Pair of accelerated black holes in anti-de Sitter background: the AdS C-metric

Óscar J. C. Dias* and José P. S. Lemos†
Centro Multidisciplinar de Astrofísica - CENTRA,
Departamento de Física, Instituto Superior Técnico,
Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
(Dated: October 24, 2018)

PACS numbers: 04.20.Jb, 04.70.Bw, 04.20.Gz

I. INTRODUCTION

The original C-metric has been found by Levi-Civita in his studies between 1917 and 1919. During the following decades, many authors have rediscovered it and studied its mathematical properties (see [1] for references). In 1963 Ehlers and Kundt [2] have classified degenerated static vacuum fields and put this Levi-Civita solution into the C slot of the table they constructed. From then onwards this solution has been called C-metric. This spacetime is stationary, axially symmetric, Petrov type D, and is an exact solution which includes a radiative term. Although the C-metric had been studied from a mathematical point of view along the years, its physical interpretation remained unknown until 1970 when Kinnersley and Walker [3], in a pathbreaking work, have shown that the original solution was geodesically incomplete, and by defining new suitable coordinates they have analytically extended it and studied its causal structure. The solution has a conical singularity in one of its angular poles that was interpreted by them as due to the presence of a strut that pushes the black holes apart. Our analysis is based on the study of the causal structure, on the description of the solution in the AdS 4-hyperboloid in a 5D Minkowski spacetime, and on the physics of the strut. We also analyze the cases $A = 1/\ell$ and $A < 1/\ell$ that represent a single accelerated black hole in the AdS background.

*Electronic address: oscar@fisica.ist.utl.pt
†Electronic address: lemos@kelvin.ist.utl.pt
Relevant generalizations to the C-metric were made by Plebański and Demiański in 1976 [16] and by Dowker, Gauntlett, Kastor and Traschen in 1994 [17]. Plebański and Demiański, in addition to the mass (m) and electromagnetic charge (q), have included into the solution a NUT parameter, a rotation and a cosmological constant term (Λ), and Dowker et al have further included a dilaton field non-minimally coupled. Thus, the most general C-metric has eight parameters, so far, namely, acceleration, mass, electric and magnetic charges, NUT parameter, rotation, cosmological constant and dilaton field. The C-metric with mass and electromagnetic charges alone have been extensively studied as shown above, and from now on we will refer to it as the flat C-metric (i.e., C-metric with $\Lambda = 0$). The C-metric with a NUT parameter has not been studied, as far as we know. The flat spinning C-metric has been studied by Farhoosh and Zimmerman [18], Letelier and Oliveira [19] and by Bičák and Pravda [20]. In particular, in [20] the flat spinning C-metric has been transformed into the Weyl form and interpreted as two uniformly accelerated spinning black holes connected by a strut. This solution constitutes an example of a spacetime with an axial and boost Killing vectors which are not hypersurface orthogonal. Dowker et al generalized the flat C-metric and flat Ernst solution to include a dilaton field and applied these solutions for the first time in the context of quantum pair creation of black holes, that once created accelerate apart.

In what concerns the cosmological C-metric introduced in [16], the de Sitter (dS) case ($\Lambda > 0$) has been analyzed by Podolský and Griffiths [21], whereas the anti-de Sitter (AdS) case ($\Lambda < 0$) has been studied, in special instances, by Emparan, Horowitz and Myers [22] and by Podolský [23]. In general the C-metric (either flat, dS or AdS) describes a pair of accelerated black holes. Indeed, in the flat and dS backgrounds this is always the case. However, in an AdS background the situation is not so simple and depends on the relation between the acceleration A of the black holes and the cosmological length ℓ_A.

Since the AdS C-metric presents such peculiar features it deserves a careful analysis. It is our intention in this paper to fully study, in its most general form, the AdS C-metric with mass, charge and cosmological constant. One can divide the study into three cases, namely, $A < 1/\ell$, $A = 1/\ell$ and $A > 1/\ell$. The $A < 1/\ell$ case was the one analyzed by Podolský [23], and the $A = 1/\ell$ case has been investigated by Emparan, Horowitz and Myers [22], which has acquired an important role since the authors have shown that, in the context of a lower dimensional Randall-Sundrum model, it describes the final state of gravitational collapse on the brane-world. The geodesic structure of this solution has been studied by Chamblin [24]. Both cases, $A < 1/\ell$ and $A = 1/\ell$, represent one single accelerated black hole. The case $A > 1/\ell$ has not been fully studied and its physical interpretation is not yet firmly established, although it has been applied, in addition to the flat and dS cases, in pair creation of black holes by Hawking, Horowitz and Ross [25], and by Mann [26] (see [27] for a review). The purpose of this article is to establish that the $A > 1/\ell$ AdS C-metric describes a pair of accelerated black holes in an AdS background. This aim will be achieved through a thorough analysis of the causal structure of the solution, together with the description of the solution in the AdS 4-hyperboloid, and the study of the strut’s physics.

The plan of this article is as follows. In section II we present the AdS C-metric and analyze its curvature and conical singularities. In section III we study the causal diagrams of the solution. In section IV we give and justify a physical interpretation to the solution. The description of the solution in the AdS 4-hyperboloid and the physics of the strut are analyzed. These two sections, III and IV, are highly related and so, in order to fully understand each of them, the reading of the other is required. Finally, in section V concluding remarks are presented.

II. GENERAL PROPERTIES OF THE ADS C-METRIC

A. The AdS C-metric

The AdS C-metric, i.e., the C-metric with negative cosmological constant Λ, has been obtained by Plebański and Demiański [16]. For zero rotation and zero NUT parameter it is given, according to [16] (see also [26]), by

$$ds^2 = 1/(\tilde{x} + \tilde{y})^2(-\mathcal{F}dt^2 + \mathcal{F}^{-1}dy^2 + \mathcal{G}^{-1}dx^2 + \mathcal{G}dz^2),$$

(1)

where

$$\mathcal{F}(\tilde{y}) = -\Lambda/6 - \tilde{A}^2 - \tilde{y}^2 - 2m\tilde{y}^3 + q^2\tilde{y}^4,$$

$$\mathcal{G}(\tilde{x}) = -\Lambda/6 + \tilde{A}^2 - \tilde{x}^2 - 2m\tilde{x}^3 - q^2\tilde{x}^4.$$

(2)

The meaning of parameters \tilde{A}, m, and q will be clarified soon. For the benefit of comparison with the flat C-metric, we note that when Λ vanishes we have $\mathcal{F}(\tilde{y}) = -\mathcal{G}(\tilde{y})$. It is now convenient to redefine the parameter \tilde{A} as $-\Lambda/6 + \tilde{A}^2 \equiv A^2$, together with the coordinate transformations: $t = t/\Lambda, \tilde{y} = Ay, \tilde{x} = Ax$ and $\tilde{z} = z/\Lambda$. With these redefinitions, the gravitational field of the AdS C-metric is written as

$$ds^2 = [A(x + y)]^{-2}(-\mathcal{F}dt^2 + \mathcal{F}^{-1}dy^2 + \mathcal{G}^{-1}dx^2 + \mathcal{G}dz^2),$$

(3)

where

$$\mathcal{F}(y) = \left(\frac{1}{\ell^2 A^2} - 1\right) + y^2 - 2mAyz^3 + q^2A^2y^4,$$

$$\mathcal{G}(x) = 1 - x^2 - 2mAxyz^3 - q^2A^2x^4,$$

(4)

and the non-zero components of the electromagnetic vector potential, $A_\mu dx^\mu$, are given by

$$A_t = -ey, \quad A_z = g x.$$

(5)

This solution depends on four parameters namely, A which is the acceleration of the black hole, m which is interpreted as the ADM mass of the non-accelerated black holes, and Λ, q which are the cosmological constant and the electromagnetic charge. Thus, the AdS C-metric has three parameters, so far, namely, mass, electromagnetic charge and cosmological constant.
hole, \(q \) which is interpreted as the ADM electromagnetic charge of the non-accelerated black hole and, in general, \(q^2 = e^2 + g^2 \) with \(e \) and \(g \) being the electric and magnetic charges, respectively, and finally the cosmological length \(\ell^2 \equiv 3/|\Lambda| \). The meaning attributed to the parameter \(\Lambda \) will be understood in section IV, while the physical interpretation given to the parameters \(m \) and \(q \) is justified in the Appendix. We will consider the case \(\Lambda > 0 \).

The coordinates used in Eqs. (3)-(5) to describe the AdS C-metric are useful to understand the geometrical properties of the spacetime, but they hide the physical interpretation of the solution. In order to understand the physical properties of the source and gravitational field we will introduce progressively new coordinates more suitable to this propose, following the approach of Kinnersley and Walker [3] and Ashtekar and Dray [6]. Although the alternative approach of Bonnor simplifies in a way the interpretation, we cannot use it were since the cosmological constant prevents such a coordinate transformation into the Weyl form.

B. Radial Coordinate. Curvature Singularities

We start by defining a coordinate \(r \) as

\[
 r = [A(x + y)]^{-1}. \tag{6}
\]

In order to interpret this coordinate as being a radial coordinate, we calculate a curvature invariant of the metric, namely the Kretschmann scalar,

\[
 R_{\mu\nu\alpha\beta}R^{\mu\nu\alpha\beta} = \frac{24}{r^8} + \frac{8}{r^6} \left[6m^2 r^2 + 12mq^2(2Axr - 1)r + q^4(7 - 24Axr + 24A^2x^2r^2) \right]. \tag{7}
\]

Clearly, this curvature invariant is equal to \(24/\ell^2 \) when the mass \(m \) and charge \(q \) are both zero. When at least one of these parameters is not zero, the curvature invariant diverges at \(r = 0 \), revealing the presence of a curvature singularity. Moreover, when we take the limit \(r \to \infty \), the curvature singularity approaches the expected value for a spacetime which is asymptotically AdS. Therefore it is justified that \(r \) is interpreted as a radial coordinate.

C. Angular Surfaces. Conical Singularities

To gain more insight into the physical nature of the AdS C-metric we now turn our attention into the angular surfaces \(t = \text{constant} \) and \(r = \text{constant} \), onwards labelled by \(\Sigma \). In this section we follow [3]. In order to have the AdS C-metric with correct signature, \((+ + +)\), one must restrict the coordinate \(x \) to a domain on which the function \(G(x) \) is non-negative [see Eq. (3)]. The shape of this function depends crucially on the three parameters \(A, m, \) and \(q \). In this work we will select only the ranges of these three parameters for which \(G(x) \) has at least two real roots, \(x_s \) and \(x_a \) (say), and demand \(x \) to belong to the range \([x_s, x_a] \) where \(G(x) \geq 0 \). This restriction has the important advantage of allowing us to endow the angular surfaces \(\Sigma \) with the topology of a compact surface. In these surfaces we now define two new coordinates,

\[
 \theta = \int_{x_s}^{x} G^{-1/2} dx, \tag{8}
\]

\[
 \phi = z/\kappa, \tag{8}
\]

where \(\phi \) ranges between \([0, 2\pi]\) and \(\kappa \) is an arbitrary positive constant which will be needed later when regularity conditions at the poles are discussed. The coordinate \(\theta \) ranges between the north pole, \(\theta = \theta_n = 0 \), and the south pole, \(\theta = \theta_s \) (not necessarily at \(\pi \)). With these transformations the metric restricted to the surfaces \(\Sigma \), \(ds^2 = r^2(G^{-1}dx^2 + Gd\phi^2) \), takes the form

\[
 ds^2 = r^2(d\theta^2 + \kappa^2Gd\phi^2). \tag{9}
\]

When \(A = 0 \) or when both \(m = 0 \) and \(q = 0 \), Eq. (8) gives \(x = \cos\theta \), \(G = 1 - x^2 = \sin^2\theta \) and if we use the freedom to put \(\kappa \equiv 1 \), the metric restricted to \(\Sigma \) is given by \(ds^2 = r^2(d\theta^2 + \sin^2\theta d\phi^2) \). This implies that in this case the angular surface is a sphere and justifies the label given to the new angular coordinates defined in Eq. (8). In this case the north pole is at \(\theta_n = 0 \) or \(x_n = +1 \) and the south pole is at \(\theta_s = \pi \) or \(x_s = -1 \). In the other cases \(x \) and \(\sqrt{G} \) can always be expressed as elliptic functions of \(\theta \). The explicit form of these functions is of no need in this work. All we need to know is that these functions have a period given by \(2\theta_s \).

As we shall see, the regularity analysis of the metric in the region \([0, \theta_n] \) will play an essential role in the physical interpretation of the AdS C-metric. The function \(G \) is positive and bounded in \([0, \theta_n] \) and thus, the metric is regular in this region between the poles. We must be more careful with the regularity analysis at the poles, i.e., at the roots of \(G \). Indeed, if we draw a small circle around the north pole, in general, as the radius goes to zero, the limit circumference/radius is not \(2\pi \). Therefore, in order to avoid a conical singularity at the north pole one must require that \(\delta_n = 0 \), where

\[
 \delta_n \equiv 2\pi \left(1 - \lim_{\theta \to 0} \frac{\theta}{\theta_n} \sqrt{\frac{g_{\theta\theta}}{g_{\theta\theta}}} \right) = 2\pi \left(1 - \frac{\kappa}{2} \left. \frac{dG}{dx} \right|_{x_n} \right). \tag{10}
\]

Repeating the procedure, this time for the south pole, \(x_s \), we conclude that the conical singularity at this pole can also be avoid if

\[
 \delta_s \equiv 2\pi \left(1 - \frac{\kappa}{2} \left. \frac{dG}{dx} \right|_{x_s} \right) = 0. \tag{11}
\]

The so far arbitrary parameter \(\kappa \) introduced in Eq. (8) plays its important role here. Indeed, if we choose

\[
 \kappa^{-1} = \frac{1}{2} \left. \frac{dG}{dx} \right|_{x=x_s}, \tag{12}
\]
Eq. (11) is satisfied. However, since we only have a single constant κ at our disposal and this has been fixed to remove the conical singularity at the south pole, we conclude that the conical singularity will be present at the north pole. There is another alternative. We can choose instead $2\kappa^{-1} = |d_x G|_{x=x_n}$ (where d_x means derivative in order to x) and by doing so we avoid the deficit angle at the north pole and leave a conical singularity at the south pole. In section IV we will see that in the extended Kruskal solution the north pole points towards the other black hole, while the south pole points towards infinity. The first choice of κ corresponds to a strut between the black holes while the alternative choice corresponds to two strings from infinity into each black hole. We leave the discussion on the physical nature of the conical singularities and on the two possible choices for the value of κ to section IV A 4. There is a small number of very special cases for which the very particular condition, $|d_x G|_{x=x_n} = |d_x G|_{x=x}$, is verified. In these special cases, the solution is free of conical singularities. They will be mentioned below.

Since we have managed to put $G(x)$ in a form equal to [3], we can now, following [3] closely, describe the behavior of $G(x)$ for different values of the parameters A, m, and q. We can divide this discussion in three cases.

1. Massless uncharged solution ($m = 0, q = 0$): in this case, we have $x = \cos \theta$, $G = 1 - x^2 = \sin^2 \theta$, and $\kappa = 1$. The angular surface Σ is a sphere and this is a particular case for which both the north and south poles are free of conical singularities.

2. Massive uncharged solution ($m > 0, q = 0$): the massive uncharged case must be divided into $mA < 3^{-3/2}$, and $mA \geq 3^{-3/2}$. When $mA < 3^{-3/2}$, $G(x)$ has three roots and, as justified above, we require x to lie between the two roots for which $G(x) \geq 0$. In doing so we maintain the metric with the correct signature and have an angular surface Σ which is compact. Setting the value of κ given in Eq. (12) one avoids the conical singularity at the south pole but leave one at the north pole. When $mA \geq 3^{-3/2}$, Σ is an open angular surface. For this reason, onwards we will analyze only the case $mA < 3^{-3/2}$.

3. Massive charged solution ($m > 0, q \neq 0$): for a general massive charged solution, depending on the values of the parameters A, m, and q, $G(x)$ can be positive in a single compact interval, $[x_s, x_n]$, or in two distinct compact intervals, $[x_{s}', x_n']$ and $[x_s, x_n]$, say. In this latter case we will work only with the interval $[x_s, x_n]$ (say) for which the charged solutions reduce to the uncharged solutions when $q = 0$. These solutions have a conical singularity at one of the poles. The only massive charged solutions that are totally free of conical singularities are those which satisfy the particular conditions $m = |q|$, and $mA > 1/4$. This indicates that in this case the AdS C-metric is an AdS black hole written in an accelerated coordinate frame. In the massless charged solution ($m = 0$ and $q \neq 0$), $G(x)$ is an even function, has two symmetric roots and is positive between them. The angular surface Σ is therefore compact and there are no conical singularities at both poles. Once again, this suggests that the solution is written in an accelerated coordinate frame.

D. Coordinate ranges

In this section we analyze the important issue of the coordinate ranges. Rewritten in terms of the new coordinates introduced in Eq. (6) and Eq. (8), the AdS C-metric is given by

$$ds^2 = r^2[-F(y)dt^2 + F^{-1}(y)dy^2 + d\theta^2 + \kappa^2 G(x(\theta)) d\phi^2],$$

(13)

where $F(y)$ and $G(x(\theta))$ are given by Eq. (4). The time coordinate t can take any value from the interval $]-\infty, +\infty[$ and ϕ ranges between $[0, 2\pi]$. As we saw in section II B, when m or q are not zero there is a curvature singularity at $r = 0$. Therefore, we restrict the radial coordinate to the range $[0, +\infty[$. On the other hand, in section II C we have decided to consider only the values of A, m, and q for which $G(x)$ has at least two real roots, x_s and x_n (say) and have demanded x to belong to the range $[x_s, x_n]$ where $G(x) \geq 0$. By doing this we guarantee that the metric has the correct signature $(- + + +)$ and that the angular surfaces $\Sigma (t=$ constant and $r=$constant) are compact. From $Ar = (x + y)^{-1}$ we then conclude that y must belong to the range $-x \leq y < +\infty$. Indeed, $y = -x$ corresponds to $r = +\infty$, and $y = +\infty$ to $r = 0$. Note however, that when both m and q vanish there are no restrictions on the ranges of r and y (i.e., $-\infty < r < +\infty$ and $-\infty < y < +\infty$) since in this case there is no curvature singularity at the origin of r to justify the constraint on the coordinates.

III. CAUSAL STRUCTURE OF THE AdS C-METRIC

In this section we analyze the causal structure of the solution. As occurs with the original flat C-metric [3, 6], the original AdS C-metric, Eq. (13), is not geodesically complete. To obtain the maximal analytic spacetime, i.e., to draw the Carter-Penrose diagrams we will introduce the usual null Kruskal coordinates.

We now look carefully to the AdS C-metric, Eq. (13), with $F(y)$ given by Eq. (4). We first notice that, contrarily to what happens in the $\Lambda \geq 0$ background where the causal structure and physical nature of the corresponding C-metric is independent of the relation between the acceleration A and $\ell \equiv \sqrt[3]{|\Lambda|}$, in the $\Lambda < 0$ case we must distinguish and analyze separately the cases $A > 1/\ell$, $A = 1/\ell$ and $A < 1/\ell$. Later, in section IV, we will justify physically the reason for this distinction. The mathematical reason for this difference is clearly identified by setting $m = 0$ and $q = 0$ in Eq. (4) giving $F(y) = y^2 - [1 - 1/(\ell^2 A^2)]$. Since the horizons of the solution are basically given by the real roots of $F(y)$, we
conclude that we have to treat separately the cases (A) $A > 1/\ell$ for which $\mathcal{F}(y)$ can have two real roots, (B) $A = 1/\ell$ for which $y = 0$ is double root and (C) $A < 1/\ell$ for which $\mathcal{F}(y)$ has no real roots (see discussion in the text of Fig. 1). We will consider each of these three cases separately in subsections III A and IV A ($A > 1/\ell$ case), III B and IV B ($A = 1/\ell$ case), and III C and IV C ($A < 1/\ell$ case). The description of the solution depends crucially on the values of m and q. In each subsection, we will consider the three most relevant solutions, namely: 1. Massless uncharged solution ($m = 0$, $q = 0$), 2. Massive uncharged solution ($m > 0$, $q = 0$), and 3. Massive charged solution ($m > 0$, $q \neq 0$).

A. Causal Structure of the $A > 1/\ell$ solutions

1. Massless uncharged solution ($m = 0$, $q = 0$)

In this case we have

$$\mathcal{F}(y) = y^2 - y^2_+ \quad \text{with} \quad y_+ = \sqrt{1 - \frac{1}{\ell^2 A^2}},$$

and $x \in [x_1 = -1, x_2 = +1]$, $x = \cos \theta$, $\mathcal{G} = 1 - x^2 = \sin^2 \theta$ and $\kappa = 1$. The shapes of $\mathcal{F}(y)$ and $\mathcal{G}(x)$ are represented in Fig. 1.

![Diagram showing $\mathcal{F}(y)$ and $\mathcal{G}(x)$](image)

FIG. 1: Shape of $\mathcal{G}(x)$ and $\mathcal{F}(y)$ for the $A > 1/\ell$, $m = 0$ and $q = 0$ C-metric studied in sections III A and IV A. The allowed range of x is between $x_1 = -1$ and $x_2 = +1$ where $\mathcal{G}(x)$ is positive and compact. The permitted range of y depends on the angular direction x ($-x \leq y < +\infty$) and is sketched for the five cases (a)-(e) discussed in the text. The presence of an accelerated horizon is indicated by h_A. [For completeness we comment here on two other cases not represented in the figure but analyzed in the text: for $A = 1/\ell$, $m = 0$ and $q = 0$ (this case is studied in sections III B and IV B), $\mathcal{F}(y)$ is zero at its minimum and positive elsewhere. For $A < 1/\ell$, $m = 0$ and $q = 0$ (this case is studied in sections III C I and IV C), $\mathcal{F}(y)$ is always positive and only case (a) survives.]

The angular surfaces $\Sigma (t = \text{constant and } r = \text{constant})$ are spheres and both the north and south poles are free of conical singularities. The origin of the radial coordinate, $r = 0$, has no curvature singularity and therefore both r and y are in the range $]-\infty, +\infty[$. However, in the general case, where m or q are non-zero, there is a curvature singularity at $r = 0$. Since the discussion of the present section is only a preliminary to that of the massive general case, following [6], the origin $r = 0$ will treat as if it had a curvature singularity and thus we admit that r belongs to the range $[0, +\infty]$ and y lies in the region $-x \leq y < +\infty$. We leave a discussion on the extension to negative values of r to section IV A.

The general procedure to draw the Carter-Penrose diagrams is as follows. First, we make use of the null condition $g_{\mu\nu}k^\mu k^\nu = 0$ (where k^μ is a geodesic tangent) to introduce the advanced and retarded Finkelstein-Eddington null coordinates,

$$u = t - y_+; \quad v = t + y_+,$$

where the tortoise coordinate is

$$y_+ = \int \mathcal{F}^{-1} dy = \frac{1}{2y_+} \ln \left| \frac{y - y_+}{y + y_+} \right|.\quad (16)$$

and both u and v belong to the range $] -\infty, +\infty[$. In these coordinates the metric is given by

$$ds^2 = r^2 [-\mathcal{F} dudv + d\theta^2 + \sin^2 \theta d\phi^2].\quad (17)$$

The metric still has coordinate singularities at the roots of \mathcal{F}. To overcome this unwanted feature we have to introduce Kruskal coordinates. Now, due to the lower restriction on the value of y ($-x \leq y$), the choice of the Kruskal coordinates (and therefore the Carter-Penrose diagrams) depends on the angular direction x we are looking at. In fact, depending on the value of x, the region accessible to y might contain two, one or zero roots of \mathcal{F} (see Fig. 1) and so the solution may have two, one or zero horizons, respectively. This angular dependence of the causal diagram is not new. The Schwarzschild and Reissner-Nordström solutions being spherically symmetric do not present this feature but, in the Kerr solution, the Carter-Penrose diagram along the pole direction is different from the diagram along the equatorial direction. Such a dependence occurs also in the flat C-metric [3]. Back again to the AdS C-metric, we have to consider separately five distinct sets of angular directions, namely (a) $x_1 < x < -y_+$, (b) $x = -y_+$, (c) $-y_+ < x < y_+$, (d) $x = +y_+$ and (e) $y_+ < x \leq x_2$, where $x_1 = -1$ and $x_2 = +1$ (see Fig. 1).

(a) $x_1 < x < -y_+$: within this interval of the angular direction, the restriction on the range of y, $-x \leq y < +\infty$, implies that the function $\mathcal{F}(y)$ is always positive in the accessible region of y (see Fig. 1), and thus the solution has no horizons. Introducing the null coordinates defined in Eq. (15) followed by the Kruskal coordinates $u' = -e^{y_+}u < 0$ and $v' = +e^{y_+}v > 0$ gives $u'v' = -e^{2y_+}y_+ = -(y - y_+)/y_+ < 0$, and Eq. (17)
becomes
\[ds^2 = r^2 \left[-\frac{(y + y_+)^2}{y_+^2} du' dv' + d\theta^2 + \sin^2 \theta d\phi^2 \right], \quad (18) \]

where \(y \) and \(r = A^{-1}(x + y)^{-1} \) are regarded as functions of \(u' \) and \(v' \),
\[y = y_+ \frac{1 - u'v'}{1 + u'v'}, \quad r = \frac{1}{A} \frac{1 + u'v'}{(y_+ + x) - u'v'(y_+ - x)} \quad (19) \]

Now, let us find the values of the product \(u'v' \) at \(r = 0 \) and \(r = +\infty \),
\[\lim_{r \to 0} u'v' = -1, \quad \lim_{r \to +\infty} u'v' = \frac{y_+ + x}{y_+ - x} < 0 \]
\[\text{and finite} \quad (20) \]

So, for \(x_0 \leq x < -y_+ \), the original massless uncharged AdS C-metric is described by Eq. (18) subjected to the following coordinates ranges,
\[0 \leq \phi < 2\pi, \quad -1 \leq x \leq +1, \quad u' < 0, \quad v' > 0, \quad (21) \]
\[-1 \leq u'v' < \frac{y_+ + x}{y_+ - x}. \quad (22) \]

This spacetime is however geodesically incomplete. To obtain the maximal analytical extension one has to define the Kruskal coordinates to take also the values \(u' \geq 0 \) and \(v' \leq 0 \) as long as Eq. (22) is satisfied.

Finally, to construct the Carter-Penrose diagram one has to define the Kruskal-Penrose coordinates by the usual arc-tangent functions of \(u' \) and \(v' \); \(U = \arctan u' \) and \(V = \arctan v' \), that bring the points at infinity into a finite position. In general, to find what kind of curve describes the lines \(r = 0 \) or \(r = +\infty \) one has to take the limit of \(u'v' \) as \(r \to 0 \) (in the case of \(r = 0 \)) and the limit of \(u'v' \) as \(r \to +\infty \) (in the case of \(r = +\infty \)). If this limit is 0 or \(\infty \) the corresponding line is mapped into a curved null line. If the limit is \(-1 \), or a negative and finite constant, the corresponding line is mapped into a curved timelike line and finally, when the limit is \(+1 \), or a positive and finite constant, the line is mapped into a curved spacelike line. The asymptotic lines are drawn as straight lines although in the coordinates \(U \) and \(V \) they should be curved outwards, bulged. It is always possible to change coordinates so that the asymptotic lines are indeed straight lines. So, from Eq. (20) we draw the Carter-Penrose diagram sketched in Fig. 2.(a). There are no horizons and both \(r = 0 \) and \(r = +\infty (I) \) are timelike lines.

(b) \(x = -y_+ \): for this particular angular direction, \(y \) is restricted to be on \(+y_+ \leq y < +\infty \) and \(F(y) \) is always positive except at \(y = +y_+ \) (which corresponds to \(r = +\infty \)) where it is zero (see Fig. 1). Therefore, the solution has no horizon and the Kruskal construction is similar to the one described above in case (a). The only difference is that now \(\lim_{r \to +\infty} u'v' = 0 \) and thus
\[r = +\infty (I) \]
is represented by a null line in the Carter-Penrose diagram which is shown in Fig. 2.(b).

(c) \(-y_+ < x < y_+ \): the demand that \(y \) must belong to the range \([-x; +\infty]\) implies, for this range of the angular direction, that we have a region \(I, -x \leq y < +y_+, \) where \(F(y) \) is negative and a region \(II, +y_+ < y < +\infty, \) where \(F(y) \) is positive (see Fig. 1). There is a single Rindler-like acceleration horizon \(r_A \) at \(y = +y_+ \), so called because it is is absent when \(A = 0 \) and present even when \(m = 0 \) and \(q = 0 \). In region I one sets the Kruskal coordinates \(u' = e^{-ax} \) and \(v' = e^{+av} \) so that \(u'v' = e^{2av} \). In region II one defines \(u' = e^{-ax} \) and \(v' = e^{+av} \) in order that \(u'v' = e^{2av} \). We set \(a \equiv y_+ \). Thus, in both regions the product \(u'v' \) is given by
\[u'v' = \frac{y_+ - y}{y_+ + y}, \quad (23) \]

and Eq. (17) expressed in terms of the Kruskal coordinates is given by
\[ds^2 = r^2 \left[\frac{1}{y_+^2} \frac{F}{u'v'} du' dv' + d\theta^2 + \sin^2 \theta d\phi^2 \right] \quad (24) \]
The Kruskal coordinates in both regions were chosen in order to obtain a negative value for the factor $F/(u'v')$, which appears in the metric coefficient $g_{uu'v'}$. The value of constant α was selected in order that the limit of $F/(u'v')$ as $y \to y_+$ stays finite and different from zero. By doing this, we have removed the coordinate singularity that was present at the root y_+ of F [see Eq. (17)]. So, the metric is now well-behaved in the whole range $-\infty < y < +\infty$ or $0 \leq r < +\infty$. The coordinates y and r are expressed as functions of u' and v' by Eq. (19) and at the edges of the interval allowed to r, the product $u'v'$ takes the values

\[
\lim_{r \to 0} u'v' = -1, \quad \lim_{r \to +\infty} u'v' = \frac{y_++x}{y_+-x} > 0 \text{ and finite}.
\]

Once again, the maximal analytical extension is achieved by allowing the Kruskal coordinates u' and v' to take all the values on the range $]-\infty; +\infty[$, as soon as the condition $-1 \leq u'v' < (y_++x)/(y_+-x)$ is satisfied. The Carter-Penrose diagram for this range of the angular direction is drawn in Fig. 2.(e). $r = 0$ is represented by a timelike line while $r = +\infty$ (\mathcal{I}) is a spacelike line. The two mutual perpendicular straight null lines at 45°, $u'v' = 0$, represent the accelerated horizon at $y_A = +y_+$ or $r_A = [A(x+y_+)]^{-1}$.

(d) $x = +y_+$: in this particular direction, the region accessible to y is $-y_+ \leq y < +\infty$. $F(y)$ is negative in region I, $-y_+ < y < y_+$ and positive in region II, $y > y_+$. It is zero at $y = +y_+$, where is located the only horizon (r_A) of the solution and $F(y)$ vanishes again at $y = -y_+$ which corresponds to $r = +\infty$ (see Fig. 1). The Kruskal construction follows directly the procedure described in case (c). The only difference is that now $\lim_{r \to +\infty} u'v' = +\infty$ and thus the $r = +\infty$ line (\mathcal{I}) is now represented by a null line in the Carter-Penrose diagram which is shown in Fig. 2.(d).

(e) $y_+ < x \leq x_n$: the region accessible to y must be separated into three regions (see Fig. 1). In region I, $-x < y < -y_+, F(y)$ is positive; in region II, $-y_+ < y < +y_+, F(y)$ is negative and finally in region III, $y > +y_+, F(y)$ is positive again. We have two Rindler-like acceleration horizons, more specifically, an outer horizon at $y = -y_+$ or $r_A = [A(x+y_+)]^{-1}$ and an inner horizon at $y = +y_+$ or $r_A = [A(x+y_+)]^{-1}$. Therefore one must introduce a Kruskal coordinate patch around each of the horizons. The first patch constructed around $-y_+$ is valid for $-x < y < +y_+$ (thus, it includes regions I and II). In region I we define $u' = -e^{-\alpha_-u}$ and $v' = +e^{-\alpha_-v}$ so that $u'v' = -e^{-2\alpha_-}$. In region II one defines $u' = +e^{\alpha_-u}$ and $v' = +e^{-\alpha_-v}$ in order that $u'v' = +e^{-2\alpha_-}$. We set $\alpha_- \equiv y_+$. Thus, in both regions, I and II, the product $u'v'$ is given by

\[
u' = \frac{y_+ + x}{y_+ - x},\]

and Eq. (17) expressed in terms of the Kruskal coordinates is given by

\[
ds^2 = r^2 \left[-\frac{(y + y_+)^2}{y_+^2} du' dv' + d\theta^2 + \sin^2 \theta d\phi^2 \right],\tag{28}
\]

which is regular in this patch $-x \leq y < +y_+$ and, in particular, it is regular at the root $y = -y_+$ of $F(y)$. However, it is singular at the second root, $y = +y_+$, of $F(y)$. To regularize the metric around $y = +y_+$, one has to introduce new Kruskal coordinates for the second patch which is built around y_+ and is valid for $-y_+ < y < +\infty$ (thus, it includes regions II and III). In region II we set $u' = +e^{-\alpha_+u}$ and $v' = +e^{+\alpha_+v}$ so that $u'v' = +e^{2\alpha_+}$. In region III one defines $u' = -e^{-\alpha_+u}$ and $v' = +e^{+\alpha_+v}$ in order that $u'v' = -e^{2\alpha_+}$. We set $\alpha_+ \equiv y_+$. Thus, in both regions, II and III, the product $u'v'$ is given by

\[
u' = \frac{y_+ - x}{y_+ + x},\tag{29}
\]

and, in this second Kruskal patch, Eq. (17) is given by

\[
ds^2 = r^2 \left[-\frac{(y + y_+)^2}{y_+^2} du' dv' + d\theta^2 + \sin^2 \theta d\phi^2 \right],\tag{30}
\]

which is regular in $y > -y_+$ and, in particular, at the second root $y = +y_+$ of $F(y)$. Once again, in both patches, the Kruskal coordinates were chosen in order to obtain a factor $F/(u'v')$ negative [see Eq. (24)]. The values of constants α_- and α_+ were selected in order that the limit of $F/(u'v')$ as $y \to +y_+$ stays finite and different from zero. To end the construction of the Kruskal diagram of this solution with two horizons, the two patches have to be joined together in an appropriate way first defined by Carter in the Reissner-Nordström solution.

From Eq. (29) and Eq. (27) we find the values of product $u'v'$ at the edges $r = 0$ and $r = +\infty$ of the radial coordinate,

\[
\lim_{r \to 0} u'v' = -1, \quad \lim_{r \to +\infty} u'v' = \frac{y_+ - x}{y_+ + x} < 0 \text{ and finite}.
\]

and conclude that both $r = 0$ and $r = +\infty$ (\mathcal{I}) are represented by timelike lines in the Carter-Penrose diagram sketched in Fig. 2.(e). The two accelerated horizons of the solution are both represented as perpendicular straight null lines at $45^\circ (u'v' = 0)$.

2. Massive uncharged solution ($m > 0, q = 0$)

Now that the causal structure of the AdS C-metric with $m = 0$ and $q = 0$ has been studied, the construction
of the Carter-Penrose diagrams for the $m > 0$ case follows up directly. As has justified in detail in section II C, we will consider only the case with small mass or acceleration, i.e., we require $mA < 3^{-3/2}$, in order to have compact angular surfaces (see discussion on the text of Fig. 3). We also demand x to belong to the range $[x_s, x_n]$ (see Fig. 3) where $G(x) \geq 0$ and such that $x_s \to -1$ and $x_n \to +1$ when $mA \to 0$. By satisfying the two above conditions we endow the $t =$constant and $r =$constant surfaces with the topology of a compact surface.

The technical procedure to obtain the Carter-Penrose diagrams is similar to the one described along section III A 1. In what concerns the physical conclusions, we will see that the essential difference is the presence of an extra horizon, a Schwarzschild-like horizon (r_+), due to the non-vanishing mass parameter, in addition to the accelerated Rindler-like horizon (r_A) which has due to non-vanishing A. Another important difference, as stated in section II B, is the presence of a curvature singularity at $r = 0$ and the existence of a conical singularity at the north pole (see section II C).

Once more the Carter-Penrose diagrams depend on the angular direction we are looking at (see Fig. 3). We have to analyze separately five distinct cases, namely (a) $x_s \leq x < x_-$, (b) $x = x_-$, (c) $x_- < x < x_+$, (d) $x = x_+$ and (e) $x_+ < x \leq x_n$, which are the massive counterparts of cases (a)-(e) that were considered in section III A 1. When $m \to 0$ we have $x_s \to -1$, $x_n \to +1$, $x_- \to -y_-$ and $x_+ \to +y_+$.

(a) $x_s \leq x < x_-$: the Carter-Penrose diagram [Fig. 4. (a)] for this range of the angular direction has a space-like curvature singularity at $r = 0$, a timelike line that represents $r = +\infty$ (I) and a Schwarzschild-like horizon (r_+) that was not present in the $m = 0$ corresponding diagram Fig. 2. (a). The diagram is similar to the one of

![FIG. 3: Shape of $G(x)$ and $F(y)$ for the $A > 1/\ell, mA < 3^{-3/2}$, and $q = 0$ C-metric studied in sections III A 2 and IV A. The allowed range of x is between x_s and x_n where $G(x)$ is positive and compact. The permitted range of y depends on the angular direction x ($-\infty < y < +\infty$) and is sketched for the five cases (a)-(e) discussed in the text. The presence of an accelerated horizon is indicated by h_A and the Schwarzschild-like horizon by h_m. [For completeness we comment on two other cases not represented in the figure: for $A = 1/\ell, mA < 3^{-3/2}$ and $q = 0$ (this case is studied in sections III B 2 and IV B), $F(y)$ is zero at its local minimum. For $A < 1/\ell, mA < 3^{-3/2}$ and $q = 0$ (this case is studied in sections III C 2 and IV C), the local minimum of $F(y)$ is positive and only case (a) survives. For $mA = 3^{-3/2}, G(x)$ is zero at its local minimum on the left and for $mA > 3^{-3/2} G(x)$ is positive between $-\infty$ and x_n. These two last cases are not studied in the text.]

![FIG. 4: Carter-Penrose diagrams of cases (a)-(e) discussed in the text of section III A 2 concerning the $A > 1/\ell, mA < 3^{-3/2}$, and $q = 0$ C-metric. Case (a) describes the solution seen from the vicinity of the south pole, case (c) applies to the equatorial vicinity, and case (e) describes the solution seen from the vicinity of the north pole. The zigzag line represents a curvature singularity, an accelerated horizon is represented by r_A, the Schwarzschild-like horizon is sketched as r_+, $r = 0$ corresponds to $y = +\infty$ and $r = +\infty$ (I) corresponds to $y = -\infty$. The hatched region does not belong to the solution. In diagrams (c)-(e) we have to glue indefinitely copies of the represented figure in the left and right sides of it. In diagram (e) a similar gluing must be done in the top and bottom regions.]

the AdS-Schwarzschild solution, although now the curvature singularity has an acceleration \(A \), as will be seen in section IV.

(b) \(x = x_- \): the curvature singularity \(r = 0 \) is also a spacelike line in the Carter-Penrose diagram (see Fig. 4(b)) and there is a Schwarzschild-like horizon \((r_+) \). The infinity, \(r = +\infty \) \((\mathcal{I})\), is represented by a null line. The origin is being accelerated (see section IV).

(c) \(x_- < x < x_+ \): the Carter-Penrose diagram [Fig. 4(c)] has a more complex structure that can be divided into left, middle and right regions. The middle region contains the spacelike infinity \((\mathcal{I})\) and an accelerated Rindler-like horizon, \(r_A = |A(x-x_-)|^{-1} \), that is already present in the \(m = 0 \) corresponding diagram [see Fig. 2(c)]. The left and right regions both contain a spacelike curvature singularity and a Schwarzschild-like horizon, \(r_+ \).

(d) \(x = x_+ \): the Carter-Penrose diagram [Fig. 4(d)] for this particular value of the angular direction is similar to the one of above case (c). The only difference is that \(r = +\infty \) \((\mathcal{I})\) is represented by a null line rather than a spacelike line.

(e) \(x_+ < x \leq x_n \): the Carter-Penrose diagram [Fig. 4(e)] can again be divided into left, middle and right regions. The middle region consists of a timelike line representing \(r = +\infty \) \((\mathcal{I})\) and two accelerated Rindler-like horizons, an inner one \((r_A = |A(x-x_-)|^{-1})\) and an outer one \((r_+ = |A(x-x_+)|^{-1})\), that were already present in the \(m = 0 \) corresponding diagram [Fig. 2(e)]. The left and right regions both contain a spacelike curvature singularity and a Schwarzschild-like horizon \((r_+)\).

3. Massive charged solution \((m > 0, q \neq 0)\)

When both the mass and charge parameters are non-zero, depending on the values of the parameters \(A \), \(m \) and \(q \), \(G(x) \) can be positive in a single compact interval, \([x_s, x_n]\), or in two distinct compact intervals, \([x'_s, x'_n]\) and \([x_s, x_n]\), say (see Fig. 5). In this latter case we will work only with the interval \([x_s, x_n]\) (say) for which the charged solutions are in the same sector of those we have analyzed in the last two subsections when \(q \to 0 \).

Depending also on the values of \(A \), \(m \) and \(q \), the function \(F(y) \) can have four roots, three roots (one of them degenerated) or two roots (see the discussion on the text of Fig. 5). As will be first, the case describes a pair of accelerated AdS–Reissner-Nordström (AdS-RN) black holes, the second case describes a pair of naked AdS-RN black holes and the third case describes a pair of naked AdS-RN singularities.

The essential differences between the Carter-Penrose diagrams of the massive charged solutions and those of the massive uncharged solutions are: (i) the curvature singularity is now represented by a timelike line rather than a spacelike line, (ii) excluding the extremal and naked cases, there are now (in addition to the accelerated Rindler-like horizon, \(r_A \)) not one but two extra horizons, the expected inner \((r_-)\) and outer \((r_+)\) horizons associated to the charged character of the solution.

Below, we study the causal structure of the electric or magnetic counterparts of cases (a)-(e) discussed in the two last sections (see Fig. 5), namely (a) \(x_s \leq x \leq x'_s \), (b) \(x = x'_s \), (c) \(x'_s < x < x'_n \), (d) \(x = x'_n \) and (e) \(x'_n < x \leq x_n \). When \(q \to 0 \) we have \(x'_n \to x_- \) and \(x'_n \to x_+ \). The Carter-Penrose diagrams are drawn in Fig. 6. In these diagrams, the left column represents the non-extremal case, the middle column represents the extremal case and the right column represents the naked charged case. The row (a) describes the solution seen from the vicinity of the south pole, row (c) applies to the equatorial vicinity, and row (e) describes the solution seen from the vicinity of the north pole. The zigzag line represents a curvature singularity, an accelerated horizon is represented by \(r_A \), the inner and outer charge associated horizons are sketched as \(r_- \) and \(r_+ \), \(\mathcal{I}^- \) and \(\mathcal{I}^+ \) represent respectively the past and future infinity \((r = +\infty)\), \(r = 0 \) corresponds to \(y = +\infty \) and \(r = +\infty \) corresponds to \(y = -x \). The hatched region does not belong to the solution. In diagrams (c)-(e) we have to glue indefinitely copies of the represented figure in the left and right sides of it. In some of the diagrams, a similar gluing must be
FIG. 6: Carter-Penrose diagrams of cases (a)-(e) discussed in the text of section III.A.3 concerning the charged massive C-metric. The left column represents the non-extremal case, the middle column represents the extremal case and the right column represents the naked charged case. The row (a) describes the solution seen from the vicinity of the south pole, row (c) applies to the equatorial vicinity and row (e) describes the solution seen from the vicinity of the north pole.

(a) $x_s \leq x < x_s'$: both the curvature singularity, $r = 0$, and $r = +\infty$ (\mathcal{I}) are represented by a spacelike line in the Carter-Penrose diagram [Fig. 6.(a)]. Besides, in the non-extremal case, there is an inner horizon (r_-) and an outer horizon (r_+) associated to the charged character of the solution. In the extremal case the two horizons r_- and r_+ become degenerate and so there is a single hori-
zon, \(r_+\) (say), and in the naked case there is no horizon. The diagram is similar to the one of the AdS–Reissner-Nordstrøm solution, although now the curvature singularity has an acceleration \(A\), as will be seen in section IV.

(b) \(x = x'_{\pm}\): the curvature singularity \(r = 0\) is a space-like line in the Carter-Penrose diagram [see Fig. 6.(b)] and \(r = +\infty\) (\(\mathcal{I}\)) is represented by a null line. Again, in the non-extremal case, there is an inner horizon \((r_-)\) and an outer horizon \((r_+)\) associated to the charged character of the solution. In the extremal case there is a single horizon, \(r_+\), and in the naked case there is no horizon. The origin is being accelerated (see section IV).

(c) \(x'_{-} < x < x'_{+}\): the Carter-Penrose diagram [Fig. 6.(c)] has a complex structure. As before [see Fig 4.(c)], it can be divided into left, middle and right regions. The middle region contains the spacelike infinity (\(\mathcal{I}\)) and an accelerated Rindler-like horizon, \(r_A = [A(x - x'_{-})]^{-1}\), that was already present in the \(m = 0\), \(q = 0\) corresponding diagram [see Fig. 2.(c)]. The left and right regions both contain a timelike curvature singularity \((r = 0)\). In addition, these left and right regions contain, in the non-extremal case, an inner horizon \((r_-)\) and an outer horizon \((r_+)\), in the extremal case they contain a single horizon \((r_+)\), and in the naked case they have no horizon.

(d) \(x = x'_n\): the Carter-Penrose diagram [Fig. 6.(d)] for this particular value of the angular direction is similar to the one of above case (c). The only difference is that \(r = +\infty\) (\(\mathcal{I}\)) is represented by a null line rather than a spacelike line.

(e) \(x'_n < x < x'_o\): the Carter-Penrose diagram [Fig. 6.(e)]. As before [see Fig 4.(e)], it can be divided into left, middle and right regions. The middle region consists of a timelike line representing \(r = +\infty\) (\(\mathcal{I}\)) and two accelerated Rindler-like horizon, \(r_A = [A(x - x'_n)]^{-1}\) and \(r_A = [A(x - x'_o)]^{-1}\), that were already present in the \(m = 0\) and \(q = 0\) corresponding diagram [see Fig. 2.(e)]. The left and right regions both contain a timelike curvature singularity \((r = 0)\). In addition, these left and right regions contain, in the non-extremal case, an inner horizon \((r_-)\) and an outer horizon \((r_+)\), in the extremal case they contain a single horizon \((r_+)\), and in the naked case they have no horizon (see however the physical interpretation of this case as a black hole in the end of subsection IV A 3).

B. Causal Structure of the \(A = 1/\ell\) solutions

The \(A = 1/\ell\) case was studied in detail in [22]. In particular, the causal structure of the massive uncharged solution was discussed. For completeness, we will also present the causal diagrams of the massless uncharged solution and of the massive charged solution.

Once more, due to the lower restriction on the value of \(y\) \((-x \leq y\)), the causal diagrams depend on the angular direction \(x\) we are looking at. We have to consider separately three distinct sets of angular directions (see discussion on the text of Figs. 1, 3 and 5), namely (a) \(x_s \leq x < 0\), (b) \(x = 0\) and (c) \(0 < x \leq x_n\), where \(x_s = -1\) and \(x_n = +1\) when \(m = 0\) and \(q = 0\).

1. Massless uncharged solution \((m = 0, q = 0)\)

In this case we have \(x \in [x_s = -1, x_n = +1]\), \(x = \cos \theta\), \(G = 1 - x^2 = \sin^2 \theta\), \(\kappa = 1\) and \(F(y) = y^2\) (see discussion on the text of Fig. 1). The angular surfaces \(\Sigma\) \((t = \text{constant} \text{ and } r = \text{constant})\) are spheres free of conical singularities. The origin of the radial coordinate \(r\) has no curvature singularity and therefore both \(r\) and \(y\) can lie in the range \([-\infty, +\infty]\). However, in the general case, where \(m\) or \(q\) are non-zero, there is a curvature singularity at \(r = 0\). Since the discussion of the present section is only a preliminary to that of the massive general case, following [6], we will treat the origin \(r = 0\) as if it had a curvature singularity and thus we admit that \(r\) belongs to the range \([0, +\infty]\) and \(y\) lies in the region \(-x \leq y < +\infty\). The Carter-Penrose diagrams are drawn in Fig. 7. In case (c) \(0 < x \leq x_n\), and only in this case, there is an accelerated horizon, \(r_A = (Ax)^{-1}\).

\[
\begin{align*}
&\text{(a)} & &\text{South} & &\text{with } & &x & &\text{as null line}\n&\text{(b)} & &\text{Equator} & &\text{with } & &z^* & &\text{as null line}\n&\text{(c)} & &\text{North} & &\text{with } & &z & &\text{as null line}\n\end{align*}
\]

FIG. 7: Carter-Penrose diagrams of cases (a)-(c) discussed in the text of section III B 1 concerning the \(A = 1/\ell\), \(m = 0\), and \(q = 0\) C-metric. \(r_A = (Ax)^{-1}\). In diagrams (a) and (c) we have to glue indefinitely copies of the represented figure in the top and bottom regions of it.

2. Massive uncharged solution \((m > 0, q = 0)\)

The causal diagrams of this solution were first presented in [22] and are drawn in Fig. 8. In the case (c) \(0 < x \leq x_n\), and only in this case, there is an accelerated horizon, \(r_A = (Ax)^{-1}\) which is degenerated (see [22]). The Schwarzschild-like horizon is at \(r_+ = A^{-1}[x + 1/(2mA)]^{-1}\).
A < 1/ℓ, mA < 3−3/2, and q = 0 C-metric. r_A = (Ax)^−1 is a degenerated horizon [see [22]]. In diagram (c) we have to glue indefinitely copies of the represented figure in the top and bottom regions of it.

3. Massive charged solution (m > 0, q ≠ 0)

The Carter-Penrose diagrams of the solution for this range of parameters is sketched in Fig. 9. In these diagrams, the left column represents the non-extremal black hole, the middle column represents the extremal black hole and the right column represents the naked charged particle. The row (a) describes the solution seen from an angle that is between the south pole (including) and the equator (excluding), row (b) applies only to the equatorial direction, and row (c) describes the solution seen from an angle between the equator (excluding) and the north pole (including).

C. Causal Structure of the A < 1/ℓ solutions

The A < 1/ℓ case was first analyzed in [23]. We complement it with the analysis of the causal structure. Contrarily to the cases A > 1/ℓ and A = 1/ℓ, the causal diagrams of this spacetime do not depend on the angular direction we are looking at. The reason for this feature is clearly identified and explained in the discussion on the text of Figs. 1, 3 and 5.

1. Massless uncharged solution (m = 0, q = 0)

The Carter-Penrose diagram is identical to the one of the AdS solution (A = 0, m = 0, q = 0) and is sketched in Fig. 7.(a). The origin has an acceleration A, as will be seen in section IV.

2. Massive uncharged solution (m > 0, q = 0)

The Carter-Penrose diagram is identical to the one of the AdS-Schwarzschild solution (A = 0, m > 0, q = 0) and is drawn in Fig. 8.(a). The origin has an acceleration A, as will be seen in section IV.

3. Massive charged solution (m > 0, q ≠ 0)

The Carter-Penrose diagrams are identical to those of the AdS-Reissner-Nordström solution (A = 0, m > 0, q ≠ 0) and is represented in Fig. 9.(a). In this figure, the non-extremal black hole is represented in the left column, the extremal black hole is represented in the middle column, and the naked charged particle is represented in the right column. The origin has an acceleration A, as will be seen in section IV.
IV. PHYSICAL INTERPRETATION OF THE ADs C-METRIC

The parameter A that is found in the AdS C-metric is interpreted as being an acceleration and the AdS C-metric with $A > 1/\ell$ describes a pair of black holes accelerating away from each other in an AdS background, while the AdS C-metric with $A \leq 1/\ell$ describes a single accelerated black hole. In this section we will justify this statement.

In the Appendix it is shown that, when $A = 0$, the general AdS C-metric, Eq. (13), reduces to the AdS ($m = 0$, $q = 0$), to the AdS-Schwarzschild ($m > 0$, $q = 0$), and to the AdS-Reissner-Nordström solutions ($m = 0$, $q \neq 0$). Therefore, the parameters m and q are, respectively, the ADM mass and ADM electromagnetic charge of the non-accelerated black holes. Moreover, if we set the mass and charge parameters equal to zero, even when $A \neq 0$, the Kretschmann scalar [see Eq. (7)] reduces to the value expected for the AdS spacetime. This indicates that the massless uncharged AdS C-metric is an AdS spacetime in disguise.

A. $A > 1/\ell$. Pair of accelerated black holes

In this section, we will first interpret case 1. Massless uncharged solution ($m = 0$, $q = 0$), which is the simplest, and then with the acquired knowledge we interpret cases 2. Massive uncharged solution ($m > 0$, $q = 0$) and 3. Massive charged solution ($m > 0$, $q \neq 0$). We will interpret the solution following two complementary descriptions, the four dimensional (4D) one and the five dimensional (5D).

1. The 4-Dimensional description ($m = 0$, $q = 0$)

As we said in III A 1, when $m = 0$ and $q = 0$ the origin of the radial coordinate r defined in Eq. (6) has no curvature singularity and therefore r has the range $]-\infty, +\infty[$. However, in the realistic general case, where m or q are non-zero, there is a curvature singularity at $r = 0$ and since the discussion of the massless uncharged solution was only a preliminary to that of the massive general case, following [6], we have treated the origin $r = 0$ as if it had a curvature singularity and thus we admitted that r belongs to the range $[0, +\infty[$. In these conditions we obtained the causal diagrams of Fig. 2. Note however that one can make a further extension to include the negative values of r, enlarging in this way the range accessible to the Kruskal coordinates u' and v'. By doing this procedure we obtain the causal diagram of the AdS spacetime. In Fig. 10 we show the extension to negative values of coordinate r (so $-\infty < y < +\infty$) of the Carter-Penrose diagrams of Fig. 2. This diagram indicates that the origin of the AdS spacetime, $r = 0$, is accelerating. The situation is analogous to the one that occurs in the usual Rindler spacetime, $ds^2 = -X^2dT^2 + dX^2$. If one restricts the coordinate X to be positive one obtains an accelerated origin that approaches a Rindler accelerated horizon. However, by making an extension to negative values of X one obtains the Minkowski spacetime.

![FIG. 10: Extending the Carter-Penrose diagrams of Fig. 2 to negative values of r, we obtain the AdS spacetime with its origin being accelerated. $r^+_A = [A(x - y_+)]^{-1} > 0$ and $r^-_A = [A(x + y_+)]^{-1} > 0$. We have to glue indefinitely copies of the represented figure in the top and bottom regions.](image)

Now, we want to clearly identify the parameter A that appears in the AdS C-metric with the acceleration of its origin. To achieve this aim, we recover the massless uncharged AdS C-metric defined by Eq. (3) and Eq. (4) (with $m = 0$ and $q = 0$), and after performing the following coordinate transformation

$$\tau = \frac{\sqrt{\ell^2 A^2 - 1}}{A} t , \quad \rho = \frac{\sqrt{\ell^2 A^2 - 1}}{A} y ,$$

$$\theta = \arccos x , \quad \phi = z ,$$

we can rewrite the massless uncharged AdS C-metric as

$$ds^2 = \frac{1}{\gamma^2} \left[- (1 - \rho^2/\ell^2) d\tau^2 + \frac{d\rho^2}{1 - \rho^2/\ell^2} + \rho^2 d\Omega^2 \right] .$$

The causal diagram of this spacetime is drawn in Fig. 11. Notice that the origin of the radial coordinate ρ corresponds to $y = +\infty$ and therefore to $r = 0$, where r has been introduced in Eq. (6). So, when we consider the massive AdS C-metric there will be a curvature singularity at $\rho = 0$ (see section II B).

![FIG. 11: Carter-Penrose diagram of metric (33). We have to glue indefinitely copies of the represented figure in the top and bottom regions.](image)
To discover the meaning of parameter A we consider the 4D timelike worldlines described by an observer with $\rho =$constant, $\theta = 0$ and $\phi = 0$ (see [28]). These are given by $x^\mu(\lambda) = (\gamma \ell \lambda / \sqrt{\ell^2 - \rho^2}, \rho, 0, 0)$, were λ is the proper time of the observer since the 4-velocity $u^\mu = dx^\mu/d\lambda$ satisfies $u_\mu u^\mu = -1$. The 4-acceleration of these observers, $a^\mu = (\nabla_\nu u^\nu) u^\mu$, has a magnitude given by

$$|a_4| = \sqrt{a_\mu a^\mu} = \frac{\rho \sqrt{\ell^2 A^2 - 1} + \ell^2 A}{\ell \sqrt{\ell^2 - \rho^2}}. \quad (35)$$

Since $a_\mu u^\mu = 0$, the value $|a_4|$ is also the magnitude of the 3-acceleration in the rest frame of the observer. From Eq. (35) we achieve the important conclusion that the origin of the AdS C-metric, $\rho = 0$ (or $r = 0$), is being accelerated with a constant acceleration whose value is precisely given by the parameter A that appears in the AdS C-metric. Moreover, at radius $\rho = \ell$ (or $y = y_+$ defined in equation (14]) the acceleration is infinite which corresponds to the trajectory of a null ray. Thus, observers held at $\rho =$constant see this null ray as an acceleration horizon and they will never see events beyond this null ray.

2. The 5-Dimensional description ($m = 0$, $q = 0$)

In order to improve and clarify the physical aspects of the AdS C-metric we turn now into the 5D representation of the solution.

The AdS spacetime can be represented as the 4-hyperboloid,

$$-(z^0)^2 + (z^1)^2 + (z^2)^2 + (z^3)^2 - (z^4)^2 = -\ell^2, \quad (36)$$

in the 5D Minkowski (with two timelike coordinates) embedding spacetime,

$$ds^2 = -(dz^0)^2 + (dz^1)^2 + (dz^2)^2 + (dz^3)^2 - (dz^4)^2. \quad (37)$$

Now, the massless uncharged AdS C-metric is an AdS spacetime in disguise and therefore our next task is to understand how the AdS C-metric can be described in this 5D picture. To do this we first recover the massless uncharged AdS C-metric described by Eq. (33) and apply to it the coordinate transformation

$$z^0 = \gamma^{-1} \sqrt{\ell^2 - \rho^2} \sinh(\tau/\ell), \quad z^2 = \gamma^{-1} \rho \sin \theta \cos \phi, \quad z^1 = \gamma^{-1} \sqrt{\ell^2 - \rho^2} \cosh(\tau/\ell), \quad z^3 = \gamma^{-1} \rho \sin \theta \sin \phi, \quad z^4 = \gamma^{-1} \sqrt{\ell^2 A^2 - 1} \rho \cos \theta + \ell^2 A, \quad (38)$$

where γ is defined in Eq. (34). Transformations (38) define an embedding of the massless uncharged AdS C-metric into the 5D description of the AdS spacetime since they satisfy Eq. (36) and take directly Eq. (33) into Eq. (37).

So, the massless uncharged AdS C-metric is an AdS spacetime, but we can extract more information from this 5D analysis. Indeed, let us analyze with some detail the properties of the origin of the radial coordinate, $\rho = 0$ (or $r = 0$). This origin moves in the 5D Minkowski embedding spacetime according to [see Eq. (38)]

$$z^2 = 0, \quad z^3 = 0, \quad z^4 = \ell^2 A / \sqrt{\ell^2 A^2 - 1} > \ell \quad \text{and} \quad (z^1)^2 - (z^0)^2 = (A^2 - 1/\ell^2)^{-1} \equiv a_5^{-2}. \quad (39)$$

These equations define two hyperbolic lines lying on the AdS hyperboloid which result from the intersection of this hyperboloid surface defined by Eq. (36) and the $z^4 =$ constant $> \ell$ plane (see Fig. 12). They tell us that the origin is subjected to a uniform 5D acceleration, a_5, and consequently moves along a hyperbolic worldline in the 5D embedding space, describing a Rindler-like motion (see Figs. 12 and 13) that resembles the well-known hyperbolic trajectory, $X^2 - T^2 = a^{-2}$, of an accelerated observer in Minkowski space. But uniformly accelerated radial worldlines in the 5D Minkowski embedding space are also uniformly accelerated worldlines in the 4D AdS space [29], with the 5D acceleration a_5 being related to the associated 4D acceleration a_4 by $a_5^2 = a_4^2 - 1/\ell^2$. Comparing this last relation with Eq. (39) we conclude that $a_4 \equiv A$. Therefore, and once again, we conclude that the origin of the AdS C-metric is uniformly accelerating with a 4D acceleration whose value is precisely given by the parameter A that appears in the AdS C-metric, Eq. (3), and this solution describes a AdS space whose origin is not at rest as usual but is being accelerated. Note that the origin of the usual AdS spacetime describes the circle $(z^0)^2 + (z^1)^2 = \ell^2$ in the AdS hyperboloid in contrast to the origin of the AdS C-metric with $A > 1/\ell$ whose motion is described by Eq. (39). This
discussion allowed us to find the physical interpretation of parameter A and to justify its label. Notice also that the original AdS C-metric coordinates introduced in Eq. (3) cover only the half-space $z^1 > -z^0$. The Kruskal construction done in section III A extended this solution to include also the $z^1 < -z^0$ region and so, in the extended solution, $r = 0$ is associated to two hyperbolas that represent two accelerated points (see Fig. 13). These two hyperbolas approach asymptotically the Rindler-like acceleration horizon (r_A), so called because it is absent when $A = 0$ and present even when $A \neq 0$, $m = 0$ and $q = 0$.

3. Pair of accelerated black holes ($m > 0$, $q \neq 0$)

Now, we are in position to interpret the massive and charged solutions that describe two black holes accelerating away from each other. To see clearly this, let us look to the Carter-Penrose diagrams near the equator, Fig. 2.(c), Fig. 4.(c) and Fig. 6.(c) (for the discussion that follows we could, as well, look at the diagrams of case (d) on these figures). Looking at these figures we can compare the different features that belong to the massless uncharged case [Fig. 2.(c)], to the massive uncharged case [Fig. 4.(c)], and ending in the massive charged case [Fig. 6.(c)]. In Fig. 2.(c) we identify the two hyperbolas $r = 0$ (represented by two timelike lines) approaching asymptotically the Rindler-like acceleration horizon (r_A). When we add a mass to the solution we conclude that each of these two simple hyperbolas $r = 0$ are replaced by the more complex structure that represents a Schwarzschild black hole with its spacelike curvature singularity and its horizon (these are represented by r_+ in the left and right regions of Fig. 4.(c)). So, the two accelerating points $r = 0$ have been replaced by two Schwarzschild black holes that approach asymptotically the Rindler-like acceleration horizon (represented by r_A in the middle region of Fig. 4.(c)). The same interpretation can be assigned to the massive charged solution. The two hyperbolas $r = 0$ of Fig. 2.(c) are replaced by two Reissner-Nordström black holes (with its timelike curvature singularity and its inner r_- and outer r_+ horizons; see the left and right regions of Fig. 6.(c)) that approach asymptotically the Rindler-like acceleration horizon already present in the $m = 0$ and $q = 0$ causal diagram.

The Carter-Penrose diagrams of cases (a) and (b) of Fig. 4 and Fig. 6 indicate that an observer that is looking through an angular direction which is in the vicinity of the south pole does not see the acceleration horizon and notices the presence of a single black hole. This is in agreement with Fig. 13. Indeed, in this schematic figure, coordinates z^0 and z^1 can be seen as Kruskal coordinates and we conclude that an observer, initially located at infinity ($z^1 = \infty$) and moving inwards into the black hole along the south pole, passes through the black hole horizons and hits eventually its curvature singularity. Therefore, he never has the opportunity of getting in contact with the acceleration horizon and with the second black hole. This is no longer true for an observer that moves into the black hole along an angular direction that is in the vicinity of the north pole. In Fig. 13 this observer would be between the two black holes, at one of the points of the $z^0 < 0$ semi-axis (say) and moving into the black hole. Clearly, this observer passes through the acceleration horizon before crossing the black hole horizons and hitting its curvature singularity. This description agrees with cases (c), (d) and (e) of Fig. 4 and Fig. 6 which describe the solution along an angular direction which includes the equatorial plane [case (c)] as well as the north pole [case (e)].

The diagrams of the third column of Fig. 6 concerning the naked case of the $A > 1/\ell$ massive charged C-metric deserve a comment. First, we stress that the term naked is employed in this situation because the values of parameters m and q are such that the solution has no charged associated horizons, i.e., in the notation used along this paper, r_- and r_+ are not present in these diagrams. However, these diagrams present an interesting new feature. Indeed, looking at at rows (a) and (b) we have a single accelerated naked particle, in rows (c)-(d) we find two naked singularities approaching asymptotically the acceleration horizon r_A but in row (e) we have no longer two naked singularities. More precisely, we have a kind of a single AdS–Reissner-Nordström black hole with the curvature singularity being provided by the mass and charge but with the horizons having their origin in the acceleration and cosmological constant.
4. Source of acceleration. The Strut

We can now ask what entity is causing the acceleration and where it is localized. To achieve this aim, let us go back to the massless uncharged AdS C-metric and consider radial worldlines motions with $z^2 = 0$, $z^3 = 0$ and $z^4 = $ constant or, equivalently, with $\theta = 0$, $\phi = $ constant and $\rho = $ constant. These observers move along a Rindler-like hyperbola described by [see Eq. (38)]

$$(z^1)^2 - (z^0)^2 = \frac{r^2 - \rho^2}{(\sqrt{r^2A^2 - 1 + A\rho})^2}. \quad (40)$$

Since the right hand side of Eq. (40) is smaller than a_5^{-2} defined in Eq. (39), the north pole $\theta_n = 0$ is localized between the hyperbolas $z^1)^2 - (z^0)^2 = a_5^{-2}$ in the z^0, z^1 diagram (see Fig. 13). What does this means? When we put m or q different from zero, each of the two hyperbolas assigned to $r = 0$ represent the accelerated motion of a black hole. Thus, Eq. (40) tells us that the $\theta_n = 0$ axis points toward the other black hole, i.e., it is in the region between the two black holes (see Fig. 13). The south pole points along the symmetry axis towards spatial infinity. Now, in section II C, we saw that parameter κ has been chosen in order to avoid a conical singularity at the south pole [see Eq. (12)] and, by doing so, at the north pole is localized a conical singularity. This is associated to a strut that joins the two black holes and provides the acceleration of the black holes. To confirm this, recall that either a straight string or a strut have a metric described by [30, 31]

$$ds^2 = -dt^2 + dZ^2 + d\phi^2 + \rho^2 d\sigma^2, \quad (41)$$

where $\sigma = [1 - \delta/(2\pi)]\phi$ and $0 \leq \phi < 2\pi$. A string has $\delta > 0$ and the geometry around it is conic, i.e., it is a plane with a deficit angle δ, while a strut has $\delta < 0$. Their mass per unit length is $\mu = \delta/(8\pi)$ and their interior energy-momentum tensor is

$$T_{a\beta} = \mu \delta(X) \delta(Y) \text{diag}(-1, 0, 0, 0, -1), \quad (42)$$

where $X = g \cos \phi$ and $Y = g \sin \phi$ are the directions normal to the strut, and $\delta(X)$ and $\delta(Y)$ are Dirac delta-functions. The pressure on the string or in the strut satisfies $\rho = -\mu$. If $\mu > 0$ we have a string, if $\mu < 0$ we have a strut. Now, turning to our case, the AdS C-metric, Eq. (13), near the north pole is given by

$$ds^2 \sim -r^2F dt^2 + r^2F^{-1} dy^2 + \left(r^2 d\phi^2 + \frac{\kappa^2}{4} \frac{dG}{dx} |_{x_a} r^2 \theta^2 d\phi^2 \right), \quad (43)$$

where κ is defined in Eq. (12) and the term between the curved brackets is the induced metric in the plane normal to the strut that connects the two black holes (along the y direction) and will be labelled as $dX^2 + dY^2$. The C-metric strut has a mass per unit length given by

$$\mu = \frac{1}{4} \frac{\delta_n}{2\pi} = \frac{1}{4} \left(1 - \frac{dG}{dx} |_{x_a} \frac{dG}{dx} |_{x_n} \right), \quad (44)$$

We have $|d_x G|_{x_a} < |d_x G|_{x_n}$ and so μ is negative. To obtain the pressure of the C-metric strut, we write Eq. (43) in a Minkowski frame, $ds^2 = -\theta^{(02)} + \theta^{(12)} + \theta^{(22)} + \theta^{(32)}$, with $\theta^{(a)} = e^{(a)} \frac{dx^a}{dx}$ and $e^{(0)} = r \sqrt{F}$, $e^{(1)} = r$, $e^{(2)} = r \theta \delta |d_x G|_{x_a}/2$ and $e^{(3)} = r \sqrt{F}$. In this Minkowski frame the energy-momentum tensor, $T_{a\beta}^{(B)}$, of the C-metric strut is given by (42). In order to come back to the coordinate basis frame and write the energy-momentum tensor of the C-metric strut in this basis we use $T_{a\beta}^{(B)} = e^{(A)a} e_{(B)}^\beta T_{A\beta}^{(B)}$ and obtain

$$T_{a\beta} = \mu (r^2 F)^{-1} \delta(X) \delta(Y) \text{diag}(1, 0, 0, -F^2). \quad (45)$$

Defining the unit vector $\zeta = \partial/\partial y$ [so, $\zeta^a = (0, 0, 0, 1)$], the pressure along the strut is $T_{a\beta} \zeta_a \zeta_\beta$ and the pressure on the C-metric strut is given by the integration over the $X-Y$ plane normal to the strut,

$$p = \int dX dY \sqrt{(2)} g T_{a\beta} \zeta_a \zeta_\beta = -\mu. \quad (46)$$

So, the pressure and mass density of the C-metric strut satisfy the relation $\rho = -\mu$. Since μ is negative, at both ends of the strut, one has a positive pressure pushing away the two black holes.

Alternatively, instead of Eq. (12), we could have chosen for κ the value $\kappa^{-1} = (1/2)|d_x G|_{x_a}^{-1}$. By doing so we would avoid the deficit angle at the north pole ($\delta_n = 0$) and leave a conical singularity at the south pole ($\delta_s > 0$). This option would lead to the presence of a semi-infinite string extending from each of the black holes towards infinity along the south pole direction, which would furnish the acceleration. The mass density of both strings is $\mu = (1/4)(1 - |d_x G|_{x_a}^{-1} |d_x G|_{x_s}) > 0$ and the pressure on the string, $p = \mu$, is negative which means that each string is pulling the corresponding black hole towards infinity.

At this point, a remark is relevant. Israel and Khan [32] have found a solution that represents two (or more) collinear Schwarzschild black holes interacting with each other in such a way that allows dynamical equilibrium. In this solution, the two black holes are connected by a strut that exerts an outward pressure which cancels the inward gravitational attraction and so the distance between the two black holes remains fixed [32]. The solution [32] is valid for $A = 0$ but, although it has not been done, it can be extended in principle for generic Λ and so the present remark holds for generic Λ. Now, the C-metric solution reduces to a single non-accelerated black hole free of struts or strings when the acceleration parameter A vanishes (see Appendix and section IV C). Thus, when we take the limit $A = 0$, the C-metric does not reduce to the static solution of Israel and Khan. The reason for this behavior can be found in the Carter-Penrose diagrams of the C-metric. For example, looking into Fig. 4.(c) which represents the massive uncharged C-metric along the equator we conclude that a null ray sent from the vicinity of one of the black holes can never cross the
acceleration horizon \((r_A) \) into the other black hole. So, if the two black holes cannot communicate through a null ray they cannot interact gravitationally. The only interaction that is present in the system is between the strut and each one of the black holes that suffer an acceleration which is only furnished by the strut’s pressure. That the limit \(A = 0 \) does not yield the solution \([32]\) can also be inferred from \([9]\), where the C-metric is obtained from the the two black hole solution of \([32]\) but through a singular limit in which several quantities go appropriately to infinity.

Ernst \([4]\) has employed a Harrison-type transformation to the \(\Lambda = 0 \) charged C-metric in order to append a suitably chosen external electromagnetic field. With this procedure the so called Ernst solution is free of conical singularities at both poles and the acceleration that drives away the two oppositely charged Reissner-Nordstrøm black holes is totally provided by the external electromagnetic field. In the AdS background we cannot remove the conical singularities through the application of the Harrison transformation \([33]\). Indeed, the Harrison transformation does not leave invariant the cosmological term in the action. Therefore, applying the Harrison transformation to Eqs. \((3)-(5)\) does not yield a new solution of the Einstein-Maxwell-AdS theory.

5. Radiative properties

The C-metric (either in the flat, de Sitter or anti-de Sitter background) is an exact solution that is radiative. As noticed in \([3]\), the gravitational radiation is present since the complex scalar of the Newman-Penrose formalism, \(\Psi^4 = -C_{\mu
u\alpha\beta}u^\mu m^\nu n^\alpha \bar{m}^\beta \) (where \(C_{\mu
u\alpha\beta} \) is the Weyl tensor and \(\{\ell,n,m,\bar{m}\} \) is the usual null tetrad of Newman-Penrose), contains a term proportional to \(r^{-1} \). Similarly, the charged version of the C-metric includes, in addition, electromagnetic radiation. In \([6]\), it has been shown that the Bondi news functions of the flat C-metric are indeed non-zero. These Bondi news functions appear in the context of the Bondi method introduced to study gravitational radiative systems. They are needed to determine the evolution of the radiative gravitational field since they carry the information concerning the changes of the system. When at least one of them is not zero, the total Bondi mass of the system decreases due to the emission of gravitational waves. The Bondi news functions of the flat C-metric have been explicitly calculated in \([14, 15]\). For a detailed review on the radiative properties of the C-metric and other exact solutions see \([15]\). In AdS background these calculations have not been carried yet. Indeed, AdS still lacks a peeling theorem.

B. \(A = 1/\ell \). Single accelerated black hole

When \(A = 1/\ell \) the AdS C-metric describes a single accelerated black hole. The absence of a second black hole is clearly indicated by the Carter-Penrose diagrams of Figs. 8 and 9.

This case has been studied in detail in \([22]\) where the Randall-Sundrum model in a lower dimensional scenario has analyzed. In this scenario, the brane-world is a 2-brane moving in a 4D asymptotically AdS background. They have shown that the AdS C-metric with \(A = 1/\ell \) describes a black hole bound to the Minkowski 2-brane. Thebrane tension is fine tuned relative to the cosmological background acceleration and thus, \(A = 1/\ell \) is precisely the acceleration that the black hole has to have in order to comove with the 2-brane. They concluded that the AdS C-metric describes the final state of gravitational collapse on the brane-world. The causal structure of the massive uncharged solution (Fig. 8) has been first discussed in \([22]\). For completeness, we have also presented the causal diagrams of the massless uncharged solution in Fig. 7 and of the non-extremal, extremal, and naked massive charged solutions in Fig. 9.

In \([22]\) the coordinate transformation that takes the massless uncharged AdS C-metric with \(A = 1/\ell \) into the known description of the AdS spacetime in Poincaré coordinates is given. From there one can easily go to the 5D description on the AdS hyperboloid. This 5D description can be also understood directly from the limits on the solutions \(A > 1/\ell \) and \(A < 1/\ell \) when \(A \to 1/\ell \). Indeed, if we take the limit \(A \to 1/\ell \) in section IV A 2 (where we have studied the 5D description of case \(A > 1/\ell \)), one sees that the cut that generates the two hyperbolic lines degenerates into two half circles which, on identifying the ends of the AdS hyperboloid at both infinities, yields one full circle. This means that the trajectory of the origin of the AdS C-metric in the \(A = 1/\ell \) case is a circle (which when one unwraps the hyperboloid to its universal cover yields a straight accelerated line). As we will see in the next subsection, for \(A < 1/\ell \) the trajectory of the origin is a circle which, on taking the limit \(A \to 1/\ell \), still yields a circle. The two limits give the same result as expected.

C. \(A < 1/\ell \). Single accelerated black hole

The \(A < 1/\ell \) case was first analyzed in \([23]\). We have complemented this work with the analysis of the causal structure. The causal diagrams of this spacetime are identical to the ones of the AdS \((m = 0, q = 0)\) [see Fig. 7.(a)], of the AdS-Schwarzschild \((m > 0, q = 0)\) [see Fig. 8.(a)], and of the AdS-Reissner-Nordström solutions \((m > 0, q \neq 0)\) [see Fig. 9.(a)]. However, the curvature singularity of the single black hole of the solution is not at rest but is being accelerated, with the acceleration \(A \) provided by an open string that extends from the pole into asymptotic infinity.

As was done with the \(A > 1/\ell \) case, it is useful to
interpret the solution following two complementary descriptions, the 4D one and the 5D. One first recovers the massless uncharged AdS C-metric defined by Eq. (3) and Eq. (4) (with \(A < 1/\ell \), \(m = 0 \) and \(q = 0 \)), and after performing the following coordinate transformation [23]

\[
T = \frac{\sqrt{1 - \ell^2 A^2}}{A} t, \quad R = \frac{\sqrt{1 - \ell^2 A^2}}{A} y,
\]

\[
\theta = \arccos x, \quad \phi = z,
\]

we can rewrite the massless uncharged AdS C-metric as

\[
ds^2 = \frac{1}{\eta^2} \left[-\left(1 + \frac{R^2}{\ell^2}\right)dt^2 + \frac{dR^2}{1 + \frac{R^2}{\ell^2}} + R^2 d\Omega^2 \right],
\]

with \(\eta^{-1} = \sqrt{1 - \ell^2 A^2} + AR \cos \theta \) and \(d\Omega^2 = d\theta^2 + \sin^2 \theta d\phi^2 \). A procedure similar to the one used to obtain (35) indicates that an observer describing 4D timelike worldlines with \(R = \text{constant} \), \(\theta = 0 \) and \(\phi = 0 \) suffers a 4-acceleration with magnitude given by

\[
|a| = \frac{\ell^2 A - R\sqrt{1 - \ell^2 A^2}}{\ell \sqrt{\ell^2 + R^2}}.
\]

Therefore, the origin of the AdS C-metric, \(R = 0 \), is being accelerated with a constant acceleration whose value is precisely given by \(A \). The causal diagram of this spacetime is drawn in Fig. 14. Notice that when we set \(A = 0 \), Eq. (48) reduces to the usual AdS spacetime written in static coordinates. Now, to obtain the 5D description, one applies to Eq. (48) the coordinate transformation [23],

\[
z^0 = \eta^{-1} \sqrt{\ell^2 + R^2} \sin(T/\ell), \quad z^2 = \eta^{-1} R \sin \theta \cos \phi,
\]

\[
z^4 = \eta^{-1} \sqrt{\ell^2 + R^2} \sin(T/\ell), \quad z^3 = \eta^{-1} R \sin \theta \sin \phi,
\]

\[
z^1 = \eta^{-1} [\sqrt{1 - \ell^2 A^2} R \cos \theta - \ell^2 A].
\]

Transformations (50) define an embedding of the massless uncharged AdS C-metric with \(A < 1/\ell \) into the 5D description of the AdS spacetime since they satisfy Eq. (36) and take directly Eq. (48) into Eq. (37).

The origin of the radial coordinate, \(R = 0 \) moves in the 5D Minkowski embedding spacetime according to [see Eq. (50)]

\[
z^1 = -\ell^2 A/\sqrt{1 - \ell^2 A^2}, \quad z^2 = 0, \quad z^3 = 0 \quad \text{and} \quad (z^0)^2 + (z^4)^2 = (1/\ell^2 - A^2)^{-1} \equiv a_5^{-2}.
\]

So, contrarily to the case \(A > 1/\ell \) where the origin described a Rindler-like hyperbolic trajectory [see Eq. (39)] that suggests the presence of two black holes driving away from each other in the extended diagram, in the \(A < 1/\ell \) case the origin describes a circle (a uniformly accelerated worldline) in the 5D embedding space (see Fig. 15), indicating the presence of a single trapped black hole in the AdS background.

To summarize and conclude, we present the global description on the AdS hyperboloid of the AdS C-metric origin when the acceleration \(A \) varies from \(+\infty\) to zero. When \(A = +\infty \) the origin of the solution is in the hyperboloid by two mutual perpendicular straight null lines at 45° that result from the intersection of the hyperboloid surface defined by Eq. (36) and the \(z^4 = \ell \) plane (see Figs. 12 and 13). When \(A \) belongs to \([1/\ell, +\infty[\), the origin of the solution is represented by two hyperbolic lines [Eq. (39)] lying on the AdS hyperboloid and result from the intersection of Eq. (36) and the \(z^4=\text{constant}> \ell \) plane (see Fig. 12). As the acceleration approaches the value \(A = 1/\ell \) the separation between the two hyperbolic lines increases. When \(A = 1/\ell \) the separation between the two hyperbolic lines becomes infinite and they collapse into two half circles which, on identifying the ends of the AdS hyperboloid at both infinities, yields one full circle in the \(z^0 - z^4 \) plane at infinite \(z^1 \). At this point we see again that the value \(A = 1/\ell \) sets a transition stage between \(A > 1/\ell \) and \(A < 1/\ell \). When \(A \) belongs to \([0, 1/\ell[\) the origin of the solution is described again by a circle [Eq. (51)] in the \(z^0 - z^4 \) plane but now at a constant \(z^1 < 0 \). As the acceleration approaches the value \(A = 0 \), the radius of this circle decreases and when \(A = 0 \) the circle has a radius with value \(\ell \) and is at \(z^1 = 0 \) (see Fig. 15) and we recover
the usual AdS solution whose origin is at rest.

V. CONCLUSIONS

The AdS C-metric found by Plebański and Demiański [16] is characterized by a quite interesting new feature when compared with the C-metric in flat or de Sitter backgrounds. Indeed, contrarily to what happens in these two last solutions, in the AdS background the solution only describes a pair of accelerated black holes if the acceleration parameter satisfies \(A > 1/\ell \), where \(\ell \) is the cosmological length. The acceleration is caused by a strut that connects the black holes. The physical interpretation of the solutions has been essentially taken from the analysis of the Carter-Penrose diagrams (following the approach of Kinnersly and Walker [3] for the flat C-metric), from the embedding of the massless uncharged solution into the AdS 4-hyperboloid in a 5D Minkowski spacetime (with two timelike coordinates), and from the physics of the strut. The alternative approach of Bonnor [7] which puts the flat C-metric into the Weyl form cannot be realized here, since the introduction of the cosmological constant prevents such a coordinate transformation.

For \(A > 1/\ell \), the embedding of the AdS C-metric into 5D Minkowski space clearly shows that the origin of the AdS C-metric solution is subjected to a uniform acceleration, and describes a hyperbolic Rindler-like worldline in the AdS 4-hyperboloid embedded in the 5D Minkowski space. To be more precise, the origin is represented by two hyperbolic lines that approach asymptotically the Rindler-like accelerated horizon, so called because it is is absent when \(A = 0 \) and present even when \(A \neq 0 \), \(m = 0 \) and \(q = 0 \). When we add a mass or a charge to the system the causal diagrams indicate that now we have two AdS-Schwarzschild or two AdS-Reissner-Nordström black holes approaching asymptotically the Rindler-like accelerated horizon. We have proceeded to the localization of the conical singularity present in the solution and concluded that it is between the two black holes and along the symmetry axis (or alternatively from the black holes out to infinity). When it is between the two black holes, it is associated to a strut satisfying the relation \(p = -\mu > 0 \), where \(p \) and \(\mu \) are respectively the pressure on the strut and its mass density. The pressure is positive, so it points outwards into infinity and pulls the black holes apart, furnishing their acceleration (as in the flat C-metric). When the conical singularity points from each of the black holes into infinity, it is associated to a string with negative pressure that pushes the black holes into infinity. From the analysis of the Carter-Penrose diagrams we also concluded that the two black holes cannot interact gravitationally. So, their acceleration is provided only by the pressure exerted by the strut. This is the reason why the limit \(A = 0 \) of the C-metric does not reduce to the static solution of Israel and Khan [32]. This solution describes two collinear Schwarzschild black holes connected by a strut that exerts an outward pressure which cancels the inward gravitational attraction and so the distance between the two black holes remains fixed.

For \(A \leq 1/\ell \) the above procedure indicates the absence of a second black hole and so the solution describes a single black hole. In the AdS 4-hyperboloid, the origin of these solutions describes a circle in the plane defined by the two timelike coordinates. In a lower dimensional Randall-Sundrum model, it has been shown that the \(A = 1/\ell \) AdS C-metric describes a black hole bound to a Minkowski 2-brane moving in a 4D asymptotically AdS background [22].

The C-metric solution for generic \(\Lambda \) has been used [17, 25, 27] to describe the final state of the quantum process of pair creation of black holes, that once created accelerate apart by an external field. In this context, we expect that the black hole pair created in the AdS background must have an acceleration \(A > 1/\ell \). Indeed, the AdS background is globally contracting with an acceleration precisely equal to \(1/\ell \). Therefore, a pair of virtual black holes created in this background can only become real if the black hole acceleration is greater than the contracting acceleration of the AdS background, otherwise, the annihilation is inevitable. The quantum process that might create the pair would be the gravitational analogue of the Schwinger pair production of charged particles in an external electromagnetic field. This would be one possible scenario to create two exactly equal black holes with the same acceleration that are described by the AdS C-metric solution with \(A > 1/\ell \).

Acknowledgments

This work was partially funded by Fundação para a Ciência e Tecnologia (FCT) through project CERN/FIS/43797/2001 and PESO/PRO/2000/4014. OJCD also acknowledges financial support from the Portuguese FCT through PRAXIS XXI programme. JPSL thanks Observatório Nacional do Rio de Janeiro for hospitality.

APPENDIX: MASS AND CHARGE PARAMETERS

In this Appendix, one gives the physical interpretation of parameters \(m \) and \(q \) that appear in the AdS C-metric. We follow [23].

Applying the coordinate transformations to Eq. (3) (see [23]),

\[
T = \sqrt{1 - \ell^2 A'^2} t, \quad R = \sqrt{1 - \ell^2 A'^2} (Ay)^{-1},
\]

\[
\theta = \int_x^{x_n} G^{-1/2} dx, \quad \phi = z/\kappa, \quad \text{(A.1)}
\]
and setting $A = 0$ (and $\kappa = 1$) one obtains
\begin{equation}
\begin{align}
\nonumber \text{A}\text{.	ext{2}} \\
\nonumber ds^2 = -F(R) \, dt^2 + F^{-1}(R) \, dr^2 + R^2 (d\theta^2 + \sin^2 \theta \, d\phi^2),
\end{align}
\end{equation}
where $F(R) = 1 + R^2/\ell^2 - 2m/R + q^2/R^2$. So, when the acceleration parameter vanishes, the AdS C-metric, Eq. (3), reduces to the AdS-Schwarzschild and AdS-Reissner-Nordström black holes and the parameters m and q that are present in the AdS C-metric are precisely the ADM mass and ADM electromagnetic charge of these non-accelerated black holes. It should however be emphasized that the accelerated black holes lose mass through radiative processes and so the determination of the mass of the accelerated black holes would require the calculation of the Bondi mass, which we do not here.

[1] D. Kramer, H. Stephani, M. MacCallum, E. Herlt, Exact solutions of Einstein’s Field Equations (Cambridge University Press, 1980).
[2] J. Ehlers, W. Kundt, Exact solutions of the gravitational field equations, in: Gravitation: an introduction to current research, edited by L. Witten (Wiley, New York, London, 1962).
[3] W. Kinnersley, M. Walker, Uniformly accelerating charged mass in General Relativity, Phys. Rev. D 2, 1359 (1970).
[4] F. J. Ernst, Removal of the nodal singularity of the C-metric, J. Math. Phys. 17, 515 (1976).
[5] H. Farhoosh, R. L. Zimmerman, Stationary charged C-metric, J. Math. Phys. 20, 2272 (1979); Killing horizons and dragging of the inertial frame about a uniformly accelerating particle, Phys. Rev. D 21, 317 (1980); Interior C-metric, Phys. Rev. D 23, 290 (1981).
[6] A. Ashtekar, T. Dray, On the existence of solutions to Einstein’s equation with non-zero Bondi-news, Comm. Phys. 79, 581 (1981).
[7] W. B. Bonnor, The sources of the vacuum C-metric, Gen. Rel. Grav. 15, 535 (1983); The C-metric with $m = 0$, $e \neq 0$, Gen. Rel. Grav. 16, 269 (1984).
[8] P. H. J. Cornish, W. J. Uttley, The interpretation of the C-metric. The vacuum case, Gen. Rel. Grav. 27, 439 (1995); The interpretation of the C metric. The charged case when $e^2 \leq m^2$, Gen. Rel. Grav. 27, 735 (1995).
[9] W. Yongcheng, Vacuum C-metric and the metric of two superposed Schwarzschild black holes, Phys. Rev. D 55, 7977 (1997).
[10] C. G. Wells, Extending the black hole uniqueness theorems I. Accelerating black holes: The Ernst solution and C-metric, gr-qc/9808044.
[11] V. Pravda, A. Pravdova, Co-accelerated particles in the C-metric, Class. Quant. Grav. 18, 1205 (2001).
[12] J. Podolský, J. B. Griffiths, Null limits of the C-metric, Gen. Rel. Grav. 33, 59 (2001).
[13] J. Bičák, B. G. Schmidt, Asymptotically flat radiative space-times with boost-rotation symmetry: The general structure, Phys. Rev. D 40, 1827 (1989).
[14] J. Bičák, Gravitational radiation from uniformly accelerated particles in general relativity, Proc. Roy. Soc. A 302, 201 (1968).
[15] V. Pravda, A. Pravdova, Boost-rotation symmetric space-times - review, Czech. J. Phys. 50, 333 (2000).
[16] J. F. Plebański, M. Demiański, Rotating, charged and uniformly accelerating mass in general relativity, Annals of Phys. (N.Y.) 98, 98 (1976).
[17] H. F. Dowker, J. P. Gauntlett, D. A. Kastor, J. Traschen, Pair creation of dilaton black holes, Phys. Rev. D 49, 2909 (1994).
[18] H. Farhoosh, R. L. Zimmerman, Surfaces of infinite redshift around a uniformly accelerating and rotating particle, Phys. Rev. D 21, 2064 (1980).
[19] P. S. Letelier, S. R. Oliveira, On uniformly accelerated black holes, , Phys. Rev. D 64, 064005 (2001).
[20] J. Bičák, V. Pravda, Spinning C-metric as a boost-rotation symmetric radiative spacetime, Phys. Rev. D 60, 044004 (1999).
[21] J. Podolský, J.B. Griffiths, Uniformly accelerating black holes in a de Sitter universe, Phys. Rev. D 63, 024006 (2001).
[22] R. Emparan, G. T. Horowitz, R. C. Myers, Exact description of black holes on branes, JHEP 0001 007 (2000); Exact description of black Holes on branes II: Comparison with BTZ black holes and black strings, JHEP 0001 021 (2000).
[23] J. Podolský, Accelerating black holes in anti-de Sitter universe, Czech. J. Phys. 52, 1 (2002).
[24] A. Chamblin, Capture of bulk geodesics by brane-world black holes, Class. Quant. Grav. 18, L17 (2001).
[25] S. W. Hawking, G. T. Horowitz, S. F. Ross, Entropy, area, and black hole pairs, Phys. Rev. D 51, 4302 (1995).
[26] R. Mann, Pair production of topological anti-de Sitter black holes, Class. Quantum Grav. 14, L109 (1997); Charged topological black hole pair creation, Nucl. Phys. B 516, 357 (1998).
[27] O. J. C. Dias, Pair creation of particles and black holes in external fields, in: Astronomy and Astrophysics: Recent developments, eds. J. P. S. Lemos et al (World Scientific, Singapore, 2001); gr-qc/0106081.
[28] J. P. S. Lemos, Thermodynamics of the two-dimensional black hole in the Teitelboim-Jackiw theory, Phys. Rev. D 54, 6206 (1996).
[29] S. Deser, O. Levin, Accelerated detectors and temperature in (anti-) de Sitter spaces, Class. Quantum Grav. 14, L163 (1997).
[30] A. Vilenkin, Cosmic strings and domain walls, Phys. Rep. 121, 263 (1985).
[31] O. J. C. Dias, J. P. S. Lemos, Magnetic strings in anti-de Sitter general relativity, Class. Quantum Grav. 19, 2265 (2002).
[32] W. Israel, K. A. Khan, Collinear particles and dipoles in general relativity, Nuovo Cimento 33, 333 (1964); M. S. Costa, M. J. Perry, Interacting Black Holes, Nucl. Phys. B 591 (2000) 469.
[33] R. Emparan, (private communication).