THE STABILITY OF SOME STOCHASTIC PROCESSES

H. BESSAIH, R. KAPICA, AND T. SZAREK

Abstract. We formulate and prove a new criterion for stability of e–processes. It says that any e–process which is averagely bounded and concentrating is asymptotically stable. In the second part, we show how this general result applies to some shell models (the Goy and the Sabra model). Indeed, we manage to prove that the processes corresponding to these models satisfy the e–process property. They are also averagely bounded and concentrating. Consequently, their stability follows.

1. Introduction

The paper is aimed at formulating and proving a new criterion for asymptotic stability of Markov processes. We are concerned with processes satisfying the so-called e–property (see [16, 18]). The e–property is a generalization of nonexpansiveness and it allows us to overcome some restrictiveness of the strong Feller property when applied to some SPDE’s (see for instance [15]). Recall that a process is called nonexpansive if the Markov semi-group (acting on measures) corresponding to the process is nonexpansive with respect to the Wasserstein metric. A. Lasota and J. Yorke (see [19]) found a very elegant and concise condition assuring the existence and uniqueness of an invariant measure for nonexpansive Markov chains. It says that the considered chain is concentrating at some point, i.e. the chain remains in arbitrary small neighborhoods of some fixed point with positive probability independent of an initial point. The proof based on the lower bound technique was developed in [19, 17]. The result mentioned above was proved in locally compact spaces, subsequently the proof was also given in Polish spaces [24] and finally the result was extended to Markov processes [26]. Here, we prove that if a Markov process is averagely bounded and with positive probability enters into any neighborhood of a fixed point, then this process is asymptotically stable. In particular, it admits a unique invariant measure.

We strongly believe that the criterion proved in the first part of the paper may be useful in the theory of SPDE’s in particular with Lévy noise. Here, it is applied to some stochastic shell models of turbulence, the GOY and Sabra model. These are very popular examples of simplified phenomenological models of turbulence. Although they are not based on conservations laws, they capture some essential statistical properties and features

Date: July 27, 2011.

2000 Mathematics Subject Classification. 60J25, 60H15 (primary), 76N10 (secondary).

Key words and phrases. Ergodicity of Markov families, invariant measures, stochastic evolution equations, Shell models of turbulence.

Tomasz Szarek has been supported by Polish Ministry of Science and Higher Education Grants N N201 419139.
of turbulent flows, like the energy and the enstrophy cascade and the power law decay of the structure functions in some range of wave numbers, the inertial range. We refer the reader to \cite{27,11,12} and the references therein and to \cite{6,9} and \cite{4} for some rigorous results. We are interested in a noise where only finitely many modes are nonzero and then we prove the e-process property. It is possible that the similar results may be obtained using coupling methods (see for instance \cite{13,16,3}). However we provide this application for its simplicity. Indeed, the proof of the e-property makes use of the Malliavin calculus developed in \cite{14}. Boundedness and concentrating property, in turn, easily follow from standard estimates for shell models. Their proofs are rather straightforward. The main result of this part of our paper answers to the conjecture posed by Barbato et al. (see \cite{4}) who anticipated that in the case when the number of modes to which we add the noise is large enough, it would be possible to prove the uniqueness of an invariant measure.

The paper is organized as follows. In section 2, we introduce the concepts of e-property, averagely bounded and concentrating at a point. We also prove (Proposition 1) the main result about asymptotic stability for Markov processes. In Section 3, we introduce the GOY and Sabra models and give general results about their well posedness. In Section 4, we apply the results of Section 2 to the shell models and prove the e-property, the average boundedness and the concentrating property and state our main result for the uniqueness of the invariant measure for the stochastic shell model with a degenerate noise.

2. Criterion on Stability

Let \((X, \rho)\) be a Polish space. By \(B_b(X)\) we denote the space of all bounded Borel-measurable functions equipped with the supremum norm. Let \((P_t)_{t \geq 0}\) be the Markovian semigroup defined on \(B_b(X)\). For each \(t \geq 0\) we have \(P_t 1_X = 1_X\) and \(P_t \psi \geq 0\) if \(\psi \geq 0\). Throughout this paper we shall assume that the semigroup is Feller, i.e. \(P_t (C_b(X)) \subset C_b(X)\) for all \(t > 0\). Here and in the sequel \(C_b(X)\) is the subspace of all bounded continuous functions with the supremum norm \(\| \cdot \|_\infty\). By \(L_b(X)\) we will denote the subspace of all bounded Lipschitz functions. We shall also assume that \((P_t)_{t \geq 0}\) is stochastically continuous, which implies that \(\lim_{t \rightarrow 0^+} P_t \psi(x) = \psi(x)\) for all \(x \in X\) and \(\psi \in C_b(X)\).

Let \(\mathcal{M}_1\) stand for the space of all Borel probability measures on \(X\). Denote by \(\mathcal{M}_1^W\), \(W \subset X\), the subspace of all Borel probability measures supported in \(W\), i.e. \(\{x \in X : \mu(B(x,r)) > 0 \text{ for any } r > 0\} \subset W\), where \(B(x,r)\) denotes the ball in \(X\) with center at \(x\) and radius \(r\). For \(\varphi \in B_b(X)\) and \(\mu \in \mathcal{M}_1\) we will use the notation \(\langle \varphi, \mu \rangle = \int_X \varphi(x) \mu(dx)\). Recall that the total variation norm of a finite signed measure \(\mu \in \mathcal{M}_1 - \mathcal{M}_1\) is given by \(\|\mu\|_{TV} = \mu^+(X) + \mu^-(X)\), where \(\mu = \mu^+ - \mu^-\) is the Jordan decomposition of \(\mu\).

We say that \(\mu_* \in \mathcal{M}_1\) is invariant for \((P_t)_{t \geq 0}\) if \(\langle P_t \psi, \mu_* \rangle = \langle \psi, \mu_* \rangle\) for every \(\psi \in B_b(X)\) and \(t \geq 0\). Alternatively, we can say that \(P_t^* \mu_* = \mu_*\) for all \(t \geq 0\), where \((P_t^*)_{t \geq 0}\) denotes the semigroup dual to \((P_t)_{t \geq 0}\), i.e. for a given Borel measure \(\mu\), Borel subset \(A\) of \(X\), and \(t \geq 0\) we set

\[P_t^* \mu(A) := \langle P_t 1_A, \mu \rangle. \]
A semigroup \((P_t)_{t \geq 0}\) is said to be *asymptotically stable* if there exists an invariant measure \(\mu_* \in \mathcal{M}_1\) such that \(P_t^* \mu\) converges weakly to \(\mu_*\) as \(t \to +\infty\) for every \(\mu \in \mathcal{M}_1\). Obviously \(\mu_*\) is unique.

Definition 2.1. We say that a semigroup \((P_t)_{t \geq 0}\) has the e–property if the family of functions \((P_t \psi)_{t \geq 0}\) is equicontinuous at every point \(x\) of \(X\) for any bounded and Lipschitz function \(\psi\), i.e.

\[
\forall \psi \in L_b(X), \; x \in X, \; \varepsilon > 0 \exists \delta > 0 \forall z \in B(x, \delta), \; t \geq 0 : |P_t \psi(x) - P_t \psi(z)| < \varepsilon.
\]

Remark. One can show (see [15]) that to obtain the e–property in the case when \(X\) is a Hilbert space, it is enough to verify the above condition for every function with bounded Fréchet derivative.

Definition 2.2. A semigroup \((P_t)_{t \geq 0}\) is called averagely bounded if for any \(\varepsilon > 0\) and bounded set \(A \subset X\) there is a bounded Borel set \(B \subset X\) such that

\[
\limsup_{T \to \infty} \frac{1}{T} \int_0^T P_s^* \mu(B)\,ds > 1 - \varepsilon \quad \text{for } \mu \in \mathcal{M}_1^A.
\]

Definition 2.3. A semigroup \((P_t)_{t \geq 0}\) is concentrating at \(z\) if for any \(\varepsilon > 0\) and bounded set \(A \subset X\) there exists \(\alpha > 0\) such that for any two measures \(\mu_1, \mu_2 \in \mathcal{M}_1^A\) holds

\[
P_t^* \mu_i(B(z, \varepsilon)) \geq \alpha \quad \text{for } i = 1, 2 \text{ and some } t > 0.
\]

Proposition 1. Let \((P_t)_{t \geq 0}\) be averagely bounded and concentrating at some \(z \in X\). If \((P_t)_{t \geq 0}\) satisfies the e–property, then for any \(\varphi \in L_b(X)\) and \(\mu_1, \mu_2 \in \mathcal{M}_1\) we have

\[
\lim_{t \to \infty} |\langle \varphi, P_t^* \mu_1 \rangle - \langle \varphi, P_t^* \mu_2 \rangle| = 0.
\]

Proof. First observe that to finish the proof it is enough to show that condition (2.1) holds for arbitrary Borel probability measures with bounded support. Indeed, the set of all probability measures with bounded support is dense in the space \((\mathcal{M}_1, \| \cdot \|_{TV})\). Moreover, \(P_t^*, \; t \geq 0\), is nonexpansive with respect to the total variation norm.

Fix \(\varphi \in L_b(X), \; x_0 \in X\) and \(\varepsilon \in (0, 1/2)\). Let \(\mu_1, \mu_2 \in \mathcal{M}_1^{B(x_0, r_0)}\) for some \(r_0 > 0\). Choose \(\delta > 0\) such that

\[
\sup_{t \geq 0} |P_t \varphi(x) - P_t \varphi(y)| < \varepsilon/2
\]

for \(x, y \in B(z, \delta)\), by the e–property.

Since \((P_t)_{t \geq 0}\) is averagely bounded we may find \(R_0 > 0\) such that

\[
\limsup_{T \to \infty} \frac{1}{T} \int_0^T P_s^* \mu(B(x_0, R_0))\,ds > 1 - \varepsilon^2/(4\|\varphi\|_\infty)
\]

for any \(\mu \in \mathcal{M}_1^{B(x_0, r_0)}\). Let \(R > \max\{R_0, r_0\}\) satisfy

\[
\limsup_{T \to \infty} \frac{1}{T} \int_0^T P_s^* \mu(B(x_0, R))\,ds > 3/4
\]
for any $\mu \in \mathcal{M}_1^{B(x_0,R_0)}$. Since $(P_t)_{t \geq 0}$ is concentrating at z we may choose $\alpha > 0$ such that for any $\nu_1, \nu_2 \in \mathcal{M}_1^{B(x_0,R)}$ there exists $t > 0$ and the condition
\begin{equation}
(2.5) \quad P_t^i \nu_i(B(z, \delta)) \geq \alpha \quad \text{for } i = 1, 2
\end{equation}
holds.

Set $\gamma := \alpha \varepsilon /2 > 0$. Let k be the minimal integer such that $4(1 - \gamma)^k \| \varphi \|_{\infty} \leq \varepsilon$.

We will show by induction that for every $l \leq k$, $l \in \mathbb{N}$, there exist $t_1, \ldots, t_l > 0$ and $\nu_1^i, \ldots, \nu_l^i, \mu_1^i \in \mathcal{M}_1$ such that $\nu_j^i \in \mathcal{M}_1^{B(z, \delta)}$ for $j = 1, \ldots, l$ and
\begin{equation}
(2.6) \quad P_{t_1 + \cdots + t_l} \mu = \gamma P_{t_1 + \cdots + t_l} \nu_1^i + \gamma (1 - \gamma) P_{t_2 + \cdots + t_l} \nu_2^i + \cdots + (1 - \gamma)^{l-1} \nu_l^i + (1 - \gamma)^l \mu_l^i \quad \text{for } i = 1, 2.
\end{equation}

Indeed, let $t_1 > 0$ be such that $P_{t_1}^i \nu_i(B(z, \delta)) \geq \alpha > \gamma$. Then there exist $s_i > 0$ for $i = 1, 2$ such that
\begin{equation}
P_{t_1 + \cdots + t_l} \mu \ni (X \setminus B(x_0, R_0)) < \varepsilon^2 / (4 \| \varphi \|_{\infty})
\end{equation}
for $i = 1, 2$, by (2.3). Since $(1 - \gamma)^l > \varepsilon / (4 \| \varphi \|_{\infty})$, from the linearity of P_s^i we obtain that
\begin{equation}
P_{s_i}^i \mu_i^i(B(x_0, R_0)) > \varepsilon \quad \text{for } i = 1, 2.
\end{equation}

Thus we may find two measures $\tilde{\mu}_1^i, \tilde{\mu}_2^i \in \mathcal{M}_1^{B(x_0,R_0)}$ such that
\begin{equation}
(2.8) \quad P_{s_i}^i \mu_i^i \ni \varepsilon \tilde{\mu}_i^i.
\end{equation}

These measures may be defined as restriction of $P_{s_i}^i \mu_i^i$ to $B(x_0, R_0)$ respectively normed (see formula (2.7)). Further, from (2.4) it follows that
\begin{align*}
\limsup_{T \to \infty} \frac{1}{T} \int_0^T \left[P_{s_i}^i \mu_i^i(B(x_0, R_0)) + P_{s_i}^i \mu_i^i(B(x_0, R_0)) \right] ds \\
= \limsup_{T \to \infty} \frac{1}{T} \int_0^T P_s^i \mu_i^i(B(x_0, R_0)) ds > 3/4,
\end{align*}
by the fact that $\tilde{\mu}_1^i /2 + \tilde{\mu}_2^i /2 \in \mathcal{M}_1^{B(x_0,R_0)}$. Consequently, for some $s > 0$ we have
\begin{equation}
P_{s_i}^i \mu_i^i(B(x_0, R_0)) \ni 1/2 \quad \text{and} \quad P_{s_i}^i \mu_i^i(B(x_0, R_0)) \ni 1/2.
\end{equation}
Comparing (2.8) and the above we obtain
\[P_{s+s_1+s_2}^i \geq (\varepsilon/2)\mu_{i+1} \]
for some \(\mu_{i+1} \in M_1^{B(z_0,R)} \), \(i = 1, 2 \), by argument similar to that in (2.8). Using it once again and taking into consideration (2.5) we obtain that there exists \(\varepsilon > 0 \) such that
\[P_{s+s_1+s_2}^i \geq (\alpha\varepsilon/2)\nu_{i+1} = \gamma\nu_{i+1} \]
for some \(\nu_{i+1} \in M_1^{B(z,\delta)} \) for \(i = 1, 2 \). Therefore, setting \(t_{i+1} = t + s + s_1 + s_2 \) we obtain
\[P_{t+s+s_1+s_2}^i \geq \gamma P_{t+s+s_1+s_2}^i + \gamma(1-\gamma)P_{t+s+s_1+s_2}^i + 1 \]
\[+ \cdots + \gamma(1-\gamma)^{i-1}P_{t+s+s_1+s_2}^i + \gamma(1-\gamma)^i\nu_{i+1} + (1-\gamma)^{i+1}\mu_{i+1}, \]
where
\[\mu_{i+1} = (1-\gamma)^{-1}(P_{t+s+s_1+s_2}^i - \gamma\nu_{i+1}) \quad \text{for} \ i = 1, 2. \]
This completes the proof of condition (2.6). In turn, this and (2.2) give for \(t \geq t_1 + \cdots + t_k \)
\[|\langle \varphi, P_t^i \mu_1 \rangle - \langle \varphi, P_t^i \mu_2 \rangle| = |\langle P_{t-(t_1+\cdots+t_k)} \varphi, P_{t_1+\cdots+t_k}^i \mu_1 \rangle - \langle P_{t-(t_1+\cdots+t_k)} \varphi, P_{t_1+\cdots+t_k}^i \mu_2 \rangle| \]
\[\leq \gamma |\langle P_{t-(t_1+\cdots+t_k)} \varphi, \nu_i^1 - \nu_i^2 \rangle| + \gamma(1-\gamma) |\langle P_{t-(t_1+\cdots+t_k)} \varphi, \nu_i^2 - \nu_i^2 \rangle| + \cdots \]
\[+ \gamma(1-\gamma)^{k-1} |\langle P_{t-(t_1+\cdots+t_k)} \varphi, \nu_i^k - \nu_i^k \rangle| + 2(1-\gamma)^k \|\varphi\|_\infty \]
\[\leq (\gamma + (1-\gamma) + \cdots + (1-\gamma)^{k-1}) \sup_{t \geq 0, x,y \in B(z,\delta)} |P_t \varphi(x) - P_t \varphi(y)| \]
\[+ \varepsilon/2 \leq \varepsilon/2 + \varepsilon/2 = \varepsilon. \]
Since \(\varepsilon > 0 \) was arbitrary, the proof is complete. \(\square \)

Proposition 2. Assume that there exists \(z \in X \) such that for any \(\varepsilon > 0 \)
\[(2.9) \quad \limsup_{T \to \infty} \sup_{\mu \in M_1} \frac{1}{T} \int_0^T P_s^\mu(B(z,\varepsilon))ds > 0. \]
If \((P_t)_{t \geq 0} \) satisfies the \(e \)-property, then it admits an invariant measure.

Proof. Assume, contrary to our claim, that \((P_t)_{t \geq 0} \) does not possess any invariant measure. From Step I of Theorem 3.1 in [18] it follows that then there exists an \(\varepsilon > 0 \), a sequence of compact sets \((K_i)_{i \geq 1} \), and an increasing sequence of positive reals \((q_i)_{i \geq 1}, q_i \to \infty \), satisfying
\[P_{q_i}^\varepsilon \delta_K(K_i) \geq \varepsilon \quad \text{for} \ i \in \mathbb{N} \]
and
\[\min \{ \rho(x,y) : x \in K_i, y \in K_j \} \geq \varepsilon \quad \text{for} \ i \neq j, i, j \in \mathbb{N}. \]
We will show that for every open neighborhood \(U \) of \(z \) and every \(i_0 \in \mathbb{N} \) there exists \(y \in U \) and \(i \geq i_0, i \in \mathbb{N} \), such that
\[P_{q_i}^\varepsilon \delta_y \left(K_{i\varepsilon/3}^{\varepsilon/3}\right) < \varepsilon/2, \]
where \(K_{i\varepsilon/3}^{\varepsilon/3} = \{ y \in X : \inf_{v \in K_i} \rho(y,v) < \varepsilon/3 \}. \)
On the contrary, suppose that there exists an open neighbourhood U of z and $i_0 \in \mathbb{N}$ such that

\begin{equation}
\inf \left\{ P_{q_i}^* \delta_y \left(K_i^{\varepsilon/3} \right) : y \in U, i \geq i_0 \right\} \geq \varepsilon / 2. \tag{2.10} \end{equation}

Clearly

\begin{equation}
\limsup_{T \to \infty} \sup_{\mu \in \mathcal{M}_1} \frac{1}{T} \int_0^T P_s^* \mu(U) ds > \alpha
\end{equation}

for some $\alpha > 0$. Further, let $N \in \mathbb{N}$ satisfy $(N - i_0 + 1)\alpha \varepsilon > 2$. Choose $\gamma \in (0, \alpha \varepsilon / 2)$ such that

\[(N - i_0 + 1)(\alpha \varepsilon - 2\gamma) > 2. \]

It easily follows that there exists $T_0 > 0$ such that for any $\mu \in \mathcal{M}_1$ and $T \geq T_0$ we have

\[\max_{i \leq N} \left| \frac{1}{T} \int_0^T P_s^* \mu ds - \frac{1}{T} \int_0^T P_{s+q_i}^* \mu ds \right|_{TV} < \gamma. \]

Choose $T \geq T_0$ and $\mu \in \mathcal{M}_1$ such that

\begin{equation}
\frac{1}{T} \int_0^T P_s^* \mu(U) ds \geq \alpha, \tag{2.12} \end{equation}

by (2.11). From (2.10) and the Markov property it follows that

\[P_{s+q_i}^* \left(K_i^{\varepsilon/3} \right) = \int_X P_{q_i}^* \delta_y \left(K_i^{\varepsilon/3} \right) P_s^* (dy) \geq \int_U P_{q_i}^* \delta_y \left(K_i^{\varepsilon/3} \right) P_s^* (dy) \geq \frac{\varepsilon}{2} P_s^* \mu(U) \]

for $i \geq i_0$ and $s \geq 0$. Consequently, we have for $i_0 \leq i \leq N$

\begin{align*}
\frac{1}{T} \int_0^T P_s^* \mu \left(K_i^{\varepsilon/3} \right) ds & \geq \frac{1}{T} \int_0^T P_{s+q_i}^* \left(K_i^{\varepsilon/3} \right) ds - \gamma \\
& \geq \frac{\varepsilon}{2} \frac{1}{T} \int_0^T P_s^* \mu(U) ds - \gamma \geq \frac{\varepsilon}{2} \alpha - \gamma,
\end{align*}

by (2.12). From this and the fact that $K_i^{\varepsilon/3} \cap K_j^{\varepsilon/3} = \emptyset$ for $i \neq j$ we obtain

\begin{align*}
\frac{1}{T} \int_0^T P_s^* \mu \left(\bigcup_{i=i_0}^N K_i^{\varepsilon/3} \right) ds & = \sum_{i=i_0}^N \frac{1}{T} \int_0^T P_s^* \mu \left(K_i^{\varepsilon/3} \right) ds \\
& \geq (N - i_0 + 1)(\alpha \varepsilon - 2\gamma)/2 > 1,
\end{align*}

which is impossible.

Now analogously as in the proof of Theorem 3.1 in [18], Step III, we define a sequence of Lipschitzian functions $(f_n)_{n \geq 1}$, a sequence of points $(y_n)_{n \geq 1}$, $y_n \to z$ as $n \to \infty$, two increasing sequences of integers $(i_n)_{n \geq 1}$, $(k_n)_{n \geq 1}$, $i_n < k_n < i_{n+1}$ for $n \in \mathbb{N}$, and a sequence of reals $(p_n)_{n \geq 1}$ such that

\begin{equation}
f_n |_{K_{i_n}} = 1, \quad 0 \leq f_n \leq 1_{K_{i_n}^{\varepsilon/3}}, \quad \text{Lip } f_n \leq 3/\varepsilon, \tag{2.13}
\end{equation}
THE STABILITY OF SOME STOCHASTIC PROCESSES

\(\left| P_{p_n} \left(\sum_{i=1}^{n} f_i \right)(z) - P_{p_n} \left(\sum_{i=1}^{n} f_i \right)(y_n) \right| > \varepsilon \frac{4}{3}, \)

\(P^*_p \delta_u \left(\bigcup_{i=k_n} \mathcal{K}_{i/3}^{\varepsilon} \right) < \varepsilon \frac{16}{10} \) for \(u \in \{z, y_n\} \) for every \(n \in \mathbb{N} \).

From (2.13)-(2.15) it follows (see the proof of Theorem 3.1 in [18], Step III, once again) that

\(\left| P_{p_n} f(z) - P_{p_n} f(y_n) \right| > \varepsilon \) for \(n \in \mathbb{N} \) and \(f := \sum_{n=1}^{\infty} f_n \in L_b(X) \). Since \(y_n \rightarrow z \) as \(n \rightarrow \infty \), this contradicts the assumption that the family \(\{P_t f : t \geq 0\} \) is equicontinuous in \(z \). The proof is complete. □

Theorem 1. Let \((P_t)_{t \geq 0}\) be averagely bounded and concentrating at some \(z \in X \). If \((P_t)_{t \geq 0}\) satisfies the \(e \)-property, then it is asymptotically stable.

Proof. Fix \(x \in X \). Since \((P_t)_{t \geq 0}\) is averagely bounded there is \(R > 0 \) such that

\[\limsup_{T \to \infty} \frac{1}{T} \int_0^T P^*_s \delta_x(B(x, R))ds > \frac{1}{2}. \]

Let \((T_n)_{n \geq 1}\) be an increasing sequence of reals such that \(T_n \to \infty \) as \(n \to \infty \) and

\[\frac{1}{T_n} \int_0^{T_n} P^*_s \delta_x(B(x, R))ds > \frac{1}{2} \quad \text{for } n \in \mathbb{N}. \]

Set \(\mu_n = \frac{1}{T_n} \int_0^{T_n} P^*_s \delta_x ds, n \in \mathbb{N} \), and observe that there are \(\mu_n^R \in \mathcal{M}^{B(x, R)}_1 \) such that

\[\mu_n \geq \frac{1}{2} \mu_n^R \quad \text{for } n \in \mathbb{N}. \]

Indeed, we may define \(\mu_n^R \) by the formula \(\mu_n^R = \mu_n(\cdot \cap B(x, R))/\mu_n(B(x, R)) \) for \(n \in \mathbb{N} \). Further, observe that, by concentrating at \(z \), for fixed \(\varepsilon > 0 \) there is \(\alpha > 0 \) such that we have

\[P^*_s \mu_n^R(B(z, \varepsilon)) \geq \alpha \]

for some \(s_n > 0, n \in \mathbb{N} \). Hence

\[P^*_s \mu_n(B(z, \varepsilon)) \geq \frac{1}{2} \alpha \quad \text{for } n \in \mathbb{N}, \]

by linearity of \((P_t^*)_{t \geq 0}\). Consequently,

\[\frac{1}{T_n} \int_0^{T_n} P^*_s(P^*_s \delta_x)(B(z, \varepsilon))ds \geq \frac{1}{2} \alpha \quad \text{for } n \in \mathbb{N}, \]
and condition (2.9) in Proposition 2 is satisfied. Now Proposition 2 implies the existence of an invariant measure. Further, from Proposition 1 it follows that for any \(f \in L_b(X) \) and \(\mu \in M_1 \)

\[
\langle \varphi, P_t^* \mu \rangle \to \langle \varphi, \mu \rangle
\]
as \(t \) tends to \(+\infty\). Application of the Alexandrov theorem finishes the proof (see [2]). \(\square \)

3. The models

3.1. GOY and Sabra shell models and functional setting. Let \(u = (u_{-1}, u_0, u_1, \ldots) \) be an infinite sequence of complex valued functions on \([0, \infty)\) satisfying the following equations for \(n = 1, 2, \ldots \)

\[
du_n(t) + \nu k_n^2 \nu_n(t) dt + [B(u, u)]_n dt = \sigma_n dw_n
\]

with the initial conditions

\[
u_{-1}(t) = u_0(t) = 0 \quad \text{and} \quad u_n(0) = \xi_n.
\]

Here \(k_n = k_0 2^n \), \(k_0 > 1 \) and \(\nu > 0 \). Moreover \((w_n(t))_{n \geq 1} \) denotes a sequence of independent Brownian motions on some probability space \((\Omega, \mathcal{F}, \mathbb{P})\). It is assumed that \(\sigma_n \in \mathbb{C} \) and there is \(n_0 \in \mathbb{N} \) such that \(\sigma_n = 0 \) for \(n \geq n_0 \). Further \(B \) is a bilinear operator which will be defined later on.

Let \(H \) be the set of all sequences \(u = (u_1, u_2, \ldots) \) of complex numbers such that \(\sum_n |u_n|^2 < \infty \). We consider \(H \) as a real Hilbert space endowed with the inner product \(\langle \cdot, \cdot \rangle \) and the norm \(|\cdot| \) of the form

\[
(u, v) = \text{Re} \sum_{n \geq 1} u_n v_n^*, \quad |u|^2 = \sum_{n \geq 1} |u_n|^2,
\]

where \(v_n^* \) denotes the complex conjugate of \(v_n \). The space \(H \) is separable. Let \(A : D(A) \subset H \to H \) be the non-bounded linear operator defined by

\[
(Au)_n = k_n^2 u_n, \quad n = 1, 2, \ldots, \quad D(A) = \left\{ u \in H : \sum_{n \geq 1} k_n^4 |u_n|^2 < \infty \right\}.
\]

The operator \(A \) is clearly self-adjoint, strictly positive definite since \((Au, u) \geq k_0^2 |u|^2 \) for \(u \in D(A) \). For any \(\alpha > 0 \), set

\[
\mathcal{H}_\alpha = D(A^\alpha) = \left\{ u \in H : \sum_{n \geq 1} k_n^{4\alpha} |u_n|^2 < +\infty \right\}, \quad \|u\|_{\alpha}^2 = \sum_{n \geq 1} k_n^{4\alpha} |u_n|^2 \text{ for } u \in \mathcal{H}_\alpha.
\]

Obviously \(\mathcal{H}_0 = H \). Define

\[
V := D(A^{1/2}) = \left\{ u \in H : \sum_{n \geq 1} k_n^2 |u_n|^2 < +\infty \right\}
\]

and set

\[
\mathcal{H} = \mathcal{H}_1, \quad \|u\|_{H} = \|u\|_{1/2}.
\]
Then V is a Hilbert space for the scalar product $(u, v)_V = \text{Re}(\sum_n k_n^2 u_n v_n^*)$, $u, v \in V$ and the associated norm is denoted by

$$\|u\|^2 = \sum_{n \geq 1} k_n^2 |u_n|^2.$$

The adjoint of V with respect to the H scalar product is $V' = \{(u_n) \in \mathbb{C}^N : \sum_{n \geq 1} k_n^{-2} |u_n|^2 < +\infty\}$ and $V \subset H \subset V'$ is a Gelfand triple. Let $\langle u, v \rangle_{V', V} = \text{Re} \left(\sum_{n \geq 1} u_n v_n^* \right)$ denote the duality between $u \in V'$ and $v \in V$.

Set $u_{-1} = u_0 = 0$, let a, b be real numbers and let $B : H \times V \to H$ (or $B : V \times H \to H$) denote the bilinear operator defined by

$$[B(u, v)]_n = i \left(a k_{n+1} u_{n+1}^* v_{n+2}^* + b k_n u_{n-1}^* v_{n+1}^* - a k_{n-1} u_{n-1}^* v_{n-2}^* - b k_n u_{n-2}^* v_{n-1}^* \right)$$

for $n = 1, 2, \ldots$ in the GOY shell model (see, e.g. [27]) or

$$[B(u, v)]_n = i \left(a k_{n+1} u_{n+1}^* v_{n+2} + b k_n u_{n-1}^* v_{n+1} + a k_{n-1} u_{n-1} v_{n-2} + b k_n u_{n-2} v_{n-1} \right),$$

in the Sabra shell model introduced in [21].

Obviously, there exists $C > 0$ such that

$$|B(u, v)| \leq C \|u\| \|v\| \quad \text{for } u \in V \text{ and } v \in H. \tag{3.3}$$

Note that B can be extended as a bilinear operator from $H \times H$ to V' and that there exists a constant $C > 0$ such that given $u, v \in H$ and $w \in V$ we have

$$|\langle B(u, v), w \rangle_{V', V} + |\langle B(u, w), v \rangle + |\langle B(w, u), v \rangle| \leq C \|u\| \|v\| \|w\|. \tag{3.4}$$

An easy computation proves that for $u, v \in H$ and $w \in V$ (resp. $v, w \in H$ and $u \in V$),

$$\langle B(u, v), w \rangle_{V', V} = -\langle B(u, w), v \rangle \quad \text{(resp. } \langle B(u, v), w \rangle = -\langle B(u, w), v \rangle).$$

Hence $(B(v, u), u) = 0$ for $u \in H$ and $v \in V$. Furthermore, $B : V \times V \to V$ and $B : H \times H \to H$; indeed, for $u, v \in V$ (resp. $u, v \in H$) we have

$$\|B(u, v)\|^2 = \sum_{n \geq 1} k_n^2 |B(u, v)_n|^2 \leq C \|u\|^2 \sup_n k_n^2 |v_n|^2 \leq C \|u\|^2 \|v\|^2,$$

$$|B(u, v)| \leq C \|u\|_H \|v\|_H.$$

3.2. **Well-posedness.** Consider the abstract equation on H of the form

$$du(t) = [-\nu Au(t) + B(u(t), u(t))] dt + QdW(t), \quad t \geq 0 \tag{3.5}$$

with the initial condition $u(0) = \xi \in H$, where $Q = (q_{i,j})_{i,j \in \mathbb{N}}$ is some matrix with $\text{Tr}(QQ^*) < \infty$ and $W(t) = (w_n(t))_{n \geq 1}$ is a cylindrical Wiener noise on some filtered space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})$.

Definition 3.1. A stochastic process $u(t, \omega)$ is a generalized solution in $[0, T]$ of the system (3.5) if

$$u(\cdot, \omega) \in C([0,T]; H) \cap L^2(0,T; \mathcal{H}).$$
for \mathbb{P}-a.e. $\omega \in \Omega$, u is progressively measurable in these topologies and equation (3.5) is satisfied in the integral sense
\[
(u(t), \varphi) + \int_0^t \nu(u(s), A\varphi) ds + \int_0^t (B(u(s), \varphi), u(s)) ds
= (\xi, \varphi) + (QW(t), \varphi)
\]
for all $t \in [0, T]$ and $\varphi \in D(A)$.

Theorem 2. Let us assume that the initial condition ξ is an \mathcal{F}_0-random variable with values in H. Then there exists a unique solution $(u(t))_{t \geq 0}$ to equation (3.5). Moreover, if $\mathbb{E}|\xi|^2 < +\infty$, then
\[
\mathbb{E}|u(t)|^2 + \int_0^t 2\nu \mathbb{E}\|u(s)\|^2 ds = \mathbb{E}|\xi|^2 + \text{Tr}(QQ^*) t
\]
for any $t \geq 0$.

Proof. We will prove well–posedness using a pathwise argument (for similar results see [4] and the references therein). Let us introduce the Ornstein-Uhlenbeck process solution of
\[
\begin{cases}
 d z(t) + \nu Az(t) dt = QdW, \\
 z(0) = 0.
\end{cases}
\]
The above equation has a unique progressively measurable solution such that \mathbb{P}-a.s.
\[
z \in C([0, T]; \mathcal{H})
\]
(for more details see [7]). Set $v = u - z$. Then for \mathbb{P}-a.e. $\omega \in \Omega$
\[
\begin{cases}
 \frac{d}{dt} v(t) + \nu Av(t) - B(v(t) + z(t), v(t) + z(t)) = 0, \\
 v(0) = \xi,
\end{cases}
\]
is a deterministic system. The existence and uniqueness of global weak solutions v follow from the Galerkin approximation procedure and then passing to the limit using the appropriate compactness theorems. We omit the details which can be found in [4] and the references therein. Instead, we present the formal computations which lead to the basic a priori estimates, this is in order to stress the role played by z. Using equation (3.8) and various properties of the nonlinear operator B, we have
\[
\frac{1}{2} \frac{d}{dt} |v(t)|^2 + \nu \|v(t)\|^2 \leq \|(B(v(t) + z(t), z(t)), v(t))\|
\leq C\|v(t)\|\|v(t) + z(t)\|z(t)|
\leq \nu \|v(t)\|^2 + C(\nu) (\|v(t)\|^2 |z(t)|^2 + |z(t)|^4).
\]
Using Gronwall’s Lemma and the fact that $\|z\|_{C([0, T]; \mathcal{H})} \leq C(\omega)$, we have
\[
\sup_{0 \leq t \leq T} |v(t)|^2 \leq C(|\xi|, T, C(\omega)).
\]
Again, using the above inequality in the previous estimate, we obtain that
\[\int_0^T \|v(s)\|^2 ds \leq C(|\xi|,T,C(\omega)). \]

Then, by classical arguments, see \([28]\), \(v \in C([0,T];H) \cap L^2(0,T;D(A^{1/2}))\). Therefore \(u = v + z \in C([0,T];H) \cap L^2(0,T;D(A^{1/4}))\) \(\mathbb{P}\)-a.s.

To finish the proof observe that condition (3.6) follows from Itô’s formula. \(\Box\)

The uniqueness of solutions is established in the following theorem.

Theorem 3. Let \((u^{(1)}(t))_{t \geq 0}, \ (u^{(2)}(t))_{t \geq 0}\), be two continuous adapted solutions of (3.5) in \(H\), with the initial conditions \(u_0^{(1)}\) and \(u_0^{(2)}\) as above. Then there is a constant \(C(\nu) > 0\), depending only on \(\nu\), such that \(\mathbb{P}\)-a.s.

\[|u^*(t) - u^2(t)|^2 \leq e^{C(\nu) \int_0^t |u^1(s)|^2 ds} |u_0^1 - u_0^2|^2 \quad t \geq 0. \]

Proof. Let us put \(u(t) = u^1(t) - u^2(t)\). Then \(u\) is the solution of the following equation

\[du + \nu Au dt - (B(u^1, u^1) - B(u^2, u^2)) dt = 0. \]

Using again the properties of operator \(B\), we obtain

\[\frac{d}{dt} |u|^2 + \nu \|u\|^2 \leq |(B(u, u^1), u)| \leq \frac{\nu}{2} \|u\|^2 + C(\nu)|u|^2 |u^1|^2. \]

Hence, by the Gronwall lemma, we obtain that

\[|u(t)|^2 \leq |u(0)|^2 e^{C(\nu) \int_0^t |u^1(s)|^2 ds}, \]

which finishes the proof. \(\Box\)

4. **Stability of the model**

Let a diagonal matrix \(Q = (q_{i,j})_{i,j \in \mathbb{N}}\) be such that there is \(n_0 \in \mathbb{N}\) and \(q_{n,n} = 0\) for \(n \geq n_0\). Consider the equation on \(H\) of the form

\[du(t) = [-\nu Au(t) + B(u(t), u(t))] dt + QdW(t) \quad t \geq 0, \]

where \((W(t))_{t \geq 0}\) is a certain cylindrical Wiener process on a filtered space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})\).

By Theorem 2 for every \(x \in H\) there is a unique continuous solution \((u^x(t))_{t \geq 0}\) in \(H\), hence the transition semigroup is well defined. From Theorem 3 we obtain that the solution satisfies the Feller property, i.e. for any \(t \geq 0\) if \(x_n \to x\) in \(H\), then \(\mathbb{E}f(u^x(t)) \to \mathbb{E}f(u^x(t))\) for any \(f \in C_b(H)\). Set

\[P_t f(x) = \mathbb{E}f(u^x(t)) \quad \text{for any } f \in C_b(H). \]
Obviously \((P_t)_{t \geq 0}\) is stochastically continuous. First note that \(DP_t f(x)[v]\), the value of the Frechet derivative \(DP_t f(x)\) at \(v \in H\), is equal to \(\mathbb{E} \{ Df(u^x(t))[U(t)] \}\), where \(U(t) := \partial u^x(t)[v]\) and
\[
\partial u^x(t)[v] := \lim_{\eta \downarrow 0} \frac{1}{\eta} (u^{x+\eta v}(t) - u^x(t))
\]
and the limit is in \(L^2(\Omega, \mathcal{F}, \mathbb{P}; H)\) (see [13] also [14]). The process \(U = (U(t))_{t \geq 0}\) satisfies the linear evolution equation
\[
\begin{align*}
\frac{dU(t)}{dt} &= -\nu AU(t) + B(u^x(t), U(t)) + B(U(t), u^x(t)), \\
U(0) &= v.
\end{align*}
\]

Suppose that \(\mathcal{X}\) is a certain Hilbert space and \(\Phi: H \to \mathcal{X}\) a Borel measurable function. Given an \((\mathcal{F}_t)_{t \geq 0}\)-adapted process \(g: [0, \infty) \times \Omega \to H\) satisfying \(\mathbb{E} \int_0^t |g(s)|^2 \, ds < \infty\) for each \(t \geq 0\) we denote by \(D_g \Phi(u^x(t))\) the Malliavin derivative of \(\Phi(u^x(t))\) in the direction of \(g\); that is the \(L^2(\Omega, \mathcal{F}, \mathbb{P}; \mathcal{X})\)-limit, if exists, of
\[
D_g \Phi(u^x(t)) := \lim_{\eta \downarrow 0} \frac{1}{\eta} \left[\Phi(u^x_{tG}(t)) - \Phi(u^x(t)) \right],
\]
where \(u^x_{tG}(t), t \geq 0\), solves the equation
\[
du^x_{tG}(t) = \left[-\nu Au^x_{tG}(t) + B(u^x_{tG}(t), u^x_{tG}(t))\right] dt + Q \left(dW(t) + g(t) dt \right), \quad u^x_{tG}(0) = x.
\]
In particular, one can easily show that when \(\mathcal{X} = H\) and \(\Phi = I\), where \(I\) is the identity operator, the Malliavin derivative of \(u^x(t)\) exists and the process \(D(t) := D_g u^x(t), t \geq 0\), solves the linear equation
\[
\frac{dD(t)}{dt} = -\nu AD(t) + B(u^x(t), D(t)) + B(D(t), u^x(t)) + Qg(t),
\]
\[D(0) = 0.\]

Directly from the definition of the Malliavin derivative we conclude the **chain rule:** suppose that \(\Phi \in C^1_b(H; \mathcal{X})\) then
\[
D_g \Phi(u^x(t)) = D\Phi(u^x(t))[D(t)].
\]
(Here \(C^1_b(H; \mathcal{X})\) denotes the space of all bounded continuous functions \(\Phi : H \to \mathcal{X}\) with continuous and bounded first derivative with the natural norm. In the case when \(\mathcal{X} = \mathbb{R}\) we simply write \(C^1_b(H)\).) In addition, the **integration by parts formula** holds, see Lemma 1.2.1, p. 25 of [22]. Indeed, suppose that \(\Phi \in C^1_b(H)\). Then
\[
\mathbb{E}[D_g \Phi(u^x(t))] = \mathbb{E} \left[\Phi(u^x(t)) \int_0^t (g(s), dW(s)) \right].
\]

Lemma 1. Let \(\eta \in (0, \nu/(2 \max q^2_i)]\). Then we have
\[
\mathbb{E}(\exp(\eta |u^x(t)|^2 + \eta \nu \int_0^t ||u^x(s)||^2 \, ds)) \leq 2 \exp(\eta (\text{Tr} Q^2)t + \eta |x|^2).
\]
Proof. Fix $\eta \in (0, \nu/(2 \max q_{i,i}^2)]$. Let $M(t) = \eta \int_0^t (u^x(s), QdW(s))$ and let $N(t) = M(t) - \eta \nu \int_0^t \|u^x(s)\|^2 ds$. Set $\alpha = \nu \max q_{i,i}^2$. Then we have $\nu \|u^x(s)\|^2 \geq \alpha |Q u^x(s)|^2$. Now observe that $N(t) \leq M(t) - (\alpha/\eta) \langle M \rangle(t)$, where $\langle M \rangle(t)$ denotes the quadratic variation of the continuous L^2–martingale M with the filtration generated by the noise. Hence by a standard variation of the Kolmogorov–Doob martingale inequality (see [23]) we have

$$
P(N(t) \geq K) \leq \exp(-\alpha K/\eta)
$$

and consequently we obtain

$$
P(\exp N(t) \geq \exp K) \leq \exp(-\alpha K/\eta) \leq \exp(-2K)
$$

for any $K > 0$. An easy observation that if some positive random variable, say X, satisfies the condition $\mathbb{P}(X \geq C) \leq C^{-2}$ for every $C > 0$, then $\mathbb{E}X \leq 2$ gives

$$
\mathbb{E}(\exp(\eta|u^x(t)|^2 + \eta \nu \int_0^t \|u^x(s)\|^2 ds - \eta(\text{Tr} Q^2 t - \eta|x|^2)) \leq 2,
$$

by Itô’s formula. This completes the proof. □

The crucial role in our consideration is played by the following lemma. The idea of its proof is taken from [14].

Lemma 2. Let $(P_t)_{t \geq 0}$ correspond to problem (4.4). If Q satisfies the condition:

\begin{equation}
q_{1,1}, \ldots, q_{N,N} \neq 0 \quad \text{for } N_* > \log_2(2C^2 \max q_{i,i}^2/\nu^3 + \text{Tr} Q^2/(2 \max q_{i,i}^2))/2,
\end{equation}

where $C > 0$ is given by (4.3), then for any $f \in C^1_b(H)$ and $R > 0$ there exists a constant $C_0 > 0$ such that

\begin{equation}
\sup_{t \geq 0} \sup_{|x| \leq R} \sup_{|v| \leq 1} |DP_t f(x)[v]| \leq C_0 \|f\|_{C^1_b(H)}.
\end{equation}

Proof. Fix $N_* > \log_2(2C^2 \max q_{i,i}^2/\nu^3 + \text{Tr} Q^2/(2 \max q_{i,i}^2))/2$. The proof will be split into three steps.

Step 1: Let $g : [0, \infty) \times \Omega \to H$ be a measurable function such that $\mathbb{E} \int_0^t |g(s)|^2 ds < \infty$ for any $t \geq 0$. Let $\omega_t(x) := D_g u^x(t)$ and $\rho_t(v, x) := \partial u^x(t)[v] - D_g u^x(t)$. Then,

$$
DP_t f(x)[v] = \mathbb{E} \{ Df(u^x(t))[\omega_t(x)] \} + \mathbb{E} \{ Df(u^x(t))[\rho_t(v, x)] \}
$$

$$
= \mathbb{E} \{ D_g f(u^x(t)) \} + \mathbb{E} \{ Df(u^x(t))[\rho_t(v, x)] \}
$$

$$
\overset{(13)}{=} \mathbb{E} \left\{ f(u^x(t)) \int_0^t (g(s), dW(s)) \right\} + \mathbb{E} \{ Df(u^x(t))[\rho_t(v, x)] \}.
$$

We have

$$
\left| \mathbb{E} \left\{ f(u^x(t)) \int_0^t (g(s), dW(s)) \right\} \right| \leq \|f\|_{L^\infty} \left(\mathbb{E} \int_0^t |g(s)|^2 ds \right)^{1/2}
$$

and

$$
\left| \mathbb{E} \{ Df(u^x(t))[\rho_t(v, x)] \} \right| \leq \|f\|_{C^1_b(H)} \mathbb{E} |\rho_t(v, x)| \leq \|f\|_{C^1_b(H)} (\mathbb{E} |\rho_t(v, x)|^2)^{1/2}.
$$
Step II: Let \(\xi(t) = (\xi_1(t), \xi_2(t), \ldots) : [0, \infty) \to H \) be a solution to the following system:
\[
\frac{d\xi_i(t)}{dt} = -\frac{\xi_i(t)}{2\sqrt{\sum_{i=1}^{N_s} \xi_i^2(t)}} \quad \text{for } i = 1, \ldots, N_s
\]
with \(\xi(0) = v \). We assume also that \(\xi_i(t)/2\sqrt{\sum_{i=1}^{N_s} \xi_i^2(t)} = 0 \) if \(\sum_{i=1}^{N_s} \xi_i^2(t) = 0 \) (see [14]).

Observe that \(\xi_1(t), \xi_2(t), \ldots, \xi_{N_s}(t) = 0 \) for \(t \geq 2 \).

Now we choose \(g : [0, +\infty) \times \Omega \to H \) to be given by the formulae:
\[
g_i(t) = \frac{1}{q_{i,i}} \left(-\nu k_i^2 \xi_i(t) + [B(u^x(t), \xi(t)) + B(\xi(t), u^x(t))]_i - \frac{\xi_i(t)}{2\sqrt{\sum_{i=1}^{N_s} \xi_i^2(t)}} \right)
\]
for \(i = 1, \ldots, N_s \) and \(g_i(t) = 0 \) for \(i \geq N_s + 1 \).

It is easy to see that \(\rho_t = \xi(t) \) for any \(t \geq 0 \). Indeed, observe that
\[
\frac{d\xi(t)}{dt} + Qg(t) = -\nu A\xi(t) + B(u^x(t), \xi(t)) + B(\xi(t), u^x(t))
\]
and
\[
\xi(0) = v.
\]
On the other hand, subtracting equation (2.1) from (2.3) we obtain the equation for \(\rho_t \).

Since \(\rho_t \) and \(\xi(t) \) solve the same equation with the same initial condition \(\rho_0 = \xi(0) = v \), we obtain \(\rho_t = \xi(t) \) for \(t \geq 0 \).

Step III: To show (4.6) it is enough to prove that
\[
\sup_{t \geq 0} \sup_{|x| \leq R} \sup_{|v| \leq 1} \mathbb{E} \int_0^\infty |g(s)|^2 ds < \infty
\]
and
\[
\sup_{t \geq 0} \sup_{|x| \leq R} \sup_{|v| \leq 1} \mathbb{E} |\xi(t)|^2 < \infty.
\]

We know that
\[
\sum_{i=1}^{N_s} |\xi_i(t)|^2 \leq |v|^2 \leq 1 \quad \text{for } t \geq 0.
\]
In particular, \(\xi_i(t) = 0 \) for \(t \geq 2 \) and \(i = 1, \ldots, N_s \). Let \(\zeta(t) = (\xi_1(t), \xi_2(t), \ldots) \). It is easy to see that \(\zeta \) satisfies the inequality
\[
\frac{d|\zeta(t)|^2}{dt} \leq -\nu k_0^2 \zeta(t) + 2C\|u^x(t)\| |\zeta(t)|^2 + 2\tilde{C} \|u^x(t)\| |\zeta(t)|
\]
for \(t \geq 0 \), where \(\tilde{C} \) is some positive constant dependent only on \(C \). Choose \(\varepsilon > 0 \) and \(\gamma \in (0, 1) \) such that
\[
-\nu k_0^2 \zeta(t) + \varepsilon + 2C^2 \max q_{i,i}^2 / \nu^2 + \nu \text{Tr } Q^2 / (2\gamma \max q_{i,i}^2) < 0.
\]

From equation (4.7) we derive
\[
\frac{d|\zeta(t)|^2}{dt} \leq (-\nu k_0^2 + 2C \|u^x(t)\| + \varepsilon)|\zeta(t)|^2 + C(\varepsilon)\|u^x(t)\|^2
\]
and using Gronwall’s lemma we obtain
\[
|\zeta(t)|^2 \leq \left(|v|^2 + C(\varepsilon) \int_0^t \|u^x(s)\|^2 ds \right) e^{\left(-\nu k_{N_*}^2 + \varepsilon\right) t + 2C \int_0^t \|u^\varepsilon(s)\| ds} \\
\leq e^{-\nu k_{N_*}^2 + \varepsilon} t \left[1 + C(\varepsilon) \int_0^t \|u^x(s)\|^2 ds \right] e^{2C \int_0^t \|u^\varepsilon(s)\| ds}.
\]

Hence we obtain that there exist constant \(A > 0 \) (independent of \(t \geq 0, v \in B(0, 1) \) and \(x \in B(0, R) \)) such that
\[
|\zeta(t)|^2 \leq A \exp(\gamma(-\nu k_{N_*}^2 + \varepsilon + 2C^2 \max q_2^2 / \nu^2) t) \exp\left(\nu / (2 \max q_2^2) \int_0^t \|u^x(s)\|^2 ds \right)
\]
for all \(t \geq 0 \), by the fact that \(-\nu k_{N_*}^2 + \varepsilon + 2C^2 \max q_2^2 / \nu^2 < 0\). Thus
\[
\sup_{|x| \leq R, |v| \leq 1, t \geq 0} E|\zeta(t)|^2 \\
\leq A \exp(\gamma(-\nu k_{N_*}^2 + \varepsilon + 2C^2 \max q_2^2 / \nu^2) t) E \left(\exp\left(\nu / (2 \max q_2^2) \int_0^t \|u^x(s)\|^2 ds \right) \right).
\]

Using Lemma 1 we obtain
\[
\sup_{t \geq 0, |x| \leq R, |v| \leq 1} E|\zeta(t)|^2 \leq \tilde{A} \exp(\gamma(-\nu k_{N_*}^2 + \varepsilon + 2C^2 \max q_2^2 / \nu^2 + \nu / (2 \gamma \max q_2^2) \text{Tr } Q^2) t)
\]
for some \(\tilde{A} > 0 \). On the other hand, by the definition of \(N_*, k_n \) and the choice of \(\varepsilon, \gamma \) we have
\[
-\nu k_{N_*}^2 + \varepsilon + 2C^2 \max q_2^2 / \nu^2 + \nu / (2 \gamma \max q_2^2) \text{Tr } Q^2 < 0.
\]

Now we must evaluate
\[
E \int_0^t |g(s)|^2 ds \leq 2 \sup_{0 \leq s \leq 2} E|g(s)|^2 + E \int_2^t |g(s)|^2 ds.
\]

The first term on the right side of the above inequality is bounded uniformly in \(|x| \leq R \)
and \(|v| \leq 1 \). Further, for \(s \geq 2 \) we have
\[
|g(s)| \leq \tilde{C} \|u^x(s)\| |\zeta(s)|
\]
and

\[
\mathbb{E} \int_2^t |g(s)|^2 ds \leq \tilde{C}^2 \mathbb{E} \int_2^\infty \|u^x(s)\|^2 |\zeta(s)|^2 ds \\
\leq \hat{C} \mathbb{E} \left[\int_2^\infty \|u^x(s)\|^2 \exp(\gamma(-\nu k^2_{N_*} + \varepsilon + 2C^2 \max q_{i,i}^2/\nu^2) s) \times \exp(\nu/(2 \max q_{i,i}^2)) \int_0^s \|u^x(r)\|^2 dr ds \right] \\
\leq \hat{C} \mathbb{E} \left[\int_2^\infty \exp(\gamma(-\nu k^2_{N_*} + \varepsilon + 2C^2 \max q_{i,i}^2/\nu^2) s) \times \exp(\nu/(2 \max q_{i,i}^2)|u^x(s)|^2 + \nu/(2 \max q_{i,i}^2) \int_0^s \|u^x(r)\|^2 dr ds \right] \\
\leq \tilde{C} \int_2^\infty \exp(\gamma(-\nu k^2_{N_*} + \varepsilon + 2C^2 \max q_{i,i}^2/\nu^2) s) \times \mathbb{E} \exp(\nu/(2 \max q_{i,i}^2)|u^x(s)|^2 + \nu/(2 \max q_{i,i}^2) \int_0^s \|u^x(r)\|^2 dr ds \right] \] \\
\leq C' \int_2^\infty \exp(\gamma(-\nu k^2_{N_*} + \varepsilon + 2C^2 \max q_{i,i}^2/\nu^2 + \nu \text{ Tr } Q^2/(2\gamma \max q_{i,i}^2)) s) ds,
\]

for any \(x \in B(0, R) \), where the constant \(C' \) depends only on \(R \). Using again the assumption on \(N_* \) we obtain

\[
\sup_{|x| \leq R, |v| \leq 1} \mathbb{E} \int_2^\infty |g(s)|^2 ds < \infty.
\]

This completes the proof. \(\square \)

Lemma 3. (Average boundedness) Let \((P_t)_{t \geq 0}\) correspond to problem (3.2). Then \((P_t)_{t \geq 0}\) is averagely bounded.

Proof. Fix an \(\varepsilon > 0 \) and let \(r > 0 \) be given. If \(x \in B(0, r) \), then

\[
\frac{1}{T} \int_0^T P_s^x \delta_x(H \setminus B(0, R)) ds = \frac{1}{T} \int_0^T \mathbb{P}(|u^x(s)| > R) ds \leq \frac{1}{T} \int_0^T \mathbb{P}(\|u^x(s)\| > R) ds \\
= \frac{1}{T} \int_0^T \mathbb{P}(\|u^x(s)\|^2 > R^2) ds \leq \frac{1}{T} \int_0^T \mathbb{E}[\|u^x(s)\|^2]/R^2 ds \\
= \frac{1}{\nu R^2} \frac{1}{T} \int_0^T \nu \mathbb{E}[\|u^x(s)\|^2] ds \leq \frac{1}{\nu R^2}(\text{Tr } Q^2 + |x|^2/T) \leq \frac{1}{\nu R^2}(\text{Tr } Q^2 + r^2/T)
\]

for arbitrary \(R > 0 \), by (3.6). Hence there is \(R_0 > 0 \) such that

\[
\liminf_{T \to +\infty} \frac{1}{T} \int_0^T P_s^x \delta_x(B(0, R_0)) ds > 1 - \varepsilon.
\]
On the other hand, by Fatou’s lemma we have
\[
\liminf_{T \to +\infty} \frac{1}{T} \int_0^T P_s^* \mu(B(0, R_0)) ds \geq \int_H \left(\liminf_{T \to +\infty} \frac{1}{T} \int_0^T \overline{P}_s^* \delta_x(B(0, R_0)) ds \right) \mu(dx)
\]
\[
\geq \int_H (1 - \varepsilon) \mu(dx) = 1 - \varepsilon
\]
for any \(\mu \in \mathcal{M}_1^{B(0,r)} \). The proof is complete. \(\square \)

Lemma 4. (Concentrating at 0) Let \((P_t)_{t \geq 0}\) correspond to problem \((3.5)\). Then \((P_t)_{t \geq 0}\) is concentrating at 0.

Proof. Consider first the deterministic equation
\[
dv(t) = [-\nu v(t) + B(v(t), v(t))] dt
\]
with the initial condition \(v(0) = x\). Then
\[
\frac{1}{2} \frac{d|v(t)|^2}{dt} \leq -\nu k_0 |v(t)|^2
\]
and consequently
\[
|v(t)|^2 \rightarrow 0 \quad \text{as} \ t \rightarrow +\infty
\]
uniformly on bounded sets. Further, fix \(\varepsilon > 0\) and \(r > 0\). Let \(t_0 > 0\) be such that \(v(t_0) \in B(0, \varepsilon/2)\) for all \(x \in B(0, r)\). We may show (see Theorem 8 in [4]) that the process corresponding to the considered model is stochastically stable (see also [15]), i.e. there exists \(\eta > 0\) and the set \(F_\eta = \{\omega \in \Omega : \sup_{0 \leq t \leq t_0} |QW(t)(\omega)| \leq \eta\}\) such that
\[
|u(t_0)(\omega) - v(t_0)| \leq \varepsilon/2 \quad \text{for any} \ \omega \in F_\eta.
\]
Since the process is degenerate, we have \(\alpha := \mathbb{P}(F_\eta) > 0\). Consequently, we obtain
\[
P_{t_0}^* \delta_x(B(0, \varepsilon)) \geq \mathbb{P}(\{\omega \in \Omega : u(t_0)(\omega) \in B(0, \varepsilon)\}) \geq \mathbb{P}(F_\eta) = \alpha
\]
for arbitrary \(x \in B(0, r)\). Since
\[
P_{t_0}^* \mu(B(0, \varepsilon)) = \int_H P_{t_0}^* \delta_x(B(0, \varepsilon)) \mu(dx),
\]
we obtain \(P_{t_0}^* \mu(B(0, \varepsilon)) \geq \alpha\) for any \(\mu \in \mathcal{M}_1^{B(0,r)}\). But \(\varepsilon > 0\) and \(r > 0\) were arbitrary and hence the concentrating property follows. \(\square \)

We may formulate the main theorem of this part of our paper.

Theorem 4. The semigroup \((P_t)_{t \geq 0}\) corresponding to problem \((3.5)\) with \(Q\) satisfying condition \((4.5)\) is asymptotically stable. In particular, it admits a unique invariant measure.

Proof. From Lemma 2 it follows that the semigroup \((P_t)_{t \geq 0}\) satisfies the \(\varepsilon\)-property. It is also averagely bounded and concentrating at 0, by Lemmas 3 and 4. Application of Theorem 1 finishes the proof. \(\square \)

Remark: Observe that condition \((4.5)\) implies that the system with not too much noise is stable even when the noise is added to the first mode only.
References

[1] Arad, L., Biferale, L., Celani, A., Procaccia, I., Vergassola, M., *Statistical conservation laws in turbulent transport*, Phy. Rev. Lett., 87 (2001), 164-502.

[2] Billingsley, P., *Convergence of Probability Measures*, John Willey, New York (1968).

[3] Bricmont, J., Kupiainen, A. and Lefevere, R., *Exponential mixing of the 2D stochastic Navier-Stokes dynamics*, Comm. Math. Phys. 230 (1) (2002), 87132.

[4] Barbato, D., Barsanti, M., Bessaih, H. and Flandoli, F., *Some rigorous results on a stochastic Goy model*, Journal of Statistical Physics, 125 (3) (2006), 677-716.

[5] Biferale, L., *Shell models of energy cascade in turbulence*, Annu. Rev. Fluid. Mech., 35 (2003), 441-468.

[6] Constantin, P., Levant, B. and Titi, E. S., *Analytic study of the shell model of turbulence*, Physica D, 219 (2006), 120–141.

[7] Da Prato, G. and Zabczyk, J., *Stochastic equations in infinite dimensions*, Cambridge University Press, Cambridge (1992).

[8] Ferrario, B., *Stochastic Navier-Stokes equations: analysis of the noise to have a unique invariant measure*, Ann. Mat. Pura Appl., 177 (1999), 331-347.

[9] Flandoli, F., *An Introduction to 3D Stochastic Fluid Dynamics*, CIME Lecture Notes (2005).

[10] Flandoli, F. and Maslowski, B., *Ergodicity of the 2-D Navier-Stokes Equation Under Random Perturbations*, Comm. Math. Phys. 171 (95), 119-141.

[11] Frisch, U., *Turbulence*, Cambridge University Press, Cambridge (1995).

[12] Gallavotti, G., *Foundations of Fluid Dynamics*, Texts and Monographs in Physics, Springer-Verlag, Berlin (2002). Translated from Italian.

[13] Hairer, M., *Exponential mixing properties of stochastic PDEs through asymptotic coupling*, Probab. Theory Related Fields 124 (3) (2002), 345380.

[14] Hairer, M. and Mattingly, J., *Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing*, Ann. of Math. 164 (2006), 993–1032.

[15] Komorowski, T., Peszat, S. and Szarek, T., *On ergodicity of some Markov processes*, Ann. of Prob. 38 (4) (2010), 1401-1443.

[16] Kuksin, S. and Shirikyan, A., *Stochastic dissipative PDEs and Gibbs measures*, Comm. Math. Phys. 213 (2) (2000), 291330.

[17] Lasota, A. and Mackey, M.C., *Chaos, fractals, and noise. Stochastic aspects of dynamics*, Springer-Verlag, New York (1994).

[18] Lasota, A. and Szarek, T., *Lower bound technique in the theory of a stochastic differential equation*, J. Differential Equations 231 (2006), 513–533.

[19] Lasota, A. and Yorke, J., *On the existence of invariant measures for piecewise monotonic transformations*, Trans. Amer. Math. Soc. 186 (1973), 481-488.

[20] Lasota, A. and Yorke, J., *Lower bound technique for Markov operators and iterated function systems*, Random Comput. Dynam. 2 (1994), 41-77.

[21] Lvov, V.S., Podivilov, E., Pomyalov, A., Procaccia, I. and Vandembroucq, D., *Improved shell model of turbulence*, Physical Review E 58 (1998), 1811–1822.

[22] Nualart, D., *The Malliavin Calculus and Related Topics*, Springer-Verlag, Berlin, Heidelberg, New York (1995).

[23] Revuz, D. and Yor, M., *Continuous Martingales and Brownian Motion*, Springer-Verlag, Berlin (1994).

[24] Szarek, T., *The stability of Markov operators on Polish spaces*, Studia Math. 143 (2) (2000), 145152.

[25] Szarek, T., *Invariant measures for nonexpensive Markov operators on Polish spaces*, Dissertationes Math. (Rozprawy Mat.) 415 (2003), 62 pp.

[26] Traple, J., *On the asymptotic stability of Markov semigroups*, Bull. Polish Acad. Sci. Math. 44 (2) (1996), 183195.

[27] Ohkitani, K. and Yamada, M., *Temporal intermittency in the energy cascade process and local Lyapunov analysis in fully developed model of turbulence*, Prog. Theor. Phys. 89 (1989), 329–341.
[28] Temam, R., *Navier-Stokes Equations, Theory and Numerical Analysis*, 3rd ed. North-Holland, Amsterdam (1984).

[29] Worm, D., *Semigroups on spaces of measures*, Thomas Stieltjes Institute for Mathematics Ph.D. Thesis, University of Leiden, Leiden (2010).

Department of Mathematics, University of Wyoming, Laramie, Wyoming, U.S.A.
E-mail address: Bessaih@uwyo.edu

Department of Mathematics, University of Silesia, Bankowa 14, 40-007 Katowice, Poland
E-mail address: rkapica@math.us.edu.pl

Institute of Mathematics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland
E-mail address: szarek@intertele.pl