SUPPLEMENTARY MATERIAL

Green-synthesised nanoparticles from *Melia azedarach* seeds and the cyclopoid crustacean *Cyclops vernalis*: an eco-friendly route to control the malaria vector *Anopheles stephensi*

Priya Anbu¹, Kadarkarai Murugan¹, Pari Madhiyazhagan¹, Devakumar Dinesh¹, Jayapal Subramaniam¹, Chellasamy Panneerselvam¹, Udaian Suresh¹, Abdullah A. Alarfaj², Murugan A. Munusamy², Akon Higuchi³, Jiang-Shiou Hwang⁴, Suresh Kumar⁵, Marcello Nicoletti⁶, Giovanni Benelli⁷*

¹Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
²Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
³Department of Chemical and Materials Engineering, National Central University, No. 300 Jhongli, Taoyuan, 32001 Taiwan
⁴Institute of Marine Biology, National Taiwan Ocean University, Keelung 202-24, Taiwan
⁵Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Malaysia
⁶Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
⁷Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy

* Corresponding author. Tel.: +390502216141. Fax: +390502216087. E-mail address: g.benelli@sssup.it; benelli.giovanni@gmail.com

Abstract

The impact of green-synthesized mosquitocidal nanoparticles on non-target aquatic predators is poorly studied. In this research, we proposed a single-step method to synthesise silver nanoparticles (Ag NP) using the seed extract of *Melia azedarach*. Ag NP were characterised using a variety of biophysical methods, including UV-vis spectrophotometry, scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. In laboratory assays on *Anopheles stephensi*, Ag NP showed LC₅₀ ranging from 2.897 (I instar larvae) to 14.548 ppm (pupae). In the field, the application of Ag NP (10×LC₅₀) lead to complete elimination of larval populations after 72 h. The application of Ag NP in the aquatic environment did not show negative adverse effects on predatory efficiency of the mosquito natural enemy *Cyclops vernalis*. Overall, this study highlights the concrete possibility to employ *M. azedarach*-synthesised Ag NP on young instars of malaria vectors.

Keywords: biological control; biosafety; cyclopoid crustacean; nanobiotechnology; neem
Experimental

Anopheles stephensi rearing

Eggs of Anopheles stephensi were collected from local breeding habitats at the National Institute of Communicable Disease Centre (Coimbatore, India) using an “O” type brush. Eggs were transferred to laboratory conditions [27 ± 2°C, 75-85% R.H., 14:10 (L:D) photoperiod] and placed in 18 x 13 x 4 cm plastic containers containing 500 mL of tap water, waiting for larval hatching. A. stephensi larvae were reared in the plastic containers described above, and fed daily with a mixture of crushed dog biscuits (Pedigree, USA) and hydrolyzed yeast (Sigma-Aldrich, Germany) at 3:1 ratio (w:w). Water was renewed every two days. The breeding medium was checked daily and dead individuals were removed. Breeding containers were kept closed with muslin cloth to prevent contamination by foreign mosquitoes. Pupae were collected daily from culture containers, transferred to glass beakers containing 500 ml of water and used in the experiments (Dinesh et al. 2015).

Cyclops vernalis rearing

Copepods were collected from a rural pond (Muthanamkulam, Coimbatore, India) using a mesh net. Collected samples were identified as C. vernalis at Department of Zoology of Acharya Nagarjuna University (India). C. vernalis was reared following the method reported by Murugan et al. (2015a). Isofemale lines were established from gravid females and maintained at Department of Zoology, Bharathiar University (Coimbatore, India). Gravid females from different isofemale lines were pooled and mass reared in dechlorinated water (pH 7) in fish tanks (15 L) at 27 ±2 °C and natural photoperiod. Food was Paramecium spp. prepared from boiled rice straw water extract and commercial powdered fish food.

Melia azedarach collection and preparation of seed extract

M. azedarach kernels were procured in local neem oil mills close to the Bharathiar University (Coimbatore, India). The material used for preparation of the extract was collected 4 weeks before experiments. The seed extract was prepared adding 10 g of M. azedarach crushed kernels in a 300-mL Erlenmeyer flask filled with 100 mL of sterilized double distilled water. The mixture was stored overnight, boiled for 5 min, and finally decanted for 2 days. The extract was filtered using Whatman filter paper No. 1, stored at −15°C and tested within five days.

Green-synthesis and characterization of silver nanoparticles

Following the method reported by Dinesh et al. (2015), the M. azedarach seed extract was transferred into an Erlenmeyer flask, treated with an aqueous solution of 1 AgNO₃ (1 mM), and incubated at room temperature. A brown-yellow solution indicated the formation of silver nanoparticles (Ag NP), since aqueous silver ions were reduced by the seed extract generating stable Ag NP in water. Silver nitrate was purchased from the Precision Scientific Co. (Coimbatore, India). The presence of Ag NP was confirmed by sampling the reaction mixture at regular intervals, and the absorption maxima was scanned by UV–vis spectroscopy at the wavelength of 200–600 nm, using a UV-3600 Shimadzu spectrophotometer at 1-nm resolution. The reaction mixture was subjected to centrifugation at 15,000 rpm for 20 min. The resulting pellet was dissolved in deionized water and filtered through a Millipore filter (0.45 μm). An aliquot of the filtrate containing Ag NP was used for SEM, FTIR and EDX (Murugan et al. 2015a). FTIR spectroscopy was carried out using a Perkin-Elmer Spectrum 2000 FTIR spectrophotometer in the diffuse reflectance mode operating at a resolution of 4 cm⁻¹. TEM was performed using a JEOL model 1200 EX instrument operating at an accelerating voltage of 120 kV. Samples were prepared by placing drops of Ag NP formulation on carbon-coated TEM grids. The film on TEM grid was allowed to dry for 5 min in laboratory condition. EDX analyzed the presence of metals in the sample. EDX was conducted using a JEOL-MODEL 6390.

Larvicidal and pupicidal assays in laboratory conditions

Following the methods reported by Murugan et al. (2015), 25 mosquito larvae (I, II, III or IV instar) or pupae were exposed for 24 h in a 500-mL glass beaker filled with dechlorinated water plus M. azedarach seed extract (20, 40, 80, 160 and 320 ppm) or green-synthesised Ag NP (2, 4, 8, 16 and 32 ppm). Larval food (0.5
mg) was provided for each tested concentration. Each concentration was replicated five times. In the control, 25 larvae or pupae were transferred in 250 mL of dechlorinated water. No mortality was observed in the control. Percentage mortality was calculated as follows: Percentage mortality = (Number of dead individuals/Number of treated individuals)*100

Larvicidal assays on Anopheles stephensi in the field

The *M. azedarach* seed extract and green synthesised silver Ag NP were applied in six external water reservoirs at the National Institute of Communicable Disease Centre (Coimbatore, India), using a knapsack sprayer (Private Limited 2008, Ignition Products, India). Pre-treatment and post-treatment at 24, 48 and 72 h was conducted using a larval dipper. The larvicidal efficacy was assessed on third- and fourth-instar larvae. Larvae were counted and identified to specific level. Specific identification highlighted that more than 96% of all surveyed larvae belong to *A. stephensi*. Six trials were conducted for each test site with similar weather conditions (27±2°C; 79% R.H.). The required quantity of mosquitocidal was calculated on the basis of the total surface area and volume (0.25 m³ and 250 L); the required concentration was prepared using 10×LC50 values on I instar larvae (Suresh et al. 2015). The percentage reduction of the larval density was calculated using the formula: Percentage reduction = (C – T)/ C × 100, where C is the total number of mosquitoes in control and T is the total number of mosquitoes in treatment.

Predation efficiency of Cyclops vernalis on Anopheles stephensi

C. vernalis adults were collected from small water ponds in Coimbatore (Tamil Nadu, India) and transferred to laboratory conditions [27 ± 2°C and 75-85% R.H.; 14:10 (L:D)] photoperiod. In the first experiment, the predation efficiency of *C. vernalis* was assessed on II and III instars larvae of *A. stephensi*. For each replicate, 200 mosquito larvae were introduced, with 20 *Cyclops vernalis*, in plastic cups (5L) containing dechlorinated water. For each instar, five replicates were conducted. Control was 5 L of dechlorinated water without copepods. All experimental arenas were checked after 12 h (daylight time) and 24 h (night time) and the number of preys consumed by the copepods was recorded. After each checking over time, the predated mosquito larvae were replaced with new ones. Predatory efficiency was calculated using the following formula: Predation efficiency = [(Number of consumed mosquitoes/Number of predators)/Total number of mosquito] *100

In the second experiment, the predation efficiency of *C. vernalis* was assessed on *A. stephensi* larvae, after a mosquitocidal treatment with Ag NP. Both for II and III instar larvae, 200 mosquitoes were introduced with 20 copepods in a 5 L plastic cups filled with dechlorinated water plus 1 mL of the desired concentration of nanoparticles (i.e. 1 ppm, 1/3 of the LC50 calculated on I instar larvae of *A. stephensi*). For II and III instar larvae, five replicates were conducted. Control was dechlorinated water without copepods. All experimental arenas were checked after 12 h (daylight time) and 24 (night time) h and the number of preys consumed by copepods was recorded. Predation efficiency was calculated using the above-mentioned formula.

Data analysis

Mosquito toxicity data were subjected to ANOVA with two factors (i.e. laboratory experiments: the targeted instar and the dosage; field experiments: the tested compound and the time elapsed from treatment). Means were separated using Tukey’s HSD test. The average mosquito mortality data were subjected to probit analysis. LC50 and LC90 were calculated using the method by Finney (1971). Data were analyzed using the SPSS 22.0 software (SPSS Inc., Chicago, IL, USA). A probability level of P < 0.05 was used for the significance of differences between values.

Predation efficiency data were analyzed by JMP 7 (SAS, 1999) using a weighted generalized linear model with one fixed factors: y = XB + ε where y is the vector of the observations (i.e. number of consumed preys), X is the incidence matrix, B is the vector of fixed effects (i.e. the presence of Ag NP and the targeted mosquito instar) and ε is the vector of the random residual effect. A probability level of P < 0.05 was used for the significance of differences between values.
Results

Table S1. Acute toxicity of *Melia azedarach* seed extract on larvae and pupae of the malaria vector *Anopheles stephensi*.

Target	Mortality (% ± SD)	LC$_{50}$ (LC$_{90}$) 95% Confidence Limit	Regression equation	χ^2						
	20 ppm	40 ppm	80 ppm	160 ppm	320 ppm	LCL	UCL			
I										
	42.61±3.01a	49.57±2.09a	57.24±2.12b	69.11±2.37c	83.70±1.84d	46.073 (383.546)	1.613 (314.785)	77.773 (507.030)	y=0.175+0.04x	1.074 n.s.
II	38.90±3.10a	46.71±2.14b	56.59±1.48c	61.15±1.40c	76.19±1.15d	70.686 (494.550)	20.011 (390.256)	108.005 (708.626)	y=214+0.003x	2.324 n.s.
III	32.24±1.08a	40.95±1.41b	49.65±1.17c	59.174±2.33d	73.42±0.98e	118.006 (535.088)	78.843 (424.450)	156.544 (756.668)	y=363+0.003x	3.255 n.s.
IV	29.73±2.00a	35.73±1.98ab	39.11±2.03b	46.59±1.48c	61.10±2.06d	201.265 (709.750)	155.175 (536.315)	277.573 (1116.823)	y=507+0.003x	0.517 n.s.
Pupae	25.62±1.03a	31.10±3.49ab	37.75±4.53b	43.67±3.15b	73.42±2.36c	253.871 (808.671)	196.337 (595.304)	373.352 (1357.290)	y=586+0.002x	1.537 n.s.

Mortality rates are means±SD of five replicates
No mortality was observed in the control
Within each row, means followed by the same letter(s) are not significantly different (P<0.05)
LC$_{50}$ = lethal concentration that kills 50% of the exposed organisms
LC$_{90}$ = lethal concentration that kills 90% of the exposed organisms
LCL = lower confidence limit
UCL = upper confidence limit
χ^2 = chi-square value
n.s. = not significant (P <0.05)
Table S2. Acute toxicity of *Melia azedarach*-synthesised silver nanoparticles on larvae and pupae of the malaria vector *Anopheles stephensi*.

Target	Mortality (%) ± SD	LC₅₀ (LC₉₀) 95% Confidence Limit	Regression equation	χ²						
	2 ppm	4 ppm	8 ppm	16 ppm	32 ppm	LCL	UCL			
I										
	48.14±2.50⁴	52.47±1.67³	69.55±1.78²	88.23±1.48¹	100±0.00¹	2.897 (16.385)	0.875 (14.068)	4.395 (20.029)	y =0.275+0.095x	0.660 n.s
II										
	43.16±2.35¹	47.36±1.31¹	59.61±1.77²	78.55±1.23²	99.26±0.19²	4.800 (21.082)	2.830 (18.246)	6.423 (25.365)	y =0.379+0.079x	1.056 n.s
III										
	37.57±1.79³	43.55±1.84³	56.53±1.79³	70.34±1.52³	95.23±1.42³	6.554 (26.611)	4.375 (23.062)	8.443 (31.917)	y =0.419+0.066x	0.684 n.s
IV										
	32.48±1.30³	39.35±1.36³	49.29±1.69³	67.53±1.53³	83.67±1.93³	9.372 (36.162)	6.743 (30.808)	11.790 (44.643)	y =0.448+0.048x	2.337 n.s
Pupa										
	29.59±1.49³	32.32±1.69³	46.54±1.55³	54.45±1.39³	71.44±1.69³	14.548 (50.311)	11.385 (41.152)	18.169 (66.836)	y =0.521+0.036x	2.634 n.s

Mortality rates are means±SD of five replicates
No mortality was observed in the control
Within each row, means followed by the same letter(s) are not significantly different (P<0.05)
LC₅₀ = lethal concentration that kills 50 % of the exposed organisms
LC₉₀ = lethal concentration that kills 90 % of the exposed organisms
LCL = lower confidence limit
UCL = upper confidence limit
χ² = chi-square value
n.s. = not significant (P <0.05)
Table S3. Field toxicity of *Melia azedarach* seed extract and green-synthesized silver nanoparticles on larval population of *Anopheles stephensi* in water storage reservoirs.

Treatment	Anopheles stephensi larval density (%)			
	Before treatment	24 h	48 h	72 h
Melia azedarach seed kernel extract (10×LC$_{50}$)	418.15±20.49a	62.89±8.84b	40.27±7.15c	25.10±6.70d
Green-synthesized Ag nanoparticles (10×LC$_{50}$)	419.88±41.19a	52.6±12.38b	31.39±11.79b	0.00±0.00c

Mortality rates are means±SD of six replicates
 Within each row, means followed by the same letter(s) are not significantly different (P<0.05)
Figure S1. Chromatic variation of the *Melia azedarach* seed extract before (a) and after (b) the process of reduction of Ag$^+$ ions to Ag0 nanoparticles. (c) UV-visualization of the absorption spectra of silver nanoparticles synthesised using *M. azedarach* seed extract plus an aqueous solution AgNO$_3$ (1 mM) over time.
Figure S2. Transmission electron micrograph of silver nanoparticles green-synthesized using *Melia azedarach* seed extract.
Figure S3. Energy-dispersive X-ray spectrum (EDX) of the silver nanoparticles synthesised using the *Melia azedarach* seed extract.
Figure S4. Fourier transform infrared (FTIR) spectrum of vacuum-dried powder of silver nanoparticles green-synthesised using the *Melia azedarach* seed extract.
References

Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519-1529

Finney DJ (1971) Probit analysis. Cambridge Univ. Press, Cambridge 333 pp

Murugan K, Benelli G, Ayyappan S, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Kumar PM, Subramaniam J, Suresh U. 2015. Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res doi: 10.1007/s00436-015-4417-z.

Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551-1562