Adult-onset leukoencephalopathy with homozygous LAMB1 missense mutation

Rei Yasuda, MD, PhD, Tomokatsu Yoshida, MD, PhD, Ikuko Mizuta, MD, PhD, Masashi Watanabe, MD, Masakazu Nakano, PhD, Ryuichi Sato, BS, Yuichi Tokuda, PhD, Natsue Omi, PhD, Norio Sakai, MD, PhD, Masanori Nakagawa, MD, PhD, Kei Tashiro, MD, PhD, and Toshiki Mizuno, MD, PhD

Neurol Genet 2020;6:e442. doi:10.1212/NXG.0000000000000442

Correspondence
Dr. Yasuda
ryasuda@koto.kpu-m.ac.jp

LAMB1 encodes laminin subunit beta 1, a constituent of the extracellular matrix glycoprotein of basement membranes.1 Mutations of LAMB1 have been reported in patients with congenital or infantile- to childhood-onset leukoencephalopathy and severe developmental retardation.2,3 We report an adulthood-onset case with mild leukoencephalopathy and a novel homozygous LAMB1 missense mutation. Our findings expand the clinical spectrum of LAMB1-related disorder.

Case report
A 37-year-old woman with headache, memory loss, and gait disturbance was referred to our department. She was born to consanguineous parents (figure 1A), and her elder sister was asymptomatic. She had been healthy until age 22 years, when migraine developed. Brain MRI showed a cerebral white matter lesion at age 30 years. She developed gait disturbance at age 31 years. She had been aware of memory loss, executive dysfunction, and menstrual irregularity since age 35 years. On neurologic examination, hyperreflexia of jaw jerk and legs and lower limb spasticity were observed. The Wechsler Adult Intelligence Scale–Third Edition indicated a full-scale IQ of 69, suggesting borderline intelligence. Blood test findings were negative/normal for syphilis, HIV, autoantibodies, lactate, pyruvate, and very-long-chain fatty acids. Measurement of enzyme activity did not suggest gangliosidosis, metachromatic leukodystrophy, or Krabbe disease. Ophthalmologic evaluation revealed mild flexion of retinal vessels (figure 1B), but neither optic atrophy nor subcapsular lens opacification. Brain MRI showed diffuse T2 hyperintensity of cerebral white matter, but neither cortical dysgenesis nor cystic lesions were observed (figure 1, C–D). Neurologic examination and brain MRI of her father showed no abnormalities, whereas her mother did not consent to neurologic examination or brain MRI. These suggested autosomal recessive inheritance. We focused exome sequencing analysis on the 115 genes retrieved from Online Mendelian Inheritance in Man (OMIM)4 using the terms: “leukoencephalopathy”, “leukodystrophy”, and “small vessel” and identified 2 potent biallelic pathogenic mutations in LAMB1 (c.1378T>C, p.Cys460Arg) on chromosome 7 and ARSE (c.220G>A, p.Val74Met) on chromosome X. Careful reading of the OMIM text of ARSE revealed that not ARSE (arylsulfatase E) but ARSA (arylsulfatase A) was related to leukodystrophy. Therefore, we focused on LAMB1 and validated the mutation by Sanger sequencing. The parents had heterozygous mutations (figure 1E). LAMB1 p.Cys460Arg was absent in the nucleotide variation databases (gnomAD and 4.7KJPN)4 and predicted to be pathogenic by multiple software programs (SIFT, PolyPhen-2, Mutation Taster, PROVEAN, and CADD).4 These findings suggest that LAMB1 was a causative gene for leukoencephalopathy in this patient.
We report a patient with adult-onset leukoencephalopathy and a homozygous LAMB1 missense mutation. The clinical phenotype included mild intellectual disability and spastic gait. Periventricular rim on brain MRI and retinal vessel abnormalities were features not reported in other adult-onset leukoencephalopathies (table e-1, figure e-1, links.lww.com/NXG/A265).

LAMB1 mutation was originally reported to cause autosomal recessive cobblestone brain malformation, presenting with congenital hydrocephalus, severe developmental delay, and an increased head circumference. Subsequently, the phenotype of LAMB1-related disorders was extended to include progressive leukoencephalopathy with seizures, ocular abnormalities, and porencephalic lesions. Recently, a patient with a relatively milder phenotype, including childhood-onset epilepsy, macrocephaly, and intellectual development arrest, was reported. Retinal vascular abnormality was reported in a patient with LAMB1 compound hetero mutation, similar to our patient, which might be a key finding to suspect LAMB1-related basement membrane pathologies.

Comparison of previous cases and the present patient with biallelic LAMB1 mutations indicated genotype-phenotype correlations. Homozygous frameshift mutations (p.Lys1049Profs*7...
and p.Ser703fs*62) were identified in the most severe congenital-onset patients (figure 1F).2 Compound heterozygous mutations including 1 missense mutation (p.Gln977Hisfs*84/ p.Cys481Phe and p.Ser703fs*62/p.Cys1182Tyr) were identified in less severe patients with postnatal to childhood onsets.3,5 Our patient with homozygous missense mutations showed a much milder phenotype. Taken together, the effect of missense mutations on the phenotype may be milder compared with that of frameshift mutations.

Localization of 5 mutations previously reported and that identified by us in LAMB1 protein is shown (figure 1G). Frameshift mutations are considered to result in truncating protein, suggesting loss-of-function effects. The effect of p.Cys480Phe and p.Cys460Arg may be conformational change because each EGF-like repeat contains 8 cysteine residues participating in 4 pairs of disulfide bonds that determine appropriate protein conformation.1 Similarly, in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, cysteine-related missense mutations in a certain EGF-like repeat were confirmed as pathogenic.5,7 Further molecular analysis will clarify the effects of LAMB1 missense mutations.

In conclusion, our findings expand the clinical spectrum of LAMB1-related disorder. LAMB1 gene mutation should be considered in the setting of adult-onset autosomal recessive leukoencephalopathy with retinal vascular abnormality.

Data availability
The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Study funding
Supported by Intractable Disease Research Grants from the Ministry of Health, Labour and Welfare of the Government of Japan (H30-Nanchitou(Nan)-Ippan-008) and JSPS KAKENHI (16K09698).

Disclosure
The authors report no disclosures relevant to the manuscript. Go to Neurology.org/NG for full disclosures.

Publication history
Received by Neurology: Genetics March 11, 2020. Accepted in final form April 20, 2020.

Appendix Authors

Name	Location	Contribution
Tomokatsu Yoshida, MD, PhD	Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan	Design and conceptualization of the study; interpretation of the data; and drafting and revision of the manuscript for intellectual content
Ikuko Mizuta, MD, PhD	Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan	Major role in the acquisition of data; analysis and interpretation of the data; and drafting and revision of the manuscript for intellectual content
Masashi Watanabe, MD	Department of Neurology, Ehime Prefectural Central Hospital, Ehime, Japan	Major role in the acquisition of data; interpretation of the data; and revision of the manuscript for intellectual content
Masakazu Nakano, PhD	Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan	Design of the study; major role in the acquisition of data; analysis and interpretation of the data; and revision of the manuscript for intellectual content
Ryuichi Sato, BS	Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan	Major role in the acquisition of data; analysis and interpretation of the data; and revision of the manuscript for intellectual content
Yuichi Tokuda, PhD	Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan	Major role in the acquisition of data; analysis and interpretation of the data; and revision of the manuscript for intellectual content
Natsue Omi, PhD	Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan	Major role in the acquisition of data and revision of the manuscript for intellectual content
Norio Sakai, MD, PhD	Child Healthcare and Genetic Science Laboratory, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan	Major role in the acquisition of data; analysis and interpretation of the data; and revision of the manuscript for intellectual content
Masanori Nakagawa, MD, PhD	Department of Neurology, North Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan	Conceptualization of the study and revision of the manuscript for intellectual content
Kei Tashiro, MD, PhD	Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan	Design and conceptualization of the study; major role in the acquisition of data; interpretation of the data; and revision of the manuscript for intellectual content
Toshiki Mizuno, MD, PhD	Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan	Conceptualization of the study; major role in the acquisition of data; interpretation of the data; and revision of the manuscript for intellectual content
References

1. Aumailley M. The laminin family. Cell Adh Migr 2013;7:48–55.

2. Radmanesh F, Caglayan AO, Silhavy JL, et al. Mutations in LAMB1 cause cobblestone brain malformation without muscular or ocular abnormalities. Am J Hum Genet 2013;92:468–474.

3. Tonduti D, Dorboz I, Renaldo F, et al. Cystic leukoencephalopathy with cortical dysplasia related to LAMB1 mutations. Neurology 2015;84:2195–2197.

4. Online Mendelian Inheritance in Man (OMIM). Available at: omim.org, accessed March 6, 2018; Genome Aggregation Database (gnomAD). Available at: gnomad.broadinstitute.org, accessed February 4, 2020; 4.7KJPN. Available at: jmorp.megabank.tohoku.ac.jp, accessed February 4, 2020; Sorting Intolerant From Tolerant (SIFT). Available at: sift.bii.a-star.edu.sg, accessed February 4, 2020; Polymorphism Phenotyping v2 (PolyPhen-2). Available at: genetics.bwh.harvard.edu/pph2, accessed February 4, 2020; Mutation Taster. Available at: www.mutationtaster.org, accessed February 4, 2020; Protein Variation Effect Analyzer (PROVEAN). Available at: provean.jcvi.org/index.php, accessed February 4, 2020; Combined Annotation Dependent Depletion (CADD). Available at: cadd.gs.washington.edu, accessed February 4, 2020.

5. Okazaki T, Saito Y, Hayashida T, et al. Bilateral cerebellar cysts and cerebral white matter lesions with cortical dysgenesis: Expanding the phenotype of LAMB1 gene mutations. Clin Genet 2018;94:391–392.

6. Wang T, Baron M, Trump D. An overview of Notch3 function in vascular smooth muscle cells. Prog Biophys Mol Biol 2008;96:499–509.

7. Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser MG. Cadasil. Lancet Neurol 2009;8:643–653.