Inflammatory periodontal diseases are an urgent problem not only in dentistry, but also in general medicine, due to their high prevalence and negative impact on a human body causing considerable economic consequences. As a result, the bioregulation of biochemical processes is often damaged, due to it, at a certain level of damage, different diseases, including dental ones, occur and develop. Moreover, the study of the impact of the combined action of xenobiotics on biochemical tissue indicators of a growing up human body, the development of new means of correction, which are based on inhibition of proteases, hydrolases, kinin system, normalization of tissue penetration, enhancing the action of protective factors of a human body, ensuring the sustainability of periodontal tissues to the negative influence of environmental agents, are important and poorly understood issues. Research purpose – to study the biochemical parameters of blood serum and homogenates of the gums in experimental gingivitis caused by the combined action of heavy metals and deficiency of fluorine and iodine. Consequently, experimental studies have convincingly demonstrated that in experimental gingivitis under the influence of the adverse environmental factors the levels of inflammatory markers – elastase and urease, as well as the indices of the protease-inhibitory system increased.

Key words: Inflammatory periodontal diseases, xenobiotics, experimental animals, protease-inhibitory system.
known, that due to anthropogenic pollution of the biosphere, water and soil up to 70% of toxicants get into a human body, and under the deficiency of certain microelements (iodine, fluorine, selenium, iron) cause pathogenic polytropic changes in a child’s body [2, 6]. Because of the high prevalence of toxicants in the environment, a particular interest is aroused to diseases caused by their action, which can manifest themselves at the molecular, cellular, tissue and body levels [7]. As a consequence, the study of the impact of the combined action of xenobiotics on biochemical tissue indicators of a growing up human body, the development of new means of correction, which are based on inhibition of proteases, hydrolases, kinin system, normalization of tissue penetration, enhancing the action of protective factors of a human body, ensuring the sustainability of periodontal tissues to the negative influence of environmental agents, are important and poorly understood issues.

Research purpose – to study the biochemical parameters of blood serum and homogenates of the gums in experimental animals with gingivitis caused by the combined action of heavy metals and deficiency of fluorine and iodine.

Material and methods. Experimental gingivitis in rats, aged 30±5 days, was induced by means of the peroxide gingivitis model, by adding to their normal diet peroxide sunflower oil at a dose of 1 ml per animal within 3 weeks [8]. Eighty white rats with average weight 54±5 g, males and females equally, were included in the study. Depending on the design of anthropogenic environmental conditions the rats were assigned to four groups: I group (control) – 20 intact rats, which were held on a regular vivarium diet; II group – 20 animals with simulated gingivitis; III group – 20 animals with induced gingivitis by means of the peroxide gingivitis model with the addition to water of heavy metals salts based on their molecular weight (\(\text{CdCl}_2 = 0.010 \text{ mg} / \text{l}; \text{Pb} (\text{NO}_3)_2 = 0.36 \text{ mg} / \text{l}) [9]; IV group – 20 animals with induced gingivitis by means of the peroxide gingivitis model with the addition of heavy metals salts to water + iodine deficiency + fluorine deficiency. Iodine deficiency in rats was induced by adding merkazolin to water, at the dose of 50 mg / kg of body weight per day for 3 weeks. [10]. Deficiency of fluorine was simulated by keeping the animals on a low calorie diet with the exception of products containing much fluorine.

After 21 days the animals were led out of the experiment under ether anesthesia. Blood and gums samples were taken for investigation. Trypsin-inhibitory and total proteolytic activities in blood serum were measured. The total proteolytic activity (TPA) was determined by reaction with Folin’s reagent (1965). To determine trypsin inhibitor activity (TIA) the method of K. N. Veremeenko et al. (1986) was used. Elastase and urease activities were measured in gingival homogenates. Elastase activity in gingival homogenates was determined by the method of L. Vasser, E. Blout in modification of G. A. Parfenkova (1968), urease activity was determined by the method of V. S. Kamysheinkova (2000).

The study was conducted in compliance with the general rules and regulations of the “European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes” (Strasbourg, 1986) and “General Ethical Principles of Animal Experiments” (Kyiv, 2001).

Results and its discussion. Analysis of elastase and urease activity in gum homogenates of experimental animals (Fig. 1) showed, that in the experimental group I (intact animals) elastase activity was 0.53 ± 0.14 nKAT/ g, which was 2.3 times significantly higher than the results of the experimental group II (1.24 ± 0.19 nKAT / g, p <0.01).

The further increase of elastase activity was observed in research groups III and IV (respectively 1.53 ± 0.17 nKAT / g, and 3.22 ± 0.14 nKAT / g) which exceeded the data obtained in the group of intact animals by 3-6 times (p <0.01). It should be noted, that the values of elastase activity in the research groups III and IV, where animals were exposed to heavy metals and their combination with fluorine and iodine deficiencies on the background of gingivitis, were 1.2 and 2.6 times higher in comparison with the values of the experimental group II (p1 <0.01), where the animals had simulated gingivitis.

The activity of urease in gum homogenates was 0.04 ± 0.003 nKAT / l in the group of intact animals which was by 80.0% lower than the value in the group of animals with simulated gingivitis (p
The urease activity levels in groups III and IV, where animals with gingivitis were affected by the negative factors of environment, exceeded the data obtained in the group of intact animals at respectively 130.0% and 205.0% (p <0.01). At the same time, the activity of urease in groups III and IV was by 27.8% and 69.4% higher (p1 <0.01) in comparison with the relevant data in group II.

Evaluation of biochemical parameters - the total proteolytic activity (TPA), trypsin inhibitor activity (TIA), and their ratio (TIA / TPA), in the blood serum of experimental animals (Fig. 2), showed that PAD level in group II (animals with simulated gingivitis) was significantly (p <0.01) higher by 12.40% in comparison with the value in intact animals (group I).

The levels of TPA in groups III and IV, where animals had been affected by the negative environmental factors, were by 36.93 % and 65.17 % significantly (p<0.01) higher than in group I. The levels of TPA in groups III and IV also significantly (p1<0.01) exceeded the TPA value in group II at respectively 21.83 % and 46.94 %. In comparison with group I, the TIA level in group II was insignificantly (p>0.05) lower by 5.99 %, while in groups III and IV the decreases by 0.51 % (p1<0.05) and by 24.79 % (p1<0.01) were significant.

At the same time, there was observed the decrease of TIA / TPA ratio from 0.31 in group I of animals to 0.14 in group IV. In groups III and IV the TIA levels were significantly lower by 15.46% (p1 <0.05) and by 20.0% (p1 <0.01) in comparison with group II.

Conclusions
1. Thus, our experimental studies have convincingly demonstrated that in experimental gingivitis under the influence of the adverse environmental factors the levels of inflammatory markers – elastase and urease, as well as the indices of the protease-inhibitory system increased.
2. The elevation of the above mentioned indices is consistent with the increase of the combined xenobiotic burden, which proves the additional influence of the latter on occurrence and development of gingivitis and requires the elaboration of adequate preventive measures and treatment.

References
1. Bezvushko E.: Features of formation of periodontal pathology in children living in different environmental conditions. Visnyk stomatol. - 2006; (2): P. 97-101.
2. Kryuchenko N.: The presence of fluoride in underground waters of Ukraine and the diseases associated with it. Search Env Geochem. - 2001; (1): P. 9-13.
3. Leus P.: Pilot project: „Optimization system of dental care to children population” / P. Leus // - Bull Dent. - 2010; (2): P. 141-146.
4. Lozovyi M. The results of monitoring study the effects of air quality on the health of the child population / M. Lozovyi, A. Nikitina, L. Kuzmenko // - Sci Bull NMU A. A. Bogomolets. - 2010; (27): P. 143-145.
5. Levytsky A. Experimental methods of playback of gingivitis / A. Levytsky, O. Denga, O. Makarenko [et al.] // - Odessa. - 2013: 14 p.
6. Petrovska M.: The health of the population in Lviv region as a result of reaction to changes in the environment. Bull Lviv Univ Ser Geogr. - 2011; (39): P.267-277.
7. World Health Organization.: Oral Health Surveys Methods. - 2013; 5th ed. Who Yeneva.
8. Yakovlev M. Endotoxin aggression” as premorbidity or a universal factor of pathogenesis of diseases of humans and animals / M. Yakovlev // - Successes Modern Biochem. - 2003; №(4): P.31-40.
9. Vynogradov V. Pharmacology with the recipe / V. Vynogradov, E. Katkova, E. Mukhin // - 2009; 5th ed. Spetslit, SPb.
10. M. Yakovlev // Endotoxin aggression as a factor of premorbidity of diseases of humans and animals / M. Yakovlev // - Successes Modern Biochem. - 2003; №(4): P.31-40.

Reферати
ЗМІНА БІОХІМІЧНИХ ПОКАЗНИКІВ СИРОВАТКИ КРОВІ ТА ГОМОГЕНАТІВ ЯСЕН ПРИ ЕКСПЕРИМЕНТАЛЬНОМУ ГІНГІВІТІ
Малько Н.В., Гасюк П., Іванчишин В., Гасюк Н.В.
Запальні захворювання пародонту є актуальною проблемою не тільки в стоматології, але і в загальній медицині через їх високу поширеність та негативні наслідки для організму людини, що спричиняє значні економічні наслідки. Встановлено, що біорегуляція біохімічних процесів часто пошкоджується, завдяки чому при певному рівні пошкодження відбуваються та

ІЗМЕНЕНИЯ БИОХИМИЧЕСКИХ ПОКАЗАТЕЛЕЙ СЫВОРОТКИ КРОВИ И ГОМОГЕНАТАХ ДЕСЕН ПРИ ЭКСПЕРИМЕНТАЛЬНОМ ГИНГИВИТЕ
Малько Н.В., Гасюк П.А., Иванчишин В.В., Гасюк Н.В.
Воспалительные заболевания пародонта являются актуальной проблемой не только в стоматологии, но и в общей медицине при их высокой распространенности и негативных последствиях для организма человека, что вызывает значительные экономические последствия. Установлено, что биорегуляция биохимических процессов часто повреждается, благодаря чему при определённом уровне повреждения происходит и развиваются различные
розвиваються різні захворювання, у тому числі стоматологічні. В даній роботі оцінено вплив комбінованої дії ксенобіотиків на показники біохімічних та хімічних, вирощування людського тіла, розробка нових засобів корекції, які базуються на гальмуванні протеаз, гідролаз, кінінової системи, нормалізації проникнення тканин, посилення дії захисних факторів організму людини, забезпечення стійкості тканин пародонта до негативного впливу екологічних агентів, є актуальними та недостатньо вивченими. Мета дослідження – вивчення біохімічних параметрів сироватки крові та гомогенатів ясен у дослідних тварин з гінгівітом, викликаним комбінованою дією важких металів та дефіцитом фтору та їоду. Охарактеризовано закономірності впливу несприятливих факторів навколишнього середовища при експериментальному гінгівітом, які сприяють підвищенню рівня неблагоприятних маркерів – лазистості та урази, показники інгібіторної системи протеаз.

Ключові слова: Запальні захворювання пародонту, ксенобіотики, експериментальні тварини, інгібіторна система протеаз.

Стаття надійшла 3.09.2017 р.

DOI 10.26724 / 2079-8334-2017-4-62-152-156
УДК 616.8:616.001 - 616.89.22

В. Ю. Молотковець, В. І. Цимбалюк, А. В. Корсак, В. В. Ліходієвський, Ю.Б.Чайковський
ДУ “Інститут нейрохірургії ім. Акад. А. П. Ромоданова НАМН України”, Національний медичний університет ім. О. О. Богомольця, м. Київ

МОРФОЛОГІЯ РЕГЕНЕРАЦІЙНОЇ НЕВРОМІ ТРАВМОВАНОГО
ПЕРИФЕРІЙНОГО НЕРВА ЗА УМОВ ВІДТВОРЕНИЯ НЕГАЙНОГО ЗВАРНОГО
ЕПІНЕВРАЛЬНОГО З’ЄДНАННЯ КУКС ТА ЧАСТКОВОЇ ІММОБІЛІЗАЦІЇ КІНЦІВКИ

Розроблена експериментальна модель оперативного втручання на травмованому периферійному нерві шляхом формування негайного зварного епіневрального з’єднання кукс та часткової іммобілізації кінцівки. Було використано нейрогістологічний метод дослідження, за допомогою якого вивчено морфологічну картину периферійного нерва в ділянці рененераційної невроми та дистального відрізку через 5 місяців після оперативного втручання. Встановлено, що одночасне використання техніки зварного епіневрального з’єднання кукс та часткової іммобілізації кінцівки в післяопераційному періоді приводить до рівномірного зварного епіневрального з’єднання кукс та часткової іммобілізації кінцівки у сироватки крові та гомогенатів десен у подопытних животных с гингивитом, вызванным комбинированным действием тяжѐлых металлов и дефицитом фтора и йода. Охарактеризованы закономерности влияния неблагоприятных факторов окружающей среды при экспериментальном гингивите, которые способствуют повышению уровня противовоспалительных маркеров – лазистости и уразы, показателей ингибиторной системы протеаз.

Ключові слова: Воспалительные заболевания пародонта, ксенобіотики, експериментальні тварини, інгибиторна система протеаз.

e-mail: alina.korsak.ns@gmail.com

Рецензент Єрошенко Г.А.

Застосування інноваційних технологій для вдосконалення методів оперативного лікування є трендом сучасної хірургії. Така можливість з’явилася завдяки розвитку інженерної думки, що сприяє розробці складного та високоспеціалізованого медичного обладнання [9, 10]. З’ясувалося, що вона може зв’язатися з аспектами артеріального течії, розробленна на основі використання нових засобів корекції, оснований на гальмуванні протеаз, гідролаз, кінінової системи, нормалізації проникнення тканин, посилення дії захисних факторів організму людини, забезпечення стійкості тканин пародонта до негативного впливу екологічних агентів, є актуальними та недостатньо вивченими. Метою дослідження є вивчення морфологічних особливостей регенераційної невроми травмованого периферійного нерва за умов негайного зварного епіневрального з’єднання кукс та часткової іммобілізації кінцівки.

Метою було вивчення морфологічних особливостей регенераційної невроми травмованого периферійного нерва за умов негайного зварного епіневрального з’єднання кукс та часткової іммобілізації кінцівки.

152