Analytical Method Development and Validation for the Estimation of Canagliflozin in Bulk and Formulation by RP-HPLC

Darshan Bhatt1*, Padmini Thatavarthi2, B. Rajkamal1

1Mewar University, NH-79, Gangrar, Chhitorgarh-312901, Rajasthan, India
2Megha Institute of Engineering and Technology for Women, Ghatkesar, Hyderabad-501301, India

ABSTRACT
A simple and sensitive reverse phase high performance liquid chromatographic method was developed and successively validated for the estimation of Canagliflozin. In the new method, Canagliflozin separation was carried out by the nonpolar inertsil ODS-3 (250 × 4.6 mm, 5μ) column with a mobile phase composition of Ammonium acetate buffer (pH-4.5) and Acetonitrile in the ratio of 30:70% v/v. Canagliflozin was determined at 252 nm using UV detection and the compound was eluted at the retention time of 4.5 min. As per International Conference on Harmonization (ICH) guidelines, the method was validated and the parameters were precision, accuracy, linearity, limit of detection, limit of quantitation and robustness. The chromatographic method was accurate, linear, specific, precise and robust. The results of method concluded that the proposed RP-HPLC method is useful, convenient and reliable in regular analysis of Canagliflozin in bulk and its formulation.

Keywords: Canagliflozin, RP-HPLC, Antidiabetic agents, Validation, ICH guidelines.

INTRODUCTION
Chromatography is an analytical tool for the determination of drugs in pharmaceutical formulations. At present HPLC is the most commonly used chromatographic technique. The category of Canagliflozin is an antidiabetic and it used to control body glucose levels in the patients suffering from type-2 diabetes. In the kidney 90 percentage of glucose reabsorbed by sodium-glucose transport protein subtype 2 (SGLT -2) and remaining 10 percentage is reabsorbed by SGLT-1. Canagliflozin inhibit SGLT-2 and prevent the reabsorption of glucose in the kidney. Canagliflozin chemically denoted as (2S, 3R, 4R, 5S, 6R)-2-[3-[5-[4-Fluoro-phenyl]-thiophen-2-ylmethyl]-4-methyl-phenyl]-6-hydroxy methyl-tetrahydro-pyran-3, 4, 5-triol. It was contraindicated in the patients suffering from type-1 diabetes, diabetic ketoacidosis, renal impairment, end-stage renal disease and patients...
on dialysis. Literature review of Canagliflozin shown that there were several analytical methods like were several analytical methods like UV spectroscopy [1], LC-MS [2], HPLC [3-8], HPTLC [9] and only few methods were reported for RP-HPLC for the estimation of this drug in bulk and in its formulation. Hence the present work targeted to develop a new precise, accurate and sensitive RP-HPLC method for the determination of Canagliflozin in API and formulation. The developed method validated as per ICH guidelines, [10-12]

Fig. 1: Structure of Canagliflozin

Table 1: Chromatographic Conditions for Canagliflozin

Flow rate	1 mL/min
Wavelength	252 nm
Injection volume	20μL
Retention time	4.5 min
Column Temperature	Ambient
Run time	7 min
Column	Inertsil ODS-3 (250 x 4.6 mm, 5μ) column
Mobile phase	Ammonium acetate buffer (pH 4.5) and Acetonitrile in the ratio of 30:70% v/v

MATERIALS AND METHODS

Materials and reagents
A gift sample of Canagliflozin from Aurobindo Pharmaceuticals, Hyderabad used as Standard drug. INVOKANA (Canagliflozin 100 mg) film coated tablet dosage form bought from the local market. Other chemicals like HPLC grade Acetonitrile, Ammonium acetate and phosphoric acid were bought from SD Fine Chemicals, Mumbai, India

Chromatographic conditions and Instrumentation
The LC system with HPLC pump model (Jasco PU 2080 Plus) with auto sampler programmed at 20 μL capacity per each injection was used. The HPLC system consisted of an UV-detector (Jasco UV 2075 Plus). Separation was carried out by the nonpolar Inertsil ODS-3 (250 x 4.6 mm, 5μ) column. Chromatographic conditions were cited in Table 1.

Preparation of Ammonium acetate Buffer pH 4.5
Accurately weighed 0.77 g of Ammonium acetate was dissolved in few mL of HPLC grade water in a 1000 mL volumetric flask and make up to the volume with HPLC grade water. Solution pH was adjusted to 4.5 by using orthophosphoric acid and the buffer was filtered through 0.45 micron membrane filter to remove any fine particles present in the solution.

Preparation of Mobile Phase
Mobile phase was prepared by mixing the Ammonium acetate buffer (pH 4.5) and Acetonitrile in the ratio of 30:70% v/v and the mixture degasified by vacuum filtration using 0.45μ filter and sonication. Mobile phase used as diluent for the preparation of standard and sample stock and working solutions.

Preparation of stock and working standard solution
100 mg of Canagliflozin standard was weighed and transferred to 100 mL volumetric flask containing few mL of Diluent. Solution was sonicated for 5 min for dissolving the drug and finally make up to the volume with diluent. From the above stock solution 20 ppm of final standard solution was prepared by serial dilutions.

Preparation of sample solution
20 tablets of Canagliflozin (INVOKANA) were weighed and powdered. From the tablet powder 100 mg equivalent amount of Canagliflozin was transferred into a 100 mL volumetric flask. 50 mL of diluent was added and sonicated for 20 min to dissolve the entire drug and finally made up to the final volume with diluent. Solution was filtered and from the filtrate 20 ppm of final sample solution was prepared by serial dilution by using diluent.

Assay
20μL of Canagliflozin standard and sample solutions were injected through autosampler into chromatographic system and peak areas were measured. The percentage of assay of tablets calculated and results were given in the Table 2.

Method Development
To optimize the HPLC method parameters, mobile phase ratios of different solvents were tried. Good separation and peak symmetry for Canagliflozin were developed with combination of Ammonium acetate buffer (pH 4.5) and Acetonitrile in the ratio of 30:70% v/v. System flow rate was confirmed as 1 mL/min. The peak was eluted at the retention time of 4.5 min at 252 nm wavelength.

Analytical Method Validation
The developed method was validated as per ICH guidelines Q-2, R-1. The typical parameters were Accuracy, precision, repeatability, intermediate precision, specificity, detection limit (LOD), quantitation limit (LOQ), linearity and robustness.

System suitability
This parameter used to know whether the HPLC system is suitable for actual chromatographic conditions or not. System suitability was estimated by injecting six standard solutions of Canagliflozin and from the chromatograms %RSD, theoretical plates and peak symmetry were calculated.

Specificity
This parameter performed by injecting blank, placebo, standard and sample solutions and any interference with excipient and mobile phase were observed.

Linearity and range
These parameters were studied by injecting 5, 10, 15, 20, 25 and 30μg/mL solutions (prepared from standard stock solution) into HPLC system and observed the linear relationship between concentration and peak area in the concentration range of 5 – 30μg/mL.

Accuracy
This parameter studied by preparing 50%, 100% and 150% concentration solutions of Canagliflozin in

Int. J. Pharm. Sci. Drug Res. May-June, 2018, Vol 10, Issue 3 (139-143)
triplicate by spiking the standard drug to the placebo and calculated the percentage recovery of Canagliflozin.

Precision

Repeatability

In this parameter closeness of six assay values were measured by calculating % RSD. For this, six sample solutions were prepared from single batch as given in sample preparation above by taking the tablet formulation.

System precision

This parameter carried out to determine whether the HPLC instrument working perfectly or not. System precision studied by injecting standard Canagliflozin 20μg/mL solution six times and % RSD was calculated from the peak areas.

Intermediate precision

Intermediate precision also called as Ruggedness of the method. It was studied by performing the system precision in different days, by different analyst and by different equipment and determined by calculating % RSD for assay values.

Limit of Detection (LOD) and Limit of Quantification (LOQ)

LOD and LOQ were determined as per ICH guidelines by using the formulas 3.3×SD/S and 10×SD/S respectively. In the formulas SD is the response standard deviation and S is the calibration curve slope. A signal-to-noise ratio for LOD is between 3 or 2:1 and LOQ is 10:1.

Robustness

Robustness was done by changing the actual chromatographic conditions like mobile phase ratio and flow rate. Results were determined by calculating the %RSD for six injections peak area values of each change in condition.

Table 2: Assay of Canagliflozin marketed tablet

Canagliflozin	Peak area	Invokana label claim	% label claim
Standard	735334	100 mg	99.5
Sample	731657		

RESULTS AND DISCUSSION

Specificity

Specificity was evaluated by observing the chromatograms of blank, placebo, sample and standard Canagliflozin. The chromatograms of blank, standard, sample and placebo showed no peaks were interfering with a drug retention time of 4.5 min. Chromatograms of blank, placebo and 20 ppm standard and sample canagliflozin were given in Figure 2, 3, 4 and 5.

Precision

Repeatability

Repeatability was determined by calculating % RSD of six assay values and the values are given the Table 3. The % RSD value was found to be 0.3.

System precision

Standard solution of canagliflozin (20 ppm) was injected six times and % RSD from peak areas was calculated as 0.23. System precision values were given in Table 4.
Robustness
Robustness was done by changing the actual mobile phase ratio and flow rate. Results were mentioned in Table 7 and the calculated % RSD values were less than 2.

Linearity and range
Linearity and range estimated by constructing the calibration curve by taking concentration on X-axis and peak area on Y-axis of 5, 10, 15, 20, 25 and 30μg/mL solutions (prepared from standard stock solution). From the curve y-intercept is 899.04 and slope is 36984. Calibration curve shown in figure 6 and linearity values tabulated in Table 8.

Fig. 6: Linearity of Canagliflozin

Table 9: Recovery data of Canagliflozin

Sample name	Amount added (μg/ml)	Amount found (μg/ml)	% recovery	% RSD					
50% solution	10	9.98	99.8	0.6	40% solution	10	9.87	98.1	0.5
50% solution	10	10.02	100.2	0.2	150% solution	30	29.7	99.2	0.45
100% solution	20	19.94	99.7	0.3					
100% solution	20	19.78	98.9						
100% solution	20	20.02	100.1						
150% solution	30	29.91	99.7						
150% solution	30	30.09	100.3						

Table 10: System suitability parameters for Canagliflozin

Parameter	Canagliflozin	
Retention Time (mins)	4.5	0.26
% RSD	12654	
Theoretical plates	1.16	
Peak symmetry		

Accuracy
Triplicate solutions of 50%, 100% and 150% concentration of Canagliflozin was prepared by spiking the standard to placebo and performed assay method. The results were depicted in the Table 9 and the % RSD was less than 2.

System suitability
Six standard solutions of Canagliflozin were injected into chromatographic system and from the chromatograms %RSD, theoretical plates and peak symmetry were calculated. Results were given in the Table 10.

Intermediate precision
Intermediate precision determined by performing the System precision in different days, by different analyst and by different equipment. Calculated % RSD values were less than 2 and values were tabulated in the Table 5.

Limit of Detection (LOD) and Limit of Quantification (LOQ)
LOD and LOQ calculated as per ICH and the value were given the Table 6.

Table 3: Method precision data for Canagliflozin

Concentration (μg/ml)	Peak area	% Assay
20	731356	99.35
20	731798	99.66
20	731498	99.47
20	735329	100.1
20	735334	100.17
20	731698	99.6
AVG	99.725	
SD	0.306	
% RSD	0.3	

Table 4: System precision data for Canagliflozin

Concentration (μg/ml)	Peak area
20	731376
20	731788
20	733498
20	735429
20	735355
20	731598
AVG	733174
SD	1711.93
% RSD	0.23

Table 5: Intermediate precision data for Canagliflozin

% Assay	% Assay	% Assay				
Analy st-1	Analy st-2	Day-1	Day-2	Equipment-1	Equipment-2	
20	99.5	98.99	98.9	99.25	98.9	99.64
20	99.67	99.25	99.85	99.64	100.01	99.55
20	98.9	99.64	99.7	99.55	99.45	100.6
20	100.01	99.55	99.63	98.36	100.01	99.55
20	99.45	100.6	100.0	100.3	99.64	98.56
20	100.2	99.56	99.21	99.8	99.55	100.3
AVG	99.62	99.59	99.55	99.51	99.59	99.7
SD	0.4188	0.50	0.38	0.531	0.38	0.64
% RSD	0.41	0.5	0.38	0.53	0.3	0.64

Table 6: LOD and LOQ of Canagliflozin

Parameter	Result
LOD	0.01 ppm
LOQ	0.04 ppm

Table 7: Robustness of Canagliflozin

Parameter	Variation	% RSD
Robustness	i. Change in flow rate (± 0.1 mL/min)	0.92
Robustness	ii. Change in mobile phase (± 1 mL)	0.45

Table 8: Linearity data for Canagliflozin

Concentration (μg/ml)	Peak area
0	0
5	183892
10	366789
15	546642
20	743593
25	939576
30	1096525

Intermediate precision
Intermediate precision determined by performing the System precision in different days, by different analyst and by different equipment. Calculated % RSD values were less than 2 and values were tabulated in the Table 5.

Limit of Detection (LOD) and Limit of Quantification (LOQ)
LOD and LOQ calculated as per ICH and the value were given the Table 6.
A new simple, sensitive and precise RP-HPLC method has been developed for the analysis of Canagliflozin in tablet formulation. The estimated %RSD values in different parameters like precision, accuracy, system suitability and robustness were found to be less than 2.0%, which indicates that the method is precise, accurate and robust. LOD and LOQ values for Canagliflozin were 0.01 and 0.04 μg/mL. Linearity and range of Canagliflozin were found between the concentration range of 5 to 30μg/mL. The % recovery values were found between 98 -101% for Canagliflozin. The peak eluted for canagliflozin at 4.5 RT by using the mobile phase composition of Ammonium acetate buffer (pH 4.5) and Acetonitrile in the ratio of 30:70 v/v.

REFERENCES

1. Kaur I, Wakode S, Singh HP. Development and Validation of UV Spectroscopic Method for Determination of Canagliflozin in Bulk and Pharmaceutical Dosage Form. Pharm Methods. 2015; 6(2): 82-6.
2. Kobuchi S, Yano K, Ito Y, Sakade T. A validated LC-MS/MS method for the determination of Canagliflozin, a sodium-glucose co-transporter 2 (SGLT-2) inhibitor, in a lower volume of rat plasma: application to pharmacokinetic studies in rats. Biomedical Chromatography. 2016; 30 (10): 1549-55.
3. Marella VL, Syed A, Lakshmi Prasanna M, Nalluri BN. A novel validated RP-HPLC method for the estimation of canagliflozin in bulk and pharmaceutical dosage forms. International Journal of Advances in Pharmaceutical Analysis. 2017; 07(03): 24-27.
4. Reddy NP, Chevela NT. RP-HPLC Method Development and validation for the simultaneous Estimation of Metformic and Canagliflozin in Tablet Dosage Form. International Journal of Pharma Sciences. 2015; 5(4): 1155-1159.
5. Gaware D, Patil RN, Harole M. A Validated Stability Indicating RP-HPLC Method for Simultaneous Determination of Metformin and Canagliflozin in Pharmaceutical Formulation. World Journal of Pharmacy and Pharmaceutical Sciences. 2015; 4(12): 631-640.
6. Kaur I, Wakode S, Singh HP, Manachanda S. Development and Validation of a Stability-Indicating Reverse Phase HPLC-PDA Method for Determination of Canagliflozin in Bulk and Pharmaceutical Dosage Form. Pharmaceutical Methods. 2016;7(1):54-62.
7. Panigrahy UP, Sunil Kumar Reddy A. A novel validated RP-HPLC-DAD method for the simultaneous estimation of Netupitant and Palonosetron in bulk and pharmaceutical dosage form with forced degradation studies. International Journal of ChemTech Research. 2015; 8: 317-337.
8. Jyothi U, Umadevi P. Analytical Method Development and Validation for the Simultaneous Estimation of Canagliflozin and Metformin in Drug Product by RP-HPLC. European Journal of Biomedical and Pharmaceutical Sciences. 2017; 4(11):298-303.
9. Bhole RP, Gandhi JS, Wankhed SB. Development and validation of HPTLC method for simultaneous estimation of canagliflozin and metformin hydrochloride in bulk and tablet dosage form. Basic Pharmaceutical Science Pharmacognosy. 2017; 84:65-71.
10. Validation of analytical procedures, ICH Harmonized Therapeutic Guidelines, Q2B, 1997
11. International conference on harmonization (ICH), Validation of Analytical Procedures: text and methodology Q2 (R1), Geneva, 2005.
12. ICH Harmonized-Tripartite Guidelines. Validation of Analytical Procedure.

HOW TO CITE THIS ARTICLE: Bhatt D, Thatavarthi P, Rajkamal B. Analytical Method Development and Validation for the Estimation of Canagliflozin in Bulk and Formulation by RP-HPLC. Int. J. Pharm. Sci. Drug Res. 2018; 10(3): 139-143. DOI: 10.25004/IJPSDR.2018.100306