How Do Dental Materials React On Tooth brushing?

Georg Tellefsen1*, Anders Liljeborg2 and Gunnar Johannsen1

1Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Sweden
2KTH-Albanova, Nanostructurephysics, Sweden

Abstract

Background: Novel dental materials have created the need for new knowledge, in terms of abrasion both in a quantitative, i.e. how much of the surface that has been abraded as well as in a qualitative way, i.e. the roughness of the surface after brushing. Furthermore, the development of new measuring techniques has created a new interest in this type of research.

Objective: To investigate if and how, different filling-materials and an acrylic are affected by brushing with and without tooth pastes.

Methods: The following dental materials were used: a cold cured acrylic, a flow composite and three different hybrid composites. The specimens were attached to acrylic plates and were exposed to brushing in a brushing machine using water alone and two different tooth pastes: a low abrasive tooth paste and a whitening tooth paste. After one and six hours of brushing the results were evaluated using a profilometr. A surface roughness value (Ra-value) was calculated from the profilometer measurements for each material.

Results: Brushing with water alone caused negligible abrasion. There was a clear difference in abrasivity between the two tooth pastes. Brushing with Pepsodent Whitening® resulted in a rougher surface than after brushing with Colgate Smiles®.

Conclusions: The present study has shown that toothpaste is needed to create a significant abrasion on dental materials. Most materials exhibited a rougher surface after six hours of brushing than after one hour, however some of the materials obtained a smoother surface indicating a polishing effect between one and six hours of brushing. The surface roughness was dependent on the type of toothpaste used.

Keywords: Toothpaste; Dental materials; Abrasivity; Profilometer

Introduction

Besides the wear from occlusion, the influence of tooth brushing with and without tooth pastes on teeth and dental materials has been in focus of interest for many years [1,2]. Due to the wide range of test methods, comparisons of the results from different studies are difficult.

Different methods have been used in order to evaluate abrasion. Both the quantitative aspect, i.e. how much of the surface that has been abraded, and the qualitative aspect, i.e. the roughness of the surface after brushing have been considered. Weight and Volume loss techniques [3,4] and radiotracer techniques [3,5], are examples of quantitative techniques, while profilometer techniques [6,7], and light reflection techniques [8-10] are examples of qualitative techniques.

The development of novel composite fillings started when methylmethacrylate was introduced into dentistry during the 1930s, which in the beginning was a denture-based material hardened by heat curing. During the 1940s researchers were able to cure methacrylates by a cold curing process, thus making it possible to use in the oral cavity. To reduce the problem of shrinkage, dimethylmethacrylate, i.e. bis-GMA (Bowen’s resin) was created. Bowen’s resin is an important ingredient in the composite fillings of today.

In recent years dental filling materials containing amalgam have been replaced by composite materials, which are now being used in all areas of the mouth. The composites used in the anterior region often contain bis-GMA with filler particles 30-60% by weight, while in the molar region the amount of filler particles can reach 83% by using hybrid composites. By using three different particle sizes the filler load can be as high as 90%. The composites have during the years been improved to withstand chewing forces in the molar region. They have also been modified either to be used in the anterior or the posterior (molar) region of the mouth. It is of utmost importance that these materials are not influenced negatively by tooth brushing with toothpaste or water, since increased surface roughness will lead to discoloration and plaque accumulation, which would consequently lead to increased risk for caries and gingivitis [11,12].

The aim of the present study was therefore to investigate the influence of tooth brushing with and without tooth pastes on the wear resistance of four different composite materials and methylmethacrylate, and also to compare a low abrasive tooth paste (Colgate Smiles®) with a whitening toothpaste (Pepsodent Whitening®).

Materials and Methods

Materials tested

Tetric Ceram HB®: (Heavy Body, Ivoclar), Capsules-Bis-GMA 19 w%, Fillers 81 w%. Particles sizes 0.04-3.0 µm. Multi fractions (to be used both for anterior and posterior teeth).

Charisma®: (Heraeus), Capsules-Bis-GMA and TEGDMA (reducing viscosity), Fillers 78 w% Two filler fractions 0.01-0.07 resp 0.7-2.0 µm (to be used both for anterior and posterior teeth).

Dyracl® flow: (Dentsply), Syringe- A compomer- alky, aryle or

*Corresponding author: Dr. Georg Tellefsen, Department of Dental Medicine, Division of Periodontology, Karolinska Institute, Box 4064, 14104 Huddinge, Sweden, Tel: +46 87536140; E-mail: georg.tellefsen@telia.com

Received October 04, 2015; Accepted November 20, 2015; Published November 27, 2015

Citation: Tellefsen G, Liljeborg A, Johannsen G (2015) How Do Dental Materials React On Tooth brushing? Dentistry 5: 341. doi:10.4172/2161-1122.1000341

Copyright: © 2015 Tellefsen G, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
alkylearylesters from monomethacrylateacid 25-50% (to be used as an underfilling and forclass V fillings).

Grandio® (Voco), Capsules-Bis-GMA, Modified methacrylate2.5-5%, Fillers 87 wt%, (to be used both for anterior and posterior teeth).

TAB 2000® (Sweden), Cold-cured acrylic-methacrylate. Methylmethacrylate more than 90% (to be used primarily in temporary crowns and bridges).

Brushing machine

The brushing machine had reciprocating movements of 85mm,2000 double strokes per hour. Load 2.35 N. The apparatus had six brush sites and each brush site had a trough for the toothpaste-water slurry in which the test plates were placed. Between each test, new brushes were mounted in the machine.

Toothbrushes

The Toothbrushes used were TePe Straight Classic®. The toothbrushes were manufactured according to the ISO standard 20126:2005 where the properties are defined and the general requirements and test methods regarding physical inspection, tuft removal force, fatigue resistance and chemical challenge are described.

Toothpastes

Pepsodent Whitening® and Colgate Smiles®

Profiler

Surface profilometer, P15, KLA Tencor, San Jose, USA [13].

Test procedure

12 specimens of each of the composites/and methyl methacrylate were prepared (10 x 25 mm) and each was placed in the middle of an acrylic plate, dimensions (115x25x3 mm), at a depth of 2.5 mm. The composite materials were cured in three different locations, along the plate, close to the borders and in the center for 2 x 20 seconds. This was then repeated on the opposite side of the plate. This is considered satisfactory according to Caughman et al. [14]. Curing light unit used was Demi LED, 921640 from Kerr®. The TAB 2000 is a soft and cold cured material. The curing was confined between two acrylic plates; the prepared plate, mentioned above and one untouched on top, resulting in a comparable surface structure. The untreated plate on top has a surface structure similar to that of a plastic strip used in the mouth. The two plates were fixed together with two clamps for at least 10 minutes. The force from the clamps was approximately 40 N each.

The plates were then subjected to brushing in the brushing machine with toothpaste-water slurry (25 mg toothpaste+50 ml water). The slurry was replaced with new slurry every hour. Two different toothpastes were used and also water alone. The total brushing time was 6 hours corresponding to 12000 double strokes but the plates were also analyzed after one hour of brushing (2000 double strokes).

Altogether, 60 plates were manufactured, 12 of each material. Two plates of each material were brushed with Colgate Smiles®, two with Pepsodent Whitening® and two plates were brushed with water alone. Brushing was performed both for 1 hour and 6 hours.

The plates were then analyzed in the profilometer (P15, KLA Tencor), which has a diamond stylus with a tip radius of 2 µm that scans the surface profile of the sample in a direction perpendicular to the brushing direction. The force of the tip can be controlled, as well as the scanning speed and the sampling interval of the depth values.

The profilometer is using a flat glass surface as vertical reference. The vertical repeatability is 0.03 µm for a range of 30 µm. The maximum vertical range of the profilometer is 130 µm, which was enough for all the samples. The scan rate was 0.2 mm/s giving a collection time for each profile of 100 seconds.

3 profiles were collected for each sample, one at midpoint of the plate and two profiles 3 mm above and 3 mm below the midpoint. Roughness average (Ra) values were computed for each profile. Ra is defined as the arithmetic average deviation of the absolute values of the roughness profile from the mean line or the center line. Porosities were formed on some of the samples, due to the properties of the material.

The calculation of Ra was made so these porosities were excluded. For some of the samples it was also possible to compute the volume of the removed material. To find an initial value for Ra prior to brushing, Ra was also computed from parts of each profile that were outside the abraded area. All profiles started and ended outside of the abraded area.

Results

The results are presented in 3 tables. Since all samples had different roughness (Ra) initially, we decided to compute the ratio between the initial roughness and the roughness of the abraded area for each sample. These values are presented in Table 1. The highest ratio was obtained for brushing with Pepsodent for 6 hours, while negligible difference was shown for water after 6 hours. No differences were found after brushing with water for 1 hour, therefore that table was excluded.

Table 2 and 3 show the specific Ra values for unbrushed and brushed materials after 1 and 6 hours of brushing. Table 2 shows data for Pepsodent Whitening® and Table 3 for Colgate Smiles®. The p-values are showing the significance of difference of abrasion.

Table 1: The ratio of Ra for brushed parts to Ra for un-brushed parts of the profiles.

Material	1 hr	6 hr						
	Initial	Abraded	Initial	Abraded				
	Ra	Standard Deviation						
Charisma	0.013	0.005	0.026	0.011	0.012	0.004	0.076	0.051
Dyracl flow	0.021	0.014	0.060	0.039	0.018	0.003	0.029	0.008
Tetric Ceram	0.039	0.039	0.165	0.087	0.015	0.008	0.086	0.042
TAB 2000	0.444	0.091	0.554	0.134	0.563	0.244	0.541	0.188
Grandio	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039

Table 2: Roughness average values (Ra) for all materials brushed with Colgate for 1 and 6 hours. All values in µm.

Material	1 hr	6 hr						
	Ra	Standard Deviation						
Charisma	0.013	0.005	0.026	0.011	0.012	0.004	0.076	0.051
Dyracl flow	0.021	0.014	0.060	0.039	0.018	0.003	0.029	0.008
Tetric Ceram	0.039	0.039	0.165	0.087	0.015	0.008	0.086	0.042
TAB 2000	0.444	0.091	0.554	0.134	0.563	0.244	0.541	0.188
Grandio	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039
Charisma®, from 0.026 to 0.076 after brushing with Colgate and from 0.092 to 0.362 after brushing with Pepsodent Whitening®.

A polishing effect could be seen in some cases, i.e. the roughness was lower in the abraded area than in the unabraded. This can be concluded from the Rₐ values as well as when inspecting the profiles. The abraded areas had in these cases a smoother appearance (Figure 1). This polishing effect could also be seen in the cases when the ratio was smaller for six hours of brushing than for one hour. This is the case for Dyract® and TAB 2000® brushed with Colgate. This effect can also be seen for Dyract and Tetric Ceram brushed with Pepsodent.

Discussion

The present study indicates that most composite materials are influenced by brushing with a toothpaste. Since brushing with water influenced neither of the materials, the influence of the toothbrush on the abrasion of dental materials is negligible, which is in line with other studies [15,16]. Those composites showed various results regarding wear and surface roughness have earlier been found by Tanoue et al. who measured surface roughness on seven different composites that had been subjected to brushing for 20000 strokes [17]. He found that the type of prosthetic composite used significantly influenced the surface condition after tooth brushing.

In a study by Frazier et al. the wear resistance of different resin-based composites and componers were compared, and they found that all but one hybrid resin-ionomer type material exhibited a resistance to tooth brushing with toothpaste that was as good or better than that of the traditional resin-based materials [18]. However, they only measured mass-loss after 120000 strokes. In the present study mass or volume loss was not investigated since we, due to initial porosities, were not able to detect volume loss except for TAB 2000®. The Rₐ values represent a qualitative measurement of the surface roughness and do not measure the quantitative loss of material. The relevance of measuring the surface roughness is obvious since a rougher surface will attract plaque and discoloration more easily, thus resulting in a greater risk for caries and gingivitis.

The Rₐ values for most of the composite materials increased between 1 and 6 hours of brushing, indicating that the surface became rougher. This might be explained by the fact that when brushing on the composite materials the resin material wears away leaving the large filler particles sticking up from the surface, which also is in line with results from van Dijken et al. [16]. For Dyract, however, a lower Rₐ value after 6 hours of brushing than after one hour brushing was found, indicating that the surface had become smoother. This was the case for brushing with both Pepsodent and Colgate. An explanation for this can be that the micro filler particle content is such that no or very few filler particles have emerged. The same smoothening effect could be seen for Tab 2000® brushed with Colgate.

The importance of the toothpaste used is obvious. Together with the toothbrush we used in this study the toothpaste played a significant role. In the present study brushing with Pepsodent Whitening® resulted in higher Rₐ values, i.e. created a rougher surface, compared to Colgates Smiles®. This has an impact especially in the anterior region where a rougher surface more easily is subjected to discoloration and risk for plaque accumulation, and in the long perspective increased risk for caries and gingivitis/periodontitis [12]. On the other hand Pickles et al. [19] and Johannsen et al. [20] have shown that whitening toothpastes do not necessarily exhibit higher abrasivity.

The hybrid-resin modified glass ionomers have been shown...
to be as good as the traditional resin based composite materials in terms of resistance to toothbrush wear and no correlation between wear resistance and filler content have been found [18]. Other studies have shown that microfilled and hybrid resin composites expressed significantly rougher surfaces than packable composites, comomers and resin modified glass-ionomers following tooth brushing [21].

Furthermore, the wear rate of most novel composites has been shown to be near that of enamel [22]. This might explain the minor influence brushing with a toothpaste had on the composites in the present study. Hardness of a material is not always directly proportional to the wear rate. Some composites can show the same hardness number as gold alloys, but significantly less resistance to wear [23].

The presence of porosities is something we have to take into account in the clinical setting, when fillings are made. Even in an in-vitro study with ideal conditions it was not possible to avoid porosities [24].

The influence of the polymerization light used has also been discussed by Tanoue et al. [17]. They found that the use of a high intensity metal halide photo-curing unit effectively enhanced the abrasion resistance. In the present study a polymerization light usually used in these cases was sufficiently large to make reliable measurements of the volume loss using the method described by Liljeborg et al [13].

Conclusion

The present study showed that the surface of composites was not influenced by tooth brushing with water alone, however when a toothpaste was added, most of the materials exhibited a rougher surface after 6 hours of brushing than after 1 hour. On some of the materials a smoother surface was obtained, thus indicating a polishing effect between 1 and 6 hours of brushing. It is important to take this into consideration, since a rougher surface attracts plaque more easily and favors discoloration and increases the risk for caries and gingivitis/periodontitis.

Acknowledgements

This study was supported by Praktikerjäst AB.

References

1. Osborne JW, Gale EN, Ferguson GW (1973) One-year and two-year clinical evaluation of a composite resin vs. amalgam. J Prostheth Dent 30: 795-800.
2. Oliveira GU, Mondelli RF, Charantola Rodrigues M, Franco EB, Ishikariama SK, et al. (2012) Impact of filler size and distribution on roughness and wear of composite resin after simulated toothbrushing. J Appl Oral Sci 20: 510-516.
3. Giles A, Claydon NC, Addy M, Hughes N, Sufi F, et al. (2009) Clinical in situ study investigating abrasive effects of two commercially available tooth pastes. J Oral Rehabil 36: 496-507.
4. Hara AT, González-Cabezas C, Creeth J, Parmar M, Eckert GJ, et al. (2009) Interplay between fluoride and abrasivity of dentifrices on dental erosion-abrasion. J Dent 37: 781-785.
5. Neme AM, Wagner WC, Pink FE, Frazier KB (2003) The effect of prophylactic polishing pastes and tooth brushing on the surface roughness of resin composite materials in vitro. Oper Dent 28: 808-815.
6. Richmond R, Macfarlane TV, McCord JF (2004) An evaluation of the surface changes in PMMA biomaterial formulations as a result of toothbrush/dentifrice abrasion. Dent Mater 20: 124-132.
7. Teixeira EC, Thompson JL, Plascik JR, Thompson JY (2005) In vitro toothbrush-dentifrice abrasion of two restorative composites. J Esthet Dent 17: 172-180.
8. Redmalm G, Johannsen G, Rydén H (1985) Lustre changes on teeth. The...
use of laser light for reflexion measurements on the tooth surface-in vivo. Swed Dent J 1985: 29-35.

9. Elmer E, Gaberthüel T, Brunner K, Mühlemann HR (1975) Reflectometry and micromorphology of polished, etched and repolished teeth. Helv Odontol Acta 19: 40-47.

10. Murray H (1971) A laser instrument for brass roughness and polished surfaces. Fertigung 4: 127-130.

11. Quirynen M, Marechal M, Busscher HJ, Weerkamp AH, Darius PL, et al. (1990) The influence of surface free energy and surface roughness on early plaque formation. An in vivo study in man. J Clin Periodontol 17: 138-144.

12. Quirynen M, Bollen CM (1995) The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature. J Clin Periodontol 22: 1-14.

13. Liljeborg A, Tellefsen G, Johannsen G (2010) The use of a profilometer for both quantitative and qualitative measurements of toothpaste abrasivity. Int J Dent Hyg 8: 237-243.

14. Caughman WF, Rueggeberg FA, Curtis JW (1995) Clinical guidelines for photocuring restorative resins. J Am Dent Assoc 126: 1280-1282.

15. Tellefsen G, Liljeborg A, Johannsen A, Johannsen G (2011) The role of the toothbrush in the abrasion process. Int J Dent Hyg 9: 284-290.

16. van Dijken JW, Stadig J, Meurman JH (1983) Appearance of finished and unfinished composite surfaces after toothbrushing. A scanning electron microscopy study. Acta Odontol Scand 41: 377-383.

17. Tanoue N, Matsumura H, Atsuta M (2000) Wear and surface roughness of current prosthetic composites after toothbrush/dentifrice abrasion. J Prosthodont 8: 93-97.

18. Frazier KB, Rueggeberg FA, Mettenburg DJ (1998) Comparison of wear-resistance of Class V restorative materials. J Esthet Dent 10: 309-314.

19. Pickles MJ, Evans M, Philpotts CJ, Joiner A, Lynch RJ, et al. (2005) In vitro efficacy of a whitening toothpaste containing calcium carbonate and perlite. Int Dent J 55: 197-202.

20. Johannsen G, Tellefsen G, Johannsen A, Liljeborg A (2012) The importance of measuring toothpaste abrasivity in both a quantitative and qualitative way. Acta Odontol Scand 71: 508-517.

21. Neme AL, Frazier KB, Roeder LB, Debner TL (2002) Effect of prophylactic polishing protocols on the surface roughness of esthetic restorative materials. Oper Dent 27: 50-58.

22. Lappalainen R, Yli-Urpo A, Seppä L (1989) Wear of dental restorative and prosthetic materials in vitro. Dent Mater 5: 35-37.

23. O’Brien WJ (1996) Introduction to Biomaterials Properties. Biomaterials Properties Database, University of Michigan. Quintessence Publishing.

24. Whitehead SA, Shearer AC, Watts DC, Wilson NH (1996) Surface texture changes of a composite brushed with tooth whitening dentifrices. Dent Mater 12: 315-318.

25. Ambjørnsen E, Holland RI (1994) In vitro abrasion of two acrylic veneers. Dent Mater 10: 107-110.

26. Sexon JC, Phillips RW (1951) Studies on the effects of abrasives on acrylic resins. J Prosthodont Dent 1: 454-471.