Purinergic signaling in the modulation of redox biology

Luiz Eduardo Baggio Savio a,⁎, Raíssa Leite-Aguiar a, Vinícius Santos Alves a, Robson Coutinho-Silva a, Angela T.S. Wyse b

a Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
b Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brasil

ARTICLE INFO

Keywords:
Oxidative stress
ROS
ATP
P2 receptors
Ectonucleotidases
Adenosine

ABSTRACT

Purinergic signaling is a cell communication pathway mediated by extracellular nucleotides and nucleosides. Tri- and diphosphonucleotides are released in physiological and pathological circumstances activating purinergic type 2 receptors (P2 receptors): P2X ion channels and P2Y G protein-coupled receptors. The activation of these receptors triggers the production of reactive oxygen and nitrogen species and alters antioxidant defenses, modulating the redox biology of cells. The activation of P2 receptors is controlled by ecto-enzymes named ectonucleotidases, E-NTPDase1/CD39 and ecto-5′-nucleotidase/CD73 being the most relevant. The first enzyme hydrolyzes adenosine triphosphate (ATP) and adenosine diphosphate (ADP) into adenosine monophosphate (AMP), and the second catalyzes the hydrolysis of AMP to adenosine. The activity of these enzymes is diminished by oxidative stress. Adenosine activates P1 G-coupled receptors that, in general, promote the maintenance of redox homeostasis by decreasing reactive oxygen species (ROS) production and increase antioxidant enzymes. Intracellular purine metabolism can also contribute to ROS generation via xanthine oxidase activity, which converts hypoxanthine into xanthine, and finally, uric acid. In this review, we describe the mechanisms of redox biology modulated by purinergic signaling and how this signaling may be affected by disturbances in the redox homeostasis of cells.

1. Introduction

Purinergic signaling is an evolutionarily conserved cell communication pathway triggered by the increase of extracellular nucleotides surrounding cells, including adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), uridine triphosphate (UTP), uridine diphosphate (UDP), and the nucleoside adenosine (ADO). This signaling is involved in neurotransmission and other physiological processes; however, nucleotides can also act as alarms or danger-associated molecular patterns in stress circumstances [1,2].

ATP was first described as a signaling transmitter in the non-adrenergic inhibitory innervation stimuli by Geoffrey Burnstock, considered the father of purinergic signaling [3,4]. Currently, it is well established that nucleotides and the nucleoside adenosine act as ligands of transmembrane purinergic receptors divided into two main families: P1 and P2 receptors. The P1 receptor family is composed of four G-coupled receptor subtypes (A1, A2A, A2B, and A3). In turn, P2 receptors are segregated into two subgroups: P2Y, which are metabotropic, and P2X, which are ionotropic proteins. The following physiological agonists activate P2 receptors: P2X and P2Y11–ATP; P2Y2,4–ATP and –UTP; P2Y1, P2Y12, and P2Y13–ADP; P2Y6–UDP; and P2Y14–UDP–glucose [5–8]. These receptor activities are coordinated by ecto-enzymes known as ectonucleotidases, which metabolize their ligands through hydrolysis. The most prominent ones are E-NTPDase1/CD39, which hydrolyzes ATP and ADP into AMP, and ecto-5′-nucleotidase/CD73, which catalyzes AMP’s hydrolysis to ADO, representing the final step of nucleotides degradation into nucleosides [9–11].

Purinergic receptors are expressed among various cell types and species [12–14]. They are critical for short- and long-term signaling, including neuromodulation processes, secretion, cell proliferation, differentiation, ossification, development, and regenerative episodes [15,16]. Purinoceptors encompass significant physiological specific phenomena in a variety of tissues and organs, including vasodilation and vasoconstriction, the release of hormones (e.g., insulin, glucagon, and others), bronchodilation, regulation of acid secretion in the gastrointestinal tract, control of reproductive systems, and other physiological

⁎ Corresponding author. Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
E-mail address: savio@biof.ufrj.br (L.E.B. Savio).

https://doi.org/10.1016/j.redox.2021.102137
Received 9 September 2021; Accepted 14 September 2021
Available online 22 September 2021
Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.
functions [17].

Purinergic signaling has also been described in many pathological scenarios, including neurological, inflammatory, and infectious diseases [8,13,18,19]. In these situations of homeostatic disturbance, extracellular nucleotides can trigger the production and release of reactive oxygen species (ROS) and reactive nitrogen species (RNS). In addition, purinergic signaling can affect the activity of antioxidant enzymes promoting changes in the redox biology of cells [1,20,21]. In the present review, we aim to describe the mechanisms of redox biology modulated by purinergic signaling and the modulation of this signaling by disturbances in the redox biology of cells, primarily in neurological, inflammatory, and infectious diseases.

2. Free radical generation and antioxidant defenses

A radical is any molecule that contains one or more unpaired electrons generated from specific elements. In biological systems, oxygen and nitrogen are the most critical elements that generate radicals [22]; they are products of several metabolic pathways, including aerobic metabolism. Some perform essential functions, exerting physiological roles in cellular signaling, immunological responses, and other processes. However, radicals may also exist in free form as highly unstable molecules with unpaired electrons that interact with tissue components, causing oxidation and potentially damage DNA, proteins, and lipids [22,23].

Three of the most common and biologically important ROS are superoxide anions (O$_2^-$), hydrogen peroxide (H$_2$O$_2$), and hydroxyl radicals (OH$^-$). Regarding RNS, the best known are NO, nitrosonium cation (NO$^+$), nitric oxide (NO\cdot), and peroxynitrite (ONOO$^-$) [24].

The superoxide anion (O$_2^-$) is formed by the univalent reduction of molecular oxygen in a reaction mediated by NADPH oxidases and xanthine oxidase or nonenzymatically through redox-reactive compounds from the mitochondrial electron transport chain [25]. H$_2$O$_2$ is not a free radical but an ROS, whose cytotoxicity is likely due to the secondary production of singlet oxygen or hydroxyl radical (OH$^-$) in redox reactions between transition-metal ions dismutations, the so-called Haber-Weiss reaction [26]. Therefore, H$_2$O$_2$ can be converted into a hydroxyl radical that is highly reactive and toxic to cells [27].

NO is a highly reactive, labile free radical that is short-lived. It has a vital role in the normal functioning of cells, mediating biological functions such as regulation of cardiac contractility and vasodilation [28,29]. Nitric oxide synthases (NOS) are isoforms responsible for NO synthesis by converting the amino acid l-arginine to l-citrulline. The NOS family contains three isoforms, neuronal NOS, endothelial NOS (eNOS), and the inducible form, iNOS. All NOS isoforms are similar concerning NO and other biological molecules such as l-citrulline [30].

Superoxide anion, H$_2$O$_2$, and NO can be dangerous when acting together and alone or with other molecules. In this context, the superoxide anion may react with NO to form peroxynitrite. H$_2$O$_2$ can be converted into hydroxyl radical (OH$^-$) in the presence of reduced transition metals because it is highly reactive and toxic to the cell. H$_2$O$_2$ can also react with carbon dioxide, leading to the formation of the carbonate radical, which is a potent oxidant [27].

Reactive oxidants regulate physiological and pathophysiological conditions from prokaryotes to humans. ROS and RNS are constantly produced from internal metabolism and external exposure [31-33]. They act as critical signaling molecules to regulate cell division and programmed cell death [33]. However, uncontrolled production of oxidants results in oxidative stress that impairs cellular functions; this process contributes to the development of several diseases [22,24-36]. Oxidative stress can be characterized as ROS production exceeding the capacity of cellular antioxidant defences to remove these toxic species, generating an imbalance between oxidizing and antioxidant agents [22,37,38]. Therefore, oxidation-reduction reactions (redox) in living cells are utilized to maintain homeostasis and are collectively referred to as redox signaling or redox control [39]. Redox homeostasis is maintained by redox signaling, which induces protective responses against oxidative stress.

The antioxidant enzyme system and the low-molecular-weight antioxidants have two protective mechanisms in cell scavenging ROS and maintaining redox homeostasis [22]. The low-molecular-weight antioxidants include glutathione, uric acid, ascorbic acid, alpha-tocopherol, and melatonin, which mediate neutralizing activities by causing transition metals’ chelation preventing lipid peroxidation and others [40,41]. Ascorbic acid and alpha-tocopherol act in concert, with ascorbate being necessary to regenerate reduced alpha-tocopherol that provokes a reduction in lipid peroxidation. The peroxidation of lipids has deleterious consequences, disrupting the integrity of cell membranes through the oxidation of polyunsaturated fatty acids. This process may be initiated by highly reactive species such as hydroxyl and peroxyl radicals [42,43]. Thiol compounds such as thioredoxin can detoxify H$_2$O$_2$; however, they require conversion back to the reduced form by thioredoxin reductase [44]. This thioredoxin system, including thioredoxin reductase and NAPDH, is a significant disulfide reductase system. It is a crucial antioxidant against oxidative stress mediated by its disulfide reductase activity, regulating protein thiol/disulfide balance [45].

The enzymatic antioxidant defense system includes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) [46]. There are three metal-containing isoforms of SOD found in various cellular compartments [47,48]: SOD1 (copper-zinc SOD) is in the cytoplasm, nucleus, and plasma membrane; SOD2 (manganese SOD) is mainly in mitochondria [48,49]; and SOD3 (copper-zinc SOD) is unique in scavenging superoxide in the extracellular compartment, dismutating superoxides generated during the inflammatory cascade [48,50]. All isoforms of SOD catalyze the dismutation of superoxide radicals to generate H$_2$O$_2$, which is not a free radical and is less reactive than superoxide. However, it is called ROS because it is closely related to the generation and detoxification of free radicals. It can diffuse through cell and organelle membranes, where it acts as a second messenger in signal transduction pathways. H$_2$O$_2$ is in turn detoxified to water by CAT and GPx. Animal catalases are heme-containing enzymes that convert H$_2$O$_2$ to water and O$_2$. They are localized mainly in subcellular organelles such as peroxisomes.

In contrast, GPx, a tetrameric selenoprotein, removes H$_2$O$_2$ by coupling its reduction with glutathione oxidation. GPx is present in the mitochondrial and cytoplasmic fractions [41,51,52]. GPx also reduces peroxides such as fatty acid hydroperoxides. Most animal tissues contain both CAT and GPx activity [47].

The antioxidant enzymes must act in concert since an imbalance in superoxide and H$_2$O$_2$ can result in the much more dangerous hydroxyl radical formation, as described previously. During the action of GPx in the detoxification of H$_2$O$_2$, glutathione (the primary cellular thiol reduct buffer in cells, synthesized in the cytosol from l-glutamate, l-cysteine, and glycine) is oxidized (the glutathione disulfide form). It is an essential non-enzymatic endogenous antioxidant that can be regenerated by glutathione reductase and is responsible for the regeneration of reduced glutathione (glutathione form) with the consumption of NADPH. The latter is generated through the pentose phosphate pathway, of which glucose-6-phosphate dehydrogenase is the first enzyme [53-55]. In this manner, optimum levels of reduced glutathione are maintained [22].

The endogenous ratio of glutathione to glutathione disulfide indicates redox homeostasis within a cell. Higher glutathione levels also serve as a cofactor for other enzymes, including glyoxalase and peroxidase [56]. It has been suggested that the presence of catalase in the vicinity of folded catalase helps it remain functionally active [57].

The increase in antioxidant capacity removes excessive oxidants and prevents further severe oxidative injury. Therefore, the response of antioxidants to oxidative stress evolved as a critical defense mechanism to combat harmful effects of intrinsic and extrinsic oxidative insults and is preserved in all organisms [58]. Furthermore, in vivo studies in mammals suggest that organs and tissues contain distinct antioxidant systems that may form the basis for differential susceptibility to oxidative stress.
Many advances have been made to understand the several antioxidant systems and their regulatory pathways [47].

3. Purine metabolism and redox biology

Nucleotides and nucleosides composing purinergic signaling can influence cell metabolism and fate. Thus, purines are involved with metabolic reprogramming and energy-dependent processes, in addition to composing genetic material and cofactors [59,60]. The availability of purines to bind purinergic receptors and nucleotidas is determined by purine metabolism, notoriously moderated by the purinosome, which is a purinergic metabolon. This temporary multimeric enzymatic complex efficiently binds to promote the physical proximity of the six enzymes involved in de novo purine pathway biosynthesis [61]. This dynamic association contains auxiliary proteins as well. It reverberates the concentration of purine molecules, as its shortage requests the de novo pathway upregulation, starting with the phosphoribosyl pyrophosphate (PRPP) as a substrate, originated from glycolysis and pentose phosphate pathway, and producing inosine 5’-monophosphate (IMP) to then increase nutrient demand with high energy consumption [62].

The purinosome colocalizes with mitochondria; this is a functional colocalization driven by microtubules that provides rapid substrates for this organelle to meet the high cellular demand for purines. This spatial interaction depends on mitochondria mTOR-related regular activity [63,64]. Notably, the activation of the P2X7 receptor downregulates the PI3K/AKT/mTOR pathway in tumor cell lines, impairing cell growth and, thus, cancer progression [65]. Various kinases may be involved in purinosome regulation, including the PI3/AKT cascade (directly related to mTOR) by managing PRPP availability and many more associated with G-protein-coupled receptors mitogenic signaling [66].

In addition to the de novo pathway, purine levels are controlled by the salvage pathway dependent on PRPP [67]. When purines are at homeostatic concentrations, most of the convertible purine pool (AMP, IMP, xanthosine monophosphate (XMP), and guanosine monophosphate (GMP)) is acquired by the salvage pathway through recycling of degraded nucleoside bases from precursor macromolecules, which requires less energy than the de novo pathway (Fig. 1) [59,66,68].

Purine metabolism is essential considering its association with diseases such as gout, an endocrine condition that occurs due to hyperuricemia, which increases blood urate (the final product of the salvage and de novo pathways). Accumulation and crystallization of urate in joints of patients are due to lack of uricase (urate oxidase), the enzyme that catalyzes the degradation of uric acid into allantoin [69]. Furthermore, monosodium urate crystals (MSU) can induce NLRP3 inflammasome active multimORIZATION through potassium efflux [70]. This feature strongly correlates to P2X7 receptor activation, as the relationship between MSU and this purinergic receptor has already been described in regards to IL-1β and HMGB1 release [71].

The relationship between oxidative stress and neurodegenerative diseases has been widely described over the years, with increasing evidence of the complications being caused and worsened by oxygen- and nonradicals molecules, as well as flaws in the robust antioxidant defense [72]. Despite a strong link, antioxidant therapies have failed to prevent the advance of these pathological conditions. Urate has been described as an endogenous potent non-enzymatic antioxidant molecule. This compound is abundant in the

Fig. 1. Purine metabolism and oxidative stress. Purine metabolism involves the hydrolysis of phosphate molecules such as ATP and GTP into nucleosides such as adenine, inosine, and guanine. Briefly, ATP is converted into ADP by ATPase, then into ADP by adenylyl kinase. Next, AMP can be transformed into ADO or IMP by 5’-nucleotidase and AMP aminohydrolase, respectively. Both can be converted into inosine by adenosine deaminase or 5’-nucleotidase as well. Finally, inosine can be metabolized into hypoxanthine, a purine derivative that compounds the salvage pathway that controls purine metabolism. Adenine can be converted into hypoxanthine as well by the action of the adenine deaminase enzyme. Hypoxanthine can then be transformed into xanthine by xanthine oxidoreductase. Finally, GTP can be converted into GDP, GMP, and guanosine by different nucleotidas. Then, guanosine can be metabolized by purine nucleoside phosphorylase, generating guanine directly converted into xanthine by guanine deaminase. Adenine or IMP enters the salvage pathway dependent on PRPP [67]. When purines are at homeostatic concentrations, most of the convertible purine pool (AMP, IMP, xanthosine monophosphate (XMP), and guanosine monophosphate (GMP)) is acquired by the salvage pathway through recycling of degraded nucleoside bases from precursor macromolecules, which requires less energy than the de novo pathway (Fig. 1) [59,66,68].
cerebrospinal fluid and has presented a promising neuroprotective role for treating Parkinson’s disease as it reduces dopamine oxidation rate, currently in a phase 3 clinical trial [73].

The antioxidant role of uric acid in oxidative stress is extensive per se or by synergy with other antioxidant systems, such as the interaction with the enzyme SOD as a mechanism to inhibit the conversion of superoxide anion to peroxynitrite after reacting with nitric oxide (NO) [74]. Urate is likewise a potent metallic antioxidant. It promotes stable chelation of ferric and ferrous ions, exerting its oxidative ability over ascorbate by forming urate-ion complexes without oxidizing itself and preventing liposomal lipid peroxidation by joining phospholipids within liposomal membranes [75,76].

The enzyme responsible for converting hypoxanthine into xanthine and then into uric acid is xanthine oxidoreductase (XOR), which takes two forms: xanthine dehydrogenase and xanthine oxidase (XO). The reversible interchange between these two forms occurs in numerous physiological and pathological situations, and it relies on an intermediary with both activities dependent on the C-terminal peptide [77]. Beyond urate production, xanthine oxidoreductase in a hypoxia context may also assist the antioxidant system via its nitrite reductase activity, generating NO, along with the withdrawal of electrons to reduce O2 at the FAD cavity within this enzyme [78].

In addition to antioxidant activity, xanthine oxidoreductase may produce ROS such as superoxide and hydrogen peroxide as subproducts of their oxygen via its XO and NADH oxidase proprieties enzymatic necessity, thereby significantly contributing to the pro-oxidant system (Fig. 1) [79,80]. Ives et al. found that ATP stimulation induces an increase in XO activity via P2K–AKT signaling pathway forming uric acid and mitochondrial ROS, triggering NLRP3 inflammasome activation and IL-1β secretion [81]. These mechanisms can contribute to inflammation and disease. One of the pathological events that stimulate XO activity is contamination with the influenza virus, increasing free radicals synthesis correlated with the progression of the infection [82]. Hence, inhibition of XOR that attempts to decrease ROS assembly could substantially improve diseases such as hyperuricemia [83].

4. Mechanisms of ATP release

Adenosine triphosphate (ATP) is one of the most evolutionarily conserved nucleotides that acts as a signaling molecule under physiological or pathological contexts as a danger signaling molecule or alarmin [84]. This purine compound presents various features that classify it as an excellent alarmin: First, it can be quickly transported through exocytosis or pore channels; second, the substantial difference between its intra- and extracellular concentrations speeds transport and increases the signal-to-noise ratio nearly without background noise; and third, ATP is soluble in water, which facilitates its diffusion in the extracellular milieu that is predominantly aqueous [85–88]. The receptors that recognize extracellular ATP, mainly P2 receptors, are expressed in almost every cell type, enabling this efficient danger signaling [87].

Hypoxia-mediated damage may induce cells to undergo necrotic death. ATP can be released into the extracellular environment due to cell membrane disruption, activating P2 receptors and NLRP3 inflammasome, creating a pro-inflammatory scenario [89]. Activation of pattern recognition receptors (PRRs) (i.e., Toll-like receptors—TLRs) also induces ATP secretion [90]. P2X7 receptor activation induces massive ATP release via its intrinsic ability to form a membrane pore or leading to secondary activation of pore-forming proteins [18]. Therefore, in addition to passive ATP release by cell rupture, this nucleotide can reach the extracellular medium mostly by active mechanisms such as vesicular exocytosis [91] or pore-forming channels [92]. Vesicular exocytosis is mediated by the vesicular nucleotide transporter VUNT, which controls ATP vesicular storage and consequently exocytosis [91,92]. The mechanism of pore-forming channels is composed of pannexin channels (e.g., pannexin-1), connexin hemichannels (connexin-43), and gasdermin pores [84,92], in addition to volume-regulated anion channels, calcium homeostasis modulator 1, and maxi-anion channels [94]. ATP non-lytic delivery may also occur utilizing transport vesicles or lysosomes [95].

Although they share some similarities, pannexin-dependent ATP release prevails under physiological conditions, while the role of connexin hemichannels in this context is not well defined [96]. Presumably, the action of connexins is more prominent during pathological circumstances, as their expression is closely associated with TLR activation and the ERK/AP1 signaling pathway [97]. Furthermore, pannexins cannot be classified as hemichannels. Their action does not rely on forming gap junctions between hemichannels from different cell membranes, connecting their cytoplasm directly, but instead on individual membrane channels of cells [98].

The phosphorylation of various connexin hemichannels residues induces conformational and functional changes during its life cycle, controlling its activity from synthesis until degradation, including its activation, permeability, and the open/close state [99,100]. Indeed, the phosphorylation of the serine residue Ser-368 reduces connexin-43 permeability [101]. Similarly, cell stress induced by metabolic inhibition in astrocytes increased the presence of connexin-43 (Cx43) in their membrane, accompanied by dephosphorylation and S-nitrosylation (a regular post-translational modification of proteins that usually occurs under oxidative stress). These alterations increase the permeability of the hemichannels, most likely because of inducing the open channel state [102,103]. During enteric neuroinflammation, glial cells stimulate enteric neurons death by producing NO, which in turn activates Cx43, corroborating its openning character, potentializing ATP release, and hence maintaining inflammation [104].

Hypoxic conditions in endothelial cells may reduce ATP release by reducing connexin-43 hemichannels expression concomitantly with an increase in Cx43 phosphorylation [105]. Moreover, the redox signaling could affect other properties within connexin hemichannels, including the oligomerization of the six connexin protein subunits to form the hemichannels and their electrical properties, cytoplasmatic transportation, and permeability [106].

Likewise, the phosphorylation of serine residue Ser-206 in pannexin channels can be modulated by NO in the cell lineage HEK-293 cells, reducing the pore-forming channel activity probably as a defensive mechanism to prevent uncontrolled cell death [107]. The post-translational changes on cysteine residues previously mentioned as S-nitrosylation take place in pannexins as well; however, unlike connexins, this modification prompts channel closing [108].

5. P2 receptors signaling in redox biology

In 1989, Kuroki and Minamaki published a seminal article showing that extracellular ATP could modulate redox biology. They found that human neutrophils stimulated by ATP in the presence of cytochalasin B could generate superoxide (O2•−) [109]. Subsequent studies identified how ATP can induce the generation of free radicals. Nakanishi and colleagues found that peritoneal macrophages from guinea pigs did not require a priming stimulus as human neutrophils to generate O2− in response to ATP treatment [110]. ATP and UTP were implicated in O2− generation via NADPH oxidase activation [111]. Furthermore, lipo-polysaccharide (LPS)-primed macrophages stimulated by extracellular ATP showed an increase in iNOS (nitric oxide synthase) mRNA levels [112,113]. Thus, purinergic signaling began to gain prominence as a signaling pathway capable of interfering with redox biology.

The first evidence linking purinergic receptors and redox signaling came from Shen and colleagues. The authors sought to understand the mechanism by which H2O2 was able to trigger contraction in the rat aorta. They found that this effect was mediated by activating ATP receptors [114]. Following this idea, they demonstrated for the first time the possible involvement of P2 receptors in rat aorta contraction activated by H2O2 using two non-selective P2 antagonists (suramin and RB-2) that completely abolished aorta contraction [115].

A close relation was established between changes in cytosolic [Ca2+]...
and ROS generation through the activation of signaling pathways composed by calcium-dependent proteins – isoforms of protein kinase C (PKC), MAP kinase members, and phospholipase A2 [116,117]. These mechanisms promoted the NADPH oxidase activation, the main enzyme involved in O₂⁻ generation [117]. Motivated by these reports about the relation of intracellular signaling pathways involved in ROS generation and also by the ability of extracellular ATP in triggering these pathways, Cruz and colleagues stimulated primary alveolar macrophages with ATP and other extracellular nucleotides (i.e., ADP, UTP, and UDP) and they measured increased ROS levels [118]. Despite a transient response, high ROS levels activated the phosphatidylinositol-3 kinase (PI3K) pathway, leading to AKT and ERK1/2 phosphorylation contributing to caspase-1 activation and IL-1β and IL-18 secretion (Fig. 2) [119]. Following the elucidative processes behind ATP-induced ROS generation, several reports found that P2 agonists or antagonists modulated ROS production [117].

5.1. P2X receptors

P2X receptors have been implicated in the modulation of redox biology. The P2X7 receptor is the most relevant in this context [13,18,120]. In the early 2000s, P2X7 receptor activation was described as an inducer of H₂O₂ production in primary rat microglia through a mechanism dependent on Ca²⁺ release from intracellular stores. These results were confirmed by using PPDA and oxidized-ATP (P2X7 inhibitors) to block H₂O₂ production or BzATP (P2X7 agonist) to stimulate ROS release via activation of NADPH oxidase [121]. Pfeiffer and colleagues reported the same effect in RAW 264.7 murine macrophages. These effects were potentiated in LPS-primed cells, whereas P2X7 absence reduced the cell capacity to produce ROS. The P2X7 agonist BzATP also stimulated MAP kinase phosphorylation [122]. In the same line of evidence, ATP-P2X7 receptor signaling promotes ROS generation via NOX2 in murine macrophages [123,124]. The P2X7 receptor-induced ROS production leads to caspase-3 activation through the ASK1-p38 MAPK pathway resulting in apoptosis [123]. In addition to the relevance of the ATP-P2X7 axis for the MAPK pathway, NADPH oxidase activation and peroxynitrite generation are also crucial for IL-1β processing and release by endotoxin primed-human monocytes (Fig. 2) [125]. Recently, Zhang et al. described that P2X7 receptor activation induces GSH efflux, promoting an accumulation of intracellular ROS and subsequent NLRP3 inflammasome activation in the J774.1 murine macrophage cell line [126]. They also found that GSH and GSSG treatment inhibited NLRP3 inflammasome assembly and IL-1β secretion.

ROS generation via P2X7 receptor activation is not only related to immune cells. Mouse and rat submandibular glands produced ROS via P2X7 receptor activation; however, this occurred by different mechanisms. Rat submandibular glands produced ROS via NADPH oxidase in a calcium-dependent manner after treatment with P2X7 receptor agonists, whereas mice submandibular glands demonstrated a calcium-independent mechanism [127,128]. Primary gingival epithelial cells

Fig. 2. P2 receptors signaling pathways in the modulation of redox status. Pathogens can release pathogen-associated molecular patterns, such as lipopolysaccharides (LPS), which can activate pattern recognition receptors (PRRs) (i.e., TLRs). This activation leads to the transcription of genes involved in NLRP3 inflammasome activation (NLRP3, pro-casp 1, and pro-IL-1β) and ATP release. ATP in high concentrations activates the P2X7 receptor inducing ROS production via NADPH oxidase activation and peroxynitrite. ROS is responsible for activating the phosphatidylinositol-3 kinase (PI3K) pathway, ASK1, AKT, ERK1/2, and p38 MAPK. These mechanisms can induce apoptosis via caspase-3 activation and NLRP3 inflammasome assembly, leading to caspase-1 activation and pro-IL-1β processing. Low concentrations of ATP or UTP can activate the P2Y₁ receptor inducing PLC activation and Ca²⁺ mobilization; these components activate NADPH oxidase, responsible for producing ROS in a mechanism dependent on RAGE expression. The ATP also activates the P2X4 receptor that promotes ROS production and potentiates the activity of the P2X7 receptor for activating NADPH oxidase. The P2X7 also induces GSH release, increasing intracellular ROS. P2Y₁ receptor increases the expression of antioxidant genes and activity of SOD, CAT, and GSH via intracellular Ca²⁺ signals. The P2Y₁ receptor also induces the phosphorylation of endothelial nitric oxide synthase (eNOS). The sensor Cyp430 allows the P2X2 receptor to sense the cell redox state in front of ROS production. P2Y₄ and P2Y₆ receptors promote ROS production, while the activation of the P2Y₁₁ and P2Y₁₂ receptor activation can inhibit ROS generation. ROS inhibits CD39 and CD73 activities.
showed ROS production in response to eATP-P2X7 receptor signaling and NADPH oxidase activation [129]. P2X7 receptor can induce the production of reactive species through NADPH oxidase by increasing the expression of the p47phox subunit that binds to membrane subunit gp91phox producing reactive species [130].

Murine erythroleukemia cells (an erythroid cell line) also produced ROS following P2X7 receptor activation [131]. However, cortical neurons stimulated by P2X7 agonists presented mitochondrial dysfunction and cell death [132]. ATP treatment leads to mitochondrial toxicity and oxidative stress in HEK-hP2X7 cells culminating in apoptosis [133], suggesting some cell types are more susceptible to ATP-induced free radical production.

Interestingly, the P2X7 receptor is not the only P2X receptor that triggers the generation of free radicals. P2X4 receptor also mediates ROS production and autophagy in macrophages, and the mechanism appears to depend on both P2X4 and P2X7 receptors [134]. Regarding other P2X receptors, one that is also involved in the redox processes is the P2X2 receptor, which demonstrated increased activity in front of mitochondrial stress inducers, mercury, and H2O2. It is mediated by an intracellular redox sensor Cys430 that allows this receptor to sense the cell redox state [135].

Rat synovocytes with collagen-induced arthritis presented a predominant expression of P2X4 and P2Y2 receptors. When treated with ATP or BzATP, these cells produced ROS. However, treatment with BBG or aminonucleoside (a natural bioactive anthraquinone) suppressed ATP/BzATP-induced ROS production, which has been suggested to be controlled by P2X4-mediated extracellular Ca2+ entry [136]. In addition, breast cell cancer treated with ivermectin demonstrated a regulated ROS generation mechanism. The authors suggested that ivermectin induces P2X4/P2X7-dependent activation and then ATP release via pannexin-1. This mechanism potentiated P2X7 receptor signaling to activate NADPH oxidase and ROS generation, leading to cancer cell death [137].

Alterations in redox biology triggered by P2X7 receptors are pivotal to host defense against pathogens [1,138]. Toxoplasma gondii-infected macrophages control the parasite load via P2X7-receptor-induced ROS production [139]. P2X7 receptor induces ROS production via NADPH oxidase, while the NLRP3 inflammasome activation and IL-1β secretion induce mitochondrial ROS production via IL-1R activation [140]. Interestingly, in cerebral toxoplasmosis, the P2X7 receptor appears to be relevant for ROS production as its absence resulted in a reduced ROS production and increased number of cysts in the brain [141]. In bacterial sepsis, P2X7 and P2X4-mediated ROS production may be necessary to pathogen control in phagocytes [142]. However, excessive ROS and NO production in sepsis result in oxidative stress, tissue damage, organ dysfunction, and poor outcomes [8,143,144]. In this context, P2X7 receptor deletion attenuated ROS and RNS production in the mice liver and brain, promoting increased SOD and catalase (CAT) activity, which diminishes oxidative stress and protection from organ injury [143,144].

5.2. P2X7 receptors

P2X7 are G-coupled receptors also identified as modulators of cell redox status. The Gq/11-coupled P2Y1 receptor activated by ADP protected astrocytes from H2O2-induced cell death, upregulating the expression of oxidoreductase genes. This effect was observed by treating cells with P2Y1 agonist 2-methylthio-adenosine-5′-diphosphate (2MeSADP). The mechanism was dependent on phosphorylase C activation and Ca2+ release. When cells were treated with P2Y1 agonist MRS2179, the protective effect in astrocytes was abolished [145]. Likewise, 2MeSADP treatment reduced ROS generation, while UDF (P2Y2 agonist) increased ROS production in hippocampal astrocyte cultures (Fig. 2) [146].

Rat hippocampal cultures treated with eATP showed neuroprotective effects against oxidative stress and cell death in a mechanism dependent on the P2Y1 receptor. The suppression of the P2Y1 receptor by selective siRNAs inhibited the protection against cell death. A critical molecule involved in this process is the cytokine IL-6 because 2MeSADP treatment of astrocytes cultures showed increased IL-6 levels, and the neuro-protection was suppressed in the presence of anti-IL-6 antibody [147]. Protective effects of P2Y1 receptor activation also involve intracellular Ca2+ release and subsequent expression of antioxidant genes such as CAT, SOD2, SOD3, and genes involved in glutathione (GSH) metabolism (Fig. 2) [148].

Other cell types express P2Y1 receptors, such as cultured endothelial cells. ADP promoted the phosphorylation of endothelial signaling proteins in these cell cultures, such as ENOS. However, this phosphorylation was not observed when these cultures were preincubated with PEG-catalase, which degrades H2O2. In this way, endogenous H2O2 mediates ADP signaling responses in vascular walls [149]. Skeletal muscle cells with electrical stimulation produce ROS in a mechanism dependent on ATP release and P2Y1 receptor activation. This response is possibly mediated by NOX2 and PKC signaling [150].

Human endothelial cells treated with oxidized-LDL, and ATP/UTP showed increased ROS production, NADPH oxidase activation and increased the receptor for advanced glycation end-products (RAGE) expression. This effect was inhibited by the P2Y2 receptor and RAGE siRNA-transfected endothelial cells (ECs), demonstrating that ROS production depended on this receptor and RAGE expression [151]. Similarly, osteoblast-like cells express only the P2Y2 receptor, and in the presence of H2O2, these cells release ATP and modify Ca2+ metabolism, possibly via P2Y2 [152]. Leishmania amazonensis-infected macrophages treated with UTP produced ROS, which might be attributed to P2Y2 and P2Y4 receptors upregulation. The same effect has been demonstrated in vivo, once UTP treatment promoted ROS production and phagocytic cells recruitment, limiting parasite replication [153,154].

The P2Y11 receptor stimulation attenuated ROS production in aortas isolated from LPS-treated rats [155]. The ATP also exerts an inhibitory action in frog neuromuscular junction, and the P2Y12 receptor-mediated this effect. This was demonstrated using the P2Y12 receptor-specific antagonist 2-methylthioadenosine-5′-monophosphate (2MeSAMP), which did not reduce end-plate currents [156,157]. ATP induces H2O2 increases with lipid peroxidation [156]; the authors found that NADPH oxidases (NOX) are probably the primary source of ROS responsible for the inhibitory action of ATP.

Interestingly, a nucleoside 5′-thiophosphate analog, the 2-5Me-ATP (ε-S), showed antioxidant/neuroprotective activities in pC12 cells stimulated with FeSO4. This compound acted via P2Y1 and P2Y2 receptor activation, inhibiting ROS production [158]. The P2Y12 receptor is also involved in diabetic wounding once the ADP can reduce ROS production, mitigating the inflammatory response. Meanwhile, a specific P2Y12 antagonist, clopidogrel, restored ROS production [159].

6. Ectonucleotidase functionality and oxidative stress

Ectonucleotidases are nucleotide-metabolizing enzymes critical for the sophisticated regulation of purinergic receptors ligands availability. The ecto-nucleo-triphosphate diphosphohydrolases (E-NTPDases), ecto-nucleotide pyrophosphatase/phosphodiesterases (E-NPPs), and ecto-5′-nucleotidase are the leading ectonucleotidases families. E-NTPDases hydrolyze extracellular tri- and diphosphonucleosides to monophosphonucleosides, while E-NPPs hydrolyze pyrophosphate and phosphodiester bonds in a wide range of substrates, including tri- and diphosphonucleosides [11,160]. Among the ectonucleotidases, E-NTPDase1/CD39 and ecto-5′-nucleotidase/CD73 are the most relevant enzymes [11].

In the 1990s, a seminal paper characterized the biochemical activity of vascular CD39. The authors found that CD39 enzymatic activity and immunocontent were significantly decreased by oxidative stress [161]. Further studies found that saturated fatty acids and antioxidants can restore CD39 activity by reducing lipid peroxidation [161,162]. CD73 activity is also inhibited by oxidative stress, and antioxidants reversed this inhibition (Fig. 2) [163].
CD39 and CD73 are critical enzymes of the immunoregulatory machinery of regulatory T cells (Treg) by scavenging ATP generating adenosine [164,165]. Recently, Gerner et al., 2020 found that the TGF-β-mediated CD39 upregulation in Tregs is impaired by ROS [166]. Furthermore, interferon gamma-producing CD8+ T cells generate ROS, which increases CD39 expression as a regulatory mechanism via JNK and NFkB signaling [167]. The increase of CD39 expression favors adenosine generation and A2A activation with immunoregulatory effects [167].

Although the activity of these enzymes is affected by free radicals, the overexpression of human CD39 and CD73 protects EC against H2O2-induced oxidative stress and damage [168]. Intracellular pathogens have shown the ability to manipulate the host cell, upregulating CD37 expression for decreasing ROS generation [169]. P. gingivalis, a gram-negative oral bacterium, significantly boosts CD73 activity and expression in host cells to overcome the microbicidal effects of ROS [169]. CD73 expression in the mouse brain also promotes parasite spreading in a model of cerebral toxoplasmosis [170].

7. P1 receptors signaling in redox biology

As has been extensively discussed elsewhere, adenosine is a powerful vasoactive nucleotide derivative component in hearts submitted with hypoxic stress [171]. Hypoxia may occur because of obstruction or insufficient blood flow, namely ischemia; in these circumstances, adenosine concentration increases substantially and may act through A1 and A2 receptors to promote myocardial ischemic preconditioning, a preventive mechanism after ischemic lesions [172] that aids cytoprotection by a variety of responses, such as inhibited production of ROS by activated neutrophils [173,174].

Adenosine has a close relationship with hypoxia-inducible factor-1 (HIF-1), enhancing its expression in human melanoma cells at the translation level in a hypoxic framework mediated through p44/42 MAP and p38 MAP kinases pathways stimulated by A3 receptor activation [175]. However, HIF-1 might play dual roles in ischemia-induced by hypoxia, being protective or toxic depending on several inducible factors of this illness, as well as the cell type [176]. In this context, agonism of A1 and A3 receptors, together with LPS incitement, suppresses HIF-1 expression and aggregation in astrocytes by inhibiting phosphorylation of MAP kinases such as p44 and p38 MAPK, hence preventing inflammation and aggressive hypoxic injury, for example, by reducing iNOS inflammatory influence in these cells [177]. In high-altitude hypoxia, resolution can be achieved by augmenting CD73 activity, which in turn expands adenosine plasma concentration, instigating A2B receptors in erythrocytes and promoting AMPK-mediated 2,3-bisphosphoglycerate production, a molecule generated in glycolysis that increases these cell’s ability to deliver O2 from hemoglobin into urgent sites [178].

The brain tumor glioblastoma possesses a cellular subpopulation of stem-like cells responsible for its high invasiveness capacity stimulated by the hypoxic extracellular adenosine boost conducted by heightening CD73 activity [179]. Still, concerning cerebral ischemia, the upregulation of the A1 receptor diminishes neuronal damage, protecting the brain against the disturbance, unlike the damaging effects produced by the A2A receptor [180,181]. The eventual damage caused after restoring average blood flow following cardiac ischemia is known as ischemia-reperfusion injury. This involves various pathological conditions that oxygen radicals can worsen. Thus, it can be partly attenuated at a long-term period by antioxidants components [182,183].

Activation of the A3 receptor increased the activity of numerous antioxidant enzymes that maintain the cellular redox homeostasis by decreasing ROS concentration, such as SOD, catalase, and glutathione peroxidase [184]. In addition, the use of adenosine analog in mobilizing A2A and A2B receptors after ischemia-reperfusion injury showed the cardioprotective impact of mitochondria in vivo and in vitro when dampening mitochondrial superoxide generation per electron transport chain [185]. Furthermore, oxygen-derived radicals such as H2O2 elicit a negative feedback loop in cytotoxicity by increasing the expression of cytoprotective A2A receptors at smooth muscle cells in an NF-kB-dependent manner [186]. Once again, the outcome is reversed in A2A receptors, as ROS reduced their NF-kB-dependent expression [187].

P1 receptors can be liable for a variety of other diseases. ROS was accountable for apoptosis in Treg cells in human and mouse tumor cases, a type of programmed cell death that enables these immune structures to create an immunosuppressive microenvironment via active A2A receptors [188]. The A2A receptors are also related to increased intracellular pressure by upregulating inflammatory markers, such as ROS that elicit the release of NO, IL-1β, and TNF, heightening oxidative stress present in other pathological circumstances [189]. The main effects of adenosine receptors on redox biology are summarized in Table 1.

8. Conclusion

Purinergic signaling and purine metabolism are modulators of redox biology in certain circumstances. The final product of purine metabolism in humans, uric acid, has antioxidant effects per se or synergy with antioxidant systems such as the interaction with the enzyme SOD as a mechanism to inhibit the conversion of superoxide anion to peroxynitrite. In addition, the enzyme responsible for the conversion of hypoxanthine into xanthine and then into uric acid in humans XO produces ROS such as superoxide and hydrogen peroxide as subproducts of their oxygen enzymatic necessity, thereby contributing to ROS-mediated NLRP3 inflammasome activation and IL-1β secretion.

P2 signaling activated by tri- and diphosphonucleotides can modulate the redox status of cells. In general, P2X receptors, mainly P2X7 and P2X4, have a prominent role in mediating ROS production during inflammation and infection. P2Y receptors can also induce ROS and NO production. However, P2Y1 and P2Y11 can exert antioxidant effects, causing protection against oxidative stress due to inflammation or cell damage.

CD39/CD73 axis functionality is impaired during oxidative stress aggravating pathological conditions of inflammation, infection, and tissue injury. By contrast, the upregulation of these enzymes can decrease ATP-induced oxidative stress and minimizes ROS-induced cell damage but favors adenosine generation and pathogen survival during infection. Finally, in general, adenosine receptors have been shown to activate the mechanisms for maintaining redox homeostasis in pathological situations.

Table 1

Adenosine receptor	G-coupled protein	Cell type	Effect redox status of cell
A2A	Gs → adenylate cyclase	Microglial cells	↑ROS, NO, IL-1β, TNF [175]
		Cardiac myoblast cells	↑ROS [171]
A2B	Gs → adenylate cyclase	Erythrocytes	↑[2,3-BPG, O2] [164]
Gq → PLCγ		Neutrophils	↑ROS, iNOS [159,160]
Go → PLCβ		Astrocytes	↑[HIF-1, iNOS] [163]
A1	Gi → β adenosine cyclase	Smooth muscle cells	↑ROS, TNF [163]
		Neutrophils	↑[HIF-1, iNOS] [163]
A2	Gi → β adenosine cyclase	Melanoma cells	↑[HIF-1, iNOS] [163]
		Astrocytes	↑[HIF-1, iNOS] [163]
		Basophilic leukemia cell	↑[SOD, CAT, GPx] [170]

PLC: Phospholipase C; ROS: Reactive oxygen species, NO: Nitrogen oxide, IL-1β: Interleukin 1 beta, TNF: Tumor necrosis factor, 2,3-BPG: 2,3-Bisphosphoglyceric acid, HIF-1: Hypoxia inducible factor-1a, iNOS: inducible nitrogen oxide synthase, SOD: superoxide dismutase, CAT: catalase, GPx: glutathione peroxidase.
Therefore, elucidating mechanisms and signaling pathways by which purinergic signaling and purine metabolism can affect the redox biology of the cell may suggest new therapeutic approaches for pathologies caused by oxidative stress, such as P2 receptor antagonists or soluble apyrases for nucleotide degradation. In addition, in infectious diseases where P2 receptor activation contributes to reactive species production and pathogen elimination, the administration of agonists and ectonucleotidase neutralizing antibodies are feasible strategies.

Declaration of competing interest

The authors declare no competing financial interests.

Acknowledgments

This work was supported by funds from the Conselho Nacional de Desenvolvimento Científico e Tecnológico do Brasil – CNPq (306839/2019-9) RCS and (305857/2020-7) LEBS. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJ (E-26/202.701/2019 and E-26/010.002260/2019 to LEBS; E-26/010.002985/2014, E-26/010.101036/2018 and E-26/202.774/2018 to RCS), and Fundação e Amparo à Pesquisa do Rio Grande do Sul (FAPERGS/19/2551-0001684-0 2019 – PgG to ATSW).

References

[1] R. Coutinho-Silva, L.E.B. Savio, Purinergic signalling in host innate immune defence against intracellular pathogens, Biochem. Pharmacol. (2021), 114405, https://doi.org/10.1016/j.bcp.2021.114405.

[2] M. Idaó, D. Ferrari, H.K. Erlenritch, Nucleotide signalling during inflammation, Nature 509 (2014) 310–317, https://doi.org/10.1038/nature13865.

[3] G. Burnstock, G. Campbell, D. Satchell, A. Smythe, Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut, Br. J. Pharmacol. 40 (1970) 668–688, https://doi.org/10.1111/j.1476-5381.1970.tb01646.x.

[4] G. Burnstock, Purinergic nerves, Pharmacol. Rev. 24 (1972) 509–581.

[5] V. Ralevic, G. Burnstock, Receptors for purines and pyrimidines, Pharmacol. Rev. 50 (1998) 413–492.

[6] B.B. Fredholm, M.P. Abbraccio, G. Burnstock, J.W. Daly, K.T. Harden, K.A. Jacobson, P. Leff, M. Williams, Nomenclature and classification of purinergic receptor Pharmacol Rev. 46 (2) (1994 Jun) 143-156, https://doi.org/10.1016/j.physrev.2017.03.040.

[7] K.A. Jacobson, E.G. Knight, Cellular distribution and functions of P2 receptor subtypes in different systems, Int. Rev. Cytol. 240 (2004) 31-171, https://doi.org/10.1016/j.ssc.2003.08.002.

[8] G. Burnstock, Purinergic Signaling: Methods and Protocols, 2020, https://doi.org/10.1007/978-1-4939-9717-6_22.
Redox Biology 47 (2021) 102137
10

[101] X. Bao, L. Reus, G.A. Altenberg, Regulation of purified and reconstituted connexin 43 hemichannels by protein kinase C-mediated phosphorylation of serine 368, J. Biol. Chem. 279 (2004) 20588–20566, https://doi.org/10.1074/jbc.M311372200.

[102] M.A. Retamal, C.J. Cortés, L. Reus, M.V.L. Bennett, J.C. Szie, S-nitrosylation and permeation through connexin 43 hemichannels in astrocytes: induction by oxidant stress and antagonism by reducing agents, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 4475–4480, https://doi.org/10.1073/pnas.0511181103.

[103] M.A. Retamal, Connexin and Pennixin hemichannels are regulated by redox potential, Front. Physiol. 5 (2014) 1–9, https://doi.org/10.3389/fphys.2014.00080.

[104] L.A.M. Brown, J.L. McClain, A.B. MacKenzie, NADPH oxidase NOX2 mediates rapid cellular oxidation following ATP stimulation of endotoxin-primed macrophages, J. Biol. Chem. 281 (2006) 2871–2880, https://doi.org/10.1074/jbc.M111137200.

[105] M.K. Kuroki, S. Minakami, Extracellular ATP triggers superoxide production in V. Poornima, S. Vallabhaneni, M. Mukhopadhyay, A.K. Bera, Nitric oxide inhibits A.W. Lohman, J.L. Weaver, M. Billaud, J.K. Sandilos, R. Griffiths, A.C. Straub, I.E. García, H.A. S.

[106] M.A. Retamal, C.J. Cortés, L. Reus, M.V.L. Bennett, J.C. Szie, S-nitrosylation and permeation through connexin 43 hemichannels in astrocytes: induction by oxidant stress and antagonism by reducing agents, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 4475–4480, https://doi.org/10.1073/pnas.0511181103.

[107] M.A. Retamal, Connexin and Pennixin hemichannels are regulated by redox potential, Front. Physiol. 5 (2014) 1–9, https://doi.org/10.3389/fphys.2014.00080.

[108] M. Seil, U. Fontanils, I.G. Etxebarria, S.-p. M. El Ouailati, M. García-Marcos, J. P. Debaye, Pharmacological evidence for the stimulation of NADPH oxidase by P2X7 receptors in mouse submandibular glands, Puriﬁng richest knowledge. J. Biol. Chem. 282 (2007) 497–505, https://doi.org/10.1074/jbc.M112.397976.

[109] T. Zhang, H. Tsutskii, W. Islam, K. Ono, K. Takeda, T. Akaike, T. Sawi, ATP exposure stimulates glutathione efﬂux as a necessary switch for NLRP3 inﬂammation activation, Redox Biol 41 (2021) 101930, https://doi.org/10.1016/j.redox.2021.101930.

[110] M. Seil, U. Fontanils, I.G. Etxebarria, S.-p. M. El Ouailati, M. García-Marcos, J. P. Debaye, Pharmacological evidence for the stimulation of NADPH oxidase by P2X7 receptors in mouse submandibular glands, Puriﬁng richest knowledge. J. Biol. Chem. 282 (2007) 497–505, https://doi.org/10.1074/jbc.M112.397976.

[111] T. Zhang, H. Tsutskii, W. Islam, K. Ono, K. Takeda, T. Akaike, T. Sawi, ATP exposure stimulates glutathione efﬂux as a necessary switch for NLRP3 inﬂammation activation, Redox Biol 41 (2021) 101930, https://doi.org/10.1016/j.redox.2021.101930.

[112] C.J. Cortés, L. Reus, M.V.L. Bennett, J.C. Szie, S-nitrosylation and permeation through connexin 43 hemichannels in astrocytes: induction by oxidant stress and antagonism by reducing agents, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 4475–4480, https://doi.org/10.1073/pnas.0511181103.

[113] M.A. Retamal, Connexin and Pennixin hemichannels are regulated by redox potential, Front. Physiol. 5 (2014) 1–9, https://doi.org/10.3389/fphys.2014.00080.

[114] L.A.M. Brown, J.L. McClain, A.B. MacKenzie, NADPH oxidase NOX2 mediates rapid cellular oxidation following ATP stimulation of endotoxin-primed macrophages, J. Biol. Chem. 281 (2006) 2871–2880, https://doi.org/10.1074/jbc.M111137200.

[115] M. Seil, U. Fontanils, I.G. Etxebarria, S.-p. M. El Ouailati, M. García-Marcos, J. P. Debaye, Pharmacological evidence for the stimulation of NADPH oxidase by P2X7 receptors in mouse submandibular glands, Puriﬁng richest knowledge. J. Biol. Chem. 282 (2007) 497–505, https://doi.org/10.1074/jbc.M112.397976.

[116] T. Zhang, H. Tsutskii, W. Islam, K. Ono, K. Takeda, T. Akaike, T. Sawi, ATP exposure stimulates glutathione efﬂux as a necessary switch for NLRP3 inﬂammation activation, Redox Biol 41 (2021) 101930, https://doi.org/10.1016/j.redox.2021.101930.

[117] C.J. Cortés, L. Reus, M.V.L. Bennett, J.C. Szie, S-nitrosylation and permeation through connexin 43 hemichannels in astrocytes: induction by oxidant stress and antagonism by reducing agents, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 4475–4480, https://doi.org/10.1073/pnas.0511181103.

[118] M.A. Retamal, Connexin and Pennixin hemichannels are regulated by redox potential, Front. Physiol. 5 (2014) 1–9, https://doi.org/10.3389/fphys.2014.00080.

[119] L.A.M. Brown, J.L. McClain, A.B. MacKenzie, NADPH oxidase NOX2 mediates rapid cellular oxidation following ATP stimulation of endotoxin-primed macrophages, J. Biol. Chem. 281 (2006) 2871–2880, https://doi.org/10.1074/jbc.M111137200.

[120] M. Seil, U. Fontanils, I.G. Etxebarria, S.-p. M. El Ouailati, M. García-Marcos, J. P. Debaye, Pharmacological evidence for the stimulation of NADPH oxidase by P2X7 receptors in mouse submandibular glands, Puriﬁng richest knowledge. J. Biol. Chem. 282 (2007) 497–505, https://doi.org/10.1074/jbc.M112.397976.

[121] T. Zhang, H. Tsutskii, W. Islam, K. Ono, K. Takeda, T. Akaike, T. Sawi, ATP exposure stimulates glutathione efﬂux as a necessary switch for NLRP3 inﬂammation activation, Redox Biol 41 (2021) 101930, https://doi.org/10.1016/j.redox.2021.101930.

[122] C.J. Cortés, L. Reus, M.V.L. Bennett, J.C. Szie, S-nitrosylation and permeation through connexin 43 hemichannels in astrocytes: induction by oxidant stress and antagonism by reducing agents, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 4475–4480, https://doi.org/10.1073/pnas.0511181103.

[123] M.A. Retamal, Connexin and Pennixin hemichannels are regulated by redox potential, Front. Physiol. 5 (2014) 1–9, https://doi.org/10.3389/fphys.2014.00080.

[124] L.A.M. Brown, J.L. McClain, A.B. MacKenzie, NADPH oxidase NOX2 mediates rapid cellular oxidation following ATP stimulation of endotoxin-primed macrophages, J. Biol. Chem. 281 (2006) 2871–2880, https://doi.org/10.1074/jbc.M111137200.

[125] M. Seil, U. Fontanils, I.G. Etxebarria, S.-p. M. El Ouailati, M. García-Marcos, J. P. Debaye, Pharmacological evidence for the stimulation of NADPH oxidase by P2X7 receptors in mouse submandibular glands, Puriﬁng richest knowledge. J. Biol. Chem. 282 (2007) 497–505, https://doi.org/10.1074/jbc.M112.397976.
A. Giniatullin, A. Petrov, R. Giniatullin, The involvement of P2Y12 receptors, nucleotides released from oxLDL-treated endothelial cells (ECs) mediates the extracellular ATP after electrical stimulation of skeletal muscle cells, PloS One 10 (2015) 1–14, https://doi.org/10.1371/journal.pone.0129882.

S. Lemos, T. Russo-Abrahão, E.M. Saraiva, C.M. Takiya, R. Coutinho-Silva, ¨ Andria, M. Romanello, M. Bicego, T.H. Steinberg, G. Tell, H2O2 modulates purinergic-dependent calcium signalling in osteoblast-like cells, Cell Calcium 43 (2008) 457–468, https://doi.org/10.1016/j.ceca.2007.11.006.

C. Marques-da-Silva, M.M. Chaves, S.P. Chaves, V.R. Figliuolo, J.R. Meyer-Fernandes, B. Rossi-Bergmann, L.E.B. Savio, R. Coutinho-Silva, Infection with Leishmania amazonensis upregulates purinergic transmission at the frog neuromuscular junction, Neuroscience 285 (2015) 417–427, https://doi.org/10.1016/j.neuroscience.2015.05.029.

M. Muntean, A. Sturza, The effect of purinergic signaling via the P2Y11 receptor on the antioxidative enzymes and cytoprotection, Trends Pharmacol. Sci. 16 (1995) 283–288, https://doi.org/10.1016/0165-6146(95)80057-9.

B. Bolli, Oxygen-derived free radicals and myocardial reperfusion injury: an physiological modulator of superoxide anion generation by human neutrophils, J. Exp. Med. 158 (1983) 1160–1167, https://doi.org/10.1084/jem.1983.158.5.1160.

B. R. Gomperts, J.A. McBurney, J.C. McInnes, Adenosine, an endogenous activator of the cellular antioxidant defense system, Biochem. J. 247 (1990) 1–9, https://doi.org/10.1042/bj2470001.

K. Enjyoji, J. Linden, M. Oukka, V.K. Kuchroo, T.B. Strom, S.C. Robson, Adenosine A2A receptor-mediated AMP-activated protein kinase activation in high-altitude hypoxia, Circulation 134 (2016) 405–421, https://doi.org/10.1161/CIRCULATIONAHA.116.023171.

A. Torres, J.J. Erics, F. Sanchez, P. Ehrenfeld, L. Turchi, T. Virolo, D. Uribe, I. Niechi, C. Spichiger, J.D. Rocha, M. Ramirez, F. Salazar-Onfray, R. San Martin, C. Quezada, Extracellular adenosine promotes cell migration/invasion of Bogloblasma Strom-like cells through A3 Adenosine Receptor activation under hypoxia, Canc. Lett. 446 (2019) 112–122, https://doi.org/10.1016/j.canlet.2019.01.004.

K.A. Rudolphi, K.A. Rudolphi, J. Fastbom, B.B. Fredholm, Ischaemic damage in gerbil hippocampus is reduced following upregulation of adenosine (A1) receptors by caffeine treatment, Neuroscience 19 (1986) 275–280, https://doi.org/10.1016/0306-4522(86)90325-5.

J.F. Chen, Z. Huang, J. Ma, J.M. Zhu, R. Moratalla, D. Standaert, M.A. Moskowitz, E.C. Wang, Y. Liu, L. Jiang, A. Rozenman, H. Liu, C. Doughty, A. Shank, K.A. Rudolphi, M. Keil, J. Fastbom, B.B. Fredholm, Ischaemic damage in gerbil hippocampus is reduced following upregulation of adenosine (A1) receptors by caffeine treatment, Neuroscience 19 (1986) 275–280, https://doi.org/10.1016/0306-4522(86)90325-5.

K. Ozaki, C.V. Carman, T. Michel, Central role for hydrogen peroxide in P2Y1 receptor signaling, J. Neurosci. Res. 85 (2007) 3456, https://doi.org/10.1002/jnr.21316.

B. Kutryb-Zajac, C. Bugarin, C. Villa, E. Grassilli, R. Combi, G. Gaipa, M. G. Cerrito, I. Rivolta, R. Smolenski, M. Laviratino, R. Giovannini, Simultaneous overexpression of human ESNT and ENTPD1 protects porcine endothelial cells against H2O2-induced oxidative stress and cytotoxicity in vitro, Free Rad. Biol. Med. 108 (2017) 320–323, https://doi.org/10.1016/j.freeradbiomed.2017.03.038.

V. Ramkumar, D.M. Hallam, Z. Nie, Adenosine oxidative stress and cytotoxicity, Jpn. J. Pharmacol. 86 (2001) 265–274, https://doi.org/10.1254/jjp.86.265.

B.N. Cronstein, B.S. Kramer, G. Weissmann, R. Hirschhorn, Adenosine: a physiological modulator of superoxide anion generation by human neutrophils, J. Exp. Med. 158 (1983) 1160–1177, https://doi.org/10.1084/jem.1983.158.5.1160.

S. Gessi, S. Merigli, A. Stefanelli, D. Fazzi, K. Varani, P.A. Borea, A1 and A3 adenosine receptors inhibit LPS-induced hypoxia-inducible factor-1 accumulation in murine astrocytes, Pharmacol. Res. 76 (2013) 157–170, https://doi.org/10.1016/j.phrs.2013.08.002.

V. Konstantopoulou, S. Derdak, G. Del Favero, I. Schwarzinger, K. Boztug, K. Enjyoji, J. Linden, K. Ozaki, C. Robson, NADH oxidase-dependent CD39 expression by CD8+ T cells modulates interferon gamma responses via generation of adenosine, Nat. Immunol. 16 (2015) 1191–1199, https://doi.org/10.1038/ni.3384.

J.S. Lee, N. Chowdhury, J.A.S. Roberts, O. Yilmaz, Host surface ectonucleotidase-CD73 and the opportunistic pathogen, Porphyromonas gingivalis, cross-modulation underlies a new homeostatic mechanism for chronic bacterial survival in human epithelial cells, Virulence 11 (2020) 414–429, https://doi.org/10.1016/j.virur.2017.06.002.
the posttranslational modification of NDUFV2 subunit of complex I in the heart, Free Radic. Biol. Med. 106 (2017) 208–218, https://doi.org/10.1016/j.freeradbiomed.2017.02.036.

[186] Z. Nie, Y. Mei, M. Ford, L. Rybak, A. Marcuzzi, H. Ren, G.L. Stiles, V. Ramkumar, Oxidative stress increases A1 adenosine receptor expression by activating nuclear factor κB, Mol. Pharmacol. 53 (1998) 663–669, https://doi.org/10.1124/mol.53.4.663.

[187] Z. Nie, Y. Mei, R.L. Malek, A. Marcuzzi, N.H. Lee, V. Ramkumar, A role of p75 in NGF-mediated down-regulation of the A2A adenosine receptors in PC12 cells, mol, Pharma 56 (1999) 947–954, https://doi.org/10.1124/mol.56.5.947.

[188] T. Maj, W. Wang, J. Crespo, H. Zhang, W. Wang, S. Wei, L. Zhao, L. Vatan, I. Shao, W. Szeliga, C. Lysiotis, J.R. Liu, I. Kryczek, W. Zuo, Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor, Nat. Immunol. 18 (2017) 1332–1341, https://doi.org/10.1038/ni.3868.

[189] I.D. Aires, R. Boia, A.C. Rodrigues-Neves, M.H. Madeira, C. Marques, A. F. Ambrósio, A.R. Santiago, Blockade of microglial adenosine A2A receptor suppresses elevated pressure-induced inflammation, oxidative stress, and cell death in retinal cells, Glia 67 (2019) 896–914, https://doi.org/10.1002/glia.23579.