A case series of the effects of a novel composition of a traditional natural preparation for the treatment of psoriasis

A. Michalsen a, b, *, O. Eddin c, A. Salama d

a Institut für Sozialmedizin, Epidemiologie und Gesundheitsökonomie, Charité – Universitätsmedizin Berlin, Luisenstrasse 57, 10117 Berlin, Germany
b Klinik für Innere Medizin, Abteilung für Naturheilkunde, Immanuel Krankenhaus Berlin, Königstraße 63, 1409 Berlin, Germany
c Meoclinic GmbH, Friedrichstraße 71, 10117 Berlin, Germany
d Charité Campus Virchow-Klinikum, Universitätsmedizin Berlin, Institut für Transfusionsmedizin, Augustenburger Platz 1, 13353 Berlin, Germany

A R T I C L E I N F O

Article history:
Received 8 January 2015
Received in revised form 7 June 2015
Accepted 10 August 2015
Available online 19 September 2015

Keywords:
psoriasis
complementary medicine
traditional
black cumin
topical treatment

A B S T R A C T

The objective of this study was to assess the effectiveness of a specific composition of a traditional herbal preparation (DurrDerma) in adult patients with moderate to severe skin psoriasis. The preparation is a newly developed topical combination containing plant-based extracts traditionally used in skin disease as black cumin, olive oil, tea tree oil, cocoa butter completed by vitamin A and vitamin B12. We documented the effectiveness of the preparation in a first case series. A total of 12 patients (8 males and 4 females, 21–86 y) with manifest and treatment-resistant psoriasis were included and treated for 12 weeks. All patients were assigned to twice-daily treatment with the DurrDerma preparation. Treatment success as determined by the Psoriasis Area and Severity Index (PASI) score, the body surface area, and the dermatology life index was achieved (PASI reduction of >75%) in 10 of the 12 treated patients (83%). The remaining two patients showed a PASI reduction of ≤50%. In 5 of the patients PASI reduction was achieved <12 weeks (between week 3–11). The beneficial effect in responder patients might be explained by a synergistic anti-oxidative and anti-inflammatory activity of all components present in DurrDerma. We conclude that the new preparation using a traditional approach seems to be a promising complementary treatment for psoriasis.

1. Introduction

Psoriasis affects 2–3% of the European populations, and less commonly other populations of other countries, i.e. Far East and China.1,2 To date, there is no doubt that psoriasis is an immune-mediated disorder as reflected by T cell hyperactivity and the production of multiple pro-inflammatory cytokines, such as tumour necrosis factor alpha (TNF-α) and Interleukin (IL)-2, IL-12, IL-17, IL-22 or IL-23.3–5 Nevertheless, all available treatment options remain largely unspecific, and many patients do not achieve the desired outcome.6,7 Topical agents including corticosteroids, vitamin D analogues, Tazarotene, coal tar, and dithranol are predominantly used for mild disease, and systemic agents including phototherapy, methotrexate, ciclosporin, retinoids, fumarates, and biological agents are used for severe disease.6,8 None of these treatment options has fully met the needs of affected patients.6,7 The question whether a combination therapy of biologic and systemic agents may improve treatment outcome is yet unclear.6,7 Thus, there is a need for alternative and well-tolerable treatment for psoriasis. In fact, many affected patients are using or seeking new therapeutic options, including complementary and alternative medicine.10–12

In this observational case series study, we documented the effectiveness and tolerability of DurrDerma in adult patients with active moderate to severe psoriasis vulgaris. The active ingredients of DurrDerma are black cumin as the main component, and olive oil, tea tree oil, cocoa butter, vitamin A and vitamin B12 as further components.
2. Patients and methods

A total of 12 unselected out-patients with moderate \((n = 6)\) to severe \((n = 6)\) psoriasis as diagnosed by a dermatologist or experienced general practitioner and characterized by a Psoriasis Area and Severity Index (PASI) score of \(\geq 10\) (Table 1) were treated with DurrDerma. Patients had to have a disease endurance of \(\geq 3\) months and at least one conventional previous treatment approach. Patients were informed about the available treatment with the DurrDerma preparation. Treatment duration was scheduled for 12 weeks and tubes of 200 g and boxes with 500 g were handed out as anticipated for proper use during the planned 12-week treatment period. Patients were asked to apply the cream twice daily and hereby to cover all skin lesions with a thin layer of cream.

The preparation relates to compositions comprising black cumin oil \((>10\%)\), olive oil \((>10\%)\), tea tree oil \((<0,09\%)\), cocoa butter \((<4\%)\), vitamin A \((<0,05\%)\) and vitamin B12 \((<0,05\%)\). The advantage is the innovative composition itself.

The essential oil components of black cumin oil are thymoquinones which have been shown to have anti-oxidative, anti-inflammatory, anti proliferative, anti-allergic and anti-bacterial activities, as well as immunomodulatory and immunotherapeutic characteristics. Olive oil contains a high concentration of polyphenols, in particular hydroxytyrosol. It has been shown to have anti-oxidative, anti-inflammatory and anti-microbial activities. Tea tree oil is mainly composed of various terpinens. It has anti-oxidative and anti-inflammatory activities. Cocoa butter is extracted from cocoa beans and contains various anti-oxidants that are related to catechines and epicatechines, as well as others that are related to procyanidines and polyphenols. Vitamin A has anti-oxidative activity and is one of the cells physiological anti-oxidants. Vitamin B12 is a water-soluble vitamin with a key role in the normal functioning of the brain and nervous system, as well as for the formation of blood. It affects inter alia DNA synthesis and regulation, fatty acid synthesis and energy production.

All patients were evaluated for 12 weeks and assessments of disease activity with calculation of PASI took place at baseline and at the time points of 2, 4, 8 and 12 weeks after initialization of treatment by the treating physician.

In addition, all patients completed a patient’s questionnaire assessing satisfaction with treatment and side effects. Furthermore compliance with the recommended application was asked by interview. Written informed consent was obtained from all patients prior to treatment with DurrDerma. There was no selection of patients by age, gender, localization and severity of disease, or previous treatments.

3. Results

Patients were aged from 18 to 86 years and had a confirmed diagnosis of psoriasis for longer than 3 months. The majority of patients had received previous standard topical and/or a systemic therapy but were treatment-resistant. Only two patients had no previous standard treatment (Table 1, nos. 6 and 8).

Initially, the vast majority of patients \((n = 10)\) showed a mild to moderate increase of local inflammation with increased reddening of the affected skin area (Table 2) for a short period of time. However, during continuous observation and under sustained treatment a gradual and pronounced clinical improvement became obvious in almost all cases within a few weeks. A PASI reduction of \(>75\%\) was observed in 10 of the 12 treated patients, in 3 patients already before the 12-week assessment, in the other 7 patients after 12 weeks of treatment (Table 2). The remaining two patients showed a PASI reduction of \(<50\%\) at week 4 and 8. The treatment effects in the early responders was maintained until the 12-week assessment.

One of the non-responder patients \((n=12)\) had autoimmune thrombocytopenia which required continuous treatment with Nplate (thrombopoietin receptor agonist). Whether Nplate would have an impact on psoriasis treatment remains obscure.

Of note, one of the well responding patients had a treatment course of topical tea tree oil (also an ingredient of DurrDerma) before starting the DurrDerma application. This patient reported that the previous use of tea tree oil alone was ineffective but resulted in an exacerbation of the disease and discontinuation of this treatment after two weeks.

3.1. Safety

The preparation was well tolerated. There were no relevant adverse events. A mild exacerbation of the skin inflammation was a common initial response \((2–4\) days after treatment initialization\) with a subsequent consistent improvement of the disease state.

Table 1: Demographic baseline characteristics of treated patients.

Patient (No.)	Sex	Age (year)	Weight (kg)	Height (cm)	Previous treatment	Systemic	Affected area	Baseline PASI score	
1	M	42	88	185	Corticosteroids	Phototherapy	Scalp, abdomen, upper & lower extremities, back, genitals	24.6	
2	M	32	89	180	Fumaric acid	Psorcutan ointment	Cetrizin	Scalp, abdomen, upper & lower extremities, back	47.4
3	M	34	90	180	Corticosteroids	Psorcutan ointment	Lower extremities	8	
4	F	43	52	169	Coal tar	Keto med-shampoo	Upper & lower extremities	7.2	
5	M	42	78	187	Corticosteroids	Tea tree oil	Trunk, back, upper extremities	23.1	
6	F	18	67	169	None	None	Scalp	4.4	
7	M	21	78	176	Corticosteroids	None	Back, upper & lower extremities	28.1	
8	M	33	79	185	Corticosteroids	None	Upper & lower extremities	21.6	
9	F	34	60	161	Corticosteroids	None	Upper & lower extremities	23.2	
10	M	46	70	175	Corticosteroids	Tacalitol	Upper & lower extremities, genitals	19.6	
11	M	33	73	175	Corticosteroids	Corticosteroids	Upper & lower extremities	6.6	
12	F	86	90	180	Corticosteroids	Phototherapy	Upper & lower extremities, back	8.4	
thereafter. Some of the patients complained about the fatty character-
istic of the preparation and the related pollution of clothes.

4. Discussion

This case series study was initiated to determine by a first
documentation the effectiveness and tolerability of DurrDerma, a
traditional herbal preparation in a new specific combination for-

tula, in patients with manifest and treatment-resistant psoriasis.

Independent of previous treatment and severity of disease, 10 of
the 12 treated patients with the new herbal preparation were well
responding and 2 patients moderately responding. Most intrig-
ugingly, psoriasis signs not only improved but completely dis-
appeared following treatment in 4 patients and nearly disappeared
in further 6 of the patients (Fig. 1). Thus, a clinical meaningful effect
of the preparation might be possible and should be tested and
evaluated by means of a randomized controlled clinical trial. As
treatment options in severe psoriasis are limited and the safety
profile, so far, seems good, further research is warranted.

The question by which mechanisms DurrDerma works remains
speculative. However, based on the fact that psoriasis is an
immune-mediated disease, and that oxidative stress is playing a
key role in this process, it seems likely that anti-oxidative
products, such several food constituents, may have a positive
effect on psoriasis. The DurrDerma composition contains different
natural and herbal products which have potential anti-oxidative
and/or anti-inflammatory effects. Black cumin oil is obtained
from the seeds of Nigella Sativa and contains thymoquinones,
which have been shown to have anti-oxidative, anti-inflammatory,
anti proliferative, anti-allergic and anti-bacterial activities, as well
as immunomodulatory and immunotherapeutic characteristics.
Similarly, olive oil contains a high concentration of polyphenols which have by large similar effects as thymoquinones
from Nigella Sativa.

Tea tree oil is obtained from leaves of Melalenca alternifolia
which has anti-oxidative, anti-inflammatory, anti-bacterial, anti-
viral, and anti-fungal activities.

Cocoa butter is extracted from cocoa beans which also contain
various antioxidants, i.e. catechines, epicatechines, procyanidines,
and polyphenols. Vitamin B12 is involved in blood production,
DIVA synthesis and regulation.

Thus, DurrDerma may provide a therapeutic effect that is not
based on an isolated substance, but rather on a synergistic
combination of various prophylactic, therapeutic, anti-
flammatory, immunological and anti-microbial activities. The
synergistic effect is supported by the observation that one patient
(no. 4), previous to the application of the preparation in this case
observation, used tea tree oil which, however, led to continuous
worsening of his psoriasis. In addition, there is empirical observa-
tion that many such affected patients appear to have used olive oil
without effect.

The question why DurrDerma initially induces a transitory
negative effect on psoriasis remains obscure. However, some
topical drugs, such as coal tar and anthralin have been described
also to cause a flare-up (Koebner phenomenon) in patients with
active psoriasis. We do not know if the initial (mild) aggravation
is a precondition for the retarded and lasting treatment effect.
Of note, patients need to be informed about this treatment kinetic
to ensure compliance. Clearly, the safety of the preparation needs
to be assessed in larger studies. However, on the background of cur-
rent existing preclinical and botanical research data of the com-
ponents of the preparation, no specific safety concerns are

Table 2

Patient (No.)	Treatment (weeks)	Adverse effects	Week 12 PASI response rate (%)	Baseline PASI score (absolute value)
1	12	ITE	100	24.6
2	12	ITE	90	47.4
3	3	None	90	8
4	12	ITE	100	7.2
5	10	ITE	90	23.1
6	13	None	100	4.4
7	32	ITE	90	28.1
8	12	ITE	90	21.6
9	12	ITE	90	23.2
10	4	ITE	50	19.6
11	8	ITE	100	6.6
12	11	None	50	8.4

PASI = Psoriasis Area Severity Index; ITE = Initially Transitory Exacerbation.

<10% = grade 1 (light);
10–29% = grade 2 (moderate to severe);
30–49% grade 3 (severe);
>49% = grades 4–6 (very severe).

Fig. 1. Skin status of the back of one patient before and after 12 week treatment with the preparation.
5. Conclusion

In conclusion, the observations in this case series study point to a promising and clinically relevant beneficial effect of the Durr-Derma preparation in patients with skin psoriasis. Further clinical trials are warranted.

Conflict of interest

The authors declare no conflict of interests.

References

1. Griffiths CE, Barker JN. Pathogenesis and clinical features of psoriasis. Lancet. 2007 Jul 21;370:263–271.
2. Parisi R, Symmons DP, Griffiths CE, Ashcroft DM. Identification and Management of Psoriasis and Associated Comorbidity (IMPACT) project team. Global epidemiology of psoriasis: a systematic review of incidence and prevalence. J Invest Dermatol. 2013 Feb;133:377–385.
3. Ortonne JP. Recent developments in the understanding of the pathogenesis of psoriasis. Br J Dermatol. 1999 Apr;140(suppl 54):1–7.
4. Neele FP, Kaplan DH, Barker J. Psoriasis. N Engl J Med. 2009 Jul 30;361:496–509.
5. Lowes MA, Suárez-Fabían M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol. 2014;32:227–255.
6. Meenter A, Griffiths CE. Current and future management of psoriasis. Lancet. 2007 Jul 21;370:272–284.
7. Cather JC, Crowley JJ. Use of biologic agents in combination with other therapies for the treatment of psoriasis. Am J Clin Dermatol. 2014 Dec;15:467–478.
8. Pathirana D, Ormerod AD, Salag P, et al. European S3-guidelines on the systemic treatment of psoriasis vulgaris. J Eur Acad Dermatol Venereol. 2009 Oct;23(suppl 2):1–70.
9. American Academy of Dermatology Work Group, Menter A, Korman NJ, et al. Guidelines of care for the management of psoriasis and psoriatic arthritis section 6. Guidelines of care for the treatment of psoriasis and psoriatic arthritis: case-based presentations and evidence-based conclusions. J Am Acad Dermatol. 2011 Jul;65:137–174.
10. Smith N, Weymouth G, Tausk FA, Gelfand JM. Complementary and alternative medicine for psoriasis: a qualitative review of the clinical trial literature. J Am Acad Dermatol. 2009 Nov;61:841–856.
11. Li N, Li YQ, Li HY, Guo W, Bai YF. Efficacy of externally applied Chinese herbal drugs in treating psoriasis: a systematic review. Clin J Integr Med. 2012 Mar;18:222–229.
12. Deng S, May BH, Zhang AL, Lu C, Xue CC. Topical herbal formulae in the management of psoriasis: systematic review with meta-analysis of clinical studies and investigation of the pharmacological actions of the main herbs. Phytother Res. 2014 Apr;28:480–497.
13. Briganti S, Picardo M. Antioxidant activity, lipid peroxidation and skin diseases. What’s new. J Eur Acad Dermatol Venereol. 2003 Nov;17:663–669.
14. Soneja A, Drews M, Malinski T. Role of nitric oxide, nitrooxidative and oxidative stress in wound healing. Pharmacol Rep. 2005;57(suppl 1):108–119.
15. Rashmi R, Rao KS, Basavaraj KH. A comprehensive review of biomarkers in psoriasis. Clin Exp Dermatol. 2009 Aug;34:658–663.
16. Zhou Q, Mrowietz U, Rostami-Yazdi M. Oxidative stress in the pathogenesis of psoriasis. Free Radic Biol Med. 2009 Oct 1;47:891–905.
17. Pastore S, Korkina L. Redox imbalance in T cell-mediated skin diseases. Mediat Inflamm. 2010;2010, 861949.
18. Kadam DP, Suryakar AN, Ankush RD, Kadam CY, Deshpande KH. Role of oxidative stress in various stages of psoriasis. Indian J Clin Biochem. 2010 Oct;25:388–392.
19. Chirchirii V, Maccarrone M. Chronic inflammatory disorders and their redox control: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2011 Nov 1;15:2605–2641.
20. Emre S, Metin A, Demirseren DD, Kicic S, Isikoglu S, Erel O. The relationship between oxidative stress, smoking and the clinical severity of psoriasis. J Eur Acad Dermatol Venereol. 2013 Mar;27:e370–5.
21. Korkina L, Pastore S, De Luca C, Kostyuk VA. Metabolism of plant polyphenols in the skin: beneficial versus deleterious effects. Curr Drug Metab. 2008 Oct;9:710–729.
22. Gülçin I. Antioxidant activity of food constituents: an overview. Arch Toxicol. 2012 Mar;86:345–391.
23. Ali BH, Blunden G. Pharmacological and toxicological properties of Nigella sativa. Phytother Res. 2003 Apr;17:299–305.
24. Salem ML. Immunomodulatory and therapeutic properties of the Nigella sativa L seed. Int Immunopharmacol. 2005 Dec;5:1749–1770.
25. Gali-Muhtasib Hala, El-Najjar Nahed, Schneider-Stock Regine. The medicinal potential of black seed (Nigella sativa) and its components. Adv Phytomed. 2006;2:133–153.
26. Randhawa MA, Alghamdi MS. Anticancer activity of Nigella sativa (black seed) – a review. Am J Chin Med. 2011;39:1075–1091.
27. Woo CC, Kumar AP, Sethi G, Tan KH. Thymoquinone: potential cure for inflammatory disorders and cancer. Biochem Pharmacol. 2012 Feb 15;83:443–451.
28. Raederstorff D. Antioxidant activity of polyphenols in humans: a review. Int J Vitam Nutr Res. 2009 May;79:152–165.
29. Cicerele S, Lucas LJ, Keast RS. Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil. Curr Opin Biotechnol. 2012 Apr;23:129–135.
30. Urpi-Sarda M, Casas R, Chiva-Blanch G, et al. Virgin olive oil and nuts as key foods of the Mediterranean diet effects on inflammatory biomarkers related to atherosclerosis. Pharmacol Res. 2012 Jun;65:577–583.
31. Carson CF, Hammner KA, Riley TV. Melaleuca alternifolia (Tea tree) oil: a review of antimicrobial and other medicinal properties. Clin Microbiol Rev. 2006 Jan;19:50–62.
32. Ramage G, Milligan S, Lappin DF, et al. Antiinflam, cytotoxic, and immunomodulatory properties of tea tree oil and its derivative components: potential role in management of oral candidosis in cancer patients. Front Microbiol. 2012 Jun 18:3:220.
33. Rudb€om MA, B€orje A, Nilsson U, Karlberg AT. α-Terpineene, an antioxidant in tea tree oil, oxidizes rapidly to skin allergens on air exposure. Chem Res Toxicol. 2012 Mar 19;25:713–721.
34. Weisburger JH. Chemopreventive effects of cocoa polyphenols on chronic diseases. Exp Biol Med (Maywood). 2001 Nov;226:891–897.
35. Ricketts JR, Rothe MJ, Grant-Kels JM. Nutrition and psoriasis. Clin Dermatol. 2010 Nov-Dec;28:615–626.
36. Tagami H. Triggering factors. Clin Dermatol. 1997 Sep-Oct;15:677–685.
37. Sagi L, Trau H. The Koebner phenomenon. Clin Dermatol. 2011 Mar-Apr;29:231–236.