Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling (vol 16, 266, 2015)

Anthony S. Zannas, Max Planck Institute of Psychiatry
Janine Arloth, Max Planck Institute of Psychiatry
Tania Carrillo-Roa, Max Planck Institute of Psychiatry
Stella Iurato, Max Planck Institute of Psychiatry
Simone Roeh, Max Planck Institute of Psychiatry
Kerry Ressler, Emory University
Charles B. Nemeroff, University of Miami
Alicia K Smith, Emory University
Bekh Bradley-Davino, Emory University
Christine Heim, Charité Universitätsmedizin Berlin

Only first 10 authors above; see publication for full author list.

Journal Title: Genome Biology
Volume: Volume 19, Number 1
Publisher: BioMed Central | 2018-05-23, Pages 61-61
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1186/s13059-018-1441-1
Permanent URL: https://pid.emory.edu/ark:/25593/sdt4n

Final published version: http://dx.doi.org/10.1186/s13059-018-1441-1

Copyright information:

© 2018 The Author(s).
This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

Accessed April 17, 2019 5:19 PM EDT
Correction to: Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling

Anthony S. Zannas¹,²*, Janine Arloth¹,³, Tania Carrillo-Roa¹, Stella Iurato¹, Simone Röh¹, Kerry J. Ressler⁴,⁵,⁶, Charles B. Nemeroff⁷, Alicia K. Smith⁴, Bekh Bradley⁸,⁹, Christine Heim⁹,¹³, Andreas Menke¹⁰,¹¹, Jennifer F. Lange¹, Tanja Brückl¹, Marcus Ising¹¹, Naomi R. Wray¹², Angelika Erhardt¹, Elisabeth B. Binder¹,⁴* and Divya Mehta¹²

Erratum
Upon publication of the original article [1] it was highlighted by the authors that a transposition error affected Additional file 1, causing the misplacement of several columns and rendering the table difficult to read. This transposition does not influence any of the results nor analyses presented in the paper and has since been formally noted in this correction article; the corrected file is available here as an Additional File. The publisher apologizes for this error.

Additional file

Additional file 1: Location of epigenetic clock CpGs in relation to the nearest glucocorticoid response element (as shown by within GR ChIP-Seq peaks in a lymphoblastoid cell line) and their methylation changes in response to the glucocorticoid receptor agonist dexamethasone. (XLSX 69 kb)

Author details
¹Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany. ²Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, USA. ³Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany. ⁴Department of Psychiatry and Behavioral Sciences, Emory University Medical School, Atlanta, USA. ⁵Howard Hughes Medical Institute, Chevy Chase, USA. ⁶Yerkes National Primate Research Center, Emory University, Atlanta, USA. ⁷Department of Psychiatry and Behavioral Sciences and the Center on Aging, University of Miami Miller School of Medicine, Miami, USA. ⁸Atlanta Veterans Affairs Medical Center, Decatur, USA. ⁹Institute of Medical Psychology, Charité Universitätsmedizin Berlin, Berlin, Germany. ¹⁰Present Address: Department of Psychiatry, Psychosomatics, and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany. ¹¹Max Planck Institute of Psychiatry, Munich, Germany. ¹²The University of Queensland, Queensland Brain Institute, St. Lucia, Australia. ¹³Department of Biobehavioral Health, Pennsylvania State University, University Park, USA.

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.