Type III Secretion System Genes of Dickeya dadantii 3937 Are Induced by Plant Phenolic Acids

Shihui Yang1*, Quan Peng1, Michael San Francisco2, Yongjun Wang1, Quan Zeng1, Ching-Hong Yang1

1 Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America, 2 Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America

Abstract

Background: Dickeya dadantii is a broad-host range phytopathogen. D. dadantii 3937 (Ech3937) possesses a type III secretion system (T3SS), a major virulence factor secretion system in many Gram-negative pathogens of plants and animals. In Ech3937, the T3SS is regulated by two major regulatory pathways, HrpX/HrpY-HrpS-HrpL and GacS/GacA-rsmB-RsmA pathways. Although the plant apoplastic environment, low pH, low temperature, and absence of complex nitrogen sources in media have been associated with the induction of T3SS genes of phytopathobacteria, no specific inducer has yet been identified.

Methodology/Principal Findings: In this work, we identified two novel plant phenolic compounds, o-coumaric acid (OCA) and t-cinnamic acid (TCA), that induced the expression of T3SS genes dspE (a T3SS effector), hrpA (a structural protein of the T3SS plus), and hrpN (a T3SS harpin) in vitro. Assays by qRT-PCR showed higher amounts of mRNA of hrpL (a T3SS alternative sigma factor) and rsmB (an untranslated regulatory RNA), but not hrpS (a σ54-enhancer binding protein) of Ech3937 when these two plant compounds were supplemented into minimal medium (MM). However, promoter activity assays using flow cytometry showed similar promoter activities of hrpN in rsmB mutant Ech148 grown in MM and MM supplemented with these phenolic compounds. Compared with MM alone, only slightly higher promoter activities of hrpL were observed in bacterial cells grown in MM supplemented with OCA/TCA.

Conclusion/Significance: The induction of T3SS expression by OCA and TCA is moderated through the rsmB-RsmA pathway. This is the first report of plant phenolic compounds that induce the expression T3SS genes of plant pathogenic bacteria.

Introduction

Dickeya dadantii (formerly Erwinia chrysanthemi) is an opportunistic plant pathogen that causes soft-rot, wilt, and blight diseases on a wide range of plant species. This bacterial pathogen produces a large battery of pectinases for disassembly of the plant cell wall [1]. In phytopathobacteria, a type III secretion system (T3SS) or hypersensitive response and pathogenicity (Hrp) system, which is responsible for the secretion and translocation of effector proteins into the host cells, is considered a major virulence factor in many Gram-negative pathogens of plants and animals. In D. dadantii 3937 (Ech3937) has a complete set of genes for the T3SS apparatus. The T3SS in D. dadantii has also been reported to play a role in pathogenicity [4–8].

The expression of T3SS genes in phytopathobacteria is repressed when bacterial cells are cultured in complex media, which is induced in the plant apoplast or in close contact with host cells [9–14]. Expression of T3SS genes is also induced in minimal medium (MM), which is considered to mimic plant apoplastic conditions [14]. The T3SS of Ech3937 is regulated by two major regulatory pathways, the HrpX/HrpY-HrpS-HrpL and the GacS/GacA-rsmB-RsmA pathways [15,16]. In the HrpX/HrpY-HrpS-HrpL pathway, the HrpX/HrpY, which is a two-component system (TCS), activates the gene encoding HrpS, which is a σ54-enhancer binding protein (Fig. 1). The HrpS protein activates the expression of an alternative sigma factor, hrpL. HrpL is required for the expression of genes encoding the T3SS effectors and structural components such as the units of the needle, the needle extension, and the translocon [16]. In the GacS/GacA-rsmB-RsmA pathway, the RsmA protein promotes the decay of hrpL mRNA [15,17]. rsmB is an untranslated regulatory RNA that binds RsmA and neutralizes its negative regulatory effect of RsmA by forming an inactive ribonucleoprotein complex [15,17–20]. Although the signal molecule for GacS autophosphorylation is still unknown, the TCS GacS/GacA is reported to up-regulate rsmB [15,17].

Although several environmental factors (e.g., low pH, low temperature, and the absence of complex nitrogen sources in media) were found to influence the expression of T3SS genes in phytopathobacteria, no specific plant inducer for hrp gene expression has been identified [12,13,21–24]. Several phenolic acids were reported to play dominant roles in defense signaling in plants [25,26]. Recently, efflux pump genes of Ech3937 were found to be...
induced by phenolic acids [26], which have been suggested to be essential for the pathogenesis of the bacterium by enhancing the resistance to antimicrobial plant chemicals [27]. Since one major role of T3SS of phytopathogens is to neutralize the host defense system during bacterial invasion, it is possible that Ech3937 induces expression of T3SS genes by recognizing certain phenolic compounds in plants. To identify plant compounds that induce the expression of T3SS genes, we focused on elucidating the effect of \(\alpha\)-coumaric acid (OCA), \(\tau\)-cinnamic acid (TCA), and salicylic acid (SA) on the expression of T3SS genes. The expression of the T3SS gene \(hrp\) was examined in MM and MM supplemented with OCA, TCA, and SA, at concentrations of 0.05, 0.1, and 0.2 mM, respectively. Compared with minimal \(hrp\)-inducing medium (MM) alone, the average GFP fluorescence intensity of bacterial cells of Ech3937 (phrpN) (Table 1) was increased approximately 4-fold when 0.05 mM of OCA and TCA were added to the medium (Fig. 2). The addition of SA did not result in increased GFP fluorescence intensity of Ech3937 (Fig. 2). No obvious inhibition of bacterial growth was observed when OCA, TCA, and SA were added into the MM at the concentration below 0.2 mM (Fig. 2; Supplementary Fig. S1).

Since OCA and TCA induced the expression of \(hrp\), we further investigated the effect of these two phenolic compounds on the expression of additional T3SS genes \(hrpA\) and \(dspE\) by qRT-PCR. Compared with MM alone, a significantly higher amount of \(dspE\) and \(hrpA\) mRNA was observed in Ech3937 supplemented with OCA (Fig. 3). As in previous work [31], the promoter activities of Ech3937 were determined by collecting the average GFP fluorescence intensity of total bacterial cells (Total) from a flow cytometry although three parameters were measured, including average GFP fluorescence intensity of total bacterial cells (Total), average GFP fluorescence intensity of GFP expressing bacterial cells (GFP\(^+\)), and the percentage of GFP expressing bacterial cells of the total bacterial cells (GFP\(^+\)%).

In this study, two novel plant phenolic compounds, OCA and TCA, that induce the expression T3SS genes of Ech3937, is described. In addition, the regulatory effect for T3SS gene induction by these two phenolic compounds is elucidated.

Results

T3SS gene expression is induced by plant phenolic compounds

Our previous efforts to screen the plant up-regulated genes in Ech3937 demonstrated that \(dspE\) and \(hrpA\) were expressed in planta [28]. Phenolic compounds constitute an important class of organic substances produced by plants. The phenolic compound SA is a signaling molecule that plays a role in host defenses. OCA and TCA are the biosynthetic precursors of SA and are also reported to induce the expression of defense-related genes in plants [29,30]. We examined OCA, TCA, and SA to elucidate their effect on the expression of T3SS genes. The expression of the T3SS gene \(hrp\) was examined in MM and MM supplemented with OCA, TCA, and SA, at concentrations of 0.05, 0.1, and 0.2 mM, respectively. Compared with minimal \(hrp\)-inducing medium (MM) alone, the average GFP fluorescence intensity of bacterial cells of Ech3937 (phrpN) (Table 1) was increased approximately 4-fold when 0.05 mM of OCA and TCA were added to the medium (Fig. 2). The addition of SA did not result in increased GFP fluorescence intensity of Ech3937 (Fig. 2). No obvious inhibition of bacterial growth was observed when OCA, TCA, and SA were added into the MM at the concentration below 0.2 mM (Fig. 2; Supplementary Fig. S1).

Since OCA and TCA induced the expression of \(hrp\), we further investigated the effect of these two phenolic compounds on the expression of additional T3SS genes \(hrpA\) and \(dspE\) by qRT-PCR. Compared with MM alone, a significantly higher amount of \(dspE\) and \(hrpA\) mRNA was observed in Ech3937 supplemented with OCA (Fig. 3). As in previous work [31], the promoter activities of Ech3937 were determined by collecting the average GFP fluorescence intensity of total bacterial cells (Total) from a flow cytometry although three parameters were measured, including average GFP fluorescence intensity of total bacterial cells (Total), average GFP fluorescence intensity of GFP expressing bacterial cells (GFP\(^+\)), and the percentage of GFP expressing bacterial cells of the total bacterial cells (GFP\(^+\)%).

In this study, two novel plant phenolic compounds, OCA and TCA, that induce the expression T3SS genes of Ech3937, is described. In addition, the regulatory effect for T3SS gene induction by these two phenolic compounds is elucidated.

Results

T3SS gene expression is induced by plant phenolic compounds

Our previous efforts to screen the plant up-regulated genes in Ech3937 demonstrated that \(dspE\) and \(hrpA\) were expressed in planta [28]. Phenolic compounds constitute an important class of organic substances produced by plants. The phenolic compound SA is a signaling molecule that plays a role in host defenses. OCA and TCA are the biosynthetic precursors of SA and are also reported to induce the expression of defense-related genes in plants [29,30]. We examined OCA, TCA, and SA to elucidate their effect on the expression of T3SS genes. The expression of the T3SS gene \(hrp\) was examined in MM and MM supplemented with OCA, TCA, and SA, at concentrations of 0.05, 0.1, and 0.2 mM, respectively. Compared with minimal \(hrp\)-inducing medium (MM) alone, the average GFP fluorescence intensity of bacterial cells of Ech3937 (phrpN) (Table 1) was increased approximately 4-fold when 0.05 mM of OCA and TCA were added to the medium (Fig. 2). The addition of SA did not result in increased GFP fluorescence intensity of Ech3937 (Fig. 2). No obvious inhibition of bacterial growth was observed when OCA, TCA, and SA were added into the MM at the concentration below 0.2 mM (Fig. 2; Supplementary Fig. S1).

Since OCA and TCA induced the expression of \(hrp\), we further investigated the effect of these two phenolic compounds on the expression of additional T3SS genes \(hrpA\) and \(dspE\) by qRT-PCR. Compared with MM alone, a significantly higher amount of \(dspE\) and \(hrpA\) mRNA was observed in Ech3937 supplemented with OCA (Fig. 3). As in previous work [31], the promoter activities of Ech3937 were determined by collecting the average GFP fluorescence intensity of total bacterial cells (Total) from a flow cytometry although three parameters were measured, including average GFP fluorescence intensity of total bacterial cells (Total), average GFP fluorescence intensity of GFP expressing bacterial cells (GFP\(^+\)), and the percentage of GFP expressing bacterial cells of the total bacterial cells (GFP\(^+\)%).

In this study, two novel plant phenolic compounds, OCA and TCA, that induce the expression T3SS genes of Ech3937, is described. In addition, the regulatory effect for T3SS gene induction by these two phenolic compounds is elucidated.
Table 1. Strains, plasmids, and DNA primers used in this study.

Strains, plasmids and primers	Characters or sequences (5' to 3')a	Reference or source
Strains		
E. coli DH5α	F' Δ80lacZ:JM15 ΔlacZYA-argF)U169 deoR recA1 endA1 hsdRI7 phoA supE44 thi-1 gyrA96 relA1 Δrmb2-11 Invitrogen, CA	
E. coli TOP10	F' mcrA.Δrmb-lacIV30-mcrBC Δ80lacZ:JM15 ΔlacX74 deoR recA1 araD139 Δ(ara-leu)7579 galU galK rpsL endA1 supG	Invitrogen, CA
D. dadantii		
Ech3937	Wild type, Saintpaulia (African violet) isolate	Hugouvieux-Cotte-Pattat, N.
Ech-Rif	Ech3937 rifampicin resistant random mutant	[15]
Ech137	ΔgacA-kan constructed from Ech-Rif; KmR	[15]
Ech138	ΔsisaM:kan; KmR	[15]
Ech148	transposon miniHimar RB1 insertion in rsmB, KmR	This work
Ech149	transposon miniHimar RB1 insertion in gacS, KmR	This work
Ech3937 (pAT)	Ech3937 containing pPROBE-AT	[33,34]
Ech3937 (phrpA)	Ech3937 containing phrpA; ApR	This work
Ech3937 (phrpP)	Ech3937 containing phrpP; ApR	[32]
Ech3937 (phrpL)	Ech3937 containing phrpL; ApR	[32]
Ech3937 (phrpS)	Ech3937 containing phrpS; ApR	[32]
Ech3937 (pmpr)	Ech3937 containing pmpr; ApR	[31]
Ech-Rif (phrpA)	Ech-Rif containing phrpA; ApR	[15]
Ech137 (phrpA)	Ech137 containing phrpA; ApR; KmR	[15]
Ech138 (phrpP)	Ech138 containing phrpP; ApR; KmR	[32]
Ech148 (phrpS)	Ech148 containing phrpS; ApR; KmR	This work
Ech149 (phrpP)	Ech149 containing phrpP; ApR; KmR	This work
Plasmids		
pPROBE-AT	Promoter-probe vector, ApR	[33,34]
pCR2.1-TOPO	PCR cloning vector, ApR	Invitrogen, CA
phrpA	pProbe-AT derivative with PCR fragment containing 412-bp hprA promoter region, ApR	This work
phrpP	pProbe-AT derivative with PCR fragment containing hprP promoter region, ApR	[32]
phrpL	pProbe-AT derivative with PCR fragment containing hprL promoter region, ApR	[32]
phrpS	pProbe-AT derivative with PCR fragment containing 709-bp hprS promoter region, ApR	This work
Pmrp	pProbe-AT derivative with PCR fragment containing pmrp promoter region, ApR	[31]
Primers		
phrpA_F	GTGCCGATAGGCAGTGAT	This work
phrpA_R	TGCTGTGCCGTTAGAAGA	This work
phrpP_F	CAGATTGTATTGCGGATTG	This work
phrpP_R	CGGATTCTATGCATTCCCTTAT	This work
rplU_RTF	GGGCCCAATAATCAAGGCCTAGTGC	[32]
rplU_RTR	CCGTCGGAAGCCTGTTACGTTGAGT	[32]
hprY_RTF	CGGGCCAGGGCGTAATGAA	This work
hprY_RTR	TTTCCGGGATGCCATTGACC	This work
hprS_RTF	TGGAAAGCGAAAACGGGCACC	This work
hprS_RTR	GCAGGCCGCGCAAGTCAC	This work
hprL_RTF	GATGATCTGGTGGATGCCATGTTG	This work
hprL_RTR	TGCATCAACAGCTGCCGAGGATA	[32]
hprA_RTF	CAGCAATGGCCAGCATGCA	This work
hprA_RTR	CTGCCGCGTGGTATTGGA	[32]
dspE_RTF	GATGCGGAGCTGAAAATGTTC	[32]
dspE_RTR	CCTTGCCGACCGTCTATACAT	[32]
rsmB_RTF	AGAGGCCAGGCACAGAGGATGTTG	This work
rsmB_RTR	CGGTTCGAGAGTCCGGTACC	This work
gasA_RTF	GGC CTG CCC AGG AAC GTT CT	This work
gasA_RTR	CGG CCG TGG GTG GAG TCA T	This work

aApR, ampicillin resistance; KmR, kanamycin resistance.
doi:10.1371/journal.pone.0002973.t001
The effect of phenolic compounds at levels relevant in plants can induce T3SS

We analyzed whether the effect of phenolic compounds is at levels that are physiologically relevant in plants. The potato plant is one of the natural hosts of *D. dadantii*. Montesano et al. [29] reported that the concentration of the phenolic compound TCA in healthy potato leaves was approximately 0.5 μM, and that TCA accumulated to 10 μM in the leaves after exposure to cell-free culture filtrate (CF) of the phytopathogen *E. carotovora*. To investigate whether the level of the phenolic compounds in plants is able to induce the expression of the T3SS gene *hrpN*, we further examined its expression with concentrations of TCA equivalent to that in potato leaves. Ech3937 (phrpN) was grown in MM supplemented with 0.2, 0.5, 5 and 10 μM of TCA, respectively. Compared with Ech3937 (phrpN) in MM alone, a 1.5- to 1.8-fold increase of GFP intensity was observed in the bacterial cells grown in MM supplemented with 0.2 and 0.5 μM TCA (Table 3). Compared with Ech3937 (phrpN) in MM, a 3- to 3.5-fold higher GFP intensity was observed in the bacterial cells grown in MM supplemented with 5 and 10 μM of TCA (Table 3). These observations suggest that physiologically relevant concentrations of phenolic acids can induce *hrpN*.

Effect of OCA on IAA biosynthesis pathway

Since an induction of the expression of *hrpA, hrpN* and *dspE* was observed in Ech3937, the regulatory mechanism of these phenolic compounds on the T3SS pathway was investigated. Our previous work demonstrated that the expression of T3SS genes *dspE*, *hrpA*, and *hrpN* was reduced in an *iaaM* mutant Ech138; *iaaM* encodes an enzyme in the pathway for indole-3-acetic acid (IAA) biosynthesis [32]. To investigate whether IAA biosynthesis is involved in induction of T3SS by the phenolic compounds, the expression of *hrpN* in the wild-type Ech3937 and Ech138 was compared with the addition of OCA. As expected, the expression of *hrpN* was reduced in an *iaaM* mutant background. However, a similar induction ratio of *hrpN* by OCA was observed in wild-type Ech3937 and Ech138 at each time point of bacterial growth (Table 4). These results suggest that OCA does not induce T3SS expression through IAA biosynthesis pathway.
Effect of OCA on HrpX/HrpY-HrpS-HrpL pathway

To investigate whether the OCA induces the T3SS through HrpX/HrpY-HrpS-HrpL pathway, the promoter activities and mRNA levels of hrpS and hrpL of 3937 was examined in MM and MM supplemented with 0.1 mM OCA. Similar hrpS promoter activities and hrpL mRNA levels were observed between bacterial cells grown in MM and MM supplemented with OCA or TCA (Table 2 and Fig. 3). Compared with MM alone, a slightly higher promoter activity of hrpL was observed in Ech3937 (hrpL) grown in MM supplemented with OCA and TCA (Table 2). However, Ech3937 cultures with the supplementation of 0.1 mM OCA produced about 3-fold more hrpL mRNAs than those grown in MM alone at 12 h of growth (p<0.01) (Fig. 3). These results suggest that OCA does not activate T3SS expression through HrpX/HrpY-HrpS-HrpL pathway and these phenolic compounds induce hrpL expression at a post-transcriptional level.

rsmB up-regulates hrpL gene expression at a post-transcriptional level

The pPROBE-AT is a promoter-probe reporter plasmid [33,34]. Since the gfp of pPROBE-AT contained its own ribosome binding site, promoter activities of bacterial cells were measured when a promoter region was inserted into this vector [31]. In E. carotovora, RsmA-rsmB regulated hrpL expression at the post-transcriptional level [15,17]. In this study, a rsmB mutant Ech148 was constructed, and a reduced amount of hrpL mRNA was observed in this mutant in comparison with 3937 (Fig. 4). However, similar promoter activity of hrpL was observed between the wild-type bacterium and ΔrsmB mutant Ech148 (Table 5). Similar promoter activity and mRNA level of hrpS were observed between 3937 and Ech148 mutant. These results suggested that the reduced amount of hrpL mRNA in Ech148 was due to the lack of rsmB RNA to quench the activity of RsmA in Ech148. In addition, compared to Ech3937, a lower expression of downstream T3SS genes hrpA and hrpV was observed in mutant Ech148 (Table 5), which was due to a reduced amount of hrpL mRNA in this mutant (Fig. 4).

Table 2. The expression of hrpA, hrpN, hrpL, and hrpS of Dickeya dadiantii 3937 (Ech3937) in MM, MM supplemented with 0.1 mM OCA (MIMOCA), and MM supplemented with 0.1 mM TCA (MMTCA).

Gene Promoter	MM	MM-OCA	MM-TCA
Ech3937 (hrpA)	41.0±2.5	82.2±0.6	77.7±0.3
GFP	120.5±2.5	170.3±4.1	167.6±13.1
GFP%	31.0±1.8	46.5±1.1	44.8±3.5
Ech3937 (hrpN)	43.0±4.3	94.4±3.2	102.8±1.1
GFP	150.9±12.5	210.1±20.8	194.2±21.6
GFP%	27.1±3.1	44.2±4.6	52.6±6.3
Ech3937 (hrpL)	13.7±1.2	19.1±0.2	18.8±1.0
GFP	24.8±1.0	29.8±0.3	29.5±0.7
GFP%	41.7±4.2	54.9±0.8	54.3±3.3
Ech3937 (hrpS)	62.6±1.6	564.0±0.7	533.5±1.8
GFP	63.7±1.8	573.7±0.7	550.0±1.7
GFP%	98.1±0.3	98.2±0.1	97.0±0.3
Ech3937 (pAT)	1.9±0.0	0.0±0.0	1.9±0.0
GFP	28.1±38.3	35.1±32.2	0.0
GFP%	0.0±0.0	0.0±0.0	0.0±0.0

The promoter activities were compared at 12 h of growth in the media. GFP intensity was determined on gated populations of bacterial cells by flow cytometry. GFP intensity was determined on gated populations (10,000-15,000 events) of bacterial cells by flow cytometry. The fluorescence intensities were collected, including average GFP fluorescence intensity of total bacterial cells (Total), average GFP fluorescence intensity of GFP expressing bacterial cells (GFP), and the percentage of GFP expressing bacterial cells of the total bacterial cells (GFP%).

**Values (Mean Fluorescence Intensity) are a representative of at least 3 experiments with similar results. Three replicates were used in this experiment. The value is present as average of three replicates with standard deviation (SD).

Table 3. The expression of hrpN of Dickeya dadiantii 3937 (Ech3937) in MM and MM supplemented with different amount of TCA and SA respectively.

TCA	12 h	24 h
MM*	41.6±3.6	913±11.5
GFP	196.8±6.6	194.5±14.3
GFP%	20.0±2.3	46.1±7.3
0.2 μM	65.1±6.9	163.1±25.5
GFP	200.0±11.4	250.7±20.2
GFP%	31.5±3.2	64.2±5.4
0.5 μM	73.5±4.3	158.8±21.0
GFP	228.0±8.9	251.4±18.0
GFP%	31.4±3.2	62.6±6.7
5 μM	134.7±5.5	266.1±14.5
GFP	287.9±24.0	357.4±9.1
GFP%	46.3±2.2	74.1±2.9
10 μM	147.8±18.5	284.3±12.3
GFP	304.1±26.7	397.7±7.7
GFP%	48.0±3.2	71.1±3.4
SA*	53.8±4.0	105.6±28.7
GFP	199.6±3.1	219.3±7.0
GFP%	25.9±2.5	47.0±1.8
0.2 μM	49.6±6.0	99.6±18.8
GFP	205.0±2.6	190.9±14.5
GFP%	23.1±3.3	50.9±6.1
0.5 μM	50.0±3.0	97.7±9.0
GFP	200.2±1.6	194.0±1.0
GFP%	23.8±1.3	49.4±4.5
5 μM	52.1±2.4	104.7±3.2
GFP	217.4±5.0	196.2±7.4
GFP%	22.9±0.7	52.5±3.1

*Minimal medium (MM) alone and MM supplemented with different concentrations of t-cinnamic acid (TCA) or salicylic acid (SA).

**The promoter activities of hrpN were measured at 12 and 24 h of growing in the media. The fluorescence intensities were collected, including average GFP fluorescence intensity of total bacterial cells (Total), average GFP fluorescence intensity of GFP expressing bacterial cells (GFP*), and the percentage of GFP expressing bacterial cells of the total bacterial cells (GFP%). Three replicates were used in this experiment. The value (Mean Fluorescence Intensity) is present as the average of three replicates with standard deviation. The GFP intensities of Ech3937 (pAT) grown in MM were 2.2±0.0 and 3.4±0.1 at 12h and 24h respectively.

doi:10.1371/journal.pone.0002973.t002
Table 4. The expression of hrpA or hrpN of Dickeya dadantii 3937 (Ech3937), gacA mutant Ech137, iaaM mutant Ech138, rsmB mutant 148 and gacS mutant Ech149 in MM and MM supplemented with 0.1 mM OCA (MMOCA).

Gene Promoter*	6h	12h	24h			
	MM	MMOCA	MM	MMOCA	MM	MMOCA
Ech3937 (pAT)	1.9±0.0	2.0±0.0	1.9±0.0	2.0±0.0	1.8±0.0	1.9±0.0
GFP*	3.9±6.7	8.0±7.1	28.1±38.3	35.1±32.2	16.3±7.2	10.7±0.0
GFP%	0	0	0	0	0	0
Ech-Rif (phrpA)	12.7±0.2	17.5±0.2	22.1±0.4	51.3±1.5	16.1±1.2	49.2±0.8
GFP*	100.8±4.5	106.7±4.8	111.2±1.7	142.8±2.1	67.1±3.7	97.7±2.4
GFP%	8.1±0.5	12.0±0.3	16.2±0.2	33.4±0.5	19.7±2.5	48.0±0.3
Ech137 (phrpA)	4.7±0.0	4.9±0.1	5.5±0.0	5.9±0.1	7.6±0.0	8.3±0.0
GFP*	19.3±4.2	18.3±3.4	14.9±0.9	15.4±0.3	14.0±0.0	14.3±0.3
GFP%	2.2±0.1	2.4±0.1	4.3±0.3	6.2±0.4	18.4±0.3	23.3±0.3
Ech3937 (phrpN)	18.8±2.4	31.4±3.2	29.5±3.1	91.4±8.0	32.5±20	78.1±7.9
GFP*	151.3±9.8	171.7±10.8	149.2±8.6	232.6±36.2	98.9±6.3	162.4±11.4
GFP%	10.4±2.1	16.4±2.5	17.7±1.3	38.5±3.2	30.9±3.2	46.9±3.5
Ech138 (phrpN)	5.6±0.7	9.1±1.6	11.3±0.9	32.6±5.0	17.3±1.5	38.7±5.3
GFP*	68.6±8.4	69.6±6.7	95.2±7.0	115.3±4.5	90.5±1.1	105.8±7.5
GFP%	3.3±0.6	8.2±1.6	8.4±0.3	25.7±5.4	16.3±1.8	34.5±2.6
Ech148 (phrpN)	4.3±0.1	3.8±0.0	4.2±0.1	3.9±0.1	4.8±0.2	4.8±0.1
GFP*	16.7±3.2	15.2±0.9	22.9±9.2	27.8±7.5	22.8±6.4	23.6±6.1
GFP%	0.6±0.1	0.4±0.0	1.6±0.3	0.8±0.2	2.69±1.0	2.3±0.4
Ech149 (phrpN)	4.6±0.2	3.6±0.3	4.7±0.3	3.9±0.2	4.6±0.2	5.4±0.2
GFP*	14.8±1.3	26.7±15.4	17.1±13	36.0±13.4	32.6±12.2	37.8±12.5
GFP%	0.6±0.3	0.3±0.0	2.6±1.2	0.9±0.2	2.2±0.1	2.9±0.1

The promoter activities were compared at 6, 12, and 24 h of bacterial growth. The fluorescence intensities were collected, including average GFP fluorescence intensity of total bacterial cells (Total), average GFP fluorescence intensity of GFP expressing bacterial cells (GFP), and the percentage of GFP expressing bacterial cells of the total bacterial cells (GFP%).

Values are a representative of at least two experiments with similar results. Three replicates were used in this experiment. The value is present as the average of three replicates with standard deviation (SD).

OCA induces T3SS through rsmB-RsmA pathway

The TCS GacS/GacA up-regulates rsmB and RsmA-rsmB regulates hrpL at the post-transcriptional level (Fig. 1). To investigate if OCA induces the T3SS through the RsmA-rsmB pathway, the promoter activities of hrpA or hrpN were compared in the wild-type bacterium, ΔrsmB mutant Ech148, ΔgacA mutant Ech149 and ΔgacA mutant Ech137 carrying phrpA or phrpN grown in MM and MM supplemented with OCA respectively. The wild-type showed a higher GFP intensity grown in MM supplemented with OCA in comparison to MM alone. However, similar GFP intensity was observed in Ech137, Ech148 and Ech149 cells grown in MM and MM supplemented with OCA at each time point of bacterial growth (Table 4). The effect of OCA on the expression of gacA and rsmB was further examined by qRT-PCR. Our results show that, compared with Ech3937 in MM alone (normalized to 1), a significantly higher rsmB mRNA (relative expression ratio 1.4, p=0.003) was observed in the bacterium grown in MM supplemented with OCA (Fig. 3). However, no significant difference in the level of gacA mRNA was observed in Ech3937 grown in MM and MM supplemented with OCA (Fig. 3). These results suggest the OCA and TCA induce the T3SS through the rsmB-RsmA pathway.
Table 5. The promoter activities of *hrpS, hrpL, hrpA* and *hrpN* of *Dickeya damentii* 3937 (Ech3937) and *rsmB* mutant Ech148 grown in minimum medium.

Gene Promoter	6h	12 h	
Ech3937 (pAT)	Total	2.1 ± 0.1	7.8 ± 0.6
	GFP+	12.6 ± 1.6	29.9 ± 10.3
	GFP%	0	0
Ech3937 (phpS)	Total	35.9 ± 1.1	107.4 ± 0.9
	GFP+	39.6 ± 0.9	108.0 ± 1.1
	GFP%	88.0 ± 1.1	99.5 ± 0.2
Ech148 (phpS)	Total	30.6 ± 2.0	90.6 ± 3.3
	GFP+	33.1 ± 1.9	90.9 ± 3.4
	GFP%	90.4 ± 1.8	99.8 ± 0.1
Ech3937 (phpL)	Total	4.7 ± 0.2	10.0 ± 1.1
	GFP+	16.3 ± 1.2	16.5 ± 2.2
	GFP%	3.3 ± 0.4	34.1 ± 3.2
Ech148 (phpL)	Total	5.3 ± 0.0	9.0 ± 0.1
	GFP+	14.3 ± 0.5	14.1 ± 0.1
	GFP%	3.4 ± 0.2	29.9 ± 1.1
Ech3937 (phpA)	Total	7.6 ± 0.1	90.7 ± 6.5
	GFP+	58.0 ± 1.7	176.4 ± 9.2
	GFP%	5.6 ± 0.2	49.8 ± 4.8
Ech148 (phpA)	Total	4.7 ± 0.1	8.5 ± 0.1
	GFP+	16.5 ± 0.5	16.0 ± 0.2
	GFP%	1.5 ± 0.2	21.6 ± 0.9
Ech3937 (phpN)	Total	4.2 ± 0.3	63.7 ± 3.4
	GFP+	79.0 ± 4.7	231.4 ± 33.0
	GFP%	1.9 ± 0.3	26.6 ± 2.5
Ech148 (phpN)	Total	2.5 ± 0.1	3.8 ± 0.1
	GFP+	35.3 ± 6.2	30.3 ± 1.8
	GFP%	0.3 ± 0.1	1.4 ± 0.2

The promoter activities were compared at 6 and 12 h of bacterial growth. The fluorescence intensities were collected, including average GFP fluorescence intensity of total bacterial cells (Total), average GFP fluorescence intensity of GFP expressing bacterial cells (GFP), and the percentage of GFP expressing bacterial cells of the total bacterial cells (GFP%).

Discussion

Plants have multifaceted strategies to deal with microbial pathogens by producing a wide array of antimicrobial compounds, such as phenolic compounds [26]. In the SA biosynthesis pathway in plants, TCA is converted to OCA through ortho-hydroxylation. SA is produced by β-oxidation of OCA [35]. An increase of the phenolic acid TCA was observed in potato leaves at 2 h after exposure to CF from *E. carotovorum* [29]. In addition, TCA was shown to induce the expression of defense-related genes *dia-1* (a defense-related alcohol dehydrogenase), *pinII* (proteinase inhibitor II), *chtB* (basic chitinase) and *chtI* (acidic chitinase) of potato, suggesting that TCA may play a role in defense signaling in plants. The T3SS is considered one of the major virulence factors in many bacterial pathogens. T3SS delivers effectors into host cells [36]. One major role of T3SS of phytopathogens is to disable the host defense system during bacterial invasion. In this work, an approximately 1.7-fold higher GFP intensity was observed in Ech3937 (*hrpN*) grown in MM supplemented with 0.5 μM of TCA (roughly the level of TCA in potato leaves) in comparison to bacterial cells grown in MM alone (Table 3). However, an approximately 3-fold higher GFP intensity was observed in the bacterial cells grown in MM supplemented with 5 μM of TCA (the level of TCA in potato leaves induced by CF). This result indicates that Ech3937 may modulate its T3SS expression to invade hosts by sensing the basal level of TCA in healthy host plants. In addition, due to the accumulated level of the phenolic compound in hosts caused by bacterial infection, a higher expression of T3SS may be induced in the bacterial cells for a defensive response against the plant responses.

In this study, a higher amount of mRNAs of *deps* and *hrpA* was observed when OCA or TCA were added into MM (Fig. 3). No induction was observed in *hrpS* when these two plant phenolic acids were added to the MM. Since a significant increase of mRNA of *hrpL* but only a slight increase of the *hrpL* promoter activity of Ech3937 was observed when these two plant phenolic acids were added into the MM (Table 3; Fig. 3), it is plausible that *deps*, *hrpA* and *hrpN* are induced by an alternative regulatory pathway and not the HrpX/HrpY-HrpS pathway. In this study, OCA and TCA were unable to enhance *hrpA* or *hrpN* expression of the Δ*rsmB, AgacS*, and *AgacA* mutants of Ech3937 (Table 4). In addition, an increased mRNA level of *rsmB* in the wild-type Ech3937 was observed when OCA and TCA were added in MM (Fig. 3). These results suggest that these phenolic compounds regulate T3SS through *rsmB*-RsmA pathway. Since the expression of *rsmB* of Ech3937 is up-regulated by TCS GacS/GacA [15], our results suggest that OCA/TCA may induce the T3SS gene expression by modulating the mRNA level of *rsmB* through activation of GacS/GacA. Compared with MM alone, there was no increase in *gacA* mRNA of Ech3937 when the bacterial cells were grown in MM supplemented with OCA (Fig. 3). In TCS, the activity of histidine kinase and response regulator is stimulated by the phosphorylation of histidine and aspartate residues of these TCS proteins respectively [37]. In this work, the activation of TCS GacS/GacA by OCA may result from the phosphorylation of the GacA protein through GacS. Thus, the amount of mRNA of *gacA* may not be increased when OCA is supplemented in MM. In the *envZ-ompR* TCS, the role of EnvZ is primarily as a phosphodonor for response regulator OmpR activation [38]. Disruption of *envZ-ompR*, the sensor kinase did not reduce the level of mRNA of the response regulator *ompR*. However, at this stage, we can not rule out the possibility of other unknown regulator(s) affected by OCA and further up-regulating the expression of *rsmB*. Finally, compared with Ech3937 in MM, a slightly higher promoter activity of *hrpL* was observed in the bacterial cells grown in MM supplemented with OCA. With the complexity of the T3SS regulatory system revealed in Ech3937, we can not rule out that other alternate regulatory pathways may also play a role in T3SS induction by OCA and/or TCA.

In summary, two T3SS inducers, OCA and TCA, were identified in this study. The induction of T3SS gene expression by these two phenolic compounds is moderated through the *rsmB*-RsmA pathway. With the similarity of these global virulence regulatory systems of T3SS among plant and animal pathogens, the role of phenolic reagents (e.g., development of phenolic compound analogues that block the T3SS regulatory pathway) and strategies for pathogen control in many fields, including agriculture, medicine, and the food industry.
Materials and Methods

Bacterial strains, plasmids, media and chemicals

The bacterial strains and plasmids used in this study are listed in Table 1. E. coli was grown in LB broth at 37°C and D. dadantii was grown in MM at 28°C [32]. Antibiotics (µg/ml) used were: ampicillin, 100; kanamycin, 50. Primers for Polymerase Chain Reaction (PCR) in this report are also listed in Table 1. OCA, TCA and SA were purchased from Sigma-aldrich (St. Louis, MO). A transposon miniHimar R1 was used to construct a mutant library of 3937 in the Yang Lab (unpublished data). For this purpose, E. coli S17-1 λ-pir (pMiniHimar R1) (E. coli S17-1 λ-pir cells carrying plasmid pMiniHimar R1) was used as a donor in mating with Ech3937 [39]. The miniHimar R1 carries an R6Kγ origin of replication. To locate the disrupted region containing the MiniHimar R1, the chromosomal DNAs of these mutants were digested by BamHI, followed by self-ligation and sequencing [39]. Two of the transposon mutants, ΔsinD (Ech148) and ΔgacS (Ech149), identified in the mutant library were used in this study.

FACS analysis

FACS analysis of promoter activity of hpA, hpL, hpN, and hpS was carried out as described [31]. Briefly, the wild-type Ech397 and the mutant strains carrying the promoter reporter plasmid were grown on LB broth at 28°C overnight and transferred to appropriate media. For FACS analysis, samples were collected by centrifugation, washed with 1X phosphate buffer saline, and re-suspended in 1X PBS to ca 10⁶ CFU/ml prior to being run in a FACS Calibur flow cytometer (BD Biosciences, CA). Among all the flow cytometry assays that we tested, the gated event number of each individual assay was constantly around 10000–15000 events. To avoid debris, electronic background, and undesired clumps in the bacterial samples, a Gate R1 was set up, which was based on light scatter for the flow cytometry assay.

References

1. Hugouvieux-Cotte-Pattat N, Coudemine G, Nasser W, Reverchon S (1996) Regulation of pectinolyis in Erwinia chrysanthemi. Annu Rev Microbiol 50: 213–237.
2. Chang JH, Geel AK, Grant SR, Dang JL (2004) Wake of the flood: ascertaining functions to the wave of type III effector proteins of phytopathogenic bacteria. Curr Opin Microbiol 7: 11–18.
3. Tang X, Xiao Y, Zhou JM (2006) Regulation of the type III secretion system in phytopathogenic bacteria. Mol Plant Microbe Interact 19: 1159–1166.
4. Bauer DW, Bogdanove AJ, Beer SV, Collmer A (1994) Erwinia chrysanthemi hp genes and their involvement in soft rot pathogenesis and elicitation of the hypersensitive response. Mol Plant Microbe Interact 7: 573–581.
5. Bauer DW, Wei ZM, Beer SV, Collmer A (1995) Erwinia chrysanthemi harpinC an elicitor of the hypersensitive response that contributes to soft-rot pathogenesis. Mol Plant Microbe Interact 8: 481–491.
6. Lopez-Solanilla E, Llama-Palacios A, Collmer A, Garcia-Olmedo F, Rodriguez-Palenzuela P (2001) Relative effects on virulence of mutations in the sip, pel, and hp loci of Erwinia chrysanthemi. Mol Plant Microbe Interact 14: 306–393.
7. Nasser W, Reverchon S, Vedel R, Boccara M (2005) PecS and PecT coregulate the synthesis of HrpN and pectate lyases, two virulence determinants in phytopathogenic bacteria. Mol Plant Microbe Interact 18: 1203–1214.
8. Yang CH, Gavilanes-Ruiz M, Okinaka Y, Vedel R, Chatterjee AK, et al. (2002) hp genes of Erwinia chrysanthemi are important virulence factors. Mol Plant Microbe Interact 15: 472–480.
9. Alfano JR, Charkowski AO, Deng WL, Badel JL, Petnicki-Ocwieja T, et al. (2000) The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc Natl Acad Sci U S A 97: 4856–4861.
10. Alhenc-Gelas M, Gandrille S, Aubry ML, Aiach M (2000) Thirty-three novel mutanions in the protein G gene. French INERM network on molecular abnormalities responsible for protein G and protein S. Thromb Haemost 83: 82–93.
11. Arlat M, Gough CL, Zischek C, Barberis PA, Trigalet A, et al. (1992) Transcriptional organization and expression of the large hp gene cluster of Pseudomonas syringae pv syringae. Mol Plant Microbe Interact 5: 187–193.
12. Brison A, Winans SC (2005) Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 69: 153–194.
13. Francis MS, Wolk-Watz H, Forberg A (2002) Regulation of type III secretion systems. Curr Opin Microbiol 5: 166–172.
14. Galan JE, Collmer A (1999) Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284: 1322–1326.
15. Yang S, Peng Q, Zhang Q, Yi X, Chei C-J, et al. (2006) Dynamic Regulation of GacA in Type III Secretion, Pectinase Gene Expression, Pellicle Formation, and Pathogenicity of Dickeya dadantii (Erwinia chrysanthemi 3937). Mol Plant Microbe Interact 21: 133–142.
16. Yap MN, Yang CH, Barak JD, John CE, Charkowski AO (2003) The Erwinia chrysanthemi type III secretion system is required for multicellular behavior. J Bacteriol 185: 639–648.
17. Cui Y, Mukherjee A, Dumenyo CK, Liu Y, Chatterjee AK (1999) rsmC of the soft-rotting bacterium Erwinia carotovora subsp. carotovora negatively controls extracellular enzyme and harpinC production and virulence by modulating levels of regulatory RNA (rsmD) and RNA-binding protein (RsmA). J Bacteriol 181: 6042–6052.
18. Chatterjee A, Cui Y, Chatterjee AK (2002) Regulation of Erwinia carotovora harpinC (signorC), which encodes an extracytoplasmic function subfamily of sigma factor required for expression of the HRP regulon. Mol Plant Microbe Interact 15: 971–980.
19. Chatterjee A, Cui Y, Chatterjee AK (2002) RsmA and the quorum-sensing signal, N-[3-oxohexanoyl]-L-homoserine lactone, control the levels of rsmD RNA.
20. Chatterjee A, Cui Y, Yang H, Collmer A, Alfano JR, et al. (2003) GacA, the response regulator of a two-component system, acts as a master regulator in *Pseudomonas syringae* pv. *tomato* DC3000 by controlling regulatory RNA, transcriptional activators, and alternate sigma factors. Mol Plant Microbe Interact 16: 1106–1117.

21. Aldon D, Genin S (2000) *Ralstonia solanacearum*-a plant pathogen in touch with its host: Response. Trends in Microbiology 8: 489.

22. Buttner D, Bonas U (2006) Who comes first? How plant pathogenic bacteria orchestrate type III secretion. Curr Opin Microbiol 9: 193–200.

23. Ham JH, Cui Y, Alfano JR, Rodriguez-Palenzuela P, Rojas CM, et al. (2004) Analysis of *Erwinia chrysanthemi* EC16 pilE::uidA, pilL::uidA, and hrcN::uidA mutants reveals strain-specific atypical regulation of the Hrp type III secretion system. Mol Plant Microbe Interact 17: 184–194.

24. Mota LJ, Seog I, Cornelis GR (2005) Type III secretion: the bacteria-eukaryotic cell express. FEMS Microbiol Lett 252: 1–10.

25. Fagard M, Dellagi A, Roux C, Perino C, Rigault M, et al. (2007) Arabidopsis thaliana expresses multiple lines of defense to counterattack *Erwinia chrysanthemi*. Molecular Plant-Microbe Interactions 20: 794–805.

26. Ravirala RS, Barabote RD, Wheeler DM, Reverchon S, Tatum O, et al. (2003) Erwinia chrysanthemi tolC is involved in resistance to antimicrobial plant chemicals and is essential for phytopathogenesis. J Bacteriol 185: 5772–5778.

27. Miller WG, Leveau JH, Lindow SE (2000) Improved gfp and snaZ broad-host-range promoter-probe vectors. Mol Plant Microbe Interact 13: 1243–1250.

28. Barabote RD, Johnson OL, Zetina E, San Francisco SK, Fralick JA, et al. (2003) *Erwinia chrysanthemi* tolC is involved in resistance to antimicrobial plant chemicals and is essential for phytopathogenesis. J Bacteriol 185: 5772–5778.

29. Montesano M, Brader G, De Leon ISP, Palva ET (2005) Multiple defence signals induced by *Erwinia carotovora* subsp. *carotovora* elicitors in potato. Molecular Plant Pathology 6: 541–549.

30. Vidal S, de Leon IP, Denecke J, Palva ET (1997) Salicylic acid and the plant pathogen *Erwinia carotovora* induce defense genes via antagonistic pathways. Plant Journal 11: 113–123.

31. Peng Q, Yang S, Charkowski AO, Yap MN, Sreebner DA, et al. (2006) Population behavior analysis of *dspE* and *pelD* regulation in *Erwinia chrysanthemi* 3937. Mol Plant Microbe Interact 19: 431–437.

32. Yang S, Zhang Q, Guo J, Charkowski AO, Glick BR, et al. (2007) Global effect of indole-3-acetic acid biosynthesis on multiple virulence factors of *Erwinia chrysanthemi* 3937. Appl Environ Microbiol 73: 1079–1088.

33. Miller WG, Lindow SE (1997) An improved GFP cloning cassette designed for prokaryotic transcriptional fusions. Gene 191: 149–153.

34. Miller WG, Leveau JH, Lindow SE (2000) Improved gfp and snaZ broad-host-range promoter-probe vectors. Mol Plant Microbe Interact 13: 1243–1250.

35. Yalpani N, Leon J, Lawton MA, Raskin I (1993) Pathway of Salicylic Acid Biosynthesis in Healthy and Virus-Inoculated Tobacco. Plant Journal 11: 115–123.

36. Heeb S, Blumer C, Haas D (2002) Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in *Pseudomonas fluorescens* CHA0. J Bacteriol 184: 1046–1056.

37. Park D, Forst S (2006) Co-regulation of motility, exoenzyme and antibiotic production by the EnvZ-OmpR-FlhDC-FliA pathway in *Xenorhabdus nematophila*. Mol Microbiol 61: 1397–1412.

38. Bouhenni R, Gehrke A, Saffarini D (2005) Identification of genes involved in cytochrome c biogenesis in *Shewanella oneidensis*, using a modified mariner transposon. Appl Environ Microbiol 71: 4935–4937.

39. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST (c)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research 30: e36.