PCR-based Identification of Eubacterium species in endodontic infection

Kee-Yeon Kum, A. F. Fouad *
Yonsei Dental College, Department of Conservative Dentistry, Oral Science Research Center, UCHC Endo, CT, USA *

I. Introduction

The oral asaccharolytic Eubacterium spp. are a diverse group of Gram-positive rods that are frequently isolated from oral infections such as periodontitis and dento-alveolar lesions. In a study of sixty-five patients with necrotic pulp and periapical lesions, Eubacterium—infirmum—specifically Eubacterium alactolyticum (currently Pseudoramibacter alactolyticus) and Eubacterium lentum—were identified in a third of the samples. Moreover, the prevalence of Eubacterium spp., mostly Eubacterium lentum, in cases of symptomatic or painfully infected root canals has been reported to range from 17-81% of teeth. Five years after treatment, it was noted that Eubacterium spp. were identified at the time of root canal obturation in a higher proportion in the cases that eventually failed compared to cases that were successful. Recently, on the basis of 16S rRNA sequence data and the phenotypic characters, Eubacterium lentum, an organism of high incidence of symptomatic root canal infections, as noted before, was reclassified as Eggerthella lenta. In a previous study we used PCR-based identification to determine the presence of the following ten putative bacterial species from root canal of pulp necrosis and apical periodontitis: Bacteroides forsythus, Fusobacterium nucleatum, Peptostreptococcus micros, Porphyromonas endodontalis, Porphyromonas gingivalis, Prevotella nigrescens, Prevotella intermedia, Treponema denticola and members of the Enterococcus and Streptococcus genera. Recently

*This study was partly supported by a NIDCR grant #DE 14476-02.
techniques utilizing the 16S rRNA gene PCR assay have been provided a new tool for evaluating the members of diverse microbial communities including uncultivable microorganisms in the field of microbial ecology. Therefore, the purposes of this study were to use the more sensitive technique of PCR to detect the presence of Eubacterium spp. and Eggerthella lenta in human samples from root canals with necrotic pulp and to study the association of these microorganisms with pre-operative clinical symptoms and the history of diabetes mellitus, and finally to study the association of Eubacterium spp. with a selected group of other putative microorganisms previously identified in the same patient specimens.

II. Materials and Methods

Patient Selection and Sample Collection

Patient samples were obtained from consenting endodontic patients in accordance with protocols approved by the Institutional Review Board of the University of Connecticut Health Center as was previously described. The teeth involved had pulp necrosis and apical periodontitis, did not have any previous endodontic procedures and had not have any been on antibiotics for at least three months. The original sample size of 24 was reduced to 22 after a PCR test utilizing 16s rDNA universal eubacterial primers showed that two of the samples was negative for any bacteria. These two specimens were excluded from any further analysis. Eight patients reported pre-operative pain and/or swelling and five patients were diabetic (two type 1 and three type 2). The technique for sample collection was as follows: Following rubber dam isolation of the tooth involved, the field was disinfected with 30% H₂O₂ then 5% tincture of iodine. Caries and/or existing restorations, if present, were removed, then the cavity was wiped with a sterile cotton pellet slightly wet with 1% buffered NaOCl, with care that it did not seep into the canal. The halogen disinfectants were then inactivated using 5% sodium thiosulphate. The pulp chamber was then accessed with a new sterile bur. If purulence or serous fluid was present in the canal, this was directly sampled using three size Fine paper points. Otherwise, sterile saline was deposited in the canal making sure it did not overflow. A size 15 – 30 K-type file (Maillefer, Ballaigus, Switzerland) was used to negotiate the canal to the estimated length. Three Fine paper points were then used to obtain the sample. The last paper point was left for 30 seconds in the canal. In multicanaled teeth, one paper point sample was obtained from each canal unless the canals were very calcified, in which case sampling of the canal in the root with the largest PA lesion and the largest canal was done. The paper points were placed in sterile, DNA/RNA-free vials containing 1mL filter-sterilized 10mM Tris-HCl; 1mM EDTA (pH =8) and 0.5g (0.71-1.18mm) sterile glass beads. The vials were frozen at -70°C until used.

DNA Extraction

The vials with paper point specimens were vortexed for 2 minutes to disperse microbial cellular material into suspension, then centrifuged for 10 minutes at 7,500 rpm, and the supernatant was again removed. From the cellular pellet, DNAs were extracted using the Chelex extraction and boiling technique or the enzymatic extraction method, according to the Quagen–QIAnamp DNA mini kit protocol (Qiagen, Valencia, CA). Extraction yielded 400μL that were aliquoted in sterile, DNA-, RNA-free conical tubes, and frozen at -20°C until use. The yield of extracted DNA ranged from 2-33 ng/μL for the stock bacterial strains and 1-19.5 ng/μL for the clinical specimens.

PCR amplification and direct sequencing

Initially the presence of bacteria was then verified in the sample using a 16S rDNA universal eubacterial primer pair. Subsequently previously published genus-level oligonucleotide primers for Eubacterium spp. and species-level oligonucleotide primers for Eggerthella lenta were selected for specific PCR amplification of 16S rRNA genes (Table 1).

In pilot experiments, the conditions for the primers were optimized using DNA extracted from corresponding control bacterial strains obtained from the American Type Culture Collection (ATCC). For Eubacterium primer pair several controls were employed. The posi
Table 1. Oligonucleotide primers used. Top primer is sense, bottom is antisense.

Organism	Primer (5’ - 3’)	Size/Bp	Annealing Temp.	Reference
Eubacterium spp.	AGA GTT TGA TCC TGG CTC AG GCC TTA AAC CCT RCG CTT	492	54°C	15)
Eggerthella lenta	CAT GAA GTG GCC ACC GGG TGA CTT CTG CTG CAG GTA CCG TCG TCG AAT T	383	63°C	8)
Universal 16S rRNA	AGA GTT TGA TCC TGG CTC AG ACG GCT ACC TTG TTA CGA CTT	1500	56°C	26)

Phylogenetic analyses

The resulting bi-directional consensus sequences, consisting of about 500-800 base pairs, were characterized using the BLAST algorithm. Although these sequences do not represent the complete 16S gene (about 1500 bp), partial sequences can suffice for determining the identity of microorganisms, particularly, as in this case, when targeting a limited range of microorganisms with genus-specific primers. Each sequence was aligned to the 15-20 closest sequences with ClustalW in MacVector (GCG, Oxford Molecular Co.). A Neighbor-Joining (NJ) phylogenetic tree was constructed from the alignment using
MacVector (GCG, Oxford Molecular Co.). A distance matrix was constructed using a Tamura-Nei model without Gamma correction and with gaps distributed proportionately. NJ Bootstrap values were derived from 1000 replications and were added to the tree.

Data Analysis:

The associations between the positive identification of a bacterial species or genus and symptoms, and the history of diabetes were analyzed using odds ratio (OR) analysis. OR associations of 2 or more were considered positive associations.3,14) These positive associations were further analyzed using a Chi-square analysis to determine their statistical significance. Furthermore, similar analysis was performed of the association of organisms with each other.

III. Results

Sixteen of 22 or (73%) of the patient specimens were positive for *Eubacterium* spp. None of the specimens contained *Eggerthella lenta*. The phylogenetic analysis showed that the most frequently amplified *Eubacterium* sequence was virtually identical with that of *Eubacterium infirmum* (9 of 16 or 56%) (Fig. 1). Of

Fig. 1. Phylogenetic analysis of 16S rRNA gene sequences with oral asaccharolytic *Eubacterium*-branch specific primer 557R and universal primer 27F, sequences of oral asaccharolytic *Eubacterium* species and most closely related species retrieved from sequence databases.
the sixteen specimens that were positive for the presence of *Eubacterium* spp., five samples were from patients who experienced pre-operative pain and/or swelling and four from patients who had diabetes mellitus (Table 2). Analysis using OR and Chi-square showed no significant associations between the combined presence or absence of all *Eubacterium* spp. and the history of symptoms or diabetes. However, a history of diabetes was significantly associated with the presence of *Eubacterium infirmum* (OR = 9.6; Chi-square, p = 0.04). Four of the nine specimens positive for *E. infirmum* were from patients with pre-operative symptoms (OR = 1.8; Chi-square, p > 0.05). Three specimens had *Eubacterium* sequences that were related to certain organisms with relatively low homology: specimen 13 was closest to *Mogibacterium timidum* (86% homology); specimen 19 was closest to *Eubacterium sulci* (83% homology); and specimen 23 was closest to *Eubacterium nodatum* (80% homology). Odds ratio (OR) analysis also showed a positive association between the presence of *Eubacterium* spp. with the presence of *F. nucleatum, P. micro, P. nigrescens, P. endodontalis, B. forsythus, T. denticola, P. gingivalis* (OR > 2).

Furthermore, a positive association was observed between the presence of diabetes mellitus and the

Table 2. PCR results of *Eubacterium* spp at the species level from 16 *Eubacterium* positive specimens. Diabetes Mellitus (DM) type, (ND: non-diabetic): preoperative pain and/or swelling experience (symptomatic) for 22 patient specimens. † Specimens 5 and 8 had very little bacterial DNA. ‡ Specimens #9 and 12 had no bacterial DNA (see text). The question marks indicate that identity could not be established on these organisms, or that there is a potential for mixed sequences.

Specimen	DM Type (HbA1c)	Symptoms	E. infirmum	E. nodatum	E. minutum	M. timidum	E. sulci
SP01	2 (11.3)	No	+				
SP02	ND	No					+
SP03	ND	Yes					
SP04	ND	No	+				
SP05 §	ND	No					
SP06	ND	No					+
SP07	ND	Yes					
SP08 §	ND	No					
SP10	2 (7.2)	Yes	+				
SP11	ND	No					
SP12	ND	Yes	+				
SP13	ND	No					+?
SP14	ND	Yes	+				
SP15	ND	No					+?
SP16	ND	Yes					
SP17	ND	No					+
SP18	2 (10.2)	No	+				
SP19	ND	No					+?
SP20	ND	Yes	+				
SP21	ND	No					+
SP22	1 (11.6)	Yes					+?
SP23	ND	Yes	+				
SP24	1 (8.1)	No	+				

Total | 9 | 3 | 2 | 1 | 1

combination of Eubacterium spp. with F. nucleatum, P. micro, P. endodontalis, T. denticola, or P. gingivalis (Table 3).

IV. Discussion

The comparison of rRNA sequence is a powerful tool for deducing phylogenetic and evolutionary relationships among bacteria in oral infection. In this study both universal and specific PCR primers targeting bacterial 16S rRNA genes were used to investigate the prevalence of Eubacterium species and Eggerthella lenta in infected root canals. In addition, the potential association of these organisms with clinical symptoms or the presence of diabetes was also evaluated.

The Eubacterium primers that we used have been validated for identification of several species including: E. brachy, E. infirmum, E. nodatum, E. saphenum, and E. tardum. E. timidum was not identified in that study. The authors attributed this to the presence of four mismatches between the reverse primer and the rRNA sequence of this organism. However, specimen 13 in this study was identified as being closest to Mogibacterium timidum (Fig. 1), which is the recent reclassification of E. timidum to the new genus Mogibacterium. In present study the percentage of specimens with positive Eubacterium DNA identification was 73%. This is comparable to the upper limits of other published material when analyzing the prevalence of Eubacterium species in total samples and not just cases with pre-operative symptoms. The genus Eubacterium currently includes a heterogenous group of Gram-positive, obligately anaerobic, non-spore-forming bacilli, many of which are slow growing, fastidious and generally unreactive in biochemical tests. As consequence, cultivation and identification of isolates are difficult and the taxonomy of the group remains indifferent.

An intriguing feature of the present study is that most of the Eubacterium species in the infected root canals were Eubacterium infirmum (9/16 or 56%), which was recently isolated from human periodontal pockets with periodontitis by Cheeseman et al. Two other recent studies, that closely examined Eubacterium spp. in endodontic infections using molecular methods, did not identify this organism. In one study, molecular sequencing was performed on cultured isolates, where culturing conditions may not have allowed the cultivation of E. infirmum, and in the other study, only primers specific to Slackia exigua, M. timidum and E. saphenum were used. Therefore, this is the first reporting of the species E. infirmum in endodontic infections, as far as we could determine. This organism was also significantly associated with the presence of a history of diabetes mellitus. Eubacterium infirmum strains are obligate, anaerobic, Gram-positive short rod and are rarely detected at healthy oral sites, but little is known about any possible virulence factors produced by these organisms in endodontic infections. A previous study which studied about serum antibody response against oral Eubacterium species in periodontal disease serum antibody levels against four Eubacterium species were significantly elevated in periodontal disease. The presence of an elevated systemic antibody suggests that Eubacterium species have breached the host’s defenses insufficient quantities to stimulate an immune response. Further work is necessary to elucidate the potential pathogenic mechanisms of E. infirmum and other Eubacterium species in endodontic infections, and whether specific microorganisms preferentially favor the diabetic host environment. We have recently reported that in patients with periradicular endodontic infections, a history of diabetes is associated with a significantly lower prognosis of endodontic treatment. It is not known whether this may be, at least in part, due to the preferential presence of specific bacteria, such as

Table 3. Odds Ratio analysis of the association between diabetes and bacterial combinations.

Bacterial combinations	Odds Ratio
Eubacterium species+F. nucleatum*	∞
Eubacterium species+P. micros *	∞
Eubacterium species+P. endodontalis *	5.0
Eubacterium species+T. denticola *	2.5
Eubacterium species+P. gingivalis *	5.0

* Statistically significant (OR ratio >2).
E. infirmum, in the necrotic pulp of diabetic patients. We also evaluated the associations of these microorganisms with pre-operative clinical symptoms. In previous studies, which evaluated the association between the presence of Eubacterium species and reported pain and swelling in symptomatic or painfully infected root canals, the presence of Eubacterium spp. was ranged from 17 to 81 percent of teeth studied. In the sixteen samples that were positive for the presence of Eubacterium species, five samples were from patients who experienced pre-operative pain and/or swelling. Statistical analysis did not reveal any significant associations between the bacterial presence or absence of Eubacterium spp. and pre-operative symptoms. Despite the fact that both sets of primers, specific for Eggerthella lenta and Eubacterium spp., did amplify our positive control E. lenta ATCC stock strain, we could not identify this organism in any specimen. The organism Eubacterium lentum, which was recently reclassified as E. lenta had been identified in a number of endodontic studies by culturing. This is a fecal organism that is uncommon in the oral cavity, and is difficult to distinguish from another closely related organism Eubacterium exiguum, recently reclassified as Slackia exigua, in that both organisms are generally not reactive to biochemical tests. This latter organism has been identified in periodontal and endodontic infections. It is possible that the organism identified in previous studies as E. lenta is the same as S. exigua, or that these specimens did not contain E. lenta. Further studies need to elucidate if E. lenta is an endodontic pathogen.

A number of sequences were marked with a question mark in table 2. These sequences either could not be matched to known sequences or had a number of ambiguous characters (designated as Ns) in hyper-variable regions of the sequences. These Ns were not used by the software to perform phylogenetic analyses, but do contribute to the uncertainty in identifying some of the sequences. In future, cloning will be performed to singularize the sequences for optimal results on all sequences.

In previous study we analyzed for the presence of the following ten putative bacterial species from root canal of pulp necrosis and apical periodontitis in same patients: F. nucleatum, P. micros, S. intermedi-a, P. nigrescens, P. endodontalis, B. forsythus, T. denticola, Enterococcus species, P. gingivalis and P intermedia. To investigate the association of Eubacterium species with a selected group of above ten putative microorganisms, we used odds ratio analysis and the results showed a positive association between the presence of Eubacterium species with the presence of F. nucleatum, P. micro, P. nigrescens, P. endodontalis, B. forsythus, T. denticola, P. gingivalis. Furthermore, a positive association was observed between the presence of diabetes mellitus and the combination of Eubacterium species with F. nucleatum, P. micro, P. endodontalis, T. denticola, or P. gingivalis. Table 3 shows the odds ratio extremes of ∞ in a number of cases due to the high prevalence of some organisms (e.g. F. nucleatum or P. micros). Because of the small number of positive identification in a number of cases and the relative small overall sample, this data is presented as revealing possible trends and should be further investigated.

In conclusion, Eubacterium spp., particularly E. infirmum, were highly prevalent organisms in endodontic infection, and the latter species was significantly associated with a history of diabetes. Further work is however, necessary to elucidate potential pathogenic mechanisms of Eubacterium species in endodontic infections.

Reference

1. Wade WG, Lewis MA, Cheesman SL, Absi EG and Bishop PA. An unclassified Eubacterium taxon in acute dento-alveolar abscess. J Med Microbiol 40:115-117, 1994.
2. Wade WG. The role of Eubacterium species in periodontal disease and other oral infections. Microb Ecol Health Dis 9:367-370, 1996.
3. Sundqvist G. Associations between microbial species in dental root canal infections. Oral Microbiol Immunol 7:257-262, 1992.
4. Wasfy MO, McMahon KT, Minah GE and Falkler WA, Jr. Microbiological evaluation of periapical infections in Egypt. Oral Microbiol Immunol 7:100-105, 1992.
5. Yoshida M, Fukushima H, Yamamoto K, Ogawa K, Toda T and Sagawa H. Correlation between clinical symptoms and microorganisms isolated from root canals of teeth with periapical pathosis. J Endod 13:24-28, 1987.
6. Sundqvist G, Johansson E and Sjogren U. Prevalence of black-pigmented bacteroides species in root canal
infections. J Endod 15:13-19, 1989.
7. Sjögren U, Figdor D, Persson S and Sundqvist G. Influence of infection at the time of root filling on the outcome of endodontic treatment of teeth with apical periodontitis. Int Endod J 30:297-306, 1997.
8. Kageyama A, Benno Y and Nakase T. Phylogenetic evidence for the transfer of Eubacterium lentum to the genus Eggerthella as Eggerthella lenta gen. nov., comb. nov. Int J Syst Bacteriol 49:1725-1732, 1999.
9. Fouad AF, Barry J, Caimano M, Clawson C, Zhu Q, Carver R, Hazlett K and D. RJ. PCR-based identification of bacteria in endodontic infections. J Clin Micro 40:1491-1501, 2002.
10. Rolph HJ, Lennon A, Riggio MP, Saunders WP, MacKenzie D, Coldere L and Bagg J. Molecular identification of microorganisms from endodontic infections. J Clin Micro 39:2328-2334, 2001.
11. Conrads, G., J. Soffner, K. Pelz, and R. Mutters. Taxonomic update and clinical significance of species within the genus Peptostreptococcus. Clin Infect Dis 25:S94-97, 1997.
12. Felsenstein, J. PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle. 1993.
13. Page, R. D. TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357-358, 1996.
14. Socransky, S. S., A. D. Haffajee, J. L. Dzink, and J. D. Hillman. Associations between microbial species in subgingival plaque samples. Oral Microbiol Immunol 3:1-7, 1988.
15. Spratt DA, Weightman AJ and Wade WG. Diversity of oral asaccharolytic Eubacterium species in periodontitis—identification of novel phyotypes representing uncultivated taxa. Oral Microbiol Immunol 14:56-59, 1999.
16. Nakazawa F, Sato M, Poco SE, Hashimura T, Ikeda T, Kallas S, Sundqvist G and Hoshino E. Description of Mogibacterium pumilum gen. nov., sp. nov., and Mogibacterium vescom gen. nov., sp. nov., and reclassification of Eubacterium timidum (Holdeman et al. 1980) as Mogibacterium timidum gen. nov., comb. nov. Int J Syst Evol Microbiol 50(2):679-688, 2000.
17. Haapasalo M, Kerosuo E and Lounatmaa K. Hydrophobicities of human PMN leukocytes and oral Bacteroides and Porphyromonas spp., Wolinella recta, and E. yurii with special reference to bacterial surface structures. Scand J Dent Res 98:472-51, 1990.
18. Downes J, Munson MA, Spratt DA, Kononen E, Tarkka E, Jeusimies-Somer H and Wade WG. Characterization of Eubacterium-like strains isolated from oral infections. J Med Microbiol 50:947-951, 2001.
19. Cheeseman SL, Hiom SJ, Weightman AJ and Wade WG. Phylogeny of oral asaccharolytic Eubacterium species determined by 16S rRNA sequence comparison and proposal of Eubacterium inffirmum sp. nov. and Eubacterium tardum sp. nov. J Sys Bacteriol 46(4):937-959, 1996.
20. Hashimura T, Sato M and Hoshino E. Detection of Slackia exigua, Mogibacterium timidum and Eubacterium saphenum from pulpal and periradicular samples using the Polymerase Chain Reaction (PCR) method. Int Endod J 34:463-470, 2001.
21. Smith AJ, Wade WG. Serum antibody response against oral Eubacterium species. J Periodont Res 34:175-178, 1999.
22. A.F. Fouad. J. Burleson. The effect of diabetes mellitus on endodontic treatment outcome. J Am Dent Assoc 134:43-51, 2003.
23. Wade WG, Downes J, Dymock D, Hiom SJ, Weightman AJ, Dewhirst FE, Pastor BJ, Tzellas N and Coleman B. The family Coriobacteriaceae: reclassification of Eubacterium exiguum (Poco et al. 1996) and Peptostreptococcus heliotrinireducens (Lanigan 1976) as Slackia exigua gen. nov., comb. nov. and Slackia heliotrinireducens gen. nov., comb. nov., and Eubacterium lentum (Prevot 1938) as Eggerthella lenta gen. nov., comb. nov. Int J Syst Bacteriol 49:595-600, 1999.
24. Wade WG, Slayne MA and Aldred MJ. Comparison of identification methods for oral asaccharolytic Eubacterium species. J Med Microbiol 33:239-242, 1990.
25. Wade WG. The role of Eubacterium species in periodontal disease and other oral infections. Microb Ecol Health Dis 9:367-370, 1997.
26. Weisburg WG, Barns SM, Pelletier DA and Lane DJ. 16S rDNA amplification for phylogenetic study. J Bacteriol 173:697-703, 1991.