Self-reported medication intake vs information from other data sources such as pharmacy records or medical records: Identification and description of existing publications, and comparison of agreement results for publications focusing on patients with cancer - a systematic review

Manuela Brüne1,2,3 | Carina Emmel1 | Gisela Meilands1 | Silke Andrich1,2,3 | Sigrid Droste1† | Heiner Claessen2,3 | Fabian Jülich1 | Andrea Icks1,2,3

1Institute for Health Services Research and Health Economics, Centre for Health and Society, Faculty of Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
2Institute for Health Services Research and Health Economics, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
3German Center for Diabetes Research (DZD), München-Neuherberg, Germany

Correspondence
Manuela Brüne, Institute for Health Services Research and Health Economics, Centre for Health and Society, Faculty of Medicine, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany. Email: manuela.bruene@hhu.de

Funding information
Universitätsklinikum Düsseldorf

Abstract

Purpose: To identify and describe publications addressing the agreement between self-reported medication and other data sources among adults and, in a subgroup of studies dealing with cancer patients, seek to identify parameters which are associated with agreement.

Methods: A systematic review including a systematic search within five biomedical databases up to February 28, 2019 was conducted as per the PRISMA Statement. Studies and agreement results were described. For a subgroup of studies dealing with cancer, we searched for associations between agreement and patients’ characteristics, study design, comparison data source, and self-report modality.

Results: The literature search retrieved 3392 publications. Included articles (n = 120) show heterogeneous agreement. Eighteen publications focused on cancer populations, with relatively good agreement identified in those which analyzed hormone therapy, estrogen, and chemotherapy (n = 11). Agreement was especially good for chemotherapy (proportion correct ≥93.6%, kappa ≥0.88). No distinct associations between agreement and age, education or marital status were identified in the results. There was little evaluation of associations between agreement and study design, self-report modality and comparison data source, thus not allowing for any conclusions to be drawn.

Conclusion: An overview of the evidence available from validation studies with a description of several characteristics is provided. Studies with experimental design...
which evaluate factors that might affect agreement between self-report and other data sources are lacking.

KEYWORDS
drug prescriptions, medical records, pharmaceutical preparations, pharmacies, pharmacoepidemiology, self-report, validation studies

1 | BACKGROUND

Data on medication use is required in several research areas to enable researchers to analyze use patterns and medication-related costs. Relevant information can be obtained from healthcare provider records or health insurance claims, for instance. Each source has its specific limitations, with claims only including reimbursed medications and provider records only covering documentation for one healthcare provider, thus requiring several institutions to be covered to gain complete documentation of one patient’s treatment. Furthermore, in some cases patients’ consent is required to gain access to data. Finally, claims and medical records reflect the receipt or filling of prescriptions, whereas patients’ self-reports are likely the most accurate reflection of actual intake of medication. Researchers therefore sometimes have to rely on self-reported medication use. Obtaining this information via interview or questionnaire is resource-intensive and at risk of interviewer or recall bias. As no data source provides complete information, there is no general reference standard. Depending on the research question, one source might be more appropriate than another. Scientific knowledge about agreement of self-reported medication intake and information from other sources is needed to help interpret results from a single source. To date, numerous studies have examined agreement between two or more sources, but only two systematic reviews published over 20 years ago were found. Harlow and Linet compared questionnaire data with medical records, while Evans and Crawford compared any self-report (eg, questionnaires, interviews) with any other data source. Both reviews only analyzed medication use as part of healthcare utilization. Given these limitations and the obsolete systematic data, we decided to conduct a systematic review.

The objectives were: (a) to identify publications comparing self-reported medication use and medication information from other data sources for adult individuals and to describe their key characteristics; (b) seek to identify parameters which might be associated with agreement in a subgroup of studies dealing with cancer patients.

2 | METHODS

We conducted this review in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.

KEY POINTS

- Over 100 publications compare agreement of self-reported medication intake with other data sources among adult populations. However, there is no current systematic review on this topic.
- The included publications reported wide differences in population samples, analyzed outcomes, and focused medications.
- Patients with cancer were most frequently studied and chemotherapy, hormone therapy in general, and the specific hormone estrogen were the most frequently analyzed medication groups among them.
- Agreement is relatively good among patients with cancer for the three medication groups, especially for chemotherapy.
- Authors’ results did not show possible associations between agreement and age, education or marital status among patients with cancer. Possible associations between agreement and study design, self-report modality or comparison data source could not be analyzed.

2.1 | Eligibility criteria

Six eligibility criteria were defined: (a) adult population: at least 18 years of age; (b) participants self-report medication use; (c) medication data available from at least one other data source; (d) agreement measurement between self-reports and other data source(s); (e) full-text language: English, and; (f) publication type: original study, excluding, for example, reviews, short reports, letters or comments.

2.2 | Systematic literature search

The systematic literature search was conducted in October 2014 and updated on February 28, 2019. We searched all records published up to this date without any restrictions in time, except for Embase which only lists records published since 1974. Five data- bases were included: Medline via PubMed, Embase (initially via OVID and via Scopus for the update), Journals@Ovid via OVID,
identified further potentially eligible records. Checked and relevant articles known by the authors included to
ey for each database is provided in File S1. Reference lists were
other data sources,” and “agreement.” The complete search strategy for each database is provided in File S1. Reference lists were checked and relevant articles known by the authors included to identify further potentially eligible records.

2.3 | Selection of publications meeting the eligibility criteria

Two researchers independently checked title, abstract and full text for relevance according to the eligibility criteria and subdivided the records into “included” or “excluded”. Every disagreement was discussed for consensus. The inter-rater reliability was calculated using Cohen’s kappa.

2.4 | Critical appraisal and risk of bias within publications

We assessed the quality of all included publications using the Scottish Intercollegiate Guidelines Network (SIGN) methodology checklist for diagnostic studies. We were therefore able to use one tool irrespective of different study designs. To apply the checklist, we had to define which data source should be used as the index test and which as reference standard. The reference standard defined by the authors was used to do so. Where authors did not indicate a reference standard, the non-self-report data source was taken as reference.

The checklist appraises the methodological quality to minimize bias (high, acceptable, low, unacceptable) and the direct applicability/external validity (yes, no) using 13 items in four domains: (a) patient selection, (b) index test, (c) reference standard, and (d) flow and timing. As described in detail in File S2, three items were excluded as not applicable to our review. Accordingly, the quality of the publications was rated high if 9 to 10 criteria were met, acceptable if 6 to 8 were met, low if 1 to 5 were met and unacceptable if no criteria were met. Direct applicability was given if all three relevant criteria were fulfilled. Two researchers completed the checklist for half of the articles each, with an overlap of every fifth article. Differences were discussed and resolved. Results are presented in Table 1.

2.5 | Data extraction

Key characteristics are provided for all included publications. As described below, we also focused on a subgroup of studies dealing with cancer patients and three medication groups, namely estrogen, hormone therapy (HT) and chemotherapy. We analyzed the degree of agreement in these subgroup studies and tried to identify factors which are associated with agreement such as study design aspects and patient characteristics.

We extracted key characteristics, namely sample size and description, analyzed medications, comparison data source, and outcome, for all included publications. Furthermore, we extracted the authors’ main findings concerning agreement. Detailed study characteristics such as data collection period, cancer type, study design, self-report modality, comparison data source, analyzed patient characteristics, analyzed medication, statistic methods, and type of outcome/s were extracted for publications focused on patients with cancer. We focused on the underlying original study design, for example case-control study or cohort study, when extracting data regarding study design. The study design of the validation study, which in most cases is cross-sectional, was not considered here.

All information was extracted by one researcher using piloted forms and was subsequently checked by another researcher to reduce errors or bias. We did not contact any of the corresponding authors for further information. No meta-analysis was performed due to the high methodological heterogeneity of the included studies.

Given the large number of inclusions and their high heterogeneity, it was necessary to set a narrower focus and go into greater detail. To do so, we looked for the largest possible set of homogeneous and comparable studies. We were unable to identify homogeneous studies when starting at the level of the analyzed drugs. We therefore decided to look for an appropriate population as a starting point and identified patients with cancer. Furthermore, we considered the three most frequent medication groups within these studies, namely the hormone estrogen as specific active agent, and hormone therapy (HT) and chemotherapy as two sub-ordinate medication groups, where HT comprises estrogen. Additionally, we focused on the proportion correct and kappa values as an agreement measurement, as most researchers calculated those estimates.

In order to identify parameters which might affect or be associated with agreement, we searched among these studies which analyzed agreement with estrogen, HT and chemotherapy in cancer patients for any which had performed regression analyses or stratified analyses. We expected that these analyses would focus particularly on patient characteristics as age, sex, and sociodemographic position. Since patient characteristics are generally not modifiable, we considered it reasonable to look for further parameters upon which researchers have an influence in study planning, such as (a) study design, (b) comparison data source and (c) self-report modality.

3 | RESULTS

3.1 | Selection of publications and assessment of the risk of bias

Database searching retrieved 3261 records and a further 131 publications were identified as potentially eligible. A total 120 studies met
References, country	CA\(^a\) result: methodological quality	CA\(^a\) result: direct applicability	Sample size	Sample characteristics	Analyzed medication	Comparison data source	Outcome	Authors’ main findings
Allin et al,\(^2\) Canada	High	Yes	32 848	Ontario residents living in private dwellings who responded to the cross-sectional Canadian Survey aged ≥65	Antihypertensives, Oral diabetes medication	Pharmacy claims data	Current use	Overall agreement was “good” to “very good” for oral diabetes medications, but “moderate” for antihypertensive medications
Andersen et al,\(^3\) Denmark	High	Yes	81	Hospital patients from regions of Copenhagen aged ≥18	All	Medical records (clinic)	Current use	Second interviews and GP lists reveal extra information in two-thirds of cases
Andrews,\(^1\) Australia	Acceptable	Yes	385	Subjects of the 1999 Victorian Population Health Survey aged ≥18	Vaccination (Influenza, Pneumococcus)	Medical records (all nominated providers)	Previous use	The kappa coefficients indicated self-reported pneumococcal vaccination was less reliable than self-reported influenza vaccination
Banks et al,\(^4\) United Kingdom	High	No	570	Female patients in the million woman study aged ≥50	HRT\(^b\), medication for hypertension, heart disease, diabetes, asthma, depression/anxiety, and thyroid disease	Medical records (general practitioners)	Current use, ever use, type of HRT\(^b\)	This study indicates, that compared to general practice prescription records, self-reported current and recent use of HRT is extremely accurate
Barat et al,\(^5\) Denmark	High	Yes	348	Seniors living in their own homes in a municipality of Aarhus aged 75	All	Medical records (general practitioners)	Current use	Disagreement concerning drugs was found in 22%, concerning doses in 71%, and concerning regimens prescribed by the GP in 66%
Barisic et al,\(^6\) Canada	High	Yes	939	Women diagnosed with incident breast cancer from the Ontario Cancer Registry aged 23 to 69	Hormone therapy, chemotherapy	Medical records (clinic)	Previous use	Agreement measures for a broad category of therapy were above 0.80. The specific type of hormonal or chemotherapy was reported with low-to-moderate agreement
Barrett-Connon et al,\(^7\) United States	High	No	4994	Postmenopausal women	Osteoporosis medication	Medical records (physician)	Current use	For monotherapy patients, concordance was lowest for patients prescribed estrogen therapy (70%) or calcium/vitamin D (72%)
Boudreau et al,\(^8\) United States	Acceptable	Yes	403	Female participants of a case-control study of medications and breast cancer risk aged 65 to 79	Antihypertensives, statins, antidepressants	Pharmacy claims data	Previous use, duration	Self-reported use of antihypertensives and statins appears to be relatively accurate among older women
Boudreau et al,\(^9\) United States	Acceptable	Yes	3610	Enrollees in GHC\(^c\): Medicare + Choice program aged ≥67	Antidepressant, antihypertensive, acid suppressant, cardiac, diabetic, hormone, and lipid lowering drugs	Pharmacy claims data	Current use	Our study indicates that health plan pharmacy records are a reliable data source for seniors receiving care within an integrated group practice
References, country	CA* result: methodological quality	CA* result: direct applicability	Sample size	Sample characteristics	Analyzed medication	Comparison data source	Outcome	Authors' main findings
---------------------	-----------------------------------	---------------------------------	-------------	------------------------	---------------------	------------------------	---------	-----------------------
Brooks et al.20 United States	High	Yes	321	Patients of the Boston Medical Center reporting lifetime epilepsy aged ≥18	Medication for epilepsy	Medical records (clinic)	Current use	Sensitivity was 90% and specificity 74%. The PPV (93.9%) was higher than the negative predictive value (62.1%)
Brown et al.21 United States	Acceptable	No	7918	Members of the Kaiser Health Plan in San Diego aged ≥45	Lipid-lowering medication	Pharmacy claims data	Current use	Self-reported measure of lipid-lowering medication exposure was accurate
Cadarette et al.22 Canada	High	Yes	858	Community-dwelling women from two regions of Ontario aged 66 to 90	Osteoporosis pharmacotherapy and other agents that may impact bone density	Pharmacy claims data	Current, past, never	Agreement between self-report and claims-based osteoporosis pharmacotherapy was very good
Carroll et al.23 Australia	Acceptable	Yes	1231	Released prisoners in Queensland	All	Medical records (prison)	Current use	Medication knowledge among prisoners is poor, with a quarter of participants in this study unable to correctly identify any of their medications
Caskie et al.6 United States	Acceptable	No	294	Participants of a clinical trial on cognitive training aged ≥65	10 major drug classes + specific cardiovascular and CNS drug classes	Pharmacy records	Current use	Congruence was generally high
Caskie et al.7 United States	High	Yes	1430	Subset of participants of the Seattle Longitudinal Study who responded to a cross-sectional study of adult cognitive development aged 23 to 97	16 selected drug classes	Pharmacy claims data	Current use	Overall, the congruence of the brown bag data and pharmacy records was high
Caverly et al.24 United States	Low	No	11	Individuals with cystic fibrosis	Oral antibiotics	Medical records	Current use	Medical record reflected the self-reported use of episodic oral antibiotics the majority of the time
Cheung et al.25 The Netherlands	High	Yes	2637	Pregnant women from a prospective birth cohort study	SSRIs (antidepressants), Benzodiazepines, Folic acid, Antibiotics, Antiallergics, Antihistamines	Pharmacy records	Current use	Medications required for managing chronic conditions had a good or substantial concordance. Medications taken for acute conditions had a substantial to moderate concordance
Chin et al.26 Australia	Acceptable	Yes	102	Patients from Melbourne with chronic heart failure and at least two prescribed medications for heart failure	Heart failure medication	Medical records (clinic)	Current use, dose	There were mismatches in the medications (49%) and dosages (57.8%). The number of mismatches increased with the number of prescribed medications

(Continues)
References, country	CA result: methodological quality	CA result: direct applicability	Sample size	Sample characteristics	Analyzed medication	Comparison data source	Outcome	Authors’ main findings
Clegg et al.,27 United States	High	Yes	3196	Male participants of a population-based cohort study with prostate carcinoma from six regions in the United States aged 39 to 89	Hormone pills and shots	Medical records (hospitals, outpatient clinics, HMOs, private physicians’ offices); cancer registries if medical records not available	Previous use	The chance-corrected agreement for hormone pills was moderate, while for hormone shots it was substantial
Cohen-Glickman et al.,28 Israel	High	Yes	75	Hemodialysis patients (HD) assigned to the largest health provider in Israel aged ≥18	13 groups of oral drugs commonly prescribed to HD patients	Pharmacy claims data	Current use, adherence	The mean overall drug adherence was 56.7%. Drug prescription, documentation and adherence are incongruent
Colantonio et al.,29 United States	High	Yes	899	Elderly participants of a United States-nationwide population-based cohort study about stroke	Lipid lowering medication (statins, ezetimibe, niacin, fibrates, bile acid sequestrants)	Pharmacy claims data	Current use	Substantial agreement assessed by self-report or through a medication inventory, however, about one in five participants had a discordance
Coleman et al.,30 United States	Low	No	375	Community-dwelling adults aged ≥65	All	Medical records (health delivery system and hospital separately)	Current use	A total of 14.1% of patients experienced 1 or more medication discrepancies
Collet et al.,31 Switzerland	High	Yes	210	Adults with diabetes, participating in a community-based survey about diabetes care	Vaccination (Influenza)	Medical records (physician)	Previous use	Processes of care, physicians’ reported data showed more missing values and appeared slightly better than when considering patients’ reported data
Cotterchio et al.,32 Canada	High	Yes	130	Female participants of a case-control study for cancer from Ontario aged 20 to 74	Antidepressants	Medical records (physician)	Ever/never-use, duration, dose, date first taken	Substantial agreement was found for medication use, while moderate agreement was observed for duration of use, and date of first use
Coulter et al.,33 United Kingdom	Acceptable	No	99	Female participants of the Oxford Family Planning Association cohort study aged 25 to 39	Oral contraceptives	Medical records (general practitioners)	Duration, brand name	Accuracy of recall of total duration of use was sufficiently good
Curtis et al.,34 United States	High	Yes	2363	Chronic glucocorticoid users from the United States as members of a national managed care organization aged ≥18	Osteoporosis medication	Pharmacy claims data	Current use	Underreporting of current osteoporosis medication use was uncommon, and agreement was high
References, country	CA\(^a\) result: methodological quality	CA\(^a\) result: direct applicability	Sample size	Sample characteristics	Analyzed medication	Comparison data source	Outcome	Authors’ main findings
---------------------	--	-------------------------------------	-------------	------------------------	---------------------	-----------------------	--------	------------------------
Demoré et al,\(^35\) France	High	Yes	653	Customers of 15 pharmacies of northeastern France	Antibiotics	Pharmacy records	Current use	Participant’s self-reports were relatively reliable (agreement 81% and k 0.60). On the other hand, they very often misnamed the drug and there was substantially more underreporting than overreporting
Drieling et al,\(^36\) United States	High	Yes	223	Older women from Seattle, United States, participating in the Women’s Health Initiative cohort study	Statins, calcium channel blockers, \(β\)-blockers, and bisphosphonates	Pharmacy records	Current use, duration	In a population of older women, a mailed medication inventory appears to be a highly accurate means of assessing current use and duration of use of four classes of chronically used medications
Enlund et al,\(^37\) Finland	Acceptable	No	570	Hypertensive inhabitants of Joensuu or Kuopio aged 30 to 64	Antihypertensives	Pharmacy claims data	Current use, brand name	Self-reports gave accurate information about the number and type of drugs in use
Fogel et al,\(^38\) United States	Acceptable	Yes	482	HIV-infected individuals from Indonesia, Ukraine, Vietnam	Antiretroviral treatment	Biosamples	Current use	Self-reported data may not be accurate
Fujita et al,\(^39\) Japan	High	Yes	54 712	Japanese beneficiaries of National Health Insurance receiving a health check-up	Antihypertensives, lipid lowering drugs, antidiabetics	Pharmacy claims data	Current use	High validity for predicting actual prescriptions for drugs used to treat hypertension, diabetes and dyslipidemia
Gee et al,\(^40\) Canada	Acceptable	Yes	161	Hypertensive people with and without diabetes aged \(≥20\)	Antihypertensives	Medical records (clinic)	Current use (number of antihypertensives)	Numbers of prescribed antihypertensive medications showed fair agreement
Gnjidic et al,\(^41\) Australia	High	No	500	Randomly sampled participants from the 45 and Up Study	Prescribed medications	Pharmacy claims data	Current use	Sensitivity and positive predictive values are good overall, and vary by medication type
Goodman et al,\(^42\) United States	Acceptable	No	942	Japanese and white women with and without breast cancer aged 45 to 74	Hormone replacement therapy, estrogen	Medical records (physician or clinic)	Ever use, duration, age at initial use	Results suggest that women can recall estrogen use with a high degree of accuracy
Gordon et al,\(^43\) United States	Acceptable	No	961	Current or former Kaiser Permanente health plan members of aged 66 to 85	Vaccination (Pneumococcus)	Pharmacy claims data	Ever use	Sensitivity was significantly lower for Blacks and Latinos than for Whites
Gordon et al,\(^44\) Australia	Low	No	76	Colorectal cancer survivors	Medicines for gastrointestinal conditions, cardiovascular disease, psychological conditions and COPD, chemotherapy	Pharmacy claims data (national insurance administrative data, medicare Australia)	Previous use	Medication use by self-report appears to be unreliable
References, country	CA result: methodological quality	CA result: direct applicability	Sample size	Sample characteristics	Analyzed medication	Comparison data source	Outcome	Authors’ main findings
---------------------	----------------------------------	-------------------------------	-------------	-----------------------	---------------------	------------------------	---------	-----------------------
Grimaldi-Bensouda et al,45 France	Acceptable	No	2702	French residents with and without myocardial infarction aged ≥18	Cardiovascular and diabetic drugs	Medical records (physician)	Previous use (2 years, 2 months, 2-12 months, 12-24 months)	Agreement was excellent overall
Grimaldi-Bensouda et al,46 France	Acceptable	No	4152	General practitioners’ patients aged ≥18	Drugs for musculoskeletal disorders: nonsteroidal anti-inflammatory drugs, nonopioid analgesics, drugs for osteoarthritis and muscle relaxants	Medical records (physician)	Previous use	Differences varied by the type of drug and the elapsed time from the index date
Guerriere et al,47 Canada	Acceptable	No	110	Cystic fibrosis care recipients aged ≥18	Insulin, antibiotics/antifungals, gastrointestinal therapy, pulmonary therapy	Pharmacy claims data	Current use	The results indicate that there was good agreement for prescription medications
Gupta et al,48 China	High	No	5042	Women with diagnosed breast cancer aged 20 to 75	Chemotherapy	Medical records (clinic)	Previous use	Agreement tended to be higher for less commonly used drugs compared with more commonly used drugs
Guzman et al,49 Canada	Acceptable	Yes	48	Workers with lower back pain aged ≥18	NSAIDs, narcotics, relaxants, topical, OTC analgesics, benzodiazepines	Medical records (physician)	Current use	Agreement on prescription medications was fair (k = 0.29-0.46)
Haapea et al,50 Finland	Acceptable	Yes	7625	Participants of the Northern Finland 1966 Birth Cohort	Antipsychotics, antidepressants, antiepileptics, antidiabetics and beta-blocking agents	Pharmacy claims data	Current use	The congruence was substantial for antipsychotics and antidepressants, and almost perfect for antiepileptics
Hafferty et al,4 United Kingdom	High	Yes	10 244	Adult participants in the Generation Scotland population-based cohort, recruited 2009 to 2011	Antidepressants, mood stabilizers, cholesterol-lowering medication, antihypertensives, Aspirin, insulin, HRT, oral contraceptives	Pharmacy records	Current use	Substantial to very good agreement for most medications studied. Agreement for mood stabilizers was indeed considerably worse
Hanigan et al,51 United States	Acceptable	No	152	Clinic cancer patients	All	Medical records (clinic)	Current use	Paper charts recorded only 69% of the prescription drugs taken by the patient
Harde et al,52 Germany	Acceptable	?	102	Diabetic patients with three or more chronic prescriptions aged ≥39	Various prescription drugs (ie, antidiabetics, cardiovascular drugs, antidepressive agents) and various OTC drugs	Medical records (physician)	Current use	We found a mismatch between general practitioner’s documentation and the medications taken by the patient
References, country	CA result: methodological quality	CA result: direct applicability	Sample size	Sample characteristics	Analyzed medication	Comparison data source	Outcome	Authors' main findings
---------------------	----------------------------------	-------------------------------	-------------	------------------------	---------------------	------------------------	---------	----------------------
Haukka et al, 53 Finland	Acceptable	No	905	Persons with schizophrenia and their siblings and parents	Psychotropic medication	Pharmacy claims data	Current use	The concordance was good for most psychotropic drugs
Heerdink et al, 54 The Netherlands	Acceptable	No	100	Residents of a medium-sized municipality of the Netherlands aged ≥65	All (prescription and OTC), that is, cardiovascular drugs, analgesic drugs and NSAIDs, psychotropic drugs, respiratory drugs	Medical records (physician), pharmacy records	Current use	Pharmacy record contained 80% of all the prescriptions found at the interview, while in general-practitioner data 40% could be traced
Hopkins et al, 55 United States	Acceptable	Yes	178	Women having given birth one or more times, aged 40 to 74	Oxytocin, regional anesthesia	Pharmacy claims data	Previous use	Oxytocin had particularly low concordance for all values except NPV which was moderate
Horwitz et al, 56 United States	High	No	133 + 191	Female participants of a case-control study with and without endometrial cancer	HRT (estrogen)	Medical records (clinic)	Ever use	The interview data disagreed with previously recorded medical information in 18% of patients
Horwitz, 57 United States	Acceptable	No	462	Postmenopausal participants of a case control study of breast cancer aged ≥65	HRT (estrogen), thiazides, beta-blocking agents, reserpine, oral contraceptives, thyroid	Medical records (clinic)	Ever use	We discovered considerable variability between the two data sources
Hulka et al, 58 United States	Acceptable	Yes	357	Adult patients with diabetes or congestive heart failure	All prescription drugs	Medical records (physician)	Current use	The combined average error was 58%
Hutchison, 59 United States	Acceptable	No	535	Patients enrolled in a group family practice aged ≥65	Influenza vaccine	Medical records (physician)	Previous use	Kappa statistic was 0.74 for 1984 to 1985 and 0.88 for 1985 to 1986
Jain et al, 60 Canada	High	Yes	653	Participants of a case-control study of endometrial cancer in Toronto and surrounding regions of Halton, Peel and York aged 30 to 79	Menopausal hormone replacement therapy	Medical records (physician)	Ever/never use, duration, brands	Information obtained by interview provides a reasonable measure of ever use and duration
Johnson et al, 61 United States	Acceptable	No	83	Frail elderly HMO enrollees of Kaiser Permanente aged ≥65	All	Pharmacy claims data	Current use (number of medications, number of different therapeutic drug classes)	An automated prescription system is an adequate source of information
References, country	CAa result: methodological quality	CAa result: direct applicability	Sample size	Sample characteristics	Analyzed medication	Comparison data source	Outcome	Authors’ main findings
---------------------	-----------------------------------	---------------------------------	-------------	-----------------------	---------------------	------------------------	---------	------------------------
Kaboli et al.62 United States	Acceptable	No	493	Veteran Affairs patients aged ≥65	All	Pharmacy claims data	Current use	There was complete agreement for only 5.3% of patients
Kehoe et al.63 United States	Acceptable	No	1380	Participants of a cataract case-control study	Insulin, oral hypoglycemics, regular Aspirin use, oral steroids, gout medications, hypertensive medication	Medical records (physician)	Current use	Results suggest an accurate recall in well-defined chronic conditions
Klungel et al.64 The Netherlands	High	Yes	372	Hypertensive subjects from three dutch cities as participants of a study of cardiovascular risk factors aged 20 to 59	Antihypertensive drugs	Pharmacy records	Current use, ever use	Agreement was consistently high for all classes of antihypertensive drugs
Klungel et al.65 The Netherlands	High	Yes	372	Hypertensive subjects from three Dutch citites as participants of a study of cardiovascular risk factors aged 20 to 59	All	Pharmacy records	Current use	Recall sensitivity was higher for questions about medications used for a specific indication (88%) than for the open-ended question (41%)
Korthuis et al.66 United States	High	Yes	1548	HIV-positive participants of the HIV Cost and Services Utilization Study receiving care in the United States aged ≥18	Medications for HIV-patients	Pharmacy records, medical records (separately)	Previous use	For specific medications, agreement is fair to substantial, but is lower for key drug classes
Kropp et al.67 Germany	High	Yes	449	Postmenopausal women who participated in a breast cancer case-control study from the german regions of Rhein-Neckar and Hamburg aged 50 to 74	Postmenopausal hormone therapy	Medical records (physician)	Current use, ever use, duration, type of medication at first use, age at first/last use	Overall, the self-reported HT of the study participants corresponded well with physicians' reports
Kwon et al.6 United States	High	Yes	164	Participants of a longitudinal depression study from the metropolitan area of Boston aged ≥18	Antidepressants	Pharmacy claims data	Current use	Self-report and claims showed good concordance, but they reflect different truths
Lacasse et al.68 Canada	High	Yes	272	Chronic pain patients enrolled in the Quebec Pain Registry	Analgesic medication	Pharmacy claims data	Current use, previous use	Accuracy of current pain medication was accurate for the main therapeutic classes. Accuracy of the past year was somewhat lower
References, country	CA¹ result: methodological quality	CA¹ result: direct applicability	Sample size	Sample characteristics	Analyzed medication	Comparison data source	Outcome	Authors’ main findings
----------------------	----------------------------------	---------------------------------	-------------	---	---------------------	--	--	---
Langendam et al, 69	Acceptable	No	505	Participants of the Amsterdam AIDS cohort study aged 21 to 52	Methadone	Administrative data (Amsterdam Central Methadone Register)	Current use, dosage, previous use	Current methadone usage was accurately reported
Lau et al, 70	Acceptable	No	115	Elderly people living in Amsterdam ≥70	All prescription drugs	Pharmacy records	Current use	Computerized pharmacy records can be a reliable source of the true drug exposure
Law et al, 71	High	Yes	123	Homosexual men with AIDS or HIV from Victoria aged 23 to 68	HIV-related treatment	Medical records (clinic, physician: inpatient, outpatient) and pharmacy records (combined)	Previous use, current use (cross-sectional and longitudinal for at least 3 months)	Data collected prospectively on prescription of drugs were reasonably accurately reported by patients
Lindberg et al, 72	High	Yes	204	Swedish hemo- or peritoneal dialysis patients aged 23 to 88	All (excluding natural remedies, homeopathic products, foodstuffs, naturopathic drugs, i.e., medicines, anticoagulants)	Medical records (clinic)	Current use, brand name, dosage	Discrepancies were prevalent in 80.4% of cases, with a median of three discrepancies per patient
Liu et al, 73	High	Yes	726	Low-income and underinsured women with breast cancer from California aged 25 to 85	Hormone therapy, chemotherapy	Medical records (each cancer provider)	Previous use	Self-reporting of key treatment is relatively accurate
Lloyd et al, 74	Acceptable	No	403	United Kingdom-resident South Asian diabetic people	All (medications for diabetes, blood pressure, high cholesterol and other conditions)	Medical records (general practitioners)	Current use	Nonconcordance with medications was common
Lokkegard et al, 75	High	Yes	2694	Participants of the Danish Nurse Cohort Study living in the Counties of Funen and North Jutland aged 50 to 69	Hormone replacement therapy	Pharmacy claims data	Current use, type of current medication, previous use, duration	Relatively high validity of self-reported data on HRT use was found
Loo et al, 76	Acceptable	No	4630	17 population samples in Japan, China, United Kingdom, United States aged 40 to 59	Analgesics (acetaminophen, ibuprofen)	Urine specimens	Current use	The overall rate of concordance was 81% to 84%
References, country	CA result: methodological quality	CA result: direct applicability	Sample size	Sample characteristics	Analyzed medication	Comparison data source	Outcome	Authors’ main findings
---------------------	----------------------------------	-------------------------------	-------------	------------------------	---------------------	------------------------	---------	-----------------------
Lubeck et al, United States	High	Yes	123	Community-dwelling seniors as participants of a longitudinal study of physical disability in alumni of Pennsylvania University aged 73 to 87	All (number of prescriptions), chemotherapy (number of visits)	Medical records (clinic and physician)	Previous use	Near-perfect agreement for the frequency of high-cost chemotherapy visits and substantial agreement for prescriptions
Mac Donald et al, United States	High	Yes	195	High-risk outpatients from Minneapolis enrolled in two different health care systems with similar vaccination programs aged 65	Vaccination (influenza, pneumococcus)	Medical records (clinic and physician)	Ever use (pneumococcus), current use (influenza)	SR of influenza vaccination is highly sensitive and moderately specific. SR of pneumococcal vaccination is also highly sensitive but less specific
Mangtani et al, United Kingdom	Low	No	?	Participants of a cost-of-illness study aged 65 to 84	Influenza and pneumococcal vaccine	Medical records (general practitioners)	Previous use	Influenza vaccine uptake (past year) had very good agreement; Pneumococcal vaccination (ever) had only moderate agreement
Margolis et al, United States	Acceptable	Yes	161 808	Postmenopausal women aged 50 to 79	Diabetic medication	Pharmacy records	Current use, previous use	Self-reports of “treated diabetes” are sufficiently accurate to allow use in epidemiologic studies
Maunsell et al, Canada	Acceptable	No	103	Female breast cancer survivors aged 60 at diagnosis	Chemotherapy, hormone therapy	Medical records (clinic)	Previous use, start of chemotherapy	Agreement of self-report with medical record data was very high
Metlay et al, United States	High	Yes	103	Veterans receiving primary care within the VA Healthcare System in Philadelphia aged ≥18	Antibiotics, antihypertensive drugs, NSAIDsd	Pharmacy claims data	Previous use	Assessment of antibiotic exposure appears comparable to other chronic and episodic drugs. Multistep assessment improves Sensitivity
Mevaag et al, Norway	Acceptable	No	174	Patients at the National Center for Epilepsy, Oslo	Antiepileptic drugs	Medical records (physician)	Current use, dose	32% of the patients had one or more discrepancies in either the type or the dosages
Midthjell et al, Norway	High	Yes	169 + 108	Norwegian participants of the population-based Nord-Trondelag health survey with and without diabetes aged ≥20	Diabetes treatment, hypertension treatment	Medical records (physician)	Current use	Patient-administered questionnaires may be a very reliable source of information in a well-defined chronic disease
References, country	CA² result: methodological quality	CA² result: direct applicability	Sample size	Sample characteristics	Analyzed medication	Comparison data source	Outcome	Authors' main findings
---------------------	----------------------------------	---------------------------------	-------------	--	--	--	-------------------------------------	--
Monster et al.³⁵	High	Yes	7568	Subjects with microalbuminuria as a subset of an ongoing population-based study from the Netherlands aged 28 to 75	Antihypertensives, lipid lowering drugs, antidiabetics, nitrates, oral contraceptives, hormone replacement therapy, painkillers	Pharmacy records	Current use (in general), ever use (for sublingual tablets/nitrates), previous use (for painkillers)	Good agreement for chronically used drugs and lower agreement for drugs used for shorter periods
Monte et al.³⁶ United States	Acceptable	No	55	Adult patients with nausea or pain in an emergency department	Prescribed drugs, OTC drugs (without herbals, supplements, vitamins)	Urine comprehensive drug screen	Current use	Self-reported drug ingestion histories were poor. Prescription drugs were concordant in 58.2%, OTCs in 60%
Moore et al.³⁷ France	High	Yes	797	Hospital patients participating in a case-control-study of hip fracture aged ≥65	Benzodiazepine	Medical records (clinic and physician) and plasma assays (separately)	Current use	Questionnaires had 80% Sens and 83% Spec, with 11% false negatives and 28% false positives. Concordance was $\kappa = 0.63$
Nielsen et al.³⁸	Low	No	1654	Female participants of the Danish Nurse Cohort Study aged ≥44	Hormone therapy	Pharmacy records	Current use, never-use, previous use, duration	The study showed only a moderate disagreement on hormone therapy exposure across the different exposure definitions
Nissen et al.³⁹ United States	High	Yes	474 + 353	Breast and colorectal cancer survivors from the metropolitan area of Minneapolis aged 25 to 98	Chemotherapy, hormone therapy	Cancer registry and medical records (combined)	Previous use	Several gaps in adult cancer survivors' knowledge of details of their treatment were identified but high accuracy in the indication of received chemotherapy
Noize et al.⁴⁰ France	Acceptable	Yes	4112	Participants of a cohort study into the relationship between vascular risk factors and dementia aged ≥67	All	Pharmacy claims data	Current use	Both sources estimate exposure to chronically used drugs similarly. Self-medication was better described with interviews whereas reimbursement data seem more useful for drugs used topically or intermittently
Noize et al.⁴¹ France	High	Yes	2985	Patients of the French three city cohort study (Bordeaux, Dijon or Montpellier) who responded to two consecutive cross-sectional interviews aged 65 to 94	All	Pharmacy claims data	Current use/chronic exposure (longitudinal)	Interviews as a proxy for chronic exposure was valid for drugs used regularly but not so for drugs used more irregularly
References, country	CA\(^a\) result: methodological quality	CA\(^a\) result: direct applicability	Sample size	Sample characteristics	Analyzed medication	Comparison data source	Outcome	Authors' main findings
---------------------	---------------------------------------	--------------------------------------	-------------	------------------------	---------------------	------------------------	---------	-----------------------
Norell et al.\(^{92}\) Sweden	High	Yes	427	Community-based sample of Swedish women from the county of Jämtland aged 20 to 34	Oral contraceptives	Pharmacy records	Current use, ever use, total duration, duration in three “time windows,” time since first/last use	High levels of agreement for any OC use, current use, time since first and last use, total duration of use, and for duration of use in different “time windows.”
Opdycke et al.\(^{93}\) United States	Acceptable	No	101	Patients with at least two chronic medical problems aged ≥60	All	Medical records (clinic)	Current use	Prescription drugs: agreement scores were high. Nonprescription drugs: use was frequently omitted from the medical record
Orrico\(^{94}\) United States	Acceptable	No	85	Health plan members calling a nurse advice line	All	Medical records (clinic)	Current use	Discrepancies in the outpatient setting were common and predominantly system generated
Paganini-Hill et al.\(^{95}\) United States	Acceptable	Yes	334	Female participants of a case-control study on breast cancer	Thyroid, reserpine, other hypertensives, steroids, barbiturates/ataretics, estrogen	Pharmacy records, medical records (general practitioners)	Current use (for most drugs), ever use and duration for estrogens	Agreement for ever use varied considerably with the type of drug studied, from low to high. Better correspondence was observed for medical record than for pharmacy records
Paganini-Hill et al.\(^{96}\) United States	Acceptable	No	3087	Female participants of a case-control study for breast cancer aged 53 to 71	Estrogen, progestogen (from menopausal hormone therapy, oral contraceptives)	Medical records (general practitioners)	Ever/never-use, duration	Interviews provide a moderately reliable measure for ever use for estrogen and progestogen
Persell et al.\(^{97}\) United States	High	Yes	119	Patients with hypertension from three primary care clinics in Grand Rapids, Michigan aged ≥18	Antihypertensive medication	Medical records (clinic)	Current use	Patients with inadequate health literacy were less able to name any of their antihypertensive medications
Persson et al.\(^{98}\) Sweden	Acceptable	No	116	Women with estrogen treatment for climacteric symptoms aged ≥55	Hormone replacement therapy (estrogen)	Pharmacy records	Brand name, dosage, total duration, treatment schedule	Questionnaire information was highly concordant with the prescription data with respect to name of brand, dosage, treatment schedule, total duration and time of start of medication
Phillips et al.\(^{99}\) Australia	High	Yes	895	Breast cancer patients of a case-control study in Melbourne and Sydney aged 23 to 69	Hormone therapy, chemotherapy	Medical records (clinic)	Previous use	SR questionnaire can be used to collect accurate data on broad categories of cancer treatment and for more detailed information on specifics of treatment
References, country	CAa result: methodological quality	CAa result: direct applicability	Sample size	Sample characteristics	Analyzed medication	Comparison data source	Outcome	Authors’ main findings
---------------------	---	---	-------------	------------------------	----------------------	------------------------	---------	------------------------
Pisa et al100, Italy	High	No	767	Pregnant women from a prenatal clinic in Trieste	All	Pharmacy claims data	Previous use	Agreement varied greatly by therapeutic class. It was almost perfect to substantial for medications taken for chronic conditions, while it was moderate to slight for OTC medications
Pit et al101, Australia	Acceptable	No	566	Community-dwelling, general practice patients aged ≥ 65	Drugs/drug classes commonly used in the elderly	Pharmacy claims data	Current use	High agreement and accuracy were demonstrated
Rauma et al102, Finland	High	Yes	11 031	Postmenopausal female residents of Kuopio Province participating in a cohort study for osteoporosis	Psychoactive medication, antidepressants, diuretics	Pharmacy records	Current use	Only 44%, 55%, 29% reported their use of psychoactive medication, antidepressants or other psychoactive medications when compared to a 4-month time window
Richardson et al103, Ireland	Acceptable	Yes	2621	Community-dwelling adults aged ≥ 50	19 therapeutic drug classes	Pharmacy claims data	Current use	Agreement was good or very good for 15 medication classes, and moderate or poor for antiinflammatory and antirheumatic products, analgesics, psychotropics, and ophthalmologicals
Rolfink et al104, United States	Acceptable	No	11 760	Community-dwelling health-plan enrollees aged ≥ 18	Various vaccines	Pharmacy claims data	Ever use	Considerable variation was found by vaccine. Under-reporting was relatively low, while over-reporting varied by vaccine
Sandini et al105, Finland	Acceptable	No	11 377	Female inhabitants of Kuopio, Finland aged 57 to 67	Estrogen hormone therapy	Pharmacy claims data	Previous use, duration, brand name	A postal inquiry is a reliable method of recording long-term hormone therapy use
Sarangarm et al106, United States	Low	No	404	Pregnant women recruited from prenatal care clinics	Drugs within the most common therapeutic classes	Medical records (clinic)	Previous use	High concordance for chronically used medications and poor agreement for medications used as needed
Saunders et al107, United States	Acceptable	No	164	GHC enrollees starting antidepressant treatment and participating in an RCT6 to improve depression treatment in primary care	Antidepressant treatment	Pharmacy claims data	Current use, dose, acute phase treatment adequacy	Results indicated that the two methods provided similarly complete information on current usage and overall acute phase treatment adequacy
Shalansky et al108, Canada	Acceptable	No	194	Outpatients with heart failure aged 27 to 94	All prescription medication	Pharmacy records	Current use	Discrepancies were identified for 71.1% of the patients

aCA = Critical Appraisal
References, country	CA result: methodological quality	CA result: direct applicability	Sample size	Sample characteristics	Analyzed medication	Comparison data source	Outcome	Authors' main findings	
Shenson et al,109	United States	High	Yes	135	Noninstitutionalized civilian respondents of a random digit dialed survey living in Dutchess or Columbia County, New York aged ≥ 65	Vaccination (pneumococcal polysaccharide vaccine)	Medicare claims, medical records (physician), when no claims available	Ever use	Self-reporting of pneumococcal immunization is a moderately sensitive and specific measure
Shahid et al,110	The Netherlands	High	No	1682	Participants of the Rotterdam Elderly Study aged ≥ 55	Cardiovascular drugs	Pharmacy records	Current use	The agreement is good for prescription only drugs
Spangler et al,7	United States	High	Yes	1399	Female participants of a population-based case-control study of the association between oral contraceptive use and fracture risk aged 45 to 59	Oral contraceptives	Pharmacy claims data	Ever use	Results show moderate agreement for up to 15 to 20 years before the interview
Spangler et al,111	Canada	Acceptable	Yes	101 + 153	Cases and controls with newly diagnosed cancer of the endometrium aged 40 to 74	Estrogen use	Medical records (clinic), medical records (physician)	Current use	Agreement for physician's records was 83%, for hospital records 85%
Stewart et al,112	United States	Acceptable	No	219	Adult patients of primary care clinic	All	Medical records (clinic-outpatient care)	Current use	74% had at least one discrepancy
Tisnado et al,113	United States	Acceptable	No	1270	Managed care patients with at least one of five chronic conditions	All	Medical records (physician)	Previous use	The medical record and patient self-report do not measure quality comparably across patient cohorts
Tisnado et al,114	United States	Acceptable	No	1270	Managed care patients with at least one of five chronic conditions	All	Medical records (physician)	Previous use	Concordance was good: total agreement was 85%, and kappa was 0.6
Tisnado et al,115	United States	Acceptable	No	1270	Managed care patients with at least one of five chronic conditions	All	Medical records (physician)	Previous use	The medical record and patient survey do not measure quality comparably across organization types
Uiters et al,116	The Netherlands	High	Yes	7012	Patients of different ethnicities as part of the Dutch Second National Survey of General Practice aged ≥ 18	All prescribed medications (excluding contraceptive prescriptions and OTCs)	Medical records (general practitioners)	Current use	The percentage of agreement above chance was in general relatively low
References, country	CAa result: methodological quality	CAa result: direct applicability	Sample size	Sample characteristics	Analyzed medication	Comparison data source	Outcome	Authors’ main findings	
---------------------	-----------------------------------	---------------------------------	-------------	------------------------	---------------------	------------------------	---------	-----------------------	
van den Brandt et al.117 The Netherlands	Acceptable	No	207	Participants of a prospective cohort study aged 55 to 69	All prescribed drugs	Pharmacy records	Previous use	Questionnaire recall of drug use amounted overall to 61.2% of drugs prescribed to the subjects for at least 6 months	
van den Brink et al.118 The Netherlands	Acceptable	No	94	Patients with resectable rectal cancer	All	Pharmacy records	Previous use	The percentage reported by both was quite low, at approximately 25%	
Varkey et al.119 United States	High	Yes	104	Primary care patients at Mayo Clinic in Rochester aged ≥18	All	Medical records (clinic)	Current use, drug frequency, dosage, route	Interventions resulted in a statistically significant over-all decrease in errors	
Voss et al.120 United States	High	No	200	HIV patients from two urban public health clinics in the Pacific Northwest	Antiretroviral treatment	Medical records (clinic)	Current use	Only 43% were able to recall their ART regimens accurately	
West et al.121 United States	High	No	454	GHCf enrollees aged 50 to 80	NSAIDs, noncontraceptive estrogen	Pharmacy claims data	Previous use	This study suggests significant under ascertainment of self-reported prescription drug exposure but little evidence that exposures are overreported	
West et al.122 United States	Acceptable	Yes	454	GHCf enrollees aged 50 to 80	NSAIDs, short-term NSAIDs, noncontraceptive estrogen	Pharmacy claims data	Previous use	Predictors of recall accuracy for previous medication use differ by the type of drug and the repetitiveness of its use	
Yasein et al.122 Jordan	High	Yes	400	Patients attending the family practice clinic at Jordan University Hospital in Amman aged 65 to 102	All	Medical records (clinic)	Previous use	Almost one-third of the patients had full agreement regarding the total number of drugs, whereas 43.4% underestimated and 21.8% overestimated these numbers	
Zhou et al.123 United States	Acceptable	Yes	2905	Adult participants of the Atherosclerosis Risk in Communities (ARIC) Study from five United States communities	Atenolol, Lisinopril, Metformin, Amlodipine, Valsartan	Pharmacy claims data	Current use	Claims for medications were more likely to match with self-reports	
Zimmerman et al.124 United States	High	Yes	820 + 819	Primary care patients from Pennsylvania aged ≥65	Vaccination (influenza, pneumococcus)	Medical records (physician)	Ever use (pneumococcal, previous use (influenza))	For influenza vaccine, sensitivity was 98% and specificity 38%. For pneumococcal polysaccharide vaccine, sensitivity was 85% and specificity 46%	

aCritical appraisal.
bHormone replacement therapy.
cHealth Maintenance Organization.
dNonsteroidal antiinflammatory drug.
eOver the counter.
fGroup health cooperative.
gRandomized controlled trial.
the inclusion criteria, of which 50 were not found by database searching. The inter-rater reliability for full-text-screening was 0.84. The selection process is presented in Figure 1.

Critical appraisal found 56 publications (47%) to be of high quality and another 58 (48%) to be of acceptable quality. Results are shown in Table 1.

3.2 | Data extraction

Among the 120 included publications, we found 18 articles dealing with cancer patients. Results regarding the three selected medication groups were found in 11 of them. All but one of the 11 articles provide information on the association of study design aspects or patient characteristics with agreement.

3.2.1 | Characteristics of publications

We included 120 full-text articles and described their characteristics in Table 1. The years of publication range from 1976 to 2019. The number of annual publications on this subject began to rise as of 1998, with a total 100 publications in 22 years, giving an average annual number of 4.5. Most studies stem from the United States (n = 54), followed by Canada (n = 12) and the Netherlands (n = 11).

The studies often evaluate data from cancer patients (n = 20). No other patient group is so strongly represented. Accordingly, hormones are often the focus of analyses (n = 27), although oral contraceptives are also included. Other commonly analyzed medication groups are antihypertensives (n = 20), antihyperglycemic medications (n = 15), drugs for depression or anxiety (n = 14), cardiovascular drugs (n = 10), lipid-lowering medications (n = 10), and vaccines (n = 9).

FIGURE 1 Flow diagram of systematic literature searching and publication inclusion process
References, country	Data collection period	Sample description with type of cancer	Original study design	Self-report modality	Comparison data source	Analyzed patient characteristics	Analyzed medication	Statistic methods	Outcome
Barisic et al. 26 Canada	1996 to 2000	Women diagnosed with incident breast cancer from the Ontario Cancer Registry aged 23 to 69	Cross-sectional validation study	Questionnaire	Medical records (clinic)	Age, education, marital status, English-speaking, alcohol, smoking, family cancer history, menopausal status, cancer recurrence, recall period	Chemotherapy (general), Cyclophosphamide, Flurouracil, Methotrexate, Epirubicin, Docetaxel, Hormone therapy (general), Tamoxifen, Megestrol, Anastrozole, MA12	Proportion correct, sensitivity, specificity, PPV, NPV, kappa	Previous use
Boudreau et al. 18 United States	1990 to 1999	Female participants of a case-control study of medications and breast cancer risk aged 65 to 79	Case-control study	Face-to-face interview	Pharmacy claims data	None	Antihypertensives (general), statins (general), antidepressants (general)	Sensitivity, specificity, intraclass correlation coefficient	Previous use, duration
Clegg et al. 27 United States	1994 to 1995	Male participants of a population-based cohort study with prostate carcinoma from six regions in the United States aged 39 to 89	Cohort study	Questionnaire	Medical records (hospitals, outpatient clinics, HMOs, private physicians' offices); cancer registries if medical records not available	Age, education, marital status, ethnicity, income, registry area	Hormone pills (finasteride, flutamide, estrogen, bicalutamide, prednisone/steroids, aminolutetethimide, ketoconazole) and hormone injections (leuprolide acetate and goserelin)	Sensitivity, specificity, PPV, NPV, kappa	Previous use
Cotterchio et al. 32 Canada	1995 to 1996	Female study participants of a case-control study for non-Hodgkin's lymphoma, breast, or kidney cancer from Ontario aged 20 to 74	Case-control study	Questionnaire	Medical records (physician)	Age, education, marital status, income, cancer site, depression, smoking	Antidepressants (general, amitriptylin, fluoxetine, imipramine, desipramine, mapiotrine, sertraline, doxepin, paroxetine)	Kappa, weighted kappa, percent agreement, percent perfect agreement, mean difference of duration	Ever use, duration, dose, date first taken
Goodman et al. 42 United States	1975 to 1980	Japanese and white women with and without breast cancer aged 45 to 74	Case-control study	Face-to-face interview	Medical records (physician and clinic combined)	Age at interview, education, marital status, ethnicity, home ownership, cigarette use, case-control status, family history of cancer, duration of estrogen use, age at initial use of estrogens, length of recall, and the number of physician records reviewed on the agreement between subject recall and physician information	Estrogen	Proportion correct, kappa, intraclass correlation coefficient	Ever use, duration, age at initial use

(Continues)
References, country	Data collection period	Sample description with type of cancer	Original study design	Self-report modality	Comparison data source	Analyzed patient characteristics	Analyzed medication	Statistic methods	Outcome
Gordon et al, Australia	2009 to 2010	Colorectal cancer survivors	RCT	Telephone interview	Pharmacy claims data (national insurance administrative data, medicare Australia)	Age, sex, income, paid work, living arrangement, private health insurance, type of surgery, chemotherapy, radiotherapy, visit frequency, intervention allocation	Any prescriptions, medicines (in general) for gastrointestinal conditions, cardiovascular disease, psychological conditions and COPD	Proportion of absolute agreement, kappa, differences (%)	Previous use
Gupta et al, China	n.a.	Women with diagnosed breast cancer aged 20 to 75	Population-based prospective cohort study	Face-to-face interview	Medical records (clinic)	Age, education, income, time since diagnosis, stage of disease at diagnosis	Fluorouracil, cyclophosphamide, epirubicin, methotrexate, calcium folinate, piraubicin, novel drugs, vinorelbine, docetaxel, paclitaxel	Kappa, percent agreement	Previous use
Hanigan et al, United States	n.a.	Clinic patients with any cancer	Cross sectional study	Questionnaire	Medical records (clinic)—Paper and electronic form separated	Sex, paper charts/electronic charts, participating in clinical trials	All (prescribed, nonprescribed, vitamins/others)	Percent agreement, sensitivity, specificity	Current use
Jain et al, Canada	1994 to 1998	Participants of a case-control study of endometrial cancer in Toronto and surrounding regions of Halton, Peel and York aged 30 to 79	Case-control study	Face-to-face Interview	Medical records (physician)	Age, education, marital status, smoking, family history of cancer	Hormone therapy (general), estrogen, progestogen	Proportion correct, kappa, ICC f	Ever use, duration
Kropp et al, Germany	2002 to 2005	Postmenopausal women who participated in a breast cancer case-control study from the German regions of Rhein-Neckar and Hamburg aged 50 to 74	Case-control study	Face-to-face interview	Medical records (physician)	Age, education, study region, BMI, case-control status, mother with breast cancer, validation period	Hormone therapy (general), estrogen, cyclical hormone therapy, continuous hormone therapy	Kappa, sensitivity, specificity, proportion correct, ICC f, differences in years, no/partial/perfect agreement	Current use, ever use, duration, type of medication at first use, age at first/fast use
Liu et al, United States	2003 to 2005	Low-income and underinsured women with breast cancer from California aged 25 to 85	Cohort study	Telephone interview	Medical records (each cancer provider)	Age, education, marital status, ethnicity, health status, communication with physician	Hormone therapy (general), chemotherapy (general)	Proportion correct, kappa	Previous use
References, country	Data collection period	Sample description with type of cancer	Original study design	Self-report modality	Comparison data source	Analyzed patient characteristics	Analyzed medication	Statistic methods	Outcome
--------------------------	------------------------	--	-----------------------	----------------------	------------------------	----------------------------------	-------------------------------------	-----------------	----------------------------------
Maunsell et al,	1996 to 2002	Female breast cancer survivors aged <60 at diagnosis	Population-based retrospective cohort study	Telephone interview	Medical records (clinic)	None	Hormone therapy (general), chemotherapy (general)	Proportion correct, kappa	Previous use, start of chemotherapy
United States									
Nissen et al,	1999 to 2008	Breast and colorectal cancer survivors from the metropolitan area of Minneapolis aged 25 to 98	Cross-sectional validation study	Questionnaire	Medical records and cancer registry (combined)	Age at diagnosis, years since diagnosis, use of medical records or notes	Hormone therapy (general), Doxorubicin, Tamoxifen, Aromatase inhibitor, Trastuzumab, Oxaliplatin, chemotherapy (general)	Proportion correct	Previous use
United States									
Paganini-Hill et al,	1977 to 1978	Female participants of a case-control study on breast cancer	Case-control study	Face-to-face interview	Medical records (physician) and pharmacy records separated	None	Estrogen (oral forever use, conjugated for dose, estrogen in general for duration), thyroid, reserpine, other antihypertensives, steroids, barbiturates/atacatics	Proportion correct, kappa, difference of years, correlation	Ever use, dose, duration
United States									
Paganini-Hill et al,	1987 to 1993	Female participants of a case-control study for breast cancer aged 53 to 71	Case-control study	Face-to-face interview	Medical records (physician)	Age, education, marital status, ethnicity, socioeconomic status, religion, smoking, alcohol consumption, parity, case-control status, mammogram history, family history of breast cancer, type of menopause, age at last menstrual period	Estrogen, progestogen (from menopausal hormone therapy, oral contraceptives)	Proportion correct, kappa	Ever use
United States									
Phillips et al,	1999	Breast cancer patients of a case-control study in Melbourne and Sydney aged 23 to 69	Case-control study	Questionnaire	Medical records (clinic)	Age at diagnosis, education, marital status, country of birth, disease recurrence, year of diagnosis	Hormone therapy (general), tamoxifen, chemotherapy (general), CMF/cyclophosphamide, methotrexate, fluorouracil; AC/adriamycin, cyclophosphamide; EC/epirubicin, cyclophosphamide	Proportion correct, sensitivity, specificity, PPV, NPV, kappa	Previous use
Australia									

(Continues)
Self-reports were compared to pharmacy claims ($n = 36$), MR/physician ($n = 28$), MR/clinic ($n = 22$), pharmacy records ($n = 21$), and combined MRs from different sources ($n = 9$). In addition, some publications use other data sources, such as information from biosamples or cancer registries.

The outcome consisted of either current use ($n = 77$), previous use ($n = 39$), ever use ($n = 19$) or duration ($n = 14$). Some publications additionally investigated brand names or dosage. Research concerning change of medication regimen is entirely lacking.

The results of the studies regarding agreement between self-reports and comparison data sources are very heterogeneous and range from poor to excellent, with most studies finding moderate or good agreement.

Table 2 lists 18 publications in which the patient population has cancer. Two studies by Horwitz et al56,57 do not analyze the population with cancer separately from the controls and were therefore not included.

Table 3 shows agreement estimates for patients with cancer where HT, estrogen or chemotherapy is analyzed ($n = 11$). In general, authors report relatively good agreement estimates for patients with cancer (PC $\geq 81.9\%$, kappa ≥ 0.57, with kappa being >0.80 in half of the analyses), with two exceptions, namely Nissen et al/hormone therapy (PC = 51.7%)89 and Paganini-Hill et al/Estrogen (PC = 65%, kappa = 0.34)95 The descriptive presentation of authors’ agreement estimates shows the best agreement results for chemotherapy (PC $\geq 93.6\%$, kappa ≥ 0.88).

3.2.2 Factors associated with agreement for patients with cancer

Table 4 shows studies which analyzed factors associated with the agreement. The factors include study design aspects and patient characteristics. Among the 10 publications, the authors used either stratification methods or regression models to analyze possible associations.

Age, education, and marital status were the most frequently analyzed patient characteristics. Nevertheless, no consistent association between these three factors and agreement can be derived. Younger age is associated with better agreement in 2 of 11 analyses,89,96 higher education in 2 of 10,67,99 and being married in 2 of 10.16,96 It must be considered that confidence intervals concerning education overlap in one of the two studies.67 Furthermore, two publications found cancer recurrence to be associated with lower agreement,16,99 and being a nonsmoker42 or being born in Australia99 were associated with higher agreement in one publication each.

With regard to study design, two publications were found in which self-reports were compared to different data sources. Firstly, the Paganini-Hill et al95 study into ever use of estrogen found better agreement estimates for MR/physician (PC = 83% and kappa = 0.62) than for pharmacy records (PC = 65% and kappa = 0.34). Secondly, Spengler et al,111 who analyzed current use of estrogen, found slightly
First author	Results for agreement	Kappa value (95% CI)	Outcome	Type of cancer	Original study design	Self-report modality	Comparison data source
Hormone therapy (in general)							
Barisic	92.6	0.88	Previous use	Cross-sectional	Questionnaire	MRb (clinic)	
Jain	87	0.74 (0.67-0.81)	Ever use	Case-control	Face-to-face interview	MRb (physician)	
Kropp	86.6	0.68 (0.58-0.79)	Ever use	Case-control	Face-to-face interview	MRb (physician)	
Liu	95.3	0.90	Previous use	Cohort	Telephone interview	MRb (combination of different providers)	
Maunsell	96	0.92 (0.85-0.99)	Previous use	Cohort	Telephone interview	MRb (clinic)	
Nissen	51.7	n.a.c	Previous use	Cross-sectional	Questionnaire	MRb combined with cancer registry	
Phillips	94	0.87	Previous use	Case-control	Questionnaire	MRb (clinic)	
Estrogen							
Goodman	87.2	0.74	Ever use	Case-control	Face-to-face interview	MRb (combination of different providers)	
Kropp	86.3	0.57 (0.36-0.77)	Current use	Case-control	Face-to-face interview	MRb (physician)	
Kropp	81.9	0.63 (0.50-0.77)	Ever use	Case-control	Face-to-face interview	MRb (physician)	
Paganini-Hill 1982	83	0.62	Ever use	Case-control	Face-to-face interview	MRb (physician)	
Paganini-Hill 1982	65	0.34	Ever use	Case-control	Face-to-face interview	Pharmacy records	
Paganini-Hill 2007	87	0.63	Ever use	Case-control	Face-to-face interview	MRb (physician)	
Spengler	83	n.a.c	Current use	Case-control	Face-to-face interview	MRb (physician)	
Spengler	85	n.a.c	Current use	Case-control	Face-to-face interview	MRb (clinic)	
Chemotherapy (in general)							
Barisic	93.6	0.88	Previous use	Cross-sectional	Questionnaire	MRb (clinic)	
Liu	99.6	0.99	Previous use	Cohort	Telephone interview	MRb (combination of different providers)	
Maunsell	100	1.00 (1.00-1.00)	Previous use	Cohort	Telephone interview	MRb (clinic)	
Nissen	97.5	n.a.c	Previous use	Breast	Cross-sectional	Questionnaire	MRb combined with cancer registry
Nissen	95.2	n.a.c	Previous use	Colorectal	Cross-sectional	Questionnaire	MRb combined with cancer registry
Phillips	99	0.98	Previous use	Case-control	Questionnaire	MRb (clinic)	

aConfidence interval.
bMedical record.
cNot available.
First author	Outcome	Analyzed factors	Statistical method	Associated factors
Hormone therapy (in general)				
Barisic	Previous use	Age, education, marital status, English-speaking, alcohol, smoking, family cancer history, menopausal status, cancer recurrence, recall period	Regression	• Cancer recurrence: lower agreement (OR = 0.19 [0.09-0.34]) • Being married: higher agreement (OR = 1.95 [1.12-3.40])
Jain	Ever use (cases)	Age, education, marital status, smoking, family history of cancer, case/control-status	Stratification	No association
Kropp	Ever use (cases + controls)	Age, education, marital status, study region, BMI, case-control status, mother with breast cancer, validation period, menopausal symptoms	Stratification	Higher education: higher agreement (k = 0.85 (0.73-0.98) vs 0.54 (0.32-0.75))
Liu	Previous use	Age, education, marital status, ethnicity, health status, communication with physician	Regression	• Fair or poor health status: lower agreement (OR = 0.43, p = 0.003) • Lower self-efficacy: lower agreement (OR = 0.44, p = 0.04)
Nissen	Previous use (breast cancer patients)	Age at diagnosis, years since diagnosis, use of medical records or notes	Regression	• Younger age: higher agreement (OR = 2.0 [1.1-3.5]) • Time since diagnosis <9 years: higher agreement (OR = 1.9 [1.1-3.1])
Phillips	Previous use (cases)	Age at diagnosis, education, marital status, country of birth, cancer recurrence, year of diagnosis	Stratification	• Cancer recurrence: lower agreement (80% correct vs 94%, p = 0.009)
Estrogen				
Goodman	Ever use (cases)	Age at interview, education, marital status, ethnicity, home ownership, cigarette use, case-control status, family history of cancer, duration of estrogen use, age at initial use of estrogens, length of recall, number of physician records reviewed on the agreement between subject recall and physician information	Stratification	• Ethnicity Japanese: higher agreement (k = 0.79 vs 0.67, p < 0.01) • Being a non-smoker: higher agreement (k = 0.79 vs 0.64, p < 0.01)
Kropp	Ever use (cases)	Broad medication group (hormone therapy) vs specific medication (estrogen)	Stratification	Broad medication group: higher agreement (k = 0.68 vs 0.63, statistical significance not calculated)
Paganini-Hill, 1982	Ever use (cases)	Comparison data source (medical record/physician, pharmacy records)	Stratification	Medical record: higher agreement (k = 0.62 vs 0.34, statistical significance not calculated)
Paganini-Hill, 2007	Ever use (cases)	Age, education, marital status, ethnicity, socioeconomic status, religion, smoking, alcohol consumption, parity, case-control status, mammogram history, family history of breast cancer, type of menopause, age at last menstrual period	Stratification	• Older age: lower agreement • Being unmarried: lower agreement • Naturally menopausal: lower agreement (no data shown)
Spengler	Current use (cases)	Comparison data source (medical record/physician, medical record/clinic)	Stratification	Medical record/clinic: higher agreement (85% correct vs 83%, statistical significance not calculated)
better proportion correct values for MR/clinic (85%) than for MR/physician (83%).

Another publication, Kropp et al., provides cautious hints that agreement might be slightly better for the broad medication group HT than for the specific agent estrogen.

4 | DISCUSSION

4.1 | Main findings

This systematic review strengthens the assumption that there are numerous publications which compare self-reported drug intake with other data sources. The 120 articles that met our inclusion criteria covered a broad range of comparisons, such as populations, analyzed medications and outcomes. Agreement results range from poor to excellent, where the majority were rated moderate to very good. Studies among populations with cancer and their most frequently studied medications estrogen, hormone therapy (HT) and chemotherapy showed relatively good agreement. Studies analyzing factors which may be associated with agreement mostly investigated patient characteristics, namely age, education and marital status. They did not identify a consistent pattern.

4.2 | Agreement of self-report with other data sources in patients with cancer

Overall, agreement for estrogen, HT, and chemotherapy in cancer patients was relatively good. This may be due to cancer likely being a very serious diagnosis for patients.

In the studies included in our review, agreement was best for chemotherapy. This may be due to patient characteristics or study design. However, chemotherapy can probably be deemed a drastic experience and might therefore be better remembered. Tentative suggestions were found that agreement might be slightly better for the broader HT medication group than for the specific agent estrogen. This observation is based solely on the Kropp et al. publication, the only study in our review to have analyzed HT and estrogen in the same sample. On the one hand, it could be assumed that broader medication classes are easier to recall. However, in their study into antidepressants, Cotterchio et al. found that patients might misunderstand which type of medication they use. This is supported by Nissen et al. who described that specific medications such as tamoxifen were not identified as hormone therapy, and that agreement was therefore better at a specific level in this case. While we were unable to compare chemotherapy as a superordinate class with specific agents in our analysis, Barisic et al. and Phillips et al. did and found better agreement for the broader medication class. They assume that, specific drug-level information may be very complex for patients, for instance where several drugs are combined for chemotherapy.
4.3 Factors associated with agreement

Among the studies dealing with cancer patients, 10 studies analyzed associated factors by using stratification or regression analysis. They most commonly tried to identify possible associations of different patient characteristics with the agreement. Although a number of studies assessed age, education and marital status, we could not find a consistent association between these factors and agreement.

Only two studies analyzed design-related factors, comparing self-reports with two other data sources, therefore only allowing for a cautious comparison of data sources. It must be considered, however, that the Paganini-Hill et al study, which found better agreement estimates for MR/physician than for pharmacy records, was conducted over three decades ago. In the meantime, data quality from each of the sources may have improved. The second study, Spengler et al, dates from the same era, and shows marginally better proportion correct estimates for MR/clinic (85%) than for MR/physician (83%). With regard to MR/clinic, the authors stated that records may have been incomplete.

4.4 Strengths and limitations

Our work has a number of strengths. To the best of our knowledge, this is the first systematic review to identify studies which compare self-reports and other data sources specifically for medications. Unlike the two existing reviews on this topic, we did not analyze healthcare utilization overall but focused on medications. That focus enabled us to provide an overview of this research area and identify a considerable number of relevant publications and describe their characteristics. Furthermore, the subsequent focus on studies including patients with cancer enabled us to provide a descriptive overview of different parameters and the agreement estimates.

However, our review also has some weaknesses. Firstly, we were unable to detect a number of relevant articles by routine database searching (50 out of 120), despite searching five different databases and including specific medications in our search strategy. This may be due to some publications having conducted agreement measurements as a piggy-back analysis and not reported it in the title/abstract/keywords. A number of potential improvements to the search strategy can be gleaned by taking a closer look at the nondetected publications. Firstly, “drug taking” would complement the terms “use/utilization/consumption.” Secondly, in addition to “drug/medication,” specific treatment methods should be added, such as “breast cancer treatment/hormone therapy/vaccination/chemotherapy.” Thirdly, the definition of a specific comparison data source might be helpful, for example “prescriptions/medical records.” The majority of non-routinely identified publications came from reference lists (37 of 50). Researchers looking to reproduce the search will thus be able to find most matches systematically.

Secondly, the 120 studies included are hardly comparable due to great methodological differences. We therefore did not perform a meta-analysis, instead opting to describe study characteristics to provide an overview of methods and analyzed aspects.

5 CONCLUSION

This review includes 120 publications that measure the agreement between self-reports and other data sources and focuses on 18 of them which refer to cancer patients. We identified relatively good agreement for hormone therapy, estrogen, and especially for chemotherapy. No consistent pattern could be found regarding factors associated with agreement for either patient characteristics or design-related parameters. The latter was rarely analyzed, indicating approaches for further research. Studies with experimental design can be helpful to counteract the impact of different comparison data sources or self-report modalities under otherwise identical conditions.

ACKNOWLEDGEMENTS

Thanks to Jeremy Groves for providing language help in the preparation of the manuscript. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Open access funding enabled and organized by Projekt DEAL.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ORCID

Manuela Brüne https://orcid.org/0000-0003-0023-8513

REFERENCES

1. Kwon A, Bungay KM, Pei Y, et al. Antidepressant use: concordance between self-report and claims records. Med Care. 2003;41(3):368-374. https://doi.org/10.1097/01.mlr.0000053019.79054.b6.
2. Allin S, Bayoumi AM, Law MR, Laporte A. Comparability of self-reported medication use and pharmacy claims data. Health Rep. 2013;24(1):3-9.
3. West SL. A comparison of data sources for drug exposure ascertainment in pharmacoepidemiologic studies with emphasis on self-reported information. Pharmacoeconomics Drug Saf. 1997;6:215-218.
4. Hafferty JD, Campbell AI, Navrady LB, et al. Self-reported medication use validated through record linkage to national prescribing data. J Clin Epidemiol. 2018;94:132-142. https://doi.org/10.1016/j.jclinepi.2017.10.013 PMID: 29097340.
5. Caskie GIL, Willis SL. Concordance of self-reported medications with pharmacy prescription records in low-income older adults. Gerontologist. 2004;44(2):176-185.
6. Caskie GIL, Willis SL, Schaie W, Zanjani FAK. Concordance of self-reported medications with pharmacy prescription records in low-income older adults: findings from the Seattle longitudinal study. Exp Aging Res. 2006;32(1):79-103.
7. Spangler L, Ichikawa LE, Hubbard RA, et al. A comparison of self-reported oral contraceptive use and automated pharmacy data in perimenopausal and early postmenopausal women. Ann Epidemiol. 2015;25(1):55-59.
8. Harlow SD, Linet MS. Reviews and commentary: agreement between questionnaire data and medical records. Am J Epidemiol. 1989;129(2):233-248.
9. Evans C, Crawford B. Patient self-reports in pharmacoeconomic studies. Their use and impact on study validity. Pharmacoeconomics. 1999;15(3):241-256.
10. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1-e43. https://doi.org/10.1016/j.icepi.2009.06.006 PMID: 19631507.

11. SIGN checklist: methodology checklist 5: studies of diagnostic accuracy [cited 2020 August 20]. http://www.sign.ac.uk/assets/checklist_for_diagnostic_accuracy-studies.doc

12. Andersen SE, Pedersen AB, Bach KF. Medication history on internal medicine wards: assessment of extra information collected from second drug interviews and GP lists. Pharmacoepidemiol Drug Saf. 2003;12(6):491-498. https://doi.org/10.1002/s11764-011-0189-3.

13. Andrews RM. Assessment of vaccine coverage following the introduction of a publicly funded pneumococcal vaccine program for the elderly in Victoria, Australia. Vaccine. 2005;23(21):2756-2761.

14. Banks E, Beral V, Cameron R, et al. Agreement between general practice prescription data and self-reported use of hormone replacement therapy and treatment for various illnesses. J Epidemiol Biostat. 2001;6(4):357-363.

15. Barat I, Andreasen F, Damsgaard EMS. Drug therapy in the elderly: what doctors believe and patients actually do. J Clin Pharmacol. 2001;51(6):615-622.

16. Barisic A, Glendon G, Weerasooriya N, Andrulis IL, Knight JA. Accuracy of self-reported breast cancer information among women from the Ontario site of the breast cancer family registry. J Cancer Epidemiol. 2012;2012:310804. https://doi.org/10.1155/2012/310804.

17. Barrett-Connor E, Ensrud K, Tosteson ANA, et al. Design of the POSSIBLE US study: postmenopausal women’s compliance and persistence with osteoporosis medications. Osteoporos Int. 2009;20(3):463-472. https://doi.org/10.1007/s00198-008-0674-3.

18. Boudreau DM, Daling JR, Malone KE, Gardner JS, Blough DK, Heckbert SRA. Validation study of patient interview data and pharmacy records for antihypertensive statin and antidepressant medication use among older women. Am J Epidemiol. 2004;159(3):308-317. https://doi.org/10.1093/aje/kwh038.

19. Boudreau DM, Doescher MP, Saver BG, Jackson JE, Fishman PA. Reliability of group health cooperative automated pharmacy data by drug benefit status. Pharmacoepidemiol Drug Saf. 2005;14(12):877-894. https://doi.org/10.1002/pds.1119.

20. Brooks DR, Avetisyan R, Jarrett KM, et al. Validation of self-reported epilepsy for purposes of community surveillance. Epilepsy Behav. 2012;23(1):57-63. https://doi.org/10.1016/j.yebeh.2011.11.002.

21. Brown DW, Anda RF, Felitti VJ. Self-reported information and pharmacy claims were comparable for lipid-lowering medication exposure. J Clin Epidemiol. 2007;60(5):525-529. https://doi.org/10.1016/j.jclinepi.2006.08.007.

22. Cadarette SM, Jaglal SB, Raman-Wilms L, Beaton DE, Paterson JM. Osteoporosis quality indicators using healthcare utilization data. Osteoporos Int. 2011;22(5):1335-1342. https://doi.org/10.1007/s00198-010-1329-9.

23. Carroll M, Kinner SA, Heffernan EB. Medication use and knowledge among pregnant women. Osteoporos Int. 2012;23(9):1119-1125. https://doi.org/10.1002/pds.4264 PMID: 28744981.

24. Clegg LX, Potosky AL, Harlan LC, et al. Comparison of self-reported and self-reported initial treatment with medical records: results from the prostate cancer outcomes study. Am J Epidemiol. 2001;154(6):582-587.

25. Cheung K, El Marroun H, Elfrink ME, Jaddoe VWV, Visser LE, Stricker BHC. The concordance between self-reported medication use and pharmacy records in pregnant women. Pharmacoepidemiol Drug Saf. 2017;26(9):1119-1125. https://doi.org/10.1002/pds.4264 PMID: 28744981.

26. Chin KL, Skiba M, Reid C, et al. Mind the Gap: Mismatches Between Clinicians and Patients in Heart Failure Medication Management. Cardiovasc Drugs Ther. 2018;32(1):37-46. https://doi.org/10.1007/s10557-017-6768-4

27. Clegg LX, Potosky AL, Harlan LC, et al. Comparison of self-reported initial treatment with medical records: results from the prostate cancer outcomes study. Am J Epidemiol. 2001;154(6):582-587.

28. Cohen-Glickman I, Haviy YS, Cohen MJ. Summary adherence estimates do not portray the true incongruity between drug intake, nurse documentation and physicians’ orders. BMC Nephrol. 2014;15:170. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534326.

29. Colantonio LD, Kent ST, Kilgore ML, et al. Agreement between Medicare pharmacy claims, self-report, and medication inventory for assessing lipid-lowering medication use. Pharmacoepidemiol Drug Saf. 2016;25(7):827-835. https://doi.org/10.1002/pds.3970 PMID: 26823152.

30. Coleman EA, Smith JD, Raha D, Min S-J. Posthospital medication discrepancies: prevalence and contributing factors. Arch Intern Med. 2005;165(16):1842-1847.

31. Collet T-H, Taffé P, Bordet J, Burnand B, Peytremann-Bridevaux I. Reproducibility of diabetes quality of care indicators as reported by patients and physicians. Eur J Public Health. 2014;24(6):1004-1009. https://doi.org/10.1093/eurpub/cku011 PMID: 24534326.

32. Cotterchio M, Kreiger N, Darlington G, Steingart A. Comparison of self-reported and physician-reported antidepressant medication use. Ann Epidemiol. 1999;9(5):283-289.

33. Coulter A, Vessey M, McPherson K. The ability of women to recall their oral contraceptive history. Contraception. 1998;33(2):127-137.

34. Curtis JR, Westfall AO, Allison J, Freeman A, Kovac SH, Saag KG. Agreement and validity of pharmacy data versus self-report for use of osteoporosis medications among chronic glucocorticoid users. Pharmacoepidemiol Drug Saf. 2006;15(10):710-718. https://doi.org/10.1002/pds.1226.

35. Demöré B, Le Govet D, Thilly N, Boivin J-M, Pulcini C. Reliability of self-reported recent antibiotic use among the general population: a cross-sectional study. Clin Microbiol Infect. 2017;23(7):e486-e486.e12. https://doi.org/10.1016/j.cmi.2017.01.006 PMID: 28110051.

36. Drieling RL, LaCroix AZ, Beresford SAA, Boudreau DM, Kooperberg C, Heckbert SR. Validity of self-reported medication use compared with pharmacy records in a cohort of older women: findings from the women’s health initiative. Am J Epidemiol. 2016;184(3):233-238. https://doi.org/10.1093/aje/kwv446 PMID: 27402774.

37. Enlund H, Tuomilehto J, Turakka H. Patient report validated against prescription records for measuring use of and compliance with antihypertensive drugs. Acta Med Scand. 1981;209(4):271-275.

38. Fogel JM, Zhang Y, Palumbo PJ, et al. Use of antiretroviral drug testing to assess the accuracy of self-reported data from HIV-infected people who inject drugs. AIDS Behav. 2019;23(8):2101-2108. https://doi.org/10.1007/s10461-016-2379-8 PMID: 30604543.

39. Fujita M, Sato Y, Nagashima K, Takahashi S, Hata A. Validity assessment of self-reported medication use by comparing pharmacy insurance claims. BMJ Open. 2015;5(11):e009490. https://doi.org/10.1136/bmjopen-2015-009490 PMID: 26553893.

40. Gee ME, Pickett W, Janssen I, Campbell NRC, Birtwhistle R. Validity of self-reported blood pressure control in people with hypertension attending a primary care center. Clin Methods Pathophysiol. 2014;19(1):19-25.

41. Gnjidic D, Du W, Pearson S-A, Hilmer SN, Banks E. Ascertainment of self-reported prescription medication use compared with pharmaceutical claims data. Public Health Res Pract. 2017;27(4):e27341702. https://doi.org/10.17061/phrp27341702 PMID: 29114718.

42. Goodman MT, Nomura AMY, Wilkens LR, Kolonel LN. Agreement between interview information and physician records on history of menopausal estrogen use. Am J Epidemiol. 1990;131(5):815-825.
78. Mac Donald R, Baken L, Nelson A, Nichol KL. Validation of self-report of influenza and pneumococcal vaccination status in elderly outpatients. Am J Prev Med. 1999;16(3):173-177.

79. Mangtani P, Shah A, Roberts JA. Validation of influenza and pneumococcal vaccine status in adults based on self-report. Epidemiol Infect. 2007;135(1):139-143.

80. Margolis KL, Qi L, Bryzsky R, et al. Validity of diabetes self-reports in the women's health initiative: comparison with medication inventories and fasting glucose measurements. Clin Trial. 2008;5(3):240-247. https://doi.org/10.1177/1740774508017949.

81. Maunsell E, Drolet M, Ouhoummane N, Robert J. Breast cancer survivors accurately reported key treatment and prognostic characteristics. J Clin Epidemiol. 2005;58(4):364-369. https://doi.org/10.1016/j.jclinepi.2004.09.005.

82. Metlay JP, Hardy C, Strom BL. Agreement between patient self-report and a veterans affairs national pharmacy database for identifying recent exposures to antibiotics. Pharmacoepidemiol Drug Saf. 2003;12(1):9-15. https://doi.org/10.1002/pds.772.

83. Mevaag M, Henning O, Baftiu A, et al. Discrepancies between physicians' prescriptions and patients' use of antiepileptic drugs. Acta Neurol Scand. 2017;135(1):80. PMID: 26923477-87. https://doi.org/10.1111/ane.12578.

84. Midthjell K, Holmen J, Bjørndal A, Lund-Larsen PG. Is questionnaire information valid in the study of a chronic disease such as diabetes? The Nord-Trendelag diabetes study. J Epidemiol Community Health. 1999;46(5):537-542.

85. Monster TB, Janssen WM, de PE J, de Jong-van den Berg LT. Pharmacacy data in epidemiological studies: an easy to obtain and reliable tool. Pharmacoepidemiol Drug Saf. 2002;11(5):379-384.

86. Monte AA, Heard KJ, Hoppe JA, Vasiiliou V, Gonzalez FJ. The accuracy of self-reported drug ingestion histories in emergency department patients. J Clin Pharmacol. 2014;55(1):33-38. https://doi.org/10.1002/jcph.368.

87. Moore N, Pierfitte C, Pehourcq F, Lagnagou R, Bégaud B. Comparison of patient questionnaires medical records and plasma assays in assessing exposure to benzodiazepines in elderly subjects. Clin Pharmacol Ther. 2001;69(6):445-450. https://doi.org/10.1097/AJP.0b013e318225da9e.

88. Nielsen LH, Lokkegaard E, Andreasen AH, Hundrup YA, Keiding N. Estimating the effect of current previous and never use of drugs in studies based on prescription registries. Pharmacoepidemiol Drug Saf. 2009;18(2):147-153. https://doi.org/10.1002/pds.1693.

89. Nissen MJ, Tsai ML, Blaes AH, Swenson KK. Breast and colorectal cancer survivors' knowledge about their diagnosis and treatment. J Cancer Surviv. 2012;6(1):20-32.

90. Noize P, Bazin F, Dufoull C, et al. Comparison of health insurance claims and patient interviews in assessing drug use: data from the three-city (3C) study. Pharmacoepidemiol Drug Saf. 2009;18(4):310-319. https://doi.org/10.1002/pds.1717.

91. Noize P, Bazin F, Pariente A, et al. Validity of chronic drug exposure presumed from repeated patient interviews varied according to drug class. J Clin Epidemiol. 2012;65(10):1061-1068. https://doi.org/10.1016/j.jclinepi.2012.04.009.

92. Norell SE, Boethius G, Perrson I. Oral contraceptive use: interview data versus pharmacy records. Int J Epidemiol. 1998;27(6):1033-1037.

93. Opdycke RAC, Ascione FJ, Shimp LA, Boyd EL, Malloch CK. Comparison of pharmacist-obtained comprehensive medication histories and medical records in geriatric patients. J Geriatr Drug Ther. 1994;9(2):19-37.

94. Orrico KB. Sources and types of discrepancies between electronic medication records and actual outpatient medication use. JMCP. 2008;14(7):626-631.

95. Paganini-Hill A, Ross RK. Reliability of recall of drug usage and other health-related information. Am J Epidemiol. 1982;116(1):114-122.

96. Paganini-Hill A, Clark LJ. Comparison of patient recall of hormone therapy with physician records. Menopause. 2007;14(2):230-234.

97. Persell SD, Osborn CY, Richard R, Skripkauskas S, Wolf MS. Limited health literacy is a barrier to medication reconciliation in ambulatory care. J Gen Intern Med. 2007;22(11):1523-1526. https://doi.org/10.1007/s11606-007-0334-x.

98. Persson I, Bergkvist L, Adami H-O. Reliability of women's histories of climacteric oestrogen treatment assessed by prescription forms. Int J Epidemiol. 1987;16(2):222-228.

99. Phillips K-A, Milne RL, Buys S, et al. Agreement between self-reported breast cancer treatment and medical records in a population-based breast cancer family registry. J Clin Oncol. 2005;23(21):4679-4686.

100. Pisa FE, Casetta A, Clagnan E, Michelello E, Vecchi Brunatti L, Barbone F. Medication use during pregnancy, gestational age and date of delivery: agreement between maternal self-reports and health database information in a cohort. BMC Pregnancy Childbirth. 2015;15:310. https://doi.org/10.1186/s12884-015-0745-3. [PMID: 26608022.]

101. Pitt S, Byles J, Cockburn J. Accuracy of telephone self-report of drug use in older people and agreement with pharmaceutical claims data. Drugs Aging. 2008;25(1):71-80.

102. Rauma PH, Koivumaa-Honkanen H, Kröger H, Tuppurainen MT, Kauhanen J, Honkanen RJ. The relationship between self-reported and registry-based data on use of psychoactive medications in postmenopausal women. BMC Psychiatry. 2013;13:180. https://bmcpsychiatry.biomedcentral.com/articles/10.1186/1471-244X-13-180.

103. Richardson K, Kenny RA, Peklar J, Bennett K. Agreement between patient interview data on prescription medication use and pharmacy records in those aged older than 50 years varied by therapeutic group and reporting of indicated health conditions. J Clin Epidemiol. 2013;66(11):1308-1316. https://doi.org/10.1016/j.jclinepi.2013.02.016.

104. Rolnick SJ, Parker ED, Nordin JD, et al. Self-report compared to electronic medical record across eight adult vaccines: do results vary by demographic factors? Vaccine. 2013;31(37):3928-3935. https://doi.org/10.1016/j.vaccine.2013.06.041.

105. Sandini L, Pentti K, Tuppurainen M, Kröger H, Honkanen R. Agreement of self-reported estrogen use with prescription data: an analysis of women from the Kuopio osteoporosis risk factor and prevention study (OSTPRE). Menopause. 2008;15(2):282-289.

106. Sarangarm P, Young B, Rayburn W, et al. Agreement between self-report and prescription data in medical records for pregnant women. Birth Defects Res A Clin Mol Teratol. 2012;94(3):153-161. https://doi.org/10.1002/bdra.22888.

107. Saunders K, Simon G, Bush T, Grothaus L. Assessing the feasibility of using computerized pharmacy refill data to monitor antidepressant treatment on a population basis: a comparison of automated and self-report data. J Clin Epidemiol. 1998;51(10):883-890.

108. Shalansky S, Jang L, Ignaszewski A, Clark C, Jung L, Marra C. Accuracy of a prescription claims database for medication reconciliation for outpatients with heart failure. Canad J Hosp Pharm. 2007;60(3):169-176.

109. Shenson D, DiMarino D, Bolen J, Campbell M, Lu P-J, Singleton JA. Validation of self-reported pneumococcal vaccination in behavioral risk factor surveillance surveys: experience from the sickness prevention achieved through regional collaboration (SPARC) program. Vaccine. 2005;23(8):1015-1020.

110. Sjahid SI, van der Linden PD, BHC S. Agreement between the pharmacy medication history and patient interview for cardiovascular drugs: the Rotterdam elderly study. Br J Clin Pharmacol. 1998;45(6):591-595.

111. Spengler RL, Clarke EA, Woolever CA, Newman AM, Osborn RW. Exogenous estrogens and endometrial cancer: a case-control study.
study and assessment of potential biases. Am J Epidemiol. 1981;114(4):497-506. https://doi.org/10.1093/oxfordjournals.aje.a113215 PMID: 7304580.

112. Stewart AL, Lynch KJ. Identifying discrepancies in electronic medical records through pharmacist medication reconciliation. J Am Pharm Assoc. 2012;52(1):59-66.

113. Tisnado DM, Adams JL, Liu H, et al. Does the concordance between medical records and patient self-report vary with patient characteristics? Health Serv Outcomes Res Methodol. 2006;6(3):157-175. https://doi.org/10.1007/s10742-006-0012-1.

114. Tisnado DM, Adams JL, Liu H, et al. What is the concordance between the medical record and patient self-report as data sources for ambulatory care? Med Care. 2006;44(2):132-140.

115. Tisnado DM, Adams JL, Liu H, et al. Does concordance between data sources vary by medical organization type? Am J Manag Care. 2007;13(6 Part 1):289-296.

116. Uiters E, van Dijk L, Devillé W, Foets M, Spreuwenberg P, Groenewegen PP. Ethnic minorities and prescription medication; concordance between self-reports and medical records. BMC Health Serv Res. 2006;6:115. https://doi.org/10.1186/1472-6963-6-115.

117. Van den Brandt PA, Petri H, Dorant E, Goldbohm RA, Van de Crommert S. Comparison of questionnaire information and pharmacy data on drug use. Pharmaceutisch Weekbl Sci Ed. 1991;13(2):91-96.

118. van den Brink M, van den Hout WB, Stiggelbout AM, van den Velde CJH, Kievit J. Cost measurement in economic evaluations of health care: whom to ask? Med Care. 2004;42(8):740-746.

119. Varkey P, Cunningham J, Bisping S. Improving medication reconciliation in the outpatient setting. Jt Comm J Qual Patient Saf. 2007;33(5):286-292.

120. Voss JG, Cesan A, Jensen K, et al. Agreement between self-reported knowledge and medical record data. Clin Nurs Res. 2015;24(3):318-336. https://doi.org/10.1177/1054773814526753 PMID: 24719280.

121. West SL, Savitz DA, Koch G, Strom BL, Guess HA, Hartzema A. Recall accuracy for prescription medications: self-report compared with database information. Am J Epidemiol. 1995;142(10):1103-1112.

122. Yasein NA, Barghouti FF, Irshaid YM, Suleiman AA. Discrepancies between elderly patient’s self-reported and prescribed medications: a social investigation. Scand J Caring Sci. 2013;27(1):131-138. https://doi.org/10.1111/j.1471-6712.2012.01012.x.

123. Zhou L, Stearns SC, Thudium EM, Alburikan KA, Rodgers JE. Assessing medicare part D claim completeness using medication self-reports: the role of veteran status and generic drug discount programs. Med Care. 2015;53(5):463-470.

124. Zimmermann RK, Raymund M, Janosky JE, Nowalk MP, Fine MJ. Sensitivity and specificity of patient self-report of influenza and pneumococcal polysaccharide vaccinations among elderly outpatients in diverse patient care strata. Vaccine. 2003;21(13-14):1486-1491.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Brüne M, Emmel C, Meilands G, et al. Self-reported medication intake vs information from other data sources such as pharmacy records or medical records: Identification and description of existing publications, and comparison of agreement results for publications focusing on patients with cancer - a systematic review. Pharmacoepidemiol Drug Saf. 2021;30:531–560. https://doi.org/10.1002/psds.5210