INDEX THEORY FOR PARTIAL-BIJections

P.L. ROBINSON

Abstract. We offer streamlined proofs of fundamental theorems regarding the index theory for partial self-maps of an infinite set that are bijective between cofinite subsets.

0. Introduction

In a recent paper [1] we called the self-map f of the infinite set Ω a \textit{near-bijection} precisely when f restricts to a true bijection from a cofinite subset $A \subseteq \Omega$ to a cofinite subset $B \subseteq \Omega$. Along with the range $f(\Omega)$ of f we introduced its ‘monoset’

$$\Omega_f = \{ \omega \in \Omega: f(f(\omega)) = \{\omega\}\};$$

in these terms, f is a near-bijection precisely when $f(\Omega)$ and Ω_f are cofinite. The \textit{index} of the near-bijection f is then defined by

$$\text{ind}(f) = |\Omega_f' - |f(\Omega)'| - |f(\Omega)| | \in \mathbb{Z}$$

where if $C \subseteq \Omega$ then $|C|$ is its cardinality and $C' = \Omega \setminus C$ is its complement. We showed in [1] that the index is insensitive to changes on a finite set and that $\text{ind}(f)$ is zero precisely when f differs from a bijection on a finite set. We also showed that when near-bijections that differ on a finite set are identified, their equivalence classes constitute a group on which the \mathbb{Z}-valued index is a homomorphism.

In [1] considerable effort was devoted to the careful handling of Ω_f' and $f(\Omega)'$: for example, when the value of a near-bijection f is changed at $\omega \in \Omega_f'$ it is important to know whether the number of points at which $f(\omega)$ was formerly the value is two or is greater than two; it is also important to know whether the new value of f at ω was or was not formerly a value of f. These circumstances cause technical complications: for example, in the verification that the index is insensitive to changes on a finite set and in the verification that the index is a homomorphism. Our primary purpose in this paper is to reformulate the notion of near-bijection in a way that circumvents these complications and facilitates streamlined proofs of the fundamental results.

1. Index theory

Let Ω be an infinite set.

\textbf{Definition:} A \textit{partial-bijection} is a (true) bijection $f : A_f \to B_f$ from a cofinite subset $A_f \subseteq \Omega$ to a cofinite subset $B_f \subseteq \Omega$.

This is our reformulation of the notion of near-bijection: as $f(\Omega)'$ and (especially) Ω_f' were the source of complications in [1] we simply eliminate them; much of the focus in [1] was on properties defined only up to changes on finite sets, so this reformulation is eminently reasonable. More strictly, we should perhaps speak of a bijective partial self-map; but the convenient abuse ‘partial-bijection’ is also reasonable.
Definition: The *index* of the partial-bijection f is defined by

$$\text{ind}(f) = |A'_f| - |B'_f| \in \mathbb{Z}.$$

We should of course verify that this notion of index agrees with the notion in [1]. To this end, let $f: \Omega \to \Omega$ be a near-bijection in the sense of [1]: that is, a map for which the complements Ω'_f (see the Introduction) and $f(\Omega)'$ are finite. Restricting f (but using the same symbol for convenience) yields a partial-bijection $f: \Omega_f \to f(\Omega_f)$: in fact,

$$\Omega \setminus f(\Omega_f) = (\Omega \setminus f(\Omega)) \cup (f(\Omega) \setminus f(\Omega_f))$$

where $f(\Omega) \setminus f(\Omega_f) = f(\Omega \setminus f(\Omega))$ by definition of Ω_f; accordingly,

$$|f(\Omega_f)'| = |f(\Omega)'| + |f(\Omega_f)|.$$

It follows that the index of $f: \Omega \to \Omega$ as defined in [1] is

$$|\Omega_f| - |f(\Omega_f)'| = |f(\Omega)'| = |\Omega'_f| - |f(\Omega_f)'|$$

and so agrees with the index of $f: \Omega_f \to f(\Omega_f)$ as presently defined.

With the current definitions, the following is immediate.

Theorem 1. The partial-bijection f extends to a true bijection $\Omega \to \Omega$ precisely when $\text{ind}(f)$ vanishes.

Proof. The bijection $f: A_f \to B_f$ extends to a bijection from Ω to itself precisely when the finite complements A'_f and B'_f have the same cardinality. \hfill \Box

In [1] we identified near-bijections when they differed on a finite set. Here, the corresponding identification results from the following definition.

Definition: The partial-bijections f and g are *almost equal* (notation: $f \equiv g$) precisely when f and g agree on a cofinite subset of $A_f \cap A_g$.

It is readily verified that almost equality is an equivalence relation; transitivity would fail were we simply to insist that f and g agree on their common domain $A_f \cap A_g$.

As expected, the index is insensitive to changes on a finite set.

Theorem 2. Let f and g be partial-bijections. If $f \equiv g$ then $\text{ind}(f) = \text{ind}(g)$.

Proof. Let f and g agree on the cofinite set $E \subseteq A_f \cap A_g$ and write $e: E \to e(E)$ for the common restriction $f|_E = g|_E$. Now f restricts to a bijection $A_f \setminus E \to B_f \setminus e(E)$ where

$$A_f \setminus E = A_f \cap E' = E' \setminus A_f'$$

and

$$B_f \setminus e(E) = B_f \cap e(E)' = e(E)' \setminus B_f'$$

whence

$$|E'| - |A_f'| = |e(E)'| - |B_f'|$$

and therefore

$$\text{ind}(f) = |A_f'| - |B_f'| = |E'| - |e(E)'| = \text{ind}(e).$$

The symmetric observation that $\text{ind}(e)$ equals $\text{ind}(g)$ completes the proof. \hfill \Box

Remark: Comparison with the proof of the corresponding result (Theorem 19) in [1] amply demonstrates the virtue of the approach adopted here.

Let us now consider the composition of partial-bijections. The natural approach to composition of partial maps suggests the following.
Definition: The *composite* of the partial-bijections f and (then) g is the map $g \circ f : A_{gof} \to B_{gof}$ with domain

$$A_{gof} := \overrightarrow{f}(B_f \cap A_g)$$

with codomain

$$B_{gof} := \overrightarrow{g}(B_f \cap A_g)$$

and with rule

$$(\forall \omega \in \Omega) \ (g \circ f)(\omega) := g(f(\omega)).$$

Theorem 3. If f and g are partial-bijections, then so is $g \circ f$.

Proof. That $g \circ f : A_{gof} \to B_{gof}$ is a bijection is clear. To see that A_{gof} is cofinite, observe that

$$A'_{gof} = \overrightarrow{f}(B_f \cap A_g)' = (\Omega \setminus A_f) \cup (A_f \setminus \overrightarrow{f}(B_f \cap A_g))$$

where $|\Omega \setminus A_f| = |A_f'|$ and where (as f is a bijection from A_f to B_f)

$$|A_f \setminus \overrightarrow{f}(B_f \cap A_g)| = |B_f \setminus (B_f \cap A_g)| = |B_f \setminus A_g| = |A'_f \setminus B'_g|.$$

Thus

$$|\overrightarrow{f}(B_f \cap A_g)| = |A_f'| + |A_g' \setminus B_f'|$$

is finite, as likewise is

$$|\overrightarrow{g}(B_f \cap A_g)| = |B_g'| + |B_f' \setminus A_g'|.$$

We now propose to prove that when partial-bijections are composed their indices add. For this purpose, it is convenient first to record the following triviality.

Theorem 4. If X and Y are finite sets then $|X \setminus Y| + |Y| = |Y \setminus X| + |X|.$

Proof. Each side of the equation is precisely $|X \cup Y|.$

Verification of our claim regarding the index of a composite is now quite straightforward.

Theorem 5. If f and g are partial-bijections then $\text{ind}(g \circ f) = \text{ind}(g) + \text{ind}(f)$.

Proof. We continue from the close of the proof for Theorem 3. Thus

$$\text{ind}(g \circ f) = |\overrightarrow{f}(B_f \cap A_g)| - |\overrightarrow{g}(B_f \cap A_g)'| = |A_f'| + |A'_g \setminus B_f'| - |B_g'| - |A_f ' \setminus B_g'|$$

while

$$\text{ind}(g) + \text{ind}(f) = |A_g'| - |B_g'| + |A_f'| - |B_f'|$$

whence

$$\text{ind}(g \circ f) - \text{ind}(g) - \text{ind}(f) = |A_g' \setminus B_f'| + |B_g'| - |B_f' \setminus A_g'| - |A_f'|$$

and an application of Theorem 4 with $X = A_g'$ and $Y = B_f'$ ends the argument.

Remark: In [1] the corresponding result is Theorem 27; once again, comparison highlights the virtue of the approach taken in the present paper.

Let $f : A_f \to B_f$ be a partial bijection: as a bijection, f has an inverse map $f^{-1} : B_f \to A_f$ which is also a partial-bijection; the composites $f^{-1} \circ f = \text{Id}_{A_f}$ and $f \circ f^{-1} = \text{Id}_{B_f}$ imply that $f^{-1} \circ f \equiv \text{Id}_{\Omega} \equiv f \circ f^{-1}$. As a companion to the last theorem, we have the next.
Theorem 6. If \(f \) is a partial-bijection then \(\text{ind}(f^{-1}) = -\text{ind}(f) \).

Proof. Immediate: passage from \(f \) to its inverse switches \(A_f \) and \(B_f \).

The permutations of \(\Omega \) make up the symmetric group \(S_\Omega \); Theorem 4 says that the partial-bijections having index zero are exactly the restrictions of these permutations to cofinite subsets of \(\Omega \). It is clear that composing a partial-bijection with a permutation (on either side, left or right) does not affect the index: indeed, if \(f \) is a partial-bijection and \(\pi \) is a permutation, then \(A'_{\pi \circ f} = A'_f \) and \(B'_{\pi \circ f} = \pi(B_f)' = \pi(B'_f) \) so that

\[
\text{ind}(\pi \circ f) = |A'_{\pi \circ f}| - |B'_{\pi \circ f}| = |A'_f| - |\pi(B'_f)| = |A'_f| - |B'_f| = \text{ind}(f)
\]

while \(A'_{f \circ \pi} = \pi(A_f)' = \pi(A'_f) \) and \(B'_{f \circ \pi} = B'_f \) so that

\[
\text{ind}(f \circ \pi) = |A'_{f \circ \pi}| - |B'_{f \circ \pi}| = |\pi(A'_f)| - |B'_f| = |A'_f| - |B'_f| = \text{ind}(f)
\]

In fact, this essentially covers all cases of equal index: any two partial-bijections having the same index are related by permutations in this way, up to almost equality.

Theorem 7. Let \(f \) and \(g \) be partial-bijections. If \(\text{ind}(f) = \text{ind}(g) \) then there exist permutations \(\lambda \in S_\Omega \) and \(\rho \in S_\Omega \) such that \(\lambda \circ f \equiv g \equiv f \circ \rho \).

Proof. The composite partial-bijection \(g \circ f^{-1} \) after \(f^{-1} \) is a true bijection

\[
g \circ f^{-1} : \overrightarrow{f}(A_g) \rightarrow \overrightarrow{g}(A_f).
\]

Theorem 5 and Theorem 6 show that \(\text{ind}(f) \) extends to a permutation \(\lambda \) of \(\Omega \); the almost equality \(\lambda \circ f \equiv g \) is clear. Similarly, the composite partial-bijection

\[
f^{-1} \circ g : \overrightarrow{g}(B_f) \rightarrow \overrightarrow{f}(B_g)
\]

has vanishing index and extends to a permutation \(\rho \) of \(\Omega \) such that \(g \equiv f \circ \rho \).

Remark: This demonstrates quite strikingly the virtue of the present approach when dealing with matters that allow indeterminacy on finite sets. In [1] the corresponding result is a combination of Theorem 21, Theorem 22 and Theorem 23; there, complications involving range and monoset necessitate the separate handling of \(\lambda \) and \(\rho \) as well as the separate handling of negative index and positive index.

As in [1] it is of interest to view these results from a group-theoretic perspective. Almost equality defines an equivalence relation on the set of all partial-bijections of \(\Omega \); we denote by \(G_\Omega \) the set comprising all such \(\equiv \)-classes, denoting the \(\equiv \)-class of \(f \) by \([f]\) as usual.

Theorem 8. Let \(f_1, f_2, g_1, g_2 \) be partial-bijections. If \(f_1 \equiv f_2 \) and \(g_1 \equiv g_2 \) then \(g_1 \circ f_1 \equiv g_2 \circ f_2 \).

Proof. Note from Theorem 5 that \(g_1 \circ f_1 \) and \(g_2 \circ f_2 \) are partial-bijections. Let \(F \subseteq A_{f_1} \cap A_{f_2} \) and \(G \subseteq A_{g_1} \cap A_{g_2} \) be cofinite sets on which \(f_1|_F = f_2|_F =: f \) and \(g_1|_G = g_2|_G =: g \). Verification that \(g_1 \circ f_1 \) and \(g_2 \circ f_2 \) agree on \(\overrightarrow{f}(G) \) is immediate; verification that \(\overrightarrow{f}(G) \) is cofinite presents no difficulties.

It follows that composition descends to a well-defined (associative) binary operation on \(G_\Omega \); this makes \(G_\Omega \) into a group, the inverse of \([f]\) being \([f^{-1}]\). Theorem 6 guarantees that the index map \(\text{ind} \) descends to a well-defined map

\[
\text{Ind} : G_\Omega \rightarrow \mathbb{Z}
\]

which is a group homomorphism by Theorem 3. By Theorem 4 the kernel \(S_\Omega \) of \(\text{Ind} \) comprises precisely all \(\equiv \)-classes containing permutations. The image of \(\text{Ind} \) is of course \(\mathbb{Z} \): note that if \(\omega_1 \in \Omega \) then any bijection \(u : \Omega \rightarrow \Omega \setminus \{\omega_0\} \) has index \(-1\) and if \(n \in \mathbb{Z} \) then \([u]^n \) has index \(-n\). The cosets of \(S_\Omega \subseteq G_\Omega \) are labelled by \(\text{Ind} \): this is clear from the fundamental isomorphism theorem, but is also explicit in Theorem 7 and the discussion leading up to it.
Thus, we have constructed a short exact sequence of groups
\[\text{Id} \rightarrow \mathbb{S}_\Omega \rightarrow \mathbb{G}_\Omega \rightarrow \mathbb{Z} \rightarrow 0. \]
This sequence splits, as \(\mathbb{Z} \) is infinite cyclic: with \(u \) as above, a splitting homomorphism is
\[\mathbb{Z} \rightarrow \mathbb{G}_\Omega : n \mapsto [u]^{-n}. \]

In summary, the approach taken in this paper, based on partial-bijections in place of near-bijections, offers a significantly streamlined route to those results of [1] pertaining to properties that are unaffected by changes on finite subsets of \(\Omega \); in particular, it is well-suited to handling the group \(\mathbb{G}_\Omega \) and the index.

REFERENCES

[1] P.L. Robinson, *Fredholm theory for cofinite sets*, arXiv 1509.08039 (2015).

Department of Mathematics, University of Florida, Gainesville FL 32611 USA
E-mail address: paulr@ufl.edu