Recent international communicable disease crises have highlighted the need for countries to assure their preparedness to respond effectively to public health emergencies. The objective of this study was to critically review existing tools to support a country’s assessment of its health emergency preparedness. We developed a framework to analyze the expected effectiveness and utility of these tools. Through mixed search strategies, we identified 12 tools with relevance to public health emergencies. There was considerable consensus concerning the critical preparedness system elements to be assessed, although their relative emphasis and means of assessment and measurement varied considerably. Several tools identified appeared to have reporting requirements as their primary aim, rather than primary utility for system self-assessment of the countries and states using the tool. Few tools attempted to give an account of their underlying evidence base. Only some tools were available in a user-friendly electronic modality or included quantitative measures to support the monitoring of system preparedness over time. We conclude there is still a need for improvement in tools available for assessment of country preparedness for public health emergencies, and for applied research to increase identification of system measures that are valid indicators of system response capability.

Key Words: assessment, emergency preparedness, Europe, health system, planning, public health, tool
Preparedness assessment tools were included, and search filters were chosen to be non-restrictive in order to increase search sensitivity. These are given in Table 1. Inclusion criteria were:

1. Period: 2000–2017;
2. Languages: reports published in English, Spanish, French, German, or Italian;
3. Category: humanities;
4. Scope: subnational, national, or international;
5. Type of hazard: generic (ie, all-hazards approach), or pandemic influenza; and
6. Presence of a checklist, indicators, or measures to assess national public health emergency preparedness status.

Civil protection emergency assessment tools were excluded if they did not include public health or health care aspects of the emergency response. The gray literature search included international and national public health and civil defense websites.

A framework to review and compare the identified tools was developed by the investigators, drawing substantively on criteria developed by Nelson et al.10 and Asch et al.9 Complementary indicators were extracted from these publications and combined in a single analytical framework, together with 2 further indicators developed by the authors (“completeness,” “main advantages”) (Table 2).

| TABLE 1 MEDLINE and Gray Literature Search Strategies |
|-------------|---|
| **Source** | **Search Strategy** |
| MEDLINE | (“public health” [All Fields] OR “health system” [All Fields]) AND (“emergencies” [MeSH Terms] OR “emergencies” [All Fields] OR “emergency” [All Fields] OR “disasters” [MeSH Terms] OR “disasters” [All Fields] OR “disaster” [All Fields] OR “pandemics” [MeSH Terms] OR “pandemics” [All Fields] OR “pandemic” [All Fields] OR “preparedness” [All Fields] OR “response” [All Fields] OR “planning” [All Fields] OR “assessment” [All Fields] OR “toolkit” [All Fields]) AND (“measurement” [All Fields]) OR (“toolkit” [All Fields]) OR (“standard” [All Fields]) AND (“2000/01/01” [PDAT]: “2017/08/29” [PDAT]) AND “humans” [MeSH Terms]) (“public health” OR “health system”) AND (emergency OR disaster OR pandemic) AND (planning OR preparedness OR response) AND (evaluation OR assessment OR measurement OR tool OR toolkit OR checklist OR standard) Websites: World Health Organization; European Centre for Disease Prevention and Control; European Commission; European Parliament; United Nations; Organization for Security and Cooperation in Europe; United States Centers for Disease Control and Prevention; Ministries of Health and of Security and Civil Defence (European Union and European Economic Area countries; United States; New Zealand; Australia; Canada) |

The 12 tools identified are summarized in Table 3. All were published between 2009 and 2016. Seven of the 12 tools were developed by international authorities or organizations.13-18,22 The other 5 were country-specific: from England,19 New Zealand,20 and the United States.11,12,21 Some of the tools developed by international organizations had a primary focus on voluntary country level implementation.13,17,18,22 Others had an apparent primary rationale of required or recommended reporting under international or European regulations.14,16

Since both tool acronyms are EPREP, we have specified the Harvard tool as H-EPREP and EpiSouth tool as E-EPREP.
Appraisal of the tools according to the evaluation framework is summarized in Table 4. All tools identified had governmental or institutional authorities as the principal target audience and specified an accountable entity, but with varying degrees of detail. Although all tools had public health emergencies as a primary focus, they varied in their relative emphasis on various aspects of emergency preparedness, including health system resilience and the wider civil emergency protection function. All except 1 took an all-hazards approach, although they mainly focused on communicable (infectious) disease emergencies with some additional sections for other types of public health hazard such as chemical or radiological events.

The key assessment areas included in each of the tools are outlined in Table 5. Some areas were common to nearly all tools,
TABLE 4

Evaluation Framework and Comparison of Identified Tools

Name of the Tool	General Description	Target Audience	Scope	Type of Hazard	Completeness (criteria based on Table 4)	Clarity of Measurement Parameters	Validity and Specificity of Scope and Measurement Parameters	Evidence Based	Feasibility	Utility	Accountable Entity Specified
EC Technical Guidance on Generic Preparedness Planning for Public Health Emergencies¹³	Checklists (tasks for every outcome expected) outlining the essential minimum requirements for public health emergency preparedness	European Union (EU) Member States government authorities, European Commission (EC) and Agencies	International and national	All hazards	Incomplete: recovery, community preparedness, and funding areas not covered	Clear description of indicators, Binary (yes/no) answer system	National focus included, High specificity to EU, Very high level of detail, no validation described, No quantification	Expert-consensus	Limited by its comprehensiveness (covers a large number of dimensions and themes) and by its format (paper based, plain text)	Includes qualitative self-rating measures, List of tasks	Yes
EC Template for Reporting on Decision No 1082/2013/EU¹⁴	Checklist (questions and indicators) assessing four areas for managing serious cross-border threats	EU Member States government authorities	International and national	All hazards	Incomplete: focus only on IHR core capacities monitoring, interoperability, business continuity management, and evaluation of plans	Clear description of questions and indicators, Open or (yes, no, not known) answer system	National focus, High specificity to EU, High level of detail in some indicators but many open questions, no validation described, No quantification	Expert-consensus	Limited by its format (paper based, plain text, several tables with different formats, different type of answers mixed)	Include qualitative self-rating measures, List for inter-sectoral collaboration	Yes
WHO Questionnaire for Monitoring IHR Core Capacities in States Parties¹⁵	Checklist with 244 global indicators for monitoring the development and maintenance of international health regulations (IHR) 13 core capacities	World Health Organization (WHO) Member States government authorities responsible for implementing IHR	International and national	All hazards	Incomplete: recovery, business continuity management, community preparedness, and other areas not covered	Clear description of indicators, Open or (yes, no, not known) answer system	National focus, Low specificity to EU, High level of detail and specificity of questions, external validation, Simple quantification	Expert-consensus	Although paper based, it is clear and simple	Includes qualitative self-rating measures, Includes qualitative self-rating and external evaluation measures	Yes
WHO Joint External Evaluation Tool¹⁶	Checklist with 48 global indicators for regular external evaluations of a country’s IHR capacity (~every 5 years). Voluntary country participation	WHO Member States government authorities responsible for implementing IHR	International and national	All hazards	Incomplete: recovery, business continuity management, community preparedness, and other areas not covered	Clear description of indicators	National focus	Expert-consensus. Also incorporates content and lessons learned from tested external assessment tools and processes of other multilateral and multi-sectoral initiatives	Simple quantification	Includes qualitative self-rating and external evaluation measures	Yes
Name of the Tool	Main Advantages	General Description	Target Audience	Scope	Type of Hazard	Completeness (criteria based on Table 4)	Clarity of Measurement Parameters	Validity and Specificity of Scope and Measurement Parameters			
------------------	-----------------	---------------------	-----------------	-------	----------------	--	---------------------------------	---------------------------------			
EC Technical Guidance on Generic Preparedness Planning for Public Health Emergencies	Comprehensive scope: almost all dimensions covered Focus on EU countries Useful list of tasks	Checklist with 51 essential attributes, corresponding to 16 key components of each of the 6 WHO health system framework functions blocks	EU Member States Coordination Group (public health and other institutions) responsible for health sector crisis management	National	All hazards	Incomplete: recovery, business continuity management, community preparedness, and evaluation not covered	Clear description of indicators Traffic lights system methodology (yes, partial, no)	National focus Low specificity to EU Good level of detail and specificity of indicators, no validation described No quantification			
EC Template for Reporting on Decision No 1082/2013/EU	Includes Interoperability, business continuity management, and evaluation of plans Focus in EU countries Mandatory requirement of the EC	Checklist with 20 goals and corresponding key indicators for pandemic influenza preparedness	EU Member States person(s) responsible for the national pandemic planning and preparedness	National	Influenza	Incomplete: not all hazards and risk based approach, several dimensions not covered	Clear description of indicators	National focus High specificity to EU Focus on one disease Good level of detail and specificity of indicators, no validation described No quantification			
WHO Questionnaire for Monitoring IHR Core Capacities in States Parties	International standards (wide consensus) Comprehensive scope Mandate by the WHO	Checklist with 37 generic and 13 specific (hazardous materials and chemical, biological, radiological, and nuclear events) response core standards	National Health System (NHS) organizations and providers of NHS funded care system	National and subnational	All hazards	Almost complete: recovery and health system operational response not fully covered	Clear description of indicators Traffic lights system methodology (yes, partial, no)	National focus High specificity to subnational sector Good level of detail of indicators and assurance mechanisms, high specificity but no validation described No quantification			
WHO Joint External Evaluation Tool	International standards (wide consensus) Comprehensive scope Voluntary requirement of the WHO: first time will be a baseline measurement of the country’s capacity and capabilities. Subsequent evaluations will identify progress made and ensure any improvements in capacity are sustained	Index based on key performance indicators and measures organized in 6 sections: 4 based on goals of the National Civil Defence and Emergency Management (CDEM) strategy and 2 “enabler” sections	New Zealand public health agencies and CDEM groups	National and subnational	All hazards	Almost complete: health system operational response not fully covered	Very clear description of indicators Scoring system methodology	High specificity to subnational sector Very high level of detail of indicators but no validation described Quantitative and comparative assessment (index)			
Name of the Tool	General Description	Target Audience	Scope								
------------------	---------------------	-----------------	-------								
WHO Toolkit for Assessing Health System Capacity for Crisis Management	Checklist with 15 public health emergency preparedness capabilities organized in 6 categories. Each capability includes a list of functions, performance measures, tasks, and resource considerations	United States (US) state and local public health departments	National and subnational								
Joint European Pandemic Preparedness Self-Assessment Indicators	Exercise evaluation tool: combination of checklists and rating scales to produce quantifiable representations of 160 tasks and 500 related actions to assess performance	US state and local public health organizations	National and subnational								
NHS England Core Standards for EPRR	Includes qualitative self-rating measures	User-friendly (Excel format)	High specificity to subnational sector								
CDC Public Health Preparedness Capabilities	Index based on 128 indicators, organized in 5 domains and 14 subdomains measuring key areas of public health emergency preparedness. National results are calculated by averaging the 50 states	Health sector of Mediterranean Basin EU and non-EU countries	National								
Emergency Preparedness Exercise Evaluation Tool (H-EPREP)	Not described	US policy-makers, practitioners, researchers, and communicators	National and subnational								
United States NHP	Not described										
EpiSouth Network E-EPREP	Not described										
Name of the Tool	CDC Public Health Preparedness Capabilities²¹	Emergency Preparedness Exercise Evaluation Tool (H-EPREP)¹²	United States NHSPI¹¹	EpiSouth Network E-EPREP²²							
------------------	--	--	----------------------------------	----------------------------------							
Type of Hazard	All hazards	All hazards	All hazards	All hazards							
Completeness	Incomplete: governance, legal framework, and other areas not covered	Incomplete: governance, legal framework, and other areas not covered	Incomplete: governance, legal framework, funding, and other areas not covered	Almost complete							
Clarity of Measurement Parameters	Clear description of the few indicators included	Very clear description of performance measures	Very clear description of indicators	Very clear description of expected outcomes							
Completeness (criteria based on Table 4)	Incomplete: governance, legal framework, and other areas not covered	Very clear description of performance measures	Complex scoring system methodology								
Validity and Specificity of Scope and Measurement Parameters	Focus on US needs, high specificity to subnational sector, very high level of detail of the few indicators but no validation described, limited qualitative assessment (no quantification)	Focus on US needs, high specificity to subnational sector, very high level of detail of the few indicators but no validation described, limited qualitative assessment (no quantification)	Focus on US needs and data availability, high specificity to subnational sector, very high level of detail of the few indicators but no validation described, limited qualitative assessment (no quantification)	National focus, high level of detail of tasks, no quantification							
Evidence Based	Systematic approach: based on evidence-informed documents, applicable preparedness literature, and subject matter expertise gathered from across the federal government and the state and local practice community	Systematic approach: based on lessons learned from discussions with expert practitioners, from review of literature, and available tools	Validation method described: tested for reliability, usability, and validity by independent evaluators during multiple exercises	Validation problem: indicators chosen favors readily collectable measures							
Feasibility	Although paper based, it is a clear and relatively short list of tasks	It is an online interactive tool with Excel outputs, very easy to use	It is an online tool with data query functionalities, very easy to use	Not described							
Utility	List of tasks, includes some qualitative self-rating measures	Includes qualitative and quantitative measures for assessing US Public Health Preparedness Capabilities, standardized but can be customized	It is not a self-assessment, includes quantitative measures, allows comparability between states (high transparency)	Available as both a descriptive tool (limited feasibility because it is paper based and very comprehensive) and as online interactive tool (easier to use)							
Accountable Entity Main Advantages	Not applicable	Yes, very user-friendly, online database of exercise evaluation measures that allows to generate customized exercise evaluation forms, store, and send them to multiple evaluators via e-mail, and generate basic reports, validation assessment described	Yes, comprehensive scope, user-friendly, quantitative and comparative assessment but it is made centrally by a large committee representing more than 25 organizations (it is not a self-assessment)	Yes, includes interoperability/inter-sectoral collaboration, useful description of tasks, possibilities for ongoing updating and revisions							
with varying degrees of detail and methodological approaches, for example, interoperability and inter-sectoral collaboration, crisis management and operations, planning, communication and information systems, and human resources and capability development. Other assessment areas were addressed less frequently, for example, recovery, community preparedness, cross-border issues, or ethical aspects.

Most tools identified provided little or no information on the criteria or decision processes used to identify the measures included in them, or the evidential approach taken for their development. Exceptions included the JEE,16,17 CDC,21,18 H-EPREP,12 and NHSPI11 tools. In most cases, the development of preparedness standards appeared to be based primarily on consultations with groups of experts. Only a minority of tools attempted to describe a conceptual and strategic framework underlying their design.11,12,21 The Civil Defence and Emergency Management Tool20 from New Zealand had the most comprehensive, logical, and updated framework, consistent with current concepts of health emergency preparedness.23,28

Most of the selected tools had clear measurement parameters, with different methodological formats and complexity. These varied from a detailed list of tasks13-15,21,22 to simple qualitative scales,12,16-19 through to more complex scoring systems.11,20

Four of the tools included a quantitative element: JEE,16 CDC,20 H-EPREP,12 and NHSPI.11 The CDEM tool had a scoring system with weighted indicators that can be customized according to national or regional priorities.20

Seven of the tools were paper-based only, with no electronic informatics to facilitate use.13-18,21 Two were presented for use as an Excel file (NHS19 and CDEM20), and 3 had online modalities (H-EPREP,12 NHSPI,11 and E-EPREP22). Two allowed a degree of customization by the user: CDEM20 and H-EPREP.12 H-EPREP12 was an exception, providing for the generation of

TABLE 5

Key Areas	EC 13	EC 14	WHO 15	WHO 16	WHO 17	WHO 18	NHS 19	CDC 20	H-EPREP12	NHSPI	E-EPREP 22
Health crisis management and principles of operation	X	X	X	X	X	X	X	X	X	X	X
Health sector incident management and hospital preparedness	X	X	X	X	-	-	-	-	X	X	X
Recovery planning and management	-	-	-	-	-	-	-	-	X	X	X
Evaluation of response	X	X	X	X	X	X	X	X	X	X	X
Community resilience, preparedness, and recovery	X	X	X	X	X	X	X	X	X	X	X
Governance	X	X	X	X	X	X	X	X	X	X	X
Management and testing of plans	X	X	X	X	X	X	X	X	X	X	X
Legal framework	X	X	X	X	X	X	X	X	X	X	X
Ethical considerations	-	-	-	-	-	-	-	-	-	-	-
Funding	X	X	X	X	X	X	X	X	X	X	X
Business continuity management	X	X	-	-	-	-	-	-	-	-	-
Communication systems and management	X	X	X	X	X	X	X	X	X	X	X
Information systems and management	X	X	X	X	X	X	X	X	X	X	X
Scientific/evidence-based advise	X	X	X	X	X	X	X	X	X	X	X
Human resources and capability development	X	X	X	X	X	X	X	X	X	X	X
Interoperability and Inter-sectoral collaboration	X	X	X	X	X	X	X	X	X	X	X
European Union level considerations	X	X	-	-	-	-	-	-	-	-	-
customized exercise evaluation forms, storage, transmission to multiple evaluators by e-mail, and generation of basic reports.

DISCUSSION
The use of systematic methods and tools for system assessment should have substantive benefits for the preparedness of countries for public health emergencies. The tool infrastructure should in itself have symbolic value to help communicate a coherent view of the emergency preparedness system to all participants. This should cover all of the elements critical to ensuring an effective response, including effective collaboration across sectors and between countries in responding to cross-border events. The systematic assessment of these elements should enable gaps and weaknesses to be proactively identified and addressed. To achieve this, tools should include assessment items, which are valid indicators of actual performance in an emergency. They should be available in user-friendly electronic modalities and include quantitative elements to support the monitoring of system preparedness over time and voluntary benchmarking with others, to promote learning and system improvement.

We have identified 12 presently available tools to support assessment of country preparedness for public health emergencies. Most tools were found through national and international websites, and it is possible that more may have been identified through gray literature in languages other than those included in this search, at subnational level, and sources such as post-graduate theses.

Few of the identified tools meet all of the above requirements. We acknowledge a potential limitation of our appraisal in that the tools were evaluated as a desktop exercise based on *a priori* criteria; however, the evidence base from user experience of the presently available tools is almost non-existent.

Our review suggests some possible contributing perspectives on this present situation. Available tools appear to have been developed with somewhat different primary aims and methodological approaches. Most tools developed by international agencies and 1 in the United States appeared to focus primarily on standard reporting requirements to which countries and states are subject. Exceptions included the self-evaluation checklists developed by the European Commission and the WHO Regional Office for Europe, which appear to be designed explicitly for country use. Tools developed by national authorities provide a primary focus on the evaluation needs of the country but may not extrapolate well for use by others, given country-specific characteristics of health and public health emergency response systems. Further, country-level tools may have less utility for subnational (regional, local) jurisdictions, and vice versa.

Country preparedness evaluations need to assess not only plans and capacities, but also system capabilities for effective response to actual emergencies. Several tools relied heavily on input data relating to system capacities and resources; while information concerning these is often readily available, it may be only indirectly predictive of the capability to respond to an emergency. Nelson et al. observed in 2007 that the few tools then available to assess preparedness status tended to focus on capacities, and little evidence existed that linked specific structures with the ability to execute effective response processes, noting that “structural measures may not be valid indicators of preparedness.” In reporting on a review of national influenza pandemic preparedness plans in the EU in 2012, Nicoll noted that some national authorities had ceased further preparedness development after producing written plans and had neither developed operational aspects nor tried to assess whether they would work in practice. The present study suggests only modest advance in this respect; among the identified tools, only the CDEM, H-EPREP, and JEE tools included significant consideration of system capabilities, as well as capacities.

The evidence base linking preparedness capacities and capabilities to health outcomes remain weak. Asch et al. noted in 2005 that most instruments for assessing public health emergency preparedness relied excessively on subjective or structural measures and lacked a scientific evidence base. Previous literature reviews have found that the majority of journal articles were commentaries and anecdotal case studies, based on qualitative analyses, a situation unchanged in our present literature search in support of this critical tools analysis (to be reported separately). One systematic review concluded that most studies lacked a rigorous design, raising questions about the validity of the results. It appears that more and better quality research into public health emergency management is needed for the development of useful assessment tools, and the validity of presently assessed system elements as predictive of actual response capability remains largely unverified. This is also the conclusion of the developers of other tools, which attempted to provide some evidence-based approach, who ended up relying mainly on lessons learned documents (see Table 4). A focus of future research should include the comparison of preparedness system *a priori* assessment scores and the actual system performance outcomes in real-life incidents and emergencies.

As the tools reviewed did not have a documented strong evidence base, there was only partial consensus on the system elements critical for public health emergency preparedness, and how they may be assessed or measured. Although some system areas were common to most tools, there was significant diversity in the system elements included and their emphasis across the tools reviewed, and in the indicators or standards used to measure their effective presence. “The problem lies not in the absence of standards per se, but in the multiplicity of overlapping (and sometimes conflicting) standards.”

One issue underlying indicator development appears as differing preferences for standardizing all system measures, or leaving
countries’ flexibility to modify, add, or delete them. Some authors have recommended standardization of all assessment measures in order to facilitate comparisons, either to a “gold standard” or between countries. However, some emergency response leaders consider that this is less useful than a flexible country-specific tool, given different country administrative structures and health care systems. Respondents to the EU pandemic influenza preparedness review in 2009 considered that “instead of [standardized] indicators, it would be more useful to develop a tool describing the main areas for consideration in pandemic influenza preparedness planning. Each country may then add its own criteria, indicators or outcomes for determining whether something is in place.”23 This choice, in turn, appears to also reflect divergent views on the perceived value of sharing country information and benchmarking with others. In the same review, “a number of member states made it clear to the ECDC that the country specific results should only be known to the country […] and that specifically there would be no ‘league tables’.”23

Few tools were available in user-friendly, electronic modalities that could facilitate data gathering, analysis, and dissemination and discussion of results by participants and stakeholders. H-EPREP was an exception, as it also allowed the generation of customized exercise evaluation forms, storage, transmission to multiple evaluators by e-mail, and generation of basic reports. Developers should therefore be encouraged to produce assessment tools in more user-friendly modalities. Inclusion of quantitative scoring systems usefully support the monitoring of progress in the development of a country’s public health emergency preparedness over time. Such quantitative scoring systems can also facilitate voluntary benchmarking with other countries. However, few tools included this feature. Only 2 tools had been published in a manner accessible to a conventional literature search; most were available only through the websites of the organizations that developed them.

CONCLUSIONS

Methods and processes for assessment of country systems are an integral part of a holistic approach to assuring country emergency preparedness, including simulation exercises, after action reports and peer reviews.31 We conclude, however, that few of the existing tools satisfy all or most of the requirements for utility and effectiveness discussed previously. There is a continuing need for further improvement in tools available for countries’ assessment of their preparedness for public health emergencies. Existing tools could be revised with critical review of the validity of their assessment elements and indicators, and availability in more user-friendly electronic format with analytical and reporting modalities. New tools could be developed de novo at country and supranational level based on both a country’s needs and best available evidence relating to the validity of its assessment elements and indicators.

The paucity of applied emergency response systems research remains a significant impediment to achieving these improvements. In particular, the elements of the preparedness system that are valid indicators of actual response capability remain poorly understood. Reporting and critical review of user experience of all of the different means of evaluating country preparedness should contribute to this goal.31

About the Authors

Institute of Health Carlos III, Madrid (Dr Haeberer, Dr Cano-Portero); European Centre for Disease Prevention and Control, Stockholm (Ms Tsoloua, Dr Riley, Dr Ciotti, Dr Fraser); PERPHECT Consortium, Public Health England, Salisbury (Dr Riley); and Robert Koch Institute, Berlin (Dr Rexroth).

Correspondence and reprint requests to Svetla Tsoloua, Public Health Functions Unit, European Centre for Disease Prevention and Control, Gustav III:s Boulevard 40, 169 73 Solna, Sweden (e-mail: svetla.tsoloua@ecdc.europa.eu).

Acknowledgments

This review was part of the ECDC-funded project, “Develop tools, templates and guidance to support the self-assessment by EU member states of their core capacities for preparedness and response planning, in line with the International Health Regulations.” The authors thank all of the experts who participated in the project from Public Health England, United Kingdom; Robert Koch Institute, Germany; Institute of Health Carlos III, Spain; and Italian National Institute of Health, in particular: Andreas Gilsdorf, Juliane Seidel, Maria an der Heiden, Maria Grazia Dente, Silvia Declich, Cristina Bojo, Cristina Fraga, and Virginia Jiménez.

Financial Support

The study was funded by the European Centre for Disease Prevention and Control.

Conflict of Interest Statement

The authors have no conflicts of interest to declare.

Authors’ Contributions

MH researched the literature and reviewed the tools; RCP researched the literature and reviewed the results; PR and GF were study investigator and commissioner, respectively; MH and GF wrote the manuscript; and ST, PR, UR, RCP, and MC critically reviewed the manuscript.

REFERENCES

1. Oshitani H. Lessons learned from international responses to severe acute respiratory syndrome (SARS). Environ Health Prev Med. 2005;10:251-254.
2. Nicoll A, Brown C, Karcher F, et al. Developing pandemic preparedness in Europe in the 21st century: experience, evolution and next steps. Bull World Health Organ. 2012;90:311-317.
3. Quaglio G, Goerens C, Putoto G, et al. Ebola: lessons learned and future challenges for Europe. Lancet Infect Dis. 2016;16(2):259-263.
4. World Health Organization. Report of the review committee on the role of the International Health Regulations (2005) in the Ebola outbreak and response; 2016.
5. World Health Organization. International Health Regulations 2005. 3rd ed. Geneva: WHO; 2016.
6. European Parliament, Council of the European Union. Decision No 1082/2013/EU on serious cross-border threats to health and repealing Decision No 2119/98/EC; 2013.

7. Savoia E, Massin-Short SB, Rockay AM, et al. Public health systems research in emergency preparedness: a review of the literature. *Am J Prev Med*. 2009;37(2):150-156.

8. Khan Y, Fazli G, Henry B, et al. The evidence base of primary research in public health emergency preparedness: a scoping review and stakeholder consultation. *BMC Public Health*. 2015;15:432.

9. Asch SM, Stoto M, Mendes M, et al. A review of instruments assessing public health preparedness. *Public Health Rep*. 2005;120(5):532-542.

10. Nelson C, Lurie N, Wasserman J. Assessing public health emergency preparedness: concepts, tools, and challenges. *Annu Rev Public Health*. 2007;28:1-18.

11. Association of State and Territorial Health Officials, Centers for Disease Control and Prevention, United States National Health Security Preparedness Index. CDC; 2013.

12. Harvard School of Public Health Preparedness and Emergency Response Research Center. Emergency Preparedness Exercise Evaluation Tool. 2015. https://www.hsph.harvard.edu/preparedness/toolkits/exercise-evaluation-toolkit/. Accessed June 10, 2017.

13. European Commission. Health and Consumers Directorate General. Strategy for generic preparedness planning. Technical guidance on generic preparedness planning for public health emergencies. Brussels: European Commission; 2011.

14. European Commission. 504/2014/EU: Commission Implementing Decision of 25 July 2014 implementing Decision No 1082/2013/EU of the European Parliament and of the Council with regard to the template for providing the information on preparedness and response planning in relation to serious cross-border threats to health. Brussels: European Commission; 2014.

15. World Health Organization. *International Health Regulations (IHR) core capacity monitoring framework: questionnaire for monitoring progress in the implementation of IHR Core Capacities in States Parties*. Geneva: WHO; 2014.

16. World Health Organization. Global Capacities Alert and Response (GCR). Joint External Evaluation tool (JEE tool). Geneva: WHO; 2016.

17. World Health Organization Europe. Toolkit for assessing health-system capacity for crisis management. Copenhagen: WHO; 2012.

18. World Health Organization Europe, European Centre for Disease Prevention and Control, European Commission. Joint European Pandemic Preparedness Self-Assessment Indicators. Copenhagen: WHO; 2010.

19. National Health Service England. NHS England Core Standards for Emergency Preparedness, Resilience and Response. London: NHS; 2014.

20. New Zealand Ministry of Civil Defence and Emergency Management. CDEM Capability Assessment Tool. Auckland: CDEM; 2014.

21. Centers for Disease Control and Prevention. *Public Health Preparedness Capabilities: National Standards for State and Local Planning*. Atlanta, GA: CDC; 2011.

22. Staïra V, Belizaire MRD, de Pando CM, et al., on behalf of the EpiSouth Network. The EpiSouth Plus Project. WP5 – EpiSouth Plus Strategic Document: tool for supporting countries on generic emergency preparedness planning in the health sector. Madrid: EpiSouth; 2013.

23. Nicoll A, Brown C, Karcher F, et al. Developing pandemic preparedness in Europe in the 21st century: experience, evolution and next steps. *Bull World Health Organ*. 2012;90(4):311-317.

24. Challen K, Lee AC, Booth A, et al. Where is the evidence for emergency planning: a scoping review. *BMC Public Health*. 2012;12:542.

25. Abramson DM, Morse S, Garret S, Redlener I. Public health disaster research: surveying the field, defining its future. *Disaster Med Public Health Prep*. 2007;1(1):57-62.

26. Bayntun C. A health system approach to all-hazards disaster management: a systematic review. *PLoS Curr Disasters*. 2012;4. doi: 10.1371/50081cad5861d.

27. Agboola F, Bernard D, Savoia E, Buddinger PD. Development of an online toolkit for measuring performance in health emergency response exercises. *Prehosp Disaster Med*. 2015;30(5):503-508.

28. World Health Organization Europe, European Centre for Disease Prevention and Control, Joint European Centre for Disease Prevention and Control and WHO Regional Office for Europe Consultation on pandemic and all hazard preparedness. Copenhagen: WHO; 2013.

29. Simpson D, Katirai M. Indicator Issues and Proposed Framework for a Disaster Preparedness Index. Working Paper. Center for Hazards Research and Policy Developments. Louisville, KY: University of Louisville; 2006.

30. Uzan Jacobson E, Inglesby T, Khan AS, et al. Design of the National Health Security Preparedness Index. *Biosecur Bioterror*. 2014;12(3):122-131.

31. World Health Organization. A strategic framework for emergency preparedness. Geneva: WHO; 2017.