TITLE:
Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation (Abstract_要旨)

AUTHOR(S):
Iwai, Yoshiko

CITATION:
Iwai, Yoshiko. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. 京都大学, 2002, 博士(医学)

ISSUE DATE:
2002-03-25

URL:
http://hdl.handle.net/2433/149712

RIGHT:
【329】

本文内容の要旨

PD-1は細胞内領域にITIMモチーフを有する免疫抑制受容体で、活性化T細胞、B細胞、骨髄細胞に発現する。PD-1欠損マウスは末梢骨髄の破綻をきたし、lupus様の球体腎炎や関節炎など多彩な自己免疫症状を示す。PD-1による免疫調節機能がいつ、どのような場面で行われているかを明らかにするために、PD-1に対するリガンドの同定を試みた。

PD-1はCTLA-4と相対性を有することから、PD-1に対するリガンドはB7様分子であるという仮説のもと、B7 homologyに基づいたdatabaseの検索により、マウスとヒトのPD-1に対するリガンド（PD-L1）を同定した。human PD-L1はB7-H1と同一家族であった。PD-L1はアミノ酸配列上B7-1と21%，B7-2と20%、ICOSのリガンドと23%の相対性を示した。

PD-L1とPD-1の特異的な結合はflow cytometryとBIACOREによるbinding assayによって確かられた。flow cytometryでCHO/PD-L1発現細胞株はPD-L1-Ig蛋白質と特異的に結合し、CTLA-4-Ig、CD28-Ig、ICOS-Igとは結合しなかった。BIACORE assayでは可溶性PD-L1-Igはナップ上に固定されたCTLA-4-Igとは結合せず、PD-1-Igとのみ結合し、この結合は可溶性PD-1-Ig存在下でblockされた。

Northern blotによる解析では、PD-L1はインターフェロンγにより刺激されたヒト末梢血単球、マウスとヒトの活性化した樹状細胞などの抗原提示細胞上に発現し、肺や心臓などの非リンパ系組織においても強い発現がみられた。

PD-1/PD-L1相互作用の機能を解析するために、野生型マウスとPD-1欠損マウスのT細胞を抗CD3抗体のみと抗CD3抗体＋PD-L1-Ig存在下で培養し、H-thymidine取込みを測定したところ、野生型T細胞ではPD-L1-Ig存在でT細胞の増殖が抑制されたが、PD-1欠損T細胞ではこの抑制がみられなかった。同様にヒトT細胞においてもPD-1/PD-L1相互作用はCD3を介したT細胞の増殖を抑制し、IFN-γ、IL-10などのサイトカイン産生を抑制した。

さらにPD-1を介したシグナルとTCRおよびCD28を介したシグナルの関係を調べるために、ヒトCD4+T細胞を抗CD3抗体と抗CD28抗体の濃度を変化させ、PD-L1-Igの存在下と非存在下でT細胞増殖を比較した。PD-1/PD-L1によるT細胞増殖に対する抑制効果はCD3あるいはCD28を介した刺激が強くなるにつれてみられないなかった。

以上の結果から、PD-1/PD-L1相互作用はTCRを介したT細胞増殖、サイトカインの産生を抑制し、その抑制効果はTCR、CD28/B7を介する刺激の強さに影響されることが示された。従ってPD-L1による抑制性シグナルとB7-1、B7-2からの共刺激シグナルの相対的なバランスがT細胞の活性化レベルや末梢骨髄／自己免疫の機能の決定に関与することが示唆された。

論文審査の結果の要旨

PD-1は細胞内領域にITIMモチーフを有する免疫抑制受容体で、活性化T細胞、B細胞、骨髄細胞に発現する。PD-1欠損マウスは末梢骨髄の破綻をきたし、多彩な自己免疫症状を示す。PD-1による免疫調節機能を明らかにするために、
PD-1に対するリガンドの同定を試みた。
PD-1はCTLA-4と相補性を有することから、B7 homologyに基づいたdatabaseの検索により、マウスとヒトのPD-1に対するリガンド（PD-L1）の候補を推定した。PD-L1を発現させたCHO細胞とPD-1-Ig蛋白質を用いて両者の特異的な結合をFACS解析により確認した。さらにPD-1とPD-L1の特異的結合はBIACoreによっても確かめられた。
PD-L1はT細胞の増殖を抑制し、IFN-γ、IL-10などのサイトカイン産生を抑制した。PD-L1による抑制効果はPD-1欠損T細胞では見られなかった。PD-1/PD-L1による抑制効果はCD3あるいはCD28を介した活性化と拮抗した。PD-L1は活性化した抗原提示細胞上に発現し、肺や心臓などの非リンパ性組織においても恒常的に強い発現が見られため、
以上の結果から、PD-L1による抑制性シグナルとB7-1、B7-2からの共刺激シグナルの相対的なバランスがT細胞の活性化レベルや未梢寛容／自己免疫の関值の決定に関与することが示唆された。
以上の研究は免疫応応の制御機構の解明に貢献し、自己免疫疾患の病態解明に寄与することが期待される。したがって、本論文は博士（医学）の学位論文として価値あるものと認める。
なお、本学位授与申請者は、平成14年2月26日実施の論文論文内容とそれに関連した試問を受け、合格と認められたものである。