A Hyperchaotic System with Three Quadratic Nonlinearities, its Dynamical Analysis and Circuit Realization

C-H Lien¹*, S Vaidyanathan², S Zhang³, A Sambas⁴, Mujiarto⁴ and Subiyanto⁵

¹Department of Marine Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
²Research and Development Centre, Vel Tech University, Avadi, Chennai, India
³School of Physics and Opotelectronic Engineering, Xiangtan University, Hunan, China
⁴Department of Mechanical Engineering, Universitas Muhammadiyah Tasikmalaya, Indonesia
⁵Department of Marine Science, Faculty of Fishery and Marine Science, Universitas Padjadjaran, Indonesia

*chlien@mail.nkmu.edu.tw

Abstract. A new four-dimensional hyperchaotic system with three quadratic nonlinearities is proposed in this paper. The dynamical properties of the new hyperchaotic system are explored in terms of phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. Also, a detailed dynamical analysis of the new hyperchaotic system has been carried out with bifurcation diagram and Lyapunov exponents. As an engineering application, an electronic circuit realization of the new hyperchaotic system is designed via MultiSIM to confirm the feasibility of the theoretical hyperchaotic model.

1. Introduction

Chaotic systems are nonlinear dynamical systems that are highly sensitive to initial conditions [1-2]. Chaotic systems that arise in modelling have many applications in science and engineering such as weather systems [3], ecology [4], neurons [5], biology [6], cellular neural networks [7], chemical reactors [8], oscillators [9], robotics [10], encryption [11-12], finance systems [13], circuits [14-15], secure communication [16], etc.

A hyperchaotic system is a chaotic system having two or more positive Lyapunov exponents [1-2]. The first hyperchaotic system was reported by Rössler [17]. Other famous hyperchaotic systems are hyperchaotic Lorenz system [18], hyperchaotic Chen system [19], hyperchaotic Lü system [20], hyperchaotic Rabinovich system [21], hyperchaotic Vaidyanathan systems [22], etc.

In this research paper, we report the finding of a new hyperchaotic system with three quadratic nonlinearities. We describe the phase plots of the new hyperchaotic system and do a rigorous dynamic analysis by finding equilibrium points and their stability, bifurcation diagrams, Lyapunov exponents, etc. Bifurcation analysis is very useful to understand the special properties of chaotic and hyperchaotic systems [23-26].

Section 2 describes the new hyperchaotic system, its phase plots and Lyapunov exponents. Section 3 describes the dynamic analysis of the new hyperchaotic system. Furthermore, an electronic circuit
realization of the new chaotic system is presented in detail in Section 4. The circuit experimental results of the new hyperjerk system in Section 4 agreement with its numerical simulations via MATLAB obtained in Section 2. Section 5 draws the main conclusions.

2. A new hyperchaotic system with three quadratic nonlinearities

In this work, we report a new 4-D system given by the dynamics

\[
\begin{align*}
\dot{x}_1 &= a(x_2 - x_1) + x_2 x_3 \\
\dot{x}_2 &= b x_2 - x_1 + x_4 \\
\dot{x}_3 &= -c x_3 + x_1 x_2 \\
\dot{x}_4 &= -d (x_1 + x_3)
\end{align*}
\]

(1)

where \(x_1, x_2, x_3, x_4 \) are state variables and \(a, b, c, d \) are positive constants.

In this paper, we show that the 4-D system (1) is hyperchaotic for the parameter values

\[
a = 30, \quad b = 15, \quad c = 3, \quad d = 2
\]

(2)

For numerical simulations and the calculation of Lyapunov exponents, we take the initial values of the new system (1) as \(X(0) = (0.1, 0.1, 0.1, 0.1) \). Using MATLAB, the Lyapunov exponents of the system (1) for the parameter values (2) are computed as follows:

\[
\begin{align*}
LE_1 &= 1.3700, \\
LE_2 &= 0.1450, \\
LE_3 &= 0, \\
LE_4 &= -19.5150
\end{align*}
\]

(3)

From the LE spectrum given in (3), it is immediate that the new system (1) is hyperchaotic for the parameter values \((a, b, c, d) = (30, 15, 3, 2) \), since there are two positive Lyapunov exponents in (3). Since the sum of the Lyapunov exponents in (3) is negative, we also conclude that the 4-D hyperchaotic system (1) is dissipative. This confirms the existence of a strange hyperchaotic attractor.

The Kaplan-Yorke dimension of the system (1) is calculated as

\[
D_{KY} = 3 + \frac{LE_1 + LE_2 + LE_3}{|LE_4|} = 3.0776,
\]

(4)

which gives a measure of the complexity of the new hyperchaotic system (1).

The system (1) is invariant under the change of coordinates given by

\[
(x_1, x_2, x_3, x_4) \mapsto (-x_1, -x_2, x_3, -x_4)
\]

(5)

This shows that the system (1) has rotation symmetry about the \(x_3 \) - axis. As a consequence, every non-trivial trajectory of the 4-D hyperchaotic system (1) must have a twin trajectory.

The equilibrium points of the system (1) are found by solving the system of equations:

\[
\begin{align*}
a(x_2 - x_1) + x_2 x_3 &= 0 \\
b x_2 - x_1 + x_4 &= 0 \\
-c x_3 + x_1 x_2 &= 0 \\
-d (x_1 + x_3) &= 0
\end{align*}
\]

(6)

For solving the nonlinear system (6), we take the parameter values as in (2).

From the last equation in (6), \(x_1 = -x_2 \).

Thus, the variable \(x_1 \) can be eliminated and we obtain a nonlinear system of three equations as follows:

\[
\begin{align*}
-x_3 (x_3 + 60) &= 0 \\
x_4 &= x_1 (x_3 + 15) \\
x_1^2 &= -3x_3
\end{align*}
\]

(7a)

(7b)

(7c)

We have two cases to consider in solving the nonlinear system (7).

Case (A): \(x_2 = -x_1 = 0 \).

In this case, \(x_2 = -x_1 = 0 \). From equations (7a) and (7c), it is clear that \(x_3 = x_4 = 0 \).

Thus, we obtain one equilibrium point of the hyperchaotic system (1) as
\[E_i = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad \text{(8)} \]

Case (B): \(x_i \neq 0 \).

In this case, from (7a), \(x_i = -60 \). Eq. (7c) gives us \(x_i^2 = 180 \) and so \(x_i = \pm \sqrt{180} \).

Since \(x_2 = -x_1 \), it follows that \(x_2 = \mp \sqrt{180} \). From Eq. (7c), we find that \(x_3 = \pm 603.7384 \).

Thus, the hyperchaotic system (1) has two more equilibrium points given by

\[E_i = \begin{bmatrix} \sqrt{180} \\ -\sqrt{180} \\ -60 \\ 603.7384 \end{bmatrix} \quad \text{and} \quad E_2 = \begin{bmatrix} -\sqrt{180} \\ \sqrt{180} \\ -60 \\ -603.7384 \end{bmatrix} \quad \text{(9)} \]

The Jacobian matrix of the hyperchaotic system (1) at any point \(x \) in

\[J(x) = \begin{bmatrix} -a & a + x_1 & x_2 & 0 \\ -x_3 & b & -x_1 & 1 \\ x_1 & x_4 & -c & 0 \\ -d & -d & 0 & 0 \end{bmatrix} \quad \text{(10)} \]

We assume that the parameter values are as in the hyperchaotic case (2).

The Jacobian matrix \(J_0 = J(E_0) \) has the eigenvalues

\[\lambda_1 = -3, \quad \lambda_2 = -30.0443, \quad \lambda_3 = 0.2703, \quad \lambda_4 = 14.7739 \quad \text{(11)} \]

This shows that the equilibrium \(E_0 \) is a saddle-point and unstable.

The Jacobian matrix \(J_1 = J(E_1) \) has the eigenvalues

\[\lambda_1 = 0.0254, \quad \lambda_2 = -19.8140, \quad \lambda_3,4 = 0.8943 \pm 37.8431i \]

This shows that the equilibrium \(E_1 \) is a saddle-focus and unstable.

Since \(J_2 = J(E_2) \) has the same set of eigenvalues as \(J_1 = J(E_1) \), we conclude that the equilibrium \(E_2 \) is also a saddle-focus and unstable.

Figures 1-4 show the 2-D projections of the new hyperchaotic system (1) in \((x_1, x_2), (x_2, x_3), (x_3, x_4)\) and \((x_1, x_4)\) coordinate planes, respectively.

Figure 1. 2-D plot of the new hyperchaotic system (1) in the \((x_1, x_2)\) plane for \(X_0 = (0.1, 0.1, 0.1, 0.1)\) and \((a, b, c, d) = (30, 15, 3, 2)\)

Figure 2. 2-D plot of the new hyperchaotic system (1) in the \((x_2, x_3)\) plane for \(X_0 = (0.1, 0.1, 0.1, 0.1)\) and \((a, b, c, d) = (30, 15, 3, 2)\)
3. Bifurcation Analysis for the New Hyperchaotic System

In this section, we describe a detailed bifurcation analysis for the new hyperchaotic system (1) introduced in Section 2. Bifurcation analysis is an important topic for studying chaotic and hyperchaotic systems. In addition, multistability means the coexistence of two or more attractors with the same parameter set but with different initial values. Multistability can lead to very complex behaviors in a dynamical system. Fix \(a = 30, \, b = 15, \, d = 2 \) and keep \(c \) as the control parameter. When \(c \) is varied in the region of \([3,13]\), the coexisting bifurcation model of the state variable of \(x_4 \) and the corresponding Lyapunov exponents (for better clarity, only the three largest Lyapunov exponents are presented, and the missing ones have smaller negative values) with the initial state \((0.1,0.1,0.1,0.1)\) are plotted in Figure 5 (a) and 5(b), respectively, where the blue orbit starts from the initial state \((0.1,0.1,0.1,0.1)\) and the magenta orbit starts from the initial state \((-0.1,-0.1,0.1,-0.1)\). From Figure 5(a), we can observe several kinds of coexisting attractors with different initial conditions.

Figure 6 exhibits the coexisting hyperchaotic attractors with \(c = 6.7 \) and the coexisting hyperchaotic attractors with \(c = 9, \, (+,0, -, -) \) where the blue attractor begins with the initial state \((0.1,0.1,0.1,0.1)\) and the magenta one begins with the initial state \((-0.1,-0.1,0.1,-0.1)\). Specially, it can be seen that the system starts from a period-1 orbit with the sign of the Lyapunov exponents \((0,-, -, -)\) in the region of \([12.25,13]\) and then evolves into quasi-periodic orbits with the sign of the Lyapunov exponents \((0,0, -, -)\) in the region of \([11.4,12.25]\) and then goes into chaos with the sign of the Lyapunov exponents in the region of \([6.8,11.4]\) and finally develops hyperchaos with the sign of the Lyapunov exponents \((+,+,0,-)\) in the region of \([3,6.8]\) with the control parameter \(c \) reducing the region of \([3,13]\). The corresponding phase portraits are plotted in Figure 7. From the above analysis, we can conclude that the system indeed displays very complicated dynamics.
Figure 6. For the new hyperchaotic system (1): (a) when $c = 6.7$, coexisting hyperchaotic attractors, and (b) when $c = 9$, coexisting chaotic attractors

Figure 7. For the new hyperchaotic system (1): (a) when $c = 4$, hyperchaos, (b) when $c = 10$, chaos, (c) when $c = 12$, quasi-period, and (d) when $c = 13$, period-1 orbits

4. Circuit Implementation of the New Hyperchaotic System

In this section, circuit design and implementation of new hyperchaotic system (1) are presented to validate the chaotic behaviour of system (1). The circuit construction of system in (1) has further verified its complex dynamic behaviors by software MultiSIM. Phase portraits obtained using circuit design of system (1) is shown in Figure 5. The circuit realization equation of new hyperchaotic system (1) is shown in (12):

$$
\begin{align*}
\dot{x}_1 &= \frac{1}{C_1 R_1} x_2 - \frac{1}{C_2 R_2} x_1 + \frac{1}{10 C_3 R_3} x_2 x_3 \\
\dot{x}_2 &= \frac{1}{C_1 R_1} x_1 - \frac{1}{10 C_2 R_2} x_1 x_2 + \frac{1}{C_2 R_6} x_4 \\
\dot{x}_3 &= -\frac{1}{C_1 R_1} x_3 + \frac{1}{10 C_2 R_2} x_1 x_2 \\
\dot{x}_4 &= -\frac{1}{C_2 R_6} x_1 - \frac{1}{C_2 R_6} x_4
\end{align*}
$$

(12)

We choose the system parameters as in the hyperchaotic case, viz. $a = 30, b = 15, c = 3, d = 2$

The values of four capacitors in Figure 8 are taken as $C_1 = C_2 = C_3 = C_4 = 3.2 \text{ nF, } R_1 = R_2 = 13.33 \text{ k}\Omega, R_3 = R_4 = 40 \text{ k}\Omega, R_5 = 26.67 \text{ k}\Omega, R_6 = 400 \text{ k}\Omega, R_7 = 133.33 \text{ k}\Omega, R_8 = R_{10} = 200 \text{ k}\Omega, R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = R_{16} = 100 \text{ k}\Omega.$

The circuit simulation result by MultiSIM is illustrated in Figure 9.

It is seen from Figure 9 that phase portraits obtained using circuit implementation matches with the results obtained using MATLAB simulation.
5. Conclusions
A new four-dimensional hyperchaotic system with three quadratic nonlinearities was announced in this paper. The dynamical properties of the new hyperchaotic system are described in terms of phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. Also, a detailed bifurcation analysis of the new hyperchaotic system was carried out with bifurcation diagram and Lyapunov exponents. Multistability and coexisting chaotic as well as hyperchaotic attractors are observed for suitable values of the system parameters. Furthermore, an electronic circuit realization of the new hyperchaotic system was carried out via MultiSIM to confirm the feasibility of the theoretical hyperchaotic model.

![Figure 8: Circuit design of the new hyperchaotic system (1)](image)
Figure 9: Hyperchaotic attractors of system (1) using Multisim circuit simulation:
(a) in $x_1 - x_2$ plane, (b) $x_2 - x_3$ plane, (c) $x_3 - x_4$ plane and (d) $x_1 - x_4$ plane.

6. References

[1] Vaidyanathan S and Volos C 2017 Advances and Applications in Chaotic Systems (Berlin: Springer)
[2] Pham V T, Vaidyanathan S, Volos C and Kapitaniak T 2018 Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors (Berlin: Springer)
[3] Vaidyanathan S, Azar A T, Rajagopal K, Sambas A, Kacar S and Cevusoglu U 2018 International Journal of Simulation and Process Modelling 13 281-96
[4] Massoud E C, Huisman J, Benincà E, Dietze M C, Bouten W and Vrugt J A 2018 Ecology letters 21 93-103
[5] Morita Y and Kimura T 2018 Nonlinear Theory and Its Applications 9 95-106
[6] Tomita K 1982 Journal of Theoretical Biology 99 111-8
[7] Fei Z, Guan C and Gao H 2018 IEEE transactions on neural networks and learning systems 29 2558-67
[8] Chaffart D and Ricardez-Sandoval L A 2018 The Canadian Journal of Chemical Engineering 96 113-31
[9] Vaidyanathan S 2015 International Journal of Modelling, Identification and Control 23 380-92
[10] Vaidyanathan S, Sambas A, Mamat M and Sanjaya W S M 2017 Archives of Control Sciences 27 541-54
[11] Vaidyanathan S, Sambas A, Mamat M and Sanjaya W S M 2017 International Journal of Modelling, Identification and Control 28 153-66
[12] Vaidyanathan S, Sambas A, Kacar S and Čavuşoğlu Ü 2018 International Journal of Modelling, Identification and Control 30 184-96
[13] Idowu B A, Vaidyanathan S, Sambas A, Olusola O I and Onma O S 2018 Studies in Systems, Decision and Control 133 271-95
[14] Sambas A, Vaidyanathan S, Mamat M and Mada Sanjaya W S 2018 Studies in Systems, Decision and Control 133 365-373
[15] Vaidyanathan S, Feki M, Sambas A and Lien C-H 2018 International Journal of Simulation and Process Modelling 13 419-32
[16] Chen S, Yu S, Lü J, Chen G and He J 2018 IEEE Transactions on Circuits and Systems for Video Technology 28 2359-71
[17] Rössler O E 1979 Physical Letters A 71 155-7
[18] Zhu C 2010 Applied Mathematics and Computation 216 3126-32
[19] Hegazi A S and Matouk A E 2011 Applied Mathematics Letters 24 1938-44
[20] Yassen M T 2008 Nonlinear Analysis 68 3592-3600
[21] He J M and Chen F Q 2017 International Journal of Non-Linear Mechanics 95 73-81
[22] Vaidyanathan S, Pham V T, Volos C and Sambas A 2018 Studies in Systems, Decision and
Control 133 345-64
[23] Zhang S, Zeng Y, Li Z, Wang M, Zhang X and Chang D 2018 International Journal of Dynamics and Control 23 1-12
[24] Zhang S, Zeng Y, Li Z, Wang M and Xiong L 2018 Pramana 90 63
[25] Wang L, Zhang S, Zeng Y C and Li Z J 2018 Electronics Letters 52 1008-10
[26] Zhang S, Zeng Y C, Li Z J, Wang M J and Xiong L 2018 Chaos 28 013113