Extended Kerr—Schild spacetimes of any dimension

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2015 J. Phys.: Conf. Ser. 600 012040
(http://iopscience.iop.org/1742-6596/600/1/012040)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 131.169.4.70
This content was downloaded on 07/03/2016 at 22:59

Please note that terms and conditions apply.
Extended Kerr--Schild spacetimes of any dimension

Tomáš Málěk
Institute of Mathematics, Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Praha 1, Czech Republic
E-mail: malek@math.cas.cz

Abstract. We study geometric and algebraic properties of extended Kerr--Schild spacetimes (xKS), i.e. an extension of the Kerr--Schild (KS) ansatz where, in addition to the null KS vector, a spacelike vector field appears in the metric. In contrast to the KS case, it turns out that xKS spacetimes with a geodetic KS vector are not necessarily algebraically special and we obtain, in general, only a necessary condition under which the KS vector is geodetic. However, it is shown that this condition becomes sufficient if we appropriately restrict the geometry of the null and spacelike vector fields. Examples of xKS spacetimes belonging to the Kundt class and also expanding xKS spacetimes, namely the CCLP black hole, are provided and briefly discussed.

1. Kerr--Schild spacetimes
The Einstein field equations are a very complex system of partial differential equations of the 2nd order and finding exact solutions is a considerably non-trivial task especially in dimension \(n > 4 \). A possible approach to this problem is to assume an appropriate form of the unknown metric and an important example of such a technique is the Kerr--Schild (KS) ansatz [1]

\[
g_{ab} = \eta_{ab} - 2\mathcal{H}k_ak_b, \quad k_a k^a = 0,
\]

where \(\eta_{ab} \) is a flat background metric and the KS vector \(k \) is null with respect to both \(g_{ab} \) and \(\eta_{ab} \). This choice ensures a simple form of the inverse metric

\[
g^{ab} = \eta^{ab} + 2\mathcal{H}k_ak_b
\]

and therefore the full metric corresponds exactly to its linear approximation around the flat background. The cosmological constant \(\Lambda \) can be included by taking the corresponding maximally symmetric spacetime as the background metric \(\bar{g}_{ab} \)

\[
g_{ab} = \bar{g}_{ab} - 2\mathcal{H}k_ak_b.
\]

The analysis of metrics (3) in [2, 3] shows that if \(k \) is geodetic, these metrics are algebraically special\(^1\) with \(k \) being the multiple Weyl aligned null direction. It also turns out that non-expanding Einstein KS spacetimes are of the Weyl type N and belong to the Kundt class, on

\(^1\) In the context of the algebraic classification of the Weyl tensor in arbitrary dimension based on the existence of preferred null directions and their multiplicity, see e.g. the recent review [4].
the other hand, expanding Einstein KS spacetimes are of genuine types II or D and the optical matrix
\[\rho_{ij} \equiv \ell_{a,b} m_{(i)}^a m_{(j)}^b \]
satisfies the optical constraint \[2, 7\]

\[
\rho_{ik} \rho_{jk} = \rho_{lk} \rho_{lk} (n-2) \theta_{\dot{\rho}(ij)} (4)
\]

implying

\[
\rho_{ij} = \text{diag} (M_1, \ldots, M_p, \frac{1}{r}, \ldots, \frac{1}{r}, 0, \ldots, 0), (5)
\]

where

\[
M_\mu = \frac{1}{r^2 + a_\mu^2} \left[\frac{r}{-a_\mu} \quad a_\mu \right]. (6)
\]

Despite the simplicity of the KS ansatz (3), the class of KS metrics contains many physically
interesting exact solutions of four-dimensional general relativity and also some of their higher
dimensional analogues such as, for instance, the Schwarzschild black hole, the Vaidya radiating
star, the Kinnersley photon rocket, the Kerr–(A)dS rotating black hole and type N pp-waves,
see e.g. \[8\]. In fact, the KS ansatz has led to the discovery of the rotating black holes in higher
dimensional general relativity with a (non-)vanishing cosmological constant \[9, 10\], respectively,
and has been successfully applied also in the context of higher order gravities such as the Gauss–
Bonnet theory \[11\] or quadratic gravity \[12, 13\].

We are motivated to generalize the KS ansatz for several reasons. More general ansatz could
lead to exact solutions of more general Weyl types, e.g. black rings which are of type Ii. Another
reason is that although the Kerr–Newman black hole can be cast to the KS form

\[
\eta_{ab} \, dx^a \, dx^b = -dt^2 + dx^2 + dy^2 + dz^2
\]

\[
k_a \, dx^a = dt + \frac{rx + ay}{r^2 + a^2} \, dx + \frac{ry - ax}{r^2 + a^2} \, dy + \frac{z}{r} \, dz
\]

\[
H = -\frac{r^2}{r^4 + a^2 z^2} \left(Mr - \frac{Q^2}{2} \right), \quad A = \frac{Q r^3}{r^4 + a^2 z^2} k;
\]

an exact charged rotating black hole solution of higher dimensional Einstein–Maxwell theory
is unknown. It is also known that a straightforward generalization of five-dimensional rotating
black hole solutions of general relativity in the KS form to the Gauss–Bonnet theory \[11\] do not
represent rotating black holes \[14\]. Moreover, as will be mentioned later, some already known
exact solutions can be cast to an extended KS form.

In the following, we briefly present our main results published in \[15\].

2. Extended Kerr–Schild spacetimes

Let us consider extended Kerr–Schild (xKS) metrics as an extension of the KS ansatz in the form

\[
g_{ab} = \bar{g}_{ab} - 2H k_a k_b - 2K k_{(a} m_{b)}
\]

involving an additional unit spacelike vector \(m \)

\[
k^a k_a = 0, \quad k^a m_a = 0, \quad m^a m_a = 1,
\]

where \(\bar{g}_{ab} \) is a maximally symmetric background metric

\[
\bar{g}_{ab} = \Omega \eta_{ab}, \quad \eta_{ab} \, dx^a \, dx^b = -dt^2 + dx_1^2 + \ldots + dx_{n-1}^2
\]

\[2\] Throughout the paper, we employ the higher dimensional generalization of the Newman–Penrose formalism [5, 6].
with a corresponding conformal factor
\[\Omega_M = 1, \quad \Omega_{dS} = \frac{(n - 2)(n - 1)}{2\Lambda t^2}, \quad \Omega_{AdS} = \frac{(n - 2)(n - 1)}{2\Lambda x^2}. \] (13)

The inverse metric can be expressed as
\[g^{ab} = \tilde{g}^{ab} + (2\mathcal{H} - \mathcal{K}^2) k^a k^b + 2\mathcal{K} k^a m^b. \] (14)

It is appropriate to identify the vectors \(k, m \) with the null and spacelike frame vectors
\[k \equiv \ell, \quad m \equiv m^{(2)} \] (15)
and define indices \(\tilde{i}, \tilde{j} = 3, \ldots, n - 1 \) so that \(m \) is excluded in the notation \(m^{(i)} \).

2.1. Geodeticity of the KS vector \(k \)
In the case of KS spacetimes, the null KS vector \(k \) is geodetic if and only if the boost weight 2 component of the Ricci tensor \(R_{00} = R_{ab} k^a k^b \) vanishes. For the xKS metric (10), \(R_{00} \) reads
\[R_{00} = 2\mathcal{H}L_{[0}L_{i]0} - \frac{1}{2} \mathcal{K}^2 L_{[i}L_{j]}0 + \mathcal{K}(2L_{i}[L_{j]0} + L_{i0}M_{j0} + DL_{20}) + 2DKL_{20} \] (16)
and therefore \(R_{00} \) vanishes if \(k \) is geodetic, but the converse implication does not hold.

If we appropriately restrict the arbitrariness in the choice of the vectors \(k \) and \(m \)
\[k_{[a;b]} b^b = 0, \quad (\zeta m_{[a;} b^b) = 0, \] (17)
which can be expressed in terms of the Lie derivative as
\[\mathcal{L}_m k_a = 0, \quad \mathcal{L}_k (\zeta m_a) = 0, \] (18)
the boost weight 2 component of the Ricci tensor reduces to
\[R_{00} = \left(2\mathcal{H} - \frac{1}{2} \mathcal{K}^2 \right) L_{[i}L_{j]}0. \] (19)

Therefore, assuming \(\mathcal{K}^2 \neq 4\mathcal{H} \), the KS vector \(k \) is geodetic if and only if \(R_{00} \) vanishes.

Note that, in the context of the Einstein field equations the vanishing of the boost weight 2 component of the Ricci tensor is related to the vanishing of the boost weight 2 component of the energy-momentum tensor \(R_{00} = \kappa T_{00} \) and the case \(R_{00} = 0 \) not only includes the vacuum case, i.e. Einstein spacetimes
\[R_{ab} = \frac{2\Lambda}{n - 2} g_{ab}, \] (20)
but also an aligned Maxwell field
\[R_{ab} = \frac{\kappa}{4} \left(F^c_a F^c_b - \frac{1}{2(n - 2)} F^2 g_{ab} \right), \quad F_{ab} k^b \propto k_a, \] (21)
or aligned pure radiation
\[R_{ab} = \Phi k_a k_b. \] (22)

Note also that the relation (18) is compatible with the optical constraint (4) if \(m \) does not correspond to any \(2 \times 2 \) block \(M_{\mu} \) in the optical matrix (5) implying \(k \) and \(m \) are surface forming.
2.2. Algebraic types of xKS spacetimes

As already mentioned above, KS spacetimes (3) of any dimension with a geodetic \(k \) are algebraically special. On the other hand, xKS spacetimes (10) with a geodetic \(k \) are in general of Weyl type III and clearly admit the xKS form (10) with the flat background.

The most straightforward examples of Kundt xKS spacetimes are metrics with vanishing scalar

\[R_{0i} = 0 \] if and only if the optical matrix \(\rho_{ij} \) and the function \(\mathcal{K} \) take one of the following forms

\[
\rho_{ij}^{(1)} = 0, \quad \mathcal{K}^{(1)} = c_1 r + c_2, \tag{23}
\]

\[
\rho_{ij}^{(2)} = \text{diag} \left(\frac{1}{r}, 0, \ldots, 0 \right), \quad \mathcal{K}^{(2)} = c_1 r + \frac{c_2}{r}, \tag{24}
\]

\[
\rho_{ij}^{(3)} = \frac{1}{1 + c_1^2 r^2} \text{diag} \left(\left[\frac{1}{r} \ c_1 \ c_2 r \right], 0, \ldots, 0 \right), \quad \mathcal{K}^{(3)} = \frac{\sqrt{1 + c_1^2 r^2}}{c_2 r}, \quad c_1 \neq 0, \tag{25}
\]

\[
\rho_{ij}^{(4)} = \text{diag} \left(0, \frac{1}{r}, r + c_2, \ldots, 1 \right), \quad \text{rank} \rho_{ij}^{(4)} \geq 1, \quad \mathcal{K}^{(4)} = c_1, \tag{26}
\]

\[
\rho_{ij}^{(5)} = \text{diag} \left(1, \frac{1}{r}, c_1 r + c_2, \ldots, 1 \right), \quad \text{rank} \rho_{ij}^{(5)} \geq 2, \quad \mathcal{K}^{(5)} = c_1 r, \tag{27}
\]

\[
\rho_{ij}^{(6)} = \text{diag} \left(\frac{1}{r}, \mathcal{M}, \ldots, \mathcal{M} \right), \quad \mathcal{K}^{(6)} = c_1 r + \frac{c_2}{r}, \quad (c_1 \neq 0) \wedge (c_2 \neq 0), \tag{28}
\]

\[
\mathcal{M} = \begin{bmatrix} s & A \\ -A & s \end{bmatrix}, \quad s = \frac{r}{r^2 + \frac{c_2}{c_1}} \quad A = \sqrt{\frac{c_2}{c_1}} \frac{1}{r^2 + \frac{c_2}{c_1}}, \tag{29}
\]

where \(r \) is an affine parameter along the null geodesics \(k \) and \(c_i \) are arbitrary scalar functions independent of \(r \).

3. Kundt xKS spacetimes

It turns out that for Kundt xKS metrics the following statements are equivalent:

(i) the spacetime is algebraically special,

(ii) the boost weight 1 components of the Ricci tensor \(R_{0i} \equiv R_{ab} k^a m^b_{(i)} = 0 \) vanish,

(iii) the function \(\mathcal{K} \) and the Ricci rotation coefficients \(M_{i0} \) take one of the forms

\[
\mathcal{K} = d \sqrt{(r + b)^2 + \mu_1 \mu_2}, \quad M_{i0} = \frac{\mu_i}{(r + b)^2 + \mu_1 \mu_2}, \tag{30}
\]

or

\[
\mathcal{K} = fr + e, \quad M_{i0} = 0, \tag{31}
\]

where \(r \) is an affine parameter along the null non-expanding, non-shearing, and non-twisting geodesics \(k \) and \(b, d, e, f, \mu_i \) are arbitrary scalar functions independent of \(r \).

3.1. Examples of Kundt xKS spacetimes

The most straightforward examples of Kundt xKS spacetimes are metrics with vanishing scalar invariants (VSI) [16, 17]

\[
dx^2 = 2du \, dr + \delta_{ij} \, dx^i \, dx^j + 2H(u, r, x^k) \, du^2 + 2W_i(u, r, x^k) \, du \, dx^i \tag{32}
\]

which are of the Weyl type III and clearly admit the xKS form (10) with the flat background

\[
g_{ab} \, dx^a \, dx^b = 2du \, dr + \delta_{ij} \, dx^i \, dx^j \]

where

\[
\mathcal{H} = -H, \quad k_a \, dx^a = du, \quad \mathcal{K} = -\sqrt{W_i W_i}, \quad m_a \, dx^a = \frac{W_i \, dx^i}{\sqrt{W_i W_j}}. \tag{33}
\]
Table 1. The relation of the class of higher dimensional Ricci-flat pp-waves to the classes of KS, xKS, and VSI spacetimes depending on the Weyl types.

Weyl type	KS	xKS	VSI
N	✓	✓	✓
III	×	✓	✓
II	×	only CSI	×

The class of pp-wave spacetimes is geometrically defined as metrics admitting a covariantly constant null vector field which can be written in the form [18]

$$ds^2 = 2du \left[dr + H(u, x^k) du + W_i(u, x^k) dx^i \right] + g_{ij}(u, x^k) dx^i dx^j$$

It can be shown that Einstein pp-waves are Ricci-flat and of the Weyl type II. Type N Ricci-flat pp-waves admit the KS form. Type III Ricci-flat pp-waves are VSI and therefore belong to the class of xKS spacetimes. Type II Ricci-flat pp-waves can be cast to the xKS form only if they have constant scalar invariants (CSI). The situation is summarized in table 1.

Note that four dimensional Ricci-flat pp-waves are of the Weyl type N, belong to the VSI class and take the KS form.

4. Example of expanding xKS spacetimes

The Chong–Cvetič–Lü–Pope charged rotating black hole [19] can be cast to the xKS form [20]

$$g_{ab} dx^a dx^b = -(1 - \lambda r^2) \frac{\Delta}{\Xi_a \Xi_b} dt^2 - 2dr \left(\frac{\Delta}{\Xi_a \Xi_b} dt - \frac{a \sin^2 \theta}{\Xi_a} d\phi - \frac{b \cos^2 \theta}{\Xi_b} d\psi \right)$$

$$+ \frac{\rho^2}{\Delta} d\theta^2 + \frac{(r^2 + a^2) \sin^2 \theta}{\Xi_a} d\phi^2 + \frac{(r^2 + b^2) \cos^2 \theta}{\Xi_b} d\psi^2, \quad (35)$$

$$k_a dx^a = -\frac{\Delta}{\Xi_a \Xi_b} dt + \frac{a \sin^2 \theta}{\Xi_a} d\phi + \frac{b \cos^2 \theta}{\Xi_b} d\psi, \quad (36)$$

$$\dot{m}_a dx^a = \lambda ab \frac{\Delta}{\Xi_a \Xi_b} dt + \frac{b \sin^2 \theta}{\Xi_a} d\phi + \frac{a \cos^2 \theta}{\Xi_b} d\psi, \quad (37)$$

$$H = -\frac{M}{\rho^2} + \frac{Q^2}{2\rho^4}, \quad \mathcal{K} = -\frac{Q \nu}{r \rho^2}, \quad A = -\frac{\sqrt{3}Q}{2\rho} k \quad (38)$$

where a and b are spins, M and Q is mass and charge, respectively, $\rho^2 = r^2 + \nu^2$, $\Delta = 1 + \lambda \nu^2$, $\Xi_a = 1 + \lambda a^2$, $\Xi_b = 1 + \lambda b^2$, and $\nu = \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta}$. It is a solution of 5D minimal gauged supergravity which is equivalent to the Einstein–Maxwell–Chern–Simons theory with the Chern–Simons coefficient $\chi = 1$ and $\Lambda < 0$

$$R_{ab} - \frac{1}{2} R g_{ab} + \Lambda g_{ab} = 2 F_{ac} F_b^c - \frac{1}{2} F_{cd} F^{cd} g_{ab}, \quad \nabla_b F^{ab} + \frac{\chi}{2 \sqrt{3} \sqrt{-g}} e^{abcde} F_{be} F_{de} = 0. \quad (39)$$

It can be shown that the CCLP black hole is of the Weyl type Ii and the vectors k and m satisfy the relation (18). Interestingly, the optical matrix takes the same form as for the 5D Kerr–(A)dS black hole

$$\rho_{ij} = \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{\rho}{\nu} & 0 \\ 0 & 0 & \frac{\nu}{\rho} \end{pmatrix} \quad (40)$$
and therefore the optical constraint (4) is met and the vectors k and m are surface-forming. In the case of the uncharged ($Q = 0$) and static ($\nu = 0$) limit, the metric reduces to the KS form (3) and is of the Weyl type D.

5. Conclusion
We believe that the xKS form (10) may lead to the discovery of new solutions of general relativity in higher dimensions in vacuum and also in the presence of matter fields aligned with the KS vector k, such as aligned Maxwell field. Using the xKS ansatz, one could also obtain new vacuum solutions of more general theories of gravity, for instance, the Gauss–Bonnet theory or Lovelock gravities of higher order. We hope that the results of our analysis of xKS spacetimes [15] will be useful for finding such new solutions in a subsequent work.

Acknowledgments
The author acknowledges the support of the Albert Einstein Center for gravitation and astrophysics, Czech Science Foundation 14-37086G.

References
[1] Kerr R P and Schild A 1965 Proc. Symp. Appl. Math. 17 199–209
[2] Ortaggio M, Pravda V and Pravdová A 2009 Class. Quant. Grav. 26 025008 (Preprint 0808.2165)
[3] Málek T and Pravda V 2011 Class. Quant. Grav. 28 125011 (Preprint 1009.1727)
[4] Ortaggio M, Pravda V and Pravdová A 2013 Class. Quant. Grav. 30 013001 (Preprint 1211.7289)
[5] Pravda V, Pravdová A, Coley A and Milson R 2004 Class. Quant. Grav. 21 2873–2898 (Preprint gr-qc/0401013)
[6] Ortaggio M, Pravda V and Pravdová A 2007 Class. Quant. Grav. 24 1657–1664 (Preprint gr-qc/0701150)
[7] Ortaggio M, Pravda V, Pravdová A and Reall H 2012 Class. Quant. Grav. 29 205002 (Preprint 1205.1119)
[8] Málek T 2012 General relativity in higher dimensions Ph.D. thesis Faculty of Mathematics and Physics, Charles University in Prague (Preprint 1204.0291)
[9] Myers R C and Perry M J 1986 Annals Phys. 172 304
[10] Gibbons G, Liu H, Page D N and Pope C 2005 J. Geom. Phys. 53 49–73 (Preprint hep-th/0404008)
[11] Anabalon A, Deruelle N, Morisawa Y, Oliva J, Sasaki M, Tempo D and Troncoso R 2009 Class. Quant. Grav. 26 065002 (Preprint 0812.3194)
[12] Gülüli I, Gürses M, Şişman T Ç and Tekin B 2011 Phys. Rev. D83 084015 (Preprint 1102.1921)
[13] Gürses M, Şişman T Ç and Tekin B 2012 Phys. Rev. D86 024009 (Preprint 1204.2215)
[14] Anabalon A, Deruelle N, Tempo D and Troncoso R 2011 Int. J. Mod. Phys. D20 639–647 (Preprint 1009.3030)
[15] Málek T 2014 Class. Quant. Grav. 31 185013 (Preprint 1401.1060)
[16] Coley A, Milson R, Pravda V and Pravdová A 2004 Class. Quant. Grav. 21 5519–5542 (Preprint gr-qc/0410070)
[17] Coley A, Fuster A, Hervik S and Pelavas N 2006 Class. Quant. Grav. 23 7431–7444 (Preprint gr-qc/0611019)
[18] Brinkmann H W 1925 Math. Ann. 94 119–145
[19] Chong Z W, Cvetic M, Liu H and Pope C 2005 Phys. Rev. Lett. 95 161301 (Preprint hep-th/0506029)
[20] Aliev A N and Çiftçi D K 2009 Phys. Rev. D79 044004 (Preprint 0811.3948)