1. Introduction

Recently, Khalfalah and Szemerédi [7] proved the following theorem, which was conjectured by Erdős, Roth, Sárközy and Sós [3]:

Theorem 1.1. Let \(\psi \) be a polynomial with integral coefficients and positive leading coefficient. Suppose that \(\psi(1) \psi(0) \) is even. Then for any \(m \)-coloring of all positive integers (i.e., partitioning \(\mathbb{Z}^+ \) into \(m \) disjoint non-empty subsets), there exist monochromatic distinct \(x, y \) such that \(x + y = \psi(z) \) for an integer \(z \).

In particular, if all positive integers are colored with \(m \)-colors, then there exists a monochromatic pair \(x, y \) with \(x \neq y \) such that \(x + y \) is a perfect square.

On the other hand, suppose that \(\psi \) is a polynomial with rational coefficients and zero constant term, in [9] Li and Pan proved that for any subset \(A \) of positive integers with

\[
\limsup_{x \to \infty} \frac{|A \cap [1, x]|}{x} > 0,
\]

there exist \(x, y \in A \) and a prime \(p \) such that \(x - y = \psi(p - 1) \). This commonly generalizes two well-known results of Furstenberg [4] and Sárközy [10, 11].

Define

\[
\lambda_{b,W}(x) = \begin{cases}
\phi(W) \log(Wx + b) & \text{if } Wx + b \text{ is prime}, \\
0 & \text{otherwise},
\end{cases}
\]

where \(\phi \) is the Euler totient function and

\[
\Lambda_{b,W} = \{x : Wx + b \text{ is prime}\}
\]

for \(1 \leq b \leq W \) with \((b,W) = 1 \). In the present paper, our main result is the following theorem:

Theorem 1.2. Let \(m, b_0, W_0 \) be positive integers satisfying \(b_0 \leq W_0 \) and \((b_0, W_0) = 1 \). Let \(\psi(x) \) be a polynomial with integral coefficients and positive leading coefficient satisfying that

\[
\begin{cases}
\psi(1) \text{ or } \psi(0) \text{ is even} & \text{if } 2 \mid W_0, \\
\psi(b_0 - 1) \text{ is even} & \text{if } 2 \nmid W_0.
\end{cases}
\]

2000 Mathematics Subject Classification. Primary 11P32; Secondary 05D99, 11P55.

This work was supported by the National Natural Science Foundation of China (Grant No. 10471090).
Suppose that all positive integers are colored with \(m \) colors. Then there exist distinct monochromatic \(x, y \) such that \(x + y = \psi(z) \) where \(z \in \Lambda_{b_0,W_0} \).

We shall use one of Green's ingredients in his proof of Roth's theorem in primes. The key of Green’s proof is a transference principle (which was greatly developed in [6]), i.e., transferring a subset of primes with positive relative density to a subset of \(\mathbb{Z}_N = \mathbb{Z}/NZ \) with positive density, where \(N \) is a large prime. In the proof of Theorem 1.2 we shall transfer one subset of \(\{ \psi(z) : z \in \Lambda_{b,W} \} \) to a subset of \(\mathbb{Z}_N = \mathbb{Z}/NZ \) with the density very close to 1.

Theorem 1.3. Let \(m, b_0, W_0 \) be positive integers satisfying \(b_0 \leq W_0 \) and \((b_0, W_0) = 1 \). Let \(\psi(x) \) be a polynomial with integral coefficients and positive leading coefficient satisfying that

\[
\begin{cases}
\psi(1) \text{ or } \psi(0) \text{ is even} & \text{if } 2 \mid W_0, \\
\psi(b_0 - 1) \text{ is even} & \text{if } 2 \nmid W_0.
\end{cases}
\]

Also, suppose that for each prime \(p \), there exists \(1 \leq c_p \leq p \) such that both \(W_0c_p + b_0 \) and \(\frac{1}{2}\psi(c_p) \) are not divisible by \(p \). Then for any \(m \)-coloring of all primes, there exist distinct monochromatic primes \(x, y \) such that \(x + y = \psi(z) \) where \(z \in \Lambda_{b_0,W_0} \).

Let us explain why the existence of \(c_p \) is necessary. Assume that there exists a prime \(p \) such that \(c_p \) doesn’t exist. That is, for each \(1 \leq c \leq p \), either \(W_0c + b_0 \) or \(\frac{1}{2}\psi(c) \) is divisible by \(p \). Then we may partition the set of all primes into \(3p \) disjoint sets \(X_1, \ldots, X_{3p} \) with

\[
X_j = \{ x \text{ is prime } : x \leq \psi((p - b_0)/W_0)/2, x \equiv j \pmod{p} \},
\]

and

\[
X_{p+j} = \{ x \text{ is prime } : x > \psi((p - b_0)/W_0), x \equiv j \pmod{p} \}
\]

and

\[
X_{2p+j} = \{ x \text{ is prime } : \psi((p - b_0)/W_0)/2 < x \leq \psi((p - b_0)/W_0), x \equiv j \pmod{p} \}
\]

for \(j = 1, 2, \ldots, p \). We claim that for each \(1 \leq j \leq 3p \), the set

\[
\{ (x, y, z) : x, y \in X_j, z \in \Lambda_{b_0,W_0}, x \neq y, x + y = \psi(z) \}
\]

is empty.

In fact, notice that now \(p \) divides one of \(W_0z + b_0 \) and \(\frac{1}{2}\psi(z) \) since \(c_p \) doesn’t exist. If \(p \) divides \(W_0z + b_0 \), we must have \(W_0z + b_0 = p \) since \(z \in \Lambda_{b_0,W_0} \). But it is easy to see that for \(1 \leq j \leq p \)

\[
\max\{ x + y : x, y \in X_j, x \neq y \} < 2 \cdot \psi((p - b_0)/W_0)/2 = \psi(z),
\]

and for \(p + 1 \leq j \leq 3p \)

\[
\min\{ x + y : x, y \in X_j, x \neq y \} > 2 \cdot \psi((p - b_0)/W_0)/2 = \psi(z).
\]

So it is impossible that

\[
\psi(z) \in X_j + X_j := \{ x + y : x, y \in X_j, x \neq y \}
\]

for any \(1 \leq j \leq 3p \).

On the other hand, suppose that \(p \) divides \(\frac{1}{2}\psi(z) \). Note that for any \(1 \leq j \leq 3p \) and \(x, y \in X_j, x \equiv y \equiv j \pmod{p} \). So if \(x + y = \psi(z) \), then we must have
\(x \equiv y \equiv 0 \pmod{p}\). Thus we have \(x = y = p\) since \(x, y\) are both primes. This also concludes that \(\psi(z) \not\equiv X_j + X_j\) for each \(j\).

2. Proof of Theorem 1.2

Assume that \(n\) is a sufficiently large integer, and
\[
\{1, 2, \ldots, n\} = X_1 \cup \cdots \cup X_m
\]
where \(X_i \cap X_j = \emptyset\) if \(i \neq j\).

Lemma 2.1. Let \(p\) be a prime. Let \(h(x)\) be a non-zero polynomial over \(\mathbb{Z}_p\). Suppose that \(S \subseteq \mathbb{Z}_p\) and \(|S| \geq \deg h + 1\). Then there exists \(b \in S\) such that \(h(b) \not\equiv 0 \pmod{p}\).

Proof. This lemma easily follows from the fact that
\[
|h(x) - h(y)| \leq \deg h \cdot |x - y|
\]
since \(h(x)\) doesn’t vanish over \(\mathbb{Z}_p\). \(\square\)

Suppose \(\psi(x) = a_1 x^k + \cdots + a_k x + a_0\) be a polynomial with integral coefficients. Let \(\Psi = \max\{(k+1)W_0, |a_1|, \ldots, |a_k|\}\). Let \(\psi'\) denote the derivative of \(\psi\). Then for any prime \(p > \Psi\), by Lemma 2.1, there exists \(1 \leq b_p \leq p-1\) with \(b_p \equiv b_0 \pmod{W_0}\) such that \(\psi'((b_p - b_0)/W_0), p) = 1\). And for each prime \(p \leq \Psi\), we may choose \(b_p \geq 1\) with \(p \mid b_p\) such that \(b_p \equiv b_0 \pmod{W_0}\) and \(\psi'((b_p - b_0)/W_0) > 0\). In particular, we may assume that \(\psi((b_2 - b_0)/W_0)\) is even if \(2 \mid W_0\). Let
\[
K = \prod_{p \text{ prime}} p^{
u_p(\psi'((b_p - b_0)/W_0))},
\]
where \(\nu_p(x) = \max\{v \in \mathbb{Z} : p^v \mid x\}\).

Let \(\kappa = 10^{-4}K^{-1}m^{-1}\). Let \(w = \lceil \log \log \log n \rceil\) and
\[
W = \prod_{p \text{ prime}} p^w.
\]

Without loss of generality, we may assume that \(w \geq \Psi\). Suppose that \(N\) is a prime in the interval \((2n/W, (2 + \kappa)n/W)\). Thanks to the prime number theorem, such prime \(N\) always exists whenever \(n\) is sufficiently large. By the Chinese remainder theorem, there exists \(0 \leq b \leq W - 1\) such that for each prime \(p \leq w\)
\[
W_0 b + b_0 \equiv b_p \pmod{W_0}.
\]
since \(b_p \equiv b_0 \pmod{W_0}\). Clearly \((W_0 b + b_0, WW_0) = 1\). We claim that \(\psi(b)\) is even. In fact, when \(W_0\) is odd, \(b \equiv b_2 - b_0 \equiv b_0 - 1 \pmod{2}\). And if \(W_0\) is even, we also have \(2 \mid \psi(b)\) since \(b \equiv (b_2 - b_0)/W_0 \pmod{2}\).

Define
\[
\psi_{b,W}(x) = \psi(Wx + b) - \psi(b).
\]
Let \(M = \max\{x \in \mathbb{N} : \psi_{b,W}(x) < KN\}\). Let \(B\) be a sufficiently large positive constant (only depending on \(k\)). Let
\[
\mathfrak{M}_{a,q} = \{\alpha \in \mathbb{T} : |\alpha q - a| \leq (\log M)^B/\psi_{b,W}(M)\},
\]
\[M = \bigcup_{1 \leq a \leq q \leq (\log M)^B} M_{a,q} \]

and \(m = \mathbb{T} \setminus M \), where \(\mathbb{T} = \mathbb{R}/\mathbb{Z} \).

Lemma 2.2. For \(\alpha \in M_{a,q} \),
\[
\sum_{x=1}^{M} \psi_{a,W}^\Delta(x - 1)\lambda_{W_{b} + b_0,WW_0}(x)e(\alpha\psi_{b,W}(x))
= \frac{\phi(WW_0)}{\phi(WW_0q)} \sum_{1 \leq r \leq q} e(a\psi_{b,W}(r)/q) \sum_{x=1}^{\psi_{b,W}(M)} e((\alpha - a/q)\psi_{b,W}(x))
+ O(\psi_{b,W}(M)(\log M)^{-B}),
\]
where \(\psi_{b,W}(x) = \psi_{b,W}(x + 1) - \psi_{b,W}(x) \).

Lemma 2.3. Suppose that \(U \geq e^aW^k \). For any \(A > 0 \), there is a \(B = B(A,k) > 0 \) such that,
\[
\sum_{x=1}^{N} \lambda_{b,W}(x)e(\alpha\psi(x)) \ll_B N(\log N)^{-A}
\]
provided that \(|\alpha - a/q| \leq q^{-2} \) with \(1 \leq a \leq q \), \((a,q) = 1 \) and \((\log N)^B \leq q \leq \psi(N)(\log N)^{-B} \).

Lemma 2.2 is the immediate consequence of Lemmas 2.3 and 2.4 of [9]. The proof of Lemma 2.3 is standard but too long, so we omit the details here. And the readers may refer to [9] for the proof.

Clearly \(\psi_{b,W} \) is positive and strictly increasing on \([1,M]\) provided that \(W \) is sufficiently large. Define
\[
a(x) = \begin{cases}
\psi_{a,W}^\Delta(z - 1)\lambda_{W_{b} + b_0,WW_0}(z)/\psi_{b,W}(M) & \text{if } x = \psi_{b,W}(z) \text{ for a } 1 \leq z \leq M, \\
0 & \text{otherwise}.
\end{cases}
\]

For any \(f : \mathbb{Z}_N \to \mathbb{C} \), define
\[
\hat{f}(r) = \sum_{x=1}^{N} f(x)e(-xr/N).
\]

Lemma 2.4. For any \(0 \neq r \in \mathbb{Z}_N \),
\[
|\hat{a}(r)| \leq C_1 Kw^{-\frac{1}{\kappa(k+1)}}, \quad (2.1)
\]
where \(C_1 \) is a constant (only depending on \(k \)).

Proof. If \(r/N \in m \), then by Lemma 2.3 and partial summation,
\[
\hat{a}(r) = \frac{1}{\psi_{b,W}(M)} \sum_{z=1}^{M} \psi_{a,W}^\Delta(z - 1)\lambda_{W_{b} + b_0,WW_0}(z)e(-\psi_{b,W}(z)r/N) \ll (\log M)^{-1}.
\]
Suppose that $r/N \in \mathfrak{m}_{a,q}$. Then by Lemma 2.2

$$\frac{1}{\psi_{b,W}(M)} \sum_{z=1}^{M} \psi_{b,W}^\Delta(z-1) \lambda_{W_0b+b_0} \psi_{W_0}(z)e(-\psi_{b,W}(z)r/N)$$

$$= \frac{\phi(WW_0)}{\phi(WW_0q)\psi_{b,W}(M)} \sum_{1 \leq s \leq q} e(-\psi_{b,W}(s)a/q) \sum_{x=1}^{\psi_{b,W}(M)} e(x(r/N - a/q))$$

$$+ O((\log M)^{-B})$$

Notice that the leading coefficient of $\psi_{b,W}(x)$ is a_1W^{k-1}, and the coefficient of x^1 in $\psi_{b,W}(x)$ coincides with

$$\psi_{b,W}'(0) = \lim_{x \to 0} \left(\frac{d}{dx} \left(\frac{\psi(Wx + b) - \psi(b)}{W} \right) \right) = \lim_{x \to b} \left(\frac{d\psi(x)}{dx} \right) = \psi'(b).$$

Also, clearly for each prime $p \leq w$, $\psi'(b) \equiv \psi'((b_p - b_0)/W_0) \pmod{p^w}$ since $W_0b + b_0 \equiv b_p \pmod{p^{w+\nu_p(W_0)}}$. Therefore when w is sufficiently large, we have

$$(\psi'(b), a_1W^{k-1}) = (\psi'(b), W) = \prod_{p \leq \Psi} p^{\nu_p(\psi'((b_p - b_0)/W_0))} = K.$$

Thus by Lemma 2.7 of [9],

$$\sum_{1 \leq s \leq q} e(\psi_{b,W}(s)a/q) \ll K q^{1 - \frac{1}{\pi(1) + 2}}.$$

Let q_2 be the largest divisor of q prime to W and $q_1 = q/q_2$. If $q \nmid W$, then either $q_2 > w$ or $q \geq 2^w$. Hence

$$\frac{\phi(WW_0)}{\phi(WW_0q)\psi_{b,W}(M)} \sum_{1 \leq s \leq q} e(\psi_{b,W}(s)a/q) \sum_{x=1}^{\psi_{b,W}(M)} e(x(r/N - a/q))$$

$$\ll K q^{1 - \frac{1}{\pi(1) + 2}} q_1 q_2 q_2 \psi_{b,W}(M) \sum_{x=1}^{\psi_{b,W}(M)} e(x(r/N - a/q))$$

$$\ll Kw^{-\frac{1}{\pi(1) + 2}}.$$

Below assume that $q \mid W$. Since W divides the coefficients of x^i in $\psi_{b,W}(x)$ for $2 \leq i \leq k$, we have

$$\sum_{1 \leq s \leq q} e(\psi_{b,W}(s)a/q) = \sum_{1 \leq s \leq q} e(\psi'(b)sa/q) = \begin{cases} q & \text{if } q \mid (\psi'(b), W) = K, \\ 0 & \text{otherwise}. \end{cases}$$
Now suppose that \(q \mid K \). Since \(KN - \psi_{b,W}(M) \leq \psi_{b,W}(M) \), then
\[
\sum_{x=1}^{\psi_{b,W}(M)} e(x(r/N - a/q)) = \sum_{x=1}^{KN} e(x(r/N - a/q)) + O(\psi_{b,W}(M))
= O(\psi_{b,W}(M)).
\]
This concludes that if \(q \mid W \) then
\[
\frac{\phi(WW_0)}{\phi(WW_0q)\psi_{b,W}(M)} \sum_{1 \leq s \leq q} e(\psi_{b,W}(s)a/q) \sum_{x=1}^{\psi_{b,W}(M)} e(x(r/N - a/q))
= O((\log M)^{-B}).
\]
\[\square\]

By the pigeonhole principle, there exists \(1 \leq i \leq m \) such that
\[
|\{x \in X_i \cap [\psi(W), n] : x \equiv \psi(b)/2 \pmod{KW}\}| \geq \frac{n}{mKW} - \psi(W) \geq \frac{N}{4mK}.
\]
Without loss of generality, we may assume that \(X_1 \) is such a set. Let
\[
A = \{(x - \psi(b)/2)/W : x \in X_1 \cap [\psi(W), n] : x \equiv \psi(b)/2 \pmod{KW}\}.
\]
Suppose that there exist \(x', y' \in A \) and \(z' \in A_{W_0+b_0,WW_0} \) such that \(x' + y' = \psi_{b,W}(z') \). Then letting \(x = Wx' + \psi(b)/2, y' = Wy' + \psi(b)/2 \in X_1 \) and \(z = Wz' + b \in A_{b_0,W_0} \), we have \(x + y = \psi(z) \).

Below we consider \(A \) as a subset of \(\mathbb{Z}_N \). We claim that if \(x, y \in A \) and \(z \in A_{W_0+b_0,WW_0} \cap [1, M] \) satisfy \(x + y = \psi_{b,W}(z) \) in \(\mathbb{Z}_N \), then the equality also holds in \(\mathbb{Z} \). Suppose that \(x + y = \psi_{b,W}(z) - lN \) for an integer \(l \). Then \(0 \leq l < K \) since \(n/W < N/2 \) and \(\psi_{b,W}(z) < KN \). Notice that \(K \) divides \(x + y \) and all coefficients of \(\psi_{b,W} \). We must have \(K \mid l \), whence \(l = 0 \). Furthermore, we may consider \(a \) as a function over \(\mathbb{Z}_N \), i.e.,
\[
a(x) = \begin{cases}
\psi_{b,W}(z-1)/\psi_{b,W}(M) & \text{if } x = \psi_{b,W}(z) \text{ in } \mathbb{Z}_N \text{ for a } 1 \leq z \leq M, \\
0 & \text{otherwise}.
\end{cases}
\]
This function is well-defined. In fact, assume that \(1 \leq z_1, z_2 \leq M \) and \(\psi_{b,W}(z_1) = \psi_{b,W}(z_2) \) in \(\mathbb{Z}_N \). Then \(\psi_{b,W}(z_1) = \psi_{b,W}(z_2) + lN \) in \(\mathbb{Z} \) where \(|l| < K \). But \(\psi_{b,W}(z_1) \equiv \psi_{b,W}(z_2) \pmod{K} \), so \(l = 0 \) and \(z_1 = z_2 \).

Let \(\eta \) and \(\epsilon \) be two positive real numbers to be chosen later. Let
\[
\mathcal{R} = \{r \in \mathbb{Z}_N : |\bar{a}(r)| \geq \eta\}
\]
and
\[
\mathcal{B} = \{x \in \mathbb{Z}_N : \|xr/N\| \leq \epsilon \text{ for all } r \in \mathcal{R}\},
\]
where \(\|x\| = \min\{|x-z| : z \in \mathbb{Z}\} \). Define \(b = 1_B/|B| \) and \(a' = a \ast b \ast b \), where \(1_B(x) = 1 \) or \(0 \) according to whether \(x \in B \) or not and
\[
f \ast g(x) = \sum_{y \in \mathbb{Z}_N} f(y)g(x-y).
\]
Lemma 2.5. If \(e^{|R|} \geq \kappa^{-1} C_1 K w^{-\kappa(k+3)} \), then for any \(x \in \mathbb{Z}_N \)

\[
|a'(x)| \leq \frac{1 + 2\kappa}{N}.
\]

Proof. It is easy to see that \(\tilde{\tilde{f}} \star \tilde{g} = \tilde{f} \cdot \tilde{g} \). By Lemma 2.2 for \(\alpha = 0 \) and Lemma 2.4,

\[
|a'(x)| = \left| \frac{1}{N} \sum_r \tilde{\tilde{a}}(r) \tilde{\tilde{b}}(r)^2 e\left(\frac{xy}{N} \right) \right|
\]

\[
\leq \frac{1}{N} \left(\tilde{\tilde{b}}(0) \right)^2 \left(\psi_{b,W}^A(z-1) \lambda_{W_{b+b_0,W_{b_0}}(z)} + \frac{1}{N} \sup_{r \neq 0} |\tilde{a}(r)| \sum_{r \neq 0} |\tilde{b}(r)|^2 \right)
\]

\[
\leq \frac{1 + \kappa}{N} + \frac{C_1 K w^{-\kappa(k+3)}}{|B|}.
\]

By the pigeonhole principle (cf. [12, Lemma 1.4]), we have \(|B| \geq \frac{\epsilon^{|R|}}{|R|} N\). All are done.

Lemma 2.6.

\[
\sum_{r \in \mathbb{Z}_N} |\tilde{a}(r)|^\rho \leq C(\rho) K.
\]

provided that \(\rho \geq k 2^{k+3} \), where \(C(\rho) \) is a constant only depending on \(\rho \).

Proof. Note that

\[
\sum_{r \in \mathbb{Z}_N} |\tilde{a}(r)|^\rho = \frac{1}{\psi_{b,W}(M)^\rho} \sum_{r \in \mathbb{Z}_N} \left(\sum_{z=1}^M \psi_{b,W}^A(z-1) \lambda_{W_{b+b_0,W_{b_0}}(z)} e\left(-\psi_{b,W}(z)r/N \right) \right)^\rho.
\]

Thus Lemma 2.6 easily follows from Lemma 2.10 of [9].

Lemma 2.7.

\[
\left| \sum_{1 \leq x,y,z \leq N} 1_A(x) 1_A(y) a(z) - \sum_{1 \leq x,y,z \leq N} 1_A(x) 1_A(y) a'(z) \right|
\]

\[
\leq C_2 K \left(e^2 \eta^{-k 2^{k+3}} + \eta^{k 2^{k+3}+1} \right) N,
\]

where \(C_2 \) is a positive constant (only depending on \(k \)).

Proof. It is easy to see that

\[
\sum_{1 \leq x,y,z \leq N} 1_A(x) 1_A(y) a(z) = \frac{1}{N} \sum_{r \in \mathbb{Z}_N} \tilde{1}_A(r) \tilde{1}_A(-r) \tilde{a}(r)
\]

and

\[
\sum_{1 \leq x,y,z \leq N} 1_A(x) 1_A(y) a'(z) = \frac{1}{N} \sum_{r \in \mathbb{Z}_N} \tilde{1}_A(r) \tilde{1}_A(-r) \tilde{a}(r) \tilde{b}(r)^2.
\]
Hence
\[
\sum_{1 \leq x, y, z \leq N \atop x+y=z} 1_A(x)1_A(y)a(z) - \sum_{1 \leq x, y, z \leq N \atop x+y=z} 1_A(x)1_A(y)a'(z) = \frac{1}{N} \sum_{r \in \mathbb{Z}_N} \tilde{1}_A(r)\tilde{1}_A(-r)\tilde{a}(r)(1 - \tilde{b}(r)^2).
\]

Let \(\rho = k2^{k+3} \). If \(r \in \mathbb{R} \), then by the proof of Lemma 6.7 of [5]
\[|1 - \tilde{b}(r)^2| \leq 32\epsilon^2.\]

So
\[
\left| \sum_{r \in \mathbb{R}} \tilde{1}_A(r)\tilde{1}_A(-r)\tilde{a}(r)(1 - \tilde{b}(r)^2) \right| \leq |1 - \tilde{b}(r)^2| \sum_{r \in \mathbb{R}} |\tilde{1}_A(r)||\tilde{a}(r)| \leq 64\epsilon^2 N^2 |\mathcal{R}|.
\]

By Lemma 2.6 we have,
\[
|R| \leq \eta^{-\rho} \sum_{r \in \mathbb{R}} |\tilde{a}(r)|^\rho \leq C(\rho) \eta^{-\rho}.
\]

Applying the Hölder inequality,
\[
\left| \sum_{r \notin \mathbb{R}} \tilde{1}_A(r)\tilde{1}_A(-r)\tilde{a}(r)(1 - \tilde{b}(r)^2) \right|
\leq 2N^{\frac{\rho}{\rho+1}} \sup_{r \notin \mathbb{R}} |\tilde{a}(r)|^{\frac{\rho}{\rho+1}} \left(\sum_{r \notin \mathbb{R}} |\tilde{1}_A(r)|^2 \right)^{\frac{1}{\rho+1}} \left(\sum_{r \notin \mathbb{R}} |\tilde{a}(r)|^\rho \right)^{\frac{1}{\rho+1}}
\leq 2C(\rho)K^{\frac{\rho}{\rho+1}} \eta^{\frac{\rho}{\rho+1}} N^2,
\]
where we again use Lemma 2.6 in the last step. \(\square\)

Lemma 2.8.
\[
\sum_{x, y, z \in \mathbb{Z}_N \atop x+y=z} 1_A(x)1_A(y)a'(z) \geq \kappa^4 N.
\]

Proof. Let
\[\mathcal{A} = \{x \in \mathbb{Z}_N : a'(x) \geq \kappa/N \}.\]

Then by Lemma 2.5
\[
\frac{1 + 2\kappa}{N} |\mathcal{A}| + \frac{\kappa}{N} (N - |\mathcal{A}|) \geq \sum_{x \in \mathbb{Z}_N} a'(x) = \sum_{x \in \mathbb{Z}_N} a(x) \geq 1 - \kappa,
\]
whence \(|\mathcal{A}| \geq (1 - 3\kappa)N \). Define
\[
\nu_{A, A', \mathcal{A}}(x) = |\{(x_1, x_2, x_3) : x_1, x_2 \in A, x_3 \in \mathcal{A}, x_1 + x_2 - x_3 = x\}|.
\]
By Lemma 3.3 of [8], we know
\[\nu_{A,A,-a}(x) \geq (\min\{|A|, |A|, \frac{2|A| + |A| - N}{4}\})^3 N^{-1}. \]
for any \(x \in \mathbb{Z}_N \). It follows that
\[\sum_{x,y,z \in \mathbb{Z}_N} 1_A(x)1_A(y)a'(z) \geq \sum_{x,y \in A, z \in A} \kappa = \frac{\kappa}{N} \nu_{A,A,-a}(0) \geq \kappa^4 N. \]
\[\square \]

Combining Lemmas 2.7 and 2.8, we obtain that
\[\sum_{1 \leq x,y,z \leq N} 1_A(x)1_A(y)a(z) \geq \sum_{1 \leq x,y,z \leq N} 1_A(x)1_A(y)a'(z) - C_2 K \left(\epsilon^2 \eta^{-k2^{k+3}} + \eta \frac{1}{k2^{k+3+1}} \right) N \]
\[\geq \kappa^4 N - C_2 K \left(\epsilon^2 \eta^{-k2^{k+3}} + \eta \frac{1}{k2^{k+3+1}} \right) N. \]

We may choose sufficiently small \(\eta \) and \(\epsilon \) such that
\[\epsilon^{C(k2^{k+3})K \eta^{-k2^{k+3}}} \geq \kappa^{-1} C_1 K w^{-\frac{1}{k(k+1)}} \]
and \(C_2 K \left(\epsilon^2 \eta^{-k2^{k+3}} + \eta \frac{1}{k2^{k+3+1}} \right) \leq \kappa^4 / 2 \), provided that \(w \) is sufficiently large. Thus
\[\sum_{x,y \in A, 1 \leq z \leq N} a(z) \geq \sum_{x,y \in A, 1 \leq z \leq N} a(z) - \sum_{1 \leq z \leq N} a(z) \geq \frac{\kappa^4}{3} N. \]
All are done. \[\square \]

3. Proof of Theorem 1.3

Let \(\mathcal{P} \) denote the set of all primes. Assume that \(\mathcal{P} = X_1 \cup \cdots \cup X_m \) where \(X_i \cap X_j = \emptyset \) if \(i \neq j \). Also, let \(\kappa = 10^{-4} K^{-1} m^{-1} \).

Let \(\Psi = \max\{(2k + 1)W_0, |a_1|, \ldots, |a_k|\} \). Then for a prime \(p > \Psi \), by Lemma 2.1 we know that there exists \(1 \leq b_p \leq p - 1 \) with \(b_p \equiv b_0 \pmod{W_0} \) such that
\[\psi'(b_p - b_0)/W_0 \psi((b_p - b_0)/W_0) \not\equiv 0 \pmod{p}. \]
For a prime \(p \leq \Psi \), we may choose \(b_p \geq 1 \) such that
\[b_p \equiv W_0 c_p + b_0 \pmod{pW_0} \]
and \(\psi'((b_p - b_0)/W_0) > 0 \). Let
\[K = \prod_{p \text{ prime \hspace{1em} } p \leq \Psi} p^{\nu_p(\psi'((b_p - b_0)/W_0))}, \]
where \(\nu_p(x) = \max\{v \in \mathbb{Z} : p^v \mid x\} \).
Suppose that n is a sufficiently large integer. Let $w = \lfloor \log \log \log \log n \rfloor$ and

$$W = \prod_{\text{prime } p \leq w} p^w.$$

Same as previous section, there exists $1 \leq b \leq W - 1$ such that

$$W_0b + b_0 \equiv b_p \pmod{p^{w + \nu_p(W_0)}}$$

for each prime $p \leq w$. And also we know that $\psi(b)$ is even.

By the prime number theorem, we know

$$\sum_{1 \leq x \leq n, \ x\text{ prime}} x \equiv \frac{\psi(b)}{2} (\mod KW)$$

$$\log x = \frac{1 + o(1)}{\phi(KW)} n.$$

Hence in view of the pigeonhole principle, without loss of generality, we may assume that

$$\sum_{x \in X_1 \cap [\psi(W), n]} \log x \geq \frac{(1 - \kappa)n}{m\phi(KW)}.$$

Let N be a prime in $(2n/W, (2 + \kappa)n/W]$ and

$$A = \{(x - \psi(b)/2)/W : x \in X_1 \cap [\psi(W), n], x \equiv \psi(b)/2 \pmod{KW}\}.$$

Below we consider A as a subset of \mathbb{Z}_N. Similarly, if $x' + y' = \psi_{b,W}(z')$ holds in \mathbb{Z}_N for $x', y' \in A$ and $z' \in \Lambda_{W_0b+b_0,WW_0}$, then we also have $x + y = \psi(z)$ holds in \mathbb{Z} where $x = Wx' + \psi(b)/2$, $y = Wy' + \psi(b)/2 \in X_1$ and $z = Wz' + b \in \Lambda_{b_0,W_0}$.

Define $a = 1_A\lambda_{\psi(b)/2,KW}/N$. Clearly we have

$$\sum_{x=1}^{N} a(x) \geq \frac{1}{3mK}.$$

Lemma 3.1 (Bourgain [1, 2] and Green [5]).

$$\sum_{r=1}^{N} |\tilde{a}(r)|^{\rho} \leq C'(\rho)$$

for any $\rho > 2$.

Proof. See [5, Lemma 6.6]. \qed

Let

$$R = \{r \in \mathbb{Z}_N : |\tilde{a}(r)| \geq \eta\}$$

and

$$B = \{x \in \mathbb{Z}_N : \|xr/N\| \leq \epsilon \text{ for all } r \in R\}.$$

Define $\beta = 1_B/|B|$ and $a' = a * \beta * \beta$.

Lemma 3.2.

\[\left| \sum_{1 \leq x, y, z \leq N \atop x + y = z} a(x)a(y)a(z) - \sum_{1 \leq x, y, z \leq N \atop x + y = z} a'(x)a'(y)a'(z) \right| \]

\[\leq C_3 K^{\frac{1}{p+1}} (\epsilon^2 \eta^{-k^{2k+3}} + \eta^{\frac{1}{2k+3+1}}) N^{-1}, \]

where \(C_3 \) is a positive constant (only depending on \(k \)).

Proof. We have

\[\sum_{1 \leq x, y, z \leq N \atop x + y = z} a(x)a(y)a(z) - \sum_{1 \leq x, y, z \leq N \atop x + y = z} a'(x)a'(y)a'(z) \]

\[= \frac{1}{N} \sum_{r \in \mathbb{Z}_N} \tilde{a}(r) \tilde{a}(-r) \tilde{a}(r) \left(1 - \tilde{\beta}(r)^2 \tilde{\beta}(-r)^2 \tilde{b}(r)^2 \right). \]

Let \(\rho = k^{2k+3} \). If \(r \in R \cap \mathcal{R} \), then by Lemma 6.7 of [5],

\[|1 - \tilde{\beta}(r)^2 \tilde{\beta}(-r)^2 \tilde{b}(r)^2| \leq 2^{15} \epsilon^2. \]

It follows that

\[\left| \sum_{r \in R \cap \mathcal{R}} \tilde{a}(r) \tilde{a}(-r) \tilde{a}(r) \left(1 - \tilde{\beta}(r)^2 \tilde{\beta}(-r)^2 \tilde{b}(r)^2 \right) \right| \]

\[\leq 2^{15} \epsilon^2 \sum_{r \in R \cap \mathcal{R}} |\tilde{a}(r)|^2 |\tilde{a}(r)| \]

\[\leq 2^{16} \epsilon^2 \min\{|R|, |\mathcal{R}|\}. \]

And by Lemma 2.6 we have \(|R| \leq C'(\rho) \eta^{-\rho}\). Also, by the Hölder inequality, Lemmas 2.6 and 3.1

\[\left| \sum_{r \in R \cap \mathcal{R}} \tilde{a}(r) \tilde{a}(-r) \tilde{a}(r) \left(1 - \tilde{\beta}(r)^2 \tilde{\beta}(-r)^2 \tilde{b}(r)^2 \right) \right| \]

\[\leq 2 \sup_{r \in R \cap \mathcal{R}} |\tilde{a}(r)| \tilde{a}(r) \left(\sum_{r \in R \cap \mathcal{R}} |\tilde{a}(r)|^2 \right)^{\frac{\rho}{p+1}} \left(\sum_{r \in R \cap \mathcal{R}} |\tilde{a}(r)|^\rho \right)^{\frac{1}{p+1}} \]

\[\leq 2C'(2 + 1/\rho)^{p+1} C(\rho)^{\frac{1}{p+1}} K^{\frac{1}{p+1}} \eta^{\frac{1}{p+1}}. \]

\(\Box \)

Lemma 3.3. If \(|R| \geq 2 \log \log w/w\), then \(|a'(x)| \leq 2/N\) for any \(x \in \mathbb{Z}_N \).

Proof. See [5] Lemma 6.3. \(\Box \)

Let

\(A' = \{ x \in \mathbb{Z}_N : a'(x) \geq \kappa/N \}, \quad \mathfrak{A} = \{ x \in \mathbb{Z}_N : a'(x) \geq \kappa/N \}. \)

Then by the proof of Lemma 2.8 we have \(|\mathfrak{A}| \geq (1 - 3\kappa)N\). By Lemma 3.3 we have

\[\frac{2}{N}|A'| + \frac{\kappa}{N}(N - |A'|) \geq \sum_{x \in \mathbb{Z}_N} a'(x) = \sum_{x \in \mathbb{Z}_N} a(x) \geq \frac{1}{3mK}. \]
\[|A'| \geq \frac{N}{2} \left(\sum_{x \in \mathbb{Z}_N} a'(x) - \frac{\kappa}{N} \cdot N \right) = \frac{N}{2} \left(\sum_{x \in \mathbb{Z}_N} a(x) - \frac{\kappa}{N} \cdot N \right) \geq 2\kappa N. \]

Hence by Lemma 3.3 of [8],

\[\sum_{1 \leq x, y, z \leq N} a'(x)a'(y)a'(z) \geq \sum_{x, y \in A', z \in A} a'(x)a'(y)a'(z) \geq \frac{\kappa^3}{N^3} \nu_{A', A', -A}(0) \geq \frac{\kappa^6}{N}. \]

We may choose sufficiently small \(\eta \) and \(\epsilon \) such that

\[\epsilon C(k \eta^{-k^{2k+3}}) \geq \frac{1}{\kappa} C(T) K \eta^{-k^{2k+3}}, \]

\[\epsilon C' \left(k \eta^{-k^{2k+3}} \right) \geq 2 \log \log w / w \]

and

\[C_3 K \frac{1}{\rho+1} \left(\epsilon^2 \eta^{-k^{2k+3}} + \frac{1}{\eta^{k^{2k+3}+1}} \right) \leq \frac{\kappa^6}{2}. \]

So by Lemma 3.2, we have

\[\phi(KW)^2 \left(\log(KWN + \psi(b)) \right)^2 \sum_{x, y \in A, 1 \leq z \leq N} a(z) \]

\[\geq \sum_{x, y \in \mathbb{Z}_N, x \neq y, x + y = z} a'(x)a'(y)a'(z) - C_3 K \frac{1}{\rho+1} \left(\epsilon^2 \eta^{-k^{2k+3}} + \frac{1}{\eta^{k^{2k+3}+1}} \right) N^{-1} \]

\[- \frac{\phi(KW)^2 \left(\log(KWN + \psi(b)) \right)^2}{K^2 W^2 N^2} \sum_{1 \leq z \leq N} a(z) \]

\[\geq \frac{\kappa^6 N^{-1}}{3} - C_3 K \frac{1}{\rho+1} \left(\epsilon^2 \eta^{-k^{2k+3}} + \frac{1}{\eta^{k^{2k+3}+1}} \right) N^{-1} - N^{-\frac{3}{2}} \]

\[\geq \frac{\kappa^6}{3N}. \]

\[\square \]

Acknowledgment. The second author thanks Professor Zhi-Wei Sun for informing the result of Khalfalah and Szemerédi.

References

[1] J. Bourgain, On \(\Lambda(p) \)-subsets of squares, Israel J. Math., 67(1989), 291-311.

[2] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal., 3(1993), 107-156.

[3] P. Erdős and A. Sárközy, On differences and sums of integers II, Bull. Greek Math. Society, 18(1977), 204-223.

[4] H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetical progressions, J. d’Analyse Math., 31(1977), 204-256.

[5] B. Green, Roth’s theorem in the primes, Ann. Math. (2), 161(2005), 1609-1636.

[6] B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. Math., to appear.

[7] A. Khalfalah and E. Szemerédi, On the Number of Monochromatic Solutions of \(x + y = z^2 \), Combinatorics, Probability and Computing, 15(2006), 213-227.
[8] H.-Z. Li and H. Pan, *Ternary Goldbach problem for the subsets of primes with positive relative densities*, preprint.

[9] H.-Z. Li and H. Pan, *Difference sets and polynomials of prime variables*, preprint.

[10] A. Sárközy, *On difference sets of sequences on integers I*, Acta Math. Acad. Sci. Hungar., 31 (1978), 125-149.

[11] A. Sárközy, *On difference sets of sequences on integers III*, Acta Math. Acad. Sci. Hungar., 31 (1978), 355-386.

[12] T. Tao, *The Roth-Bourgain Theorem*, preprint, unpublished.

E-mail address: lihz@sjtu.edu.cn

E-mail address: haopan79@yahoo.com.cn

Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, People’s Republic of China