Glycomics using mass spectrometry

Manfred Wuhrer

Abstract Mass spectrometry plays an increasingly important role in structural glycomics. This review provides an overview on currently used mass spectrometric approaches such as the characterization of glycans, the analysis of glycopeptides obtained by proteolytic cleavage of proteins and the analysis of glycosphingolipids. The given examples are demonstrating the application of mass spectrometry to study glycosylation changes associated with congenital disorders of glycosylation, lysosomal storage diseases, autoimmune diseases and cancer.

Keywords Cancer · Congenital disorders of glycosylation · Lysosomal storage diseases · MALDI-TOF-MS · Permethylation

Introduction

Mass spectrometry (MS) based glycomics techniques are broadly used to analyze free oligosaccharides, glycosaminoglycans as well as the glycan portions of glycoproteins, proteoglycans and glycolipids. A wide range of MS equipments are available for glycoconjugate analysis. Both matrix-assisted laser desorption-ionization (MALDI) and electrospray ionization (ESI) are commonly applied. MS may be used as a stand-alone technique, or coupled online to separation methods such as HPLC [1-4] and capillary electrophoresis (CE) [5-7]. Carbohydrate and glycoconjugate analysis by MALDI-MS has been comprehensively reviewed by Harvey [8, 9]. Other useful review articles, which cover a range of analytical techniques including tandem MS (MS/MS) of glycoconjugates have appeared in recent years [8-15]. This review aims at giving a concise overview of MS based glycomics technology, together with selected applications in clinical research.

Analysis of free glycans

Protein-linked N-glycans and O-glycans are typically released by enzymatic and chemical methods, respectively [16]. Also glycosaminoglycans are generally degraded by chemical or enzymatic means for subsequent analysis [5, 17]. Analysis of released (or “free”) glycans may be achieved by a variety of techniques such as mass spectrometry. HPLC of reductively aminated glycans employing fluorescence or UV detection and capillary gel electrophoresis with laser-induced fluorescence detection (CGE-LIF) of labeled glycans [16, 18-21]. MS is particularly advantageous for analyzing very complex glycan mixtures containing unusual oligosaccharide structures for which the standardized migration positions in HPLC or CGE-LIF have not yet been determined. Importantly, the mass of the analyzed glycan – when determined with sufficient accuracy or accompanied by a tandem MS experiment – will directly provide information on the glycan composition in terms of hexoses, N-acetylhexosamines, deoxyhexoses, etc. By contrast, this direct link between the observed glycan species and its molecular composition is not inherently present for HPLC and CGE-LIF experiments and additional efforts are required such as the use of glycan standards or exoglycosidase treatments for the determination of terminal monosaccharides [22, 23]. On the other hand, separation-based methods for glycan analysis will often resolve structural
isomers such as the 6-arm and 3-arm isomers of monogalactosylated biantennary glycans [24], while their distinction is not easily achieved by MS and requires additional efforts such as tandem MS analysis [25].

Therefore, while very complex pools of oligosaccharides can be analyzed by MS/MS without separation [26], many researchers choose to perform glycan analysis by LC-MS [1–3] or - less frequently - CE-MS coupling [5–7]. (Normalized) retention and migration times, precursor masses and fragmentation spectra may then be used for structural elucidation as in the case of O-glycan analysis by porous graphitized carbon (PGC) HPLC coupled online to MS [27–29]. PGC-HPLC appears to have a particularly high power in separating oligosaccharide structural isomers, which makes this method very useful for in-depth structural analysis of complex oligosaccharide mixtures [2]. Another popular separation technique hyphenated with MS for oligosaccharide analysis is HILIC, which likewise features isomer separation [24, 30, 31]. High-performance anion-exchange chromatography (HPAEC) coupled with online-desalting and online-ESI-MS is another approach which is particularly useful for the analysis of underderivatized oligosaccharides [32].

Derivatization is often useful to support mass spectrometric detection and identification of carbohydrates [33]. For example, oligosaccharides may be reduced to alditols resulting in a 2 Da mass tag on the innermost monosaccharide which facilitates fragment assignment in tandem MS. Analysis of O-glycan alditols obtained by reductive beta-elimination may be achieved by porous graphitized carbon (PGC) HPLC coupled via online, negative-mode electrospray ionization to ion trap-tandem mass spectrometry (MS/MS) [27, 28]. An online database has been made available by the UniCarb-DB partners allowing structural assignment of O-glycan alditols on the basis of MS and MS/MS spectra in addition to retention times (http://www.unicarb-db.com/). Similarly, N-glycans may be structurally assigned on the basis of mass and retention time in PGC-ESI-MS. This approach has been introduced by Altmann and coworkers [29].

Within the range of mass spectrometric techniques, negative-mode MS of glycans has recently obtained increased attention, both for MALDI and ESI ionization [33, 34]. There are several attractive features of analyzing glycans in negative-ion mode. Negative-mode ionization is particularly effective for acidic glycan structures. In this respect, labeling of glycans at the reducing end with an acidic tag such as 2-aminobenzoic acid (anthranilic acid; AA) is advantageous, as it confers acidic properties to all glycans including neutral species, thereby allowing the efficient detection of both sialylated and non-sialylated AA-labeled oligosaccharides in negative-mode MALDI-time of flight (TOF)-MS [16]. In addition, negative-mode MS/MS of oligosaccharides has attractive features, for example that the glycosidic linkages of fucose are rather stable, in contrast to their labile behavior in positive-ion mode [35]. Harvey has described several diagnostic ions, which are observed in negative-ion mode MS/MS of N-glycans and allow the elucidation of antenna compositions as well as the differentiation between the 6-branch and 3-branch of the glycan [36, 37].

Alternatively, oligosaccharides may be analyzed after permethylation [33]. Permethylation converts all the hydroxyl groups into methyl ethers. Moreover, the carboxylic acid groups of sialylated glycans are protected by methyl esterification, which stabilizes the sialic acids and enables MALDI-TOF-MS profiling of permethylated neutral and acidic glycans simultaneously. By contrast, sialic acids are labile when analyzing native glycans, leading to the observation of degradation products in MALDI-TOF-MS spectra [16, 33]. Analysis of the sodium adducts of permethylated glycans by tandem MS is a very useful approach for detailed structural characterization as - next to cleavages of glycosidic bonds - diagnostic cross-ring cleavages are observed, which reveal linkage positions. These analyses may be performed by high-energy collision-induced dissociation (CID) MALDI-TOF/TOF-MS resulting in very complex yet informative fragmentation spectra [38]. MALDI-ion trap-MS of permethylated N-glycans released from total plasma glycoproteins has recently been established by Guillard et al. [39]. This approach allows in-depth analysis of glycans by multistage-tandem mass spectrometry as exemplified in Fig. 1: MS2 (Fig. 1a) and MS3 experiments (Fig. 1b) provided evidence for the occurrence of a sialyl-Lewis X structure on a plasma N-glycan.

Analysis of permethylated glycans in combination with ESI-ion trap-MS is particularly attractive. When this approach is combined with multistage fragmentation of permethylated glycans, the combination of various characteristic fragmentation spectra of sub-structures of the precursor oligosaccharides allows the unambiguous structural assignment of large oligosaccharide structures as impressively demonstrated by Reinholt and coworkers [25, 26].

Internal standards for MS may be obtained by isotope labeling during the derivatization step. For example reductive amination or permethylation using deuterated or C13-labeled versions of the tag / chemicals have been shown to be advantageous for oligosaccharide quantification and the detailed comparison of glycan profiles [16]. It has to be noted, however, that most of these isotope labeling strategies have not yet been applied to clinical glycomics research questions.

Fig. 1 Permethylated serum N-glycans measured by MALDI-linear ion trap-MS (a). Tandem mass spectrum of the sodiated precursor ion at m/z 2968. Fragments at m/z 1022, 1143, and 2690 are indicative of antenna fucosylation, whereas fragments at m/z 1113, 1317, and 2516 mark core fucosylation (b). The inset in (b) shows an MS3 experiment of m/z 1022 confirming the proposed structure with terminal sialic acid and antenna fucosylation. Filled square, GlcNAc, empty circle, galactose; filled circle, mannose; filled triangle, fucose; filled diamond, N-acetylneuraminic acid. Taken from [39] with permission.
Analysis of glycopeptides

In addition to the analysis of released glycans studying protein glycosylation at the level of glycopeptides is rapidly gaining importance [40–44]. The peptide portion may be seen as a tag, which potentially allows the assignment of the glycan to a specific N- or O-glycosylation site on a specific protein. However, this approach is complicated by several obstacles. First, proteolytic cleavage is often hindered in highly glycosylated proteins, resulting in very large, highly and heterogeneously glycosylated peptide moieties, which are hardly accessible for MS analysis [45]. Second, a variety of glycans are generally found attached to one specific glycosylation site (microheterogeneity of glycosylation), and different N-glycosylation sites on one protein often have different glycan patterns. Therefore, glycopeptides generally occur stoichiometrically, making them difficult to analyze by MS in the presence of a majority of non-glycosylated peptides. Various enrichment techniques including lectin affinity chromatography are available to purify glycopeptides for MS analysis [3, 46]. A very promising technique for enriching N-glycopeptides is hydrophilic interaction liquid chromatography-solid phase extraction (HILIC-SPE), which may be performed using silica-based or carbohydrate-based stationary phases [30, 31, 47, 48].

Third, depending on the size of the glycan moiety and the chosen MS/MS approach, it is often hard to obtain peptide sequence information, which is in most cases needed for unambiguous assignment of the glycan to a specific protein [46]. Popular approaches are electron capture dissociation (ECD) and electron transfer dissociation (ETD) of glycopeptides as well as various types of (multistage) CID [4, 43, 44]. In ECD and ETD the glycan portion is generally stable, and peptide backbone cleavages tend to provide (some) peptide sequence information [4]. Single stage low-energy CID (as occurring on an ion trap) is generally characterized by fragmentation of glycosidic bonds, and peptide backbone cleavages are usually minor, if detectable at all. Fragmentation of the peptide portion may be achieved by performing ion trap-multistage MS/MS, and has been successfully applied in various cases for the identification of glycosylated proteins and glycosylation sites [41, 43]. Alternatively, fragmentation of glycopeptides at elevated energies in MALDI-TOF/TOF-MS and MALDI-or ESI-quadrupole-TOF-MS has been reported to provide peptide sequence information next to information on glycan composition and structure [4].

Glycopeptide analysis is almost exclusively performed on protonated species in positive-ion mode. It has been observed that under these conditions glycan moieties may undergo rearrangements in MS/MS, of which prominent examples are the migration of fucoses between N-glycan antennae, or from the core to outer portions of the N-glycan structure [49, 50]. These rearrangements may not only be observed for N-glycopeptides, but also for O-glycopeptides. Obviously, awareness of these processes is required for avoiding misinterpretation of glycopeptide fragmentation spectra.

The major bottle-neck in glycopeptidomics-based proteomics of complex samples is data analysis. Software supporting data analysis is desperately needed, and several promising approaches have recently been reported ([45] and references cited therein). Yet additional, concerted efforts in developing data analysis tools are needed to boost the impact of this analytical approach.

Analyzing protein glycosylation at the glycopeptide level may be categorized as part of a bottom-up glycopeptidomics approach. The analysis of the intact mass of glycoproteins, together with a bottom-up analysis, often allows the detailed structural assignment of protein species such as monoclonal antibodies [51, 52]. In addition, top-down glycoproteomics, i.e., the MS analysis of intact glycoproteins followed by their tandem MS analysis for the characterization of post-translational modifications including glycosylation, has high potential but needs to be further developed [53, 54].

Glycopeptide analysis by MS can be performed in a high-throughput mode. IgG glycopeptide profiling by MALDI-TOF-MS has been performed to determine the changes in IgG1 and IgG2 Fc glycosylation features with pregnancy and rheumatoid arthritis [55] as well as with longevity and healthy aging [56]. MALDI-FTICR-MS was likewise evaluated for IgG Fc glycopeptides profiling and was found to be particularly useful for analyzing changes in sialylation [57]. MALDI-FTICR-MS analysis of IgG Fc glycopeptides is characterized by reduced losses of sialic acid, which is most probably due to the higher pressure in the source and the resulting collisional cooling, in combination with the lower extraction voltages as compared to MALDI-TOF-MS [57]. Recently, using a sheath-flow ESI sprayer, a robust nanoLC-MS method for IgG Fc glycosylation profiling was established [58] (Fig. 2). Notably, the sheath-flow ESI sprayer setup was found to significantly increase the long-term stability of the system while keeping the sensitivity of the system in the same range as with conventional nano-ESI-MS [58]. High-sensitivity IgG Fc glycosylation analysis is particularly valuable when analyzing affinity-purified, antigen-specific IgGs, which may be present at low concentrations. For the most common applications, however, such as glycosylation analysis of total plasma IgG and biotechnologically produced IgG the available sample amounts are generally plenty and sensitivity is not an issue. The sheath flow setup was used in combination with trifluoroacetic acid containing running solvents resulting in the coelution of sialylated and non-sialylated IgG Fc glycopeptides. In contrast, conventional nano-LC-MS with
formic acid-containing running solvents features early-eluting glycopeptides with neutral glycans and late-eluting ones with sialylated glycans [58]. This set-up was used to study IgG Fc glycosylation changes during pregnancy. It was found that galactosylation, sialylation were increased whilst fucosylation and the incidence of bisecting GlcNAc were decreased during pregnancy. The observed glycosylation changes may contribute to the immune suppression occurring during pregnancy in order to protect the fetus from alloimmune reactions of the mother [58].

Analysis of glycolipids

Next to glycoproteins, glycolipids play an important role in cellular interaction and cellular differentiation [59]. The majority of glycolipids observed in humans have a ceramide...
Clinical glycomics applications

The importance of the above described techniques is illustrated by their application in clinical studies. Glycosylation changes play important roles in the cellular mechanisms of health and disease [65], and glycans have a great potential as biomarkers for different types of cancer [66, 67]. There is a vast range of studies of human glyobiology in healthy and diseased people employing MS, and some selected examples will be presented demonstrating the potential of mass spectrometric approaches for clinical glycomics.

MS has been shown to be useful to type congenital disorders of glycosylation. Guillard et al. established an approach that relies on N-glycan release from total plasma, permethylation, and MALDI-ion trap-MS measurement [39], allowing in-depth analysis of glycans by tandem MS (Fig. 1). This approach was applied to determine plasma N-glycan profiles of congenital disorder of glycosylation (CDG) type II patients, as well as controls [68]. A total of 38 peaks were assigned in terms of molecular composition, and changes in the N-glycan profiles were found to be useful to distinguish between the patient groups. The authors also successfully addressed the challenge of differentiating CDG type II diseases from other diseases with secondary causes of underglycosylation. This method is now being successfully applied in clinical research, including research on patients with defects in 1-4-galactosyltransferase I (B4GAT1), which leads to the expression of largely truncated glycans on plasma proteins [69].

Another application field for MS is represented by the analysis of lysosomal storage disorders. Lysosomal defects of glycoconjugate degradation may lead to the secretion of glycopeptides, glycolipids or oligosaccharides in patient urine. These secreted molecules are potential markers of the diseases. Molecular analysis of these degradation products by MS often directly pinpoints to the genetic defect. In Schindler’s disease, which is a hereditary N-acetylhexosaminidase deficiency, characteristic O-glycosylated amino acids and O-linked glycopeptides were detected from patients’ urines [70]. In Fabry’s disease, the causative enzymatic defect leads to elevated levels of globotriaosylceramide and lyso-globotriaosylceramide species in urine and plasma, which can be detected by LC-MS with good diagnostic sensitivity and specificity [71, 72]. A very powerful approach for the analysis of urinary oligosaccharides is HPAEC, which was applied in capillary-scale with online-desalting and ESI-ion trap-MS/MS analysis to study urinary oligosaccharides of patients with GM1-gangliosidosidosis and galactosialidosis [32, 73]. On the basis of literature knowledge of N-glycan biosynthesis, this approach allowed the structural assignment of chromatographically separated isomeric N-glycan degradation products in GM1-gangliosidosidosis (Fig. 3). The observation of N-glycans with terminal galactose residues points to a deficiency of β-galactosidase activity [32]. When the same analytical setup was applied to study urinary glycans in galactosialidosis, novel degradation products were observed such as glycolipid-derived oligosaccharides, both in reducing form and with C1-oxidation of the innermost glucose [73]. These results indicate the presence of an alternative glycolipid degradation pathway in galactosialidosis patients involving a hitherto not described endoglycerceramidase activity.

The analysis of protein degradation products from bio fluids has repeatedly led to the identification of glycopeptides, thereby shedding new light on protein glycosylation. For
example, apolipoprotein CIII-derived O-glycopeptides were found in the urine of *Schistosoma mansoni* infected individuals [75]. Remarkably, these glycopeptides did not exhibit the sialylated T-antigen glycan structures found on apolipoprotein CIII from human serum, but instead carried larger O-glycan structures with a high degree of sialylation. In another study, an O-glycosylated peptide stemming from the C-terminus of the fibrinogen α-chain was found to be increased in the urine during urinary tract infection with *Escherichia coli* [76]. Recently, O-glycosylated amyloid β-peptides representing a potential disease biomarker were characterized from cerebrospinal fluid of Alzheimer patients using both CID and ECD fragmentation [41].

Cancer glycomics biomarker discovery has recently been reviewed [66, 67], and MS is becoming an important research tool in this field. Novotny and Mechref with coworkers chose to analyze serum N-glycan profiles after permethylation using MALDI-TOF-MS. Using this approach, they demonstrated vastly different N-glycan profiles in metastatic prostate cancer as compared to healthy tissue [77]. A variety of mainly fucosylated, complex-type N-glycans were found to be increased in cancer vs. control. In another study the relative abundances of a set of 8 complex-type serum N-glycans were found to be indicative of the progression of breast cancer [78]. Other studies have focused on the glycosylation analysis of specific acute-phase proteins. For example, MALDI-MS of 2-aminobenzoic acid-labeled N-glycans showed that the N-
glycan fucosylation of α-1-acid glycoprotein is significantly increased in ovarian cancer [79]. Notably, most of the reported cancer glycomics studies focus on the analysis of the total plasma or serum N-glycome or certain acute-phase proteins [66, 67]. While these approaches are promising, an increase in sensitivity and specificity may be expected when tumor-derived antigens isolated from body fluids are characterized together with their specific glycosylation profiles.

Still another glycomics application area for MS is the study of the genetic and environmental regulation and dysregulation of protein glycosylation in health and diseases [80]. For example, various novel aspects of the regulation of immunoglobulin G Fc glycosylation have only recently been revealed by high-sensitivity glycosylation profiling at the glycopeptide level. Employing this analysis technique, in vitro studies have shown that soluble factors such as cytokines and toll-like receptor ligands modulate the degree of IgG Fc galactosylation, sialylation and the incidence of bisecting GlcNAc [81]. Likewise, fucosylation of IgG Fc glycans appears to be regulated in humans: IgG Fc glycan fucosylation in humans is known to be generally above 90 %, yet recently pathogenic alloantibodies with a low degree of fucosylation (50 % and below) have been described for patients with fetal and neonatal alloimmune thrombocytopenia (FNAIT) [82]. Figure 4 shows the total serum IgG1 Fc glycosylation profile of a patient and the corresponding profile of the pathogenic anti-human plate antigen (HPA) 3a alloantibodies. While the total serum IgG1 shows 9 % afucosylated structures (A), the afucosylation is 38 % for the alloantibodies of this patient (B). Importantly, these IgG Fc glycosylation changes are known to be functionally relevant. Low fucosylation has been associated with enhanced cellular cytotoxicity [83], whilst high degrees of sialylation confer anti-inflammatory properties to IgGs [84].

References

1. Pabst, M., Altmann, F.: Glycan analysis by modern instrumental methods. Proteomics 11, 631–643 (2011)
2. Ruhaak, L.R., Deelder, A.M., Wahrer, M.: Oligosaccharide analysis by graphitized carbon liquid chromatography-mass spectrometry. Anal. Bioanal. Chem. 394, 163–174 (2009)
3. Wahrer, M., Deelder, A.M., Hokke, C.H.: Protein glycosylation analysis by liquid chromatography-mass spectrometry. J. Chromatogr. B 825, 124–133 (2005)
4. Wahrer, M., Catalina, M.I., Deelder, A.M., Hokke, C.H.: Glyco-proteomics based on tandem mass spectrometry of glycopeptides. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 849, 115–128 (2007)
5. Zaia, J.: On-line separations combined with MS for analysis of glycosaminoglycans. Mass Spectrom. Rev. 28, 254–272 (2009)
6. Mechref, Y.: Analysis of glycans derived from glycoconjugates by capillary electrophoresis-mass spectrometry. Electrophoresis 32, 3467–3481 (2011)
7. Mechref, Y., Novotny, M.V.: Glycomics analysis by capillary electrophoresis-mass spectrometry. Mass Spectrom. Rev. 28, 207–222 (2009)
8. Harvey, D.J.: Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007–2008. Mass Spectrom. Rev. 31, 183–311 (2012)
9. Harvey, D.J.: Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for the period 2005–2006. Mass Spectrom. Rev. 30, 1–100 (2011)
10. Ziaia, J.: Mass spectrometry and the emerging field of glycomics. Chem. Biol. 15, 881–892 (2008)
11. North, S.J., Hitchen, P.G., Haslam, S.M., Dell, A.: Mass spectrometry in the analysis of N-linked and O-linked glycans. Curr. Opin. Struct. Biol. 19, 498–506 (2009)
12. Morelle, W., Canis, K., Chirat, F., Faid, V., Michalski, J.C.: The use of mass spectrometry for the proteomic analysis of glycosylation. Proteomics 6, 3993–4015 (2006)
13. Morelle, W., Michalski, J.C.: Analysis of protein glycosylation by mass spectrometry. Nat. Protoc. 2, 1585–1602 (2007)
14. Mechref, Y., Novotny, M.V.: Structural investigations of glycoconjugates at high sensitivity. Chem. Rev. 102, 321–369 (2002)
15. Ahn, J., Bones, J., Yu, Y.Q., Rudd, P.M., Gilar, M.: Separation of glycosylation labels. Proteomics 7(Suppl 1), 70–76 (2007)
16. Ruhaak, L.R., Zauner, G., Huhn, C., Bruggink, C., Deelder, A.M., Wuhrer, M.: Glycer labeling strategies and their use in identification and quantification. Anal. Bioanal. Chem. 397, 3457–3481 (2010)
17. Huang, Y., Shi, X., Yu, X., Leymarie, N., Staples, G.O., Yin, H., Killeen, K., Ziaia, J.: Improved liquid chromatography-MS/MS of heparan sulfate oligosaccharides via chip-based pulsed makeup flow. Anal. Chem. 83, 8222–8229 (2011)
18. Geyer, H., Geyer, R.: Strategies for analysis of glycopen glycosylation. Biochim. Biophys. Acta 1764, 1853–1869 (2006)
19. Domann, P.J., Pardos-Pardos, A.C., Fernandes, D.L., Spencer, D.I., Radcliffe, C.M., Royle, L., Dwek, R.A., Rudd, P.M.: Separation-based glycoprofiling approaches using fluorescent labels. Proteomics 7(Suppl 1), 70–76 (2007)
20. Ruhaak, L.R., Hennig, R., Huhn, C., Borowiak, M., Dolhain, R.J., Deelder, A.M., Rapp, E., Wuhrer, M.: Optimized workflow for preparation of APTS-labeled N-glycans allowing high-throughput analysis of human plasma glycans using 48-channel multiplexed CGE-LIF. J. Proteome Res. (2010)
21. Vanderschaeghe, D., Szekrenyes, A., Wenz, C., Gassmann, M., Naik, N., Bynum, M., Yin, H., Delanghe, J., Gutman, A., Callewaert, N.: High-throughput profiling of the serum N-glycome on capillary electrophoresis microfluidics systems: toward clinical implementation of GlycoHepatoTest. Anal. Chem. 82, 7408–7415 (2010)
22. Marino, K., Bones, J., Kattla, J.J., Rudd, P.M.: A systematic approach to protein glycosylation analysis: a path through the maze. Nat. Chem. Biol. 6, 713–723 (2010)
23. Royle, L., Campbell, M.P., Radcliffe, C.M., White, D.M., Harvey, D.J., Abrahams, J.L., Kim, Y.G., Henry, G.W., Shadick, N.A., Weinblatt, M.E., Lee, D.M., Rudd, P.M., Dwek, R.A.: HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal. Biochem. 376, 1–12 (2008)
24. Ahn, J., Bones, J., Yu, Y.Q., Rudd, P.M., Gilar, M.: Separation of 2-aminobenzamide labeled glycans using hydrophilic interaction chromatography columns packed with 1.7 microm sorbent. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 878, 403–408 (2009)
25. Pien, J.M., Ashline, D.J., Lapadula, A.J., Zhang, H., Reinhold, V.N.: The high mannose glycans from bovine ribonuclease B analyzed by high-performance liquid chromatography with dedicated database software. Anal. Biochem. 376, 1–12 (2008)
26. Stumpo, K.A., Reinhold, V.N.: The N-glycome of human plasma. J. Proteome Res. 8, 4823–4830 (2010)
27. Karlsson, N.G., Wilson, N.L., Wirth, H.J., Dawes, P., Joshi, H., Packer, N.H.: Negative ion graphitized carbon nano-liquid chromatography/mass spectrometry increases sensitivity for glycoprotein glycosylation analysis. Rapid Commun. Mass Spectrom. 18, 2282–2292 (2004)
28. Karlsson, N.G., Schulz, B.L., Packer, N.H.: Structural determination of neutral O-linked oligosaccharide alditols by negative ion LC-electrospray-MSn. J. Am. Soc. Mass Spectrom. 15, 659–672 (2004)
29. Pabst, M., Bondili, J.S., Stadlmann, J., Mach, L., Altmann, F.: Mass + retention time = structure: a strategy for the analysis of N-glycans by carbon LC-ESI-MS and its application to fibrin N-glycans. Anal. Chem. 79, 5051–5057 (2007)
30. Wuhrer, M., de Boer, A.R., Deelder, A.M.: Structural Glycomics using Hydrophilic Interaction Chromatography (HiLCIC) with Mass Spectrometry. Mass Spectrom. Rev. 28, 192–206 (2009)
31. Zauner, G., Deelder, A.M., Wuhrer, M.: Recent advances in hydrophilic interaction liquid chromatography (HILIC) for structural glycomics. Electrophoresis 32, 3456–3466 (2011)
32. Bruggink, C., Wuhrer, M., Koeleman, C.A., Barreto, V., Liu, Y., Pohl, C., Ingendoh, A., Hokke, C.H., Deelder, A.M.: Oligosaccharide analysis by capillary-scale high-pH anion-exchange chromatography with on-line ion-trap mass spectrometry. J. Chromatogr. B 829, 136–143 (2005)
33. Harvey, D.J.: Derivatization of carbohydrates for analysis by chromatography; electrophoresis and mass spectrometry. J. Chromatogr. A 1150, 338–358 (2007)
34. Qian, J., Liu, T., Yang, L., Daus, A., Crowley, R., Zhou, Q.: Structural characterization of N-linked oligosaccharides on monolayer antibody cetuximab by the combination of orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole-time-of-flight tandem mass spectrometry and sequential enzymatic digestion. Anal. Biochem. 364, 8–18 (2007)
35. Wuhrer, M., Deelder, A.M.: Negative-mode MALDI-TOF/TOF-MS of oligosaccharides labeled with 2-amino-phenylboronic acid. Anal. Chem. 77, 6954–6959 (2005)
36. Harvey, D.J.: Fragmentation of negative ions from carbohydrates: part 3. Fragmentation of hybrid and complex N-linked glycans. J. Am. Soc. Mass Spectrom. 16, 647–659 (2005)
37. Harvey, D.J., Jaeken, J., Butler, M., Armitage, A.J., Rudd, P.M., Dwek, R.A.: Fragmentation of negative ions from N-linked carbohydrates, part 4. Fragmentation of complex glycans lacking substitution on the 6-antenna. J. Mass Spectrom. 45, 528–535 (2010)
38. Mechref, Y., Novotny, M.V., Krishnan, C.: Structural characterization of oligosaccharides using MALDI-TOF/TOF tandem mass spectrometry. Anal. Chem. 75, 4895–4903 (2003)
39. Guillard, M., Gloerich, J., Wessels, H.J., Morava, E., Wevers, R.A., Lefeber, D.J.: Automated measurement of permethylated serum N-glycans by MALDI-linear ion trap mass spectrometry. Carbohydr. Res. 344, 1550–1557 (2009)
40. Halim, A., Nilsson, J., Ruetshi, U., Hesse, C., Larson, G.: Human urinary glycoproteomics; attachment site specific analysis of N- and O-linked glycosylations by CID and ECD. Mol. Cell. Proteomics (2011)
41. Halim, A., Brinkmalm, G., Ruetshi, U., Westman-Brinkmalm, A., Portelius, E., Zetterberg, H., Blennow, K., Larson, G., Nilsson, J.: Site-specific characterization of thromine, serine, and tyrosine glycosylations of amyloid precursor protein/amyloid beta-peptides in human cerebrospinal fluid. Proc. Natl. Acad. Sci. U. S. A. 108, 11848–11853 (2011)
42. Nilsson, J., Ruetshi, U., Halim, A., Hesse, C., Carlssohn, E., Brinkmalm, G., Larson, G.: Enrichment of glycopeptides for glycan structure and attachment site identification. Nat. Methods 6, 809–811 (2009)
43. Steentoft, C., Vakhrushev, S.Y., Vester-Christensen, M.B., Schjoldager, K.T., Kong, Y., Bennett, E.P., Mandel, U., Wandall, H., Lery, S.B., Clausen, H.: Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines. Nat. Methods 8, 977–982 (2011)
Breast cancer diagnosis and prognosis through quantitative measurements of serum glycan profiles. Clin. Chem. **54**, 1166–1175 (2008)

79. Imre, T., Kremmer, T., Heberger, K., Molnar-Szollosi, E., Ludanyi, K., Pocsfalvi, G., Malorni, A., Drahos, L., Vekey, K.: Mass spectrometric and linear discriminant analysis of N-glycans of human serum alpha-1-acid glycoprotein in cancer patients and healthy individuals. J. Proteomics **71**, 186–197 (2008)

80. Gornik, O., Pavic, T., Lauc, G.: Alternative glycosylation modulates function of IgG and other proteins - implications on evolution and disease. Biochim. Biophys. Acta. (2011)

81. Wang, J., Balog, C.I., Stavenhagen, K., Koeleman, C.A., Scherer, H.U., Selman, M.H., Deelder, A.M., Huizinga, T.W., Toes, R.E., Wuhrer, M.: Fc-glycosylation of IgG1 is modulated by B-cell stimuli. Mol. Cell. Proteomics **10**, M110 (2011)

82. Wuhrer, M., Porcelijn, L., Kapur, R., Koeleman, C.A., Deelder, A.M., de Haas, M., Vidarsson, G.: Regulated glycosylation patterns of IgG during alloimmune responses against human platelet antigens. J. Proteome Res. **8**, 450–456 (2009)

83. Iida, S., Misaka, H., Inoue, M., Shibata, M., Nakano, R., Yamane-Ohnuki, N., Wakitani, M., Yano, K., Shitara, K., Satoh, M.: Nonfucosylated therapeutic IgG1 antibody can evade the inhibitory effect of serum immunoglobulin G on antibody-dependent cellular cytotoxicity through its high binding to FegammaRIIIa. Clin. Cancer Res. **12**, 2879–2887 (2006)

84. Anthony, R.M., Kobayashi, T., Wermeling, F., Ravetch, J.V.: Intravenous gammaglobulin suppresses inflammation through a novel T(H)2 pathway. Nature **475**, 110–113 (2011)

85. Tran, J.C., Zamdborg, L., Ahlf, D.R., Lee, J.E., Catherman, A.D., Durbin, K.R., Tipton, J.D., Vellaichamy, A., Kellie, J.F., Li, M., Wu, C., Sweet, S.M., Early, B.P., Siuti, N., LeDuc, R.D., Compton, P.D., Thomas, P.M., Kelleher, N.L.: Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature **480**, 254–258 (2011)

86. Jungblut, P.R., Holzhutter, H.G., Apweiler, R., Schluter, H.: The speciation of the proteome. Chem. Cent. J. **2**, 16 (2008)