A reproducible mouse model of chronic allograft nephropathy with vasculopathy

Abolfazl Zarjou1, Lingling Guo1, Paul W. Sanders1,2, Roslyn B. Mannon1, Anupam Agarwal1,2 and James F. George1

1Departments of Medicine and Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA and 2Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA

Although short-term outcomes in kidney transplantation have improved dramatically, long-term survival remains a major challenge. A key component of long-term, chronic allograft injury in solid organ transplants is arteriosclerosis characterized by vascular neointimal hyperplasia and inflammation. Establishing a model of this disorder would provide a unique tool not only to identify mechanisms of disease but also to test potential therapeutics for late graft injury. To this end, we utilized a mouse orthotopic renal transplant model in which C57BL/6J (H-2b) recipients were given either a kidney allograft from a completely mismatched Balb/cJ mouse (H-2d) or an isograft from a littermate. A unilateral nephrectomy was performed at the time of transplant followed by a contralateral nephrectomy on post-transplant day 7. Recipients were treated with daily cyclosporine subcutaneously for 14 days and then studied 8 and 12 weeks post transplantation. Renal function was significantly worse in allograft compared with isograft recipients. Moreover, the allografts had significantly more advanced tubulointerstitial fibrosis and profound vascular disease characterized by perivascular leukocytic infiltration and neointimal hyperplasia affecting the intrarenal blood vessels. Thus, we describe a feasible and reproducible murine model of intrarenal transplant arteriosclerosis that is useful to study allograft vasculopathy.

Kidney International (2012) 82, 1231–1235; doi:10.1038/ki.2012.277; published online 8 August 2012

KEYWORDS: arteriosclerosis; renal transplantation; transplant pathology; vascular disease

RENAL FUNCTION IS WORSE IN ALLOGRAFTS

Animal survival and renal function was significantly worse in the allograft recipients compared with the isograft recipients (functional decline was significant in the allograft recipient group starting at 3 weeks post transplantation) (Figure 1a and b). In this model, the outcome of the surgery is highly dependent on the technical skills of the microsurgeon performing the procedure. Of 173 orthotopic kidney transplants performed at our center, the overall survival rate for all kidney transplants was ~78%, with a follow-up of 60 days, much in line with other reported outcomes.11,12 These survival data include all animals in which surgery was performed, not just those that survived beyond a given time point, and therefore represent routine, reproducible survival. In all, 21% of the transplant animals died at less than 30 days post transplantation. Reasons for loss of grafts included...
Histological analysis revealed that isografts had better preserved kidney architecture and normal intrarenal arteries (Figure 2a and b, left panels) compared with allografts that displayed increased fibrosis and intrarenal vascular disease (Figure 2a and b, right panels). Semiquantitative analysis revealed markedly higher amounts of interstitial collagen deposition in the allografts at both 8 and 12 weeks post transplantation (Figure 2c). Importantly, intrarenal blood vessels had profound perivascular mononuclear leukocytic infiltration, as well as neointimal hyperplasia characteristic of transplant arteriosclerosis (Figure 3a and b, right panels); these findings were not observed in arteries of the isografts (Figure 3a and b, left panels). Immunophenotyping revealed that the perivascular leukocytic infiltrate is mainly composed of macrophages (CD11b+) and cytotoxic CD8+ T cells (Supplementary Figure S1 online). Neointimal hyperplasia was quantified in intrarenal arteries and was higher (P-value <0.05) in the allografts at 8 and 12 weeks post transplantation compared with isografts (Figure 3c). Applying the Banff schema used for human kidney allografts, the vascular lesions in all allografts at 12 weeks demonstrated neointima formation, significant arterial intimal fibrosis, and mononuclear cell infiltration consistent with Banff grade 3 acute cellular rejection, as well as evidence of chronic active T-cell–mediated rejection (chronic allograft arteriopathy). Furthermore, there was moderate (grade II) interstitial fibrosis and tubular atrophy in the cortical area of the allograft recipients.

In this study, we report a feasible and reproducible model of mouse kidney transplantation with consistent perivascular inflammation and transplant arteriosclerosis. C57BL/6J (H-2b) recipients received a kidney either from a Balb/cJ mouse (H-2b; allograft) or from a littermate (isograft). This reproducibility is based on several quantitative measures including survival data (Figure 1a), assessment of renal function (Figure 1b), proteinuria (Figure 1c), and histological changes (Figures 2a–c and 3a–c). Each of these criteria was quantified as described in the methods and statistical significance. All the allograft recipients (100%) that were evaluated at the 8-and 12-week time point displayed significant vascular neointimal inflammation.

A hallmark lesion of long-term graft loss particularly in solid organs such as the kidney is transplant arteriosclerosis affecting intrarenal blood vessels. Although specific combinations of rat strains are able to reproduce the classic lesion of transplant arteriosclerosis with fibrointimal hyperplasia, mouse models have not been successful owing to variable outcomes. The model described in this work showing significant intrarenal vascular lesions offers an opportunity for further mechanistic studies to uncover the pathogenesis of this lesion and explore potential therapies. The factors contributing to the development of the vascular lesions seen in this model remain to be determined. It is possible that administration of cyclosporine contributed to the vascular

Figure 1 Survival and renal function in allograft and isograft recipients. (a) Survival rate was monitored after transplantation for 12 weeks. (b) Serum was separated from blood that was collected via retro-orbital puncture, and serum creatinine was determined by LC-MS/MS at the indicated time points (n = 7/group, *P <0.05). (c) Urine was collected at the time of killing, and urinary albumin and creatinine were determined. Data are represented as urinary albumin/creatinine ratio (n = 7/group, *P <0.01).

ALLOGRAFT KIDNEYS DISPLAY INCREASED COLLAGEN DEPOSITION, PERIVASCULAR INFILTRATE, AND NEOINTIMAL HYPERPLASIA

bleeding from vascular anastomotic site, graft hydronephrosis, and thrombosis. Importantly, there were no differences in terms of technical failures between allografts and isografts. Compared with the isograft recipients, proteinuria (measured by urinary albumin/creatinine ratio) was higher (P-value <0.05) at 8 and 12 weeks post transplantation in the allograft recipient group (Figure 1c). These results confirmed that mismatched renal allograft recipients develop impaired renal function and proteinuria and reduced survival when compared with isograft recipients.
lesions in the allografts, although isografts received similar doses of cyclosporine and did not develop any vascular pathology. It is interesting to note that the blood vessels with marked neointimal hyperplasia also had significant mononuclear infiltration (mainly composed of macrophages (CD11b+) and cytotoxic CD8+ T cells), corroborating previous findings and suggesting that vascular inflammation may be linked to the development of neointimal hyperplasia.

In summary, we report a mouse model of renal transplantation between C57BL/6J (H-2b) and mismatched Balb/cJ mouse donor (H-2d; allograft) with high reproducibility and low variability. The findings of vascular lesions of transplant arteriosclerosis in this model would allow the study of pathways involved and hence provide a tool to facilitate translational studies to enhance long-term graft survival.

KIDNEY TRANSPLANTATION

The study protocol was approved by the Institutional Animal Care and Use Committee at the University of Alabama at Birmingham and performed in accordance with the NIH Guide for the Care and Use of Laboratory Animals. Vascularized, orthotopic kidney transplants were performed in mice as previously described. Briefly, donor and recipient male mice weighing between 20 and 25 g were anesthetized with isoflurane, and the donor kidney, ureter, and bladder were harvested en bloc, including the renal artery with a small aortic cuff and the renal vein with a small caval cuff (Supplementary Video files S1 and S2 online, and Figure 4). The arterial and venous cuffs attached to the donor organ were anastomosed to the recipient abdominal aorta and vena cava, respectively, below the level of the native renal vessels. Donor and recipient bladders were attached dome to dome. The left native kidney was removed at the time of transplant, and the right native kidney was removed through a flank incision 1 week later; care was taken to preserve the recipient adrenal glands with their normal blood supply. Two experimental groups were evaluated. In the isograft group C57BL/6J (H-2b) recipients received a kidney from a littermate and in the allograft group C57BL/6J (H-2b) recipients received a kidney from a completely mismatched Balb/cJ mouse (H-2d; allograft). Both allograft and isograft recipients received cyclosporine at a dose of 10 mg/kg daily subcutaneously for 14 days to prevent acute rejection.

MEASUREMENT OF KIDNEY TRANSPLANT FUNCTION

Renal function was determined by collecting retro-orbital blood at the indicated time points. Serum creatinine levels were measured as previously described using LC-MS/MS.
Urine was collected via bladder puncture at the time of killing, and the albumin/creatinine ratio was determined as described previously.21

HISTOLOGY

For determination of histological changes, kidney grafts were isolated and harvested, fixed in 10% neutral buffered formalin (Fisher Scientific, Pittsburgh, PA), and embedded in paraffin. Five-micrometer serial sections were stained using hematoxylin and eosin, Masson trichrome, periodic acid–Schiff, and elastin staining protocols. Histomorphometric analyses were performed on images acquired with a Digital Module R Leica microscope (Leica, Bannockburn, IL) and IMAGE PRO software (Media Cybernetics, Silver Spring, MD). Neointimal hyperplasia in intrarenal arteries was calculated using the formula [(neointimal hyperplasia area–lumen area)/neointimal hyperplasia area] × 100 and expressed as a percentage. The area of collagen deposition, stained blue by Masson trichrome staining, was measured by color image analysis software from ten random images (five cortical and five medullary images) from each graft recipient. Five-micrometer frozen sections from five different allograft recipients were used for Immunofluorescence staining of CD11b (Abcam, Cambridge, MA), CD4, and CD8 (Santa Cruz Biotechnology, Santa Cruz, CA).

STATISTICAL ANALYSIS

Data were represented as mean ± s.e.. One-way analysis of variance followed by the Holm–Sidak or Tukey–Kramer test was performed for multiple-group comparisons. Student’s *t*-test was used for comparison between two groups. *P* < 0.05 was considered significant.
Figure 4 | Mouse orthotopic kidney transplantation.
(a) Transplanted kidney a few seconds following cross-clamp removal. Note the patchy red areas indicating restoration of normal blood flow. (b) The same kidney after complete reperfusion. The upper suture line on the abdominal aorta can also be seen (arrow). (c) The forceps in the lower right corner indicates the suture line where the donor and recipient bladders are joined dome to dome. (d) Gross morphology of a kidney allograft and bladder at 8 weeks after transplantation. Note the presence of urine in the bladder.

DISCLOSURE
All the authors declared no competing interests.

ACKNOWLEDGMENTS
This work was supported by NIH grants R01 DK59600 (AA), R01 DK75532 (AA), R01 DK046199 (PWS), the core resource of the UAB-UCSD O'Brien Center (P30 DK079337) (AA), and AHA grant 0655318B (JFG).

SUPPLEMENTARY MATERIAL
Figure S1. Immunofluorescence staining of CD11b (left) and CD8 (right) demonstrates that the majority of perivascular infiltrates are composed of macrophages and CD8+ T cells in allografts.
Video file S1. The clip demonstrates the donor kidney along with the ureter and bladder before anastomosis to the recipient.
Video file S2. The clip shows the cross clamp removal following anastomosis. Note the change in color in the graft that manifests full reperfusion.
Supplementary material is linked to the online version of the paper at http://www.nature.com/ki

REFERENCES
1. Nankivell BJ, Kuppers DR. Diagnosis and prevention of chronic kidney allograft loss. Lancet 2011; 378: 1428–1437.
2. Li C, Yang CW. The pathogenesis and treatment of chronic allograft nephropathy. Nat Rev Nephrol 2009; 5: 513–519.
3. Djimaji A, Premasathan N, Pirsc JD. Outcomes in kidney transplantation. Semin Nephrol 2003; 23: 306–316.
4. Jevnikar AM, Mannon RB. Late kidney allograft loss: what we know about it, and what we can do about it. Clin J Am Soc Nephrol 2008; 3(Suppl 2): S56–S67.
5. Rahmani M, Cruz RP, Granville DJ et al. Allograft vasculopathy versus atherosclerosis. Circ Res 2006; 99: 801–815.
6. Julius BK, Attenhofer Jost CH, Sutsch G et al. Incidence, progression and functional significance of cardiac allograft vasculopathy after heart transplantation. Transplantation 2000; 69: 847–853.
7. Zheng Q, Liu S, Song Z. Mechanism of arterial remodeling in chronic allograft vasculopathy. Front Med 2011; 5: 248–253.
8. Autier MV. Allograft-induced proliferation of vascular smooth muscle cells: potential targets for treating transplant vasculopathy. Curr Hypertens Pharmacol 2003; 1: 1–9.
9. Rahmani M, McDonald PC, Wong BW et al. Transplant vascular disease: role of lipids and proteoglycans. Can J Cardiol 2004; 20(Suppl B): 588–658.
10. Mannon RB, Doyle C, Griffiths R et al. Altered intragraft immune responses and improved renal function in MHC class II-deficient mouse kidney allografts. Transplantation 2000; 69: 2137–2143.
11. Mannon RB, Kopp JB, Ruiz P et al. Chronic rejection of mouse kidney allografts. Kidney Int 1999; 55: 1935–1944.
12. Bedi DS, Riella LV, Tullius SG et al. Mechanisms of induction of renal allograft tolerance in CD45RB-treated mice. Kidney Int 1999; 55: 1303–1310.
13. Kunter U, Fleige J, von Burgenson AS et al. Expression of A20 in the vessel wall of rat-kidney allografts correlates with protection from transplant arteriosclerosis. Transplantation 2003; 75: 3–9.
14. Bedi DS, Riella LV, Tullius SG et al. Animal models of chronic allograft injury: contributions and limitations to understanding the mechanism of long-term graft dysfunction. Transplantation 2010; 90: 935–944.
15. Coffman T, Geier S, Ibrahim S et al. Improved renal function in mouse kidney allografts lacking MHC class I antigens. J Immunol 1993; 151: 425–435.
16. Sun HJ, Zhou T, Wang Y et al. Macrophages and T lymphocytes are the predominant cells in intimal arteritis of resected renal allografts undergoing acute rejection. Transpl Immunol 2011; 25: 42–48.
17. Matheson PJ, Dittmer ID, Beaumont BW et al. The macrophage is the predominant inflammatory cell in renal allograft intimal arteritis. Transplantation 2005; 79: 1658–1662.
18. Mannon RB, Griffiths R, Ruiz P et al. Absence of donor MHC antigen expression ameliorates chronic kidney allograft rejection. Kidney Int 2002; 62: 290–300.
19. Crowley SD, Gurley SB, Oliverio MI et al. Distinct roles for the kidney and systemic tissues in blood pressure regulation by the renin-angiotensin system. J Clin Invest 2005; 115: 1902–1909.
20. Takahashi N, Boysen G, Li F et al. Tandem mass spectrometry measurements of creatinine in mouse plasma and urine for determining glomerular filtration rate. Kidney Int 2007; 71: 266–271.
21. Clement LC, Avila-Casado C, Mace C et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med 2011; 17: 117–122.