Supplemental Information for: Environmental Impacts of Surgical Procedures: Life Cycle Assessment of Hysterectomy in the United States

Cassandra L. Thiel1*‡, Matthew Eckelman3‡, Richard Guido2‡, Matthew Huddleston1‡, Amy E. Landis5‡, Jodi Sherman4‡, Scott O. Sh rake‡, Noe Copley-Woods2‡, Melissa M. Bilec1‡

AUTHOR ADDRESS

1University of Pittsburgh, Department of Civil and Environmental Engineering
153 Benedum Hall
3700 O’Hara St.
Pittsburgh, PA 15261

2University of Pittsburgh School of Medicine, Magee-Womens Hospital of UPMC, Department of Obstetrics and Gynecology
300 Halket St,
Pittsburgh, PA 15213

2University of Pittsburgh School of Medicine, Magee-Womens Hospital of UPMC, Department of Obstetrics and Gynecology
300 Halket St,
Pittsburgh, PA 15213

3Northeastern University, Department of Civil and Environmental Engineering
360 Huntington Ave.,
Boston, Massachusetts 02115

4Yale University School of Medicine, Department of Anesthesiology
333 Cedar Street, TMP 3
P.O. Box 208051
New Haven, CT 06520

5Arizona State University, School of Sustainable Engineering and the Built Environment
PO Box 875306
Tempe, AZ 85287
CONTENTS

LIFE CYCLE INVENTORY: DATABASE SELECTION AND ALLOCATION DETAILS 1

ECONOMIC INPUT-OUTPUT LCA SETUP AND LCIA ... 6

MONTE CARLO ANALYSIS ... 7

REFERENCES .. 11

Tables

Table 1: Life Cycle Inventory Databases and Processes Chosen for Hysterectomy Materials found in MSW ... 2

Table 2: Additional LCI Databases and Processes ... 4

Table 3: Average Weight and Estimated Lifespan of Reusable Surgical Linens .. 4

Table 4: Reusable Stainless Steel Surgical Instrument Weight and Quantity per Hysterectomy ... 5

Table 5: Distributions of MSW Materials Weighed during Waste Auditing; LN = Lognormal MEV = Most Extreme Value; No Dist = No distribution (assumed an average); Para. = Parameter 9

Table 6: Impact Category Characterization and Conversion for EIO-LCA and Process LCA .. 10
Life Cycle Inventory: Database selection and allocation details

Following collection of material weights, energy values, and cost data described in the Methods section of the main text, unit processes from the life cycle inventory database were assigned to the data collected as shown in Table 1 and Table 2. Unit processes link data collected directly during the procedure to the emissions from the material extraction, production, and transportation of each item. For this study, researchers gave preference first to US based databases, i.e. USLCI [1]; second to the European database ecoinvent v2.2 [2]; and finally, alternate databases were selected if unit processes were not available in either USLCI or ecoinvent.

Certain unit processes were modified based on literature to more accurately reflect the product/process represented. Disposable gowns, drapes, and bluewrap from the OR are a type of polypropylene fabric also known as spunbond-meltblown-spunbond polypropylene (SMS PP). Since SMS PP products account for an average of 23% of the MSW by weight for all hysterectomy types, the existing PP process within the USLCI database was modified based on literature to more accurately reflect impacts associated with manufacturing plastics into a fabric form [3]. The USLCI electricity process was modified to match the energy mix of Pennsylvania for 2012 which is 73% coal, 22% nuclear, 3% natural gas, and less than 1% of hydropower, oil, and non-hydro renewables [4].
Table 1: Life Cycle Inventory Databases and Processes Chosen for Hysterectomy Materials found in MSW

Material Type	LCI Database	Production Process Name	LCI Database	Disposal Process Name
Cotton	ecoinvent unit process	Textile, woven cotton, at plant/GLO U	ecoinvent unit process	Disposal, inert material, 0% water, to sanitary landfill/CH U
PVC	ecoinvent unit process	Polyvinylchloride, at regional storage/RER U	ecoinvent unit process	Disposal, polyvinylchloride, 0.2% water, to sanitary landfill/CH U
HDPE	ecoinvent unit process	Polyethylene, HDPE, granulate, at plant/RER U	ecoinvent unit process	Disposal, polyethylene, 0.4% water, to sanitary landfill/CH U
LDPE	ecoinvent unit process	Polyethylene, LDPE, granulate, at plant/RER U	ecoinvent unit process	Disposal, polyethylene, 0.4% water, to sanitary landfill/CH U
PU Foam	ecoinvent unit process	Polyurethane, flexible foam, at plant/RER S	ecoinvent unit process	Disposal, polyurethane, 0.2% water, to sanitary landfill/CH U
PP	modified ecoinvent unit process	SMS PP Disposable Gown - with energy and materials from C. Ponder dissertation	ecoinvent unit process	Disposal, polypropylene, 15.9% water, to sanitary landfill/CH U
Styrofoam	ecoinvent unit process	Polystyrene, general purpose, GPPS, at plant/RER U	ecoinvent unit process	Disposal, polystyrene, 0.2% water, to sanitary landfill/CH U
Stainless Steel	ecoinvent unit process	Stainless steel hot rolled coil, annealed & pickled, elec. arc furnace route, prod. mix, grade 304 RER U	ecoinvent unit process	Disposal, steel, 0% water, to inert material landfill/CH U
Aluminum	USLCI	Aluminum, secondary, shape casted/RNA	ecoinvent unit process	Disposal, aluminium, 0% water, to sanitary landfill/CH U
Isoprene	ecoinvent unit process	Synthetic rubber, at plant/RER U	ecoinvent unit process	Disposal, plastics, mixture, 15.3% water, to sanitary landfill/CH U
Nitrile	USLCI	Polybutadiene, at plant/RNA	ecoinvent unit process	Disposal, plastics, mixture, 15.3% water, to sanitary landfill/CH U
The selection of environmental impact database processes for reusable materials was identical to that of single-use or disposable materials. Allocation of impacts due to production and disposal of reusable materials was allocated based on the estimated lifespan of the materials, as listed in Table 3 for linens and Table 4 for stainless steel. Limited information was available on the environmental impacts of the sterilization process and associated products for reusable materials. In the case of linen sterilization, a quantity of 27.4 g of detergent per kg of cotton laundered and 0.2 kWh of electricity per kg of cotton laundered was assumed based on previous literature, specifically a 1999 study based in Germany [9-11]. Though a US-based literature of domestic laundry estimates the electrical consumption per kilogram of cotton at 0.87 kWh, lower estimates are expected for industrial laundry facilities [12]. The sterilization of surgical trays was based off of an energy consumption estimate (2.57 kWh per stainless steel surgical instrument tray) of the sterilizing and autoclaving machines at Magee [13]. No estimate was available for the types or numbers of chemicals or solvents used to sterilize the stainless steel surgical instruments.

Neoprene	ecoinvent unit process	Synthetic rubber, at plant/RER U	ecoinvent unit process	Disposal, plastics, mixture, 15.3% water, to sanitary landfill/CH U
Rubber	ecoinvent unit process	Synthetic rubber, at plant/RER U	ecoinvent unit process	Disposal, plastics, mixture, 15.3% water, to sanitary landfill/CH U
Paper	ecoinvent unit process	Kraft paper, bleached, at plant/RER U	ecoinvent unit process	Disposal, paper, 11.2% water, to sanitary landfill/CH U
Paperboard	ecoinvent unit process	Solid bleached board, SBB, at plant/RER U	ecoinvent unit process	Process-specific burdens, sanitary landfill/CH U
Glass	ecoinvent unit process	Packaging glass, white, at plant/RER U	ecoinvent unit process	Disposal, glass, 0% water, to inert material landfill/CH U
Wood	USLCI	Plywood, at plywood plant, US SE/kg/US	ecoinvent unit process	Process-specific burdens, sanitary landfill/CH U
Complex Instruments (Sharps)	EIO-LCA	Sector # 339112: Surgical and Medical Instrument Manufacturing	EIO-LCA	Sector #562000: Waste management and remediation services
Table 2: Additional LCI Databases and Processes

Material Type	LCI Database	Process Name
Chemo/Path Waste (Uterus)	ecoinvent unit	Disposal, biowaste, 60% H2O, to municipal incineration, allocation price/CH U
Waste Transport	ecoinvent unit	1 tkm Transport, lorry 16-32t, EURO3/RER S (of project Ecoinvent system processes)
Recycling	ecoinvent unit	Recycling PP/RER U
Recycling	ecoinvent unit	Recycling PET/RER U
Recycling	ecoinvent unit	Recycling PS/RER U
Reusable Linens	ecoinvent unit	Textile, woven cotton, at plant/GLO U
Stainless Steel Surgical Instruments	ecoinvent unit	Stainless steel hot rolled coil, annealed & pickled, elec. arc furnace route, prod. mix, grade 304 RER U
Laundry Detergent	ecoinvent unit	Sodium perborate, tetrahydrate, powder, at plant/RER S
Electricity	modified USLCI	Electricity 2012 PA mix
Natural Gas	USLCI	Natural gas, combusted in industrial equipment/RNA

Table 3: Average Weight and Estimated Lifespan of Reusable Surgical Linens

Cotton Material	Weight (kg)	Lifespan (# Uses)
Sheet	0.292	50
Blanket	0.698	52
Pillowcase	0.098	32
Blue Towel	0.054	10
Under-Patient Chuck	0.51	42
Gown	0.344	48
Table 4: Reusable Stainless Steel Surgical Instrument Weight and Quantity per Hysterectomy

Stainless Steel Surgical Instrument Tray Name	Weight (kg)	Abdominal (# trays / 14 cases)	Vaginal (# trays / 16 cases)	Laparoscopic (# trays / 13 cases)	Robotic (# trays / 16 cases)
Cysto Pan Tray	2.032	2	4	0	5
Vaginal Hyst Tray	10.6	0	16	2	0
Book Walter 1	10.7	1	0	0	0
Book Walter Table Post Set	10.7	1	0	0	0
Laparomtoy Tray	11.1	15	0	0	0
Laparomtoy Mayo String	5.0	9	0	0	0
Mini-Laparotomy Tray	9.71	1	0	0	0
Oncology Tray	3.0	5	0	0	0
0 Degree Cysto Scope	0.492	3	0	0	0
Hd Camera	2.132	3	2	10	5
Advanced Laparoscopy	5.7	0	0	13	5
Olympus Operative Laparoscopy	4.732	0	0	13	1
D&C Pan	10.1	0	1	13	2
Morcellator Knife	2.432	0	0	3	0
Karl-Strotz Morcillator	4.132	0	0	4	0
Cysto Pan Tray	2.032	0	0	3	4
Pellosi Uterine Manipulator	2.5	0	0	9	0
Bariatric High Def Scope	2.432	0	0	5	0
0-Degree Bariatric Scope	2.253	0	0	11	0
Abdominal Sacropexy	8.232	0	0	1	0
0-Degree Gyne Scope	2.432	0	0	1	4
Davinci Scope	2.432	0	0	0	16
Davinci General Top	8.7	0	0	0	15
Davinci General Bottom	8.7	0	0	0	16
Rigid Davinci Tray	8.2	0	0	0	3
Average number of trays per case		3	2	7	5
Ave. weight per case allocated over 300 uses		0.064	0.040	0.105	0.088

Anesthetic type was based on anesthesiologist preference, per routine. Type and concentration of anesthetics were recorded at one-minute intervals and transcribed from the medical record. The fresh gas
flow rates of oxygen and other carrier gases flowing from the anesthetic machine to the breathing system were determined by clinical staff to be 2L/min during anesthesia maintenance, with rates of 5L/min during induction and emergence phases (the first and last 5 minutes of IA use) per UPMC routine regardless of type used. Inhaled anesthetics (IA) undergo little in vivo metabolism, and upwards of 95% are exhaled. Intravenous propofol was used in combination with spinal anesthetics in 4 vaginal cases. Administered propofol undergoes complete biotransformation, and wasted drug was assumed incinerated in accordance with manufacturer recommendation. Anesthetic data were not available from one robotic case. The amount of CO2 used to inflate abdomens during laparoscopic and robotic hysterectomies was measured by Magee staff at 2L per minute during insufflation of the abdomen. None of these gases are captured, and they were vented to the atmosphere in their entirety per standard.

The Inhalation Anesthetics considered here include desflurane, sevoflurane, and nitrous oxide, and are themselves greenhouse gases with the Global Warming Potential (GWP100, the heat trapping property over 100 years) of 2540, 130, and 310 kg CO2-equivalent per kg of IA respectively[5, 6]. This study also utilized GHG emission factors for the production, use, and emissions of IA and propofol (total life cycle) as determined from previous literature [5-8].

Economic Input-Output LCA Setup and LCIA

Monetary values for EIO-LCA were evaluated using the purchaser price and assigned background emissions using the corresponding sectors within the North American Industry Classification System (NAICS). For the production of disposable complex medical devices, NAICS sector 339112 *Surgical and Medical Instrument Manufacturing* was selected. The disposal of these devices in Magee’s sharps waste stream was also evaluated with EIO-LCA through NAICS sector 562000: *Waste Management and Remediation Services*, which includes the processing of sharps-designated medical equipment. The price paid per unit for each piece of medical equipment was collected from Magee purchasing staff and matched to the number of medical equipment used in each hysterectomy based off of collected peel pack
data. The monetary values were deflated from 2012 US dollars to 2002 dollars, the basis for the most recent EIO-LCA model, using Producer Price Index Industry (PPI) Data from the US Bureau of Labor Statistics for medical instrument manufacturing[14].

Environmental impacts from the inputs and outputs of the four types of hysterectomy were calculated using TRACI 2.1 version 1.0 for both process- and EIO-LCA [15]. Embodied energy or a summation of all energy used during the material’s life cycle, was calculated using Cumulative Energy Demand (CED) version 1.08 developed by ecoinvent version 2.0 and PRé Consultants [16, 17]. Impact categories analyzed and reported include greenhouse gas emissions (with the IPCC’s 100-year time horizon calculations for the potency of greenhouse gases relative to CO2 [15]), acidification, carcinogens, non-carcinogens, respiratory effects, eutrophication, ozone depletion, ecotoxicity, smog, and CED.

Monte Carlo Analysis

We utilized Monte Carlo Analysis (MCA) to account for the uncertainty inherent in life cycle inventory data and the variability of material and energy consumption for each type of hysterectomy. Distributions of material and energy quantities used in each type of hysterectomy were fitted to normal, lognormal, most extreme value using Anderson Darling (A-D) tests for goodness of fit, shown in Table 5. Variability of the complex, electrical laparoscopic and robotic instruments was incorporated into the MCA as a triangular distribution based on the number and cost of individual tools purchased by Magee for those cases. Where A-D tests showed distributions were not normal, lognormal, or most extreme value, a designation of “no distribution” was given and a single value (i.e. the average) was used in the MCA. Because electricity data was collected as an average and not on a per-case basis, the variability in electrical and energy consumption in the MCA was based off of the duration of surgery. The MCA randomly sampled 100,000 times from the probability distributions, creating an overall distribution (which was fit using A-D) of the GWP of each hysterectomy from which a 90% confidence interval was determined.
Unit conversion was necessary to match the impact categories Acidification, Carcinogenics, NonCarcinogenics, and EcoToxicity with the process LCA results as seen in Table 6. A characterization factor of 50.79 kg SO2 eq / H+ mole was used for acidification potential conversion. EIO-LCA reports human health toxicity impacts (cancer and non-cancer) in benzene and toluene equivalent emissions to air. For this reason, TRACI characterization factors of 2.97e-7 CTUh / kg benzene to air and 5.3e-8 CTUh / kg toluene to air were chosen, where CTUh stands for Cumulative Toxicity Unit for humans. EIO-LCA reports ecotoxicity as kg 2,4D to continental freshwater, and a characterization factor of 8.60e2 CTUe / kg 2,4D was used, where CTUe stands for Cumulative Toxicity Unit for the environment. For the EIO-LCA portion of this study, the effects of chemicals’ fate to soil and water were not considered in the categories related to human toxicity, nor were chemicals’ fate to air and soil for ecotoxicity.
Material	Abdominal Hysterectomy	Vaginal Hysterectomy	Laparoscopic Hysterectomy	Robotic Hysterectomy					
	Dist. Type	Para. 1	Para. 2	Dist. Type	Para. 1	Para. 2	Dist. Type	Para. 1	Para. 2
Gowns	Normal	1.096	0.563	Normal	1.46	0.324	Normal	1.2871	0.354
Blue Drape	No Dist.	0.42	0	Normal	0.51	0.43	No Dist.	0.32	0
Blue Towels, Clean Gauze	No Dist.	1.009	0	No Dist.	0.54	0	No Dist.	0.709	0
CSR Blue Wrap	No Dist.	0.346	0	No Dist.	1.34	0.562	Normal	0.98	0.442
Purple Gloves	Normal	0.117	0.068	Normal	0.082	0.055	LN	-2.259	0.3731
Tan Gloves	Normal	0.162	0.038	Normal	0.153	0.063	Normal	0.21	0.071
Blue Gloves	Normal	0.083	0.062	LN	-2.406	0.6773	LN	-2.508	0.5962
Green Gloves	No Dist.	0.004	0	No Dist.	0.01	0	No Dist.	0.005	0
Rubber	No Dist.	0.042	0	No Dist.	0.035	0	No Dist.	0.029	0
Hard Plastic (#5)	LN	-1.73	0.6504	No Dist.	0.2734	0	LN	-1.988	0.6052
Soft Plastic	No Dist.	0.508	0	No Dist.	0.5107	0	No Dist.	0.693	0
Styrofoam	No Dist.	0.023	0	No Dist.	0.032	0	No Dist.	0.018	0
PU Foam	No Dist.	0.004	0	No Dist.	0.005	0	No Dist.	0.11	0
Cardboard/Paperboard	LN	-3.23	1.2096	No Dist.	0.0571	0	MEV	0.149	0.118
Glass	Normal	0.14	0.139	Normal	0.23	0.18	Normal	0.16	0.138
Paper	Normal	0.35	0.131	No Dist.	1.237	0	Normal	0.362	0.111
Syringes	Normal	0.088	0.034	LN	-2.268	0.9233	Normal	0.16	0.079
Aluminum/Metal	LN	-2.77	0.5402	No Dist.	0.06	0.045	LN	-3.324	0.6075
IV Bags	MEV	0.038	0.057	MEV	0.068	0.069	Normal	0.07	0.065
Wood	No Dist.	0.002	0	No Dist.	0.002	0	No Dist.	0.002	0
Metal (Non-Aluminum)	No Dist.	0	0	No Dist.	0.004	0	No Dist.	0.001	0
Table 6: Impact Category Characterization and Conversion for EIO-LCA and Process LCA

Impact Category	EIO-LCA Units	Process LCA Units (TRACI)	EIO-LCA Impacts per $1US2002 Purchaser	CF (TRACI)	EIO-LCA Impacts per $1US2002 Purchaser (Converted)
Ozone depletion	kg CFC-11e	kg CFC-11 eq	0.000002	1	0.000002
Global warming	kg CO2e	kg CO2 eq	0.403317	1	0.403317
Smog	kg O3e	kg O3 eq	0.000002	1	0.000002
Acidification	kg SO2e	mol H+ eq	0.002117	50.79	0.10752243
Eutrophication	kg Ne	kg N eq	0.000068	1	0.000068
Carcinogenics	kg benzene eq	CTUh	0.000037	2.97E-07	1.0989E-11
Non carcinogenics	kg toluene eq	CTUh	0.023076	5.3E-08	1.22303E-09
Respiratory effects	kg PM10e	kg PM10 eq	0.000698	1	0.000698
Ecotoxicity	kg 2,4D	CTUe	0.000018	860	0.01548
Energy	MJ	MJ	5.87	1	5.87
References

1. NREL U.S. Life-Cycle Inventory Database (USLCI). http://www.nrel.gov/pci/database/

2. Frischknecht, R.; Jungbluth, N.; Althaus, H.; Doka, G.; Dones, R.; Heck, T.; Hellweg, S.; Hischier, R.; Nemecek, T.; Rebitzer, G., The ecoinvent Database: Overview and Methodological Framework (7 pp). The International Journal of Life Cycle Assessment 2005, 10, (1), 3-9.

3. Ponder, C. S. Life cycle inventory analysis of medical textiles and their role in prevention of nosocomial infections. North Carolina State University, Raleigh, North Carolina 2009.

4. EPA, U., eGRID2010 Version 1.1. In December 31, 2010 ed.; US Environmental Protection Agency: 2007.

5. Sherman, J.; Le, C.; Lamers, V.; Eckelman, M., Life Cycle Greenhouse Gas Emissions of Anesthetic Drugs. Anesthesia & Analgesia May 2012, 114, (5), 1086-1090.

6. Sulbaek Andersen, M. P.; Sander, S. P.; Nielsen, O. J.; Wagner, D. S.; Sanford, T. J.; Wallington, T. J., Inhalation anaesthetics and climate change. British Journal of Anaesthesia 2010, 105, (6), 760-766.

7. Am Society of Anesthesiologists (ASA), Task Force on Occupational Health. Waste Anesthetic Gases: An Update on Information for Management in Anesthetizing Areas and the Postanesthesia Care Unit. ASA Newsletter 1999.

8. Am Society of Anesthesiologists (ASA), Task Force on Trace Anesthetic Gases. Waste Anesthetic Gases: Information for Management in Anesthetizing Areas and the Postanesthesia Care Unit ASA Newsletter 1999.

9. Dettenkofer, M.; Grießhammer, R.; Scherrer, M.; Daschner, F., Life-Cycle Assessment of single-use versus reusable surgical drapes (cellulose/polyethylene - Mixed cotton system). Einweg- Versus Mehrweg-Patientenabdeckung im Operationssaal. Ökobilanz: Vergleich von Zellstoff-Polyethylen- und Baumwoll-Mischabdeckung 1999, 70, (4), 485-492.

10. Bajpai, D.; Tyagi, V., Laundry detergents: an overview. Journal of oleo science 2007, 56, (7), 327-340.

11. Barrie, D., How hospital linen and laundry services are provided. Journal of Hospital Infection 1994, 27, (3), 219-235.

12. Blackburn, R.; Payne, J., Life cycle analysis of cotton towels: impact of domestic laundering and recommendations for extending periods between washing. Green Chemistry 2004, 6, (7), G59-G61.

13. Campion, N.; Thiel, C. L.; DeBlois, J.; Woods, N. C.; Landis, A. E.; Bilec, M. M., Life cycle assessment perspectives on delivering an infant in the US. Science of the Total Environment 2012, 425, (0), 191-198.
14. BLS, Producer Price Index Industry Data. In U.S. Department of Labor - Bureau of Labor Statistics, Ed. 2013.

15. Bare, J. C.; Norris, G. A.; Pennington, D. W.; McKone, T., TRACI: The tool for the reduction and assessment of chemical and other environmental impacts. *Journal of Industrial Ecology* **2003, 6**, (3-4), 49-78.

16. Frischknecht R., J. N., et.al. *Implementation of Life Cycle Impact Assessment Methods.*; Swiss Centre for LCI.: Duebendorf, CH, 2003.

17. Frischknecht, R.; Jungbluth, N.; Althaus, H.; Bauer, C.; Doka, G.; Dones, R.; Hischier, R.; Hellweg, S.; Humbert, S.; Köllner, T. *Implementation of life cycle impact assessment methods; ecoinvent report: 2007.*