ON THE RIGIDITY OF SYMBOLIC POWERS

MOHSEN ASGHARZADEH

Abstract. We deal with the rigidity conjecture of symbolic powers over regular rings. This was asked by Huneke. Along with our investigation, we confirm a conjecture [4, Conjecture 3.8].

1. Introduction

In this note \((R, \mathfrak{m})\) is a regular local ring of dimension \(d\). Recall that the \(n\)-the symbolic power of an ideal \(I\) defined by \(I^{(n)} := \bigcap_{p \in \text{Ass}(I)} (I^n R_p \cap R)\). Recall from [12] Question 31 that:

Question 1.1. Let \(p \in \text{Spec}(R)\). If \(p^{(d)} = p^d\), does it follow that \(p^n = p^{(n)}\) for all \(n \geq 1\)?

Question 1.1 is true in dimension 3, see [10, Corollary 2.5]. This uses the intersection multiplicity due to Serre. Also, Question 1.1 is true for 1-dimensional Gorenstein prime ideals of a 4-dimensional regular ring. This was proved by Huneke, see [10, Corollary 2.6]. Huneke and Ulrich extended this to the class of 1-dimensional prime ideals of regular rings that are lieri, see [9]. In Theorem 3.6 we show that:

Theorem 1.2. Let \(I\) be a Cohen-Macaulay height-two ideal generated by exactly \(d\) elements in a regular local ring \(R\) of dimension \(d > 2\). Suppose \(I\) is locally complete intersection. Then \(I^i = I^{(i)}\) for all \(i < d - 1\) and \(I^n \neq I^{(n)}\) \(\forall n \geq d - 1\).

In the graded situation and over polynomial rings, the claims \(I^i = I^{(i)}\) for all \(i < d - 1\) and \(I^{d-1} \neq I^{(d-1)}\) are in the recent preprint [4]. One may try to drop the conditions forced over \(I\). Such a dream overlaps with the following recent conjecture based on "computer experiments":

Conjecture 1.3. (See [4]) Let \(X \subset \mathbb{P}^3_k\) be a subvariety of codimension 2. Assume that there is a point \(p \in X\) such that the localization of \(I_X\) at \(p\) is not a complete intersection. Then \(\forall m \geq 2\), the saturation of \(I_X^{(m)}\) has an embedded component at \(p\). In particular, \(I_X^{(m)} \neq I_X^{(m)}\) \(\forall m \geq 2\).

In Section 4 we show Conjecture 1.3 is true in the irreducible case. We say an ideal \(I\) is rigid, if \(I^n = I^{(n)}\) for all \(n\) provided \(I^{(i)} = I^i\) for all \(i \leq \dim R\). Recall from [12]: Is any prime ideal rigid? Here, we present a sample:

Corollary 1.4. Any Cohen-Macaulay prime ideal \(p\) of height 2 in a 4-dimensional regular local ring is rigid. In fact \(p^n = p^{(n)}\) for all \(n \geq 1\) provided \(p^{(3)} = p^3\).

In Section 5 we use the machinery of birational geometry to construct non-rigid ideals (the ideals may not be radical).

2010 Mathematics Subject Classification. Primary 13D40; 13F20.
Key words and phrases. Symbolic powers; regular rings; local cohomology; rigidity.
2. Towards the rigidity in codimension one

For the simplicity of the reader we collect some well-known results that we need:

Subsection 2.A: Preliminaries. Recall that an ideal I is called complete intersection if I is generated by a regular sequence of length equal to height of I.

Lemma 2.1. (See [10], Corollary 2.5) Let (R, \mathfrak{m}) be a regular local ring of dimension 3 and \mathfrak{p} be a prime ideal of dimension one which is not a complete intersection. Then $\mathfrak{p}^i \neq \mathfrak{p}^{(i)}$ for all $i > 1$.

The grade of an ideal \mathfrak{a} on a module M is defined by $\text{grade}_A(\mathfrak{a}, M) := \inf \{i \in \mathbb{N}_0 | \text{Ext}^i_{R}(R/\mathfrak{a}, M) \neq 0 \}$. We use depth($M$), when we deal with the maximal ideal of *-local rings. Denote the minimal number of generators of M by $\mu(M)$.

Discussion 2.2. An ideal $I \triangleleft R$ is called perfect if $p \cdot \text{dim}(R/I) = \text{grade}(I, R)$. Also, I is called strongly Cohen-Macaulay, if its Koszul homologies $H_i(I, R)$ are all Cohen-Macaulay modules. The ideal I satisfies the G_∞ condition if for all $p \in V(I)$, one has $\mu(I_p) \leq \text{ht}(p)$.

Example 2.3. (See [11] Theorem 2.1(a) and [11] Supplement)

i) Perfect ideals of codimension two in a regular ring are strongly Cohen-Macaulay.

ii) If $\mu(I) \leq \text{ht}(I) + 2$, R is Gorenstein and R/I is Cohen-Macaulay, then I is strongly Cohen-Macaulay.

Lemma 2.4. (See [9], Lemma 2.7) Let R be a local Gorenstein ring, let I be a perfect ideal which is strongly Cohen-Macaulay and G_∞. We write $D := \text{dim}(R/I)$. Then for all $n \geq d := \mu(I) - \text{grade}(I, R)$, we have $\text{depth}(R/I^{n+1}) = D - d$.

An ideal I is called almost complete intersection, if $\mu(I) = \text{ht}(I) + 1$. The definition presented in [10] is more general than this.

Lemma 2.5. (See [10], Theorem 3.1) Let R be a Cohen-Macaulay ring and \mathfrak{p} be a prime ideal which is an almost complete intersection. Then $\mathfrak{p}^{(2)} = \mathfrak{p}^2$ if and only if $\mathfrak{p}R_{\mathfrak{q}}$ is generated by an $R_{\mathfrak{q}}$-sequence $\forall \mathfrak{q} \in V(\mathfrak{p})$ such that $\text{dim}((R/\mathfrak{p})_{\mathfrak{q}}) \leq 1$.

Subsection 2.B: Towards the rigidity in codimension one. For an R-module M, the i^{th} local cohomology of M with respect to an ideal \mathfrak{a} is defined by $H^i_{\mathfrak{a}}(M) := \lim_{\leftarrow n} \text{Ext}^i_{R}(R/\mathfrak{a}^n, M)$. By definition, $H^0_{\mathfrak{m}}(R/I^n) = \bigcup_i (I^n :_{R/I^n} \mathfrak{m}^i) =: (I^n)_{\text{ast}}$. Note that $\mathfrak{m} \notin \text{Ass}(R/I^n)$ if and only if $\text{depth}(R/I^n) > 0$ if and only if $(I^n)_{\text{ast}}$. In fact, our interest in 1-dimensional ideals coming from:

Fact 2.6. Let $I \triangleleft R$ be a radical ideal of dimension one. Then $I^{(n)}/I^n = H^0_{\mathfrak{m}}(R/I^n)$.

In the case $I^{(n)}/I^n = H^0_{\mathfrak{m}}(R/I^n)$, the equality of symbolic powers and ordinary powers translates to the positivity of the depth function $f(n) := \text{depth}(R/I^n)$.

Proposition 2.7. Let (R, \mathfrak{m}) be a regular local ring of dimension d and \mathfrak{p} be a prime ideal of dimension one generated by at most d elements. The following holds:

a) Suppose $\mathfrak{p}^i = \mathfrak{p}^{(i)}$ for some $i > 1$. Then

i) $\mathfrak{p}^i = \mathfrak{p}^{(i)}$ for all i.

ii) \mathfrak{p} generated by exactly $d - 1$ elements.
b) Suppose $p^{i_0} \neq p^{(i_0)}$ for some $i_0 > 1$. Then $p^i \neq p^{(i)}$ for all $i > i_0$.

Proof. a): As p is almost complete intersection and of dimension one, one can easily check that p is perfect, strongly Cohen-Macaulay (see Example 2.3(ii)) and G_{∞}.

i) In view of Lemma 2.4, $f(n) := \text{depth}(R/p^n)$ is constant for all $n > 1$. Having Fact 2.6 in mind, $f(i_0) \neq 0$. So, $f(n) \neq 0$ for all $n > 1$. As $f(n) \leq \dim R/p^n = 1$, we get $f(n) = 1$ for all $n > 1$. Again by Fact 2.6, $p^i = p^{(i)}$ for all i.

ii) By part i), $p^2 = p^{(2)}$. By Lemma 2.8, p_q is generated by an R_q-sequence for all $q \in V(p)$ such that $\dim R_q/p_q \leq 1$. For example we can take $q := m$. The proof is now complete.

b): Every d-generated prime ideal of height $d - 1$ in a regular local ring of dimension d is generated by a weak d-sequence, see [11, 1.3]. In view of [11, Corollary 2.5], for an ideal generated by a weak d-sequence over an integral domain, one has

$$\text{Ass}(R/p) \subset \text{Ass}(R/p^2) \subset \ldots \subset \text{Ass}(R/p^{i_0}) \subset \ldots \quad (*)$$

As $p^{i_0} \neq p^{(i_0)}$ and by Fact 2.6, $\text{depth}(R/p^{i_0}) = 0$. Thus $m \in \text{Ass}(R/p^{i_0})$. Applying $(*)$, we deduce that $m \in \text{Ass}(R/p^i)$ for all $i > i_0$. In view of Fact 2.6, $p^i \neq p^{(i)}$ for all $i > i_0$.

The following result shows that the assumption $\mu(p) = d$ is really important.

Lemma 2.8. (See [11]) Let (R, m) be a regular local ring of dimension $d \geq 4$ and p be a prime ideal of dimension one which is not a complete intersection and is in the linkage class of a complete intersection.

i) If R/p is Gorenstein, then $p^2 = p^{(2)}$ and $p^i \neq p^{(i)}$ for all $i > 2$.

ii) If R/p is not Gorenstein, then $p^i \neq p^{(i)}$ for all $i \geq 2$.

It was asked in [9] when is the natural map $\text{Ext}^d_R(R/a, R) \rightarrow H^n_a(R)$ is injective.

Corollary 2.9. Let p be as Lemma 2.8. Then, the natural map $\text{Ext}^d_R(R/p^n, R) \rightarrow H^n_a(R)$ is not injective for all $n > 2$.

Proof. We are going to apply Hartshorne-Lichtenbaum vanishing theorem. As regular local rings are analytically irreducible and $\dim R/p = 1$ we get that $H^n_a(R) = 0$. Thus, we need to show $\text{Ext}^d_R(R/p^n, R) \neq 0$. Note that $\text{Ext}^d_R(R/p^n, R)$ is not if its Matlis dual $\text{Ext}^d_R(R/p^n, R)^v$ is nonzero. By local duality and Fact 2.6, we get that $\text{Ext}^d_R(R/p^n, R)^v \simeq H^n_{\mathfrak{m}}(R/p^n) = p^{(n)}/p^n$, which is nonzero.

3. Towards the rigidity in codimension two

The following well-known example (see e.g. [20]) illustrates our’s idea:

Example 3.1. Let $R := \mathbb{C}[x_0, \ldots, x_3]$ and let $p := I_2(A)$ where

$$A := \begin{pmatrix} x_0 & x_1 & x_2 \\ x_1 & x_2 & x_3 \end{pmatrix}.$$

Then p is perfect of height two in a four-dimensional ring with three generators. Also, $p^n = p^{(n)}$ for all n.

An ideal \(I \) is called \textit{generically complete intersection} if \(I_p \) is complete intersection for all \(p \in \min(I) \). Also, recall that \(I \) is called \textit{locally complete intersection} if \(I_p \) is complete intersection for all \(p \in V(I) \setminus \{m\} \). In the graded situation we assume in addition that \(p \) is homogeneous. Our interest on locally complete intersection comes from the following non-linear version of[4] Remark 2.2:

\textbf{Fact 3.2.} Let \(I \) be a locally complete intersection ideal. Then \(I^{(n)}/I^n = H^0_m(R/I^n) \).

\textbf{Sketch of proof:} Recall that symbolic powers and ordinary powers are the same if the ideal is complete-intersection. Also, localization behaves nicely with respect to symbolic power (see Lemma 4.3 below). It turns out that \(I^{(n)} = (I^n)^{\text{sat}} \). It remains to mention that \(H^n_m(R/I^n) = H^n_m(R/I^d) \) for all \(n > d - 1 \).

\textbf{Lemma 3.3.} Let \(I \) be a Cohen-Macaulay height two ideal generated by \(d \) elements in a regular local ring \(R \) of dimension \(d \). If \(I \) is locally complete intersection, then \(\text{depth}(R/I^n) = \text{depth}(R/I^d) \) for all \(n > d - 1 \).

\textbf{Proof.} It is easy to see that such an ideal is perfect and \(G_\infty \). Due to Example 2.3, \(I \) is strongly Cohen-Macaulay. It remains to apply Lemma 2.4. \(\square \)

The same argument suggests:

\textbf{Corollary 3.4.} Let \(p \) be a Cohen-Macaulay height two prime ideal generated by \(3 \) elements in a regular local ring \(R \) of dimension \(4 \). Then \(\text{depth}(R/p^n) = \text{depth}(R/p^4) \) for all \(n > 2 \).

For each \(X \subseteq \text{Spec}(R) \) and any \(\ell \), set \(X^{\geq \ell} := \{ p \in X : \text{ht}(p) \geq \ell \} \).

\textbf{Lemma 3.5.} Let \(I \) be a Cohen-Macaulay height two ideal locally complete intersection in a regular local ring \(R \) of dimension \(d = \dim R > 2 \). Then \(I^i = I^{(i)} \) for all \(i > 1 \) if and only if \(\mu(I) \leq d - 1 \).

\textbf{Proof.} Suppose first that \(I^i = I^{(i)} \) for all \(i > 1 \). The ideal \(I \) is perfect, because \(\text{p.dim}(I) < \infty \). Clearly, a locally complete intersection ideal is generically complete intersection. In particular, we are in the situation of[13] Corollary 3.4. We note that the proof of[13] Corollary 3.4 uses the existence of a prime ideal of height \(\geq 3 \). Here, is the place that we use the assumption \(d > 2 \). Now, [13] Corollary 3.4] shows that \(\mu(I) \leq d - 1 \). Now, suppose \(\mu(I) \leq d - 1 \). Recall that a locally complete intersection ideal is generically complete intersection. In view of Example 2.3 I is strongly Cohen-Macaulay. Since \(I \) is locally complete intersection, \(\mu(IR_q) = \text{grade}(IR_q, R_q) = \text{ht}(IR_q) = 2 \leq \text{ht}(Q) \) for all \(q \in V(I) \setminus \{m\} \) with \(3 \leq \text{ht}(Q) \). Also, \(\mu(I) \leq d - 1 = \text{ht}(m) - 1 \). In particular, \(\mu(I_q) \leq \text{ht}(Q) - 1 \) for all \(q \in V(I)^{\geq 3} \).

By 15 Lemma 3.1, \(I^i = I^{(i)} \) for all \(i \).

The assumption \(d > 2 \) is important: Let \(R := k[[x, y]] \) and \(I := (x, y) \). Then \(I^n = I^{(n)} \) for all \(n \). But, \(\mu(I) > d - 1 \) (in the case of projective geometry there is no restriction on the dimension, because in the construction of \(I^n \) we disregard the irrelevant ideal).

\textbf{Theorem 3.6.} Let \(I \) be a Cohen-Macaulay height two ideal generated by exactly \(d \) elements in a regular local ring \(R \) of dimension \(d > 2 \). Suppose \(I \) is locally complete intersection. Then \(I^i = I^{(i)} \) for all \(i < d - 1 \) and \(I^n \neq I^{(n)} \) \(\forall n \geq d - 1 \).
We barrow some lines from [4].

Proof. Since I is locally complete intersection and in view of Fact 3.2 we observe that $I^n/I^n = H^n_{R}(R/I^n)$. This means that $I' = I^{(i)}$ if and only if $\text{depth}(R/I')} > 0$. It is easy to see that I is G_{∞} and strongly Cohen-Macaulay. Combining these along with Lemma 3.3 we observe

$$I' = I^{(i)} \iff I' = I^{(i)} \forall i \geq d - 1. \quad (*)$$

Since I is perfect, $p. \dim(R/I) = \text{grade}(I, R) = \text{ht}(I) = 2$. So, $p. \dim(I) = 1$, and recall that $\mu(I_p) \leq \text{ht}(p) = \text{depth}(R_p)$, because I is locally complete intersection assumption. These assumptions imply that $\text{Sym}^i(I) \simeq I^i$ for all $i \leq d$ (see [19, Theorem 5.1]). Due to Hilbert-Burch, $0 \rightarrow R^{d-1} \xrightarrow{(a_{ij})} R^d \rightarrow I \rightarrow 0$ is exact. In the light of [22], the following (not necessarily exact) complex

$$F_i : 0 \rightarrow \bigwedge^i (R^{d-1}) \rightarrow \bigwedge^{i-1} (R^{d-1}) \otimes R^d \rightarrow \cdots \rightarrow R^{d-1} \otimes \text{Sym}^{i-1}(R^d) \rightarrow \text{Sym}^i(R^d)$$

approximates $\text{Sym}^i(I) \simeq I^i$.

Let $C := \ker \left(\text{Sym}(R^d) \rightarrow \text{Sym}(I) \right) = \text{im} \left(\text{Sym}(R^{d-1}) \rightarrow \text{Sym}(R^d) \right)$. Note that $\mathcal{R} := \text{Sym}(R^d) = R[X_1, \ldots, X_d]$. Thus, $C = \left(\sum a_{ij} X_i : 1 \leq j \leq d - 1 \right)$ when we view C as an ideal of \mathcal{R}. Denote the Koszul complex with respect to a generating set of C in \mathcal{R} by K. We should remark that \mathcal{R} is a graded polynomial ring. The i-th spot of K is the above complex F_i. Let $p \in V(I) \setminus \{m\}$. To prove $(F_i)_p$ is exact, we need to show $K_p[x_1, \ldots, x_d]$ is exact. Such a thing is the case if $C_{p[x_1, \ldots, x_d]}$ is complete intersection. Let us check this. There are regular elements f, g such that $I_p = (f, g)$. Then $0 \rightarrow R_p \rightarrow R_p^2$ approximates I_p. Denote the identity matrix by Id. Thus

$$0 \rightarrow R_p^{d-1} \xrightarrow{(a_{ij})} R_p^d \rightarrow I_p \rightarrow 0 \simeq (0 \rightarrow R_p \xrightarrow{(f, g)} R_p^2 \rightarrow I_p \rightarrow 0) \oplus (0 \rightarrow R_p^{d-2} \xrightarrow{\text{Id}} R_p^{d-2} \rightarrow 0 \rightarrow 0).$$

This yields that $C_{p[x_1, \ldots, x_d]} = (fX_1 - gX_2, X_3 \ldots, X_d)$ which is complete intersection. In sum, we observed that F_i has finite length homologies.

Suppose $i < d$. Then, in view of the new intersection theorem [17], F_i is acyclic. Conclude from Auslander-Buchsbaum formula that $\text{depth}(R/I') > 0$ for all $i < d - 1$. This implies that

$$I' = I^{(i)} \forall i < d - 1.$$

Suppose on the contradiction that $I^n = I^{(n)}$ for some $n \geq d - 1$. Via the last displayed item and $(*)$, we deduce that $I^n = I^{(n)}$ for all n. Then by Lemma 3.3 $\mu(I) \leq d - 1$ which is a contradiction. □

Corollary 3.7. Let I be a Cohen-Macaulay height two ideal generated by at least d elements in a regular local ring R of dimension $d > 2$. Suppose I is locally complete intersection. Then $I' = I^{(i)}$ for all $i < d - 1$ and $I^{d-1} \neq I^{(d-1)}$.

Proof. Recall that $\mu(I_p) \leq \text{ht}(p) = \text{depth}(R_p)$ for all $p \in V(I)$ of height less than d and that $p. \dim(I) = 1$. Therefore, $\text{Sym}^i(I) \simeq I^i$ for all $i \leq d - 1$ (see [19, Theorem 5.1]). This follows by above proof that $I' = I^{(i)}$ for all $i < d - 1$. Suppose on the contradiction that $I^{d-1} = I^{(d-1)}$. Let us summarize things: $I' = I^{(i)}$ for all $i < d - 1$, I is perfect of height-two and I is generically complete intersection. Under these assumptions [15, Theorem 3.2] implies that $I' = I^{(i)}$ for all i.
In the light of Lemma 5.5 \(\mu(I) \leq d - 1 \). This is excluded by the assumption. This contradiction implies that \(I^{d-1} \neq I^{(d-1)} \).

The assumption \(d > 2 \) is important: Let \(R := k[[x, y]] \) and \(I := (x, y) \). Then \(\mu(I) = 2 > d - 1 \). Clearly, \(I^2 = I^{(2)} \). The locally complete intersection assumption is important:

Example 3.8. Look at \(I := (yzw, xzw, xyw, xyz) \) as an ideal in \(R := k[x, y, z, w] \). Then \(I \) is a Cohen-Macaulay height two ideal generated by exactly 4 elements in a *-regular ring \(R \) of dimension 4. It is easy to observe that \(x^n yzw \in I^{(2)} \setminus I^2 \) for all large \(n \). Thus \(I^{(2)} \neq I^2 \).

The height-two assumption is important:

Example 3.9. Set \(R := k[x_1, \ldots, x_5] \). We look at the pentagon as a simplicial complex. Its Stanley-Reisner ring is \(R_\Delta := k_\Delta/I_\Delta := R/(x_1 x_3, x_1 x_4, x_2 x_4, x_2 x_5, x_3 x_5) \). Note that \(I_\Delta \) is a height three ideal. So, \(\text{dim}(\Delta) = \text{dim} R_\Delta - 1 = 1 \). By the help of Macaulay 2, the projective resolution of \(R_\Delta \) over \(R \) is \(0 \rightarrow R \rightarrow R^4 \rightarrow R^5 \rightarrow R \rightarrow R_\Delta \rightarrow 0 \). Due to Auslander-Buchsbaum formula, \(\text{depth}_R(R_\Delta) = 2 = \text{dim}(R_\Delta) \). Thus \(I_\Delta \) is perfect and of codimension 3 generated minimally by 5 elements. In view of \([18 \text{ Proposition 1.11}] \), \(I_\Delta \) is locally complete intersection. Thus, for all \(p \in V(I) \), one has \(\mu(I_p) \leq \text{ht}(p) \). By definition, \(I \) is \(G_\infty \). Thanks to Macaulay2, \(p, \text{dim}(R/I_\Delta^1) = 5 \). By Auslander-Buchsbaum formula, \(\text{depth}(R/I_\Delta^1) = 0 \). In the light of \(\text{Lemma 2.3} \), \(\text{depth}(R/I_\Delta^2) = 0 \) for all \(n \geq 3 \). Consequently, \(I_\Delta^2 \neq I_\Delta^{(n)} \) for all \(n \geq 3 \), because \(I_\Delta \) is locally complete intersection (see Fact 3.2). By \([18 \text{ Example 2.8}] \), \(p, \text{dim}(R/I_\Delta^1) = 3 \) and consequently \(I_\Delta^3 = I_\Delta^{(2)} \).

In fact, the above example suggests:

Corollary 3.10. Let \(I \) be a perfect ideal of height \(d - 2 \) with minimally \(d \) generators in a \(d \)-dimensional regular local ring \(R \). If \(I \) is locally complete intersection, then \(I^n \neq I^{(n)} \) for all \(n \geq 3 \).

Proof. As \(\mu(I) - \text{grade}(I, R) \leq 2 \), \(I \) is strongly Cohen-Macaulay, because of Example 2.3. Since \(\mu(I_p) \leq \text{ht}(p) \), we see \(I \) is \(G_\infty \). By \(\text{Lemma 2.3} \), \(\text{depth}(R/I^{(n)}) = 0 \) for all \(n \geq 3 \). Since \(I \) is locally complete intersection and in view of Fact 3.2 we observe that \(I^{(n)}/I^n = H^0_m(R/I^n) \). So, \(I^n \neq I^{(n)} \) for all \(n \geq 3 \).

The Cohen-Macaulay assumption is important:

Example 3.11. Let \(C \) be the curve in \(\mathbb{P}^3 \) parameterized by \(\{s^4, s^3 t, s t^3, t^4\} \). This is the Macaulay’s curve. Denote the ideal of definition of \(C \) by \(p \) which is a prime ideal in \(k[x, y, z, w] \). This is well-known that \(\mu(p) = 4 \), \(p^n = p^{(n)} \) for all \(n \) and that \(R/p \) is not Cohen-Macaulay, see [20 Example]. One can show that \(p \) is locally complete intersection (for a quick proof please see Theorem 4.3 below). Also, \(\text{ht}(p) = 2 \). In particular, the Cohen-Macaulay assumption in Theorem 3.6 is really important.

4. Towards the rigidity in dimension four

Conjecture 4.1. (See [4 Conjecture 3.8]) Let \(X \subset \mathbb{P}^3_k \) be a subvariety (reduced and unmixed) of codimension 2. Assume that there is a point \(p \in X \) such that the localization of \(I_X \) at \(p \) is not a complete intersection. Then \(\forall m \geq 2 \), the saturation of \(I_X^m \) has an embedded component at \(p \). In particular, \(I_X^m \neq I_X^{(m)} \) for all \(m \geq 2 \).
Observation 4.2. The monomial-situation rarely happens: Recall that I is an ideal in the ring $R := k[x_1, \ldots, x_4]$. As I is radical unmixed monomial and 2-dimensional we have

$$I = \text{rad}(I) = \bigcap_{(i \neq j)} (x_i, x_j).$$

Let G be the graph with the vertex set $\{1, \ldots, 4\}$ where $\{i, j\}$ is an edge, if such a pair does not appear in the above intersection. Suppose on the contradiction that $I^m = I^{(m)}$ for some $m \geq 2$. Thanks to [18] Lemma 3.1, G is a path or a cycle or the union of two disjoint edges. In the case of union of two disjoint edges, I is locally complete intersection (see [18] Example 1.18) which is excluded by the conjecture. The corresponding ideal of the paw-graph

![Paw Graph](image)

is (x_1x_4, x_2x_4) which is of height one. This is excluded. The ideal of the diamond

![Diamond Graph](image)

is (x_1x_3) which is of height one. This is excluded. The corresponding ideal of

![Tetrahedral Graph](image)

is (x_1x_4, x_2x_4, x_3x_4) which is of height one. This is excluded. Also, the corresponding ideal of tetrahedral graph excluded. Therefore, G is either 4-gon (square graph) or 4-pointed path. In particular, it is connected. Deduce from [18] Proposition 1.11] that I is locally complete intersection which is excluded by the conjecture. Therefore, G is either 4-gon (square graph) or 4-pointed path. In particular, it is connected. Deduce from [18] Proposition 1.11] that I is locally complete intersection which is excluded by the conjecture. Therefore, G is either 4-gon (square graph) or 4-pointed path. In particular, it is connected. Deduce from [18] Proposition 1.11] that I is locally complete intersection which is excluded by the conjecture.

The following result is well-known (see e.g. the stacks project).

Lemma 4.3. Let $R \to S$ be a flat ring map (e.g. localization with respect to a multiplicative closed set). Let $q \subseteq R$ be a prime ideal such that $p = qS$ is a prime ideal of S. Then $q^{(n)}S = p^{(n)}$.

Theorem 4.4. Conjecture 4.1 is true for irreducible varieties.

Proof. Let q be the defining ideal of the variety $X \subset \mathbb{P}^3$. Then, q is a height-two prime ideal in $R := k[x_1, \ldots, x_4]$ which is not locally complete intersection. By definition, there is a homogeneous prime ideal $p \in V(q) \setminus \{m\}$ such that qR_p can not be generated by a regular sequence. Note that qR_q is generated by a regular sequence, because it is a maximal ideal of a regular local ring. Deduce from this that $p \supsetneq q$. One may find easily that $p \supsetneq m$. We conclude by this that $\text{ht}(p) = 3$. We
summarize things as follows: R_p is a regular local ring of dimension 3 and qR_p is a prime ideal of height two which is not a complete intersection ideal. Set $S := R \setminus p$. In the light of Lemma 4.3
\[(S^{-1}q)^m \neq (S^{-1}q)^{(m)} \quad \forall m > 1 \quad (*)\]
One can find easily that $(S^{-1}q)^m = S^{-1}(q^m)$.
If $q^m = q^{(m)}$ were be the case, in view of Lemma 4.3 we should have
\[(S^{-1}q)^m = S^{-1}q^m = S^{-1}(q^m) = (S^{-1}q)^{(m)},\]
which is a contradiction via $(*)$. So, $q^m \neq q^{(m)}$ for all $m > 1$.

Corollary 4.5. Let p be a 2-dimensional Cohen-Macaulay prime ideal in a regular local ring of dimension four. If $p^{(3)} = p^3$, then $p^n = p^{(n)}$ for all $n \geq 1$.

Proof. By the proof of Theorem 4.4 we may assume that p is locally complete intersection. If $\mu(p) \leq 3$, by the help of Lemma 3.5, we observe that $p^n = p^{(n)}$ for all $n \geq 1$. Suppose $\mu(p) \geq 4$. Then we are in the situation of Corollary 3.7. In view of Corollary 3.7, $p^{(3)} \neq p^3$. This is excluded by the assumptions. The proof is now complete.

5. **Towards non-rigidity**

The rings in this section are of zero characteristic.

Discussion 5.1. Let $X \subset \mathbb{P}^n$ be a projective variety. Given a rational map $F : X \dashrightarrow \mathbb{P}^n$ into another projective space, $Y \subset \mathbb{P}^n$ denote its image. Recall that F is called birational onto its image if there exists a rational map $G : Y \dashrightarrow \mathbb{P}^n$ whose image is X. When such a thing happens we say F is a Cremona transformation. Note that F (resp. G) determines by forms $\underline{f} := f_0, \ldots, f_n$ (resp. \underline{g}) of same degree. By d (resp. d') we mean $\deg(f_i)$ (resp. $\deg(g_j)$). Also, \underline{g} is called representatives of the inverse. The ideal generated by \underline{f} is called the base ideal. By a result of Gabber, $d' \leq d^{n-1}$, see [2]. In particular, when $n = 2$ one can recover the classical result $d = d'$. The following is a method to construct non-rigid ideals.

Proposition 5.2. Adopt the above notation and let I be the base ideal generated by forms of degree $d \geq 2$. Assume the following conditions hold:

i) $\text{depth}(R/I) > 0$,

ii) $I^{(\ell)}/I^\ell$ is either zero or \mathfrak{m}-primary for all ℓ, and

iii) The Rees algebra $R(I)$ satisfies Serre’s condition S_2.

Then $I^\ell = I^{(\ell)}$ for all $\ell < d'$ and $I^d \neq I^{(d')}$, where d' is the degree of representatives of the inverse.

Proof. In the light of [3] Theorem 2.1 we observe that the symbolic Rees algebra $R(I) := \bigoplus_s f^{(s)}_s$ is equal to $R[I, Dt^{d'}]$, where D is called the source inversion. We note that D is defined by the equation
\[g_i(f_0, \ldots, f_n) = Dx_i \quad \forall i \quad (* \star)\]
In particular, for all $i < d'$, one has
\[I^{(i)} = R_t(I) = R(I)_i = I_i\]
By (⋆), we have $\deg(D) = dd' - 1$. Recall that $I^{d'}$ has no element of degree less than dd'. Thus, $D \in \mathbb{R}_{d'}^{(d')} \setminus I^{d'} = I^{(d')} \setminus I^{d'}$.

We give a non-rigid ideal:

Example 5.3. The primeness of the ideal is important. Let $R := \mathbb{k}[x,y,z]$ and let d be any integer. Take $I := (x^d, x^{d-1}y, y^{d-1}z)$. This is the base ideal of $\mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ and is of degree d. The base ideal is one-dimensional and saturated. In particular, it is Cohen-Macaulay. Under this assumption it is shown in [3, Proposition 3.4] that the conclusion of Proposition 5.2 holds true. Recall from Discussion 5.4 that $d = d'$. It follows that $I^i = I^{(i)}$ for all $i < d$ and $I^d \neq I^{(d)}$.

Discussion 5.4. Let us revisit $I := (yzw, xzw, xyw, xyz)$ as an ideal in $A := \mathbb{k}[x,y,z,w]$. Then I is square-free and is 3-Veronese. Such an ideal is perfect, of height 2, 4-generated and the depth of its powers are computed by the following table (see [3, Corollary 10.3.7])

$$\text{depth}(R/I^n) = \begin{cases}
2 & \text{if } n = 1 \\
1 & \text{if } n = 2 \\
0 & \text{if } n > 2
\end{cases}$$

Let us show that the assumption ii) in Proposition 5.2 is really needed.

Example 5.5. Look at $I := (yzw, xzw, xyw, xyz)$ as an ideal in $R := \mathbb{k}[x,y,z,w]$. We note that I is the base ideal of the Cremona map $F : \mathbb{P}^3 \dashrightarrow \mathbb{P}^3$.

i) In view of Example 3.8, the module $I^{(2)}/I^2$ is not zero. By Discussion 5.4, $\text{depth}(R/I^2) = 1$. Thus, $m \nsubseteq \text{Ass}(R/I^2)$. Therefore, I^2 has no m-primary component. So, $I^{(2)}/I^2$ is not m-primary.

ii) Here, we show that I respects the conditions i) and iii) in Proposition 5.2. In the light of [21], $I^n = I^0$ for all n. This means that R/I is normal. Normal rings are S2. Also, $\text{depth}(R/I) = 2 > 0$.

iii) Suppose on the contradiction that Proposition 5.2 is true without its second assumption. Recall that F defines via the partial derivations of $f := xyzw$. This is well-known and classical from birational geometry that F is standard involution, i.e., it is self-inverse as a rational map. In particular, $d = d' = 3$. In view of Proposition 5.2 we should have $I^2 = I^{(2)}$ which is a contradiction with Example 3.8.

Example 5.6. Let us apply things in an example due to Dolgachev: Let $f := x(xz + y^2)$. In view of [5, Page 192], the partial derivations $\{\partial f/\partial x, \partial f/\partial y, \partial f/\partial z\}$ define a plane Cremona transformation. Such a transformation is called polar transformation. It is easy to find that the base ideal $I = (2xz + y^2, xy, x^2)$ is perfect and of codimension 1. Recall that $d' = d = 2$. By Proposition 5.2, $I^2 \neq I^{(2)}$.

Remark 5.7. Let us look at the system $\{X^2, XY, WX + Y^2, ZX + W^2, UX + Z^2\}$. This defines a birational map $\mathbb{P}^4 \dashrightarrow \mathbb{P}^4$ such that $d' = d^{n-1}$. Let $A := \mathbb{k}[X,Y,W,Z,U]$ and let $I := (X^2, XY, WX + Y^2, ZX + W^2, UX + Z^2)$. Set $R := \frac{A}{I}$. Here, we only check that $\text{depth}(R) > 0$: We use lowercase letters to represent the elements in R. We show u is a regular element. It turns out that u is a homogeneous parameter element. Look at R as a $k[u]$-module. The set $\Gamma := \{1, x, y, w, z, y^2, yw, w^2, wz, w^3, yzw\}$ is a generating set for R as a $k[u]$-module. Since Γ is...
linearly independent over $k[u]$, we observe that R is free as a $k[u]$-module. Clearly, u is regular over $k[u]$. So, u is regular, as claimed.

Conjecture 5.8. Assume that R is a d-dimensional polynomial ring over a field and $I \triangleleft$ be an ideal. Suppose there is a polynomial function f of degree at most d with coefficients depend only on the degree of generators of I and d such that $I^{(i)} = I^i$ for all $i < f$. Then $I^n = I^{(n)}$ for all $n \geq 1$.

Acknowledgement. I thank Prof. Simis for his comments on the very earlier version of this note.

REFERENCES

[1] L. Avramov, and J. Herzog, *The Koszul algebra of a codimension 2 embedding*, Math. Z. **175** (1980), 249-260.
[2] H. Bass, E. Connell, and D. Wright, *The Jacobian conjecture: reduction of degree and formal expansion of the inverse*, Bull. Amer. Math. Soc. 7 (1982), 287-330.
[3] B. Costa, A. Simis, and Z. Ramos, *A theorem about Cremona maps and symbolic Rees algebras*, Internat. J. Algebra Comput. **24** (2014), 1191-1212.
[4] S. Cooper, G. Fatabbi, E. Guardo, A. Lorenzini, J. Migliore, U. Nagel, A. Seceleanu, J. Szpond and A. Van Tuyl, *Symbolic powers of codimension two Cohen-Macaulay ideals*, [arXiv:1606.00995](http://arxiv.org/abs/1606.00995) [Math.AC]
[5] I.V. Dolgachev, *Polar Cremona transformations*, Michigan Math. J. **48** (2000), 191–202.
[6] D. Eisenbud, M. Mustata, and M. Stillman, *Cohomology on toric varieties and local cohomology with monomial supports*, J. Symbolic Comput. **29** (2000), 583-600.
[7] D. Grayson, and M. Stillman, *Macaulay2, a software system for research in algebraic geometry*, Available at http://www.math.uiuc.edu/Macaulay2/
[8] J. Herzog, and T. Hibi, *Monomial ideals*, Graduate Texts in Mathematics, **260** Springer-Verlag London, Ltd., London, (2011)
[9] C. Huneke, and B. Ulrich, *Powers of lci ideals*, Commutative algebra (Berkeley, CA, 1987), 339-346, Math. Sci. Res. Inst. Publ., **15**, Springer, New York, 1989.
[10] C. Huneke, *The primary components and integral closures of ideals in 3-dimensional regular local rings*, Math. Ann. **275** (1986), 617-635.
[11] C. Huneke, *Powers of ideals generated by weak d-sequences*, J. Algebra **68** (1981), 471-509.
[12] C. Huneke, and C. Raicu, *Introduction to uniformity in commutative algebra*, lectures given by the first author as part of an introductory workshop at MSRI for the program in Commutative Algebra, 2012-13, [arXiv:1408.7098](http://arxiv.org/abs/1408.7098) [math.AC].
[13] C. Huneke, *Symbolic powers of prime ideals and special graded algebras*, Comm. Algebra **9** (1981), 339-366.
[14] N.C. Minh, and N.V. Trung, *Cohen-Macaulayness of powers of two-dimensional squarefree monomial ideals*, J. Algebra **322** (2009), 4219-4227.
[15] S. Morey, *Stability of associated primes and equality of ordinary and symbolic powers of ideals*, Comm. Algebra **27** (1999), 3221-3231.
[16] Stack project authors, *Stacks project*, http://stacks.math.columbia.edu (2016).
[17] P. Roberts, *Le theoreme d intersection*, C. R. Acad. Sci. Paris Ser. I Math., **304** (1987), 177-180.
[18] N. Terai, and K.I. Yoshida, *Locally complete intersection Stanley-Reisner ideals*, Illinois J. Math. **53** (2009), 413-429.
[19] A. Tchernev, *Torsion freeness of symmetric powers of ideals*, Trans. Amer. Math. Soc. **359** (2007), 3357-3367.
[20] N.V. Trung, *On a certain transitivity of the graded ring associated with an ideal*, Proc. Amer. Math. Soc. **85** (1982), no. 4, 489-495.
[21] R.H. Villarreal, *Normality of subrings generated by square free monomials*, J. Pure Appl. Algebra **113** (1996), 91-106.
[22] J. Weyman, *Resolutions of the exterior and symmetric powers of a module*, J. Algebra **58**, (1979) 333–341.
E-mail address: mohsenasgharzadeh@gmail.com