Knee flexion after total knee arthroplasty

PH Li, YC Wong, YL Wai
Department of Orthopaedics and Traumatology, Yan Chai Hospital, Hong Kong

INTRODUCTION

Postoperative knee flexion is an important indicator of success in total knee arthroplasty (TKA). Satisfactory flexion is required for various activities of daily living: 67º is required for the swing phase of gait, 83º for climbing up stairs, 90º for descending stairs, and 93º for rising up from a chair.1,2 In North America and Europe, 110º or 115º flexion are considered adequate for the lifestyle of seniors.3 Deep flexion is especially important for Asian and Middle Eastern populations as many of their cultural and religious activities demand full flexion.

The mean postoperative flexion in most western studies was around 100º to 115º.4-6 Some Japanese groups achieved excellent postoperative flexion: one attained 127º, attributing it to dedicated instrumentation for soft tissue balancing and vigorous rehabilitation.7 Another achieved 124º mean range of movement (ROM) using Bisurface knee prosthesis.8 Factors influencing the postoperative ROM were reported to be preoperative ROM, primary indication, height of postoperative joint line, patellar thickness, postoperative pain and rehabilitation.9

We aimed to identify the determinants of postoperative knee flexion through reviewing the...
TKA results in 173 Chinese patients.

MATERIALS AND METHODS

We retrospectively reviewed 242 (119 left and 123 right) primary TKAs in 173 patients performed by a single experienced surgeon between January 1995 and December 2003 inclusive. The follow-up period was 12 to 108 (mean, 50) months. 132 (76%) were female and 41 (24%) were male. The mean patient age was 71 (standard deviation [SD], 7; range, 38–87) years. The diagnoses were osteoarthritis (n=219), rheumatoid arthritis (n=20), and osteonecrosis (n=3).

Patients with incomplete data (n=1) or with severe complications (n=12) e.g. infection (n=3), popliteal arterial thrombosis (n=1), intra-operative patella tendon rupture (n=1), complications requiring concomitant osteotomy (n=1), revision for aseptic loosening within one year (n=1), cerebrovascular accidents (n=2), and dying of unrelated causes within one year of operation (n=2) were excluded.

Patient parameters were classified into preoperative, intra-operative or postoperative groups. A single surgeon assessed all postoperative parameters >12 months after the operation, when chance of further improvement was considered minimal.10,11 The preoperative parameters were age, gender, diagnosis (osteoarthritis, rheumatoid arthritis, or osteonecrosis), knee flexion, extension, flexion arc, tibiofemoral angle, and Knee Society knee score and functional score. The intra-operative parameter was prosthesis design: Insall-Burstein II (n=124), Legacy (n=40), Press Fit Condylar-Sigma (n=37), Anatomic Modular Knee (n=22), Legacy-flex (n=15) and Low Contact Stress (n=4). Most entailed posterior-stabilised designs. The postoperative parameters corresponded to the preoperative ones.

Active knee flexion, extension, and flexion arc were measured using a goniometer with patients lying supine. Weight-bearing radiography was used to measure the tibiofemoral angle.

Table 1

| Parameters           | Preoperation (mean±SD)       | Postoperation (mean±SD)      | p value |
|----------------------|------------------------------|------------------------------|---------|
| Flexion arc          | 98.0º±18.9º                  | 102.8º±15.3º                 | 0.017   |
| Flexion              | 107.5º±14.1º                 | 105.1º±14.2º                 | 0.002   |
| Extension            | 9.4º±8.6º                    | 2.4º±4.9º                    | <0.001  |
| Tibiofemoral angle   | 186.0º±10.3º                 | 175.0º±2.5º                  | <0.001  |
| Knee score           | 44.1±14.2                    | 92.7±6.3                     | <0.001  |
| Functional score     | 46.3±16.2                    | 69.1±21.3                    | <0.001  |

The Pearson correlation test and 2-tailed Student’s t test were used to compare the change of parameters before and after surgery, as well as the association between various preoperative parameters and postoperative knee flexion. Preoperative knee flexion and tibiofemoral angle were stratified into 3 groups (≤90º, 91º–110º, and >110º) to compare differences in postoperative flexion. The postoperative flexion of patients with different prostheses was also compared.

RESULTS

Most parameters had significant changes (p<0.05) after the operation. Although flexion decreased after surgery, the flexion arc, the extension, and the Knee Society knee score and functional score improved significantly and the tibiofemoral angle optimised (Table 1).

The correlation coefficient of preoperative and postoperative flexion was 0.26 (p<0.01). The knees were divided into 3 groups according to the preoperative flexion category (≤90º, 91º–110º, and >110º) and the mean preoperative and postoperative ranges of flexion were compared. There was no significant difference in flexion for 91º–110º group before and after surgery. However, after surgery there was a flexion gain in the ≤90º group, and a flexion loss in the >110º group; both differences were statistically significant (p<0.001, Table 2).

Other factors significantly associated with postoperative flexion were gender, age, and preoperative flexion arc. The mean postoperative flexion of females and males were 109.3º and 103.9º respectively; the difference was statistically significant (p=0.01). The correlation coefficient of age with postoperative flexion was 0.26 (p<0.01), and age with preoperative flexion arc was 0.21 (p<0.01). Preoperative extension, the diagnosis, the Knee Society knee score and functional score had no significant association with postoperative flexion.
The effect of the preoperative tibiofemoral angle on postoperative flexion was examined by stratifying patients into 4 groups: tibiofemoral angle of 5°–9° as neutral, ≥10° as valgus, 4° to -10° as mild varus and < -10° as severe varus. Although the preoperative ranges of flexion of the mild and severe varus groups were significantly less than those of the neutral group, the corresponding postoperative ranges of flexion attained were not significantly different from those of the neutral group. There was no significant difference in flexion of the valgus and the neutral groups before and after surgery (Table 3).

Table 4 shows the extent of preoperative and postoperative flexion attained using different prostheses. Insall-Burstein II, the most common design, was compared with other prostheses. Although there was no significant difference in preoperative flexion, the Legacy group and the Press Fit Condylar-Sigma group yielded significantly better postoperative flexion. There was no significant difference in postoperative flexion between the Legacy group and the Legacy-flex group.

**DISCUSSION**

TKA is a standard treatment for end-stage knee pathologies aiming to provide a pain-free and stable knee with good ROM. With the advances in implant design and surgical technique, the first 2 goals are usually achieved. However, improvement in ROM is still a hotly debated issue.
The mean postoperative flexion of our patients was 105.1°, with a loss of 2.4° flexion but a gain of 4.8° flexion arc after surgery, because of an increase in extension by 7.0°. The flexion of our patients was comparable to what has been reported in other studies (ranging from 100° to 115°). This degree of flexion is sufficient for most activities of daily living for western populations. However, for the Asian and Islamic populations, flexion up to as much as 160° is required for prolonged kneeling and squatting. As flexion of contemporary TKA rarely exceeds 120°, the lifestyle of many patients has to be compromised.

Preoperative flexion is considered the most critical determinant of postoperative flexion. Poor and long-standing preoperative flexion may result in bone and soft tissue changes, which may not be reversed by TKA. There was a positive correlation between preoperative and postoperative flexion; the better the preoperative flexion, the better the postoperative flexion. However, good flexors tend to lose flexion while the poor flexors tend to gain some. Postoperative flexion therefore migrates towards the middle range. TKA can produce a predictable result, not totally dictated by poor preoperative flexion. However, restoration or even improvement in ROM for those with good preoperative flexion may be limited by implant design and soft tissue tension.

Other factors that were significantly associated with postoperative flexion included age, gender, and the preoperative flexion arc. Females and the elderly had better results, probably because of laxer soft tissue and less scarring than in males and younger patients. Younger age was related to lower postoperative ROM, though the principal predictive factor was still the preoperative ROM.

For knees with severe coronal deformities, poor postoperative ROM may result from scarring after extensive soft tissue release. A varus tibiofemoral angle of ≤-6.5° preoperatively was predictive of a lower postoperative flexion. Postoperative flexion in patients who had release of the deep medial collateral ligament and the superficial medial collateral ligament for varus tibiofemoral alignment was 3.3° less than in the reference group. In our study, preoperative varus or valgus deformity did not predict poor postoperative flexion. This may be reassuring to surgeons performing extensive yet balanced soft tissue release for severely deformed knees.

Contemporary designs like Legacy and Press Fit Condylar-Sigma could produce better postoperative flexion than the classic Insall-Burstein II. Although there was no significant difference in preoperative flexion, the postoperative flexion of Legacy and Press Fit Condylar-Sigma were 6.1° and 7.4° more than that of Insall-Burstein II respectively. Legacy has a better cam-spine mechanism because of a longer trochlear groove and a more posteriorly placed femoral cam. Whether this difference is real or due to the learning curve of surgeons and better instrumentation is questionable.

Legacy-flex is a high flexion arthroplasty design, with modifications in the posterior femoral condyles, tibial polyethylene insert, and cam-spine mechanism, all designed to achieve deep flexion. However, in our limited number of cases it did not produce a result superior to Legacy and Press Fit Condylar-Sigma. No difference was found in postoperative ROM between Legacy and Legacy-flex knees.

One drawback to this study was that knee flexion, extension, and flexion arc were measured using a goniometer with the knees unloaded. Unloaded flexion does not reflect functional flexion. The more accurate method with less inter- and intra-observer variation is to measure weight-bearing radiographs. Measurement bias can be eliminated by employing multiple third-party examiners instead of using a single surgeon as in this study. The interaction of different variables was not taken into account, though multiple regression analysis can eliminate this problem. Prostheses used in this study were a mixture of 6 different designs; the numbers of some were too small to yield statistically significant results.

CONCLUSION

Advanced age, female gender, and good preoperative flexion and flexion arc are related to better postoperative flexion. Postoperative flexion tends to migrate to the middle range despite different degrees of preoperative flexion. Preoperative axial malalignment and thus extensive soft tissue release do not affect postoperative flexion. Contemporary prostheses yield better flexion.

REFERENCES

1. Laubenthal KN, Smidt GL, Kettelkamp DB. A quantitative analysis of knee motion during activities of daily living. Phys Ther 1972;52:34–43.
2. Kettelkamp DB, Johnson RJ, Smidt GL, Chao EY, Walker M. An electrogoniometric study of knee motion in normal gait. J
Bone Joint Surg Am 1970;52:775–90.
3. Banks S, Bellemans J, Nozaki H, Whiteside LA, Harman M, Hodge WA. Knee motions during maximum flexion in fixed and mobile-bearing arthroplasties. Clin Orthop Relat Res 2003;410:131–8.
4. Chiu KY, Ng TP, Tang WM, Yau WP. Review article: knee flexion after total knee arthroplasty. J Orthop Surg (Hong Kong) 2002;10:194–202.
5. Becker MW, Insall JN, Faris PM. Bilateral total knee arthroplasty. One cruciate retaining and one cruciate substituting. Clin Orthop Relat Res 1991;271:122–4.
6. Pagnano MW, Hanssen AD, Lewallen DG, Stuart MJ. Flexion instability after primary posterior cruciate retaining total knee arthroplasty. Clin Orthop Relat Res 1980;148:23–33.
7. Shoji H, Yoshino S, Komagamine M. Improved range of motion with the Y/S total knee arthroplasty system. Clin Orthop Relat Res 1987;218:150–63.
8. Akagi M, Nakamura T, Matsusue Y, Ueo T, Nishijyo K, Ohnishi E. The bisurface total knee arthroplasty: a unique design for flexion. Four-to-nine-year follow-up study. J Bone Joint Surg Am 2000;82:1626–33.
9. Ryu J, Saito S, Yamamoto K, Sano S. Factors influencing the postoperative range of motion in total knee arthroplasty. Bull Hosp Jt Dis 1993;53:35–40.
10. Insall JN, Hood RW, Flawn LB, Sullivan DJ. The total condylar knee prosthesis in gonarthrosis. A five to nine-year follow-up of the first one hundred consecutive replacements. J Bone Joint Surg Am 1983;65:619–28.
11. Schurman DJ, Parker JN, Orinstein D. Total condylar knee replacement. A study of factors influencing range of motion as late as two years after arthroplasty. J Bone Joint Surg Am 1985;67:1006–14.
12. Rowe PJ, Myles CM, Walker C, Nutton R. Knee joint kinematics in gait and other functional activities measured using flexible electrogoniometry: how much knee motion is sufficient for normal daily life? Gait Posture 2000;12:143–55.
13. Mulholland SJ, Wyss UP. Activities of daily living in non-Western cultures: range of motion requirements for hip and knee joint implants. Int J Rehabil Res 2001;24:191–8.
14. Szabo G, Lovasz G, Kustos T, Bener A. A prospective comparative analysis of mobility in osteoarthritic knees. J Bone Joint Surg Br 2000;82:1167–9.
15. Sultan PG, Most E, Schule S, Li G, Rubash HE. Optimizing flexion after total knee arthroplasty: advances in prosthetic design. Clin Orthop Relat Res 2003;416:167–73.
16. Yoshino S, Nakamura H, Shiga H, Ishiuchi N. Recovery of full flexion after total knee replacement in rheumatoid arthritis—a follow-up study. Int Orthop 1997;21:98–100.
17. Schurman DJ, Mattiyahu A, Goodman SB, Maloney W, Woolson S, Shi H, et al. Prediction of postoperative knee flexion in Insall-Burstein II total knee arthroplasty. Clin Orthop Relat Res 1998;353:175–84.
18. Anouchi YS, McShane M, Kelly F Jr, Elting J, Stiehl J. Range of motion in total knee replacement. Clin Orthop Relat Res 1996;311:87–92.
19. Ritter MA, Hardy LD, Davis KE, Meding JB, Berend ME. Predicting range of motion after total knee arthroplasty. Clustering, log-linear regression, and regression tree analysis. J Bone Joint Surg Am 2003;85:1278–85.
20. Ranawat CS. Design may be unproductive for optimizing flexion after TKR. Clin Orthop Relat Res 2003;416:174–6.
21. Kawamura H, Bourne RB. Factors affecting range of flexion after total knee arthroplasty. J Orthop Sci 2001;6:248–52.
22. Kurosaka M, Yoshiya, S, Mizuno K, Yamamoto T. Maximizing flexion after total knee arthroplasty: the need and pitfalls. J Arthroplasty 2002;17(4 Suppl 1):S59–62.
23. Parsley BS, Engh GA, Dwyer KA. Preoperative flexion. Does it influence postoperative flexion after posterior-cruciate-retaining total knee arthroplasty? Clin Orthop Relat Res 1992;275:204–10.
24. Harvey IA, Barry K, Kirby SP, Johnson R, Ellloy MA. Factors affecting the range of movement of total knee arthroplasty. J Bone Joint Surg Br 1993;75:950–5.
25. Allen DG, Beers C, Tramnell M. Postoperative evaluation of the Nexgen Legacy posterior stabilized LPS flex implants. La Societe Internationale De Chirurgie Orthopedie et de Traumatologie/La Societe Internationale de Recherche Orthopedie et de Traumatologie, XXII World Congress, San Diego 2002:542.
26. Dennis DA, Komistek RD, Stiehl JB, Walker SA, Dennis KN. Range of motion after total knee arthroplasty: the effect of implant design and weight-bearing conditions. J Arthroplasty 1998;13:748–52.