Long-term effects of different starter yeasts on colour and natural antioxidant power of red wines

Andrea Caridi¹ · Rosa Romeo¹ · Alessandra De Bruno¹ · Cristian Masaneo¹ · Marco Poiana¹

Received: 8 April 2021 / Revised: 17 June 2021 / Accepted: 19 June 2021 / Published online: 7 July 2021
© The Author(s) 2021

Abstract
Eighty-seven red wines produced from red grapes of the grape variety Gaglioppo from the Calabria region (vintage 2009) were analysed by standard methods after 4 and 120 months of ageing. So, a total of 29 selected starters of Saccharomyces cerevisiae—3 wild type, 12 monoclonal cultures, and 14 hybrids—inoculated in triplicate were studied for their effects on colour and natural antioxidant power keeping of red wine. Wine ageing decreased the red component, the colour intensity, and the DPPH values while the colour hue values increased. This research has shown that the evolution of wine ageing is affected in a very different way by the starter yeast used and has allowed choosing the best yeast strain useful to produce red wine able to endure very long-time ageing, until 10 years.

Keywords Long-time ageing · Red wines · Saccharomyces cerevisiae · Wine starter

Introduction
Moderate but regular consumption of red wine is proven to possess a positive effect on health, due to the presence of antioxidants and protective substances [1]. During ageing, these substances undergo an evolution, which involves changes in chemical and sensory characteristics of red wines [2]; the potential relevance of these changes to wine quality and complexity was assessed [3]. Particularly, the colour seems to provide information about defects, variation of quality parameters of wines during storage and polyphenolic composition, playing an important role in the evaluation of the perceived quality of wine [4]. The relation between colour components and antioxidant properties of wine is widely proven; it was reported that phenolic composition, as well as monomeric anthocyanins and co-pigments, effect the colour stability of wine [5]. The influence of different native grape varieties [6–8], and winemaking technologies [9–14] on the evolution of the chemical characteristics was diffusely investigated. The aim of this work was to study the influence of the yeast strain used as a starter on the evolution of the red component, colour intensity, colour hue, and antioxidant activity of red wine to assess its influence on long-term wine ageing. Several of the 29 yeast strains used and, in details, all the 14 hybrids were previously selected towards their effect on antioxidant phenolic compounds and towards a reduced absorption of wine phenolics.

Materials and methods

Microorganisms
Three wild type, 12 monosporal cultures, and 14 hybrid strains of Saccharomyces cerevisiae, specifically obtained crossing selected strains with a low aptitude to adsorb grape pigments on their parietal mannoproteins were used. In details, the 14 hybrids were previously selected towards their effect on antioxidant phenolic compounds [15] and some of them are characterised by reduced absorption of wine phenolics [16].

Fermentation trials and analyses
Twenty kilograms of red grapes (vintage 2009) of the Calabrian cultivar Gaglioppo were given pre-fermentative maceration to extract pigments from skins and seeds. They were manually destemmed, crushed and macerated at 4 °C
for 3 days, performing a punch down twice per day. The must obtained after pressing (pH 3.40, °Brix 22) was divided into aliquots of 100 mL and immediately inoculated at 5% in triplicate with 48-h precultures of each wine yeast. Microwinemaking trials were performed at 25 °C. At the end of fermentation, the wines were refrigerated at 4 °C and racked into 125 mL plastic jars with a screw cap, under 10 ml of liquid paraffin, and keep in the dark at cellar temperature. After 4 and 120 months of ageing, the wines were analysed. The red component (Abs 520 nm), the colour intensity, and the colour hue were evaluated according to the Glories method [17]; the percentage of DPPH inactivation were evaluated according to Alén-Ruiz method [18].

Data were elaborated as mean ± standard deviations of three measurements. The significant differences (p < 0.05) among samples were determined by analysis of variance (ANOVA) with Tukey’s post-hoc test (SPSS Software, Version 15.0, SPSS Inc., Chicago, IL, USA).

Table 1
Red component of the 29 wines—absorbance at 520 nm—after 4 months and 10 years

Strains	Ageing period (months)	4	120	Significance
RC026	0.386 ± 0.020efgh	0.234 ± 0.051a	**	
RC026C-1A	0.369 ± 0.003gh	0.079 ± 0.005def	**	
RC026C-1B	0.379 ± 0.004fgh	0.110 ± 0.015bcdef	**	
RC026C-1C	0.371 ± 0.000gh	0.116 ± 0.015bcdef	**	
RC026C-1D	0.376 ± 0.010gh	0.103 ± 0.008cdef	**	
RC029	0.390 ± 0.007efgh	0.090 ± 0.003cdef	**	
RC029A-1A	0.354 ± 0.006h	0.113 ± 0.013bcdef	**	
RC029A-1B	0.388 ± 0.013efgh	0.155 ± 0.062abcde	**	
RC029A-1C	0.372 ± 0.010gh	0.110 ± 0.009cdef	**	
RC029A-1D	0.399 ± 0.006cdefg	0.147 ± 0.068abcde	**	
RC029B-1A	0.386 ± 0.027efgh	0.148 ± 0.063abcde	**	
RC029B-1B	0.386 ± 0.011efgh	0.137 ± 0.064abcde	**	
RC029B-1C	0.369 ± 0.023gh	0.067 ± 0.011ef	**	
RC029B-1D	0.361 ± 0.001gh	0.092 ± 0.049cdef	**	
RC039	0.355 ± 0.016h	0.133 ± 0.067abcde	**	
RC026C-1C × RC039C-1C (4)	0.379 ± 0.019fgh	0.031 ± 0.005f	**	
RC029A-1D × RC039C-1C (4)	0.396 ± 0.023defg	0.123 ± 0.017abcd	**	
RC029B-1C × RC039C-1C (7)	0.431 ± 0.021abcd	0.113 ± 0.022bcdef	**	
RC029A-1D × RE078C-1C (4)	0.437 ± 0.001abc	0.090 ± 0.014cdef	**	
RC029B-1C × RE078C-1C (4)	0.463 ± 0.021a	0.100 ± 0.023cdef	**	
RC029B-1C × NA093B-1C (6)	0.424 ± 0.033abcde	0.107 ± 0.015bcdef	**	
NA014C-1D × RC039C-1C (3)	0.380 ± 0.034fgh	0.133 ± 0.023abcdf	**	
NA014C-1D × RC039C-1C (2)	0.369 ± 0.005gh	0.126 ± 0.004abcd	**	
NA015A-1B × RC039C-1C (5)	0.390 ± 0.019efgh	0.137 ± 0.024abcde	**	
NA015A-1B × NA093B-1C (2)	0.376 ± 0.024gh	0.127 ± 0.016abcd	**	
RE049B-1A × NA093B-1C (1)	0.434 ± 0.007abcd	0.188 ± 0.067abcde	**	
RE049B-1A × NA093B-1C (5)	0.446 ± 0.025ab	0.144 ± 0.018abcde	**	
RE049B-1A × RC039C-1C (8)	0.385 ± 0.022efgh	0.216 ± 0.016ab	**	
RE049B-1A × RC039C-1C (9)	0.416 ± 0.005bcdef	0.202 ± 0.030abc	**	
Min	0.354	0.031	**	
Max	0.463	0.234	**	
Mean	0.392	0.127	**	
Significance	**	**	**	

The italicized values are less than or equal to the mean value
The strains written in bold type exhibit in both the ageing periods values above average
ns not significant
*significant (p < 0.05), **high significant (p < 0.01)
Results and discussion

The data presented in Table 1 show the red component of examined wines. After an ageing period of 4 months, the red component ranged \((p<0.01)\) from a minimum value of 0.354 (strain RC029A-1A) to a maximum value of 0.463 [strain RC029B-1C × RE078C-1C (4)]. Twenty strains (value highlighted in grey) exhibited a value ≤ 0.392 (the mean value). After an ageing period of 120 months, the red component ranged \((p<0.01)\) from a minimum value of 0.031 [strain RC026C-1C × RC039C-1C (4)] to a maximum value of 0.354 (strain RC029A-1A). Thirteen strains (value highlighted in grey) exhibited a value ≤ 0.127 (the mean value). The four strains are written in bold type exhibited in both the ageing periods values above average probably because they absorbed less anthocyanins than the others. Considering the variation of the value of the red component between 4 and 120 months, for each strain it highly significantly \((p<0.01)\) decreased after 10 years of ageing from a minimum of −39.38% (strain RC026) to a maximum of −91.82% [strain RC026C-1C × RC039C-1C (4)] and a mean value of −67.68%.

This decrease in red component with wine ageing has also been observed by other authors. Red wines produced from five red grapes varieties of Metohija regions (Serbia) were analysed after 0, 4, 8, and 12 months of ageing for the colour intensity [19]. It always decreased too, exhibiting variations of: (a) −8.33% after 12 months for Game wine; (b) −2.75% after 4 months, −3.67% after 8 months, and −5.50% after 12 months for Merlot wine; (c) −3.85% after 4 months, −7.69% after 8 months, and −9.62% after 12 months for Prokup wine; (d) −1.83% after 4 months, −3.67% after 8 months, and −5.50% after 12 months for Vranac wine. Red wines produced from two different grape batches, both Cabernet Sauvignon, of Langhorne Creek region (South Australia) with low \((P_{\text{low}})\) and high \((P_{\text{high}})\) initial tannin and anthocyanin concentration were analysed after 0 and 42 months of ageing for the value of the red component [20]. It always decreased too, exhibiting variations of: −43.11% for \(P_{\text{low}}\) wine and −44.65% for \(P_{\text{high}}\) wine. Red wines produced from red grapes of the Cabernet Sauvignon variety from Ribera del Duero region (Spain) were analysed after 6 and 12 months of ageing for the value of the red component [21]. It always decreased too, exhibiting a mean variation of −2.46%.

The data presented in Table 2 show the colour intensity of examined wines. After an ageing period of 4 months, the colour intensity ranged \((p<0.01)\) from a minimum value of 1.145 (strain RC026C-1B) to a maximum value of 1.443 [strain RE049B-1A × NA093B-1C (5)]. Twenty strains (value highlighted in grey) exhibited a value ≤ 1.245 (the mean value). After an ageing period of 120 months, the colour intensity ranged \((p<0.01)\) from a minimum value of 0.147 [strain RC026C-1C × RC039C-1C (4)] to a maximum value of 1.214 [strain RE049B-1A × RC039C-1C (8)]. Sixteen strains (value highlighted in grey) exhibited a value ≤ 0.675 (the mean value). The four strains written in bold type exhibited in both the ageing periods values above average probably because they absorbed less pigments than the others. Considering the variation of the colour intensity between 4 and 120 months, it always decreased after 10 years of ageing for 21 strains highly significantly \((p<0.01)\), for five strains significantly \((p<0.05)\), and for three strains not significantly, from a minimum of −2.80% [strain RE049B-1A × RC039C-1C (8)] to a maximum of −87.97% [strain RC026C-1C × RC039C-1C (4)] and a mean value of −45.73%.

This decrease in colour intensity with wine ageing has also been observed by other authors. Red wines produced from five red grapes varieties of Metohija regions (Serbia) were analysed after 0, 4, 8, and 12 months of ageing for the colour intensity [19]. It decreased too, excluding the Cabernet wine, exhibiting variations of: (a) 0% after 4 and 8 months, and 1.80% after 12 months for Cabernet wine; (b) −0.62% after 4 and 8 months, and −1.85% after 12 months for Game wine; (c) −1.33% after 4 and 8 months, and −1.77% after 12 months for Merlot wine; (d) 0% after 4 months, −4.96% after 8 months, and −2.48% after 12 months for Prokup wine; (e) −0.45% after 4, 8, and 12 months for Vranac wine. Eighty-four bottled samples of red wines, all produced using red grapes of Listan negro variety in the Canary Islands, were analysed after 12 and 24 months of ageing for the colour density [22]. It always decreased too, exhibiting, compared to the values after 55 days, a mean value variation of −21.84%. Tempranillo wines made with grapes from two different vineyards of Rioja Alta (Spain) were analysed after 55 and 720 days of ageing for the colour intensity [23]. It always decreased too exhibiting, compared to the values after 55 days, a mean value variation of −11.25%.

The data presented in Table 3 show the colour hue of examined wines. After an ageing period of 4 months, the colour hue ranged \((p<0.01)\) from a minimum value of 1.729 (strain RC026C-1B) to a maximum value of 1.987 (strain RC029A-1A). Thirteen strains (value highlighted in grey) exhibited a value ≥ 1.857 (the mean value). After an ageing period of 120 months, the colour hue ranged \((p<0.01)\) from a minimum value of 2.476 (strain RC026) to a maximum value of 6.712 (strain RC029B-1C). Thirteen strains (value highlighted in grey) exhibited a value ≥ 4.179 (the mean value). The ten strains written in bold type exhibited in both the ageing periods values below average because they
better-protected wine from ageing. Considering the variation of the colour hue between 4 and 120 months, it always increased after 10 years of ageing for 20 strains highly significantly ($p < 0.01$), for six strains significantly ($p < 0.05$), and for three strain not significantly, from a minimum of 27.07% (strain RC039) to a maximum of 248.13% (strain RC029B-1C) and a mean value of 124.13%.

This increase in colour hue with wine ageing has also been observed by other authors. Red wines produced from five red grapes varieties of Metohija regions (Serbia) were analysed after 0, 4, 8, and 12 months of ageing for the colour hue [19]. It increased too exhibiting variations of: a) 5.88% after 4 months, 9.41% after 8 months, and 16.47% after 12 months for Cabernet wine; (b) 4.82% after 4 months, 9.64% after 8 months, and 13.25% after 12 months for Game wine; (c) 2.33% after 4 months, 3.49% after 8 months, and 5.81% after 12 months for Merlot wine; (d) 18.52% after 4 months, 11.11% after 8 months, and 23.46% after 12 months for Prokup wine; (e) 2.47% after 4 months, 6.17% after 8 months, and 9.88% after 12 months for Vranac wine. Eighty-four bottled samples of red wines, all produced using red grapes of Listán negro variety in the Canary Islands,
were analysed after 12 and 24 months of ageing for the colour hue [22]. It always increased too exhibiting, compared to the values after 12 months, a mean value variation of 2.41%.

Tempranillo wines made with grapes from two different vineyards of Rioja Alta (Spain) were analysed after 55 and 720 days of ageing for the colour hue [23]. It always increased too exhibiting, compared to the values after 55 days, a mean value variation of 8.95%.

The data presented in Table 4 show DPPH value of examined wines. After an ageing period of 4 months, the DPPH ranged (p < 0.01) from a minimum value of 29.00% (strain RC029) to a maximum value of 51.12% [strain RE049B-1A × NA093B-1C (5)]. Eleven strains (value highlighted in grey) exhibited a value ≤ 41.71% (the mean value). After an ageing period of 120 months, the DPPH ranged (p < 0.01) from a minimum value of 9.66% (strain RC026C-1D) to a maximum value of 18.57% [strain RE049B-1A × RC039C-1C (8)]. Seventeen strains (value highlighted in grey) exhibited a value ≤ 13.04% (the mean value). The eight strains are written in bold type exhibited in both the ageing periods values above average because they better-protected wine from the lowering of the antioxidant activity. Considering

Table 3 Colour hue of the 29 wines after 4 months and 10 years

Strains	Colour hue	Significance	
RC026	1.776 ± 0.001cde	2.476 ± 0.394d	*
RC026C-1A	1.848 ± 0.005abce	5.380 ± 0.280abc	**
RC026C-1B	1.729 ± 0.011e	4.204 ± 0.260abcd	**
RC026C-1C	1.791 ± 0.090bce	4.034 ± 0.116abcd	**
RC026C-1D	1.825 ± 0.048abce	4.437 ± 0.157abcd	**
RC029	1.895 ± 0.042abce	5.103 ± 0.009abcd	**
RC029A-1A	1.987 ± 0.022a	4.474 ± 0.675abcd	**
RC029A-1B	1.811 ± 0.050abce	3.403 ± 1.064bcd	*
RC029A-1C	1.849 ± 0.074abce	4.185 ± 0.299abcd	**
RC029A-1D	1.774 ± 0.053cde	3.643 ± 1.080bcd	*
RC029B-1A	1.811 ± 0.071abde	3.792 ± 0.947bcd	*
RC029B-1B	1.775 ± 0.045cde	3.830 ± 1.196abcd	*
RC029B-1C	1.928 ± 0.134abcd	6.712 ± 1.491a	**
RC029B-1D	1.946 ± 0.084abcd	6.066 ± 2.194ab	*
RC039	1.964 ± 0.031ab	2.521 ± 1.595 cd	ns
RC026C-1C × RC039C-1C (4)	1.897 ± 0.006abce	3.086 ± 2.309 cd	ns
RC029A-1D × RC039C-1C (4)	1.786 ± 0.034cde	3.886 ± 0.280abcd	**
RC029B-1C × RC039C-1C (7)	1.822 ± 0.068abce	4.139 ± 0.688abcd	**
RC029A-1D × RE078C-1C (4)	1.808 ± 0.074abce	5.293 ± 0.495abcd	**
RC029B-1C × RE078C-1C (4)	1.761 ± 0.015ede	4.639 ± 0.912abcd	**
RC029B-1C × NA093B-1C (6)	1.864 ± 0.036abce	5.040 ± 0.341abcd	**
NA014C-1D × RC039C-1C (3)	1.939 ± 0.102ab	4.091 ± 0.434abcd	**
NA014C-1D × RC039C-1C (2)	1.966 ± 0.048abc	4.341 ± 0.214abcd	**
NA015A-1B × RC039C-1C (5)	1.786 ± 0.035cde	3.793 ± 0.403bcd	**
NA015A-1B × NA093B-1C (2)	1.952 ± 0.036abcd	4.189 ± 0.466abcd	**
RE049B-1A × NA093B-1C (1)	1.877 ± 0.132abcde	3.484 ± 0.207bcd	**
RE049B-1A × NA093B-1C (5)	1.899 ± 0.017abcd	3.815 ± 0.378bcd	**
RE049B-1A × RC039C-1C (8)	1.933 ± 0.057abcd	4.173 ± 0.587abcd	**
RE049B-1A × RC039C-1C (9)	1.839 ± 0.019abde	2.952 ± 0.594 cd	ns
Min	1.729	2.476	
Max	1.987	6.712	
Mean	1.857	4.179	
Significance	**	**	

The italicized values are greater than or equal the mean value
The strains written in bold type exhibit in both the ageing periods values below average
ns not significant
*p significant (p < 0.05), **high significant (p < 0.01)
the variation of the DPPH value between 4 and 120 months, it always decreased after 10 years of ageing for 28 strains highly significantly \((p < 0.01)\) and for one strain significantly \((p < 0.05)\) from a minimum of -55.80% \([\text{strain RE049B-1A } \times \text{RC039C-1C (8)}]\) to a maximum of -80.06% \(\text{strain RC026C-1D}\) and a mean value of -68.11%.

This decrease in DPPH value with wine ageing has also been observed by other authors. Red wines produced from three red grapes varieties from the South-Slovakian wine-growing region from the village of Strekov were analysed after 3, 7, 11, 19, and 28 months of ageing for the DPPH value \([24]\). It decreased too, excluding the \textit{Cabernet Sauvignon} wine, exhibiting variations, compared to the values after 3 months, of: (a) \(-1.79\%\) after 7 months, \(-3.45\%\) after 11 months, \(-8.41\%\) after 19 months, and \(-8.87\%\) after 28 months for \textit{Alibernet} variety; (b) \(-0.49\%\) after 7 months, \(-6.13\%\) after 19 months, and \(-6.26\%\) after 28 months for \textit{Cabernet Sauvignon} variety; (c) \(-1.70\%\) after 7 months, \(-6.11\%\) after 19 months, and \(-15.06\%\) after 19 months, and \(-22.87\%\) after 28 months for \textit{Torysa} variety.

Table 4 DPPH of the 29 wines after 4 months and 10 years

Strains	Ageing period (months)	4 DPPH (% of inactivation)	120 DPPH (% of inactivation)	Significance
RC026	48.61 ± 1.18ab	14.60 ± 1.06bcde	**	
RC026C-1A	43.62 ± 10.68abcd	12.37 ± 0.60deghi	**	
RC026C-1B	47.33 ± 0.80ab	13.83 ± 0.34cdfe	**	
RC026C-1C	47.70 ± 1.71ab	10.09 ± 0.33hi	**	
RC026C-1D	48.45 ± 1.44ab	9.66 ± 1.14i	**	
RC029	29.00 ± 2.76d	11.82 ± 0.62efghi	**	
RC029A-1A	30.81 ± 1.80 cd	12.02 ± 0.26efghi	**	
RC029A-1B	29.25 ± 8.06d	12.25 ± 0.88deghi	**	
RC029A-1C	40.30 ± 7.47abcd	16.87 ± 0.04ab	**	
RC029A-1D	34.60 ± 9.88bcd	13.36 ± 2.00cdefg	**	
RC029B-1A	40.61 ± 2.51abcd	12.70 ± 0.86deghi	**	
RC029B-1B	44.30 ± 2.62abc	12.33 ± 0.41deghi	**	
RC029B-1C	42.92 ± 1.37abcd	11.33 ± 0.42efghi	**	
RC029B-1D	43.51 ± 2.80abcd	11.99 ± 0.88efghi	**	
RC039	44.63 ± 2.94abc	11.72 ± 0.82efghi	**	
RC026C-1C × RC039C-1C (4)	44.80 ± 6.89abc	14.12 ± 0.90bcdef	**	
RC029A-1D × RC039C-1C (4)	45.91 ± 0.50ab	13.91 ± 0.70cdef	**	
RC029B-1C × RE078C-1C (4)	42.48 ± 2.54abcd	10.62 ± 0.72ghi	**	
RC029B-1C × RE078C-1C (4)	41.78 ± 1.77abcd	16.03 ± 0.50abc	**	
RC029B-1C × NA093B-1C (6)	37.86 ± 5.58abcd	11.95 ± 0.66efghi	**	
NA014C-1D × RC039C-1C (3)	36.99 ± 5.85abcd	14.15 ± 0.98cdef	**	
NA014C-1D × RC039C-1C (2)	36.92 ± 6.82abcd	14.18 ± 0.89cdef	**	
NA015A-1B × RC039C-1C (5)	45.72 ± 4.37ab	15.12 ± 0.70bced	**	
NA015A-1B × NA093B-1C (2)	40.42 ± 7.09abcd	12.07 ± 0.80efghi	**	
RE049B-1A × NA093B-1C (1)	38.20 ± 1.09abcd	12.47 ± 0.41defghi	**	
RE049B-1A × NA093B-1C (5)	51.12 ± 0.24a	12.27 ± 0.41defghi	**	
RE049B-1A × RC039C-1C (8)	42.01 ± 0.22abcd	18.57 ± 1.33a	**	
RE049B-1A × RC039C-1C (9)	45.61 ± 1.14abc	10.67 ± 2.19ghi	**	
Min	29.00	9.66	**	
Max	51.12	18.57	**	
Mean	41.71	13.04	**	
Significance			**	

The italicized values are less than or equal the mean value
The strains written in bold type exhibit in both the ageing periods values above average
ns not significant
*significant \((p < 0.05)\), **high significant \((p < 0.01)\)
Globally considering the analytical characteristics of the studied wines after the ageing period of 120 months, it is evident that there is a very high biodiversity among the tested yeast strains. Seven strains—RC026C-1A, RC026C-1D, RC029, RC029A-1A, RC029B-1C, RC029B-1D, RC029B-1C × RE078C-1C (4)—exhibit fermentation behaviour worse than average for all the tested parameters. Seven strains—RC026C-1B, RC026C-1C, RC029A-1C, RC029B-1C × RC039C-1C (7), RC029A-1D × RE078C-1C (4), RC029B-1C × NA093B-1C (6), NA015A-1B × NA093B-1C (2)—exhibit fermentation behaviour better than average for only one of the tested parameters. Four strains—RC039, RC026C-1C × RC039C-1C (4), RC029A-1D × RC039C-1C (4), NA014C-1D × RC039C-1C (2)—exhibit fermentation behaviour better than average for two of the tested parameters. Six strains—RC029A-1B, RC029B-1A, RC029B-1B, RE049B-1A × NA093B-1C (1), RE049B-1A × NA093B-1C (5), RE049B-1A × RC039C-1C (9)—exhibit fermentation behaviour better than average for three of the tested parameters. Five strains—RC026, RC029A-1D, NA014C-1D × RC039C-1C (3), NA015A-1B × RC039C-1C (5), RE049B-1A × RC039C-1C (8)—exhibit fermentation behaviour better than average for all the tested parameters.

Conclusion

This research has shown that the evolution of wine ageing is affected in a very different way by the starter yeast used and has allowed choosing the best yeast strain useful to produce red wine able to endure very long-time ageing, until 10 years. Data clearly show that after 120 months of ageing wine variability linked to the starter biodiversity is notably increased.

Acknowledgements Not applicable.

Funding Open access funding provided by Università degli Studi Mediterranea di Reggio Calabria within the CRUI-CARE Agreement.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Compliance with ethical requirements This article does not contain any studies with human or animal subjects.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s licence, it is not governed by the licence of the article. Supplementary material is subject to the same licence.

References

1. Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339:1523–1526. https://doi.org/10.1016/1014-6736(92)91277-F
2. Marquez A, Serratosa MP, Merida J (2014) Influence of bottle storage time on color, phenolic composition and sensory properties of sweet red wines. Food Chem 146:507–514. https://doi.org/10.1016/j.foodchem.2013.09.103
3. Peri P, Kamioğlu S, Capanoğlu E, Özçelik B (2015) Investigating the effect of aging on the phenolic content, antioxidant activity and anthocyanins in Turkish wines. J Food Process Preserv 39:1845–1853. https://doi.org/10.1111/jfpp.12420
4. Sáenz-Navajas MP, Echavarri F, Ferreira V, Fernández-Zurbano P (2011) Pigment composition and color parameters of commercial Spanish red wine samples: linkage to quality perception. Eur Food Res Technol 232:877–887. https://doi.org/10.1007/s00217-011-1456-2
5. Parpinello GP, Versari A, Chinnici F, Galassi S (2009) Relationship among sensory descriptors, consumer preference and color parameters of Italian Novello red wines. Food Res Int 42:1389–1395. https://doi.org/10.1016/j.foodres.2009.07.005
6. Chira K, Jourdes M, Teissedre PL (2012) Cabernet sauvignon red wine astringency quality control by tannin characterization and polymerization during storage. Eur Food Res Technol 23:253–261. https://doi.org/10.1007/s00217-011-1627-1
7. Stamatinis K, Yorgos K, Maria K, Niki P, Argirios T, Garifalia K (2015) Analytical phenolic composition and sensory assessment of selected rare Greek cultivars after extended bottle ageing. J Sci Food Agric 95:1638–1647. https://doi.org/10.1002/jsfa.6865
8. Gambuti A, Siani T, Picariello L, Rinaldi A, Lisanti MT, Ugliano M, Dieval JB, Moio L (2017) Oxygen exposure of tannins-rich red wines during bottle aging. Influence on phenolics and color, astringency markers and sensory attributes. Eur Food Res Technol 243:669–680. https://doi.org/10.1007/s00217-016-2780-3
9. del Alamo SM, Nevares Domínguez I, García Merino S (2004) Influence of different aging systems and oak woods on aged wine color and anthocyanin composition. Eur Food Res Technol 219:124–132. https://doi.org/10.1007/s00217-004-0930-5
10. Cano-López M, Pardo-Minguez F, López-Roca JM, Gómez-Plaza E (2007) Chromatic characteristics and anthocyanin profile of a micro-oxygenated red wine after oak or bottle maturation. Eur Food Res Technol 225:127–132. https://doi.org/10.1007/s00217-006-0390-1
11. Hernández T, Estrella I, Dueñas M, Fernández de Simón B, Cadahía E (2007) Influence of wood origin in the polyphenolic composition of a Spanish red wine aging in bottle, after storage in barrels of Spanish, French and American oak wood. Eur Food Res Technol 224:695–705. https://doi.org/10.1007/s00217-006-0360-7
12. González-del Pozo A, Arozarena Í, Noriega M-J, Navarro M, Casp A (2010) Short- and long-term effects of micro-oxygenation treatments on the colour and phenolic composition of a Cabernet Sauvignon wine aged in barrels and/or bottles. Eur Food Res Technol 231:589–601. https://doi.org/10.1007/s00217-010-1311-x
13. Albu C, Erementa SAV, Penu R, Vasilescu I, Litescu SC, Radu G-L (2017) Characterization of the phenolics and free radical
scavenging of Romanian red wine. Anal Lett 50:591–606. https://doi.org/10.1080/00032719.2016.1192641
14. Aleixandre-Tudo JL, du Toit WJ (2020) Evolution of phenolic composition during barrel and bottle aging. S Afr J Enol Vitic 41:233–237. https://doi.org/10.21548/41-2-4128
15. Caridi A, Sidari R, Giuffrè AM, Pellicanò TM, Sicari V, Zappia C, Poiana M (2017) Test of four generations of Saccharomyces cerevisiae concerning their effect on antioxidant phenolic compounds in wine. Eur Food Res Technol 243:1287–1294. https://doi.org/10.1007/s00217-016-2840-8
16. Caridi A, Sidari R, Pulvirenti A, Blaiotta G (2020) Genetic improvement of wine yeasts for opposite adsorption activity of phenolics and ochratoxin A during red winemaking. Food Biotechnol 34:352–370. https://doi.org/10.1080/08905436.2020.1850472
17. Glories Y (1984) La couleur des vins rouges. 1° e 2° partie. Conn Vigne Vin 18:253–271
18. Alén-Ruiz F, García-Falcón MS, Pérez-Lamel MC, Martínez-Carballo E, Simal-Gándara J (2009) Influence of major polyphenols on antioxidant activity in Mencía and Brancellao red wines. Food Chem 113:53–60. https://doi.org/10.1016/j.foodchem.2008.07.038
19. Babincev LM, Gurešić DM, Simonović RM (2016) Spectrophotometric characterization of red wine color from the vineyard region of Metohia. J Agri Sci 61:281–290. https://doi.org/10.2298/JAS1603281B
20. Bindon KA, McCarthy MG, Smith PA (2014) Development of wine colour and non-bleachable pigments during the fermentation and ageing of (Vitis vinifera L. cv.) Cabernet Sauvignon wines differing in anthocyanin and tannin concentration. LWT Food Sci Technol 59:923–932. https://doi.org/10.1016/j.lwt.2014.05.051
21. Prat-García S, Oliveira J, del Alamo-Sanza M, de Freitas V, Nevares I, Mateus N (2021) Characterization of anthocyanins and anthocyanin-derivatives in red wines during ageing in custom oxygenation oak wood barrels. Molecules 26:64. https://doi.org/10.3390/molecules26010064
22. Darias-Martín J, Carrillo-López M, Echavarri-Granado JF, Díaz-Romero C (2007) The magnitude of copigmentation in the colour of aged red wines made in the Canary Islands. Eur Food Res Technol 224:643–648. https://doi.org/10.1007/s00217-006-0352-7
23. Revilla E, López JF, Ryan J-M (2005) Anthocyanin pattern of Tempranillo wines during ageing in oak barrels and storage in stainless-steel tanks. Eur Food Res Technol 220:592–596. https://doi.org/10.1007/s00217-005-1148-x
24. Mezey J, Czako P, Mezeyová I, Bajčan D, Kobolka R (2016) Changes of selected antioxidant parameters of red wines during maturation. Czech J Food Sci 34:356–361. https://doi.org/10.17221/517/2015-CJFS

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.