Nine-hole Peg Test and Ten-meter Walk Test for Evaluating Functional Loss in Chinese Charcot-Marie-Tooth Disease

Hui-Xia Niu, Rui-Hao Wang, Hong-Liang Xu, Bo Song, Jing Yang, Chang-He Shi, Yu-Sheng Li, Bing-Qian Zhang, Shao-Ping Wang, Quan Yong, Yuan-Yuan Wang, Yu-Ming Xu

Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China

Abstract

Background: The 9-hole peg test (9-HPT) and 10-meter walk test (10-MWT) are commonly used to test finger motor function and walking ability. The aim of this present study was to investigate the efficacy of these tests for evaluating functional loss in Chinese Charcot-Marie-Tooth (CMT) disease.

Methods: Thirty-four Chinese CMT patients (CMT group) from August 2015 to December 2016 were evaluated with 9-HPT, 10-MWT, CMT disease examination score, overall neuropathy limitation scale (ONLS), functional disability score, and Berg Balance Scale (BBS). Thirty-five age- and gender-matched healthy controls (control group) were also included in the study. Student’s nonpaired or paired t-test were performed to compare data between two independent or related groups, respectively. The Pearson test was used to examine the correlations between recorded parameters.

Results: The mean 9-HPT completion time in the dominant hand of CMT patients was significantly slower than that in the healthy controls (29.60 ± 11.89 s vs. 19.58 ± 3.45 s; t = −4.728, P < 0.001). Women with CMT completed the 9-HPT significantly faster than men with CMT (dominant hand: 24.74 ± 7.93 s vs. 33.01 ± 13.14 s, t = 2.097, P = 0.044). The gait speed of the average self-selected velocity and the average fast-velocity assessed using 10-MWT for CMT patients were significantly slower than those in the control group (1.03 ± 0.18 m/s vs. 1.44 ± 0.17 m/s, t = 9.333, P < 0.001; 1.31 ± 0.30 m/s vs. 1.91 ± 0.25 m/s, t = 8.853, P < 0.001, respectively). There was no difference in gait speed between men and women. Both 9-HPT and 10-MWT were significantly correlated with the ONLS, functional disability score, and BBS (P < 0.05 for all).

Conclusion: The 9-HPT and 10-MWT might be useful for functional assessment in Chinese patients with CMT.

Key words: Charcot-Marie-Tooth Disease; Charcot-Marie-Tooth Disease Examination Score; Nine-hole Peg Test; Ten-meter Walk Test

Introduction

Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral nervous system disorder, with a prevalence of up to 1/1214.1 CMT commonly causes significant muscular deficits and restriction of daily activity, leading to severe disabilities, even at a very young age. Although the progression is relatively slow, CMT always deteriorates progressively, and the ability to balance and exercise might also be affected.2

There are many functional assessments used in CMT. The 9-hole peg test (9-HPT) is widely used for assessing dexterity, particularly in patients with CMT, chronic inflammatory demyelinating polyneuropathy, and spinocerebellar ataxia,3-5 and exhibits excellent inter- and intra-rater intraclass correlation coefficients (ICC), for example, 0.95 (even up to 0.99 in one study) in CMT patients.6-7 The 10-meter walk test (10-MWT) is also widely used to assess gait speed in individuals with gait limitations, particularly in patients with Parkinson’s disease, monoclonal IgM-related neuropathies, stroke, CMT, and other diseases.8-11 Further, it exhibits excellent reliability (inter-rater ICC, 0.97; intra-rater ICC, 0.96) in CMT patients.12 Other commonly used scales include...
Nine-hole peg test
Subjects were asked to pick up the pegs from a container one at a time, place the pegs into the holes in any order until all the holes were filled, and then remove the pegs one at a time and return them to the container. The test was performed as quickly as possible. The time started as soon as the subject touched the first peg and stopped when the last peg hit the container. Both the dominant and nondominant hands were tested twice, and the average time of each hand was calculated (the pegs and container were produced by Devine Medical, Norwalk, CA, USA).[25]

Ten-meter walk test
Subjects were instructed to walk at a normal comfortable speed and a maximum speed for 10 m without assistance, and time was recorded for the intermediate 6 m for excluding acceleration and deceleration. The performance time started and stopped with the toes of the leading foot crossing the 2-m mark and the 8-m mark, respectively. For data analysis, an average self-selected velocity (ASSV) and average fast-velocity (AVF) of three trials were calculated.[26]

Charcot-Marie-Tooth disease examination score
Charcot-Marie-Tooth disease examination score (CMTES), the clinical component of the CMT neuropathy score, did not include neurophysiological assessment,[27] and thus avoided differences related to use of different methods for examining nerve conduction velocity. CMTES was considered the only specific scale for CMT patients, and each CMTES assessment was scored on a 0–4-point scale, reflecting the progressive severity of impairment.

Overall neuropathy limitation scale
ONLS was used to evaluate the motor function of the limb, and was scored from 0 (no limitations) to 5 or 7 (no purposeful movement for the upper and lower limb section).[28]

Functional disability scale
FDS was used to evaluate lower extremity motor function,[29] which was divided into nine levels corresponding to scores of 0–8, with the higher the score, the more serious the motor dysfunction.

Berg balance scale
The BBS was used to evaluate balance ability, and included 14 different balance tasks, including standing, reaching, bending, and transferring abilities. This scale had an overall score ranging from 0 (severely impaired patient) to 56 points (excellent).[30]

Statistical analysis
Numerical data were expressed as constituent ratio (%), whereas normally distributed data were expressed as the mean ± standard deviation (SD). Differences between groups at baseline for age, height, and weight were assessed using the independent Student’s t-test. Categorical data were compared using Chi-square test. Differences between two independent or related groups were analyzed using the independent or paired Student’s t-test. Pearson’s correlation analysis was performed to assess correlations between the recorded parameters. The significance level was set at α = 0.05. All statistical analyses were performed with statistical software (SPSS version 17.0 for Windows; SPSS Inc., Chicago, IL, USA).

RESULTS
Clinical and neurological data
The dominant hand was the right hand for all the study participants. There were no differences in gender,
age ($t = 0.839, P = 0.405$), height ($t = 0.497, P = 0.621$), or body weight ($t = 1.783, P = 0.079$) between the CMT group and the control group. The mean age at onset of symptoms of CMT patients was 18.44 ± 14.09 years (range 1–61 years), and the mean disease duration was 12.65 ± 8.14 years (range 1–30 years). Nerve conduction results showed injury to both the motor nerve and the sensory nerve in all patients, and the genotype included CMT disease type 1A (CMT1A, 58.8%), CMT disease type 2A (20.6%), and CMT disease type 1X (20.6%).

Clinical manifestations

The muscle strength of both hands was symmetrical in all subjects, as was the muscle strength for both feet. CMT patients showed diminished or absent tendon reflexes (100.0%), pes cavus (85.3%), drop foot (85.3%), and claw hand (32.4%), as well as bilateral atrophy of the first dorsal interosseous muscle (85.3%), bilateral thenar muscle atrophy (58.8%), hypothenar muscle atrophy (bilateral 47.1%, unilateral 2.9%), gastrocnemius atrophy (bilateral 47.1%, unilateral 2.9%), and anterior tibial muscle atrophy (bilateral 52.9%, unilateral 5.9%). Abnormalities of gait with toe walking were observed in 25 CMT patients (73.5%), and heel walking impairment in 32 CMT patients (94.2%). Six patients (17.6%) underwent orthopedic surgery, and five patients (14.7%) used ankle-foot orthosis in daily life. Abnormal pin sensitivity was observed in ten patients, and abnormal vibration observed in 22 patients. Other symptoms included hand tremor in two patients, abnormal vision with delayed P100 latency of two eyes in one patient, hearing loss with abnormal brainstem auditory evoked potential in one patient, and lower limb fracture in one patient. No cognitive changes were observed in any patients.

Clinical assessment data

Nine-hole peg test

All CMT patients and healthy controls completed the test, although the completion time was significantly longer in CMT patients [Table 1]. The dominant hand completed 9-HPT faster than the nondominant hand (CMT group: $t = -2.060, P = 0.047$; control group: $t = -5.464, P < 0.001$). The 9-HPT completion time was significantly shorter in women with CMT than in men with CMT, while slight sex differences in completion time were also observed in the control group in the dominant hand [Table 2].

10-meter walk test

Walking speeds were measured by 10-MWT. Two CMT patients did not finish the test, one patient walked slowly at 0.38 m/s while the remaining participants completed the test. CMT patients walked more slowly than control subjects [Table 1]. There was a positive correlation of AFV with ASSV for CMT patients and control subjects (CMT group: $r = 0.900, P < 0.001$; control group: $r = 0.618, P < 0.001$). There were no gender differences in gait speed [Table 2].

Correlation results

There was a positive correlation of 9-HPT completion time with ONLS and FDS, and a negative correlated with BBS just for CMT patients. There was also a negative correlation of ASSV/AFV with ONLS and FDS, and a positive correlation with BBS. There was no correlation of CMTES with 9-HPT completion time of the dominant hand, ASSV, or AFV, whereas there was a significant correlation of CMTES with 9-HPT completion time of the nondominant hand [Table 3].

The was a positive correlation of the course of disease with CMTES ($r = 0.491, P = 0.003$), but no correlation with 9-HPT completion time (dominant hand: $r = 0.009, P = 0.960$; nondominant hand: $r = -0.023, P = 0.897$), ASSV ($r = -0.061, P = 0.746$), AFV ($r = -0.156, P = 0.402$), ONLS ($r = 0.175, P = 0.323$), FDS ($r = -0.028, P = 0.875$), and BBS ($r = -0.182, P = 0.302$). In addition, except for a positive correlation of ASSV with height ($r = 0.487, P = 0.005$), there were no correlations between 9-HPT completion time, 10-MWT, or independent variables [Table 4].

Discussion

In the present study, we found that the most frequent symptoms of CMT were located in the lower limbs. Except for diminished or absent tendon reflexes, the three most frequent symptoms were heel walking impairment, pes cavus/drop foot first interosseous muscle atrophy, and toe walking impairment. As previously reported, the rate of heel walking impairment was 94.2%, slightly higher than the rate of a severe group of CMT1A patients (93%). By contrast, the rate of toe walking impairment was 73.5%, which was markedly higher than the rate in CMT1A patients (2%) in mild group, 41% in severe group. Further, reduced thumb mobility and intrinsic finger function in CMT patients limited prehension, resulting in abnormal posture during the 9-HPT test. For example, the peg was grabbed by the thumb and the proximal portion of the index finger and was placed on the board with the first interosseous muscle down and a valgus elbow. Further, CMT patients found it easier to place the peg on the board than grab the peg.

The 9-HPT is a standardized, ratio scale tool with established norms, and is available and portable for use in a variety of settings, including the clinic, laboratory, and home. 9-HPT is used to examine dexterity and hand/eye coordination as

Table 1: Scores for the 9-HPT and 10-MWT in CMT disease patients and healthy controls

Parameters	CMT (n = 34)	Control (n = 35)	t	P
9-HPT				
Dominant hand (s)	29.60 ± 11.89	19.58 ± 3.45	-4.728	<0.001
Non-dominant hand (s)	32.12 ± 12.97	21.37 ± 3.36	-4.682	<0.001
10-MWT				
ASSV (m/s)	1.03 ± 0.18	1.44 ± 0.17	9.333	<0.001
AFV (m/s)	1.31 ± 0.30	1.91 ± 0.25	8.853	<0.001

Data are presented as mean ± SD. 9-HPT: Nine-hole peg test; 10-MWT: Ten-meter walk test; CMT: Charcot-Marie-Tooth; ASSV: Average self-selected velocity; AFV: Average fast-velocity; SD: Standard deviation.
A measure of hand function, and its reliability and validity have been demonstrated in adults with CMT.[6,31] Our CMT patients were markedly slower to complete the 9-HPT compared with mild CMT1A patients (dominant hand: 15 ± 5.1 s; nondominant hand: 16 ± 4.6 s),[32] but much faster than spinocerebellar ataxia patients (dominant hand: 47.2 ± 35.7 s; nondominant hand: 52.2 ± 41.8 s).[33] Nevertheless, despite this variance in 9-HPT completion time in these subgroups of CMT patients, the findings confirm that the completion time of the dominant hand was shorter than that for the nondominant hand.

There is some evidence that 9-HPT completion time is shorter in women than that in men,[11] as observed in this study. The absolute values for walking speed were reported to be lower in women than men at all ages,[33] whereas men also had faster walking speeds than women.[8,34] However, in the present study, there were no differences in gait speed between men and women assessed using 10-MWT. Gait speed was reported to be reduced in older and taller individuals[36] while 10-MWT was significantly correlated with gender, and slightly correlated with age, in CMT1A patients.[31] By contrast, we found that only ASSV was positively correlated with height.

Pagliano et al.[37] reported a positive correlation of the 9-HPT completion time in children with CMT with the ONLS score ($r = 0.586, P = 0.005$) and the CMTES score ($r = 0.617, P = 0.003$). Similarly, we found a positive correlation of 9-HPT completion time of the nondominant hand with ONLS, FDS, and CMTES, and a positive correlation of 9-HPT completion time of the dominant hand with ONLS and FDS, in CMT patients. Briouk et al.[29] also reported that dysfunction in CMT1A patients increase the course of the disease. By contrast, we only found a positive correlation of CMTES with disease course, with no correlation of 9-HPT completion time, ASSV, AFV, ONLS, FDS, or BBS with the disease course. These contrasting findings might relate to the small sample size in this study.

There are some limitations to the scales used in the present study. Several studies have shown that 9-HPT and 10-MWT could be used to determine changes in the clinical function of patients.[5,38] as well as to assess disease severity in cross-sectional studies.[7,8] However, the study can only be carried out in cross-sectional study at this stage, and dynamic follow-up will be conducted to assess the sensitivity of different assessment methods in the future work. In addition, it could be difficult to evaluate the disease severity and function in patients with hereditary sensory and autonomic neuropathy using 9-HPT and 10-MWT. Kwong et al.[39] reported that the leg selected as the weight-bearing leg in item 13 (standing unsupported one foot in front) and item 14 (standing on one leg) of the BBS can influence the item scores, and thus the total score. These findings were verified in stroke patients, with a lower BBS when the paresis leg was

Table 2: Scores for the 9-HPT and 10-MWT between women and men

Parameters	CMT	Men (n = 20)	Women (n = 14)	t	P	Men (n = 20)	Women (n = 15)	t	P
9-HPT									
Dominant hand (s)	33.01 ± 13.14	24.74 ± 7.93	2.097	0.044		20.72 ± 3.57	18.06 ± 2.69	2.411	0.022
Non-dominant hand (s)	35.87 ± 13.60	26.76 ± 10.20	2.118	0.042		22.26 ± 3.54	20.20 ± 2.77	1.860	0.072
10-MWT									
ASSV (m/s)	1.03 ± 0.21	1.02 ± 0.15	0.082	0.935		1.44 ± 0.21	1.43 ± 0.11	0.104	0.918
AFV (m/s)	1.30 ± 0.34	1.33 ± 0.24	-0.257	0.799		1.94 ± 0.26	1.87 ± 0.25	0.724	0.474

Data are presented as mean ± SD. 9-HPT: Nine-hole peg test; 10-MWT: Ten-meter walk test; CMT: Charcot-Marie-Tooth; ASSV: Average self-selected velocity; AFV: Average fast-velocity; SD: Standard deviation.

Table 3: Correlation of 9-HPT and 10-MWT scores with CMTES, ONLS, FDS, and BBS

Parameter	CMTES	ONLS	FDS	BBS
9-HPT (D)				
r	0.335	0.552	-0.174	-0.275
P	0.053	0.001	0.349	0.135
9-HPT (ND)				
r	-0.001	0.995	0.029	-0.207
P	-0.233	0.879	0.032	0.264
ASSV				
r	0.029	0.874	0.342	0.256
P	0.960	0.006	0.165	0.158
FDS				
r	0.893	0.857	0.586	0.617
P	<0.001	<0.001	0.003	0.003
BBS				
r	0.463	0.004	-0.481	0.612
P	0.006	0.001	0.001	<0.001

9-HPT: Nine-hole peg test; 10-MWT: Ten-meter walk test; CMTES: Charcot-Marie-Tooth examination score; ONLS: Overall neuropathy limitation scale; FDS: Functional disability score; BBS: Berg Balance Scale; D: Dominant hand; ND: Nondominant hand; ASSV: Average self-selected velocity; AFV: Average fast-velocity.

Table 4: Correlation of 9-HPT and 10-MWT scores with independent variables

Parameter	Age at examination	Course	Height			
r	p	r	p			
9-HPT (D)	0.046	0.795	0.009	0.960	-0.024	0.893
r	-0.001	0.995	-0.023	0.897	-0.005	0.979
ASSV	0.029	0.874	0.032	0.864	0.487	0.005
AFV	-0.207	0.264	-0.159	0.392	0.256	0.165

9-HPT: Nine-hole peg test; 10-MWT: Ten-meter walk test; D: Dominant hand; ND: Nondominant hand; ASSV: Average self-selected velocity; AFV: Average fast-velocity.
selected. Although CMTES is considered the only specific scale for CMT patients, it has a similar limitation.

In summary, the findings suggest that CMT patients perform worse on 9-HPT and 10-MWT. These findings with 9-HPT were consistent with other studies, apart for the similar ASSV and AVF between men and women. Nevertheless, the data suggest that 9-HPT and 10-MWT can be used in Chinese patients with CMT.

Acknowledgments

The authors would like to thank the patients for their participation in this study, and also thank Prof. Yun Yuan, Prof. Zhao-Xia Wang, Dr. Yi-Ming Zheng, Dr. Si Cheng and Dr. Jun Fu from Peking University First Hospital for their kind help.

Financial support and sponsorship

There are no conflicts of interest.

Conflicts of interest

Nil.

REFERENCES

1. Braathen GJ. Genetic epidemiology of Charcot-Marie-Tooth disease. Acta Neurol Scand Suppl 2012;126:iv-22. doi: 10.1111/ane.12013.
2. Corrado B, Ciardi G, Bargigli C. Rehabilitation management of the Charcot-Marie-Tooth syndrome: A systematic review of the literature. Medicine (Baltimore) 2016;95:e3278. doi: 10.1097/MD.0000000000003278.
3. Connolly BS, Prashanth LK, Shah BB, Marras C, Lang AE. A randomized trial of varenicline (chantix) for the treatment of spinocerebellar ataxia type 3. Neurology 2012;79:2218. doi: 10.1212/01.wnl.0000413897.88059.97.
4. Markvardsen LH, Debost JC, Harbo T, Sindrup SH, Andersen H, Christiansen I, et al. Subcutaneous immunoglobulin in responders to intravenous therapy with chronic inflammatory demyelinating polyradiculoneuropathy. Eur J Neurol 2013;20:836-42. doi: 10.1111/j.1468-1331.2012.03783.x.
5. Svensson E, Häger-Ross C. Hand function in Charcot-Marie-Tooth disease: Test retest reliability of some measurements. Clin Rehabil 2006;20:896-908.
6. Medijainen K, Piäsuksi M, Lukkman A, Taba P. Functional performance and associations between performance tests and neurological assessment differ in men and women with Parkinson’s disease. Behav Neurol 2015;2015:519801. doi: 10.1155/2015/519801.
7. Kilidireas C, Anagnostopoulos A, Karandreas N, Mouselimi L, Pareyson D, CMT-TRIAAL Study Group. Reliability of clinical outcome measures in Charcot-Marie-Tooth disease. Neuromuscular Disord 2008;18:19-26. doi: 10.1016/j.nmd.2007.09.006.
8. Svensson E, Häger-Ross C. Hand function in Charcot Marie Tooth: Test retest reliability of some measurements. Clin Rehabil 2006;20:896-908.
9. Amatachaya S, Chuadthong J, Thaweewannaku T, Srisim K, Phonthee S. Levels of community ambulation ability in patients with stroke who live in a rural area. Malays J Med Sci 2016;23:56-62.
10. Ferrarin M, Lencioni T, Rabuffetti M, Moroni I, Pagliano E, Pareyson D. Changes of gait pattern in children with Charcot-Marie-Tooth disease type 1A: A 18 months follow-up study. J Neurol Neurorehabil 2013;10:65. doi: 10.1186/1743-0003-10-65.
11. Colomban C, Micallef J, Lefebvre MN, Dubourg O, Gonnaud PM, Pareyson D. Changes of gait pattern in children with Charcot-Marie-Tooth disease type 1A: A 18 months follow-up study. J Neurol Neurorehabil 2013;10:65. doi: 10.1186/1743-0003-10-65.
12. Shy ME, Blake J, Krajewski K, Fuerst DR, Laura M, Hahn AF, et al. Reliability and validity of the CMT neuropathy score as a measure of disability. Neurology 2005;64:1209-14. doi: 10.1212/01.wnl.0000156517.00615.a3.
13. Burns J, Ouvrier R, Estilow T, Shy R, Laurá M, Pallant JF, et al. Validation of the Charcot-Marie-Tooth disease pediatric scale as an outcome measure of disability. Ann Neurol 2012;71:642-52. doi: 10.1002/ana.23572.
14. Kim YH, Charung HK, Park KD, Choi KG, Kim SM, Sunwoo IN, et al. Comparison between clinical disabilities and electrophysiological values in Charcot-Marie-Tooth 1A patients with PMP22 duplication. J Clin Neurol 2012;8:139-45. doi: 10.3988/jcn.2012.8.2.139.
15. Monti Bragadin M, Francini L, Bellone E, Grandis M, Reni L, Canneva S, et al. Tinetti and Berg balance scales correlate with disability in hereditary peripheral neuropathies: A preliminary study. Eur J Phys Rehabil Med 2015;51:423-7.
16. WNL.0b013e318278a059. 17. Li S, Chen X, Li Q, Du J, Liu Z, Peng Y, et al. Effects of acetyl-L-carnitine and methylecobalamin for diabetic peripheral neuropathy: A multicenter, randomized, double-blind, controlled trial. J Diabetes Invest 2016;7:777-85. doi: 10.1111/jdi.12493.
18. Wang W, Wang A, Yu L, Han X, Jiang G, Weng C, et al. Constraint-induced movement therapy promotes brain functional reorganization in stroke patients with hemiplegia. Neuro Regen Res 2012;7:2548-53. doi: 10.3969/j.issn.1673-5374.2012.32.010.
19. Li S, Hao YL, Tian WJ, Gong L, Zhang K, Shi QG, et al. The effectiveness of Tai Chi for patients with Parkinson’s disease: Study protocol for a randomized controlled trial. Trials 2015;16:111. doi: 10.1186/s13063-015-0639-8.
20. Wang Y, Hao YL, Liu ZQ, Zuo YH, Liu J, Wang ZX, et al. Clinical and genetic features of Chinese X-linked Charcot-Marie-Tooth type 1 disease. Chin Med J 2017;130:1049-54. doi: 10.4103/0366-6999.204925.
21. Fang XJ, Zhang L, Lins H, Wang ZJ, Yuan Y, et al. Compound heterozygote mutation of C12orf65 causes distal motor neuropathy and optic atrophy. Chin Med J 2017;130:242-4. doi: 10.4103/0366-6999.190819.
22. Sun B, Chen ZH, Ling L, Li YF, Lui LZ, Yang F, et al. Mutation analysis of gap junction protein beta 1 and genotype-phenotype correlation in X-linked Charcot-Marie-Tooth disease in Chinese patients. Chin Med J 2016;129:1011-6. doi: 10.4103/0366-6999.180511.
23. Harding AE, Thomas PK. The clinical features of hereditary motor and sensory neuropathy types I and II. Brain 1980;103:259-80. doi: 10.1093/brain/103.2.259.
24. Oxford Grice K, Vogel KA, Le V, Mitchell A, Muniz S, Vollmer MA. Adult norms for a commercially available nine hole peg test for finger dexterity. Am J Occup Ther 2003;57:570-3. doi: 10.5014/ajot.57.5.570.
25. Bohannon RW. Comfortable and maximum walking speed of adults aged 20-79 years: Reference values and determinants. Age Ageing 1997;26:15-9. doi: 10.1093/ageing/26.1.15.
26. S. Shy ME, Rose MR. Charcot-Marie-Tooth disease impairs quality of life: Why? And how do we improve it? Neurology 2005;65:790-1. doi: 10.1212/01.wnl.0000181027.21574.df.
27. Graham RC, Hughes RA. A modified peripheral neuropathy scale: The overall neuropathy limitations scale. J Neurol Neurosurg Psychiatry 2005;76:570-3. doi: 10.1136/jnnp.76.5.570.
28. WNL.0000156517.00615.A3. 29. Amatachaya S, Chaudhong J, Thaweewannaku T, Srisim K, Phonthee S. Levels of community ambulation ability in patients with stroke who live in a rural area. Malays J Med Sci 2016;23:56-62.
30. Colomban C, Micaleff J, Lefebvre MN, Dubourg O, Gonnaud PM, Stojkovic T, et al. Clinical spectrum and gender differences in a large cohort of Charcot-Marie-Tooth type 1A patients. J Neurol Sci 2014;336:155-60. doi: 10.1016/j.jns.2013.10.029.
31. 32. Burns J, Bray P, Cross L, North KN, Ryan MM, Ouvrier RA.
Hand involvement in children with Charcot-Marie-Tooth disease type 1A. Neuromuscul Disord 2008;18:970-3. doi: 10.1016/j.nmd.2008.08.004.

32. Pelayo-Negro AL, Gallardo E, Garcia A, Sánchez-Juan P, Infante J, Berciano J. Evolution of Charcot-Marie-Tooth disease type 1A duplication: A 2-year clinico-electrophysiological and lower-limb muscle MRI longitudinal study. J Neurol 2014;261:675-85. doi: 10.1007/s00415-014-7248-4.

33. Schmitz-Hübsch T, Giunti P, Stephenson DA, Globas C, Baliko L, Saccà F, et al. SCA Functional Index: A useful compound performance measure for spinocerebellar ataxia. Neurology 2008;71:486-92. doi: 10.1212/01.wnl.0000324863.76290.19.

34. Earhart GM, Cavanaugh JT, Ellis T, Ford MP, Foreman KB, Dibble L. The 9-hole peg test of upper extremity function: Average values, test-retest reliability, and factors contributing to performance in people with Parkinson disease. J Neurol Phys Ther 2011;35:157-63. doi: 10.1097/NPT.0b013e318235da08.

35. Samson MM, Crowe A, de Vreede PL, Dessens JA, Duursma SA, Verhaar HJ. Differences in gait parameters at a preferred walking speed in healthy subjects due to age, height and body weight. Aging Clin Exp Res 2001;13:16-21. doi: 10.1007/BF03351489.

36. Hass CJ, Malczak P, Nocera J, Stegemöller EL, Wagle Shukla A, Malaty I, et al. Quantitative normative gait data in a large cohort of ambulatory persons with Parkinson’s disease. PLoS One 2012;7:e42337. doi: 10.1371/journal.pone.0042337.

37. Pagliano E, Moroni I, Baranello G, Magro A, Marchi A, Bulgheroni S, et al. Outcome measures for Charcot-Marie-Tooth disease: Clinical and neurofunctional assessment in children. J Peripher Nerv Syst 2011;16:237-42. doi: 10.1111/j.1529-8027.2011.00357.x.

38. Pareyson D, Reilly MM, Schenone A, Fabrizi GM, Cavallaro T, Santoro L, et al. Ascorbic acid in Charcot-Marie-Tooth disease type 1A (CMT-TRIAAL and CMT-TRAUK): A double-blind randomised trial. Lancet Neurol 2011;10:320-8. doi: 10.1016/S1474-4422(11)70025-4.

39. Kwong PW, Ng SS, Liu TW, Chung RC, Ng GY. Effect of leg selection on the Berg Balance Scale scores of hemiparetic stroke survivors: A cross-sectional study. Arch Phys Med Rehabil 2016;97:545-51. doi: 10.1016/j.apmr.2015.11.017.