Structural and electrical properties of Barium Titanate (BaTiO₃) and Neodymium doped BaTiO₃ (Ba₀.₉₉₅Nd₀.₀₀₅TiO₃)

Tuan Amirah, Tuan Sulong, Rozana Aina Maulat Osman, Mohd Sobri Idris, Zul Azhar Zahid Jamal

1School of Microelectronics Engineering, University Malaysia Perlis, 02600, Arau, Perlis, Malaysia
2School of Materials Engineering, University Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
3COE Frontier Material Research Centre, School of Material Engineering, University Malaysia Perlis, 01000, Perlis, Malaysia

Abstract. Barium titanate (BaTiO₃) and Neodymium (Nd) doped BaTiO₃ with composition Ba₀.₉₉₅Nd₀.₀₀₅TiO₃ were prepared using conventional solid state reaction method to study the dielectric properties of materials. Pure phase samples were found at final heating temperature of 1400 °C for overnight. X-ray diffraction analysis reveals the changes in the lattice parameter and unit cell volume of the pure perovskite tetragonal structure with space group (P4mm). Electrical analysis is carried out to investigate the dielectric properties, conductivity behaviour and dielectric loss of BaTiO₃ and Ba₀.₉₉₅Nd₀.₀₀₅TiO₃. Ba₀.₉₉₅Nd₀.₀₀₅TiO₃ have a broaden dielectric peaks with high permittivity of 8000 and reasonably low loss tan δ which is about 0.004 (1 kHz).

1 Introduction

Dielectric ceramics are widely used in advance microelectronics technologies such as capacitor and microwave communication [1]. A high dielectric constant ceramic had received a lot of attention in reducing the size of the microelectronics circuits where high permittivity and low dielectric loss are required for many electronics application. BaTiO₃ composition modified by doping have been extensively studied for high dielectric materials applications.

In previous work reported by Shaikh & Vest [2], BaTiO₃ structure are very sensitive to the doping level and will change the electrical behaviour of pure BaTiO₃. In order to improve the properties of BaTiO₃, some modifications on BaTiO₃ structure was made and rare earth materials were of interest due to a huge improvement in the permittivity as reported by Abdul Hamid et. al. [3] in Lanthanum (La) doped BaTiO₃ and Samarium (Sm) doped BaTiO₃ by Ganguly et al. [4].

Neodymium (Nd) doped BaTiO₃ was previously studied by other researcher, however, in this study, we present a simple study about the physical behaviour and electrical behaviour change by small amount of Nd doping to the A-site perovskite of BaTiO₃. The trivalent Nd is very interesting to study because it previously reported that small amount of Nd will exhibit a PTCR effect and change the electrical behaviour from insulating to semiconducting [5]. Instead of that, in term of structure, the radius of Nd³⁺ (1.27Å) is very close to the radius of Ba²⁺ (1.61Å) and small size of Ti⁴⁺ (0.605Å) at the center of the octahedral site towards one of the other corner oxygens. In view of the radius, it is possible for Nd³⁺ to enter into the A-sites of BaTiO₃ perovskite and effect the properties of BaTiO₃ ceramics. In this work, the phase analysis, structural analysis and electrical behaviour of BaTiO₃ and Ba₀.₉₉₅Nd₀.₀₀₅TiO₃ was presented. The incorporation location of small amount of doping Nd doped to BaTiO₃ was identified using Rietveld Refinement analysis.

2 Experimental Procedure

High purity of raw materials BaCO₃ (99%), TiO₂ (99%) and Nd₂O₃ (99%) from Sigma-Aldrich were used as starting materials. Stoichiometric amount of materials were mixed and grounds using pestle and mortar. Samples were pressed uniaxially using handpress into pellets and heated at final temperature of 1400 °C for 12 hours with heating rate 5°C/min. The phase purity of the samples were analyzed using the X-ray Diffraction (XRD: D2-ADVANCE, Bruker, Germany) from 2θ, 20°-130°. Structural studied obtained were refined using the General Structure Analysis Software (GSAS). For impedance measurements, pressed pellets were sintered at 1400°C for 6 hours. Silver paste was used as electrode. Samples was painted with silver paste on both pellets’ surfaces. Pellets were connected to the Platinum (Pt) leads of a conductivity jig which was mounted inside a horizontal tube furnace. Impedance data were recorded on a stepwise heating cycle using HIOKI IM 3522 Impedance Analyzer instrumentation in frequency range 10 Hz to 100 kHz.
3 Result and Discussion

Figure 1 shows the XRD patterns of BaTiO$_3$ and Ba$_{0.995}$Nd$_{0.005}$TiO$_3$ respectively. The reflection patterns of Ba$_{0.995}$Nd$_{0.005}$TiO$_3$ remain similar as BaTiO$_3$ sample, except with the presence of broad peak at 2θ: 22° and 51° respectively. All samples of the BaTiO$_3$ and Nd-doped BaTiO$_3$ were indexed with tetragonal phase with the unit cell a = 3.9937 Å, c = 4.0342 Å and a = 3.9964 Å, c = 4.0288 Å, volume = 64.38 Å3 and volume = 64.34 Å3 respectively. The space group belong to P4mm. Figure 2 shows the variation of lattice parameters and unit cell volume of BaTiO$_3$ and Ba$_{0.995}$Nd$_{0.005}$TiO$_3$. Introducing the small amount of Nd content into pure BaTiO$_3$ at A—sites perovskite structure, resulting the changes as shown in Figure 2(a) and 2(b). A decrement in the lattice parameter and unit cell volume was observed. The decrement in lattice parameter and unit cell volume means that the lattice is shrinkage and the size of the unit cell become smaller. This effect is might be due to the size incompatibility of Nd with ionic radii of Nd$^{3+}$ and Ba$^{2+}$, thus causes an overall shrinkage of unit cell and volume.

XRD data for Ba$_{1-x}$Nd$_x$TiO$_3$ (0 ≤ x ≤ 0.015) were collected and the structure was refined using the atomic coordinates of tetragonal perovskite (ICSD No: 245945) as a starting parameters. The cation site occupancies were varied with Ba and Nd on A–sites and Ti on B-sites. The optimized parameters for refinement were detailed in [6,7]. The refinement result, Table 1, shown the substitution of Nd into BaTiO$_3$. Reliability refinement parameters show relatively lower R_p, R_{wp} and χ^2. This result give some ideas to claim that substitution...
mechanism, suggest by the refinement result are mostly reliable. Fitting parameters (R_p and R_wp) indicate acceptable agreement between refined and observed XRD patterns for BaTiO_3 and Ba_{0.995}Nd_{0.005}TiO_3 ceramics with both tetragonal structure. Some variations in occupancy values were showed due to the replacement of Ba atoms by Nd atoms which indicates that (Ba or Nd) atoms located in the same A-site occupy the same site in a fractional percentage. Note that there are small variations in atomic positions related to the titanium and oxygen atoms while the barium and neodymium atoms keep their fixed positions within the structure. Figure 3(a–d) shown the difference profile of (a) BaTiO_3 and (b) Ba_{0.995}Nd_{0.005}TiO_3 after refinement. Results obtained by using the Rietveld refinement method indicate acceptable agreement between observed XRD patterns and fitted theoretical results. This indicate the success of the Rietveld refinement method which displays small differences near zero in the intensity scale.

Table 1. Refinement data for BaTiO_3 and Ba_{0.995}Nd_{0.005}TiO_3.

Doping Concentration	x = 0	x = 0.005
Ti, z	0.5171 (3)	0.5126 (2)
Ba (1a), U_iso	0.3841 (8)	0.0052 (7)
Nd (1a), U_iso	-	0.0076 (9)
Ti (1b), U_iso	0.5740 (7)	0.0050 (9)
O1 (1b), U_iso	0.8923 (9)	0.0064 (5)
O2 (2c), U_iso	0.2377 (5)	0.0118 (9)
R_wp	14.04	13.89
R_p	10.44	11.04
\(\chi^2\)	3.994	4.468

Fig. 3. Structural refinement plot for a) BaTiO_3 and b) Ba_{0.995}Nd_{0.005}TiO_3

Permittivity at fixed frequency of 1 kHz, 10 kHz and 100 kHz for BaTiO_3 and Ba_{0.995}Nd_{0.005}TiO_3 sintered at 1400 °C for 6 hours are shown in Figure 4 respectively. Data show sharp maximum permittivity for all samples in accordance with literature. Permittivity at T_c was remarkably decreased for Nd-doped BaTiO_3 as compared to undoped BaTiO_3. Maximum permittivity for pure BaTiO_3 about 8500, at curie temperature (T_c) of 120 °C, while for Nd-doped BaTiO_3, permittivity at T_c are 8000, 5000 and 2000 at different frequency. At room temperature, the permittivity of Nd-doped BaTiO_3 show remarkable value as compared to permittivity of BaTiO_3. Small amount of Nd shows a very interesting result by shifting the T_c towards lower temperature, and slight decrement in permittivity change at T_c. This might be related to the high dipole polarisation of rare-earth based-Nd, microstructure and grain size of the sample. The permittivity reaches a peak at the Curie point and falls of at higher temperatures in accordance with the Curie–Weiss law [8]. This phenomena were strongly related with the shifting of maximum permittivity at T_c of Nd-Doped BaTiO_3 at tetragonal phase to cubic phase above T_c. Generally, in heavily doped BaTiO_3 ceramics grain size is usually suppressed and the permittivity of BaTiO_3 ceramics attains the maximum when the grain size is 1μm or less[9]. Factors that influence permittivity include type of dopant, doping mechanism, processing conditions and grain size [10]. On the other hand, high permittivity may be associated with sample geometry and, in particular, with thin layer effects associated with grain boundaries, surface layers or sample-electrode contacts [11].
Figure 5 shows the temperature dependence in dielectric loss of BaTiO$_3$ and Ba$_{0.995}$Nd$_{0.005}$TiO$_3$ at a frequency of 1 kHz. The dielectric loss of the Ba$_{0.995}$Nd$_{0.005}$TiO$_3$ is very low at much lower temperature which is below 0.04 loss. The dielectric loss of BaTiO$_3$ and Ba$_{0.995}$Nd$_{0.005}$TiO$_3$ at frequency of 1 kHz is very low below T_c and increase a little bit to 0.06 about T_c. However the loss was very minimal as frequency increased in Figure 5(b) and 5(c). Minimum dielectric loss as low as 0.2 was maintained at lower temperature, however, rapidly increased at high temperature. By doping Nd, below T_c, the dielectric loss was bound from 0.04 to 0.004. Figure 6 (a) and (b) shows the frequency dependence conductivity of BaTiO$_3$ and Ba$_{0.995}$Nd$_{0.005}$TiO$_3$ at frequency of 1 kHz, 10 kHz and 100 kHz sintered at 1400°C for 6 hours. The conductivity of BaTiO$_3$ changes with the frequencies of 1 kHz to 100 kHz. At 1 kHz, the conductivity is about 5.4×10^{-8} Scm$^{-1}$. However a small increase of 10^{-7} Scm$^{-1}$ at 10 kHz and increased again at 100 kHz to 10^{-6} Scm$^{-1}$. The conductivity at T_c for BaTiO$_3$ is higher compared to other temperatures and much higher at higher frequency. The conductivity of Ba$_{0.995}$Nd$_{0.005}$TiO$_3$ tend to increase from 10^{-8} to 10^{-6} Scm$^{-1}$ approaching T_c at 110°C.
The range of conductivity at low frequency of 1 kHz and 100 kHz were about 9.0×10^{-7} Scm$^{-1}$ and 1×10^{-5} Scm$^{-1}$ respectively. The conductivity difference considered high, with two orders of magnitude. This is in agreement with the exact conductivity of a semiconductor material, correlated with the observed properties and related phenomenon responsible [10]. Therefore, conductivity was greatly affected by temperature and frequency of range 1 kHz to 100 kHz. Data collection was limited to frequencies < 1 MHz, due to increases in inductive effects that influenced the impedance data [11].

4 Conclusion

The effect of Nd incorporation to the A-sites of perovskite BaTiO$_3$ was studied. This effect is seen by observing the lattice and volume change in the structure of BaTiO$_3$ with percentage 0.68% of shrinkage. However, the structure was still maintain with tetragonal unit cell and the structural site of Nd was confirmed by rietveld analysis with Nd at A-sites. The permittivity maximum was at T_c with 8500 and reduced to 8000 by doping at low frequency. However at room temperature, the substitution of Nd show a very high permittivity compared to pure BaTiO$_3$ at three different frequencies. The conductivities of BaTiO$_3$ and Ba$_{0.995}$Nd$_{0.005}$TiO$_3$ increased by increasing the frequency and temperature.

The authors acknowledge the financial support from the Ministry of Education, Malaysia for funding this project (FRGS Grant No: 9003-00496) and Universiti Malaysia Perlis (UniMAP) for the opportunities of performing this research.

![Fig. 6. Frequency dependence of conductivity of (a) BaTiO$_3$ and (b) Ba$_{0.995}$Nd$_{0.005}$TiO$_3$.](image)
References

1. X. Hao, Journal of Advanced Dielectrics, 3, 1, 1-14, (2013).
2. A. S. Shaikh and R. W. Vest, Journal of American Ceramic Society, 69, 9, 689-694, (1986).
3. N.F. Abdul Hamid, R. A. M. Osman and M. S. Idris, Applied Mechanics and Materials, 815, 131-135, (2015).
4. M. Ganguly, S. K. Rout, W. S. Woo, C. W. Ahn and I. W. Kim, Physica B, 411, 26-34, (2013).
5. N. Hirose, J. M. S. Skakle and A.R. West, Journal of Electroceramics, 3, 3, 233-238, (1999).
6. M. S. Idris and R. A. M. Osman, Structure Refinement Strategy of Li-based Complex Oxides Using GSAS-EXPGUI Software Package, Advanced Materials Research, 795, 479-482, (2013).
7. T.Q. Tan, M. S. Idris, R. A. M. Osman, M. V. Reddy and B. V. R. Chowdry, Solid State Ionics, 278, 43-48, (2015).
8. W. Heywang, Journal of Material Science, 6, 1214-1226, (1971).
9. Z. Yao, H. Liu, Y. Liu, Z. Wu, Z. Shen, Y. Liu and M. Cao, Material Chemistry and Physics, 109, 475-481, (2008).
10. A. R. West, Basic Solid State Chemistry, 2nd edition. Chichester: John & Wiley &Sons Ltd., (2014).
11. A. R. West, T. B. Adams, F.D. Morrison and D. C. Sinclair, Journal of the European Ceramic Society, 24, 1439-1448, (2004).