ABSTRACT
The search for relevant information can be very frustrating for users who, unintentionally, use too general or inappropriate keywords to express their requests. To overcome this situation, query expansion techniques aim at transforming the user request by adding new terms, referred as expansion features, that better describe the real intent of the users. We propose a method that relies exclusively on relevant structures (as opposed to the use of semantics) found in knowledge bases (KBs) to extract the expansion features. We call our method Structural Query Expansion (SQE). The structural analysis of KBs takes us to propose a set of structural motifs that connect their strongly related entries, which can be used to extract expansion features. In this paper we use Wikipedia as our KB, which is probably one of the largest sources of information. SQE is capable of achieving more than 150% improvement over non expanded queries and is able to identify the expansion features in less than 0.2 seconds in the worst case scenario. Most significantly, we believe that we are contributing to open new research directions in query expansion, proposing a method that is orthogonal to many current systems. For example, SQE improves pseudo-relevance feedback techniques up to 13%.

1. INTRODUCTION
In a typical information retrieval scenario, users express their needs of information with a set of keywords. However, vocabulary mismatch between the keywords and the documents to be retrieved entails poor results that do not satisfy the user needs [15]. Poor results also arise from the topic inexperience of the users because they are not often familiar with the vocabulary and use too general keywords.

Query expansion techniques aim at improving the results achieved by the user request by means of introducing new terms, commonly called expansion features. Thus, the challenge is to select those expansion features that are capable of improving the results the most. A bad choice of expansion features may be counterproductive. There are different families of expansion techniques, which differ in the way they acquire the expansion features. One such family consists in using knowledge bases (KBs). To the best of our knowledge, those rely on some kind of text analysis, such as explicit semantic analysis [2], or are based on other existing query expansion techniques such as pseudo-relevance feedback [3]. However, as we show here, the underlying network structure of KBs has been barely exploited. In [10], we presented a proof of concept in which we used the network structure of a KB. Although we achieved good results, the algorithms that we used were based on [17], which is a metric designed for social network analysis and hence, it does not exploit the particular KBs structures.

In this piece of work, we propose Structural Query Expansion (SQE), a new query expansion strategy to exploit KBs relying exclusively on the structural relationships among data. For that purpose we present a structural analysis of a KB, Wikipedia, and from this analysis we define a set of structural motifs that are capable of identifying reliable expansion features. In other words, we show that it is not necessary to use semantic analysis, but just to look at the structure of KBs to obtain good expansion features.

1.1 General Overview
The goal of this paper is to improve a typical query expansion process. First, the system receives a user request, which is the input of the system. Then, it identifies a set of expansion features that better describe the user intent. Finally, it builds an expanded query that is used by the search engine to retrieve the results.

In order to identify the expansion features, we use a KB. KBs consist of a set of entries, each of which describes a single concept, and that relate to each other forming a graph, where the nodes represent the entries and the links their relationships. In this paper we propose SQE, a novel approach that relies exclusively on exploiting the structure of the KBs graph with no need for analyzing their content in any way.

The proposed approach follows the pipeline depicted in Figure 1. The Entity Linker receives the input, usually expressed as a set of keywords. Then, it identifies the entities, which are the real world concepts that appear in the input. Finally, it matches those entities with nodes of the KB graph. We refer to these nodes as the input nodes.

The Query Graph Expansion is in charge of selecting those nodes of the KB graph that are tightly linked with the input nodes. From a structural analysis of the KB graph, we describe a set of structural motifs that allow deciding which nodes to select. Out of those, we induce a subgraph, which we name the Query Graph, that is a graph representation of
The query graph is used by the Query Builder to extract the expansion features out of its nodes. Also, it builds the expanded query with the input, the entities and the expansion features. Then, the expanded query is issued to the Search Engine that uses it to retrieve the results.

In the particular case of this paper, we use Wikipedia as our KB. Wikipedia has two types of entries: Article and Category. Articles are used to link the entities with the input nodes because each describes a single topic. Articles and categories form a network in which articles can link to other articles and must belong to, at least, one category. In addition, each category can belong to one or more general categories. From the analysis of this network, we propose the structural motifs to create the query graphs. Finally, the expansion features are extracted out of the query graph articles, in particular from their title, that according to the Wikipedia’s edition rules, must be recognizable, natural, precise, concise and consistent.

According to the conducted experiments, SQE is able to obtain statistically significant improvements of more than 150% over the non-expanded queries. Moreover, SQE does not incur in a relevant overhead, by running in the order of a few tenths of a second at most.

SQE is orthogonal to many other existing techniques. For example, in Section 4 we show that combining SQE with pseudo-relevance feedback achieves 13.68% improvement in the quality of the results. We believe that we are contributing to open new research directions that consist in understanding and exploiting the particular structures that characterize KBs in order to extract relevant expansion features, which can be potentially combined with other strategies.

1.2 Contributions

The contributions of this paper can be summarized as follows:

- We open new research directions consisting in exploiting the structure of KBs to identify structural motifs that allow connecting semantically related entries.
- We use Wikipedia as our KB, we analyze its structure and identify its relevant structural motifs.
- We propose SQE, which is orthogonal to existing strategies and it is executed in sub-second times, which are not a burden for the search process.
- We test the capabilities of SQE with three different datasets: Image CLEF 2011, CHiC CLEF 2012 and CHiC CLEF 2013 and validate the results with statistical significance analysis.

2. STRUCTURAL QUERY EXPANSION

As a starting point for the work in this paper we take [11], where we use an information retrieval dataset, Image CLEF, to create a ground truth. For that purpose, for each Image CLEF request we extract the entities of its valid documents and match them with the articles in Wikipedia. From this, we induce the ground truth query graphs. Then, we analyze the query graphs in order to identify the relevant structures that relate the original input nodes to the set of articles that are good to extract reliable expansion features. In the rest of this section, we elaborate on these concepts to motivate the proposal of SQE based on query graphs.

2.1 Wikipedia Structure Analysis

From the analysis of the query graphs, we have learned that, in general, they are disconnected graphs composed by a moderately large connected component. Also, that the largest connected component, and thus the one that provides more expansion features, contains, in general, all the input nodes for the ground truth query graph. This supports the strategy of using the Entity Linker to identify the input nodes, and then build the query graphs and also that Wikipedia encodes, in its structure, the information to select reliable expansion features. Finally, we have observed that the number of expansion features introduced is very variable, it goes from 0 to 176. This result means that we cannot establish a unique and good number of expansion features as it depends on the particular nature of each query.

When we turn to analyze the relationship between the input nodes and the articles in the query graphs, we observe that cycles are very relevant to explain the structure. In this case, cycles are defined as a closed sequence of nodes, either articles or categories, with at least one edge among each pair of consecutive nodes. The goal of our research is to identify a set of characteristics of the cycles (length, ratio of articles and categories and density of edges) that allow us to identify the articles in those query graphs.

Concerning the length of the cycles, we evaluate the precision achieved by using the expansion features extracted out of the articles reachable through cycles of length, 2, 3, 4 and 5 isolated from the rest of the nodes of query graphs. In Table 1, we summarize those results. We realize that, broadly speaking, the precision achieved are comparable to the best results obtained in the Image CLEF 2011 conference [20].

The conference overview only publishes the results for \P@10 and \P@15, which are 0.632 and 0.510 respectively. However, these results were achieved combining textual and visual analysis techniques, using the three languages in which the metadata of the documents are written (we only use English), and exploiting feedback relevance techniques.
In Figure 2a, we show the contribution of the cycles depending on their length. We see that the cycles that contribute the most are those with length equal to 2. However, we count that, in average, the query graphs only contain 1.56 cycles of this length. This can be caused either because a) Wikipedia does not contain a large amount of such cycles or because b) the cycles of length 2 are not always reliable, as otherwise they would appear more frequently in the query graphs. However, according to our experiments, among all pairs of Wikipedia articles that are connected, 11.47% form a cycle of length 2, meaning that this structure is not so infrequent. Then, we must assume the hypothesis that the cycles of length 2 that contribute significantly to the quality of the results are scarce. On the other hand, cycles of length 3, 4 and 5 contribute less, compared to those of length 2, but appear more frequently, which encourages us to focus on this type of structures.

Table 1: Average precision of using expansion features of different configurations of cycle lengths.

Cycle Size	Top 1	Top 5	Top 10	Top 15
2	0.826	0.539	0.539	0.552
3	0.833	0.578	0.519	0.513
4	0.703	0.589	0.541	0.494
5	0.788	0.624	0.588	0.547

Regarding the observed proportion of articles and categories, in Figure 2b we show the percentage of categories per cycle length. In general, we see that independently of the cycle length, a third of the nodes are categories, though there is a slightly increasing slope as the length increases. This fact, points out the importance of the category nodes, since those nodes are maintaining the cycles within a single or very related domain of knowledge. This observation may also justify the scarcity of cycles of length 2, given that cycles of this particular length are always composed by 2 articles, that may belong to very distant domains.

Finally, in Figure 2c we show the average density of extra edges with respect to the length of the cycles. We define the density of extra edges as the amount of edges minus the minimum required amount of edges to create a cycle divided by the maximum amount of possible edges of the cycle (remember that two consecutive nodes can be connected by two edges). From Figures 2a and 2c we can see a correlation between denser cycles and those that contribute more.

2.2 Query Graph Expansion

Given the pipeline depicted in Figure 1, at this point of the process, the requests of the users are represented as a set of articles, the input nodes. Given the input nodes, the goal of this module is to select, among the Wikipedia nodes, those articles that allow constructing query graphs that are similar to the ground truth ones, which were previously described.

Based on these characteristics we propose the motifs depicted in Figures 3a and 3b, which are based on cycles of length 3 and 4 respectively. The motif depicted in Figure 3a is called, from now on, triangular motif, while the one depicted in Figure 3b is called square motif. In the figures, the square nodes are categories, while round nodes are articles. The black round node is an input node, while the white round node is article A, a new article selected as it forms a motif with the input node, and therefore, a node of the resulting query graph.

In the triangular motif we force the input node to be doubly linked with article A. That means that the input node...
Figure 4: Expansion motifs in action for Image CLEF requests.

2.3 Combining Query Graphs

According to the analysis presented in [11], cycles of different lengths may favor better precision for small amounts of results, while other, for larger amount of results. Therefore, it is expected that, depending on the motif used to create the query graph, the titles of its articles serve better as expansion features for small or large tops of retrieved documents.

For that purpose we have implemented the pipeline depicted in Figure 5. This pipeline allows configuring the system in a way that, first, it creates several query graphs with different configurations, for example one using the triangular motif, another using the square motif and yet another one using a combination of both types of motifs. Then, using each of these query graphs, in combination with the input and the entities (not depicted in the figure) the system creates a query, as described in detail in Section 4. Then each of these queries is run by the search engine which returns a set of documents. Finally, the documents are combined into a single list of documents that is returned to the user as the result to his/her request.

Since Dexter is capable of recognizing the entities and link them with Wikipedia, which is the goal of this module, it is the first library that we use. Only if Dexter is not able to find any matching entry, we use Alchemy. In that case, once Alchemy returns the set of entities, we use Dexter again.
to process one by one and link them with Wikipedia. We have observed, that preprocessing the input with Alchemy
and then using Dexter, allows Dexter to retrieve input nodes
that it could not find with just the input text.
In Table 2 we provide a few examples of inputs and the results of the entity linking process. We observe that for the
request number 73 and 93 of Image CLEF the process works properly and returns two and one input nodes respectively,
all of them referring to correct entities within the input. However, for the input of the request number 96, the process
retrieves an input node which does not refer to the correct entity of the input. Instead of linking the entity shaking hands
with the article Handshake, it links it with the article Shake, which is a disambiguation page. Finally, we see that
the entity linker module its not able to retrieve anything for the input of the request number 110. It is difficult for
us to understand the reasons behind these mistakes, since the entity linking is carried on by Dexter. In case of not
returning entities, the pipeline is stopped and the system cannot look for expansion features However, according to
our experiments this is very rare.

Query Builder & Search Engine

Technically, we should differentiate between the request of the users, in the form of a set of keywords, from the set of “instructions” that the search engine is capable of under-
standing and processing. To the latter we call it query. The goal of the query builder is precisely to build a query that
is actually understandable by the search engine.

For this paper we have used Indri [19] as the search en-
gine that processes the query. Indri is a state of the art
open-source search engine that provides phrase matching, term proximity, explicit phrase weighting and the usage of pseudo-relevance techniques. Indri language consists of sev-
eral operators that we use to assemble the different elements
that form the queries:

- **combine**: indicates that the different elements have to
 be weighted equally and combined in an “or” fashion
 within the search engine.

- **weight**: allows specifying a different weight for each of
 the elements.

- **#**: ordered window – elements must appear ordered,
 with at most N-1 elements between each. #1 indicates
 exact phrase matching.

At this point of the pipeline depicted in Figure 1 the
intent of the user is described by: i) her/his input, which
is written in natural language, as a set of keywords, ii) the
input nodes and iii) the query graph. In order to build

¹Real Wikipedia pages can be visited Wikipedia adding the prefix https://en.wikipedia.org/wiki/ to the input node.

Request ID	Input	Input Nodes
73	graffiti street art on walls	Graffiti
93	cable car	Cable_car
96	shaking hands	Shake
110	male color portrait	

Table 2: Entity linking on Image CLEF queries

Query 1: Expanded query written with the Indri language.

```
1: #combine(
2: %input
3: %combine(graffiti street art on walls)
4: %entities
5: %combine(#1(graffiti) #1(street art))
6: %expansion features
7: #weight(
8: 5.0#1(stencil) 5.0#1(yarn bombing)
9: 4.0#1(above (artist)) 3.0#1(banksy)
10: 3.0#1(john fekner) 3.0#1(urban art)
11: 3.0#1(public art) ...
12: )
13: )
```

The input keywords are assembled with the combine operator. To process the input nodes we use their corresponding article titles. Each title is assembled with the phrase matching operator #1. Then, titles are assembled, again, with the combine operator. In order to process the query graph, we only use the articles and discard the categories. Articles are processed in the same way as input nodes, via phrase matching, but they are assembled together with the weight operator. The weight of each title is the number of motifs in which it has appeared and that we annotated during the query graph creation process. Notice that this means that we are also exploiting the structural properties to build the query. These three elements can be used isolated or combined into a single query by means of the combine operator.

Let us use a syntax sugar to refer to the queries that we may send to the search engine. We call input, entities, and expansion features to the Indri-formated input, titles of the input nodes and titles of the articles of the query graph, respectively. When we combine all these components into a single query, we talk about the expanded query.

In Query 1 we show part of a query written in Indri that combines the three components. The input is in the third line, the entities are in the fifth line and the expansion features are from the seventh line on. Note that the expansion features are weighted according to what we explained, thus, stencil and yarn bombing have appeared in five motifs, above (artist) in four and the rest of the expansion features are the titles of articles that have appeared in 3 motifs.

In Section 4 we analyze the best way to combine those three components in order to achieve the best results.

Datasets

For the evaluation of SQE we use three datasets:

Image CLEF: This is a multimedia retrieval dataset. The collection of results contains 237,434 images downloaded from Wikipedia, which have short descriptions as metadata. Approximately, 60% of these descriptions contain texts in English. The test collection also provides fifty requests. Each of which consists of an input in the form of a set of keywords, a brief description in natural language, and a set of relevant images in the test collection. This dataset has been used during the implementation of the query expansion system.

CHIC 2012 & CHIC 2013: These datasets are based on cultural heritage retrieval. Both datasets shared the collection of results, which contains 1,107,176 short documents.
Table 3: Precision obtained by different configurations at different levels of precision. † indicates statistically significant improvement for the Image CLEF dataset.

Configuration	P@5	P@10	P@15	P@20	P@30	P@100	P@200	P@500	P@1000
input	0.206	0.226	0.226	0.213	0.195	0.133	0.077	0.038	0.018
entities	0.244	0.229	0.213	0.195	0.127	0.081	0.040	0.021	0.011
input + entities	0.409	0.401	0.384	0.349	0.282	0.147	0.059	0.040	0.020†
expanded query 1	0.462	0.411	0.379	0.315	0.171	0.102	0.048	0.025†	
expanded query 2	0.491	0.401	0.362	0.301	0.164	0.104	0.051	0.027†	
expanded query 3	0.538	0.515	0.445	0.339	0.163	0.095	0.042	0.023†	

Each dataset provides a set of fifty requests and their corresponding valid results. These datasets have been only used for experimental reasons, and never during the implementation of the system to avoid overfitting.

Wikipedia Dump & Graph Database Manager

We use the English Wikipedia dump of July 2nd, 2012 as our KB. It has 9,483,031 articles and 99,675,360 links among articles, 1,320,671 categories, 3,795,869 links among categories and 41,490,074 links among articles and categories.

We use Sparksee [14] as our graph database manager. The database requires about 8GB in disk. Notice that for each article we only store its title because we do not need the content of the article to apply SQE.

Evaluation

To evaluate the results we use TrecEval, which is a program to evaluate TREC results using the standard NIST evaluation procedure. This is possible because CLEF datasets are TREC compatible. We focus on the analysis of the system’s precision for the top 5, 10, 15, 20, 30, 100, 200, 500 and 1000 results, which are the default tops in TrecEval. Notice that the precision of the results is defined as the fraction of retrieved documents that are relevant to the user.

To show the statistical significance of SQE, with p<0.05, we have done the paired t-test, which is used to compare two population means, usually in 'before-after' studies. For the tests we have used as the 'before' situation the best configuration among the input, issued by the user, the entities, or the combination of both the input and the entities.

4. EXPERIMENTS

4.1 Query Graph Expansion Evaluation

We start analyzing the potential of the query graphs to improve the results. For this reason, we have isolated the query graph expansion module from the entity linker module, since the later could introduce errors that would propagate and, hence, it would make it difficult to understand the real benefit of using our proposed strategy. For that purpose, we have selected manually the input nodes of the entities in the input.

For these experiments, we focus on the Image CLEF dataset, since it is the dataset that was used in the analysis of [11], and that for which we have the ground truth. As baselines we use the input, which is the text issued by the user, the entities, whose input nodes have been manually selected and the input + entities. Then, we study the results achieved using three different ways of creating the expanded query (input + entities + expanded features) that differ in the way of creating the query graph, out of which the expansion features are extracted. In the expanded query 1, the triangular motif is used, in the expanded query 2 both the triangular and the square motifs are used to create the query graph and in the expanded query 3 only the square motif is used. We also compare our current results with those obtained in [11], which we use as an upper bound as they were achieved using a ground truth query graph (Upper bound Cycles length 3 and Upper bound Cycles length 4).

In Table 3 we see that the three query expansion configurations improve, with statistical significance, the precision achieved either for the input, the entities or the combination of both for all the tested levels of precision. This means that the achieved improvement is due to the introduction of the expansion features, and not only due to the identification and usage of the entities.

We also see that the results achieved by the expanded queries represent, in the worst case scenario (expanded query 3, P@20 - 0.362), the 71.41% of the upper bound results (cycles of length 4, P@20 - 0.485). In average, this percentage is 85.86%, which means that the proposed query expansion strategy is close to the results achieved by the upper bound. Note that the results achieved by the upper bound configurations are due to the search of cycles within a controlled environment, which are the ground truth query graphs created knowing a priori which were the valid documents for each user request. Now, we are blindly creating the query graphs, traversing the whole Wikipedia graph with the only information of the cycles characteristics, out of which we have described the motifs. So, it is expected that the created query graphs and the ground truth query graphs are not equal. The former may lack some articles that existed in the latter or it may have articles that did not appear.

In Figure 6 we show the percentual improvement of the three expanded queries shown in Table 3 with respect to the best result achieved by the input, the entities or the combination of both. An analysis of these configurations reveals three different ranges, depending on the query expansion
configuration that achieves the best results. The first range which includes the first five results, up to P@5, the second range that goes from P@5 to P@100 and the third range from P@100 to P@1000.

Range P@1-P@5: The three configurations achieve an improvement around the 80%. However, the one that achieves the best results is the expanded query 1, whose query graph is created only by means of triangular motifs. According to our results, this configuration introduces 0.76 articles in the query graph (and expansion features) per user request. This means that this type of motif is very restrictive - given an input node it is difficult to find other articles that are related to it through this type motif –, but very trustful. The introduction of the expansion features via the triangular motifs allows the system to achieve an improvement of 83.87%. However, since there are just a few expansion features, the expanded query is not very different from the input issued by the user, and the improvement decreases quickly as we look at larger tops.

Range P@10-P@100: The best results are achieved by the expanded query 2 and the improvement goes from 83.85% to 34.22%. This configuration consists in creating the query graphs using triangular and square motifs. The combination of both types of motifs introduces in average 20.96 expansion features per query. The introduction of the expansion features that are obtained through the square motif, allow the system to introduce expansion features that are not as close to the original input but still related and useful for larger tops. However, the fact that these expansion features are combined with those introduced by the triangular motifs makes this configuration the best for this range in the middle between very small tops (P@5) and larger ones (from P@100 to P@1000).

Range P@100-P@1000: We observe that the configuration that allows achieving the best results is the expanded query 3 which allows an improvement from 27.99% to 33.30%. This configuration introduces, in average, 20.48 expansion features per query. The fact that these expansion features are not so tied to the original input issued by the user enables to retrieve documents that were not selected by the other configurations.

To understand why the percentual improvement diminishes with the size of the analyzed top, we need to understand that the average number of correct documents per query is 68.8. Hence, it is difficult to keep improving when the amount of retrieved documents is much larger than the amount of actually valid documents.

4.2 System Evaluation

We now analyze the whole system including the entity linker module. For that purpose, and according to the results previously shown, we will use the variation of the system depicted in Figure 5. We have configured the system to use the set of results obtained by the configurations previously discussed: expanded query 1, expanded query 2 and expanded query 3 to build the list of results that are returned to the user. Notice that, since the three expanded queries are expressing the same user request but using different expansion features, it is expected that the three sets of results share many documents. As a consequence, in order to obtain the best of each configuration, the ranges previously described have to be adjusted. Experimentally, we have configured the system to build the final list of results in a manner that the first 5 results come from expanded query 1, then 30 results are included from expanded query 2, and the rest of the results, up to 1000, come from expanded query 3.

In Figure 7, we show the percentual improvement for Image CLEF, CHIC 2012 and CHIC 2013 over the best execution without the expansion features –using only the input, only using the entities (manually and automatically selected) or using both the input and the entities–. More precisely, we show the percentual improvement executing the expanded query, selecting manually the entities, expanded query (M), and also selecting the entities automatically, as described in Section 3, expanded query (A). We also show the percentual improvement using only the expansion features to retrieve the results. For the three datasets of Figure 7 we see that using the expansion features in an isolated way is not useful to improve the precision of the system, but diminishes the quality of the results. That supports the idea of assembling the expanded query as described in Section 3, using i) the input issued by the users, ii) the entities and iii) the expansion features. The input, even not being the best way to express the real intention of the user, due to his/her lack of knowledge and the vocabulary mismatch, is the only query form in which we are sure that the system has not introduced any error and hence, it helps to diminish errors that could be introduced later in the process. Introducing the entities, reinforce the input, removing all signs of ambi-
ually or automatically selected); and only the expansion features.

Regarding the improvement achieved by SQE, which is depicted as expanded query (M) and expanded query (A), we observe that it is improving the results significantly. We also observe that there are differences between selecting the entities manually or automatically. The manual entity selection is almost an upper bound of SQE because it isolates the creation of the query graphs from errors that could be introduced due to the entity linking module, as it is shown in Table 2. Nonetheless, we observe that in the worst case scenario (Image CLEF, P@5), the improvement achieved by expanded query (A) represents 81.89% of the result achieved by expanded query (M). As shown in Figure 7(a) there is also a difference between the results achieved by expanded query (M) and expanded query (A) for the larger tops, while in small tops is imperceptible. It is difficult to explain why in Image CLEF and CHiC 2012 the difference is noticeable in small tops, while in CHiC 2013 it is noticeable in larger tops. The most simple explanation is that since the set of requests are different, it is difficult to expect the same behavior. Another reason may be that, although similar efforts have been made to select manually the entities, those of the CHiC 2013 dataset could not be as precise as the ones in Image CLEF and CHiC 2012. Entity linking is not the focus of this paper, however, improving the current entity linking techniques used in our system would improve the results, making it possible to achieve the results of selecting manually the entities and the input nodes.

In Tables 4a, 4b and 4c we show the precision achieved in the three datasets. In particular, we show the results achieved by our baselines, which are the input; the entities selected manually (entities (M)); both the input and the entities (either manually or automatically selected); and only the expansion features. We also show the results achieved by the expanded query, both selecting the entities manually expanded query (M) and automatically expanded query (A). The results show that both expanded query (M) and expanded query (A) present statistically significant improvements with respect to the baselines for the three datasets (p < 0.05).

In Table 4a we show that the combination of query graphs allows achieving even better results than each of the configurations independently in their best range, as shown in Table 3. This supports our strategy of combining the results obtained by different expanded queries to improve the quality of the results independently the amount of them.

Focusing only in expanded query (A) we also observe differences among the results for the three datasets. At first sight we could think that it performs better with Image CLEF because the precision achieved with this dataset goes from 0.380 (P@5) to 0.0029 (P@1000), while for CHiC 2012 and 2013 it goes from 0.232 to 0.013 and from 0.304 to 0.017 respectively. We could also think this could be due to an overfitting of SQE for Image CLEF, since it is the dataset that has been used during the development of the system. However, there are objective facts that explain this behavior. First, the document collection of Image CLEF consists of 237,434 documents, while the document collection of the CHiC datasets has 1,107,176. This makes Image CLEF an easier dataset. Moreover, Image CLEF has an average of 68.8 correct results per request, while CHiC 2012 and CHiC 2013 have 31.32 and 50.6 respectively. In addition, all the requests in Image CLEF have at least 1 correct result, while in CHiC 2012 there are 14 requests (out of 50) that do not have any correct result and in CHiC 2013 there is 1 request without any correct result. From an absolute value perspective, it is easier for the system to achieve good results in terms of precision, when most of the requests have valid results, and even easier if the number of results is higher. Hence, Image CLEF is the one that achieves better results, CHiC 2013 comes next and finally, CHiC 2102. Moreover, although from an absolute value point of view (as show in Table 4a), it may appear that our system works better for Image CLEF, from a relative point of view (as depicted in Figure 7), we see that the percentual improvement for the three datasets is equivalent, and even better for the CHiC 2013 dataset.

4.3 System Performance

We also evaluate the performance of SQE. Even though it is not the main concern of this paper to address possible bottlenecks that might prevent SQE to be applied in a practical context, we show that it incurs in a negligible overhead. Note that we have not used any technique, such as indexing or exploiting parallelism, to speed up the process.

Table 4: Comparison of the precision achieved in the datasets. † indicates statistically significant improvement.

(c) CHiC 2013 results.

Top	Image CLEF (M)	P@5	P@10	P@15	P@20	P@30	CHiC 2012 (M)	P@5	P@10	P@15	P@20	P@30
5	0.458	0.282	0.203	0.157	0.137	0.097	0.048	0.181	0.124	0.113	0.106	0.097
10	0.458	0.282	0.203	0.157	0.137	0.097	0.048	0.181	0.124	0.113	0.106	0.097
15	0.458	0.282	0.203	0.157	0.137	0.097	0.048	0.181	0.124	0.113	0.106	0.097
20	0.458	0.282	0.203	0.157	0.137	0.097	0.048	0.181	0.124	0.113	0.106	0.097
30	0.458	0.282	0.203	0.157	0.137	0.097	0.048	0.181	0.124	0.113	0.106	0.097
In Figure 8 we show the average execution time per request for each of the three datasets that have been used in this paper, assuming that the entities are selected automatically (expanded query (A)). We divide the execution time into three parts. The Entity Linking time, which is the time that Dexter and Alchemy need to do the entity linking. The query graph expansion time, which is depicted as Query Graph Expansion 1, 2, 3 which corresponds to the time spent creating the query graphs of the expanded query 1, 2, 3, previously described. And the Running Query time which is the time spent running the query by the search engine. According to the results, the average time to run a request and to obtain the documents goes from 1373.38 ms. (Image CLEF) to 8907.76 ms. (CHiC 2012) which is still far from being considered “real time”. Nonetheless, notice that the total query expansion time is negligible compared with the whole process. In the worst case scenario, which is the Image CLEF dataset, the expansion time represents 14% of the running time, while in the two other datasets this only represents 4%. Moreover, this time would probably be easily reduced by parallelizing the expansion process, which would reduce the expansion process time to the maximum of the expansions times, instead of the aggregation. That could also be done for the running time. Regarding the differences among the running time of the three datasets, it is difficult for us to justify them or even explain them, because the process is carried on by Indri. We do not blame in any case Indri for the running query time, because it could be probably reduced indexing the document collection in a better way. However, we have detected, and it is expected to happen, that the more expansion features introduced during the query expansion, the longer it takes to solve the query. According to our results the average number of expansion features for the queries of Image CLEF, CHiC 2012 and CHiC 2013 are 26.7, 46.06 and 33.52 respectively, which is correlated with the time spent running the query.

4.4 Pseudo-Relevance Feedback benefits

We have implemented a query expansion technique that is orthogonal to many other techniques, some of them reviewed in Section 3. As an example, we have combined SQE with Pseudo-relevance feedback, another query expansion approach. Pseudo-relevance feedback techniques consist in assuming that the initial set of retrieved results are good and, hence, they can be used as a source of reliable expansion features. In Tables 5(a), 5(b), and 5(c) we show the results achieved by combining the input, the entities (A), and the expanded query (A) with pseudo-relevance feedback. We have used the implementation of pseudo-relevance that is inbuilt in Indri and we have used the default configuration. For Image CLEF, we observe an important improvement for the precision of P@5, up to 13.68%, while the rest of the improvements are not as remarkable. For the CHIC datasets the improvement is more homogeneous for most of the observed tops. Moreover, notice that pseudo-relevance feedback techniques are not capable of improving the results of non-expanded queries, on the contrary they tend to diminish the quality of the results. We are not familiar with relevance feedback techniques nor their current implementation in Indri, thus we have not tuned the build-in pseudo-relevance feedback of Indri to better fit with our way of expressing the expanded query, which would probably turn up in better results. Nonetheless, our results show the potential of SQE in combination with other techniques.

5. RELATED WORK

Query expansion techniques can be classified into several families depending on the methods used to obtain the expansion features: linguistic analysis [10], query specific [5], query-log analysis [18], and external source of information such as KB. We focus on the KBs family.

The classical use of KBs consists in analyzing semantically their corpus to identify relevant information for the query that better describe the users request. Particularly, Wikipedia has become a frequently used large corpus of information. For example, Egozi et al. [7] present an interesting technique for query rewriting based on explicit semantic analysis, where they postprocess queries obtained from pseudo-relevance feedback using a KB. This technique depends on the quality of the pseudo-relevance feedback expansion, which is very poor in our document collection unless we previously expand the query, as seen in Section 4. In [13], the expansion features are extracted out of the most important terms of the Wikipedia article and are calculated with classical TF-IDF. The corpus is also used to derive search support tools. For instance, in [12] Wikipedia is used to
build a map of concepts, then, user requests are mapped onto those concepts, which make it easier for the search engine to resolve them. In [19], the textual corpus of Wikipedia is used to derive a Markov network to improve query expansion. There is a family of techniques that consist in using the anchor texts of the links of the KB to identify the expansion features. In [5], the authors show that anchor texts are similar to real queries regarding to term distribution and length, therefore they can be a source of expansion features. Also, in [10], they are exploited to build a virtual query log, that can be used to reformulate the queries. In [3], the authors propose a query expansion method for blog recommendation. Their method is based on the analysis of links. The anchor text of the most important twenty links is used to expand the query which results in a significant improvement in terms of precision. Such an approach could be used in our work to rate the importance of the links, and then, include the strength of connections in the motifs. In contrast to previous works, in this paper we do not focus on analyzing the content of the KB, or ranking the links among articles using other techniques. We rely exclusively on the structure of the KB. However, SQE could be combined with most of the techniques that exploit the content of the KB.

6. CONCLUSIONS AND FUTURE WORK

In this paper we contribute in opening a new research direction in the field of query expansion. We have proposed SQE as a query expansion technique that relies on the underlying network structures of KBs, which, to the best of our knowledge, have been barely exploited so far. From the analysis of a KB structure we have defined a set of structural motifs which allow relating their tightly linked entries.

Given a user request, which is the input of the system, usually represented as a set of keywords, SQE identifies its entities and links them with the corresponding nodes of the KB, which we have named input nodes. Then, only from the structural motifs and with no need of semantic analysis, SQE relates the input nodes with a set of semantically connected entries, out of which the expansion features are extracted.

There are many expansion techniques, which differ in the way they identify the expansion features. Some of those techniques use query logs to reword the queries, based on previous users behavior, others apply complex semantic analysis, so the system can understand the real intent of the user. There are many others that are not cited to synthesize. SQE does not expect to substitute them, we propose it as a query expansion method that relies on handy external KBs for those systems that lack the resource to apply other techniques, but also that, due to its orthogonality, can be combined with those in a search system.

Even though it is not the main concern of this paper to address possible bottlenecks that might prevent SQE to be applied in a practical context, we show that it incurs in a negligible overhead. Moreover, using performance techniques such as indexing the motifs, or using parallel techniques would speed up the process. Performance is something that we want to look at in our future research.

In the particular case of this paper we have used Wikipedia as our test KB. From the analysis of Wikipedia we have defined 2 different types of motifs that we called triangular motif and square motif. To evaluate SQE we have used three different datasets, Image CLEF, CHiC 2012 and CHiC 2013. The first collection is used during the development of the system, while the CHiC collections are used exclusively for the experiments. The results achieved by SQE are consistent for the three datasets ensuring that SQE is not overfitted for a particular one. From the results, we see that the triangular motif is useful to improve the results of small tops up to 83.87%, a combination of the triangular and the square motifs improve the result in between small and large tops up to 33.30%, while using the square motif exclusively improves the results of large tops up to 83.85%. Also, we have presented a way of combining several query graphs to improve the most no matter the top to be optimized.

In this paper we have shown the potential of using exclusively the structural properties of KB to identify tightly linked entries that are close semantically, with no need of using semantic analysis. We have succeed in identifying the proper motifs for Wikipedia, however there are many KBs and probably each has its own relevant structures. We need to expand our understanding of KBs, and study what other motifs may be relevant for other KBs besides Wikipedia.

7. REFERENCES

[1] AlchemyAPITM, http://www.alchemyapi.com/
[2] N. Aggarwal and P. Buitelaar. Query expansion using wikipedia and dbpedia. In CLEF, 2012.
[3] J. Arguello, J. Elsas, J. Callan, and J. Carbonell. Document representation and query expansion models for blog recommendation. In ICWSM, 2008.
[4] D. Ceccarelli, C. Lucchese, S. Orlando, R. Perego, and S. Trani. Dexter: an open source framework for entity linking. In ESAIR, pages 17–20, 2013.
[5] Y. Chang, I. Ounis, and M. Kim. Query reformulation using automatically generated query concepts from a document space. JPM, 42(2):453–468, 2006.
[6] V. Dang and W. Croft. Query reformulation using anchor text. In WSDM, pages 41–50, 2010.
[7] O. Egori, S. Markovitch, and E. Gabrilovich. Concept-based information retrieval using explicit semantic analysis. TOIS, 29(2):8, 2011.
[8] N. Eiron and K. McCurley. Analysis of anchor text for web search. In SIGIR, pages 459–460, 2003.
[9] L. Gan and H. Hong. Improving query expansion for information retrieval using wikipedia. IJDTA, 8(3):27–40, 2015.
[10] J. Guisado-Gámez, D. Domínguez-Sal, and J. Larriba-Pey. Massive query expansion by exploiting graph knowledge bases for image retrieval. In ICMR, page 33, 2014.
[11] J. Guisado-Gámez and A. Prat-Pérez. Understanding graph structure of wikipedia for query expansion. In GRADES, pages 6:1–6:6, 2015.
[12] J. Hu, G. Wang, F. Lochovsky, J. Sun, and Z. Chen. Understanding user’s query intent with wikipedia. In WWW, pages 471–480, 2009.
[13] a. K. S. M. Boer and W. K. Knowledge based query expansion in complex multimedia event detection. MTA, pages 1–19, 2015.
[14] N. Martínez-Bazan, M. Aguilá-Lorente, V. Muntés-Mulero, D. Domínguez-Sal, S. Gómez-Villamor, and J. Larriba-Pey. Efficient graph management based on bitmap indices. In IDEAS, pages 110–119, 2012.
[15] D. Metzler, S. Dumais, and C. Meek. Similarity measures for short segments of text. In ECIR, pages 16–27, 2007.
[16] C. Paice. An evaluation method for stemming algorithms. In SIGIR, pages 42–50, 1994.
[17] A. Prat-Pérez, D. Domínguez, J. Brunat, and J. Larriba-Pey. Shaping communities out of triangles. In CIKM, pages 1677–1681, 2012.
[18] Y. Song, D. Zhou, and L. He. Query suggestion by constructing term-transition graphs. In WSDM, pages 353–362, 2012.
[19] T. Strohman, D. Metzler, H. Turtle, and W. Croft. Indri: A language model-based search engine for complex queries. In ICOIA, volume 2, pages 2–6, 2005.
[20] T. Tsikrika, A. Popescu, and J. Kludas. Overview of the wikipedia image retrieval task at ImageClef. In CLEF, 2011.
[21] D. Wolfram, A. Spink, B. Jansen, and T. Saracevic. Vox populi: The public searching of the web. JASIST, 52(12):1073–1074, 2001.