On the Shoshan-Zwick Algorithm for the All-Pairs Shortest Path Problem

Pavlos Eirinakis 1, Matthew Williamson 2, K. Subramani 3

1 Athens University of Economics and Business, Athens, Greece
2 West Virginia University Institute of Technology, Montgomery, WV
3 West Virginia University, Morgantown, WV

Abstract

The Shoshan-Zwick algorithm solves the all-pairs shortest paths problem in undirected graphs with integer edge costs in the range \{1, 2, …, M\}. It runs in $\tilde{O}(M \cdot n^\omega)$ time, where n is the number of vertices, M is the largest integer edge cost, and $\omega < 2.3727$ is the exponent of matrix multiplication. It is the fastest known algorithm for this problem. This paper points out and corrects an error in the Shoshan-Zwick algorithm.

The first author was co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund. (MIS: 380232) The second and third authors were supported in part by the National Science Foundation and Air Force of Scientific Research through Awards CNS-0849735, CCF-1305054, and FA9550-12-1-0199.

E-mail addresses: peir@aeub.gr (Pavlos Eirinakis) matthew.williamson@mail.wvu.edu (Matthew Williamson) ksmani@csee.wvu.edu (K. Subramani)
1 Introduction

In this paper, we revise the Shoshan-Zwick algorithm \[2\] to correct an error. Recall that the Shoshan-Zwick algorithm solves the all-pairs shortest paths (APSP) problem in undirected graphs, where the edge costs are integers in the range \(\{1, 2, \ldots, M\}\). This is accomplished by computing \(O(\log(M \cdot n))\) distance products of \(n \times n\) matrices with elements in the range \(\{1, 2, \ldots, M\}\). The algorithm runs in \(\tilde{O}(M \cdot n^\omega)\) time, where \(\omega < 2.3727\) is the exponent for the fastest known matrix multiplication algorithm \[3\].

This paper identifies and resolves an error with the algorithm. Additional details including a description of the algorithm, a counter-example that identifies the error in the algorithm, and a discussion concerning the efficacy of the algorithm can be found in \[1\].

2 The Errors in the Algorithm

In this section, we describe what causes the erroneous behavior of the Shoshan-Zwick algorithm. Recall that \(\Delta\) is the matrix that contains the costs of the shortest paths between all pairs of vertices after the algorithm terminates. Moreover, let \(\delta(i, j)\) denote the cost of the shortest path between nodes \(i\) and \(j\). After the termination of the algorithm, we must have \(\Delta_{ij} = \delta(i, j)\) for any \(i, j \in \{1, \ldots, n\}\). However, it may be the case that \(\Delta_{ij} \neq \delta(i, j)\) for some \(i, j\) at termination. The exact errors of the algorithm are as follows:

1. \(R\) is not computed correctly.
2. \(B_0\) is not computed correctly.
3. \(\Delta\) is not computed correctly, since \(M \cdot B_0 + R\) is part of the sum producing it.

In the rest of this section, we illustrate what causes these errors. When we compute \(\Delta = M \cdot B_0 + R\), observe that the matrices \(B_k\) (for \(0 \leq k \leq l\)) represent the \(\lceil \log_2 n \rceil\) most significant bits of each distance. That is,

\[
(B_k)_{ij} = \begin{cases}
1 & \text{if } 2^k \cdot M \text{ must be added to } \Delta_{ij} \text{ so that } \Delta_{ij} = \delta(i, j) \\
0 & \text{otherwise}
\end{cases},
\]

while \(R\) represents the remainder of each distance modulo \(M\). This is also illustrated in \[2\ Lemma 3.6\], where for every \(0 \leq k \leq l\), \((B_k)_{ij} = 1\) if and only if \(\delta(i, j) \mod 2^{k+m+1} \geq 2^{k+m}\), while \(R_{ij} = \delta(i, j) \mod M\). Hence, for every \(i, j\), we must have

\[
(M \cdot B_0 + R)_{ij} = \delta(i, j) \mod 2^{m+1}. \tag{1}
\]

The first error of the algorithm arises immediately from the key observation that \(P_0\) can have entries with negative values. This means that \(R_{ij} = (P_0)_{ij} \mod M\) is not correctly calculating \(R_{ij} = \delta(i, j) \mod M\), since \(\delta(i, j) \geq 0\) by definition, while \((P_0)_{ij}\) can be negative.

A closer examination of how \(P_0\) obtains its negative values reveals another error of the algorithm. The following definitions are given in \[2\ Section 3\]. Consider a set
Let \(Y \subseteq [0, M \cdot n] \). Note that \([0, M \cdot n]\) includes any value that \(\delta(i, j) \) can take, since \(n \) is the number of nodes, and \(M \) is the maximum edge cost. Let \(Y = \bigcup_{r=1}^{p} [a_r, b_r] \), where \(a_r \leq b_r \), for \(1 \leq r \leq p \) and \(b_r < a_{r+1} \), for \(1 \leq r < p \). Let \(\mathbf{Y} \) be an \(n \times n \) matrix, whose elements are in the range \([-M, \ldots, M] \cup \{+\infty\} \), such that for every \(1 \leq i, j \leq n \), we have

\[
(\mathbf{Y})_{ij} = \begin{cases}
-M & \text{if } a_r \leq \delta(i, j) < b_r - M \text{ for some } 1 \leq r \leq p, \\
\delta(i, j) - b_r & \text{if } b_r - M < \delta(i, j) \leq b_r + M \text{ for some } 1 \leq r \leq p, \\
+\infty & \text{otherwise.}
\end{cases}
\] (2)

By \([2\) Lemma 3.5], \(\mathbf{P}_0 = \mathbf{Y}_0 \), where \(Y_0 = \{x | (x \mod 2^{m+1}) = 0\} \). Recall that \(2^m = M \). Note that by definition of \(Y_0 \), when calculating \(\mathbf{P}_0 = \mathbf{Y}_0 \), it can only be the case that \(a_r = b_r \). Moreover, \(b_r = 2^{m+1} \cdot (r - 1) \) for \(1 \leq r \leq p \), where \(p \) is such that \(2^{m+1} \cdot (p - 1) \leq M \cdot n < 2^{m+1} \cdot p \). But then:

\[
(\bigcup_{r=1}^{p} [b_r - M, b_r + M]) \supseteq [0, M \cdot n]
\]

That is, \((\bigcup_{r=1}^{p} [b_r - M, b_r + M])\) covers all possible values that \(\delta(i, j) \) may take for any \(i, j \). Hence,

\[
(\mathbf{P}_0)_{ij} = \begin{cases}
\delta(i, j) & \text{for } r = 1 \text{ (i.e., if } \delta(i, j) \leq 2^m), \\
\delta(i, j) - b_r & \text{for } 2 \leq r \leq p, \text{ such that } b_r - 2^m < \delta(i, j) \leq b_r + 2^m.
\end{cases}
\] (3)

Let us examine the values that \((\mathbf{P}_0)_{ij}\) takes by equation (3):

- For \(0 \leq \delta(i, j) \leq 2^m \), we have \((\mathbf{P}_0)_{ij} = \delta(i, j) \mod 2^{m+1}\).
- For \(2^m < \delta(i, j) < 2^m + 2^m \), we have \((\mathbf{P}_0)_{ij} = (\delta(i, j) \mod 2^{m+1}) - 2^{m+1}\).
- For \(2^{m+1} \leq \delta(i, j) \leq 2^{m+1} + 2^m \), we have \((\mathbf{P}_0)_{ij} = \delta(i, j) \mod 2^{m+1}\).
- And so forth...

More formally, equation (3) can be rewritten as follows:

\[
(\mathbf{P}_0)_{ij} = \begin{cases}
\delta(i, j) \mod 2^{m+1} & \text{if } \delta(i, j) \mod 2^{m+1} \leq 2^m, \\
(\delta(i, j) \mod 2^{m+1}) - 2^{m+1} & \text{if } \delta(i, j) \mod 2^{m+1} > 2^m.
\end{cases}
\] (4)

Moreover, equation (4) implies that

for \(i, j \) such that \(\delta(i, j) \mod 2^{m+1} \leq 2^m \), we have \(0 \leq (\mathbf{P}_0)_{ij} \leq M \),

while

for \(i, j \) such that \(\delta(i, j) \mod 2^{m+1} > 2^m \), we have \(-M < (\mathbf{P}_0)_{ij} < 0\).

(5)

(6)

Recall now that we must have \((\mathbf{B}_0)_{ij} = 1\) if and only if \(\delta(i, j) \mod 2^{m+1} \geq 2^m \). However, from equations (5) and (6), this does not hold (as claimed in the proof of \([2\) Lemma 3.6]) for \(\mathbf{B}_0 = (0 \leq \mathbf{P}_0 < M) \). Therefore, the algorithm does not compute \(\mathbf{B}_0 \) correctly.

It is clear that in the presence of these two identified errors (in calculating \(\mathbf{R} \) and \(\mathbf{B}_0 \), the algorithm is not computing \(\Delta \) correctly.
3 The Revised Algorithm

In this section, we present a new version of the Shoshan-Zwick algorithm that resolves the problems illustrated in Section 2. The first three steps from [2, Figure 2] remain unchanged. We make the following changes in Step 4:

1. We replace \(B_0 \) with \(\hat{B}_0 \) and set \(\hat{B}_0 \) to \((-M < P_0 < 0)\).
2. In the line \(R = P_0 \ mod \ M \), we replace \(R \) with \(\hat{R} \) and set \(\hat{R} \) to \(P_0 \).
3. We set \(\Delta \) to \(M \cdot \sum_{k=1}^{l} 2^k \cdot \hat{B}_k + 2 \cdot M \cdot \hat{B}_0 + \hat{R} \).

Note that we have replaced \(B_0 \) and \(R \) with \(\hat{B}_0 \) and \(\hat{R} \), respectively. The purpose of the change in notation is to show that these matrices no longer represent the incorrect versions from the original (erroneous) algorithm. Step 4 of the revised algorithm is illustrated in Algorithm 3.1.

```
for (k ← 1 to l) do
    \( B_k = (C_k \geq 0) \)
end for
\( \hat{B}_0 ← (-M < P_0 < 0) \)
\( \hat{R} ← P_0 \)
\( \Delta ← M \cdot \sum_{k=1}^{l} 2^k \cdot \hat{B}_k + 2 \cdot M \cdot \hat{B}_0 + \hat{R} \)
return \( \Delta \)
```

Algorithm 3.1: The revised Step 4 of the Shoshan-Zwick algorithm

We now prove that the revised version of the Shoshan-Zwick algorithm is correct.

Theorem 1 The revised Shoshan-Zwick algorithm calculates all the shortest path costs in an undirected graph with integer edge costs in the range \(\{1, \ldots, M\} \).

Proof: It suffices to show that \(2 \cdot M \cdot \hat{B}_0 + \hat{R} \) represents what the original algorithm intended to represent with \(M \cdot B_0 + R \). That is, by equation (1), it suffices to show that
\[
(2 \cdot M \cdot \hat{B}_0 + \hat{R})_{ij} = \delta(i,j) \ mod 2^{m+1},
\]
for every \(1 \leq i, j \leq n \).

First, we consider the case where \(\delta(i,j) \ mod 2^{m+1} \leq 2^m \). Equation (2) indicates that \(0 \leq (P_0)_{ij} \leq M \). Hence, \((\hat{B}_0)_{ij} = 0 \) (by \(\hat{B}_0 ← (-M < P_0 < 0) \) in the revised algorithm). Moreover, since \(\hat{R}_{ij} = (P_0)_{ij} \) (by \(\hat{R} ← P_0 \) in the revised algorithm), we have that \(\hat{R}_{ij} = \delta(i,j) \ mod 2^{m+1} \) by equation (3). Thus, \((2 \cdot M \cdot \hat{B}_0 + \hat{R})_{ij} = \delta(i,j) \ mod 2^{m+1} \).

We next consider the case where \(\delta(i,j) \ mod 2^{m+1} > 2^m \). Equation (4) indicates that \(-M < (P_0)_{ij} < 0 \). Hence, \((\hat{B}_0)_{ij} = 1 \) (by \(\hat{B}_0 ← (-M < P_0 < 0) \) in the revised algorithm). Further, \(\hat{R}_{ij} = (\delta(i,j) \ mod 2^{m+1}) - 2^{m+1} \) by equation (3). Therefore, \((2 \cdot M \cdot \hat{B}_0 + \hat{R})_{ij} = 2 \cdot 2^m \cdot 1 + (\delta(i,j) \ mod 2^{m+1}) - 2^{m+1} = \delta(i,j) \ mod 2^{m+1} \), which completes the proof. \(\square \)
References

[1] P. Eirinakis, M. D. Williamson, and K. Subramani. On the Shoshan-Zwick algorithm for the all-pairs shortest path problem. CoRR, abs/1603.08627, 2016. URL: http://arxiv.org/abs/1603.08627

[2] A. Shoshan and U. Zwick. All pairs shortest paths in undirected graphs with integer weights. In 40th Annual Symposium on Foundations of Computer Science, FOCS '99, 17-18 October, 1999, New York, NY, USA, pages 605–615, 1999. doi:10.1109/SFFCS.1999.814635

[3] V. V. Williams. Multiplying matrices faster than Coppersmith-Winograd. In STOC, pages 887–898, 2012. doi:10.1145/2213977.2214056