Mucinous differentiation features associated with hormonal escape in a human prostate cancer xenograft

M-E Legrier1, G de Pinieux2, K Boyé1, F Arvelo1, J-G Judde3, J-J Fontaine4, J Bara5 and M-F Poupon*,1

1Institut Curie, Section de Recherche, FRE2584 CNRS, France; 2Hôpital Cochin, Anatomie Pathologique, Paris, France; 3Institut Curie, Section Médicale, 26 rue d’Ulm, Paris 75248, France; 4Ecole Nationale Vétérinaire, Service d’Anatomie Pathologique, 7 av du Général de Gaulle, Maisons Alfort cedex 94704, France; 5Hôpital Saint-Antoine, U-482 INSERM, 184 rue du Faubourg St-Antoine, Paris 75012, France

Many theories mention hypersensitive, promiscuous, outlaw or bypass signalling pathways to explain the acquisition of hormone independence in prostate cancer. Hormonal escape of prostate tumours is marked by many biological changes, including mucinous and neuroendocrine differentiation. Since expression of several mucins has been linked to carcinoma tumour progression, we have characterised the expression of mucins at both RNA and protein levels in an in vivo model of prostate cancer in hormonal escape. Using PAC120, a xenograft of a human hormone-dependent prostate tumour, and its hormone-independent variants, we analysed the expression of mucins (MUC1, MUC2, MUC4, MUC5AC, MUC5B, MUC6) by immunohistochemistry or reverse transcriptase (RT)–PCR. While the parental PAC120 tumour was a compact poorly-differentiated tumour of Gleason score 9 (5 + 4), hormone-independent variants displayed mucinous, neuroendocrine-like or mixed histological changes; these changes were stable through serial transplantations or after testosterone supply. MUC1 mRNA was expressed in both PAC120 and the hormone-independent variants, although at variable levels. All tumours displayed a high and constant expression of MUC2 and no expression of MUC4 mRNA. While MUC1 was expressed in all xenografts whatever their hormone dependence status, MUC2, MUC5B and MUC6 were preferentially expressed in hormone-independent variants. The loss of hormone dependence in this prostate cancer xenograft model is therefore marked by irreversible histological alterations, mucinous or neuro-endocrine, associated with an expression of secretory MUC2, MUC5B and MUC6, independent of the histological differentiation subtype. These data point to mucinous differentiation as an important step in the acquisition of hormone independence in this cancer, and suggest that secretory mucins might participate in an unknown pathway of hormonal escape in prostate cancer.

British Journal of Cancer (2004) 90, 720–727. doi:10.1038/sj.bjc.6601570 www.bjcancer.com

© 2004 Cancer Research UK

Keywords: prostate cancer; hormone independence; morphological differentiation; mucins

Androgen deprivation therapy has been used for decades in the treatment of prostate cancer (Huggins, 1967). However, although this treatment is initially very effective in these hormone-dependent cancers, they invariably become hormone-refractory and metastasise, leading to the death of patients. Recently, Feldman and Feldman (2001) reviewed possible mechanisms by which prostate cancer can escape androgen deprivation therapy. While the androgen receptor (AR) is activated by testosterone-induced phosphorylation in hormone-dependent prostate tumours, hormone-independent growth might be due to the activation of AR via a phosphorylation event induced by other growth factor receptors, such as HER1 (EGFR) and HER2 (Her2/neu) (Kwong and Hung, 1998; Yeh et al, 1999). In addition, several recent studies have linked the IGF-1 receptor pathway to the stimulation of the androgen-signalling pathway in hormone-refractory prostate cancer (Culig et al, 1994; Bubendorf et al, 1999). Hormone-independent growth of prostate tumours has also been associated with biological changes such as mucinous and neuroendocrine differentiation. Neuroendocrine differentiation has been observed in prostate cancer and has been correlated with tumoural aggressiveness, short survival and poor response to endocrine therapy (McWilliam et al, 1997), and was considered to be an early marker of progression toward hormone independence (Cohen et al, 1991; Di Sant’Agnese and Cockett, 1996; Noordzij et al, 1996). Although true mucinous or colloid prostatic adenocarcinoma, with extensive mucin production, remains a rare entity (Epstein and Lieberman, 1985; Nagakura et al, 1993), a total of 19 different mucin genes (MUC1–MUC4, MUC5B, MUC5AC, MUC6–MUC18) have been identified to date and divided into two groups: those coding for membranous mucins such as MUC1, MUC3 and MUC4, and those coding for secreted mucins such as MUC2, MUC5AC, MUC5B and MUC6. Secreted mucins are glycoproteins constituting the major macromolecular component of mucus, while membrane-associated mucins contribute to epithelial cell–cell interactions. Their pattern of expression, especially for the secreted mucins, appears to be relatively tissue-specific. However, the distribution and type of mucin produced by normal prostatic tissue and prostatic carcinomas are not well documented (Daher et al, 1990), though
focal mucin production in conventional prostatic adenocarcino-
mas has been recognised for many years (Pinder and McMahon,
1990). Mucin expression has also been observed in a few cases of
prostatic intraepithelial neoplasia (PIN) (Sentinelli, 1993).

MUC1, designated also as the CA19.9 marker, is frequently
expressed in many types of cancer (Chu and Chang, 1999), and was
found to be highly expressed in normal prostatic glandular tissue
and in prostatic adenocarcinoma (Ho et al, 1993). Its detection in
the blood is a good indicator of the presence and burden of the
tumour, but its biological role in cancer is poorly understood. In a
recent study, its expression was detected in 94% of prostate
tumours examined, and the intensity of the cytoplasm staining was
significantly correlated with the tumour grade and stage (Kirschenbaum
et al, 1999). MUC2 is not expressed in any
prostatic tissues (Ho et al, 1993), but in the majority of colon
adenocarcinomas, particularly those of colloid type (Hanksi et al,
1997). MUC5AC is highly expressed in normal prostatic glandular
tissue (Daher et al, 1990) and in colon adenocarcinomas (Bara et al,
1991), while MUC4, MUC5B and MUC6 are not expressed in
prostatic glandular tissue.

In this study, we have used a xenograft model of human prostate
cancer to explore the changes in histology and mucin expression
patterns occurring during the progression to hormone indepen-
dence. PAC120 is a human prostate cancer xenograft obtained by
urethral resection of a recurrent prostate cancer, and direct
subcutaneous engraftment into nude mice (de Pinieux et al, 2001).
PAC120 is androgen-responsive, but recurs as hormone-refractory
disease following transplantation in castrated mice. We have
compared the hormone-responsive PAC120 parental tumour with
several independently obtained hormone-refractory tumour var-
iants for their mucinous and neuroendocrine histological compo-
nents, and analysed the relationship between these phenotypic
changes and the expression of mucins at the RNA and protein
levels.

MATERIALS AND METHODS

Prostate tumour xenografts

All the experiments were realised in vivo and have been carried out
with ethical committee approval, and meet the standards required
by the UKCCR guidelines (Workman et al, 1998).

The parental tumour PAC120, a hormone-dependent human prostate
cancer xenograft transplantable into nude mice, was
established in our laboratory (de Pinieux et al, 2001). The original
PAC120 tumour appeared 7 months after grafting, and was
maintained by serial transplantation during several passages
(p4 – p29) by subcutaneous implantation of tumour fragments. We have
compared the hormone-responsive PAC120 parental tumour with
several independently obtained hormone-refractory tumour var-
iants for their mucinous and neuroendocrine histological compo-
nents, and analysed the relationship between these phenotypic
changes and the expression of mucins at the RNA and protein
levels.

Table 1 Immunoreagents used in the immunohistochemical analysis

Reagent	Source	Dilution	Positive control
Anti-MUC1 (monoclonal H23)	Transgene (Strasbourg, France)	1 : 100	Breast cancer
Anti-MUC1 (monoclonal MB)	A gift from S Gendler (Gendler and Spicer, 1995)	1 : 10	Gastric mucosa
Anti-MUC2 (polyclonal Lum 2 – 3)	I Carstedt	1 : 1000	Colonic mucosa
Anti-MUC5B (monoclonal EU1)	D Swallow	1 : 10	Bronchial epithelium
Anti-MUC5B (polyclonal Lum SB-2)	I Carstedt	1 : 1000	Gastric mucosa
Anti-MUC5AC (monoclonal 21M1)	A gift from J Bara (Daher et al, 1990)	1 : 10	Gastric mucosa
Anti-MUC6 (monoclonal F8)	P Real	1 : 10	Gastric mucosa

Experimental Therapeutics

© 2004 Cancer Research UK

British Journal of Cancer (2004) **90**(3), 720 – 727

Mucins in hormone-independent prostate cancer

M-E Legrier et al

months for HID25, HID28, HID33, respectively, and 12 months for
the four later variants HID16, HID19, HID34 and HID35. Delays
before the second passage in precastrated males were between 3
and 6 months. One variant, HID28, was transplanted into both
castrated and unastrated male mice.

Immunohistochemical studies

Two PAC120 tumour samples (passages p4 and p20) and the seven HID tumours were removed from mice and immediately
fixed in a 95% ethanol solution for immunohistochemical studies of
MUC1, MUC2, MUC5AC (Daher et al, 1990), MUC5B and
MUC6 expression; this fixation is known to protect the integrity
of mucin epitopes. All tumour samples were screened for
mucin production with alcian blue (pH 2.5) and periodic acid
Schiff stains. The antibodies used for immunohistochemical
(IHC) studies, their sources and dilutions are listed in Table 1.
Tissues employed as positive controls are indicated in the
same table.

Standard immunohistochemistry by avidin–biotin complex
(ABC) immunoperoxidase technique was done as follows. Paraf-
fin-embedded sections, 4-μm thick, were used for light microscopy
examination after haematoxylin–eosin–safran (HES) staining,
and for immunohistochemistry. Immunohistochemical study of
MUC1, MUC2, MUC5B, MUC5AC and MUC6 mucin expression
was performed on all tumour samples.

Immunostaining was performed on sections, mounted onto
silane coated slides, air dried, deparaffinised in xylene and
rehydrated. Slides were washed three times in phosphate-buffered
saline (PBS, pH 7.4) between each incubation step of the
procedures. Endogenous peroxidase activity was blocked by
incubation of samples in 0.3% hydrogen peroxide in methanol
for 30 min. Tissue slides were microwaved in 0.01 M sodium citrate
buffer (pH 6) near boiling for 20 min, and cooled for 30 min in the
buffer before incubation with the primary antibodies. Sections
were then incubated with normal serum (1 : 20 in PBS) for 20 min
to block nonspecific serum-binding sites. Primary antibodies were
incubated on tissue sections at room temperature for 1 h. After
incubation with a biotinylated secondary antibody, the immuno-
histochemical reaction was visualised using ABC (Vectastain Elite
kit, Vector Laboratories, Burlingame, CA, USA) with the chromo-
gen amino-ethylcarbazol (AEC). Sections were counterstained by
Mayer’s haematein solution. In each case, appropriate positive and
negative controls were tested simultaneously. Staining intensity
was assessed semiquantitatively as 0 (negative), + (weak to
moderate) and + + (strong). The pattern distribution of staining
was focal (F) or diffuse (D).

Detection of mRNA transcripts by reverse transcriptase (RT) – PCR

Xenograft samples were harvested 6 – 8 weeks after grafting and
snap-frozen in liquid nitrogen for subsequent RNA extraction.
RNA was prepared using a commercially available kit (Trizol,
Invitrogen, Gercy Pontoise, France). RNA quality was confirmed
Mucins in hormone-independent prostate cancer

M-E Legrier et al

by gel electrophoresis and ethidium bromide staining, or by RNA 6000 Assay (Agilent Technologies, 2100 Bioanalyzer, Massy, France). Reverse transcription of RNA was performed in a final volume of 20 μl containing 5 × RT buffer (Invitrogen), 100 mM DTT, 200 ng ml−1 oligoDT, 2.5 mM dNTP and 200 units1−1 of reverse transcriptase. The samples were incubated at 42 °C for 1 h, and then kept frozen until use. A measure of 100 ng of cDNA was used for each PCR reaction. PCR amplification was performed using human tubulin-β2 primers as control, and MUC1, MUC2 and MUC4 primers (Table 2). The thermal cycling conditions comprised 40 cycles at 94 °C for 1 min, 60 °C for 1 min and 72 °C for 1 min.

For real-time RT–PCR, RT of RNA was realised by random priming (cDNA cycle Kit, Invitrogen). Primers for the MUC1 mRNA were designed with the Primer Express (ABI, Les Ulysses, France) and ClustalX softwares. We conducted BLASTN searches to confirm the gene specificity of the nucleotide sequences chosen (Table 3). To avoid amplification of contaminating genomic DNA, one of the two primers was placed across a splice junction. QPCR was performed using the qPCR™ Core Kit for Sybr™ Green I (Eurogentec, Seraing, Belgium) to quantify the MUC1 transcripts. DNAc (50 ng) was used for each PCR. The thermal cycling conditions comprised an initial denaturation step at 95 °C for 10 min and 45 cycles at 95 °C for 15 s and 60 °C for 1 min. Experiments were performed in triplicate for each data point. We quantified HPRT transcripts (human hypoxanthine phosphoribosyltransferase) as an endogenous RNA control, and each sample was normalised on the basis of its HPRT content. Biologically significant variations were defined for genes with a ratio ≥2.

RESULTS

Histological features of PAC120 and HID tumour xenografts

The histological features of PAC120 xenografts were those of a poorly differentiated, Gleason score 9 (5 + 4), conventional prostate adenocarcinoma, without any evidence of mucus secretion. PAC120 reproduced the morphological and biological characteristics of the original tumour as published (de Pinieux et al, 2001), with a compact, lobular pattern and sparse gland lumens Figure 1A). During serial transplantation, PAC120 displayed a very stable morphology and histology (neither mucinous nor neuroendocrine differentiation were observed), and remained hormone-dependent for 29 passages over 7 years.

Castration of tumour-bearing hosts induced tumour growth arrest, followed by a decrease in tumour size. Tumours recurred after various prolonged delays, from 7 to 16 months. The recurrent tumours kept growing upon transplantation into castrated mice, confirming their hormone independence. Seven hormone-independent variants (HID) were obtained independently from PAC120. Compared to the parental hormone-dependent PAC120 tumour, HID5s displayed distinctive histological changes typical of advanced prostate cancer, such as mucinous, neuroendocrine-like or mixed differentiation features. Several tumours originating from the same variants were studied.

The histological pattern of HID28 (Figure 1B) and HID16 was close to that of PAC120, with few areas exhibiting a neuroendocrine-type pattern (Figure 1C) or mucinous areas. Growth of HID28 tumours in intact animals did not alter tumour morphology, although their growth was accelerated (de Pinieux et al, 2001). HID25 contained principally signet-ring cells (Figure 1D), while HID33 was mucinous. HID19 consisted of a clear-cut juxtaposition of areas of compact poorly differentiated carcinoma and mucinous adenocarcinoma. In HID19, the less-differentiated tumoural component showed pleomorphic tumour cells arranged in large sheets, without glandular differentiation. HID34 and HID35 tumours exhibited focal areas, with a morphological pattern associating neuroendocrine-type with mucinous areas. The histological patterns of these different tumour variants are summarised in Table 4. Four of the seven HID variants presented a dominant neuroendocrine differentiation and five a dominant mucinous phenotype. In all cases, the mucinous tumours contained signet-ring cells, extracellular mucin lakes (colloid carcinoma areas) and glandular structures delimited by a layer of mucin-secreting tumour cells. Intra- and extracellular mucin stained positively for alcin blue pH 2.5 (Figure 2A) and periodic acid Schiff.

Immunohistochemical detection of mucins

MUC1 was detected in PAC120 tumours, the anti-MUC1 antibody staining focally the cytoplasm of 10–20% of tumour cells (Figure 2B). The anti-MUC2 and anti-MUC5AC antibodies stained

Table 2 Primers used for the study of mucin genes by RT–PCR.

Genes	Primers 5′ → 3′	Position	bp	GENBANK Accession no
MUC1	S:ACTCTGTGATACTCCTACCACCCCTTG	830–853	406	X52228
	AS:GATAGCAGACGCTCAAGCTTTA	1235–1212		
MUC2	S:CTGACACCCAGACTGCTGGAGCTTTG	15291–15312	401	L21998
	AS:GCAAGAAGCTCAAGAAAGATCTCAAGAC	15667–15699		
MUC4	S:CGCGGTGGTGGAGGCGCTCTTTT	3094–3114	596	A24246
	AS:GAAATCTCTGCAGCCCTTCAG	3670–3690		
Tubulin-β2	S:CGAAAGCTCTCTACGAGTTT	669–688	489	NM 006088
	AS:GAAATTGCGGGCAGCAATTTTAG	1139–1158		

Table 3 Primers used for the study of the MUC1 gene by real-time RT–PCR.

Genes	Primers 5′ → 3′	Position	bp	GENBANK Accession no
HPRT	S: GCTTTCTTGGTCAGGAGCTTAA	523–546	141	NM 000194
	AS: AAGGGCATATCCTACAACAAACTT	641–664		
MUC1	S: CTCTGCTCTGCTGCTGCTCCTT	22–44	95	NM 002456
	AS: AGCCAGACTCTCCTTTCTTCCA	96–117		
the cytoplasm of very few tumour cells in the compact areas (data not shown). Anti-MUC5B and anti-MUC6 antibodies did not stain PAC120 tumours (data not shown). It should be emphasised that staining of mucins by the selected antibodies was strictly dependent on the tissue-fixation method, as we used a 95% ethanol solution, a technical published by one of us (Daher et al., 1990).

In the HID variants, MUC1 was expressed focally with cytoplasm positivity in HID16, HID19, HID33, or membrane positivity in HID19, HID25, HID28, and in the neuroendocrine-type tumour

Table 4 Expression patterns of mucins in xenografts of PAC120 prostate adenocarcinoma and of its HID variants (Immunohistochemistry detection)

Tumours	Histological pattern	MUC1	MUC2	MUC5AC	MUC5B	MUC6
PAC120	Compact area	++\(^{a,b,c}\)	+\(^{b,c}\)	+\(^{b,c}\)	0	0
	Mixed\(^d\)					
HID16	Compact area	++\(^{a,b,c}\)	+\(^{b,c}\)	0	0	0
	Neuroendocrine area					
HID28	Compact area	+\(^{b,c}\)	+\(^{b,c}\)	0	0	0
	Neuroendocrine area	0	+\(^{f,g}\)	0	+\(^{f}\)	+\(^{f}\)
HID25	Mucinous area	+\(^{a,e}\)	+\(^{f,g}\)	0	+\(^{f}\)	+\(^{f}\)
HID33	Mucinous area	+\(^{a,e}\)	+\(^{b,c}\)	0	0	0
HID34	Compact area	+\(^{a,b,c}\)	0	0	0	0
	Mucinous area	+\(^{a,e}\)	+\(^{f,g}\)	0	+\(^{f}\)	+\(^{f}\)
HID35	Neuroendocrine area	++\(^{a,c}\)	0	0	0	0
	Mucinous area	0	+\(^{f,g}\)	0	+\(^{f}\)	+\(^{f}\)

Staining intensity: 0: negative; +: low to moderate; ++: strong; Immunostaining: \(^{a}\) focal; \(^{b}\) cytoplasmic; \(^{c}\) tumour samples exhibiting different patterns of differentiation with or without testosterone support; \(^{d}\) membranous; \(^{e}\) signet-ring cells; \(^{f}\) extracellular mucin lakes.
Mucins in hormone-independent prostate cancer

M-E Legrier et al.

British Journal of Cancer (2004) 90(3), 720 – 727

© 2004 Cancer Research UK

Figure 2 Expression patterns of different mucins in xenografts PAC120 and HID variants by immunohistochemistry. (A) Alcian blue pH 2.5 in HID-19: signet-ring cells staining positively (HES × 400). (B) MUC1 expression in PAC120: cytoplasmic immunostaining in a fraction of the tumour cells (HES × 400). (C) MUC1 expression in HID25: scattered tumour cells staining positively for MUC1 with a cytoplasmic pattern (HES × 400). (D) MUC2 expression in PAC120 p4: rare tumour cells exhibiting cytoplasmic staining (HES × 400). (E) MUC2 expression in HID16: rare tumour cells exhibiting cytoplasmic staining (HES × 100). (F) MUC2 expression in HID25: uniform and strong intracytoplasmic positivity of signet-ring cells (HES × 100). (G) MUC6 expression in HID35, mucinous areas: strong staining of extracellular mucin lakes (HES × 100). (H) MUC5B expression in HID19, mucinous areas: strong staining of extracellular mucin lakes (HES × 100).

foci of HID16, HID34 and HID35. MUC1 immunoreactivity was observed at the apex of occasional tumour cells delimiting mucosecreting glandular tubes in HID25 (Figure 2C) and in HID19 tumours. MUC1 and MUC2 mucins were not simultaneously expressed in tumour cells. Anti-MUC2 antibodies stained rare tumour cells in PAC120 p4 (Figure 2D) and in HID16 (Figure 2E), HID28 and HID33, while signet-ring cells were uniformly stained in HID25 (Figure 2F) and in the other HID variants. Extracellular mucin lakes were strongly stained by the anti-MUC2 and anti-MUC6 antibodies (Figure 2G), and weakly stained at the apex of rare tumour cells in HID16 (Figure 2H).
by the anti-MUC5B antibodies (Figure 2H). MUC5AC mucin was not expressed in the HID xenografts. There was no significant modification in mucin expression between HID28 tumours with or without testosterone supply. Colorectal mucosa was used as positive controls for MUC2, gastric mucosa for MUC1, MUC5AC, MUC6 and bronchial mucosa for MUC5B (Table 1). MUC2 was not detected in normal prostate tissue, except in cells derived from the duct utriculum (data not shown). The immunohistochemical localisation of different mucins is reported in Table 4.

DISCUSSION

Tumour escape from hormone deprivation therapy is a major obstacle in the clinical management of prostate cancer. However, the biological basis of the acquisition of hormone independence by these tumours is still poorly understood. This is in part due to the difficulty in obtaining clinical samples at the various stages of prostate tumour progression, and also to the fact that only a few experimental systems are amenable to the study of prostate cancer hormonal escape (Nagabhushan et al, 1996).

PAC120 is a hormone-dependent poorly differentiated prostate adenocarcinoma xenograft that displayed no major morphological changes along successive transplantations (passages p4–p29), and from which several distinct HID variants have been obtained in vivo (de Pinieux et al, 2001). It is noteworthy that the hormone-dependent phenotype of PAC120 was consistently maintained for 7 years. Morphological changes appeared as a consequence of hormonal escape after surgical castration. HID tumour variants presented three different phenotypes: neuroendocrine, mucinous or mixed. The neuroendocrine type was characterised by tumour cells arranged in large tumoural cords intermingled in a conjunctiva-vascular stroma. The mucinous differentiation associates glandular structures delimited by a layer of mucin-secreting prostate xenografts, according to the semiquantitative RT–PCR results. Analysis of real-time PCR data showed that MUC1 expression decreased when HID28 grew in intact animals, that is, with testosterone support.
tumour cells, extracellular mucin lakes and independent signet-ring cells. In HID variants, the neuroendocrine tumours presenting a variable contingent of neuroendocrine areas (four out of seven) and the mucinous variants (five out of seven) were frequent and stable during successive passages. Some variants presented as poorly differentiated adenocarcinomas, as observed in the parental PAC120 tumour.

The significance of these morphological changes remains unknown, though they must be somehow related to tissue suffering and survival as a consequence of hormone deprivation. Neuroendocrine and mucinous differentiation appeared in almost all HID variants, with a predominance of one phenotype but frequently mixed, as if a superior degree of tumour heterogeneity was reached by chromosomal instability. In this study, we focused on the analysis of the changes in the mucin expression pattern associated with the acquisition of hormone independence. Mucin expression in adenocarcinomas is recognised as characteristic of advanced tumoural stage, especially in prostate and breast cancers. Production of focal mucus, detected by histochemistry, was observed in 43–61% of prostatic adenocarcinomas (Ro et al., 1988; Pinder and McMahon, 1990). A true mucinious differentiation, involving more than 50% of tumour cells, is rare and is a marker of poor prognosis (Pinder and McMahon, 1990). In colon and breast adenocarcinomas, expression of mucins was also associated with a low survival rate (Nakamori et al., 1994; McCuickin et al., 1995). Mucin expression may contribute to cancer cell survival during tumour progression and hypoxic conditions found at advanced tumour stages. Although mucinous differentiation has been observed in patients with advanced stage prostate cancer (Ro et al., 1988; Pinder and McMahon, 1990), this was the first observation of such changes being directly related to hormone deprivation and the acquisition of hormone independence.

Human mucin genes constitute a family of 19 glycoproteins, which can be divided into two groups: membrane-bound mucins (MUC1, MUC3 and MUC4) and secreted mucins (MUC2, MUC5AC, MUC5B and MUC6). The expression profile of mucins differs according to the glandular tissue type. Mucins are encoded by genes located on distinct chromosomes; MUC1, MUC3, MUC4, MUC7, MUC8 are located on chromosome 1, 7, 3, 4, 12, respectively, while MUC2, MUC5AC, MUC5B, MUC6 are clustered in chromosome 11p15. Expression of membrane-bound mucins MUC1 and MUC4 was analysed in our model. MUC1 mRNA was detected in PAC120 xenografts, although at variable levels and regardless of the morphological pattern. By immunohistochemistry, the expression profile of MUC1 in the hormone-independent poorly differentiated, neuroendocrine and mucosecreting subtypes was similar to that of hormone-dependent tumours. A focal and intracytoplasmic MUC1 immunostaining was observed in 10–20% of tumour cells. There was no quantitative relationship between the MUC1 mRNA and protein expression level. A hypothesis was that HID cells displayed an adaptation to the environmental conditions, which implicated the activation of some genes that HID cells displayed an adaptation to the environmental conditions, which implicated the activation of some genes that acquisition by tumour cells of a mucinous phenotype belongs to a pathway of hormonal escape in prostate cancer. Mucosecreting cells positive for MUC5AC were present in the Cowper’s glands and prostatic urethral epithelium near the uriculum (Dashe et al., 1990). Anti-MUC5AC antibodies stained the cytoplasm of rare cells in PAC120 and did not stain HID variants. MUC5B and MUC6 were detected in the mucin lakes of mucinous differentiated variants. So, these secreted mucins were independently secreted and expressed in a cell type-specific manner. Overall, MUC2, MUC5B and MUC6 were associated with mucinous morphology, and were expressed in HID prostate tumour variants. These three mucins are encoded by genes colocalized in the chromosome 11p15. Their de novo expression seemed to be concomitant, suggesting either an amplification of this region or a deregulated expression, which lends further support to the possibility that these mucins are involved in hormonal escape. Mucin secretion may affect interactions with the extracellular environment, which could directly or indirectly influence proliferation and/or apoptosis of prostate cancer cells. Additionally, secreted mucins may directly affect tumour cell behaviour through interactions with membrane components. Indeed, a recent study revealed the role of MUC5AC, MUC1 and proteoglycans in the inhibition of E-cadherin function associated with invasiveness of HT-29 colon adenocarcinoma cell variants (Truant et al., 2003). We are currently investigating the link between the expression of secreted mucins, E-cadherin function and perturbations of the androgen receptor signalling pathway in hormone-independent prostate tumours.

In conclusion, the loss of hormone dependence in this prostate cancer xenograft model is marked by irreversible
histological alterations, mucinous or neuroendocrine, that are associated with a constant increase in the expression of secretory MUC2, MUC5B and MUC6, which might participate in an unknown pathway of hormone escape in prostate cancer. These data point to mucinous differentiation as an important step in the acquisition of hormone independence in prostate cancer.

REFERENCES

Bara J, Gautier R, Mouradian P, Decaens C, Daher N (1991) Oncofetal mucin M1 epitope family: characterization and expression during colonic carcinogenesis. Int J Cancer 47: 304 – 310

Bubendorf L, Kolmer M, Kononen J, Kuvisto P, Mousses S, Chen Y, Mahlamaki E, Schraml P, Moch H, Willi N, Elkahelou AG, Pretlow TG, Gasser TC, Mihatsch MJ, Sauter G, Kallioniemi OP (1999) Hormone therapy failure in human prostate cancer: analysis by complementary DNA and tissue microarrays. J Natl Cancer Inst 91: 1758 – 1764

Carraway KL, Ramsauer VP, Haq B, Carothers Caraway CA (2002) Cell signaling through membrane mucins. Bioscys 25: 66 – 71

Chu JS, Chang KJ (1999) Mucin expression in mucinous carcinoma and other invasive carcinomas of the breast. Cancer Lett 142: 121 – 127

Cohen RJ, Gleeserson G, Hafiez Z (1991) Neuroendocrine cells – a new prognostic feature in prostate cancer. Br J Urol 68: 258 – 262

Copin MC, Buisman MP, Devisse L, Leroy X, Escande F, Bosselut A, Aubert JP, Porchet N (2001) Normal respiratory mucosa, precursor lesions and lung carcinomas: differential expression of human mucin genes. Front Biosci 6: D1264 – D1275

Dutrillaux B, Poupon MF (2001) Clinical and experimental progression of E-cadherin-mediated cell – cell adhesion by the membrane-associated cysteine-rich cell adhesion molecule EpCAM in MUC1 negative cell lines. Mol Immunol 38: 1063 – 1071

Epstein JI, Lieberman PH (1985) Mucinous adenocarcinoma of the prostate. Am J Clin Pathol 84: 65 – 71

Hanski C, Hofmeier M, Schmitt-Graff A, Riede E, Hanski ML, Borchard F, Chen Y, Moniaux N, Nollet S, Poirson-Bichat F, Courty Y, Bras-Goncalves R, Sentinelli S (1993) Mucins in prostatic intra-epithelial neoplasia and stage. Histopathology 23: 43 – 46

Kirschenbaum A, Itzkowitz SH, Wang JP, Yao S, Elashivili M, Levine AC (2001) MUC1 expression in prostate carcinoma: correlation with grade and stage. Mol Urol 3: 163 – 168

Lickert H, Bauer A, Klemler R, Stappert J (2000) Casein kinase II phosphorylation of E-cadherin increases E-cadherin/beta-catenin interaction and strengthens cell – cell adhesion. J Biol Chem 275: 5090 – 5095

M-C Legrier et al. (2004) Mucins in hormone-independent prostate cancer

ACKNOWLEDGEMENTS

This work was supported by the Association pour la Recherche sur les Tumeurs de Prostate (ARTP) and the Ligue contre le Cancer. We thank Severin Nollet for the research on mucins PCR in tumour samples and Vincent Bordier for his technical assistance in animal experimentation.