Evidence for Clonal Selection of \(\gamma/\delta \) T Cells in Response to a Human Pathogen

By Koichi Uyemura,* Robert J. Deans,§ Hamid Band,¶ Jeffrey Ohmen,* Govindaswamy Panchamoorthy,¶ Craig T. Morita,¶ Thomas H. Rea,∥ and Robert L. Modlin*‡

From the *Division of Dermatology and ‡Department of Microbiology and Immunology, UCLA School of Medicine, Los Angeles, California 90024; the §Department of Neurology and ¶Section of Dermatology, USC School of Medicine, Los Angeles, California 90033; and the ∥Laboratory of Immunochemistry, Dana Farber Cancer Institute, and Department of Rheumatology and Immunology, Harvard Medical School, Boston, Massachusetts, 02115

Summary

T cells bearing \(\gamma/\delta \) antigen receptors comprise a resident population of intraepithelial lymphocytes in organs such as skin, gut, and lungs, where they are strategically located to contribute to the initial defense against infection. An important unsolved question about antigen-driven \(\gamma/\delta \) T cell responses regards the breadth of their T cell receptor (TCR) repertoire, since many specific epithelial compartments in mice display limited diversity. We have examined the diversity of TCR \(\delta \) gene expression among human \(\gamma/\delta \) T cells from skin lesions induced by intradermal challenge with *Mycobacterium leprae*. We show that the vast majority of \(\gamma/\delta \) cells from *M. leprae* lesions use either V61-J61 or V62-J61 gene rearrangements and, within a given region of the lesion, display limited junctional diversity. This contrasts markedly with the extensive diversity of \(\gamma/\delta \) T cells from peripheral blood of these same individuals, as well as skin from normal donors. These results indicate that the \(\gamma/\delta \) response to *M. leprae* involves the selection of a limited number of clones from among a diverse repertoire, probably in response to specific mycobacterial and/or host antigens.

One of the fundamental aspects of cellular immunology is the selection and clonal expression of T cells bearing specific receptors by antigens. While the selection of \(\alpha/\beta \) T cells has been studied in detail, little is known about the selection of \(\gamma/\delta \) T cells by antigen. The genetic diversity of the TCR provides a measure of the scope of the T cell repertoire. In contrast to the \(\alpha/\beta \) TCR, the germline gene segment diversity for both the TCR \(\gamma \) and \(\delta \) chains is small. The further limitation of this diversity by the preferential usage of only a few variable (V) genes or V gene pairs at specific anatomical locations (1-3) suggests a particularly narrow TCR repertoire, likely reflecting recognition of a limited number of ligands. On the other hand, there is an unprecedented junctional diversity, particular in the \(\delta \) chains of this receptor (4-6). We reasoned that analysis of the TCR \(\gamma/\delta \) repertoire of a specific immune response would provide clues about the set of antigens recognized: whether diverse or limited, conventional, or superantigen-like. The presence of antigen-reactive TCR \(\gamma/\delta \)-bearing cells in leprosy skin lesions (7) provides a unique in vivo model to examine the \(\gamma/\delta \) receptor repertoire at the site of immunopathologic reaction.

Much experimental evidence indicates that \(\gamma/\delta \) T cells contribute to the granuloma formation in response to mycobacterial infection (7). First, TCR \(\gamma/\delta \) cells comprise a strikingly high percentage of the T cell population in infectious disease lesions that contain recently formed granulomas. These include lepromin skin tests (Mitsuda reactions), which are experimental DTH reactions induced by intradermal injection of *Mycobacterium leprae*, reversal reactions in leprosy, which represent a naturally occurring DTH response to *M. leprae*, and localized American cutaneous leishmaniasis. Second, the \(\gamma/\delta \) T cells from these infectious lesions proliferate to mycobacterial antigens in vitro. Third, the \(\gamma/\delta \) T cells from lesions appear to release a lymphokine(s) that synergizes with granulocyte/macrophage (GM)-CSF to induce macrophage adhesion, aggregation, and proliferation, cellular events that would be necessary for the granulomatous response.

The present study was undertaken to determine the distribution and TCR diversity of \(\gamma/\delta \) T cell subpopulations in lepromin skin tests. This was accomplished by immunopathologic analysis according to V6 chain expression and molecular analysis of V6, J6, and junctional elements. The repertoire in these infectious lesions was compared with the
Clonal Selection of γ/δ T Cells in Response to a Human Pathogen
peripheral blood of the same individual and the repertoire in normal human skin.

Materials and Methods

Immunoperoxidase Staining of Biopsies. Lepromin skin tests (3-wk Mitsuda reactions) were studied from 14 tuberculoid leprosy patients (8). All specimens were obtained with informed consent. The patients were distributed among the different diagnostic groups showing no segregation according to sex, race, or age. Skin biopsy specimens were obtained by punch or scalpel technique at the time of diagnosis, embedded in OCT medium (Ames Co., Elkhart, IN), and snap frozen in liquid nitrogen. The tissues were stored at -70°C until sectioning. Sections (3-5 µm) were acetone fixed before undergoing incubations with the mAbs for 45 min. mAbs included the Cα-specific antibody anti-TCR61 (9) (1:100, T-cell Sciences, Boston, MA), the V61-J61-specific antibody, 6TCS1 (1:10, T-cell Sciences), and the V62-specific antibody, BB3 (1:3,000; a generous gift of Dr. L. Moretta, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy). The results obtained with 6TCS1 were corroborated with the V61-reactive antibody A13 (1:1,000; kindly provided by Dr. S. Ferrini, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy). The primary antibody was visualized using the alkaline phosphatase anti-alkaline phosphatase technique (Dako Corp., Carpinteria, CA). Slides were sequentially incubated with rabbit anti-mouse antibody for 30 min, alkaline phosphatase mouse anti-alkaline phosphatase immune complex for 30 min, and then developed with Vector Red substrate (Vector Laboratories, Burlingame, CA). Slides were washed in Tris buffer between incubations. Endogenous alkaline phosphatase was blocked using 125 mM levamisole (Vector Laboratories). Slides were counterstained with hematoxylin and then mounted in glycerine-gelatin. Some slides were stained using the ABC Elite system (Vector Laboratories). The numbers of Vδ-positive cells in the epidermis and dermis of an entire tissue section (~5 x 5 mm) were enumerated and expressed as the percentage of total TCR61' cells in each microanatomic location. Peripheral blood was obtained from the same individuals and analyzed by flow cytometry.

PCR Analysis. 20 5-µm sections from each of five lepromin skin tests were placed in 0.5 ml of 4 M guanidinium isothiocyanate buffer. Additionally, 106 PBMC were obtained by Ficoll-Hypaque density centrifugation. Genomic DNA was isolated by phenol/chloroform extraction and ethanol precipitation with yields of 1-3 µg of DNA. For each PCR reaction, ~100 ng of DNA was used in a 25-µl reaction. By calculating the numbers of γ/δ T cells/mm² of granuloma as detailed previously (10), and knowing the volume of tissue utilized, we determined that each PCR reaction of lesions contained DNA from ~500 γ/δ T cells. Similar calculations for peripheral blood indicated identical numbers of γ/δ T cells per each reaction. Titration of VδJδ containing plasmid confirmed that the sensitivity of our PCR amplification was on the order of 10² or 10³ copies. PCR amplification mixtures contained 10 pmol of each oligonucleotide primer, 2.5 U Taq polymerase (Promega Corp., Madison, WI), and 2.5 mM MgCl₂ in PCR buffer (Promega Corp.). Oligonucleotide primers were tested on a panel of γ/δ T cell clones with known rearrangements. Sequences of oligonucleotide primers were selected to yield ~300 bp products (11). 30 cycles of PCR amplification were performed using the following conditions: 1 min of denaturation at 94°C and 2 min of annealing/extension at 65°C. Amplified products were subjected to electrophoresis on 1.5% agarose gels and visualized as single bands by ethidium bromide. Verification of product was accomplished by nucleotide sequencing. Two skin biopsy specimens were obtained from normal donors after informed consent. DNA was extracted from the entire 4-mm punch biopsy and 100 ng used for PCR amplification followed by sequencing of the VδJ junctions.

Nucleotide Sequence Analysis of TCR δ Vδ Junctions. To facilitate cloning into sequencing vector, oligonucleotide primers for
PCR amplification were designed to contain a SalI or EcoRI restriction site in \(V_\delta \) and \(J_\delta \) primers, respectively. Amplified product was digested with both restriction enzymes and gel purified. Purified products were ligated into pUC18 vector and used to transform DH5\(\alpha \) (BRL Laboratories, Gaithersburg, MD) and selected for ampicillin resistance. Plasmid DNA from insert containing colonies was sequenced (Sequenase 2.0 Kit; U.S. Biochemicals, Cleveland, OH) using the method of Sanger et al. (12). Precautions taken to avoid PCR contamination artifact included the use of positive displacement pipettes, assembling of PCR reactions in a laminar flow hood in a separate room from plasmid preparations, and inclusion of negative and well-characterized controls in the PCR reactions.

Results

Distinct Microanatomic Localization of \(V_\delta \) T Cell Populations. The microanatomic distribution of \(\gamma/\delta \) T cell subpopulations within lepromin skin tests was investigated by immunohistologic staining of frozen sections with mAbs directed against \(V_\delta \)-encoded determinants (Fig. 1). Within the dermal granulomas, \(V_\delta 1 \)- and \(V_\delta 2 \)-bearing cells accounted for the majority of infiltrating \(\gamma/\delta \) cells, with a \(V_\delta 2/V_\delta 1 \) ratio \(\sim 2:1 \) compared to 9:1 in the peripheral blood of these same individuals. Unexpectedly, in contrast to the predominance of \(V_\delta 2 \)-bearing cells in the peripheral blood and in the dermis, TCR\(\delta^+ \) cells infiltrating the epidermis primarily expressed the \(V_\delta 1 \)-encoded TCRs. \(V_\delta 2 \)+ cells were rarely detected in the epidermal layer.

Preferential Usage of \(J_\delta 1 \) by \(\gamma/\delta \) T Cells in Lesional Skin. To further characterize the repertoire of the \(\gamma/\delta \) T cells in response to mycobacterial stimulation in vivo, we performed PCR amplification of tissue-derived vs. peripheral blood-derived DNA using paired V and joining (J) oligonucleotide primers. PCR conditions were established such that each PCR reaction included DNA derived from \(\sim 500 \) \(\gamma/\delta \) T cells. PCR analysis confirmed that \(V_\delta 1 \) and \(V_\delta 2 \) were used by \(\gamma/\delta \) T cells in these lesions, as amplified product was obtained from all five lesions for \(V_\delta 1-J_\delta 1 \) and \(V_\delta 2-J_\delta 1 \) rearrangements (Fig. 2). In contrast, \(V_\delta 2-J_\delta 3 \) rearrangements were detected in 1/5 lesions, but 5/5 blood samples (Figure 2). These data suggest a selective localization of the \(V_\delta 2-J_\delta 1 \) subpopulation of \(V_\delta 2^+ \) cells to lesions. PCR using other \(V_\delta \) and \(J_\delta \) combinations did not reveal additional gene rearrangements (data not shown).

Limited Junctional Diversity of \(\gamma/\delta \) TCRs in Leprosy Skin Lesions. The junctional diversity of \(\gamma/\delta \) T cells in lepromin skin tests was determined by cloning and sequencing PCR amplified products. We chose to focus on TCR \(\delta \) chain diversity for two reasons: it encodes the greatest amount of diversity in the \(\gamma/\delta \) receptor; and it is specific for \(\gamma/\delta \) T cells since the \(\delta \) locus is deleted during rearrangement of the TCR \(\alpha \) chain. By using DNA rather than mRNA, bias towards activated lymphoblasts containing abundant mRNA is eliminated as each \(\gamma/\delta \) T cell contains only one copy of its functionally rearranged \(\delta \) gene. Strikingly, in each of the three lepromin skin tests subjected to nucleotide sequencing analysis, the majority of \(V_\delta 1-J_\delta 1 \) and \(V_\delta 2-J_\delta 1 \) junctional sequences were found to be identical, but distinct for each patient (Fig. 3). This was clearly different from peripheral blood of these
Figure 3. Nucleotide sequence analysis of TCRβ V-J junctions of skin test lesions and blood. Sequencing of PCR products was performed to analyze the diversity at the VJ junction. Limited diversity was found in both the V61-J61 and V62-J61 junctions from the blood of the same individuals. Nonfunctional sequences are marked with an asterisk.
same individuals, which exhibited extensive diversity (Fig. 3). The data indicate clonal selection by antigen with oligoclonal expansion within the lesion. The occurrence of identical sequences that are nonproductive in a given sample is likely to represent the nonfunctional allele in the cell undergoing clonal expansion.

To determine the extent of oligoclonal expansion throughout the lesion, spatially separated regions of one biopsy specimen were studied. Within each region of the biopsy specimen, there was limited diversity of the V-J junctions, although the predominant sequence differed from site to site (Fig. 4). Given the limited diversity observed in these lesions, we addressed the possibility of a PCR artifact producing the surprising results. Extensive precautions were undertaken to avoid PCR contaminations as outlined in the Materials and Methods. Simultaneous PCR and cloning was performed on lesions and blood, so that finding of limited diversity in lesions was accompanied by finding of expected diversity in blood. The finding of different predominant sequences in separate areas of the biopsy argues against sample to sample contamination. The finding of limited diversity was obtained by complete workup of tissue samples by three separate investigators from different laboratories. We are confident that the PCR reaction was performed on DNA from ~500 cells and not on a single cell based upon: (a) calculation of the number of γ/δ cells in the biopsy specimen; (b) comparison of PCR product to PCR titration of known amounts of plasmid DNA containing δ gene segments; (c) appearance of several unique sequences along with the predominant sequence in many of the clonings of lesional skin; and (d) derivation of the same sequences along with the predominant sequence in many of the clonings of lesional skin; and (d) derivation of the same sequences along with the predominant sequence in many of the clonings of lesions.

Extensive Diversity of γ/δ TCRs in Normal Human Skin. The resident γ/δ population in normal human skin is small, with few cells identified by immunohistologic techniques (13). We wanted to determine whether the limited TCR diversity among γ/δ T cells from leprosy lesions reflected a limited diversity within the resident γ/δ population in skin or rather clonal expansion of specific TCRs in response to antigenic selection. The γ/δ TCR repertoire analysis of normal skin indicated the presence of V$\delta2$-J$\delta1$ rearrangements, with minor V$\delta1$-J$\delta1$ products and undetectable V$\delta2$-J$\delta3$ gene rearrangements (Fig. 5). This indicates that in diseased or normal skin, there is selective localization of γ/δ T cells expressing the J$\delta1$ gene product. Lack of δ chain-bearing J$\delta3$ rearrangements in DNA derived from normal skin further supports our conclusion that the PCR products are derived from a resident γ/δ population, not from T cells within blood vessel lumina. In contrast to diseased skin, the analysis of TCR junctional sequences derived from normal skin indicates extensive diversity equivalent to peripheral blood (Fig. 5).

Conserved Motif in Predicted Amino Acid Sequences of V$\delta2$-J$\delta1$ Junctions. The predicted amino acid sequences of predominant lesional V$\delta2$-J$\delta1$ gene junctions indicated conservation of amino acids from site to site within a biopsy and from patient to patient (Fig. 6). The conserved motif comprised the 5' end of the V-J junction: T-L/V-G-G/D, beginning in the third amino acid position after the second cysteine of V$\delta2$. This motif results primarily from the contribution of V$\delta2$, P, and D$\delta3$ gene segments. A similar motif is seen in the peripheral blood of these individuals, but only in those clones that solely use the D$\delta3$ gene segment (Fig. 6). This motif was rarely observed in normal skin (Fig. 6). In addition, the length of the V-J junction was relatively conserved in the lesions, as compared to the peripheral blood.

To ascertain whether the conserved motif we observed in the V$\delta2$-J$\delta1$ junctions of leprosy lesions was present in other granulomatous diseases, we translated the V$\delta2$-J$\delta1$ nucleotide sequences of γ/δ T cells from the lungs of patients with
sarcoidosis (14). This comparison revealed a relatively high frequency of the T-L/V-G-G/D motif in V62-J61 junctional sequences (data not shown). This motif occurred in the same amino acid positions as in sequences from leprosy lesions, but only when the D63 segment was the only D segment used. The length of the V-J junction in the repeated sequences of the sarcoidosis patients was conserved, at a length similar to that observed in the leprosy lesion sequences. This was in contrast to the variable length of the V62-J61 junction sequences of normal blood γ/δ T cells reported (14).

Discussion

Distinct Microanatomic Patterns of Vδ Populations in Leprosy Lesions. Immunohistologic identification of Vδ T cell populations in leprosy lesions reveals distinct microanatomic patterns for Vδ1- and Vδ2-bearing cells: the dermal infiltrate containing both populations, but the epidermal γ/δ T cells preferentially expressing the Vδ1 chain. The localization of Vδ1+ cells to epidermis in these mycobacterial lesions suggests either homing, retention, and/or in situ expansion of Vδ1+ cells during the immunopathogenic reaction. This localization of Vδ1+ cells to an epithelial surface may be characteristic of the inflammatory process. The gut epithelia of patients with Celiac disease, a gluten sensitive enteropathy, was found to contain Vδ1+ cells (15).

The experimental evidence indicates that Vδ1 and Vδ2 populations may recognize distinct antigens and/or presentation molecules. Some human Vδ1+ cells appear to have cytotoxic activity against allogeneic targets; this cytotoxicity is blocked by a mAb that recognizes a 43-kD protein termed TCT1 (16). Also, Vδ1+ cells have been reported to recognize CD1 molecules (17, 18). Langerhans cells express CD1 molecules, can present antigen, and are increased in the epidermis and dermis of these lesions (8). Perhaps, the expression of the TCT1 molecule and/or CD1 molecules by diseased epithelia results in the stimulation of the Vδ1 population. In contrast, human Vδ2+ cells expand in response to M. tuberculosis antigens in vitro. The ability of these same Vδ2+ cells to proliferate to Daudi cell lines is blocked by a polyclonal serum to a human HSP 58-kD protein (19).

Limited Diversity of γ/δ TCRs in Lesional Microenvironments Suggests Clonal Selection by Antigen. The most striking data presented here are the limited diversity of the V-J junctional elements of γ/δ T cells in leprosy lesions. The junctional sequences of γ/δ T cells from lesions were not found in the respective individual's peripheral blood, indicating that the lesional sequences do not represent an already existing clonal
LEPROSY SKIN BIOPSY SPECIMENS

PT A CDTLHWWGRDK
PT B CDRLLGGPYTDK
PT D CDTVGGSYTDK

PBMC FROM LEPROSY PATIENTS

PT A CDTDTPCN TD
PT B CDSDCTQADK
PT D CDSPRSLWHTDK

NORMAL SKIN

NL F CDTDPWKT DK
CDHI VVTDK
CDLSLYTDK
CDTLLYTDK

NL G CDTVR TGGCTDK
CDRLGGPYTDK

Figure 6. Predicted amino acid sequences based on V62-J61 nucleotide sequences. The predicted amino acid sequences for the predominant lesion V62-J61 junctions are shown. The conservation in amino acid sequences, the T-/V-G-G/D motif beginning in the third amino acid position after the second cytosine of V62, is primarily encoded by the V62, P, and the D63 gene segments. Although D63 gene segment usage is frequent in the peripheral blood, the conserved motif does not appear in the same location within the V-J junction with the high frequency of leprosy lesional sequences. In addition, the junctional amino acid lengths of peripheral blood V62+ cells are more variable, occasionally showing a greater length than the lesion-derived sequences. The amino acid sequences of normal skin show even greater heterogeneity.

expansion in the peripheral repertoire. It is noteworthy that in each spatially separated region of the biopsy specimen, a limited number of junctional nucleotide sequences were represented multiple times, although the predominant sequence differed from site to site. Since there was conservation in the predicted amino acid sequence in various areas of the biopsy and among individuals, we hypothesize that the γ/δ T cell expansion in lesions is selected by a limited set of antigens within the tissue microenvironment. The limited micro-

heterogeneity implies that a very small number of γ/δ clones initiate the oligoclonal expansion and that their progeny do not disperse homogeneously throughout the lesion. Studies of murine γ/δ T cells indicate the positive selection of γ/δ T cells in the periphery (20). The study of leprosy lesions indicates that the clonal selection by foreign antigen occurs at the site of infection. Furthermore, γ/δ T cells in the lungs and blood of patients with sarcoidosis (14) may similarly result from the oligoclonal expansion to antigen.

The nucleotide sequence analysis of lesional γ/δ T cells revealed that while V61-J61 T cells utilize multiple D6 segments at the V-J junction, the V62-J61 T cells use only the D63 gene segment in 98% of the isolates. This is in contrast to the 67% usage of D63 alone in sequences derived from the blood of the same individuals, or the 33% usage in normal skin. The differences in D6 usage suggest a fundamental distinction in the V61 and V62 populations in skin lesions. The exclusive use of the D63 gene segment with minimal use of N segments is a feature of γ/δ T cells representing an early fetal thymic wave (11). Since V62-D63-J61 cells in leprosy skin lesions were found to contain N segments, they are likely derived from a later developmental stage when the levels of terminal deoxynucleotide transferase are higher. The finding of conserved amino acid residues and length of the predominant lesion-derived V62-J61 junctions suggests that the junctional region, and specifically the D63-encoded sequence, participates in antigen recognition (Fig. 4). This is supported by murine studies indicating that the junctional sequences influence the specificity of the γ/δ TCR (21). When compared to the limited TCR diversity displayed by γ/δ T cells from leprosy lesions, the normal skin data suggests that the γ/δ T cells in leprosy lesions represent clonal selection from among a genetically diverse peripheral blood or resident skin population. The reported diversity of V-J junctions in mycobacterial-reactive murine γ/δ T cells derived from antigen-unselected neonatal thymus indicates that the breadth of the antigen-reactive repertoire is large (22).

Human vs. Murine Skin γ/δ T Cells. The normal murine epidermis contains a dendritic cell population that is Thy-1+ and bears γ/δ TCRs. This resident population is of extremely limited genetic diversity, with virtually exclusive usage of a single Vγ gene and single Vδ gene and no junctional diversity (1). Similar to the murine intraepidermal T cells, we find the normal human TCR γ/δ skin population to be encoded by a restricted set of V and J genes (V62-J61). In response to infection, the epidermis is found to contain a specific TCR δ population (V61-J61), and all TCRs are of limited genetic diversity.

Our findings indicate clear differences between human versus murine skin γ/δ T cells. The resident human skin population, known to be significantly smaller than the murine resident population (13), displays extensive, rather than limited, genetic diversity of junctional gene elements. Even in human skin lesions of infectious etiology, the number of epidermal γ/δ T cells was relatively few as compared to the resident murine population. However, limited genetic diversity occurs in γ/δ T cells responding to infection and appears to be due
to the oligoclonal expansion of specific TCR-bearing cells from a diverse pool.

Implications. \(\gamma/\delta\) T cells appear to function as a first line of defense against infectious pathogens (23). This hypothesis is based on the finding of large numbers of \(\gamma/\delta\) T cells at peripheral interfaces, including normal murine skin (24), gut (25, 26), and lungs (3). \(\gamma/\delta\) T cells derived from antigen-unselected murine neonatal thymocytes (27) respond to mycobacterial antigens in vitro. Furthermore, the initial immune response to *M. tuberculosis* (28), *Listeria monocytogenes* (29), and *Trypanosoma cruzi* (30) infection is characterized by expansion of \(\gamma/\delta\) T cells. In humans, \(\gamma/\delta\) T cells accumulate in early lesions of leprosy and leishmaniasis (7). Studies of human \(\gamma/\delta\) have indicated reactivity to a number of infectious agents, including mycobacteria (7, 31-33), listeria (34), streptococcus (34, 35), staphylococcus (34-36), plasmodium (37, 38), and herpes viruses (39). The present data indicate that the \(\gamma/\delta\) T cell response to infection involves clonal selection from a diverse TCR repertoire and further expansion by antigen in situ. The limited junctional diversity in leprosy lesions is not consistent with current knowledge of superantigen responses (40). Our data suggest that VJ junctions are critical for antigen recognition.

We are grateful to Drs. Michael B. Brenner, Mitchell Kronenberg, and Barry R. Bloom for scientific discussions and encouragement. We are indebted to Drs. Shuzhuang Lu, Erica Nelson, and Florence Hofman for technical expertise.

This work was supported by grants from the National Institutes of Health (AI-22553, AR-40312, AI-28508), the UNDP/World Bank/World Health Organization Special Programme for Research and Training in Tropical Diseases (IMMLEP and THELEP), the Heiser Trust, and The Dermatologic Research Foundation of California, Inc. H. Band is a Leukemia Society of America Special Fellow and an Arthritis Foundation Investigator.

Address correspondence to Robert L. Modlin, Division of Dermatology, 52-121 CHS, UCLA School of Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90024.

Received for publication 8 April 1991.

References

1. Asarnow, D.M., W.A. Kuziel, M. Bonyhadi, R.E. Tigelaar, P.W. Tucker, and J.P. Allison. 1988. Limited diversity of gamma delta antigen receptor genes of Thy-1+ dendritic epidermal cells. *Cell.* 55:837.
2. Takagaki, Y., A. DeCloux, M. Bonneville, and S. Tonegawa. 1989. Diversity of gamma delta T-cell receptors on murine intestinal intra-epithelial lymphocytes. *Nature (Lond.).* 339:712.
3. Augustin, A., R.T. Kubo, and G.K. Sim. 1989. Resident pulmonary lymphocytes expressing the gamma/delta T-cell receptor. *Nature (Lond.).* 340:239.
4. Hata, S., K. Satyanarayana, P. Devlin, H. Band, J. McLean, J.L. Strominger, M.B. Brenner, and M.S. Krangel. 1988. Extensive junctional diversity of rearranged human T cell receptor delta genes. *Science (Wash. DC).* 240:1541.
5. Loh, E.Y., S. Cwirla, A.T. Serafini, J.H. Phillips, and L.L. Lanier. 1988. Human T-cell-receptor delta chain: genomic organization, diversity, and expression in populations of cells. *Proc. Natl. Acad. Sci. USA.* 85:9714.
6. Takihara, Y., J. Reimann, E. Michalopoulous, E. Ciccone, L. Moretta, and T.W. Mak. 1990. Diversity and structure of human T cell receptor \(\delta\) chain genes in peripheral blood \(\gamma/\delta\)-bearing T lymphocytes. *J. Exp. Med.* 169:393.
7. Modlin, R.L., C. Pirmez, F.M. Hofman, V. Torigian, K. Uyemura, T.H. Rea, B.R. Bloom, and M.B. Brenner. 1989. Lymphocytes bearing antigen-specific gamma/delta T-cell receptors in human infectious disease lesions. *Nature (Lond.).* 339:544.
8. Dugan, E., R.L. Modlin, and T.H. Rea. 1985. An in situ immunohistological study of Mitsuda reactions. *Int. J. Lepr.* 53:404.
9. Band, H., F. Hochstenbach, J. McLean, S. Hata, M.S. Krangel, and M.B. Brenner. 1987. Immunohistochemical proof that a novel rearranging gene encodes the T cell receptor delta subunit. *Science (Wash. DC).* 238:682.
10. Cooper, C.L., C. Mueller, T.-A. Sinchaisri, C. Pirmez, J. Chan, G. Kaplan, S.M.M. Young, I.L. Weissman, B.R. Bloom, T.H. Rea, and R.L. Modlin. 1989. Analysis of naturally occurring delayed-type hypersensitivity reactions in leprosy by in situ hybridization. *J. Exp. Med.* 169:1565.
11. Krangel, M.S., H. Yssel, C. Brocklehurst, and H. Spits. 1990. A distinct wave of human T cell receptor gamma/delta lymphocytes in the early fetal thymus: evidence for controlled gene rearrangement and cytokine production. *J. Exp. Med.* 172:847.
12. Sanger, F., S. Nicklen, and A.R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. *Proc. Natl. Acad. Sci. USA.* 74:5463.
13. Groh, V., S. Porcelli, M. Fabbri, L. Lanier, L.J. Picker, T. Anderson, R.A. Warnke, A.K. Bhan, J.L. Strominger, and M.B. Brenner. 1989. Human lymphocytes bearing T cell receptor gamma/delta are phenotypically diverse and evenly distributed throughout the lymphoid system. *J. Exp. Med.* 169:1277.
14. Tamura, N., K.J. Holroyd, T. Banks, M. Kirby, H. Okayama, and R.G. Crystal. 1990. Diversity in junctional sequences associated with the common human V\(\gamma\)9 and V\(\delta\)2 gene segments in normal blood and lung compared with the limited diversity in a granulomatous disease. *J. Exp. Med.* 172:169.
15. Yoshikai, Y., G. Matsuzaki, T. Inoue, and K. Nomoto. 1990. An increase in number of T-cell receptor gamma/delta-bearing T cells in athymic nude mice treated with complete Freund's adjuvants. *Immunology*. 70:61.

16. Marni-Chouaib, F., C. Miossec, P. Del Porto, C. Flamant, F. Triebel, and T. Hercend. 1990. T cell target 1 (TCT1): a novel target molecule for human non-major histocompatibility complex-restricted T lymphocytes. *J. Exp. Med.* 172:1071.

17. Porcelli, S.A., M.B. Brenner, J.L. Greenstein, S.P. Balk, C. Terhorst, and P.A. Bleicher. 1989. Recognition of cluster of differentiation 1 antigens by human CD4-CD8- cytotoxic T lymphocytes. *Nature (Lond.)*. 341:447.

18. Porcelli, S., M.B. Brenner, and H. Band. 1991. Biology of the human gamma/delta T-cell receptor. *Immunol. Rev.* In press.

19. Fisch, P., M. Malkovsky, S. Kovats, E. Sturrm, E. Braakman, B.S. Klein, S.D. Voss, L.W. Morrissey, R. DeMars, W.J. Welch, R.L.H. Bolhuis, and P.M. Sondel. 1990. Recognition by human Vgamma9/Vdelta2 T cells of a groEL homolog on Daudi Burkitt's lymphoma cells. *Science (Wash. DC)*. 250:1269.

20. Sim, G.K., and A. Augustin. 1990. Dominantly inherited expression of BID, an invariant undiversified T cell receptor delta chain. *Cell*. 61:397.

21. Reilahan, B.L., J.A. Bluestone, B.A. Houliden, M.M. Cottman, and L.A. Matis. 1991. Junctional sequences influence the specificity of y/8 T cell receptors. *J. Exp. Med.* 173:503.

22. Happ, M.P., R.T. Kubo, E. Palmer, W.K. Born, and R.L. O'Brien. 1989. Limited receptor repertoire in a mycobacterial subset of gamma/delta T lymphocytes. *Nature (Lond.)*. 342:696.

23. Janeway, C.A. 1988. Frontiers of the immune system (news and views). *Nature (Lond.)*. 333:804.

24. Kuizel, W.A., A. Takashima, M. Bonyhadi, P.R. Bergstresser, J.P. Allison, R.E. Tigelaar, and P.W. Tucker. 1987. Regulation of T cell receptor gamma-chain RNA expression in murine Thy-1+ dendritic epidermal cells. *Nature (Lond.)*. 328:263.

25. Goodman, T., and L. Lefrancois. 1988. Expression of the gamma-delta T-cell receptor on intestinal CD8+ intraepithelial lymphocytes. *Nature (Lond.)*. 333:855.

26. Bonneville, M., C.A. Janeway, Jr., K. Ito, W. Haser, I. Ishida, N. Nanakishii, and S. Tonegawa. 1988. Intestinal intraepithelial lymphocytes are a distinct set of gamma delta T cells. *Nature (Lond.)*. 336:479.

27. O'Brien, R.L., M.P. Happ, A. Dallas, E. Palmer, R. Kubo, and W.K. Born. 1989. Stimulation of a major subset of lymphocytes expressing T cell receptor gamma delta by an antigen derived from *Mycobacterium tuberculosis*. *Cell*. 57:667.

28. Janis, E.M., S.H. Kaufmann, R.H. Schwartz, and D.M. Pardoll. 1989. Activation of gamma delta T cells in the primary immune response to *Mycobacterium tuberculosis*. *Science (Wash. DC)*. 244:713.

29. Ohga, S., Y. Yoshikai, Y. Takeda, K. Hiromatsu, and K. Nomoto. 1990. Sequential appearance of gamma/delta- and alpha/beta-bearing T cells in the peritoneal cavity during an i.p. infection with *Listeria monocytogenes*. *Eur. J. Immunol.* 20:533.

30. Minoprio, P., A. Bandeira, T.M. Santos, and A. Coutinho. 1989. Preferential expansion of Ly-1 B and CD4-CD8- T cells in the polyclonal lymphocyte responses to murine T cruzi infection. *Int. Immunol.* 1:176.

31. Holoshitz, J., F. Koning, J.E. Coligan, J. De Bruyn, and S. Strober. 1989. Isolation of CD4-CD8- mycobacteria-reactive T lymphocyte clones from rheumatoid arthritis synovial fluid. *Nature (Lond.)*. 339:226.

32. Haregewoin, A., G. Soman, R.C. Hom, and R.W. Finberg. 1989. Human gamma delta+ T cells respond to mycobacterial heat-shock protein. *Nature (Lond.)*. 340:309.

33. Kabelitz, D., A. Bender, S. Schondelmaier, B. Schoel, and S.H. Kaufmann. 1990. A large fraction of human peripheral blood y/8+ T cells is activated by *Mycobacterium tuberculosis* but not by its 65-kD heat shock protein. *J. Exp. Med.* 171:667.

34. Munk, M.E., A.J. Gatrill, and S.H.E. Kaufmann. 1990. Target cell lysis and IL-2 secretion by gamma/delta T lymphocytes after activation with bacteria. *J. Immunol.* 145:2434.

35. Abo, T., S. Sugawara, S. Seki, M. Fujii, H. Rikitihi, K. Takeda, and K. Kumagai. 1990. Induction of human TCR gamma delta+ and TCR gamma delta-CD2+CD3- double negative lymphocytes by bacterial stimulation. *Int. Immunol.* 2:775.

36. Rust, C.J., F. Verreel, H. Vietor, and F. Koning. 1990. Specific recognition of staphylococcal enterotoxin A by human T cells bearing receptors with the Vgamma9 region. *Nature (Lond.)*. 346:572.

37. Roussilhon, C., M. Agrapart, J.J. Ballet, and A. Bensussan. 1990. T lymphocytes bearing the gamma delta T cell receptor in patients with acute Plasmodium falciparum malaria [letter]. *J. Infect. Dis.* 162:283.

38. Ho, M., H.K. Webster, P. Tongtawe, K. Pattaapanyasat, and W.P. Weidanz. 1990. Increased gamma delta T cells in acute Plasmodium falciparum malaria. *Immunol. Lett.* 25:139.

39. De Paoli, P., G. Gennari, P. Martelli, V. Cavarzerani, R. Comoretto, and G. Santini. 1990. Gamma delta T cell receptor-bearing lymphocytes during Epstein-Barr virus infection. *J. Infect. Dis.* 161:1013.

40. Blackman, M., J. Kappler, and P. Marrack. 1990. The role of the T cell receptor in positive and negative selection of developing T cells. *Science (Wash. DC)*. 248:1335.