Análise Microbiológica de Leite Fermentado Kefir Produzido com Leite Contaminado por Escherichia Coli

Danúbia Rodovanski Caetano, Maike Taís Maziero Montanhini*
Faculdade Evangélica do Paraná
* maikemaziero@yahoo.com.br

Resumo. O leite fermentado a partir de grãos de kefir é uma bebida láctea probiótica que fornece ao consumidor vários benefícios à saúde, podendo ser consumida inclusive por pessoas que sofrem de intolerância à lactose. Estes grãos contêm em sua microbiota bactérias ácido-láticas capazes de inibir a multiplicação de alguns micro-organismos patogênicos. O presente trabalho objetivou avaliar a inibição de Escherichia coli pela fermentação do kefir produzido com leite artificialmente contaminado. Para tanto, foi utilizada a cepa de E. coli ATCC 11229 inoculada no leite antes da produção do kefir. Após a fermentação por 24h a 20 ºC, a amostra foi diluída em água peptonada e inoculada em placa Petrifilm EC, seguido de incubação a 36 °C por 24 horas. Em todas as repetições, foi observado que a fermentação do kefir não inibiu a multiplicação da bactéria contaminante. Os resultados reforçam a importância da utilização de leite com qualidade, assim como, de seguir os procedimentos de higiene, tanto com os utensílios utilizados quanto de manipuladores, durante a fabricação do kefir.

Palavras-chave: probiótico, inibição bacteriana, produtos lácteos

INTRODUÇÃO
Leites fermentados são produtos lácteos que sofreram um processo fermentativo, alterando assim, suas propriedades sensoriais. Podem ser produzidos a partir de leite de diferentes espécies e vários agentes de fermentação, por exemplo: leveduras, mofos, bactérias mesófilas, bactérias termófilas e/ou bactérias probióticas (ORDOÑEZ et al., 2005).

O kefir é um produto lácteo em que a fermentação é feita por bactérias ácido-láticas conhecidas como grãos de kefir, que produzem ácido láctico, etanol e dióxido de carbono. É ligeiramente efervescente e espumoso, com consistência semelhante ao iogurte, de sabor agridoce e de alta digestibilidade (MARCHIORI, 2007; LEITE et al., 2013).

Os grãos de kefir são constituídos por Lactobacillus kefir, espécies dos gêneros Leuconostoc, Lactococcus e Acetobacter. Contêm também leveduras fermentadoras de lactose (Kluyveromyces marxianus) e leveduras não fermentadoras de lactose (Saccharomyces omnisporus, Saccharomyces cerevisae e Saccharomyces exiguis), Lactobacillus casei, além das bactérias Bifidobacterium sp e
Streptococcus salivarius subsp thermophilus (BRASIL, 2007).

Os grãos de kefir são estruturados por uma massa gelatinosa de polissacarídeos referidos como kefiran, contendo estes micro-organismos em simbiose, com capacidade de multiplicação e aumento de volume, passando suas propriedades para a geração seguinte de novos grãos (MARCHIORI, 2007). Nesse agrupamento semelhante a uma couve-flor de cor amarelada ou esbranquiçada temos, vitamina do complexo B (biotina, niacina, ácido pantotênico, piridoxina, ácido fólico e B12) e vitamina K, oito leveduras, cálcio, carboidratos, gordura, fósforo, magnésio, aminoácidos, além das várias culturas bacterianas e leveduras, conferindo ao produto características sensoriais singulares. O ácido láctico formado com a fermentação da lactose age como conservante natural, além de facilitar a absorção de minerais pelo organismo (PINTADO et al., 1996; HERTZLER & CLANCY, 2003).

O leite fermentado pelo kefir está sendo utilizado em pesquisas nos hospitais, na alimentação de pacientes que possuem algum tipo de enfermidade do trato gastrointestinal; o produto promove grande capacidade de estimular o sistema imunológico aumentando as defesas do organismo, devido à presença de bactérias probióticas (OTLES & CAGINDI, 2003; MARCHIORI, 2007). Tais bactérias formam uma barreira no intestino impedindo a colonização de bactérias patogênicas; o mecanismo para tal impedimento é a competição das bactérias do leite fermentado diante das bactérias patogênicas. O consumo do kefir melhora também a digestão de proteínas, absorção de vitaminas e minerais, reduzindo significativamente os níveis de colesterol total com diminuição do LDL colesterol, possui ainda, atividade antitumor e imunomoduladores, melhora a digestão da lactose, entre outros benefícios (MARTINS et al., 2012; VARAVALLO et al., 2008).

As bactérias ácido-lácticas dos grãos de kefir também produzem bacteriocinas, substâncias com propriedades antimicrobianas, que podem inibir tanto bactérias Gram-positivas quanto bactérias Gram-negativas, dentre as quais se destaca a Escherichia coli (WESCHENFELDER et al., 2009). E. coli é uma bactéria de origem intestinal, Gram-negativa, aeróbica facultativa e potencialmente patogênicas. Pode causar infecções intra-abdominais, infecção do trato urinário, podendo disseminar-se para os rins, ou ainda para a próstata, meningite neonatal e doenças gastrointestinais que são as mais frequentes. Podemos destacar seis grupos subdivididos de gastrenterites causadas pela E. coli, que são: ETEC E. coli entero-toxigênicas, a EPEC E. coli entero-patogênicas, a EIEC E. coli entero-invasivas, a EHEC E. coli entero-hemorrágicas, a EAEC E. coli entero-agregativas e a DAEC E. coli difusamente aderente (KOHLER & DOBRINDT, 2011).

Diante dessas informações, esse trabalho tem como objetivo, avaliar a atividade antimicrobiana do kefir produzido a partir de leite artificialmente contaminado por E. coli e, deste modo, avaliar se o produto feito a partir do leite de baixa qualidade microbiológica poderá resultar em um produto seguro para o consumo.

MATERIAIS E MÉTODOS

Preparo do Kefir

Os grãos de kefir utilizados são de uso doméstico e foram obtidos por doação na cidade de Curitiba – PR, preparado diariamente pelo método tradicional (www.kefir.com.br) por dois meses de modo a garantir sua plena atividade e viabilidade. O leite UHT utilizado no experimento foi incubado previamente por 7 dias a 35-37 ºC, não apresentando estufamento da embalagem, sendo portanto, considerado estéril (SILVA et al., 2010).

Para a realização do experimento foram inoculados 20 g de grãos de kefir em 200 mL de leite integral (proporção de 1:10) em frascos esterilizados. A fermentação foi realizada a 20 ºC, 22 ºC e 24 ºC por 24 e 48 horas (OTLES & CAGINDI, 2003).

Após a fermentação, foi realizada a separação dos grãos do kefir com auxílio de uma peneira esterilizada conforme o fluxograma apresentado na Figura 1. Todos os experimentos foram realizados em triplicata.
Determinação do pH
O pH do produto foi medido com o auxílio de pHmetro digital de acordo com Cechi (2003) em cada condição de tempo e temperatura de fermentação avaliada.

Contaminação do Kefir com *Escherichia coli*
Foi utilizada uma cepa padrão de *E. coli* ATCC 11229, ressuspensada em caldo BHI por 24h a 36 ºC atingindo assim a fase estacionária da curva de crescimento. A suspensão foi diluída de acordo com a escala de MacFarland (SILVA *et al*., 2010) e inoculada de modo que os níveis de contaminação no leite atingissem as contagens de 10, 10² e 10³ de *E.coli* por mL de leite. As amostras foram incubadas a 20 ºC por 24h.

As análises de *E. coli* (conforme procedimento abaixo) foram realizadas antes da inoculação/fermentação do kefir e no produto final. A bebida fermentada e os grãos de kefir utilizados em cada experimento foram autoclavados e descartados ao final de cada experimento, em função da contaminação com *E. coli*.

Contagem de *E. coli*
Foram diluídos 25 mL das amostras em 225 mL de água peptonada (seguida de diluições seriadas) e inoculados 1 mL de cada diluição em placas Petrifilm *E. coli* (3M), seguido de incubação a 36 ºC por 24 horas. As colônias características (azuis com formação de bolhas) foram contadas e o resultado foi convertido em UFC/mL em função da diluição utilizada (SILVA *et al*., 2010).

Figura 1 - Fluxograma do preparo do kefir.

Figura 2 – Leite fermentado kefir.

Figura 3 – Grãos de kefir.
RESULTADOS E DISCUSSÃO

O pH do produto variou em função da temperatura e do tempo de fermentação. Quanto mais alta a temperatura, mais baixo o pH; quanto maior o tempo de incubação, mais baixo o pH (Tabela 1).

O kefir é um produto caseiro, fermentado em temperatura ambiente, sendo portanto, difícil de controlar a temperatura de fermentação, faltando assim, uma padronização no pH do produto final. O produto obtido em dias quentes será mais ácido do que o obtido em dias frios. O pH baixo representa um fator intrínseco inibitório para muitos micro-organismos, o que seria desejável em se tratando do efeito antimicrobiano do produto frente às bactérias patogênicas. No entanto, produtos demasiadamente ácidos tendem a desagradar o consumidor.

Considerando o aspecto sensorial, o ideal seria uma fermentação de, no máximo, 24 horas a 20 ºC, pois nesta condição o produto final apresenta pH mais próximo ao do iogurte (4,6), sendo assim, mais agradável ao paladar (ORDOÑEZ et al., 2005).

Estudos feitos por Weschenfelder et al. (2009) resultantes da fermentação do leite com os grãos de Kefir por 24 horas a 25 ºC apresentaram resultados de pH na faixa de 3,6 a 3,8. Nessa temperatura o metabolismo do kefir é acelerado, tornando a fermentação do leite mais rápida, tornando o produto muito ácido e fazendo com que tenha uma aceitação negativa.

Avaliando as amostras contaminadas artificialmente com E. coli, observou-se que em todos os níveis de contaminação inicial houve aumento significativo nas contagens (Tabela 2), indicando que o micro-organismo encontrou condições favoráveis para sua multiplicação. O pH do leite próximo à neutralidade e a disponibilidade de nutrientes, aliados à baixa competição microbiana no início da fermentação, tornaram as condições favoráveis à adaptação e multiplicação de E. coli.

Em um estudo feito por Ulusoy et al. (2007) com kefir liofilizado, foi demonstrada a atividade antibacteriana do produto frente à Staphylococcus aureus (ATCC 29213), Listeria monocytogenes (ATCC 7644), Bacillus cereus (ATCC 11778), Escherichia coli (ATCC 8739) e Salmonella enteritidis (ATCC 13076). Avaliações feitas por Santos et al. (2003) mostraram atividade antimicrobiana de 58 cepas isoladas do kefir, inoculadas com bactérias enteropatogênicas, e observaram atividade inibitória da maioria delas frente aos agentes testados. Já Weschenfelder et al. (2009) avaliaram a atividade antibacteriana do kefir e do soro de kefir, demonstrando que, ambos apresentaram total inibição e inativação frente ao inoculo de E. coli. Em todos estes trabalhos o patógeno foi inoculado ao final da fermentação, onde o pH ácido, a microbiota competitiva do kefir, e seus metabólitos bacteriocigênicos foram capazes de inibir a multiplicação do micro-organismo inoculado.

Santos et al. (2013) avaliaram a atividade antimicrobiana de kefir obtido em três diferentes regiões do Brasil contra cepas de S. aureus, E. coli, Salmonella typhi, L. Monocytogenes e B. cereus.

Tabela 1	Valores de pH de kefir em diferentes condições de fermentação (média de três repetições).		
	20°C	22°C	24°C
24h	4,24 (±0,12)	4,22 (±0,10)	4,04 (±0,08)
48h	3,98 (±0,23)	3,91 (±0,18)	3,75 (±0,16)

Tabela 2	Contagem de E. coli em leite artificialmente contaminado e em kefir produzido com este leite após fermentação por 24h a 20 ºC.	
Amostra	Contaminação do leite com E. coli antes da fermentação	Contagem de E. coli no Kefir após a fermentação
1	10^5 UFC/ml	>10^8 UFC/ml
2	10^5 UFC/ml	>10^8 UFC/ml
3	10 UFC/ml	>10^6 UFC/ml
Os autores relataram diferentes níveis de atividade inibitória entre os kefirs e os microorganismos avaliados. A composição microbiana do kefir é bastante variável, sendo influenciada pela região de origem, tempo de utilização, substrato utilizado no seu preparo e pelas técnicas utilizadas na sua manipulação (WESCHENFELDER et al., 2009; MAGALHÃES et al., 2011). Estas diferenças podem justificar as diferenças nos resultados entre os trabalhos citados e o estudo em questão.

Neste experimento, mesmo em baixos níveis de contaminação inicial (Amostra 3) descrito na Tabela 2, *E. coli* atingiu elevadas contagens ao final da fermentação, indicando que a qualidade microbiológica do leite utilizado na produção do kefir é imprescindível, ou seja, um leite oriundo de animais saudáveis, que seja coletado em condições de higiene adequadas e que, de preferência, tenha sido submetido a tratamento térmico. A manipulação do kefir em condições inadequadas de higiene pode ocasionar na sua contaminação por bactérias da família Enterobacteriaceae, Clostridiaceae, bem como Pseudomonas sp e até mesmo por fungos patogênicos como *Dipodascus capitus* e *Trichosporon coremiiforme* (LEITE et al., 2013).

A partir dos resultados deste estudo, percebe-se que o kefir não inibiu o metabolismo da *E. coli* durante a fermentação do produto, provavelmente porque a inoculação do agente patogênico foi feita antes da fermentação - simulando assim a utilização de um leite de baixa qualidade microbiológica. Desta forma, *E. coli* começou seu metabolismo antes do kefir conseguir atingir um pH baixo e metabolizar seus agentes inibitórios.

CONCLUSÃO

A qualidade do leite utilizado na fabricação dos produtos lácteos, assim como as condições de produção, são de extrema importância para se obter um produto saudável. O processo de fermentação do kefir não foi capaz de inibir a multiplicação de *E. coli* em leite artificialmente contaminado, o que evidencia o perigo de se manipular os alimentos sem higiene adequada, principalmente se tratando de leite fermentado kefir, um produto caseiro sujeito às condições de preparo.

REFERÊNCIAS

BRASIL. Instrução Normativa nº 46, de 23 de Outubro de 2007. Regulamento Técnico de Identidade e Qualidade de Leites Fermentados, Ministério da Agricultura, Pecuária e Abastecimento. Diário oficial da união. 2007.

CECCHI, H.M. Fundamentos teóricos e práticos em análise de alimentos. 2º Edição, Editora Unicamp. 2003, p.109.

HERTZLER S.R., CLANCY S.M. Kefir improves lactose digestion and tolerance in adults with lactose maldigestion. Journal of American Dietetic Association v.153, n.5, p. 582-587, 2003.

KOHLER, C.D. & DOBRINDT, U. What defines extraintestinal pathogenic Escherichia coli? International Journal of Medical Microbiology, v.301, p.642–647, 2011.

LEITE, A.M.O.; MIGUEL, M.A.L.; PEIXOTO, R.S.; ROSADO, A.S.; SILVA, J.T.; PASCHOALIN, V.M.F. Microbiological, technological and therapeutic properties of Kefir: a natural probiotic beverage. Brazilian Journal of Microbiology, v.44, n.2, p.341-349, 2013.

MAÇALHÃES, K.T.; PEREIRA, G.V.M.; CAMPUS, C.R.; DRAGONE, G.; SCHWAN, R.F. Brazilian kefir: structure, microbial communities and chemical composition. Brazilian Journal of Microbiology. v.42, n.2, p.693-702, 2011.

MARCHIORI, R.C. Caracterização do kefir e propriedades probióticas – uma revisão. Revista do Instituto de Laticínios Cândido Tostes, v. 62, n. 358, p.21-31, 2007.

MARTINS, F.L.J; MARINHO, E., FIRMINO, H.H., RAFAEL, C.V.; FERREIRA, L.F.C.L. Avaliação da adição do Kefir em dieta hospitalar. Revista do Instituto de Laticínios Cândido Tostes. v 67, n.386, 2012.

ORDÓÑEZ; A.J., RODRÍGUEZ, C.M.I.; ÁLVAREZ, F.L.; SANZ, G.M.L.; MINGUILLÓN D.G.; PERALES, L.A.; CORTECERO, S.M.D. Tecnologia de
alimentos (Alimentos de origem animal) v. 2. Porto Alegre RS, Artesmed 2005.

OTLES, S.; CAGINDI, O. Kefir: a probiotic dairy – composition, natural and therapeutic aspects. Pakistan Journal of Nutrition, v.2, n.2, p.54-59, 2003.

PINTADO, M.E.; SILVA, J.A.L.; FERNANDES, P.B.; MALCATA, F.X.; HOGG, T.A. Microbiological and rheological studies on Portuguese Kefir grains. International Journal of Food Science and Technology, v.31, p.15-26, 1996.

RODRIGUES, K.L.J.; CARVALHO, J.C.T.; SCHNEEDORF, J.M. Anti-inflammatory properties of Kefir and its polysaccharide extract. Inflammopharmacology, v.13, n.5-6, p.404-408, 2005.

SANTOS, A.; MAURO, S.M.; SANCHEZ, A.; TORRES, J.M. The antimicrobial properties of different strains of Lactobacillus ssp system APPL Microbiology. 2003, cap. 26, pag. 434-437.

SANTOS, J.P.V.; ARAÚJO, T.F.; FERREIRA, C.L.L.F.; GOULART, S.M. Evaluation of antagonistic activity of milk fermented with kefir grains of different origins. Brazilian Archives of Biology and Technology. v.56, n.5, p.823-827, 2013.

SILVA, N.; JUNQUEIRA V.C.A.; SILVEIRA N.F.A. Manual de métodos de análise microbíológica em alimentos. 4ª Edição. Livraria Varela. São Paulo, SP, 2010.

ULUSOY, B.H.; COLAK, H.; HAMPIKYAN, H.; ERKAN, M.E. An in vitro study on the antibacterial effect of Kefir against some food-borne pathogens. Turk Mikrobiyol Cem Derg v.37, n.2, p.103-107, 2007.

VARAVALLO, A.M.; THOME, N.J.; TESHIMA, E. Aplicação de bactérias probióticas para profilaxia e tratamento de doenças gastrointestinal. Semina: Ciências Biológicas e da Saúde, v. 29 n. 1, p.83-104, 2008.

WESCHENFELDER, S.; WIEDT, M.J.; CARVALHO, H.H.C. Atividade anti-Escherichia coli em Kefir e soro de Kefir tradicionais. Revista do Instituto de Laticínios Cândido Tostes. Viçosa, MG. Vol.64, n. 368, p.48-55, 2009.