Effect of Fruiting and Biennial Bearing Potential on Spur Quality and Leaf Gas Exchange in Apple

Mokhles A. Elsysy
Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907; and Department of Pomology, College of Agriculture, Assiut University, Assiut 71515, Egypt

Michael V. Mickelbart
Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN, 47907; and Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907

Peter M. Hirst
Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907

ADDITIONAL INDEX WORDS. flower formation, transpiration

ABSTRACT. Uniform annual apple (Malus ×domestica) fruit production is highly dependent on consistent flower formation from year to year, as inconsistent flowering can lead to the biennial bearing observed in some high-value cultivars. The presence of fruit on a spur has been considered the main cause of the expression of biennial bearing and the inhibition of flower initiation, with a number of theories being introduced to explain the phenomenon. In the current experiment, individual spurs of annual bearing cultivars (Gala, Ruby Jon, and Pink Lady) and biennial bearing cultivars (Honeycrisp, Fuji, and Golden Delicious) were thinned to a single fruit or completely defruited at petal fall. Spurs were sampled at the end of the growing season. Effects of fruiting on spur characteristics such as spur and bourse leaf area, stomatal density, leaf gas exchange, and flower formation were determined. Across all cultivars, the presence of fruit on a spur did not affect spur characteristics or flower formation compared with nonfruited spurs. Similarly, flowering was unaffected by those factors associated with greater spur carbohydrate status, such as bourse leaf area and assimilation rate. Cultivars with greater transpiration and stomatal conductance (g) rates had lower rates of flower formation. Future studies should focus on xylem flow and expression of genes regulating flowering and plant growth regulators in annual and biennial bearing cultivars.
environmental stimuli (Hanke et al., 2007). In addition, leaves transpire and affect the flow of substances through the xylem stream. In temperate deciduous trees, stomatal density correlates positively with transpiration and photosynthetic potential (Aasamaa et al., 2001; Sack et al., 2003, 2005). Moreover, stomatal density varies among apple cultivars (Cowart, 1936; Slack, 1974; Warrit et al., 1980). Fruiting affects several physiological processes in the leaves. For instance, in different fruit tree types, fruit-bearing trees showed increased CO₂ assimilation rates compared with nonfruit-bearing trees (Palmer et al., 1991; Syvertsen et al., 2003; Urban et al., 2004). However, no differences in CO₂ assimilation rates were observed in cherry (Prunus avium) and sweet orange (Citrus sinensis) between on and off crop years within the same cultivars (Monerri et al., 2011; Nebauer et al., 2013; Roper et al., 1988). A reduction in photoassimilate utilization was accompanied by the accumulation of nonstructural carbohydrates, especially starch, in ‘Braeburn’ apple leaves bearing low or no crop load (Wünsche et al., 2005). This reduction may have been induced by plant growth regulators or it may be a response to a change in intercellular CO₂ concentrations. Moreover, the availability of photoassimilates could possibly play a regulatory role in floral induction (Shalom et al., 2012).

The relationship between carbohydrate content and flower formation has been well defined for a number of crops. For example, fruit removal of ‘Wilking’ mandarin (Citrus reticulata) by midsummer led to an increase in starch content and flower formation (Goldschmidt and Golomb, 1982). In ‘Murcott’ mandarin, defruiting affected the expression of genes related to photosynthesis, flower formation genes, and flower formation (Shalom et al., 2014). Sugar has been suggested to be a florigenic substance in plants (Ortiz-Marchena et al., 2015; Wahl et al., 2013). In addition, the network of flower formation in apple was suggested to be mediated by the crosstalk between sugar and plant growth regulator signals (Xing et al., 2015).

The objective of our experiment was to compare spur quality and flower formation of single-fruited and defruited spurs of annual and biennial apple cultivars. We hypothesized that defruiting would have a greater stimulating effect on flowering of biennial bearing cultivars than annual bearing cultivars, and that spur quality attributes that lead to greater spur carbohydrate levels will be associated with greater levels of flowering.

Cultivar	Yr planted	Rootstock	Bearing classification
Fuji	2001	B.9	Biennial
Gala	2001	B.9	Annual
Golden Delicious	2000	G.16	Biennial
Honeycrisp	2003	M.7	Biennial
Pink Lady	1999	M.9 EMLA	Annual
Ruby Jon	2001	B.9	Annual

Fig. 1. (A) Apple fruiting spur showing spur leaves emerging directly from the spur, and bourse leaves emerging from the bourse shoot. (B) Leaves on 1-year-old shoot.

Fig. 2. Gas exchange of ‘Honeycrisp’ apple leaves measured throughout the day ≃2 months after full bloom in Lafayette, IN. (A) CO₂ assimilation rate. (B) Stomatal conductance.

Table 1. Apple trees growing in Lafayette, IN, used in this study of the effect of fruiting and biennial bearing potential on spur quality and leaf gas exchange in apple. Bearing classification was based on experience with these cultivars.
Materials and Methods

PLANT MATERIALS. This experiment was conducted in Spring 2014 on six apple cultivars, three generally considered to be annual bearing (Gala, Pink Lady, and Ruby Jon) and three generally considered to have greater biennial bearing potential (Fuji, Honeycrisp, and Golden Delicious) (Table 1). All cultivars were planted with 3 × 5 m spacing at the Samuel G. Meigs Horticulture Facility of Purdue University in Lafayette, IN. This experiment used mature trees growing on dwarfing ‘Budagovsky 9’ (B.9) or semidwarfing [‘Geneva 16’ (G.16), ‘Malling 9’ (M.9 EMLA), and ‘Malling 7 EMLA’ (M.7)] rootstocks (Table 1). All trees chosen for this study appeared healthy and were 3 to 5 m tall regardless of rootstock. Trees were trained to a vertical axis tree form and were managed according to standard commercial practices. Crop load was adjusted manually by hand-thinning at petal fall to achieve a medium crop load of 120–140 fruit per tree to avoid possible effects of excessive crop load on leaf gas exchange (Neilsen et al., 2016).

EXPERIMENTAL PROCEDURE. All trees were located at the same experimental farm within close proximity to each other (less than a 400-m spread). Growing conditions, including soil type, and tree management were similar for all trees. Within each cultivar, fruiting treatments were arranged as a completely randomized design. Four healthy trees of each cultivar were chosen and 120 flowering spurs were selected randomly at bloom across the four trees. At petal fall, 60 of these spurs were thinned to king flower only, whereas the other 60 selected spurs were completely defruited. All spurs were tagged using durable plastic tags identified by color and number. For each cultivar and treatment, 60 spurs from each cultivar and treatment were collected at the end of the growing season, 150 d after full bloom.

Measurements

ANATOMICAL MEASUREMENTS. The following measurements were made on sampled spurs: 1) spur and bourse leaf number and leaf area (LI-3000; LI-COR, Lincoln, NE), 2) stomatal density, and 3) flower formation [examined under a dissecting microscope (SZ-STS; Olympus Corp., Center Valley, PA)] to determine flower formation for each bourse (Hirst and Ferree, 1995b).

STOMATAL DENSITY. Stomatal density of spur, bourse, and shoot leaves was measured from five single-fruited and five defruited spurs (Fig. 1). Abaxial epidermal anatomy was characterized on the second fully developed bourse and spur leaf. The abaxial epidermis adjacent to the leaf midrib was placed initially onto a cyanoacrylate droplet on a glass slide for 2 s to remove trichomes, then was placed on another cyanoacrylate droplet for 30 s to imprint the abaxial epidermis. Four images from different spots of each imprint were obtained from each slide under 200× magnification using a generic description microscope (OptiPhot2; Nikon, Tokyo, Japan) and microscope camera software MiniSee (Scopetek Electric Co., Hangzhou, China). In all calculations, stomata were considered to be a pair of fully developed guard cells. Stomata were counted using Image J software (National Institutes of Health, Bethesda, MD) and are expressed per square millimeter leaf area.

LEAF GAS EXCHANGE. Leaf gas exchange was measured on the third fully expanded, attached bourse leaf on three single-fruited and three defruited spurs in well-illuminated positions on the west side of the trees. Measurements were transpiration, gs, internal CO₂ concentration, assimilation, and water use efficiency (WUE). All measurements were taken 66 d after full bloom on a sunny day of ≈24 °C between 0930 and 1430 HR. The optimal time of day was based on steady rates of assimilation and gs found during a pilot study on ‘Honeycrisp’ trees by measuring the same leaf throughout the day (Fig. 2). Measurements were taken using a portable infrared gas analyzer system (CIRAS-3; PP Systems, Amesbury, MA) fitted with a 4.5-cm² leaf chamber with built-in light emitting diodes (LEDs; 475-, 528-, 625-, and 425–650-nm peak wavelengths for the blue, green, red, and white LEDs, respectively). The conditions were reference CO₂ concentration, 400 µmol·mol⁻¹;
leaf temperature, 25 °C; relative humidity, 60%; and flow rate through the chamber, 300 mL min⁻¹. To determine the light-saturated rates of photosynthesis, gs, transpiration, respiration, and WUE, the light unit in the cuvette was programmed to provide 1000 μmol m⁻² s⁻¹ (33% red light, 33% blue light, and 34% green light). Measurements were recorded after reaching a steady state (≈90 s).

Statistical analysis. Analysis of variance and mean separation of parameters between defruited and single-fruited spurs were performed for all data. However, a binomial logistic regression with mixed-effects model was used to test flower formation. All data analyses were performed using R software version 3.2.2 (14 Aug. 2015) “Fire Safety” in the R statistical package (R Foundation, Vienna, Austria).

Results

Effects of fruiting on anatomical and morphological characteristics. Bourse leaf area was not different in fruiting spurs compared with defruited spurs of the same cultivar (Fig. 3). There was also no relationship between the bearing potential of these cultivars and bourse leaf area. For example, both ‘Pink Lady’ and ‘Ruby Jon’ are characterized as annual bearing cultivars, but there was a trend for ‘Pink Lady’ to have the greatest bourse leaf area and for ‘Ruby Jon’ to have the lowest among all cultivars in this study (Fig. 3).

Stomatal density. In all cultivars, the presence of fruit did not affect spur or bourse leaf stomatal density. Therefore, data from defruited and single-fruited spurs were combined. In all cultivars, shoot leaves had greater stomatal density than spur leaves, with bourse leaves tending to be intermediate (Fig. 4). There were no differences between biennial cultivars as a group and annual bearing cultivars.

Flower formation. In all cultivars, there was no significant effect of fruiting on flower formation, although there was a trend in every cultivar for fruiting spurs to exhibit less flowering (Fig. 5). Biennial cultivars generally exhibited a decreased flowering proportion compared with annual cultivars. Fruit of both annual and biennial cultivars contained six to eight seeds per fruit, and no differences in seed number between annual and biennial cultivars was observed (Fig. 6). In addition, there was no effect of seed number on flower formation within any of the cultivars.

Effects of single fruiting on leaf gas exchange parameters. The presence of fruit had no effect on leaf gas exchange in any of the studied cultivars (Table 2). Furthermore, WUE was unaffected by fruiting on single-fruited spurs compared with defruited spurs on the same trees (Elsisy and Hirst, unpublished data). However, both transpiration and gs were greater in biennial cultivars compared with annual cultivars. Furthermore, analyses using Pearson correlation coefficients among different gas exchange processes revealed significant correlation coefficients (P < 0.05) between the following: 1) transpiration with gs, internal CO₂ concentration, and assimilation; and 2) WUE with internal CO₂ concentration and stomatal density (Table 3). Significant correlation coefficients (P < 0.05) occurred between flower formation and both transpiration and gs [r = -0.61 and -0.62, respectively (Fig. 7)].

Discussion

Theories to explain the effect of fruiting on flower formation generally fall into three categories: 1) plant growth regulators (Guitton et al., 2012; Krasniqi et al., 2013; Pellerin et al., 2012),
Transpiration was closely related to carbon assimilation (Table 2; Fig. 7). Stomatal density was found previously to be correlated with transpiration in a transgenic apple species (Liao et al., 2017), although no such relationship was found in the current study (Table 3) and no differences in stomatal density were found among cultivars (Fig. 4). Transpiration was closely related to gs but not stomatal density (Table 3). Hence, it would seem that differences in gs and resultant transpiration rates among these cultivars, may influence flower formation (Fig. 7).

In addition, both gs and transpiration correlated positively with assimilation (Table 3). Hence, we suggest that high gs and transpiration rates in biennial cultivars may affect flower formation via 1) different consumption rates of photoassimilates in biennial cultivars that could affect the sink–source relationship, 2) change in the balance of plant growth regulators, and 3) higher xylem flow in biennial cultivars compared with annual cultivars. Actually, the newly well-defined interaction among sugar, photoassimilates, and the expression level of flower formation genes in citrus (Shalom et al., 2014) and in a related experiment on flower formation in ‘Honeycrisp’ apple, we found greater flower formation on single-fruited spurs compared with those bearing two fruit (M.A. Elsysy and P.M. Hirst, unpublished data).

Table 2. Effect of fruiting, bearing potential, and their interaction on gas exchange in six apple cultivars.

Bearing	Cultivar	Single fruited	Defruited	X cultivar	P value
	Transpiration [H₂O (mmol m⁻² s⁻¹)]				
Biennial	Honeycrisp	2.47	2.93	2.7	0.40
	Golden Delicious	3.26	3.06	3.16	0.82
	Fuji	2.77	2.47	2.62	0.33
	Biennial mean	2.83	2.82	2.83	
Annual	Ruby Jon	2.83	2.66	2.75	0.64
	Pink Lady	2.09	2.26	2.18	0.75
	Gala	2.24	2.26	2.25	0.96
	Annual mean	2.39	2.40	2.39	
	Fruiting (F)				0.98
	Bearing (B)				0.04**
	F × B				0.95
	Carbon assimilation [CO₂ (µmol m⁻² s⁻¹)]				
Biennial	Honeycrisp	15.67	20.27	17.97	0.14
	Golden Delicious	21.97	22.20	22.09	0.87
	Fuji	16.17	17.83	17	0.56
	Biennial mean	17.94	20.1	19.02	
Annual	Ruby Jon	18.87	19.17	19.02	0.89
	Pink Lady	19.77	18.40	19.09	0.59
	Gala	15.90	16.17	15.85	0.91
	Annual mean	17.88	17.91	17.9	
	F				0.38
	B				0.36
	F × B				0.26
	Stomatal conductance [H₂O (mol m⁻² s⁻¹)]				
Biennial	Honeycrisp	263.3	369.0	329.65	0.40
	Golden Delicious	435.3	437.0	436.15	0.82
	Fuji	331.3	251.7	291.5	0.34
	Biennial mean	343.3	361.57	352.43	
Annual	Ruby Jon	326.3	291.3	308.8	0.68
	Pink Lady	252.3	269.0	260.65	0.75
	Gala	227.7	230.0	228.85	0.96
	Annual mean	268.77	263.43	266.1	
	F				0.90
	B				0.05*
	F × B				0.8

*Significant at P ≤ 0.05.

Table 3. Correlation coefficients among leaf gas exchange, stomatal density, leaf area, and flower formation of six apple cultivars in Summer 2014.

Flowering	E	gₛ	Ci	A	WUE	Stomatal density
E	0.61*	-0.62*	0.93***	-0.51	0.59*	0.42
gₛ	-0.51	0.64*	0.78**	-0.15	-0.36	-0.42
Ci	-0.16	0.21	0.06	0.52	-0.31	-0.62*
A	0.02	-0.37	-0.14	-0.20	0.05	0.56*
WUE	-0.16	0.21	0.06	0.52	-0.31	-0.62*
Stomatal density	-0.16	0.21	0.06	0.52	-0.31	-0.62*
Leaf area	0.02	-0.37	-0.14	-0.20	0.05	0.56*

Flowering = flower formation.

*Significant at P ≤ 0.05, 0.01, or 0.001, respectively.

E = transpiration; gₛ = stomatal conductance; Ci = internal CO₂ concentration; A = assimilation; WUE = water use efficiency.

In a related experiment on flower formation in ‘Honeycrisp’ apple, we found greater flower formation on single-fruited spurs compared with those bearing two fruit (M.A. Elsysy and P.M. Hirst, unpublished data). Hence, in the current study, we examined the effect of bearing a single fruit on spur quality and flower formation of annual and biennial cultivars. In contrast to our previous results with double-fruited spurs, in this experiment we found that single-fruited spurs showed similar spur characteristics and flower formation to nonfruited spurs in both annual and biennial cultivars (Table 2; Figs. 3–5). Apparently, single fruited did not stimulate the local inhibition effects previously suggested by plant growth regulators, source–sink competition, or their interaction.

Fruiting affects several leaf physiological processes (Palmer et al., 1991; Syvertsen et al., 2003; Urban et al., 2004). However, the combined effects of individual spur fruited and cultivar bearing potentials on leaf anatomy and physiological processes have not been examined. In this study, we propose that annual and biennial cultivars possess different photoassimilation strategies, because both gₛ and transpiration were greater in biennial cultivars compared with annual cultivars (Table 2; Fig. 7). Stomatal density was found previously to be correlated with transpiration in a transgenic apple species (Liao et al., 2017), although no such relationship was found in the current study (Table 3) and no differences in stomatal density were found among cultivars (Fig. 4).

Transpiration was closely related to gs but not stomatal density (Table 3). Hence, we suggest that high gs and resultant transpiration rates among these cultivars, may influence flower formation (Fig. 7).

In addition, both gs and transpiration correlated positively with assimilation (Table 3). Hence, we suggest that high gs and transpiration rates in biennial cultivars may affect flower formation via 1) different consumption rates of photoassimilates in biennial cultivars that could affect the sink–source relationship, 2) change in the balance of plant growth regulators, and 3) higher xylem flow in biennial cultivars compared with annual cultivars. Actually, the newly well-defined interaction among sugar, photoassimilates, and the expression level of flower formation genes in citrus (Shalom et al., 2014) and 2) source–sink competition (Bruchou and Génard, 1999; Palmer et al., 1991; Saa and Brown, 2014), and 3) the interaction between plant growth regulators and sink–source competition (Smith and Samach, 2013; Untiedt and Blanke, 2001).
Fig. 7. Relationship between flower formation and (A) transpiration and (B) stomatal conductance in six apple cultivars during Summer 2014. Flowering (measured as a percentage) represents the proportion of flower formation for each treatment in each cultivar.

The apple (Xing et al., 2015) suggests that transpiration and gs may influence flower formation by affecting photoassimilates or sugar levels. Differences found here in transpiration rates between biennial and annual bearing cultivars, and the relationship between transpiration rates and flowering, are likely the result of changes in plant growth regulators transported in the xylem, because no differences in assimilation were found (Table 2; Fig. 7).

In conclusion, this research shows that in both annual and biennial cultivars, bearing a single fruit per spur does not necessarily inhibit flower formation for the following year’s crop when the overall tree crop load is not excessive. Based on the three biennial and three annual cultivars studied in this experiment, different bearing types appear to have different gas exchange characteristics, with biennial cultivars having greater gs and transpiration rates. Further research on the effects of different transpiration and gs rates on xylem flow, and the expression patterns of photosynthesis genes, plant growth regulator genes, and flowering genes in buds of annual and biennial cultivars could explain the complicated networks involved in apple flower formation.

Literature Cited

Aasamoa, K., A. Sober, and M. Rahi. 2001. Leaf anatomical characteristics associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees. Austral. J. Plant Physiol. 28:765–774.

Bangerth, K.F. 2009. Floral induction in mature, perennial angiosperm fruit trees: Similarities and discrepancies with annual/biennial plants and the involvement of plant hormones. Scientia Hortic. 122:153–163.

Barritt, B.H., C.R. Rom, K.R. Guelich, S.R. Drake, and M.A. Dilley. 1987. Canopy position and light effects on spur, leaf, and fruit characteristics of ‘Delicious’ apple. HortScience 22:402–405.

Bruchou, C. and M. Génard. 1999. A space–time model of carbon translocation along a shoot bearing fruits. Ann. Bot. 84:565–576.

Chan, B. and J. Cain. 1967. The effect of seed formation on subsequent flowering in apple. J. Amer. Soc. Hortic. Sci. 91:63–67.

Cowart, F.F. 1936. Apple leaf structure as related to position of the leaf upon the shoot and to type of growth. Proc. Amer. Soc. Hortic. Sci. 33:145–148.

Dennis, F.G. 1967. Apple fruit-set: Evidence for a specific role of seeds. Science 156(3771):71–73.

Elsesy, M.A. and P.M. Hirst. 2017. The role of spur leaves, bourse leaves, and fruit on local flower formation in apple: An approach to understanding biennial bearing. HortScience 52:1229–1232.

Ferree, D.C. 1989. Influence of orchard management systems on spur quality, light and fruit within the canopy of ‘Golden Delicious’ apple trees. J. Amer. Soc. Hortic. Sci. 114:869–875.

Ferree, D.C. and J.C. Schmid. 1987. Influence of growth regulators on apple spur quality and tree performance, p. 1–6. In: Fruit crops 1987: A summary of research. Ohio State Univ. Res. Circ. 295.

Goldschmidt, E.E. and A. Golomb. 1982. The carbohydrate balance of alternate-bearing citrus trees and the significance of reserves for flowering and fruiting. J. Amer. Soc. Hortic. Sci. 107:206–208.

Greene, D.W. 1996. Flower development, p. 91–98. In: K. Maib, P. Andrews, G. Lang, and K. Mullinix (eds.). Tree fruit physiology: Growth and development. Good Fruit Grower, Yakima, WA.

Guitton, B., J.J. Kelner, R. Velasco, S.E. Gardiner, D. Chagné, and E. Costes. 2012. Genetic control of biennial bearing in apple. J. Expt. Bot. 63:131–149.

Hanke, M.V., H. Flachowsky, A. Peil, and C. Hättasch. 2007. No flower no fruit: Genetic potentials to trigger flowering in fruit trees. Genes Genomes Genomics 1:1–20.

Heinicke, A.J. 1917. Factors influencing the abscission of flowers and partially developed fruits of the apple (Pyrus malus L.). PhD thesis.

Hirst, P.M. 2017. Advances in understanding flowering and pollination in apple trees, p. 109–126. In: K. Evans (ed.). Achieving sustainable cultivation of apples. Burleigh Dodds Scientific Publishing, Cambridge, UK.

Hirst, P.M. and D.C. Ferree. 1995a. Rootstock effects on shoot morphology and spur quality of ‘Delicious’ apple and relationships with precocity and productivity. J. Amer. Soc. Hortic. Sci. 120:622–634.

Hirst, P.M. and D.C. Ferree. 1995b. Rootstock effects on the flowering of ‘Delicious’ apple: I. Bud development. J. Amer. Soc. Hortic. Sci. 120:1010–1017.

Kotoda, N., H. Iwanami, S. Takahashi, and K. Abe. 2006. Antisense expression of MtTFL1, a TFL1-like gene, reduces the juvenile phase in apple. J. Amer. Soc. Hortic. Sci. 131:74–81.

Kotoda, N. and M. Wada. 2005. MtTFL1, a TFL1-like gene of apple, retards the transition from the vegetative to reproductive phase in transgenic Arabidopsis. Plant Sci. 168:95–104.

Krasniqi, A.L., L. Damerow, A. Kunz, and M.M. Blanke. 2013. Quantifying key parameters as elicitors for alternate fruit bearing in cv. ‘Elsstar’ apple trees. Plant Sci. 212:10–14.

Liao, X., X. Guo, Q. Wang, D. Zhao, L. Yao, S. Wang, G. Liu, and T. Li. 2017. Overexpression of MsDREB6.2 results in cytokinin-deficient developmental phenotypes and enhances drought tolerance in transgenic apple plants. Plant J. 89:510–526.

Mimida, N., S. Komori, A. Suzuki, and M. Wada. 2013. Functions of MdTFL1, a TFL1/FT ortholog in phase transition. Scientia Hortic. 156:106–112.

Monerri, C., A. Fortunato-Almeida, R.V. Molina, S.G. Nebauer, A. García-Luis, and J.L. Guardiola. 2011. Relation of carbohydrate reserves with the forthcoming crop, flower formation and photosynthetic rate, in the alternate bearing ‘Salustiana’ sweet orange (Citrus sinensis L.). Scientia Hortic. 129:71–78.

Monselise, S.P. and E.E. Goldschmidt. 1982. Alternate bearing in fruit trees. Hort. Rev. 4:128–173.
Nebauer, S.G., C. Arenas, J. Rodriguez-Gamir, Y. Bordón, A. Fortunato-Almeida, C. Monerri, J.L. Guardiola, and R.V. Molina. 2013. Crop load does not increase the photosynthetic rate in Citrus leaves under regular cropping conditions: A study throughout the year. Scientia Hort. 160:358–365.

Neilsen, D., G. Neilsen, S. Guak, and T. Forge. 2016. Consequences of deficit irrigation and crop load reduction on plant water relations, yield, and quality of ‘Ambrosia’ apple. HortScience 51:98–106.

Ortiz-Marchena, M.I., J.M. Romero, and F. Valverde. 2015. Photoperiodic control of sugar release during the floral transition: What is the role of sugars in the florigenic signal? Plant Signal. Behav. 10: e1017168.

Palmer, J.W., Y.L. Cai, and Y. Edjamo. 1991. Effect of part-tree flower thinning on fruiting, vegetative growth and leaf photosynthesis in ‘Cox’s Orange Pippin’ apple. J. Hort. Sci. 66:319–325.

Pellerin, B.P., D. Buszard, A. Georgallas, and R.J. Nowakowski. 2012. A novel framework to consider endogenous hormonal control of apple tree flowering. HortScience 47:589–592.

Rom, C.R. and B. Barratt. 1990. Spur development of ‘Delicious’ apple as influenced by position, wood age, strain, and pruning. HortScience 25:1578–1581.

Rom, C.R. and D.C. Ferree. 1984. Spur leaf characteristics of nine apple cultivars. J. Var. J. 38:2–5.

Roper, T.R., J.D. Keller, W.H. Loescher, and C.R. Rom. 1988. Photosynthesis and carbohydrate partitioning in sweet cherry: Fruiting effects. Physiol. Plant. 72:42–47.

Saa, S. and P.H. Brown. 2014. Fruit presence negatively affects photosynthesis by reducing leaf nitrogen in almond. Funct. Plant Biol. 41:884–891.

Sack, L., P.D. Cowan, N. Jaikumar, and N.M. Holbrook. 2003. The ‘hydrology’ of leaves: Co-ordination of structure and function in temperate woody species. Plant Cell Environ. 26:1343–1356.

Sack, L., M.T. Tyree, and N.M. Holbrook. 2005. Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees. New Phytol. 167:403–413.

Shalom, L., S. Samuels, N. Zur, L. Shlizerman, A. Doron-Faigenboim, E. Blumwald, and A. Sadka. 2014. Fruit load induces changes in global gene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds. J. Expt. Bot. 65: 3029–3044.

Smith, H.M. and A. Samach. 2013. Constraints to obtaining consistent annual yields in perennial tree crops. II. Heavy fruit load dominates over vegetative growth. Plant Sci. 207:158–167.