CH$_3$NH$_3$Br solution as a novel platform for the selective fluorescence detection of Pb$^{2+}$ ions

Jun Yan1, Yuchun He1, Yunlin Chen1*, Yongzhe Zhang2* & Hui Yan2

The development of a simple fluorescent sensor for detecting the Pb$^{2+}$ heavy metal is fundamentally important. The CH$_3$NH$_3$PbBr$_3$ perovskite material exhibits excellent photoluminescence properties that are related to Pb$^{2+}$. Based on the effects of Pb$^{2+}$ on the luminescent properties of CH$_3$NH$_3$PbBr$_3$, we design a novel platform for the selective fluorescence detection of Pb$^{2+}$ ions. Herein, we use a CH$_3$NH$_3$Br solution at a high concentration as the fluorescent probe. Incorporation of PbBr$_2$ into the CH$_3$NH$_3$Br solution results in a rapid chemical reaction to form CH$_3$NH$_3$PbBr$_3$. Hence, the nonfluorescent CH$_3$NH$_3$Br material displays a sensitive and selective luminescent response to Pb$^{2+}$ under UV light illumination. Moreover, the reaction between CH$_3$NH$_3$Br and PbBr$_2$ could transform Pb$^{2+}$ into CH$_3$NH$_3$PbBr$_3$, and therefore, CH$_3$NH$_3$Br may also be used to extract Pb$^{2+}$ from liquid waste in recycling applications.

In the past several decades, the control of heavy metal pollution has been the focal point of environmental protection efforts$^{1-8}$. Development of simple and selective sensors is critical for detection of heavy metals. Several methods such as atomic absorption spectrometry (AAS)7, inductively coupled plasma-mass spectrometry (ICP-MS)8, inductively coupled plasma atomic-emission spectroscopy (ICP-AES)9, and electrochemical methods10, and fluorescent techniques11 have been devised to detect heavy metals. Compared with other methods, the fluorescence-based methods display many advantages such as low cost, high sensitivity, rapid detection, and ease of use12. As fluorescent materials, lead halide perovskite CH$_3$NH$_3$PbBr$_3$ (MAPbBr$_3$) and CsPbBr$_3$ show excellent luminescent properties including bright photoluminescence (PL), high PL quantum yields (PLQY), and narrow bandwidth$^{13-15}$. Compared with MAPbBr$_3$, the PL emission peaks of MAPbI$_3$ and MAPbCl$_3$ are red and blue light, respectively, which can’t be excited by a UV lamp. Due to these advantages, the MAPbBr$_3$ and CsPbBr$_3$ have been used in light-emitting diodes (LED)$^{16-22}$ and fluorescence sensors or detectors12,23. Chinnadurai et al.24 reported that fluorescent MAPbBr$_3$ nanoparticles can be used as an excellent sensor for the detection of 2, 4, 6-trinitrophenol (TNP). Liu et al.25 used CsPbBr$_3$ perovskite quantum dots as photoluminescence probe for selective detection of Cu$^{2+}$. Zhang et al.26 encapsulated MAPbBr$_3$ perovskite quantum dots in MOF-5 matrix as a stable fluorescent probe for the detection of Al$^{3+}$, Bi$^{3+}$, Co$^{2+}$, Cu$^{2+}$, Fe$^{3+}$, and Cd$^{2+}$. The detection mechanisms of the perovskite fluorescent sensor is mostly related to luminescence-quenching mechanisms. The introduction of metal ions in perovskite solutions will quench the PL performance of perovskite materials. However, the excellent PL properties of MAPbBr$_3$ and CsPbBr$_3$ are due to the Pb$^{2+}$ ion. The high toxicity of Pb$^{2+}$ is a considerable concern for the future applications of the lead halide perovskite fluorescent probe. In this work, we report on the use of MABr solution for the selective and sensitive detection of Pb$^{2+}$. The MABr solution detects the Pb$^{2+}$ due to the luminescence enhancing effect which is different from the quenching mechanisms of lead halide perovskite fluorescent probes.

Experimental Section

All materials were purchased from Xi’an Polymer Light Technology Corp (China). The MABr solution was prepared by dissolving 0.8 mmol MABr in 1 ml N,N-dimethylformamide (DMF). To detect the Pb$^{2+}$ concentration, different amounts of PbBr$_2$, PbI$_2$ and PbCl$_2$ powders were added into MABr solutions to form the MABr@PbBr$_2$, MABr@PbI$_2$ and MABr@PbCl$_2$ precursor solutions, respectively. After stirring the precursor solutions at room temperature for 30 min, the MABr@PbBr$_2$, MABr@PbI$_2$, and MABr@PbCl$_2$ solutions were transformed into MABr@MAPbBr$_3$, MABr@MAPbBr$_3$-I, and MABr@MAPbBr$_3$-Cl solutions that are transparent liquids under room light. The photoluminescence (PL) emission spectra of the MABr@MAPbBr$_3$, MABr@MAPbBr$_3$-I, and MABr@MAPbBr$_3$-Cl solutions were recorded using a fluorescence spectrophotometer (FLS920). The excitation wavelength was 450 nm, and the emission wavelength was scanned from 470 to 900 nm. The concentration of Pb$^{2+}$ ions was determined by the standard addition method. The results show that the MABr@MAPbBr$_3$ solution has a high detection limit of Pb$^{2+}$ ions. The MABr@MAPbBr$_3$ solution was used to detect Pb$^{2+}$ ions in liquid waste, and the results showed that the MABr@MAPbBr$_3$ solution has a high detection limit of Pb$^{2+}$ ions. The MABr@MAPbBr$_3$ solution was used to detect Pb$^{2+}$ ions in liquid waste, and the results showed that the MABr@MAPbBr$_3$ solution has a high detection limit of Pb$^{2+}$ ions.

1Institute of Applied Micro-Nano Materials, School of Science, Beijing Jiaotong University, Beijing, 100044, People’s Republic of China. 2College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P.R. China. *email: ylchen@bjtu.edu.cn; yzzhang@bjut.edu.cn
and MABr@MAPbBr$_3$-Cl$_x$ solutions were measured by a photoluminescence system in the reflection mode. The time-resolved PL spectra of MABr@MAPbBr$_3$ solution were measured by an FLS980 time-resolved fluorescence spectrometer (Edinburgh Instrument). To analyze the structures of these solutions, MABr@MAPbBr$_3$ solutions were dropped on the glass substrate and then heated at 100 °C for 30 min in order to evaporate the DMF solvents. After the heat treatment, the precipitates of MABr@MAPbBr$_3$ solutions were formed on the substrate. For all of the samples on the substrates, X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements were carried out to analyze the crystal structure and morphology of the precipitate, respectively. Dynamic light scattering measurement (DLS) was conducted to analyze the size distributions of the particles in MABr and MABr@MAPbBr$_3$ solutions.

Results and Discussion

Figure 1 shows the photographs of MABr@MAPbBr$_3$ solutions under illumination by a 365 nm UV lamp in a darkroom. As shown in Fig. 1(a–h), the solutions consisted of 0.8 M MABr and different amounts of PbBr$_2$ (0–2 × 10$^{-1}$ M). All of the solutions were transparent under ambient light. The MABr solution without PbBr$_2$ only reflects the purple color of the UV light under the UV lamp illumination, as shown in Fig. 1(a), indicating that the MABr solution is nonfluorescent under the UV lamp illumination. Introduction of a small amount of PbBr$_2$ to the MABr solution leads to the formation of the MABr@MAPbBr$_3$ solution, and the MABr@MAPbBr$_3$ solution emits very pale yellow color under UV light illumination. As the Pb$^{2+}$ concentration of the MABr@MAPbBr$_3$ solutions increased from 1.6 × 10$^{-3}$ to 2 × 10$^{-1}$ M, the emission colors of these solutions changed quickly from pale yellow to bright green, as shown in Fig. 1(b–h). The dependence of the photoluminescence (PL) of the MABr@MAPbBr$_3$ solutions on Pb$^{2+}$ concentration is displayed in Fig. 2(a). All of the solutions were measured at room temperature with an excitation wavelength of 400 nm. The MABr solution does not show any fluorescence signal and the MABr@MAPbBr$_3$ solutions exhibit a green emission peak centered at 557 nm. However, the green emission peaks of the solutions display a large full-width-at-half-maximum (FWFM). For the MABr@MAPbBr$_3$ solution with 2 × 10$^{-1}$ M Pb$^{2+}$, the FWFM of emission peak is 60 nm, which is larger than that of the MABrPb$_3$ thin film and powder.$^{26–30}$ Hence, a yellow green color emission is observed from the MABr@MAPbBr$_3$ solutions under the 365 nm UV lamp illumination in a darkroom (Fig. 1). The PL intensity of the MABr solution was significantly
increased by the addition of Pb$^{2+}$ ion in a concentration-dependent manner (Pb$^{2+}$ concentration ranging from 0 to 2×10^{-3} M). The influence of MABr concentration on the sensitivity of Pb$^{2+}$ detection was studied (Fig. S1). If the Pb$^{2+}$ concentration is greater than 1×10^{-1} M, then for the same Pb$^{2+}$ concentration, the PL intensity of the 0.8 M MABr solution is nearly the same as that of the 0.4 M MABr solution (Fig. S1). However, upon a further decrease in the Pb$^{2+}$ concentration, the PL intensity of the 0.4 M MABr solution is much smaller that of the 0.8 M MABr solution. Hence, increasing the concentration of MABr will enhance the sensitivity for detection of Pb$^{2+}$ ions. However, if the MABr concentration is larger than 0.8 M, the MABr powder is insoluble in the DMF solution at room temperature. Therefore, we choose the 0.8 M MABr solution as the fluorescent probe for the detection of Pb$^{2+}$ ions.

To clarify the general applicability of MABr for Pb$^{2+}$ detection, we replace the PbBr$_2$ powders with PbI$_2$ and PbCl$_2$ powders to form the MABr@PbI$_2$ and MABr@PbCl$_2$ precursor solutions, respectively. Figure S2 shows the PL emission spectra of MABr@PbI$_2$ and MABr@PbCl$_2$ solutions for different Pb$^{2+}$ concentrations. Compared with MABr solutions, both MABr@PbI$_2$ and MABr@PbCl$_2$ solutions display a green emission peak under UV light illumination. For MABr@PbI$_2$ or MABr@PbCl$_2$, solutions with I$^-$ or Cl$^-$ concentrations increase, the center of the PL emission peak gradually changed. Based on the PL measurement of MABr, MABr@PbBr$_2$, MABr@PbI$_2$ and MABr@PbCl$_2$, solutions, we can get the conclusion that MABr solutions exhibit luminescent response to Pb$^{2+}$ ions. To obtain the quantitative relationship, we plotted the PL intensity of the solutions as a function of Pb$^{2+}$ concentration (Fig. 2(b)). The relationship can be described by the following equation:

$$I/I_0 = A + K[C]$$

where I and I_0 are the PL intensities of the solutions in the presence and absence of Pb$^{2+}$ ions, respectively. A and $K (1/M)$ are the intercept and sensitivity (slope), respectively, and [C] (M) represents the Pb$^{2+}$ concentration. The I/I_0 vs. Pb$^{2+}$ concentration curve can be fitted to $I/I_0 = 1.43 + 0.59 \times (137.00 + 7.22 [C])$, with the correlation coefficient R^2 of 0.98, as shown in Fig. 2(b). The $\Delta(I/I_0)$, 0.59 and 7.22 are the standard error of I/I_0, A and K respectively. It was reported that perovskite fluorescent materials for the selective detection of metal ions or 2, 4, 6-trinitrophenol (TNP) are based on the quenching mechanism and the Stern-Volmer relationship. However, the PL emission intensity of the MABr solution was enhanced with the addition of Pb$^{2+}$, which is different from the quenching mechanism. To evaluate the selective detection ability of the MABr solution for Pb$^{2+}$ ions, the PL response of the MABr solution to different metal ions was explored, as shown in Fig. 3(a). The PL intensity (I) of the MABr solutions (0.8 M) after the addition of different metal ions in the same concentration (2×10^{-3} M), including Pb$^{2+}$, Ga$^{3+}$, Co$^{2+}$, Cu$^{2+}$, Fe$^{3+}$, Mg$^{2+}$, Ni$^{2+}$, Sn$^{2+}$, Sr$^{2+}$, and Zn$^{2+}$, Cs$^{2+}$ were measured. Analysis of the PL intensity ratios I/I_0 (I_0 is the PL intensity of the MABr solution without the metal ions) of the MABr solutions with different ions showed that only Pb$^{2+}$ gave rise to a clear PL effect for the MABr solutions, while other cations exhibit almost no PL behavior for an excitation wavelength of 400 nm or under illumination by a 365 nm UV lamp.

In order to get a better insight into the role of MABr on selective fluorescence detection of Pb$^{2+}$ ions, the effect of interference by other metal ions were studied. Some equimolar mixtures of PbBr$_2$ (0.1 M) along with XBr ($X =$ different metal ions) were added to the MABr solutions. The PL response of the MABr solution to equimolar mixtures of Pb$^{2+}$ with different metal ions is shown in Fig. S3. For transparent solutions (Pb$^{2+}$@Ca$^{2+}$, Pb$^{2+}$@Mg$^{2+}$, Pb$^{2+}$@Sn$^{2+}$, Pb$^{2+}$@Sr$^{2+}$, Pb$^{2+}$@Zn$^{2+}$, Pb$^{2+}$@Cs$^{+}$), the presence of interfering ions has little impact on the luminescent response of the MABr solution to Pb$^{2+}$. For semitransparent solutions Pb$^{2+}$@Co$^{2+}$ and Pb$^{2+}$@Ni$^{2+}$, their PL intensities are greatly lower than that of MABr@PbBr$_2$ solutions. However, compared with MABr, the MABr@PbBr$_2$, MABr@PbI$_2$, and MABr@PbCl$_2$ solutions still exhibit a green PL emission peak. The MABr@PbBr$_2$@CoBr$_2$ solution emits green color under UV light illumination as shown in Fig. S4. Hence, the MABr can be used to selectively detect the Pb$^{2+}$ in the presence of Ca$^{2+}$, Mg$^{2+}$, Sn$^{2+}$, Sr$^{2+}$, Zn$^{2+}$, Co$^{2+}$, Ni$^{2+}$. For opaque solutions Pb$^{2+}$@Ca$^{2+}$ and Pb$^{2+}$@Fe$^{3+}$, the MABr@PbBr$_2$@CoBr$_2$ and MABr@PbBr$_2$@FeBr$_3$ solutions do not show any fluorescence signal. Researchers also reported that Cu$^{2+}$ led to dramatic quenching of the PL of perovskite materials. Therefore, the MABr can detect the Pb$^{2+}$ in Pb$^{2+}$@Ca$^{2+}$ or Pb$^{2+}$@Fe$^{3+}$ solutions.

To explain the significant selective luminescent response of MABr solutions to Pb$^{2+}$, the structure of MABr@ MAPbBr$_3$ solutions with different Pb$^{2+}$ concentrations should be elucidated. For all of the solutions, the DMF

Figure 3. (a) PL response of the MABr solution (0.8 M) to different metal ions. (b) X-ray diffraction patterns of MABr@MAPbBr$_3$ solutions with different Pb$^{2+}$ concentrations.
solvents were evaporated on the glass substrates, and then we obtained MABr@MAPbBr3 films that were analyzed by XRD. Figure 3(b) shows the XRD patterns of these films with different Pb2+ concentrations from top to bottom at room temperature. The XRD patterns of the MABr powder and MABr thin films were measured (Fig. S5). For the MABr solutions without PbBr2 (top spectrum in Fig. 3(b)), all of the diffraction peaks are the characteristic peaks of MABr. As Pb2+ concentration increases, the MABr peaks intensities gradually decrease and new diffraction peaks of MAPbBr3 indicated by squares appear in the XRD patterns presented in Fig. 3(b). The evolution of MAPbBr3 peaks with Pb2+ concentration is shown in Fig. 4(a,b). The XRD results (Fig. 4) show that the two peaks’ intensities gradually increase with increasing Pb2+ concentration, corresponding to the increasing crystalline characteristics of MAPbBr3 with a preferential orientation in the (100) and (200) directions. Our previous study also found that MAPbBr3 thin films prepared with high MABr concentration exhibit partial preferential orientation along the (100) and (200) directions. The (100) and (200) peaks shift toward larger angles with increasing Pb2+ concentration, indicating that the lattice constant of MAPbBr3 is decreasing. Due to the preferential orientation, we calculated the lattice parameters of MAPbBr3 from the (100) and (200) diffraction peaks. For the film with 2 × 10−4 M Pb2+, the lattice constant of MAPbBr3 is 6.10 Å which is larger than the previously reported value. However, our research indicated that when Pb2+ concentration increased to 1 × 10−3 M, the lattice constant of MAPbBr3 was 5.93 Å which is closer to the values reported by other researchers. To further confirm the MAPbBr3 phase in MABr@MAPbBr3 films, we studied the morphology of these films with SEM measurements.

Figure 5 shows the morphologies of the films prepared with MABr@MAPbBr3 solutions with different Pb2+ concentrations. An examination of Fig. 5(a,b) shows that the surface exhibits two different nonuniform aggregation morphologies. The first type of aggregation shows a shapeless morphology which is characteristic of the MABr organic compound. The other kind of aggregation is composed of cubic-shaped crystals, which is the crystalline morphology of MAPbBr3. The SEM results are consistent with the XRD analyses that indicate this film is composed of MABr and MAPbBr3 phases as shown in Figs 3(b) and 4. When the PbBr2 concentration in the precursor solution is reduced, the number of MAPbBr3 crystals formed in the films decreased, as shown in Fig. 5(c,d). For the solution with 1.6 × 10−3 M Pb2+, the morphology of the film displays highly dense MABr aggregation with high coverage and only a small amount of MAPbBr3 crystals are observed on top of the MABr as shown in Fig. 5(e,f). We did not find any phases other than MABr and MAPbBr3 in the XRD patterns and SEM images of the films prepared by evaporating the DMF solvents from the MABr@MAPbBr3 solutions. To further explore the interactions between MABr and PbBr2, the size distributions of the particles formed in MABr and MABr@MAPbBr3 solutions were measured by Dynamic Light Scattering (DLS), as shown in Fig. S6. The high MABr concentration (0.8 M) tends to form a gel-like solution and its hydrodynamic particle diameter is 650.1 nm, indicating the formation of MABr organic aggregates. Adding PbBr3 in MABr solution increases the particles size. With Pb2+ concentration increased to 0.2 M, the diameter of the particles in MABr@MAPbBr3 solutions increased from 650.1 to 783.5 nm. The added PbBr3 might quickly react with Br− and MA+ to generate PbBr6 octahedron inorganic frame and then self-assemble into MAPbBr3 perovskite lattice. Adding PbBr3 in MABr solutions would provide more nucleating sites and growth spaces, resulting in the formation of bigger aggregates in MABr@MAPbBr3 solutions. Hence, addition of a small amount of PbBr3 to a high MABr concentration solution and stirring of this mixture could lead to a rapid chemical reaction to form MAPbBr3.

The significant luminescent response of the MABr solution to Pb2+ arises from the outstanding photoluminescence properties of MAPbBr3. The detection limit is an important indicator of the fluorescence detector performance. As the PbBr3 concentration was reduced to 1.6 × 10−3 M, the PL emission peak and diffraction peaks associated with the MAPbBr3 can no longer be observed in the PL emission spectra (Fig. 2) and XRD patterns (Figs 3(b) and 4), respectively. When the PbBr3 concentration is lower than 1.6 × 10−3 M, only the diffraction peak of MABr could be clearly observed in the XRD pattern. However, the MABr solution with 1.6 × 10−3 M PbBr3 shows a pale yellow color under UV light illumination and we can still find the MAPbBr3 crystals in SEM images.

Figure 4. XRD peaks of MAPbBr3 in MABr@MAPbBr3 solutions with different Pb2+ concentrations (a) (100) and (b) (200) peak.
unlike for the MABr solution without PbBr₂. Therefore, the detection limit of the 0.8 M MABr solution for Pb²⁺ is at least as low as 1.6×10^{-3} M. Compared with other methods whose detection limits for Pb²⁺ are μM, the sensitivity of the MABr is not high. However, the MABr fluorescent sensor also displays many advantages such as low cost, rapid detection and ease of use. For the MABr fluorescent sensor, to selectively detect the Pb²⁺ from other metal ions, we only need a UV lamp equipment which is very cheap and easy to use. Moreover, the high MABr concentration solutions can quickly react with Pb²⁺ to form MAPbBr₃, which can be used to extract Pb²⁺ from liquid waste in recycling applications. Other heavy metal detectors can't extract Pb²⁺ from liquid waste. We also justify the luminescent response of MABr to Pb²⁺ on paper strips, as shown in Fig. S7. The letters “BJTU” were written with PbBr₂ solution (0.1 M) on paper strips. The “BJTU” are invisible on paper strips under ambient light. However, after loading of MABr solutions (0.8 M) on these paper strips, the “BJTU” show bright green emission pattern under UV light illumination.

Based on these results, the fluorescence sensing mechanism can be schematically represented as shown in Fig. 6. To obtain excellent performance in a photovoltaic device, it is necessary to lower the rate of the chemical reaction between MABr and PbBr₂ to form uniform MAPbBr₃ films with good surface coverage. However, for fluorescence sensors or detectors with a short response time, we seek to make MABr react with PbBr₂ to form MAPbBr₃ as quickly as possible. Excess MABr contributes to speeding up the transformation from PbBr₂ to MAPbBr₃. On the other hand, a MABr-rich environment gives rise to MABr residue that encompasses the MAPbBr₃ crystal after the reaction. Thus, the use of excess MABr leads to the formation of a high amount of defects. The recombination lifetimes of the MABr@MAPbBr₃ solution with 2×10^{-1} M Pb²⁺ is only 1.33 ns (Fig. S8). For perovskite materials, the recombination lifetime is related to crystallite dimension, the larger
crystallites (e.g. single crystal) present longer photoluminescence lifetime. However, in our research, the DLS and SEM studies indicate that the MABr@MAPbBr₃ solutions display big aggregates (783.5 nm) which consist of organic aggregates and MAPbBr₃ crystals. Because of the organic aggregates and numerous defects, the MABr@MAPbBr₃ solutions display a short-lived PL lifetime. In fact, the spin-coating method could evaporate some of the used MABr. We used a MABr@MAPbBr₃ solution with 2 × 10⁻¹ M Pb⁺⁺ as the precursor solution and spin-coated it on the glass substrate to obtain the MABr@MAPbBr₃ thin film. The SEM images exhibit that the number of MABr residues of the MABr@MAPbBr₃ thin film prepared by the spin-coating method is smaller than that of the MABr@MAPbBr₃ film prepared by evaporating the DMF solutions (Figs 5(a,b) and S9). For MAPbBr₃ films, a previous study also indicated that the introduction of Cl was conducive to the evaporation of the excess MABr during the spin-coating process. If the MABr in MABr@MAPbBr₃ solutions can be removed completely, we can obtain MAPbBr₃ material with excellent photovoltaic performance. Therefore, the MABr solution not only can be used to detect the Pb⁺⁺ heavy metal but also may extract the Pb⁺⁺ from the liquid waste for reuse.

Conclusion
In summary, our research indicates that MABr can be used as a new platform for selective fluorescence detection of Pb⁺⁺ ions. The incorporation of PbBr₂ into a MABr solution formed MAPbBr₃@MABr solutions that exhibit significant luminescent responses under UV light illumination. The significant color changes of the MABr solutions before and after the addition of PbBr₂ under UV lamp illumination can be observed by the naked eye. The PL intensity of the MABr sensor increases with increasing Pb⁺⁺ concentration, exhibiting a linear relationship. The fluorescence sensing mechanism of MABr for Pb⁺⁺ is due to the excellent PL performance of MAPbBr₃ in MAPbBr₃@MABr solutions. Some MABr in MAPbBr₃@MABr solutions can be evaporated by the spin-coating method, enabling the extraction of Pb⁺⁺ from the liquid waste for recycling use. These findings may contribute to the development of new applications for luminescent perovskite materials.

Data availability
The datasets analysed during the current study are available from the corresponding author on reasonable request.

Received: 10 April 2019; Accepted: 17 October 2019;

References
1. Winnecke, G., Brockhaus, A., Ewers, U., Kramer, U. & Neuf, M. Results from the European multicenter study on lead neurotoxicity in children: implications for risk assessment. Neurotoxicol. Teratol. 12, 553–559 (1990).
2. Wang, S. & Mulligan, C. N. Occurrence of arsenic contamination in Canada: sources, behavior and distribution. Sci. Total Environ. 366, 701–721 (2006).
3. Sorg, T. J., Chen, A. S. C. & Wang, L. Arsenic species in drinking water wells in the USA with high arsenic concentrations. Water Res. 48, 156–169 (2014).
4. Xing, W., Zhao, Q., Scheckel, K. G., Zheng, L. & Li, L. Inhalation bioaccessibility of Cd, Cu, Pb and Zn and speciation of Pb in particulate matter fractions from areas with different pollution characteristics in Henan Province, China. Ecotoxicol. Environ. Saf. 175, 192–200 (2019).
5. Ding, Y. et al. Binding characteristics of heavy metals to humic acid before and after fractionation by ferricyanide. Chemosphere 226, 140–149 (2019).
6. Jin, M. et al. Synergistic effects of Pb and repeated heat pulse on developmental neurotoxicity in zebrafish. Ecotoxicol. Environ. Saf. 172, 460–470 (2019).
7. Shkinev, V. M., Gomolitskii, V. N. & Spivakov, B. Y. Determination of trace heavy metals in waters by atomic-absorption spectroscopy after preconcentration by liquid-phase polymer-based retention. Talanta 36, 861–863 (1989).
8. Sondergaard, J., Asmund, G. & Larsen, M. M. Trace Elements Determination in Seawater by ICP-MS With On-line Pre-concentration on a Chelex 100 Column Using a Standard Instrument Setup. Methodo. 32, 323–330 (2015).
9. Tonguc, O. T., Yilmaz, S., Turkoglu, M. & Dilgin, Y. Determination of heavy metal pollution with environmental physicochemical parameters in waste water of Kocabas Stream (Buga, Canakkale, Turkey) by ICP-AES. Environ. Monit. Assess. 127, 389–397 (2006).
10. Dutta, S., Strack, G. & Kurup, P. Gold nanostar electrodes for heavy metal detection. Sens. Actuators, B 281, 383–391 (2019).
11. Sarkar, S., Chatti, M. & Mahalingam, V. Highly Luminescent Colloidal Colloidal Eu⁺⁺ Doped KZnF₃ Nanoparticles for the Selective and Sensitive Detection of Ca-II Ions. Chem. Eur. J. 20, 3311–3316 (2014).
12. Zhang, D. W., Xu, Y., Liu, Q. L. & Xia, Z. G. Encapsulation of CH₃NH₃PbBr₃ Perovskite Quantum Dots in MOF-5 Microcrystals as a Stable Platform for Temperature and Aqueous Heavy Metal Ion Detection. Inorg. Chem. 48, 4613–4619 (2019).
13. Wang, Q. L., Tao, L. M., Jiang, X. X., Wang, M. K. & Shen, Y. Graphene oxide wrapped CH₃NH₃PbBr₃ perovskite quantum dots (MOF-5) as a high-performance visible light-emitting diode. Small 1504484 (2017).
14. Wang, K. H., Li, L. C., Shellaiah, M. & Sun, K. W. Structural and Photophysical Properties of Methylammonium Lead Tribromide (MAPbBr₃) Single Crystals. Sci. Rep. 7, 13643 (2017).
15. Luo, Y. et al. Direct Observation of Halide Migration and its Effect on the Photoluminescence of Methylammonium Lead Bromide Perovskite Single Crystals. Adv. Mater. 29, 1703451 (2017).
16. Li, X. et al. On the performance of polymer-organometal halide perovskite composite light emitting diodes: the effects of polymer additives. Org. Electron. 52, 350–353 (2018).
17. Tang, X. et al. Ultrathin Core–Shell Structured SiO2 Coated Mn⁺⁺ Doped Perovskite Quantum Dots for Bright White Light-Emitting Diodes. Small 1900484 (2019).
18. Yang, D. et al. Surface Halogen Compensation for Robust Performance Enhancements of CsPbX₃ Perovskite Quantum Dots. Adv. Optical Mater. 1900276 (2019).
19. Zhang, X. et al. Strong Blue Emission from Sb⁺⁺ Doped Super Small CsPbBr₃ Nanocrystals. J. Phys. Chem. Lett. 10, 1750–1756 (2019).
20. Park, M. H. et al. Efficient Perovskite Light-Emitting Diodes Using Poly crystalline Core Shell-Mimicked Nanograins. Adv. Funct. Mater. 1902017 (2019).
21. Wang, Q., Ren, J., Peng, X. F., Ji, X. X. & Yang, X. H. Efficient Sky-Blue Perovskite Light-Emitting Devices Based on Ethy lammonium Bromide Induced Layered Perovskites. ACS Appl. Mater. Interfaces 9, 29891–29896 (2017).
22. Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).
23. Zhang, C. et al. Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption. Nat. Commun. 8, 1138 (2017).
24. Muthu, C., Nagamma, S. R. & Nair, V. C. Luminescent hybrid perovskite nanoparticles as a new platform for selective detection of 2, 4, 6-trinitrophenol. RSC Adv. 4, 55908–55911 (2014).
25. Liu, Y. et al. All–inorganic CsPbBr3 perovskite quantum dots as photoluminescent probe for ultrasensitive Cu2+ detection. J. Mater. Chem. C 6, 4793–4799 (2018).
26. Zhang, M. et al. Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr3−xClx films. Chem. Commun. 50, 11727–11730 (2014).
27. Baikie, T. et al. A combined single crystal neutron/X-ray diffraction and solid-state nuclear magnetic resonance study of the hybrid perovskites CH3NH3PbX3 (X = I, Br and Cl). J. Mater. Chem. A 3, 9298–9307 (2015).
28. Yan, J., Ke, X. H., Chen, Y. L., Zhang, A. & Zhang, B. Effect of modulating the molar ratio of organic to inorganic content on morphology, optical absorption and photoluminescence of perovskite CH3NH3PbBr3−xClx films, Appl. Surf. Sci. 351, 1191–1196 (2015).
29. Yan, J., Zhang, B., Chen, Y. L., Zhang, A. & Ke, X. H. Improving the Photoluminescence Properties of Perovskite CH3NH3PbBr3−xClx Films by Modulating Organic Cation and Chlorine Concentrations. ACS Appl. Mater. Interfaces. 8, 12756–12763 (2016).
30. Zhang, B., Yan, J., Wang, J. & Chen, Y. L. Effect of the modulating of organic content on optical properties of single-crystal perovskite. Opt. Mater. 62, 273–278 (2016).
31. Boaz, H. & Rollefson, G. K. The Quenching of Fluorescence Deviations from the Stern–Volmer Law. J. Am. Chem. Soc. 72, 3435–3443 (1950).
32. Yu, H. et al. The role of chlorine in the formation process of "CH3NH3PbI3−xClx" perovskite. Adv. Funct. Mater. 24, 7102–7108 (2014).
33. Edri, E., Kirmayer, S., Kulbak, M., Hodes, G. & Cahen, D. Chloride Inclusion and Hole Transport Material Doping to Improve Methyl Ammonium Lead Bromide Perovskite-Based High Open-Circuit Voltage Solar Cells. J. Phys. Chem. Lett. 5, 429–433 (2014).
34. Chen, Q. et al. The optoelectronic role of chlorine in CH3NH3PbI3−x(Cl)-based perovskite solar cells. Nat. Commun. 6, 7269 (2015).

Acknowledgements
This work is financially supported by National Natural Science Foundation of China (Nos 51802014, 61875235) and the Fundamental Research Funds for the Central Universities (No. 2019JBM068).

Author contributions
J.Y., Y.C. and Y.Z. designed the experiments. J.Y. and Y.H. carried out all the experiments. H.Y. advised on the overall experiments with critical comments. J.Y. wrote the manuscript and all authors have given approval to the final version of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-52431-y.

Correspondence and requests for materials should be addressed to Y.C. or Y.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2019