I. INTRODUCTION

There has been considerable speculation about the nature of “second-generation” incompressible quantum liquid (IQL) states observed recently by Pan et al. Their incompressibility depends on spin and charge dynamics of the fractionally charged Laughlin quasiparticles (QPs). Pan’s experiment employed the fractional quantum Hall (FQH) effect\(^a\) a non-perturbative interaction many-body phenomenon, dependent on magnetic quantization of the two-dimensional single-electron energy spectrum into massively degenerate Landau levels (LLs). It coincides with the formation of electron IQLs and thus occurs at the particular fractional values of the LL filling factor, defined as \(\nu_e = 2\pi \varrho_e \lambda^2\) (where \(\varrho_e\) is the electron concentration and \(\lambda = (\hbar c/eB)^{1/2}\) is the magnetic length).

The emergence of IQLs is explained as follows by the composite fermion (CF) theory.\(^2\) Electrons partially filling the lowest LL are said to capture \(2p\) magnetic flux quanta \(\varrho_0 = \hbar c/e\) and become (weakly interacting) CFs moving in a reduced effective magnetic field, corresponding to a higher effective CF filling factor \(\nu_{CF}\). The most prominent IQL sequence at \(\nu_e = s(2p + 1)^{-1}\) (with \(s\) and \(p\) being a pair of integers) corresponds to \(\nu_{CF} = s\), i.e., to the integral quantum Hall effect of the CFs.

However, not all IQLs found in the lowest LL can be explained in this way. Recently, Pan et al.\(^1\) observed the FQH effect at \(\nu_e = \frac{4}{17}\), corresponding to \(\nu_{CF} = \frac{1}{4}\), i.e., to a partial filling of a CF-LL. This discovery demonstrated that CFs, like electrons, can form IQLs. The origin of incompressibility of Pan’s correlated CF liquid (also called a “second-generation” FQH state) has been vigorously studied for the last three years.\(^6,7,8,9,10,11,12\) However, some of even most fundamental questions remain controversial.

The subject of this paper is polarization of the \(\nu_e = \frac{4}{17}\) state. It is largely motivated by the wealth of theory of spin dynamics in the “first-generation” FQH states.\(^13,14,15,16,17,18,19,20\) However, our main goal is to extend the work of Chang et al.\(^22\) and address Pan’s experimental results in tilted magnetic fields which indicated ferromagnetic order. In the CF picture, this corresponds to a completely filled lowest CF-LL (0\(^\dagger\)) and a \(\frac{1}{4}\)-filled first excited CF-LL with the same spin (1\(^\dagger\)). Since the Laughlin \(\nu = \frac{1}{4}\) state in CF-LL\(_1\) was earlier ruled out\(^22\) on the form of short-range CF-CF interaction pseudopotential, the explanation for the observed incompressibility must be different. This distinction makes the polarized \(\nu_e = \frac{4}{17}\) state an object of intense investigation.\(^22\) Although several ideas were formulated (e.g., CF pairing\(^22\)), neither an analytic CF wavefunction nor an intuitive understanding for the incompressibility has been reached. A partially unpolarized state was also proposed\(^22\) with the \(\nu = \frac{1}{3}\) filling of the lowest CF-LL with reversed spin (0\(^\dagger\)). In contrast to the polarized state and due to a different form\(^22\) of CF-CF interaction in CF-LL\(_4\), it is expected to be a Laughlin CF liquid. However, this state has not yet been observed in experiment.

Let us summarize this remarkable situation as follows: The polarized state has been observed but it is not well understood, and the unpolarized state has not been observed but it appears to be much easier to understand. In this paper we calculate the single-particle and correlation energies in these two competing CF states, depending on the experimentally controlled parameters (electron layer width, concentration, and magnetic field). The main result is the spin phase diagram, from which we predict a spin transition at \(\nu_e = \frac{4}{17}\), induced e.g. by an additional electric field narrowing the electron layer. Suggested experimental demonstration of this transition would shine more light on the role played by spin of correlated CFs.

II. NUMERICAL MODEL

The calculations were done in Haldane’s spherical geometry\(^26\) convenient for the numerical studies of incompressible quantum liquids with short-range correlations. To model an extended (planar) 2D system of interacting particles filling a fraction \(\nu\) of a degenerate LL, their finite number \(N\) is considered within a shell of appropriate angular momentum \(l\) and degeneracy \(g = 2l + 1\) (containing states with different angular momentum projections, \(|m| \leq l\)). The assignment of the filling factor \(\nu\) to a finite system \((N, g)\) is not trivial. It requires identifying dependence \(g = \nu^{-1}N + \gamma\) which defines a series of finite systems representing an infinite state \(\nu\) (here, the
Laughlin correlated electrons at filling factor ν are obtained from the comparison of the Laughlin liquid and quantum-electron (QE) and reverse-spin quasielectron (QE$_R$) wavefunctions, but take advantage of the fact that the symmetry of angular momentum eigenstates $|l, m\rangle$ under 2D rotations mimics the symmetry of the planar eigenstates under 2D (magnetic) translations. Thus, the interaction matrix elements are guaranteed to obey general rules for a scalar operator in the basis of spherical harmonics, but the particular values are put into the model "by hand," so as to describe the actual interaction among the considered particles (on the plane). This is done by specifying Haldane pseudopotentials defined as interaction energy V as a function of relative angular momentum R. On a sphere relative and total pair angular momenta are related by $R + L = 2l$, and the matrix elements $(l_1, m_1; l_2, m_2) | V(L_3, m_3; l_3, m_3) \rangle$ are connected with $V(L)$ through the Clebsch-Gordan coefficients.

The many-body interaction Hamiltonian is diagonalized numerically in the configuration-interaction basis, using a Lanczos algorithm. The energy levels E are determined separately for each subspace of the total spin S and angular momentum L.

III. SINGLE-QUASIELECTRON ENERGIES

In the mean-field CF transformation, the liquid of Laughlin correlated electrons at filling factor $\nu = \frac{1}{3}$ is converted to the system of CFs with an effective filling factor $\nu_{CF} = \frac{1}{3}$. Thus, the low-energy dynamics of N_e electrons with Coulomb interaction in the lowest LL can be mapped onto that of $\sim \frac{1}{3} N_e$ CFs completely and rigidly filling the lowest CF-LL (0^\uparrow) and the excess of $N \approx \frac{1}{3} N_e$ CFs in the $\nu = \frac{1}{3}$ filled next lowest CF-LL (either 1^\uparrow or 0^\downarrow, depending on the relative magnitude of electron Zeeman energy E_Z and the effective CF cyclotron gap $\propto e^2/\lambda$). Each CF in the partially filled 1^\uparrow or 0^\downarrow LL represents a “normal” or “reversed-spin" quasi-electron (QE or QE$_R$) of the underlying incompressible Laughlin liquid, respectively.

The Coulomb energies ε_{QE} and ε_{QE_R} of these two QPs can be extracted from exact diagonalization of finite systems of N_e electrons in the lowest LL with the appropriate degeneracy g. The Laughlin ground state occurs at $g = 3N_e - 2 \equiv g_l$; it is non-degenerate ($L = 0$) and spin-polarized ($S = \frac{1}{2} N_e$). A single QE or QE$_R$ appears in the Laughlin liquid in the lowest states at $g = g_l - 1$ and either $S = \frac{1}{2} N_e$ or $\frac{1}{2} N_e - 1$, respectively. The QE and QE$_R$ energies ε (defined relative to the underlying Laughlin liquid) are obtained from the comparison of the $(N_e$-electron) energies at $g = g_l$ and $g_l - 1$.

IV. QUASIELECTRON INTERACTIONS

The weak effective CF–CF interactions are known with some accuracy from earlier studies. At least at sufficiently low CF fillings factors $\nu \leq \frac{1}{3}$, they can be well approximated by fixed Haldane pseudopotentials (independent of the CF-LL filling or spin polarization). The short-range QE–QE, QE$_R$–QE$_R$, and QE–QE$_R$ pseudopotentials can be obtained from finite-size diagonalization for N_e electrons with up to two reversed spins ($S = \frac{1}{2} N_e - 2$) at $g = g_l - 2$.

The result is a reliable account of the relative values $\Delta V_{R, R'} = V(R) - V(R')$ at small neighboring R and R', but the absolute values are not estimated very accurately. Fortunately, since vertical correction of $V(R)$ by a constant does not affect the many-CF wavefunctions and only rigidly shifts the entire energy spectrum, a few leading values of ΔV completely determine the (short-range)
CF correlations at a given ν. Therefore, the knowledge of those few approximate values of ∆V_{QER} and ∆V_{QE} was sufficient to establish that: (i) the QE’s form a Laughlin ν = \frac{1}{3} liquid21,24,25 which in finite N-QE systems on a sphere occurs at g = 3N - 2, and (ii) in contrast, the QEs form a different (probably paired) state29 at the same ν = \frac{1}{3}, which on a sphere occurs at g = 3N - 6.

However, the relative strength of QE–QE and QE–QER pseudopotentials \textit{V}_{QER} and \textit{V}_{QE} must also be known (in addition to ∆V) to compare the energies of many-QE and many-QE states (i.e., of the spin-polarized and unpolarized electron states at \nu = \frac{1}{3}). The absolute values of \textit{V}_{QER} and \textit{V}_{QE} can be obtained by matching the short-range behavior from exact diagonalization of small systems with the long-range behavior predicted for a pair of charges q = -\frac{1}{e}. Specifically, the short-range part of \textit{V}_{QER}(R), which describes a pair of CFs in the 1↑ CF-LL, is shifted to match \eta V_0(R), the electron pseudopotential in the lowest LL rescaled by \eta = (q^2\lambda_\nu^{-1})/(e^2\lambda_\nu^{-1}) = (q/e)^{5/2}. Similarly, the short-range part of \textit{V}_{QE}(R), related to the 1↑ CF-LL, is shifted to match \eta V_1(R).

The result in Fig. 2(a) for an ideal 2D layer was reported earlier22 in Fig. 2(b) the width dependence of the leading parameters ∆V has been plotted. It is noteworthy that \textit{V}_{QE} is much more sensitive to the electron layer width \textit{w} than \textit{V}_{QER}. This is explained by stronger oscillations in \textit{V}_{QE}(R) at \textit{w} = 0, which tend to weaken in wider wells (when the characteristic in-plane distances decrease relative to \textit{w}). The curves for \textit{V}_{QER}(1) and \textit{V}_{QE}(3) have been drawn with dashed lines, since the dominant pseudo-potential parameters will be avoided22 in the unpolarized and polarized ν = \frac{1}{3} CF ground states, respectively.

\[u = \frac{E + U_{\text{bckg}}}{N} \zeta. \]

Here, \(E \) is the interaction energy of the ground state of \textit{N} QE’s, \(U_{\text{bckg}} = -(Nq)^2/2R \) is a correction due to interaction with the charge-compensating background (with the sphere radius \(R = \lambda \sqrt{Q} \) taken for 2Q + 1 = \(N \), in analogy to the relation for electrons in the lowest LL). Factor \(\zeta = \sqrt{Q/(Q - 1)^{3/2}} \) is used to rescale the energy unit \(e^2/\lambda = \sqrt{Q} e^2/R \) from that corresponding to \(g_{\text{QER}} = 3N - 2 \) to that of an average \(\bar{g} = \frac{1}{N} (g_{\text{QER}} + g_{\text{QE}}) = 3N - 4 \), to allow for a later comparison of \(u \) calculated for QE’s and QEs at different \(g \)’s (and thus, at different magnetic lengths \(\lambda \) corresponding to the same area \(4\pi R^2 \)).

The correlation energies \(u \) were calculated for \textit{N} ≤ 12, and extrapolated to \(N \rightarrow 0 \) to eliminate the finite-size effects. Neither the particular form of \(U_{\text{bckg}} \) (i.e., the assumption of \(g = 2Q + 1 \) for the relation between \(R \) and \(\lambda \)) nor the rescaling by \(\zeta \) directly affect the extrapolated value (they only affect the size dependence, and thus the accuracy of extrapolation). For an ideal 2D system, the result of extrapolation is \(u_{\text{QER}} = -0.026 e^2/\lambda = -0.405 q e^2/\lambda \). This value is very close to \(\eta_{0} \), where \(u_{0} = -0.412 e^2/\lambda \) describes the Laughlin state of electrons in LL\textsubscript{0}. Good agreement confirms not only Laugh-
lin correlations among the QEs’s (which are guaranteed by the form of ΔQER and can also be verified directly by the analysis of pair amplitudes) but, more importantly, the accurate estimate of the absolute values of $QER(R)$ drawn in Fig. 2(a) and used in the N-QER calculation.

Let us turn to the QEs. The dominant QE–QE repulsion at $R = 3$ causes the QEs to form pairs rather than a Laughlin state at $\nu = \frac{1}{3}$ (although the exact wavefunction of this incompressible state is still unknown). The corresponding series of non-degenerate N-QE ground states on a sphere was identified12 at $g = 3N - 6$, different from the Laughlin sequence. The QE correlation energy u was calculated from the same Eq. (11), but with a different ζ_{QER} and ζ_{QE} we removed discrepancy between λ/R of finite N-QER and N-QE systems, in order to improve size convergence of $\Delta u = u_{QER} - u_{QE}$.

In an ideal 2D system ($w = 0$), the extrapolated value at $N^{-1} = 0$ is $u_{QER} = -0.013 e^2/\lambda$, twice smaller (in the absolute value) than u_{QER} of a Laughlin state. The difference $\Delta u = 0.013 e^2/\lambda$ is the key numerical result of this paper. The accuracy of this estimate can be judged from the extrapolation plot in Fig. 3(b).

The fact that $u_{QER} < u_{QE}$ can be explained from the comparison11 of QER and QE charge-density profiles $\rho(r)$. The roughly gaussian ρ_{QER} (up to normalization) very similar to ρ_0 of an electron in the lowest LL, yielding similar QER and electron pseudopotentials $V(R)$ and correlation energies u (in the η-rescaled units). The ring-like ρ_{QE} is more complicated and has a bigger radius, causing stronger (on the average) QE–QE repulsion. The estimate of how much stronger -- depends on the accurate matching of the short- and long-range QE–QE pseudopotentials in Fig. 2(a). Therefore, to gain more confidence, we compared u_{QER} with u_1 of the electrons filling $\nu = \frac{1}{3}$ of LL\textsubscript{1}, whose r_1 falls between ρ_{QER} and ρ_0 in terms of occupied area and the number of oscillations. For the known31 $g = 3N - 6$ sequence of non-degenerate $\nu = \frac{1}{3}$ ground states in LL\textsubscript{1} we obtained $u_1 = -0.32 e^2/\lambda$. Upon rescaling for the fractional QP charge, $\eta u_1 = -0.021 e^2/\lambda$ falls between $\eta u_0 \approx u_{QER} = -0.026 e^2/\lambda$ and $u_{QER} = -0.013$. This demonstrates that the difference between u_{QER} and u_{QE} is caused by the difference between ρ_{QER} and ρ_{QE}, and supports the obtained order of magnitude of Δu.

To demonstrate dependence of the correlation energies on layer width, in Figs. 3(a) and (b) we also showed data for $w = 8\lambda$. The extrapolated values for this very wide layer are $u_{QER} = -0.025 e^2/\lambda$ and $u_{QE} = -0.031 e^2/\lambda$. Significant decrease of both energies compared to $w = 0$ reflects an overall (averaged over in-plane distances, i.e., over R) reduction of the QE repulsion in wider wells caused by the spread of electron (and thus also QER and QE) wavefunctions in the z-direction. Due to different in-plane dynamics, u_{QER} and u_{QE} depend differently on width, and their difference $\Delta u = 0.06 e^2/\lambda$ at $w = 8\lambda$ is about twice smaller than at $w = 0$.

VI. SPIN PHASE DIAGRAM FOR $\nu_e = 4/11$

Whether QEs or QEs’s will form a $\nu = \frac{1}{3}$ state at $\nu_e = \frac{11}{3}$ depends on the competition of Coulomb and Zeeman energies. The condition for the QEs-QE transition is

$$\Delta \varepsilon + \Delta u = E_Z. \quad (2)$$

The competing phases differ in electron spin polarization ($P = 100\%$ vs 50%). They are both incompressible, but probably have different excitation gaps (and thus might not show equally strong FQH effect). In an ideal 2D electron layer, the excitation gap (for neutral excitations) of the polarized state can be expected12 below $0.005 e^2/\lambda$, and for the Laughlin state of QER’s it is estimated at $\sim 0.06\eta e^2/\lambda = 0.004 e^2/\lambda$ (note, however, that a much smaller value $\sim 0.001 e^2/\lambda$ was predicted in Ref. 21). The nature of charged excitations, and the corresponding transport gaps (especially in more realistic conditions, i.e., for $w > 0$, including LL mixing and disorder, etc.) are not known, and their prediction should require a much more extensive calculation.

Let us concentrate on the question of stability of either QER’s or QEs at $\nu_e = \frac{11}{3}$. In order to draw in Fig. 3(c) the phase diagram for GaAs heterostructures, we combined the estimated dependences of $\Delta \varepsilon(e^2/\lambda)$ and $\Delta u(e^2/\lambda)$ on w/λ (where $e^2\lambda^{-1}/\sqrt{B} = 4.49$ meV/T$^{1/2}$ and $\lambda\sqrt{B} = 25.6$ nm T$^{1/2}$) with published data22 on width dependence of the effective Landé factor g^*, governing the Zeeman splitting $E_Z = g^* \mu_B B$ (for $W > 30$ nm, it is $g^* = -0.44$ and $E_z/B = 0.03$ meV/T; in narrower wells, g^* increases, passing through zero at $W \approx 5.5$ nm; recall that $w \approx W + 3.3$ nm).

The most important phase boundary drawn in Fig. 3(c) divides the polarized and unpolarized $\nu_e = \frac{11}{3}$ states, i.e., the correlated QE and QER liquids at a finite $\nu = \frac{1}{3}$. In experiment of Pan et al. the polarized $\nu_e = \frac{11}{3}$ state was observed in a symmetric $W = 50$ nm GaAs quantum well at $B = 11$ T. The corresponding point (w, B) lies very close to predicted phase boundary, suggesting that the experimentally detected polarization depended critically on the choice of a very wide well. It is clear from Fig. 3(c) that the spin transition in narrower wells shifts quickly to higher magnetic fields (i.e., to higher electron concentrations $g_e = \nu_e(2\pi\lambda^2)^{-1}$), especially when the width dependence of g^* is taken into account. This suggests that the spin transition at $\nu_e = \frac{11}{3}$ might be confirmed in a similar experiment, carried out in a sample with the same W and θ_e, but with the layer width w tuned by the electric gates (inducing a controlled well asymmetry).

The role of QP interaction in stabilizing the QER phase is clear from the comparison of boundaries dividing correlated QE-QER liquids and non-interacting QE-QE ($\eta < \frac{4}{3}$) gases (the gas occurs at $\nu < \frac{4}{3}$, with the critical equation $\Delta \varepsilon = E_Z$; the CF gas-liquid transition was recently demonstrated by inelastic light scattering23). Additional boundaries (not shown here, but cf. Fig. 13(b) in Ref. 20) appear at even smaller B, defining the areas of stabili-
ity for a gas of CF skyrmions of different sizes.\(^\text{18,19,20,34}\) Note also that \(\Delta z\) is determined more accurately than \(\Delta u\), possibly explaining the incorrect position of the experimental point inside the predicted QE-gas/QE\(_R\)-liquid area.

VII. CONCLUSION

Combining composite fermion theory with exact numerical diagonalization we studied two spin states of the “second-generation” incompressible quantum liquid at \(\nu_e = \frac{4}{5}\). Our main result is prediction of a transition between these competing states, different not only by the spin polarization, but also by the microscopic mechanism of incompressibility (the nature of CF–CF correlation). Starting with effective interaction pseudopotentials of polarized and reversed-spin Laughlin quasielectrons (QE and QE\(_R\)), we determined their correlation energies \(u\) in conditions adequate for realistic 2D electron layers of different widths \(w\) and in different magnetic fields \(B\). This allowed us to draw a spin phase diagram of the \(\nu_e = \frac{4}{5}\) state in the \((w, B)\) coordinates. Comparison of our numerics with the experiment of Pan et al. is not conclusive. However, our prediction of the spin transition induced in the same quantum well by external electric gates offers a possibility of more accurate testing of the theory. Finally, we have only considered pure QE or QE\(_R\) states (i.e., confined ourselves to the extreme polarizations of \(P = 100\%\) and 50\% in constructing the \(\nu_e = \frac{4}{5}\) phase diagram), leaving out the possibility of mixed QE/QE\(_R\) states with intermediate \(P\) near the predicted phase boundary.

Acknowledgment

The authors thank Wei Pan for helpful discussions and sharing unpublished experimental data, and acknowledge partial support from grants DE-FG 02-97ER45657 of US DOE and N202-071-32/1513 of the Polish MNiSW.

1. W. Pan, H. L. Störmer, D. C. Tsui, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 90, 016801 (2003).
2. R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
3. D. C. Tsui, H. L. Störmer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).
4. D. Yoshioka, The Quantum Hall Effect (Springer-Verlag, New York, 2002); Perspectives in Quantum Hall Effects, edited by S. Das Sarma and A. Pinczuk, (Wiley, New York, 1997); T. Chakraborty and P. Pietiläinen, The Fractional Quantum Hall Effect (Springer, Heidelberg, 1988).
5. J. K. Jain, Phys. Rev. Lett. 63, 199 (1989); Science 266, 1199 (1994); Phys. Today 53, No. 4, 39 (2000).
6. J. H. Smet, Nature (London) 422, 391 (2003).
7. C.-C Chang and J. K. Jain, Phys. Rev. Lett. 92, 196806 (2004); M. R. Peterson and J. K. Jain, ibid. 93, 046402 (2004).
8. A. Lopez and E. Fradkin, Phys. Rev. B 69, 155322 (2004).
9. A. Wój, K.-S. Yi, and J. J. Quinn, Phys. Rev. B 69, 205322 (2004); A. Wój, D. Wodzinski, and J. J. Quinn, ibid. 71, 245331 (2005).
10. M. O. Goerbig, P. Lederer, and C. Morais Smith, Phys. Rev. Lett. 93, 216802 (2004); Phys. Rev. B 69, 155324 (2004).
11. A. Wój, D. Wodzinski, and J. J. Quinn, Phys. Rev. B 74, 035315 (2006).
12. J. J. Quinn and J. J. Quinn, Solid State Commun. 140, 52 (2006).
13. B. I. Halperin, Helv. Phys. Acta 56, 75 (1983).
14. T. Chakraborty and F. C. Zhang, Phys. Rev. B 29, 7032 (1984); F. C. Zhang and T. Chakraborty, ibid. 30, 7320 (1984); T. Chakraborty, P. Pietiläinen, and F. C. Zhang, Phys. Rev. Lett. 57, 130 (1986).
15. E. H. Rezayi, Phys. Rev. B 36, 5454 (1987); ibid. 43, 5944 (1991).
16. X. G. Wu, G. Dev, and J. K. Jain, Phys. Rev. Lett. 71, 153 (1993).
17. V. M. Apalkov, T. Chakraborty, P. Pietiläinen, and K. Niemelä, Phys. Rev. Lett. 86, 1311 (2001).
18. R. K. Kamilla, X. G. Wu, and J. K. Jain, Solid State Commun. 99, 289 (1996).
19. A. H. MacDonald and J. J. Palacios, Phys. Rev. B 58, R10171 (1998).
20. A. Wój, J. J. Quinn, Phys. Rev. B 66, 045323 (2002).
21. C. C. Chang, S. S. Mandal, and J. K. Jain, Phys. Rev. B 67, 121305 (2003).
22. A. Wój, J. J. Quinn, Phys. Rev. B 61, 2846 (2000).
23. S. S. Mandal and J. K. Jain, Phys. Rev. B 66, 155302 (2002).
24. K. Park and J. K. Jain, Phys. Rev. B 62, 13274 (2000).
25. I. Szlufarska, A. Wój, and J. J. Quinn, Phys. Rev. B 64, 165318 (2001).
26. F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983).
27. G. Fano, F. Ortolani, and E. Colombo, Phys. Rev. B 34, 2670 (1986).
28. F. D. M. Haldane, in The Quantum Hall Effect, edited by R. E. Prange and S. M. Girvin (New York: Springer-Verlag, 1987), Chap. 8, pp. 303–352.
29. S.-Y. Lee, V. W. Scarola, and J. K. Jain, Phys. Rev. Lett. 87, 256803 (2001); Phys. Rev. B 66, 085336 (2002).
30. P. Sitko, K.-S. Yi, and J. J. Quinn, Phys. Rev. B 56, 12417 (1997).
31. A. Wój, Phys. Rev. B 63, 125312 (2001).
32. M. J. Smilling, G. P. Flinn, A. S. Plaut, R. T. Harley, A. C. Tropper, R. Eccleston, and C. C. Philips, Phys. Rev. B 44, 11345 (1991).
33. Y. Gallais, T. H. Kirschenmann, I. Dujovne, C. F. Hirjibehedin, A. Pinczuk, B. S. Dennis, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 97, 036804 (2006).
34. D. R. Leadley, R. J. Nicholas, D. K. Maude, A. N. Utjuzh, J. C. Portal, J. J. Harris, and C. T. Foxon, Phys. Rev. Lett. 79, 4246 (1997).