Ferromagnetic Josephson junction with precessing magnetization

Manuel Houzet

1INAC/SPSMS, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex, France
(Dated: February 2, 2022)

The Josephson current in a diffusive superconductor/ferromagnet/superconductor junction with precessing magnetization is calculated within the quasiclassical theory of superconductivity. When the junction is phase-biased, a stationary current (without a.c. component) can flow through it despite the non-equilibrium condition. A large critical current is predicted due to a dynamically induced long range triplet proximity effect. Such effect could be observed in a conventional hybrid device close to the ferromagnetic resonance.

PACS numbers: 74.45.+c, 76.50.+g.

The proximity effect in a ferromagnetic (F) metal in contact with a conventional superconductor (S) is usually short ranged [1]. Indeed, the conversion from Cooper pairs in the superconductor to Andreev pairs in the ferromagnet involves two electrons with opposite spins. They get quickly dephased due the large value of the exchange field acting on their spins. Yet, it was predicted that a long range proximity effect can take place when the magnetization rotates spatially [2] or when spin-flip processes take place [3] in vicinity of the F/S interface. Indeed, Andreev pairs involving electrons with parallel spins are then created and can propagate on a long distance. The long range proximity effect was invoked to explain the large Josephson current measured through half-metallic (HM) chromium oxide [4] as well as superconducting phase-periodic conductance oscillations in an Andreev interferometer made of a long metallic wire with helimagnetic order [5]. However, the crossover from short range to long range proximity effect in the same device remains to be observed. Recently, it was suggested to measure the strong variations of the Josephson current through a trilayer ferromagnetic junction by tuning the relative orientations of the magnetizations [6].

In this article, we propose that the long range triplet proximity effect can be stimulated by varying in time (rather than in space) the orientation of the magnetization in the ferromagnet. Specifically, we consider a diffusive metallic S/F/S junction with dynamical precession of the magnetization, as shown in fig. 1. In the ferromagnet, the conduction electrons feel the time-varying exchange field:

\[h_F(t) = h_F(\sin \theta \cos \Omega t, \sin \theta \sin \Omega t, \cos \theta) \]

which is proportional to the magnetization and assumed to be spatially uniform. Here, \(\Omega/2\pi \) is the precession frequency around \(\hat{z} \)-axis, \(\theta \) is a tilt angle, and the amplitude of exchange field, \(h_F \), is constant at temperatures well below the Curie temperature. In the rotating frame, such precession can be viewed as a difference between spin-resolved chemical potentials in the leads, \(\mu_\pm = hF \xi_\pm \). At finite tilt angle, \(h_F \) has a component transverse to \(\mu_+ \). Thus, it creates a non-equilibrium situation for the conduction electrons. In particular, the device could act as a spin pump when the leads are in the normal state [7]. Moreover, in the superconducting state, the non colinear orientation of \(h_F \) and \(\mu_+ \) generates a long range proximity effect similar to the case studied in Ref. [6]. Despite the non-equilibrium condition, we find that a stationary (d.c. only) Josephson current flows through the junction when a phase difference is applied to the leads. In a long junction, its amplitude is comparable to that of a normal (N) metallic Josephson junction with the same length, provided that \(h \Omega \) is comparable with \(k_B T_c \) (\(T_c \) is the superconducting critical temperature of the leads) and \(\theta \) is large enough, while it would be exponentially suppressed in the absence of precession.

Recently, a Josephson effect was also predicted in S/HM/S junctions when magnetic impurities located at the interfaces dynamically precess and mediate spin-flip tunneling processes for the conduction electrons [8]. It was also suggested that this effect could be observed at the ferromagnetic resonance (FMR). In the present work, we address the opposite case when the Fermi energy much exceeds the exchange field and the spin polarization in the ferromagnet is small. When the junction’s length, \(L \), much exceeds the ferromagnetic coherence length, \(\xi_F = \sqrt{D/h_F} \), where \(D \) is the diffusion constant, we will show that the Josephson current has two dominant contributions. The first one comes from long range triplet
proximity effect. The second one arises from the inter-
ferration between short range and long range proximity
effects out of equilibrium and it displays a non-analytical
temperature dependence close to T_c. Both have an oscillator
behaviour, depending on the ratios between $\hbar\Omega$, $k_B T_c$, and the Thouless energy $E_T = \hbar D/L^2$. This pro-
vides a mechanism for π-coupling [1] in long ferromag-
netic Josephson junctions. In the following, we derive both
components, discuss their properties and the con-
tions to observe them in conventional F/S structures.

Within the quasiclassical theory of superconductivity,
the current flowing through the junction is [9 11]:

$$I(t) = -\frac{\pi GL}{8e} \text{Tr} \{ \tau_z (\hat{g} \circ \nabla \hat{g})(K, t, t) \},$$

(2)

where the quasiclassical Green’s function $\hat{g}(x, t, t')$ is a
matrix in spin, Nambu, and Keldysh spaces and it obeys the
Usadel equation along the ferromagnetic layer:

$$-i D \nabla (\hat{g} \circ \nabla \hat{g}) + ((i \partial_t + \text{h}_F(t) \sigma) \tau_z \delta(t - t') \circ \hat{g}) = 0.$$

(3)

Here, G is the conductance of the ferromagnetic layer,
the spatial derivative is taken along \hat{x}-axis, σ is the el-
ementary charge, σ_i, and τ_j ($i, j = x, y, z$) are the Pauli
matrices in spin and Nambu spaces, respectively, and \circ de-
notes the time convolution. (Units with $\hbar = k_B = 1
are adopted from now.) Note also that the orbital ef-
fect generated by the magnetization has been neglected in
Eq. (3) as it is usually done [1]. Moreover, \hat{g} obeys the
properties: $\text{Tr} \hat{g} = 0$ and $\hat{g} \circ \hat{g} = 1$, and it has a tri-
angular structure in Keldysh space with the retarded,
advanced and Keldysh components: \hat{g}^R, \hat{g}^A, and \hat{g}^K, re-
spectively. The normalisation condition is fulfilled pro-
vided $\hat{g}^R/A \circ \hat{g}^R/A = 1$ and $\hat{g}^K = \hat{g}^R \circ \hat{f} - \hat{f} \circ \hat{g}^A$, where \hat{f} is a distribution function matrix which obeys $[f, \tau_z] = 0$
[10].

In the present study, we assume that there is a good
electric contact at the F/S interfaces and we neglect the
inverse proximity effect in the leads. This yields the
boundary conditions:

$$\hat{g}(x = \pm \frac{L}{2}, t, t') = \hat{g}_{x, \tau_{\chi}/2}(t - t').$$

(4)

Here, χ is the phase difference between the leads. The
quasiclassical Green’s function in a superconductor with
phase ϕ is defined in energy space by $\hat{g}_{s, \phi}^R/A(\varepsilon) = [-i e \tau_z + \Delta \tau_\phi / \sqrt{\Delta^2 - (\varepsilon - i\Lambda)^2}]$ and $\hat{g}_{s, \phi}^K = (\hat{g}_{s, \phi}^R - \hat{g}_{s, \phi}^A) f_{T}$, where $\tau_\phi = \cos \phi \tau_x - \sin \phi \tau_y$, $f_{T}(\varepsilon) = \text{tanh}(\varepsilon/2T)$, and Δ is the con-
tventional superconducting gap at temperature T.

We also introduced a small, phenomenological depairing
parameter Γ which may account for the current-induced
depairing, as well as scattering on magnetic impurities in
the leads.

In order to determine the current through the junction,
one has to solve Eqs. [11 14]. Despite a time-varying ex-
change field in Usadel equation [4], the problem is equiv-
alent to a stationary (though non-equilibrium) one. In
Indeed, one may perform the unitary transformation:

$$\hat{g}(t, t') \rightarrow V U(t) \hat{g}(t, t') U(t') V^d,$$

(5)

where $U(t) = \exp(i \alpha \sigma_z / 2)$ transforms from the lab-
oratory frame into a rotating frame and absorbs the
time-dependent terms in Usadel equation [3], while $V = \exp(i \alpha \sigma_y / 2)$, with $\alpha = h_F \sin \theta / (h_F \cos \theta + \Omega/2)$, ro-
tates the spin quantization axis. Specifically, V aligns the
effective exchange field with amplitude $J = [h_F^2 \sin^2 \theta +
(h_F \cos \theta + \Omega/2)^2]^{1/2}$ along \hat{z}-axis and rotates the
precession axis away from it. Eq. (4) now takes a simple form
in energy space:

$$-i D \nabla (\hat{g}(x, \varepsilon) \nabla \hat{g}(x, \varepsilon)) + [\varepsilon + J \sigma_z] \tau_z \hat{g}(x, \varepsilon) = 0.$$

(6)

The boundary conditions (4) yield: $\hat{g}(x = \pm \frac{L}{2}, \varepsilon) = \sqrt{\hat{g}_{s, \tau_{\chi}/2}(\varepsilon + \Omega \sigma_z / 2)} V^d$ and the current (2) takes the form

$$I = \frac{GL}{16e} \int d\varepsilon \text{Tr} \{ \tau_z (\hat{g} \nabla \hat{g})^K \},$$

(7)

Let us emphasize that the special time-dependence
in Eq. (1) is crucial for the non-equilibrium problem (6) to
be formulated as a stationary one, see Eq. (6). For a dif-
terent time-dependence and/or for applied bias voltage,
one could use the procedure formulated in Ref. [11] to
study numerically the conductance in S/N/S junctions.

In spite of the above simplification, we are still dealing
with a complicated non-linear equation (6). Now, we
assume that the temperature is close to T_c, so that $\Delta \sim
|T_c(T_c - T)|^{1/2}$ is vanishingly small. Thus, we can look
for a solution $\hat{g} = \hat{g}_0 + \hat{g}_1 + \hat{g}_2 + \ldots$ in the series expansion
around the normal state solution, when $\Delta/T_c \ll 1$. In
zeroth order, one finds $\hat{g}_{0}^R/A = \pm \tau_z$ and

$$\hat{f}_0 = f_+ - f_- \sin \left[\alpha \left(\sigma_x R \frac{\text{ch} q L}{q L} + \sigma_y \right) \frac{\text{ch} q L}{q L} - \cos \alpha \sigma_z \right],$$

(8)

where $f_{\pm}(\varepsilon) = [f_T(\varepsilon + \Omega/2) \pm f_T(\varepsilon - \Omega/2)]/2$ and $q = \sqrt{2\pi J/D}$. We note that \hat{f}_0 is diagonal in Nambu space
and the non diagonal components in spin space only ap-
pear at finite Ω. In the first order in Δ, Eq. (6) yields:

$$-i D \nabla^2 \hat{g}_{1}^R/A \pm \{ \varepsilon + J \sigma_z, \hat{g}_{1}^R/A \} = 0$$

(9)

which is solved with $\hat{g}_{1}^R = \hat{g}_{10}^R + \hat{g}_{1}^R \sigma$, where:

$$\hat{g}_{10}^R = -F_+^R \sin \alpha \left[\frac{\text{sin} k(L/2 - x)}{\sin k L} \tau_{x/2} - \frac{\sinh k (L/2 + x)}{\sinh k L} \frac{\tau_{x/2}}{\tau_{-x/2}} \right],$$

(10a)

$$\hat{g}_{11}^R \pm \hat{g}_{12}^R = (F_+^R \pm F_+^R \cos \alpha) \left[\frac{\sinh p_\pm (L/2 - x)}{\sinh p_\pm L} \tau_{x/2} - \frac{\sinh p_\pm (L/2 + x)}{\sinh p_\pm L} \frac{\tau_{x/2}}{\tau_{-x/2}} \right],$$

(10b)
and \(g_1^R = 0 \) while \(g_1^A = -\tau_z (\hat{g}_1^A)^\dagger \tau_z \). Here, \(k = \sqrt{-2i\varepsilon/D} \), \(p_\pm = \sqrt{-2i(\varepsilon \pm J)/D} \), and \(F^R(\varepsilon) = [F^R(\varepsilon + \Omega/2) \pm F^R(\varepsilon - \Omega/2)]/2 \), where \(F^R(\varepsilon) = i\Delta/\sqrt{(\varepsilon + i\Gamma)^2 - \Delta^2} \). We note that the component \(g_{1x} \) is long ranged, while \(g_{10} \) and \(g_{1z} \) are short ranged. It is straightforward to check that the Keldysh component is solved with \(\hat{f}_1 = 0 \) and that the current \(I_1^A \) vanishes up to the first order in \(\Delta \).

In the second order in \(\Delta \), the current is:

\[
I = -\frac{GL}{16\varepsilon} \int d\varepsilon \text{Tr} \left[\tau_z \left(2\nabla \hat{f}_2 - \hat{g}_1^R \nabla \hat{f}_1^A \right.
ight.

\[
+ \Re \left(\left[\hat{g}_1^R \nabla \hat{g}_1^R - \nabla \hat{g}_1^R \hat{g}_1^A \right] \hat{f}_0 - \left[\hat{g}_1^R \nabla \hat{f}_0^A \right] \right) \right].
\]

(11)

(The terms with \(g_2 \) have been eliminated with help of the identities: \(\{\tau_z, g_2^{R/A}\} = (g_1^{R/A})^2 = 0 \) coming from the normalization condition \(\hat{g}^2 = 1 \).) The function \(\hat{f}_2 \) vanishes at the boundaries with the leads and solves the differential equation:

\[
2iD \nabla^2 \hat{f}_2 + 2 J \sigma_z \hat{f}_2 = -iD \left(\nabla \hat{g}_1^R \nabla \hat{f}_0 + \nabla \hat{f}_0 \hat{g}_1^A \nabla \hat{g}_1^A + \nabla \hat{g}_1^A \nabla \hat{f}_0 \right).
\]

(12)

Close to \(T_c \), the Josephson relation remains sinusoidal, \(I = I_c \sin \chi \), and the critical current \(I_c \) can be obtained by evaluating Eq. (11). Before proceeding, let us make simplifying assumptions. In usual ferromagnets, \(h_F \) would exceed \(\Omega \) and \(T_c \) by several orders of magnitude. Therefore, \(\alpha \approx \theta \), \(J \approx h_F \) and \(p_\perp \approx q \). We also assume that the junction is long (\(L \gg \xi_F \)). Thus, we discard the exponentially small terms contributing to \(I_c \) and find that it has two main terms: \(I_c = I_1^A + I_1^A \). The first one comes from the long range triplet proximity effect (component \(\hat{g}_1^A \), only):

\[
I_1^A = -\frac{G \sin^2 \theta}{2e} \int d\varepsilon \hat{f}_2 \left(F_R^2 \right) \frac{kL}{\sinh kL}.
\]

\[
= -\frac{G \pi T \Delta^2 \sin^2 \theta}{4e} \sum_{\omega > 0} \left(\frac{1}{\omega + i\Omega} - \frac{1}{\omega} \right)^2 \frac{\kappa_\omega L}{\sinh \kappa_\omega L}.
\]

(13)

where \(\omega = (2n + 1)\pi T \) are Matsubara frequencies and \(\kappa_\omega = \sqrt{2(\omega + i\Omega/2)/D} \). In particular, we get

\[
I_1^A/I_{0} \approx \begin{cases} \frac{4}{9} (\Omega/T_c)^2 \sin^2 \theta & \text{if } \Omega \ll T_c \ll E_T, \\ \frac{4}{9} \sin^2 \theta & \text{if } T_c \ll \Omega \ll E_T. \end{cases}
\]

(14)

Here, \(I_{0} = \pi G \Delta^2 / 4e T_c \) is the critical current for a S/N/S junction with \(T_c < E_T \) at temperatures close to \(T_c \). We notice that \(I_1^A \) vanishes at \(\Omega = \pi T_c \). At larger frequency, it changes its sign and a \(\pi \)-coupling between the superconducting leads is realized. When \(\Omega \sim E_T \), we also find an oscillatory behaviour of the frequency dependence of \(I_1^A \) on the scale of \(E_T \) (see fig. 2) with an alternation of \(0 \)- and \(\pi \)-couplings.

In contrast to ferromagnetic Josephson junctions with spatial variation of the magnetization and S/HM/S junctions, there arises a mixing of short range and long range proximity effects through the non-equilibrium spin-dependent terms of the distribution function matrix in the system studied here. Most of the terms in Eq. (11) reflecting such mixing are suppressed by the small factor \(\xi_F / L \), when compared to \(I_c^A \). However, the contribution

\[
I_c^A = \frac{G \xi_F \sin^2 \theta \cos \theta}{2e} \int d\varepsilon \hat{f}_2 \left(F_R^2 \right) \frac{kL}{\sinh kL}.
\]

(15)

This term vanishes like \((T_c - T)^{1/2} \ln(T_c - T) \) close to \(T_c \). Such non analytic temperature dependence was already met in the field of transport in N/S junctions [13]. When \(\Omega \sim E_T \), we also get from Eq. (15) an oscillatory frequency dependence of \(I_1^A \) (see fig. 2).

Let us now compare both main contributions [13] and [14] to \(I_c \). They have quite different dependences on the device parameters. At low precession frequency compared to \(T_c \), \(I_1^A \) scales linearly with \(\Omega \) and dominates over \(I_1^A \) which scales quadratically. On the other hand, at large frequency, \(I_1^A \) takes over if \(\Delta / T_c > (\xi_F / L) \ln(\Delta / T) \). At low temperatures, we speculate that the above expressions still hold qualitatively. As the ratio \(\Delta / T_c \) becomes of the order of unity, the critical current at \(L \gg \xi_F \) is dominated by the long range triplet component only.

Simplifying assumptions have been made to get analytical expressions for the current. In principle, more realistic conditions could also be studied. The Usadel equation...
may be solved numerically to get the current at all temperatures. Spin-flip diffusion in the ferromagnet and tunnel barriers at the F/S interfaces could easily be incorporated in the theory. On the other hand, a finite spin polarization in the ferromagnet, as well as a mean free path comparable with the coherence length would require to go beyond the quasiclassical theory for diffusive metals. Nevertheless, we expect that Eqs. (13)-(16) hold qualitatively beyond their strict range of validity. Thus, our findings are relevant to the study of F/S junctions with conventional metals. The quasiclassical theory has proved its usefulness for the prediction and quantitative analysis of several experiments in these systems.

The dynamically induced long range proximity effect studied in this work is expected to have special properties. In particular, it would be of interest to characterize the current-voltage characteristics in S/F and S/F/S junctions. We may expect an a.c. current response at frequencies mixing Ω and the Josephson frequency. This geometry was used performing FMR experiments in the microwave regime to detect electrically the spin polarization in the ferromagnet, as well as S/HM/S junctions with conventional metals. The quasiclassical theory has proved its usefulness for the prediction and quantitative analysis of several experiments in these systems.

The long range Josephson current may be observed by performing FMR experiments in the microwave regime in a planar S/F/S junction. This geometry was used in N/F/N junctions to detect electrically the spin polarization due to a precessing magnetization. A large resonance frequency, such that \(k_0 \sim k_B T_c\) (1K corresponds to 30GHz), can be reached even by applying a moderate d.c. magnetic field \(H_0\) along the plane of the ferromagnet. A small transverse r.f. field, \(H_{rf}\), is used to induce the magnetization precession. The tilt angle \(\theta\) strongly depends on the precession frequency. At resonance, \(\theta\) can be estimated from the Landau-Lifshitz equations: \(\theta \sim \mu H_{rf}/\hbar k_0\), where \(\mu\) is the Bohr magneton and \(a\) is the Gilbert damping parameter. In soft ferromagnets, a quite large \(\theta \simeq 15^\circ\) could be obtained. Away from resonance, \(\theta\) is much reduced. This would induce a strong frequency dependence, \(\text{via} \ angle \ \theta\), in the expressions for the critical current derived above. We note that FMR was recently performed in an Nb/Permalloy bilayer. Below the superconducting critical temperature, the reduction of the resonance width was observed. It was attributed to an efficient proximity effect leading to the reduced efficiency of spin-flip processes below \(T_c\) persists at FMR. If the same conditions can be met in an S/F/S junction, we expect that the large critical current predicted in this work will be well measurable.

In conclusion, we have proposed a model of ferromagnetic Josephson junction with precessing magnetization where a large current flows thanks to a dynamically induced long range proximity effect. The dependence of the current with the precession frequency shows an oscillatory behavior. We have discussed the conditions for this effect to be observed under the condition of ferromagnetic resonance in superconductor/ferromagnet devices with conventional metals.

The work presented above has benefited from discussions with S. Teber, R. Mélin and D. Feinberg on a related problem, as well as with A. Buzdin, M. Aprili and T. Champel. Support from ANR-07-NANO011 ELEC-EPR is acknowledged.