MOURRE’S METHOD FOR A DISSIPATIVE FORM PERTURBATION

JULIEN ROYER

Abstract. We prove uniform resolvent estimates for an abstract operator given by a dissipative perturbation of a self-adjoint operator in the sense of forms. For this we adapt the commutator method of Mourre. We also obtain the limiting absorption principle and uniform estimates for the derivatives of the resolvent. This abstract work is motivated by the Schrödinger and wave equations on a wave guide with dissipation at the boundary.

1. Introduction

The purpose of this paper is to prove some uniform resolvent estimates and the limiting absorption principle for a dissipative operator obtained by a form-perturbation of a self-adjoint operator. For this we prove a suitable version of the commutators method of Mourre.

Given a self-adjoint operator H_0 on a Hilbert space \mathcal{H}, the purpose of the Mourre method (see [Mou81]) is to prove uniform estimates for the weighted resolvent

$$\langle A \rangle^{-\delta} (H_0 - z)^{-1} \langle A \rangle^{-\delta}$$

when z is close to the real axis. Here A is a (self-adjoint) conjugate operator and $\delta > \frac{1}{2}$. The main assumption on A concerns its commutator with H_0:

$$1_J(H_0) [H_0, iA] 1_J(H_0) \geq \alpha 1_J(H_0),$$

for some $\alpha > 0$. (1.2)

Here J is an open interval of \mathbb{R} and 1_J is the characteristic function of J. With this (and other) assumption(s), the operator (1.1) appears to be uniformly bounded for $\text{Re}(z)$ in a compact subset of J and $\text{Im}(z) \neq 0$. In addition to these resolvent estimates, the method gives the limiting absorption principle: the operator (1.1) is not only uniformly bounded for z close to the real axis, but for $\text{Re}(z) \in J$ it has a limit when $\pm \text{Im}(z) \to 0$.

The original motivation for this theory is to prove the absence of singular spectrum for H_0 in J. This is an important question in scattering theory.

Compared to previous commutators methods (see for instance [Put67, Lav69, Lav71, Lav73]), we see that the assumption (1.2) on the commutator is spectrally localized with respect to H_0.

This result proved to be very efficient for difficult problems such as the N-body problem (see for instance [PSS81, DG97, HS00] and references therein).

There are so many generalisations of the original result that we cannot mention them all, so we refer to [ABC91] for a general overview of the subject. See also [CFKS87].

In this paper we focus on dissipative operators. In [Roy10b], we generalized the result of [Mou81] for a dissipative operator $H = H_0 - iV$, where $V \geq 0$ is relatively bounded with respect to H_0. In this case we cannot localize spectrally with respect to the non-selfadjoint operator H, but it turned out that we can obtain a similar result using the spectral projections of the self-adjoint part H_0. It is even possible to use the dissipative part to weaken the assumption:

$$1_J(H_0)[[H_0, iA] + \beta V] 1_J(H_0) \geq \alpha 1_J(H_0), \quad \alpha > 0, \quad \beta \geq 0.$$ (1.3)

Notice that for a general maximal dissipative operator we only know that the spectrum is included in the lower half-plane $\{\text{Im}(z) \leq 0\}$ and the estimates for the weighted resolvent (1.1) (with H_0 replaced by $H = H_0 - iV$) are only available for $\text{Im}(z) > 0$. Then in [BR14] we adapted to this setting the results of [JMP84, Jen85] about the derivatives of the resolvent. We also mention [BG10] for a closely related context.

The present work is motivated by the dissipative wave guide. If we consider a Schrödinger operator on a domain with dissipation at the boundary, we obtain a dissipative operator H which
cannot be written as $H_0 - iV$ for H_0 and $V \geq 0$ as in [Roy10b]. However the quadratic form q associated to H can be written as $q = q_0 - iq_\Theta$ where q_0 is the quadratic form corresponding to a self-adjoint operator and q_Θ is a non-negative quadratic form relatively bounded with respect to q_0. This example will be discussed with more details in Section 3. Our main purpose in this paper is to prove uniform estimates for the resolvent of this kind of operators, as well as estimates for the derivatives of the resolvent and the limiting absorption principle. A closely related result has been proved in [ABG] for self-adjoint operators. Moreover the Mourre method has already been used for wave guides (in a self-adjoint context) in [KT04].

Compared to the self-adjoint analog, the first motivation for proving a dissipative Mourre theorem is not to obtain results on the absolutely continuous spectrum and the corresponding absolutely continuous subspace. Indeed, they are a priori only defined for self-adjoint operators. However, an absolutely continuous subspace corresponding to a maximal dissipative operator H on \mathcal{H} has been defined in [Dav78] as the closure in \mathcal{H} of

$$\left\{ \varphi \in \mathcal{H} : \exists C_\varphi \geq 0, \forall \psi \in \mathcal{H}, \int_0^{+\infty} |\langle e^{-itH}\varphi,\psi \rangle|^2 \, dt \leq C_\varphi \|\psi\|_\mathcal{H}^2 \right\}.$$

This definition coincide with the usual one for a self-adjoint operator. Notice that there are other generalizations for the notion of absolutely continuous subspace in the litterature (see for instance [NF10, Rom04, Rom06, Ryz97a, Ryz97b, Ryz98]). We prove in this paper that the uniform resolvent estimates given by the Mourre theory give results on the the absolutely continuous subspace in the sense of Davies. For this we will use the dissipative generalization of the theory of relatively smooth operators in the sense of Kato.

This paper is organized as follows. In Section 2 we give precise definitions for the dissipative operator H which we consider and the corresponding conjugate operator A. Then in Section 3 we describe the applications which motivated this abstract work: the Schrödinger operator on a wave-guide or on a half-space with dissipation at the boundary, and then the Schrödinger operator on \mathbb{R}^d whose absorption index becomes singular for low frequencies. In Section 4 we state and prove the main theorem of this paper about uniform estimates and the limiting absorption principle. Finally we discuss the resolvent estimates for the derivatives of the resolvent in Section 5 and the absolutely continuous subspace in Section 6.

We close this introduction by some general notation. We set

$$\mathbb{C}_+ = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \},$$

and for $I \subset \mathbb{R}$:

$$\mathbb{C}_{I,+} = \{ z \in \mathbb{C} : \text{Re}(z) \in I, \text{Im}(z) > 0 \}.$$

If \mathcal{H}_1 and \mathcal{H}_2 are Hilbert spaces, we denote by $\mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ the space of bounded operators from \mathcal{H}_1 to \mathcal{H}_2.

Acknowledgements: This work was motivated by discussions with David Krejčiřík, Petr Siegl and Xue Ping Wang during a French-Czech BARRANDE Project (26473UL). I would like to thank them warmly for their stimulating questions, their helpful remarks and their kind hospitality in Prague/Rež and Nantes. This research is also partially supported by the French ANR Project NOSEVOL (ANR 2011 BS01019 01).

2. Dissipative operators and associated conjugate operators

In this section we recall some basic facts about dissipative operators given by form perturbations of self-adjoint operators, and we introduce the corresponding conjugate operators. Let \mathcal{H} be a complex Hilbert space.

Definition 2.1. We say that an operator T with domain $\mathcal{D}(T)$ on the Hilbert space \mathcal{H} is dissipative (respectively accretive) if

$$\forall \varphi \in \mathcal{D}(T), \quad \text{Im} \langle T\varphi,\varphi \rangle_{\mathcal{H}} \leq 0, \quad \text{(respectively Re} \langle T\varphi,\varphi \rangle_{\mathcal{H}} \geq 0).$$

Moreover T is said to be maximal dissipative (maximal accretive) if it has no other dissipative (accretive) extension on \mathcal{H} than itself.
Notice that the conventions for accretive and dissipative operators may be different for other authors. With our definition, an operator T is (maximal) dissipative if and only if iT is (maximal) accretive. Moreover we recall that a dissipative operator T is maximal dissipative if and only if $(T - \gamma I)$ has a bounded inverse on H for some (and hence any) $\gamma \in \mathbb{C}$ with $\Im(\gamma) > 0$.

Let q_0 be a quadratic form closed, densely defined, symmetric and bounded from below. Let H_0 (with domain $\mathcal{D}(H_0)$) be the corresponding selfadjoint operator (see [Kat80, Theorem VI.2.6]). We denote by K the domain of the form q_0 (or the form-domain of the operator H_0). We identify H with its dual, and denote by K^* the dual of K. Let $\tilde{H}_0 \in \mathcal{L}(K, K^*)$ be such that $(\tilde{H}_0 \varphi, \psi)_{K^*, K} = q_0(\varphi, \psi)$ for all $\varphi, \psi \in K$.

Let q_Θ be another symmetric form on H, non-negative and q_0-bounded: there exists $C_\Theta \geq 0$ such that for all $\varphi \in K$ we have

$$|q_\Theta(\varphi, \varphi)| \leq C_\Theta \left(|q_0(\varphi, \varphi)| + \|\varphi\|^2\right).$$

(2.1)

We set $q = q_0 - iq_\Theta$ and denote by \tilde{H} the corresponding operator in $\mathcal{L}(K, K^*)$.

Proposition 2.2. There exists a unique maximal dissipative operator H on H such that $\mathcal{D}(H) \subset \mathcal{D}(q) = \mathcal{D}(q_0)$ and

$$\forall \varphi \in \mathcal{D}(H), \ (H \varphi, \varphi)_H = q(\varphi, \varphi).$$

Moreover, the domain of H is the set of $u \in \mathcal{D}(q)$ such that

$$\exists f \in H, \forall \varphi \in \mathcal{D}(q), \ q(u, \varphi) = \langle f, \varphi \rangle_H.$$

In this case f is unique and we have $Hu = f$.

We recall from [Roy14] the following lemma:

Lemma 2.3. Let q_R be a non-negative, densely defined, closed form on a Hilbert space H. Let q_I be a symmetric form relatively bounded with respect to q_R. Then the form $q_R - iq_I$ is sectorial and closed.

Proof of Proposition 2.2. There exists $\gamma \geq 0$ such that $q_0 + \gamma i$ is non-negative. According to Lemma 2.3, the form $q_\gamma := q_0 + \gamma - iq_\Theta$ is sectorial and closed. We denote by H_γ the maximal accretive operator associated to q_γ by the representation theorem (see Theorem VI.2.1 in [Kat80]). This operator is dissipative. Since it is maximal accretive, $(-1 + i)$ belongs to its resolvent set, and hence it is also maximal dissipative. Then it remains to consider $H = H_\gamma - \gamma$. \[\square\]

It is important to note that the form q_Θ is not assumed to be closable, so it is not associated to any operator on H. However it defines an operator $\Theta \in \mathcal{L}(K, K^*)$ and we have $\tilde{H} = \tilde{H}_0 - i\Theta$ in $\mathcal{L}(K, K^*)$.

Compared to the setting of [Roy10b], this equality is not assumed to have a sense in $\mathcal{L}(\mathcal{D}(H_0), H)$. We will see in Paragraph 3 an example of operator of this form which cannot be written as $H_{s,a} - iV$ for $H_{s,a}$ self-adjoint and V self-adjoint, non-negative and $H_{s,a}$-bounded with relative bound less than 1. Our purpose in this paper is to recover the results of [Roy10b] in this case.

According to the Lax-Milgram Theorem the operators $i(\tilde{H} - z)$ and hence $(\tilde{H} - z)$ have bounded inverses in $\mathcal{L}(K^*, K)$ for all $z \in \mathbb{C}_+$. Moreover we have in $\mathcal{L}(K^*, K)$ the resolvent identities

$$(\tilde{H} - z)^{-1} = (\tilde{H}_0 - z)^{-1} + i(\tilde{H}_0 - z)^{-1}\Theta(\tilde{H} - z)^{-1}$$

$$= (\tilde{H}_0 - z)^{-1} + i(\tilde{H} - z)^{-1}\Theta(\tilde{H}_0 - z)^{-1}.$$

(2.2)

Notice that for $f \in H \subset K^*$ we have

$$(H - z)^{-1}f = (\tilde{H} - z)f.$$

We now introduce the conjugate operator A for H. Before the definition we recall from [ABG] (see Lemma 1.1.4) the following result:

Lemma 2.4. Let A be a self-adjoint operator on H. Assume that K is left invariant by e^{-itA} for all $t \in \mathbb{R}$. Then the domain of the generator of the unitary group $e^{-itA}|_K$ is

$$\{\varphi \in \mathcal{D}(A) \cap K : A\varphi \in K\}.$$
Given $t \in \mathbb{R}$, we remark that under the assumption of Lemma 2.4 we can extend by duality the operator e^{-itA} to \mathcal{K}^*, which is also left invariant.

Definition 2.5. Let A be a self-adjoint operator on \mathcal{H}. We say that A is a conjugate operator (in the sense of forms) to H on the interval J if the following conditions are satisfied:

(i) The form domain \mathcal{K} is left invariant by e^{-itA} for all $t \in \mathbb{R}$. We denote by \mathcal{E} the domain of the generator of $e^{-itA}|_{\mathcal{K}}$.

(ii) The commutators $B_0 = [\mathcal{H}_0, iA]$ and $B = [\mathcal{H}, iA]$, a priori defined as operators in $\mathcal{L}(\mathcal{E}, \mathcal{E}^*)$, extend to operators in $\mathcal{L}(\mathcal{K}, \mathcal{K}^*)$.

(iii) The commutator $[B, iA]$, a priori defined as an operator in $\mathcal{L}(\mathcal{E}, \mathcal{E}^*)$, extends to an operator in $\mathcal{L}(\mathcal{K}, \mathcal{K}^*)$.

(iv) There exist $\alpha > 0$ and $\beta > 0$ such that

$$\mathds{1}_J(H_0)(B_0 + \beta \Theta)\mathds{1}_J(H_0) \geq \alpha \mathds{1}_J(H_0).$$

(2.3)

Remark 2.6. If $H = H_0 - iV$ and A is a conjugate operator for H on J in the sense of Definition 2.3 in [Roy10b] then H can be seen as a perturbation of H_0 in the sense of forms and A is a conjugate operator for H on J in the sense of Definition 2.5.

When dealing with a family of operators indexed by a parameter λ, it may be important to track the dependence in λ of all the quantities which appear in this definition. In this case we will refer to the following refined version of Definition 2.5:

Definition 2.7. We say that A is a conjugate operator (in the sense of forms) to H on J and with bounds $(\alpha, \beta, \Upsilon) \in [0, 1] \times \mathbb{R}_+ \times \mathbb{R}_+$, if all the assumptions of Definition 2.5 are satisfied (in particular α and β are the constants which appears in (2.3)) and moreover

$$\|B\| \leq \sqrt{\alpha \Upsilon}, \quad \|B + \beta \Theta\| B_0 \| \leq \alpha \Upsilon \quad \text{and} \quad \|[B, A]\| + \beta \|[\Theta, A]\| \leq \alpha \Upsilon,$$

where all the norms are in $\mathcal{L}(\mathcal{K}, \mathcal{K}^*)$.

These definitions include the assumptions we will need to prove a uniform estimate and the limiting absorption principle for the resolvent of H. However it is known that in order to estimate the derivatives of the resolvent we have to control more commutators of H with the conjugate operator A:

Definition 2.8. Let $N \in \mathbb{N}^*$. We set $B_1 = B$. We say that the selfadjoint operator A is a conjugate operator for H on J up to order N if it is a conjugate operator in the sense of Definition 2.5 and if for all $n \in \{1, \ldots, N\}$ the operator $[B_n, iA]$ defined (inductively) in $\mathcal{L}(\mathcal{E}, \mathcal{E}^*)$ extends to an operator in $\mathcal{L}(\mathcal{K}, \mathcal{K}^*)$, which we denote by B_{n+1}.

Again, for a family of operators it may be useful to control the size of these multiple commutators:

Definition 2.9. We say that A is a conjugate operator for H on J with bounds $(\alpha, \beta, \Upsilon_N)$ up to order N if it is a conjugate operator for H on J with bounds $(\alpha, \beta, \Upsilon)$ in the sense of Definition 2.7, if it is a conjugate operator up to order N in the sense of Definition 2.8, and if

$$\Upsilon + \frac{1}{\alpha} \sum_{n=2}^{N+1} \|B_n\|_{\mathcal{L}(\mathcal{K}, \mathcal{K}^*)} \leq \Upsilon_N.$$

3. THE DISSIPATIVE WAVE GUIDE AND OTHER APPLICATIONS

Before going further, we give some applications to illustrate the definitions of Section 2 and to motivate the upcoming abstract theorems.

We first recall that for the free laplacian $-\Delta$ on \mathbb{R}^d an example of conjugate operator is given by the generator of dilations

$$A = -\frac{i}{2}(x \cdot \nabla + \nabla \cdot x) = -i(x \cdot \nabla) - \frac{id}{2}.$$

(3.1)

Indeed for all $t \in \mathbb{R}$ the dilation e^{-itA} maps u to $e^{-itA}u : x \mapsto e^{\frac{-it}{2}x}u(e^{-it}x)$. In particular it leaves invariant the form domain $H^1(\mathbb{R}^d)$. Moreover a straightforward computation gives $[-\Delta, iA] = -2\Delta$, so A is conjugate to $-\Delta$ on any interval $J \subset \mathbb{R}_+$ with bound $\alpha = 2 \inf(J) > 0$.

4 JULIEN ROYER
The study of more general Schrödinger operators is usually inspired by this model case.

The first example that motivated this abstract work is the following: let $\Omega \subset \mathbb{R}^d$ be a wave guide of the form $\Omega = \mathbb{R}^p \times \omega$ where $p \in \{1, \ldots, d-1\}$ and ω is a smooth open bounded subset of \mathbb{R}^{d-p}. A general point in Ω is denoted by (x, y) with $x \in \mathbb{R}^p$ and $y \in \omega$. Let $a \in W^{1,\infty}(\partial \Omega)$. We consider on $L^2(\Omega)$ the operator

$$H_a = -\Delta$$

with domain

$$\mathcal{D}(H_a) = \{ u \in H^2(\Omega), \partial_n u = i au \text{ on } \partial \Omega \}.$$

We could also consider a (dissipative) perturbation of the free laplacian in the interior of Ω. This operator appears in the spectral analysis of the wave equation

$$-i\partial_t u - \Delta u = 0 \quad \text{on } \mathbb{R}_+ \times \Omega,$$

$$\partial_n u = i au \quad \text{on } \mathbb{R}_+ \times \partial \Omega,$$

or the Schrödinger equation

$$\begin{cases}
\partial_t^2 w - \Delta w = 0 & \text{on } \mathbb{R}_+ \times \Omega,
\partial_n w + a\partial_t w = 0 & \text{on } \mathbb{R}_+ \times \partial \Omega,
w(0, \cdot) = w_0, & \partial_n w(0, \cdot) = w_1 & \text{on } \Omega.
\end{cases}$$

In [Roy14] we have studied (3.5) in the particular case where $\dim \omega = 1$ and a is greater than a positive constant at least on one side of the boundary. In this situation it was possible to compute almost explicitly some spectral properties of H_a. In particular we proved that $\sigma(H_a)$ is included in $\{ z \in \mathbb{C} : \text{Im}(z) < -\gamma \}$ for some $\gamma > 0$ with a uniform estimate for the resolvent on the real axis, which gives exponential decay for the solution of (3.5). When the absorption index a is not that strong, for instance if it is compactly supported on $\partial \Omega$, the essential spectrum will stay included in the real axis. Then we need more general tools to prove uniform resolvent estimates up to the real axis in this case.

We know from [Roy14] that the operator H_a is maximal dissipative. The corresponding quadratic form is

$$q_a : \varphi \mapsto \int_{\Omega} |\nabla \varphi|^2 - i \int_{\partial \Omega} a |\varphi| =: q_0(\varphi) - i q_0(\varphi).$$

It is defined on $\mathcal{K} = H^1(\Omega)$. The self-adjoint part q_0 is associated with the operator H_0 (defined as H_a with the Neumann boundary condition $a = 0$). However the imaginary part is not associated to any operator on $L^2(\Omega)$. Since $\mathcal{D}(H_a) \neq \mathcal{D}(H_0^*) = \mathcal{D}(H_{-a})$ there is no hope to write H_a as $H_{s,a} - iV$ for some self-adjoint operator $H_{s,a}$ and some non-negative self-adjoint operator V relatively bounded with respect to $H_{s,a}$ with relative bound less than 1 as is required in [Roy10b, BR14].

We define H_0 and \tilde{H}_a in $\mathcal{L}(\mathcal{K}, \mathcal{K}^*)$ as in Section 2. Let L_ω denote the Laplacian with Neumann boundary condition on the compact ω. L_ω is self-adjoint on $L^2(\omega)$ with compact resolvent. We denote by $0 = \lambda_0 < \lambda_1 \leq \lambda_2 \leq \ldots$ its eigenvalues and by $\{ \varphi_n \}_{n \in \mathbb{N}}$ a corresponding sequence of orthonormal eigenfunctions. The spectrum of H_0 is given by $\bigcup_{n \in \mathbb{N}} \lambda_n + \mathbb{R}_+ = \mathbb{R}_+$, and the eigenvalues of L_ω are the thresholds in the spectrum of H_0. We denote by \mathcal{T} the set of these thresholds. Assume that $u \in \mathcal{D}(H_0)$ and $\lambda \in \mathbb{R}$ are such that $H_0u = \lambda u$. Let

$$\hat{u} : (\xi, y) \in \mathbb{R}^p \times \omega \mapsto \int_{x \in \mathbb{R}^p} e^{-i(x, \xi)} u(x, y) \, dx$$

be the partial Fourier transform of u with respect to x. Then for almost all $\xi \in \mathbb{R}^p$ we have

$$(L_\omega + |\xi|^2 - \lambda)\hat{u}(\xi, \cdot) = 0.$$

Since L_ω has a discrete set of eigenvalues, $\hat{u}(\xi, \cdot)$ vanishes for ξ outside a set of measure 0 in \mathbb{R}^p. This proves that $u = 0$, and hence H_0 has no eigenvalue.

We denote by ∇_x the gradient with respect to the first p variables on Ω. Then we consider the generator A_x of dilations in the first p variables, defined by

$$(A_x u)(x, y) = -ix \cdot \nabla_x u(x, y) - \frac{ip}{2}$$
Then for $u \in L^2(\Omega)$, $t \in \mathbb{R}$ and $(x, y) \in \mathbb{R}^p \times \omega$ we have
\[
e^{-itA_x} u(x, y) = e^{-it \mathbf{A}} (e^{-t} x, y) .
\] (3.7)

Proposition 3.1. Let $J \subset \mathbb{R}_+ \setminus T$ be a compact interval. Let $N \in \mathbb{N}^*$. Assume that for $\gamma \in \mathbb{N}^p$ with $|\gamma| \leq N$ we have
\[
|\partial^\gamma u(x, y)| \leq c_\gamma \langle x \rangle^{-|\gamma|}.
\] (3.8)

Then A is conjugate to H_n on J up to order N.

Proof. According to (3.7) the form domain $\mathcal{K} = H^1(\Omega)$ is left invariant by e^{-itA_x} for any $t \in \mathbb{R}$. Let $\varphi, \psi \in \mathcal{S}(\Omega)$. If $-\Delta_x$ denotes the Laplacian in the first p directions we have
\[
[-\Delta, iA_x] = [-\Delta_x, iA_x] = -2\Delta_x \quad \text{(on } \Omega) \quad \text{and} \quad [a, iA_x] = -(x \cdot \nabla_x)a \quad \text{(on } \partial \Omega),
\]
so
\[
\langle [\mathcal{H}_x, iA_x] \varphi, \psi \rangle = 2 \langle \nabla_x \varphi, \nabla_x \psi \rangle_{L^2(\Omega)} + i \int_{\partial \Omega} (x \cdot \nabla_x a) \varphi \overline{\psi}.
\]

With $a = 0$ we simply obtain
\[
\langle [\mathcal{H}_0, iA_x] \varphi, \psi \rangle = 2 \langle \nabla_x \varphi, \nabla_x \psi \rangle_{L^2(\Omega)}.
\]

We similarly compute for any $n \in \{0, \ldots, N\}$
\[
\langle \text{ad}_{iA_x}^n (\mathcal{H}_0) \varphi, \psi \rangle = 2^n \langle \nabla_x \varphi, \nabla_x \psi \rangle_{L^2(\Omega)} - i \int_{\partial \Omega} (\langle x \cdot \nabla_x \rangle^n a) \varphi \overline{\psi}.
\]

This implies in particular that the forms $\text{ad}_{iA_x}^n (\mathcal{H}_0)$ and $\text{ad}_{iA_x}^n (\mathcal{H}_a)$ for $n \in \{1, \ldots, N\}$ extend to forms on $H^1(\Omega)$. It remains to check the last assumption of Definition 2.5.

- There exist $m \in \mathbb{N}$ and $\varepsilon > 0$ such that $J \subset [\lambda_m + \varepsilon, \lambda_{m+1} - \varepsilon]$. Let $u \in L^2(\Omega)$. For almost all $x \in \mathbb{R}^p$ we have $u(x, \cdot) \in L^2(\omega)$ so we can find a sequence $(u_n(x))_{n \in \mathbb{N}}$ in \mathcal{C}^∞ such that
\[
u(x, \cdot) = \sum_{n \in \mathbb{N}} u_n(x) \varphi_n \quad \text{and in particular } \sum_{n \in \mathbb{N}} |u_n(x)|^2 = \|u(x, \cdot)\|^2_{L^2(\omega)}.
\]

This defines a sequence $(u_n)_{n \in \mathbb{N}}$ of functions in $L^2(\mathbb{R}^p)$ with
\[
\sum_{n \in \mathbb{N}} \|u_n\|^2_{L^2(\mathbb{R}^p)} = \|u\|^2_{L^2(\omega)}.
\]

With the same proof as for Proposition 4.3 in [Roy14] we can check that for $z \in \mathbb{C} \setminus \mathbb{R}_+$ we have
\[
(H_0 - z)^{-1} u = \sum_{n \in \mathbb{N}} (-\Delta + \lambda_n - z)^{-1} u_n \otimes \varphi_n.
\]

Moreover if $u \in \mathcal{D}(H_0)$ then $u_n \in H^2(\mathbb{R}^p)$ for all $n \in \mathbb{N}$ and we have
\[
H_0 u = \sum_{n \in \mathbb{N}} (-\Delta + \lambda_n) u_n \otimes \varphi_n.
\]

Let $n \geq m + 1$. We have
\[
\langle H_0 (u_n \otimes \varphi_n), (u_n \otimes \varphi_n) \rangle_{L^2(\Omega)} = \langle (-\Delta + \lambda_n) u_n, u_n \rangle_{L^2(\mathbb{R}^p)} \geq \lambda_n \|u_n\|^2_{L^2(\mathbb{R}^p)} \geq \lambda_{m+1} \|u_n \otimes \varphi_n\|^2_{L^2(\Omega)}.
\]

In particular $\mathbf{1}_J(H_0)(u_n \otimes \varphi_n) = 0$. For a bounded operator T we set $\text{Im}(T) = (T - T^*)/(2i)$. Since H_0 and $-\Delta_x$ have no eigenvalues we can write
\[
\mathbf{1}_J(H_0) u = \sum_{n=0}^m \mathbf{1}_J(H_0)(u_n \otimes \varphi_n)
\]
\[
= \frac{1}{\pi} \lim_{\mu \to 0} \sum_{n=0}^m \int_J \text{Im} \left[(-\Delta + \lambda_n - (\tau + i\mu))^{-1} u_n \otimes \varphi_n \right] d\tau
\]
\[
= \sum_{n=0}^m \mathbf{1}_J(-\Delta + \lambda_n)(u_n \otimes \varphi_n).
\]
This gives
\[
\left\langle [\hat{H}_0, iA_x]\mathds{1}_J(\hat{H}_0)u, \mathds{1}_J(\hat{H}_0)u \right\rangle_{L^2(\Omega)} = (-2\Delta_x \mathds{1}_J(\hat{H}_0)u, \mathds{1}_J(\hat{H}_0)u)_{L^2(\Omega)} \\
= \sum_{n=0}^{m} (-2\Delta_x \mathds{1}_J(-\Delta_x + \lambda_n)(u_n) \otimes \varphi_n, \mathds{1}_J(-\Delta_x + \lambda_n)(u_n) \otimes \varphi_n)_{L^2(\Omega)} \\
\geq 2\varepsilon \sum_{n=0}^{m} \|\mathds{1}_J(-\Delta_x + \lambda_n)(u_n) \otimes \varphi_n\|^2_{L^2(\Omega)} \\
\geq 2\varepsilon \|\mathds{1}_J(\hat{H}_0)u\|^2_{L^2(\Omega)}.
\]
This proves (2.3) with \(\alpha = 2\varepsilon\) and concludes the proof of the proposition. \(\square\)

We could similarly analyse the same problem on the half-space
\[
\Omega = \{(x_1, \ldots, x_d) \in \mathbb{R}^d : x_d > 0\}. \tag{3.9}
\]
We also mention the Schrödinger operator on \(\mathbb{R}^d\) with dissipation on the hyperplane \(\Sigma = \mathbb{R}^{d-1} \times \{0\}\) given by the transmission condition
\[
\partial_{x_d} u(x', 0^+) - \partial_{x_d} u(x', 0^-) = -ia(x') u(x', 0) \quad \text{on} \ \Sigma. \tag{3.10}
\]
Here we have denoted by \(x = (x', x_d)\) a general point in \(\mathbb{R}^d\), with \(x' \in \mathbb{R}^{d-1}\) and \(x_d \in \mathbb{R}\). When \(d = 1\) this corresponds to the second derivative with (dissipative) Dirac potential, usually denoted by
\[
u \mapsto -u'' - ia(x)u.
\]
More precisely, given \(a \in W^{1,\infty}(\Sigma)\) we consider on \(L^2(\mathbb{R}^d)\) the operator \(H_a = -\Delta\) with domain \(\mathcal{D}(H_a) = \{u \in H^1(\mathbb{R}^d) \cap H^2(\mathbb{R}^d \setminus \Sigma) : u \text{ satisfies } (3.10)\}\).

Given \(u \in \mathcal{D}(H_a)\) we define \(H_a u\) as the function \(f \in L^2(\mathbb{R}^d)\) which coincide with the distribution \(-\Delta u\) on \(\mathbb{R}^d \setminus \Sigma\). The operator \(H_a\) is associated to the quadratic form
\[
qu_a : \varphi \mapsto \int_{\mathbb{R}^d} |\nabla \varphi|^2 \, dx - i \int_{\Sigma} a(x') |u(x', 0)|^2 \, dx',
\]
defined on \(\mathcal{D}(q_a) = H^1(\Omega)\).

In both cases, we can take the generator of dilations (3.1) as a conjugate operator on any compact interval \(J \subset \mathbb{R}_+\), if for all \(k \in \mathbb{N}\) the function \((x', \nabla')^k a\) is bounded on \(\partial \Omega\) or \(\Sigma\) (we have denoted by \(\nabla'\) the gradient in the first \((d - 1)\) variables).

In the same spirit as the last example, we can also mention the dissipative quantum graphs with some infinite edges and dissipation at the vertices, given by the condition
\[
u \mapsto \sum_{j=1}^{n_\nu} u_j(0) = -ia_\nu u(0), \tag{3.11}
\]
where for a vertex \(\nu\) the integer \(n_\nu\) is the number of edges attached to \(\nu\) and \(a_\nu \geq 0\). For precise definitions we refer to [Ong], which deals with the limiting absorption principle for such a quantum graph with self-adjoint boundary conditions at the vertices (in particular (3.11) with \(a_\nu = 0\) for all vertices \(\nu\)). For various non-selfadjoint conditions on quantum graphs we also refer to [HKS14].

We finish this section with the example of the Schrödinger operator with dissipation by a potential in low dimensions and for low frequencies. In this case the dissipative Mourre theory in the sense of operators as given in [Roy10b, BR14] can be applied, but not uniformly.

We consider on \(\mathbb{R}^d, d \geq 3\) the Schrödinger operator
\[
H_\lambda = -\Delta - \frac{i}{\lambda^2} a\left(\frac{x}{\lambda}\right),
\]
where \(\lambda > 0\) and \(a \in C^\infty(\mathbb{R}^d, \mathbb{R}_+)\) is of very short range: for some \(\rho > 0\) there exist constants \(c_\alpha, \alpha \in \mathbb{N}^d\) such that
\[
|\partial^\alpha a(x)| \leq c_\gamma \langle x \rangle^{-2-\rho-|\gamma|}.
\]
In order to obtain low frequency resolvent estimates for the Schrödinger operator $-\Delta - ia$ we have to prove uniform resolvent estimates for H_λ close to the spectral parameter $\lambda > 0$ (see [BR14] for the wave equation). Since a is bounded the multiplication by $\frac{a}{\lambda}$ defines a bounded operator on $L^2(\mathbb{R}^d)$ so for any $\lambda > 0$ we can apply to H_λ the dissipative Mourre theory for perturbations in the sense of operators. However this absorption index becomes singular when λ is close to 0 and it is not clear that this method gives estimates which are uniform in λ. According to Proposition 7.2 in [KR] we have for $u \in S$

\[\left\| a \left(\frac{x}{\lambda} \right) a \right\|_{H^s} \lesssim \lambda^2 \| u \|_{H^{s+2}} \]

evertheless for perturbations in the sense of operators. However this absorption index becomes singular when λ is close to 0 and it is not clear that this method gives estimates which are uniform in λ.

According to Proposition 7.2 in [KR] we have for $u \in S$

\[\left\| a \left(\frac{x}{\lambda} \right) a \right\|_{H^s} \lesssim \lambda^2 \| u \|_{H^{s+2}} \]

whenever s and $s + 2$ belong to $]-\frac{d}{2}, \frac{d}{2}[$. The same applies if we replace a by $(x \cdot \nabla)^k a$ for some $k \in \mathbb{N}$. This proves that the commutator between the dissipative part of H_λ and the generator of dilations A defines an operator in $\mathcal{L}(H^2(\mathbb{R}^d), L^2(\mathbb{R}^d))$ uniformly in $\lambda > 0$ if $d \geq 5$.

But not if $d \in \{3, 4\}$. However, for any $d \geq 3$ it defines a uniformly bounded operator in $\mathcal{L}(H^1(\mathbb{R}^d), H^{-1}(\mathbb{R}^d))$, so it is fruitful to see it as a perturbation of the free laplacian in the sense of forms. This idea will be used (in a more general setting) in [KR].

4. Uniform resolvent estimate and limiting absorption principle

In this section we prove the uniform resolvent estimates and the limiting absorption principle in the abstract setting:

Theorem 4.1. Assume that A is a conjugate operator to H on the interval J with bounds $(\alpha, \beta, \Upsilon)$, in the sense of Definition 2.7.

(i) Let $I \subset J$ be a compact interval and $\delta > \frac{d}{2}$. Then there exists $C \geq 0$ (which only depends on C_{α}, I, J, δ, β and Υ) such that for all $\lambda \in C_{I,+}$ we have

\[\left\| \langle A \rangle^{-\delta} (H - z)^{-1} \langle A \rangle^{-\delta} \right\|_{\mathcal{L}(\mathcal{H})} \leq \frac{C}{\alpha^2}. \]

(ii) Moreover for all $\lambda \in \hat{J}$ the limit

\[\langle A \rangle^{-\delta} (H - (\lambda + i\mu))^{-1} \langle A \rangle^{-\delta} = \lim_{\mu \to 0^+} \langle A \rangle^{-\delta} (H - (\lambda + i\mu))^{-1} \langle A \rangle^{-\delta} \]

exists in $\mathcal{L}(\mathcal{H})$ and defines a continuous function of λ on J (it is Hölder-continuous of index $\frac{\delta}{\delta - 1}$ with a constant of size $\alpha^{-\frac{\delta}{\delta - 1}}$).

Remark 4.2. Taking the adjoint we obtain the same estimate with $(H - z)^{-1}$ replaced by $(H^* - z)^{-1}$.

The rest of this section is devoted to the proof of Theorem 4.1. To simplify the notation, the symbol “\lesssim” will be used to replace “$\leq C$” where C is a constant which depends on C_{α}, I, J, δ, β and Υ. The dependence in $\alpha \in [0, 1]$, $z \in C_{I,+}$ and in the parameter ε (which will be introduced in the proof) will always be explicit.

Let $\phi \in C_0^\infty(\mathbb{R}, [0, 1])$ be supported in \hat{J} and equal to 1 on a neighborhood of I (notice that all the estimates below will also depend on the choice of ϕ). We set $\Phi = \phi(H_0)$ and $\Phi^1 = (1 - \phi)(H_0)$. We have

\[\Phi \in \mathcal{L}(\mathcal{K}^*, \mathcal{K}) \quad \text{and} \quad \Phi^1 \in \mathcal{L}(\mathcal{H}) \cap \mathcal{L}(\mathcal{K}) \cap \mathcal{L}(\mathcal{K}^*). \]

Now let

\[M_0 = \Phi(B_0 + \beta \Theta)\Phi \quad \text{and} \quad M = \Phi(B + \beta \Theta)\Phi. \]

The operators M_0 and M are bounded on \mathcal{H}, and M_0 is the self-adjoint part of M. After multiplication by Φ on both sides, assumption (2.3) reads

\[M_0 \geq \alpha \Phi^2. \]

The proof of the following lemma is postponed to the end of the section:

Lemma 4.3. The operator $[M, A]$, a priori defined as an operator in $\mathcal{L}(\mathcal{E}, \mathcal{E}^*)$, extends to an operator in $\mathcal{L}(\mathcal{K}^*, \mathcal{K})$ which we denote by $[M, A]_{\mathcal{K}}$. Moreover we have

\[\| [M, A]_{\mathcal{K}} \|_{\mathcal{L}(\mathcal{K}^*, \mathcal{K})} \lesssim \alpha. \]
Let $\varepsilon \geq 0$. The operator $H - i\varepsilon M$ is maximal dissipative on \mathcal{H} with domain $\mathcal{D}(H)$, so for $z \in \mathbb{C}_+$ it has a bounded inverse $(H - i\varepsilon M - z)^{-1}$ in $\mathcal{L}(\mathcal{H}, \mathcal{D}(H))$. As above for \hat{H}, the operator $(\hat{H} - i\varepsilon M - z) \in \mathcal{L}(\mathcal{K}, \mathcal{K}^*)$ has a bounded inverse

$$G_z(\varepsilon) := (\hat{H} - i\varepsilon M - z)^{-1} \in \mathcal{L}(\mathcal{K}^*, \mathcal{K}).$$

The Mourre method relies on the so-called quadratic estimates (see Proposition II.5 in [Mon81]). Here we will use the following version:

Proposition 4.4. Let γ_0 be a quadratic form closed, densely defined, symmetric and bounded from below. Let P_0 be the corresponding selfadjoint operator. Let \mathcal{K}_γ denote the domain of the form γ_0. Let γ_1 be a non-negative and γ_0-bounded form on \mathcal{H}. Let P be the maximal dissipative operator associated to the form $\gamma_0 - i\gamma_1$, and \hat{P} the corresponding operator in $\mathcal{L}(\mathcal{K}_\gamma, \mathcal{K}_\gamma^*)$. Let γ a non-negative form on \mathcal{K}_γ which satisfies $\gamma \leq \gamma_1$. Then for $z \in \mathbb{C}_+$ and $\varphi \in \mathcal{K}_\gamma^*$ we have

$$\gamma((\hat{P} - z)^{-1}\varphi) \leq \frac{1}{2i} \left\langle (\hat{P} - z)^{-1}\varphi, \varphi \right\rangle_{\mathcal{K}_\gamma, \mathcal{K}_\gamma}$$

and

$$\gamma((\hat{P}^* - \bar{z})^{-1}\varphi) \leq \frac{1}{2i} \left\langle (\hat{P} - z)^{-1}\varphi, \varphi \right\rangle_{\mathcal{K}_\gamma, \mathcal{K}_\gamma}.$$

If $\varphi \in \mathcal{H}$ we can replace \hat{P} by P in these estimates.

Proof. For $z \in \mathbb{C}_+$ and $\varphi \in \mathcal{K}_\gamma^*$ we have

$$\gamma((\hat{P} - z)^{-1}\varphi) \leq \frac{1}{2i} \left\langle (\hat{P} - z)^{-1}\varphi, (\hat{P} - z)^{-1}\varphi \right\rangle_{\mathcal{K}_\gamma, \mathcal{K}_\gamma}.$$

The second estimate is proved similarly. □

Proposition 4.5. Let \mathcal{K}_0 stand either for \mathcal{K} or \mathcal{H}. Then there exists $\varepsilon_0 \in [0, 1]$ (which depends on C_{α}, I, J, β and T) such that for $Q \in \mathcal{L}(\mathcal{K}_0^*)$, $z \in \mathbb{C}_{I,+}$ and $\varepsilon \in [0, \varepsilon_0]$ we have

$$\|\Phi^{\perp}G_z(\varepsilon)Q\|_{\mathcal{L}(\mathcal{K}_0^*, \mathcal{K})} \lesssim \|Q\|_{\mathcal{L}(\mathcal{K}_0^*)} + \|Q^*G_z(\varepsilon)Q\|_{\mathcal{L}(\mathcal{K}_0^*, \mathcal{K})}^\frac{1}{2},$$

$$\|\Phi G_z(\varepsilon)Q\|_{\mathcal{L}(\mathcal{K}_0, \mathcal{K})} \lesssim \frac{1}{\sqrt{\alpha\varepsilon}} \|Q^*G_z(\varepsilon)Q\|_{\mathcal{L}(\mathcal{K}_0^*, \mathcal{K})}^\frac{3}{2},$$

and for $\varphi \in \mathcal{K}_0^*$ with $\|\varphi\|_{\mathcal{K}_0^*} \leq 1$:

$$q_0(\Phi G_z(\varepsilon)Q\varphi) + q_0(\Phi^\perp G_z(\varepsilon)Q\varphi) \lesssim \|Q\|^2_{\mathcal{L}(\mathcal{K}_0^*)} + \|Q^*G_z(\varepsilon)Q\|_{\mathcal{L}(\mathcal{K}_0^*, \mathcal{K})}.\quad (4.6)$$

These estimates also hold if $G_z(\varepsilon)$ is replaced by $G_z(\varepsilon)^*$ on the left-hand sides.

Applied with $Q = \text{Id}_{\mathcal{K}^*}$, (4.5) gives an estimate on $G_z(\varepsilon)$ alone:

Corollary 4.6. For $z \in \mathbb{C}_{I,+}$ and $\varepsilon \in [0, \varepsilon_0]$ we have

$$\|G_z(\varepsilon)\|_{\mathcal{L}(\mathcal{K}^*, \mathcal{K})} + \|G_z(\varepsilon)^*\|_{\mathcal{L}(\mathcal{K}^*, \mathcal{K})} \lesssim \frac{1}{\alpha\varepsilon}.$$
Since ϕ is compactly supported in J, there exists a constant c which only depends on J such that

$$\|\Phi G_z(\varepsilon)Q\phi\|^2_{K_0} \leq \frac{c}{\alpha\varepsilon} \|Q^* G_z(\varepsilon)Q\|_{\mathcal{L}(K_0, K)} \|\phi\|^2_{K_0}.$$

The same holds with $G_z(\varepsilon)$ replaced by $G_z(\varepsilon)^*$, and (4.4) is proved.

- Since the quadratic form q_Θ is non-negative we can apply the Cauchy-Schwarz inequality: for $\psi_1, \psi_2 \in K$ we have

$$q_\Theta(\psi_1 + \psi_2) \leq q_\Theta(\psi_1) + 2\sqrt{q_\Theta(\psi_1)q_\Theta(\psi_2)} + q_\Theta(\psi_2) \leq 2q_\Theta(\psi_1) + 2q_\Theta(\psi_2).$$

In particular

$$q_\Theta(\Phi G_z(\varepsilon)Q\phi) \leq 2q_\Theta(G_z(\varepsilon)Q\phi) + 2q_\Theta(\Phi^* G_z(\varepsilon)Q\phi).$$

According to Proposition 4.4 we have

$$q_\Theta(G_z(\varepsilon)Q\phi) \leq \left\|\left(Q^* G_z(\varepsilon)Q, \varphi\right)_{K_0, K_0}\right\| \leq \left\|Q^* G_z(\varepsilon)Q\right\|_{\mathcal{L}(K_0, K)} \|\varphi\|^2_{K_0}. \quad (4.7)$$

On the other hand, according to (2.1)

$$q_\Theta(\Phi^* G_z(\varepsilon)Q\phi) \leq \frac{C_0}{\alpha\varepsilon} \left\|\Phi^* G_z(\varepsilon)Q\phi\right\|^2_K. \quad (4.8)$$

We obtain

$$q_\Theta(\Phi G_z(\varepsilon)Q\phi) \leq 2 \left\|Q^* G_z(\varepsilon)Q\right\|_{\mathcal{L}(K_0, K)} \|\varphi\|^2_{K_0} + 2C_0 \left\|\Phi^* G_z(\varepsilon)Q\phi\right\|^2_K. \quad (4.9)$$

Thus we have to prove (4.3) to prove (4.6). The proof of (4.6) relies itself on (4.9).

- According to the resolvent identity (as in (2.2)) we have in $\mathcal{L}(K_0, K)$

$$\Phi^* G_z(\varepsilon)Q = \Phi^* (\tilde{H}_0 - z)^{-1}Q + i\Phi^* (\tilde{H}_0 - z)^{-1}(\Theta + \varepsilon\Phi B\Phi + \varepsilon\beta\Phi\Theta\Phi)G_z(\varepsilon)Q.$$

By functional calculus the operator $\Phi^* (\tilde{H}_0 - z)^{-1}$ belongs to $\mathcal{L}(K^*, K)$ uniformly in $z \in \mathbb{C}_{\ell^+}$. Let $\varphi \in K_0^*$ and $\psi \in K^*$. According to the Cauchy-Schwarz inequality we have

$$\left\langle \Phi^* (\tilde{H}_0 - z)^{-1}\Theta G_z(\varepsilon)Q\varphi, \psi \right\rangle_{K,K^*} = q_\Theta(G_z(\varepsilon)Q\varphi, \Phi^* (\tilde{H}_0 - z)^{-1}\psi) \leq q_\Theta(G_z(\varepsilon)Q\varphi, \Psi)^{1/2}q_\Theta(\Phi^* (\tilde{H}_0 - z)^{-1}\psi, \Psi)^{1/2}.$$

According to (2.1) we have

$$q_\Theta \left(\Phi^* (\tilde{H}_0 - z)^{-1}\psi\right) \leq \|\psi\|^2_{K_0^*}.$$

With (4.7) this proves that

$$\left\|\Phi^* (\tilde{H}_0 - z)^{-1}\Theta G_z(\varepsilon)Q\right\|_{\mathcal{L}(K_0^*, K)} \leq \left\|Q^* G_z(\varepsilon)Q\right\|_{\mathcal{L}(K_0, K)} \|\varphi\|^2_{K_0^*}.$$

Then we have

$$\varepsilon \left\|\Phi^* (\tilde{H}_0 - z)^{-1}\Phi B\Phi G_z(\varepsilon)Q\right\|_{\mathcal{L}(K_0^*, K)} \leq \sqrt{\frac{\alpha\varepsilon}{\varepsilon}} \left\|\Phi G_z(\varepsilon)Q\right\|_{\mathcal{L}(K_0, K)} \leq \sqrt{\frac{\alpha\varepsilon}{\varepsilon}} \left\|Q^* G_z(\varepsilon)Q\right\|_{\mathcal{L}(K_0, K)} \|\varphi\|^2_{K_0^*}.$$

On the other hand, according to the Cauchy-Schwarz inequality and (4.9) we have

$$\varepsilon\beta \left\|\Phi^* (\tilde{H}_0 - z)^{-1}\Phi\Theta\Phi G_z(\varepsilon)Q\phi\right\|_{K} \leq \varepsilon\beta q_\Theta(\Phi^* (\tilde{H}_0 - z)^{-1}\Phi\varphi) \leq \varepsilon \left(\left\|Q^* G_z(\varepsilon)Q\right\|_{\mathcal{L}(K_0, K)} + \left\|\Phi^* G_z(\varepsilon)Q\right\|_{\mathcal{L}(K_0, K)} \right) \|\varphi\|^2_{K_0^*}.$$

Finally we obtain

$$\left\|\Phi^* G_z(\varepsilon)Q\right\|_{\mathcal{L}(K_0, K)} \leq \left(\left\|Q\right\|_{\mathcal{L}(K_0^*, K)} + \left\|Q^* G_z(\varepsilon)Q\right\|_{\mathcal{L}(K_0, K)} \varepsilon + \varepsilon \left\|\Phi^* G_z(\varepsilon)Q\right\|_{\mathcal{L}(K_0, K)} \right).$$

This gives (4.3) when $\varepsilon > 0$ is small enough. Then (4.9) and (4.8) give (4.6). \(\square\)

Lemma 4.7. On $\mathcal{L}(\mathcal{D}(A), \mathcal{D}(A)^*)$ we have

$$G_z(\varepsilon)BG_z(\varepsilon) = iAG_z(\varepsilon) - iG_z(\varepsilon)A - \varepsilon G_z(\varepsilon)[M, A]_K G_z(\varepsilon).$$
Proof. Let \(\varphi, \psi \in \mathcal{D}(A) \). Since \(\mathcal{E} \) is dense in \(\mathcal{K} \) we can consider sequences \((\varphi_n)_{n \in \mathbb{N}}\) and \((\psi_n)_{n \in \mathbb{N}}\) in \(\mathcal{E} \) such that \(\varphi_n \to G_z(\varepsilon)\varphi \) and \(\psi_n \to G_z(\varepsilon)\psi \) in \(\mathcal{K} \). Since \(B \in \mathcal{L}(\mathcal{K}, \mathcal{K}^*) \) we have
\[
\langle B\varphi_n, \psi_m \rangle_{n,m \to \infty} \to \langle G_z(\varepsilon)BG_z(\varepsilon)\varphi, \psi \rangle.
\]
On the other hand, since \(\varphi_n, \psi_m \in \mathcal{D}(A) \) and \(A\varphi_n, A\psi_m \in \mathcal{K} \) we can write
\[
\langle B\varphi_n, \psi_m \rangle = \langle [\hat{H}, iA]\varphi_n, \psi_m \rangle = \langle [\hat{H} - i\varepsilon M - z, iA]\varphi_n, \psi_m \rangle - \varepsilon \langle [M, A]\varphi_n, \psi_m \rangle.
\]
According to Lemma 4.3 we have
\[
\langle [M, A]\varphi_n, \psi_m \rangle_{n,m \to \infty} \to \langle G_z(\varepsilon)[M, A]KG_z(\varepsilon)\varphi, \psi \rangle.
\]
And finally
\[
\lim_{n,m \to \infty} \langle [\hat{H} - i\varepsilon M - z, iA]\varphi_n, \psi_m \rangle = i \lim_{n \to \infty} \lim_{m \to \infty} \langle A\varphi_n, (\hat{H} - i\varepsilon M - z)^*\psi_m \rangle_{\mathcal{K}, \mathcal{K}^*} - i \lim_{m \to \infty} \lim_{n \to \infty} \langle (\hat{H} - i\varepsilon M - z)\varphi_n, A\psi_m \rangle_{\mathcal{K}, \mathcal{K}^*} = i \lim_{m \to \infty} \langle A\varphi_n, (\hat{H} - i\varepsilon M - z)^*\psi_m \rangle_{\mathcal{H}} - i \lim_{n \to \infty} \langle (\hat{H} - i\varepsilon M - z)\varphi_n, A\psi_m \rangle_{\mathcal{H}} = i \langle (G_z(\varepsilon)\varphi, A\psi) \rangle_{\mathcal{H}} - i \langle A\varphi, G_z(\varepsilon)^*\psi \rangle_{\mathcal{H}}.
\]
The lemma is proved. \(\square \)

The strategy for the proof of Theorem 4.1 is standard and relies on the following abstract result about ordinary differential equations (see Lemma 3.3 of [JMP84]):

Lemma 4.8. Let \(X \) be a Banach space, \(\varepsilon_0 \in (0,1] \) and \(f \in C^1([0,\varepsilon_0], X) \). Suppose there exist \(\gamma_1 \in [0,1] \), \(\gamma_2 \in [0,1] \), \(\gamma_3 \in \mathbb{R} \), and \(c_1, c_2 > 0 \) such that
\[
\forall \varepsilon \in [0,\varepsilon_0], \quad \| f'(\varepsilon) \| \leq c_1 \varepsilon^{-\gamma_1}(1 + \| f(\varepsilon) \|^\gamma_2) \quad \text{and} \quad \| f(\varepsilon) \| \leq c_2 \varepsilon^{-\gamma_3}.
\]
Then \(f \) has a limit at 0 and there exists \(c \geq 0 \) which only depends on \(\varepsilon_0, \gamma_1, \gamma_2, \gamma_3, c_1 \) and \(c_2 \) such that
\[
\forall \varepsilon \in [0,\varepsilon_0], \quad \| f(\varepsilon) \| \leq c.
\]

Now we can prove Theorem 4.1:

Proof of Theorem 4.1. \(\bullet \) For \(\varepsilon \in [0,1] \) we set \(Q(\varepsilon) = \langle A \rangle^{-\delta} \langle \varepsilon A \rangle^{\delta-1} \). According to the functional calculus we have
\[
\|Q(\varepsilon)\|_{\mathcal{L}(\mathcal{H})} \leq 1 \quad \text{and} \quad \|AQ(\varepsilon)\|_{\mathcal{L}(\mathcal{H})} + \|Q(\varepsilon)A\|_{\mathcal{L}(\mathcal{H})} \lesssim \varepsilon^{\delta-1}. \quad (4.10)
\]
Denoting by a prime the derivative with respect to \(\varepsilon \) we also have
\[
\|Q'(\varepsilon)\|_{\mathcal{L}(\mathcal{H})} \lesssim \varepsilon^{\delta-1}. \quad (4.11)
\]
\(\bullet \) For \(z \in \mathbb{C}_{I,+} \) we set
\[
F_z(\varepsilon) = Q(\varepsilon)G_z(\varepsilon)Q(\varepsilon).
\]
According to (4.10) and Proposition 4.5 applied with \(Q = Q(\varepsilon) \) we have for \(\varepsilon \in [0,\varepsilon_0] \) (\(\varepsilon_0 \) being given by Proposition 4.5)
\[
\|F_z(\varepsilon)\| \leq \|G_z(\varepsilon)Q(\varepsilon)\| \lesssim 1 + \frac{\|F_z(\varepsilon)\|^\frac{1}{2}}{\sqrt{1+\varepsilon}}, \quad (4.12)
\]
and hence
\[
\|F_z(\varepsilon)\| \lesssim \frac{1}{\alpha \varepsilon}. \quad (4.13)
\]
\(\bullet \) We now estimate the derivative of \(F \):
\[
F_z'(\varepsilon) = Q'(\varepsilon)G_z(\varepsilon)Q(\varepsilon) + Q(\varepsilon)G_z(\varepsilon)Q'(\varepsilon) + iQ(\varepsilon)G(\varepsilon)\Phi(B + \beta\Theta)\Phi(\varepsilon)Q(\varepsilon)
\]
Proposition 4.5 and (4.11) yield
\[
\|Q'(\varepsilon)G_z(\varepsilon)Q(\varepsilon) + Q(\varepsilon)G_z(\varepsilon)Q'(\varepsilon)\| \lesssim \varepsilon^{\delta-1} \left(1 + \frac{\|F_z(\varepsilon)\|^\frac{1}{2}}{\sqrt{1+\varepsilon}} \right) \quad (4.14)
\]
and
\[\|Q(\varepsilon)G(\varepsilon)\Phi \Phi G(\varepsilon)Q(\varepsilon)\| \lesssim 1 + \|F_z(\varepsilon)\|_{L(H)}. \]
(4.15)

For the remaining term we write in \(L(K,K^*) \)
\[\Phi B\Phi = B - \Phi B\Phi^\perp - \Phi^\perp B\Phi - \Phi^\perp B\Phi^\perp. \]

According to Proposition 4.5 we have
\[\|Q(\varepsilon)G(\varepsilon)(\Phi B\Phi^\perp + \Phi^\perp B\Phi + \Phi^\perp B\Phi^\perp)G(\varepsilon)Q(\varepsilon)\| \lesssim 1 + \frac{\|F_z(\varepsilon)\|}{\sqrt{\varepsilon}}. \]

- According to Lemma 4.7 we have on \(L(H) \):
\[Q(\varepsilon)G_z(\varepsilon)BG_z(\varepsilon)Q(\varepsilon) = iQ(\varepsilon)AG_z(\varepsilon)Q(\varepsilon) - iQ(\varepsilon)G_z(\varepsilon)AQ(\varepsilon) \]
\[- \varepsilon Q(\varepsilon)G_z(\varepsilon)[M,A]K_GG_z(\varepsilon)Q(\varepsilon). \]

With (4.10), Proposition 4.5 and Lemma 4.3 we get
\[\|Q(\varepsilon)G_z(\varepsilon)BG_z(\varepsilon)Q(\varepsilon)\| \lesssim 1 + \alpha^{-\frac{1}{2}}\varepsilon^{\delta-\frac{3}{2}} \|F_z(\varepsilon)\|^\frac{1}{2} + \|F_z(\varepsilon)\|. \]
Together with (4.14) and (4.15) this gives
\[\|\alpha F_z(\varepsilon)\| \lesssim \varepsilon^{\delta-\frac{1}{2}} + \varepsilon^{-\frac{1}{2}} \|\alpha F_z(\varepsilon)\| + \varepsilon^{\delta-\frac{3}{2}} \|\alpha F_z(\varepsilon)\|^\frac{1}{2}, \]
and hence, according to Lemma 4.8, we finally obtain
\[\|F_z(\varepsilon)\| \lesssim \frac{1}{\alpha}, \]
(4.17)
which gives the uniform resolvent estimates (4.1) when \(\varepsilon \) goes to 0.

- Now we prove the limiting absorption principle on \(I \). Without loss of generality we can assume that \(\delta \in [\frac{1}{2},1] \). We prove that there exists \(C \geq 0 \) such that for all \(z, z' \in C_{I,+} \) we have
\[\left\| \langle A \rangle^{-\delta} \left((H - z)^{-1} - (H - z')^{-1} \right) \langle A \rangle^{-\delta} \right\|_{L(H)} \lesssim \alpha^{-\frac{2\delta}{2\delta+1}} |z - z'|^{\frac{2\delta+1}{2\delta+1}}. \]
(4.18)

For any \(c_0 > 0, (4.18) \) is a direct consequence of the uniform estimate (4.1) as long as \(|z - z'| \geq c_0 \alpha \), so it is enough to prove (4.18) when \(|z - z'| \leq c_0 \alpha \) for some well chosen \(c_0 > 0 \). According to (4.16) and (4.17) we have
\[\|F_z'(\varepsilon)\| \lesssim \alpha^{-1} \varepsilon^{\delta-\frac{3}{2}}, \]
and hence
\[\|F_z(\varepsilon) - F_z(0)\| \lesssim \alpha^{-1} \varepsilon^{\delta-\frac{3}{2}}. \]

Of course we have the same estimate for \(z' \). Moreover, according to (4.12) we have for all \(\varepsilon \in [0,\varepsilon_0] \)
\[\left\| \frac{\partial}{\partial z} F_z(\varepsilon) \right\| = \|Q(\varepsilon)G_z(\varepsilon)^2Q(\varepsilon)\| \leq \|G_z(\varepsilon)Q(\varepsilon)\| \lesssim \frac{1}{\alpha^2 \varepsilon}, \]
and hence
\[\|F_z(\varepsilon) - F_{z'}(\varepsilon)\| \lesssim \frac{|z - z'|}{\alpha^2 \varepsilon}. \]
Given \(z \) and \(z' \) we take
\[\varepsilon = \left(\frac{|z - z'|}{\alpha} \right)^\frac{2}{2\delta+1}. \]
If \(c_0 \) was chosen small enough then \(\varepsilon \in [0,\varepsilon_0] \), and we obtain
\[\|F_z(0) - F_{z'}(0)\| \lesssim \alpha^{-\frac{2\delta}{2\delta+1}} |z - z'|^{\frac{2\delta+1}{2\delta+1}}, \]
which is exactly (4.18). Now for all \(\lambda \in I \) the function
\[\mu \mapsto \langle A \rangle^{-\delta} (H - (\lambda + i\mu))^{-1} \langle A \rangle^{-\delta} \]
has a limit when \(\mu \) goes to 0+ . Taking the limit \(\text{Im } z, \text{Im } z' \to 0^+ \) in (4.18) proves that this limit is a Hölder-continuous function of index \(\frac{2\delta-1}{2\delta+1} \).

To conclude we have to give a proof of Lemma 4.3:
Proof of Lemma 4.3. The proof is inspired by the proof of Lemma 1.2.1 in [ABG].

- For $\theta \in \mathbb{R}$ we set
 \[\hat{H}_\theta = e^{i\theta A} \hat{H}_0 e^{-i\theta A} \in \mathcal{L}(\mathcal{K}, \mathcal{K}^*). \]

We first prove that the map $\theta \mapsto \hat{H}_\theta$ is strongly C^1 and that for all $\theta, \tau \in \mathbb{R}$ and $\varphi \in \mathcal{K}$ we have in \mathcal{K}^*
 \[(\hat{H}_\tau - \hat{H}_0)\varphi = -\int_0^\tau e^{isA} B_0 e^{-isA} \varphi \, ds. \tag{4.19} \]

This gives in particular
 \[\| \hat{H}_\tau - \hat{H}_0 \|_{\mathcal{L}(\mathcal{K}, \mathcal{K}^*)} \lesssim |\tau - \theta| \| B_0 \|_{\mathcal{L}(\mathcal{K}, \mathcal{K}^*)}. \tag{4.20} \]

Let $\theta \in \mathbb{R}$ and $\varphi \in \mathcal{E}$. For $\varepsilon \in \mathbb{R}^*$ we have
 \[\frac{\hat{H}_{\theta + \varepsilon} - \hat{H}_\theta}{\varepsilon} \varphi = e^{i(\theta + \varepsilon)A} \hat{H}_0 e^{-i(\theta + \varepsilon)A} \varphi + e^{i\theta A} e^{i\varepsilon A} - 1 \varepsilon} \varphi + e^{i\theta A} e^{i\varepsilon A} - 1 \varepsilon} \varphi, \tag{4.21} \]

and hence the first term in the right-hand side of (4.21) goes to $-i\theta A e^{-i\theta A} \varphi$ in \mathcal{K}^* when ε goes to 0. Now let $g = \hat{H}_{\theta + \varepsilon} e^{-i\theta A} \varphi \in \mathcal{K}^*$. Since $D(A)$ is dense in \mathcal{K}^*, we can consider a sequence $(g_n)_{n \in \mathbb{N}} \in D(A)^N$ such that $g_n \to g$ in \mathcal{K}^*. For all $n \in \mathbb{N}$ we have in \mathcal{H}:
 \[\frac{e^{i\varepsilon A} - 1}{\varepsilon} g_n - iA g_n = \frac{i}{\varepsilon} \int_0^\varepsilon (e^{i\tau A} - 1) A g_n \, d\tau. \]

In \mathcal{E}^* we can let n go to infinity (we use the Lebesgue dominated convergence theorem for the right-hand side). We obtain that the equality holds in \mathcal{E}^* when g_n is replaced by g, and hence the second term in the right-hand side of (4.21) goes to $i e^{i\theta A} \hat{H}_0 e^{-i\theta A} \varphi$ in \mathcal{E}^*. This proves that the map $\theta \mapsto \hat{H}_\theta \varphi$ is differentiable with derivative $-i\theta A [\hat{H}_0, iA] e^{-i\theta A} \varphi \in \mathcal{E}^*$, and hence (4.19) holds in $\mathcal{L}(\mathcal{E}, \mathcal{E}^*)$. Since $B_0 = [\hat{H}_0, iA]$ extends to an operator in $\mathcal{L}(\mathcal{K}, \mathcal{K}^*)$, this is the case for both terms in (4.19) and we have the equality in $\mathcal{L}(\mathcal{K}, \mathcal{K}^*)$.

- On $\mathcal{L}(\mathcal{K}, \mathcal{K}^*)$ we have $[\hat{H}_0, e^{i\theta A}] = (\hat{H}_0 - \hat{H}_\theta) e^{i\theta A}$ and hence for $t \in \mathbb{R}$ and $\theta \in \mathbb{R}^*$ we have in the strong sense in $\mathcal{L}(\mathcal{K}, \mathcal{K}^*)$:
 \[e^{it\hat{H}_0} e^{i\theta A} - 1 \frac{i}{i\theta} e^{it\hat{H}_0} e^{i\theta A} - 1 \frac{i}{i\theta} e^{i\varepsilon H_0} [i\hat{H}_0, e^{i\theta A}] e^{i(i-t)\hat{H}_0} \, ds = \int_0^t e^{i\varepsilon H_0} \hat{H}_0 - \hat{H}_\theta e^{i\theta A} e^{i(i-t)\hat{H}_0} \, ds. \]

The operator $e^{i\theta A}$ goes strongly to 1 in $\mathcal{L}(\mathcal{K})$ and $e^{\frac{i\varepsilon A}{i\theta} - 1}$ converges strongly to A in $\mathcal{L}(\mathcal{E}, \mathcal{K})$ and $\mathcal{L}(\mathcal{K}^*, \mathcal{E}^*)$. Moreover
 \[e^{i\varepsilon H_0} \hat{H}_0 - \hat{H}_\theta e^{i\theta A} e^{i(i-t)\hat{H}_0} \]

is uniformly bounded in $\mathcal{L}(\mathcal{K}, \mathcal{K}^*)$ according to (4.20). Since $\frac{\hat{H}_0 - \hat{H}_\theta}{\theta} \to B_0$ strongly in $\mathcal{L}(\mathcal{K}, \mathcal{K}^*)$ when θ goes to 0 (see (4.19)) we can apply Lebesgue dominated convergence to obtain
 \[[e^{it\hat{H}_0}, A] = \int_0^t e^{i\varepsilon H_0} B_0 e^{i(i-t)\hat{H}_0} \, ds, \]

in the strong sense in $\mathcal{L}(\mathcal{E}, \mathcal{E}^*)$. But the right-hand side defines an operator in $\mathcal{L}(\mathcal{K}, \mathcal{K}^*)$, so the operator on the left has an extension in $\mathcal{L}(\mathcal{K}, \mathcal{K}^*)$ and
 \[\| [e^{it\hat{H}_0}, A] \|_{\mathcal{L}(\mathcal{K}, \mathcal{K}^*)} \lesssim |t| \| B_0 \|_{\mathcal{L}(\mathcal{K}, \mathcal{K}^*)}. \tag{4.22} \]

- Let $\psi : x \mapsto \phi(x)(x-i)^2$ and $\Psi = \psi(H_0)$. We have $\Phi = (H_0 - i)^{-1}\Psi(H_0 - i)^{-1}$. On $\mathcal{L}(\mathcal{E}, \mathcal{E}^*)$ we have
 \[\| \Psi, A \| = \frac{1}{\sqrt{2\pi}} \int_\mathbb{R} [e^{it\hat{H}_0}, A] \psi(t) \, dt. \]
The right-hand side extends to an operator in $\mathcal{L}(\mathcal{K}, \mathcal{K}^*)$. Then this is also the case for the left-hand side, and moreover
\[
\|[\Psi, A]\|_{\mathcal{L}(\mathcal{K}, \mathcal{K}^*)} \lesssim \|B_0\|_{\mathcal{L}(\mathcal{K}, \mathcal{K}^*)} \int_{\mathbb{R}} |\hat{\psi}(t)| \, dt.
\]
Then
\[
[\Phi, A] = [(H_0 - i)^{-1}, A]\Psi(H_0 - i)^{-1} + (H_0 - i)^{-1}[\Psi, A](H_0 - i)^{-1}
\]
+ $(H_0 - i)^{-1}\Psi [(H_0 - i)^{-1}, A]$. Since
\[
\left[(H_0 - i)^{-1}, A\right] = i(H_0 - i)^{-1}B_0(H_0 - i)^{-1} \in \mathcal{L}(\mathcal{K}^*, \mathcal{K}),
\]
this proves that $[\Phi, A] \in \mathcal{L}(\mathcal{K}^*, \mathcal{K})$ and
\[
\|[\Phi, A]\|_{\mathcal{L}(\mathcal{K}^*, \mathcal{K})} \lesssim \|B_0\|_{\mathcal{L}(\mathcal{K}, \mathcal{K}^*)}
\]
Now it only remains to write
\[
[M_0, A] = [\Phi, A][B + \beta\Theta]\Phi + \Phi[B + \beta\Theta, A]\Phi + \Phi(B + \beta\Theta)\Phi, A
\]
to conclude the proof.

\[\square\]

5. **Multiple commutator estimates**

In this section we generalize the multiple resolvent estimates known for a self-adjoint operator (see [JMP84, Jen85]) or for the perturbation by a dissipative operator (see [Roy10b, BR14]).

Let $N \geq 2$ be fixed for all this section. We will use the notation of Definition 2.9. Thus the symbol “\lesssim” will stand for “$\leq C$” where C is a constant which depends on $C_{\Theta}, I, J, \delta, \beta$ and Υ_N.

For $n \in \{1, \ldots, N\}$ and $\varepsilon \in[0,1]$ we set
\[
C_n(\varepsilon) = \sum_{j=1}^{n} \frac{(-i\varepsilon)^j}{j!} B_j \in \mathcal{L}(\mathcal{K}, \mathcal{K}^*). \tag{5.1}
\]

In order to prove multiple resolvent estimates, we first need some estimates for the inverse of $(\hat{H} + C_n(\varepsilon) - z)$. It is not clear that this operator has an inverse, since for $n \geq 3$ there is an anti-dissipative term in $C_n(\varepsilon)$, but it will be the case for ε small enough. The following result generalizes Lemma 3.1 in [JMP84] (see also Lemma 3.1 in [Roy10b]) to our setting:

Proposition 5.1. Suppose A is a conjugate operator for H up to order N on J with bounds $(\alpha, \beta, \Upsilon_N)$.

(i) There exists $\varepsilon_N > 0$ such that for $n \in \{1, \ldots, N\}$, $z \in \mathbb{C}_{I, \varepsilon}$ and $\varepsilon \in[0, \varepsilon_N]$ the operator $(\hat{H} + C_n(\varepsilon) - z)$ has a bounded inverse in $\mathcal{L}(\mathcal{K}^*, \mathcal{K})$, which we denote by $G_n^z(\varepsilon)$.

(ii) For $n \in \mathbb{N}$, $z \in \mathbb{C}_{I, \varepsilon}$ and $\varepsilon \in[0, \varepsilon_N]$ we have
\[
\|G_n^z(\varepsilon)\|_{\mathcal{L}(\mathcal{K}^*, \mathcal{K})} \lesssim \frac{1}{\alpha \varepsilon}
\]
and
\[
\left\|G_n^z(\varepsilon) (A)^{-1}\right\|_{\mathcal{L}(\mathcal{H}, \mathcal{K})} \lesssim \frac{1}{\alpha \sqrt{\varepsilon}}
\]

(iii) The function $\varepsilon \in[0, \varepsilon_N] \mapsto G_n^z(\varepsilon)$ is differentiable in $\mathcal{L}(\mathcal{K}^*, \mathcal{K})$. Moreover in $\mathcal{L}(\mathcal{D}(A), \mathcal{D}(A)^*)$ we have the equality
\[
\frac{d}{d\varepsilon} G_n^z(\varepsilon) = [G_n^z(\varepsilon), A] - i \left(\frac{-i\varepsilon}{n!}\right) G_n^z(\varepsilon) B_{n+1} G_n^z(\varepsilon).
\]

For the proof of Proposition 5.1 we need the following lemma, inspired by the standard technique for factored perturbations (see [Kat66]):

Lemma 5.2. Let $T \in \mathcal{L}(\mathcal{K}, \mathcal{K}^*)$ and assume that T has an inverse $T^{-1} \in \mathcal{L}(\mathcal{K}^*, \mathcal{K})$. Let $P_1 \in \mathcal{L}(\mathcal{H}, \mathcal{K}^*)$ and $P_2 \in \mathcal{L}(\mathcal{K}, \mathcal{H})$ be such that $\|P_2 T^{-1} P_1\|_{\mathcal{L}(\mathcal{H})} < 1$. Then $T + P_1 P_2 \in \mathcal{L}(\mathcal{K}, \mathcal{K}^*)$ has a bounded inverse given by $T^{-1} - T^{-1} P_1 \Gamma^{-1} P_2 T^{-1} \in \mathcal{L}(\mathcal{K}^*, \mathcal{K})$, where $\Gamma = 1 + P_2 T^{-1} P_1 \in \mathcal{L}(\mathcal{H})$.

Proof of Lemma 5.2. The assumptions ensure that Γ is bounded on \mathcal{H} with bounded inverse, so the operator $R = T^{-1} - T^{-1}P_1\Gamma^{-1}P_2T^{-1}$ is well-defined in $\mathcal{L}(\mathcal{K}^*, \mathcal{K})$. We only have to check that R is indeed an inverse for $T + P_1P_2$. On \mathcal{K}^* we have

\[
(T + P_1P_2)R = 1 + P_1P_2T^{-1} - P_1\Gamma^{-1}P_2T^{-1} - P_1P_2T^{-1}P_1\Gamma^{-1}P_2T^{-1} \\
= 1 + P_1(1 - \Gamma^{-1} - P_2T^{-1}P_1\Gamma^{-1})P_2T^{-1} \\
= 1 + P_1(1 - (1 + P_2T^{-1}P_1)\Gamma^{-1})P_2T^{-1} \\
= 1.
\]

Similarly we have on \mathcal{K}:

\[
R(T + P_1P_2) = 1 + T^{-1}P_1P_2 - T^{-1}P_1\Gamma^{-1}P_2 - T^{-1}P_1\Gamma^{-1}P_2T^{-1}P_1P_2 \\
= 1 + T^{-1}P_1(1 - \Gamma^{-1} - P_2T^{-1}P_1)P_2 \\
= 1. \quad \square
\]

Proof of Proposition 5.1. We use the notation introduced in Section 4.

- Let $c_0 > 0$ be given by Proposition 4.5. The operator $\Phi\Theta\Phi$ is bounded and self-adjoint on \mathcal{H}. It is also non-negative, so its square root $\sqrt{\Phi\Theta\Phi}$ is well-defined as a bounded operator on \mathcal{H}. As in Proposition 4.5, we write \mathcal{K}_0 either for \mathcal{H} or \mathcal{K}. Then for $Q \in \mathcal{L}(\mathcal{K}_0^*, \mathcal{K}_0)$, $z \in \mathbb{C}_{I^+, \varepsilon} \in [0, \varepsilon_0]$ and $\varphi \in \mathcal{K}_0$ we have according to Proposition 4.5:

\[
\langle \Phi\Theta G_z(\varepsilon)Q\varphi, \Phi G_z(\varepsilon)Q\varphi \rangle \lesssim \left(\|Q\|^2_{\mathcal{L}(\mathcal{K}_0^*)} + \|Q^*G_z(\varepsilon)Q\|_{\mathcal{L}(\mathcal{K}_0^*, \mathcal{K}_0)} \right) \|\varphi\|^2_{\mathcal{K}_0}.
\]

This proves that

\[
\left\| \sqrt{\Phi\Theta\Phi}G_z(\varepsilon)Q \right\|_{\mathcal{L}(\mathcal{K}_0^*, \mathcal{K}_0)} \lesssim \left(\|Q\|^2_{\mathcal{L}(\mathcal{K}_0^*)} + \|Q^*G_z(\varepsilon)Q\|_{\mathcal{L}(\mathcal{K}_0^*, \mathcal{K}_0)} \right)^{1/2}.
\]

(5.2)

Applied with $Q = \sqrt{\Phi\Theta\Phi} \in \mathcal{L}(\mathcal{H})$, this gives

\[
\sup_{\varepsilon \in [0, \varepsilon_0]} \sup_{z \in \mathbb{C}_{I^+, \varepsilon}} \left\| \sqrt{\Phi\Theta\Phi}G_z(\varepsilon)\sqrt{\Phi\Theta\Phi} \right\|_{\mathcal{L}(\mathcal{H})} < +\infty.
\]

(5.3)

- For $z \in \mathbb{C}_{I^+, \varepsilon}$ and $\varepsilon \in [0, \varepsilon_0]$ (where $\varepsilon_0 \in [0, \varepsilon_0]$ is chosen small enough) we can apply Lemma 5.2 with $T = (\tilde{H} - i\varepsilon BM - z) \in \mathcal{L}(\mathcal{K}, \mathcal{K}^*)$, $P_1 = i\varepsilon\beta\sqrt{\Phi\Theta\Phi} \in \mathcal{L}(\mathcal{H})$ and $P_2 = \sqrt{\Phi\Theta\Phi} \in \mathcal{L}(\mathcal{H})$. We obtain that the operator $(\tilde{H} - i\varepsilon\Phi B\Phi - z)$ has a bounded inverse $G_z^\theta(\varepsilon) \in \mathcal{L}(\mathcal{K}^*, \mathcal{K})$, given by

\[
G_z^\theta(\varepsilon) = G_z(\varepsilon) - i\varepsilon\beta G_z(\varepsilon)\sqrt{\Phi\Theta\Phi}\Gamma_z^\theta(\varepsilon)^{-1}\sqrt{\Phi\Theta\Phi}G_z(\varepsilon),
\]

(5.4)

where

\[
\Gamma_z^\theta(\varepsilon) = 1 + i\varepsilon\beta\sqrt{\Phi\Theta\Phi}G_z(\varepsilon)\sqrt{\Phi\Theta\Phi} \in \mathcal{L}(\mathcal{H}).
\]

In particular $\Gamma_z^\theta(\varepsilon)^{-1}$ is bounded in $\mathcal{L}(\mathcal{H})$ uniformly with respect to $z \in \mathbb{C}_{I^+, \varepsilon}$ and $\varepsilon \in [0, \varepsilon_0]$. Corollary 4.6 and estimate (5.2) applied with $Q = \text{Id}_{\mathcal{K}^*}$ give

\[
\left\| \sqrt{\Phi\Theta\Phi}G_z(\varepsilon) \right\|_{\mathcal{L}(\mathcal{K}^*, \mathcal{H})} \lesssim \frac{1}{\sqrt{\alpha}\sqrt{\varepsilon}}.
\]

With the similar estimate for $G_z(\varepsilon)\sqrt{\Phi\Theta\Phi}$ and (5.4) we obtain

\[
\|G_z^\theta(\varepsilon)\|_{\mathcal{L}(\mathcal{K}, \mathcal{K}^*)} \lesssim \frac{1}{\alpha\varepsilon}.
\]

(5.5)

With Proposition 4.5 we can check similarly that

\[
\|G_z^\theta(\varepsilon)\Phi^{-1}\|_{\mathcal{L}(\mathcal{K}, \mathcal{K}^*)} \lesssim \frac{1}{\sqrt{\alpha}\sqrt{\varepsilon}}
\]

(5.6)

and

\[
\|G_z^\theta(\varepsilon)\langle A \rangle^{-1}\|_{\mathcal{L}(\mathcal{H}, \mathcal{K})} \lesssim \frac{1}{\sqrt{\alpha}\sqrt{\varepsilon}}.
\]

(5.7)

- Now we want to apply Lemma 5.2 with $T = (\tilde{H} - i\varepsilon\Phi B\Phi - z)$, $P_1 = i\varepsilon\Phi^{-1}B\langle H_0 \rangle^{-\frac{1}{2}}$ and $P_2 = \langle H_0 \rangle^{\frac{1}{2}}\Phi$. According to (5.6) we have

\[
\|\langle H_0 \rangle^{\frac{1}{2}}\Phi G_z^\theta(\varepsilon)\Phi^{-1}B\langle H_0 \rangle^{-\frac{1}{2}}\|_{\mathcal{L}(\mathcal{H})} \lesssim \varepsilon \|\Phi G_z^\theta(\varepsilon)\Phi^{-1}\|_{\mathcal{L}(\mathcal{K}, \mathcal{K}^*)} \|B\|_{\mathcal{L}(\mathcal{K}, \mathcal{K})} \lesssim \sqrt{\varepsilon}.
\]

\[
\varepsilon \|\langle H_0 \rangle^{\frac{1}{2}}\Phi G_z^\theta(\varepsilon)\Phi^{-1}B\langle H_0 \rangle^{-\frac{1}{2}}\|_{\mathcal{L}(\mathcal{H})} \lesssim \varepsilon \|\Phi G_z^\theta(\varepsilon)\Phi^{-1}\|_{\mathcal{L}(\mathcal{K}, \mathcal{K}^*)} \|B\|_{\mathcal{L}(\mathcal{K}, \mathcal{K})} \lesssim \sqrt{\varepsilon}.
\]
So if \(\varepsilon \perp \in [0, \varepsilon_{\perp}] \) is chosen small enough we can apply Lemma 5.2 for \(\varepsilon \in [0, \varepsilon_{\perp}] \); for all \(z \in \mathbb{C}_{I, +} \) and \(\varepsilon \in [0, \varepsilon_{\perp}] \) the operator \((\tilde{H} - z - i\varepsilon B\Phi) \) has a bounded inverse \(G_z^\varepsilon (\varepsilon) \in \mathcal{L}(\mathcal{K}^*, \mathcal{K}) \) given by

\[
G_z^\varepsilon (\varepsilon) = G_z^{\varepsilon_0}(\varepsilon) - i\varepsilon G_z^{\varepsilon_0}(\varepsilon) \Phi^\perp B(\langle H_0 \rangle)^{-\frac{1}{2}} \Gamma_z^\varepsilon (\varepsilon)^{-1} \langle H_0 \rangle^\frac{1}{2} \Phi G_z^{\varepsilon_0}(\varepsilon),
\]

where

\[
\Gamma_z^\varepsilon (\varepsilon) = 1 + i\varepsilon \langle H_0 \rangle^\frac{1}{2} \Phi G_z^{\varepsilon_0}(\varepsilon) \Phi^\perp B(\langle H_0 \rangle)^{-\frac{1}{2}}.
\]

Then, as above we use (5.5), (5.6) and (5.7) to prove

\[
\|G_z^\varepsilon (\varepsilon)\|_{\mathcal{L}(\mathcal{K}^*, \mathcal{K})} \lesssim \frac{1}{\alpha \varepsilon}, \tag{5.8}
\]

\[
\|G_z^\varepsilon (\varepsilon) \Phi^\perp\|_{\mathcal{L}(\mathcal{K}^*, \mathcal{K})} \lesssim \frac{1}{\sqrt{\alpha \varepsilon \varepsilon}} \tag{5.9}
\]

and

\[
\|G_z^\varepsilon (\varepsilon) (A)^{-1}\|_{\mathcal{L}(\mathcal{H}, \mathcal{K})} \lesssim \frac{1}{\alpha \varepsilon}. \tag{5.10}
\]

- In order to prove the existence of \(G_z^1 (\varepsilon) \), it remains to apply Lemma 5.2 with \(T = (\tilde{H} - i\varepsilon B\Phi - z) \), \(P_1 = i\varepsilon B(\langle H_0 \rangle)^{-\frac{1}{2}} \) and \(P_2 = \langle H_0 \rangle^\frac{1}{2} \Phi^\perp \). We have

\[
\varepsilon \|\langle H_0 \rangle^\frac{1}{2} \Phi^\perp G_z^{\varepsilon_0}(\varepsilon) B(\langle H_0 \rangle)^{-\frac{1}{2}}\|_{\mathcal{L}(\mathcal{H})} \lesssim \varepsilon \|\Phi^\perp G_z^{\varepsilon_0}(\varepsilon)\|_{\mathcal{L}(\mathcal{K}^*, \mathcal{K})} \|B\|_{\mathcal{L}(\mathcal{K}^*, \mathcal{K})} \lesssim \sqrt{\varepsilon}.
\]

So if \(\varepsilon \perp \in [0, \varepsilon_{\perp}] \) is chosen small enough we can apply Lemma 5.2, which proves that for \(z \in \mathbb{C}_{I, +} \) and \(\varepsilon \in [0, \varepsilon_{\perp}] \) the operator \((\tilde{H} - i\varepsilon B - z) \) has a bounded inverse \(G_z^1 (\varepsilon) \in \mathcal{L}(\mathcal{K}^*, \mathcal{K}) \) given by

\[
G_z^1 (\varepsilon) = G_z^\varepsilon (\varepsilon) - i\varepsilon G_z^\varepsilon (\varepsilon) B(\langle H_0 \rangle)^{-\frac{1}{2}} \Gamma_z^\varepsilon (\varepsilon)^{-1} \langle H_0 \rangle^\frac{1}{2} \Phi^\perp G_z^\varepsilon (\varepsilon),
\]

where

\[
\Gamma_z^\varepsilon (\varepsilon) = 1 + i\varepsilon \langle H_0 \rangle^\frac{1}{2} \Phi^\perp G_z^{\varepsilon_0}(\varepsilon) B(\langle H_0 \rangle)^{-\frac{1}{2}}.
\]

Moreover we have

\[
\|G_z^1 (\varepsilon)\|_{\mathcal{L}(\mathcal{K}^*, \mathcal{K})} \lesssim \frac{1}{\alpha \varepsilon}. \tag{5.11}
\]

and

\[
\|G_z^1 (\varepsilon) (A)^{-1}\|_{\mathcal{L}(\mathcal{H}, \mathcal{K})} \lesssim \frac{1}{\alpha \sqrt{\varepsilon}}. \tag{5.12}
\]

- For \(n \in \{2, \ldots, N\} \) we have

\[
\|\langle H_0 \rangle^\frac{1}{2} G_z^1 (\varepsilon)(C_n(\varepsilon) - C_1(\varepsilon)) \langle H_0 \rangle^{-\frac{1}{2}}\|_{\mathcal{L}(\mathcal{H})} \lesssim \sum_{j=2}^{n} \varepsilon_j \|G_z^1 (\varepsilon)\|_{\mathcal{L}(\mathcal{K}^*, \mathcal{K})} \|B_j\|_{\mathcal{L}(\mathcal{K}^*, \mathcal{K})} \lesssim \varepsilon^2 \times \frac{1}{\alpha \varepsilon} \times \alpha \lesssim \varepsilon.
\]

Thus for \(\varepsilon \in [0, \varepsilon_N] \), \(\varepsilon_N \) chosen small enough, we can apply Lemma 5.2 with \(T = \tilde{H} + C_1(\varepsilon) - z \), \(P_1 = \langle C_n(\varepsilon) - C_1(\varepsilon) \rangle \langle H_0 \rangle^{-\frac{1}{2}} \) and \(P_2 = \langle H_0 \rangle^\frac{1}{2} \). This proves that the operator \(\tilde{H} + C_n(\varepsilon) - z \) has a bounded inverse in \(\mathcal{L}(\mathcal{K}^*, \mathcal{K}) \), given by

\[
G_z^n (\varepsilon) = G_z^1 (\varepsilon) - G_z^1 (\varepsilon)(C_n(\varepsilon) - C_1(\varepsilon)) \langle H_0 \rangle^{-\frac{1}{2}} (1 + G_z^1 (\varepsilon)(C_n(\varepsilon) - C_1(\varepsilon)))^{-1} \langle H_0 \rangle^\frac{1}{2} G_z^1 (\varepsilon).
\]

This proves the first statement, and the estimates are proved as above.

- Let \(\varepsilon \in [0, \varepsilon_N] \). For \(\varepsilon_2 \in [\varepsilon_N, \varepsilon_N] \) we have

\[
G_z^n (\varepsilon) - G_z^n (\varepsilon) = -G_z^n (\varepsilon)(C_n (\varepsilon) - C_n (\varepsilon)) G_z^n (\varepsilon).
\]

Since \(C_n \) is a continuous function in \(\mathcal{L}(\mathcal{K}, \mathcal{K}^*) \) and \(G_z^n (\varepsilon) \) is uniformly bounded in \(\mathcal{L}(\mathcal{K}^*, \mathcal{K}) \) (by a constant which depends on \(\alpha \)) on \([\varepsilon_N, \varepsilon_N] \), the map \(G_z^n (\varepsilon) \) is continuous in \(\mathcal{L}(\mathcal{K}^*, \mathcal{K}) \). Then we divide this equality by \(\varepsilon - \varepsilon \) et let \(\varepsilon \) go to \(\varepsilon \). We obtain that \(G_z^n (\varepsilon) \) is differentiable and

\[
\frac{d}{d\varepsilon} G_z^n (\varepsilon) = -G_z^n (\varepsilon) C_n'(\varepsilon) G_z^n (\varepsilon).
\]

The derivative \(C_n'(\varepsilon) \) is well-defined in \(\mathcal{L}(\mathcal{K}, \mathcal{K}^*) \). In the sense of forms on \(\mathcal{E} \) we can check that

\[
C_n'(\varepsilon) = [\tilde{H} + C_n(\varepsilon) - z, A] - \frac{(-i\varepsilon)^n}{n!} [B_n, A].
\]

But the right-hand side extends to an operator in \(\mathcal{L}(\mathcal{K}, \mathcal{K}^*) \), and the last statement of the proposition follows.
The following two results generalize Theorems 3.2 and 3.5 in [Jen85]:

Theorem 5.3. Suppose A is a conjugate operator for H up to order N on J with bounds $(\alpha, \beta, \Upsilon_N)$. Let $\delta_1, \delta_2 \geq 0$ be such that $\delta_1 + \delta_2 < N - 1$. Let I be a compact subinterval of J. Then there exists $\varepsilon \geq 0$ which only depends on C_Θ, J, I, δ_1, δ_2, β and Υ_N such that for all $z \in \mathbb{C}_{I,+}$ we have

$$\left\| (A)^{\delta_1} \mathbb{I}_R(A)(H - z)^{-1} \mathbb{I}_R(A) (A)^{\delta_2} \right\| \lesssim \frac{\varepsilon}{\alpha}.$$

Moreover for $\text{Re}(z) \in \hat{J}$ fixed this operator has a limit when $\text{Im}(z) \searrow 0$. This limit defines in $\mathcal{L}(\mathcal{H})$ a Hölder-continuous function of index $\frac{N - \delta_1 - \delta_2}{N + 1 + \delta_1}$ with respect to $\text{Re}(z)$.

Proof. Let ε_N be given by Proposition 5.1. For $z \in \mathbb{C}_{I,+}$ and $\varepsilon \in [0, \varepsilon_N]$ we set

$$F_z^N(\varepsilon) = (A)^{\delta_1} e^{\varepsilon A} \mathbb{I}_R(A) G_z^N(\varepsilon) \mathbb{I}_R(A) e^{-\varepsilon A} (A)^{\delta_2}.$$

According to Proposition 5.1, the functional calculus and the fact that $\| [B_N, A]\|_{\mathcal{L}(K, K^*)} \lesssim \alpha$ we have

$$\left\| \frac{d}{d\varepsilon} F_z^N(\varepsilon) \right\| = \frac{\varepsilon}{N!} \left\| (A)^{\delta_1} e^{\varepsilon A} \mathbb{I}_R(A) G_z^N(\varepsilon) [B_N, A] G_z^N(\varepsilon) \mathbb{I}_R(A) e^{-\varepsilon A} (A)^{\delta_2} \right\| \lesssim \varepsilon^{-\delta_1} \alpha^{-1} \varepsilon^{-N-2} \times \varepsilon^{-\delta_2} = \frac{\varepsilon^{N-\delta_1 - \delta_2 - 2}}{\alpha}.$$

Since $N - \delta_1 - \delta_2 - 2 > -1$, this proves that $F_z^N(\varepsilon)$ is uniformly bounded (we do not have to use Lemma 4.8 here). Now let $z, z' \in \mathbb{C}_{I,+}$ and $\varepsilon \in [0, \varepsilon_0]$. The previous estimates give

$$\| F_z^N(\varepsilon) - F_z^N(0) \| \leq \frac{\varepsilon^N}{\alpha} \varepsilon^{-\delta_1 - \delta_2} \text{ and } \| F_z^N(\varepsilon) - F_z^N(\varepsilon') \| \leq \frac{\varepsilon N}{\alpha^2} e^{-(\delta_1 + \delta_2 + 2)} |z - z'|.$$

We get the second statement as we did for Theorem 4.1, taking $\varepsilon = \alpha^{-\frac{1}{N + 1}} |z - z'|^{\frac{1}{N + 1}}$. \hfill \Box

Theorem 5.4. Suppose A is a conjugate operator for H up to order N on J with bounds $(\alpha, \beta, \Upsilon_N)$. Let $\delta \in \left[\frac{1}{2}, N \right]$. Then there exists $\varepsilon \geq 0$ which only depends on C_Θ, J, I, δ_1, δ_2, β and Υ_N such that for all $z \in \mathbb{C}_{I,+}$ we have

$$\left\| (A)^{-\delta} (H - z)^{-1} \mathbb{I}_R(A) (A)^{\delta-1} \right\|_{\mathcal{L}(\mathcal{H})} \leq \frac{\varepsilon}{\alpha},$$

and for $\text{Re}(z) \in \hat{J}$ fixed this operator has a limit when $\text{Im}(z) \searrow 0$. This limit defines in $\mathcal{L}(\mathcal{H})$ a Hölder-continuous function with respect to $\text{Re}(z)$. Moreover we have similar results for the operator

$$(A)^{\delta-1} \mathbb{I}_R(A)(H - z)^{-1} (A)^{-\delta}.$$

Proof. We follow the proof given in [Jen85]. It relies itself on the results of [Mou83]. We also refer to [Roy10a] for a proof in the dissipative case (perturbation by a dissipative operator). The case of a dissipative perturbation in the sense of forms does not rise new difficulties, so we omit the details. \hfill \Box

Now that we have Theorems 4.1, 5.3 and 5.4 we can follow the idea developed in [BR14, Sec. 5]. The purpose is not only to prove uniform estimates for the powers of the resolvent, but also to allow inserted factors. This is motivated by the wave equation. Indeed, the derivatives of the corresponding resolvent are not its powers in this case (see Example 5.7 below).

Let $n \in \{1, \ldots, N\}$. We consider $\Phi_0 \in \mathcal{L}(K, \mathcal{H})$, $\Phi_1, \ldots, \Phi_{n-1} \in \mathcal{L}(K, K^*)$ and $\Phi_n \in \mathcal{L}(\mathcal{H}, K^*)$. We assume (inductively) on $m \in \{1, \ldots, N\}$ that the operator

$$\text{ad}^m_{\alpha A}(\Phi_0) := [\text{ad}^m_{\alpha A}(\Phi_0), iA]$$

(with $\text{ad}^0_{\alpha A}(\Phi_0) = \Phi_0$), at least defined as an operator in $\mathcal{L}(E, E^*)$, can be extended to an operator in $\mathcal{L}(K, \mathcal{H})$. We assume similarly that the commutators $\text{ad}^m_{\alpha A}(\Phi_j)$ for $m \in \{1, \ldots, N\}$ and $j \in \{1, \ldots, n-1\}$ extend to operators in $\mathcal{L}(K, K^*)$ and finally that the commutators $\text{ad}^m_{\alpha A}(\Phi_n)$ for $m \in \{1, \ldots, N\}$ extend to operators in $\mathcal{L}(\mathcal{H}, K^*)$. Then for $j \in \{1, \ldots, n-1\}$ we set

$$\| \Phi_j \|_{L^N(\alpha A, \mathcal{K}, K^*)} = \sum_{m=0}^N \| \text{ad}^m_{\alpha A}(\Phi_j) \|_{\mathcal{L}(K, K^*)}.$$
We similarly define $\|\Phi_0\|_{\mathcal{C}_N(A,K,H)}$ and $\|\Phi_n\|_{\mathcal{C}_N(A,H,K^*)}$, and then

$$\|\Phi_0, \ldots, \Phi_n\|_{C^k_N} = \|\Phi_0\|_{\mathcal{C}_N(A,K,H)} \|\Phi_n\|_{\mathcal{C}_N(A,H,K^*)} \prod_{j=1}^{n-1} \|\Phi_j\|_{\mathcal{C}_N(A,K,K^*)}.$$

For $z \in \mathbb{C}_+$ we set

$$R_n(z) = \Phi_0(H - z)^{-1}\Phi_1(H - z)^{-1} \ldots \Phi_{n-1}(H - z)^{-1}\Phi_n,$$

(5.13)

The statement is the following:

Theorem 5.5. Suppose that the self-adjoint operator A is conjugate to the maximal dissipative operator H on J up to order N with bounds $(\alpha, \beta, \Upsilon_N)$. Let $I \subset J$ be a compact interval. Let $\delta \in]n - \frac{1}{2}, N[$ and $\delta_1, \delta_2 \geq 0$ such that $\delta_1 + \delta_2 < N - n$. Then there exists $c \geq 0$ such that

$$\left\| (A)_{I_{\mathbb{R}}(A)}^{|\delta|} R_n(z) (A)^{|\delta|} \right\| \leq \frac{c}{\alpha^n} \left\| (\Phi_0, \ldots, \Phi_n) \right\|_{C^k_N},$$

and

$$\left\| (A)^{|\delta|} I_{\mathbb{R}}(A) R_n(z) I_{\mathbb{R}}(A) (A)^{|\delta|} \right\| \leq \frac{c}{\alpha^n} \left\| (\Phi_0, \ldots, \Phi_n) \right\|_{C^k_N}.$$

Proof. We can follow the proof of the analogous Theorem 5.14 in [BR14]. We only briefly recall the strategy. With the identity

$$1 = (H - z)^{-1} = (H - i)^{-1} + (z - i)(H - i)^{-2} + (z - i)^2(H - i)^{-3}(H - z)^{-1}(H - i)^{-1},$$

we see that we can assume without loss of generality that the operators Φ_j and their commutators with A are in $\mathcal{L}(H)$. Then the idea is to start from the estimates for a single resolvent (see Theorems 4.1, 5.3 and 5.4), to prove analogous estimates with $(H - z)^{-1}$ replaced by an operator of the form $\Phi_j(H - z)^{-1} \Phi_k$ (for this we use the commutation properties between Φ_j and A), and finally we use Lemma 5.4 in [BR14] to obtain the multiple resolvent estimates with inserted factors. We omit the details and refer to the proof of Theorem 5.14 in [BR14].

Remark 5.6. With the same idea we could even prove uniform estimates for an operator of the form

$$R(z) = \Phi_0(H_1 - z)^{-1}\Phi_1(H_2 - z)^{-1} \ldots \Phi_{n-1}(H_n - z)^{-1}\Phi_n,$$

where H_1, \ldots, H_n are different maximal dissipative operators of the form discussed in Section 2 with uniform constant C_0 in (2.1) and with the same form domain K, under the assumption that A is conjugated to H_k on J with bounds $(\alpha_k, \beta, \Upsilon_N)$ for all $k \in \{1, \ldots, n\}$. Then the quotient α^n is replaced by $\alpha_1 \ldots \alpha_n$ in the estimates of the theorem.

Example 5.7. We consider the wave equation (3.4) on the half-space (3.9). Assume that $w_0 = 0$ on $\partial \Omega$. Let w be the solution of (3.4). For $\mu > 0$ we set $w_\mu(t) = \mathbb{1}_{\mathbb{R}_+}(t)e^{-it\mu}w(t)$. Then the inverse Fourier transform of w_μ,

$$\hat{w}(\tau) = \int_{\mathbb{R}} e^{it\tau} w_\mu(t) \, dt = \int_0^{+\infty} e^{it(\tau + \mu)}w(t) \, dt,$$

is solution of the problem

$$\left\{ \begin{array}{ll}
(-\Delta - z^2)\hat{w}_\mu(\tau) = -izw_0 + w_1 & \text{on } \Omega, \\
\partial_\nu\hat{w}_\mu(\tau) = iz\omega\hat{w}_\mu(\tau) & \text{on } \partial\Omega,
\end{array} \right.$$

where $z = \tau + i\mu$. In other words, we have

$$\hat{w}_\mu(\tau) = R(z)(-izw_0 + w_1) \quad \text{where} \quad R(z) = (H_{az} - z^2)^{-1}.$$

In order to study the properties of $\hat{w}_\mu(\tau)$ and hence those of $w(t)$ we have to prove uniform resolvent estimates for the derivative of $R(z)$ when $\text{Im}(z) < 0$ (see for instance Theorem 1.2 in [BR14] for the wave equation on \mathbb{R}^d). We can check that for $z \in \mathbb{C}_+$ we have

$$R'(z) = R(z)(i\Theta + 2z)R(z),$$

where Θ is the second order symbol of the wave operator.
we can prove the following result: For the general theory of self-adjoint dilations we refer to [Dav78] the following definition:

Definition 6.1. Let H be a maximal dissipative operator on a Hilbert space \mathcal{H}. The absolutely continuous subspace $\mathcal{H}_{ac}(H)$ of H is the closure of \mathcal{H} of

$$\mathcal{H}_{ac}(H) := \left\{ \varphi \in \mathcal{H} : \exists C_\varphi \geq 0, \forall \psi \in \mathcal{H}, \int_0^{+\infty} \left| \langle e^{-itH} \varphi, \psi \rangle_{\mathcal{H}} \right|^2 dt \leq C_\varphi \| \psi \|_{\mathcal{H}}^2 \right\}.$$

For a self-adjoint operator this definition coincide with the usual definition involving the spectral measure (see for instance Proposition 1.7, Theorem 1.3 and Corollary 1.4 in [Per83]).

In the self-adjoint case, the uniform resolvent estimates and the $L^2(\mathbb{R}, \mathcal{H})$ norm of the solution of the time-dependent problem are linked by the theory of relatively smooth operators in the sense of Kato (see [Kat66] and [RS79, §XIII.7]). It is less known that this link remains valid for dissipative operators.

In order to extend the self-adjoint theory of relative smoothness for a dissipative operator H, we use a self-adjoint dilation of H. For the general theory of self-adjoint dilations we refer to [NF10]. Here we only recall that a maximal dissipative operator H on a Hilbert space \mathcal{H} always has a self-adjoint dilation. This means that there exists a self-adjoint operator \hat{H} on some Hilbert space $\hat{\mathcal{H}}$ (which contains \mathcal{H} as a subspace) such that on $\mathcal{L}(\mathcal{H})$ we have

$$\forall z \in C_+, \quad P_H (\hat{H} - z)^{-1} I_{\mathcal{H}} = (H - z)^{-1},$$

$$\forall z \in C_+, \quad P_{\hat{H}} (\hat{H} - \overline{z})^{-1} I_{\mathcal{H}} = (H^* - \overline{z})^{-1},$$

$$\forall t \geq 0, \quad P_H e^{-itH} I_{\mathcal{H}} = e^{-itH},$$

$$\forall t \geq 0, \quad P_{\hat{H}} e^{it\hat{H}} I_{\mathcal{H}} = e^{itH*},$$

where $P_H \in \mathcal{L}(\mathcal{H}, \mathcal{H})$ denotes the orthogonal projection of \hat{H} on \mathcal{H} and $I_{\mathcal{H}} \in \mathcal{L}(\mathcal{H}, \mathcal{H})$ is the embedding of \mathcal{H} in \mathcal{H}. An explicit example of (minimal) self-adjoint dilation for the dissipative Schrödinger operator on \mathbb{R}^d is given in [Pav77].

Proposition 6.2. Let Q be a closed operator on \mathcal{H}. Assume that there exists $C \geq 0$ such that for all $z \in C_+$ and $\varphi \in \mathcal{D}(Q^*)$ we have

$$\langle (H^* - \overline{z})^{-1} Q^* \varphi, \varphi \rangle_{\mathcal{H}} \leq C \| \varphi \|_{\mathcal{H}}^2.$$

Then for $\psi \in \mathcal{H}$ we have $e^{-itH} \psi \in \mathcal{D}(Q)$ for almost all $t \geq 0$ and

$$\int_0^{+\infty} \| Q e^{-itH} \psi \|_{\mathcal{H}}^2 dt \leq C \| \psi \|_{\mathcal{H}}^2.$$

We also have $e^{itH*} \psi \in \mathcal{D}(Q)$ for almost all $t \geq 0$ and

$$\int_0^{+\infty} \| Q e^{itH*} \psi \|_{\mathcal{H}}^2 dt \leq C \| \psi \|_{\mathcal{H}}^2.$$
Proof. Let \hat{H} be a self-adjoint dilation of H on a Hilbert space $\hat{\mathcal{H}}$ which contains \mathcal{H} as a subspace. We can write $\mathcal{H} = \mathcal{H} \oplus \mathcal{H}^\bot$. We extend Q as an operator \hat{Q} on \mathcal{H} by 0 on \mathcal{H}^\bot. Then \hat{Q} is a closed operator on $\hat{\mathcal{H}}$ with domain $\mathcal{D}(\hat{Q}) = \mathcal{D}(Q) \oplus \mathcal{H}^\bot$. Then for all $z \in \mathbb{C}_+$ and $\hat{\phi} = (\varphi, \varphi^\bot), \psi = (\psi, \psi^\bot) \in \mathcal{D}(\hat{Q})$ we have
\[
\left\langle ((H - z)^{-1} - (\hat{H} - \tilde{\zeta})^{-1})\hat{Q}^* \tilde{\phi}, \hat{Q}^* \tilde{\psi} \right\rangle_{\hat{\mathcal{H}}} = \left\langle ((H - z)^{-1} - (H^* - \tilde{\zeta})^{-1})Q^* \varphi, Q^* \psi \right\rangle_{\mathcal{H}} \leq C \left\| \varphi \right\|_{\mathcal{H}} \left\| \psi \right\|_{\mathcal{H}} \leq C \left\| \tilde{\phi} \right\|_{\hat{\mathcal{H}}} \left\| \tilde{\psi} \right\|_{\hat{\mathcal{H}}}.
\]

Let $\tilde{\zeta} \in \hat{\mathcal{H}}$. According to Theorem XIII.25 in [RS79] we have $e^{-it\hat{H}} \tilde{\zeta} \in \mathcal{D}(\hat{Q})$ for almost all $t \in \mathbb{R}$ and
\[
\int_{\mathbb{R}} \left\| \hat{Q} e^{-it\hat{H}} \tilde{\zeta} \right\|_{\hat{\mathcal{H}}}^2 \, dt \leq C \left\| \tilde{\zeta} \right\|_{\hat{\mathcal{H}}}^2.
\]

Now let $\varphi \in \mathcal{H}$ and $\hat{\phi} = (\varphi, 0) \in \hat{\mathcal{H}}$. We have $e^{-itH} \varphi = P_\mathcal{H} e^{-itH} \hat{\varphi} \in P_\mathcal{H} \mathcal{D}(\hat{Q}) = \mathcal{D}(Q)$ for almost all $t \geq 0$ and moreover
\[
\int_0^{+\infty} \left\| Q e^{-itH^*} \varphi \right\|_{\mathcal{H}}^2 \, dt = \int_0^{+\infty} \left\| Q e^{-it\hat{H}} \hat{\varphi} \right\|_{\hat{\mathcal{H}}}^2 \, dt \leq C \left\| \tilde{\phi} \right\|_{\hat{\mathcal{H}}}^2 = C \left\| \varphi \right\|_{\mathcal{H}}^2.
\]

We conclude similarly for the integral of $\left\| Q e^{itH^*} \varphi \right\|_{\mathcal{H}}^2$.

\begin{corollary}
Under the assumptions of Proposition 6.2 we have $\text{Ran}(Q^*) \subset \mathcal{H}_{\text{c.c.}}^*(H)$.
\end{corollary}

Proof. Let $\varphi \in \text{Ran}(Q^*)$ and $\zeta \in \mathcal{H}$ be such that $\varphi = Q^* \zeta$. Then for $\psi \in \mathcal{H}$ we have
\[
\int_0^{+\infty} \left| \langle e^{-itH^*} \varphi, \psi \rangle_{\mathcal{H}} \right|^2 \, dt = \int_0^{+\infty} \left\| Q e^{itH^*} \psi \right\|_{\mathcal{H}}^2 \, dt \leq C \left\| \zeta \right\|_{\mathcal{H}}^2 \left\| \psi \right\|_{\mathcal{H}}^2.
\]

Theorem 4.1 gives an estimate as in Proposition 6.2 with $Q = (A)^{-\delta}$ but only for $z \in \mathbb{C}_{I,+}$ for some interval I. In order to obtain an estimate for all $z \in \mathbb{C}_+$ we have to localize spectrally. For this we are going to use a function of the self-adjoint part H_0 of H. We first prove the following lemma:

\begin{lemma}
Let $N \in \mathbb{N}_*$. Similarly to Definition 2.8, assume inductively that the commutators $B_n^\delta := \text{ad}_\delta^\mathcal{A}(H_0)$, at least defined as operators in $\mathcal{L}(\mathcal{E}, \mathcal{E}^*)$, extend to bounded operators on $\mathcal{L}(\mathcal{K}, \mathcal{K}^*)$ for $n = 1, \ldots, N$. Then for all $\delta \in [-N, N]$ and $\chi \in C^\infty(\mathbb{R})$ the operator $(A)^{-\delta} \chi(H_0)(A)^\delta$ extends to a bounded operator in $\mathcal{L}(\mathcal{K}, \mathcal{K}^*)$.
\end{lemma}

Proof. We consider an almost analytic extension $\tilde{\chi}$ of χ (see [DS99, Dav95]):
\[
\tilde{\chi} (x + iy) = \psi(y) \sum_{k=0}^{m} \chi^{(k)}(x) (iy)^k \frac{k!}{k!}
\]
where $m \geq N + 1$ and $\psi \in C^\infty([0,1])$ is supported on $[-2,2]$ and equal to 1 on $[-1,1]$. We have
\[
\frac{\partial \tilde{\chi}}{\partial \zeta} (x + iy) = \frac{i\psi'(y)}{2} \sum_{k=0}^{m} \chi^{(k)}(x) \frac{(iy)^k}{k!} + \frac{\psi(y)}{2} \chi^{(m+1)}(x) \frac{(iy)^m}{m!},
\]
and in particular for $\zeta \in \mathbb{C}$
\[
\left| \frac{\partial \tilde{\chi}}{\partial \zeta} (\zeta) \right| \leq |\text{Im} \zeta|^m \frac{1}{(\text{Re} \zeta)^{m+1}} \mathbb{1}_{\text{supp}(\chi)}(\zeta) \leq 2 (\text{Im} \zeta)^2 (\zeta).
\]
Thus we can write the Helffer-Sjöstrand formula for $\chi(H_0)$:
\[
\chi(H_0) = -\frac{1}{\pi} \int_{\zeta = x + iy \in \mathbb{C}} \frac{\partial \tilde{\chi}}{\partial \zeta} (\zeta) (\tilde{H}_0 - \zeta)^{-1} \, dx \, dy.
\]
Then we can check by induction on $n \in \{1, \ldots, N\}$ that the commutator $\text{ad}_\delta^\mathcal{A}(\chi(H_0))$ can be written as a sum of terms of the form
\[
\frac{\pm 1}{\pi} \int_{\mathbb{C}} \frac{\partial \tilde{\chi}}{\partial \zeta} (\zeta) (\tilde{H}_0 - \zeta)^{-1} B_n^\delta (\tilde{H}_0 - \zeta)^{-1} B_n^{\delta} \cdots (\tilde{H}_0 - \zeta)^{-1} B_n^{\delta} (\tilde{H}_0 - \zeta)^{-1} \, dx \, dy.
\]
where $p \in \{1, \ldots, n\}$ and $n_1, \ldots, n_p \in \mathbb{N}^*$ are such that $n_1 + \cdots + n_p = n$. For $\zeta \in \text{supp}(\chi)$ and $\text{Im}(\zeta) \neq 0$ we have

$$\left\| (\hat{H}_0 - \zeta)^{-1} \right\|_{\mathcal{L}(\mathcal{K}, \mathcal{K})} \lesssim \frac{1}{\text{Im}(\zeta)},$$

so with (6.1) we see that $\text{ad}^n_{A_\psi}(\chi(H_0))$ extend to an operator in $\mathcal{L}(\mathcal{K}, \mathcal{K})$ for $n \in \{0, \ldots, N\}$. Thus $(A)^{-\delta}_\chi(H_0) \langle A \rangle^\delta$ extends to a bounded operator for $\delta \in \{\sim N, \ldots, N\}$, and we conclude by interpolation.

Now we can prove the main result of this section:

Theorem 6.5. Assume that A is a conjugate operator to H on the open interval J, and let $\delta > \frac{1}{2}$. Then $\text{Ran}(\mathds{1}_J(H_0) \langle A \rangle^{-\delta}) \subset \mathcal{H}_{\text{ac}}(H)$.

Proof. Let I and I' be compact intervals such that $I \subset I' \subset I$. Let $\chi \in C_0^\infty(\mathbb{R})$ be supported in I and equal to 1 on a neighborhood of I. According to Lemma 6.4 and Theorem 4.1 (and Remark 4.2) the operator

$$(A)^{-\delta}_\chi(H_0)(H - z)^{-1}\chi(H_0) \langle A \rangle^{-\delta}$$

and its adjoint are bounded in $\mathcal{L}(\mathcal{H})$ uniformly in $z \in C_{I'^{+}}$. Then for $z \in C_{\mathbb{R}\setminus I', +}$ and $\varphi, \psi \in \mathcal{H}$ we have by the resolvent identity (see (2.2)):

$$\left| \left\langle (A)^{-\delta}_\chi(H_0)(H - z)^{-1}\chi(H_0) \langle A \rangle^{-\delta} \varphi, \psi \right\rangle_{\mathcal{H}} \right| \leq \left| \left\langle (A)^{-\delta}_\chi(H_0)(H_0 - z)^{-1}\chi(H_0) \langle A \rangle^{-\delta} \varphi, \psi \right\rangle_{\mathcal{H}} \right| + q_\varphi ((H - z)^{-1}\chi(H_0) \langle A \rangle^{-\delta} \varphi, (H_0 - \overline{z})^{-1}\chi(H_0) \langle A \rangle^{-\delta} \psi)
\leq \|\varphi\|_1 \|\psi\|_1 + q_\varphi ((H_0 - z)^{-1}\chi(H_0) \langle A \rangle^{-\delta} \varphi, (H_0 - \overline{z})^{-1}\chi(H_0) \langle A \rangle^{-\delta} \psi)\frac{1}{z}.$$

According to Proposition 4.4 and (2.1) we have

$$\left| \left\langle (A)^{-\delta}_\chi(H_0)(H - z)^{-1}\chi(H_0) \langle A \rangle^{-\delta} \right\rangle_1 \right| \leq 1 + \left| \left\langle (A)^{-\delta}_\chi(H_0)(H - z)^{-1}\chi(H_0) \langle A \rangle^{-\delta} \right\rangle_1 \right| \frac{1}{z},$$

and hence

$$\left\| (A)^{-\delta}_\chi(H_0)(H - z)^{-1}\chi(H_0) \langle A \rangle^{-\delta} \right\|_1 \leq 1.$$

Since we have the same estimate for $(H^* - \overline{z})^{-1}$ instead of $(H - z)^{-1}$, we conclude with Corollary 6.3 that $\text{Ran}(\chi(H_0) \langle A \rangle^{-\delta}) \subset \mathcal{H}_{\text{ac}}^\mathcal{H}(H)$. Since $\mathcal{H}_{\text{ac}}^\mathcal{H}(H_0)$ is closed in \mathcal{H} by definition, the result follows.

We go back to the Schrödinger operator on the dissipative wave guide discussed in Section 3, see (3.2)-(3.3). In [Roy14] we have proved that under a strong assumption on the absorption index then the norm of the solution of the Schrödinger equation (3.5) decays exponentially, which implies in particular that $\mathcal{H}_{\text{ac}}^\mathcal{H}(H_0) = L^2(\Omega)$. In general we cannot expect such a fast decay but the result concerning the $L^2(\mathbb{R}^+ \times \Omega)$ norm remains valid:

Proposition 6.6. With the notation of Section 3 we have $\mathcal{H}_{\text{ac}}^\mathcal{H}(H_0) = L^2(\Omega)$.

Proof. We recall that \mathcal{T} is the (discrete) set of thresholds. Let $\delta > \frac{1}{2}$. If $J \subset \mathbb{R} \setminus \mathcal{T}$ then according to Theorem 6.5 we have $\text{Ran}(\mathds{1}_J(H_0) \langle A_\psi \rangle^{-\delta}) \subset \mathcal{H}_{\text{ac}}(H_0)$. Since H_0 has no eigenvalue, the union of these sets for all suitable J is dense in $L^2(\Omega)$. Since $\mathcal{H}_{\text{ac}}(H_0)$ is closed in $L^2(\Omega)$, the result follows.

References

[ABG] W.O. Amrein, A. Boutet de Monvel-Berthier, and V. Georgescu. Notes on the N-body problem, Part I. Preprint Univ. de Genève UGVA 1988/11-598a.

[ABG91] W. Amrein, A. Boutet de Monvel, and V. Georgescu. C_0-groups, Commutator Methods and Spectral theory of N-body Hamiltonians, volume 135 of Progress in mathematics. Birkhäuser Verlag, 1991.

[BG10] N. Boussaid and S. Golénia. Limiting absorption principle for some long range perturbations of Dirac systems at threshold energies. Commun. Math. Phys., 299(3):677–708, 2010.

[BR14] J.-M. Bouclet and J. Royer. Local energy decay for the damped wave equation. Jour. Fonc. Anal., 266(2):4538–4615, 2014.

[CFKS87] H.L. Cycon, R.G. Froese, W. Kirsch, and B. Simon. Schrödinger operators with application to quantum mechanics and global geometry. Texts and monographs in physics. Springer-Verlag, 1987.
