SOME SUBCLASSES OF ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS FOR OPERATORS ON HILBERT SPACE

Yong Chan Kim¹, Jae Ho Choi² §

¹Department of Mathematics Education
Yeungnam University, Gyongsan 38541, KOREA
²Department of Mathematics Education
Daegu National University of Education
219 Jungangdaero, Namgu, Daegu 42411, KOREA

Abstract: The main object of the present paper is to investigate some results concerning a sufficient and necessary condition, coefficient estimates and distortion theorem for the class $T_\lambda^\delta(\alpha, A)$. Furthermore, some applications of the fractional calculus for operator on Hilbert space are also considered.

AMS Subject Classification: 30C45, 33C20
Key Words: analytic functions, starlike functions, operator, proper contraction, fractional calculus

1. Introduction and definitions

Let A denote the class of functions $f(z)$ of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k,$$

which are analytic in the open unit disk $U = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$. Also let S denote the class of functions in A which are univalent in the unit disk U.

Received: April 5, 2019 © 2019 Academic Publications

§Correspondence author
Then a function \(f(z) \in S \) is said to be starlike of order \(\alpha \) \((0 \leq \alpha < 1)\) in \(\mathbb{U} \) if and only if
\[
\text{Re} \left(\frac{zf'(z)}{f(z)} \right) > \alpha \quad (0 \leq \alpha < 1; z \in \mathbb{U}).
\] (2)

We denote by \(S^*(\alpha) \) the class of all functions in \(S \) which are starlike of order \(\alpha \) in \(\mathbb{U} \).

A function \(f(z) \in S \) is said to be convex of order \(\alpha \) \((0 \leq \alpha < 1)\) in \(\mathbb{U} \) if and only if
\[
\text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) > \alpha \quad (0 \leq \alpha < 1; z \in \mathbb{U}).
\] (3)

We denote by \(K(\alpha) \) the class of all functions in \(S \) which are convex of order \(\alpha \) in \(\mathbb{U} \).

Let \(a, b \) and \(c \) be complex numbers with \(c \neq 0, -1, -2, \cdots \). Then the Gaussian/classical hypergeometric function \(_2F_1(a, b; c; z) \) is defined by
\[
_2F_1(a, b; c; z) = \sum_{k=0}^{\infty} \frac{(a)_k(b)_k z^k}{(c)_k k!},
\]
where \((\eta)_k\) is the Pochhammer symbol defined, in terms of the Gamma function, by
\[
(\eta)_k = \frac{\Gamma(\eta + k)}{\Gamma(\eta)} = \begin{cases}
1 & (k = 0) \\
\eta(\eta + 1) \cdots (\eta + k - 1) & (k \in \mathbb{N}).
\end{cases}
\]
The hypergeometric function \(_2F_1(a, b; c; z) \) is analytic in \(\mathbb{U} \) and if \(a \) or \(b \) is a negative integer, then it reduces to a polynomial.

For functions \(f_j(z) \in A \), given by
\[
f_j(z) = z + \sum_{k=2}^{\infty} a_{k,j} z^k \quad (j = 1, 2),
\]
we define the Hadamard product (or convolution) of \(f_1(z) \) and \(f_2(z) \) by
\[
(f_1 * f_2)(z) = z + \sum_{k=2}^{\infty} a_{k,1} a_{k,2} z^k = (f_2 * f_1)(z) \quad (z \in \mathbb{U}).
\]

For the purpose to define the Srivastava-Attiya transform, we recall here the general Hurwitz-Lerch Zeta function, which is defined in [15] by the following series:
\[
\Phi(z, \lambda, \delta) := \frac{1}{\delta^\lambda} + \sum_{k=1}^{\infty} \frac{z^k}{(k+\delta)^\lambda}
\]
(δ ∈ C \ Z₀⁻ = \{0, -1, -2, ...\}; λ ∈ C when z ∈ U;
Re(λ) > 1 when |z| = 1).

For the properties and characteristics of the Hurwitz-Lerch Zeta function and other related special functions, see for example [4], [9] and [16].

Recently, Srivastava and Attiya [14] have introduced the linear operator
L_λ,δ : A → A, defined in terms of the Hadamard product by

L_λ,δ f(z) = G_λ,δ(z) * f(z) \quad (δ ∈ C \ Z₀⁻; λ ∈ C; z ∈ U), \quad (4)

where

G_λ,δ(z) = (1 + δ) \lambda \left[Φ(z, λ, δ) - δ^{-λ} \right] \quad (z ∈ U). \quad (5)

The operator L_λ,δ is now popularly known in the literature as the Srivastava-Attiya operator. Various class-mapping properties of the operator L_λ,δ (and its variants) are discussed in the recent works of Srivastava and Attiya [14], Liu [8], Murugusundaramoorthy [10], Yuan and Liu [19], Yunus et al. [20] and others.

It is easy to observe from (1) and (4) that

L_λ,δ f(z) = z + \sum_{k=2}^{∞} \left(\frac{1 + δ}{k + δ} \right)^{λ} a_k z^k. \quad (6)

We note that:
(i) L_{0,0} f(z) = f(z);
(ii) L_{1,0} f(z) = L f(z) = \int_{0}^{z} \frac{f(t)}{t} \, dt \quad (f ∈ A) (see Alexander [1]);
(iii) L_{m,1} f(z) = T^m f(z) \quad (m ∈ N₀ = N \cup \{0\} = \{0, 1, 2, 3, ...\}) (see Flett [5]);
(iv) L_{γ,1} f(z) = Q^γ f(z) \quad (γ > 0) (see Jung et al. [6]);
(v) L_{m,0} f(z) = L^m f(z) \quad (m ∈ N₀) (see Sălăgean [12]).

Let T denote the subclass of S consisting of functions whose nonzero coefficients are negative. That is, an analytic and univalent function f is in T if it can be expressed as

f(z) = z - \sum_{k=2}^{∞} a_k z^k \quad (a_k ≥ 0). \quad (7)

We also denote by T^*(α) and C(α) the subclasses of T that are, respectively, starlike of order α and convex of order α. See Silverman [13] for further information on them. And let T^λ_δ(α) denote the class of functions of the form (7) satisfying the condition:

Re \left(\frac{z(L_λ,δ f)'(z)}{L_λ,δ f(z)} \right) > α \quad (λ ∈ R; δ > -1; 0 ≤ α < 1; z ∈ U). \quad (8)
Clearly, we have $\mathcal{T}_0^0(\alpha) = \mathcal{T}^*(\alpha)$ and $\mathcal{T}_0^{\alpha-1}(\alpha) = \mathcal{C}(\alpha)$ ($0 \leq \alpha < 1$).

Finally, let A be a bounded linear operator on a complex Hilbert space \mathcal{H}. For a complex valued function f analytic on a domain E of the complex plane containing the spectrum $\sigma(A)$ of A we denote $f(A)$ as Riesz-Dunford integral [2, p.568], that is,

$$f(A) := \frac{1}{2\pi i} \int_C f(z)(zI - A)^{-1}dz,$$

where I is the identity operator on \mathcal{H} and C is positively oriented simple closed rectifiable contour containing $\sigma(A)$. Also $f(A)$ can be defined by the series $f(A) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} A^k$ which converges in the norm topology, [3]. If $f(z)$ is defined by (1), we also have

$$\mathcal{L}_{\lambda, \delta} f(A) = \sum_{k=1}^{\infty} \left(\frac{1 + \delta}{k + \delta} \right)^\lambda a_k A^k \quad (a_1 = 1).$$

Throughout this paper, A^* shall always denote the conjugate operator of A.

By using arguments similar to [13, Theorem 2] with (8), we prove the following lemma.

Lemma 1. Let $f(z)$ of the form (7) be analytic in \mathbb{U}, $\lambda \in \mathbb{R}$, $\delta > -1$, and $0 \leq \alpha < 1$. Then the following statements are equivalent:

(i) $f \in \mathcal{T}_\delta^\lambda(\alpha)$;

(ii) $\left| \frac{z(\mathcal{L}_{\lambda, \delta} f(z))'}{\mathcal{L}_{\lambda, \delta} f(z)} - 1 \right| \leq 1 - \alpha \quad (z \in \mathbb{U})$;

(iii) $\sum_{k=2}^{\infty} \frac{k - \alpha}{1 - \alpha} B_k(\lambda, \delta) a_k \leq 1$,

where

$$B_k(\lambda, \delta) = \left(\frac{1 + \delta}{k + \delta} \right)^\lambda.$$

Proof. In view of the definition of $\mathcal{T}_\delta^\lambda(\alpha)$, we obtain

$$f \in \mathcal{T}_\delta^\lambda(\alpha) \Leftrightarrow \mathcal{L}_{\lambda, \delta} f \in \mathcal{T}^*(\alpha),$$

and so, Lemma 1 follows immediately from the result [13, Theorem 2].

From Lemma 1, we define a new class $\mathcal{T}_\delta^\lambda(\alpha, A)$ as following.

Definition 1. Let $\mathcal{T}_\delta^\lambda(\alpha, A)$ denote the class of functions of the form (7) satisfying the condition
\[\|A(\mathcal{L}_{\lambda,\delta} f)'(A) - \mathcal{L}_{\lambda,\delta} f(A)\| \leq (1 - \alpha)\|\mathcal{L}_{\lambda,\delta} f(A)\|, \]
(12)

where \(\lambda \in \mathbb{R} \), \(\delta > -1 \), \(0 \leq \alpha < 1 \), and all operators \(A \) with \(\|A\| < 1 \), \(A \neq \theta \) (\(\theta \) denotes the zero operator on \(\mathcal{H} \)).

The following definition is given below for some operators of generalized fractional calculus defined by Kim et al. [7] (see also [11] and [17]).

Definition 2. For an invertible operator \(A \), the fractional integral operator \(\mathcal{I}_{0,A}^{a,b,c} \) is defined by

\[\mathcal{I}_{0,A}^{a,b,c} f(A) = \frac{1}{\Gamma(a)} \int_0^1 A^{-b} F_1(a + b, -c; a; 1 - t) f(tA)(1 - t)^{a-1} dt, \]
(13)

where \(a > 0 \) and \(b, c \in \mathbb{R} \).

The fractional derivative operator \(\mathcal{D}_{0,A}^{a,b,c} \) is defined by

\[\mathcal{D}_{0,A}^{a,b,c} f(A) = \frac{1}{\Gamma(1 - a)} g'(A), \]
(14)

where

\[g(z) = \int_0^1 z^{-b} F_1(b - a + 1, -c; 1 - a; 1 - t) f(tz)(1 - t)^{-a} dt, \]

\(0 < a < 1 \) and \(b, c \in \mathbb{R} \). In both (13) and (14), \(f(z) \) is an analytic function in a simply-connected region of the \(z \)-plane containing the origin with the order

\[f(z) = \mathcal{O}(|z|^\epsilon) \quad (z \to 0) \]

for \(\epsilon > \max\{0, b - c\} - 1 \), and the multiplicity of \((1 - t)^{a-1} \) is in (13) (and that of \((1 - t)^{-a} \) in (14)) removed by requiring \(\log(1 - t) \) to be real when \(1 - t > 0 \).

In this article, we provide some results concerning a sufficient and necessary condition, coefficient estimates and the distortion theorem for the class \(\mathcal{T}_\delta^\lambda(\alpha, A) \). Also, we consider several applications of fractional calculus for operators on Hilbert space.

2. Some results for the class \(\mathcal{T}_\delta^\lambda(\alpha, A) \)

We begin by proving an equivalent condition for the class \(\mathcal{T}_\delta^\lambda(\alpha, A) \) due to Lemma 1 as following.

Lemma 2. Let \(f(z) \) be in the class \(\mathcal{T}_\delta^\lambda(\alpha, A) \) for all proper contraction \(A \) with \(A \neq \theta \) if and only if
\[
\sum_{k=2}^{\infty} \frac{k - \alpha}{1 - \alpha} B_k(\lambda, \delta)a_k \leq 1,
\] (15)

where \(B_k(\lambda, \delta)\) is given by (11), \(\lambda \in \mathbb{R}, \delta > -1\) and \(0 \leq \alpha < 1\). The result is sharp for the function

\[
f(z) = z - \frac{1 - \alpha}{(k - \alpha)B_k(\lambda, \delta)} z^k \quad (k \geq 2).
\] (16)

Proof. Assume that the inequality (15) holds. By using (10) and (11), we have

\[
\| A(L_{\lambda, \delta} f)'(A) - L_{\lambda, \delta} f(A) \| - (1 - \alpha) \| L_{\lambda, \delta} f(A) \|
\]

\[
= \| A - \sum_{k=2}^{\infty} k B_k(\lambda, \delta)a_k A^k - A + \sum_{k=2}^{\infty} B_k(\lambda, \delta)a_k A^k \|
\]

\[
- (1 - \alpha) \| A - \sum_{k=2}^{\infty} B_k(\lambda, \delta)a_k A^k \|
\]

\[
= \| \sum_{k=2}^{\infty} (k - 1) B_k(\lambda, \delta)a_k A^k \| - (1 - \alpha) \| A - \sum_{k=2}^{\infty} B_k(\lambda, \delta)a_k A^k \|
\]

\[
\leq \sum_{k=2}^{\infty} (k - 1 + 1 - \alpha) B_k(\lambda, \delta)a_k - (1 - \alpha) \leq 0.
\]

Hence \(f(z) \in T_{\delta}^{\lambda}(\alpha, A)\). For the converse, assume that

\[
\| A(L_{\lambda, \delta} f)'(A) - L_{\lambda, \delta} f(A) \| \leq (1 - \alpha) \| L_{\lambda, \delta} f(A) \|.
\]

Then

\[
\| \sum_{k=2}^{\infty} (k - 1) B_k(\lambda, \delta)a_k A^k \| \leq (1 - \alpha) \| A - \sum_{k=2}^{\infty} B_k(\lambda, \delta)a_k A^k \|.
\]

Choose \(A = eI\) \((0 < e < 1)\). We obtain

\[
\frac{\sum_{k=2}^{\infty} (k - 1) B_k(\lambda, \delta)a_k e^k}{e - \sum_{k=2}^{\infty} B_k(\lambda, \delta)a_k e^k} \leq 1 - \alpha.
\] (17)

Upon clearing the denomination in (17) and letting \(e \to 1\), we have

\[
\sum_{k=2}^{\infty} (k - 1) B_k(\lambda, \delta)a_k \leq (1 - \alpha) \{ 1 - \sum_{k=2}^{\infty} B_k(\lambda, \delta)a_k \},
\]

which yields the required condition (15). It is evident that the function (16) is an extreme one for Lemma 2. \(\square\)
Corollary 1. Let \(f(z) \) be in the class \(T_\delta^\lambda(\alpha, A) \). Then
\[
a_k \leq \frac{1 - \alpha}{(k - \alpha)B_k(\lambda, \delta)} \quad (k \geq 2),
\]
where \(B_k(\lambda, \delta) \) is given by (11), \(\lambda \in \mathbb{R}, \delta > -1 \) and \(0 \leq \alpha < 1 \). The result is sharp for the function
\[
f(z) = z - \frac{1 - \alpha}{(k - \alpha)B_k(\lambda, \delta)} z^k \quad (k \geq 2).
\]

Theorem 1. Let \(f_1(z) = z \) and
\[
f_k(z) = z - \frac{1 - \alpha}{(k - \alpha)B_k(\lambda, \delta)} z^k \quad (k \geq 2).
\]
Then \(f(z) \in T_\delta^\lambda(\alpha, A) \) if and only if it can be expressed in the form
\[
f(z) = \sum_{k=1}^{\infty} \mu_k f_k(z), \tag{18}
\]
where \(\mu_k \geq 0 \) \((k \geq 1) \) and \(\sum_{k=1}^{\infty} \mu_k = 1 \).

Proof. If we set
\[
f(z) = \sum_{k=1}^{\infty} \mu_k f_k(z),
\]
then
\[
f(z) = z - \sum_{k=2}^{\infty} \mu_k \frac{1 - \alpha}{(k - \alpha)B_k(\lambda, \delta)} z^k.
\]
Thus we obtain
\[
\sum_{k=2}^{\infty} \frac{(k - \alpha)B_k(\lambda, \delta)}{1 - \alpha} \mu_k \frac{1 - \alpha}{(k - \alpha)B_k(\lambda, \delta)} = \sum_{k=2}^{\infty} \mu_k = 1 - \mu_1 \leq 1.
\]
Hence \(f(z) \in T_\delta^\lambda(\alpha, A) \). For the converse, we assume that \(f(z) \) given by (7) is in the class \(T_\delta^\lambda(\alpha, A) \). From Corollary 1 we have
\[
a_k \leq \frac{1 - \alpha}{(k - \alpha)B_k(\lambda, \delta)} \quad (k \geq 2).
\]
We may set
\[
\mu_k = \frac{(k - \alpha)B_k(\lambda, \delta)}{1 - \alpha} a_k \quad (k \geq 2)
\]
and \(\mu_1 = 1 - \sum_{k=2}^{\infty} \mu_k \). Hence we conclude that
\[
f(z) = \sum_{k=1}^{\infty} \mu_k f_k(z),
\]
which completes the proof of Theorem 1. \(\square \)
Theorem 2. If $f(z) \in T_{\delta}^\lambda(\alpha, A)$ for $\lambda \geq 0$, $\delta > -1$, $0 \leq \alpha < 1$ and $\|A\| < 1$, $A \neq \theta$, then

$$\|A\| - \frac{1 - \alpha}{2 - \alpha} \left(\frac{1 + \delta}{2 + \delta}\right)^\lambda \|A\|^2 \leq \|f(A)\| \leq \|A\| + \frac{1 - \alpha}{2 - \alpha} \left(\frac{1 + \delta}{2 + \delta}\right)^\lambda \|A\|^2$$

and

$$1 - \frac{2(1 - \alpha)}{2 - \alpha} \left(\frac{1 + \delta}{2 + \delta}\right)^\lambda \|A\| \leq \|f'(A)\| \leq 1 + \frac{2(1 - \alpha)}{2 - \alpha} \left(\frac{1 + \delta}{2 + \delta}\right)^\lambda \|A\|.$$

Proof. From Lemma 2, we see that

$$\frac{2 - \alpha}{1 - \alpha} \left(\frac{1 + \delta}{2 + \delta}\right)^{-\lambda} \sum_{k=2}^{\infty} k - \frac{\alpha}{1 - \alpha} \sum_{k=2}^{\infty} k - \frac{\alpha}{1 - \alpha} B_k(-\lambda, \delta) a_k \leq 1$$

for $\lambda \geq 0$ and $\delta > -1$ which gives

$$\sum_{k=2}^{\infty} a_k \leq \frac{1 - \alpha}{2 - \alpha} \left(\frac{1 + \delta}{2 + \delta}\right)^\lambda.$$

Therefore we have

$$\|f(A)\| \geq \|A\| - \|A\|^2 \sum_{k=2}^{\infty} a_k \geq \|A\| - \frac{1 - \alpha}{2 - \alpha} \left(\frac{1 + \delta}{2 + \delta}\right)^\lambda \|A\|^2$$

and

$$\|f(A)\| \leq \|A\| + \|A\|^2 \sum_{k=2}^{\infty} a_k \leq \|A\| + \frac{1 - \alpha}{2 - \alpha} \left(\frac{1 + \delta}{2 + \delta}\right)^\lambda \|A\|^2.$$

By noting the relation

$$\frac{k(2 - \alpha)}{2(1 - \alpha)} \left(\frac{1 + \delta}{2 + \delta}\right)^{-\lambda} \leq \frac{k - \alpha}{1 - \alpha} B_k(-\lambda, \delta) \quad (k \geq 2),$$

we have

$$\sum_{k=2}^{\infty} k(2 - \alpha) \left(\frac{1 + \delta}{2 + \delta}\right)^{-\lambda} a_k \leq \sum_{k=2}^{\infty} \frac{k - \alpha}{1 - \alpha} B_k(-\lambda, \delta) a_k \leq 1,$$

that is

$$\sum_{k=2}^{\infty} k a_k \leq \frac{2(1 - \alpha)}{2 - \alpha} \left(\frac{1 + \delta}{2 + \delta}\right)^\lambda.$$

Thus

$$\|f'(A)\| \geq 1 - \|A\| \sum_{k=2}^{\infty} k a_k \geq 1 - \frac{2(1 - \alpha)}{2 - \alpha} \left(\frac{1 + \delta}{2 + \delta}\right)^\lambda \|A\|$$

and
\[\|f'(A)\| \leq 1 + \frac{2(1-\alpha)}{2-\alpha} \left(\frac{1+\delta}{2+\delta} \right)^\lambda \|A\|.\]

This completes the proof of Theorem 2. \(\Box\)

3. Some results for fractional calculus operators

By using Definition 2, we prove the following theorem.

Theorem 3. Let \(\max\{b-c,b,-c-a\} < 2\), \(2a > b(a+c)\), \(\lambda \geq 0\) and \(\delta > -1\). If \(f(z) \in T^\lambda_{\alpha}(\alpha, A)\) (\(0 \leq \alpha < 1\)), then

\[\|I_{a,b,c}^A f(A)\| \leq \frac{\Gamma(2-b+c)}{\Gamma(2-b)\Gamma(a+2+c)} \|A\|^{1-b} \]

\[+ \frac{(1-\alpha)\Gamma(2-b+c)}{(2-\alpha)\Gamma(2-b)\Gamma(a+2+c)} \left(\frac{1+\delta}{2+\delta} \right)^\lambda \|A\|^{2-b} \]

and

\[\|I_{a,b,c}^A f(A)\| \geq \frac{\Gamma(2-b+c)}{\Gamma(2-b)\Gamma(a+2+c)} \|A\|^{1-b} \]

\[- \frac{(1-\alpha)\Gamma(2-b+c)}{(2-\alpha)\Gamma(2-b)\Gamma(a+2+c)} \left(\frac{1+\delta}{2+\delta} \right)^\lambda \|A\|^{2-b} \]

for \(a > 0\), \(b,c \in \mathbb{R}\) and all invertible operator \(A\) with \((A^q)^*A^q = A^q(A^q)^*\) \((q \in \mathbb{N})\), \(\|A\| \leq 1\) and \(r_{sp}(A)r_{sp}(A^{-1}) \leq 1\), where \(r_{sp}(A)\) is the radius of spectrum of \(A\).

Proof. Consider the function

\[F(A) = \frac{\Gamma(2-b)\Gamma(a+2+c)}{\Gamma(2-b-c)} A^b I_{a,b,c}^A f(A) \]

\[= A - \sum_{k=2}^{\infty} \frac{\Gamma(k+1-b+c)\Gamma(k+1)\Gamma(2-b)\Gamma(a+2+c)}{\Gamma(k+1-b)\Gamma(a+k+1+c)\Gamma(2-b+c)} a_k A^k \]

\[= A - \sum_{k=2}^{\infty} b_k A^k ,\]

where

\[b_k = \frac{\Gamma(k+1-b+c)\Gamma(k+1)\Gamma(2-b)\Gamma(a+2+c)}{\Gamma(k+1-b)\Gamma(a+k+1+c)\Gamma(2-b+c)} a_k.\]
Further, for convenience, we put
\[\Phi(k) = \frac{\Gamma(k + 1 - b + c)\Gamma(k + 1)\Gamma(2 - b)\Gamma(a + 2 + c)}{\Gamma(k + 1 - b)\Gamma(a + k + 1 + c)\Gamma(2 - b + c)} \quad (k \geq 2). \]

Then, by the constraints of the hypotheses, we see that \(\Phi(k) \) is non-increasing for integers \(k \geq 2 \) and we have \(0 < \Phi(k) < 1 \). By virtue of Lemma 2, we obtain
\[
\frac{2 - \alpha}{1 - \alpha} \left(\frac{1 + \delta}{2 + \delta} \right)^{-\lambda} \sum_{k=2}^{\infty} b_k \leq \sum_{k=2}^{\infty} \frac{k - \alpha}{1 - \alpha} B_k(-\lambda, \delta) b_k \leq \sum_{k=2}^{\infty} \frac{k - \alpha}{1 - \alpha} B_k(-\lambda, \delta) a_k \leq 1,
\]
which gives
\[
\sum_{k=2}^{\infty} b_k \leq \frac{1 - \alpha}{2 - \alpha} \left(\frac{1 + \delta}{2 + \delta} \right)^{\lambda} \quad \text{and} \quad F(z) \in \mathcal{T}_{\delta}^{\lambda}(\alpha, A).
\]

Therefore we have
\[
\|T_{0,A}^{a,b,c} f(A)\| \leq \frac{\Gamma(2 - b + c)}{\Gamma(2 - b)\Gamma(a + 2 + c)} \|A\| \|A^{-b}\| \quad (20)
\]
\[
+ \frac{(1 - \alpha)\Gamma(2 - b + c)}{(2 - \alpha)\Gamma(2 - b)\Gamma(a + 2 + c)} \left(\frac{1 + \delta}{2 + \delta} \right)^{\lambda} \|A\|^2 \|A^{-b}\|
\]
and
\[
\|T_{0,A}^{a,b,c} f(A)\| \geq \frac{\Gamma(2 - b + c)}{\Gamma(2 - b)\Gamma(a + 2 + c)} \|A\| \|A^{-b}\| \quad (21)
\]
\[
- \frac{(1 - \alpha)\Gamma(2 - b + c)}{(2 - \alpha)\Gamma(2 - b)\Gamma(a + 2 + c)} \left(\frac{1 + \delta}{2 + \delta} \right)^{\lambda} \|A\|^2 \|A^{-b}\|.
\]
By the equation (7) of [18, p.307],
\[
\|A^b\| = \|A\|^b \quad (b > 0).
\]
Since \(A^*A = AA^* \), \(\|A\| = r_{sp}(A) \). So,
\[
1 = \|AA^{-1}\| \leq \|A\| \|A^{-1}\| = r_{sp}(A)r_{sp}(A^{-1}) \leq 1.
\]
Thus \(\|A^{-1}\| = \|A\|^{-1} \). Therefore
\[
\|A^b\| = \|A\|^b \quad (22)
\]
for all real \(b \). By applying (20), (21) and (22), we evidently completes the proof of Theorem 3. \(\square \)
Theorem 4. Let \(\max\{b-c-1, b, -2-c+a\} < 1 \), \(c+1 < (1-b)(2-a+c) \), \(b(2-a+c) \leq 2(1-\alpha) \), \(\lambda \geq 0 \) and \(\delta > -1 \). If \(f(z) \in T^\lambda_\delta(\alpha, A) \) (\(0 \leq \alpha < 1 \)), then

\[
\|D_{0,A}^{a,b,c} f(A)\| \leq \frac{\Gamma(2-b+c)}{\Gamma(1-b)\Gamma(3-a+c)}\|A\|^{-b} \noindent + \frac{2(1-\alpha)\Gamma(2-b+c)}{(2-\alpha)\Gamma(1-b)\Gamma(3-a+c)} \left(\frac{1+\delta}{2+\delta} \right) \lambda \|A\|^{1-b}
\]

and

\[
\|D_{0,A}^{a,b,c} f(A)\| \geq \frac{\Gamma(2-b+c)}{\Gamma(1-b)\Gamma(3-a+c)}\|A\|^{-b} \noindent - \frac{2(1-\alpha)\Gamma(2-b+c)}{(2-\alpha)\Gamma(1-b)\Gamma(3-a+c)} \left(\frac{1+\delta}{2+\delta} \right) \lambda \|A\|^{1-b}
\]

for \(a > 0 \), \(b, c \in \mathbb{R} \) and all invertible operator \(A \) with \((A^{\frac{1}{q}})^* A^{\frac{1}{q}} = A^\frac{1}{q} (A^\frac{1}{q})^* \) (\(q \in \mathbb{N} \)), \(\|A\| \leq 1 \) and \(r_{sp}(A)r_{sp}(A^{-1}) \leq 1 \), where \(r_{sp}(A) \) is the radius of spectrum of \(A \).

Proof. Consider the function

\[
G(A) = \frac{\Gamma(1-b)\Gamma(3-a+c)}{\Gamma(2-b-c)} A^{b+1} D_{0,A}^{a,b,c} f(A)
\]

\[
= A - \sum_{k=2}^{\infty} \frac{\Gamma(k+1-b+c)\Gamma(k+1)\Gamma(1-b)\Gamma(3-a+c)}{\Gamma(k-b)\Gamma(k+2-a+c)\Gamma(2-b+c)} a_k A^k
\]

\[
= A - \sum_{k=2}^{\infty} c_k A^k,
\]

where

\[
c_k = \frac{\Gamma(k+1-b+c)\Gamma(k+1)\Gamma(1-b)\Gamma(3-a+c)}{\Gamma(k-b)\Gamma(k+2-a+c)\Gamma(2-b+c)} a_k.
\]

Further, for convenience, we put

\[
\Psi(k) = \frac{\Gamma(k+1-b+c)\Gamma(k)\Gamma(1-b)\Gamma(3-a+c)}{\Gamma(k-b)\Gamma(k+2-a+c)\Gamma(2-b+c)} \quad (k \geq 2).
\]

Then, by the constraints of the hypotheses, we see that \(\Psi(k) \) is non-increasing for the integers \(k \geq 2 \) and we have \(0 < \Psi(k) < 1 \), that is,

\[
0 < \frac{\Gamma(k+1-b+c)\Gamma(k+1)\Gamma(1-b)\Gamma(3-a+c)}{\Gamma(k-b)\Gamma(k+2-a+c)\Gamma(2-b+c)} < k.
\]
Therefore, by applying (19) and Lemma 2, we obtain
\[
\frac{2 - \alpha}{2(1 - \alpha)} \left(\frac{1 + \delta}{2 + \delta} \right)^{-\lambda} \sum_{k=2}^{\infty} c_k = \sum_{k=2}^{\infty} \frac{2 - \alpha}{2(1 - \alpha)} \left(\frac{1 + \delta}{2 + \delta} \right)^{-\lambda} k\Psi(k)a_k \\
\leq \sum_{k=2}^{\infty} \frac{k - \alpha}{1 - \alpha} B_k(-\lambda, \delta)\Psi(k)a_k \\
\leq \sum_{k=2}^{\infty} \frac{k - \alpha}{1 - \alpha} B_k(-\lambda, \delta)a_k \leq 1,
\]
which gives
\[
\sum_{k=2}^{\infty} c_k \leq \frac{2(1 - \alpha)}{2 - \alpha} \left(\frac{1 + \delta}{2 + \delta} \right)^{\lambda}.
\]
Hence, by using same arguments with the proof of Theorem 3, we have
\[
\|D_{a,b,c}^0 f(A)\| &= \frac{\Gamma(2 - b + c)}{\Gamma(1 - b)\Gamma(3 - a + c)}\|A\|^{-b} + \frac{\Gamma(2 - b + c)}{\Gamma(1 - b)\Gamma(3 - a + c)}\|A\|^{-b}\sum_{k=2}^{\infty} c_k \\
&\leq \frac{\Gamma(2 - b + c)}{\Gamma(1 - b)\Gamma(3 - a + c)}\|A\|^{-b} \\
&\quad + \frac{2(1 - \alpha)\Gamma(2 - b + c)}{(2 - \alpha)\Gamma(1 - b)\Gamma(3 - a + c)} \left(\frac{1 + \delta}{2 + \delta} \right)^{\lambda} \|A\|^{-b}
\]
and
\[
\|D_{a,b,c}^0 f(A)\| \geq \frac{\Gamma(2 - b + c)}{\Gamma(1 - b)\Gamma(3 - a + c)}\|A\|^{-b} \\
- \frac{2(1 - \alpha)\Gamma(2 - b + c)}{(2 - \alpha)\Gamma(1 - b)\Gamma(3 - a + c)} \left(\frac{1 + \delta}{2 + \delta} \right)^{\lambda} \|A\|^{-b}
\]
This evidently completes the proof of Theorem 4. \[\square\]

References

[1] J.W. Alexander, Functions which map the interior of the unit circle upon simple regions, *Ann. Math. Ser. 2*, 17 (1915), 12-22.

[2] N. Dunford and J.T. Schwarz, *Linear Operators, Part I, General Theory*, Interscience, New York (1958).
[3] K. Fan, Julia’s lemma for operators, *Math. Ann.*, 239 (1979), 241-245.

[4] C. Ferreira and J.L. Lopez, Asymptotic expansions of the Hurwitz-Lerch Zeta function, *J. Math. Anal. Appl.*, 298 (2004), 210-224.

[5] T.M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, *J. Math. Anal. Appl.*, 38 (1972), 746-765.

[6] I.B. Jung, Y.C. Kim and H.M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, *J. Math. Anal. Appl.*, 176 (1993), 138-147.

[7] Y.C. Kim, J.H. Choi, and J.S. Lee, Generalized fractional calculus to a subclass of analytic functions for operators on Hilbert space, *Internat. J. Math. and Math. Sci.*, 21 (1998), 671-676.

[8] J.L. Liu, Sufficient conditions for strongly starlike functions involving the generalized Srivastava-Attiya operator, *Integral Transforms Spec. Funct.*, 22 (2011), 79-90.

[9] S.D. Lin, H.M. Srivastava and P.Y. Wang, Some expansion formulas for a class of generalized Hurwitz-Lerch Zeta functions, *Integral Transforms Spec. Funct.*, 17 (2006), 817-827.

[10] G. Murugusundaramoorthy, Subordination results for spiral-like functions associated with the Srivastava-Attiya operator, *Integral Transforms Spec. Funct.*, 23 (2012), 97-103.

[11] S. Owa, M. Saigo and H.M. Srivastava, Some characterization theorems for starlike and convex functions involving a certain fractional integral operator, *J. Math. Anal. Appl.*, 140 (1989), 419-426.

[12] G.S. Sălăgean, Subclasses of univalent functions, In: *Lecture Notes in Mathematics*, Vol. 1013, Springer, Berlin (1983), 362-372.

[13] H. Silverman, Univalent functions with negative coefficients, *Proc. Amer. Math. Soc.*, 51 (1975), 109-116.

[14] H.M. Srivastava and A.A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, *Integral Transforms Spec. Funct.*, 18 (2007), 207-216.

[15] H.M. Srivastava and J. Choi, *Series Associated with the Zeta and Related Function*, Kluwer Academic Publishers, Dordrecht (2001).
[16] H.M. Srivastava, D. Jankov, T.K. Pogány and R.K. Saxena, Two-side inequalities for the extended Hurwitz-Lerch Zeta function, *Comput. Math. Appl.*, **62** (2011), 516-522.

[17] H.M. Srivastava, M. Saigo and S. Owa, A class of distortion theorems involving certain operators of fractional calculus, *J. Math. Anal. Appl.*, **131** (1988), 412-420.

[18] Y. Xiaopei, A subclass of analytic p-valent functions for operator on Hilbert space, *Math. Japonica*, **40** (1994), 303-308.

[19] S.M. Yuan and Z.M. Liu, Some properties of two subclasses of k-fold symmetric functions associated with Srivastava-Attiya operator, *Appl. Math. Comput.*, **218** (2011), 1136-1141.

[20] Y. Yunus, A.B. Akbarally and S.A. Halim, Properties of a certain subclass of starlike functions defined by a generalized operator, *Int. J. Appl. Math.*, **31**, No 4 (2018), 597-611; DOI: 10.12732/ijam.v31i4.6.