N-Heterocyclic Carbene Platinum(IV) as Metallodrug Candidates: Synthesis and 195Pt NMR Chemical Shift Trend
Mathilde Bouche, Bruno Vincent, Thierry Achard, Stéphane Bellemin-Laponnaz

To cite this version:
Mathilde Bouche, Bruno Vincent, Thierry Achard, Stéphane Bellemin-Laponnaz. N-Heterocyclic Carbene Platinum(IV) as Metallodrug Candidates: Synthesis and 195Pt NMR Chemical Shift Trend. Molecules, MDPI, 2020, 25 (14), pp.3148. 10.3390/molecules25143148. hal-02960887

HAL Id: hal-02960887
https://hal.archives-ouvertes.fr/hal-02960887
Submitted on 25 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract: A series of octahedral platinum(IV) complexes functionalized with both N-heterocyclic carbene (NHC) ligands were synthesized according to a straightforward procedure and characterized. The coordination sphere around the metal was varied, investigating the influence of the substituted NHC and the amine ligand in trans position to the NHC. The influence of those structural variations on the chemical shift of the platinum center were evaluated by 195Pt NMR. This spectroscopy provided more insights on the impact of the structural changes on the electronic density at the platinum center. Investigation of the in vitro cytotoxicities of representative complexes were carried on three cancer cell lines and showed IC$_{50}$ values down to the low micromolar range that compare favorably with the benchmark cisplatin or their platinum(II) counterparts bearing NHC ligands.

Keywords: N-heterocyclic carbene; platinum; metal complexes; 195Pt NMR
complexes [25]. The chemistry in the solution of cisplatin and its derivatives have been studied by 195Pt NMR spectroscopy. In particular, they have been used to characterize related complexes with aqua, chloro, nitrate, acetate, and phosphate ligands [26,27]. Therefore, we report herein a series of NHC-Pt(IV) complexes and a few examples of their Pt(II) metabolites possibly formed in vitro, that were synthesized and characterized using routine techniques. In vitro activities against three cancer cell lines of representative NHC-Pt(IV) complexes are also presented. Moreover, the shift in the platinum resonance signal in 195Pt NMR is investigated and discussed as a function of tuning their oxidation degree and coordination sphere.

2. Results and Discussion

2.1. Synthesis of the Platinum(II) and Platinum(IV) Complexes

All NHC-Pt complexes were prepared using standard synthetic procedures as previously reported. The general scheme for the synthesis of the Pt(II) and Pt(IV) complexes is described in Scheme 1. First, platinum(II) NHC pyridine complexes were synthesized involving the in situ deprotonation of the imidazolium salt with K$_2$CO$_3$ and the coordination of the carbene to the PtCl$_2$ precursor in dry amine with excess NaI overnight ((1), first step, Scheme 1) [28]. Chemical variation was then possible by the ligand substitution of the pyridine with various nitrogen-based ligands as shown in (1), second step, Scheme 1. The obtained (NHC)PtI$_2$(pyridine) and (NHC)PtI$_2$(amine) complexes could further be oxidized according to a procedure previously reported by us [9]. The aforementioned Pt(II) complexes were reacted with a 10-fold excess of bromine at 0 °C to obtain the corresponding (NHC)PtBr$_4$(L) complexes ((2), Scheme 1). The reaction proceeded very quickly and cleanly to give the expected corresponding Pt(IV) species after only 5 min of reaction. The chlorinated complexes ((NHC)PtCl$_4$L) were obtained by direct oxidation using a 2-fold excess of freshly prepared hypervalent iodine reagent PhICl$_2$ ((3), Scheme 1). The reaction was complete after 1 h at 0 °C. All the platinum(IV) complexes were easily isolated by precipitation with pentane. They were usually obtained in high chemical yield and were stable under air in the solid state or in chlorinated solvents and showed increasing solubility in organic solvents in respect to the length of alkyl chains on the NHC or amine ligand.

![Scheme 1. General synthesis of the platinum (II) and platinum (IV) complexes.](image-url)
Scheme 2 displays the molecular structures of the five platinum(II) NHC complexes used either as precursors for the Pt(IV) syntheses, or as a reference for the studies discussed here. The (NHC)Pt(II)(DMSO) complexes 3 and 4 were obtained by a transmetallation route from the bis(benzyl)imidazol-2-ylidene silver(I) bromide precursor reacted with platinum salt as previously published by us [7]. The NHC Pt(II) complexes 2 and 5 were obtained using the procedure described in (1), Scheme 1 using the corresponding salt NaBr or NaCl respectively.

Scheme 2. Molecular structure of the N-heterocyclic carbene (NHC)-Pt(II) references.

Scheme 3 displays all the platinum(IV) that were synthesized and characterized. A series of (NHC)PtBr$_4$(amine) complexes bearing a (methyl-, benzyl-)NHC, were obtained in a 99% yield with various trans amine ligands, i.e., dodecylamine, cyclohexylamine, morpholine and pyridine, corresponding to complexes 6, 8, 12 and 18, respectively. Identically, the (NHC)PtCl$_4$(amine) complexes with varying amine ligands were obtained in good yields, the corresponding amine ligand being a cyclohexylamine for 22, a morpholine for 23 and a pyridine for 26. The versatile synthesis tolerated the NHC structural variations among the (NHC)PtBr$_4$(amine) family, with N-substituents being a CH$_2$-tert-butylacetate for 14, p-nitro-benzyl for 15, p-benzaldehyde for 16, a pentyl for 19, a cyclopentyl for 20 and a phenyl for 21, all obtained in 99% yield. The functionalization of the positions 4 and 5 of the NHC ligand did not hamper the oxidation reaction, and the (NHC)PtBr$_4$(amine) complexes 9, 11, 13 and 17 were isolated in high yield, corresponding respectively to a benzimidazole, 4-methyl- and 5-aldehyde, 4-methylester, and 4,5-dichloro-NHC. Similarly, the (NHC)PtCl$_4$(amine) complexes 24 bearing a 4,5-dichloro-NHC and 25 functionalized with a pentyl-N-substituted NHC were obtained also in a yield up to 99%. The characterization by the 1H NMR showed that all the proton signals displayed a shift to a lower field compared to their imidazolium precursors which proved typical for such complexes. Overall, the NHC-Pt(IV) complexes showed a signal duplication typically observed for all the protons in up to the 5J position to the platinum center, suggesting an enhanced coupling with the 195Pt isotope compared to their NHC-Pt(II) precursors. Of note, the very low solubility of (NHC)PtBr$_4$(pyridine) complexes prevented the successful acquisition of the 13C NMR of complexes 4, 5, 11, 20 and 26, or rendered the carbenic carbon signal not visible. However, in the case of more lipophilic complexes, coupling between the carbenic carbon and the platinum center was observed in 13C NMR. Such a trend was found typical throughout all the NHC-Pt(IV) complexes, the carbenic carbon signal appearing as a singlet and doublet system, possibly due to the heavy atom effect of platinum [29]. Moreover, chemical shifts to a higher field of the carbenic carbon were also observed by 13C NMR spectroscopy, ca. δ 109–120 ppm in the case of NHC-Pt(IV) complexes, while (NHC)PtI$_2$(amine) complexes previously reported by us [30,31] and others [32,33] typically show a signal shift at least 30 ppm greater.
Scheme 3. Molecular structure of the NHC-Pt(IV) complexes.

Among these Pt(IV) complexes, the molecular structure of the (NHC)PtBr$_4$(amine) complex 15 was determined by X-ray diffraction and is presented in Figure 1. The platinum center shows an octahedral geometry with bromine ligands forming a distorted square planar shape in equatorial position,
comparable to other (NHC)PtBr₄(amine) complexes previously reported by us [6,7]. The pyridine ligand is located in trans position to the NHC with a platinum-pyridine length of 2.128(6) Å while the NHC-platinum bond is found to be 2.057(8) Å. The molecular structure of the (NHC)PtCl₄(amine) complex 23 revealed a comparable geometry with overall shorter bonds between the platinum center and the ligands, reflective of the influence of the coordination sphere on platinum’s electronic density, exemplified by the NHC-platinum length of 2.034(3) Å, and the chloride-platinum bonds in the range of 2.327(3)–2.336(3) Å [7].

Figure 1. Molecular structure of complex 15. Selected bond distances (Å) and angles (deg): C(1)-Pt(1), 2.057(8); Br(1)-Pt(1), 2.4882(8); Br(2)-Pt(1), 2.4657(8); Br(3)-Pt(1), 2.4615(8); Br(4)-Pt, 2.4839(8); N(3)-Pt(1), 2.128(6); C(1)-Pt(1)-N(3), 179.2(3); C(1)-Pt(1)-Br(3), 92.9(2); N(3)-Pt(1)-Br(3), 87.10(16); Br(2)-Pt(1)-Br(3), 86.10(3); Br(1)-Pt(1)-Br(4), 177.05(3).

2.2. In Vitro Activities against Cancer Cell Lines

Among the series of NHC-platinum complexes herein, a series of the most soluble complexes were selected for the evaluation of their in vitro anticancer activities. Overall, most NHC-Pt(IV) complexes were found to display comparable IC₅₀ values to cisplatin in the range of 0.5–23 µM. Contrastingly, the complex 16 showed disparate anticancer activities depending on the cancer cell line with the IC₅₀ values of 5.42 µM and 81.09 µM against the PC3 or HCT116 respectively (Table 1). Of note, the low solubility of this complex in aqueous media might explain the low IC₅₀ values observed in this study. The series of the (NHC)PtBr₄(amine) complexes 6, 8, 12 and 19 show potencies that compare favorably with the NHC-Pt(II) complexes which are expected to be the species released upon their redox activation. Such a result is in line with our previous findings suggesting their rapid reduction and release of the active species [6,7]. Remarkably, the (NHC)PtCl₄(amine) complexes 22 and 25 show the most promising in vitro potencies with IC₅₀ values in the low micromolar range against the three tested cancer cell lines.
Table 1. Half-inhibitory concentrations IC$_{50}$ (µM) of the selected complexes toward the HCT116, MCF7 and PC3 cancer cells.

Complex Number	Structure	IC$_{50}$ (µM) HCT116	IC$_{50}$ (µM) MCF7	IC$_{50}$ (µM) PC3
Cisplatin	(NH$_3$)$_2$PtCl$_2$	3.57 ± 0.1	4.15 ± 0.7	3.10 ± 0.2
2	(NH$_3$)PtBr$_2$(pyr)	5.44 ± 1	7.73 ± 1	5.35 ± 1.6
3	(NH$_3$)PtBr$_2$(DMSO)	>100	>100	>100
4	(NH$_3$)PtCl$_2$(DMSO)	63 ± 5	80 ± 13	65 ± 6
5	(NH$_3$)PtCl$_2$(pyr)	3.78 ± 0.1	3.48 ± 1	4.40 ± 0.9
6		7.5 ± 0.3	23 ± 5	10 ± 1
8		14 ± 2	5 ± 1	5 ± 1
12	(NH$_3$)PtBr$_4$(amine)	11 ± 0.3	3 ± 0.7	2 ± 0.5
16		81.09 ± 2	17.22 ± 1.8	5.42 ± 0.5
19		5 ± 1	4 ± 0.2	5 ± 1
22	(NH$_3$)PtCl$_4$(amine)	0.5 ± 0.03	0.5 ± 0.09	1 ± 0.1
25		1.48 ± 0.2	1.78 ± 0.6	1.31 ± 0.2

1 HCT116, colon cancer cells; MCF7, breast carcinoma; PC3, prostate adenocarcinoma. (After 72 h of incubation; stock solutions in DMSO for all complexes; stock solution in H$_2$O for cisplatin).

2.3. 195Pt NMR Spectroscopy

The NHC-platinum complexes were further characterized using a 1H detection inverse NMR spectroscopy sequence which was preferred to direct the 195Pt measurement in regard of shorter acquisition time and enhanced sensibility. This was supported by a test experiment using complex 8 as a reference, comparing spectra obtained in direct 195Pt NMR or indirect HMOC 1H-195Pt NMR, and both showed a signal peak at $\delta_{Pt} = -2168$ ppm irrespective of the sequence used. Table 2 displays the 195Pt chemical shift NMR of all the complexes and carbonic carbon signal in the 13C NMR, when observed. The most significant variation in the platinum chemical shift was found as a function of the oxidation state of the platinum center. All the (NH$_3$)PtBr$_4$(amine) complexes 6–21 displayed a platinum chemical shift in the range of $\delta_{Pt} = -1901$ to -2196 ppm while the (NH$_3$)PtCl$_4$(amine) complexes 22–26 were observed at $\delta_{Pt} = -883$ to -795 ppm and all other NHC-Pt(II) complexes 1–5 displayed a chemical shift below -3304 ppm.

Of note, the use of 1H detection inverse spectroscopy proved of high interest for most complexes to observe the $^4J_{H-Pt}$ long-range couplings between the platinum center and C, C$_3$, C$_4$ protons on the NHC backbone as well as the protons on the N-substituents of the NHC. This strong chemical coupling suggests a high electronic delocalization from the platinum center to the substituents of the NHC ligand which yet does not seem to significantly affect the chemical shift in 195Pt NMR. Thus, the series of NHC-Pt(IV) complexes 14–16, 19 and 20 show a platinum chemical shift decrease from $\delta_{Pt} = -2032$ to -2070 ppm with the N-substituents following the trend Cy > C$_6$H$_{11}$ > Bn > CH$_2$CO$_2$Bu. Similarly, the functionalization of C$_3$ and C$_4$ positions on the NHC backbone of the NHC-Pt(IV) complexes is shown to have a negligible effect on the platinum shift with $\Delta \delta_{Pt} = 2$ ppm between complexes 13 and 11. Moreover, a large platinum chemical shift variation $\Delta \delta_{Pt} = 64$ ppm was observed between the imidazolizin-2-yldiene ligand in 16 ($\delta_{Pt} = -2063$ ppm) and the benzimidazolin-2-yldiene ligand in 9 ($\delta_{Pt} = -2127$ ppm), which was found to correlate with the $\Delta \delta_C = 23.1$ ppm of their carbonic carbon observed by 13C NMR. Among the series of the NHC-Pt(IV) complexes, the variation of the trans amine ligand shows a trend in the platinum chemical shift that follows the amine’s basicity from $\delta_{Pt} = -2040$ ppm for complex 18 to $\delta_{Pt} = -2196$ ppm for complex 6. Thus, the trend in the platinum chemical shift is found to be 18 > 12 > 8 > 6, corresponding to a trans ligand being pyridine > morpholine > cyclohexylamine > dodecylamine. Of note, the same trend is visible while comparing their carbonic carbon shift as complex 18 bearing a pyridine shows a δ_C of 109.3 ppm while its cyclohexylamine counterpart 8 shows a shift up to 115.2 ppm. Moreover, the (NH$_3$)PtCl$_4$(amine) complexes follow the same trend with platinum chemical shifts being 26 > 23 > 22, corresponding to the trans amine ligand pyridine > morpholine > cyclohexylamine.
Table 2. Chemical shift evolution of the Pt signal as a function of the metal oxidation state, the coordination sphere of the metal and the NHC substituents (external reference for 195Pt: H$_2$PtCl$_6$ in D$_2$O: $\delta_{\text{Pt}} = 0$ ppm).

Complex	Ox. State	δ_{Pt} (ppm) 195Pt NMR	δ_{C} (ppm) 13C NMR
1	+II	-4313	125.1
2	+II	-3814	138.2
3	+II	-3356	154.7
4	+II	-3351	n.o. 1
5	+II	-3304	n.o.
6	+IV	-2196	n.o.
7	+IV	-2168	113.4
8	+IV	-2168	115.2
9	+IV	-2167	133.9
10	+IV	-2083	124.6
11	+IV	-2081	n.o.
12	+IV	-2080	112.7
13	+IV	-2079	115.4
14	+IV	-2070	n.o.
15	+IV	-2067	n.o.
16	+IV	-2063	110.8
17	+IV	-2058	110.7
18	+IV	-2048	109.3
19	+IV	-2040	109.2
20	+IV	-2032	n.o.
21	+IV	-1901	n.o.
22	+IV	-883	n.o.
23	+IV	-853	n.o.
24	+IV	-825	112.9
25	+IV	-810	111.5
26	+IV	-795	n.o.

1 n.o.: not observed.

3. Materials and Methods

All the manipulations of the air- and moisture-sensitive compounds were carried out using standard Schlenk techniques under an argon atmosphere and the solvents were purified and degassed following standard procedures. All the reagents were purchased from commercial chemical suppliers (Acros (Illkirch, France), Alfa Aesar (Lancashire, UK), and TCI Europe (Paris, France)) and used without further purification. 1H and 13C nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AVANCE 300 or Bruker AVANCE 500 spectrometer (Bruker, Wissembourg, France) using the residual solvent peak as a reference (CDCl$_3$: $\delta_{\text{H}} = 7.26$ ppm; $\delta_{\text{C}} = 77.16$ ppm) at 295 K. The HMQC 1H-195Pt spectra were recorded on a Bruker AVANCE 600 spectrometer using the residual solvent peak as reference for the 1H calibration and an external reference for the 195Pt (H$_2$PtCl$_6$ in D$_2$O: $\delta_{\text{Pt}} = 0$ ppm) at the Institut de Chimie NMR Facility of the University of Strasbourg. Positive mode electrospray ionization mass spectra (ESI-HRMS) analyses were carried out on microTOF, Bruker Daltonics (Bruker, Wissembourg, France).

All the syntheses and characterizations are available in the Supplementary Materials.

4. Conclusions

In the present work, a series of N-heterocyclic carbene-coordinated platinum(IV) complexes were synthesized in high yield according to a versatile procedure. All the complexes were found stable in the air and in chlorinated solvents for months. Some representative examples of these NHC-Pt(IV) complexes were selected for the in vitro evaluation of their cancer inhibitory properties and compared
to their possible Pt(II) metabolites formed in the biological environment. Overall, the lipophilic (NHC)PtCl$_4$(amine) complex 22 was found to induce the greater in vitro potencies toward selected cancer cell lines with IC$_{50}$ values in the low micromolar range.

In the development of platinum-based metallotherapeutics, numerous parameters have to be considered in addition to the apparent electronic density at the platinum center that may be reflected by the 195Pt NMR chemical shift, namely lipophilicity and pharmacological properties and so forth. Moreover, the balance between the stability of the platinum drugs in the blood stream and their ability to form metabolites and interact with DNA is difficult to anticipate by finetuning the coordination sphere of the platinum. However, the 195Pt NMR has proved to be a helpful probe in investigating the biological activity of platinum-based drugs. For example, a recent study involving the monitoring of carboplatin after subcutaneous injection in rats was studied using 195Pt NMR [34]. Thus, all the complexes presented here were characterized with standard techniques and the influence of structural variations, i.e., on one hand the coordination sphere and on the other hand the NHC ligand’s functionalization, were correlated to their chemical shift in 195Pt NMR. All the (NHC)PtBr$_4$(amine) complexes displayed platinum chemical shifts in the range of $\delta_{Pt} -1900$ to -2200 ppm while the (NHC)PtCl$_4$(amine) complexes were observed at $\delta_{Pt} -900$ to -800 ppm. All other NHC–Pt(II) complexes displayed a chemical shift below -3304 ppm. The 195Pt NMR spectroscopy could then be used to monitor the kinetics and the mechanism of such platinum complexes with biological substances.

Supplementary Materials: The following are available online. 195Pt NMR spectra and characterization for all compounds.

Author Contributions: S.B.-L. designed the research. M.B., T.A. and S.B.-L. conceived, designed and performed the chemical experiments. B.V. performed the NMR experiments. S.B.-L. and M.B. wrote the paper and T.A. and B.V. participated in manuscript writing. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the University of Strasbourg/CNRS-Program IDEX Interdisciplinaire. M.B. was granted by the French “Ministère de la Recherche”.

Acknowledgments: The authors gratefully acknowledge the Ministère de l’Enseignement Supérieur et de la Recherche for Ph.D. grants to M.B. Biological evaluations of cell proliferation inhibition have been performed at the Cibiothèque Cellulaire ICSN (Gif sur Yvette, France). The authors also thank Michel Sigrist for technical assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gietema, J.A.; Meinardi, M.T.; Messerschmidt, J.; Gelevert, T.; Alt, F.; Uges, D.; Seijfer, D.T. Circulating plasma platinum more than 10 years after cisplatin treatment for testicular cancer. *Lancet* 2000, 355, 1075–1076. [CrossRef]

2. Cheff, D.M.; Hall, M.D. A Drug of Such Damned Nature. 1 Challenges and Opportunities in Translational Platinum Drug Research: Miniperspective. *J. Med. Chem.* 2017, 60, 4517–4532. [CrossRef] [PubMed]

3. Um, I.S.; Armstrong-Gordon, E.; Moussa, Y.E.; Gnijdic, D.; Wheate, N.J. Platinum drugs in the Australian cancer chemotherapy healthcare setting: Is it worthwhile for chemists to continue to develop platinums? *Inorg. Chim. Acta* 2019, 492, 177–181. [CrossRef]

4. Gibson, D. Multi-action Pt (IV) anticancer agents; do we understand how they work? *J. Inorg. Biochem.* 2019, 191, 77–84. [CrossRef]

5. Hall, M.D.; Hambley, T.W. Platinum (IV) antitumour compounds: Their bioinorganic chemistry. *Coord. Chem. Rev.* 2002, 232, 49–67. [CrossRef]

6. Bouchez, M.; Bonnefont, A.; Achard, T.; Bellemín-Laponnaz, S. Exploring diversity in platinum (IV) N-heterocyclic carbene complexes: Synthesis, characterization, reactivity and biological evaluation. *Dalton Trans.* 2018, 33, 11491–11502. [CrossRef]

7. Bouchez, M.; Dahm, G.; Wantz, M.; Fournel, S.; Achard, T.; Bellemin-Laponnaz, S. Platinum (IV) N-heterocyclic carbene complexes: Their synthesis, characterisation and cytotoxic activity. *Dalton Trans.* 2016, 45, 11362–11368. [CrossRef]
8. Chardon, E.; Dahm, G.; Guichard, G.; Bellemín-Laponnaz, S. Derivatization of preformed platinum N-heterocyclic carbene complexes with amino acid and peptide ligands and cytotoxic activities toward human cancer cells. Organometallics 2012, 31, 7618–7621. [CrossRef]

9. Bellemín-Laponnaz, S. N-Heterocyclic Carbene Platinum Complexes: A Big Step Forward for Effective Antitumor Compounds. Eur. J. Inorg. Chem. 2020, 2020, 10–20. [CrossRef]

10. Priqueler, J.R.L.; Butler, I.S.; Rochon, D.D. High selectivity of colorimetric detection of p-nitrophenol based on Ag nanoclusters. Appl. Spectrosc. Rev. 2006, 41, 185–226. [CrossRef]

11. Höfer, D.; Varbaniv, H.P.; Hejl, M.; Jakupc, M.A.; Roller, A.; Galanski, M.; Keppler, B.K. Impact of the equatorial coordination sphere on the rate of reduction, lipophilicity and cytotoxic activity of platinum (IV) complexes. J. Inorg. Biochem. 2017, 174, 119–129. [CrossRef] [PubMed]

12. Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The next generation of platinum drugs: Targeted Pt (II) agents, nanoparticle delivery, and Pt (IV) prodrugs. Chem. Rev. 2016, 116, 3436–3486. [CrossRef] [PubMed]

13. Johnstone, T.C.; Alexander, S.M.; Wilson, J.J.; Lippard, S.J. Oxidative halogenation of cisplatin and carboplatin: Synthesis, spectroscopy, and crystal and molecular structures of Pt (IV) prodrugs. Dalton Trans. 2015, 44, 119–129. [CrossRef] [PubMed]

14. Bokach, N.A.; Kukushkin, V.Y.; Kuznetsov, M.L.; Garnovskii, D.A.; Natile, G.; Pombeiro, A.J.L. Direct addition of alcohols to organonitriles activated by ligation to a platinum (IV) center. Inorg. Chem. 2002, 41, 2041–2053. [CrossRef]

15. Still, B.M.; Anil Kumar, P.G.; Aldrich-Wright, J.R.; Price, W.S. 195Pt NMR—Theory and application. Chem. Soc. Rev. 2007, 36, 665–686. [CrossRef]

16. Hu, D.; Yang, C.; Lok, C.-N.; Xing, F.; Lee, P.-Y.; Fung, Y.M.E.; Jiang, H.; Che, C.-M. An Antitumor Bis (N-Heterocyclic Carbene) Platinum (II) Complex That Engages Asparagine Synthetase as an Anticancer Target. Angew. Chem. Int. Ed. 2019, 58, 10914–10918. [CrossRef]

17. Matczuk, M.; Ruzik, L.; Alekssanko, S.S.; Keppler, B.K.; Jarosz, M.; Timerbaev, A.R. Analytical methodology for studying cellular uptake, processing and localization of gold nanoparticles. Anal. Chim. Acta 2019, 1052, 1–9. [CrossRef]

18. Galvez, L.; Theiner, S.; Grabarics, M.; Kowol, C.R.; Keppler, B.K.; Hann, S.; Koellensperger, G. Critical assessment of different methods for quantitative measurement of metallodrug-protein associations. Anal. Bioanal. Chem. 2018, 410, 7211–7220. [CrossRef]

19. Ahmad, S. Kinetic aspects of platinum anticancer agents. Polyhedron 2017, 138, 109–124. [CrossRef]

20. Hall, M.D.; Daly, H.L.; Zhang, J.Z.; Zhang, M.; Alderden, R.A.; Pursche, D.; Foran, G.J.; Hambley, T.W. Quantitative measurement of the reduction of platinum (IV) complexes by X-ray absorption near-edge spectroscopy (XANES). Metallomics 2012, 4, 568–575. [CrossRef]

21. Czapla-Masztafaik, J.; Kubas, A.; Kayser, Y.; Fernandes, D.L.A.; Kwiatek, W.M.; Lipiec, E.; Deacon, G.B.; Al-Jorani, K.; Wood, B.R.; Szlachetko, J.; et al. Mechanism of hydrolysis of a platinum (IV) complex discovered by atomic telemetry. J. Inorg. Biochem. 2018, 187, 56–61. [CrossRef] [PubMed]

22. Huynh, H.V. The Organometallic Chemistry of N-heterocyclic Carbenes; John Wiley & Sons: Hoboken, NJ, USA, 2017.

23. Teng, Q.Q.; Huynh, H.V. A Unified Ligand Electronic Parameter Based on 13C NMR Spectroscopy of N-heterocyclic Carbene Complexes. Dalton Trans. 2017, 46, 614–627. [CrossRef]

24. Teng, Q.Q.; Ng, P.S.; Leung, J.N.; Huynh, H.V. Donor strengths determination of pnictogen and chalcogen carbene precursors. Chem. Eur. J. 2019, 25, 13956–13963. [CrossRef]

25. Tsipis, A.C.; Karapetsas, I.N. Prediction of 195Pt NMR of photoactivable diazido- and azine-Pt(IV) anticancer agents by DFT computational protocols. Magn. Reson. Chem. 2017, 55, 145–153. [CrossRef]

26. Appleton, T.G.; Berry, R.D.; Davis, C.A.; Hall, J.R.; Kimlin, H.A. Reactions of platinum(II) aqua complexes. I: Multinuclear (195Pt, 15N, and 31P) NMR study of reactions between the cis-diaminedi(aqua)platinum(II) cation and the oxygen-donor ligands hydroxide, perchlorate, nitrate, sulfate, phosphate, and acetate. Inorg. Chem. 1984, 23, 3514–3531. [CrossRef]

27. Appleton, T.G.; Hall, J.R.; Ralph, S.F.; Thompson, C.S.M. Reactions of platinum(II) aqua complexes. 2. Platinum-195 NMR study of reactions between the tetraaquaplatinum(II) cation and chloride, hydroxide, perchlorate, nitrate, sulfate, phosphate, and acetate. Inorg. Chem. 1984, 23, 3521–3525. [CrossRef]

28. Benhamou, L.; Chardon, E.; Lavigne, G.; Bellemín-Laponnaz, S.; César, V. Synthetic routes to N-heterocyclic carbene precursors. Chem. Rev. 2009, 111, 2705–2733. [CrossRef] [PubMed]
29. Sutter, K.; Autschbach, J. Computational study and molecular orbital analysis of NMR shielding, spin–spin coupling, and electric field gradients of azido platinum complexes. *J. Am. Chem. Soc.* **2012**, *134*, 13374–13385. [CrossRef]

30. Dahm, D.; Bailly, C.; Karmazin, L.; Bellemín-Laponnaz, S. Synthesis, structural characterization and in vitro anti-cancer activity of functionalized N-heterocyclic carbene platinum and palladium complexes. *J. Organomet. Chem.* **2015**, *794*, 115–124. [CrossRef]

31. Chardon, E.; Puleo, G.-L.; Dahm, G.; Guichard, G.; Bellemín-Laponnaz, S. Direct functionalisation of group 10 N-heterocyclic carbene complexes for diversity enhancement. *Chem. Commun.* **2011**, *47*, 5864–5866. [CrossRef]

32. Chtchigrovsky, M.; Eloy, L.; Jullien, H.; Saker, L.; Ségal-Bendirdjian, E.; Poupon, J.; Bombard, S.; Cresteil, T.; Retailleau, P.; Marinetti, A. Antitumor trans-N-Heterocyclic Carbene–Amine–Pt(II) Complexes: Synthesis of Dinuclear Species and Exploratory Investigations of DNA Binding and Cytotoxicity Mechanisms. *J. Med. Chem.* **2013**, *56*, 2074–2086. [CrossRef] [PubMed]

33. Skander, M.; Retailleau, P.; Bourri, B.; Schio, L.; Mailliet, P.; Marinetti, A. N-heterocyclic carbene-amine Pt (II) complexes, a new chemical space for the development of platinum-based anticancer drugs. *J. Med. Chem.* **2010**, *53*, 2146–2154. [CrossRef] [PubMed]

34. Becker, M.; Port, R.E.; Zabel, H.-J.; Zeller, W.J.; Bachert, P. Monitoring Local Disposition Kinetics of Carboplatin in Vivo after Subcutaneous Injection in Rats by Means of 195Pt NMR. *J. Magn. Reson.* **1998**, *133*, 115–122. [CrossRef] [PubMed]

Sample Availability: Not available.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).