N-acetylgalactosaminyl transferase-3 is a potential new marker for non-small cell lung cancers

H Dosaka-Akita*,1, I Kinoshita2, K Yamazaki2, H Izumi3, T Itoh4, H Katoh5, M Nishimura2, K Matsuo6, Y Yamada2 and K Kohno3

1Department of Medical Oncology, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo, 060-8638, Japan; 2First Department of Medicine, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan; 3Department of Molecular Biology, University of Occupational and Environmental Health, Japan, School of Medicine, Kitakyushu, 807-8555, Japan; 4Department of Surgical Pathology, Hokkaido University Medical Hospital, Sapporo, 060-8648, Japan; 5Department of Surgical Oncology, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan; 6Hanno Research Center, Tacho Pharmaceutical Co. Ltd., Saitama, 357-0041, Japan

N-acetylgalactosaminyl transferase-3 (GalNAc-T3) is an enzyme involved in the initial glycosylation of mucin-type O-linked proteins. In the present study, we used immunohistochemistry to examine GalNAc-T3 expression in 215 surgically resected non-small cell lung cancers. We analysed the biological and clinical importance of GalNAc-T3 expression, especially with regard to its potential as a prognostic factor. We found that normal bronchial epithelial cells, bronchial gland cells, and alveolar pneumocytes showed cytoplasmic immunostaining for GalNAc-T3. Low expression of GalNAc-T3, observed in 93 of 215 tumours (43.4%), was found more frequently in tumours from smokers than those from nonsmokers (P=0.001), in squamous cell carcinomas than nonsquamous cell carcinomas (P<0.0001), and in moderately and poorly differentiated tumours than well differentiated tumours (P=0.0002). Multivariate logistic regression analysis showed that an association of low GalNAc-T3 expression with squamous cell carcinomas was the only one significant relationship of GalNAc-T3 expression with various factors (P<0.0001). Moreover, tumours losing GalNAc-T3 expression had a significantly higher Ki-67 labelling index than tumours retaining GalNAc-T3 expression (P=0.0003). Patients with low GalNAc-T3 expression survived a significantly shorter time than patients with high GalNAc-T3 expression in 103 pStage I non-small cell lung cancers (5-year survival rates, 58% and 78%, respectively; P=0.02 by log-rank test) as well as in 61 pStage I nonsquamous cell carcinomas (5-year survival rates, 63% and 85%, respectively; P=0.03). Low GalNAc-T3 expression was an unfavourable prognostic factor in pStage I non-small cell lung cancers (hazard ratio, 2.04; P=0.03), and in pStage I nonsquamous cell carcinomas (hazard ratio, 2.70; P=0.03). These results suggest that GalNAc-T3 is a new marker of non-small cell lung cancers with specificity for histology and prognosis.

British Journal of Cancer (2002) 87, 751 – 755. doi:10.1038/sj.bjc.6600536 www.bjcancer.com

© 2002 Cancer Research UK

Keywords: GalNAc-T3; lung cancer; adenocarcinoma; Ki-67; prognosis

Lung cancer is one of the leading causes of cancer death worldwide. Although the management and treatment of non-small cell lung cancers (NSCLCs) have improved, there is no evidence that therapeutic advances have resulted in a marked increase of survival rates. The overall 5-year survival rate remains at less than 15% (Ginsberg et al., 2001). It is not fully understood why patients with comparable stages of NSCLC may have different clinical courses and respond differently to similar treatments. A more sophisticated understanding of the pathogenesis and biology of these tumours (Hanahan and Weinberg, 2000; Sekido et al., 2001) could provide useful information for predicting clinical outcome, individualising treatment (Harpole et al., 1995; Strauss et al., 1995; Kwiatkowski et al., 1998; Dosaka-Akita et al., 2001), and identifying molecular targets of the treatment (Gibbs, 2000).

Oligosaccharides on glycoproteins are altered in tumorigenesis. These oligosaccharides often play a role in the regulation of the biological characteristics of tumours in terms of invasion and metastatic potential (Hakomori, 1989). Each oligosaccharide is synthesised by a specific glycosyltransferase (Varki, 1993). The initial glycosylation of mucin-type O-linked proteins is catalysed by one of the UDP-N-acetyl-α-D-Galactosamine: polypeptide N-acetylgalactosaminyl transferases (GalNAc-transferase family of enzymes) (Hagen et al., 1993; Homa et al., 1993; Wandall et al., 1997). Three distinct human GalNAc-transferases, GalNAc-T1, GalNAc-T2, and GalNAc-T3, have been characterised (White et al., 1995; Bennett et al., 1996; Wandall et al., 1997). Recently another 3 homologue enzymes, GalNAc-T4, GalNAc-T5, and GalNAc-T6, have been identified (Bennett et al., 1996, 1998, 1999; Ten Hagen et al., 1998). Compared with the expression of GalNAc-T1 and GalNAc-T2, the expression of GalNAc-T3 is highly tissue specific. GalNAc-T3 mRNA has been detected in organs that contain secretory epithelial glands (Hagen et al., 1993; Homa et al., 1993; White et al., 1995; Bennett et al., 1996). It is hypothesised that the differential expression of GalNAc-T3 may affect the specialised functions of glycoproteins produced by normal and malignant cells, and that it is also associated with biological properties of normal and malignant cells (Sutherlin et al., 1997). However, GalNAc-T3 expression has not been previously examined in human lung cancers, or in human bronchial epithelial cells and alveolar pneumocytes, from which lung cancers develop.
In the present study, GaINAc-T3 expression was examined by immunohistochemistry in surgically resected NSCLCs. We analysed the biological and clinical importance of GaINAc-T3 expression, especially with regard to its potential as a prognostic factor.

MATERIALS AND METHODS

Tumour specimens and survival data

Primary tumour specimens from 215 NSCLCs were consecutively obtained by surgery from the Hokkaido University Medical Hospital during 1976 and 1994. The patients with NSCLCs consisted of 142 men and 73 women. The histologic classification of the tumour specimens was based on World Health Organization criteria (World Health Organization, 1982). The tumour specimens included 87 squamous cell carcinomas, 110 adenocarcinomas, nine large cell carcinomas, and eight adenosquamous cell carcinomas. Nonsquamous cell carcinoma included adenocarcinoma, large cell carcinoma and adenosquamous cell carcinoma. There were 119 Stage I, 18 Stage II, 70 Stage IIIa, one Stage IIIb, and seven Stage IV tumours. The postoperative pathologic TNM stage (pTNM) was determined according to the guidelines of the American Joint Committee on Cancer (American Joint Committee on Cancer, 1992). Of the 119 patients with pStage I tumours resected with curative intent, survival was analysed for the 103 patients who met the following criteria: (1) survived for more than 3 months after surgery; (2) did not die of causes other than lung cancer within 5 years after surgery; and (3) were followed for more than 3 years after surgery (for patients who remained alive). Sixteen patients did not meet the above criteria (four died within 3 months after surgery, five died of causes other than lung cancer within 5 years, and seven had no survival records after surgery) were excluded from the survival analysis. Of the 103 patients for whom survival was analysed, 54 patients had died of cancer, including 27 with squamous cell carcinomas, 22 with adenocarcinomas, three with large cell carcinomas and two with adenosquamous cell carcinomas. The Karnofsky performance status was 90% or greater in all these 103 patients. This study was approved by the Medical Ethical Committees of Hokkaido University School of Medicine. Because all patients were coded, they could not be individually identified.

Construction of the plasmid and preparation of GST fusion protein

The GaINAcT3 cDNA was cloned into pGEM-Teasy (Promega, Madison, WI, USA) by RT–PCR using the primers 5′-ATGGCCT-CACCTAAAGCGACTAG-3′ and 5′-GAAGACTCCAGTCAAAT-TTCC-3′, as described previously (Nomoto et al, 1999). The EcoRI–EcoRIII fragment (amino acid residues 1–178 of the whole 324 amino acids) was cloned into EcoRI–Smal sites in the pGEX-6P, and GST fusion protein (GST-GaINAcT3N) was purified according to the manufacturer’s protocol (Pharmacia, Uppsala, Sweden).

Western blot analysis of GST fusion protein

Both GST and GST-GaINAcT3N were separated on a 12% SDS–PAGE gel and transferred to polyvinylidene difluoride membrane (Millipore, Bedford, MA, USA) using semidry blotter. Immunoblot analysis was performed with anti-GST antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA) and anti-GaINAcT3 antibody, which was a rabbit polyclonal antibody against a synthesised peptide of human GaINAc-T3 (Nomoto et al, 1999) and was used for immunohistochemistry.

Immunohistochemistry for GaINAc-T3 expression

GaINAc-T3 expression was analysed by immunohistochemistry. The labelled streptavidin biotin method was used on 4-μm sections of formalin-fixed, paraffin-embedded tissues after deparaffinisation. Briefly, deparaffinised tissue sections were microwaved twice in 10 mM citrate buffer (pH 6.0) for 5 min to retrieve the antigenicity. The sections were incubated with normal rabbit serum to block the non-specific antibody binding sites. The sections were then incubated with a 1:5000 dilution of rabbit polyclonal antibody against a synthesised peptide of human GaINAc-T3 (Nomoto et al, 1999) or with control rabbit non-immunised serum at 4°C overnight. Immunostaining was performed by the biotin-streptavidin immunoperoxidase method with 3,3′-diaminobenzidine as a chromogen (SAB-PO kit; Nichirei, Tokyo, Japan). Sections were counterstained with methyl green. GaINAc-T3 expression in normal bronchial epithelial cells, bronchial gland cells, and alveolar pneumocytes in the same sections served as an internal positive control. The GaINAc-T3 expression in tumours was classified as high or low, according to the proportion of positively stained tumour cells. Tumours with staining in at least 50% of cancer cells, were judged as having high GaINAc-T3 expression (retaining expression of GaINAc-T3). Tumours with staining in less than 50% of cancer cells, were judged as having low GaINAc-T3 expression (losing expression of GaINAc-T3), as we previously described (Shibao et al, 2002).

For the Ki-67 staining, the results that were previously reported (Hommura et al, 2000) were used for the present study.

Statistical analysis

The associations between GaINAc-T3 expression and categorical variables were analysed by the χ² test or Fisher’s exact test as appropriate. The associations between GaINAc-T3 expression and age or the Ki-67 labelling index (LI) were analysed by Student’s t-test. To simultaneously examine the effect of more than one factor on GaINAc-T3 expression, multivariate logistic regression analysis was used (Cox and Snell, 1989). The survival curves were estimated using the Kaplan–Meier method, and differences in survival distributions were evaluated by the generalised Wilcoxon test. Cox’s proportional hazards modelling of factors potentially related to survival was performed to identify factors with a significant influence on survival. P values less than 0.05 were considered statistically significant. All tests were two-sided.

RESULTS

To confirm the availability of an anti-GaINAc-T3 polyclonal antibody, Western blot analysis of a GST fusion protein (GST-GaINAcT3N) was performed (Figure 1). Strong signals of the GST fusion protein were obtained in the immunoblotting with anti-GaINAc-T3 polyclonal antibody as well as in that with anti-GST antibody. The specificity of this anti-GaINAc-T3 polyclonal antibody was also tested by immunohistochemistry. After incubation of this antibody with the excess of GST-GaINAcTN, the positive immunostaining was abolished (Figure 2).

Typical immunostaining patterns for GaINAc-T3 with this antibody in NSCLCs are shown in Figure 3. In tumour cells, GaINAc-T3 expression was found diffusely in the cytoplasm, or localised in the Golgi apparatus. Normal bronchial epithelial cells (Figure 3A), bronchial gland cells (Figure 3B), and alveolar pneumocytes (data not shown) also expressed GaINAc-T3.

Of the 215 NSCLCs, 122 (56.7%) had high GaINAc-T3 expression, and 93 (43.3%) had low GaINAc-T3 expression (Table 1). The status of GaINAc-T3 expression was statistically analysed to investigate possible correlations with clinical and clinicopathological characteristics of NSCLCs. Low expression of GaINAc-T3 was
significantly more prevalent in tumours from men than in those from women ($P=0.0001$ by the χ^2 test) and in tumours from smokers compared to nonsmokers ($P=0.001$). Low GalNAc-T3 expression was also more prevalent in squamous cell carcinomas than nonsquamous cell carcinomas ($P<0.0001$) (Table 1). GalNAc-T3 expression was not associated with pTNM classifications and pStage. Multivariate logistic regression analysis showed a significant association of low GalNAc-T3 expression with squamous cell ($P<0.0001$) (Table 2). This relationship between GalNAc-T3 expression and histology was the only significant relationship between GalNAc-T3 expression and various factors within the context of the multivariate model. Tumours having low GalNAc-T3 expression showed a significantly higher Ki-67 LI than tumours having high GalNAc-T3 expression ($P=0.0003$) (Table 3). Tumours having low GalNAc-T3 expression also exhibited a high

Figure 1 Western blotting of GST fusion protein. GST (100 ng) and GST-GalNAcT3N (200 ng) proteins were loaded on a 12% SDS–PAGE gel and transferred to membrane. Immunoblot analysis was performed with an anti-GalNAcT3 antibody (left) and anti-GST antibody (right). IB, immunoblotting.

Figure 2 Immunoreactivity of an anti-GalNAc-T3 polyclonal antibody. Immunostaining was performed with this antibody in a NSCLC specimen after incubation of this antibody with excess of GST (A) or GST-GalNAcT3N (B). Scale bar=20 μm.

Table 1 Relationship between GalNAc-T3 expression and clinical and clinicopathological characteristics in 215 surgically resected NSCLCs

Characteristics	Low	High	P
Age (mean±s.d.)	63.9±9.0	62.4±9.4	0.2
Sex			
Male	75	67	0.0001
Female	18	55	0.0001
Smoking			
Nonsmoker	15	45	0.001
Smoker	72	69	
Smoking (pack years)			
$0 \leq x < 20$	18	49	0.001
≤ 20	69	64	
Histologya			
Squamous	58	29	<0.0001
Adeno	28	83	
Others	7	10	
Differentiation			
Well	9	42	0.0002
Moderate	40	37	
Poor	27	20	
pT classification			
1	22	41	0.2
2–4	70	81	
pN classification			
0	60	71	0.4
1–3	32	51	
pM classification			
0	90	117	0.7
1	2	5	
pStage			
1	53	66	0.6
2	8	10	
3a	29	41	
3b	1	0	
4	2	5	

aSquamous, squamous cell carcinoma; adeno, adenocarcinoma; others, large cell carcinoma and adenosquamous cell carcinoma.
Table 1 Multivariate logistic regression analysis for the correlation between GalNAc-T3 expression and various characteristics

Characteristics	Odds ratio	95% CI	P
Gender (male/female)	1.56	0.45–5.36	0.5
Smoking (smoker/non-smoker)	0.82	0.23–2.87	0.8
Histology (squamous/nonsquamous)	5.05	2.25–11.36	<0.0001
Differentiation (moderate and poor/well)	3.14	1.25–7.90	0.1

*Selected from Table 1. *Confidence interval. †Including adenocarcinoma, large cell carcinoma, and adenosquamous cell carcinoma.

Table 2 Relationship between GalNAc-T3 expression and Ki-67 cell growth fractions in NSCLCs

Characteristics	Low	High	P
Ki-67 LI (mean±s.d.)	44.2±25.5	30.6±27.0	0.0003
Low LI'	29	67	0.0003
High LI'	62	51	

*LI, labelling index. †Low LI, <30% of tumour cells stained. ‡High LI, ≥30% of tumour cells stained.

The importance of GalNAc-T3 as a prognostic factor was associated with a shorter survival period, and was an unfavourable prognostic factor. The finding that GalNAc-T3 expression was retained more frequently in nonsquamous cell carcinomas (most of which were adenocarcinomas) than in squamous cell carcinomas may reflect tissue specific expression of GalNAc-T3 in organs that contain secretory epithelial glands (Hagen et al., 1993; Homa et al., 1994).

DISCUSSION

In the present study, GalNAc-T3 expression was frequently decreased in NSCLCs, although it was expressed in normal bronchial epithelial cells, bronchial gland cells, and alveolar pneumocytes. Furthermore, low GalNAc-T3 expression of NSCLCs was associated with a shorter survival period, and was an unfavourable prognostic factor.

The finding that GalNAc-T3 expression was retained more frequently in nonsquamous cell carcinomas (most of which were adenocarcinomas) than in squamous cell carcinomas may reflect tissue specific expression of GalNAc-T3 in organs that contain secretory epithelial glands (Hagen et al., 1993; Homa et al., 1994).

Figure 4 Kaplan–Meier survival curves of patients with pStage I NSCLCs stratified by GalNAc-T3 expression. Survival curves of patients with overall NSCLCs (A) and with nonsquamous cell carcinomas (B) are stratified by low and high GalNAc-T3 expression. Nonsquamous cell carcinoma included adenocarcinoma, large cell carcinoma and adenosquamous cell carcinoma.

Table 4 Cox’s proportional hazards model analysis of prognostic factors in patients with pStage I NSCLCs

Characteristics	Hazards ratio	95% CI	P
Sex (male/female)	0.63	0.35–1.16	0.1
Age (≥65/ <65)	0.75	0.43–1.31	0.3
Chemotherapy	1.24	0.72–2.15	0.4
Differentiation	1.34	0.77–2.35	0.3
pT classification	0.89	0.44–1.80	0.8
GalNAc-T3 expression (high/low)	2.04	1.09–3.85	0.03

*Confidence interval. †Including adenocarcinoma, large cell carcinoma, and adenosquamous cell carcinoma.
1993; White et al. 1995; Bennett et al. 1996). Moreover, in nonsquamous cell carcinomas, decreased expression of GalNAc-T3 was associated with unfavourable prognosis. Consistent with these results, we have recently found that GalNAc-T3 is expressed in normal epithelial cells and gland cells of the colon, and that decreased expression of GalNAc-T3 is an unfavourable prognostic factor in adenocarcinomas of the colon (Shibao et al., 2002).

The mechanism underlying the relationship between decreased GalNAc-T3 expression and poor prognosis remains to be determined. Bronchial and alveolar epithelia, from which NSCLCs develop, normally express GalNAc-T3. Decreased GalNAc-T3 expression may induce decreased level of glycosylation in certain types of glycoprotein, resulting in altered functions of the glycoproteins. Therefore, the biological importance of GalNAc-T3 expression depends on the function of target substrate glycoproteins. The importance of GalNAc-T3 expression for the development and progression of cancer as well as for maintaining physiologic properties of normal cells also remains to be determined, although certain cancer-associated decreases or increases in glycosylation has been shown to directly contribute to cellular transformation (Vavasseur et al., 1994; Demetriou et al., 1995). Collectively, decreased expression of GalNAc-T3 may directly contribute to altered biological properties of NSCLCs. In fact, in this study, low expression of GalNAc-T3 in NSCLCs was associated with a higher LI of Ki-67 cell growth fractions, and resulted in shorter survival times.

In conclusion, these results indicate that GalNAc-T3 is a new marker of NSCLCs with specificity for histology and survival. GalNAc-T3 expression may be useful to stratify patients with pStage I tumours into groups at high and low risks of recurrence in NSCLCs, especially in nonsquamous cell carcinomas.

REFERENCES

American Joint Committee on Cancer (1992) Lung. In Manual for staging of cancer 4th edn, Beahrs OH, Henson DE, Hutter RVP, Kennedy BL (eds) pp 15 – 122 Philadelphia: JB Lippincott Company

Bennett EP, Hassan H, Clausen H (1996) CDNA cloning and expression of a novel human UDP-N-acetyl-alpha-D-galactosamine. Polypeptide N-acetylgalactosaminyltransferase, GalNAc-T3. J Biol Chem 271: 17006 – 17012

Bennett EP, Hassan H, Mandel U, Mirgorodskaya E, Roeppstorff P, Burchell J, Taylor-Papadimitriou J, Hollingsworth MA, Merkx G, van Kessel AG, Eiberg H, Steffensen R, Clausen H (1998) Cloning of a human UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase that complements other GalNAc-transferases in complete O-glycosylation of the MUC1 tandem repeat. J Biol Chem 273: 30472 – 30481

Bennett EP, Hassan H, Mandel U, Hollingsworth MA, Akiwai S, Ikematsu Y, Merkx G, van Kessel AG, Olofsson S, Clausen H (1999) Cloning and characterization of a close homologue of human UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase, GalNAc-T6. Evidence for genetic but not functional redundancy. J Biol Chem 274: 25362 – 25370

Cox D, Snell E (1989) Analysis of Binary Data 2nd edn, London: Chapman and Hall

Demetriou M, Nabi IR, Coppolino M, Dedhar S, Dennis JW (1995) Reduced Manual for staging of cancer 4th edn, Beahrs OH, Henson DE, Hutter RVP, Kennedy BL (eds) pp 15 – 122 Philadelphia: JB Lippincott Company

Dosaka-Akita H, Hommura F, Mishina T, Ogura S, Shimizu M, Katoh H, et al (1996) von interstitial myofibroblasts in adenoma cells during progression to cancer. Eur J Biochem 222: 413 – 423

Kwiatkowski DJ, Harpole Jr DH, Golecki J, Herndon II JE, Dar-Bin S, Richards W, Blanco R, Xu H, Strauss GM, Sugarbaker DJ (1998) Molecular pathologic staging in 244 stage I non-small-cell lung cancer patients: clinical implications. J Clin Oncol 16: 2468 – 2477

Nomoto M, Izumi H, Ise T, Kato K, Takano H, Nagatani G, Shibao K, Ohita R, Imamura T, Kuwano M, Matsuou K, Yamada Y, Itoh H, Kohno K (1999) Structural basis for the regulation of UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase-3 gene expression in adenocarcinoma cells. Cancer Res 59: 6214 – 6222

Sekido Y, Fong KM, Minna JD (2001) Molecular biology of lung cancer. In: Cancer: principles and practice of oncology 6th edn, DeVita VT, Hellman S, Rosenberg SA (eds) pp 917 – 924 Philadelphia: Lippincott-Raven Publishers

Shibao K, Izumi H, Nakayama Y, Ohita R, Nagata N, Nomoto M, Matsuou K, Yamada Y, Kitazawa K, Itoh H, Kohno K (2002) Expression of UDP-α-D-galactosamine: Polypeptide GalNAc N-acetylgalactosaminyltransferase-3 in relation to differentiation and prognosis in human colorectal carcinoma. Cancer 94: 1939 – 1946

Strauss GM, Kwiatkowski DJ, Harpole DH, Lynch TJ, Skarin AT, Sugarbaker DJ (1995) Molecular and pathologic markers in stage I non-small cell carcinoma of the lung. J Clin Oncol 13: 1265 – 1279

Vavasseur F, Kwiatkowski DJ, Harpole Jr DH, Golecki J, Herndon II JE, Dar-Bin S, Richards W, Blanco R, Xu H, Strauss GM, Sugarbaker DJ (1998) Molecular pathologic staging in 244 stage I non-small-cell lung cancer patients: clinical implications. J Clin Oncol 16: 2468 – 2477

Wandall HH, Hassan H, Mirgorodskaya E, Kristensen AK, Roeppstorff P, Bennett EP, Hollingsworth MA (1997) Expression of three UDP-N-acetyl-alpha-D-galactosamine:polypeptide GalNAc N-acetylgalactosaminyltransferases in adenocarcinoma cell lines. Cancer Res 57: 4744 – 4748

Ten Hagen KG, Hagen FK, Buly MM, Beres TM, Van Wuyckhuyse B, Tabak LA (1998) Cloning and expression of a novel, tissue specifically expressed member of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase family. J Biol Chem 273: 27749 – 27754

Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3: 97 – 130

Vavasseur F, Dole K, Yang J, Matta KL, Myerscough N, Corfield A, Paraskeva C, Brockhausen I (1994) O-glycan biosynthesis in human colorectal adenoma cells during progression to cancer. Eur J Biochem 222: 413 – 423

Wandall HH, Hassan H, Mirgorodskaya E, Kristensen AK, Roeppstorff P, Bennett EP, Nielsen PA, Hollingsworth MA, Burchell J, Taylor-Papadimitriou J, Clausen H (1997) Substrate specificities of three members of the human UDP-N-acetyl-alpha-D-galactosamine:Polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1, -T2, and -T3. J Biol Chem 272: 23503 – 23514

White T, Bennett EP, Takio K, Sorensen T, Bonding N, Clausen H (1995) Purification and cDNA cloning of a human UDP-N-acetyl-alpha-D-galactosaminyltransferase:polypeptide N-acetylgalactosaminyltransferase. J Biol Chem 270: 24156 – 24165

World Health Organization (1982) Histopathological staging of lung tumours, 2nd edn. Am J Clin Pathol 77: 123 – 136

© 2002 Cancer Research UK