Study of stresses in plane truss nodes

A P Shabaldin, N V Kharinova

Department of structural mechanics, Novosibirsk State University of Architecture and Civil Engineering (Sibstrin), 113, Leningrdskaia str., Novosibirsk 630008, Russia

E-mail:a.shabaldin@edu.sibstrin.ru

Abstract: in this paper, the stress state in a plane truss node was studied in two ways: numerically using the finite element method and experimentally using the photoelasticity method. The finite element method was used to calculate plane truss model. Photoelasticity or polarization-optical method was used to research stresses of piezo-optical materials. The picture of interference fringe patterns in the model of a planetruss was obtained by the method of photoelasticity. Stresses were calculated with their help. The purpose of the work was compared with both methods. Fields of maximum tangent stresses were obtained in the sample plane using both methods.

1. Introduction

The complexity of building structures, the use of nodes in a complex configuration entails difficulties associated with obtaining stress fields in these nodes. In some cases, experimental verification of numerical solutions and experimental studies was required [1,2]. A truss is a structure consisting of perfectly straight rods connected at the nodes by cylindrical hinges and working for the perception of nodal loads [3-16].

Numerical and physical experiments were used for the study. The solution obtained in the SCAD software package was tested using a physical experiment. There were a number of experimental methods for studying stresses. In this work, the polarization-optical method of stress investigation, namely the photoelasticity method [17-20], was applied.

2. Technique of polarization-optical experiment

When studying plane models using a polarizing optical method, the sample was illuminated by a beam of coherent light. As a result, when a beam of light passes through the loaded model, double refraction occurs and a picture of interference fringe patterns, or an isochrome field, was observed on the screen (Figure. 1).

In the case of obtaining an isochrome field in white light, interference fringes with strictly defined color alternation was observed. Special points or areas with zero optical path difference were characterized by color; uniformity of care was characterized by dark color. To obtain isochromes in monochromatic light, there was the same color of the entire field, corresponding to the wavelength of light, against which the isochromes were observed as alternating dark and light lines. If we talk about the relationship between the picture of interference fringe patterns and the stress-strain state of the model, then isochromes are lines that are the geometric location of points with the same difference in the main stresses.
In addition to the isochrome field, in the photoelasticity studies, we can observe isoclines, which are geometric places of points with the same angle of inclination of the main stresses coinciding with the plane of polarization (Figure 2).

Figure 1. The picture of interference fringe patterns farm.

Figure 2. Isoclines (10°, 30°, 60°, 90°).

Isoclines field could be obtained either in “white” or monochromatic light. When receiving isoclines in white light, they were observed as dark lights passing against the background of color picture of interference fringe patterns. When receiving isoclines in monochromatic light, they were observed as dark lights passing over an isochromatic fringe pattern consisting of alternating dark and light lines. Therefore, lines of isoclines in monochromatic light were difficult distinguish from isochromes. When the angle of inclination of the polarization planes changes the isochromatic fringe...
patterns remains unchanged and stationary and isoclines were moved relative to isochromes. And with only synchronous rotation of the polarization planes can one family of lines distinguished from others. The isolines family represented the isoclines field in the sample plane.

Isoclines in the stressed model are observed in plane-polarized light with the cross position of the polarization plane of the polarizer and analyzer. Thus, to study stress-strain state model you need to get the picture of interference fringe patterns and isocline field.

2.1. Polarization-optical experiment

The model was studied made from polarizing–optical material - epoxy resin (E = 3000 MPa; υ = 0.38, $\sigma_0^{1,0} = 1$, 4MPa*cm, sample thickness = 0.5cm)

The farm in question is construction with rigid nodes, supported by a hinge at the edges. The load was concentrated force in the central node of the upper belt of farm. The model was tested on polarizing unit PPU-7, was loaded with force of 0.4 kN in the node of farm and highlighted with white light. As the result, a picture of interference fringe patterns farm was obtained.

On figure 4 the isochrome field was enlarged in the node which was noted on a figure 3. Numbers (1, 2, 3…) indicate the order of the interference fringe patterns.

![Figure 3. Farm model.](image)

The order of the fringe pattern was related with difference of main stresses by the formula (1) where n – order of the fringe, σ_1, σ_2 are main stresses in the sample plane, h is thickness of the model and $\sigma_0^{1,0}$ is value of the material fringe. The band value is a difference between the main stresses that cause a single fringe to appear in a model with a thickness of h = 1cm and it is usually determined by calibration tests. In our case we consider a strip for material with a thickness of 0.5 cm

$$n = \frac{h(\sigma_1 - \sigma_2)}{\sigma_0^{1,0}} \quad (1)$$

Then we determine the maximum tangent stresses τ_{max} based on the known dependences of the resistance of materials.

$$\tau = \frac{n \ast \sigma_0^{1,0}}{2h} \quad (2)$$

As a result, we got fields of maximum tangent stresses figure 5.
3. Numerical experiment

The finite element method (FEM) using the SCAD software package was used to study a flat truss with rigid nodes, the rods of which were set by plate elements. The loading scheme of model was shown in figure 6. The characteristics of the calculated model correspond to the epoxy resin from the polarization-optical experiment. In the node, in the upper belt on the axis of symmetry of the truss, the node load $F = 0.4$ kN was set. The model was divided into cells that have a square base grid with a size of 1x1 mm. The x-axis was oriented along the rods.

As a result of calculating the model by the finite element method, stress fields $\sigma_x, \sigma_y,$ and τ_{xy} were obtained in its plane. For figure 7 showed the stress fields in the truss node marked in figure 6, analyzing which, we can conclude that the maximum stresses were located in the center of the truss node. At the junction of the rods, there was a concentrator in the form of an acute angle, where extreme stresses were marked.

Comparing the stress fields in the numerical and optical polarization methods, we can note a qualitative coincidence of the results.

Figure 4. The picture of interference fringe patterns in the node.

Figure 5. Field of maximum tangent stresses (MPa).

Figure 6. The loading scheme of model.
Based on the results of the work performed, conclusions can be drawn:
1. Using the photoelasticity method, we obtained picture of interference fringe patterns and isocline fields in the node of the farm model;
2. The field of maximum tangent stresses in the truss node was obtained by the photoelasticity method;
3. Stress fields in the truss node were obtained by the finite element method in the software package “SCAD”;
4. A comparative analysis of the results of numerical and physical experiments was carried out and it was found that the nature of the stress distribution in both numerical and physical experiments coincides.

Reference
[1] Kiychenko T S, Tabanyukhova M V et al 2019 Determination of stresses in truss rods: a numerical and physical experiment conf. on Traditions, modern problems and prospects of construction development (Grodno: Novosibirsk state University of architecture and civil engineering (sibstrin)) pp 1-6
[2] Kazakova E A and Tabanyukhova M V 2019 Photoelastic analysis of the stress state of a perforated beam. Text of a scientific article on the specialty "Construction and architecture". Textbook: Design and construction. Proc. of the 3rd Int scientific and practical conf of young scientists, postgraduates, masters and bachelors. South-Western state University, Moscow state machine-building University (Moscow) pp 209–212

[3] Belenya E I, Kudishin Yu I, Ignatier-VA V S et al 2007 Metal structures: Textbook for students. no. studies'. I / 10th ed. (ster. Publishing center "Academy") p 688

[4] Tabanyukhova M V 2010 Reducing stress in beams in the presence of defects in the textbook: Defects in buildings and structures. Strengthening of building structures Materials of the XIV scientific and methodological conf. of METU. Military engineering and technical University, pp 104–108

[5] Heyman J 2010 Design of a simple steel truss Proceedings of the Institution of Civil Engineers – Structures and Buildings 163(1) 53–56

[6] Hutchinson R G 2006 The structural performance of the periodic truss Journal of the Mechanics and Physics of Solids 54(4) 756–782

[7] Alpatov V Yu 2009 Optimization of the geometric shape of spatially-rod structures Metal structures 15(1) 47–57

[8] Camp C V 2014 Design of space trusses using modified teaching-learning based optimization Engineering Structures 62–63, 87–97

[9] Kaveh A 2008 Optimal structural design family by genetic search and ant colony approach Engineering Computations 25(3) 268–288

[10] Tabanyukhova M V 2012 Study of the stress state of beams with a reinforcing layer of carbon fiber value Mechanics of composite materials and structures 18(2) 248–254

[11] Tinkov D 2015 Comparative analysis of analytical solutions to the problem of deflection of truss structures Engineering and Construction Journal 5(57) 66–73

[12] Tinkov D 2015 Analysis of exact solutions of the deflection of regular hinged-rod structures Building mechanics of engineering structures and structures 6 21–28

[13] Kiyko L K 2016 Analytical assessment of the arch of a truss under the influence of wind load Scientific Herald 1(7) 247–254

[14] Kirsanov M N 2015 Analysis of the deflection of a lattice girder truss type Construction Engineering Journal 5(57) 58–65

[15] Kirsanov M N 2015 Analytical calculation of a truss beam with a complex lattice Building mechanics and structural design 3(260) 7–12

[16] Albaut G N 2002 Nonlinear photoelasticity in the application to the problems of fracture mechanics: Textbook Ministry of education of the Russian Federation. Novosibirsk State University of architecture and civil engineering-Novosibirsk pp 8–12

[17] Zerkal S M and Tabanyukhova M V 2019 Photoelastic analysis of stress concentration near the tops of cracks-cuts Journal Innovation in life 2(29) 126–133

[18] Tabanyukhova M V, Photoelastic 2020 Analysis of the stressed state of a flat element with geometrical stress concentrators (cutout and cuts) KEM Key engineering materials 82 7330–335

[19] Tabanyukhova M V 2018 Determination of coefficients of stress concentration near notches simulating cracks textbook Theory of structures: achievements and problems. Materials of the III all-Russian scientific and practical conf. Dagestan state technical University pp 88–92

[20] Belyaeva I V, Tabanyukhova M V et al 2011 Study of the stress-strain state of a two-layer system of the "coating-substrate" type In the textbook: Int conf on physical mesomechanics, computer design and development of new materials pp 75–76