Low temperature hcp to monoclinic structural transition in solid C$_{70}$: Ephemeral nature of the intermediate phase

G. Ghosh, V. S. Sastry, C. S. Sundar, Surajit Sengupta and T. S. Radhakrishnan

Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, India.

We follow the structural transformation in solid C$_{70}$ from the high temperature hcp to a low temperature monoclinic phase using detailed x-ray diffraction studies at controlled cooling-rates from 0.0033 to 0.42 K/min. Rapid cooling of the sample gives the signature of a two-step transformation which disappears when the system is transformed quasi-statically. These experimental results can be rationalized using a simple mean field, Langevin dynamical theory using a free energy functional with minima corresponding to the parent and two competing product phases such that one of these product phases remains metastable throughout. The implication of our results on the existence of the intermediate phase in the sequence, hcp-dhcpp-monoclinic, of structural transitions in solid C$_{70}$ with the lowering of temperature is discussed.

Following the pioneering work of Heiney et al., on relating the structural transition at low temperature (260 K) in solid C$_{60}$ to the development of orientational correlations between rotating C$_{60}$ molecules, there have been extensive studies on fullerene molecular crystals, both solid C$_{60}$ and C$_{70}$. However, unlike in solid C$_{60}$, the low temperature structural transitions in the next higher fullerene C$_{70}$ are not unambiguously established. The situation is exacerbated by the complicated orientational dynamics of the lower symmetry (D$_{5h}$) molecule, associated sluggishness of the transition and complications due to intercalated solvent effects etc. Solid C$_{70}$ is observed to crystallize in both fcc and ideal hcp structures, corresponding to close packing of rapidly rotating spherically averaged molecules. The fcc solid C$_{70}$ is first seen to transform at \approx280 K to a rhombohedral structure and subsequently to a monoclinic structure at 200 K with the lowering of temperature; both these transitions are associated with considerable hysteresis of \approx 50 K.

A widely accepted viewpoint on the nature of structural transitions in hcp solid C$_{70}$ involves two transitions: One from the ideal hcp ($c/a \approx 1.63$) to the deformed hcp ($c/a \approx 1.82$) at 337 K (dhcp) and a second transition to the monoclinic structure at 276 K. Data from differential thermal analysis (DTA), differential scanning calorimetry (DSC) and dilatometry measurement also lend support to this scenario. The occurrence of a two-step transition is rationalized in terms of successive freezing of molecular orientations, first along the short C$_2$ axis and then along the long C$_5$ axis; the structural transitions being produced by the coupling of these orientational degrees of freedom to the lattice strain.

Several experiments, however, see a single-step transition from hcp to monoclinic phase, and there are others that have reported three structural transitions with the variation of temperature. For example, Dennis et al. observed a single-step orientational ordering of C$_{70}$ molecules, over the temperature range of 270 to 160 K in their muon spin resonance (μSR) experiments. In our earlier work, using high quality samples prepared by the solution route we observed (1) the equilibrium room temperature structure of solid C$_{70}$ to be ideal hcp and (2) a broad (270 to 170 K) single-step transition from the ideal hcp to a monoclinic structure implying a simultaneous freezing of all the orientational degrees of freedom. It is of interest to know if the differences in the structural sequence are related to the different (often uncontrolled) cooling-rates employed in the earlier experiments. If an equilibrium intermediate phase actually exists then it would be seen during controlled slow cooling of the system from the ideal hcp structure.

With a view to investigate this, x-ray diffraction (XRD) experiments at various controlled cooling-rates (varying over two orders of magnitude) have been carried out, and the evolution of the monoclinic phase at low temperature followed. Contrary to our initial expectations, though the transformation proceeds through a single-step (starting at \approx270 K) when a slow cooling-rate (0.0033 K/min.) is used, it has a two-step sequence on cooling rapidly (0.42 K/min.). Our experimental results (Fig. 2.) strongly suggest that the intermediate phase reported earlier is likely to be an artifact of the kinetics of the transformation process and not a true equilibrium phase. We show that qualitative aspects of our data for the temperature evolution of the fraction of the retained hcp phase during the hcp to monoclinic transition can be understood within a simple phenomenological kinetic theory employing a general free energy functional with minima corresponding to the parent and two product phases such that one of the product phases is always metastable.

Chromatographically separated C$_{70}$ powder was heated in vacuum at 250$^\circ$ C for 24 hours to get rid of trapped solvents. The x-ray diffraction (XRD) study at low temperatures was carried out using a Siemens D-500 powder diffractometer with a continuous flow cryostat. The sample holder was a (911) cut silicon wafer attached to the cold tip of the cryostat using a thin layer of GE vernish. The sample displacement errors due to thermal contraction were corrected by simultaneously using a small quantity of NIST 640a silicon powder as internal d-spacing standard. The XRD patterns were recorded at
10 K steps over the temperature range of 300 to 77 K. The sample was cooled at controlled rates. Experiments were carried out at four different cooling-rates varying over two orders of magnitude, viz. 0.0033 K/min., 0.22 K/min., 0.31 K/min., and 0.42 K/min. Before commencing a fresh cooling cycle we carried out a detailed XRD run at room temperature to ensure that the sample had regained its original hcp structure.

As shown in Fig.1 (a), the room temperature XRD pattern can be indexed to the ideal hcp with lattice parameters \(a = 10.593 \) Å, \(c = 17.262 \) Å, and space group \(P6_3/mmc \). The low temperature pattern can be indexed to a monoclinic structure, space group \(P2_1/m \), with lattice parameters \(a = 10.99 \) Å, \(b = 16.16 \) Å, \(c = 9.85 \) Å, \(\beta = 107.75^\circ \). At a slow cooling rate of 0.0033 K/min, it is seen that the hcp phase transforms to the monoclinic structure without the intervening dhcp phase, consistent with the results reported earlier \([1]\). At higher cooling rates of 0.22, 0.31 and 0.42 K/min, XRD patterns in the \(2\theta \) range of 16° and 18°, corresponding to the most intense peaks of the hcp (110) and the monoclinic (211) phases \([1]\), have been measured, and these results are shown in Figs.1 (b)-(d).

The change in the fraction of the hcp phase with temperature has been calculated from these patterns as the area ratio of the 100% hcp (110) reflection to the sum of the areas of the (110) reflection of the hcp and (211) reflection of the monoclinic phase, and these results are plotted in Fig.2. It is seen that at a cooling-rate 0.0033 K/min. the hcp fraction decreases in a single-step, within a temperature range of about 100 K. The structural change commences at \(\approx 270 \) K, and by \(\approx 170 \) K the transformation to the monoclinic phase is complete. While apriori, such a broad transition could be attributed to impurity effects (presence of intercalants), the observation of a \(\approx 80 \) K co-existence region even in the sublimed sample \([2]\) suggests that this feature is intrinsic. It is seen from Fig. 2 that the width of the transition increases with the increase in cooling rate (e.g., 0.22 K/min.) implying that the width is related to the sluggishness of transition in solid \(C_{70} \). The kinetic model proposed in this paper (see below) accounts for the broad hcp to monoclinic transition solid \(C_{70} \) (cf. Fig. 2 and Fig. 3).

The interesting aspect of Fig. 2 is that with increasing the cooling-rate further, one obtains a step in the transformation region, which can be seen as a distinct plateau for the cooling-rate of 0.42 K/min, the fastest controlled cooling rate possible with our present experimental setup.

As shown in Fig.1 (a), the room temperature XRD pattern can be indexed to the ideal hcp with lattice parameters \(a = 10.593 \) Å, \(c = 17.262 \) Å, and space group \(P6_3/mmc \). The low temperature pattern can be indexed to a monoclinic structure, space group \(P2_1/m \), with lattice parameters \(a = 10.99 \) Å, \(b = 16.16 \) Å, \(c = 9.85 \) Å, \(\beta = 107.75^\circ \). At a slow cooling rate of 0.0033 K/min, it is seen that the hcp phase transforms to the monoclinic structure without the intervening dhcp phase, consistent with the results reported earlier \([1]\). At higher cooling rates of 0.22, 0.31 and 0.42 K/min, XRD patterns in the \(2\theta \) range of 16° and 18°, corresponding to the most intense peaks of the hcp (110) and the monoclinic (211) phases \([1]\), have been measured, and these results are shown in Figs.1 (b)-(d).

The change in the fraction of the hcp phase with temperature has been calculated from these patterns as the area ratio of the 100% hcp (110) reflection to the sum of the areas of the (110) reflection of the hcp and (211) reflection of the monoclinic phase, and these results are plotted in Fig.2. It is seen that at a cooling-rate 0.0033 K/min. the hcp fraction decreases in a single-step, within a temperature range of about 100 K. The structural change commences at \(\approx 270 \) K, and by \(\approx 170 \) K the transformation to the monoclinic phase is complete. While apriori, such a broad transition could be attributed to impurity effects (presence of intercalants), the observation of a \(\approx 80 \) K co-existence region even in the sublimed sample \([2]\) suggests that this feature is intrinsic. It is seen from Fig. 2 that the width of the transition increases with the increase in cooling rate (e.g., 0.22 K/min.) implying that the width is related to the sluggishness of transition in solid \(C_{70} \). The kinetic model proposed in this paper (see below) accounts for the broad hcp to monoclinic transition solid \(C_{70} \) (cf. Fig. 2 and Fig. 3).

The interesting aspect of Fig. 2 is that with increasing the cooling-rate further, one obtains a step in the transformation region, which can be seen as a distinct plateau for the cooling-rate of 0.42 K/min, the fastest controlled cooling rate possible with our present experimental setup.

As shown in Fig.1 (a), the room temperature XRD pattern can be indexed to the ideal hcp with lattice parameters \(a = 10.593 \) Å, \(c = 17.262 \) Å, and space group \(P6_3/mmc \). The low temperature pattern can be indexed to a monoclinic structure, space group \(P2_1/m \), with lattice parameters \(a = 10.99 \) Å, \(b = 16.16 \) Å, \(c = 9.85 \) Å, \(\beta = 107.75^\circ \). At a slow cooling rate of 0.0033 K/min, it is seen that the hcp phase transforms to the monoclinic structure without the intervening dhcp phase, consistent with the results reported earlier \([1]\). At higher cooling rates of 0.22, 0.31 and 0.42 K/min, XRD patterns in the \(2\theta \) range of 16° and 18°, corresponding to the most intense peaks of the hcp (110) and the monoclinic (211) phases \([1]\), have been measured, and these results are shown in Figs.1 (b)-(d).

The change in the fraction of the hcp phase with temperature has been calculated from these patterns as the area ratio of the 100% hcp (110) reflection to the sum of the areas of the (110) reflection of the hcp and (211) reflection of the monoclinic phase, and these results are plotted in Fig.2. It is seen that at a cooling-rate 0.0033 K/min. the hcp fraction decreases in a single-step, within a temperature range of about 100 K. The structural change commences at \(\approx 270 \) K, and by \(\approx 170 \) K the transformation to the monoclinic phase is complete. While apriori, such a broad transition could be attributed to impurity effects (presence of intercalants), the observation of a \(\approx 80 \) K co-existence region even in the sublimed sample \([2]\) suggests that this feature is intrinsic. It is seen from Fig. 2 that the width of the transition increases with the increase in cooling rate (e.g., 0.22 K/min.) implying that the width is related to the sluggishness of transition in solid \(C_{70} \). The kinetic model proposed in this paper (see below) accounts for the broad hcp to monoclinic transition solid \(C_{70} \) (cf. Fig. 2 and Fig. 3).

The interesting aspect of Fig. 2 is that with increasing the cooling-rate further, one obtains a step in the transformation region, which can be seen as a distinct plateau for the cooling-rate of 0.42 K/min, the fastest controlled cooling rate possible with our present experimental setup.
Being a large and somewhat asymmetric molecule C\textsubscript{70}, possesses a rich energy landscape with many closely competing local minima with the possibility of the system getting trapped in metastable phases influencing the equilibrium phase transitions in this system. A Landau theory for the hcp - monoclinic transition in C\textsubscript{70} can, in principle, be constructed along the lines worked out in Refs [4] for the fcc - rhombohedral transition. In this case, the free energy would have three nonequivalent minima corresponding to the three (hcp, dhcp and monoclinic) phases described above and is expected to have either one (hcp-monoclinic) or a sequence of two (hcp-dhcp-monoclinic) first order transitions depending on the relative stability of the dhcp and the monoclinic phases. The question of relative stability is, unfortunately, tricky since it depends on the actual magnitudes of the various coefficients in the Landau expansion. The uncertainty in the values of these coefficients, which have to be obtained experimentally or from accurate microscopic calculations, makes it difficult in practice to settle this question convincingly.

\begin{equation}
 f = \eta^2 \{ 1 - (1 - \tau)(\delta e^{-\alpha_1(\eta - \eta_1)^2} + e^{-\alpha_2(\eta - \eta_2)^2}) \} \quad (1)
\end{equation}

The depth of these minima relative to the one at \eta = 0 is determined by the dimensionless “relative temperature” \tau \propto (T - T_c)/T_c (defined for \tau < 1 with T_c the equilibrium transition temperature) and \delta controls the relative stability of the products for \eta_1 and \eta_2; we have chosen \delta to be such that the minimum at \eta_1 is always metastable throughout the range of \tau considered. At \tau = 0 we have a single first order transition from the parent to the product corresponding to \eta = \eta_2. Using the (arbitrary) set of parameters \eta_1 = 0.4, \alpha_1 = 200, \eta_2 = 0.8, \alpha_2 = 10 and \delta = 0.78 we have plotted the free energy \(f(\eta) \) for \tau = 0.1 and \tau = -1 in Fig. 3 (inset). Note that the parameter \delta has been so chosen that the intermediate minimum is always slightly metastable compared to the other two minima. While our order parameter \eta has no direct connection to actual order parameters for orientational transitions of C\textsubscript{70} it may be thought of as a “distance” along a “minimal free energy” path connecting the parent minima to the two nonequivalent product minima in the true high dimensional order parameter space.

We now investigate the dynamics of this transition and especially the effect of the metastable minimum at \eta = \eta_1. The dynamics is governed by a Langevin equation [13] for the order parameter \eta (we neglect all spatial fluctuations) evolving in the free energy landscape \(f(\eta) \) and is given by,

\begin{equation}
 d\eta/dt = -\Gamma d\phi(\eta)/d\eta + \xi(t). \quad (2)
\end{equation}

The friction coefficient \Gamma is related to the variance of the Gaussian white noise \gamma by the usual fluctuation-dissipation relation \gamma = \langle \xi(t)\xi(t') \rangle = 2k_BT\Gamma \delta(t - t') , \quad (2)
where \(k_B \) is the Boltzmann constant and \(T \) the actual temperature. The value of \Gamma can, in principle, be obtained from the libron lineshape obtained from Raman [14] and neutron \[17\] scattering experiments. The angular brackets signifies an average over various realizations of the random noise.

We therefore choose a simple, phenomenological approach to understand the qualitative features of the kinetics of the hcp-monoclinic transition as depicted in Fig. 2, without trying to derive them with any amount of numerical accuracy. Consider a general free energy \(f(\eta) \) with three minima obtained by adding inverted Gaussians at \eta = \eta_1 and \eta_2 with widths \alpha_1 and \alpha_2 representing the product phases, to a parabolic potential centred at \eta = 0, representing the parent phase.
the parent to the metastable intermediate phase, on the other hand, by the time the system relaxes from to relax to the global minimum. For very fast quenches, words, at slow cooling rates the system gets enough time to the plateau observed in Fig.3 (curve 3). In other cases, the intermediate phase is metastable. In the light of present investigations theoretical calculations on the stability of dhcp phase need to be re-examined.

We simulate Eq.3 using a straightforward Euler discretization scheme with a timestep of $\Delta t = 0.01$. The dimensionless temperature τ is reduced from 1 in steps of 0.01. At each temperature step the system was held for t_h steps (a larger value of t_h implies slower cooling). The order parameter η averaged over t_h steps and over various realizations of the random noise (typically $300 - 700$) is plotted as a function of τ in Fig. 3 (for the above set of parameters for $f(\eta)$ and $\gamma = 1.8$). The resemblance with the cooling curves of Fig. 2 is remarkable. Both extremely fast and slow cooling obtains a single step transformation — the transformation becoming sharper as the cooling rate is reduced. For intermediate values of the cooling rate a plateau develops. The plateau results when the system is trapped, temporarily, in the intermediate phase as it evolves from the parent to the product structure. This can be illustrated as follows.

In Fig.4 we have plotted the probability distributions $P(\eta, \tau(t))$ as a function of $\tau(t)$ for a collection of 500 independent systems cooled from $\tau = 1$ to $\tau = -4.0$ with $t_h = 100\Delta t$. Starting from a delta function at the origin at $t = 0$ the $P(\eta, t)$ spreads out with time and eventually evolves into a strong peak centered at the equilibrium value of η. However, we observe that the system spends a considerable amount of time in the secondary metastable minimum near η_1 which roughly corresponds to the plateau observed in Fig.3 (curve 3). In other words, at slow cooling rates the system gets enough time to relax to the global minimum. For very fast quenches, on the other hand, by the time the system relaxes from the parent to the metastable intermediate phase, τ decreases to the extent that the barriers are no longer sufficient to trap it there. Similar qualitative behaviour is seen over a broad range of values for our parameters as long as the intermediate minimum lies sufficiently close to the true global minimum and it is sharp enough to trap the system effectively. This behaviour is quite general and is analogous to that in ferroelectrics where a similar kinetic stabilization of the metastable paraelectric state produces double hysteresis loops [10].

To paraphrase, the low temperature structural transformation of solid C_{70} exhibits interesting kinetic effects, as evidenced by XRD experiments carried out at various cooling rates. At extremely slow cooling rates ($0.0033K/min$), rarely employed in the studies so far, the transformation to the monoclinic phase proceeds through a single step. This implies that the equilibrium transformation corresponds to the simultaneous freezing of all orientational degrees of freedom, and recently [11] a structural model for the low temperature monoclinic structure has been proposed. At high cooling rate the transformation from ideal hcp to monoclinic phase proceeds through an intermediate phase. With support from a theoretical model, we show that such a situation can arise if the intermediate phase is metastable. In the light of present investigations theoretical calculations on the stability of dhcp phase need to be re-examined.

ACKNOWLEDGMENTS

We gratefully acknowledge Y. Hariharan and A. Bharathi for providing good quality C_{70} powder. We thank K.P.N. Murthy and Madan Rao for useful discussions.

[1] P. A. Heiney et al., Phys. Rev. Lett., 66, 2911 (1991).
[2] C. Christides, I. M. Thomas, T. J. S. Dennis and K. Prassides, Europhys. Lett., 22, 611 (1993).
[3] G. B. M. Vaughan et. al., Science, 254, 1350 (1991).
[4] M. A. Verheijen, H. Meekes, G. Meijer, P. Bennema, J. L. de Boer, S. van Smaalen, G. van Tendeloo, S. Amelinckx, S.Muto, and J. Lansdught, Chem. Phys., 106, 287 (1992).
[5] G. van Tendeloo, S. Amelinckx, J. L. de Boer, S. van Smaalen, M. A. Verheijen, H. Meekes and G. Meijer, Europ. Phys. Lett., 21, 329 (1993).
[6] T. Tanaka and T. Atake, J. Phys. Chem. Solids, 57, 277 (1996).
[7] J. Sworakowski, K. Palewska and M. Bertault, Chem. Phys. Lett., 220, 197 (1993).
[8] C. Meingast, F. Gugenberger, G. Roth, M. Haluska and H. Kuzmany, Z. Phys. B 95, 67 (1994).
[9] S.K. Ramesh, A.K. Singh, Ram Seshadri, A.K. Sood and C.N.R. Rao, Chem. Phys., 220, 203 (1994).
[10] T. J. S. Dennis, K. Prassides, E. Roduner, L. Cristofolini and R. DeRenzi, J. Phys. Chem., 97, 8553 (1993).
[11] G. Ghosh., V. S. Sastry, C. S. Sundar, and T. S. Radhakrishnan, Sol. Stat. Commun., 105, 247 (1998).
[12] G. V. Narasimha Rao, V. S. Sastry, M. Premila, A.
Bharathi, C. S. Sundar, Y. Hariharan, V. Seshagiri, and T. S. Radhakrishnan, Powder Diff., 11, 5 (1996).

[13] G. V. Narasimha Rao, V. S. Sastry, H. S. G. K. Murthy, V. Seshagiri and T. S. Radhakrishnan, Powder Diff., 11, 200 (1996).

[14] R. Sachidanandam and A. B. Harris, Phys. Rev. B, 49, 2878 (1994); A. V. Nikolaev and K. H. Michel, Phys. Rev. B, 54, 12733 (1996).

[15] P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics, Cambridge University Press (1997).

[16] P.H.M. van Loosdrecht, M.A. Verheijen, H. Meeks, P.J.M. van Bentum and G. Meijer, Phys. Rev. B, 47, 7610 (1993).

[17] K. Prassides, in Physics and Chemistry of Fullerenes, edited by, K.Prassides, NATO, ASI series, Kluwer Acad. Press, 1994, p.203.

[18] see for example, T. Mitsui, I. Tatsuzaki and E. Nakamura. An Introduction to the Physics of Ferroelectrics, Grodon and Breach, New York, (1976).

[19] G. Ghosh., V. S. Sastry, and T. S. Radhakrishnan, Phys. Rev. B, 57, R13969 (1998).