Spin liquids are collective phases of quantum matter which have eluded discovery in correlated magnetic materials for over half a century. Theoretical models of these enigmatic topological phases are no longer in short supply. In experiment there also exist plenty of promising candidate materials for their realisation. One of the central challenges for the clear diagnosis of a spin liquid has been to connect the two. From that perspective, this review discusses characteristic features in experiment, resulting from the unusual properties of spin liquids. This takes us to thermodynamic, spectroscopic, transport, and other experiments on a search for traces of emergent gauge fields, spinons, Majorana Fermions and other fractionalised particles.

CONTENTS

I. The quest for spin liquids 1
 A. What is a spin liquid 2
 B. How to tell one, as a matter of principle... 3
 C. ... and in practice 4
 D. The role of universality 4
II. How to start looking ... 4
 A. ... and where 5
III. Thermodynamics and transport 5
 A. Thermodynamics 6
 B. Longitudinal transport: thermal versus charge 6
 C. Bulk-boundary correspondence and quantization of currents 7
 D. Unconventional phase transitions 7
IV. Spectroscopy 8
 A. Inelastic neutron scattering and quasi-particle kinematics 8
 B. Light scattering 9
 C. Local probes 9
 D. Bound states of fractionalized quasiparticles 10
 E. Statistics 10
V. Disorder and defect physics 11
VI. Discussion and future directions 11
Acknowledgements 12
References 12

I. THE QUEST FOR SPIN LIQUIDS

The search for spin liquids as fundamentally new states of matter is a long-running quest1–4. Their occurrence in insulating magnets appears to be greatly facilitated by frustrated interactions for which the corresponding classical spin systems display a large ground state degeneracy because the local energetics cannot be minimized in a unique way5–10. For a long time, the central and defining concept involved was a negative one – a (ground) state without any magnetic order – in contrast to the prevailing phases with spontaneous symmetry breaking characterised by local order parameters. The rejuvenated interest in resonating valence bond (RVB) physics through high-temperature superconductors11 focused attention on topological properties12–15.

Initially, theoretical ideas were centred around wavefunctions, e.g. of the RVB type, but it took considerable time until microscopic Hamiltonians realising such states at isolated points16 or extended bona fide quantum spin liquid (QSL) phases were established2. The advent of exactly soluble model Hamiltonians16,17 has allowed to gain an unprecedented understanding of ground- and excited state properties of QSLs. Nowadays, the theory community has developed a remarkable capacity to invent elaborate schemes with a plethora of different phenomenologies but arguably with little guidance from experiment.

At the same time, while the target space of interesting models has exploded, the arsenal of methods for their detection has not grown commensurably. Nonetheless, there has been a sustained materials physics effort covering a huge number of magnetic compounds, and many a promising candidate systems have been unearthed, some of which have benefitted from an intense research effort for clarifying their properties in considerable detail.

The aim of this review is to contribute towards redressing this balance. In particular, we discuss the rich phenomenology of spin liquids in order to make connection to past and future experiments.

Before we embark on this, we would like to motivate this programme with a few words about how it fits in with the broader research landscape of modern condensed matter physics. The search for spin liquids nowadays forms part of the grand challenge of understanding existence, scope and nature of physics beyond the standard theory of Landau and spontaneous symmetry breaking.
As such, they fall in the field of topological condensed matter physics under the headings of long-range entangled phases and topological order.

To this date, we have only one outstanding established class of experimental systems (at least in terms of materials science and beyond one dimension) exhibiting a topologically ordered quantum phase with fractionalized excitations: this is the fractional quantum Hall effect. The Laughlin state and its even more elaborate brethren18,19 have attracted much attention, most recently fuelled by the dream of realising a quantum computer topologically protected against decoherence20. This is nicely reviewed in Ref.21.

QSLs have the added attraction of accessing the vast space of possible materials provided by the combinatorial richness of the periodic table, the presence of sometimes large exchange energy scales, as well as a high degree of tuneability and being amenable to experimental probes, e.g. through the application of magnetic fields and the use of neutron scattering. The central goal for the foreseeable future therefore is an unambiguous identification of a QSL phase. For this, new experiments, including new probes, may be needed, accompanied by a reliable theoretical analysis framework.

Our approach here is to support this quest, but not by providing a complete introduction to quantum spin liquids for the expert. Rather, we present a compendium of ideas to provide a broader overview, which can also act as a guide for the newcomer. Many reviews are available with material which we do not cover here, e.g. comprehensive reviews on spin liquids22 and frustrated magnetism more generally23; about spin ice24; introductory reviews to quantum spin liquids4,25–27; an overview over spin ice28 and Kitaev QSLs29 from a fractionalisation perspective, as well as a nice review of classical emergent Coulomb gauge fields30; and works focusing on the materials aspects of pyrochlores31, herbertsmithite32 and Kitaev material candidates33,34.

Physics is an experimental science. However, while discoveries are mostly driven by experiments, the resulting insights are naturally preserved in the language of theory. The history of the search for spin liquids is therefore naturally intertwined with what phenomena one exp- and includes under this heading. Before we move on to the core of this field guide, we provide a brief review of the background taxonomy.

The remaining sections are then devoted to spin liquid phenomenology. The ultimate ambition – to provide a textbook, not unlike standard solid state physics textbooks on conventional phases, on the behaviour of such topological phases – is a step too far for us, and we make a selection of phenomena which we feel are particularly instructive and/or realistically attainable.

A. What is a spin liquid

What is certainly true is that the meaning of the term has shifted over the years. This is not an uncommon state of affairs, driven not only by the human tendency to adapt a definition to the requirements of the moment, but also by the fact that as the understanding of the subtleties of the phenomenon advances, refinements to the concepts follow.

A constitutive concept for a spin liquid is the absence of magnetic order of a system of interacting spins at temperatures smaller than the interaction scale. This encodes the idea of a phase beyond the Landau paradigm (which covers all forms of magnetic order), as well as the intuition that a ‘liquid’ should be different from a ‘solid’. In this sense, other forms of ordering of the spin degrees of freedom – such as nematic orders38,39 – also a priori disqualify a system from being classified as a spin liquid.

This negative definition, about the absence of something, continues to be the most ubiquitous and intuitive. Besides its practical limitation, to which we return below, it is nowadays considered to be somewhat too broad. For instance, it includes models – interesting in their own right – which are considered somewhat too simple. One is a quantum paramagnet, such as the kagome lattice Ising model in a transverse field, which is connected continuously to a high-temperature (classical) paramagnetic phase. Another is the Shastry-Sutherland model, whose two spins per structural unit cell form a dimer at low temperature, producing a simple inert state which again is straightforwardly connected to a high-temperature paramagnet but which can also display protected edge excitations of triplons at low temperatures40. One calls this broader class of disordered magnets ‘cooperative paramagnets’, to distinguish them from magnets disordered by thermal fluctuations at high temperatures, although this nomenclature is by no means universally used.

A more ‘modern’, positive definition involves listing conditions which a phase should meet to qualify as a spin liquid. This derives from advances in our understanding of what phases beyond the Landau paradigm can look like, and applies these to spin systems.

Akin to the Mermin-Wagner theorem41, which forbids spontaneous breaking of continuous symmetry (SSB) at finite temperatures in dimensions $d \leq 2$, there is a rigorous result for spin systems with short range interactions. For systems with half-odd integer spin per unit cell, hence proper Mott insulators, and without symmetry breaking, the Lieb-S Schultz-Mattis theorem states42 that the ground state is either unique with gapless excitations or degenerate with a gap to excitations. It establishes to some level of mathematical rigour43,44 the possibility of gapless QSLs or gapped ones with topological order.

Perhaps the crispest is to demand that the magnet should at low temperatures be described by a topological field theory, such as Chern-Simons theory45. On the one hand, this is very restrictive, a priori ruling out gapless spin liquids, and spin liquids with some additional
ordered degrees of freedom. On the other hand, this exclusion is not arbitrary—trying to braid quasiparticles in the presence of gapless Goldstone modes of a ferromagnet, like for SU(2) quantum Hall Skyrmions, does present an obstacle for envisaged quantum computation experiments.

However, in practise to qualify as a spin liquid, it may be enough to bear in mind that 'some subset' of the degrees of freedom should look 'essentially topological'. This is more or less the attitude we will take for the remainder of this review. For the purposes of a field guide, we will therefore be looking for fractionised excitations and emergent gauge fields. The latter two are intimately linked together as standard spin flip excitations always lead to integer changes of the total spin. Therefore, excitations labeled by 'fractions' of such quantum numbers, e.g. quasiparticles carrying half-integer spin, need to be created in even numbers and once separated we can think of the emergent background gauge field as taking care of the global constraint. The connection holds particularly in higher dimensional spin liquids, which are the focus of our field guide, but in $d = 1$ fractionalisation may appear much simpler via domain wall excitations of ordered states.

B. How to tell one, as a matter of principle...

The characterisation of a topological state of matter proceeds most easily via its global properties. Given the importance that numerical simulations have played in advancing the field, some of these – while appearing rather complex – are comparatively straightforwardly diagnosed numerically.

The topological order discovered by Wen and Niu posits that topological states have a degeneracy which depends on the genus of the surface they live on. For instance, the Laughlin state at filling fraction $\nu = 1/3$ is non-degenerate on a sphere, and threefold degenerate on a torus. This is intimately connected with the existence of fractionised quasiparticles. When a pair of Laughlin quasiparticles of charge $\pm e/3$ is created from a ground state, and one member of the pair moves around a non-contractible loop of the torus before annihilating the other, the system moves from one ground state to another. Only once three such particles, and hence an electron with unit charge, have made such a trajectory does the system return to the original ground state. Indeed, the connections between quantum Hall physics and quantum spin liquids can become remarkably detailed, such as in transfers of wavefunctions between the two settings, see e.g. 49.

Observing the topological ground state degeneracy can be challenging but numerical methods like DMRG are well-suited for extracting an equally reliable quantifier for gapped QSLs. In analogy to long range order of conventional phases the long-range entanglement can serve as an order parameter of topological phases. The entanglement entropy of a ground state wave function can be calculated from a reduced density operator with one part of the total degrees of freedom of a bipartitioned system traced out (with a smooth boundary of length L separating the two regions). For gapped phases it follows a universal scaling form

$$ S = cL - \gamma + ... $$

The first term with a non-universal prefactor c is the ‘area’ law common to all gapped phases but the second term γ quantifies the long-range entanglement (it is independent of the length of the boundary of the partition). It is only nonzero in a topological phase and is directly related to the emergent gauge structure of the QSL phase,
e.g. in a Z_2 QSL $\gamma = \ln 2^{54}$. More detailed analyses can then yield information on the properties of fractionalised excitations and edge spectra55.

C. \ldots and in practice

Above, we called these diagnostics ‘comparatively straightforward’ because the experimental situation is considerably less promising. The entanglement entropy – in particular, any subleading contribution to it – does not correspond to any natural measurement on a many-body quantum spin system. Also, putting even a two-dimensional magnet on a manifold of nontrivial topology sounds like a thought experiment par excellence, even more so than the idea of diagnosing a spin stiffness for a conventionally ordered magnet by twisting boundary conditions.

The core aim of this review is to address precisely the question how to move forward from here. Lacking a silver bullet or smoking gun (or whatever alternative martial metaphor one prefers to use) in experimental reality, one needs to make do with the probes that actually exist, and think about how best to employ and combine them for an unambiguous identification of spin liquids.

D. The role of universality

Before we turn to this in more detail, we would like to raise an additional ‘ideological’ point of fundamental importance which may at times be somewhat under-appreciated when making contact between theory and experiment.

The tension arises from the need in theory to devise precise definitions. One of the most successful of these is the idea of universality, which is intimately related to the success of the developments of the concepts of symmetry breaking and encoded in the renormalisation group half a century ago. Phases and phase transitions have properties which are independent of microscopic details of the Hamiltonian – these properties are called universal.

The question then is: how much of this universality is visible – and where/how – in an actual experiment. The fundamentalist answer is: a priori, nothing. A case in point is the existence of Goldstone modes accompanying the breaking of a continuous symmetry, in the limit of long wavelengths and low frequencies. Obviously, the limit of low frequencies will be cut off by a finite energy resolution – not only due to Heisenberg’s uncertainty relations – of any conceivable experimental probe. On top of these, innumerable other limitations, many of them based on nothing less than the second law of thermodynamics, will always be with us. We have to live with them (but can at times perhaps, see Sec. V, even turn them to our advantage).

In practice, this observation is not just a complaint around the edges. As we will argue below, many of the most striking manifestations of spin liquid behaviour in fact are non-universal in the sense that they could be altered without leaving the phase; or conversely, that proximate phases may exhibit the behaviour we are interested in essentially just as characteristically as the pristine version.

As a poster child of this, we would like to adduce the fractionalised Heisenberg chain, see Fig.3 (a). The agreement between theory and experiment is striking, up to considerable detail of the structure factor at high energies, including subtle intensity variations with wavevector and frequency. However, none of these are universal. Close inspection of the universal part of the spectrum at low frequencies reveals the opposite36: due to the residual coupling between neighbouring chains, they undergo an ordering transition into a different phase with different, ‘conventional’ universal behaviour of a long range ordered 3d magnet.

A fundamentalist ‘universalist’ perspective therefore leaves two non-palatable alternatives: either one has the low-temperature, conventional ordered phase; or, above the ordering transition, a phase continuously connected to a boring high-temperature paramagnet. Both miss the remarkable, and in our minds convincing, evidence for fractionalisation ‘in practise’ in this compound. As is so often the case, while the worldview of the fundamentalist is deceptively simple, much of what makes real life interesting lies in the grey areas, the appreciation of which requires an open mind.

II. HOW TO START LOOKING \ldots

A time-honoured way of making a first cut at the diagnosis of spin liquidity in a candidate material is via studies of thermodynamic properties, Sect. III, in part because these are relatively easy to carry out locally in a laboratory. The first chore is to establish the absence of magnetic ordering in a strongly interacting (low-temperature) regime.

A popular measure for its existence is the frustration parameter $f = |\Theta_{CW}|/T_f$57,58, which is defined as the ratio of two quantities. One is the Curie(-Weiss) temperature extracted from a straightforward fit to the high-temperature susceptibility, which to first order in a high-temperature expansion is given by $\chi = C/(T - \Theta_{CW})$. This expression applies to an insulating magnet the size and nature of whose magnetic moments determine the Curie constant C, and whose interactions determine the size of Θ_{CW}. The second quantity, T_f, is the location of any non-analyticity (divergence, cusp, \ldots) in χ, indicating a residual ordering tendency, or spin freezing which is commonly encountered in frustrated magnets. The regime in temperature $\Theta_{CW} \gg T > T_f$ the cooperative paramagnetic regime, is then a natural place to start looking for a spin liquid, and it is well defined provided f is sufficiently large, see Fig.1 (a) for a classic example.
If appropriate measurements are possible and available (e.g. thanks to the availability of a neutron source), the absence of ordering can be confirmed by verifying that no magnetic Bragg peaks appear when cooling down the system.

The challenge in practice lies in the need to eliminate the presence of less obvious ordering tendencies (such as multipolar or distortive order), which are more elusive in neutron scattering; and also not to miss any features in the specific heat, which is nonspecific in the type of orderings it picks up, other than requiring the corresponding non-analytic features of the phase transition to be discernible above its smooth background temperature dependence. Also, it may be polluted by ‘incidental’ phase transitions, such as those of the lattice which have little bearing on its magnetism.

Further valuable insights can be gleaned in spectroscopic experiments, Sec. IV and Fig.3. These can provide considerably more detailed information than the purely macroscopic thermodynamic ones: inelastic neutron scattering; and also not to miss any features in the presence of less obvious ordering tendencies (such as a more ‘quantum’ version with anisotropy

A key target for diagnosing spin liquids is the experimental identification of fractionalized excitations at low energies. Thermodynamic and transport measurements are complementary in this endeavour, the former probing the necessary low energy density of states (DOS) and the latter the mobility of the excitations. The absence of standard Goldstone modes from conventional symmetry breaking phases, e.g. spin waves of an ordered magnet,
can be deduced from the the absence of non-analyticities in thermodynamic observables. In practice many material candidates have preemptive symmetry breaking instabilities leading to non-analyticities from sub-leading interactions. It prevents a true low temperature liquid phase for example due to weak interlayer couplings of quasi-two-dimensional materials, but as long as the frustration parameter f is small enough the correlated paramagnetic regime at intermediate temperatures is a good starting point in the search for QSL physics.

Candidate spin liquids often exhibit a spectral weight downshift of the specific heat as part of their refusal to order. This can in the most extreme cases go as far as apparent violations of the third law of thermodynamics. This happens in spin ice, Fig.1 (b), where upon cooling a ’residual entropy’ is measured, which indicates that even at the lowest temperatures, the system continues to explore an exponentially large number of states. This in particular sets cooperative paramagnetism apart from, say, dimensionality-induced destruction of ordering. While purely one-dimensional spin systems such as a $S = 1/2$ Heisenberg antiferromagnetic chain do not order at any nonzero temperature, they nonetheless are close to an ordered state and often lose most of their entropy already upon cooling through Θ_{CW}.

A. Thermodynamics

Even though characteristic correlations of a QSL are only expected at temperatures well below Θ_{CW}, the high temperature thermodynamic response of a candidate material already contains useful information. Details of a microscopic description are obtained by a comparison of the temperature scale at which (and the form of how) the magnetic susceptibility deviates from Curie-Weiss behaviour to that calculated in a high-temperature expansion of a putative spin Hamiltonian86,87. The angular magnetic field dependence of χ with respect to crystal orientation is in principle able to detect spin-anisotropic interactions86. The goal is to invert macroscopic measurements to microscopic descriptions which however is only attainable as long as the low energy spin Hamiltonian and the magnetic g-tensor are sufficiently simple.

A defining feature of QSLs is fractionalized magnetic excitations which, after subtracting other contributions to the heat capacity (mainly from phonons, but at times, in particular at the lowest energies, nuclear spin), can be probed via the low temperature dependence of thermodynamic observables. In a gapless QSL information about a low energy power-law DOS, $N(\omega) \propto \omega^\alpha$, can be readily extracted because the specific heat is able to directly probe the exponent α

$$\frac{C_V}{T} = \frac{1}{T} \frac{\partial}{\partial T} \int d\omega N(\omega)n(\omega,T) \propto T^\alpha.$$ \hspace{1cm} (2)

Hence, in conjunction with the dimensionality of the system detailed information about the low energy dispersion can be inferred such as the presence of emergent Fermi surfaces, Dirac points or nodal lines, all of which have been proposed in model QSLs89-91. Of course, the procedure rests on assumptions like the presence of weakly interacting quasi-particles whose thermal distribution only depends on their individual energies, for example $n(\omega,T)$ being the Fermi-Dirac or Bose-Einstein distribution functions.

Another caveat is that these power laws are not necessarily fixed in all circumstances. For instance, in a honeycomb system with slowly varying bond disorder the resulting hopping problem is equivalent to particles in a random gauge field. Famously, this problem gives rise to a density of states with a power increasing continuously with disorder strength92. Such strains may quite conceivably be present in, say, organic systems with relatively low lattice rigidities.

Another intrinsic complication for a straightforward interpretation of thermodynamic data could be the presence of very different energy scales making it hard to estimate the right scaling regime. For example, the Dirac spectrum of the honeycomb Kitaev QSL with $N(\omega) \propto \omega$ would simply predict $C_V/T \propto T$ which turns out to be only observable at extremely low temperatures but instead over a large temperature window a metallic like $C_V/T \propto T^0$ appears93,94. The reason is that spin flip excitations fractionalize into Majorana fermions and flux excitations. The latter have a small gap which is only a fraction of the total magnetic energy scale. At all but the lowest temperatures the presence of thermally excited fluxes destroys the Dirac spectrum of the Majorana fermions changing the low energy DOS to roughly a constant $N(\omega) \propto \omega^0$. This particular example shows, on the one hand, the difficulties of drawing reliable conclusions from thermodynamic measurements. On the other hand, it highlights how a close comparison of microscopic calculations and experimental data could be used in principle to extract complementary information about the fractionalized excitations of a QSL.

B. Longitudinal transport: thermal versus charge

In the absence of mobile charge carriers in magnetic insulating materials thermal transport experiments can probe the mobility of elementary excitations. Ideally the heat flow along a temperature gradient contains information about the velocity, v_k, and mean-free path, l_{MFP}, of fractionalized quasi-particles of a QSL with dispersion E_k, e.g. as obtained for the longitudinal thermal conductivity κ in a semi-classical Boltzmann calculation

$$\kappa = \frac{\partial}{\partial T} \int d^2k l_{\text{MFP}} E_k |v_k| n(E_k,T).$$ \hspace{1cm} (3)

In a number of low dimensional QSL candidate materials such purely magnetic contributions have been observed, e.g. in triangular82,95, kagome85 and Kitaev honeycomb96,97 systems. However, in general it is very hard
to get rid of the spurious phonon contribution. Moreover, in the presence of sizeable spin-phonon couplings magnetic excitations scatter of phonon contributions and vice versa which makes it hard to disentangle the two. These problems could in principle be overcome by studying directly the spin current transport which is measurable via the inverse spin Hall effect as demonstrated with insulating ordered magnets. This has recently been proposed for QSL materials but more theoretical work and experiments are needed to show whether spin transport measurements can be turned into a new tool for studying QSLs.

C. Bulk-boundary correspondence and quantization of currents

A crowning achievement would be the observation of quantised transport signatures directly related to topological invariants, to rank alongside the famously quantised Hall conductivity of the fractional quantum Hall effect. Again, for insulating magnets, these cannot be charge transport, but nevertheless a quantization of the thermal Hall effect, κ_{xy}, has been predicted in certain types of QSLs with broken time reversal symmetry. The origin of the quantization can be illustrated for a chiral QSL with n chiral edge modes (their one dimensional dispersions labeled by momentum q connecting zero energy with the gapped bulk states) and at temperatures below the bulk gap Δ. The current is simply determined by the product of energy, thermal occupation (here for fermionic spinons obeying Fermi-Dirac statistics) and their velocity

$$I_{xy} = \nu \int_0^\Delta \epsilon(q) n(\epsilon) v(q) \frac{dq}{2\pi}$$

$$= \nu \int_0^\infty \frac{1}{1 + e^{\epsilon(q)/T}} \frac{dq}{dq} \frac{dq}{2\pi} = \nu \pi T^2.$$

Recent experiments have observed signatures of a thermal Hall effect in disordered magnetic insulators, e.g. in kagome Volbortite, pyrochlore compound Tb$_2$Ti$_2$O$_7$ and the Kitaev candidate α-RuCl$_3$. However, the unambiguous confirmation of the quantised prefactor of the temperature dependence is missing because it is yet again difficult to disentangle from, say, more prosaic types of heat transport. In addition, not every spin liquid comes with quantised transport coefficient, and at any rate, different spin liquids may not be distinguishable in this way alone. Nevertheless, the resulting problems of uniqueness and completeness of a classification scheme can safely be deferred until a time that such quantised transport has unambiguously been detected in at least two compounds.

D. Unconventional phase transitions

Despite the identification of a distinguishing characteristic of a QSL via its topological properties – the long-range entanglement of its ground state – this can be of limited practical use as even some of the most paradigmatic states – among them classical spin ice, the Z_2 gauge theories or the Kitaev honeycomb model – are only zero temperature phases and no phase transition occurs when cooling down from the simple high temperature paramagnet. Nevertheless, the behaviour of short length and time scales [and here short could mean logarithmic in system size] can still be governed by the fractionalized excitations of the zero temperature QSL.

The phase transitions out of topological phases can be of considerable autonomous importance. Since the first non-symmetry breaking phase transition beyond the Landau paradigm identified by Wegner for lattice gauge theories, many other interesting proposals have been made. We mention these only in passing since pinning these down in detail is even more challenging than identifying the relevant phase in itself.
The basic attraction of such transitions is that they reflect the exotic nature of the emergent degrees of freedom. For instance, the Kasteleyn transition108 is an asymmetric transition on account of the string-like nature of an emergent U(1) gauge field: when a string has a negative free energy per unit length, it is suppressed by a Boltzmann factor in systems size as it needs to span the entire system. Hence, none – not even in the form of fluctuations – are present until the sign of its free energy changes, upon which there is a totally conventional continuous onset of string density. In spin ice, where the topological spin state is most reliably established, (a thermally rounded version of) this transition has indeed been observed109–111.

Spin ice also hosts a liquid-gas transition with a critical endpoint of the emergent magnetic monopoles as zero-dimensional defects in a three-dimensional topological phase112. These form a Coulomb liquid which can then be treated with methods imported from electrochemistry such as Debye-Hückel theory and its extensions113–115. This is an instance of non-trivial collective behaviour of the emergent degrees of freedom, which in itself remains a largely unexplored aspect of the field, Sec. V.

Much beautiful theory has been developed regarding such unusual phase transitions, including the identification of unusual signatures such as anomalously large anomalous exponents. A particular case in point is the possibility of deconfined quantum criticality116,117, where the critical point with deconfined excitations separates two symmetry-breaking confined phases2.

IV. SPECTROSCOPY

The absence of Bragg peaks in zero frequency measurements probing static correlations is an alternative indicator for ruling out conventional symmetry-breaking phases in spin liquid candidate materials. The generic situation of the correlations not only lacking a long-range ordered component, but also being numerically short-range means that, in reciprocal space, all features are broad.

Inelastic scattering experiments at nonzero frequency have the big advantage of also probing excited states beyond the asymptotic low energy regime of thermodynamic measurements. The apparent disadvantage that these are ‘non-universal’ is remedied by the prospect of identifying concrete spin liquids in actual experiments. Many experimental probes with ever increasing frequency resolution are available. Each of these has its well-developed strengths and also well-known set of shortcomings, to discuss all of which would go beyond the scope of a simple review such as this, so that we will emphasize the points specific to spin liquids in the following.

First of all, just like in the thermodynamic probes, one thing to fundamentally look out for is an unusual temperature dependence of dynamical correlations118, see Fig.3 (c) for a recent example. There should again be a cooperative paramagnetic regime in which interactions are strong but response functions change little as the temperature is lowered.

A. Inelastic neutron scattering and quasi-particle kinematics

The method of choice for measuring the basic spin correlation functions – both static and dynamic – is inelastic neutron scattering whose cross-section is given by

\[
\frac{d\sigma}{d\Omega dE} \propto F(q) \left(\delta_{\alpha\beta} - \frac{q^\alpha q^\beta}{q^2} \right) \times \left(\sum_{r_i, r_j} e^{i\mathbf{q} \cdot (r_i - r_j)} \int dt dt' e^{-i\omega(t-t')} \langle S_{r_i}^\alpha(t) S_{r_j}^\beta(t') \rangle \right). \tag{5}
\]

From the sum rules connecting static correlations to frequency integrated dynamical ones it is apparent that the absence of static Bragg peaks in spin liquids goes along with the spectral weight being found elsewhere at nonzero frequencies.

A central role in pursuing spin liquids and their concomitant fractionalisation is played by selection rules. Most simply put, if scattering involves a two-body process – e.g. a neutron spin flip creating a magnon – the twin constraints of energy and momentum conservation can lead to a sharp response in the form of a single line of frequency versus wavevector transfer, \(\omega(q) \) which represents the magnon dispersion relation. This simple situation is fortuitous in that the selection rules for neutron scattering off magnons permit precisely such a matrix element. The combined facts that neutrons are well-matched to length/energy scales and quantum numbers of magnons underpins some of their phenomenal success in the field of magnetism.

A broader response can therefore have a number of different origins. Firstly, there may not be such simple scattering processes available, such as in Raman scattering, where zero wavevector transfer \(q = 0 \) requires the creation of multiple magnetic excitations. Secondly, there may not be a simple magnon available, but rather only fractionalised excitations which have to be created together, thereby rendering the scattering process a many-particle one. Thirdly, there may not be a quasiparticle description of the low-energy spectrum in the first place, so that no dispersion relation \(\omega(q) \) exists even as a matter of principle. This latter situation, especially with view to gapless spin liquids, is perhaps the least understood at this point in time.

Hence, while the existence of a broad dynamic scattering response is a good indicator of a correlated paramagnetic regime, it is itself not a sufficient piece of evidence for fractionalized excitations of a spin liquid. Nevertheless, given the large amount of information available in a full \(\omega(q) \) map, it opens up the possibility of providing a more microscopic modelling of the non-universal features discussed above.
For the Heisenberg chain, the kinematics of fractionalisation is most beautifully illustrated already in the three parabolae which denote the possible energy-momentum combinations of two independent domain walls obtained from flipping a single spin in an ordered chain. The rather nontrivial intensity map – the kinematically allowed processes take place with very different intensities – follows from an actual enumeration of the matrix elements involved, see Fig.3(a).

In high dimensions, an analogous picture may e.g. apply to a Z_2 spin liquid where a triplet excitation can be decomposed into a pair of $S = 1/2$ spinons, which would appear as monomers in a quantum dimer model119. For this to be straightforwardly visible, it would be necessary for the individual spinon to act like a coherent free particle, which is likely the case in the limit of low spinon excitation energies. However, it is at present unclear – and one of the most interesting questions – over what energy range such long-lived well-defined fractionalised quasiparticles will exist.

This case of symmetric fractionalisation into two particles is a particularly simple scenario. In addition, many other emergent particles are possible, and it is a priori straightforward to come up with mean-field parton constructions with a wide variety of different fractionalisation schemes89. One which is not uncommon is to end up with a spin flip corresponding to the creation of a gauge-charged particle, and an excitation of the emergent gauge field itself, e.g. as happens in the Kitaev models120–122. This fractionalisation can be very asymmetrical: the flux may be very heavy, that is to say, have a very small bandwidth. It can thus take up an arbitrary amount of momentum at almost constant energy, and thereby render momentum conservation essentially inoperative59. This then leads to features in reciprocal space which are so broad that it is hard to infer much about the dispersion of the light particle. Nevertheless, key information about the energy of flux excitations and the DOS of the light fractionalized particles can in principle be inferred from the INS response120–122.

B. Light scattering

Light can interact with the purely magnetic low energy degrees of freedom of Mott insulators via the virtual hopping processes, which determine the magnetic exchange constant themselves. This has been shown for example to lead to a nonzero electric polarisability. It gives rise to an AC optical conductivity in Mott insulators127 signatures of which have been analysed for a number of QSLs128–131. Moreover, optical absorption can directly couple via magnetic dipole excitations to spin flips and thus becomes sensitive to the zero momentum structure factor. Such experiments on a α-RuCl$_3$ have been recently interpreted as indications of a magnetic field induced QSL132–134.

Alternatively, higher order photon process can induce virtual electron-hole pairs causing double spin flip excitations135. Such dynamical Raman response of kagome136,137 and Kitaev QSLs138,139 has been analysed theoretically. Interestingly, the difference in matrix elements compared to INS permits a more direct coupling to certain types of fractionalized quasi-particles140 and the polarization dependence of this zero momentum probe contains additional information140. Hence, Raman measurements on pyrochlores141, herbertsmithite142 and two-126 and three-dimensional143 Kitaev candidate materials have been interpreted in terms of the spinon DOS of QSLs but it is difficult to separate the inevitable phonon contribution to Raman scattering – we return to this point below, Sec. IV E. Finally, with a further increase in energy resolution resonant inelastic X-ray scattering (RIXS) will be a promising new tool for probing QSL excitations including their momentum dependence144,145.

C. Local probes

Nuclear magnetic resonance (NMR) experiments probe the local magnetic fields of the spin degrees of freedom in insulators via the hyperfine interaction with nuclear levels. They are a powerful tool in the study of spin liquids146. For example, an NMR frequency, which remains sharp and does not split when cooling to low temperatures, rules out the presence of static magnetism with inequivalent magnetic sites or a static disordered state. Even more information is obtained from the relaxation time $1/T_1T$ directly sensitive to the local magnetic susceptibility (in the zero frequency limit) related to the magnetic DOS. In a gapped QSL an Arrhenius type behaviour is expected but gapless QSLs would again lead to characteristic power law behaviour as a function of temperature similar to the specific heat but without the parasitic phonon contributions.

An alternative probe of local magnetic fields is the relaxation of spin-polarized muons deposited in a candidate material. These μSR experiments are able to reliably distinguish between the presence of static moments due to conventional LRO, which leads to long lived oscillations of the polarization, or dynamical moments of spin liquids, which lead to a quick decay without oscillations147. The main advantage of μSR is its high sensitivity but a straightforward interpretation of the data can be complicated because the positively charged muon interacts with the lattice altering the local magnetic environment.

Unfortunately, experiments with both local and controlled spatial resolution are missing for magnetic insulators. For weakly correlated electronic materials thanks to scanning tunnelling microscopy (STM) and angle resolved photo emission spectroscopy (ARPES) a hallmark signature of topological systems – the bulk-boundary correspondence – could be confirmed shortly after its prediction, e.g. of the surface Dirac cone of three dimensional topological insulators148 or of Majorana zero energy modes in superconducting wires149. Of course, for a direct confirmation of topological surface states in spin...
FIG. 3. (Color online) Comparison of inelastic scattering experiment and theory. (a) Fractionalised spinons in the $S = 1/2$ Heisenberg chain material KCuF$_3$123,124. (b) Finite frequency neutron structure factor of the proximate spin liquid in α-RuCl$_3$125. (c) Fermionic nature of excitations in RuCl$_3$ as evidenced in Raman scattering105,126.

liquid candidates without charged quasi-particles similar measurement tools are highly desirable. In that context it will promising to explore new directions for example spin noise spectroscopy, scanning SQUID magnetometry150, Raman microscopes151 or inelastic scanning tunnelling microscopy152 on spin liquid candidate thin films all with spatial resolution.

D. Bound states of fractionalized quasiparticles

Contrary to the intuition developed from the discussion of INS experiments, fractionalised quasiparticles need not have a broad, fully continuous spectrum. Instead, they may form bound or localised states. Indeed, their quantum numbers may look a lot like that of the un-fractionalised spin flip; we remind the reader that the statement of deconfinement of fractionalised particles refers to the energy cost of their separation being bounded; this does not preclude the possibility of discrete composite states with a finite binding energy. Again, in $d = 1$ there is a celebrated and experimentally established instance of this153, when at the magnetic field tuned critical point the exchange field leads to a discrete part of the spectrum from bound pairs of domain wall excitations. In higher dimension, analogous phenomena have been theoretically proposed. In spin ice, like in the $d = 1$ case, application of a field can lead to bound states of monopoles with a characteristic spectrum154.

More exotically, the possibility of the gauge field degree of freedom being involved in a ground state is present in non-Abelian spin liquids. This is analogous to the case of a $p_x + ip_y$ superconductor155 where vortices host Majorana fermion bound states, e.g. the two Majoranas of a pair of vortices lead to a fermionic bound state whose energy goes exponentially to zero with vortex separation. Of course, the long-term goal is the controlled manipulation of the degenerate ground state manifold for braiding in the context of topological quantum computation21. Slightly less ambitious would be the observation of such a flux-Majorana bound state which has been shown to lead, for example, to a sharp contribution in the spin structure factor121,122 in the non-Abelian phase of the Kitaev honeycomb QSL in which a spin flip introduces a pair of nearest neighbour fluxes binding a pair of Majoranas below the gapped continuum response. Alternatively, already in the Abelian but anisotropic Kitaev phases156,157, the leading response can be a sharp delta-function corresponding to the addition of a pair of emergent gauge fluxes.

E. Statistics

The quantum statistics of quasiparticles is a very fundamental property – it affects the many-body density of states even for non-interacting particles. This is already evidenced by the (conventional) Fermi sphere and its suppressed heat capacity, and thus in principle accessible in thermodynamic measurements already, Sec. III. The temperature dependence of dynamical scattering experiments contains information about the thermal distribution functions which are qualitatively different for quasiparticles with different quantum statistics, e.g. Fermi-Dirac versus Bose-Einstein. For example, in the context of Raman experiments on the Kitaev candidate material α-RuCl$_3$ a close comparison between the T-dependence of the high energy Raman response and experimental data arguably points to the presence of spin fractionalisation in terms fermionic excitations105.

In general, fractionalised quasiparticles in topological phases can have unusual exchange statistics of Anyons due to the relative phases picked up when emergent particles of different type are interchanged. Such braiding operations are particularly of interest given their much-appreciated potential in procuring a framework
for fault-tolerant topological quantum computing20. Directly probing the exchange statistics of emergent particles in a quantum spin liquid is a tall order, which at present – given the difficulties in doing the same even in the much more controlled setting of quantum interferometers in the quantum Hall effect – seems not too close at hand.

However, there are nonetheless qualitative features to look out for. For instance, a scattering process which creates a set of fractionalised particles via a local interaction is sensitive to the statistics of the particles generated together, as their relative wavefunction influences the matrix elements for the process in question: for a pointlike interaction, the creation of two Fermions, say, is inhibited by the vanishing of their wavefunction as the pair moves close together. Hence, under rather general conditions for gapped QSLs the onset of the INS response is dominated by the long range statistical interaction between Anyonic quasiparticles leading to a universal power law dependence as a function of frequency158. Similarly, a promising directions will be ambitious experiments for noise spectroscopy directly probing statistics or measuring emergent quantum numbers of fractionalized quasiparticles.

V. DISORDER AND DEFECT PHYSICS

The presence of disorder – defects, vacancies, impurities and the like – is an unavoidable fact of life in condensed matter systems. Indeed, in many candidate spin liquids, understanding the role of disorder is a crucial step towards the identification of the physics involved, see e.g.64,65,73,159.

Besides being a nuisance, however, disorder can also be used as a probe. The basic idea is that disorder can make fractionalisation physics visible in the ground state that would otherwise require probing excitations. As a simple illustration, consider the following picture. A vacancy in a two-dimensional system can be thought of as inserting a microscopically tiny hole into the plane – in a sense, it changes the topology of the plane into that of an annulus. This hole can then have effective degrees of freedom. One instance could occur in a non-Abelian spin liquid, where (well-separated) vacancies can host Majorana zero modes at zero energy, as described in Sec.IV E. Also, not unlike impurities in a semiconductor, a vacancy can host a localised fractionalised excitation – such as a magnetic monopole – which would otherwise require an activation energy in the bulk160.

In this sense, disorder physics is closely related to our discussion of dynamical probes of fractionalised degrees of freedom, upon replacing dynamical probes by probes of the disorder sites. Local probes can then be used to resolve the signal coming from the defects. While in a bulk probe, a signal from a small density of defects, unless it is singularly large, is easily swamped by the bulk signal, a local probe like NMR can detect the defect response at a frequency separated from that of the bulk. Again, in one dimension, edge defects have provided a beautiful picture of the physics of the gapped Haldane chain161. This kind of study has been carried out in some detail for gauge-charged vacancy degrees of freedom83 following detailed NMR measurements on SCGO84, see Fig.2 (b). These orphan spins35 establish an oscillating spin texture decaying like a Coulomb law; modelling this has led to the conclusion that the level of disorder in SCGO is likely higher than that determined from the controllable non-stochiometry only. The spin liquid response to disorder can thus be used to inverse-infer properties of the composition of the material itself.

The response to disorder can also be very intuitive. For a spinon Fermi surface, one can develop an analogy to the response of a Fermi liquid to disorder: an impurity can induce Friedel oscillations, leading to a disturbance surrounding the impurity modulated at the Fermi wavevector, which in turn can give rise to RKKY-type interactions between impurities162.

As mentioned above, collective defect physics is a huge field in its own right, so far little studied. A systematic understanding of the many-body state of a finite density of defects embedded in a topological spin liquid seems like a particularly promising direction for the discovery of surprising new phenomena159,163–166. This topic is beyond the scope of the present article, and arguably merits a stand-alone treatment.

VI. DISCUSSION AND FUTURE DIRECTIONS

After several decades of searching for quantum spin liquids in magnetic materials we are still awaiting the unambiguous sighting of this elusive state of matter. Encouragingly, recent years have seen a flurry of discoveries of new candidate materials and novel indicative signatures of liquidity, which raise the hopes that this long search will come to a successful conclusion in the not too distant future. One of the great attractions of finding a topological phase in a magnetic systems is their high tunability. For instance, magnetic fields of a few tens of teslas in strength are becoming increasingly routinely available. They potentially push ‘proximate’ spin liquid candidates72 in the desired direction167 and the impressive advances in the energy-wavevector resolution of neutron experiments, for example, enable a visualisation of the field induced melting of conventional long range magnetism168. A magnetic field can not only add a Zeeman term to the Hamiltonian, but also acts in the presence of spin-orbit interactions as a versatile probe, even mimicking an effectively staggered field on different sublattices which can change the effective dimensionality of the emergent gauge field28.

In the absence of uniquely and individually compelling features of spin liquidity in a particular material, an investigation of how a particular feature (gap size, mode dispersion, continuum bandwidth, bound state energy)
changes as a function of tuning parameter (external fields, pressure, composition, strain) will be a crucial ingredient for assessing the validity of a particular interpretation of experimental data in terms of a spin liquid under the merciless action of Ockham’s razor. In that context, a joint effort of both theory and experiment continues to be called for pinning down the rich phenomenology of spin liquids.

Besides such more detailed model-based input, methodological progress is also on the horizon. High on the wishlist are improved local probes, especially with a resolution approaching the lattice scale, which is currently elusive for, say, SQUID-based devices measuring local field distributions. These could then be used to probe boundary modes or impurity susceptibilities even in insulating magnets, in the hope of emulating their huge success in electronic systems with charge degrees of freedom via STM and ARPES. Another exciting development for probing fractionalized excitations lies in the realm of non-equilibrium techniques, e.g. pump-probe measurements or spin echo and noise spectroscopy. The non-equilibrium physics of topological phases is a nascent field that will surely hold numerous surprises for the patient explorer.

Our field guide is also subject to continual extension on account of the search for new materials. These may arise in the form of bulk materials, metal organic frameworks, metallic Kondo systems, or in ‘artificial’ settings such as nanostructured/thin film samples. In addition, there remains the promise of one day realizing new phases of spin systems in analogue cold atomic quantum simulators.

In conclusion of this little field guide, it is worth recalling that in physics, the most interesting phenomena are often the ones which are not anticipated at all, so that the most basic suggestion remains to produce and analyse experimental data with an open mind.

ACKNOWLEDGEMENTS

We are grateful to John Chalker, Dima Kovrizhin and Shivaji Sondhi, with who our respective journeys into spin liquid territory commenced; and to all the other collaborators and discussion partners since, too numerous to mention here, who have helped us shape the view of the field summarised above.

\[\text{1 P.W. Anderson. Resonating valence bonds - new kind of insulator.} \]
\[\text{Materials Research Bulletin, 8(2):153–160, 1973.} \]
\[\text{2 R. Moessner and S. L. Sondhi. Resonating valence bond phase in the triangular lattice quantum dimer model.} \]
\[\text{Phys. Rev. Lett., 86:1881–1884, Feb 2001.} \]
\[\text{3 Xiao-Gang Wen. Quantum Field Theory of Many-Body Systems.} \]
\[\text{Oxford University Press, 2004.} \]
\[\text{4 Patrick A. Lee. An end to the drought of quantum spin liquids.} \]
\[\text{Science, 321(5894):1306–1307, 2008.} \]
\[\text{5 G. H. Wannier. Antiferromagnetism. the triangular ising net.} \]
\[\text{Phys. Rev., 79:357–364, Jul 1950.} \]
\[\text{6 P. W. Anderson. Ordering and antiferromagnetism in ferrites.} \]
\[\text{Phys. Rev., 102:1008–1013, May 1956.} \]
\[\text{7 Jacques Villain. Insulating spin glasses.} \]
\[\text{Zeitschrift für Physik B Condensed Matter, 33(1):31–42, Mar 1979.} \]
\[\text{8 P. Chandra, P. Coleman, and A. I. Larkin. Ising transition in frustrated heisenberg models.} \]
\[\text{Phys. Rev. Lett., 64:88–91, Jan 1990.} \]
\[\text{9 Andrey Chubukov. Order from disorder in a kagomé antiferromagnet.} \]
\[\text{Phys. Rev. Lett., 69:832–835, Aug 1992.} \]
\[\text{10 R. Moessner and J. T. Chalker. Properties of a classical spin liquid: The heisenberg pyrochlore antiferromagnet.} \]
\[\text{Phys. Rev. Lett., 80:2929–2932, Mar 1998.} \]
\[\text{11 P. W. Anderson. The resonating valence bond state in \textit{la}_2\textit{cu}_3\textit{o}_4 and superconductivity.} \]
\[\text{Science, 235(4793):1196–1198, 1987.} \]
\[\text{12 V. Kalmeyer and R. B. Laughlin. Equivalence of the resonating-valence-bond and fractional quantum hall states.} \]
\[\text{Phys. Rev. Lett., 59:2095–2098, Nov 1987.} \]
\[\text{13 Steven A. Kivelson, Daniel S. Rokhsar, and James P. Sethna. Topology of the resonating valence-bond state: Solitons and high-} \text{\textit{T}} \text{\textsubscript{c} superconductivity.} \]
\[\text{Phys. Rev. B, 35:8865–8868, Jun 1987.} \]
\[\text{14 X. G. Wen. Vacuum degeneracy of chiral spin states in compactified space.} \]
\[\text{Phys. Rev. B, 40:7387–7390, Oct 1989.} \]
\[\text{15 X. G. Wen. Mean-field theory of spin-liquid states with finite energy gap and topological orders.} \]
\[\text{Phys. Rev. B, 44:2664–2672, Aug 1991.} \]
\[\text{16 Daniel S. Rokhsar and Steven A. Kivelson. Superconductivity and the quantum hard-core dimer gas.} \]
\[\text{Phys. Rev. Lett., 61:2376–2379, Nov 1988.} \]
\[\text{17 Alexei Kitaev. Anyons in an exactly solved model and beyond.} \]
\[\text{Annals of Physics, 321(1):2 – 111, 2006.} \]
\[\text{18 Gregory Moore and Nicholas Read. Nonabelions in the fractional quantum hall effect.} \]
\[\text{Nuclear Physics B, 360(2):362 – 396, 1991.} \]
\[\text{19 N. Read and E. Rezayi. Beyond paired quantum hall states: Parafermions and incompressible states in the first excited landau level.} \]
\[\text{Phys. Rev. B, 59:8084–8089, Mar 1999.} \]
\[\text{20 A Yu Kitaev. Fault-tolerant quantum computation by anyons.} \]
\[\text{Annals of Physics, 303(1):2–30, 2003.} \]
\[\text{21 Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman, and Sankar Das Sarma. Non-abelian anyons and topological quantum computation.} \]
\[\text{Rev. Mod. Phys., 80:1083–1159, Sep 2008.} \]
\[\text{22 Yi Zhou, Kazushi Kanoda, and Tai-Kai Ng. Quantum spin liquid states.} \]
\[\text{Rev. Mod. Phys., 89:025003, Apr 2017.} \]
\[\text{23 Claudine Lacroix, Philippe Mendels, and Frédéric Mila, editors.} \]
\[\text{Introduction to Frustrated Magnetism: Materials, Experiments, Theory} \]
\[\text{(Springer Series in Solid-State Sciences). Springer, 2011 edition, January 2011.} \]
\[\text{24 Steven T. Bramwell and Michel J. P. Gingras. Spin ice state in frustrated magnetic pyrochlore materials.} \]
\[\text{Sci.} \]
M. B. Hastings. Lieb-schultz-mattis in higher dimensions. Phys. Rev. B, 69:104431, Mar 2004.

S. C. Zhang, T. H. Hansson, and S. Kivelson. Effective-field-theory model for the fractional quantum hall effect. Phys. Rev. Lett., 62:82–85, Jan 1989.

M. E. Brooks-Bartlett, S. T. Banks, L. D. C. Jaubert, A. Harman-Clarke, and P. C. W. Holdsworth. Magnetic-moment fragmentation and monopole crystallization. Phys. Rev. X, 4:011007, Jan 2014.

S. L. Sondhi, A. Karlhede, S. A. Kivelson, and E. H. Rezayi. Skyrmions and the crossover from the integer to fractional quantum hall effect at small zeeman energies. Phys. Rev. B, 47:16419–16426, Jun 1993.

X. G. Wen and Q. Niu. Ground-state degeneracy of the fractional quantum hall states in the presence of a random potential and on high-genus riemann surfaces. Phys. Rev. B, 41:9377–9396, May 1990.

Darrell F. Schroeter, Eliot Kapit, Ronny Thomale, and Martin Greiter. Spin hamiltonian for which the chiral spin liquid is the exact ground state. Phys. Rev. Lett., 99:097202, Aug 2007.

Simeng Yan, David A. Huse, and Steven R. White. Spin liquid ground state of the $s = 1/2$ kagome heisenberg antiferromagnet. Science, 332(6034):1173–1176, 2011.

Hong-Chen Jiang, Hong Yao, and Leon Balents. Spin liquid ground state of the spin-$\frac{1}{2}$ square J_1-J_2 heisenberg model. Phys. Rev. B, 86:024424, Jul 2012.

Alessio Hamma, Radu Ionicioiu, and Paolo Zanardi. Bipartite entanglement and entropic boundary law in lattice spin systems. Phys. Rev. A, 71:022315, Feb 2005.

Alexei Kitaev and John Preskill. Topological entanglement entropy. Phys. Rev. Lett., 96:110404, Mar 2006.

Michael Levin and Xiao-Gang Wen. Detecting topological order in a ground state wave function. Phys. Rev. Lett., 96:110405, Mar 2006.

L. Cincio and G. Vidal. Characterizing topological order by studying the ground states on an infinite cylinder. Phys. Rev. Lett., 110:067208, Feb 2013.

Bella Lake, D Alan Tennant, Chris D Frost, and Stephen E Nagler. Quantum criticality and universal scaling of a quantum antiferromagnet. Nature materials, 4(4):299, 2005.

X. Obradors, A. Labarta, A. Isalgu, J. Tejada, J. Rodriguez, and M. Peret. Magnetic frustration and lattice dimensionality in srcrgadol19. Solid State Communications, 65(3):189 – 192, 1988.

A P Ramirez. Strongly geometrically frustrated magnets. Annual Review of Materials Science, 24(1):453–480, 1994.

Matthias Punk, Debanjan Chowdhury, and Subir Sachdev. Topological excitations and the dynamic structure factor of spin liquids on the kagome lattice. Nature Physics, 10(4):289, 2014.

A S Wills. Conventional and unconventional orderings in the jarosites. Canadian Journal of Physics, 79(11-12):1501–1510, 2001.

Zenji Hiroi, Masafumi Hanawa, Naoya Kobayashi, Minoru Nohara, Hidenori Takagi, Yoshimoto Kato, and Masashi Takigawa. Spin-1/2 kagomé-like lattice in volbor-thite cu3v2o7(oh)22h2o. Journal of the Physical Society of Japan, 70(11):3377–3384, 2001.
62 T. Yavors’kii, W. Apel, and H.-U. Everts. Heisenberg antiferromagnet with anisotropic exchange on the kagomé lattice: Description of the magnetic properties of volborthite. Phys. Rev. B, 76:064430, Aug 2007.

63 G. J. Nilsen, F. C. Coomer, M. A. de Vries, J. R. Stewart, P. P. Deen, A. Harrison, and H. M. Rennow. Pair correlations, short-range order, and dispersive excitations in the quasi-kagome quantum magnet volborthite. Phys. Rev. B, 84:172401, Nov 2011.

64 J. S. Helton, K. Matan, M. P. Shores, E. A. Nytko, B. M. Bartlett, Y. Yoshida, Y. Takano, A. Suslov, Y. Qiu, J.-H. Chung, D. G. Nocera, and Y. S. Lee. Spin dynamics of the spin-1/2 kagome lattice antiferromagnet znucchini(OH)cl2. Phys. Rev. Lett., 98:107204, Mar 2007.

65 P. Mendels, F. Bert, M. A. de Vries, A. Olariu, A. Harrison, F. Duc, J. C. Trombe, J. S. Lord, A. Amato, and C. Baines. Quantum magnetism in the paratracamite family: Towards an ideal kagomé lattice. Phys. Rev. Lett., 98:077204, Feb 2007.

66 Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and G. Saito. Spin liquid state in an organic mott insulator with a triangular lattice. Phys. Rev. Lett., 91:107001, Sep 2003.

67 G. Jackeli and G. Khaliullin. Mott insulators in the strong spin-orbit coupling limit: From heisenberg to a quantum compass and kitaev models. Phys. Rev. Lett., 102:017205, Jan 2009.

68 Jiří Chaloupka, George Jackeli, and Giniyat Khaliullin. Kitaev-heisenberg model on a honeycomb lattice: Possible exotic phases in iridium oxides A2rio3. Phys. Rev. Lett., 105:027204, Jul 2010.

69 Yogesh Singh and P. Gegenwart. Antiferromagnetic mott insulating state in single crystals of the honeycomb lattice material na4rio3. Phys. Rev. B, 82:064412, Aug 2010.

70 Yogesh Singh, S. Manni, J. Reuther, T. Berlijn, R. Thomale, W. Ku, S. Trebst, and P. Gegenwart. Relevance of the heisenberg-kitaev model for the honeycomb lattice iridates a2kro3. Phys. Rev. Lett., 108:127203, Mar 2012.

71 K. W. Plumb, J. P. Clancy, L. J. Sandilands, V. Kijay Shankar, Y. F. Hu, K. S. Burch, Hae-Young Kim, and Young-June Kim. α – RuCl3: A spin-orbit assisted mott insulator on a honeycomb lattice. Phys. Rev. B, 90:041112, Jul 2014.

72 A. Banerjee, C. A. Bridges, J.-Q. Yan, A. A. Aczel, L. Li, M. B. Stone, G. E. Granroth, M. D. Lumsden, Y. Yiu, J. Knolle, S. Bhattacharjee, D. L. Kovrizhin, R. Moessner, D. A. Tennant, D. G. Mandrus, and S. E. Nagler. Proximate kitaev quantum spin liquid behaviour in a honeycomb lattice. Nature Materials, 15:733–740, 2016.

73 J.-J. Wen, S. M. Koohpayeh, K. A. Ross, B. A. Trump, T. M. McQueen, K. Kimura, S. Nakatsuji, Y. Qiu, D. M. Pajerowski, J. R. D. Copley, and C. L. Broholm. Disordered route to the coulomb quantum spin liquid: Random transverse fields on spin ice in pr2x2o7. Phys. Rev. Lett., 118:107206, Mar 2017.

74 S.-H. Lee, C. Broholm, T. H. Kim, W. Ratcliff, and S.-W. Cheong. Local spin resonance and spin-petriis-like phase transition in a geometrically frustrated antiferromagnet. Phys. Rev. Lett., 84:3718–3721, Apr 2000.

75 Yoshihiko Okamoto, Minoru Nohara, Hiroko Arugakatori, and Hidenori Takagi. Spin-liquid state in the s = 1/2 hyperkagome antiferromagnet na4ir3o8. Phys. Rev. Lett., 99:137207, Sep 2007.

76 Christian Balz, Bella Lake, Johannes Reuther, Hubertus Luetkens, Rico Schönemann, Thomas Herrmannsdörfer, Yogesh Singh, ATM Nazmul Islam, Elisa M Wheeler, Jose A Rodriguez-Rivera, et al. Physical realization of a quantum spin liquid based on a complex frustration mechanism. Nature Physics, 12(10):942, 2016.

77 JG Cheng, G Li, L Balicas, JS Zhou, JB Goodenough, Cenke Xu, and HD Zhou. High-pressure sequence of ba 3 nisb 2 o 9 structural phases: New s = 1 quantum spin liquids based on ni 2+1. Physical review letters, 107(19):197204, 2011.

78 Joseph AM Paddison, Marcus Daum, Zhiling Dun, Georg Ehlers, Yaohua Liu, Matthew B Stone, Haidong Zhou, and Martin Moungiral. Continuous excitations of the triangular-lattice quantum spin liquid ybmgga40. Nature Physics, 13(2):117–122, 2017.

79 Mykola Abramchuk, Cigdem Ozsoy-Keskinbora, Jason W Krizan, Kenneth R Metz, David C Bell, and Fazel Tafti. Cu2iro3: a new magnetically frustrated honeycomb iride. Journal of the American Chemical Society, 139(43):15371–15376, 2017.

80 K Kitagawa, T Takayama, Y Matsumoto, A Kato, R Takano, Y Kishimoto, S Bette, R Dinnebier, G Jackeli, and H Takagi. A spin-orbital-entangled quantum liquid on a honeycomb lattice. Nature, 554(7692):341, 2018.

81 Satoshi Yamashita, Takashi Yamamoto, Yasuhiro Nakazawa, Masahumi Tamura, and Reizo Kato. Gapless spin liquid of an organic triangular compound evidenced by thermodynamic measurements. Nature communications, 2:275, 2011.

82 Minoru Yamashita, Norihito Nakata, Yoshinori Senshu, Masaki Nagata, Hiroshi M Yamamoto, Reizo Kato, Takasada Shibauchi, and Yuji Matsuda. Highly mobile gapless excitations in a two-dimensional candidate quantum spin liquid. Science, 328(5983):1246–1248, 2010.

83 Arnab Sen, Kedar Damle, and Roderich Moessner. Fractional spin textures in the frustrated magnet srcr99p12–9p019. Phys. Rev. Lett., 106:127203, Mar 2011.

84 L. Limot, P. Mendels, G. Collin, C. Mondelli, B. Ouladdiaf, H. Mutka, N. Blanchard, and M. Mekata. Susceptibility and dilution effects of the kagomé bilayer geometrically frustrated network: A ga nmr study of srcr99p12–9p019. Phys. Rev. B, 85:144447, Apr 2002.

85 Daiki Watanabe, Kaoru Sugi, Masaki Shimosawa, Yoshitaka Suzuki, Takeshi Yajima, Hajime Ishikawa, Zenji Hiroi, Takasada Shibauchi, Yuji Matsuda, and Minoru Yamashita. Emergence of nontrivial magnetic excitations in a spin-liquid state of kagomé volborthite. Proceedings of the National Academy of Sciences, 113(31):8653–8657, 2016.

86 Jaan Oitmaa, Chris Hamer, and Weihong Zheng. Series expansion methods for strongly interacting lattice models. Cambridge University Press, 2006.

87 Andre Lohmann, Heinz-Jürgen Schmidt, and Johannes Richter. Tenth-order high-temperature expansion for the susceptibility and the specific heat of spin-s heisenberg models with arbitrary exchange patterns: Application to pyroclore and kagome magnets. Phys. Rev. B, 89:014415, Jan 2014.

88 K. A. Modic, Tess E. Smidt, Itamar Kimchi, Nicholas P. Breznay, Alun Biffin, Sungkyun Choi, Roger D. Johnson, Radu Coldea, Pilanda Watkins-Curry, Gregory T. McCandless, Julia Y. Chan, Felipe Gandara, Z. Islam, et al. Nature Physics, 12(10):942, 2016.
B. Lake, D. A. Tennant, J.-S. Caux, T. Barthel, U. Schollwöck, S. E. Nagler, and C. D. Frost. Multispinon continua at zero and finite temperature in a near-ideal heisenberg chain. Phys. Rev. Lett., 111:137205, Sep 2013.

Martin Mourigal, Mechthild Enderle, Axel Klipperpierer, Jean-Sbastien Caux, Anne Stunault, and Henrik M. Runow. Fractional spinon excitations in the quantum heisenberg antiferromagnetic chain. Nature Physics, 9:435–441, 2013.

Arnar Banerjee, Jiaqiang Yan, Johannes Knolle, Craig A Bridges, Matthew B Stone, Mark D Lumsden, David G Mandrus, David A Tennant, Roderich Moessner, and Stephen E Nagler. Neutron scattering in the proximate quantum spin liquid α-ruc3. Science, 356(6342):1055–1059, 2017.

Luke J. Sandilands, Yao Tian, Kemp W. Plumb, Young-June Kim, and Kenneth S. Burch. Scattering continuum and possible fractionalized excitations in α–ruc3. Phys. Rev. Lett., 114:147201, Apr 2015.

L. N. Bulaevskii, C. D. Batista, M. V. Mostovoy, and D. I. Khomskii. Electronic orbital currents and polarization in mott insulators. Phys. Rev. B, 78:024402, Jul 2008.

Tai-Kai Ng and Patrick A. Lee. Power-law conductivity inside the mott gap: Application to $\alpha–(\text{BEDT-TTF})_2\text{Cu}_2(\text{CN}_3)_2$. Phys. Rev. Lett., 99:156402, Oct 2007.

Andrew C. Potter, T. Senthil, and Patrick A. Lee. Mechanisms for sub-gap optical conductivity in herbertsmithite. Phys. Rev. B, 87:245106, Jun 2013.

Yejin Huh, Matthias Punk, and Subir Sachdev. Optical conductivity of visons in Z$_3$ spin liquids close to a valence bond solid transition on the kagome lattice. Phys. Rev. B, 87:235108, Jun 2013.

Adrien Bolens, Hosho Katsura, Masao Ogata, and Seiji Miyashita. Mechanism for sub-gap optical conductivity in honeycomb kagome materials. arXiv preprint arXiv:1711.00398, 2017.

A. Little, Liang Wu, P. Lampen-Kelley, A. Banerjee, S. Patankar, D. Rees, C. A. Bridges, J.-Q. Yan, D. Mandrus, S. E. Nagler, and J. Orenstein. Antiferromagnetic resonance and terahertz continuum in α–ruc3. Phys. Rev. Lett., 119:227201, Nov 2017.

Zhe Wang, S. Reschke, D. Hivonen, S.-H. Do, K.-Y. Choi, M. Gensch, U. Nagel, T. Rö om, and A. Loidl. Magnetic excitations and continuum of a possibly field-induced quantum spin liquid in α–ruc3. Phys. Rev. Lett., 119:227202, Nov 2017.

C. Wellm, J. Zeisner, A. Alikhaw, AUB Wolter, M. Roslova, A. Isaeva, T. Doert, M. Vojta, B. Büchner, and V. Kataev. Signatures of low-energy fractionalized excitations in α–ruc3 from field-dependent microwave absorption. arXiv preprint arXiv:1710.00670, 2017.

Thomas P. Devereaux and Rudi Hacket. Inelastic light scattering from correlated electrons. Rev. Mod. Phys., 79:175–233, Jan 2007.

O. Cépas, J. O. Haerter, and C. Lhuillier. Detection of weak emergent broken-symmetries of the kagome antiferromagnet by raman spectroscopy. Phys. Rev. B, 77:172406, May 2008.

Wing-Ho Ko, Zheng-Xin Liu, Tai-Kai Ng, and Patrick A. Lee. Raman signature of the $u(1)$ dirac spin-liquid state in the spin-$\frac{3}{2}$ kagome system. Phys. Rev. B, 81:024414, Jan 2010.

J. Knolle, Gia-Wei Chern, D. L. Kovrizhin, R. Moessner, and N. B. Perkins. Raman scattering signatures of kitaev spin liquids in $\text{A}_2\text{Ir}_2\text{O}_7$ with $\alpha = \text{Na or Li}$. Phys. Rev. Lett., 113:187201, Oct 2014.

Brent Perreault, Johannes Knolle, Natalia B. Perkins, and F. J. Burnell. Theory of raman response in three-dimensional kitaev spin liquids: Application to β- and γ–$\text{Li}_2\text{Ir}_2\text{O}_7$ compounds. Phys. Rev. B, 92:094439, Sep 2015.

Brent Perreault, Johannes Knolle, Natalia B. Perkins, and F. J. Burnell. Resonant raman scattering theory for kitaev models and their majorana fermion boundary modes. Phys. Rev. B, 94:104427, Sep 2016.

M. Maczka, M. L. Sanjuán, A. F. Fuentes, K. Hermanowicz, and J. Hanuza. Temperature-dependent raman study of the spin-liquid pyrochlore $\text{tb}_2\text{ti}_2\text{o}_7$. Phys. Rev. B, 78:134420, Oct 2008.

Dirk Wullferring, Peter Lemmens, Patric Scheib, Jens Röder, Philippe Mendels, Shaoyan Chu, Tianheng Han, and Young S. Lee. Interplay of thermal and quantum spin fluctuations in the kagome lattice compound herbertsmithite. Phys. Rev. B, 82:144412, Oct 2010.

A. Glamazda, P. Lemmens, S. H. Do, Y. S. Choi, and K. Y. Choi. Raman spectroscopic signature of fractionalized excitations in the harmonic-honeycomb iridates β- and γ–$\text{Li}_2\text{Ir}_2\text{O}_7$. Nature Communications, 7:12286, 2016.

Gábor Balázs, Natalia B. Perkins, and Jeroen van den Brink. Resonant inelastic x-ray scattering response of the kitaev honeycomb model. Phys. Rev. Lett., 117:127203, Sep 2016.

W. M. H. Natori, M. Daghofer, and R. G. Pereira. Dynamics of a $j = \frac{3}{2}$ quantum spin liquid. Phys. Rev. B, 96:125109, Sep 2017.

Pietro Carretta and Amit Keren. Nmr and jsr in highly frustrated magnets. In Introduction to Frustrated Magnetism, pages 79–105. Springer, 2011.

Alain Yaouanc and Pierre Dalmas De Reotier. Muon spin rotation, relaxation, and resonance: applications to condensed matter, volume 147. Oxford University Press, 2011.

David Hisieh, Dong Qian, Lewis Wray, YuQi Xia, Yew San Hor, Robert Joseph Cava, and M Zahid Hasan. A topological dirac insulator in a quantum spin hall phase. Nature, 452(7190):970, 2008.

V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven. Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science, 336(6084):1003–1007, 2012.

Denis Vasyukov, Yonathan Anahory, Lior Embon, Dorri Alfonsov, AUB Wolter, M. Roslova, A. Isaeva, T. Doert, M. Vojta, B. Büchner, and V. Kataev. Signatures of low-energy fractionalized excitations in α–ruc3 from field-dependent microwave absorption. arXiv preprint arXiv:1710.00670, 2017.

Thomas P. Devereaux and Rudi Hacket. Inelastic light scattering from correlated electrons. Rev. Mod. Phys., 79:175–233, Jan 2007.

O. Cépas, J. O. Haerter, and C. Lhuillier. Detection of weak emergent broken-symmetries of the kagome antiferromagnet by raman spectroscopy. Phys. Rev. B, 77:172406, May 2008.

Wing-Ho Ko, Zheng-Xin Liu, Tai-Kai Ng, and Patrick A. Lee. Raman signature of the $u(1)$ dirac spin-liquid state in the spin-$\frac{3}{2}$ kagome system. Phys. Rev. B, 81:024414, Jan 2010.
Yuan Wan and Oleg Tchernyshyov. Quantum strings in quantum spin ice. *Phys. Rev. Lett.*, 108:247210, Jun 2012.

D. A. Ivanov. Non-abelian statistics of half-quantum vortices in p-wave superconductors. *Phys. Rev. Lett.*, 86:268–271, Jan 2001.

A. Smith, J. Knolle, D. L. Kovrizhin, J. T. Chalker, and R. Moessner. Neutron scattering signatures of the 3d hyperhoneycomb kitaev quantum spin liquid. *Phys. Rev. B*, 92:180408, Nov 2015.

A. Smith, J. Knolle, D. L. Kovrizhin, J. T. Chalker, and R. Moessner. Majorana spectroscopy of three-dimensional kitaev spin liquids. *Phys. Rev. B*, 93:235146, Jun 2016.

Siddhardh C. Morampudi, Ari M. Turner, Frank Pollmann, and Frank Wilczek. Statistics of fractionalized excitations through threshold spectroscopy. *Phys. Rev. Lett.*, 118:227201, May 2017.

Lucile Savary and Leon Balents. Disorder-induced quantum spin liquid in spin ice pyrochlores. *Phys. Rev. Lett.*, 118:087203, Feb 2017.

Arnab Sen and R. Moessner. Topological spin glass in diluted spin ice. *Phys. Rev. Lett.*, 114:247207, Jun 2015.

M. Hagijara, K. Katsumata, Ian Affleck, B. I. Halperin, and J. P. Renard. Observation of $s=1/2$ degrees of freedom in an $s=1$ linear-chain heisenberg antiferromagnet. *Phys. Rev. Lett.*, 65:3181–3184, Dec 1990.

David F. Mross and T. Senthil. Charge friedel oscillations in a mott insulator. *Phys. Rev. B*, 84:041102, Jul 2011.

R. N. Bhatt and P. A. Lee. Scaling studies of highly disordered spin-1/2 antiferromagnetic systems. *Phys. Rev. Lett.*, 48:344–347, Feb 1982.

Kedar Damle, Olexei Motrunich, and David A. Huse. Dynamics and transport in random antiferromagnetic spin chains. *Phys. Rev. Lett.*, 84:3434–3437, Apr 2000.

A. J. Willans, J. T. Chalker, and R. Moessner. Site dilution in the kitaev honeycomb model. *Phys. Rev. B*, 84:115146, Sep 2011.

Itamar Kimchi, Adam Nahum, and T Senthil. Valence bonds in random quantum magnets: Theory and application to ybmgga04. *arXiv preprint arXiv:1710.06860*, 2017.

Richard Hentrich, Anja U. B. Wolter, Xenophon Zotos, Wolfram Brenig, Domenic Nowak, Anna Isaeva, Thomas Doert, Arnab Banerjee, Paula Lampen-Kelley, David G. Mandrus, Stephen E. Nagler, Jennifer Sears, Young-June Kim, Bernd Büchner, and Christian Hess. Unusual phonon heat transport in α–rucl$_3$: Strong spin-phonon scattering and field-induced spin gap. *Phys. Rev. Lett.*, 120:117204, Mar 2018.

Arnab Banerjee, Paula Lampen-Kelley, Johannes Knolle, Christian Balz, Adam Anthony Aczel, Barry Winn, Yao-hua Liu, Daniel Pajerowski, Jiaqiang Yan, Craig A Bridges, et al. Excitations in the field-induced quantum spin liquid state of α-rucl$_3$. *npj Quantum Materials*, 3(1):8, 2018.

MPM Dean, Yue Cao, X Liu, S Wall, D Zhu, Roman Mankowsky, V Thampy, XM Chen, JG Vale, D Casa, et al. Ultrafast energy-and momentum-resolved dynamics of magnetic correlations in the photo-doped mott insulator sr 2 iro 4. *Nature materials*, 15(6):601, 2016.

Zhanybek Alpichshev, Fahad Mahmood, Gang Cao, and Nuh Gedik. Confinement-deconfinement transition as an indication of spin-liquid-type behavior in na 2 iro 3. *Physical review letters*, 114(1):017203, 2015.