Quasi-elementary H-Azumaya algebras arising from generalized (anti) Yetter-Drinfeld modules

Florin Panaite
Institute of Mathematics of the Romanian Academy
PO-Box 1-764, RO-014700 Bucharest, Romania
e-mail: Florin.Panaite@imar.ro

Freddy Van Oystaeyen
Department of Mathematics and Computer Science
University of Antwerp, Middelheimlaan 1
B-2020 Antwerp, Belgium
e-mail: Francine.Schoeters@ua.ac.be

Abstract

Let H be a Hopf algebra with bijective antipode, $\alpha, \beta \in Aut_{Hopf}(H)$ and M a finite dimensional (α, β)-Yetter-Drinfeld module. We prove that $\text{End}(M)$ endowed with certain structures becomes an H-Azumaya algebra, and the set of H-Azumaya algebras of this type is a subgroup of $BQ(k, H)$, the Brauer group of H.

Introduction

Let H be a Hopf algebra with bijective antipode S and $\alpha, \beta \in Aut_{Hopf}(H)$. An (α, β)-Yetter-Drinfeld module, as introduced in [10], is a left H-module right H-comodule M with the following compatibility condition:

$$(h \cdot m)(0) \otimes (h \cdot m)(1) = h_2 \cdot m(0) \otimes \beta(h_3)m(1)\alpha(S^{-1}(h_1)).$$

This concept is a generalization of three kinds of objects appearing in the literature. Namely, for $\alpha = \beta = id_H$, one obtains the usual Yetter-Drinfeld modules; for $\alpha = S^2$, $\beta = id_H$, one obtains the so-called anti-Yetter-Drinfeld modules, introduced in [3], [6], [7] as coefficients for the cyclic cohomology of Hopf algebras defined by Connes and Moscovici in [3], [4]; finally, an (id_H, β)-Yetter-Drinfeld module is a generalization of a certain object H_β defined in [2]. The main result in [10] is that, if we denote by $\mathcal{YD}(H)$ the disjoint union of the categories $H\mathcal{YD}^H(\alpha, \beta)$ of (α, β)-Yetter-Drinfeld modules, for all $\alpha, \beta \in Aut_{Hopf}(H)$, then $\mathcal{YD}(H)$ acquires the structure of a braided T-category (a concept introduced by Turaev in [12]) over a certain group G, a semidirect product between two copies of $Aut_{Hopf}(H)$. Moreover, the subcategory $\mathcal{YD}(H)_{fd}$ consisting of finite dimensional objects has left and right dualities.

*Research carried out while the first author was visiting the University of Antwerp, supported by a postdoctoral fellowship offered by FWO (Flemish Scientific Research Foundation). This author was also partially supported by the programme CEEX of the Romanian Ministry of Education and Research, contract nr. 2-CEEx06-11-20/2006.
The Brauer group $BQ(k, H)$ of the Hopf algebra H was introduced in \[\text{[1]},\] by taking equivalence classes of so-called H-Azumaya algebras in the braided category \mathcal{H}_YD^H of Yetter-Drinfeld modules over H, and using the braided product inside this category to define the multiplication of the group. If $M \in \mathcal{H}_YD^H$ is a finite dimensional object, then $\text{End}(M)$ is an H-Azumaya algebra, representing the unit element in $BQ(k, H)$. Also, if H is finite dimensional and $\beta \in Aut_{Hopf}(H)$, the object H_β mentioned before is not an object in \mathcal{H}_YD^H but nevertheless $\text{End}(H_\beta)$ with certain structures becomes an H-Azumaya algebra, and moreover the map $\beta \mapsto \text{End}(H_\beta)$ gives a group anti-homomorphism from $Aut_{Hopf}(H)$ to $BQ(k, H)$, see \[\text{[2]}.\]

The aim of this paper is to construct a new class of examples of H-Azumaya algebras, containing the two classes mentioned above as particular cases. Namely, we prove that if $\alpha, \beta \in Aut_{Hopf}(H)$ and $M \in \mathcal{H}_YD^H(\alpha, \beta)$ is finite dimensional, then $\text{End}(M)$ endowed with certain structures becomes an H-Azumaya algebra. The proof is rather technical and relies heavily on the fact that $\mathcal{YD}(H)_{fd}$ is a braided T-category with dualities. We also prove that, if we denote by $BA(k, H)$ the subset of $BQ(k, H)$ consisting of H-Azumaya algebras that can be represented as $\text{End}(M)$, with $M \in \mathcal{H}_YD^H(\alpha, \beta)$ finite dimensional, for some $\alpha, \beta \in Aut_{Hopf}(H)$, then $BA(k, H)$ is a subgroup of $BQ(k, H)$.

1 Preliminaries

We work over a ground field k. All algebras, linear spaces, etc. will be over k; unadorned \otimes means \otimes_k. Unless otherwise stated, H will denote a Hopf algebra with bijective antipode S. We will use the version of Sweedler’s sigma notation: $\Delta(h) = h_1 \otimes h_2$. For unexplained concepts and notation about Hopf algebras we refer to \[\text{[8], [9], [11]}.\] By $\alpha, \beta, \gamma...$ we will usually denote Hopf algebra automorphisms of H. If M is a vector space, a left H-module (respectively H-comodule) structure on M will be usually denoted by $h \otimes m \mapsto h \cdot m$ (respectively $m \mapsto m_{(0)} \otimes m_{(1)}$).

We recall now some facts from \[\text{[11]}\] about (α, β)-Yetter-Drinfeld modules.

Definition 1.1 Let $\alpha, \beta \in Aut_{Hopf}(H)$. An (α, β)-Yetter-Drinfeld module over H is a vector space M, such that M is a left H-module (with notation $h \otimes m \mapsto h \cdot m$) and a right H-comodule (with notation $M \rightarrow M \otimes H$, $m \mapsto m_{(0)} \otimes m_{(1)}$) with the following compatibility condition:

$$
(h \cdot m)_{(0)} \otimes (h \cdot m)_{(1)} = h_2 \cdot m_{(0)} \otimes \beta(h_3)m_{(1)}\alpha(S^{-1}(h_1)),
$$

(1.1)

for all $h \in H$ and $m \in M$. We denote by $\mathcal{H}_YD^H(\alpha, \beta)$ the category of (α, β)-Yetter-Drinfeld modules, morphisms being the H-linear H-colinear maps.

Remark 1.2 As for usual Yetter-Drinfeld modules, one can see that \[\text{[11]}\] is equivalent to

$$
(h_1 \cdot m_{(0)} \otimes \beta(h_2)m_{(1)} = (h_2 \cdot m)_{(0)} \otimes (h_2 \cdot m)_{(1)}\alpha(h_1).
$$

(1.2)

Example 1.3 For $\alpha = \beta = id_H$, we have $\mathcal{H}_YD^H(id, id) = \mathcal{H}_YD^H$, the usual category of (left-right) Yetter-Drinfeld modules. For $\alpha = S^2$, $\beta = id_H$, the compatibility condition \[\text{[11]}\] becomes

$$
(h \cdot m)_{(0)} \otimes (h \cdot m)_{(1)} = h_2 \cdot m_{(0)} \otimes h_3m_{(1)}S(h_1),
$$

(1.3)

hence $\mathcal{H}_YD^H(S^2, id)$ is the category of anti-Yetter-Drinfeld modules defined in \[\text{[3], [6], [7]}\].

2
Example 1.4 For $β ∈ \text{Aut}_{\text{Hopf}}(H)$, define $H_β$ as in [2], that is $H_β = H$, with regular right H-comodule structure and left H-module structure given by $h · h' = β(h_2)h'S^{-1}(h_1)$, for all $h, h' ∈ H$. It was noted in [2] that $H_β$ satisfies a certain compatibility condition, which actually says that $H_β ∈ H\mathcal{YD}^H(id, β)$. More generally, if $α, β ∈ \text{Aut}_{\text{Hopf}}(H)$, define $H_{α, β}$ as follows: $H_{α, β} = H$, with regular right H-comodule structure and left H-module structure given by $h · h' = \beta(h_2)h'α(S^{-1}(h_1))$, for $h, h' ∈ H$. Then one can check that $H_{α, β} ∈ H\mathcal{YD}^H(α, β)$.

Example 1.5 Let $α, β ∈ \text{Aut}_{\text{Hopf}}(H)$ and assume that there exist an algebra map $f : H → k$ and a group-like element $g ∈ H$ such that

$$α(h) = g^{-1}f(h_1)β(h_2)f(S(h_3))g, \quad ∀ h ∈ H. \quad (1.4)$$

Then one can check that $k ∈ H\mathcal{YD}^H(α, β)$, with structures $h · 1 = f(h)$ and $1 → 1 ⊗ g$. More generally, if V is any vector space, then $V ∈ H\mathcal{YD}^H(α, β)$, with structures $h · v = f(h)v$ and $v → v ⊗ g$, for all $h ∈ H$ and $v ∈ V$.

Definition 1.6 If $α, β ∈ \text{Aut}_{\text{Hopf}}(H)$ such that there exist f, g as in Example 1.5, we say that (f, g) is a pair in involution corresponding to $(α, β)$ (in analogy with the concept of modular pair in involution due to Connes and Moscovici) and the $(α, β)$-Yetter-Drinfeld modules k and V constructed in Example 1.5 are denoted by $f k^g$ and respectively $f V^g$.

For instance, if $α ∈ \text{Aut}_{\text{Hopf}}(H)$, then $(ε, 1)$ is a pair in involution corresponding to $(α, α)$.

2 Tensor products and duals

By [5], the tensor product of a Yetter-Drinfeld module with an anti-Yetter-Drinfeld module becomes an anti-Yetter-Drinfeld module. We generalize this result as follows:

Proposition 2.1 Let $α, β, γ ∈ \text{Aut}_{\text{Hopf}}(H)$ and M, N two vector spaces which are left H-modules and right H-comodules.

(i) Endow $M ⊗ N$ with the left H-module structure $h · (m ⊗ n) = h_1 · m ⊗ h_2 · n$ and the right H-comodule structure $m ⊗ n → (m_{(0)} ⊗ n_{(0)}) ⊗ n_{(1)}m_{(1)}$ (we call these structures ”of type one”). If $M ∈ H\mathcal{YD}^H(α, β)$ and $N ∈ H\mathcal{YD}^H(β, γ)$, then $M ⊗ N ∈ H\mathcal{YD}^H(α, γ)$; in particular, if $M ∈ H\mathcal{YD}^H(S^2, id)$ and $N ∈ H\mathcal{YD}^H$, then $M ⊗ N ∈ H\mathcal{YD}^H(S^2, id)$, and if $M ∈ H\mathcal{YD}^H(id, β)$ and $N ∈ H\mathcal{YD}^H(β, id)$, then $M ⊗ N ∈ H\mathcal{YD}^H$.

(ii) Endow $M ⊗ N$ with the right H-module structure $h · (m ⊗ n) = h_2 · m ⊗ h_1 · n$ and the right H-comodule structure $m ⊗ n → (m_{(0)} ⊗ n_{(0)}) ⊗ m_{(1)}n_{(1)}$ (we call these structures ”of type two”). If $M ∈ H\mathcal{YD}^H(α, β)$ and $N ∈ H\mathcal{YD}^H(γ, α)$, then $M ⊗ N ∈ H\mathcal{YD}^H(γ, β)$; in particular, if $M ∈ H\mathcal{YD}^H$ and $N ∈ H\mathcal{YD}^H(S^2, id)$, then $M ⊗ N ∈ H\mathcal{YD}^H(S^2, id)$, and if $M ∈ H\mathcal{YD}^H(α, id)$ and $N ∈ H\mathcal{YD}^H(id, α)$, then $M ⊗ N ∈ H\mathcal{YD}^H$.

Proof. We include here a direct proof for (i) (while (ii) is similar and left to the reader), an indirect proof will appear below. We compute:

$$(h · (m ⊗ n))_{(0)} ⊗ (h · (m ⊗ n))_{(1)}$$

$$= (h_1 · m ⊗ h_2 · n)_{(0)} ⊗ (h_1 · m ⊗ h_2 · n)_{(1)}$$

$$= ((h_1 · m)_{(0)} ⊗ (h_2 · n)_{(0)}) ⊗ (h_2 · n)_{(1)}(h_1 · m)_{(1)}$$
\[
\begin{align*}
&= (h_{(1,2)} \cdot m_{(0)} \otimes h_{(2,2)} \cdot n_{(0)}) \otimes \gamma(h_{(2,3)}n_{(1)} \beta(S^{-1}(h_{(2,1)})) \beta(h_{(1,3)}) m_{(1)} \alpha(S^{-1}(h_{(1,1)}))) \\
&= (h_2 \cdot m_{(0)} \otimes h_5 \cdot n_{(0)}) \otimes \gamma(h_6) m_{(1)} \beta(S^{-1}(h_4) h_3) m_{(1)} \alpha(S^{-1}(h_1)) \\
&= (h_2 \cdot m_{(0)} \otimes h_3 \cdot n_{(0)}) \otimes \gamma(h_4) n_{(1)} m_{(1)} \alpha(S^{-1}(h_1)) \\
&= h_2 \cdot (m \otimes n)_{(0)} \otimes \gamma(h_3) (m \otimes n)_{(1)} \alpha(S^{-1}(h_1)),
\end{align*}
\]

that is \(M \otimes N \in H \mathcal{YD}^H(\alpha, \gamma) \).

In what follows, a tensor product with structures of type one will be denoted by \(\hat{\otimes} \), and one with structures of type two will be denoted by \(\hat{\otimes} \).

By 10, if \(M \in H \mathcal{YD}^H(\alpha, \beta) \) and \(N \in H \mathcal{YD}^H(\gamma, \delta) \), then \(M \otimes N \) becomes an object in \(H \mathcal{YD}^H(\alpha \gamma, \delta \gamma^{-1} \beta \gamma) \) with the following structures:

\[
h \cdot (m \otimes n) = \gamma(h_1) \cdot m \otimes \gamma^{-1} \beta \gamma(h_2) \cdot n,
\]

\[
m \otimes n \mapsto (m \otimes n)_{(0)} \otimes (m \otimes n)_{(1)} := (m_{(0)} \otimes n_{(0)}) \otimes n_{(1)} m_{(1)}.
\]

This tensor product defines, on the disjoint union \(\mathcal{YD}(H) \) of all categories \(H \mathcal{YD}^H(\alpha, \beta) \), a structure of a braided T-category (see 10), and will be denoted by \(\hat{\otimes} \) in what follows.

We want to see what is the relation between this tensor product and \(\hat{\otimes} \). We need a generalization of a result in 10, which states that, if \(\beta \in \text{Aut}_{H_{\text{opf}}}(H) \), then \(H \mathcal{YD}^H(\beta, \beta) \simeq H \mathcal{YD}^H \).}

Proposition 2.2 If \(\alpha, \beta, \gamma \in \text{Aut}_{H_{\text{opf}}}(H) \), the categories \(H \mathcal{YD}^H(\alpha \beta, \gamma \beta) \) and \(H \mathcal{YD}^H(\alpha, \gamma) \) are isomorphic. A pair of inverse functors \((F, G) \) is given as follows. If \(M \in H \mathcal{YD}^H(\alpha \beta, \gamma \beta) \), then \(F(M) \in H \mathcal{YD}^H(\alpha, \gamma) \), where \(F(M) = M \) as vector space, with structures \(h \mapsto m = \beta^{-1}(h) \cdot m \) and \(m \mapsto m_{<0>} \otimes m_{<1>} := m_{(0)} \otimes m_{(1)} \), for all \(h \in H \), \(m \in M \). If \(N \in H \mathcal{YD}^H(\alpha, \gamma) \), then \(G(N) \in H \mathcal{YD}^H(\alpha \beta, \gamma \beta) \), where \(G(N) = N \) as vector space, with structures \(h \mapsto n = \beta(h) \cdot n \) and \(n \mapsto n_{(0)} \otimes n_{(1)} := n_{(0)} \otimes n_{(1)} \), for all \(h \in H \), \(n \in N \). Both \(F \) and \(G \) act as identities on morphisms.

Proof. Everything follows by a direct computation.

Corollary 2.3 We have isomorphisms of categories:

\[
H \mathcal{YD}^H(\alpha, \beta) \simeq H \mathcal{YD}^H(\alpha \beta^{-1}, \text{id}), \quad H \mathcal{YD}^H(\alpha, \beta) \simeq H \mathcal{YD}^H(\text{id}, \beta \alpha^{-1}),
\]

\[
H \mathcal{YD}^H(\alpha, \text{id}) \simeq H \mathcal{YD}^H(\text{id}, \alpha^{-1}), \quad H \mathcal{YD}^H(\text{id}, \beta) \simeq H \mathcal{YD}^H(\beta^{-1}, \text{id}),
\]

for all \(\alpha, \beta \in \text{Aut}_{H_{\text{opf}}}(H) \).

Let now \(M \in H \mathcal{YD}^H(\alpha, \beta) \) and \(N \in H \mathcal{YD}^H(\beta, \gamma) \). On the one hand, we can consider the tensor product \(M \hat{\otimes} N \), which is an object in \(H \mathcal{YD}^H(\alpha \beta, \gamma \beta) \). On the other hand, we have the tensor product \(M \hat{\otimes} N \), which is an object in \(H \mathcal{YD}^H(\alpha, \gamma) \). Using the above formulae, one can then check that we have:

Proposition 2.4 \(M \hat{\otimes} N = F(M \hat{\otimes} N) \).

Let \(M \) be a finite dimensional vector space such that \(M \) is a left \(H \)-module and a right \(H \)-comodule. Denote by \(M^* \) the dual vector space \(M^* \), endowed with the following left \(H \)-module and right \(H \)-comodule structures:

\[
(h \cdot f)(m) = f(S(h) \cdot m),
\]
\[f_{(0)}(m) \otimes f_{(1)} = f(m_{(0)}) \otimes S^{-1}(m_{(1)}), \]

for all \(h \in H, \ f \in M^\circ, \ m \in M, \) and by \(^{o}M \) the same vector space \(M^* \) endowed with the following left \(H \)-module and right \(H \)-comodule structures:

\[
(h \cdot f)(m) = f(S^{-1}(h) \cdot m), \\
f_{(0)}(m) \otimes f_{(1)} = f(m_{(0)}) \otimes S(m_{(1)}),
\]

for all \(h \in H, \ f \in ^{o}M, \ m \in M \) (if \(M \) would be an object in \(_H\mathcal{YD}^H \), then \(M^\circ \) and \(^{o}M \) would be the left and right duals of \(M \) in \(_H\mathcal{YD}^H \)).

Proposition 2.5 If \(M \) is a finite dimensional object in \(_H\mathcal{YD}^H(\alpha, \beta) \), then \(M^\circ \) and \(^{o}M \) are objects in \(_H\mathcal{YD}^H(\beta, \alpha) \).

Proof. Follows by direct computation (an alternative proof will appear below). \(\square \)

Recall now from [10] that, if \(M \) is a finite dimensional object in \(_H\mathcal{YD}^H(\alpha, \beta) \), then \(M \) has left and right duals \(M^* \) and respectively \(^*M \) in the \(T \)-category \(\mathcal{YD}(H) \); in particular, \(M^* \) and \(^*M \) are objects in \(_H\mathcal{YD}^H(\alpha^{-1}, \alpha \beta^{-1} \alpha^{-1}) \), defined as follows: as vector spaces they coincide both to the dual vector space of \(M \), with structures:

\[
(h \cdot f)(m) = f((\beta^{-1} \alpha^{-1} S(h)) \cdot m), \\
f_{(0)}(m) \otimes f_{(1)} = f(m_{(0)}) \otimes S^{-1}(m_{(1)}),
\]

for \(M^* \), and

\[
(h \cdot f)(m) = f((\beta^{-1} \alpha^{-1} S^{-1}(h)) \cdot m), \\
f_{(0)}(m) \otimes f_{(1)} = f(m_{(0)}) \otimes S(m_{(1)}),
\]

for \(^*M \). We are interested to see how the objects \(M^\circ, \ M^* \) and respectively \(^{o}M, \ ^*M \) are related. Consider the functor \(F \) as in Proposition 2.2, but this time between the categories \(_H\mathcal{YD}^H(\beta(\beta^{-1} \alpha^{-1}), \alpha(\beta^{-1} \alpha^{-1})) \) and \(_H\mathcal{YD}^H(\beta, \alpha) \). Then, using the expression for \(F \) and the above formulae, one can check that we have:

Proposition 2.6 \(M^\circ = F(M^*) \) and \(^{o}M = F(^*M) \).

Lemma 2.7 Let \(M \in _H\mathcal{YD}^H(\alpha, \beta) \) and \(N \in _H\mathcal{YD}^H(\gamma, \delta) \) finite dimensional. Then the map

\[\Psi : N^* \otimes M^* \rightarrow (M \otimes N)^*, \quad \Psi(n^* \otimes m^*)(m \otimes n) := m^*(m)n^*(n), \]

is an isomorphism in \(_H\mathcal{YD}^H(\gamma^{-1} \alpha^{-1}, \alpha \beta^{-1} \gamma^{-1} \delta^{-1} \gamma^{-1} \alpha^{-1}) \).

Proof. Straightforward computation. \(\square \)

3 Endomorphism algebras

Let \(A \) be an algebra in \(_H\mathcal{YD}^H \). We denote by \(A^{op} \) the (usual) opposite algebra, with multiplication \(a \bullet a' = a'a' \) for all \(a, a' \in A \), and by \(\overline{A} \) the \(H \)-opposite algebra (the opposite of \(A \) in the category \(_H\mathcal{YD}^H \)), which equals \(A \) as object in \(_H\mathcal{YD}^H \) but with multiplication \(a \ast a' = a'_{(0)}(a'_{(1)} \cdot a) \), for all \(a, a' \in A. \)
If A, B are algebras in \mathcal{HYD}^H, then $A \otimes B$ becomes also an algebra in \mathcal{HYD}^H with the following structures:

$$h \cdot (a \otimes b) = h_1 \cdot a \otimes h_2 \cdot b,$$

$$(a \otimes b) \mapsto (a(0) \otimes b(0)) \otimes b(1)a(1),$$

$$(a \otimes b)(a' \otimes b') = aa'(0) \otimes (a'(1) \cdot b)b'.$$

This algebra structure on $A \otimes B$ (which is just the braided tensor product of A and B in the braided category \mathcal{HYD}^H) is denoted by $A \# B$ and its elements are denoted by $a \# b$.

We introduce now endomorphism algebras associated to (α, β)-Yetter-Drinfeld modules.

Proposition 3.1 Let $\alpha, \beta \in \text{Aut}_{\text{Hopf}}(H)$ and $M \in \mathcal{HYD}^H(\alpha, \beta)$ finite dimensional. Then:

(i) $\text{End}(M)$ becomes an algebra in \mathcal{HYD}^H, with structures:

$$(h \cdot u)(m) = \alpha^{-1}(h_1) \cdot u(\alpha^{-1}(S(h_2)) \cdot m),$$

$$u(0)(m) \otimes u(1) = u(m(0))(0) \otimes S^{-1}(m(1))u(m(0))(1),$$

for all $h \in H$, $u \in \text{End}(M)$, $m \in M$.

(ii) $\text{End}(M)^{\text{op}}$ becomes an algebra in \mathcal{HYD}^H, with structures:

$$(h \cdot u)(m) = \beta^{-1}(h_2) \cdot u(\beta^{-1}(S^{-1}(h_1))) \cdot m),$$

$$u(0)(m) \otimes u(1) = u(m(0))(0) \otimes u(m(0))(1)S(m(1)),$$

for all $h \in H$, $u \in \text{End}(M)^{\text{op}}$, $m \in M$.

Proof. Everything follows by direct computation. Note that the structures of $\text{End}(M)$ can be obtained in two (equivalent) ways, namely either take $M \hat{\otimes} M^*$, which is in \mathcal{HYD}^H, and then transfer its structures to $\text{End}(M)$, or by taking first $M \hat{\otimes} M^{\circ}$, which is in $\mathcal{HYD}^H(\alpha, \alpha)$, transforming this into an object in \mathcal{HYD}^H via the isomorphism $\mathcal{HYD}^H(\alpha, \alpha) \simeq \mathcal{HYD}^H$, and finally transferring the structures to $\text{End}(M)$. Similarly, the structures of $\text{End}(M)^{\text{op}}$ can be obtained either by transferring the structures from $^*M \hat{\otimes} M$, which is in \mathcal{HYD}^H, or by taking first $^\circ M \hat{\otimes} M$, which is in $\mathcal{HYD}^H(\beta, \beta)$, transforming this into an object in \mathcal{HYD}^H via the isomorphism $\mathcal{HYD}^H(\beta, \beta) \simeq \mathcal{HYD}^H$ and finally transferring the structures to $\text{End}(M)^{\text{op}}$.

Remark 3.2 Assume that there exists a pair in involution (f, g) corresponding to (α, β) and consider the (α, β)-Yetter-Drinfeld module f^k as in the Preliminaries. Then one can easily check that $\text{End}(f^k)$ coincides, as an algebra in \mathcal{HYD}^H, with k with trivial Yetter-Drinfeld structures.

Let $\alpha, \beta, \gamma \in \text{Aut}_{\text{Hopf}}(H)$ and the functor F as in Proposition 2.2. Then one can easily check that we have:

Corollary 3.3 If M is a finite dimensional object in $\mathcal{HYD}^H(\alpha, \beta, \gamma)$ and consider the object $F(M) \in \mathcal{HYD}^H(\alpha, \gamma)$, then $\text{End}(M) = \text{End}(F(M))$ and $\text{End}(M)^{\text{op}} = \text{End}(F(M))^{\text{op}}$ as algebras in \mathcal{HYD}^H.

Corollary 3.4 If $M \in \mathcal{HYD}^H(\alpha, \beta)$ is finite dimensional, then

$$\text{End}(M^*) = \text{End}(M^\circ), \quad \text{End}(^* M) = \text{End}(^\circ M),$$

$$\text{End}(M^*)^{\text{op}} = \text{End}(M^\circ)^{\text{op}}, \quad \text{End}(^* M)^{\text{op}} = \text{End}(^\circ M)^{\text{op}},$$

as algebras in \mathcal{HYD}^H.

6
Corollary 3.5 Let $\alpha, \beta \in \text{Aut}_{H_{opf}}(H)$ and assume that H is moreover finite dimensional. Then $\text{End}(H_{\alpha,\beta}) = \text{End}(H_{\beta\alpha^{-1}})$ as algebras in $H\mathcal{YD}^{H}$, where $H_{\alpha,\beta}$ and $H_{\beta\alpha^{-1}}$ are as in Example [1.4].

Proof. Follows from Corollary 3.3 using the fact that $H_{\alpha,\beta}$ and $H_{\beta\alpha^{-1}}$ correspond via the isomorphism of categories $H\mathcal{YD}^{H}(\alpha,\beta) \simeq H\mathcal{YD}^{H}(id,\beta\alpha^{-1})$.

Let M be a finite dimensional vector space endowed with a left H-module and a right H-comodule structures. Consider on $\text{End}(M)$ the canonical left H-module and right H-comodule structures induced by the structures of M, that is

$$(h \cdot u)(m) = h_{1} \cdot u(S(h_{2}) \cdot m),$$

$$u_{(0)}(m) \otimes u_{(1)} = u(m_{(0)})(0) \otimes S^{-1}(m_{(1)}))u(m_{(0)})(1),$$

for all $h \in H$, $u \in \text{End}(M)$, $m \in M$. We recall the following concept from [2]: if A is an algebra in $H\mathcal{YD}^{H}$, then A is called quasi-elementary if there exists such an M with the property that $\text{End}(M)$ with the above structures is an algebra in $H\mathcal{YD}^{H}$ which coincides with A as an algebra in $H\mathcal{YD}^{H}$.

Proposition 3.6 Let $\alpha, \beta \in \text{Aut}_{H_{opf}}(H)$ and $M \in H\mathcal{YD}^{H}(\alpha,\beta)$ finite dimensional. Then $\text{End}(M)$ with structures as in Proposition 3.3 is a quasi-elementary algebra in $H\mathcal{YD}^{H}$.

Proof. This is obvious if $\alpha = \text{id}_{H}$, because of the formulae for the H-module and H-comodule structures of $\text{End}(M)$ given in Proposition 3.3 (i). For the general case, we consider the functor $F : H\mathcal{YD}^{H}(\alpha,\beta) \rightarrow H\mathcal{YD}^{H}(id,\beta\alpha^{-1})$ as in Proposition 2.2. We know from Corollary 3.3 that $\text{End}(M) = \text{End}(F(M))$ as algebras in $H\mathcal{YD}^{H}$, and since $\text{End}(F(M))$ is quasi-elementary it follows that so is $\text{End}(M)$. We emphasize that the H-module H-comodule object making $\text{End}(M)$ quasi-elementary is not M itself, but $F(M)$.

Recall from [10] the group $G = \text{Aut}_{H_{opf}}(H) \times \text{Aut}_{H_{opf}}(H)$ with multiplication $(\alpha,\beta) \cdot (\gamma,\delta) = (\alpha\gamma, \delta\gamma^{-1}\beta\gamma)$. We have the obvious result:

Lemma 3.7 The map $G \rightarrow \text{Aut}_{H_{opf}}(H)$, $(\alpha,\beta) \mapsto \beta\alpha^{-1}$ is a group anti-homomorphism.

Proposition 3.8 If H is finite dimensional, the map $(\alpha,\beta) \mapsto \text{End}(H_{\alpha,\beta})$ defines a group homomorphism from G to the Brauer group $BQ(k,H)$ of H.

Proof. Using Corollary 3.5 the map $(\alpha,\beta) \mapsto \text{End}(H_{\alpha,\beta})$ is just the composition between the group anti-homomorphisms $G \rightarrow \text{Aut}_{H_{opf}}(H)$ from Lemma 3.7 and $\text{Aut}_{H_{opf}}(H) \rightarrow BQ(k,H)$, $\alpha \mapsto \text{End}(H_{\alpha})$ from [2].

Let $\beta \in \text{Aut}_{H_{opf}}(H)$ and H_{β} as in Example 1.4 in [2] was defined another object, denoted by H'_{β}, as follows: it has the same left H-module structure as H_{β}, and right H-comodule structure given by $h \mapsto h_{1} \otimes \beta^{-1}(h_{2})$. It was proved then that H'_{β} satisfies a certain compatibility condition, which actually says that $H'_{\beta} \in H\mathcal{YD}^{H}(\beta^{-1},id)$.

If instead of H_{β} we take an arbitrary object $M \in H\mathcal{YD}^{H}(\alpha,\beta)$, with $\alpha,\beta \in \text{Aut}_{H_{opf}}(H)$, then the above result admits several possible generalizations; we choose the one that will serve our next purpose, which will be to identify the H-opposite of $\text{End}(M)$ (in case M is finite dimensional), generalizing [2], Lemma 4.5 as well as [1], Proposition 4.2.
Proposition 3.9 Let $\alpha, \beta \in \text{Aut}_{\text{Hopf}}(H)$ and $M \in \mathcal{HYDH}(\alpha, \beta)$. Define a new object M' as follows: M' coincides with M as left H-modules, and has a right H-comodule structure given by

$$m \mapsto m_{<0>} \otimes m_{<1>} := m(0) \otimes \alpha_0^{-1}(m(1)),$$

where $m \mapsto m(0) \otimes m(1)$ is the comodule structure of M. Then $M' \in \mathcal{HYDH}(\alpha_0^{-1} \alpha, \alpha)$.

Proof. We compute:

$$(h \cdot m)_{<0>} \otimes (h \cdot m)_{<1>} = (h \cdot m)(0) \otimes \alpha_0^{-1}((h \cdot m)(1)) = h_2 \cdot m(0) \otimes \alpha_0^{-1}(\beta(h_3)m(1)\alpha(S^{-1}(h_1))) = h_2 \cdot m(0) \otimes \alpha(h_3)\alpha_0^{-1}(m(1))\alpha_0^{-1}(S^{-1}(h_1)) = h_2 \cdot m_{<0>} \otimes \alpha(h_3)m_{<1>}\alpha_0^{-1}(S^{-1}(h_1)), $$

that is $M' \in \mathcal{HYDH}(\alpha_0^{-1} \alpha, \alpha)$. \square

Proposition 3.10 Let $\alpha, \beta \in \text{Aut}_{\text{Hopf}}(H)$ and $M \in \mathcal{HYDH}(\alpha, \beta)$ finite dimensional; consider also the object $M' \in \mathcal{HYDH}(\alpha_0^{-1} \alpha, \alpha)$ as above. Define the map

$$\tau : \text{End}(M) \to \text{End}(M')^{\text{op}}, \quad \tau(u)(m) = u(0)(\alpha_0^{-1}(u(1)) \cdot m),$$

for all $u \in \text{End}(M)$ and $m \in M'$, where $u \mapsto u(0) \otimes u(1)$ is the right H-comodule structure of $\text{End}(M)$. Then τ is an isomorphism of algebras in \mathcal{HYDH}.

Proof. We first prove that τ is an algebra map. We compute:

$$\tau(u \ast v)(m) = \tau(v(0)(v(1) \cdot u))(m) = (v(0)(v(1) \cdot u))(0)(\alpha_0^{-1}((v(0)(v(1) \cdot u))(1)) \cdot m) = v(0)(v(1) \cdot u)(0)(\alpha_0^{-1}((v(1) \cdot u)(1)v(0)(1)) \cdot m) = v(0)(v(1) \cdot u)(0)(\alpha_0^{-1}((v(1) \cdot u)(1)v(1)(1)) \cdot m) = v(0)(v(1) \cdot u)(0)(\alpha_0^{-1}(v(1)u(1)S^{-1}(v(1)u(1)) \cdot m) = v(0)(v(1) \cdot u)(0)(\alpha_0^{-1}(v(1)u(1)) \cdot m) = \tau(v)(u(0)(\alpha_0^{-1}(u(1)) \cdot m)) = \tau(v)(\tau(u)(m)) = (\tau(u) \ast \tau(v))(m), \quad q.e.d.$$

We prove now that τ is H-linear. We compute:

$$\tau(h \cdot u)(m) = (h \cdot u)(0)(\alpha_0^{-1}((h \cdot u)(1)) \cdot m) = (h_2 \cdot u(0))(\alpha_0^{-1}(h_3u(1)S^{-1}(h_1)) \cdot m) = \alpha_0^{-1}(h_2) \cdot u(0)(\alpha_0^{-1}(h_3)\alpha_0^{-1}(h_4u(1)S^{-1}(h_1)) \cdot m) = \alpha_0^{-1}(h_2) \cdot u(0)(\alpha_0^{-1}(u(1)) \cdot m) = \alpha_0^{-1}(h_2) \cdot u(0)(\alpha_0^{-1}(u(1)) \cdot m)$$

We prove now that τ is H-colinear. We have to prove that $\rho(\tau(u)) = \tau(u_{(0)}) \otimes u_{(1)}$, if we denote by ρ the H-comodule structure of $\text{End}(M')^{op}$, that is, if we denote $\rho(v) = v^{(0)} \otimes v^{(1)}$, we have to prove that $\tau(u^{(0)}(m) \otimes \tau(u^{(1)}) = \tau(u_{(0)})(m) \otimes u_{(1)}$ for all $m \in M'$. Recall that the H-comodule structure of M' is given by $m \mapsto m_{<0>} \otimes m_{<1>} = m_{(0)} \otimes \alpha \beta^{-1}(m_{(1)})$. First we compute:

$$\tau(u_{(0)})(m) \otimes u_{(1)} = u_{(0)}((\alpha^{-1}(u_{(1)}) \cdot m) \otimes u_{(1)})$$

for all $u \in \text{End}(M)$ and $m \in M$. Now we compute:

$$\tau(u^{(0)})(m) \otimes \tau(u^{(1)}) = \tau(u)(m_{<0>} \otimes \tau(u)(m_{<0>})_{<1>} \otimes \tau(u)(m_{<1>}), S(m_{<1>}))$$

$$= \tau(u)(m_{(0)})_{(0)} \otimes \alpha \beta^{-1}(\tau(u)(m_{(0)})_{(1)} S(m_{(1)}))$$

$$= (u_{(0)}((\alpha^{-1}(u_{(1)}) \cdot m_{(0)})_{(0)}$$

$$\otimes \alpha \beta^{-1}((u_{(0)}(\alpha^{-1}(u_{(1)}) \cdot m_{(0)})_{(1)} S(m_{(1)}))$$

$$\tag{3.1} m_{(0)}((\alpha^{-1}(u_{(1)}) \cdot m_{(0)})_{(1)} u_{(0)} S(m_{(1)})),$$

so the two terms are equal. The only thing left to prove is that τ is bijective; define the map

$$\tau^{-1} : \text{End}(M')^{op} \to \text{End}(M), \quad \tau^{-1}(v)(m) = v^{(0)}(\alpha^{-1}(S(v^{(1)}) \cdot m),$$

for all $v \in \text{End}(M')^{op}$ and $m \in M$. From the H-colinearity of τ it follows easily that $\tau^{-1} \tau = id$. We have not been able to prove directly that $\tau \tau^{-1} = id$; we need to prove first that τ^{-1} is also H-colinear, that is we have to prove that

$$\tau^{-1}(v)(m_{(0)})_{(0)} \otimes S^{-1}(m_{(1)}) \tau^{-1}(v)(m_{(0)})_{(1)} = \tau^{-1}(v^{(0)})(m) \otimes v^{(1)},$$

for all $v \in \text{End}(M')^{op}$ and $m \in M$. Note first that

$$v^{(0)}(m) \otimes v^{(1)} = v(m_{(0)})_{(0)} \otimes \alpha \beta^{-1}(v(m_{(0)})_{(1)} S(m_{(1)})),$$

which together with (3.1) imply

$$v(m_{(0)}) \otimes v(m_{(1)}) = v^{(0)}(m_{(0)}) \otimes \beta \alpha^{-1}(v^{(1)}) m_{(1)} \tag{3.2}.$$
\[\tau^{-1}(v(m(0))_0) \otimes S^{-1}(m(1)) \tau^{-1}(v(m(0))_1) \]
\[= (v(0)(\alpha^{-1}(S(v^{(1)})) \cdot m(0)))_0 \otimes S^{-1}(m(1))(v(0)(\alpha^{-1}(S(v^{(1)})) \cdot m(0)))_1 \]
\[= v(0)(\alpha^{-1}(S(v^{(1)})) \cdot m(0))_0 \otimes S^{-1}(m(1)) \beta \alpha^{-1}(v(0)(\alpha^{-1}(S(v^{(1)})) \cdot m(0)))_1 \]
\[= v(0)(\alpha^{-1}(S(v^{(1)})) \cdot m(0))_0 \otimes S^{-1}(m(1)) \beta \alpha^{-1}(v(0)(\alpha^{-1}(S(v^{(1)}))_3 m(0))_1 S^{-1}(S(v^{(1)}))_1) \]
\[= v(0)(\alpha^{-1}(S(v^{(1)})) \cdot m(0))_0 \otimes S^{-1}(m(1)) \beta \alpha^{-1}(v(0)(\alpha^{-1}(S(v^{(1)}))_3 m(0))_1 (v^{(1)}))_4 \]
\[= v(0)(\alpha^{-1}(S(v^{(1)})) \cdot m(0))_0 \otimes (v^{(1)}))_2 \]
\[= \tau^{-1}(v(0))(m) \otimes v^{(1)}, \text{ q.e.d.} \]

Now from the H-colinearity of τ^{-1} it follows easily that $\tau \tau^{-1} = id$, hence τ is indeed an isomorphism with inverse τ^{-1}.

It was proved in [1], Proposition 4.7 that, if M is a finite dimensional Yetter-Drinfeld module, then $\text{End}(M)^{op}$ and $\text{End}(^\circ M)$ are isomorphic as algebras in $\mathcal{H}YD^H$. We generalize this result as follows:

Proposition 3.11 Let $\alpha, \beta \in \text{Aut}_{\mathcal{H}op}(H)$ and $M \in \mathcal{H}YD^H(\alpha, \beta)$ finite dimensional. Then $\text{End}(M)^{op} \simeq \text{End}(^\circ M)(= \text{End}(^\circ M))$ as algebras in $\mathcal{H}YD^H$.

Proof. Define the map

\[\iota : \text{End}(M)^{op} \rightarrow \text{End}(^\circ M), \quad \iota(u) = u^*, \]

which is obviously an algebra isomorphism. We prove now that it is H-linear. Let $u \in \text{End}(M)^{op}$, $h \in H$, $f \in ^\circ M$ and $m \in M$. Using the various formulae given before (and remembering that $^\circ M \in \mathcal{H}YD^H(\beta, \alpha)$) we compute:

\[\iota(h \cdot u)(f)(m) = (f \circ (h \cdot u))(m) \]
\[= f((h \cdot u)(m)) \]
\[= f(\beta^{-1}(h_2) \cdot u(\beta^{-1}(S^{-1}(h_1)) \cdot m)), \]

\[(h \cdot \iota(u))(f)(m) = (\beta^{-1}(h_1) \cdot \iota(u)(\beta^{-1}(S(h_2)) \cdot f))(m) \]
\[= (\beta^{-1}(h_1) \cdot ((\beta^{-1}(S(h_2)) \cdot f) \circ u))(m) \]
\[= (\beta^{-1}(S(h_2)) \cdot f) \circ u(\beta^{-1}(S^{-1}(h_1)) \cdot m) \]
\[= (\beta^{-1}(S(h_2)) \cdot f)(u(\beta^{-1}(S^{-1}(h_1)) \cdot m)) \]
\[= f(\beta^{-1}(h_2) \cdot u(\beta^{-1}(S^{-1}(h_1)) \cdot m)), \]

hence the two terms are equal. The H-colinearity of ι is easy to prove and left to the reader. □

We recall now some more facts from [10]. If $N \in \mathcal{H}YD^H(\gamma, \delta)$ and $\alpha, \beta \in \text{Aut}_{\text{Hopf}}(H)$, define the object $(\alpha, \beta)N = N$ as vector space, with structures

\[h \rightarrow n = \gamma^{-1}\beta\gamma^{-1}(h) \cdot n, \]
\[n \mapsto n_{<0>} \otimes n_{<1>} := n_{(0)} \otimes \alpha^{-1}(n_{(1)}). \]

Then \((\alpha, \beta)N \in H\mathcal{YD}^H(\alpha \gamma, \alpha^{-1}, \alpha^{-1} \beta^{-1} \beta \gamma^{-1}) = H\mathcal{YD}^H((\alpha, \beta) * (\gamma, \delta) * (\alpha, \beta)^{-1})\), where * is the multiplication in the group G recalled before. Let also \(M \in H\mathcal{YD}^H(\alpha, \beta)\) and denote by \(M N = (\alpha, \beta)N\); then the braiding in the T-category \(\mathcal{YD}(H)\) is given by the maps

\[c_{M,N} : M \otimes N \rightarrow N \otimes M, \quad c_{M,N}(m \otimes n) = n_{(0)} \otimes \beta^{-1}(n_{(1)}) \cdot m, \]

which are isomorphisms in \(H\mathcal{YD}^H((\alpha, \beta) * (\gamma, \delta))\). In particular, assume that \(\alpha = \beta = id_H\), so \(M \in H\mathcal{YD}^H\); then obviously \(M N = N\) as objects in \(H\mathcal{YD}^H(\gamma, \delta)\) and we have the isomorphism in \(H\mathcal{YD}^H(\gamma, \delta)\)

\[c_{M,N} : M \otimes N \rightarrow N \otimes M, \quad c_{M,N}(m \otimes n) = n_{(0)} \otimes n_{(1)} \cdot m, \]

with inverse \(c_{M,N}^{-1}(n \otimes m) = S(n_{(1)}) \cdot m \otimes n_{(0)}\).

It was proved in [1], Proposition 4.3 that, if \(M\) and \(N\) are finite dimensional Yetter-Drinfeld modules, then \(End(M) \# End(N) \simeq End(M \otimes N)\) as algebras in \(H\mathcal{YD}^H\). We generalize this result as follows:

Proposition 3.12 If \(M \in H\mathcal{YD}^H(\alpha, \beta)\) and \(N \in H\mathcal{YD}^H(\gamma, \delta)\) both finite dimensional, then \(End(M) \# End(N) \simeq End(M \otimes N)\) as algebras in \(H\mathcal{YD}^H\).

Proof. Define the map \(\phi : End(M) \# End(N) \rightarrow End(M \otimes N)\) by the formula

\[\phi(u \# v)(m \otimes n) = u(m_{(0)}) \otimes (m_{(1)} \cdot v)(n), \]

for all \(u \in End(M)\), \(v \in End(N)\), \(m \in M\), \(n \in N\), where - is the \(H\)-module structure of \(End(N)\) as in Proposition 3.1 (i). As in [1] one can prove that \(\phi\) is an algebra map. We prove now that \(\phi\) is \(H\)-linear. We compute:

\[
\begin{align*}
\phi(h \cdot (u \# v))(m \otimes n) &= \phi(h_{1} \cdot u \# h_{2} \cdot v)(m \otimes n) \\
&= (h_{1} \cdot u)(m_{(0)}) \otimes (m_{(1)} \cdot h_{2} \cdot v)(n) \\
&= \alpha^{-1}(h_{1}) \cdot u(\alpha^{-1}(S(h_{2})) \cdot m_{(0)}) \\
&\quad \otimes \gamma^{-1}(m_{(1)} \cdot h_{3}) \cdot v(\gamma^{-1}(S(m_{(1)} \cdot h_{4})) \cdot n) \\

(h \cdot \phi(u \# v))(m \otimes n)
&= \gamma^{-1}\alpha^{-1}(h_{1}) \cdot (\phi(u \# v)(\gamma^{-1}\alpha^{-1}(S(h_{2})) \cdot (m \otimes n))) \\
&= \gamma^{-1}\alpha^{-1}(h_{1}) \cdot (\phi(u \# v)(\alpha^{-1}(S(h_{3})) \cdot m \otimes \gamma^{-1}\beta \alpha^{-1}(S(h_{2})) \cdot n)) \\
&= \gamma^{-1}\alpha^{-1}(h_{1}) \cdot (u((\alpha^{-1}(S(h_{3})) \cdot m)_{(0)}) \\
&\quad \otimes ((\alpha^{-1}(S(h_{3})) \cdot m)_{(1)} \cdot v)(\gamma^{-1}\beta \alpha^{-1}(S(h_{2})) \cdot n)) \\
&= \gamma^{-1}\alpha^{-1}(h_{1}) \cdot (u(\alpha^{-1}(S(h_{4})) \cdot m_{(0)}) \\
&\quad \otimes (\beta \alpha^{-1}(S(h_{3}))_{(1)} \cdot h_{5} \cdot v)(\gamma^{-1}\beta \alpha^{-1}(S(h_{2})) \cdot n)) \\
&= \gamma^{-1}\alpha^{-1}(h_{1}) \cdot (u(\alpha^{-1}(S(h_{4})) \cdot m_{(0)}) \\
&\quad \otimes (\beta \alpha^{-1}(S(h_{3}))_{(1)} \cdot h_{5} \cdot v)(\gamma^{-1}\beta \alpha^{-1}(S(h_{2})) \cdot n)) \\
&= \gamma^{-1}\alpha^{-1}(h_{1}) \cdot u(\alpha^{-1}(S(h_{4})) \cdot m_{(0)}) \otimes \gamma^{-1}\beta \alpha^{-1}(S(h_{3})) \gamma^{-1}(m_{(1)} \cdot h_{5}) \gamma^{-1}(h_{(1,1)}) \\
&\quad \otimes v(\gamma^{-1}(S(h_{(1,2)})) \gamma^{-1}(S(m_{(1)})) \gamma^{-1}\beta \alpha^{-1}(S(h_{2})) \gamma^{-1}\beta \alpha^{-1}(S(h_{2})) \cdot n)) \\
&= \gamma^{-1}\alpha^{-1}(h_{1}) \cdot (u(\alpha^{-1}(S(h_{3})) \cdot m_{(0)}) \otimes \gamma^{-1}\beta \alpha^{-1}(S(h_{2})) \gamma^{-1}(m_{(1)} \cdot h_{5}) \gamma^{-1}(h_{4}) \\
&\quad \otimes v(\gamma^{-1}(S(h_{5})) \gamma^{-1}(S(m_{(1)} \cdot h_{4})))) \\
\end{align*}
\]
\begin{align*}
\phi^{-1}(h_1) \cdot u(\phi^{-1}(S(h_4)) \cdot m_{(0)} \otimes \gamma^{-1}(h_2) \gamma^{-1}(h_3) \gamma^{-1}(m_{(1)} h_5) \\
\cdot v(\gamma^{-1}(S(m_{(1)} h_6)) \cdot n)
&= \alpha^{-1}(h_1) \cdot u(\alpha^{-1}(S(h_2)) \cdot m_{(0)} \otimes \gamma^{-1}(m_{(1)} h_3) \cdot v(\gamma^{-1}(S(m_{(1)} h_4)) \cdot n),
\end{align*}

and we see that the two terms are equal. We have to prove now that \(\phi \) is \(H \)-colinear, that is we have to prove that \(\phi(u \# v)_0 \otimes \phi(u \# v)_1 = \phi(u_0 \# v_0) \otimes v_1 u_1 \). We compute:

\[
\phi(u \# v)_0(m \otimes n) \otimes \phi(u \# v)_1
\]

and on the other hand:

\[
\phi(u_0 \# v_0)(m \otimes n) \otimes v_1 u_1
\]

hence the two terms are equal. The only thing left to prove is that \(\phi \) is bijective; we give a proof similar to the one in [1]. Namely, one can check that \(\phi \) coincides with the composition of the following isomorphisms:

\[
\text{End}(M) \otimes \text{End}(N) \cong M \otimes M^* \otimes N \otimes N^*
\]

where the first and the last are the canonical linear isomorphisms, the second is \(\text{id}_M \otimes c_{N \otimes N^*}^{-1} \) and the third is \(\text{id}_{M \otimes N} \otimes \Psi \), where \(\Psi \) is the isomorphism defined in Lemma [2,7].

Let us recall from [2] that, if \(A \) is an algebra in \(H \mathcal{YD}^H \) and \(\mu \in \text{Aut}_{H_{opf}}(H) \), we can define a new algebra in \(H \mathcal{YD}^H \), denoted by \(A(\mu) \), which equals \(A \) as an algebra, but with \(H \)-structures \((A(\mu), \rightarrow, \rho') \) given by \(h \rightarrow a = \mu(h) \cdot a \) and \(\rho'(a) = a_{<0>} \otimes a_{<1>} := a_{(0)} \otimes \mu^{-1}(a_{(1)}) \), for all \(a \in A(\mu), h \in H \).
Proposition 3.13 Let $N \in _H\mathcal{YD}^H(\gamma, \delta)$ finite dimensional and $\alpha, \beta \in \text{Aut}_H^{\text{Hopf}}(H)$. Then $\text{End}^{(\alpha, \beta)}(N) = \text{End}(N)(\beta \alpha^{-1})$ as algebras in $_H\mathcal{YD}^H$.

Proof. We compute the structures of $\text{End}^{(\alpha, \beta)}(N)$. Let $h \in H$, $u \in \text{End}(N)$, $n \in N$; we have:

\[
(h \cdot u)(n) = \alpha \gamma^{-1} \gamma^{-1} \alpha^{-1}(h_1) \cdot u(\alpha \gamma^{-1} \gamma^{-1} \alpha^{-1}(S(h_2)) \cdot n)
\]

\[
= \gamma^{-1} \beta \gamma^{-1} \gamma^{-1} \alpha^{-1}(h_1) \cdot u(\gamma^{-1} \beta \alpha^{-1}(S(h_2)) \cdot n)
\]

\[
= \gamma^{-1} \beta \alpha^{-1}(h_1) \cdot u(\gamma^{-1} \beta \alpha^{-1}(S(h_2)) \cdot n),
\]

while the structures of $\text{End}(N)(\beta \alpha^{-1})$ are:

\[
(h \rightarrow u)(n) = (\beta \alpha^{-1}(h) \cdot u)(n)
\]

\[
= \gamma^{-1} \beta \alpha^{-1}(h_1) \cdot u(\gamma^{-1} \beta \alpha^{-1}(S(h_2)) \cdot n),
\]

\[
u_{<0>}(n) \otimes u_{<1>} = u_{(0)}(n) \otimes \alpha \beta^{-1}(u_{(1)})
\]

\[
= u_{(n(0))(0)} \otimes \alpha \beta^{-1}(S^{-1}(n_{(1)}))u_{(n(0))(1)}),
\]

and we are done. \qed

It was proved in \cite{1} that, if M and N are finite dimensional Yetter-Drinfeld modules, then $\text{End}(M) \# \text{End}(N) \simeq \text{End}(N) \# \text{End}(M)$ as algebras in $_H\mathcal{YD}^H$. By using Proposition 3.12 and the isomorphisms $c_{M,N}$ recalled above, we obtain the following generalization of this fact:

Proposition 3.14 Let $M \in _H\mathcal{YD}^H(\alpha, \beta)$ and $N \in _H\mathcal{YD}^H(\gamma, \delta)$, both finite dimensional. Then $\text{End}(M) \# \text{End}(N) \simeq \text{End}(M N) \# \text{End}(M)$ as algebras in $_H\mathcal{YD}^H$.

4 H-Azumaya algebras and a subgroup of the Brauer group

We begin by recalling several facts from \cite{1} about H-Azumaya algebras and the Brauer group of a Hopf algebra H.

Let A be a finite dimensional algebra in $_H\mathcal{YD}^H$ and consider the maps

\[
F : A \# \overline{A} \rightarrow \text{End}(A), \quad F(a \# b)(c) = ac_{(0)}(c_{(1)} \cdot b),
\]

\[
G : \overline{A} \# A \rightarrow \text{End}(A)^{\text{op}}, \quad G(a \# b)(c) = a_{(0)}(a_{(1)} \cdot c)b,
\]

for all $a, b, c \in A$, which are algebra maps in $_H\mathcal{YD}^H$. In case F and G are bijective, A is called H-Azumaya. If M is a finite dimensional object in $_H\mathcal{YD}^H$, then $\text{End}(M)$ is an H-Azumaya algebra. If A and B are H-Azumaya, then so are $A \# B$ and \overline{A}. Two H-Azumaya algebras A and B are called Brauer equivalent (and denoted $A \sim B$) if there exist $M, N \in _H\mathcal{YD}^H$ finite dimensional such that $A \# \text{End}(M) \simeq B \# \text{End}(N)$ as algebras in $_H\mathcal{YD}^H$. The relation \sim is an equivalence relation which respects the operation $\#$. The quotient set is a group with multiplication induced by $\#$ and inverse induced by $A \mapsto \overline{A}$. This group is denoted by $BQ(k, H)$ and called the Brauer group of H. The class of an H-Azumaya algebra A in $BQ(k, H)$ is denoted by $[A]$.

We have now all the necessary ingredients to prove the main result of this paper:
Remark 4.3 Following \[2\], we denote \(\alpha \in Aut_{\text{Hopf}}(H) \) and \(M \in H YD^H(\alpha, \beta) \) a finite dimensional object. Then \(\text{End}(M) \), with structures as in Proposition 3.7, is an \(H\)-Azumaya algebra.

Proof. We prove that the map
\[
F : \text{End}(M) \# \hat{\text{End}}(M) \to \text{End}(\text{End}(M)),
\]
\[
F(a \# b)(c) = a c_{(0)}(c_{(1)} \cdot b), \quad \forall \ a, b, c \in \text{End}(M),
\]
is bijective (the proof that the other map \(G \) is bijective is similar and left to the reader). By Propositions 3.10, 3.11 and 3.12 we obtain that \(\text{End}(M) \# \hat{\text{End}}(M) \simeq \text{End}(M \otimes \text{End}(M)) \) as algebras in \(H YD^H \); in particular, it follows that \(\text{End}(M) \# \hat{\text{End}}(M) \) is a simple ring, and since \(F \) is an algebra map it follows that \(F \) is injective, and hence bijective, as \(\text{dim}_k(\text{End}(M) \# \hat{\text{End}}(M)) = \text{dim}_k(\text{End}(\text{End}(M))) \), finishing the proof. \(\square \)

Corollary 4.2 We denote by \(BA(k, H) \) the subset of \(BQ(k, H) \) consisting of \(H\)-Azumaya algebras that can be represented as \(\text{End}(M) \), with \(M \in H YD^H(\alpha, \beta) \) finite dimensional, for some \(\alpha, \beta \in Aut_{\text{Hopf}}(H) \). Then \(BA(k, H) \) is a subgroup of \(BQ(k, H) \). Moreover, if \(H \) is finite dimensional, the image of the group anti-homomorphism from \(\hat{\text{End}}(M) \) consisting of classes that are represented by quasi-elementary \(H\)-Azumaya algebras. It was noted in \(\hat{\text{Aut}}(\text{End}(M)) \) is a finite dimensional object in some \(H YD^H(\alpha, \beta) \), we do obtain a subgroup of \(BQ(k, H) \).

Proof. Follows immediately by using Propositions 3.10, 3.11 and 3.12. \(\square \)

Remark 4.3 Following \[2\], we denote \(BT(k, H) \) the subset of \(BQ(k, H) \) consisting of classes that are represented by \(\alpha \)-Yetter-Drinfeld modules, with \(H YD^H(\alpha, \beta) \) closed under multiplication, but it is not known whether it is a subgroup of \(BQ(k, H) \). By Proposition 3.6 \(BA(k, H) \subseteq BT(k, H) \). Thus, by considering only those quasi-elementary \(H\)-Azumaya algebras that are represented as \(\text{End}(M) \), with \(M \) a finite dimensional object in some \(H YD^H(\alpha, \beta) \), we do obtain a subgroup of \(BQ(k, H) \).

We recall from \[2\] that the construction \(A \mapsto A(\mu) \) recalled before defines a group action of \(Aut_{\text{Hopf}}(H) \) on \(BQ(k, H) \), by \(\mu([A]) = [A(\mu)] \) for \(\mu \in Aut_{\text{Hopf}}(H) \) and \([A] \in BQ(k, H) \). As a consequence of Proposition 3.13 we obtain:

Corollary 4.4 The above action induces a group action of \(Aut_{\text{Hopf}}(H) \) on \(BA(k, H) \).

Proposition 4.5 Assume that there exists \((f, g)\) a pair in involution corresponding to \((\alpha, \beta)\) and let \(M \in H YD^H(\alpha, \beta) \) finite dimensional. Then \([\text{End}(M)] = 1\) in the Brauer group.

Proof. By \[10\], Theorem 5.1, \(M \) is isomorphic, as \((\alpha, \beta)\)-Yetter-Drinfeld modules, with \(f_{k^g} \otimes N \), where \(N \in H YD^H \). Thus \(\text{End}(M) \simeq \text{End}(f_{k^g} \otimes N) \simeq \text{End}(f_{k^g}) \# \text{End}(N) = k \# \text{End}(N) \), hence in the Brauer group we get \([\text{End}(M)] = [k][\text{End}(N)] = 1 \cdot 1 = 1\). \(\square \)

References

[1] S. Caenepeel, F. Van Oystaeyen, Y. Zhang, Quantum Yang-Baxter module algebras, \textit{K-Theory} \textbf{8} (1994), 231–255.

[2] S. Caenepeel, F. Van Oystaeyen, Y. Zhang, The Brauer group of Yetter-Drinfeld module algebras, \textit{Trans. Amer. Math. Soc.} \textbf{349} (1997), 3737–3771.
[3] A. Connes, H. Moscovici, Hopf algebras, cyclic cohomology and the transverse index theorem, Comm. Math. Phys. 198 (1998), 199–264.

[4] A. Connes, H. Moscovici, Cyclic cohomology and Hopf algebra symmetry, Lett. Math. Phys. 52 (2000), 1–28.

[5] P. M. Hajac, M. Khalkhali, B. Rangipour, Y. Sommerhäuser, Stable anti-Yetter-Drinfeld modules, C. R. Math. Acad. Sci. Paris 338 (2004), 587–590.

[6] P. M. Hajac, M. Khalkhali, B. Rangipour, Y. Sommerhäuser, Hopf-cyclic homology and cohomology with coefficients, C. R. Math. Acad. Sci. Paris 338 (2004), 667–672.

[7] P. Jara, D. Ștefan, Hopf-cyclic homology and relative cyclic homology of Hopf-Galois extensions, Proc. London Math. Soc. 93 (2006), 138–174.

[8] C. Kassel, ”Quantum groups”, Graduate Texts in Mathematics 155, Springer Verlag, Berlin, 1995.

[9] S. Majid, ”Foundations of quantum group theory”, Cambridge Univ. Press, 1995.

[10] F. Panaite, M. D. Staic, Generalized (anti) Yetter-Drinfeld modules as components of a braided T-category, Israel J. Math. 158 (2007), 349–365.

[11] M. E. Sweedler, ”Hopf algebras”, Benjamin, New York, 1969.

[12] V. Turaev, Homotopy field theory in dimension 3 and crossed group-categories, arXiv:math.GT/0005291