Heterogeneity of the pharmacologic treatment of allergic rhinitis in Europe based on MIDAS and OTCims platforms

Jean Bousquet1,2,3,4 | Detlef Schröder-Bernhardi5 | Claus Bachert6,7,8,9 | G. Walter Canonica10 | Victoria Cardona11 | Elisio M. Costa12 | Wienczyslawa Czarlewska13 | Philippe Deviller14 | Joao A. Fonseca15,16 | Ludger Klimek17,18,19 | Piotr Kuna20 | Olga Lourenco21 | Joaquim Mullol22,23 | Oliver Pfaar24 | Nhàn Pham-Thu25 | Boleslaw Samolinski26 | Julia Saueressig5 | Glenis K. Scadding27 | Ann-Kathrin Stroh5 | Sophie Scheire28 | Eric Van Ganse29,30 | Torsten Zuberbier1,2

1Charité Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
2Department of Dermatology and Allergy, Comprehensive Allergy Center, Berlin Institute of Health, Berlin, Germany
3University Hospital Montpellier, Montpellier, France
4MACVIA-France, Montpellier, France
5IQVIA Consumer Health, Frankfurt, Germany
6Upper Airways Research Laboratory, ENT Dept, Ghent University Hospital, Ghent, Belgium
7International Airway Research Center, First Affiliated Hospital Guangzhou, Sun Yat-sen University, Guangzhou, China
8Division of ENT Diseases, CLINTEC, Karolinska Institutet, Stockholm, Sweden
9Department of ENT Diseases, Karolinska University Hospital, Stockholm, Sweden
10Personalized Medicine Asthma, & Allergy Clinic-Humanitas University & Research Hospital, IRCCS-Milano, Milano, Italy
11Allergy Section, Department of Internal Medicine, Hospital Vall d’Hebron & ARADyAL Research Network, Barcelona, Spain
12UCIBIO, REQUINTE, Faculty of Pharmacy and Competence Center on Active and Healthy Ageing of University of Porto (Porto4Ageing), Porto, Portugal
13Medical Consulting Czarlewska, Levallois, France
14Unité de Recherche en Pharmacologie Respiratoire, Pôle des Maladies des Voies Respiratoires, Hôpital Foch, Université Paris-Saclay, Suresnes, France
15CINTESS, Center for Research in Health Technology and Information Systems, Faculte de Medicina da Universidade do Porto, Lda Porto, Portugal
16Medica, Lda Porto, Portugal
17Center Department of Otolaryngology, Head and Neck Surgery, Universitätsmedizin Mainz, Mainz, Germany
18Center for Rhinology and Allergology, Wiesbaden, Germany
19Department of Otolaryngology, Head and Neck Surgery, Universitätsmedizin Mainz, Mainz, Germany
20Division of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical University of Lodz, Lodz, Poland
21Faculty of Health Sciences and CICS – UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
22Rhinology Unit & Smell Clinic, ENT Department, Hospital Clinic, Barcelona, Spain
23Clinical & Experimental Respiratory Immunology, IDIBAPS, CIBERES, University of Barcelona, Barcelona, Spain
24Section of Rhinology and Allergy, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
25Ecole Polytechnique Palaiseau, IRBA (Institut de Recherche bio-Médicale des Armées), Bretigny, France
26Department of Prevention of Environmental Hazards, Allergology and Immunology, Medical University of Warsaw, Warsaw, Poland
27The Royal National ENT Hospital, University College London, London, UK
28Pharmaceutical Care Unit, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
29PELYon, Lyon, France
30HESPER 7425, Health Services and Performance Research, Université Claude Bernard Lyon, Lyon, France

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

The Authors. Clinical & Experimental Allergy published by John Wiley & Sons Ltd.
1 | INTRODUCTION

Allergic rhinitis (AR) is one of the most common chronic conditions. Available treatments include allergen avoidance, pharmacotherapy with H₁-antihistamines or intranasal corticosteroids (INCS) and allergen-specific immunotherapy (AIT). Many patients are dissatisfied with their treatment for various reasons. Management does not consider the patients’ needs, no cure is available, adherence to long-term therapy is poor, and/or the patients do not fully understand their condition. Real-world data obtained via mobile technology have suggested that there are differences in medication use between countries.

MASK-air® is a Good Practice of DG Santé concerning the digital transformation of health. The practice of allergology varies widely between countries, and the costs and sales for the treatment of rhinitis differ depending on practices and health systems. To understand these differences and their implications, the rhinitis market was studied in some of the EU countries.

2 | METHODS

2.1 | Study design

This ARIA study evaluated the market for allergic rhinitis (AR) treatment (prescribed and over-the-counter (OTC) medications) in five EU countries in the years 2016–18. We conducted a pharmaco-epidemiological database analysis to assess the medications that were being prescribed for allergic rhinitis in the years 2016, 2017 and 2018. We used the IQVIA platforms for prescribed medicines (MIDAS®—Meaningful Integration of Data, Analytics and Services) and for OTC medicines (OTC International Market Tracking—OTCims). We selected the five most important markets in the EU (France, Germany, Italy, Poland and Spain).

Results: Intranasal decongestants were excluded from the analyses because they are rarely prescribed for allergic rhinitis. For both Standard Units (SU) and costs, France is leading the other countries. In terms of SU, the four other countries are similar. For costs, Poland is lower than the three others. However, medication use differs largely. For 2018, in SU, intranasal corticosteroid is the first treatment in Poland (70.0%), France (51.3%), Spain (51.1%) and Germany (50.3%), whereas the Italian market is dominated by systemic antihistamines (41.4%) followed by intranasal corticosteroids (30.1%). Results of other years were similar.

Discussion: There are major differences between countries in terms of rhinoconjunctivitis medication usage.

Keywords: allergic rhinitis, costs, medications, MIDAS, units
dose prescribed and treatment duration. We used manufacturing costs rather than costs for the healthcare system as, in some countries, there are rebates that are not publicly available.

2.2 Medications

2.2.1 Definitions used

We used SU (Standard Units) and LEU/MNF (Local Currency Euro/Manufacturer Price Level) to compare data between countries.

An SU is a unit defined by IQVIA to represent the smallest daily unit of consumption, for example one tablet, one vial/ampoule or 5 ml of liquid. As an example, a pack of 100 tablets with a dosage recommendation of two tablets a day will lead to Unit = 1, Counting Units = 100 and SU = 50.

LEU/MNF per year represents the total sales in Local Currency Euro at Ex-Manufacturer Price Level per Calendar Year.

We chose Manufacturing Cost of the drugs, and it was not possible to mention healthcare system costs due to rebates that are not publicly available.

2.2.2 Selection of medications

We selected medications registered for AR, as well as nasal or ocular decongestants which may also be administered for AR.

The World Health Organization (WHO) Anatomical Therapeutic Chemical (ATC) classifies drugs by their active ingredients and their defined daily dose (DDD), a fixed attribute that allows the conduct of national or international drug use studies. This ATC system is based on the earlier Anatomical Classification System, which was intended as a tool for the pharmaceutical industry to classify pharmaceutical products (as opposed to their active ingredients). This system was initiated in 1971 by the European Pharmaceutical Market Research Association (EphMRA). In the present study, we used the EphMRA system and gave the ATC correspondence.

For prescribed medications, the study was performed by IQVIA Ltd., London, England, using de-identified prescription data from MIDAS® for 2016, 2017 and 2018 (in € for sales) as well as numbers of treatments. MIDAS® provides connectivity and international standardization of national-level pharmaceutical audits to allow the cross-country analysis of company and product performance, as well as additional insights and attributes not available at a local level. MIDAS® captures and harmonizes the data from 92 countries worldwide, mainly for registered medicines (prescription and non-prescription) in pharmacy and hospital channels. MIDAS® integrates and extends IMS National Audits that accurately detail estimated product volumes, trends and market share by product and therapy class, through retail and non-retail channels. MIDAS® tracks the direct sales (i.e., sales invoices) of pharmaceuticals from the manufacturer to pharmacies or hospitals. MIDAS® also tracks indirect sales (sales going through a middleman, i.e., the wholesaler) to pharmacies and hospitals. MIDAS® tracks inflow or what these different channels are purchasing (i.e., the sales made into those outlets). It represents the full European market through representative panel projections for both retail and hospital channels.

The following subgroups include symptomatic AR drugs and ophthalmic drugs (since rhinitis is often associated with conjunctivitis). Montelukast was not used as it is an asthma and a rhinitis treatment and is only indicated in patients with both rhinitis and asthma. The following medications were considered (Table 1).

For OTC medications, the QuintilesIMS OTCims (OTC International Market Tracking) database was used. OTCims is a Customized Global Information Offering that provides granular data for the effective tracking of company and competitor performance in the Consumer Health marketplace. It uses IQVIA Consumer Health Classification based on Market Positioning. Data are available across four main market segments: OTC, Personal Care, Patient Care, and Nutrition. Data are included for 36 countries from Europe, Asia Pacific, and North and Latin America. Clients are supported in both own as well as competitor product/pack performance tracking against key performance indicators.

The MIDAS® database does not identify the disease for which the medication has been used. This is the case for systemic anti-histamines (R06A0) which include treatments for the nose, skin and other organs. They cannot be distinguished. INCS (R01A1) can also be administered for AR, non-allergic rhinitis and rhinosinusitis.

The list of OTC medications is given in Table 2. The four OTC therapy classes include ‘oral H1-antihistamines’ and ‘INCS’. The list is too far from ATC to propose any correspondence.

2.3 Allergen-specific immunotherapy

The only country where AIT is mostly delivered in pharmacies is Germany. We only provided data for AIT in Germany (allergens, V1A0).

2.3.1 Selection of countries

The market for prescribed medications (in costs for patients) for 2018 in all EU countries was ranked in order to choose the markets with the highest sales (Table S1). OTC medications were not considered in the country selection because a single database cannot be used in all countries. AIT was not considered in the country selection since large variations exist between countries in terms of supply (pharmacies, hospitals, Named-Patient Products, etc.).

The first six countries with the highest sales for AR medications and nasal decongestants were France, Germany, Italy, Spain, Poland and the UK. There was a big gap between UK N°6 and Sweden N°7. Thus, we considered only the first six countries. In the UK, a significant proportion of sales took place in supermarkets and these were not considered by IQVIA. Thus, the country had to be excluded.
The ‘Sell-Out’ (Medication dispensed in pharmacies) data and, if not available, the ‘Sell-In’ (Medication delivered in pharmacies) data were obtained from IQVIA. For the countries selected, the databases were from different origins, and the data type differed taking into account the country specificities on drug dispensing (Table 3).

2.4 | Collection of information

There are different methods of collecting the information, and we needed to make assumptions.

It is possible to compare ‘Sell-in’ (from wholesaler to retail pharmacy, effects like stocking are included) and ‘Sell-out’ (from retail pharmacy to patient) data, bearing in mind some biases. Therefore, for one quarter, the ‘Sell-in’ data might be higher when compared to ‘Sell-out’ due to stock, but these effects are minimized for yearly data. In the countries tested, ‘hospital’ means hospital consumption from hospital to patient.

For the OTCims Panel, all panels are ‘Sell-out’.

2.5 | Analyses

We conducted a descriptive analysis to evaluate the medications used in different countries. To derive figures for anti-rhinitis consumption per person over the three years, we linked consumption by SU to population estimates.

Stratification: The analyses were performed separately for prescription data and OTC data. In some countries, the same products could be prescribed and were also available OTC. Thus, in order to prevent multiple counts, a complex merger process between prescriptions and OTC was necessary.

Data periods: The analyses covered the periods 2016, 2017 and 2018. Results were processed on a yearly basis.

Analyses were performed once at the same time.

Projection: The results were projected yearly per country.

3 | RESULTS

3.1 | Intranasal decongestants (R1A7 and 01B2)

Intranasal decongestant sales (R1A7 and 01B2) are extremely variable, with low sales in France (from 612,073 to 751,739 kSU per year, 12.6%–14.8% of total sales) and high sales in Germany (from 6,586,460 to 6,890,822 kSU per year, 71.6%–79.6%) (Table 4). We checked the monthly variation of R1A7 in Germany in 2018 and found that they were purchased less often during the pollen season than outside (Figure S4). In Germany, although the majority of products were available in pharmacies, they were non-prescribed. We therefore excluded R1A7 and 01B2 from further analyses as they are unlikely to represent patients with allergic rhinitis.

3.2 | Overall results without intranasal decongestants (R1A7 and 01B2)

The results are presented in Table S2, Table 5 and Figure 1. For both SU and costs, France is leading the other countries. In terms of SU,
the four other countries are similar. For costs, Poland is lower than the three others. However, medication use differs largely. For 2018, in SU, INCS is the first treatment in Poland (70.0%), France (51.3%), Spain (51.1%) and Germany (50.3%), whereas the Italian market is dominated by systemic antihistamines (41.4%) followed by INCS (30.1%). Results of other years are similar. MPAze-Flu (DYMISTA) is represented from less than 1% in Spain to 1.5% in Poland and Germany and to around 2.6% in France of SU in 2018.

In costs for 2018, INCS represent 20.7% of the market in Poland, around 26–28% in Germany, Italy and Spain, and up to 38.6% in France. Systemic antihistamines represent from 45.8% (Italy) to 49.3% (France), 57% to 59% (Germany, Spain) and 67% (Poland).

3.3 | Rhinocconjunctivitis medication consumption per person in Europe

There are very large differences in medication consumption (SU) per person in Europe depending on the country (Table 6). In France, there are 4.3 times more INCS sold per inhabitant than in Germany. On the other hand, in Germany, there are 9.25 times more nasal decongestants sold per inhabitant than in France.

Although the proportion of reimbursement/out of pocket differs between countries, and even in the same country, for different classes of drugs, reimbursement and OTC availability of medications differ in EU countries (Table S3).

3.4 | Allergen immunotherapy

In Germany, AIT represents between 33.2% and 37.3% of LEU/MNF (Table 4).

4 | DISCUSSION

The present paper shows that there is a great heterogeneity in AR medications across Europe. Some explanations may be proposed including reimbursement strategies.
TABLE 4 Overall units and costs obtained by MIDAS and OTCims

	Annual SU (thousands)			Annual LEU/MNF (million €)		
	2016	2017	2018	2016	2017	2018
France						
All without	4,345,542 (85.2%)	4,232,505 (85.8%)	4,262,629 (87.4%)	297,502 (91.1%)		
R1A7 + 01B2	751,739	697,063	612,073	29,107		
Total	5,097,281	4,929,568	4,874,702	326,609		
Germany						
All without	1,873,427 (28.4%)	1,813,819 (20.4%)	1,988,758 (22.4%)	148,607 (50.2%)		
R1A7 + 01B2	6,586,460	6,763,831	6,964,445	147,137		
Total	8,459,887	8,577,650	8,955,203	295,744		
Allergens						
(V1A0)	896,439	841,312	964,073	107,746		
Italy						
All without	1,584,524 (63.5%)	1,560,315 (63.5%)	1,560,179 (62.3%)	163,988 (75.6%)		
R1A7 + 01B2	908,777	897,072	945,276	52,739		
Total	2,493,301	2,457,387	2,505,455	216,727		
Poland						
All without	1,725,720 (62.4%)	1,804,554 (63.5%)	1,806,021 (63.7%)	98,413 (69.1%)		
R1A7 + 01B2	1,039,763	1,037,053	1,029,205	44,063		
Total	2,765,483	2,841,607	2,835,226	142,476		
Spain						
All without	1,659,893 (71.1%)	1,696,172 (72.4%)	1,746,283 (73.4%)	158,275 (83.5%)		
R1A7 + 01B2	675,098	645,544	631,286	31,317		
Total	2,334,991	2,341,716	2,377,569	189,592		

4.1 Limitations

Although the IQVIA platform appears to be a good source of data for estimating drug consumption in different countries, there are several limitations.

First, we can only use the classification of medications proposed by IQVIA and some classes assess medications for multiple diseases such as ‘Systemic antihistamines’. It is likely that their use differs between countries and that the results reported in this paper may not be totally comparable.

Second, in the IQVIA database, medications are not classified by disease and there are overlaps between skin and respiratory diseases. Furthermore, in respiratory diseases, there are different indications such as allergic and non-allergic rhinitis or rhinosinusitis.

Third, we had to make assumptions that were discussed in the methods. It does not seem that these estimations may have led to significant problems.

Fourth, another limitation is non-adherence to prescribed drugs in patients that cannot be estimated. Thus, the results of the study do not consider lack of adherence to medication which was reported to be quite high.

Finally, the exclusion of nasal decongestants was proposed because they are not indicated in AR and are largely used for common cold and cough in some countries. The BSCAI guidelines (the only European guidelines) and ARIA (global guidelines) - used in most European countries - do not recommend the regular use of intranasal decongestants. In ARIA, the last recommendation was made in 2010; there have not been any other important papers on the subject since. In adults with AR and severe nasal obstruction, we suggest a very short course (no longer than 5 days, and preferably shorter) of intranasal decongestants while co-administering other drugs (conditional recommendation, very low-quality evidence). We suggest that clinicians should not administer and that parents should not use intranasal decongestants in preschool children.
Country	Standard units 2016 (Absolute)	Standard units 2017 (Absolute)	Standard units 2018 (Absolute)	LEU/MNF 2016 (Absolute)	LEU/MNF 2017 (Absolute)	LEU/MNF 2018 (Absolute)
France	5,097,280,885	4,929,568,274	4,874,702,206	326,609,288	315,187,283	313,398,985
Hospital	24,443,211	22,347,969	19,213,960	3,994,101	3,930,879	3,901,789
R1A1	4,430,987	3,142,635	3,008,948	323,730	307,361	336,467
R1A7	4,165,245	3,735,215	3,600,270	61,833	52,174	48,840
R6A0	12,383,393	12,163,848	12,668,770	3,124,229	3,209,892	3,284,036
*Dymista	0	720	144,840			
S1G1	14,980	13,119	20,349			
S1G2	3,376,938	3,251,404	4,251,647			
S1G3	63,456	35,431	170,362			
Germany	8,474,999,252	8,595,106,633	8,898,547,120	691,220,202	686,781,024	707,408,598
Hospital	249,496,527	255,184,305	250,282,157	8,711,628	7,863,795	8,272,906
R1A1	5,474,147	5,439,325	5,575,688	324,277	282,455	299,298
R1A7	228,397,070	234,976,448	229,199,632	2,923,767	2,942,361	2,909,478
R6A0	13,346,015	12,761,105	13,384,968	2,066,290	1,923,863	2,484,365
V1A0	17,442	12,954	13,269			
*Dymista	64,240	44,400	72,120	13	0	
S1G1	291,274	303,232	410,628	10,349	11,407	11,025
S1G2	1,387,085	1,278,129	1,156,591	16,949	13,627	14,754
S1G3	583,494	413,112	541,381	34,953	21,948	29,107
Phmscope	7,867,016,585	7,966,630,528	8,257,235,986	674,286,284	669,888,195	689,539,848
R1A1	775,921,033	755,819,069	829,008,199	37,308,422	37,331,516	42,471,934
R1A7	6,231,082,998	6,396,953,648	6,486,356,795	139,382,223	148,708,228	155,314,296
R6A0	564,852,155	543,717,940	608,321,693	92,324,525	80,342,707	88,917,806
V1A0	15,095,779	17,444,001	18,953,549	392,140,744	391,651,448	387,486,192
*Dymista	36,562,768	34,240,092	36,755,760	6,093,972	5,706,703	6,165,471
S1G1	39,119,160	33,719,080	44,437,320	2,479,823	2,128,481	2,849,695

(Continues)
	Standard units 2016 (Absolute)	Standard units 2017 (Absolute)	Standard units 2018 (Absolute)	LEU/MNF 2016 (Absolute)	LEU/MNF 2017 (Absolute)	LEU/MNF 2018 (Absolute)
S1G2	106,793,840	94,276,360	104,978,800	2,957,406	2,544,410	2,862,850
S1G3	134,151,620	124,700,430	165,179,630	7,693,141	7,181,405	9,637,075
Pharmacy	193,137,402	210,177,201	216,417,121	5,093,515	5,681,215	5,846,784
01B2	83,858,450	98,444,811	103,622,407	2,281,585	3,043,918	3,246,814
07A5	100,576,690	104,101,960	105,335,380	2,088,516	2,002,415	2,000,027
O1E1	5,926,522	4,475,960	4,168,654	578,025	481,892	452,820
07A2	2,775,740	3,154,470	3,290,680	145,389	152,990	147,123
Discount	8,832,814	8,533,946	8,590,854	257,229	197,507	193,400
01B2	113,170,473	114,023,434	124,054,013	1,999,975	2,237,524	2,572,119
Drugstore	38,898,835	36,600,671	37,537,948	778,642	823,753	893,062
O1E1	26,857,170	19,024,460	15,197,810	272,864	184,562	174,842
07A2	0	4,272,160	4,959,840	0	71,889	80,231
07A5	0	1,261,375	3,312,875	0	200,545	521,960
S/Market	8,832,814	8,353,946	8,590,854	257,229	197,507	193,400
01B2	8,832,814	30,506,765	32,530,143	733,210	724,048	766,362
Drugstore	38,898,835	36,600,671	37,537,948	778,642	823,753	893,062
O1E1	26,857,170	19,024,460	15,197,810	272,864	184,562	174,842
07A2	0	4,272,160	4,959,840	0	71,889	80,231
07A5	0	1,261,375	3,312,875	0	200,545	521,960
Small SMKT	4,446,616	4,136,548	4,212,660	45,432	51,778	51,792
01B2	3,781,336	3,682,438	3,629,200	45,432	51,778	51,792
07A2	0	2,176,640	1,022,880	0	34,308	18,346
07A5	0	85,250	355,725	0	13,619	56,562

Italy

2,493,701,426

Hospital

19,268,623

30,506,765

3,781,336

665,280

0

4,446,616

0

Small SMKT

9,292

80,231

18,346

56,562

13,619

521,960

18,346

51,792

20,468

172

3166

*Dymista

12,628

30,759,112

230,409,525

230,409,525

214,051,423

183,808,168

20,468

172

3166

230,409,525

230,409,525

214,051,423

183,808,168

(Continues)
	Standard units 2016 (Absolute)	Standard units 2017 (Absolute)	Standard units 2018 (Absolute)	LEU/MNF 2016 (Absolute)	LEU/MNF 2017 (Absolute)	LEU/MNF 2018 (Absolute)
O1E1	18,147,917	15,335,022	13,921,881	1,525,029	1,454,974	1,373,791
07A2	23,223,460	24,866,070	25,146,300	1,345,096	1,761,222	2,005,317
07A5	195,211,214	202,401,346	224,849,740	17,808,502	18,049,321	18,549,494
Para pharm						
01B2	62,842,213	61,141,481	57,418,452	760,555	722,685	2,043,213
O1E1	3,130,451	2,712,157	2,786,754	289,792	304,747	
07A2	811,270	1,139,910	856,970	72,531	72,711	
07A5	22,258,465	23,602,930	25,236,525	1,157,789	1,151,717	
Mass market						
01B2	113,035,642	110,123,888	104,286,137	4,382,715	4,382,715	4,382,715
O1E1	3,130,451	2,712,157	2,786,754	289,792	304,747	
07A2	811,270	1,139,910	856,970	72,531	72,711	
07A5	22,258,465	23,602,930	25,236,525	1,157,789	1,151,717	
Poland						
Hospital	2,765,988,564	2,842,199,367	2,835,908,301	160,226,726	164,378,170	
R1A1	15,137,626	16,445,222	15,776,895	1,157,789	1,151,717	
R1A7	7,500,858	8,190,886	7,891,661	67,923	70,286	
R6A0	4,753,783	4,890,510	5,023,220	699,454	700,018	
V1A0	18,573	17,682	17,331	762,527	658,504	
Dymista						
S1G1	376,200	407,800	388,700	5658	5468	
S1G2	160,400	154,620	162,200	1783		
S1G3	28,860	34,620	32,180	1987		
Retail	2,366,366,557	2,417,153,496	2,431,208,428	150,426,738	153,779,672	
R1A1	653,132,400	703,686,012	713,149,704	20,705,341	20,673,273	
R1A7	1,004,863,014	1,011,149,604	992,832,758	45,819,743	46,349,359	
R6A0	486,694,708	493,734,398	503,733,894	66,049,824	67,962,276	
V1A0	668,615	573,662	665,272	13,306,862	13,759,838	
Dymista	6,561,360	8,876,280	21,715,680	2,772,401		
S1G1	32,080,900	28,343,000	26,681,800	519,091	490,397	
S1G2	142,996,760	131,793,440	139,948,300	1,259,054	1,311,795	
S1G3	46,130,160	47,873,380	54,196,700	3,498,734		
Offtake	384,484,381	408,600,649	388,670,885	8,943,692		
01B2	27,399,224	27,711,821	27,497,770	1,596,898	1,479,956	
O1E1	70,555,480	59,164,147	59,314,467	3,395,491		
07A2	19,943,700	40,539,400	52,760,100	1,368,100		
07A5	266,585,977	281,185,281	249,296,548	2,700,145		
Spain	2,335,455,930	2,342,195,399	2,378,256,266	2,027,34,932		
Hospital	9,112,183	11,052,976	10,225,055	1,560,387		
R1A1	2,172,526	3,357,987	2,535,450	75,791		

(Continues)
(conditional recommendation, very low-quality evidence). A report by Statistica (https://www.statista.com/statistics/417727/cough-and-cold-self-medication-market-sales-in-europe/) showed the same ranking order for cold and cough drugs as the IQVIA data for nasal decongestants. Germany ranked first (1,557 million € for 2017), followed by Italy (718), Poland (609), Spain (552) and France (490). In Germany, in 2018, the months with the highest pollen counts were those with the lowest use of nasal decongestants.

4.2 | Interpretation

Although many papers dealt with AR costs, we were not able to find any that analyzed the units sold. Moreover, costs are difficult to compare between papers as OTC and prescribed drugs vary between countries, and direct AR costs reduced considerably when OTC medications became available. In the present paper, we found large differences between EU countries and particularly between France (low nasal decongestants, high INCS consumption) and Germany (the opposite).

In a Swedish study, it was found that 71.6% of patients with AR were using OAH, 44% INCS and 41% nasal decongestants.21

In France, most medications are reimbursed if prescribed. A long wait to consult French medical specialists encourages the quick purchase of OTC drugs, during pollen seasons, for example. French pharmacists are often well trained for offering OTC drugs: easy-to-use, inexpensive oral OAH, nasal sprays and eye drops. ENT physicians and allergists traditionally prescribe these molecules and train general practitioners to also do so. These molecules were prescribed very early by pediatricians, also to children of atopic families who present nasal signs. These children are used to these methods from the age of 3.

In Germany, the situation is more complex than in other countries. The general reimbursement strategy is outlined in Table 4. 8.7% of the population are privately insured; this is only possible for people who are self-employed or for employees who earn an above-average salary. For privately insured patients, all allergic rhinitis medications are usually reimbursed but this depends very much on the individual contracts. Some privately insured patients, for instance, have a contract where they are only reimbursed for medications and other healthcare costs above a chosen limit, for example 1,000€ per year. This is a contract which young people very often choose, with the monthly costs being lower and the speculation of not having to use this fixed rate in the year. These patients often tend

TABLE 5 (Continued)
R1A7
R6A0
*Dymista
S1G1
S1G2
S1G3
Sell-out
R1A1
R1A7
R6A0
V1A0
*Dymista
S1G1
S1G2
S1G3
Off-Take
O1B2
O1E1
O7A2
O7A5
Parapharm
O1B2
O1E1
O7A5
Standard units 2016 (Absolute)

R1A7
R6A0
*Dymista
S1G1
S1G2
S1G3
Sell-out
R1A1
R1A7
R6A0
V1A0
*Dymista
S1G1
S1G2
S1G3
Off-Take
O1B2
O1E1
O7A2
O7A5
Parapharm
O1B2
O1E1
O7A5
not to buy medications recommended by the physician. The rest of the population is under the statutory health insurance (Gesetzliche Krankenversicherung) but can choose between policies of different companies. Also, the official healthcare insurance companies have different reimbursement strategies, and details vary. The general reimbursement strategy is outlined in Table 4 but another variable comes into play. Physicians treating patients under the statutory health insurance scheme in Germany have a fixed budget for medication costs and can be made liable if they do not adhere to the very strict economic prescription pathways. Although OAH can be reimbursed for severe allergic rhinitis, even if over-the-counter products are available, physicians often choose not to prescribe these medications on a panel prescription allowing reimbursement. They choose rather to give a private prescription to the patient which means that he/she has to cover the full costs. Last but not least, another limiting factor in Germany is the fact that all patients above 12 years of age also have to pay a cost share fee for every drug at the pharmacy (10% of the price of the product), with a minimum of 5 € and maximum of 10 €.

In Italy, most medications for rhinoconjunctivitis are provided through medical prescription. OAH are reimbursed by the NHS (National Healthcare System), whereas INCS (including INCS + INAH) are not, except in the region of Tuscany.

In Poland, the situation is similar to France. The medications for Allergic Rhinoconjunctivitis are reimbursed if prescribed by the physician. Everyone is covered by the National Health Fund (NHF), but the private sector is also very active. Patients can visit specialists working under the NHF for free, but they have to wait for a few months to consult. Otherwise, they can choose to visit a private doctor and pay out of pocket for the service without having to wait. Physicians in private and public sectors can prescribe reimbursed medications. Many medications which are reimbursed if prescribed also have an OTC version, including INCS and OAH. Similar to France, these molecules were prescribed very early by pediatricians, also to children of atopic families who present nasal symptoms. These children are used to these methods from the age of 2. In Poland, nasal washing with isotonic saline is also very common.

In Spain, most medications for rhinoconjunctivitis are provided through medical prescription. Nevertheless, there are a few formulations which may be acquired as OTC, including some OAH, such as cetirizine, and INCS, such as fluticasone propionate. A recent study has calculated the direct and indirect costs of AR in patients attending specialized clinics in Spain. Data showed that the mean drug treatment per year was significantly higher in persistent AR (77.88 ± 134.22€) compared to intermittent AR (45.62 ± 78.93€). On the other hand, no significant differences were found when comparing mild, moderate and severe AR (41.77 ± 86.02€, 70.36 ± 127.07€ and 72.16 ± 114.60€, respectively). Direct costs accounted for 24% of total costs, and drug therapy was only 10%-13% of the direct costs.

Cultural and reimbursement differences between countries may explain trends in treatment.

Many studies reported that OAH are more often used than INCS and this accords with the results of the present study. However, this is the first multi-national study to compare medication delivery.

The large differences between countries in INCS use are surprising since the guidelines of ARIA, the British Society of Allergy and Clinical Immunology and the US Practice parameters all recommend INCS as the first-line treatment for moderate to severe AR and

Country	Population 2015 (in thousands)	All without nasal decongestants	Nasal decongestants	INCS
France	66,352	64.2	9.2	33
Germany	81,175	24.5	85.1	7.6
Italy	60,795	25.7	15.6	8.3
Poland	38,005	47.5	27.0	18.8
Spain	46,440	36.5	13.7	20.0
it is likely that AR severity is similar between countries. However, the reimbursement strategies of some countries may impair the implementation of guidelines. Moreover, although most AR patients consulting a physician have moderate to severe rhinitis, the low level of ICNS prescribed is surprising. These data may at least partly explain the poor satisfaction of AR patients.

There are also very large differences between countries in intranasal decongestants. Although the indications cannot be assessed using the IQVIA database, it is likely that many patients in Germany use intranasal decongestants for AR. This does not accord with guidelines. In ARIA, ‘in adults with AR and severe nasal obstruction, we suggest a very short course (no longer than 5 days, and preferably shorter) of intranasal decongestants while co-administering other drugs (conditional recommendation, very low-quality evidence).’

5 CONCLUSIONS

With the limitations discussed, this study is of great interest for assessing the heterogeneity of pharmacotherapy in some European countries and can be used as a baseline for future studies to show treatment trends.

CONFLICT OF INTEREST

CB reports personal fees from Meda. JB reports personal fees from Chiesi, Cipla, Hikma, Menarini, Mundipharma, Mylan, Novartis, Purina, Sanofi-Aventis, Takeda, Teva, Uriach, other from KYomed-Innov, outside the submitted work. VC reports personal fees from ALK, Allergopharma, Allergy Therapeutics, Diater LETI, Thermofisher, Stallergenes, outside the submitted work. PD reports personal fees and non-financial support from Astra Zeneca, Chiesi, personal fees from Mylan, personal fees from Sanofi, GlaxoSmithKline, Menarini, outside the submitted work. LK reports grants and personal fees from Allergopharma, LETI Pharma, MEDA/Mylan, Sanofi, personal fees from HAL Allergie, Allergy Therapeut, grants from ALK Abelló, Stallergenes, Quintiles, ASIT biotech, Lofarma, AstraZeneca, GSK, ImmuNoTOK outside the submitted work; and Membership: AeDA, DGHN, Deutsche Akademie für Allergologie und klinische Immunologie, HNO-BV GPA, EAACI. OP reports personal fees and non-financial support from ALK-Abelló, Allergopharma, Anergis S.A., Stallergenes Greer, HAL Allergy Holding B.V./HAL Allergie GmbH, Bencard Allergie GmbH/Allergy Therapeutics, Lofarma, ASIT Biotech Tools S.A., Laboratorios LETI/LETI Pharma, grants from Biomay, Circassia, Glaxo Smith Kline, personal fees from MEDA Pharma/MYLAN, Mobile Chamber Experts (a GA2LEN Partner), Indoor Biotechnologies, Astellas Pharma Global, EUFOREA, ROXALL, NOVARTIS, SANOFI AVENTIS, Med Update Europe GmbH, streamedup! GmbH, outside the submitted work. BS reports grants from AstraZeneca, personal fees from Mylan, Polpharma, outside the submitted work. GS reports personal fees from ALK-Abelló, Mylan, GSK, Bayer outside the submitted work. EVG reports personal fees from PELyon, outside the submitted work. TZ reports: Organizational affiliations:Committee member: WHO-Initiative ‘Allergic Rhinitis and Its Impact on Asthma’ (ARIA). Member of the Board: German Society for Allergy and Clinical Immunology (DGAKI); Head: European Centre for Allergy Research Foundation (ECARF); President: Global Allergy and Asthma European Network (GA2LEN). Member: Committee on Allergy Diagnosis and Molecular Allergology, World Allergy Organization (WAO).

AUTHOR CONTRIBUTIONS

Jean Bousquet designed and interpreted the study data and wrote the paper. Detlef Schröder-Bernhard co-designed the study and participated in the analysis interpretation. Claus Bachert, G. Walter Canonica, Victoria Cardona, Elisio M Costa, Wienczyslaw Czarlewski, Philippe Devillier, Joao A. Fonseca, Ludger Klimek, Piotr Kuna, Olga Lourenco, Joaquim Mullol, Oliver Pfaar, Nhan Pham-Thi, Boleslaw Samolinski, Glenis Scadding, Sophie Scheire, Eric Van Ganse, Torsten Zuberbier interpreted the data and reviewed the paper. They all gave their agreement for the publication. Julia Saueressig, Ann-Kathrin Stroh analyzed the data.

DATA AVAILABILITY STATEMENT

The data is the property of IQVIA.

ORCID

Jean Bousquet https://orcid.org/0000-0002-4061-4766
Victoria Cardona https://orcid.org/0000-0003-2197-9767
Philippe Devillier https://orcid.org/0000-0001-6054-1886
Oliver Pfaar https://orcid.org/0000-0003-4374-9639
Eric Van Ganse https://orcid.org/0000-0002-7463-9187

REFERENCES

1. Bousquet J, Anto JM, Bachert C, et al. Allergic rhinitis. Nat Rev Dis Primers. 2020;6(1):95.
2. Bedard A, Basagana X, Anto JM, et al. Mobile technology offers novel insights into the control and treatment of allergic rhinitis: the MASK study. J Allergy Clin Immunol. 2019;144(1):135-143.e6.
3. Bedard A, Basagana X, Anto JM, et al. Treatment of allergic rhinitis during and outside the pollen season using mobile technology. A MASK study. Clin Transl Allergy. 2020;10(1):62.
4. Bousquet J, Anto JM, Annesi-Maesano I, et al. POLLAR: Impact of air POLLution on Asthma and Rhinitis; a European Institute of Innovation and Technology Health (EIT Health) project. Clin Transl Allergy. 2018:8:36.
5. Bousquet J, Arnavielhe S, Bedbrook A, et al. MASK 2017: ARIA digitally-enabled, integrated, person-centred care for rhinitis and asthma multimorbidity using real-world-evidence. Clin Transl Allergy. 2018:8:45.
6. Bousquet JJ, Schunemann HJ, Togias A, et al. Next-generation ARIA care pathways for rhinitis and asthma: a model for multimorbid chronic diseases. Clin Transl Allergy. 2019:9:44.
7. Bousquet J, Bedbrook A, Czarlewski W, et al. Guidance to 2018 on Allergy Diagnosis and Molecular Allergology, World Allergy Organization (WAO).
8. Valiulis A, Bousquet J, Vergy A, et al. Vilnius Declaration on Allergy Diagnosis and Molecular Allergology, World Allergy Organization (WAO).
9. Van Boeckel TP, Gandra S, Ashok A, et al. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. *Lancet Infect Dis*. 2014;14(8):742-750.

10. Collignon P, Beggs JJ, Walsh TR, Gandra S, Laxminarayan R. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis. *Lancet Planet Health*. 2018;2(9):e398-e405.

11. Kenyon C, Manoharan-Basil SS. Cultural drivers of antibiotic consumption in high-income countries: a global ecological analysis. *Microb Drug Resist*. 2020;26(9):1063-1070.

12. Tu CM. Use of proprietary names by prescribers when prescribing Over-the-Counter (OTC) drug products. *Ther Innov Regul Sci*. 2019;53(1):132-137.

13. Wastesson JW, Martikainen JE, Zoega H, Schmidt M, Karlstad O, Pottegard A. Trends in use of paracetamol in the Nordic countries. *Basic Clin Pharmacol Toxicol*. 2018;123(3):301-307.

14. Wertheimer AI. The defined daily dose system (DDD) for drug utilization review. *Hosp Pharm*. 1986;21(3):233-234, 9-41, 58.

15. Tollier C, Fusier I, Husson MC. ATC and EphMRA classifications: evolution from 1996 to 2003 and comparative analysis. *Therapie*. 2005;60(1):47-56.

16. EPHMRA. Anatomical classification. Guidelines 2016. https://webarchive.org/web/20160423224519/http://www.ephmra.org/user_uploads/atcguidelines2016finalpdf; 2016.

17. Comparison of the WHO ATC classification and EphMRA/PBIRG anatomical classification. Version 3. https://webarchive.org/web/20150806235351/http://www.ephmra.org/user_uploads/who-atc%202013%20finalpdf. 2013.

18. Menditto E, Costa E, Midao L, et al. Adherence to treatment in allergic rhinitis using mobile technology. The MASK Study. *Clin Exp Allergy*. 2019;49(4):442-460.

19. Scadding GK, Kariyawasam HH, Scadding G, et al. BSACI guideline for the diagnosis and management of allergic and non-allergic rhinitis (Revised Edition 2017: First edition 2007). *Clin Exp Allergy*. 2017;47(7):856-889.

20. Brozek JL, Bousquet J, Baena-Cagnani CE, et al. Allergic rhinitis and its impact on Asthma (ARIA) guidelines: 2010 revision. *J Allergy Clin Immunol*. 2010;126(3):466-476.

21. Cardell LO, Olsson P, Andersson M, et al. TOTALL: high cost of allergic rhinitis—a national Swedish population-based questionnaire study. *NPJ Prim Care Respir Med*. 2016;26:15082.

22. Colas C, Broka M, Anton E, et al. Estimate of the total costs of allergic rhinitis in specialized care based on real-world data: the FERIN Study. *Allergy*. 2017;72(6):959-966.

23. Hellings PW, Dobbels F, Denhaerynck K, Piessens M, Ceuppens JL, De Geest S. Explorative study on patient’s perceived knowledge level, expectations, preferences and fear of side effects for treatment for allergic rhinitis. *Clin Transl Allergy*. 2012;2(1):9.

24. Smith P, Price D, Harvey R, et al. Medication-related costs of rhinitis in Australia: a NostraData cross-sectional study of pharmacy purchases. *J Asthma Allergy*. 2017;10:153-161.

25. Bousquet PJ, Devillier P, Tadmouri A, Mesbah K, Demoly P, Bousquet J. Clinical relevance of cluster analysis in phenotyping allergic rhinitis in a real-life study. *Int Arch Allergy Immunol*. 2015;166(3):231-240.

26. Brozek JL, Bousquet J, Agache I, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines-2016 revision. *J Allergy Clin Immunol*. 2017;140(4):950-958.

27. Wallace DV, Dykewicz MS. Comparing the evidence in allergic rhinitis guidelines. *Curr Opin Allergy Clin Immunol*. 2017;17:286-294.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Bousquet J, Schröder-Bernhardi D, Bachert C, et al. Heterogeneity of the pharmacologic treatment of allergic rhinitis in Europe based on MIDAS and OTCims platforms. *Clin Exp Allergy*. 2021:00:1-13. https://doi.org/10.1111/cea.13884