Research and Analysis of Nonlinear Model Identification Control Algorithm Based on Improved Neural RBF For Short Term Heat Load Forecasting of Heat Supply Network

Xuan Wang¹, WanJun Zhang², ³, ⁴, *, Feng Zhang², Xiaoping Gou³, Jingxuan Zhang², Jingyi Zhang²

¹School of Teaching, Longdong University, Qingyang 745000, China
²Gansu ZeDe Electronic Technology Company Limited, Gansu 741003, China
³School of Physical Education, Longdong University, Qingyang 745000, China
⁴Lanzhou Industry and Equipment Company Limited, Gansu 730050, China

*Corresponding author e-mail: gszwj_40@163.com

Abstract. Aiming at the mismatch between heat supply and demand of heating system, a nonlinear model identification control algorithm based on improved neural network for short-term heat load prediction of heat supply network is proposed by using the characteristics that heat load and temperature of heating system will not change dramatically in a short period of time. By using MATLAB simulation, short-term heat load rolling prediction is realized. From the experimental results, this algorithm is better than the traditional RBF neural network in the prediction accuracy, and can accurately predict the trend of heat load.

Keywords: Improved neural network; short-term heat load forecasting of heat supply network; nonlinear model; identification control algorithm; research and analysis.

1. Introduction
The heat supply process is a very complex dynamic system, and the energy and material transfer relationship are highly nonlinear. It is difficult to establish the mathematical model of heat load of heating system through physical models. Moreover, the heat supply network is a large lagging system. The effect of control will only take effect after a certain period of time [1-3], it is necessary to make short-term prediction of the load variation trend of heating network in advance, and to improve the parameters of the pre-regulation controller. In this way, the heating load forecast, especially the short-term load forecasting, can match the heating capacity of the heat source with the heat required by the user, and then the whole system can be coordinated and efficient operation.

The heat load forecasting methods in the field of heat supply network include outdoor temperature heating load curve [4-6], linear regression analysis [7,8-14], neural network [9]. The neural network method does not need to know the mathematical model between input and output in advance, so it is more suitable for the system which cannot establish accurate physical model [15-27].

In this paper, a nonlinear model identification control algorithm based on improved neural network for short-term heat load prediction of heat supply network is presented. A prediction model system based on improved neural network for short-term heat load prediction is established. The rolling
The prediction of short-term heat load is realized by MATLAB simulation. From the experimental results, this algorithm is better than the traditional RBF neural network in the prediction accuracy, and can accurately predict the trend of heat load.

2. Nonlinear model for short-term heat load forecasting of heat supply network

Nonlinear model for short-term heat load forecasting of heat supply network; Neural network, as is shown in Figure 5.

\[R_i(X-C_i) = \exp \left(-\frac{\|X-C_i\|^2}{2\sigma_i^2} \right), \quad i = 1, 2, \cdots, k \]

(1)

Fig. 1 Neural network.

Neural network is suitable for multivariable function approximation. As long as the radial basis function center is selected properly, only a few neurons are needed to obtain good approximation effect. The key problem of training RBF neural network is how to determine the center and weight coefficient of RBF neural network effectively.

\[d_i = \min \|C_j-C_i\| \, , \quad \rho_i = a \cdot d_i \cdot C_k = \frac{1}{n+h-1} \sum_{(p) \in S_k} X_i^{(p)} \]

(2)

Where: \(a \) is the overlap coefficient, and \(d_i \) is the distance between the \(i \) data center

The corresponding expected output is

\[\hat{Y}_i = \Phi_{i-1} W_{i-1}, \quad Y_i = \hat{Y}_i + e \]

(3)

\[\min J_{i-1} = \|e\|_{F} = \|Y_{i-1} - \Phi_{i-1} W_{i-1}\|_{F} \]

(4)

The output deviation matrix \(e \) in equation (7) is minimized, and the performance index function of neural network approximating the expected output is defined by norm.

3. Nonlinear model identification control algorithm based on Improved RBF

So, the vector, let’s call it

\[\Phi_{i-1} = T_{i} \begin{bmatrix} Y_{i-1} \\ \varphi_{i} \end{bmatrix}, \quad \begin{bmatrix} R_{i-1} \\ \varphi_{i} \end{bmatrix} = T_{i} \begin{bmatrix} r_{i-1} \\ 0 \end{bmatrix} \]

(5)
If $\lambda(j)=0$ are fixed, minimize $\Im(\theta)$, and according to

$$T_1^T \bar{Y}_{i+1} = \begin{bmatrix} \bar{Y}_{i+1} \\ \bar{Y}_{i+1} \end{bmatrix}, \quad T_2^T \begin{bmatrix} \bar{Y}_{i+1} \\ \bar{Y}_{i} \end{bmatrix} = \begin{bmatrix} \bar{Y}_{i} \\ \bar{Y}_{i} \end{bmatrix}$$

(6)

$$\|\bar{Y}_{i}\|_F^2 = \|\bar{Y}_{i}^T\|_F^2 + \|\bar{Y}_{i-1}\|_F^2$$

(7)

In the formula, $\|\bar{Y}_{i-1}\|_F$ is the error caused by $i-1$ data input; QR recursive decomposition can be performed by givens rotation transformation; R_i is an upper triangular matrix, and the linear output weight matrix W_i can be obtained by equation (8).

4. Steps of improving RBF neural network

Dynamic mean clustering and rlos algorithm are applied to RBF neural network to form improved RBF neural network. The algorithm steps are as follows:

Step 1: select k historical data with large difference from heat network data as the initial cluster center C_i.

Step 2: each time a new training data vector X is input, the distance d between the new training data vector and the initial clustering is calculated to obtain the minimum d_{min}.

Step 3: after the network center is determined, the cluster radius can be recalculated by Equation (4) until all input vectors are assigned to the cluster.

Step 4: calculate the weight W_i of prediction data output from hidden layer to output layer.

Step 5: output load forecast value.

Step 6: test the trained model and apply it to short-term rolling prediction.

5. Research and analysis

In this paper, based on the improved neural network, a nonlinear model identification control system for short-term heat load prediction of heat supply network is established, and the rolling prediction of short-term heat load is realized by MATLAB simulation. Our Lab, as are shown in Figure 2.

![Fig. 2 Our Lab.](image-url)
Comparative analysis of nonlinear model identification control based on Improved RBF.1, Comparative analysis of nonlinear model identification control based on Improved RBF.2, Comparative analysis of nonlinear model identification control based on Improved RBF.3, as are shown in Figure 3-6.

Fig. 3 Comparative analysis of nonlinear model identification control based on Improved RBF.1.

Fig. 4 Comparative analysis of nonlinear model identification control based on Improved RBF.2.

Fig. 5 Comparative analysis of nonlinear model identification control based on Improved RBF.3.

Nonlinear economic operation and management identification for anti-hail apple bagging.3. Comparative analysis of nonlinear model identification control based on Improved RBF.3, as is shown in Figure 4.
4. In Figure 2-5, a prediction model system based on improved neural network for short-term heat load prediction is established. The rolling prediction of short-term heat load is realized by MATLAB simulation. From the experimental results, this algorithm is better than the traditional RBF neural network in the prediction accuracy, and can accurately predict the trend of heat load.

6. Summary
In this paper, a nonlinear model identification control algorithm based on improved neural network for short-term heat load prediction of heat supply network is presented. A prediction model system based on improved neural network for short-term heat load prediction is established. The rolling prediction of short-term heat load is realized by MATLAB simulation. From the experimental results, this algorithm is better than the traditional RBF neural network in the prediction accuracy, and can accurately predict the trend of heat load.

Acknowledgements
The authors thank the financial supports from National Natural Science Foundation of China (Grant no. 51165024) and Science and Technology Major Project of “High-grade NC Machine Tools and Basic Manufacturing Equipment” (2010ZX0400001-181).

Author:Wanjun Zhang received the M.S. and Ph.D. degrees from, Lanzhou University of technology, Xi'an Jiaotong University, in 2011 and 2018, respectively. I am currently an associate professor in the School of Mechanical Engineering, Xi'an Jiaotong University, I am currently an Senior Engineer and Senior economist in Lanzhou Industry and Equipment Co., Ltd. His research involved in artificial intelligence, NC, control of complex mechatronic system and failure diagnoses.

References
[1] Shengchuan,Yu Deliang,Qi Weigui. Heat load forecasting based on multiplicative seasonal ARIMA model [J]. Journal of Shenyang University of Technology, 2011, 33(3): 3219-325.
[2] Huang J Y, Ji G L, Zhu Y C, Bosch P. Identification of multi-model LPV models with two scheduling variables [J]. Journal of Process Control 2012, 22(7): 1198-1208.
[3] Fan Wenbing,Yao Zhenlin,Zhang Suzhen. An optimizing algorithm of recursive orthogonal least squares based on RBF nets [J]. Journal of East China University of Science and Technology, 2001, 27(5): 503-506.
[4] ZhangWanjun,Zhang Feng,Zhang Jingxuan,et,al. Cross coupled contour error compensation technology [J]. Materials Science and Engineering, 2018, 8, Vol. 394. 032031: 1-5.
[5] ZhangWanjun,Zhang Feng,Zhang Jingxuan,et,al. Research on the vector control system based on the difference frequency of wind turbine generator [J]. Materials Science and Engineering, 2018, 8, Vol. 394. 042020:1-9.
[6] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Curved Measurement Theory of Honing Pneumatic Measurement System and Optimization of Measurement Parameters [J]. Journal of Physics, 2018, 8, Vol. 1064. 012028:1-14.

[7] Zhang Wanjun, Zhang Feng, Zhang Wanliang, et al. Fuzzy Control of Wind Turbine Based on Directional Power Conversion [J]. Electric Power Construction, 2014, 10, 35(10): 13-16.

[8] Zhang Wanjun, Zhang Feng, Zhang Guohua. Research on a algorithm of adaptive interpolation for NURBS curve. [J]. Applied Mechanics and Materials, Vol. 687-691, pp.1600-1603, December 2014.

[9] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Parameter optimization and model identification of identification model control based on improved generalized predictive control [C]// Proceedings of the IEEE International Conference on Computers, Signals and systems. Dalian, 2018: 125-129.

[10] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Study on System Recognition Method for Newton-Raphson Iterations [C]// Proceedings of the IEEE International Conference on Computers, Signals and systems. Dalian, 2018: 130–135.

[11] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Modeling and identification of system model parameters based on information granularity method [C]// Proceedings of the IEEE International Conference on Computers, Signals and systems. Dalian, 2018: 114–118.

[12] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Optimization of identification structure parameters based on recursive maximum likelihood iteration [C]// Proceedings of the IEEE International Conference on Computers, Signals and systems. Dalian, 2018: 119–124.

[13] P. Bandyopadhyay, T. Kuila, J. Balamurugan, T.T. Nguyen, N.H. Kim, J.H. Lee, Facile synthesis of novel sulfonated polyaniline functionalized graphene using maminobenzene sulfonic acid for asymmetric supercapacitor application [J]. Chem. Eng. J. 308 (2017) 1174-1184.

[14] Gou Xiaoping, Zhang Wanjun, Zhang Feng, et al. Based on the Physiological Performance Test of Sprinters Through Indoor Treadmill [J]. Materials Science and Engineering, 2019, 11, Vol. 612:3826-3837.

[15] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Curved Measurement Theory of Honing Pneumatic Measurement System and Optimization of Measurement Parameters [J]. Journal of Physics, 2018, 8, Vol. 1064. 012028:1-14.

[16] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Flow field analysis and parameter optimization of main and measured nozzles of differential pressure type gas momentum instrument based on CFD [J]. Journal of Physics, 2018, 8, Vol. 1064. 012028:1-12.

[17] Zhang Wanjun, Zhang Feng, Zhang Wanliang, et al. Fuzzy Control of Wind Turbine Based on Directional Power Conversion [J]. Electric Power Construction, 2014, 10, 35(10): 13-16.

[18] Zhang Wanjun, Zhang Feng, Zhang Guohua. Research on a algorithm of adaptive interpolation for NURBS curve. [J]. Applied Mechanics and Materials, Vol. 687-691, pp.1600-1603, December 2014.

[19] Zhang Wan-Jun, Zhang Feng, Zhang Guohua. Research on modification algorithm of Cubic B-spline curve interpolation technology [J]. Applied Mechanics and Materials, Vol. 687-691, pp.1596-1599, December 2014.

[20] Zhang Wan-Jun, Zhang Feng, Zhang Wan-liang. Research on high-grade CNC machines tools CNC system for B-Spline curve method of High-speed real-time interpolation arithmetic [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 8(8), pp.172-176, August 2015.

[21] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Parameter optimization and model identification of identification model control based on improved generalized predictive control [C]// Proceedings of the IEEE International Conference on Computers, Signals and systems. Dalian, 2018: 125–129.
[22] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Study on System Recognition Method for Newton-Raphson Iterations [C]// Proceedings of the IEEE International Conference on Computers, Signals and Systems. Dalian, 2018: 130–135.

[23] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Research on a Kind of Adaptive Fuzzy Control Method and Its Application in Feeding System of CNC Honing Machine [J]. Materials Science and Engineering, 2018, 8, Vol. 452. 042076:1-8.

[24] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Application of PLC in Pneumatic Measurement Control System [J]. Materials Science and Engineering, 2018, 8, Vol. 042074:1-11.

[25] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Research and Analysis on the Identification Model of Multivariate Economic System [J]. Materials Science and Engineering, 2018, 8, Vol. 452. 022061: 1-11.

[26] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Identification and Analysis of Economic Model Based on Longnan Southeast [J]. Materials Science and Engineering, 2018, 8, Vol. 452. 032058: 1-8.

[27] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Based on Brushless DC Motor of Fuzzy and PID Control System [J]. Materials Science and Engineering, 2018, 8, Vol. 452. 042075:1-10.