Hysteresis Effect in Two-Dimensional Bi$_2$Te$_3$ Nanoplate Field-Effect Transistors

Junliang Liu, Wenwu Pan, Han Wang, Zekai Zhang, Songqing Zhang, Guang Yuan,* CaiLei Yuan, Yongling Ren, and Wen Lei*

Recently, field-effect transistors (FETs) based on two-dimensional (2D) Bi$_2$Te$_3$ nanoplates have attracted much attention due to their great potential for fabricating high-performance electronic devices. However, the gating property measurement of the Bi$_2$Te$_3$ nanoplate FETs exhibits hysteric behavior in an ambient environment, which degrades not only their electrical properties, but also their device performance. This work presents a systematic study on the origins of this hysteresis effect in 2D Bi$_2$Te$_3$ FETs and explores effective approaches to minimize and eliminate this hysteresis effect. The hysteresis effect in 2D Bi$_2$Te$_3$ nanoplate FETs can be attributed to the charge trap states caused by the water molecules adsorbed on the nanoplate surface. To minimize and eliminate this hysteresis, poly(methyl methacrylate) layer is applied to passivate the 2D Bi$_2$Te$_3$ FETs, which leads to almost hysteresis-free gating property and thus improves the carrier mobility and device performance. These results indicate that the surface/interface trap states of nanostructures can significantly influence their electrical properties and thus device performance, and as a result, surface passivation is required to minimize the influence of the surface/interface trap states and achieve high device performance.

1. Introduction

Semiconductor field-effect transistors (FETs) are the fundamental building blocks of the modern electronics industry, and thus play a prominent role in people’s daily life. With the development of electronics industry, FET devices are required to have better and better performance to meet the increasing performance demand. Over the past few years, 2D materials, such as graphene, topological insulators (TIs), and transition metal dichalcogenides (TMDs), have attracted significant attention for fabricating high-performance FETs due to their unique physical properties such as high carrier mobility.$^{[1,2]}$ For example, Zomer et al. presented that the carrier mobility of graphene is as high as 12 500 cm2V$^{-1}$s$^{-1}$, which makes it a promising material for potential applications in electronic devices. However, the graphene-based FETs exhibit a few tens of I_{on}/I_{off} ratio at most and large off-current, which is due to its zero band gap.$^{[3]}$ In comparison to graphene, the most significant advantage of TMDs is the existence of band gap ranging from ≈1 to 2 eV, ensuring a low off-current in switching behavior and a small subthreshold swing of ≈80 mV dec$^{-1}$.$^{[4]}$ However, the relatively larger band gap of TMDs is at the cost of carrier mobility. For example, the carrier mobility of MoS$_2$ presents only a few tens of cm2V$^{-1}$s$^{-1}$ in experiments.$^{[5]}$ In addition to TMDs and graphene, 2D Bi$_2$Se$_3$-based transistors (one of TIs) were also investigated, which presented a narrow band gap of 0.25 eV and a large I_{on}/I_{off} ratio ($≈10^5$). This indicated its great potential in high-performance electronics, for example, infrared sensors.$^{[6]}

Most recently, another TI material, Bi$_2$Te$_3$, has received significant attention due to the interest in its fundamental physics (metallic surface states and strong spin–orbit interaction) as well as potential applications in FETs and infrared detectors.$^{[7–9]}$ For example, Liu et al.$^{[10]}$ reported FETs based on Bi$_2$Te$_3$ flakes with atomic-layer-deposited (ALD) Al$_2$O$_3$ as the top-gate and back-gate dielectric. They achieved both top-gate and bottom-gate control of the FETs, which presented different electron mobilities with ≈1.69 cm2V$^{-1}$s$^{-1}$ for the top-gate control and ≈170 cm2V$^{-1}$s$^{-1}$ for the bottom gate one. These results indicate that top-gate modulation is not as effective as the back-gate modulation, which is because the interface conditions and surface chemistry can significantly affect the field-effect modulation efficiency. Teweldebrhan et al.$^{[11]}$ demonstrated FETs based on exfoliated Bi$_2$Te$_3$ films with Si/SiO$_2$ substrate as gate dielectric, which, however, did not show gate modulation with sweeping the gate voltage from –50 to 50 V.

DOI: 10.1002/aelm.202000851
at room temperature. Thus, this indicates extremely low carrier mobility. Chen et al.\cite{12} studied the thermoelectric applications of Bi$_2$Te$_3$ nanoplates grown by chemical vapor deposition (CVD) method. They found that the grown Bi$_2$Te$_3$ nanoplates presented low thermopowers due to the unintentional surface doping (e.g., surface oxidation, gas adsorption, etc.), which can be improved by depositing 30 nm Al$_2$O$_3$ as a passivation layer. From these studies, it can be observed that the interface and surface conditions can have a significant influence on the carrier mobility and thus the device performance of 2D Bi$_2$Te$_3$ nanoplate-based FETs, which could limit their ultimate industry applications. The main reason can be attributed to the feature with 2D geometry, presenting almost all atoms exposed to the top/bottom surface. Apart from the interface and surface conditions such as different gate interfaces, the working environment can also have a significant influence on the device performance, which is currently missing for the study of Bi$_2$Te$_3$ nanoplate-based FETs. In this work, the influence of environmental conditions on the device performance is studied for Bi$_2$Te$_3$ nanoplate FETs. A hysteresis effect is observed for the Bi$_2$Te$_3$ nanoplate FET devices measured in an ambient environment when sweeping gate voltage forward and backward. Furthermore, the effect of various environmental conditions on the hysteresis effect is investigated systematically, including oxygen content, nitrogen molecules, and humidity to identify the main causes of this hysteresis effect. The physical mechanisms for this hysteresis effect are analyzed, and surface passivation is also studied to minimize this hysteresis effect and enhance the device performance.

2. Results and Discussion

The schematic structure and scanning electron microscopy (SEM) image of the Bi$_2$Te$_3$ nanoplate FET device are shown in Figure 1a,b, respectively. The metal electrodes of the 2D Bi$_2$Te$_3$ transistors were first defined by standard photolithography process on silicon substrate with a 300 nm SiO$_2$ layer on the top, then Cr (10 nm)/Au (40 nm) was deposited as metal contacts by using a conventional thermal evaporation process. The 300 nm SiO$_2$ layer that presents a high-k dielectric was used to separate the gate electrode from the FET conducting channel. The electrical properties of Bi$_2$Te$_3$ nanoplate transistors in this work were measured in a probe station (Lakeshore TTP4) with a hermetic chamber at room temperature. Figure 1c presents the I_{ds}–V_{gb} curves of the 2D Bi$_2$Te$_3$ transistors under a fixed V_{tg} of –30, 0, and 30 V, respectively. The perfect linearity of the I_{ds}–V_{gb} curves at the fixed V_{tg} shown in Figure 1c indicates the ohmic nature of the Au contact. Figure 1d shows the gating features (I_{ds}–V_{tg}) of the Bi$_2$Te$_3$ nanoplate FET with sweeping V_{eg} from –30 to 30 V and then back to –30 V at a fixed V_{eb} of 0.1 V. It is observed that the change of sweeping direction from forward to backward causes a significant threshold voltage (V_{th}) shift—up to \approx12.5 V and reduces the I_{ds},
which leads to a big difference in the field-effect carrier mobility. Note that the hysteresis behavior in this work is defined as the change of the V_T shift. According to the gating property, the field-effect mobility can be calculated by using the following equation

$$\mu = \left[\frac{L}{C W} \right] \times \left[\frac{dI_{ds}}{dV_g} \right] \times \frac{1}{V_g} \quad (1)$$

where C is the area-normalized capacitance of 300 nm thick SiO$_2$, $C = 11.505 \times 10^{-9}$ F cm$^{-2}$ for the 300 nm layer of SiO$_2$ ($C = \varepsilon_0\varepsilon_r/d$; $\varepsilon_0 = 8.85 \times 10^{-12}$ F m$^{-2}$; $\varepsilon_r = 3.9$; $d = 300$ nm); W is the channel width of the Bi$_2$Te$_3$ transistor; L is the channel length of the device; and I_{ds}, V_g, and V_b have been defined above. In this work, L and W are ≈ 10 and ≈ 11 μm, respectively. Based on this equation, the Bi$_2$Te$_3$ nanoscale FET device shows an electron mobility of 10.9 and 21.4 cm2 V$^{-1}$ s$^{-1}$ for the forward and backward sweeping V_g, respectively. Note that although it is for the first time observed in 2D Bi$_2$Te$_3$ nanosheets, this hysteresis phenomenon and the degradation of the device performance were also observed in other nanostructured materials, such as graphene and MoS$_2$,[13,14] which were mainly attributed to water and oxygen molecules-related trapping states. In the meantime, the relatively lower mobility of the Bi$_2$Te$_3$ nanosheet FETs observed in this work also suggests the presence of trapping states.

Considering the fact the hysteresis effect is observed at a fixed V_b while sweeping the V_g, the carrier transport and device behavior could be affected by the trapping states in the Bi$_2$Te$_3$ nanosheets and/or those at the interfaces between the Bi$_2$Te$_3$ nanosheets and air/SiO$_2$. Therefore, three possible types of trapping states existed in the devices of this work, which is sketched in Figure 1a: 1) the adsorbates on the Bi$_2$Te$_3$ nanosheet surface. For example, water molecules adsorbed on the nanosheet surface; 2) the intrinsic defects in the Bi$_2$Te$_3$ nanosheet; and 3) extrinsic traps at the interface between Bi$_2$Te$_3$ nanosheet and SiO$_2$. Because the Bi$_2$Te$_3$ nanosheets were grown under vacuum environment and at a high temperature of over 400 °C, and special attention has been devoted to removing the possible residues of air before starting the growth, it is unlikely for water/oxygen molecules to appear at the Bi$_2$Te$_3$/SiO$_2$ interface, eliminating the origin of type (3) trapping states. Although oxygen vacancies in materials can cause hysteresis effect as observed in ZnO nanowire FETs,[13,15] it is unlikely for Bi$_2$Te$_3$ nanosheets to have oxygen vacancy, thus ruling out the origin of type (2) trapping states. As shown by the high-resolution transmission electron microscopy (TEM) study of the Bi$_2$Te$_3$ nanosheet, no oxygen vacancy were observed.[2,9] As a result, type (1) trapping states are the main reason for the hysteresis effect observed, which will be studied in details in the following.

Figure 2a shows the transfer curves of the Bi$_2$Te$_3$ nanosheet-based transistor measured in the air before and after baking at 120 °C for 2 h in a vacuum tube with flushing argon gas. It is observed that the V_T shift caused by hysteresis is decreased to 1.5 V after baking, indicating that the adsorbates on the device surface such as water, oxygen, and nitrogen from the air, could be the primary causes for the hysteresis observed here. The small shift
of V_T observed after the furnace baking in Figure 2a could be related to the readsorbed molecules on the device surface from the air during the cooling process after baking. To study the specific origin for the hysteresis observed, the 2D Bi$_2$Te$_3$ nanoplate-based FETs were measured under different measurement conditions in the probe station chamber at a fixed V_b of 0.1 V. First, to study the influence of oxygen molecules in the air the $I_{ds}-V_g$ features of the 2D Bi$_2$Te$_3$ FET were measured in the testing chamber filled with pure dry nitrogen and dry air, respectively, as shown in Figure 2b. It can be seen from Figure 2b that there is no significant difference in the hysteresis observed, which indicates that the influence of oxygen can be excluded as the main cause of the hysteresis effect. Another possible adsorbate on the nanoplate surface is nitrogen molecules in the air, which also could be the reason for the hysteresis. Figure 2c presents the gating property of 2D Bi$_2$Te$_3$ FETs measured under vacuum (10^{-4} Torr) and under dry nitrogen filled testing environment with a nitrogen pressure of 772 Torr, respectively. The change in the V_T is 1.5 V under vacuum, and 1.35 V under the nitrogen pressure of 772 Torr, respectively, which are much smaller in comparison to the results as shown in Figure 1d. This proves that the nitrogen molecules in the air are also not the main reason for the hysteresis effect observed. As a result, water molecules adsorbed on the device surface could be the main possible origin for the hysteresis effect.

To study the influence of water molecule adsorption, the 2D Bi$_2$Te$_3$ nanoplate-based FET was measured in an environment with various concentrations of water molecules (C_{wm}), which ranged from dry air (C_{wm}: 2%) to a higher C_{wm} of 40%. As shown in Figure 2d, the V_T shift caused by the hysteresis increases from 1.5 to 12.5 V with increasing the C_{wm} in the test chamber from 2% to 40%. Table S2, Supporting Information, shows the summary of the V_T shift with adjusting C_{wm} (device 1). To confirm the durability of the hysteresis effect, other two devices were measured under the same conditions, presenting similar value of V_T shift. These results clearly indicate that the C_{wm} in the air is the main cause for the hysteresis effect observed in this work. The reason of this C_{wm}-induced hysteresis can be attributed to the fact that water molecules can act as acceptor-type traps with negative charges, and thus cause the Fermi energy level of the Bi$_2$Te$_3$ channel to be filled with electrons. This will lead to different Schottky barrier heights and current decay rates, and thus the hysteresis effect observed above.$^{[16]}$ It should be noted that for nanostructured devices the effect of charge traps and thus hysteresis effect could be more significant in comparison to that in devices with large sizes, which degrades the device performance more seriously.$^{[17]}$ As a result, for nanostructured devices such as Bi$_2$Te$_3$ nanoplate FET in this work, it is essential to further study the trapping behavior to understand the hysteresis mechanism and identify approaches to minimize the hysteresis effect in order to achieve high device performance, which will be discussed next in more details.

Figure 3. Transient characteristics of drain–current (I_{ds}) at a fixed gate voltage of 30 V and a drain bias voltage of 0.1 V measured under a) dry air (C_{wm}: 2%), b) C_{wm}: 20%, and c) C_{wm}: 40%. d) Hysteretic behavior of I_{ds}–V_g at a fixed bias voltage of 0.1 V under different sweeping rates of V_g.

In order to further understand the hysteresis effect caused by charge traps, the transient characteristics of I_{ds} were measured at a fixed V_g of 30 V and a V_b of 0.1 V, the results of which are shown in Figure 3a–d. One of the most important parameters
for estimating the charge traps in a device is the trapping time constant, which determines not only the effective carrier density in a semiconductor material but also the noise behavior of a FET. The data in Figure 3a–d are fitted by using the following equation

\[I = I_0 + Ae^{-\frac{t}{\tau}} \]

(2)

where \(t \) is a trapping time constant. Figure 3a shows the results measured in an environment filled with dry air (\(C_{wm} \): 2\%). It is observed that \(I_{ds} \) decays exponentially with time, characterized by the decay time constant of \(t_1 \) to be 133.40 s. Figure 3b–c shows the transient characteristics of the device measured in the chamber filled with different \(C_{wm} \) (20% and 40%) of air. It is observed that the device measured under the higher \(C_{wm} \) exhibits a faster decay of \(I_{ds} \). Moreover, the time constant of \(t_1 \) for the cases measured with a \(C_{wm} \) of 20% and 40% are fitted to be 54.14 and 25.80 s, respectively. The time constant of \(t_1 \) clearly follows a downward trend with increasing \(C_{wm} \) from 2% to 40%. This indicates that a higher \(C_{wm} \) can lead to a relatively faster current decay and thus a smaller time constant, which is mainly due to the higher concentration of trapping states exist on the device surface when have a higher \(C_{wm} \).

In comparison to the trapping time constants reported in other works,\[18\] the time constants obtained in this work are much larger, which indicates the hysteresis in 2D Bi\(_2\)Te\(_3\) FETs is a relatively slow process. Therefore, it means that this hysteresis can be observed only when the sweeping rate of \(V_g \) is slow. Figure 3d shows the Bi\(_2\)Te\(_3\) nanoplate FETs measured with different \(C_{wm} \) (20% and 40%) under different bias voltage and \(V_d \). It is observed that the hysteresis effect weakens with a larger \(V_d \) and \(C_{wm} \), leading to a weakened hysteresis effect observed.

As discussed above, the trap states on the Bi\(_2\)Te\(_3\) nanoplate surface are mainly caused by the adsorption of water molecules in the air, and present relatively a larger trapping time constant. To quantify the water-induced trap states, the density of trap states \((D_{ts}) \) for the Bi\(_2\)Te\(_3\) nanoplate FETs under different \(C_{wm} \) are extracted and analyzed by using a subthreshold method reported before.\[19\] First, the \(I_{ds} \) near the subthreshold regime can be expressed using the following equation

\[I_{ds} = I_M \left[1 - e^{-\frac{qV_g}{ns}} \right] \]

(3)

where \(n = 1 + \frac{C_d + C_d}{C_{ox}} \), \(m = 1 + \frac{C_d}{C_{ox}} \), \(C_d \) is the depletion capacitance per unit, \(C_i \) is the interface capacitance per unit area, \(C_{ox} \) is the area-normalized capacitance of 300 nm thick SiO\(_2\), \(V_b \) is the bias voltage and \(I_M \) is the maximum drain current at the given \(V_g \). \(k \) is the Boltzmann’s constant, \(q \) is the elementary charge, and \(T \) is the temperature. Then \(\frac{m}{n} V_g = -\ln(1 - \frac{I_{ds}}{I_M}) \times k \times T \) and \(D_{ts} \) can be obtained via the ratio of the \(\frac{-\ln(1 - \frac{I_{ds}}{I_M}) \times k \times T}{q} \) to the \(V_g \). The value of \(n \) can be extracted from the ratio of the \(V_g \) to log \(I_{ds} \). Thus, the values of \(n \), \(m \), \(D_{ts} \), and \(S \) under different \(C_{wm} \) and different \(V_g \) can be calculated, the values of which are listed in Table 1. The \(D_{ts} \) of the Bi\(_2\)Te\(_3\) nanoplate FETs can then be calculated using the equation:

\[D_{ts} = \frac{C_{ts}}{q} \times (n - m) \]

Figure 4a shows the dependence of \(D_{ts} \) on the \(V_g \) under different \(C_{wm} \) at a \(V_d \) of 0.1 V. It is observed that the value of \(D_{ts} \) can be up to 6.5 \times 10\(^{12}\) cm\(^{-2}\) eV\(^{-1}\) under the \(C_{wm} \) of 40% at a \(V_g \) of 30 V; however, the \(D_{ts} \) can be reduced to 1.2 \times 10\(^{12}\) cm\(^{-2}\) eV\(^{-1}\) under the \(C_{wm} \) of 2% at a \(V_g \) of –30 V. This further confirms that a higher \(C_{wm} \) in the testing chamber can induce a higher \(D_{ts} \) which act as carrier trapping centers and leads to the hysteresis effect and device performance degradation observed. Also, the increased \(D_{ts} \) with increasing \(V_g \) under different \(C_{wm} \) indicates that the water-induced trap states are mainly located at shallow energy levels, which are close to the conduction band and are shallow traps.\[20\]

Table 1. Summary of the extracted and calculated parameters under different \(V_g \) and \(C_{wm} \), including \(D_{ts} \), \(n \), \(m \), and \(S \).

\(V_g \) [V]	\(D_{ts} \) [cm\(^{-2}\) eV\(^{-1}\)]	\(n \)	\(m \)	\(S \) [mV dec\(^{-1}\)]	
40%	–30	1.35 \times 10\(^{11}\)	2.78	0.903	0.162
–20	1.74 \times 10\(^{11}\)	2.74	0.320	0.159	
–10	1.92 \times 10\(^{11}\)	2.75	0.080	0.160	
20%	–30	1.02 \times 10\(^{11}\)	2.65	1.231	0.154
–20	1.23 \times 10\(^{11}\)	2.58	0.869	0.150	
–10	1.46 \times 10\(^{11}\)	2.64	0.610	0.153	
2%	–30	8.7 \times 10\(^{10}\)	2.55	1.340	0.148
–20	9.8 \times 10\(^{10}\)	2.46	1.097	0.143	
–10	1.18 \times 10\(^{10}\)	2.52	0.879	0.146	

Thus the values of \(\frac{m}{n} \) for the device measured under different \(C_{wm} \) can be obtained via the ratio of the \(-\ln(1 - \frac{I_{ds}}{I_M}) \times k \times T \) to the \(q \).
It should also be noted that when measuring the \(I_{ds} - V_{g} \) curves under different \(C_{wm} \), the \(V_T \) measured with sweeping the \(V_{g} \) forward from –30 to 30 V is much less than that with sweeping the \(V_{g} \) backward from 30 to –30 V, as presented in Figure 2d. This observation can also be explained by the water-induced acceptor-type trap states on the surface of Bi\(_2\)Te\(_3\) channels. As illustrated in Figure 5b, the water-induced acceptor-type states are filled with negative charges, which leads to the Fermi energy level filled with electrons and thus lift the Fermi energy level. On one hand, the electrons captured by the water-induced trap states can be released to the Bi\(_2\)Te\(_3\) channel with scanning \(V_{g} \) forward from –30 to 30 V, which is due to the negative \(V_{g} \) applied initially and thus the reduced \(V_T \) caused. On the other hand, electrons are transferred to the water-induced traps with sweeping the \(V_{g} \) backward from 30 to –30 V due to the positive \(V_{g} \) applied initially, and thus the increased \(V_T \) caused. As discussed above, water molecules adsorbed on the Bi\(_2\)Te\(_3\) channel are the main reason for the hysteresis behavior observed in this work.

As the hysteresis behavior will degrade the electrical properties and thus the ultimate device application, it is necessary and vital to explore effective methods to minimize and even eliminate this hysteresis behavior in the 2D Bi\(_2\)Te\(_3\) FETs. It is known that surface passivation can effectively suppress and eliminate the influence of surface states and thus enhance the performance of electronic devices such as transistors and infrared detectors. To overcome this hysteresis effect, photoresist PMMA is used as a passivation layer to suppress and eliminate the hysteresis effect observed in the Bi\(_2\)Te\(_3\) FETs. Figure 6a shows the schematic diagram of 2D Bi\(_2\)Te\(_3\) nanoplate FET passivated with PMMA thin layer. The detailed fabrication process is as follows: first, PMMA was naturally warmed-up to room temperature, and coated onto the 2D Bi\(_2\)Te\(_3\) FET for 60 s at a rotational speed of 3000 rpm by using a spinner; then, the pattern of the two electrodes was defined on the coated PMMA layer with a standard photolithography process; at last, the device was baked at 120 °C for 120 s to solidify the PMMA. Note that the passivation process was conducted under atmospheric pressure in a class 1000 cleanroom and the devices were baked at 120 °C for 2 h before coating the PMMA passivation layer. Figure 6b shows the hysteresis behavior of the 2D Bi\(_2\)Te\(_3\) FETs measured with PMMA passivation layer under different scanning rates of \(V_{g} \). It can be observed that the devices passivated with PMMA layer present almost hysteresis-free \(I_{ds} - V_{g} \) curve and thus a significantly enhanced carrier mobility (≈43.8 cm\(^2\) V\(^{-1}\) s\(^{-1}\)), even under the low scanning rates of 0.75 V s\(^{-1}\). This much-improved device performance can be attributed to the outstanding hydrophobic property of PMMA which could prevent Bi\(_2\)Te\(_3\) nanoplate surface from adsorbing water molecules in the air.

It should be noted that a weak hysteresis effect (≈0.15 V) is still observed in PMMA-passivated 2D Bi\(_2\)Te\(_3\) FETs, as presented in Figure 6b, which can be attributed to the water molecules permeated through the PMMA layer from the air or the water molecules remained on the nanoplate surface even after the 2 h of baking at 120 °C before passivation. Although the Bi\(_2\)Te\(_3\) nanoplates grown in this work have a high crystalline quality, there could be some surface defects on the nanoplates. Because the water molecules in the air prefer to be adsorbed on the crystal defects with higher binding energy, it is necessary to use effective methods to passivate and eliminate the water molecules adsorbed on the crystal defects.
it is hard to remove these water molecules adsorbed due to the stronger bonds with the structure defects. Therefore, high quality Bi$_2$Te$_3$ nanoplates without intrinsic defects will also be critical for reducing and eliminating the hysteresis effect, and thus enhancing the device performance. In addition, as seen in Figure S2, Supporting Information, to further confirm the durability of the passivated FETs after long-term storage in air, we also measured the hysteretic effect of the PMMA-passivated FETs under the same conditions before and after the long-term storage. There is no obvious difference observed before and after the storage, further indicating that the PMMA layer presents great potential to prevent Bi$_2$Te$_3$ nanoplate surface from adsorbing water molecules from the air and thus eliminate the hysteresis effect.

3. Conclusion

In this work, we have systemically investigated the hysteresis behavior for the first time in 2D Bi$_2$Te$_3$ nanoplate FETs. It is observed that, when measuring the gating property, the threshold voltage in 2D Bi$_2$Te$_3$ nanoplate FETs is changed from -17.5 to -5 V with sweeping the gate voltage from forward to backward. To study the origin of this hysteresis behavior, the I_{ds}–V_{gs} features and transient characteristic of 2D Bi$_2$Te$_3$ nanoplate FETs are measured under different nitrogen, oxygen, and humidity environments. The trap states caused by water molecule adsorption on the Bi$_2$Te$_3$ nanoplate surface are found to be the primary reason for this hysteresis behavior. Fundamentally, this hysteresis effect observed might be attributed to the electrons of Bi$_2$Te$_3$ channel captured by the water-induced acceptor-type trap states. To minimize and eliminate this hysteresis effect, PMMA passivation is applied to prevent the water adsorption on the nanoplate surface, which leads to a significantly reduced hysteresis effect and an enhanced device performance. This work demonstrates that the interface/surface chemistry of 2D materials can significantly impact their electrical properties, and thus their ultimate device performance. The surface passivation can effectively reduce the surface states and thus enhance their device performance, which can also be applied to other 2D material-based electronic devices.

4. Experimental Section

Ultrathin Bi$_2$Te$_3$ nanoplates with a thickness of ≈10 nm were grown in a 24 in. horizontal tube furnace (Lindberg/Blue M) by using CVD method. The schematic growth system is presented in Figure S1, Supporting Information. Bi$_2$Te$_3$ (Sigma-Aldrich, purity $>99.99\%$) in powder form was used as precursor material, which was placed in a quartz boat located in the center of the furnace. Silicon substrates with 300 nm SiO$_2$ layer were used as the growth substrates and placed in another quartz boat located at downstream, which is 13–15 cm away from the central of the furnace. The detailed growth conditions are listed in Table S1, Supporting Information, of the supporting information, and the detailed growth process has already been discussed in the previous studies.[8,9] The characterization results of the grown Bi$_2$Te$_3$ nanoplates, SEM images, atomic force microscopy data, Raman spectrum, energy-dispersive X-ray spectrometer data, and TEM results, have also been presented in the previous research.[2,8]

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

J.L. and W.P. contributed equally to this work. This work was supported by the Australian Research Council (FT130101708, DP200103188, DP170104552, and LP170100088), Universities Australia-DAAD German Research cooperation scheme (2014-2015), a Research Collaboration Awards from The University of Western Australia, Ocean University of China, National Natural Science Foundation of China (41766082), and National Key Lab of Electromagnetic Environment, China Research Institute of Radiowave Propagation (201803001). Facilities used in this work were supported by the WA node of Australian National Fabrication Facility (ANFF), and Microscopy Australia Facility at the Centre for Microscopy, Characterization and Analysis (CMCA) at UWA.
Conflict of Interest

The authors declare no conflict of interest.

Keywords

2D Bi$_2$Te$_3$ field-effect transistors, gating properties, hysteresis behavior, water-induced charge traps

Received: August 26, 2020
Revised: November 4, 2020
Published online: November 30, 2020

[1] a) I. Moon, S. Lee, M. Lee, C. Kim, D. Seol, Y. Kim, K. H. Kim, G. Y. Yeom, J. T. Tehranini, J. Hone, Nanoscale 2019, 11, 17368; b) P. Wu, J. Appenzeller, IEEE Electron Device Lett. 2019, 40, 981; c) S. Wu, Y. Zeng, X. Zeng, S. Wang, Y. Hu, W. Wang, S. Yin, G. Zhou, W. Jin, T. Ren, 2D Mater. 2019, 6, 025007; d) Z. Wang, P. Wang, F. Wang, J. Ye, T. He, F. Wu, M. Peng, P. Wu, Y. Chen, F. Zhong, Adv. Funct. Mater. 2020, 30, 1907945.

[2] J. Liu, H. Wang, X. Li, H. Chen, Z. Zhang, W. Pan, G. Luo, C. Yuan, Y. Ren, W. Lei, J. Alloys Compd. 2019, 798, 656.

[3] M. C. Lemme, T. J. Echttermeyer, M. Baus, H. Kurz, IEEE Electron Device Lett. 2007, 28, 282.

[4] a) H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, A. Javey, Nano Lett. 2012, 12, 3788; b) V. Podzorov, M. Gershenson, C. Kloc, R. Zeis, E. Bucher, Appl. Phys. Lett. 2004, 84, 3301.

[5] a) X. Li, J. T. Mullen, Z. Jin, K. M. Borysenko, M. B. Nardelli, K. W. Kim, Phys. Rev. B 2013, 87, 115418; b) B. Radisavljevic, A. Kis, Nat. Mater. 2013, 12, 815; c) M. S. Fuhrer, J. Hone, Nat. Nanotechnol. 2013, 8, 146.

[6] a) S. H. Kim, H. Kam, C. Hu, T.-J. K. Liu, presented at 2009 Symp. on VLSI Technology, Honolulu, HI, June 2009; b) J. Chang, L. F. Register, S. K. Banerjee, J. Appl. Phys. 2012, 112, 124511.

[7] a) Y. Zhang, Q. You, W. Huang, L. Hu, J. Ju, Y. Ce, H. Zhang, Nanoscale Adv. 2020, 2, 1333; b) Y. Chen, J. G. Analytis, J.-H. Chu, Z. Liu, S.-K. Mo, X.-L. Qi, H. Zhang, D. Lu, X. Dai, Z. Fang, Science 2009, 325, 178; c) J. Liu, H. Chen, X. Li, H. Wang, Z. Zhang, W. Pan, G. Yuan, C. Yuan, Y. Ren, W. Lei, J. Alloys Compd. 2020, 818, 152819.

[8] W. Lei, I. Madni, Y. Ren, C. Yuan, G. Luo, L. Faraone, Appl. Phys. Lett. 2016, 109, 083106.

[9] J. Liu, H. Wang, X. Li, H. Chen, Z. Zhang, W. Pan, G. Luo, C. Yuan, Y. Ren, W. Lei, Appl. Surf. Sci. 2019, 484, 542.

[10] H. Liu, P. D. Ye, Appl. Phys. Lett. 2011, 99, 052108.

[11] D. Teweldebrhan, V. Goyal, A. A. Balandin, Nano Lett. 2010, 10, 1209.

[12] J. Chen, J. Kim, N. Poudel, B. Hou, L. Shen, H. Shi, L. Shi, S. Cronin, Appl. Phys. Lett. 2018, 113, 083904.

[13] D. J. Late, B. Liu, H. R. Matte, V. P. Dravid, C. Rao, ACS Nano 2012, 6, 5635.

[14] a) W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, H. Dai, Nano Lett. 2003, 3, 193; b) H. Wang, Y. Wu, C. Cong, J. Shang, T. Yu, ACS Nano 2010, 4, 7221.

[15] J. Maeng, W. Park, M. Choe, G. Jo, Y. H. Kahng, T. Lee, Appl. Phys. Lett. 2009, 95, 123101.

[16] A. Campbell, D. Bradley, E. Werner, W. Brütting, Org. Electron. 2000, 1, 21.

[17] C.-C. Shih, W.-Y. Lee, W.-C. Chen, R. Martins, Adv. Electron. Mater. 2018, 4, 025007; b) P. Joshi, H. Romero, A. Neal, V. Toutam, S. A. Tadigadapa, J. Phys.: Condens. Matter 2010, 22, 334214.

[18] a) Y. G. Lee, C. C. Kang, U. J. Jung, J. J. Kim, H. J. Hwang, H.-J. Chung, S. Seo, R. Choi, B. H. Lee, Appl. Phys. Lett. 2011, 98, 183508; b) P. Joshi, H. Romero, A. Neal, V. Toutam, S. A. Tadigadapa, J. Phys.: Condens. Matter 2010, 22, 334214.

[19] a) Y. A. Zeng, A. Softic, M. H. White, Solid-State Electron. 2002, 46, 1579; b) H. Jawa, A. Varghese, S. Lodha, arXiv:2005.07106 2020.

[20] a) R. Di Pietro, D. Fazzi, T. B. Kehoe, H. Sirringhaus, J. Am. Chem. Soc. 2012, 134, 14877; b) L. Zhu, G. He, W. Li, B. Yang, E. Fortunato, R. Martins, Adv. Electron. Mater. 2018, 4, 1800100.

[21] J.-H. Ahn, W. M. Parkin, C. H. Naylor, A. C. Johnson, M. Drndic, Sci. Rep. 2017, 7, 4075.

[22] a) K. Xu, Y. Huang, B. Chen, Y. Xia, W. Lei, Z. Wang, Q. Wang, F. Wang, L. Yin, J. He, Small 2016, 12, 3106; b) C. Yuan, Y. Mei, T. Yu, Y. Yang, A. Hong, K. Xu, X. Luo, J. He, W. Lei, RSC Adv. 2017, 7, 6875; c) J. Zhang, G. A. Umans-Membreno, R. Gu, W. Lei, J. Antoszewski, J. Dell, L. Faraone, J. Electron. Mater. 2015, 44, 2990.