EFFECT OF ORGANIC MATTER AND SOIL FERTILITY ON NITROGEN MINERALIZATION AND ITS UPTAKE BY CASSAVA (Manihot esculenta CRANTZ) IN A TYPIC HAPLUDULTS

Andy Wijanarko

Indonesian Legumes and Tuber Crops Research Institute. Jl. Raya Kendalpayak km 8, PO Box 66, Malang, East Java, Indonesia

Received – March 05, 2015; Revision – March 16, 2015; Accepted – May 21, 2015
Available Online – June 19, 2015

DOI: http://dx.doi.org/10.18006/2015.3(3).232.240

ABSTRACT

Fertility of soil and crop biomass production are directly affected by organic matters present in soil. The availability of organic matter and its quality plays a key role in the soil, plants and environment sustainability. Present study was aimed to investigate the influence of organic matter and soil fertility on nitrogen mineralization and its uptake by cassava. To estimate the parameters of N mineralization potential (N0), rate of mineralization (k), and activation energy (Ea) incubation experiments were conducted in the laboratory, using a first order equation. While the relationship between the parameters of N mineralization and nutrient uptake were carried out in green house pot experiments. Value of N0, k and Ea were reported 400 - 1156 mg/kg, 0.0056 - 0.098 per week and 10166 - 31478 J mol⁻¹ respectively. N mineralization was positively correlated with water soluble N, N- Particulate Organic Matter, N microbial biomass, C- Particulate Organic Matter, C microbial biomass, N-total plant dry weight, N concentration and N uptake of cassava plants, however it was negatively correlated with C:N ratio. A higher N mineralization rate was found in soils with low C:N ratio of organic matter and higher fertility, as indicated by the value of N0, k and N0.k, which were higher than that of high C:N ratio of organic matter and low fertility of soil.
1 Introduction

Cassava is one of the most widely cultivated plants in Lampung, Indonesia (Sarno et al., 2004). Planting cassava monoculture in Ultisol may decrease soil fertility, which results in decreasing in soil organic matter, nitrogen (N), and ultimately reduced the yield of cassava (Hairiah et al., 2000). However, addition of organic matter like manure or crop residue in the soil can increase the N and C content in the Cassava cultivated soil (Fließbach et al., 2007). Amongst various nutrient elements, nitrogen is required in higher quantities and it directly influenced the productivity but unfortunately its availability to plants is always in scarcity because of its high mobility within soil. Availability of N in soil is determined by the conditions and the amount of soil organic matter (Cookson et al., 2002). Mineralization is the process of decomposition of organic matter involving microorganisms. It is responsible for the N availability in soil. This process involves the various enzymes which are directly or indirectly involved in the formulation of N compounds in soils and decomposition of manure or protein complex.

This decomposition process was carried out by microorganisms, in this process microorganisms utilized carbon compounds of organic matters and obtained energy. In this process soil organic carbon reduced and as a result of this C:N ratio of the soil get disturbance. The conversion rate of organic N into inorganic N influences the mineralization process and determine the availability of N in the soil. The process of N mineralization consisted of proteins into R-NH2, ammonification (R-NH2 to NH4+) and nitrification (NH4+ to NO3-) (Benbi & Richter, 2000). Stanford & Smith (1972) developed a simple exponential equation to describe nitrogen mineralization. This first order kinetic equation can be used to describe the kinetics of N mineralization on the different land-use, crops and climatic conditions (Nishio et al., 1994; Deng & Tabatabai, 2000; Roelcke et al., 2002; Ge et al., 2010; Zhang et al., 2010; Kim et al., 2011). Double exponential model are also widely used to describe the N mineralization, this model contains two parts which describe organic pool having differences in the decomposition of the pool fast and slow (Cartes et al., 2009). In recent years various models based on the logarithmic, parabolic and hyperbolic are also used to determine the rate of N mineralization, among this exponential model is most frequently used by researchers. Microorganism activity is determined by the dynamics of an enzyme that is often described as exponential, so mineralization can also described by this exponential models (Li et al., 2003). Several kinetic models are often used together to predict the kinetics of N mineralization followed by selection of a model that can describe the process of kinetics is based on the highest correlation coefficient with the lowest standard error (Shariatmadari et al., 2006).

Determination of the soil chemical properties that affects the kinetics of N mineralization in the soil is crucial to improve the crops productivity. Watanabe et al. (1996) and Inubushi et al. (1985) has been reported a negative correlation between clay content and k value in paddy soil. Furthermore, N0 values positively correlated with water-soluble C. In dry soils, the value of N0 is positively correlated with organic N extracted by phosphate buffer extraction (r = 0.66 **, P <0.01) and sulfuric acid extract (r = 0.69 **, P <0.01) (Sano et al., 2006). However, in peat soils, N0 value is negatively correlated with the ratio C alkyl to O-alkyl C (Purwanto et al., 2006). Similarly, wide range of k values shows differences in the availability of active organic N and microbial activity. Many studies of N mineralization were related to the chemical properties of soil, but still they are rarely associated with N labile or C labile fractions in the soil. Fractions of N labile and C labile are important source of energy for microorganisms which plays important role in the mineralization process. Light fractions are transit pool between fresh organic and humified organic, contributing to reserve of C organic and energy sources for microorganisms (Haynes, 2000; Burton et al., 2007; Laik et al., 2009). A labile organic matter fraction has a significant effect on soil organic matters reserve. A change in the quantity of these fractions is an early indicator to predict the effect of mineral application land and soil management (Soon et al., 2007; Lou et al., 2011). The sufficiency of nutrient availability in the soil is important to support the growth and high crop production. Nutrient uptake by plants depends on the concentration of nutrients in the soil. N nutrient availability in the soil is influenced by the rate of mineralization of organic matter, so it is necessary to learn the relationship between N mineralization kinetics parameters and the availability of N and N uptake by plants.

2 Materials and Methods

2.1 Soil Preparation and Experimental Treatment

Soil used for experimentation were taken from a depth of 0-20 cm (topsoil) belonging to Typic Hapludults order (ICALRD, 2008). The results pertaining to soil analysis are presented in Table 1. Experiment was laid down in completely randomized design. Two factors viz land use and types of organic matters were studied in detail. First factor land uses was divided in the subcategories like collection of soil under cassava cultivation less than 10 years and more than 30 years while the second factor was the type of organic matters it consists of various biomasses like only groundnut; only maize; combination of groundnut-maize (in 1:1; 2:1 & 1:2 ratio) and control (without organic matter). All the selected biomasses were applied @ level of 5t/ha. The soil of the experimental field sieved through 2 mm sieve. 10 g of soil was weighed and kept into a plastic bottle which was followed by its treatment with organic matter. The moisture content of the soil was maintained at field level. These bottles were stored in an incubator at the temperature of 20°C, 25°C and 30°C. After 0, 2, 4, 8, 6, 10 and 12 weeks of observation, content of N (NH4+ and NO3-) determined following Kjeldahl method with extracts of 1 M KCl.
Effect of Organic Matter and Soil Fertility on Nitrogen Mineralization and its uptake by *Manihot esculenta* Crantz in a Typic Hapludults.

Table 1 Analysis of experimental soil for various chemical properties.

Soil Properties	Soil planted with cassava less than 10 years	soil planted with cassava more than 30 years
pH (H2O)	5.1	4.6
N (%)	0.073	0.037
Organic C (%)	2.06	0.70
P-Bray I (ppm P2O5)	15.9	6.8
CEC (cmol (p+) kg⁻¹)	6.54	4.12
K (cmol (p+) kg⁻¹)	0.14	0.05
Ca (cmol (p+) kg⁻¹)	1.68	0.50
Mg (cmol (p+) kg⁻¹)Al exchange	0.33	0.15
(cmol (p+) kg⁻¹)	1.40	2.50

2.2 Kinetics of Nitrogen Mineralization

Kinetics of nitrogen mineralization was predicted by mineralization potential (N₀ in mg kg⁻¹), mineralization rate constant (k on day⁻¹), apparent activation energy (Ea in J mol⁻¹) and using a simple reaction type models developed by Sugihara et al. (1986):

\[N = N₀ [1 - \exp (-kt)] \]

Here N is the number of inorganic N (mg N kg⁻¹) on day t, N₀ is the potential mineralization (mg N kg⁻¹), k is the rate constant of mineralization (day⁻¹).

Determination of activation energy (Ea, J mol⁻¹) was carried out by using two temperatures T₁ and T₂ and k₁ and k₂ with the help of method described by Kanda (2000):

\[\text{Ea} = \frac{R \ln (k_1/k_2)}{1/T_1-1/T_2} \]

R is the gas constant (8.318 J K⁻¹ mol⁻¹)

The formula as outlined by Kanda (2000) was followed for estimating minimum incubation time (T_m):

\[T_m = 0.76/k \]

dQ10 values (Arrhenius models) by using temperature as constant referent by comparing N mineralization (Guntinas et al., 2012):

\[\text{Q10} [(T-T_1)/10] = k/k_1 \]

Where T is temperature, T₁: referent temperature (20°C), k: constant at temperature T, k₁: constant temperature T₁.

The data analysis of N mineralization uses first-order kinetics equation fitted with the curve fit procedure using the program SigmaPlot 12 (SYSTAT software inc, 2011).

3 Results and Discussion

3.1 Nitrogen mineralization during incubation

Application of groundnut and maize biomass had a positive effect on nitrogen mineralization. Combination of groundnut & maize biomass (2:1) showed highest N mineralization (Table 2). Application of organic matter derived from groundnut biomass could reduce the original C:N ratio of organic matter derived from maize biomass.

The low C:N ratio of organic matter causing susceptibility towards mineralization. Results of the present study shows similarity with the finding of Singh et al. (2007) those have reported that mixing low C:N ratio of organic matter derived from Sesbania (16) and the high C:N ratio derived from wheat straw (82) has increased N mineralization. The C:N ratio is often used to predict rate of N mineralization, results of the previous studies clearly indicated that use of different C:N ratio showed the breakeven point between mineralization and immobilization occurs at C:N ratio around 21 (Hadas et al., 2004).

Soil fertility has effects on the amount of N released during the mineralization process. The mineralized of N was reported higher in the soil that planted with cassava less than 10 years than the soil planted with cassava more than 30 years. Soil planted with cassava less than 10 years, amount of cumulative N was 1086 mg kg⁻¹, while the soil that planted with cassava more than 30 years, the amount of N released was 783 mg kg⁻¹. The value of pH, N, organic C, P and exchangeable bases were found higher in soil under less than 10 years cassava cultivation as compared to the soil under more than 30 years cassava cultivation. Gonzalez-Prieto et al. (1992) reports that mineralization was negatively correlated with exchangeable aluminum, hydrogen, and available Fe. Increased soil pH will increase N mineralization (Li et al., 2003).
The rate of mineralization (k), N potential (N₀) and Q₁₀

Effect of the application of organic matter derived from groundnut and maize biomass affect the mineralization rate constant (k). The rate of mineralization (k) in soil under cassava cultivation less than 10 years and more than 30 years shows almost similar pattern. Among the various biomass tested, application of organic matter derived from groundnut : maize biomass (2:1) has highest k value this value was followed by the application of individual groundnut, groundnut : maize combination (1:1), groundnut : maize combination (1:2), individual maize and control without organic matter respectively (Table 3). Findings of the present study indicated that the mixing of organic matter with groundnut having low C:N ratio while the maize biomass has high C:N and because of this groundnut shows higher rate of mineralization as compared to maize. Result of the present study are in agreement with the finds of Sholihah et al. (2012) those who have reported that the rate of mineralization indirectly correlates with the ratio C:N (0.582²), which shows that higher mineralization take place at low C:N (Abera et al., 2012). The observation of N potential also shows the similar pattern of the rate of mineralization.

A positive correlation has been reported between the rate of mineralization constant (k) and temperature. The value of k has increased around 32% by increasing temperature from 20-30°C for the soil under cultivation of cassava less than 10 years, while the soil under cultivation of more than 30 years of cassava cultivation has about 27% higher k value at the same temperature. Findings of the present study in conformity with the findings of Guntinas et al. (2012) those have reported that the rate of mineralization indirectly correlated with the ratio C:N (0.582²), which shows that higher mineralization take place at low C:N (Abera et al., 2012). The observation of N potential also shows the similar pattern of the rate of mineralization.

Temperature has positive effect on N mineralization and it was well reported that higher temperature shows higher rate of N mineralization. In all treatments, N mineralized at 30°C temperature was reported higher than the other temperatures under observation, although it is not significantly differing than N mineralized at 25°C (Table 1). According Nicolard et al., (1994) and Stark & Firestone (1996), maximum N mineralization takes place between the temperature range of 25-35°C.

3.2 The rate of mineralization (k), N potential (N₀) and Q₁₀

Table 2 Cumulative nitrogen mineralization (mg kg⁻¹) for 12 weeks at various temperatures and biomasses application.

Treatments	20°C	25°C	30°C
Only Groundnut (G)	550.6	773.8	1015.6
Only Maize (M)	435.2	704.9	872.3
G : M (1:1)	533.8	943.0	1036.0
G : M (2:1)	589.6	1011.8	1086.2
G : M (1:2)	459.4	710.5	851.9
Control (Without Organic Matter)	347.8	459.4	450.1

Treatments	20°C	25°C	30°C
Only Groundnut (G)	496.6	738.4	747.7
Only Maize (M)	388.7	556.1	638.0
G : M (1:1)	444.5	634.3	638.0
G : M (2:1)	526.4	738.4	783.1
G : M (1:2)	375.7	647.3	758.9
Control (Without Organic Matter)	264.1	437.1	394.3

Q₁₀ value is the representation of the rate of biological or chemical changes in soil at every 10°C increases. Rodrigo et al. (1997) and Harthev & Ineson (2008) recommended that the use of Arhenius models with reference temperature i.e. 20°C is the best way to compare the soil variations (Table 3). For the present study the values of Q₁₀ were reported normal for all the treatments. Similar type of study was conducted by Kirschbaum (1995) and reported average Q₁₀ value between 1.10-1.93 at 30°C. The difference in the Q₁₀ value is generally caused by differences in the composition of organic matter, state of research and range of temperatures used (Rodrigo et al., 1997).
Table 3 Effects of groundnut and maize biomass application on the value of k (per week), N mineralization and Q10 value at various temperatures range in the Typic Hapludults.

Treatments	20°C k	N0	R²	25°C k	N0	R²	30°C k	N0	R²	Q10
Only Groundnut (G)	0.0064	693.5	0.992	0.0070	703.9	0.997	0.0090	743.0	0.996	1.41
Only Maize (M)	0.0061	560.5	0.986	0.0069	848.1	0.993	0.0074	989.8	0.989	1.21
G : M (1:1)	0.0064	673.6	0.991	0.0077	979.8	0.995	0.0090	1000.9	0.995	1.41
G : M (2:1)	0.0067	725.8	0.987	0.0074	1248.1	0.993	0.0098	1150.5	0.994	1.46
G : M (1:2)	0.0060	621.1	0.988	0.0063	722.0	0.997	0.0078	1056.2	0.989	1.30
Control (Without Organic Matter)	0.0056	400.2	0.967	0.0060	560.4	0.990	0.0063	641.1	0.966	1.13

Table 4 Effects of the various biomasses on the activation energy and incubation time in the Typic Hapludults.

Treatments	Activation energy (J mol⁻¹)	Period of incubation (days)
Soil that planted with cassava less than 10 years		
Groundnut (G)	28580	84.4
Maize (M)	15856	102.7
G : M (1:1)	28580	84.4
G : M (2:1)	31478	77.6
G : M (1:2)	10166	97.4
No organic matter	10166	120.6

| Soil that planted with cassava more than 30 years |
Groundnut (G)	26186	95.0
Maize (M)	14469	113.4
G : M (1:1)	23721	100.0
G : M (2:1)	26791	91.6
G : M (1:2)	15166	105.6
No organic matter	10899	131.0

3.3 Activation energy and the incubation time

Like other factors activation energy is also influenced by the type of available organic matter and land uses. Among the various tested biomasses highest activation energy was reported from the treatment containing the combination of groundnut : maize biomass in the soil that used for cassava plantation from less than 10 years. For the soils planted with cassava less than 10 years, the activation energy was reported between the 10166 J mol⁻¹ (no organic matter) - 31478 J mol⁻¹ (groundnut:maize, 2:1), whereas, this value was reported between 10899 J mol⁻¹ (no organic matter) - 26791 J mol⁻¹ (groundnut:maize, 2:1) for the soil planted with cassava more than 30 years (Table 4). According to Purwanto et al. (2006) value of activation energy is correlated with the temperature and higher activation energy was reported at the higher temperature. Furthermore, activation energy is also associated with the incubation time and higher activation energy was reported at the minimum incubation period. The greater the activation energy, shorter will be the minimum incubation time. Minimum incubation time ranged from 77-120 days in the soil under less than 10 years of cassava cultivation, while for the soil under cassava cultivation more than 30 years cassava shows incubation period between 91-131 days (Table 4). Combination of maize and groundnut biomass shows minimum incubation time.
The correlation coefficient between N mineralization kinetics parameters with labile C, labile N, organic C, total N and C:N ratio are presented in Table 5. N0 and N0.k positively correlated with water-soluble N, N-POM, N microbial biomass, C-POM, C microbial biomass C, N-total and negatively correlated with C:N ratio. Results of Sano et al. (2006) on dry soil recommended that the value of N0 is positively correlated with water-soluble N (0.66 **), water-soluble C (0.76 **), total N (0.29 *) and total C (0.26 *). Furthermore, Sano et al. (2006) suggested that the value of N0 is an index of long-term N mineralization, whereas value N0.k is an index short-term mineralization. The results of this study indicated that the both value of N0 and N0.k were positively associated with soluble N, N-POM, N microbial biomass, C-POM, C microbial biomass, N-total and negatively correlated with C: N ratio (Sano et al., 2006). Present study showed that the fraction of labile N contributed more to the mineralization process. In the soils, number of N labile fraction is relatively low. Addition of organic matter can make decomposition process relatively easier, because labile N fraction is a source of N mineralized (Sano et al., 2006).

Table 5 The coefficient of determination (R²) between N mineralization kinetics parameters (N0, k, and N0.k) with the labile N fraction, C labile, total N, total C and C:N ratio.

Observations	N0	k	N0.k
N water soluble (%)	0.585**	0.563**	0.632**
N-POM (%)	0.643**	0.482**	0.650**
N Microbiomass (mg kg⁻¹)	0.390*	0.286	0.405*
C water soluble (%)	0.014	0.056	0.001
C-POM (%)	0.522**	0.489**	0.544**
C Microbiomass (mg kg⁻¹)	0.453**	0.388*	0.499**
C (%)	0.145	0.141	0.179
N (%)	0.608**	0.453**	0.697**
C/N ratio	0.487**	0.453**	0.534**

* significant at P<0.05, ** significant at P<0.01

Table 6 The coefficient of determination (R²) between N mineralization kinetics parameters (N0, k, and N0.k) with plant dry weight, N concentration and N uptake.

Observations	N0	k	N0.k
Plant dry weight	0.519**	0.458**	0.621**
N uptake	0.539**	0.586**	0.716**

* significant at P<0.05, ** significant at P<0.01

3.4 Relationship between N mineralization kinetics parameters with labile fractions

The correlation coefficient between N mineralization kinetics parameters with labile C, labile N, organic C, total N and C:N ratio are presented in Table 5. N0 and N0.k positively correlated with water-soluble N, N-POM, N microbial biomass, C-POM, C microbial biomass C, N-total and negatively correlated with C:N ratio. Results of Sano et al. (2006) on dry soil recommended that the value of N0 is positively correlated with water-soluble N (0.66 **), water-soluble C (0.76 **), total N (0.29 *) and total C (0.26 *). Furthermore, Sano et al. (2006) suggested that the value of N0 is an index of long-term N mineralization, whereas value N0.k is an index short-term mineralization. The results of this study indicated that the both value of N0 and N0.k were positively associated with soluble N, N-POM, N microbial biomass, C-POM, C microbial biomass, N-total and negatively correlated with C: N ratio (Sano et al., 2006). Present study showed that the fraction of labile N contributed more to the mineralization process. In the soils, number of N labile fraction is relatively low. Addition of organic matter can make decomposition process relatively easier, because labile N fraction is a source of N mineralized (Sano et al., 2006).

3.5 The relationship between the parameters of N mineralization kinetics and N uptake

The parameters of N mineralization kinetics positively correlated with plant dry weight, and N uptake (Table 6). So, N mineralization kinetics can be used to estimate N nutrient uptake by plants. The higher value of N0 and k favor the N mineralized from organic matter. The addition of organic matter in the soil will increase the activities of microorganism which increased the process of mineralization especially increased the addition of N and C in soil (Table 5). It has been reported that increase in the value of the N0, k and N0.k increase the N mineralization kinetics which is closely linked to the availability of N in the soil, resulting in increased N uptake by plants. Microorganisms can use various sources of N through the life cycle.

By the process of organic matter decomposition, microorganisms will release N directly into the soil or microbes can be used it for the purposes of their own growth and then releases it into the soil through the process of secretion (Geisseler et al., 2009). Yan et al. (2006) reported that N mineralization was positively related to N uptake in rice. The treatment without N fertilizer showed approximately 98% of N absorbed by rice was from N mineralization.

Conclusion

Soil fertility effects N mineralization and it was higher for the soil under cassava cultivation less than 10 years while this process is slower in the soil planted with cassava more than 30 years. Mineralization rate constant (k) is also affected due to temperature. Increasing k from 20°C to 30°C on soil planted with cassava less than 10 years was around 32%, while it was 27% on soils that were planted with cassava more than 30 years. The parameters of N mineralization (N0 and N0.k) were positively correlated with water-soluble N, N-POM, N microbial biomass, C-POM, C microbial biomass, N-total, plant dry weight, N concentration in leaf and N uptake. N mineralization parameters are important to estimate N uptake by cassava plants.
Effect of Organic Matter and Soil Fertility on Nitrogen Mineralization and its uptake by Cassava (Manihot esculenta Crantz) in a Typic Hapludults.

Conflict of interest

Authors would hereby like to declare that there is no conflict of interests that could possibly arise.

Acknowledgments

The authors gratefully acknowledge to The Board of Agricultural Research Development, Ministry of Agriculture, Indonesian for the financial support and the authors wish to thank the Laboratory staff of ILETRY to provide facilities for the achievement of this research.

References

Abera G, Wolde-meskel E, Bakken LR (2012) Carbon and nitrogen mineralization dynamics in different soils of the tropics amended with legume residues and contrasting soil moisture contents. Biology and Fertility of Soils 48: 51–66 DOI 10.1007/s00374-011-0607-8.

Benbi DK, Richter J (2000) A critical review of some approaches to modelling nitrogen mineralization. Biology and Fertility of Soils 35:168–183 DOI 10.1007/s00374-002-0456-6.

Burton J, Chen C, Xu Z, Ghadiri H (2007) Soluble organic nitrogen pools in adjacent native and plantation forests of subtropical Australia. Soil Biology and Biochemistry 39:2723–2734 doi:10.1016/j.soilbio.2007.05.021.

Cartes P, Jara AA, Demanet R, de la Luz Mora M (2009) Urease activity and Nitrogen mineralization kinetics as affected by Temperature and Urea input rate in Southern Chilean Andisols. Journal of Soil Science and Plant Nutrition 9: 69–82.

Cookson WR, Cornforth IS, Rowarth JS (2002) Winter soil temperature (2–15 °C) effects on nitrogen transformations in clover green manure amended or unamended soils: a laboratory and field study. Soil Biology and Biochemistry 34:1401–1415 doi:10.1016/S0038-0717(02)00083-4.

Deng SP, Tabatabai MA (2000) Effect of cropping systems on nitrogen mineralization in soils. Biology and Fertility of Soils 31:211–218 DOI 10.1007/s003740050647.

Fliednbach A, Oberholzer H, Gänz L, Mader P (2007) Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agriculture, Ecosystems and Environment 118: 273–284 DOI:10.1016/j.agee.2006.05.022.

Ge T, Nie S, Hong Y, Wu J, Xiaoa H, Tong C, Iwasaki K (2010) Soluble organic nitrogen pools in greenhouse and open field horticultural soils under organic and conventional management: A case study. European Journal of Soil Biology 46: 371-374 doi:10.1016/j.ejsoibi.2010.07.001.

Geisseler D, Horwath WR, Doane TA (2009) Significance of organic nitrogen uptake from plant residues by soil microorganisms as affected by carbon and nitrogen availability. Soil Biology and Biochemistry 41: 1281–1288 doi:10.1016/j.soilbio.2009.03.014.

González-Prieto SJ, Villar MC, Carballas M, Carballas T (1992) Nitrogen mineralization and its controlling factors in various kinds of temperate humid-zone soils. Plant and Soil 144: 31–44 DOI: 10.1007/BF00018842.

Gutiñas ME, Leirós MC, Trasar-Cepeda C, Gil-Sotres F (2012) Effects of moisture and temperature on net soil nitrogen mineralization: A laboratory study. European Journal of Soil Biology 48:73-80 doi:10.1016/j.ejsoibi.2011.07.015.

Hadas A, Kautsky L, Geek M, Kara EE (2004) Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover. Soil Biology and Biochemistry 36: 255–266.

Hairiah K, Van Noordwijk M, Cadisch G (2000) Crop yield, C and N balance of three types of cropping systems on an Ultisol in Northern Lampung. NJAS - Wageningen Journal of Life Sciences 48:3-17 doi:10.1016/S1573-5214(00)80001-9.

Hartley IP, Ineson P (2008) Substrate quality and the temperature sensitivity of soil organic matter decomposition. Soil Biology and Biochemistry 40: 1567–1574 doi:10.1016/j.soilbio.2008.01.007.

Haynes RJ (2000) Labile organic matter as an indicator or organic matter quality in arable and pastoral soils in New Zealand soil. Soil Biology and Biochemistry 32: 211-219 doi:10.1016/S0038-0717(99)00148-0.

Indonesian Center for Agricultural Soil Resources Research and Development (ICALRD) (2008) Identification and soil suitability mapping for soybean at Sumatera. Pp. 146 (In Indonesian).

Inubushi K, Wada H, Takai Y (1985) Easily decomposable organic matter in paddy soils VI. Kinetics of nitrogen mineralization in submerged soils. Soil Science and Plant Nutrition 31: 563–572 DOI:10.1008/00380768.1985.10557464.

Kanda K (2000) Rapid anaerobic incubation methods for measuring N mineralization potential in soil. JIRCAS Journal 8: 33-40.

Kim I, Deurer M, Sivakumaran S, Huh KY, Green S, Clothier B (2011) The impact of soil carbon management and environmental conditions on N mineralization. Biology and Fertility of Soils 47: 709 – 714 DOI: 10.1007/s00374-010-0526-0.
Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic storage. Soil Biology and Biochemistry 27 : 753 – 760 doi:10.1016/0038-0717(94)00242-S.

Laik R, Kumar K, Das DK, Chaturvedi OP (2009) Labile soil organic matter pools in a Calciorthent after 18 years of afforestation by different plantations. Applied Soil Ecology 42 : 71–78 doi:10.1016/j.apsoil.2009.02.004.

Li H, Han Y, Cai Z (2003) Nitrogen mineralization in paddy soils of the Taihu Region of China under anaerobic conditions: dynamics and model fitting. Geoderma 115 : 161–175 doi:10.1016/S0016-7061(02)00358-0.

Lou Y, Wang J, Liang W (2011) Impacts of 22-year organic and inorganic N managements on soil organic C fractions in a maize field, northeast China. Catena 87 : 386– 390 doi:10.1016/j.catena.2011.07.006.

MacDonald NW, Zak DR, Pregitzer KS (1995) Temperature effects on kinetics of microbial respiration and net nitrogen and sulfur mineralization. Soil Science Society of America Journal 59 : 233–240.

Nicolardot B, Fauvet G, Cheneby D (1994) Carbon and nitrogen cycling through soil microbial biomass at various temperatures. Soil Biology and Biochemistry 26 : 253–261 doi:10.1016/0038-0717(94)00165-1.

Nira R, Nishimune A (1993) Studies on nitrogen mineralization properties of Tokachi soils by kinetic analysis. Soil Science and Plant Nutrition 39 : 321-329 DOI:10.1080/003807068.1993.10417003.

Nishio T, Sekiya H, Toriyama K, Kogano K (1994) Changes in gross rates of nitrogen transformations in soil caused by conversion of paddy fields to upland fields, Soil Science and Plant Nutrition 40:301-309 DOI: 10.1080/00380768.1994.10413304.

Nordmeyer H, Richter J (1985). Incubation experiments on nitrogen mineralization in loess and sandy soils. Plant and Soil 83 : 433–445 DOI: 10.1007/BF02184455.

Okore IK, Tijani-Eniola H, Agboula AA, Aiyelari EA (2007) Impact of land clearing methods and cropping systems on labile soil C and N pools in the humid zone Forest of Nigeria. Agriculture, Ecosystems and Environment 120 : 250–258 doi:10.1016/j.agee.2006.09.011.

Purwanto BH, Watanabe MA, Shoon JF, Kakuda K, Ando H (2006) Kinetic Parameters of Gross N Mineralization of Peat Soils as Related to the Composition of Soil Organic Matter. Soil Science and Plant Nutrition 51 : 109-115 DOI:10.1111/j.1747-0765.2005.tb00013.

Rodrigo A, Recous S, Neel C, Mary B (1997) Modeling temperature and moisture effects on C-N transformations in soils: comparison of nine models. Ecological Modelling 102 : 325–339 DOI: http://dx.doi.org/10.1016/S0304-3800(97)00067-7.

Roelcke M, Han Y, Cai Z, Richter J (2002) Nitrogen mineralization in paddy soils of the Chinese Taihu Region under aerobic conditions. Nutrient Cycling in Agroecosystems 63 : 255–266 DOI: 10.1023/A:1021115218531.

Sano S, Yanai J, Kosaki T (2006) Relationships between labile organic matter and nitrogen mineralization in Japanese agricultural soils with reference to land use and soil type. Soil Science & Plant Nutrition 52: 49–60 doi:10.1111/j.1747-0765.2006.00003.x

Sarno, Iijima M, Lumbanraja J, Sunyoto, Yuliani E, Izumi Y, Watanabe A (2004) Soil chemical properties of an Indonesian red acid soil as affected by land use and crop management. Soil and Tillage Research76: 115–124 doi:10.1016/j.still.2003.09.001.

Shariatmadari H, Shirvani M, Jafari A (2006) Phosphorus release kinetics and availability in calcareous soils of selected arid and semiarid toposequences. Geoderma 132 : 261-272 doi:10.1016/j.geoderma.2005.05.011.

Sholihah A, Prijono S, Utami SR, Handayanto E (2012) N Mineralization from Residues of Crops Grown with Varying Supply of 15N Concentrations. Journal of Agricultural Science 4: 117-123 DOI: 10.5539/jas.v4n8p117.

Singh S, Ghoshal N, Singh KP (2007) Synchronizing nitrogen availability through application of organic inputs of varying resource quality in a tropical dryland agroecosystem. Applied Soil Ecology 36: 164–175 doi:10.1016/j.apsoil.2007.01.007.

Soon YK, Arshad MA, Haq A, Lupwayi N (2007) The influence of 12 years of tillage and crop rotation on total and labile organic carbon in a sandy loam soil. Soil and Tillage Research 95: 38-46 doi:10.1016/j.still.2006.10.009.

Stanford G, Smith SJ (1972) Nitrogen mineralization potentials of soils. Soil Science Society of America Journal 36 : 465-472 doi:10.2136/sssaj1972.0361599500360030029x.

Stark JM, Firestone MK (1996) Kinetic characteristics of ammonium-oxidizer communities in a California oak woodland-dannual grassland. Soil Biology and Biochemistry 28 : 1307–1317 doi:10.1016/S0038-0717(96)00133-2.

Sugihara S, Konno T, Ishii K (1986) Kinetics of nitrogen mineralization of organic nitrogen in soil. Bulletin of National Institute for Agro-Environmental Science 1: 127-166 (in Japanese with English summary) available on http://www.niaes.affrc.go.jp/sinfo/publish/bullet_e.html.
Watanabe I, Manguiat IJ, Mascarina GB (1996) Nitrogen mineralization in tropical wetland rice soils II. Application of exponential models. Soil Science and Plant Nutrition 42: 239-249 DOI:10.1080/00380768.1996.10415094.

Yan DZ, Wang DJ, Sun RJ, Liu JH (2006) N mineralization as affected by long-term N Fertilization and its relationship with crop N uptake. Pedosphere 16:125-130 doi:10.1016/S1002-0160(06)60034-9.

Zhang C, Trofymow JA, Jamieson RC, Meng F, Gordon R, Bourque C (2010) Litter decomposition and nitrogen mineralization from an annual to a monthly model. Ecological Modelling 221: 1944-1953 doi:10.1016/j.ecolmodel.2010.04.015.