The affine Hecke category is a monoidal colimit

James Tao

jamestao@mit.edu

February 24, 2021
Overview

Main Idea

A monoidal category \mathcal{C} with a stratification indexed by a Coxeter group W can often be expressed as the monoidal colimit of subcategories $\mathcal{C}_J \subset \mathcal{C}$ indexed by finite type standard subgroups $W_J \subset W$.

This talk will have two parts:

1. Colimit theorems for $\mathcal{C} = \mathcal{D}(\mathcal{L}G), \mathcal{D}(I \backslash \mathcal{L}G/I)$. The category of words and bistratified descent.
 (Joint with Roman Travkin.)

2. An application-in-progress: constructing $\mathcal{H}^{\text{aff}} \rightarrow \mathcal{H}^{\text{fin}}$ in type A. Deformed affine Hecke categories.
 (Joint with Kostya Tolmachov.)
Two colimit theorems

\[G \] – algebraic group, semisimple and simply-connected.
\[W_f \] – affine Weyl group of \(\mathcal{L}G \).
\[I \] – set of affine simple reflections.

For \(J \subset I \), let \(P_J \subset \mathcal{L}G \) be the standard parahoric of type \(J \).

Theorem (monoidal colimits)

(i) \[\mathcal{D}(\mathcal{L}G) \simeq \colim_{J \subset I} \mathcal{D}(P_J) \]

(ii) \[\mathcal{D}(I \backslash \mathcal{L}G / I) \simeq \colim_{J \subset I} \mathcal{D}(I \backslash P_J / I) \]

Remarks. To remove the ‘semisimple and simply-connected’ hypothesis, change the colimit indexing diagram to Varshavsky’s ‘category of parahorics.’

Analogues for monodromic Hecke categories, Kac–Moody groups, …
Motivation: generators and relations (part 1)

Monoidal object	Presentation	Colimit thm.	Cat. level		
Weyl group	Simple reflections	$A = \operatorname{colim} A_J$	sets		
Hecke algebra	1-term relations				
	2-term relations				
		$	J	\leq 2$	
Weyl group (as discrete Picard grpd)	Simple reflections	$A \simeq \operatorname{colim} A_J$	categories		
Hecke category	1-term relations				
	2-term relations				
	3-term relations				
		$	J	\leq 3$	
Weyl group (as discrete top. group)					
Hecke ∞-category	??	$A \simeq \operatorname{colim} A_J$	∞-categories		
		$J \text{ f.t.}$			

Presentation of Weyl group (as discrete Picard grpd): Thm. 1.17, *Diagrammatics for Coxeter groups*, Elias–Williamson (2017)

Presentation of Hecke category: Thm. 1.11, *Tilting modules and the p-canonical basis*, Riche–Williamson (2018)
Motivation: generators and relations (part 2)

Relation	Geometric origin	Name
1-term relations	codimension-1 faces	quadratic relations “wall crossing”
2-term relations	codimension-2 faces	braid relations
3-term relations	codimension-3 faces	Zamolodchikov relations

Image source: https://www.math.umd.edu/~jda/kac/A3.gif
Proof: The category of words (part 1)

Word is the following category:

- Objects are sequences \((w_1, \ldots, w_n)\) in \(W_f\). Each \(w_i\) is ‘finite type.’
- A morphism \(\varphi : (w_1, \ldots, w_{n_1}) \to (w'_1, \ldots, w'_{n_2})\) is an ordered map
 \[
 \varphi^* : \{1, \ldots, n_1\} \to \{1, \ldots, n_2\}
 \]
 satisfying that
 \[
 w'_j \geq_{\text{Bruhat}} (\text{Demazure product of } w_i \text{ for } i \in \varphi^{-1}(j)),
 \]
 for all \(j \in \{1, \ldots, n_2\}\).
Proof: The category of words (part 2)

Key Idea

Word governs ‘convolution’ products of Schubert varieties.

For $w \in W_I$, let $P_w \subset L^G$ be the closure of the w Bruhat cell.

- A word $w = (w_1, \ldots, w_n)$ encodes the variety
 \[
 \tilde{\mathcal{F}}_w := P_{w_1} \times \cdots \times P_{w_n}/I
 \]

- A morphism $\varphi : w \to w'$ encodes the conv. map $\tilde{\mathcal{F}}_w \to \tilde{\mathcal{F}}_{w'}$

- Example for \tilde{A}_2, with simple reflections s, t, u:

 \[
 \begin{array}{ccc}
 (s, t, s) & \downarrow & (g_1, g_2, g_3) \\
 \downarrow & \downarrow & \\
 (s, 1, sts) & P_s \times I \times P_{sts}/I & (g_1, 1, g_2g_3)
 \end{array}
 \]
Proof: Monoidal colimits are amalgamated products

\[
\text{colim}_{J \subset I} \mathcal{D}(P_J) \simeq \text{colim}_{(J_1, \ldots, J_n)} \mathcal{D}(P_{J_1}) \otimes \cdots \otimes \mathcal{D}(P_{J_n})
\]

\[
\simeq \text{colim}_{(w_1, \ldots, w_n) \in \text{Word}} \mathcal{D}(P_{w_1}) \otimes \cdots \otimes \mathcal{D}(P_{w_n})
\]

\[
\simeq \text{colim}_{(w_1, \ldots, w_n) \in \text{Word}} \mathcal{D}
(\mathbb{P}_{w_1} \times \cdots \times \mathbb{P}_{w_n})
\]

\[
\text{colim}_{J \subset I} \mathcal{D}(I \setminus P_J / I) \simeq \text{colim}_{(w_1, \ldots, w_n) \in \text{Word}} \mathcal{D}'(I \setminus \mathbb{P}_{w_1} \times \cdots \times \mathbb{P}_{w_n} / I)
\]

\(\mathcal{D}'(-) := \mathcal{D}\text{-modules constant on each (twisted) product of cells.}\)
Proof: The category of words (part 3)

Let \(\varphi : w \to w' \) be a map.

- \(\varphi \) is a **strict embedding** if \(\varphi_* \) is a bijection and \(\varphi \neq \text{(identity)} \).
- \(\varphi \) is **birational** if and only if \(\overline{\Fl}_w \to \overline{\Fl}_{w'} \) is birational.

Let \(y \in W_I \). We define full subcategories \(\text{Word}_{\preceq y}, \text{Word}_{\prec y} \).

- \(w \in \text{Word}_{\preceq y} \) if and only if \(\overline{\Fl}_w \to \Fl := \mathcal{L}G/I \) factors through \(\Fl_y \) (the \(y \) Schubert variety).
- \(w \) is **\(y \)-relevant** if this map is birational onto \(\Fl_y \).
- \(w \in \text{Word}_{\prec y} \) if and only if this map factors through \(\partial \Fl_y \).

(\(\partial \) means ‘boundary,’ i.e. complement of open cell.)
Proof: Bistratified descent

Let $F : \text{Word} \to \mathcal{E}$ be any functor. How to compute $\text{colim} F$?

Theorem (bistratified descent)

Assume that, for every birational map $w \to w'$, the following diagram is cocartesian:

$$
\begin{array}{ccc}
\text{colim} & F(v) & \to & F(w) \\
\downarrow & & \downarrow & \\
F(v') & \to & F(w')
\end{array}
$$

Then, for any y-relevant $w \in \text{Word}_{\leq y}$, the following diagram is cocartesian:

$$
\begin{array}{ccc}
\text{colim} & F(v) & \to & F(w) \\
\downarrow & & \downarrow & \\
\text{colim} F(v') & \to & \text{colim} F(w')
\end{array}
$$

The conclusion is: $\text{colim} F$ can be computed via a sequence of pushouts.
Proof: Applying bistratified descent

\[
\begin{align*}
\colim_{v \to w} F(v) & \to F(w) \\
\colim_{v' \to w'} F(v') & \to F(w') \\
\end{align*}
\]

The previous diagrams correspond to blow-up squares:

\[
\begin{align*}
\partial \tilde{\Fl}_w & \to \tilde{\Fl}_w \\
\partial \tilde{\Fl}_{w'} & \to \tilde{\Fl}_{w'} \\
\end{align*}
\]

Upshot. Bistratified descent can be applied when the sheaf theory satisfies descent w.r.t. blow-up squares. (E.g. \mathcal{D}-modules, ℓ-adic sheaves)
How to apply the colimit theorem (part 1)

\(\mathcal{C} \) – any stable monoidal \(\infty \)-category. Assume \(I \) is irreducible.

How to construct a monoidal triangulated functor \(F : \mathcal{H}_{\text{aff}} \to \mathcal{C} \)?

1. For \(i \in I \), choose \(F_i \in \text{Fun}^{\text{mon}}(\mathcal{H}_{I \setminus \{i\}}, \mathcal{C}) \)

2. For \(i, j \in I \), choose \(F_i|_{\mathcal{H}_{I \setminus \{i,j\}}} \xrightarrow{\sim} F_j|_{\mathcal{H}_{I \setminus \{i,j\}}} \) in \(\text{Fun}^{\text{mon}}(\mathcal{H}_{I \setminus \{i,j\}}, \mathcal{C}) \)

3. For \(i, j, k \in I \), ensure commutativity in \(\text{Fun}^{\text{mon}}(\mathcal{H}_{I \setminus \{i,j,k\}}, \mathcal{C}) \):

\[
\begin{array}{ccc}
F_i|_{\mathcal{H}_{I \setminus \{i,j,k\}}} & \xrightarrow{\sigma_{ik}|_{\mathcal{H}_{I \setminus \{i,j,k\}}} } & F_k|_{\mathcal{H}_{I \setminus \{i,j,k\}}} \\
\sigma_{ij}|_{\mathcal{H}_{I \setminus \{i,j,k\}}} & \xrightarrow{\sigma_{jk}|_{\mathcal{H}_{I \setminus \{i,j,k\}}} } & \quad \\
F_j|_{\mathcal{H}_{I \setminus \{i,j,k\}}} & & \quad \\
\end{array}
\]

4. (higher associativity constraints)
Choose a t-structure on \mathcal{C}. Restrict attention to functors $F : \mathcal{H}_{\text{aff}} \to \mathcal{C}$ which send all tilting generators into \mathcal{C}^{\heartsuit}.

To construct these functors, one only needs the “1-categorical colimit theorem,” which follows from the Elias–Williamson presentation.

This is because of ‘truncatedness’:

$$\text{Hom}^i_{\mathcal{C}}(F(T_1), F(T_2)) = 0 \quad \text{for } i < 0.$$

This corresponds to vanishing of some π_1, π_2, \ldots, because we are using cohomological indexing.

To construct more general functors, one needs the “∞-categorical colimit theorem.”
Problem: In a general ∞-category, it’s hard to check Step 4. In an ordinary category, however, Step 4 automatically follows.

Key Idea

Choose a t-structure on C. The subcategory of $\text{Fun}^{\text{mon}}(\mathcal{H}_{I\setminus\{i\}}, C)$ which sends all tilting generators into C^\Diamond is an ordinary category.

This trick may work even when there is no t-structure on C such that the desired functor $\mathcal{H}_{\text{aff}} \to C$ sends all tilting generators into C^\Diamond.

Indeed, we may now use a different t-structure for each $i \in I$.
From now on, \(I = \tilde{A}_{n-1} \), with vertices \(\{0, \ldots, n-1\} \), and \(G := \text{GL}_n \).

Question

Is there a (monoidal) functor \(\mathcal{H}_{\text{aff}} \rightarrow \mathcal{H}_{I \setminus \{0\}} \) which is compatible with the following map of braid groups \(\mathbb{B}_{\text{aff}} \rightarrow \mathbb{B}_{\text{fin}} \)?

Bezrukavnikov’s equivalence states that \(\mathcal{H}_{\text{aff}} \simeq D^b(\text{Coh}^G(\text{St})) \). Tolmachov’s thesis constructs a functor \(\text{Perf}^G(\text{St}) \rightarrow \mathcal{H}_{I \setminus \{0\}} \).

Image source: Tolmachov’s thesis
Tolmachov’s thesis: $\text{Perf}^G(\text{St}) \rightarrow \mathcal{H}_{\text{fin}}$ in type A (part 2)

Key Idea for Bezrukavnikov’s equivalence

$\text{Perf}^G(\text{St})$ is generated by the vector bundles $\mathcal{O}(\lambda, \mu) \otimes \mathbb{C} \ V$ and maps (highest weight arrows, monodromy endomorphisms) subject to some relations. The object $\mathcal{O}(\lambda, \mu) \otimes \mathcal{V}$ corresponds to $J_\lambda \star \mathcal{Z}_V \star \Xi \star J_\mu \in \mathcal{H}_{\text{aff}}$.

Question 1: Where should $J_\lambda \star \mathcal{Z}_V \star \Xi \star J_\mu$ map to?

Weight decomposition $V = \bigoplus \lambda V_\lambda$.

Recall that \mathcal{Z}_V is an iterated extension, in which J_λ occurs $\dim V_\lambda$ times.

$\mathcal{B}_{\text{aff}} \rightarrow \mathcal{B}_{\text{fin}}$ forces $J_\lambda \mapsto \mathbb{L}_\lambda$ (Jucys–Murphy sheaves).

Anything in \mathcal{B}_{fin} convolved with Ξ yields Ξ.

Answer: $J_\lambda \star \mathcal{Z}_V \star \Xi \star J_\mu \mapsto \mathbb{L}_\lambda \star (V \otimes \mathbb{C} \Xi) \star \mathbb{L}_\mu$.
Tolmachov’s thesis: $\text{Perf}^G(\text{St}) \to \mathcal{H}_{\text{fin}}$ in type A (part 3)

To get maps and relations, need to ‘take apart’ $V \otimes_{\mathbb{C}} \Xi$. Thus, we ask:

Question 2: Under $\mathcal{H}_{\text{aff}} \to \mathcal{H}_{\text{fin}}$, where should \mathcal{Z}_V map to?

Answer: For V_{std}, it’s an “averaged” parabolic Springer sheaf.

Let P be the parabolic which fixes a line. $G\backslash (G \times U_P) \simeq P \backslash U_P$

Parabolic Springer sheaf: $\text{Spr}_P := \pi_*\mathbb{C}u_P^{\mathbb{P}}[2 \dim U_P]$

Pull-push Spr_P, then force it to be T-monodromic.
Tolmachov’s thesis: $\text{Perf}^G(St) \to \mathcal{H}_{\text{fin}}$ in type A (part 4)

What about $\wedge^k V_{\text{std}}$?

\[\lambda_k \quad \text{– partition of } n \text{ given by the ‘hook’ } (k, 1, \ldots, 1). \]

\[\text{IC}_{\lambda_k} \quad \text{– IC-complex of the unipotent orbit in } G = \text{GL}_n \text{ given by } \lambda_k. \]

Main Theorem of Tolmachov’s thesis

(a) $\wedge^k \text{Spr}_P \simeq \text{IC}_{\lambda_k} \oplus \text{IC}_{\lambda_{k+1}}$ for $1 \leq k \leq n - 1$.

(b) $\wedge^n \text{Spr}_P \simeq \text{IC}_{\lambda_n}$.

(c) IC_{λ_n} becomes invertible after some averaging.

(d) $\wedge^{n+1} \text{Spr}_P = 0$.

Finally, bootstrap from $\wedge^k V_{\text{std}}$ to all GL_n-reps via a Tannakian argument.
To apply the colimit theorem, we need to do Steps 1, 2, 3 from before.

1. $F_i : \mathcal{H}_{I \setminus \{i\}} \to \mathcal{H}_{I \setminus \{0\}}$ is conjugation by a specific element $b_i \in \mathbb{B}_{aff}$.

2. $\sigma_{ij} : F_i|_{\mathcal{H}_{I \setminus \{i,j\}}} \sim F_j|_{\mathcal{H}_{I \setminus \{i,j\}}}$ expresses that $b_j^{-1}b_i$ centralizes $\mathcal{H}_{I \setminus \{i,j\}}$.
 (Use centrality of $\Delta^2_{w_0}$, Prop. 5.4, Monodromic model for Khovanov–Rozansky homology, Bezrukavnikov–Tolmachov)
3. Want to check \(\sigma_{jk} \circ \sigma_{ik} \simeq \sigma_{ik} \) in \(\text{Fun}^{\text{mon}}(\mathcal{H}_{I \setminus \{i,j,k\}}, \mathbb{C}) \).

Right now, we do not know if this is true.

What if Step 3 fails?

That is, what if \(\sigma_{ik}^{-1} \circ \sigma_{jk} \circ \sigma_{ik} \) is not the id. natural transformation?

Key Idea (deformed affine Hecke category)

One may define a new category \(\mathcal{H}_{aff}^{(\alpha)} \) by deforming \(\mathcal{H}_{aff} \) using the ‘cocycle’ \(\sigma_{ik}^{-1} \circ \sigma_{jk} \circ \sigma_{ik} \). By construction, there will be a monoidal functor

\[
\mathcal{H}_{aff}^{(\alpha)} \rightarrow \mathcal{H}_{I \setminus \{0\}}.
\]
Interpret the colimit diagram in $\mathcal{H}_{\text{aff}} \simeq \operatorname{colim}_{J \subsetneq I} \mathcal{H}_J$ as follows:

1. For $i \in I$, write down the category $\mathcal{H}_{I \setminus \{i\}}$.

2. For $i, j \in I$, write down the identity functor

 $$
 \begin{array}{ccc}
 \mathcal{H}_{I \setminus \{i,j\}} & \longrightarrow & \mathcal{H}_{I \setminus \{i\}} \\
 \downarrow \text{Id} & & \downarrow \text{Id} \\
 \mathcal{H}_{I \setminus \{i,j\}} & \longrightarrow & \mathcal{H}_{I \setminus \{j\}}
 \end{array}
 $$

3. For $i, j, k \in I$, write down the trivial commutativity natural iso

 $$
 \begin{array}{ccc}
 \mathcal{H}_{I \setminus \{i,j,k\}} & \longrightarrow & \mathcal{H}_{I \setminus \{i\}} \\
 \downarrow \text{Id} & & \downarrow \text{Id} \\
 \mathcal{H}_{I \setminus \{i,j,k\}} & \longrightarrow & \mathcal{H}_{I \setminus \{j\}} \\
 \downarrow \text{Id} & & \downarrow \text{Id} \\
 \mathcal{H}_{I \setminus \{i,j,k\}} & \longrightarrow & \mathcal{H}_{I \setminus \{k\}}
 \end{array}
 $$
Define $\mathcal{H}^{(\alpha)}_{\text{aff}} := \lim_{J \subseteq I} \mathcal{H}_J$ using a modified colimit diagram:

Steps 1 and 2 are the same as before.

3'. For $i, j, k \in I$, write down a nontrivial commutativity natural iso

\[
\begin{array}{ccc}
\mathcal{H}_{I \setminus \{i, j, k\}} & \xrightarrow{\text{Id}} & \mathcal{H}_{I \setminus \{i, j, k\}} \\
\downarrow & & \downarrow \\
\mathcal{H}_{I \setminus \{i, j, k\}} & \xrightarrow{\text{Id}} & \mathcal{H}_{I \setminus \{i, j, k\}}
\end{array}
\]

4. For $i, j, k, \ell \in I$, the following tetrahedron must commute:

\[
\begin{array}{ccc}
\mathcal{H}_{I \setminus \{i, j, k, \ell\}} & \xrightarrow{\text{Id}} & \mathcal{H}_{I \setminus \{i, j, k, \ell\}} \\
\downarrow & & \downarrow \\
\mathcal{H}_{I \setminus \{i, j, k, \ell\}} & \xrightarrow{\text{Id}} & \mathcal{H}_{I \setminus \{i, j, k, \ell\}}
\end{array}
\]

All six maps are Id, all four triangles come from step 3'.
Key Idea (deformed affine Hecke category)

Use the natural iso’s $\sigma^{-1}_{ik} \circ \sigma_{jk} \circ \sigma_{ik}$ to define natural iso’s for Step 3’. The resulting category $\mathcal{H}^{(\alpha)}_{\text{aff}}$ admits a monoidal functor to $\mathcal{H}_{I\setminus\{0\}}$.

We expect that $\mathcal{H}^{(\alpha)}_{\text{aff}}$ can be (noncanonically) obtained from \mathcal{H}_{aff} by altering the 3-term (and higher) associativity constraints for the monoidal structure.

Hence, the centers of $\mathcal{H}^{(\alpha)}_{\text{aff}}$ and \mathcal{H}_{aff} are equivalent (as categories), but their (braided) monoidal structures are different.

Next steps. Describe the categories $\mathcal{H}^{(\alpha)}_{\text{aff}}$ more explicitly.
Investigate the center of $\mathcal{H}^{(\alpha)}_{\text{aff}}$ and compare with the center of $\mathcal{H}_{I\setminus\{0\}}$.
References

B. Elias and G. Williamson, *Soergel calculus*, Represent. Theory **20** (2016), p. 295-374.

B. Elias and G. Williamson, *Diagrammatics for Coxeter groups and their braid groups*, Quantum Topology **8**(3) (2017), pp. 413–457.

S. Riche and G. Williamson, *Tilting modules and the p-canonical basis*, Asterisque, Société Mathématique de France, 2018, 397. hal-01249796v3

J. Tao and R. Travkin, *The affine Hecke category is a monoidal colimit*, preprint arXiv:2009.10998 (New version will be available soon.)

K. Tolmachov, *Towards a functor between affine and finite Hecke categories in type A*, Ph.D. thesis (2018), available at http://tolmak.khtos.com/thesis_tolmachov.pdf

R. Bezrukavnikov and K. Tolmachov, *Monodromic model for Khovanov–Rozansky homology*, preprint arXiv:2008.11379
Appendix: How to construct $\mathbb{B}_{\text{aff}} \to \mathcal{H}_{\text{aff}}$ (part 1)

"Reduced lift" presentation of braid monoid $\mathbb{B}_{\text{aff}}^+$:

$$
\mathbb{B}_{\text{aff}}^+ \simeq \left\langle t_w \text{ for } w \in W_{\text{aff}} \middle| \begin{array}{l}
t_{w_1}t_{w_2} = t_{w_1w_2} \text{ whenever } \\
\ell(w_1) + \ell(w_2) = \ell(w_1w_2)
\end{array} \right\rangle
$$

Valid even when $\mathbb{B}_{\text{aff}}^+$ is viewed as a discrete topological monoid!

Finite type: Thm. 1.7, *Action du groupe des tresses sur une catégorie*, Deligne (1997)
Arbitrary type: Generalize Deligne's proof, or apply Thm. 5.1, *Configuration spaces of labeled particles*, Dobrinskaya (2006)

Define the monoidal functor $\mathbb{B}_{\text{aff}}^+ \to \mathcal{H}_{\text{aff}}$ via $t_w \mapsto (j_w)!C = \Delta_w$.

\mathcal{H}_{aff} is a monoidal colimit
Thm. 5.2 of Dobrinskaya (2006)

\[I \rightarrow \text{any Coxeter–Dynkin diagram} \]

The homotopy groupification of \(B_I^+ \) is the (discrete) braid group \(B_I \) if and only if \(K(\pi, 1) \) conjecture holds for \(B_I \).

Paolini and Salvetti (2020) proved the \(K(\pi, 1) \) conjecture for affine \(I \).

Universal property of homotopy groupification:

\[(j_w)! C = \Delta_w \text{ invertible} \implies \text{Get a monoidal functor } B_{\text{aff}} \rightarrow H_{\text{aff}}. \]