Late Amazonian Ice Survival in Kasei Valles, Mars
Hepburn, A.J.; Ng, F.S.L.; Holt, T.O.; Hubbard, B.

Published in:
Journal of Geophysical Research: Planets
DOI:
10.1029/2020JE006531
Publication date:
2020
Citation for published version (APA):
Hepburn, A. J., Ng, F. S. L., Holt, T. O., & Hubbard, B. (2020). Late Amazonian Ice Survival in Kasei Valles, Mars. Journal of Geophysical Research: Planets, 125(11), [e2020JE006531]. https://doi.org/10.1029/2020JE006531

Document License
CC BY

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 27. Apr. 2021
Supporting Information for “Late Amazonian ice survival in Kasei Valles, Mars”

A.J. Hepburn1,2, F.S.L. Ng2, T.O. Holt1, B. Hubbard1

1Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth SY23 3DB, UK
2Department of Geography, University of Sheffield, Sheffield S10 2TN, UK

Contents of this file:

Figure S1. Coverage of HRSC DEM in our study site.

Figure S2–S49. Impact crater size frequency distributions of GLDA depressions, mesas, and the AHv lava flow. The same caption applies to these figures.

Corresponding author: A.J. Hepburn, adh28@aber.ac.uk
Figure S1. Coverage of HRSC DEM in our study site. HRSC scenes are marked by black polygons. Background colours show MOLA gridded topography in a equirectangular projection. Dashed white line indicates the approximate extent of the AHv lava flow. The grey irregular polygon indicates a gap in CTX coverage.
Figure S2. Impact crater size-frequency distributions of GLDA depression 1 and 18. Data points are derived from crater counts on CTX imagery. Grey curves outline the isochron system. Each line segment next to data points shown with solid symbols (having the same colour as the line) is a fitted isochron in our age determination procedure; the corresponding crater-diameter ranges are documented in Table 2 of the online repository linked to this paper.
Figure S3. GLDA depression 2. See Figure S2 caption.

Figure S4. GLDA depression 3. See Figure S2 caption.
Figure S5. GLDA depression 4. See Figure S2 caption.

Figure S6. GLDA depression 5. See Figure S2 caption.
Figure S7. GLDA depression 6. See Figure S2 caption.

Figure S8. GLDA depression 7. See Figure S2 caption.
Figure S9. GLDA depression 8. See Figure S2 caption.

Figure S10. GLDA depression 9. See Figure S2 caption.
Figure S11. GLDA depression 10. See Figure S2 caption.

Figure S12. GLDA depression 11. See Figure S2 caption.
Figure S13. GLDA depression 12. See Figure S2 caption.

Figure S14. GLDA depression 13. See Figure S2 caption.
Figure S15. GLDA depression 14. See Figure S2 caption.

Figure S16. GLDA depression 15. See Figure S2 caption.
Figure S17. GLDA depression 16. See Figure S2 caption.

Figure S18. GLDA depression 17. See Figure S2 caption.
Figure S19. GLDA depression 19. See Figure S2 caption.

Figure S20. GLDA depression 20. See Figure S2 caption.
Figure S21. GLDA depression 21. See Figure S2 caption.

Figure S22. GLDA depression 22. See Figure S2 caption.
Figure S23. GLDA depression 23. See Figure S2 caption.

Figure S24. GLDA depression 24. See Figure S2 caption.
Figure S25. GLDA depression 25. See Figure S2 caption.

Figure S26. GLDA depression 26. See Figure S2 caption.
Figure S27. GLDA depression 27. See Figure S2 caption.

Figure S28. GLDA depression 28. See Figure S2 caption.
Figure S29. GLDA depression 29. See Figure S2 caption.

Figure S30. GLDA depression 30. See Figure S2 caption.
Figure S31. GLDA depression 31. See Figure S2 caption.

Figure S32. GLDA depression 32. See Figure S2 caption.
Figure S33. GLDA depression 33. See Figure S2 caption.

Figure S34. GLDA depression 34. See Figure S2 caption.
Figure S35. GLDA depression 35. See Figure S2 caption.

Figure S36. GLDA depression 36. See Figure S2 caption.
Figure S37. GLDA depression 37. See Figure S2 caption.

Figure S38. Mesa associated with GLDA depression 1. See Figure S2 caption.
Figure S39. Mesa associated with GLDA depression 2. See Figure S2 caption.

Figure S40. Mesa associated with GLDA depression 3. See Figure S2 caption.
Figure S41. Mesa associated with GLDA depression 4. See Figure S2 caption.

Figure S42. Northernmost mesa associated with GLDA depression 6. See Figure S2 caption.
Figure S43. Southernmost mesa associated with GLDA depression 6. See Figure S2 caption.

Figure S44. Mesa associated with GLDA depression 7. See Figure S2 caption.
Figure S45. Mesa associated with GLDA depression 8. See Figure S2 caption.

Figure S46. Mesa associated with GLDA depression 14. See Figure S2 caption.
Figure S47. Mesa associated with GLDA depression 16. See Figure S2 caption.

Figure S48. Mesa associated with GLDA depression 36. See Figure S2 caption.
Figure S49. Kasei Valles lava flow (AHv: Tanaka et al. (2014)). See Figure S2 caption.
References

Tanaka, K. L., Skinner, J.A., J., Dohm, J., Irwin, R. P., I., Kolb, E., Fortezzo, C., … Hare, T. (2014). *Geologic map of Mars: U.S. Geological Survey Scientific Investigations Map 3292, scale 1:20,000,000* (Tech. Rep.). United States Geological Survey. doi: 10.3133/sim3292