SUPPORTING INFORMATION

Downconversion Luminescence-Based Nanosensor for Label-Free Detection of Explosives

Monika Malik†‡, Preeti Padhye†‡, Pankaj Poddar*†‡

†Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune - 411008, India
‡Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2, Rafi Marg, New Delhi - 110001, India

Corresponding author
*E-mail: p.poddar@ncl.res.in, Phone: +91-20-2590 2580
Figure S1. The chemical structures of the commonly used nitrocompounds.
Figure S2. XRD pattern of NaYF$_4$ doped with Gd$^{3+}$ and Tb$^{3+}$ ions (black line), calculated XRD curve after crystal structure refinement by Rietveld method (red line), $I_{\text{obs}}-I_{\text{cal}}$, difference curve (green line) and Bragg position (pink vertical line) is displayed.
Table S1. Rietveld refinement data of the as-synthesized product β-NaYF₄:Gd³⁺,Tb³⁺@PEI.

χ²	2.4	wR_p (%)	5.3	
R_p (%)	4.0			
Spacegroup	P62m			
a=b	5.96	c	3.58	

	x	y	z	occupancy
Na⁺+1	0.333300	0.666700	0.500000	0.742401
Y⁺³	0.333300	0.666700	0.500000	0.245310
Y⁺³	0	0	0	0.714572
Gd⁺³	0	0	0	0.246481
Tb⁺³	0	0	0	0.091391
F⁻¹	0.619858	0	0	0.979559
F⁻¹	0.220950	0	0.500000	1.010779
Figure S3. The EDXA pattern showing the elemental composition consisting of Na, F, Y, Gd and Tb ions.
Figure S4. (a) The HRTEM image, (b) corresponding inverse fast Fourier transformation (IFFT) image of the square region marked red in figure (a), corresponding to (110) plane masked in the FFT pattern with red circles as shown in inset, (c) the line profile of the selected region in IFFT image for interplanar spacing of 0.30 nm, and (d) SAED pattern of β-NaYF$_4$:Gd$^{3+}$,Tb$^{3+}$@PEI nanophosphors.
Figure S5. The TGA curve for branched polyethylenimine (PEI) showing decomposition temperature at ~ 400 °C.
Figure S6. The high-resolution XPS spectra of the elements present in β-NaYF₄:Gd³⁺, Tb³⁺@PEI showing the binding energy of (a) Na 1s, (b) Y 3d, and (c) F 1s revealing the core energy levels.
Figure S7. The Raman spectra of as-synthesized β-NaYF$_4$:Gd$^{3+}$,Tb$^{3+}$@PEI excited under wavelength of 325 nm.
Table S2. The comparison of different methods and limit of detection for TNT (*NA= Not applicable).

Detection technique	Probe	Detection rangea/linear rangeb	LOD
Electrochemical	Graphene nanoribbons⁴	4.4 - 66 μMb	4.4 μM
method			
Surface enhanced	Molecularly imprinted	NA*	3 μM
Raman spectroscopy	polymers²		
Fluorescence	Mesoporous silica	1 - 25 μMa	0.6 μM
method	nanoparticles³		
	Graphene quantum	2.2 - 800 μMb	2.2 μM
dots⁴			
	Polymer substrates and	0.1 - 5.5×10³ μMa⁶	1 μM
fibres⁵			
	Pyrene derivatives⁶	1 - 14 μMa⁷	1 μM
	Carbon quantum dots⁷	10⁻³ - 1 μMa⁸	0.213 μM
	Downconverting	0.1 - 10 μMb⁹	0.119 μM
phosphors			
(this work)			
Figure S8. (a) Influence of pH on the luminescence intensity before and after the addition of TNT (300 μM). For pH 7-8, NaH₂PO₄-Na₂HPO₄, pH 9-11 NaHCO₃-Na₂CO₃-NaOH and pH 12-13 KCl-NaOH were used. (b) Effects on incubation time on the PL intensity at 544 nm due to the presence of TNT was studied at pH 7 in buffer solution at room temperature.
Figure S9. The comparison of static photoluminescence spectra of β-NaYF$_4$:Gd$^{3+}$,Tb$^{3+}$ nanophosphors with and without PEI in presence and in absence of TNT in aqueous medium.
Table S3. The average lifetime of the β-NaYF$_4$:Gd$^{3+}$,Tb$^{3+}$@PEI with different concentrations of TNT.

S. No.	Sample	τ_1 (ms)	Rel %	τ_2 (ms)	Rel %	Average lifetime (ms)
1	β-NaYF$_4$:Gd$^{3+}$,Tb$^{3+}$@PEI	0.35	18	2.50	82	2.11
2	β-NaYF$_4$:Gd$^{3+}$,Tb$^{3+}$@PEI + 1 μM TNT	0.42	22	2.34	78	1.91
3	β-NaYF$_4$:Gd$^{3+}$,Tb$^{3+}$@PEI + 10 μM TNT	0.21	27	2.17	73	1.72
4	β-NaYF$_4$:Gd$^{3+}$,Tb$^{3+}$@PEI + 100 μM TNT	0.24	24	1.89	76	1.49
5	β-NaYF$_4$:Gd$^{3+}$,Tb$^{3+}$@PEI + 300 μM TNT	0.23	30	1.32	70	0.98
Figure S10. The chemical structures of commonly used (A) amino acids, (B) pesticides, and (C) sugars.
References

(1) Goh, M. S.; Pumera, M. Graphene-Based Electrochemical Sensor for Detection of 2,4,6-Trinitrotoluene (TNT) in Seawater: The Comparison of Single-, Few-, and Multilayer Graphene Nanoribbons and Graphite Microparticles. *Anal. Bioanal. Chem.* 2011, 399, 127–131.

(2) Holthoff, E. L.; Stratis-Cullum, D. N.; Hankus, M. E. A Nanosensor for TNT Detection Based on Molecularly Imprinted Polymers and Surface Enhanced Raman Scattering. *Sensors* 2011, 11, 2700–2714.

(3) Feng, L.; Li, H.; Qu, Y.; Lù, C. Detection of TNT Based on Conjugated Polymer Encapsulated in Mesoporous Silica Nanoparticles through FRET. *Chem. Commun.* 2012, 48, 4633.

(4) Fan, L.; Hu, Y.; Wang, X.; Zhang, L.; Li, F.; Han, D.; Li, Z.; Zhang, Q.; Wang, Z.; Niu, L. Fluorescence Resonance Energy Transfer Quenching at the Surface of Graphene Quantum Dots for Ultrasensitive Detection of TNT. *Talanta* 2012, 101, 192–197.

(5) Pablos, J. L.; Trigo-López, M.; Serna, F.; García, F. C.; García, J. M. Solid Polymer Substrates and Smart Fibres for the Selective Visual Detection of TNT Both in Vapour and in Aqueous Media. *RSC Adv.* 2014, 4, 25562–25568.

(6) Kovalev, I. S.; Taniya, O. S.; Sloveanova, N. V.; Kim, G. A.; Santra, S.; Zyryanov, G. V.; Kopchuk, D. S.; Majee, A.; Charushin, V. N.; Chupakhin, O. N. Fluorescent Detection of 2,4-DNT and 2,4,6-TNT in Aqueous Media by Using Simple Water-Soluble Pyrene Derivatives. *Chem.-Asian J.* 2016, 11, 775–781.

(7) Tian, X.; Peng, H.; Li, Y.; Yang, C.; Zhou, Z.; Wang, Y. Highly Sensitive and Selective Paper Sensor Based on Carbon Quantum Dots for Visual Detection of TNT Residues in Groundwater. *Sensors Actuators B Chem.* 2017, 243, 1002–1009.