(\mathbb{Z}/2\mathbb{Z})^{m_{i}}$ acts by complex conjugation in the components.

4.2 The flat bundle $\mathcal{V} = V(\mathcal{R})$

If $\mathcal{R} \to M$ is a bundle of Lie algebras, we denote by $\mathcal{V} \to M$ the vector bundle with fibres $\mathcal{V}_{x} = V(\mathcal{R}_{x})$. It carries a canonical flat connection \mathcal{d}, defined by $\mathcal{d}\kappa(\xi, \eta) := \kappa(\nabla \xi, \eta) + \kappa(\xi, \nabla \eta)$ for $\xi, \eta \in \Gamma(\mathcal{R})$, where ∇ is a Lie connection on \mathcal{R}, meaning that $\nabla[\xi, \eta] = [\nabla \xi, \eta] + [\xi, \nabla \eta]$ for all $\xi, \eta \in \Gamma(\mathcal{R})$. As any two Lie connections differ by a der(\mathcal{R})-valued 1-form, this definition is independent of the choice of ∇ (cf. [1W13]).

If \mathcal{R} has semisimple typical fibre \mathfrak{t}, then the isotypical ideals $\mathfrak{t}_{i}^{m_{i}}$ in the decomposition $\mathfrak{t} = \bigoplus_{i=1}^{r} \mathfrak{t}_{i}^{m_{i}}$ are $\text{Aut}(\mathfrak{t})$-invariant, so that we obtain a direct sum decomposition

$$\mathcal{V} = \bigoplus_{i=1}^{r} \mathcal{V}_{i}$$

of flat bundles.

If the ideal \mathfrak{t}_{i} is absolutely simple, which is always the case if \mathfrak{t} is a compact Lie algebra, then the structure group of \mathcal{V}_{i} reduces to $S_{m_{i}}$. In particular, if \mathfrak{t} is compact simple, then \mathcal{V} is simply the trivial line bundle $M \times \mathbb{R} \to M$.

If the ideal \mathfrak{t}_{i} possesses a complex structure, then the structure group of \mathcal{V}_{i} reduces to $(\mathbb{Z}/2\mathbb{Z})^{m_{i}} \times S_{m_{i}}$. In particular, for \mathfrak{t} complex simple, the bundle $\mathcal{V} \to M$ is the vector bundle with fibre \mathbb{C}, and $\alpha \in \text{Aut}(\mathfrak{t})$ flips the complex structure on \mathbb{C} if and only if it flips the complex structure on \mathfrak{t}. If $\mathcal{R} = \text{Ad}(P)$ for a principal fibre bundle $P \to M$ with complex simple structure group K, then \mathcal{V} is the trivial bundle $M \times \mathbb{C} \to M$.

5 Central extensions of gauge algebras

Let \mathfrak{g} be the compactly supported gauge algebra $\Gamma_{c}(\mathcal{R})$ for a Lie algebra bundle $\mathcal{R} \to M$ with semisimple fibres. In this section, we will classify all possible central extensions of $\mathfrak{g} \times_{D} \mathbb{R}$, in other words, we will calculate the continuous second
Lie algebra cohomology $H^2(g \rtimes_D \mathbb{R}, \mathbb{R})$ with trivial coefficients. In [JN16] we will examine which of these cocycles comes from a positive energy representation.

Remark 5.1. For a cocycle ω on $g \rtimes_D \mathbb{R}$, the relation

$$\omega(D, [\xi, \eta]) = \omega(D\xi, \eta) + \omega(\xi, D\eta)$$ \hspace{1cm} (11)

shows that $i_D\delta\omega$ measures the non-invariance of the restriction of ω to $g \times g$ under the derivation D. It also shows that, if the Lie algebra g is perfect, then the linear functional $i_D\delta\omega: g \to \mathbb{R}$ is completely determined by (11).

5.1 Definition of the 2-cocycles

We define 2-cocycles $\omega_{\lambda, \nabla}$ on $g \rtimes_D \mathbb{R}$ such that their classes span the cohomology group $H^2(g \rtimes_D \mathbb{R}, \mathbb{R})$. They depend on a ∇-valued 1-current $\lambda \in \Omega^1_c(M, \nabla)'$, and on a Lie connection ∇ on \mathcal{R}. Recall from Section 4 that $\kappa: \mathfrak{t} \times \mathfrak{t} \to V(\mathfrak{t})$ is the universal invariant bilinear form of \mathfrak{t}, and $\nabla \to M$ is the flat bundle with fibres $\nabla_x = V(\mathfrak{r}_x)$. In the important special case that \mathfrak{t} is compact simple, $V(\mathfrak{t}) = \mathbb{R}$, κ is the Killing form, and ∇ is the trivial real line bundle.

A 1-current $\lambda \in \Omega^1_c(M, \nabla)' \in \mathfrak{g}$ is said to be

(L1) closed if $\lambda(dC^\infty(M, \nabla)) = 0$,

(L2) $\pi_*\nabla$-invariant if $\lambda(L_{\pi_*\nabla}\Omega^1_c(M, \nabla)) = \{0\}.$

Given a closed $\pi_*\nabla$-invariant current $\lambda \in \Omega^1_c(M, \nabla)'$, we define the 2-cocycle $\omega_{\lambda, \nabla}$ on $g \rtimes_D \mathbb{R}$ by skew-symmetry and the equations

$$\omega_{\lambda, \nabla}(\xi, \eta) = \lambda(\kappa(\xi, \nabla\eta)),$$ \hspace{1cm} (12)

$$\omega_{\lambda, \nabla}(D, \xi) = \lambda(\kappa(L_{\nabla}\nabla, \xi)),$$ \hspace{1cm} (13)

where we write ξ for $(\xi, 0) \in g \rtimes_D \mathbb{R}$ and D for $(0, 1) \in g \rtimes_D \mathbb{R}$ as in (1). We define the $\text{der}(\mathcal{R})$-valued 1-form $L_{\nabla}\nabla \in \Omega^1(M, \text{der}(\mathcal{R}))$ by

$$(L_{\nabla}\nabla)_w(\xi) = L_{\nabla}(\nabla\xi)_w - \nabla_w L_{\nabla}\xi = L_{\nabla}(\nabla_w\xi) - \nabla_w L_{\nabla}\xi - \nabla_{[\pi_*\nabla, w]}\xi$$ \hspace{1cm} (14)

for all $w \in \mathfrak{X}(M)$, $\xi \in \Gamma(\mathcal{R})$. Since the fibres of $\mathcal{R} \to M$ are semisimple, all derivations are inner, so we can identify $L_{\nabla}\nabla$ with an element of $\Omega^1(M, \mathcal{R})$. Using the formulae

$$d\kappa(\xi, \eta) = \kappa(\nabla\xi, \eta) + \kappa(\xi, \nabla\eta),$$ \hspace{1cm} (15)

$$L_{\pi_*\nabla}\kappa(\xi, \eta) = \kappa(L_{\nabla}\xi, \eta) + \kappa(\xi, L_{\nabla}\eta),$$ \hspace{1cm} (16)

$$L_{\nabla}(\nabla\xi) - \nabla L_{\nabla}\xi = [L_{\nabla}\nabla, \xi],$$ \hspace{1cm} (17)

it is not difficult to check that $\omega_{\lambda, \nabla}$ is a cocycle. Skew-symmetry follows from (15) and (L1). The vanishing of $\delta\omega_{\lambda, \nabla}$ on g follows from (14), the derivation property of ∇ and invariance of κ. Finally, $i_D\delta\omega_{\lambda, \nabla} = 0$ follows from skew-symmetry, (17), (10), (L2) and the invariance of κ.
Note that the class \([\omega_{\lambda,\nabla}]\) in \(H^2(\mathfrak{g} \rtimes_D \mathbb{R}, \mathbb{R})\) depends only on \(\lambda\), not on \(\nabla\). Indeed, two connection 1-forms \(\nabla\) and \(\nabla'\) differ by \(A \in \Omega^2(M, \text{der}(\mathfrak{h}))\). Using \(\text{der}(\mathfrak{h}) \cong \mathfrak{h}\), we find

\[
\omega_{\lambda,\nabla'} - \omega_{\lambda,\nabla} = \delta \chi_A \quad \text{with} \quad \chi_A(\xi) := \lambda(A(\xi) \xi).
\]

5.2 Classification of central extensions

We now show that every continuous Lie algebra 2-cocycle on \(\mathfrak{g} \rtimes_D \mathbb{R}\) is cohomologous to one of the type \(\omega_{\lambda,\nabla}\) as defined in (12) and (13). The proof relies on a description of \(H^2(\mathfrak{g}, \mathbb{R})\) provided by the following theorem ([JW13, Prop. 1.1]).

Theorem 5.2. (Central extensions of gauge algebras) Let \(\mathfrak{g}\) be the compactly supported gauge algebra \(\mathfrak{g} = \Gamma_c(\mathfrak{h})\) of a Lie algebra bundle \(\mathfrak{h} \to M\) with semisimple fibres. Then every continuous 2-cocycle is cohomologous to one of the form

\[
\psi_{\lambda,\nabla}(\xi, \eta) = \lambda(\kappa(\xi, \nabla\eta)),
\]

where \(\lambda: \Omega^1_c(M, \mathbb{V}) \to \mathbb{R}\) is a continuous linear functional that vanishes on \(\text{der}(\mathfrak{k})\), and \(\nabla\) is a Lie connection on \(\mathfrak{h}\). Two such cocycles \(\psi_{\lambda,\nabla}\) and \(\psi_{\lambda',\nabla'}\) are equivalent if and only if \(\lambda = \lambda'\).

Using this, we classify the continuous central extensions of \(\mathfrak{g} \rtimes_D \mathbb{R}\).

Theorem 5.3. (Central extensions of extended gauge algebras) Let \(\mathcal{K} \to M\) be a bundle of Lie groups with semisimple fibres, equipped with a 1-parameter group of automorphisms with generator \(v \in \mathfrak{x}(\mathcal{K})\). Let \(\mathfrak{g} = \Gamma_c(\mathfrak{k})\) be the compactly supported gauge algebra, and let \(\mathfrak{g} \rtimes_D \mathbb{R}\) be the Lie algebra \(\mathfrak{g}\). Then the map \(\lambda \mapsto [\omega_{\lambda,\nabla}]\) induces an isomorphism

\[
\left(\Omega^1_c(M, \mathbb{V})/\left(\text{der} \Omega^1_c(M, \mathbb{V}) + L_{\pi, v} \Omega^1_c(M, \mathbb{V})\right)\right)' \tilde{\to} H^2(\mathfrak{g} \rtimes_D \mathbb{R}, \mathbb{R})
\]

between the space of closed \(\pi, v\)-invariant \(\mathbb{V}\)-valued currents and \(H^2(\mathfrak{g} \rtimes_D \mathbb{R}, \mathbb{R})\).

Proof. Let \(\omega\) be a continuous 2-cocycle on \(\mathfrak{g} \rtimes_D \mathbb{R}\). If \(i: \mathfrak{g} \hookrightarrow \mathfrak{g} \rtimes_D \mathbb{R}\) is the inclusion, then \(i^*\omega\) is a 2-cocycle on \(\mathfrak{g}\). By Theorem 5.2 there exists a Lie connection \(\nabla\) and a continuous linear functional \(\varphi \in \mathfrak{g}'\) such that

\[
i^*\omega(\xi, \eta) = \lambda(\kappa(\xi, \nabla\eta)) + \varphi([\xi, \eta]), \quad \text{where} \quad \lambda \in \Omega^1_c(M, \mathbb{V})'.
\]

Using the cocycle property (cf. Rk. 5.1), we find

\[
\omega(D, [\xi, \eta]) = i^*\omega(L_v \xi, \eta) + i^*\omega(\xi, L_v \eta)
\]

and hence, using (16) and (17),

\[
\omega(D, [\xi, \eta]) = \lambda(\kappa(L_v \xi, \nabla\eta) + \kappa(\xi, \nabla L_v \eta)) + \varphi(L_v [\xi, \eta]) = \lambda(L_{\pi, v}\kappa(\xi, \nabla\eta)) + \lambda(\kappa(L_v \nabla [\xi, \eta])) + \varphi(L_v [\xi, \eta])
\]
In particular, \([\xi, \eta] = 0\) implies \(\lambda(L_{\pi, v}\kappa(\xi, \nabla\eta)) = 0\).

Now fix a trivialisation \(\mathcal{K}|_U \cong U \times K\) over an open subset \(U \subseteq M\). It induces the corresponding trivialisation \(\mathcal{V}|_U \cong U \times V(\mathfrak{k})\) of flat bundles. For \(f, g \in C_c^\infty(U)\) and \(X \in \mathfrak{k}\), we consider \(\xi = fX\) and \(\eta = gX\) as commuting elements of \(\Gamma_c(\mathfrak{k})\). With the local connection 1-form \(A \in \Omega^1(U, \mathfrak{k})\), we then have

\[
\kappa(\xi, \nabla\eta) = \kappa(fX, dg \cdot X + g[A, X]) = f \cdot dg \cdot \kappa(X, X).
\]

Since \([\xi, \eta] = 0\), we find \(\lambda(L_{\pi, v}\beta\kappa(X, X)) = 0\) for all 1-forms \(\beta = f \cdot dg\). Applying (18) to \(\Delta\), we see that \(\Delta(\mathfrak{g}) = 0\) and hence that \(\Delta = 0\) because \(\mathfrak{g}\) is perfect by [JW13, Prop. 2.4].

This shows surjectivity of the map \(\lambda \mapsto [\omega_{\lambda, \nabla}]\). Injectivity follows because \(\omega_{\lambda, \nabla} = \delta\chi\) implies \(\omega_{\lambda, \nabla}|_{\mathfrak{g} \times \mathfrak{g}} = \delta(\chi|_{\mathfrak{g}})\), hence \(\lambda = 0\) by Theorem 5.2.

Remark 5.4. If the Lie connection \(\nabla\) on \(\mathfrak{k}\) can be chosen so as to make \(v \in \mathfrak{X}(K)\) horizontal, \(\nabla_{\pi, v}\xi = L_v\xi\) for all \(\xi \in \Gamma(\mathfrak{k})\), then equation (14) shows that \(L_v\nabla = i_{\pi, v}R\), where \(R\) is the curvature of \(\nabla\). For such connections, (13) is equivalent to

\[
\omega_{\lambda, \nabla}(D, \xi) = \lambda(\kappa(i_{\pi, v}R, \xi)).
\]

References

[A-T93] Albeverio, S., R. J. Høegh-Krohn, J. A. Marion, D. H. Testard, and B. S. Torresani, “Noncommutative Distributions – Unitary representations of Gauge Groups and Algebras,” Pure and Applied Mathematics 175, Marcel Dekker, New York, 1993

[Go04] Goldin, G. A., Lectures on diffeomorphism groups in quantum physics, in “Contemporary Problems in Mathematical Physics,” Proc. of the third internat. workshop (Cotonue, 2003), 2004; 3–93

[JW13] Janssens, B., and C. Wockel, Universal central extensions of gauge algebras and groups, J. reine angew. Math. 682 (2013), 129–139

[JN15] Janssens, B., and K.-H. Neeb, Projective unitary representations of infinite dimensional Lie groups, submitted; arXiv:math.RT.1501.00939

[JN16] —, Positive energy representations of gauge groups, in preparation

13
[Ka85] Kac, V., “Infinite Dimensional Lie Algebras”, Cambridge University
Press, Cambridge, 1985

[Ne06] Neeb, K.-H., Towards a Lie theory of locally convex groups, Jap. J.
Math. 3rd ser. 1:2 (2006), 291–468

[NW09] Neeb, K.-H., and C. Wockel, Central extensions of groups of sections,
Ann. Global Anal. Geom. 36:4 (2009), 381–418

[PS86] Pressley, A., and G. Segal, “Loop Groups”, The Clarendon Press Ox-
ford University Press, New York, 1986

[Ti83] Tits, J., “Liesche Gruppen und Algebren,” Hochschultext, Springer-
Verlag, Berlin, 1983

[Wa10] Walter, B., Weighted diffeomorphism groups of Banach spaces and
weighted mapping groups, Preprint, arXiv:1006.5580