INTRODUCTION

Free air in the spinal canal has been presented in a number of situations, but it is rare for patients to develop symptomatic epidural gas (EG) after spinal surgery. Only 3 cases of EG, after surgery on the lumbar spine followed by the operative procedure, have been reported in the literature

operation and postoperative course

She underwent a partial hemilaminectomy, foraminotomy at L2–3, L3–4, L5–S1 three levels, and discectomy at only L2–3 and L5–S1 two levels. Her symptoms resolved during the postoperative period, but she returned to the hospital 2 weeks after discharge, with complaints of recurrent preoperative symptom. She was re-evaluated clinically and with imaging studies, including radiography, CT, and MR imaging. Her leg pain was similar to what she had experienced before the surgery. However, contrary to the previous symptoms, the patient complained of the aggravation of symptoms with weight-bearing. Partial relief of pain was gained while patient was sitting and recumbent. There was no motor or sensory deficit. Laboratory studies to rule out the possibility of infection showed no abnormal finding. Radiographs showed the narrowing of the L2–3 and L5–S1 levels, but not in L3–4 level (Fig. 1C).
Minimal dynamic instability was seen in the L2–3 level. MR image showed epidural, signal void, space-occupying, cyst-like lesions in the L2–3 and L5–S1 level, which suggested air or calcified disk fragment. Granulation tissue around the gas was observed in the surgery site (Fig. 2A). A subsequent non-contrast CT of the lumbar spine confirmed well-defined, ovoid air-attenuation in the epidural space in the L2–3 and L5–S1 level (Fig. 2B). The gas was compressing the dural sac and right L3 and left S1 nerve root. The patient received conservative treatment, including absolute bed rest (ABR), steroid, nonsteroidal anti-inflammatory drug medication for 2 weeks, but her neurologic condition did not improve. Follow-up CT revealed the increased amount of EG (Fig. 3A).
In most cases, the gas formation in the spinal canal is associated also been reported coris, are another potential source of gas in the spinal canal.ogenic infections produced by gas-forming organisms and osteonecrosis, are another potential source of gas in the spinal canal. Postoperative EG formation causing a severe radicular pain, however, is very unusual. As mentioned, the current literature documents 7 cases of symptomatic EG after lumbar microdiscectomy. Three of these patients have undergone a revision surgery for the removal of gas (Table 1)\(^{12,13,14}\).

Pathogenetic mechanisms of postoperative EG are still unknown. A few hypothesis were introduced to explain postoperative gas formation in the spinal canal. Sasani et al.\(^{15}\) suspected that, in cases of postoperative symptomatic EG, air becomes trapped during the surgical procedure within the soft tissue when blood in the surgical field causes soft tissue margins to bind. They thought that this “closure” eventually leads to the formation of a membrane that encases the gas collection. But, in the current case, postoperative MRI taken just 1 day after the primary operation didn’t show any significant sign of air bubble in the spinal canal. By this radiological finding, it can be assumed that postoperative intraspinal air was originated from the spinal structure itself, not by air trapping during the operation. They might be formed insidiously sometime after the operation and had a relationship with the removal of the disc.

Intraspinal air was thought to have the relationship with vacuum phenomenon by many authors\(^{16,17}\). Some authors demonstrated the existence of communication between the intradiscal gas and the intraspinal gas by confirming the flow of contrast media into the pseudocyst using a CT after discography\(^{18,19}\). Intradiscal gas can migrate into the epidural space, through this communication, as a result of normal movements of the lumbar spine acting as a piston, and this can, albeit infrequently, lead to nerve root compression\(^{20}\).

In this case, postoperative intraspinal air was seen just only in the L2–3 and L5–S1 levels, where the preoperative intradiscal vacuum phenomenon had been shown and a discectomy was performed, but not in the L3–4 level where only a laminectomy had been done and preoperative intradiscal air was not seen. Authors also could find some scattered gas, which had already been in the extradisc in L2–3 and L5–S1 levels. These findings correspond to previous reports that the presence of the gas in the intervertebral disc was at the same level as the postoperative bubble\(^{21}\), and support the hypothesis of vacuum phenomenon as the cause of postoperative EG, as other authors mentioned. We suggest that anular tear, which had already existed and had the role of the channel between intradiscal and epidural space, was enlarged by a discectomy procedure during the operation, and intradiscal air was expelled to the spinal canal through this channel more easily. It caused postoperative intraspinal air trapping.

Regarding the characteristics of recurred pain, aggravation of symptoms when weight-bearing, while sitting and recumbency are associated with pain relief, was also observed in this case, as previous reports had described\(^{10,11}\). The mechanism of reversible root compression was thought to be a back and forth movement of air through the channel by a piston-like pneumatic-compressors.
Reference	Age (yr)/ sex	Primary disorder	Primary operation	Postoperative course	Diagnostic image finding	Treatments	Outcome
Raynor and Saint-Louis et al. 1999	35/M	Disc herniation on the right side at L4–5	Disc excision on the right side at L4–5	15 days after surgery, a foot drop and pain in the right leg	MRI and CT: a 4-mm gas bubble located in the proximal right L5 lateral recess	Steroid treatment for 10 days	Symptoms returned to normal after 8 weeks
Kaymaz et al. 2005	NR	L4–5 disc herniation	Simple discectomy and foraminoectomy	After the procedure, weakness in dorsal flexion on the contra lateral leg	MRI and CT: air trapping within the epidural space in the L3–4 level	Conservative	Spontaneous resolution of the epidural gas and recovery of clinical findings within 20 days
Capelle and Krauss 2006	50/F	Intraforaminal disc herniation in L5–S1, spondylosis with facet hypertrophy	Removal of free herniated disc without discectomy	4 days after surgery, recurrent pain in right leg	CT myelography; demonstrated epidural gas formation at the operative site	Reoperation after no response to 7 days conservative therapy	Patient’s pain immediately alleviated after the surgery and did not recur during a year-long follow-up period
Ilica et al. 2006	44/M	Herniated L4–5 disk	Hemilaminectomy, foraminoectomy, and discectomy at the L4–5 level	5 months after the operation lower back pain SLR 45°+	MRI and CT: accumulation of gas in the lumbar epidural space compressing the dural sac and nerve root	1 month conservative therapy, reoperated after no response	Improved, symptom-free for a 6-month follow-up period
Sasani et al. 2007	62/F	Disc extrusion on the right side at L2–3	Microdiscectomy without foraminoectomy or hemilaminectomy	20 days after the surgery with recurrent pain	MRI: a signal void indicating air bubble in the right anterolateral portion of the epidural space at L2–3	Conservative treatment including restricted mobilization, and analgesics	Full recovery was achieved on 4 days After initiation of conservative treatment
	72/F	Disc herniation at L4–5 on the right	Microdiscectomy and stabilization	2 weeks after discharge, recurred pain in left leg	MRI and CT: a cyst-like collection of EG on the left mediolateral at L4–5	3 days conservative therapy, pain recurred; treated with needle aspiration and pain recurred 2 days later; surgery successful	The pain in the patient’s back and left leg disappeared completely and there was no recurrence at 3 and 6 months of follow-up.
	69/M	Disc herniation on the left at L5–S1 and associated stenosis of the spinal canal	Left hemilaminectomy at L5 and left foraminoectomy at L5–S1 and microdiscectomy	7 days after the surgery, radiculopathy in his right leg	CT: gas bubble in the right anterolateral portion of the epidural space at L5–S1 and gas accumulation in the disc space at this level	Conservative treatment for 3 days of restricted bed rest and pain medication	Improved and neurologic examination at 3 months revealed no symptoms
Present article	68/F	Disc herniation on the left at L2–3, L5–S1 and stenosis at L4–5	Left L2–3, L5–S1 laminectomy and discectomy left L3–4 laminectomy only	2 weeks after the operation, lower back pain and radiating pain to her left leg similar to preoperative symptoms	MRI and CT; the accumulation of air compressing the dural sac and nerve root in L3–4, L5–S1 levels	Conservative treatment for 2 weeks, pain recurred; treated with needle aspiration and pain recurred 2 days later; surgery successful	Improved, symptom-free for a 1 and a half year follow-up period

EG: epidural gas, SLR: straight leg raising
pression, and distraction of the vertebral body in a closed system consist of intradiscal space and encapsulated cyst. This mechanism could be the rationale for ABR and immobilization with brace, which was done in this case as one of the therapeutic strategies for this complication.

There is another question that still remains. It’s why the amount of gas in the spinal canal increased again after the needle aspiration and previous symptom recurred after just 2 days. Some authors mentioned the “valve-pump mechanism” or “ball-valve effect” as the cause of increased amount of gas in the spinal canal. If the total amount of the air in disc space and spinal canal is constant, the air movement from disc space to spinal canal would lead to decreased amount of intradiscal air by this mechanism. However, based on the imaging data when symptom recurred after the aspiration procedure, the amount of intradiscal air was not decreased, even seemed to be a little bit increased. It means more intradiscal gas had been being produced since the needle aspiration, and there is another mechanism to make further gas formation in the disc space. The vacuum phenomenon is explained by several physiologic and anatomic factors. Various reported observations have demonstrated or suggested the reversible formation and absorption of gas and fluid in the disc space. Biomechanically, negative pressure is produced by enlarging the clefts in the disc that attracts gas from the surrounding extracellular spaces. Authors assume that in company with normal movement of the lumbar spine, leakage of intradiscal gas to the spinal canal can contribute to this negative pressure in disc space, which could lead to further recruitment of gas in the disc space, which results in a more accumulation of gas in the spinal canal in conjunction with “valve-pump mechanism”. This assumption should be further investigated and considered on the biomechanical and physiologic background, which was mentioned above in order to understand the exact pathogenesis of postoperative EG in the spinal canal.

Treatment options for postoperative intraspinal air range from nonoperative to operative, depending on the clinical symptoms presented. Based on the current case and those previously reported, we think that conservative management should always be attempted first, when clinical signs of EG appear after lumbar surgery. As noted, postoperative EG may resolve spontaneously if conservative treatment fails. Needle aspiration is one of the therapeutic options, but was reported to have the chance of recurrence. Some authors stressed complete removal of the cyst wall as the preventive measure of recurrence of air collection. Just simple aspiration of the air, through the encapsulated cyst, seems not to be enough to resolve this problem because the closed system formed by encapsulated cyst and intradiscal space may not be collapsed, and air could be collected in the pseudocyst again. Some authors also suggest the presence of granulation tissue surrounding the epidural gas is a predictor for surgery. Authors think it’s in line with this closed system concept. Open surgery is most reliable in cases where there is no response to conservative therapy, and is definitely required to remove chronic encapsulated air and the cyst wall totally, and break this closed system. Although further gas was formed in the spinal canal, it may be absorbed by the adjacent soft tissue after the removal of the cyst wall. Other authors suggested that the treatment needs to be targeted to the disc, as well as the gaseous cyst, and recommended ensuring adequate foraminotomy, carefully removing the membranous soft tissue near the nerve root during the operation in order to prevent re-accumulation or persistence of air in the lumbar epidural space.

Irrigating the surgical field well with isotonic saline and longer stay of the drain, postoperatively, during the revision surgery was also mentioned as surgical tips. The ABR and immobilization with brace to restrict the motion in pathologic segments are also advisable, in order to lower the chances of radicular compression by the re-accumulation of the air.

CONCLUSION

Although symptomatic EG is rare clinically, it should be considered as one of the possible causes for postoperative radiculopathy. Combined use of CT and MRI is helpful to diagnose the EG in the spinal canal, and differentiate other pathological lesions. Open revision surgery is the most reliable method to treat the postoperative EG, by removing the encapsulated cyst wall totally if conservative treatment fails.

References
1. Bosser V, Dietemann JL, Wartier JM, Granet de Solognac M, Beaudeau R, Buchheit F: L5 radicular pain related to lumbar extradural gas-containing pseudocyst. Role of CT-guided aspiration. Neuroradiology 31: 552-553, 1990
2. Capelle HH, Krauss JK: Recurrent sciatica due to periligamentous trapped epidural gas after spinal sequestrectomy. J Neurosurg Spine 4: 75-77, 2006
3. Charles RW, Mody GM, Govender S: Pyogenic infection of the lumbar vertebral spine due to gas-forming organisms. A case report. Spine (Phila Pa 1976) 14: 541-543, 1989
4. Cheng TM, Link MJ, Onofrio BM: Pneumatic nerve root compression: epidural gas in association with lateral disc herniation. Report of two cases. J Neurosurg 81: 453-458, 1994
5. Ford LZ, Ghia LA, Murphy WA, Gado M: Analysis of gas in vacuum lumbar disc. AJR Am J Roentgenol 128: 1056-1057, 1977
6. Gulati AN, Weinstein ZR: Gas in the spinal canal in association with the lumbosacral vacuum phenomenon: CT findings. Neuroradiology 20: 191-192, 1980
7. Hidalgo-Oviedo AM, Garcia-Mata S, Gozal-Vallejo S, Izzo-Cabezón T, Martínez-Morentín J, Martínez-Grande M: Intradural disc herniation and epidural gas: something more than a casual association? Spine (Phila Pa 1976) 29: E1463-E1467, 2004
8. Ilica AT, Kocagöz M, Bulakbasi N, Kahraman S: Symptomatic epidural gas after open discectomy: CT and MR imaging findings. AJNR Am J Neuroradiol 27: 998-999, 2006
9. Kakitsubata Y, Theodorou SJ, Theodorou DJ, Yoko M, Ito Y, Yuki Y, et al.: Symptomatic epidural gas cyst associated with discal vacuum phenomenon. Spine (Phila Pa 1976) 34: E784-E789, 2009
10. Kaymaz M, Oztanir N, Emmez H, Ozköse Z, Paşaoğlu A: Epidural air entrapment after spinal surgery. Clin Neurol Neurosurg 107: 421-424, 2005
11. Malghem J, Maldague B, Labaisse MA, Dooms G, Duprez T, Devogelaer JP, et al.: Intravertebral vacuum cleft: changes in content after supine positioning. Radiology 187: 483-487, 1993
12. Mortensen WW, Thorne RP, Donaldson WF 3rd: Symptomatic gas-containing disc herniation. Report of four cases. Spine (Phila Pa 1976) 16: 190-192, 1991
13. Pak KL, Hoffman DC, Herrosh RJ, Lutz GE: Percutaneous intradiscal aspiration of a lumbar vacuum disc herniation: a case report. HSS J 7: 89-93, 2011
14. Raynor RB, Saint-Louis L: Postoperative gas bubble foot drop. A case report. Spine 24: 299-301, 1999
15. Ricca GF, Robertson JT, Hines RS: Nerve root compression by herniated intradiscal gas. Case report. J Neurosurg 72: 282-284, 1990
16. Righini A, Lucchi S, Reganati P, Zavanone M, Bettinelli A: Percutaneous treatment of gas-containing lumbar disc herniation. Report of two cases. J Neurosurg 91 (1 Suppl): 133-136, 1999
17. Sasani M, Ozer AF, Oktenoglu T, Cosar M, Karaarslan E, Sarioglu AC: Recurrent radiculopathy caused by epidural gas after spinal surgery: report of four cases and literature review. Spine (Phila Pa 1976) 32: E320-E325, 2007
18. Tsitouridis I, Sayegh FE, Papapostolou P, Chondromatidou S, Goutsidou F, Emmanouilidou M, et al.: Disc-like herniation in association with gas collection in the spinal canal: CT evaluation. Eur J Radiol 56: 1-4, 2005
19. Wang HJ, Chen BB, Yu CW, Hsu CY, Shih TT: Alteration of disc vacuum contents during prolonged supine positioning: evaluation with MR image. Spine (Phila Pa 1976) 32: 2610-2615, 2007
20. Yoshida H, Shinomiya K, Nakai O, Kurosa Y, Yamaura I: Lumbar nerve root compression caused by lumbar intraspinal gas. Report of three cases. Spine (Phila Pa 1976) 22: 346-351, 1997