Jakyakgamcho-tang in the Relief of Delayed-Onset Muscle Soreness in Healthy Adults: study protocol for a randomized, double-blind, placebo-controlled, crossover design clinical trial

CURRENT STATUS: ACCEPTED

Kyungsun Han
Korea Institute of Oriental Medicine

Ojin Kwon
Korea Institute of Oriental Medicine

So-Young Jung
Korea Institute of Oriental Medicine

In-hwa Park
Pusan National University Korean Medicine Hospital

Man-Suk Hwang
Pusan National University Korean Medicine Hospital

Sun-Young Park
Pusan National University Korean Medicine Hospital

Eui-Hyoung Hwang
Pusan National University Korean Medicine Hospital

Jun-Hwan Lee
Korea Institute of Oriental Medicine

Corresponding Author

ORCID: https://orcid.org/0000-0001-5730-6869

DOI: 10.21203/rs.2.9922/v2

SUBJECT AREAS
Translational Medicine

KEYWORDS
delayed onset muscle soreness, herbal medicine, Jakyakgamcho-tang, Peony licorice decoction, Shakuyakukanzoto, Shaoyaogancao-tang
Abstract
Background Muscle soreness after exercise, or so-called delayed onset muscle soreness (DOMS), may cause significant changes to muscle function and may increase the risk of sports injuries. Therefore, various therapeutic strategies have been studied to help recovery after exercise. Jakyakgamcho-tang (JGT) is a widely prescribed herbal medicine to treat muscle pain and cramps in traditional Eastern medicine. The aim of this study was to evaluate the effect of JGT for reducing pain and improving muscle damage after exercise. Methods This study is a randomized, double-blind, placebo-controlled, cross-over design clinical trial. A total of 30 healthy male adults will be recruited. Subjects who voluntarily wish to participate in this study will be hospitalized for 4 days. On the first day, the subjects will perform a standardized treadmill exercise for 1 hour to induce DOMS. After the exercise, the subjects will take either JGT or a placebo for 3 days. After a more than 1 week wash-out period, the subjects will repeat the same process with the other drug. Pain intensity, calf circumference, and pain threshold will be measured as outcome measures. Blood tests and blood pressure will be measured as safety assessments. In addition, blood tests for muscle damage and inflammation markers, such as creatine kinase, interleukin-6, and C-reactive protein will be analyzed. Discussion This will be the first trial to assess the effect of JGT on exercise-induced muscle soreness. Our findings will provide valuable data to determine the clinical effects of JGT on DOMS.

Background
Muscle soreness after exercise, or so-called delayed onset muscle soreness (DOMS), occurs after long-term physical activity or unusual exercise (1, 2). DOMS symptoms, such as pain, discomfort, muscle tenderness, or loss of range of motion, usually occur 12–48 hours after exercise and recover within 7 days. DOMS symptoms occur when structural damage to the muscle fibers initiates an inflammatory reaction cascade, which consequently increases inflammatory markers and intramuscular enzyme such as creatine kinase (CK) (2, 3). However, the mechanism of DOMS after exercise has not been fully elucidated. Although symptoms disappear over time, eccentric activity may cause significant changes to muscle function and may increase the risk of sports injuries (2). Analgesics can be used for severe pain but some studies have demonstrated a lack of efficacy of nonsteroidal anti-
inflammatory drug treatments (4, 5). Many studies have attempted to identify ways to alleviate DOMS symptoms, such as massage, cryotherapy, immersion, and laser acupuncture (6-11). Various supplements with anti-inflammatory and antioxidant effects have been studied to help recovery after exercise (12-14). Moreover, there has been increasing interest in herbal medicines to treat DOMS because of their holistic approach and minimal side effects (15).

Jakyakgamcho-tang (JGT), also known as Shakuyakukanzoto, Shaoyaogancao-tang, or Peony licorice decoction, is an herbal medicine widely used to treat acute pain in both skeletal and smooth muscle (16, 17). JGT is widely prescribed to treat muscle pain and cramps in traditional Korean and Japanese medicine (18, 19). JGT consists of the herbs *Glycyrrhiza uralensis* Fischer (Glycyrrhizae Radix et Rhizoma) and *Paeonia lactiflora* Pallas (Paeoniae Radix), which contain glycyrrhetic acid, glycyounmarin, isoliquiritigenin, paeoniflorin, and albiflorin as active components (20). Glycyrrhetic acid inhibits calcium-activated potassium channels, which consequently relax skeletal muscle, while paeoniflorin relaxes muscle fibers by regulating calcium movement near the neuromuscular junction (21, 22). Another study reported that JGT reduces excess potassium ions from the external space of myofibers, thus reducing muscle pain (23). Although *Glycyrrhiza uralensis* Fischer and *Paeonia lactiflora* Pallas have known analgesic and muscle relaxation effects, respectively, studies have shown that there is a synergetic effect when both herbs are used together (24-26). The analgesic effects of JGT have been reported by various animal studies (27, 28). However, no clinical trials have evaluated the therapeutic effects of JGT on exercise-induced muscle pain.

The aim of this study is to evaluate the effect of Jakyakgamcho-tang in pain reduction and improvements in muscle damage after exercise. The safety and effectiveness of JGT for DOMS symptoms will be demonstrated in a randomized, double-blind, placebo-controlled, cross-over design clinical trial. After inducing DOMS with 1-hour eccentric exercise, pain intensity, pain threshold in calf muscles and calf circumference will be measured from 0 to 72 hours after exercise along with blood tests for the safety analysis. Additionally, shifts in serum and urinary metabolites will be analysed using metabolomics-based analysis to provide insight into the pharmacological mechanism of JGT.

Methods
2.1 Objective
The aim of this study is to assess the therapeutic effect of JGT in the relief of DOMS symptoms. The primary outcome is the difference between the JGT and placebo groups in pain intensity, measured every 12 hours from 0 to 72 hours after exercise. Our secondary outcomes include the pain threshold in the calf muscles, calf circumference, and serum markers of muscle damage. Furthermore, exercise-induced shifts in serum and urinary metabolites will be analyzed using a metabolomics-based analysis.

2.2 Study Design
This will be a randomized, placebo-controlled, cross-over design, investigator-initiated clinical trial. The trial will be conducted at Pusan National University Korean Medicine Hospital. Thirty healthy male adults will be recruited by hospital bulletin boards and local advertisements. Subjects who voluntarily wish to participate in this study and provide written informed consent will undergo a screening assessment to determine their eligibility. Subjects will be hospitalized for 4 days. On the first day, the subjects will perform eccentric exercise for 1 hour to induce DOMS. After exercise, the subjects will be administered either JGT or placebo for 3 days. After a more than 1 week wash-out period, the subjects will repeat the same process with the other drug. The duration of the wash-out period was calculated based on the major component of JGT with the longest half-life. As glycycoumarin has the longest half-life ($T_{1/2}$) of 14.9 hours (20), we decided that the wash-out period should be 6.21 days or more, which is 10 times the half-life of glycoumarin needed to minimize the carry-over effect of JGT. The overall study flow is shown in Fig. 1. The detailed schedule is given in Fig. 2 and Table 1.

2.3 Participants
2.3.1 Inclusion criteria

(1) Subjects who have experienced muscle soreness with a numeric rating score (NRS) > 5 within 24 to 30 hours after exercise

(2) Healthy male subjects from 19 to 35 years of age without any recognized disease

(3) Subjects with a body mass index (BMI) > 18.5 kg/m2 and < 30 kg/m2
(4) Subjects who have not exercised regularly for 2 consecutive weeks or more in the last 6 months or more

(5) Subjects who have voluntarily signed the written consent approved by institutional review board (IRB) after sufficient explanation prior to the study

2.3.2 Exclusion criteria

(1) Subjects who have had an open wound or inflammatory disease within the last 6 months

(2) Subjects with neurological or muscular disorders that may affect muscle strength

(3) Subjects with missing limbs

(4) Patients with a seriously unstable medical condition during a physical examination, such as cardiovascular disease, respiratory disease, gastrointestinal disease, hepatobiliary disease, metabolic disease, endocrine disease, renal disease, urinary disease, or problems with the nervous system or mental health

(5) Those who are taking steroids, analgesics, muscle relaxants, or other medications that the researchers decide to be inappropriate, such as antispasmodics, antidepressants, antidiarrheals, antibiotics, and thrombolytics

(6) Subjects with a history of alcohol abuse or drug abuse within the past year

(7) Subjects who have taken other clinical trial drugs for less than 3 months

(8) Subjects with genetic problems, such as galactose intolerance, Lapp lactase deficiency, or glucose-galactose malabsorption

(9) Those who are unwilling to or unable to follow the study guidelines

(10) Others whom the researcher decides to be inappropriate for this study

2.4 Randomization and allocation concealment

Subjects will be randomly allocated to either the JGT or the placebo group with equal probability. An independent statistician will use SAS version 9.4 software (SAS Institute, Cary, NC, USA) to generate a random allocation list and will send the list to the pharmaceutical company for packing. The random allocation list will assign 30 subjects to group A or B. According to the cross-over design, both groups will take JGT and the placebo drug. Subjects in group A will take JGT and those in group B will take the
placebo drug during their first hospitalization.

2.5 Blinding

The statistician will send the randomization code to the pharmaceutical company for packing to maintain blindness on both the assessors and the subjects. JGT and the placebo drug will be manufactured by the same pharmaceutical company. The placebo drug will be manufactured in a form similar to the JGT. It was confirmed in advance that the taste and flavor will be similar. According to the random sequence, the drugs will be packed in the same form and will delivered to the hospital. The pharmacist will supply the drug sequentially during the trial period, according to the randomization code. The blinding will be maintained until all 30 subjects have completed the study and the database is locked. To evaluate whether the blinding was successful, a quick questionnaire will be conducted at the end of each hospitalization asking “which test drug do you think you were allocated to, JGT or placebo drug? And why do you think so?”

2.6 Exercise protocol for inducing muscle soreness

A standardized treadmill exercise protocol will be performed on the first day of hospitalization to induce DOMS. Previous studies have shown that downhill running protocols induce stress in the gastrocnemius muscles, as it is an unfamiliar eccentric exercise (29-31). The subjects will step backwards on a moving treadmill inclined at 13°. Starting with the right leg, the exercise will persist for 1 hour at a speed of 2.2 km/hour. The subjects will carry a 5–10 kg weight belt to ensure adequate stimulation to the muscles.

2.7 Intervention

After the treadmill exercise, the subjects will be administered either JGT or the placebo drug, three times daily before meals for 3 days (9 times in total). Both the JGT and placebo drug will be manufactured by Kyungjin Pharmaceutical Co., Ltd. (Gyeonggi-do, Republic of Korea), according to Good Manufacturing Practice guidelines. Both drugs will be prepared in the form of light brown granules. The constituents of each drug are shown in Table 2. After the first hospitalization, subjects will be re-admitted to the hospital after the wash-out period of more than 1 week. During the second hospitalization, subjects will be administered the other drug to the one taken before in accordance
with the cross-over design. No over-the-counter drugs or prescription-based medicines will be permitted throughout the clinical trial. If a subject already has taken a medication during the trial or the subject is suffering from a medical condition that needs medication, the subject will be dropped from the trial.

2.8 Outcome measures

2.8.1 Pain intensity

The primary outcome will be the visual analog scale (VAS) score to measure pain with motion. To assess the perception of DOMS after the treadmill exercise, four separate baseline pain intensity measures will be recorded: the numeric rating scale (NRS), a VAS with motion, a VAS at rest, and a VAS after walking downstairs. Pain intensity will be measured before the exercise, immediately after the exercise, and 1, 6, 12, 24, 36, 48, 60, and 72 hours after the exercise.

The VAS is one of the most widely used measures of pain intensity, determined on a 100-mm horizontal line, where 0 indicates “no pain” and 100 indicates “the worst imaginable pain” (32, 33). Assessors will record the length of the point marked by the subject. For the NRS pain score, the subjects will be asked to report overall pain intensity on a single 11-point numeric scale, with 0 indicating “no pain” and 10 representing “the worst imaginable pain” (33). Although studies have shown that both VAS and NRS have similar sensitivity in pain assessments, VAS is believed to have a higher degree of precision (34, 35). On the other hand, NRS has the advantage that it can be used effectively across all type of disorders because it is easy and simple. Taking advantage of each methods, VAS will be used to evaluate the detailed pain intensity with motion and NRS will be used to evaluate the overall pain intensity.

To assess time-weighted overall pain intensity, the sum of the pain intensity differences (SPID), which is an outcome measure that summarizes the treatment response over a period of time, will be calculated using the NRS scores that were evaluated before exercise and at 24, 48, and 72 hours after exercise (36). The SPID72 value will be obtained according to the following calculation: (1) PID (pain intensity difference) = NRS_t - NRS_{baseline} (2) SPID_t = ΣPID_t * (time in hours elapsed since the
previous observation). A higher SPID\textsubscript{72} value indicates larger differences in pain intensity over the 72 hours after exercise.

2.8.2 Calf circumference

The circumference around both legs will be measured at the level of acupuncture point BL57, horizontally on the ground to obtain a constant reference point. BL57 is in the middle of the calf between the two heads of the gastrocnemius muscle. After marking the acupuncture point with a pen for repeatability, the same measurer will use the same tape to repeat the measurements. The average value will be calculated after measuring three times consecutively. Calf circumferences will be measured before the exercise, immediately after the exercise, and 1, 6, 12, 24, 36, 48, 60, and 72 hours after the exercise.

2.8.3 Pain threshold

Pain threshold will be measured using a digital algometer (model FPX25, Wagner Instruments, Greenwich, CT, USA). The point of measurement will be acupuncture point BL57 in both calves, at which the rubber tip will be pressed perpendicularly into the muscle with a consistently increasing force of 0.25 kg/cm2/sec (37). The values will be obtained when the subject indicates the onset of pain. Each leg will be measured three times after brief resetting times. Average values will be obtained for further analysis. Pain threshold will be measured immediately after measuring calf circumference.

2.8.4 Muscle damage and inflammation

Venous blood samples will be collected to assess muscle damage and inflammation. Plasma CK activity will be used to assess muscle damage. C-reactive protein (CRP) and interleukin-6 (IL-6) concentrations will be measured to evaluate the inflammation induced by eccentric exercise. Whole blood samples will be obtained and centrifuged to isolate the serum. The samples will be stored at −80°C and analyzed at the end of the study. As plasma concentrations of the markers will differ depending on the reaction time, each marker will be collected at the appropriate time (38, 39). Blood samples for CK activity will be collected at six different time points: before exercise, and 12, 24, 48,
60, and 72 hours after the exercise. Blood samples for the inflammation markers will be collected at six different time points, including before the exercise, immediately after the exercise, and 1, 6, 12, and 24 hours after the exercise.

2.8.5 Safety assessment

Blood pressure and heart rate will be measured every day using an automated device. In addition, blood tests will be conducted before and after the drug intervention during each hospitalization. The blood tests will include aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total bilirubin, gamma-glutamyl transpeptidase, protein, albumin, blood urea nitrogen, creatinine, red blood cells, hematocrit, hemoglobin, white blood cells, and lipids.

2.9 Exploratory outcomes

2.9.1 Metabolomics analysis

During the hospitalization, plasma and urine samples will be obtained three times (before the exercise, 1 hour after the exercise, and 72 hours after the exercise) to examine the drug-induced and exercise-induced changes in metabolites. Urinary samples and plasma will be aliquoted into empty vials and maintained at −80°C until further analysis. When the trial has been completed, all samples will be analyzed simultaneously. Non-targeted analysis by mass spectrometry will be used to understand the metabolic changes after exercise and the drug intervention, which is called “sportomics” (11-13). Briefly, the supernatants will be obtained by adding acetonitrile or methanol and the solution will be injected into an ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS, Synapt G2Si; Waters, Milford, MA, USA) system. Information from the mass data, including retention time, ion intensity, and m/z will be extracted. After alignment and normalization, the multivariate data matrix will be exported into SIMCA-P (Umetrics, Umea, Sweden) for a multivariate statistical analysis. The ions contributing to separation of the JGT and placebo groups will be further investigated by searching the METLIN and human metabolomics databases.

2.9.2 Other outcomes

The degree of pain induced by eccentric exercise can vary depending on the usual momentum and
body composition. To determine the effects of usual physical activity and body composition on DOMS symptoms, the Korean version of the International Physical Activity Questionnaire Short Form (IPAQ-SF) and a body composition analysis will be performed on the first day of hospitalization. The IPAQ-SF consists of seven questions asking about the amount of time spent per week for activities (walking and moderate and vigorous activities) and sitting (11, 12). Total weekly physical activity for each activity category will be estimated by a metabolic equivalent energy expenditure (11). Body composition parameters, such as body fat percentage, fat mass, and muscle mass will be obtained with the InBody 720 instrument (Biospace, Seoul, Republic of Korea).

2.10 Sample size
As no clinical trial has evaluated the efficacy of JGT on DOMS, the sample size calculation was impossible. A study estimating the sample size for a pilot study proposed 15 subjects per treatment arm as an optimal sample size for the standardized effect size with 90% power and two-sided 5% significance (8).

2.11 Statistical analysis
The statistical analysis will be conducted by an independent statistician using SAS version 9.4 (SAS Institute). The significance level will be set at 0.05 in a two-tailed test. All continuous data will be presented as means and 95% confidence intervals (CIs). Categorical data will be reported as frequencies and percentages. The intention-to-treat (ITT) principle will be applied for the primary analysis. The ITT principle will include subjects who meet the full analysis set (FAS) criteria, including subjects who had the primary outcomes assessed once or more except for the baseline measures and who took the test drug at least once. Subjects who do not meet the eligibility criteria, those who did not take the test drug throughout the study, and those who have never been evaluated after the screening visit will be excluded from the FAS dataset. The per-protocol set will be analyzed, which will only include subjects who have completed the study as a supplementary analysis.

The baseline characteristics of the study subjects will be presented using a descriptive analysis for each group. The primary outcome will be the differences between the VAS score with motion measured at various intervals from 0 to 72 hours after exercise. A mixed-effect model repeated
measures (MMRM) model will be used to assess differences along with the time effect. The dependent variable will be the change in the VAS score (pain with motion) measured 0 to 72 hours after exercise. The model will include treatment and protocol-specified visits as fixed effects, and subjects as a random factor. Dunnett’s test will be used for multiple comparisons. The results of the secondary effective analysis will be analyzed using the same method as the primary outcome, in the case of continuous variables with time variation. Additionally, Student’s t-test or Wilcoxon’s signed-rank test will be used to compare before and after the treatment within each group. Categorical data will be analyzed using the chi-square or Fisher’s exact test. Missing values by maximum likelihood will be considered when the MMRM model is used. The last observation carried forward method will be adopted for missing values for Student’s paired t-test, the Wilcoxon signed-rank test, or repeated measures analysis of variance.

The incidence of serious adverse events (SAEs) and adverse events (AEs) related to the treatment will be analyzed for the safety assessment using the independent t-test or Wilcoxon’s rank-sum test. The percentage of subjects who experienced one or more side effects during the study will be analyzed using Pearson’s chi-square test or Fisher’s exact test.

2.12 Data management and monitoring strategies

All source documents, including informed consent forms, questionnaires, and worksheets will be collected in compliance with standard operating procedures. The data will be collected on an electronic data capture system through electronic case report forms (eCRF) using the Medidata RAVE data management system (Medidata Solutions Inc., New York, NY, USA). The Korea Institute of Oriental Medicine will be responsible for quality control throughout the study. An independent clinical research associate will regularly monitor the overall process to determine if the trial is performed in accordance with the protocol.

2.13 Adverse events

During the hospitalization, subjects will be asked if they have any physical discomfort other than DOMS symptoms. Occurrence of any AEs will be recorded on the eCRF after assessing severity and causality. If a SAE occurs, it will be reported to the IRB as soon as possible. When suspected
unexpected serious adverse reactions occur, they will also be reported to the Korea Food and Drug Administration according to the relevant regulations.

Discussion

This is a protocol for a randomized, double-blind, placebo-controlled, cross-over designed clinical trial to study the efficacy and safety of the herbal medicine JGT in the relief of DOMS in healthy male adults. The strength of this study lies in the rigorous design. In general, DOMS is difficult to test in a clinical trial because of the short duration of the symptoms. A standardized method for pain induction and a rigorously designed clinical trial will provide reliable results on the therapeutic effects of JGT in DOMS. The standard protocol items recommendations for interventional trials checklist is attached in Additional file 1. This study will provide a better understanding of the mechanisms of JGT for relieving muscle pain in general, as DOMS is an important experimental model to evaluate analgesic efficacy and to study movement-related pain (40, 41). We expect to provide novel insight into potential biological mechanisms of JGT through a metabolomics approach. In this protocol, the inclusion criteria of the study participants will be narrowed to male adults, and participants will be hospitalized during the intervention. Therefore, the results of the metabolomics analysis is expected to yield reliable results because factors affecting metabolites, such as age, gender, and food intake, will be controlled (42, 43). Moreover, as this is a 2 × 2 cross-over design study, each subject will serve as their own control to reduce individual variations.

To our knowledge, no clinical trial has evaluated the therapeutic effects of JGT on exercise-induced muscle pain. Several clinical trials have evaluated the antispasmodic and analgesic effects of JGT. Clinical trials of JGT to reduce pain have mostly considered pain caused by complications, such as muscular cramps of hemodialysis patients and myalgia caused by chemotherapy (44-48). Although it is widely prescribed to manage muscle soreness and myalgia, it is difficult to find any evidence other than a clinical study about JGT on painful muscle cramps in lumbar spinal stenosis patients (49). There was a retrospective case series study with 37 patients treated with JGT for muscle spasms and pain (16). However, the current clinical trial will be the first to assess the effect of JGT on exercise-induced muscle soreness. This study will provide valuable data to determine the clinical effects of JGT
on exercise-induced pain.

Trial Status

This study was approved by the Pusan National University Korean Medicine Hospital IRB (IRB approval number: 2018013). The most recent version of the protocol is version 1.4 (3 January 2019) and this was also approved by the IRB. Recruitment began on 7 February 2019. This study is expected to be complete by August 2019.

Abbreviations

DOMS: delayed onset muscle soreness; JGT: Jakyakgamcho-tang; NRS: numeric rating score IRB: institutional review board;; VAS: visual analog scale; SPID: sum of pain intensity differences; PID: pain intensity difference; CK: creatine kinase; CRP: C-reactive protein; IL-6: interleukin-6; IPAQ-SF: International Physical Activity Questionnaire Short Form; MET: metabolic equivalents; ITT: intention-to-treat; FAS: full analysis set; MMRM: mixed-effect model repeated measures; SAE: serious adverse events; AE: adverse events; eCRF: electronic case report form

Declarations

6.1 Ethics approval and consent to participate

This study was approved by the Pusan National University Korean Medicine Hospital IRB (IRB approval number: 2018013). All participants will sign the latest version of the informed consent form approved by the IRB. This trial was prospectively registered before the recruitment. This trial was registered at the Clinical Research Information Service (CRIS identifier: KCT0003457), which is one of the World Health Organization’s International Clinical Trials Registry Platforms. This study was approved by the Korea Food and Drug Administration for the investigator-sponsored investigational new drug application (approval number: 31983). If protocol modifications are necessary, it will be reported to both the IRB and the Korea Food and Drug Administration. The personal information of subjects will be kept secret and will be processed anonymously.

6.2 Consent for publication

Not applicable.

6.3 Availability of data and materials

The final dataset of the clinical trial will be accessible to all authors and the Ministry of Food and Drug
Safety (MFDS).

6.4 Competing interests

The authors declare no competing interests.

6.5 Funding

This study was supported by Korean Institute of Oriental Medicine (KIOM). As a government-funded research institute, “Establishment of the evidence for clinical practice-based Korean Medicine treatment technologies” project is currently underway (K18121). KIOM is responsible for the study design, data collection, analysis, data interpretation, and presentation of the results.

6.6. Authors’ contributions

KH designed the study and drafted the manuscript. OK planned the statistical strategy and was actively involved in the sample size calculation and random allocation. SYJ took part in study design. As investigators at the hospital, IHP, MSH and SYP were involved in study design and IRB approval. EHH is a principal investigator at the hospital. JHL is the principal investigator of the research project and was involved in the study design. EHH and JHL have the final responsibility for publication. All authors have read, revised, and approved the final version of the manuscript.

6.7 Acknowledgements

The authors express their gratitude to all subjects who have or will participate in this clinical trial.

References

1. Connolly DA, Sayers SP, McHugh MP. Treatment and prevention of delayed onset muscle soreness. Journal of strength and conditioning research. 2003;17(1):197-208.

2. Cheung K, Hume PA, Maxwell L. Delayed onset muscle soreness. Sports medicine. 2003;33(2):145-64.

3. Lieber RL, Fridén J. Morphologic and mechanical basis of delayed-onset muscle soreness. JAAOS-Journal of the American Academy of Orthopaedic Surgeons. 2002;10(1):67-73.

4. Tokmakidis SP, Kokkinidis EA, Smilos I, Douda H. The effects of ibuprofen on delayed
muscle soreness and muscular performance after eccentric exercise. Journal of strength and conditioning research. 2003;17(1):53-9.

5. Barlas P, Craig JA, Robinson J, Walsh DM, Baxter GD, Allen JM. Managing delayed-onset muscle soreness: lack of effect of selected oral systemic analgesics. Archives of physical medicine and rehabilitation. 2000;81(7):966-72.

6. Hilbert JE, Sforzo GA, Swensen T. The effects of massage on delayed onset muscle soreness. British Journal of Sports Medicine. 2003;37(1):72-5.

7. Zainuddin Z, Newton M, Sacco P, Nosaka K. Effects of massage on delayed-onset muscle soreness, swelling, and recovery of muscle function. Journal of athletic training. 2005;40(3):174-80.

8. Holub C, Smith JD. Effect of Swedish Massage on DOMS after Strenuous Exercise. International Journal of Exercise Science. 2017;10(2):258-65.

9. Rossato M, de Souza Bezerra E, da Silva DdCS, Santana TA, Malezam WR, Carpes F. Effects of cryotherapy on muscle damage markers and perception of delayed onset muscle soreness after downhill running: A pilot study. Revista Andaluza de Medicina del Deporte. 2015;8(2):49-53.

10. Machado AF, Almeida AC, Micheletti JK, Vanderlei FM, Tribst MF, Netto Junior J, et al. Dosages of cold-water immersion post exercise on functional and clinical responses: a randomized controlled trial. Scandinavian journal of medicine & science in sports. 2017;27(11):1356-63.

11. Chang WD, Wu JH, Chang NJ, Lee CL, Chen S. Effects of Laser Acupuncture on Delayed Onset Muscle Soreness of the Biceps Brachii Muscle: A Randomized Controlled Trial. Evidence-based complementary and alternative medicine : eCAM. 2019;2019:6568976.

12. Hillman AR, Taylor BC, Thompkins D. The effects of tart cherry juice with whey
protein on the signs and symptoms of exercise-induced muscle damage following plyometric exercise. Journal of functional foods. 2017;29:185-92.

13. Herrlinger KA, Chirouzes DM, Ceddia MA. Supplementation with a polyphenolic blend improves post-exercise strength recovery and muscle soreness. Food & nutrition research. 2015;59:30034.

14. Close GL, Ashton T, Cable T, Doran D, Noyes C, McArdle F, et al. Effects of dietary carbohydrate on delayed onset muscle soreness and reactive oxygen species after contraction induced muscle damage. Br J Sports Med. 2005;39(12):948-53.

15. Meamarbashi A. Herbs and natural supplements in the prevention and treatment of delayed-onset muscle soreness. Avicenna journal of phytomedicine. 2017;7(1):16-26.

16. Jung WS, Moon SK, Park SU, Ko CN, Cho KH. Clinical assessment of usefulness, effectiveness and safety of jackyakamcho-tang (shaoyaogancao-tang) on muscle spasm and pain: a case series. The American journal of Chinese medicine. 2004;32(04):611-20.

17. Shin YS, Lee SI. A Review Study of Researches on Jakyakgamcho-tang. Herbal Formula Science. 2017;25(2):271-302.

18. Katayama K, Yoshino T, Munakata K, Yamaguchi R, Imoto S, Miyano S, et al. Prescription of kampo drugs in the Japanese health care insurance program. Evidence-based complementary and alternative medicine : eCAM. 2013;2013:576973.

19. Ryu H-r, Kim Y-j, Kim Y-k, Kim K-m. A Study of Patients Who Visited the Emergency Department at a Korean Medical Hospital: A Retrospective Chart Review. The Journal of Internal Korean Medicine. 2018;39(3):350-62.

20. Sadakane C, Watanabe J, Fukutake M, Nisimura H, Maemura K, Kase Y, et al. Pharmacokinetic Profiles of Active Components After Oral Administration of a Kampo Medicine, Shakuyakukanzoto, to Healthy Adult Japanese Volunteers. Journal of
21. Satoh H. Pharmacological characteristics of Kampo medicine as a mixture of constituents and ingredients. Journal of integrative medicine. 2013;11(1):11-6.

22. Kimura M, Kimura I, Kimura M. Decreasing effects by glycyrrhizin and paeoniflorin on intracellular Ca2+-aequorin luminescence transients with or without caffeine in directly stimulated-diaphragm muscle of mouse. The Japanese Journal of Pharmacology. 1985;39(3):387-90.

23. Suganami A, Sakamoto K, Ono T, Watanabe H, Hijioka N, Murakawa M, et al. The inhibitory effect of shakuyakukanzoto on K+ current in H9c2 cells. Fukushima journal of medical science. 2014;60(1):22-30.

24. Shen L, Cong WJ, Lin X, Hong YL, Hu RW, Feng Y, et al. Characterization using LC/MS of the absorption compounds and metabolites in rat plasma after oral administration of a single or mixed decoction of Shaoyao and Gancao. Chemical & pharmaceutical bulletin. 2012;60(6):712-21.

25. Shen L, Hu R, Lin X, Hong Y, Feng Y, Xu D, et al. Pharmacokinetics effect of shaoyao gancao compound with different decocting methods on characteristic ingredients in rat plasma after oral administration. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2012;37(1):52-6.

26. Xu CH, Wang P, Wang Y, Yang Y, Li DH, Li HF, et al. Pharmacokinetic comparisons of two different combinations of Shaoyao-Gancao Decoction in rats: competing mechanisms between paeoniflorin and glycyrrhetinic acid. Journal of ethnomedical. 2013;149(2):443-52.

27. Lee K-O, Kuk Y-B, Yun Y-G. Effects of Jakyakgamchotang extract on the Analgesic effect in Mice. Herbal Formula Science. 2003;11(1):161-70.

28. Omiya Y, Suzuki Y, Yuzurihara M, Murata M, Aburada M, Kase Y, et al. Antinociceptive
effect of shakuyakukanzoto, a Kampo medicine, in diabetic mice. Journal of pharmacological sciences. 2005;99(4):373-80.

29. Law RY, Herbert RD. Warm-up reduces delayed onset muscle soreness but cool-down does not: a randomised controlled trial. The Australian journal of physiotherapy. 2007;53(2):91-5.

30. Weerakkody NS, Whitehead NP, Canny BJ, Gregory JE, Proske U. Large-fiber mechanoreceptors contribute to muscle soreness after eccentric exercise. The journal of pain : official journal of the American Pain Society. 2001;2(4):209-19.

31. Whitehead NP, Weerakkody NS, Gregory JE, Morgan DL, Proske U. Changes in passive tension of muscle in humans and animals after eccentric exercise. The Journal of physiology. 2001;533(Pt 2):593-604.

32. Bijur PE, Silver W, Gallagher EJ. Reliability of the visual analog scale for measurement of acute pain. Academic emergency medicine. 2001;8(12):1153-7.

33. Hawker GA, Mian S, Kendzerska T, French M. Measures of adult pain: Visual analog scale for pain (vas pain), numeric rating scale for pain (nrs pain), mcgill pain questionnaire (mpq), short-form mcgill pain questionnaire (sf-mpq), chronic pain grade scale (cpgs), short form-36 bodily pain scale (sf-36 bps), and measure of intermittent and constant osteoarthritis pain (icoap). Arthritis care & research. 2011;63(S11):S240-S52.

34. Breivik EK, Bjornsson GA, Skovlund E. A comparison of pain rating scales by sampling from clinical trial data. The Clinical journal of pain. 2000;16(1):22-8.

35. Bahreini M, Jalili M, Moradi-Lakeh M. A comparison of three self-report pain scales in adults with acute pain. The Journal of emergency medicine. 2015;48(1):10-8.

36. Farrar JT, Portenoy RK, Berlin JA, Kinman JL, Strom BL. Defining the clinically important difference in pain outcome measures. Pain. 2000;88(3):287-94.
37. Fischer AA. Pressure algometry over normal muscles. Standard values, validity and reproducibility of pressure threshold. Pain. 1987;30(1):115-26.

38. Kasapis C, Thompson PD. The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. Journal of the American College of Cardiology. 2005;45(10):1563-9.

39. Baird MF, Graham SM, Baker JS, Bickerstaff GF. Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. Journal of nutrition and metabolism. 2012;2012:960363.

40. Singla N, Desjardins PJ, Cosca EB, Parulan C, Arriaga A, Poole KC, et al. Delayed-onset muscle soreness: a pilot study to assess analgesic study design features. Pain. 2015;156(6):1036-45.

41. Matsuda Y, Kan S, Uematsu H, Shibata M, Fujino Y. Pain-Related Brain Activity Evoked by Active and Dynamic Arm Movement: Delayed-Onset Muscle Soreness as a Promising Model for Studying Movement-Related Pain in Humans. Pain medicine (Malden, Mass). 2015;16(8):1528-39.

42. Ramautar R, Berger R, van der Greef J, Hankemeier T. Human metabolomics: strategies to understand biology. Current opinion in chemical biology. 2013;17(5):841-6.

43. Yu Z, Zhai G, Singmann P, He Y, Xu T, Prehn C, et al. Human serum metabolic profiles are age dependent. Aging cell. 2012;11(6):960-7.

44. Hinoshita F, Ogura Y, Suzuki Y, Hara S, Yamada A, Tanaka N, et al. Effect of orally administered shao-yao-gan-cao-tang (Shakuyaku-kanzo-to) on muscle cramps in maintenance hemodialysis patients: a preliminary study. The American journal of Chinese medicine. 2003;31(3):445-53.

45. Hyodo T, Taira T, Takemura T, Yamamoto S, Tsuchida M, Yoshida K, et al. Immediate
effect of Shakuyaku-kanzo-to on muscle cramp in hemodialysis patients. Nephron Clinical practice. 2006;104(1):c28-32.

46. Hasegawa K, Mizutani Y, Kuramoto H, Nagao S, Masuyama H, Hongo A, et al. The effect of L-Glutamine and Shakuyaku-Kanzo-to for paclitaxel-induced myalgia/arthralgia. Gan to kagaku ryoho Cancer & chemotherapy. 2002;29(4):569-74.

47. Yamamoto K, Hoshiai H, Noda K. Effects of shakuyaku-kanzo-to on muscle pain from combination chemotherapy with paclitaxel and carboplatin. Gynecologic oncology. 2001;81(2):333-4.

48. Fujiwara H, Urabe T, Ueda K, Mizunoe T, Date K, Nakano M, et al. Prevention of arthralgia and myalgia from paclitaxel and carboplatin combination chemotherapy with Shakuyaku-kanzo-to. Gan to kagaku ryoho Cancer & chemotherapy. 2000;27(7):1061-4.

49. Takao Y, Takaoka Y, Sugano A, Sato H, Motoyama Y, Ohta M, et al. Shakuyaku-kanzo-to (Shao-Yao-Gan-Cao-Tang) as Treatment of Painful Muscle Cramps in Patients with Lumbar Spinal Stenosis and Its Minimum Effective Dose. Kobe J Med Sci. 2015;61(5):E132-E7

Tables

Table 1 Time schedule for the hospitalized clinical trial
◎ Assess only at the first hospitalization (Phase I). IPAQ-SF: International Physical Activity Questionnaire Short Form; CK: creatine kinase; CRP: C-reactive protein; IL-6: interleukin-6

Table 2. Constituents of Jakyakgamcho-tang and the placebo control drug
Day	Day1	Day2	Day3	Day4										
Timepoints	15:00	17:00	18:00	19:00	00:00	6:00	12:00	18:00	6:00	12:00	18:00	6:00	12:00	18:00
Time after exercise	-1hr	0hr	1hr	6hr r	12 hr	18 hr	24 hr	36 hr	42 hr	48 hr	60 hr	66 hr	72 hr	
Blood pressure	○	○	○	○	○	○	○	○	○	○	○	○	○	
Check for adverse event	○	○	○	○	○	○	○	○	○	○	○	○	○	
Physical examination	○													
Body composition analysis	○													
IPAQ-SF questionnaire	○													
Treadmill exercise	○													
Medication	○	○	○	○	○	○	○	○	○	○	○	○	○	
Randomization	○													
Blood tests	○													
Serum CK analysis	○													
Serum CRP, IL-6	○	○	○	○	○	○	○	○	○	○	○	○	○	
Pain intensity assessments	○	○	○	○	○	○	○	○	○	○	○	○	○	
Calf circumferences	○	○	○	○	○	○	○	○	○	○	○	○	○	
Pain threshold	○	○	○	○	○	○	○	○	○	○	○	○	○	
Serum & urine collection	○													
Blind assessment													○	
Test drugs	Constituents	Contents	Purpose of use											
--------------------	--	---------------------------------	---											
Jackyakgamcho-tang (JGT)	The amount contained in the single dose (3.0g)													
	Paeonia lactiflora Pallas	2g	Main component solid extract 480mg											
	Glycyrrhiza uralensis Fischer	2g												
	Lactose	1650mg	Excipient											
	Cornstarch	720mg	Excipient											
	Colloidal silicon dioxide	150mg	Excipient											
Placebo	The amount contained in the single dose (3.0g)													
	Lactose	1800mg	Excipient											
	Cornstarch	785mg	Excipient											
	Colloidal silicon dioxide	160mg	Excipient											
	Caramel color	255mg	Coloring											

Figures
Figure 1

Flow chart of the study.
TIMEPOINT	Study Period	Enrolment	Phase I	Phase II	Wash-out period (>1wk)									
		Day1	Day2	Day3	Day4	Day1	Day2	Day3	Day4	Day1	Day2	Day3	Day4	
ENROLMENT:														
Eligibility screen	X													
Informed consent	X													
Demographic	X													
Physical examination	X													
IPAQ-SF	X													
Allocation	X													
INTERVENTIONS:														
Treadmill exercise	X						X							
Jakyakgamcho-tang			X	X	X			X	X	X				
Placebo			X	X	X			X	X	X				
ASSESSMENTS:														
Blood pressure	X	X	X	X	X									
Blood tests		X							X	X	X			
NRS, VAS	X	X	X	X					X	X	X	X	X	
SPID 72									X					
Pain threshold	X	X	X	X										
Calf circumference			X	X	X									
CK, CRP, IL-6,	X	X	X	X										
Serum & urine collection										X	X			
Blind assessment												X		

Figure 2
Schedule of enrolment, intervention, and assessment, according to the SPIRIT 2013 statement.
Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

Additional File 1.doc