

pulver: an R package for parallel ultra-rapid p-value computation for linear regression interaction terms

Sophie Molnos1,2,3*, Clemens Baumbach1,2,3, Simone Wahl1,2,3, Martina Müller-Nurasyid4,5,6,7, Konstantin Strauch5,6, Rui Wang-Sattler1,2, Melanie Waldenberger1,2, Thomas Meitinger8,9, Jerzy Adamski3,10,11, Gabi Kastenmüller12,13, Karsten Suhre12,14, Annette Peters1,2,3, Harald Grallert5,6, Fabian J. Theis15,16 and Christian Gieger1,2,3

Abstract

Background: Genome-wide association studies allow us to understand the genetics of complex diseases. Human metabolism provides information about the disease-causing mechanisms, so it is usual to investigate the associations between genetic variants and metabolite levels. However, only considering genetic variants and their effects on one trait ignores the possible interplay between different "omics" layers. Existing tools only consider single-nucleotide polymorphism (SNP)–SNP interactions, and no practical tool is available for large-scale investigations of the interactions between pairs of arbitrary quantitative variables.

Results: We developed an R package called pulver to compute p-values for the interaction term in a very large number of linear regression models. Comparisons based on simulated data showed that pulver is much faster than the existing tools. This is achieved by using the correlation coefficient to test the null-hypothesis, which avoids the costly computation of inversions. Additional tricks are a rearrangement of the order, when iterating through the different "omics" layers, and implementing this algorithm in the fast programming language C++. Furthermore, we applied our algorithm to data from the German KORA study to investigate a real-world problem involving the interplay among DNA methylation, genetic variants, and metabolite levels.

Conclusions: The pulver package is a convenient and rapid tool for screening huge numbers of linear regression models for significant interaction terms in arbitrary pairs of quantitative variables. pulver is written in R and C++, and can be downloaded freely from CRAN at https://cran.r-project.org/web/packages/pulver/.

Keywords: Algorithm, Linear regression interaction term, SNP–CpG interaction, Software

Background

Hundreds of genetic variants associated with complex human diseases and traits have been identified by genome-wide association studies (GWAS) [1–4]. However, most GWAS only considered univariate models with one outcome and one independent variable, thereby ignoring possible interactions between different quantitative “omics” data [5], such as DNA methylation, genetic variations, mRNA levels, or protein levels. For example, studies observed associations between specific epigenetic-genetic interactions and a phenotype [6–8]. The lack of publications analyzing genome-wide interactions may result because of the high computational cost of running linear regressions for all possible pairs of “omics” data. Understanding the interplay among different “omics” layers can provide important insights into biological pathways that underlie health and disease [9].

Previous interaction analyses in genome-wide studies mainly considered interactions between single-nucleotide polymorphisms (SNPs), which led to the development of several rapid analysis tools. For example, BiForce [10] is a

* Correspondence: Sophie.molnos@helmholtz-muenchen.de
1Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
2Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
3Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
stand-alone Java program that integrates bitwise computing with multithreaded parallelization; SPHINX [11] is a framework for genome-wide association mapping that finds SNPs and SNP–SNP interactions using a piecewise linear model; and epiGPU [12] calculates contingency table-based approximate tests using consumer-level graphics cards.

Several rapid programs are also available for calculating linear regressions without interaction terms. For example, OmicABEL [13] efficiently exploits the structure of the data but does not allow the inclusion of an interaction term. The R package MatrixEQTL [14] computes linear regressions very quickly based on matrix operations. This package also allows for testing for interaction between a set of independent variables and one fixed covariate. However, interactions between arbitrary pairs of quantitative covariates would require iteration over covariates, which is quite inefficient.

Thus, our R package called pulver is the first tool to allow the user to compute p-values for interaction terms in huge numbers of linear regressions in a practical amount of time. The acronym pulver denotes parallel ultra-rapid p-value computation for linear regression interaction terms.

We benchmarked the performance of our implemented method using simulated data. Furthermore, we applied our algorithm to “omics” data from the Cooperative Health Research in the Region of Augsburg (KORA) F4 study (DNA methylation, genetic variants, and metabolite levels).

KORA comprises a series of independent population-based epidemiological surveys and follow-up studies of participants living in the region of Augsburg, Southern Germany [15].

Access to the KORA data can be requested via the KORA Passt System (https://helmholtz-muenchen.managed-otr.com/otrs/customer.pl).

Implementation
pulver computes p-values for the interaction term in a series of multiple linear regression models defined by covariate matrices X and Z and an outcome matrix Y, containing continuous data, e.g. metabolite levels, mRNA or proteomics data. In most cases the residuals from the phenotype adjusted for other parameters are used. All matrices must have equal number of rows, i.e., observations. For efficiency reasons, pulver does not adjust for additional covariates, instead the residuals from the phenotype adjusted for other parameters should be used.

Linear regression analysis
For every combination of columns x, y, and z from matrices X, Y, and Z, pulver fits the following multiple linear regression model:

\[y = \beta_0 + \beta_1 x + \beta_2 z + \beta_3 xz + \epsilon, \epsilon \sim \text{i.i.d.} \mathcal{N}(0, \sigma^2), \]

where y is the outcome variable, x and z are covariates, and xz is the interaction (product) of covariates x and z. All variables are quantitative. We need to test the null hypothesis \(\beta_3 = 0 \) against the alternative hypothesis \(\beta_3 \neq 0 \). In particular, we are not interested in estimating the coefficients \(\beta_1 \) and \(\beta_2 \), which allows us to take a computational shortcut. By centering and orthogonalizing the variables, we can reduce the multiple linear regression problem into a simple linear regression without intercept. Thus, we can compute the Student’s t-test statistic for the coefficient \(\beta_3 \) as a function of the Pearson’s correlation coefficient between y and the orthogonalized xz: \(t = r\sqrt{DF/(1-r^2)} \), where DF is the degree of freedom. See the Additional file 1 for a more detailed derivation.

By computing the t-statistic based on the correlation coefficient, which has a very simple expression in the simplified model, we avoid fitting the entire model including estimating the coefficients \(\beta_1 \) and \(\beta_2 \). This is much more efficient because we are actually only interested in the interaction term.

Avoiding redundant computations
Despite the computational shortcut, even more time can be saved by employing a sophisticated arrangement of the computations. The naive approach would iterate through three nested for-loops, with one for each matrix, where all computations occur in the innermost loop. However, Fig. 1 shows that some computations can be moved out of the innermost loop to avoid redundant computations.

Programming language and general information about the program
We implemented the algorithm in an R package [16] called pulver. Due to speed considerations, the core of the algorithm was implemented in C++. We used R version 3.3.1 and compiled the C++ code with gcc compiler version 4.4.7. To integrate C++ into R, we used the R package Rcpp [17] (version 0.12.7).

To determine whether C/Fortran could improve the performance compared to that of C++, we also implemented the algorithm using a combination of C and Fortran via R’s C interface.

We used OpenMP version 3.0 [18] to parallelize the middle loop. To minimize the amount of time required to coordinate parallel tasks, we inverted the order of matrices X and Z so that the middle loop could run over more variables than the outer loop, thereby maximizing the amount of work per thread.

To improve efficiency, the program does not allow covariates other than x and z. If additional covariates are required, the outcome y must be replaced by the residuals from the regression of y on the additional covariates.
Missing values in the input matrices are replaced by the respective column mean.

Our \textit{pulver} package can be used as a screening tool for scenarios where the number of models (number of variables in matrix $X \times$ number of variables in matrix $Y \times$ number of variables in matrix Z) is too large for conventional tools. By specifying a p-value threshold, the results can be limited to models with interaction term p-values below the threshold, thereby reducing the size of the output greatly. After the initial screening process, additional model characteristics for the significant models, e.g., effect estimates and standard errors, can be obtained with traditional methods such as R’s \textit{lm} function.

The user can access \textit{pulver}’s functionality via two functions: \textit{pulverize} and \textit{pulverize_all}. The \textit{pulverize} function expects three numeric matrices and returns a table with p-values for models with interaction term p-values below the (optionally specified) p-value threshold. The wrapper function \textit{pulverize_all} expects files with names containing X, Y, and Z matrices, calls \textit{pulverize} to perform the actual computation, and returns a table in the same format as \textit{pulverize}. The \textit{pulverize_all} function is particularly useful if the matrices are too huge to be loaded all at the same time because of the computer memory restrictions. Thus, \textit{pulverize_all} gets inputs as lists of file names containing the submatrices X, Y, and Z. \textit{pulverize_all} iterates through these lists and subsequently loads matrices before calling the \textit{pulverize}.

\textbf{Fig. 1} Pseudo-code of the \textit{pulverize} function

\begin{verbatim}
Input: matrices X,Y,Z, p-value threshold
Output: table with p-values < p-value threshold and columns matching variable names in X,Y,Z

Compute r-value threshold using p-value threshold
Center variables of X,Y,Z
for x in variables in matrix X
 for z in variables in matrix Z
 Orthogonalize z wrt x
 Compute interaction xz
 Center xz
 Orthogonalize xz wrt x and z
 Compute \|xz\| (norm of xz)
 for y in variables in matrix Y
 Orthogonalize y wrt x and z
 Compute \|y\|
 Compute \(r = (y,xz) / (\|y\| \ast \|xz\|) \)
 if \(r > r\text{-value threshold} \)
 Calculate p-value
\end{verbatim}

\textbf{Comparisons with other R tools for running linear regressions}

As illustrated in Fig. 2, the inputs for the interaction analysis can be vectors or matrices. Compared to other R tools such as \textit{lm} and \textit{MatrixEQTL} \textit{pulver} is currently the only available option for users who want all the inputs to be matrices. It is possible to adapt other tools to all-matrix inputs, but the resulting code is not optimized for this use and will be too slow for practical purposes.

\(p_1, p_2 \text{ and } p_3 \in \mathbb{N} \).

\textbf{Results}

To benchmark the performance of \textit{pulver} against other tools, we simulated X, Y, and Z matrices with different numbers of observations and variables.

We also applied \textit{pulver} to real data from the KORA study.

\textbf{Performance comparison using simulated data}

No other tool is specialized for the type of interaction analysis described above, so we compared the speed of our R package \textit{pulver} with that of R’s built-in \textit{lm} function and the R package \textit{MatrixEQTL} [14] (version 2.1.1) (also see Fig. 2).

To ensure a fair comparison, we did not use the parallelization feature of \textit{pulverize} because it is not available
Parallelization is possible and leads to significant speedups, although sublinear. For benchmarking purposes, each scenario was run 200 times using the R package `microbenchmark` (version 1.4–2.1, https://CRAN.R-project.org/package=microbenchmark) and the results were filtered with a p-value threshold of 0.05.

Figure 3 shows that `pulver` performed better than the alternatives in all the benchmarks. Note that the benchmark results obtained for the `lm` function were so slow that they could not be included in the chart.

In particular, for the benchmark where the number of variables in matrix Z was varied (see Fig. 3d), `pulver` outperformed the other methods by several orders of magnitude, and the results obtained by `MatrixEQTL` could not be included in the chart. The poor performance of `MatrixEQTL` is because it can only handle one Z variable, which forced us to repeatedly call `MatrixEQTL` for every variable in the Z matrix. This type of iteration is known to be slow in R. The good performance of `pulver` with benchmark d is particularly notable because this benchmark reflects the intended user case for `pulver` where all input matrices contain many variables.

Applying pulver to the analysis of real-world data

Metabolites are small molecules in blood whose concentrations can reflect the health status of humans [19]. Therefore, it is useful to investigate the potential effects of genetic and epigenetic factors on the concentrations of metabolites.

DNA methylation denotes the attachment of a methyl group to a DNA base. Methylation occurs mostly on the cytosine nucleotides preceding a guanine nucleotide, which are also called cytosine-phosphate-guanine (CpG) sites [20]. DNA methylation was measured using the Illumina Infinium HumanMethylation450 BeadChip platform, which quantifies the relative methylation of CpG sites [21].
DNA methylation was measured in whole blood so it was based on a mixture of different cell types. We employed the method described by Houseman et al. [22] and adjusted for different proportions of cell types. Thus, CpG sites were represented by their residuals after regressing on age, sex, body mass index (BMI), Houseman variables, and the first 20 principal components of the principal component analysis control probes from 450 K Illumina arrays. The control probes were used to adjust for technical confounding, where they comprised the principal components from positive control probes, which were used as quality control for different data preparation and measurement steps.

Furthermore, to avoid false positives, all CpG sites listed by Chen et al. [23] as cross-reactive probes were removed. Cross-reactive probes bind to repetitive sequences or co-hybridize with alternate sequences that are highly homologous to the intended targets, which could lead to false signals.

In the KORA F4 study, genotyping was performed using the Affymetrix Axiom chip [24]. Genotyped SNPs were imputed with IMPUTE v2.3.0 using the 1000 Genomes reference panel.

Metabolite concentrations were measured using two different platforms: Biocrates (151 metabolites) and Metabolon (406 metabolites). Biocrates uses a kit-based, targeted
quantitative by electrospray (liquid chromatography) – tandem mass spectrometry (ESI-(LC) MS/MS) method. A detailed description of the data was provided previously by Illig et al. [25]. Metabolon uses non-targeted, semi-quantitative liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and GC-MS methods. The data were previously described in Suhre et al. [26].

Metabolites were represented by their Box-Cox transformed residuals after regressing on age, sex, and BMI. We used the R package car [27] to compute the Box–Cox transforms.

Initially, there were 345,372 CpG sites, 9,143,401 SNPs (coded as values between 0 and 2 according to an additive genetic model), and 557 metabolites in the dataset. Analyzing the complete data would have taken a very long time even with pulver.

Thus, to estimate the time required to analyze the whole dataset, we ran scenarios using all CpG sites, all metabolites, and different numbers of SNPs (100, 1000, 2000, 4000, and 5000), and extrapolated the runtime that would be required to analyze all SNPs. Due to time limitations, we ran each of the scenarios defined above only once. The estimated runtime required to analyze the complete dataset by parallelizing the work across 40 processors was 1.5 years.

Thus, we decided to only select SNPs that had previously known significant associations with at least one metabolite [1, 25]. We determined whether these signals became even stronger after adding an interaction effect between DNA methylation and SNPs.

To avoid an excessive number of false positives, the SNPs were also required to have a minor allele frequency greater than 0.05. We applied these filters separately to the Biocrates and Metabolon data. After filtering, we had 345,372 CpG sites, 117 SNPs, and 16 metabolites for Biocrates, with 345,372 CpG sites, 6406 SNPs, and 376 metabolites for Metabolon.

We were only interested in associations that remained significant after adjusting for multiple testing, so we used a p-value threshold of $\frac{\log_{10}(0.05) \times 345372 + 117 \times 16 + 345372 \times 6406 \times 376}{10^{14}} = 6.01 \times 10^{-14}$ according to Bonferroni correction.

We found 27 significant associations for metabolites from the Biocrates platform (p-values ranging from 1.28×10^{-29} to 5.17×10^{-14}) and 286 significant associations for metabolites from the Metabolon platform (p-values ranging from

Fig. 4 Regional plot with significant associations among SNPs (circles), CpGs (squares), and butyrylcarnitine for the Biocrates platform (a) and Metabolon platform (b). Interactions between SNPs and CpGs are visualized by lines connecting SNPs and CpGs. c) Comparison of the adjusted coefficient of determination in the models with and without the interaction term. d) Scatterplot of CpG site cg21892295 and metabolite butyrylcarnitine. Genotypes are color-coded.
1.15 \times 10^{-42} to 3.73 \times 10^{-14}). All of the significant associations involved the metabolite butyrylcarnitine as well as SNPs and CpG sites on chromosome 12 in close proximity to the ACADS gene (see Fig. 4a and b). Figure 4c shows one of the significant results (SNP rs10840791, CpG site cg21892295, and metabolite butyrylcarnitine) to illustrate how the inclusion of an interaction term in the model increased the adjusted coefficient of determination, R² (calculated using the summary.lm function in R).

The ACADS gene encodes the enzyme Acyl-CoA dehydrogenase, which uses butyrylcarnitine as a substrate [25], and previous studies have shown that SNPs and CpGs in this gene region are independently associated with butyrylcarnitine [1, 4, 25].

Discussion

In the case where interaction terms need to be calculated for arbitrary pairs of variables, pulver performs far better than its competitors. The time savings are achieved by avoiding redundant calculations. Thus, computationally expensive p-values are only computed at the very end and only for results below a significance threshold determined using the (computationally cheap) Pearson’s correlation coefficient. To maximize the speedup, we recommend always specifying a p-value threshold and using pulver as a filter to find models with significant or near-significant interaction terms. If a p-value threshold is not specified, the time savings will be suboptimal and the number of results will be very high.

Thus, we recommend using a p-value threshold to adjust for multiple testing, such as Bonferroni correction, i.e.

\[\frac{0.05}{\text{number of tests}} = \text{number of columns in } X \times \text{number of columns in } Y \times \text{number of columns in } Z. \]

The core algorithm of pulver was implemented in two languages namely, C++ and C/Fortran, to examine different performances due to programming languages. However, comparing the two different implementation of pulver reveals no striking differences. Thus, we continued to use the C++ version as it offered some useful implemented functions such as those implemented in the C++ Standard Library algorithms [28].

The package imputes missing values based on their column means. If this is not required, then we recommend using other more sophisticated methods, such as the mice package in R [29], in order to remove missing values before applying pulver.

pulver was developed as a screening tool to efficiently identify associations between the outcome, such as metabolite levels, and the interaction among two quantitative variables, such as CpG-SNP interaction. Once, significant associations are identified, other information regarding the fitted models, such as slope coefficients, standard errors, or residuals, can be computed in a second step using traditional tools.

Conclusion

Our pulver package is currently the fastest implementation available for calculating p-values for the interaction term of two quantitative variables given a huge number of linear regression models. Pulver is part of a processing pipeline focused on interaction terms in linear regression models and its main value is allowing users to conduct comprehensive screenings that are beyond the capabilities of existing tools.

Availability and requirements

Project name: pulver.

Project home page: https://cran.r-project.org/web/packages/pulver/index.html

Operating system(s): Platform independent.

Programming language: R, C++.

Other requirements: R 3.3.0 or higher.

License: GNU GPL.

Any restrictions to use by non-academics: None.

Additional file

Additional file 1: Theory underlying pulver. This file describes the derivation of the t-value computed from the beta value divided by the standard error and the correlation value. (PDF 426 kb)

Abbreviations

GWAS: Genome-wide association studies; SNP: Single-nucleotide polymorphism

Acknowledgements

We thank all of the participants in the KORA F4 study, everyone involved with the generation of the data, and the two anonymous reviewers for comments.

Funding

The KORA study was initiated and financed by the Helmholtz Zentrum München – German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. Furthermore, KORA research was supported within the Munich Center of Health Sciences (MC-Health), Ludwig-Maximilians-Universität, as part of LMUinnovativ.

Availability of data and materials

pulver can be downloaded from CRAN at https://cran.r-project.org/web/packages/pulver/.

The data used in the simulations were generated by the create_input_files function found in testing.R.

Authors’ contributions

SM and CG designed the study. SM and CB wrote the pulver software and conducted computational benchmarking. SM, CB, SW, MN, KS, RW, MW, TM, JA, GK, KS, AP, HG, FJT, and CG contributed to the data acquisition or data analysis and interpretation of results. SM wrote the manuscript. SM, CB, SW, MN, KS, RW,MW, TM, JA, GK, KS, AP, HG, FJT, and CG contributed to the review, editing, and final approval of the manuscript.

Ethics approval and consent to participate

The KORA study was approved by the local ethics committee (“Bayerische Landesärztekammer”, reference number: 06068).
