Offset-corrected Δ-Kohn-Sham scheme for the prediction of X-ray photoelectron spectra of molecules and solids

Michael Walter, Michael Moseler, and Lars Pastewka

1Freiburger Materialforschungszentrum, Universität Freiburg, Stefan-Meier-Straße 21, D-79104 Freiburg, Germany
2Fraunhofer IWM, MikroTribologie Centrum µTC, Wöhlerstrasse 11, D-79104 Freiburg, Germany
3Physikalisches Institut, Universität Freiburg, Herrmann-Herder-Straße 3, D-79104 Freiburg, Germany
4Karlsruher Institut für Technologie, Institut für Angewandte Materialien, Engelbert-Arnold-Straße 4, D-76131 Karlsruhe, Germany

(Received: November 24, 2015)

Absolute binding energies of core electrons in molecules and bulk materials can be efficiently calculated by spin paired density-functional theory employing a Δ Kohn-Sham (ΔKS) scheme corrected by offsets that are highly transferable. These offsets depend on core level and atomic species and can be determined by comparing ΔKS energies to experimental molecular X-ray photoelectron spectra. We demonstrate the correct prediction of absolute and relative binding energies on a wide range of molecules, metals and insulators.

PACS numbers: 78.70.Dm, 33.20.Rm, 31.15.E

X-ray photoelectron spectroscopy (XPS) has become a valuable tool for the characterization of molecules and materials. High energy photons ionize the system under study by removing an electron from a core level (see Fig. 1). The resulting energy loss can be interpreted as a direct measure of the core electron binding energy (CEBE). Core levels typically range between several tens (e.g., ~ 80 eV for Al(2s)) to hundreds (e.g., ~ 570 eV for F(1s)) of eV and this large spread allows for a determination of the elemental composition of materials.

Furthermore the exact CEBE of an atomic species can vary by several eV, depending on its local chemical environment. This “chemical shift” is an indirect measure for the configuration of the valence electrons that determine the atoms’ bonds. It forms the basis of the ESCA method (electron spectroscopy for chemical analysis) that is routinely used for chemical material characterization. In practice the assignment of experimental XPS lines relies on extensive tables of CEBEs measured in well-known compounds that is useful for chemical material characterization. In this letter, we provide an extensive benchmark of inexpensive density-functional theory (DFT) calculations within the Δ-Kohn-Sham (ΔKS) formalism. We carry out ΔKS calculations of absolute CEBEs for isolated systems and explore the potential of periodic ΔKS to reproduce absolute CEBEs from solid state XPS experiments. In view of future applications to large material systems we aim at the most efficient scheme and therefore our ΔKS approach is based on spin-paired calculations. We demonstrate below, that in contrast to the general believe, periodic DFT can be used for the prediction of absolute CEBE values with good accuracy. Errors that are associated with the spin-paired treatment and with inaccuracies in the exchange-correlation potential can easily be compensated by offsets that depend merely on the element type X and the core level nl (e.g., $\delta(C(1s))$ is the offset of the carbon 1s core level). These highly-transferable offsets are virtually independent of the chemical environment of the respective species X and do not vanish for spin-polarized calculations.

Theory. Despite the common interpretation as a single...
particle energy, the CEBE

\[-E_B = E_0 - E_{\text{ch}}^+\] (1)

is the difference between the ground state energy of a system \(E_0\) and the energy of an (metastable) excited state \(E_{\text{ch}}^+\) of the same system with one electron less.

The definition of the ionized core-hole state itself relies on an effective single particle picture and is thus not unambiguous. Nevertheless, the DKS method, which is defined through a partly filled Kohn-Sham orbital, has been shown to correlate well with experiment [12, 16, 17].

A molecular CEBE can be directly compared to experiment as the energy scales of both the neutral ground state and the ionized state that contains the core hole are well defined. The reference energy of such finite systems is the vacuum level \(\varepsilon_{\text{vac}} = 0\), i.e. the energy of an electron at infinite distance from the molecule (see Fig. 1). The vacuum level also serves as a convenient reference for the energy needed to remove the most weakly bound valence electron (the ionization potential, IP) and for the energy gained by an extra electron (the electron affinity, EA). These many particle energies unambiguously define the single particle energies of the highest occupied (HOMO) and the lowest unoccupied molecular orbital (LUMO), \(\varepsilon_H = -\text{IP}\) and \(\varepsilon_L = -\text{EA}\), respectively [18]. Eq. (1) can be directly applied when the electron is ejected into the vacuum surrounding the molecule.

The vacuum level is not an easily accessible reference for extended systems. There the CEBE is usually reported relative to the Fermi level \(\varepsilon_F\) [19], that is the energy threshold up to which the single particle levels are filled:

\[E_B^F = E_{\text{ch}}^+ - E_0 + \varepsilon_F.\] (2)

The charged state energy \(E_{\text{ch}}^+\) in Eq. (2) poses a problem in simulations as extended system typically have to be modeled using periodic boundary conditions. These require a neutral unit cell to avoid interaction of the charge with its periodic images. This problem can be overcome by artificially neutralizing the system, by either adding an extra valence electron [13, 20, 21] or by adding a constant background charge [13, 22, 24].

Adding a valence electron changes the total energy of the system by the LUMO energy \(\varepsilon_L\) [25] such that the neutral system containing the core hole has the energy \(E_{\text{ch}} = E_{\text{ch}}^+ + \varepsilon_L\) and the binding energy of the core hole for extended systems becomes

\[E_B^F = E_{\text{ch}}^0 - E_0 + \varepsilon_F - \varepsilon_L.\] (3)

In metallic systems, many of the single particle energies coincide as \(\varepsilon_F = \varepsilon_H = \varepsilon_L < 0\) (see Fig. 1). In this case, the core hole binding energy relative to the Fermi level simply becomes \(E_B^F = E_{\text{ch}}^0 - E_0\). This quantity is also straightforward to measure in experiments according to Eq. (2), since for metallic systems the Fermi level is given by the electrostatic potential (voltage) of the metallic specimen.

The situation complicates for non-metals. For systems with a finite band gap \(\varepsilon_L - \varepsilon_H, \varepsilon_F\) lies somewhere inside of the gap. The exact position depends on temperature, is strongly influenced by impurities [20] and can be modified by the presence of surface layers [27]. Measured binding energies for non-metals therefore tend to vary by many eV from experiment to experiment. Computationally, the situation is further complicated because the empty (Kohn-Sham) energy levels obtained from density functional theory calculations (based on the usual gradient corrections) are typically too low in energy leading a significant underestimation of the band gap.

Chemical shifts are independent of these complications since the energy reference cancels out. In application of a chosen single particle picture, these shifts were analyzed by contributions that are attributed to differences between two atomic sites already present in the “initial state” or emergent in final state of the ionization process [14]. In Kohn-Sham DFT, the method of choice for large molecules and solids due to its computational efficiency, approximate CEBEs are obtained directly from the eigenvalues of core states [28–30]. This approach is especially popular in solid state applications since it circumvents the treatment of charged ionized states in periodic supercells. It was shown, however, that the neglect of relaxation in the final state results in appreciable errors including predictions of erroneous shift directions [20] and prohibits the determination of reliable absolute CEBEs [13]. Within the single particle picture, relaxation effects can be included via Slater-Janak transition state theory, where the orbital energy of a partly occupied core hole state is interpreted as CEBE [29–31, 32].

In order to fully capture the final state effects, eq. (1) has to be applied. The simplest approach to obtain \(E_{\text{ch}}^+\) or \(E_0\) is the \(Z + 1\) or equivalent-core approximation [33, 34], where the excited nucleus is replaced by the next element in the periodic table. This approach is covered by ground state DFT, but assumes the density change to be located exactly at the position of the nucleus. While stretching the DFT’s validity [14], the most accurate results are obtained by modelling the core hole as a partly occupied atomic state either in all electron [12, 16, 21, 22, 35], effective core or pseudopotentials [13, 17, 20] or within the projector augmented wave method and the frozen core approximation [28, 29]. These approaches lead to very similar results and yield differences of around 50 meV [28].

Methods. The following DFT calculations were carried out with the GPAW [37, 38] package, an implementation of the projector augmented wave (PAW) method [39]. We use the configuration space grid implementation and apply a grid spacing of 0.2 Å to represent the smooth wave functions unless noted otherwise. The exchange correla-
tion energy was approximated by the generalized gradient correction by Perdew et al. (PBE) \(^{40}\) and additional calculations were carried out in the local density approximation (LDA) \(^{41}\). All calculations are spin-paired with the exception indicated. For isolated systems, the size of the simulation box had at least 4 Å vacuum around each atom. Molecules were relaxed until the maximum force dropped below 0.05 eVÅ\(^{-1}\).

The wave-functions of core atomic states are approximately independent of the chemical environment and can be treated in the frozen core approximation. We freeze the \(1s\) electrons for C, N, O, and F, and additionally the \(2s, 2p\) electrons for Al, Si, P and S. The atomic Kohn-Sham states are obtained within a non-spin polarized spherical symmetric approximation. A similar approach is adopted to describe the core hole by lowering the occupation of the relevant state in the atomic calculation by unity. The resulting Kohn-Sham orbitals are then used to construct the frozen core \(^{23, 38}\).

Molecules. We have calculated the \(1s\) core hole binding energies of the elements C, N, O, and F and the \(2p\) core hole energies of Al, Si, P and S for a total of 63 molecules and 133 chemically distinct core hole binding energies. Fig. 2 shows that there is an excellent linear correlation between calculated and experimental \(^{42}\) data. The main difference between experiment, \(E_{B}^{\text{exp}}\), and simulation, \(E_{B}^{\text{calc}}\), is a constant offset \(\delta = E_{B}^{\text{calc}} - E_{B}^{\text{exp}}\) that depends on element and core electron level as demonstrated by the straight lines in Fig. 2. Binding energies typically span several eV over which the deviation from a linear correlation analysis is small.

The values of the offsets \(\delta\) are given in Fig. 2 and in

functional	C	N	O	F	Al	Si	P	S
PBE	6.07	6.95	7.66	8.44	0.74	0.76	0.67	0.91
PBE\(^b\)	6.10	7.12	7.88	8.55	0.74	0.76	0.66	0.87
LDA	3.05	3.38	3.60	3.84	0.68	0.72	0.66	0.91
PBE\(^c\)	-0.93	-1.12	-1.45	-1.69	-0.02	-0.10	-0.28	-0.13

Table I. Empirical offsets \(\delta\) in eV between experimental and calculated core hole binding energies as depicted in Fig. 2. \(^b\) PBE calculation with grid spacing \(h = 0.15\) Å. \(^c\) PBE calculation with corrected spin density (see text).

The main contribution to \(\delta\) comes from neglecting the spin dependence of the core hole. Including the spin dependent core hole density \(^{23}\) yields much smaller offsets of \(\lesssim 1\) eV (see Tab. I). This computationally more demanding approach leads to rather small corrections for the \(2p\) holes, but it overcorrects for the more localized \(1s\) holes. Table I also shows that \(\delta\) is strongly dependent on the functional. LDA gives much lower values than PBE. The qualitative trend of increasing values from C to F and lower offsets for \(2p\) holes prevails.

The main contribution to \(\delta\) comes from neglecting the spin dependence of the core hole. Including the spin dependent core hole density \(^{23}\) yields much smaller offsets of \(\lesssim 1\) eV (see Tab. I). This computationally more demanding approach leads to rather small corrections for the \(2p\) holes, but it overcorrects for the more localized \(1s\) holes. Tab. I also shows that \(\delta\) is strongly dependent on the functional. LDA gives much lower values than PBE. The qualitative trend of increasing values from C to F and lower offsets for \(2p\) holes prevails.

Table I. The PBE offsets are always positive (i.e. \(E_{B}\) is predicted too large), are largest for the \(1s\) core holes and increase from C (\(\sim 6\) eV) to F (\(\sim 8.5\) eV) as binding energy increases and the core hole becomes more localized. The offsets are much smaller (\(\sim 1\) eV) for the less localized \(2p\) core holes in Al, Si, P and S. The standard deviations reported in Fig. 2 are always \(\lesssim 0.1\) eV.

The main contribution to \(\delta\) comes from neglecting the spin dependence of the core hole. Including the spin dependent core hole density \(^{23}\) yields much smaller offsets of \(\lesssim 1\) eV (see Tab. I). This computationally more demanding approach leads to rather small corrections for the \(2p\) holes, but it overcorrects for the more localized \(1s\) holes. Table I also shows that \(\delta\) is strongly dependent on the functional. LDA gives much lower values than PBE. The qualitative trend of increasing values from C to F and lower offsets for \(2p\) holes prevails.

Numerical settings influence the values of the offsets \(^{43}\), where the grid spacing \(h\) is found to have the largest influence as can be seen in Table I. The remaining differences to the experiment might have several reasons.

Figure 2. Core electron binding energies obtained with the PBE functional compared to experimental values for molecules in the gas-phase. The constant offset \(\delta\) for each element corresponding to the straight line is given (see text). The exact numbers are listed in Supplemental Material \(^{36}\).
including dynamic screening effects \cite{24,44}, spin-orbit contributions and inaccuracies of the density functional applied.

The important observation is, that the offset δ does depend on just atom type and orbital and is – to a good approximation – independent of molecule and chemical environment. This enables a correction of energies obtained from facile spin unpolarized calculations for an accurate prediction of experimental core hole binding energies. The standard deviation of the approach is smaller than 0.2 eV for all elements considered, an accuracy that is sufficient in comparison to the variation over several eV. Despite of this problem, we find an astonishing agreement even in absolute CEBES for many elements where these are not available, an alternative route is the calibration from metallic alloys where accurate relative shifts are available. Finally also more accurate, but computationally more demanding quantum chemical calculations could be used to obtain δ without reference to experiment.

Energy reference problems cancel out when CEBE differences within a single compound are considered. In this case the experimental energy spread is drastically reduced when values from the same experiment are compared (Fig. 3b)). Also the agreement between prediction and experiment is excellent for all solids considered proving that the prediction of relative shifts is possible even for systems with large gaps. Note that the empirical energy offsets δ do not cancel since they vary between different elements and core levels and need to be considered even for the calculation of relative shifts.

Summary & Discussion. We have presented a convenient computational method for the prediction of absolute core electron binding energies (CEBEs) from density-functional theory (DFT) calculations within the projector augmented wave (PAW) formulation. A large set of experimental molecular data have been used to show that spin paired gas phase calculations predict CEBEs in excellent accuracy up to a constant offset that mainly depends on chemical element and core level. These offsets allow an a-posteriori correction of DFT results and therefore a prediction of core electron binding energies also for solids. The main issue in absolute CEBEs is the definition of the reference energy, a problem also present in experiment. This mainly affects systems with a band gap, where the common Fermi energy reference is not defined. Chemical shifts, that do not require the definition of an energy reference can still be calculated with good accuracy.

It would be desirable to have δ values for all elements of the chosen functional. Such a database could serve for the assignment of experimental XPS peaks via direct comparison to simulations. Gas-phase XPS spectra can be used for parametrisation as shown above. For elements where these are not available, an alternative route is the calibration from metallic alloys where accurate relative shifts are available. Finally also more accurate, but computationally more demanding quantum chemical calculations could be used to obtain δ without reference to experiment.

Acknowledgments. Computational resources of FZ-
Jülich are thankfully acknowledged. This work is partially based on research funded by the DFG (grants PA 2023/2 and MO 879/17).

Michael.Walter@fmf.uni-freiburg.de

[1] K. Siegbahn, C. Nording, J. Hedman, P. F. Heden, K. Hamrin, U. Gelius, T. Bergmark, L. Werme, R. Manne, and Y. Baer, ESCA Applied to Free Molecules (North-Holland, Amsterdam, 1969) p. 208.

[2] K. Siegbahn, in Atomic Physics 3 (Springer US, Boston, MA, 1973) pp. 493–522.

[3] G. Beaman and D. Briggs, High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database (Wiley, New York, NY, 1992) p. 295.

[4] B. Henke, E. Gullikson, and J. Davis, At. Data Nucl. Data Tab. 54, 181 (1993).

[5] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics, Inc., 1995) p. 255.

[6] B. V. Crest, Handbook of Monochromatic XPS Spectra (John Wiley & Sons, 2000) p. 1570.

[7] A. V. Naumkin, A. Kraut-Vass, S. W. Gaarenstrom, and C. J. Powell, “National Institute of Standards and Technology X-ray Photoelectron Spectroscopy Database,” http://erdata.nist.gov/xps/ (2012), version 4.1.

[8] P. S. Bagus, Phys. Rev. 139 (1965).

[9] I. Lindgren, J. Electron Spectros. Relat. Phenomena 137-140, 591 (2001).

[10] H. W. Nesbitt and G. M. Bancroft, Rev. Mineral. Geochemistry 78, 271 (2014).

[11] R. M. Martin, Electronic Structure (Cambridge University Press, 2004).

[12] L. Triguelo, L. G. M. Pettersson, and H. Ågren, Phys. Rev. B 58, 8097 (1998).

[13] R. Haerle, E. Riedo, A. Pasquarello, and A. Baldereschi, Phys. Rev. B 65, 045101 (2001).

[14] W. F. Egelhoff, Surf. Sci. Rep. 6, 253 (1987).

[15] M. Walter and H. Häkkinen, New J. Phys. 10, 043018 (2008).

[16] Y. Takahata and D. P. Chong, J. Electr. Spectr. Rel. Phen. 133, 69–76 (2003).

[17] O. Takahashi and L. G. M. Pettersson, J. Chem. Phys. 121, 10339 (2004).

[18] E. J. Baerends, O. V. Gritsenko, and R. van Meer, Phys.Chem. Chem. Phys. 15, 16408 (2013).

[19] J. Riga, J.-J. Preaux, and J. J. Verbiest, Mol. Phys. 34, 131 (1977).

[20] E. Pelike and M. Scheffler, Phys. Rev. Lett. 71, 2338 (1993).

[21] A. Snis and S. F. Matar, Phys. Rev. B 60, 10855–10863 (1999).

[22] J. Titantah and D. Lamoen, Carbon 43, 1311–1316 (2005).

[23] M. P. Ljungberg, J. J. Mortensen, and L. G. M. Pettersson, J. Electron. Spectr. Rel. Phen. 184, 427 (2011).

[24] T. Susi, M. Kaukonen, P. Hauv, M. P. Ljungberg, P. Ayala, and E. I. Kauppinen, Beilstein J. Nanotechnol. 5, 121–132 (2014).

[25] We regard the LUMO energy \(\varepsilon_L \) as constant under the addition of the extra electron, an approximation that becomes exact in the limit of infinite supercells.

[26] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (John Wiley & Sons, 1981).

[27] S. Zhong, J. Q. Zhong, H. Y. Mao, J. L. Zhang, J. D. Lin, and W. Chen, Phys. Chem. Chem. Phys. 14, 14127–14141 (2012).

[28] L. Köhler and G. Kresse, Phys. Rev. B 70, 165405 (2004).

[29] A. Gandubert, E. Krebs, C. Legens, D. Costa, D. Guillarme, and P. Raybaud, Catalysis Today 130, 149–159 (2008).

[30] M. Vogel, C. Kasigkeit, K. Hirsch, A. Langenberg, J. Röttmann, V. Zamudio-Bayer, A. Kulesza, R. Mitrić, T. Møller, B. v. Issendorff, and J. T. Lau, Phys. Rev. B 85, 195454 (2012).

[31] D. P. Chong, Chem. Phys. Lett. 232, 486 (1995).

[32] D. P. Chong, J. Chem. Phys. 103, 1842 (1995).

[33] N. Märtensson and B. Johansson, Solid State Commun. 32, 791 (1979).

[34] B. Johansson and N. Märtensson, Phys. Rev. B 21, 4427 (1980).

[35] T. Susi, D. J. Mowbray, M. P. Ljungberg, and P. Ayala, Phys. Rev. B 91, 081401 (2015).

[36] See Supplemental Material at [URL will be inserted by publisher] for tables of molecular XPS spectra and experimental solid state references.

[37] A. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. B 71, 035109 (2005).

[38] J. Enkövaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dulak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuismia, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tiritasari, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. H. Madsen, R. M. Nieminen, J. K. Norskov, M. Puska, T. T. Rantal, J. Schiotz, S. M. Thygesen, and K. W. Jacobsen, J. Phys.: Condens. Matter 22, 253202 (2010).

[39] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

[40] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

[41] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

[42] W. L. Jolly, K. D. Bomben, and C. J. Eyermann, At. Database, Data Tables 31, 433 (1984).

[43] M. Walter, M. Moseler, and L. Pastewka, in preparation.

[44] K. Kotsis and V. Staemmler, Phys. Chem. Chem. Phys. 8, 1490–1498 (2006).