Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Crimean-Congo hemorrhagic fever in children

Hasan Tezer a,⁎, Iclal Ayrancı Sucaklı a, Tulin Revide Saylı a, Elif Celikel a, Ibrahim Yakut a, Ateş Kara b, Bahattin Tunca, Onder Ergonul c

a Department of Pediatrics, Republic of Turkey Ministry of Health Ankara Dışkapı Children’s and Research Hospital, Dışkapı, Ankara, Turkey
b Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
c Marmara University, School of Medicine, Infectious Diseases and Clinical Microbiology, Department, Istanbul, Turkey

ARTICLE INFO

Article history:
Received 24 December 2009
Received in revised form 26 March 2010
Accepted 1 April 2010

Keywords:
Crimean-Congo hemorrhagic fever
Children
Ribavirin

ABSTRACT

Background: Crimean-Congo hemorrhagic fever (CCHF) virus causes a severe disease in humans with a mortality up to 30%. In Turkey there has been an increase in the number of cases during years since 2002. Humans of all ages living in endemic areas, especially those who are working as shepherds and toddlers, have high risk of acquiring CCHF.

Objectives: The epidemiological, clinical, and laboratory characteristics of the children, who were diagnosed as Crimean-Congo hemorrhagic fever (CCHF) were described.

Study design: The children infected with CCHF virus between April 2008 and October 2009, and hospitalised in Ankara Dışkapı Children’s and Research Hospital were included.

Results: Laboratory diagnosis was set by detection of CCHF IgM antibodies and/or genetic detection of CCHF virus. Thirty-one cases included to the study, and all were from the northeastern Anatolia and the southern parts of Black sea region. The mean age was 9.45 ± 4.9 years, the proportion of females was 38.7%. The majority (87%) of the cases had the history of tick bite. There was no fatal case. All the patients had the history of fever. Malaise, tonsillopharyngitis, nausea-vomiting, headache, diarrhea, myalgia and rash were the most common symptoms. The mean AST and ALT levels on the admission were 116 (range 25–389) and 61 (range 8–180) U/L respectively. The mean platelet count on admission was 125,000/mm³, and the lowest was 23,000/mm³. The mean of the lowest white blood cell count was 2353/mm³ and the mean of the highest lactate dehydrogenase was 861 IU/L.

Conclusions: The clinical course of CCHF among children seems to be milder than in adults. Tonsillopharyngitis is a common symptom among children with CCHF.

© 2010 Elsevier B.V. All rights reserved.

1. Background

Crimean-Congo hemorrhagic fever (CCHF) is an often-fatal viral infection described in about 30 countries over the world, and it has the most extensive geographic distribution among the medically significant tickborne viruses. Geographic distribution of CCHF closely approximates the known world distribution of Hyalomma spp. ticks. Humans of all ages living in endemic areas, especially those who are working as shepherds and toddlers, have high risk of acquiring CCHF. The virus belongs to the genus Nairovirus in the Bunyaviridae family and causes severe diseases in humans, with the reported mortality rate of 5–30%. In Turkey, the first cases of CCHF were diagnosed in 2002 and by the year 2008 about 3000 patients with the 5% case fatality rate (CFR) had been reported by the Ministry of Health of Turkey.

The CFR differs in different countries and different hospital settings. The host factors could be one of the factors for different CFR. Different age groups as one of the parameter of host factors are not detailed yet. Here, we present characteristics of children, who had been infected with CCHF. Knowledge of the differences in clinical and laboratory findings between adult and children cases might be useful in investigation.

2. Objective

The aim of this study is to evaluate the epidemiological, clinical, and laboratory characteristics of the children, who were diagnosed as CCHF.

3. Study design

3.1. Patient population

The patients with acute febrile syndrome characterized by fever, malaise, bleeding, leukopenia, and thrombocytopenia in spring and summer months of 2008 and 2009 were included. The patients,
who had positive IgM and/or positive PCR results for CCHFV in blood or tissue, were included to the study. Virologic studies were performed in Refik Saydam Hygiene Center, which is the national reference laboratory in Ankara, Turkey.

The patients were given erythrocyte, fresh frozen plasma, and total blood preparations depending on their hemostasis. The results of diagnostic studies were not available on the same day due to the present situation of reference laboratory; therefore all of the ribavirin therapy was initiated before the laboratory evidence of CCHF infection. Oral ribavirin was administered within a mean of 5.9 ± 1.9 (3–9) days of onset of symptoms at the dosage recommended by the WHO (30 mg/kg as an initial loading dose, then 15 mg/kg every 6 h for 4 days, and then 7.5 mg/kg every 8 h for 6 days). The total duration of treatment was 10 days. STATA 10 (USA) software package was used in the analysis.

4. Results

During the epidemic period April 2008–October 2009, 31 patients were hospitalized. Twelve (38.7%) of the patients were female, the mean age was 9.4 ± 4.8 (range 1–16) years. The majority of the patients had the history of tick bite (87.0%). Crimean-Congo hemorrhagic fever infection was detected among the parents of 5 (16.1%) children. These five children had the history of tick bite as well. Fever, malaise, nausea-vomiting, diarrhea, tonsillopharyngitis, headache and myalgia were the most common presenting symptoms (Table 1). Among the hemorrhagic symptoms, maculopapular rash, petechia and epistaxis were the most common ones.

Extreme laboratory findings were described in Table 2. The hematological abnormalities were as following: thrombocytopenia (27 cases, 87.0%), leucopenia (26 cases, 83.8%) and bicytopenia (24 cases, 77.4%). Bone marrow aspiration was performed in one patient and revealed haemophagocytosis. Seven children (22.5%) were classified as severe case and 17 (54.8%) children were given ribavirin.

Clinical improvement was observed earlier than the laboratory improvement. Body temperature of the patients were elevated in ribavirin. The time from tick bite to onset of disease was reported as 4.5 ± 1.9 (3–9) days. The mean duration for improvement was 6.5 days (4–13 days).

Prothrombin time (PT), activated partial thromboplastin time (aPTT), and international normalized ratio became to the normal levels in average at the 5th day of hospital admission, whereas all other laboratory tests became to normal levels in average after 9 days of hospital admission.

5. Discussion

The CCHF cases in Turkey increased exponentially in recent years. The case fatality rate reported from Ministry of Health of Turkey was 5%.

In previous reports from Turkey including adults, nearly as low as 40–60% of the patients reported the history of tick bites. However, in our study, 87.0% of the patients reported the history of tick bite, similar to the previous article from Turkey in 2008 including the same age group like our patients, suggesting 71.4% of positive history of tick bite history. This could be because of the increased public awareness of the problem in recent years. The time from tick bite to onset of disease was reported as 4 days. In South Africa, the time to onset of disease after exposure to tick bite was 3.2 days, to blood or tissue of livestock was 5 days, and to blood of human cases was 5.6 days. The mean duration of the disease course before the hospital was reported to be 5.5 days in Turkey, and 3.5 days in United Arabic Emirates. However in our study, the average time from onset of the disease to admission to the hospital was 2 days.

Clinical improvement was observed earlier than the laboratory improvement. Prothrombin time (PT) and activated partial thromboplastin time (aPTT), and international normalized ratio became to the normal levels in average at the 5th day of hospital admission, whereas all other laboratory tests became to normal levels in average after 9 days of hospital admission.

Table 1

Demographic and clinical characteristics of the children with CCHF.

Characteristic	n (%)
Male/females ratio	1.6:1
Mean age, years (range)	9.4 ± 4.8 (range 1–16)
History of tick bite	27 (87.0)
Median days from symptoms to admission	2 days (1–6)
Median days of stay in hospital (range)	10 days (3–19 days)
Parents with CCHF	25 (80.6)
Hemorrhagic symptoms	
Petechia	6 (19.3)
Epistaxis	6 (19.3)
Hematuria	5 (16.1)
Gingival bleeding	4 (12.9)
Melena	3 (9.7)
Hematemesis	2 (6.5)
Symptoms and signs (%	
Fever	31 (100)
Malaise	29 (93.5)
Tonsillopharyngitis	23 (74.1)
Nausea-vomiting	21 (67.7)
Headache	14 (45.1)
Diarrhea	12 (38.7)
Myalgia	11 (35.5)
Somniaclone	5 (16.1)
Maculopapular rash	2 (6.5)

Table 2

Laboratory findings.

Characteristic	Mean value (range)
Longest prothrombin time (s)	15.0 (11.2–24)
Longest activated partial thromboplastin time (s)	40.4 (24–95)
Lowest platelet count (platelets/mm3)	75225 (4000–314.000)
Lowest WBC (WBCs/mm3)	2353 (730–8800)
Fibrinogen (U/L)	280 (91–379)
Highest lactic dehydrogenase level (U/L)	861 (245–2502)
Highest creatinine phosphokinase level (U/L)	1044 (33–15402)
Highest aspartate transaminase level (U/L)	239 (25–952)
Highest alanine transaminase level (U/L)	123 (23–601)
to normal levels in average after 9 days of hospital admission.

Fever, malaise, nausea-vomiting, diarrhea, tonsillopharyngitis, headache and myalgia were the most common presenting symptoms (Table 1). Tonsillopharyngitis and abdominal pain were reported as more common symptoms among the children compared to the adults. The proportion of children who had diarrhea were higher than the adult population (20%). Also the rate of myalgia was reported to be more higher comparing to children. The mean lower leucocyte values of children in our study were like the adult CCHF patients, while mean lower platelet count in children with CCHF were found to be lower compared to adult studies. The mean days for clinical improvement is seven, whereas the days for laboratory improvement is nine.

Treatment options for CCHF in children are also limited. Supportive therapy is the most essential part of case management and includes intensive monitoring for volume control and administration of platelets, fresh frozen plasma and erythrocyte preparations. Ribavirin is the recommended antiviral agent for patients with CCHF, although its mechanism of action is not clear. In case management, severe cases should be defined and treated. Severe cases in Turkey are defined according to a revised form of the Swanepoel criteria. It is important to mention that there have been no randomized or controlled studies to confirm the effectiveness of ribavirin against CCHF to date.

Haemolytic anaemia, hypocalcaemia, and hypomagnesaemia were reported in patients treated with ribavirin for severe acute respiratory syndrome. None of these side effects were observed in our patients under ribavirin therapy. Three patients under ribavirin therapy developed sinus bradycardia and returned to normal heart rate after ceasing ribavirin therapy. To our knowledge, sinus bradycardia was not reported before.

In conclusion, the clinical course of CCHF among children seems to be milder than in adults. Tonsillopharyngitis is a common symptom among children with CCHF.

Conflict of interest

The authors declare no conflict of interest.

References

1. Whitehouse CA. Crimean-Congo hemorrhagic fever. Antivir Res 2004;64:145–60.
2. Whitehouse CA. Risk groups and control measures for Crimean Congo hemorrhagic fever. In: Ergonul O, Whitehouse CA, editors. Crimean-Congo hemorrhagic fever: a global perspective. Dordrecht (NL): Springer; 2007. p. 273–80.
3. Ozkurt Z, Kiki I, Erol S, Erdem F, Yilmaz N, Parlak M, et al. Crimean-Congo hemorrhagic fever in Eastern Turkey: clinical features, risk factors and efficacy of ribavirin therapy. J Infect 2006;52:207–15.
4. Ergonul O, Celikbasi A, Dokuozoguz B, Eren S, Baykam N, Esener H. Characteristics of patients with Crimean-Congo hemorrhagic fever in a recent outbreak in Turkey and impact of oral ribavirin therapy. Clin Infect Dis 2004;39:284–7.
5. Ergonul O. Crimean-Congo haemorrhagic fever. Lancet Infect Dis 2006;6:203–4.
6. Gozalan A, Esen B, Fitzner J, Tapar FS, Ozkan AP, Georges-Courbot MC, et al. Crimean-Congo hemorrhagic fever cases in Turkey. Scand J Infect Dis 2007;39:332–6.
7. Tatansever Z, Uzun R, Estrada-Pena A, Ergonul O. Crimean Congo hemorrhagic fever in Turkey. In: Ergonul O, Whitehouse CA, editors. Crimean Congo hemorrhagic fever: a global perspective. Dordrecht (NL): Springer; 2007. p. 59–74.
8. Ergonul O. Clinical and pathologic features of Crimean Congo hemorrhagic fever. In: Ergonul O, Whitehouse CA, editors. Crimean Congo hemorrhagic fever: a global perspective. Dordrecht (NL): Springer; 2001. p. 207–20.
9. Tezer H, Savsil TR, Metin A, Koker Y, Devrim I, Ergonul O. Regular letters: lymphocyte subgroups in children with CCHF: a marker for prognosis. J Infect 2009;59:291–3.
10. WHO. Crimean-Congo haemorrhagic fever. Available at: http://www.who.int/mediacentre/factsheets/fs208/en/ [accessed 7.02.2008].
11. Yilmaz GR, Buzgan T, Torunoglu MA, Safran A, Irmak H, Com S, et al. A preliminary report on Crimean-Congo haemorrhagic fever in Turkey, March–June 2008. Euro Surveill 2008;13:18953.
12. Yilmaz GR, Buzgan T, Irmak H, Safran A, Uzun R, Cevik MA, et al. The epidemiology of Crimean-Congo hemorrhagic fever in Turkey, 2002–2007. Int J Infect Dis 2009;13:380–6.
13. Sharifi-Mood B, Mardani M, Keshhtar-Jahromi M, Rahnavardi M, Hatami H, et al. Clinical and epidemiologic features of Crimean-Congo hemorrhagic fever among children and adolescents from southeastern Iran. Pediatr Infect Dis J 2008;27:561–3.
14. Dilber E, Cakir M, Ascar A, Orhan F, Yars N, Bahat E, et al. Crimean-Congo hemorrhagic fever among children in north-eastern Turkey. Ann Trop Paediatr 2009;29:23–8.
15. Schwarz TF, Nsanze H, Ameen AM. Clinical features of Crimean-Congo haemorrhagic fever in the United Arab Emirates. Infection 1997;25:364–7.
16. Cevik MA, Erbay A, Bodur H, Gulderen E, Baytug A, Kubar A, et al. Clinical and laboratory features of Crimean-Congo hemorrhagic fever: predictors of fatality. Int J Infect Dis 2009;12:374–9.
17. Watts DM, Ussery MA, Nash D, Peters JC. Inhibition of Crimean-Congo hemorrhagic fever viral infectivity yields in vitro by ribavirin. Am J Trop Med Hyg 1989;41:581–5.
18. Swanepoel R, Gill DE, Shepherd AJ, Leman PA, Mynhardt JH, Harvey S. The clinical pathology of Crimean-Congo hemorrhagic fever. Rev Infect Dis 1989;11(Suppl 4):S794–800.
19. Ergonul O, Celikbasi A, Baykam N, Eren S, Dokuozoguz B. Analysis of risk-factors among patients with Crimean-Congo hemorrhagic fever virus infection: severity criteria revisited. Clin Microbiol Infect 2006;12:551–4.
20. Bakir M, Ugurlu M, Dokuozoguz B, Bodur H, Tasyaran MA, Vahaboglu H. Crimean-Congo hemorrhagic fever outbreak in Middle Anatolia: a multicentre study of clinical features and outcome measures. J Med Microbiol 2005;54:385–9.
21. Knowles SR, Phillips EE, Dressler L, Matukas L. Common adverse events associated with the use of ribavirin for severe acute respiratory syndrome in Canada. Clin Infect Dis 2003;37:1139–42.
22. Chiu HE, Liu CI, Buttrej MJ, Kuo HP, Liu HW, Kuo HT, et al. Adverse effects of ribavirin and outcome in severe acute respiratory syndrome: experience in two medical centers. Chest 2005;128:263–72.