MAXIMAL DIVISORIAL IDEALS AND t-MAXIMAL IDEALS

STEFANIA GABELLI AND MOSHE ROITMAN

ABSTRACT. We give conditions for a maximal divisorial ideal to be t-maximal and show with examples that, even in a completely integrally closed domain, maximal divisorial ideals need not be t-maximal.

INTRODUCTION

The v-operation and the t-operation are the the best known and most useful star operations; mainly because the structure of certain semigroups of t-ideals reflects the multiplicative properties of an integral domain. In this context an important role is played by the prime and the maximal v- and t-ideals.

Since the t-operation is a star operation of finite type, a domain R has always t-maximal ideals. On the other hand, the set of v-maximal ideals may be empty.

In this paper we deal with the following question:

Assume that M is a v-maximal ideal of R, is M necessarily a t-maximal ideal?

We show that although the answer is positive in a large class of domains, namely in the class of v-coherent domains, it is negative in general. In fact we give two examples of a v-maximal ideal P that is not a t-maximal ideal. In the first example P is an upper to zero of a completely integrally closed polynomial ring, thus P is v-invertible. In the second example P is a strongly divisorial ideal of an integrally closed semigroup ring.

1. Preliminaries and notations

Throughout this paper R will denote an integral domain with quotient field K. We will refer to a fractional ideal as an ideal and will call a fractional ideal contained in R an integral ideal.

1991 Mathematics Subject Classification. Primary: 13C13; Secondary: 13G05.

Key words and phrases. divisorial ideal, star operation, t-ideal.
We recall that a star operation is an application $I \rightarrow I^*$ from the set $F(R)$ of nonzero ideals of R to itself such that:

1. $R^* = R$ and $(aI)^* = aI^*$, for all $a \in K \setminus \{0\}$;
2. $I \subseteq I^*$ and $I \subseteq J \Rightarrow I^* \subseteq J^*$;
3. $I^{**} = I^*$.

General references for systems of ideals and star operations are [13, 16, 17, 22]. We denote by $f(R)$ the set of nonzero finitely generated ideals of R. A star operation $*$ is of finite type if, for each $I \in F(R)$, $I^* = \cup\{J^* | J \subseteq I$ and $J \in f(R)\}$. To any star operation $*$, we can associate a star operation $*_{f}$ of finite type by defining $I^{*_{f}} = \cup\{J^* | J \subseteq I$ and $J \in f(R)\}$. Clearly $I^{*_{f}} \subseteq I^*$.

The v- and the t-operations are particular star operations, defined in the following way.

For a pair of nonzero ideals I and J of a domain R we let $(J : I)$ denote the set $\{x \in K | xI \subseteq J\}$ and $(J : R I)$ denote the set $\{x \in R | xI \subseteq J\}$. We set $I_v = (R : (R : I))$ and $I_t = \bigcup J_v$ with the union taken over all finitely generated ideals J contained in I.

The t-operation is the finite type star operation associated to the v-operation.

A nonzero ideal I is called a $*$-ideal if $I = I^*$. Thus a nonzero ideal I is a v-ideal, or is divisorial, if $I = I_v$, and it is a t-ideal if $I = I_t$. Note that I is a t-ideal if and only if $J_v \subseteq I$ whenever J is finitely generated and $J \subseteq I$.

The set $F_*(R)$ of $*$-ideals of R is a semigroup with respect to the $*$-multiplication, defined by $(I, J) \rightarrow (IJ)^*$, with unity R.

We say that an ideal $I \in F(R)$ is $*$-invertible if I^* is a unit in the semigroup $F_*(R)$. In this case the $*$-inverse of I is $(R : I)$. Thus I is $*$-invertible if and only if $(I(R : I))^* = R$. Invertible ideals are ($*$-invertible) $*$-ideals.

We have $I \subseteq I^* \subseteq I_v$, so that any divisorial ideal is a $*$-ideal and any $*$-invertible ideal is v-invertible. In particular a divisorial ideal is a t-ideal and a t-invertible ideal is v-invertible.

A nonzero ideal I is $*$-finite if $I^* = J^*$ for some finitely generated ideal J. Since the v- and the t-operation coincide on finitely generated ideals and since $I_t = J_v$ implies $I_v = J_v$, an ideal I is t-finite if and only if $I_v = J_v$ (equivalently $(R : I) = (R : J)$) for some finitely generated ideal $J \subseteq I$. It follows that the set $f_v(R)$ of the v-finite divisorial ideals coincides with the set of the t-finite t-ideals. $f_v(R)$ is a sub-semigroup of $F_v(R)$.
An ideal I is t-invertible if and only if it is v-invertible and both I and $(R : I)$ are t-finite. Hence the set of the t-invertible t-ideals of R, here denoted by $T(R)$, is the largest subgroup of $f_v(R)$. The importance of the notion of t-invertibility is well illustrated in [28].

Denoting by $Inv(R)$ the group of the invertible ideals of R, we have

$Inv(R) \subseteq T(R) \subseteq f_v(R) \subseteq F_v(R) \subseteq F_t(R) \subseteq F(R)$

and

$Inv(R) \subseteq f(R)$.

Several important classes of domains may be characterized by the fact that some of these inclusions are equalities. For example R is a Prüfer domain if and only if $Inv(R) = f(R)$ [13], it is a Krull domain if and only if $T(R) = F_t(R)$ [21] and it is a Prüfer v-multiplication domain, for short a PeMD, if and only if $T(R) = f_v(R)$ [16]. A Mori domain is a domain satisfying the ascending chain condition on integral divisorial ideals and has the property that $f_v(R) = F_t(R)$. Noetherian and Krull domains are Mori. A recent reference for Mori domains is [1]. The class of domains with the property that $F_v(R) = F_t(R)$ have been studied by several authors [3, 18, 26, 4, 5]. A domain such that $F_t(R) = F(R)$ is called in [20] a TV-domain. Examples of TV-domains are given in [20, 23, 7]. Mori and pseudovaluations domains which are not valuation domains are TV-domains.

2. When a maximal divisorial ideal is t-maximal

A prime $*$-ideal is called a $*$-prime. A $*$-maximal ideal is an ideal that is maximal in the set of the proper integral $*$-ideals. A v-maximal ideal is also called a maximal divisorial ideal. A $*$-maximal ideal is a prime ideal (if it exists).

If $*$ is a star operation of finite type, an easy application of the Zorn Lemma shows that the set $*\text{Max}(R)$ of the $*$-maximal ideals of R is not empty. Moreover, for each $I \in F(R)$, $I^* = \cap_{M \in \text{Max}(R)} I^* R_M$ [16]. In particular the set of the t-maximal ideals is not empty and $I_t = \cap_{M \in \text{Max}(R)} I_t R_M$. On the contrary, the set of maximal divisorial ideals may be empty, like for example when R is a rank-one nondiscrete valuation domain.

If M is a $*$-maximal ideal that is not $*$-invertible, then $M = (M(R : M))^*$ and so $(M : M) = (R : M)$. An ideal I with the property that $(R : I) = (I : I)$ is called strong. A strong ideal is never $*$-invertible and we have just seen that a $*$-maximal ideal is either $*$-invertible or strong.

An ideal which is strong and divisorial is called strongly divisorial.
Proposition 2.1.

(1) If M is a maximal divisorial ideal of R, then $M = x^{-1}R \cap R$, for some element $x \in K$. Hence $(R : M) = (R + xR)_v$.

(2) If P is a prime divisorial ideal of R such that $(R : P) = R + xR$, for some element $x \in K$, then P is maximal divisorial.

Proof. (1) If $x \in (R : M) \setminus R$, then $M \subseteq x^{-1}R$ and $R \not\subseteq x^{-1}R$. Since an intersection of divisorial ideals is divisorial and M is v-maximal, we have $M = x^{-1}R \cap R = (R : R + xR)$.

(2) Let Q be a proper divisorial ideal containing P. Since Q is divisorial, $(R : Q) \not\subseteq R$. Since $(R : Q) \subseteq (R : P) = R + xR$, we see that there exists an element $y \in R$ such that $xy \in (R : Q) \setminus R$. Thus $y \not\in P$, and $xyQ \subseteq R$. Since $P = (R : R + xR)$, we obtain that $yQ \subseteq P$. Since P is a prime ideal, we conclude that $Q \subseteq P$. Hence P is maximal divisorial. □

In a Mori domain R, all the prime divisorial ideals are of the form $x^{-1}R \cap R = (R : R + xR)$ [19, Corollary 2.5].

A domain has the property that each t-maximal ideal is divisorial if and only if every ideal I such that $(R : I) = R$ is t-finite [20, Proposition 2.4]. A domain of this type is called an H-domain in [15]. A TV-domain is clearly an H-domain, but the converse is not true [20, 2].

The following proposition gives conditions for a divisorial prime ideal to be a t-maximal ideal. A proof can be found in [10].

Proposition 2.2.

(1) A v-invertible divisorial prime is maximal divisorial;
(2) A v-finite maximal divisorial ideal is t-maximal;
(3) A v-finite v-invertible divisorial prime is t-invertible;
(4) A t-invertible t-prime is t-maximal.

We remark that in general a $*$-invertible $*$-prime need not be $*$-maximal (for example a principal prime ideal is not necessarily a maximal ideal) and that a (non-prime) v-finite v-invertible divisorial ideal need not be t-invertible [6].

Corollary 2.3. Assume that each maximal divisorial ideal of R is a t-maximal ideal. Then each v-invertible divisorial prime is a t-invertible t-maximal ideal.

Proof. Let P be a v-invertible divisorial prime. By Proposition 2.2, P is maximal divisorial and so t-maximal. Since P is not strong, then it is t-invertible. □

In general, if each v-invertible divisorial prime of R is t-invertible, it is not true that each v-invertible ideal is t-invertible. This last property
is in fact equivalent to R being an H-domain \[25\] Proposition 4.2]. The ring of entire functions is not an H-domain, but all its divisorial primes are t-invertible (see for example \[10\] Section 2). A v-coherent domain is a domain R with the property that, for each finitely generated ideal J, the ideal $(R : J)$ is v-finite. This class of domains was first studied (under a different name) in \[25\] and is very large, properly including $PvMD$’s, Mori domains and coherent domains \[25\] \[14\]. (A domain is coherent if each finitely generated ideal is finitely presented, or, equivalently, if the intersection of each pair of finitely generated ideals is finitely generated.)

Proposition 2.4. If R is v-coherent, then each maximal divisorial ideal is t-maximal.

Proof. Let M be a maximal divisorial ideal of R. Then $M = x^{-1}R \cap R = (R : R + xR)$ for some $x \in K$ (Proposition \[2.1\]). Since R is v-coherent, then M is v-finite and so t-maximal by Proposition \[2.2\].

A domain R is completely integrally closed if and only if $F_v(R)$ is a group under v-multiplication \[13\]. If $F_v(R) = T(R)$, then R is a completely integrally closed H-domain, equivalently a Krull domain \[10\] \[15\].

A divisorial prime of a completely integrally closed domain, being v-invertible, is always maximal divisorial by Proposition \[2.2\]. We will see in the next section that it need not be t-maximal. As a matter of fact, a divisorial prime P of a completely integrally closed domain has height one and P is t-maximal if and only if it is v-finite, if and only if it is t-invertible \[10\] Theorem 2.3].

A completely integrally closed v-coherent domain is a (completely integrally closed) $PvMD$. In this case each divisorial prime is t-maximal by Corollary \[2.3\].

We now turn to the case of polynomial rings.

We denote by X a set of independent indeterminates over R and by $R[X]$ the polynomial ring in this set of indeterminates. It is well known that the correspondence $I \mapsto I[X]$ induces inclusion preserving injective maps $t(R) \hookrightarrow t(R[X])$ and $D(R) \longrightarrow D(R[X])$. Moreover, M is a t-maximal ideal, respectively a maximal divisorial ideal, of $R[X]$ such that $M \cap R \neq (0)$, if and only if $M = (M \cap R)[X]$ and $M \cap R$ is a t-maximal ideal, respectively a maximal divisorial ideal, of R (see for example \[8\] Lemma 2.1 and \[27\] Theorem 3.6]).

Thus, if each maximal divisorial ideal of $R[X]$ is t-maximal, R has the same property.
On the other hand, Example 3.1 in the next section shows that if $M \cap R = (0)$, then M may be maximal divisorial but not t-maximal.

A prime ideal Q of $R[X]$ such that $Q \cap R = (0)$ is called an upper to zero. Q is an upper to zero of height one if and only if $Q = fK[X] \cap R[X]$ for some polynomial $f \in R[X]$, irreducible in $K[X]$ [12, Lemma 2.1]. In one indeterminate, all the uppers to zero are of this form.

Recall that if R is integrally closed and f is a nonzero polynomial of $R[X]$, then $fK[X] \cap R[X] = f(R : c(f))[X]$ [13, Corollary 34.9]. (Here $c(f)$ denotes the content of f, that is the fractional ideal of R generated by the coefficients of f.) Hence if R is integrally closed, an upper to zero of height one is always divisorial and if R is completely integrally closed, an upper to zero of height one, being v-invertible, is always maximal divisorial.

In general, an upper to zero is t-maximal if and only if it is t-invertible; in this case it has height one [12, Section 3]. We now show that a similar result holds for the v-operation.

Proposition 2.5. A divisorial upper to zero is a maximal divisorial ideal if and only if it is v-invertible. In this case it has height one.

Proof. A divisorial v-invertible prime is always maximal divisorial (Proposition 2.2 (1)).

Conversely, let $P \subseteq R[X]$ be an upper to zero that is maximal divisorial. Then $P = \frac{f}{g}R[X] \cap R[X] \subseteq fK[X] \cap R[X]$, for some $f, g \in R[X]$, $g \neq 0$ (Proposition 2.1(1)). Since $P \cap R = (0)$ and $f = \frac{f}{g}g \in P$, then $f \notin R$. We may also assume that f and g are coprime in $K[X]$.

Let $h = f\alpha \in fK[X] \cap R[X]$, with $\alpha \in K[X]$. There is a nonzero $c \in R$ such that $c\alpha \in R[X]$. Hence $ch = (c\alpha)f = (c\alpha)\frac{f}{g}g \in P$. Since $c \notin P$, then $h \in P$.

We conclude that $P = fK[X] \cap R[X]$ has height one. In addition, $\frac{f}{g} \in (R[X] : P)$, but $\frac{f}{g} \notin (P : P)$. Otherwise $g = \frac{f}{g}f \in P$ and so $g = \frac{f}{g}t$ for some $t \in R[X]$. Then f divides g^2 in $K[X]$, which is impossible, because f and g are coprime and $f \notin K$.

It follows that P is not strong and, being maximal divisorial, is v-invertible. □

The following result was proved in [15] for one indeterminate.

Proposition 2.6. R is an H-domain if and only if $R[X]$ is an H-domain.

Proof. An extended prime $P[X]$ is a t-maximal ideal, respectively a maximal divisorial ideal, if and only if so is P, [8, Lemma 2.1] and
A t-maximal upper to zero is t-invertible by [12, Theorem 2.3]. Hence it is divisorial.

The domain R is said to be a UMT-domain if every upper to zero of $R[X]$ is a t-maximal ideal [21]. This property is stable under polynomial extensions, in fact R is a UMT-domain if and only if $R[X]$ is a UMT-domain [8, Theorem 2.4]. The integrally closed UMT-domains are exactly the PvMDs [21, Proposition 3.2].

The following proposition is immediate.

Proposition 2.7. Assume that R is an UMT-domain. Then each maximal divisorial ideal of R is t-maximal if and only if $R[X]$ has the same property.

We conclude this section recalling that it is not known whether R v-coherent implies that $R[X]$ is v-coherent. This is true under the additional hypothesis that R is integrally closed [25]. In this case, each prime of $R[X]$ upper to zero is divisorial v-finite. When R is v-coherent and completely integrally closed (thus a completely integrally closed PvMD), each upper to zero of $R[X]$ is t-maximal (and t-invertible).

3. MAXIMAL DIVISORIAL IDEALS THAT ARE NOT t-MAXIMAL

In this section we give two examples of a maximal divisorial ideal P of an integral domain R that is not a t-maximal ideal. In the first example R is a completely integrally closed polynomial ring in one indeterminate and P is an upper to zero, thus P is v-invertible. In the second example R is an integrally closed semigroup ring and P is strongly divisorial.

Example 3.1. An upper to zero P of a completely integrally closed polynomial ring $R[X]$ that is maximal divisorial but not t-maximal. P is necessarily v-invertible.

Let y, z and $t = \{t_n(n \geq 1)\}$ be independent indeterminates over a field k. Let S be the semigroup of monomials f of $k[y, z, t]$ satisfying the conditions $\deg_{y, z} f \geq \deg_{t_n} f$ for all $n \geq 1$, and let $R = k[S]$ the semigroup ring over k generated by S.

Set

$$P = (y + zX)K[X] \cap R[X],$$

where K is the field of fractions of R and X is an indeterminate over R. Then R (and so also $R[X]$) is completely integrally closed, and P is a maximal divisorial ideal of $R[X]$ that is not t-maximal.

Proof.
(1) \(R[X] \) is completely integrally closed.

It is enough to show that \(R \) is completely integrally closed. Since \(R = k[S] \) is a semigroup ring over the field \(k \), by [13, Corollary 12.7 (2)] to this end it suffices to show that the semigroup \(S \) is completely integrally closed.

Let \(u, v, w \in S \) so that \(u(\frac{w}{w})^m \in S \) for all \(m \geq 1 \). Fix \(n \geq 1 \). Then \(\deg_{y,z}(u(\frac{w}{w})^m) \geq \deg_{t^n}(u(\frac{w}{w})^m) \) for all \(m \). Hence

\[
\deg_{y,z} u + m \deg_{y,z}(\frac{v}{w}) \geq \deg_{t^n} u + m \deg_{t^n}(\frac{v}{w}).
\]

Divide by \(m \) and let \(m \) go to \(\infty \) to obtain that \(\deg_{y,z}(\frac{v}{w}) \geq \deg_{t^n}(\frac{v}{w}) \). The same argument shows that \(\frac{w}{w} \) is a monomial, that is has a nonnegative degree in each indeterminate. It follows that \(\frac{w}{w} \in S \); thus \(S \) is completely integrally closed.

(2) \(P \) is an upper to zero of \(R[X] \) that is a \(v \)-invertible maximal divisorial ideal.

\(P \) is clearly an upper to zero. Since \(R \) is integrally closed, then \(P = (y + zX)(R : (y, z))|X] \) by [13, Corollary 34.9], hence \(P \) is divisorial. But \(R[X] \) is completely integrally closed; thus \(P \) is \(v \)-invertible and so maximal divisorial (Proposition 2.2).

(3) \(P \) is not t-maximal.

Let \(Q = (y, z)k[y, z, t] \cap R \). Then \(QR[X] \) is a proper t-ideal of \(R[X] \) properly containing \(P \).

To verify this, let \(F \) be a finite subset of \(QR[X] \). Let \(t_n \) be an indeterminate that does not occur in the polynomials in the set \(F \). Then \(t_n \cdot f \in R[X] \) for all \(f \in F \), so \(t_n \in (R[X] : F) \). If \(g \in (F)_v \), then \(gt_n \in R[X] \). Hence \(\deg_{y,z} gt_n \geq 1 \) and \(g \in Q \). It follows that \((F)_v \subseteq Q \), so \(Q \) is a t-ideal.

\(\square \)

Example 3.2. An example of a strong maximal divisorial ideal of an integrally closed domain \(R \) that is not t-maximal.

Let \(k \) be a field and let \(Y, Z, X = \{X_n : n \geq 1\}, T = \{T_n : n \geq 1\} \) be independent indeterminates over \(k \). Let \(S \) be the set of monomials \(f \) in \(k[Y, Z, X, T] \) satisfying the following two conditions:

(a) If \(Z \) occurs in \(f \), then some \(X_n \) occurs in \(f \).
(b) For all \(n \), if \(T_n \) occurs in \(f \), then either \(Y \) or \(X_i \) occurs in \(f \) for some \(i \leq n \).

Clearly, \(S \) is a semigroup containing \(X \) and \(Y \). Let \(R = k[S] \) be the semigroup ring over \(S \) and set

\[
P = (X)k[Y, Z, X, T] \cap R.
\]
Then R is integrally closed and P is a strong maximal divisorial ideal of R that is not t-maximal.

Proof. We will use repeatedly that P is a monomial ideal of R.

1. R is integrally closed.

 By [14, Corollary 12.11 (2)], it is enough to show that the monoid S is integrally closed. If f is an element in the quotient group of S such that $f^n \in S$ for some $n \geq 1$, then f is a monomial. Since f^n satisfies conditions (a)-(b), it is clear that f also satisfies them, thus $f \in S$. We conclude that R is integrally closed.

2. $P = RZ^{-1} \cap R$. Hence P is a divisorial ideal.

 Clearly, any monomial in ZP satisfies conditions (a)-(b), hence $ZP \subseteq R$. Thus $P \subseteq RZ^{-1} \cap R$.

 For the reverse inclusion, it is enough to show that any monomial $f \in RZ^{-1}$ belongs to P. Since $Zf \in R$, we see that Zf satisfies conditions (a)-(b) and so does f, thus $f \in R$. Using again that $Zf \in R$, we see that some X_n occurs in f, hence $f \in P$.

3. $(R : P) = R[Z]$.

 Using conditions (a)-(b), we see that $R[Z] \subseteq (R : P)$.

 For the reverse inclusion, let u be a quotient of monomials in $(R : P)$. Since $uX_1, uX_2 \in R$, we see that uX_1 and uX_2 are monomials, hence, by factoriality, u also is a monomial. Let $u = Z^k u_0$, where $k \geq 0$, u_0 is a monomial and Z does not occur in u_0. Choose a positive integer N such that $N > i$ for all T_i’s occurring in u. Since $Z^k u_0 X_N \in R$, we see that u_0 satisfies condition (b); hence $u_0 \in R$, so $u \in R[Z]$.

4. P is a strong maximal divisorial ideal.

 We have $(R : P) = R[Z] \subseteq (P : P)$, thus $(R : P) = (P : P)$, that is, P is strong.

 Assume that P is not maximal divisorial, so there is a divisorial ideal Q properly containing P. Let $f \in Q \setminus P$. We may assume that no X_n occurs in f, thus Z does not occur in f either by condition (a) above. Let $g \in (R : Q) \setminus R$, thus $g \in (R : P) = R[Z], g = \sum_{i=0}^{n} a_i Z^i$, where $a_0, \ldots, a_n \in R$. We may assume that $a_n Z^n \notin R$, thus $n \geq 1$. We also may assume that no X_i occurs in a_n. Thus no X_i occurs in fa_n, which implies that $fa_n Z^n \notin R$. Since $R = k[S]$, we obtain that $fg = fa_n Z^n + \cdots \notin R$, a contradiction.

5. The ideal $M = (S)R$ is a maximal ideal of R properly containing P and is a t-ideal.
Clearly M is a maximal ideal containing P. Since $Y \in M \setminus P$, we have $P \subseteq M$.

To show that M is a t-ideal, let F be a finite subset of M and let N be a positive integer such that $N > i$ for each T_i occurring in some element of F. From conditions (a)-(b) it follows that $M \subseteq (X, Y)k[Y, Z, X, T]$. Hence $T_N F \subseteq R$. Thus $(F)_v \subseteq (R : T_N) \cap R$. Since $T_N \notin R$ and since $(R : T_N) \cap R$ is a monomial ideal, we obtain that $(R : T_N) \cap R \subseteq (S)R = M$. It follows that $(F)_v \subseteq M$ and that M is a t-ideal.

\[\square\]

References

[1] V. Barucci, Mori domains, Non-Noetherian commutative ring theory, 57-74, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000.

[2] V. Barucci, S. Gabelli and M. Roitman, On semi-Krull domains, J. Algebra 145 (1992), 306-328.

[3] H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28.

[4] S. Bazzoni, Divisorial domains, Forum Math. 12 (2000), 397-419.

[5] S. Bazzoni and L. Salce, Warfield domains, J. Algebra 185 (1996), 836-868.

[6] J. Dieudonné, Sur la théorie de la divisibilité, Bull. Soc. Math. France 69 (1941), 133-134.

[7] Chul Ju Hwan and Gyu Whan Chang, Prüfer v-multiplication domains in which each t-ideal is divisorial, Bull. Korean Math. Soc. 35 (1998), 259-268.

[8] M. Fontana, S. Gabelli and E. Houston, UMT-domains and domains with Prüfer integral closure, Comm. Algebra 26 (1998) 1017-1039.

[9] M. Fontana, J. A. Huckaba and Ira J. Papick. Prüfer domains, M. Dekker, 1997.

[10] S. Gabelli, Completely integrally closed domains and t-ideals, Bollettino U.M.I. 3-B (1989), 327-342.

[11] S. Gabelli and H. Houston, Coherentlike conditions in pullbacks, Michigan Math. J. 44 (1997), 99-123.

[12] S. Gabelli, H. Houston and T. Lucas, The $t\#$ property for integral domains, manuscript.

[13] R. Gilmer, Multiplicative Ideal Theory, M. Dekker, 1972.

[14] R. Gilmer, Commutative semigroup rings, The University of Chicago Press, 1984.

[15] S. Glaz and W. Vasconcelos, Flat ideals II, Manuscripta Math. 22 (1977), 325-341.

[16] M. Griffin, Some results on v-multiplication rings, Canad. J. Math. 19 (1967), 710-722.

[17] F. Halter-Koch, Ideal systems. An introduction to multiplicative ideal theory, Monographs and Textbooks in Pure and Applied Mathematics, 211, M. Dekker, 1998.

[18] W. Heinzer, Integral domains in which each nonzero ideal is divisorial, Mathematika 15 (1968), 164-170.
[19] E. G. Houston, T. G. Lucas and T. M. Viswanathan, Primary decomposition of divisorial ideals in Mori domains, J. Algebra 117 (1988), 327-342.
[20] E. G. Houston and M. Zafrullah, Integral domains in which each t-ideal is divisorial, Michigan Math. J. 35 (1988), 291-300.
[21] E. G. Houston and M. Zafrullah, On t-invertibility II, Comm. Algebra 17 (1989), 1955-1969.
[22] P. Jaffard, Les Systèmes d’Idéaux, Dunod, Paris, 1970.
[23] B. G. Kang, Some questions about Prüfer v-multiplication domains. Comm. Algebra 17 (1989), 553–564.
[24] B. G. Kang, On the converse of a well-known fact about Krull domains. J. Algebra 124 (1989), 284–299.
[25] D. Nour el Abidine, Groupe des classes de certain anneaux intègres et idéaux transformés, Thèse de Doctorat, Lyon, 1992.
[26] E. Matlis, Reflexive domains, J. Algebra 8 (1968), 1-33.
[27] M. Roitman, On Mori domains and commutative rings with $CC_{⊥}I$, J. Pure Applied Algebra 56 (1989), 247-268.
[28] M. Zafrullah, Putting t-invertibility to use, Non-Noetherian commutative ring theory, 429-457, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000.

Dipartimento di Matematica, Università degli Studi Roma Tre, Largo S. L. Murialdo, 1, 00146 Roma, Italy
E-mail address: gabelli@mat.uniroma3.it

Department of Mathematics, University of Haifa, Mount Carmel, Haifa 31905, Israel
E-mail address: mroitman@math.haifa.ac.il