GENERALIZATION OF FROBENIUS’ THEOREM FOR GROUP DETERMINANTS

NAOYA YAMAGUCHI

ABSTRACT. Frobenius built a representation theory of finite groups in the process of obtaining the irreducible factorization of the group determinant.

Here, we give a generalization of Frobenius’ theorem. The generalization leads to a corollary on irreducible representations of finite groups.

1. INTRODUCTION

In this paper, we give a generalization of Frobenius’ theorem. In addition, the generalization leads to a corollary on irreducible representations of finite groups.

Let G be a finite group, \hat{G} a complete set of irreducible representations of G over \mathbb{C}, and $R = \mathbb{C}[x_g] = \mathbb{C}[x_g; g \in G]$ the polynomial ring in $\{x_g \mid g \in G\}$ with coefficients in \mathbb{C}. The group determinant $\Theta(G) \in R$ is the determinant of a matrix whose elements are independent variables x_g corresponding to $g \in G$. Frobenius proved the following theorem about the irreducible factorization of the group determinant.

Theorem 1 (Frobenius [2]). Let G be a finite group, for which we have the irreducible factorization,

$$\Theta(G) = \prod_{\varphi \in \hat{G}} \det \left(\sum_{g \in G} \varphi(g)x_g \right)^{\deg \varphi}.$$

Frobenius built a representation theory of finite groups in the process of obtaining Theorem 1. Here, we give a generalization of Theorem 1, i.e., a generalization of Frobenius’ theorem. The theorem is as follows.

Theorem 2 (Generalization of Forbenius’ theorem). Let G be a finite group, H a subgroup of G, L a left regular representation from RG to $\text{Mat}([G : H], RH)$, $\alpha = \sum_{g \in G} x_g g \in RG$, and $L(\alpha) = \sum_{h \in H} C_h h$, where $C_h \in \text{Mat}([G : H], R)$. Then, we have

$$\Theta(G) = \prod_{\psi \in H} \det \left(\sum_{h \in H} \psi(h) \otimes C_h^{(G : H)} \right)^{\deg \psi}.$$

Date: November 4, 2016.

2010 Mathematics Subject Classification. Primary 20C15; Secondary 15A15; 22D20.

Key words and phrases. Frobenius’ theorem; noncommutative determinant; group determinant; group algebra.
Corollary 3. Let G be a finite group and H a subgroup of G. For all $\varphi \in \hat{G}$, we have

$$\deg \varphi \leq |G : H| \times \max \left\{ \deg \psi \mid \psi \in \hat{H} \right\}.$$

Theorem 2 is obtained by using left regular representations of the group algebra. In Section 3, we review the left regular representation and properties of the left regular representation needed for proving Theorem 2. The last section proves a generalization of Theorem 1.

2. Group determinant

Let G be a finite group, $\{x_g \mid g \in G\}$ be independent commuting variables, and $R = \mathbb{C}[x_g] = \mathbb{C}[x_g; g \in G]$ the polynomial ring in $\{x_g \mid g \in G\}$ with coefficients in \mathbb{C}. The group determinant $\Theta(G)$ is the determinant of the $|G| \times |G|$ matrix $(x_g h)_g \in G$, where $x_g h = x_{g^{-1}} h$, for $g, h \in G$, and it is thus a homogeneous polynomial of degree $|G|$ in x_g. Frobenius proved the following theorem about the factorization of the group determinant.

Theorem 4 (Frobenius [2]). Let G be a finite group, for which we have the irreducible factorization,

$$\Theta(G) = \prod_{\varphi \in \hat{G}} \det \left(\sum_{g \in G} \varphi(g)x_g \right)^{\deg \varphi}.$$

The above equation holds from the following theorem.

Theorem 5 ([7 Theorem 4.4.4]). Let G be a finite group, $\{\varphi_1, \varphi_2, \ldots, \varphi_s\}$ a complete set of inequivalent irreducible representations of G, $d_i = \deg \varphi_i$, and L_G the left regular representation of G. Then,

$$L_G \sim d_1 \varphi_1 \oplus d_2 \varphi_2 \oplus \cdots \oplus d_s \varphi_s.$$

3. Prepare for the main result

Here, we review the left regular representation of the group algebra and describe some of the properties of the left regular representation that will be needed later.

Let R be a commutative ring, G a group, H a subgroup of G of finite index, and RG the group algebra of G over R whose elements are all possible finite sums of the form $\sum_{g \in G} a_g g$, where $a_g \in R$. We take a complete set $T = \{t_1, t_2, \ldots, t_{|G:H|}\}$ of left coset representatives of H in G, where $|G:H|$ is the index of H in G.

Definition 6 (Left regular representation). For all $A \in \operatorname{Mat}(m, RG)$, there exists a unique $L_T(A) \in \operatorname{Mat}(m|G:H|, RH)$ such that

$$A(t_1 I_m t_2 I_m \cdots t_{|G:H|} I_m) = (t_1 I_m t_2 I_m \cdots t_{|G:H|} I_m)L_T(A).$$

We call the map $L_T : \operatorname{Mat}(m, RG) \ni A \mapsto L_T(A) \in \operatorname{Mat}(m|G:H|, RH)$ the left regular representation from $\operatorname{Mat}(m, RG)$ to $\operatorname{Mat}(m|G:H|, RH)$ with respect to T.

Obviously, L_T is an injective R-algebra homomorphism.

To give an expression for L_T when H is a normal subgroup of G, we will use the Kronecker product. Let $A = (a_{ij})_{1 \leq i \leq m_1, 1 \leq j \leq n_1}$ be an $m_1 \times n_1$ matrix and
Let $B = (b_{ij})_{1 \leq i \leq m_2, 1 \leq j \leq n_2}$ an $m_2 \times n_2$ matrix. The Kronecker product $A \otimes B$ is the $(m_1 m_2) \times (n_1 n_2)$ matrix

$$A \otimes B = \begin{bmatrix} a_{11} B & a_{12} B & \cdots & a_{1n_1} B \\ a_{21} B & a_{22} B & \cdots & a_{2n_1} B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m_1} B & a_{m_1} B & \cdots & a_{m_1 n_1} B \end{bmatrix}.$$

Let

$$P = \begin{bmatrix} t_1 I_m \\ t_2 I_m \\ \vdots \\ t_{[G:H]} I_m \end{bmatrix}.$$

Now, we have the following lemma.

Lemma 7 ([12] Lemma 12). Let H be a normal subgroup of G, L_T the left regular representation from $	ext{Mat}(m, RG)$ to $\text{Mat}(m[G : H], RH)$ with respect to T, $L_{G/H}$ the left regular representation from $R(G/H)$ to $\text{Mat}([G/H], R\{e\})$ with respect to G/H, and $A = \sum_{t \in T} tA_t \in \text{Mat}(m, RG)$, where $A_t \in \text{Mat}(m, RH)$. Accordingly, we have

$$L_T(A) = P^{-1} \left(\sum_{t \in T} L_{G/H}(tH) \otimes tA_t \right) P.$$

Let $K \subset H \subset G$ be a sequence of groups, $H = u_1 K \cup u_2 K \cup \cdots \cup u_{[H,K]}$ and $U = \{u_1, u_2, \ldots, u_{[H,K]}\}$. We can now prove the following theorem.

Lemma 8 ([12] Lemma 13). Let $L_T : \text{Mat}(m, RG) \rightarrow \text{Mat}(m[G : H], RH)$ the representation with respect of T and $L_U : \text{Mat}(m[G : H], RH) \rightarrow \text{Mat}(m[G : K], RK)$ the representation with respect of U. Then there exists a unique representation L_V from $\text{Mat}(m, RG)$ to $\text{Mat}(m[G : K], R\{e\})$ with respect to V such that

$$L_V = L_U \circ L_T$$

where $V = \{v_1, v_2, \ldots, v_{[G : K]}\}$ is a complete set of left coset representatives of K in G.

The following lemma connects the left regular representation with the group determinant.

Lemma 9 ([12] Lemma 24). Let G be a finite group, $\Theta(G)$ the group determinant of G, $\alpha = \sum_{g \in G} x_g g \in RG$, and $L : RG \rightarrow \text{Mat}([G], R\{e\})$ a left regular representation. We have

$$(\det \circ L)(\alpha) = \Theta(G)e.$$

4. Generalization of Frobenius' theorem

Here, we prove the generalization of Frobenius' theorem. In addition, the proof leads to a corollary on irreducible representations of finite groups.

We define $F_m : \text{Mat}(m, RG) \rightarrow \text{Mat}(m, R)$ by

$$F_m \left(\sum_{g \in G} x_{ij}(g)g \right)_{1 \leq i \leq m, 1 \leq j \leq m} = \left(\sum_{g \in G} x_{ij}(g) \right)_{1 \leq i \leq m, 1 \leq j \leq m}.$$
where \(x_{ij}(g) \in R \). We denote \(F_m(A) \) by \(A^{F_m} \) for all \(A \in \text{Mat}(m, RG) \). Then, \(F_m \) is an \(R \)-algebra homomorphism that satisfies with \(\det \circ F_m = F_1 \circ \det \).

Let \(G \) be a finite group and \(K \) a normal subgroup of \(G \) and \(H \). The lemmas will be needed later.

Lemma 10. Let \(H \) be a normal subgroup of \(G \), \(L \) a left regular representation from \(\text{Mat}(m, RG) \to \text{Mat}(m[G : H], RH) \), and \(A = \sum_{t \in T} tA_t \), where \(A_t \in \text{Mat}(m, RH) \).

We have

\[
(\text{Det} A)^{F_1} = (\det \circ F_m[G : H] \circ L)(A) = \prod_{\varphi \in \hat{G}/H} \det \left(\sum_{t \in T} \varphi(tH) \otimes A_t^{F_m} \right).
\]

Proof. Let \(L \sim \varphi'_1 \oplus \varphi'_2 \oplus \cdots \oplus \varphi'_{s'} \) where \(\varphi'_i \) is an irreducible representation of \(G \). From Lemma 7 and Theorem 5 we find that

\[
(\det \circ F_m[G : H] \circ L)(A)
= \det \left(P^{-1} \left(\sum_{t \in T} L_{G/H}(tH) \otimes tA_t \right) P \right)^{F_m[G : H]}
= \det \left(\sum_{t \in T} \begin{bmatrix} \varphi'_1(tH) & \varphi'_2(tH) & \cdots & \varphi'_{s'}(tH) \end{bmatrix} \otimes A_t^{F_m} \right)
= \prod_{\varphi \in \hat{G}/H} \det \left(\sum_{t \in T} \varphi(tH) \otimes A_t^{F_m} \right)^{\deg \varphi}.
\]

This completes the proof. \(\square \)

Lemma 11. Let \(L : \text{Mat}(m, RG) \to \text{Mat}(m[G : H], RH) \) be a left regular representation, \(A = \sum_{v \in V} vB_v \), and \(\Lambda(A) = \sum_{u \in U} uC_u \), where \(B_v \in \text{Mat}(m, RK) \) and \(C_u \in \text{Mat}(m[G : H], RK) \). We have

\[
\prod_{\varphi \in \hat{G}/R} \det \left(\sum_{v \in V} \varphi(vK) \otimes B_v^{F_m} \right)^{\deg \varphi} = \prod_{\psi \in \hat{H}/K} \det \left(\sum_{u \in U} \psi(uK) \otimes C_u^{F_m[G : H]} \right)^{\deg \psi}.
\]
Proof. From Lemma 8 and 10, we have
\[
\prod_{\varphi \in \hat{G}/K} \det \left(\sum_{v \in V} \varphi(vK) \otimes B_v^{F_1} \right)^{\deg \varphi} = \left(\det \circ F_{m[G:K]} \circ L_V \right)(A)
\]
\[
= \left(\det \circ F_{m[G:K]} \circ L_U \circ L_T \right)(A)
\]
\[
= \left(\det \circ F_{m[G:K]} \circ L_U \circ L \right)(A)
\]
\[
= \left(\det \circ F_{m[G:K]} \circ L_U \right) \left(\sum_{u \in U} uC_u \right)
\]
\[
= \prod_{\varphi \in \hat{H}/K} \det \left(\sum_{u \in U} \psi(uK) \otimes C_u^{F_{m[G:H]}} \right)^{\deg \psi}
\]
This completes the proof. \[\square\]

The following is the proof of the generalization of Frobenius’ theorem.

Theorem 12. Let \(G \) be a finite group, \(\Theta(G) \) the group determinant of \(G \), \(H \) a subgroup of \(G \), \(L \) a left regular representation from \(RG \) to \(\text{Mat}(\mathbb{Z}[G:H], RH) \), \(\alpha = \sum_{g \in G} xg \in RG \), and \(L(\alpha) = \sum_{h \in H} C_h h \), where \(C_h \in \text{Mat}(\mathbb{Z}[G:H], R) \). We have
\[
\Theta(G) = \prod_{\psi \in \hat{H}} \det \left(\sum_{h \in H} \psi(h) \otimes C_h^{F_{m[G:H]}} \right)^{\deg \psi}.
\]

Proof. For all \(v \in V \), there exists \(B_v \in \text{Mat}(m, R\{e\}) \) such that
\[
\Theta(G) = (\Theta(G)e)^{F_1}
\]
\[
= \prod_{\varphi \in \hat{G}/\{e\}} \det \left(\sum_{v \in V} \varphi(vK) \otimes B_v^{F_1} \right)^{\deg \varphi}
\]
\[
= \prod_{\psi \in \hat{H}/\{e\}} \det \left(\sum_{u \in U} \psi(u\{e\}) \otimes C_u^{F_{m[G:H]}} \right)^{\deg \psi}
\]
\[
= \prod_{\varphi \in \hat{H}} \det \left(\sum_{h \in H} \psi(h) \otimes C_h^{F_{m[G:H]}} \right)^{\deg \psi}
\]
from Lemma 9, 10, and 11 \[\square\]

The polynomial ring \(\mathbb{C}[x_g] \) is a unique factorization domain. Therefore, we have the following corollary from Theorem 4 and 12.

Corollary 13. Let \(G \) be a finite group and \(H \) a subgroup of \(G \). For all \(\varphi \in \hat{G} \), we have
\[
\deg \varphi \leq [G : H] \times \max \left\{ \deg \psi \mid \psi \in \hat{H} \right\}.
\]
Proof. We have
\[
\deg \varphi = \deg \left(\det \left(\sum_{g \in G} \varphi(g)x_g \right) \right)
\leq \max \left\{ \deg \left(\det \left(\sum_{h \in H} \psi(h) \otimes C_u^{F[G,H]} \right) \right) \mid \psi \in \hat{H} \right\}
= \max \left\{ \deg \psi \times |G : H| \mid \psi \in \hat{H} \right\}
= |G : H| \times \max \left\{ \deg \psi \mid \psi \in \hat{H} \right\}.
\]
This completes the proof. □

Remark that Corollary 13 follows from Frobenius reciprocity[6].
Acknowledgments

I am deeply grateful to Prof. Hiroyuki Ochiai, Prof. Geoffrey Robinson and Dr. Benjamin Sambale who provided helpful comments and suggestions. Also, I would like to thank my colleagues in the Graduate School of Mathematics of Kyushu University, in particular Yuka Suzuki for comments and suggestions. I would also like to express my gratitude to my family for their moral support and warm encouragements. This work was supported by a grant from the Japan Society for the Promotion of Science (JSPS KAKENHI Grant Number 15J06842).

REFERENCES

[1] ASLAKSEN, Helmer. Quaternionic determinants. The Mathematical Intelligencer, 1996, 18.3: 57–65.
[2] CONRAD, Keith. On the origin of representation theory. ENSEIGNEMENT MATHEMATIQUE, 1998, 44: 361–392.
[3] FORMANEK, Edward; SIBLEY, David. The group determinant determines the group. Proceedings of the American Mathematical Society, 1991, 112.3: 649–656.
[4] ISAACS, I. Martin. Character theory of finite groups. Courier Corporation, 2013.
[5] JOHNSON, Kenneth W. On the group determinant. In: Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press, 1991, 109.02: 299–311.
[6] KONDO, Takeshi. Group theory, Iwanami Shoten, 2002 (in japanese).
[7] STEINBERG, Benjamin. Representation theory of finite groups: an introductory approach. Springer Science & Business Media, 2011.
[8] UMEDA, Tōru. On some variants of induced representations, Symposium on Representation Theory 2012, 2012, 7–17 (in Japanese).
[9] VAN DER WAERDEN, Bartel L. A history of algebra: from al-Khwārizmī to Emmy Noether. Springer Science & Business Media, 2013.
[10] YAMAGUCHI, Naoya. Factorization of group determinant in some group algebras. arXiv preprint arXiv:1405.1909, 2014.
[11] YAMAGUCHI, Naoya. An extension and a generalization of Dedekind’s theorem. arXiv preprint arXiv:1601.08170, 2016.
[12] YAMAGUCHI, Naoya. Factorizations of group determinant in group algebra for any abelian subgroup. arXiv preprint arXiv:1610.06047, 2016.
[13] YAMAGUCHI, Naoya. Proof of some properties of transfer using noncommutative determinants. arXiv preprint arXiv:1602.08667, 2016.

Naoya Yamaguchi
Graduate School of Mathematics
Kyushu University
Nishi-ku, Fukuoka 819-0395
Japan
n-yamaguchi@math.kyushu-u.ac.jp