The concept of creating perspective technological paradigm of formation (development) of the underground space on the basis of the leading development of new approaches in construction geotechnology and geotechnics. Premises and basic provisions (part 2)

V V Aksenov¹,²,6, A A Khoreshok³, V U Beglyakov⁴,⁷ and A B Efremenkov⁵,⁸

¹Scientific and research centre LLC "Siberian Research and Production Association", 650099, Sovetsky Av. 56, Kemerovo, Russia
²Institute of Coal of the Federal Research Center of Coal and Coal Chemistry, Siberian Branch of the RAS, 650610, 10 Leningradsky av, Kemerovo, Russia
³T.F. Gorbachev Kuzbass State Technical University, 650000, 28 Vesennyaya St., Kemerovo, Russia
⁴Yurga Technological Institute Branch of Tomsk Polytechnic University, 652052 Lenin-gradskaya Str. 26, Yurga, Russia
⁵Yaroslav-the-Wise Novgorod State University, ul. B. St. Petersburgskaya, 41 173003 Veliky Novgorod, Russia
⁶E-mail: 55vva42@mail.ru
⁷E-mail: begljakov@rambler.ru
⁸E-mail: abe@novsu.ru

Abstract. The article presents some reasons for the lagging of domestic mining engineering from foreign competitors, substantiates the need to form a new promising technological paradigm in the field of formation and development of underground space. A new systematic approach to the development of geotechnics and geotechnologies is proposed, which allows for creation of prerequisites for formation of a new technological structure and Russia’s breakthrough into leading positions in the field of geotechnology and mining engineering.

The main areas of development of underground space include [1, 2]:

– adaptation of natural cavities (caves, karst cavities);
– reuse of existing man-made cavities (mine workings, mothballed objects of civil defense, etc.) in a new capacity;
– construction of new underground facilities for civil and special purposes.

The development of civilization is accompanied by the expansion of infrastructure and population growth, which inevitably leads to reduction of the amount of the undeveloped territories on the surface of the planet as well as search for new places to accommodate buildings, industrial and other objects of human activity.
In fact, there are three of such places [3, 4]: space, water bodies and the Earth’s interior, and subsequently the surface and the interior of other planets. At the present stage of development of our society, underground space is of the greatest interest.

Worldwide, the construction of underground facilities for various purposes has become one of the priorities [5]. The number of them in developed countries doubles every 10 years [3–5], and in the future we should expect a further increase in the rate of exploration of underground space.

The market for the construction of underground workings in Russia is growing dynamically. Growth rates in natural terms range from 9 to 27%.

By function, underground facilities can be divided into four main groups [3, 4]:

1. Industrial and infrastructure facilities for technical purposes (energy, mining and industrial enterprises, transport complexes, warehouses, etc.).
2. Social facilities (libraries, hospitals, commodity bases and storages, gyms, shops, etc.).
3. Objects for environmental purposes (repositories for the disposal of radioactive and industrial waste, hazardous substances, hazardous manufactures).
4. Objects of defense purposes.

The modern state of technology in the field of underground space formation by a mechanized method is represented by two classes of mining machines [7, 8]: tunneling machines and tunneling shields. At the same time, if the production of tunneling machines in Russia is somehow represented by Ltd Yurga Machine-Building Plant and JSC Kopeysk Machine-Building Plant, then the production of panel-tunnel mining aggregates is much more complicated, it simply does not exist.

In the USSR, tunneling shields were designed and manufactured by domestic enterprises. Import of such important equipment was almost absent [5, 7, 8]. In the late 90s, production was almost completely stopped due to the crisis in the economy of our country, scientific and design institutes were closed.

Russia has fallen into a situation in which it is extremely dependent on imports.

It should be noted that the world's first mining combines and sewage treatment plants for mining reservoir deposits were created and introduced in the USSR in the 40s and 50s. Further development and introduction of new equipment (not equipment upgrades) was a very long process.

The main types of products offered by foreign manufacturers for tunneling are: tunneling machines of all diameters for all rocks and environmental requirements, machines for driving in hard rocks, open tunneling machines with a system of thrust (Gripper) against the walls of the tunnel, tunneling machines for oblique tunneling, expansion tunneling machines, tunneling shields, tunneling machines, etc.

Major competing companies [5, 8]:

- **Herrenknecht AG (Germany).** It is the only company in the world that manufactures machines for the construction of tunnels with diameters ranging from 0.10 to 19 meters in any engineering and geological conditions;
- **The Robbins Company (USA).** An international organization with four main production enterprises, has an extensive network of representative offices throughout the world (at the moment there is no official representative office in Russia). Over 60 years on the market;
- **Mitsubishi heavy industries, Ltd (Japan).** Large diversified holding with a century and a half history (the company was founded in 1868);
- **Lovat Tunnel Equipment (Canada).** Engaged in the design, maintenance, production and repair of shield tunnel complexes, specializes in shield microtunnel complexes of diameter from 0.75 to 15 m;
- **WIRTH GmbH (Germany).** Produces equipment for laying and maintenance of tunnels, which is used throughout the world.

Currently, the introduction of fundamentally new domestic technology in coal and mining companies, tunneling organizations in Russia is almost impossible, since a prerequisite for its use is the customers' requirement to provide the results of using the machine in other enterprises. This is caused
by the discrepancy between the technical levels of the consumer and the manufacturer of technological machines, i.e. the destruction of the technological paradigm. (Paradigm – technological structure or Techno-economic paradigm is a set of related productions that have a single technical level and develop synchronously).

This makes impossible the revival and development of the mining engineering industry without restoring or creating a new promising industrial and technological paradigm.

At present, with the active participation of Ltd "Siberian NPO", the Concept of creating a promising industrial structure based on the priority development of key engineering components has been formed and is being implemented. One of the approaches of the Concept is the thesis [9]:

"It is difficult to enter the industrial structure formed by global corporations with standard products, but one can set a goal to replace this structure to the maximum extent. If we propose more economical technologies, we can significantly expand our participation in the international division of labor, as well as ensure our priority in creating more advanced mechanisms and machines."

A constraining factor in creating a promising industrial paradigm in the part relating to mining engineering, both in Russia and abroad, is the current approach to the creation of mining machines.

The traditional representation of excavation as the process of cavity formation in the rock massif, has always defined and still defines the directions of:

– scientific research;
– improvement of geotechnologies for the construction of underground structures and, accordingly
– creation of tunneling equipment for the formation of underground space.

At present, in underground conditions, the following external propulsive devices are used to move the tunneling apparatus: tracked, wheeled, wheel-rail or distance-walking. The propellers that have performed well when working on the earth's surface (at the contact of solid and air environments) are not adapted for movement in geoenvironment.

In the course of work of the tunneling machine or the shield, in order to create the force of thrust and pressure force on the executive body, the external geoenvironment itself is not involved in any way, what involved is only the solid surface of the excavation at the interface of the geo-and air environments, or with the shield method of penetration – a strong permanent support.

This circumstance leads to the main problems of modern technologies for the construction of underground workings:

– the impossibility of creating a universal mining apparatus capable of moving in any direction of the Earth’s interior;
– the dependence of the maximum force on the gravity vector, and as a result, the impossibility of creating large pressure forces on the executive body to destroy hard rock.

As a result, in order to create sufficient pressure forces, designers are forced to increase the mass of mining combines, the mass of which already exceeds 130 tons, and the task of reducing the overall metal consumption of the machine is not even considered.

Further development of work in the field of geotechnologies and geotechnics can go in two directions [2, 6]:

1) modernization of the existing mining equipment and its improvement by creating systems of a new technical level;
2) the search and creation of a fundamentally new, alternative geotechnological tools (technologies, geotechnics) for exploration of the subsoil and formation of underground space.

Known technologies for mining, developing along the path of increasing the power and metal consumption of equipment, have practically exhausted their capabilities in increasing productivity, ensuring safety of work and expanding the scope.

In search of ways to create a fundamentally new tools for mine workings, the team of authors reviewed alternative approaches and solutions used, in particular, in aircraft construction and
shipbuilding. As is known, in these areas results of the research based on the process of studying the motion of a solid body in air and water, respectively, are used.

Aircraft designers and shipbuilders in the design and construction of vehicles intended for movement in airspace (aircraft, helicopter, etc.) and in the aquatic environment (ship, submarine, etc.) found the possibility of using the environment itself to create thrust when the corresponding device moves. For this purpose, propellers operating inside the environment (propeller, propeller screw, etc.), or “into coverage” of the environment (water jet and other jet propellers), performance of which does not directly depend on gravity, were created. As a result, the possibility of moving a solid body (apparatus) in any direction of the air or water space was created.

Over the years, a team of scientists and engineers has been working to create a fundamentally new type of mining equipment – geokhodes [10–39].

A scientific and practical groundwork has been created in the field of developing new technology for mine workings [10, 11], and a new type of mining technology [12–15], the patent purity of the developed technical [15–24] and technological [11, 25-29] solutions has been confirmed.

With the participation of employees of UT I TPU, OJSC "UMP", KuzSTU, OJSC Siberian NPO and OJSC "KORMZ", the Comprehensive Project “Creation and Production of a Multi-Purpose Screen Tunneling Units of Geological Multipurpose Objects” was implemented - the winner of the Ministry of Education and Science (2013-218-04) in the selection of organizations for the right to receive subsidies for the implementation of complex projects for the creation of high-tech production [12, 13].

The accumulated scientific background allowed the team of authors to implement a complex of research and developmental works, which resulted in a prototype model of geokhod “model 401” (figure 1) [14].
The results obtained not only opened up new areas of research in the field of mining and determined the need for the emergence of a new branch of engineering – geo-engineering, but also created the prerequisites for Russia to become a leader in the field of geotechnology and mining engineering.

Patent search and analysis of scientific publications showed that the research team is a leader in this direction. There are no analogues of the research conducted in mining and the results obtained both in Russia and in the world yet.

During the designing and manufacturing of the prototype, the absence of a domestic component base for many components was revealed, which, along with the imposed sanctions, will be a deterrent when creating new samples of geokhods.

In addition, there are no specialized centers for testing developed new geotechnics, its fine-tuning and implementation at existing enterprises.

The implementation of the project gave as a result not only a prototype of the machine, but also revealed new ways to improve the design of the geokhod, problems of testing and experimental studies of this type of machines, problems of creating a working environment for mastering the production of new types of products. The results obtained form the basis of innovative geotechnical tools for the formation of underground space – a complex that includes:

- a new approach to the conduct of underground mining and the formation of underground space;
- new technologies for underground mining;
- new class of mining technology;
- a new type of support for mine workings and lining of underground structures;
- new scientific and methodological support.

A new approach to the underground mining and the formation of underground space – the excavation of underground mining is considered as a process of movement of a solid body (equipment) in the environment of surrounding rocks (geological environment).

The marginal array (geoenvironment) is used here:
- as a supporting element involved in formation of the driving force of the underground vehicle – geokhod, incl. for the formation of a pressure force on the executive body;
- for the perception of reactive forces during the movement of the tunneling unit (underground apparatus);
- to perform basic technological operations, including fixing the production of a permanent support.

New technologies for underground mining – geo-technology – the process of mechanized mining with the formation and use of a system of marginal screw and longitudinal channels in which operations for the development of the face, cleaning the rock mass, fixing the open space, and moving the entire tunneling system to the face are being done in combined mode.

A new approach to the underground mining and the formation of underground space

New class of mining equipment, systems (GPS) – geokhods, underground robots.

Geokhod is a machine moving in the rock array using geological environment. The basic element of geokhod technology. Representing a new class of mining machines, geokhods are designed for driving underground workings for various purposes and location in space.

Underground robots. In the line of robots for various purposes, there are aircraft, ground, floating and underwater robots. There is an urgent need to create underground robots, especially for performing specialized tasks of the Ministry of Emergency Situations and other in dangerous and hazardous conditions. The principle of geokhod operation assumes fully automatic control of the entire system. According to experts of the Ministry of Emergency Situations geokhod is the closest to the appearance of an underground robot.

A new type of lining of mine workings and lining of underground structures is a geo-built (marginal) support.
Geo-built (marginal support) is based upon the use of screw and longitudinal channels behind the contour of the current generation for formation of a spatial support system “support – marginal array of rocks”.

New scientific and methodological support – new scientific disciplines, educational programs, methods of substantiating the parameters of the main systems of geokhod and geo-built support, etc.

The solution of problems of designing a new type of mining equipment – geokhods– requires the creation of new scientific directions:

– geodynamics of underground devices is a science that studies the forces arising on the surface of a solid (underground device) moving in a solid environment (geological environment);

– geokhod engineering is a scientific discipline related to the design and construction of geokhods (underground robots).

One of the defining directions for the development of mining (development of the subsoil and formation of underground space) is the improvement of its **design and technological tools**, which in turn is based on specialists, scientific and engineering personnel and scientific and methodological support.

Findings:

– The introduction of a fundamentally new domestic technology in coal and mining companies is almost impossible in Russia, since a prerequisite for its use in the enterprise is the requirement to provide the results of using the machine in other enterprises.

– The current state of technology in the field of underground space formation in a mechanized way is represented by two classes of mining machines: tunneling machines and tunneling shields. At the same time, if the production of tunneling machines in Russia is somehow represented by Ltd Yurga Machine-Building Plant and JSC Kopeysk Machine-Building Plant, then the production of panel-tunnel mining aggregates is much more complicated, it simply does not exist.

– In Russia, with the active participation of OJSC Siberian NPO, the Concept of creating a promising industrial paradigm based on the priority development of key engineering components has been formed and is being implemented.

– Known technologies for mining, developing along the path of increasing the power and metal consumption of equipment, have practically exhausted their capabilities in increasing productivity, ensuring safety of work and expanding the scope.

– A new approach to the process of construction of underground workings and the formation of underground space has been formulated – the excavation of underground workings was initially considered as a process of movement of a solid body (equipment) in the environment of surrounding rocks (geo-environment).

– A scientific and practical groundwork has been created in the field of developing a new technology for mine workings, and a new type of mining equipment – geokhod.

– Many geokhod systems have no analogues in mining engineering, they are fundamentally different in purpose and principle of operation from all existing systems of mining tunnels and tunneling shields. In addition, the manufacture of geokhods and their systems are very specific in production.

– The results obtained not only opened up new areas of research in the field of mining and determined the need for the emergence of a new branch of engineering – geo-engineering, but also created the prerequisites for Russia to become a leader in the field of geotechnology and mining engineering.

– The absence of a domestic component base for many components has been revealed, which, along with the imposed sanctions, will be a deterrent when creating new samples of geokhods.

– There are no specialized centers for testing the developed geotechnics, its fine-tuning and implementation at existing enterprises.

– One of the defining directions for the development of mining (development of the subsoil and formation of underground space) is the improvement of its **design and technological tools**.
There is an urgent need to create a promising technological paradigm for the development (formation) of underground space based on the rapid development of new approaches in building geotechnology and geotechnics.

References
[1] Belyaev V L and Belyaev V B 2012 Osvoenie podzemnogo prostranstva gorodov v aspekte ih ustojchivogo razvitiya [The development of the underground space of cities in the aspect of their sustainable development] MSSU 198 p
[2] Aksenov V V, Khoreshok A A, Efremenkov A B, Kazantsev A A, Beglyakov V Y and Valter A V 2015 Sozdanie novogo instrumentariya dlja formirovaniya podzemnogo prostranstva [Creating a new tool for the formation of underground space] Gornaya technika 1 24–26
[3] Kartoziya B A 2015 Osvoenie podzemnogo prostranstva kroupnyh gorodov. Novye tendencii [The development of the underground space of large cities. New tendencies] Mining Information and Analytical Bulletin (scientific and technical journal) 1 615–629
[4] Kartoziya B A at al 2001 Mine and underground construction. Vol 1: Textbook for universities Academy of Mining Sciences p 607
[5] Marketing research of the tunneling market and estimation of the volume of works on the construction of underground workings (structures) in Russia 2012–2015 Available at: https://www.megaresearch.ru/issledovaniya/syre/mineraly-gornye-porody/22904 (accessed: 21.07.2019) (In Russ.)
[6] Aksenov V V, Efremenkov A B, Sadovets V Y and Rezanova E V 2010 Sozdanie innovacionnogo instrumentariya dlja formirovaniya podzemnogo prostranstva [Creating innovative tools for the formation of underground space] 1
[7] Safokhin M S 1995 Mining machines and equipment: a textbook for universities Nedra p 463
[8] Brenner V A, Zhabin A B, Schegolevsky M M, Polyakov A V and Polyakov A V 2009 Shield tunneling complexes: Textbook Gornaya kniga MSU p 447
[9] The concept of creating a promising industrial structure based on the advanced development of key engineering components Available at: http://pro-kompas.info/strategy/ (accessed: 21.07.2019) (In Russ.)
[10] Aksenov V V 2004 Nauchnye osnovy geovinchesternoj tekhnologii provedeniya gornyh vyrabotok i sozda-niya vintopovorotnyh agregatov [Scientific basis of geovinchesternoy technology for mine workings and the creation of screw-rotating units] ICC SU RAS
[11] Aksenov V V, Izakson V Y, Cherdantsev N V, Anferov B A and Kuznetsova L V Method for underground mining of circular cross section Patent for invention RUS 2369742 26.03.2008
[12] Aksenov V V, Beglyakov V Y, Valter A V, Efremenkov A B and Kazantsev A A 2016 Opyt uchastyi yurginskogo technologicheskogo instituta (filiala) NI TPU v proekte po organizacii vosokotehknologichnogo proizvodstva [Experience of participation of the Yurginsky Technological Institute (branch) of TPU in the project on the organization of high-tech production] Technologies and materials 2 10–17
[13] Aksenov V V, Beglyakov V Y, Kazantsev A A, Valter A V and Efremenkov A B 2016 Opyt uchastyi v proekte po organizacii vosokotehknologichnogo proizvodstva [Experience of participation in the project on the organization of high-tech production] Mining equipment and electrical engineering 8(126) p 8–15
[14] Aksenov V V, Beglyakov V Y, Blashchuk M Yu, Efremenkov A B, Kazantsev A A, Khoreshok A A and Valter A V 2016 Geokhod: zadachi, karakteristiky, perspektivy [Geokhod: objectives, characteristics, prospects] Mining equipment and electrical engineering 8 (126) 3–8
[15] Lelukh B F, Aksenov V V, Efremenkov A B, Khoreshok A A, Masalitin B G, Beglyakov V Y and Timofeev V Y Birotative tunneling shield unit Patent for invention RUS 2412354 31.07.2009
[16] Aksenov V V, Slyadnev A V, Efremenkov A B, Khoreshok A A, Masalitin B G, Beglyakov V Y and Timofeev V Y Geokhod (tunnel shield unit) Patent for invention RUS 2552539
04.12.2013

[17] Aksenov V V, Efremenkov A B, Lelukh B F and Sadovets V Y Duplex geokhod Patent for invention RUS 2469192 24.05.2011

[18] Gorbunov V F, Eller A F, Aksenov V V, Nagorny V D and Skomorokhov V M Tunneling shield unit Patent for invention RUS 1229354 24.04.1984

[19] Eller A F, Aksenov V V, Nagorny V D and Gorbunov V F Tunneling shield unit Patent for invention RUS 1328531 23.10.1985

[20] Eller A F, Gorbunov V F, Aksenov V V, Pushkina N B, Saruev L A and Krauin'sh P Y Tunneling shield unit Patent for invention RUS 1668678 02.08.1989

[21] Eller A F, Gorbunov V F and Aksenov V V Tunneling shield unit Patent for invention RUS 1719642 04.05.1987

[22] Aksenov V V, Efremenkov A B, Blashchuk M U, Lelukh B F and Beglyakov V Y Tunneling shield unit Utility patent RUS 112269 13.12.2010

[23] Eller A F, Aksenov V V and Pushkina N B Tunneling shield unit Patent for invention RUS 2066762 4

[24] Aksenov V V, Efremenkov A B, Timofeev V Y, Beglyakov V U, Blashchuk M U Tunneling shield unit (geokhod) Patent for invention RUS 2418950 05.10.2009

[25] Aksenov V V, Valter A V and Beglyakov V U 2014 Obespechenie geometricheskoy tochnosti obolochki pri sborke sekcij geohoda [Ensuring the geometric accuracy of the shell when assembling sections of geohod] Metal processing (technology, equipment, tools) 4 (65) 19–28

[26] Valter A V, Aksenov V V, Beglyakov V U and Chazov P A 2015 Opredelenie pogreshnosti raspolozheniya sektorov stabiliziruyushchej sekcii geohoda na osnove dannyh koordinatnogo kontrolya [Determination of the error of the location of the sectors of the stabilizing section of the geohod based on the coordinate control] Metal processing (technology, equipment, tools) 4 (69) 31–42

[27] Valter A V and Aksenov V V 2015 Varianty obespecheniya tochnosti obolochek i sobiraemosti korpusnyh izdelij geohoda [Options to ensure the accuracy of the shells and the collection of buildings geohod] Mechanics of XXI century 14 89–92

[28] Valter A V and Aksenov V V 2015 Opredelenie otklonenij geometricheskoy formy obolochki korpusnych izdelij geohoda [Determination of deviations of the geometric shape of geohod hulls] Collection of works of the International Scientific and Practical Conferenceof Yurga Institute of Technology 165–170

[29] Aksenov V V and Valter A V 2013 Specifika geohodov kak ob'ektov proizvodstva i problemy sozdaniya tehnologii ih izgotovleniya [The specifics of geokhods as objects of production and the problems of creating technologies for their manufacture] Mining engineer 1 222–223

[30] Ermakov A N, Aksenov V V, Khoreshok A A and Ananiev K A 2014 Obosnovanie trebovanij k ispolnitel'nym organam formirovaniya zakonturnyh kanalov geohoda [Justification of the requirements for the executive bodies of the formation of marginal channels of geokhod] Vestnik KuzSTU 2 5–7

[31] Aksenov V V, Kostinets I K and Beglyakov V U 2013 Osobennosti raboty vneshnega dvizhitelya geohoda [Features of the external propeller of a geokhod] Mining Information and Analytical Bulletin (scientific and technical journal) S6 419–425

[32] Aksenov V V, Beglyakov V U, Kazantsev A A, Kostinets I K and Koperchuk A V 2016 Klassifikaciya geometricheskikh parametrov vneshnega dvizhitelya geohoda [Classification of the geometric parameters of the external propeller of geohod] Mining equipment and electrical engineering 8 33–39

[33] Beglyakov V U, Aksenov V V, Kazantsev A A and Kostinets I K 2017 Razrabotka zakonturnoj oporno-dvizhitel'noy sistemy geohodov [Development of the boundary propeller support system of geokhods] Vestnik KuzSTU 6 (124) 175–181

[34] Aksenov V V, Beglyakov V U and Kostinets I K 2013 Razrabotka trebovanij k vneshnemu dvizhitelyu geohoda [Development of requirements for external propulsion of a geokhod]
Beglyakov V U, Aksenov V V, Kostinets I K and Khoreshok A A 2017 Skhemy nagruzheniya pri modelirovanii processa vzaimodejstviya vneshnego dvizhitelya geohoda prikonturnym massivom porod [Loading schemes for modeling the interaction of an external propulsion geokhod marginal rock mass] Mining science and technology 3 3–8

Beglyakov V U, Aksenov V V, Kostinets I K and Khoreshok A A 2017 Opredelenie sil vzaimodejstviya osnovnyh sistem geohoda s geosredoj i mezhdusoboj [Determination of the forces of interaction of the main geokhod systems with the geoenvironment and between each other] 4 23–28

Aksenov V V and Kazantsev A A 2013 Reinforcing edge support of mine workings - a new approach to the construction of underground structures [Armiruyushchaya zakonturnaya krep' gornyh vyrabotok – novyj podhod k stroitel'stvu podzemnyh sooruzhenij] Mining Information and Analytical Bulletin (scientific and technical journal) S6 411–418

Aksenov V V, Kazantsev A A and Dortman A A 2012 Obosnovanie neobhodimosti sozdaniya sistem krepi gornyh vyrabotok pri prohodke po geowinchesternoj teknologii [Justification of the need to create support systems for mine workings when driving on geowinchester technology] Mining Information and Analytical Bulletin (scientific and technical journal) S3 138–143

Aksenov V V, Kazantsev A A and Dortman A A 2013 Obosnovanie neobhodimosti sozdaniya profilya dlya vintovoj ramnoj krepi v geowinchesternoj tekhnologii [Justification of the need to create a profile for helical frame support in geowinchester technology] Mining engineer 1 280–287