Search for Pair Production of Scalar Top Quarks Decaying to a τ Lepton and a b Quark in $p\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

T. Aaltonen,23 J. Adelman,13 T. Akimoto,54 M.G. Albrow,17 B. Álvarez González,11 S. Amerio,42 D. Amidei,34 A. Anastassov,51 A. Anno,19 J. Antos,14 M. Aoki,24 G. Apollinari,17 A. Apresyan,47 T. Arisawa,56 A. Artikov,15 W. Ashmanskas,17 A. Attal,3 F. Aurisano,52 F. Azfar,41 P. Azzi-Bacchetta,42 P. Azzurri,45 N. Bacchetta,42 W. Badgett,17 A. Barbaro-Galtieri,29 V.E. Barnes,47 B.A. Barnett,25 S. Baroian,7 V. Bartsch,30 G. Bauer,32 P.-H. Beauchemin,33 F. Bedeschi,45 P. Bednar,14 S. Behari,25 G. Bellettini,45 J. Bellinger,58 A. Belloni,22 D. Benjamin,16 A. Beretvas,17 J. Beringer,26 T. Berry,29 A. Bhatti,49 M. Binkley,17 D. Bisello,42 I. Bizjak,30 R.E. Blair,2 C. Blocker,6 B. Blumenfeld,25 A. Bocci,16 A. Bodek,58 V. Boisvert,48 G. Bolla,47 A. Bolshov,32 D. Bortoletto,47 J. Boudreau,46 A. Boveia,10 B. Brau,10 A. Bridgeman,24 L. Brigliadori,5 C. Bronberg,35 E. Bruhak,17 J. Budagov,15 H.S. Budd,48 S. Budd,24 K. Burkett,17 G. Busetto,42 P. Bussey,21 A. Buzatu,33 K.L. Byrum,2 S. Cabrera,16 M. Campanelli,35 M. Campbell,34 F. Canelli,17 A. Canepa,44 D. Carlsmith,58 R. Carosi,45 S. Carroll,28 S. Carron,33 B. Casal,11 M. Casarsa,17 A. Castro,5 P. Castatini,15 D. Cauz,53 M. Cavalli-Sforza,3 A. Cerri,28 L. Cerrito,30 S.H. Chang,27 Y.C. Chen,1 M. Chertok,7 G. Chiarelli,45 G. Chlachidze,17 F. Chlebana,17 K. Cho,27 D. Chokheli,15 J.P. Chou,22 G. Choudalakis,32 S.H. Chuang,51 K. Chung,12 W.H. Chung,58 Y.S. Chung,48 C.I. Ciobanu,24 M.A. Ciocci,45 A. Clark,20 D. Clark,6 G. Compostella,42 M.E. Convy,17 J. Conway,7 B. Cooper,30 K. Koppe,34 M. Cordelli,19 G. Cortiana,42 F. Crescioli,45 C. Cuenca Almenar,7 J. Cuevas,11 R. Culbertson,17 J.C. Cully,34 D. Dagenhart,17 M. Datta,17 T. Davies,21 P. de Barbaro,48 S. De Cecco,50 A. Deisher,28 G. De Lentdecker,48 G. De Lorenzo,3 M. Dell’Orso,45 L. Demortier,49 J. Deng,16 M. Denino,5 D. De Pedis,50 P.F. Derwent,17 G.P. Di Giovanni,43 C. Dionisi,50 B. Di Ruzza,53 J.R. Dittmar,4 M. D’Onofrio,3 S. Donati,45 P. Doug,8 J. Donini,42 T. Dorigo,42 S. Dube,51 J. Efron,38 R. Erlacher,7 D. Errede,24 S. Errede,24 R. Eusebi,17 H.C. Fang,28 S. Farrington,29 W.T. Fedorko,13 R.G. Feld,59 M. Feindt,26 J.P. Fernandez,31 C. Ferrarazzi,50 R. Field,58 G. Flanagan,47 R. Forrest,7 S. Forrester,7 M. Franklin,22 J.C. Freeman,29 I. Furic,18 M. Gallinaro,49 J. Galyardt,12 F. Garberson,10 J.E. Garcia,45 A.F. Garfinkel,37 K. Genser,17 H. Gerberich,24 S. Giardella,45 S. Giagkiozis,53 F. Giakoumopoulou,34 F. Giannetti,45 K. Gibson,56 J.L. Gimmell,48 C.M. Ginsburg,17 N. Giokaris,15 M. Giordani,53 P. Gironi,19 M. Giunta,45 V. Glagolev,15 D. Glniezniz,17 M. Gold,36 N. Goldschmidt,18 A. Golossianov,17 G. Gomez,11 G. Gomez-Ceballos,18 M. Goncharov,52 O. González,31 I. Gorelov,36 A.T. Goshaw,16 K. Goulianos,49 A. Gresele,42 S. Grinstein,22 C. Grosso-Pilcher,13 R.C. Group,17 U. Grindwald,24 J. Guimaraes da Costa,22 Z. Gunay-Unal,35 C. Haber,28 K. Hahn,32 S.R. Hahn,17 E. Halkiadakis,51 A. Hamilton,20 B.-Y. Han,48 J.Y. Han,48 R. Handler,58 F. Happracher,19 K. Hara,54 D. Hare,51 M. Hare,55 S. Harper,41 R.F. Harr,57 R.M. Harris,17 M. Hartz,46 K. Hatakeyama,49 J. Hauser,8 C. Hays,41 M. Heck,26 A. Helderbo,44 B. Heinemann,24 J. Hehirich,44 C. Henderson,19 M. Hernon,58 J. Heuser,26 S. Hewamana,4 D. Hidas,16 C.S. Hill,10 D. Hirschbuehl,26 A. Hocker,17 S. Hou,1 M. Houlk,29 S.-C. Hsu,9 B.T. Huffman,41 R.E. Hughes,38 U. Hussemann,59 J. Huston,35 J. Incandela,10 G. Intrezzini,45 M. Iori,50 A. Ivanov,7 B. Iyyutin,22 J. James,17 B. Jayatilaka,16 D. Jeans,50 E.J. Jeon,27 S. Jindariani,18 W. Johnson,7 M. Jones,47 K.K. Joo,27 S.Y. Jun,12 J.E. Jung,27 T.R. Junk,24 T. Kamon,52 D. Kar,18 P.E. Karchin,57 Y. Kato,40 R. Keplhart,14 U. Kerzel,26 V. Khotilovich,52 B. Kilminster,38 D.H. Kim,27 H.S. Kim,27 J.E. Kim,57 M.J. Kim,17 S.B. Kim,27 S.H. Kim,34 Y. Kim,13 N. Kimura,54 L. Kirsch,6 S. Klimek,18 M. Klute,32 B. Knuteson,32 B.R. Ko,16 S.A. Koay,10 K. Kondo,56 D.J. Korg,27 J. Konigsberg,18 A. Korytov,18 A.V. Kotwal,16 J. Kraus,24 M. Kreps,26 J. Kroll,44 N. Krumnaack,4 M. Kruse,16 V. Krutelyov,10 T. Kubo,54 S.E. Kuhlmann,2 T. Kuhm,26 N.P. Kulkarni,57 Y. Kusakabe,56 S. Kwang,13 A.T. Laasanen,47 S. Lai,33 S. Lami,45 S. Lammel,17 M. Lancaster,39 R.L. Lander,7 K. Lannon,38 A. Lath,51 G. Latino,15 I. Lazzarrella,42 T. LeCompte,2 J. Lee,48 J. Lee,27 Y.J. Lee,27 S.W. Lee,52 R. Lefevre,20 N. Leonardo,32 S. Leone,45 S. Levy,13 J.D. Lewis,17 C. Lin,59 C.S. Lin,28 J. Linacre,41 M. Lindgren,17 E. Lipeles,9 T.M. Lisse,24 A. Lister,7 D.O. Litvintsev,17 T. Liu,39 N.S. Lockyer,44 A. Logino,59 M. Loretii,42 L. Lovas,14 R.-S. Lu,1 D. Lucchesi,42 J. Lueke,26 C. Luci,50 P. Lujan,28 P. Lukens,17 G. Lungu,18 L. Lyons,41 J. Lys,28 R. Lysak,14 E. Lytken,47 P. Mack,26 D. MacQueen,33 R. Madar,17 K. Maeshima,17 K. Makhloufi,23 T. Maki,23 P. Maksimovic,25 S. Malde,31 S. Malik,30 G. Manca,29 A. Manousakis,15 F. Margarelli,47 C. Marino,26 C.P. Marino,24 A. Martin,59 M. Martin,25 V. Martin,31 M. Martínez,3 R. Martínez-Ballarín,31 T. Maruyama,54 P. Mastrandrea,50 T. Masubuchi,54 M.E. Mattson,57 P. Mazzanti,5 K.S. McFarland,48 P. McIntyre,52 R. McNulty,29 A. Mehta,29 P. Mehtala,23
We search for pair production of supersymmetric top quarks (\tilde{t}_1), followed by R-parity violating decay $\tilde{t}_1 \rightarrow \tau b$ with a branching ratio β, using 322 pb^{-1} of $p\bar{p}$ collisions at $\sqrt{s} = 1.96 \text{ TeV}$ collected by the CDF II detector at Fermilab. Two candidate events pass our final selection criteria, consistent with the standard model expectation. We set upper limits on the cross section $\sigma(\tilde{t}_1\bar{\tilde{t}}_1) \times \beta^2$ as a function of the stop mass $m(\tilde{t}_1)$. Assuming $\beta = 1$, we set a 95% confidence level limit $m(\tilde{t}_1) > 153 \text{ GeV}/c^2$. The limits are also applicable to the case of a third generation scalar leptoquark (LQ_3) decaying $LQ_3 \rightarrow \tau b$.

PACS numbers: 12.60.Jv, 14.80.Ly, 13.85.Rm, 11.30.Pb, 11.30.Er
In supersymmetric (SUSY) models [1], the spin-1/2 quarks and leptons have spin-0 quark and lepton partners. Experimental data suggest that the superpartners of the first and second generation are heavier than those of the standard model (SM) particles, while the mass of the lighter scalar top quark (stop or \tilde{t}_1) is weakly constrained and can be below that of the top quark [2]. This is due to the mixing between the left and right handed interaction eigenstates which is a function of the large Yukawa coupling of the top quark. At the Fermilab Tevatron stop quarks and antiquarks can be produced in pairs in strong interactions ($gg/\bar{g}g \rightarrow \tilde{t}_1\tilde{t}_1$). A single stop could also be produced at the Tevatron, e.g., via $bg \rightarrow \tilde{t}_1\tau \bar{\nu}$; however, unlike pair production, this process requires an R-parity (R_p) violating vertex. In regions of parameter space not excluded by data, R_p violating (R_p) couplings are small [3], making single stop production negligible compared to pair production. Stop quarks can decay into lighter SUSY and SM particles if R_p is conserved or into ordinary quarks and/or leptons if R_p is violated.

Within the framework of R_p SUSY [3], theoretical studies indicate that the dominant decay mode for the light stop is the lepton number violating decay $\tilde{t}_1 \rightarrow t\tau$ for a wide range of SUSY model parameters, including the region allowed by neutrino oscillation data [5].

Leptoquarks appear in various SM extensions [3]. Charge $|Q| = 2/3$ and $|Q| = 4/3$ third generation scalar leptoquarks (LQ_3) are expected to decay into τ and b with $B(LQ_3 \rightarrow \tau b) = 1$ for all LQ_3 states when $m(LQ_3) < m(t)$. The next-to-leading order (NLO) cross section for $LQ_3\overline{LQ}_3$ production is very close to the $\tilde{t}_1\tilde{t}_1$ production cross section $\sigma(\tilde{t}_1\tilde{t}_1)$ since diagrams with virtual gluino exchange are strongly suppressed with the existing limits on gluino mass [2]. Thus, the limits obtained for R_p stop should be fully applicable to the LQ_3 case.

In this Letter we describe a search for $\tilde{t}_1\tilde{t}_1 \rightarrow \tau^+\tau^-b\overline{b}$ with the upgraded CDF detector (CDF II) [3] and set an upper limit on $\sigma(\tilde{t}_1\tilde{t}_1) \times \beta^2$, neglecting additional decay modes that may pass selections of this analysis when $\beta = B(\tilde{t}_1 \rightarrow \tau b) < 1$. We look for a final state with either an electron or muon from the decay $\tau \rightarrow \ell\nu\nu_\tau$ (\(\ell = e\) or μ), a hadronically decaying tau τ, missing transverse energy E_T [9] from the neutrinos, and two or more jets. We have studied the addition of a requirement that the jets are consistent with originating from the hadronization of a b quark but found that the increase in purity is outweighed by the loss in signal acceptance. Therefore, we make no such specific requirement. This analysis uses approximately three times more data at a higher \sqrt{s} than the previous CDF result [10] that set a 95% C.L. limit of $m(\tilde{t}_1) > 122$ GeV/c^2. The increased \sqrt{s} is expected to give a substantial increase in the $\tilde{t}_1\tilde{t}_1$ production rate, e.g., $\sim 35\%$ for $m(\tilde{t}_1) = 155$ GeV/c^2.

CDF II features several main subsystems critical to this analysis. The charged particle tracking system consists of multi-layer silicon detectors and an open-cell cylindrical drift chamber enclosed in a 1.4 T superconducting magnet. At $|\eta| < 1$ [2] charged particle trajectories traverse all chamber layers, while at larger $|\eta|$ the chamber coverage is reduced progressively. The calorimeter system is organized into electromagnetic and hadronic sections segmented in a projective tower geometry and covers $|\eta| < 3.6$. A set of strip and wire chambers is located within the central electromagnetic calorimeter at approximately the depth of shower maximum and aids in reconstructing electrons, and photons for $|\eta| < 1.1$. The muon detection system is located outside of the calorimeter and covers $|\eta| < 1.0$.

The analysis begins with a data sample collected by inclusive lepton-plus-track triggers [11]. These triggers select events containing an electron (muon) candidate with $E_T > 8$ GeV ($p_T > 8$ GeV/c) and a second track, which is required to be consistent with originating from a tau decay by demanding that there be no other nearby tracks with $p_T > 1.5$ GeV/c between the cones of 0.175 and 0.524 radians around the track. The integrated luminosity of the data sample is 322 ± 19 pb$^{-1}$ [12].

From the trigger sample we select events offline by identifying at least one lepton with $p_T^\ell > 10$ GeV/c and at least one τ candidate in $|\eta| < 1$. The details of the τ identification algorithm can be found in Refs. [13, 14]. We require $p_T^\tau > 15$ GeV/c. Jets are reconstructed using a fixed-cone algorithm with $\Delta R \equiv \sqrt{\Delta\eta^2 + \Delta\phi^2} = 0.4$ within $|\eta| < 2.4$.

The dominant SM backgrounds are vector boson production, QCD, and $t\bar{t}$ production. In QCD multijet events, for example, semileptonic b quark decays or γ conversions can be misidentified as lepton candidates, and narrow jets can be misidentified as τ candidates. We require the sum of the p_T of the tracks within $\Delta R < 0.4$ around the lepton candidate ($I_{\tau_{\ell\ell}}$) be less than 2 GeV/c, and no jet with $E_T > 15$ GeV within $0.3 < \Delta R < 0.8$ around the lepton. Further, we reject events where the muon or electron candidate is consistent with a cosmic
ray muon or γ conversion electron (see Ref. 13 for details). We veto events where the invariant mass of the primary electron (muon) and a reconstructed electron (muon) candidate, which is required to pass loose identification criteria [13], is $76 < m_{\ell\ell} < 106 \text{ GeV/c}^2$. We also reject events with $76 < m_{\ell\tau} < 106 \text{ GeV/c}^2$ and azimuthal separation of $|\Delta\phi_{\tau\ell}| > 2.9 \text{ rad}$. For the muon channel we do not apply a similar requirement, as the probability for a muon to be reconstructed as a τ is negligible. To suppress further QCD and $Z \rightarrow \tau \tau$ events [10], we require $S_T \equiv |p_T^\tau| + |p_T^{\gamma T}| + |\vec{E}_T|/c > 110 \text{ GeV/c}$. We define six regions in the $m_T(\ell, \vec{E}_T) = \sqrt{2p_T^\ell p_T^{\vec{E}_T}(1 - \cos \Delta\phi_{\ell,\vec{E}_T})}$ versus N_{jet} plane, and denote them as A_0 (B_0) for $m_T \leq 35 \text{ GeV/c}^2$ ($m_T > 35 \text{ GeV/c}^2$) and $j = 0$, 1 or 2 for $N_{\text{jet}} = 0$, 1 or ≥ 2. We count into N_{jet} the jet candidates that have $E_T > 20 \text{ GeV}$ and are separated from any of e, μ or τ_h by $\Delta R > 0.8$. The minimal values of S_T and jet E_T are optimized for maximum significance in the A_2 region for $140 - 160 \text{ GeV/c}^2 \tilde{t}$'s. The $m_T \leq 35 \text{ GeV/c}^2$ cut effectively separates signal from $W + \text{jet}$ and τ backgrounds. The $N_{\text{jet}} \geq 2$ requirement strongly suppresses the Drell-Yan contribution. The data in region A_2 were not examined until the analysis procedure was finalized. The regions with $N_{\text{jet}} = 0$ or 1 contain mostly background and were used mainly as control samples for validation. Region B_2 has an appreciable signal acceptance ($\sim 40\%$ of that in region A_2) but substantially higher background expectation. For statistical interpretation of the data, we developed a likelihood method that, in addition to our primary signal region A_2, utilizes side-band regions A_0, B_0, and B_2, which are used to perform data-driven $W + \text{jet}$ background estimations and to improve the sensitivity of the analysis.

The total event acceptance is $\alpha \equiv \epsilon_{\text{MC}} \cdot \epsilon_{\text{trig}}$. Here ϵ_{MC} is the product of geometrical and kinematical acceptances, efficiencies to identify lepton and τ_h candidates, including isolation requirements, and the efficiency for the all remaining cuts. We use PYTHIA Monte Carlo (MC) generator [15] and the GEANT3-based [10] CDF II detector simulation to calculate ϵ_{MC}. Our nominal choice for the parton distribution functions (PDFs) is CTEQ5L [17] with the renormalization scale $Q \equiv \sqrt{m(\tilde{t}_1)^2 + p_T(\tilde{t}_1)^2}$. The trigger efficiency ϵ_{trig} is measured using data [14]. In region A_2 α increases nearly linearly from about 0.6% at $m(\tilde{t}_1) = 100 \text{ GeV/c}^2$ to 2.7% at 170 GeV/c2 and is similar for both electron and muon channels.

The combined systematic uncertainty on α decreases almost linearly from 11% for $m(\tilde{t}_1) = 100 \text{ GeV/c}^2$ to 7.2% for 170 GeV/c2 and is similar in both channels. The largest contribution comes from the PDF systematic uncertainty, which is estimated using the uncertainty sets of CTEQ6.1M PDFs [17] and the technique described in Ref. 18. For a 150 GeV/c2 stop this uncertainty on α is 4.0%. The uncertainty due to an imperfect knowledge of the jet energy scale, determined by varying the scale by $\pm 1\sigma$, is 2.9%. The uncertainty due to the amount of initial and final state radiation is found to be 2.5%. Other sources of systematic uncertainty include the uncertainties in lepton and τ_h identification and isolation, and \vec{E}_T resolution, and amount to a 5.1% relative contribution. The uncertainty on the integrated luminosity is 6%.

The SM backgrounds come from two sources: (i) events with a true τ_h pair from $Z/\gamma^*(\rightarrow \tau\tau)+\text{jets}$, $\tilde{t} \bar{\tilde{t}}$ and diboson (WW, WZ, ZZ) production; and (ii) events where lepton or τ_h candidates do not originate from a true lepton or tau but from the jets in $W + \text{jet}$, $Z/\gamma^*(\rightarrow \ell\ell)+\text{jets}$ and QCD multijet events. We first estimate the background from SM processes excluding the $W + \text{jet}$ contribution. Drell-Yan, $\tilde{t} \bar{\tilde{t}}$, and WW production are estimated using PYTHIA and the CDF II detector simulation. For Drell-Yan backgrounds we use scale factors that improve the agreement between the prediction for the yield of these events in MC simulation and the yield observed in data. The QCD multijet contribution is estimated by extrapolating the number of observed events in data for events with non-isolated leptons, defined by $2 < I_{\text{trk}} < 10 \text{ GeV/c}$, into the class of events with an isolated lepton, defined by $I_{\text{trk}} < 2 \text{ GeV/c}$ [13]. The NLO cross sections of 6.7 \pm 0.7 pb [19] and 13.5 \pm 0.5 pb [20] for $\tilde{t} \bar{\tilde{t}}$ and WW production, respectively, are used. The contributions from WZ and ZZ are found to be negligible.

The PYTHIA MC simulation does not accurately predict the absolute rate of the $W + \text{jet}$ background contribution (N_W) in this analysis. Therefore, to estimate N_W in each region, we use the differences between the data and all other backgrounds plus signal in regions A_2, B_2, A_0, and B_0 and the assumption that $R = [N_W(A_2)/N_W(B_2)]/([N_W(B_2)/N_W(A_0)]$ \sim 1. The ratios in R are determined by kinematics of the $W + \text{jet}$ events at fixed N_{jet} and are well modeled in MC. Based on MC predictions and cross checks with data vs MC comparisons, we conclude that $R = 1.0 \pm 0.5$ is a conservative assumption. We define a likelihood function using Poisson statistics as a function of $\sigma(\tilde{t}_1 \tilde{t}_1)$ and N_W. The input parameters to the likelihood are the numbers of observed and expected events in each of the four regions. The number of expected events in region i is given by $N_i = \sigma(\tilde{t}_1 \tilde{t}_1) \cdot B(\tau\tau \rightarrow \ell \ell_h) \cdot f \cdot \alpha_i + N_{BG}^i + N_W^i$, where the branching ratio $B(\tau\tau \rightarrow \ell \ell_h)$ \approx 0.23, N_{BG}^i includes all SM backgrounds except $W + \text{jet}$ events, and α_i is the total event acceptance for signal in region i. The ratio $R = 1.0 \pm 0.5$ and N_W in regions A_0, B_0, and B_2 are nuisance parameters with flat prior distributions. The large uncertainty on R does not affect our final results because $N_W(A_2)$ is expected to be small. We use this two-dimensional likelihood to estimate N_W^i for each region and to calculate upper limits on $\sigma(\tilde{t}_1 \tilde{t}_1) \times \beta^2$.

In Table III we show the number of events observed
TABLE I: Number of events observed in data, \(N_{\text{obs}} \), along with the expected number of SM background events. The \(W + \text{jet} \) contributions are shown separately as they are estimated using the observed number of events in the data, the SM prediction excluding the \(W + \text{jet} \) contribution, and a possible stop quark contribution.

Region	\(N_{\text{obs}} \) \(c + \tau \nu \) Channel	SM Backgrounds	Other	\(W + \text{jet} \)	\(N_{\text{obs}} \) \(\mu + \tau \nu \) Channel	SM Backgrounds	Other	\(W + \text{jet} \)
\(A_2 \)	10.0 \(\pm 0.2 \)	0.9 \(\pm 0.0 \)	1.0 \(\pm 0.0 \)	1.0 \(\pm 0.0 \)	1.0 \(\pm 0.0 \)	0.9 \(\pm 0.0 \)	0.9 \(\pm 0.0 \)	
\(B_2 \)	10.0 \(\pm 0.2 \)	0.9 \(\pm 0.0 \)	1.0 \(\pm 0.0 \)	1.0 \(\pm 0.0 \)	1.0 \(\pm 0.0 \)	0.9 \(\pm 0.0 \)	0.9 \(\pm 0.0 \)	
\(A_1 \)	10.0 \(\pm 0.2 \)	0.9 \(\pm 0.0 \)	1.0 \(\pm 0.0 \)	1.0 \(\pm 0.0 \)	1.0 \(\pm 0.0 \)	0.9 \(\pm 0.0 \)	0.9 \(\pm 0.0 \)	
\(B_1 \)	10.0 \(\pm 0.2 \)	0.9 \(\pm 0.0 \)	1.0 \(\pm 0.0 \)	1.0 \(\pm 0.0 \)	1.0 \(\pm 0.0 \)	0.9 \(\pm 0.0 \)	0.9 \(\pm 0.0 \)	
\(A_0 \)	10.0 \(\pm 0.2 \)	0.9 \(\pm 0.0 \)	1.0 \(\pm 0.0 \)	1.0 \(\pm 0.0 \)	1.0 \(\pm 0.0 \)	0.9 \(\pm 0.0 \)	0.9 \(\pm 0.0 \)	
\(B_0 \)	10.0 \(\pm 0.2 \)	0.9 \(\pm 0.0 \)	1.0 \(\pm 0.0 \)	1.0 \(\pm 0.0 \)	1.0 \(\pm 0.0 \)	0.9 \(\pm 0.0 \)	0.9 \(\pm 0.0 \)	

FIG. 1: Distribution of the number of jets \((E_T > 20 \text{ GeV}) \) for events with \(m_T (\ell, E_T) \leq 35 \text{ GeV}/c^2 \) (regions \(A_0, A_1, \) and \(A_2 \)) compared to the expectations from SM processes and prediction for \(\tilde{t} \tilde{\tau}_1 \) (\(m(\tilde{t}_1) = 150 \text{ GeV}/c^2 \)) signal.

\(^{2}\)Theoretical uncertainty including PDFs.

\(^{3}\)Also applicable to \(m(\tilde{t}_1) \leq 60 \text{ GeV}/c^2 \) and \(m(\tilde{t}_1) \geq 100 \text{ GeV}/c^2 \).

\(^{4}\)Theoretical uncertainty including PDFs.

\(^{5}\)Also applicable to \(m(\tilde{t}_1) \leq 60 \text{ GeV}/c^2 \) and \(m(\tilde{t}_1) \geq 100 \text{ GeV}/c^2 \).

\(^{6}\)Also applicable to \(m(\tilde{t}_1) \leq 60 \text{ GeV}/c^2 \) and \(m(\tilde{t}_1) \geq 100 \text{ GeV}/c^2 \).

in the data along with the SM expectation. In Fig. 1 we present the \(N_{\text{jet}} \) distribution for events with \(m_T (\ell, E_T) \leq 35 \text{ GeV}/c^2 \) (regions \(A_0, A_1, \) and \(A_2 \)).

Two events are found in region \(A_2 \), consistent with the SM prediction. We use the likelihood function to obtain a probability of such an observation given a specific signal cross section, and calculate a 95\% C.L. limit on \(\sigma(\tilde{t} \tilde{\tau}_1) \times \beta^2 \). The electron and muon channels are treated as two separate measurements, taking into account the correlations among the systematic uncertainties.

Figure 2 shows the 95\% C.L. limit curves for \(\sigma(\tilde{t} \tilde{\tau}_1) \times \beta^2 \) as a function of \(m(\tilde{t}_1) \), with the numerical results given in Table II. The dotted curve is our experimental result, compared to the NLO cross section (solid line) obtained using PROSPINO version 2 \(^{22}\) with our nominal choice of CTEQ6.1M PDFs \(^{12}\) and \(Q \). The theoretical uncertainty of \(\pm 18\% \) on \(\sigma(\tilde{t} \tilde{\tau}_1) \) is due to the choice of \(Q \) (varying the scale from its nominal value by a factor of two or a half) and PDFs. Taking this uncertainty into consideration, the limits are re-evaluated and are shown in Fig. 2 using a dashed line. The corresponding mass limits for the first and second cases are 153 GeV/\(c^2 \) (compared to 122 GeV/\(c^2 \) \(^{10}\)) and 153 GeV/\(c^2 \) respectively.

In conclusion, we have searched for \(\tilde{t} \tilde{\tau}_1 \) production in the final state of a lepton (\(e \) or \(\mu \)), a hadronically decaying tau, and two jets using 322 pb\(^{-1} \) of \(p\bar{p} \) collision data at \(\sqrt{s} = 1.96 \text{ TeV} \). We observed no excess of events in data over the number of expected events from SM processes. In an \(R_p \) SUSY scenario, we set a 95\% C.L. lower limit on the \(\tilde{t}_1 \) mass of 153 GeV/\(c^2 \) taking into account the theoretical uncertainties on the NLO cross section and assuming \(B(\tilde{t}_1 \to \tau b) = 1 \). These results are also applicable to \(LQ_3 \) pair production.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department
of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Technology Foundation; the Comisión Interministerial de Ciencia y Tecnología, Spain; the European Community’s Human Potential Programme; the Slovak R&D Agency; and the Academy of Finland.

[1] H.P. Nilles, Phys. Rept. 110, 1 (1984); H.E. Haber and G.L. Kane, ibid. 117, 75 (1985).
[2] K. Inoue, A. Kakuto, H. Komatsu, and S. Takeshita, Prog. Theor. Phys. 68, 927 (1982); ibid. 70, 330 (1983); L.E. Ibanez and C. Lopez, Nucl. Phys. B 233, 511 (1984); J.R. Ellis and S. Rudaz, Phys. Lett. B 128, 248 (1983).
[3] A. Alves, O. Eboli, and T. Plehn, Phys. Lett. B 558, 165 (2003).
[4] S. Weinberg, Phys. Rev. D 26, 287 (1982); G.R. Farrar and S. Weinberg, ibid. 27, 2732 (1983); S. Dawson, Nucl. Phys. B 261, 297 (1985). For a recent review on RPV SUSY, see R. Barbier et al., Phys. Rept. 420, 1 (2005).
[5] F. de Campos et al., arXiv:hep-ph/9903245; D. Restrepo, W. Porod, and J. W. F. Valle, Phys. Rev. D 64, 055011 (2001); S. P. Das, A. Datta, and S. Poddar, Phys. Rev. D 73, 075014 (2006).
[6] For a review on leptoquark models, see S. Davidson, D. C. Bailey, and B. A. Campbell, Z. Phys. C 61, 613 (1994).
[7] V. M. Abazov et al. (D0 Collaboration), Phys. Lett. B 638, 119 (2006). For example, the difference in \(\sigma(t\bar{t})\) for the case of gluino mass of 200 GeV/c\(^2\) and the case of a very heavy gluino is 3% (for \(m(t\bar{t}) = 150\) GeV/c\(^2\)).
[8] D.E. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005).
[9] We use a coordinate system where \(\theta\) and \(\phi\) are the polar and azimuthal angles, respectively, with respect to the proton beam direction (\(z\) axis). The pseudorapidity \(\eta\) is defined as \(-\ln[\tan(\theta/2)]\). The transverse momentum of a particle is denoted as \(p_T = p \sin \theta\). Similarly, the transverse energy is defined as \(E_T = E \sin \theta\). The uncorrected missing transverse energy, \(E_T^{unc}\), is the magnitude of \(\vec{E}_T^{unc} \equiv - \sum E_T^n \hat{n}_i\), where \(\hat{n}_i\) is the unit vector in the transverse plane pointing from the interaction point to the energy deposition in calorimeter cell \(i\). \(\vec{E}_T\) is \(E_T^{unc}\) further corrected for the muon \(p_T\) and for the effects of non-ideal response of the calorimeter to \(e, \tau,\) and jets.
[10] D.E. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 92, 051803 (2004).
[11] A. Anastassov et al. (CDF Collaboration), Nucl. Instrum. Meth. A 518, 609 (2004).
[12] D. Acosta et al., Nucl. Instrum. Methods A 494 (2002) 57; S. Klimenko et al., FERMILAB-FN-0741 (2003).
[13] A. Abulencia (CDF Collaboration), Phys. Rev. D 75, 092004 (2007).
[14] V. Khotilovich, Ph.D. Thesis, Texas A&M University (unpublished).
[15] T. Sjostrand et al., Comput. Phys. Commun. 135, 238 (2001). We use PYTHIA version 6.216.
[16] R. Brun et al., CERN-DD-EE-81-1 (1989).
[17] J. Pumplin et al. (CTEQ Collaboration), J. High Energy Phys. 0207, 012 (2002).
[18] A. Abulencia et al. (CDF Collaboration), J. Phys. G 34, 2457 (2007).
[19] M. Cacciari et al., J. High Energy Phys. 0404, 068 (2004); N. Kidonakis and R. Vogt, Phys. Rev. D 68, 114014 (2003).
[20] J.M. Campbell and R.K. Ellis, Phys. Rev. D 60, 113006 (1999).
[21] F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 78, 2906 (1997); G. Abbiendi et al. (OPAL Collaboration), Eur. Phys. J. C 31, 281 (2003).
[22] W. Beenakker, R. Hopker, M. Spira, and P. M. Zerwas, Nucl. Phys. B 492, 51 (1997).