THE DISCOVERY OF A LARGE Lyα+He II NEBULA AT z ≈ 1.67: A CANDIDATE LOW METALICITY REGION?

Moire K. M. Prescott1, Arjun Dey2, and Buell T. Jannuzi2

1 Steward Observatory, University of Arizona, Tucson, AZ 85721, USA; mprescott@as.arizona.edu
2 National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719, USA; dey@noao.edu, jannuzi@noao.edu

Received 2008 October 29; accepted 2009 June 29; published 2009 August 13

ABSTRACT

We have discovered a ≈45 kpc Lyα nebula (or Lyα “blob”) at z ≈ 1.67 which exhibits strong, spatially extended He II emission and very weak C IV and C III] emission. This is the first spatially extended Lyα+He II emitter observed and the lowest redshift Lyα blob yet found. Strong Lyα and He II\textsc{1640} emission in the absence of metal lines has been proposed as a unique observational signature of primordial galaxy formation (e.g., from gravitational cooling radiation or Population III star formation), but no convincing examples of spatially extended Lyα+He II emitters have surfaced either in Lyα-emitting galaxy surveys at high redshifts (z > 4) or in studies of Lyα nebulae at lower redshifts. From comparisons with photoionization models, we find that the observed line ratios in this nebula are consistent with low metallicity gas (Z ≲ 10^{-2–10^{-3}} Z_\odot), but that this conclusion depends on the unknown ionization parameter of the system. The large He II equivalent width (≈37 ± 10 Å) and the large He II/Lyα ratio (0.12 ± 0.04) suggest that the cloud is being illuminated by a hard ionizing continuum, either an active galactic nucleus (AGN) or very low metallicity stars, or perhaps powered by gravitational cooling radiation. Thus far there is no obvious sign of a powerful AGN in or near the system, so in order to power the nebula while remaining hidden from view even in the mid-infrared, the AGN would need to be heavily obscured. Despite the strong Lyα+He II emission, it is not yet clear what is the dominant power source for this nebula. The system therefore serves as an instructive example of how the complexities of true astrophysical sources will complicate matters when attempting to use a strong Lyα+He II signature as a unique tracer of primordial galaxy formation.

Key words: galaxies: formation – galaxies: high-redshift – surveys

Online-only material: color figures

1. INTRODUCTION

Understanding primordial galaxy formation is a major science driver for the next generation of large space- and ground-based telescopes and has inspired a substantial amount of theoretical literature due to the potential contribution of the first generations of stars to reionization and the early stages of galaxy evolution. According to theoretical predictions, the observational signpost of primordial galaxy formation is the presence of strong Lyα\textsc{1216} and He II\textsc{1640} emission lines, either due to photoionization by very low metallicity and Population III (Pop III, i.e., zero metallicity) star formation (e.g., Tumlinson et al. 2001; Schaerer 2003, 2008) or due to gas cooling during gravitational collapse (e.g., Haiman et al. 2000; Yang et al. 2006). In the case of Pop III stars, the strong Lyα and He II is a direct consequence of the low metallicities, where, in the absence of metals, H and He become the dominant line coolants for the gas, and of the hot effective temperatures of Pop III stellar clusters, which are predicted to show a top-heavy initial mass function (IMF) and low stellar atmospheric opacity due to the lack of metals (e.g., Ezer & Cameron 1971; Bromm et al. 2001). In the case of gravitational cooling radiation, Lyα and He II are the primary ways for pristine gas to cool as it is collisionally excited during gravitational collapse; the predicted He II/Lyα ratios may be as high as 10% (e.g., Haiman et al. 2000; Yang et al. 2006). Strong Lyα and He II emission lines are commonly seen in other astrophysical sources with hard ionizing continua, but at normal metallicities they are generally accompanied by strong metal lines such as C III] and C IV, as seen for example, in active galactic nuclei (AGNs), radio galaxy halos, Wolf–Rayet (W–R) galaxies, or cases of shock ionization (e.g., Reuland et al. 2007; Leitherer et al. 1996; Dopita & Sutherland 1996). The presence of strong Lyα and He II emission in the absence of strong metal lines has been put forward as a potentially unique observational signature of primordial galaxy formation.

Although theoretical studies suggest that Pop III and very low metallicity star formation may persist down to lower redshifts, this depends on the feedback efficiency, i.e., the ability of a Pop III stellar population to pollute the large-scale surroundings with metals (e.g., Tornatore et al. 2007). Searches for Pop III stars have understandably pushed to higher redshift (z > 4), where the Pop III star formation rate (SFR) density should increase dramatically relative to that found in the local universe (Scannapieco et al. 2003). Thus far, no unambiguous case of a Pop III stellar population has been observed. Several Lyα-emitting galaxy studies at z ∼ 4–5 have uncovered sources with unusually high Lyα equivalent widths (W_{Lyα} > 240 Å)—larger than that expected from a normal stellar population—suggesting either a top-heavy IMF, a very low metallicity, and/or a very young age (Malhotra & Rhoads 2002; Rhoads et al. 2003). However, the complicated radiative transfer of Lyα in a clumpy interstellar medium (ISM) could also be responsible for boosting the Lyα (Finkelstein et al. 2008), and in these studies, no corroborating evidence for the Pop III scenario in the form of a strong He II detection was found in either the individual or stacked LAE spectra, leaving the matter unresolved (Dawson et al. 2004; Ouchi et al. 2008). Deep spectroscopic observations of a strong Lyα-emitting galaxy at z ≈ 6.33 showed no evidence for He II emission (Nagao et al. 2005).
and a more recent Lyα+He II dual emitter survey at $z \sim 4$–5 found no convincing candidates (Nagao et al. 2008). The limits from each of these studies suggest that Pop III star formation does not dominate in these $z \sim 4$–5 samples, prompting the authors to encourage searches at ever higher redshifts ($z \gtrsim 7$). Additional high redshift Lyα+He II surveys are underway (e.g., di Serego Alighieri et al. 2008).

In this paper, we report on the discovery of a $z \sim 1.67$ Lyα nebula with strong, spatially extended He II emission and very weak C IV and C III] emission. This is the first spatially extended source that resembles the predicted Lyα+He II signature of primordial galaxy formation. However, the system is more complex than it first appears. The observed line ratios suggest that the nebula may contain low metallicity gas, but this depends on the unknown ionization parameter of the system. Detailed analysis of the spectra along with extensive multiwavelength data reveals that the source of ionization is uncertain: the nebula is either an H II region ionized by a high luminosity source, an AGN, or a very low metallicity stellar population, or a gravitationally cooling cloud. The fact that multiwavelength follow-up observations are required in order to better constrain the source(s) of ionization and metallicity of the nebula has implications for Lyα+He II searches at higher redshift. In Section 2, we summarize the systematic search for Lyα nebulae that led to this discovery and our observations and reductions. Section 3 contains a discussion of the observational results, and Section 4 details our analysis of the physical properties of the nebula. In Section 5, we discuss the implications of this discovery for the ongoing high redshift Lyα+He II surveys, and we summarize our conclusions in Section 6.

We assume the standard ΛCDM cosmology ($\Omega_M = 0.3$, $\Omega_\Lambda = 0.7$, $h = 0.7$); 1″ corresponds to a physical scale of 8.47 kpc at $z = 1.671$. All magnitudes are in the AB system. Unless otherwise stated, He II refers to He II λ1640 Å, C IV to C IVλλ1549,1550, C III] to C III]λ1909, and Ne IV to Ne IVλ1424.

2. OBSERVATIONS AND REDUCTIONS

In this section, we discuss the observations that led to the discovery of this Lyα+He II nebula and the methods used to process the imaging and spectroscopic data.

2.1. The Search

Large Lyα nebulae (or Lyα “blobs”)—large (~ 100 kpc) clouds of gas emitting strongly in Lyα—are thought to be sites of ongoing galaxy formation and have been found in small numbers, primarily at $2 < z < 3$. Early theoretical work suggested that these nebulae could be examples of gravitationally cooling clouds (Haiman et al. 2000), and more recent cosmological hydrodynamic simulations indicated that cooling clouds should be detectable as Lyα+He II nebulae, although the specific predictions proved uncertain due to the treatment of star-forming gas (Yang et al. 2006; Y. Yang 2008, private communication). Several of the largest Lyα nebulae, including one with strong He II and C IV emission (Dey et al. 2005), have since been shown to be powered instead by AGN, spatially extended star formation, or some combination (e.g., Dey et al. 2005; Matsuda et al. 2007; Geach et al. 2007). Two groups claim to have discovered Lyα nebulae that are powered by gravitational cooling radiation (Nilsson et al. 2006; Smith & Jarvis 2007; Smith et al. 2008), but neither case shows strong He II emission.

Lyα nebulae are extremely rare objects and have often been found using deep narrowband imaging surveys of known galaxy overdensities. As such, their space density, particularly at the bright end of the luminosity function, is largely unconstrained. In order to carry out an efficient but unbiased survey of a large cosmic volume, we have designed a systematic morphological search for spatially extended Lyα nebulae using the broadband imaging from the NOAO Deep Wide-Field Survey (NDWFS; Jannuzi & Dey 1999) Boötes Field. This field has been imaged in B_W, R, and I bands with median 5σ point-source depths of ≈ 27.1, 26.3, and 25.8 mag (AB), respectively. In the subfield relevant to this paper, the B_W, R, and I-band 5σ point-source depths are 27.5, 26.1, and 26.0 mag for 2.3, 1.7, and 2.8 hrs of integration, respectively. Candidates were selected from the broadband data using a morphological and color selection algorithm, and spectroscopic follow up was used to rule out low-redshift interlopers. The advantage of using broadband data to search for line-emitting sources, a seemingly crude approach, is the enormous comoving volumes ($\sim 10^8$ h$_{100}^{-2}$ Mpc3) that can be surveyed efficiently using publicly available data over wide fields. The success of the present survey relied heavily on the depth of the broadband NDWFS imaging and the darkness of the sky within the B_W band, against which strong line emission can dominate the flux even within the very broad B_W filter.

A full discussion of the search algorithm and results will be discussed elsewhere (M. K. M. Prescott et al. 2009, in preparation). Here, we report on the discovery of a new Lyα+He II nebula at $z \sim 1.67$ (hereafter denoted PRG1) located in the Boötes field at 14:35:12.439 +35:11:07.16 (J2000). Unlike the other Lyα sources found in our systematic search, the Lyα+He II nebula presented here was selected by the search algorithm not because of its Lyα emission, which lies outside the B_W filter, but instead because of the strong and diffuse blue continuum emission ($\approx 92\%$) and spatially extended He II emission ($\approx 8\%$) within the bandpass. Postage stamps from GALEX (FUV & NUV; Martin et al. 2005), NDWFS (B_W, R, and I), and the Spitzer Deep Wide-Field Survey (SDWFS; IRAC 3.6 μm, 4.5 μm, 5.8 μm, and 8.0 μm; Ashby et al. 2009) are shown in Figure 1. The GALEX limits are 0.36 μJy in the NUV and FUV bands; the SDWFS limits are 3.2, 4.4, 25.5, and 25 μJy (5σ). The Spitzer MIPS coverage of this region shows no detection with a 1σ root-mean-square (rms) limit of 51 μJy (E. Le Floc’h 2008, private communication).

2.2. Spectroscopic Follow up

We obtained spectroscopic follow-up observations using the MMT and the Blue Channel Spectrograph during UT 2008 June 8–9 as part of our systematic search for Lyα nebulae. We used a 1.5 × 120′′ (unvignetted) slit and the 300 mm$^{-1}$ grating ($\lambda_c = 5713$ Å, $\Delta\lambda = 3100$–8320 Å). We chose a slit orientation that spanned the longest dimension of the diffuse emission (Position angle = 81.2°, observed near transit), as shown in Figure 1, while also intersecting a nearby bright object. We moved the target along the slit by $\sim 5′′$ in between exposures.

Conditions during the first night were clear and stable with 1′′ seeing; the second night was clear but with variable seeing ($\gtrsim 2′′$) and high winds which caused shaking of the telescope pointing. We show in Section 3.2, that due to a slight pointing offset and wind-shake, the data from the second night sample a different spatial region within the nebula and are contaminated at some level by sources nominally off the slit, in particular a red compact source to the west–northwest (Source A in Figure 1). For this reason, data from the two nights were
reduced and analyzed separately. The most robust Lyα and He II flux measurements are from the first night, when conditions were excellent during the single half hour exposure. An additional 1.5 hr of integration were obtained during the second night. The Lyα flux measurement from Night 2 shows a 25% loss relative to that from Night 1. In the remainder of the paper, we use the Lyα and He II flux measurements from Night 1 but include the line ratios derived from both nights.

The data were reduced using IRAF.\footnote{IRAF is distributed by the National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.} After performing the overscan and bias subtraction, we corrected flat-field exposures for the response of the internal “Bright Continuum” flat-field lamp by dividing out the median along columns and then applied the flat-field correction. We used twilight flats to determine the flat-field correction. We used HeArNe and HgCd comparison lamps, with an rms of ≈ 0.17 Å. We corrected the data for a slight systematic offset in the night sky lines; the night sky line wavelengths in the final spectrum are correct to ± 0.3 Å. Flux calibration was based on observations of the standard stars BD+33 2642 and Wolf 1346.\footnote{http://iraf.noao.edu/iraf/ftp/iraf/extern/xdimsum020627} We applied a gray shift (≤ 0.08 mag) and fitted the sensitivity function using extra care at the blue end of the spectrum because the Lyα line at 3.250 Å lies only 56.3 pixels (109.7 Å) from the edge of the chip. The instrumental resolution measured from the Hg II 4047 line is 3.6 Å, and the tilt within the aperture is ≤ 5.24 km s$^{-1}$ over the region of the nebula.

3. RESULTS

3.1. Lyα and He II Emission

The final two-dimensional and one-dimensional spectra from the first and second night are shown in Figures 2 and 3. The spectra show strong Lyα and He II emission lines, both of which exhibit similar kinematic structure in the two-dimensional spectrum. The measured fluxes and flux limits were derived separately from each night’s data using a 1.5 × 5.0 aperture, chosen to maximize the signal-to-noise ratio of the He II measurement (Table 1). Faint continuum emission is detected in the spectra (Figure 3). We scaled the spectra by a factor of 1.4 and 1.6, respectively, in order to match the continuum fluxes measured from the much deeper NDWFS broadband data within the region covered by the slit (Table 2).

The Lyα and He II luminosities from Night 1 are $L_{Ly\alpha} = L_{Ly\alpha,ap} \times f_{geo} \times f_{profile} \approx 5.4 \times 10^{43}$ erg s$^{-1}$ and $L_{HeII} = L_{HeII,ap} \times f_{geo} \approx 4.0 \times 10^{42}$ erg s$^{-1}$. $L_{Ly\alpha,ap} = 9.3 \times 10^{42}$ erg s$^{-1}$ and $L_{HeII,ap} = 1.2 \times 10^{42}$ erg s$^{-1}$ are the luminosities measured within the spectroscopic aperture, f_{geo} is the geometric correction factor between the spectroscopic aperture and full extent of the nebula, and $f_{profile}$ corrects for asymmetry in the Lyα profile due to blue side absorption. We discuss the estimation of these correction factors below.

The geometric correction factor f_{geo} was derived from a comparison of the spatial extent of the nebula measured in the Lyα line versus the extent in the B_{W} imaging. In our best
Table 1
PRG1 Spectroscopic Measurements

Parameter	Lyα1216	Nvλ1240	Siivλ1398	Civiλ1549	Hett1640	Cmλ1909	Nervλ2424
Night 1 - UT 2008 June 08							
Flux a [10$^{-17}$ erg s$^{-1}$ cm$^{-2}$]	49.9 ± 5.7	< 6.4b	< 1.8b	< 1.4b	6.2 ± 1.7	< 1.2b	< 1.4b
EW$_{rest}$ [Å]	294.1 ± 39.4	36.8 ± 10.1
λ_{cent} [Å]	3250.07 ± 0.56	4383.07 ± 1.25
Redshift	1.6735 ± 0.0005	1.6714 ± 0.0008
FWHM$_{ Instrument}$ [Å]	10.20 ± 0.82	8.41 ± 3.23
FWHM [km s$^{-1}$]	941.5 ± 75.5	575.5 ± 221.1

| Night 2 - UT 2008 June 09 |
Flux a [10$^{-17}$ erg s$^{-1}$ cm$^{-2}$]	43.6 ± 4.0	< 5.5b	< 1.1b	2.1 ± 1.1	5.7 ± 0.9	4.7 ± 0.8	2.8 ± 1.0	
EW$_{rest}$ [Å]	257.1 ± 29.4	12.4 ± 6.5	33.9 ± 6.1	28.0 ± 5.3	29.9 ± 11.5
λ_{cent} [Å]	3249.59 ± 0.38	4142.30 ± 1.46	4381.92 ± 0.76	5095.26 ± 0.10	6476.81 ± 1.83
Redshift	1.6731 ± 0.0003	1.6724 ± 0.0009	1.6707 ± 0.0005	1.6695 ± 0.0001	1.6720 ± 0.0008
FWHM$_{ Instrument}$ [Å]	9.75 ± 0.71	6.36 ± 0.64	23.28 ± 1.94
FWHM [km s$^{-1}$]	900.4 ± 65.1	435.5 ± 44.1	1370.7 ± 114.5

Notes.
a Flux measured in a 1.5' × 5.0' aperture. No correction has been applied for Lyα absorption.
b Quoted upper limits are 1σ values.

Figure 2. Night 1 (UT 2008 June 08) two-dimensional and one-dimensional spectra showing strong Lyα and He II emission from a single half hour exposure (1.5' × 5.0' aperture). The spectra have been smoothed by 6.84 spatially and by 5.8 Å in the spectra dimension. The filter curve is the BW bandpass convolved with the atmospheric transmission (blue). The 1σ error spectrum is overlaid (red). (A color version of this figure is available in the online journal.)

...seeing Night 1 data, where we have accurate spatial information and low slit losses, the Lyα is extended by ∼5" (42.3 kpc) with a fairly sharp truncation at large radii, but with a possible extension toward the west (right of center, Figure 4). The He II emission is weaker than the Lyα by a factor of 10, but it appears that at lower signal-to-noise the He II nebula extends to roughly the same radius as the core of the Lyα nebula (no westward extension). The Night 2 data show a Lyα extent of ∼6" and an He II extent of ∼5" but suffer from slit losses and degraded spatial resolution due to poor seeing and wind-shake. The extent of the Lyα nebula in the spectroscopic observations is in rough agreement with the spatial extent of the diffuse emission measured from the broadband B_W data along the position of the slit (∼6/6, ∼56 kpc above a B_W surface brightness of 4.5 × 10$^{-16}$ erg s$^{-1}$ cm$^{-2}$ arcsec$^{-2}$). The full area of the diffuse emission in the B_W imaging is ∼26 square arcseconds. Assuming that the Lyα emission is distributed similarly to the B_W continuum emission, we estimated that a geometric correction factor of $f_{geo} = 3.4$ is required to obtain the total Lyα flux from the nebula. This correction is very approximate; narrowband imaging and/or spatially resolved spectroscopy will be required to accurately account for the contributions of line and continuum emission to different portions of the nebula.

...
Figure 4. Lyα and He II spatial profiles with errors as a function of position along the slit from the Night 1 (UT 2008 June 08) and Night 2 (UT 2008 June 09). As C III was not detected on Night 1, the C III profile is shown for Night 2 only. He II and C III profiles scaled by a factor of 6 are also overplotted to allow easier comparison with the Lyα profile. The He II region appears to be comparable in size to the Lyα region. The shaded area represents the approximate position of Source A, a source that was off-slit but that may have contaminated the Night 2 observations due to poor seeing and windy conditions. The discrepancy between the spatial profiles and the offset of the C III spatial profile relative to the Lyα are both consistent with the hypothesis that the Night 2 spectrum is contaminated by light from Source A and that Source A may be the primary source of the metal line emission.

(A color version of this figure is available in the online journal.)

We derived the Lyα blue side absorption correction \(f_{\text{profile}} \) using a comparison of the Lyα and He II line centroids. The Lyα profile is fairly symmetric (Figure 5), but the center of the Lyα line is offset to the red from the systemic redshift, as determined from the centroid of the He II emission line, likely due to absorption. We estimated the amount of blue side absorption of Lyα by mirroring the red side of the Lyα profile across the line centroid, and derived a factor of 1.7 (Night 1) and 1.8 (Night 2) increase in the Lyα flux. We therefore used a correction factor of \(f_{\text{profile}} = 1.7 \) to obtain the final Night 1 Lyα luminosity.

The nebula shows clear velocity structure in both the Lyα and He II lines. The lines are resolved, showing Lyα and He II velocity dispersions of \(\sigma_v \approx 400 \) and 250 km s\(^{-1}\), respectively, corrected for the instrumental resolution. Figure 6 shows the velocity profile of the Lyα line from Night 1 and Night 2 derived using 2 pixel (0.56") extractions. The profile is relatively smooth but flattens on the east (left) of center. The spatially resolved Lyα velocity dispersion is essentially constant across the nebula.

3.2. C IV, C III, and Ne IV Emission

Despite the strong Lyα and He II emission seen in the Night 1 data, there is no detection of C III, C IV, or Ne IV. The 1σ upper limits on the line ratios are C IV/He II < 0.23, C III/He II < 0.19, and Ne IV/He II < 0.23. Due to the excellent and stable observing conditions during Night 1, the Night 1 spectrum provides the most accurate flux measurements for Lyα and He II along with higher resolution kinematic information and the strongest limits on the C III, C IV, and Ne IV emission from
the source. In contrast, the Night 2 spectrum shows weak C IV and marginal C IV and Ne IV emission at the same redshift. The resulting line ratios are C IV/He II = 0.36, C III/He II < 0.82, and Ne IV/He II < 0.49. The Night 2 data provide additional constraints on the line ratios but must be treated with care due to the Night 2 observing conditions. Due to the poor seeing and the wind-shake of the telescope, the Night 2 spectrum suffers from slit losses as well as contamination from nearby sources nominally off the slit, most importantly from a compact red source to the west–northwest of the target center (Source A; see Figure 1).

From a comparison of the line ratios derived from each night, we argue that the metal line emission is not from the same spatial location as the Ly α and He II, and may instead be associated with the region closer to Source A. On Night 2, the C III/He II ratio was 0.82; thus if the emission were perfectly cospatial, we should have detected C III on Night 1 at $\approx 5.1 \times 10^{-17}$ erg s$^{-1}$ cm$^{-2}$, roughly the same significance as He II. Instead, we can rule out C III emission at the 4.3σ level. For Ne IV, we should have detected it at 3.0×10^{-17} erg s$^{-1}$ cm$^{-2}$ on Night 1, which disagrees at the 2.2σ level with our Night 1 result. We cannot make a robust comparison for C IV, as it is only detected at the 2σ level even on Night 2, but we make the assumption that all the metal line emission originates from the same source. In contrast, the He II/Ly α line ratios are consistent between the two nights (0.12 ± 0.04 and 0.13 ± 0.02, respectively), indicating that the Ly α and He II are indeed cospatial within the region sampled by these observations even though the metal line emission varies spatially.

The offsets in the spatial profiles of the lines are consistent with the idea that the data from the two nights sampled different spatial regions. If the C IV, C III, and Ne IV lines are from the region around Source A and if the wind-shake was consistently perpendicular to the slit, there should be a ≈ 5.2 pixel (1.5 west) offset between the spatial centroid of these lines and that of Ly α. However, this offset will vary by an estimated ≈ ± 3.6 pixels ($\approx 1''$) or more depending on the direction of the telescope wind-shake relative to the angle of the slit during a given exposure. We do see a difference between the two nights when we look at the spatial profiles extracted in 2 pixel spatial bins along the spatial direction (Figure 4); the Night 1 profile is skewed toward the east (left, away from Source A), whereas the Night 2 profile is peaked closer to the position of Source A, suggesting contamination. We use these spatial profiles to compute flux-weighted mean spatial centroids for each emission line separately. The He II position is consistent with that of Ly α to within 1σ ($\Delta x = 1.41 \pm 1.54$ pixels, 0.40 ± 0.43). The C III offset is 4.03 ± 2.07 pixels (1.13 ± 0.58) in the direction of Source A. (Due to the intrinsic faintness of the C IV and Ne IV lines, the computed offsets are not statistically significant.) Follow-up observations will be required to resolve this issue, but it appears that the C III line is offset from the spatial centroid of the Ly α at the 1.9σ level, in the right direction and at roughly the correct position to be explained by contamination from the region closer to Source A.

Given the pointing uncertainty and inevitability of contamination from sources off the slit due to the unstable conditions on Night 2, the discrepancy in the spatial profiles between the two nights, the evidence that the C III line shows a spatial offset consistent with the position of Source A, and the fact that the Night 1 data are inconsistent with the fluxes of Ne IV and C III measured on Night 2 at $\sim 2\sigma$–4σ, we argue that much of the metal line emission derives from the region around Source A. We cannot rule out that some is emitted further out in the nebula, but even if it does, it arises from a region spatially distinct from the region observed on Night 1. Combining the data from the two nights would not be appropriate due to the different spatial sampling of the observations and these intrinsic

Figure 6. Velocity and velocity dispersion spatial profiles of the Ly α line for Night 1 (UT 2008 June 08; black filled circles) and Night 2 (UT 2008 June 09; red open circles) derived from spectra extractions taken in 2 pixel (0.56) spatial bins and corrected for the instrumental resolution. The velocity zero point was set using the redshift calculated from the He II line centroid in the full 5′0 aperture extraction.

(A color version of this figure is available in the online journal.)
spatial inhomogeneities. In the absence of more definitive data, we use the metal emission line measurements from both nights as independent upper limits on the emission coming from two possibly distinct regions of the nebula.

4. DISCUSSION

In this section, we derive estimates for the physical properties of PRG1 and use photoionization models to gain insight into the gas metallicity and the possible source(s) of ionization. Despite the strong Lyα-He ii signature and weak metal line emission often associated with primordial phenomena, we find that it is not possible to make an unambiguous determination of the source of ionization. The line ratios are consistent with a nebula comprised of low (but non-zero) metallicity gas, irrespective of the nature of the ionizing source, but this conclusion depends on the unknown ionization parameter of the system.

4.1. Physical Properties of the Nebula

Our discovery data can be used to put constraints on the physical properties of the nebula. Using the emission measure of Lyα, we can estimate the electron density

\[L_{\text{Ly}\alpha} = \frac{j_{\text{Ly}\alpha}}{j_{\text{H}\beta}} n_e n_p f V h v_{\text{H}\beta} \alpha_{\text{eff}}^{\text{H}\beta}, \]

\[\approx 1.2 \frac{j_{\text{Ly}\alpha}}{j_{\text{H}\beta}} n_e^2 f V h v_{\text{H}\beta} \alpha_{\text{eff}}^{\text{H}\beta}, \]

where \(j_{\text{Ly}\alpha} \) and \(j_{\text{H}\beta} \) are the emission coefficients for Lyα and Hβ, respectively, \(n_e \) and \(n_p \) are the proton and electron number densities with \(n_e \approx 1.2 n_p \) (the factor of 1.2 accounts for the contribution of electrons from doubly ionized Helium), \(f \) is the volume filling factor of the nebula, \(V \) is the volume of the nebula, \(h \) is Planck’s constant, \(v_{\text{H}\beta} \) is the frequency of Hβ, and \(\alpha_{\text{eff}}^{\text{H}\beta} \) is the effective recombination coefficient for Hβ (Osterbrock 1989). We approximate the nebula as a sphere with radius \(R \approx 28.0 \) kpc. The Lyα luminosity extrapolated to the entire nebula and corrected for blue side absorption \((5.4 \times 10^{48} \text{ erg s}^{-1})\) corresponds to an electron number density of \(n_e \approx 0.994 f^{-0.5} \text{ cm}^{-3} \), where we used a typical value for \(f \) derived for the line-emitting regions in cluster cooling flows \((\sim 10^{-5}; \text{e.g., Heckman et al. 1989})\). This corresponds to an ionized gas mass of \(M_{\text{ion}} = 1.25 m_p n_e f V = 8.4 \times 10^{5} \text{ (f/10^{-5})^{0.5} M_\odot} \).

Similarly, the He ii emission measurement can be used to estimate the He ii+ and electron densities, assuming the cosmic mass fraction of He,

\[L_{\text{He}\alpha\text{1640}} = \frac{j_{\text{He}\alpha\text{1640}}}{j_{\text{He}\beta\text{4868}}} n_{\text{He}^{++}} n_e f V h v_{\text{He}\beta\text{4868}} \alpha_{\text{eff}}^{\text{He}^{++}}, \]

\[\approx \frac{j_{\text{He}\alpha\text{1640}}}{j_{\text{He}\beta\text{4868}}} (14)n_e^2 f V h v_{\text{He}\beta\text{4868}} \alpha_{\text{eff}}^{\text{He}^{++}}, \]

where \(j_{\text{He}\alpha\text{1640}} \) and \(j_{\text{He}\beta\text{4868}} \) are the emission coefficients, \(n_{\text{He}^{++}} \) and \(n_e \) are the He ii+ and electron number densities with \(n_{\text{He}^{++}} \approx 1.2 n_p \approx 14 n_e \), \(v_{\text{He}\beta\text{4868}} \) is the frequency of He ii\text{4686}, and \(\alpha_{\text{eff}}^{\text{He}^{++}} \) is the He ii\text{4686} effective recombination coefficient (Osterbrock 1989). The He ii luminosity extrapolated to the whole nebula \((4.0 \times 10^{42} \text{ erg s}^{-1})\) corresponds to an He ii+ number density of \(n_{\text{He}^{++}} \approx 1.0 \text{ (f/10^{-5})^{-0.5} cm}^{-3} \) and an electron number density of \(n_e \approx 14.5 \text{ (f/10^{-5})^{-0.5} cm}^{-3} \). This corresponds to an ionized gas mass of \(M_{\text{ion}} = 1.25 m_p n_e f V = 4.1 \times 10^{6} \text{ (f/10^{-5})^{0.5} M_\odot} \), roughly consistent with the Lyα estimate.

If we make the naive assumption that the velocity spread results from rotation with \(V_c \approx \Delta V/2 = 350 \text{ km s}^{-1} \) at a radius of 28 kpc \((3^2/3)\), we estimate the mass interior to this radius to be \(M_{\text{ion}} = 8.0 \times 10^{11} \text{ sin}^2 i \), where \(i \) is the inclination of the system. If the velocity dispersion is due to random motions of small clouds within the system, we estimate the dynamical mass (using the more kinematically robust He ii line; \(\sigma_v = 245 \text{ km s}^{-1} \)) to be \(M_{\text{dyn}} = 1.9 \times 10^{2} M_\odot \).

The spatial extent of the Lyα (H’) and He ii (He ii+) emitting regions appear to be similar in size, certainly within a factor of 2 \((R_{\text{H}}/R_{\text{He}^{++}} \lesssim 2)\). This is somewhat surprising when we consider a simple Strömgren sphere argument. Assuming a hard central ionizing source (an AGN or a Pop III SED) embedded within an infinite spherical H+He cloud, the predicted size ratio of the H’ and He ii+ emitting regions is \(R_{\text{H}}/R_{\text{He}^{++}} \sim 9–17\), an order of magnitude higher than we observe. This suggests that either the H’ region is density bounded, that the sources of ionization are distributed throughout the nebula, or that the assumption of spherical symmetry is invalid (e.g., the cloud is illuminated from the outside).

The observed Lyα luminosity \((L_{\text{Ly}\alpha} = 5.4 \times 10^{43} \text{ erg s}^{-1})\) corresponds to an H-ionizing photon flux \((13.6 \text{ eV} \leq E_{\gamma} \leq 54.4 \text{ eV})\) of

\[Q(H) = \frac{L_{\text{Ly}\alpha}}{h v_{\text{Ly}\alpha}} \frac{1}{0.68} = 4.9 \times 10^{54} \text{ photons s}^{-1}, \]

where we have assumed that the fraction of H ionizing photons converted into Lyα is 0.68 (Spitzer 1978). We note that this is likely a lower limit due to a number of considerations: Lyα is highly susceptible to resonant scattering and is easily destroyed by dust, and Lyα for this system is observed at \(\approx 3250 \text{ Å}, \) a wavelength regime that suffers from very low atmospheric transmission and poor CCD sensitivity, making accurate flux calibration difficult.

From the observed He ii emission \((L_{\text{He}\alpha\text{1640}} = 4.0 \times 10^{42} \text{ erg s}^{-1})\), we calculate an He ii+ ionizing photon flux \((E_{\gamma} \geq 54.4 \text{ eV})\) of

\[Q(\text{He}^{++}) = \frac{L_{\text{He}\alpha\text{1640}}}{h v_{\text{He}\alpha\text{1640}}} \alpha_{\text{eff}}^{\text{He}^{++}} \approx 6.2 \times 10^{55} \text{ photons s}^{-1}, \]

where \(\alpha_{\text{eff}}^{\text{He}^{++}} = 1.53 \times 10^{-12} \text{ cm}^{-3} \text{ s}^{-1} \) (case B; 100 cm\(^{-3}\), 10\(^4\) K, Storey & Hummer 1995) and \(\alpha_{\text{He}^{++}}^{\text{He}^{++}} = \alpha_{\text{He}^{++}}^{\text{He}^{++}} = 8.08 \times 10^{-13} \text{ cm}^{-3} \text{ s}^{-1} \) (case B; Osterbrock 1989).

The large value of \(Q(\text{He}^{++})/Q(\text{H})\) is 0.13 is strong evidence that the source is illuminated by a hard ionizing continuum. The prediction for a Pop II stellar population (instantaneous burst, Salpeter IMF, 1–100 \(M_\odot \), \(Z = 0.001; \) Schaerer 2003) is \(Q(\text{He}^{++})/Q(\text{H}) = 0.0004; \) while our Lyα measurement may be compromised by radiative transfer effects and poor flux calibration at the edge of the atmospheric cutoff, it would need to have been underestimated by more than a factor of 100 in order for the observed \(Q(\text{He}^{++})/Q(\text{H})\) to match that of a normal Pop II stellar population. The observed \(Q(\text{He}^{++})/Q(\text{H})\) is in the range expected for AGN or Pop III stars. A typical AGN template has a ratio of \(Q(\text{He}^{++})/Q(\text{H}) \approx 0.09 \) (Elvis et al. 1994), more consistent with the observational constraint. While normal metallicity stellar populations will have very little flux above the He ii+ ionization edge, Pop III stars are predicted to have much harder spectra due to high temperatures, low stellar
atmospheric opacity, and a top-heavy IMF. Strong mass loss from these stars would cause higher effective temperatures, boosting the hard ionizing photons even further. Schaerer (2002) calculated a suite of Pop III models, both with and without strong mass loss. For individual high-mass stars (M > 80–300 M☉) they predict Q(He+)/Q(H) ≳ 0.022–0.11. Models with mass loss yields ratios of Q(He+)/Q(H) ≳ 0.06–0.17 (80–300 M☉). However, such large Q(He+)/Q(H) ratios persist for only a few megayears for instantaneous burst models. Constant star-forming Pop III models (with no mass loss) integrated over few megayears for instantaneous burst models. Constant star-forming Pop III models (with no mass loss) integrated over few megayears for instantaneous burst models.

4.2. Photoionization Modeling

The ubiquity of AGN, the association of AGN and extended emission line regions (EELRs), and the presence of spatially varying metal line emission suggest that an AGN is a plausible source of ionization. At the same time, the observed line ratios are highly unusual and have been tied in the theoretical literature to primordial galaxy formation processes (the presence of Pop III stars or gravitational cooling radiation). A comparison of the line ratios from PRG1 with those of radio galaxy EELRs and other Lyα nebulae is shown in Table 3. While the Lyα/He II ratios are comparable, other than the C IV/He II ratio on Night 2, all the metal line ratios from this source are at the low end or lower than the range seen in EELRs. Furthermore, this source shows very different line ratios than those seen in another large radio-quiet Lyα nebula at z ≈ 2.7 (Dey et al. 2005).

In order to gain greater insight into the metallicity and possible ionization sources for the nebula, we used CLOUDY to model simple, constant density gas clouds being illuminated by AGN, Pop III, and Pop II SEDs and predict the resulting line ratios and continuum emission. The AGN template is taken from Mathews & Ferland (1987; Fν ∝ ν−1.0 at 26 < hν < 56 eV, Fν ∝ ν−3.0 at 56 < hν < 365 eV), and the Pop III spectra are Tumlinson et al. (2006) 1 Myr models (Z = 0, a top-heavy IMF peaked around 10 M⊙ with σ = 1.0; i.e., their case A). The Pop II case is a 1 Myr, Z = 0.001, Salpeter IMF, instantaneous burst model from Starburst 99 (Leitherer et al. 1996).

The strong, spatially extended Lyα+He II emission and weak, spatially variable C IV and C IV emission in our discovery spectra and the blue, spatially extended continuum emission measured from deep broadband imaging provide constraints on the metallicity of the gas and on the slope of the ionizing continuum in the system. He II and C IV have similar ionization potentials (54.4 eV and 47.9 eV, respectively), so a comparison of He II and C IV puts constraints on the metallicity that are less dependent on the ionizing continuum slope. The Lyα and C IV emission lines (relevant ionization potentials of H and C IV: 13.6 eV and 24.4 eV) provide additional constraints on the slope of the ionizing continuum.

The observed limits will also depend on the ionization parameter of the system. A very rough estimate based on our discovery data is U = ϕ(H)/(nH c2) ≳ 0.0002, where ϕ(H) = Q(H)/(π R2) is the surface flux of ionizing photons, nH is the total hydrogen gas density, and R is the radius of the cloud. We have assumed our observed quantities: Q(H) = 4.9 × 1054 photons s−1, nH ∼ n e ∼ 29.7 cm−3, and R ∼ 28 kpc. However, this estimate is uncertain and most likely a lower limit.

4.3. Metallicity of the Gas

In order to explore the range of parameter space allowed by our observations, in Figure 7 we plot line diagnostics for models with a range of ionization parameters, metallicities, and ionizing SEDs, comparing them to our observed limits on the line ratios of the nebulosity from Night 1 and Night 2.

For low ionization parameters (log U < −1), it is possible to produce the observed line ratios with an AGN spectral energy distribution (SED) illuminating solar metallicity gas (Figure 7; blue plus signs). For higher ionization parameter (log U ≳ 1), the observed ratios require low metallicity gas. In the case of an AGN SED, the C IV/He II and C IV/He II limits imply Z < 10−2 Z⊙. Models with Pop III ionization lead to lower metallicity estimates of Z < 10−3 Z⊙. (For the Pop II model even lower metallicities would be required, but this case is highly unlikely given the large Q(He+)/Q(H) ratio, as discussed in Section 4.1.1.) To put this into context, these metallicity estimates are at or below the lowest limits for weak Mg II absorbers at 0.4 < z < 2.4 (>10−2−10−2.5; Lynch & Charlton 2007). Studies of the most

Table 3

Source	Lyα/He II	C IV/He II	C III/He II	C IV/C III	Reference
Radio Galaxy Halos (Composite)	11.7	1.75	0.73	2.4	Humphrey et al. 2008c
Radio Galaxy Halos (Mean)	9.80 ± 5.69	1.59 ± 0.56	1.06 ± 1.05	2.22 ± 1.17	Humphrey et al. 2008
Stacked Lyα Blobs at z ≈ 3	11.11 ± 9.88				Saito et al. 2008
PRG1 Night 1	7.62 ± 0.08	1.02 ± 0.01	0.12 ± 0.02	8.34 ± 1.67	Dey et al. 2005
PRG1 Night 2	8.00 ± 2.32	< 0.22c	< 0.19c	···	This study

Notes:
- a No correction has been applied for Lyα absorption.
- b Errors on line ratios from composite spectrum not given.
- c 1σ upper limits.
metal-poor damped Lyα absorbers have shown that none have metallicities lower than \([\text{Fe}^2/\text{H}]+3\) (Pettini et al. 2008). Lyα forest clouds at \(z \approx 3\) with \(N(\text{H}^+)>10^{13}\) cm\(^{-2}\) are uniformly metal enriched with carbon abundances of \(\approx 10^{-2}\) \(Z_\odot\), and observations of lower column density Lyα forest clouds indicate that there may be universal minimum metallicity of \(3.5 \times 10^{-4}\) \(Z_\odot\) that is roughly constant from \(z \approx 2-6\) (Songaila 2001). If the metallicity of PRG1 is similar to the lowest metallicities measured from absorption-line studies, this would be the first time such a system has been seen in Lyα and He I emission. As another comparison, Fosbury et al. (2003) have suggested that the emission line ratios observed in the Lynx Arc indicate a nebula of metallicity \(Z/Z_\odot \approx 0.04\) ionized by an extremely low metallicity star cluster (Binette et al. 2003). The He I/Lyα line ratio is 3.7 times smaller and the C IV, C III]/He I line ratios nearly 30 times larger in the Lynx Arc than in PRG1.

While the weak metal line emission suggests a low metallicity system, the metallicity estimates are uncertain due to a variety of factors, none of which are well constrained by the current data, e.g., the ionization parameter, the geometry of the cloud and ionizing source(s), and the intensity and spectrum of the source(s) of ionization. Putting stronger constraints on the metallicity of the nebula will require deeper spectroscopy and more detailed photoionization modeling, which is beyond the scope of the current paper.

4.4. Source of Ionization

The large He II equivalent width and large He II/Lyα ratio is strong evidence that the nebula is powered by a hard ionizing continuum. We discuss each of the possible ionization sources in turn: AGN, shock ionization, W–R stars, low metallicity (Pop II) and zero metallicity (Pop III) star formation, and gravitational cooling radiation.

4.4.1. AGN

An AGN can produce high He II/Lyα ratios and weaker C IV and C III]/He II] emission lines, particularly if it is illuminating a low metallicity cloud. This scenario is certainly plausible, as emission line halos (e.g., Lyα, C III]/He II, C IV) around radio galaxies have been known for some time, arising predominantly from a combination of jet-ISM interactions and scattered light from the AGN or from spatially extended star formation (e.g., McCarthy et al. 1987; van Ojik et al. 1996; Dey et al. 1997; Villar-Martín et al. 2003; Reuland et al. 2003). Unlike our Lyα+He II nebula, however, these gaseous halos are predominantly metal enriched, with strong C III] and C IV emission (e.g., Reuland et al. 2007; Maxfield et al. 2002).

While there is no compact source visible in the center of the nebula, there are several compact sources in the vicinity of the nebula that could in principle harbor an AGN (Figure 1). For two reasons, we believe that if there is an AGN in the system, it must be at the position of Source A. First, we find that even if all the nearby sources were AGN, Source A would contribute the vast majority of the ionizing photon flux. When we scale the standard quasar template from Elvis et al. (1994) to match the measured \(B_W\) flux from each source and calculate the corresponding ionizing photon flux, the net contribution is only 2% of the ionizing photon flux required to explain the Lyα, with nearly all of that arising from Source A. Second, in Section 3.2 we argued that the metal line emission is not cosmopolitan with the Lyα+He II nebula, and that the observed metal lines likely derive from the region of Source A. Below we discuss the likelihood that an AGN at the position of Source A is powering the Lyα+He II nebula.

If we assume that the Night 2 metal line emission stems primarily from Source A, we can compare the measured line ratios to those of well-studied galaxy populations. At face value, the C III] and C IV emission lines associated with the region around Source A are suggestive of an AGN, however we find that the line ratios are more consistent with that seen in non-AGN Lyman break galaxies (LBGs; Shapley et al. 2003). The measured ratios of C IV/Lyα=0.05 \pm 0.03 and C III]/Lyα=0.11 \pm 0.02 (uncorrected for Lyα absorption) are likely upper limits due to the uncertainties in the Lyα measurement. Even so, the C IV/Lyα ratio is a factor of 4–5 lower than what is seen in LBGs flagged as narrow-line AGNs (C IV/Lyα≈0.25; Shapley et al. 2003) and in local Seyfert galaxies (C IV/Lyα≈0.21; Ferland & Osterbrock 1986). In addition, if Lyα is underestimated by a factor of 2, the corrected C IV/Lyα and C III]/Lyα ratios would match those of non-AGN LBGs.
Furthermore, the ratio of C III]/C IV = 2.3 ± 1.2 is in agreement with that found for non-AGN LBGs (C III]/C IV ≈ 2.5; Shapley et al. 2003) and is a factor of 4 higher than expected from a narrow-line AGN spectrum (C III]/C IV ≈ 0.05; Shapley et al. 2003), suggesting Source A has a softer ionizing continuum.

There is currently no evidence from the multwavelength SED that Source A is an AGN. Existing X-ray coverage of the field reveals no X-ray detection at the position of the system (F_X > 1.5 × 10^{-14} erg s^{-1} cm^{-2} or L_X > 2.7 × 10^{44} erg s^{-1}, 2–7 keV observed; Kenter et al. 2005) but is too shallow to rule out lower luminosity Seyfert galaxies. The typical luminosities of Seyfert galaxies: L_{lya} = 10^{52} – 2 × 10^{44} erg s^{-1} and L_X (0.5–4.5 keV) = 5 × 10^{42}–10^{45} erg s^{-1}, with L_{lya}/L_X ratios of ~ 0.1–2 (Kriss 1984). If we combine the L_{lya}/L_X ratio as an upper limit (since the ratio for an extended nebula will be smaller due to the smaller covering fraction of the gas) with our measured Lyα luminosity (5.4 ± 10^{33} erg s^{-1}), we should expect L_X (0.5–4.5 keV) > 2.7 × 10^{43}–5.4 × 10^{44} erg s^{-1}, which is at or below our current X-ray detection threshold.

The optical and mid-infrared (MIR) photometric measurements for Source A are listed in Table 2. We measured the broadband optical fluxes of Source A from NDWFS using 2:1 diameter apertures and applied aperture corrections of [1.06, 1.40, 1.07] in the B_W, R, and I bands. The Source A IRAC photometry comes from SDWFS (3:5 diameter aperture with point source aperture corrections of [1.38,1.81,1.38,1.42]). The IRAC colors of Source A lie outside the AGN color–color selection regions of Stern et al. (2005) and Lacy et al. (2004), and the probability that an X-ray AGN will have these IRAC colors is small (Gorjian et al. 2008). The IRAC colors of Source A are [3.6]–[4.5] = 0.52 ± 0.03 (Vega) and [5.8]–[8.0] = 0.131 ± 0.11 (Vega) (in “Region B” of Figure 4 of Gorjian et al. 2008). The percentage of X-ray sources down to the XBo"otes limit with IRAC colors in this region is 4%. In a small portion of the survey with 10 times deeper X-ray coverage, the distribution of sources in IRAC color–color space is similar, i.e., there are very few X-ray sources with the IRAC colors of Source A (Gorjian et al. 2008). In contrast, these IRAC colors are consistent with star-forming galaxies at z = 1.25–1.75 (Donley et al. 2008), the redshift range of our source. Similarly, the IRAC SED of Source A shows the 1.6 μm bump rather than the power-law typical of obscured AGN (Alonso-Herrero et al. 2006), indicating that the MIR SED is dominated by stellar emission. All of the other sources in the vicinity show similar non-power-law SEDs.

PRG1 is also undetected at longer wavelengths: the MIPS 24 μm non-detection corresponds to an upper limit of 51 μJy (1σ), and the Westerbork 20 cm survey non-detection yields a 5σ limit at 3 GHz in the rest frame of 6.4 × 10^{22} W Hz^{-1} (de Vries et al. 2002), well below the realm of high redshift radio galaxies (~10^{26} W Hz^{-1}; Seymour et al. 2007).

On the other hand, the energetics of the nebula suggest that an AGN at the projected position of Source A could explain the observed continuum emission if the AGN is highly obscured to our line of sight. If we make the assumption that an AGN at Source A is powering the He ii emission, we can estimate the amount of B_W continuum emission we expect from the nebula due to illumination by the AGN. Scaling a standard AGN template (Elvis et al. 1994) to match the ionizing photon flux implied by the He ii (Q(He ii) ~ 6.2 × 10^{53} photons s^{-1}), we estimate that the B_W luminosity from the AGN striking the cloud should be L_{B_W, incident} ~ 1.9 × 10^{41} erg s^{-1} Å^{-1}. This incident AGN continuum flux—the maximum possible contribution from the AGN to the observed continuum emission—is roughly the same as the measured B_W continuum emission from the nebula (L_{B_W, nebula} ~ 1.1 × 10^{41} erg s^{-1} Å^{-1}). In reality, the continuum observed within the nebula will arise solely from two-photon (2γ) continuum and scattering of AGN light with no contribution directly from the AGN itself. Given the predicted He ii equivalent width from our Cloudy models of AGN illumination, we estimate the expected B_W 2γ continuum within the nebula to be L_{B_W, 2γ} ~ 2.0 × 10^{40} erg s^{-1}, roughly 18% of the observed B_W continuum of the nebula. Electron scattering of AGN light is expected to have a scattering optical depth of τ = n_e σ_T = 0.1–1.1, where n_e ~ 0–10 cm^{-3} and f = 56 kpc is the approximate path through the nebula, corresponding to a Thompson scattering continuum of L_{B_W, Thompson} ~ 1.9 × 10^{41} erg s^{-1} Å^{-1} × (1 – e^{-τ}) = 1.3 × 10^{41} erg s^{-1} Å^{-1}, comparable to the observed B_W continuum emission. Although dust scattering, which is much more efficient than Thompson scattering, may contribute as well, large quantities of dust would be difficult to reconcile with the large observed Lyα and He ii luminosities. Questions remain, but given the limitations of our discovery data it appears that an AGN at the position of Source A that is unobscured along the line of sight to the nebula, but completely hidden from our viewpoint, could explain the observed B_W continuum emission. Correcting for the maximal (since we are assuming the projected separation) solid angle subtended by the cloud as seen from Source A (dΩ ~ 3.1 sr), we find that the minimum intrinsic AGN luminosity needed to produce this incident flux is L_{B-W, min(AGN)} ~ 1.9 × 10^{41} erg s^{-1} × 4π/dΩ erg s^{-1} Å^{-1} ~ 7.6 × 10^{41} erg s^{-1} Å^{-1}. Source A has a B_W luminosity of 1.8 × 10^{40} erg s^{-1} Å^{-1}, which is over an order of magnitude fainter than this firm lower limit. The AGN would therefore need to be very highly obscured along our line of sight to match the existing observational constraints.

In conclusion, an AGN at the position of Source A is a plausible source of the hard ionizing radiation. However, there is no visible AGN in the vicinity of the nebula, so it would have to be highly obscured along our line of sight. An AGN in the vicinity of the nebula must be in a radio-quiet phase and so highly obscured that even the observed MIR SED is dominated by light from the host galaxy. Deep optical and near-infrared spatially resolved spectroscopy will be required to resolve this issue.

4.4.2. Shocks

The observed ratios are inconsistent with shock ionization in solar metallicity gas, which typically produces much higher C III]/He ii and C IV/C III] ratios (e.g., ~3–25 and ~1–10 for shock velocities of 500–150 km s^{-1}; Dopita & Sutherland 1996) along with strong N v/λ1240. Stronger shock velocities are inconsistent with the narrow width of the He ii line (v_{FWHM} ~ 500 km s^{-1}).

4.4.3. Wolf-Rayet Stars

Strong He ii emission is seen in both of the major classes of W–R stars (nitrogen dominated WN stars and carbon dominated WC stars), but it is accompanied by strong Si iv and/or other metal emission lines. WN stars show strong Si iv/λ1393,1402 relative to He ii, C IV, and C III], which we can rule out with our discovery spectra. WC stars usually show C IV/λ1450 ratios greater than 1, medium-strength Si iv, and a large number of other metal lines (e.g., Fe), all of which are
inconsistent with our observations. The spectrum of a typical “W–R galaxy” (a galaxy with spectrum dominated by W–R features) effectively averages over hundreds or thousands of W–R stars, but none the less typically shows Si v, C iv, He ii, and N v emission with P Cygni profiles due to the effects of strong stellar winds (e.g., Leitherer et al. 1996). The composite LBG spectrum measured at z ≈ 3 also shows Si iv and C iv with P Cygni profiles from the stellar winds of massive stars, as well as broad He ii ($\lambda_{\text{FWHM}} \approx 1500$ km s$^{-1}$), which the authors argue is most likely due to the fast, dense winds of W–R stars (Shapley et al. 2003). In our case, the narrow width of the He ii line ($\lambda_{\text{FWHM}} \lesssim 500$ km s$^{-1}$) and the absence of other important W–R features (e.g., Si iv, N v) rules out the idea that the He ii emission is coming from W–R stars.

4.4.4. Population II Star Formation

The existence of diffuse, blue continuum that is cospatial with the Lyα and He ii line emission (Figure 1) is suggestive of a distributed source of ionization such as spatially extended star formation. However, the observed He ii/Lyα line ratio is inconsistent with ionization by a standard Population II SED (e.g., $Z = 0.001 = 1/20 Z_\odot$). The expected Q(He ii)/Q(H) ratio for a Pop II model is several orders of magnitude lower than observed (Schaerer 2003). Predictions from our Cloudy models indicate that the dearth of hard ionizing photons translates into negligible He ii emission and He ii/Lyα ratios that are a factor of 1000 lower than observed. Furthermore, the large observed He ii equivalent width can only be produced by very low metallicity stellar populations (Schaerer 2003).

4.4.5. Population III Star Formation

The only way to explain strong He ii emission with ionization from a stellar population is to invoke very young ages and very low metallicities. The rest-frame equivalent width of Lyα (EW ≈ 294 Å) is higher than or comparable to what is expected from solar metallicity and Pop II stellar populations (Schaerer 2003), but it is by no means the largest observed in Lyα-emitting galaxy surveys (EW$_{\text{max}} \gtrsim 300$ Å; Dawson et al. 2007). The measured equivalent width (EW) of He ii, however, is very large (EW ≈ 37 Å) in the context of stellar populations and only consistent with the youngest ($\lesssim 2$ Myr) and lowest metallicity stars ($Z \lesssim 10^{-7} Z_\odot$), in the absence of mass loss (Schaerer 2003). Here, we chose a Pop III model with a moderately top-heavy IMF from Tumlinson et al. (2006) that has a peak at 10 M_\odot (their case A); a more top-heavy IMF will tend to boost the He ii/Lyα ratio due to the additional hard ionizing photons. The ionizing photon flux implied by the Lyα and He ii measurements from PRG1 implies a Pop III cluster mass of 13–100 $10^6 M_\odot$ and a B_W continuum flux of $L_{B_W,\text{incident}} \approx 1.7 \times 10^{11}$ erg s$^{-1}$ Å$^{-1}$, roughly equal to the observed continuum ($L_{B_W,\text{nucleus}} \approx 1.1 \times 10^{11}$ erg s$^{-1}$ Å$^{-1}$). In comparing with our Cloudy models, however, we find that the observed He ii/Lyα ratio (≈ 0.12) is much higher than expected from our Pop III model (≈ 0.004). However, it is important to keep in mind that model uncertainties, such as the assumed IMF and the effects of mass loss, could have a large effect on the predicted line luminosities. In addition, the possible underestimation of the Lyα flux discussed in Section 4.1 as well as a density-bounded geometry will tend to boost the observed He ii/Lyα ratio.

On the face of it, it would be surprising to find such low metallicity star formation at such a low redshift. However, we cannot conclusively rule out the Pop III scenario on this basis alone. While the mean metallicity of the universe increases with time, several theoretical models of Pop III star formation have suggested that significant metallicity inhomogeneities may exist even at low redshifts (Tornatore et al. 2007). These models predict that while the metallicity is quickly enriched at the center of collapsed structures, low metallicity regions can persist on the periphery over longer timescales, allowing Pop III star formation to proceed well after the epoch of reionization (Tornatore et al. 2007; Scannapieco et al. 2003). At $z \approx 2.3$ (roughly the redshift midpoint of our Lyα nebula survey), Tornatore et al. (2007) predict a Pop III SFR density of $1.3 \times 10^{-7} M_\odot$ yr$^{-1}$ Mpc$^{-3}$. If we were to assume that this Lyα+He ii nebula is powered by very low metallicity star formation, use the Lyα line emission (extrapolated to the entire nebula and corrected for absorption) to estimate a SFR (SFR $= L_{\text{Ly}\alpha} / 1.26 \times 10^{42} = 5.4 \times 10^{33} / 1.26 \times 10^{42}$ erg s$^{-1}$ $\approx 42.9 M_\odot$ yr$^{-1}$; Kennicutt 1998), and ignore any incompleteness of our survey, we would calculate that one nebula of this kind within our survey volume (3.3×10^8 Mpc3), corresponds to a Pop III SFR density of $\lesssim 3.3 \times 10^{-7} M_\odot$ yr$^{-1}$ Mpc$^{-3}$. This very rough estimate based on a single source is of the same order of magnitude as the model predictions (within a factor of 3) despite the large theoretical uncertainties in the conditions regulating Pop III star formation and intergalactic medium (IGM) enrichment at all redshifts.

In reality, the amount of low metallicity gas and Pop III star formation as a function of redshift will depend on the efficiency of star formation in different environments and the efficiency with which stars pollute their environment, i.e., the feedback efficiency. A more realistic treatment of galactic winds in cosmological simulations (e.g., momentum-driven winds; Oppenheimer & Davé 2006) is shown to suppress the metallicity in all gas phases relative to the constant wind scenario similar to that used in Tornatore et al. (2007), which may in turn increase the fraction of Pop III star formation at any given redshift. On the other hand, only a few stellar generations would be required to produce the mass of carbon in the nebula. Assuming the derived ionized gas mass ($\approx 8 \times 10^8 M_\odot$), the simulated yields for Pop III supernovae ($\approx 0.2–1 M_\odot$ per 20–40 M\odot supernova progenitor; Tominaga et al. 2007) and instantaneous mixing, enriching the cloud to $Z \approx 10^{-3} Z_\odot$ would only require order of 750 supernovae ($2–4 \times 10^4 M_\odot$). This is several orders of magnitude lower than the fraction of the cluster mass implied by the Lyα and He ii luminosities that is in stars with $M > 20 M_\odot$ for the assumed top-heavy IMF: $f(M > 20 M_\odot) = 0.26$ or $(3–27) \times 10^4 M_\odot$. Thus it is likely the nebula would be polluted to the observed levels over a relatively short timescale.

Large uncertainties remain in our understanding of Pop III star formation. The expected fraction of Pop III star formation at a given epoch is unclear, feedback efficiency of these first stars is largely unconstrained, and there are a wide range of possible Lyα/He ii ratios, depending on stellar mass loss, star formation history, and the complicated effects of Lyα radiative transfer. Despite the strong Lyα+He ii signature in this source, we cannot conclusively confirm or rule out Pop III star formation as a source of ionization with the current observations.

4.4.6. Gravitational Cooling Radiation

A number of theoretical papers have addressed the issue of gravitational cooling radiation, i.e., the cooling of gas as it collapses within the dark matter potential and heats to $T \approx 10^4$ K. Metal-line cooling is possible for gas with $T < 10^4$ K, but it is ≈ 1000 times less efficient than cooling via Lyα emission, unless $Z > 0.1 Z_\odot$ (Haiman et al. 2000),
Thus for low metallicity gas, strong Lyα emission is expected to dominate the cooling (Fardal et al. 2001). He ii emission may be important as well, but its contribution relative to Lyα is unclear due to uncertainties in how much Lyα will escape the system. From a semianalytic calculation assuming monolithic collapse, Haiman et al. (2000) suggested that a cloud that is sufficiently metal poor will radiate 10% of the energy via He ii λ1640 Å; this corresponds to an He ii λ1640/Lyα of ~0.01, where we have followed Yang et al. (2006) and adopted a ratio of He ii λ1640/He ii λ304 ≈ 0.10, i.e., the case B values of Storey & Hummer (1995) extrapolated to the low density limit. Using Parallel TreeSPH simulations, Yang et al. (2006) predicted ratios of He ii λ1640/Lyα ≲ 0.10–0.001 for gravitationally cooling clouds, depending on the degree to which self-shielding of the gas reduces the Lyα flux. This range approaches the observed ratio for PRG1, but due to subsequent corrections to the treatment of star-forming gas in more recent simulations the predictions from Yang et al. (2006) are likely overestimates (Y. Yang 2008, private communication). Thus, the observed He ii/Lyα ratio appears to be higher than predicted for gravitational cooling radiation, but again the uncertainties in both the theoretical predictions and in our Lyα measurement make it difficult to draw firm conclusions.

Some of the theoretical predictions for gravitationally cooling clouds are consistent with our observations. The observed He ii line width (σc < 250 km s⁻¹) is more consistent with gravitational cooling radiation (σc < 400 km s⁻¹; e.g., Yang et al. 2006) than with outflows. In addition, theoretical simulations of the redshift evolution predict a peak in the number density of gravitational cooling Lyα nebulae at z ≈ 2, consistent with our discovery of a Lyα+He ii nebula at z ≈ 1.7. While Dijkstra (2009) predicts rest-frame Lyα equivalent widths of >1000 Å for gravitationally cooling clouds, he notes that the observed rest-frame equivalent width is likely to be reduced by a factor of 5–10 due to scattering of Lyα photons in the IGM, more in line with our measurements.

However, a number of other theoretical predictions of gravitational cooling radiation do not fit our observations. First, the simulations do not reproduce the relative sizes of the observed Lyα and He ii regions. Fardal et al. (2001) could not reproduce the sizes of the largest observed Lyα nebulae unless they invoked resonant scattering of the Lyα emission. In that case, the He ii emission should be more centrally concentrated than the Lyα. Similarly, Yang et al. (2006) suggested that He ii regions would likely be too small to resolve with current observational facilities. In contrast, in our Lyα+He ii nebula the He ii region appears to be comparable in size to the Lyα region (~45 kpc). The theoretical papers also predict that Lyα nebulae will only be present as a halo around a massive galaxy (Fardal et al. 2001; Furlanetto et al. 2005). While there are a few faint sources around the edge of our nebula, and there may be unresolved low surface brightness clumps within the cloud, the multiband imaging shows no evidence for a central massive galaxy in this system.

Given the uncertainties in the theoretical predictions and the limits of our discovery data it is difficult to assess the applicability of the gravitational cooling model. The weight of the current evidence disfavors gravitational cooling as the sole explanation for the line emission, but it is certainly possible that the nebula is powered by multiple processes, with gravitational cooling radiation playing a larger role on the outskirts and photoionization from stars or AGN dominating the ionization of the central regions.

5. IMPLICATIONS

Strong Lyα+He ii in the absence of strong metal lines has been championed as a unique observational signature of primordial galaxy formation (e.g., Pop III star formation or gravitationally cooling clouds), but the discovery of this Lyα+He ii nebula suggests that the situation can be much more complex in actual astrophysical sources. Occam’s razor suggests that the most likely power source is an AGN at the position of Source A. An analysis of the existing data shows no obvious evidence of a powerful AGN in the vicinity, so to explain the ionization of the nebula, an AGN would need to be highly obscured even in the mid-infrared. The line ratios rule out ionization by shocks, W–R stars, and Pop II star formation. Pop III star formation would provide the necessary hard ionizing continuum to explain the observed line ratios along with a natural explanation for the spatially extended continuum emission, but this scenario appears unlikely given the low redshift. Despite the compelling Lyα+He ii signature, the complexity of this source and the large uncertainties in theoretical predictions preclude a more definitive conclusion. The contribution from gravitational cooling radiation is similarly unclear, although the morphology of the nebula (with no central compact source) and relative sizes of the Lyα and He ii emitting regions disfavor this hypothesis as a dominant mechanism.

One of the most important implications of this discovery is that it demonstrates that we must be careful when using strong Lyα+He ii emission as a tracer of Pop III star formation. Surveys looking specifically for this Lyα+He ii signature are ongoing. While the low redshift of PRG1 allows for the detailed multiwavelength follow-up necessary in order to understand the power source and the metallicity of the gas, the same cannot be said for ongoing Lyα+He ii emitter surveys at higher redshift that will lack longer wavelength coverage and be sensitivity challenged. It is extremely important to note that if this Lyα+He ii had been discovered at high redshift, it would have been easy to jump prematurely to the Pop III conclusion. The discovery of a Lyα+He ii nebula at z ≈ 1.67 therefore provides an ideal opportunity to evaluate the extent to which strong Lyα+He ii emission can be used as a unique tracer of Pop III star formation and underscores the importance of using care when interpreting a strong Lyα+He ii signature in the absence of more extensive multiwavelength data.

6. SUMMARY

We have discovered a Lyα nebula at z ≈ 1.67 (the lowest redshift Lyα nebula known) that shows strong, diffuse He ii emission and weak/negligible C iv and C iv emission. From the line ratios, we derive evidence that this nebula may contain low metallicity (Z < 10⁻²⁻²⁻³ Z⊙) gas, depending on the unknown ionization parameter, that is being illuminated by a hard ionizing continuum, either due to an AGN or a very low metallicity stellar population (Pop III), by gravitational cooling, or some combination thereof. The softer continua of Pop I and II stars can be conclusively ruled out along with ionization by shocks and W–R stars. No obvious, unobscured, powerful AGN is seen in the system; thus if an AGN is responsible, it must be highly obscured along our line of sight. Despite the strong Lyα+He ii signature, our detailed analysis of the discovery data shows that dedicated follow-up observations will be required in order to draw firm conclusions about the dominant source of ionization for the nebula and better constrain the metallicity. This is the first time that the predicted observational
signature of very low metallicity (Pop III) star formation—strong Lyα and He II in the absence of strong metal lines—has been seen in a spatially extended source; however, the complex nature of the nebula and the fact that such complexity becomes increasingly difficult to discern with redshift suggest that studies at high redshift will need to use caution when interpreting future Lyα+He II discoveries.

We are grateful to J. Tumlinson for providing the Pop III evolving spectra, to E. Le Floc’h and the IRS GTO and MIPS GTO teams for providing the MIPS data, to Gary Ferland for useful advice on the photoionization modeling, and to K. Finlator for observing assistance and many helpful discussions. D. Stern, M. Ashby, M. Brodwin, and the rest of the SDWFS team are thanked for access to the most current Spitzer IRAC imaging of the Boötes field. We also thank the anonymous referee for suggestions that improved the clarity of this paper. We would like to acknowledge the expert assistance of the staff of the MMT Observatory (especially John McAlie, Ale Milone, and G. Grant Williams). M. P. was supported by an NSF Graduate Research Fellowship and a P.E.O Scholar Award. This research builds on data from the NOAO Deep Wide-Field Survey (NDWFS) as distributed by the NOAO Science Archive. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation. Some of the data presented in this paper were obtained from the Multi-mission Archive at the Space Telescope Science Institute (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NAG5-7584 and by other grants and contracts.

REFERENCES

Alonso-Herrero, A., et al. 2006, ApJ, 640, 167
Ashby, M. L. N., et al. 2009, arXiv:0906.0024
Binette, L., Groves, B., Villar-Martín, M., Fosbury, R. A. E., & Axon, D. J. 2003, A&A, 405, 975
Bromm, V., Kudritzki, R. P., & Loeb, A. 2001, ApJ, 552, 464
Dawson, S., Rhoads, J. E., Malhotra, S., Stern, D., Dey, A., Spinrad, H., & Jannuzi, B. T. 2007, ApJ, 671, 1227
Finkelstein, S. L., Rhoads, J. E., Malhotra, S., Grogin, N., & Wang, J. 2008, ApJ, 687, 655
Fosbury, R. A. E., et al. 2003, ApJ, 596, 797
Ferland, G. J., Korista, K. T., Verner, D. A., Ferguson, J. W., Kingdon, J. B., & Verner, E. M. 1998, PASP, 110, 761
Ferland, G. J., & Osterbrock, D. E. 1986, ApJ, 300, 658
Fosbury, R. A. E., et al. 2003, ApJ, 596, 797
Furlanetto, S. R., Schaye, J., Springel, V., & Hernquist, L. 2005, ApJ, 622, 7
Geach, J. E., Smail, I., Chapman, S. C., Alexander, D. M., Blain, A. W., Stott, J. P., & IVISON, R. J. 2007, ApJ, 655, L9
Gorjian, V., et al. 2008, ApJ, 679, 1040
Haiman, Z., Spaans, M., & Quataert, E. 2000, ApJ, 537, L5
Heckman, T. M., Baum, S. A., van Breugel, W. J. M., & McCarthy, P. 1989, ApJ, 338, 48
Humphrey, A., Villar-Martín, M., Vernet, J., Fosbury, R., di Serego Alighieri, S., & Binette, L. 2008, MNRAS, 383, 11
Jannuzi, B. T., & Dey, A. 1999, in ASP Conf. Ser. 191, Photometric Redshifts and the Detection of High Redshift Galaxies, ed. R. Weymann et al. (San Francisco, CA: ASP), 111
Kennicutt, R. C., Jr. 1998, ApJ, 498, 541
Kenter, A., et al. 2005, ApJS, 161, 9
Kriss, G. A. 1984, ApJ, 277, 495
Lacy, M., et al. 2004, ApJS, 154, 166
Leitherer, C., Vacca, W. D., Conti, P. S., Filippenko, A. V., Robert, C., & Sargent, W. L. W. 1996, ApJ, 465, 717
Lynch, R. S., & Charlton, J. C. 2007, ApJ, 666, 64
Malhotra, S., & Rhoads, J. E. 2002, ApJ, 565, L71
Martin, D. C., et al. 2005, ApJ, 619, L1
Mathews, W. G., & Ferland, G. J. 1987, ApJ, 323, 456
Matsumoto, Y., Iono, D., Ohta, K., Nakada, T., Kawabe, R., Hayashino, T., Peck, A. B., & Petitpas, G. R. 2007, ApJ, 667, 667
Maxfield, L., Spinrad, H., Dey, A., & Dickinson, M. 2002, AJ, 123, 2321
McCay, P. J., Spinrad, H., Djorgovski, S., Strauss, M. A., van Breugel, W., & Liebert, J. 1987, ApJ, 319, L9
Nagao, T., Motohara, K., Maiolino, R., Marconi, A., Taniguchi, Y., Aoki, K., Ajiki, M., & Shioya, Y. 2005, ApJ, 631, L5
Nagao, T., et al. 2008, ApJ, 680, 100
Nisson, K. F., Fynbo, J. P. U., Møller, P., Sommer-Larsen, J., & Ledoux, C. 2006, A&A, 452, L23
Oppenheimer, B. D., & Davé, R. 2006, MNRAS, 373, 1265
Osterbrock, D. E. 1989, Research supported by the University of California, John Simon Guggenheim Memorial Foundation, University of Minnesota, et al. (Mill Valley, CA: University Science Books)
Ouchi, M., et al. 2008, ApJS, 176, 301
Pettini, M., Zych, B. J., Steidel, C. C., & Chaffee, F. H. 2008, MNRAS, 385, 2011
Reuland, M., et al. 2003, ApJ, 592, 755
Reuland, M., et al. 2007, AJ, 133, 2607
Rhoads, J. E., et al. 2003, AJ, 125, 1006
Saito, T., Shimasaku, K., Okamura, S., Ouchi, M., Akiyama, M., Yoshida, M., & Ueda, Y. 2008, ApJ, 675, 1076
Scannapieco, E., Schneider, R., & Ferrara, A. 2003, ApJ, 589, 55
Schaerer, D. 2002, A&A, 382, 28
Schaerer, D. 2003, A&A, 397, 527
Schaerer, D. 2008, in IAU Symp. 255, Low Metallicity Star Formation: From the First Stars to Dwarf Galaxies, ed. L. Hunt, M. D., & Macchetto, F. 1996, A&A, 313, 25
Smith, D. J. B., & Jarvis, M. J. 2007, MNRAS, 378, L49
Smith, D. J. B., Jarvis, M. J., Lacy, M., & Martín-Sansigre, A. 2008, MNRAS, 389, 799
Songaila, A. 2001, ApJ, 561, L153
Spitzer, L. 1978, Physical Processes in the Interstellar Medium (New York: Wiley Interscience)
Stern, D., et al. 2005, ApJ, 631, 163
Storey, P. J., & Hummer, D. G. 1995, MNRAS, 272, 41
Tomkinova, N., Umeda, H., & Nomoto, K. 2007, ApJ, 660, 516
Tornatore, L., Borgani, S., Dolag, K., & Matteucci, F. 2007, MNRAS, 382, 1050
Tumlinson, J., Giroux, M. L., & Shull, J. M. 2001, ApJ, 550, L1
Tumlinson, J., et al. 2006, ApJ, 641, L1
van Ojik, R., Roettgering, H. J. A., Carilli, C. L., Miley, G. K., Bremer, M. N., & Macchetto, F. 1996, A&A, 313, 25
Villar-Martín, M., Vernet, J., di Serego Alighieri, S., Fosbury, R., Humphrey, A., Pentericci, L., & Cohen, M. 2003, New Astron. Rev., 47, 291
Yang, Y., Zabludoff, A. I., Pinto, P. A., Katz, N., Weinberg, D. H., & Barton, E. J. 2006, ApJ, 640, 539