THE ERROR FOR THE SECOND MOMENT OF COTANGENT SUMS RELATED TO THE RIEMANN HYPOTHESIS

HELMUT MAIER AND MICHAEL TH. RASSIAS

Abstract. In various papers the authors have derived asymptotics for moments of certain cotangent sums related to the Riemann Hypothesis. S. Bettin [4] has given an upper bound for the error term in these asymptotic results. In the present paper the authors establish a lower bound for the error term for the second moment.

Key words: Riemann Hypothesis, Riemann zeta function, Nyman-Beurling-Báez-Duarte criterion.

2000 Mathematics Subject Classification: 30C15, 11M26, 42A16, 42A20

1. Introduction

The authors in joint work (cf. [8, 9, 10, 11]) and the second author in his thesis ([12]) investigated the distribution of cotangent sums

$$c_0 \left(\frac{r}{b} \right) := \sum_{m=1}^{b-1} \frac{m}{b} \cot \left(\frac{\pi mr}{b} \right),$$

as \(r \) ranges over the set

$$\{r : (r, b) = 1, A_0 b \leq r \leq A_1 b\}, \text{ where } 1/2 < A_0 < A_1 < 1.$$

These cotangent sums are related to the Estermann zeta function

$$E \left(s, \frac{r}{b}, \alpha \right) := \sum_{n \geq 1} \frac{\sigma_\alpha(n) \exp(2\pi inr/b)}{n^s},$$

where \(\Re s > \Re \alpha + 1 \), \(b \geq 1 \), \((r, b) = 1 \) and

$$\sigma_\alpha(n) := \sum_{d|n} d^\alpha.$$

The cotangent sum \(c_0(r/b) \) can be associated to the study of the Riemann Hypothesis through its relation with the Vasyunin sum \(V \), which is defined by

$$V \left(\frac{r}{b} \right) := \sum_{m=1}^{b-1} \left\{ \frac{mr}{b} \right\} \cot \left(\frac{\pi mr}{b} \right),$$

where \(\{u\} := u - \lfloor u \rfloor \), \(u \in \mathbb{R} \).

It can be shown that

$$V \left(\frac{\bar{r}}{b} \right) = -c_0 \left(\frac{\bar{r}}{b} \right),$$

Date: June 5, 2018.
where \(r\bar{r} \equiv 1 \pmod{b} \). We have
\[
\frac{1}{2\pi \sqrt{rb}} \int_{-\infty}^{\infty} \left| \zeta \left(\frac{1}{2} + it \right) \right|^2 \left(\frac{r}{b} \right)^it \frac{dt}{\frac{4}{t} + t^2} = \log 2 \pi - \frac{\gamma}{2} \left(\frac{1}{r} + \frac{1}{b} \right) + \frac{b - r}{2rb} \log \frac{r}{b} - \pi \left(\frac{V(\frac{r}{b}) + V(\frac{b}{r})}{2} \right).
\]
The above formula is related to the Nymann-Beurling-Báez-Duarte-Vasyunin approach to the Riemann Hypothesis (see [14]). Let
\[
d_N^2 := \inf_{D_N} \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| 1 - \zeta D_N \left(\frac{1}{2} + it \right) \right|^2 \frac{dt}{\frac{4}{t} + t^2}
\]
and the infimum is over all Dirichlet polynomials
\[
D_N(s) := \sum_{n=1}^{N} \frac{a_n}{n^s}, \quad a_n \in \mathbb{C},
\]
of length \(N \) (see [3]).
The Riemann Hypothesis is true if and only if
\[
\lim_{N \to +\infty} d_N = 0.
\]
The authors of the present paper in joint work (cf. [9]), considered the moments defined by
\[
H_k := \lim_{b \to +\infty} \phi(b)^{-1} b^{-2k} (A_1 - A_0)^{-1} \sum_{a_0b \leq r \leq A_1b \atop (r,b)=1} c_0 \left(\frac{r}{b} \right)^{2k}, \quad k \in \mathbb{N},
\]
where \(\phi(\cdot) \) denotes the Euler phi-function. They could show that
\[
H_k = \int_0^1 \left(\frac{g(x)}{\pi} \right)^{2k} dx,
\]
where
\[
g(x) := \sum_{l \geq 1} \frac{1 - 2\{lx\}}{l}
\]
a function that has been investigated by de la Bretèche and Tenenbaum ([9]), as well as Balazard and Martin ([2, 3]).
Bettin [4] could replace the interval \((1/2, 1]\) for \(A_0, A_1 \) by the interval \((0, 1)\). In a series of papers the authors investigated the moments \(H_k \). In [10] they showed:
Let \(K \in \mathbb{N} \). There is an absolute constant \(C > 0 \), such that
\[
\int_0^1 |g(x)|^K dx = \frac{e^\gamma}{\pi} \Gamma(K + 1)(1 + O(\exp(-CK)))
\]
for \(K \to +\infty \).
In [11] the authors could generalise this result for arbitrary positive exponents.
The size of the error term in (1.1) has been investigated by Bettin ([4]). Using the Mellin transform and complex integration he could show the following result:
\[
\frac{1}{\phi(q)} \sum_{(a,q)=1} c_0 \left(\frac{a}{q} \right)^k = H_{k/2} q^k + O(q^{k-1+\epsilon}(Ak \log q)^{2k}).
\]
In this paper we show that for the special case \(k = 2 \) and \(q \) a prime number Bettin’s upper bound for the error term is close to best possible. Our main result is the following:

Theorem 1.1. Let \(q \) be a prime number, \(H_1 \) resp. \(g \) be given by (1.2) resp. (1.3) and let

\[
\frac{1}{q-1} \sum_{a=1}^{q-1} c_0 \left(\frac{a}{q} \right)^2 = H_1 q^2 + E(q) .
\]

Then there is an absolute constant \(C > 0 \), such that

\[
E(q) \geq C q (\log q)^2 , \quad q \geq q_0 .
\]

2. **Continued Fractions**

We recall some fundamental definitions and results from [3].

Definition 2.1. Let \(X := [0, 1] \setminus \mathbb{Q} \) and \(\alpha(x) := \{1/x\} \) for all \(x \in X \), where \(\{ \cdot \} \) denotes the fractional part. We define the iterates of \(\alpha \) by:

\[
\alpha_0(x) := x , \quad \alpha_k(x) := \alpha(\alpha_{k-1}(x)) , \quad \text{for all } k \in \mathbb{N} .
\]

We write

\[
a_0(x) := 0 \quad \text{and} \quad a_k(x) := \left\lfloor \frac{1}{\alpha_{k-1}(x)} \right\rfloor , \quad k \geq 1 .
\]

If \(x \) is irrational, then the sequence of partial fractions of \(x \) is defined by the recursion:

\[
\begin{align*}
p_0(x) &:= 0 , \quad q_0(x) := 1 ; \quad p_1(x) := 1 , \quad q_1(x) := a_1(x) , \\
p_k(x) &:= a_k(x)p_{k-1}(x) + p_{k-2}(x) , \\
q_k(x) &:= a_k(x)q_{k-1}(x) + q_{k-2}(x) , \quad k \geq 2 .
\end{align*}
\]

One writes

\[
\frac{p_k(x)}{q_k(x)} := [0; a_1(x), \ldots, a_k(x)] .
\]

The sequence

\[
\left(\frac{p_k(x)}{q_k(x)} \right)_{k=0}^{+\infty}
\]

is called the continued fraction expansion of \(x \) and is denoted by

\[
[0; a_1(x), \ldots, a_k(x), \ldots] .
\]

If \(x \) is a rational number, then \(a_K(x) = 0 \) for some \(K \in \mathbb{N} \) and we have:

\[
x = [0; a_1(x), \ldots, a_K(x)] .
\]

\(K \) is called the depth of \(x \).

We shall also apply the Definitions 2.1, 2.2 for the case that the last term \(a_k(x) \) is not an integer.

We define the functions \(\beta_k \) and \(\gamma_k \) by

\[
\beta_k(x) := \alpha_0(x)\alpha_1(x)\ldots\alpha_k(x) , \quad (\beta_{-1} = 1)
\]

and

\[
\gamma_k(x) := \beta_{k-1}(x) \log \frac{1}{\alpha_k(x)} ,
\]
with
\[(2.5)\]
\[\gamma_0(x) := \log(1/x).\]

Definition 2.2. (cells)

Let \(k \in \mathbb{N}, b_0 := 0\) and \(b_1, \ldots, b_k \in \mathbb{N}^* = \mathbb{N} \setminus \{0\}\). The **cell of depth** \(k\), \(C(b_1, \ldots, b_k)\) is the open interval with the endpoints \([0; b_1, \ldots, b_k]\) and \([0; b_1, \ldots, b_{k-1}, b_k + 1]\).

In the cell \(C(b_1, \ldots, b_k)\) the functions \(a_j, p_j, q_j\) are constant for \(j \leq k\).

For \(x \in C(b_1, \ldots, b_k)\) we have:
\[a_j(x) = b_j, \quad \frac{p_j(x)}{q_j(x)} = [0; b_1, \ldots, b_j], \quad j \leq k.\]

Lemma 2.3. Within the cell \(C(b_1, \ldots, b_k)\), \(\alpha_k\) and \(\gamma_k\) are differentiable functions of \(x\). We have:
\[\alpha_k' = (-1)^k (q_k + \alpha_k q_{k-1})^2, \quad \gamma_k' = (-1)^{k-1} q_{k+1} \log \left(\frac{1}{\alpha_k}\right) + \frac{(-1)^{k-1}}{\beta_k}.\]

Proof. (2), Formula (34), p. 207 and (36), p. 208. \(\square\)

Lemma 2.4.
\[\beta_k(x) = (-1)^{k-1} (p_k(x) - x q_k(x)) = |p_k(x) - x q_k(x)| = \frac{1}{q_{k+1}(x) + \alpha_{k+1}(x) q_k(x)}.\]

Proof. This is formula (14) of [3]. \(\square\)

3. A representation of \(g(x)\) related to Wilton’s function

We now recall the following definition from [3]. The number \(x\) is called a Wilton number if the series
\[(3.1)\]
\[\sum_{k \geq 0} (-1)^k \gamma_k(x)\]
converges. Wilton’s function \(W(x)\) is defined by
\[(3.2)\]
\[W(x) := \sum_{k \geq 0} (-1)^k \gamma_k(x)\]
for each Wilton number \(x \in (0, 1)\).

The operator \(T : L^p \rightarrow L^p\) (\(p > 1\)) is defined by
\[(3.3)\]
\[Tf(x) := xf(\alpha(x))\]

For \(n \in \mathbb{N}, x \in X\), we define
\[(3.4)\]
\[\mathcal{L}(x, n) := \sum_{v=0}^{n} (-1)^v (T^v l)(x).\]

For \(\lambda \geq 0\) we set
\[(3.5)\]
\[A(\lambda) := \int_0^{+\infty} \left\{t\right\} \lambda t \ dt \frac{dt}{t^2}\]
\[(3.6)\]
\[F(x) := \frac{x + 1}{2} A(1) - \frac{x}{2} A(x) - \frac{x}{2} \log x\]
\[(3.7)\]
\[H(x) := -2 \sum_{j \geq 0} (-1)^j \beta_{j-1}(x) F(\alpha_j(x)).\]
Lemma 3.1. We have

\begin{equation}
L(x, n) = \sum_{k=0}^{n} (-1)^k \gamma_k(x) .
\end{equation}

\begin{equation}
g(x) = L(x, n) + H(x) + (-1)^{n+1} T^{n+1} W(x).
\end{equation}

Proof. Equality (3.8) follows from (2.3)-(2.5) and (3.4). Equality (3.9) follows from Lemma 2.7 of [2]. □

4. An expression for the error-term

We recall the following definition from [2].

Definition 4.1.

\[D_{\sin}(s, x) := \sum_{n=1}^{+\infty} \frac{d(n) \sin(2\pi nx)}{n^s}. \]

Lemma 4.2.

\[c_0 \left(\frac{a}{q} \right) = 2q\pi^{-2} D_{\sin}(1, \bar{a}/q), \]

where

\[D_{\sin}(1, x) = \pi g(x). \]

Proof. The first fact is due to Ishibashi [7], the second to de la Bretêche and Tenenbaum [6] (see also [4]). □

Lemma 4.3. Let

\[\frac{1}{q-1} \sum_{a=1}^{q-1} g \left(\frac{a}{q} \right)^2 = H_1 + \tilde{E}(q). \]

Then Theorem 4.1 is equivalent to

\[\tilde{E}(q) \geq Cq^{-1} (\log q)^2, \quad q \geq q_0, \]

for an absolute constant \(C > 0 \).

Proof. This follows from Lemma 4.2. To estimate \(\tilde{E}(q) \) we thus have to investigate the sums in the following. □

Definition 4.4.

\[\Sigma_1 := \sum_{k \leq K} \sum_{a=1}^{q-1} \int_{\frac{a}{q} - \frac{1}{2q}}^{\frac{a}{q} + \frac{1}{2q}} \gamma_k(x)^2 - \gamma_k \left(\frac{a}{q} \right)^2 \, dx \]

\[\Sigma_2 := \sum_{k_1 < k_2 \leq K} (-1)^{k_1 + k_2} \sum_{a=1}^{q-1} \int_{\frac{a}{q} - \frac{1}{2q}}^{\frac{a}{q} + \frac{1}{2q}} \left(\gamma_{k_1}(x) - \gamma_k \left(\frac{a}{q} \right) \right) \left(\gamma_{k_2}(x) - \gamma_k \left(\frac{a}{q} \right) \right) \, dx \]

\[\Sigma_3 := \sum_{k \leq K} \sum_{a=1}^{q-1} \int_{\frac{a}{q} - \frac{1}{2q}}^{\frac{a}{q} + \frac{1}{2q}} \left(H(x) - H \left(\frac{a}{q} \right) \right) \left(\gamma_k(x) - \gamma_k \left(\frac{a}{q} \right) \right) \, dx \]

\[\Sigma_4 := \sum_{k \leq K} \sum_{a=1}^{q-1} \int_{\frac{a}{q} - \frac{1}{2q}}^{\frac{a}{q} + \frac{1}{2q}} \left(H(x) - H \left(\frac{a}{q} \right) \right)^2 \, dx \]
5. A LOWER BOUND FOR \(\Sigma_1 \)

We first give some facts and definitions which are also of importance in the estimate of the other terms.

Lemma 5.1. Let \(r \) be a rational number of depth \(k \),

\[
r = [0; b_1, \ldots, b_k] , \ k \geq 2 .
\]

Then there is exactly one pair \(P_k = (C_1, C_2) \), \(C_1 \) a cell of depth \(k \) and \(C_2 \) a cell of depth \(k + 1 \), such that \(r \) is a common endpoint of both of the cells, namely

\[
C_1 = C(b_1, \ldots, b_k) \text{ and } C_2 = C(b_1, \ldots, b_k - 1, 2) .
\]

Proof. By definition a cell \(\tilde{C} \) of depth \(k + 1 \) that has an endpoint of depth \(k \) must be of the form

\[
\tilde{C} = C(a_1, \ldots, a_k - 1, 2) , \ a_k \geq 2 .
\]

Thus we must have

\[
C_2 = C(b_1, \ldots, b_k - 1, 2) .
\]

By Definition 2.2 the cells of order \(k \) bordering on \(r \) are

\[
\tilde{C} = C(b_1, \ldots, b_k - 1) \text{ and } \tilde{C} = C(b_1, \ldots, b_k) .
\]

Since \(C(b_1, \ldots, b_k - 1, 2) \) is a proper subset of \(\tilde{C} \), we must have \(C_1 = C(b_1, \ldots, b_k) \). \(\square \)

Definition 5.2. We call the pair \(P_k = (C_1, C_2) \) of Lemma 5.1 the pair of order \(k \) of \(r \). For each \(k \) we partition the set of intervals

\[
I_a := \left[\frac{a}{q}, \frac{a+1}{q} \right]
\]

into two classes:

\[
C_{k,1} := \{ I_a : I_a \text{ and } I_{a+1} \text{ do not contain a rational number of depth } k \}
\]

\[
C_{k,2} := \{ I_a : I_a \text{ or } I_{a+1} \text{ contains a rational number of depth } k \} .
\]

We first give a lower bound for the contribution of the intervals of class \(C_{k,1} \). Each \(I_a^* \in C_{k,1} \) is entirely contained in a cell \(c(I_a^*) = C(b_1, \ldots, b_k) \) of order \(k \). Let

\[
[b_1, \ldots, b_k] := \frac{p_k}{q_k} .
\]

We write \(a = a_0 + b \), where

\[
a_0 = \min \{ a : I_a \subset c(I_a^*) \} .
\]

We now evaluate

\[
C_a = \int \frac{\alpha_{k+1}}{\alpha_k} - \gamma_k(x)^2 - \gamma_k \left(\frac{a}{q} \right)^2 \ dx
\]

From Lemmas 2.3 and 2.4 we obtain:

\[
\gamma_k(x) = -q_k - 1 \log \left(\frac{1}{\alpha_k(x)} \right) + q_k^{-1} \left(\frac{p_k}{q_k} - x \right)^{-1}
\]

and thus

\[
\gamma_k''(x) = 2q_k^{-1} \left(\frac{p_k}{q_k} - x \right)^{-2} + O \left(\left(\frac{p_k}{q_k} - x \right)^{-1} \right) .
\]
We also have that
\[\left| \frac{p_k}{q_k} \right| - a_k \geq \frac{1}{qq_k}. \]

This leads to
\[\frac{d^2}{dx^2}(\gamma_k(x)^2) = 2\gamma_k'(x)^2 + 2\gamma_k(x)\gamma_k''(x) \geq 4q_k^{-2} \frac{q^2 \log(q)}{(h + \theta(x))^2}, \quad 0 \leq \theta(x) \leq 1, \]
if \(q_k \leq q^{1/3} \).

By Taylor’s theorem we obtain with \(\theta_1(u), \theta_2(u) \in (0, 1) \),
\[C_a = \int_0^{a/q} \gamma_k \left(\frac{a}{q} + u \right)^2 + \gamma_k \left(\frac{a}{q} - u \right)^2 - 2\gamma_k \left(\frac{a}{q} \right)^2 \, du
\]
\[= \int_0^{a/q} \frac{1}{2} \left(\frac{d^2}{dx^2} \left(\gamma_k \left(\frac{a}{q} + \theta_1(u) \right)^2 \right) + \frac{d^2}{dx^2} \left(\gamma_k \left(\frac{a}{q} - \theta_2(u) \right)^2 \right) \right) \, du
\]
\[\geq c_1 q_k^{-2} q^{-1} h^{-2} \log \left(\frac{q}{h} \right) \]
for \(q_k \leq q^{1/3} \) (where \(c_1 > 0 \) is an absolute constant).

We now investigate the contribution of the intervals \(I_a \subset c_{k,2} \). We assume that \(k \) is odd. The case \(k \) even is treated similarly.

Let \(r \) be a rational number of depth \(k \) in
\[I_a = \left(\frac{a}{q}, \frac{a + 1}{q} \right). \]

We write
\[r = \frac{a}{q} + \frac{1}{2q} + w_0, \quad w_0 \in \left(-\frac{1}{2q}, \frac{1}{2q} \right). \]

By Lemma \textbf{2.1} there is exactly one pair \(P_k \) of cells \((C_1, C_2) \), \(C_1 \) of depth \(k \), \(C_2 \) of depth \(k + 1 \), such that \(r \) is a common endpoint of both, namely
\[C_1 = C(b_1, \ldots, b_k) \quad \text{and} \quad C_2 = C(b_1, \ldots, b_k - 1, 2). \]

We combine the contributions of order \(k \) to \(I_a \) and of order \(k + 1 \) to \(I_{a+1} \), i.e. we consider
\[C(a, k) := \int_{\frac{a}{q} + \frac{1}{2q} + w_0}^{\frac{a}{q} + \frac{1}{2q} + w_0 + v} \gamma_k(x)^2 - \gamma_k \left(\frac{a}{q} \right)^2 \, dx + \int_{\frac{a}{q} + \frac{1}{2q} + w_0}^{\frac{a}{q} + \frac{1}{2q} + w_0 + v} \gamma_{k+1}(x)^2 - \gamma_{k+1} \left(\frac{u + 1}{q} \right)^2 \, dx
\]
\[=: I(a, k, w_0). \]

and study \(I(a, k, w_0) \) as a function of \(w_0 \). We first treat the case \(w_0 = 0 \).

For \(u > 0 \) we write
\[r - u = [b_1, \ldots, b_k + v] = [b_1, \ldots, b_k - 1, (1 + v)^{-1}] . \]

By Lemma \textbf{2.2} we obtain:
\[\gamma_k(r - u) - \gamma_k \left(\frac{a}{q} \right) = \left(\gamma_{k+1}(r + u) - \gamma_{k+1} \left(\frac{a + 1}{q} \right) \right) (1 + O(q^{-1})). \]

We obtain
\[I(a, k, 0) \geq c_2 q_k^{-2} q^{-1} \log q \]
A simple computation shows that
\[\frac{d^2 I(a, k, w_0)}{dw_0^2} > 0. \]
Thus we also have:

\[(5.3) \quad C(a, k) \geq c_3q_k^{-2}q^{-1}\log q, \quad \text{for } q_k \leq q^{1/3}. \]

We still need a bound for the contribution of a cell, which is uniform in \(q_k \). The width of the cell of depth \(k \) with partial denominators \(q_k \) is \(O(1/q_k^2) \). From the bound

\[\beta_k(x) \leq \frac{1}{q_k}, \]

we obtain

\[(5.4) \quad \int C \gamma_k(x)^2 dx = O(q_k^{-4}). \]

We now collect the estimates (5.2), (5.3), (5.4). Summing over \(h, p_k \) and \(q_k \) we obtain

\[(5.5) \quad \Sigma_1 \geq c_4q^{-1}(\log q)^2, \quad \text{for } K \text{ sufficiently large.} \]

6. Upper bound for the other sums

The estimate of the other sums is carried out with very similar methods. To estimate the sum \(\Sigma_2 \) - the most difficult case - we again collect pairs \(P_k \) of order \(k \) and estimate integrals

\[\int_{-w_0}^{w_0} \gamma_k(r + v)(\gamma_k(r + v) - \gamma_{k+1}(r + v)) dv, \]

which arise from the alternating signs in (3.8). We obtain

\[(6.1) \quad \Sigma_i = o(q^{-1}(\log q)^2) \quad (i = 2, 3, 4). \]

Theorem 1.1 now follows from (5.4) and (6.1).

References

[1] L. Báez-Duarte, M. Balazard, B. Landreau, E. Saias, Étude de l’autocorrelation multiplicative de la fonction ‘partie fractionnaire’, (French) [Study of the multiplicative autocorrelation of the fractional part function], Ramanujan J., 9(2005), no. 1–2, 215–240; arxiv math.NT/0306251.
[2] M. Balazard, B. Martin, Comportement local moyen de la fonction de Brjuno (French) [Average local behavior of the Brjuno function], Fund. Math., 218(3)(2012), 193–224.
[3] M. Balazard, B. Martin, Sur l’autocorrélation multiplicative de la fonction “partie fractionnaire” et une fonction définie par J. R. Wilton, arXiv: 1305.4395v1.
[4] S. Bettin, On the distribution of a cotangent sum, Int. Math. Res. Notices (2015), doi: 10.1093/imrn/rnv036
[5] S. Bettin, J. B. Conrey, D. W. Farmer, An optimal choice of Dirichlet polynomials for the Nyman-Beurling criterion, (in memory of Prof. A. A. Karacuba), arXiv:1211.5191
[6] R. de la Bretèche and G. Tenenbaum, Séries trigonométriques à coefficients arithmétiques, J. Anal. Math., 92(2004), 1–79.
[7] M. Ishihashi, The value of the Estermann zeta function at \(s = 0 \), Acta Arith. 73(4)(1995), 357–361.
[8] H. Maier and M. Th. Rassias, Generalizations of a cotangent sum associated to the Estermann zeta function, Communications in Contemporary Mathematics, 18(1)(2016), 89 pages, doi: 10.1142/S0219199715500789.
[9] H. Maier and M. Th. Rassias, *The order of magnitude for moments for certain cotangent sums*, Journal of Mathematical Analysis and Applications, 429(1)(2015), 576–590.

[10] H. Maier and M. Th. Rassias, *Asymptotics for moments of certain cotangent sums*, Houston Journal of Mathematics, 43(1)(2017), 207–222.

[11] H. Maier and M. Th. Rassias, *Asymptotics for moments of certain cotangent sums for arbitrary exponents*, Houston Journal of Mathematics, 43(4)(2017), 1235–1249.

[12] M. Th. Rassias, *Analytic investigation of cotangent sums related to the Riemann zeta function*, Doctoral Dissertation, ETH-Zürich, Switzerland, 2014.

[13] V. I. Vasyunin, *On a biorthogonal system associated with the Riemann hypothesis*, (in Russian) Algebra i Analiz 7(3)(1995), 118–135; English translation in St. Petersburg Math. J. 7(3)(1996), 405–419.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ULM, HELMHOLTZSTRASSE 18, 89081 ULM, GERMANY.

E-mail address: helmut.maier@uni-ulm.de

INSTITUTE OF MATHEMATICS, UNIVERSITY OF ZURICH, CH-8057, ZURICH, SWITZERLAND

E-mail address: michail.rassias@math.uzh.ch