REMOVAL OF SOME ADVANCED DYES FROM AQUEOUS SOLUTION USING MODIFIED KAOLINITE CLAY

Abeer A. Emam* and Mohamed A. Abdel Khalek**

* Department of Chemistry, Faculty of Science, Al-Azhar University (Girls), Nasr City, Cairo, Egypt.
** Central Metallurgical Research & Development Institute (CMRDI), Cairo, Egypt.
Corresponding author: dr.abeerahmedemam@azhar.edu.eg
a_a_emam@yahoo.com

ABSTRACT

Kaolin mineral and its modified forms were used for dye removal from aqueous solutions. The affecting parameters such as pH, dye concentration and contact time on the removal performance were investigated. Three different dyes (acid Green 25, Basic Blue 3 and Disperse Orange 13) were studied. The removal has a higher rate at initial period of contact time. The equilibrium is achieved at 120 min. The adsorption is occurring through transport of dye molecules from solution to solid surface. Then, they diffused into the pores. The order of adsorption was: Basic blue 3 > Acid Green 25 > Disperse Orange 13. The adsorption process follows the pseudo-second-order kinetics. The rate controlling step is not depending on the intra-particle diffusion. A Freundlich isotherm model could describe the adsorption. The calculated (R_L) factor confirmed the variability of the adsorption process.

Key words: Kaolin, Treatment, Adsorption, Dyes, Kinetics.

INTRODUCTION

Kaolin is a natural material. It has wide applications due to its composition. It may contain small amounts of silica and mica [1]. It is composed of two sheet layer structure of hydrous aluminum silicate. It has unlocked crystal structure. It contains many replaceable positive ions and water molecules. They are replaced physical or by ion exchange [2]. It is composed of tetrahedral sheet of silica (SiO₂) and an octahedral sheet of aluminum oxyhydroxide [Al(O,OH)_6]. It can be expressed as [Si₂Al₂O₅(OH)₄] or [Al₂O₃·2SiO₂·2H₂O] [3-4].

The different applications of kaolin are due to its special surface character. Thus, the surface treatment such as mechanical or chemical activation [5-15], intercalation [16-18], thermal and chemical treatment [19-21] and chemical activation improves them [22-24].

Acid treatment can improve the surface and catalytic properties of different types of clays such as sepeolite, palygoreskite, saoponite, etc. [1-4, 12-15]. It is carried out by mixing the clay with inorganic acids. It leads to particles desegregation, impurity elimination, and dissolution of the external layers [12-15]. As a result, the surface area, porosity and the number of acid centers are increased. The treated clay contains hydrous, amorphous, and partially protonated silica. It can be used as absorber or as catalytic supports [25].

The kaolin solubility depends on the acid type and concentration, temperature and contact time. Sulfuric acid has higher effects than other mineral acids [26].

Wastewater treatment needs more development to reduce the absorber cost and increasing removal efficiency. The dyes in wastewater cause higher toxicity. Many types of dyes are used in different industries such as textile, paints, etc. It causes water pollution due to highly colored. Dyes can be classified based on chemical structure. Thus, there are many types such as anionic, cationic and non-ionic dyes depending on its ionic charge [27]. In this study, the performance of kaolin and its treated forms as absorbers of dyes were investigated.

2. EXPERIMENTAL

2.1. Chemicals

Acid green 25, Basic blue 3 and Disperse orange 13 dyes, were employed in this study to represent the different types of dyes. Dyes were
purchased from Aldrich, Milwaukee, WI, USA, and used as received. All other chemicals such as, hydrochloric acid and sodium hydroxide were reagent grade.

2.2. Kaolin preparation

Kaolin employed in this study is brought from Wade Kalapsha which is near to Aswan, Egypt. It is washed aggressively to separate the silica as a hard component. Coloring material as iron is removed by the intensive magnetic separation. Other impurities especially titanium mineral is separated using the flotation technique.

2.3. Kaolin treatment

Treatment of the kaolin is carried out by mix 200 g of washed sample with 500 ml of 1 M NaOH solution as alkali treatment. Also, the kaolin is treating by mixing with 1 M of potassium di-hydrogen phosphate/sulfuric acid mixture solution. Mixing is continued for 1 day at normal temperature. The treated kaolin is filtered and washed with pure water till pH ≈ 7. The moisture is removed using an air dryer at 90°C for 4 hours. It is pulverized to powder size of less than 74 μm. It is used as absorber in dye removal study.

2.4. Characterization of adsorbents

The treated samples were dissolved in a digestive mixture of nitric and hydro-fluoric acids using microwave digester. The chemical composition is determined by atomic absorption spectrophotometry (Perkin Elmer, AAnalyst-2 series).

The surface area is determined according to the Seer’s method [28]. A 0.5 g of sample is mixed with 50 ml of HCl solution at pH about 3. A 10g of sodium chloride salt was added, followed by 0.1 M NaOH solution gradually until pH reaches to 4. Again, the pH is increased to pH = 9. The quantity of alkali is consumed to raise the pH from 4 to 9 is recorded. It is calculated as follows:

\[
Surface \ area \ (m^2/g) = 32 \ V - 25 \quad (1) [28]
\]

X-ray diffraction investigation for kaolin is carried out using the X-ray diffract-meter (Brokar, Darmsdaret, Germany). X-PEIRT PREIO-MPEID, with Copper-potassium alpha radiation (λ = 1.5416 Å). The porosity of the treated samples was determined using nitrogen adsorption technique. It is carried out in a micro-metrics accelerator surface-area and a porous-meter system 2011 model analyzer.

2.5. Batch adsorption

A 100 ml round bottom flask is used for mixing dye solution with absorber. A 500 mg of treated sample is mixed with 50 ml of desired concentration of the dye solution. The effect of temperature is investigated up to 60°C. Also, initial dye concentration in the range up to 250 ppm is investigated. The mixture was agitated in thermo-stated water-bath at 250 RPM for desire time up to 180 min in thermo-state water bath. The pH of the solution is adjusted using 0.01 M NaOH or 0.01 M HCl. At the end of the experiment, the aqueous solution is separated using centrifuged. The concentration of dyes was determined through measuring the absorbance at 608, 654 and 427 nm for acid green-25, Basic Blue-3 and Disperse Orange-13, respectively. The UV/Vis-Spectrometer, Lambada-2500 was employed for this purpose using a calibration curve for each dye.

The amount adsorbed of dye in mg by 1 g of absorber is calculated using the following equation:

\[
q_e = \frac{(C_o - C_t)}{m} \times V \quad (2) [27]
\]

Where \(q_e\) (the amount adsorbed dye, mg/g), \(C_o\) and \(C_t\) (the initial and final concentrations of dye (mg/l), V (the volume of solution in liter), and m (the weight of absorber, g).

The removal percent is calculated using the following equation:

\[
Removal \ % = \left(\frac{C_o - C_t}{C_o} \right) \times 100 \quad (3) [27]
\]

3. RESULTS AND DISCUSSION

3.1. Characterization of kaolin

Mineralogy and microscopic study showed that the sample contains a small amount of quartz. The iron and titanium were found in the
form of ilminite and anatese minerals. They have very small grains of rhombic shape forming and as a network structure. Table 1, shows the composition of kaolin sample.

Table 1: Complete chemical analysis of the kaolin clay sample.

Constituents	%
SiO$_2$	52.6
Al$_2$O$_3$	34.4
Fe$_2$O$_3$	0.25
TiO$_2$	0.75
CaO	0.21
MgO	0.13
Na$_2$O	0.17
K$_2$O	0.08
Cl$^-$	0.04
Loss on ignition	11.35
Total	99.98

The surface area of untreated kaolin is 16.2 m2 g$^{-1}$ while it is 82.5 and 159.3 m2 g$^{-1}$ of treated kaolin, basic or acidic, respectively. It is noted that, it is up to 25 m2 g$^{-1}$ for kaolin clays [29]. The lattice of clay is opened as a result of acid treatment. It leads to increases of pore size and surface area [30].

Fig. 1 shows the XRD of the untreated and treated kaolin. There are two peaks at 2-theta of 12° and 25° (it is equivalent to d value 7.15 and 3.57). They confirm the presence of kaolin mineral.

The peaks at 2-theta = 34-36°, 38-42° and 45-50° are also confirming the composition of kaolin mineral [31]. As a result of treatment, the peak intensity of kaolin is sharply decreased. It may be due to the structure deficiency. Moreover, it affects the crystal degree of the sample [32]. The slim peak may be due to increasing of the crystal degree and decreasing of the main lattice exertion [33].

On the other hand, for the alkali sample, the intensity of the peak is increased. It confirms that there is no effect on kaolin silicate rather than the free silica. X-ray diffraction can be considered as a tool for measuring the degree of crystallinity [34]. The non-crystalline mineral of alkali-treated sample permits to permeate the dye molecules into kaolin surface. It leads to high adsorption [35-36].

3.2. Adsorption Study

3.2.1. The effect of pH

The pH has a serious function on the removal efficiency. It has influenced the charged surface of the absorber, the charged of adsorbed molecules in aqueous medium and the behavior effective locations at adsorbent surface. Also, it may change the form of dye molecules [37-39]. The efficiency of dye removal using untreated, alkaline-treated and acid-treated clay was investigated at pH 2 – 10, Fig. 2. The acid green 25 dye showed high stability in acidic medium. There is a slight decreasing of dye removal by untreated kaolin and alkaline-treated clay by increasing the pH. It may be due to the ecstatic repudiation between dye molecules and locations on absorber surface.

The removal of Basic Blue 3 dye is reinforced with increasing pH. The drop of dye uptake at higher pH may be due to the chemical structure transform the dye molecules and to
the zero point of charge of solid surface, Fig. 3. The alkali-treated clay has zero surface charge at pH 5.2. The pH 6 is considered as the best possible pH to investigate other affecting parameters. The presence of much hydroxyl ion in alkaline medium, leads to rival with the negative molecules of anionic dye with the negative locations on absorber surface. Hence, low adsorption of Blue 3 dye is expected. In acidic medium, the hydrogen ions have a competitive ability with the dye molecules on the absorber surface. Thus, the lower the pH is unfavorable for efficient removal. In much alkaline medium there is no much hydrogen ion to enhance the adsorption. Moreover, at alkaline medium, the positivity of solid surface is reduced which leads to low ecstatic repudiation with the dye molecules [40].

\[\text{Fig.3. Zeta potential of untreated and treated forms as a function of pH.} \]

The adsorption of Disperse orange-13 is slightly reduced with increasing pH for untreated kaolin, alkali-treated and acid-treated forms. The best removal is appeared at pH = 2 for acid-treated kaolin. The higher adsorption capacity of treated forms compared with that for untreated form confirms the distinction and needs to the chemical treatments. The higher adsorption for acid-modified kaolin may be due to the significant high surface area. The moderate adsorption for alkali-treated form may be due to increasing of the exchangeability of cations compared with original kaolin.

3.2.2. The effect of contact time

The effect of contact time on the adsorption of dyes is shown in Fig. 4. The highest removal is achieved at 120 min. The higher adsorption rate at the initial stages might be due to the presence of great active locations on the solid surface of clay. It becomes saturated with time. Vander Waals forces and eclectic attractions; fast diffusion through the surface followed by fast diffusion into the matrix to reaching the balance at 60 min [41]. Initially, sorption is controlled by moving the adsorbed species from the aqueous solution to the solid surface of kaolin. Whereas, sorption is an adhesion-controlled process due to the presence of inactive points [17]. The experimental results indicated that the order of the adsorption capacity of kaolin and treated forms for all types of dyes follows: Basic blue 3 > Acid Green 25 > Disperse Orange 13. This may be due to the negativity of Basic blue-3 molecules.

\[\text{Fig.4. Effect of contact time on the adsorption performance of untreated and treated kaolin.} \]

To investigate the mechanism of adsorption, the rate-controlling step, pseudo-first, pseudo-second-order kinetic and intra-particle diffusion models were applied.

3.2.2.1. Pseudo-first-order model

The pseudo-first-order model is stated as: [42–44]

\[\log (q_e - q_t) = \left(\frac{k_1}{2.303} \right) t \]

Where \(q_t \) and \(q_e \) (the dye adsorbed at time \(t \) and at equilibrium time). \(k_1 \) (the rate constant). The \(K_1 \) and \(q_e \) are calculated, from plotting of \(\log (q_e - q_t) \) with time, Table 2.

Plotting of \(\log (q_e - q_t) \) versus time, according to pseudo-first-order kinetics allowed
to calculate the rate constant K_1 with poor linear regression coefficient (R^2). It indicates that the pseudo first-order kinetics cannot be applied, Fig.5. This model estimated higher value of the adsorption capacity compared with the experimental data.

$$\frac{t}{q_t} = \frac{1}{K_2q_e^2} + \left(\frac{1}{q_e} \right)^t$$ \hspace{1cm} (6) \cite{44}

Thus, the rate constant (K_2), adsorption rate (h) and estimated (q_e) can be determined from the plotting of t/q with time, Fig.6. Moreover pseudo-second-order kinetic model predicts a closer value of the adsorption compared with the experimental results, Table 3. Hence, it confirms the suitability of applying this model.

3.2.2.2. Pseudo-second-order model

The adsorption data are analyzed using pseudo second-order model, which is described by:

$$\frac{dq}{dt} = K_2\left(q_e - q_t\right)^2$$ \hspace{1cm} (5) \cite{42}

Where K_2: the rate constant of pseudo-second-order (g/mg min)

Integrating and applying boundary conditions from $t = 0$ to $t = t$, thus:

![Image](image)

Fig.5. Plotting data using Pseudo-first order model.

![Image](image)

Fig.6. Plotting data using Pseudo-second order model.

3.2.2.3. Intra-particle diffusion model

This model states that the adsorption is occurring through transfer of the dye molecules from the aqueous solution to the solid surface. It can be also occurred by penetration of the dye molecules through the pores. The latter is usually a slow process. It is stated that the

| Table 2: Parameters of Pseudo-first-order model. |
|-----------------|-----------------|-----------------|-----------------|
| Item | Acid Green25 | Basic Blue3 | Disperse orange13 |
| | Untreated | Alkali-treated | Acid-treated | Untreated | Alkali-treated | Acid-treated | Untreated | Alkali-treated | Acid-treated |
| R^2 | 0.8288 | 0.8279 | 0.8281 | 0.8281 | 0.828 | 0.8282 | 0.8282 | 0.8278 | 0.828 |
| K_1 | -0.0089 | -0.0089 | -0.0089 | -0.0089 | -0.0089 | -0.0089 | -0.0089 | -0.0089 | -0.0089 |
| Exp. q_e | 3.2763 | 4.5813 | 5.4679 | 4.2958 | 4.9061 | 5.5352 | 1.2187 | 1.9357 | 2.6527 |
| Cal. q_e | 1.4006 | 1.9548 | 2.3345 | 1.8336 | 2.0941 | 2.3621 | 0.5204 | 0.8258 | 1.1321 |

| Table 3: Parameters of Pseudo-second-order model. |
|-----------------|-----------------|-----------------|-----------------|
| Item | Acid Green25 | Basic Blue3 | Disperse orange13 |
| | Untreated | Alkali-treated | Acid-treated | Untreated | Alkali-treated | Acid-treated | Untreated | Alkali-treated | Acid-treated |
| R^2 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 |
| K_2 | 0.072 | 0.051 | 0.043 | 0.054 | 0.048 | 0.042 | 0.193 | 0.121 | 0.089 |
| Exp. q_e | 3.276 | 4.581 | 5.467 | 4.295 | 4.906 | 5.535 | 1.2187 | 1.9357 | 2.6527 |
| Cal. q_e | 3.276 | 4.581 | 5.467 | 4.295 | 4.906 | 5.535 | 1.2187 | 1.9357 | 2.6527 |
adsorption process is usually proportional to the square root of time, which can be represented as follows: [45]

\[q_t = K_{id} t^{0.5} + I \]

(7) [46]

Where \(q_t \) (the dye adsorbed at time \(t \)), \(t^{0.5} \) (the square root of the time), \(K_{id} \) (the rate constant of intra-particle diffusion) and \(I \) (the intercept which reflects the thickness of the boundary layer). The higher intercept indicates the higher the boundary layer.

Fig. 7 shows very poor linear regression coefficients \((R^2) \) indicates the inapplicability of this model. Thus, intra-particle diffusion was not only the rate-controlling step.

3.2.3. The effect of initial dye concentration

The amount of dye uptake is increased as a result of increasing initial concentration, Fig. 8. The higher dye species molecules concentration vanquishes the impedance to transfer of adsorbed species from the aqueous solution to the solid surface [39]. The permeation through pores restrains the adsorption process. As a result of no linearity between the initial concentration and the adsorption rate [47], the diffusion process does not limit the adsorption process. There are different isotherms can be used to explain the correlativity between the dye in the aqueous solution and on the solid surface as follows:

Fig. 8. Effect of dye concentration on the adsorption capacity of untreated and treated kaolin.

3.2.3.1. Freundlich isotherm

Freundlich adsorption isotherm model, states that the adsorption occurred on the uniform surface, as: [42, 48].

\[\ln q_e = \ln K_f + \frac{1}{n} \ln C_e \]

(8) [42]

Where \(q_e \) (dye adsorbed at time “t”), \(C_e \) (final concentration of dye). \(K_f \) and \(n \) are the isotherm constants. They reflect the capacity and the intensity of the adsorption, respectively [42, 48]. The isotherm constants can be determined from the plotting of \(\ln q_e \) and \(\ln C_e \), Fig. 9. The value of ‘\(n \)’ is higher than one which confirms the favorability nature of the process, Table 4 [49, 50]. Thus, it implies the physical adsorption.

Item	Untreated kaolin	Alkali treated	Acid treated
Acid Green25	0.977	0.958	0.921
Basic Blue 3	0.964	0.949	0.920
Disperse orange 13	0.988	0.985	0.982
Acid Green25	1.542	1.789	2.221
Basic Blue 3	1.715	1.899	2.221
Disperse orange 13	1.370	1.415	1.475
Acid Green25	0.2458	0.5850	1.2128
Basic Blue 3	0.4790	0.7452	1.2128
Disperse orange 13	0.0517	0.0978	0.1633

Table 4: Freundlich isotherm constants.
REMOVAL OF SOME ADVANCED DYES FROM AQUEOUS SOLUTION

3.2.3.2. Langmuir isotherm

Langmuir model states that the adsorption occurs unitarily on the activated locations of the solid surface. Then, no further adsorption can occurred at these locations [51]. The straight form of Langmuir can be written as: [42, 48]

\[
\frac{1}{q_e} = \left(\frac{1}{K_2 q_{\text{max}}} \right) \frac{1}{C_e} + \frac{1}{q_{\text{max}}} \quad (9) [48]
\]

\(q_{\text{max}}\) (maximum adsorption capacity) and \(K_2\) can be calculated from the plot between \(1/q_e\) versus \(1/C_e\). Fig.10 shows that the Langmuir model did not fit the data for all dyes. Thus, it does not represent the mono-layer sorption onto the homogenous solid surface (\textit{It is not chemical adsorption}). The \((q_{\text{max}})\) and \((K_2)\) are represented in Table 5.

Table 5: Langmuir isotherm constants.

Item	Untreated kaolin	Acid Green25	Basic Blue 3	Disperse orange 13
	Acid Green25	Basic Blue 3	Disperse orange 13	
\(R^2\)	0.764	0.768	0.759	0.768
Cal.\(q_{\text{max}}\)	13.227	15.221	6.146	15.576
\(1/\text{Exp.} q_{\text{max}}\)	7.612	7.612	2.831	10.644
\(b\) \quad \text{range}	0.0066	0.0010	0.0035	0.016
	Acid Green25	Basic Blue 3	Disperse orange 13	
	Acid Green25	Basic Blue 3	Disperse orange 13	
\(q_{\text{max}}\)	13.227	15.221	6.146	15.576
\(C_0\)	0.0066	0.0010	0.0035	0.016

Table 6: The dimension-less separation factor.

C_0	Acid Green25	Basic Blue 3	Disperse orange 13
25	0.0066	0.0101	0.0035
50	0.0066	0.0101	0.0035
100	0.0066	0.0101	0.0035
200	0.0066	0.0101	0.0035

The degree of favorability of adsorption process for the Langmuir isotherm is stated in terms of dimension-less separation factor as follow: [49].

\[
R_L = \frac{1}{(1 + K_2 C_0)} \quad (10) [49]
\]

Where \(K_2\) (Langmuir constant) and \(C_0\) (initial dye concentration). It is noted that, if \(R_L\) values is less than one and higher than zero, it indicates the favorable adsorption. If it is equal one, it suggests unfavorable adsorption. While, if \(R_L\) equal zero, it represents irreversible adsorption [49].

The calculated values of separation factor, \(R_L\) (from Langmuir plot, Table 6) are range between 0 and 1. It confirmed the availability of the adsorption process.
5. CONCLUSIONS

The removal of Acid Green 25 (AG25), Basic Blue 3 (BB3) and Disperse orange 13 (DO13) dyes from their aqueous solution using kaolin and its treated forms showed that:

- The adsorption of dyes is strongly affected by the pH, initial dye concentration and treatment type. The adsorption increases with increasing dye concentration and adsorption time. The acidic treatment produces the higher dye absorber followed by alkali-treatment.
- The adsorption is increasing with increasing contact time at all initial dye concentrations. The equilibrium is attained within 120 min. The adsorption process is highly pH dependent.
- The order of dye adsorption for kaolin and its modified forms was: AG25 > BB3 > DO13.
- Kinetic study indicated that the adsorption of AG25, BB3 and DO13 is occurring through a two steps process: a rapid adsorption of dye molecule to the surface followed by intra-particle diffusion into the interior of adsorbent. The adsorption follows the pseudo-second-order.
- The intra-particle diffusion is not only the control rate step.
- The adsorption obeys Freundlich isotherm model which indicates its physical nature.
- The R_L value (low separation factor) confirmed the favorable adsorption.

REFERENCES

[1] Belver C., Munoz M.A.B. and Vicente M.A., "Chemical activation of a kaolinite under acid and alkaline conditions", Chem. Mater. 14 (2002) 2033–2043.

[2] Varga G., "The structure of kaolinite and metakaolinite", ptoanyag 59 (2007) 4–8.

[3] Okada K., Shimai A., Takei T., Hayashi S., Yasumori A. and MacKenzie K.J.D., "Preparation of microporous silica from metakaolinite by selective leaching method", Micropor. Mesopor. Mater 21 (1998) 289–296.

[4] Madejeva J., "FTIR techniques in clay mineral studies", Vib. Spectrosc. 31 (2003)1–10.

[5] Juhasz A.Z. and Opoczky L., "Mechanical Activation of Minerals by Grinding: Pulverizing and Morphology of Particles", Academia Press, Budapest, 1990.

[6] Dragsdorf R.D., Kissinger H.E. and Perkins A.T., "An X-ray study of the decomposition of kaolinite", Soil Sci. 71 (1951) 439–448.

[7] Gregg S.J., Parker T.W. and Stephens M.J., The graining of kaolinite: II, J. Appl. Chem. (Lond.) 4 (1954) 666–674.

[8] Gregg S.J., Hill K.J. and Parker T.W., The graining of kaolinite: I, J. Appl. Chem. (Lond.) 4 (1954) 631–632.

[9] Holt J.B., Cutler I.B. and Wadsworth M.E., Clays and clay minerals, in: Proc. of 12th Nat. Conf. Clays and Clay Minerals, Macmillan, London, 1964, p. 55.

[10] Laws W.D. and Page J.B., "Changes produced in kaolinite by dry grinding", Soil Sci. 62 (1946) 319–336.

[11] Takahashi H., "Wet grinding on kaolin minerals", Bull. Chem. Soc. Jpn. 32 (1959) 381–387.

[12] Vagvalgyi V., Kovacs J., Horvath E. and Kristof J., "Investigation of mechanochemically modified kaolinite surfaces by thermoanalytical and spectroscopic methods", J. Colloid Interface Sci. 317 (2008) 523–529.

[13] Temuujin J., Burmaa G., Amgalan J., Okada K., Jadambaa T. and MacKenzie K.J.D., "Preparation of porous silica from mechanically activated kaolinite", J. Porous Mater 8 (2001) 233–238.

[14] Temuujin J., Okada K., MacKenzie K.J.D. and Jadambaa Ts., "Characterization of porous silica prepared from mechanically amorphized kaolinite by selective leaching", Powder Technol. 121 (2001) 259–262.

[15] Mak Z., Senkr J., Kristf V. and Vgvlgyi, "Surface modification of mechano-chemically activated kaolinites by selective leaching", J. Colloid Interf. Sci. 294 (2006) 362–370.

[16] K. Wada, Lattice expansion of kaolinite minerals by treatment with potassium acetate, Am. Miner. 46 (1962) 78–91.

[17] Ledoux R.L. and White J.L., Infrared study of hydrogen bonding interactions between kaolin and intercalated potassium acetate, hydrazine, formamide and urea, J. Colloid Interface Sci. 21 (2) (1966) 127–232.
[18] Horvath E., Kristof J., Frost R.L., Jakab E. and Mako E., "Identification of super active centers in thermally treated formamide–intercalated kaolinite", J. Colloid Interface Sci. 289 (2005) 132–138.

[19] Horvath E., Frost R.L., Mak J. and Kristof T., "Thermal treatment of mechano-chemically activated kaolinite", Thermochim. Acta 404 (2003) 227–234.

[20] Lussier R.J., "A novel clay-based catalytic material—preparation and properties", J. Catal. 129 (1991) 225–237.

[21] Chaisena A. and Rangsriwatananon K., "Effect of thermal and acid treatment on some physico-chemical properties of lamping diatomite", J. Sci. Technol. 11 (2004) 289–299.

[22] Thoriiils C.L., Hickey J. and Stecker G., "Chemistry of clay racking catalysts", J. Ind. Eng. Chem. 42 (1950) 866–871.

[23] Rodrigues M.G.F., "Physical and catalytic characterization of smectites from Boa-Vista", Paraiba, Brazil, Ceramica 49 (2003) 146–150.

[24] Rhodes C.N., Franks G.M.B. and Brown D.R., "The effect of acid treatment on the activity of clay supports for ZnCl2 alkylation catalysts", J. Chem. Soc. Chem. Commun. 12 (1991) 804–807.

[25] Dudkin B.N., Loukhina I.V., Avvakumov E.G. and Isupov V.P., "Application of mechanochemical treatment of disintegration of kaolinite with sulfuric acid", Chem. Sust. Dev. 12 (2004) 327–330.

[26] Grim R.E., Clay Mineralogy, McGraw-Hill, London, 1953.

[27] Hao O.J., Kim H. and Chiang P.C., Decolorization of wastewater, Crit. Rev. Environ. Sci. Technol. 30 (2000) 449–505.

[28] Sears G., "Determination of Specific Surface Area of Colloidal Silica by Titration with Sodium Hydroxide," Anal. Chem., 28, 1981–1983 (1956).

[29] Volzone C., Thompson J.G., Melnitchenko A., Ortiga J. and Palethorpe S.R., “Selective Gas Adsorption by Amorphous Clay-Mineral Derivatives,” Clays Clay Miner., 5, 647–657 (1999).

[30] Diaz F.R.V. and Santos P.D.S., “Studies on the Acid Activation of Brazilian Smeectitic Clays,” Quim. Nova, 24, 345–353 (2001).

[31] Dudkin B.N., Loukhina I.V., Avvakumov E.G. and Isupov V.P., "Application of mechanochemical treatment of disintegration of kaolinite with sulfuric acid", Chem. Sust. Dev. 12 (2004) 327–330.

[32] Hinckley D.N., Clays & clay minerals, in: Proc. of 11th Nat. Conf., Pergamon, Oxford, 1963, pp. 229–236.

[33] Delhez R., Keijser T.H., Mittemeijer E.J. and Fresenius Z., "Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis", Anal. Chem. 312 (1982) 1–10.

[34] Kobya M., Demirbas E., Senturk E. and Ince M., "Adsorption of heavy metal ions from aqueous solution by activated carbon prepared from apricot stone", Biores. Technol. 96 (2005) 1518–1521.

[35] Vinod V.T.P., Sashidhar R.B. and Sukumar A.A., "Competitive adsorption of toxic heavy metal contaminants by gum kondagodu: a natural hydrocolloid", Colloid Surf. B 75 (2010) 490–495.

[36] Kovo G. A. and Folasegun A. D., "Efficient abstraction of nickel (II) and manganese (II) ions from solution onto an alkaline-modified montmorillonite", Journal of Taibah University for Science 8 (2014) 343–356.

[37] Nandi B.K., Goswami A. and Purkait M.K., Adsorption characteristics of brilliant green dye on kaolin, J. Hazard. Mater. 161 (2009) 387 – 395.

[38] Crini G. and Badot P.M., Application of chitosan, a natural amino polysaccharide, for Dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature, Prog. Polym. Sci. 33 (2008) 399 – 447.

[39] Nandi B.K., Goswami A. and Purkait M.K., Removal of cationic dyes from aqueous solutions by kaolin: kinetic and equilibrium studies, Appl. Clay Sci. 42 (2009) 583 – 590.

[40] Krishna G. Bhattacharyya and Susmita S. Gupta, “Adsorption of Fe(III) from water by natural and acid activated clays: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions”, (2006) 12:185–204
[41] Abdel Latif M.M., Amal M.I., El-Kady M.F. (2010), Adsorption equilibrium, kinetics and thermodynamics of Methylene blue from aqueous solutions using biopolymer oak sawdust composite, J. Am. Sci. 6(6) 267-283

[42] Sen T.K. and Sarzali M.V., Chem. Eng. J. 142 (2008) 256–262.

[43] Naiya T.K., Chowdhury P., Bhattacharya A.K. and Das S.K., Chem. Eng. J. (2008), doi: 10.1016/J.cej.2008.08.002.

[44] Tseng R.L., Wu F.C. and Juang R.S., Carbon 42 (2003) 487–495.

[45] Weber W.J., Morris J.C. and Sanit J., Eng. Div. Am. Soc. Civ. Eng. 89 (1963) 31–60.

[46] Knocke W.R. and Hemphill L.H., Water Res. 15 (2) (1981) 275–282.

[47] Perez-Marin A.B., Meseguer Zapata V., Ortuno J.F., Aguilar M., Saez J. and Llorens M., J. Hazard. Mater. B139 (2007) 122–131.

[48] Demiral H., Demiral L., Tumsek F. and Karabacakoglu B., Chem. Eng. J. 144 (2008) 188–196.

[49] Malik P.K., J. Hazard. Mater. 113 (2004) 81–88.

[50] Yadava K.P., Tyagi B.S. and Singh V.N., J. Chem. Biotechnol. 51 (1991) 47–60.

Removed some advanced colors from aqueous solutions using biopolymer oak sawdust composite.

Abstract

Abeer Ahmad Imam* , Mohamed Abd El-Daim Abd Al-Haleem**

*Department of Chemistry, Faculty of Science, Cairo University-

**Chemical Research Center, Cairo City*

A biopolymer, either natural or chemically treated, was used to remove the following colors from aqueous solutions:

- Acid Green 25
- Basic Blue 3
- Disperse Orange 13

It was found that the removal efficiency increased with increasing color concentration and contact time. However, the removal rate decreased progressively until it reached a constant value at 120 minutes. The results showed that the equilibration process occurred through a physical adsorption process, which was not affected by the mass transfer within the adsorbent particles. It was found that the Freundlich and Langmuir isotherm models were applicable to fit the adsorption data. The adsorption process was found to follow the second-order kinetics.