Original Article

In Situ Atomic Force Microscopy Depth-Corrected Three-Dimensional Focused Ion Beam Based Time-of-Flight Secondary Ion Mass Spectroscopy: Spatial Resolution, Surface Roughness, Oxidation

Lex Pillatsch1,2, Szilvia Kalácska1,2*, Xavier Maeder1 and Johann Michler1

1Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory of Mechanics of Materials and Nanostructures, Thun CH-3602, Switzerland and 2TOFWERK AG., Thun CH-3600, Switzerland

Abstract
Atomic force microscopy (AFM) is a well-known tool for studying surface roughness and to collect depth information about features on the top atomic layers of samples. By combining secondary ion mass spectroscopy (SIMS) with focused ion beam (FIB) milling in a scanning electron microscope (SEM), chemical information of sputtered structures can be visualized and located with high lateral and depth resolution. In this paper, a high vacuum (HV) compatible AFM was installed in a TESCAN FIB-SEM instrument that was equipped with a time-of-flight SIMS (ToF-SIMS) detector. To calibrate the sputtering rate and measure the induced roughness caused by the ToF-SIMS analysis, subsequent AFM measurements were performed on an inorganic multilayer vertical cavity surface-emitting laser sample. Normalized sputtering rates were used to aid the accurate three-dimensional reconstruction of the sputtered volume’s chemical composition. Achievable resolution, surface roughness during sputtering, and surface oxidation issues were analyzed. The integration of complementary detectors opens up the ability to determine the sample properties as well as to understand the influence of the Ga+ ion sputtering method on the sample surface during the analysis.

Key words: atomic force microscopy (AFM), chemical characterization, depth profiling, focused ion beam (FIB), time-of-flight secondary ion mass spectroscopy (ToF-SIMS)

(Received 13 December 2019; revised 10 September 2020; accepted 29 October 2020)

Introduction
Focused ion beam secondary ion mass spectroscopy (FIB-SIMS) is a well-known surface analysis technique (Dunn & Hull, 1999; Giannuzzi & Stevie, 2005; Giannuzzi & Utlaut, 2011). The measurement principle is based on locally sputtering the sample by the impact of ions while collecting and selecting the resulting sputtered ions according to their mass. The sensitivity of SIMS makes it suitable for locating trace elements in semiconductors and metals. SIMS is also capable of analyzing the chemical composition of multilayer structures (Whitby et al., 2012) with an excellent depth resolution. The remarkable depth resolution comes from the localization of sputtered particles that are limited to the few top surface layers (Pillatsch et al., 2019; Priebe et al., 2019). Although SIMS is extremely sensitive, it is not possible to determine the depth of a sputtered particle, as the sputter rate depends on the chemical and crystallographic composition of the sample and the projectile. Therefore, the elemental composition of the sputtered volume is usually represented as signal per sputtered frame. This often leads to a false impression of the depth-represented elemental composition. Depth profiling of the crater after SIMS measurement gives only information about the average sputtering rate of the analyzed volume, which can vary significantly because of the different sputtering rates of the analyzed structures at various crater depths.

An additional analysis method is required to calibrate the depth of the sputtered crater and to analyze the roughness of the crater bottom. This information is provided by atomic force microscopy (AFM). There have been previous attempts to couple AFM and ToF-SIMS analysis to carry out depth profile analysis (Busby et al., 2018; Casula et al., 2019) and surface roughness characterization by AFM (Noel et al., 2019). When combining AFM with SIMS, the AFM needs to be vacuum compatible, as SIMS measurements are done in high vacuum (HV). Breaking the vacuum for AFM measurement needs to be avoided when alternating SIMS and AFM measurements, as surface oxidation can occur. A suitable HV AFM setup that is easy to implement is based on a tuning fork AFM where the tip vibration is controlled and recorded by tracking the variations in the electrical impedance of the tuning fork (Akiyama et al., 2003, 2006, 2010). No optical setup is required for this type of AFM, which makes it easy to adjust in vacuum.

An advantage of in situ AFM consists in a higher quality factor (Q-factor) compared with in-air AFM. The Q-factor of a micro-

*Author for correspondence: Szilvia Kalácska, E-mail: szilvia.kalacska@empa.ch
Cite this article: Pillatsch L, Kalácska S, Maeder X, Michler J (2021) In Situ Atomic Force Microscopy Depth-Corrected Three-Dimensional Focused Ion Beam Based Time-of-Flight Secondary Ion Mass Spectroscopy: Spatial Resolution, Surface Roughness, Oxidation. Microsc Microanal 27, 65–73. doi:10.1017/S1431927620024678

© The Author(s), 2020. Published by Cambridge University Press on behalf of the Microscopy Society of America
cantilever AFM probe is defined as

\[Q = \frac{f_0}{\Delta f} \]

where \(\Delta f = (\text{full-width at maximum height}/\sqrt{2}) \) of the resonance peak of the amplitude curve, while \(f_0 \) is the resonance frequency (Perez-Cruz et al., 2012). This Q-factor indicates the damping and the energy dissipation capacity of the applied system.

The damping force from ambient air acting on the vibration of the tip is missing in vacuum, which allows free vibration of the tip, hence the Q-factor is increased. The consequence of a high Q-factor is faster response reaction to variation of the tip-to-surface interaction (Kushmerick & Weiss, 2017), and thus, the sensitivity to surface variations is higher.

At ambient pressure, the AFM can be driven either in amplitude mode (AM-AFM) by keeping the amplitude of the tip vibration constant, or in frequency mode (FM-AFM) by keeping the frequency of the tip vibration constant. Both methods are used in tapping mode where although the tip is close to the surface, any actual contact between the surface and tip should be avoided. For AM-AFM, the frequency of the tip changes according to the interaction force between the tip and the surface. The frequency shift of the tip is proportional to the scan speed and inversely proportional to the Q-factor (Rodriguez & García, 2003; Kushmerick & Weiss, 2017). Apart from measuring the surface height, AM-AFM mode also provides information about the presence of different domain segregations by tracking the phase shift between the vibration frequency and the excitation frequency of the tip, that is proportional to the tip–surface interaction force (Bayat et al., 2008). A drawback of this measurement method is the link of the Q-factor to the scan speed. In HV conditions, the elevated Q-factor leads to a reduced scan speed in order to keep the tip vibration in an acceptable frequency range for a given tip vibration amplitude. This will slow down the scan speed to an unacceptable level.

For FM-AFM, the Q-factor is independent from the scan speed. Frequency detection is not affected by the amplitude of the tip vibration. This allows maintaining high scan speeds while recording precise information of the surface height. As phase shift cannot be measured, the composition of the surface cannot be tracked by this method. Nevertheless, the FM-AFM precision in terms of depth measurement is higher than the precision of the AM-AFM mode.

The visualization of the crater was done by scanning electron microscopy (SEM) after the last AFM scan. The SEM image is useful to determine and overlay the scan area of the earlier AFM and SIMS measurements and to confirm the measured AFM data after surface sputtering.

In this article, we present a scanning strategy to alternate AFM and SIMS measurements in order to get the depth information about the chemical composition of a multilayer sample. Advantages and drawbacks of the acquisition are analyzed, and limits of the measurement are discussed.

Materials and Methods

An FIB-SEM instrument developed by TESCAN served as a platform for the SIMS-AFM integration. The sample was sputtered by a gallium (Ga⁺) FIB. Surface damage induced by the impacting Ga⁺ ions was visualized by SEM images. The elemental composition of the sample was measured by an orthogonal ToF-SIMS instrument (Alberts et al., 2014) developed by TOFWERK AG (Switzerland). This configuration allows the use of a continuous Ga⁺ ion beam for the simultaneous sputtering and analysis process. With the HV compatible AFM, the surface roughness and the sputter depth in between the SIMS scans were measured.

AFM Setup

Figure 1 shows the AFM setup with a tuning fork tip that was designed to fit in the FIB-SEM instrument. For the so-called “Akiyama tips”, the silicon (Si) tip apex is attached between two prongs (Akiyama et al., 2010). The deflection of the tip, orthogonal to the vibration plane of the prongs, is induced by periodical changing of the mechanical stress in the legs of the cantilever. The tuning fork itself acts as an oscillatory force sensor and dominates the frequency and the amplitude of the tip vibration. The interaction of the tip with the surface was measured by the piezoelectric current of the tuning fork. Important parameters of the AFM measurements are summarized in Table 1. The resonance precision of the AM-AFM mode.

Table 1. Parameters of the AFM Measurements.

Parameter	Value
Force constant of the cantilever	5 N/m
Apex radius of the tip	~15 nm
Applied mode	FM-AFM tapping
AFM maximum scan range	10 μm × 10 μm
AFM lateral scan range	20 nm (512 px × 512 px)
Scan speed	1.5 s/line
Repetition positioning error	~100 nm
Time to switch from AFM to SIMS	10 s
AFM tip positioning time	< 3 min
frequency of the tip was about 45 kHz with Q-factor measured in air of about 1,000. In vacuum, the tip vibration was not damped by air. The Q-factor in this case was 4–5 times higher which had a favorable impact on the reaction precision of the tip height. AFM measurements were performed in FM-AFM tapping mode. The compactness of the AFM setup allowed the mounting of the AFM tip between the extraction optics of the ToF-SIMS, the FIB, and the sample surface. The sample was mounted on the AFM piezo scanner with a maximum scan range of 10 μm × 10 μm. For a 512 px × 512 px scan with a lateral resolution of 20 nm and a scan speed of 1.5 s/line, an AFM scan took about 13 min. The height adjustment of the tip was done by a piezo scanner below the tip with a maximum movement range of 5 μm. The coarse motion of the tip was done by a tripod setup of slip-stick actuators. The coarse motion was independent of the AFM scanner and served only to set the tip at the area of interest and so to intersect the tip scan area with the scan area of the SIMS. During the actual AFM scan, the tip height was regulated by a piezo actuator under the AFM tip. The statistical analysis of each AFM measurement was carried out on a 5 μm × 5 μm area applying a raster size of 128 px × 128 px.

Secondary Ion Mass Spectroscopy

The SIMS measurements were carried out with a high-resolution ToF-SIMS detector from TOFWERK AG, Thun, Switzerland (Whitby et al., 2012). The mass resolution of the orthogonal ToF-SIMS was Δm/m > 3,900 Th/Th, where Δm denotes the peak width at full-width at half-maximum (Th is the unit “Thomson” for charge-to-mass ratio). The sample was sputtered by the Ga+ beam perpendicular to the sample surface. The beam of sputtered particles is pulsed in orthogonal direction in the ToF-SIMS mass analyzer. This configuration allows to use the same continuous beam for sputtering and analyzing the sample with ToF-SIMS. Beam energy of 20 keV was chosen for both sputtering and analysis in order to guarantee a lateral resolution below 50 nm (Whitby et al., 2012; Alberts et al., 2014). The extraction voltage for the secondary ions applied to the extraction nozzle of the ToF-SIMS was limited to <200 V, while the sample itself was grounded. The distance between the extraction optics and the sample surface was 9 mm. Because of the weak electric field, the AFM tip could stay at a distance of about 20 μm from the scanning area without disturbing the ion extraction of the ToF-SIMS. Therefore, it was possible to make fast alternation between SIMS and AFM scans with a repetition precision in the range of 100 nm that was limited by the coarse motion for the tip positioning.

Scanning Electron Microscopy

The exact location of the tip and the distance between the sample surface and the AFM tip was visualized by SEM. As the magnification of the SEM is higher by orders of magnitude than for optical microscopes, approaching and positioning of the tip at the area of interest was easy. Furthermore, damage of the apex of the tip was noted prior to AFM measurements. If the AFM parameters were adjusted adequately, the tip apex would last during several AFM scans which was required for a correct AFM-SIMS reconstruction of the sample. The position of the scan area of the AFM measurement matching the position of the crater created by the FIB beam can be determined by SEM in case where the intersection of the FIB and the SEM beam is done correctly and is at the sample surface. SEM was also applied to visualize the sputter location after the SIMS-AFM measurement to confirm the correctness of the AFM data.

Sample

The concept of depth calibration of the SIMS depth profile with direct depth measurements by AFM was demonstrated on a multilayer vertical cavity surface-emitting laser (VCSEL) sample (Lyytikäinen et al., 2009). The exact layer structure of the sample is shown in Figure 2a. This sample was chosen because of its initial surface flatness and its elemental composition being favorable for SIMS measurements.

The well-defined layer structure with the discrete border limitation was ideal to measure the intermixing due to collision cascades induced by impacting ions. Figure 2b shows the SIMS depth profile of 27Al, 69Ga, and 115In as a function of the SIMS frames.

Numerical Control of the SIMS-AFM Combination

The SIMS-AFM combination is either used to determine the surface roughness and the crater depth at a specific SIMS frame or the SIMS-AFM scans are alternated, giving a three-dimensional (3D) data set with the real sputter depth. The alternation of the SIMS-AFM scans was controlled through a Python script. The script only took over control when switching between SIMS and AFM, so to start and stop a SIMS acquisition, to relocate the AFM tip before and after a SIMS acquisition (Fig. 3a), and to launch the AFM scans. The SIMS- and AFM-specific parameters

![Fig. 2. (a) Layer structure of the VCSEL sample composed by 5 times a set of an aluminum rich layer structure separated by an indium phosphide (InP) layer, followed by 35 times alternating gallium arsenide (GaAs) and aluminum gallium arsenide (AlGaAs) layer structure. (b) SIMS depth profile of the VCSEL sample showing the 27Al-rich structure and one of the AlGaAs layers.]
After each ToF-SIMS measurement. With a pressure of two AFM scans (Figs. 3b, 3c). The inner part of the crater and roughness information at the center of the crater consisted of in-plane position (x), crater roughness, and the 27Al distribution measured by SIMS are represented.

such as scan range, scan speed, and resonance frequency of the AFM tip were all set in the software of the corresponding analysis tool. New SIMS data acquisition was launched after each AFM acquisition set, resulting in several SIMS data sets that could be handled together by external software. The periodicity of alternation between SIMS and AFM was determined by the number of SIMS frames per SIMS data set.

SIMS-AFM Scanning Strategy

During the overall SIMS-AFM experiments, AFM measurements were the most time consuming. As the AFM tip was scanning line by line with a defined scan speed, the scan time increased with the power of 2 with the increase of the scan area for a given lateral resolution. For the analyzed sample, a SIMS scan area of $10 \mu m \times 10 \mu m$ was enough to get the required information about the chemical composition of the different layers. This scan size was at the limit of the scanning range of the AFM setup.

A time-efficient scanning strategy leading to collect depth and roughness information at the center of the crater consisted of two AFM scans (Figs. 3b, 3c). The inner part of the SIMS crater was measured first by an AFM scan to record the roughness of the crater bottom. A second AFM scan with the crater edge in the middle of the scan area measured the sputter depth of the crater. By overlaying both AFM scans, all the required information could be extracted. Crater depths were determined by the Gwyddion software (Nečas & Klapetek, 2012).

Results

Surface Oxidation

It took ~ 25 min to perform the overall AFM analysis on the crater after each ToF-SIMS measurement. With a pressure $p = 10^{-6} \text{mbar}$ in the analysis chamber and by assuming that the residual gas in the FIB-SIMS-SEM instrument consisted only of N_2 molecules (the chamber was vented with nitrogen when changing the sample), the number of impinging atoms at the analysis surface during the AFM scan was calculated by (Jeans, 1982):

$$N_{\text{mol}} = \frac{p}{\sqrt{2\pi mk_{\text{B}}T}}$$

(1)

where m is the molecular mass of N_2 molecules, k_B is the Boltzmann constant, and $T = 298$ K is the ambient temperature, resulting $N_{\text{mol}} = 2.9 \times 10^6$ molecules/µm2's impinging nitrogen molecules. Within 25 min, 4.3×10^9 molecules/µm2 would impinge a surface unit. This is sufficient to cover the surface. Whereas only N_2 molecules were assumed to be in the residual gas, in reality, a nonnegligible fraction of chemically more reactive molecules (O_2, H_2O, and C_2) were contained as well in the residual gas. These reactive molecules would react with the surface during the AFM scan. Of course, only a given fraction of impinging molecules can react with the surface and, therefore, have an effect on the chemical surface state.

The ionization probability of sputtered particles (and so the secondary ion signal) depends on the chemical state of the surface. The effect of surface oxidation enhances the secondary ion formation, and as a result, the signal of the first SIMS frame recorded after an AFM scan was significantly higher. Already at the subsequent SIMS scan, most of the oxidized surface was sputtered away, resulting in a SIMS signal drop, appropriate to a clean surface. In Figure 4, the effect of surface oxidation on the SIMS signal after the AFM scan (every 20th SIMS frame) is visible.

Being aware of this effect, the signal spikes were eliminated by averaging the last secondary ion signal before and the ion signal of the second SIMS frame after an AFM scan in order to reflect the SIMS depth profile in absence of surface oxidation. This correction was found to be necessary to eliminate a false periodic signal appearing on the 3D reconstructions in "Discussion" in order to visualize the real structure and composition of the sample.

The depth profile of the VCSEL sample was recorded by SIMS. Beginning with an AFM scan, the SIMS depth profile was interrupted at every 20th frames to measure the sputter depth and the crater roughness by AFM.
Figure 5 shows the results of the combined SIMS-AFM measurement. The concentration variation of aluminum ions (^{27}Al), gallium ions (^{69}Ga), and indium ions (^{115}In) in the layer structure of the VCSEL is reflected by the SIMS depth profile. The sputter rate per 20 SIMS frames of the sample varies as a function of the local sample composition.

In Figure 6, the correction of the sputter depth of the ^{27}Al signal by AFM measurements is compared with the depth profile related directly to the sputter time of the crater. When referring the ^{27}Al signal to the sputter time, the layer thickness is reflected incorrectly due to the involved unknown sputter rate of the different layers. This is clearly visible in Figure 6 by the mismatch between the ^{27}Al signal once represented as a function of the sputter time and once represented by a correct depth calibration of the sputtered crater.

Starting with a roughness of 100 nm of the pristine surface, the decreasing trend of the roughness was observed until the 18th AFM scan (InP layer). The initial surface roughness was reduced by sputtering without adding new roughness by the impacting ions. The variation of the root-mean-square (RMS) roughness of the crater bottom for the AFM scans 18 (InP layer) to 26 (AlGaAs–GaAs layer structure) is related to the globular nanostructure formation at the surface (Fig. 7).

Discussion

The sputter process of a sample by an incident ion beam depends on the sample configuration, the species of incident ions, and the sample-incident ion beam interaction. The sputter rate is, thus, dependent on the layers to be sputtered, the mixing of the layers at the interface and the implantation and chemical reaction of incident ions with the sample and the development of the roughness related to the sputter process. The nature of incident ions, cluster or mono atomic ion beam, influences the sputter behavior. The acceleration energy distributed between atoms of a cluster results in lower impact energy per atom and thus in a higher energy deposition close to the surface for clusters. Therefore, the use of cluster bombardment in a given energy range is beneficial for a high sputter rate.

Sputter Rate and Roughness Analysis by AFM

In Figure 5, it can be noticed that the sputter rate is highest on the falling slope of SIMS signals of the ^{115}In-rich layers (AFM scans 3, 5, and 8: the interface between InP and AlGa) than on its corresponding rising slope (AFM scans 4, 6, 9, 12, and 15: within the layer AlGaInAs). This indicates that the sputter behavior was influenced by the interlayer mixing. The sputtering of one of the ^{27}Al-rich structure (AFM scans 7, 10, and 15: within the layer AlGaInAs) is lower than the sputtering rate at the AlGaInAs/InP interfaces, but still higher than the sputtering rate of InP (AFM scan 17 and 18).
As the sputter behavior of the sample was unknown prior to measurement, it was not possible to synchronize the depth measurements with the SIMS signals. Nevertheless, it was possible to determine the consistency of the sputter rate of an 27Al-rich layer structure by summing up the sputter depth of three consecutive AFM measurements incorporating an 27Al-rich layer structure (Fig. 5). For all five 27Al-rich structures, the same amount of material was sputtered away. For the first 27Al-rich layer structure, the sputter depth of 177 nm was influenced by the foregoing AlInAs/InP layers as well as by the initial surface roughness. The sputter depth of 170 nm of the second 27Al-rich structure was still influenced by the high roughness of the surface. With the decreasing roughness, the sputter depth for an 27Al-rich structure was still influenced by the high roughness of the surface. With the decreasing roughness, the sputter depth for an 27Al-rich layer structure leveled off to about 145–155 nm for the 3–5 27Al-rich structure. This corresponds to the distance between two 27Al-rich layers defined during the production of the sample.

The crater depth shown in the top graph of Figure 5 increases constantly up to the 18th AFM scan (InP layer), just before reaching the AlGaAs–GaAs layer structure. The sputter rate for this layer structure defers noticeably from the previous layer structure, resulting in a lower sputtering behavior, and thus in a lower sputter depth per 20 SIMS frames.

Surface Roughness

In Figure 7 on the left side of the 18th AFM scan (InP layer), the formation of an induced topography with a morphology characterized by globular nanostructures starts already. When comparing the depth of the AFM scans with the SIMS data, globular nanostructure formation occurs mainly on the GaAs/AlGaAs interface. At the AFM scan, 19 (the interface between InP and AlGaAs–GaAs layer structure) well-separated globular nanostructures are formed. The low RMS roughness values are still dominated by the flat surface area in between the globular nanostructures. The RMS roughness increases at the AFM scan 20 (AlGaAs–GaAs layer structure) due to the expansion of the globular nanostructures. When the GaAs/AlGaAs interface appears, the globular nanostructures are sputtered and a more uniform surface appeared. This leads to a reduction of the RMS roughness at the AFM scan 21–23 (AlGaAs–GaAs layer structure), just before a new GaAs/AlGaAs interface appears and the globular nanostructure formation starts again to dominate the surface structure. The globular nanostructure formation continues, leading to an increase of the RMS values. As stated in the article of Wei et al. (2008), the mechanism of globular nanostructure formation on a GaAs surface can be attributed to preferential sputtering of 75As and clustering of the remaining excess of Ga+, both form the Ga+ beam and from the substrate. They also identified the composition of the globular nanostructures by energy-dispersive X-ray spectroscopy and transmission electron microscopy to be pure 69Ga. According to TRIM2013 simulations, the sputtering yield of 75As is 2.5 times higher than for 69Ga. On the other hand, no local increase in 69Ga could have been observed on SIMS images, while globular nanostructures are
formed. This can be explained by the movement of the globular nanostructures during sputtering and by Ga⁺ induced nanostructures clouded out by the ⁶⁹Ga from the GaAs layer. The position of the globular nanostructures changes from frame to frame, but the ⁶⁹Ga signal of the ToF-SIMS image was averaged over 20 frames. This is enough time for the globular nanostructures to move over the entire sputtered area. Although the globular nanostructures are a local accumulation of ⁶⁹Ga, the ⁶⁹Ga concentration around the globular nanostructures was still in the 10th of percent range, as ⁶⁹Ga is present in the sample and the dose of Ga⁺ implanted by the Ga⁺ beam was high. The difference in ⁶⁹Ga signal coming from globular nanostructures and from the area around the globular nanostructures might, therefore, only be minor. It is important to note that it is not possible to determine the ⁶⁹Ga distribution of a sample sputtered by a Ga⁺ beam containing the ⁶⁹Ga isotope. On the other hand, the ⁶⁹Ga signal should increase for layers containing ⁶⁹Ga, hence differences between ⁶⁹Ga-rich layers and layers without ⁶⁹Ga can still be distinguished from each other.

3D Reconstruction

To compensate for the difference in sputtering rate for subsequent layers, the AFM data were used to create a depth-calibrated data set for the 3D reconstruction. Between each AFM measurement, the surface was sputtered for 20 frames to acquire ToF-SIMS data. The sputter rate of different layers was changing significantly, but only the sputtered depth between two AFM layers was measured, leading to an average sputter rate between two AFM measurements. For the 3D reconstruction, the ToF-SIMS data had to be split up again to 20-nm-thick slices. With a fixed 20 nm depth and a varying sputter rate, the number of ToF-SIMS frames is adapted to correspond to the 20 nm depth. With a 20 nm depth of each slice and a total sputter depth of 56, individual slices containing an integrated and normalized signal intensity measured by ToF-SIMS were formed. The intensity distribution of the elements of the entire measurement with respect to the actual sputter depth was done by piling up the 56 slices. It is worth mentioning that for the sake of the 3D reconstruction, a different depth could have been chosen (bigger or smaller than 20 nm), but given that the created 56 layers were sufficient to show the characteristics of the investigated structure, the value of 20 nm depth was set.

In Figure 8, the construction of three 3D model slices from the ToF-SIMS frames is shown. Voxel size in the 3D model is, therefore, 156 nm × 156 nm × 20 nm, as the ToF-SIMS mapping was binned to 64 px × 64 px resolution on a 10 μm × 10 μm area. In Figure 9, the 3D models reconstructed with Visage Imaging Amira 5.2.2 software are shown for the three studied ions. The lateral size was cropped to 5 μm × 5 μm to get rid of the errors due to the edge effect (atoms from the side walls can contribute to the measured signal). For an easier interpretation of the distribution of secondary ions in depth, the Z-axis has been exaggerated six times, in reality this axis corresponds to a depth of 1.1 μm.

From the 3D models, we can observe the five consequent AlₓGa₁−ₓInₙAs₁−ₙ−y−In layers in the distribution of the three ions. This is in good agreement with the composition of the material (green dotted line in Fig. 2). It is also clear that the bottom part (red dotted line in Fig. 2) does not contain any ¹¹⁵In, and that there is a difference in thickness between the ²⁷Al and ⁶⁹Ga bottom layers due to the existing GaAs layer above the AlₓGa₁−ₓ−In layer. The intensities of ²⁷Al and ⁶⁹Ga ions are higher in this region compared with the upper layers.

In some regions, secondary ions cannot be clearly distinguished (in example ¹¹⁵In inside the InP layers). This is due to the matrix effect, when interactions between the ion and its surroundings can substantially alter the yield and type of ions that we can observe.

Summary and Conclusions

One of the challenges for ToF-SIMS to be considered as an efficient 3D technique is to be able to accurately determine the depth from where the signal came from. The proposed combination of AFM and ToF-SIMS techniques takes us closer to achieve signal depth localization. It was demonstrated that consecutive sputtering and surface measuring can be successfully applied on materials which are ordered in an epitaxial manner. The concept of depth calibration of the SIMS depth profile by direct AFM depth measurements was demonstrated in this paper on a multilayer sample. SIMS-AFM scans of 10 μm × 10 μm area were alternated and controlled by a Python script.

Surface oxidation artifacts on SIMS profiles were corrected by averaging SIMS signals before and after AFM scans in order to reflect the real ion depth profiles. The concentration variations
of ^{27}Al, ^{69}Ga, and ^{115}In ions in the layer structure of the VCSEL sample show good agreement with the expected composition; however, without the depth calibration, SIMS depth profiles do not coincide with the known structure. Sputter rate varies as a function of the local sample composition. We noticed higher sputter rates on the falling slopes of SIMS signals of the ^{115}In-rich layers than on the corresponding rising slopes that indicates interlayer-mixing dependence of the sputter behavior.

AFM scans showed globular nanostructure formation on the surface as a consequence of FIB milling. ^{69}Ga globular nanostructure formation has been observed by measuring the RMS roughness values. It was concluded that the beginning of the globular nanostructure formation can be linked to a specific interface (the interface between InP and AlGaAs–GaAs layer structure). While both AFM scans and SEM imaging confirmed the induced topography with a morphology characterized by globular nanostructure formation, SIMS data of ^{69}Ga top projection showed no local increase in ^{69}Ga ion intensity.

3D depth-corrected models of the sputtered material were successfully reconstructed using SIMS layers corresponding to 20-nm-thick slices. AFM data could also be used to correct small surface roughness changes, leading to the composition of real 3D data sets, but it would require that an AFM scan is taken after every ToF-SIMS frame, but this would imply signal variation of every ToF-SIMS scan due to surface oxidation.

It was out of the scope of this work to consider real 3D data set correction for small roughness changes (in the order of couple of tens of nanometers) in case of the VCSEL sample. For samples with a more complex surface topology, due to the sputter rate that depends on local composition variation having an impact on the SIMS signal, it would be mandatory to take into account the roughness effects for an adequate representation of the sample structure.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/S1431927620024678.

Acknowledgments. The present work was supported by ROTTOF Project 5211.01371.900.01 and by the EMPAPPOSTDOCS-II Programme (SzK), part of the European Union Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement number 754364.

References

Akiyama T, de Rooij NF, Stauffer U, Detterbeck M, Braendlin D, Waldmeier S & Scheidiger M (2010). Implementation and characterization of a quartz tuning fork based probe consisted of discrete resonators for dynamic mode atomic force microscopy. Rev Sci Instrum 81(6), 063706.

Akiyama T, Stauffer U & de Rooij N (2003a). Self-sensing, and self-actuating probe based on quartz tuning fork combined with microfabricated cantilever for dynamic mode atomic force microscopy. Appl Surf Sci 210(1–2), 18–21.

Akiyama T, Stauffer U, de Rooij NF, Frederix P & Engel A (2003b). Symmetrically arranged quartz tuning fork with soft cantilever for intermittent contact mode atomic force microscopy. Rev Sci Instrum 74(1), 112.

Akiyama T, Suter K, de Rooij NF, Baumgartner A, Gildemeister AE, Ihn T, Eisslin K & Stauffer U (2006). Scanning probe with tuning fork sensor, microfabricated silicon cantilever and conductive tip for microscopy at cryogenic temperature. Jpn J Appl Phys 45(3B), 1992–1995.

Alberts D, von Werra L, Oestlund F, Rohner U, Hohl M, Michler J & Whitby JA (2014). Design and performance of two orthogonal extraction time-of-flight secondary ion mass spectrometers for focused ion beam instruments. Instrum Sci Technol 42(4), 432–445.

Bayat D, Akiyama T, de Rooij NF & Stauffer U (2008). Dynamic behavior of the tuning fork AFM probe. Microelectron Eng 85(5–6), 1018–1021.

Busby Y, Franquet A, Sparpillano V, Casula G, Bonfiglio A, Cossetto P, Pireaux J & Houssiau L (2018). Combined AFM and ToF-SIMS analyses for the study of films in organic resistive switching memories. Proceedings SPIE 10738, Organic and Hybrid Sensors and Bioelectronics XI, 1073814.

Casula G, Busby Y, Franquet A, Sparpillano V, Houssiau L, Bonfiglio A & Cossetto P (2019). A flexible organic memory device with a clearly disclosed resistive switching mechanism. Org Electron 64, 209–215. doi:10.1016/j.orgel.2018.10.018

Dunn DN & Hull R (1999). Reconstruction of three-dimensional chemistry and geometry using focused ion beam microscopy. Appl Phys Lett 75(21), 3414–3416.

Giannuzzi LA & Stevie FA (2005). Introduction to Focussed Ion Beams: Instrumentation, Theory, Techniques and Practice. New York: Springer.

Giannuzzi LA & Utlaut M (2011). A review of Ga+ FIB/SIMS. Surf Interface Anal 43(1–2), 475–478.

Jeans J (1982). Preface. In An Introduction to the Kinetic Theory of Gases, Cambridge Science Classics, pp. V–VI. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511628849.001

Kushmanick JG & Weiss PS (2017). Scanning probe microscopes. In Encyclopedia of Spectroscopy and Spectrometry, Lindon JC, Tranter GE & Koppenaal DW (Eds.), 3rd edn. pp. 7–14. Oxford: Academic Press.

Lyytikäinen J, Rautiainen J, Toikkanen L, Sirbu A, Mereuta A, Caliman A, Pescetelli S, Agresti A, Franquet A, Spampinato V, Houssiau L & Busby Y (2018). Combined AFM and ToF-SIMS analyses for the study of filaments in organic resistive switching memories. Org Electron 64, 209–215. doi:10.1016/j.orgel.2018.10.018

Mochalin VN, Akiyama T, Staufer U & de Rooij N (2012). Optimization of Q-factor of AFM cantilevers using genetic algorithms. Ultramicroscopy 115, 61–67.

Perez-Cruz A, Dominguez-Gonzalez A, Stiharu I & Osornio-Rios RA (2012). Optimization of Q-factor of AFM cantilevers using genetic algorithms. Ultramicroscopy 115, 61–67.

Pillatsch L, Ostlund F & Michler J (2019). FIBSIMS: A review of secondary ion mass spectrometry for analytical dual beam focused ion beam instruments. Prog Cryst Growth Charact Mater 65, 1–19.

Piebe A, Barnes J-P, Edwards TEJ, Pethö L, Balogh I & Michler J (2019). 3D imaging of nanoparticles in an inorganic matrix usingToF-SIMS validated with STEM and EDX. Anal Chem 91(18), 11834–11839.
Rodríguez TR & García R (2003). Theory of Q control in atomic force microscopy. *Appl Phys Lett* 82(26), 4821–4823.

Wei Q, Lian J, Lu W & Wang L (2008). Highly ordered Ga nanodroplets on a GaAs surface formed by a focused ion beam. *Phys Rev Lett* 100(7), 20–23.

Whitby JA, Östlund F, Horvath P, Gabureac M, Riesterer JL, Utke I, Hohl M, Sedláček L, Jiruš J, Friedli V, Bechelany M & Michler J (2012). High spatial resolution time-of-flight secondary ion mass spectrometry for the masses: A novel orthogonal ToF FIB-SIMS instrument with *in situ* AFM. *Adv Mater Sci Eng* 2012, 180437.