Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
transient ischemic attack and tachycardia. The patient’s renal failure was attributed to acute kidney injury (AKI) and diabetic nephropathy. Renasight testing was performed that revealed a heterozygous autosomal dominant TTR mutation c.424G>A (p.Val142Ile) and heterozygous carrier status for HBB Beta-Hemoglobinopathy. Following genetic testing, the patient was referred back to cardiology for re-evaluation.

This patient had a significant history of edema and cardiovascular disease (CVD) believed to be secondary to nephrotic syndrome. Genetic testing revealed an amyloidogenic pathogenic variant, known to be associated with CVD. Following this diagnosis, the patient opted for a living-related transplant. For the patient, the findings could affect donor selection and may pose risk for increased risk of CVD in his children. Family testing and genetic counseling would be appropriate for monitoring and implementing suitable medications such as ACEi/ARBs to slow the progression of heart and kidney disease.

Mid-level healthcare providers can effectively take advantage of Renasight to improve patient management and care. This case provides an example where correct diagnosis using Renasight can influence treatment decisions, selection of a suitable donor for transplant, and future genetic testing for families.

150 CLINICAL TIMELINE OF DECREASED GFR FROM HYPOTHYROIDISM CAUSED BY AMIODARONE TOXICITY: A REVERSIBLE YET UNDERAPPRECIATED ENTITY:

Jae Kim, Kristen Tillquist, Maria Capistrano, Ankur Shah. 1Kent (51x716) Hospital, Warwick, RI, United States; 2Alpert Medical School at Brown University, Providence, RI, United States

While the differential diagnosis of acute kidney injury and chronic kidney disease include states of distant organ dysfunction that can lead to renal dysfunction, e.g. cardiorenal and hepatorenal syndromes, thyroid dysfunction causing renal dysfunction is not typically included in the classic differential despite its well-understood pathophysiology and reversible nature. We present a case of amiodarone-induced hypothyroidism leading a rapid worsening of clearance, reversible with thyroid replacement.

A 69-year-old male with a history of coronary artery disease, hypertension, heart failure with reduced ejection fraction, CKD stage 3, and type 2 diabetes was referred for evaluation of CKD. His history included a new diagnosis of paroxysmal atrial fibrillation for which he was started on amiodarone. His sCr had risen from a baseline of 1.6 mg/dL to 2.9 mg/dL over 5 months. Urinalysis was bland with absent proteinuria. Thyroid stimulating hormone was profoundly elevated to 181.31 mIU/ml; thus amiodarone was discontinued and levothyroxine was started. Once euthyroid, sCr improved to 1.4 mg/dL.

The numerous effects of thyroid hormone on kidney function include increased cardiac output, renal blood flow, renin-angiotensin-aldosterone system activity, filtration pressure, tubular glomerular feedback, sodium potassium ATPase activity, and urinary concentrating ability. Thyroid hormone also decreases peripheral vascular resistance. Through these mechanisms, hypothyroidism reduces GFR which is reversible with thyroid replacement.

In spite of the well understood mechanism as well as numerous epidemiologic reports, few clinical reports of the syndrome of thyroid dysfunction resulting in reversible renal dysfunction have been published. This is an underrecognized important reversible cause of CKD.

151 STRATEGIES TO CONTAIN COVID-19 INFECTION IN A HOSPITAL BASED OUTPATIENT HEMODIALYSIS UNIT IN THE SOUTH BRONX:

Susan Kim, Amara Sarwal, Neeraj Kumar, Aye Myat Mon, Mariya Stratiotova, Vidya Menon, Isatarieni Gnanasekaran, Lincoln Medical Center, Bronx, United States

New York City was the epicenter of COVID-19 infections within the United States in the spring of 2020. Our public, hospital-based hemodialysis (HD) unit is located in Bronx County, which had the highest rates of infections and deaths due to COVID-19.2 We retrospectively investigated the prevalence of COVID-19 in our HD unit and the effectiveness of expanded infection control measures implemented during the surge.

Charts were reviewed for all 61 patients receiving maintenance HD between March 1-July 15, 2020.

4 HD patients and 2 HD healthcare providers (HCP) developed symptoms from COVID-19 infection between March 17-23, followed by another 5 patients and 2 HCP. HD patients underwent SARS-CoV-2 PCR nasal swab, regardless of symptoms, allowing detection of asymptomatic COVID-19 cases. Positive cases were cohorted. Patients were screened for fever and COVID-19 symptoms before each HD, advised to wear face masks and practice hand hygiene. 5 patients were hospitalized with COVID-19 within 14 days of the screening period with no additional cases detected afterwards.

During the surge, patients requiring bedside HD increased exponentially so HD frequency or treatment hours were reduced for some patients and 20 were temporarily transferred to other units.

In May, all 32 HCP were tested for COVID-19 antibody with 18.8% (5 with and 1 without symptoms) testing positive. In June, 51 HD patients were tested for antibodies with detection of 6 additional asymptomatic individuals who had been SARS-CoV-2 PCR negative. In total, 26 patients (42.6%) tested positive for COVID-19, of which 42.3% were asymptomatic, and with 1 death.

Early identification and isolation of both symptomatic and asymptomatic patients by universal screening along with stringent infection control measures limited the spread of COVID-19 infection in our unit.

152 OUTCOMES OF HOSPITALIZED PATIENTS WITH COVID-19 AND ACUTE KIDNEY INJURY REQUIRING RENAL REPLACEMENT THERAPY:

Kevin Kim, Madeleine Gysi, Deborah Lu, David Selevan, John Sim. 1Kaiser Permanente Los Angeles Medical Center, Los Angeles, CA, United States; 2Kaiser Permanente Los Angeles Medical Center, Los Angeles, CA, United States; 3Kaiser Permanente Southern California, Los Angeles, CA, United States

The incidence of acute kidney injury (AKI) in COVID-19 patients has been reported as high as 47%, with mortality ranging from 35-80% in this population. AKI patients requiring renal replacement therapy (RRT) likely have a greater mortality risk. Our aim was to describe outcomes of AKI patients who required RRT among hospitalized COVID-19 patients from a large diverse population in Southern California.

We conducted a retrospective cohort study of COVID-19 patients with AKI requiring RRT defined as conventional hemodialysis, continuous renal replacement therapy, or both, within Kaiser Permanente Southern California in the period of 3/14/2020 through 9/30/2020. We collected information on patient characteristics,