Diversity and antibiotic resistance patterns of enterobacteria isolated from seafood in Thailand

Neelawan Pongsilpa and Pongrawee Nimnoib

aDepartment of Microbiology, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand; bDepartment of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom, Thailand

\textbf{ABSTRACT}

Contamination with enterobacteria was detectable in 89% of seafood samples from three central seafood markets in Thailand. The average numbers obtained from the same type of seafood were between 1.3 ± 0.9 and 4.5 ± 1.3 log CFU/g per sample. Eighty-one strains and 16 species were distinguished based on ERIC-PCR patterns and TP-RAPD patterns, respectively. The highest prevalence (90% of strains) was resistant to penicillin G whereas none was resistant to gentamycin. In addition, 63% exhibited multidrug resistance. The 16S rDNA sequences of a representative strain from each species exhibited 99% identity to either one of six genera including \textit{Citrobacter}, \textit{Enterobacter}, \textit{Klebsiella}, \textit{Providencia}, \textit{Serratia}, and \textit{Yersinia}. Three \(\beta\)-lactamase genes including \textit{blaTEM}, \textit{ampC}, and \textit{shv} were detected at the frequencies of 43%, 27%, and 24%, respectively. The representative strains possessing \(\beta\)-lactamase genes exhibited \(\beta\)-lactamase activity ranging from 1.96 ± 0.88 to 11.3 ± 0.37 \(\mu\)mol of hydrolyzed nitrocefin/min/mg protein.

\textbf{INTRODUCTION}

Seafood is a nutrient-rich part of a healthful diet containing a unique dietary source of the marine \(n\)-3 fatty acids, eicosapentaenoic acid, docosahexaenoic acid, vitamin D, vitamin B12, iodine, and selenium (Dahl, Bjerrka-Jaer, Graff, Kjellved, & Klemensen, 2006; Iwamoto, Ayers, Mahon, & Swerdlow, 2010). Seafood consumption has been shown to be associated with potential health attributes including cognitive development of infant during pregnancy (Oken et al., 2005), neurologic development during gestation and infancy (Hibbeln et al., 2007), and reduction in risk of heart disease (Mozaffarian & Rimm, 2006). Nevertheless, seafood consumption is not risk-free because seafood contributes to an important proportion of food-borne illnesses and outbreaks worldwide. Among the Food and Drug Administration (FDA)-regulated food categories, seafood was responsible for the second most outbreaks and the most relative rate of illness during 2004–2013 (Center for Science in the Public Interest (CSPI), 2015). Bacteria were reported to be a major cause (54%) of food-borne disease outbreaks in the United States in 2015 (Center for Disease Control and Prevention (CDC), 2017). Food poisoning caused by enterobacteria has become a public health concern in Thailand. In 2015, 200.22 food poisoning cases per 100,000 population were reported and \textit{Salmonella} spp. were the one most frequently found (48%) among pathogenic bacteria identified from 0.57% of all patients (Bureau of Epidemiology, Thailand, 2015).

Enterobacteria, which belong to the family \textit{Enterobacteriaceae}, are known as important seafood-associated pathogens. Up to date, some members have been assigned to novel families: \textit{Budviciaceae}, \textit{Erwiniacae}, \textit{Hafniaceae}, \textit{Morganellaceae}, \textit{Pectobacteriaceae}, and \textit{Yersiniaceae} which were proposed by Adeolu, Aminj, Naushad, and Gupta (2016). Enterobacteria have been implicated in the pathogenesis of host diseases such as nonalcoholic steatohepatitis, allergy, and inflammatory bowel disease (Miyata et al., 2011). Previous reports demonstrated the presence of enterobacteria in a variety of seafood of various origins (Guo et al.,...
Enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) fingerprinting of enterobacterial isolates

ERIC-PCR was performed to analyze genotypic diversity and relatedness among enterobacterial isolates as well as to distinguish individual strains. Genomic DNA of each isolate was used as a template in PCR reactions using a pair of primers ERIC2 and ERIC1R as described previously (Ogutcu, Adiguzel, Gulluce, Karadayi, & Sahin, 2009). The presence and size of the amplified fragments were determined by agarose (1% in Tris-borate-EDTA (TBE) buffer) gel electrophoresis and the unweighted pair groups using mathematical averages (UPGMA) dendrogram was constructed using the Phoretix ID Pro. software (TotalLab Ltd., Newcastle upon Tyne, UK). Enterobacterial strains with individual ERIC-PCR patterns were selected for subsequent studies.

Physiological and biochemical characteristics of enterobacterial strains

Enterobacterial strains were examined for their physiological and biochemical characteristics including 1) temperatures, pH values, and NaCl concentrations for growth; 2) production of enzymes (catalase, amylase, urease, caseinase, and protease); 3) fermentation of sugars (glucose, lactose, and sucrose); 4) decarboxylation of amino acids (arginine, lysine, and ornithine); and 5) indole, methyl red (MR), Voges-Proskauer (VP), citrate (IMViC) test.

Examination on antibiotic resistance of enterobacterial strains

Enterobacterial strains were examined for resistance to ten antibiotics as described by European Committee on Antimicrobial Susceptibility Testing (EUCAST, 2012).

Detection of antibiotic resistance genes in enterobacterial strains

Genomic DNA of each strain was used as a template in PCR reactions to detect the presence of eight antibiotic resistance genes as previously described. These genes included ampC (Hanson et al., 1999), blaCTX (Mohaddam, Beidokhti, Jamehdar, & Ghahraman, 2014), blaTEM (Bert, Bramger, & Lambert-Zochovsky, 2002), blaz (Olsen, Christensen, & Aarestrup, 2006), mecA (Durun, Ozer, Duran, Onlen, & Demir, 2012), oxa1 (Onyang, Ndeda, Wandlli, Wawire, & Ochieng, 2014), oxa9 (Hanson et al., 1999), and shv (Fang, Ataker, Hedin, & Dornbusch, 2008).

Two-primers random amplified polymorphic DNA (TP-RAPD) fingerprinting of enterobacterial strains

TP-RAPD was performed to distinguish enterobacterial species. Genomic DNA of each strain was used as a template in PCR reactions using a pair of primers 8F and 1522R as described by Rivas, Velazquez, Valverde, Mateos, and Martinez-Molina (2001). The presence and size of the amplified fragments were determined by agarose (1% in TBE buffer) gel electrophoresis.

Sequence analysis of partial 16S rDNA of enterobacteria

Partial 16S rDNA of a representative strain from each TP-RAPD pattern was amplified using a pair of universal primers UN16S 926f and UN16S 1392r (Lane, 1991). PCR reactions were carried out as described by Pongsilp, Teamroong, Nuttagij, Boonkerd, and Sadowsky (2002) and the PCR...
products were purified using QIAquick gel extraction kit (Qiagen, Valencia, CA, USA). The purified PCR products were sequenced by Bio Basic Canada Inc. (Markham, Ontario, Canada). The nucleotide sequences were aligned with reference 16S rDNA sequences using the BLASTN program (https://blast.ncbi.nlm.nih.gov/Blast.cgi) to identify the closest genera.

Sequence analysis of antibiotic resistance genes of enterobacteria

To reinforce the presence of antibiotic resistance genes in seafood-associated enterobacteria, the detected antibiotic resistance genes of a representative strain from each species were amplified. The PCR products were purified using the QIAquick gel extraction kit (Qiagen, Valencia, CA, USA). The purified PCR products were sequenced by Bio Basic Canada Inc. (Markham, Ontario, Canada). The nucleotide sequences were aligned with reference sequences using the BLASTN program (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

Measurement of β-lactamase activity of enterobacteria

The β-lactamase activity of a representative strain from each species which possessed β-lactam antibiotic resistance gene(s) was measured. The β-lactamase induction and β-lactam antibiotic resistance gene assay were performed as described by Sharma, Ramnani, and Virdi (2004).

Results and discussion

Prevalence of enterobacteria in seafood sold in Thailand

Enterobacteria were under the detection limit (< 1.2 log CFU/g) in four seafood samples while the remaining 31 samples contained enterobacteria that ranged from 1.3 ± 0.2 to 5.4 ± 0.1 log CFU/g. Average numbers of presumptive enterobacteria per sample of the same type of seafood sold in three central seafood markets of Thailand are shown in Table 1. Ninety-six pure isolates of enterobacteria were derived and designated by abbreviations ENTSF followed by the number (1 to 35) that indicates the order of isolation. The numbers of enterobacterial isolates was derived from the orders 16 and 28. Enterobacteria counts were tested and five profiles were obtained. The 33 and 5 strains fermented all tested sugars. Eighty-one enterobacterial strains varied in their physiological and biochemical characteristics. All strains grew at a temperature range between 20°C and 40°C. The 18 and 5 strains were able to grow at a minimum temperature of 15°C and maximum temperature of 45°C, respectively. All strains grew at a pH range between 4 and 9. The only one strain was able to grow at a minimum pH of 3. The maximum pH for growth was 11 for 20 strains. The 56 strains tolerated the maximum NaCl concentration of 7%. The 68, 9, and 1 strains produced catalase, urease, and amylase, respectively. None was positive for caseinase production. Protease activity ranging from undetectable to 14.56 ± 1.08 units/ml supernatant was measured by azocasein protease assay (Secades & Guijarro, 1999).

The strains exhibited four profiles for sugar fermentation. Sixty-eight strains fermented all tested sugars. Eight strains fermented only glucose. The only one strain fermented both glucose and lactose while four strains fermented both glucose and sucrose. Decarboxylation of arginine, lysine, and ornithine was tested and five profiles were obtained. The 33 and 5 strains decarboxylated both lysine and ornithine. Thirty strains decarboxylated both lysine and ornithine. Eleven strains were unable to decarboxylate either one of these amino acids.

Type of seafood	Average numbers of presumptive enterobacteria per sample of the same type of seafood (log CFU/g)*	
Common name	Scientific name	
Blue swimming	Portunus pelagicus	1.8 ± 1.0
Crab (6)		
Banana shrimp	Fenneropenaeus murgiennsis	2.5 ± 1.2
(5)		
Splendid squid	Loligo fomasana	1.3 ± 0.9
(4)		
Spotted babylon	Babylonia areolata	2.8 ± 0.9
(3)		
Scallop (3)	Agaponeurus purpuratus	2.6 ± 1.5
Barramundi (2)	Lates calcarifer	4.5 ± 1.3
Bigfin reef	Sepioteuthis lessoniana	2.5 ± 1.8
Squid (2)		
Short-bodied	Rastrelliger brachysoma	3.0 ± 1.9
mackerel (2)		
Silver pomfret	Pampus argenteus	2.0 ± 0.4
(2)		
Kuruma prawn	Marsupenaeus japonicus	under the detection limit (< 1.2)
(1)		
Blood cockle	Tegillarca granosa	under the detection limit (< 1.2)
(1)		
Mangrove crab	Scylla serrata	3.6 ± 0.4
(1)		
Cuttle fish	Sepia officinalis	2.7 ± 0.1
(1)		
John’s snapper	Lutjanus johnii	2.9 ± 0.5
(1)		
Green tiger	Peneaus semisculus	1.8 ± 0.2
prawn (1)		

*In cases that there were more than one sample of the same type of seafood, the values shown are the means of all samples assayed ± standard deviations. In cases that there was only one sample of the same type of seafood, the values shown are the means of three replicates ± standard deviations.

Physiological and biochemical characteristics of enterobacterial strains

Eighty-one enterobacterial strains varied in their physiological and biochemical characteristics. All strains grew at a temperature range between 20°C and 40°C. The 18 and 5 strains were able to grow at a minimum temperature of 15°C and maximum temperature of 45°C, respectively. All strains grew at a pH range between 4 and 9. The only one strain was able to grow at a minimum pH of 3. The maximum pH for growth was 11 for 20 strains. The 56 strains tolerated the maximum NaCl concentration of 7%. The 68, 9, and 1 strains produced catalase, urease, and amylase, respectively. None was positive for caseinase production. Protease activity ranging from undetectable to 14.56 ± 1.08 units/ml supernatant was measured by azocasein protease assay (Secades & Guijarro, 1999).

The strains exhibited four profiles for sugar fermentation. Sixty-eight strains fermented all tested sugars. Eight strains fermented only glucose. The only one strain fermented both glucose and lactose while four strains fermented both glucose and sucrose. Decarboxylation of arginine, lysine, and ornithine was tested and five profiles were obtained. The 33 and 5 strains decarboxylated both lysine and ornithine. Thirty strains decarboxylated both lysine and ornithine. Eleven strains were unable to decarboxylate either one of these amino acids.
The strains exhibited eight IMViC profiles including – + – – (56 strains), + + – + (nine strains), + + – – (five strains), – + – + (five strains), – + + – (three strains), – – + + (one strain), – – + – (one strain), and – + + + (one strain). The 14, 79, 6, and 16 strains were positive for indole production, MR reaction, VP reaction, and citrate utilization, respectively.

Prevalence of antibiotic resistance among enterobacterial strains

Twenty-four antibiotic resistance patterns, as shown in **Table 2**, were observed among 81 enterobacterial strains. The most common resistance pattern (25% of strains) was the ampicillin, erythromycin, penicillin G, and vancomycin co-resistance. The resistance to penicillin G, vancomycin, erythromycin, ampicillin, tetracycline, chloramphenicol, streptomycin, neomycin, and kanamycin was found in 73 (90% of strains), 62 (77%), 56 (69%), 50 (62%), 18 (22%), 3 (4%), 3 (4%), 2 (2%), and 1 (1%) strains, respectively, while none was resistant to gentamycin. The only one strain was susceptible to all ten antibiotics while the remaining strains exhibited resistance to at least one but up to six of the tested antibiotics. These ten antibiotics are sorted into six categories including 1) aminoglycosides (e.g. gentamycin, kanamycin, neomycin, and streptomycin); 2) glycopeptides (e.g. vancomycin); 3) macrolides (e.g. erythromycin); 4) penicillins (e.g. ampicillin and penicillin); 5) phenicols (e.g. chloramphenicol), and 6) tetracyclines (e.g. tetracycline). These antibiotics have been selected to determine the resistance of *Enterobacteriaceae* members in previous reports. The high prevalence of enterobacterial isolates displayed resistance to ampicillin, erythromycin, penicillin, and vancomycin. In con-

Table 2. Antibiotic resistance patterns of seafood-associated enterobacterial strains and numbers of strain(s) belonging to each pattern.

Antibiotic resistance pattern	Number of resistant strain(s) (%)	Antibiotic resistance pattern	Number of resistant strain(s) (%)	Antibiotic resistance pattern	Number of resistant strain(s) (%)
none	1 (1%)	AMP ERY PEN VAN	2 (3%)	ERY NEO PEN VAN	1 (1%)
PEN	2 (3%)	AMP PEN TET VAN	2 (3%)	ERY PEN TET VAN	1 (1%)
VAN	3 (4%)	AMP PEN TET VAN	6 (7%)	AMP CHL ERY VAN PEN VAN	1 (1%)
AMP PEN	8 (10%)	ERY PEN TET VAN	1 (1%)	AMP ERY PEN TET VAN	5 (6%)
AMP ERY PEN	1 (1%)	ERY PEN TET VAN	13 (16%)	CHL ERY PEN TET VAN	1 (1%)
ERY PEN	2 (3%)	ERY PEN TET VAN	2 (3%)	AMP CHL ERY PEN TET VAN	1 (1%)
NEO PEN	1 (1%)	AMP ERY PEN TET VAN	1 (1%)	AMP ERY KAN PEN TET VAN	1 (1%)
PEN VAN	2 (3%)	AMP ERY PEN TET VAN	20 (25%)	AMP ERY PEN STR TET VAN	3 (4%)

AMP: ampicillin (10 µg); CHL: chloramphenicol (30 µg); ERY: erythromycin (15 µg); KAN: kanamycin (30 µg); NEO: neomycin (30 µg); PEN: penicillin G (10 units); STR: streptomycin (10 µg); TET: tetracycline (30 µg); VAN: vancomycin (30 µg)

Figure 1. Dendrogram constructed from ERIC-PCR patterns of 96 enterobacterial isolates.

Figura 1. Dendrograma construido de patrones ERIC-PCR de 96 asilados enterobacterianos.
In relation to the result of antibiotic resistance, numbers of strains (s) closely related to each genus that exhibited resistance were obtained. The closest genera of 16 enterobacterial species were Citrobacter, Enterobacter, Klebsiella, Providencia, Serratia, and Yersinia with 99% identity. These sequences can be retrieved from the GenBank database under accession numbers MF593860 to MF593875. Taken together with TP-RAPD patterns, the data suggest that the seafood-associated enterobacteria included six species closely related to members of Klebsiella (34 strains), four species closely related to members of Enterobacter (30 strains), three species closely related to members of Citrobacter (three strains), one species closely related to members of Providencia (11 strains), one species closely related to members of Yersinia (two strains), and one species closely related to members of Serratia (one strain). The frequencies of the strains closely related to Klebsiella, Enterobacter, Providencia, Citrobacter, Yersinia, and Serratia in 35 seafood samples were 57%, 57%, 23%, 9%, 6%, and 3%, respectively. TP-RAPD patterns of species closely related to members of Klebsiella, Enterobacter, Citrobacter, Providencia, Yersinia, and Serratia correspond to lanes 1 to 6, 7 to 10, 11 to 13, 14, 15, and 16, in Figure 2, respectively.

In order to confirm the resistance to the antibiotic test, numbers of strains (s) closely related to each genus that showed high and low prevalences were reported for gentamycin-resistant isolates (Citron, Tyrrell, Merriam, & Goldstein, 2012; Hu, Liu, Zhang, Feng, & Zong, 2017; Kilonzo-Nthengen, Rotich, & Nahashon, 2013; Kumar, 2016). Multidrug resistant (MDR) is defined as nonsusceptibility to at least one agent in three or more antimicrobial categories (Basak, Singh, & Rajurkar, 2016). Therefore, 63% of strains were multiresistant. The previous study also noted the incidence of multiresistant enterobacteria present in seafood (Janecko et al., 2016; Nawaz et al., 2012). Antibiotic resistance may be directly introduced into seafood-associated enterobacteria via terrestrial run-off, in which antibiotic-resistant bacteria or antibiotic compounds were present. Mutidrug resistance of enterobacteria is a challenge for the global public health agenda. Enterobacteria have an intriguing ability to acquire multi-resistance in a single step by capturing several resistance genes from a variety of bacterial species and transferring genes to the same plasmids (Partridge, 2015).
strains were resistant to either one of three aminoglycosides including kanamycin, neomycin, and streptomycin.

In relation to their biochemical characteristics, shared characteristics among six species closely related to *Klebsiella* included 1) fermentation of glucose, lactose, and sucrose; 2) arginine decarboxylase-negative and lysine decarboxylase-positive reactions; 3) negative indole test; and 4) positive MR test. Similar features among four species closely related to *Enterobacter* were 1) fermentation of glucose; 2) ornithine decarboxylase-positive reaction; and 3) negative indole test. Three species closely related to *Citrobacter* shared features including 1) fermentation of glucose and lactose; 2) lysine decarboxylase-negative and ornithine decarboxylase-positive reactions; 3) positive MR test and negative VP test; and 4) negative urease test. A single species closely related to *Providencia* fermented glucose but did not ferment lactose. They were negative for arginine, lysine, and ornithine decarboxylases, positive for indole and MR tests, negative for VP test as well as displayed variable reactions for sucrose fermentation, citrate utilization, and urease production. A single species closely related to *Yersinia* fermented glucose, lactose, and sucrose. They were positive for ornithine decarboxylase and MR test but negative for arginine and lysine decarboxylase, indole test, VP test, citrate utilization, and urease production. A strain closely related to *Serratia* fermented glucose, lactose, and sucrose. It was positive for lysine and ornithine decarboxylases and MR test but negative for arginine decarboxylase, indole test, VP test, citrate utilization, and urease production. The results of carbohydrate fermentation were in accord with the phenotypic features of identified genera described in Walker, Mahon, Lehman, & Manuselis (2015). Glucose fermentation is a common characteristic of enterobacteria which is employed as a basis for their detection. Lactose fermentation is a common characteristic in most members of *Citrobacter, Enterobacter, Klebsiella, and Serratia,* but it is very rare in *Providencia.* Sucrose fermentation is common in most members of *Klebsiella* and *Serratia.* It is widely variable (0% to 100%) among species of *Enterobacter* and *Yersinia.*

Table 3.
Numbers of strain(s) closely related to each genus that exhibited resistance to each antibiotic.

Genus	AMP (%)	CHL (%)	ERY (%)	GEN (%)	KAN (%)	NEO (%)	PEN (%)	STR (%)	TET (%)	VAN (%)
Klebsiella (n = 34)	24 (71%)	0 (53%)	18 (61%)	0 (3%)	0 (3%)	1 (3%)	32 (94%)	0 (24%)	8 (65%)	22 (65%)
Enterobacter (n = 30)	20 (67%)	2 (7%)	24 (80%)	0 (3%)	1 (3%)	0 (3%)	28 (93%)	2 (7%)	6 (20%)	23 (77%)
Providencia (n = 11)	4 (36%)	1 (9%)	8 (73%)	0 (3%)	0 (3%)	0 (3%)	7 (64%)	0 (27%)	3 (100%)	11 (100%)
Citrobacter (n = 3)	1 (33%)	0 (0%)	3 (100%)	0 (3%)	0 (3%)	0 (3%)	1 (100%)	1 (33%)	1 (33%)	3 (100%)
Yersinia (n = 2)	1 (50%)	0 (0%)	2 (100%)	0 (3%)	0 (3%)	0 (3%)	2 (100%)	0 (0%)	0 (0%)	2 (100%)
Serratia (n = 1)	0 (0%)	0 (0%)	1 (100%)	0 (3%)	0 (3%)	0 (3%)	1 (100%)	0 (0%)	0 (0%)	1 (100%)

AMP: ampicilina (10 µg); **CHL:** chloramphenicol (30 µg); **ERY:** erythromycin (15 µg); **GEN:** gentamycin (10 µg); **KAN:** kanamycin (30 µg); **NEO:** neomycin (30 µg); **PEN:** penicillin G (10 units); **STR:** streptomycin (10 µg); **TET:** tetracycline (30 µg); **VAN:** vancomycin (30 µg)

The values with the same letter are not significantly different.

The values shown are the means of three replicates ± standard deviations.

Table 4.
β-lactamase activity of the selected enterobacterial strains harboring different β-lactamase genes.

Strain harboring β-lactamase gene(s)	Closest genus	Detected β-lactamase gene(s)	β-lactamase activity (µmol of hydrolyzed nitrocefin/min/mg protein)
ENTSSF 4–1	Enterobacter	blaTEM	3.59 ± 0.27**
ENTSSF 6–3	Enterobacter	blaTEM	4.09 ± 0.96
ENTSSF 1–1	Klebsiella	blaTEM	1.96 ± 0.88
ENTSSF 31–2	Klebsiella	blaTEM	4.18 ± 0.16
ENTSSF 22–1	Providencia	blaTEM	11.3 ± 0.37
ENTSSF 7–2	Serratia	blaTEM	3.2 ± 0.12
ENTSSF 23–1	Enterobacter	ampicilina blatem	7.7 ± 0.5
ENTSSF 22–2	Providencia	ampicilina blatem	9.73 ± 0.49
ENTSSF 8–2	Enterobacter	ampicilina blatem shv	8.77 ± 0.38
ENTSSF 18–1	Providencia	ampicilina blatem shv	2.59 ± 0.74

The values shown are the means of three replicates ± standard deviations.

The values with the same letter are not significantly different.

Los valores presentados corresponden a las medias de tres repeticiones ± desviación estándar.

Los valores que figuran con la misma letra no son significativamente diferentes.

Table 3.
Mediciones de cepa(s) estrechamente relacionadas con cada género que exhibió resistencia a cada uno de los antibióticos.

Table 4.
Actividad de β-lactamasa de las cepas de enterobacterias seleccionadas.
ine the β-lactamase activity. Among the ten strains examined, the strain ENTSF 22–1 displayed the highest β-lactamase activity. The β-lactamase activity of the selected enterobacterial strains is listed in Table 4. However, it is possible that β-lactamase activity was partly resulted from other β-lactamase genes that co-occur in the same strains.

Conclusion

The results of this study provide information on the prevalence of enterobacteria, a major group of food-borne pathogenic bacteria, in seafood sold in Thailand that would be valuable for hygienic and sanitary management. Most of the seafood samples (89%) were positive for contamination with enterobacteria, in which 63% were multiresistant. The resistance to antibiotics in five categories was exhibited by 7% of all strains. The multi-drug resistance in nonclinical strains emphasizes the risk of spread via food and environment. This issue of concern should be involved in surveillance programs.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Silpakorn University Research and Development Institute under Grant SURI-D 57/01/27.

References

Adeolu, M., Alnajar, S., Naushad, S., & Gupta, R. S. (2016). Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: Proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Environiaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. International Journal of Systematic and Evolutionary Microbiology, 66(12), 5575–5599.

Ananchaiapattana, C., Bari, M. D. L., & Inatsu, Y. (2016). Bacterial contamination into ready-to-eat foods sold in Middle Thailand. Biocontrol Science, 21(4), 225–230.

Ananchaiapattana, C., Hosotani, Y., Kawasaki, S., Pongsawat, S., Bari, M. D. L., Isobe, S., & Inatsu, Y. (2012). Bacterial contamination in retailed foods purchased in Thailand. Food Science and Technology Research, 18(5), 705–712.

Basak, S., Singh, P., & Rajurkar, M. (2016). Multidrug resistant and extensively drug resistant bacteria: A study. Journal of Pathogens, 2016, 4065603.

Bert, F., Bramger, C., & Lambert-Zochovsky, N. (2002). Identification of PSE and OXA β-lactamase genes in Pseudomonas aeruginosa using PCR-Restiction fragment length polymorphism. Journal of Antimicrobial Chemotherapy, 50(1), 11–18.

Bureau of Epidemiology, Thailand. (2015). Annual epidemiological surveillance report, 2015. Retrieved from http://www.boe.moph.go.th/ Annual/AESR2015/aesr2558/Part%201/ 07_food_poisoning.pdf

Center for Disease Control and Prevention (CDC). (2017). Surveillance for foodborne disease outbreaks, United States, 2015. Annual Report. Retrieved from https://www.cdc.gov/foodsafety/pdfs/2015FoodborneOutbreaks_508.pdf

Center for Science in the Public Interest (CSPI). (2015, November). Outbreak alert 2015!: A review of foodborne illness in the U.S. from 2004–2013. Retrieved from https://cspinet.org/sites/default/files/attachment/outbreak-alert-2015.pdf

Citron, D. M., Tyrrell, K. L., Merriam, C. V., & Goldstein, E. J. C. (2012). In vitro activities of CB-183,315, vancomycin, and metronidazole against 556 strains of Clostridium difficile, 445 other intestinal anaerobes, and 56 Enterobacteriaceae species. Antimicrobial Agents and Chemotherapy, 56(3), 1613–1615.

Da Silva, N., Taniwaki, M. H., Junqueira, V. C. A., Silveira, N., Da Silva Do Nascimento, M., & Gomes, R. A. R. (2012). Microbiology examination methods of food and water: A laboratory manual. Boca Raton, FL: CRC Press.

Dahl, L., Bjørkjaer, T., Graff, I. E., Kjellevold, M., & Klemensen, B. (2006). Fish – more than just omega-3. Tidsskrift for Den Norske Lægeforening, 126(3), 309–311.

Durán, N., Ozer, B., Durán, G. G., Onyen, Y., & Demir, C. (2012). Antibiotic resistance genes & susceptibility patterns in staphylococci. Indian Journal of Medical Research, 135(3), 389–396.

European Committee on Antimicrobial Susceptibility Testing (EUCAST). (2012, February). Antimicrobial susceptibility testing EUCAST disk diffusion method version 2.1. Retrieved from https://asmisg.files.wordpress. com/2013/08/manual_v_2_1_eucast_disk_test.pdf

Fang, H., Ataker, F., Hedin, G., & Dornbusch, K. (2008). Molecular epide- miology of extended-spectrum β-lactamases among Escherichia coli isolates collected in a Swedish hospital and its associated health care facilities from 2001 to 2006. Journal of Clinical Microbiology, 46(2), 707–712.

Ghanem, N. A., Elshabasy, N. A., Ibrahim, H. A., & Samaha, I. A. (2014). Enterobacteria in some marine fish fillet. Alexandria Journal of Veterinary Sciences, 40, 124–131.

Guo, Y., Zhou, H., Qin, L., Pang, Z., Qin, T., Ren, H., ..., Zhou, J. (2016). Frequency, antimicrobial resistance and genetic diversity of Klebsiella pneumoniae in food samples. Public Library of Science One, 11(4), e0153561.

Hanson, N. D., Thomson, K. S., Moland, E. S., Sanders, C. C., Berthold, G., & Penn, R. G. (1999). Molecular characterization of a multiple resistant Klebsiella pneumoniae encoding ESBLs and a plasmid-mediated AmpC. Journal of Antimicrobial Chemotherapy, 44(3), 377–380.

Hibbelen, J. R., Davis, J. M., Steer, C., Emmett, P., Rogers, I., Williams, C., & Golding, J. (2007). Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): An observational cohort study. The Lancet, 369(9561), 578–585.

Hu, Y., Liu, L., Zhang, X., Feng, Y., & Zong, Z. (2017). In vitro activity of neomycin, streptomycin, paromomycin and apramycin against carbapenem-resistant Enterobacteriaceae clinical strains. Frontiers in Microbiology, 8, 2275.

Iredell, J., Brown, J., & Tagg, K. (2016). Antibiotic resistance in Enterobacteriaceae: Mechanisms and clinical implications. British Medical Journal, 352, h6420.

Iwamoto, M., Ayers, T., Mahon, B. E., & Swerdlov, D. L. (2010). Epidemiology of seafood-associated infections in the United States. Clinical Microbiology Reviews, 23(2), 399–411.

Janecko, N., Mertz, S., Ayerov, B. P., Daignault, D., Desruisseau, A., Boyd, D., ..., Reid-Smith, R. J. (2016). Carbapenem-resistant Enterobacter spp. in retail imported from Southeast Asia to Canada. Emerging Infectious Diseases, 22(9), 1675–1677.

Karczmarczyk, M., Abbott, Y., Walsh, C., Leonard, N., & Fanning, S. (2011). Characterization of multidrug-resistant Escherichia coli isolates from animals presenting at a university veterinary hospital. Applied and Environmental Microbiology, 77(20), 7104–7112.

Khari, F. I. M., Karunakaran, R., Rosli, R., & Tay, S. T. (2016). Genotypic and phenotypic detection of AmpC β-lactamases in Enterobacter spp. isolated from a Teaching Hospital in Malaysia. Plos One, 11(3), e0150643.

Kilonzo-Nthenge, A., Rotich, E., & Nahashon, S. N. (2013). Evaluation of drug-resistant Enterobacteriaceae in retail poultry and beef. Poultry Science, 92(4), 1098–1107.

Kumar, H. (2016). Multiple antibiotic resistance patterns of the Enterobacteriaceae in the untreated municipal sewage. Journal of Clinical and Diagnostic Research, 10(9), DL01–DL02.

Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematic (pp. 115–175). New York, NY: Wiley.

Lincopan, N., Leis, R., Vianello, M. A., De Araujo, M. R. E., Ruiz, A. S., & Mamiukza, E. M. (2006). Enterobacteria producing extended-spect- rum β-lactamases and IMP-1 metallo-β-lactamases isolated from Brazilian hospitals. Journal of Medical Microbiology, 55(11), 1611–1613.

Miyata, M., Yamakawa, H., Hamatsu, M., Kurihayaishi, H., Takamatsu, Y., & Yamazoe, Y. (2011). Enterobacteria modulate intestinal bile acid transport and homeostasis through apical sodium dependent bile acid transporter (SLC10A2) expression. Journal of Pharmacology and Experimental Therapeutics, 336(1), 188–196.
Moghaddam, M. N., Beidokhti, M. H., Jamehdar, S. A., & Ghahraman, M.
(2014). Genetic properties of blaCTX-M and blaVIM β-lactamase genes in
clinical isolates of Enterobacteriaceae by polymerase chain reaction.
Iran Journal of Basic Medical Sciences, 17(5), 378–383.
Mozaffarian, D., & Rimm, E. B. (2006). Fish intake, contaminants, and
human health. Evaluating the risks and the benefits. JAMA, 296(15),
1885–1899.
Nawaz, M., Khan, S. A., Tran, Q., Sung, K., Khan, A. A., Adamu, I., & Steele,
R. S. (2012). Isolation and characterization of multidrug-resistant
Klebsiella spp. isolated from shrimp imported from Thailand.
International Journal of Food Microbiology, 153(3), 179–184.
Ogutcu, H., Adiguzel, A., Gulluce, M., Karadayi, M., & Sahin, F. (2009).
Molecular characterization of Rhizobium strains isolated from wild
chickpeas collected from high altitudes in Erzurum-Turkey.
Olsen, J. E., Christensen, H., & Aarestrup, F. M. (2004). Detection and
assy of β-lactamases in clinical and non-clinical strains of Yersinia enterocolitica
biocar 1A. The Journal of Antimicrobial Chemotherapy, 54(2), 401–405.
Partridge, S. R. (2015). Resistance mechanisms in Enterobacteriaceae.
Pathology, 47(3), 270–284.
Pongsilp, N. (2012). Phenotypic and genotypic diversity of rhizobia.
Sharjah, UAE: Bentham Science Publishers.
Pongsilp, N., Teaumroong, N., Nuntagij, A., Boonkerd, N., & Sadowsky, M.
J. (2004). Genetic structure of indigenous non-nodulating and nodulating
populations of Bradyrhizobium in soils from Thailand.
Symbiosis, 33, 39–58.
Popovic, N. T., Skukan, A. B., Dzidara, P., Coz-Rakovac, R., Strunjak-
Perovic, I., Kozacinski, L. . . . Brlek-Gorski, D. (2010). Microbiological
quality of marketed fresh and frozen seafood caught off the Adriatic
coast of Croatia. Veterinarni Medicina, 55(5), 233–241.
Rani, M. K., Chelladurai, G., & Jayanthi, G. (2016). Isolation and identification
of bacteria from marine market fish Scomberomorus guttatus
(Bloch and Schneider, 1801) from Madurai district, Tamil Nadu,
India. Journal of Parasitic Diseases, 40(3), 1062–1065.
Rivas, R., Velazquez, E., Valverde, A., Mateos, P. F., & Martinez-Molina, E.
(2001). A two primers random amplified polymorphic DNA procedure to
 obtain polymerase chain reaction fingerprints of bacterial species.
Electrophoresis, 22(6), 1086–1089.
Rumjanukiat, R., Keawsompong, S., & Nitisingprasert, S. (2017). Bacterial
contaminants from frozen puff pastry production process and their
growth inhibition by antimicrobial substances from lactic acid bac-
teria. Food Science And Nutrition, 5(3), 454–465.
Secades, P., & Guirarro, J. A. (1999). Purification and characterization of
an extracellular protease from fish pathogen Yesinia ruckeri and efeito
of culture conditions on production. Applied and Environmental
Microbiology, 65(9), 3969–3975.
Sharma, S., Ramnani, P., & Virdi, J. S. (2004). Detection and assay of β-
lactamas in clinical and non-clinical strains of Yersinia enterocolitica
biovar 1A. The Journal of Antimicrobial Chemotherapy, 54(2), 401–405.
Valverde, A., Igual, J. M., Peix, A., Cervantes, E., & Velaaza, E. (2006).
Rhizobium lusitanum sp. nov. a bacterium that nodulates Phaseolus vulgaris.
International Journal of Systematic Evolutionary Microbiology, 56(11),
2631–2637.
Vasques, M. R. G., Bello, A. R., Da Cruz Lamas, C., Correa, L., & Pereira, J. A.
A. (2011). β-lactamase producing enterobacteria isolated from surveil-
lance swabs of patients in a Cardiac Intensive Care Unit in Rio de
Janeiro, Brazil. The Brazilian Journal of Infectious Diseases, 15(1), 28–33.
Walker, K. E., Mahon, C. R., Lehman, D. C., & Manuselis, G. (2015).
Enterobacteriaceae. In C. R. Mahon, D. C. Lehman, & G. Manuselis (Eds.),
Textbook of diagnostic microbiology (pp. 420–454). St. Louis, MO:
Saunders.
Zurfluh, K., Nuesch-Inderbinen, M., Morach, M., Berner, A. Z., Hachler, H.,
& Stephan, R. (2015). Extended-spectrum-β-lactamase-producing
enterobacteriaceae isolated from vegetables imported from the
Dominican Republic, India, Thailand, and Vietnam. Applied and
Environmental Microbiology, 81(9), 3115–3120.