Treatment of unicameral bone cyst: systematic review and meta analysis

Muayad Kadhim · Mihir Thacker · Amjed Kadhim · Laurens Holmes Jr.

Received: 7 October 2013 / Accepted: 31 January 2014 / Published online: 26 February 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract

Purpose Different treatment modalities have been utilized to treat unicameral bone cyst (UBC), but evidence has not been fully described to support one treatment over another and the optimal treatment is controversial. The aim of this quantitative systematic review was to assess the effectiveness of different UBC treatment modalities.

Methods We utilized Pubmed to isolate retrospective studies on patients with UBC who received any kind of treatment. The included studies needed to have a minimum sample size of 15 patients, and have provided data on radiographic healing outcome.

Results Sixty-two articles were selected for the meta-analysis from a total of 463 articles. The cumulative sample size was 3,211 patients with 3,217 UBC, and male to female ratio was 2.2:1. The summary or pool estimate of methylprednisolone acetate (MPA) injection resulted in a healing rate of (77.4 %) that was comparable to bone marrow injection (77.9 %). A higher healing rate was observed with MPA injection when inner wall disruption was performed. The pool estimate of bone marrow with demineralized bone matrix injection was high (98.7 %). UBC healing rate after surgical curettage was comparable whether autograft or allograft was utilized (90 %). UBC treatment with flexible intramedullary nails without curettage provided almost 100 % healing rate, while continuous decompression with cannulated screws provided 89 % healing rate. Conservative treatment indicated a healing rate of 64.2, 95 % CI (26.7–101.8).

Conclusions Active treatment for UBC provided variable healing rates and the outcomes were favorable relative to conservative treatment. Due to the heterogeneity of the studies and reporting bias, the interpretation of these findings should be handled with caution.

Keywords Unicameral Bone Cyst · Success and failure rate · Treatment modalities · Healing · Persistence and recurrence

Introduction

Unicameral bone cyst (UBC) is a benign lesion that mostly affects children and adolescents, and represents about 3 % of primary tumors in the first two decades of life [1–3]. UBC is also known as solitary or simple bone cyst and radiographically is seen as mildly expansile, lytic thin-walled bone lesion without periosteal reaction. The typical location is in the metaphysis adjacent to the growth plate of the tubular bones, mostly the humerus and femur [3]. Based on the distance between the cyst and the growth plate, UBC is classified as active when the distance is less than 5 mm, and latent when the distance is larger than 5 mm [4]. Other locations of UBC may include the pelvis, ribs, vertebrae and the tarsal bones, especially calcaneus. Several theories have been postulated to explain the origin of UBC, including trauma and inflammation; however, none has been conclusive [5].
The purpose of treatment is to restore bone strength, cortical thickness and obliteration of the cyst; and based on these criteria, healing of UBC was classified by Neer [3] and Capanna [6]. Complete filling of the cyst with restoration of cortical thickness was described as healed cyst. When small radiolucent areas persist with good bone strength, the cyst was described as partially healed. When the UBC had continuous bone lucency and thin or broken cortex and did not respond to the treatment, the cyst was considered persistent. Cyst recurrence was defined when a cavity and expansile remodelling and thinning of the cortex develop after full obliteration.

Various treatment modalities have been utilized to treat UBC, including surgical and nonsurgical interventions with variable reported healing rates. UBC has frequently been examined in the literature, yet no clearcut evidence supports one modality over another. The aim of this current study was to review the literature and examine the published articles referenced in Pubmed about the healing outcome of UBC management with every treatment modality. A qualitative systematic review was performed to screen all the articles and to select eligible articles for a meta-analysis on UBC treatment outcome. We postulated that treatment of UBC leads to better rates of cyst healing.

Materials and methods

Search techniques and terms:

The studies were identified from Pubmed until 2012 using the following search terms: unicameral bone cyst, simple bone cyst and solitary bone cyst. The articles were searched by a single investigator (MK), but were reviewed by two investigators (MK, AK) independently and data were extracted during the review. The articles selected were
reviewed and screened for pertinent information based on specific criteria (Fig. 1).

Eligibility criteria

The extracted articles were examined based on: (a) non-experimental retrospective studies on unicameral bone cyst in any anatomical location and any kind of treatment, (b) studies conducted in any geographic location, (c) studies with abstracts published in English, (d) studies that examined consecutive patients with sample size equal or greater than 15 patients, (e) studies with follow-up more than 6 months, and (f) studies that demonstrated the radiographic outcome of treatment that can be classified into (healed, partially healed, persistence or recurrence).

Studies with sample size smaller than 15 were excluded in order to avoid sparse data bias; implying negative finding as a result of small sample size and limited statistical power. Case reports were excluded, as they did not examine consecutive patients. When more than one study was conducted in the same institution, the articles were examined for a possibility of duplicate report on the same patient sample, and data were retrieved from the most complete or recent study.

Study quality assessment

The included studies were assessed for study design, sampling techniques and data on patients’ characteristics and radiographic healing status. We determined the objectivity of each study, whether the aims or the purposes were clearly stated, and whether the studies presented factual results. We also examined for adequate statistical analysis and how the outcomes were determined. Studies were assessed for confounding factors that might have influenced the outcome and for any bias, including selection, information and misclassification biases. This quality assessment provided comparable measures to the preferred reporting for systematic reviews and meta-analysis (PRISMA statement) [7].

Study variables

Each study was identified by the first author’s last name and the year of publication. Study populations were stratified by sex, age at treatment, cyst location, cyst activity (active or latent), follow-up time and radiographic healing classified by Neer [3] and Capanna [6] criteria. The cohort of each study was categorized into two groups based on the final healing status of UBC: success—good outcome included healed and partially healed UBCs, and failure—poor outcome included persistence and recurrent UBCs.

Treatment groups

All treatment modalities were included in this study (conservative and surgical intervention). Studies that utilized injection as a method of treatment were categorized in one treatment group and subgroups were identified based on the material utilized for injection, including; methylprednisolone acetate (MPA) injection, bone marrow injection, combined MPA with bone marrow, combined bone marrow with demineralized bone matrix (DBM), and combined bone marrow with MPA and DBM. The technique of injection procedure was reviewed in each article to identify whether inner wall disruption was performed or not, and based on this criterion, every injection subgroup was subcategorized into injection with and without inner wall disruption. Studies on surgical treatment were examined and subgroups were identified, including: curettage only, curettage with bone graft (autograft versus allograft), curettage with bone substitution (calcium sulphate pellets, calcium phosphate pellets, Hydroxyapetite, ceramic substitute), curettage with myoplasty, cyst excision, flexible intramedullary nailing (IM nail) and continuous decompression with cannulated screws.

Comparative studies

Retrospective comparative studies that presented outcome of different treatment modalities were selected for further evaluation by combining the patients of each treatment group. Comparative assessment performed included: MPA vs. bone marrow injection, MPA injection with vs. without inner wall disruption, curettage with autograft vs. curettage with allograft, MPA injection vs. curettage with autograft, MPA injection vs. curettage with allograft.

Anatomical location

We identified the studies that provided a list of UBC cases demonstrating age, sex, cyst location treatment modality and radiographic healing outcome. The UBC cases were categorized based on the anatomic location for further assessment.

Sample size and power estimation

Four hundred and sixty-three articles published between 1942 and 2012 were identified for the qualitative systematic review. The number of studies included in the quantitative systematic review (meta-analysis or quantitative evidence synthesis) was represented by K = 62. The combination of study sizes (UBC) that constituted this meta-analysis was represented by n = 3,217 cysts. To estimate the power of this meta-analysis, we used 95 %
confidence interval (5 % error), effect size of 20 % (0.2), and a random effect meta-analytic technique (DerSimonian and Laird). With these parameters, and with the combined sample sizes from the individual studies (n) for each treatment group, we obtained sufficient power (>80 %) to detect a difference between success (good) and failure (poor) outcomes in terms of UBC healing.

Statistical analysis

Frequency and percentages were employed to summarize nominal variables, while mean and standard deviation were used to describe the continuous variables, including age and follow-up. We tested the hypotheses to determine the effectiveness of different treatment modalities. Both the fixed method of Peto and Mantel–Haenszel, and the random effect method of Dersimonian-Laird meta-analytic techniques were utilized. The fixed effect method was applicable to the summary point estimate when the studies that constituted the meta-analysis were assessed to be homogenous (implying heterogeneity test I with a significance level >0.05). Unless the homogeneity test was performed, the fixed method was inapplicable. The random effect method was utilized when the homogeneity assumption was not met.

The significance level was <0.05 and all tests were two-tailed. All analyses were performed using STATA 12.0 (StataCorp LP, College Station, TX).

Results

The results of this meta-analysis consisted of two parts, descriptive and inferential. Four hundred and sixty-three articles were identified for the qualitative systematic review. Sixty-two articles were eligible for the quantitative systematic review [3, 6, 8–67]. The rest of the articles were excluded, including: 97 articles that were not in English or French [68–164], one randomized clinical trial [165], one prospective study [166], seven case series [167–173], 174 case reports [2, 174–346], 10 basic science articles [5, 347–355], 26 articles that did not discuss UBC treatment [1, 356–380], 17 articles that did not represent clear data on healing [381–397], 18 review articles [4, 398–414], one article that was a reprint [415], three commentary articles [416–418], 36 articles with a sample size smaller than 15 [419–454], and ten articles with possibility of shared cohort [455–464] (Fig. 1).

The 62 studies of the meta-analysis generated 3,211 patients with 3,217 UBCs. There were 1,709 boys and 765 girls. While some studies did not provide enough data on gender and the proportions did not add up to 100 %, the estimated male to female ratio was 2.2:1. The clinical presentation was with a pathologic fracture in 1,107 UBCs, pain in 204 cysts, and incidental finding in 133 UBCs (the clinical presentation was not specified in all studies). Seven hundred and twenty-four UBC were classified as active and 535 cysts were latent. The overall average age at treatment was 10.9 ± 2.9 years, and the average follow up was 6.1 ± 4.2 years (not all the studies provided data on age at surgery and follow-up).

The most common location of UBC was in the humerus (59.2 %), followed by the femur (25.9 %). The calcaneus was affected in 6 %, the tibia in 4 %, the fibula in 1.5 %, the radius in 1.1 %, the pelvis in 0.9 %, and the other locations were affected in 1.4 % (Table 1).

Based on radiographic healing classification, 2,448 UBCs (76.1 %) were classified as healed or partially healed (success), while 769 cysts (23.9 %) were classified as persistent or recurrent (failure).

Anatomic location	Number of UBC
Humerus	1,629
Proximal humerus	691
Mid humerus	123
Distal humerus	13
Radius	29
Ulna	7
Scapula	1
Clavicle	3
Pelvis	26
Ilium	14
Ischium	3
Pubis	5
Femur	712
Proximal femur	303
Mid femur	22
Distal femur	27
Tibia	111
Proximal tibia	19
Distal tibia	24
Fibula	40
Proximal fibula	9
Mid fibula	3
Distal fibula	3
Calcaneus	166
Talus	3
Metatarsus	6
Other locations	20

a The exact location of the cyst was not determined in all the papers; therefore, the count did not add up to 100 %
Table 2 Outcome of UBC stratified by the treatment modalities

Treatment modality	n = UBC	Treatment outcome	Reference articles	
		Success	Failure	
Injection (MPA)	1,128	806	322	[6, 12, 14, 16, 19, 22, 25–29, 33, 37–39, 41, 44, 47, 50, 55, 64, 66]
Injection (bone marrow)	114	88	26	[19, 26, 38–40, 45]
Injection (bone marrow + DBM)	85	73	12	[15, 21, 33, 45]
Injection (MPA + bone marrow)	9	3	6	[23]
Injection (bone marrow + MPA + DBM)	34	17	17	[37]
Only curettage	31	16	15	[9, 18, 38, 43, 46, 47]
Curettage with allograft	353	271	82	[8, 9, 14, 25, 27, 29, 35, 37, 53, 57–60]
Curettage with allograft + bone marrow	23	21	2	[56]
Curettage with autograft	128	96	32	[9, 14, 19, 25, 27, 36, 43, 46, 47, 58, 59]
Curettage with allograft + autograft	3	3	0	[14, 59]
Curettage with pellets	115	104	11	[19, 23, 24, 42, 47, 48, 59, 63]
Curettage with hydroxyapatite	25	22	3	[47, 48]
Curettage with ceramic	12	12	0	[8]
Curettage + Zinc cautertization of the cyst	9	8	1	[43]
Curettage with osteoset pellets + autograft	1	1	0	[59]
Curettage with myoplasty	35	32	3	[10]
Curettage with bone graft + Kuntcher stabilization (rinsing the cyst cavity with peroxide)	12	9	3	[64]
Curettage with bone graft + plate stabilization	10	9	1	[66]
Curettage with pellets + plate stabilization	7	6	1	[23]
Minimal invasive curettage + ethanol cautertization + calcium sulfate pellet + cannulated screw	12	11	1	[23]
Curettage + autograft + allograft with IM nail stabilization	19	11	8	[51]
Papers with different surgical techniques*	528	426	102	[3, 12, 13, 17, 18, 28, 34, 52, 62, 64]
Cyst excision	83	76	7	[9, 14, 36, 54, 65, 66]
Cyst wall trepanation	26	26	0	[9, 49]
IM nail without curettage	205	196	9	[11, 16, 19, 20, 30–32, 67]
Continuous decompression with cannulated screws	61	47	14	[13, 29, 61]
Conservative treatment	149	58	91	[9, 12, 13, 36, 44, 47, 52, 58–60, 66]
Overall number of cysts	3,217	2,448	769	

* These papers were not included in the subcategories for treatment modalities, because healing classification was not stratified based on the treatment.

Treatment

Primarily three treatment modalities were assessed; injection, surgery and conservative treatment (observational management) (Table 2). Overall injection was utilized in 1,370 cysts. Of the injection cases, 1,128 cysts were treated with MPA, while 114 cysts were injected with bone marrow. Surgical treatment included several surgical techniques as presented in Table 2. Curettage as a separate treatment was done in 31 UBCs. Curettage with allograft was performed in 353 UBCs, while 128 cysts were treated with curettage and autograft. Flexible IM nail was used in 205 UBCs and cannulated screws for continuous decompression were utilized in 61 UBCs. Conservative treatment implying observational management was utilized in 149 cysts.

Comparative studies

We examined the studies that compared the healing outcome of MPA injection with bone marrow injection [19, 26, 38, 39]. Of 206 patients in this protocol, a higher rate of success was observed in bone marrow injection compared to MPA injection (Fig. 2). Only one study examined MPA injection outcome with and without inner wall disruption [47] and the outcome success was comparable. Five studies...
examined the difference in outcome of curettage with allograft compared to autograft [3, 9, 14, 25, 27], and the success rate was comparable (Fig. 3). Five articles compared the outcome of MPA injection relative to surgical curettage with autograft [14, 19, 25, 27, 47] (Fig. 4), and five articles also examined the outcome of MPA injection compared to surgical curettage with allograft [14, 25, 27, 29, 37] (Fig. 5).

Outcome of treatment based on the anatomic location

The outcome of treatment based on UBC anatomic location was also examined, including (humerus, femur, calcaneus, fibula, tibia and radius). Some studies did not present healing status for each anatomic location of the cyst; therefore, the numbers and percentages did not add up to 100 % of the total number of UBC of the meta-analysis. Tables 3, 4, 5, and 6 present the findings on healing outcome stratified by sex, activity level and treatment modalities. A few studies examined the fibula, radius, tibia and pelvic locations.

Quantitative results (Pool estimates)

Table 7 illustrates the percentages and 95 % CI of each treatment modality representing the successful outcome (healed and partially healed UBC). The combination of studies in almost all the categories of the meta-analysis indicated satisfactory healing of UBC after each specific treatment. The summary or pool estimate of overall injection category was 81.3, 95 % CI (77.9–84.8), implying a statistically significant 81 % success rate for overall injection ($p < 0.05$). MPA injection resulted in a healing rate of 77.4, 95 % CI (72.7–82.2) (Fig. 6). The effect of inner wall disruption with MPA injection was examined and higher healing rate was observed when the disruption was performed. The pool estimate of bone marrow injection was comparable to MPA injection, 77.9, 95 % CI (65.9–89.8) (Fig. 7). Only one study reported on the outcome of bone marrow injection with inner wall disruption and success rate was 78.6 % [39]; therefore, no pool estimate was performed for bone marrow injection with inner wall disruption. The pool estimate of bone marrow with DBM injection was high, 98.7, 95 % CI (95.7–101.7) relative to injection with either MPA or bone marrow.
Surgical curettage was examined according to the utilization of bone graft or bone substitute, and the pool estimates of all the subcategories were comparable. Other surgical managements were also assessed, including cyst excision, continuous decompression with IM nail or cannulated screws, and cyst wall trepanation (Table 3). The pool estimate of conservative treatment was 64.2, 95% CI (26.7–101.8) (Fig. 8).

Table 3 The characteristics and healing outcome of UBCs located in the humerus (n = 497)

Treatment outcome	Success	Failure
Sex*		
Male	132 (79.0)	35 (21.0)
Female	51 (82.3)	11 (17.7)
Location*		
Metaphysis	145 (73.6)	52 (26.4)
Diaphysis	31 (93.9)	2 (6.1)
Activity*		
Active	31 (72.1)	12 (27.9)
Latent	31 (81.6)	7 (18.4)
Treatment		
Surgical curettage	107 (77.0)	32 (23.0)
No graft	12 (63.2)	7 (36.8)
Allograft	23 (95.8)	1 (4.2)
Autograft	35 (74.5)	12 (25.5)
Mix allograft + autograft	11 (57.9)	8 (42.1)
Allograft + bone marrow	7 (78.5)	1 (12.5)
Ceramic	6 (100)	0 (0)
Osteoset pellets	13 (81.2)	3 (18.8)
Injection		
MPA	86 (81.1)	20 (18.9)
Bone marrow	16 (72.7)	6 (27.3)
Bone marrow + DBM	28 (100)	0 (0)
MPA + bone marrow	2 (100)	0 (0)
IM nail	88 (96.7)	3 (3.3)
Screws	12 (85.7)	2 (7.1)
Cyst excision	39 (92.9)	3 (14.7)
Conservative	12 (22.6)	41 (77.3)
Proximal metaphysis	6 (12.8)	41 (78.2)
Diaphysis	4 (100)	0 (0)

Data were retrieved from these references: [6, 8, 9, 12, 13, 15, 21, 24, 25, 27, 30, 31, 38, 42, 43, 45, 46, 51, 54, 61, 65, 67]

MPA methylprednisolone, DBM demineralized bone matrix, IM nail Intramedulary nail, Screws continuous decompression with cannulated screws

* The exact location of the cyst was not determined in all the papers; therefore, the percentages did not add up to 100%.

Table 4 The characteristics and healing outcome of UBCs located in the femur (n = 211)

Treatment outcome	Success	Failure
Sex*		
Male	37 (75.5)	12 (24.5)
Female	30 (88.2)	4 (11.8)
Location*		
Metaphysis	99 (84.6)	18 (15.4)
Diaphysis	6 (100.0)	0 (0)
Activity*		
Active	30 (75.0)	10 (25.0)
Latent	16 (84.2)	3 (15.8)
Treatment		
Surgical curettage	63 (81.1)	14 (18.2)
No graft	13 (76.5)	4 (23.5)
Allograft	15 (88.2)	2 (11.8)
Autograft	18 (78.3)	5 (21.7)
Ceramic	7 (100)	0 (0)
Osteoset pellets	6 (85.7)	1 (14.3)
Injection		
MPA	46 (76.7)	14 (23.3)
Bone marrow	10 (76.9)	3 (23.1)
Bone marrow + DBM	10 (100)	0 (0)
IM nail	32 (97.0)	1 (3.0)
Screws	2 (40.0)	3 (60.0)
Cyst excision	2 (100)	0 (0)
Conservative	7 (63.3)	4 (36.4)
Metaphysis	4 (50.0)	4 (50.0)

Data were retrieved from these references: [6, 8, 9, 12, 13, 15, 20, 21, 24, 25, 27, 30, 31, 38, 42–46, 54, 61]

MPA methylprednisolone, DBM demineralized bone matrix, IM nail Intramedulary nail, Screws continuous decompression with cannulated screws

* The exact location of the cyst was not determined in all the papers; therefore, the percentages did not add up to 100 %

Discussion

The effect of various treatment modalities on UBC management has been repeatedly examined in the literature, but the natural history of UBC and the optimal treatment remain unclear. The conventional knowledge about UBC is that it is a self-limited benign bone lesion [370]; however, the healing rate without treatment (observational management) is undetermined and most of the studies in this review demonstrated better results with active treatment. With the purpose to better understand the role of each treatment modality of UBC, we aimed in this quantitative systematic review to synthesize the literature and assess the
natural history of UBC, as well as evaluate the various treatment methods.

The main purpose of meta-analysis is to improve the power by combining homogeneous studies and arriving at a summary effect or pool estimate. We performed both systematic review and meta-analysis to examine the effect of several treatment modalities on UBC. Specifically, we tested the hypothesis regarding the effectiveness of different treatment modalities on UBC healing. Our meta-analysis has some relevant findings: overall active treatment improves UBC healing, regardless of anatomic site and the type of treatment compared to observational management. In this meta-analysis, observational treatment leads to a healing rate of 64%. However, due to the variability of the studies, the rate of healing after conservative treatment can be as low as 27% and as high as 100%. The healing rate after conservative treatment varied in different anatomic location. Higher failure rate of conservative treatment was found in calcaneal and humeral UBCs compared to femoral UBCs (although the number of femoral UBCs was small, 11 out of 211 cysts were treated conservatively).

The indication to treat UBC is to prevent a pathologic fracture and to manage symptoms, especially pain. Historically, surgical curettage and cyst excision with bone graft were the optimal choices to treat UBCs. Based on this meta-analysis, UBC healing rate after surgical curettage was comparable (90%) whether autograft or allograft was utilized. The utilization of MPA in the treatment of UBC was first described by Scaglietti [454]. The role of MPA is to reduce the production of cyst fluid from the inner wall.

Table 5	The characteristics and healing outcome of UBCs located in the calcaneus (n = 116)	
Treatment outcome	Success	Failure
Sexa		
Male	24 (77.4)	7 (22.6)
Female	19 (95.0)	1 (5.0)
Treatment		
Surgical curettage	76 (96.2)	3 (3.8)
No graft	1 (100)	0 (0)
Allograft	33 (100)	0 (0)
Autograft	17 (94.4)	1 (5.6)
Mix allograft + autograft	2 (100)	0 (0)
Allograft + bone marrow	21 (91.3)	2 (8.7)
Osteoset pellets	2 (100)	0 (0)
Injection (bone marrow + DBM)	1 (100)	0 (0)
Screws	10 (100)	0 (0)
Cyst excision	1 (100)	0 (0)
Conservative	1 (4.0)	24 (96.0)

Data were retrieved from these references: [21, 24, 42, 54, 56–59, 61]

DBM demineralized bone matrix, Screws Continuous decompression with cannulated screws

a The exact location of the cyst was not determined in all the papers, therefore the percentages did not add up to 100%
cyst, which enhances bone healing [352]. On the other hand, bone marrow injection was proposed to accelerate healing, given the osteogenic potential of red marrow [465, 466]. In this meta-analysis, the healing rate of UBC was comparable after injection with bone marrow or MPA (77%). The healing rate after MPA or bone marrow injection was higher (almost double) in our meta-analysis compared to the results demonstrated by Wright et al. [165] in a randomized (prospective) clinical trial. This might be a result of failure to report unsuccessful outcomes in studies of retrospective design (reporting bias). Both the randomized study by Wright et al. [165] and our meta-analysis demonstrated comparable healing rate after MPA injection and bone marrow injection.

The utilization of IM nails or cannulated screws for the treatment of UBC was also described, and the rationale was that theoretically, UBCs develop from venous blockage and increase of fluid pressure inside the cyst [5]. In this meta-analysis, we found that treatment with IM nails without curettage provided almost 100% healing rate of UBC in long bones. IM nails were described as an efficient acute treatment for UBCs that present with a fracture [11, 16, 67]. Cyst wall drilling and trepanation also provided a healing rate of almost 100%; however, this healing rate was estimated based on only two studies [9, 49]. Although this meta-analysis may be interpreted as a comparison between different treatment modalities such as MPA and bone marrow injection, this is incorrect. Studies that tested hypothesis with respect of comparative effectiveness of treatment were not available; therefore, we were unable to use formal meta-analysis method to examine the differences in outcomes of treatment with different treatment modalities. Future studies designed to compare different modalities of treatment are recommended, and will provide the opportunity for these questions to be addressed.

Our systematic review is limited in the sense that different studies presented with different sampling designs and different study protocols. For example, data were not

Table 7 Pool estimate of treatment outcome for different treatment modalities

Treatment category	Pool estimate (%)	95 % Confidence interval
Overall injection	81.3	77.9–84.8
MPA injection	77.4	72.7–82.2
With no inner wall disruption	75.3	72.7–82.3
With inner wall disruption	86.6	59.6–113.7
Bone marrow injection	77.9	65.9–89.9
With no inner wall disruption	74.4	63.2–91.5
Bone marrow + DBM injection	98.7	95.7–101.7
With no inner wall disruption	99.9	98.7–101.1
With inner wall disruption	86.1	57.6–114.7
Curettage with allograft	90.8	86.7–94.9
Curettage with autograft	90.9	85.8–96.1
Curettage with pellets	96.5	91.7–101.3
Sulfate pellets	89.9	75.3–104.4
Phosphate pellets	99.2	95.7–102.7
Curettage with hydroxyapatite	98.7	94.5–102.9
Cyst excision	96.7	91.3–102.1
IM nail with no curettage	99.7	99.0–100.4
Continuous decompression with cannulated screws	83.9	63.1–104.7
With no curettage	88.8	64.5–113.0
Cyst wall trepanation	99.9	98.7–101.1
Conservative treatment	64.2	26.7–101.8

a Pool estimate was reported utilizing random effect meta-analysis
b Pool estimate was reported utilizing fixed effect meta-analysis

Fig. 6 Forest plot illustrating the point estimate of each article and the pool estimate of healing outcome of methylprednisolone (MPA) injection
available on MPA dosage that was utilized for treatment. Also, the variability of surgical techniques and type of bone graft (autograft or allograft) has a tendency of introducing a confounding that may lead to bias in our outcomes estimation and interpretation. In addition, we were unable to examine the need for further intervention and recurrence rate in each treatment modality, as data were not clearly specified in the reviewed articles. Also UBC activity as described by the distance from the growth plate may be an important factor that may affect on cyst healing after different treatment modalities. Some of the studies provided data on cyst activity, but only a few of these provided data on the outcome of treatment stratified by cyst activity. The other limitations are the heterogeneity of the patients in terms of UBC anatomic locations, cyst size, sex variability, and duration of treatment and follow-up. We could have performed subgroup meta-analysis in terms of the impact of sex or anatomic site of the UBC on the outcome implying cyst healing. However, since many studies did not provide relevant data, performing such subgroup analysis could have ended up in biased results regarding such effects. Considering this inability to perform the observed subgroup analyses, we recommend future studies to provide complete data on patients’ sex and specific anatomic location.

Heterogeneity remains an important factor to be considered in the conduct and interpretation of meta-analysis. There is no meta-analytic study without some influence of heterogeneity. Several studies used in our meta-analysis showed significant heterogeneity; however, our meta-analysis is not completely driven by this variability. A meta-analytic finding could be reliable and valid despite heterogeneity when appropriate analysis is used in the summary estimate. We applied the random effect meta-analysis given the heterogeneity of studies included in this meta-analysis. Consequently, by adjusting for the differences between studies with the random effect method approach, we have produced relatively standard and valid meta-analytic results on the effect of treatments on the outcomes of UBC. Whereas qualitative systematic review is not intended to quantify results of reviewed literature, we attempted to summarize proportions with regard to UBC healing, and caution is recommended in the interpretation of the results of our systematic review.

We are unaware of previous meta-analysis in this direction to either support or negate our findings. Clinicians
will be interested in assessing the possibility of the results of this meta-analysis in developing guidelines regarding the treatment of UBC. Our meta-analysis of published literature on UBC treatment indicates improved healing rates among treated patients relative to the observational management. Healing rate was found to be comparable in studies that utilized bone marrow injection or MPA, and higher rate of healing was found when DBM was added. Surgical curettage resulted in healing rate of 90% with the utilization of autograft, allograft or any bone substitution material. Healing rate was also high with the utilization of IM nails.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Boseker EH, Bickel WH, Dahlin DC (1968) A clinicopathologic study of simple unicameral bone cysts. Surg Gynecol Obstet 127(3):550–560
2. Cohen J (1970) Etiology of simple bone cyst. J Bone Jt Surg Am 52(7):1493–1497
3. Neer CS, Francis KC, Marcove RC, Terz J, Carbonara PN (1966) Treatment of unicameral bone cyst. A follow-up study of one hundred seventy-five cases. J Bone Jt Surg Am 48(4):731–745
4. Jaffe H, Lichtenstein L (1942) Solitary unicameral bone cyst—emphasis on the roentgen picture the pathologic appearance and the pathogenesis. Arch Surg 44:1004–1025
5. Cohen J (1960) Simple bone cysts. Studies of cyst fluid in six cases with a theory of pathogenesis. J Bone Jt Surg Am 42-A:609–616
6. Capanna R, Dal MA, Gitelis S, Campanacci M (1982) The natural history of unicameral bone cyst after steroid injection. Clin Orthop Relat Res 166:204–211
7. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535
8. Spence KF Jr, Bright RW, Fitzgerald SP, Sell KW (1976) Solitary unicameral bone cyst: treatment with freeze-dried crushed
9. Chuo CY, Fu YC, Chien SH, Lin GT, Wang GJ (2003) Surgical options for the treatment of simple bone cyst in children and adolescents. Isr Med Assoc J 12(2):87–90
10. Pogorelic Z, Furlan D, Biocic M, Mestrovic I, Todoric D (2010) Titanium intramedullary nailing for treatment of simple bone cysts of the long bones in children. Scott Med J 55(3):35–38
11. Rougrouaff BT, Kling TJ (2002) Treatment of active unicameral bone cysts with percutaneous injection of demineralized bone matrix and autogenous bone marrow. J Bone Jt Surg Am 84-A(6):921–929
12. de Palma L, Santucci A (1987) Treatment of bone cysts with methylprednisolone acetate. A 9 to 11 year follow-up. Int Orthop 11(1):23–28
13. Hou HY, Wu K, Wang CT, Chang SM, Lin WH, Yang RS (2010) Treatment of unicameral bone cyst: a comparative study of selected techniques. J Bone Jt Surg Am 92(4):855–862
14. Kanellopoulos AD, Yiannakopoulos CK, Soucacos PN (2005) Percutaneous reaming of simple bone cysts in children followed by injection of demineralized bone matrix and autologous bone marrow. J Pediatr Orthop 25(5):671–675
15. Jouneau P, Ciotlos D (2003) Treatment of solitary bone cysts by intra-medullary nailing or steroid injection in children. Rev Chir Orthop Reparative Appar Mot 89(4):333–337
16. Gakuu LN (1997) Solitary unicameral bone cyst. East Afr Med J 74(1):31–32
17. Graham JJ (1952) Solitary unicameral bone cyst; a follow-up study of thirty-one cases with proven pathological diagnoses. Bull Hosp Jt Dis 13(1):106–130
18. Kokavec M, Fristakova M, Polan P, Bialik GM (2010) Surgical options for the treatment of simple bone cyst in children and adolescents. Isr Med Assoc J 12(2):87–90
19. Pogorelic Z, Furlan D, Biocic M, Mestrovic I, Todoric D (2010) Titanium intramedullary nailing for treatment of simple bone cysts of the long bones in children. Scott Med J 55(3):35–38
20. Rougrouaff BT, Kling TJ (2002) Treatment of active unicameral bone cysts with percutaneous injection of demineralized bone matrix and autogenous bone marrow. J Bone Jt Surg Am 84-A(6):921–929
21. de Palma L, Santucci A (1987) Treatment of bone cysts with methylprednisolone acetate. A 9 to 11 year follow-up. Int Orthop 11(1):23–28
22. Hou HY, Wu K, Wang CT, Chang SM, Lin WH, Yang RS (2010) Treatment of unicameral bone cyst: a comparative study of selected techniques. J Bone Jt Surg Am 92(4):855–862
23. Peltier LF, Jones RH (2004) Treatment of unicameral bone cysts by curettage and packing with plaster-of-Paris pellets. 1978. Clin Orthop Relat Res 422:145–147
24. Farber JM, Stanton RP (1990) Treatment options in unicameral bone cysts. Orthopedics 13(1):25–32
25. Cho HS, Oh JH, Kim HS, Kang HG, Lee SH (2007) Unicameral bone cysts: a comparison of injection of steroid and grafting with autologous bone marrow. J Bone Jt Surg Br 89(2):222–226
26. Pentimalli G, Tusidoco C, Scalo E, Farsetti P, Ippolito E (1987) Unicameral bone cysts—comparison between surgical and steroid injection treatment. Arch Orthop Trauma Surg 106(4):251–256
27. Campanacci M, Capanna R, Picci P (1986) Unicameral and aneurysmal bone cysts. Clin Orthop Relat Res 204:25–36
28. Brecelj J, Sudholdovan L (2007) Continuous decompression of unicameral bone cyst with cannulated screws: a comparative study. J Pediatr Orthop B 16(5):367–372
29. Masquijo JJ, Baroni E, Mascione H (2008) Continuous decompression with intramedullary nailing for the treatment of unicameral bone cysts. J Child Orthop 2(4):279–283
30. Di BC, Dozza B, Frisoni T, Cevolani L, Donati D (2010) Injection of demineralized bone matrix with bone marrow concentrate improves healing in unicameral bone cyst. Clin Orthop Relat Res 468(11):3047–3055
31. Teoh KH, Watts AC, Chee YH, Reid R, Porter DE (2010) Predictive factors for recurrence of simple bone cyst of the proximal humerus. J Orthop Surg (Hong Kong) 18(2):215–219
32. Spence KF Jr, Bright RW, Fitzgerald SP, Sell KW (1976) Solitary unicameral bone cyst: treatment with freeze-dried crushed.
cortical-bone allograft. A review of one hundred and forty-four cases. J Bone Jt Surg Am 58(5):636–641
36. Fahey JJ, O’Brien ET (1973) Subtotal resection and grafting in selected cases of solitary unicameral bone cyst. J Bone Jt Surg Am 55(1):59–68
37. Sung AD, Anderson ME, Zuraskowski D, Hornicek FJ, Gebhardt MC (2008) Unicameral bone cyst: a retrospective study of three surgical treatments. Clin Orthop Relat Res 466(10):2519–2526
38. Canavesi F, Wright JG, Cole WG, Hopyan S (2011) Unicameral bone cysts: comparison of percutaneous curettage, steroid, and autologous bone marrow injections. J Pediatr Orthop 31(1):50–55
39. Chang CH, Stanton RP, Glutting J (2002) Unicameral bone cysts treated by injection of bone marrow or methylprednisolone. J Bone Jt Surg Br 84(3):407–412
40. Zamzam MM, Abak AA, Bakarman KA, Al-Jassir FF, Khoshhal KI, Zamzami MM (2009) Efficacy of aspiration and autogenous bone marrow injection in the treatment of simple bone cysts. Int Orthop 33(5):1535–1538
41. Scagliotti O, Marchetti PG, Bartolozzi P (1982) Final results obtained in the treatment of bone cysts with methylprednisolone acetate (depomedrol) and a discussion of results achieved in other bone lesions. Clin Orthop Relat Res 165:33–42
42. Alternatt M, Schwobel M, Pochon JP (1992) Operative treatment of solitary bone cysts with tricalcium phosphate ceramic. A 1 to 7 year follow-up. Eur J Pediatr Surg 2(3):180–182
43. James AG, Coley BL, Hignbotham NL (1948) Solitary, unicameral, bone cyst. Arch Surg 57(1):137–147
44. Norman-Taylor FH, Hashemi-Nejad A, Gillingham BL, Stevens D, Cole WG (2002) Risk of refracture through unicameral bone cysts of the proximal femur. J Pediatr Orthop 22(2):249–254
45. Docruiyer PL, Delloye C (2004) Autologous bone marrow injection in the management of simple bone cysts in children. Acta Orthop Belg 70(3):204–213
46. Hagberg S, Mansfeld L (1967) The solitary bone cyst. A follow-up study of 24 cases. Acta Chir Scand 133(1):25–29
47. Mylle J, Burssens A, Fabry G (1992) Simple bone cysts. A review of 59 cases with special reference to their treatment. Arch Orthop Trauma Surg 111(6):297–300
48. Inoue O, Ibaraki K, Shimabukuro H, Shingaki Y (1993) Packing with high-porosity hydroxyapatite cubes alone for the treatment of simple bone cyst. Clin Orthop Relat Res 293:287–292
49. Shinozaki T, Arita S, Watanabe H, Chigira M (1996) Simple bone cysts treated by multiple drill-holes, 23 cysts followed 2–10 years. Acta Orthop Scand 67(3):288–290
50. Carrara A, Gabagna P, Mapelli S, Zucchi V (1983) The treatment of simple bone cysts by topical infiltrations of methylprednisolone acetate (depo-medrol) and a discussion of results achieved in other bone lesions. Clin Orthop Relat Res 165:33–42
51. Vrbicky B (1982) Solitary cyst of the calcaneous (author’s transl). Z Orthop Chir Narzadow Ruchu Ortop Pol 65(2):117–121
52. Sturz H, Hagena FW (1980) Simple bone cysts with expansion through the complete humerus (author’s transl). Acta Chir Orthop Traumatol Cech 49(2):174–176
53. Sturz H, Hagena FW (1980) Simple bone cysts with expansion throughout the complete humerus (author’s transl). Z Orthop Ihre Grenzbz 118(6):923–926
54. Altermatt S, Schwobel M, Pochon JP (1992) Operative treatment of solitary bone cysts with tricalcium phosphate ceramic. A 1 to 7 year follow-up. Eur J Pediatr Surg 2(3):180–182
55. Schreuder HW, Conrad EU III, Bruckner JD, Howlett AT, Gebhardt D, Cole WG (2002) Risk of refracture through unicameral bone cysts of the proximal femur. J Pediatr Orthop 22(2):249–254
56. Gray DH (1971) Simple bone cysts: results of a pilot survey. Aust N Z J Surg 41(2):169–173
57. Kanter JI, Akman I, Sahin O, Keklikci K (2011) Simple calcaneal bone cysts: a pilot study comparing open versus endoscopic curettage and grafting. J Bone Jt Surg Br 93(12):1626–1631
58. Smith RW, Smith CF (1974) Solitary unicameral bone cyst of the calcaneus. A review of twenty cases. J Bone Jt Surg Am 56(1):49–56
59. Polat O, Saglik Y, Adiguzel HE, Arikan M, Yildiz HY (2009) Our clinical experience on calcaneal bone cysts: 36 cysts in 33 patients. Arch Orthop Trauma Surg 129(11):1489–1494
60. Bumci I, Vlahovic T (2002) Significance of opening the medullar canal in surgical treatment of simple bone cyst. J Pediatr Orthop 22(1):125–129
61. Takagi Y, Yasutake H (2002) Cannulation of simple bone cysts. J Bone Jt Surg Br 84(2):245–248
62. Meyer JM, Burdet A (1979) Essential bone cyst and its therapy. Schweiz Med Wochenschr 109(19):714–719
63. Mik G, Arkader A, Manteghi A, Dormans JP (2009) Results of a minimally invasive technique for treatment of unicameral bone cysts. Clin Orthop Relat Res 467(11):2949–2954
64. Glowacki M, Ignys-O’Byrne A, Ignys I, Mankowski P, Melzer P (2010) Evaluation of volume and solitary bone cyst remodeling using conventional radiological examination. Skeletal Radiol 39(3):251–259
65. Chang HC, Stanton RP, Glutting J (2002) Unicameral bone cysts treated by injection of bone marrow or methylprednisolone. J Bone Jt Surg Br 84(3):407–412
66. Inoue O, Ibaraki K, Shimabukuro H, Shingaki Y (1993) Packing with high-porosity hydroxyapatite cubes alone for the treatment of simple bone cyst. Clin Orthop Relat Res 293:287–292
67. Shinozaki T, Arita S, Watanabe H, Chigira M (1996) Simple bone cysts treated by multiple drill-holes, 23 cysts followed 2–10 years. Acta Orthop Scand 67(3):288–290
68. Carrara A, Gabagna P, Mapelli S, Zucchi V (1983) The treatment of simple bone cysts by topical infiltrations of methylprednisolone acetate: technique and results. Eur J Radiol 3(1):3–8
69. Hunt KJ, Bergeson A, Coffin CM, Randall RL (2009) Percutaneous curettage and bone grafting for humeral simple bone cysts. Orthopedics 32(2):89
70. Gray DH (1971) Simple bone cysts: results of a pilot survey. Aust N Z J Surg 41(2):169–173
71. Schreuder HW, Conrad EU III, Bruckner JD, Howlett AT, Sorensen LS (1997) Evaluation of volume and solitary bone cyst remodeling using conventional radiological examination. Skeletal Radiol 39(3):251–259
72. Sturz H, Hagena FW (1980) Simple bone cysts with expansion throughout the complete humerus (author’s transl). Z Orthop Ihre Grenzbz 118(6):923–926
73. Glowiak M, Struszyński J, Krasyń I (2000) Simple cyst of the calcaneus contemporary diagnostic possibilities: the results and treatment. Chir Narzadow Ruchu Ortop Pol 65(2):117–121
74. Sturz H, Witt AN (1979) Solitary benign bone lesions. Cesk Radiol 38(4):276–290
75. Chigira M, Watanabe H, Arita S, Udagawa E (1983) Simple bone cyst–pathophysiology and treatment. Nihon Seikeigeka Gakkai Zasshi 57(8):759–766
76. Vrbicky B (1982) Solitary cyst of the calcaneus (author’s transl). Acta Chir Orthop Traumatol Cech 49(2):174–176
77. Sturz H, Hagena FW (1980) Simple bone cysts with expansion throughout the complete humerus (author’s transl). Z Orthop Ihre Grenzbz 118(6):923–926
78. Iwasaki H, Okamura Y, Hirano Y, Tagawa T, Murata M, Sato I (1979) Three cases of solitary bone cyst (author’s transl). Arch Orthop Trauma Surg 100(2):107–114
79. Gennari JM, Merrot T, Legre B, Bergoin M (1996) The choice of treatment for simple bone cysts of the upper third of the femur in children. Eur J Pediatr Surg 6(2):95–99
80. Fahey JJ, O’Brien ET (1973) Subtotal resection and grafting in selected cases of solitary unicameral bone cyst. J Bone Jt Surg Am 55(1):59–68
81. Liu X, Zhang Y, Zhao L, Li J, Wang J, Shi Y (2011) Periosteal segmental resection and insertion of a fibula graft in the treatment of solitary bone cysts of the humerus. Arch Orthop Trauma Surg 100(2):107–114
82. Liu X, Zhang Y, Zhao L, Li J, Wang J, Shi Y (2011) Periosteal segmental resection and insertion of a fibula graft in the treatment of solitary bone cysts of the humerus. Arch Orthop Trauma Surg 100(2):107–114
autogenous bone marrow. Zhongguo Xi Fu Chong Jian Wai Ke Za Zhi 20(9):925–927

132. Sulko J (2005) Solitary calcaneal bone cyst in children. Chir Narzadow Ruchu Ortop Pol 70(4):261–264

133. Yilmez G, Aksoy MC, Alany A, Yazici M, Alpaslan AM (2005) Treatment of simple bone cysts with methylprednisolone acetate in children. Acta Orthop Traumatol Turc 39(5):411–415

134. Kraus R, Schnettler R (2006) Distraction osteogenesis for adjusting humeral length difference due to premature closure of the proximal growth plate in a simple bone cyst. Chirurg 77(4):376–380

135. Zhang Y, Wang Y, Cheng J (2005) A long-term follow-up of treatment of adult unicameral bone cysts with allograft of lyophilized cancellous bone. Zhongguo Xi Fu Chong Jian Wai Ke Za Zhi 198:600–602

136. Topuridze ZM, Bekauri LA, Makaridze DS (2005) Immunohistochemical characteristics of solitary bone cyst. Georgian Med News 118:56–58

137. Lewandowski B, Kulig T (2004) Simple bone cyst. Pol Merkur Lekarski 17(97):70–72

138. Huch K, Werner M, Puhl W, Delling G (2004) Calcaneal cyst: a classical simple bone cyst? Z Orthop Ihre Grenzgeb 142(5):625–630

139. Pogoda P, Priemel M, Catala-Lehnen P, Gebauer M, Rupprecht J, Maas R, Winkler K, Heise U, Delling G (1996) Solitary bone. Langenbecks Arch Chir 381(6):300–302

140. Kondo A, Ewerbeck V, Bernd L (2002) Calcifying solitary bone cyst of the sacrum–A rare type of bone cyst and its unknown localisation, differential diagnosis and management. Z Orthop Ihre Grenzgeb 140(2):214–217

141. Zietek P, Krolewski J, Bohatyrewicz A (1999) Aneurysmal bone cyst and solitary cyst of bone. Chir Narzadow Ruchu Ortop Pol 64(6):663–669

142. Seip GU, Thiele H (1999) Solitary juvenile cyst of the heel bone. Two case reports and review of the literature. Unfallchirurg 102(7):576–579

143. Glowiacki M, Marciniak W, Krasny I, Szulc A (1998) The classical simple bone cyst? Z Orthop Ihre Grenzgeb 140(2):335–338

144. Seip GU, Thiele H (1999) Solitary bone cyst. Dtsch Zahnarztl Z 40(6):570–572

145. Konera W, Okonski M, Gregosiewicz A (1990) Outcome of treating solitary osseous cyst with acetate methylprednisolone injections. Chir Narzadow Ruchu Ortop Pol 55(3):237–240

146. Bielecki T, Cieslik-Bielecka A, Zelawski M, Mikusek W (2012) A side-effect induced by the combination of a demineralized freeze-dried bone allograft and leucocyte and platelet-rich plasma during treatment for large bone cysts: a 4-year follow-up clinical study. Transfus Apher Sci 47(2):133–138

147. Chryssel J (1955) Remote prognosis and treatment of solitary bone cysts. Lyon Chir 50(1):98–103

148. Miles JE, Degenshein GA (1956) Solitary bone cysts. Am J Surg 91(2):170–177

149. Wallenbock E, Pollanz H (1996) Solitary calcaneal cyst. Langenbecks Arch Chir 381(6):300–302

150. Mandys V, Mazanek J (1995) Solitary “traumatic” mandibular cyst. Cesk Patol 31(3):92–93

151. D’Angelo R, Mangoni Di Stefano ML, Arienzo A, Fazioli F, De Rosa V (1995) Unicameral cysts of the hindfoot. Diagnostic aspects and therapeutic implications. Radiol Med 89(3):335–338

152. Ludwig A, Merten HA (1995) Solitary bone cysts. The pathogenesis, clinical picture and therapy of solitary bone cysts. Schweiz Monatsschr Zahnmed 105(1):63–70

153. Miat VV (1992) Zonography in solitary bone cysts. Khirurgia (Mosk) 7–8:56–58

154. Heublein GW, Baird CL (1948) Solitary unicameral bone cyst of the ilium; a case report. Am J Roentgenol Radium Ther Nucl Med 107(8):680–688

155. Chryssel J, Barry P (1953) Postoperative recurrences in solitary bone cysts. Acta Orthop Belg 20(5):463–476

156. Ruchu Ortop Pol 63(3):259–266

157. Creyssel J (1954) Remote prognosis and treatment of solitary bone cysts. Acta Orthop Belg 20(5):463–476

158. Brandt M, Lehmann W (1985) Frequency and recurrence of solitary bone cysts. Dtsch Zahnarztl Z 40(6):570–572

159. Kondach A, Ewerbeck V, Bernd L (2000) Cystifying solitary bone cyst of the sacrum–A rare type of bone cyst and its unknown localisation, differential diagnosis and management. Z Orthop Ihre Grenzgeb 140(2):214–217

160. Bregante BJ (2002) Simple bone cysts in childhood. Retrospective study of 15 cases and review of literature. Cir Pediatr 3(48–49

161. Sim E, Haid C (1990) Unicameral cyst of the calcaneus: surgical presentation and course in 13 cases. An Esp Pediatr 30(3):171–174

162. Pedersen NW, Schmidt SA (1986) Solitary bone cyst. Ugeskr Laeger 148(20):1195–1197

163. Fischer-Brandies E, Dieelter E (1985) The diagnosis and therapy of solitary bone cysts. Dtsch Zahnarztl Z 40(6):573–575

164. Sokolov TP (1986) Our experience treating a solitary bone cyst with mineralocorticoid preparations. Ortop Travmatol Protez 3:48–49

165. Brandt M, Lehmann W (1985) Frequency and recurrence of solitary bone cysts. Dtsch Zahnarztl Z 40(6):566–569

166. Slobo A (1985) Solitary cyst of the ilium. Chir Narzadow Ruchu Ortop Pol 50(6):513–515

167. Wright JG, Yandow S, Donaldson S, Marley L (2008) A randomized clinical trial comparing intralesional bone marrow and steroid injections for simple bone cysts. J Bone Jt Surg Am 90(4):722–730

168. Bielecki T, Cieslik-Bielecka A, Zelawski M, Mikusek W (2012) A side-effect induced by the combination of a demineralized freeze-dried bone allograft and leucocyte and platelet-rich plasma during treatment for large bone cysts: a 4-year follow-up clinical study. Transfus Apher Sci 47(2):133–138

169. Creyssel J (1954) Remote prognosis and treatment of solitary bone cysts. Lyon Chir 50(1):98–103

170. Dotter WE (1959) Solitary unicameral bone cysts. Surg Clin North Am 39(3):857–864
224. Fincher RL (1971) Radiographic diagnosis of a bone cyst of the humerus with pathological fracture. J Ark Med Soc 67(9):298
225. Tanghe W, Verstreken J, Mulier JC (1970) Solitary cyst of the ramus ossis pubis. Report of a case. Acta Orthop Belg 36(3):346–349
226. Broder HM (1968) Possible precursor of unicameral bone cysts. J Bone Jt Surg Am 50(3):503–507
227. Sato A, Watanabe R, Nishijima H (1966) A rare case of a solitary bone cyst of the patella. Nihon Geka Hokan 35(1):173–175
228. Idebelker K (1964) A solitary cyst of the 4th lumbar vertebra, operated on by abdominoprosthetic approach in a 48 year old man. Rev Chir Orthop Reparatrice Appar Mot 50:385–387
229. Devan WT (1964) Solitary bone cyst with pathological fracture complicating otherwise normal pregnancy: report of a case and discussion of fractures in etiology, pathogenesis and treatment. Am Surg 30:109–114
230. Clark L (1962) The influence of trauma on unicameral bone cysts. Clin Orthop 22:209–214
231. Ufranc OE, Jones WN, Harris WH (1961) Humeral fractures through unicameral bone cysts. JAMA 188(17):410–413
232. Beller ML (1952) Solitary bone cyst in the humeral mid-shaft at age five years. Bull Hosp Jt Dis 13(1):212–216
233. McCort JJ (1951) Weekly clinicopathological exercises: unicameral bone cyst of the spine. J Pediatr 39(3):114–115
234. Wu KK (1993) A surgically treated unicameral (solitary) bone cyst in a rib. Br J Radiol 66(792):51–53
235. Kliger M (1951) Solitary bone cyst of humerus, report of case and discussion of fractures in etiology, pathogenesis and treatment. Arch Pediatr 68(11):518–525
236. Wu KK (1993) A surgically treated unicameral (solitary) bone cyst of the talus with a 15-year follow-up. J Foot Ankle Surg 32(2):242–244
237. Brogdon BG, Cottrell WC, Nimityongskul P, Takhtani D (2006) A bullet-sired bone cyst. Skeletal Radiol 35(12):959–963
238. Akman S, Gur B, Seckin F, Ozturk I (2002) A case of bilateral unicameral bone cyst of the calcaneus and surgical outcome. Acta Orthop Traumatol Turc 36(3):265–267
239. Schwartz D (2009) An 11-year-old boy with ankle trauma: unicameral bone cyst of the calcaneus. Pediatr Ann 38(3):132–134
240. Giddings CE, Bray D, Stapleton S, Daya H (2005) Aneurysmal bone cyst of the spine. J Laryngol Otol 119(6):495–497
241. Sarierler M, Cullu E, Yurekli Y, Birincioglu S (2004) Bone cement treatment for aneurysmal bone cyst in a dog. J Vet Med Sci 66(9):1137–1142
242. Burr BA, Resnick D, Syklawler R, Haghighi P (1993) Fluid-fluid levels in a unicameral bone cyst: CT and MR findings. J Comput Assist Tomogr 17(1):134–136
243. Ruggieri P, Biagini R, Picci P (1987) Case report 437: solitary (unicameral, simple) bone cyst of the scapula. Skeletal Radiol 16(6):493–497
244. Chaudhary D, Bhata N, Ahmed A, Chopra RK, Malik AC, Singh AK, Rao KS (2000) Unicameral bone cyst of the patella. Orthopedics 23(12):1285–1286
245. Vayego SA, De Conti OJ, Varella-Garcia M (1996) Complex cytogenetic rearrangement in a case of unicameral bone cyst. Cancer Genet Cytogenet 86(1):46–49
246. Marsh JH, Munk PL, Muller NL (1992) CT of a unicameral bone cyst in a rib. Br J Radiol 65(769):74–75
247. Weisal A, Hecht HL (1980) Development of a unicameral bone cyst. Case report. J Bone Jt Surg Am 62(4):664–666
248. Haims AH, Desai P, Present D, Beltran J (1997) Epiphysial extension of a unicameral bone cyst. Skeletal Radiol 26(1):51–54
249. Cebesoy O (2007) Intracerebral ganglion of the talus treated with the talonavicular joint approach without exposing the ankle joint. J Am Podiatr Med Assoc 97(5):424–427
250. Scholper SA, Lawrence JF, Johnson MK (1986) Lengthening of the humerus for upper extremity length discrepancy. J Pediatr Orthop 6(4):477–480
251. Sadler AH, Rosenhain F (1964) Occurrence of two unicameral bone cysts in the same patient. J Bone Jt Surg Am 46:1557–1560
252. Madiefsky L, Wasiak GA (1986) Outpatient surgery of a unicameral bone cyst of the calcaneus. J Foot Surg 25(1):73–77
253. Tynan JR, Schachar NS, Marshall GB, Gray RR (2005) Pathologic fracture through a unicameral bone cyst of the pelvis: CT-guided percutaneous curettage, biopsy, and bone matrix injection. J Vasc Interv Radiol 16(2 Pt 1):293–296
254. Madhavan P, Ogilvie C (1998) Premature closure of upper humeral physis after fracture through simple bone cyst. J Pediatr Orthop B 7(1):83–85
255. Shindell R, Connolly JF, Lippielli L (1987) Prostaglandin levels in a unicameral bone cyst treated by corticosteroid injection. J Pediatr Orthop 7(2):210–212
256. Stearns HC III (1986) Radiologic review: unicameral bone cyst with humeral fracture. Orthop Nurs 5(4):43–45
257. Tyler W, Frassica FJ, McCarthy EF (2002) Recurrence of a unicameral bone cyst after nineteen years. Orthopedics 25(4):435–436
258. Bowen RE, Morrissy RT (2004) Recurrence of a unicameral bone cyst in the proximal part of the fibula after en bloc resection. A case report. J Bone Jt Surg Am 86(1):154–158
259. Lee CC, Wei JD, How SW (2000) Simple bone cyst in cervical vertebral spinous process and laminae: report of a case. J Formos Med Assoc 99(1):54–58
260. Violas P, Salmeron F, Chapius M, de Sales GJ, Braqu J, Cuhuaz JF (2004) Simple bone cysts of the proximal humerus complicated with growth arrest. Acta Orthop Belg 70(2):166–170
261. Thomas LB, Steffensen T, Walling AK, Gilbert-Barness E (2008) Simple (unicameral) bone cyst of the calcaneus: a pathologic variant revisited. Fetal Pediatr Pathol 27(3):141–147
262. Nager GT (1986) Solitary (unicameral) cysts involving the temporal bone. Laryngoscope 96(6):664–674
263. Tausend ME, Marcus M (1959) Solitary unicameral bone cyst in a seven-week-old infant. N Engl J Med 260(3):129–131
264. Frankel SL, Chioros PG, Saifuddin A (1998) Steroid injection of a unicameral bone cyst of the calcaneus: literature review and two case reports. J Foot Surg 27(1):60–65
265. Alvarez RG, Arnold JM (2007) Technical tip:arthroscopic assistance in minimally invasive curettage and bone grafting of a calcaneal unicameral bone cyst. Foot Ankle Int 28(11):1198–1199
266. McGlynn FJ, Mickelson MR, El-Khoury GY (1981) The fallen fragment sign in unicameral bone cyst. Clin Orthop Relat Res 156:157–159
267. Tsuchihara T, Arino H, Nemoto K, Amako M, Isaki H, Fujikawa Tsuchihara T, Arino H, Nemoto K, Amako M, Isaki H, Fujikawa Tsuchihara T, Arino H, Nemoto K, Amako M, Isaki H, Fujikawa
268. Frankel SL, Chioros PG, Saifuddin A (1998) Steroid injection of a unicameral bone cyst of the calcaneus: literature review and two case reports. J Foot Surg 27(1):60–65
269. Alvarez RG, Arnold JM (2007) Technical tip:arthroscopic assistance in minimally invasive curettage and bone grafting of a calcaneal unicameral bone cyst. Foot Ankle Int 28(11):1198–1199
270. Mcgillivray FF, Mickelson MR, El-Khoury GY (1981) The fallen fragment sign in unicameral bone cyst. Clin Orthop Relat Res 156:157–159
271. Tsunoe Hara T, Arino H, Nemoto K, Amako M, Isaki H, Fujikawa K (2008) The growth rate of the humerus: long-term follow-up of treatment of solitary bone cyst of the proximal humerus using cannulated screws: a case report. J Pediatr Orthop B 17(3):145–147
272. Jordanov MI (2009) The “rising bubble” sign: a new aid in the diagnosis of unicameral bone cysts. Skeletal Radiol 38(6):597–600
273. Taxin RN, Feldman R (1975) The tumbling bullet sign in a post-traumatic bone cyst. Am J Roentgenol Radium Ther Nucl Med 123(1):140–143
274. Richkind KE, Mortimer E, Mowery-Rushton P, Fraire A (2002) Translocation (16;20)(p11.2;q13). sole cytogenetic abnormality
in a unicameral bone cyst. Cancer Genet Cytogenet 137(2):153–155
271. Johnston CE, Fletcher RR (1986) Traumatic transformation of unicameral bone cyst into aneurysmal bone cyst. Orthopedics 9(10):1441–1447
272. Yildirim C, Mahirogullari M, Kuskucu M, Akmaz I, Keklikci K (2010) Treatment of a unicameral bone cyst of calcaneus with endoscopic curettage and percutaneous filling with corticocancellous allograft. J Foot Ankle Surg 49(1):93–97
273. Moed BR, LaMont RL (1982) Unicameral bone cyst complicated by growth retardation. J Bone Jt Surg Am 64(9):1379–1381
274. Prietto C, Orofino CF, Waugh TR (1977) Unicameral bone cyst in the scapula. Clin Orthop Relat Res 125:183–184
275. Bone LB, Johnston CE, Bucholz RW (1986) Unicameral bone cyst. Orthopedics 9(8):1155–1161
276. Yoho RM, Mandracchia VJ, Syvrudd NJ (1996) Unicameral bone cyst. An unusual complication. J Am Podiatr Med Assoc 86(5):236–238
277. Shulman HS, Wilson SR, Harvie JN, Cruickshank B (1977) Unicameral bone cyst in a rib of a child. Am J Roentgenol 128(6):1058–1060
278. Grumbine NA, Clark GD (1986) Unicameral bone cyst in the calcaneus with pathologic fracture. A literature review and case report. J Am Podiatr Med Assoc 76(2):96–99
279. Keret D, Kumar SJ (1987) Unicameral bone cysts in the humerus and femur in the same child. J Pediatr Orthop 7(6):712–715
280. Hresko MT, Miele JF, Goldberg MJ (1988) Unicameral bone cyst in the scapula of an adolescent. Clin Orthop Relat Res 236:141–144
281. Ehrlich MG, Chaglassian JH (1974) Unicameral bone cyst in the scapula. Clin Orthop Relat Res 103:80–81
282. Tsirikos AI, Bowen JR (2002) Unicameral bone cyst in the spineous process of a thoracic vertebra. J Spinal Disord Tech 15(5):440–443
283. Head SA (1984) Unicameral bone cyst located in metacarpal bone: report of a case. J Am Osteopath Assoc 84(4):372–373
284. Snell BE, Adesina A, Wolffa CE (2001) Unicameral bone cyst of a cervical vertebral body and lateral mass with associated pathologic fracture in a child. Case report and review of the literature. J Neurosurg 95(2 Suppl):243–245
285. Brodsky AE, Khalil M, VanDeventer L (1986) Unicameral bone cyst in a lumbar vertebra. A case report. J Bone Jt Surg Am 68(8):1283–1285
286. Hazmy CH (2004) Unicameral bone cyst of the calcaneum. Med J Malaysia 59 Suppl F:63–64
287. Epstein J, Werthesimer SJ (1984) Unicameral bone cyst of the calcaneus. Literature review and case studies. J Am Podiatry Assoc 74(2):76–79
288. O’Laughlin SJ (2012) Unicameral bone cyst of the calcaneus. J Orthop Sports Phys Ther 42(1):43
289. Perlman MD, Maioccco JL, Rybczynski JM (1989) Unicameral bone cyst of the first metatarsal. J Foot Surg 28(1):38–41
290. Randelli P, Arrigoni P, Cabitza P, Denti M (2009) Unicameral bone cyst of the humeral head: arthroscopic curettage and bone grafting. Orthopedics 32(1):54
291. Wray CC (1986) Unicameral bone cyst of the ilium. J R Coll Surg Edinb 31(4):233–236
292. Wu KK (1990) Unicameral bone cyst of the medial malleolus of the ankle. J Foot Surg 29(2):183–187
293. Janjua KJ (1999) Unicameral bone cyst of the patella. Am J Knee Surg 12(2):111–113
294. Saglik Y, Ucar DH, Yildiz HY, Dogan M (1995) Unicameral bone cyst of the patella. A case report. Int Orthop 19(5):280–281
295. Wientroub S, Salama R, Baratz M, Papo I, Weissman SL (1979) Unicameral bone cyst of the patella. Clin Orthop Relat Res 140:159–161
296. Martin SJ, Schiller JE (1987) Unicameral bone cyst of the second metatarsal with pathologic fracture. J Am Podiatr Med Assoc 77(3):143–147
297. Cheiappa WA, Shinder M (1989) Unicameral bone cyst of the talus. J Am Podiatr Med Assoc 79(9):441–446
298. Gordon SL, Denton JR, McCann PD, Parisien MV (1987) Unicameral bone cyst of the talus. Clin Orthop Relat Res 215:201–205
299. Nasca RJ (1988) Unicameral bone cyst of the tibia complicated by genu valgum. South Med J 81(10):1301–1304
300. Malawer MM, Markle B (1982) Unicameral bone cyst with epiphyseal involvement: clinicoradiographic analysis. J Pediatr Orthop 2(1):71–79
301. Deoye L, Woodbury DF (1985) Unicameral bone cyst with fracture. Orthopedics 8(4):529–531
302. Singh S, Dhammi IK, Arora A, Kumar S (2003) Unusually large solitary unicameral bone cyst: case report. J Orthop Sci 8(4):599–601
303. Agerholm JC, Goodfellow JW (1965) Simple cysts of the humerus treated by radical excision. J Bone Jt Surg Br 47(4):714–717
304. MacKenzie DB (1980) Treatment of solitary bone cysts by diaphyseotomy and bone grafting. S Afr Med J 58(4):154–158
305. Kleiger B (1969) Unicameral bone cyst, 15 year follow-up. Bull Hosp Jt Dis 30(1):53–58
306. Gundes H, Sahin M, Alici T (2010) Unicameral bone cyst of the lunate in an adult: case report. J Orthop Surg Res 5:79
307. Hutter CG (1950) Unicameral bone cyst; report of an unusual case. J Bone Jt Surg Am 32A(2):430–432
308. Dormans JP, Dormans NJ (2004) Use of percutaneous intramedullary decompression and medical-grade calcium sulfate pellets for treatment of unicameral bone cysts of the calcaneus in children. Orthopedics 27(1 Suppl):s137–s139
309. Siegel IM (1966) Brisement force with controlled collapse in treatment of solitary unicameral bone cyst. Arch Surg 92(1):109–114
310. Goel AR, Kriger J, Bronfman R, Lauf E (1994) Unicameral bone cysts; treatment with methylprednisolone acetate injections. J Foot Ankle Surg 33(1):6–15
311. Cho HS, Seo SH, Park SH, Park JH, Shin DS, Park IH (2012) Minimal invasive surgery for unicameral bone cyst using demineralized bone matrix: a case series. BMC Musculoskelet Disord 13:134
312. Shibata K, Tsunooka H, Sasaki S, Oono N, Niwa A, Oowa T, Kakehi K, Yonehara S, Takeda T, Yamauchi T, Kato Y, Ito K, Uesugi H, Kikuta J, Nakamura K, Sato H (2013) Treatment of a unicameral bone cyst of calcaneus with minimal invasive surgery for unicameral bone cyst using demineralized bone matrix: a case series. BMC Musculoskelet Disord 15(5):440–443
313. Siegel IM (1966) Brisement force with controlled collapse in treatment of solitary unicameral bone cyst. Arch Surg 92(1):109–114
314. Goel AR, Kriger J, Bronfman R, Lauf E (1994) Unicameral bone cysts; treatment with methylprednisolone acetate injections. J Foot Ankle Surg 33(1):6–15
315. Cho HS, Seo SH, Park SH, Park JH, Shin DS, Park IH (2012) Minimal invasive surgery for unicameral bone cyst using demineralized bone matrix: a case series. BMC Musculoskelet Disord 13:134
316. Shibata K, Tsunooka H, Sasaki S, Oono N, Niwa A, Oowa T, Kamio Y, Saito Y, Sumita H, Naito A (1992) A case report of solitary bone cyst of rib detected from pathological fracture. Kyobu Geka 45(9):817–819
317. Zennmyo M, Komiya S, Hamada T, Inoue A (2000) A solitary bone cyst in the spinous process of the cervical spine: a case report. Spine (Phila Pa 1976) 25(5):641–642
318. Nystrom L, Raw R, Buckwalter J, Morcuende JA (2008) Acute intraoperative reactions during the injection of calcium sulfate bone cement for the treatment of unicameral bone cysts: a review of four cases. Iowa Orthop J 28:81–84
319. Asada Y, Suzuki I, Suzuki M, Fukushima M (1991) Atypical multiple benign osteoblastomas accompanied by simple bone cysts. A case report. J Cranio-maxillofac Surg 19(4):166–171
320. Taneda H, Azuma H (1994) Avascular necrosis of the femoral epiphysis complicating a minimally displaced fracture of solitary bone cyst of the neck of the femur in a child. A case report. Clin Orthop Relat Res 304:172–175
381. Reynolds J (1969) The ‘fallen fragment sign’ in the diagnosis of unicameral bone cyst. Radiology 30(3):495–504

382. Margau R, Babyn P, Cole W, Smith C, Lee F (2009) Measurement of bone cyst fluid volume using k-means clustering. Magn Reson Imaging 27(10):1430–1439

383. Vasconcellos DA, Yandow SM, Grace AM, Moritz BM, Marley LD, Fillman RR (2007) Cyst index: a nonpredictor of simple bone cyst fracture. J Pediatr Orthop 27(3):427–432

384. Yandow SM, Marley LD, Fillman RR, Galloway KS (2009) Precondal Doppler evaluation of simple bone cyst injection. J Pediatr Orthop 29(2):196–200

385. Norman A, Schiffman M (1977) Simple bone cysts: factors of age dependency. Radiology 124(3):779–782

386. Hammoud S, Weber K, McCarthy EF (2005) Unicameral bone cysts of the pelvis: a study of 16 cases. Iowa Orthop J 25:69–74

387. Brodetti A (1956) The weight bearing capacity of the femoral neck with solitary bone cyst. Acta Orthop Scand 26(2):81–98

388. Dochezier PL, Paul L, Menten R, Cartiaux O, Franço B, Banse X (2009) Measurement of bone cyst fluid volume using k-means clustering. Magn Reson Imaging 27(10):1430–1439

389. Vasconcellos DA, Yandow SM, Grace AM, Moritz BM, Marley LD, Fillman RR (2007) Cyst index: a nonpredictor of simple bone cyst fracture. J Pediatr Orthop 27(3):307–310

390. Ortiz EJ, Isler MH, Navia JE, Canosa R (2005) Pathologic fractures in children. Clin Orthop Relat Res 432:116–126

391. Reynolds J (1969) The ‘fallen fragment sign’ in the diagnosis of unicameral bone cysts. Radiology 92(5):949–953

392. Amling M, Werner M, Posl M, Maas R, Korn U, Delling G (1995) Calcifying solitary bone cyst: morphological aspects and differential diagnosis of sclerotic bone tumours. Virchows Arch 426(3):235–242

393. Yanagawa T, Watanabe H, Shinozaki T, Takagishi K (2009) Curettage of benign bone tumors without grafts gives sufficient bone strength. Acta Orthop 80(1):9–13

394. Shrader MW, Schwab JH, Slaughnessy WJ, Jacofsky DJ (2009) Pathologic femoral neck fractures in children. Am J Orthop (Belle Mead NJ) 38(2):83–86

395. Mnaymneh WA, Ghandur-Mnaymneh L, Chaglassian J (1973) Unicameral bone cyst. Appraisal of experience at the American University Hospital of Beirut. J Med Liban 2(6):459–470

396. Sakamoto A, Matsuda S, Yoshida T, Iwamoto Y (2010) Clinical outcome following surgical intervention for a solitary bone cyst: emphasis on treatment by curettage and steroid injection. J Orthop Sci 15(4):553–559

397. Haidar SG, Culliford DJ, Gent ED, Clarke NM (2011) Distance from the growth plate and its relation to the outcome of unicameral bone cyst treatment. J Child Orthop 5(2):151–156

398. Fillingham YA, Lenart BA, Gitelis S (2012) Function after injection of benign bone lesions with a bioceramic. Clin Orthop Relat Res 470(7):2014–2020

399. Glowacki M, Ignys-O’Byrne A, Ignys I, Wroblewska K (2011) Limb shortening in the course of solitary bone cyst treatment—a comparative study. Skeletal Radiol 40(2):173–179

400. Sturz H, Zenker H, Buckl H (1979) Total subperiosteal resection treatment of solitary bone cysts of the humerus. Arch Orthop Trauma Surg 93(3):231–239

401. Morton KS (1982) Unicameral bone cyst. Can J Surg 25(3):330–332

402. Tey IK, Mahadev A, Lim KB, Lee EH, Nathan SS (2009) Active unicameral bone cysts in the upper limb are at greater risk of fracture. J Orthop Surg (Hong Kong) 17(2):157–160

403. Stanton RP, Abdel-Mota’al MM (1998) Growth arrest resulting from unicameral bone cyst. J Pediatr Orthop 18(2):198–201

404. Garceau GJ, Gregory CF (1954) Simple unicameral bone cyst. J Bone Joint Surg Am 36(A:2):267–280

405. Matthiass HH, Immenkamp M (1976) Surgical treatment of solitary bone cysts. Recent Results Cancer Res 54:231–238

406. Yajima H, Murata K, Kawamura K, Kawate K, Takakura Y (2008) Treatment of intraosseous ganglia and bone cysts of the carpal bones with injectable calcium phosphate bone cement. Hand Surg 13(3):167–173

407. Garcia Filho RJ, Dos Santos JB, Korkutian M, Laredo FJ (1992) Conservative treatment of solitary bone cysts—a study of 55 patients. Rev Paul Med 110(3):131–137

408. Givon U, Sher-Lurie N, Schindler A, Ganel A (2004) Titanium elastic nail—a useful instrument for the treatment of simple bone cyst. J Pediatr Orthop 24(3):317–318

409. Chaves D (1980) Treatment of solitary cysts of the humerus. Treated by diaphyseal resection and bone grafting. Int Orthop 3(4):253–256

410. Biermann JS (2002) Common benign lesions of bone in children and adolescents. J Pediatr Orthop 22(2):268–273

411. Abdel-Wanis ME, Tsuchiya H (2002) Simple bone cyst is not a single entity: point of view based on a literature review. Med Hypotheses 58(1):87–91

412. Robins PR, Peterson HA (1972) Management of pathologic fractures through unicameral bone cysts. JAMA 222(1):80–81

413. Neer CS, Francis KC, Johnston AD, Kiernan HA Jr (1973) Comparative study. Skeletal Radiol 18(1):20–22

414. Kodama H, Kodama K, Kodama H (2009) Simple bone cyst. Jpn J Orthop Traumatol 97:40–51

415. Leclert H, Adamsbaum C (1998) Intraosseous cyst injection. Radiol Clin North Am 36(3):581–587

416. Wilkins RM (2000) Unicameral bone cysts. J Am Acad Orthop Surg 8(4):217–224

417. Capanna R, Campanacci DA, Manfrini M (1996) Unicameral and aneurysmal bone cysts. Orthop Clin North Am 27(3):605–614

418. Makley JT, Joyce MJ (1989) Unicameral bone cyst (simple bone cyst). Orthopedics 12(6):877–878

419. Neer CS, Francis KC, Johnston AD, Kiernan HA Jr (1973) Current concepts on the treatment of solitary unicameral bone cyst. Clin Orthop Relat Res 97:40–51

420. Leclert H, Adamsbaum C (1998) Intraosseous cyst injection. Radiol Clin North Am 36(3):581–587

421. Wilkins RM (2000) Unicameral bone cysts. J Am Acad Orthop Surg 8(4):217–224

422. Capanna R, Campanacci DA, Manfrini M (1996) Unicameral and aneurysmal bone cysts. Orthop Clin North Am 27(3):605–614

423. Makley JT, Joyce MJ (1989) Unicameral bone cyst (simple bone cyst). Orthop Clin North Am 20(3):407–415

424. Kruls HJ (1979) Pathological fractures in children due to solitary bone cysts. Reconsr Surg Traumatol 17:113–118

425. Iorio R, Betz RR, Clancy MJ (1989) Treatment options in simple unicameral bone cysts. Orthopedics 12(6):877–878

426. Donaldson S, Chundamala J, Yandow S, Wright JG (2010) Treatment for unicameral bone cysts in long bones: an evidence based review. Orthop Rev (Pavia) 2(1):e13

427. Baig R, Eady JL (2006) Unicameral (simple) bone cysts. South Med J 99(9):966–976

428. Dormans JP, Pill SG (2002) Fractures through bone cysts: unicameral bone cysts, aneurysmal bone cysts, fibrous cortical...
defects, and nonossifying fibromas. Instr Course Lect 51:457–467
411. Lokiec F, Wiemtroub S (1998) Simple bone cyst: etiology, classification, pathology, and treatment modalities. J Pediatr Orthop B 7(4):262–273
412. Hecht AC, Gebhardt MC (1998) Diagnosis and treatment of unicameral and aneurysmal bone cysts in children. Curr Opin Pediatr 10(1):87–94
413. Chaney SL, Karp NE (1981) The use of freeze-dried bone allografts: a review of the literature with special emphasis on their use in treatment of solitary bone cysts. J Foot Surg 20(1):41–43
414. Cohen J (1977) Unicameral bone cysts. A current synthesis of reported cases. Orthop Clin North Am 8(4):715–736
415. Peltier LF, Jones RH (1978) Treatment of unicameral bone cysts by curetage and packing with plaster-of-Paris pellets. J Bone Jt Surg Am 60(6):820–822
416. Moore TM (1982) Orthopedics-important advances in clinical medicine: injection of steroid agents in solitary bone cysts. West J Med 137(5):408–409
417. Weinert CR (1989) Administering steroids in unicameral bone cysts. West J Med 150(6):684–685
418. Namazi H (2008) Practice pearl: a novel use of botulinum toxin for unicameral bone cyst ablation. Ann Surg Oncol 15(2):657–658
419. Savastano AA (1979) The treatment of bone cysts with intracyst injection of steroids. Injection of steroids will largely replace surgery in the treatment of benign bone cysts. R I Med J 62:93–95
420. Galasko CS (1974) Letter: the fate of simple bone cysts which fracture. Clin Orthop Relat Res (101):302–304
421. Matsumine A, Myoui A, Kasuzaki K, Araki N, Seto M, Yoshikawa H, Uchida A (2004) Calcium hydroxyapatite ceramic implants in bone tumour surgery. A long-term follow-up study. J Bone Jt Surg Br 86(5):719–725
422. Gebhart M, Blaimont P (1996) Contribution to the vascular origin of the unicameral bone cyst. Acta Orthop Belg 62(3):137–143
423. Innami K, Takao M, Miyamoto W, Abe S, Nishi H, Matsushita T (2011) Endoscopic surgery for young athletes with symmetric unicameral bone cyst of the calcaneus. Am J Sports Med 39(3):575–581
424. Shindell R, Huurman WW, Lippiello L, Connolly JF (1989) Prostaglandin levels in unicameral bone cysts treated by intralesional steroid injection. J Pediatr Orthop 9(5):516–519
425. Fernbach SK, Blumenthal DH, Poznanski AK, Dias LS, Tachdjian MO (1981) Radiographic changes in unicameral bone cysts following direct injection of steroids: a report on 14 cases. Radiology 140:689–695
426. Lindell L (1963) Solitary unicameral bone cyst in childhood. Ann Chir Gynaecol Fenn 52:80–92
427. Glaser DL, Dormans JP, Stanton RP, Davidson RS (1999) Surgical management of calcaneal unicameral bone cysts. Clin Orthop Relat Res 360:231–237
428. Moreau G, Letts M (1994) Unicameral bone cysts of the calcaneus in children. J Pediatr Orthop 14(1):101–104
429. Kanellopoulos AD, Mavrogenis AF, Papagelopoulos PJ, Soucacos PN (2007) Elastic intramedullary nailing and DBM-bone marrow injection for the treatment of simple bone cysts. World J Surg Oncol 5:111
430. Abdel-Wanis ME, Tsuchiya H, Uehara K, Tomita K (2002) Minimal curettage, multiple drilling, and continuous decompression through a cannulated screw for treatment of unicameral bone cysts in children. J Pediatr Orthop 22(4):540–543
431. Thawrani D, Thai CC, Welch RD, Copley L, Johnston CE (2009) Successful treatment of unicameral bone cyst by single percutaneous injection of alpha-BSM. J Pediatr Orthop 29(5):511–517
432. Saraph V, Zwick EB, Maizen C, Schneider F, Linhart WE (2004) Treatment of unicameral calcaneal bone cysts in children: review of literature and results using a cannulated screw for continuous decompression of the cyst. J Pediatr Orthop 24(5):568–573
433. Killian JT, Wilkinson L, White S, Brassard M (1998) Treatment of unicameral bone cyst with demineralized bone matrix. J Pediatr Orthop 18(5):621–624
434. Yandow SM, Ludden GA, Scott SM, Coffin C (1998) Autogenic bone marrow injections as a treatment for simple bone cyst. J Pediatr Orthop 18(5):616–620
435. Lokiec F, Enra E, Khermosh O, Wiemtroub S (1996) Simple bone cysts treated by percutaneous autologous marrow grafting. A preliminary report. J Bone Jt Surg Br 78(6):934–937
436. Delloye C, Docquier PL, Cornu O, Poivavache P, Peters M, Woitrin B, Rombouts JJ, De Nayer P (1998) Simple bone cysts treated with aspiration and a single bone marrow injection. A preliminary report. Int Orthop 22(2):134–138
437. Symeonides PP, Economou CJ, Papadimitriou J (1977) Solitary bone cyst of the calcaneus. Int Surg 62(1):24–26
438. Pedzisz P, Zgoda M, Kocon H, Benke G, Gorecki A (2010) Treatment of solitary bone cysts with allogenic bone graft and platelet-rich plasma. A preliminary report. Acta Orthop Belg 76(3):374–379
439. Rosenborg M, Karlsson A, Hirsch G, Mortensson W (1992) Contrast medium injected into juvenile bone cysts to analyze interior morphology and guide intracavity corticoosteriod treatment. Acta Radiol 33(3):221–224
440. El-Adl G, Mostafa MF, Enan A, Ashraf M (2009) Biphasic ceramic bone substitute mixed with autogenous bone marrow in the treatment of cavity benign bone lesions. Acta Orthop Belg 75(1):110–118
441. Rud B, Pedersen NW, Thomsen PB (1991) Simple bone cysts in children treated with methylprednisolone acetate. Orthopedics 14(2):185–187
442. Gartland JJ, Cole FL (1975) Modern concepts in the treatment of unicameral bone cysts of the proximal humerus. Orthop Clin North Am 6(2):487–498
443. Robbins H (1982) The treatment of unicameral or solitary bone cysts by the injection of corticosteroids. Bull Hosp Jt Dis Orthop Inst 42(1):1–16
444. Komiyi S, Minamitani K, Sasaguri Y, Hashimoto S, Morimatsu M, Inoue A (1993) Simple bone cyst. Treatment by trepanation and studies on bone resorptive factors in cyst fluid with a theory of its pathogenesis. Clin Orthop Relat Res 287:204–211
445. Santori F, Ghera S, Castelli V (1988) Treatment of solitary bone cysts with intramedullary nailing. Orthopedics 11(6):873–878
446. Komiya S, Minamitani K, Sasaguri Y, Hashimoto S, Morimatsu M, Inoue A (1993) Simple bone cyst. Treatment by trepanation and studies on bone resorptive factors in cyst fluid with a theory of its pathogenesis. Clin Orthop Relat Res 287:204–211
447. Santori F, Ghera S, Castelli V (1988) Treatment of solitary bone cysts with intramedullary nailing. Orthopedics 11(6):873–878
448. Kose N, Gokturk E, Turgut A, Gunal I, Seber S (1999) Percutaneous autologous bone marrow grafting for simple bone cysts. Bull Hosp Jt Dis Orthop Inst 58(2):105–110
449. Arazi M, Senaran H, Memik R, Kapicioglu S (2005) Minimal curettage, multiple drilling, and continuous decompression using a cannulated ceramic pin for simple bone cysts. J Orthop Surg (Hong Kong) 17(1):62–66
450. Chigira M, Maehara S, Arita S, Udagawa E (1983) The aetiology of the unicameral bone cyst. Acta Orthop Scand 51:457–467
451. Vigler M, Weigl D, Schwarz M, Ben-Itzhak I, Salai M, Bar-On E (2006) Subtrochanteric femoral fractures due to simple bone cysts in children. J Pediatr Orthop B 15(6):439–442
452. Ovadia D, Ezra E, Segev E, Hayek S, Keret D, Wientroub S, Lokiec F (2003) Epiphyseal involvement of simple bone cysts. J Pediatr Orthop 23(2):222–229
453. Tang XY, Liu LJ, Peng MX, Xiang B (2006) Simple bone cysts in children treated with intracystic fibrin sealant injection. Chin Med J (Engl) 119(6):523–525
454. Scaglietti O, Marchetti PG, Bartolozzi P (1979) The effects of methylprednisolone acetate in the treatment of bone cysts. Results of three years follow-up. J Bone Jt Surg Br 61(2):200–204
455. Capanna R, Van HJ, Ruggieri P, Biagini R (1986) Epiphyseal involvement in unicameral bone cysts. Skeletal Radiol 15(6):428–432
456. Capanna R, Albisinni U, Caroli GC, Campanacci M (1984) Contrast examination as a prognostic factor in the treatment of solitary bone cyst by cortisone injection. Skeletal Radiol 12(2):97–102
457. Bensahel H, Jehanno P, Desgr coppes Y, Penneocot GF (1998) Solitary bone cyst: controversies and treatment. J Pediatr Orthop B 7(4):257–261
458. Chigira M, Shimizu T, Arita S, Watanabe H, Heshiki A (1986) Radiological evidence of healing of a simple bone cyst after hole drilling. Arch Orthop Trauma Surg 105(3):150–153
459. Campanacci M, De SL, Trentani C (1977) Scaglietti’s method for conservative treatment of simple bone cysts with local injections of methylprednisolone acetate. Ital J Orthop Traumatol 3(1):27–36
460. Roposch A, Saraph V, Linhart WE (2004) Treatment of femoral neck and trochanteric simple bone cysts. Arch Orthop Trauma Surg 124(7):437–442
461. Spence KF, Sell KW, Brown RH (1969) Solitary bone cyst: treatment with freeze-dried cancellous bone allograft. A study of one hundred seventy-seven cases. J Bone Jt Surg Am 51(1):87–96
462. Docquier PL, Delloye C (2003) Treatment of simple bone cysts with aspiration and a single bone marrow injection. J Pediatr Orthop 23(6):766–773
463. Dormans JP, Sankar WN, Moroz L, Erol B (2005) Percutaneous intramedullary decompression, curettage, and grafting with medical-grade calcium sulfate pellets for unicameral bone cysts in children: a new minimally invasive technique. J Pediatr Orthop 25(6):804–811
464. Bensahel H (1976) Treatment of the solitary bone cyst in children. Nouv Presse Med 5(11):711–712
465. Salama R, Weissman SL (1978) The clinical use of combined xenografts of bone and autologous red marrow. A preliminary report. J Bone Jt Surg Br 60(1):111–115
466. Burwell RG (1964) Studies in the transplantation of bone. VII. The fresh composite homograft of cancellous bone, an analysis of factors leading to osteogenesis in marrow transplantsations and in marrow-containing bone grafts. J Bone Jt Surg Br 46:110–140