Combination of fuzzy-AHP and GIS techniques in land suitability assessment for wheat (Triticum aestivum) cultivation

Orhan Mete Kılıç a,⁎, Kemal Ersayın a, Hikmet Guna b, Ahlam Khalofah c,d, Moodi Saham Alsubeie e

a Tokat Gaziosmanpasa University, Arts and Science Faculty, Department of Geography, Tokat, Turkey
b Harran University, Agriculture Faculty, Department of Soil Science and Plant Nutrition, Sanlıurfa, Turkey
c Biology Department, Faculty of Science, King Khalid University, P.O. Box 5004, Abha 61413, Saudi Arabia
d Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 5004, Abha 61413, Saudi Arabia
e Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSU), Riyadh 11623, Saudi Arabia

A R T I C L E I N F O

Article info
Received 27 October 2021
Revised 27 November 2021
Accepted 20 December 2021
Available online 23 December 2021

Keywords:
Fuzzy-AHP
Wheat farming
GIS
Multi-criteria decision

A B S T R A C T

Land suitability classification is a useful management practice to ensure planned and sustainable use of agricultural lands according to their potentials. The main purposes of this study were to analyze land suitability for bread wheat (Triticum aestivum) cultivation and generate a land suitability map for wheat by integrating the analytical hierarchy (AHP)-fuzzy algorithm with the Geographical Information System (GIS) in the Tozanlı sub-basin located in the upper part of Yeşilirmak Basin, Turkey. Topographic (elevation, slope, aspect) characteristics of the basin and some of physical and chemical properties of soils (texture, pH, electrical conductivity, lime, organic matter, and soil depth) were used as criteria in determining the suitability classes. Ninety-two disturbed soil samples were collected from 0 to 20 cm depth in October 2017 using random sampling method. Weighted overlay spatial analysis in GIS was used to combine different thematic layers to identify areas suitable for wheat production. The fuzzy-AHP suitability assessment model was adapted to determine the weights for topographic and soil properties. The highest specific weights were obtained for soil depth (0.232) and elevation (0.218), while the lowest weight was calculated for aspect (0.042). Highly, moderately, and marginally suitable lands for wheat cultivation cover 2.63, 9.85 and 32.59% of the study area, respectively. In addition, the results indicated that 54.92% of the total area is permanently unsuitable for wheat cultivation. The results revealed that integration of AHP-fuzzy algorithm and GIS techniques is a useful method for accurate evaluation of land suitability in planning for specific crop production and decreasing the negative environmental impacts of agricultural practices.

© 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The need for natural resources has increased in the 21st century to meet the increasing food and fiber demand of rapidly increasing world population. Global climate change, inappropriate land uses and pressure to meet the increasing food and fiber demands are significantly threatening the global agricultural production and food security (IPCC, 2013; Kılıç and Gunal, 2021). Many developed and developing countries have recently realized the importance of the problems and modified their agricultural policies to conserve and appropriate use of their agricultural lands (Ramamurthy et al., 2020). Therefore, the main goal of new policies is to ensure the sustainability in agricultural production (Dengiz, 2013; Zhang et al., 2015). The accurate assessment of land suitability for various uses is vital in transferring the productive lands to future generations for their food and fiber productions (Sharma et al., 1994).

A prerequisite for land use plans is the assessment of land suitability, which allows to determine the most appropriate uses of lands (Akinci et al., 2013). Land suitability analyses are carried out to determine the potential of a land for different uses based on specific requirements and preferences of a land use type (Akbulağ, 2010). Land use planning is necessary not only for agricultural lands, but also for many socio-economic alternative pur-
poses such as the selection of settlements, road construction, national parks, recreation areas and factory construction areas (Al-shalabi et al., 2006). Land planning, which is the reorganization of resources in the environment to create more efficient land use patterns (FAO, 1976), has two important issues. The first one is to use the natural resources in the most beneficial way to people, and the second one is to conserve the resources for the future generations (Cengiz and Akbulak, 2009). Therefore, a thorough understanding of the natural environment and the contemplated land use patterns are essential in planning. Otherwise, natural resources may be degraded or land use attempts may fail due to the ignorance of interrelationship between land suitability and land use pattern. One function of land suitability assessment is to compare the most promising land use types, and present them to planners (Dedeoğlu and Dengiz, 2019; Tashayo et al., 2020). In this process, main soil, climate, vegetation, and other land characteristics are evaluated in terms of suitability to different land use patterns. The suitability of land use patterns to physical, economic, and social structure of the land is compared in land use planning. In addition, economic suitability of the land use patterns is also taken into account in land use planning (Duc, 2006; Fao, 1976). In this context, land suitability assessment should naturally be treated as a multi-criteria process (Dengiz and Sarioğlu, 2013).

Evaluation of more than one criterion, which includes different qualitative and quantitative information, for an aim is expressed as the “Multi-Criteria Decision Making (MCDM)” process (Timor, 2011). The MCDM helps to determine the most logical choice in evaluating many parameters and analyze the relationships between these parameters. Because, every criterion is not of equal importance, and the contribution of each criterion to suitability is at different levels (Prakash, 2003). Land suitability evaluation contains more than one environmental component, and these components have complex relationships among them, therefore, the MCDM approach was preferred in this study. The Analytical Hierarchy Process (AHP), which uses pairwise comparison technique, is one of the MCDM methods developed by Saaty (1980), and has been widely used in different parts of the world (Akinci et al., 2013; Dengiz and Usul, 2018; Mandal and Mondal, 2018; Mandal et al., 2020; Pramanik, 2016; Yalçın et al., 2016). Each criterion is compared by assigning a degree of importance between 1 and 9 (Saaty, 1988). The comparisons expressed with a single value may not be sufficient in uncertain cases (Kuo et al., 2006). Land suitability assessments also require integrating various levels of expert knowledge at the decision stage. However, an expert at the decision stage may not always be sure, and uncertainties in case of no definite judgments can be handled better by using fuzzy logic (Prakash, 2003). Fuzzy logic, introduced by Zadeh (1965), is a proposed method to overcome uncertainties and imprecise issues in judgment (Elaalem et al., 2011). In this context, fuzzy logic theory is combined with AHP to ensure a more accurate decision-making process (Huang et al., 2008; Ustaoglu et al., 2021; Zhang et al., 2021). Spatial evaluations can also be carried out by using multi-criteria decision analysis (MCDA) with geographic information systems (GIS). The MCDA integration with GIS is an excellent spatial analysis tool that allows the preparation of a comprehensive spatial database to be used by multi-criteria methodologies in land evaluation and suitability analysis and allows the user to evaluate different alternatives on the basis of multiple and conflicting objectives (Orhan, 2021; Saha et al., 2021). Appropriate decisions in disaster management (Oluoglu et al., 2017), solid waste storage area (Çeliker et al., 2019), and wind-solar energy installation land (Mevliç, 2017), and assessment of conservation areas (Görmiş, 2012) were taken by using MCDA and GIS methods. In addition to aforementioned advantages, suitable areas to agricultural production can also be determined using the combination of MCDA and GIS methods (Dengiz et al., 2015; Mohammed et al., 2020; Özkatan et al., 2020; Pilevar et al., 2020; Saha et al., 2021; Ustaoglu et al., 2021).

Wheat is the field crop with the largest cultivation area (217 million hectares), the largest production after corn and rice (776 million tons), and also the most traded crop (189 million tons) in the world (FAOSTAT, 2021). Wheat, which meets >20% of daily calorie needs of people, has the highest carbohydrate and protein content among the cereals (Peng et al., 2011). Wheat is used in nutrition as the basic food item in Turkey as well as in the whole world. The wheat is also used as a raw material in other agricultural industries, and creates added value for the economy (Atak, 2017). The latest data indicated that wheat is the field crop with the largest cultivation area (6.8 million ha) and production (19 million tons) in Turkey (FAOSTAT, 2021). By the middle of the 21st century, the production of annual 642 million tons of wheat should be increased to 840 million tons to meet the need of increasing world population (Sharma et al., 2015). In this respect, land suitability analyzes are needed to ensure efficient and sustainable wheat supply from agricultural lands, which are the limited natural resources (Bodaghabadi et al., 2015; El Baroudy, 2016; Mohammed et al., 2020). The most comprehensive study that spatially mapped the production capacities of lands in Turkey was prepared by the General Directorate of Soil-Water between 1966 and 1972 (Doğan et al., 2013). These maps with 1/25000 scale were prepared in paper format with great soil group levels and their important phases classified according to 1938 American soil classification system. The inclusion of only land capability classes on the productivity of lands in these maps is not sufficient for evaluating land capacity for land use alternatives. Therefore, alternative land evaluation methods are needed to increase the production of agricultural crops, especially wheat production in Turkey (Dedeoğlu and Dengiz, 2019). In this context, this study focused on analyzing land suitability to wheat cultivation, and generate a land suitability map for wheat by integrating the AHP-Fuzzy algorithm with GIS in the Tozalı sub-basin located in the upper part of the Yeşilirmak Basin, Turkey.

2. Material and methods

2.1. Study area

Tozalı basin is located between 3640′ - 3750′ East latitudes and 4010′ – 4020′ North longitudes in Tokat and Sivas provinces of Turkey (Fig. 1). The total surface area of the basin is 2364 km², and the altitude varies between 774 and 2703 m, while the average altitude is 1488 m. The annual average temperature and precipitation are 10.7 °C and 481 mm, respectively. Paleozoic aged schist, marble, crystallized limestone and metabasite rocks, which are called Tokat metamorphic, compose the majority of geological formation. Haydaroglu formation, which includes Lutetian conglomerate, sandstone, mudstone, limestone and volcanic rocks are the other common geological formations in the study area. In addition, the Artova ophiolite complex formed by basic, ultrabasic, volcanic and sedimentary rocks; Almus formation consisting of conglomerate, sandstone, mudstone, marine limestone; Doğansar formation consisting of sandstone, conglomerate, clayey-sandy limestone and tuffite, agglomerate, andesite, basalt rocks and Boztepe formation consisting of conglomerate, sandstone, shale pelagic and nertic limestone are found in the area. Common soil types in the basin are Eutric Cambisols, Calcic Cambisols, Lithosols, Calcaric Regosols and Calcic Xerosols (FAO, 1990).

2.2. Methodology

Most of the mathematical methods used in determining the suitability of lands use different evaluation criteria when deciding
the suitability of a land. In this study, GIS-based analysis was adapted to determine suitable areas for wheat production in the Tozanlı Basin. The integration of GIS and MCDA methods provides powerful spatial analysis functions for suitability analysis due to the ability to process and analyze different layers of spatial data (Kumar and Jhariya, 2015). The weights for topographic and soil properties were determined using the fuzzy-AHP suitability assessment model proposed by Tashayo et al. (2020). Different thematic layers were combined using weighted overlay spatial analysis in GIS to identify areas suitable for wheat production. The flowchart of the process used in the study is shown in Fig. 2.

Nine different parameters consisting of topographic (slope, elevation, aspect, soil depth) and physical and chemical soil properties (electrical conductivity (EC), pH, organic matter, soil texture, and calcium carbonate) were used to determine the suitability of lands for wheat cultivation. These thematic parameters were divided into subclasses considering the land requirements of wheat production (Table 1). The weights for subclasses were determined according to local field conditions and expert opinions. The parameters used, the creation of databases and the determination of weights for main parameters using the fuzzy-AHP process were explained in the relevant section.

2.3. Preparation of topographic parameters

Topography of the Tozanlı basin is an important limiting factor for agricultural production, as lands have a fractured and sloppy structure. Many environmental factors such as soil water content, precipitation, radiation, evaporation, and temperature which vary with altitude and aspect, are important factors in crop yield, growth and distribution. Therefore, topographic parameters were included in the analysis to determine the suitable areas for agricultural production. Data sets of topographic parameters were obtained from ALOS Global Digital Elevation Model (DEM) with 10 × 10 m resolution. Slope and aspect maps were also produced from the DEM data. Slope is an important topographic factor in soil formation, and the increase in slope causes problems in irrigation and mechanization facilities (FAO, 1976). In addition, high slope causes soil erosion, removal of fertile topsoil and land degradation; therefore, is considered as a limiting parameter in the suitability assessment.

Plants need sunlight to sustain development of root and vegetative parts, flowering and photosynthesis and to produce the highest yield (Bajracharya et al., 2013). In this regard, most cultivars optimally grow in south- and west-facing lands. Since the aspect of a land has a significant impact on plant growth, the aspect was used as a parameter in determining suitable lands for wheat production. Slope and aspect parameters were classified considering the conditions of the study area and the requirement of wheat plants (Table 1).

2.4. Soil parameters

Soil depth is one of the most important criteria for hydrological dynamics of soils and plant growth (Hirzel and Matus, 2013; Rhoton and Lindbo, 1997), and thus soil depth was used as a land
suitability indicator for wheat production. The soil depth information of the study area was obtained from the soil database produced by Turkey Village Services (Anonymous, 1970). Ninety-two soil samples were collected in October 2017 to determine physical and chemical soil criteria used in land suitability assessment. Random sampling method was used to collect soil samples, and geographical coordinate of each location was recorded. Particle size distribution, pH, EC, organic matter, and calcium carbonate content of soil samples were determined for land suitability assessment.

Soil texture is considered an important basic soil property due to the effect on structure, water holding capacity, infiltration, aeration etc. (Abdelrahman et al., 2016; Elsheikh et al., 2013). Therefore, soil texture classes were evaluated as criteria in land suitability classification. The optimum soil texture class for wheat production is specified as loam (Ahmed et al., 2016). The texture of soil samples were determined by the Bouyoucos hydrometer method (Bouyoucos, 1951). Soil reaction (pH) is defined as the negative logarithm of H+ ions in soil solution, and greatly influences nutrient uptake, crop production and soil chemistry. The soil pH is an important measure in assessing the potential availability of nutrients and toxic elements to plants. The optimum pH value for wheat production is specified as 6.5–7.5. Therefore, soil pH was also considered as an important criterion for wheat production. Lime content of soils was determined as percentage (%) by Scheibler calcimeter (Allison and Moodie, 1965).

Empirical semivariograms were constructed for each of indicator, and model variograms of indicators were constructed using the GS + 7.0 software. The abnormal distribution of a parameter negatively affects the accuracy of prediction. Therefore, normality of parameters was checked before analyzing the spatial variability. The parameters with abnormal distribution were subjected to square root and logarithmic transformations to normalize the distribution. Kriging was used to express the spatial variation and to minimize the errors of predicted values. The empirical semivariogram was calculated using Eq. (1) (Webster and Oliver, 2001).

\[
\gamma(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} [Z(x_i) - Z(x_i + h)]^2
\]

where; \(Z(x_i)\) is the value of soil properties at the location of \(x_i\), \(\gamma(h)\) is the variogram for a lag distance \(h\) between \(Z(x_i)\) and \(Z(x_i + h)\), and \(N(h)\) is the number of data pairs separated by \(h\) distance, respectively.

The best fit model was selected based the R² of the model and the Residual Sum of Squares (RSS) value, which is the indicator of measurement errors. The models with a R² value close to 1.0 and RSS value close to zero were selected as the best fit models (Budak and Acir, 2019). Spatial distribution maps of parameters were produced by ordinary kriging method using ArcGIS 10.3.1.

2.5 Weight for criteria maps

Different fuzzy numbers can be used depending on the nature of study. Triangular fuzzy numbers were preferred in this study because of their simplicity in the calculation and their usefulness in expressing and processing fuzzy logic (Ertugrul and Karakasoğlu, 2008). Triangular fuzzy numbers are a special class of fuzzy numbers defined by three real numbers, usually \(l, m, and u\). In a defined triangular fuzzy number, \(l\) represents the lower limit, \(u\) represents the upper limit, and \(m\) is the possible value (Deng, 1999; van Laarhoven and Pedrycz, 1983). Basic fuzzy arithmetic should be used in arithmetic calculations where evaluations

Criteria	Sub-criteria	Sub-criteria Weight	Criteria	Sub-criteria	Sub-criteria Weight
Depth	Deep	10	Slope (*)	0–2	10
	Moderately Deep	7		2–5	8
	Shallow	3		5–10	5
	Very shallow	1		10–40	2
	Wetland and Stoniness surface	0		> 40	0
Elevation (m)	774–1000	7	Organic Matter	0–1	2
	1000–1250	5		1–2	4
	1250–1500	3		2–4	6
	> 1500	1		> 4	8
Texture	Clay	4	CaCO₃	0–5	6
	Sandy Clay Loam	9		5–15	9
	Clay Loam	6		15–25	7
	Silt Loam	7		> 25	2
	Loam	7		6 – 7.5	9
	Sand	1		7.5 – 8.2	6
	Loamy Sand	2		> 8.2	1
	Sandy Loam	2		W, E	7
	Gravel, massive clay, pit	0		NE, NW	4
EC	0–250	9		N	2
	250–500	9			
	>500	8			

Table 1
Subclasses and weight scores of parameters.
are expressed with fuzzy numbers. Basic arithmetic calculations for triangular fuzzy number were done as stated in Deng (1999).

Different methods have been proposed to integrate fuzzy logic and AHP (Buckley, 1985; Chang, 1996; Deng, 1999). In this study, geometric mean method introduced by Buckley (1985) was used to combine both methods. This method was applied considering the process steps explained by Hsieh et al. (2004):

Step 1: A comparison matrix was created with linguistic expressions based on the importance among the criteria. Triangular fuzzy numbers were created during comparisons by considering the table introduced by Gunus (2009) (Table 1).

\[
A = \begin{bmatrix}
1 & a_{12} & \cdots & a_{1n} \\
a_{21} & 1 & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & 1
\end{bmatrix} = \begin{bmatrix}
1 & a_{12} & \cdots & a_{1n} \\
1/a_{12} & 1 & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
1/a_{1n} & 1/a_{2n} & \cdots & 1
\end{bmatrix}
\]

where:

\[
a_{ij} = \begin{cases}
1, 2, 3, 4, 5, 6, 7, 8, 9 \\
1^{-1}, 2^{-1}, 3^{-1}, 4^{-1}, 5^{-1}, 6^{-1}, 7^{-1}, 8^{-1}, 9^{-1}
\end{cases}
\]

i is relative importance to criterion j

i = j

criterion i relative less importance to criterion j

Step 2: Geometric mean is used to determine the fuzzy geometric mean and fuzzy weights of each criterion.

\[r_i = (a_{i1} \otimes a_{i2} \otimes \cdots \otimes a_{in})^{1/n} \tag{2}\]

\[w_i = r_i \otimes (r_1 \otimes \cdots \otimes r_n)^{-1} \tag{3}\]

where \(a_{in}\) is the fuzzy value of the i criterion when compared to the n criterion. In this case, \(r_i\) represents the geometric mean of the fuzzy values produced by comparing the criterion i with each other criterion. \(w_i\) indicates the fuzzy weight of the i criterion. This \(w_i\) value consists of triangular fuzzy numbers (\(w_i = (hw_i, mw_i, uw_i)\)).

Step 3: The weight values obtained for each criterion consist of triangular fuzzy numbers as explained in the second step. These fuzzy numbers are defuzzified and a single value (crisp) was obtained for each criterion. Thus, the Best Non-Fuzzy Performance Value (BNP) was obtained. This value represents the weight of the criterion. For this purpose, the center of area (COA) method was used. Compared to other methods (mean of maximal (MOM) and α-cut used for clarification), the COA is a simple and practical method (Chen et al., 2008), therefore, preferred in this study. The equation used to calculate the BNP with COA is given below (Opricovic and Tzeng, 2003):

\[BNP_i = hw_i + \frac{(uw_i - hw_i) + (mw_i - lw_i)}{3} \tag{4}\]

2.6. Land suitability assessment

Suitable areas for wheat production in the Tozanlı basin were determined using thematic maps produced and classified for the parameters and the weights determined by the fuzzy-AHP method. The following equation was used in the production of wheat suitability map (Eq. (5)).

\[LSI = \sum_{i=1}^{n} (Wi \cdot Xi) \tag{5}\]

where LSI expresses the land suitability value. Wi is the weight of a parameter; Xi represents the weight of the subclasses within a parameter (Cengiz and Akbulak, 2009; Pramanik, 2016). The Eq. (5) was adapted to the thematic maps in GIS, which allows the integration of different spatial parameters, and suitable areas for wheat production were determined in the study area. Land suitability for wheat production was assessed based on the methodology given in the FAO land assessment framework (FAO, 1976). Each land was assessed as suitable or unsuitable for the land use type. The suitable class was classified as highly suitable (S1), moderately suitable (S2), and marginally suitable (S3). Not suitable class was divided into two classes as not suitable for economic reasons (N1) and not suitable for physical reasons (N2). The process of assessing land suitability for wheat production involves matching the wheat plants requirements with the characteristics of the particular land unit. The LSI values obtained in the MCDA and GIS processes were divided into 4 classes: areas with land suitability values between 6 and 9 are highly suitable (S1), areas between 5 and 6 are moderately suitable (S2), areas between 4 and 5 are marginally suitable (S3), and the areas between 3 and 4 are unsuitable (N) classes (see Table 2).

3. Results

3.1. Evaluation of topographic parameters

Spatial distribution maps (Fig. 3) of topographic parameters (elevation, slope, aspect) used to evaluate land suitability were produced and coverage area of their spatial distributions were calculated (Table 3). Mountainous areas and hilly lands are dominant in the Tozanlı basin where the altitude varies between 774 m and 2703 m. The areas where the elevation is higher than 1500 m cover approximately 50% of the study area.

The classes with low elevations do not occupy large areas in the basin. The areas with the lowest elevation, which was between 774 and 1000 m, cover only 9.92% (231.85 km²) of the basin. Areas with low elevation in the basin correspond to valley bottoms and slopes developed due to gully erosion by streams. Fluvial processes also control the slope in the study area. Flat areas (slope between 0 and 5%) correspond to only 20.85% of the basin (487.49 km²). The slope in the remaining lands which covers approximately 80% of the basin is >5%. Steep slopes with a slope between 10 and 40% constitute the most widespread slope class, covering 51.95% of the basin (1448.37 km²). Approximately 5% of the basin consists of steep slopes (>40%). The classes for slope aspect formed by the deformation of topography by external factors are given in Table 3. South facing slopes (S, SE, SW), and flat (F) areas cover 38.77% (906.55 km²) of the basin, and followed by east and west facing (692.34 km² – 29.61%), north facing (386.95 km² – 16.55%) and northwest-northeast facing (352.23 km² – 15.07%) slopes.

Linguistic terms	Fuzzy number	Triangular fuzzy numbers
Perfect	9	(8,9,10)
Absolute	8	(7,8,9)
Very good	7	(6,7,8)
Fairly good	6	(5,6,7)
Good	5	(4,5,6)
Preferable	4	(3,4,5)
Not bad	3	(2,3,4)
Weak advantage	2	(1,2,3)
Equal	1	(1,1,1)
3.2. Soil characteristics in the study area

Descriptive statistics of soil properties are given in Table 4. The clay content of soils varied between 1.25 and 46.25%, with an average of 18.62%. The silt content varied between 7.50 and 55%, with an average of 26.76%. The sand content varied between 23 and 88% with an average value of 54.63. The pH values ranged between 6.40 (slightly acidic) and 8.30 (slightly alkaline), with an average pH value of 7.26 (neutral). Soil pH is generally optimum for wheat production. The EC values varied between 70 and 1000 mmhos, which indicate that the soluble salt content in the basin is very low. Organic matter content of soils varied between 0.07 and 7.94%, with an average value of 2.40. The lime content ranged from 1.66% (low) to 41.06 (very calcareous), with an average of 10.81%.

The variability of soil properties within a field or a larger area is classified based on CV values (Wilding (1985)). The variability of a soil property is considered high, moderate or low when the CV is higher than 35%, between 15% and 35%, and <15%, respectively. Soil pH values are the only soil property with low variability, while silt and sand contents had moderate variability and clay, EC, organic matter and lime contents had high variability. The differences in parent materials, high variability of the topography, as well as the differences in land uses caused high variability in soil properties.

Table 4 reveals that clay, sand, and pH (0.61, -0.13, 0.45) had normal distribution; however, silt, EC and lime had non-normal distribution (1.35, 3.89, 1.05, 1.52). Silt, organic matter and lime were transformed by square root transformation, whereas EC was transformed by log transformation technique. Table 5 reveals that different soil properties have significant correlations at \(p < 0.05 \) and at \(p < 0.01 \). The individual soil properties were highly correlated as expected and sand and clay exhibit the strongest correlation (\(p < 0.01; r = -0.81 \)). Budak et al. (2018) reported positive correlation among pH and CaCO$_3$. The correlation among pH and CaCO$_3$...
was parallel to earlier reports. The significant positive/negative correlations at \(p<0.05\) were noted among CaCO3 and clay \(0.287\), pH and sand \(0.288\), organic matter and sand \(-0.263\) and organic matter and clay \(0.268\). Similarly, EC and pH \(0.319\) were also had significant positive correlation.

3.3. Geostatistical analysis of soil properties

The parameters of the geostatistical models for soil properties are given in Table 6. All soil properties had an anisotropic semivariogram. Exponential model was the best to predict clay content and pH values, and linear model was the best for organic matter and lime contents. The sand and silt content and EC values semivariograms were well-described by spherical model. Spatial dependency, which is the ratio of nugget \((C_0)\) semivariance to sill \((C_0 + C)\), was used to express the extent of the spatial changes within the study area. The spatial dependence value of \(<25\%\) indicates a strong degree of dependence, a value between 25 and 75\% indicates a moderate degree of dependence, and a value of \(>75\%\) indicates a weak degree of spatial dependence (Cambardella et al., 1994). Organic matter (13.12\%) content had strong spatial dependence, and lime (30.81\%) and silt (50.10\%) contents showed moderate spatial dependence, while other soil properties had a weak spatial dependence. Strong spatial dependence indicates a continued similarity between samples even over long distances. Range values of clay, silt, pH, organic matter and lime were 3022, 4648, 5907, 5824, 9302 m, respectively. After semivariogram models were created for soil properties, spatial distribution maps were prepared using the ordinary kriging method. The soil maps prepared were reclassified for suitability analysis using the classes

Table 4
Descriptive statistics of soils.

Properties	Unit	Min	Max	Mean	Std. dev.	CV	Skewness
Clay	%	1.25	46.25	18.62	10.65	57.21	0.61
Silt	7.50	55.00	26.76	7.48	27.93	1.35	
Sand	23.00	88.00	54.63	12.82	23.47	0.45	
pH	6.40	8.30	7.26	0.35	4.77	1.52	
EC	mmhos cm\(^{-1}\)	70.00	1900.00	156.01	82.11	3.89	
Organic matter	%	0.07	7.94	2.40	1.60	66.73	1.05
Lime	1.66	41.06	10.81	8.82	81.64	1.52	

\(p < 0.01\) was parallel to earlier reports. The significant positive/negative correlations at \(p < 0.05\) were noted among CaCO3 and clay \(0.287\) pH and sand \(0.288\), organic matter and sand \(-0.263\) and organic matter and clay \(0.268\). Similarly, EC and pH \(0.319\) were also had significant positive correlation.

Table 5
Correlation coefficients between soil properties.

	Clay	Silt	Sand	pH	EC	OM
Clay	1					
Silt	-0.031	1				
Sand	-0.813**	-0.557**	1			
pH	0.045	0.034		-0.057	1	
EC	0.086	0.061	-0.107	0.319*	1	
OM	0.268	0.079	-0.263*	-0.181	0.41	1
CaCO3	0.287*	0.085	-0.288*	0.329**	-0.168	-0.034

*: significant at \(p < 0.05\), **: significant at \(p < 0.01\)
in Table 1, considering wheat growth requirements (Fig. 3). The range values in a semivariogram model represent the maximum distance of autocorrelation, and beyond this distance the autocorrelation is not exist among variables. The distance with the highest autocorrelation (9321 m) was calculated for sand content. The related parameter of highest importance. Especially in the mountains, areas with lower altitudes received higher BNPs. The BNPs values indicated that depth (0.232) is the parameter of highest importance. The w values for slope parameters was calculated as w = (0.062, 0.110, 0.204). This value is a triangular fuzzy number. At this stage, the BNP value was calculated by performing the defuzzification process using the COA method given in Eq. (4):

$$BNP_i = \frac{(0.204 - 0.062) + (0.110 - 0.062)}{3}$$

Since the weight sum of the criteria should be 1, the BNP values for the parameters used were calculated and defuzzification was carried out normalize the values. The weights calculated were given in Table 8. The weight values indicated that depth (0.232) is the parameter of highest importance.

3.4. Effects of parameters used in land suitability

The weights expressed with the quantitative values were obtained by using the MCDA process over the topography and soil parameters to calculate the suitable places for wheat cultivation in the basin. The fuzzy-AHP method was used to determine the weights of nine environmental components determined in the study area. The pairwise comparison matrix contains the opinions of experts. In this decision-making process, the comparison matrix, which is the first step of fuzzy-AHP, was created by considering Table 2 (Table 7).

The w values were calculated by the ri values using Eq. (3). For example, the value of w for the slope parameter was calculated as follows:

$$w_i = \left(0.93, 1.22, 1.63\right)$$

The w values for slope parameters was calculated as $w = (0.062, 0.110, 0.204)$. This value is a triangular fuzzy number. At this stage, the BNP value was calculated by performing the defuzzification process using the COA method given in Eq. (4):

$$BNP_i = \frac{(0.204 - 0.062) + (0.110 - 0.062)}{3}$$

Since the weight sum of the criteria should be 1, the BNP values for the parameters used were calculated and defuzzification was carried out normalize the values. The weights calculated were given in Table 8. The weight values indicated that depth (0.232) is the parameter of highest importance.

The second most important parameter is the altitude (0.218) that is one of the topographic factors. Especially in the mountains, 0.5 °C decrease in air temperature with every 100 m elevation causes a delay of up to six days in vegetation period and flowering (Atalay, 2006). Thus, areas with lower altitudes received higher weight scores, which played an important role in determining suitable lands. Since the increase in slope with the altitude causes erosion and consequently formation of shallow soils, the altitude parameter has been considered as an important limiting factor for wheat production. The effects of slope on erosion is similar to the altitude; thus, the slope has a high weight score (0.110). The weights of other properties in determining suitable areas for wheat production were calculated as 0.056 for organic matter and lime, 0.050 for pH and 0.042 for aspect, respectively (Table 8).

Table 6

Parameters of semivariogram models calculated for soil properties.

Soil Prop.	Model	Nugget (Co)	Sill (Co + C)	Spatial Dependence	Range (m)	R^2	RSS	Dispersion pretreatment
Clay	Exponential	0.0130	1.626	99.20	3022	0.826	0.51	Normal
Silt	Gaussian	0.400	0.801	50.10	4648	0.277	0.194	Square root
Sand	Spherical	76.00	562.9	86.50	9321	0.732	1.512	Normal
pH	Exponential	0.093	0.483	80.71	5907	0.931	4.887E-04	Normal
EC	Spherical	0.195	1.045	81.30	1953	0.874	0.012	Log
OM	Linear	0.105	0.106	13.12	5824	0.941	4.479E-03	Square root
CaCO3	Linear	0.518	0.748	30.81	9302	0.631	0.068	Square root

Table 7

Binary comparison matrix.

	Slope	Elevation	Depth	EC	pH	Org Mat	Texture	Lime	Aspect
Slope	1	3^{-1}	2^{-1}	3^{-1}	3	3	1	4	3
Elevation	3	1	2^{-1}	3	4	4	3	5	3
Depth	2	2	1	3	3	3	3	5	4
Electrical Conductivity	3	3^{-1}	3^{-1}	1	3	3	3^{-1}	2	2
pH	3^{-1}	4^{-1}	3^{-1}	3^{-1}	1	3^{-1}	3^{-1}	2	2
Organic Matter	3^{-1}	4^{-1}	3^{-1}	3^{-1}	1	3^{-1}	3^{-1}	2^{-1}	2
Texture	1	1/3	3^{-1}	3	3	3	1	3	4
Lime	4^{-1}	5^{-1}	5^{-1}	2^{-1}	2^{-1}	2^{-1}	1	2	
Aspect	3^{-1}	1/3	4^{-1}	2^{-1}	2^{-1}	2^{-1}	4^{-1}	2^{-1}	1
3.5. Land suitability assessment for wheat production

A land suitability map for wheat production was obtained by analyzing and classifying the weights determined using Fuzzy-AHP methods and the thematic maps produced in GIS environment (Fig. 4). The results revealed that highly suitable (S1) areas for wheat production covers 2.63% (61.59 km²) of Tozanlı Basin. (Table 9). These areas are generally located around the Dam Lake, in the alluvial lands of the mountain plain and on the valley bottoms formed by the Yeşilirmak and Tozanlı rivers. The soils in highly suitable areas are deep and the slope of the land is almost flat. Moderately suitable (S2) areas (230.41 km²) generally are located around highly suitable areas. Marginally suitable (S3) lands are distributed in 32.59% (761.94 km²) of the basin and are generally located in hillside lands. Majority of study area (54.92%, 1284.13 km²) was classified as unsuitable (N) for wheat production due to the high elevation, slope and insufficient soil depth.

4. Discussion

Fuzzy-AHP and GIS integrated-based approach was successfully used in the current study to evaluate land suitability for wheat cultivation. Nine parameters, including topographic (elevation, slope and aspect) and pedological (soil depth, texture, CaCO₃, pH, EC, OM) were selected and the weights of each parameter were calculated using the multi-criteria fuzzy-AHP model effectively. A land suitability map was then created for wheat production. According to the map created, S1 (61.59 km²), S2 (230.41 km²), S3 (761.94 km²) and N (1284.13 km²) classes were determined for wheat production in the study area.

Table 8
Weights of criteria obtained with fuzzy AHP.

Criteria	Weight
Depth	0.232
Elevation	0.218
Texture	0.131
Slope	0.110
Electrical Conductivity	0.105
Organic Matter	0.056
Lime	0.056
pH	0.050
Aspect	0.042

Table 9
Spatial distribution of classes in the suitability map.

Suitability	Area (km²)	Ratio (%)
S1	61.59	2.63
S2	230.41	9.85
S3	761.94	32.59
N	1284.13	54.92

High degree of slope due to the relief conditions throughout the basin prevents the formation of soil depth that will provide the effective root depth in plant production. Depth parameter was considered as the most important criterion for wheat production due to the importance in providing sufficient moisture and plant nutrients. Similarly, Dedeoğlu and Dengiz (2019) who carried out a suitability analysis conducted in a similar basin in Turkey, reported that soil depth is the most important parameter for wheat production. The result indicates that the depth criterion is an important parameter for suitability analyzes in areas with high elevation and shaped by fluvial processes.

The weight obtained for slope is consistent with the weight reported by researchers who performed suitability analysis in different regions such as Tashayo et al. (2020) and Akıncı et al. (2013). Soils in highly suitable areas are deep and the slope of the land is almost flat. Moderately suitable (S2) areas (230.41 km² – 9.85%) generally are located around highly suitable areas. Marginally suitable (S3) lands are distributed in 32.59% (761.94 km²) of the basin and are generally located in hillside lands. Majority of study area (54.92%, 1284.13 km²) was classified as unsuitable (N) for wheat production due to the high elevation, slope and insufficient soil depth.
be obtained using the TPI index. The areas with irrigation facilities can be easily determined by evaluating the soil moisture conditions in the basins using TWI. In future studies, the inclusion of these indices in multi-criteria decision-making analyses and their impacts on land suitability studies should be investigated.

5. Conclusion

The aim of this study was to determine land suitability assessment for wheat production in Tokanli Basin using geostatistics, Fuzzy-AHP approach and geographic information system techniques. The suitability analysis showed that highly suitable (S1) lands for wheat production cover 2.63% (61.59 km²), moderately suitable (S2) lands 9.85% (230.41 km²), and marginally suitable (S3) lands was 32.52% (761.94 km²). Unsuitable lands (N) to wheat production covers 54.92% (1284.13 km²) due to the geomorphological features (elevation and slope) of the study area. Majority of the lands in the study area were classified as not suitable for wheat production due to the high elevation, insufficient soil depth and severe erosion problems in the high sloping areas. The findings may serve as a guide for future land use management planning to explore the soil topography, to explore the potential for agriculture production.

The results revealed that combining of fuzzy-AHP and GIS methods is an applicable and effective approach to take more effective decisions in agricultural land use planning.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

The authors would like to express their gratitude to the Research Center of Advanced Materials—King Khalid University, Saudi Arabia for support by grant number (RCAMS/KKU/G001/21).

References

Abdelrahman, M.A.E., Natarajan, A., Hegde, R., 2016. Assessment of land suitability and capability by integrating remote sensing and GIS for agriculture in Chamarajanagar district, Karnataka, India. Egy. J. Remote Sens. Space Sci. 19 (1), 125–141. https://doi.org/10.1016/J.EJRSS.2016.02.001.

Ahmed, G.B., Shariff, A.R.M., Balasundram, S.K., Abdullah, A.F., 2016. Agriculture land suitability analysis evaluation based multi criteria and GIS approach. IOP Conf. Ser. Earth Environ. Sci. 37 (1), 012044. https://doi.org/10.1088/1755-1315/37/1/012044.

Akbaklar, C., 2010. Land use suitability analysis of the Upper Basin of the Kara Menderes River using analytical hierarchy process and geographical information systems. J. Human. Sci. 7 (2), 557–576. https://www.j-humansciences.com/j.php?ISSN=article/view/1305.

Akinci, H., Ozalp, A.Y., Turgut, B., 2013. Agricultural land use suitability analysis using GIS and AHP technique. Comput. Electron. Agric. 97, 71–82. https://doi.org/10.1016/j.compag.2013.07.006.

Al-shalabi, M.A., Mansor, S. Bin, Ahmed, N. Bin, Shariff, R., 2006. GIS Based Multicriteria Approaches to Housing Site Suitability Assessment. In: XXIII FIG Congress. Shaping the Change. Munich, Germany, October 8-13, pp. 1–17.

Allison, L.E., Moodie, C.D., 1965. Carbonate. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. John Wiley & Sons Ltd, pp. 1379–1396.

Anonymous, 1970. Yesilirmak Basin Soils. General Directorate of Toprakbil Publications Basin No:14.

Atak, M., 2017. Wheat and Turkey wheat village varieties. J. Mustafa Kemal Univ. Facul. Agric. 22, 71–88.

Atlaya, I., 2006. Soil Genesis, Classification and Geography. Meta Press Publishing, Bajracharya, R.M., Sitaula, B.K., Sharma, S., 2013. Seasonal dynamics, slope aspect and land use effects on soil mesofauna density in the mid-hills of Nepal AU - Begum, Farida. Int. J. Biodiv. Sci. Ecosystem. Serv. Manage. 9, 434–438.

Bodaghabadi, M.B., Martinez-Casasnovas, J.A., Matalonabi, H.M., A., M., 2015. Assessment of the FAO traditional land evaluation methods, A case study: Iranian Land Classification method. Soil Use Manag. 31 (3), 384–396.
Orhan Mete Rılcı, K. Ersayın, H. Gunal et al.

Saudi Journal of Biological Sciences 29 (2022) 2634–2644

Özkan, B., Dengiz, O., Turan, N., Nelson, D.W., Sommers, L.E., 1983. Total Carbon, Organic Carbon, and Organic Matter. In: Page, A.L. (Ed.), Methods of soil analysis Part 2: Chemical and microbiological properties. John Wiley & Sons, Ltd, pp. 539–579. https://doi.org/10.1002/9780471185059.a0021965-x.

Webster, R., Oliver, M.A., 2001. Geostatistics for Environmental Scientist. John Wiley and Sons.

Ustaoglu, E., Sisman, S., Aydınoglu, A.C., 2021. Determining agricultural suitable areas for pomegranate cultivation under irrigated conditions using GIS and AHP. Geomatics, Geoinformatics, Geoinformatics 2010. https://doi.org/10.1109/GEOINFORMATICS.2010.5567607.

Sharma, I., Tyagi, B., Singh, G., 2015. Enhancing wheat production—a global perspective Genetic analysis of yield component in wheat View project. Ind. J. Agric. Sci. 85 (8), 726–730. https://doi.org/10.1016/j.indjags.2015.08.002.

Richards, L., 1954. Diagnosis and Improvoment of Saline and Alkaline Soils. U.S. Department of Agriculture (Handbook 60), U.S.A.

Webster, R., Oliver, M.A., 2001. Geostatistics for Environmental Scientist. John Wiley and Sons.

Mandal, V.P., Rehman, S., Ahmed, R., Masroor, M., Kumar, P., Sajjad, H., 2020. Land use suitability assessment for optimal cropping sequences in Katihar district of Bihar, India using GIS and AHP. Spat. Inform. Res. 28 (5), 589–599. https://doi.org/10.1080/10106049.2014.997304.

Tashayo, B., Honarbakhsh, A., Azma, A., Akbari, M., 2020. Combined Fuzzy AHP–GIS adaptation using Fuzzy, AHP, and GIS in Yunnan Province, China. Arab. J. Geosci. 14 (14), 1–18. https://doi.org/10.1007/s40808-016-0167-x.

Dzdruli, P., Jones, R., Montanarella, L., 2004. Organic matter in the soils of Southern Europe. http://eusoils.jrc.ec.europa.eu/ebd/archive/eusoils_docs/esb_rj/n15_0MsouthEurope.pdf.

Zhang, S., Liu, X., Wang, X., Gao, Y., Yang, Q., 2021. Evaluation of coffee ecological adaptability using Fuzzy, AHP, and GIS in Yunnan Province, China. Arab. J. Geosci. 14 (14), 1–18.

Peng, J.H., Sun, D., Nevo, E., 2011. Will emmer wheat, Triticum dicoccoides, occupies a pivotal position in wheat domestication process. Aust. J. Crop Sci. 5 (9), 1127–1143.

Pilevar, A.R., Matinfar, H.R., Sohrabi, A., Sarmadian, F., 2020. Integrated fuzzy, AHP and GIS techniques for land suitability assessment in semi-arid regions for wheat and maize farming. Ecol. Ind. 110, 105887. https://doi.org/10.1016/j.ecolind.2019.105887.

Prakash, T.N., 2003. Land suitability analysis for agricultural crops: A fuzzy Multicriteria Decision Making Approach. http://src.eu/library/Papers_2003/mmcgpdf/prakash.pdf535chiprt://hal.archives-ouvertes.fr/hal-00298259/.

Pramanik, M.K., 2016. Site suitability analysis for agricultural land use of Darjeeling district using AHP and GIS techniques. Model. Earth Syst. Environ. 2 (2), 1–22. https://doi.org/10.1007/s40808-016-0116-8.

Ramamurthy, V., Reddy, G.P.O., Kumar, N., 2020. Assessment of land suitability for maize (Zea mays L.) in semi-arid ecosystem of southern India using integrated AHP and GIS approach. Comput. Electron. Agric. 179, 105806. https://doi.org/10.1016/j.computagro.2020.105806.

Rhoton, F.E., Lindbo, D.L., 1997. A soil depth approach to soil quality assessment. J. Soil Water Conserv. 52 (1).

Richards, L., 1954. Diagnosis and Improvement of Saline and Alkaline Soils. U.S. Department of Agriculture (Handbook 60), U.S.A.

Saaty, T.L., 1980. The analytical hierarchical process. J. Wiley.

Saaty, T.L., 1988. What is the analytic hierarchy process? In: Mathematical models for decision support. Springer, Berlin Heidelberg, pp. 109–121.

Saha, S., Sarkar, D., Mondal, P., Goswami, S., 2021. GIS and multi-criteria decision-making assessment of sites suitability for agriculture in an anabranching site of soor river, India. Model. Earth Syst. Environ. 7 (1), 571–588.

Sharma, K.R., Sharma, P.K., Sawhney, J.S., 1994. Soil suitability for rice in different agroclimatic zones of Punjab. Agropedology 4, 573–584. https://doi.org/10.1016/S0218-4885(03)00238-9.

Sharma, I., Tyagi, B., Singh, G., 2015. Enhancing wheat production—a global perspective Genetic analysis of yield component in wheat View project. Ind. J. Agric. Sci. 85 (8), 726–730. https://doi.org/10.1016/j.indjags.2015.08.002.