Case Report

Mycosis Fungoides of the Oral Cavity: Fungating Tumor Successfully Treated with Electron Beam Radiation and Maintenance Bexarotene

Juri Bassuner,1 Roberto N. Miranda,1 Drew A. Emge,2 Beau A. DiCicco,3 Daniel J. Lewis,2 and Madeleine Duvic1

1The University of Texas MD Anderson Cancer Center, Houston, TX, USA
2Baylor College of Medicine, Houston, TX, USA
3University of Texas Medical School at Houston, Houston, TX, USA

Correspondence should be addressed to Madeleine Duvic; mduvic@mdanderson.org

Received 13 August 2016; Revised 26 October 2016; Accepted 6 November 2016

Academic Editor: Alireza Firooz

Copyright © 2016 Juri Bassuner et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Oral cavity involvement in mycosis fungoides is unusual and portends a poor prognosis. The clinical findings of three new cases are described along with a differential diagnosis and review of the literature. For brevity, only one patient is discussed in detail below whereas the other two cases are solely described in table form. The patient had a four-year history of mycosis fungoides before developing an exophytic tongue tumor. He was treated with local electron beam radiation and is disease-free to date while being on maintenance therapy with oral bexarotene. Analysis of the data collected from our review of the literature and the present cases reveal key insights.

1. Introduction

One of the most common T-cell lymphomas is mycosis fungoides (MF). It is a malignant, insidious, cutaneous, extranodal non-Hodgkin’s lymphoma (NHL) [1]. MF encompasses about 4% of all lymphoma cases worldwide and has an incidence of 0.36 per 100,000 [2]. The MF disease process has a relatively predictable pattern: in three phases, erythematous or eczematous patches can become infiltrated plaques and cutaneous tumors [1]. Extracutaneous manifestations of MF can involve a wide array of sites, particularly lymph nodes [3].

Oral cavity involvement in MF is rare, found in less than 1% of patients. Interestingly, autopsy studies suggest up to 13% involvement [4]. This is thought to be a predictor of poor prognosis. Often, patients have advanced stage disease and the majority have expired shortly after presentation [5–8]. We present a case of oral MF and a review of the literature. Two additional patients with oral MF that presented to our hospital are presented in table form alongside the 45 patients with oral MF found in the literature (Table 2). Key observations are made from analysis of the patients.

2. Materials and Methods

We have expanded on our previous case series on oral MF (20) to include three new cases that were selected from the electronic medical records of The University of Texas MD Anderson Cancer Center (UTMDACC). The patients were treated at UTMDACC over periods from 2005 to present (Case 1), 2005 to 2008 (Case 2), and 2015 to present (Case 3).

3. Case Report

A 63-year-old white man (Case 1) presented in 2005 with exfoliative erythroderma. He stated that he was diagnosed with a rash localized to his right hand three years earlier. Over the course of one and a half years, his lesions spread widely. On presentation, he had 90% body surface area (BSA) involvement with a 3:1 ratio of plaque to patch. His
Table 1: Differential diagnosis of oral tumors.

Disease	Oral lesion description	Diagnostic clues
Malignancy/premalignancy		
Squamous cell papilloma	Discrete exophytic papillary lesions (verruca): occur at any intraoral site	History of human immunodeficiency virus infection; association with cutaneous warts on fingers
Squamous cell carcinoma	Nonhealing ulcers, papules, or plaques: occur most frequently at the floor of the mouth and soft palate	History of tobacco and alcohol consumption; mechanical trauma from ill-fitting dentures
Mesenchymal neoplasms and tumor-like lesions		
Fibrous and vascular overgrowths	Discrete lesions of cheek or tongue	
Pyogenic granuloma	Exuberant overgrowths usually at the gingiva but can occur at any intraoral site	May bleed spontaneously or following irritation due to extreme vascularity
Odontogenic tumors and cysts		
Ameloblastoma	Oral swellings occurring on the mandible that typically produce multicystic appearance on radiograph	Painless and slow growing; untreated, may reach substantial size
Odontogenic cysts	Oral swellings arising adjacent to teeth that usually produce a well-demarcated cyst on radiograph	Painless and slow growing

skin exhibited indurated erythematous papular rash that was confluent over the upper and lower extremities with skip areas on the abdomen and relative sparing of the groin.

Flow cytometry revealed $30 \times 10^9/L$ CD4 cells and 96% CD4+/CD26− cells. Biopsy of the tumor showed MF with large cell transformation.

The patient received numerous systemic treatments including (1) vorinostat 400 mg daily that improved his pruritus but was accompanied by intolerable side effect of diarrhea and overall lack of response in the skin, (2) forodesine with minor partial response, (3) combined modality with interferon-alpha plus bexarotene and extracorporeal photopheresis, (4) total body skin electron beam radiation that effectively cleared his skin temporarily, and (5) alemtuzumab with which he achieved durable near-complete remission.

After these treatments, roughly four years after initial presentation, the patient presented with a rapidly growing tumor on his tongue measuring $2.0 \times 2.0 \times 2.5$ cm with a central cleft (Figure 1). His skin at that point had 12% BSA involvement of MF. His tongue biopsy showed a large protruding lesion, lined by squamous mucosa, nonulcerated, composed of a diffuse, dense lymphoid infiltrate that extended deep into underlying skeletal muscle of tongue (Figure 2(a)). On higher magnification, the neoplastic cells were large, with vesicular nuclei and prominent central nucleoli (Figure 2(b)). Approximately 2 atypical mitotic figures per high power field were identified. The large neoplastic cells were strongly and diffusely positive for CD3 (Figure 3(a)) CD4 and CD30 (Figure 3(b)). Approximately 90% of neoplastic cells expressed the proliferation marker Ki-67. Bone marrow was positive for atypical cells as well. Imaging revealed a 1.3 cm spiculated lesion in the left upper lobe, which was subsequently biopsied and found to be positive for lymphoma. His tumor responded to 22 Gy of electron beam radiation leaving behind a 3.0×1.5 cm erosion that eventually formed a scar. He was restarted on bexarotene and had an excellent response on the skin. He continues to be disease-free to the time of this writing.

4. Discussion

Lymphomatous lesions of the oropharynx in MF are becoming increasingly recognized in the literature. Presentation is heterogeneous, ranging from depressed ulcerations and red or white patches to exuberant outgrowth of tumors. This presents a diagnostic challenge to the uninitiated clinician. The differential diagnosis of various benign and malignant oral lesions is reviewed (Table 1).
Author	At onset of MF	At onset of oral lesion	At death	Time to death from onset of oral lesion (yr.)	Sex	Stage	Cutaneous involvement	Extracutaneous involvement	Lymph node involvement	Multiple sites of oral involvement	Presence of GI involvement	Lesion type	Location of oral lesion(s)		
Laskaris	52	63	65.2	0.2	F	IIb	+	+	+	+	+	+	*	*	Buccal mucosa, lips
Crane	70	73.5	*	*	F	IIa	–	–	–	–	–	–	*	*	Gingiva
Yao	54	37.8	59.1	1.3	M	Ib	+	*	*	+	*	Patch			
Brousset Visente	47	50	52	2	F	Ib	+	–	–	–	–	–	Tumor	Lingual margin	
Case 1	51	59	59.5	0.5	F	IIb	+	–	–	–	+	*	Plaque	Hard palate	
Case 2	72	77	77.5	0.5	F	IIb	+	*	*	–	–	*	Plaque	Hard palate	
Kasha	65	66	67.2	1.2	M	IIb	+	–	–	–	–	–	Plaque	Dorsal tongue	
Case 1	62	80	81	1	M	IIa	+	–	+	+	+	*	Plaque	Tongue, esophagus	
Evans	52	65	66.2	1.2	F	Ib	+	–	*	+	*	Plaque	Dorsal tongue, palatal mucosa, gingiva, pharynx		
Barnett	39	69	69.2	0.2	M	IIb	+	*	*	+	*	Plaque	Hard palate, buccal mucosa, tongue		
Cohn	50	52.5	*	*	M	IIb	+	+	+	+	+	*	Plaque	Hard palate, soft palate, alveolar ridge	
Damm	68	68	*	*	M	IIb	+	–	–	+	–	*	Plaque	Hard palate and, later, tongue	
Whitbeck	68	72	72.6	0.6	M	IVb	+	+	–	+	–	–	Tumor	Gingiva, buccal mucosa, palate	
Ellams	52	52	52.3	0.3	F	Ib	–	–	*	+	*	Plaque	Tongue, hard palate		
Reynolds	60	75.5	76.7	1.2	F	Ib	+	–	*	+	*	Plaque	Hard palate, upper gingiva		
Wright	60	64.5	62.7	1.2	M	IVb	+	+	–	+	*	Patch	Hard palate, upper gingiva		
Author	At onset of MF	At onset of oral lesion	At death	Time to death from onset of oral lesion (yr.)	Sex	Stage	Cutaneous involvement	Extracutaneous involvement	Lymph node involvement	Multiple sites of oral involvement	Presence of GI involvement	Lesion type	Location of oral lesion(s)		
-----------------	---------------	-------------------------	----------	---	-----	-------	-----------------------	----------------------------	-------------------------	----------------------------------	--------------------------	-------------	----------------------------		
Sirois													Gingiva, palate, tongue, lip, buccal mucosa, tonsil		
Case 1	71	75	76	1	M	IVa	+	*		-	*		Gingiva, palate, tongue, lip, buccal mucosa, tonsil		
Case 2	44	57	58	1	M	III	+	*		-	*		Gingiva, palate		
Case 3	46	49	50	1	M	IVa	+	*		-	*		Gingiva, palate		
Case 4	71	74	75	1	M	IIb	+	*		-	*		Gingiva, palate		
Case 5	62	66	69	3	F								Gingiva, palate		
Case 6	51	53	56	3	F	IVa	+	*		-	*		Gingiva		
Case 7	67	73	81	8	F								Gingiva		
Case 8	43	51	53	2	M	III	+	*		-	*		Gingiva, palate		
McBride	*	63	63.1	0.1	F	Ia	+	*		-	*		Tongue		
Harman	*	35	57.6	0.6	M	IIb	+	-		+	-		Gingiva, palate		
Cawley													Gingiva		
Case 1	72	72	74	2	M	Ib	+	-		-	-		Hard/soft palate, tonsils		
Case 2	65	65	65.0	0.04	M	IIb	+	-		-	-		Labial commissure, tongue		
Postorino et al.	*	60	*	*	M	IIb	+	-		-	-		Plaque Mucosa		
Corbett et al.	*	*	*	*	F	IIb	+	-		-	-		Plaque Soft palate, throat		
Wain et al.	*	*	*	*	M	IIb	+	-		-	-		Plaque Soft palate, tongue, lips		
Wahie et al.	60	69	*	*	M	Ia	-	-		+	-		Plaque Suprahypopharyngeal region, epiglottis		
Viswanathan	69	69	*	*	M	Ia	+	-		+	-		Plaque Tongue, soft palate		
Luigetti et al.	27	38	*	*	F	*	+	-		+	-		Plaque Hard palate		
Goldsmith et al.	44	64	*	*	F	*	+	-		-	-		Plaque Hard palate		
Le et al.	32	36	*	*	M	IIb	+	-		+	-		Tumor Tonsil		
Tillman et al.	60	*	*	*	M	*	*	*		*	*		Tumor Hard palate		
Chua et al.	80	80.7	*	*	M	Ib	+	-		-	-		Tumor Hard palate, gingiva, mucosa		
Author	Case 1	Case 2	May	Present report											
------------	--------	--------	-------	----------------											
At onset of MF	35	66	*	60											
At onset of oral lesion	45	70	*	74											
Age	45.5	*	*	*											
Time to death from onset of oral lesion (yr.)	0.5	*	*	*											
Sex	F	F	M	M											
Stage	IIb	Ia	MIVb	IVb											
Cutaneous involvement At onset	+	+	+	+											
Extracutaneous involvement At onset	−	−	−	−											
Lymph node involvement	−	−	−	−											
Multiple sites of oral involvement	+	+	+	+											
Presence of GI involvement	−	−	−	−											
Lesion type	Tumor	Tumor	Tumor	Tumor											
Location of oral lesion(s)	Tongue, uvula, oropharynx	Tumor palate, uvula, tonsils	Tumor palate, uvula, tonsils	Tongue palate											

* = Present report

Table 2: Continued.
MF is classically divided into three progressive, often overlapping, stages: patch, plaque, and tumor. Clinically and histopathologically, patch stage MF is commonly misdiagnosed as psoriasis. Lesions appear erythematous and sometimes scaly usually responding to topical steroids, the mainstay treatment [9]. Microscopically, there is nonspecific inflammatory infiltrate. Atypical cells are not readily identified.

During the plaque and tumor stages, lesions present a much more characteristic histologic picture. There are a dense polymorphous infiltrate and characteristic epidermotropism. Malignant cells called Sezary cells may be seen in the peripheral blood and subsequently may spread to lymph nodes. Sezary cells can be identified in peripheral blood by flow cytometry immunophenotype [10]. Treatments are often directed systemically with medicines such as bexarotene, a vitamin A derivative. In our experience, lesions respond well to local electron beam radiation.

To our knowledge, there are 42 reported cases of oral MF (Table 2). At presentation of oral MF, the age ranged from 36 to 81 years, with a median of 64. Forty percent were women and 60% were men. Skin involvement universally preceded oral involvement with the exception of two cases ranging from 6 months to 20 years, with a median of 4 years.

At time of oral lesion diagnosis, 33% of patients had stage IB disease or lower and 11% had no active cutaneous disease. Most commonly, patients presented with oral lesions on the palate ($n=21$) and/or tongue ($n=20$), which is consistent with the literature [8, 11–19]. Sixty-one percent had multiple sites of oral involvement. Of the lesions identified, there were 12 tumor, 11 plaque, and 3 patch.

Our patient is remarkable in that he is in complete remission seven years after onset of oral lesion, which defies the median time of one year from diagnosis of oral lesion to death. Further, our patient had large cell transformation, which carries additional poor prognosis [20]. At the time of oral lesion development, no lymphadenopathy was present whereas in many of the reported cases, oral lesions occurred mostly in advanced stages of the disease.

Competing Interests

The authors declare that they have no competing interests.
References

[1] C. S. Ahn, A. ALSayyah, and O. P. Sangüeza, “Mycosis fungoides: an updated review of clinicopathologic variants,” American Journal of Dermatopathology, vol. 36, no. 12, pp. 933–951, 2014.

[2] V. D. Criscione and M. A. Weinstock, “Incidence of cutaneous T-cell lymphoma in the United States, 1973–2002,” Archives of Dermatology, vol. 143, no. 7, pp. 854–859, 2007.

[3] G. Burg, “Systemic involvement in mycosis fungoides,” Clinics in Dermatology, vol. 33, no. 5, pp. 563–571, 2015.

[4] E. H. Epstein, D. L. Levin, J. D. Croft, and M. A. Lutzner, “Mycosis fungoides: survival, prognostic features, response to therapy, and autopsy findings,” Medicine, vol. 51, no. 1, pp. 61–72, 1972.

[5] E. de la Fuente, J. L. Rodriguez-Peralto, P. L. Ortiz, N. Barrientos, F. Vanaclocha, and L. Iglesias, “Oral involvement in mycosis fungoides: report of two cases and a literature review,” Acta Dermato-Venereologica, vol. 80, no. 4, pp. 299–301, 2000.

[6] J. Jones, F. Vega, A. H. Sarris, and L. J. Medeiros, “CD4+ CD8-‘double-negative’ cutaneous T-cell lymphomas share common histologic features and an aggressive clinical course,” American Journal of Surgical Pathology, vol. 26, no. 2, pp. 225–231, 2002.

[7] E. E. Kash Jr. and C. M. Parker, “Oral manifestations of cutaneous T cell lymphoma,” International Journal of Dermatology, vol. 29, no. 4, pp. 275–280, 1990.

[8] M. J. Quarterman, J. L. Lesher Jr., L. S. Davis, C. G. Pantazis, and S. Mullins, “Rapidly progressive CD8-positive cutaneous T-cell lymphoma with tongue involvement,” The American Journal of Dermatopathology, vol. 17, no. 3, pp. 287–291, 1995.

[9] R. A. Wilcox, “Cutaneous T-cell lymphoma: 2016 update on diagnosis, risk-stratification, and management,” American Journal of Hematology, vol. 91, no. 1, pp. 151–165, 2016.

[10] S. I. Jawed, P. L. Myskowski, S. Horwitz, A. Moskowitz, and C. Querfeld, “Primary cutaneous T-cell lymphoma (mycosis fungoides and Sézary syndrome): part I. Diagnosis: clinical and histopathologic features and new molecular and biologic markers,” Journal of the American Academy of Dermatology, vol. 70, no. 2, pp. 205.e1–205.e16, 2014.

[11] D. D. Damm, D. K. White, M. L. Cibull, J. F. Drummond, and J. R. Cramer, “Mycosis fungoides: initial diagnosis via palatal biopsy with discussion of diagnostic advantages of plastic embedding,” Oral Surgery, Oral Medicine, Oral Pathology, vol. 58, no. 4, pp. 413–419, 1984.

[12] G. E. Evans and K. L. Dalziel, “Mycosis fungoides with oral involvement. A case report and literature review,” International Journal of Oral & Maxillofacial Surgery, vol. 16, no. 5, pp. 634–637, 1987.

[13] S. M. Goldsmith, B. L. Seo, R. Kumara De Silva, P. Parachuru, A. M. Rich, and G. J. Seymour, “Oral mycosis fungoides: report with immune profile,” Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, vol. 118, no. 2, pp. e48–e52, 2014.

[14] M. Harman, S. Akdeniz, A. Arslan, and S. Köyoglu, “Mycosis fungoides with involvement of the oral cavity,” Journal of the European Academy of Dermatology and Venereology, vol. 10, no. 3, pp. 253–256, 1998.

[15] G. C. Laskaris, G. D. Nicolis, and J. P. Capetanakis, “Mycosis fungoides with oral manifestations,” Oral Surgery, Oral Medicine, Oral Pathology, vol. 46, no. 1, pp. 40–42, 1978.

[16] M. Luigetti, A. Cianfoni, E. Scarano et al., “Mycosis fungoides as a cause of severe obstructive sleep apnea,” Internal Medicine, vol. 50, no. 16, pp. 1753–1755, 2011.

[17] M. Postorino, L. Pupo, I. Provenzano et al., “A case of oral mycosis fungoides successfully treated by combination of alemtuzumab and chemotherapy,” Annals of Hematology, vol. 95, no. 1, pp. 153–154, 2016.

[18] S. Wahie, H. H. Lucaft, C. Hartley, D. S. Milne, V. Prabhu, and P. M. Farr, “Oropharyngeal mycosis fungoides [5],” Clinical and Experimental Dermatology, vol. 31, no. 6, pp. 821–822, 2006.

[19] J. M. Wright Jr., B. A. Balcianas, and J. H. Muus, “Mycosis fungoides with oral manifestations. Report of a case and review of the literature,” Oral Surgery, Oral Medicine, Oral Pathology, vol. 51, no. 1, pp. 24–31, 1981.

[20] S. I. Jawed, P. L. Myskowski, S. Horwitz, A. Moskowitz, and C. Querfeld, “Primary cutaneous T-cell lymphoma (mycosis fungoides and Sézary syndrome): part II. Prognosis, management, and future directions,” Journal of the American Academy of Dermatology, vol. 70, no. 2, pp. 223.e1–223.e17, 2014.