depression and urinary incontinence. They were also assessed for a history of agitation, wandering, paranoia, falls and walking difficulties. Survival was measured from the time of initial diagnosis until death or when the study ended in 2001.

When compared to the life expectancy of the general U.S. population, overall survival was lower for people with AD in all age groups. For instance, median survival was 8 years for women aged 70 diagnosed with AD, which is about half the life expectancy of similarly aged American women who do not have the disease. Similar trends were found among 70-year-old men with AD who had a median survival time of 4.4 years compared with 9.3 years for the U.S. population.

Survival was poorest among those aged 85 and older who wandered, had walking problems and had histories of diabetes and congestive heart failure. However, the difference in the life expectancy between those who were diagnosed with AD and the general population progressively diminished with age. At 85, for example, median life expectancy for women with AD was 3.9 years after diagnosis compared to about 6 years for women who didn’t have the disease. Similarly, 85-year-old men with newly diagnosed AD had a median life expectancy of 3.3 years compared to 4.7 for men of the same age who didn’t have AD.

Poor scores on the initial tests of memory and cognitive performance predicted shorter survival time after diagnosis. In fact, a five-point drop in one key test, the Mini-Mental State Exam, during the first year following diagnosis, predicted up to a 66 percent increase in the risk of death after that initial year. Walking problems, congestive heart failure, and a history of falls, diabetes and ischemic heart disease were other important predictors of reduced life expectancy after AD diagnosis.

AD is an irreversible disorder of the brain, robbing those who have it of memory and, eventually, overall mental and physical function, leading to death. It’s the most common cause of dementia among people over age 65. Recent studies estimate that up to 4.5 million people currently have the disease, and the prevalence (the number of people with the disease at any one time) doubles every 5 years after the age of 65. By 2050, if current population trends continue and no preventive treatments become available, some 13.5 million Americans will have Alzheimer’s disease.

Vaccine Protects Against SARS In Mice

An experimental vaccine prevents the SARS virus from replicating in laboratory mice, according to a new report in the April 1 issue of *Nature*. Scientists at the Vaccine Research Center (VRC) of the National Institute of Allergy and Infectious Diseases (NIAID), one of the National Institutes of Health, developed the vaccine. The vaccine was tested in a mouse model of SARS infection recently validated by other NIAID investigators.

The VRC scientists are preparing further experiments to evaluate the vaccine’s safety and potential to induce similar immune responses in humans. The vaccine contains a small piece of SARS virus DNA, insufficient to reproduce the SARS virus yet able to stimulate a protective immune response.

Scientists found that their experimental DNA vaccine caused the immune system to produce both antibodies and cells designed specifically to defend against the SARS virus.

They also determined, however, that the antibodies alone were responsible for the dramatic reduction in virus particles in mice that received the vaccine.

The SARS virus infected 8,098 people and killed 774 worldwide between November 1, 2002, and July 31, 2003, according to the World Health Organization.