Late Miocene constrictional strain in the northern Apennines: A case study from the Barabarca metaconglomerate (Elba Island, Italy)

Samuele Papeschi

Dipartimento di Scienze della Terra, Pisa University, Pisa, Italy

Correspondence
Samuele Papeschi, Dipartimento di Scienze della Terra, Pisa University, via Santa Maria 53, 56126 Pisa, Italy.
Email: s.papeschi@gmail.com

Funding Information
Università di Pisa, Grant/Award Number: PRA_2016; University of Pisa

Peer Review
The peer review history for this article is available at https://publons.com/publon/10.1002/gj.3793.

Handling Editor: C. Frassi

Finite strain analyses were performed on a deformed metaconglomerate from the Calamita Unit in the Island of Elba. The Calamita Unit is a synkinematic contact aureole that was shaped by Late Miocene contractional deformation coeval with high-temperature metamorphism. The metaconglomerate occurs as an L-tectonite in the footwall of a major thrust, entirely surrounded by S-tectonites developed in schistose rocks. Object lineations, defined by the preferred orientation of clasts, trend sub-parallel to the stretching lineations in the associated rocks. Quartz microstructures registered ductile deformation of clasts by grain boundary migration to bulging recrystallization, suggesting temperature decrease during deformation. R_f/ϕ analyses were carried out on three metaconglomerate samples using quartzite clasts as markers. The finite strain data show that the metaconglomerates are strongly deformed in the constrictional field with K values between ~3 and ~7. The constrictional deformation registered by the metaconglomerate with respect to the surrounding metapelites, which likely deformed under plane strain, can be interpreted as the result of flow partitioning in rheologically heterogeneous sequences during deformation. These results suggest the presence of significant strain gradients in the Calamita Unit, strictly associated with heterogeneously distributed ductile shear zones.

KEYWORDS
aureole, deformation, finite strain analysis, northern Apennines, pluton, shear zone, Verrucano

INTRODUCTION

From grain- to lithospheric-scale, deformation tends to be heterogeneously distributed in rocks (Ramsay, 1980; Ramsay & Graham, 1970; Ramsay & Huber, 1983; Sibson, 1977; Simpson & De Paor, 1993). Strain partitioning is a result of the heterogeneous nature of rocks, which consists of lenses, layers, and grains characterized by different physical, chemical, and mechanical properties (Carreras, Cosgrove, & Druguet, 2013; Kuiper, Lin, & Jiang, 2011; Lister & Williams, 1983). While we know that strain tends to be partitioned in rocks, it is often difficult or nearly impossible to quantify how much strain has been absorbed by different lithologies. This is both because strain markers are relatively rare in nature, and because tectonites are often overlooked in the field. However, the distribution of tectonites in the field reveals invaluable clues about how the components of strain are partitioned between different lithologies (see Sullivan, 2013).

According to Flinn (1965), flattening strain produces tectonites with well-developed foliations (S-tectonites), while constrictional strain results in lineation-dominated (L-) tectonites. Between these end-members, tectonites containing a foliation and a lineation (SL-, S=L, and LS-tectonites) are thought to be developed under conditions of more-or-less plane strain. Different types of tectonites often coexist associated within the same geological setting. In particular, it is common to find L-tectonites, surrounded by S- or SL-tectonites (e.g. Bhattacharyya, Dwivedi, Das, & Damania, 2015; Collins, Van Kranendonk, & Teyssier, 1998; Fossen, 1993; Holst & Fossen, 1987;
Hudleston, Schultz-Ela, & Southwick, 1988; Kassem & Ring, 2004; Krabbendam & Dewey, 1998; Sullivan, 2008). The presence of localized L-tectonites has been linked to specific geological settings, such as (a) closures of isoclinal folds, (b) shear zones, (c) and around diapirs and plutons (Yang, Jiang, & Lu, 2019; Sullivan, 2013 and references therein). Some authors have suggested that flow partitioning may produce bodies of L-tectonites in competent bodies surrounded by less-competent lithologies (e.g. Chen, 2014; Sullivan, 2008). This has been confirmed, based on multiscale micromechanical approach, by Yang, Jiang, and Lu (2019), which showed that L-tectonites produced by strain partitioning tend to develop only in lithologies with moderately strong relative viscosity with respect to their host rocks. According to these authors, stronger lithologies tend not to register enough strain, while softer lithologies always deform in the flattening field.

In the present study, we document an example of heterogeneous deformation, marked by the occurrence of L-tectonites in quartz metaconglomerate surrounded by schistose rocks that deformed as S-tectonites. Finite strain analyses were carried out on the deformed metaconglomerate using quartz clasts as strain markers. The described deformation is associated with a major shear zone developed under high- to low-grade metamorphic conditions, in a cooling contact aureole.

2 | GEOLOGICAL OUTLINE

The northern Apennines are a fold-and-thrust belt that resulted from the Oligocene closure of the Ligurian Tethys Ocean and the subsequent westward subduction of the Adria microplate beneath the Corsica-Sardinia margin (Boccaletti, Elter, & Guazzzone, 1971). The eastward retreat of the hinge of subduction caused the propagation of the northern Apennines towards the east, leading to the Miocene to present-day opening of the northern Tyrrhenian Sea as a back-arc basin in the hinterland sector of the belt (Brunet, Monié, Jolivet, & Cadet, 2000; Jolivet et al., 1998). Intrusive and extrusive bodies of dominant crustal signature, ranging in age from 14 Ma to 0.2–0.3 Ma and interpreted as related to crustal extension, mark the onset of anatectic magmatism in the area (Serri, Innocenti, & Manetti, 1993). Back arc extension occurred discontinuously from Miocene to present-day times, interrupted by at least one episode of shortening in the late Miocene (see Bonini et al., 2014 and references therein), which is well-documented on the Island of Elba.

The Island of Elba, located in the middle of the northern Tyrrhenian Sea, exposes a complete cross-section through the W-dipping and E-verging northern Apennine nappe stack (Keller & Coward, 1996). An out-of-sequence thrust, known as the Capo Norsi-Monte Arco Thrust (CN-MAT in Figure 1), divides the first-order nappe pile into an Upper Complex and a Lower Complex. The Upper Complex comprises ocean-continent-derived units with anchizone- to lower greenschist-facies metamorphism, intruded by Late Miocene intrusives. The Lower Complex comprises two basement-and-cover metamorphic nappes: the lower amphibolite-facies Ortano Unit and the upper-amphibolite facies Calamita Unit, at the bottom of the nappe stack (Figure 1).

Amphibolite-facies metamorphism in the Lower Complex was caused by the emplacement of shallow ($p < 0.2 \text{ GPa}$) Late Miocene intrusives which are hidden below the Calamita Peninsula (Porto Azzurro pluton in Figure 1; Barberi, Innocenti, & Ricci, 1967; Musumeci & Vaselli, 2012). Monzogranite apophyses and leucogranite dykes, dated between 6.33 ± 0.07 Ma and 5.9 ± 0.2 Ma (Mainieri et al., 2003; Musumeci, Mazzarini, & Cruden, 2015), represent the only exposures of the Porto Azzurro pluton. Metamorphic temperatures exceeded 650–700°C in the Calamita Unit, where partial melting was recently reported (Papeschi et al., 2019) and were between 400 and 600°C in the Ortano Unit (Duranti, Palmeri, Pertusati, & Ricci, 1992; Musumeci & Vaselli, 2012). Contact metamorphic parageneses are constrained between 6.76 ± 0.08 Ma (40Ar/39Ar phlogopite age; Musumeci et al., 2015) and 6.23 ± 0.06 Ma (40Ar/39Ar muscovite age; Musumeci et al., 2015) and are corroborated by a 6.40 ± 0.15 Ma U/Pb zircon age (Musumeci, Mazzarini, Tiepolo, & Di Vincenzo, 2011).

Earlier blueschist- to greenschist-facies assemblages, dated at 19.68 ± 0.15 Ma (40Ar/39Ar phengite age; Deino et al., 1992) and 19.8 ± 1.4 Ma (40Ar/39Ar glucophane age; Bianco et al., 2019), are preserved in the northern part of the Ortano Unit (Bianco et al., 2015).

According to Massa et al. (2017), the Lower Complex experienced early Miocene thrusting, middle Miocene extension, and a renewed phase of contraction in theLate Miocene. Late Miocene that was coeval with amphibolite-facies contact metamorphism. Consequently, in the Lower Complex this phase produced W-dipping thrust shear zones (Felciaio Shear Zone [FSZ] and Calanchiole Shear Zone [CSZ]; Musumeci & Vaselli, 2012; Musumeci et al., 2015; Papeschi, Musumeci, & Mazzarini, 2017, 2018) and large-scale folds (Ripalte antiform; Mazzarini, Musumeci, & Cruden, 2011). Thrusting led to inverted metamorphic gradients in the Lower Complex and continued after the thermal pulse was over, with the brittle CN-MAT superimposing non-metamorphic rocks of the Upper Complex directly over cordierite-bearing rocks (Musumeci & Vaselli, 2012). The activity of the syn-metamorphic CSZ and FSZ was bracketed between 6.8 and 6.3 Ma (Musumeci et al., 2015), whereas post-metamorphic brittle thrusting of the CN-MAT lasted until 4.9 Ma (Viola et al., 2018). The aforementioned shear zones were crosscut by the low-angle top-to-the-E Zucale Fault (ZF in Figure 1; Colletti, Niemeijer, Viti, & Marone, 2009; Smith, Holdsworth, Colletti, & Pearce, 2011). The ZF, whose significance as a detachment or a thrust is debated, slipped after 4.9 Ma, well after the end of contact metamorphism in the area (Viola et al., 2018).

2.1 | Structure and deformation of the Calamita Unit

The Calamita Unit (Figure 1) consists of an early Carboniferous basement made up of andalusite-cordierite-biotite schist and metabaspsammitite, known as the Calamita Schists Fm. (Barberi et al., 1967; Musumeci et al., 2011), overlain by the cordierite-bearing Triassic Barabarca Quartzite Fm. and Mesozoic diopside-tremolite marble (Calanchiole Marble Fm.; Papeschi et al., 2017). Although originally
the Calamita Unit was considered as a coherent basement-and-cover nappe (e.g. Barberi et al., 1967; Garfagnoli et al., 2005), recent studies have shown that the Mesozoic formations are separated from the Calamita Schists Fm. by the Late Miocene CSZ (Musumeci & Vaselli, 2012; Papeschi et al., 2017, 2018; Figures 1, 2a). In particular, the CSZ is localized in 10–15-m-thick mylonitic marbles, dolomitic marbles, and cataclasite rocks at the base of the Calanchiole Marble Fm. According to Musumeci and Vaselli (2012), the CSZ shows general top-to-the-E kinematics, a W-dipping (10–40°/C14) mylonitic foliation, SW–NE trending lineations (Figure 2c), and causes a repetition of the Calamita Schists Fm. over the Calanchiole Marble Fm. along the Norsi-Calanchiole section (Figure 1). The activity of the CSZ lasted between 500–600°C and ~250°C during cooling of the contact aureole (Musumeci & Vaselli, 2012) and was constrained between 6.76 ± 0.08 Ma (40Ar/39Ar phlogopite age in mylonitic marble; Musumeci et al., 2015) and 6.14 ± 0.64 Ma (K/Ar on authigenic illite in fault gouge; Viola et al., 2018). The ZF, dated to an age <4.90 Ma, crosscuts the CSZ, superimposing the non-metamorphic Cretaceous Flysch Unit of the Upper Complex directly over the Calamita Unit (Figure 2a; Musumeci et al., 2015; Viola et al., 2018).

The relationships between the CSZ and the formations belonging to the Calamita Unit are well-visible along the coast from Punta di Zuccale to Pudedelli beach (Figure 2). In the Calanchiole area (Figure 3a), the CSZ superimposes mylonitic marble (Figure 3b) and cataclasite, derived from the Calanchiole Marble Fm., over schist and fractured quartzite (Figure 3c) belonging to the Barabarca Quartzite Fm. Further South, at Pudedelli beach (Figure 3d), analogue mylonitic marble, metadolomite, and cataclasite (Figure 3e; Calanchiole Marble Fm.) are directly superimposed over fractured schist derived from the
Calamita Schists Fm. (Figure 3f). In both cases, the main foliation in the footwall and hanging wall rocks is roughly N–S striking and W-dipping and the stretching lineation trends E–W to NE–SW (see Figure 3a,d and general stereonets in Figure 2b,c). The relationships between the Calamita Schists Fm. and the Barabarca Quartzite Fm. are not exposed. Based on the different metamorphic grade of these formations, the Barabarca Quartzite Fm. was interpreted as a 10–50-m-thick tectonic slice below the CSZ, sandwiched between the Calanchiole Marble Fm. and the Calamita Schists Fm. (Papeschi et al., 2017).

2.2 Deformed metaconglomerate from the Barabarca quartzite

The Barabarca Quartzite Fm. is made up of white to pink quartzite and violet cordierite-bearing schist with lenses of quartz metaconglomerate (Figure 4a), referred to as anagenite (Anageniti grossolane of Rau & Tongiorgi, 1974). Barberi et al. (1967) correlated the Barabarca Quartzite Fm. with the Triassic Verrucano of mainland Tuscany, marking the onset of the alpine sedimentary cycle (Rau & Tongiorgi, 1974). The quartz metaconglomerate (i.e. Anageniti grossolane) deposited in a fluvial system, fed mostly by a cratonic source, and its clasts, showing sub-angular to well-rounded shape, indicate prolonged transport (see Cassinis, Perotti, & Santi, 2018 and references therein). On Elba, outcrops of metaconglomerates belonging to the Barabarca Quartzite Fm. are exposed along the coast in the Barabarca and Stecchi localities (Figures 2a, 4a), in the footwall of the CSZ (Figures 1, 2a). Inland, the metaconglomerates are poorly exposed, due to the presence of a thick cover of Pleistocene aeolian sandstones (e.g. Figure 4a).

The metaconglomerate lenses contain polycrystalline quartz- and, locally, tourmaline-clasts (tourmalinoite Auctt.), ranging in size between some millimeters to several centimeters (Figure 4b,c), embedded in a quartz-rich matrix, with minor white mica, tourmaline, biotite, cordierite, ilmenite, and hematite. The foliation in the metaconglomerate is marked by sub-millimetric phyllosilicate-rich layers and pressure solution surfaces wrapping the deformed clasts (Figure 4b). Based on the elongate shape of the clasts and the intensity of the foliation, the metaconglomerate can be classified as a LS- or, less frequently, a L-tectonite, according to the tectonite classification proposed by Ramsay (1967). The L-fabric is defined by the strong preferred orientation of elongated clasts (Figure 4b). Their long axes trend E-W to NE-SW and are parallel to the mineral lineations in the associated metapelite (Figure 2c).

The metapelites are characterized by thin alternations of sub-parallel quartz- and phyllosilicate-rich layers (Figure 4d), defining the foliation, and contain abundant cordierite and andalusite spots.
FIGURE 3 Relationships between the Calanchiole Shear Zone, the Barabarca Quartzite Fm., and the Calamita Schists Fm., at (a–c) Calanchiole and (d–f) Peducelli beaches. (a–d) Panoramic views. (b) Stretching lineations, defined by aggregates of dolomite and calcite, in mylonitic marble. (c) Fractured quartzite and schist belonging to the Barabarca Quartzite Fm. (e) Ultramylonitic marble with boudined lenses of metadolomite. (f) Riedel shears in the Calamita Schists Fm., consistent with overall top-to-the-E sense of shear. Stereographic projections are equal area, lower hemisphere. Circles represent poles to the foliation in the Calanchiole Marble Fm. (light blue), the Barabarca Quartzite Fm. (pink), and the Calamita Schists Fm. (violet). Crosses are stretching lineations in the Calanchiole Marble Fm. (blue), the Barabarca Quartzite Fm. (red), and the Calamita Schists Fm. (black) See text for a detailed comment. Measurements from the Calanchiole area after Musumeci and Vaselli (2012) [Colour figure can be viewed at wileyonlinelibrary.com]
FIGURE 4 Details of the investigated outcrops, hosting the metaconglomerate. (a) Panoramic view of the Barabarca gulf, showing the relationships between metaconglomerate, quartzite, and schist in the Barabarca Quartzite Fm. The red dashed line highlights the projected location of the Calanchiole Shear Zone. (b,c) Outcrop appearance of the deformed quartz metaconglomerate, showing (b) L-tectonite fabric and (c) LS-tectonite fabric. (d,e) Metapelite associated with the metaconglomerate. Note (d) the strong planar fabric, and (e) the presence of stretching lineations defined by quartz fibers and alignments of andalusite (And)—cordierite (Cd) spots [Colour figure can be viewed at wileyonlinelibrary.com]
The lineation in the metapelite is marked by elongated quartz-fibers, and, in second order, by elongated aggregates of cordierite and andalusite (Figure 4e). However, such aggregates are sometimes also randomly oriented, suggesting a heterogeneous partitioning of strain. The metapelites can be classified, hence, as S-tectonites to SL-tectonites, according to Ramsay (1967).

In the investigated area, three samples of quartz-metaglomerate were collected for finite-strain analysis in all the available coastal outcrops (sampling locations are shown in Figure 2a). Two thin sections, representative of the metaglomerate and the associated metapelite, were prepared for microstructural analysis. The samples are registered on the System for Earth Sample Registration (SESAR) with additional details are available at http://www.geosamples.org/.

3 | MICROSTRUCTURAL ANALYSIS

The metaglomerate (sample IESP3SP164) shows polycrystalline quartz clasts with very coarse grain size (mm- to cm- sized) surrounded by a medium- to coarse-grained quartz-rich matrix (Figure 5a). The larger clasts contain single quartz grains measuring up...
to several millimeters and are commonly boudinnted along fractures perpendicular to the foliation (Figure 5a). Intracrystalline deformation, characterized by structures such as deformation lamellae (Figure 5a), is frequent in the inner part of the clasts, whereas extensive dynamic recrystallization to medium- to fine-grained (<150 μm) quartz aggregates appears localized on the edges of deformed clasts and in the surrounding matrix (Figure 5b). Small clasts (<1 mm in thickness) are strongly recrystallized, stretched, and show grains with irregular, amoeboid to lobate shape, variable grain size (50–500 μm), and serrated grain boundaries (Figure 5c). The deformed clasts are surrounded by micrometric to 0.1–0.2-mm-thick phyllosilicate- and tourmaline-rich layers, containing also tiny quartz grains and defining the foliation (Figure 5d). Ellipsoidal-shaped sericite aggregates are interpreted as pseudomorphs over former cordierite and/or andalusite grains (Figure 5d).

The metapelite (sample IESP3SP163), associated to the metaglomerate, displays a continuous schistosity defined by the preferred orientation of medium- to fine-grained white mica, quartz, albite, biotite, and oxides (in modal order; Figure 5e). Quartz forms thin lenses and recrystallized aggregates with serrated grain boundaries surrounded by lepidoblastic, mica-rich bands, forming anastomosing patterns (Figure 5e). Coarse-grained (100–400 μm) synkinematic porphyroblasts of andalusite and cordierite, with rotated internal foliations defined by inclusions of quartz and oxides, overgrow the main metamorphic foliation (Figure 5f). Biotite is present as fine-grained stacks, enveloped by the foliation, or, more commonly, as inclusions in cordierite. Chlorite and sericite occur as alteration phases, over cordierite, andalusite, and biotite.

4 | STRAIN ANALYSIS

Finite strain analysis was conducted on three samples of quartz metaglomerate (samples IESP3SP161, IESP3SP162 and IESP3SP164; shown in Figure 2a), representative of all the exposed outcrops (see Figure 2a and Figure 4a), using the Rf/ϕ method and the deformed clasts as strain markers. The Rf/ϕ method relies on several techniques developed to estimate finite strain starting from a dataset of deformed markers, whose shape can be approximated to that of an ellipse (Dunnet, 1969; Lisle, 1977, 1979, 1985; Ramsay, 1967; Shimamoto & Ikeda, 1976), hence suitable for deformed conglomerates.

Samples were prepared cutting two orthogonal slabs parallel to the XZ (perpendicular to foliation, parallel to lineation) and YZ (perpendicular to foliation and lineation) principal planes of the finite strain ellipsoid. The polished slabs were analyzed using the best-fit ellipse tool of the EllipseFit software (Vollmer, 2015) that makes it possible to estimate the aspect ratio (Rf) and the angle with the foliation (ϕ) of each deformed clast. The original orientation (θ) and aspect ratio (Rf) that each deformed object had in the undeformed state are linked to the Rf and ϕ parameters and depend on the axial ratio of the finite strain ellipsoid (Rs). Dunnet (1969) defined a method to plot hyperbolic Rf- and ϕ-curves for a population of deformed objects in the Rf/ϕ space, which is, however, based on the assumption of initial random distribution. Following Lisle (1985), the Rf values and the number of objects in a population (n) can be used to derive the harmonic mean H and to perform the symmetry (Isym) and χ² test. H allows to obtain an approximate estimation of Rs, Isym estimates the statistical quality of a sample. If Isym is high (above the critical values listed in Lisle, 1985), then the data set is symmetrical and the assumption of initial random distribution is correct (see in detail Lisle, 1977, 1985). Finally, the χ² test allows to obtain a precise estimation of Rs, by calculating the family of ϕ-curves providing the best fit for the data set. The calculation of H, Rs, and χ² for a given set of Rf/ϕ values was done using the Excel spreadsheet by Chew (2003). The dataset containing the polished slab scans and the finite strain data is available for download at Mendeleey Data (https://doi.org/10.17632/ymbcwhpgr.1).

4.1 | Results

The estimated values of H, Isym, χ², and Rs are summarized in Table 1, whereas Figure 6 shows the resulting Rf/ϕ diagrams with Rf- and ϕ-curves and the vector mean (red lines). The investigated samples are characterized by very high values of Isym (always above 0.89), indicating that the assumption of initial random distribution is correct. This is consistent with the sedimentological data reported from the anagenites in the northern Apennines, which contain clasts with very weak preferred orientation (e.g. Azzaro et al., 1976; Martini, Rau, & Tongiorgi, 1986; Rau & Tongiorgi, 1974). The samples display high Rf ratio associated with ϕ < 30° on XZ sections and low Rf ratio with a complete ϕ spread on YZ sections (Figure 6). Estimated Rs value ranges between 2.50 and 2.92 on XZ sections and between 1.17 and 1.38 on YZ sections (Table 1). The K value of Flinn (1965) was derived from the Rs value calculated on XZ and YZ sections, based on the χ² test, following the relation:

$$K = \frac{Rs_{XY} - 1}{Rs_{YZ} - 1}$$

where Rs_{XY} = Rs_{XZ}/Rs_{YZ}. The calculated K values are 3.29 (IESP3SP161), 6.68 (IESP3SP162), and 2.94 (IESP3SP164), which plot in the constrictional field of Flinn’s diagram (Figure 7). In Figure 7, the Rs_{XY} and Rs_{YZ} values estimated with the χ² test are shown as triangles. For comparison, the squares represent the Rs_{XY} and Rs_{YZ} values based

Sample	Section	n	H	Isym	χ² min	Rs
SP161	XZ	84	2.7167	0.9524	5.0476	2.65
YZ		88	1.4324	0.9090	9.0455	1.31
SP162	XZ	74	2.6298	0.9189	7.6216	2.50
YZ		56	1.3511	0.8929	4.3571	1.17
SP164	XZ	69	3.0102	0.8985	0.7101	2.92
YZ		67	1.5535	0.9552	2.7015	1.38

Note: n is the population of measured strain markers. See text for further details.
on the harmonic mean H. The samples plot very close in the diagram, suggesting homogeneous strain within the investigated lens of metaconglomerate in the Barabarca Quartzite Fm.

5 DISCUSSION

5.1 Strain geometry and conditions of strain

The calculated K values indicate constrictional deformation (Figure 7), consistently with the field evidence of L- and LS-fabric developed in the metaconglomerate (Figure 4b,c). The object lineations defined by clasts in the metaconglomerate are subparallel to stretching lineations and mineral lineations defined by the high-temperature assemblage, found in the Barabarca Quartzite Fm., the Calanchiole Marble Fm., and the Calamita Schists Fm. (Figure 2b,c). This general trend of stretching lineations is consistent with the E-W trend of lineations in the Late Miocene CSZ (Musumeci & Vaselli, 2012) and in the Late Miocene shear zones that characterize the Calamita Schists Fm. (Papeschi et al., 2017). Although geometrically linked to the Late Miocene contractional event that affected the Calamita Unit (see Musumeci et al., 2015; Viola et al., 2018), the reconstructed total finite-strain ellipsoid marked by the metaconglomerates might have registered a certain amount of pre-Late Miocene strain, related to regional metamorphism during continental collision in the northern Apennines. It is impossible to quantify the role of the pre-Late
Miocene deformation in the Calamita Unit, where thermal metamorphism and deformation nearly erased pre-existing structures (see Papeschi et al., 2017, 2018). However, the anagenites from the Verrucano of mainland Tuscany, where regional metamorphic temperatures were mostly in the range of 350–500°C (e.g. Franceschelli, Leoni, Memmi, & Puxeddu, 1986; Lo Pò & Braga, 2014; Molli, Giorgetti, & Meccheri, 2000), is characterized by weakly deformed clasts retaining in large part their original shape and sedimentary features (e.g. Cassinis et al., 2018; Martini et al., 1986; Rau & Tongiorgi, 1974). It is, hence, likely that the metaconglomerate from the Barabarca Quartzite Fm. was weakly deformed before the contact metamorphic event, and that, hence, its fabric is mostly the result of the Late Miocene shearing related to the CSZ.

Thermal metamorphism might have induced a strong softening of quartz in the cordierite-bearing Barabarca Quartzite Fm., which allowed deformation to be accommodated within quartz-metaconglomerate. Indeed, deformation temperatures in the range of 400–600°C were suggested for this part of the aureole (Musumeci & Vaselli, 2012, based on the assemblages described by Pattison & Tracy, 1991). The structures preserved in quartz are indicative of dynamic recrystallization with no evidence of annealing or static growth (Figure 5a–d). Although quartz microstructures in the cores of the clasts may be inherited from the protolith, extensive recrystallization is evident along the rims (Figure 5a,b), in strongly stretched quartz, and in the matrix (Figure 5c,d), domains marking the stretching lineation of these rocks. Such structures are indicative of grain boundary migration recrystallization (amoeboid grain boundaries) overprinted by subgrain rotation and bulging (i.e. equant, serrated grains), based on a comparison with the structures observed by Stipp, Stünitz, Heilbronner, and Schmid (2002). High-temperature microstructures overprinted by low-temperature microstructures in quartz suggest progressive temperature decrease (see also Papeschi et al., 2017), assuming that no significant change in strain rate and presence of water during deformation.

5.2 | Origin of L-tectonites surrounded by S-tectonites in the Barabarca quartzite

The general trend of stretching lineations (Figure 2b, c) and the analysis of deformation mechanisms at the microscale (see above) link the investigated L- and LS-tectonites (Figure 4b, c) to the activity of the CSZ. Any effect related to pluton ballooning (e.g. Ramsay, 1989; Sylvester, Ortel, Nelson, & Christie, 1978) can be excluded, since object lineations are parallel to shear zone lineations. Furthermore, as documented by Papeschi et al. (2017), the effect of pluton ballooning on the general geometry of structures within the aureole is negligible.

There are several ways in which L-tectonites could have formed on a major shear zone. In first order, the activity of the CSZ might have caused buckling of the competent metaconglomerate, producing isoclinal folds. In this case, object lineations would have been parallel to the fold axes, hence roughly perpendicular to the stretching lineations related to the CSZ (Figure 8a; see examples in Fossen, 1993: [Colour figure can be viewed at wileyonlinelibrary.com])

FIGURE 7 Results of the finite strain analyses plotted on the Flinn diagram. For each sample, \(RS_{XY} \) and \(RS_{YZ} \) were calculated based on the harmonic mean method (squares) and the \(\chi^2 \) test (triangles) [Colour figure can be viewed at wileyonlinelibrary.com]
was deformed in the constrictional field with deformation under medium-grade conditions. The metaconglomerate microstructures and metamorphic paragenesis are consistent with metamorphism related to the emplacement of intrusives. Quartz tion related to coeval contractional tectonics and high-temperature regarding a deformed metaconglomerate from the Calamita Unit This study provides new microstructural and finite strain data

ACKNOWLEDGEMENTS
I wish to thank Giovanni Musumeci and Francesco Mazzarini for field support during sampling and for their constructive reviews on an earlier version of this manuscript. I also thank Giulio Viola and an anonymous reviewer for their helpful reviews and Chiara Frassi for her excellent editorial job. This work received funding from PRA_2016 (Resp. Sergio Rocchi) funds of the University of Pisa. I am most grateful to ‘Nonna’ Josée Peeters who supported me and my research until the very end.

ORCID
Samuele Papeschi https://orcid.org/0000-0002-5774-7119

REFERENCES
Azzaro, E., Coccozza, T., Di Sabatino, B., Gasperi, G., Gelmini, R., & Lazzarotto, A. (1976). Geology and petrography of the Verrucano and Paleozoic formations of Southern Tuscany and Northern Latium (Italy). In H. Falke (Ed.), The Continental Permain in Central, West, and South Europe (pp. 181–195). Proceedings of the NATO Advanced Study Institute held at the Johannes Gutenberg University, Mainz, F.R.G., 23 September–4 October, 1975. Dordrecht: Springer.

Barberi, F., Innocenti, F., & Ricci, C. A. (1967). Il complesso scistoso di Capo Calamita (Isola d’Elba). Atti della Società Toscana di Scienze Naturali residente a Pisa, Memorie, Serie A 72(2), 579–617.

Bhattacharyya, K., Dwivedi, H. V., Das, J. P., & Damania, S. (2015). Structural geometry, microstructural and strain analyses of L-tectonites from Palaeoproterozoic orthogneisses: Insights into local transport-parallel constrictional strain in the Sikhim Himalayan fold thrust belt. *Journal of Asian Earth Sciences*, 107, 212–231.

Bianco, C., Brogi, A., Caggianelli, A., Giorgetti, G., Liotta, D., & Mecccheri, M. (2015). HP-LT metamorphism in Elba Island: Implications for the geodynamic evolution of the inner Northern Apennines (Italy). *Journal of Geodynamics*, 91, 13–25.

Bianco, C., Godard, G., Halton, A., Brogi, A., Liotta, D., & Caggianelli, A. (2019). The lawsonite-glaucophane blueschists of Elba Island (Italy). *Lithos*, 348, 105198.

Boccaletti, M., Elter, P., & Guazzzone, G. (1971). Plate tectonic models for the development of the Western Alps and Northern Apennines. *Nature Physical Science*, 234(49), 108–111.

Bonini, M., Sani, F., Stucchi, E. M., Moratti, G., Benvenuti, M., Menanno, G., & Tanini, C. (2014). Late Miocene shortening of the Northern Apennines back-arc. *Journal of Geodynamics*, 74, 1–31.

Brunet, C., Monié, P., Jolivet, L., & Cadet, J. P. (2000). Migration of compression and extension in the Tyrrenhian Sea, insights from 40Ar/39Ar ages on micas along a transect from Corsica to Tuscany. *Tectonophysics*, 321(1), 127–155.

Carreras, J., Cosgrove, J. W., & Drugget, E. (2013). Strain partitioning in banded and/or anisotropic rocks: Implications for inferring tectonic regimes. *Journal of Structural Geology*, 50, 7–21.

Cassinis, G., Perotti, C., & Santi, G. (2018). Post-Variscan Verrucano-like deposits in Italy, and the onset of the alpine tecnoto-sedimentary cycle. *Earth-Science Reviews*, 185, 476–497.

Chen, W. (2014). The development of L-tectonites in high-strain zone settings: A multiscale modeling investigation. (Master Dissertation). The University of Western Ontario, 1–116.

Chew, D. M. (2003). An Excel spreadsheet for finite strain analysis using the Rf/φ technique. *Computers & geosciences*, 29(6), 795–799.

Collettini, C., Niemeyer, A., Viti, C., & Marone, C. (2009). Fault zone fabric and fault weakness. *Nature*, 462(7275), 907.
Simpson, C., & De Paor, D. G. (1993). Strain and kinematic analysis in general shear zones. *Journal of Structural Geology, 15*(1), 1–20.

Smith, R. B. (1975). Unified theory of the onset of folding, boudinage, and mullion structure. *Geological Society of America Bulletin, 86*(11), 1601–1609.

Smith, S. A. F., Holdsworth, R. E., Collettini, C., & Pearce, M. A. (2011). The microstructural character and mechanical significance of fault rocks associated with a continental low-angle normal fault: The Zuccale Fault, Elba Island, Italy. *Geological Society, London, Special Publications, 359*(1), 97–113.

Stipp, M., Stünitz, H., Heilbronner, R., & Schmid, S. M. (2002). The eastern Tonale fault zone: A 'natural laboratory' for crystal plastic deformation of quartz over a temperature range from 250 to 700 C. *Journal of Structural Geology, 24*(12), 1861–1884.

Sullivan, W. A. (2008). Significance of transport-parallel strain variations in part of the Raft River shear zone, Raft River Mountains, Utah, USA. *Journal of Structural Geology, 30*(2), 138–158.

Sullivan, W. A. (2013). L tectonites. *Journal of Structural Geology, 50*, 161–175.

Sylvester, A. G., Ortel, G., Nelson, C. A., & Christie, J. M. (1978). Papoose Flat pluton: A granitic blister in the Inyo Mountains, California. *Geological Society of America Bulletin, 89*(8), 1205–1219.

Treagus, S. H. (1988). Strain refraction in layered systems. *Journal of Structural Geology, 10*(5), 517–527.

Viola, G., Torgersen, E., Mazzarini, F., Musumeci, G., van der Lelij, R., Schönemberger, J., & Garofalo, P. S. (2018). New constraints on the evolution of the Inner Northern Apennines by K-Ar dating of Late Miocene-Early Pliocene Compression on the Island of Elba, Italy. *Tectonics, 37*(9), 3229–3243.

Vollmer, F. W. (2015). EllipseFit 2.0.

Yang, R., Jiang, D., & Lu, L. X. (2019). Constrictional strain and linear fabrics as a result of deformation partitioning: A multiscale modeling investigation and tectonic significance. *Tectonics, 38*(8), 2829–2849.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Papeschi S. Late Miocene constrictional strain in the northern Apennines: A case study from the Barabarca metaconglomerate (Elba Island, Italy). *Geological Journal*. 2020;55:6325–6337. https://doi.org/10.1002/gj.3793