The diameter and radius of radially maximal graphs

Pu Qiaoa, Xingzhi Zhanb\textdagger

aDepartment of Mathematics, East China University of Science and Technology, Shanghai 200237, China

bDepartment of Mathematics, East China Normal University, Shanghai 200241, China

Abstract

A graph is called radially maximal if it is not complete and the addition of any new edge decreases its radius. In 1976 Harary and Thomassen proved that the radius \(r \) and diameter \(d \) of any radially maximal graph satisfy \(r \leq d \leq 2r - 2 \). Dutton, Medidi and Brigham rediscovered this result with a different proof in 1995 and they posed the conjecture that the converse is true, that is, if \(r \) and \(d \) are positive integers satisfying \(r \leq d \leq 2r - 2 \), then there exists a radially maximal graph with radius \(r \) and diameter \(d \). We prove this conjecture and a little more.

Key words. Radially maximal; diameter; radius; eccentricity

1 Introduction

We consider finite simple graphs. Denote by \(V(G) \) and \(E(G) \) the vertex set and edge set of a graph \(G \) respectively. The complement of \(G \) is denoted by \(\bar{G} \). The radius and diameter of \(G \) are denoted by \(\text{rad}(G) \) and \(\text{diam}(G) \) respectively.

Definition. A graph \(G \) is said to be radially maximal if it is not complete and

\[
\text{rad}(G + e) < \text{rad}(G) \quad \text{for any } e \in E(\bar{G}).
\]

Thus a radially maximal graph is a non-complete graph in which the addition of any new edge decreases its radius. Since adding edges in a graph cannot increase its radius,
every graph is a spanning subgraph of some radially maximal graph with the same radius. It is well-known that the radius \(r \) and diameter \(d \) of a general graph satisfy \(r \leq d \leq 2r \) [4, p.78]. In 1976 Harary and Thomassen [3, p.15] proved that the radius \(r \) and diameter \(d \) of any radially maximal graph satisfy
\[
 r \leq d \leq 2r - 2. \tag{1}
\]

Dutton, Medidi and Brigham [1, p.75] rediscovered this result with a different proof in 1995 and they [1, p.76] posed the conjecture that the converse is true, that is, if \(r \) and \(d \) are positive integers satisfying (1) then there exists a radially maximal graph with radius \(r \) and diameter \(d \).

We prove this conjecture and a little more.

We denote by \(d_G(u, v) \) the distance between two vertices \(u \) and \(v \) in a graph \(G \). The eccentricity, denoted by \(e_G(v) \), of a vertex \(v \) in \(G \) is the distance to a vertex farthest from \(v \). The subscript \(G \) might be omitted if the graph is clear from the context. Thus \(e(v) = \max\{d(v, u) | u \in V(G)\} \). If \(e(v) = d(v, x) \), then the vertex \(x \) is called an eccentric vertex of \(v \). By definition the radius of a graph \(G \) is the minimum eccentricity of all the vertices in \(V(G) \), whereas the diameter of \(G \) is the maximum eccentricity. A vertex \(v \) is a central vertex of \(G \) if \(e(v) = \rad(G) \). A graph \(G \) is said to be self-centered if \(\rad(G) = \diam(G) \). Thus self-centered graphs are those graphs in which every vertex is a central vertex. \(N_G(v) \) will denote the neighborhood of a vertex \(v \) in \(G \). The order of a graph is the number of its vertices. The symbol \(C_k \) denotes a cycle of order \(k \).

2 Main Results

We will need the following operation on a graph. The extension of a graph \(G \) at a vertex \(v \), denoted by \(G\{v\} \), is the graph with \(V(G\{v\}) = V(G) \cup \{v'\} \) and \(E(G\{v\}) = E(G) \cup \{vv'\} \cup \{v'x | vx \in E(G)\} \) where \(v' \notin V(G) \). Clearly, if \(G \) is a connected graph of order at least 2, then \(e_{G\{v\}}(u) = e_G(u) \) for every \(u \in V(G) \) and \(e_{G\{v\}}(v') = e_{G\{v\}}(v) = e_G(v) \). In particular, \(\rad(G\{v\}) = \rad(G) \) and \(\diam(G\{v\}) = \diam(G) \).

Gliviak, Knor and Šoltész [2, Lemma 5] proved the following result.

Lemma 1. Let \(G \) be a radially maximal graph. If \(v \in V(G) \) is not an eccentric vertex of any central vertex of \(G \), then the extension of \(G \) at \(v \) is radially maximal.

Now we are ready to state and prove the main result.

Theorem 2. Let \(r, d \) and \(n \) be positive integers. If \(r \geq 2 \) and \(n \geq 2r \), then there exists
a self-centered radially maximal graph of radius r and order n. If $r < d \leq 2r - 2$ and $n \geq 3r - 1$, then there exists a radially maximal graph of radius r, diameter d and order n.

Proof. We first treat the easier case of self-centered graphs. Suppose $r \geq 2$ and $n \geq 2r$. The even cycle C_{2r} is a self-centered radially maximal graph of radius r and order $2r$. Choose any but fixed vertex v of C_{2r}. For $n > 2r$, successively performing extensions at vertex v starting from C_{2r} we obtain a graph $G(r, n)$ of order n. $G(4, 11)$ is depicted in Figure 1.

Denote $G(r, 2r) = C_{2r}$. Since $G(r, n)$ has the same diameter and radius as C_{2r}, it is self-centered with radius r. Let xy be an edge of the complement of $G(r, n)$. Denote by S the set consisting of v and the vertices outside C_{2r}. Then S is a clique. If one end of xy, say, x lies in S, then $y \not\in N[v]$, the closed neighborhood of v in $G(r, n)$. We have $e(x) < r$. Otherwise $x, y \in V(C_{2r}) \setminus S$. We then have $e(x) < r$ and $e(y) < r$. In both cases, $\text{rad}(G(r, n) + xy) < \text{rad}(G(r, n))$. Hence $G(r, n)$ is radially maximal.

Next suppose $r < d \leq 2r - 2$ and $n \geq 3r - 1$. We define a graph $H = H(r, d, 3r - 1)$ of order $3r - 1$ as follows. $V(H) = \{x_1, x_2, \ldots, x_{2r-1}\} \cup \{y_1, y_2, \ldots, y_r\}$ and

$$E(H) = \{x_i x_{i+1}|i = 1, 2, \ldots, 2r - 1\} \cup \{x_{2r-1} y_1\} \cup \{x_{2r-2j+2} y_j|j = 1, 2, \ldots, 2r - d\}$$

$$\cup \{x_{d-r+1} y_{2r-d+1}\} \cup \{y_t y_{t+1}|t = 2r - d + 1, \ldots, r - 1 \text{ if } d \geq r + 2\}$$

where $x_{2r} = x_1$. H is obtained from the odd cycle C_{2r-1} by attaching edges and one path. A sketch of H is depicted in Figure 2, and $H(6, d, 17)$ with $d = 7, 8, 9, 10$ are depicted in Figure 3.
Clearly, H has radius r, diameter d and order $3r - 1$. To see this, verify that x_{d-r+1} is a central vertex and $e_H(y_r) = d$.

Now we show that H is radially maximal. Let C be the cycle of length $2r - 1$; i.e., $C = x_1x_2\ldots x_{2r-1}x_1$. We specify two orientations of C. Call the orientation $x_1, x_2, \ldots, x_{2r-1}, x_1$ clockwise and call the orientation $x_{2r-1}, x_{2r-2}, \ldots, x_1, x_{2r-1}$ counterclockwise. For two vertices $a, b \in V(C)$, we denote by $\rightarrow C(a, b)$ the clockwise (a, b)-path on C and by $\leftarrow C(a, b)$ the counterclockwise (a, b)-path on C.

For $uv \in E(H)$, denote $T = H + uv$. To show $\text{rad}(T) < r$, it suffices to find a vertex z such that $e_T(z) < r$. Denote

$$A = V(C) = \{x_1, x_2, \ldots, x_{2r-1}\} \quad \text{and} \quad B = V(H) \setminus V(C) = \{y_1, y_2, \ldots, y_r\}.$$

We distinguish three cases.

Case 1. $u, v \in A$. Let $u = x_i$ and $v = x_j$ with $i > j$.

Fig. 2. A sketch of $H(r, d, 3r-1)$

Fig. 3. $H(6, d, 17)$ with $d = 7, 8, 9, 10$
Since $d - r + 1 \leq 2r - 3$, the vertex y_2 is a leaf whose only neighbor is x_{2r-2}. Note that in H, the three vertices x_{r}, x_{r-1} and x_{r-2} are central vertices, y_1 is the unique eccentric vertex of x_r, and y_2 is the unique eccentric vertex of x_{r-1} and x_{r-2}. If $j \geq r$ or $i \leq r$, then $e_T(x_r) < r$. Indeed, in the former case $\overrightarrow{C}(x_r, v) \cup vu \cup \overrightarrow{C}(u, x_{2r-1}) \cup x_{2r-1}y_1$ is an (x_r, y_1)-path of length less than r and in the latter case, $\overrightarrow{C}(x_r, u) \cup uv \cup \overrightarrow{C}(v, x_1) \cup x_1y_1$ is an (x_r, y_1)-path of length less than r.

Next suppose $i > r > j$. If $| (i - r) - (r - j) | \geq 2$, then in T there is an (x_r, y_1)-path of length less than r, which implies that $e_T(x_r) < r$. It remains to consider the case $| (i - r) - (r - j) | \leq 1$. If $(i - r) - (r - j) = 0$ or 1, then in T, there is an (x_{r-1}, y_2)-path of length less than r and hence $e_T(x_{r-1}) < r$. If $(r - j) - (i - r) = 1$, then in H, there is an (x_{r-2}, y_2)-path of length $r - 1$ and hence $e_T(x_{r-2}) < r$.

Case 2. $u, v \in B$. Let $u = y_i$ and $v = y_j$ with $1 \leq i < j \leq r$.

Subcase 2.1. $i = 1$ and $j \leq 2r - d$. In the sequel the subscript arithmetic for x_k is taken modulo $2r - 1$. x_{r-2j+2} is a central vertex of H whose unique eccentric vertex is y_j. To see this, note that if $r - 2j + 2 \leq d - r + 1$ then $d_H(x_{r-2j+2}, y_r) \leq d - r + 1 - (r - 2j + 2) + r - (2r - d) = 2d - 3r + 2j - 1 \leq r - 1$ since $j \leq 2r - d$, and if $r - 2j + 2 > d - r + 1$ then $d_H(x_{r-2j+2}, y_r) \leq r - 2j + 2 - (d - r + 1) + r - (2r - d) = r - 2j + 1 \leq r - 3$ since $j \geq 2$.

If $r - 2j + 2 \geq 1$, in T there is the (x_{r-2j+2}, y_j)-path $\overrightarrow{C}(x_{r-2j+2}, x_1) \cup x_1y_1 \cup y_1y_j$. Hence $d_T(x_{r-2j+2}, y_j) \leq r - 2j + 2 - 1 + 2 = r - 2j + 3 \leq r - 1$ since $j \geq 2$, implying $e_T(x_{r-2j+2}) < r$. If $r - 2j + 2 \leq 0$, in T there is the path $\overrightarrow{C}(x_{r-2j+2}, x_{2r-1}) \cup x_{2r-1}y_1 \cup y_1y_j$. Hence $d_T(x_{r-2j+2}, y_j) \leq 0 - (r - 2j + 2) + 2 = 2j - r \leq r - 2$ since $j \leq 2r - d$ and $d \geq r + 1$, implying $e_T(x_{r-2j+2}) < r$.

Subcase 2.2. $i = 1$ and $2r - d + 1 \leq j \leq r$. First suppose $j = r$. Observe that $x_{2d-3r+1}$ is a central vertex of H whose unique eccentric vertex is y_r. Also the condition $d \leq 2r - 2$ implies $2d - 3r + 1 < d - r + 1$. If $2d - 3r + 1 \geq 1$, then $d_T(x_{2d-3r+1}, y_r) \leq 2d - 3r + 1 - 1 + 2 \leq r - 2$. If $2d - 3r + 1 \leq 0$, then $d_T(x_{2d-3r+1}, y_r) \leq 0 - (2d - 3r + 1) + 2 \leq r - 1$, where we have used the fact that $d \geq r + 1$. Hence $e_T(x_{2d-3r+1}) < r$.

Next suppose $2r - d + 1 \leq j \leq r - 1$. Observe that x_{r} is a central vertex of H whose unique eccentric vertex is y_1. Note also that $r > d - r + 1$. Now in T, there is the (x_r, y_1)-path $\overrightarrow{C}(x_r, x_{d-r+1}) \cup x_{d-r+1}y_{2r-d+1} \cdots y_j \cup y_jy_1$. Hence $d_T(x_r, y_1) \leq r - (d - r + 1) + j - (2r - d) + 1 = j \leq r - 1$, implying $e_T(x_r) < r$.

5
Subcase 2.3. \(i \geq 2 \) and \(j \leq 2r - d \). First suppose \(2(j - i) \leq r - 1 \). Then \(2r - 2j + 2 \geq r - 2i + 3 \). Clearly \(x_{2r-2j+2} \) is the unique neighbor of \(y_j \) in \(H \). By considering the two possible cases \(r - 2i + 3 \leq d - r + 1 \) and \(r - 2i + 3 > d - r + 1 \), it is easy to verify that \(x_{r-2i+3} \) is a central vertex of \(H \) whose unique eccentric vertex is \(y_i \). In \(T \) there is the \((x_{r-2i+3}, y_i) \)-path \(\overrightarrow{C}(x_{r-2i+3}, x_{2r-2j+2}) \cup x_{2r-2j+2}y_j \cup y_jy_i \). Hence \(d_T(x_{r-2i+3}, y_i) \leq 2r - 2j + 2 - (r - 2i + 3) + 1 + 1 = r - 2(j - i) + 1 \leq r - 1 \), implying \(e_T(x_{r-2i+3}) < r \).

Next suppose \(2(j - i) \geq r \). Then \(r - 2i + 2 \geq 2r - 2j + 2 \). Observe that \(x_{r-2i+2} \) is a central vertex of \(H \) whose unique eccentric vertex is \(y_i \). Also \(j - i \leq 2r - d - 2 \). Similarly we have

\[
d_T(x_{r-2i+2}, y_i) \leq r - 2i + 2 - (2r - 2j + 2) + 1 + 1
= 2 - r + 2(j - i)
\leq 2 - r + 2(2r - d - 2)
\leq r - 2,
\]

implying \(e_T(x_{r-2i+2}) < r \).

Subcase 2.4. \(2 \leq i \leq 2r - d \) and \(2r - d + 1 \leq j \leq r \). First suppose \(2r + 2 \leq 2i + d \). Then \(d - r + 1 \geq r - 2i + 3 \). Note that \(x_{r-2i+3} \) is a central vertex of \(H \) whose unique eccentric vertex is \(y_i \). In \(T \) we have the \((x_{r-2i+3}, y_i) \)-path \(\overrightarrow{C}(x_{r-2i+3}, x_{d-r+1}) \cup x_{d-r+1}y_{2r-d+1} \ldots y_j \cup y_jy_i \). Thus

\[
d_T(x_{r-2i+3}, y_i) \leq d - r + 1 - (r - 2i + 3) + j - (2r - d) + 1
\leq d - r + 1 - (r - 2i + 3) + r - (2r - d) + 1
= 2d - 3r + 2i - 1
\leq r - 1,
\]

implying \(e_T(x_{r-2i+3}) < r \).

Next suppose \(2r + 2 \geq 2i + d + 1 \). Then \(r - 2i + 2 \geq d - r + 1 \). Observe that \(x_{r-2i+2} \) is a central vertex of \(H \) whose unique eccentric vertex is \(y_i \). Similarly we have

\[
d_T(x_{r-2i+2}, y_i) \leq r - 2i + 2 - (d - r + 1) + j - (2r - d) + 1
\leq r - 2i + 2 - (d - r + 1) + r - (2r - d) + 1
= r - 2i + 2
\leq r - 2,
\]
implying \(e_T(x_{r-2i+2}) < r \).

Subcase 2.5. \(2r - d + 1 \leq i < j \leq r \). Observe that \(x_{r+1} \) is a central vertex of \(H \) whose unique eccentric vertex is \(y_r \). Clearly \(e_T(x_{r+1}) < r \).

Case 3. \(u \in A \) and \(v \in B \). Let \(u = x_i \) and \(v = y_j \).

Observe that \(x_r \) is a central vertex of \(H \) whose unique eccentric vertex is \(y_1 \). If \(j = 1 \), then \(e_T(x_r) < r \). Now suppose \(2 \leq j \leq 2r - d \). Then both \(x_{r-2j+2} \) and \(x_{r-2j+3} \) are central vertices of \(H \) whose unique eccentric vertex is \(y_j \). If \(u \) lies on the path \(\overrightarrow{C}(x_{r-2j+2}, x_{r-2j+2}) \), then \(e_T(x_{r-2j+2}) < r \); if \(u \) lies on the path \(\overrightarrow{C}(x_{r-2j+2}, x_{r-2j+3}) \), then \(e_T(x_{r-2j+3}) < r \).

Finally suppose \(2r - d + 1 \leq j \leq r \). We have \(2d - 3r + 1 < d - r + 1 < r + 1 \). Observe that both \(x_{r+1} \) and \(x_{2d-3r+1} \) are central vertices of \(H \) whose unique eccentric vertex is \(y_r \). If \(2d - 3r + 1 \leq i \leq d - r + 1 \), then \(d_T(x_{2d-3r+1}, y_r) \leq r - 1 \) and hence \(e_T(x_{2d-3r+1}) < r \). Similarly, if \(d - r + 2 \leq i \leq r + 1 \) then \(e_T(x_{r+1}) < r \).

It remains to consider the case when \(u = x_i \) lies on the path \(\overrightarrow{C}(x_{r+2}, x_{2d-3r}) \). We assert that \(e_T(u) < r \). First note that if \(w \in \{y_{2r-d+1}, y_{2r-d+2}, \ldots, y_r\} \) then \(d_T(x_i, w) \leq d - r \leq r - 2 \). Also if \(w \in V(C) \) we have \(d_T(x_i, w) \leq r - 1 \) since \(\text{diam}(C) = r - 1 \). Next suppose \(w = y_s \) with \(1 \leq s \leq 2r - d \). Let \(x_k \) and \(x_{k+1} \) be the two vertices on \(C \) with \(d_C(x_i, x_k) = d_C(x_i, x_{k+1}) = r - 1 \). Since \(x_i \) lies on the path \(\overrightarrow{C}(x_{r+2}, x_{2d-3r}) \), we have \(k \geq 2 \) and \(k + 1 \leq 2d - 2r < 2(d - r + 1) \). It follows that \(d_H(x_i, w) \leq r - 1 \), since \(N_H(y_i) = \{x_{2r-1}, x_1\} \) and \(N_H(y_{2r-d}) = \{x_{2(d-r+1)}\} \). This completes the proof that \(H \) is radially maximal.

Note that by the two inequalities in (1), any non-self-centered radially maximal graph has radius at least 3. Obviously, the vertex \(x_{2r-2} \) is not an eccentric vertex of any vertex in \(H \). Hence by Lemma 1, the extension of \(H \) at \(x_{2r-2} \), denoted \(H_{3r} \), is radially maximal. Also, \(H_{3r} \) has the same diameter and radius as \(H \), and has order \(3r \). Again, the vertex \(x_{2r-2} \) is not an eccentric vertex of any vertex in \(H_{3r} \). For any \(n > 3r - 1 \), performing extensions at the vertex \(x_{2r-2} \) successively, starting from \(H \), we can obtain a radially maximal graph of radius \(r \), diameter \(d \) and order \(n \). This completes the proof. \(\square \)

Combining the restriction (1) on the diameter and radius of a radially maximal graph and Theorem 2 we obtain the following corollary.

Corollary 3. There exists a radially maximal graph of radius \(r \) and diameter \(d \) if and only if \(r \leq d \leq 2r - 2 \).
3 Final Remarks

Since any graph with radius r has order at least $2r$, Theorem 2 covers all the possible orders of self-centered radially maximal graphs.

Gliviak, Knor and Šoltés [2, p.283] conjectured that the minimum order of a non-self-centered radially maximal graph of radius r is $3r − 1$. This conjecture is known to be true for the first three values of r; i.e., $r = 3, 4, 5$ [2, p.283], but it is still open in general. If this conjecture is true, then Theorem 2 covers all the possible orders of radially maximal graphs with a given radius.

Acknowledgement. This research was supported by the NSFC grants 11671148 and 11771148 and Science and Technology Commission of Shanghai Municipality (STCSM) grant 18dz2271000.

References

[1] R.D. Dutton, S.R. Medidi and R.C. Brigham, Changing and unchanging of the radius of a graph, Linear Algebra Appl., 217(1995), 67-82.

[2] F. Gliviak, M. Knor and L. Šoltés, On radially maximal graphs, Australas. J. Combin., 9(1994), 275-284.

[3] F. Harary and C. Thomassen, Anticritical graphs, Math. Proc. Cambridge Phil. Soc., 79(1976), no.1, 11-18.

[4] D.B. West, Introduction to Graph Theory, Prentice Hall, Inc., 1996.