INTRODUCTION

Alloy nanoparticles have emerged as a new category of nanomaterials in recent years (1). These nanoparticles were widely applied across a diverse range of fields from catalysis to sensing and biolabeling (2–12). Recent research revealed that physical and chemical properties such as catalytic activity and selectivity (13–17) as well as electrical (18) and optical properties (19) are highly structure-dependent. Thus, uncovering the structures of nanoparticles is of extreme significance and has attracted intense research efforts. Thiolate-protected atomically precise Au or Ag nanoparticles (also called nanoclusters) represent an important class of noble metal nanoparticles due to precise determination of their structures. In the past few years, great improvement has been made in understanding the surface structures and metal packing modes of these nanoclusters by using x-ray crystallography (20). On the basis of these efforts, the structural construction and the related catalytic, magnetic, luminescence, and other properties of homogold or homosilver nanoclusters have been well studied (20–33). Compared to the homometal nanoclusters, the structures of bimetallic nanoclusters have been rarely investigated. Recently, three thiolate-protected Au-Ag nanoclusters have been successfully determined by x-ray crystallography (34–36). It is interesting to find that these alloy nanoclusters retain the same frameworks as their homometal counterparts with homometallic shells (37–40). This phenomenon raises questions such as whether alloy nanoclusters with doped surfaces exist or not and how the atoms are packing within these alloy nanoparticles. The unique surface structure may provide opportunities for a better understanding of packing modes of alloy nanoparticles and structure-related properties.

Herein, we accomplished surface doping in Ag-Au nanoclusters and obtained a chiral [Ag46Au24(SR)32](BPh4)2 (R=--Bu) nanocluster, which constitutes the largest bimetallic nanocluster structure thus far. The atomic structure of [Ag46Au24(SR)32](BPh4)2 nanocluster can be described as a three-shelled achiral Ag2@Au18@Ag20 core surrounded by a chiral bimetallic shell comprising of six heart-like units. The free valence electrons were calculated to 36 (70-32-2). The total structure of this thiolate-protected bimetallic nanocluster uncovers the unprecedented bimetallic Ag2Au1SR unit as well as the Ag6SR unit as the unique surface-protecting motifs. This newly found surface doping [Ag46Au24(SR)32](BPh4)2 bimetallic nanocluster provides an opportunity to study the packing mode and structure-related catalytic property in a bimetallic system at the atomic level.

RESULTS AND DISCUSSION

The structure of [Ag46Au24(SR)32](BPh4)2 nanocluster (counterion: two BPh4− ions) was solved by single-crystal x-ray crystallography (Fig. 1). The 70 metal atoms in this nanocluster are distributed in three shells. The central two silver atoms are surrounded by a tubbiness structure composed of 18 gold atoms (Fig. 2, A and B), which are capped with 20 silver atoms (Fig. 2, C and D). The 18 core gold atoms are distributed into three hexagons, and the overall shape resembles a barrel. Within this 18-gold atom shell, the average Au-Au distance is 2.776 Å. The second shell consists of 20 silver atoms, with the top and bottom two silver atoms as covers of 18 core gold atoms. Among the remaining 18 silver atoms in the second shell, every six silver atoms form concentric hexagons with six gold atoms in the first shell. The average M-M distance in the Ag20Au18 core is 2.882 Å. The Ag30Au18 core can also be considered as two types (types A and B) of layers (Fig. 2D): type A is one silver atom; type B is a hexagonal Au6 with another six vertex caps (Ag6). These two types of layers give rise to the 1:12:1:12:1 layers and can be described as nearly hexagonal close-packed A:B:A layering. Note that the similar 9:1:9 layer structure was also reported in [Au39(PPh3)14Cl6]Cl2 by Teo et al. (41).

The Ag2@Au18 core is protected by an Au-Ag bimetallic shell. The doped shell composition in our case can be seen as six eight-motifs Ag3Au1(SR)3 resembling a “heart” shape, and each motif shares an Ag3(SR)3 unit with the neighboring two hearts (Fig. 2, E and F). Four types of bonding modes are found in this nanocluster (Fig. 2G): (i) One RS connects with three Ag atoms to form Ag3SR, and this bonding mode is common in other thiolate-protected silver nanoclusters, such as Ag44 and Ag62 (40, 42, 43). (ii) One RS connects with four Ag atoms to form a Ag2SR unit. The Ag-S distance in this unit is very unusual. For example, the distance of S-Agcore bond was much shorter (2.330 Å) than...
that of in Ag_{44} nanoclusters (~2.6 Å), indicating the strong interaction between Ag and RS groups. The two longer S-Ag shell (2.911 and 2.950 Å) indicates the fairly weak bonding therein, which has never been previously reported in homosilver and bimetallic nanoclusters. (iii) One RS is bonded with two Ag atoms and one Au atom to form an Ag_{2}Au_{1}SR, and this mode is unique in the alloy nanocluster. In this context, this mode represents the first example to identify the capability of the thiolate group in forming the bimetallic surface. (iv) Staple-like Au_{1}(SR)_{2}, one Au atom, and two S atoms are almost on a line, similar to the bonding mode in Au_{18}(SR)_{14}, Au_{23}(SR)_{16}, Au_{30}(SR)_{18}, Au_{102}(SR)_{44}, and Au_{133}(SR)_{52} nanoclusters (44–50).

The previously reported structures of Ag–Au alloy nanoclusters are based on the same framework of the same-sized homometal nanoclusters [for example, Ag_{32}Au_{12}(SR)_{32} versus Ag_{44}(SR)_{30} (34, 40), Ag_{38}Au_{24}(SR)_{24} versus Au_{38}(SR)_{24} (36, 39), and Ag_{x}Au_{25–x}(SR)_{18} versus Au_{25}(SR)_{18} (35, 37, 38)]. The same situation was also predicted in the case of Ag_{x}Au_{144–x}(SR)_{60} nanoclusters (51). In these nanoclusters, the second metal could only be doped in the core, whereas the surface motifs are homometallic. By contrast, the [Ag_{46}Au_{24}(SR)_{32}]^{2+} nanocluster represents the first example, which shows that silver and gold coexist in the surface motifs.

As shown in Fig. 2 (C and D), the metal core of this nanocluster is achiral. To further identify the origin of chirality in this nanocluster, we remove the metal core, the AuRS unit in the shell, as well as the top and bottom RS groups. As shown in Fig. 3A, the point group of a Ag-RS shell is D_{3d} after removing these groups, suggesting that this shell is achiral. The tilted AuSR units reduce the symmetry by eliminating three ε_{6}, with a symmetric center remaining (Fig. 3B). The top and bottom RS groups give rise to chirality (Fig. 3, C and D) in the [Ag_{46}Au_{24}(SR)_{32}](BPh_{4})_{2} nanocluster (Fig. 3, E and F). The findings on chirality in this nanocluster are remarkable. In general, two major effects might be responsible for the chirality of homometal nanoclusters: (i) the chiral ligands can induce the chirality of achiral nanoclusters (52) and (ii) asymmetric arrangement of an RS–Au–RS group on the achiral gold nanoclusters (39, 48, 49, 50, 53). In our case, asymmetric arrangement of the two RS groups changed the chirality of the nanoclusters.
The nanocluster formula and charge state were further confirmed by nuclear magnetic resonance (NMR) analysis (fig. S1). In the 1H NMR spectrum of [Ag$_{46}$Au$_{24}$(SR)$_{32}$](BPh$_4$)$_2$, the peaks at 6.5 to 7.5 ppm (40H) are assigned to –C_6H_5 of Ph$_4$B$^-$, and the peaks at 0.5 to 4.5 ppm (28H) are assigned to –CH$_3$ in the –SBut ligands. This result is consistent with the proton ratio (C_6H_5:CH$_3$=40:288) and thus indicates the 1:2 ratio of Ag$_{46}$Au$_{24}$(SR)$_{32}$ to Ph$_4$B$^-$, in agreement with the x-ray crystallographic result.

With the successfully determined Ag$_{46}$Au$_{24}$(SR)$_{32}$ nanocluster structure, a comparison with the previously reported core-shell structured Ag-Au bimetallic nanoclusters is now available. This could provide a simple model for understanding the structural effect in styrene oxidation catalyzed by the bimetallic silver-gold nanocluster.

We synthesized a series of structure-determined homometal and alloy nanoclusters, such as Au$_{25}$(SR)$_{18}$, Ag$_{44}$(SR)$_{30}$, Ag$_{32}$Au$_{12}$(SR)$_{30}$, and Ag$_{46}$Au$_{24}$(SR)$_{32}$ nanoclusters (see the Supplementary Materials for details). Multiwalled carbon nanotubes (CNTs) were used as the common carrier because of the fact that all of these nanoclusters can be efficiently adsorbed on the CNT surface. In addition, CNTs have an advantage to prevent diffusion of naked nanoclusters (54). Transmission electron microscopy (TEM) (figs. S2 and S3) showed that the clusters were evenly spread on CNTs and that all nanoclusters have average sizes of about 2 nm before and after reaction. This indicates negligible aggregation of clusters owing to sufficient interaction between the nanocluster and CNT (9).

Table 1 summarizes the results. Epoxide and benzaldehyde were the major products in the styrene oxidation. All catalysts showed high activity compared to plain CNT. Homogold Au$_{25}$/CNT showed the highest conversion of styrene, that is, 72.8%, whereas the selectivity for benzaldehyde is 66.4%. The homosilver Ag$_{44}$/CNT showed a much lower conversion (that is, 43.6%) than the homogold nanocluster did but it
exhibited a better selectivity for benzaldehyde (that is, 92.6%). Compared with the homometal nanoclusters, surface doping bimetallic $\text{Au}_{24}\text{Ag}_{46}/\text{CNT}$ (Table 1, entry 3) catalysts could increase the selectivity for epoxide (that is, >95%) and give much better conversion (that is, ~70%) than the homosilver nanocluster does. Therefore, the advantages of both the silver (high selectivity for benzaldehyde) and the gold (high conversion) have been well reflected on the surface doping $\text{Ag}_{46}\text{Au}_{24}/\text{CNT}$ catalyst. In contrast, the core-shell structured bimetallic $\text{Ag}_{46}\text{Au}_{12}$ nanocluster shows a much lower benzaldehyde selectivity (that is, 37.6%) than does the surface doping catalyst. This finding is remarkable in pioneering investigations on the structure effect in atomically precise alloy nanoclusters and demonstrates a clear synergistic effect of the AgAu alloy catalysts (Scheme 1).

In conclusion, we obtained the x-ray crystal structure of a new magic number bimetallic $(\text{Au}-\text{Ag})$ nanocluster formulated as $[\text{Ag}_{46}\text{Au}_{24}(\text{SR})_{32}]^{2+}(\text{BPh}_4)_2$ and further investigated its catalytic properties. This nanocluster fills the vacancy between Ag_{44} and Au_{102} nanoclusters. The newly found bimetallic shell holds potential in expanding the library of magic-sized nanoclusters as well as the understanding of structure-related properties of thiolate-protected alloy nanoclusters at the atomic level by studying styrene oxidation catalysis.

MATERIALS AND METHODS

The detailed information about the synthesis of $[\text{Ag}_{46}\text{Au}_{24}(\text{SR})_{32}]^{2+}(\text{BPh}_4)_2$ is given in the Supplementary Materials. In summary, AgNO_3 and $\text{HAuCl}_4\cdot3\text{H}_2\text{O}$ were dissolved in methanol to give a yellow turbid liquid. Tertiary butyl was added into the solution to obtain the mixture of Au^+/SR and Ag^{2+} complex. Then, NaOH (1 M) was used to adjust the pH value. After that, NaBH_4 was used to reduce this mixture complex. The $[\text{Ag}_{46}\text{Au}_{24}(\text{SR})_{32}]^{2+}$ nanoclusters were precipitated out from the solution, washed by hexane, extracted by toluene, and redissolved in CH_2Cl_2 solution. The addition of NaBPh_4 (dissolved in methanol) formed $[\text{Ag}_{46}\text{Au}_{24}(\text{SR})_{32}]^{2+}(\text{BPh}_4)_2$ nanocluster. The multiwalled CNT was dispersed in toluene, and a calculated amount (0.1 wt %) of cluster was added to the suspension of CNT under vigorous magnetic stirring. After proceeding overnight, the product was separated from the solution by centrifugation and dried under vacuum for 12 hours. Calcination of the $\text{Au}_{25}/\text{SR}/\text{CNT}$, $\text{Ag}_{44}/\text{SR}/\text{CNT}$, and $\text{Ag}_{46}\text{Au}_{24}/\text{CNT}$ composites was performed in a quartz-tube oven under vacuum conditions at 200°C for 2 hours to remove the ligands. The detailed method and characterization are available in the Supplementary Materials.

REFERENCES AND NOTES

1. R. Fernando, J. Jellinek, R. L. Johnston, Nanoalloys: From theory to applications of alloy clusters and nanoparticles. *Chem. Rev.* **108**, 845–910 (2008).
2. R. Ghosh Chaudhuri, S. Pariy, Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. *Chem. Rev.* **112**, 2373–2433 (2012).
3. S. Link, Z. L. Wang, M. A. El-Sayed, Alloy formation of gold–silver nanoparticles and the dependence of the plasmon absorption on their composition. *J. Phys. Chem. B* **103**, 3529–3533 (1999).
4. T. Pradeep, Anshup, Noble metal nanoparticles for water purification: A critical review. *Thin Solid Films* **517**, 6441–6478 (2009).
5. Y. Sugano, Y. Shiraiishi, D. Tsukamoto, S. Ichikawa, S. Tanaka, T. Hiraiz, Supported Au–Cu bimetallic alloy nanoparticles: An aerobic oxidation catalyst with regenerable activity by visible-light irradiation. *Angew. Chem. Int. Ed.* **52**, 5295–5319 (2013).
6. D. Wang, A. Villa, F. Porta, D. Su, L. Prati, Single-phase bimetallic system for the selective oxidation of glycerol to glycerate. *Chem. Commun.* **1995–1998** (2006).
7. C. L. Bracey, P. R. Ellis, G. J. Hutchings, Application of copper–gold alloys in catalysis: Current status and future perspectives. *Chem. Soc. Rev.* **38**, 2231–2243 (2009).
8. P. Hervés, M. Pérez-Lorenzo, L. M. Liz-Marzán, J. Dubiella, Y. Lu, M. Balluff, Catalysis by metallic nanoparticles in aqueous solution: Model reactions. *Chem. Soc. Rev.* **41**, 5577–5587 (2012).
9. S. Xie, H. Tsuchiya, W. Kunishige, Y. Negishi, T. Tsukuda, Enhancement in aerobic alcohol oxidation catalysis of Au$_{25}$ clusters by single Pd atom doping. *ACS Catal.* **2**, 1519–1523 (2012).
10. H. Zhang, T. Watanabe, M. Okumura, M. Haruta, N. Toshima, Catalytically highly active top gold atom on palladium nanocluster. *Nat. Mater.* **11**, 49–52 (2012).
11. L. Kesavan, R. Tinocam, M. H. Ab Rahim, M. I. bin Saiman, D. L. Enache, R. L. Jenkins, N. Dimitratos, J. A. Lopez-Sanchez, S. H. Taylor, D. W. Knight, C. J. Kiezy, G. J. Hutchings, Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles. *Science* **331**, 195–199 (2011).
12. D. Wang, Y. Li, Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications. *Adv. Mater.* **23**, 1044–1060 (2011).
13. Z. L. Wang, T. Ahmad, M. A. El-Sayed, Steps, ledges and kinks on the surfaces of platinum nanoparticles of different shapes. *Surf. Sci.* **380**, 302–310 (1997).
14. H. Lee, S. E. Habas, S. Kweskin, D. Butcher, A. Somorjai, P. Yang, Morphological control of catalytically active platinum nanocrystals. *Angew. Chem. Int. Ed.* **45**, 7824–7828 (2006).
15. A. U. Nilesar, S. Alyoglu, B. Eichhorn, M. Mavrikakis, Preferential CO oxidation in hydrogen: Reactivity of core–shell nanoparticles. *J. Am. Chem. Soc.* **132**, 7416–7426 (2010).
16. S. Alyoglu, A. U. Nilesar, M. Mavrikakis, B. Eichhorn, Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. *Nat. Mater.* **7**, 333–338 (2008).
17. M. Chen, D. Kumar, C. Y. D. W. Goodman, The promotional effect of gold in catalysis by palladium-gold. *Science* **310**, 291–293 (2005).
18. J. W. Hong, D. Kim, Y. W. Lee, M. Kim, S. W. Kang, S. W. Han, Atomic-distribution-dependent electrocatalytic activity of Au–Pd bimetallic nanocrystals. *Angew. Chem. Int. Ed.* **50**, 8875–8880 (2011).
19. P. N. Njoki, W. Wu, P. Lutz, M. M. Maye, Growth characteristics and optical properties of core/ally nanoparticles fabricated via the layer-by-layer hydrothermal route. *Chem. Mater.* **23**, 3105–3113 (2011).
20. R. Jin, Atomeically precise metal nanoclusters: Stable sizes and optical properties. Nanoscale. 7, 1549–1565 (2015).
21. S. Yamazoe, K. Koyasu, T. Tsukuda, Nonscalable oxidation catalysis of gold clusters. Acc. Chem. Res. 46, 816–824 (2013).
22. G. Li, R. Jin, Atomeically precise gold nanoparticles as new model catalysts. Acc. Chem. Res. 46, 1749–1758 (2013).
23. S. Wang, X. Meng, A. Das, T. Li, Y. Song, T. Cao, X. Zhu, M. Zhu, R. Jin, A 200-fold quantum yield boost in the photoluminescence of silver-doped Ag25(SCH2CH2Ph)18 nanoparticles: The 13th silver atom matters. Angew. Chem. Int. Ed. 53, 2376–2380 (2014).
24. M. Zhu, C. M. Aikens, M. P. Henderson, R. Gupta, H. Qian, C. C. Schatz, R. Jin, Reversible switching of magnetism in thiolate-protected Au25 superatoms. J. Am. Chem. Soc. 131, 2490–2492 (2009).
25. S. Antonello, N. V. Perera, M. Ruzzi, J. A. Gascón, F. Maran, Interplay of charge state, lability, and magnetism in the molecule-like Au25(SR)15 cluster. J. Am. Chem. Soc. 135, 15585–15594 (2013).
26. M. S. Devadas, J. Kim, E. Sinn, D. Lee, T. Goodson, III, G. Ramakrishna, Unique ultrafast visible luminescence in monolayer-protected Au255 clusters. J. Phys. Chem. C 114, 22417–22423 (2010).
27. S. Park, D. Lee, Synthesis and electrochemical and spectroscopic characterization of bicosahedral Au25 clusters. Langmuir 28, 7049–7054 (2012).
28. M. Walter, J. Akola, O. Lopez-Acevedo, P. D. Jadzinsky, G. Calero, C. J. Ackerson, R. L. Whetten, H. Grönbeck, H. Häkkinen, A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl. Acad. Sci. U.S.A. 105, 9157–9162 (2008).
29. A. Mathew, G. Natarajan, L. Lehtovaara, H. Häkkinen, R. M. Kumar, V. Subramanian, A. Jaleel, T. Pradeep, Supramolecular functionalization and concomitant enhancement in properties for the detection of dopamine. J. Phys. Chem. Lett. 6, 665 (2011).
30. S. Park, H. Qian, K. Nobusada, S. Zhao, N. L. Rosi, R. Jin, Structure determination of [Au33(SR)32]− nanocluster with a complete face-centered cubic kernel. J. Am. Chem. Soc. 136, 15559–15564 (2014).
31. A. Das, C. Liu, H. Y. Byun, K. Nobusada, S. Zhao, N. L. Rosi, R. Jin, Structure determination of [Au33(SR)32]− nanocluster with a complete face-centered cubic kernel. J. Am. Chem. Soc. 136, 15340–15344 (2015).
32. S. Chen, S. Wang, J. Zhong, Y. Song, J. Zhang, H. Sheng, Y. Pei, M. Zhu, The structure and optical properties of the [Au33(SR)32]− nanocluster. Angew. Chem. Int. Ed. 54, 3140–3144 (2015).
33. I. Dolamic, S. Knoppe, A. Dass, T. Bürgi, First enantioseparation and circular dichroism absorption and ultrafast luminescence dynamics of bi-icosahedral Au25 clusters. J. Phys. Chem. C 117, 23155–23161 (2013).
34. L. Li, H. Liu, Y. Shen, J. Zhang, J. Zhu, Electrogenerated chemiluminescence of Au nanoclusters for the detection of dopamine. Anal. Chem. 83, 661–665 (2011).
35. M. Y. Sfeir, H. Qian, K. Nobusada, R. Jin, Ultrafast relaxation dynamics of rod-shaped 25-atom gold nanoclusters. J. Phys. Chem. C 115, 6200–6207 (2011).
36. I. Dolamic, S. Knoppe, A. Dass, T. Bürgi, First enantioseparation and circular dichroism spectra of Au25 clusters protected by achiral ligands. Nat. Commun. 3, 798 (2012).
37. H. Yang, Y. Wang, H. Huang, L. Gell, L. Lehtovaara, S. Malo, H. Häkkinen, N. Zheng, All-thiol-stabilized Ag14 and Au25Ag29 nanoparticles with single-crystal structures. Nat. Commun. 4, 2422 (2013).
38. C. Kumara, C. M. Aikens, A. Dass, X-ray crystal structure and theoretical analysis of Au25Ag22(SCH2CH2Ph)18 alloy. J. Phys. Chem. Lett. 5, 461–466 (2014).
39. C. Kumara, K. J. Gagnon, A. Dass, X-ray crystal structure of Au25Ag22(SCH2CH2Ph)18 alloy nanomolecules. J. Phys. Chem. Lett. 6, 1223–1228 (2015).
40. M. Zhu, C. M. Aikens, F. J. Holland, G. C. Schatz, R. Jin, Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 130, 5883–5885 (2008).
41. M. W. Heaven, A. Dass, P. S. White, K. M. Holt, R. W. Murray, Crystal structure of the gold nanoparticle [Ni(H2C=CH)2][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 130, 3754–3755 (2008).
42. H. Qian, W. T. Eckenhoff, Y. Zhu, T. Pintauer, R. Jin, Total structure determination of thiolate-protected Au25 nanoparticles. J. Am. Chem. Soc. 132, 8280–8281 (2010).
43. R. Jin, Y. Song, M. Zhu, Total structure determination of surface doping [Ag46Au24(SR)32(BPh4)2]− nanocluster and its structure-related catalytic property. Sci. Adv. 1, e1500441 (2015).