Research Article

Genome Signature Difference between Deinococcus radiodurans and Thermus thermophilus

Hiromi Nishida, 1 Reina Abe, 2 Taishi Nagayama, 2 and Kentaro Yano 2

1 Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
2 Bioinformatics Laboratory, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan

Correspondence should be addressed to Hiromi Nishida, hnishida@iu.a.u-tokyo.ac.jp

Received 7 November 2011; Accepted 8 December 2011

The extremely radioresistant bacteria of the genus Deinococcus and the extremely thermophilic bacteria of the genus Thermus belong to a common taxonomic group. Considering the distinct living environments of Deinococcus and Thermus, different genes would have been acquired through horizontal gene transfer after their divergence from a common ancestor. Their guanine-cytosine (GC) contents are similar; however, we hypothesized that their genomic signatures would be different. Our findings indicated that the genomes of Deinococcus radiodurans and Thermus thermophilus have different tetranucleotide frequencies. This analysis showed that the genome signature of D. radiodurans is most similar to that of Pseudomonas aeruginosa, whereas the genome signature of T. thermophilus is most similar to that of Thermanaerovibrio acidaminovorans. This difference in genome signatures may be related to the different evolutionary backgrounds of the 2 genera after their divergence from a common ancestor.

1. Introduction

In the present bacterial taxonomic system, the extremely radioresistant bacteria of the genus Deinococcus and the extremely thermophilic bacteria of the genus Thermus belong to a common lineage with remarkably different characteristics [1, 2]. Comparative genomic analyses have shown that after their divergence from a common ancestor, Deinococcus species seem to have acquired numerous genes from various other bacteria to survive different kinds of environmental stresses, whereas Thermus species have acquired genes from thermophilic archaea and bacteria to adapt to high-temperature environments [3]. For example, the aspartate kinase gene of Deinococcus radiodurans has a different evolutionary history from that of Thermus thermophilus [4]. In addition, D. radiodurans has several unique protein families [5] and genomic characters [6], and there is no genome-wide synteny between D. radiodurans and T. thermophilus [7]. However, phylogenetic analyses based on both orthologous protein sequence comparison and gene content comparison have shown that the genomes of Deinococcus and Thermus are most closely related with each other [3, 8]. The trinucleotide usage correlations have been used to predict the functional similarity between two RecA orthologs of bacteria including D. radiodurans and T. thermophilus [9].

If the genes acquired through horizontal gene transfers are different between Deinococcus and Thermus, then the genomic base composition (GC content) and/or genome signature can be hypothesized to also be different between these 2 genera. However, the GC content of D. radiodurans (67%) is similar to that of T. thermophilus (69.4%). The genome signature, on the other hand, is a powerful basis for comparing different bacterial genomes [11–19].

Phylogenetic analyses based on genome signature comparison have been developed, and these analyses are useful for metagenomics studies [20]. It was reported that comparative study using the frequency of tetranucleotides is a powerful tool for the bacterial genome comparison [21]. In this study, we compared the relative frequencies
Figure 1: Neighbor-joining tree based on tetranucleotide sequence frequencies in 89 genomes. The frequencies for 89 bacteria were obtained from OligoWeb (oligonucleotide frequency search, http://insilico.ehu.es/oligoweb/). Each frequency vector consisted of 256 elements. The Euclidean distance between 2 vectors was calculated using the software package R (language and environment for statistical computing, http://www.R-project.org). On the basis of the distance matrix, a neighbor-joining tree was constructed using the MEGA software [10]. Numbers in parentheses indicate the GC content (percentage) of each genome sequence. Arrows indicate the positions of Thermus thermophilus and Deinococcus radiodurans.
of tetranucleotides in 89 bacterial genome sequences and determined the phylogenetic positions of *D. radiodurans* and *T. thermophilus*.

2. Methods

2.1. Construction of Phylogenetic Relationships Based on the Relative Frequencies of Tetranucleotides in 89 Genome Sequences. We compared the relative frequencies of tetranucleotides in the genome sequences. The frequencies of the 89 bacteria were obtained from OligoWeb (oligonucleotide frequency search, http://insilico.ehu.es/oligoweb/). The 89
Table 2: Distance between *Thermus thermophilus* and each bacterial using correspondence analysis.

Bacterial species	Distance
Thermanaerovibrio acidaminovorans	0.468763255
Symbiobacterium thermophilium	0.686400076
Geobacter sulfurreducens	0.756754453
Myxococcus xanthus	0.772836176
Streptomyes griseus	0.78527308
Thermomonospora curvata	0.791039191
Moorella thermoacetica	0.806329416
Syntrophobacter fumaroxidans	0.825184063
Deinococcus radiodurans	0.831109438
Rhodopseudomonas palustris	0.834908111
Azorhizobium caulinodans	0.837487399
Gloecapsa violacea	0.847382695
Rhodobacter capsulatus	0.857474011
Desulfatibacillum alkenivorans	0.876897744
Heliobacterium modesticum	0.886434587
Pseudomonas aeruginosa	0.902403886
Acidobacterium capsulatum	0.910464775
Thermococcus acidophilus	0.918025431
Acidobacterium capsulatum	0.940977424
Thermomicrobium roseum	0.958396462
Agrobacterium tumefaciens	0.993867563
Gemmatimonas aurantiaca	1.014357577
Ralslania solanacearum	1.014357577
Opitutus terrae	1.014357577
Chlorobium chlorochromatii	1.02758835
Chloroflexus aurantiacus	1.02758835
Pirelliia staleyi	1.047176443
Desulfobacterium hafniense DCB-2	1.051272244
Dehalococcoides ethenologique	1.071801398
Xylella fastidiosa	1.080146527
Thermobaculum terrenum	1.080146527
Aminobacterium colihominum	1.103447745
Syntrophomonas wolfei	1.119525557
Nitrosomonas europaea ATCC 19718	1.125942985
Escherichia coli K-12 MG1655	1.136082769
Neisseria meningitidis MC58	1.137392967
Fibrobacter succinogenes	1.147727362
Aquifex aeolicus	1.154770307
Thermotoga maritima	1.163190235
Coprothermobacter proteolyticus	1.187035315
Vibrio cholerae N16961	1.194131544
Carboxydothermus hydrogenoformans	1.202997317
Shewanella oneidensis	1.207081448
Bacillus subtilis	1.236980427
Coxiella burnetii RSA 493	1.237627206
Kosmotoga olearia	1.240199863
Altormonas macleodii	1.241401986
Bacteroides thetaaomicron	1.250498401
Chlamydia trachomatis	1.25907769

Table 2: Continued.

Bacterial species	Distance
Chlorobium chlorochromatii	1.264256111
Dentromicrobium acetiphilum	1.264320363
Nostoc sp. PCC 7120	1.283892849
Halothrixorium orei	1.307140057
Thermoaerobacter tengcongensis	1.321852789
Elusimicrobium minutum	1.327006319
Cyanothec sp. ATCC 51142	1.338924672
Helicobacter pylori	1.353623157
Veillonella parvula	1.366004516
Natraneraebactobacter thermophilus	1.374016605
Persephonella marina	1.384851067
Prochlorococcus marinus CCMP1375	1.392425502
Haemophilus influenzae Rd KW20	1.392980333
Anaerococcus prevotii	1.394012634
Eubacterium eligens	1.420199298
Dictyogloum turidum	1.42068199
Caldiviciculosiruptors acarachyticus	1.428805275
Caldiviciculosiruptors besic	1.430940559
Dictyogloum thermophilum	1.432160811
Petrogta mobilis	1.43247619
Fervidobacterium nodosum	1.436232766
Leptospira interrogans serovar lai 56601	1.445580854
Thermodesulfovibrio yellowstonii	1.44563432
Trichodesmium erythraeum	1.459253665
Sebaldella termitidis	1.49153819
Thermus solisphila melanesiensis	1.522817305
Deffribacter desulfuricans	1.541278701
Clostridium acetobutylicum	1.553667164
Mycoplasma genitalium	1.586376377
Campylobacter jejuni NCTC 11168	1.59002763
Leptotrichia buccalis	1.598390053
Borrelia burgdorferi B31	1.62648618
Rickettsia prowazekii	1.653875547
Candidatus Phytoplasma asteris	1.673704846
Fusobacterium nucleatum	1.674099107
Mesoplasma florum	1.701326765
Streptobacillus moniliformis	1.715886446
Brachyspira hydysenteriae	1.71796178
Ureaplasma parvum ATCC 700970	1.784252531

Bacterial species are part of a list that covers a wide range of bacterial species published in a previous report [8]. Each frequency vector consisted of 256 (4^4) elements. The Euclidean distance between 2 vectors was calculated using the software package R (language and environment for statistical computing, http://www.R-project.org). On the basis of the distance matrix, a neighbor-joining tree was constructed using the MEGA software [10].
2.2. Ranking Based on Similarities between the Relative Frequencies of Tetranucleotides according to Correspondence Analysis. Correspondence analysis [22], which is a multivariate analysis method for profile data, was performed against the relative frequencies of tetranucleotides in 89 genomes. Correspondence analysis summarizes an originally high-dimensional data matrix (rows (tetranucleotides) and columns (genomes)) into a low-dimensional projection (space) [23, 24]. Scores (coordinates) in the low-dimensional space are given to each genome. The distance between plots (genomes) in a low-dimensional space theoretically depends on the degree of similarity in the relative frequencies of tetranucleotides: a short distance means similar relative frequencies of tetranucleotides between genomes, whereas a long distance means different relative frequencies. Thus, distance can be used as an index for similarity among genomes in the relative frequencies of tetranucleotides.

Distances between all genome pairs were calculated, and then a ranking for distances was obtained.

3. Results and Discussion

In the neighbor-joining tree (Figure 1), *D. radiodurans* is located in the high-GC-content cluster, whereas *T. thermophilus* is grouped with *Thermanaerovibrio acidaminovorans* and their group is located away from the high-GC-content cluster. The neighbor-joining tree (Figure 1) was greatly influenced by the genomic GC content bias; most of the well-defined major taxonomic groups did not form a monophyletic lineage. This result indicates that each constituent of the well-defined major group has diversified by changing its genome signature during evolution. It is consistent with a previous paper indicating that microorganisms with a similar GC content have similar genome signature patterns [25].

Phylogenetic analysis according to genome signature comparison is not based on multiple alignment data. Thus, bootstrap analysis cannot be performed. In this paper, we estimated the similarity between 2 different tetranucleotide frequencies by using correspondence analysis. The correspondence analysis showed that the genome signature of *D. radiodurans* is most similar to that of *Pseudomonas aeruginosa* (Table 1), whereas the genome signature of *T. thermophilus* is most similar to that of *Th. acidaminovorans* (Table 2). Although the *D. radiodurans* genome signature has similarity to 18 bacterial species within the distance 0.5, the *T. thermophilus* genome signature has similarity only to *Th. acidaminovorans* within the same distance (Table 2). These results indicate that *T. thermophilus* has a different genome signature from those of bacteria included in the high-GC-content cluster (Figure 1).

Although Pearson’s correlation coefficient between the tetranucleotide frequencies of genomes of *D. radiodurans*
and *T. thermophilus* is 0.630 (Figure 2), that between the tetranucleotide frequencies of genomes of *D. radiodurans* and *Pseudomonas aeruginosa* is 0.935 (Figure 3) and that between the tetranucleotide frequencies of genomes of *Th. acidaminovorans* and *T. thermophilus* is 0.914 (Figure 4). These results support the results of the neighbor-joining and correspondence analyses.

The frequency of horizontal gene transfer between different bacteria may be associated with genome signature similarity. However, the tree topology based on genome signature (Figure 1) is different from that based on gene content [8]. This is caused by, among others, an amelioration of the tetranucleotide frequencies of genomes of *Pseudomonas aeruginosa* and *D. radiodurans* [9]. This is caused by, among others, an amelioration of the tetranucleotide frequencies of genomes of *Pseudomonas aeruginosa* and *D. radiodurans* [9].

Acknowledgment

The authors thank Professor Teruhiko Beppu for his valuable comments and encouragement.

References

[1] W. G. Weisburg, S. J. Giovannoni, and C. R. Woese, “The Deinococcus-Thermus phylum and the effect of rRNA composition on phylogenetic tree construction,” *Systematic and Applied Microbiology*, vol. 11, pp. 128–134, 1989.

[2] E. Griffiths and R. S. Gupta, “Distinctive protein signatures provide molecular markers and evidence for the monophyletic nature of the Deinococcus-Thermus phylum,” *Journal of Bacteriology*, vol. 186, no. 10, pp. 3097–3107, 2004.

[3] M. V. Omelchenko, Y. I. Wolf, E. K. Gaidamakova et al., “Comparative genomics of *Thermus thermophilus* and *Deinococcus radiodurans*: divergent routes of adaptation to thermophily and radiation resistance,” *BMC Evolutionary Biology*, vol. 5, article no. 57, 2005.

[4] H. Nishida and I. Narumi, “Phylogenetic and disruption analyses of aspartate kinase of *Deinococcus radiodurans*,” *Bioscience, Biotechnology, and Biochemistry*, vol. 71, no. 4, pp. 1015–1020, 2007.

[5] K. S. Makarova, L. Aravind, Y. I. Wolf et al., “Genome of the extremely radiation-resistant bacterium *Deinococcus radiodurans* viewed from the perspective of comparative genomics,” *Microbiology and Molecular Biology Reviews*, vol. 65, no. 1, pp. 44–79, 2001.

[6] H. Sghaier, H. Mitomo, and I. Narumi, “Genomic confession of *Deinococcus radiodurans*: it started out as a radiation resistant organism,” *Viva Origino*, vol. 33, no. 4, pp. 243–257, 2005.

[7] A. Henne, H. Brüggemann, C. Raasch et al., “The genome sequence of the extreme thermophile *Thermus thermophilus*,” *Nature Biotechnology*, vol. 22, no. 5, pp. 547–553, 2004.

[8] H. Nishida, T. Beppu, and I. Narumi, “Whole-genome comparison clarifies close phylogenetic relationships between phyla Dictyoglomi and Thermotogae,” *Genomics*, vol. 98, no. 5, pp. 370–375, 2011.

[9] H. Sghaier, K. Satoh, and I. Narumi, “In silico method to predict functional similarity between two RecA orthologs,” *Journal of Biomolecular Screening*, vol. 16, no. 4, pp. 457–459, 2011.

[10] K. Tamura, J. Dudley, M. Nei, and S. Kumar, “MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0,” *Molecular Biology and Evolution*, vol. 24, no. 8, pp. 1596–1599, 2007.

[11] A. Campbell, J. Mrázek, and S. Karlin, “Genome signature comparisons among prokaryote, plasmid, and mitochondrial DNA,” *Proceedings of the National Academy of Sciences of the United States of America*, vol. 96, no. 16, pp. 9184–9189, 1999.

[12] T. Abe, S. Kanaya, M. Kinouchi, Y. Ichiba, T. Kozuki, and T. Ikemura, “Informatics for unveiling hidden genome signatures,” *Genome Research*, vol. 13, no. 4, pp. 693–702, 2003.

[13] M. W. J. van Passel, A. Bart, A. C. M. Luyf, A. H. C. van Kampen, and A. van der Ende, “Compositional discordance between prokaryotic plasmids and host chromosomes,” *BMC Genomics*, vol. 7, article 26, 2006.

[14] M. W. J. Van Passel, E. E. Kurumae, A. C. M. Luyf, A. Bart, and T. Boekhout, “The reach of the genome signature in prokaryotes,” *BMC Evolutionary Biology*, vol. 6, article 84, 2006.

[15] J. Mrázek, “Phylogenetic signals in DNA composition: limitations and prospects,” *Molecular Biology and Evolution*, vol. 26, no. 5, pp. 1163–1169, 2009.

[16] H. Suzuki, H. Yano, C. J. Brown, and E. M. Top, “Predicting plasmid promiscuity based on genomic signature,” *Journal of Bacteriology*, vol. 192, no. 22, pp. 6045–6055, 2010.

[17] H. Suzuki, M. Sota, C. J. Brown, and E. M. Top, “Using Mahalanobis distance to compare genomic signatures between bacterial plasmids and chromosomes,” *Nucleic Acids Research*, vol. 36, no. 22, article e147, 2008.

[18] S. C. Perry and R. G. Beiko, “Distinguishing microbial genome fragments based on their composition: evolutionary and comparative genomic perspectives,” *Genome Biology and Evolution*, vol. 2, no. 1, pp. 117–131, 2010.

[19] F. Reyes-Prieto, A. J. García-Chéquer, H. Jaimez-Díaz et al., “LifePrint: a novel k-tuple distance method,” *Advances and Applications in Bioinformatics and Chemistry*, vol. 2011, pp. 13–27, 2011.

[20] G. J. Dick, A. F. Andersson, B. J. Baker et al., “Community-wide analysis of microbial genome sequence signatures,” *Genome Biology*, vol. 10, article R85, no. 8, 2009.

[21] D. T. Pride, R. J. Meinersmann, T. M. Wassenaar, and M. J. Blaser, “Evolutionary implications of microbial genome tetranucleotide frequency biases,” *Genome Research*, vol. 13, no. 2, pp. 145–156, 2003.

[22] M. J. Greenacre, *Correspondence Analysis in Practice*, Chapman and Hall, London, UK, 2nd edition, 2007.

[23] K. Yano, K. Imai, A. Shimizu, and T. Hanashita, “A new method for gene discovery in large-scale microarray data,” *Nucleic Acids Research*, vol. 34, no. 5, pp. 1532–1539, 2006.

[24] K. Hamada, K. Hongo, K. Suwabe et al., “OryzaExpress: an integrated database of gene expression networks and omics annotations in rice,” *Plant and Cell Physiology*, vol. 52, no. 2, pp. 220–229, 2011.

[25] S. H. Zhang and L. Wang, “A novel common triplet profile for GC-rich prokaryotic genomes,” *Genomics*, vol. 97, no. 5, pp. 330–331, 2011.

[26] J. G. Lawrence and H. Ochman, “Amelioration of bacterial genomes: rates of change and exchange,” *Journal of Molecular Evolution*, vol. 44, no. 4, pp. 383–397, 1997.