Time Dependent Variational Principle and Coherent State Orbits for a Trapped Ion

Bogdan M. Mihalcea
Institute for Laser, Plasma and Radiation Physics (INFLPR),
Atomiştilor Str. Nr. 409,
077125 Măgurele-Bucharest, Jud. Ilfov, Romania
E-mail: bogdan.mihalcea@infim.ro

Abstract.
Spectral properties of the Hamiltonian function which characterizes a trapped ion are investigated. In order to study semiclassical dynamics of trapped ions, coherent state orbits are introduced as sub-manifolds of the quantum state space, with the Kähler structure induced by the transition probability. The time dependent variational principle is applied on coherent states' orbits. The Hamilton equations of motion on Kähler manifolds of the type of classical phase spaces naturally arise. The associated classical Hamiltonian is obtained from the expected values on symplectic coherent states of the quantum Hamiltonian. Spectral information is thus coded within the phase portrait. We deal with the bosonic realization of the Lie algebra of the SU(1,1) group, which we particularize for the case of an ion confined in a combined, Paul and Penning trap. This formalism can be applied to Hamiltonians which are nonlinear in the infinitesimal generators of a dynamical symmetry group, such as the case of ions confined in electrodynamic traps. Discrete quasienergy spectra are obtained and the corresponding quasienergy states are explicitly realized as coherent states parameterized by the stable solutions of the corresponding classical equations of motion. A correspondence between quantum and classical stability domains is thus established, using the Husimi representation.

PACS numbers: 02.20.Sv, 03.65.Ca, 03.65.Ge, 03.65.Fd, 03.65.Sq, 37.10.Gh, 37.10.Ty, 37.30+i
1. Introduction. Classical-quantum correspondence

The development of quantum mechanics and of its concepts left it with a heavy legacy of classical concepts. The most notable among them is Bohr’s correspondence principle, which states that in the limit of large quantum numbers there are similarities between classical and quantum dynamics. In other words, the results from classical mechanics are macroscopically correct and may be regarded as limit cases of the quantum mechanics results, when quantum physics discontinuities are negligible. This principle is still used as an intuitive guide for finding quantum properties which are similar to known classical laws. Some of these analogies are intriguing, considering the fundamental differences in the mathematical formalism underlying the two theories: quantum mechanics uses a separable Hilbert space with a unitary inner product, while classical mechanics is based on a continuous phase space endowed with a symplectic structure [1, 2]. Nevertheless, in certain situations it might represent a weak correspondence between classical and quantum concepts. The concept of observables in quantum mechanics and in classical probability theory has drawn a lot of interest. It was shown that, by means of injective statistical maps, quantum mechanics can to a certain extent be reformulated in classical terms [3].

Pure and mixed states of a n-dimensional quantum entity can be represented as points of a subset of a n^2 dimensional real space [4]. Mathematically, a pure quantum state is typically represented by a vector in a Hilbert space. Mixed quantum states are characterized by means of density matrices. Both mixed and pure state are intensively investigated, due to a very large interest they present for modern physics. The expressions coherent and incoherent superposition of quantum states are also used in order to help distinguish between pure and mixed states. Superpositions of quantum states exhibit many features similar to those of their classical counterparts: they are the so-called coherent states, investigated by Schrödinger in 1926 [5] and then rediscovered by Klauder [6, 7], Glauber [8, 9] and Sudarshan [10] at the beginning of the 1960s. Glauber coined the term 'coherent states' in 1963, in the context of quantum optics [11]. Such states are superpositions of Fock states of the quantized electromagnetic field which, below the limit of a complex factor, are not modified by the action of the photon annihilation operator [12, 13]. Since then coherent states had a huge impact on quantum physics [14, 15, 16, 17, 18, 19, 20] with widespread applications such as nuclear, atomic and condensed matter physics [21, 22, 23, 24, 25, 26], quantum field theory [27], problems of quantization and dequantization [25, 26, 28, 29], non-commutative quantum mechanics [30] trying to unify quantum mechanics and gravity, path integrals, signal analysis and recently, quantum information processing (QIP) [24, 25, 26, 31, 32, 33] using the entanglement feature [12, 24, 27, 34]. Moreover, there are a lot of quantum states of interest for modern physics [13, 36] such as Fock states, Schrödinger-cat states [19, 34] or squeezed states [37, 38, 39, 40]. A matter of interest is the engineering of quantum states showing negative parts in their Wigner functions, which is a signature for non-classical properties of the state that can not be explained using a classical phase-space
distribution. Solutions of the linearized quantum Liouville equation for a plasma in a uniform magnetic field were obtained in the coherent-state basis and the linear response of such a system to general electromagnetic perturbations was investigated [41]. Other plasma physics applications are identified in [42, 43]. All these problems are of large interest, as they discuss the relation between classical and quantum physics, of the still blurred separation line between them.

Time-dependent variational method represents one of the most suited methods to characterize the time-evolution of quantum mechanical systems in the framework of a possible approximation. The quantum engineering mechanism on which the method is based consists in preparing a trial state for the variation as a function of variational parameters. If a certain condition is introduced, the time-dependent variational method can be formulated in the framework of classical Hamiltonian mechanics [44]. Moreover, the time-dependent Hartree-Fock (TDHF) is one of the time-dependent mean-field frameworks in the nuclear many-body theories and has been made use of in describing the microscopic mechanism of nuclear collective motions which are represented as classical trajectories in the TDHF phase space. Since the TDHF phase space is the classical correspondent of the quantum space of states (i.e., a coherent state representation of the boson-mapped fermion space of states), classical informations obtained from the TDHF trajectories supplies us with relevant data on the structure change which occurs in the quantum space of states [45]. Time-dependent Hartree-Fock (TDHF) approximation of single-particle dynamics in systems of interacting fermions was studied in [46]. The time-dependent Hartree-Fock (TDHF) method was used to simulate the behavior of the electronic density prior to ionization, for molecules in high intensity oscillating electric fields [47]. A canonical Hamiltonian formulation for the general time-dependent variational principle associated with the Schrödinger equation is discussed in [48]. Such methods have proven to be useful when studying a wide range of systems including the many body problem and field theory.

A charged particle driven by a time-dependent perturbation in a quantum system is a non-trivial fundamental issue, with applications such as nonlinear dynamics [49], quantum simulation of the Dirac equation and implicitly quantum field theories [50, 51], cavity QED [52, 53], quantum non-locality [54], quantum transport [55], quantum optics [20, 56, 57, 58], superpositions of arbitrary quantum states [59] or quantum information processing [13, 34, 35, 60, 61, 62, 63]. The paper investigates quantum dynamics for systems with dynamical symmetry, such as is the case of ions confined in electrodynamic traps or combined (Paul and Penning) traps [64]. The coherent states’ orbits are introduced as sub-manifolds of the quantum state space, with a Kähler structure induced by the transition probability. An algorithm is proposed, which associates a classical Hamiltonian to the quantum Hamiltonian describing the ion. The classical Hamiltonian implicitly contains the spectral information of the quantum system. The coherent states formalism introduced in [65, 66] and developed in [29] is used, and the time dependent variational principle (TDVP) [16, 67, 68, 69], in order to characterize the semiclassical dynamics.
The results have been applied to the case of an ion confined in a quadrupole electromagnetic trap with anharmonicities. The coherent states formalism for dynamical groups and the time dependent variational principle (TDVP) are applied with an aim to investigate semiclassical behaviour of trapped ions. The explicit expression of the quantum Hamiltonian associated to a charged particle is found, as a function of the Lie algebra generators for the radial and axial symplectic groups. The Schrödinger equation solution is also obtained. The Hamiltonian function is then particularized to the case of combined, quadrupole and octupole traps.

The paper is organized as follows: Section 2 reviews some definitions from the geometry of coherent states. In Section 3 the time dependent variational principle is applied to a manifold of test vectors in paragraph 3.1. The Lagrange function is introduced and the Hamilton equations of motion result for the system we have investigated in Section 3.2. Section 3.3 presents the coherent states built over weight states of the discrete positive series of the symplectic group $S_p(2, \mathbb{R})$ and the Lie algebra generators. A model is proposed which enables explicit calculus of the Husimi function for every algebraic model with a dynamical group. The equations of motion in phase space arise. The model we suggest is applied in Section 4 to a combined Paul and Penning trap, with octupole anharmonicity. The Lie algebra generators for the radial and axial symplectic group $S_p(2, \mathbb{R})_{a,r}$ are introduced in Section 4.1, together with the Hamiltonian of the system. The symplectic coherent states representation is introduced in Section 4.3. The classical Hamiltonian for the system we investigated finally results. Section 5 is dedicated to a discussion of the results.

2. Coherent states for dynamical symmetry groups

2.1. Notions of differential geometry

Euclidian space is a basic symplectic manifold not only because it is simple to characterize, but mainly owing to the fact that it provides a local model for every symplectic manifold. The Euclidean space can be treated as a semi-local symplectic manifold. Hence we can submit global nonlinear problems on it. The phase space exhibits a geometric structure, as it is a space endowed with a tensor. Such space is called a symplectic form. Symplectic manifolds are even-dimensional. They are studied using symplectic geometry or symplectic topology [70][71], which represents a branch of differential geometry (topology) [72]. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds, e.g. in the Hamiltonian formulation of classical mechanics [70][73]. The subject of symplectic topology is the global structure of a symplectic manifold and the behaviour of symplectomorphisms which are far from identity. These aspects are of interest both in Euclidean space with its associated standard linear symplectic structure and on general symplectic manifolds [71][72]. A Kähler manifold is a symplectic manifold with an integrable almost complex structure. A consequence of the integrability
Theorem is the fact that every Riemann surface carries a Kähler structure [72]. Most symplectic manifolds are not Kähler, which means they do not possess an integrable complex structure compatible with the symplectic form. Gromov [75, 76] made the important observation that symplectic manifolds admit an abundance of compatible almost complex structures, therefore they satisfy all the axioms for a Kähler manifold except the requirement that the transition functions be holomorphic. Differential geometry has applications to both Lagrangian mechanics and Hamiltonian mechanics. Symplectic manifolds in particular can be used to study Hamiltonian systems. Any real valued differential function H on a symplectic manifold can serve as an energy function or Hamiltonian.

2.2. Coherent states geometry

Further on, we will recall some definitions from the geometry of coherent states [14, 15, 31], while introducing the elementary quantum systems (in the Wigner sense), which represent the most extended class of models describing both analytically and numerically the energetic spectra and the solutions of the Schrödinger equation.

Let G be a Lie group acting on a manifold M (respectively, a complex Lie group acting on a complex manifold M). Then for every point $m \in M$ we define its orbit by $O_m = G_m = \{ g.m | g \in G \}$ and stabilizer by [77]$G_m = \{ g \in G | g.m = m \}$ (1)

We will denote by H the separable complex Hilbert space of the state vectors (quantum states). The state space in quantum mechanics will be denoted by $P(H)$. If $\psi \in H$ is a state vector, then $\hat{\psi} = \{ \lambda \psi | \lambda \in \mathbb{C} \}$ represents the state associated to ψ. Then

$$P(H) = \left\{ \hat{\psi} \mid \psi \in H \setminus \{0\} \right\}$$

(2)

is the state space, which is also a projective complex space. $\hat{\psi}$ is an unidimensional, complex linear space. If using normalized states ($\| \psi \| = 1$), we can introduce the states as radii and we have $\hat{\psi} = \left\{ e^{i\varphi} \cdot \psi \mid \varphi \in \mathbb{R} \right\}$. Further below we will consider U as an unitary irreducible representation (UIR) of the Lie group G in H. This means that $U(g)$ is a unitary operator on H for $\forall g \in G$, such as

$$U(g \cdot g') = U(g) \cdot U(g') , \forall g, g' \in G$$

$$U(g^{-1}) = [U(g)]^{-1} = U^+(g) .$$

where U^+ is the adjoint of U. This representation induces an action of the group G on $P(H)$, defined as $g \hat{\psi} = U(g)\hat{\psi}$ for $\forall g \in G$ and $\psi \in H \setminus \{0\}$. Then G_0 is the stationary group of the state $\hat{\psi}$, defined as

$$G_0 = \left\{ g \mid g \cdot \hat{\psi} = \hat{\psi} , \; g \in G \right\}$$
The orbit $\mathcal{G} \cdot \hat\psi = \left\{ g \cdot \hat\psi \mid g \in \mathcal{G} \right\}$ is called a coherent state orbit, while any state $g \cdot \hat\psi$ is called a coherent state for the group \mathcal{G}. We will denote $O_{\hat\psi} = \mathcal{G} \cdot \hat\psi$. The coherent vectors which determine the coherent states, can be parametrized with the coordinates of the quotient space $\mathcal{M} = \mathcal{G}/\mathcal{G}_0$. For a large class of symmetry groups \mathcal{G}, \mathcal{M} presents a structure of classical phase space (symplectic manifold). Hence it is convenient to parametrize the try functions with points from \mathcal{M}. There exists a bijection between the points from \mathcal{M}, considered as classical states, and the coherent states.

The triplet $(\mathcal{H}, \mathcal{U}, \mathcal{G})$ is defined as an elementary quantum system in the Wigner sense or a quantum system with symmetry, where \mathcal{H} is a separable Hilbert space, \mathcal{G} is a group and \mathcal{U} stands for an UIR. Coherent states can be associated with such systems. We will consider that the orbit $O_{\hat\psi}$ is a sub-manifold of the space $\mathcal{P}(\mathcal{H})$ with a structure of Kähler space induced by the transition probability. Coherent state Kähler orbits are obtained for Heisenberg groups, compact groups and semisimple groups, with representations belonging to the holomorphic discrete series. The coherent states considered here have important applications in quantum physics and quantum optics, especially when referring to the physics of trapped ions.

Thus a family of coherent states provides the opportunity of investigating the quantum world using the methods of study applied to the classical world. This feature allowed Glauber and others to treat a quantized boson or fermion field as a classical field, with an aim to compute correlation functions and other quantities relevant for statistical physics, such as partition functions. Therefore the system can be characterized by means of the associated classical trajectories.

2.3. $SU(1,1)$ group in quantum optics

We now turn our attention to elements of the group theory, especially those related to the $SU(1,1)$ group, the most elementary noncompact non-Abelian simple Lie group. It has several series of unitary irreducible representations (UIR): discrete, continuous and supplementary [79, 80]. This paper refers only to the case of the discrete series, that exhibits many interesting physical applications [15]. The Lie algebra corresponding to the group $SU(1,1)$ is spanned by three operators K_0, K_1, K_2, which satisfy the following commutation relationships [81]

$$[K_1, K_2] = -iK_0, [K_2, K_0] = iK_1, [K_0, K_1] = iK_2.$$ \hfill (3)

We introduce the raising and lowering operators $K_\pm = K_1 \pm iK_2$ which satisfy

$$[K_0, K_\pm] = \pm K_\pm, \quad [K_-, K_+] = 2K_0.$$ \hfill (4)

The Casimir operator $K^2 = K_0^2 - K_1^2 - K_2^2$ for any UIR can be expressed as the product between the identity operator I and a number k: $K = k(k-1)I$. Therefore, representations of $SU(1,1)$ are determined by a single number k. In case of the discrete series representation, k can have discrete values such as $k = \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots$. The representation Hilbert space is spanned by the orthonormal basis $|k, n\rangle$, where $n = 0, 1, 2, \ldots$. A. O. Barut and L. Girardello [82], then A. M. Perelomov [14, 15] have
brought in the $SU(1,1)$ group to quantum optics. They have constructed the coherent states of the $SU(1,1)$ group in different space representations: Hilbert space and unit disk space or Lobachevian space \cite{15,83}. We will briefly review geometrical aspects of coherent states and generalized coherent ones based on Lie algebras, and especially the $su(1,1)$ Lie algebra \cite{81,85,86,87}. The topological space that parametrizes the elements of a Lie group is a manifold. Therefore a Lie group is a finite dimensional manifold.

Generally, group methods are used in order to find degenerate states of a given state in quantum mechanics \cite{88,89}. The Lie group of $SU(1,1)$ is widely used in physics as it plays the role of a spectrum generating dynamical group for a large number of dynamical systems, such as the Hydrogen atom, the harmonic oscillator or many-body systems. The Lie algebra of the generalized special unitary group $SU(1,1)$ is widely used in quantum optics. The $SU(1,1)$ coherent states arise in the case of generation of boson pairs with zero spins in homogeneous alternating electric field or in the gravitation field of the expanding Universe \cite{90}. In particular, Wódkiewicz and Eberly \cite{91} have discussed the role of the generalized coherent states of Perelomov \cite{14,15} associated with the Lie algebra of the $SU(1,1)$ group in connection with variance reduction. Single- and two-mode bosonic realizations of the $su(1,1)$ Lie algebra are tightly connected with nonclassical squeezed states of light \cite{92}. Coherence-preserving Hamiltonians associated with the $SU(1,1)$ generalized coherent states have been studied by Gerry \cite{94,95}. It should be emphasized that the $SU(1,1)$ generalized coherent states in \cite{14} and \cite{91} are special cases of the two-photon coherent states discussed by Yuen \cite{10}. This fact has been used by Gerry \cite{94,95} who applied the $SU(1,1)$ formulation of the two-photon coherent states to the issue of the interaction of squeezed light with a nonlinear non-absorbing medium modelled as an anharmonic oscillator. The coherent states have been especially useful in quantum optics and quantum information processing (QIP) \cite{12,24,25}. Each mode of the electromagnetic field may be formally described as a harmonic oscillator, and different quantum states of the oscillator correspond to different states of the field. The field from a single-mode laser operating far enough above threshold can be described for many purposes as a coherent state; it differs from a coherent state in that its phase drifts randomly. Coherent states also play an important role in mathematical physics \cite{12,15,83,87}. The paper investigates the bosonic realization of the Lie algebra for the $SU(1,1)$ group, for (generalized) coherent states in the Fock space, in case of an ion confined within a nonlinear Paul trap.

The $SU(1,1)$ group \cite{12,28} consists of unimodular matrices of 2 x 2 dimension with unit determinant. It is also isomorphic to the following noncompact groups \cite{96}:

$$SO(2, 1) \approx SU(1, 1) \approx SL(2, \mathbb{R}) \approx Sp(2, \mathbb{R}).$$ (5)

For example, we can construct the three-dimensional noncompact group $SU(1,1)$ by taking the intersection of the unitary group $U(1,1)$ with $SL(2; \mathbb{C})$. All usual groups of linear algebra such as $GL(n, \mathbb{R})$, $SL(n, \mathbb{R})$, $O(n, \mathbb{R})$, $U(n)$, $SO(n, \mathbb{R})$, $SU(n)$, $Sp(n, \mathbb{R})$ are real or complex Lie groups \cite{77}.
3. The Variational Principle

3.1. The Variational Principle. Test states

The Time-Dependent Hartree-Fock (TDHF) method was first proposed by Dirac in 1930. In this approximation (which is equivalent to the Hartree-Fock approximation) the total electronic wave function can be approximated by a product of one-electron wave functions. Furthermore, one must assume that the potential experienced by a given electron is an average of the potentials produced by the remaining electrons. The reference state for TDHF methods is the single determinant Hartree-Fock ground state, represented as a Slater determinant (using second quantization) \[78\].

The equations of motion in classical mechanics arise as solutions of variational problems. An example would be Fermat’s principle of least time, stating that light propagates between two points by a path which takes the shortest possible amount of time. In a manner similar to light, all systems possessing only kinetic energy move along geodesics, which are paths that minimize energy. As a mechanical system usually possesses both kinetic and potential energy, the quantity to be minimized is the mean value of the difference between the kinetic and potential energy. This less intuitive quantity is called the action \[71\]. The variational principle results from the definition of an action integral \[S = \int_{t_1}^{t_2} L(\psi) \, dt\], where the real Lagrange function of this variational problem is defined as \[67, 72\]

\[L(\psi) = \frac{1}{\langle \psi | \psi \rangle} \left[\langle \psi | H | \psi \rangle - \Im \left(\left. \frac{\partial \psi}{\partial t} \right|_t \right) \right], \tag{6}\]

where \(\hbar H\) is the quantum Hamiltonian of the system. In eq. \[6\] \(\psi\) is a vector in the Hilbert space \(\mathcal{H}\) for any moment of time \(t\), and it belongs to the domain of the self-adjoint quasienergy operator \(K(t) = H - i\partial/\partial t\). The variational principle for \(S\) applied on the entire Hilbert space \(\mathcal{H}\), leads to the Schrödinger equation \[67, 69\].

By minimizing the action \(\delta S = 0\), it can be shown that the Schrödinger equation is rigorously obtained from the variational principle. The natural symplectic structure induced by the transition probability between states for unitary transformations, achieved by the identification of the symplectic form with the imaginary part of the scalar product, enables approaching quantum mechanics issues through the formalism of the classical mechanics on (infinitely dimensional) symplectic manifolds (phase spaces), in particular Kähler manifolds.

We apply the variational principle to a manifold \(\widehat{\mathcal{M}}\) of test vectors, parametrized by the points of a finite \(2n\) dimensional phase space \(\mathcal{M}\), with a Kähler manifold structure. In agreement with the Darboux theorem, the symplectic manifold \(\widehat{\mathcal{M}}\) admits canonical local coordinates and associated complex local coordinates. Generally the complex structure is not global, but local complex parametrization is preferred. In case of elementary quantum systems with dynamical symmetry groups which admit coherent states, the complex structure is global and \(\mathcal{M}\) represents a Kähler manifold.
3.2. The Lagrange function. Hamilton equations of motion

We will consider \(z = (z_1, z_2, \ldots, z_n) \in \mathcal{O} \) as a system of complex canonical local coordinates in \(\mathcal{M} \), where \(\mathcal{O} \) is an open set from \(\mathbb{C}^n \). \(\mathcal{M} \) is a manifold of dimension \(2n \). The (global) symplectic structure and the (local) Kähler structure are induced on the variety of test vectors \(\hat{\mathcal{M}} \). We choose a family of vectors \(\psi(z) \in \hat{\mathcal{M}} \) with \(z \in \mathcal{O} \), holomorphic in \(z \), such as \(\partial \psi(z)/\partial z_i^* = 0, \ i = 1, \ldots, n \). The Lagrange function in the complex parametrization can be expressed as

\[
L(z, z^*) = \frac{i}{2} \left\langle \psi(z^*) | H | \psi(z) \right\rangle \sum_{i=1}^{n} \left\{ \dot{z}_j \left\langle \psi(z^*) | \partial \psi(z)/\partial z_i \right\rangle - \dot{z}_j^* \left\langle \partial \psi(z)/\partial z_j^* | \psi(z) \right\rangle \right\} - \frac{\left\langle \psi(z^*) | H | \psi(z) \right\rangle}{\left\langle \psi(z^*) | \psi(z) \right\rangle}.
\]

It is convenient to introduce the following notations [67]:

\[
N(z, z^*) = \left\langle \psi(z^*) | \psi(z) \right\rangle, \quad H_{cl}(z, z^*) = \frac{\left\langle \psi(z^*) | H | \psi(z) \right\rangle}{\left\langle \psi(z^*) | \psi(z) \right\rangle},
\]

where \(H \) is the quantum Hamiltonian of the system, while \(H_{cl} \) stands for the classical Hamiltonian. Then the Lagrange function described by eq. (7) becomes

\[
L(z, z^*) = \frac{i}{2} \left(\dot{z} \nabla z - z^* \nabla z^* \right) \ln N(z, z^*) - H_{cl}(z, z^*),
\]

where \(z \cdot \nabla z = \sum_{i=1}^{n} z_i \partial z_i \). The variation of the action is

\[
\delta S = \int \left\{ i \sum_{j,k=1}^{n} \frac{\partial^2 \ln N}{\partial z_j^* \partial z_k^*} \dot{z}_j^* \delta z_k^* - i \sum_{j,k=1}^{n} \frac{\partial^2 \ln N}{\partial z_j \partial z_k} \dot{z}_j \delta z_k - \delta H_{cl} \right\}.
\]

From the condition of extreme \(\delta S = 0 \), using independent variables, we obtain a system of equations:

\[
i \sum_{j=1}^{n} \frac{\partial^2 \ln N}{\partial z_j^* \partial z_k^*} \dot{z}_j^* = - \frac{\partial H_{cl}}{\partial z_k}, \quad i \sum_{j=1}^{n} \frac{\partial^2 \ln N}{\partial z_j \partial z_k} \dot{z}_j = - \frac{\partial H_{cl}}{\partial z_k^*}.
\]

We now introduce the matrix of the symplectic structure on \(\hat{\mathcal{M}} \)

\[
\Omega = (\omega_{jk})_{1 \leq j, k \leq n}, \quad \omega_{jk} = \frac{\partial^2 \ln N}{\partial z_j \partial z_k^*},
\]

and Eqs. (11) change accordingly into

\[
i \sum_{j=1}^{n} \omega_{kj} \dot{z}_j^* = - \frac{\partial H_{cl}}{\partial z_k}, \quad i \sum_{j=1}^{n} \omega_{jk} \dot{z}_j = \frac{\partial H_{cl}}{\partial z_k^*},
\]

where \(\omega_{jk}^* = \omega_{kj} \). Hence we can ascertain that the matrix \(\Omega = \omega_{ij} \) is Hermitian. The Poisson brackets for the \(f, g \in C^\infty(\mathcal{M}) \) functions, smooth on \(\mathcal{M} \), can be introduced as:

\[
\{f, g\} = i \sum_{j,k=1}^{n} \left(\lambda_{jk} \frac{\partial f}{\partial z_j} \frac{\partial g}{\partial z_k^*} - \lambda_{kj}^* \frac{\partial g}{\partial z_j^*} \frac{\partial f}{\partial z_k} \right) = \left(\frac{\partial f}{\partial z} \right)^t \Omega^{-1} \frac{\partial g}{\partial z^*} + \left(\frac{\partial f}{\partial z^*} \right)^t \Omega^{-1} \frac{\partial g}{\partial z},
\]

\[
(14)
\]
where $\lambda_{jk} = -i(\Omega^*)^{-1}$. Thus the variational principle for S applied on \hat{M} leads to the following classical Liouville equations of motion [67]:

$$
\frac{dz_j}{dt} = \{z, H_c\}, \quad \frac{dz_j^*}{dt} = \{z^*, H_c\},
$$

where

$$
H_c(z, z^*) = \frac{\langle \psi(z^*) | H | \psi(z) \rangle}{\langle \psi(z^*) | \psi(z) \rangle}.
$$

This paper deals with the study of classical and semiclassical nonlinear dynamical systems. It focuses on similarities and differences found when comparing the dynamical behaviour of Hamiltonian systems described by classical theory in respect with those described by the quantum theory [97, 98]. An algorithm results, which associates an energy function to the quantum Hamiltonian. This function represents a classical type Hamiltonian, whose values are precisely the expected values of the quantum Hamiltonian [12] on coherent states. The energy function determines nonlinear equations of motion which can be approached using the theory of differential dynamical systems. We suggest that such algorithm could be used in order to establish a correspondence between semiclassical and classical dynamics.

The phase space M is a symplectic manifold described by eq. (12), with Poisson brackets determined by eq. (15). Eqs. (11) are the Hamilton equations which describe the Hamiltonian function H_c on M. Thus $H_c(z, z^*)$ is the expected value of the quantum Hamiltonian in the state represented by $\psi(z) \in \hat{M}$. Consequently H_c is considered the classical Hamiltonian associated to the quantum Hamiltonian H. This association is usually called dequantization [99] and it represents a set of rules which turn quantum mechanics into classical. The solutions of the equations of motion for the classical Hamiltonian H_c contain the same amount of spectral information as the solutions of the Schrödinger equation for the quantum Hamiltonian H, in case of many of the dynamical systems of interest. One of the conditions that are to be satisfied is to choose \hat{M} as a manifold of coherent states.

The group of linear canonical transformations of a dynamical system with n degrees of freedom is the symplectic group $Sp(2n, \mathbb{R})$. An electrically charged particle confined within an electromagnetic trap can be explicitly described using coherent states, for a subgroup G of the symplectic group $Sp(6, \mathbb{R})$ [29, 31]. Symplectic transformations in $Sp(2n, \mathbb{R})$ leave invariant the canonical form of the classical Hamiltonian equations of motion [71 77].

3.3. Symplectic coherent states. Algebraic models. Equations of motion

Further on we will introduce the coherent states built over weight states of the discrete positive series of the symplectic group $Sp(2, \mathbb{R})$, which is also a real Lie group [29 28 65 66 100]. We will consider a unitary representation U of the group $Sp(2, \mathbb{R})$ in the Fock-Hilbert space \mathcal{H}. We will denote by G the group of unitary operators $U(g)$ with $g \in Sp(2, \mathbb{R})$ and by g the Lie algebra for this group (in fact, the $SU(1,1)$
group Lie algebra, denoted by \(\mathfrak{su}(1,1) \)). The \(\mathfrak{su}(1,1) \) algebra is determined by the three generators \(K_0, K_1, \) and \(K_2 \), introduced in eqs. \(3 \). Further on we recall the ladder operators defined in eq. \(4 \), such as the Lie algebra may be cast into canonical form \(92, 81, 36 \), as described by eq. \(3 \). The Lie algebra \(\mathfrak{sp}(2, \mathbb{R}) \) consists of all the real linear combinations of the operators \(iK_0, iK_1, \) and \(iK_2 \). We will denote by \(\mathcal{U}_k \) a unitary irreducible subrepresentation of the \(\mathcal{U} \) representation in the Hilbert subspace \(\mathcal{H}_k \) of the \(\mathcal{H} \) space, where \(k \) stands for the Bargmann index \(79 \). The discrete series unitary representation of the Lie algebra considered are labelled by the eigenstates of the Casimir operator \(C \): \(28, 66 \)

\[
C_2 = K_0^2 - K_1^2 - K_2^2 ,
\]

with eigenvalues \(k(k-1) \) \(88, 101, 102 \). We will consider only unitary irreducible representations (UIR) of the group \(\mathcal{S}p(2, \mathbb{R}) \), corresponding to the discrete positive series \(D^+(k) \) \(36, 66, 88, 92 \).

Coherent and squeezed states in Quantum Optics are concerned with the Positive Discrete Series \(D^+(k) \). The canonical orthonormal basis of the \(\mathcal{H}_k \) space consists of the \(|m,k\rangle \): \(m = 0, 1, \ldots \), vectors. For the representations of interest, the states \(|m,k\rangle \) diagonalize the compact operator \(K_0 \). The operators \(K_+ \) and \(K_- \) are Hermitian conjugates of each other and act as raising and lowering operators of the quantum number \(m \) \(36, 65, 85 \):

\[
K_+ |m,k\rangle = [(m+1)(m+2k)]^{1/2} |m+1,k\rangle ,
K_- |m,k\rangle = [m(m+2k-1)]^{1/2} |m-1,k\rangle ,
K_0 |m,k\rangle = (m+k)|m,k\rangle , k > 0, m = 0, 1, 2, \ldots .
\]

The coherent states for the symplectic group \(\mathcal{S}p(2, \mathbb{R}) \) are defined as \(36 \):

\[
|z,m,k\rangle = \mathcal{U}(z) |m,k\rangle ,
\]

Using the disentagling theorem for the \(SU(1,1) \) Lie algebra \(91, 93 \), the unitary operator \(\mathcal{U}(z) \) can be expressed as

\[
\mathcal{U}(z) = \exp (zK_+) \exp (\beta K_0) \exp (-\bar{z}K_-) ,
\]

where \(|z| < 1 \) and \(\beta = \ln (1 - z\bar{z}) \). The \(|z,m,k\rangle \) states are called symplectic coherent states. The phase space \(\mathcal{M} \) whose points parametrize the coherent states is the unitary disk \(|z| < 1 \), endowed with the Lobacevski metrics \(ds^2 = 4(1 - z\bar{z})^{-2} dz d\bar{z} \). For \(m = 0 \) we infer the geometrical construction of Perelomov \(15, 92 \). Eq. \(19 \) remains valid for coherent states with \(m > 0 \), realized by applying the unitary operators \(\mathcal{U}(z) \in \mathcal{G} \) on the nondominant weighting vectors \(|k,m\rangle ; m = 1, 2, \ldots .\)

Using the Baker-Campbell-Hausdorff formula \(16, 77, 103, 28 \) and eq. \(19 \) we infer \(65, 66, 104 \):

\[
U^{-1}(z) K_0 U(z) = (1 - z\bar{z})^{-1} \left[\bar{z}K_- + (1 + z\bar{z}) K_0 + zK_+ \right] ,
U^{-1}(z) K_+ U(z) = (1 - z\bar{z})^{-1} \left[K_+ + 2\bar{z}K_0 + \bar{z}^2 K_- \right] ,
U^{-1}(z) K_- U(z) = (1 - z\bar{z})^{-1} \left[K_- + 2zK_0 + z^2 K_+ \right] .
\]
We will denote by \(\Omega_\varepsilon = K_0 + \varepsilon K_1 \), where \(\varepsilon = \pm 1 \). Then
\[
U^{-1}(z) \Omega_\varepsilon U(z) = \frac{(1 + \varepsilon z)(1 + \varepsilon \bar{z})}{1 - z\bar{z}} E_\varepsilon ,
\]
(22)

\[
E_\varepsilon = \frac{1}{2} (1 - z\bar{z})^{-1} \left[2(1 + z)(1 + \bar{z})K_0 + \varepsilon (1 + z)^2 K_- + \varepsilon (1 + \bar{z})^2 K_+ \right] \quad (23)
\]

From eqs. (21) - (23), we infer
\[
\langle z, k, m| \Omega_\varepsilon^n | z, k, m \rangle = \left[\frac{(1 + \varepsilon z)(1 + \varepsilon \bar{z})}{1 - z\bar{z}} \right]_\varepsilon^n \langle k, m| E_\varepsilon^n | k, m \rangle .
\]
(24)

Eq. (24) enables the explicit calculus of the Husimi function for every algebraic model with a dynamical group \(G \). If \(H \) is the Hamiltonian for such a model, expressed as a polynomial in the operators \(K_0, K_1, \) and \(K_2 \), we observe that the Hamiltonian function \(H_{cl}(z) = \langle z, k, m| H | z, k, m \rangle \) leads to the following equation of motion in the phase space \(M \):
\[
\dot{z} = \{ z, H_{cl} \} .
\]
(25)

The brackets \(\{ , \} \) stand for the Poisson brackets associated with the symplectic manifold \(M \), defined as \([67, 69]\)
\[
\{ f, g \} = \frac{(1 - z\bar{z})^2}{2i(k + m)} \left(\frac{\partial f}{\partial z} \frac{\partial g}{\partial \bar{z}} - \frac{\partial f}{\partial \bar{z}} \frac{\partial g}{\partial z} \right) ,
\]
(26)

where the phase space classical observables \(f \) and \(g \) are smooth and real functions of \(Re z \) and \(Im z \). When \(m = 0 \), from the TDVP applied to the coherent states \(| z, 0, k \rangle \) for the Hamiltonian \(H \) we infer Eqs. (25), which can also be expressed as
\[
\dot{z} = \frac{(1 - z\bar{z})^2}{2ik} \frac{\partial H_{cl}}{\partial \bar{z}} .
\]
(27)

We now introduce the complex variables \(\xi \) and \(\eta \) defined as
\[
\xi = \frac{(1 + z)(1 + \bar{z})}{1 - z\bar{z}} \quad , \quad \eta = \frac{(1 - z)(1 - \bar{z})}{1 - z\bar{z}} .
\]
(28)

Then eqs. (27) become
\[
\dot{\xi} = \frac{2}{ik} \frac{z - \bar{z}}{1 - z\bar{z}} \frac{\partial H_{cl}}{\partial \eta} , \quad \dot{\eta} = -\frac{2}{ik} \frac{z - \bar{z}}{1 - z\bar{z}} \frac{\partial H_{cl}}{\partial \xi} ,
\]
(29)

which are exactly the equations of motion in the phase space for the system we considered. The group of the linear canonical transformations of a dynamical system system with \(n \) degrees of freedom, is the symplectic group \(Sp(2n, \mathbb{R}) \) \([96]\). In case of dynamical symmetry groups, the Schrödinger equation solutions associated to linear Hamiltonians are given by coherent vectors multiplied by geometrical (Berry) phase factors \([65]\). The associated classical Hamiltonians result from the expected values of the quantum Hamiltonians on coherent symplectic states. Thus spectral information is coded into the phase portrait. The formalism presented here allows to explicitly construct bases and systems of symplectic coherent states for the study of trapped ion systems.
4. Semiclassical dynamics of an ion in combined traps with axial symmetry

4.1. Algebraic models for nonlinear axial traps

We have reviewed the properties of the coherent states and their exceptional importance for physics and especially for quantum optics. Coherent states for charged particles confined in electrodynamic traps can be built using the group theory [28, 105, 106]. We will further investigate the semiclassical dynamics of an ion trapped in a nonlinear electrodynamic trap with cylindrical symmetry, using the symplectic state approach and coherent state formalism developed in [15, 29, 31, 65], presented in Sections 3.2 and 3.3. The coherent state formalism is applied in order to study the semiclassical behaviour of trapped ions [29, 31, 65, 66]. We will introduce the Lie algebra generators of the axial symplectic group $Sp(2, \mathbb{R})_a$ [29, 65]

$$K_{0,1a} = \frac{M \omega_a}{4 \hbar} \left[z^2 \pm \frac{p_a^2}{M^2 \omega_a^2} \right], \quad K_{2a} = \frac{i}{4 \hbar} \left[2z \frac{\partial}{\partial z} + 1 \right],$$

and the Lie algebra generators of the radial symplectic group $Sp(2, \mathbb{R})_r$ for a fixed eigenvalue of the orbital angular momentum $\hbar l$

$$K_{0,1r} = \pm \frac{1}{2h \omega_r} \left[\frac{1}{2M} p_r^2 \pm \frac{M \omega_r^2}{2} \rho^2 + \frac{\hbar^2}{2M} \left(l^2 - \frac{1}{4} \right) \frac{1}{\rho^2} \right],$$

$$K_{2r} = \frac{i}{4 \hbar} \left[2\rho \frac{\partial}{\partial \rho} + 1 \right].$$

We have denoted by $\omega_a/2\pi$ the axial frequency and by $\omega_r/2\pi$ the radial frequency respectively, of the quadrupole trap potential. The K_{0j}, K_{1j} and $K_{2j} = i[K_{1j}, K_{0j}], j = a, r$ operators satisfy the commutation relations for the Lie algebra of the symplectic group $Sp(2, \mathbb{R})$

$$[K_{0j}, K_{1j}] = iK_{2j}, \quad [K_{2j}, K_{0j}] = iK_{1j}, \quad [K_{2j}, K_{1j}] = iK_{0j}.$$

Then the quantum Hamiltonian of a particle with electrical charge Q, mass M and orbital angular momentum $\hbar l$, located in the quadrupole trap with octupole anharmonicity, can be expressed as [104]

$$H_l = -\frac{4Q \hbar}{M \omega_a} A(t) (K_{0a} + K_{1a}) + \frac{\hbar}{\omega_r} \left(\frac{\omega_c^2}{4} + \frac{2Q}{M} A(t) \right) (K_{0r} + K_{1r}) - \frac{\omega_c}{2} h \omega_a (K_{0a} - K_{1a}) + h \omega_r (K_{0r} - K_{1r}) + c_2 A(t) H_4(\rho, z),$$

where ω_c stands for the cyclotronic frequency and H_4 is a harmonic polynomial of degree 2 homogeneous in the variables z^2 and $\rho^2 = x^2 + y^2$. These variables can be expressed as a function of the generators

$$z^2 = \frac{4\hbar}{M \omega_a} (K_{0a} + K_{1a}), \quad \rho^2 = \frac{4\hbar}{M \omega_r} (K_{0r} + K_{1r}).$$

The coupling constant c_2 and the time dependent function $A(t)$ are characteristic for the type of trap used and will be explained later.
Eq. (33) results from the general expression of the Hamiltonian associated to a particle which undergoes the influence of an electromagnetic field, characterized by an electrical potential Φ and a magnetic induction \vec{B}:

$$ H = \frac{1}{2M} \left[\vec{p} - \frac{i}{2} Q \vec{B} \times \vec{r} \right]^2 + Q\Phi . $$

(35)

The momentum operator for the particle is $\vec{p} = -i\hbar \nabla$, while the magnetic field is considered to be axial: $\vec{B} = (0, 0, B_0)$ and $\omega_c = QB_0/M$. We can introduce the (axial) angular momentum operator on the z axis, defined as $L_z = xp_y - yp_x$. Then Eq. (35) becomes

$$ H = \frac{1}{2M} \left(p_x^2 + p_y^2 + p_z^2 \right) + \frac{1}{8M} Q^2 B_0^2 \rho^2 - \frac{QB_0}{2M} L_z + Q\Phi . $$

(36)

Because the axial angular momentum operator L_z commutes both with the symplectic groups generators as well as with the Hamiltonian H, the study of the quantum system can be restricted to a subspace of the Hilbert space for which $L_z = \hbar l I$, where l is the orbital quantum number. The Hamiltonian reduced to this subspace can be expressed as

$$ H_l = \frac{1}{2M} \left(p_x^2 + p_y^2 + p_z^2 \right) + \frac{1}{8M} Q^2 B_0^2 \rho^2 - \frac{QB_0}{2M} \hbar l + Q\Phi . $$

(37)

Choosing a system of cylindrical coordinates ρ and θ, the expressions for the radial coordinates are $x = \rho \cos \theta$ and $y = \rho \sin \theta$. It follows that

$$ p_x^2 + p_y^2 = -\hbar^2 \left(\frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho^2} \frac{\partial^2}{\partial \theta^2} + \frac{1}{\rho} \frac{\partial}{\partial \rho} \right) , \quad L_z = -i\hbar \frac{\partial}{\partial \theta} . $$

(38)

We choose $\Psi = e^{i\theta} \chi$ as a solution of the Schrödinger equation, where χ depends only on ρ and z. Then $L_z \Psi = \hbar l \Psi$ and χ is a solution of the Schrödinger equation for the Hamiltonian

$$ H_l = -\frac{\hbar^2}{2M} \left(\frac{\partial^2}{\partial \rho^2} - \frac{l^2}{\rho^2} + \frac{1}{\rho} \frac{\partial}{\partial \rho} \right) - \frac{\hbar^2}{2M} \frac{\partial^2}{\partial z^2} + \frac{M \omega_c^2}{8} \rho^2 - \frac{\omega_c}{2} \hbar l + Q\Phi , $$

(39)

which results from Eqs. (37) and (38).

We will now choose a potential with axial symmetry, such as

$$ \Phi (\vec{r}, t) = A(t) g(\rho, z) , $$

(40)

where $A(t)$ is a time-periodical function of period $T = 2\pi/\Omega$, while g is a function of ρ^2 and z^2 which satisfies

$$ g(\rho, z) = \sum_{k \geq 1} c_k H_{2k}(\rho, z) . $$

(41)

The H_{2k} polynomials are harmonic polynomials of degree k in ρ^2 and z^2. The potential described by Eq. (40) is characteristic for a trap with axial symmetry and with symmetry in respect to the radial plane xOy. For a Penning trap A is constant in time, but for most of the radiofrequency traps we choose $A(t) = U_0 + V_0 \cos \Omega t$. In case of a harmonic potential ($c_k = 0$ for $k > 1$) we have

$$ g(\rho, z) = \frac{1}{r_0^2 + 2z_0^2} (\rho^2 - 2z^2) , \quad c_2 = -\frac{1}{r_0^2 + 2z_0^2} . $$

(42)
where \(r_0 \) and \(z_0 \) are the semiaxes of the combined quadrupole trap we have considered. We remind that a combined trap consists of a Penning trap and a superimposed Paul trap. The particular case of the ideal Paul trap is obtained for \(\vec{B} = 0 \). The quadrupole potential is produced by hyperbolic electrodes. Real traps are different from ideal ones. Due to mechanical imperfections (holes drilled in the endcap electrodes or in the ring electrode, the latter causing a radial asymmetry of the potential), the trap potential is not a pure quadrupole potential. The potential is then expanded in a power series and higher order terms have to be considered. Due to the trap symmetry we have chosen, the odd terms of higher order from the series expansion of the potential vanish and we are left only with the even terms. In case of a quadrupole trap with octupole anharmonicity, the electric potential can be expressed as

\[
g (\rho, z) = c_1 H_2 (\rho, z) + c_2 H_4 (\rho, z) , \tag{43}
\]

\[
H_2 (\rho, z) = 2 z^2 - \rho^2 , \quad H_4 (\rho, z) = 8 z^4 - 24 z^2 \rho^2 + 3 \rho^4 . \tag{44}
\]

where \(H_2 \) is the pure quadrupole term and \(H_4 \) is the octupole term. Under such case, the Hamiltonian \(H_I \) is given by Eq. (39). The next anharmonical contribution is given by the polynomial

\[
H_6 = 16 z^6 - 120 z^4 \rho^2 + 90 z^2 \rho^4 - 5 \rho^6 . \tag{45}
\]

The sketches for contours of the electrical potentials in the quadrupole and octupole trap, as well as in the case of the combined \(H_2 + 0.2 H_4 \) trap are given below.

By denoting

\[
K_r = \frac{M \omega_c^2}{4} - 2 Q c_2 A (t) , \quad K_a = 4 Q c_2 A (t) ,
\]

the Hamiltonian given by Eq. (39) can be expressed as

\[
H_I = \frac{\hbar^2}{2M} \left(\frac{\partial^2}{\partial \rho^2} - \frac{l^2}{\rho^2} + \frac{1}{\rho} \frac{\partial}{\partial \rho} \right) - \frac{\hbar^2}{2M} \frac{\partial^2}{\partial z^2} - \frac{\omega_c}{2} \hbar l + \frac{K_r}{2} \rho^2 + \frac{K_a}{2} z^2 + Q A (t) P (\rho^2, z^2) , \tag{46}
\]

where the anharmonical part is defined as

\[
P (\rho^2, z^2) = \sum_{k \geq 2} c_k H_{2k} (\rho, z) . \tag{47}
\]

In the following we will study the Schrödinger equation

\[
i \hbar \frac{\partial \chi}{\partial t} = H_I \chi ,
\]

where \(H_I \) is given by Eq. (46), with particularizations for combined quadrupole and octupole traps. In agreement with Eqs. (33), (34) and (46), The Hamiltonian \(H_I \) describes an algebraic model when \(P (\rho^2, z^2) \) is a polynomial function. This model is linear for quadrupole traps (\(P \) is a linear combination between \(\rho^2 \) and \(z^2 \)).
Figure 1. Surface plot and contour plot of the electric potential for the quadrupole $H_2(\rho, z)$ and octupole $H_4(\rho, z)$ traps
4.2. Dynamical symmetries for an ion in an axial trap

The algebraic model described by the Hamiltonian H_l can be characterized by the dynamical symmetry group $\mathcal{G} = \mathcal{G}_a \otimes \mathcal{G}_r$, realized as a direct product between the axial symplectic group $\mathcal{G}_a = Sp(2, \mathbb{R})_a$ and the radial symplectic group $\mathcal{G}_r = Sp(2, \mathbb{R})_r$ [66, 107].

From Eqs. (31) we obtain the commutation relations

$$[K_{0a}, K_{1a}] = iK_{2a}, \ [K_{2a}, K_{0a}] = iK_{1a}, \ [K_{1a}, K_{2a}] = iK_{0a},$$

for the Lie algebra \mathfrak{g}_a of the group \mathcal{G}_a. The Casimir operator of the Lie algebra \mathfrak{g}_a determines the Bargmann indexes k, and it can be expressed as $[65, 66, 85]

$$C_{2a} = K_{0a}^2 - K_{1a}^2 - K_{2a}^2 = -\frac{3}{16}I = k(k - 1)I,$$

where I is the unitary operator. From Eq. (49) we infer the values of the two Bargmann indexes which characterize the axial motion

$$k_{a+} = \frac{1}{4}, \quad k_{a-} = \frac{3}{4}.$$

From Eqs. (31) we obtain the commutation relations

$$[K_{0r}, K_{1r}] = iK_{2r}, \ [K_{2r}, K_{0r}] = iK_{1r}, \ [K_{1r}, K_{2r}] = iK_{0r},$$

for the Lie algebra \mathfrak{g}_r of the group \mathcal{G}_r. The Casimir operator of the Lie algebra \mathfrak{g}_r is $[36, 66, 104]

$$C_{2r} = K_{0r}^2 - K_{1r}^2 - K_{2r}^2 = \frac{l^2 - 1}{4}I = k(k - 1)I.$$

From Eq. (52) we infer the Bargmann index $k_r = (l + 1)/2$, where l stands for the quantum orbital number. Eq. (46) can be now expressed as

$$H_l = \hbar \omega_r (K_{0r} - K_{1r}) + 2\hbar \omega_a (K_{0a} - K_{1a}) - \frac{\omega_c}{2} \hbar l$$

$$+ \frac{K_r}{2} \frac{2\hbar}{M \omega_r} (K_{0r} + K_{1r}) + \frac{K_a}{2} \frac{2\hbar}{M \omega_a} (K_{0a} + K_{1a}) + QA(t) P (\rho^2, z^2).$$

Consequently, the study of the Hamiltonian for an ion confined in a quadrupole trap ($P = 0$) has been restricted to the study of a linear model for the dynamic group \mathcal{G}, for which the unitary irreducible representations are characterized by the Bargmann indexes k_a and k_r, fixed $[65]$. The solutions of the Schrödinger equation for this elementary quantum system will result explicitly by using the coherent state formalism for the group \mathcal{G}. This formalism will be also used for algebraic models which describe nonlinear traps (with $P \neq 0$).

It can be shown that symplectic coherent states are realized in the trapped ion dynamics and a classical Hamiltonian (the Husimi or the energy function) can be associated to the quantum Hamiltonian. The Hamiltonian function leads to equations of motion in the classical Lobacevskii phase space.
4.3. Symplectic coherent states representation

According to paragraph [4.2], the Bargmann indexes for the axial motion are given by $k_- = \frac{1}{4}$ and $k_+ = \frac{3}{4}$, while in case of the radial motion the expression is $k_l = (1 + l)/2$, where l stands for the orbital quantum number. The canonical orthonormal basis of the Hilbert space for an irreducible unitary representation of the group G_j, of Bargmann index k_j, with $j = a, r$, consists of the vectors ϕ_{jm}, $m = 0, 1, \ldots$ and it is characterized by the equations

$$K_{0j} \phi_{jm} = (k_j + m) \phi_{jm}, \quad K_{-j} \phi_{jj} = 0.$$ \hspace{1cm} (54)

We can introduce the coherent symplectic vectors $\psi_{jm} (z_j)$, defined as

$$\psi_{jm} (z_j) = U_j (z) \phi_{jm},$$ \hspace{1cm} (55)

$$U_j (z_j) = \exp (z_j K_{+j}) \exp (\beta_j K_{0j}) \exp (-\bar{z}_j K_{-j}),$$ \hspace{1cm} (56)

where $U_j (z_j)$ are unitary operators of the representation, $\beta_j = \ln (1 - z_j \bar{z}_j)$, and z_j is a complex variable from the unit disk $|z_j| < 1$. The phase space \mathcal{M} associated to an ion confined within an axial symmetry trap represents the product of the axial and radial unit disks, realized as a bound domain in \mathbb{C}^2, made out of all points (z_a, z_r) with $|z_a| < 1$ and $|z_r| < 1$. The coherent states for the dynamical group \mathcal{G}, parametrized with points from \mathcal{M}, can be expressed as

$$\Phi_{m_a m_r} (z_a, z_r) = \psi_{m_a m_r} (z_a) \psi_{m_r} (z_r).$$ \hspace{1cm} (57)

In case of quadrupole traps, the symplectic coherent states $\Phi_{m_a m_r} (z_a, z_r)$ multiplied by Berry phase factors are solutions of the Schrödinger equation [65].

The energy function associated to the Hamiltonian [53] represents a classical Hamiltonian H_l on \mathcal{M}, whose values are exactly the expected values of the Hamiltonian H_l on coherent states $\Phi_{m_a m_r} (z_a, z_r)$, such as

$$H_{el} = \hbar \omega_r (k_r + m_r) \frac{(1 - z_r)(1 - \bar{z}_r)}{1 - z_r \bar{z}_r} + 2\hbar \omega_a (k_a + m_a) \frac{(1 - z_a)(1 - \bar{z}_a)}{1 - z_a \bar{z}_a} + \frac{2\hbar K_r}{M \omega_r} \frac{(1 + z_r)(1 + \bar{z}_r)}{1 - z_r \bar{z}_r} + \frac{2\hbar K_a}{M \omega_a} \frac{(1 + z_a)(1 + \bar{z}_a)}{1 - z_a \bar{z}_a} - \frac{\omega_c h l}{2} + H_{anarm},$$ \hspace{1cm} (58)

cu

$$H_{anarm} = QA (t) \langle P (\rho^2, z^2) \rangle = QA (t) \sum_{k \geq 1} c_k \langle H_{2k} (\rho, z) \rangle.$$ \hspace{1cm} (59)

We have denoted by $\langle X \rangle$ the expected value of the operator X in the coherent state $\Phi_{m_a m_r} (z_a, z_r)$. In particular we obtain

$$\langle H_4 \rangle = 8S_{2a} - 24S_{1r} S_{2r} + 3S_{2r},$$ \hspace{1cm} (60)

$$\langle H_6 \rangle = 16S_{3a} - 120S_{2a} S_{1r} + 90S_{1a} S_{2r} - 5S_{3r}.$$ \hspace{1cm} (61)
Time dependent variational principle

where

\[S_{jr} = S_j(z_r, k_r, m_r) \quad \text{and} \quad S_{ja} = S_j(z_a, k_a, m_a) \quad 1 \leq j \leq 3, \]

with

\[S_j(z, k, m) = \left[\frac{(1 + z)(1 + \bar{z})}{1 - z\bar{z}} \right]^j Q_j(k, m), \quad (62) \]

and

\[Q_1(k, m) = 2(k + m) \quad (63) \]
\[Q_2(k, m) = 2k(2k + 1) + 12km + 6m^2 \quad (64) \]
\[Q_3(k, m) = 4k(k + 1)(2k + 1) + 4mk(5 + 12k) + 4m^2(15k + 1) + 20m^3 \quad (65) \]

The values of the indexes are:

\[m_a, m_r = 0, 1, \ldots \quad k_a = \frac{3}{4}, \quad k_r = \frac{l + 1}{2}. \]

We will introduce the complex variables \(\xi_j \) and \(\eta_j, j = a, r \), defined as

\[\xi_j = \frac{(1 + z_j)(1 + \bar{z}_j)}{1 - z_j\bar{z}_j} \quad \text{and} \quad \eta_j = \frac{(1 - z_j)(1 - \bar{z}_j)}{1 - z_j\bar{z}_j}. \quad (66) \]

Then the classical Hamiltonian (the Husimi function) for an octupole trap in case of the pseudopotential approximation can be expressed as

\[H_{cl} = A_r\eta_r + A_a\eta_a + B_r\xi_r + B_a\xi_a + (C_{20}\xi_r^2 + C_{11}\xi_r\xi_a + C_{02}\xi_a^2) \]
\[+ (D_{30}\xi_r^3 + D_{21}\xi_r^2\xi_a + D_{12}\xi_r\xi_a^2 + D_{03}\xi_a^3) - \frac{\omega_c^2}{2}\hbar l. \quad (67) \]

If \(P \) is a polynomial of \(\rho^2 \) and \(z^2 \), then \(H_{cl} \) is a polynomial of \(\xi_a \) and \(\xi_r \). In order to find the points of minimum for the Husimi function, we have to solve the equations

\[\frac{\partial H_{cl}}{\partial \xi_a} = 0, \quad \frac{\partial H_{cl}}{\partial \xi_r} = 0, \quad \frac{\partial H_{cl}}{\partial \eta_a} = 0, \quad \frac{\partial H_{cl}}{\partial \eta_r} = 0. \quad (68) \]

The Husimi functions for a fourth order trap are given in Fig. 2.

It can be observed that the Hamiltonian function \(H_{cl} = \langle z, k, m | H | z, k, m \rangle \) determines the classical Liouville equation of motion in the Lobacevski phase space \(|z| < 1 \):

\[\dot{z} = \{ z, H_{cl} \}, \quad (69) \]

where \(\{ , \} \) stands for the generalized Poisson bracket, defined in Eq. (26) \cite{67}. Eq. (69) is exactly the standard form of the symplectic structure, as in classical mechanics \cite{1} \cite{16}. After applying the TDVP to the coherent states \(|z, 0, k \rangle \) for the Hamiltonian \(H \), we infer Eqs.

\[\{ z, H_{cl} \} = \frac{(1 - z\bar{z})^2}{2l} \frac{\partial H_{cl}}{\partial \bar{z}} \quad (70) \]

which represents a classical type equation of motion. If \(P \) given by Eq. (47) is a polynomial in \(\rho^2 \) and \(z^2 \), then \(H_{cl} \) is a polynomial in \(\xi_a \) and \(\xi_r \).
Figure 2. Husimi functions in case of fourth order traps with electric potentials $H_2(\rho, z) + 0.2H_4(\rho, z)$ and $H_2(\rho, z) + H_4(\rho, z)$, respectively.
The results obtained here can be extended to a system of N particles (ions), confined in a quadrupole electromagnetic trap with cylindrical symmetry \cite{60, 29, 31}. As shown in these references, the Hamiltonian of the center of mass (CM) is similar to the Hamiltonian for one particle H, given by Eq. \eqref{eq:35}. Then the quasienergy states and the coherent states are exactly those for the H Hamiltonian, where we have to substitute M the mass of one particle with NM. In case when the interaction potential is translation invariant and homogeneous of degree -2, we obtain soluble models (e.g., for Calogero type potentials). These models enable to explicitly obtain bases and systems of symplectic coherent states, in order to investigate ordered systems made of trapped ions.

5. Conclusions

The widest class of quantum models which describe both analytically and numerically the energy spectra and the solutions of the Schrödinger equation, is made of elementary quantum systems (in the Wigner sense). An elementary quantum system is described by an irreducible unitary representation U of a dynamical group G on a Hilbert space \mathcal{H}. The space of states is the quantum phase space $\mathcal{P}(\mathcal{H})$, with the symplectic structure induced by the transition probability. It is assumed that the representation U admits coherent states. Then, coherent states manifolds are orbits of the action of the dynamical group on the space of states. The quantum Hamiltonian is a polynomial in the generators of the Lie algebra \mathfrak{g} of the group G. This property is specific to dynamical groups considered as spectrum generating groups. The energy (Husimi) function associated to the quantum Hamiltonian H is a classical type Hamiltonian, whose values are precisely the expected values of the quantum Hamiltonian on coherent states.

Therefore the quantum dynamical system is considered as a Hamiltonian system over the phase space of quantum states, while the corresponding classical system is described by the energy (Husimi) function over the phase space \mathcal{M}, whose points parametrize the coherent states. The symplectic structure of the classical phase space and the Hamilton equations of motion are explicitly obtained using the variational principle applied on coherent states and from the theory of group representation. An algorithm has resulted, through which an energy function is associated to the quantum Hamiltonian. This function represents a classical type Hamiltonian, whose values are precisely the expected values of the quantum Hamiltonian. We suggest that this algorithm can be used to establish a correspondence between semiclassical and classical dynamics.

Semiclassical dynamics of trapped ions has been investigated by introducing the coherent state orbits as sub-manifolds of the quantum states’ space with a Kähler structure induced by the transition probability. In case of dynamical symmetry groups, the solutions of the Schrödinger equation associated to linear Hamiltonians (in the infinitesimal generators of a dynamical symmetry group) are given by coherent vectors multiplied by geometric (Berry) phase factors for a confined ion or for the center of mass.
(CM) of a system of identical ions. Thus we obtain an energy spectrum for the time independent Hamiltonians (the case of Penning type traps) or a quasienergy spectrum for time periodical Hamiltonians (in case of dynamical Paul traps). The coherent states are parametrized by the solutions of the classical equations of motion.

These results have been extended to the case of an ion confined in a quadrupole electromagnetic trap with anharmonicities (a situation according to reality), in order to study semiclassical dynamics associated to ions. Identification of equilibrium configurations is of interest for quantum information processing. We have obtained the explicit expression of the quantum Hamiltonian associated to a charged particle, located in an nonlinear electromagnetic trap (with anharmonicities), as a function of the Lie algebra generators for the radial and axial symplectic groups. The Schrödinger equation solution was found for the Hamiltonian we considered. An analytical potential with cylindrical symmetry was chosen. The Hamiltonian was particularized to the case of combined, quadrupole and octupole traps. In case of the pseudopotential approximation, the minimum points of the dequantified Hamiltonian define the equilibrium configurations for trapped ions, which enable implementing and scaling of quantum logic for larger number of ions.

Although the Schrödinger equation is nonlinear, the Hamiltonian (Husimi) function generally determines nonlinear equations of motion which can be investigated using the theory of differential dynamical systems. This theory enables qualitative global investigation of Hamilton families, depending on various control parameters. In particular it allows to describe classical chaos using Morse theory, bifucation theory and catastrophe theory. Thus quantum chaos is described using the methods of study for the deterministic classical chaos. This description is possible through implicit codification in the Husimi function of the spectral properties of the Schrödinger operator. Dequantization by means of coherent states enables to achieve exact connexions between symmetrical quantum and classical dynamical systems. For an ion confined within a quadrupole trap, the requantification corresponds to a geometrical quantification.

6. Acknowledgements

The author would like to acknowledge support provided by the Ministry of Education, Research and Innovation from Romania (ANCS-National Agency for Scientific Research), contracts CEEX 05-D11-55/2005-2007 and PN09.39.03.01. The author (B. M.) also acknowledges fruitful discussions with Prof. Dr. Viorica Gheorghe, Dr. A. Gheorghe and Prof. Dr. M. Apostol.

References

[1] Goldstein H 1980 *Classical Mechanics* (Addison-Wesley, Reading)
[2] Peres A 2002 Quantum Theory: Concepts and Methods (*Fundamental Theories of Physics* vol 72 Ed A Van Der Merwe (Kluwer Academic Publishers, New York Boston Dordrecht London Moscow)
Time dependent variational principle

[3] Stulpe W 1997 *Int. J. Theor. Phys.* **37** 349
[4] Coecke B 1995 *Int. J. Theor. Phys* **34** 1313
[5] Schrödinger E 1926 *Naturwissenschaft* **14** 664
[6] Klauder J R 1960 *Ann. Phys.* **11** 123
[7] Klauder J R 1963 *J. Math. Phys.* **4** 1055, 1058
[8] Glauber R 1963 *Phys. Rev. Lett* **10** 84
[9] Glauber R 1963 *Phys. Rev.* **130** 2529
[10] Sudarshan E C G *Phys. Rev. Lett.* **10** 277
[11] Glauber R 1963 *Phys. Rev.* **131** 2766
[12] Gazeau J-P 2009 *Coherent States in Quantum Physics* (Wiley-VCH, Weinheim)
[13] Sanders B C 2012 *J. Phys. A: Math. Theor.* **45** 244002
[14] Perelomov A M 1972 *Commun. Math. Phys.* **26** 222
[15] Perelomov A 1986 *Generalized Coherent states and Their Applications* (Springer, Berlin)
[16] Feng D-H and Gilmore R 1980 *Physics Letters B* **90** 327; Zhang W-M, Feng D H and Gilmore R 1990 *Rev. Mod. Phys.* **62** 867
[17] The Physics of Quantum Information Eds D Bouwmeester, A Ekert and A Zeilinger 2000 (Springer, Berlin)
[18] Dodonov V V 2002 *J. Opt. B: Quantum Semiclass. Opt.* **4** R1
[19] Leibfried D, Blatt R, Monroe C and Wineland D J 2003 *Rev. Mod. Phys.* **75** 281
[20] Grunberg G, Aspect A and Fabre C 2010 *Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light* (Cambridge University Press, Cambridge)
[21] Horvath G K Z, Thompson R C and Knight P L 1997 *Contemp. Phys.* **38** 25
[22] Sackett C A et al 2000 *Nature* **404** 256
[23] Vogel V and Wallentowitz S 2001 *Coherence and statistics of photons and atoms*, ed J Perina (Wiley, New York)
[24] Fox M 2006 *Quantum Optics: An Introduction* (Oxford Master Series in Atomic, Optical and Laser Physics) (Oxford: Oxford Univ. Press)
[25] Haroche S and Raimond J-M *Exploring the Quantum* (Oxford: Oxford Univ. Press)
[26] Chen G, Church D A, Englert B-G, Henkel C, Rohwedder B, Scully M O and Suzail Zubairy M 2007 *Quantum Computing Devices: Principles, Designs, and Analysis* (Chapman & Hall/CRC, Boca Raton)
[27] Orszag M 2008 *Quantum Optics: Including Noise Reduction, Trapped Ions, Quantum Trajectories, and Decoherence* (Springer, Berlin Heidelberg)
[28] Combescure M and Robert D 2012 *Coherent States and Applications in Mathematical Physics* (Springer, Dordrecht Heidelberg)
[29] Major F G, Gheorghe V N and Werth G 2005 *Charged Particle Traps Physics and Techniques of Charged Particle Field Confinement* (Springer, Berlin Heidelberg New York)
[30] Ben Geloun J and Scholtz F G 2009 arXiv:0901.3315
[31] Werth G, Gheorghe V N and Major F G 2009 *Charged Particle Traps II: Applications* (Springer, Berlin Heidelberg)
[32] Leibfried D, Meekhof D M, Monroe C, King B E, Itano W M and Wineland D J 1997 *J. Mod. Opt.* **44** 2485
[33] Marzoli I, Tombesi P, Ciamicanici G, Werth G, Bushev P, Stahl S, Schmidt-Kaler F, Hellwig M, Henkel C, Marx G, Jex I, Stachowska E, Szawiola G and Walaszyk A 2009 *J. Phys. B* **42** 154010
[34] D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestead, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Lost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland 2005 *Nature* **438** 639
[35] R. Reichle, D. Leibfried, E. Knill, J. Britton, E. B. Blakestead, J. D. Lost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland 2006 *Nature* **443** 838
[36] *Theory of Nonclassical States of Light*, ed V V Dodonov and V I Man’ko 2003 (London:
Time dependent variational principle

[37] Hollenhorst J N 1979 Phys. Rev. D 19 1669
[38] Caves C M, Thorne K S, Drever R W P and Zimmermann M 1980 Rev. Mod. Phys. 52 341
[39] Walls D F 1983 Nature 306 141
[40] Yuen H P 1976 Phys. Rev. A 13 2226
[41] Nag T, Ghosh G, and Dasgupta B 1980 Phys. Rev. A 21 1025
[42] Groza A 2012 Suppl. of Rom. Rep. Phys. 64 1227
[43] Groza A, Surmeian A, Dipiasu C, Luculescu C, Chapon P, Tempea A, and Ganciu M 2012 Surface and Coatings Technology 212 145
[44] Ceausescu V and Gheorghe A 1987 Classical limit and quantization of Hamiltonian systems in Symmetries and Semiclassical Features of Nuclear Dynamics Ed. A. A. Raduta (Lecture Notes in Physics, Vol. 279) (Springer-Verlag, Berlin)
[45] Hashimoto Y, Tsukuma H, and Sakata F 2001 AIP Conference Proceedings 597 357
[46] Bardos C, Golse F, Gottlieb A D, and Mauser N J 2003 J. Stat. Phys. 115 1037-1055
[47] Li X, Smith S M, Markevitch A N, Romanov D A, Levis R J and Schlegel H B 2004 Phys. Chem. Chem. Phys. 7 233-239
[48] Kerman A K and Koonin S E 1976 Ann. Phys. 100 332-358 (1976)
[49] Porter M A 2001 [arXiv:nlin/0107039v2]
[50] Lamata L, Léon J, Schätz T and Solano E 2007 Phys. Rev. Lett. 98 253005
[51] Gerritsma R, Kirchmair G, Zähringer F, Solano E, Blatt R and Roos C F 2010 Nature 463 68
[52] Barros H G, Stute A, Northup T E, Russo C, Schmidt P O and Blatt R 2009 New J. Phys. 11 103004
[53] Russo C, Barros H G, Stute A, Dubin F, Phillies E S, Monz T, Northup T E, Becher C, Salzburger T, Ritsch H, Schmidt P O, and Blatt R 2009 Appl. Phys. B 95 205
[54] Blatt R and Wineland D J 2008 Nature 453 1008
[55] Tang C S and Chu C S 1999 Phys. Rev. B 60 1830
[56] Figueira de M Faria C, Dorr M and Sandner W 1996 Phys. Rev. A 55 3961
[57] Vogel K, Marte P and Schleich W P 1993 Phys. Rev. Lett. 71 1816
[58] Vogel W and Welsch D-G 2006 Quantum Optics (Wiley-VCH, Weinheim)
[59] Ben-Kish A et al 2003 Phys. Rev. Lett. 90 037902
[60] Höffner H, Hänsel W, Roos C F, Benholm J, Chek-al-Kar D, Chwalla M, Körber T, Rapol U D, Riebe M, Schmidt P O, Becher C, Gühne O, Dür W, and Blatt R 2005 Nature 438 643
[61] Benhelm J, Kirchmair G, Roos C F, and Blatt R 2008 Nat. Phys. 4 463
[62] Monz T, Kim K, Hänsel W, Riebe M, Villar A S, Schindler P, Chwalla M, Jennewehr M, and Blatt R 2009 Phys. Rev. Lett. 102 040501
[63] Home J P, Hanneke D, Jost J D, Leibfried D, and Wineland D J 2011 New J. Phys. 13 073026
[64] Ghosh P K 1995 Ion Traps (Clarendon Press, Oxford)
[65] Gheorghe V N and Vedral F 1992 Phys. Rev. A 45 4828
[66] Gheorghe V N and Werth G 2000 Eur. Phys. J. D 10 197
[67] Kramer P and Saraceno M 1981 Geometry of the Time-Dependent Variational Principle in Quantum Mechanics (Lecture Notes in Physics vol 140) ed J Ehlers, K. Hepp, R Kippenhalm, H A Weidennmüller and J Zittarz (Berlin: Springer)
[68] Bozic M, Lombard R J and Maric Z 1991 Z. Phys. D 18 311
[69] Dragoman D and Dragoman M 2004 Quantum-Classical Analogies (Springer, Berlin Heidelberg)
[70] Fomenko A T 1995 Symplectic Geometry (Advanced Studies in Contemporary Mathematics, Volume 5) (Gordon and Breach Publishers, CRC Press)
[71] McDuff D and Salamon D 1998 Introduction to symplectic topology (Oxford Univ. Press, Oxford)
[72] Jost J 2009 Geometry and Physics (Springer, Berlin Heidelberg)
[73] Bolsinov A V and Fomenko A T 2004 Integrable Hamiltonian Systems: Geometry, Topology, Classification (Chapman & Hall/CRC Press)
[74] Salvai M 2005 Manuscripta Mathematica 118 181
Time dependent variational principle

[75] Gromov M 1985 *Invent. Math.* **82** 307
[76] Gromov M 1999 Metric structures for Riemannian and non-Riemannian spaces *Progress in Mathematics* vol 152 (Birkhäuser Boston Inc., Boston, MA)
[77] Kirillov, Jr. A *An Introduction to Lie Groups and Lie Algebras* Cambridge Studies in Advanced Mathematics **113** (Cambridge: Cambridge Univ. Press)
[78] Linderberg J and Öhrn Y 2004 *Propagators in Quantum Chemistry* (Wiley, Hoboken, NJ, 2004, 2nd Ed).
[79] V Bargmann *Ann. Math. Phys.* **48** 568
[80] N. Ya. Vilenkin *Special Functions and the Theory of Group Representations* Rhode Island: American Math. Soc., Providence, Rhode Island
[81] Brif C 1997 *Int. J. Theor. Phys.* **36** 1651; Brif. C 1996 *Ann. Phys.* **251** 180
[82] A O Barut and Girardello L 1971 *Commun. Math. Phys.* **21** 41
[83] Klauder J R and Skagerstam B-S 1985 *Coherent states - Applications in Physics and Mathematical Physics* (Singapore: World Scientific)
[84] Fulton W and Harris J 1991 *Representation Theory: A First Course* (New York: Springer)
[85] Fujii K 2002 [arXiv:quant-ph/0112090v2]
[86] Gilmore R 2006 *Lie Groups, Lie Algebras, and Some of Their Applications* (New York: Dover Publications)
[87] Gilmore R 2008 *Lie Groups, Physics and Geometry: An Introduction for Physicists, Engineers and Chemists* (Cambridge: Cambridge Univ. Press)
[88] Sazonova Z S and Singh R 2000 *Laser Physics* **10** 765
[89] Tinkham M 2003 *Group theory and Quantum Mechanics* (New York: Dover Publications)
[90] Perelomov A M 1972 *Phys. Lett. A* **39** 165; 1973 *Theor. Math. Phys.** **16** 303
[91] Wódkiewicz K and Eberly J H 1985 *J. Opt. Soc. Am. B* **2** 458
[92] Lo C F and Liu K L 1993 *Phys. Rev. A* **48** 3363
[93] Dattoli G, Ricchetta M and Torre A 1986 *Phys. Rev. a* **37** 2007
[94] Gerry C C 1985 *Phys. Rev. A* **31** 2721; 1987 *Phys. Rev. A* **35** 2146; 1984 *Phys. Lett. B* **142** 391; 1986 *Phys. Rev. A* **33** 2207
[95] Bužek V 1990 *J. Mod. Opt.* **37** 303
[96] Wybourne B G 1974 *Classical Group for Physicists* (New York: Wiley)
[97] Plimak L I 1994 *Phys. Rev. A* **50** 2120
[98] Polkovnikov A 2009 [arXiv: 0905.3384v1 [cond-mat.stat-mech]]
[99] Abrikosov A A Jr, Gozzi E and Mauro D 2005 *Annals of Physics* **317** 24
[100] Mihalcea B M, Gheorghe V N and Gheorghe A 2006, 20-th Int. Conf. on Atomic Phys. (Innsbruck, Austria) Book of Abstracts p 521
[101] Dragt A J, Forest E and Wolf K B 1986 Foundations of a Lie algebraic theory of geometrical optics *Lie Methods in Optics: An assessment* (Lecture Notes in Physics vol 250) ed J Sánchez-Mondragón and B Wolf (Berlin: Springer) pp 109-113, 239-246
[102] Popov V S 2005 *J. Exp. Theor. Phys* **101** 817
[103] Sternberg S 2004 *Lie Algebras* [http://www.math.harvard.edu/~shlomo/docs/lie_algebras.pdf]
[104] Mihalcea B M 2011 *Physica Scripta* **T143** 014018
[105] Combescure M 1987 *Ann. Phys.* **173** 210
[106] Nieto M M and Truax D R 2000 *New. J. Phys.* **2** 18
[107] Gheorghe V N, Mihalcea B M and Gheorghe A 1997 *EGAS97 Conf. Abstracts* ed H D Kronfeldt (Eur. Phys. Soc., Berlin) p 427