Supporting Information

Ligand-Enabled Disproportionation of 1,2-Diphenylhydrazine at a P^V-Center

S. B. H. Karnbrock, C. Golz, R. A. Mata, M. Alcarazo*
Contents

General Information ... 3
Syntheses .. 5
 Synthesis of Compound 10 .. 5
 Synthesis of Compound 11 .. 5
 Synthesis of Compound 12 .. 6
 Synthesis of Compound 13 .. 6
 Synthesis of Compound 14 .. 7
 Synthesis of Compound 15 .. 7
 Synthesis of Compound 18 .. 8
 Synthesis of benzenaminium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate bis(tetrahydrofuran) (PhNH$_3$BArF \cdot 2 THF) ... 8
 Oxidation of Compound 14 ... 9
 Oxidation of Compound 15 ... 9
 Gutmann-Beckett Test ... 10
Phosphorane-catalyzed Disproportionation of 1,2-Diphenylhydrazine 11
Mechanistic Experiments ... 14
Kinetic Experiments ... 17
Kinetic Analysis and Mechanistic Proposal .. 19
 Kinetic Model .. 19
 Study of Catalyst Aggregation via DOSY NMR .. 21
 Study of Catalyst Aggregation via DFT calculations .. 23
 Mechanistic Proposal .. 24
Cyclic Voltammetry ... 25
NMR Spectra .. 26
Single crystal X-ray Diffraction Analysis .. 40
 Refinement table and details for 9H$_4$.. 40
 Refinement table and details for 10 .. 41
 Refinement table and details for 11 .. 42
 Refinement table and details for 12 .. 43
 Refinement table and details for 14 .. 44
 Refinement table and details for 18 .. 45
Computational Details ... 47
References ... 90
General Information

Working methods:

Unless otherwise stated, all manipulations were carried out under a nitrogen atmosphere in flame-dried glassware on a Schlenk line or under nitrogen atmosphere in an MBraun UNILab plus glovebox. Dry solvents were obtained using an MBraun MB-SPS-7 solvent purification system (THF, diethyl ether, toluene, pentane, dichloromethane, acetonitrile), deoxygenated in a nitrogen stream and stored over 3 Å molecular sieves under a nitrogen atmosphere. Flash chromatography was performed on Macherey Nagel 60 (40-63 μm) silica gel. Air-insensitive reactions were controlled by thin layer chromatography (TLC) analysis, performed using polygram SIL G/UV254 from Macherey Nagel and visualized by UV irradiation (λ = 254 nm), phosphomolybdic acid or iodine stains.

Starting materials:

Unless otherwise specified, all reagents were used as received from commercial suppliers (ABCR, AcrosOrganics, Alfa Aesar, Chempur GmbH, J and K Scientific, Sigma Aldrich, Thermo Fisher Scientific, Tokyo Chemical Industry). PCl₃ was freshly distilled under a nitrogen atmosphere prior to use. N,N'-Diisopropylethylamine and aniline were dried over 3 Å molecular sieves and deoxygenated in a nitrogen stream. 4-Dimethylaminopyridine (DMAP) was purified under nitrogen atmosphere by sublimation at 80 °C and 10⁻³ mbar and stored in a nitrogen-filled glovebox. N,N'-Bis(3,5-di-tert-butyl-2-hydroxyphenyl)-1,2-phenylenediamine (9·H₄),¹ sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate Na⁺[(CF₃)₂C₆H₃]₄B⁻ (NaBArF),² [(3,5-(CF₃)₂C₆H₃)₄B][H(OEt₂)₂][{(Et₂O)₂H}[BArF]],³ 1,2-di-p-tolylhydrazine⁴ and aryl azides (p-TolN₃, MesN₃)⁵ were synthesized according to the published procedures.

NMR spectroscopy:

The NMR spectra were recorded on a Bruker Avance III 300 MHz, Bruker Avance III HD 300 MHz, Bruker Avance III 400, Bruker Avance III HD 400 MHz or Bruker Avance Neo 400 MHz at 298 K. ¹H and ¹³C chemical shifts are given in ppm relative to TMS, using the solvent signals as references and converting the chemical shifts to the TMS scale. ¹⁹F and ³¹P chemical shifts are given in ppm relative to CFCl₃ and H₃PO₄, respectively (external standard). The chemical shifts are given in parts per million (ppm), and the coupling constants (J) in Hertz (Hz). Solvents for NMR spectroscopy were deoxygenated in a nitrogen stream and stored over 3 Å molecular sieves in a glove box.

Mass spectrometry:

Mass spectrometry analyses were performed using the following equipment: Bruker Daltronik microTOF (ESI), Bruker Daltronik maXis (ESI), Joel AccuTOF (LIFDI).

Infrared spectroscopy:

Neat samples were measured on a JASCO FT/IR-4100 or JASCO FT/IR-4600 at room temperature. The vibrational frequencies are reported in wavenumbers (cm⁻¹).
X-ray-diffraction:

Data collection was done on two dual source equipped Bruker D8 Venture four-circle-diffractometer from Bruker AXS GmbH; used X-ray sources: microfocus μS 2.0 Cu/Mo and microfocus μS 3.0 Ag/Mo from Incoatec GmbH with mirror optics HELIOS and single-hole collimator from Bruker AXS GmbH; used detector: Photon III CE14 (Cu/Mo) and Photon III HE (Ag/Mo) from Bruker AXS GmbH; for data collection with internal number below 0800 Photon II from Bruker AXS GmbH.

Used programs: APEX3 Suite (early v2017.3-0; late v2019.11-0) for data collection and therein integrated programs SAINTV8.40A (Integration) und SADABS 2016/2 (Absorption correction) from Bruker AXS GmbH; structure solution was done with SHELT, refinement with SHELXL-2018/3,[6] OLEX2 and FinalCif were used for data finalization.[7]

Special Utilities: SMZ1270 stereomicroscope from Nikon Metrology GmbH was used for sample preparation; crystals were mounted on MicroMounts or MicroLoops from MiTeGen in NVH oil; crystals were cooled to given temperature with Cryostream 800 from Oxford Cryosystems.

EPR spectroscopy:

EPR-spectra were measured on a Bruker EMX mikro X-Band EPR from BRUKER Biospin with the Bruker Xenon Software. The spectra were measured in dry and degassed solvents at room temperature unless otherwise stated.

Cyclic voltammetry:

Cyclic voltammetry was performed with a VersaSTAT 4 potentiostat from Princeton Applied Research using the VersaStudio software (version 2.44.4). A standard three electrodes setup was used with a glassy carbon working electrode, a platinum counter electrode and a silver/silver chloride pseudo-reference electrode. Internal referencing was performed against $[\text{Fe(Cp)}_2]^{0/+}$.

Elemental analyses:

Elemental analyses were obtained from the Analytisches Labor, Georg-August-Universität, Göttingen, using an Elementar Vario EL 3 analyzer.
Syntheses

Synthesis of Compound 10

A Schlenk flask equipped with a magnetic stirring bar was charged with compound 9·H₂ (4.40 g, 8.51 mmol, 1.00 equiv.) and THF (85 mL). DIPEA (3.47 g, 4.67 mL, 26.82 mmol, 3.15 equiv.) was added and the solution was cooled to −78 °C using a dry ice/acetone bath. PCl₃ (1.228 g, 0.78 mL, 8.94 mmol, 1.05 equiv.) was added slowly via syringe under rigorous stirring. The reaction mixture was allowed to warm to ambient temperature over a period of 16 h. The solvent was evaporated and the remaining white solid was extracted copious amounts of pentane at ambient atmosphere. The extract was evaporated to dryness and the residue was purified by flash chromatography (SiO₂; pentane; Rf = 0.1) to yield a white, crystalline solid (2.48 g, 4.56 mmol, 54%).

m.p. decom. >198 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.81 (d, ¹Jₚₙ = 782.3 Hz, 1H), 7.67 (dd, J = 5.8, 3.5 Hz, 2H), 7.57 (s, 2H), 7.13 (dd, J = 5.9, 3.2 Hz, 2H), 7.06 (s, 2H), 1.53 (s, 18H), 1.45 (s, 18H). "C [¹H] NMR (101 MHz, CDCl₃): δ 144.1, 139.9 (d, J = 2.2 Hz), 133.6 (d, J = 9.5 Hz), 130.3 (d, J = 13.3 Hz), 130.0 (d, J = 19.3 Hz), 121.1, 116.2, 110.6 (d, J = 9.9 Hz), 107.2 (d, J = 11.6 Hz), 35.2, 34.7, 32.0, 29.7. "P NMR (121 MHz, CDCl₃): δ −39.8 (d, ¹Jₚₙ = 782 Hz). ³¹P [¹H] NMR (121 MHz, CDCl₃): δ −39.8. IR (ATR, neat) [cm⁻¹]: 2952, 2905, 2867, 2384, 2373, 2366, 2359, 1586, 1501, 1435, 1360, 1304, 1275, 1203, 1125, 1001, 932, 903, 825, 800, 766, 724, 638, 608, 544, 523, 419. HR-MS-ESI(+) calcd. for C₃₄H₄₅N₂O₃P⁺ [M+H]⁺: 545.3291; found 545.3281. Anal. calcd. for C₃₄H₄₅N₂O₃P: C 74.97, H 8.33, N 5.14, found: C 75.18, H 8.25, N 4.98.

Synthesis of Compound 11

In a Schlenk flask equipped with a magnetic stirring bar, compound 10 (500 mg, 918 µmol, 1.00 equiv.) and N-chlorosuccinimide (123.8 g, 927 µmol, 1.01 equiv.) were dissolved in THF (10 mL) and stirred under reflux for 2 h using an oil bath. The solvent was evaporated under reduced pressure. Extraction of the crude reaction mixture with pentane (3 × 3 mL) yielded the target compound as a white solid (487 mg, 841 µmol, 92%).

m.p. 298 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.78 (ddd, J = 6.0, 3.3, 1.1 Hz, 2H), 7.64 (s, 2H), 7.23 (ddd, J = 6.0, 3.3, 1.0 Hz, 2H), 7.12 (s, 2H), 1.53 (s, 18H), 1.44 (s, 18H). "C [¹H] NMR (101 MHz, CDCl₃): δ 145.1, 138.4 (d, J = 2.4 Hz), 134.4 (d, J = 12.3 Hz), 127.8 (d, J = 25.6 Hz), 127.6 (d, J = 19.4 Hz), 121.7 (d, J = 1.6 Hz), 116.7 (d, J = 1.7 Hz), 111.1 (d, J = 12.0 Hz), 107.0 (d, J = 13.8 Hz), 35.3, 34.7, 32.0, 29.7. ³¹P [¹H] NMR (121 MHz, CDCl₃): δ −25.3. IR (ATR, neat) [cm⁻¹]: 2956, 2931, 2907, 2867, 1592, 1505, 1436, 1362, 1124, 1003, 953, 912, 822, 792, 725, 629, 546, 431. MS-LIFDI(+) calcd. for C₃₄H₄₄ClN₂O₃P⁺ [M]⁺: 578.3; found 578.5. HR-MS-ESI(+) calcd. for C₃₄H₄₄ClN₂O₃P⁺ [M-Cl]⁻: 543.3135; found 543.3135. Anal. calcd. for C₃₄H₄₄ClN₂O₃P: C 70.51, H 7.66, N 4.84, found: C 70.51, H 7.77, N 4.74.
Synthesis of Compound 12

In a Schlenk flask equipped with a magnetic stirring bar, chloride 11 (50 mg, 86 µmol, 1.00 equiv.) was dissolved in THF (2 mL). Trimethylsilyl cyanide (10.3 mg, 13 µL, 104 µmol, 1.2 equiv.) was added and the solution was stirred under reflux for 4 h using an oil bath. Evaporation of all volatiles at 66 °C yielded the target compound as a white solid (48.1 mg, 84 µmol, 98%).

m.p. 272 - 273 °C. 1H NMR (300 MHz, CDCl3): δ 7.75 (dd, J = 6.1, 3.4 Hz, 2H), 7.62 (s, 2H), 7.23 (dd, J = 5.9, 3.3 Hz, 2H), 7.14 (s, 2H), 1.53 (s, 18H), 1.44 (s, 18H). 13C{1H} NMR (75 MHz, CDCl3): δ 145.6, 138.3 (d, J = 3.3 Hz), 134.7 (d, J = 11.5 Hz), 128.4, 128.1 (d, J = 4.7 Hz), 122.3 (d, J = 1.5 Hz), 117.4, 116.3 (d, 1JPC = 253.5 Hz), 111.4 (d, J = 11.7 Hz), 107.7 (d, J = 13.2 Hz), 35.3, 34.7, 31.9, 29.7. 31P{1H} NMR (121 MHz, CDCl3): δ −55.4. IR (ATR, neat) [cm⁻¹]: 2958, 2906, 2868, 2359, 2340, 1590, 1504, 1487, 1438, 1361, 1203, 1127, 953, 827, 731, 636. MS-LIFDI (+) calcd. for C35H44N3O2P+: [M]+ 569.3; found 569.6. HR-MS-ESI (+) calcd. for C34H44N2O2P− [M−CN]+ 543.3135; found 543.3132.

Anal. calcd. for C35H44N3O2P: C 73.79, H 7.78, N 7.38, found: C 73.68, H 7.74, N 7.24.

Synthesis of Compound 13

In a Schlenk flask equipped with a magnetic stirring bar, chloride 11 (150 mg, 259 µmol, 1.00 equiv.) was dissolved in THF (5 mL). Cesium fluoride (393 mg, 25.9 mmol, 10 equiv.) was added, and the dispersion was stirred at ambient temperature for 20 h. Extraction with pentane (3 × 3 mL), filtration through a plug of silica and evaporation of the filtrate yielded the target compound as a white solid (143.8 mg, 256 µmol, 99%).

m.p. 199 °C. 1H NMR (400 MHz, CDCl3): δ 7.84 – 7.78 (m, 2H), 7.66 (dd, J = 1.9, 1.2 Hz, 2H), 7.23 (ddd, J = 5.9, 3.3, 0.9 Hz, 2H), 7.10 (t, J = 1.7 Hz, 2H), 1.53 (s, 18H), 1.43 (s, 18H). 13C{1H} NMR (101 MHz, CDCl3): δ 144.6, 138.5 (d, J = 3.7 Hz), 133.8 (d, J = 12.5 Hz), 128.8 (d, J = 23.5 Hz), 128.0 (d, J = 19.8 Hz), 121.4 (d, J = 1.4 Hz), 116.3, 111.0 (d, J = 12.7 Hz), 107.0 (d, J = 13.7 Hz), 35.3, 34.7, 32.0, 29.7. 19F{1H} NMR (376 MHz, CDCl3): δ −52.9 (d, 1JPF = 888 Hz). 31P NMR (121 MHz, CDCl3): δ −29.8 (d, 1JPF = 888 Hz). IR (ATR, neat) [cm⁻¹]: 2956, 2906, 2868, 2359, 2340, 1590, 1504, 1487, 1438, 1361, 1127, 953, 827, 731, 636. HR-MS-ESI (+) calcd. for C34H44FN2O2P+: [M+H]+ 563.3197; found 563.3190. Anal. calcd. for C34H44FN2O2P: C 72.57, H 7.88, N 4.98, found: C 72.30, H 7.90, N 4.82.
Synthesis of Compound 14

In a Schlenk flask equipped with a magnetic stirring bar, chloride 11 (50 mg, 86 µmol, 1.00 equiv.) was dissolved in THF (2 mL) and cooled to −78 °C. p-Tolylmagnesium bromide (1 M in THF, 104 µL, 104 µmol, 1.2 equiv.) was added; the solution was stirred at ambient temperature for 16 h and at reflux temperature for an additional 30 min. After the solution was cooled to ambient temperature, water (5 mL) was added. The mixture was extracted with DCM (3 × 5 mL), the combined organic extracts were washed with brine and dried over MgSO₄. Purification by flash chromatography (SiO₂; 200:1; pentane:ethyl acetate) yielded the target compound as a white solid (20.1 mg, 32 µmol, 37%).

m.p. 264 °C. **¹H NMR** (300 MHz, CDCl₃): δ 7.72 – 7.63 (m, 2H), 7.55 – 7.48 (m, 2H), 7.38 (dd, J = 15.6, 7.9 Hz, 2H), 7.12 (dd, J = 5.9, 3.3 Hz, 2H), 7.00 (dd, J = 7.9, 5.0 Hz, 2H), 6.96 (d, J = 1.4 Hz, 2H), 2.21 (s, 3H), 1.50 (s, 18H), 1.38 (s, 18H). **¹³C[¹H] NMR** (101 MHz, CDCl₃): δ 143.60, 140.7 (d, J = 3.5 Hz), 139.6 (d, J = 2.5 Hz), 133.2 (d, J = 9.6 Hz), 133.0 (d, J = 222.8 Hz), 130.7 (d, J = 12.7 Hz), 130.1 (d, J = 18.5 Hz), 129.0 (d, J = 4.8 Hz), 128.8 (d, J = 10.8 Hz), 120.8, 115.9, 110.2 (d, J = 10.2 Hz), 107.4 (d, J = 11.6 Hz), 35.1, 34.6, 32.0, 29.8, 21.5 (d, J = 1.8 Hz). **³¹P[¹H] NMR** (121 MHz, CDCl₃): δ −26.2. **IR** (ATR, neat) [cm⁻¹]: 3953, 2933, 2904, 2867, 1586, 1502, 1425, 1360, 1304, 1273, 1221, 1124, 1042, 1002, 905, 854, 824, 765, 720, 655, 624, 605, 541, 521, 431. **HR-MS-ESI(+)** calcd. for C₄₁H₅₁N₂O₂P⁺ [M+H⁺] 635.3761; found 635.3746. **Anal.** calcd. for C₄₁H₅₁N₂O₂P: C 77.57, H 8.10, N 4.41, found: C 77.27, H 8.11, N 4.18.

Synthesis of Compound 15

In a Schlenk flask equipped with a magnetic stirring bar, chloride 11 (100 mg, 173 µmol, 1.00 equiv.) was dissolved in THF (3 mL). Aniline (32.3 mg, 317 µL 347 µmol, 2.01 equiv.) was added, and the reaction mixture was stirred at room temperature for 20 h. The solvent was evaporated and the residue extracted with pentane (3 × 1 mL). Evaporation of the extract yielded the target compound as a white solid (87.8 mg, 138 µmol, 80%).

m.p. 175 °C. **¹H NMR** (400 MHz, CDCl₃): δ 7.60 (dd, J = 5.7, 3.4 Hz, 2H), 7.43 (s, 2H), 7.11 (dd, J = 5.8, 3.3 Hz, 2H), 7.04 (t, J = 7.6 Hz, 2H), 6.99 – 6.91 (m, 3H), 6.80 (d, J = 7.7 Hz, 2H), 4.41 (d, J = 11.9 Hz, 1H), 1.39 (s, 18H), 1.38 (s, 18H). **¹³C[¹H] NMR** (101 MHz, CDCl₃): δ 143.8, 139.6 (d, J = 2.1 Hz), 133.2 (d, J = 10.8 Hz), 130.6 (d, J = 3.3 Hz), 130.4 (d, J = 6.3 Hz), 129.5, 128.5, 126.2 (d, J = 4.8 Hz), 124.6 (d, J = 1.8 Hz), 121.0, 115.9, 111.2 (d, J = 11.5 Hz), 107.1 (d, J = 12.4 Hz), 35.1, 34.6, 32.0, 29.7. **³¹P NMR** (121 MHz, CDCl₃): δ −34.7 (d, ²JPH = 12 Hz). **IR** (ATR, neat) [cm⁻¹]: 3366, 2954, 2905, 2867, 1587, 1497, 1435, 1361, 1222, 1123, 1001, 905, 855, 769, 728, 693, 633, 545. **HR-MS-ESI(+)** calcd. for C₄₅H₅₅N₃O₂P⁺ [M+H⁺] 636.3713; found 636.3708. **Anal.** calcd. for C₄₆H₅₅N₃O₂P: C 75.56, H 7.93, N 6.61, found: C 75.17, H 7.94, N 6.39.
Synthesis of Compound 18

In a nitrogen-filled glovebox, chloride 11 (60.0 mg, 104 µmol, 1.10 equiv.), 4-DMAP (11.5 mg, 94.2 µmol, 1.00 equiv.) and NaSbF$_6$ (29.2 mg, 113 µmol, 1.20 equiv.) were mixed in a glass vial and DCM (2 mL) was added. The reaction mixture was stirred for 5 min and filtered; the product was crystallized by pentane diffusion into the filtrate. Drying of the crystalline material in vacuo yielded the target compound as a white crystalline solid (47.0 mg, 52.1 µmol, 55%).

m.p. decomp. >211 °C. 1H NMR (400 MHz, CDCl$_3$): δ 7.94 – 7.85 (m, 2H), 7.78 (d, J = 7.4 Hz, 2H), 7.69 (s, 2H), 7.36 (dd, J = 6.0, 3.2 Hz, 2H), 7.14 (s, 2H), 6.68 (d, J = 7.5 Hz, 2H), 3.16 (s, 6H), 1.51 (s, 18H), 1.40 (s, 18H). 13C{1H} NMR (101 MHz, CDCl$_3$): δ 157.2, 146.5, 138.86, 137.6 (d, J = 3.8 Hz), 134.7 (d, J = 11.5 Hz), 128.1 (d, J = 8.1 Hz), 127.9 (d, J = 3.5 Hz), 123.3, 118.3, 111.7 (d, J = 12.0 Hz), 108.5 (d, J = 13.6 Hz), 107.5, 40.6, 35.4, 34.8, 31.8, 30.0. 31P NMR (121 MHz, CDCl$_3$): δ ~35.70. IR (ATR, neat) [cm$^{-1}$]: 2958, 2907, 2870, 1640, 1589, 1498, 1432, 1361, 1126, 1066, 1001, 954, 824, 725, 653, 518. HR-MS-ESI(+) calcd. for C$_{41}$H$_{54}$N$_4$O$_2$F$_2$: 665.3979; found 665.3966. Anal. calcd. for C$_{41}$H$_{54}$F$_6$N$_4$O$_2$PSb: C 54.62, H 6.04, N 6.21, found: C 54.39, H 6.20, N 6.42.

Synthesis of benzenaminium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate bis(tetrahydrofuran) (PhNH$_3$BARF·2 THF)

A Schlenk flask equipped with a magnetic stirring bar was charged with aniline (200 mg, 196 µL, 2.15 mmol, 1.00 equiv.) and Et$_2$O (10 mL). The solution was chilled to 0 °C using an ice bath, and HCl (2 µL, 2.2 mmol, 1.0 equiv.) was added dropwise. Afterwards the ice bath was removed and the formed suspension was stirred for an additional hour at ambient temperature. The suspension was filtered and the residue was resuspended in THF (15 mL) followed by addition of NaBARF (1.905 g, 2.15 mmol, 1.00 equiv.). The reaction mixture was stirred for 16 h at ambient temperature, filtered through a plug of celite and extracted with an additional 5 mL of THF. The filtrate was evaporated and washed with pentane (3 x 5 mL). Drying in high vacuum (10$^{-3}$ mbar, 3 h) yielded the title compound as a white solid (1.97 g, 1.79 mmol, 83%).

m.p. 78 °C. 1H NMR (400 MHz, CDCl$_3$): δ 9.02 (s, 3H), 7.73 – 7.67 (m, 8H), 7.52 (s, 4H), 7.50 – 7.40 (m, 3H), 7.13 (d, J = 7.2 Hz, 2H), 3.74 – 3.66 (m, 8H), 1.89 – 1.80 (m, 8H). 11B{1H} NMR (96 MHz, CDCl$_3$): δ ~6.62. 13C{1H} NMR (101 MHz, CDCl$_3$): δ 161.8 (q, J = 50.0 Hz), 134.9, 131.3, 131.0, 129.1 (qq, J = 31.2, 2.5 Hz), 128.1, 124.7 (q, J = 272.5 Hz), 122.0, 117.9 – 117.4 (m), 68.6, 25.4. 19F{1H} NMR (282 MHz, CDCl$_3$): δ ~62.39. IR (ATR, neat) [cm$^{-1}$]: 3309, 2890, 2817, 2591, 2570, 1607, 1497, 1353, 1272, 1112, 1038, 934, 885, 837, 741, 713, 681, 670. MS-ESI(+) calcd. for C$_{60}$H$_{58}$N$_4$ [M-BARF]$^+$ 94.07; found 94.07. HR-MS-ESI(-) calcd. C$_{32}$H$_{12}$BF$_{24}$ [BARF]$^-$ 863.0654; found 863.0666.
Oxidation of Compound 14

In a Schlenk flask, compound 14 (5.0 mg, 7.9 µmol, 1.0 equiv.) was dissolved in DCM (2 mL) and the solution was cooled to –78 °C. A solution of AgSbF$_6$ (2.7 mg, 7.9 µmol, 1.0 equiv.) in DCM (1 mL) was added dropwise, upon which the solution turned from colorless to blue. The solution was filtered and diluted with DCM from ~2.5 to approximately 0.5 mM. An aliquot was transferred to a precollated (–78 °C) EPR tube with a Teflon cap and analyzed by X-band EPR spectroscopy.

Figure S1: X-band EPR spectrum (DCM, 250 K): Oxidation of 14. Fitting Parameters: g = 2.003, a(13P) = 0.8 G, a(21N) = 3.5 G, a(21H) = 2.4 G, a(23H) = 2.1 G

Oxidation of Compound 15

In a Schlenk flask, compound 15 (8.0 mg, 13 µmol, 1.0 equiv.) was dissolved in DCM (3 mL) and the solution was chilled to –78 °C. A solution of AgSbF$_6$ (4.3 mg, 13 µmol, 1.0 equiv.) in DCM (2 mL) was added dropwise, upon which the solution turned from colorless to violet. The solution was filtered and diluted with DCM from ~2.5 to approximately 0.5 mM. An aliquot was transferred to a precollated (–78 °C) EPR tube with a Teflon cap and analyzed by X-band EPR spectroscopy.

Figure S2: X-band EPR spectrum (DCM, 200 K): Oxidation of 15. Fitting parameters: g = 2.003.
Gutmann-Beckett Test

In a nitrogen-filled glovebox, chloride 11 (15.0 mg, 25.9 µmol, 2.00 equiv.) and NaBArF (23.0 mg, 25.9 µmol, 2.00 equiv.) were added to a solution of triethylphosphine oxide (1.7 mg, 13 µmol, 1.0 equiv.) in DCM (0.5 mL) and transferred into a J. Young NMR tube. Analysis by 31P{1H} NMR spectroscopy gave the Gutmann-Beckett number as $\Delta \delta^{(31}\text{P}) = 45.8 \text{ ppm}$.
Phosphorane-catalyzed Disproportionation of 1,2-Diphenylhydrazine

In a nitrogen-filled glovebox, 1,2-diphenylhydrazine (31.8 mg, 173 µmol, 1.00 equiv.) and the internal standard hexamethylbenzene were dissolved in CDCl$_3$ (0.5 mL), transferred into a J. Young NMR tube and analyzed by 1H NMR spectroscopy. To this solution, chloride 11 (10.0 mg, 17.3 µmol, 0.10 equiv.) and NaBARF (15.3 mg, 17.3 µmol, 0.10 equiv.) were added, and the NMR tube was sonicated until all NaBARF was dissolved and the color of the suspension changed to dark green. After 16 h, starting material was completely consumed and azobenzene as well as aniline formed in 90 and 80% yield, respectively, as evidenced by the 1H NMR spectrum. The 31P NMR showed one signal at -34.6 ppm which fits well to compound 15 ($\Delta\delta = 0.1$ ppm).
In a nitrogen-filled glovebox, 1,2-diphenylhydrazine (31.8 mg, 173 µmol, 1.00 equiv.), compound 15 (11.0 mg, 17.3 µmol, 0.10 equiv.) and the internal standard hexamethylbenzene were dissolved in CDCl₃ (0.5 mL), transferred into a J. Young NMR tube and analyzed by ¹H NMR spectroscopy. To this solution, [(Et₂O)₂H][BARF] (17.5 mg, 17.3 µmol, 0.10 equiv.) was added, and catalytic turnover started. After 16 h, starting material was completely consumed and azobenzene as well as aniline formed in 86 and 97% yield, respectively, as evidenced by the ¹H NMR spectrum.
Isolation of catalysis products

A flame-dried Schlenk flask equipped with a magnetic stirring bar was charged with 1,2-diphenylhydrazine (95.4 mg, 518 µmol, 1.00 equiv.), 11 (30.0 mg, 51.8 µmol, 0.10 equiv.) and NaBArF (45.9 mg, 51.8 µmol, 0.10 equiv.) and CHCl₃ (2 mL) was added. The mixture was stirred for 16 h and afterwards cooled to 0 °C using an ice bath. Triethylamine (68.1 mg, 94 µL, 673 µmol, 1.30 equiv.) and benzoyl chloride (80.1 mg, 66 µL, 570 µmol, 1.10 equiv.) were added subsequently. The ice bath was removed and the reaction mixture was stirred for additional 16 h. Evaporation of all volatiles and purification of the crude reaction mixture by flash chromatography (SiO₂; 200:1 to 10:1; pentane:ethyl acetate; manual gradient) gave azobenzene (39.5 mg, 217 µmol, 84%) and N-phenylbenzamide (72.9 mg, 370 µmol, 71%) as red-orange and colorless solids, respectively.

Azobenzene:

\[^1H\text{ NMR} \text{ (300 MHz, CDCl}_3\text{): } \delta 7.99 – 7.89 \text{ (m, 4H), 7.60 – 7.42 \text{ (m, 6H).} \]

The spectral data is in accordance with literature reports.⁸

N-Phenylbenzamide:

\[^1H\text{ NMR} \text{ (300 MHz, DMSO-}d_6\text{): } \delta 10.24 \text{ (s, 1H), 8.04 – 7.91 \text{ (m, 2H), 7.79 \text{ (d, } J = 8.0 \text{ Hz, 2H), 7.65 – 7.45 \text{ (m, 3H), 7.35 \text{ (t, } J = 7.8 \text{ Hz, 2H), 7.10 \text{ (t, } J = 7.4 \text{ Hz, 1H).} \]

The spectral data is in accordance with literature reports.⁹
Mechanistic Experiments

Reduction of in situ formed nitrene-radical species:

\[
\begin{align*}
\text{N}_3 & \quad \text{Cl} & \quad \text{Me} & \quad \text{Me} & \quad \text{NH}_2 \\
\text{t-Bu} & \quad \text{t-Bu} & \quad \text{t-Bu} & \quad \text{DCE} & \\
\end{align*}
\]

In a nitrogen-filled glovebox, chloride 11 (20.0 mg, 34.5 µmol, 1.00 equiv.), p-tolyl azide (4.6 mg, 34.5 µmol, 1.00 equiv.), 9,10-dihydroanthracene (6.2 mg, 34.5 µmol, 1.00 equiv.) and the internal standard 1,2-dichloroethane (DCE) were dissolved in CDCl₃ (0.5 mL). The solution was transferred to a J. Young NMR tube and analyzed by ¹H NMR. Afterwards NaBArF (30.6 mg, 34.5 µmol, 1.00 equiv.) was added and the mixture was sonicated for 1 h resulting in a dark blue solution. The tube was kept at a temperature of 61 °C for 15 h. The ¹H NMR spectrum evidenced a spectroscopic yield of 22% for p-toluidine and 26% for anthracene.
Reaction of chloride 11 with MesN₃

Compound 11 (20.0 mg, 34.5 µmol, 1.00 equiv.) and MesN₃ (5.6 mg, 35 µmol, 1.0 equiv.) were dissolved in CDCl₃ (0.5 mL). Afterwards NaSbF₆ (44.7 mg, 173 µmol, 5.00 equiv.) was added and the resulting suspension was transferred to a J. Young NMR tube. Sonicating the tube in an ultrasonic bath for 16 h resulted in a strongly blue-green colored solution. NMR spectroscopy evidenced compound 11 and MesN₃ as the major visible components. The solution was diluted with DCM to ca. 0.5 mM and analyzed by EPR spectroscopy. The resulting spectrum is indicative of a species with a doublet spin state for which structure 17(Mes) is proposed.

Figure S3: X-band EPR spectrum (DCM, 298 K) Fitting Parameters: g = 2.003, a(1x^{31}P) = 13.1 G, a(1x^{14}N) = 3.7 G, a(1x^{14}N) = 2.8 G, a(1x^{14}N) = 8.6 G, a(2x^{1}H) = 3.5 G, a(1x^{1}H) = 4.6 G, a(1x^{1}H) = 5.1 G.
Crossover Experiment

\[
\begin{array}{c}
\text{Ph}^+\text{N}^\equiv\text{N}\text{Ph} + \rho\text{-tol}^+\text{N}^\equiv\text{N}\rho\text{-tol} \\
\xrightarrow{\text{rt, 16 h}} \text{Ph}^-\text{N}^-\text{N}^-\text{Ph} + \rho\text{-tol}^-\text{N}^-\text{N}^-\rho\text{-tol}
\end{array}
\]

In a nitrogen-filled glovebox, 1,2-diphenyldiazene (15.9 mg, 86.3 µmol, 5.00 equiv.) and 1,2-di-p-tolylhydrazine (18.3 mg, 86.3 µmol, 5.00 equiv.) were dissolved in CDCl₃ (0.5 mL). NaBArF (15.3 mg, 17.3 µmol, 1.00 equiv.) and chloride 11 (10.0 mg, 17.3 µmol, 1.00 equiv.) were added, and the reaction mixture was transferred to a J. Young NMR tube. After 16 h ¹H NMR indicated complete consumption of starting material, the reaction mixture was submitted to mass spectrometry analysis. While symmetrically substituted diaryldiazenes could be easily detected, no evidence of 1-phenyl-2-(p-tolyl)diazene was found.

1,2-Diphenyldiazene: HR-MS-ESI(+) calcd. for C₁₂H₁₁N₂⁺ [M+H]⁺ 183.0917; found 183.0921.
1,2-Di-p-tolyl diazine: HR-MS-ESI(+) calcd. for C₁₄H₁₅N₂⁺ [M+H]⁺ 211.1230; found 211.1234.
1-Phenyl-2-(p-tolyl) diazine: HR-MS-ESI(+) calcd. for C₁₃H₁₃N₂⁺ [M+H]⁺ 197.1073; not detected.
Kinetic Experiments
For kinetic experiments Burés' Variable Time Normalization Analysis was applied.[10] In a nitrogen-filled glovebox, three stock solutions were prepared. Solution A contained 1,2-diphenylhydrazine (0.5 M in CDCl₃), solution B contained the catalyst 15 (0.1 M in CDCl₃) and solution C a buffer consisting of PhNH₂ and PhNH₂BArF · 2 THF (each 0.25 M in CDCl₃) as well as the internal standard hexamethylbenzene (0.05 M in CDCl₃). The stock solutions were directly used after preparation.

In a typical kinetic experiment, a J. Young NMR tube was filled subsequently with the desired amounts of CDCl₃, solution C and solution A (see Table S1). The contents were mixed by closing and shaking the tube. Afterwards, the respective amount of solution B was added. The tube was closed, shaken and inserted into a 400 MHz spectrometer. ¹H NMR spectra were recorded with spinning every 30 s for 60 min. The product formation was quantified by integration of the azobenzene signals versus the one corresponding to the internal standard C₆Me₆ after processing (Fourier transform, automatic phase correction, Whittaker baseline correction) of the stacked spectra.

Table S1: Reaction components for the catalyses run at varying starting concentrations of 1,2-diphenylhydrazine and 15.

Exp	V (A) / mL	V (B) / mL	V (C) / mL	V (CDCl₃) / mL
1	0.40	0.20	0.40	/
2	0.20	0.20	0.40	0.20
3	0.40	0.10	0.40	0.10

Figure S4 Determination of order in 1,2-diphenylhydrazine.
Figure S5 Determination of order in 15.
Kinetic Analysis and Mechanistic Proposal

Kinetic Model

The kinetic experiments reveal a half-order dependence on 15. This is usually rationalized by the cleavage of a dimeric catalyst species en route to the turnover limiting step. The simplest explanation of the half-order dependence on 15 which is in line with our computations and mechanistic studies is provided by dimeric aggregation of 15 in the presence of the PhNH₂/PhNH₃⁺ buffer employed in the kinetic experiments. The resulting aggregate is labeled (15)₂ indicating the incorporation of two molecules of 15 without any claim to the exact composition.

Following this proposal, a kinetic model with corresponding rate laws can be derived.

The rate of the reaction is given by

\[rate = k_4[I] \]

Mass balance with total concentration of phosphorus centers [P]

\[[P] = 2[(15)_2] + [15] + [VII] + [I] \]

Approximation: quasi-equilibria for steps preceding the turnover-limiting step (k₄):

\[\frac{[15]^2}{[(15)_2]} = K_1 \]

\[\frac{[VII][PhNH_2]}{[15][PhNH_3^+]} = K_2 \]

\[\frac{[I][PhNH_2]}{[VII][PhNHNHPH]} = K_3 \]

Experimental conditions: [PhNH₂],[PhNH₃⁺] ≈ const.

\[\frac{[VII]}{[15]} = K'_2 \]

\[\frac{[I]}{[VII][PhNHNHPH]} = K'_3 \]
Please note that due to the assumption of constant concentration of the buffer components, the exact number of either aniline or anilinium molecules in aggregate \((15)_2\) has no influence on the rate laws.

Rearrange equations:

\[
[\text{VII}] = \frac{[I]}{K'_{3}[\text{PhNHNHPH}]}
\]

\[
[15] = \frac{[\text{VII}]}{K_2'} = \frac{[I]}{K'_{2}K'_{3}[\text{PhNHNHPH}]}
\]

\[
[(15)_2] = \frac{[15]^2}{K_1} = \frac{[I]^2}{K_1(K'_{2}K'_{3}[\text{PhNHNHPH}])^2}
\]

Insert:

\[
[P] = \frac{2[I]^2}{K_1(K'_{2}K'_{3}[\text{PhNHNHPH}])^2} + \frac{[I]}{K'_{2}K'_{3}[\text{PhNHNHPH}]} + \frac{[I]}{K'_{3}[\text{PhNHNHPH}]} + [I]
\]

\[
[P] = \frac{2[I]^2}{K_1(K'_{2}K'_{3}[\text{PhNHNHPH}])^2} + \frac{1 + K'_{2} + K'_{2}K'_{3}[\text{PhNHNHPH}]}{K'_{2}K'_{3}[\text{PhNHNHPH}]} [I]
\]

Solve for \([I]\):

\[
[I] = \frac{2[P]}{1 + K'_{2} + K'_{2}K'_{3}[\text{PhNHNHPH}] + \sqrt{(1 + K'_{2} + K'_{2}K'_{3}[\text{PhNHNHPH}])^2 + \frac{8[P]}{K_1(K'_{2}K'_{3}[\text{PhNHNHPH}])^2}}}
\]

Insert:

\[
\text{rate} = \frac{2k_4[P]}{1 + K'_{2} + K'_{2}K'_{3}[\text{PhNHNHPH}] + \sqrt{(1 + K'_{2} + K'_{2}K'_{3}[\text{PhNHNHPH}])^2 + \frac{8[P]}{K_1(K'_{2}K'_{3}[\text{PhNHNHPH}])^2}}}
\]

If formation of \((15)_2\) is favorable, \(1/K_1\) becomes high and the last term will dominate the denominator:

\[
\text{rate} = \frac{2k_4[P]}{\sqrt{\frac{8[P]}{K_1(K'_{2}K'_{3}[\text{PhNHNHPH}])^2}}}
\]

\[
\text{rate} = \frac{2k_4[P]\sqrt{K_1K'_{2}K'_{3}[\text{PhNHNHPH}]}}{\sqrt{8[P]}}
\]
rate = \frac{k_4}{\sqrt{\frac{K_1}{2}K'_2K'_3[P]^{0.5}[\text{PhNHNPh}]}}

This results in a reaction order of 0.5 in [P] and an order of 1 in [PhNHNPh] which is in line with the experimental results.

Study of Catalyst Aggregation via DOSY NMR

For DOSY experiments two samples were prepared. The first sample contained 15 (31 mM in CDCl$_3$) and the second sample contained 15 (31 mM in CDCl$_3$) as well as PhNH$_2$ and PhNH$_3$BArF · 2 THF (each 157 mM in CDCl$_3$). The samples were measured on a Bruker Avance 400 spectrometer. Diffusion experiments were performed with the pulse program dstebpgp3s$^{[11]}$ (double-stimulated echo sequence in combination with bipolar gradient pulses) employing a linear gradient ramp incremented from 2 to 98% of the maximum gradient strength, 16 dummy scans and 16 scans on 32K data points. The diffusion time was $\Delta = 0.1$ s and the values for the gradient pulses δ are in the range of 900 – 1100 μs. To achieve ideal signal attenuation the gradient pulses were adjusted by recording and comparing 1D spectra (dstebpgp3s1d) and processed using MestreNova 14.1 and TopSpin 4.0.7. The diffusion coefficients from the DOSY experiments were calculated with the T1/T2 software of TopSpin 4.0.7. From the determined diffusion coefficients, the hydrodynamic radii and volumes were calculated using the Stokes-Einstein equation for spherical particles.

![Figure S6 1H DOSY NMR (400 MHz, CDCl$_3$) of 15.](image-url)
Figure S7 1H DOSY NMR (400 MHz, CDCl$_3$) of 15 in a PhNH$_2$/PhNH$_3^+$ buffer.

Figure S8 Superimposed 1H DOSY NMR spectra (400 MHz, CDCl$_3$) of 15 with (green) and without (red) the addition of a PhNH$_2$/PhNH$_3^+$ buffer.
Table S2 Comparison of diffusion coefficients D, hydrodynamic radii r and volumes V of 15 and its aggregate (15)$_2$ formed in a PhNH$_2$/PhNH$_3^+$ buffer.

	15	(15)$_2$
$D / 10^{-10}$ m2 s$^{-1}$	6.556	5.058
$r / \text{Å}$	6.1	8.0
$V / \text{Å}^3$	971	2114

For species 15 a volume of 971 Å3 was determined. This can be compared to the volume of structurally related 14 which was characterized by X-ray diffraction. Division of the unit cell volume by the number of molecules in the unit cell yields a volume per molecule of 946 Å3. These results compare well with a relative volume deviation of approximately 3%.

The volume of the aggregate (15)$_2$ was determined to 2114 Å3. This is slightly higher than twice the volume of 15 which is expected due to likely incorporation of either aniline or anilinium units in the aggregate.

In summary, DOSY experiments support the proposal of a dimeric aggregate of 15 responsible for the half-order dependence observed in the kinetic studies.

Study of Catalyst Aggregation via DFT calculations

The process of aggregation of 15 in the presence of PhNH$_2$/PhNH$_3^+$ was further studied by computational methods.

One of the simplest conceivable structures for the aggregate (15)$_2$ is depicted in Figure S9 and was modeled on the B3LYP-D3(BJ)/def2-TZVP(C-PCM:CHCl$_3$)//PBE-D3(BJ)/def2-SVP level of theory. The aggregation was calculated to be highly favorable with a Gibbs Energy of -15.6 kcal/mol.

![Figure S9 Possible structure for aggregate (15)$_2$ and Gibbs Energy of aggregation.](image-url)
Mechanistic Proposal

Figure S10 Mechanistic proposal.
Cyclic Voltammetry

Figure S11: Cyclic voltammogram of 14 (DCM, 0.1 M NBu₄PF₆).

Figure S12: Cyclic voltammogram of 15 (DCM, 0.1 M NBu₄PF₆).
NMR Spectra

1H NMR (300 MHz, CDCl$_3$) of 10.

13C(1H) NMR (101 MHz, CDCl$_3$) of 10.
31P NMR (121 MHz, CDCl$_3$) of 10.

31P$^{[1]}$H NMR (121 MHz, CDCl$_3$) of 10.
1H NMR (300 MHz, CDCl$_3$) of 11.

13C(1H) NMR (101 MHz, CDCl$_3$) of 11.
3P1H NMR (121 MHz, CDCl$_3$) of 11.

1H NMR (300 MHz, CDCl$_3$) of 12.
$^{13}\text{C}[^1\text{H}]$ NMR (75 MHz, CDCl$_3$) of 12.

$^{31}\text{P}[^1\text{H}]$ NMR (121 MHz, CDCl$_3$) of 12.
1H NMR (300 MHz, CDCl$_3$) of 13.

13C(1H) NMR (101 MHz, CDCl$_3$) of 13.
19F(1H) NMR (376 MHz, CDCl$_3$) of 13.

31P(1H) NMR (121 MHz, CDCl$_3$) of 13.
1H NMR (300 MHz, CDCl$_3$) of 14.

13C(1H) NMR (101 MHz, CDCl$_3$) of 14.
3P$^{[1]}$H NMR (121 MHz, CDCl$_3$) of 14.

1H NMR (400 MHz, CDCl$_3$) of 15.
1H NMR (101 MHz, CDCl$_3$) of 15.

13C(1H) NMR (101 MHz, CDCl$_3$) of 15.

31P(1H) NMR (121 MHz, CDCl$_3$) of 15.
31P NMR (121 MHz, CDCl$_3$) of 15.

1H NMR (400 MHz, CDCl$_3$) of 18.
13C$\{^1H\}$ NMR (101 MHz, CDCl$_3$) of 18.

31P$\{^1H\}$ NMR (121 MHz, CDCl$_3$) of 18.
1H NMR (400 MHz, CDCl$_3$) of PhNH$_3$BArF \cdot 2 THF.

11B(1H) NMR (96 MHz, CDCl$_3$) of PhNH$_3$BArF \cdot 2 THF.
$^{13}\text{C}^{\{1\text{H}\}}$ NMR (101 MHz, CDCl$_3$) of PhNH$_3$BArF ∙ 2 THF.

$^{19}\text{F}^{\{1\text{H}\}}$ NMR (282 MHz, CDCl$_3$) of PhNH$_3$BArF ∙ 2 THF.
Single crystal X-ray Diffraction Analysis

Refinement table and details for 9H₄

![Molecular structure of 9H₄](image)

Figure S13: Molecular structure of 9H₄. Ellipsoids drawn at 50% probability level. Crystals obtained from a mixture of heptane and toluene. Disorder found, consisting of both the hydroxy groups switching their ortho-positions as well as a connected rotation of the t-butyl group by 30°, with a refined occupancy factor of 0.889(2). Minor disorder part drawn

Crystal colour	colourless
Crystal shape	needle
Radiation	MoKα (λ=0.71073 Å)
2θ range [°]	4.50 to 57.54 (0.74 Å)
Index ranges	-13 ≤ h ≤ 13
-13 ≤ k ≤ 13	
-22 ≤ l ≤ 22	
Reflections collected	64630
Independent reflections	7870
Rrup = 0.0556	
R supervisor = 0.0371	
Completeness to θ = 25.242°	99.9 %
Data / Restraints / Parameters	7870/6/414
Goodness-of-fit on P²	1.136
Final R indexes	R_l = 0.0538
wR_l = 0.1380	
Final R indexes [all data]	R_l = 0.0820
wR_l = 0.1550	
Largest peak/hole [eÅ⁻³]	0.28/-0.24

Parameter	Value
CCDC number	2153553
Empirical formula	C₃₄H₄₈N₂O₂
Formula weight	516.74
Temperature [K]	100.00
Crystal system	triclinic
Space group (number)	(2)
a [Å]	9.986(3)
b [Å]	10.240(3)
c [Å]	16.805(4)
α [°]	75.315(7)
β [°]	87.009(8)
γ [°]	66.172(7)
Volume [Å³]	1518.1(7)
Z	2
ρcalc [gcm⁻³]	1.130
μ [mm⁻¹]	0.069
F(000)	564
Crystal size [mm³]	0.299×0.16×0.081
Refinement table and details for 10

![Molecular structure of 10](image)

Figure S14 Molecular structure of 10 · 0.5 toluene. Ellipsoids drawn at 50% probability level, non-P-H hydrogen atoms omitted for clarity. Crystals obtained from a mixture of methanol and toluene. Disorder found, consisting of rotation of the t-butyl group by 30°, with a refined occupancy factor of 0.558(8). Minor disorder part drawn translucent with stippled bonds.

Parameter	Value
CCDC number	2153554
Empirical formula	C_{75}H_{98}N_4O_4P_2
Formula weight	1181.51
Temperature [K]	100.0
Crystal system	orthorhombic
Space group (number)	(33)
\(a\) [Å]	20.6954(14)
\(b\) [Å]	16.7441(10)
\(c\) [Å]	19.8655(11)
\(a^{\prime}\) [°]	90
\(\beta\) [°]	90
\(\gamma\) [°]	90
Volume [Å³]	6883.9(7)
\(Z\)	4
\(\rho_{calc}\) [gcm⁻³]	1.140
\(\mu\) [mm⁻¹]	0.113
\(F(000)\)	2552
Crystal size [mm³]	0.317×0.296×0.218

Crystal colour | **colourless**

Crystal shape | **block**

Radiation | MoKα (\(\lambda=0.71073\) Å)

2Θ range [°]	4.44 to 65.19 (0.66 Å)
Index ranges	-31 ≤ h ≤ 30
-25 ≤ k ≤ 25
-29 ≤ l ≤ 30 |

Reflections collected | 380971

Independent reflections | 24351

- \(R_{int} = 0.0243\)
- \(R_{sigma} = 0.0147\)

Completeness to \(\Theta = 25.242°\) | 99.9 %

Data / Restraints / Parameters	24351/4/830

Goodness-of-fit on \(F^2\) | 1.059

Final \(R\) indexes

- \([h\leq20(l)]\) \(R_l = 0.0275\)
- \(wR_B = 0.0739\)

- \([all\ data]\) \(R_l = 0.0295\)
- \(wR_B = 0.0753\)

Largest peak/hole [eÅ⁻³] | 0.36/0.25

Flack X parameter | -0.009(4)
Refinement table and details for 11

Figure S15: Molecular structure of 11 - 0.5 pentane. Ellipsoids drawn at 50% probability level, hydrogen atoms omitted for clarity. Crystals obtained from a solution of pentane. Co-crystallized pentane was found disordered over three positions, with refined occupancy factors of 0.567(2) : 0.317(2) : 0.116(2). Minor disorder parts drawn translucent, part 2 with red and part 3 with green hue, and with stippled bonds.

CCDC number	2153556
Empirical formula	C73H100Cl6N4O4P2
Formula weight	1230.40
Temperature [K]	100.00
Crystal system	triclinic
Space group (number)	(2)
a [Å]	11.6562(7)
b [Å]	17.0418(8)
c [Å]	17.5986(11)
α [°]	84.206(2)
β [°]	83.351(2)
γ [°]	82.270(2)
Volume [Å³]	3427.8(3)
Z	2
ρcalc [gcm⁻³]	1.192
μ [mm⁻¹]	0.192
F(000)	1324
Crystal size [mm³]	0.41×0.384×0.22
Crystal colour	colourless
Crystal shape	block
Radiation	MoKα (λ=0.71073 Å)
2θ range [°]	4.37 to 70.22 (0.62 Å)
Index ranges	-18 ≤ h ≤ 18
	-27 ≤ k ≤ 27
	-28 ≤ l ≤ 28
Reflections collected	322492
Independent reflections	29944
Rint	0.0322
Rsigma	0.0166
Completeness to	99.9 %
Θ = 25.242°	
Data / Restraints / Parameters	29944/43/886
Goodness-of-fit on F²	1.037
Final R indexes	
[I>2σ(I)]	R = 0.0324
	wR² = 0.0910
Final R indexes	
[all data]	R = 0.0381
	wR² = 0.0955
Largest peak/hole [eÅ⁻³]	0.57/-0.32
Figure S16: Molecular structure of 12. Ellipsoids drawn at 50% probability level, hydrogen atoms omitted for clarity. Crystals obtained from a solution of pentane. Disorder found, consisting of rotation of the t-butyl group by 30°, with a refined occupancy factor of 0.767(2). Minor disorder part drawn translucent with stippled bonds.

CCDC number	2153555
Empirical formula	C35H44N3O2P
Formula weight	569.70
Temperature [K]	100.0
Crystal system	triclinic
Space group (number)	(2)
a [Å]	9.4599(12)
b [Å]	13.0637(17)
c [Å]	14.5931(17)
α [°]	106.884(4)
β [°]	99.090(4)
γ [°]	104.437(4)
Volume [Å³]	1618.7(4)
Z	2
\(\rho_{calc} \) [gcm\(^{-3}\)]	1.169
\(\mu \) [mm\(^{-1}\)]	0.119
\(F(000) \)	612
Crystal size [mm\(^2\)]	0.268×0.143×0.14
Crystal colour	colourless
Crystal shape	block
Radiation	MoKα (λ=0.71073 Å)
2Θ range [°]	4.59 to 61.04 (0.70 Å)
Index ranges	-13 ≤ h ≤ 13, -18 ≤ k ≤ 18, -20 ≤ l ≤ 20
Reflections collected	133154
Independent reflections	9896
\(R_{int} \)	0.0245
\(R_{sigma} \)	0.0114
Completeness to \(\Theta = 25.242° \)	99.9 %
Data / Restraints / Parameters	9896/3/413
Goodness-of-fit on \(F^2 \)	1.050
Final \(R \) indexes \[\| I \geq 2\sigma(I) \]	\(R_I = 0.0322 \)
\(wR_F \)	0.0874
Final \(R \) indexes \[all data \]	\(R_I = 0.0349 \)
\(wR_F \)	0.0900
Largest peak/hole [eÅ\(^{-3}\)]	0.50/-0.31
Refinement table and details for 14

Figure S17: Molecular structure of 14-1 MeCN. Ellipsoids drawn at 50% probability level, hydrogen atoms omitted for clarity. Crystals obtained from a solution of acetonitrile. The co-crystallized acetonitrile was found unfavorably disordered and the solvent cavity masked using solvent mask in OLEX2.

Crystal colour	Colourless
Crystal shape	Block
Radiation	MoKα (λ=0.71073 Å)
2θ range [°]	4.12 to 69.71 (0.62 Å)
Index ranges	-15 ≤ h ≤ 15 -31 ≤ k ≤ 30 -31 ≤ l ≤ 32
Reflections collected	162521
Independent reflections	15655
Rint	0.0255
Rsigma	0.0146
Completeness to Θ = 25.242°	99.9 %
Data / Restraints / Parameters	15655/0/428
Goodness-of-fit on F²	1.044
Final R indexes [R>2σ(Σ)]	R₁ = 0.0424 wR₁ = 0.1164
Final R indexes [all data]	R₁ = 0.0478 wR₁ = 0.1202
Largest peak/hole [eÅ⁻³]	0.57/-0.39

CCDC number	2169268
Empirical formula	C₄₁H₅₁N₂O₂P
Formula weight	634.80
Temperature [K]	100.00
Crystal system	Monoclinic
Space group (number)	P2₁/n (14)
a [Å]	9.6461(8)
b [Å]	19.7864(12)
c [Å]	20.0277(13)
α [°]	90
β [°]	98.128(3)
γ [°]	90
Volume [Å³]	3784.1(5)
Z	4
ρcalc [gcm⁻³]	1.114
μ [mm⁻¹]	0.108
F(000)	1368
Crystal size [mm³]	0.398×0.302×0.202
Refinement table and details for 18

Figure S18 Molecular structure of 18 • 0.6125 chloroform • 0.3875 pentane. Ellipsoids drawn at 50% probability level, hydrogen atoms omitted for clarity. Crystals obtained from a mixture of pentane and chloroform. Several separate disorders found: Rotation of one tert-butyl group by 30° on each of the two molecules in asymmetric unit, refined occupancy 0.686(7) and 0.803(8), respectively; positional disorder on both SbF$_6$-anions, refined occupancy 0.776(6) and 0.830(13), respectively; substitution disorder of chloroform/pentane on special position, with manually set occupancy of 0.25 for chloroform and for pentane 0.5 and 0.25 on two split positions. Pentane only refined isotropically due to instability caused by the close center of symmetry. Minor disorder part drawn translucent with stippled bonds.

Characteristic	Value
CCDC number	2153557
Empirical formula	$C_{87}H_{118.25}Cl_{3.75}F_{12}N_8O_4P_2Sb_2$
Formula weight	2006.52
Temperature [K]	100.00
Crystal system	triclinic
Space group (number)	(2)
a [Å]	15.8289(11)
b [Å]	17.2714(13)
c [Å]	17.9082(13)
α [°]	109.156(2)
β [°]	89.999(2)
γ [°]	96.475(2)
Volume [Å3]	4591.7(6)
Z	2
ρ_{calc} [g cm$^{-3}$]	1.451
μ [mm$^{-1}$]	0.809
$F(000)$	2064
Crystal size [mm3]	0.462×0.111×0.067
Crystal colour	colourless
Crystal shape	block
Radiation	MoKα ($\lambda=0.71073$ Å)
2Θ range [°]	3.99 to 57.47 (0.74 Å)
Index ranges	-21 ≤ h ≤ 21
	-23 ≤ k ≤ 23
	-24 ≤ l ≤ 24
Reflections collected	41268
Independent reflections	41268
	$R_{int} = 0.0428$
	$R_{sigma} = 0.0451$
Completeness to $\Theta = 26.242^\circ$	99.9 %
Data / Restraints / Parameters	41268/191/1234
Goodness-of-fit on F^2	1.053
Final R indexes [I ≥ 2σ(I)]	
	$R_1 = 0.0555$
	$wR_2 = 0.1469$
Final R indexes [all data]	
	$R_1 = 0.0646$
	$wR_2 = 0.1554$
Largest peak/hole [eÅ$^{-3}$]	2.49/-1.06
Extinction coefficient	0.0049(4)
Computational Details

General Information
Geometry optimization and frequency calculations were done with Gaussian16, Revision A.03.\(^\text{[12]}\) For the creation of input files, analysis of calculation outcomes and visualization of molecular orbitals and spin densities GaussView 6.0 was used. Stationary points were characterized by frequency evaluation.

Hydride and Fluoride Ion Affinities
Hydride and fluoride ion affinities were calculated isodesmically using the method described by Erdmann et al.\(^\text{[13]}\) using the trimethylsilyl (TMS) reference system in combination with the B3LYP-D3(BJ)/def2-TZVP\(^\text{[14]}\) method for optimization and frequency calculations. Final single point energies were calculated at the PW6B95-D3(BJ)/def2-QZVPP\(^\text{[15]}\) level of theory.

Computation of Free Energy Landscape
Geometry optimization and frequency calculations were performed using the PBE-D3(BJ) functional\(^\text{[16]}\) in combination with the def2-SVP basis set. Single point energies on the optimized structures were obtained at the B3LYP-D3(BJ)/def2-TZVP level including implicit solvation using the C-PCM model (chloroform). Relative free energies were determined at standard molarity (1 M) and the reaction temperature of 298 K. For the computations, truncated geometries were used in which the four tert-butyl groups of 9 were replaced by methyl groups.

Computation of Hyperfine couplings
A truncated geometry (four tert-butyl groups removed) of compound 17 was optimized at the PBE-D3(BJ)/def2-SVP level of theory. The EPR simulation was performed at the B2PLYP/IGLO-II level of theory\(^\text{[17]}\) applying the RIJCOSX approximation\(^\text{[18]}\) and automatically generated auxiliary basis sets\(^\text{[19]}\) with use of the Orca 5.0.2 program package.\(^\text{[20]}\) The calculations did not include solvent corrections. The results for the heavier atoms fall in good agreement with the measured spectrum, with \(a_{(31)P}=16.0\) G (compared to 13.1 G), and \(a_{(14)N}=8.7, 3.9\) and 2.6 G (compared to 8.6, 3.7 and 2.8 G). The second-order contribution from spin-orbit coupling was included in the calculation of the isotropic coupling value of P.

Cartesian Coordinates of Optimized Geometries

Hydride/Fluoride Ion Affinity Calculations:

19 (optimized at the B3LYP-D3(BJ)/def2-TZVP level)

	X	Y	Z
P	0.00621028	0.05427982	-0.46021883
O	1.14054975	1.20799654	-0.14375111
O	-1.14622558	1.19344636	-0.14704751
N	1.21459688	-1.17098724	-0.16814827
N	-1.18731852	-1.18524795	-0.16140138
C	2.42277986	0.75012745	-0.05195432
C	2.50231136	-0.64847119	-0.05428899
C	3.73309811	-1.28334750	0.03681219
H	3.81094972	-2.35486730	0.05299896
C	4.88136421	-0.50340566	0.13561037
Atoms	x-coordinate	y-coordinate	z-coordinate
-------	--------------	--------------	--------------
C	4.7552698	0.89366466	0.11388338
H	5.65202361	1.48336088	0.18753623
C	3.54261402	1.57380956	0.00745185
C	3.43509273	3.09867712	-0.02421023
C	2.58655463	3.58291299	1.16810523
H	1.56867193	3.1965371	1.12714259
H	2.53485513	4.67260961	1.16145708
H	3.03469514	3.27316707	2.11363924
C	4.81380690	3.76240140	0.07057955
H	5.32208075	3.51681603	0.03938287
H	4.69055151	4.84486349	0.00393827
H	5.46048399	3.48135225	-0.76207402
C	2.78096947	3.53737648	-1.34915820
H	3.37115822	3.20045672	-2.20294156
C	1.76977930	3.14815287	-1.45311269
C	6.24170127	-1.19585881	0.26623546
C	6.64525675	-2.10993320	-0.95325652
H	7.43467729	-2.60409850	-0.87588456
H	6.44969857	-1.53504876	-1.88045364
C	5.70405893	-2.88770899	-1.02606847
C	7.40135056	-0.19584168	0.33573428
H	8.34154602	-0.74051004	0.42219847
H	7.32273572	0.46029554	1.20396436
C	7.46164687	0.42138306	-0.56209994
C	6.25326586	-2.04192935	1.55348457
C	5.48137273	-2.81246466	1.54070807
H	6.09072869	-1.41686728	2.43288144
H	7.21738066	-2.54051934	1.66410567
C	0.73139068	-2.4560537	-0.17639684
C	-0.68848674	-2.46561085	-0.17155574
C	-1.38426974	-3.67818299	-0.22495182
H	-2.45884430	-3.70604820	-0.25508470
C	-0.66505805	-4.85393912	-0.24412034
H	-1.19277930	-5.79714237	-0.26868262
C	0.73739832	-4.84501445	-0.25022165
H	1.27671379	-5.78151429	-0.27981202
C	1.44178455	-3.66024699	-0.23645019
H	2.51627494	-3.67372644	-0.27648473
C	-2.41910940	0.71773612	-0.04994068
C	-3.55385844	1.52920141	0.00453757
C	-4.75066302	0.83262396	0.11176509
H	-5.66057289	1.40536198	0.18340669
C	-4.85848689	-0.57162669	0.13832592
C	-3.70528159	-1.33517916	0.04465953
H	-3.76385714	-2.40609746	0.06398084
C	-2.47966715	-0.67891299	-0.04639337
C	-6.24379046	-1.20717350	0.26849630
C	-6.88584619	-0.74848036	1.59166771
H	-6.27977716	-1.05387127	2.44616604
H	-7.87539156	-1.19495309	1.69943704
H	-7.00464019	0.33426601	1.63194924
C	-6.18229588	-2.73845563	0.26580876
19 · $F^* = 13$ (optimized at the B3LYP-D3(BJ)/def2-TZVP level)

Atom	x	y	z
C	-5.76043054	-3.12652435	-0.66358803
C	-7.19042215	-3.14201401	0.35829139
C	-5.59937105	-3.12405320	1.10466179
C	-7.11985297	-0.75473985	-0.91528540
C	-7.24625813	0.32753277	-0.93894424
C	-8.11169746	-1.20183737	-0.83502084
C	-6.68253026	-1.06475816	-1.86573571
C	-3.46549349	3.05484169	-0.03389139
C	-2.81893118	3.49581723	-1.36177274
C	-1.80288440	3.11942198	-1.46544563
C	-2.77482525	4.58508302	-1.40497540
C	-3.40590617	3.14746628	-2.21318197
C	-2.62189283	3.55501159	1.15527857
C	-3.06478599	3.24350217	2.10270752
C	-2.58449883	4.64522131	1.14365522
C	-1.59904392	3.18521808	1.11465593
C	-4.85287144	3.70014829	0.05982689
C	-5.49625510	3.40725281	-0.77137267
C	-4.74466579	4.78405351	0.02441050
C	-5.35654453	3.45121930	0.99521388

$19 · F^* = 13$ (optimized at the B3LYP-D3(BJ)/def2-TZVP level)
C	2.79689963	3.60098986	1.14863988	
H	1.80012715	3.19843957	1.31489198	
H	2.72327678	4.69012687	1.1178782	
H	3.42268227	3.3193069	2.00163303	
C	4.77821609	3.74190813	-0.34966565	
H	5.45365845	3.52688852	0.48007532	
H	4.64394989	4.82360287	-0.39522705	
H	5.26058080	3.42846686	-1.27709155	
C	0.70588270	-2.45773808	0.09587286	
C	1.40282697	-3.64195816	-0.09336417	
H	2.47829368	-3.66153423	-0.10641587	
C	0.69311285	-4.82767310	-0.27287097	
H	1.23664646	-5.75247230	-0.41127105	
C	-0.69311169	-4.82767278	-0.27288501	
H	-1.23664266	-5.75247177	-0.41129701	
C	-1.40282923	-3.64195798	-0.09339047	
H	-2.47829549	-3.66153325	-0.10646613	
C	-0.70588855	-4.82773802	0.09586205	
C	-3.52854269	1.54870141	-0.09451318	
C	-4.75374362	0.87127488	-0.18295672	
H	-5.64594251	1.46025281	-0.30228979	
C	-4.87218120	-0.51453473	-0.11554821	
C	-3.71543982	-1.28670829	0.04071024	
H	-3.79343536	-2.35619726	0.11643544	
C	-2.48793716	-0.65370551	0.12180924	
C	-6.22717652	-1.22670861	-0.19859245	
C	-6.22436674	-2.19607033	-1.39516080	
H	-6.05244182	-1.65708507	-2.32838556	
H	-7.18484102	-2.71093979	-1.46859826	
H	-5.44628288	-2.95392899	-1.29975135	
C	-6.46861231	-2.01924477	1.09953957	
H	-5.69639237	-2.77145026	1.26310227	
H	-7.43178608	-2.53263674	1.05722516	
H	-6.47340311	-1.35262860	1.96353841	
C	-7.39149893	-0.24745305	-0.38273648	
H	-7.47099267	0.44918044	0.45337245	
H	-8.32903077	-0.80350232	-0.43986338	
H	-7.29260463	0.33026510	-1.30312577	
C	-2.51827038	3.47028591	-1.35336782	
H	-1.51298165	3.06695617	-1.25326875	
H	-2.44415728	4.55824832	-1.41459626	
H	-2.94415495	3.10643961	-2.29045038	
C	-4.77817725	3.74194936	-0.34970848	
H	-5.26053028	3.42853115	-1.27714731	
H	-4.64388083	4.82364097	-0.39525924	
H	-5.45364305	3.52694282	0.48001651	
C	-2.79688854	3.60097893	1.14862947	
H	-3.42268903	3.33193382	2.00163181	
H	-2.72323975	4.69011421	1.11177807	
H	-1.80012754	3.19840467	1.31489483	
C	3.41152570	3.07278532	-0.16205874	
C	-2.41700221	0.73973742	0.06708993	
C	-3.41150795	3.07278804	-0.16207648	
-----	----------------	------------------	----------------	----------------
H	0.00000015	0.21748580	-2.02976414	
P	0.00000000	0.07915243	-0.63672103	
O	-1.13877937	1.22333497	-0.22514467	
O	1.13877911	1.22333487	-0.22514399	
N	-1.19743857	-1.15860089	-0.35019125	
N	1.19743869	-1.15860096	-0.35019144	
C	-2.42310641	0.74992492	-0.13398495	
C	-3.54082330	1.54865456	0.03802319	
C	-4.76653346	0.86567218	0.10522485	
H	-5.66045959	1.44977170	0.22882430	
C	-4.87923805	-0.51782090	0.00976023	
C	-3.71683002	-1.28216777	-0.15034054	
H	-3.78828716	-2.35041465	-0.25179215	
C	-2.49050963	-0.64501658	-0.20791683	
C	-6.21930919	-1.23651487	0.06615636	
C	-6.45828912	-2.00527175	-1.24888129	
H	-6.45869521	-1.32207553	-2.09991874	
H	-7.41939217	-2.52380836	-1.22517041	
H	-5.68104067	-2.75065872	-1.41968633	
C	-2.36661836	-2.22860741	1.24393858	
H	-5.45463150	-2.98146504	1.14123475	
H	-7.19570164	-2.74845649	1.29875621	
H	-6.07518035	-1.70684611	2.18873726	
C	-7.40228381	-0.26543168	0.25790366	
H	-7.31380967	0.29476414	1.19014685	
H	-8.33783236	-0.82580729	0.29522876	
H	-7.47575044	0.44708367	-0.56525551	
C	-2.54819402	3.44387491	1.34849932	
H	-2.98117537	3.05902053	2.27384321	
H	-2.47503020	4.53031088	1.43460267	
H	-1.54236997	3.04223050	1.24676017	
C	-2.81193791	3.63665904	-1.15035891	
H	-1.80929819	3.24812097	-1.31458868	
H	-2.74977585	4.72539709	-1.08810450	
H	-3.42759558	3.38117633	-2.01501022	
C	-4.80292935	3.73042805	0.33733609	
H	-5.47205688	3.53412111	-0.50217820	
H	-4.67355655	4.81116082	0.41185809	
H	-5.29018183	3.39112612	1.25296510	
C	-0.70641148	-2.43877455	-0.10859619	
C	-1.40219274	-3.60723455	0.16227714	
H	-2.47772014	-3.62263066	0.18774139	
C	-0.69253572	-4.78116891	0.41552804	
H	-1.23672123	-5.69486156	0.61301378	
C	0.92523594	-4.78116900	0.41552758	
H	1.23672147	-5.69486172	0.61301291	
C	1.40219293	-3.60723472	0.16227631	
H	2.47772036	-3.62263096	0.18773978	
C	0.70641162	-2.43877463	-0.10859646	
C	3.54082272	1.54865431	0.03802668	
C	4.76563325	0.86567246	0.10522558	
H	5.66045928	1.44977230	0.22882457	
20 (optimized at the B3LYP-D3(BJ)/def2-TZVP level)				
	X	Y	Z	
---	--------------	--------------	--------------	---
C	4.66238184	-0.47662856	0.40021591	H
C	4.79472021	0.50413941	-0.58949296	H
C	3.69408083	1.75514453	-1.97412928	H
C	0.89223537	1.83556245	-2.31190137	H
H	1.42416086	1.57745701	-3.22690729	H
C	3.32710333	-2.07955978	1.91866639	H
C	2.65485747	-3.33772028	1.33594860	H
H	2.95140847	-0.63004665	3.50432458	H
H	2.41730909	-2.27081937	3.87693817	H
H	2.59072120	-4.10979270	2.10393126	H
H	4.56970249	-3.23993465	3.23763837	H
H	5.22098400	-1.63684377	2.92096967	H
C	6.85796453	1.61883366	0.28708031	H
C	6.14951616	2.07917099	-2.05662680	H
H	6.96613582	0.88748024	1.08792447	H
H	6.58327973	-0.62642675	-2.35312194	H
C	7.14928370	-0.94917453	-0.71287045	H
H	5.71369705	1.69719806	-2.98188905	H
C	-3.32732322	2.07986664	1.91829528	H
C	-2.65534244	3.33806371	1.33534049	C
H	-2.95127699	0.63067018	3.50415668	H
H	-2.41749090	2.27160562	3.87649238	H
H	-2.59126095	4.11024813	2.10321478	H
H	-4.57009034	3.24021397	3.23713802	H
H	-5.22108065	1.63694915	2.92075580	C
C	-7.03777420	0.17294756	-1.47031069	C
C	-6.85774095	-1.61926184	0.28719668	
20 · F⁻ (optimized at the B3LYP-D3(BJ)/def2-TZVP level)

F -0.00019200 0.00005000 2.00908900
P -0.00001100 0.00010000 0.41533600
O 1.25729500 -1.13440700 0.42815600
O -1.25730300 1.13460200 -0.42793300
N 1.04842200 -1.11364600 0.29068800
N -1.04834300 1.11351000 -0.29073600
C 2.48973700 -0.60881100 0.16644100
C 3.71126000 -1.25514400 0.30959100
C 4.83174900 -0.49839200 -0.05452100
H 5.80279000 -0.95767400 -0.03556200
C 3.51709300 -0.81794300 -0.51636400
H 3.42337100 -2.45367000 -0.94926100
C 2.39053700 -0.70218400 -0.27777400
C 0.72804000 -2.42709600 -0.83013900
H -0.31521000 2.47217800 -1.11078100
H -1.33642200 2.59583600 -1.71897700
C 0.93474100 -3.21946200 -0.10643100
C -2.48974100 0.60889500 0.16634700
C -3.71131800 1.25513200 0.30959100
C -4.83174900 0.49839200 -0.05452100
H -5.80279000 0.95767400 -0.03556200
C -4.76793300 0.81794300 -0.51636400
C -3.51709300 1.43147100 -0.62115700
H -3.42337100 2.45367000 -0.94926100
C -2.39053700 0.70218400 -0.27777400
C -0.72804000 2.42709600 -0.83013900
H -0.31521000 -2.47217800 1.11078100
H -1.33642200 -2.59583600 1.71897700
C -0.93474100 3.21946200 0.10643100
C -2.48974100 -0.60889500 0.16634700
C -3.71131800 -1.25513200 0.30959100
C -4.83174900 -0.49839200 0.05452100
H -5.80279000 -0.95767400 0.03556200
C -4.76793300 -0.81794300 0.51636400
C -3.51709300 -1.43147100 0.62115700
H -3.42337100 -2.45367000 0.94926100
C -2.39053700 -0.70218400 0.27777400
C -0.72804000 -2.42709600 0.83013900
H -0.31521000 -2.47217800 -1.11078100
H -1.33642200 -2.59583600 -1.71897700
C -0.93474100 -3.21946200 -0.10643100
C -2.48974100 0.60889500 0.16634700
C -3.71131800 1.25513200 0.30959100
C -4.83174900 0.49826900 -0.05452100
H -5.80279000 0.95767400 0.03556200
C -4.76793300 0.81794300 -0.51636400
C -3.51709300 1.43147100 -0.62115700
H -3.42337100 2.45367000 -0.94926100
C -2.39053700 -0.70218400 -0.27777400
C -0.72804000 -2.42709600 -0.83013900
H -0.31521000 -2.47217800 -1.11081400
H -1.33642200 -2.59466100 -1.72026900
C -0.93520200 -3.21944900 -0.10787000
C -3.81262400 2.68039200 0.85475300
C -3.21912000 2.72078000 2.72626400
C -3.03414600 3.64700400 -0.05631600
C -5.26494500 3.16561700 0.92843500
H -3.77651100 2.05953700 2.94212800
H -2.17659700 2.40900000 2.28172800
H -3.27750000 3.73524600 2.67755700
H -3.41612600 3.60826300 1.07833900
H -3.14011700 4.67135800 0.30778300
H -1.97487000 4.04097000 -0.07338700
H -5.28462200 4.18039200 1.32891800
H -5.73643200 3.18791500 -0.05570800
| | H | C | C | C | H | H | C | C | C | H | H | H | H | H | H | H | H | H | H |
|---|------|
| | -5.86920500 | -6.06536300 | -6.97966300 | -6.78720100 | -5.81071200 | -6.48866100 | -7.23813900 | -7.90922600 | -6.15763200 | -7.71475400 | -7.03897000 | -6.76051000 | -5.18718800 | -5.32820100 | 3.81245600 | 3.21903700 | 3.03379300 | 5.26472500 | 3.77654000 |
| | 2.53858200 | -1.54945300 | -1.61967100 | -0.78512800 | -2.98124100 | -2.15720300 | -0.62567100 | -2.14024000 | -0.72271500 | -1.29446400 | 0.23125900 | -3.45735200 | -2.99929700 | -3.58847900 | -2.60374400 | -2.70561000 | -3.64978800 | 0.92854600 | 2.05931600 |
| | 1.58583300 | 0.35724000 | 0.37523900 | -2.00455200 | -1.36470000 | 1.17013000 | 0.72246900 | 0.11422000 | -2.89395600 | -2.27624500 | -1.70169000 | -1.61347200 | -2.26040300 | -0.59679500 | 0.85491900 | 2.27646900 | -0.05600100 | 0.92854600 | 2.94223700 |
| | 1.58583300 | 0.35724000 | 0.37523900 | -2.00455200 | -1.36470000 | 1.17013000 | 0.72246900 | 0.11422000 | -2.89395600 | -2.27624500 | -1.70169000 | -1.61347200 | -2.26040300 | -0.59679500 | 0.85491900 | 2.27646900 | -0.05600100 | 0.92854600 | 2.94223700 |

20 · H⁺ (optimized at the B3LYP-D3(BJ)/def2-TZVP level)

	H	P	O	O	N	N	C	C	C	C	C	H	H	H	H	H	H	H	H				
	-0.00002092	-0.00001061	1.38078576	-1.38080035	0.94116375	-0.94117534	2.51069653	3.76898086	4.76615507	5.75734417	4.55534695	0.000002092	0.00001061	1.38078576	-1.38080035	0.94116375	-0.94117534	2.51069653	3.76898086	4.76615507	5.75734417	4.55534695	
	0.0000628	-0.00000380	1.54922000	1.02924328	1.41717490	-1.14172899	-0.51048593	-1.10131786	-0.36080344	-0.78182414	0.88998989	0.0000628	-0.00000380	1.54922000	1.02924328	1.41717490	-1.14172899	-0.51048593	-1.10131786	-0.36080344	-0.78182414	0.88998989	0.0000628
---	---	---	---																				
C	3.27912960	1.45574590	-0.66961319																				
H	3.07376067	2.42697861	-1.08902839																				
C	2.27445670	0.74733183	-0.03201920																				
C	0.50122596	2.38204680	-0.44883648																				
H	-0.56401764	2.50380218	-0.32044259																				
H	0.73028502	2.36509977	-1.51703751																				
H	1.01274896	3.23695471	0.00097933																				
C	-2.51070305	0.51048818	0.51120602																				
C	-3.76897983	1.10133241	0.48324107																				
C	-4.76615355	0.36080931	-0.16667090																				
H	-5.75733782	0.78183790	-0.21587762																				
C	-4.55534861	-0.89000050	-0.74688143																				
C	-3.27913572	-1.45576361	-0.66963614																				
H	-3.07376980	-2.42700788	-1.08902592																				
C	-2.27446497	-0.74734260	-0.03204647																				
C	-0.50125380	-2.38210061	-0.44877006																				
H	0.56399183	-2.50384950	-0.32039228																				
H	-0.73033358	-2.36522091	-1.51696742																				
H	-1.01277084	-3.23697871	0.00110988																				
C	-4.04994565	2.44422164	1.16191453																				
C	-3.77918622	2.30725992	2.67275106																				
C	-3.14099731	3.54123238	0.57896311																				
C	-5.50522846	2.88961389	0.97527350																				
H	-4.43444490	1.55305400	3.11231970																				
H	-2.74722910	2.01797477	2.86327922																				
H	-3.96820844	3.25805489	3.17679263																				
H	-3.26338005	3.61320237	-0.50355156																				
H	-3.39761336	4.50942841	1.01460362																				
H	-2.09536576	3.34257764	0.79933608																				
H	-5.65565440	3.84548299	1.47950777																				
H	-5.75563249	3.02627982	-0.07831389																				
H	-6.20779789	2.17473477	1.40608577																				
C	-5.72260850	-1.60561810	-1.43661277																				
C	-6.85492171	-1.84237931	-0.42035638																				
C	-6.24891544	-0.73362475	-2.59139204																				
C	-5.31175862	-2.96433893	-2.01582113																				
H	-6.50514840	-2.45855512	0.40981828																				
H	-7.22531424	-0.90431660	-0.00681408																				
H	-7.69420111	-2.35405257	-0.89736879																				
H	-5.46317459	-0.55328522	-3.32719484																				
H	-7.08231891	-1.22970441	-3.09450492																				
H	-6.60048032	0.23449169	-2.23450214																				
H	-6.17182722	-3.43165994	-2.49820320																				
H	-4.52623524	-2.86216845	-2.76668685																				
H	-4.95871064	-3.64471002	-1.23884500																				
C	4.04995900	-2.44418636	1.16204237																				
C	3.77925470	-2.30717730	2.67288497																				
C	3.14098859	-3.54121298	0.57915558																				
C	5.50523381	-2.88958822	0.97536570																				
H	4.43452511	-1.55295290	3.11240448																				
H	2.74730329	-2.01789348	2.86344344																				
H	3.96830308	-3.25795458	3.17695021																				
H	3.26332978	-3.61321356	-0.50336176																				
Atom	X	Y	Z																				
------	-----------	-----------	-----------																				
H	3.39761999	-4.50939689	1.01481392																				
H	2.09536592	-3.34255145	0.79956339																				
H	5.65567938	-3.84543315	1.40611557																				
C	5.72260977	1.60560081	-1.43656602																				
H	6.24893708	0.73358720	-2.59132072																				
C	5.31175703	2.96430636	-2.01580816																				
H	6.0050752	-0.23451817	-2.23440640																				
C	5.46320576	0.55322436	-3.32712797																				
H	7.08234124	1.22966386	-3.09443547																				
C	5.72260977	1.60560081	-1.43656602																				
H	6.17182733	3.43162210	-2.49819232																				
C	4.52624132	2.86211431	-2.76667895																				
H	6.61941916	2.35405820	-0.89731419																				
C	6.50512189	2.45858415	0.40985545																				
H	7.22530091	0.90433985	-0.00673241																				

TMS⁺ (optimized at the B3LYP-D3(BJ)/def2-TZVP level)

Atom	X	Y	Z
Si	-0.00000300	0.00000369	0.00000127
C	1.28688962	1.29687574	-0.00000628
C	-1.76657841	0.46603190	0.00000505
C	0.47969230	-1.76290964	-0.00000004
H	0.87535266	2.30526210	-0.00015999
H	1.93382927	1.16887320	0.87558054
H	1.93048695	1.16868278	-0.87536838
H	-1.97916108	1.09066240	0.87533466
H	-1.97922578	1.09024269	-0.87561273
H	-2.43407781	-0.39458002	0.00022334
H	1.55875271	-1.91067929	0.00000418
H	0.04522518	-2.25925530	0.87546621
H	0.04523873	-2.25924815	-0.87547802

TMSF (optimized at the B3LYP-D3(BJ)/def2-TZVP level)

Atom	X	Y	Z
Si	0.0003222	-0.0000798	0.02874658
C	-0.76810847	1.60649818	-0.52457981
C	-1.00727627	-1.46836507	-0.52466468
C	1.77526444	-0.13805543	-0.52474291
F	0.00008890	-0.00006907	1.64825575
H	-0.19859575	2.46286916	-0.15750722
H	-1.79228543	1.70077616	-0.15768550
H	-0.79679421	1.66672793	-1.61547853
H	-0.57699339	-2.40252355	-0.15771371
H	-2.03368448	-1.40317941	-0.15766046
H	-1.04505515	-1.52333504	-1.61556342
H	2.23207907	-1.05954536	-0.15782744
H	2.36907833	0.70166769	-0.15775303
H	1.84172163	-0.14319018	-1.61564012

TMSF (optimized at the B3LYP-D3(BJ)/def2-TZVP level)
TMSH (optimized at the B3LYP-D3(BJ)/def2-TZVP level)

Si	-0.00001980	0.00000658	0.37885863
C	1.61859445	-0.73841974	-0.22288963
C	-0.16979207	1.77093452	-0.22299106
C	-1.44877282	-1.03252274	-0.22306584
H	-0.00008927	-0.00000110	1.86784226
H	1.74129937	-1.76420941	0.13130198
H	2.47371569	-0.15871772	0.13131628
H	1.65615364	-0.75554236	-1.31498658
H	-1.09932822	2.22176260	0.13121955
H	0.65728431	2.39006351	0.13109087
H	-0.17380968	1.81189074	-1.31508613
H	-2.39851907	-0.62590512	0.13104401
H	-1.37434488	-2.06295429	0.13108372
H	-1.48226198	-1.05643118	-1.31516764
Energy Landscape:

Table S3: Overview of single point energies SPE_{B3LYP} ((U)B3LYP-D3(BJ)(C-PCM:CHCl$_3$/def2-TZVP), $SPE_{ωB97XD}$ ((U)ωB97XD (C-PCM:CHCl$_3$/def2-TZVP), correction terms for Gibbs free energy G_{corr} ((U)PBE-D3(BJ)/def2-SVP) and imaginary frequencies $\tilde{\nu}$ for transition states ((U)PBE-D3(BJ)/def2-SVP).

	$SPE_{B3LYP} \ E_h$	$SPE_{ωB97XD} \ E_h$	$G_{corr} \ E_h$	$\tilde{\nu}$ / cm$^{-1}$
Aniline	-287.742931		0.084269	
Azobenzene	-573.019202		0.147437	
1,2-Diphenylhydrazine	-574.242977		0.169513	
Int I	-2026.411594		0.504355	
TSI	-2026.372733		0.499960	i1280.46
Int Ila	-2026.415446		0.504892	
Int Iib	-2026.417373		0.504053	
TSII	-2026.411358		0.502017	i443.57
Int III	-2026.414848		0.504122	
TSIiI	-2026.399206		0.502711	i311.83
Int IV$_{CSS}$	-1738.642277	-1737.976419	0.393126	
Int IV$_{OSS}$	-1738.643273	-1737.986676	0.393773	
Int IV$_{triplet}$	-1738.644448	-1737.987718	0.389950	
Int V	-2312.911005		0.585921	
Int V$_{triplet}$	-2312.935399		0.583469	
Int VI	-2312.967587		0.589543	
Int VII	-1739.912967		0.416838	

Figure S19: Free Energy landscape with schematic representations of intermediates and transition states at the B3LYP-D3(BJ)/def2-TZVP(C-PCM)/PBE-D3(BJ)/def2-SVP level.
Aniline (optimized at the PBE-D3(BJ)/def2-SVP level)

Atoms	X (Å)	Y (Å)	Z (Å)
C	-0.22242128	-1.21617556	-0.00002627
C	1.17714295	-1.20828093	-0.00000417
C	1.89382885	-0.00000000	0.00002965
C	1.17714296	1.20828092	0.00004101
C	-0.22242128	1.21617557	0.00001924
C	-0.95243869	0.00000000	-0.00001501
N	-2.32791707	0.00000000	-0.00003735
H	-0.76887077	-2.17296734	-0.00005281
H	1.71675825	-2.16826513	-0.00001361
H	2.99339299	-0.00000000	0.00004693
H	1.71675825	2.16826513	0.00006744
H	-0.76887076	2.17296734	0.00002856
H	-2.84937476	-0.87113169	-0.00005699
H	-2.84937476	0.87113170	-0.00002478

Azobenzene (optimized at the PBE-D3(BJ)/def2-SVP level)

Atoms	X (Å)	Y (Å)	Z (Å)
C	2.29117195	1.12243922	-0.00001669
C	3.67449773	1.31454872	-0.00000249
C	4.54779410	0.20836811	0.00001336
C	4.03012168	-1.09716985	0.00001082
C	2.64383760	-1.29773655	-0.00000947
C	1.76657542	-0.19217512	-0.00001820
N	0.38756969	-0.50112753	0.00004058
N	-0.38756962	0.50112727	0.00003939
C	-1.76657539	0.19217500	0.00001779
C	-2.64383747	1.29773653	0.00000997
C	-4.03012158	1.09716998	-0.00000970
C	-4.54779414	-0.20836793	-0.00001258
C	-3.67449788	-1.31454862	-0.0000233
C	-2.29117208	-1.12243928	0.00001594
H	1.58189958	1.96203274	-0.00002776
H	4.08622519	2.33577505	-0.00000529
H	5.63676060	0.36878321	0.00002421
H	4.71151086	-1.96129459	0.00002175
H	2.20054725	-2.30449860	-0.00001721
H	-2.20054700	2.30449856	0.00001791
H	-4.71151068	1.96129481	-0.00001989
H	-5.63676065	-0.36878290	-0.00002298
H	-4.08622545	-2.33577490	0.00000483
H	-1.58189980	-1.96203287	0.00002626

1,2-Diphenylhydrazine (optimized at the PBE-D3(BJ)/def2-SVP level)

Atoms	X (Å)	Y (Å)	Z (Å)
C	1.94085477	0.93638522	0.45336580
C	3.20082017	1.17564511	1.01746273
C	4.28651993	0.32492347	0.75352351
C	4.09400133	-0.78034436	-0.09233592
C	2.84222811	-1.03227713	-0.66571733
C	1.74884334	-0.17759512	-0.39368607
N	0.50008430	-0.46515080	0.94933877
N	-0.50008455	0.46515969	-0.94933560
C	-1.74884392	0.17759885	-0.39368488
C	-2.84222990	1.03228022	-0.66571179
C -4.09400278 0.78034226 -0.09233143
C -4.28651942 -0.32493015 0.75352168
C -3.20081801 -1.17565132 1.01745699
C -1.94085321 0.45336118 0.45336118
H 1.08892352 1.59823490 0.66229153
H 3.33325969 2.04668545 1.67789340
H 5.27234620 0.52120183 1.19961521
H 4.93280846 -1.45777181 -0.31504297
H 2.70123878 -1.89995452 -1.33051457
H -0.47627956 1.18138925 -1.68454430
H -2.70124235 -1.89995452 -1.33051457
H -4.93281093 -1.45777181 -0.31504297
H -5.27234620 -0.52120183 1.19961521
H -3.33325969 -2.04668545 1.67789340
H -1.08892088 -1.59823490 0.66229153

Int I (optimized at the PBE-D3(BJ)/def2-SVP level)
C 0.56837965 3.81544978 -0.83159152
C 0.10418801 2.61785267 -0.26436752
C -1.29422205 2.34821511 -0.19272805
C -2.21885014 3.28276645 -0.68639544
C -1.74304583 4.47135678 -1.25716868
C -0.36505747 4.73476921 -1.33059557
N 0.84811069 1.56637413 0.29105411
N -1.54051218 1.11245226 0.41289818
C 2.21300199 1.45170771 0.63457298
C -2.73194591 0.48100816 0.81707356
C 3.30903428 2.28345442 0.35810211
C 4.58890229 1.89261649 0.80778929
C 4.73771005 0.67489884 1.51126960
C 3.65767371 -0.17588353 1.80418469
C 2.40548249 0.25193411 1.34929494
C -2.40932264 -0.67366908 1.55811892
C -3.36961063 -1.52659888 2.11101734
C -4.71085333 -1.17911946 1.85343118
C -5.07880295 -0.4407510 1.10014601
C -4.07518568 0.79899952 0.57693030
O 1.25091873 -0.47528648 1.54480012
O -1.05272367 -0.90692731 1.66971173
P -0.11438938 0.21614350 0.84586794
N 0.06596488 -1.03887970 -0.78419906
N 1.21167526 -0.74151248 -1.58033249
C -2.96528345 -2.74353289 2.89455633
C -1.51554988 -0.22831771 -2.50437061
C -2.77132704 -0.30825228 -3.12132521
C -3.67789831 -1.31870809 -2.75828393
C -6.53176920 0.28983347 0.87362999
C -3.32567601 -2.26577418 -1.78447665
C -2.07224081 -2.19629069 -1.16003673
C 1.99999320 -3.06497452 -1.48285052
C 3.81375829 -1.50111255 2.49527367
C 3.05915353 -3.97852544 -1.36957542
TSI (optimized at the PBE-D3(BJ)/def2-SVP level)

C -0.67269403 3.69579584 0.40281735
C -0.28833532 2.39791372 0.05980416
C 0.97897396 2.13601377 -0.51773032
C 1.84722121 3.20920179 -0.78996497
C 1.45635818 4.50802886 -0.44546386
C 0.21372218 4.75730677 0.15330919
N -1.08119369 1.20995949 0.22042467
N 1.20221071 0.76421017 -0.77853822
C -2.41167479 1.11808623 -0.32829564
C 2.39688337 0.06792594 -1.09875137
C -3.53510381 1.87859845 0.01283034
C -4.77138918 1.58653538 -0.59968578
C -4.84119292 0.51774939 -1.52004738
C	-3.73125283	-0.27649532	-1.86864467
C	-2.52127921	0.06682238	-1.25151683
C	2.12906035	-1.31338195	-1.16738269
C	3.11090942	-2.27622356	-1.41036206
C	4.42042425	-1.78181506	-1.58648072
C	4.73554633	-0.41108501	-1.50665486
C	3.70909501	0.52625682	-1.25454661
O	-1.35667670	-0.66897959	-1.48918266
P	0.80568216	-1.63483180	-0.90519826
N	-0.10651469	-0.30096477	-0.47061023
N	-0.53770665	-0.84060786	1.32005057
N	0.50303563	-1.36255130	2.10294523
C	2.76700911	-3.73900154	-1.45156548
C	-2.83452177	-1.19697228	2.12778196
C	-4.01240776	-1.95565489	2.16362614
C	-4.9063855	-3.16782221	1.45892825
C	6.15234461	0.07090009	-1.69332356
C	-2.98952912	-3.62833803	0.71857632
C	-1.80696200	-2.87628901	0.67247686
C	2.93677436	-1.16989599	2.00956466
C	-3.81217675	-1.43800209	-2.81821210
C	4.10181128	-0.40143282	2.13183760
C	4.01939738	0.97126520	2.41193874
C	2.76108620	1.56816913	2.59536713
C	-5.99575519	2.40930199	-0.29013399
C	1.59117293	0.80266597	2.50822631
C	-1.74342761	-1.66181391	1.37759928
C	1.67510361	-0.57032634	2.19686317
H	-1.65280890	3.88359213	0.85912663
H	2.80745502	3.0385649	-1.28802653
H	2.14082803	5.34193664	-0.65792155
H	-0.07675029	5.78285157	0.42173919
H	-3.46630803	2.68120917	0.75947036
H	-5.81131506	0.28003160	-1.98420328
H	5.22743531	-2.50456920	-1.78328315
H	3.96886646	1.58485392	-1.15482549
H	-0.90326020	0.4456585	1.27877674
H	2.00806369	-3.95362765	-2.2357607
H	3.66150084	-4.35400444	-1.66083804
H	2.33505149	-4.08072950	-0.48687558
H	-2.75752210	-0.24726469	2.67723605
H	-4.87327067	-1.59713495	2.74643796
H	-5.01750067	-3.75939877	1.48777880
H	6.87427637	-0.76717486	-1.67365651
H	6.27312683	0.59172396	-2.66647980
H	6.44204815	0.79236171	-0.90254743
H	-3.05172568	-4.57801821	0.16710996
H	-0.95075931	-3.21508931	0.07009503
H	3.00304272	-2.23990979	1.75894878
H	-4.82996983	-1.54198371	-3.23669584
H	-3.09793085	-1.32245994	-3.65853344
H	-3.54742195	-2.38503836	-2.30338015
H	5.08071101	-0.88010773	1.98369853
Atom	X	Y	Z
------	------------	------------	------------
H	4.93463609	1.57539784	2.49322098
H	2.68547809	2.64069349	2.82652183
H	-5.8995483	2.94527406	0.67359966
H	-6.1657131	1.78153834	-1.07799476
H	-6.90733005	1.2758341	2.69913867
H	0.61490300	-2.34425032	1.85562585

Int IIa (optimized at the PBE-D3(BJ)/def2-SVP level)

Atom	X	Y	Z
C	1.50604331	0.80360717	3.09846256
C	-0.34165189	-0.30176829	0.991187615
C	-1.12099609	-0.26273815	3.08079815
C	-0.56613830	0.27980428	4.25147639
C	0.73249482	0.81318449	4.27133854
N	0.61205015	0.19233635	0.65664908
O	-0.49613967	-0.73050120	0.63692607
O	-0.88887358	-1.12634160	0.40240161
C	-1.17740112	-1.32270820	0.25380084
C	1.93560519	1.19356051	4.27133854
C	4.25147639	3.08079815	4.25147639
C	3.07470779	-0.6314617	1.23453753
C	2.17659836	-0.77814058	
C	-1.15246377	-1.12612180	
C	-1.64982664	-1.79877390	
C	-2.35468118	-1.00366550	
C	-4.2944455	1.23453753	
O	-1.17625893	-1.47801805	
P	-0.45856703	-0.73983097	
N	-0.73005120	-1.07799476	
C	-1.42656417	-3.27416938	
C	3.61437580	-0.65561683	
C	4.35942282	-0.63154613	
C	3.82172670	-1.14418371	
C	-3.33032380	1.17918685	
C	2.53880489	-1.71097034	
C	1.79049672	-1.76716595	
C	2.15457755	-1.14927288	
C	-3.36596899	-2.50338652	
C	2.21225792	-0.25056929	
C	2.36180242	1.12723025	
C	2.44984632	1.59594550	
C	-2.70611248	1.58979603	
C	2.40022944	0.70434577	
C	2.31798129	-1.21297542	
C	2.24469981	-0.67668562	
H	1.24336833	3.0808707	
H	-0.61376203	3.07339263	
H	-0.30274144	5.16571995	
	X	Y	Z
--------	-----------	-----------	-----------
H	1.14121378	1.24761619	5.19430718
H	3.87434127	-0.68920088	2.12751523
H	4.83293490	-3.78567335	-0.75690463
H	-5.12519167	-2.76500753	-1.49361067
H	-2.72515012	-2.26359891	2.07774688
H	2.06414193	1.10647577	0.43141452
H	-2.58596683	-1.75540953	-3.84363120
H	-4.35973485	-1.97304940	-3.65833870
H	-3.62202076	-0.34862816	-3.50056864
H	0.48180918	4.03254147	-0.26479863
H	2.59677373	5.37331373	-0.20347053
H	4.72699025	4.41178048	-1.11561183
C	-1.10417368	-3.58241323	-1.67747322
C	-0.41667342	-2.53577764	-1.06250923
C	0.96810194	-2.60412444	-0.79447193
C	1.67028996	-3.77344362	-1.13862393
C	0.98158964	-4.82424549	-1.76427829
C	-0.39124252	-4.73604939	-2.04182057
N	-1.02257599	-1.29513912	-0.63263202
N	1.47616192	-1.46915540	-0.14710986
C	-2.17924984	-1.36436164	0.27328604
C	2.81519204	-1.10867403	0.16118538
C	-3.48135818	-1.73113086	-0.07749291
C	-4.48461605	-1.68248752	0.91055334
C	-4.13562444	-1.25155626	2.21110976
C	-2.83660890	-0.84972787	2.57635897
C	-1.86899753	-0.92127354	1.56090430
C	2.81122279	0.03038868	0.98801250
C	3.97626252	0.67465601	1.41071639
C	5.18687147	0.09334210	0.96977058
C	5.23598057	-1.03309493	0.13232089
C	4.03034297	-1.63842976	-0.29119683
O	-0.57280929	-0.48104269	1.76133436
O	1.54399410	0.49150196	1.29272670

Int IIb (optimized at the PBE-D3(BJ)/def2-SVP level)

	X	Y	Z
C	-1.10417368	-3.58241323	-1.67747322
C	-0.41667342	-2.53577764	-1.06250923
C	0.96810194	-2.60412444	-0.79447193
C	1.67028996	-3.77344362	-1.13862393
C	0.98158964	-4.82424549	-1.76427829
C	-0.39124252	-4.73604939	-2.04182057
N	-1.02257599	-1.29513912	-0.63263202
N	1.47616192	-1.46915540	-0.14710986
C	-2.17924984	-1.36436164	0.27328604
C	2.81519204	-1.10867403	0.16118538
C	-3.48135818	-1.73113086	-0.07749291
C	-4.48461605	-1.68248752	0.91055334
C	-4.13562444	-1.25155626	2.21110976
C	-2.83660890	-0.84972787	2.57635897
C	-1.86899753	-0.92127354	1.56090430
C	2.81122279	0.03038868	0.98801250
C	3.97626252	0.67465601	1.41071639
C	5.18687147	0.09334210	0.96977058
C	5.23598057	-1.03309493	0.13232089
C	4.03034297	-1.63842976	-0.29119683
O	-0.57280929	-0.48104269	1.76133436
O	1.54399410	0.49150196	1.29272670
TSII (optimized at the PBE-D3(BJ)/def2-SVP level)

Atom	X	Y	Z	Charge
C	-1.16943041	-3.44402551	-1.85635522	
C	-0.46984846	-2.48735461	-1.11634212	
C	0.92991431	-2.58853827	-0.92370736	
C	1.62585333	-3.68308959	-1.46363943	
C	0.91918417	-4.64062760	-2.20917282	
C	-0.46382542	-4.52535073	-2.41082001	
N	-1.03481452	-1.33339894	-0.46971793	
N	1.44463243	-1.54580544	-0.13765478	
C	-2.20178489	-1.43870799	0.36495838	
C	2.77974620	-1.18172483	0.16611449	
C	-3.49106357	-1.84579895	0.00281226	
C	-4.51916272	-1.79465244	0.96717456	
C	-4.21921567	-1.31006880	2.25986252	
C	-2.93576893	-0.87345368	2.64362323	
C	-1.94205355	-0.95600896	1.65548649	
C	2.76883411	-0.09618904	1.06459792	
C	3.9295092	0.54168918	1.50820747	
C	5.14400217	0.02029928	1.01267683	
C	5.19961332	-1.06008823	0.10990338	
C	3.99821524	-1.66303733	-0.32949394	
O	-0.65091533	-0.51802761	1.88019009	
O	1.50294367	0.31212703	1.42880990	
P	0.30364759	-0.41294313	0.51112904	
N	-0.00194912	1.02348350	-0.41104082	
N	-0.92527326	0.92716522	-1.50825264	
C	3.84802985	1.72980181	2.42415707	
C	2.03517138	2.23377164	-1.07205333	
C	2.82063856	3.39536036	-1.04644700	
C	2.38146506	4.52356734	-0.33488459	
C	6.52533927	-1.59318639	-0.37343790	
C	1.15730622	4.49452843	0.35401211	
C	0.36872075	3.33543522	0.33879484	
C	-2.08737888	2.84305351	-2.52402771	
C	-2.61621249	-0.34733587	4.01413416	
C	-3.14454457	3.76609797	-2.53288467	
C	-4.10990030	3.73680449	-1.51551711	
C	-4.02319664	2.78119743	-0.48834826	
C	-5.91086669	-2.26547643	0.62990605	
C	-2.97845648	1.84787870	-0.47232873	
C	0.81402854	2.20751113	-0.37192148	
C	-2.02340680	1.88968196	-1.49967448	
H	-2.25370990	-3.35842598	-1.99928301	
H	2.69803928	-3.81342721	-1.28469415	
H	1.46575390	-5.49616514	-2.63168265	
H	-1.00371058	-5.28249367	-2.99677071	
H	-3.71427101	-2.18015656	-1.01917115	
H	-5.02669801	-1.25923016	3.00728496	
H	6.08441926	0.49015447	1.34057966	
H	4.04462741	-2.47605471	-1.06267000	
H	-1.20895806	-0.23577978	-1.29604838	
H	3.26001076	1.49695613	3.33490413	
H	4.85448193	2.06760254	2.73308735	
	X	Y	Z	E
----	---------	---------	---------	---------
H	3.33455726	2.57749644	1.92267863	1.92267863
H	2.38090474	1.33568090	-1.60699210	-1.60699210
H	3.78406798	5.43270721	-0.31417081	-0.31417081
H	6.83882361	-2.47676613	0.22270558	0.22270558
H	6.47684494	-1.91713489	-1.43204984	-1.43204984
H	7.32701655	-0.83560838	0.28163531	0.28163531
H	6.83882361	2.47676613	0.22270558	0.22270558
H	6.47684494	-1.91713489	-1.43204984	-1.43204984
H	7.32701655	-0.83560838	0.28163531	0.28163531

Int III (optimized at the PBE-D3(BJ)/def2-SVP level)

	X	Y	Z	E
C	-1.15693285	3.58310700	1.69998245	1.69998245
C	-0.46022766	2.58572266	1.00982559	1.00982559
C	0.95120837	2.64422564	0.87561996	0.87561996
C	1.66139040	3.72284899	1.42802227	1.42802227
C	0.95696605	4.71493525	2.12882757	2.12882757
C	-0.43700292	4.64892964	2.26635411	2.26635411
N	-1.01210234	1.44143029	0.35917957	0.35917957
C	1.45134975	1.57519836	0.11776661	0.11776661
C	-2.21686200	1.45968469	-0.40668390	-0.40668390
C	2.77586195	1.18433504	-0.18168890	-0.18168890
C	-3.49642788	1.8862118	-0.02930517	-0.02930517
C	-4.56623358	1.73194228	-0.93655117	-0.93655117
C	-4.32014128	1.12594514	-2.18819084	-2.18819084
C	-3.04735855	0.67039461	-2.58732791	-2.58732791
C	-2.01138819	0.85709023	-1.65971484	-1.65971484
C	2.74314444	0.11069266	-1.09440055	-1.09440055
C	3.89215437	-0.54657966	-1.54244172	-1.54244172
C	5.11544252	-0.06111219	-1.03356557	-1.03356557
C	5.19215962	1.00614136	-0.11636978	-0.11636978
C	4.00325255	1.63181844	0.32443623	0.32443623
O	-0.72428855	0.42376442	-1.89826530	-1.89826530
O	1.47143546	-0.26147947	-1.47064551	-1.47064551
P	0.27669370	0.47925933	-0.54990033	-0.54990033
N	0.00903163	-0.95419797	0.41385615	0.41385615
N	-0.88269251	-0.85156283	1.54533532	1.54533532
C	3.78816475	-1.71944943	-2.47566933	-2.47566933
C	2.03743739	-2.18432920	1.06634133	1.06634133
C	2.81214393	-3.35233542	1.03074564	1.03074564
C	2.36118553	-4.47204784	0.31185349	0.31185349
C	6.52799045	1.50123194	0.37946076	0.37946076
TSIII (optimized at the PBE-D3(BJ)/def2-SVP level)

C 0.12690023 3.95309330 -1.43377682
C -0.31925305 2.76581526 -0.84057708
C -1.70904749 2.47372943 -0.75830454
C -2.64487528 3.38848046 -1.26794891
C -2.18862017 4.57267533 -1.86898993
C -0.81772782 4.85440719 -1.95328944
N 0.46379354 1.74703227 -0.24865064
N -1.94676069 1.26089304 -0.09810302
H	1.62158722	-2.57275066	-3.23712543			
H	3.63736202	0.10119071	4.26184524			
H	1.84060184	0.14137906	4.24921430			
H	2.70269467	-1.07673983	3.27696149			
H	3.53701865	-4.15385777	-2.93611511			
H	5.34783575	-3.62783378	-1.28462416			
H	5.25168140	-1.50906513	0.05486756			
H	5.24604978	3.74046577	-0.25107341			
H	4.96526091	4.52212019	1.32793440			
H	6.02617923	3.09147197	1.22861729			
H	3.33975554	0.07097599	-0.22612532			
H	0.74208509	-0.39198947	-2.76057074			

Int IV (closed shell-singlet, optimized at the PBE-D3(BJ)/def2-SVP level)

C	-2.19468479	3.15939496	0.31393922			
C	-1.38250018	2.04508378	0.02221909			
C	0.03737337	2.23728797	-0.17694412			
C	0.60501030	3.53088526	-0.11620877			
C	-0.22585907	4.61809950	0.14062997			
C	-1.61120529	4.42515959	0.36684754			
N	-1.75245937	0.72419443	-0.07330296			
N	0.64696380	1.04728770	-0.44547657			
C	-3.00596190	0.09442808	-0.08351216			
C	1.88665889	0.66852382	-0.88677180			
C	-4.30493090	0.63209580	-0.12389876			
C	-5.40574626	-0.24512857	-0.17317962			
C	-5.17566410	-1.63861196	-0.20164286			
C	-3.88347837	-2.20856902	-0.19636430			
C	-2.82153452	-1.30370261	-0.13051700			
C	1.81017015	-0.68602530	-1.34455233			
C	2.91182401	-1.33900607	-1.92831880			
C	4.09471488	-0.58838756	-2.00445579			
C	4.22192823	0.74587462	-1.51854334			
C	3.20872996	1.37462968	-0.95038326			
C	-1.50043527	-1.70121608	-0.16027085			
O	0.60191670	-1.28383639	-1.18728041			
P	-0.40521363	-0.44651500	-0.05264337			
N	0.17854409	-0.46603040	1.47971090			
C	2.79124970	-2.75215951	-2.42012031			
C	1.93084683	-0.0850809	3.05549067			
C	3.18567098	-0.38684001	3.56809406			
C	3.96427263	-1.4178865	2.98596289			
C	5.54609296	1.45192140	-1.62969731			
C	3.46766563	-2.15178478	1.89456721			
C	2.21295082	-1.86002746	1.36111385			
C	-3.63403467	-3.6880018	-0.25397508			
C	-6.81499481	0.29067683	-0.18265876			
C	1.40895675	-0.80308383	1.92236564			
H	-3.26251461	3.08328575	0.52148904			
H	1.67820269	3.67864755	-0.27996149			
H	0.19087740	5.63107909	0.17961662			
H	-2.24497469	5.29622732	0.59808521			
H	-4.48196389	1.71324580	-0.14087215			
Atom	X	Y	Z			
------	---------	---------	---------			
H	-6.04064286	-2.31937958	-0.23821297			
H	4.97931899	-1.06455871	-2.45695676			
H	3.19418270	2.39754538	-0.56549980			
H	1.94401275	-2.85812065	-3.12720363			
H	3.71710991	-3.08169327	-2.92596097			
H	2.58735970	-3.45207278	-1.58230372			
H	1.30369454	0.70871809	3.48499630			
H	3.57727676	0.17366395	4.42991549			
H	4.95584502	-1.65034120	3.40060932			
H	5.84842780	1.56097810	-2.69202928			
H	5.51651915	2.46110960	-1.17829697			
H	6.34917764	0.87347412	-1.1283571			
H	4.06499193	-2.97196328	1.46913142			
H	1.78957449	-2.47750669	0.55861000			
H	-3.11114705	-4.04133053	0.65892138			
H	-4.58097425	-4.25090994	-0.35011841			
H	-2.98210676	-3.94954656	0.78945342			
H	-7.31751761	0.10244081	0.78945342			
H	-6.84030308	1.38173677	-0.36589645			
H	-7.42863785	-0.20240653	-0.96280334			

Int IV (open shell-singlet, optimized at the UPBE-D3(BJ)/def2-SVP level)

Atom	X	Y	Z
C	1.42615319	-3.37432495	1.29309943
C	0.72387563	-2.31011303	0.69098753
C	-0.72394507	-2.31009599	0.69098574
C	-1.42624809	-3.37428990	1.29309890
C	-0.70756035	-4.42155502	1.87273994
C	0.70744029	-4.42157289	1.87273965
N	1.23337033	-1.20448610	0.05705180
N	-1.23341444	-1.20445638	0.05704918
C	2.49073567	-0.86320794	-0.40119298
C	-2.49077751	-0.86314803	-0.40118229
C	3.72615382	-1.53726073	-0.30860936
C	4.86386225	-0.95206359	-0.88335844
C	4.74753467	0.30485157	-1.53911577
C	3.53361003	1.00303515	-1.65969100
C	2.41413248	0.38221397	-1.08642136
C	-2.41415980	0.38229089	-1.08637827
C	-3.53363171	1.00314227	-1.65962784
C	-4.74756500	0.30497276	-1.53906578
C	-4.86390677	-0.95195836	-0.88334087
C	-3.72620392	-1.53718685	-0.30861245
O	1.16642754	0.92161835	-1.15048754
O	-1.16644939	0.92167842	-1.15043553
P	-0.00000918	0.13081437	-0.18136784
N	0.00001406	0.77988295	1.32882170
C	-3.40100276	2.32750134	-2.35580393
C	0.00006299	2.36751162	3.08942638
C	0.00010706	3.67593333	3.55846456
C	0.00014864	4.75408083	2.64756411
C	-6.20387780	-1.63422768	-0.81701784
C	0.00014631	4.50594630	1.25546709
C	0.00010385	3.20492973	0.76082300
Int IV’ (triplet, optimized at the UPBE-D3(BJ)/def2-SVP level)

C -1.42615299 3.37432447 1.29309925
C -0.72387553 2.31011269 0.69098743
C 0.72394496 2.31009565 0.69098564
C 1.42624789 3.37428942 1.29309872
C 0.70756024 4.42155438 1.87273967
C -0.70744019 4.42157225 1.87273938
N -1.23337015 1.20448592 0.05705180
N 1.23341426 1.20445621 0.05704918
C -2.49073531 0.86320782 -0.40119292
C 2.49077715 0.86314791 -0.40118223
C -3.72615328 1.53726051 -0.30860932
C -4.86386155 0.95206345 -0.88335831
C -4.74753399 -0.30485153 -1.53911555
C -3.53360952 -1.00303501 -1.65969076
C -2.41413214 -0.38221391 -1.08642120
C 2.41415946 -0.38229083 -1.08637811
C 3.53363120 -1.00314213 -1.65962760
C 4.74756432 -0.30497272 -1.53906546
C 4.86390607 0.95195823 -0.88334074
C 3.72620338 1.53718663 -0.30861241
O -1.16642738 -0.92161821 -1.15048738
O 1.16644922 -0.92167828 -1.15043537
P 0.00000918 -0.13081435 -0.18136782
Figure S20: Spin density plot of Int IV' (UωB97 XD(C-PCM:CHCl3)/def2-TZVP, isovalue=0.0004).
Int V (optimized at the PBE-D3(BJ)/def2-SVP level)

Element	X	Y	Z
C	-1.52006225	1.08896672	-2.45200780
C	-0.48585519	0.33339762	-1.86270215
C	0.89099342	0.75050418	-2.02661948
C	1.19181718	1.91107489	-2.77481558
C	0.14834098	2.64157092	-3.34697101
C	-1.19621422	2.23784523	-3.17965683
N	-0.59239153	-0.80748055	-1.09771037
N	1.73832297	-0.10622215	-1.38282519
C	-1.63611957	-1.72711433	-0.91992330
C	3.10591895	-0.22308989	-1.28717868
C	-2.91279109	-1.79061101	-1.49573980
C	-3.76101672	-2.87079640	-1.16283026
C	-3.30220642	-3.8591962	-0.26943709
C	-2.00991541	-3.83649936	0.30181807
C	-1.20262014	-2.74860384	-0.04667895
C	3.41504690	-1.38777667	-0.52466095
C	4.73445821	-1.79357169	-0.27137474
C	5.74179292	-0.97673049	-0.81239627
C	5.47677910	0.19615835	-1.56978290
C	4.14808395	0.57586678	-1.80465586
O	0.09788555	-2.61275658	0.37914795
O	2.33438913	-2.08308182	-0.07446082
P	0.87108250	-1.20415139	-0.15191323
N	0.83597231	-0.09173162	1.07560031
C	5.01782999	-3.03255850	0.54282472
C	2.25556783	1.52889482	2.18707806
C	3.29047362	1.84263118	3.07027211
C	4.00735589	0.81915461	3.71856634
C	6.62392938	1.00901139	-2.10974296
C	3.66839923	-0.52466273	3.47934551
C	2.63644581	-0.85117096	2.59557592
C	-1.49693073	-4.91023243	1.21972515
C	-5.12811789	-2.96724122	-1.79155759
C	1.90623556	0.17303130	1.92329696
H	-2.56613496	0.79592694	-2.31566147
H	2.22897586	2.38171768	-2.90869367
H	0.37774064	3.54417323	-3.93127247
H	-2.00291951	2.83460698	-3.62906036
H	-3.2601675	-1.03308091	-2.20752015
H	-3.97019280	-4.6910156	-0.00979358
H	6.79094952	-1.26322981	-0.63687697
H	3.93972816	1.47695357	-2.39225525
H	4.40158269	-3.87994897	0.20495379
H	6.08471909	-3.30686561	0.48242770
H	4.76819098	-2.85105658	1.61035863
H	1.70434395	2.33082288	1.67218133
H	3.54845205	2.89634437	3.25429136
H	4.82283323	1.06943272	4.41284732
H	7.24941721	0.40574536	-2.79983232
H	6.27472341	1.90248796	-2.66075187
H	7.29094667	1.35023933	-1.29124317
H	4.21206640	-1.32868300	3.99860545
-----	------------------	------------------	------------------
H	2.35846192	-1.90069528	2.42732362
H	-1.19017581	-4.49307217	2.20111355
H	-2.26299849	-5.68791664	1.39525306
H	-0.59615644	-5.39862729	0.79391622
H	-5.78284988	-3.66744334	-1.23841721
H	-5.63021685	-1.97986716	-1.82392421
H	-5.06003977	-3.33426916	-2.83779161
H	-0.16882740	1.13782365	0.78458600
H	-1.39880032	-0.11399061	1.79414106
N	-1.16786539	1.58051763	0.83307621
N	-1.96563423	0.64526218	1.38849541
C	-1.42746102	2.94137824	0.80398500
C	-2.47117350	3.54803300	1.54782305
C	-0.56564970	3.74296179	-0.01004273
C	-2.63684441	4.93373529	1.49050524
H	-3.12218961	2.93459588	2.18540227
C	-0.74380615	5.12870938	-0.02525766
H	0.22305833	3.25896179	-0.58367508
C	-1.78158863	5.73172627	0.70589445
H	-3.43821782	5.40379487	2.07974407
H	-0.07210800	5.74437716	-0.64157998
H	-1.92526737	6.82118195	0.66810875
C	-3.29322562	0.36716159	1.07864617
C	-3.87548235	-0.7540137	1.71998581
C	-4.05460108	1.13235716	0.16267476
C	-5.20068752	-1.09874288	1.45119219
H	-3.27089804	-1.35940555	2.41179506
C	-5.38521191	0.77683735	-0.08439096
H	-3.61040832	1.99959860	-0.34176021
H	-5.96791417	-0.33016667	0.55748320
H	-5.64049945	-1.97743326	1.94461528
H	-5.97808585	1.37760793	-0.79006827
H	-7.01619975	-0.59572085	0.35880971

Int V' (triplet, optimized at the UPBE-D3(BJ)/def2-SVP level)

C	-1.66173105	0.85412311	-2.57312208
C	-0.54150982	0.26264297	-1.95669360
C	0.76655974	0.84609645	-2.13061035
C	0.92005781	2.01426264	-2.90986375
C	-0.20575679	2.59219931	-3.49654334
C	-1.48611590	2.01557162	-3.32894057
N	-0.49693085	-0.86720249	-1.17683369
N	1.73302661	0.11591244	-1.48081474
C	-1.42095474	-1.88764627	-0.93336500
C	3.10576290	0.25443436	-1.35891085
C	-2.81831334	-1.92415099	-1.08710170
C	-3.50842504	-3.10975797	-0.76854723
C	-2.78075875	-4.22789520	-0.29923976
C	-1.38008146	-4.22176151	-0.12842648
C	-0.73071889	-3.02616472	-0.45384546
C	3.62603143	-0.87419319	-0.66411176
C	4.99246803	-1.03197616	-0.39212200
C	5.82913384	0.00373560	-0.84252868
H -3.06880559 5.24877558 2.35564710
H 0.55206168 5.04537139 -0.03051075
H -1.19926361 6.40802062 1.15052964
C -3.80951567 0.56062560 0.95163082
C -4.79082920 -0.30386541 1.48888203
C -4.16984686 1.49984988 -0.04233343
C -6.11370504 -0.22833071 1.04144583
H -4.50502709 -1.03677281 2.25935668
C -5.49945906 1.56142763 -0.47856103
H -3.41490788 2.16703138 -0.47630693
C -6.1188217 0.70615250 -0.05669691
H -6.86838070 -0.90499961 1.46888529
H -5.77456259 2.29282062 -1.25337970
H -7.51964173 0.76970281 -0.28994337

Int VI (optimized at the PBE-D3(BJ)/def2-SVP level)
C -1.11300611 3.30052892 -1.22672700
C -0.33974966 2.13828897 -1.09267047
C 1.07012130 2.29345747 -0.90105532
C 1.69080683 3.48570057 -0.81688617
C 0.90159185 4.64160518 -0.91741973
C -0.48367435 4.54942569 -1.12549738
N -0.74947729 0.80285235 -1.17612773
N 1.66011024 0.95856468 -0.87908726
C -1.98394466 0.23119370 -1.52739284
C 3.00987617 0.55950445 -0.95878798
C 3.27136840 0.78271178 -1.58323298
C -4.34803247 -0.03363898 -1.99550601
C -4.10569859 -1.37957395 -2.33745159
C -2.82579205 -1.97037216 -2.26667772
C -1.79156739 -1.13207420 -1.83827265
C 3.06559067 -0.81415073 -1.26480631
C 4.26500386 -1.52261514 -1.39227151
C 5.44177572 -0.77623726 -1.18288180
C 5.43087890 0.59916680 -0.86958434
C 4.19744476 1.27540547 -0.75395542
O -0.49154712 -1.56355898 -1.69245919
O 1.82888536 -1.40916235 -1.41114809
P 0.54837265 -0.37453997 -1.08011717
N 0.32293762 -0.95174141 0.73246894
C 4.26039948 -2.99317353 -1.69934021
C 2.25299751 -0.15391862 2.05487425
C 3.45586920 -0.41971836 2.72376892
C 3.92990294 -1.73618766 2.83041671
C 6.72569006 1.35079283 -0.68609860
C 3.19524151 -2.79539820 2.27318694
C 1.99377527 -2.53988586 1.59903885
C -2.56204066 -3.41255185 -2.59291023
C -5.73759951 0.54850257 -2.07013999
C 1.53318840 -1.21773776 1.49153196
H -2.19142095 3.24501232 -1.40213053
H 2.77366844 3.57459626 -0.68561064
H 1.38303892 5.62727489 -0.84336321
Int VII (optimized at the PBE-D3(BJ)/def2-SVP level)

H	-1.08908283	5.46270023	-1.21387609	
H	-3.46129181	1.82331859	-1.29767774	
H	-4.94992350	-2.00630851	-2.66509706	
H	6.40865367	-1.2952183	-1.26146690	
H	4.19282105	2.33714344	-0.48417928	
H	3.66794391	-3.21285002	-2.61049433	
H	5.28742404	-3.37450013	-1.84828708	
H	3.79434311	-3.56832772	-0.87147293	
H	1.89467537	0.87859413	1.94244991	
H	4.02902955	0.41173322	3.15864227	
H	4.8741983	-1.93889698	3.35226154	
H	7.10950756	1.72156712	-1.66058141	
H	6.60114449	2.23239829	-0.02746945	
H	7.51374119	0.70470850	-0.25266871	
H	3.56165552	-3.8286930	2.35901739	
H	1.41989135	-3.36121159	1.14302846	
H	-2.27947673	-3.9791130	-1.68047959	
H	-3.45561932	-3.89321860	-3.03246637	
H	-1.71945854	-3.51667940	-3.30579920	
H	-6.49543192	-0.22876533	-2.8337343	
H	-6.01884245	1.04845188	-1.12051556	
H	-5.80903685	1.31381220	-2.87103482	
H	-0.37611509	-0.27864465	1.26298036	
H	-0.21735032	-1.83297049	0.65179443	
N	-1.75875467	0.45636508	1.85920515	
N	-2.84459240	-0.18877923	1.71209002	
C	-1.86939884	1.86166487	1.92551691	
C	-3.08864645	2.55216405	1.72813266	
C	-0.68463304	2.57963651	2.19719874	
C	-3.10545298	3.94672029	1.80191028	
H	-3.99663180	1.96773073	1.52675034	
C	-0.71276512	3.97605705	2.27303392	
H	0.24646502	2.02375969	2.37409979	
C	-1.92197040	4.66128124	2.07404382	
H	-4.05037574	4.49029490	1.65175111	
H	0.21074828	4.53297770	2.48619875	
H	-1.94630142	5.75960571	2.13257429	
C	-2.74106525	-1.58597254	1.72261879	
C	-3.71755481	-2.30026160	0.99105223	
C	-1.75470724	-2.29222163	2.46050300	
C	-3.66097119	-3.69703323	0.93368642	
H	-4.48875518	-1.73022511	0.45531629	
C	-1.72028468	-3.69048599	2.41000473	
H	-1.06120201	-1.73347948	3.10707202	
C	-2.66134640	-4.39505153	1.63446656	
H	-4.40939427	-4.24924120	0.34634849	
H	-0.97180834	-4.23936484	3.00162387	
H	-2.63390845	-5.49441155	1.60449295	
---	---	---	---	---
C	0.97110290	3.07655339	-1.07840181	
C	0.26751590	4.28816143	-1.12267242	
C	-1.11900317	4.32509661	-0.89670255	
N	-1.63941419	0.64764922	-0.32220570	
N	0.75795172	0.58872238	-0.69910507	
C	-2.94843068	0.15662359	-0.16083628	
C	2.03587052	0.04399373	-0.92198929	
C	-4.17439403	0.82468877	-0.00419256	
C	-5.35368035	0.06311054	0.11291780	
C	-5.28002491	-1.34792350	0.06088550	
C	-5.28002491	-2.04779978	0.09573561	
C	-2.91764739	-1.25333763	0.18356993	
C	1.94157331	-1.36216611	0.91698932	
C	3.04129590	-2.20592685	1.10884745	
C	4.28179976	-1.5587523	-1.27314818	
C	4.42484941	-0.15417331	1.25815174	
C	3.28542022	0.65841338	0.08191422	
O	-1.65409912	-1.78669324	-0.3367248	
O	0.66874278	-1.83903549	-0.67383805	
P	-0.44430727	-0.62004604	-0.36833952	
C	-0.18161676	-0.82512211	1.65663237	
C	2.88103929	-3.70015994	1.10110326	
C	1.10791521	1.12428925	2.42798733	
C	2.33180147	1.69479888	2.80505374	
C	3.48036526	0.89428445	2.91595163	
C	5.77887496	0.47837444	-1.45840114	
C	3.40627740	-0.48431796	2.66065214	
C	2.18850835	-1.06601792	2.28380600	
C	-3.98225595	-3.54634357	-0.16678562	
C	-6.68908338	0.74064240	0.28846389	
C	1.05120101	-0.25305351	2.16972703	
H	-2.91759102	3.19421065	-0.47359865	
H	2.04655339	3.06076893	-1.28043067	
H	0.81224535	5.21681126	-1.34507355	
H	-1.65742880	5.28527212	-0.94078779	
H	-4.23504097	1.91739247	0.03975411	
H	-6.20968726	-1.93203307	0.14715255	
H	5.17820855	-2.18322388	-1.41242839	
H	3.40172404	1.74686051	-1.04632109	
H	2.14433136	-4.02873225	-1.86220055	
H	3.84233881	-4.20601995	-1.30607899	
H	2.50336057	-4.06349653	-0.12194441	
H	0.21031270	1.75302811	2.32137329	
H	2.38487810	2.77318144	3.01212412	
H	4.43845503	1.34702268	3.20994248	
H	5.96911799	0.67089722	-2.53590565	
H	5.85994428	1.45054795	-0.93406026	
H	6.59333240	-0.17873602	-1.09725042	
H	4.30227220	-1.11494532	2.75108793	
H	2.12831837	-2.14330238	2.06585391	
H	-4.98411396	-4.00795198	-0.09606074	
H	-3.51408638	-3.87347169	-1.11781763	
H	-3.35434117	-3.95630961	0.65112247	
H	-6.59376591	1.84251488	0.31591327	
H	-7.37855773	0.48017691	-0.54074569	
H	-7.18207279	0.41725326	1.22814505	
H	-1.01470543	-0.40821088	2.10511699	
H	-0.22491907	-1.84557559	1.81047829	
Further Structures:

16 (optimized at the UB3LYP-D3(BJ)/def2-TZVP level)

Atom	X	Y	Z
O	1.13341515	-1.10669821	-0.63205583
O	-1.13355764	-1.10649456	-0.63082723
N	1.21140718	1.26635688	-0.35950885
N	-1.21121217	1.26658404	-0.35776022
C	0.71824291	2.52323089	-0.48492805
C	-0.71797225	2.52338126	-0.48371445
C	-1.41572445	3.72790482	-0.65023238
H	-2.49098766	3.74531897	-0.67449350
C	-0.70397539	4.89657078	-0.80292367
H	-1.23558748	5.82911542	-0.93172808
C	0.7041846	4.89639026	-0.93409040
C	1.41608870	3.72752356	-0.65276919
H	2.49131766	3.74453728	-0.67910443
C	2.49908494	0.75090643	-0.44554920
C	3.73310220	1.39238014	-0.37295921
H	3.79619070	2.44967944	-0.19644978
C	4.88760951	0.63206353	-0.49452438
C	4.76379316	-0.75501189	-0.68311104
H	5.66954684	-1.33019753	-0.78205056
C	3.54913811	-1.44020294	-0.74026376
C	2.42384049	-0.63688299	-0.60636099
C	3.45339650	-2.95326771	-0.94540339
C	2.72997581	-3.59420177	0.25419526
H	1.70455346	-3.24240859	0.33617387
H	3.24879743	-3.37006608	1.18772993
H	2.70532596	-4.67808783	0.13195971
C	4.83985916	-3.59647651	-1.06460062
H	5.43584100	-3.45302472	-0.16173071
H	5.39905683	-3.20635903	-1.91640880
H	4.72300891	-4.66987914	-1.21375598
C	2.67413979	-3.24417914	-2.24280201
H	2.61502610	-4.32202628	-2.40224624
H	3.17957956	-2.80373192	-3.10379659
H	1.65914208	-2.85356303	-2.20229004
C	6.28383457	1.25322162	-0.42094145
C	6.23249644	2.77133486	-0.21748455
H	5.73795162	3.04036440	0.71800561
H	5.72147516	3.27370169	-1.04138197
H	7.24730695	3.16672055	-0.17444670
C	7.03514635	0.96595508	-1.73472820
H	6.50634551	1.39388560	-2.58796394
H	7.15065638	-0.10331177	-1.91174676
H	8.03317925	1.40527695	-1.69711910
C	7.05294052	0.63069290	0.75962996
H	8.05187381	1.06470563	0.82505324
H	7.16663605	-0.44746224	0.64642416
H	6.53725586	0.81833083	1.70289084
C	-2.49899910	0.75128188	-0.44383138
C	-3.73291438	1.39292289	-0.37129294
Atom	X	Y	Z
------	-------	-------	-------
H	-3.79586958	2.45010078	-0.19404032
C	-4.88755141	0.63294427	-0.49402711
C	-4.76393179	-0.75389314	-0.68407022
H	-5.66973856	-1.32876713	-0.78428865
C	-3.54935158	-1.43926343	-0.74141072
C	-2.42399394	-0.63636471	-0.60553942
C	-3.45394535	-2.95193274	-0.94979941
C	-2.67512970	-3.23950363	-2.24814463
H	-3.18088650	-2.79746213	-3.10795212
H	-2.61595285	-4.31732367	-2.41008161
H	-1.66014504	-2.84922642	-2.20703845
C	-2.73018950	-3.59603289	0.24785329
H	-1.70420055	-3.24580639	0.32921531
H	-2.70705971	-4.67971197	0.12356541
C	-3.24768641	-3.37299871	1.18239052
C	-3.43629762	-3.45301465	-0.16673650
H	-4.72393649	-4.6671972	-1.22159270
H	-5.3990319	-3.2025984	-1.92088054
C	-6.28368238	1.25436749	-0.42056003
C	-6.3210093	2.7726283	-0.21553665
H	-5.7261530	3.2755016	-1.03870374
H	-5.73789055	3.04024111	0.72043182
H	-7.24684234	3.16783215	-0.17254196
C	-7.05397432	0.63082774	0.75895618
H	-6.53839926	0.81794930	1.70269326
H	-7.16735383	-0.44720210	0.64463590
H	-8.05248041	1.06492488	0.82424141
C	-7.03437979	0.96862485	-1.73502880
H	-8.03229949	1.40821519	-1.69753945
H	-7.15011720	-0.10043175	-1.91316425
H	-6.50498039	1.39722974	-2.58755343
C	0.00093795	-0.22130611	1.69590384
C	0.01246263	0.88501332	2.54485000
C	-0.00507596	-1.50488135	2.24362987
C	0.01638301	0.70566206	3.91843150
H	0.02168399	1.89015914	2.14504785
C	-0.00085631	1.67133188	3.61870935
H	-0.00990222	-2.37160138	1.59908531
C	0.00720183	-0.57282024	4.47977284
H	0.02926292	1.57242159	4.56701401
H	-0.00159800	-2.67260771	4.03061079
C	-0.01869887	-0.76079236	5.96887404
H	0.45698213	0.07327752	6.48402375
H	-1.0495624	-0.82310578	6.32711519
H	0.48467317	-1.68179894	6.26197468
P	0.00018211	-0.03893987	-0.08789785
Figure S21: Spin density plot of 16 (isovalue=0.0004) computed at the UB3LYP-D3(BJ)/def2-TZVP level of theory.

17 (optimized at the UB3LYP-D3(BJ)/def2-TZVP level)

Element	X	Y	Z	
C	-1.64830239	2.91381169	-1.12822057	
C	-1.00308514	1.70575486	-0.84546444	
C	0.42447031	1.61391386	-0.97403217	
C	1.16251294	2.70787772	-1.44606646	
C	0.49879036	3.87498311	-1.74487355	
C	-0.89632882	3.98130192	-1.57199476	
N	-1.54961541	0.52526290	-0.43006686	
N	0.86047867	0.39077478	-0.61186017	
C	-2.87247494	0.12679007	-0.26007301	
C	1.99318385	-0.34048252	-0.91127100	
C	-4.06551315	0.72922443	-0.65537691	
C	-5.26364460	0.07976191	-0.38121304	
C	-5.24188935	-1.16027036	0.27586901	
C	-4.06423209	-1.79663765	0.66225866	
C	-2.89267323	-1.1175315	0.37471988	
C	1.67749803	-1.69863960	-0.80251684	
C	2.59557395	-2.70426357	-1.02934571	
C	3.87889836	-2.27672922	-1.37912288	
C	4.23843045	-0.92473707	-1.49121717	
C	3.28369593	0.05649497	-1.25132385	
O	-1.65107618	-1.61513609	0.65934928	
O	0.36369079	-1.94340924	-0.44384287	
P	-0.38300106	-0.6406538	0.22133326	
N	0.10245457	-0.29420337	1.74746972	
C	2.21896785	-4.15036015	-0.90983691	
C	1.10020333	1.85724945	2.34437033	
C	2.20090140	2.61509796	2.72341342	
C	3.43329839	2.00207847	2.92098067	
C	5.64517669	-0.55281796	-1.86826779	
C	3.56401322	0.62951665	2.74334919	
C	2.46627797	-0.13070605	2.36079869	
C	-4.03839791	-3.13351015	1.34001547	
---	---	---	---	---
C	-6.57684748	0.68907396	-0.78551170	
C	1.23780052	0.48678733	2.15742556	
H	-2.70939175	3.02278813	-0.98497939	
H	2.23231024	2.64149810	-1.55324363	
H	1.05576753	4.73060537	-2.10049951	
H	-1.38636334	4.92086309	-1.78665135	
H	-4.07977799	1.66248606	-1.19299720	
H	-6.18348129	-1.65467614	0.48208185	
H	4.63364041	-3.03048287	-1.56861562	
H	3.55772852	1.09835783	-1.29702613	
H	1.43036918	-4.40812079	-1.61925256	
H	3.07733559	-4.79075137	-1.10260052	
H	1.83585777	-4.37453457	0.08724138	
H	0.13513396	2.32170429	2.19002843	
H	2.09447144	3.68157279	2.86995326	
H	4.28881865	2.59248996	3.22055357	
H	5.85323072	-0.82523151	-2.90550726	
H	5.81669076	0.51751395	-1.76292194	
H	6.37094196	-1.07700075	-1.24459664	
H	4.52013257	0.14926182	2.90213421	
H	2.55772579	-1.19801092	2.21009547	
H	-5.04566473	-3.53050776	1.44982898	
H	-3.44384868	-3.84903080	0.76920096	
H	-3.58761639	-3.06318477	2.33208226	
H	-6.43398338	1.61193952	-1.34590710	
H	-7.15261952	0.00105091	-1.40718183	
H	-7.18565558	0.91861522	0.09178813	
H	-0.43880469	-0.73065686	2.47931040	

Anilinium (optimized at the PBE-D3(BJ)/def2-SVP level)

C	-0.17090400	1.22973600	-0.00637900	
C	1.23232400	1.21888800	0.00171100	
C	1.92926100	0.00000000	0.00684200	
C	1.23232400	-1.21888800	0.00171100	
C	-0.17090400	-1.22973600	-0.00637900	
C	-0.83747500	0.00000000	-0.01095200	
N	-2.32813600	0.00000000	0.00832400	
H	-0.71973300	2.18471800	-0.01157900	
H	1.77978700	2.17242200	0.00032000	
H	3.02896400	0.00000000	0.01065900	
H	1.77978700	-2.17242200	0.00032000	
H	-0.71973300	-2.18471800	-0.01157900	
H	-2.71534200	0.83505900	-0.47106800	
H	-2.71534200	-0.83506000	-0.47106700	
H	-2.70919100	0.00000000	0.97640800	
---	---	---	---	
C	-2.15661011	3.35743747	0.81466915	
C	-1.26289646	2.32315015	0.49897462	
C	0.13276309	2.59783744	0.36129221	
C	0.61289922	3.90432417	0.54141539	
C	-0.28988787	4.92726399	0.88076180	
C	-1.65939459	4.65717429	1.01531795	
N	-1.53812328	0.98282771	0.22929833	
N	0.83274751	1.45237449	-0.01078705	
C	-2.74980643	0.34457475	-0.06968057	
C	2.17433702	1.25586231	-0.36018758	
C	-4.06422362	0.65292335	0.30446528	
C	-5.12168195	-0.16783499	-0.14931322	
C	-4.83182107	-1.27921025	-0.96295630	
C	-3.51654568	-1.62218469	-1.34602695	
C	-2.49571979	-0.79043955	-0.87546061	
C	2.30533495	0.00167248	-0.9997245	
C	3.53170860	-0.49121718	-1.45480175	
C	4.65549475	0.33668429	-1.24112560	
C	4.56733581	1.58653554	-0.59960662	
C	3.30994678	2.05001577	-0.14971664	
O	-1.17302203	-1.00103004	-1.16535357	
O	1.13115900	-0.68875061	-1.13472183	
P	-0.14028658	-0.01862935	-0.22279202	
C	0.01513326	-0.91628939	1.22460291	
C	3.61096656	-1.84493282	-2.10418834	
C	1.27576267	-2.37308085	2.70746847	
C	1.92391305	-3.58614274	2.97215998	
C	2.00998362	-4.57797692	1.98263143	
C	5.79637686	2.43601628	-0.38177021	
C	1.41988156	-4.34332903	0.73002938	
C	0.75038570	-3.14263890	0.45864267	
C	-3.19162623	-2.81784678	-2.19817969	
C	-6.54178271	0.15525503	0.24841804	
C	0.68237590	-2.13424950	1.44766483	
H	-3.23146115	3.16209481	0.89689456	
H	1.67504206	4.13459070	0.40521557	
H	0.08928377	5.94818374	1.03459627	
H	-2.35858860	5.46525764	1.27579045	
H	4.28158283	1.50095793	0.96579970	
H	-5.65933964	-1.91913119	-1.30861941	
H	5.64042986	-0.02270069	-1.57939417	
H	3.24615709	3.00663012	0.38270628	
H	2.93829347	-1.90793039	-2.98446902	
H	4.64228158	-2.07258989	-2.43363447	
H	3.28197673	-2.63889279	-1.40093628	
H	1.23023780	-1.59055068	3.48175211	
H	2.37664719	-3.75023589	3.96203727	
H	2.52719622	-5.52681821	2.18746486	
H	5.73297286	3.39309656	-0.94171104	
H	5.92543901	2.69873178	0.68898566	
H	6.71445177	1.91422674	-0.71394046	
H	1.46673803	-5.11584701	-0.05317846	
Aggregate (15)\textsubscript{2} (optimized at the PBE-D3(BJ)/def2-SVP level)

Atoms	x	y	z
C	0.98329300	-1.43166000	3.47196400
C	-0.12821800	-1.49225700	2.61480800
C	-1.33982400	-0.81964300	2.97595800
C	-1.41265100	-0.07809400	4.16952500
C	-0.28169500	-0.00752200	5.00248400
C	0.89888100	-0.68352800	4.66116200
C	-0.28356600	-2.21242100	1.42740200
C	-2.34503600	-1.07319900	2.05047100
C	0.47768100	-3.29846400	0.95248900
C	-3.70546100	-0.72565000	2.03873000
C	1.81809200	-3.64731400	1.18221400
C	2.32041600	-4.84339900	0.63049400
C	1.47056600	-5.65526800	-0.14915700
C	0.12956000	-5.31883300	-0.41841000
C	-0.33459200	-4.12373400	0.14842200
C	-4.38288800	-1.56674000	1.13059500
C	-5.74846800	-1.43902100	0.85782200
C	-6.42052500	-0.40143100	1.53925200
C	-5.77384400	0.47359600	2.43538600
C	-4.39287700	0.30997100	2.68654900
O	-1.62834800	-3.68767800	0.00530000
O	-3.57507100	-2.47857600	0.49466000
P	-1.92531000	-2.17200100	0.71901600
N	-1.64614500	-1.06004700	-0.62358600
C	-6.41078100	-2.33266700	-0.15135500
C	-3.64157400	0.12811000	-1.44412100
C	-4.66700400	0.29345900	-2.38687100
C	-4.75422500	-0.56389100	-3.49570500
C	-6.53691600	1.57020600	3.13608400
C	-3.82007700	-1.60198100	-3.64792200
C	-2.80460300	-1.78361500	-2.69762900
C	-0.77729000	-6.15860100	-1.27212700
C	3.76231300	-5.23568200	0.84287400
C	-2.70271100	-0.90719600	-1.60102400
H	1.90599000	-1.97150200	3.23632900
H	-2.35054600	0.40361600	4.46883100
H	-0.33742300	0.56962300	5.93665500
H	1.77470200	-0.63275800	5.32370000
H	2.49001600	-3.00125400	1.75914700
H	1.86776100	-6.58985100	-0.57630000
H	-7.49541300	-0.26299700	1.34326600
H	-3.87730300	1.01387600	3.35175800
Atoms	X	Y	Z
-------	----------	----------	----------
	-6.23080400	-3.40222400	0.07855100
	-7.50217000	-2.15850600	-0.18773600
	-5.93484000	-2.15230000	-0.18773600
	-3.58481300	0.79923000	0.79923000
	-5.40074300	1.10166000	2.25066500
	-5.55468800	-0.42826000	-4.23788700
	-6.75267500	1.29744400	4.19111600
	-5.96049600	2.51731700	3.15721900
	-7.50217000	-2.15850600	-0.18773600
	-2.09489600	-2.61811000	-2.78772200
	-1.00878900	-5.64170300	-2.22811800
	-0.31513200	-7.13398300	-1.51274000
	-1.74901800	-6.33983200	-0.77036500
	4.35979700	5.11220600	0.08661000
	4.24247000	4.62621600	1.63283600
	3.85367300	6.30095700	1.13523900
	1.30029200	0.54233300	0.14588300
	-0.76734300	-1.34353300	-1.09389400
	-0.88884800	1.32230000	0.76204600
	0.15117700	1.40138500	0.47854900
	-1.57214400	2.61071300	0.74638300
	-1.98513800	3.15882800	-0.47378100
	-1.75601600	3.29322300	1.95764800
	-2.60317400	4.41811700	-0.47416600
	-1.81999900	2.61866800	-1.41678000
	-2.37689100	4.55025500	1.94332600
	-1.39584500	2.85392100	2.90071700
	-2.61811000	5.11322700	0.72885200
	-2.92363800	4.85511800	-1.43130800
	-2.52155800	5.09492300	2.88788800
	-3.28610100	6.10080400	0.72113000
	-0.87253900	0.93421500	1.72568200
	1.85735800	1.43396200	0.48476400
	2.56464200	1.29898600	-1.12239100
	1.99931600	2.50897600	1.42913800
	2.00237500	0.53077000	0.95772100
	3.15754900	-0.36764200	-0.98035500
	1.25627900	0.62462400	-2.11614600
	4.13361900	1.88102200	-0.85781100
	2.16674900	2.84205400	-1.70682700
	1.73744700	2.19397900	2.77892400
	2.28996200	3.84020300	1.07383600
	2.46302300	-1.32670400	-1.71601300
	4.44301600	-0.40388000	-0.41205700
	1.34331500	-0.74574900	-2.38215100
	0.45418600	1.61108500	-2.71138400
	4.96930600	0.90432000	-0.35948400
	1.00937700	2.88161400	-2.44245600
	1.74338400	3.19564400	3.75794100
	1.52697900	1.15281900	3.06869500
	2.29513200	4.83314800	2.06568200
	2.51057200	4.09995700	0.03293000
C 2.77576700 -2.67938300 -1.91221000
C 5.18125900 -1.48225600 0.09745900
C 0.54975200 1.18569800 0.16779200
C 0.43795300 4.07236700 -2.90444900
C 6.23613400 1.48225600 0.09745900
C 0.54975200 1.18569800 -3.23870700
C 2.01599500 4.52627000 3.40597200
C 1.53732700 2.92321200 4.80427400
C 2.52660000 5.86941500 1.77643300
C 1.95258400 -3.45989400 -2.73969800
C 3.65435500 -3.12444000 -1.43487000
C 6.46140200 -1.23831300 0.63794300
C 4.77103200 -2.49939000 -0.10309700
C 0.85083700 2.89182900 -3.39507800
C -0.27555500 -1.08260800 -3.80367700
C -1.33703400 2.69228900 -3.94437000
H -1.22146100 0.54780700 -3.63734400
C 6.96092500 0.08144800 0.66106200
C 6.74983300 2.59748100 0.20652700
C -0.74450900 3.93977000 -3.66475900
C 1.05015500 5.40177800 -2.56317700
H 2.02333000 5.31585800 4.17131500
H 2.18728400 -4.52443000 -2.87636900
C 7.29394700 -2.38033700 1.16661600
H 0.22505100 -3.50709100 -4.05814900
C -2.59864900 2.59637100 -4.76538100
H 7.95641300 0.26681700 1.09455100
H 6.06502500 3.25440000 0.78199800
H 7.75374500 2.64725000 0.66725600
H 6.81269500 3.02742400 -0.81440800
H -1.22287300 4.85548900 -4.04647300
H 2.14626000 5.39465500 -2.72746000
H 0.60792200 6.21471500 -3.16860600
H 0.88669400 5.64675700 -1.49184100
H 7.83718400 -2.09628600 2.08960500
H 6.67464400 -3.27066100 1.39195400
H 8.05972700 -2.69190300 0.42453600
H -3.09359900 3.58081500 -4.86950800
H -2.37977900 2.22556000 -5.78917300
H -3.32149500 1.88759000 -4.31360800
References

[1] P. Chaudhuri, M. Hess, J. Müller, K. Hildenbrand, E. Bill, T. Weyhermüller, K. Wieghardt, *J. Am. Chem. Soc.* 1999, 121, 9599.

[2] N. A. Yakelis, R. G. Bergman, *Organometallics* 2005, 24, 3579.

[3] M. Brookhart, B. Grant, A. F. Volpe, *Organometallics* 1992, 11, 3920.

[4] L. Wang, A. Ishida, Y. Hashidoko, M. Hashimoto, *Angew. Chem. Int. Ed.* 2017, 56, 870; *Angew. Chem.* 2017, 129, 888.

[5] Y. Liao, Q. Lu, G. Chen, Y. Yu, C. Li, X. Huang, *ACS Catal.* 2017, 7, 7529.

[6] G. M. Sheldrick, *Acta Crystallogr. A* 2008, A64, 112.

[7] a) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Crystallogr.* 2009, 42, 339; b) D. Kratzert, *FinalCif*, Kratzert, D.

[8] R. Rowshanpour, T. Dudding, *RSC Adv.* 2021, 11, 7251.

[9] M. Shi, N. Ye, W. Chen, C. Cheung, M. Parmentier, F. Gallou, B. Wu, *Org. Process Res. Dev.* 2020, 24, 1543.

[10] J. Burés, *Angew. Chem. Int. Ed.* 2016, 55, 16084; *Angew. Chem.* 2016, 128, 16318.

[11] a) A. Jerschow, N. Müller, *J. Magn. Reson.* 1996, 123, 222; b) A. Jerschow, N. Müller, *J. Magn. Reson.* 1997, 125, 372.

[12] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji et al., *Gaussian 16 Rev. A.03*, Wallingford, CT, 2016.

[13] P. Erdmann, J. Leitner, J. Schwarz, L. Greb, *ChemPhysChem* 2020, 21, 987.

[14] a) Becke, *Phys. Rev. A* 1988, 38, 3098; b) A. D. Becke, *J. Chem. Phys.* 1993, 98, 5648; c) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, *J. Chem. Phys.* 2010, 132, 154104; d) S. Grimme, S. Ehrlich, L. Goerigk, *J. Comput. Chem.* 2011, 32, 1456; e) A. Schäfer, H. Horn, R. Ahlrichs, *J. Chem. Phys.* 1992, 97, 2571; f) F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, 7, 3297; g) F. Weigend, *Phys. Chem. Chem. Phys.* 2006, 8, 1057.

[15] Y. Zhao, D. G. Truhlar, *J. Phys. Chem.* 2005, 109, 5656.

[16] a) Perdew, Burke, Ernzerhof, *Phys. Rev. Lett.* 1996, 77, 3865; b) J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* 1997, 78, 1396.

[17] a) S. Grimme, *J. Chem. Phys.* 2006, 124, 34108; b) S. Huzinaga, *J. Chem. Phys.* 1965, 42, 1293; c) W. Kutzelnigg, U. Fleischer, M. Schindler in *NMR Basic Principles and Progress* (Hrsg.: P. Diehl, E. Fluck, H. Günther, R. Kosfeld, J. Seelig, U. Fleischer, W. Kutzelnigg, H.-H. Limbach, G. J. Martin, M. L. Martin et al.), Springer Berlin Heidelberg, Berlin, Heidelberg, 1991, S. 165–262.

[18] S. Kossmann, F. Neese, *J. Chem. Theory Comput.* 2010, 6, 2325.

[19] G. L. Stoychev, A. A. Auer, F. Neese, *J. Chem. Theory Comput.* 2017, 13, 554.

[20] F. Neese, F. Wennmoehs, U. Becker, C. Riplinger, *J. Chem. Phys.* 2020, 152, 224108.