Interactions of Candida albicans with host epithelial surfaces

David W. Williams¹*, Rachael P. C. Jordan¹, Xiao-Qing Wei¹, Carlos T. Alves², Matt P. Wise³, Melanie J. Wilson¹ and Michael A. O. Lewis¹

¹Tissue Engineering and Reparative Dentistry, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK; ²IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Braga, Portugal; ³Adult Critical Care, University Hospital of Wales, Cardiff, UK

Candida albicans is an opportunistic, fungal pathogen of humans that frequently causes superficial infections of oral and vaginal mucosal surfaces of debilitated and susceptible individuals. The organism is however, commonly encountered as a commensal in healthy individuals where it is a component of the normal microflora. The key determinant in the type of relationship that Candida has with its host is how it interacts with the epithelial surface it colonises. A delicate balance clearly exists between the potentially damaging effects of Candida virulence factors and the nature of the immune response elicited by the host. Frequently, it is changes in host factors that lead to Candida seemingly changing from a commensal to pathogenic existence. However, given the often reported heterogeneity in morphological and biochemical factors that exist between Candida species and indeed strains of C. albicans, it may also be the fact that colonising strains differ in the way they exploit resources to allow persistence at mucosal surfaces and as a consequence this too may affect the way Candida interacts with epithelial cells. The aim of this review is to provide an overview of some of the possible interactions that may occur between C. albicans and host epithelial surfaces that may in turn dictate whether Candida removal, its commensal persistence or infection follows.

Keywords: oral microbiology; biofilm; virulence factors; pathogenesis

Received: 22 July 2013; Revised: 27 September 2013; Accepted: 28 September 2013; Published: 21 October 2013
carriage rates of 41 and 21% reportedly occurring in type 1 and type 2 diabetic patients, respectively (3). Women who are pregnant also reportedly have a high incidence of vaginal carriage (4), and vaginal candidosis is one of the most common superficial infections in reproductive-age women (5).

Given that *C. albicans* colonises host surfaces at such a high prevalence, infections are unsurprisingly often endogenous (6), occurring when there is an ecological shift in the microbiological community, frequently due to debilitation in the host’s immune system. Receipt of a broad-spectrum antibiotic, a high frequency intake of carbohydrates, hormonal imbalances, and poor nutrition may also be contributory factors. Interestingly, in the case of oral candidosis four clinically distinct forms of infection are recognised (Fig. 1) and these could reflect different forms of interaction between the colonising *Candida* and host epithelium. The four clinically distinct primary forms of oral candidosis are acute erythematous candidosis, pseudomembranous candidosis, chronic erythematous candidosis, and chronic hyperplastic candidosis. Clinical symptoms of acute erythematous candidosis include redness and soreness of the oral mucosa with the tongue most often affected. Pseudomembranous candidosis is most common in infants and immunocompromised people and typically manifests as creamy white plaques or patches on oral tissues that can usually be scraped off. Chronic erythematous candidosis presents as localised erythema in regions of ill-fitting or inadequately cleaned dentures. Chronic hyperplastic candidosis is seen as firmly adhered white patches on the oral mucosa.

To successfully persist within the host environment, either as a commensal or as a pathogen, *Candida* first has to adhere and then colonise host surfaces. These surfaces may take the form of the biomaterials of medical devices, for example, the acrylic of a denture, or the host’s mucosal surfaces.

Adherence of Candida to mucosal surfaces

The process of initial adherence of *Candida* to human epithelial surfaces is complex and multifactorial. Cell surfaces (both *Candida* and epithelial cells) are generally negatively charged, and establishing successful adherence is, in part, dependent on the sum of non-specific factors contributing to the total free energy of interaction. These include attractive Lifshitz–van der Waals forces, hydrophobic interaction, and Brownian movement forces, as well as the repulsive effects of the electrical double layer of cells. Such interactions form the basis of the extended Derjaguin–Landau–Verwey–Overbeek (DLVO) theory (7).

Once the ‘long-distance’ repulsive forces have been overcome, adherence of *Candida* is then mediated by specific molecules, referred to as adhesins, on the fungal cell surface and these interact with specific ligands on the host cell surface (Table 1). Adhesins on the cell surface of

![Fig. 1. Clinically distinct forms of primary oral candidosis. (a) Acute erythematous candidosis; (b) pseudomembranous candidosis; (c) chronic erythematous candidosis; (d) chronic hyperplastic candidosis.](image-url)
(23). In the case of *C. albicans*, Als3 appears to play a key role in adhesion to oral epithelial cells, and it is also related to the extent of subsequent epithelial damage and induction of epithelial cytokines (33).

Hyphal wall protein 1 (Hwp1; encoded for by the *HWP1* gene) is another protein involved in *C. albicans* adhesion to epithelial cells and this protein is perhaps the most widely studied adhesin of *C. albicans* (34). Glutamine residues in the N-terminal domain of Hwp1 can be cross-linked to unidentified host proteins by host transglutaminase activity and this leads to covalent attachment of the yeast to host epithelial cells. This interaction has been shown to be important for *C. albicans* colonisation within the oral cavity (35).

The β-1,3-glucan motif of the cell wall of *C. albicans* and indeed other pathogenic fungi (36), has been shown to interact with Dectin-1 on the surfaces of host cells, primarily on phagocytic cells including dendritic cells within the oral epithelium. As such, several studies have shown that Dectin-1 belongs to the armoury of pathogen recognition molecules participating in host defence against fungal pathogens, including *Candida* species and *Aspergillus* species (37, 38). Dectin-1 can synergise with toll-like receptor (TLR) 2 and TLR4 signals and promote Th1 and Th17 responses to activate antifungal host defences (39-41). Further detail concerning Dectin-1 and fungal interactions in respect to immune responses is provided later in this review.

Recently, the gene encoding the *C. albicans* protein, *EAP1* (Enhanced Adherence to Polystyrene) was identified. This gene was originally investigated because of its ability to encode for a protein mediating adhesion to polystyrene of a *Saccharomyces cerevisiae* flocculinficient strain. *EAP1* encodes for a glycosylphosphatidylinositol-anchored, glucan-cross-linked cell-wall protein that has since been shown to facilitate adhesion of *C. albicans* to epithelial cells as well as polystyrene (28).

Once adherence to mucosal surfaces has been established, colonisation and growth of *C. albicans* is required to maintain the presence of the organism at the host site. The extent of this colonisation is key to determining whether eradication, commensal carriage, or infection subsequently follows. The ability of *C. albicans* to generate a biofilm on host surfaces, including mucosa, is also an important attribute toward such persistence.

Biofilm formation by *C. albicans* on mucosal surfaces

Biofilms are defined as microbial communities that are often attached to solid substrata with the biofilm cells themselves embedded within extracellular polymeric substances (EPS) that they have generated. *C. albicans* is particularly adept at forming biofilms on the acrylic of dentures and also on mucosal surfaces (Fig. 2). In the case of pseudomembranous candidosis, the pseudomembranes that develop on the oral mucosa have been shown to be typical biofilms and linked to the recalcitrant nature of the condition (42). Once the biofilm has formed, the EPS encasing the cells may contribute to persistence of the organism by several possible mechanisms. First, the EPS may serve to sequester antimicrobial substances that are present in oral secretions or within administered agents thereby limiting diffusion into the biofilm and access to cells. Similarly, restricted access of phagocytic cells to *C. albicans* within the biofilm will also occur. It has also been suggested that altered cell phenotypes, potentially with reduced growth rates of biofilm cells provides an additional means of protection against host defence molecules. An important regulator of *C. albicans* biofilm formation is the transcription factor Bcr1, which is a positive regulator of several candidal adhesin genes including *HYR1*, *HWP1*, *CHT2*, *ECE1*, *RBT5*, *ALS1*, and *ALS3* (43, 44). The importance of Bcr1 in *C. albicans* biofilm formation within in a mouse model of oral infection has recently been demonstrated (45).

Damage induced by *C. albicans* to epithelial cell surfaces

To propagate at mucosal sites, nutrients may be acquired from the surrounding milieu or through degradation of host tissue structures. The latter may also allow penetration of *C. albicans* hyphae into deeper layers of the

| Table 1. Examples of *Candida albicans* adhesins and associated host cell ligands |
|------------------------------------|-------------------------------|------------------|
| **Candida adhesin** | **Host cell receptor** | **References** |
| Integrin analog (INT) | iC3b, Arginine-glycine-aspartic acid (RGD) | (8-11) |
| Fibronectin adhesin (FN) | Fibronectin and vitronectin receptors | (12-14) |
| Fucoside-binding adhesin | Glycoside (glycoprotein or glycolipid) receptor | (15-18) |
| GlcNAc-binding protein | N-Acetylgalcosamine | (15-17) |
| Fimbrial adhesin | βGalNAc(1-4)-βGal | (19) |
| Hyphal wall protein 1 (HWP1) | A subset of epithelial cell-associated transglutaminases facilitating cross-linking with epithelial cells | (20, 21) |
| Agglutinin-like sequence (ALS) family | Multiple receptors including E-cadherin, N-cadherin and host cell ferritin | (22-25) |
| Enhanced adherence to polystyrene (EAPI) | Host cell targets not yet identified | (26, 27) |
epithelium (Fig. 2), which would further enhance persistence of the organism on oral surfaces, which, in the oral cavity has a high cellular turnover partly serving as a defence mechanism to remove colonised cells.

As previously mentioned, *C. albicans* is an opportunistic pathogen and as such it can be argued that it does not possess potent virulence factors, certainly when compared with other strict pathogens. However, *C. albicans* can generate a number of hydrolytic enzymes with broad substrate activity that can damage host cell structures. Perhaps, the most extensively studied extracellular hydrolytic enzymes of *C. albicans* are the secreted aspartyl proteinases (SAPs).

The SAP family of *C. albicans* is currently known to comprise 10 genes encoding for proteinases with masses of 35–50 kDa. SAPs 1–3 and SAPs 4–6 are thought to represent two subfamilies (46). The SAP genes are differentially regulated depending on the surrounding environment and are thought to be involved in the pathogenesis of *C. albicans*. SAP1–6 gene expression appears to be related to adherence, tissue damage, and changes in the immune response (46–49). SAPs 4–6 are expressed by *C. albicans* during hyphal invasion of a reconstituted human oral epithelium (RHE; 50) and oral infection (51). SAPs 4–6 are also linked with hyphal formation, invasion of the epithelium (52), and apoptosis of epithelial cells (53). SAPs 2 and 6 are also potent inducers of IL-1β, TNF-α, and IL-6 production by monocytes (54). The SAP gene products are suggested to contribute to various virulence processes *in vitro* including adherence to and invasion of the epithelial cells (55, 56). However, all the SAPs have distinct pH optima and the extent of their functional activity at the generally neutral pH of oral mucosa remains to be ascertained.

E-cadherin is a protein associated with epithelial cell junctions that serves to maintain a functional barrier to invasion. *In vitro* breakdown of E-cadherin, produced by oral epithelial cells by SAP5, has been demonstrated and this could represent a mechanism by which *C. albicans* mediates invasion of oral mucosa (56).

Fig. 2. *Candida albicans* biofilm formation on oral mucosal surfaces. Arrows indicate green fluorescing *C. albicans* (stained with a labelled peptide nucleic acid probe) infecting a reconstituted oral epithelium generated commercially from transformed human keratinocytes of the cell line TR146 (from a squamous cell carcinoma of the buccal mucosa; SkinEthic Laboratories, Nice, France); nuclei of epithelial keratinocytes are shown as blue (Hoescht staining).
In addition to SAPs, _C. albicans_ also has two other gene families, namely the lipases (LIP) and phospholipases (PL) that produce extracellular hydrolytic enzymes that could play roles in candidal adhesion, nutrient acquisition and invasion of epithelial surfaces (57, 58). The LIP gene family of _C. albicans_ comprises at least 10 genes (LIP1–10) (59), whilst seven phospholipase genes of _C. albicans_ have been identified (PLA, PLB1, PLB2, PLC1, PLC2, PLC3, and PLD1) (60). Constitutive expression of the LIP genes and PLB has been demonstrated in _C. albicans_ biofilms generated on an RHE (61).

Epithelial cell responses to _C. albicans_

Epithelial cells of host mucosal surfaces represent the first line of defence against _Candida_ infection. As key cells in the innate immunity of the host, epithelial cells express pattern recognition receptors (PRRs), which recognise _C. albicans_. PRRs interact with pathogen-associated molecular patterns (PAMPs) on microbial cells and examples of these in _C. albicans_ include cell-wall components and nucleic acids. PRRs are divided into three major groups, TLRs, C-type lectin receptors (CLRs) and nod-like receptors (NLRs). Within these receptor groups, only certain TLRs and CLRs on epithelial surfaces recognise _Candida_. In addition to PRRs, other cell-surface proteins, such as E-cadherin and Epidermal Growth Factor Receptor (EGFR), can also recognise _Candida_ and as discussed previously, these are unsurprisingly implicated in _Candida_ adherence and endocytosis (62, 63).

Cell-surface recognition of _Candida_ produces a cascade cell signaling reaction, which leads to gene expression in epithelial cells for a number of growth factors, chemokines/cytokines, antimicrobial peptides, and cell matrix proteins (64, 65). Epithelial responses to _Candida_ may not however, result in a strong host immune response and inflammation. Indeed, certain candidal factors as well as proteins produced by epithelial cells may actually result in anti-inflammatory effects and subsequent immune tolerance (66). The precise features that determine whether epithelial cells induce inflammation or are acquiescent toward _C. albicans_ remain unclear. In the following section, we will summarise the general mechanisms involved in epithelial cell responses to _Candida_, including cell-surface receptor binding, cell signaling triggering, and the factors produced by the epithelial cells.

TLRs are a family of PRRs whose involvement in host innate immune responses to various pathogens has been well studied. Up to 13 TLRs have been identified in both humans and mice. Expression of TLR1, 2, 4, 5, and 6 has been demonstrated in human mucosal epithelial cells (64–68), and their expression in response to _C. albicans_ infecting both oral and vaginal epithelial cell lines has been shown to be similar (69). The exact composition of the PRRs used by epithelial cells in response to infections with _C. albicans_ is, however, unknown (69). TLR2 and TLR5 are both expressed at high levels by oral cells and are frequently associated with epithelial repair, growth, and survival (70, 71).

Candida stimulates human epithelial cells to express (granulocyte-macrophage colony-stimulating factor) GM-CSF, which is a highly potent cytokine that stimulates dendritic cell maturation to mediate mucosal inflammation. Interestingly, TLR4 is not involved in GM-CSF stimulation and it has also been shown that candidal viability is also required in GM-CSF induction (72).

Aside from TLRs, perhaps the most important PRRs for _Candida_ recognition are CLRs. CLRs comprise a family of six cell-surface proteins. Dectin-1 and Dectin-2 belong to this family, and are confirmed receptors for _Candida_ recognition (73–75). Whilst the role of Dectin-1 and 2 in host immunity against _Candida_ infection has been extensively studied in animal models and human macrophages/dendritic cells, only Dectin-1 expression in human oral gingival epithelial cells has been reported, and its expression is at best weak (76). Therefore, the exact role of Dectin-1 expression in oral mucosal immunity remains unclear.

Epithelial cells can also recognise the morphology of the colonising _Candida_. _C. albicans_ yeast and hyphae both trigger Nuclear Factor Kappa β (NFκβ) activation in epithelial cells, but NFκβ activation alone does not lead to cytokine release. Only _C. albicans_ hyphae appear to be able to also induce mitogen-activated protein kinases (MAPK) phosphorylation, which combined with NFκβ activation results in production of IL-6 and GM-CSF by epithelial cells (34, 77, 78). Despite the identification of such downstream inflammatory signaling cascades, the oral epithelial receptor(s) that induce(s) cytokine responses to _Candida_ have yet to be identified. The receptors described above might be involved in differential detection of _Candida_ hyphae, thus representing a possible mechanism by which the host distinguishes between commensal _Candida_ yeast carriage (resulting in immune tolerance) and invasive _Candida_ hyphal infection (resulting in inflammatory immune responses).

Many downstream mechanisms have been identified as influencing immune tolerance and activation following _Candida_ colonisation. Examples include involvement of the resident macrophages in the mucosa that produce anti-inflammatory cytokines to regulate host immune responses (66). Nevertheless, details of the mechanisms of _Candida_ recognition and host tolerance by mucosal epithelial cells still need to be clarified.

Candida also induces _in vitro_ upregulation of various antimicrobial peptides such as β-defensins and LL-37 (79, 80), which are known to have candidacidal activity and could play significant roles in combating infections and invasion, as well as initiating other immune responses (81, 82).
Summary
It is clear that a delicate balance exists between C. albicans and host epithelial surfaces. The type of response elicited by the epithelial surface to colonising Candida is extremely important given that such surfaces are the first line of defence of the host to infection. The nature of mucosal responses is affected by many variables including host factors such as immune dysfunction, underlying disease, other forms of host debilitation, and the composition of the existing microflora community. In addition, there are factors associated with the strain of C. albicans involved that are also important in determining responses of the epithelium. These include the level of expression of putative virulence factors including cell-surface adhesins, extracellular hydrolytic enzymes, and the type of morphology exhibited by the colonising C. albicans. Given the heterogeneity associated with such factors in both the Candida genus and amongst strains of C. albicans, it could readily be postulated that those strains able to adapt to the conditions at the mucosal surface without inducing host responses represent those most likely to successfully persist as commensals. Strains that rely on virulence factors to persist are those that lead either to pathology or become eradicated through the activity of host defences.

Acknowledgements
All clinical images used in this manuscript were generated by the authors from consenting patients attending the School of Dentistry, Cardiff University.

Conflict of interest and funding
There is no conflict of interest in the writing of this article for any of the authors.

References
1. Akpan A, Morgan R. Oral candidiasis. Postgrad Med J 2002; 78: 455–9.
2. Samarayake L. Commensal oral Candida in Asian cohorts. Int J Oral Sci 2009; 1: 2–5.
3. de Leon EM, Jackson SJ, Sobel JD, Foxman B. Prevalence and risk factors for Candida colonization in women with type 1 and type 2 diabetes. BMC Infect Dis 2002; 2: 1.
4. Leli C, Mencacci A, Meucci M, Bietolini C, Vitali M, Farinelli S, et al. Association of pregnancy and Candida vaginal colonization in women with or without symptoms of vulvovaginitis. Minerva Ginecol 2013; 65: 303–9.
5. Foxman B, Marsh JV, Gillespie B, Sobel JD. Frequency and response to vaginal symptoms among white and African American women: results of a random digit dialing survey. J Womens Health 1998; 7: 1167–74.
6. Ruby J, Barbeau J. The buccal puzzle: the symbiotic nature of endogenous infections of the oral cavity. Can J Infect Dis 2002; 13: 34–41.
7. van Oss CJ. Interfacial forces in aqueous media. New York: Marcel Dekker; 1994.
8. Bendel CM, Hostetter MK. Distinct mechanisms of epithelial adhesion for Candida albicans and Candida tropicalis. Identification of the participating ligands and development of inhibitory peptides. J Clin Invest 1993; 92: 1840–9.
9. Eigentler A, Schulz TF, Larcher C, Breitwieser EM, Myones BL, Petzer AL, et al. C3bi-binding protein on Candida albicans: temperature-dependent expression and relationship to human complement receptor type 3. Infect Immun 1989; 57: 616–22.
10. Gilmore BJ, Retsinas EM, Lorenz JS, Hostetter MK. An iC3b receptor on Candida albicans: structure, function, and correlates for pathogenicity. J Infect Dis 1988; 157: 38–46.
11. Hostetter MK. Adhesins and ligands involved in the interaction of Candida albicans. Clin Microbiol Rev 1994; 7: 29–42.
12. Klotz SA, Hein RC, Smith RL, Rouse JB. The fibronectin adhesin of Candida albicans. Infect Immun 1994; 62: 4679–81.
13. Skerl KG, Calderone RA, Segal E, Sreevalasan T, Scheld WM. In vitro binding of Candida albicans yeast cells to human fibronectin. Can J Microbiol 1984; 30: 221–7.
14. Yan S, Négre E, Cashel JA, Guo N, Lyman CA, Walsh TJ, et al. Specific induction of fibronectin binding activity by hemoglobin in Candida albicans grown in defined media. Infect Immun 1996; 64: 2930–5.
15. Critchley IA, Douglas LJ. Isolation and partial characterization of an adhesin from Candida albicans. J Gen Microbiol 1987; 133: 629–36.
16. Critchley IA, Douglas LJ. Role of glycosides as epithelial cell receptors for Candida albicans. J Gen Microbiol 1987; 133: 636–43.
17. Douglas LJ. Mannoprotein adhesins of Candida albicans. In: Bennett JE, Hay RJ, Peterson PK, eds. New strategies in fungal disease. Edinburgh: Churchill Livingstone; 1992. p. 34–53.
18. Vardar-Unlu G, McSharry C, Douglas L. Fucose-specific adhesins on germ tubes of Candida albicans. FEMS Immunol Med Microbiol 1998; 20: 55–67.
19. Yu L, Lee KK, Sheth HB, Lane-Bell P, Srivastava G, Hindsgaul O, et al. Fimbria mediated adherence of Candida albicans to glycoprophingolipid receptors on human buccal epithelial cells. Infect Immun 1994; 62: 2843–8.
20. Staab JF, Bradley SD, Fidel PL, Sundstrom P. Adhesive and mammalian transfutamine substrate properties of Candida albicans Hwp1. Science 1999; 283: 1535–8.
21. Sundstrom P. Adhesion in Candida spp. Cell Microbiol 2002; 4: 461–9.
22. Fu Y, Ibrahim AS, Sheppard DC, Chen YC, French SW, Cutler JE, et al. Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol Microbiol 2002; 44: 61–72.
23. Kaptaycn JC, Hoyer LL, Hecht JE, Müller WH, Andel A, Verkleij AJ, et al. The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol 2000; 35: 601–11.
24. Zhao X, Oh SH, Cheng G, Green CB, Nuessen JA, Yeater K, et al. ALS3 and ALS1 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiology 2004; 150: 2415–28.
25. Zhao X, Pujol C, Soh DR, Hoyer LL. Allelic variation in the contiguous loci encoding Candida albicans ALS5, ALS1 and ALS9. Microbiology 2003; 149: 2947–60.
26. Hamada K, Terasima H, Arisawa M, Kitada K. Amino acid sequence requirement for efficient incorporation of glycosylphosphatidylinositol-associated proteins into the cell wall of Saccharomyces cerevisiae. J Biol Chem 1998; 273: 26946–53.
27. Hamada K, Terasima H, Arisawa M, Yabuki N, Kitada K. Amino acid residues in the omega-minus region participate in cellular localization of yeast glycosylphosphatidylinositol-attached proteins. J Bacteriol 1999; 181: 3886–9.
35. Sundstrom P, Balish E, Allen CM. Essential role of the Candida Pr1l protein. Int J Med Microbiol 2011; 301: 423–30.

36. Yokota K, Takashima A, Bergstresser PR, Ariizumi K. Apoptosis of epithelial cells by a novel Trojan horse mechanism. J Infect Dis 2002; 185: 521–30.

37. Brown GD, Herre J, Williams DL, Willment JA, Marshall AS, et al. Secreted aspartyl proteinases 4 induce apotosis of epithelial cells by a novel Trojan horse mechanism. FASEB J 2013; 27: 2132–44.

38. Naglik J, Albrecht A, Bader O, Hube B. Candida albicans proteinases and host/pathogen interactions. Cell Microbiol 2004; 6: 915–26.

39. Schaller M, Januschke E, Schackert C, Woerle B, Korting HC. Different isoforms of secreted aspartyl proteinases (Sap) are expressed by Candida albicans during oral and cutaneous candidosis in vitro. J Med Microbiol 2001; 50: 743–7.

40. Saegusa S, Totsuka M, Kaminogawa S, Hosoi T. Candida albicans and Saccharomyces cerevisiae induce interleukin-8 production from intestinal epithelial-like Caco-2 cells in the...
65. Bahri R, Saidane-Mosbahi D, Rouabhia M. Candida famata modulates toll-like receptor, beta-defensin, and proinflammatory cytokine expression by normal human epithelial cells. J Cell Physiol 2010; 222: 209-18.

66. Zheng XF, Hong YX, Feng GJ, Zhang GF, Rogers H, Lewis MA, et al. Lipopolysaccharide-induced M2 to M1 macrophage transformation for IL-12p70 production is blocked by Candida albicans mediated up-regulation of EB13 expression. PLoS One 2013; 8: e63967.

67. Filler SG. Candida-host cell receptor-ligand interactions. Curr Opin Microbiol 2006; 9: 333-9.

68. Pivarcsi A, Nagy I, Koreck A, Kis K, Kenderessy-Szabo A, Szell M, et al. Microbial compounds induce the expression of pro-inflammatory cytokines, chemokines and human beta-defensin-2 in vaginal epithelial cells. Microbes Infect 2005; 7: 1117-27.

69. Naglik JR, Moyes D. Epithelial cell innate response to Candida albicans. Adv Dent Res 2011; 23: 50-5.

70. Rhee SH, Im E, Riegler M, Kokkotou E, O’Brien M, Pothoulakis C. Pathophysiological role of toll-like receptor 5 engagement by bacterial flagellin in colonic inflammation. Proc Natl Acad Sci USA 2005; 102: 13610-5.

71. Shaykhiev R, Behr J, Bals R. Microbial patterns signaling via toll-like receptors 2 and 5 contribute to epithelial repair, growth and survival. PLoS One 2008; 3: e1393.

72. Li L, Dongari-Bagtzoglou A. Epithelial GM-CSF induction by Candida glabrata. J Dent Res 2009; 88: 746-51.

73. Goodridge H, Simmons RM, Underhill DM. Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J Immunol 2007; 178: 3107-15.

74. Robinson MJ, Osorio F, Rosas M, Freitas RP, Schweigehoffer E, Gross O, et al. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J Exp Med 2009; 206: 2037-51.

75. Rogers H, Williams DW, Feng GJ, Lewis MA, Wei XQ. Role of bacterial lipopolysaccharide in enhancing host immune response to Candida albicans. Clin Dev Immunol 2013; 2013: 320168.

76. Weindl G, Wagener J, Schaller M. Epithelial cells and innate antifungal defense. J Dent Res 2010; 89: 666-75.

77. Moyes DL, Murciano C, Runglall M, Kohli A, Islam A, Naglik JR. Activation of MAPK/e-Fos induced responses in oral epithelial cells is specific to Candida albicans and Candida dubliniensis hyphae. Med Microbiol Immunol 2012; 201: 93-101.

78. Netea MG, Kullberg BJ. Epithelial sensing of fungal invasion. Cell Host Microbe 2010; 8: 219-20.

79. Li M, Chen Q, Tang R, Shen Y, Liu WD. The expression of beta-defensin-2, 3 and LL-37 induced by Candida albicans phospholipomannan in human keratinocytes. J Dermatol Sci 2011; 61: 72-5.

80. Schneider JJ, Unholzer A, Schaller M, Schafer-Korting M, Korting HC. Human defensins. J Mol Med 2005; 83: 587-95.

81. Lopez-Garcia B, Lee PH, Yamasaki K, Gallo RL. Anti-fungal activity of cathelicidins and their potential role in Candida albicans skin infection. J Invest Dermatol 2005; 125: 108-15.

82. Vylkova S, Nayyar N, Li W, Edgerton M. Human beta defensins kill Candida albicans in an energy-dependent and salt-sensitive manner without causing membrane disruption. Antimicrob Agents Chemother 2007; 51: 154-61.

*David W. Williams
Tissue Engineering and Reparative Dentistry
School of Dentistry, College of Biomedical and Life Sciences
Cardiff University, Heath Park
Cardiff CF14 4XJ, UK
Email: WilliamsDD@cardiff.ac.uk