Parallel and Gradual Genome Erosion in the *Blattabacterium* Endosymbionts of *Mastotermes darwiniensis* and *Cryptocercus* Wood Roaches

Yukihiro Kinjo1,2,3,4, Thomas Bourguignon3,5, Kwei Jun Tong6, Hirokazu Kuwahara2, Sang Jin Lim7, Kwang Bae Yoon7, Shuji Shigenobu8, Yung Chul Park7, Christine A. Nalepa9, Yuichi Hongoh1,2, Moriya Ohkuma1, Nathan Lo6,*, and Gaku Tokuda4,*

1Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Japan
2Department of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
3Okinawa Institute of Science and Technology, Graduate University, Okinawa, Japan
4Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
5Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
6School of Life and Environmental Sciences, University of Sydney, NSW, Australia
7Division of Forest Science, Kangwon National University, Chuncheon, Republic of Korea
8National Institute for Basic Biology, NIBB Core Research Facilities, Okazaki, Japan
9Department of Entomology, North Carolina State University, Raleigh, North Carolina, USA

*Corresponding authors: E-mails: nathan.lo@sydney.edu.au; tokuda@comb.u-ryukyu.ac.jp.
Accepted: May 29, 2018
Data deposition: This project has been deposited in the International Nucleotide Sequence Database (GenBank/ENA/DDBJ) under the accession numbers given in Table 1.

Abstract

Almost all examined cockroaches harbor an obligate intracellular endosymbiont, *Blattabacterium cuenotii*. On the basis of genome content, *Blattabacterium* has been inferred to recycle nitrogen wastes and provide amino acids and cofactors for its hosts. Most *Blattabacterium* strains sequenced to date harbor a genome of ~630 kbp, with the exception of the termite *Mastotermes darwiniensis* (~590 kbp) and *Cryptocercus punctulatus* (~614 kbp), a representative of the sister group of termites. Such genome reduction may have led to the ultimate loss of *Blattabacterium* in all termites other than *Mastotermes*. In this study, we sequenced 11 new *Blattabacterium* genomes from three species of *Cryptocercus* in order to shed light on the genomic evolution of *Blattabacterium* in termites and *Cryptocercus*. All genomes of *Cryptocercus*-derived *Blattabacterium* genomes were reduced (~614 kbp), except for that associated with *Cryptocercus kyebangensis*, which comprised 637 kbp. Phylogenetic analysis of these genomes and their content indicates that *Blattabacterium* experienced parallel genome reduction in *Mastotermes* and *Cryptocercus*, possibly due to similar selective forces. We found evidence of ongoing genome reduction in *Blattabacterium* from three lineages of the *C. punctulatus* species complex, which independently lost one cysteine biosynthetic gene. We also sequenced the genome of the *Blattabacterium* associated with *Salganea taiwanensis*, a subsocial xylophagous cockroach that does not vertically transmit gut symbionts via proctodeal trophallaxis. This genome was 632 kbp, typical of that of nonsubsocial cockroaches. Overall, our results show that genome reduction occurred on multiple occasions in *Blattabacterium*, and is still ongoing, possibly because of new associations with gut symbionts in some lineages.

Key words: *Blattabacterium*, genome reduction, *Cryptocercus*, proctodeal trophallaxis.
Introduction

Cockroaches and *Mastotermes darwiniensis*, the most primitive termite, harbor the endosymbiotic bacteria *Blattabacterium cuenoti* (hereafter *Blattabacterium*) in their fat bodies. *Blattabacterium* is transovarially transmitted between host generations, and is essential to host growth and reproduction (Brooks and Richards 1955; Brooks 1970). On the basis of whole genome sequencing of various strains, *Blattabacterium* has been inferred to provide essential amino acids (hereafter EAA) and vitamins for its host, and participate in the recycling of nitrogen wastes (López-Sánchez et al. 2009; Sabree et al. 2009). The symbiotic relationship between *Blattabacterium* and cockroaches is believed to have been established >235 Ma (Bourguignon et al. 2018), and has been maintained via strict vertical transmission since then (Lo et al. 2003).

Although essential to most cockroaches, *Blattabacterium* symbionts were lost in all termites (which are a form of derived social cockroach; Lo et al. 2000) except *Mastotermes darwiniensis* (Bandi et al. 1995; Lo et al. 2003). The sister group of termites is the rotten wood-feeding and subsocial cockroach genus *Cryptocercus*. By studying the *Blattabacterium* strains of *M. darwiniensis* and *Cryptocercus*, insights into the factors leading to the loss of this symbiont from all other termites can be obtained. *Blattabacterium* may also have been lost in the enigmatic cave roach genus *Nocticola* (Lo et al. 2007), although the uncertain phylogenetic position of this taxon among other cockroaches (Bourguignon et al. 2018) has made it difficult to test this hypothesis. If the ancestors of *Nocticola* did indeed lose *Blattabacterium*, the reasons for this loss cannot easily be investigated because *Nocticola* has no known close relatives.

Most *Blattabacterium* strains sequenced to date harbor a genome of ~630 kbp, with the exception of MADAR from *M. darwiniensis* (~590 kbp; Sabree et al. 2012) and CPU from *Cryptocercus punctulatus* (~614 kbp; Neef et al. 2011). The causes of the increased levels of genome degradation in these strains are not clear. One common cause of genome reduction in endosymbionts is the association of the host with a new endosymbiotic partner (e.g., Husnik et al. 2013). Although *Wolbachia* has been found in some species (Vaishampayan et al. 2007), obligate intracellular nutritional mutualists other than *Blattabacterium* are not known from cockroaches, and do not appear to be responsible for the genome reduction found in CPU and MADAR.

Many of the genes missing in CPU and MADAR, but present in other *Blattabacterium* strains, are associated with EAA synthesis. An increase in available EAs in the diets of their ancestral hosts may have led to the loss of these genes in CPU and MADAR, due to relaxed selection. One source of such EAs could have been microbes associated with rotting wood, which could then be digested and taken up by the host in the midgut (Neef et al. 2011). To test this hypothesis, Tokuda et al. (2013) sequenced the *Blattabacterium* genome of *Panesthia angustipennis*, another rotten-wood feeding cockroach. However, this genome was found to encode all the EAA biosynthesis genes found in most *Blattabacterium* strains. Alternative hypotheses to explain the loss of EAA pathways in MADAR and CPU include: 1) increased EAA levels in the diets of ancestral hosts due to behaviors associated with subsociality and eusociality, such as protodeal trophallaxis (Fujita et al. 2001; Tokuda et al. 2014); 2) the presence of symbionts in the guts of the ancestors of *M. darwiniensis* and *C. punctulatus* which were able to provision the host with EAs. For example, cellulolytic protists in the guts of *Cryptocercus* and *M. darwiniensis* host bacterial endosymbionts that fix nitrogen, produce essential amino acids and participate in the nitrogen metabolism of their protist hosts (Hongoh 2010; Okkuma et al. 2015). These two hypotheses are not mutually exclusive.

Many genes, particularly those associated with EAA biosynthesis, are absent in both CPU and MADAR, suggesting they were lost in the common ancestor of these species (Patiño-Navarrete et al. 2013). Nonetheless, several genes are absent in only one of the strains, indicating independent gene loss. For example, MADAR retains *cysE* and *cysK* genes, but CPU has lost both these genes. On the contrary, *metB* and *lySA* are pseudogenised in CPU but functional in MADAR. Because many genes were lost independently by MADAR and CPU, the possibility remains that some genes in EAA pathways have been lost independently by both lineages, and not by their common ancestor as currently believed.

To test between the hypotheses of gene loss in a common ancestor of CPU and MADAR versus independent gene loss in each of these lineages, we sequenced additional *Blattabacterium* genomes from one host sample of *Cryptocercus kyebangensis*, one specimen of *C. clevelandi* and nine specimens of *C. punctulatus*. We also investigated the influence of subsocial behavior and wood-feeding on *Blattabacterium* genome evolution by sequencing the strain from one specimen of *Salganea taiwanensis*, a wood-feeding subsocial cockroach which does not exhibit protodeal trophallaxis.

Materials and Methods

Sample Collection and DNA Extraction

Locations of the sample collection for *Cryptocercus* cockroaches are indicated in figure 1 (details are indicated in supplementary table S1, Supplementary Material online). Although four species of *Cryptocercus* cockroaches have been described from the Appalachian Mountains, (Burnside et al. 1999), we refer to all of them as *Cryptocercus punctulatus* species complex, and distinguish among them by their chromosome numbers. *Salganea taiwanensis* were collected in Iriomote-island, Okinawa, Japan. We extracted DNA from
the fat bodies of a single individual. DNA extraction was done by using ISOPLANT II DNA extraction Kit (NIPPON GENE, Tokyo) under the manufacturer’s instructions.

Genome Sequencing and Assembly
Libraries were prepared from fat body total DNA using the TruSeq DNA Sample Preparation Kit according to the manufacturer’s protocol. Libraries were then mixed in equimolar concentration and sequenced with Illumina MiSeq or HiSeq2000 sequencing system. Reads were quality checked, trimmed and filtered using FaQCs (Lo and Chain 2014). High quality reads were assembled with the “TCSF and IMRA” pipeline (Kinjo et al. 2015). Gaps between contigs were filled using GapFiller (Nadalin et al. 2012). All final assemblies consisted of a single circular chromosome. The quality of the final assembly was evaluated using REAPER (Hunt et al. 2013), and no assembly errors were detected. Screening for potential secondary symbionts in the sequence libraries for each species was performed using blastx, implemented in the DIAMOND software package (Buchfink et al. 2015). All assembled contigs were subject to blastx searches against a UniRef90 database (Suzek et al. 2015) with a 1e-30 E-value threshold. All assembled genome data were deposited in the International Nucleotide Sequence Database (GenBank/ENA/DDBJ) under the accession numbers given in table 1.

Genome Annotation
Prediction of protein coding regions was carried out using Prodigal (Hyatt et al. 2010) with a 0.6 score cutoff. In addition to the Prodigal prediction, we also carried out homology-based ORF prediction using blastp search, implemented in the BLAST+ package (Camacho et al. 2009), against the Swiss-prot database (released in March 2017). Predictions for rRNA, tRNA, and other noncoding RNAs were done by using RNAmmer (Lagesen et al. 2007), tRNAscan-SE (Lowe and Eddy 1997), and Infernal (Nawrocki and Eddy 2013), respectively. Functional annotation of predicted coding sequences was done by blastp search against the COG database (Galperin et al. 2015) with curation using CD-search (Marchler-Bauer and Bryant 2004).

Phylogenetic Tree Inference
We determined a set of orthologous genes shared by all genomes used in this study using Proteinortho ver. 5.
Table 1
Genome Characteristics of All Sequenced *Blattabacterium* Strains

Organism (host scientific name) Strain	Plasm. Size (Kb)	G + C%	CDS	rRNA	tRNA	ncRNA	Pseudogene	Accession Number	Site No.
Blattabacterium sp. (Panesthia angustipennis spadica) str. BPA	0*	632	26.4	578	3	34	3	NC_020510.1	—
Blattabacterium sp. (Pa. angustipennis yaeyamensis) str. BPAY	0*	632	26.3	577	3	34	3	NZ_AP014609.1	—
Blattabacterium sp. (Salganea taiwanensis taiwanensis) str. STAT	0*	632	24.8	575	3	33	2	AP014608	—
Blattabacterium sp. (Nauphoeta cinerea) str. BNCIN	1	627	26.1	568	3	34	2	NC_022550.1-NC_022551.1	—
Blattabacterium sp. (Blaberus giganteus) str. BGIGA	1	633	25.7	577	3	34	2	NC_017924.1-NC_017925.1	—
Blattabacterium sp. (Blattella germanica) str. BGE	1	641	27.1	591	3	34	3	NC_013454.1-NC_015679.1	—
Blattabacterium sp. (Periplaneta americana) str. BPLAN	1	640	28.2	589	3	33	3	NC_013418.2-NC_013419.1	—
Blattabacterium sp. (Blatta orientalis) str. BOR	1	638	28.2	576	3	34	3	NC_020195.1-NC_020196.1	—
Blattabacterium sp. (Cryptocercus kyevangensis) str. CKYod	1	637	25.7	571	3	32	2	CP029820-CP029821	1
Blattabacterium sp. (C. clelandi) str. CCLhc	1	621	24.5	551	3	32	2	CP029844-CP029845	2
Blattabacterium sp. (C. punctulatus species complex: 2n = 43) str. CPUsm	0*	614	23.8	548	3	32	2	CP029810	3
Blattabacterium sp. (C. punctulatus species complex: 2n = 43) str. CPUmp	0*	613	23.9	546	3	32	2	CP029815	8
Blattabacterium sp. (C. punctulatus species complex: 2n = 43) str. CPUmc	0*	613	23.9	546	3	32	2	CP029816-CP029817	10

(continued)
Table 1

Organism (host scientific name) Strain	Plsmd.	Size (Kb)	G + C%	CDS	rRNA	tRNA	ncRNA	Pseudogene	Accession Number	Site No.
Blattabacterium sp. (C. punctulatus species complex: 2n = 39) str. CPUwf	1	611	23.8	546	3	32	2	4	CP029818-CP029819	11
Blattabacterium sp. (C. punctulatus species complex: 2n = 37) str. CPU	1	610	23.9	547	3	32	3	2	NC_016621.1-NC_016598.1	12
Blattabacterium sp. (Mastotermes darwiniensis) str. MADAR	1	590	27.5	547	3	34	3	1	NC_016146.1-NC_016150.1	—

Fig. 2.—Number of gene losses from the pan-genome of Blattabacterium strains. Number of gene losses in each strain was calculated by comparing with constructed pan-genome of all Blattabacterium strains used in this study. Singletons in each genome which did not match any reference sequences in the COG database by Reverse PSI-BLAST search were removed from the pan-genome data set.

Results and Discussion

We obtained the complete genome sequences of Blattabacterium strains associated with one specimen of C. kyebangensis, one specimen of C. clevelandi and nine specimens of C. punctulatus. The content of each Blattabacterium genome sequenced to date is summarized in Table 1. The genome sizes of the Blattabacterium strains associated with Cryptocercus spp. ranges from 609 to 637 kbp. These differences are largely due to the loss of EAA biosynthesis genes in some genomes (figs. 2 and 3). The topology recovered in our phylogenetic analysis of Blattabacterium concurs with previous phylogenetic inferences of the endosymbiont derived from the C. punctulatus species complex (Che et al. 2016). CPU Blattabacterium strains are divided into 2 clades (A and B in supplementary fig. S1, Supplementary Material online), except for CPUml. The plasmid of the endosymbiont was integrated in the chromosome in all strains belonging to clade B.

Although MADAR and CPU strains generally have similar amino acid biosynthesis gene repertoires, some genes are
present only in some of the Cryptocercus-derived strains (fig. 3), namely those of C. kyebangensis (CKYod) and C. clevelandi (CCLhc). For example, genes involved in tryptophan synthesis are found in CKYod only, and fully intact copies of lysA and argH are only found in CKYod and CCLhc. This shows that these genes have been lost independently (or have become putative pseudogenes) in MADAR and in strains of CPU.

Only one gene involved in methionine synthesis, metB, and a few genes involved in BCAA synthesis (ilvA, ilvBH, ilvC, and ilvD), are absent in all Blattabacterium strains associated with Mastotermes and Cryptocercus (fig. 3). However, some of the genes involved in the methionine and BCAA synthesis pathways, such as metE or ilvE, are still present in the genomes of MADAR and/or Cryptocercus-derived strains, either intact or as putative pseudogenes. Independent losses of methionine and BCAA synthesis in the Blattabacterium of Mastotermes and Cryptocercus cannot, therefore, be ruled out.

The Blattabacterium genome content varies between CPU strains of the C. punctulatus species complex (Nalepa et al. 2002; Everaerts et al. 2008). For example, one strain (CPUml) retains the entire gene set involved in cysteine synthesis (i.e., cysE and cysK), but one or both these have been lost or occur as putative pseudogenes in the other nine strains (fig. 3). The phylogeny of C. punctulatus suggests that the cysE gene was lost or pseudogenized independently three times (fig. 4).

We sequenced the endosymbiont genome of another wood-feeding cockroach, Salganea taiwanensis, a subsocial insect unrelated to termites and Cryptocercus. Although subsocial, Salganea taiwanensis does not exhibit proctodeal trophallaxis (Maekawa et al. 2008). We found that its genome is 632 kbp with a GC content of 24.8%. The genome comprises 575 coding sequences (CDSs), a single rRNA operon, 32 tRNAs, and three other noncoding RNAs. The plasmid is integrated into the genome, similar to the case of related Panesthia cockroaches. Overall, genomic characteristics differ from the strains derived from Mastotermes and Cryptocercus, and are highly similar to the strains of other cockroaches, including the strains of the related Panesthia species (supplementary fig. S2A, Supplementary Material online). This includes the presence of all amino acid biosynthetic genes typically present in Blattabacterium genomes (fig. 3).

Our results show that the genomes of Blattabacterium independently underwent erosion in the lineages leading to extant Cryptocercus and Mastotermes. Among Cryptocercus strains, Blattabacterium genome erosion was gradual, and comparison of gene loss events with previous chronograms estimated for Cryptocercus (Che et al. 2016) indicates that these events took place sequentially over the last 60 My (fig. 4). We also found evidence of further gene loss during the last 5 My in the Blattabacterium genome of the C. punctulatus species complex (CPU strains). In the earliest branching C. punctulatus lineage, Blattabacterium CPUml possesses functional cysE and cysK, and is presumably able to synthesize cysteine. In contrast, three other lineages of the C. punctulatus species complex harbor endosymbionts with almost
identical gene repertoires, all of which lack functional cysK and/or cysE. The phylogenetic tree of the C. punctulatus species complex suggests that the loss of cysE occurred independently in three lineages. Blattabacterium genome reduction is therefore ongoing among members of the C. punctulatus species complex, and involves the same set of genes.

Primary endosymbionts often experience genome instability subsequent to the establishment of new symbiotic associations between their host and a secondary obligate (or co-obligate) symbionts. Genes with redundant functions in the primary and secondary symbiont genomes are easily lost because of relaxed selective pressures. As a result, the two genomes evolve to complement each other, and become mutually dependent. For example, in the aphid lineages associated with the secondary obligate symbiont Serratia symbiotica, the aphid primary endosymbiont Buchnera aphidicola underwent massive gene losses, having a genome size of only 425–453 kbp (Manzano-Marín et al. 2016). Secondarily acquired endosymbionts can trigger even more extreme genome reduction, such as in Candidatus Sulcia muelleri, Candidatus Carsonella rudii, and Candidatus Portiera aleyrodidarum, primary endosymbionts of cicada, psyllid and whitefly, respectively, which have genomes varying in size between 114 and 245 kbp (McCutcheon et al. 2009; Sloan and Moran 2012; Rao et al. 2015). Although these genomes lack many genes involved in various functions, they retain most genes involved in EAAs biosynthesis.

The genomes of MADAR and CPU are between 30 and 50 kbp smaller than that of other strains of Blattabacterium, and most of the genes they lost were involved in EAAs biosynthesis. This markedly contrasts with the 200 kbp of genes lost by the Buchnera strains whose host aphids secondarily acquired Serratia endosymbionts. The reason why Blattabacterium mostly lost EAAs biosynthesis genes, but retained genes with other functions, is unclear. One possible explanation is the presence of secondary intracellular symbionts in Cryptocercus and termites. Such secondary symbionts typically comprise a single, or a few, microbial species, all localized in bacteriocytes, allowing metabolic collaborations with primary symbionts (McCutcheon et al. 2009; Sloan and Moran 2012; Rao et al. 2015). We searched for secondary symbionts in Cryptocercus but found no evidence of their presence. No assembled contig from Cryptocercus fat body sequence libraries in this study was found to have a reliable blastx matches with bacterial protein sequences from the Uniref90 database. Although a few small (<2 Knt) contigs were found to have matches with bacterial protein sequence, each of these had low depth (>50 fold lower than those of Blattabacterium contigs), and were not shared among libraries. We therefore conclude that these contigs are most likely derived from environmental or intestinal contaminants present during cockroach dissection and DNA extraction.

An alternative explanation for gene loss in Blattabacterium is the gradual development of novel associations among intestinal symbiotic microbes, which in some way enhanced the availability of essential amino acids to their hosts. One such association known in Cryptocercus and lower termites, including M. darwiniensis, is the presence of oxymonad and hypermastigid flagellates in the guts of these insects. These flagellates themselves have bacterial ecto- and endosymbionts which contribute to nitrogen metabolism (Ohkuma 2008; Ohkuma et al. 2015; Hongoh 2010). Some symbiotic bacteria of gut flagellates are diazotrophs, having the capability of fixing atmospheric nitrogen into protein, potentially allowing their hosts access to new nitrogen sources (Tai et al. 2016). How
the production of EAAs by symbiotic microbes could be accessed by hosts is unclear. One possibility is an increase in EAA concentration in the gut lumen, followed by uptake in the rectum (Phillips et al. 1986). Alternatively, microbes could be consumed by nestmates via proctodeal trophallaxis or coprophagy (Fujita et al. 2001; Machida et al. 2001; Nalepa et al. 2001; Tokuda et al. 2014), and EAAs released and taken up in their midguts.

Unlike the genomes of MADAR and Cryptocercus-derived Blattabacterium strains, the Blattabacterium genome of Salganea has not undergone significant further reduction. Salganea spp. are known to engage in social behaviors, including stomodeal trophallaxis and filial coprophagy, which are expected to provide larvae with nutritional stability during early development. However, our results indicate that such behaviors do not necessarily promote genome reduction. Unlike termites and Cryptocercus, Salganea does not exhibit proctodeal trophallaxis. Proctodeal trophallaxis, along with the acquisition of novel gut symbionts, may therefore be a key factor in the genome reduction of Blattabacterium.

Conclusion

In this study, we found that the losses of the same set of EAAs biosynthesis genes by MADAR and CPU were primarily the result of parallel evolution. We also found that additional genome reduction occurred during the last 5 My in several strains present in Cryptocercus, highlighting the phenomenon of ongoing gene loss in Blattabacterium. Future studies investigating the contribution of proctodeal trophallaxis and gut microbes to cockroach and Mastotermes metabolism are required to test the hypothesis of a link between genome reduction in Blattabacterium on the one hand, and social behavior and associations with novel gut symbiotic partners on the other.

Supplementary Material

Supplementary data are available at Genome Biology and Evolution online.

Acknowledgments

The insects were collected under permits GRSM-2014-SCI-0015, GRSM-2015-SCI-1243, BLRI-2009-SCI-0001, and BLRI-2015-SCI-0021 from the U.S. National Park Service, 2015_0059 from North Carolina Department of Environment and Natural Resources, 132015 from Georgia Department of Natural Resources, SC-013299 from California Department of Fish and Wildlife, and 2017-01 from Wonju Regional Environment Office in South Korea. Tatsuya Kitazume is acknowledged for Illumina sequencing at Functional Genomics Facility, NIBB Core Research Facilities. This work was supported by Japan Society for the Promotion of Science KAKENHI 17H01510, 26292177, 26117722, 18K14767, and NIBB Cooperative Research Program no. 11-723. Y.K. was supported by RIKEN Junior Research Associate Program. N.L. was supported by the Australian Research Council (FT160100463).

Literature Cited

Bandi C, et al. 1995. The establishment of intracellular symbiosis in an ancestor of cockroaches and termites. Proc R Soc B Biol Sci. 259(1356):293–299.

Bourguignon T, et al. 2018. Transoceanic dispersal and plate tectonics shaped global cockroach distributions: evidence from mitochondrial phylogenomics. Mol Biol Evol. 35(4):970–983.

Brooks MA. 1970. Comments on the classification of intracellular symbiotes of cockroaches and a description of the species. J Invert Pathol. 16(2):249–258.

Brooks MA, Richards GA. 1955. Intracellular symbiosis in cockroaches. I. Production of aposymbiotic cockroaches. Biol Bull. 109(1):22–39.

Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nat Methods 12(1):59–60.

Burnside CA, Smith PT, Kambhampati S. 1999. Three new species of the wood roach, Cryptocercus (Blattodea: cryptocercidae), from the eastern United States. J Kans Entomol Soc 72:361–378.

Camacho C, et al. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421.

Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 17(4):540–552.

Che Y, et al. 2016. A global molecular phylogeny and timescale of evolution for Cryptocercus woodroaches. Mol Phylogenet Evol. 98:201–209.

Everaerts C, et al. 2008. The Cryptocercus punctulatus species complex (Dictyoptera: cryptocercidae) in the eastern United States: comparison of cuticular hydrocarbons, chromosome number, and DNA sequences. Mol Phylogenet Evol. 47(3):950–959.

Fujita A, Shimizu I, Abe T. 2001. Distribution of lysozyme and protease, and amino acid concentration in the guts of a wood-feeding termite, Reticulitermes speratus (Kolbe): possible digestion of symbiotic bacteria transferred by trophallaxis. Physiol Entomol. 26(2):116–123.

Galperin MY, Makarova KS, Wolf YI, Koonin EV. 2015. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43(D1):D261–D269.

Hongyoh Y. 2010. Diversity and genomes of uncultured microbial symbionts in the termite gut. Biosci Biotechnol Biochem. 74(6):1145–1151.

Hunt M, et al. 2013. REAPR: a universal tool for genome assembly evaluation. Genome Biol. 14(5):R47.

Husnik F, et al. 2013. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 153(7):1567–1578.

Hyatt D, et al. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.

King Y, Saitoh S, Tokuda G. 2015. An efficient strategy developed for next-generation sequencing of endosymbiotic genomes performed using crude DNA isolated from host tissues: a case study of Blattabacterium cuenoti inhabiting the fat bodies of cockroaches. Microbes Environ. 30(3):208–220.

Lagesen K, et al. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35(9):3100–3108.
Lo N, et al. 2007. Cockroaches that lack Blattabacterium endosymbionts: the phylogenetically divergent genus Nocticola. Biol Lett. 3:327–330.
López-Sánchez MJ, et al. 2009. Evolutionary convergence and nitrogen metabolism in Blattabacterium strain Bge, primary endosymbiont of the cockroach Blattella germanica. PLoS Genet. 5(11):e1000721.
Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25(5):955–964.
Maekawa K, Matsumoto T, Nalepa CA. 2008. Social biology of the wood-feeding cockroach genus Salganea (Dictyoptera, Blaberidae, Panesthiinae): did ovoviparity prevent the evolution of eusociality in the lineage?. Insectes Soc. 55(2):107–114.
Manzano-Marquez MJ, et al. 2009. Evolutionary convergence and nitrogen fixation by an endosymbiotic spirochete of a termite-gut cellulytic protist. Proc Natl Acad Sci U S A. 112(3):10224–10230.
Ohkuma M. 2008. Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends Microbiol. 16(7):345–352.
Patrino-Navarrete R, Moya A, Latorre A, Peretó J. 2013. Comparative genomics of Blattabacterium cuenoti: the frozen legacy of an ancient endosymbiont genome. Genome Biol Evol. 5(2):351–361.
Patrino-Navarrete R, et al. 2014. The cockroach Blattella germanica obtains nitrogen from uric acid through a metabolic pathway shared with its bacterial endosymbiont. Biol Lett. 10:20140407.
Phillips JE, Hanrahan J, Chamberlin M, Thomson B. 1986. Mechanisms and control of reabsorption in insect hindgut. Adv Insect Physiol. 19:329–422.
Rao Q, et al. 2015. Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci. BMC Genomics 16(1):1–13.
Sabree ZL, et al. 2012. Genome shrinkage and loss of nutrient-providing potential in the obligate symbiont of the primitive termite Mastotermes danvinieri. Appl Environ Microbiol. 78(1):204–210.
Sabree ZL, Kambhampati S, Moran NA. 2009. Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc Natl Acad Sci U S A. 106(46):19521–19526.
Sloan DB, Moran NA. 2012. Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids. Mol Biol Evol. 29(12):3781–3792.
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1213–1213.
Suyama M, Torres D, Bork P. 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34(Web Server):W609–W612.