Boundedness of Hausdorff operators on Hardy spaces H^1 over locally compact groups

A. R. Mirotin

Abstract. Results of Liflyand and collaborators on the boundedness of Hausdorff operators on the Hardy space H^1 over finite-dimensional real space generalized to the case of locally compact groups that are spaces of homogeneous type. Special cases and examples of compact Lie groups, homogeneous groups (in particular the Heisenberg group) and finite-dimensional spaces over division rings are considered.

Key words: Hausdorff operator, Hardy space, space of homogeneous type, locally compact group, homogeneous group, Heisenberg group.

AMS Mathematics Subject Classification: 47B38, 46E30, 22E30.

1 Introduction

Hausdorff operators originated from some classical summation methods. This class of operators contains some important examples, such as Hardy operator, adjoint Hardy operator, the Cesàro operator. As mentioned in [25] the Riemann-Liouville fractional integral and the Hardy-Littlewood-Pólya operator can also be reduced to the Hausdorff operator. As was noted in [4] the Hausdorff operator is closely related to a Calderón-Zygmund convolution operator, too.

The study of general Hausdorff operators on Hardy spaces H^1 over the real line was pioneered by Liflyand and Móricz [20]. After publication of this paper Hausdorff operators have attracted much attention. The multidimensional case was considered by Lerner and Liflyand [16], and Liflyand [17] (the case of the space $L^p(\mathbb{R}^n)$ was studied earlier in [8]). Hausdorff operators on spaces $H^p(\mathbb{R})$ for $p \in (0,1)$ were considered by Kanjin [15], and Liflyand and Miyachi [20]. The survey article by E. Liflyand [18] contains main results on Hausdorff operators in various settings and bibliography up to 2013. See also [5], [23], [6], [7], [26], [28]. The recent paper by Ruan and Fan [25] contains in particular several sharp conditions for boundedness of Hausdorff operators on the space $H^1(\mathbb{R}^n)$.

The aim of this work is to generalize results on the boundedness of Hausdorff operators on Hardy spaces over \mathbb{R}^n to the case of general locally compact
groups. The main task is a distillation of results about Hausdorff operators depending only on the group and (quasi-)metric structures. So, we consider locally compact groups that are spaces of homogeneous type in the sense of Coifman and Weiss [9]. Special cases and examples of compact Lie groups, homogeneous groups (in particular the Heisenberg group) and finite-dimensional spaces over division rings are also considered.

Recall that according to [9] a space of homogeneous type is a quasi-metric space \(\Omega \) endowed with a Borel measure \(\mu \) and a quasi-metric \(\rho \). And the basic assumption relating the measure and the quasi-metric is the existence of a constant \(C \) such that

\[
\mu(B(x, 2r)) \leq C \mu(B(x, r))
\]

for each \(x \in \Omega \) and \(r > 0 \) ("the doubling condition"). Here \(B(x, r) \) denotes a quasi-ball of radius \(r \) around \(x \). The doubling constant is the smallest constant \(C \geq 1 \) for which the last inequality holds. We denote this constant by \(C_\mu \). Then for each \(x \in \Omega, k \geq 1 \) and \(r > 0 \)

\[
\mu(B(x, kr)) \leq C_\mu k^s \mu(B(x, r)),
\]

where \(s = \log_2 C_\mu \) (see, e.g., [13, p. 76]). The number \(s \) sometimes takes the role of a “dimension” for a doubling quasi-metric measure space.

Recall also the definition of the real Hardy space \(H^1(\Omega) \) associated with a space of homogeneous type \(\Omega \) [9].

First note that a function \(a \) on \(\Omega \) is an \(((1, \infty)-)\)atom if

(i) the support of \(a \) is contained in a ball \(B(x, r) \);
(ii) \(\|a\|_\infty \leq \frac{1}{\mu(B(x, r))} \);
(iii) \(\int_\Omega a(x) d\mu(x) = 0 \).

By definition, the real Hardy space \(H^1(\Omega) \) consists of those functions admitting an atomic decomposition

\[
f = \sum_j \lambda_j a_j
\]

where the \(a_j \) are atoms, and \(\sum_j |\lambda_j| < \infty \) [9, p. 593].

The infimum of the numbers \(\sum_j |\lambda_j| \) taken over all such representations of \(f \) will be denoted by the symbol \(\|f\|_{H^1} \).

Remark 1. Real Hardy spaces over compact connected (not necessary quasi-metric) Abelian groups were defined in [21].
2 The general case

In the following G stands for a locally compact σ-compact group which is a space of homogeneous type (in particular, a homogeneous group \[12, \[10]\]) with respect to quasi-metric ρ and left Haar measure μ, and $A : G \to \text{Aut}(G)$ a μ-measurable map.

Let

$L_A(G) = \{ \Phi : G \to \mathbb{C} : \| \Phi \|_{L_A} := \int_G |\Phi(u)| \text{mod}(A(u)^{-1}) d\mu(u) < \infty \}$

where $\text{mod}(A(u)^{-1})(= 1/\text{mod}(A(u)))$ denotes the modulus of the automorphism $A(u)^{-1}$ (recall that the modulus of the automorphism $\varphi \in \text{Aut}(G)$ satisfies $\mu(\varphi(E)) = (\text{mod}(\varphi))\mu(E)$ for every Borel $E \subset G$ with finite measure, see, e.g., [2, Chapter VII]).

Definition 1 (cf. [3]). Let Φ be a locally integrable function on G. We define the *Hausdorff operator* with the kernel Φ by

\[
(\mathcal{H}f)(x) = (\mathcal{H}_\Phi,A f)(x) = \int_G \Phi(u) f(A(u)(x)) d\mu(u).
\]

Remark 2. One can assume that A is defined almost everywhere on the support of Φ only.

We need four lemmas to prove our main result.

Lemma 1. Let $\Phi \in L_A(G)$. Then the operator \mathcal{H}_Φ,A is bounded in $L^1(G)$ and

\[
\|\mathcal{H}_\Phi,A\| \leq \|\Phi\|_{L_A}.
\]

Proof. Using Fubini Theorem and [2 VII.4, formula (31)] we have for $f \in L^1(G)$

\[
\|\mathcal{H}_\Phi,A f\|_{L^1} = \int_G \left| \int_G \Phi(u) f(A(u)(x)) d\mu(u) \right| d\mu(x) \leq
\]

\[
\int_G |\Phi(u)| \int_G |f(A(u)(x))| d\mu(x) d\mu(u) = \int_G |\Phi(u)| \text{mod } (A(u)^{-1}) \left(\int_G |f(x)| d\mu(x) \right) d\mu(u) = \|\Phi\|_{L_A} \|f\|_{L^1}.
\]
Lemma 2. Let (Ω, ρ) be σ-compact quasi-metric space with positive Radon measure μ, and let $\mathcal{F}(\Omega)$ be some Banach space of μ-measurable functions on Ω. Assume that the convergence of a sequence strongly in $\mathcal{F}(\Omega)$ yields the convergence of some subsequence to the same function for μ-almost all $x \in \Omega$. Let $F(u, x)$ be a function such that $F(u, \cdot) \in \mathcal{F}(\Omega)$ for μ-almost all $u \in \Omega$ and $u \mapsto F(u, \cdot) : \Omega \to \mathcal{F}(\Omega)$ is Bochner integrable with respect to μ. Then for μ-almost all $x \in \Omega$

$$\left(B \int_{\Omega} F(u, \cdot) d\mu(u) \right) (x) = \int_{\Omega} F(u, x) d\mu(u).$$

Proof. Let K_m be an increasing sequence of compact subsets of Ω and $\Omega = \bigcup_{m=1}^{\infty} K_m$. Then $\mu(K_m) < \infty$ and

$$\left(B \int_{\Omega} F(u, \cdot) d\mu(u) \right) = \lim_{m \to \infty} \left(B \int_{K_m} F(u, \cdot) d\mu(u) \right).$$

By [22] (see also [1, Theorem 2.1]) there exist a metric d on Ω and positive constants $a, b,$ and β such that

$$ad^{1/\beta}(x, y) \leq \rho(x, y) \leq bd^{1/\beta}(x, y)$$

for all $x, y \in \Omega$. Since (Ω, ρ) and (Ω, d) are isomorphic as uniform spaces, Theorem 1 from [24] remains true for (Ω, ρ) along with its proof. Therefore [24, p. 203] for every m there are a sequence of partitions $P^{(n)} = (\Omega_j^{(n)})_{j=1}^{N(n)}$ of K_m with the property $\max_j \text{diam}(\Omega_j^{(n)}) \to 0$ as $n \to \infty$ and a sequence of sample point sets $S^{(n)} = \{u_j^{(n)} : j = 1, 2, \ldots, N(n)\}$ such that

$$\left(B \int_{K_m} F(u, \cdot) d\mu(u) \right) = \lim_{n \to \infty} \sum_{j=1}^{N(n)} F(u_j^{(n)}, \cdot) \mu(\Omega_j^{(n)})$$

strongly in $\mathcal{F}(\Omega)$, and therefore the sequence in the right-hand side contains a subsequence that converges to the function in the left-hand side μ-almost everywhere. This implies that for μ-almost all $x \in \Omega$

$$\left(B \int_{K_m} F(u, \cdot) d\mu(u) \right)(x) = \int_{K_m} F(u, x) d\mu(u)$$

and lemma 2 follows.
Lemma 3. There are such $a, b > 0$ that for all $x, x' \in G$ and $r > 0$

$$
\mu(B(x', \frac{a}{b} r)) \leq \mu(B(x, r)) \leq \mu(B(x', \frac{b}{a} r)).
$$

Proof. Let positive constants $a, b, \beta,$ and a metric d on G be such that (3) is valid. One can assume that d is left invariant (see, e.g., [14, Theorem 2.8.3]). By formula (3)

$$
B_d(x, \left(\frac{r}{b}\right)^\beta) \subseteq B(x, r) \subseteq B_d(x, \left(\frac{r}{a}\right)^\beta)
$$

and therefore

$$
\mu(B_d(x, \left(\frac{r}{b}\right)^\beta)) \leq \mu(B(x, r)) \leq \mu(B_d(x, \left(\frac{r}{a}\right)^\beta)). \tag{4}
$$

Since μ and d are left invariant, $\mu(B_d(x, R)) = \mu(B_d(x', R))$ for all $x, x' \in G, R > 0$. It follows in view of (4) that

$$
\mu(B(x, r)) \geq \mu(B_d(x, \left(\frac{r}{b}\right)^\beta)) = \mu(B_d(x', \left(\frac{r}{b}\right)^\beta)) = \mu(B_d(x', \left(\frac{ar/b}{a}\right)^\beta)) \geq \mu(B(x', \frac{a}{b} r)).
$$

The proof of the second inequality is similar.

Consider the following condition: for every automorphism $A(u)$, for every $x \in G,$ and for every $r > 0$ there exist a positive number $k(u)$ which depends of u only and a point $x' = x'(x, u, r) \in G$ such that

$$
A(u)^{-1}(B(x, r)) \subseteq B(x', k(u)r) \tag{\ast}
$$

(in fact, $k(u)$ depends of $A(u)$). In the following we choose k to be a μ-measurable function, $s = \log_2 C_\mu$.

We shall say that $\Phi \in L_{k,s}(G)$ if

$$
\|\Phi\|_{L_{k,s}^1} := \int_G |\Phi(u)| k(u)^s d\mu(u) < \infty.
$$

Lemma 4. If the condition (\ast) holds, then $L_{k,s}(G) \subseteq L_A(G)$.

Proof. For every $x, u \in G,$ and for every $r > 0$ the condition (\ast) implies that

$$
\text{mod}(A(u)^{-1}) \mu(B(x, r)) = \mu(A(u)^{-1}(B(x, r))) \leq \mu(B(x', k(u)r)).
$$
On the other hand, we have by Lemma 3 and formula (D)
\[\mu(B(x', k(u)r)) \leq \mu(B(x, \frac{b}{a}k(u)r)) \leq C\mu k(u)^s \left(\frac{b}{a} \right)^s \mu(B(x, r)). \]
Then \(\text{mod}(A(u)^{-1}) \leq C\mu(b/a)^sk(u)^s \) and the desired inclusion follows.

Now we are in position to prove our main theorem.

Theorem 1. Let the condition (\(\ast \)) holds. For \(\Phi \in L^1_k(G) \) the Hausdorff operator \(\mathcal{H} \) is bounded on the real Hardy space \(H^1(G) \) and
\[
\| \mathcal{H} \| \leq C\mu \left(\frac{b}{a} \right)^s \| \Phi \|_{L^1_k}.
\]

Proof. We use the approach from [17]. First note that by lemmas 4 and 1 the integral in (1) exists. Since for \(f \in H^1(G) \) we have \(\| f \|_{L^1} \leq \| f \|_{H^1} \), one can apply lemma 2 and formula (1) can be rewritten as follows:
\[
\mathcal{H}_{\Phi, A} f = \int_G \Phi(u) f \circ A(u) d\mu(u),
\]
the Bochner integral with respect to \(H^1 \) norm, (as usual, \(\circ \) denotes the composition operation) and therefore
\[
\| \mathcal{H}_{\Phi, A} f \|_{H^1} \leq \int_G |\Phi(u)| \| f \circ A(u) \|_{H^1} d\mu(u). \tag{5}
\]
We wish to estimate the right-hand side of (5) from above by using (\(\ast \)). If \(f \) has an atomic decomposition \(f = \sum_j \lambda_j a_j \), then
\[
f \circ A(u) = \sum_j \lambda_j a_j \circ A(u). \tag{6}
\]
We claim that \(a'_{j,u} := C\mu^{-1}(bk(u)/a)^{-s}a_j \circ A(u) \) is an atom, as well. Indeed, the condition (\(\ast \)) shows that if \(a_j \) is supported in \(B(x_j, r_j) \), the function \(a'_{j,u} \) is supported in \(B(x'_j, k(u)r_j) \), and thus (i) holds for \(a'_{j,u} \). Next, by lemma 3 and the doubling condition,
\[
\mu(B(x'_j, k(u)r_j)) \leq \mu(B(x_j, \frac{b}{a}k(u)r_j)) \leq C\mu \left(\frac{b}{a}k(u) \right)^s \mu(B(x_j, r_j)).
\]
Then
\[
\| a_j \circ A(u) \|_{\infty} \leq \frac{1}{\mu(B(x_j, r_j))} \leq C\mu \left(\frac{b}{a}k(u) \right)^s \frac{1}{\mu(B(x'_j, k(u)r_j))}.
\]
and (ii) is also valid for \(a'_{j,u} \). Finally, the cancelation property (iii) for \(a'_{j,u} \) follows from [2, VII.1.4, formula (31)].

Since by (6)

\[
f \circ A(u) = \sum_j \left(C_\mu \left(\frac{b}{a} k(u) \right)^s \lambda_j \right) a'_{j,u},
\]

we get

\[
\| f \circ A(u) \| \leq C_\mu \left(\frac{b}{a} k(u) \right)^s \sum_j |\lambda_j|.
\]

Therefore \(\| f \circ A(u) \| \leq C_\mu (bk(u)/a)^s \| f \| \) and the conclusion of the theorem follows from the formula (5).

Remark 3. If \(\rho \) is a left invariant quasi-metric, one can take \(a = b = 1 \) in theorem 1 because in this case lemma 3 holds trivially with such \(a \) and \(b \).

3 Special cases and examples

3.1 Compact Lie groups

As mentioned in [3] p. 588, Example (7)] compact Lie groups with natural distances and Haar measures are spaces of homogeneous type. Moreover, the condition (\(* \)) holds for such groups automatically as the following lemma shows.

Lemma 5. Let \(G \) be a compact Lie group with left invariant metric \(\rho \). Every automorphism \(A \in \text{Aut}(G) \) is Lipschitz, i.e. for some constant \(k > 0 \) and for every \(x, y \in G \)

\[
\rho(A(x), A(y)) \leq k \rho(x, y).
\]

Proof. Taking into account that every compact Lie group is smoothly isomorphic to a matrix group, one can assume that \(G \) is such a group. Let an automorphism \(A \in \text{Aut}(G) \) induces an automorphism \(\hat{A} \) of the Lie algebra \(\mathfrak{g} \) of \(G \) such that \(A(\exp X) = \exp(\hat{A}X) \) (see, e.g. [3]). Consider a sufficiently small neighborhood \(U \) of unit \(e \in G \) such that \(\exp^{-1} \) is defined in \(U \). For \(x \in U \) let \(X := \exp^{-1}(x) \) and let the norm \(\| \cdot \| \) on \(\mathfrak{g} \) corresponds to the
metric ρ. Since (infimum below is taken over all curves $\alpha \in C^1([0, 1], G)$ with $\alpha(0) = e, \alpha(1) = \exp X$)

$$\rho(\exp X, e) = \inf_{\alpha} \int_{0}^{1} \|\alpha'(t)\| \, dt \leq \int_{0}^{1} \left\| \frac{d}{dt} \exp (tX) \right\| \, dt = \|X\| + o(\|X\|)$$

and therefore $\rho(A(x), e) = \rho(\exp(\hat{A}X), e) = \|\hat{A}X\| + o(\|X\|)$, we have

$$\limsup_{x \to e} \frac{\rho(A(x), e)}{\rho(x, e)} = \limsup_{x \to 0} \frac{\rho(\hat{A}X)}{\|X\|} \leq \|\hat{A}\|.$$

Thus the function $\rho(A(x), e)/\rho(x, e)$ is bounded in some open neighborhood V of unit. Since it is also continuous on the compact set $G \setminus V$, it is bounded, $\rho(A(x), e)/\rho(x, e) \leq k$. To finish the proof one should substitute $y^{-1}x$ in place of x in the last inequality.

Now theorem 1 yields the following corollary (see remark 3).

Corollary 1. Let G be a compact Lie group with left invariant metric ρ. For $\Phi \in L_{k, s}^1(G)$ the Hausdorff operator $\mathcal{H}_{\Phi, A}$ is bounded on the real Hardy space $H^1(G)$ and

$$\|\mathcal{H}_{\Phi, A}\| \leq C_{\mu}\|\Phi\|_{L_{k, s}^1}.$$

Examples. (1) The n-dimensional torus \mathbb{T}^n. We assume that \mathbb{T}^n is equipped with the invariant metric $\rho(x, y) = \max_{1 \leq i \leq n} d(x_i, y_i)$ (here $x = (x_i), y = (y_i) \in \mathbb{T}$ and d is a usual metric in \mathbb{T}).

The one-dimensional torus possesses only two automorphisms $z \mapsto z$ and $z \mapsto -z$. Therefore we can take $k(u) = 1$ for every $A(u) \in \text{Aut}(\mathbb{T})$ and then $L_{k, s}^1(\mathbb{T}) = L^1(\mathbb{T})$. It follows that the condition $\Phi \in L_{k, s}^1(G)$ of theorem 1 is sharp in general and that bounded Hausdorff operators on $H^1(\mathbb{T})$ turns out to be very simple: $\mathcal{H} = aI + bJ$ where $I f = f, J f(z) = f(-z)$, and $a, b \in \mathbb{R}$.

In the general case $n > 1$ all elements of $\text{Aut}(\mathbb{T}^n)$ have the form

$$A(z_1, \ldots, z_n) = (z_1^{m_{11}} \ldots z_n^{m_{1n}}, \ldots, z_1^{m_{n1}} \ldots z_n^{m_{nn}})$$

where the matrix (m_{ij}) belongs to $\text{GL}(n, \mathbb{Z})$ and $\det(m_{ij}) = \pm 1$ (see, e.g., [14] (26.18)(h)).

Thus for every measurable map $A : \mathbb{T}^n \to \text{Aut}(\mathbb{T}^n), u \mapsto (m_{ij}(u))$ the corresponding Hausdorff operator over \mathbb{T}^n takes the form

$$(\mathcal{H}_{\Phi, A} f)(z) = \int_{\mathbb{T}^n} \Phi(u) f(z_1^{m_{11}(u)} \ldots z_n^{m_{1n}(u)}, \ldots, z_1^{m_{n1}(u)} \ldots z_n^{m_{nn}(u)}) d\mu_n(u),$$

where μ_n denotes the normalized Lebesgue measure on \mathbb{T}^n. 8
In this example the measure of the ball \(B(x, r) \) for sufficiently small \(r > 0 \) has the form \(c_n r^n \), and therefore \(C_\mu = 2^n \).

(2) The special unitary group \(\text{SU}(2) \). It is a compact connected Lie group which is isomorphic to the group of unit quaternions and it is known that all automorphisms of \(\text{SU}(2) \) are inner. It follows that \(k(u) = 1 \) for every \(A(u) \in \text{Aut}(\text{SU}(2)) \) (we consider a bi-invariant metric in \(\text{SU}(2) \)) and therefore \(L^1_k(\text{SU}(2)) = L^1(\text{SU}(2)) \). Every Hausdorff operator for \(\text{SU}(2) \) has the form (below \(b : \text{SU}(2) \rightarrow \text{SU}(2) \) is a \(\mu \)-measurable map)

\[
(\mathcal{H}_{\Phi, b}f)(x) = \int_{\text{SU}(2)} \Phi(u)f(b(u)x b(u)^{-1})d\mu(u).
\]

According to theorem 1 this operator is bounded in \(H^1(\text{SU}(2)) \) if \(\Phi \in L^1(\text{SU}(2)) \).

The group \(\text{SU}(2) \) as a space of homogeneous type may be identified with the 3-sphere \(S^3 \subset \mathbb{R}^4 \) endowed with the natural distance and volume (action of \(\text{SU}(2) \) preserves the inner product in \(\mathbb{C}^2 \)). It follows that \(C_\mu = 8 \) in this example.

3.2 Homogeneous groups

According to [12] a homogeneous group \(G \) is a connected simply connected Lie group whose Lie algebra is equipped with dilations. It induces the dilation structure \(D_\lambda (\lambda > 0) \) on the group \(G \) such that \(D_\lambda \in \text{Aut}(G) \) [12, p. 5, 6] (see also [10]).

The group \(G \) is endowed with a homogeneous (quasi-)norm, a continuous nonnegative function \(| \cdot | \) on \(G \) which satisfies \(|x^{-1}| = |x|, |D_\lambda(x)| = \lambda |x| \) for all \(x \in G, \lambda > 0, \) and \(|x| = 0 \) if and only if \(x = e \), the unit of \(G \). Moreover, the formula \(\rho(x, y) := |y^{-1}x| \) defines a left invariant quasi-metric on \(G \) [12, p. 9, Proposition 1.6].

Let \(\mu \) be a (bi-invariant) Haar measure on \(G \) normalized in such a way that \(\mu(B(x, r)) = r^Q \) where \(Q \) is the so called homogeneous dimension of \(G \) [12, p. 10]. Then the doubling condition holds and \(C_\mu = 2^Q \) (see also [10 Lemma 3.2.12]).

Let \(\lambda : G \rightarrow (0, \infty) \) be any \(\mu \)-measurable function. Then the family of automorphisms \(A(u) := D_{\lambda(u)} \) enjoys the property (\(\ast \)) with \(k(u) = 1/\lambda(u) \). Indeed, since \(D_{\lambda^{-1}}(x^{-1}) = (D_{\lambda^{-1}}(x))^{-1} \), we have for every \(\lambda > 0 \)

\[
D_{\lambda^{-1}}(B(x, r)) = \{D_{\lambda^{-1}}(y) : |yx^{-1}| < r\} = \{z : |D_{\lambda}(z)x^{-1}| < r\} = \{z : |D_{\lambda}(z)x^{-1}| < r\}.
\]
\{ z : |D_\lambda(zD_\lambda^{-1}(x^{-1}))| < r \} = \{ z : \lambda|zD_\lambda^{-1}(x^{-1})| < r \} = \{ z : |z(D_\lambda^{-1}(x))^{-1}| < r/\lambda \} = B(D_\lambda^{-1}(x), r/\lambda).

Since \(\mu(B(x, r)) = r^Q \), it follows also that \(\text{mod}(D_\lambda) = \lambda^Q \).

Definition 2. We define the Hausdorff operator \(\mathcal{H}_{\Phi, \lambda} \) for the homogeneous group \(G \) via the formula (1) with \(A(u) = D_{\lambda(u)} \).

Then theorem 1 and remark 3 imply the following

Corollary 2. The operator \(\mathcal{H}_{\Phi, \lambda} \) is bounded on \(H^1(G) \) provided \(\Phi \in L^{1}_{1/\lambda Q}(G) \) and

\[\| \mathcal{H}_{\Phi, \lambda} \| \leq 2^Q \| \Phi \|_{L^{1}_{1/\lambda Q}}. \]

Examples. (3) **Heisenberg groups** (see, e.g., [11]). If \(n \) is a positive integer, the Heisenberg group \(H_n \) is the group whose underlying manifold is \(\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R} \) and whose multiplication is given by \((v, w, v', w') \in \mathbb{R}^n, t, t' \in \mathbb{R} \)

\[(v, w, t)(v', w', t') = \left(v + v', w + w', t + t' + \frac{1}{2}(v \cdot w' - w \cdot v') \right) \]

\((v \cdot w \text{ stands for the usual inner product on } \mathbb{R}^n) \). Then \(H_n \) is a homogeneous group with dilations

\[D_\lambda(v, w, t) = (\lambda v, \lambda w, \lambda^2 t) \]

(there are another families of dilations on \(H_n \), see [12, p. 7] where the isomorphic version of \(H_n \) is considered). The Haar measure of \(H_n \) is the Lebesgue measure \(dudvdw \) of \(\mathbb{R}^{2n+1} \), and the homogeneous dimension of \(H_n \) equals to \(2n + 2 \) (see, e.g., [27, p. 642]). The left invariant Heisenberg distance \(d_H \) on \(H_n \) is derived from the homogeneous norm \(|(v, w, t)|_H := c_n((v^2 + w^2)^2 + t^2)^{1/4} \) (with an appropriate constant \(c_n \) which guarantee the relation \(\mu(B(x, r)) = r^Q \)). So, corollary 2 is valid for \(H_n \) with \(Q = 2n + 2 \).

Remarks 4. 1) There are automorphisms of \(H_n \) distinct from \(D_\lambda \), see [11, Chapter I, Theorem (1.22)] for the description of all automorphisms of \(H_n \). So, one can define the Hausdorff operator for \(H_n \) by definition 1 using this description. Thus, \(\mathcal{H}_{\Phi, \lambda} \) is a special case of Hausdorff operator for \(H_n \) in a sense of definition 1. Using automorphisms of \(H_n \) generated by the real symplectic group \(Sp(n, \mathbb{R}) \) (see [11, p. 20]) we can define another special case of Hausdorff operator for \(H_n \) as follows. Consider the measurable map \(S : H_n \to Sp(n, \mathbb{R}) \). Then the corresponding Hausdorff operator takes the form

\[(\mathcal{H}_{\Phi, S} f)(v, w, t) = \int_{\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}} \Phi(v', w', t') f(S(v', w', t')(v, w), t) dv' dw' dt'. \]

2) Special cases of Hausdorff operator on \(H_n \) were considered in [26].
Let $T_1(n, \mathbb{R})$ be the group of all $n \times n$ real matrices (a_{ij}) such that $a_{ii} = 1$ for $1 \leq i \leq n$ and $a_{ij} = 0$ when $i > j$. Then $T_1(n, \mathbb{R})$ is a homogeneous group with Haar measure $\mu(d(a_{ij})) = \otimes_{i<j} da_{ij}$ and dilations

$$D_\lambda(a_{ij}) = (\lambda^{j-i}a_{ij}).$$

It is known that $\mu(dD_\lambda(a_{ij})) = \lambda^Q \mu(d(a_{ij}))$ \cite[p. 10]{12}. Since $\otimes_{i<j} \lambda^{j-i}da_{ij} = \lambda^Q \otimes_{i<j} da_{ij}$ where

$$Q = \sum_{1 \leq i < j \leq n} (j - i) = n(n^2 - 1)/6,$$

the homogeneous dimension of $T_1(n, \mathbb{R})$ equals to $n(n^2 - 1)/6$. So, corollary 2 is valid for $T_1(n, \mathbb{R})$ with $Q = n(n^2 - 1)/6$.

3.3 Finite-dimensional spaces over locally compact division rings

Let K be a locally compact σ-compact division ring equipped with the norm $|\cdot|$ (e.g., $K = \mathbb{R}, \mathbb{Q}_p$, or \mathbb{H}, the quaternion division ring). In the following we assume that the additive group K^n is endowed with the invariant metric $\rho(x, y) = |x - y|_\infty := \max_{1 \leq i \leq n} |x_i - y_i|$ (here $x = (x_i), y = (y_i) \in K^n$).

Remark 5. If K is a field we have \cite[Subsection VII.1.10, Corollary 1]{2} $\mod(A(u)) = \mod_K(\det(A(u)))$.

Lemma 6. The additive group K^n endowed with the metric ρ is a space of homogeneous type with respect to the Haar measure μ_n and $C_{\mu_n} = 2^n$.

Proof. First note that the additive group K endowed with the metric $\rho_1(x, y) = |x - y|$ is a space of homogeneous type with respect to the Haar measure μ and $C_{\mu} = 2$. Indeed, since $(2e)B(0, r) = B(0, 2r)$ (e denotes the unit in K), we have for all $x \in K$ (see, e.g., \cite[Section VII.1, formula (32) and Definition 6]{2})

$$\mu(B(x, 2r)) = \mu(B(0, 2r)) = \mod(2e)\mu(B(0, r)) = 2\mu(B(0, r)) = 2\mu(B(x, r)).$$

Since $B(x, r) = \times_{i=1}^n B(x_i, r)$ where $x = (x_1, \ldots, x_n) \in K^n, r > 0$, lemma 6 follows.
Lemma 7. For every family $A(u)$ of invertible $n \times n$ matrices with entries from K the condition (\ast) is valid with

$$k(u) = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}(u)|$$

where $A(u)^{-1} = (a_{ij}(u))$ (in other words, $k(u) = \|A(u)^{-1}\|_{\infty}$.)

Proof. Indeed, $A(u)^{-1}(B(x, r)) = A(u)^{-1}x + A(u)^{-1}(B(0, r))$ and $A(u)^{-1}(B(0, r)) = \left\{ \left(\sum_{j=1}^{n} a_{ij}(u)y_j \right)^n_{i=1} : y = (y_j) \in B(0, r) \right\}$.

Since

$$\left| \left(\sum_{j=1}^{n} a_{ij}(u)y_j \right)^n_{i=1} \right| = \max_{1 \leq i \leq n} \left| \sum_{j=1}^{n} a_{ij}(u)y_j \right| \leq \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}(u)|r,$$

we have $A(u)^{-1}(B(0, r)) \subseteq B(0, k(u)r)$.

Definition 3. We define the Hausdorff operator \mathcal{H} on the additive group $G = K^n$ via the formula (1) where $A(u)$ is a family of invertible $n \times n$ matrices with entries from K and μ is replaced by μ_n.

Now theorem 1 along with remark 3 yields the next result.

Corollary 3 (cf. [16]). The operator \mathcal{H} is bounded on $H^1(K^n)$ provided $\Phi \in L^1_{\mu_n}(K^n)$ and

$$\|\mathcal{H}\| \leq 2^n \|\Phi\|_{L^1_{\mu_n}}.$$

Remark 6. The result by Ruan and Fan [25 Theorem 1.3] shows that for $K = \mathbb{R}$ the above condition of boundedness for \mathcal{H} can not be sharpened in general.

Acknowledgments. The author thanks E. Liflyand for posing the problem.

References

[1] R. Alvarado, M. Mitrea. Hardy Spaces on Ahlfors-Regular Quasi-Metric Spaces. A Sharp Theory. Springer International Publishing, Switzerland (2015)

[2] Bourbaki, N., Elements de mathematique. Livre VI. Integration. 2nd ed., Ch. 1 – 9. Hermann, Paris (1965 – 1969)
[3] G. Brown and F. Móricz, Multivariate Hausdorff operators on the spaces $L^p(\mathbb{R}^n)$, J. Math. Anal. Appl., 271, 443–454 (2002)

[4] J. Chen, J. Dai, D. Fan, et al., Boundedness of Hausdorff operators on Lebesgue spaces and Hardy spaces, Science China Mathematics, 61, 1647 – 1664 (2018)

[5] J. Chen, D. Fan, S. Wang, Hausdorff operators on Euclidean space (a survey article), Appl. Math. J. Chinese Univ. Ser. B (4) 28, 548–564 (2013)

[6] J. Chen, D. Fan and J. Li, Hausdorff operators on function spaces, Chinese Annals of Mathematics, Series B, 33, 537 – 556 (2012)

[7] J. Chen, D. Fan, X. Lin, and J. Ruan, The fractional Hausdorff operators on the Hardy spaces $H^p(\mathbb{R}^n)$, Analysis Math., 42 (1) (2016), 1 – 17.

[8] C. Chevalley, Theory of Lie groups. Princeton, NJ (1946)

[9] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83, 569 – 645 (1977).

[10] Fischer, V., Ruzhansky, M., Quantization on nilpotent Lie groups. Progress in Mathematics, vol. 314. Birkhauser, Basel (2016).

[11] G.B. Folland, Harmonic analysis in phase space, Princeton University Press, Princeton, New Jersey (1989)

[12] Folland, G.B., Stein, E.M., Hardy Spaces on Homogeneous Groups. Mathematical Notes, vol. 28. Princeton University Press, Princeton (1982)

[13] J. Heinonen, P. Koskela, N. Shanmugalingam, J. T. Tyson, Sobolev Spaces on Metric Measure Spaces. An Approach Based on Upper Gradients, Cambridge University Press, Cambridge (2015)

[14] E. Hewitt, K. Ross, Abstract Harmonic Analysis. Vol. 1. Springer-Verlag, Berlin, Gettingen, Heidelberg (1963)

[15] Y. Kanjin, The Hausdorff operators on the real Hardy spaces $H^p(\mathbb{R})$, Studia Math., 148, 37 – 45 (2001)

[16] A. Lerner and E. Liflyand, Multidimensional Hausdorff operators on the real Hardy space, J. Austr. Math. Soc., 83, 79–86 (2007)
[17] E. Liflyand, Boundedness of multidimensional Hausdorff operators on $H^1(\mathbb{R}^n)$, Acta Sci. Math. (Szeged) 74, 845–851 (2008)

[18] E. Liflyand, Hausdorff operators on Hardy spaces, Eurasian Mathematical Journal, 4, Number 4, 101 – 141 (2013)

[19] E. Liflyand, A. Miyachi, Boundedness of the Hausdorff operators in H^p spaces, 0 \leq p \leq 1, Studia Math., 194(3), 279 – 292 (2009)

[20] E. Liflyand and F. Móricz, The Hausdorff operator is bounded on the real Hardy space $H^1(\mathbb{R})$, Proc. Am. Math. Soc., 128, 1391–1396 (2000).

[21] A. R. Mirotin, On the general form of linear functionals on the Hardy spaces H^1 over compact Abelian groups and some of its applications, Indag. Math., 28, 451 – 462 (2017)

[22] D. Mitrea, I. Mitrea, M. Mitrea, S. Monniaux, Groupoid Metrization Theory with Applications to Analysis on Quasi-Metric Spaces and Functional Analysis. Applied and Numerical Harmonic Analysis, Birkhauser/Springer, New York (2013)

[23] F. Móricz. Multivariate Hausdorff operators on the spaces $H^1(\mathbb{R}^n)$ and $BMO(\mathbb{R}^n)$, Anal. Math., 31, 31 – 41 (2005)

[24] J. M. A. M. van Neerven, Approximating Bochner integrals by Riemann sums, Indag. Mathem., N.S., 13 (2) 197–208 (2002)

[25] J. Ruan, D. Fan, Hausdorff operators on the power weighted Hardy spaces, Journal of Mathematical Analysis and Applications, 433(1), 31 – 48 (2016)

[26] J. Ruan, D. Fan, Q. Wu, Weighted Morrey estimates for Hausdorff operator and its commutator on the Heisenberg group, arXiv:1712.10328v1 [math.CA]

[27] S. Semmes, An Introduction to Heisenberg Groups in Analysis and Geometry, Notices of the AMS, 50 (6), 640 – 646 (2003)

[28] Q. Wu, D. Fan, Hardy space estimates of Hausdorff operators on the Heisenberg group, Nonlinear Analysis, 164, 135 – 154 (2017)

Adolf R. Mirotin,
Department of Mathematics and Programming Technologies, F. Skorina Gomel State University, 246019, Sovietskaya, 104, Gomel, Belarus
E-mail address: amirotin@yandex.ru