Gender-Dependent Association of Body Mass Index and Waist Circumference with Disability in the Chinese Oldest Old

Zhaoxue Yin1, Xiaoming Shi1, Virginia B. Kraus2, Melanie Sereny Brasher3, Huashuai Chen4, Yuzhi Liu5, Yuebin Lv1 and Yi Zeng4,5

Objectives: To explore associations of BMI and waist circumference (WC) with disability among the Chinese oldest old.

Methods: The 5,495 oldest old in the sixth wave of Chinese Longitudinal Healthy Longevity Study conducted in 2011 were included in this study. Disability was assessed by activities of daily living (ADL); height and weight for BMI and WC were measured; information including socio-demographics, lifestyles, and health status was collected.

Results: Generalized additive models analysis showed that the association of BMI/WC with ADL disability was nonlinear. Among the males, logistic regression results supported a “J” shape association between ADL disability with BMI/WC—the highest tertile group in BMI or WC was significantly associated with an increased risk of ADL disability: odds ratio 1.78 (95% confidence interval (CI): 1.26-2.52) for BMI and 2.01 (95% CI: 1.44-2.82) for WC. Among females, an inverse “J” shape association was found, only the lowest tertile group before the cutoff point had an increased risk of ADL disability: odds ratio 1.42 (95% CI: 1.02-1.97) for BMI and 1.47 (95% CI:1.06-2.04) for WC.

Conclusions: Associations of BMI and WC with ADL disability are significant even in the oldest old, but differ between the genders.

Introduction

Disability has become an important health problem for many developed countries because of decreasing mortality, improvement in medical care, and ageing, and the World Health Organization estimated that 650 million people live with a disability or functional impairment (1). Activity of daily living (ADL) disability represents one of the most severe stages of disability. Therefore, identifying the determinants of ADL disability is crucial for prevention and control of disability.

The BMI and waist circumference (WC) are often used as indicators of weight status or nutritional health status; BMI is usually used as a measure of general fatness, and WC is a reflection of abdominal fat. In recent years, obesity, assessed by BMI or WC, has been highlighted by researchers because of its possible relationship with disability as well as its high prevalence among the population. As a whole, many prospective or cross-sectional studies have demonstrated the associations between obesity and ADL disability; however, it is not yet clear that which measure, BMI, WC, or both are significantly associated with ADL limitations. Among recent studies, especially when gender was considered, the association of BMI/WC with ADL disability was very inconsistent and controversial. Some researchers have found BMI associated with ADL impairment in older adults (2-5). Among studies that focused on both BMI and WC simultaneously, some found that WC was better predictive

1 Division of Non-communicable Diseases Control and Community Health, Chinese Center for Disease Control and Prevention, Beijing, China. Correspondence: Xiaoming Shi (xxmcdc@163.com) 2 Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA 3 Department of Sociology & Anthropology, University of Rhode Island, Kingston, Rhode Island, USA 4 Center for the study of Aging and Human Development, School of Medicine, Duke University, Durham, North Carolina, USA. Correspondence: Yi Zeng (zengyi68@gmail.com) 5 Center for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing, China

Funding agencies: This research was supported by grant R01 AG023627 to ZY from the National Institute of Ageing/National Institute of Health, grant 71110107025 to YZ from the National Natural Science Foundation of China and National Institute of Health/National Institute of Ageing (Claude D. Pepper Older Americans Independence Centers 5P30 AG028716 to VBK.

Disclosure: The authors have no competing interests.

Author contributions: Zhaoxue Yin conducted the field survey and data analysis, and drafted and revised the manuscript. Yi Zeng and Xiaoming Shi designed the survey, reviewed, and revised this manuscript. Virginia B. Kraus and Melanie Sereny Brasher help conduct data analysis and critically revised this manuscript. Huashuai Chen, Yuzhi Liu, and Yuebin Lv helped to implement the survey, and review the manuscript.

Xiaoming Shi and Yi Zeng contributed equally to this work.

Received: 27 January 2014; Accepted: 13 April 2014; Published online 29 April 2014. doi:10.1002/oby.20775
marker of self-reported ADL disability in both gender or only in women (6,7), some researchers supported the combination use of WC and BMI in assessing the risk of disability in older adults (8); some others found that both BMI and WC were related with ADL(8,9) or just in the females (7). Some concluded that both BMI and WC were unrelated to ADL (10) or only related with specific ADL items of disability (11). Second, the association of underweight with disability was not clear and not fully studied (4,12), and even fewer studies focused on the association of underweight with ADL disability. Third, little is known regarding whether the association found in younger elderly is suitable for the oldest old. Except for one study (N = 380) conducted in Sweden (13), a large majority of previous studies have only evaluated younger elderly or mixed-age groups. Fourth, few studies have been carried out in developing countries.

For the reasons stated earlier, the objective of this study was to address these knowledge gaps through analysis of the association of BMI and WC with ADL disability among a group of Chinese oldest old with a relatively large sample size.

Methods

Study subjects

Participants in this study were from the sixth wave of the Chinese Longitudinal Healthy Longevity Survey (CL HLS) conducted in 2011. The CL HLS was first conducted in 1998—and then followed in 2000, 2002, 2005, 2008, and 2011 in randomly selected half of the counties and cities in 22 provinces of China—was the first national longitudinal survey on determinants of health aging and has the largest sample of the oldest-old individuals in China. Details of the sample design have been described elsewhere and data quality was reported to be generally good (14,15). Briefly, all centenarians were invited to be interviewed, one nearby octogenarian and one nonagenarian of predesignated age and sex were randomly chosen to be interviewed, which ensured comparable numbers of randomly selected male and female oldest old aged 80 years and over. We used the wave of 2011 because it was the first year that included measurement of WC. The study was approved by the ethics committee of Peking University, and written informed consent was obtained from all participants (or their proxies).

Disability measurement

Disability was assessed using the Katz Activities of Daily living Scale (16). Interviewed asked participants if they experienced difficulty or needed assistance in performing the following activities: bathing, dressing, toileting, transfers, continence, and eating. ADL disability was dichotomized as having difficulty or no difficulty in performing any one or more of the ADL tasks previously mentioned.

Anthropometric measures

Weight and height were measured using standard methods rounded to the nearest integer. BMI was computed as weight in kilograms divided by height in meters squared. WC was measured using a non-stretchable tape in centimeters at a level between the lowest rib and Iliac crest (Ilium) with the subjects lightly clothed.

Description of covariates

Covariates included socio-demographic information (age, ethnicity, educational levels, marital status), behaviors and lifestyles (living arrangement, smoking, drinking, physical activities, leisure activities), resilience, and health status, which included self-rated health status, cognitive function, systolic blood pressure (SBP), diastolic blood pressure (DBP), the prevalence of heart diseases, stroke, respiratory disease, cancer and bone joint disease. If the participant was unable to answer, questions (except those used to measure cognitive function) could be answered by one adult family member who was most familiar with the living status of the participant. Education was defined as “no” if the subject had no education whatsoever, and as “yes” if the subject received any formal education at any time. Marital status was categorized as “yes” if the subject was currently married, and “no” if they were divorced, widowed, or never married. Living arrangement was categorized as living alone or living with others. Physical activity was defined as “yes” or “no” by the question “Do you often do physical activities, including walking, playing ball, running, and Qigong?” Leisure activities were assessed by the question, “How often do you do the following leisure activities: outdoor activities, growing flowers, reading, raising pets, playing cards, watching TV, listening to the radio, and taking part in social activities?” Each kind of leisure activity was measured on a scale from 1 to 5, representing always, often, sometimes, rarely, or never. We dichotomized responses for each kind of leisure activity into two categories: “yes” if the answer was “always” or “often,” and “no” if the answer was sometimes, rarely, or never. A positive response to any of the above leisure activities was coded as a positive value for the leisure activity variable (17). Resilience was assessed by a simplified resilience score (SRS) emphasizing coping and adjusting among the elderly, described in detail in our previous study (18), The SRS is based on seven questions related to resilience in our survey, which reflect personal tenacity, optimism, coping with negative mood, secure relationship, and self-control; and the total SRS ranges from 0 to 22, with the higher scores reflecting greater resilience, and higher resilience was defined as a score ≥ 16 (18). Cognitive function was measured by the widely used Mini-Mental State Examination (MMSE) (19). MMSE scores ranged from 0 to 30, with higher scores indicating better cognition. In this study, cognitive impairment was defined as a cut-off score of < 18, as defined in an earlier study that focused on the Chinese oldest old (17), most of whom were illiterate or not well educated. Physical examinations were also conducted by medical personnel. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured twice, and the mean values were used for our analyses.

Statistical analysis

All statistical analyses were conducted separately on male and female subsamples. Subject characteristics were compared by analysis of variance for continuous variables and by chi-square tests for dichotomous variables between the subjects with and without ADL disability. Generalized additive models (GAMs) were employed to explore the shapes of the association of BMI and WC with ADL disability. The GAM is an extension of the generalized linear model in that one or more predictors may be specified using spline smooth function $f(x)$. The significant advantage of GAM over generalized linear model is the flexibility derived from the data-driven shape of the $f(x)$ function, which avoid assumptions about the shape of the independent effect on the dependent variable. We estimated the shapes of their association, adjusting for BMI and WC with each other in addition to age.
On the basis of the results from the sex-specific GAM analysis, we could identify the cut-points of ADL disability risk for BMI and WC. Subjects were divided according to tertiles of their BMI and WC, respectively, before and after the cut-point. The three low groups were designated the low, lower and lowest for those subjects whose BMI or WC values were before the cut-off points; the three high groups were designated high, higher, and highest for those subjects whose BMI or WC were over the cut-off points. Logistic regressions were used to analyze the associations of these groups with the dependent variable ADL dichotomized as any disability or no disability; Odds ratio (OR) and 95% confidence interval (95%CI) were also calculated.

Models were all first run without adjustment, and then three adjusted logistic regression models were fit; adjusted for socio-demographic variables (model 1); then adjusted additionally for “behaviors and lifestyles” variables and resilience (model 2); and finally models were further adjusted for health status variables (model 3).

All statistical analyses were performed with SAS, version 9.2 (SAS Institute Inc., Cary, NC). P < 0.05 was considered statistically significant, and all P values were two-sided.

Results

Among the 9,765 participants in the 2011 wave of CLHLS, 6,530 were aged 80 years and over. We excluded subjects with missing data on key variables, such as ADL, weight, height, and WC, so the final sample size was 5,495 participants that included 2,303 males and 3,192 females. As shown in Table 1, the subjects with ADL disability were more likely to be older, illiterate, Han nationality and less likely to be married, they usually reported less physical activities and leisure activities, in addition to poor self-rated health, resilience, and cognitive function. They had a higher prevalence of chronic diseases. Those with ADL disability usually had higher BMI and WC.
waist circumference among the males, but relative lower waist circumference among the females.

There were two aspects of the GAM analyses, a linear regression model analysis and a smoothing model analysis. By linear regression analyses of the male data, there was no statistically significant linear association of BMI with ADL disability \((P > 0.05)\), but significant association of WC with ADL disability \((P < 0.05)\). Deviance in the smoothing model analysis showed that the spline of BMI and WC were all significantly related to ADL disability \((P < 0.05)\); this indicated that a nonlinear association existed between them. From Figure 1 (males), the cut-points of BMI and WC for risk of ADL disability were 18.5 kg/m² and 75 cm, respectively. For women, there were nonlinear associations for BMI and WC with ADL disability \((P < 0.05)\), as shown in Figure 2 (females), the cut-points of BMI and WC for the risk of ADL disability were 20 kg/m² and 80 cm, respectively.

To further analyze the associations of BMI and ADL disability above and below the BMI cut-off value of 18.5 kg/m² for males, we conducted logistic regression (three models). As shown in Table 2, among the subjects whose BMI values were less than 18.5 Kg/m², BMI was not significantly associated with ADL disability whether the model was adjusted or not \((P > 0.05)\). For subjects whose BMI values were above 18.5 Kg/m², the highest tertile group had an increased risk of ADL disability \((P < 0.05)\); the OR increased from 1.37 (95%CI: 1.05-1.79; \(P = 0.02\)) in the unadjusted model to 1.78 (95%CI: 1.26-2.52; \(P = 0.001\)) in the final fully adjusted model. For subjects whose WC values were below 75 cm, compared with the
low group, WC in the lowest group had an increased risk of ADL disability when the model was unadjusted or adjusted only with demographic variables (model 1), whereas the association was not significant when further adjusted (P > 0.05). For those with WC of 75 cm and above, the highest tertile group of WC was significantly associated with ADL disability; the OR increased from 1.42 (95% CI: 1.10-1.83; P = 0.007) in the unadjusted model to 2.01 (95% CI: 1.44-2.82; P < 0.001) in the final fully adjusted model.

Table 3 showed results of logistic regressions for females. Results for females appeared to be the inverse of the findings for males. Among subjects whose BMI values were less than 20 kg/m², compared with those in the low tertile group, those in the lowest group had increased risk of ADL disability; the OR was 1.42 (95% CI: 1.02-1.97; P = 0.03) in the fully adjusted model 3. For those whose BMI values were 20.0 kg/m² and above, no significant association was found between BMI and ADL disability (P > 0.05). Among the subjects whose WC values were lower than 80 cm, the lowest tertile group in WC was also significantly associated with ADL disability whether the model was fully adjusted (P = 0.02) or not adjusted (P < 0.001). For those with WC of 80 cm and above, WC, like BMI, was not significantly associated with ADL disability (P > 0.05).

Discussion

In this sample, we found the prevalence of ADL disability was 27.31% and 38.44% among male and female respondents, respectively. By GAM, we found nonlinear associations among BMI/WC and ADL disability in both male and female respondents, it was therefore deemed more appropriate to study the associations above and below the cut-points of BMI (18.5 and 20.0 kg/m² for the males and females, respectively) and WC (75 and 80 cm for the males and females, respectively). These results were basically consistent with recommendations on malnutrition of various other agencies or organizations, such as World Health Organization and Food and Agriculture Organization, which consistently have recommended a lower BMI cutoff point for underweight or malnutrition as between 18.5 and 20.0 kg/m² when physiological function was taken into account (20). Logistic regressions were further used to further explore the odds ratios for ADL disability among the four subpopulations defined by sex and cut-points. We categorized subjects according to tertiles of BMI or WC before and after the cut-points rather than simply using the current diagnostic criteria for general adults as the criteria are likely to be inappropriate for the oldest old because of composition changes. Our results supported a “J” shaped association between ADL disability with BMI and WC for the male oldest old—above the cutoff points, the highest tertile group in BMI or WC was significantly associated with increased risk of ADL disability; on the contrary, BMI or WC lower than the cutoff points were not. Whereas an inverse “J” shape association between ADL disability with BMI and WC was found in the female oldest old, which meant underweight was more likely associated with ADL disability among females.
with increased risk of ADL limitation. There are several possible explanations for this association. First, increased BMI or WC could lead to major chronic diseases that could result in disability. Second, studies show that obesity is associated with poorer mobility and declining physical performance (24); abdominal obesity may adversely impact joint mechanics of the individual, increase postural instability (25), making it difficult or impossible to carry out activities of daily living. Third, obesity is associated with low-grade systemic inflammation and excessive oxidative stress (26), which could reduce muscle mass (27) and decrease the grip strength (28), thus lead to frailty (29) and low physical function (30).

In females, our results were consistent with other cross-sectional and longitudinal studies, which found that underweight might lead to mobility disability (4) and ADL disability (21). There are three possible explanations for the link between underweight and disability in women. First, being underweight would increase the risk of fracture and falls (31), and this risk would be even higher than that from overweight and obesity (32). Second, a low BMI in old age groups may reflect chronic malnutrition, illness, or disease rather than a healthy body composition (23). Last, as BMI declines, motor function, such as strength, would be impaired significantly, therefore underweight may be a predictor of declining function (33).

There are also some studies which got inconsistent results with ours. Several possible explanations may account for the gender differences discovered in this study. First, women have poorer physical performance and more limitations in functional abilities compared with the same-aged men (34), so women in the lowest BMI/WC, usually
under malnutrition or illness (23), may report more ADL disability than men, which may be a real reflection of higher prevalence of disability among them (35). Another contributing factor may be gender difference in fat redistribution among those oldest old with a high level of BMI/WC. As studies have shown, the aging process is associated with a decrease in lower body subcutaneous fat and increase in abdominal fat. Abdominal fat consists of visceral fat and abdominal subcutaneous fat. Men are more likely to deposit visceral fat than women, and women have a greater proportion of their abdominal fat in subcutaneous depots compared with men (36,37), whereas visceral fat is believed to pose greater adverse health consequences; it is more cellular, vascular and contains a larger number of inflammatory cells (38), which may lead to ADL disability, so the men “obese” oldest old whose BMI/WC was at high level would be more likely to report disability, one life-threatening condition, than the women “obese” oldest old, which may contribute to men’s higher mortality rate.

There were several limitations of this study. First, our analysis was essentially cross-sectional, which meant we could not tell the causal relationship between them. There is also a potential bidirectional relationship between obesity/underweight and disability. Obesity or underweight could be the underlying cause of disability, but just as several other studies have shown, subjects who have already had disabilities might have increased risk of obesity (39,40). Further analyses, as a part of a longitudinal study, can be conducted in the next wave of our survey with this cohort to address these important considerations. Second, most of the medical conditions included as statistical controls were based on self-report rather than objective measurement; however, we asked subjects whether the diseases they have were diagnosed by doctors.

Strengths of this study included the fact that unlike other studies, this study was, to our knowledge, one of the very few that have investigated the associations of BMI and WC with ADL disability among the oldest old. Furthermore, we studied a large sample of oldest old from a developing country. We used GAM models to explore the relationship of BMI/WC with ADL disability, thereby avoiding the assumption of a linear association among them in the absence of evidence. In addition, we conducted the analyses separately by sex, helping to shed light on gender differences in the obesity–disability relationship.

In summary, this study showed that high levels of BMI and WC were associated with ADL disability in the male oldest old, whereas very low level of BMI and WC were associated with ADL disability among females. More longitudinal studies should be conducted to elucidate the possible mechanism underlying these associations. These results also suggested that gender differences should be considered in programs to prevent ADL disability among the oldest old.

© 2014 The Obesity Society

References

1. World Health Organization. Disability and rehabilitation. Geneva, Switzerland: World Health Organization; 2009; Available at: http://www.who.int/disabilities/en/, last accessed on July 16, 2009.
2. Backholer K, Pasupathi K, Wong E, Hodge A, Stevenson C, Peeters A. The relationship between body mass index prior to old age and disability in old age. Int J Obes (Lond) 2012;36:1180-1186.
3. Al Snih S, Graham JE, Kuo YF, Goodwin JS, Markides KS, Ottenbacher KJ. Obesity and Disability: Relation Among Older Adults Living in Latin America and the Caribbean. Am J Epidemiol 2010;171:1282-1288.
4. Larrieu S, Péris K, Letenneur L, Berr C, Dartigues JF, Ritchie K, et al. Relationship between body mass index and different domains of disability in older persons: the 3C study. Int J Obes Relat Metab Disord 2004;28:1555-1560.
5. Jenkins KR. Obesity’s Effects on the Onset of Functional Impairment Among Older Adults. Gerontologist 2004;44:206-216.
6. Angleman SB, Harris TB, Melzer D. The role of waist circumference in predicting disability in periretirement age adults. Int J Obes (Lond) 2006;30:364-373.
7. Chen H, Guo X. Obesity and functional disability in elderly Americans. J Am Geriatr Soc 2008;56:689-694.
8. Nam S, Kuo YF, Markides KS, Al Snih S. Waist circumference (WC), body mass index (BMI), and disability among older adults in Latin American and the Caribbean (LAC). Arch Gerontol Geriatr 2012;55:e40-47.
9. Houston DK, Stevens J, Cai J. Abdominal fat distribution and functional limitations and disability in a biracial cohort: the Atherosclerosis Risk in the communities study. Int J Obes (Lond) 2005;29:1457-1463.
10. Na YM, Park HA, Kang JH, et al. Obesity, Obesity Related Disease, and Disability. Korean J Fam Med 2011;32:412-422.
11. Guallar-Castillo P, Sagardui-Villamor J, Banegas JR, et al. Waist Circumference as a Predictor of Disability among Older Adults. Obesity (Silver Spring) 2007;15:233-244.
12. Tahany MG. Relative body weight and disability in older adults: Results from a national survey. J Aging Health 2010;22:403-418.
13. Dong HJ, Unosson M, Wressle E, Marcusson J. Health Consequences Associated with Being Overweight or Obese: A Swedish population-Based Study of 85-Year-Olds. J Am Geriatr Soc 2012;60:245-250.
14. Chen, H. Assessment of the quality of the cross-sectional data collected in the 2008-2009 wave of Chinese longitudinal healthy longevity survey. In: Zeng Y, ed. Research on Elderly Population, Family, Health and Care Needs/Costs. Beijing, China: Science Press; 2010: 350-352.
15. Yi Zeng. Towards deeper research and better policy for healthy aging—using the unique data of Chinese Longitudinal Healthy Longevity Survey. China Economic J 2012;5:2-3,131-149.
16. Katz S., Ford AB, Moscovitz RW, Jackson BA, Jaffe MW. The index of ADL: A standardized measure of biological and psychosocial function. JAMA 1963;185:914-919.
17. Yin ZX, Shi XM, Kraus VB, et al. High normal plasma triglycerides are associated with preserved cognitive function in Chinese oldest old. Age Ageing 2012;41:600-606.
18. Zeng Y, Shen K. Resilience significantly contributes to Exceptional longevity. Curr Gerontol Geriatr Res 2010:2010:525693.
19. Folstein MF, Folstein ME, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12: 189-198.
20. Stratton RJ, Green CJ, Elia M. Evidence base for oral nutritional support. In: Stratton RJ, Green CJ, eds. Disease-Related Malnutrition: An Evidence-Based Approach to Treatment. Oxfordshire, UK: CABI Publishing; 2003:168-236.
21. Reynolds SL, McIvane JM. The impact of obesity and arthritis on active life expectancy in older Americans. Obesity (Silver Spring) 2009;17:363-369.
22. Backholer K, Wong E, Freak-Poli R, Walls HL, Peeters A. Increasing body weight and risk of limitations in activities of daily living: a systematic review and meta-analysis. Obes Rev 2012;13:456-468.
23. Armour BS, Courtney-Long EA, Campbell VA, Wethington HR. Disability prevalence among healthy weight, overweight, and obese adults. Obesity (Silver Spring) 2013;21:852-855.
24. Vincent HK, Vincent KR, Lamb KM. Obesity and mobility disability in the older adult. Obes Rev 2010;11:568-579.
25. Corceli P, Simoncini M, Rancourt D, Tremblay A, Teasdale N. Increased risk for falling associated with obesity: mathematical modeling of postural control. IEEE Trans Neural Syst Rehabil Eng 2001;9:126-136.
26. Mathieu P, Lemieux I, Després JP. Obesity, Inflammation, and Cardiovascular Risk. Clin Pharmacol Ther 2010;87:407-416.
27. Ferrucci L, Penninx BW, Volpato S, et al. Change in muscle strength explains accelerated decline of physical function in older women with high interleukin-6 serum levels. J Am Geriatr Soc 2002;50:1947-1954.
28. Howard C, Ferrucci L, Sun K, et al. Oxidative protein damage is as soicated with poor grip strength among older women living in the community. J Appl Physiol 2007;103:17-20.
29. Hubbard RE, Woodhouse KW. Frailty, inflammation and the elderly. Biogerontology 2010;11:635-641.
30. Brinkley TE, Leng X, Miller ME, Kittzman DW, Pahor M, Berry MJ, et al. Chronic inflammation is associated with low physical function in older adults across multiple comorbidities. J Gerontol A Biol Sci Med Sci 2009;64:455-461.
31. Manandhar MC. Functional ability and nutritional status of free living elderly people. *Proc Nutr Soc* 1995;54:677-691.

32. Tanaka S, Kuroda T, Saito M, Shiraki M. Overweight/obesity and underweight are both risk factors for osteoporotic fractures at different sites in Japanese postmenopausal women. *Osteoporos Int* 2013;24:69-76.

33. Honda A, Tanabe N, Seki N, Ogawa Y, Suzuki H. Underweight/overweight and the risk of long-term care: Follow-up study using data of the Japanese long-term care insurance system. *Geriatr Gerontol Int* 2014;14:328-335.

34. Crimmins EM, Kim JK, Solé-Auró A. Gender differences in health: results from SHARE, ELSA and HRS. *Eur J Public Health* 2011;21:81-91.

35. Merrill SS, Seeman TE, Kasl SV, Berkman LF. Gender differences in the comparison of self-reported disability and performance measures. *J Gerontol A Biol Sci Med Sci* 1997;52:M19-M26.

36. Power ML, Schulkin J. Sex differences in fat storage, fat metabolism, and the health risks from obesity: possible evolutionary origins. *Br J Nutr* 2008;99:931-940.

37. Lemieux S, Prud’homme D, Bouchard C, Tremblay A, Després JP. Sex differences in the relation of visceral adipose tissue accumulation to total body fatness. *Am J Clin Nutr* 1993;58:463-467.

38. Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. *Obes Rev* 2010;11:11-18.

39. Dixon-Ibarra A, Hornor-Johnson W. Disability status as an antecedent to chronic conditions: National Health Interview Survey, 2006-2012. *Prev Chronic Dis* 2014;11:130251. DOI: http://dx.doi.org/10.5888/pcd11.130251.

40. Yamaki K. Body weight status among adults with intellectual disability in the community. *Ment Retard* 2005;43:1-10.