VRK2, a Candidate Gene for Psychiatric and Neurological Disorders

Ming Li¹,² Weihua Yue³,⁴

¹Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China; ²CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; ³Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; ⁴Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China

Keywords
VRK2 · Genome-wide association study · Schizophrenia · Major depressive disorder · Biological mechanism

Abstract
Recent large-scale genetic approaches, such as genome-wide association studies, have identified multiple genetic variations that contribute to the risk of mental illnesses, among which single nucleotide polymorphisms (SNPs) within or near the vaccinia related kinase 2 (VRK2) gene have gained consistent support for their correlations with multiple psychiatric and neurological disorders including schizophrenia (SCZ), major depressive disorder (MDD), and genetic generalized epilepsy. For instance, the genetic variant rs1518395 in VRK2 showed genome-wide significant associations with SCZ (35,476 cases and 46,839 controls, \(p = 3.43 \times 10^{-8}\)) and MDD (130,620 cases and 347,620 controls, \(p = 4.32 \times 10^{-12}\)) in European populations. This SNP was also genome-wide significantly associated with SCZ in Han Chinese population (12,083 cases and 24,097 controls, \(p = 3.78 \times 10^{-13}\)), and all associations were in the same direction of allelic effects. These studies highlight the potential roles of VRK2 in the central nervous system, and this gene therefore might be a good candidate to investigate the shared genetic and molecular basis between SCZ and MDD, as it is one of the few genes known to show genome-wide significant associations with both illnesses. Furthermore, the VRK2 gene was found to be involved in multiple other congenital deficits related to the malfunction of neurodevelopment, adding further support for the involvement of this gene in the pathogenesis of these neurological and psychiatric illnesses. While the precise function of VRK2 in these conditions remains unclear, preliminary evidence suggests that it may affect neuronal proliferation and migration via interacting with multiple essential signaling pathways involving other susceptibility genes/proteins for psychiatric disorders. Here, we have reviewed the recent progress of genetic and molecular studies of VRK2, with an emphasis on its role in psychiatric illnesses and neurological functions. We believe that attention to this important gene is necessary, and further investigations of VRK2 may provide hints into the underlying mechanisms of SCZ and MDD.
Introduction

Schizophrenia (SCZ) and major depressive disorder (MDD) are seriously disabling public health problems. The worldwide lifetime prevalence and incidence of SCZ are 0.30–0.66% and 10.2–22.0 per 100,000 person-years, respectively, if its diagnostic category is considered in isolation [1–3], and this illness shows strong heritability (around 0.80) based on previous twin and family studies [1, 4–6]. A previous review reported that MDD has a 12-month prevalence of 6.6% and a lifetime prevalence of 16.2% [7, 8]. Meanwhile, the lifetime incidence of MDD (broad definition) in the United States is more than 12% in men and 20% in women [8, 9]. MDD also shows substantial heritability (approx. 0.37) [9, 10] and polygenic inheritance [11, 12]. However, promising genetic risk candidates for SCZ and MDD had not been well implicated until the emergence of recent large-scale genome-wide association studies (GWAS) [13–21]. GWAS is believed to be an ideal approach for studying common genetic variations across the genome, given its key feature that no a priori hypotheses are established [22]. Indeed, GWAS of psychiatric disorders have led to the identification of multiple novel risk variants with known or unknown function relevant to the biology of illnesses [23–25], and substantial progress has been obtained toward understanding the genetic architecture and molecular pathogenesis (e.g., dendritic spine pathology) of these psychiatric disorders [26, 27].

Among the risk candidates discovered through SCZ and MDD GWAS studies [13–20], VRK2 (vaccinia-related kinase 2) is one of the few genes showing consistent genome-wide significant associations with both disorders. In addition, this gene has been implicated in a variety of neurological disorders, further supporting its potential roles in the central nervous system. However, despite strong genetic evidence and a relatively rudimentary understanding of the biological mechanisms of VRK2 in SCZ and MDD susceptibility, a systematic overview of existing evidence to depict the potential involvement and relevant biological mechanisms of this gene in these illnesses is lacking. Thus, we examined recent discoveries regarding the role of VRK2 in psychiatric and neurological disorders, including genetics, molecular biology, and neurophysiology to propose recommendations for future research.

Identification of VRK2 Variants in Psychiatric Disorders among World Populations

VRK2 was first implicated in psychiatric disorders by Stefansson et al. [28]. By conducting a GWAS study, the authors reported several risk polymorphisms conferring risk of SCZ in 47,536 European subjects [28]. The single nucleotide polymorphism (SNP) rs2312147, which is located in the intron 1 of VRK2 (Fig. 1a), was identified as a potential SCZ risk SNP \((p = 3.00 \times 10^{-7}) \), although it did not achieve conventional genome-wide significance (which is \(p = 5.00 \times 10^{-8} \)). Later, Steinberg et al. [29] confirmed the association between rs2312147 and SCZ in larger European samples \((n = 60,742, p = 1.9 \times 10^{-9}) \). Following these, the Irish Schizophrenia Genomics Consortium and the Welcome Trust Case Control Consortium 2 further replicated this significant association of rs2312147 and SCZ in a European GWAS [30]. These series of studies motivated researchers worldwide to pay attention to the genetic risk for SCZ conferred by VRK2 polymorphisms, and replication studies in populations other than Europeans were also conducted [31–33]. For example, Li et al. [34] replicated the association between rs2312147 and SCZ in independent Asian samples \((n = 6,565, p = 4.24 \times 10^{-4}) \). More recently, several meta-analytic studies have further confirmed the role of this SNP in the risk of SCZ in both East Asians and Europeans [35, 36]. In addition, in the recent PGC2 SCZ GWAS, rs2312147 again displayed genome-wide significance (35,476 cases and 46,839 controls, \(p = 2.02 \times 10^{-8}, \text{Fig. 2} \) [13]. These results are particularly intriguing as the effect sizes of rs2312147 for SCZ are similar between European and Asian populations, suggesting that it is likely an authentic risk variant for SCZ in general populations.

In addition to rs2312147, other SNPs in the VRK2 gene have also been found to be associated with SCZ in both East Asian and European populations. For example, in a recent SCZ GWAS in Han Chinese population, a genetic variant (rs1518395) in the intron 1 of VRK2 showed a genome-wide significant association in a total of 12,083

Fig. 1. a Schematic of mRNA structure of VRK2 isoforms and locations of representative SNPs. b mRNA expression of VRK2 isoforms in diverse human tissues and cells from GTEx dataset [44]. c mRNA expression of VRK2 gene in brain single-cell RNA-seq dataset (GSE67835) [84]. d Schematic of domain structure of predicted Vrk2 protein. The source of this figure was previous literature [104, 175]. SCZ, schizophrenia; MDD, major depressive disorder; GGE, genetic generalized epilepsy; OPC, oligodendrocyte progenitor cell.

(For figure see next page.)
VRK2 in Psychiatric and Neurological Disorders

Mol Neuropsychiatry 2018;4:119–133
DOI: 10.1159/000493941

Rank of VRK2 Expression in GSE67835
Hippocampus OPC
Cortex fetal-replicating
Cortex oligodendrocytes
Hippocampus microglia
Cortex endothelial
Hippocampus oligodendrocytes
Hippocampus endothelial
Cortex fetal-quiescent
Hippocampus hybrid
Cortex hybrid
Cortex neurons
Cortex astrocytes
Cortex OPC
Cortex microglia

| 1a1aa Vaccinia related kinase 2 |
| ATP-binding site |
| Kinase active site |
| Protein Kinase Domain |
| Phosphotyrosine |
| Phosphothreonine |
| Transmembrane domain |
| 508aa protein |

(rs2312147, rs1380703) Europeans, sleep duration, P=7.60×10⁻⁹
(rs1518395, rs13026414, rs2947349) Chinese, SCZ, P=1.12×10⁻¹²
(rs1051061, rs7596038) Europeans, SCZ, P=1.90×10⁻⁹
(rs13026414) Europeans, GGEs, P=9.99×10⁻⁹
(rs1051061) Europeans, GGEs, P=2.50×10⁻⁹
(rs13026414, rs1518395) Europeans, SCZ, P=1.15×10⁻¹⁰
(rs13026414, rs1518395) Europeans, SCZ, P=3.43×10⁻⁸
(rs13026414) Europeans, MDD, P=3.78×10⁻¹³

Color version available online.
cases and 24,097 controls \((p = 3.78 \times 10^{-13}, \ OR = 1.160 \) for G allele) [15]. This is one of the most significant SNPs for SCZ in Chinese, and this SNP was also genome-wide significantly associated with SCZ in European populations (35,476 cases and 46,839 controls, \(p = 3.43 \times 10^{-8}, \ OR = 1.061 \) for G allele, Fig. 2) [13]. More interestingly, in a recent GWAS of MDD in European populations (130,620 cases and 347,620 controls), rs1518395 again showed genome-wide significant associations with MDD \((p = 4.32 \times 10^{-12}, \ OR = 1.034 \) for G allele) [14], and the same allele of rs1518395 increased the risk of both SCZ and MDD, suggesting the involvement of the variant(s) in VRK2 in a broad spectrum of mood-psychosis conditions, at least in the European populations. More importantly, rs1518395 is also one of the few SNPs showing genome-wide significant associations with SCZ in both European and Chinese populations; such observations greatly enhance our understanding of the shared genetic basis of SCZ between populations. We retrieved the distributions of rs1518395 in 53 populations worldwide using the HGDP Selection Browser (http://hgdp.uchicago.edu/) [37–39], and its allelic frequencies between East Asians and Europeans were similar (Fig. 3). We then examined the linkage disequilibrium (LD) between rs1518395 and nearby SNPs in East Asian and European populations using the SNAP website (http://archive.broadinstitute.org/mpg/snap/ldplot.php) and identified sharp differences in the LD pattern of this genomic region between the two populations (Fig. 4). Briefly, there were more SNPs in high LD \((r^2 > 0.8) \) with rs1518395 in Europeans, and the linked SNPs spanned a wide region, while in East Asians, there were fewer SNPs in strong LD with rs1518395 covering a smaller genomic region (Fig. 4). Nevertheless, this trans-ethnic analysis added further evidence for the involvement of rs1518395 (or its LD SNPs) in the risk of psychiatric disorders.

Notably, rs1518395 and rs2312147 are in high LD \((r^2 = 1.000 \) in Europeans and \(r^2 = 0.876 \) in East Asians), and both SNPs are located in the noncoding region (Fig. 1a). Prior evidence has suggested that noncoding SNPs might exert their function by affecting gene expression levels [40–43], and we thus examined the associations of rs2312147 and rs1518395 with nearby gene expression using the existing expression quantitative trait loci (eQTL) datasets, such as GTEx [44], Braineac [45], and BrainCloud [46]. However, no significant associations were observed, and the potential impact of those risk SNPs is still unclear.

In addition to rs1518395 and rs2312147, several other SNPs in low to moderate LD in the VRK2 gene are also associated with SCZ. For instance, in the PGC2 GWAS of SCZ using samples mainly from European populations

![Fig. 2. Associations of VRK2 common variants with schizophrenia in PGC2 genome-wide association studies of European ancestry [13]. This figure was made using LocusZoom [176].](image-url)
[13], multiple genomic variants in low to high LD with rs1518395 showed genome-wide significant associations. Rs7596038, a SNP located 175 kb from rs1518395 and in moderate LD ($r^2 = 0.500$ in Europeans, and $r^2 = 0.288$ in East Asians) showed the strongest association with SCZ among VRK2 regions ($p = 1.15 \times 10^{-10}$, Fig. 2); rs7596038 is located in the intron region of VRK2 and is predicted to be nonfunctional through the epigenomic analyses using ENCODE data [47], but further studies are necessary to examine its functional impact. Furthermore, in a recent GWAS of SCZ in Han Chinese populations, Yu et al. [48] reported that rs1051061 ($r^2 = 0.224$ with rs1518395 in Europeans, $r^2 = 0.178$ with rs1518395 in East Asians) in an exon of VRK2 was genome-wide significantly associated with SCZ in a total of 8,723 cases and 12,813 controls ($p = 1.14 \times 10^{-12}$, see Fig. 1a). Although this SNP did not achieve genome-wide significance in European populations (35,476 cases and 46,839 controls, $p = 1.26 \times 10^{-6}$) [13], the same direction of allelic effects was observed in both Europeans and Chinese, further strengthening the link between VRK2 and SCZ. Overall, these data suggest that there are (at least partially) independent association signals for SCZ within VRK2 in global populations.

Additionally, the association between VRK2 and bipolar disorder (BPD) has also been implicated in a recent BPD GWAS conducted in European populations [49]. Briefly, an intergenic variant rs57681866 near VRK2, rather than the earlier reported SCZ-associated SNP rs1518395 (these two SNPs are 232.3 kb away from each other, and in low LD in Europeans [$r^2 = 0.001$]), showed genome-wide significant association ($p = 5.00 \times 10^{-8}$) with the illness in the discovery stage of this study (20,352 cases and 31,358 controls). However, the association between rs57681866 and BPD was not observed in the replication stage of this GWAS (9,412 cases and 137,760 controls) [49]. This leaves questions to be further investigated: Is VRK2 truly associated with BPD? Is the nonsignificant result during replication stage attributed to the limited sample size of BPD patients? Expanded analyses including more subjects might provide clues.

While the association of VRK2 with psychiatric disorders is supported by convincing evidence, the precise impacts of the risk SNPs on neuronal function and brain development remain unclear. Recent studies suggest that changes in regional brain structures and functions are core features of SCZ [50–54] and MDD [55–59], and neuroimaging approaches may provide clues into the underlying pathophysiology of these illnesses. In fact, it is proposed that there are intermediate phenotypes reflecting alterations in brain structure and function in psychiatric patients and their unaffected relatives compared to unrelated healthy individuals [60]. These intermediate phenotypes are assumed to involve the same biological pathways as the illness but to relate more closely.

Fig. 3. Global distributions of rs1518395 in 53 world populations from HGDP dataset [37–39].
to the effects of relevant genes [61–65]. Recent studies of several psychiatric candidate genes including ZNF804A [66–68] and CACNA1C [69–72] have already demonstrated the validity and reliability of this approach. We previously also analyzed the association between VRK2 SNPs and brain phenotypes related to psychiatric disorders [34] and found that the psychiatric risk allele [C] in rs2312147 was associated with reduced total brain volume and white matter volume in healthy individuals, which was in line with clinical characteristics in the brains of psychiatric patients compared with healthy controls [73]. This finding was further supported by Sohn et al. [74], as they reported significant differences in the white matter connectivity between rs2312147 CC and CT/TT genotype groups of SCZ patients for many brain regions. These data provided initial evidence for the effects of VRK2 on white matter development, and investigations dissecting the underlying biological mechanisms and etiological relevance in psychosis and mood disorders are necessary.

VRK2 and Genetic Generalized Epilepsies

In addition to SCZ and MDD, variants in VRK2 have been implicated in genetic generalized epilepsies (GGEs). GGEs have a lifetime prevalence of 0.3% [75] and account for 20–30% of all epilepsies [76]. In 2012, the EPICURE Consortium conducted a two-stage GWAS of 3,020 patients with GGEs and 3,954 controls of European ancestry.

![Fig. 4. Comparisons of rs1518395 LD SNPs between European and East Asian populations. This figure was obtained from the SNAP website.](image-url)
VRK2 and its interactions with other molecules, such as Erk [104, 105, 141, 142].

According to previous published studies regarding the function of VRK2 in the pathogenesis of psychiatric disorders, this figure was made according to previous published studies regarding the function of VRK2 and its interactions with other molecules, such as Erk [104, 105, 141, 142].

Deficits in neuronal phenotypes in brains of psychiatric patients

A hypothesized molecular mechanism for VRK2 in the pathogenesis of psychiatric disorders. This figure was made according to previous published studies regarding the function of VRK2 in the pathogenesis of psychiatric disorders. This figure was made according to previous published studies regarding the function of VRK2 and its interactions with other molecules, such as Erk [104, 105, 141, 142].

The involvement of the VRK2 gene in the genetic risk and heritability of psychiatric and neurological disorders calls for further characterization of its role in these illnesses. It is suggested that most genetic risk variants contribute to diseases via modulating mRNA expression of susceptible genes [40, 43, 79], and earlier studies have examined the mRNA expression of VRK2 in patients with psychiatric disorders. For instance, Tesli et al. [80] have measured VRK2 mRNA level in the whole blood of 652 European individuals (SCZ, n = 201; BPD, n = 167; psychosis not otherwise specified [PNOS], n = 61; healthy controls, n = 223) and analyzed the difference in expression levels (as stated in their study, “the probe used for measuring VRK2 expression was chosen so as to produce an aggregate measure of expression over all RefSeq transcripts”) across diagnostic categories and subcategories. They found that VRK2 mRNA levels differed significantly between the SCZ, BPD, PNOS, and control groups, and pairwise comparisons revealed significantly lower VRK2 mRNA levels in the SCZ group than in healthy controls [80]. Interestingly, they did not observe significant alteration of VRK2 mRNA levels in patients treated with antipsychotics, anticonvulsants, lithium, hypnotics, or psychostimulants [80]. In another study, the authors also compared the peripheral blood VRK2 gene expression (measuring the aggregate expression of all isoforms) in SCZ or epilepsy patients to that of normal subjects; the authors found significant downregulation of VRK2 mRNA levels in SCZ (p < 0.0001) and epilepsy (p = 0.008) compared with healthy individuals [81]. Collectively, these data suggest that lower VRK2 mRNA in the blood is likely an indicator (or a risk factor) of SCZ and epilepsy, presenting a potential opportunity for the future development of new biomarkers.

As shown in the Ensembl, VRK2 has two primary mRNA transcripts, longer transcript (ENST00000435505) with generally lower expression levels that is enriched in the brain, and a shorter transcript (ENST00000340157) that is widely expressed in nonbrain tissues at higher levels (these data have been retrieved from the GTEx dataset, Fig. 1b). Nevertheless, both isoforms encode the same protein. The hypothesis that SCZ and MDD are mental...
illnesses mostly originated from brain dysfunctions, and thus, it is of great interest to clarify whether mRNA levels of VRK2 in the brain tissues from psychiatric individuals exhibit alterations compared with healthy subjects. For this purpose, we performed analyses using data from the Stanley Medical Research Institute (SMRI) dataset (http://sncid.stanleyresearch.org/) [82]. Compared with healthy controls, VRK2 (aggregate expression of all isoforms) was not significantly altered in the dorsolateral prefrontal cortex region from the brains of patients with SCZ or MDD in this analysis. However, this result does not deny the putative involvement of VRK2 in these illnesses, as the gene may exert its effects in other brain regions such as the hippocampus and amygdala and might also undergo posttranscriptional modulations and thereby contribute to the pathogenesis of the illnesses. To this end, we examined the brain cell types in which the VRK2 was dominantly expressed using scRNAseqDB (https://bioinfo.uth.edu/scrnaseqdb/index.php), an online single-cell RNA-seq dataset [83]. In this dataset, we utilized the data from GSE67835 [84], which used single-cell RNA-seq on hundreds of cells to capture the cellular complexity at the whole-brain transcriptome level during different developmental stages. Intriguingly, VRK2 is abundantly expressed in the hippocampus oligodendrocyte progenitor cell (OPC), followed by cortex fetal-replicating, cortex oligodendrocytes, hippocampus microglia, and other cells, while this gene is weakly expressed in the cortex OPC and cortex microglia (Fig. 1c) [84]. These data suggest that the VRK2 may exert variable functions in different brain cell types.

VRK2 and Other Congenital Abnormalities

There has been a consensus that individuals with congenital developmental abnormalities are prone to develop psychiatric disorders later in life [85, 86], and the prevalence of major psychiatric illnesses in children with mental retardation is significantly higher than that in general populations [87–89]. Indeed, the etiological contribution of developmental deficits to psychiatric and neurological disorders including SCZ [50, 90], autism [91, 92], MDD [93, 94], and potentially BPD [95] have been recognized. A core mechanism underlying this neurodevelopmental hypothesis for psychiatric disorders is impaired brain development, which might also be manifested as a series of congenital abnormalities, such as microcephaly [96, 97] and intellectual disability [98]. In fact, several studies have examined the correlation between genetic variants affecting VRK2 and major developmental abnormalities and have revealed a potentially pivotal role for this gene in neurodevelopment.

Chandler et al. [99] reported a novel neurodevelopmental disorder characterized by “congenital microcephaly with severe failure of postnatal brain growth, neonatal onset of intractable seizures associated with lack of developmental progression and death within the first 3 years of life.” In a few cases, a homozygous deletion within the 2p16 region, which harbors the gene VRK2, was found to be associated with these phenotypes. Intriguingly, this region was later highlighted, respectively, in studies of idiopathic intellectual disability and other related developmental disorders by Rajcan-Separovic et al. [100] and de Leeuw et al. [101]. In their studies, deletions encompassing VRK2 within this genomic region were consistently identified in intellectually disabled individuals, suggesting a potential contribution by VRK2 to these phenotypes. However, whether VRK2 actually accounts for these developmental deficits remains to be clarified.

In addition to the aforementioned developmental problems, longitudinal studies have revealed a significant correlation between sleeping problems and behavioral and emotional abnormalities (including depression and anxiety) that develop later in life [102]. Interestingly, Jones et al. [103] found that two conditionally independent SNPs near the VRK2 gene, rs1380703 ($p = 7.6 \times 10^{-9}$, see Fig. 1a) and rs17190618 ($p = 1.2 \times 10^{-9}$), exhibited genome-wide significant associations with sleep duration using the self-reported chronotype data from 89,283 individuals of European ancestry, which were replicated in another 128,266 British individuals. These data have provided preliminary but enlightening evidence for the involvement of VRK2 in neurological activities and likely for brain function.

Functions of VRK2 in the Neurological System

While the genetic associations between variants in VRK2 and a variety of psychiatric and neurological conditions have been reported, the potential roles of VRK2 and its protein product, the vaccine-related serine/threonine kinase 2 (Vrk2), are largely unknown. However, studies analyzing their structure and function have been continuously progressing [104, 105] and have provided valuable implications for future investigations.

The VRK2 gene is located on human chromosome 2p16.1 and codes for a serine/threonine kinase of the ca-
VRK2 in Psychiatric and Neurological Disorders

While the exact mechanisms underlying the functions of VRK2 in cell proliferation and survival are not fully understood, it is suggested that VRK2 likely involves JIP1 (Fig. 5), a crucial mediator of neurite initiation and axon outgrowth in neuronal cells [115, 116]. Moreover, a previous study found that in the intracellular signaling pathways VRK2 is also an upstream modulator of Erk1/2 MAPK and CREB transcription factor [117], and activation of VRK2 will affect MEK-induced gene transcription through reducing phosphorylation of key proteins in the relevant pathways (Fig. 5) [115, 118]. Notably, both MAPK3 (encodes Erk1) [13, 119, 120] and CREBI [121, 122] are potentially involved in genetic susceptibility to SCZ, and CREB1 has also repeatedly been implicated in the genetic and molecular risk of BPD and MDD [123–126]. In a recent study, Jeong et al. showed that VRK2 directly interacts with dysbindin [113], a protein encoded by the important SCZ susceptibility gene DTNBP1 [127–130]. VRK2 could phosphorylate dysbindin, which will consequently enhance its ubiquitination and decrease protein stability [113]. Moreover, Hirata et al. [131] found that VRK2 interacts with Akt in the lysosomes, and the lysosomal VRK2-Akt complex controls cellular proliferation and mitochondrial outer-membrane stabilization in the process of autophagy. Intriguingly, AKTI is also one of the best candidate genes for SCZ [132–137]. Since the susceptibility genes/proteins of psychiatric disorders usually form a highly interconnected protein-protein interaction network and are enriched in specific pathways involved in brain function and neurodevelopment [138–140], these data collectively provide essential hints for the biological mechanisms underlying the genetic susceptibility to psychiatric disorders conferred by VRK2.

In addition to its pivotal roles in cell proliferation and neurodevelopment, VRK2 has been shown to participate in major posttranslational processes such as protein ubiquitination that could affect neurodegenerative disorders. For instance, Kim et al. [141] revealed that VRK2 controlled the stability of the eukaryotic chaperonin TRiC (TCP-1 Ring Complex – also known as CCT, for chaperonin containing TCP-1) by inhibiting the deubiquitinating enzyme USP25, and VRK2 could mediate accumulation of polyglutamine aggregates via negative regulation of TRiC [142]. Recently, Lee et al. [143] further showed that GSK3β directly bound to VRK2, resulting in inhibition of VRK2 catalytic activity, reduction of ubiquitination-proteosomal degradation of TRiC, and suppression of polyglutamine protein aggregation (Fig. 5). While these data suggest a potential involvement of VRK2 in the development of neurodegenerative disorders, it remains an interesting topic for future investigations whether these pathways contribute to the
pathogenesis of major psychiatric disorders (e.g., SCZ), given that GSK3β is likely a psychiatric susceptibility gene [144–156].

Another intriguing finding regarding Vrk2 function is the discovery of its role in inflammatory responses. In fact, this protein has been recognized for its involvement in the viral infection processes [157, 158]. It has long been hypothesized that brain inflammation contributes to pathological alterations in SCZ, and a recent study indicates that Vrk2 can reduce the transcriptional response to interleukin-1b (IL-1b, encoded by IL-1B) [115], a cytokine involved in inflammatory activity and psychiatric disorders [159–161]. Therefore, it also remains to be elucidated whether Vrk2 affects the major psychiatric disorders via IL-1b-related pathways. Additionally, in line with the inflammatory hypothesis for psychiatric disorders, researchers have studied proteins encoded by genes highlighted in previous GWAS studies to determine whether they could elicit autoantibody production, and thus be involved in inflammatory processes in the brain [162]. They found that Vrk2 was expressed by both neurons and B lymphocytes, and the serum levels of autoantibody against Vrk2 were significantly lower in SCZ patients compared with healthy subjects, suggesting a protective effect of the IgG against Vrk2 [162]. However, the exact mechanisms explaining this observation remain unclear. More interestingly, the administration of antipsychotic risperidone, whose anti-inflammatory effects have been previously described, could increase the level of IgG against Vrk2 [162]. While these findings need further replication, they strongly suggest the correlation between Vrk2 and brain inflammation in SCZ.

Implications for Overlapped Genetic and Biological Basis of SCZ and MDD

The discovery of Vrk2 in genetic studies of SCZ and MDD adds convincing support for the shared genetic susceptibility factors between these two psychiatric disorders [11, 163–166]. Although this hypothesis has long been raised based on the discoveries of susceptibility loci for both SCZ and major mood disorders [164, 167–169], the number of risk genes known to transcend the diagnostic categories remains limited. It is therefore intriguing to see that the same allele in Vrk2 showed genome-wide significant associations with both SCZ and MDD. These results not only indicate that Vrk2 is a common risk gene in psychiatric disorders but also suggest that Vrk2 may be involved in the shared biological pathways or intermediate phenotypes underlying both illnesses. It should also be noted that debates remain over the boundaries between the clinical symptoms and the degree to which they delineate distinct diagnostic categories of psychiatric disorders [4, 164, 170–173]. Systematic variations introduced by different researchers in sample recruitment during GWAS analyses or other genetic studies are therefore inevitable. This phenomenon, on the other hand, highlights the importance of further elucidation of the genetic and biological basis underlying the shared susceptibility components between psychiatric disorders, and future studies identifying the loci conferring risk of more specific symptoms may provide valuable insights for refining classifications of psychiatric conditions.

Future Perspectives

It is clear that VRK2 is of considerable interest, given its function in physiological processes as well as its association with major psychiatric and neurological diseases. While current knowledge of this gene and its protein product is relatively rudimentary, there are many unexplored questions that arise from these exciting findings. First, the effects of variants in VRK2 on the genetic risk of psychiatric disorders are considered to be only modest (odds ratio ∼1.10) [13–15, 29], and the functions of the risk variants are still unclear. It is therefore under debate whether VRK2 could be directly used as a possible target in the future clinical management of these disorders. The detailed genetic mechanisms for its role in such disorders will provide essential information. In addition, studies describing the effects of VRK2 on neurodevelopment and brain function are still lacking. Although there is preliminary evidence that this gene may affect neuronal migration [48] and inflammation [115, 159, 160], whether it could affect other aspects of neuronal function, e.g. synaptic development and transmission, is still unclear. Furthermore, several studies have reported that proteins interact with Vrk2 or regulate its function [143, 174]. Whether these mechanisms facilitate the pathogenesis of certain psychiatric and neurological disorders should be examined to reveal potential therapeutic opportunities.

In summary, in the present review, we have outlined the compelling evidence suggesting that VRK2 is a significant factor in the onset or/and development of SCZ and MDD. To the best of our knowledge, VRK2 is also one of the few genes showing genome-wide significant
associations with both SCZ and MDD, making it an important subject for studies in the field of psychiatric genetics. Moreover, we have discussed the urgent need for further exploration of its role in the genetic architecture of psychiatric disorders (especially SCZ and MDD), the biological impact on neurodevelopment and brain function, and the roles of associated molecules in diseases. As the majority of studies on VRK2 were conducted in vitro, future utilization of animal- and/or human-derived tissues may provide valuable insights and information.

Acknowledgement

The authors would like to express regret to those authors whose work was not mentioned or elaborately represented in this review because of our ignorance and negligence during the literature survey. This study was supported by the National Natural Science Foundation of China (grant No. 81722019 to M.L.). M.L. was also supported by CAS Pioneer Hundred Talents Program and the 1000 Young Talents Program.

Disclosure Statement

All authors report no conflicts of interest.

References

1. van Os J, Kapur S. Schizophrenia. *Lancet*. 2009 Aug;374(9690):635–45.
2. Freedman R. Schizophrenia. *N Engl J Med.* 2003 Oct;349(18):1738–49.
3. McGrath J, Saha S, Chant D, Welham J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. *Epidemiol Rev.* 2008;30(1):67–76.
4. Sullivan PF, Daly MJ, O’Donovan M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. *Nat Rev Genet.* 2012 Jul;13(8):537–51.
5. Delisi LE. A Case for Returning to Multiplex Families for Further Understanding the Heritability of Schizophrenia: A Psychiatrist’s Perspective. *Mol Neuropsychiatry*. 2016 May;2(1):15–9.
6. Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. *Arch Gen Psychiatry*. 2003 Dec;60(12):1187–92.
7. Kuperlf DJ, Frank E, Phillips ML. Major depressive disorder: new clinical, neurobiological, and treatment perspectives. *Lancet*. 2012 Mar;379(9820):1045–55.
8. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, et al.; National Comorbidity Survey Replication. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). *JAMA*. 2003 Jun;289(23):3095–105.
9. Belmaker RH, Agam G. Major depressive disorder. *N Engl J Med.* 2008 Jan;358(1):55–68.
10. Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: review and meta-analysis. *Am J Psychiatry*. 2000 Oct;157(10):1552–62.
11. Ding Y, Chang LC, Wang X, Guiloux JP, Parrihj J, Oh H, et al. Molecular and Genetic Characterization of Depression: Overlap with other Psychiatric Disorders and Aging. *Mol Neuropsychiatry*. 2015 May;11(1):1–12.
12. Bigdelli TB, Ripke S, Peterson RE, Trzaskowski M, Baracan SA, Abdelloua i A, et al. Genetic effects influencing risk for major depressive disorder in China and Europe. *Transl Psychiatry*. 2017 Mar;7(3):e1074.
13. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. *Nature*. 2014 Jul;511(7510):421–7.
14. Hyde CL, Nagle MW, Tian C, Chen X, Piacia SA, Wendland JR, et al. Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. *Nat Genet*. 2016 Sep;48(9):1031–6.
15. Li Z, Chen J, Yu H, He L, Xu Y, Zhang D, et al. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. *Nat Genet*. 2017 Nov;49(11):1576–83.
16. Pardinas AF, Holmans P, Pocklington AJ, Escott-Price V, Ripke S, Carrera N, et al.; GERAD1 Consortium; CRESTAR Consortium; GERAD1 Consortium; CRESTAR Consortium; GERAD1 Consortium; CRESTAR Consortium. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. *Nat Genet*. 2018 Sep;50(3):381–9.
17. Ripke S, O’Dushlaine C, Chambert K, Moran JL, Kühler AK, Akterin S, et al.; Multicenter Genetic Studies of Schizophrenia Consortium; Psychosis Endophenotypes International Consortium; Wellcome Trust Case Control Consortium 2. Genome-wide association study identifies 13 new risk loci for schizophrenia. *Nat Genet*. 2013 Oct;45(10):1150–9.
18. Yue WH, Wang HF, Sun LD, Tang FL, Liu ZH, Zhang HX, et al. Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2. *Nat Genet*. 2011 Oct;43(12):1228–31.
19. Cai N, Bigdelli TB, Kretzschmar W, Li Y, Liang J, Song L, et al.; CONVERGE consortium. Sparse whole-genome sequencing identifies two loci for major depressive disorder. *Nature*. 2015 Jul;523(7562):588–91.
20. Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdelloua i A, et al.; eQTL-Gen; 23andMe; Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. *Nat Genet*. 2018 May;50(5):668–81.
21. Avramopoulos D. Recent Advances in the Genetics of Schizophrenia. *Mol Neuropsychiatry*. 2018 Jun;4(1):35–51.
22. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 Years of GWAS Discovery: Biology, Function, and Translation. *Am J Hum Genet*. 2017 Jul;101(1):5–22.
23. Rautiainen MR, Paunio T,Repo-Tiihonen E, Virkkunen M, Ollila HM, Sulkava S, et al. Genome-wide association study of antisocial personality disorder. *Transl Psychiatry*. 2016 Sep;6(9):e883.
24. Witt SH, Streit F, Jungkunz M, Frank J, Awasthi S, Reinbold CS, et al.; Bipolar Disorders Working Group of the Psychiatric Genomics Consortium; Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium; Schizophrenia Working Group of the Psychiatric Genomics Consortium. Genome-wide association study of borderline personality disorder reveals genetic overlap with bipolar disorder, major depression and schizophrenia. *Transl Psychiatry*. 2017 Jun;7(6):e1155.
25. Xiao X, Wang L, Wang C, Yuan TF, Zhou D, Zheng F, et al.; Advanced Collaborative Study of Mood Disorder (COSMO) Team, Mood Bipolar Consortium. Common variants at 2q11.2, 8q21.3, and 11q13.2 are associated with major mood disorders. *Transl Psychiatry*. 2017 Dec;7(12):1273.
26. Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. *Nat Neurosci*. 2011 Mar;14(3):285–93.
27 Forrest MP, Parnell E, Penztes P. Dendritic structural plasticity and neuropsychiatric disease. Nat Rev Neurosci. 2018 Mar;19(4):215–34.

28 Steffansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, et al.; Genetic Risk and Outcome in Psychosis (GROUP). Common variants conferring risk of schizophrenia. Nature. 2009 Aug;460(7256):744–7.

29 Steinberg S, de Jong S, Andreassen OA, Werge T, Borglum AD, Mors O, et al.; Irish Schizophrenia Genomics Consortium; Wellcome Trust Case Control Consortium 2. Common variants at VRK2 and TCF4 conferring risk of schizophrenia. Hum Mol Genet. 2011 Oct;20(20):4076–81.

30 Irish Schizophrenia Genomics Consortium and the Wellcome Trust Case Control Consortium 2. Genome-wide association study implicates HLA-C*01:02 as a risk factor at the major histocompatibility complex locus in schizophrenia. Biol Psychiatry. 2012 Oct;72(8):620–8.

31 Zhang B, Gao CY, Zhang HB, Yang B, Yin JF, Wei SG, et al. Association of the VRK2 gene rs3732136 polymorphism with schizophrenia in a Northwestern Chinese Han population. Genet Mol Res. 2015 Aug;14(3):9040–11.

32 Bocharova AV, Stepanov VA, Marusin AV, Kharkov VN, Vagaitseva KV, Fedorenko OY, et al. Association study of genetic markers of schizophrenia and its cognitive endophenotypes. Genetika. 2017 Jan;53(1):100–8.

33 Stepanov VA, Bocharova AV, Saduakassova KZ, Marusin AV, Koneva LA, Vagaitseva KV, et al. Replicative study of susceptibility to childhood-onset schizophrenia in Kazakhs. Genetika. 2015 Feb;51(2):227–35.

34 Li M, Wang Y, Zheng XB, Ikeda M, Iwata N, Xiao X, Luo XJ, Chang H, Liu Z, Li M. Evaluating the role of the VRK2 rs3231247 variant in schizophrenia. PLoS One. 2017 Dec;12(12):e0189802.

35 Xiao X, Luo XJ, Chang H, Liu Z, Li M. Evaluation of European Schizophrenia GWAS Loci in Asian Populations via Comprehensive Meta-Analyses. Mol Neurobiol. 2017 Aug;54(6):4071–80.

36 Chang H, Zhang C, Xiao X, Pu X, Liu Z, Wu L, et al. Further evidence of VRK2 rs3231247 associated with schizophrenia. World J Biol Psychiatry. 2016 Sep;17(6):457–66.

37 Pickrell JK, Coop G, November J, Kudaravalli S, Li JZ, Absher D, et al. Signals of recent positive selection in a worldwide sample of human populations. Genome Res. 2009 May;19(5):826–37.

38 Pritchard JK, Pickrell JK, Coop G. The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation. Curr Biol. 2010 Feb;20(4):R208–15.

39 Coop G, Pickrell JK, November J, Kudaravalli S, Li JZ, Absher D, et al. The role of geography in human adaptation. PLoS Genet. 2009 Jun;5(6):e1000500.

40 Edwards SL, Belsiey J, French JD, Dunning AM. Beyond GWASs: illuminating the dark road from association to function. Am J Hum Genet. 2013 Nov;93(5):779–97.

41 Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, et al.; Schizophrenia Working Group of the Psychiatric Genomics Consortium. Schizophrenia risk from complex variation of complement component 4. Nature. 2016 Feb;530(7589):177–83.

42 Li M, Jaffe AE, Straub RE, Tao R, Shin H, Wang Y, et al. A human-specific AS3MT isoform and BORCS5 are molecular risk factors in the 10q24.32 schizophrenia-associated locus. Nat Med. 2016 Jun;22(6):649–56.

43 Bray NJ, Hill MJ. Translating Genetic Risk Loci Into Molecular Mechanisms for Schizophrenia. Schizophr Bull. 2016 Jan;42(1):5–8.

44 Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al.; GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013 Jun;45(6):580–5.

45 Ramasamy A, Trabzuni D, Guelfi S, Varghese V, Smith C, Walker R, et al.; UK Brain Expression Consortium; North American Brain Expression Consortium. Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat Neurosci. 2014 Oct;17(10):1418–28.

46 Colantuoni C, Lipska BK, Ye T, Hyde TM, Tao R, Leek JT, et al. Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature. 2011 Oct;478(7370):519–23.

47 ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012 Sep;489(7414):57–74.

48 Yu H, Yan H, Li J, Li Z, Zhang X, Ma Y, et al.; Chinese Schizophrenia Collaboration Group. Common variants on 2p16.1, 6p22.1 and 10q24.32 are associated with schizophrenia in Han Chinese population. Mol Psychiatry. 2017 Jul;22(7):954–60.

49 Stahl E, Forstner A, McQuillin A, Ripke S, Stahl E, Forstner A, McQuillin A, et al. Genome-wide association study identifies 3 loci associated with bipolar disorder. bioRxiv. 2017:173062.

50 Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry. 1987 Jul;44(7):680–9.

51 Breier A, Buchanan RW, Elkashef A, Munson RC, Kirkpatrick B, Gellad F. Brain morphometry and schizophrenia. A magnetic resonance imaging study of limbic, prefrontal cortex, and caudate structures. Arch Gen Psychiatry. 1992 Dec;49(12):921–6.

52 Birnbaum R, Weinberger DR. Genetic insights into the neurodevelopmental origins of schizophrenia. Nat Rev Neurosci. 2017 Dec;18(12):727–40.

53 Weinberger DR. The neurodevelopmental origins of schizophrenia in the penumbra of genomic medicine. World Psychiatry. 2017 Oct;16(3):225–6.

54 Saia-Cereda VM, Santana AG, Schmitt A, Falkai P, Martins-de-Souza D. The Nuclear Proteome of White and Gray Matter from Schizophrenia Postmortem Brains. Mol Neuropsychiatry. 2017 Jul;3(1):37–52.

55 Chen Z, Peng W, Sun H, Kuang W, Li W, Jia Z, et al. High-field magnetic resonance imaging of structural alterations in first-episode, drug-naive patients with major depressive disorder. Transl Psychiatry. 2016 Nov;6(11):e942.

56 Henje Blom E, Han LK, Connolly CG, Ho TC, Lin J, LeWinn KZ, et al. Peripheral telomere length and hippocampal volume in adolescents with major depressive disorder. Transl Psychiatry. 2015 Nov;5(11):e676.

57 Renteria ME, Schmaal L, Hibar DP, Couvy-Duchene B, Strike LT, Mills NT, et al. Subcortical brain structure and suicidal behaviour in major depressive disorder: a meta-analysis from the ENIGMA-MDD working group. Transl Psychiatry. 2017 May;7(5):e1116.

58 Schmaal L, Hibar DP, Sämann PG, Hall GB, Baune BT, Jahanshad N, et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depression Disorder Working Group. Mol Psychiatry. 2017 Jun;22(6):900–9.

59 Schmaal L, Veltman DJ, van ERP TG, Sämann PG, Frodl T, Jahanshad N, et al. Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depression Disorder working group. Mol Psychiatry. 2016 Jun;21(6):806–12.

60 Meyer-Lindenberg A, Weinberger DR. Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci. 2006 Oct;7(10):818–27.

61 Hasler G, Northoff G. Discovering imaging endophenotypes for major depression. Mol Psychiatry. 2011 Jun;16(6):604–19.

62 Hasler G, Drevets WC, Manji HK, Charney DS. Discovering endophenotypes for major depression. Neuropsychopharmacology. 2004 Oct;29(10):1765–81.

63 Leuchter AF, Hunter AM, Kranz DE, Cook IA. Intermediate phenotypes and biomarkers of treatment outcome in major depressive disorder. Dialogues Clin Neurosci. 2014 Dec;16(4):525–37.

64 Wedenoja J, Tuulio-Henriksson A, Suvisaari J, Loukola A, Paunio T, Partonen T, et al. Replication of association between working memory and Reelin, a potential modifier gene in schizophrenia. Biol Psychiatry. 2010 May;67(10):983–91.

65 Wedenoja J, Loukola A, Tuulio-Henriksson A, Paunio T, Ekelund J, Silander K, et al. Replication of linkage on chromosome 7q22 and association of the regional Reelin gene with working memory in schizophrenia families. Mol Psychiatry. 2008 Jul;13(7):673–84.
VRK2 in Psychiatric and Neurological Disorders

66 Rasetti R, Sambataro F, Chen Q, Callcott JH, Mattay VS, Weinberger DR. Altered cortical network dynamics: a potential intermediate phenotype for schizophrenia and association with ZNF804A. Arch Gen Psychiatry. 2011 Dec;68(12):1207–17.

67 Walter H, Schnell K, Erk S, Arnold C, Kirsch P, Esslinger C, et al. Effects of a genome-wide supported psychosis risk variant on neural activation during a theory-of-mind task. Mol Psychiatry. 2011 Apr;16(4):462–70.

68 Walters JT, Choi A, Owen MJ, Williams H, Dragovic M, Quinn EM, et al. Psychosis susceptibility gene ZNF804A and cognitive performance in schizophrenia. Arch Gen Psychiatry. 2010 Jul;67(7):692–700.

69 Bigos KL, Mattay VS, Callcott JH, Straub RE, Vakkalanka R, Kolachana B, et al. Genetic variation in CACNA1C affects brain circuitries related to mental illness. Arch Gen Psychiatry. 2011 May;68(5):439–45.

70 Erk S, Meyer-Lindenberg A, Schnell K, Opitz von Boberfeld C, Esslinger C, Kirsch P, et al. Brain function in carriers of a genome-wide supported bipolar disorder variant. Arch Gen Psychiatry. 2010 Aug;67(8):803–11.

71 Soeiro-de-Souza MG, Lafer B, Moreno RA, Rasetti R, Sambataro F, Chen Q, Callicott JH, Dragovic M, Quinlan EM, et al. Psychosis susceptibility gene ZNF804A and cognitive performance in schizophrenia. Arch Gen Psychiatry. 2010 Jul;67(7):692–700.

72 Westermeyer J, de-lOimte W, von Boberfeld C, Esslinger C, Kirsch P, et al. Brain function in carriers of a genome-wide supported bipolar disorder variant. Arch Gen Psychiatry. 2010 Aug;67(8):803–11.

73 Oestreich LK, Lyall AE, Pasternak O, Kikinis R, Epicure Consortium, EMINet Consortium. Lancet Neurol. 2014 Sep;13(9):893–903.

74 Duke J, Jorgensen E, Grant AM, Pierse SB, Cooper GM, et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science. 2008 Apr;320(5875):539–43.

75 Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA, Webb SJ. Autism and abnormal development of brain connectivity. J Neurosci. 2004 Oct;24(42):9228–31.

76 Courchesne E. Abnormal early brain development in autism. Mol Psychiatry. 2002;7(S2 Suppl 2):S21–3.

77 Josephson CB, Jetté N. Psychiatric comorbidities in epilepsy. Int Rev Psychiatry. 2017 Oct;29(5):409–24.

78 Wu Y, Yao YG, Luo XJ, SZDB: A Database for Schizophrenia Genetic Research. Schizophr Bull. 2017 Mar;43(2):459–71.

79 Tesi M, Wirgenes KV, Hughes T, Bettella F, Athanasiou I, Høseth ES, et al. VRK2 gene expression in schizophrenia, bipolar disorder and healthy controls. Br J Psychiatry. 2016 Aug;209(2):114–20.

80 Azimia T, Ghafouri-Fard S, Davood Omran R, Mazzeh M, Arsanjanzang J, Sayad A, et al. Vaccinia Related Kinase 2 (VRK2) expression in neurological disorders: schizophrenia, epilepsy and multiple sclerosis. Mult Scler Relat Disord. 2018 Jan;19:15–9.

81 Kim S, Webster MJ. The stanley neuropathology consortium integrative database: a novel, web-based tool for exploring neuropathological markers of mental disorders and the biological processes associated with abnormalities of those markers. Neuropsychopharmacology. 2010 Jan;35(2):473–82.

82 Cao Y, Zhu J, Jia P, Zhao Z. scRNASeqDB: A Database for RNA-Seq Based Gene Expression Profiles in Human Single Cells. Genes (Basel). 2017 Dec;8(12):8.

83 Darmanis S, Sloan SA, Zhang Y, Enge M, Caneda C, Shuer LM, et al. A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci USA. 2015 Jun;112(23):2785–90.

84 Bouras N. Psychiatric and behavioural disorders in developmental disabilities and mental retardation. Cambridge: Cambridge University Press; 1999.

85 Schizophrenia Research B, Whitford TJ, McMenamin P, Robbiano A, et al. Genome-wide association studies related to mental illness. Arch Gen Psychiatry. 2010 Sep;67(9):939–45.

86 von Boberfeld C, Esslinger C, Kirsch P, et al. Brain function in carriers of a genome-wide supported bipolar disorder variant. Arch Gen Psychiatry. 2010 Aug;67(8):803–11.

87 Steffenburg S, Gillberg C, Steffenburg U. Psychiatric and behavioural disorders in children and adolescents with intellectual disability. J Intellect Disabil Res. 2003 Jan;47(Pt 1):51–8.

88 Salmi T, Leino K, Liitola H, et al. A newly recognised microdeletion syndrome involving 2p15.16.1: narrowing down the critical region by adding another patient detected by genome wide tiling array comparative genomic hybridisation analysis. J Med Genet. 2008 Feb;45(2):122–4.

89 Streltsova I, Mieloo H, et al. A newly recognised microdeletion syndrome involving 2p15p16.1: narrowing down the critical region by adding another patient detected by genome wide tiling array comparative genomic hybridisation analysis. J Med Genet. 2008 Feb;45(2):122–4.

90 Gregory AM, O’Connor TG. Sleep problems in childhood: a longitudinal study of developmental change and association with behavioral problems. J Am Acad Child Adolesc Psychiatry. 2002 Aug;41(8):864–71.

91 Jones SE, Tyrrell J, Wood AR, Beaumont RN, Ruth KS, Tuke MA, et al. Genome-Wide Association Analyses in 128,266 Individuals Identifies New Morningness and Sleep Duration Loci. PLoS Genet. 2016 Aug;12(8):e1006125.

92 Sanz-Garcia M, Valbuena A, López-Sánchez I, Blanco S, Fernández I, Vázquez-Cedeira M, Lazo P: Vaccinia-related kinase (VRK) signaling in cell and tumor biology. Emerg Signal Pathways Tumor Biol 2010:15–56.

93 Hankin BL, Oppenheimer C, Jenness J, Barrosa A, Shapero BG, Goldband J. Developmental origins of cognitive vulnerabilities to depression: review of processes contributing to stability and change across time. J Clin Psychol. 2009 Dec;65(12):1327–38.

94 Ansorge MS, Hen R, Gingrich JA. Neuromolecular origins of depressive disorders. Curr Opin Pharmacol. 2007 Feb;7(1):8–17.

95 Geoffroy PA, Etain B, Scott J, Henry C, Jamain S, Leboyer M, et al. Reconsideration of bipolar disorder as a developmental disorder: importance of the time of onset. J Physiol Paris. 2013 Sep;107(4):278–85.

96 Mochida GH, Walsh CA. Molecular genetics of human microcephaly. Curr Opin Neurol. 2001 Apr;14(2):151–6.

97 Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and disease. Nature. 2013 Sep;510(7476):373–39.

98 Shevell M. Global developmental delay and mental retardation or intellectual disability: conceptualization, evaluation, and etiology [xi.]. Pediatr Clin North Am. 2008 Oct;55(5):1071–84.

99 Chandler KE, Del Rio A, Rakshi K, Springell K, Williams DK, Stoodley N, et al. Leucodysplasia, microcephaly, cerebral malformation (LMC): a novel recessive disorder linked to 2p16. Brain. 2006 Jan;129(Pt 1):272–7.

100 Rajcan-Separovic E, Harward C, Liu X, McGillivary B, Hall JG, Qiao Y, et al. Clinical and molecular cytogenetic characterisation of a newly recognised microdeletion syndrome involving 2p15-16.1. J Med Genet. 2007 Apr;44(4):269–76.

101 de Leuw N, Pfundt R, Koolen DA, Neefs J, Scheltinga I, Mieloo H, et al. A newly recognised microdeletion syndrome involving 2p15p16.1: narrowing down the critical region by adding another patient detected by genome wide tiling path array comparative genomic hybridisation analysis. J Med Genet. 2008 Feb;45(2):122–4.

102 Gregory AM, O’Connor TG. Sleep problems in childhood: a longitudinal study of developmental change and association with behavioral problems. J Am Acad Child Adolesc Psychiatry. 2002 Aug;41(8):864–71.
106 Nezu J, Oku A, Jones MH, Shimane M. Identification of two novel human putative serine/threonine kinases, VRK1 and VRK2, with structural similarity to vaccinia virus B1R kinase. Genomics. 1997 Oct;45(2):327–31.

107 Blanco S, Klimekova L, Vega FM, Lazo PA. The subcellular localization of vaccinia-related kinase-2 (VRK2) isoforms determines their different effect on p53 stability in tumour cell lines. FEBS J. 2006 Jun;273(11):2487–504.

108 Birendra KC, May DG, Benson BV, Kim DI, Nezu J, Oku A, Jones MH, Shimane M. Identification of Akt with VRK2. Oncogene. 2018 Jun;37(40):5367–86.

109 Vega FM, Gonzalo P, Gaspar ML, Lazo PA. Expression of the VRK (vaccinia-related kinase) gene family of p53 regulators in murine development. FEBS Lett. 2003 Jun;544(1-3):176–80.

110 Rodríguez-Hernández I, Vázquez-Cedeira M, Santos-Briz A, García JL, Fernández IF, Gómez-Moreta JA, et al. VRK2 identifies a subgroup of primary high-grade astrocytomas with a better prognosis. BMC Clin Pathol. 2013 Oct;13(1):23.

111 Del Puerto-Nevado L, Marín-Arango JP, Fernández-Aceñero MJ, Arroyo-Manzano D, Martínez-Useros J, Borroño-Palacios A, et al. Predictive value of vrk1 and 2 for rectal adenocarcinoma response to neoadjuvant chemoradiation therapy: a retrospective observational cohort study. BMC Cancer. 2016 Jul;16(1):519.

112 Li LY, Liu MY, Shih HM, Tsai CH, Chen JY. Human cellular protein VRK2 interacts specifically with Epstein-Barr virus BHRF1, a homologue of Bcl-2, and enhances cell survival. J Gen Virol. 2006 Oct;87(Pt 10):2869–78.

113 Li M, Luo XJ, Rietschel M, Lewis CM, Mattick JS. The subcellular localization of vaccinia-related kinase-2 modulates the stress response to hypoxia mediated by TAK1. Mol Cell Biol. 2007 Oct;27(20):7273–83.

114 Blanco S, Santos C, Lazo PA. Vaccinia-related kinase 2 modulates the stress response to hypoxia mediated by TAK1. Mol Cell Biol. 2007 Oct;27(20):7273–83.

115 Blázquez KD, Diaz-Castro B, Forrest MP, Schürmann B, Bach AP, Martin-de-Saavedra MD, et al. Reversal of dendritic phenotypes in 16p11.2 microduplication mouse models neurons by pharmacological targeting of a network hub. PLoS One. 2016 Jul;11(3):3520–5.

116 Chang H, Li L, Li M, Xiao X. Rare and common variants at 16p11.2 are associated with schizophrenia. Schizophr Res. 2017 Jun;184:105–8.

117 Fernández IF, Pérez-Rivas LG, Blanco S, Li LY, Liu MY, Shih HM, Tsai CH, Chen JY. Neuronavigation, attentional processing, and response to olanzapine treatment in schizophrenia. Am J Psychiatr Res. 2017 Oct;37(1):34–42.

118 Nieminen J, Rönnholm S, Laitinen MT, Myllylä K, Rinne JO. Convergent evidence for impaired AKT1-GSK3β signaling in schizophrenia. Nat Genet. 2004 Dec;37(4):446–50.

119 Thiselton DL, Vladimirov VI, Kuo PH, McCray J, Wormley B, Fanous A, et al. AKT1 is associated with schizophrenia across multiple symptom dimensions in the Irish study of high density schizophrenia families. Biol Psychiatry. 2005 Sep;58(6):446–50.

120 Slavich T, Gogos JA. Convergent evidence for impaired AKT1-GSK3β signaling in schizophrenia. Nat Genet. 2004 Feb;36(2):131–7.

121 Blasi G, Napolitano F, Ursini G, Taurisano P, Romano R, Califori G, et al. DRD2/AKT1 interaction on D2 c-Amp independent signaling, attentional processing, and response to olanzapine treatment in schizophrenia. Proc Natl Acad Sci USA. 2011 Jan;108(3):1158–63.

122 Luo X, Huang L, Jia P, Li M, Su B, Zhao Z, et al. Protein-protein interaction and pathway analyses of top schizophrenia genes reveal schizophrenia susceptibility genes converge on common molecular networks and enrichment of nucleosome (chromatin) assembly genes in schizophrenia susceptibility loci. Schizophr Bull. 2014 Jan;40(1):39–49.

123 Li M, Luo XJ, Rietschel M, Lewis CM, Mattick JS. The subcellular localization of vaccinia-related kinase-2 modulates the stress response to hypoxia mediated by TAK1. Mol Cell Biol. 2007 Oct;27(20):7273–83.

124 Gong C, Wong ML, Licinio J. Sequence variations of ABCB1, SLC6A2, SLC6A3, SLC6A4, CREB1, CRHR1 and NTRK2: associations of ABCB1, SLC6A2, SLC6A3, SLC6A4, CREB1, CRHR1 and NTRK2: association with major depression and antidepressant response in Mexican-Americans. Mol Psychiatry. 2009 Dec;14(12):1105–18.

125 Hettema JM, An SS, van den Oord EJ, Nurnberg B, Bach AP, Martin-de-Saavedra MD, et al. The subcellular localization of vaccinia-related kinase-2 modulates the stress response to hypoxia mediated by TAK1. Mol Cell Biol. 2007 Oct;27(20):7273–83.

126 Xiao X, Zhang C, Grigoroiu-Serbanescu M, Wang L, Li L, Zhou D, et al. The cAMP responsive element-binding (CREB)-1 gene increases risk of major psychiatric disorders. Mol Psychiatry. 2017 Nov 21. doi: 10.1038/mp.2017.243. [Epub ahead of print].

127 Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishiev MV, et al. Genetic variation in the 6p22.3 gene DTNBP1, the human orthology of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet. 2002 Aug;71(2):337–48.

128 Van Den Bogaert A, Schumacher J, Schulze TG, Otte AC, Ohrnrau S, Kovalenko S, et al. The DTNBP1 (dysbindin) gene contributes to schizophrenia, depending on family history of the disease. Am J Hum Genet. 2003 Dec;73(6):1348–43.

129 Tang YX, Zhou J, Fan JR, Li XY, Shi YY, Gu NF, et al. Family-based association study of DPTNBP1 in 6p22.3 and schizophrenia. Mol Psychiatry. 2003 Aug;8(8):717–8.

130 van den Oord EJ, Sullivan PF, Jiang Y, Walsh D, O’Neill FA, Kendler KS, et al. Identification of a high-risk haplotype for the dystrobrevin binding protein 1 (DTNB1P1) gene in the Irish study of high-density schizophrenia families. Mol Psychiatry. 2003 May;8(5):499–510.

131 Hirata N, Suizu F, Matsuda-Lennikov M, Tanaka T, Edamura T, Ishigaki S, et al. Functional characterization of lysosomal interaction of Akt with VRK2. Oncogene. 2018 Jun;37(40):5367–86.

132 Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA. Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet. 2004 Feb;36(2):131–7.

133 Li M, Luo XJ, Rietschel M, Lewis CM, Mattick JS. The subcellular localization of vaccinia-related kinase-2 modulates the stress response to hypoxia mediated by TAK1. Mol Cell Biol. 2007 Oct;27(20):7273–83.
VRK2 in Psychiatric and Neurological Disorders

Mol Neurobiol 2018;4:119–133
DOI: 10.1159/000493941

140 Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium. Psychiatric-genome-wide association study analyzes implicate neuronal, immune and histone pathways. *Nat Neurosci.* 2015 Feb;18(2): 199–209.

141 Kim S, Lee D, Lee J, Song H, Kim HJ, Kim KT. Vaccinia-Related Kinase 2 Controls the Stability of the Eukaryotic Chromoprotein TRIC/CCT by Inhibiting the Disubiquitinating Enzyme USP25. *Mol Cell Biol.* 2015 May;35(10):1754–62.

142 Kim S, Park DY, Lee D, Kim W, Jeong YH, Lee J, et al. Vaccinia-related kinase 2 mediates accumulation of polyglutamine aggregates via negative regulation of the chaperonin TRIC. *Mol Cell Biol.* 2014 Feb;34(4): 463–52.

143 Lee E, Ryu HG, Kim S, Lee D, Jeong YH, Kim KT. Glycogen synthase kinase 3β suppresses polyglutamine aggregation by inhibiting V334558-related GSK2B activity. *Sci Rep.* 2016 Jul;6:29097.

144 Li M, Mo Y, Luo XJ, Xiao X, Shi L, Peng YM, et al. Genetic association and identification of a functional SNP at GSK3β for schizophrenia susceptibility. *Schizophr Res.* 2011 Dec;133(1-3):165–71.

145 Blasi G, Napolitano F, Ursini G, Di Giorgio A, Caffaro G, Taurisano F, et al. Association of GSK-3β genetic variation with GSK3-3 expression, prefrontal cortical thickness, prefrontal physiology, and schizophrenia. *Am J Psychiatry.* 2013 Aug;170(8):688–76.

146 Inkster B, Nichols TE, Saemann PG, Auer DP, Holsober F, Muglia P, et al. Association of GSK3beta polymorphisms with brain structural changes in major depressive disorder. *Arch Gen Psychiatry.* 2009 Jul;66(7):721–8.

147 Wang IR, Sun PH, Ren ZX, Meltzer HY, Zhen XC. GSK-3β Interacts with Dopamine D1 Receptor to Regulate Receptor Function: Implication for Prefrontal Cortical D1 Receptor Dysfunction in Schizophrenia. *CNS Neurosci Ther.* 2017 Feb;23(2):174–87.

148 Saus E, Soria V, Escaramís G, Crespo JM, Valero J, Gutiérrez-Zotes A, et al. A haplo-type of glycogen synthase kinase 3β is associated with early onset of unipolar major depression. *Genes Brain Behav.* 2010 Oct;9(7):799–807.

149 Chen J, Wang M, Waheed Khan RA, He K, Wang Q, Li Z, et al. The GSK3β gene confers risk for both major depressive disorder and schizophrenia in the Han Chinese population. *J Affect Disord.* 2015 Oct;185:149–55.

150 Zhang K, Yang C, Xu Y, Sun N, Yang H, Liu J, et al. Genetic association of the interaction between the BDNF and GSK3B genes and major depressive disorder in a Chinese population. *J Neural Transm (Vienna).* 2010 Mar;117(3):393–401.

151 Liu S, Wang L, Sun N, Yang C, Liu Z, Li X, et al. The gender-specific association of rs35558 in GSK3β with major depressive disorder. *Medicine (Baltimore).* 2017 Jan;96(3):e928.

152 Tang H, Shen N, Jin H, Liu D, Miao X, Zhu LQ. GSK-3β polymorphism discriminates bipolar disorder and schizophrenia: a systematic meta-analysis. *Mol Neurobiol.* 2013 Dec;48(3):404–11.

153 Tamura M, Mukai J, Gordon JA, Gogos JA. Developmental Inhibition of Gsk3 Rescues Behavioral and Neurophysiological Deficits in a Mouse Model of Schizophrenia Predisposition. *Neuron.* 2016 Mar;89(5):1100–9.

154 Xing B, Li YC, Gao WJ. GSK3βHyperactivity during an Early Critical Period Impairs Prefrontal Synaptic Plasticity and Induces Lasting Deficits in Spine Morphology and Working Memory. *Neuropsychopharmacology.* 2016 Dec;41(13):3003–15.

155 Hu G, Yang C, Zhao L, Fan Y, Lv Q, Zhao J, et al. The interaction of NOS1AP, DISC1, DAOA, and GSK3B confers susceptibility of early-onset schizophrenia in Chinese Han population. *Prog Neuropsychopharmacol Biol Psychiatry.* 2018 Feb;81:187–93.

156 Liu Z, Guo H, Cao X, Cheng C, Yang C, Xu C, et al. A combined study of GSK3β polymorphisms and brain network topological metrics in major depressive disorder. * Psychiatry Res.* 2014 Sep;223(3):210–17.

157 Suzuki Y, Ogawa K, Koyanagi Y, Suzuki Y. Functional disruption of the moloney murine leukemia virus preintegration complex by vaccinia-related kinases. *J Biol Chem.* 2010 Jul;285(31):24032–43.

158 Olson AT, Rico AB, Wang Z, Delhon G, Wiebe MS. Deletion of the Vaccinia Virus B1 Kinase Reveals Essential Functions of This Enzyme Complemented Partly by the Homologous Cellular Kinase VRK2. *J Virol.* 2017 Jul;91(15):91.

159 Yu YW, Chen TJ, Hong CJ, Chen HM, Tsai SJ. Association study of the interleukin-1 beta (C-511T) genetic polymorphism with major depressive disorder, associated symptomatic, and antidepressant response. *Neuropsychopharmacology.* 2003 Jun;28(6):1182–5.

160 Raison CL, Capuron L, Miller AH. Cytochrome C-511T genetic polymorphism with major depressive disorder. *Mol Psychiatry.* 2005;11(4):494–504.

161 Sanz-García M, López-Sánchez I, Lazo PA. Proteomics identification of nuclear Ran GTPase as an inhibitor of human VRK1 and VRK2 (vaccinia-related kinase) activities. *Mol Cell Proteomics.* 2008 Nov;7(11):2199–214.

162 Vázquez-Cedeira M, Lazo PA, Fernández IF, Monsalve DM, Lazo PA. Human VRK2 (vaccinia-related kinase 2) modulates tumor cell invasion by hyperactivation of NFAT1 and expression of cycloxygenase-2. *J Biol Chem.* 2012 Dec;287(51):42739–50.

163 Pruijm RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. LocusZoom: regional visualization of genome-wide association scan results. *Bioinformatics.* 2010 Sep;26(18):2336–7.