Synthesis, antiasthmatic, and insecticidal/antifungal activities of allosamidins

Gangliang Huanga and Hualiang Huangb

aChongqing Key Laboratory of Green Synthesis and Application, Active Carbohydrate Research Institute, Chongqing Normal University, Chongqing, China; bSchool of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China

ABSTRACT

Allosamidins come from the secondary metabolites of Streptomyces species, and they have the pseudotrisaccharide structures. Allosamidins are chitinase inhibitors that can be used to study the physiological effects of chitinases in a variety of organisms. They have the novel antiasthmatic activity and insecticidal/antifungal activities. Herein, the synthesis and activities of allosamidins were summarized and analyzed.

Introduction

An effective chitinase inhibitor was found in screening metabolites of actinomycetes, which was isolated from the mycelium extract of Streptomyces 1713,1,2. Its new structure was elucidated, which was a pseudotrisaccharide containing two β-linked N-acetyl-2-amino-2-deoxy-D-allopyranoside building blocks. The new disaccharide is linked to allosamizoline 2 (Figure 1) through its reducing terminal. It is a new family-18 chitinase inhibitor, named allosemidin 1. The compound has a unique chemical structure and its synthetic method is very challenging3–29. The selection of glycosylation methods to assemble the structural units of allosamidin and its analogues is the essential difference between each reported total synthesis method. The main goal of these glycosylation methods is to produce β-configuration products. This article analyses the synthesis and activity of isomides. The synthesis and activities of allosamidins were reviewed herein.

Preparation of allosamizoline 2

Allosamizoline 2 is an important unit of allosamidin 1. Compound 2 and its analogues were mainly synthesized with non-sugar compounds as raw materials30–43. Sugar was also used in the synthesis of compound 244–11. Under proper protection, sugar-based receptors were prepared first, and then combined with the required oligosaccharide donors to complete the synthesis of compound 1.

The regio- and stereocontrolled total synthesis of (+)-allosamizoline 2 was studied (Scheme 1)26. Using D-glucosamine as raw material, aldehyde 3 was synthesized by five-step reaction. The Wittig olefination of aldehyde 3 was carried out by using ylide Ph3P=CHCO2Me to obtain a high yield (91%) of acrylate 4. In the ring-closed metathesis reaction, the terminal substituent of the alken e was not transferred to the cyclized product. The ring-closing metathesis also took place smoothly and cyclopentene 5 was obtained in 88% yield. The key steps of the synthesis included halogen cyclization to provide oxazoline ring, followed by stereoselective addition of alkene radical, and finally carried out alkene isomerization to form hydroxymethyl. (+)-Allosamizoline 2 was prepared by 13-step reaction with an overall yield of 22%.

Rhodium-catalyzed oxidative cyclization of glucal 3-carbamates to oxazolidinone-protected mannosamine derivatives (Scheme 2)44 could be used to synthesize various allosamidin analogues. The stereoselectivity of anomeric centers relied on the properties of protective groups and solvents. It was proved that benzylic protection mainly produced a product of α-configuration. Solvents with lower polarity, such as hexane and benzene, also increased the anomeric proportion. Its formation was with a primary amide containing carbamate as a raw material.

Synthesis of allosamidin compounds

Solid phase synthesis is a fast and effective method for the synthesis of oligosaccharides30,51. In the multi-step solid phase synthesis of oligosaccharides, excess reactants or by-products can be easily removed. Oligosaccharide synthesis is important for glycosylation, which involves sugar-based donors and receptors. For example, Huang’s group first synthesized the α-trichloroacetimidate donors 8, 9 and allosamizoline-derived acceptor 10. Moreover, the solid-state synthesis of allosamidin 1 was developed12.

To synthesize α-trichloroacetimidate donor 8 (Scheme 3), the preparation of α-D-allosamine-hydrochloride 11 was carried out23. Compound 11 was treated with benzoylcarbonyl (Cbz)-Cl and NaHCO3/H2O, N-benzoylcarbonyl protected allosamine 12 in 85% yield was obtained. Compound 12 was acetylated in pyridine to obtain the α/β isomer (4:1) mixture of tetracete 13. The anomeric acetyl group was selectively removed in N,N-Dimethylformamide (DMF) with hydrazine acetate to obtain the...
hemiacetal 14. In the compound 14, the compound 14 reacted with the
CCl₃CN to obtain 82% yield of α-trichloroacetimidate donor 8.

The hemiacetal 14, which was directly carried out without puri-
fication, was produced in DMF with the hydrazine acetate-treated
compound 13. Compound 14 was reacted with tert-butyldimethyl-
silyl (TBDMs)-Cl in imidazole to give a β-configuration TBDMs
derivative 15. A 95% yield of TBDMS 2-deoxy-N-benzyloxycarbonyl-
limino-β-D-allopyranoside 16 was obtained by deacetylation of
compound 15 with NaOME/MeOH. Compound 16 was treated
with benzaldehyde dimethylacetal to obtain 4,6-O-benzylidene
derivative 17. The reaction of compound 17 and Ac₂O was carried
out in the presence of pyridine to give acetate 18 in a yield of
94%. 6-O-Bn acceptor 19 was obtained by regioselective reduction
of benzylidene acetate 18 with CF₃COOH/Et₃SiH at 0°C in a yield of
86%. In the presence of N,N-diisopropylpropylcarbodiimide (DIPC),
compound 19 was reacted with levulinic acid to give the orthogonally
protected alloamine 20 in 95% yield. In the presence of acetic
acid, tetrabutylammonium fluoride (TBAF) was used to remove the
anomeric TBDMS group. The crude product was then reacted with
the CCCl₃CN and DBU to give the α-trichloroacetimidate donor 9
(Scheme 4).

Dial 21 was prepared (Scheme 5)54. Compound 21 was select-
ively benzylated on C-3 hydroxyl group by the method of stanny-
lene55 to produce the dibenzylated unit 10 in a yield of 45%. The
glycosylation was carried out by using 3.0 equivalent donor and
1.2 equivalent trimethylsilyl trifluoromethanesulfonate (TMSOTf) as
promoter to activate trichloroacetimidate donor. TMSOTf pro-
moted the glycosylation of trichloroacetimidate donor 9 with 6-O-
benzylalloosaminoligosaccharin alcohol acceptor 10 at low temperature.
The corresponding β-pseudodisaccharide 22 was obtained with a yield of
68%. Wang resin was removed from building block 22 with tri-
fluoroacetic acid. The product was analyzed by high pressure
liquid chromatography (HPLC). The receptor 23 was obtained by
cleaving the levulinoyl ester with hydrazine acetate dissolved in
methanol. After the glycosylation was carried out with acceptor
23 and donor 8, the resin was washed, filtered, and dried in vac-
uum for 12 h. Sugar-based resin were catalytically hydrogenated
with benzaldehyde dimethylacetal to obtain 4,6-O-benzylidene
derivative 17. The reaction of compound 17 and Ac₂O was carried
out in the presence of pyridine to give acetate 18 in a yield of
94%. 6-O-Bn acceptor 19 was obtained by regioselective reduction
of benzylidene acetate 18 with CF₃COOH/Et₃SiH at 0°C in a yield of
86%. In the presence of N,N-diisopropylpropylcarbodiimide (DIPC),
compound 19 was reacted with levulinic acid to give the orthogonally
protected alloamine 20 in 95% yield. In the presence of acetic
acid, tetrabutylammonium fluoride (TBAF) was used to remove the
anomeric TBDMS group. The crude product was then reacted with
the CCCl₃CN and DBU to give the α-trichloroacetimidate donor 9
(Scheme 4).

Dial 21 was prepared (Scheme 5)54. Compound 21 was select-
ively benzylated on C-3 hydroxyl group by the method of stanny-
lene55 to produce the dibenzylated unit 10 in a yield of 45%. The
glycosylation was carried out by using 3.0 equivalent donor and
1.2 equivalent trimethylsilyl trifluoromethanesulfonate (TMSOTf) as
promoter to activate trichloroacetimidate donor. TMSOTf pro-
moted the glycosylation of trichloroacetimidate donor 9 with 6-O-
benzylalloosaminoligosaccharin alcohol acceptor 10 at low temperature.
The corresponding β-pseudodisaccharide 22 was obtained with a yield of
68%. Wang resin was removed from building block 22 with tri-
fluoroacetic acid. The product was analyzed by high pressure
liquid chromatography (HPLC). The receptor 23 was obtained by
cleaving the levulinoyl ester with hydrazine acetate dissolved in
methanol. After the glycosylation was carried out with acceptor
23 and donor 8, the resin was washed, filtered, and dried in vac-
uum for 12 h. Sugar-based resin were catalytically hydrogenated
with benzaldehyde dimethylacetal to obtain 4,6-O-benzylidene
derivative 17. The reaction of compound 17 and Ac₂O was carried
out in the presence of pyridine to give acetate 18 in a yield of
94%. 6-O-Bn acceptor 19 was obtained by regioselective reduction
of benzylidene acetate 18 with CF₃COOH/Et₃SiH at 0°C in a yield of
86%. In the presence of N,N-diisopropylpropylcarbodiimide (DIPC),
compound 19 was reacted with levulinic acid to give the orthogonally
protected alloamine 20 in 95% yield. In the presence of acetic
acid, tetrabutylammonium fluoride (TBAF) was used to remove the
anomeric TBDMS group. The crude product was then reacted with
the CCCl₃CN and DBU to give the α-trichloroacetimidate donor 9
(Scheme 4).

Dial 21 was prepared (Scheme 5)54. Compound 21 was select-
ively benzylated on C-3 hydroxyl group by the method of stanny-
lene55 to produce the dibenzylated unit 10 in a yield of 45%. The
glycosylation was carried out by using 3.0 equivalent donor and
1.2 equivalent trimethylsilyl trifluoromethanesulfonate (TMSOTf) as
promoter to activate trichloroacetimidate donor. TMSOTf pro-
moted the glycosylation of trichloroacetimidate donor 9 with 6-O-
benzylalloosaminoligosaccharin alcohol acceptor 10 at low temperature.
The corresponding β-pseudodisaccharide 22 was obtained with a yield of
68%. Wang resin was removed from building block 22 with tri-
fluoroacetic acid. The product was analyzed by high pressure
liquid chromatography (HPLC). The receptor 23 was obtained by
cleaving the levulinoyl ester with hydrazine acetate dissolved in
methanol. After the glycosylation was carried out with acceptor
23 and donor 8, the resin was washed, filtered, and dried in vac-
uum for 12 h. Sugar-based resin were catalytically hydrogenated
with benzaldehyde dimethylacetal to obtain 4,6-O-benzylidene
derivative 17. The reaction of compound 17 and Ac₂O was carried
out in the presence of pyridine to give acetate 18 in a yield of
94%. 6-O-Bn acceptor 19 was obtained by regioselective reduction
of benzylidene acetate 18 with CF₃COOH/Et₃SiH at 0°C in a yield of
86%. In the presence of N,N-diisopropylpropylcarbodiimide (DIPC),
compound 19 was reacted with levulinic acid to give the orthogonally
protected alloamine 20 in 95% yield. In the presence of acetic
acid, tetrabutylammonium fluoride (TBAF) was used to remove the
anomeric TBDMS group. The crude product was then reacted with
the CCCl₃CN and DBU to give the α-trichloroacetimidate donor 9
(Scheme 4).

An international group has developed a new type of chiti-
nase inhibitor55. The core building block is a cyclic sugar fused
with thiazoline, a five-membered ring consisting of one N, one S
and three C atoms (Scheme 6). This arrangement simulates a
ring intermediate product formed during chitinase degradation
and interacts with the binding sites on chitinase. To enhance
the inhibition, the researchers added two or three additional
sugar building blocks, similar to chitin (chitobiose or chitotrios).

The synthesis of disaccharide and trisaccharide thiazolines 24
and 25 began with octaacetylethiose 26 and undecaacetyle-
chitositrone 27 in turn (Scheme 6)36. The α-configuration of ace-
toxy groups of compounds 26 and 27 was reversed to give the
corresponding β-anomers, the anomic chlorides were obtained
by the initial treatment with HCl and AcOH, and then treated
with AgOAc/AgOH. After treatment with Lawesson reagent, thia-
zolines 28 and 29 were obtained by affecting both the conver-
sion of amides to thioamides and the intramolecular substitu-
tion of adjacent thioamide sulfur atom to the anomeric
β-acetoxy group. The partial deacetylation of per-O-acetylated
thiazolines 28 gave two additional chitinase inhibitors,
namely the chitobiose thiazoline thioamide 30 in a yield of 89%
and chitotriose thiazoline dithioamide 31 in a yield of 80%. To
synthesize target compounds 24 and 25, thioamides 28 and 29
were converted to diacytymides 32 and 33 (81% and 60% yields in turn)
with silver acetate/dichloromethane without destroying the thiazoline part. Finally, chitobiose thiazoline 24
(69% yield) and chitotriose thiazoline 25 (78% yield) were obtained by O-deacylation and mono-N-deacylation of imides
32 and 33 with sodium methanol/methanol.

It was indicated that chitobiose and chitotriose thiazolines (24
and 25) were synthesized by traditional method. As above-men-
tioned, the of allosamidin 1 was synthesized by solid phase
method. So, compound 25 was successfully synthesized by the
similar approach (Scheme 7)57. Compounds 36 and 39 were used
as the corresponding α-trichloroacetimidate donors.

GlCN thiazoline is a poor chitinase A (ChiA) inhibitor whose
Kₐ>1 mM. However, adding one GlCN residue to compound 24
increased the binding power by at least 40 times, and the second
GlCN residue further increased the affinity by 100 times. The Kᵢ
value of pseudotrisaccharide 25 was much lower than that of

Figure 1. Structures of allosamidin 1 and allosamizoline 2.

Scheme 1. Preparation of (-)-allosamizoline 2.
allosamidin ($K_i=0.6 \mu M$) in inhibition of ChiA. This result contrasted with recent finding that the disaccharide thiazoline with sulfur linkage was not a significant ChiA inhibitor. No significant inhibition was observed in this study might be due to the different geometric structure imposed by the thioglycosidic linkage.

The main methods of synthesis of compound 25 were compared as shown in Table 1.

The activities of allosamidins

In mouse asthma model, allosamidin showed antiasthmatic activity and decreased inflammatory symptoms were observed in rabbits with endotoxin-induced uveitis. Demethylallosamidin, a derivative of allosamidin, had strong inhibitory activity on yeast chitinase and human chitosidase. The inhibitory effect of

Scheme 3. Synthesis of donor 8 with N-Cbz protection.

Scheme 4. Synthesis of donor 9 with N-Cbz protection.

Scheme 5. Solid phase synthesis of allosamidin 1.

Scheme 6. Synthesis of chitobiose and chitotriose thiazolines (24 and 25), and their thioamide analogues (30 and 31).
demethylallosamidin on acidic mammalian chitinase (AMCase) was stronger than that of allosamidin and had strong anti-asthma activity. Demethylallosamidin inhibited IL-13-induced hyperresponsiveness and had better potential as an anti-asthma drug than allosamidin. There is a need to use other target molecules in the future to investigate the difference in the anti-asthma activity of allosamidin and demethylallosamidin.

Allosamidins can inhibit chitinase activity. So, they can prevent the ecdysis of insect larvae and pupae, and isolation of fungal microspore mother cells. As a result, they play a role in insecticidal and antifungal activities. At very low concentrations, pseudo-trisaccharide allosamidin 1 has competitive inhibitory activity against chitinases. The injection of compound 1 into silkworm (Bombyx mori) larvae and armyworm (Leucania separata) strongly interfered with larval molting and increased the mortality of lepidopterous pests. The inhibitory effects of allosamidin 1 on Bombyx mori larvae and Leucania separata larvae were EI50 = 2 μg and 4 μg, respectively. EI50 is a 50% molting inhibition. Compound 1 and its derivatives could significantly increase the mortality of fly larvae (Lucilia cuprina) after exposure or feeding test. Allosamidin 1 could result in larval mortality in the webbing clothes moth Tineola bisselliella because of severe morphological alterations, namely delaying growth and interrupting molting. This occurred during larval development. Compound 1 could also induce the killing effect of aphids, increase larval mortality and decrease the reproductive ability of aphid Myzus persicae.

Allosamidin 1 has the broad-spectrum chitinase inhibitory activity. Compound 1 and its derivatives, i.e., methylallosamidin, demethylallosamidin, glucoallosamidin A, glucoallosamidin B, and methyl-N-demethylallosamidin, could also kill different human pests and pathogens, such as plasmodium and nematode. Allosamidin 1 also had antibacterial and insecticidal/antifungal activities. In Streptomyces species producing compound 1, this inhibitor was beneficial to the production of chitinase insensitive to compound 1, which was beneficial to fungal growth.

The binding mode to chitinases of allosamidins

According to the NMR spectrum information, ab initio calculations and the spatial squeezing effect between molecules, it could be proved that the binding power in the allosamizoline part of allosamidin 1 was the strongest.

The pseudotrisaccharide allosamidin is an effective family-18 chitinase inhibitor, which has obvious biological activity against insects, fungi and Plasmodium falciparum, and affects their life cycle. Similar to other chitinases, demethylallosamidin derivatives have a 10-fold inhibitory effect on human chitinase. These structures explained the effects of changing hydrogen bonds and hydrophobic interactions as well as the effect of substituted water molecules on the inhibition.

Allosamidin 1 is located in the deep active site of ChiA from S. marcescens and interacts with three important residues: Glu315 is the catalyzed proton donor. Asp313 takes two conformations in the primary structure, but faces toward Glu315 in the inhibitor complex. Tyr390 is located opposite Glu315 in the active site tunnel.

The inhibition of the family-18 chitinase is becoming a target for pest and fungal control and the treatment of asthma and inflammation. Under the condition of pH 6.0, the binding of allosamidin 1 required the deprotonation of Asp142-Glu144 catalytic diad.

The structure-activity relationships of allosamidins

The structure-activity relationship of allosamidins is as follows. Allosamidins can inhibit the enzymes of GH18 and GH20 families. NAG-thiazoline is a potential inhibitor of N-acetylhexosaminase of GH20 family. It is introduced into the structure of allosamidin analogues. The obtained compounds have been proved to have good inhibitory activity against 18 family chitinases. Substituted N-glycosyl oxazolines, N-glycosyl aminooxazolines, and N-glycosyl thiazolines also exhibit enzymatic inhibition. Allosamidins containing N-acetylgulosamine structural unit have the good inhibitory effect on chitinases. In addition, the side chain groups of allosamidin analogues structural units can be extended appropriately, but if the side chain groups are prolonged too much, the volume of side chain groups will be too large and the steric hindrance will increase, which will reduce the affinity to 20 family glycosylhydrolases.

Table 1. Comparison of the three synthetic methods of compound 25.

Synthetic method of compound 25	Number of synthetic steps	Number of column chromatography separation
Solid-liquid phase	7	3
Total solid phase	8	0
Total liquid phase	6	6

Scheme 7. Solid phase synthesis of chitotriose thiazoline 25.
Conclusion

To sum up, the synthesis efficiency of allosamidin 2 and its analogues can be greatly improved by introducing related metal catalytic reactions, which is beneficial to improve the selectivity of the reactions. At the same time, it is proved that the synthesis efficiency of allosamidin 1 and its analogues can also be improved by solution phase synthesis and solid phase synthesis. The activities of allosamidin 1 and its analogues showed that they can not only be used as lead compounds to develop the effective anti-asthma drugs and insecticidal/antifungal agents, but also as probes to investigate the physiological effects of chitin-like proteins. The development trend in this field is to develop new synthesis methods, improve synthesis efficiency, and screen out new allosamidins which can significantly inhibit chitinases and have high anti-asthma and insecticidal/antifungal activities.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The Project was sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry [No. 2015-1098]. The work was also supported by Chongqing Key Research Project of Basic Science & Frontier Technology [No. cstc2017jcyjBX0012], Foundation Project of Chongqing Normal University [No. 14XYY020], Chongqing General Research Program of cstc2017jcyjBX0012, Foundation Project of Chongqing Normal University Postgraduate’s Research and Innovation Project [No. YKC17004], China.

References

1. Sakuda S, Isogai A, Matsumoto S, Suzuki A. Search for microbial insect growth regulators. II. Allosamidin, a novel insect chitinase inhibitor. J Antibiot 1987;40:296–300.
2. Sakuda S, Isogai A, Matsumoto S, et al. The structure of allosamidin, a novel insect chitinase inhibitor, produced by Streptomyces sp. Tetrahedron Lett 1986;27:2475–8.
3. Takahashi S, Terayama H, Koshino H, Kuzuhara H. Synthesis of a novel azapseudosaccharide related to allosamidin employing N,N'-diacetylchitobiose as a key starting material. Tetrahedron 1999;55:14871–84.
4. Blattner R, Gerard PJ, Spindler-Barth M. Synthesis and biological activity of allosamidin and allosamidin analogues. Pestic Sci 1997;50:312–8.
5. Blattner R, Fumeaux RH, Lynch GP. Synthesis of allosamidin analogues. Carbohydr Res 1996;294:29–39.
6. Griffith DA, Danishefsky SJ. The total synthesis of allosamidin. Expansions of the methodology of azaglycosylation pursuant to the total synthesis of allosamidin. A surprising enantiotopic sense for a lipase-induced deacetylation. J Am Chem Soc 1996;118:9526–38.
7. Shrades WD, Imperiali B. Synthesis of the glucoallosamidin pseudodisaccharide: use of an efficient Hg(III)-mediated cyclization. Tetrahedron Lett 1996;37:599–602.
8. Takahashi S, Terayama H, Koshino H, Kuzuhara H. Design and synthesis of a potential endoglycosidase inhibitor: chemical conversion of N,N'-diacetylchitobiose into novel pseudodisaccharide containing a five-Membered cyclic N,N'-dimethylguanidine. Chem Lett 1996;25:97–8.
9. Takahashi S, Inoue H, Kuzuhara H. Preparation of a highly functionalized cyclopentane derivative suitable for the synthesis of allosamidin analogues. J Carbohydr Chem 1995;14:273–85.
10. Chénéde A, Pothier P, Sologoub M, et al. Samarium(II) iodide promoted ring contraction of carbohydrate derivatives: an expeditious synthesis of functionalised cyclopentanes. J Chem Soc Chem Commun 1995;0:1373–4.
11. Blattner R, Fumeaux R, Kemmitt T, et al. Syntheses of the fungicide/insecticide allosamidin and a structural isomer. J Chem Soc Perkin Trans 1994;1:3411–21.
12. Takahashi S, Terayama H, Kuzuhara H. Synthesis of demethylallosamidin, a yeast chitinase inhibitor; use of disaccharide glycosyl donor carrying novel neighboring group. Tetrahedron Lett 1994;35:4149–52.
13. Takahashi S, Terayama H, Kuzuhara H, et al. Preparation of a demethylallosamidin isomer having an N,N'-diacetylchitobiosyl moeity and its potent inhibition against yeast chitinase. Biosci Biotechnol Biochem 1994;58:2301–2.
14. Corbett DF, Dean DK, Robinson SR. Synthesis of pseudo-disaccharides related to allosamidin. Tetrahedron Lett 1994;35:459–62.
15. Corbett DF, Dean DK, Robinson SR. The synthesis of pseudosugars related to allosamidol. Tetrahedron Lett 1993;34:1525–8.
16. Trost BM, Van Vranken DL. General synthetic strategies toward aminocyclopentitol glycosidase Inhibitors. Application of palladium catalysis to the synthesis of allosamidol and mannostatin A. J Am Chem Soc 1993;115:444–58.
17. Zhou Z-Y, Sakuda S, Kinoshita M, Yamada Y. Biosynthetic studies of allosamidin 2, isolation of didemethylallosamidin, and conversion experiments of 14C-labeled demethylallosamidin, didemethylallosamidol in and their related compounds. J Antibiot 1993;46:1582–8.
18. Kinoshita M, Sakuda S, Yamada Y. Preparation of N-monoalkyl and O-acyl derivatives of allosamidin, and their chitinase inhibitory activities. Biosci Biotechnol Biochem 1993;57:1699–703.
19. Terayama H, Kuzuhara H, Takahashi S, et al. Synthesis of a new allosamidin analog, N,N'-diacetyl-beta-chitobiosyl allosamidol and its inhibitory activity against some chitinases. Biosci Biotechnol Biochem 1994;57:2067–9.
20. Trost BM. A biological catalysis for synthetic efficiency. Pure Appl Chem 1992;64:315–22.
21. Takahashi S, Terayama H, Kuzuhara H. Total synthesis of (−)-allosamidin, an insect chitinase inhibitor, employing chitin as a key starting material. Tetrahedron Lett 1992;33:7565–8.
22. Maloisel J-L, Vasella A, Pothier P, Sollogoub M, et al. Samarium(II) iodide promoted ring contraction of carbohydrate-derived disaccharides. Tetrahedron 1992;68:2207–17.
23. Maloisel J-L, Vasella A. Synthesis of mannostatin A, pseudolizoline and mannostatin A. J Chem Soc Chem Commun 1995;0:1373–4.
24. Corbett DF, Dean DK, Robinson SR. Synthesis of pseudo-disaccharides related to allosamidin. Tetrahedron Lett 1994;35:459–62.
25. Corbett DF, Dean DK, Robinson SR. The synthesis of pseudosugars related to allosamidol. Tetrahedron Lett 1993;34:1525–8.
26. Trost BM, Van Vranken DL. General synthetic strategies toward aminocyclopentitol glycosidase Inhibitors. Application of palladium catalysis to the synthesis of allosamidol and mannostatin A. J Am Chem Soc 1993;115:444–58.
a potent α-mannosidase inhibitor. Tetrahedron Lett 1990;31:7109–12.

27. Shing TKM, Elsley DA, Gillhouley JG. A rapid entry to carbohydrates via intramolecular nitrene cycloaddition. J. Chem. Soc., Chem. Commun 1989;25:1280–2.

28. Bartlett PA, McLaren KL, Ting PC. Radical cyclization of oxime ethers. J Am Chem Soc 1988;110:1633–4.

29. Bernet B, Vasella A. Carbocyclic compounds from monosaccharides. I. transformations in the glucose series. Helv Chim Acta 1979;62:1990–1960.

30. Felpin F-X, Lebreton J. Enantiospecific and stereoselective synthesis of (2)-allosedamine. Tetrahedron Lett 2002;43:225–7.

31. Mehta G, Mohal N. Stereoselective syntheses of aminocyclopentitol using a C2-symmetric desymmetrization of meso-cyclopentitol using a C2-symmetric bis-sulfoxide: a synthesis of (-)-allosamizoline. Org Lett 2007;9:5509–11.

32. Wakabayashi T, Saito H, Shiozaki M. Preparation of 3,6-di-O-benzylallosamizoline from natural allosamidin. Tetrahedron: Asymmetry 2000;11:2083–91.

33. Lu H, Mariano PS, Lam Y-F. A concise synthesis of the (-)-allosamizoline aminocyclo-pentitol based on pyridinium salt photochemistry. Tetrahedron Lett 2001;42:4227–30.

34. Nakata M, Akazawa S, Kitamura S, Tatsuta K. Enantiospecific total synthesis of (−)-allosamizoline, and aminocyclitol moiety of the insect chitinase inhibitor allosamidin. Tetrahedron Lett 1991;32:5363–6.

42. Goering BK, Ganem B. Total synthesis of (+)-allosamizoline from a symmetric tri substituted cyclopentene. Tetrahedron Lett 1994;35:6997–7000.

43. Elliott RP, Fleet GWJ, Pearce L, et al. A reductive aldol strategy for the synthesis of very highly substituted cyclopanetanes from sugar lactones. Tetrahedron Lett 1991;32:6227–30.

44. Trost BM, Van Vranken DL. Template directed synthesis of (+)-allosamizoline and its 3,4-epimers. J Am Chem Soc 1990;112:1261–3.

45. Simpkins NS, Stokes S, Whittle AJ. An enantiospecific synthesis of allosamizoline. J Chem Soc Perkin Trans 1992;1:2471–7.

46. Nakata M, Akazawa S, Kitamura S, Tatsuta K. Enantiospecific total synthesis of (−)-allosamizoline, and aminocyclitol moiety of the insect chitinase inhibitor allosamidin. Tetrahedron Lett 1991;32:5363–6.

47. Takahashi S, Terayama H, Kuzuhara H. Stereoregulated synthesis of (−)-allosamizoline using D-glucosamine as a chiral template. Tetrahedron Lett 1991;32:5123–6.

48. Donohoe TJ, Rosa CP. A concise and efficient synthesis of (−)-allosamizoline. Org Lett 2007;9:5509–11.

49. Ritu G, Kimberly MS, Sarah EB, et al. Protecting group and solvent control of stereo- and chemoselectivity in glucal 3-carbamate amidoglycosylation. Org Lett 2009;11:1527–30.

50. Plante OJ, Palmacci ER, Seegerbergh P. Automated synthesis of a branched oligosaccharide. Science 2001;291:1523–7.

51. Tanaka K, Fujimoto Y, Tanaka S, et al. Combinatorial methods in oligosaccharide synthesis. In: Fraser-Reid B, Tatsuta K, Thiem J, eds. Glycoscience, Part 5. Berlin, Heidelberg: Springer-Verlag; 2008:1205–1240.

52. Huang GL, Dai YP. Solid-phase synthesis of allosamidin. Synlett 2010;21:1554–6.

53. Cai Y, Ling C-C, Bundle DR. Concise and efficient synthesis of 2-acetamido-2-deoxy-beta-D-hexopyranosides of diverse aminosugars from 2-acetamido-2-deoxy-beta-D-glucose. J Org Chem 2009;74:580–9.

54. Griffith DA, Dainshesfy SJ. Total synthesis of allosamidin: an application of the sulfonamidoglycosylation of glucals. J Am Chem Soc 1991;113:5863–4.

55. Zhang Z, Wong CH. Regioselective benzoylation of sugars mediated by excessive Bu2SnO: observation of temperature promoted migration. Tetrahedron 2002;58:6513–9.

56. Macdonald JM, Tarling CA, Taylor EJ, et al. Chitinase inhibition by chitobiase and chitotriose thiazolines. Angew Chem Int Ed Engl 2010;49:2599–602.

57. Huang GL, Chen Y. Solid-phase synthesis of di-N-acetyl-b,β-chitobiosyl NAG-thiosaccharide. Lett Drug Des Discov 2011;8:649–51.

58. Fettke A, Peikow A, Peter MG, Kleinpeter E. Synthesis and conformational analysis of glycomimetic analogs of chitothiobiase. Tetrahedron 2009;65:4356–66.

59. Zhu Z, Zheng T, Homer RJ, et al. Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science 2004;304:1678–82.

60. Bucolo C, Musumeci M, Maltese A, et al. Effect of chitinase inhibitors on endotoxin-induced uveitis (EIU) in rabbits. Pharmacol Res 2008;57:247–52.

61. Sakuda S, Nishimoto Y, Ohi M, et al. Effects of demethylallosamidin, a potent yeast chitinase inhibitor, on the cell division of yeast. Agric Biol Chem 1990;54:1333–5.

62. Rao FV, Houston DR, Boot RG, et al. Crystal structures of allosamidin derivatives in complex with human macrophage chitinase. J Biol Chem 2003;278:20110–6.

63. Matsumoto T, Inoue H, Sato Y, et al. demethylallosamidin, a potent yeast chitinase inhibitor, suppresses airway inflammation and hyperresponsiveness. Biochem Biophys Res Commun 2009;390:103–8.

64. Sakuda S, Sakurada M. Preparation of biotinylated allosamidins with strong chitinase inhibitory activities. Bioorg Med Chem Lett 1998;8:2987–90.

65. Saguez J, Dubois F, Vincent C, et al. Differential aphicidal effects of chitinase inhibitors on the polyphagous homopteran Myzus persicae (Sulzer). Pest Manag Sci 2006;62:1150–4.
66. Spindler KD, Spindler-Barth M, Sakuda S. Effect of demethylation on the chitinase inhibitory activity of allosamidin. Arch Insect Biochem Physiol 1997;36:223–7.

67. Filho BPD, Lemos FJA, Secundino NFC, et al. Presence of chitinase and beta-N-acetylglucosaminidase in the Aedes aegypti. A chitinolytic system involving peritrophic matrix formation and degradation. Insect Biochem Mol Biol 2002;32:1723–9.

68. Tsai YL, Hayward RE, Langer RC, et al. Disruption of Plasmodium falciparum chitinase markedly impairs parasite invasion of mosquito midgut. Infect Immun 2001;69:4048–54.

69. Villagómez-Castro JC, Calvo-Méndez C, López-Romero E. Chitinase activity in encysting Entamoeba invadens and its inhibition by allosamidin. Mol Biochem Parasitol 1992;52: 53–62.

70. Sampson MN, Gooday GW. Involvement of chitinases of Bacillus thuringiensis during pathogenesis in insects. Microbiology 1998;144:2189–94.

71. Bortone K, Monzingo AF, Ernst S, et al. The structure of an allosamidin complex with the Coccidioides immitis chitinase defines a role for a second acid residue in substrate-assisted mechanism. J Mol Biol 2002;320:293–302.

72. Suzuki S, Nakanishi E, Ohira T, et al. Chitinase inhibitor allosamidin is a signal molecule for chitinase production in its producing Streptomyces II. Mechanism for regulation of chitinase production by allosamidin through a two-component regulatory system. J Antibiot 2006;59:410–7.

73. Germer A, Klod S, Peter MG, Kleinpeter E. NMR spectroscopic and theoretical study of the complexation of the inhibitor allosamidin in the binding pocket of the plant chitinase hevamine. J Mol Model 2002;8:231–6.

74. Papanikolau Y, Tavlas G, Vorgias CE, Petratos K. De novo purification scheme and crystallization conditions yield high-resolution structures of chitinase A and its complex with the inhibitor allosamidin. Acta Crystallogr D Biol Crystallogr 2003;59:400–3.

75. Cederkvist FH, Suaa SF, Karlsen V, et al. Thermodynamic analysis of allosamidin binding to a family 18 chitinase. Biochemistry 2007;46:12347–54.

76. Macauley MS, Whitworth GE, Debowski AW, et al. O-GlcNAcase uses substrate-assisted catalysis: kinetic analysis and development of highly selective mechanism-inspired inhibitors. J Biol Chem 2005;280:25313–22.