Epetraborole Is Active against *Mycobacterium abscessus*

Uday S. Ganapathy,a Martin Gengenbacher,a,b Thomas Dick,a,b,c

aCenter for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
bDepartment of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
cDepartment of Microbiology and Immunology, Georgetown University, Washington, DC, USA

ABSTRACT Benzoxaboroles are a new class of leucyl-tRNA synthetase inhibitors. We recently reported that the antitubercular 4-halogenated benzoxaboroles are active against *Mycobacterium abscessus*. Here, we find that the nonhalogenated benzoxaborole epetraborole, a clinical candidate developed for Gram-negative infections, is also active against *M. abscessus in vitro* and in a mouse model of infection. This expands the repertoire of advanced lead compounds for the discovery of a benzoxaborole-based candidate to treat *M. abscessus* lung disease.

KEYWORDS epetraborole, *Mycobacterium abscessus*, NTM, nontuberculous mycobacteria, benzoxaborole

Mycobacterium abscessus lung disease is notoriously difficult to treat due to the bacterium’s high intrinsic drug resistance (1, 2). In addition to resistance to all first-line tuberculosis (TB) drugs, *M. abscessus* displays resistance to macrolides (3, 4), threatening the current macrolide-based treatment regimens (2, 5). Therefore, new antibiotics with novel targets and mechanisms of action are needed to treat this disease (6).

Benzoxaboroles are a class of boron-heterocyclic antimicrobials that target leucyl-tRNA synthetase (LeuRS) (7). Acting through the oxaborole tRNA-trapping (OBORT) mechanism (8), these compounds form adducts with uncharged tRNA\textsubscript{Leu} molecules that subsequently bind to the LeuRS editing domain, blocking protein synthesis. Following the discovery of tavaborole (7, 8), a benzoxaborole with antifungal activity, this compound class was optimized for antibacterial activity. Addition of a 3-aminomethyl group to the benzoxaborole core improved interactions with the editing domain of *Escherichia coli* LeuRS, while a 7-O-propanol substituent added a novel interaction with the phosphate backbone of tRNA\textsubscript{Leu} (9). Combining these modifications yielded epetraborole (Fig. 1), a clinical candidate with potent activity against a broad range of Gram-negative bacteria (9, 10). The subsequent addition of a 4-halogen group (particularly Cl or Br) improved antituberculosis activity (11–13).

Recently, we reported that the antitubercular 4-halogen benzoxaborole EC/11770 (Fig. 1) is active against *M. abscessus* in *vivo* and in *vivo* in a mouse infection model (14). Here, we asked whether the anti-Gram-negative, nonhalogenated benzoxaborole epetraborole (Fig. 1) is active against *M. abscessus*. We first measured the MIC of this compound against our screening strain *M. abscessus* subsp. *abscessus* Bamboo (15) in Middlebrook 7H9 medium using 96-well plates, as previously described (14). Surprisingly, epetraborole showed activity similar to that of the antitubercular EC/11770 (Table 1). Epetraborole retained activity against culture collection reference strains for each of the three subspecies of the *M. abscessus* complex and a panel of *M. abscessus* clinical isolates (16, 17) (Table 1). Taken together, the anti-Gram-negative, nonhalogenated benzoxaborole epetraborole was active against the *M. abscessus* complex in *vivo*.

To confirm that epetraborole indeed exerts its antimycobacterial activity by targeting *M. abscessus* LeuRS, we selected for epetraborole-resistant *M. abscessus* mutants (Table 2).
Adapting our previously described method (14), *M. abscessus* ATCC 19977 culture was plated on Middlebrook 7H10 agar containing 16.5 μM epetraborole, the lowest concentration suppressing the emergence of wild-type colonies. After 5 days of incubation, apparent resistant colonies were confirmed by restreaking on epetraborole-containing agar. Based on two independent selections, we calculated the frequency of resistance to epetraborole to be 5.4×10^{-8}/CFU. This frequency of resistance was on the lower end of a range determined for epetraborole in several Gram-negative bacterial species (3.8×10^{-8}/CFU to 8.1×10^{-7}/CFU) (9) and was comparable to what we reported for EC/11770 in *M. abscessus* (3.9×10^{-9}/CFU) (14). MIC profiling of nine epetraborole-resistant mutants (RM1 to RM9) showed high-level resistance to epetraborole (Table 2). Sequencing of *leuS* (*MAB_4923c*) showed that RM1 to RM9 all had missense mutations in the LeuRS editing domain (residues V292 to K502) (Table 2). These results suggest that epetraborole retains LeuRS as its target to exert its anti-*M. abscessus* activity (8, 9).

Development of epetraborole for the treatment of complicated urinary tract infections caused by Gram-negative bacteria was discontinued after rapid emergence of drug resistance in a phase II clinical trial (18). Determination of spontaneous resistance frequencies for epetraborole in the current study, and for EC/11770 previously (14), suggest low propensity for the development of resistance against benzoxaboroles in *M. abscessus*. However, it is to note that we needed to carry out selection of resistant mutants on agar containing high concentrations of the drugs (50 to 100× broth MIC), as lower concentrations did not suppress outgrowth of wild-type bacteria. Thus, it cannot be excluded that the spontaneous resistance frequency of *M. abscessus* against the benzoxaboroles would be higher than the observed 4×10^{-8} to 5×10^{-9}/CFU when lower drug concentrations could be used. Such resistant strains, presumably displaying

![Epetaborole and EC/11770](FIG 1 Structures of epetraborole and EC/11770)

TABLE 1 Activity of epetraborole against members of the *M. abscessus* complex

Strain	Strain type	CLR	EC/11770	EPB
M. abscessus Bamboo	Clinical isolate, screening stra	0.30	1.2	0.28
M. abscessus subsp. abscessus ATCC 19977	Culture collection reference strain	0.90	0.70	0.33
M. abscessus subsp. massiliense CCG 48898\(^T\)	Culture collection reference strain	0.22	0.71	0.32
M. abscessus subsp. bolletii CCG 50184\(^\prime\)	Culture collection reference strain	1.3	1.3	0.49
M. abscessus subsp. abscessus M9	Clinical isolate	1.4	0.49	0.42
M. abscessus subsp. abscessus M199	Clinical isolate	3.3	0.93	0.56
M. abscessus subsp. abscessus M337	Clinical isolate	1.6	0.50	0.44
M. abscessus subsp. abscessus M404	Clinical isolate	0.2	0.52	0.3
M. abscessus subsp. abscessus M422	Clinical isolate	0.68	0.33	0.34
M. abscessus subsp. bolletii M232	Clinical isolate	1.6	0.67	0.37
M. abscessus subsp. bolletii M506	Clinical isolate	0.28	0.48	0.28
M. abscessus subsp. massiliense M111	Clinical isolate	0.25	0.95	0.44
M. abscessus subsp. abscessus K21	Clinical isolate, infection model	0.78	0.60	0.40

\(^{a}\)MIC values are the means from two independent experiments. CLR, clarithromycin; EPB, epetraborole.

\(^{b}\)EC/11770 MIC values are from published literature (14) and are included for comparison.
To determine whether epetraborole is active against *M. abscessus* in vivo, we evaluated the efficacy of this compound in a previously established murine model of *M. abscessus* infection (17). All experiments involving live animals were approved by the Institutional Animal Care and Use Committee of the Center for Discovery and Innovation, Hackensack Meridian Health. NOD SCID mice were infected intranasally with *M. abscessus* K21. At day 1 postinfection, the lung bacterial burden of the mice reached 10^6 CFU (Fig. 2A). Beginning on day 1, clarithromycin (formulated in 0.5% carboxymethyl cellulose-0.5% Tween 80-sterile water), epetraborole (formulated in sterile phosphate-buffered saline [PBS]), or vehicle (sterile PBS) was administered by oral gavage once per day for 10 days. Based on a previous efficacy study using a *Pseudomonas aeruginosa* mouse infection model (9), epetraborole was administered at 150 and 300 mg/kg body weight. The lung bacterial burden remained unchanged in mice that received the drug-free vehicle control (Fig. 2A, day 11). Mice that received epetraborole at 300 mg/kg showed a statistically significant 1-log reduction in lung CFU that was comparable to that after treatment with clarithromycin at 250 mg/kg (Fig. 2A). A similar pattern of CFU reduction was observed in the spleen (Fig. 2B). Thus, epetraborole was active against *M. abscessus* in vivo. It is interesting to note that epetraborole, despite having similar in vitro activity as the previously characterized benzoxaborole EC/11770 (Table 1) (14), required with 300 mg/kg a 30-fold higher dosing to achieve a similar (≈ 10-fold) reduction in bacterial lung burden. The basis for this difference remains to be determined but may be due to differences in the pharmacokinetic properties of the two compounds, including oral bioavailability (9, 14).

TABLE 2 Characterization of *M. abscessus* epetraborole-resistant mutants

Strain	Batch	MIC (µM)*	LeuS mutation	Other bacteria with LeuS mutation (reference)*
M. abscessus ATCC 19977	1	1.3	None	
RM1	1	1.5	LeuS G393V	
RM2	1	2.7	LeuS T322I	*E. coli, Proteus mirabilis* (18)
RM3	1	1.3	LeuS T323P	
RM4	2	1.5	LeuS S303L	*M. tuberculosis* (11)
RM5	2	1.8	LeuS S303L	*M. tuberculosis* (11)
RM6	2	1.6	LeuS S303L	*M. tuberculosis* (11)
RM7	2	1.4	LeuS Y421D	*M. tuberculosis* (Y421C) (11)
RM8	2	0.9	LeuS T322I	*E. coli, P. mirabilis* (18)
RM9	2	2.2	LeuS F321V	

*MIC values are the means from two independent experiments. CLR, clarithromycin; EPB, epetraborole.
*Corresponding benzoxaborole resistance-conferring LeuS mutations reported for other bacteria.

low level resistance, would have been missed in our selection experiments. In any case, given the use of multidrug chemotherapy in *M. abscessus* treatment (2, 5), the risk of benzoxaborole resistance emerging in this bacterium would be reduced significantly.

FIG 2 Epetraborole is active against *M. abscessus* in vivo. Lung CFU (A) and spleen CFU (B) from NOD SCID mice 1 day after intranasal infection with Mab (drug-free day 1) and following daily oral administration of drug-free vehicle, clarithromycin (CLR), or epetraborole (EPB) for 10 days (day 11). Data represent the means plus standard deviations from six mice per treatment group. Statistical significance of the results was analyzed by one-way analysis of variance (ANOVA) multiple-comparison and Tukey’s posttests. *, $P < 0.05$; **, $P < 0.01$.

October 2021 Volume 65 Issue 10 e01156-21 aac.asm.org 3
In conclusion, we show that epetraborole, an advanced nonhalogenated 3-amino-methyl benzoxaborole developed for Gram-negative infections, is also active against M. abscessus in vitro and in a mouse model of infection. This agrees with a recent publication that identified epetraborole in a screen of the MMV pandemic response box for anti-M. abscessus activity and reported this compound’s efficacy against M. abscessus in a zebrafish infection model (19). Our findings reaffirm leucyl-tRNA synthetase as an attractive target against M. abscessus and expand the repertoire of advanced lead compounds for the discovery of a benzoxaborole-based candidate for the treatment of M. abscessus lung disease.

ACKNOWLEDGMENTS

We thank Wei Chang Huang (Taichung Veterans General Hospital, Taichung, Taiwan) for providing M. abscessus Bamboo, Jeanette W. P. Teo (Department of Laboratory Medicine, National University Hospital, Singapore) for providing the collection of M. abscessus clinical M isolates, and Sung Jae Shin (Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea) and Won-Jung Koh (Division of Pulmonary and Critical Care Medicine, Samsung Medical Center, Seoul, South Korea) for providing M. abscessus K21.

Research reported in this work was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under award number R01AI132374.

REFERENCES

1. Luthra S, Rominski A, Sander P. 2018. The role of antibiotic-target-modifying and antibiotic-modifying enzymes in Mycobacterium abscessus drug resistance. Front Microbiol. 9:2179. https://doi.org/10.3389/fmicb.2018.02179.
2. Daley CL, Iaccarino JM, Lange C, Cambau E, Wallace RJ, Andrejak C, Bottger EC, Brozek J, Griffith DE, Guglielmetti L, Huitt GA, Knight SL, Leitman P, Marras TK, Olivier KN, Santin M, Stout JE, Tortoli E, van Ingen J, Wagner D, Winthrop KL. 2020. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMI/IDSA clinical practice guideline: executive summary. Clin Infect Dis 71:e1–e6. https://doi.org/10.1093/cid/ciaa241.
3. Wallace RJ Jr, Meier A, Brown BA, Zhang YK, Onyi GO, Bottger EC. 1996. Genetic basis for clarithromycin resistance among isolates of Mycobacterium chelonei and Mycobacterium abscessus. Antimicrob Agents Chemother 40:1676–1681. https://doi.org/10.1128/AAC.40.7.1676.
4. Nash KA, Brown-Elliott BA, Wallace RJ Jr. 2009. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonei. Antimicrob Agents Chemother 53:1367–1376. https://doi.org/10.1128/AAC.01275-08.
5. Strnad L, Winthrop KL. 2018. Treatment of Mycobacterium abscessus complex. Semin Respir Crit Care Med 39:362–376. https://doi.org/10.1055/s-0038-1651494.
6. Wu ML, Aziz DB, Dartois V, Dick T. 2018. NTM drug discovery: status, gaps and the way forward. Drug Discov Today 23:1502–1519. https://doi.org/10.1016/j.drudis.2018.04.001.
7. Baker SJ, Zhang YK, Akama T, Lau A, Zhou H, Hernandez V, Mao W, Alley MR, Sanders V, Plattner JJ. 2006. Discovery of a new boron-containing anti-fungal agent, 5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (AN2690), for the potential treatment of onychomycosis. J Med Chem 49:4447–4450. https://doi.org/10.1021/jm0603724.
8. Rock FL, Mao W, Yaremchuk A, Tukalo M, Crepin T, Zhou H, Zhang YK, Hernandez V, Akama T, Baker SJ, Plattner JJ, Shapiro L, Martinis SA, Benkovic SJ, Cusack S, Alley MR. 2007. An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site. Science 316:1759–1761. https://doi.org/10.1126/science.1142189.
9. Hernandez V, Crepin T, Palencia A, Cusack A, Akama T, Baker SJ, Bu W, Feng L, Freund YR, Liu L, Meewan M, Mohan M, Mao W, Rock FL, Sexton H, Sheoran A, Zhang Y, Zhang YK, Zhou Y, Nieman JA, Anugula MR, Keramane el M, Saveriark I, Reddy DS, Sharma R, Subedi R, Singh R, O’Leary A, Simon NL, De Marsh PL, Mushtaq S, Warner M, Livermore DM, Alley MR, Plattner JJ. 2013. Discovery of a novel class of boron-based antibacterials with activity against Gram-negative bacteria. Antimicrob Agents Chemother 57:1394–1403. https://doi.org/10.1128/AAC.02058-12.
10. Mendes RE, Alley MR, Sader HS, Biedenbach DJ, Jones RN. 2013. Potency and spectrum of activity of AN3365, a novel boron-containing protein synthesis inhibitor, tested against clinical isolates of Enterobacteriaceae and nonfermentative Gram-negative bacilli. Antimicrob Agents Chemother 57:2849–2857. https://doi.org/10.1128/AAC.00160-13.
11. Palencia A, Li X, Bu W, Choi W, Ding CZ, Easom EE, Fei L, Hernandez V, Houston P, Liu L, Meewan M, Mohan M, Rock FL, Sexton H, Zhang S, Zhou Y, Wan B, Wang Y, Franzblau SG, Woolhiser L, Gruppen V, Llenaets AJ, O’Malley T, Parish T, Cooper CB, Waters MG, Ma Z, Ioerger TR, Sacchettini JC, Rullas J, Angulo-Barturen I, Perez-Herran E, Mendoza A, Barros D, Cusack S, Plattner JJ, Alley MR. 2016. Discovery of novel oral protein synthesis inhibitors of Mycobacterium tuberculosis that target leucyl-tRNA synthetase. Antimicrob Agents Chemother 60:6271–6280. https://doi.org/10.1128/AAC.01339-16.
12. Li X, Hernandez V, Rock FL, Choi W, Mak YSL, Mohan M, Mao W, Zhou Y, Easom EE, Plattner JJ, Zou W, Perez-Herran E, Giordano I, Mendoza-Losana A, Alemparte C, Rullas J, Angulo-Barturen I, Crouch S, Ortega F, Barros D, Alley MR. 2017. Discovery of a potent and specific M. tuberculosis leucyl-tRNA synthetase inhibitor: (S)-3-(aminomethyl)-4-chloro-7-(2-hydroxyethoxy)benzo[c][1,2]oxaborol-3(1H)-ol (GSK656). J Med Chem 60:8011–8026. https://doi.org/10.1021/acs.jmedchem.7b00631.
13. Tenero D, Derimanov G, Carlton A, Tonkyn J, Davies M, Cozens S, Gresham S, Gaudion A, Puri A, Muladiatian M, Rullas-Trincado J, Mendoza-Losana A, Skingsley A, Barros-Aguirre D. 2019. First-time-in-human study and prediction of early bactericidal activity for GSK3036656, a potent leucyl-tRNA synthetase inhibitor for tuberculosis treatment. Antimicrob Agents Chemother 63:e00240-19. https://doi.org/10.1128/AAC.00240-19.
14. Ganapathy US, Del Rio RG, Cacho-Izquierdo M, Ortega F, Leilleve J, Barros-Aguirre D, Lindman M, Dartois V, Bengenbacher M, Dick T. 2021. A leucyl-tRNA synthetase inhibitor with broad-spectrum anti-mycobacterial activity. Antimicrob Agents Chemother 65:e02420-20. https://doi.org/10.1128/AAC.02420-20.
15. Yee M, Klinzing D, Wei JR, Bengenbacher M, Rubin EJ, Dick T. 2017. Draft genome sequence of Mycobacterium abscessus Bamboo. Genome Announc 5:e00388-17. https://doi.org/10.1128/genomeA.00388-17.
16. Aziz DB, Low JL, Wu ML, Bengenbacher M, Teo JWP, Dartois V, Dick T. 2017. Rifabutin is active against Mycobacterium abscessus complex. Antimicrob Agents Chemother 61:e00155-17. https://doi.org/10.1128/AAC.00155-17.

October 2021 Volume 65 Issue 10 e01156-21 aac.asm.org
17. Dick T, Shin SJ, Koh WJ, Dartois V, Gengenbacher M. 2020. Rifabutin is active against Mycobacterium abscessus in mice. Antimicrob Agents Chemother 64:e01943-19. https://doi.org/10.1128/AAC.01943-19.

18. O'Dwyer K, Spivak AT, Ingraham K, Min S, Holmes DJ, Jakielaszek C, Rittenhouse S, Kwan AL, Livi GP, Sathe G, Thomas E, Van Horn S, Miller LA, Twynholm M, Tomayko J, Dalessandro M, Caltabiano M, Scangarella-Oman NE, Brown JR. 2015. Bacterial resistance to leucyl-tRNA synthetase inhibitor GSK2251052 develops during treatment of complicated urinary tract infections. Antimicrob Agents Chemother 59:289–298. https://doi.org/10.1128/AAC.03774-14.

19. Kim T, Hanh B-T-B, Heo B, Quang N, Park Y, Shin J, Jeon S, Park J-W, Samby K, Jang J. 2021. A screening of the MMV pandemic response box reveals epetaborole as a new potent inhibitor against Mycobacterium abscessus. Int J Mol Sci 22:5936. https://doi.org/10.3390/ijms22115936.