Evaluation of healthcare associated infections at pediatric critical care units

Çocuk yoğun bakım ünitesinde saptanan hastane enfeksiyonlarının retrospektif olarak değerlendirilmesi

Ebru Atike Ongun¹, Ahu Aksay2

Objective: Health-care associated infection (HAI) constitutes a major health care problem resulting in prolonged hospital stay with increased medical costs. The burden is much greater by accompanying risk factors among intensive care admissions. The incidence is reported 30% of all ICU admissions in developed countries; however the estimated rates are clearly higher in developing countries¹.

In order to prevent HAIs, the health-care facilities should determine their own risk factors, analyse the microorganisms isolated from the body fluids and provide the necessary precautions accordingly². Despite all the efforts and the advances at preventive protocols, the HAI burden still exists.

The pediatric intensive care unit (PICU) of Sivas Cumhuriyet University Hospital is a tertiary critical care unit serving to a broad range of population under 18 years with highly advanced technology within a considerably populated territory. The demographic profiles of the admissions account a wide range of childhood sicknesses from trauma to neurological disorders. The aim of this retrospective study was to examine the microorganism profiles isolated from the body fluids (blood, urine, tracheal aspirates, wound cultures, spinal fluid) of all PICU admissions during the past five years. Hence we decided to obtain our local surveillance data, deploy the necessary precautions to decline HAIs and administer the appropriate antimicrobial therapy accordingly.

Method: In this retrospective descriptive study, we searched the medical records of all PICU admissions between January 2014 and December 2018. Children with i) PICU admission lasting over 48 hours, ii) culture positivity at body fluids, iii) presenting clinical signs of infection were enrolled in the study. Patient demographics, initial complaints, admission diagnosis, the underlying chronic conditions, the source of PICU admission (admission from an indoor clinic, emergency service or an outdoor clinic) and previous hospitalizations were all recorded. We recalled HAI subgroups according to the definitions of centers for disease control and prevention (CDC)³ such as: ventilator-associated pneumonia (VAP), central line-associated bloodstream infections (CLABSIs), catheter-associated urinary tract infections (CAUTI) and surgical site infections (SSI).

SPSS-23 (Statistical Package for Social Sciences for Windows 23) was used for statics of the study. Descriptive analyses were expressed as percentages, mean±standard deviation (SD), median with minimum and maximum values. Chi square and Fischer exact test were used for comparison of categorical variables. Normal and non-normal distributions of continuous variables were assessed by Student’s t-test, Mann Whitney U test and Wilcoxon rank sum test. P-value < 0.05 was considered significant.

Results: Investigation of 1566 PICU admissions between the periods January 2014 and December 2018, presented 56 children with 71 culture positivity at body fluids (infection rate:4.5%). The median age was 15 months (2 months-17 years) and male gender occupied 58.9% of the study population. We observed respiratory distress and acute pneumonia as the major complaint and the diagnosis at admission (48.5% and 35.7% respectively). 76.7% of the children manifested previous hospitalizations. Forty-three children presented an underlying chronic condition; mainly involving the central nervous system. The sources of PICU admission were identified as: first admission from the emergency service (44.6%), an outdoor clinic (28.6%) and an indoor clinic (pediatric ward) (26.8%).

In terms of culture positivity, we observed PICU-infections as in decreasing order: VAP (26/71, 36.6%), BSI (18/71, 25.4%), CAUTI (18/71, 25.4%), SSI (7/71, 9.9%) and CLABSIs (2/71, 2.8%). Infections with gram-negative bacteria constituted the major infection group (54/71, 77.1%); Acinetobacter baumanii and Klebsiella pneumonia seemed as the

Editorial panel approval: Yes

Conflict of interest: There is not a conflict of interest.
most frequent isolated microorganisms (25.3% and 14.1%). Fungi infections-incapsulated 12.6% of the infections overall. Among the thirty (42.2%) antibiotic resistant-culture positivity, carbapenem resistant and ESBL positive bacteria occurred as the common strains (21.1% and 12.7% respectively). We observed Carbapenem resistant strains mostly at SSI (5/15, 33.3%), while ESBL positive strains were developed at BSI and CAUTI.

In terms of ventilator-associated events, the mean intubation length was 17.5±5.4 days. Pseudomonas aeruginosa and Acinetobacter baumanii were the most common bacteria reproduced at tracheal aspirates. For the resistance strains, Colistin–resistant Acinetobacter baumanii demonstrated the most prominent resistant strain at a rate of 50%, followed by Carbapenem-resistant strains (15.4%). Colistin-resistant strains seemed to have an escalating trend especially in 2018, on the contrary the frequency of carbapenem-resistant strains have declined over their years.

Length of PICU stay and hospitalization were 38.1±27.6 days and 42.2±27.6 days respectively. Twelve children died of infections (21.4%). Age less than five years and higher PRISM 3 scores were associated with mortality (p=0.004 and p<0.001). Those who died had longer intubation, PICU stay and hospitalization periods with significant nasogastric tube insertion rates (in following order, p=0.007, p=0.010, p=0.045, p=0.001). Those who died had more than 10 days length ICU.

Conclusions: Health-care associated infections remain to be a major problem all around the world. What we can do to overcome this challenge is, to initiate local surveillance protocols, educate the health-care stuff on hand hygiene, enforce appropriate isolation tactics and practice wise antibiotic administration.

Keywords: Health-care associated infection, pediatric critical care, ventilator-associated pneumonia, central line-associated bloodstream infections, catheter-associated urinary tract infections

ÖZET

Amaç: Hastane enfeksiyonları (HE), hastalarda hastaneye başvuru anında veya inkübasyon döneminde olmayan, hastaneye başvurularından 48–72 saat sonra gelişen enfeksiyonlar olarak tanımlanmaktadır. Bu çalışmada çocuk yoğun bakım ünitenin HE açısından lokal sürveyans verilerinin elde edildiği, HEBKH’ın azaltılması ve uygun tedavinin gecekmeyen uygulanabilirliği amaçlanmıştır.

Vücut: Sivas Cumhuriyet Üniversitesi Hastanesi Çocuk Yoğun Bakım (CYB) servisinde Ocak 2014- Aralık 2018 tarihleri arasında yatan hastaların yoğun bakım ünitenin HE prevalansını ve tedavi başarılarının değerlendirilebilmesi için “Centers for Disease Control and Prevention” kriterlerine göre değerlendirildi.

Bulgular: Çalışma süresince atışını 1566 hastanın (765 yoğun bakım yatış günü) toplam 56‘sında, 71 HE saptandi (enfeksiyon hızı: %4.5). Ortanca yaş 15 ay (2ay-17yas), E/K:1.43 olarak gözlandı. Solunum sikintisi ve pnomonisi en sık başvuru şakayetini ve yatış tanısını oluşturdu (%48.5,%35.7). HE yerli olarak, azalan sinklaka VİO (26/71, %36.6), KDE (18/71, %25.4), ÜSE (18/71, %25.4), CAE (7/71, %9.9), SVK-KDE (7/71, %28.4) görüldü. Gram negatif bakteri enfeksiyonlarının belirgin olduğu çalışmada (54/71, %77.1), Acinetobacter baumanii ve Klebsiella pneumonia en sık bakteriyel erkenleri (%25.3, %14.1). Çalışmamızda funguslar HE’nin %12.6’ndan sorumlu bulundu. Antibiyotik direncinin 30 kütüphanedeki var olduğu (%42.2), karbapenem direnci (%21.1) ile ESBL (%12.7) pozitif bakteri oranının en sık iki antibiyotik direncini oluşturduğu gözlandı. On iki hasta enfeksiyonu ikincil sebeplerden eksitus oldu (HE mortalite oranı: %21.4). Eksitus olan hastaların 5 yaşından küçük, yüksek PRISM 3 scores were associated with mortality (p=0.004, p<0.001, p=0.007, p=0.001, p=0.010, p=0.045).

Sonuç: Hastane enfeksiyonları, hasta yatış süresini uzatan, tedavi maliyetleri ile morbidity ve mortalitiesi yüksek olan enfeksiyonlardır. Invaziv girişimlerin yoğun olduğu, kritik hasta takibinin yapıldığı çocuk yoğun bakım servislerinde ise, diğer risk faktörlerinin de eklenmesi ile HE riski ve siklik belirgin olarak artır. Bu nedenle yoğun bakım ünilerinde sürveyans çalışmalarını yaparak uygun tedavininغنlanılması ve gerekli invaziv girişimlerin azaltılmasını, enfeksiyon tedavisinin uygulanması ve enfeksiyon nedeniyle oluşan morbidity ve mortalite azaltılmalıdır.

Anahtar sözcükler: Çocuk yoğun bakım, hastane enfeksiyonu, antibiyotik direnci

INTRODUCTION

Health-care associated infection (HAI) constitutes a major health care problem resulting in prolonged hospital stay with increased medical costs1. The burden is much greater by accompanying risk factors among intensive care admissions2. The incidence is reported 30% of all ICU admissions in developed countries; however the estimated rates are clearly higher in developing countries3.

In order to prevent HAIs, the health-care facilities should determine their own risk factors, analyse the microorganisms isolated from the body fluids and provide the necessary precautions accordingly4. Despite all the efforts and the advances at preventive protocols, the HAI burden still exits.

The pediatric intensive care unit (PICU) of Sivas Cumhuriyet University Hospital is a tertiary critical care unit serving to a broad range of population under 18 years with highly advanced technology within a considerably populated territory. The demographic profiles of the admissions account a wide range of childhood
sicknesses from trauma to neurological disorders. The aim of this retrospective study was to examine the microorganism profiles isolated from the body fluids (blood, urine, tracheal aspirates, wound cultures, spinal fluid) of all PICU admissions during the past five years. Hence we decided to obtain our local surveillance data, deploy the necessary precautions to decline HAIs and administer the appropriate antimicrobial therapy accordingly.

MATERIAL AND METHODS
In this retrospective descriptive study, we searched the medical records of all PICU admissions between January 2014 and December 2018. Children with i) PICU admission lasting over 48 hours, ii) culture positivity at body fluids, iii) presenting clinical signs of infection were enrolled in the study. Patient demographics, initial complaints, admission diagnosis, the underlying chronic conditions, the source of PICU admission (admission from an indoor clinic, emergency service or an outdoor clinic) and previous hospitalizations were all recorded. In case of multiple culture positivity at different body fluids, each one of the isolated microorganisms were enlisted separately (they were referred as children with multiple culture positivity). We recalled HAI subgroups according to the definitions of centers for disease control and prevention (CDC) such as: ventilator-associated pneumonia (VAP), blood stream infection (BSI), central line-associated bloodstream infections (CLABSIs), catheter-associated urinary tract infections (CAUTI) and surgical site infections (SSI). The microorganisms with antibiotic resistance were categorized as: methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant coagulase negative Staphylococcus (CoNS), bacteria producing extended-spectrum beta-lactamases (ESBL), Carbapenem-resistant bacteria, and Colistin-resistant Acinetobacter baumanii. We determined the infection rate by dividing the number of culture-positive children to the total number of PICU admissions, then multiplied with 100.

We obtained approval of the noninvasive clinical research ethics committe of Sivas Cumhuriyet University.

SPSS-23 (Statistical Package for Social Sciences for Windows 23) was used for statics of the study. Descriptive analyses were expressed as percentages, mean±standart deviation (SD), median with minimum and maximum values. Chi square and Fischer exact test were used for comparison of categorical variables. Normal and non-normal distributions of continous variables were assessed by Student’s t-test, Mann Whitney U test and Wilcoxon rank sum test. P-value < 0.05 was considered significant.

RESULTS
Investigation of 1566 PICU admissions between the periods January 2014 and December 2018, presented 56 children with 71 culture positivity at body fluids (infection rate:4.5%). The median age was 15 months (2 months-17 years) and male gender occupied 58.9% of the study population. We observed respiratory distress and acute pneumonia as the major complaint and the diagnosis at admission (48.5% and 35.7% respectively). Table 1 represents the initial complaints and admission diagnosis. 76.7% of the children manifested previous hospitalizations. Forty-three children presented an underlying chronic condition; mainly involving the central nervous system (Table 2). The sources of PICU admission were identified as: first admission from the emergency service (44.6%), an outdoor clinic (28.6%) and an indoor clinic (pediatric ward) (26.8%).
Table 1. Initial complaints and the diagnosis of PICU admissions

Initial complaints	n (66)*	Initial diagnosis	n (56)*
Respiratory distress	32 (48.5%)	Acute pneumonia	20 (35.7%)
Fever	12 (18.2%)	Sepsis	9 (16.0%)
Seizure	11 (16.7%)	Status epilepticus	8 (14.3%)
Loss of consciousness	2 (3.0%)	Ventriculo-peritoneal shunt (VP) dysfunction / shunt infection	6 (10.7%)
Trauma	4 (6.0%)	Trauma / gunshot injury	5 (8.9%)
Burns	2 (3.0%)	Postoperative infection	2 (3.6%)
Gunshot injury	1 (1.5%)	Burns	2 (3.6%)
Intoxicity	1 (1.5%)	Acute kidney failure	1 (1.8%)
Inability to urinate	1 (1.5%)	Cardiomyopathy	1 (1.8%)

*In case of multiple complaints, each one them were recorded and categorized separately.

Table 2. The underlying chronical conditions

Cerebral palsy / Epilepsy	12 (27.9%)
Hydrocephalus/ VP shunting	14 (32.5%)
Immune deficiency	6 (10.7%)
Cardiomyopathy	2 (4.6%)
Chronic kidney failure	2 (4.6%)
Congenital hydrops fetalis	2 (4.6%)
Metabolic disease	2 (4.6%)
Genetic anomaly (Pierre Robin syndrome)	1 (2.3%)
Rheumatological disorder	1 (2.3%)
Gastrointestinal system disease	1 (2.3%)
In terms of culture positivity, we observed PICU-infections as (in decreasing order): VAP (26/71, 36.6%), BSI (18/71, 25.4%), CAUTI (18/71, 25.4%), SSI (7/71, 9.9%) and CLABSI (2/71, 2.8%). Table 3 presents the microorganism isolated from the body fluids and the area of infection. Infections with gram-negative bacteria constituted the major infection group (54/71, 77.1%); Acinetobacter baumanii and Klebsiella pneumonia seemed as the most frequent isolated microorganisms (25.3% and 14.1%). Fungi infections incapsulated 12.6% of the infections overall.

Table 3. The isolated microorganisms and the location of infections

Isolated microorganisms	BSI (n=18)	CAUTI (n=18)	VAP (n=26)	SSI (n=7)	CLABSI (n=2)	Toplam n (71)
Bacterial infections						62 (87.3%)
Gram negative bacteria						
Acinetobacter baumanii	3	4	5	2	15	18 (25.3%)
Klebsiella pneumonia	3	4	3	-	-	10 (14.1%)
Pseudomonas aeruginosa	1	-	7	-	-	8 (11.3%)
Stenotrophomonas maltophilia	2	-	4	-	-	6 (8.5%)
Serratia marcescens	-	1	4	-	-	5 (7.1%)
Enterobacteriaceae	1	1	1	-	-	3 (4.2%)
Escherichia coli	-	2	-	1	-	3 (4.2%)
Burkholderia cepacia	1	-	-	-	-	1 (1.4%)
Gram positive bacteria						
Staphylococcus aureus	1	-	1	-	-	2 (2.8%)
Staphylococcus epidermidis	1	-	-	1	-	2 (2.8%)
Enterococcus faecium	-	2	-	-	-	2 (2.8%)
Streptococcus mitis	1	-	-	-	-	1 (1.4%)
Streptococcus salivarius	1	-	-	-	-	1 (1.4%)
Fungi infections						
Candida albicans	1	3	1	-	-	5 (7%)
Candida saprophyticus	1	-	1	-	-	2 (2.8%)
Candida glabrata	-	1	-	-	-	1 (1.4%)
Candida tropicalis	1	-	-	-	-	1 (1.4%)
Antibiotic Resistant Strains						
Carbapenem resistance	2	4	4	5	-	15 (21.1%)
ESBL-producing bacteria	3	3	2	1	-	9 (12.7%)
Colistin resistant A. baumanii	1	-	2	-	-	3 (4.2%)
MRSA	1	-	1	-	-	2 (2.8%)
Meticilline resistant CoNS	1	-	-	-	-	1 (1.4%)

VAP: ventilator-associated pneumonia (VAP), BSI: blood stream infection, CLABSI: central line-associated bloodstream infection, CAUTI: catheter-associated urinary tract infections, SSI: surgical site infection.
In terms of ventilator-associated events, the mean intubation length was 17.5±5.4 days. *Pseudomonas aeruginosa* and *Acinetobacter baumanii* were the most common bacteria reproduced at tracheal aspirates (Table 3). For the resistance strains, Colistin–resistant *Acinetobacter baumanii* demonstrated the most prominent resistant strain at a rate of 50%, followed by Carbapenem-resistant strains (15.4%). Colistin-resistant strains seemed to have an escalating trend especially in 2018, on the contrary the frequency of carbapenem-resistant strains have declined over the years (Table 4). The locations of antibiotic resistant infections for Colistin-resistant *Acinetobacter baumanii* and ESBL positive *Klebsiella pneumonia* were identified as BSI and CLABSI. Length of PICU stay and hospitalization were 38.1±27.6 days and 42.2±27.6 days respectively. Twelve children died of infections (21.4%). Age less than five years and higher PRISM-3 scores were associated with mortality (p=0.004 and p<0.001). Those who died had longer intubation, PICU stay and hospitalization periods with significant nasogastric tube insertion rates (in following order, p=0.007, p=0.010, p=0.045, p=0.001)(Table 5).

Table 4. The isolated microorganisms over the past five years

	2014	2015	2016	2017	2018	(n=71)
Bacteria (n=62)						
Gram Negative Bacteria						
Acinetobacter baumanii	-	7	7	-	4	18 (25.3%)
Klebsiella pneumonia	2	1	1	3	3	10 (14.1%)
Pseudomonas aeruginosa	5	1	1	1	-	8 (11.3%)
Stenotrophomonas maltophilia	2	2	-	1	1	6 (8.5%)
Serratia marcescens	2	1	1	1	-	5 (7.1%)
Enterobacteriaceae	-	2	-	1	0	3 (4.2%)
Escherichia coli	2	-	-	1	-	3 (4.2%)
Burkholderia cepacia	-	-	-	1	-	1 (1.4%)
Gram Positive Bacteria						
Staphylococcus aureus	-	-	1	-	1	2 (2.8%)
Staphylococcus epidermidis	1	-	-	1	-	2 (2.8%)
Enterococcus faecium	-	-	-	2	-	2 (2.8%)
Streptococcus mitis	-	-	-	-	1	1 (1.4%)
Streptococcus salivarius	-	-	-	-	1	1 (1.4%)
Fungi infections (n:9)						
Candida albicans	2	2	-	1	-	5 (7.0%)
Candida saprophyticus	1	1	-	-	-	2 (2.8%)
Candida glabrata	-	-	-	-	1	1 (1.4%)
Candida tropicalis	1	-	-	-	-	1 (1.4%)
Antibiotic Resistance						
Carbapenem resistance	4	6	2	2	15	15 (21.1%)
ESBL producing bacteria	-	-	-	2	3	9 (12.7%)
Colistin resistant A. baumanii	-	1	-	2	3	3 (4.2%)
MRSA	-	-	-	1	1	2 (2.8%)
Meticillin resistant CoNS	1	1	-	-	-	1 (1.4%)

Table 5. The demographics and the intensive care interventions according to mortality
### Variable	Survivors (n= 44)	Non-survivors (n= 12)	p
Gender
Male | 24 (54.5%) | 9 (75%) | 0.202
Female | 20 (45.5%) | 3 (25%) | 0.202

Underlying chronical condition
33 (75%) | 10 (83.3%) | 0.210

Multiple culture positivity
12 (27.3%) | 6 (50%) | 0.135

Age (months), median (min-max)
15.50 (1-197) | 12 (2-197) | 0.562

Age groups
1 month - 5 years | 29 (65.9%) | 8 (66.7%) | 0.004
6 - 10 years | 7 (15.9%) | 1 (8.3%) | -
11 – 17 years | 8 (18.2%) | 3 (25%) | -

Years
2018 | 8 (18.2%) | 2 (16.7%) | -
2017 | 5 (11.4%) | 1 (8.3%) | -
2016 | 6 (13.6%) | 3 (25%) | -
2015 | 11 (25%) | 3 (25%) | -
2014 | 14 (31.8%) | 3 (25%) | -

PRISM-3 score (mean±SD)
12.65±3.22 | 36.25±5.17 | <0.001

Length of PICU stay (days) (mean±SD)
31.54±24.67 | 54.91±28.87 | 0.010

Length of hospitalization (days) (mean±SD)
37.0±25.85 | 54.91±28.87 | 0.045

PICU interventions	Survivors (n= 44)	Non-survivors (n= 12)	p
Endotracheal intubation | 26 (59.1%) | 12 (100%) | 0.007
Central venous catheterization | 24 (54.5%) | 6 (50%) | 0.780
Nasogastric tube insertion | 11 (25%) | 9 (75%) | 0.001
Urinary tract catheterization | 10 (22.7%) | 5(41.7%) | 0189
Tracheostomy | 7 (15.9%) | 3 (25%) | 0.466
Total parenteral nutrition | 4 (9.1%) | 3 (25%) | 0.140
Gastric motility inhibitors | 2 (6.8%) | 2 (16.7%) | 0.289
Gastrostomy | 1 (2.3%) | - | -
Chest tube insertion | 1 (2.3%) | - | -

DISCUSSION
Hospital associated infection was first described in 1843 by Oliver Wendell Holmes. He proposed, the fever in postpuerperal women occurred due to lack of hand hygiene of the medical stuff. In the past decade, the term has shifted to health-care associated infection and many attempts have been
implemented by the health care stuff to decline the nosocomial infections all over the world.\(^8\)

HAI prolongs the hospitalization period and increase the health-care related expenses.\(^8\) In addition of chronic underlying disease of the critically ill child, administration of wide-spectrum antibiotics, invasive procedures such as central venous catheterization, urinary tract catheterization, invasive mechanical ventilation and prolonged hospital admission increase the the odds of HAI ratio by 5-10 times at intensive care units.\(^8,9\)

The importance of local PICU surveillance for prevention of HAI have been well documented in ‘The Study of the Efficacy of Nosocomial Infection Control and Prevention’ (SENIC)\(^10\) This study demonstrated the successful decline in nosocomial infections in presence of appropriate prevention protocols. Therefore, each health-care facility should study on their own local surveillance protocols, determine the profile of prominent microorganisms with resistant strains and arrange the antibiotic therapy accordingly. We also constituted our surveillance protocol with the collaboration of the infection control committee.

Numerous articles regarding HAI rates at intensive care units in Turkey have been published over ther years\(^11-14\); however those encompassing the pediatric ICUs are limited. The HAI incidence vary greatly between 2.36% and 37% depending on the surveillance methods, health-care staff and infection prevention protocols.\(^5,11-14\) Celiloglu et al. documented the five years HAI rate as 2.36% (60/2545 patients); however those encompassing the pediatric ICUs are limited. Celioglu et al. documented the five years HAI rate as 2.36% (60/2545 patients); on the contrary the incidence was described as 32.7% at the report of Aml et al\(^5\), which was significantly higher than the latter.

We detected the VAP incidence as 36.6%, followed by BSI (25.4%) and CAUTI (25.4%), SSI (9.9%) and CLABSI (2.8%). A point prevalence study conducted in 2015, had appointed the upper respiratory tract infections and BSI as the most frequent HAI subgroups (23.5%, 11.6%)\(^12\). We documented the most common source of HAI as VAP, similar to the study of Akyıldız et al\(^13\).

Pseudomonas aeruginosa and _Acinetobacter baumannii_ are responsible for majority of VAP in several studies.\(^12,13\) Therefore, in case of ampicil antibiotic therapy decision for moderate / severe PICU infections, the antibiotic choice should cover the gram negative bacteria with anti-pseudomonal activity.

The microorganism strains and antibiotic resistance might change over the years. Infections with resistant strains of gram negative bacteria have an escalating trend at intensive care units\(^5,11-13\). The antibiotic resistance occurred as 42.2% in the present study; of them 21.1% presented carbapenem resistant strains, while 12.5% had ESBL positivity. The search of the infection site for resistant strains demonstrated the carbapenem-resistance mostly observed at SSI (5/15, 33.3%) and ESBL positivity at BSI and CAUTI equally (16.6% for each infection site). Celiloğlu documented _Pseudomonas aeruginosa_ and _Klebsiella Pneumoniae_ as the most frequent bacteria with carbapenem resistance of 65% and 56% respectively.\(^11\) Our observations on colistin resistant _Acinetobacter baumannii_ infections were lower than expected (16.6%)\(^12,13\). The intriguing point in the present study was the observation of resistant strains in _Staphylococcus aureus_ (MRSA:100%) and _meticilline resistant CONS bacteria_ (50%). The rates of resistant strains at VAP were 50% for colistin-resistant _Acinetobacter baumannii_ and 15.4% for carbapenem resistant infections.

The infection outcome over the past five years demonstrates a general incline at Colistin-resistance and a decline at Carbapenem-resistance. Extensive administration of antibiotics at intensive care units results in antibiotic resistant bacteria colonization and infections. Hence, the treatment of such children have become more challenging with significant mortality rates. Despite the advances in antibiotherapy, the mortality rates are varying between 9% and 80%\(^11,13,14\). Twelve children died of infections (HAI mortality rate: 21.4%). Age less than five years, higher PRISM-3 score, longer intubation, frequent nasogastric tube insertion were associated with mortality in this study. The mentioned risk factors were similar to those reported in literature\(^17-19\).

CONCLUSION

Health-care associated infections remain to be a major problem all around the world. What we can do to overcome this challenge is, to initiate local surveillance protocols, educate the health-care stuff on hand hygiene, enforce appropriate...
isolation tactics and practice wise antibiotic administration.

REFERENCES

1. Furue M, Kadono T. Bullous pemphigoid: What's ahead? J Dermatol. 2016;43:237-40.

2. Kershenovich R, Hodak E, Mimouni D. Diagnosis and classification of pemphigus and bullous pemphigoid. Autoimmun Rev. 2014;13:477-81.

3. Akay BN, Bodamyalı P, Şanlı H, Akyol A. 10-Year Observation of Bullous Pemphigoid Patients. Turkderm 2010;44:61-4.

4. Schmidt E, Zillikens D. Pemphigoid diseases. Lancet. 2013;381:320-32.

5. Marzano AV, Tedeschi A, Fanoni D, et al. Activation of blood coagulation in bullous pemphigoid: role of eosinophils, and local and systemic implications. Br J Dermatol. 2009;160:266-72.

6. Bancroft AJ, Abel EW, McLaren M, Belch JJ. Mean platelet volume is a useful parameter: a reproducible routine method using a modified Coulter thrombocytometer. Platelets. 2000;11:379-87.

7. Park Y, Schoene N, Harris W. Mean platelet volume as an indicator of platelet activation: methodological issues. Platelets 2002;13:301-306.

8. Polat M, Bugdayci G, Kaya H, Oğuzman H. Evaluation of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in Turkish patients with chronic plaque psoriasis. Acta Dermatovenerol Alp Pannonica Adriat. 2017;26:97-100.

9. Rifaioglu EN, Sen BB, Ekiz Ö, Dogramaci AC. Mean platelet volume and eosinophilia relationship in patients with bullous pemphigoid. Platelets. 2014;25:264-7.

10. Ozer I, Bilevi S, Ataseven A. Can Neutrophil/Lymphocyte Ratio Be Used As a Marker in the Diagnosis of Bullous Pemphigoid? Selcuk Med J 2018;34:65-69.

11. Baum S, Sakka N, Artsi O, Trau H, Barzilai A. Diagnosis and classification of autoimmune blistering diseases. Autoimmun Rev 2014;13:482-9.

12. Ekiz Ö, Sen BB, Rifaioglu EN, et al. Three-year observation of the patients with bullous pemphigoid: 29 cases. Turkderm 2013;47:205-8.

13. Yazıcı S, Başkan EB, Tunali Ş, Aydoğan K, Sarıçaoğlu H. Kliniğimizde takip edilen kırk-altı büllöz pemfigoid olgusunun retrospektif analizi. Turkderm 2016;50:114-8.

14. Tan SK, Tay YK. Bullous pemphigoid: Profile and outcome in a series of 100 cases in Singapore. J Dermatol Dermatol Surg 2018;22:12-5.

15. Kızılyel O, Elmas ÖF, Bilen H, et al. Bullous pemphigoid in Erzurum: A 10 year retrospective study. Turkderm 2015;49:66-9.

16. Ong E, Goldacre R, Hoang U, Sinclair R, Goldacre M. Associations between bullous pemphigoid and primary malignant cancers: an English national record linkage study, 1999-2011. Arch Dermatol Res 2014;306:75-80.

17. Marzano AV, Tedeschi A, Spinelli D, et al. Coagulation activation in autoimmune bullous diseases. Clin Exp Immunol. 2009;158:31-6.

18. Schmidt E, Della Torre R, Borradori L. Clinical features and practical diagnosis of bullous pemphigoid. Dermatol Clin 2011;29:427-38.

19. Ameglio F, D’Auria L, Bonifati C, et al. Cytokine pattern in blister fluid and serum of patients with bullous pemphigoid: Relationships with disease intensity. Br J Dermatol 1998;138:611-4.

20. Gökmen F, Akbal A, Reşorlu H, et al. Neutrophil-Lymphocyte Ratio Connected to Treatment Options and Inflammation Markers of Ankylosing Spondylitis. J Clin Lab Anal. 2015;29:294-8.

21. Sen BB, Rifaioglu EN, Ekiz O, et al. Neutrophil to lymphocyte ratio as a measure of systemic inflammation in psoriasis. Cutan Ocul Toxicol.2014;33:223-7.
22. Ozturk C, Balta S, Balta I, et al. Neutrophil-lymphocyte ratio and carotid-intima media thickness in patients with Behçet disease without cardiovascular involvement. Angiology. 2015;66:291-6.

23. Uçmak D, Akkurt M, Uçak H, et al. The relationship of neutrophil to lymphocyte ratio with pemphigus vulgaris. Konuralp Medical Journal 2015;2015:88-92.

24. Kridin K, Shihade W, Zelber-Sagi S. Mean Platelet Volume in Pemphigus Vulgaris. Angiology. 2018;69:303-307.

25. Canpolat F, Akpinar H, Eskioğlu F. Mean platelet volume in psoriasis and psoriatic arthritis. Clin Rheumatol. 2010;29:325-328.

26. Balkarli A, Kucuk A, Babur H, Erbasan F. Neutrophil/lymphocyte ratio and mean platelet volume in Behçet's disease. Eur Rev Med Pharmacol Sci. 2016;20:3045-50.

27. Jiang Y, Ma W. Assessment of Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio in Atopic Dermatitis Patients. Med Sci Monit. 2017;23:1340-1346.

28. Kim DS, Shin D, Lee MS, et al. Assessments of neutrophil to lymphocyte ratio and platelet to lymphocyte ratio in Korean patients with psoriasis vulgaris and psoriatic arthritis. J Dermatol. 2016;43:305-10.

29. Wu Y, Chen Y, Yang X, Chen L, Yang Y. Neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) were associated with disease activity in patients with systemic lupus erythematosus. Int Immunopharmacol. 2016;36:94-99.

30. Hayta SB, Güner R, Akyol M. Blood mean platelet volume may be predictive for disease course in the cases with pemphigus vulgaris. Biomedical Research 2017;28:4223-4227.