Acute Compartment Syndrome of the Lower Extremity: Update on Proper Evaluation and Management

Abstract

Acute compartment syndrome (ACS) of the lower extremities is a common complication in patients with lower extremity trauma or ischemia. It has been associated with significant morbidity and complications, especially in cases with missed ACS or delayed treatment. This editorial aims to present a summary of current knowledge on epidemiology, diagnostics and management. Recent progress in intra-compartment pressure measurement as well as pooled results on major outcomes will be reported to assist future clinical practice.

Keywords: Acute; Compartment syndrome; Lower extremity

Editorial

The incidence of acute compartment syndrome (ACS) of the lower extremities depends on the inciting event. Tibial fractures are the most common precipitating factor, accounting for 2-12% of all compartment syndrome cases, according to literature [1]. However, DeLee and Stiehl [2] have found that 6% of patients with open tibial fractures developed ACS compared with only 1.2% of patients with closed tibial fractures. The incidence of ACS is much higher in patients with an associated vascular injury. Feliciano et al. [3] reported that 19% of patients with vascular injury required a fasciotomy although the true incidence may not be always clear as a prophylactic fasciotomy is usually performed in such patients at the time of vascular repair.

Regarding pathogenesis, the pressure gradient from the pre-capillary arteriole to the post-capillary venule (ΔP) seems to play a primary role in causing an elevated intra-compartmental pressure (ICP), according to Poisseuille’s law [1]. A diminished ΔP has two main implications, namely a decrease in the rates of both delivery of oxygenated arterial blood and drainage of deoxygenated venous blood. This establishes a vicious cycle of fluid extrusion into the muscle interstitium, tissue edema, collapse of lymphatics and ultimately tissue ischemia and necrosis [4]. Although Matsen and Krugmire [5] suggested almost 40 years ago that there is a ‘critical closing pressure’ above which capillaries collapse from transmural pressure and blood flow is arrested, Hastock et al. [6] have found that a pressure gradient between ICP and mean arterial pressure (MAP) arrests capillary blood flow. Therefore, the ‘critical closing theory’ has been disproved and it has been suggested that the arterial-venous pressure gradient is the critical determinant of capillary blood flow. Finally, Heppenstall et al. have found that uninjured muscle in dogs develops evidence of tissue ischemia on magnetic resonance spectroscopy when the difference between MAP and ICP (MAP-ICP) drops below 30 mm Hg [7]. Comparing ICP criteria, McQueen and Court-Brown found that an absolute ICP threshold of 30 mmHg would have resulted in fasciotomy in 43% of patients, whereas a dynamic ICP threshold of 30 mmHg less than diastolic pressure resulted in only three fasciotomies [8]. These studies provide compelling data suggesting that a dynamic ICP threshold relative to MAP or diastolic pressure is a more appropriate criterion for selecting patients for fasciotomy.

ICP is elevated by conditions that either increase compartment volume or produce external compression. ACS may complicate up to 21% of cases of acute ischemia, with the ischemia/reperfusion phenomenon playing a crucial role in the pathogenesis [9]. Papalambros et al. [10] have identified several risk factors for...
Several diagnostic techniques have been introduced and straight needles, which tended to overestimate pressures. Lately, port needles and slit catheters were more accurate compared to Wongworawat [16] who compared the various devices, side-system, and Whiteside manometer. According to Boody and proposed including arterial line manometer, hand-held Stryker ACS. Traditionally, several techniques and instruments have been cases, unconscious patients or pediatric cases suspicious for ACS. Pressure measurement should be utilized for equivocal is adequate in most of cases for ascertaining the diagnosis of Regarding ICP measurement, clinical suspicion and examination remain the cornerstones for proper management for decades. However, a poor technique could lead to incomplete decompression, with the risk of permanent disability or limb loss. Clinical criteria for fasciotomy include a swollen, tense compartment; pain with passive motion of the muscle groups traversing that compartment; and neurologic findings referable to the compartment. Furthermore, some authors have advocated the ‘prophylactic fasciotomy’, especially in vascular surgery patients, producing satisfying results [10]. However, fasciotomy has been associated with certain complications such as impaired sensation at the margins of the wound, tethered tendons or recurrent ulcerations. A small subset of patients (7.5%) requires late amputation (between 1 month and 1 year), usually due to neurologically devastated limb or ischemia [18].

Finally, a delayed or missed ACS could have devastating consequences for the patient or the limb, increasing the risk for neurologic deficit and amputation. Potential complications of ACS include myonecrosis causing hyperkalemia, hypocalcemia, elevated liver enzymes, disseminated intravascular coagulation, and myoglobinuria [1]. Renal failure remains a rare complication elevated liver enzymes, disseminated intravascular coagulation, and myoglobinuria [1]. Renal failure remains a rare complication and it usually occurs in victims of crush injuries. Delay of fasciotomy for more than 36 hours almost invariably results in amputation. In an old study by Sheridan and Matsen [19], the overall complication rate increased dramatically if fasciotomy delayed more than 12 h (54%) compared to early fasciotomy (4.5%). Furthermore, in a recent study by Farber et al. [20], late fasciotomy (>8 h) in patients with extremity vascular injury was found to be associated with higher amputation rate, higher infection rate and longer hospital stay compared to earlier fasciotomy (<8 h). As a result, after 3 to 4 days, decompression of CS is not indicated because the rate of infection and muscle necrosis is prohibitively high.

In conclusion, data so far indicate that clinical suspicion and examination remain the cornerstones for proper diagnosis of lower extremity ACS. However, novel techniques of pressure measurement are being developed to assist diagnosis and management in equivocal cases. Regarding treatment, early fasciotomy and prevention of potential complications of tissue ischemia and myonecrosis remain the recommended first line therapeutic strategy.
References

1. Donaldson J, Haddad B, Khan WS (2014) The Pathophysiology, Diagnosis and Current Management of Acute Compartment Syndrome. Open Orthop J 8: 185-193.

2. DeLee JC, Stiehl JB (1981) Open tibia fracture with compartment syndrome. Clin Orthop Relat Res: 175-184.

3. Feliciano DV, Cruse PA, Spjut-Patrinely V, Burch JM, Mattox KL (1988) Fasciotomy after trauma to the extremities. Am J Surg 156: 533-536.

4. Gourgiotis S, Villias C, Germanos S, Foukas A, Ridolfini MP (2007) Acute limb compartment syndrome: a review. J Surg Educ 64: 178-186.

5. Matsen FA 3rd, Krugmire RB Jr (1978) Compartmental syndromes. Surg Gynecol Obstet 147: 943-949.

6. Hartsock LA, O’Farrell D, Seaber AV, Urbaniak JR (1998) Effect of increased compartment pressure on the microcirculation of skeletal muscle. Microsurgery 18: 67-71.

7. Heppenstall RB, Sapega AA, Izant T, Fallon R, Shenton D, et al. (1989) Compartment syndrome: a quantitative study of high-energy phosphorus compounds using 31P-magnetic resonance spectroscopy. J Trauma 29: 1113-1119.

8. McQueen MM, Court-Brown CM (1996) Compartment monitoring in tibial fractures. The pressure threshold for decompression. J Bone Joint Surg Br 78: 99-104.

9. Garner MR, Taylor SA, Gausden E, Lyden JP (2014) Compartment syndrome: diagnosis, management, and unique concerns in the twenty-first century. HSS J 10: 143-152.

10. Papalambros EL, Panayiotopoulos VP, Bastounis E, Zavos G, Balas P (1989) Prophylactic fasciotomy of the legs following acute arterial occlusion procedures. Int Angiol 8: 120-124.

11. Perkins ZB, Yet B, Glasgow S, Cole E, Marsh W, et al. (2015) Meta-analysis of prognostic factors for amputation following surgical repair of lower extremity vascular trauma. Br J Surg 102: 436-450.

12. Asgun HF, Kirilmaz B (2013) Compartment syndrome of the vein donor leg following an uneventful coronary artery bypass surgery. J Card Surg 28: 30-32.

13. McQueen MM, Duckworth AD, Aitken SA, Sharma RA, Court-Brown CM (2015) Predictors of Compartment Syndrome after Tibial Fracture. J Orthop Trauma 29: 451-455.

14. Von Keudell AG, Weaver MJ, Appleton PT, Bae DS, Dyer GS, et al. (2015) Diagnosis and treatment of acute extremity compartment syndrome. Lancet 386: 1299-1310.

15. Ulmer T (2002) The clinical diagnosis of compartment syndrome of the lower leg: are clinical findings predictive of the disorder? J Orthop Trauma 16: 572-577.

16. Boody AR, Wongworawat MD (2005) Accuracy in the measurement of compartment pressures: a comparison of three commonly used devices. J Bone Joint Surg Am 87: 2415-2422.

17. Sellei RM, Hingmann SJ, Kobbe P, Weber C, Grice JE, et al. (2015) Measurement of compartment elasticity using pressure related ultrasound: a method to identify patients with potential compartment syndrome. Acta Chir Orthop Traumatol Cech 82: 198-202.

18. Gorczyca JT, Roberts CS, Pugh KJ, Ring D (2011) Review of treatment and diagnosis of acute compartment syndrome of the calf: current evidence and best practices. Instr Course Lect 60: 35-42.

19. Sheridan GW, Matsen FA 3rd (1976) Fasciotomy in the treatment of the acute compartment syndrome. J Bone Joint Surg Am 58: 112-115.

20. Farber A, Tan TW, Hamburg NM, Kalish JA, Joglar F, et al. (2012) Early fasciotomy in patients with extremity vascular injury is associated with decreased risk of adverse limb outcomes: a review of the National Trauma Data Bank. Injury 43: 1486-1491.