Nephroprotective Effect of Asgand Powder (Withania somnifera Dunal) on Cisplatin Induced Renal Injury in Rats

Farhan Akhtar*, Misbahuddin Azhar2, Mohd Aslam3, Kalim Javed4

1 Medical Officer (Unani), Government Unani Hospital, Asara, Baghpat, India
2 Research Officer Scientist-III, Regional Research Institute of Unani Medicine, Aligarh, India
3 Professor, School of Unani Medical Education and Research, Jamia Hamdard, New Delhi, India
4 Professor, Dept. of Chemistry, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India

Abstract

Background: The nephroprotective effect of crude powder of Asgand (Withania somnifera Dunal) was studied against cisplatin induced renal toxicity in wistar albino rats of either sex.

Results: The powder of Withania somnifera Dunal at dose level 700 and 1400 mg/kg body wt/day showed reduction in elevated blood urea, serum creatinine and uric acid. It was found to protect kidney damage by cisplatin induced nephrotoxicity as evidenced by oral administration of Asgand (Withania somnifera Dunal) (700 mg/kg) inhibited the rise in blood urea nitrogen (121.7%), Serum creatinine (76.64%), and uric acid (92.7%). There were 92.71% inhibition in the rise of BUN, 92% inhibition in the rise of serum creatinine and 106.6% inhibition in the rise of uric acid with 1400 mg.

Conclusion: The findings suggest that the famous Unani herb Asgand Powder possesses marked nephroprotective activity and could offer a promising role in the treatment of acute renal injury caused by nephrotoxins like cisplatin.

Keywords: Withania somnifera Dunal, Cisplatin, Asgand, Nephroprotection, Unani Medicine

INTRODUCTION

Acute renal failure refers to the sudden and usually reversible loss of renal function, which develops over a period of days or weeks. Among the causes of acute renal failure acute tubular necrosis, which occurs due to ischemia or nephrotoxins like cisplatin and gentamicin (aminoglycoside) is most common, accounting for 85% of the incidences. Cisplatin is an important anticancer or anti-neoplastic drug and especially effective for the treatment of solid tumors of testes, ovaries, breast, lungs, bladder etc.1-3 Its use is limited due to nephrotoxicity, which is a major clinical problem, seen in about 20% of patients despite the use of saline hydration and diuretics, and it is characterized by decreased glomerular filtration and tubular injury.4,6

Although the mechanism of cisplatin induced renal injury is not well understood. It may involve direct interference with tubular or mitochondrial transport processes7 covalent modification of cellular constituents8 or it has been suggested that oxygen free radicals play an important role.9 11 But some hypotheses are given for explaining their mechanism. Experimental and clinical studies showed that after cisplatin injection, a marked decrease in renal blood flow and glomerular filtration rate was also observed.12-13 Cisplatin increases lipid peroxidation in renal cortical slices.9,14-15 It has been reported that the administration of free radical scavengers and antioxidants such as super oxide dismutase, sodium selenite10 offered partial protection of the kidney against cisplatin toxicity. Although the mechanism of cisplatin renal toxicity is not clear, it has been suggested that oxygen free radicals play an important role.9 The crude extract of Ginkgo biloba (Family: Ginkgoaceae) protects kidney slices against cisplatin induced lipid peroxidation and decreased uptake of p-aminohippuric acid.9
Search for nephroprotective agents has made man turn to alternative sources viz indigenous system of medicines especially Unani and Ayurveda. That has a rich literature from ancient time and provides a cheap, effective and safe medicine through it source of herbal, mineral and animal origin drugs.17

Asgand (Withania somnifera, Dunal) belongs to the family Solanaceae. It is very familiar name in Unani as well as in other traditional systems of medicine for its multifarious properties, due to the similarity between the restorative properties of Asgand root and Ginseng root it is also called ‘Indian ginseng’. In Tibbe Unani, Asgand is well known for its therapeutic properties as rejuvenator, strengthen, immunomodulator, diuretics, adaptogenic etc.18,19 The fresh roots are preferred for medicinal uses, two type of asgand mentioned in Unani literature. Our preliminary studies showed that Asgand (Withania somnifera, Dunal) protect the kidney damage against the cadmium chloride induced renal damage.20 Rhubarb (Rheum emodi) against gentamicin, cadmium chloride, mercuric chloride and potassium dichromate,21 Kulthi (Dolichos biflorous) against gentamicin and mercuric chloride induced nephrotoxicity,22-23 Kundur (Boswellia serrata Roxb.)24 Khar-e-Khasak Khurd (Trifolium terrestries)25 Hweet (Refula foetida Regal)26 against gentamicin induced toxicity in experimental animals.

Objective of the study

The objective of this study was taken to evaluate the efficacy of the crude power of Withania somnifera Dunal, against cisplatin-induced nephropathy.

MATERIALS AND METHOD

Plant Material

The Asgand (Withania somnifera Dunal) was procured from Asian Traders, Kharibaoli, Delhi. The authenticity of Asgand (Withania somnifera Dunal) was established by the matching with authentic specimen available in Dept. of Ilmul Advia, F/o Medicine (U), Jamia Hamdard, New Delhi-110062. The root of Asgand (Withania somnifera Dunal) was dried and converted into fine powder (Asgand power=AP) and finally suspended in vehicle before its administration per orally.

Animals

Healthy albino rats of Wistar strain of either sex weighing 130-250 gms (aged 60-90days) were used for this study. Rats were obtained from Central Animal House Facilities, Jamia Hamdard, New Delhi. They were kept under standard laboratory conditions (Temperature and humidity controlled) and fed with standard diet. Water was allowed ad libitum. The study was conducted after obtaining Institutional animal ethical committee Clearance.

Research designed

Three days after acclimatization, the rats were assigned randomly to four equal experimental groups having six animals each. The group-I served as control and was injected with distilled water and orally administered gum acacia solution (2% w/v) for 7 days. The group-II was given cisplatin (1mg/kg/day, intra peritoneal) for four days and orally administered same as group-I. Group-III was treated with powder of Withania somnifera Dunal in the dose of 700 mg/kg body wt, orally suspended in acacia solution (2% w/v), group-IV was administered the test drug in the dose of 1400mg/kg body wt. orally. Group III and IV also received gentamicin, 80mg/kg/day, for five days. The blood samples were collected, serum was separated by centrifuging at 3000 rpm for 10min. Serum were analyses for blood urea, serum creatinine and uric acid levels.28

Statistical Analysis:

Data were expressed as Mean±S.E.M and analyzed by one-way analysis of variance (ANOVA) followed by Dunnett’s ‘t’ test. The probability level less than 5% considered to be significant.

RESULTS

Table-1: Effects of Asgand (Withania somnifera Dunal) on BUN in Cisplatin induced nephrotoxicity in rat model (Oral treatment period –7 days)

Groups	Treatment	Dose	BUN Level (mg/dl)	% of change	% of inhibition
			(Mean±SEM)		
I	Control (Vehicle)	10 ml/KG	20.19±0.68	-	-
II	Cisplatin (Toxicant)	1mg/Kg/day	29.8±1.15*	100	-
III	AP + Toxicant	700+1mg/Kg/day	18.10±0.91*	-21.7	121.7
IV	AP + Toxicant	1400+1mg/KG/day	20.89±1.09*	7.3	92.7

N=6, BUN = Blood urea nitrogen, *Statistically significant, in comparison with control, in comparison with toxicant, * P<0.01

Figure-1: Effects of Asgand (Withania somnifera Dunal) on BUN in Cisplatin induced nephrotoxicity in rat model.
Table 2: Effects of Asgand (Withania somnifera Dunal) on serum creatinine in Cisplatin induced nephrotoxicity in rat model (Oral treatment period – 7 days)

Groups	Treatment	Dose	S.Cr Level (mg/dl) (Mean±SEM)	% of change	% of inhibition
I	Control (Vehicle)	10 ml/KG	1.44±0.11	-	-
II	Cisplatin (Toxicant)	1mg/Kg/day	2.81±0.21*	100	-
III	AP + Toxicant	700+1mg/Kg/day	1.76±0.13*	23.40	76.6
IV	AP + Toxicant	1400+1mg/Kg/day	1.55±0.10*	8.0	92

N=6, S.Cr = Serum Creatinine, *Statistically significant, ^in comparison with control, $in comparison with toxicant, *P<0.01

Figure 2: Effects of Asgand (Withania somnifera) on Sr. Cr. in cisplatine induced nephrotoxicity in rat model

Table 3: Effects of Asgand (Withania somnifera Dunal) on uric acid in Cisplatin induced nephrotoxicity in rat model (Oral treatment period – 7 days)

Groups	Treatment	Dose	Uric Acid Level (mg/dl) (Mean±SEM)	% of change	% of inhibition
I	Control (Vehicle)	10 ml/KG	8.92±1.03	-	-
II	Cisplatin (Toxicant)	1mg/Kg/day	13.19±0.83*	100	-
III	AP + Toxicant	700+1mg/Kg/day	9.23±0.62*	7.3	92.7
IV	AP + Toxicant	1400+1mg/Kg/day	8.64±0.61*	-6.6	106.6

N=6, UA= Uric Acid, *Statistically significant, ^in comparison with control, $in comparison with toxicant, *P<0.01

Figure 3: Effects of Asgand (Withania somnifera Dunal) on Uric acid in cisplatine induced nephrotoxicity in rat model

Group I (Control) was compared Group II (Toxicant) for observation of change in the parameters. The Group III and Group IV were compared with Group II to observe the Inhibition. The inhibition was calculated in term of percentage of change in comparison to control. The level of the markers increased significantly in cisplatin treated (group-II) animals in comparison to Control (group-I). Cisplatin treatment caused nephrotoxicity as evidenced by marked elevation in blood urea nitrogen (BUN) 47.59%, serum creatinine (SC) 95.13% and uric acid (UA) 47.86% as shown in table I, II & III and table -1, 2 & 3.

The elevation of serum markers were significantly reduced by the oral administration of Asgand powder (Withania somnifera Dunal) in the dose 700mg/kg, inhibited the rise in BUN 121.7%, SC 76.64% and UA 92.7%. There were 92.71% inhibition in the rise of BUN, 92% inhibition in the rise of SC
and 106.6% inhibition in the rise of UA with the dose 1400 mg/kg.

DISCUSSION

The study demonstrates renal injury due to cisplatin which was evidenced by the elevated blood urea and serum creatinine level. Crude powder of As günd (Withania somnifera) could be a rapid response-drug with good antioxidant property and free radical scavenging property. Hence the probable mechanism of nephroprotection by As günd (Withania somnifera) could be due to its antioxidant property and free radical-scavenging property and thus this plant could play a promising role in the treatment of acute renal failure induced by nephrotoxic like cisplatin. Literature on Unani Advia Mufrada (Single drugs) is so rich and having many drugs mentioned for nephroprotection by great scholars in their treatises. Many of them have proved by scientists in experiments. These may be evaluated on the scientific parameters for the treatment of chronic kidney disease.**

ACKNOWLEDGEMENT

The authors are thankful to the Honorable Vice Chancellor, Jamia Hamdard and Hamdard National Foundation, New Delhi for providing excellent facilities of academics and research to carry out this research work.

REFERENCES

1. Rozeneveig M, Van Hoff DD, Slavil M, Muggia FM, Cis-diamine dichloroplatinum, a new anticancer agent, Annals of Internal Medicine, 1976; 85(1): 307-314.
2. Livingstone RB. Cisplatin in the treatment of solid tumors: effect of dose and schedule. J. National Cancer Institute, 1989; 81(10):724-725.
3. Kuhlmann MK, Burkhartt G, Kohler H. Insights into potential cellular mechanisms of cisplatin nephrotoxicity and their clinical application. Nephrol Dial Transplant, 1997; 12(12):2478-2480.
4. Garnick MB, Mayer RJ, Abe!son HT. Acute renal failure associated with cancer treatment. In: Acute renal failure. Eds. B.M. Brenner & J.M. Lazarus. Churchill Livingstone, New York; 1988. P. 621-657.
5. Madias NE, Harrington JT. Platinum nephotoxicity, American Journal of Medicine, 1978; 65(1): 307-314.
6. Goldstein RS, Mayor GH. The nephrotoxicity of cisplatin. Life Sciences, 1983; 32:685-690.
7. Zhang J, Lindup E. Cisplatin nephrotoxicity: decreases in mitochondrial protein sulphhydril concentration and calcium uptake by mitochondria from rat renal cortical slices, Biochem, Pharmacol, 1994; 47 (7):1127-1135.
8. Mistry P, Meraza Y, Spargo DJ, Riley PA, Mc Brien DCH. The effects of cisplatin on the concentration of protein thiois and glutathione in the rat kidney, Cancer Chemother. Pharmacol, 1991; 28(4):277-282.
9. Inselman G, Blohmer A, Kottny W, Nelissen U, Heidemann HT. Modification of cisplatin-induced renal paminohippurate uptake alteration and lipid peroxidation by thiol, Ginkgo biloba extract, desferoxamine and torbaylirine, Nephron, 1995; 70(4):425-429.
10. Kandaswami C, Middleton Jr. E. Free Radical Scavenging and Antioxidant Activity of Plant Flavonoids, Free Radicals in Diagnostic Medicine, 1994; 36:351-376.
11. Sadzuka Y, Shojo T, Takino Y. Effect of cisplatin on the activities of enzymes which protect against lipid per oxidation, Biochem. Pharmacol., 1992; 43(8):1872-1875.
12. Offerman JIC, Meijer S, Skeijer DT, Mulder NH, Donker AJM, Koops HS, Vander Hem GK. Acute effects of cis-diaminedichloroplatinum (CDDP) on renal function, Cancer Chemother, Pharmacol., 1984; 12(1):36-38.
13. Li Q, Bowmer CJ, Yates MS. Effect of arginine on cisplatin-induced acute, renal failure in the rat, Biochem, Pharmacol., 1994; 47(12):2298-2301.
14. Nakano S. Gembka M. Potentiation of cisplatin-induced lipid peroxidation in kidney cortical slices by glutathione depletion, Jpn J Pharmacol., 1989; 50(2):87-92.
15. Zhong LF, Zhang JG, Zhang M, Xia YK. Protection against cisplatin induced lipid peroxidation and kidney damage by procaine in rats, Arch Toxicol., 1990; 64(7):599-600.
16. Baldew GS, Van den Hamer CJA, Gos G, Vermuelen NPE, de Goeij JJM, McVie JG. Selenium induced protection against cis-diaminedichloroplatinum nephrotoxicity in mice and rats, Cancer Research, 1989; 49(11):5302-5303.
17. Anonymous, “Unani system of Medicine, The Science of health and healing”, Department of AYUSH, Ministry of Health and family welfare publication, New Delhi, 2013.
18. Ghani N. Khazainul Advisa, Vol-II, Barqi press Lahore. 1926. P. 79-81.
19. Khan MA. Muheet-e-Azam. (urdu translation), vol-I. Central council for Research in Unani Medicine Publication, New Delhi, 2012. P. 319-320.
20. Azhar MU, Alam M, Aslam M, Javed K, Jafri MA. Role of As günd (Withania somnifera) Dunal in cadmium chloride induced nephrotoxicity in rats, Hamdard Medicus, 2005; 48(3):48-51.
21. Alam MMA, Javed K, Jafri MA. Effect of revad (Rheum emodi) on renal functions in rats. Journal of Ethnopharmacology, 2005; 96(1-2):121-125.
22. Azhar MU, Khan SA, Aslam M, Javed K, Jafri MA. Nephroprotective activity of kutilh (Dolichos biflorus) on gentamicin induced toxicity in rats, Journal of Science and Pharmacy, 2004; 5(2):50-53.
23. Azhar MU, Tajuddin, Jafri MA, Nephroprotective effect of kutilh [Macrotlyloma uniflorum (lam) verd.] on acute renal failure in rats, Hippocratic Journal of Unani Medicine, 2008; 3(4):97-102.
24. Alam M, Javed K, Jafri MA. Effect of oleo-gum-resin of Boswellia serrata (Kundur) on renal functions in Albino rats, Indian Journal of Traditional Knowledge, 2011; 10(4):735-740.
25. Akhtar F, Azhar MU, Aslam M, Javed K, Nephroprotective effect of Khar-e-Khasak Khurd (Tribulus terrestris linn) on gentamicin-induced experimental nephrotoxicity in rats, Asian Journal of Research in Nephrology, 2020; 5(3):6-13.
26. Javed R, Aslam M, Javed B, Azami Q, Javaid K, Azhar MU, Extract of ferula foetida Regel reverses gentamicin induced nephrotoxicity in rats, Experimental and Clinical Sciences Journal, 2012; 11-1-7.
27. Rao M, Rao MNA, Protective Effect of Cystone a polyherbal Ayurvedic preparation on cisplatin induced renal toxicity in rats, Journal of Ethnopharmacology, 1998; 62(P):1-6.
28. Godkar PB. Text Book of Medical Laboratory Technology. Bhalani Publishing House, Bombay, 1994. P. 174-185.
29. Devipriya S, Shyamaladevim CS, Protective effect of quercetin in cisplatin induced cell injury in the rat kidney, Indian J. Pharmacol., 1999; 31(6):422-426.
30. Azhar MU, Anjum N, Quddusi N, Akhtar J, Akram U, Yadav PK, Pharmacologically active nephroprotective plants- a review, Hamdard Medicus, 2013; 5:6-66-76.
31. Azhar MU, Javed K, Jafir MA, Plant with nephroprotective activity, Hamdard Medicus, 2005; 48(4):35-43.
32. Azhar MU, Akhtar F, Aslam M, Anwer M, Tajuddin, Jafri MA, Nephroprotective activity of some herbal preparations, Hamdard Medicus, 2005; 49(1):110-115.
33. Azhar MU. Effect of herbal unani formulation on nephrotic syndrome: a case study, Indian Journal of Traditional Knowledge, 2018; 17(4):807-809.
34. Azhar MU, Mustehsanan, Alam M, Ahmad SG, Anjum N, Quddusi N, Nephroprotective unani drug Khar-e-Khasak Khurd (Tribulus terrestris linn.) - a review, International Journal of Scientific Research in Biological Sciences, 2020; 7(1):24-36.