Regions of the nanoparticle confinement by the electrodynamic linear Paul trap

D S Lapitsky
Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya st. 13 Bd.2, 125412 Moscow, Russia
E-mail: dmitrucho@yandex.ru

Abstract. The possibility of the nanoparticles confinement by the electrodynamic Paul trap is shown. The areas of a nanoparticle confinement in gas flow are found. The electric potential of a nanoparticle for its capturing in the Paul trap should be of order 0.5 V to 150 V for particle sizes from 0.03 nm to 1 μm.

1. Introduction
Nanosized particles are present in atmospheric aerosols and astrophysical dusty plasmas [1, 2, 3]. Recent investigations have demonstrated a strong correlation between the presence of aerosols in the atmosphere and their effect on climate parameters and the quality of life [4, 5]. Therefore, a removal of charged particles is a very important issue. One way of filtering is a particle charging by the corona discharge and their deposition on the precipitation electrodes. For example, in electrostatic filters particles gain charge in the corona discharge and then are accumulated by the electrodes [6]. However, electrostatic filters are not efficient in capturing particles with sizes of 0.6–1.6 microns. Unfortunately, the problems of a selective particles removal cannot be solved by the corona discharge precipitators.

The other possibility of charged particles capturing is their confinement in alternating electric fields generated by electrodynamic traps [7]. The observation of dynamic traps for the charged particles confinement is presented in [8]. The analysis of charged particle motion in alternating electric fields is presented in [9].

In previous works [10, 11, 12, 13] the confinement of micron sized particles by the alternating electric fields has been studied in static gas media and in gas flows.

The goal of this work is a theoretical study of charged nanoparticles confinement by the electrodynamic Paul trap [7] in gas flows. The regions of the nanoparticle and trap parameters necessary for the particles confinement are investigated at normal conditions.

2. Mathematical simulation of charged nanoparticle dynamics in Paul trap in gas flows
The sketch of a linear Paul trap is presented in Figure 1a. The trap consists of four cylindrical electrodes with radius $R_1 = 1.5$ mm and length $L_m = 6$ cm. The alternating voltage is applied to electrodes: $U_\omega \sin(\omega t + \pi)$ to pair electrodes with number 1 and $U_\omega \sin(\omega t)$ to those with number 2, where U_ω is the alternating voltage magnitude, $\omega = 2\pi f$ and f is the alternating voltage frequency. The distance between the axes of the neighboring electrodes varies from $L = 8$ mm to 28 mm. To simulate the charged nanoparticle dynamics in the trap and to find the regions of nanoparticle confinement the Brownian dynamics has been used. The simulations took into account stochastic forces of random collisions with

1 To whom any correspondence should be addressed.
neutral particles, viscosity of the gas medium, regular forces of the trap electrodes and the gravitational force. Thus, the particle dynamics was described by the following Langevin equation [14]:

$$m_p \frac{d^2 r}{dt^2} = F_t(r) - 6\pi \eta r_p \left(\frac{dr}{dt} - v_f \right) + F_b + F_g$$

where r is the radius-vector of particle, r_p is the particle radius, m_p is the particle mass in the assumption of spherical particles ($m_p = \frac{4}{3}\pi r_p^3 \rho_p$), in simulations $\rho_p = 3700$ kg/m3, η is the dynamic viscosity of gas medium (18.2 μPa•s [15]), C_x is the Cunningham factor [16], v_f is the gas flow velocity, $F_t(r)$ is the force of trap electrodes, F_b are stochastic delta-correlated forces accounting for stochastic collisions with neutral particles, F_g is the gravitational force. To solve the stochastic differential equation (1) the numerical method developed in [17] was used.

To simulate nanoparticle dynamics in the air at the normal conditions the Cunningham correction factor C_x was taken into account as the dependency on particle size. In Figure 1b the dependence of η/C_x on the particle size is presented obtained from the data in [16]. For the micron sized particles the Cunningham factor is close to 1.

To simulate the interaction of the electric field of the trap with a charged nanoparticle the model of point charges distributed along each electrode [14] was used.

Figure 2 presents the lower bounds of the regions of nanoparticle confinement for the charged nanoparticle for gas flow velocities 1, 5 and 10 cm/s at different interelectrode distances L. As the $F_t(r)$ depends on the $\frac{q_p U}{L}$ ($U = 2U_\omega$) [14], the lower bounds of confinement regions are presented as the dependencies of the expression $\frac{q_p U}{L}$ on f, where $U = 2U_\omega$. From Figure 2 one can see that at increasing of the gas flow velocity the minimum frequency of alternating voltage for particle catching increases. To catch nanoparticles in the gas flow with the velocity of 1 cm/s the frequency of the alternating voltage should be higher than 150 Hz (Figure 2a). In gas flows with the velocity of 5 cm/s the lowest frequency should be 400 Hz and for the velocity of 10 cm/s the frequency should be higher than 700 Hz. To catch micronsized particles the frequency f should be one and a half times lower. Also from Figures 2a–c one can see that at increasing the interelectrode distance L the frequency f for particle cathing becomes lower.

From Figure 2 it is possible to find the potentials of nanoparticle needed for its confinement in the Paul trap for a given magnitude of the electric field strength ($2U_\omega/L$). For example, for the electric field strength of 20 kV/cm in Figure 3 the lower bounds of particle potentials U_p are presented.
The lower bounds of the nanoparticle confinement for different particle sizes and gas flow velocities in trap with (a) $L = 8$ mm, (b) $L = 14$ mm and (c) $L = 28$ mm.

Figure 4 shows that at increasing the interelectrode distance the particle electric potential for its confinement rises despite of the same value of electric field strength in trap $2U_{\omega}/L = 20$ kV/cm.

3. Conclusion
The possibility of the nanoparticle confinement by the electrodynamic Paul trap was shown. The areas of the nanoparticle confinement in gas flow were found. The electric potential of the nanoparticle for its capturing in the Paul trap should be of order 0.5 V to 150 V for particle sizes from 0.03 nm to 1 μm and electric field potential up to 20 kV/cm. As the interelectrode distance increases the particle electric potential for its confinement rises. Also as the gas flow velocity increases, the frequency of alternating voltage needed for particle capturing grows as well. To catch particles in gas flow with 1 cm/s the frequency of alternating voltage should be higher than 100 Hz, gas flows 2 cm/s the lowest frequency should be 200 Hz and for 10 cm/s – 400 Hz.

Acknowledgments
The work was done by the financial support of the Russian Science Foundation via grant 14-50-00124.
Figure 3. The lower bounds of the electric potentials of the nanoparticle for different particle sizes and gas flow velocities in trap with (a) $L = 8$ mm, (b) $L = 14$ mm and (c) $L = 28$ mm.

Figure 4. The lower bounds of the electric potentials of the nanoparticle for different interelectrode distances.

References
[1] Pandis S N, Wexler A S an Seinfeld J H 1995 J. Phys. Chem. 99 9646–9659
[2] Seinfeld J H, Pandis S N 2006. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley)
[3] Draine B T 2003 Annual Review of Astronomy and Astrophysics 41 241–289
[4] Trevitt J A 2006 Ion Trap Studies of Single Microparticles: Optical Resonances and Mass Spectroscopy (The University of Melbourne)
[5] Kulkarni P, Baron P A and Willeke K 2011 Aerosol Measurement: Principles, Techniques and Applications (Wiley)
[6] Peukert W., Wadenpohl C 2001 Powder Technology 118 136–148
[7] Paul W 1990 Usp. Fiz. Nauk 160 109
[8] Molhave Kristian 2000 Construction of and Experiments with a Linear Paul Trap (Institut for Fysik of Astronomi, Aarhus Universitet).
[9] Lapitsky D S 2015 J. Phys.: Conf. Ser. 653 012130
[10] Lapitsky D S, Filinov V S, Deputatova L V, Vasilyak L M, Vladimirov V I and Pecherkin V Ya 2015 EPL 110 15001
[11] Deputatova L V, Filinov V S, Lapitsky D S, Pecherkin V Ya, Syrovatka R A, Vasilyak L M and Vladimirov V I 2015 JPCS 653 012131
[12] Vasilyak L M, Vladimirov V I, Deputatova L V, Lapitsky D S, Molotkov V I, Pecherkin V Ya, Filinov V S and Fortov V E 2013 New Journal of Physics 15 043047
[13] Hart M B, Sivaprakasam V, Eversole J D, Johnson L J and Czege J 2015 Applied Optics 31 54
[14] Lapitsky D S, Filinov V S, Deputatova L V, Vasilyak L M, Vladimirov V I and Pecherkin V Ya 2015 High Temperature 5 (1) 1–8
[15] Tsilingiris P 2008 Energy Conversion and Management 49 1098
[16] Gussman R A 1969 Journal of applied meteorology 8 999–1001
[17] Skeel R and Izaguirre J 2002 Molecular Physics 100 (24) 3885