Supporting Information

for

Synthesis of 3-substituted isoxazolidin-4-ols using hydroboration–oxidation reactions of 4,5-unsubstituted 2,3-dihydroisoxazoles

Lívia Dikošová, Júlia Laceková, Ondrej Záborský and Róbert Fischer

Beilstein J. Org. Chem. 2020, 16, 1313–1319. doi:10.3762/bjoc.16.112

Detailed experimental procedures, analytical data, and NMR spectra of all compounds
Table of contents

1. Experimental section

2. 1H and 13C NMR spectra of compound 7a

3. 1H and 13C NMR spectra of compound 7b

4. 1H and 13C NMR spectra of compound 8a

5. 1H and 13C NMR spectra of compound 8b

6. 1H and 13C NMR spectra of compound 8c

7. 1H and 13C NMR spectra of compound 9a

8. 1H and 13C NMR spectra of compound 9b

9. 1H and 13C NMR spectra of compound 9c

10. 1H and 13C NMR spectra of compound 10a

11. 1H and 13C NMR spectra of compound 10b

12. 1H and 13C NMR spectra of compound 10c

13. 1H and 13C NMR spectra of compound 11

14. 1H and 13C NMR spectra of compound 12

15. References

S2–S10

S11

S12

S13

S14

S15

S16

S17

S18

S19

S20

S21

S22

S23

S24
Experimental section

General
Flash column chromatography (FCC) was carried out with a Büchi system (Pump Manager C-615 and Fraction Collector C-660) using Normasil 60 silica gel (0.040–0.063 mm; VWR). Thin-layer chromatography (TLC) analysis was carried out using TLC silica gel 60 F254 (aluminium sheets, Merck), and plates were visualized with UV light or by treatment with permanganate solution followed by heating. Optical rotations were measured with a JASCO P-2000 digital polarimeter with a Na-D lamp (10 cm cell length). Concentrations (c) are given in gram per 100 mL. Infrared (IR) spectra were recorded as neat samples with a Nicolet 5700 FTIR spectrometer with an ATR Smart Orbit Diamond adapter (Thermo Electron Corporation). NMR spectra were recorded with a Varian INOVA-300 spectrometer (1H, 299.95 MHz, and 13C, 75.42 MHz) and a Varian VNMRS-600 instrument (1H, 599.75 MHz, and 13C, 150.81 MHz) in CDCl3 using tetramethylsilane as the internal standard. Data are presented as follows: chemical shift (in ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, ddd = doublet of doublet of doublets, td = triplet of doublets, dt = doublet of triplets, m =multiplet, bs = broad singlet), coupling constants (J/Hz) and integration. HRMS analysis was carried out with an Orbitrap Velos Pro spectrometer (Thermo Fisher Scientific). All solvents used were dried and distilled according to conventional methods.

2,3-Dihydroisoxazoles 5a, 5b and benzoylated isoxazolidine-4,5-diols 6a, 6b were prepared using already published procedures [1,2].

(±)-2-Benzyl-3-phenylisoxazolidin-4-yl benzoate (7a)
A round-bottom reaction flask was charged with isoxazolidinyl dibenzoate 6a (350 mg, 0.73 mmol), sealed with a rubber septum, evacuated, and filled with argon. Anhydrous CH2Cl2 was added (0.7 mL) followed by Et3SiH (350 µL, 2.19 mmol), and the resulting solution was cooled in an ice-water bath (0 °C). TMSOTf (270 µL, 1.49 mmol) was added dropwise to the stirred solution. After stirring at 0 °C for 5 min, the cooling bath was removed, and the mixture was further stirred at room temperature for 2 h. After this time, TLC showed that the reaction was complete (hexanes/ethyl acetate, 9:1). The reaction mixture was cooled in an ice-water bath and the reaction was quenched by addition of sat. aq NaHCO3 solution (5 mL). Afterwards, the mixture was diluted with water (5 mL) and extracted with CH2Cl2 (2 × 5 mL). The combined organic layers were washed with water (10 mL), dried with MgSO4 and evaporated in vacuo. The product was isolated by FCC (hexanes/EtOAc, 9:1) to give the isoxazolidine 7a (195 mg, 0.54 mmol, 74%) as a white solid. mp 78–80 °C; Rf = 0.24 (n-hexane/EtOAc, 9:1); IR (ATR): νmax = 3030, 2873, 1713, 1448, 1271, 1112, 1071, 979, 712, 694, 633, 536 cm⁻¹; 1H NMR (600 MHz, CDCl3) δ 3.96 (d, J = 14.1 Hz, 1H, PhCH2), 4.07–4.11 (m, 3H, H-3, H-5a, PhCH2), 4.37 (dd, J = 5.8, 10.3 Hz, 1H, H-5b), 5.58 (ddd, J = 2.0, 4.3, 5.8 Hz, 1H, H-4), 7.23–7.60 (m, 13H, H-Ph), 8.06–8.08 (m, 2H, H-Ph); 13C NMR (150 MHz, CDCl3) δ 60.3 (PhCH2),
72.1 (C-5), 75.8 (C-3), 85.6 (C-4), 127.5 (CH-Ph), 128.0 (CH-Ph), 128.3 (CH-Ph), 128.4 (CH-Ph), 128.6 (CH-Ph), 2 x 128.9 (CH-Ph), 129.7 (C-Ph), 129.9 (CH-Ph), 133.5 (CH-Ph), 137.4 (C-Ph), 137.7 (C-Ph), 166.3 (C=O); HRMS (ESI): calcd. for C_{23}H_{22}NO_3 [M+H]^+ 360.1595; found 360.1593.

(±)-2-Benzyl-3-isopropylisoxazolidin-4-yl benzoate (7b)
A round-bottom reaction flask was charged with isoxazolidinyl dibenzoate 6b (360 mg, 0.81 mmol), sealed with a rubber septum, evacuated, and filled with argon. Anhydrous CH_2Cl_2 was added (0.8 mL) followed by Et_3SiH (390 µL, 2.44 mmol), and the resulting solution was cooled in an ice-water bath (0 °C). TMSOTf (290 µL, 1.60 mmol) was added dropwise to the stirred solution. After stirring at 0 °C for 5 min, the cooling bath was removed, and the mixture was further stirred at room temperature for 2 h. After this time, TLC showed that the reaction was complete (hexanes/ethyl acetate, 4:1). The reaction mixture was cooled in an ice-water bath and the reaction was quenched by addition of saturated aqueous solution of NaHCO_3 (5 mL). Afterwards, the mixture was diluted with water (5 mL) and extracted with CH_2Cl_2 (2 x 5 mL). The combined organic layers were washed with water (10 mL), dried with MgSO_4 and evaporated in vacuo. The product was isolated by FCC (hexanes/EtOAc, 9:1) to give the isoxazolidine 7b (210 mg, 0.65 mmol, 80%) as a colourless oil. R_t = 0.22 (n-hexane/EtOAc, 9:1); IR (ATR): \nu_{max} = 2958, 2873, 1716, 1452, 1270, 1109, 1069, 1026, 709, 697 cm^{-1}; ^1H NMR (600 MHz, CDCl_3) δ 1.00 (d, J = 6.8 Hz, 3H, CH_3), 1.02 (d, J = 6.8 Hz, 3H, CH_3), 1.80–1.88 [m, 1H, CH(CH_3)_2, 3.01 (dd, J = 2.3, 6.6 Hz, 1H, H-3), 4.10 (dd, J = 2.5, 10.3 Hz, 1H, H-5a), 4.11 (d, J = 13.3 Hz, 1H, PhCH_2), 4.16 (d, J = 13.3 Hz, 1H, PhCH_2), 4.19 (dd, J = 5.7, 10.3 Hz, 1H, H-5b), 5.61 (dt, J = 2.4, 2.5, 5.7 Hz, 1H, H-4), 7.25–7.62 (m, 8H, H-Ph), 8.06–8.08 (m, 2H, H-Ph); ^13C NMR (150 MHz, CDCl_3) δ 18.8 (CH_3), 19.9 (CH_3), 29.7 [CH(CH_3)_2], 61.6 (PhCH_2), 72.0 (C-5), 76.2 (C-3), 80.8 (C-4), 127.5 (CH-Ph), 128.5 (CH-Ph), 128.7 (CH-Ph), 129.2 (CH-Ph), 129.8 (CH-Ph), 129.9 (C-Ph), 133.5 (CH-Ph), 137.6 (C-Ph), 166.2 (C=O); HRMS (ESI): calcd. for C_{20}H_{14}NO_3 [M+H]^+ 326.1751; found 326.1750.

From 8b by reaction with benzoyl chloride
Isoxazolidin-4-ol 8b (270 mg, 1.22 mmol) was dissolved in CH_2Cl_2 (6 mL), and then benzoyl chloride (0.29 mL, 2.50 mmol), pyridine (0.3 mL, 3.68 mmol) and DMAP (29 mg, 0.24 mmol) were added. The reaction mixture was stirred at rt overnight. After the reaction was complete (TLC; hexanes/EtOAc, 7:3), above mixture was diluted with water (15 mL) and repeatedly extracted with CH_2Cl_2 (3 x 15 mL). The combined organic layers were dried over MgSO_4 and the solvent was removed by rotary evaporation. The product was isolated by FCC (CH_2Cl_2) to give the isoxazolidine 7b (320 mg, 0.98 mmol, 80%) as a colourless oil; R_t = 0.18 (CH_2Cl_2). All analytical data were consistent with those described above.
(±)-2-Benzyl-3-phenylisoxazolidin-4-ol (8a)

A round-bottom flask was charged with 2,3-dihydroisoxazole 5a (590 mg, 2.49 mmol), evacuated and flushed with argon. Afterwards, dry THF was added (25 mL), the mixture was cooled to 0 °C and BH₃·THF (5 mL, 5 mmol, 1 M solution in THF) was added dropwise. The reaction mixture was stirred at rt for 12 h. After the disappearance of the starting material (TLC, hexanes/EtOAc, 4:1), a 10% solution of NaOH (7.5 mL) was added dropwise as slowly as possible at 0 °C, followed by a 35% solution of H₂O₂ (15 mL) added in likewise manner. After 3 h of stirring at 0 °C (TLC, hexanes/EtOAc, 1:1), the reaction was diluted with EtOAc (30 mL). The organic layer was separated, washed with brine (2 × 40 mL), dried over MgSO₄ and concentrated under reduced pressure. The product was purified by FCC (hexanes/EtOAc, 7:3) to give isoxazolidinol 8a (485 mg, 1.90 mmol, 76%) as a colourless oil. Rₜ = 0.43 (n-hexane/EtOAc, 1:1); IR (ATR): ʋ max = 3392, 3030, 2862, 1495, 1454, 1095, 993, 753, 695, 635, 527 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 2.44 (bs, 1H, OH), 3.66 (d, J = 4.7 Hz, 1H, H-3), 3.81 (dd, J = 2.6, 9.3 Hz, 1H, H-5a), 3.82 (d, J = 14.2 Hz, 1H, PhCH₂), 3.98 (d, J = 14.2 Hz, 1H, PhCH₂), 4.11 (dd, J = 6.1, 9.3 Hz, 1H, H-5b), 4.48 (ddd, J = 2.6, 4.8, 6.1 Hz, 1H, H-4), 7.21–7.43 (m, 10H, H-Ph); ¹³C NMR (150 MHz, CDCl₃) δ 60.3 (PhCH₂), 73.8 (C-5), 79.5 (C-3), 83.5 (C-4), 127.4 (CH-Ph), 127.9 (CH-Ph), 128.2 (CH-Ph), 128.3 (CH-Ph), 2 × 128.9 (CH-Ph), 137.4 (C-Ph), 138.2 (C-Ph); HRMS (ESI): calcd. for C₁₆H₁₆NO₂ [M+H]+ 256.1333; found 256.1329.

From 7a by hydrolysis with K₂CO₃ in aqueous methanol

Isoxazolidinyl benzoate 7a (200 mg; 0.56 mmol) was dissolved in aqueous methanol (MeOH/H₂O, 10:1; 5.5 mL), potassium carbonate (39 mg; 0.28 mmol) was added and the solution was stirred at rt for 12 h. When TLC showed that the starting isoxazolidine had disappeared (TLC; hexanes/EtOAc, 1:1), water (10 mL) and Et₂O (10 ml) were added. After stirring for additional 5 minutes, the organic layer was separated, and the aqueous phase was extracted with Et₂O (2 × 10 mL). The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The product was purified by FCC (hexanes/EtOAc, 7:3) to give isoxazolidinol 8a (125 mg; 0.49 mmol; 88%) as a colourless oil. All analytical data were consistent with those described above.

(±)-2-Benzyl-3-isopropylisoxazolidin-4-ol (8b)

A round-bottom flask was charged with 2,3-dihydroisoxazole 5b (1 g; 4.92 mmol), evacuated and flushed with argon. Afterwards, dry THF was added (50 mL), the mixture was cooled to 0 °C and BH₃·THF (10 mL; 10 mmol; 1 M solution in THF) was added dropwise. The reaction mixture was stirred at rt for 12 h. After the disappearance of the starting material (TLC, hexanes/EtOAc, 95:5) a 10% solution of NaOH (15 mL) was added dropwise as slowly as possible at 0 °C, followed by a 35% solution of H₂O₂ (30 mL) added in likewise manner. After 3 h of stirring at 0 °C (TLC; hexanes/EtOAc, 1:1) the reaction was diluted with EtOAc (50 mL). The organic layer was separated, washed with brine (2 × 40 mL), dried over MgSO₄ and concentrated under reduced pressure. The
product was purified by FCC (hexanes/EtOAc, 7:3) to give isoxazolidinol 8b (1 g; 4.52 mmol, 92%) as a colourless waxy solid. mp 32–34 °C; \(R_f = 0.37 \) (n-hexane/EtOAc, 1:1); IR (ATR): \(\nu_{\text{max}} = 3300, 2961, 2873, 1455, 1370, 1083, 1001, 957, 758, 700, 639 \ \text{cm}^{-1}; \) \(^1\text{H NMR} \) (600 MHz, CDCl\(_3\)) \(\delta \) 0.97 (d, \(J = 6.8 \ \text{Hz}, 3\text{H}, \text{CH}_3 \)), 1.00 (d, \(J = 6.8 \ \text{Hz}, 3\text{H}, \text{CH}_3 \)), 1.68–1.75 [m, 1\(\text{H}, \text{CH(CH}_3\text{)}_2 \)], 1.97 (bs, 1\(\text{H}, \text{OH} \)), 2.62 (dd, \(J = 2.4, 6.6 \ \text{Hz}, 1\text{H}, \text{H}-3 \)), 3.86–3.89 (m, 2\(\text{H}, \text{H}-5\text{a}, \text{H}-5\text{b} \)), 4.05 (d, \(J = 13.7 \ \text{Hz}, 1\text{H}, \text{PhCH}_2 \)), 4.10 (d, \(J = 13.7 \ \text{Hz}, 1\text{H}, \text{PhCH}_2 \)), 4.43–4.45 (m, 1\(\text{H}, \text{H}-4 \)), 7.25–7.40 (m, 5\(\text{H}, \text{H}-\text{Ph} \)); \(^{13}\text{C NMR} \) (150 MHz, CDCl\(_3\)): \(\delta \) 18.7 (CH\(_3\)), 20.0 (CH\(_3\)), 29.7 [CH(CH\(_3\))\(_2\)], 61.9 (PhCH\(_2\)), 73.9 (C-5), 78.0 (C-3), 79.9 (C-4), 127.4 (CH-Ph), 128.4 (CH-Ph), 129.1 (CH-Ph), 137.8 (C-Ph); HRMS (ESI): calcd. for C\(_{13}\)H\(_{20}\)NO\(_2\) [M+H]\(^+\) 222.1489; found 222.1491.

From 7b by hydrolysis with K\(_2\)CO\(_3\) in aqueous methanol

Isoxazolidinyl benzoate 7b (100 mg; 0.31 mmol) was dissolved in aqueous methanol (MeOH/H\(_2\)O, 10:1; 3 mL), potassium carbonate (22 mg; 0.16 mmol) was added and the solution was stirred at rt for 12 h. When TLC showed that the starting isoxazolidine had disappeared (TLC; hexanes/EtOAc, 1:1), water (5 mL) and Et\(_2\)O (5 ml) were added. After stirring for additional 5 minutes, the organic layer was separated, and the aqueous phase was extracted with Et\(_2\)O (2 \(\times \) 5 mL). The combined organic layers were dried over MgSO\(_4\) and concentrated under reduced pressure. The product was purified by FCC (hexanes/EtOAc, 7:3) to give isoxazolidinol 8b (60 mg; 0.27 mmol; 87%) as a colourless waxy solid. All analytical data were consistent with those described above.

\((3S,4R)-2\)-Benzyl-3-[(S)-2,2-dimethyl-1,3-dioxolan-4-yl]isoxazolidin-4-ol (8c)

A round-bottom flask was charged with 2,3-dihydroisoxazole 5c (920 mg; 3.52 mmol), evacuated and flushed with argon. Afterwards, dry THF was added (35 mL), the mixture was cooled to 0 °C and BH\(_3\)-THF (7 mL; 7 mmol; 1 M solution in THF) was added dropwise. The reaction mixture was stirred at rt for 12 h. After the disappearance of the starting material (TLC, hexanes/EtOAc, 9:1) a 10% solution of NaOH (11 mL) was added dropwise as slowly as possible at 0 °C, followed by a 35% solution of H\(_2\)O\(_2\) (21 mL) added in likewise manner. After 3 h of stirring at 0 °C (TLC; hexanes/EtOAc, 7:3) the reaction was diluted with EtOAc (30 mL). The organic layer was separated, washed with brine (2 \(\times \) 40 mL), dried over MgSO\(_4\) and concentrated under reduced pressure. The product was purified by FCC (hexanes/EtOAc, 1:1) to give isoxazolidinol 8c (645 mg; 2.31 mmol; 65%) as a colourless waxy solid. mp 53–55 °C; \(R_f = 0.28 \) (n-hexane/EtOAc, 1:1); \[\alpha\]\(_D\)\(^{25}\) = +29.25 (c =1.01, CHCl\(_3\)); IR (ATR): \(\nu_{\text{max}} = 3290, 2987, 2887, 1368, 1264, 1204, 1150, 1073, 1039, 1002, 840, 741, 701, 513 \ \text{cm}^{-1}; \) \(^1\text{H NMR} \) (600 MHz, CDCl\(_3\)) \(\delta \) 1.31 (s, 3\(\text{H}, \text{CH}_3 \)), 1.37 (s, 3\(\text{H}, \text{CH}_3 \)), 2.29 (bs, 1\(\text{H}, \text{OH} \)), 3.06 (dd, \(J = 1.5, 8.8 \ \text{Hz}, 1\text{H}, \text{H}-3 \)), 3.51 (dd, \(J = 5.8, 8.5 \ \text{Hz}, 1\text{H}, \text{H}-2\text{a} \)), 3.93 (dt, \(J = 6.0, 8.8 \ \text{Hz}, 1\text{H}, \text{H}-1\text{a} \)), 4.01 (dd, \(J = 6.2, 8.5 \ \text{Hz}, 1\text{H}, \text{H}-2\text{b} \)), 4.04 (dd, \(J = 3.7, 9.4 \ \text{Hz}, 1\text{H}, \text{H}-5\text{a} \)), 4.12 (d, \(J = 12.8 \ \text{Hz}, 1\text{H}, \text{PhCH}_2 \)), 4.15 (dd, \(J = 6.1, 9.4 \ \text{Hz}, 1\text{H}, \text{H}-5\text{b} \)), 4.25 (d, \(J = 12.8 \ \text{Hz}, 1\text{H}, \text{PhCH}_2 \)),
PhCH₂), 4.81–4.84 (m, 1H, H-4), 7.27–7.39 (m, 5H, H-Ph); ^13^C NMR (150 MHz, CDCl₃) δ 25.4 (CH₃), 27.0 (CH₃), 61.6 (PhCH₂), 68.0 (C-2'), 73.5 (C-5), 75.3, 75.5 (C-3, C-1'), 78.6 (C-4), 109.6 [C(CH₃)₂], 127.8 (CH-Ph), 128.6 (CH-Ph), 129.6 (CH-Ph), 136.9 (C-Ph); HRMS (ESI): calcd. for C₁₅H₂₂NO₄ [M+H]^+ 280.1544; found 280.1545.

(±)-2-Benzyl-3-phenylisoxazolidin-4-one (9a)
A Schlenk flask was charged with isoxazolidinol 8a (450 mg, 1.76 mmol), evacuated and filled with argon. The starting material was dissolved in anhydrous CH₂Cl₂ (18 mL), the reaction mixture was cooled to 0 °C and solid Dess–Martin periodinane (1.5 g, 3.54 mmol) was slowly added under stream of argon. The reaction was stirred at 0 °C for 12 h and after complete conversion of the starting material (TLC, hexanes/EtOAc, 1:1), a sat. aq NaHCO₃ solution (20 mL) and a sat. aq Na₂SO₃·5H₂O solution (20 mL) were added. The mixture was stirred for 15 min at 0 °C, and then the solution was allowed to warm to rt. The organic layer was separated and washed with water (2 × 20 mL), dried over MgSO₄ and evaporated in vacuo. The residue was purified by FCC (hexanes/EtOAc, 9:1) to give isoxazolidin-4-one 9a (305 mg, 1.20 mmol, 68%) as a yellowish waxy solid that gradually decomposed over time. mp 35–38 °C; R f = 0.61 (n-hexane/EtOAc, 1:1); IR (ATR): ʋ max = 3032, 2871, 2814, 1770, 1495, 1454, 1123, 1048, 737, 695, 615, 545, 470 cm⁻¹; ^1^H NMR (300 MHz, CDCl₃) δ 3.97 (s, 1H, H-3), 3.98 (d, J = 14.3 Hz, 1H, PhCH₂), 4.14 (d, J = 15.7 Hz, 1H, H-5a), 4.24 (d, J = 14.3 Hz, 1H, PhCH₂), 4.29 (d, J = 15.7, 1H, H-5b), 7.28–7.41 (m, 10H, H-Ph); ^13^C NMR (150 MHz, CDCl₃) δ 60.7 (PhCH₂), 70.7 (C-5), 75.1 (C-3), 127.9 (CH-Ph), 128.5 (CH-Ph), 128.7 (CH-Ph), 128.8 (CH-Ph), 129.0 (CH-Ph), 129.3 (CH-Ph), 133.6 (C-Ph), 136.0 (C=O); HRMS (APCI): calcd. for C₁₅H₁₆NO₂ [M+H]^+ 254.1176; found 254.1174.

(±)-2-Benzyl-3-isopropylisoxazolidin-4-one (9b)
A Schlenk flask was charged with isoxazolidinol 8b (500 mg; 2.26 mmol), evacuated and filled with argon. The starting material was dissolved in anhydrous CH₂Cl₂ (23 mL), the reaction mixture was cooled to 0 °C and solid Dess–Martin periodinane (1.9 g; 4.48 mmol) was slowly added under stream of argon. The reaction was stirred at 0 °C for 12 h and after complete conversion of the starting material (TLC, hexanes/EtOAc, 7:3), a sat. aq NaHCO₃ solution (25 mL) and a sat. aq Na₂SO₃·5H₂O solution (25 mL) were added. The mixture was stirred for 15 min at 0 °C, and then the solution was allowed to warm to rt. The organic layer was separated and washed with water (2 × 20 mL), dried over MgSO₄ and evaporated in vacuo. The residue was purified by FCC (hexanes/EtOAc, 9:1) to give isoxazolidin-4-one 9b (320 mg; 1.46 mmol; 65%) as a yellowish waxy solid that gradually decomposed over time. mp 38–40 °C; R f = 0.67 (n-hexane/EtOAc, 1:1); IR (ATR): ʋ max = 2966, 2872, 2810, 1754, 1451, 1367, 1051, 753, 701, 641, 484 cm⁻¹; ^1^H NMR (600 MHz, CDCl₃) δ 0.98 (d, J = 6.9 Hz, 3H, CH₃), 1.06 (d, J = 6.9 Hz, 3H, CH₃), 1.95–2.10 [m, 1H, CH(CH₃)₂], 2.84 (dd, J = 0.8, 4.8 Hz, 1H, H-3), 3.88 (d, J = 15.9 Hz, 1H, H-5a), 4.03 (d, J = 13.5 Hz, 1H, PhCH₂), 4.11 (dd, J
= 0.8, 15.9 Hz, 1H, H-5b), 4.12 (d, J = 13.5 Hz, 1H, PhCH₂), 7.27–7.41 (m, 5H, H-Ph); \(^{13}\)C NMR (150 MHz, CDCl₃) δ 18.7 (CH₃), 18.8 (CH₃), 29.4 [CH(CH₃)₂], 62.1 (PhCH₂), 68.7 (C-5), 74.1 (C-3), 127.9 (CH-Ph), 128.6 (CH-Ph), 129.2 (CH-Ph), 136.3 (C-Ph), 215.0 (C=O); HRMS (APCI): calcd. for C₁₃H₁₈NO₂ [M+H]+ 220.1333; found 220.1336.

(R)-2-Benzyl-3-[1(S)-2,2-dimethyl-1,3-dioxolan-4-yl]isoxazolidin-4-one (9c)

A Schlenk flask was charged with isoxazolidinol 8c (615 mg; 2.20 mmol), evacuated and filled with argon. The starting material was dissolved in anhydrous CH₂Cl₂ (22 mL), the reaction mixture was cooled to 0 °C and solid Dess–Martin periodinane (1.8 g; 4.4 mmol) was added slowly under stream of argon. The reaction was stirred at 0 °C for 12 h and after complete conversion of the starting material (TLC, hexanes/EtOAc, 1:1), a sat. aq NaHCO₃ solution (20 mL) and a sat. aq Na₂S₂O₃·5H₂O solution (20 mL) were added. The mixture was stirred for 15 min at 0 °C, and then the solution was allowed to warm to rt. The organic layer was separated and washed with water (2 × 20 mL), dried over MgSO₄ and evaporated in vacuo. The product was purified by FCC (hexanes/EtOAc, 4:1) isoxazolidin-4-one 9c (390 mg; 1.41 mmol, 64%) as a yellowish waxy solid that gradually decomposed over time; mp 34–36 °C. \(R\)ₐ = 0.59 (n-hexane/EtOAc, 1:1); \([\alpha]^{25}_D = -45.07 \text{ (c = 1.02, CHCl₃)}\); IR (ATR): \(\nu_{\text{max}} = 2987, 2891, 2827, 1765, 1370, 1262, 1202, 1157, 1046, 841, 758, 701, 636, 576, 522 \text{ cm}^{-1}\); \(^1\)H NMR (600 MHz, CDCl₃) δ 1.36 (s, 3H, CH₃), 1.43 (s, 3H, CH₃), 3.37 (d, \(J = 3.8 \text{ Hz, 1H, H-3)}\), 3.92 (d, \(J = 16.0 \text{ Hz, 1H, H-5a)}\), 4.00 (dd, \(J = 6.5, 8.1 \text{ Hz, 1H, H-2}’\)a), 4.03 (dd, \(J = 7.0, 8.1 \text{ Hz, 1H, H-2}’\)b), 4.10 (d, \(J = 13.9 \text{ Hz, 1H, PhCH₂}\)), 4.13 (d, \(J = 16.0 \text{ Hz, 1H, H-5b)}\), 4.35 (d, \(J = 13.9 \text{ Hz, 1H, PhCH₂}\)), 4.50 (dt, \(J = 3.8, 6.8 \text{ Hz, 1H, H-1}'\)), 7.30–7.42 (m, 5H, H-Ph); \(^{13}\)C NMR (150 MHz, CDCl₃) δ 25.1 (CH₃), 26.4 (CH₃), 62.5 (PhCH₂), 65.2 (C-2'), 2 × 69.1 (C-3, C-5), 75.0 (C-1'), 109.9 [C(CH₃)₂], 128.0 (CH-Ph), 128.6 (CH-Ph), 129.4 (CH-Ph), 135.9 (C-Ph), 211.5 (C=O); HRMS (APCI): calcd. for C₁₅H₂₀NO₄ [M+H]+ 278.1387; found 278.1377.

(±)-2-Benzyl-3-phenylisoxazolidin-4-ol (10a)

L-Selectride (1.4 mL, 1.4 mmol, 1 M solution in THF) was added dropwise to a solution of isoxazolidin-4-one 9a (280 mg, 1.11 mmol) in anhydrous THF (11 mL) under argon at 0 °C, and the reaction mixture was stirred for 30 min. When TLC showed that the starting isoxazolidinone disappeared (TLC; hexanes/EtOAc, 1:1), a sat. aq NH₄Cl was added slowly (20 mL) and the mixture was stirred for additional 10 min. Afterwards, the mixture was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layers were washed with water (50 mL), dried over MgSO₄ and concentrated under reduced pressure. The product was isolated by FCC (hexanes/EtOAc, 7:3) to give isoxazolidinol 10a (215 mg, 0.84 mmol, 76%) as a colourless oil. \(R\)ₐ = 0.41 (n-hexane/EtOAc, 1:1); IR (ATR): \(\nu_{\text{max}} = 3421, 3028, 2924, 2868, 1495, 1454, 1107, 1028, 749, 696, 599, 531 \text{ cm}^{-1}\); \(^1\)H NMR (600 MHz, CDCl₃) δ 1.65 (bs, 1H, OH), 3.70 (d, \(J = 14.4 \text{ Hz, 1H, PhCH₂}\)), 3.79 (d, \(J = 5.5 \text{ Hz, 1H, H-3}\)), 3.85 (dd, \(J = 3.5, 9.2 \text{ Hz, 1H, H-5a)}\), 4.07 (d, \(J = 14.4 \text{ Hz, 1H, PhCH₂}\)), 4.38 (dd, \(J = 6.1, 9.2 \text{ Hz, 1H, H-2}’\))
1H, H-5b), 4.59 (td, J = 3.5, 5.8 Hz, 1H, H-4), 7.24–7.47 (m, 10H, H-Ph); 13C NMR (150 MHz, CDCl3) δ 60.4 (PhCH2), 74.5 (C-5), 75.3 (C-3), 76.8 (C-4), 127.4 (CH-Ph), 128.3 (CH-Ph), 128.4 (CH-Ph), 128.9 (CH-Ph), 129.0 (CH-Ph), 129.2 (CH-Ph), 134.4 (C-Ph), 137.3 (C-Ph); HRMS (ESI): calcd. for C16H18NO2 [M+H]+ 256.1333; found 256.1329.

(±)-2-Benzyl-3-isopropylisoazolidin-4-ol (10b)
L-Selectride (1.8 mL; 1.8 mmol; 1 M solution in THF) was added dropwise to a solution of isoazolidin-4-one 9b (300 mg, 1.37 mmol) in anhydrous THF (14 mL) under argon at 0 °C, and the reaction mixture was stirred for 30 min. When TLC showed that the starting isoazolidinone disappeared (TLC; hexanes/EtOAc, 1:1), a sat. aq NH4Cl was added slowly (20 mL) and the mixture was stirred for additional 10 min. Afterwards, it was extracted with CH2Cl2 (3 x 20 mL). The combined organic layers were washed with water (50 mL), dried over MgSO4 and concentrated under reduced pressure. The product was purified by FCC (hexanes/EtOAc, 7:3) to give isoazolidinol 10b (155 mg; 0.70 mmol; 51%) as a yellowish waxy solid. mp 46–48 °C; Rf = 0.33 (n-hexane/EtOAc, 1:1); IR (ATR): ʋmax = 3358, 2968, 2866, 1454, 1362, 1209, 1026, 944, 879, 801, 745, 696, 602, 509 cm⁻¹; 1H NMR (300 MHz, CDCl3) δ 1.06 (d, J = 6.5 Hz, 3H, CH3), 1.12 (d, J = 6.5 Hz, 3H, CH3), 2.05–2.17 [m, 1H, CH(CH3)2], 2.31 (bs, 1H, OH), 2.57 (dd, J = 3.5, 8.9 Hz, 1H, H-3), 3.82 (d, J = 9.5 Hz, 1H, H-5a), 3.89 (s, 2H, PhCH2), 4.02 (dd, J = 2.6, 9.5 Hz, 1H, H-5b), 4.49–4.58 (m, 1H, H-4), 7.23–7.42 (m, 5H, H-Ph); 13C NMR (150 MHz, CDCl3) δ 20.4 (CH3), 21.1 (CH3), 28.2 [CH(CH3)2], 62.9 (PhCH2), 71.6 (C-5), 76.9 (C-3), 127.3 (CH-Ph), 128.4 (CH-Ph), 128.9 (CH-Ph), 138.1 (C-Ph). The signal for the C-4 carbon atom is missing, however, NMR spectroscopic data nearly correspond with those for 10a and 10c; HRMS (ESI): calcd. for C13H20NO2 [M+H]+ 222.1489; found 222.1491.

(3S,4S)-2-Benzyl-3-[(S)-2,2-dimethyl-1,3-dioxolan-4-yl]isoazolidin-4-ol (10c)
L-Selectride (1.7 mL; 1.7 mmol; 1 M solution in THF) was added dropwise to a solution of isoazolidin-4-one 9c (360 mg, 1.30 mmol) in anhydrous THF (13 mL) under argon at 0 °C, and the reaction mixture was stirred for 30 min. When TLC showed that the starting isoazolidinone disappeared (TLC; hexanes/EtOAc, 1:1), a sat. aq NH4Cl was added slowly (20 mL) and the mixture was stirred for additional 10 min. Afterwards, it was extracted with CH2Cl2 (3 x 20 mL). The combined organic layers were washed with water (50 mL), dried over MgSO4 and concentrated under reduced pressure. The product was purified by FCC (hexanes/EtOAc, 1:1) to give isoazolidinol 10c (260 mg; 0.93 mmol; 72%) as a colourless waxy solid. mp 88–90 °C; Rf = 0.24 (n-hexane/EtOAc, 1:1); [α]D²⁵ = −65.53 (c = 1.00, CHCl3); IR (ATR): ʋmax = 3464, 2989, 2918, 1452, 1373, 1264, 1203, 1158, 1017, 848, 746, 699, 630, 518 cm⁻¹; 1H NMR (600 MHz, CDCl3) δ 1.34 (s, 3H, CH3), 1.39 (s, 3H, CH3), 2.87 (bs, 1H, OH), 3.16 (dd, J = 6.0, 7.9 Hz, 1H, H-3), 3.56 (dd, J = 6.4, 8.5 Hz, 1H, H-2’a), 3.87 (dd, J = 2.0, 9.7 Hz, 1H, H-5a), 3.89 (d, J = 13.7 Hz, 1H, PhCH2), 3.99 (d, J = 13.6 Hz, 1H, PhCH2), 4.01 (dd, J = 6.1, 8.5 Hz, 1H, H-2’b), 4.18 (dd, J = 4.8, 9.6 Hz, 1H, H-5b), 4.42 (dt, J = 6.3,
7.9 Hz, 1H, H-1’), 4.82–4.87 (m, 1H, H-4), 7.27–7.36 (m, 5H, H-Ph); 13C NMR (150 MHz, CDCl$_3$) δ 25.4 (CH$_3$), 26.9 (CH$_3$), 61.9 (CH$_2$Ph), 67.8 (C-2’), 70.9 (C-3), 72.6 (C-5), 74.8 (C-1’), 77.0 (C-4), 109.2 [C(CH$_3$)$_2$], 127.8 (CH-Ph), 128.6 (CH-Ph), 129.3 (CH-Ph), 136.9 (C-Ph); HRMS (ESI): calcd. for C$_{13}$H$_{22}$NO$_4$ [M+H]$^+$ 280.1544; found 280.1541.

(±)-2,2,2-Trichloroethyl 4-(benzoyloxy)-3-isopropylisoxazolidine-2-carboxylate (11)

2,2,2-Trichloroethyl chloroformate (0.33 mL, 2.4 mmol) was added dropwise to a stirred solution of N-benzylisoxazolidine 7b (260 mg, 0.8 mmol) and lithium iodide (160 mg, 1.2 mmol) in anhydrous acetonitrile (4 mL) under argon. The reaction mixture was stirred at 60 °C for 8 h. When TLC showed that the starting isoxazolidine disappeared (TLC; hexanes/EtOAc, 9:1), a sat. aq NaHCO$_3$ solution (10 mL) and CH$_2$Cl$_2$ (20 mL) were added. After vigorous stirring for additional 5 min, the organic layer was separated, and the aqueous phase was extracted with CH$_2$Cl$_2$ (10 mL). The combined organic layers were washed with water (20 mL), dried over MgSO$_4$ and concentrated under reduced pressure. The product was purified by FCC (hexanes/EtOAc, 9:1) to give N-Troc-isoxazolidine 11 (230 mg, 0.56 mmol, 70%) as a colourless sticky oil. $R_f = 0.20$ (n-hexane/EtOAc, 9:1); IR (ATR): $\nu_{\text{max}} = 3067, 2963, 2881, 1755, 1717, 1374, 1315, 1265, 1107, 1052, 805, 708, 572$ cm$^{-1}$; 1H NMR (600 MHz, CDCl$_3$) δ 1.09 (d, J = 6.7 Hz, 3H, CH$_3$), 1.14 (d, 3H, J = 6.7 Hz, CH$_3$), 1.89–1.97 [m, 1H, CH(CH$_3$)$_2$], 4.12 (dd, J = 3.4, 9.5 Hz, 1H, H-5a), 4.22 (d, J = 8.4 Hz, 1H, H-3), 4.51 (dd, J = 5.9, 9.6 Hz, 1H, H-5b), 4.72 (d, J = 11.9 Hz, 1H, Cl$_3$CCH$_2$O), 4.86 (d, J = 11.9 Hz, 1H, Cl$_3$CCH$_2$O), 5.64 (dd, J = 1.1, 3.5, 5.9 Hz, 1H, H-4), 7.43–7.46 (m, 2H, H-Ph), 7.57–7.60 (m, 1H, H-Ph), 7.95–7.98 (m, 2H, H-Ph); 13C NMR (150 MHz, CDCl$_3$) δ 19.1 (CH$_3$), 19.2 (CH$_3$), 29.7 [CH(CH$_3$)$_2$], 72.1 (C-3), 74.4, 75.3 (C-5, CO$_2$CH$_2$), 78.9 (C-4), 94.8 (CCl$_3$), 128.6 (CH-Ph), 128.9 (C-Ph), 129.7 (CH-Ph), 133.7 (CH-Ph), 157.1 (CO$_2$CH$_2$), 165.9 (COPh); HRMS (ESI): calcd. for C$_{16}$H$_{19}$Cl$_3$NO$_5$ [M+H]$^+$ 410.0324; found 410.0329.

(±)-3-Isopropylisoxazolidin-4-ol (12)

The NaOH solution (0.6 mL, 3.6 mmol, 6 M) was added to a solution of N-Troc-isoxazolidine 11 (120 mg, 0.29 mmol) in isopropyl alcohol (1.2 mL) and the mixture was stirred at rt for 1 h. After the disappearance of the starting material (TLC, hexanes/EtOAc, 5:1), the solution was neutralized with HCl (6 M). Afterwards, a sat. aq NaHCO$_3$ solution (2 mL) and solid NaCl were added and the resulting slurry was vigorously extracted with EtOAc (3 × 5 mL). The combined organic layers were dried over MgSO$_4$ and concentrated under reduced pressure. The product was purified by FCC (EtOAc) to give isoxazolidinol 12 (28 mg, 0.21 mmol, 72%) as a colourless sticky oil. $R_f = 0.25$ (EtOAc); IR (ATR): $\nu_{\text{max}} = 3160, 2971, 2899, 2874, 1473, 1093, 1036, 1013, 935, 886, 754, 718, 647$ cm$^{-1}$; 1H NMR (600 MHz, CDCl$_3$) δ 1.02 (d, J = 6.7 Hz, 3H, CH$_3$), 1.04 (d, J = 6.7 Hz, 3H, CH$_3$), 1.58–1.66 [m, 1H, CH(CH$_3$)$_2$], 2.90 (dd, J = 1.8, 8.8 Hz, 1H, H-3), 3.83 (dd, J = 1.9, 9.4 Hz, 1H, H-5a), 3.89 (dd, J = 5.0, 9.4 Hz, 1H, H-5b), 4.51 (dt, J = 2.0, 5.0 Hz, 1H, H-4); 13C NMR (150 MHz,
CDCl₃ δ 19.8 (CH₃), 20.0 (CH₃), 29.1 [CH(CH₃)₂], 75.7 (C-3), 78.0 (C-5), 78.4 (C-4); HRMS (ESI): calcd. for C₆H₁₄NO₂ [M+H]⁺ 132.1020; found 132.1020.
References

[1] Fischer, R.; Lackovičová, D.; Fišera, L. *Synthesis* **2012**, *44*, 3783–3788.

[2] Beňadiková, D.; Čurillová, J.; Lacek, T.; Rakovský, E.; Moncoľ, J.; Doháňošová, J.; Fischer, R. *Tetrahedron* **2014**, *70*, 5585–5593.