Supporting Information for

Study of The Modification Mechanism of Heavy Metal Ions Adsorbed by Biomass Activated Carbon Doped with Solid Nitrogen Source

Wanlan Zheng, Shuang Chen, * Huie Liu, Yudi Ma, and Wenlong Xu

State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China.

*E-mail: chsh1030@163.com (Shuang Chen)
As shown in Figure S1, the isotherms of BAC-U and BAC-N can be classified as type IV, presenting a rapid adsorption of N_2 at low relative pressures and an adsorption platform at high relative pressures. Compared with BAC-U, the mesoporous porosity of BAC-N increased significantly in pore distribution curve.

Figure S2 shows the thermodynamic curves of two nitrogen-doped
activated carbons. The slope of two curves is less than zero, which indicates that the adsorption process is endothermic reaction. The adsorption performance of BAC-N is more obviously affected by temperature, because the absolute value of slope is larger.