Traditional Utilization and Harvesting of Medicinal Plants in Mandla District of Madhya Pradesh

Smita Shree Dikshit, Chandra Prakash Kala*

Ecosystem & Environment Management Indian Institute of Forest Management, Nehru Nagar, Bhopal, Madhya Pradesh, INDIA
*Corresponding author: cpkala@yahoo.co.uk

Received February 26, 2014; Revised March 11, 2014; Accepted March 14, 2014

Abstract Utilization and harvesting practices of medicinal plants used by local people of Ghughri block in Mandla district of Madhya Pradesh was studied through questionnaire survey. The study resulted in the documentation of 43 medicinal plants of these 95% was used by traditional healers for curing various diseases. Tree species were used in maximum cases, followed by herbs and shrubs. Tree bark was the most used plant part for medicinal purpose, followed by root. In all studied villages, the quantities of medicinal plants collection for own consumption was higher than the quantity collected for sale. Species like Embilica officinalis, Terminalia bellirica, Aegle marmelos, Semecarpus anacardium, Buchanania lanzan, Terminalia chebula, and Syzygium cumini were mainly used by local people for own consumption and not for sale. There was almost consistency in collection of medicinal plants across the studied villages however the collection was determined by the season of species availability. Some species being rare and found in limited area was either not collected or collected by a few villagers. The findings of the study are further discussed in the sustainability perspective of medicinal plants and traditional healing systems.

Keywords: medicinal plants, harvesting practices, tribal community, Madhya Pradesh, Mandla district, traditional practices

Cite This Article: Smita Shree Dikshit, and Chandra Prakash Kala, “Traditional Utilization and Harvesting of Medicinal Plants in Mandla District of Madhya Pradesh.” Applied Ecology and Environmental Sciences, vol. 2, no. 2 (2014): 48-53. doi: 10.12691/aees-2-2-2.

1. Introduction

The medicinal plants play an important role in the socio-cultural, spiritual and health care needs of communities across the world, as they occur in diverse ecosystems [1-7]. The Indian sub-continent is inhabited by large number of tribal communities, and they generally live in the forest and forest fringe areas [8,9,10,11]. These communities are mostly unable to access the formal health care systems due to several reasons including the high cost of modern medicine and unavailability of many such facilities in the remote rural areas hence they still fully or partially depend on the medicinal plants of their surrounding areas for health care [12,13].

The Indian state of Madhya Pradesh, wherein the present study was carried out, is inhabited by various tribal communities who are known to have accumulated a great amount of knowledge on the use of various plant species. Various forest types in this Indian state support number of medicinal plants [14,15,16,17]. Mandla district of Madhya Pradesh is one of the tribal dominated districts where the tribal communities mainly depend on forest resources, including medicinal plants for their livelihood and health care [18]. Though attempts have been made in the past by various researchers to document the medicinal plants, as utilized by the forest dwellers, less emphasis was given to study utilization practices and harvesting mechanisms [16,19]. Though there are studies available in some parts of Madhya Pradesh [14,16,17,19], no study on the utilization of medicinal plants has been carried out yet in the Ghughri block of the Mandla district of Madhya Pradesh. The present study aims to document the medicinal plants, as utilized by the selected group of local people. Attempt was also made to identify various harvesting and utilization practices of medicinal plants.

2. Methodology

2.1. Study Area

Madhya Pradesh is located in the central part of India. The variation in the climate, soil and topographic features in the state resulted into diversity of its forests types and floristic composition. The intensive study area - Mandla is a tribal dominated district, situated in the east-central part of Madhya Pradesh. The area of the Mandla district is 8771 km². According to the 2012 census, population of the district is 779,414. It has 9 development blocks, 4 tehsil and 1214 villages. It lies between the latitude 22° 2’ and 23° 22’ north and longitude 80° 18’ and 81° 50’ east.

Mandla endows with rich forests. Some good forest area of Mandla district falls under Bicchiya tehsil, which constitutes of Bicchiya, Mohgaon, and Mawai and Ghughri development blocks. The present study was
conducted in the Ghughri block of Mandla district as it has diverse ethnic groups including Gond and Baigas and medicinal plants' wealth, as well. There were 96 villages in Ghughri block out of which three were forest villages and 93 were revenue village. Its total population was 78,690. Most of the village population was below poverty line [18].

2.2. Survey Methods

Literature survey was carried out for compilation of information on medicinal plants of the study area. Secondary information was also gathered from the forest officials of the Ghughri block. Besides, the forest officials at Ghughri were also interviewed on the collection practices of medicinal plants.

2.2.1. Household Survey

Out of 96 villages in Ghughri block 4 villages were selected for the collection of first hand information of which 2 were forests (e.g., Sajpani and Gorakhpur), and 2 were revenue villages (e.g., Gajraj and Chattarpur). Forest villages were situated in the forest and were looked after by the forest department while revenue villages were controlled by the revenue department. The extensive survey was conducted in the selected villages for documentation of medicinal plants, the plants part used in different therapies, traditional practices, quantity of medicinal plants collection, and medicinal plants trading. Random sampling was adopted for household survey and minimum 50 households at each selected village were approached for questionnaire survey.

2.2.2. Selection of the Target groups

Interviews of knowledgeable persons such as specialized traditional healers were also carried out for documentation of specific knowledge on medicinal plants from each of the selected village. These target groups were selected on the basis of the possession and practice of their indigenous knowledge.

2.3. Data Analysis

The primary data as collected on traditional utilization of medicinal plants were analyzed by using parameters such as total medicinal plants collected for own consumption, and for sale. The list of medicinal plants, as used by the local people and traditional healers, was prepared and also a comparative statement was developed on the utilization of medicinal plants between traditional healers and common local people.

3. Results

3.1. Utilization of Medicinal Plants

A total 43 medicinal plants were documented during the present investigations those were utilized by the villagers and traditional healers of Ghughri block in Mandla district of Madhya Pradesh. Of these except two species 41 species were used by traditional healers and 12 species by common local people residing in the forest as well as non forest villages (Table 1). Maximum tree species were used, followed by herbs and shrubs (Figure 1). Various parts of these plant species were collected. Tree bark was the most used plant part for medicinal purpose (20%), followed by roots (18%). Rhizome stem and gum of species were also used for medicinal purpose (Figure 2). Edible fruits of many species such as Aegle marmelos, Annona squamosa, Cassia fistula, Embilica tsjeriam, Gloriosa superba, Terminalia bellirica and Terminalia chebula were also used for curing diseases. Almost all plant parts of Azadirachta indica, Bauhinia tomentosa, Calotropis gigantea, Euphorbia hirta and Ocimum basilicum were used by traditional healers for curing diseases.
Table 1. Utilization of medicinal plants in the Ghughri block of Mandla district in Madhya Pradesh

Sl. no	Plant species	Local name	Family	Availability	Utilized by	Part used	Indigenous uses	
1	Abrus precatorius	Gumchhi	Fabaceae	Forest	Winter	Yes	No	Seed
2	Acacia catechu	Khair	Fabaceae	Forest	All season	Yes	No	Bark
3	Acyranthes aspera	Chirchita	Amaranthaceae	Forest	All season	Yes	No	Root
4	Aegle marmelos	Bel	Rutaceae	Forest	Summertime	Yes	Yes	Fruit
5	Alnus sahmana	Chhitafal	Alnaceae	Cultivation	Summertime	Yes	No	Leaves, fruit
6	Anogeissus latifolia	Dhavha	Combretaceae	Forest	All season	No	Yes	Bark, gum
7	Argyrothalamus mexicana	Katayn	Papaveraceae	Forest	All season	Yes	No	Root
8	Asparagus racemosus	Satwar	Asparagaceae	Forest	All season	Yes	No	Root
9	Azadirachta indica	Neem	Meliaceae	Road side	All season	Yes	No	Entire plant
10	Badaunia tomentosa	Kachnar	Fabaceae	Forest	All season	Yes	No	Entire plant
11	Boerhaavia chilimemis	Patharchi ta	Nyctangina ceae	Forest	All season	Yes	No	Entire plant
12	Buchanania lanzan	Char	Anacardiaceae	Forest	Spring	Yes	Yes	Fruit
13	Butea monosperma	Palash	Fabaceae	Forest	All season	No	Seed, bark, flower	Piles, mensuration disorder, diarrhea
14	Calotropis gigantea	Aak	Apocynaceae	Forest	All season	Yes	No	Entire plant
15	Cassia fistula	Amaltas	Fabaceae	Forest	All season	Yes	No	Fruit, flower
16	Cassia tora	Chakoda	Fabaceae	Forest	Winter	Yes	Yes	Leaves
17	Cissus quadrangularis	Hadjod	Vitaceae	Forest	All season	Yes	No	Cold cough
18	Cucumis angustifolia	Takur	Zingiberaceae	Forest	All season	Yes	No	Rhizome
19	Cylinia scarissa	Ban sem	Fabaceae	Forest	All season	Yes	No	Roots
20	Cyperus scariosus	Narguna	Cyperaceae	River side	All season	Yes	No	Stomachache, ulcers
21	Emblica tsiinriam	Bailiran g	Myrsinaceae	Forest	All season	Yes	No	Fruit
22	Emblica officinalis	Amla	Euphorbiaceae	Forest	Winter	Yes	Yes	Fruit
23	Erianthamum purpureascens	Van Tulsi	Acanthaceae	Forest	Winter	No	Yes	Seed
24	Eriotheca hookeriana	Bothi	Malvaceae	Forest	All season	Yes	No	Root
25	Euphorbia hirta	Doodhi	Euphorbiaceae	Forest	All season	Yes	No	Entire plant
26	Gloriosa superba	Kalhari	Colechaeacea	Forest	Rainy	Yes	No	Rhizome
27	Grewia tilaeformia	Dhaman	Malvaceae	Forest	All season	Yes	No	Dysentery, cough
28	Gymnema sylvestre	Gurmar	Asclepiadaceae	Forest	All season	Yes	No	Roots, leaves
29	Madhuca indica	Mahua	Sapotaceae	Forest	Summertime	Yes	Yes	Fruit, flower
30	Macuna pruriens	Kiwanch	Fabaceae	Forest	All season	Yes	No	Seed, roots
31	Ocimum basilicum	Van tulsa	Lamiaceae	Wasteland	All season	Yes	No	Entire plant
32	Racina communis	Andi, Arna nd	Euphorbiacae	Forest	All season	Yes	No	Roots, seeds
33	Schleichera olescens	Kusum	Sapindaceae	Forest	All season	Yes	Yes	Seed oil, bark
34	Semecarpus anacardium	Bhelwa	Ancaridaceae	Forest	Spring	Yes	Yes	Bark, seed
35	Sida raphylla	Rohan	Melaceae	Forest	All season	Yes	No	Bark, resin
36	Sterculia urens	Kullu	Malvaceae	Forest	All season	Yes	No	Bark, gum
37	Styzygium cumini	Jamun	Myrtaceae	Forest	Summertime	Yes	Yes	Fruit
38	Tephrosia purpuraea	Samplonk a	Fabaceae	Forest	All season	Yes	No	Leaves
39	Terminalia arjuna	Arjuna	Combretaceae	Forest	All season	Yes	No	Bark
40	Terminalia bellirica	Baheda	Combretaceae	Forest	Spring	Yes	Yes	Fruit
41	Terminalia chebula	Harra	Combretaceae	Forest	Spring	Yes	Yes	Fruit
42	Woodfordia fruticosa	Surteli	Lythraceae	Forest	All season	Yes	No	Entire plant
43	Zycyphus mauritiana	Ber	Rhamnaceae	Forest	Winter	Yes	No	Bark, fruit, seed
Table 2. Medicinal plants utilized by households of study area for own consumption and sale

	Species collected	Saipani	Gorakhpur	Gajraj	Chattarpur				
		For own consumption	For sale	For own consumption	For sale	For own consumption	For sale		
1	Aegle marmelos	80%	0	100%	0	90%	0	95%	0
2	Anogeissus latifolia	100%	0	100%	0	100%	0	100%	0
3	Buchanania lanzan	30%	0	70%	8%	99%	0	88%	0
4	Cassia tora	100%	100%	100%	100%	90%	80%	90%	75%
5	Emblica officinalis	40%	0	50%	0	80%	0	70%	0
6	Eranthemum purpurascens	0%	100%	0%	80%	0	4%	0	0
7	Madhuca indica	100%	100%	100%	100%	100%	100%	100%	100%
8	Schleichera oleosa	16%	0	0%	0%	0	0	0	0
9	Semecarpus anacardium	100%	20%	100%	12%	100%	0	98%	0
1	Syzygium cumini	60%	0	70%	0	80%	0	84%	0
2	Terminalia bellirica	100%	0	100%	0	70%	0	92%	0

3.2. Harvesting and Post Harvesting of Medicinal Plants

Some medicinal plants were collected by local people for their own consumption while some medicinal plants were collected for both sale and own consumption (Table 2). In all studied villages, the quantities of medicinal plants collection for own consumption is higher than the quantity collected for sale. Terminalia tomentosa, Anogeissus latifolia and Ougenia ooginensis though having medicinal properties yet the maximum quantity of these species were utilized as fuel wood. Species like Emblica officinalis, Terminalia bellirica, Aegle marmelos, Semecarpus anacardium, Buchanania lanzan, Terminalia chebula, and Syzygium cumini were mainly used for own consumption and not for sale.

The local people generally preferred to go for selling the collected medicinal plants by weekly basis due to poor road connectivity, especially in the forest villages which were situated deep inside the forests. Species like Madhuca indica, Cassia tora and Eranthemum purpurascens were collected and sold out either through forest department or sometimes directly in the market. In Chattarpur, Eranthemum purpurascens is not being collected for sale. Thus, here in this village out of the 4 species which is used as a source of income only 3 species were sold out on a weekly basis. Out of the studied villages, Gorakhpur was the only one which collected Buchanania lanzan for own consumption as well as for selling.

There was almost uniform pattern in collection of medicinal plants across the studied villages however the collection was determined by the season of specific species availability (Table 3). Some species being rare and found in limited area was either not collected or collected by a few villages. Buchanania lanzan was collected and utilized by the villagers of Gorakhpur for their own consumption as well as for selling whereas the villagers of Saipani did not report its collection for sale. Since tree species was collected in majority of cases (52%) and trees being available round the year, the collection from such species remained operational in all seasons (Figure 3). The collection was done from 68% of species in all seasons, followed by summer (11%), winter (10%), spring (9%) and rainy seasons (2%). Being annual the occurrence of some species was determined by the season such as Cassia tora.

![Figure 3. Seasonal availability (in percentage) of medicinal plants utilized by the villagers](image-url)
4. Discussion

The local people of Ghughri block in Mandla district have been using medicinal plants growing in their surrounding village forests for curing various human diseases from antiquity. Though some of the medicinal plants were being collected and used by almost every household in the study area, there were specialized knowledge holders and traditional healers who used 95% of medicinal plants documented during the survey. The specialized knowledge holders mainly dealt to cure some specific disease not more than one or two such as snake bite, scorpion bite, malaria and jaundice whereas the commonly known diseases were cured by rest of the traditional healers. Of the total species used for curing diseases, 8 species such as *Aegle marmelos*, *Buchanania lanzan*, *Cassia tora*, *Terminalia bellirica*, *Terminalia chebula*, *Syzygium cuminii*, *Semecarpus anacardium* and *Schleichera oleosa* were used by both household members and traditional healers, as well.

On an average 12 people per month visited traditional healers for treatments. The traditional healers and specialized knowledge holders, as well, were mainly visited for curing snake bite, scorpion bite, jaundice, delivery, skin diseases, diabetes, heart diseases, fever, malaria, diarrhea and dysentery. Some species were used for curing specific disease such as *Annona sqamosa* was used for curing dysentery, *Acyranthus aspera* was used in scorpion and snake bite, *Abras precatorious* was used for stomachache and *Argemone maxicana* was used for getting recovered from heat stroke. For the treatment of diarrhoea, dysentery and constipation many species were discovered by healers including *Aegle marmelos*, *Acacia catechu*, *Mucuna pruriens*, *Soymida febrifuga*, *Syzygium cuminii*, *Woodfordia fruticosa* and *Zizyphus mauritiana*. The healers also mixed up sugar and honey in preparing some herbal formulation.

Medicinal plants were collected mostly from the wild. Only a few households reported cultivation of some medicinal plant species. The collection pattern was almost similar across the villages. The collection practices of medicinal plants were also influenced by market forces hence premature collection was also rampant. The fruits of *Embilica officinalis* matured after December [4,19], but due to high demand in industries and intense competition among collectors, the harvesting was started in October only (Table 3). Lopping of branches of some medicinally important trees were also observed in the study area.

The local people had less concern about proper harvesting period of medicinal plants. The seasonal harvesting of medicinal plants in studied villages indicates that *Embilica officinalis*, *Buchanania lanzan*, *Terminalia chebula* and *Terminalia bellirica* were subjected to premature harvesting for collection of fruits. The actual harvesting season of these species is April to May, but people collected them in March and sometime even earlier. This suggests that villagers were not following the proper and traditional harvesting practices. The results of present study on harvesting practices do not fully corroborate with a study of Chauhan [20], which concluded that tribal people were aware of the necessity of the preservation and propagation of species. The study reveals the pressure on medicinal plants, due to illegal lopping and felling of important plant species. Overexploitation of forest by cutting and uprooting trees for easy and quick collection of medicinal plants may lead negative impacts on medicinal plants as well as the traditional health care system.

Acknowledgement

The authors thank villagers of Sajpani, Gorakhpur, Gajraj and Chattarpur of Mandla district for their cooperation and help during the fieldwork. The state forest department of Madhya Pradesh is acknowledged for extending support during the survey.

References

[1] Raven, P.H. 1998. Medicinal plants and global sustainability: The canary in the coal mine. In Medicinal Plants: A Global Heritage. Proceedings of the International conference on medicinal plants for survival. International Development Research Center, New Delhi, pp. 14-18.

[2] Chopra, K. 1993. The value of non-timber forest products: an estimate from India. Economic Botany, 47: 251-257.

[3] Kala, C.P. 2003. Commercial exploitation and conservation status of high value medicinal plants across the borderline of India and Nepal in Pithoragarh. Indian Forester, 129 (1): 80-84.

[4] Kala, C.P. 2009. Aboriginal uses and management of ethnobotanical species in deciduous forests of Chhattisgarh state in India. Journal of Ethnobiology and Ethnomedicine, 5: 1-12. http://www.ethnobiomed.com/content/5/1/20

[5] Bhujvaid, P. 2003. Medicinal Plants Based Forest Management. Indian Forester, 129 (1): 25-36.

[6] Hamilton, A.C. 2004. Medicinal plants, conservation and livelihoods. Biodiversity and Conservation 13, 1477-1517.
[7] Hoareau, L. 1999. Medicinal Plants: A Re-emerging Health Aid. Electronic Journal of Biotechnology, 2 (2): 56-70.

[8] Jagtap, S.D., Deokule, S.S. and Bhosle, S.V. 2006. Some unique ethnomedicinal uses of plants used by the Korku tribe of Amravati district of Maharashtra, India. Journal of ethnopharmacology, 107 (3): 463-469.

[9] Kala, C.P. and Ratajc, P. 2012. High altitude biodiversity of the Alps and the Himalayas: ethnobotany, plant distribution and conservation perspective. Biodiversity and Conservation. Vol. 21, Number 4, pages 1115-1126.

[10] Kala, C. P. 2005. Ethnomedicinal Botany of the Apatani in the Eastern Himalayan region of India. Journal of Ethnobiology and Ethnomedicine, 1 (11): 1-15.

[11] Nag A., Galav, P. and Katewa, S.S. 2007. Indigenous animal healthcare practices from Udaipur district, Rajasthan. Indian Journal of Traditional Knowledge, 6 (4): 583-588.

[12] Kala, C.P. 2005. Current status of medicinal plants used by traditional Vaidyas in Uttarakhand state of India. Ethnobotany Research and Applications, 3: 267-278.

[13] Kala, C.P. 2011. Indigenous Uses and sustainable Harvesting of Trees by Local People in Pachmarhi Biosphere reserve of India. International Journal of Medicinal and Aromatic Plants, 1 (2): 153-161.

[14] Mahajan, S.K. 2007. Traditional herbal remedies among the tribes of Bijagarh of West Nimar district, Madhya Pradesh. Indian Journal of Traditional Knowledge, 6 (2): 375-377.

[15] Kala, C.P. 2010. Home gardens and management of key species in the Pachmarhi Biosphere Reserve of India. Journal of Biodiversity, 1 (2): 111-117.

[16] Kala, C.P. 2012. Traditional ecological knowledge and conservation of ethnobotanical species in the buffer zone of Pachmarhi Biosphere Reserve, Madhya Pradesh. Indian Institute of Forest Management, Bhopal, Madhya Pradesh. 194 pp.

[17] Yadav, M. and Misra, S. 2012. Sustainable development: a role for market information systems for non - timber forest products. Sustainable Development, 20 (2): 128-140.

[18] Shrivastava, R.K. 2010. Working Plan of East Mandla Forest Division for 2010-11 to 2019-2020. Jabalpur, Madhya Pradesh: Madhya Pradesh Government, Forest Department.

[19] Prasad, R., Kotwal, P. and Mishra, M. 2002. Impact of Harvesting of Embelia officinalis (Aonla) on Natural Regeneration, Health, Vitality and Ecosystem in Central Indian Forest. Journal of Sustainable Forestry, 14 (4): 1-12.

[20] Chauhan, N.S. 1999. Medicinal and Aromatic Plants of Himachal Pradesh. New Delhi: Indus Publishing Company.