Letters to Editor

Other advantages of lightwand include low acquisition costs, portability, and disposable components that eliminate the need for disinfection of equipment. Though it is difficult to use when laryngeal structures are distorted and needs dim light during usage, the other advantages makes it more user-friendly. Therefore, we suggest that infant lightwand is a useful device in the management of neonatal difficult airway especially where small size ETTs of less than 3 mm ID are required. Hence, it should be a readily available option in today's world of flexible fiberscopes. We need to master the art of using it and gain the necessary experience to prevent a havoc when the crisis really occurs.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

Chitta R. Mohanty, Suma R. Ahmad
Bikram Kishore Behera
Snigdha Bellapukonda
Department of Trauma and Emergency (Anesthesia) and Anesthesia and Critical Care, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India

Address for correspondence:
Dr. Snigdha Bellapukonda,
Department of Anesthesia and Intensive Care,
All India Institute of Medical Sciences,
Bhubaneswar, Odisha, India.
E-mail: drsnigdha5bellapukonda@gmail.com

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

How to cite this article:
Mohanty CR, Ahmad SR, Behera BK, Bellapukonda S. Difficult and failed airway in small neonates: Lightwand revisited. J Anaesthesiol Clin Pharmacol 2020;36:130-1.

Submitted: 08-Jul-2019
Accepted: 11-Jul-2019
Published: 18-Feb-2020

© 2020 Journal of Anaesthesiology Clinical Pharmacology | Published by Wolters Kluwer - Medknow

References
1. Hagberg CA, Artime CA, Aziz MF, editors. Hagberg and Benumof's Airway Management. 4th ed. Elsevier; 2017.
2. Biban P, Rugolotto S, Zoppi G. Fiberoptic endotracheal intubation through an ultra‑thin bronchoscope with the suction channel in a newborn with a difficult airway. Anesth Analg 2000;90:1007.
3. Hung OR, Murphy MF, editors. Hung's Difficult and Failed Airway Management. 3rd ed. McGraw‑Hill Education; 2018.
4. Agrò F, Hung OR, Cataldo R, Carassiti M, Gherardi S. Lightwand intubation using the trachlight: A brief review of current knowledge. Can J Anaesth 2001;48:592‑9.
5. Sethi S, Mohanty CR. Trachlight‑guided intubation in small infant with difficult airway. J Anaesthesiol Clin Pharmacol 2015;31:275.

Airway management using a non-coaxial fibreoptic bronchoscope guided endotracheal intubation in a case of near complete palatoglossal synechiae

Madam,
Present case is of an infant aged 3.5 months with Pallatoglossal band (PGB), weighing 2.6 kgs, and having severe malnutrition. Oral examination revealed PGB involving posterior part of the tongue and hard palate with only a small opening of less than 1 cm through which the oral cavity and oropharynx were communicating [Figure 1]. Direct laryngoscopy and intubation were not possible, bag mask ventilation (BMV) was also anticipated to be difficult. The plan was to perform tracheal intubation with a tracheal tube of 3 mm diameter passed pernasally under visual guidance of FOB that had already been passed through the other nostril. A cuffed endotracheal tube was considered appropriate (there was a chance of airway bleed and inability to do throat pack mandated a cuffed tube). A backup plan for emergency tracheostomy and cricothyroidotomy was kept ready alongside.

Preparation included high-risk consent of perioperative asphyxia, 6 and 2 hours fasting for milk and water, respectively; premedication with injection atropine 0.02 mg/
kg intramuscular 1 hour before induction; lignocaine 4% nebulization for 5 minutes; oxymetazoline nasal drops 15 minutes before nasal intubation; venous access. The patient was monitored using ECG, pulse oximeter, NIBP. Preoxygenation was done with 100 percent oxygen for 3 minutes. Anesthesia induction was done with Sevoflurane by the graduated increments method.

After ensuring BMV, fentanyl (2 mcg/kg) and succinylcholine (1 mg/kg) were given intravenously. We passed a pediatric FOB (2.8 mm bronchoscope, Olympus medical corp, Japan) through the right nostril and stationed it just above the glottis; through the other nostril we passed a 3 mm cuffed ETT and directed it towards the glottis under an indirect vision obtained from the FOB. External manipulations of ETT and larynx helped in achieving endotracheal intubation. PGBs which were mostly fibrotic were excised successfully [Figure 2] followed by tracheal extubation.

Extent of synechiae helps in deciding surgical and anesthesia plan. Excision of incomplete intramural synechiae can be done under local anesthesia or general anesthesia with BMV. In cases of incomplete synechiae, a paraglossal approach of intubation can be adopted using a miller blade or a Bullard laryngoscope.

In a case with near complete PGB, definitive airway is necessary; hence, FOB-assisted co-axial nasal intubation (ETT rail-roaded over the FOB) in a spontaneously breathing patient seems to be the most appropriate approach. Endotracheal tubes—less than 3.5 mm diameter—cannot be railloaded on the commonly available pediatric bronchoscope (2.8 mm diameter). Most of the centers do not have flexible bronchoscopes smaller than 2.8 mm as was the case with us, so we improvised the tracheal intubation using a FOB-assisted non-coaxial approach and overcame the limitation of a coaxial technique of FOB assisted intubation.

A preoperative tracheostomy is another valid option,[4,5] but pediatric tracheostomies have their challenges and complications, such as infection, airway bleeding, difficulties of decannulation, subglottic stenosis that enhance the morbidity, especially in pediatric patients.[6]

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

Vaishali Waindeskar, Anuj Jain
Department of Anesthesiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India

Address for correspondence: Dr. Anuj Jain, B118 New Minal Residency, JK Road, Bhopal, Madhya Pradesh, India.
E-mail: anuj.anesth@aiimsbhopal.edu.in

References

1. Gharavifard M, Kashani I, Joudi M, Sharifian M, Sayedi SJ, Mohammadipanah B, *et al.* Surgery and anesthesia management for intraoral synechia: A case report. Iran J Otorhinolaryngol 2018;30:117-9.
2. Cerrati EW, Ahmed OH, Rickert SM. Isolated congenital maxillomandibular synechiae. Am J Otolaryngol 2015;36:707-9.
3. Henderson JJ. The use of paraglossal straight blade laryngoscopy in difficult tracheal intubation. Anaesthesia 1997;52:552-60.
4. Solanki S, Babu MN, Gowrishankar, Ramesh S. Palatoglossal fusion with cleft palate and hypoplasia of cerebellar vermis. Indian J Plast Surg 2016;49:106-8.
5. Sybil D, Sagtani A. Cleft palate lateral synechia syndrome. Natl J Maxillofac Surg 2013;4:87-9.
6. Carr MM, Poje CP, Kingston L, Kielma D, Heard C. Complications in pediatric tracheostomies. Laryngoscope 2001;111:1925-8.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.