Larvicidal and adulticidal effects of some Egyptian oils against *Culex pipiens*

Mohamed M. Baz¹, Abdelfattah Selim ²*, Ibrahim Taha Radwan³, Abeer Mousa Alkhaibari⁴ & Hanem F. Khater⁵

Mosquitoes and mosquito-borne diseases represent an increasing global challenge. Plant extract and/or oil could serve as alternatives to synthetic insecticides. The larvicidal effects of 32 oils (1000 ppm) were screened against the early 4th larvae of *Culex pipiens* and the best oils were evaluated against adults and analyzed by gas chromatography-mass spectrometry (GC mass) and HPLC. All oils had larvicidal activity (60.0–100%, 48 h Post-treatment, and their Lethal time 50 (LT₅₀) values ranged from 9.67 (*Thymus vulgaris*) to 37.64 h (*Sesamum indicum*). Oils were classified as a highly effective group (95–100% mortalities), including *Allium sativum*, *Anethum graveolens*, *Camellia sinensis*, *Foeniculum vulgare*, *Nigella sativa*, *Salvia officinalis*, *T. vulgaris*, and *Viola odorata*. The moderately effective group (81–92% mortalities) included *Boswellia serrata*, *Cuminum cyminum*, *Curcuma aromatic*, *Allium sativum*, *Melaleuca alternifolia*, *Piper nigrum*, and *Simmondsia chinensis*. The least effective ones were *C. sativus* and *S. indicum*. *Viola odorata*, *Anethum graveolens*, *T. vulgaris*, and *N. sativa* provide 100% adult mortalities PT with 10, 25, 20, and 25%. The mortality percentages of the adults subjected to 10% of oils (H group) were 48.89%, 88.39%, 63.94%, 51.54%, 92.96%, 44.44%, 72.22%, and 100% for *A. sativum*, *A. graveolens*, *C. sinensis*, *F. vulgare*, *N. sativa*, *S. officinalis*, *T. vulgaris*, and *V. odorata*, respectively. *Camellia sinensis* and *F. vulgare* were the most potent larvicides whereas *V. odorata*, *T. vulgaris*, *A. graveolens* and *N. sativa* were the best adulticides and they could be used for integrated mosquito control.

Mosquitoes are an ancient nuisance pest and mosquito-borne diseases represent an increasing global health challenge, threatening over 40% of the world’s population and it is expected that almost half of the world’s population will be at risk of arbovirus transmission by 2050¹. *Culex pipiens* (Diptera: Culicidae) is widely distributed, transmitting dreadful diseases leading to severe morbidity and sometimes mortality to humans and animals²–⁵. Vector control is the primary method for reducing public concerns about mosquito-borne diseases⁶–¹¹. Controlling adults and larvae through repellents and insecticides¹²,¹³, are the most effective approach for reducing mosquito bites. Using synthetic insecticides led to insecticide resistance, environmental pollution, and health hazards to human health and non-target organisms.

Searching for eco-friendly alternatives in botanicals such as essential oils (EOs) is a curtail need. EOs are volatile components found in many plant families like Asteraceae, Rutaceae, Myrtaceae, Lauraceae, Lamiaceae, Apiaceae, Piperaceae, Poaceae, Zingiberaceae, and Cupressaceae¹⁴. EOs contain complicated mixtures of products as phenols, sesquiterpenes, and monoterpenes¹⁵. EOs have antibacterial, antiviral, and antifungal activities. They also possess insecticidal effect interfering with insects’ physiological, metabolic, behavioral, and biochemical functions through inhalation, ingestion, or skin absorption of EOs inducing a neurotoxic action¹⁶. EOs act as adulticides, larvicides, deterrents, and repellents. They are less toxic, biodegradable, and overcome insecticidal resistance¹⁵,¹⁷,¹⁸. EOs have higher popularity with organic growers and environmentally conscious consumers and suitability for urban areas, homes, and other sensitive areas.

¹Department of Entomology, Faculty of Science, Benha University, Benha 13518, Egypt. ²Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt. ³Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, P.O. Box 11835, Cairo, Egypt. ⁴Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia. ⁵Department of Parasitology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt. ⁶email: Abdelfattah.selim@fvtm.bu.edu.eg
The role of EOs in mosquito control has been discussed. This study aimed to screen and evaluate the lethal time values of the larvicidal effects of thirty-two oils and evaluate the adulticidal effect and phytochemical analyses of the most effective ones against *Cx. pipiens*.

Materials and methods

Plant oils

Thirty-two oils were purchased from EL CAPTAIN Company for extracting natural oils, plants, and cosmetics "Cap Pharm," El Obor, Cairo, Egypt, and Harraz for Food Industry & Natural products, Cairo, Egypt (Table 1).

Culex pipiens

* Culex pipiens* (an autogenous strain) was provided from the colony reared at the Department of Entomology, Faculty of Science, Benha University, Egypt, and maintained at 27 ± 2 °C, 75–85% RH and 14:10 h (L/D) photoperiod.

Larvicidal efficacy

Thirty-two oils were screened for their larvicidal efficacy against the early fourth instar larvae, *Cx. pipiens*. Oils were added to a solvent (emulsifier) consisting of dechlorinated water plus 1.0 mL of 0.5% Tween-20, through a shaker plate to yield a homogenous solution. Oils were added to a solvent consisting of dechlorinated water plus 5% Tween 20. For each oil, twenty larvae were placed in a 500 mL glass beaker containing 250 mL of 1000 ppm. The experiment and the control group, treated with the solvent only, were replicated three times. Larval mortalities were recorded 0.5, 2, 8, 24, and 48 h post-treatment (PT).

Table 1. Plants species screened (oil No = 32) used for larvicidal activity. *Plant oils purchased from EL CAPTAIN company for extracting natural oils, plants and cosmetics "Cap Pharm".* Plant oils purchased from Harraz for Food Industry & Natural products.

No.	Oil name	Plant oils	Order	Family	English name
1	*Allium sativum*	Asparagales Amaryllidaceae	Garlic		
2	*Anethum graveolens*	Apiaceae	Dill		
3	*Argania spinosa*	Sapotaceae	Argan		
4	*Boswellia serrata R.*	Sapindales Bursaraceae	Olibanum		
5	*Brassica carinata*	Brassicales Brassicaceae	Mustard		
6	*Camellia sinensis*	Theaceae	Green Tea		
7	*Cedrus libani A.*	Pinaceae	Cedar wood		
8	*Citriulis colocynthis L.*	Cucurbitales Cucurbitaceae	Bitter apple		
9	*Crocus sativus L.*	Asparagales Iridaceae	Saffron crocus		
10	*Cucurbita maxima D.*	Cucurbitales Cucurbitaceae	Pumpkin		
11	*Cuminum cyminum*	Apiales Apiaceae	Camin		
12	*Cupressus sempervirens*	Pinales Cupressaceae	Italian cypress		
13	*Curcuma aromatica S.*	Zingiberales Zingiberaceae	Zarcuma		
14	*Curcuma longa L.*	Zingiberales Zingiberaceae	Common turmeric		
15	*Foeniculum vulgare M.*	Apiales Apiaceae	Sweet fennel		
16	*Gadus morhua*	Gadiformes Gadidae	Cod Liver		
17	*Lepidium sativum L.*	Brassicales Brassicaceae	Garden pepperwort		
18	*Linum usitatissimum*	Apiales Apiaceae	Linaceae	Common flax	
19	*Melaleuca alternifolia*	Myrtales Myrtaecae	Tea tree		
20	*Nigella sativa*	Ranunculales Ranunculaceae	Black cumin		
21	*Panax ginseng*	Apiales Araliaceae	Chinese ginseng		
22	*Piper nigrum L.*	Piperales Piperaceae	Black pepper		
23	*Prunus dulcis*	Rosales Rosaceae	Almond		
24	*Ruta chalepensis L.*	Sapindales Rutaceae	Rues		
25	*Salvia officinalis L.*	Lamiales Lamiaceae	Sage		
26	*Sesamum indicum*	Lamiales Pedaliaceae	Sesame		
27	*Simmondsia chinensis*	Caryophyllales Simmondsiaceae	Jojoba		
28	*Syzgium aromaticum*	Myrtales Myrtaecae	Clove		
29	*Tilia americana L.*	Malvales Malvaceae	Tilia		
30	*Thymus vulgaris L.*	Lamiales Lamiaceae	Garden		
31	*Viola odorata L.*	Malpighiales Violaceae	Sweet violet		
32	*Zingiber officinale*	Zingiberales Zingiberaceae	Ginger		
Adulticidal efficacy. Susceptibility tests for adult mosquitoes were performed for the promising larvicidal oils through the CDC bottle bioassays with modifications. For each concentration, three bottles were coated. Several concentrations for each oil were prepared using pure ethanol as a solvent. The bottles were coated with the desired concentrations and left overnight at 27±2°C for solvent evaporation. Adult mosquitoes (15–10, aged 3–4 days) fed on 10% sucrose solution were released to each bottle using a hand aspirator. The exposure time was set to 30 min. The mosquitoes were removed from the bottles. Mosquito groups were added to separate transparent paper cups (10 × 9 × 6 cm) having 10% sucrose solution and mortalities were checked after 24 h. Three replicates were made for each concentration.

GC/MS analysis. A Thermo Scientific Trace GC Ultra/ISQ Single Quadrupole MS, TG-5MS fused silica capillary column was used for the GC/MS study (0.1 mm, 0.251 mm and 30 m film thickness). An electron ionisation device with a 70 eV ionisation energy was employed for GC/MS detection. At a constant flow rate of 1 mL/min, helium gas was used as the carrier gas. Temperatures were established at 280°C for the injector and MS transfer line. The oven temperature was set at 50°C (hold for 2 min), then increased to 150°C at a rate of 7°C per minute, then to 270°C at a rate of 5°C per minute (hold for 2 min), and finally to 310°C at a rate of 3.5°C per minute (hold 10 min). A percent relative peak area was used to explore the quantification of all of the discovered components. The components were tentatively identified by comparing their respective retention times and mass spectra to those of the NIST, WILLY library data from the GC/MS instrument. The identification was done using mass spectra and a computer search of user-generated reference libraries. To check peak homogeneity, single-ion chromatographic reconstruction was used. When identical spectra could not be identified, only the structural type of the relevant component was provided based on its mass spectral fragmentation. When possible, reference compounds were co-chromatographed to confirm GC retention durations.

Data analysis. Data were analyzed through one-way analysis of variance (ANOVA), Duncan's multiple range tests, and Probit analysis for calculating the lethal concentration (LC) and lethal time (LT) values using the computer program PASW Statistics 2009 (SPSS version 22). The relative efficacies (RE) were calculated according to the following formula:

\[RE = \frac{LT_{50} \text{ or } LC_{50}}{LT_{90} \text{ or } LC_{90}} \]

where \(LT \) is the lethal time and \(LC \) is the lethal concentration. The Chi-square, significance, and regression equations were provided for all tested oils (Table 3).

Results

The larvicidal effect of 32 oils was screened against the early 4th larvae, Cx. pipiens. The results showed that all plant oils had larvicidal activity (60.0–100%, 48 h PT) and their Lethal time 50 (LT50) values ranged from 9.67 (Thymus vulgaris) to 37.64 h (Sesamium indicum), Tables 2 and 3.

The efficacy of oils could be classified, 48 h post-treatment (PT) as the highly effective group (H group) inducing 95–100% mortalities, including eight oils: Allium sativum, Anethum graveolens, Camellia sinensis, Foeniculum vulgare, Nigella sativa, Salvia officinalis, T. vulgaris, and Viola odorata. Camellia sinensis and F. vulgare provided 100%, 24 h PT (Table 2).

The LT50 values of the H group ranged from 9.67 (T. vulgaris) to 19.91 (An. graveolens) hours and those of LT50 values ranged from 29.97 (Foeniculum vulgare) to 55.32 (An. graveolens). The relative efficacies (RE) of such oils according to LT50 values were 2.7, 1.9, 2.9, 3.7, 2.4, 2.4, 2.4, 2.4, and 3.6 times, respectively, times than S. indicum; whereas those of LT50 values were 2.1, 1.8, 2.4, 3.3, 3.0, 3.0, 3.0, 3.0, and 3.0 times, respectively, than C. sativus. The Chi-square, significance, and regression equations were provided for all tested oils (Table 3).

The moderately effective (M group) group of oils resulted in 81–92% mortalities 48 h PT, including B. serrata, C. cyanium, C. aromatic, L. sativum, M. alternifolia, P. nigrom, and S. chinensis. They provided 63.33–71.67% mortalities, 24 h PT (Table 2).

The LT50 values of M group ranged from 19.00 (S. chinensis) to 22.65 (C. cyanium) hours and those of LT90 values ranged from 57.95 (S. chinensis) to 66.22 (M. alternifolia) (Table 3). Their RE: regarding the LT50 values were 1.8, 1.7, 1.8, 1.9, 1.7, 1.9, and 1.9 times than S. indicum, respectively, whereas those of LT90 values were 1.7, 1.6, 1.6, 1.7, 1.5, 1.6, and 1.8 times than C. sativus, respectively (Table 3).

The least effective group (L group) included the other 17 oils, and the least effective ones were C. sativus, and S. indicum, providing 62.33 and 60.00% mortalities, 48 h PT, whereas their LT50 values were 37.07 and 37.64 h and their LT90 values were 96.88 and 92.89 h, respectively (Table 3).

Furthermore, the Kruskal–Wallis test was performed to compare the mean differences of more than two groups followed by the Mann–Whitney test to compare the mean differences between the effective oil groups.

Vioila odorata, A. graveolens, T. vulgaris, and N. sativa provide 100% adult mortality PT with 10. 25, 20, and 25%. The mortality percentages of the adults subjected to 10% of oils (H group) were 48.89%, 88.39, 63.94, 51.54, 92.96, 44.44, 72.22, and 100.0% for A. sativum, An. graveolens, C. sinensis, F. vulgare, N. sativa, S. officinalis T. vulgaris, and V. odorata, respectively. Their adulticidal LC50 values, 24 h PT, were 15.57, 2.42, 9.01, 15.07, 3.42, 20.46, 3.08, and 1.88%, whereas their LC90 values were 38.86, 9.47, 32.18, 33.34, 5.44, 50.76, 16.08, and 7.37%, respectively. Salvia officinalis followed by A. sativum were the least effective oils against adults. According to LC50, N. sativa, V. odorata and An. graveolens killed mosquitoes 9.3, 6.9, and 5.4 times more than S. officinalis (Table 6).
Oil phytochemical analysis. Phytochemical analysis of oils of *F. vulgaris* Mill., *A. graveolens* L., *V. odorata* L., *T. vulgaris* L., *A. sativum*, *S. officinalis* and *C. sinensis* by GC/MS and HPLC analysis revealed their major compounds. *F. vulgaris* oil contains Estragole (70.36%); Limonene (8.96%) and 1,3,3-trimethyl Bicyclo [2.2.1] heptan-2-one (2.81%) (Table 7 and Fig. 1).

Anethum graveolens showed abundance of 4-Pyrindinecarbaldehyde-4-propyl-3-thiosemicarbazone (32.13%); 1,5-dimethyl-1,5-Cyclooctadiene (17.19%); Dihydrocarvone (5.98%); 3a(1H)-Azulenol,2,3,4,5,8,8a-hexahydro-6,8-adimethyl-3-{1-methyl(ethyl),3R-[3a,3a,8a-a]} (Carrotol) (21.26%); and tricyclic compound Daucol (2.39%) (Table 8 and Fig. 2).

V. odorata L. oil contains Diphenyl ether (42.04%); alpha.-Iodone (11.87%); (Z)-5-(4-tert-Butyl-1-hydroxyccylohexyl)-3-methylpent-2-ene-4-yne (7.22%); 2,3,4,5,4,6,7,8,9a-decahydro-3,5a,9-trimethyl-7,9a-peroxy Naphtho-[1,2-b]furan-2-one (6.67%); 2-hexyl-1-Decanol (4.15%); and hexacahydro-Pyrene (2.79%) (Table 9 and Fig. 3).

Thymus vulgaris oil included 2-Ethynyl-3-hydroxypyridine (12.37%); 2-á-pinene(8.92%); 2,5-Dipropoxybenzaldehyde-4-propyl-3-thiosemicarbazone (32.13%); 1,5-dimethyl-1,5-Cyclooctadiene (17.19%); Dihydrocarvone (5.98%); 3a(1H)-Azulenol,2,3,4,5,8,8a-hexahydro-6,8-adimethyl-3-{1-methyl(ethyl),3R-[3a,3a,8a-a]} (Carrotol) (21.26%); and tricyclic compound Daucol (2.39%) (Table 8 and Fig. 2).

Allium sativum contains many effective chemical compounds including the 9-Octadecenamide, (Z)- (29.07%), Trisulfide, di-2-propenyl (14.86%), and isochiapin B%2 < (8.63%) compounds (Table 11 and Fig. 5).
Table 3. Lethal time values of applied oils (1000 ppm) against *Culex pipiens* larvae. RE Relative efficacy. Significant values are in [bold].

Oil name	LT$_{90}$ (lower-upper)	RE (LT$_{90}$)	LT$_{99}$ (lower-upper)	RE (LT$_{99}$)	Chi (Sig)	Regression equation
Allium sativum	3.2 (3.16–54.44)	2.7	2.2	2.1	39.30	$y = 0.86 + 0.06^\times$
Anethum graveolens	19.90 (11.30–36.52)	1.9	1.8	1.8	23.13	$y = 1.23 + 0.06^\times$
Argania spinosa	33.02 (22.75–55.92)	1.1	1.1	1.1	13.91	$y = 1.31 + 0.04^\times$
Boswellia serrata	20.78 (12.05–37.26)	1.8	1.7	1.7	22.42	$y = 1.27 + 0.06^\times$
Brassica carinata	32.09 (21.04–59.25)	1.2	1.1	1.1	17.05	$y = 1.33 + 0.04^\times$
Camellia sinensis	13.02 (3.56–56.12)	2.9	2.5	2.4	40.31	$y = 0.96 + 0.07^\times$
Cedrus libani A	26.87 (17.55–44.77)	1.4	1.3	1.3	16.60	$y = 1.24 + 0.05^\times$
Citrullus colocynthis	26.08 (12.80–65.61)	0.0	0.0	0.0	32.23	$y = 1.25 + 0.05^\times$
Crocus sativus	37.07 (25.39–68.56)	1.0	1.0	1.0	14.35	$y = 1.41 + 0.04^\times$
Cucurbita maxima	30.90 (22.00–47.60)	1.2	1.2	1.2	12.91	$y = 1.44 + 0.05^\times$
Camellia sinensis	22.65 (13.54–140.07)	1.7	1.6	1.6	22.68	$y = 1.39 + 0.06^\times$
Capsicum annuum	34.67 (26.87–47.96)	1.1	1.0	1.0	18.16	$y = 1.41 + 0.05^\times$
Crocus sativus	20.49 (10.77–39.97)	1.8	1.6	1.6	25.53	$y = 1.14 + 0.05^\times$
Curcuma longa	33.89 (24.46–52.94)	1.1	1.1	1.1	11.35	$y = 1.37 + 0.04^\times$
Foeniculum vulgare	10.22 (5.29–21.14)	3.7	3.3	3.3	21.56	$y = 1.06 + 0.1^\times$
Galium verum	27.64 (16.47–54.29)	1.4	1.3	1.3	21.54	$y = 1.2 + 0.04^\times$
Lepidium sativum	20.06 (11.18–36.90)	1.9	1.7	1.7	22.42	$y = 1.11 + 0.05^\times$
Linum usitatissimum	26.78 (12.80–77.92)	1.4	1.3	1.3	31.75	$y = 1.18 + 0.04^\times$
Malva sylvestris	22.36 (9.11–58.90)	1.7	1.5	1.5	36.44	$y = 1.12 + 0.05^\times$
Nigella sativa	15.67 (5.25–46.57)	2.4	2.1	2.1	36.89	$y = 1.01 + 0.06^\times$
Panax ginseng	30.16 (19.05–57.39)	1.2	1.2	1.2	18.86	$y = 1.25 + 0.04^\times$
Piper nigrum	20.14 (9.84–81.44)	1.9	1.6	1.6	27.10	$y = 1.07 + 0.05^\times$
Prunus dulcis	26.75 (19.88–36.78)	2.6	1.4	1.4	21.11	$y = 1.2 + 0.04^\times$
Bauhinia variegata	25.12 (14.60–50.27)	1.5	1.4	1.4	24.68	$y = 1.24 + 0.05$
Salvia officinalis	15.42 (5.38–41.36)	2.4	2.1	2.1	32.84	$y = 0.89 + 0.06^\times$
Sesamum indicum	37.64 (32.87–113.44)	1.0	1.0	1.0	8.60	$y = 1.54 + 0.04^\times$
Simmondsia chinensis	19.00 (14.03–25.19)	1.9	1.8	1.8	4.20	$y = 1.23 + 0.06^\times$
Soyuzgum aromaticum	32.14 (21.00–44.85)	1.2	1.1	1.1	16.81	$y = 1.26 + 0.04^\times$
Tilia americana	26.03 (19.61–33.79)	1.4	1.3	1.3	16.6 (0.47a)	$y = 1.24 + 0.05^\times$
Thymus vulgaris	9.67 (3.58–33.79)	3.9	3.2	3.2	33.04	$y = 0.88 + 0.09^\times$
Vicia faba	10.31 (3.88–25.82)	3.6	3.2	3.2	29.95	$y = 0.96 + 0.09^\times$
Zingiber officinale	29.27 (19.73–48.49)	1.3	1.2	1.2	14.90	$y = 1.26 + 0.04^\times$

Reference oil: Sesamum indicum, Crocus sativus.
Table 4. Kruskal–Wallis test for larval mosquito mortality (%) of plant oil groups at 1000 ppm. *Means produced by non-parametric analysis (Kruskal–Wallis, p 0.05). **The X^2 value is sig. at significant level 1% H: The highly effective group (95–100% mortality) are 8 oils (A. sativum, A. graveolens, C. sinensis, F. vulgaris, N. sativa, S. officinalis, T. vulgaris, and V. odorata). M: The moderately effective group (81–92% mortalities) are 7 oils (B. serrata, C. cymimum, C. aromatic, L. sativum, M. alternifolia, P. nigrum, and C. officinalis). L: The moderately effective group are included the rest of oils, 17 oils (A. spinosa, B. carinata, C. libani, C. colocynthis, C. sativus, C. maxima, C. sempervirens, C. longa, G. morhua, L. usitatissimum, P. ginseng, P. dulcis, R. chalepensis, S. indicum, S. aromaticum, T. americana, and Z. officinale).

Oil groups	Mortality % (mean ± SD)*	0.5 h	2 h	8 h	24 h	48 h
Low	4.2 ± 0.847	12.3 ± 2.278	25.980 ± 6.590	49.4 ± 7.838	71.6 ± 7.39	
Medium	5.0 ± 1.361	13.8 ± 4.050	35.950 ± 2.864	69.5 ± 2.841	88.3 ± 3.191	
High	7.5 ± 1.260	22.7 ± 1.527	54.792 ± 6.389	87.1 ± 8.533	98.3 ± 1.992	
Chi-Square	16.909**	18.152**	23.037**	25.391**	25.098**	
df	2	2	2	2	2	
Asymp. Sig	0.001	0.001	0.001	0.001	0.001	

Table 5. Friedman test for larval mosquito mortality (%) of plant oil groups at 1000 ppm. **The X^2 value is sig. at significant level 1%

Table 5

Oil groups	0.5 h	2 h	8 h	24 h	48 h	Chi^2	Df = 4
Low	4.2 ± 0.847	12.3 ± 2.278	25.980 ± 6.590	49.4 ± 7.838	71.6 ± 7.39	68**	
Medium	5.0 ± 1.361	13.8 ± 4.050	35.950 ± 2.864	69.5 ± 2.841	88.3 ± 3.191	28**	
High	7.5 ± 1.260	22.7 ± 1.527	54.792 ± 6.389	87.1 ± 8.533	98.3 ± 1.992	31.7**	
total	5.21 ± 1.735	15.21 ± 5.111	35.36 ± 1.337	63.23 ± 1.761	81.93 ± 1.992	127.6**	

Discussion

EOs could serve as suitable alternatives to synthetic insecticides because they are relatively safe, available, and biodegradable\(^{35}\). In this study, 32 oils were evaluated against Cx. pipiens. *Thymus vulgaris* and *C. sinensis* were the most effective larvicides (100% mortality 24 h PT). The larvicidal effect of the H group could be arranged according to their LT_{50} values (h) as follows: *T. vulgaris* (9.67), *F. vulgaris* (10.22), *V. odorata* (10.31), *C. sinensis* (13.02), *A. sativum* (13.95), *S. officinalis* (15.42). *N. sativa* (15.67), then *An. graveolens* (19.90). On the other hand, their LT_{50} values ranged from 29.77 (F. vulgaris) to 55.31 (An. graveolens).

In this study, the most effective oils against adults were *An. graveolens* and *V. odorata* followed by *F. vulgaris* then *N. sativa*. The data revealed that *F. vulgaris* is a highly potent larvicide. Similarly, its oil controlled *Anopheles arabiensis*, *Culex quinquefasciatus*\(^{28,29}\), and *Aedes aegypti*\(^{30}\). Despite its effectiveness as larvicide in this study, *F. vulgaris* was the least effective adulticide. In contrast, it induced adulticidal properties against *Cx. quinquefasciatus*\(^{21}\).

Our data indicated that *C. sinensis* was a highly effective larvicide and the less effective adulticide. Comparatively, the chemical extracts of *C. sinensis* induced larvicidal and adult repellent effects against *C. pipiens* providing the highest protection (100%) from the bites of starved females at the dose of 6 mg/cm\(^2\)\(^{29}\). Moreover, its leaf extract showed larvicidal effect against *Anopheles arabiensis* and *Anopheles gambiae* (s.s.)\(^{31}\).

Thymus vulgaris *An. graveolens* showed potent larvicidal and adulticidal effects in this work. Likewise, *T. vulgaris* has both effects against *Cx. quinquefasciatus*\(^{28,29}\) and *A. aegypti*\(^{30}\). *Thymus vulgaris* exhibited larvicidal properties, 100% mortality, against *Cx. pipiens* larvae, at 200 ppm, whereas the LC_{50} and LC_{90} values indicated no effect on AChE activity, activation of the detoxification system, as indicated by an increase in GST activity and a decrease in GSH rate\(^{30}\).

Our findings agree with another study found that the most potent EOs out of 53 oils against larvae were *F. vulgaris*, *T. vulgaris*, *Citrus medica* (lime), and *C. sinensis* (LC_{50} = 27.5, 31.6, 51.3, 53.5 ppm, respectively). *C. sinensis* was the most efficient EOs enhancing the efficacy of deltamethrin, co-toxic factor = 316.67, over than PBO, the positive control, co-toxic factor = 283.35\(^{33}\).

Some oils applied in this study showed a similar larvicidal effect against *C. pipiens* as *N. sativa*\(^{34,35}\) and *S. officinalis*\(^{36}\). Some essential oils such as *T. vulgaris*, *S. officinalis*, *C. sempervirens* and *A. graveolens* had a larvicidal effect against mosquito larvae and their LC_{50} values were < 200–300 ppm. This result may be due to several
Oil name	Conc. %	Mortality% (mean ± SD)	LC50 (lower-upper limit) RE (LC50)	LC90 (lower-upper limit) RE (LC90)	LC95 (lower-upper limit) RE (LC95)	Chi (Sig)	Equation
Allium sativum	0	0 ± 0e	15.57 (8.49–28.46) 2.4	38.86 (26.79–61.87) 1.9	45.47 (31.19–97.80) 1.9	24.40 (0.000a)	Y = 0.051 + 0.008*x
	0.5	20.00 ± 6.67d					
	2.0	24.44 ± 5.88d					
	5.0	42.22 ± 2.22c					
	10	48.89 ± 4.44c					
	20	62.22 ± 8.01b					
	40	86.67 ± 3.85a					
Anethum graveolens	0	6.37 ± 18.75d	2.42 (0.08–4.22) 8.05	9.47 (4.66–17.80) 5.4	23.25 (7.17–129.13) 2.6	33.254 (.000a)	Y = 0.242 + 0.130*x
	0.1	36.86 ± 15.46b					
	0.5	41.66 ± 27.57b					
	2	46.12 ± 11.77b					
	5	75.96 ± 18.84a					
	10	88.39 ± 7.27a					
	20	91.85 ± 9.24a					
	25	100.00 ± 0.00a					
Camellia sinensis	0	3.57 ± 20.00c	9.01 (−17.75 to 23.09) 2.3	32.18 (19.96–170.57) 1.6	38.754 (24.052–218.98) 1.5	26.52 (0.000a)	Y = 0.644 + 0.106*x
	0.1	51.51 ± 2.62b					
	0.5	61.21 ± 6.30ab					
	2	63.94 ± 10.22ab					
	5	75.35 ± 29.22ab					
	10	78.78 ± 16.87ab					
	25	91.99 ± 0.45a					
Foeniculum vulgare	0	10.50 ± 25.00d	15.07 (0.10–104.60) 1.4	33.34 (21.67–789.17) 1.5	38.53 (24.63–986.39) 1.5	22.19 (0.000a)	Y = 0.331 + 0.03*x
	0.05	36.73 ± 16.93bc					
	0.1	51.54 ± 11.47ab					
	0.5	51.70 ± 2.27bc					
	2	59.00 ± 16.87ab					
	5	75.96 ± 1.36a					
	10	36.73 ± 16.93bc					
	15	51.54 ± 11.47ab					
	20	59.00 ± 16.87ab					
	25	75.96 ± 1.36a					
Nigella sativa	0	4.95 ± 20.61e	3.42 (−53.96 to 30.15) 6.0	5.44 (−14.41 to 84.13) 9.3	29.95 (15.87–1184.48) 3.2	57.88 (0.000a)	Y = 0.261 + 0.06*x
	0.05	41.87 ± 12.75 cd					
	0.1	60.68 ± 3.73bc					
	0.5	72.91 ± 6.45ab					
	1	74.54 ± 19.76ab					
	2	78.09 ± 18.26ab					
	10	92.96 ± 9.44ab					
	25	91.99 ± 0.45a					
Salvia officinalis	0	4 ± 0e	20.46 (11.34–45.85) 1.0	50.76 (33.24–140.52) 1.0	59.35 (38.59–168.23) 1.0	25.35 (0.000a)	Y = 0.8022 + 0.091*x
	0.5	17.78 ± 2.22d					
	2.0	22.22 ± 2.22d					
	5.0	37.78 ± 4.45c					
	10	44.44 ± 4.44bc					
	20	53.33 ± 3.85b					
	40	73.33 ± 7.70a					
Thymus vulgaris	0	3.57 ± 7.15c	3.08 (−3.29 to 7.48) 6.6	16.08 (10.43–41.60) 3.2	19.76 (12.83–52.76) 3.0	34.12 (0.000a)	Y = 0.350 + 0.091*x
	0.1	38.74 ± 4.28b					
	0.5	61.66 ± 7.26ab					
	2	69.82 ± 9.85ab					
	10	72.22 ± 14.69ab					
	20	100.00 ± 0.00a					

Continued
reasons, including the percentages of their principal components compositions that are manipulated according to the origin of plant oil, quality of oil, susceptibility of the strain used, oil storage conditions, and technical conditions.

Likewise our findings, *An. graveolens* and *F. vulgare* act as larvicidal, pupicidal, and oviposition deterrent agents against *M. domestica*. Moreover, *Ocimum basilicum* was the most effective extract tested on *Cx. pipiens* larvae and adults. *Argania spinosa* oil showed a low larvicidal effect in this study. A similar effect was recorded against *Cx. quinquefasciatus* larvae.

Oil name	Conc. %	Mortality% (mean ± SD)	LC50 (lower-upper limit) RE (LC50)	LC90 (lower-upper limit) RE (LC90)	LC95 (lower-upper limit) RE (LC95)	Chi (Sig)	Equation		
Viola odorata	0	3.57 ± 7.15d	10.8	7.37 (4.46–29.82)	6.9	8.92 (5.43–37.58)	6.6	21.99 (0.001a)	Y = 0.190 + 0.112*x
	0.1	50.00 ± 10.00c							
	0.5	54.95 ± 15.61c							
	1	57.50 ± 19.20c							
	2	65.83 ± 15.21bc							
	6	85.05 ± 13.62ab							
	10	100.00 ± 0.00a							
Reference oils		Salvia officinalis							

Table 6. The adulticidal effects of selected plant oils against *Culex pipiens* after 24 h post-treatments.

Peak no.	R (min.)	MW	MF	Area %	Probabilities of the detected compounds
1	5.03	138	C2H4	0.41	1-Pyrrolidine
2	5.22	138	C7H10N2O	0.26	2,3,3a,4,7,7a-Hexahydro-1H-benzimidazol-2-one
3	5.28	348	C19H22ClN2O	1.06	1-Chloro-3-(3-fluorobenzyl)-4-(2-(diethylamino)ethylamino)benzene
4	6.38	136	C10H16	0.41	Saline
5	6.49	262	C12H23O4	1.01	Dimethyl[2,2-dimethyl-3-(2′-methylpropyl)cylopropyl][methyl]phosphonate
6	7.57	670	C44H27D3N4I	0.15	5,10,15,20-tetraphenyl[2-(2H)1]porphyrin-atozinc(II)
7	9.17	136	C10H16	8.96	Limonene
8	10.90	152	C10H16O	2.81	1,3,3-trimethyl Bicyclo[2.2.1]heptan-2-one
9	14.26	148	C10H12O	70.36	Estragole
10	14.72	818	C44H28Br2N4Ti	0.11	Tetraphenylporphyrinodibromotitanium IV
11	16.70	166	C11H18O	0.47	3,7-Dimethyl-2,6-Nonadienal
12	17.28	152	C10H16O	1.41	2,4-Decadienal
13	18.07	194	C14H26	0.17	1′,1′-Bicycloheptyl
14	21.00	152	C18H32O2	0.20	Tetradecanoic acid, trimethylsilyl ester
15	21.69	160	C10H21F	0.15	Fluoro decane
16	23.36	244	C13H24O4	0.11	Oxalic acid isohexylpentyl ester
17	25.03	328	C19H40O2Si	1.74	Hexadecanoic acid, trimethylsilyl ester
18	25.78	282	C18H34O2	0.15	(Z)-9-Octadecenoic acid
19	30.03	138	C10H18	0.25	7-Methyl-1-nonyne
20	30.12	282	C18H34O2	0.30	(Z)-9-Octadecenoic acid
21	30.58	256	C16H32O2	0.12	Hexadecanoic acid
22	31.57	280	C18H32O2	1.44	(Z,Z)-9,12-Octadecadienoic acid
23	31.64	280	C18H32O2	1.03	(Z,Z)-9,12-Octadecadienoic acid
24	31.70	356	C21H40O4	0.53	2,3-Dihydroxypropyldiide
25	31.76	238	C16H30O	1.67	Z-7-Octadecenial
26	32.25	280	C18H32O2	0.23	(Z,Z)-9,12-Octadecadienoic acid
27	32.38	266	C18H34O2	0.43	12-Octadecenal
28	32.83	142	C9H18O	0.13	Nonanal
29	46.93	660	C20C12I2	0.13	Dodecachloroperylene
30	48.70	295	C20H25NO	0.61	(R)-1-[(N-1-cyclopentylpropionylamino-1-ethyl)naphthalene
31	50.05	354	C20H18O6	0.38	Isoesasamin

Table 7. GC/MS analysis of the *Foeniculum vulgare* Mill.
Figure 1. GC/MS analysis of the *Foeniculum vulgare* Mill.

Table 8. GC/MS analysis of the *Anethum graveolens* L.

Peak no.	R_t (min.)	MW	MF	Area %	Probabilities of the detected compounds	
1	5.14	238	C13H18O4	0.49	Diethyl 3,4-bis(methylene)cyclopentane-1,1-dicarboxylate	
2	5.21	600	C33H28O11	0.69	(2S,3S,3′,5′)-hydroxyanhydrophlegmacin-9,10-quinone 8′-O-methylether	
3	7.65	290	C19H19O2	0.06	2-(2′-Isopropenyldec-2′-enyl)methylcyclopentane-1,3-dione	
4	9.18	136	C10H16	17.19	1,5-Dimethyl-1,5-Cyclooctadiene	
5	9.35	136	C10H16	0.23	α-s-Limonene	
6	14.05	152	C10H16O	5.98	Dihydrocarvone	
7	14.25	150	C10H14O	14.62	2-Methyl-5-(1-methylethenyl)2-Cyclohexen-1-one	
8	15.80	733	C44H28Cl2N4V	0.07	Dichloro(5,10,15,20-tetra phenylporphyrinato)vanadium	
9	16.71	692	C41H33FeO5P	0.13	Dicarbonyl(1,3-5-α-6-phenyl-2-(phenylethyl)cyclohept-4-ene-1,3-diyl)triphenoxyphosphaneiron	
10	17.29	110	C8H14	0.47	octahydro Pentalene	
11	18.89	675	C44H28CuN4	0.09	(5,10,15,20-tetraphenyl[2-(2H1)]prophyrinato)copper(II)	
12	20.82	204	C15H24	0.10	α-Humulene	
13	21.36	686	C37H24Cl2N6O4	0.08	2,2-Bis[4-(4-chloro-6-(3-ethynylphenoxy)-1,3,5-triazin-2-yl]oxy]phenyl]propane	
14	21.92	134	C10H14	0.14	1,2,3,4-Tetramethyl-5-methylene cyclopenta-1,3-diene	
15	22.07	204	C15H24	0.38	α-Bisabolene	
16	22.16	648	C35H38Cl2N4O4	0.11	2,4-bis(α-chloroethyl)-6,7-bis(α-methoxycarbonyylethyl)-1,3,5-trimethylporphyrin	
17	22.36	640	C32H26O5Ss	0.23	OTETRAKIS(TRIMETHYLSILYL)5,5-DIHYDROXY-2-(3-HYDROXY-1-OCTENYL)CYCLOPENTANEHEPTANOATE	
18	23.34	208	C14H24O	0.18	3-Oxacycloc[3.3.1]non-6-ene	
19	24.23	222	C15H26O	21.26	3a(1H)-Azulenol,3,3,4,5,6,8a-hexahydro-6,8-adimethyl-3-(1-methylethenyl)[3R-(3α,3a,8ai)]	
20	24.57	572	C23H26Br2O2	0.10	Dibromogomisin A	
21	25.05	222	C10H14N4S	32.13	4-Pyrindinecaldehyde-4-propyl-3-thiosemicarbazone	
22	25.28	238	C15H26O2	2.39	Daucoel	
23	26.01	194	C12H18O2	0.06	3-(1-Hydroxyhexyl)phenol	
24	27.54	220	C15H24O	0.06	Trans-Z-α-Bisaboleneoxide	
25	33.01	2598	N/A	0.07	YGRKKRRQRRRQPVKRRRD/5	
26	34.16	691	C51H33NO2	0.07	2,6-Bis(2,3,5-triphenyl-4-oxocyclo pentadienyl)pyridine	
27	35.47	733	C44H28Cl2N4V	0.08	Dichloro(5,10,15,20-tetraphenylporphyrinato)vanadium	
28	40.31	739	C39H81NO4Si4	0.13	(3S,4R,1E,2″R,3″R)-1-tertButyldimethylsilyl4-(3″-tertbutyldimethylsiloxoy-2′-methylprop-1′-enyl)-3-(1″,3″ di(tertbutyldimethylsiloxoy)-2′-methylhex-5″-yl]-2-methylazetidin-2-one	
29	41.48	114	C6H10O2	0.13	3,4-Hexanedione	
30	50.56	680	C35H40OS6s5	0.06	Pentamethylpentaphenylcyclopentasiloxane	
31	51.11	733	C44H28Cl2N4V	0.09	Dichloro(5,10,15,20-tetraphenylporphyrinato)vanadium	
Curcuma species was less effective in this study, but its 27 components as curcuminoids and monocarbonyl curcumin derivatives were effective larvicidal agents against Cx. Pipiens and Ae. albopictus.

Hexane extraction of Curcuma longa showed 100% larvicidal activity against Cx. pipiens and Aedes albopictus at 1000 ppm after being treated 24 h. Zingiber officinale and Syzygium aromaticum were less effective. In contrast, they were effective against Cx. pipiens (LC50 = as 71.85 and 30.75, respectively). Sesamum indicum is one of the L group in this study. In contrast, petroleum ether extract showed larvicidal, antifeedant and repellent action against Cx. pipiens. Furthermore, EOs of N. sativa, Allium cepa, and S. indicum, induced larvicidal effect and their LC50 values against both field and laboratory strains of Cx. pipiens were 247.99 and 108.63; 32.11 and 2.87; and finally, 673.22 and 143.87 ppm, respectively. They influenced the pupation and adult emergence rates besides developmental abnormalities at sublethal concentrations.

Boswellia serrata (M group) and Brassica carinata (L group) showed relative larvicide against Cx. pipiens in this study. A similar result was reported. The lethal concentration values of Fenugreek (Trigonella foenum-graecum), earth almond (Cyperus esculentus), mustard (Brassica compestris), olibanum (Boswellia serrata), rocket (Erba sativa), and parsley (Carum ptroselinum) were 32.42, 47.17, 71.37, and 83.36, 86.06, and 152.94 ppm.

Table 9. GC/MS analysis of the Viola odorata L.

Peak no.	R_t (min.)	MW	MF	Area %	Probabilities of the detected compounds
1	23.923	170	C12H10O 42.04	Diphenyl ether	
2	24.735	192	C13H20O 11.87	alpha-Ionone	
3	26.485	192	C13H20O 7.73	3-Buten-2-one, 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)	
4	28.317	236	C15H24O2 0.61	Limonen-6-ol, pivalate	
5	28.58	226	C13H22O3 0.9	2-Hydroxy-1,1,10-trimethyl-6,9-epidioxydecalin	
6	28.786	238	C16H30O 1.26	7-Hexadecenal, (Z)-	
7	29.599	236	C16H28O 0.83	7,11-Hexadecadienal	
8	29.713	296	C20H40O 1.48	Phytole	
9	29.959	242	C16H34O 2.15	2-Hexyl-1-Decanol	
10	30.074	378	C25H46O2 1.09	Undec-10-yneic acid, tetradecyl ester	
11	30.211	296	C20H40O 1.02	PHYTOL ISOMER	
12	30.881	266	C16H26O3 0.67	2-Dodecen-1-yl(-)-succinic anhydride	
13	31.338	242	C16H34O 2.14	1-Decanol, 2-hexyl-	
14	31.939	218	C16H26 2.79	HexadecahydroPyrene	
15	32.054	240	C17H36 0.7	Tetradecane, 2,6,10-trimethyl	
16	34.245	250	C16H26O2 7.22	(Z)-5-(4-tert-Butyl-1-hydroxy-cyclohexyl)-3-methylpent-2-en-4-yl	
17	35.092	264	C15H20O4 6.6	2,3,3a,4,5,6,7,9,9b-decahydro-3,5a,9-trimethyl-7,9a-peroxy Naphtho[1,2-b]furan-2-one	
18	35.269	264	C15H20O4 4.73	2,3,3a,4,5,6,7,9,9b-decahydro-3,5a,9-trimethyl-7,9a-peroxy Naphtho[1,2-b]furan-2-one	
19	35.905	242	C16H34O 2.19	2-hexyl-1-Decanol	
20	37.146	266	C18H34O 1.89	Z=E-2,13-Octadecadien-1-ol	
21	23.923	170	C12H10O 0.78	Diphenyl ether	
respectively. Against Cx. pipiens larvae. Furthermore, increasing concentrations were directly proportional to the reduction of both pupation and adult emergences rates48.

Some oil-resins as Commiphora molmol, Araucaria heterophylla, Eucalyptus camaldulensis, Pistacia lentiscus, and Boswellia sacra showed larvicidal activity against Cx pipiens larvae. The larvicidal effect 24 and 48 h PT, respectively, were for acetone extracts, 1500 ppm, of C. molmol (83.3% and 100% and LC50 = 623.52 and 300.63 ppm) and A. heterophylla (75% and 95% and LC50 = 826.03 and 384.71 ppm). On the other hand, the aqueous extract of A. heterophylla induced higher mortalities (LC50 = 2819.85 ppm and 1652.50 ppm), followed by C. molmol, (LC50 = 3178.22 and 2322.53 ppm)49.

A similar larvicidal effect was recorded for Rosmarinus officinalis, hexane extract (80 and 160 ppm), reduced 100% mortality against 3rd and 4th instars larvae of Cx. pipiens and the toxicity increased in the pupal and adult stages50.

Out of 36 essential oils, red moor besom leaf oil has strong fumigation activity against Cx. pipiens pallens adults51. Similar to the adulticidal effect of the applied oils in this work, some other oils have adulticidal activities against mosquitoes as Cedrus deodara, Eucalyptus citriodora, Cymbopogon flexuosus, Cymbopogon winterianus, Pinus roxburghii, S. aromaticum, and Tugtes minata52. The Leaf Oils of Cinnamonum species had adulticidal activities against Ae. aegypti and Aedes albopictus53. EOs have adulticidal effects against Musca domestica54 as A. sativum, S. aromaticum, and F. vulgare55. Essential oils of Melaleuca leucadendron (L.) and Callistemon citrinus (Curtil) showed 100% adult mortality against Aedes aegypti (L.) and Cx. quinquefasciatus (Say), 24 h exposure56.

The results showed that A. sativum, and S. officinalis oils were effective against mosquito larvae, maybe due to the presence of a number of active secondary compounds such as ISOCHIAPIN B₂ (< sesquiterpene lactone) and 9-Octadecenamide, (Z)-that are anti-inflammatory activity57, also, Terpinen-4-ol and Camphor in Sage oil that these are excellent natural insecticide58, but these oils garlic and Sage did not show the required efficacy against adult mosquitoes.

The phytochemical analysis of this study revealed the major activated compounds of the analyzed oils. Green tea oil is a highly effective larvicide in this study contains a high amount of polyphenols that have antioxidant activity. A similar finding was reported59. Our data indicated that green tea oil also contains polyphenols as Gallic acid, Catechin, Methyl gallate, Coffeic acid, Coumaric acid, Naringenin, and Kaempferol which might aid in its insecticidal effect.

This study indicated that F. vulgare contains Estragole (70.36%) and Limonene (8.96%). Similarly, Limonene as a cyclic monoterpene has a viable insecticidal effect60. Besides, Estragole induced toxicity to adult fruit flies, Ceratitis capitata61. Moreover, An. graveolens contains thiosemicarbazone (32.13%) in this study. Likewise, thiosemicarbazide is a major component An. graveolens with insecticidal effect62. Also, Dauco and carotol are essential oils documented for An. graveolens in this work have repellent activity against adult Ae. aegypti, Ae. albopictus, and Anopheles quadrimaculatus Say63. Furthermore, V. odorata in the present analysis contains alphalone, which revealed anti-inflammatory and analgesic effects64. Thymus vulgaris showed good alpha-pinene and pyridine derivatives that play an important role as larvicidal and adulticidal effects against Ae. aegypti and growth regulator, respectively65,66. In addition, the combination of all constituents may promote their individual larvicidal and adulticidal effects.

The biochemical compositions showed that T. vulgaris oil affected the energy reserves with a marked effect on proteins and lipids67. The differences between our findings and those of the others could be attributed to the biological activities and the chemical composition for EOs, which could vary between plant age, tissues, geographical origin, the part used in the distillation process, distillation type, and the species. Therefore, types and levels of active constituents in each oil may be responsible for the variability in their potential against pests68.

Conclusions

Diseases transmitted by mosquitoes represent global concerns. Our findings demonstrate the potential of F. vulgare and C. sinensis as the most potent larvicides and N. sativa, V. odorata, and An. graveolens as the most effective adulticides as they contain good command of different essential oils. EOs could be used for integrated mosquito control programs as larvicides or synergists for enhancing the efficacy of current adulticides69.
Peak no.	Rt (min.)	MW	MF	Area %	Probabilities of the detected compounds
1	5.1	208	C13H20O2	0.86	TRANS-á-IONON-5,6-EPOXIDE
2	5.23	122	C8H15B	0.79	1-Borabicyclo[4.3.0]nonane
3	6.46	136	C10H16	1.85	Tricyclene
4	6.86	136	C10H16	0.69	Camphene
5	7.64	136	C10H16	8.92	2-á-pinene
6	9.07	119	C7H5NO	12.37	2-Ethynyl-3-hydroxypropyridine
7	11.32	196	C12H20O2	0.68	Linallyl acetate
8	12.50	152	C10H16O	1.27	(1S) Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl
9	13.39	156	C10H20O	0.78	1-Methyl-4-(1-methylthyl)cyclohexanol
10	13.51	154	C10H18O	4.73	4-Methyl-1-(1-methylthyl)-3-cyclohexen-1-ol
11	13.91	154	C10H18O	1.13	4,4,4-trimethyl (S) 3-Cyclobexene-1-methanol
12	15.67	182	C11H18O2	0.63	linallyl formmate
13	16.48	196	C12H20O2	1.76	EXOBORNYL ACETATE
14	18.17	196	C12H20O2	5.00	á-terpinyl acetate
15	20.52	142	C9H18O	0.56	3-Ethylheptanal
16	21.94	268	C19H40	0.58	Nonadecane
17	22.84	199	C9H13NO4	1.87	2S,7S Methyl-2-Hydroxy-3-oxotetrahydro-1-Hpyrrolizine-7a-(5H)-carboxylate
18	22.97	226	C16H34	0.92	Pentadecane-5-methyl
19	23.10	212	C15H32	0.75	3-ethyl Tridecane
20	23.22	348	C19H40O3S	0.84	hexyltridecyl ester Sulfurous acid
21	23.39	226	C16H34	1.09	3-methyl Pentadecane
22	24.06	168	C11H20O2	1.52	1,6-diisocyanato Hexane
23	24.24	298	C20H42O	3.26	1,1’-oxybis Decane,
24	24.40	282	C20H42	0.81	Eicosane
25	24.65	234	C18H38O3S	0.57	Sulfurous acid, butyltridecyl ester
26	25.10	282	C20H42	4.12	10-Methylnonadecane
27	25.24	268	C19H40	1.00	7-heptyl Tridecane
28	25.37	334	C18H38O3S	1.10	6-Tetradecanolsulfonic acid, butyl ester
29	25.49	334	C18H38O3S	1.44	6-Tetradecanolsulfonic acid, butyl ester
30	25.68	250	C16H26O2	4.54	5-(6,6-Dimethyl-5-oxohept-2-enyl)-cycloheptanone
31	25.98	222	C13H18O	7.70	2,5-Dipropoxybenzaldehyde
32	26.30	352	C25H52	1.33	Pentacosane
33	26.44	282	C20H42	3.55	9-methyl Nonadecane
34	26.62	224	C16H32	1.08	1-Hexadecene
35	26.84	236	C16H28O	2.14	7,11-Hexadecadien
36	27.25	232	C11H12N4O2	5.05	5-Amino-8-cyano-7-methoxy-3,4-dihydro-3-methyl-1,1,6-naphthyridin-2(1H)-one
37	27.32	232	C15H20O2	2.01	(2R,3R)-3-(2-Methoxy-4-methylphenyl)-2,3-dimethylocyclopentanone
38	27.42	282	C20H42	0.87	2,6-dimethyl Octadecane
39	27.54	310	C22H46	0.77	8-heptyl Pentadecane
40	27.65	376	C21H44O3S	0.61	Sulfurous acid, hexyl pentadecyl ester
41	27.82	226	C16H34	0.88	Hexadecane
42	28.42	348	C5H9BO	0.62	1-Bromo-2-methyl-3-Buten-2-ol
43	28.54	242	C16H34O	1.25	2-Hexyl-1-decanol
44	28.69	111	C7H13N	1.08	1-isocyano Hexane
45	29.32	116	C7H16O	1.94	2-ethyl 1-Pentanol
46	30.70	200	C13H28O	0.82	2-Propyldecan-1-ol
47	31.33	197	C11H19NO2	0.98	2-Ethylhexyl cyanoacetate
48	33.27	592	C41H84O	0.70	1-Hentetacontanol
49	36.28	324	C23H48	0.57	9-hexyl Heptadecane
50	37.92	366	C26H54	0.58	5,14-dibutyl Octadecane

Table 10. GC/MS analysis of *Thymus vulgaris* L.
Figure 4. GC/MS analysis of *Thymus vulgaris* L.

Peak no.	Rt (min.)	MW	MF	Area %	Probabilities of the detected compounds
1	6.27	146	C6H10S2	4.54	Diallyl disulphide
2	7.49	152	C4H8S3	9.68	Trisulphide, methyl 2-propenyl
3	9.35	178	C6H10S3	14.86	Trisulphide, di-2-propenyl
4	12.22	350	C19H26O6	8.63	ISOCHIAPIN B %2<
5	14.97	334	C20H30O4	3.54	1,2-Benzenedicarboxylic acid, butyl octyl ester
6	16.05	346	C19H22O6	3.11	ISOCHIAPIN B
7	17.67	387	C17H37N7O3	7.84	9-OCTADECENAMIDE
8	19.61	281	C18H35NO	29.07	9-Octadecanamide, (Z)-
9	21.40	208	C11H12O2S	4.25	3-(Benzylthio)acrylic acid, methyl ester
10	23.27	436	C26H44O5	1.82	3 Ethyl iso-allocholate
11	23.54	490	C34H50O2	6.81	CHOLEST-5-EN-3-YL BENZOATE

Table 11. GC/MS analysis of the *Allium sativum*. 9-Octadecanamide, (Z)- (29.07), Trisulfide, di-2-propenyl (14.86), and ISOCHIAPIN B %2< (8.63).

Figure 5. GC/MS analysis of *Allium sativum*.
Table 12. GC/MS analysis of the *Salvia officinalis*.

Peak no.	R_t (min.)	MW	MF	Area %	Probabilities of the detected compounds
1	10.22	152	C10H16O	16.08	Camphor
2	10.90	156	C10H20O	5.24	Cyclohexanol, 1-methyl-4-(1-methylethyl)
3	11.47	154	C10H18O	17.35	Terpinen-4-ol
4	13.86	254	C13H24O2	2.47	Tridecanedioi
5	14.50	280	C18H32O2	3.43	17-Octadecynoic acid
6	15.70	400	C28H48O	0.90	Cholestane-3-ol, 2-methylene-, (3α,5α)-
7	16.68	268	C17H32O2	1.80	7-Methyl-Z-tetradec-1-ol acetate
8	17.50	280	C19H36O	1.63	12-Methyl-E,E-2,13-octadecadien-1-ol
9	17.99	288	C21H36	2.03	14-á-H-PREGNA
10	19.18	288	C18H37Cl	5.13	1-CHLOROOCTADECANE
11	19.51	288	C21H36	1.77	14-á-H-PREGNA
12	19.86	450	C32H66	4.33	DOTRIACONTANE
13	20.18	536	C37H76O	1.41	1-Heptatriacotanol
14	20.32	268	C16H20O3	1.15	7-(13,14-Epoxy)tetradec-11-en-1-ol acetate
15	20.55	258	C16H14S	1.58	tert-Hexadecanethiol
16	20.80	312	C20H40O	3.17	Ethanol, 2-(9-octadecenyloxy)-, (Z)-
17	20.90	288	C21H36	2.18	14-á-H-PREGNA
18	21.26	350	C19H26O6	0.73	ISOCHIAPIN B %2<
19	21.61	288	C18H37Cl	6.82	1-CHLOROOCTADECANE
20	21.84	294	C21H36	3.7	14-á-H-PREGNA
21	22.39	288	C21H36	0.82	1-Heptatriacotanol
22	22.47	346	C19H22O3	2.74	ISOCHIAPIN B
23	22.73	288	C21H36	9.25	14-á-H-PREGNA
24	23.09	280	C19H36O	2.20	12-Methyl-E,E-2,13-octadecadien-1-ol
25	23.23	350	C19H26O6	2.05	ISOCHIAPIN B %2<

Figure 6. GC/MS analysis of *Salvia officinalis*.
studies are needed to develop nanoformulations that improve the efficacy and minimize applications after revealing their ecotoxicological side views.

Received: 23 September 2021; Accepted: 24 February 2022
Published online: 15 March 2022
References

1. Jones, R. T., Ant, T. H., Cameron, M. M. & Logan, J. G. Vol. 376 (The Royal Society, 2021).
2. Abdel-Shafi, I. R. Vol. 376 (The Royal Society, 2021).
3. Selim, A., Radwan, A., Arnaout, F. & Khater, H. The recent update of the situation of west nile fever among equids in Egypt after three decades of missing information. *Pakistan Veterinary J.* 40 (2020).
4. Selim, A., Megahed, A., Kandeel, S., Alouffi, A. & Almutairi, M. M. West Nile virus seroprevalence and associated risk factors among horses in Egypt. *Sci. Rep.* 11, 1–9 (2021).
5. Selim, A. & Radwan, A. Seroprevalence and molecular characterization of West Nile Virus in Egypt. *Compr. Immunol. Microbiol. Infectious Diseases.* 71, 101473 (2020).
6. Jones, R. T., Ant, T. H., Cameron, M. M. & Logan, J. G. (The Royal Society, 2021).
7. Selim, A., Manaa, E., Abdelhady, A., Ben Said, M. & Sazzmand, A. Serological and molecular surveys of Anaplasma spp. in Egyptian cattle revealed high A. marginale infection prevalence.
8. Selim, A. et al. Seroprevalence and risk factors associated with Canine Leishmaniasis in Egypt. *Veterinary Sci.* 8, 236 (2021).
9. Selim, A., Megahed, A. A., Kandeel, S. & Abdelhady, A. Risk factor analysis of bovine leukemia virus infection in dairy cattle. *Infectious Diseases.* 72, 101517 (2020).
10. Selim, A. & Abdelhady, A. The first detection of anti-West Nile virus antibody in domestic ruminants in Egypt. *Trop. Anim. Health Prod.* 52, 3147–3151 (2020).
11. Selim, A., Abdelhady, A. & Alahadeb, J. Prevalence and first molecular characterization of Ehrlichia canis in Egyptian dogs. *Vet. J.* 231, 108–109 (2020).
12. Khater, H. F. Bioactivity of essential oils as green biopesticides: Recent global scenario.
13. Noutcha, M. A., Edwin-Wosu, N. I., Ogali, R. E. & Okiwelu, S. N. The role of plant essential oils in mosquito (Diptera: Culicidae) population control. *Asian Pac. J. Trop. Med.* 11, 43 (2018).
14. Pavela, R. Larvicidal property of essential oils against *Aedes albopictus* (L.) and *S. Afr. J. Bot.* 85, 1121–1126 (2019).
15. El Zayyat, E. A., Soliman, M. I., Elleboudy, N. A. & Ofaa, S. E. Bioefficacy of some Egyptian aromatic plants on *Culex quinquefasciatus* Say (Diptera: Culicidae) adults and larvae. *J. Insect Sci.* 17, 1–9 (2016).
16. Shafaie, F., Aramideh, S., Valizadegan, O., Safaralizadeh, M. H. & Pesyan, N. N. GC/MS analysis of the essential oils of *Schinus molle* Sims and *Foeniculum vulgare* L. (Lamiaceae) from North Center of Morocco against *Culex pipiens* L. (Diptera: Culicidae). *Eur. J. Biol.* 12, 995–1011 (2021).
17. Alkenani, N. A. M. Larvicidal, pupicidal and oviposition deterrent activities of essential oils from *Umbelliferae* plants. *Int. J. Pharmacog. Phytochem. Res.* 10, 254–260 (2018).
18. Sheng, Z. et al. Screening of larvicidal activity of 53 essential oils and their synergistic effect for the improvement of deltamethrin larvicidal efficacy against *Aedes albopictus*. *Ind. Crops Products.* 145, 112131 (2020).
19. Alkenani, N. A. et al. Molecular identification and bio-control of mosquitoes using black seeds extract in Jeddah. *Pak. J. Vet. Med.* https://doi.org/10.29261/pakvet/2021/025 (2021).
20. Farag, M. Larvicidal and repellent potential of *Sesamum indicum* hull peel extracts against *Culex pipiens* L. (Diptera: Culicidae). *Egypt. J. Aquat. Biol. Fisheries.* 24, 955–1011 (2021).
21. Abd El Meguid, A. D., Mahmoud, S. H. & Baz, M. M. Toxicological activity of four plant oils against *Aedes aegypti* and *Culex pipiens* Say (Diptera: Culicidae). *Int. J. Mosq. Res.* 6, 86–94 (2019).
22. El Ouali Lalami, A., El-Akhal, F., Ez Zoubi, Y. & Taghzouti, K. Study of phytochemical screening and larvicidal efficacy of ethanolic extract of *Salvia officinalis* (Lamiaceae) from North Center of Morocco against *Culex pipiens* (Diptera: Culicidae) vector of serious human diseases. *Int. J. Pharmacog. Phytochem. Res.* 8, 1663–1668 (2016).
23. Hayouni, E. A. et al. Tunisian *Salvia officinalis* L. and *Chinus molle* L. essential oils: Their chemical compositions and their preservative effects against *Salmonella* inoculated in minced meat. *Int. J. Food Microbiol.* 125, 242–251 (2008).
24. Nabi, I. & Bounechada, M. Larvicidal activities of essential oils extracted from five Algerian medicinal plants against *Culex longiareolata* Maqsr. Larvae (Diptera: Culicidae). *Eur. J. Biol.* 78, 133–138 (2019).
25. Chantawee, A. & Soonwera, M. Larvicidal, pçudicial and oviposition deterrent activities of essential oils from *Umbelliferae* plants against house fly *Musca domestica*. *Asian Pac. J. Trop. Med.* 11, 621 (2018).
26. Belong, P., Ntonga, P. A., Fils, E., Dadji, G. A. F. & Tamasee, J. L. Chemical composition and residue activities of *Ocimum canum* Sims and *Ocimum basilicum* L. essential oils on adult female *Anopheles funestus*. *Anim. J. Plant Sci.* 19, 2854–2863 (2013).
27. El Zayyat, E. A., Soliman, M. I., Elleboudy, N. A. & Ofaa, S. E. Bioefficacy of some Egyptian aromatic plants on *Culex pipiens* (Diptera: Culicidae) adults and larvae. *J. Arthropod. Borne Dis.* 11, 147 (2017).
28. Muturi, E. J., Ramirez, J. L., Zilkowski, B., Flor-Weiler, L. B. & Rooney, A. P. Ovicidal and larvicidal effects of garlic and asafoetida essential oils against West Nile virus vectors. *J. Insect Sci.* 18, 43 (2018).
42. Alerwi, S. T. et al. Molecular identification and bio-control of Culex quinquefasciatus from Yanbu region. J. Entomol. Zool. Stud. 7, 1081–1086 (2019).
43. Matiadi, D. et al. Curcumin derivatives as potential mosquito larvicidal agents against two mosquito vectors, Culex pipiens and Aedes albopictus. Int. J. Mol. Sci. 22, 8915 (2021).
44. Prak, J.-W., Yoo, D.-H., Kim, H. K., Koo, H.-N. & Kim, G.-H. in 2014 Larvicidal and repellent activities of 33 plant extracts against two mosquitoes as Culex pipiens and Aedes albopictus. 181–181.
45. Ijballar, A., Tariq, M., Gulzar, A., Mukhtar, T. & Zahain, T. Lethal and sub lethal effects of plant extracts and green silver nanoparticles against Culex pipiens. (2021).
46. Khater, H. F. Biocontrol of Some Insects (Benha University, 2003).
47. Baz, M. M., Hegazy, M. M., Khater, H. F. & El-Sayed, Y. A. Comparative evaluation of five oil-resin plant extracts against the mosquito larvae, Culex pipiens Say (Diptera: Culicidae). Pak. Vet. J. J. https://doi.org/10.29261/pakvet (2021).
48. Khater, H. F. & Shalaby, A.A.-S. Potential of biologically active plant oils to control mosquito larvae (Culex pipiens, Diptera: Culicidae) from an Egyptian locality. Rev. Inst. Med. Trop. Sao Paulo 50, 107–112 (2008).
49. Baz, M. M., Hegazy, M. M., Khater, H. F. & El-Sayed, Y. A. Comparative evaluation of five oil-resin plant extracts against the mosquito larvae, Culex pipiens Say (Diptera: Culicidae). Pak. Vet. J. 41, 191–196 (2021).
50. Shalaby, A. & Khater, H. Toxicity of certain solvent extracts of Rosmarinus officinalis against Culex pipiens larvae. J. Egypt. German Soc. Zool. 48, 69–80 (2005).
51. Chen, W., Wu, H., Ma, Z., Feng, J. & Zhang, X. Evaluation of fumigation activity of thirty-six essential oils against Culex pipiens pallens (Diptera: Culicidae). Acta Entomol. Sin. 61, 86–93 (2018).
52. Makhhaik, M., Naik, S. N. & Tewary, D. K. Evaluation of anti-mosquito properties of essential oils. (2005).
53. Jantan, I. B., Yalvema, M. F., Ahmad, N. W. & Jamal, J. A. Insecticidal activities of the leaf oils of eight cinnamonum species against Aedes aegypti and Aedes albopictus. Pharm. Biol. 43, 526–532 (2005).
54. Khater, H. F. & Geden, C. J. Efficacy and repellency of some essential oils and their blends against larval and adult house flies, Musca domestica L. (Diptera: Muscidae). J. Vector Ecol. 44, 256–263 (2019).
55. Levchenko, M. A., Silivanova, E. A., Khodakov, P. E. & Gholizadeh, S. Insecticidal efficacy of some essential oils against adults of Musca domestica L. (Diptera: Muscidae). Int. J. Trop. Infect. Sci. 1–9 (2021).
56. Pushpalatha, E. & Viswan, K. A. Adulticidal and repellent activities of Melaleuca leucadendron (L.) and Callitris citrinus (Curtis) against filarial and dengue vectors. Assoc. Advancement Entomol. 38, 149–154 (2013).
57. Sari, N. M. Evaluation of insecticidal activity of bioactive compounds from Eucalyptus citriodora against Tribolium castaneum. Int. J. Pharm. Phytochem. Res. 8, 1256–1260 (2016).
58. Fu, J. et al. Fumigant toxicity and repellence activity of camphor essential oil from Cinnamomum camphora Siebold against Solenopsis invicta workers (Hymenoptera: Formicidae). J. Insect Sci. 15, 129 (2015).
59. Zalbussainim, M. et al. Insecticidal and Genotoxic effects of some indigenous plant extracts in Culex quinquefasciatus Say Mosquitoes. Sci. Rep. 10, 1–13 (2020).
60. Sutthanont, N. et al. Chemical composition and larvicidal activity of edible plant-derived essential oils against the pyrethroid-susceptible and-resistant strains of Aedes aegypti (Diptera: Culicidae). J. Vector Ecol. 35, 106–115 (2010).
61. Ling Chang, C., Kyu Cho, I. & Li, Q. X. Insecticidal activity of basil oil, trans-anethole, estragole, and linalool to adult fruit flies of Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae. J. Econ. Entomol. 102, 203–209 (2009).
62. da Silva, J. B. P. et al. Thiosemicarbazones as Aedes aegypti larvicalid. Eur. J. Med. Chem. 100, 162–175 (2015).
63. Ali, A., Radwan, M. M., Wanas, A. S. & Khan, I. A. Repellent activity of carrot seed essential oil and its pure compound, carotol, against mosquitoes. J. Am. Mosq. Control Assoc. 34, 272–280 (2018).
64. Branquinho, L. S. et al. Anti-inflammatory and toxicological evaluation of essential oil from Piper glabratum et al. Eur. J. Med. Chem. 101, 86–93 (2016).
65. Orion, R., Adhikari, K., Mahanta, S. & Khanikor, B. Combinations of plant essential oil based terpene compounds as larvicidal and adulticidal agent against Aedes aegypti (Diptera: Culicidae). Sci. Rep. 9, 1–12 (2019).
66. Gad, M., Aref, S., Abdelhamid, A., Elwissamy, M. & Abdel-Raheem, S. Biologically active organic compounds as insect growth regulators (IGRs): Introduction, mode of action, and some synthetic methods. Curr. Chem. Lett. 10, 393–412 (2021).

Acknowledgements
This work was funded by the Science, Technology, Innovation Funding Authority, Egypt, entitled: “Lumpy Skin Disease in Cattle and Development of Sustainable Pest Management Tools”, Project ID: 37024.

Author contributions
Conceptualization, A.A., A.M. and M.B.; methodology, H.K., M.B., I.R.; validation, M.B., I.R. and A.A.; formal analysis, A.A. and H.K.; resources, A.A.; writing—original draft preparation, M.B., I.R., H.K. and A.A.; writing—review and editing, H.K., A.A., A.M. and A.S.; supervision, H.K.; project administration, A.S.; funding acquisition, A.S. All authors have read and agreed to the published version of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
