Coexistence of paternally-inherited ABCC8 mutation and mosaic paternal uniparental disomy 11p hyperinsulinism

Joanna Yuet-ling Tung¹, Sophie Hon Yu Lai², Sandy Leung Kuen Au³, Kit San Yeung², Anita Sik Yau Kan³, Florence Loong⁴, Diva D. DeLeón⁵,⁶, Jennifer M. Kalish⁶,⁷,⁸, Arupa Ganguly⁸, Brian Hon Yin Chung²* and Kelvin Yuen Kwong Chan³*

Abstract

Background: Beckwith–Wiedemann syndrome (BWS) is an overgrowth syndrome with variable clinical phenotype and complex molecular aetiology. It is mainly caused by dysregulation of the chromosome 11p15 imprinted region, which results in overgrowth in multiple tissues, often in a mosaic manner.

Case presentation: A large-for-gestational-age infant without any other somatic features of BWS presented with medically refractory hyperinsulinism (HI) requiring 80% pancreatectomy. Next generation sequencing with congenital HI sequencing panel identified a pathogenic ABCC8:c.1792C > T (p.Arg598Ter) variant of paternal origin, suggestive of focal HI. However, pancreatic histology revealed atypical findings of coalescing nests and trabeculae of adenomatosis scattered with islets with isolated enlarged, hyperchromatic nuclei scattered throughout the pancreas. Methylation analysis, SNP-based chromosomal microarray and short tandem repeat markers analysis revealed mosaic segmental paternal uniparental disomy (UPD) 11p15.5-p15.1 in the pancreatic tissue, but not the peripheral blood, suggestive of BWS/BW-spectrum HI.

Conclusions: This case highlights the importance of integrating the clinical presentation and subsequent clinical course, together with radiological, genetic and histological findings in the definitive diagnosis of this rare yet clinically important entity. In addition, this is the first report that demonstrated the level of paternal inherited c.1792 T pathogenic variant in the pancreatic tissue being directly correlated to the mosaic level of pUPD.

Keywords: Congenital hyperinsulinism, Hyperinsulinism, Beckwith-Wiedemann syndrome, UPD11

Background

Congenital hyperinsulinism (HI) is the most common cause of persistent hypoglycaemia in infants. It is characterized by dysregulated insulin secretion from pancreatic β-cells and is a group of heterogeneous conditions that vary in terms of clinical severity, histopathology and molecular aetiology. Inactivating mutations of the ABCC8 and KCNJ11 genes, which are located on 11p15.1 and encode the SUR1 and Kir6.2 subunits of the pancreatic β-cell ATP-sensitive potassium channel (KATP channel) respectively, are the most common genetic aetiology of HI [1].

There are two major histological subtypes — diffuse and focal HI. The two have distinct molecular aetiology and response to medical treatment. Rarely, some patients have atypical histology that could not be easily classified into either focal or diffuse forms [2]. They have...
enlargement of β-cell nuclei that is distinct from diffuse
HI in several discrete regions of the pancreas, which
suggests the possibility of mosaicism [3].

Beckwith–Wiedemann syndrome (BWS) is an over-
growth syndrome with variable clinical phenotype and
complex molecular aetiology. It is mainly caused by the
dysregulation of the chromosome 11p15 imprinted re-
gion, which results in overgrowth in multiple tissues,
often in a mosaic manner [4]. While only a small pro-
portion of HI are associated with BWS, transient HI oc-
curs in up to 50% of BWS neonates, and 5% have
persistent HI requiring medical and/or surgical manage-
ment [5, 6]. The exact mechanism of HI in patients with
BWS has remained unclear. In a cohort of children with
HI and BWS, it was demonstrated that most did not
have a concomitant K ATP defect, however they did have
pancreatic lesions significantly larger than those seen in
cases of focal HI [5]. For the small proportion of BWS
with a concomitant paternally transmitted K ATP mu-
tation, their HI were remarkably severe and prolonged [5].
Somatic features of BWS may not be readily apparent in
these patients compared to classical BWS [5].

Herein, we report a case of a large-for-gestational-age
infant with medically refractory HI due to a paternally
transmitted K ATP mutation, who was subsequently diag-
osed with mosaic BWS related to mosaic segmental
pUPD (paternal uniparental disomy) 11 based on mo-
olecular testing of the pancreatic lesion.

Case presentation
A female infant was born at 37 weeks of gestation to a non-
sconsanguineous Chinese couple, with a birth weight of 4.3
kg (>2SD). Antenatal history was unremarkable with no
gestational diabetes, polyhydramnios nor placentalmegaly.
She presented with a hypoglycaemic seizure in the first
hour of life and required a high glucose infusion rate (GIR)
of 20 mg/kg/min to maintain normoglycaemia. Physical
examination showed macrosomia but no other dysmorphic
features (Fig. 1a). Critical samples taken when blood glu-
cose was 2.8 mmol/L on day 2 of life were compatible with
hyperinsulinaemic hypoglycaemia (insulin = 33.9mIU/L,
blood beta-hydroxybutyrate < 0.5 mmol/L). She was started
on the highest dose of diazoxide (15 mg/kg/day) with hy-
drochlorothiazide with no response. Octreotide (15mcg/kg/
day) was therefore added on with partial response, and she
still required a GIR of 11 mg/kg/min.

18F-Dopa PET scan at 3 months of age showed accen-
tuated 18F-dopa uptake in the pancreatic body com-
pared with a lesser degree of diffuse activity in
pancreatic head and tail, suggestive of a focal lesion (Fig.
1b). There was no organomegaly or asymmetric kidneys.
The first partial pancreatectomy was performed at 5
months of age. A distal lesion was identified by gross in-
spection intraoperatively, and a distal resection (~ 5%
pancreatectomy) was performed. Post-operatively, a high
GIR requirement at 11 mg/kg/min was still required.
Histology from resected tissue revealed no evidence of
pancreatic adenomatosis. Therefore, a second operation
was carried out with real-time frozen section evaluation,
resulting in an 80% pancreatectomy. Resected pancreatic
tissue revealed multiple discrete areas of adenomatosis
interspersed between areas of normal exocrine acini.
There were areas of coalescing nests and trabeculae (Fig.
1c) that were negative for p57 staining, suggestive of ad-
enomatous hyperplasia; whilst some areas contained is-
lets with isolated enlarged, hyperchromatic nuclei and
exocrine acini at the periphery (Fig. 1d). These enlarged
nuclei were positive for p57 staining. Post-operatively,
the GIR could be further lowered to 3 mg/kg/min but
she was unable to be completely weaned off her dextrose
infusion. She was subsequently restarted on diazoxide
with no response, and hence changed to octreotide. She
finally managed to be weaned off from intravenous dext-
rose with reasonable fasting tolerance of 9 h at the age
of 7 months.

Molecular analysis
Peripheral blood of proband and both parents, and the
resected pancreatic tissue (at two different areas: Pan-
creas 1A and Pancreas 2A) from the proband were col-
lected for genomic DNA extraction and further
molecular genetic analysis.

A heterozygous pathogenic ABCC8 NM_000352.4:
c.1792C > T p.(Arg598Ter) was found in the DNA ex-
tracted from peripheral blood of proband through NGS
gen panel analysis. This nonsense loss-of-function
c.1792T variant was previously reported [7]. Sanger
DNA sequencing confirmed the NGS finding and con-
firmed the variant was inherited from the father. The
proportion of the c.1792C and c.1792T variant present
in Pancreas 1A and 2A were of approximately 10%:90
and 30%:70%, respectively, estimated by peak height for
the c.1792C and c.1792T in the sequence chromatogram
(Fig. 2a). Absolute quantitation by digital PCR analysis
showed that the proportion of c.1792T was approxi-
mately 88.9 and 70.6% in Pancreas 1A and 2A, respect-
ively (Fig. 2b), which was concomitant to the level of
mosaicism of pUPD11p region carrying the c.1792T
variant inherited from the father.

DNA methylation analysis for chromosome 11p15
showed normal methylation pattern at both IC1 (H19-
IGF2 imprinting centre) and ICR2 (KCNQ1OT1/KCNQ1
imprinting centre) in the peripheral blood leucocytes of
the proband. However, gain of methylation at IC1 and
loss of methylation at IC2 were detected in the DNA ex-
tracted from resected pancreas, consistent with a diag-
nosis of Beckwith-Wiedemann Syndrome due to pUPD.
SNP-based chromosomal microarray (CMA) analysis showed copy number neutrality in DNA extracted from the peripheral blood of proband and parents. However, the pancreatic tissue showed a 17.44 Mb region of copy number neutral loss of heterozygosity (LOH) in 11p15.5-p15.1, suggesting segmental UPD 11, with a higher level of mosaicism for Pancreas 1A (~90%) compared to Pancreas 2A (~70%) (Fig. 2c) for the same region. Trio genotyping analysis on Pancreas 1A and parents using UPDtool [8] based on the SNP genotype results from CytoScan 750 k SNP array further revealed that the 17.44 Mb of LOH in Pancreas 1A was paternally inherited and the rest of the chromosome 11 was biparental, confirming mosaic segmental pUPD 11p15.5-p15.1. CMA was suggested to be a sensitive tool to investigate low level of mosaic segmental UPD [4],

Fig. 1 a. Picture of the proband with no somatic features suggestive of BWS. 1b. 18F-Dopa PET scan showed accentuated 18F-dopa uptake in the pancreatic body, with a lesser degree of diffused activity in pancreatic head and tail, suggestive of a focal lesion. 1c-e. Histology of resected pancreatic tissue. c. The pancreas shows preserved acinar architecture with prominent islets of Langerhans (arrowhead), consist of coalescing nests and trabeulae of endocrine cells. d. High power field showing some islets containing isolated, enlarged, hyperchromatic nuclei, which is over 2 times the size of the nuclei in the adjacent islet cells. e. Immunohistochemical stains confirmed the nests and trabeulae of endocrine cells are positive for neuroendocrine marker chromogranin and many of them express insulin by immunohistochemistry.
however that sensitivity varies between array types in the case of the Affymatrix CytoScan 750 k SNP array, mosaicism above 20% can be detected. Therefore, short tandem repeat (STR) markers analysis as a different molecular approach was performed to verify the level of mosaicism. Based on the peak height ratios of the maternal and paternal alleles detected in the DNA extracted from Pancreas 1A and 2A (Table 1), paternal allele from D11S1363 to D11S1923 in the 11p15.5-p15.4 region accounted for 83–90% and 68–76% respectively.
results were consistent with the mosaic level of pUPD in 11p15.5-q15.4 shown in CMA. The rest of the chromosome 11 was biparental in both pancreatic sites.

Discussion
We described an infant with severe HI resulting from a paternally-inherited ABCC8 mutation in conjunction with mosaic segmental pUPD11p15 demonstrated in the pancreatic tissue from the second resection but not in peripheral blood leucocytes, suggestive of BWS/BWS-spectrum HI. With pUPD11p15, the loss of maternal allele resulted in a loss of $H19$ and $CDKN1C$ expression, which usually negatively regulates cell proliferation; whereas the biallelic $IGF-II$ expression promotes cell growth [9]. Therefore, pancreatic adenosomatous hyperplasia and hyperinsulinism were attributed to the combination of the K_{ATP} defect along with the pUPD11 and the imbalance of imprinted genes at 11p15 region. In contrast to the classical histological findings in focal HI related to a paternally-inherited ABCC8 mutation with lesion confines to a small localized area, our patient had multiple foci of adenosomatous hyperplasia throughout the pancreas. Furthermore, the level of mosaicism of UPD cells in the pancreas correlated with the shifted allele frequency of the ABCC8 mutation. To our understanding, this is the first report using the accurate and sensitive assays to demonstrate the direct correlation of the paternally inherited ABCC8 c.1792T level with mosaic level of pUPD.

Other than being macrosomic, our patient had no other somatic features of BWS. The consideration of testing for BWS was triggered by the atypical histological findings. This distinct pancreatic histology had been described in children with Beckwith-Wiedemann Spectrum [5, 10, 11]. In a large series of 28 patients with BWS and persistent HI, their phenotypes were reported to range from isolated, subtle hemihypertrophy or umbilical hernia to frank BWS phenotype with multiple somatic features [6]. Only four of them had concomitant K_{ATP} mutations. Therefore, it was suggested that, even in the absence of somatic features of BWS, testing should be considered in HI cases with large ‘focal’ pancreatic lesions with or without a K_{ATP} mutation [5]. The diagnosis of BWS is important due to their inherent vulnerability to embryonal tumours, affecting up to 8% of BWS patients [4, 12]. Calton et al. reported a similar case of large/multifocal focal HI resulting from a paternally inherited recessive ABCC8 mutation [11]. That patient, like our patient, had no clinical features of BWS. BWS testing was only performed at the age of 20 months when he developed hepatoblastoma. Again, similar to our patient, pUPD11p was identified in the affected tissue (hepatoblastoma tissue and the stored pancreatic tissue), but not in peripheral blood or buccal DNA [11]. This highlights that infants with HI related to mosaic BWS could also develop BWS-associated tumours due to mosaic UPD, and that tumour surveillance is indicated. It has been suggested that the tumour risk could be associated with the level of mosaicism for UPD within specific organs [13]. Since tissues from other organs were not available for testing in our patient, it is unclear whether other organs are affected by pUPD11p. Therefore, tumour surveillance during early childhood is warranted.

Table 1 Analysis of short tandem repeat (STR) marker inheritance and their allelic ratio in pancreas DNA from two different loci (Pancreas 1A and 2A) from the proband

STR	Cytoband	Maternal	Paternal	Pancreas 1A	Pancreas 2A	Pancreas 1A mat:pat allelic ratio	Pancreas 2A mat:pat allelic ratio	Interpretation
D11S1363	11p15.5	a, b	a	a	a	0.1:0.9	0.24:0.76	mos paternal UPD
D11S1984	11p15.5	a	a, b	a	a	0.110.89	0.25:0.75	mos paternal UPD
CHR11-TH	11p15.5	a, b	c, d	c	c	0.170.83	0.32:0.68	mos paternal UPD
D11S1923	11p15.4	a, b	c, d	b, c	b, c	0.120.88	0.26:0.74	mos paternal UPD
D11S1338	11p15.4	a, b	a	a	a	nil	nil	uninformative
D11S904	11p14.2	a, b	c, d	a	a	0.11:1	1:1	biparental
D11S2632	11q12	a, b	c	b, c	b, c	0.11:1	1:1	biparental
D11S956	11q12.1	a, b	c, d	b, c	b, c	0.11:1	1:1	biparental
D11S898	11q22.1	a, b	a, b	a	a	0.1:1	1:1	uninformative
D11S1299	11q23.3	a, b	c	b, c	b, c	0.11:1	1:1	biparental
D11S488	11q24.1	a, b	c, d	a	a	0.11:1	1:1	biparental

mat:pat allelic ratio: maternal to paternal allelic ratio
nil: unable to provide allelic ratio as monoallelic pattern in observed in Pancreas 1A and 2A DNA
biparental: Pancreas 1A and 2A DNA show inheritance of one allele from each parent
mos paternal UPD: the inheritance of alleles in the pancreas 1A and 2A DNA is not unambiguously biparental (due to presence of low level of maternal allele), but is consistent with mosaic UPD of paternal origin
uninformative: unable to delineate inheritance by the STR marker pattern
With the variability of mosaicism between tissues in patients with BWS, the source of DNA for molecular analysis is extremely important. In our patient, absence of mosaicism in the peripheral blood leukocytes would have wrongly concluded as ‘normal study’ if the pancreatic tissues were not sent for further analysis. Therefore, similar to other mosaic conditions, affected tissue should always be sent for further molecular analysis if possible [4].

Conclusions
This case highlights the importance of integrating the clinical presentation and subsequent clinical course, together with radiological, genetic and histological findings in the definitive diagnosis of this rare yet clinically important entity. In managing HI caused by both pUPD11p and K_{ATP} mutation, the HI course could be severe, and hypoglycaemia might persist despite extensive pancreatotomy, trial of resuming medical treatment should be considered, allowing better glycaemic control.

Abbreviations
BWS: Beckwith–Wiedemann syndrome; CMA: Chromosomal microarray; GIR: Glucose infusion rate; HI: Hyperinsulinism; LOH: Loss of heterozygosity; UPD: Uniparental disomy

Acknowledgements
We thank the family for their permission to publish this case report. JMK acknowledges support from Alex’s Lemonade Stand Foundation for Childhood Cancer.

Authors’ contributions
JYL was the major writer of this manuscript and is the paediatric endocrinologist taking care of the case. KYC was a major contributor in writing the molecular findings of this case report. DDO, JMK and BHC had been involved in revising this case report critically for important intellectual content. All authors read and approved the final manuscript. KYC, KSV and AG analysed and interpreted the molecular analysis. FL performed the histological examination of the pancreas. All authors read and approved the final manuscript.

Funding
National Cancer Institute, Grant/Award Number: K08 CA193915.

Availability of data and materials
Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Written informed consent to write and publish this case report was obtained from the family.

Competing interests
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of this case report.

Author details
1Department of Paediatrics, Hong Kong Children’s Hospital, Kowloon, Hong Kong. 2Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong. 3Prenatal Diagnostic Laboratory, Department of Obstetrics and Gynaecology, Tsan Yuk Hospital, Room 314, 3/F, 30 Hospital Road, Sai Ying Pun, Hong Kong. 4Department of Pathology, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong. 5Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, USA. 6Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA. 7Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA. 8Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.

Received: 3 February 2020 Accepted: 16 June 2020
Published online: 10 July 2020

References
1. Vajravelu ME, De Leon DD. Genetic characteristics of patients with congenital hyperinsulinism. Curr Opin Pediatr. 2018;30(4):568–75.
2. Adzick NS, De Leon DD, States LJ, Lord K, Bhatti TR, Becker SA, et al. Surgical treatment of congenital hyperinsulinism: results from 500 pancreatectomies in neonates and children. J Pediatr Surg. 2019;54(1):27–32.
3. Husain K, Flanagan SE, Smith W, Ashworth M, Day M, Pierro A, et al. An ABCC8 gene mutation and mosaic uniparental isodisomy resulting in atypical diffuse congenital hyperinsulinism. Diabetes. 2008;57(1):259–63.
4. Brioude F, Kalish JM, Mussa A, Foster AC, Bilek J, Ferrero GB, et al. Expert consensus document: clinical and molecular diagnosis, screening and management of Beckwith-Wiedemann syndrome: an international consensus statement. Nat Rev Endocrinol. 2018;14(4):229–40.
5. Kalish JM, Moodharsingh KE, Bhatti TR, Ganguly A, Conlin UX, Becker SA, et al. Congenital hyperinsulinism in children with paternal 11p uniparental isodisomy and Beckwith-Wiedemann syndrome. J Med Genet. 2016;53(1):53–61.
6. Senniappan S, Ismail D, Shipster C, Beesley C, Hussain K. The heterogeneity of hyperinsulinemic hypoglycaemia in 19 patients with Beckwith-Wiedemann syndrome caused by maternal uniparental isodisomy and Beckwith-Wiedemann syndrome. J Med Genet. 2014;61(9):901–10.
7. Schroeder C, Sturm M, Dufke A, Mau-Holzmann U, Eggermann T, Poths S, et al. UPDtool: a tool for detection of iso- and heterodisomy in parent-child trios using SNP microarrays. Bioinformatics. 2013;29(12):1562–4.
8. Damaj L, le Lorch M, Verkarre V, Werl C, Hubert L, Nihoul-Fékété C, et al. Chromosome 11p15 paternal isodisomy in focal forms of neonatal hyperinsulinism. J Clin Endocrinol Metab. 2008;93(12):4941–7.
9. Laje P, Palladino AA, Bhatti TR, States LJ, Stanley CA, Adzick NS. Pancreatic surgery in infants with Beckwith-Wiedemann syndrome and hyperinsulinism. J Pediatr Surg. 2013;48(12):2511–6.
10. Calton EA, Temple IK, Mackay DJG, Lever M, Ellard S, Flanagan SE, et al. Mutational analysis of ABCC8, KCNJ11, GLUD1, HNF4A and GCK genes in 30 Chinese patients with congenital hyperinsulinism. Endocr J. 2014;61(9):901–10.
11. Brioude F, Kalish JM, Mussa A, Foster AC, Bilek J, Ferrero GB, et al. Expert consensus document: clinical and molecular diagnosis, screening and management of Beckwith-Wiedemann syndrome: an international consensus statement. Nat Rev Endocrinol. 2018;14(4):229–40.
12. Schroeder C, Sturm M, Dufke A, Mau-Holzmann U, Eggermann T, Poths S, et al. UPDtool: a tool for detection of iso- and heterodisomy in parent-child trios using SNP microarrays. Bioinformatics. 2013;29(12):1562–4.
13. Damaj L, le Lorch M, Verkarre V, Werl C, Hubert L, Nihoul-Fékété C, et al. Chromosome 11p15 paternal isodisomy in focal forms of neonatal hyperinsulinism. J Clin Endocrinol Metab. 2008;93(12):4941–7.
14. Laje P, Palladino AA, Bhatti TR, States LJ, Stanley CA, Adzick NS. Pancreatic surgery in infants with Beckwith-Wiedemann syndrome and hyperinsulinism. J Pediatr Surg. 2013;48(12):2511–6.
15. Calton EA, Temple IK, Mackay DJG, Lever M, Ellard S, Flanagan SE, et al. Hepatoblastoma in a child with a paternally-inherited ABCC8 mutation and mosaic paternal uniparental disomy 11p causing focal congenital hyperinsulinism. Eur J Endocrinol. 2013;168(2):114–7.
16. Maas SM, Vansenne F, Kadouch DJM, Ibrahim A, Bliek J, Hopman S, et al. Phenotype, cancer risk, and surveillance in Beckwith-Wiedemann syndrome depending on molecular genetic subgroups. Am J Med Genet A. 2016;170(9):2248–60.
17. Shuman C, Beckwith JB, Weksberg R. Beckwith-Wiedemann Syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ, Stephens K, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle, 1993. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1394/ [cited 2019 Sep 15].