The neuroprotective effect of nicotine in Parkinson’s disease models is associated with inhibiting PARP-1 and caspase-3 cleavage

Justin YD Lu, Ping Su, James ED Barber, Joanne Nash, Anh D Le, Fang Liu, Albert HC Wong

Corresp. 1, 3, 4

1 Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
2 Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto, Scarborough, Toronto, Ontario, Canada
3 Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
4 Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada

Corresponding Author: Albert HC Wong
Email address: albert.wong@utoronto.ca

Clinical evidence points to neuroprotective effects of smoking in Parkinson’s disease (PD), but the molecular mechanisms remain unclear. We investigated the pharmacological pathways involved in these neuroprotective effects, which could provide novel ideas for developing targeted neuroprotective treatments for PD. We used the ETC complex I inhibitor methylpyridinium ion (MPP⁺) to induce cell death in SH-SY5Y cells as a cellular model for PD and found that nicotine inhibits cell death. Using choline as a nicotinic acetylcholine receptor (nAChR) agonist, we found that nAChR stimulation was sufficient to protect SH-SY5Y cells against cell death from MPP⁺. Blocking α7 nAChR with methyllycaconitine (MLA) prevented the protective effects of nicotine, demonstrating that these receptors are necessary for the neuroprotective effects of nicotine. The neuroprotective effect of nicotine involves other pathways relevant to PD. Cleaved Poly (ADP-ribose) polymerase-1 (PARP-1) and cleaved caspase-3 were decreased by nicotine in 6-hydroxydopamine (6-OHDA) lesioned mice and in MPP⁺-treated SH-SY5Y cells. In conclusion, our data indicate that nicotine likely exerts neuroprotective effects in PD through the α7 nAChR and downstream pathways including PARP-1 and caspase-3. This knowledge could be pursued in future research to develop neuroprotective treatments for PD.
The neuroprotective effect of nicotine in Parkinson’s disease models is associated with inhibiting PARP-1 and caspase-3 cleavage

Justin Y. D. Lu,1 Ping Su,1 James E. D. Barber2, Joanne Nash,2 Anh Dzung Le,1,4 Fang Liu,1,3 Albert H.C. Wong1,3,4

1 Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College street, Toronto, ON, Canada
2 Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada
3 Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
4 Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada

Address for correspondence:
Albert H.C. Wong
Centre for Addiction and Mental Health
250 College street
Room 323
Toronto, ON
M5T1R8
Canada
albert.wong@utoronto.ca
Abstract

Clinical evidence points to neuroprotective effects of smoking in Parkinson’s disease (PD), but the molecular mechanisms remain unclear. We investigated the pharmacological pathways involved in these neuroprotective effects, which could provide novel ideas for developing targeted neuroprotective treatments for PD. We used the ETC complex I inhibitor methylpyridinium ion (MPP\(^+\)) to induce cell death in SH-SY5Y cells as a cellular model for PD and found that nicotine inhibits cell death. Using choline as a nicotinic acetylcholine receptor (nAChR) agonist, we found that nAChR stimulation was sufficient to protect SH-SY5Y cells against cell death from MPP\(^+\). Blocking \(\alpha_7\) nAChR with methyllycaconitine (MLA) prevented the protective effects of nicotine, demonstrating that these receptors are necessary for the neuroprotective effects of nicotine. The neuroprotective effect of nicotine involves other pathways relevant to PD. Cleaved Poly (ADP-ribose) polymerase-1 (PARP-1) and cleaved caspase-3 were decreased by nicotine in 6-hydroxydopamine (6-OHDA) lesioned mice and in MPP\(^+\)-treated SH-SY5Y cells. In conclusion, our data indicate that nicotine likely exerts neuroprotective effects in PD through the \(\alpha_7\) nAChR and downstream pathways including PARP-1 and caspase-3. This knowledge could be pursued in future research to develop neuroprotective treatments for PD.
Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder affecting the nigrostriatal dopamine tract that regulates the initiation and fluency of voluntary movement. Patients present with a characteristic set of neurological symptoms that include tremor, muscle rigidity, bradykinesia, stooped posture, shuffling gait and a lack of facial expression (Magrinelli et al. 2016). In the advanced stages, patients may also develop a subcortical dementia and a variety of neuropsychiatric symptoms (Sveinbjornsddottir 2016). Symptoms can be alleviated temporarily with L-dopa and carbidopa but this does not alter the progression of the illness or the death of nigrostriatal neurons (Connolly & Lang 2014).

Although smoking cigarettes has well documented adverse health effects including lung cancer, and cardiovascular disease, smokers are less likely to develop PD (Ascherio & Schwarzchild 2016; Baron 1996; Breckenridge et al. 2016; Hernan et al. 2002; Polito et al. 2016; Ritz et al. 2007). This is also true for passive exposure to second-hand smoke (Searles Nielsen et al. 2012) or chewing tobacco (O'Reilly et al. 2005), and appears to be dose-dependent (Thacker et al. 2007). The mechanisms underlying the potential neuroprotective effects of tobacco exposure remain unclear, but hypotheses include: (1) interactions between the dopamine and acetylcholine neurotransmitter systems, (2) reduction of oxidative stress, (3) modulation of neuroinflammation, and (4) non-specific cognitive enhancing effects (Barreto et al. 2014).

Although nicotine is the most well-known component of tobacco, cotinine and other metabolites may also play a role (Barreto et al. 2014).

Animal studies have provided useful insights into potential mechanisms for the protective effects of tobacco in PD. Lesioning cholinergic neurons in the pedunculopontine nucleus resulted in loss of substantia nigra dopaminergic neurons (Bensaid et al. 2016), showing that
physiological levels of acetylcholine are required for survival of nigrostriatal dopaminergic neurons. In rats with 6-hydroxydopamine (6-OHDA) lesions of the medial forebrain bundle, nicotine or the α_7 nAChR agonist ABT-107 improved neurological functioning in conjunction with restoring dopamine transporter levels and dopamine release (Bordia et al. 2015). Treatment with a different α_7 nAChR agonist 3-[(2,4-dimethoxy)benzylidene]anabaseine dihydrochloride (DMXBA) or nicotine also protects dopamine neurons in rats injected with 6-OHDA (Costa et al. 2001; Suzuki et al. 2013). Blocking nAChR with chlorisondamine prevents the protective effects of nicotine in vivo. Another common animal model for PD relies on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) that is toxic to nigrostriatal dopamine neurons. Both cigarette smoke and nicotine increased the survival of these neurons in MPTP mice (Parain et al. 2003). Similar results have been reported in non-human primates exposed to MPTP (Quik et al. 2006), and in mice models of PD using methamphetamine to induce dopamine neuron toxicity (Maggio et al. 1997). Nicotine increases the levels of fibroblast growth factor-2 (FGF-2) and the brain-derived neurotrophic factor in rat striatum in these models, which could be one mechanism for neuroprotection (Mudo et al. 2007).

Cellular model systems have also been used to investigate specific pathways through which nicotine and other tobacco constituents could protect neurons in PD. Using cultured mouse ventral midbrain neurons that included dopaminergic neurons, one group used tunicamycin as an endoplasmic reticulum stressor and found that nicotine, at levels comparable to those achieved through smoking cigarettes, attenuated the unfolded protein response (Srinivasan et al. 2016). There is also evidence that dopamine release can be regulated by presynaptic nAChR in rat brain slices (Giorguieff-Chesselet et al. 1979), and mouse striatal synaptosomes (Grady et al. 1992; Rapier et al. 1990).
Poly (ADP-ribose) polymerase-1 (PARP-1) and caspase have both been implicated in the pathophysiology or etiology of PD. PARP-1 is a DNA-damage sensor that is activated in some PD models such as the MPTP mouse (Wang et al. 2003), and inhibiting PARP-1 reduced dopamine neuron death from MPTP (Iwashita et al. 2004), alpha synuclein and MPP+ (Outeiro et al. 2007). PARP-1 also mediates dopamine neuron degeneration in the 6-OHDA mouse PD model (Kim et al. 2013). Mutations in PARP-1 protect against mitochondrial dysfunction and neurodegeneration in mouse models of PD with mutations in the Parkin gene (Lehmann et al. 2016), and in human clinical populations (Infante et al. 2007).

Caspase-3 has been implicated in cleavage of a proapoptotic kinase protein kinase C delta (PKCdelta) that mediates neuron death in both MPP+ and 6-OHDA cellular PD models (da Costa et al. 2003; Kanthasamy et al. 2006; Shimoke & Chiba 2001). There is also evidence that caspase-1 activation is the final step in apoptotic cell death in PD (Hartmann et al. 2000; Tatton 2000). Acteoside binding to caspase-3 is neuroprotective in the rotenone rat PD model (Yuan et al. 2016), and caspase-3 activation has been observed to be important in a number of pathways related to PD (Shukla et al. 2014; Zawada et al. 2015). Genetic disruption of caspase-3 is also protective against the effects of MPTP (Yamada et al. 2010). To our knowledge, there have not been attempts to investigate whether the neuroprotective effects of nicotine involve PARP-1 or caspase.

In summary, there is evidence that nicotinic cholinergic drugs may delay progression of PD (Perez 2015), and thus, a7 nAChR have been proposed as a target for new medications to treat PD (Quik et al. 2015). However, since the mechanisms underlying the neuroprotective effects remain unclear, we sought to further investigate the role of the a7 nicotinic acetylcholine receptor (a7 nAChR) in mediating the protective effects of nicotine in PD. We used the ETC
complex I inhibitor methylpyridinium ion (MPP⁺) to induce cell death in SH-SY5Y cells as a cellular model for PD and used 6-hydroxydopamine (6-OHDA) lesions as a mouse model for PD. We investigated the potential involvement of PD-related molecules PARP-1 and caspase in both of these model systems.
Materials and Methods

Cell culture and treatment

SH-SY5Y cells are derived from a human neuroblastoma and are often used as a cellular model for PD because they express tyrosine hydroxylase, dopamine-beta-hydroxylase, and the dopamine transporter. (Xie et al. 2010) SH-SY5Y cells (American Type Culture Collection (ATCC), Manassas, VA) were maintained as a monolayer in Dulbecco’s Modified Eagle Medium (DMEM) (Gibco, ON, Canada) with 10% fetal bovine serum (Gibco, ON, Canada), 100 U/ml penicillin (Sigma-Aldrich, Oakville, ON, Canada), and 100 U/ml streptomycin (Sigma-Aldrich, Oakville, ON, Canada). Cells were cultured in a humidified atmosphere of 5% CO2, at 37°C. All cells were cultured in 100-mm (diameter) cell culture plates (BD Biosciences, ON, Canada) until ~80% confluence and then seeded into 24-well plates (BD Bioscience, ON, Canada) to achieve ~90% confluence 24-28 hours prior to treatment. The medium was replaced by DMEM without fetal bovine serum 12 hours before treatments.

Drugs

MPP⁺ (methylpyridinium ion) was purchased as MPP⁺ iodide from Sigma-Aldrich, dissolved in water to a stock concentration of 500 mM, and wrapped with foil to protect from light. Choline, nicotine and methyllycaconitine (MLA) were purchased from Tocris Bioscience. Nicotine was used at a concentration of 2 mM for in vitro experiments based on previous reports (Ke et al. 1998; Wang et al. 2011). We used MLA at a concentration of 20 µM based on a previous report that MLA at 5 µM and 10 µM could alleviate amyloid-β peptide-induced cytotoxicity in SH-SY5Y cells, without affecting cell viability (Zheng et al. 2014). At 20 µM, MLA could theoretically interact with α4β2 and α6β2 receptors, but no α4 and α6 receptor subunit mRNA...
was detected in SH-SY5Y cells (Gould et al. 1992; Lukas et al. 1993). The α7 acetylcholine receptor subunit has good expression levels in SH-SY5Y cells (Peng et al. 1994).

Propidium iodide (PI) and Hoechst33342 staining

Cultured SH-SY5Y cells were gently rinsed with phosphate-buffered saline (PBS) (pre-warmed in 37°C) twice, incubated with 50 μg/ml PI (Invitrogen, Carlsbad, CA) or double labeling of Hoechst 33342 (20 μg/ml) (Invitrogen, Carlsbad, CA) and PI for 30 min, and then rinsed three times with PBS. Fluorescent intensity was measured by a plate reader (Victor 3; Pekin-Elmer, Waltham, MA). The level of cell death was defined as the ration of PI: Hoechst 33342. The fraction of dead cells was normalized to the cell toxicity that occurred in the control group.

Protein extraction

Striatal tissues were dissected from mice in 6-OHDA exposure models. Striata were homogenized in ice cold buffer containing (in mmol/L): 50 Tris-Cl, pH 7.4, 150 NaCl, 2 EDTA, 1 PMSF plus 1% Igepal CA-630, 0.5–1% sodium deoxycholate, 1% Triton X-100 and protease inhibitor mixture (5 μL/100 mg of tissue; Sigma-Aldrich, Okaville, ON, Canada) on ice and shaken at 4°C for 1 hour. Striatal tissues dissolved in the lysis buffer was centrifuged at 12,000 g for 10 minutes at 4°C to yield the total protein extract in the supernatant. The concentration of protein was measured with the BCA protein assay kit (Pierce Protein Biology, ON, Canada). Equal amounts of samples (50~100 μg) were denatured and subjected to 10% SDS-PAGE and Western blot analyses.

Gel electrophoresis and Western blot analyses

Samples were separated using SDS-PAGE with 10% separating gel and 5% stacking gel, and transferred to a nitrocellulose membrane after gel electrophoresis. After blocking for 1 hour with 5% fat-free milk powder in TBST (10 mM Tris, 150 mM NaCl, 0.05% Tween-20, pH7.4), blots
were incubated overnight at 4°C with primary antibodies: 1:200 anti-PARP-1 (Santa Cruz Biotechnology, Dallas, Texas), 1:10,000 anti-α-Tubulin (Sigma-Aldrich) and 1:200 anti-caspase-3 (Santa Cruz Biotechnology, Dallas, Texas). After washes, blots were incubated with HRP-conjugated secondary antibodies (Sigma-Aldrich, Okaville, ON, Canada) for 2 hours at room temperature. Immunoactivity was visualized with ECL Western blot detection reagents (GE Healthcare). Data representative of three experimental replicates are shown.

Unilateral 6-OHDA lesions and nicotine administration

The animal studies were approved by the University Animal Care Committee (UACC) at the University of Toronto in accordance with the Canadian Council on Animal Care (CCAC) guidelines (IRB approval number 20010879). Surgeries were performed as previously described (Thiele et al. 2011; Thiele et al. 2012). In brief, 30 minutes prior to surgery, a mixture of desipramine hydrochloride (25 mg/kg, Sigma Aldrich) and pargyline hydrochloride (5 mg/kg, Sigma Aldrich) in 0.9% sterile saline (pH 7.4) was systemically administered intra-peritoneally (i.p.). C57Bl/6J mice (P35, 24-28 g) were aesthetised (isoflurane (Abbott), 2-3%) and placed in a stereotaxic frame (David Kopf Instruments, USA). 6-hydroxydopamine (6-OHDA) (15 µg/µl, 0.02% ascorbic acid, w/v in 0.9% saline) or vehicle was unilaterally injected into the medial forebrain bundle (MFB) at a rate of 0.1 µl/min (total delivery of 3 µg total, as a 0.2 µl bolus) at the following coordinates: AP: -1.2 mm, ML: -1.1 mm, and DV: -5.0 mm (Franklin K.B.J. 2007). This protocol results in a >95% dopamine depletion of the SNC (Thiele et al. 2011; Thiele et al. 2012).

Seven days prior to 6-OHDA lesion surgeries, animals were given nicotine or saline control by subcutaneous injection (s.c.) (MP Biomedicals, LLC) twice daily for two weeks. For the first 3 days animals received a dose of 0.4 mg/kg, which was then increased to 0.8 mg/kg for
four days prior to surgery. This dose was continued for one week post-surgery until subjects were
sacrificed for tissue collection.

Statistical analysis

Levene’s homogeneity test or F test was used to compare the variances between groups. For
equal variances, data were analyzed either by t-test, one-way analysis of variance (ANOVA)
followed by Tukey’s test, or two-way analysis of variance (ANOVA) followed by Bonferroni or
Tukey’s post-tests (SPSS Statistics, I.B.M Corporation, USA). For groups with unequal variance,
data were analyzed either with a t-test with Welch’s correction, a one-way analysis of variance
(ANOVA), or two-way ANOVA, followed by Dunnett’s *post hoc* test. Data are expressed as
mean ± standard error of mean (SEM). The significance levels of *p* < 0.05, *p* < 0.01, or *p* < 0.001
were used for all analyses.
Results

Nicotine inhibits MPP⁺-induced SH-SY5Y cell death.

Tobacco exposure is associated with decreased risk for PD (O'Reilly et al. 2005; Ritz et al. 2007; Searles Nielsen et al. 2012) and nicotine is the most prominent psychoactive component of tobacco. Thus, we first investigated if nicotine could protect against cell death in a cellular model of PD: MPP⁺-induced SH-SY5Y cell death. As shown in Figure 1A, using propidium iodide (PI) staining, MPP⁺ treatment (500 μM, 24 hours) induced more SH-SY5Y cell death compared to control cells (control: 1.00±0.099; MPP⁺: 1.40±0.086). Pre-treatment with nicotine (2 mM, 30 min) prior to MPP⁺ treatment, decreased the level of cell death, as compared cells treated with MPP⁺ alone (MPP⁺: 1.40±0.086; MPP⁺ with nicotine: 0.88±0.068; figure 1B).

These data show that nicotine can inhibit MPP⁺-induced SH-SY5Y cell death.

nAChR is involved in the protective effect of nicotine

To determine whether the protective effects of nicotine are mediated by activation of the nAChR, we investigated if activation of nAChR without using nicotine, inhibits MPP⁺-induced SH-SY5Y cell death. Nicotine is an nAChR agonist and previous studies have shown that other nAChR agonists can protect against nigrostriatal dopamine neuron damage in PD animal models (Dajas et al. 2001; Janson et al. 1988; Maggio et al. 1998; Mudo et al. 2007). As shown in Figure 2, choline (1 mM, 30 min), a nAChR specific agonist, decreased the level of cell death, when administered prior to MPP⁺ treatment (Control: 1.00±0.099; Choline: 0.98±0.10; MPP⁺: 1.40±0.086; MPP⁺ with choline: 0.81±0.12). These results indicate that activation of nAChR prevents SH-SY5Y cells from MPP⁺-induced cell death and suggest that nAChR activation is sufficient to protect SH-SY5Y cells against MPP⁺-induced death.
\(\alpha 7 \) nAChR mediates the protective effect of nicotine against MPP\(^+\)-induced SH-SY5Y cell death

We hypothesized that the \(\alpha 7 \) nAChR could be the receptor through which nicotine has neuroprotective effects in PD. Activation of the \(\alpha 7 \) nAChR has protective effects in other neurodegenerative disorders, and in Alzheimer’s disease models (Fan et al. 2015; Hu et al. 2015; Shen & Wu 2015). To confirm if \(\alpha 7 \) nAChR mediates the effect of nicotine to protect against MPP\(^+\)-induced cell death, we pre-treated SH-SY5Y cells with methyllycaconitine (MLA) (20 \(\mu \)M, 30 min), a \(\alpha 7 \) nAChR specific antagonist, followed by MPP\(^+\) as above and either nicotine (2 mM, 30 min) or choline (1 mM, 30 min). As shown in Figure 3A, MLA treatment increased the level of cell death when administered prior to nicotine and MPP\(^+\) treatments, as compared to those treated with nicotine and MPP\(^+\) alone (control: 1.00±0.053; MPP\(^+\): 1.70±0.119; MPP\(^+\) with nicotine: 1.37±0.0351; MPP\(^+\) with nicotine and MLA: 1.81±0.0628). Similarly, figure 3B shows that choline can reduce the cell death induced by MPP\(^+\) and this effect is blocked by MLA (Control: 1.00±0.053; MPP\(^+\): 1.70±0.119; MPP\(^+\) with choline: 1.34±0.0197; MPP\(^+\) with choline and MLA: 1.85±0.0796). These data indicate that \(\alpha 7 \) nAChR signaling is necessary for the neuroprotective effect of nicotine.

Nicotine pre-treatment inhibits PARP-1 and caspase-3 cleavage in MPP\(^+\)-treated SH-SY5Y neuroblastoma cells

To investigate potential mechanisms mediating the effect of nicotine in the MPP\(^+\) SH-SY5Y cellular model of PD, we examined PARP-1 and caspase-3 cleavage with and without nicotine. As shown in Figure 4, nicotine pre-treatment inhibits the cleavage of caspase-3 (Control: 1.00±0; nicotine: 1.05±0.078; MPP\(^+\): 1.27±0.026; MPP\(^+\) with nicotine: 0.933±0.073)
and PARP-1 (Control: 1.00±0; nicotine: 0.919±0.054; MPP+: 1.17±0.022; MPP+ with nicotine: 0.919±0.022), compared to the control cells, using α-Tubulin as the loading control against which the other proteins were normalized.

The neuroprotective effect of nicotine is associated with decreased PARP-1 and caspase-3 cleavage

To expand on the in vitro results above, we performed unilateral 6-hydroxydopamine lesions in mice as an in vivo model of PD. We first confirmed that the 6-OHDA lesion was causing the expected death of dopamine neurons and that nicotine had a neuroprotective effect in vivo, by measuring the amount of tyrosine hydroxylase as a proxy for dopamine neuron survival. Tyrosine hydroxylase is the rate limiting enzyme in the synthesis of catecholamines including dopamine. Figure 5 shows that the lesioned hemisphere of the brain has lost approximately half of the TH-containing neurons, while nicotine treatment protected almost all of these neurons from death (non-lesioned side in 6-OHDA mice: 1.00±0.070; lesioned side in 6-OHDA mice: 0.49±0.19, figure 5B; and non-lesioned side in 6-OHDA mice with nicotine: 1.00±0.0473; lesioned side in 6-OHDA mice with nicotine: 0.978±0.0565, figure 5C).

To investigate potential mechanisms underlying this neuroprotective effect of nicotine, we measured the expression of Poly [ADP-ribose] polymerase 1(PARP-1) and caspase-3 using Western blots. We analyzed protein from solubilized striatal tissue of mice exposed to 6-hydroxydopamine (6-OHDA) with or without nicotine. Both cleaved PARP-1 (6-OHDA: 1.00±0.54; Nicotine+6-OHDA: 0.740±0.022; figure 6A-C) and cleaved caspase-3 (6-OHDA: 1.00±0.017; Nicotine+6-OHDA: 0.718±0.053; figure 6D-F) were decreased by nicotine pre-treatment in 6-OHDA mice pretreated with nicotine. This indicates that nicotine pre-treatment
inhibits PARP-1 and caspase-3 cleavage in this PD mouse model. The main cleaved PARP-1 fragment was 89 KDa in size (full length 116 kDa).

We also performed a control experiment to examine whether nicotine alone might alter PARP-1 or caspase-3 cleavage, using Western blots to quantify the amount of the intact, full-length protein vs. the cleaved form, in the unlesioned hemisphere of 6-OHDA mice. As shown in figure 7, there is no significant effect of nicotine alone on the cleavage of these two proteins. These data demonstrate that the neuroprotective effect of nicotine for dopamine neurons in PD models is associated with PARP-1 and caspase-3 cleavage pathways.

Discussion

The data presented above demonstrate that nicotine inhibits MPP⁺-induced SH-SY5Y cell death through activating α7 nAChR, and inhibits PARP-1 and caspase-3 cleavage in the 6-OHDA mouse model for PD. We first demonstrated that activation of nAChR with either nicotine or choline is sufficient to protect SH-SY5Y cells from MPP⁺ toxicity. Nicotine also inhibits PARP-1 and caspase-3 cleavage in MPP⁺-treated SH-SY5Y cells. We then showed that α7 nAChR activation is necessary for these neuroprotective effects by using the α7 nAChR antagonist methyllycaconitine, which reduces the number of cells rescued by nicotine. Finally, we used the in vivo 6-OHDA mouse model for PD to demonstrate that nicotine inhibits PARP-1 and caspase-3 cleavage, suggesting a potential downstream molecular mechanism for neuroprotection in PD.

This study provides additional knowledge of potential mechanisms to explain the clinical phenomenon of reduced PD incidence in smokers and other people exposed to tobacco. Some have suggested that people who become tobacco users may have an underlying trait that also
renders them less susceptible to PD (Barreto et al. 2014), a form of “reverse causation” rather than nicotine actually being neuroprotective. One group found that PD patients are able to quit smoking more easily than matched population controls (Ritz et al. 2014). However, there are two main arguments against this interpretation. The first is that passive exposure to cigarette smoke is also associated with a dose-dependent decreased risk for PD (Searles Nielsen et al. 2012), and the second is the large body of data from experimental animal and cellular models (Barreto et al. 2014; Perez 2015).

The nAChRs are obvious potential starting points for the mechanism of neuroprotection by nicotine in PD, and these receptors have been investigated in many other studies (Barreto et al. 2014; Perez 2015; Quik et al. 2015). α7nAChR agonists are also likely to have significant impacts in PD via the regulation of the immune system and intestinal permeability (Anderson et al. 2016). However, our study is unique in using SH-SY5Y cells exposed to MPP+ as an in vitro model to investigate the neuroprotective effects of nicotine and nAChR activation. Also novel is our attempt to investigate the effect of nicotine on PARP-1 and caspase-3 cleavage in the 6-OHDA mouse model for PD. These elements provide insight into molecular mechanisms and potential targets for developing new PD treatments.

Our results do not exclude the involvement of other neuroprotective mechanisms. Several signaling pathways that promote cell survival are enhanced by stimulating nAChR, including the Src family-PI3 K-AKT pathway, with subsequent upregulation of Bcl-2 and Bcl-x, JAK2/STAT3 and MEK/ERK (Kawamata & Shimohama 2011). Nicotine can protect SH-SY5Y cells from other types of insults, such as beta-amyloid toxicity, through Erk1/2-p38-JNK-dependent signaling pathways (Xue et al. 2014). However, there are no published studies...
investigating the role of PARP-1 or caspase in the neuroprotective effects of nicotine in PD disease models.

Caspases are a family of proteases that are activated during apoptotic cell death (Kroemer & Martin 2005). There are twelve numbered caspases, some of which initiate or execute apoptosis, but these enzymes also regulate inflammation and cell differentiation (Galluzzi et al. 2016). Caspases are initially synthesized as an inactive pro-caspase, which must undergo dimerization or oligomerization and then cleavage to become active (Shi 2004).

Caspases are involved in the pathophysiology of PD through mediating dopaminergic neuron death from MPTP (Furuya et al. 2004; Qiao et al. 2016; Viswanath et al. 2001), promoting synuclein aggregation (Wang et al. 2016), and cleaving Transactivation response DNA-binding protein 43 (TDP-43), which is a primary component of Lewy bodies in PD (Kokoulina & Rohn 2010).

A number of neuroprotective compounds that have been studied in PD animal models also affect caspases, such as telmisartan (an angiotensin II type 1 receptor blocker) (Tong et al. 2016), and nerve growth factor (NGF) (Shimoke & Chiba 2001). Directly blocking a caspase-3 cleavage site on the proapoptotic protein kinase C delta has neuroprotective effects in MPP+ and 6-OHDA PD models (Kanthasamy et al. 2006). Despite the prominence of caspases in neuronal death in PD, they may not be viable targets for treatment since directly blocking caspase-8 resulted in a switch from apoptosis to necrosis (Hartmann et al. 2001), and this may apply to other caspases as well (Kroemer & Martin 2005). Modulating caspase function in PD through the nicotinic receptors may be a better approach for developing new treatments.

PARP-1 enzymes are involved in a number of neurodegenerative disorders including Alzheimer’s disease and PD (Martire et al. 2015). PARP-1 has DNA binding domains that detect
DNA damage and facilitate repair. When PARP-1 levels are too high or when DNA damage is too severe, cell death is initiated (Burkle 2001), and this decision is regulated by NAD+ depletion (Alano et al. 2010). During cell death programs, PARP-1 is cleaved into fragments that are specific to different apoptotic pathways (Chaitanya et al. 2010). The 89KDa fragment we detected appears during apoptosis, and could have been generated by the action of caspase-3, caspase-7 (Lazebnik et al. 1994) or the lysosomal proteases cathepsin B or D (Gobeil et al. 2001).

Some PARP-1 genetic variants are protective against PD (Infante et al. 2007), and the involvement of PARP-1 in PD pathophysiology includes regulation of alpha-synuclein expression (Chiba-Falek et al. 2005), and modification of p53 in the MPTP model (Mandir et al. 2002). Small molecule inhibitors of PARP-1 reduce cell death induced by alpha-synuclein and MPP+ (Outeiro et al. 2007), consistent with our results above. PARP-1 induced depletion of NAD+ could also contribute to decreasing sirtuins and mitochondrial dysfunction in PD (Anderson & Maes 2014).

In conclusion, we have demonstrated that the neuroprotective effects of nicotine in animal and cellular models of PD is mediated by activation of α7 nAChR and the inhibition of PARP-1 and caspase-3 cleavage. All of these molecules have been previously implicated in the pathophysiology of PD, but until now, have not been linked together. This knowledge could be used to aid development of novel treatments for PD, but further work to delineate the molecular pathway linking α7 nAChR to PARP-1 and caspase-3 is required.
Figure legends:

Figure 1: Nicotine protects SH-SY5Y cells against MPP⁺-induced cell death. A. MPP⁺ treatment (500 μM, 24 hrs) in SH-SY5Y cells increased the level of cell death, as compared to control cells. *p<0.05 as compared to those in control group, t-test, n=5; F-test to compare variance, p=0.928. B. Pretreatment with nicotine (2 mM, 30 min) prior to MPP⁺ exposure in SH-SY5Y cells decreased the level of cell death as compared to those treated with MPP⁺ only (*p<0.05 as compared to those of control group, ##p<0.01 as compared to MPP⁺ group, n=5 for control and MPP⁺ groups, n=3 for nicotine and MPP⁺ with nicotine groups; Levene’s test of equality of error variance: p>0.05; two-way ANOVA followed by Bonferroni post-tests: main effect of nicotine treatment F₁,₆=15.86, p<0.01; interaction effect F₁,₆= 3784, p>0.05). All data are shown as mean ± SEM. The level of cell death was detected using PI (50 μg/ml) and Hoechst33342 (20 μg/ml) double staining, and was defined as the ratio of fluorescent intensity of PI:Hoechst33342.

Figure 2: Choline protects SH-SY5Y cells against MPP⁺-induced cell death. Pre-treatment with choline (1 mM, 30 min), a specific nAChR agonist, followed by MPP⁺ treatment (500 μM,
24 hrs) in SH-SY5Y cells decreased the level of cell death as compared to those treated with MPP\(^+\) only (*p<0.05 compared to control group, ###p<0.001 compared to MPP\(^+\) group, n=5; Levene’s test of equality of error variance: p>0.05; two-way ANOVA followed by Bonferroni post-tests: main effect of choline treatment: F\(_{1,8}=13.05, p<0.01\); interaction effect F\(_{1,8}=5.65, p<0.05\). All data are shown as mean ± SEM. The level of cell death was detected using PI and Hoechst33342 double staining, and was defined as the ratio of fluorescent intensity of PI:Hoechst33342.

Figure 3: Blockade of α7 nAChR inhibits the protective effect of nicotine and choline against MPP\(^+\)-induced SH-SY5Y cell death.

A. MLA (20 μM, 30 min), a specific antagonist of α7 nAChR, increased the level of cell death when administered prior to nicotine (2 mM, 30 min) and MPP\(^+\) (500 μM, 24 hrs) treatments in SH-SY5Y cells, as compared to those treated with nicotine and MPP\(^+\) alone (***p<0.001 compared to control group, # p<0.05 compared to MPP\(^+\) group; control group n=5; other groups n=4; Levene’s test of equality of error variance: p<0.05; one-way ANOVA followed by Dunnett’s C test F\(_{3,16}=27.20, p<0.001\)).

B. MLA (20 μM, 30 min), a specific antagonist of α7 nAChR, increased the level of SH-SY5Y cell death when administered prior to choline (1 mM, 30 min) and MPP\(^+\) (500 μM, 24 hrs) treatments, as compared to those treated with choline and MPP\(^+\) alone (***p<0.001 compared to the control group, # p<0.05 as compared to the MPP+ group; control group n=5, other groups n=4; Levene’s test of equality of error variance: p<0.05; one-way ANOVA followed by Dunnett’s C test F\(_{3,16}=26.24, p<0.001\)). All data are shown as mean ± SEM. The level of cell death was detected using PI and Hoechst33342 double staining, and was defined as the ratio of fluorescent intensity of PI:Hoechst33342.
Figure 4: Nicotine pre-treatment inhibits PARP-1 and caspase-3 cleavage in MPP+-treated SH-SY5Y neuroblastoma cells. A. Western blot analysis showing that cleaved caspase-3 decreased in SH-SY5Y cells pre-treated with nicotine before MPP+ treatment, as compared to those treated with MPP+ only. \(\alpha\)-Tubulin was used as a loading control. B and C. Densitometric analysis of expression levels of full length (B) and cleaved (C) caspase-3. The expression level of caspase-3 was defined as the ratio of the intensity of caspase-3: \(\alpha\)-Tubulin, and was normalized as percentage of the control group (\(*\ast p<0.01, n=3\); Levene’s test of equality of error variance: \(p<0.05\); two-way ANOVA followed by Dunnett’s C test, main effect of nicotine treatment \(F_{1,4}=3.613, p<0.05\); interaction effect \(F_{1,4}=213.2, p<0.001\)). D. Western blot analysis showing that cleaved PARP-1 was decreased in SH-SY5Y cells pre-treated with nicotine before MPP+ treatment, as compared to those treated with MPP+ only. \(\alpha\)-Tubulin was used as a loading control. E and F. Densitometric analysis of the intensity of expression levels of full length (E) and cleaved (F) PARP-1. The expression level of PARP-1 was defined as the ratio of the intensity of PARP-1: \(\alpha\)-Tubulin, and was normalized as percentage of the control group (\(*\ast\ast p<0.001, n=3\); Levene’s test of equality of error variance: \(p<0.05\); two-way ANOVA followed by Dunnett’s C test; main effect of nicotine treatment \(F_{1,4}=24.78, p<0.01\); interaction effect \(F_{1,4}=9.15, p<0.05\)). All data are shown as mean ± SEM.

Figure 5: Tyrosine Hydroxylase expression level decreased in lesioned hemisphere of 6-OHDA mouse model of PD. A. Western blot analysis showing that tyrosine hydroxylase expression level decreased in striatal tissues of lesioned hemisphere from mice exposed to 6-OHDA only, but did not change in mice pretreated with nicotine before 6-OHDA exposure. \(\alpha\)-
Tubulin was used as a loading control. **B.** Densitometric analysis of expression levels of tyrosine hydroxylase in mice exposed to 6-OHDA only. The expression level of tyrosine hydroxylase was defined as the ratio of the intensity of tyrosine hydroxylase:α-Tubulin, and was normalized as percentage of non-lesioned hemisphere (n=3, F test to compare variance, p=0.24; paired t-test *p<0.05 as compared to non-lesioned hemisphere in 6-OHDA mice). All data are shown as mean ± SEM. **C.** Densitometric analysis of expression levels of tyrosine hydroxylase in mice pretreated with nicotine before 6-OHDA exposure. The expression level of tyrosine hydroxylase was defined as the ratio of the intensity of tyrosine hydroxylase:α-Tubulin, and was normalized as percentage of non-lesioned hemisphere (n=3, paired t-test). All data are shown as mean ± SEM.

Figure 6: Nicotine pre-treatment inhibits PARP-1 and caspase-3 cleavage in striatal tissue from 6-OHDA mouse model of PD. **A.** Western blot analysis showing that cleaved PARP-1 decreased in striatal tissues from mice pre-treated with nicotine before 6-OHDA exposure, as compared to those exposed to 6-OHDA only. α-Tubulin was used as a loading control. **B and C.** Densitometric analysis of expression levels of full length (B) and cleaved (C) PARP-1. The expression level of PARP-1 was defined as the ratio of the intensity of PARP-1:α-Tubulin, and was normalized as percentage of the 6-OHDA group (n=3; F test to compare variance, p=0.738; t-test *p<0.05 compared to the 6-OHDA group). **D.** Western blot analysis showing that cleaved caspase-3 was decreased in striatal tissues from mice pre-treated with nicotine prior to 6-OHDA exposure, as compared to those exposed to 6-OHDA only. α-Tubulin was used as a loading control. **E and F.** Densitometric analysis of the intensity of expression levels of full length (E) and cleaved (F) caspase-3. The expression level of caspase-3 was defined as the ratio of the intensity of caspase-3:α-Tubulin, and was normalized as percentage of the 6-OHDA group (n=3;
F test to compare variance, p=0.290, t-test **p<0.01 compared to the 6-OHDA group). All data are shown as mean ± SEM.

Figure 7: Nicotine pre-treatment does not change PARP-1 and caspase-3 cleavage in striatal tissue from non-lesioned hemisphere of 6-OHDA mouse model of PD. A. Western blot analysis showing no difference of cleaved caspase-3 in striatal tissues of non-lesioned hemisphere from mice pre-treated with nicotine before 6-OHDA exposure, as compared to those exposed to 6-OHDA only. α-Tubulin was used as a loading control. B and C. Densitometric analysis of expression levels of full length (B) and cleaved (C) caspase-3. The expression level of caspase-3 was defined as the ratio of the intensity of caspase-3:α-Tubulin, and was normalized as percentage of the 6-OHDA group (n=3, t-test). D. Western blot analysis showing no difference of cleaved PARP-1 was decreased in striatal tissues of the non-lesioned hemisphere from mice pre-treated with nicotine prior to 6-OHDA exposure, as compared to those exposed to 6-OHDA only. α-Tubulin was used as a loading control. E and F. Densitometric analysis of the intensity of expression levels of full length (E) and cleaved (F) PARP-1. The expression level of PARP-1 was defined as the ratio of the intensity of PARP-1:α-Tubulin, and was normalized as percentage of the 6-OHDA group (n=3, t-test). All data are shown as mean ± SEM.
REFERENCES

Alano CC, Garnier P, Ying W, Higashi Y, Kauppinen TM, and Swanson RA. 2010. NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. J Neurosci 30:2967-2978. 10.1523/jneurosci.5552-09.2010

Anderson G, and Maes M. 2014. Neurodegeneration in Parkinson’s disease: interactions of oxidative stress, tryptophan catabolites and depression with mitochondria and sirtuins. Mol Neurobiol 49:771-783. 10.1007/s12035-013-8554-z

Anderson G, Seo M, Berk M, Carvalho AF, and Maes M. 2016. Gut Permeability and Microbiota in Parkinson’s Disease: Role of Depression, Tryptophan Catabolites, Oxidative and Nitrosative Stress and Melatonergic Pathways. Curr Pharm Des 22:6142-6151.

Ascherio A, and Schwarzschild MA. 2016. The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol 15:1257-1272. 10.1016/s1474-4422(16)30230-7

Baron JA. 1996. Beneficial effects of nicotine and cigarette smoking: the real, the possible and the spurious. Br Med Bull 52:58-73.

Barreto GE, Iarkov A, and Moran VE. 2014. Beneficial effects of nicotine, cotinine and its metabolites as potential agents for Parkinson’s disease. Front Aging Neurosci 6:340. 10.3389/fnagi.2014.00340

Bensaid M, Michel PP, Clark SD, Hirsch EC, and Francois C. 2016. Role of pedunculopontine cholinergic neurons in the vulnerability of nigral dopaminergic neurons in Parkinson’s disease. Exp Neurol 275 Pt 1:209-219. 10.1016/j.expneurol.2015.11.004

Bordia T, McGregor M, Papke RL, Decker MW, McIntosh JM, and Quik M. 2015. The alpha7 nicotinic receptor agonist ABT-107 protects against nigrostriatal damage in rats with unilateral 6-hydroxydopamine lesions. Exp Neurol 263:277-284. 10.1016/j.expneurol.2014.09.015

Brekenridge CB, Berry C, Chang ET, Sielken RL, Jr., and Mandel JS. 2016. Association between Parkinson’s Disease and Cigarette Smoking, Rural Living, Well-Water Consumption, Farming and Pesticide Use: Systematic Review and Meta-Analysis. PLoS One 11:e0151841. 10.1371/journal.pone.0151841

Burkle A. 2001. PARP-1: a regulator of genomic stability linked with mammalian longevity. Chembiochem 2:725-728.

Chaitanya GV, Steven AJ, and Babu PP. 2010. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal 8:31. 10.1186/1478-811x-8-31

Chiba-Falek O, Kowalak JA, Smulson ME, and Nussbaum RL. 2005. Regulation of alpha-synuclein expression by poly (ADP ribose) polymerase-1 (PARP-1) binding to the NACP-Rep1 polymorphic site upstream of the SNCA gene. Am J Hum Genet 76:478-492. 10.1086/428655

Connolly BS, and Lang AE. 2014. Pharmacological treatment of Parkinson disease: a review. Jama 311:1670-1683. 10.1001/jama.2014.3654

Costa G, Abin-Carriquiry JA, and Dajas F. 2001. Nicotine prevents striatal dopamine loss produced by 6-hydroxydopamine lesion in the substantia nigra. Brain Res 888:336-342.
da Costa CA, Masliah E, and Checler F. 2003. Beta-synuclein displays an antiapoptotic p53-dependent phenotype and protects neurons from 6-hydroxydopamine-induced caspase 3 activation: cross-talk with alpha-synuclein and implication for Parkinson’s disease. *J Biol Chem* 278:37330-37335. 10.1074/jbc.M306083200

Dajas F, Costa G, Abin-Carriquiry JA, McGregor R, and Urbanavicius J. 2001. Involvement of nicotinic acetylcholine receptors in the protection of dopamine terminals in experimental parkinsonism. *Funct Neurol* 16:113-123.

Fan H, Gu R, and Wei D. 2015. The alpha7 nAChR selective agonists as drug candidates for Alzheimer’s disease. *Adv Exp Med Biol* 827:353-365. 10.1007/978-94-017-9245-5_21

Franklin K.B.J. PG. 2007. The Mouse Brain in Stereotaxic Coordinates. *Academic Press*.

Gobéil S, Boucher CC, Nadeau D, and Poirier GG. 2001. Characterization of the necrotic cleavage of poly(ADP-ribose) polymerase (PARP-1): implication of lysosomal proteases. *Cell Death Differ* 8:588-594. 10.1038/sj.cdd.4400851

Gould J, Reeve HL, Vaughan PF, and Peers C. 1992. Nicotinic acetylcholine receptors in human neuroblastoma (SH-SY5Y) cells. *Neurosci Lett* 145:201-204.

Grady S, Marks MJ, Wonnacott S, and Collins AC. 1992. Characterization of nicotinic receptor-mediated [3H]dopamine release from synaptosomes prepared from mouse striatum. *J Neurochem* 59:848-856.

Hartmann A, Hunot S, Michel PP, Muriel MP, Vyas S, Faucheux BA, Mouatt-Prigent A, Turmel H, Srinivasan A, Ruberg M, Evan GI, Agid Y, and Hirsch EC. 2000. Caspase-3: A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. *Proc Natl Acad Sci U S A* 97:2875-2880. 10.1073/pnas.040556597

Hartmann A, Troade JD, Hunot S, Kikly K, Faucheux BA, Mouatt-Prigent A, Ruberg M, Agid Y, and Hirsch EC. 2001. Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson’s disease, but pathway inhibition results in neuronal necrosis. *J Neurosci* 21:2247-2255.

Hernan MA, Takkouche B, Caamaño-Isorna F, and Gestal-Otero JJ. 2002. A meta-analysis of coffee drinking, cigarette smoking, and the risk of Parkinson’s disease. *Ann Neurol* 52:276-284. 10.1002/ana.10277

Hu S, Cui W, Mak S, Xu D, Hu Y, Tang J, Choi C, Lee M, Pang Y, and Han Y. 2015. Substantial Neuroprotective and Neurite Outgrowth-Promoting Activities by Bis(propyl)-cognitin via the Activation of Alpha7-nAChR, a Promising Anti-Alzheimer’s Dimer. *ACS Chem Neurosci* 6:1536-1545. 10.1021/acschemneuro.5b00108
Infante J, Sanchez-Juan P, Mateo I, Rodriguez-Rodriguez E, Sanchez-Quintana C, Llorca J, Fontalba A, Terrazas J, Oterino A, Berciano J, and Combarros O. 2007. Poly (ADP-ribose) polymerase-1 (PARP-1) genetic variants are protective against Parkinson's disease. *J Neurol Sci* 256:68-70. 10.1016/j.jns.2007.02.008

Iwashita A, Yamazaki S, Mihara K, Hattori K, Yamamoto H, Ishida J, Matsuoka N, and Mutoh S. 2004. Neuroprotective effects of a novel poly(ADP-ribose) polymerase-1 inhibitor, 2-[3-[4-(4-chlorophenyl)-1-piperazinyl] propyl]-4(3H)-quinazolinone (FR255595), in an in vitro model of cell death and in mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. *J Pharmacol Exp Ther* 309:1067-1078. 10.1124/jpet.103.064642

Janson AM, Fuxe K, Agnati LF, Kitayama I, Harfstrand A, Andersson K, and Goldstein M. 1988. Chronic nicotine treatment counteracts the disappearance of tyrosine-hydroxylase-immunoreactive nerve cell bodies, dendrites and terminals in the mesostriatal dopamine system of the male rat after partial hemitransection. *Brain Res* 455:332-345.

Kanthasamy AG, Anantharam V, Zhang D, Latchoumycandane C, Jin H, Kaul S, and Kanthasamy A. 2006. A novel peptide inhibitor targeted to caspase-3 cleavage site of a proapoptotic protein kinase protein C delta (PKCdelta) protects against dopaminergic neuronal degeneration in Parkinson's disease models. *Free Radic Biol Med* 41:1578-1589. 10.1016/j.freeradbiomed.2006.08.016

Kawamata J, and Shimohama S. 2011. Stimulating nicotinic receptors trigger multiple pathways attenuating cytotoxicity in models of Alzheimer’s and Parkinson’s diseases. *J Alzheimers Dis* 24 Suppl 2:95-109. 10.3233/jad-2011-110173

Ke L, Eisenhour CM, Bencherif M, and Lukas RJ. 1998. Effects of chronic nicotine treatment on expression of diverse nicotinic acetylcholine receptor subtypes. I. Dose- and time-dependent effects of nicotine treatment. *J Pharmacol Exp Ther* 286:825-840.

Kim TW, Cho HM, Choi SY, Suguiria Y, Hayasaka T, Setou M, Koh HC, Hwang EM, Park JY, Kang SJ, Kim HS, Kim H, and Sun W. 2013. (ADP-ribose) polymerase 1 and AMP-activated protein kinase mediate progressive dopaminergic neuronal degeneration in a mouse model of Parkinson’s disease. *Cell Death Dis* 4:e919. 10.1038/cddis.2013.447

Kokoulina P, and Rohn TT. 2010. Caspase-cleaved transactivation response DNA-binding protein 43 in Parkinson’s disease and dementia with Lewy bodies. *Neurodegener Dis* 7:243-250. 10.1159/000287952

Kroemer G, and Martin SJ. 2005. Caspase-independent cell death. *Nat Med* 11:725-730. 10.1038/nm1263

Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, and Earnshaw WC. 1994. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. *Nature* 371:346-347. 10.1038/371346a0

Lehmann S, Costa AC, Celardo I, Loh SH, and Martins LM. 2016. Parp mutations protect against mitochondrial dysfunction and neurodegeneration in a PARKIN model of Parkinson’s disease. *Cell Death Dis* 7:e2166. 10.1038/cddis.2016.72

Lucas RJ, Norman SA, and Lucero L. 1993. Characterization of Nicotinic Acetylcholine Receptors Expressed by Cells of the SH-SY5Y Human Neuroblastoma Clonal Line. *Mol Cell Neurosci* 4:1-12. 10.1006/mcne.1993.1001
Maggio R, Riva M, Vaglini F, Fornai F, Molteni R, Armogida M, Racagni G, and Corsini GU. 1998. Nicotine prevents experimental parkinsonism in rodents and induces striatal increase of neurotrophic factors. *J Neurochem* 71:2439-2446.

Maggio R, Riva M, Vaglini F, Fornai F, Racagni G, and Corsini GU. 1997. Striatal increase of neurotrophic factors as a mechanism of nicotine protection in experimental parkinsonism. *J Neural Transm (Vienna)* 104:1113-1123. 10.1007/bf01273324

Magrinelli F, Picelli A, Tocco P, Federico A, Roncari L, Smania N, Zanette G, and Tamburin S. 2016. Pathophysiology of Motor Dysfunction in Parkinson’s Disease as the Rationale for Drug Treatment and Rehabilitation. *Parkinsons Dis* 2016:9832839. 10.1155/2016/9832839

Mandir AS, Simbulan-Rosenthal CM, Poitras MF, Lumpkin JR, Dawson VL, Smulson ME, and Dawson TM. 2002. A novel in vivo post-translational modification of p53 by PARP-1 in MPTP-induced parkinsonism. *J Neurochem* 83:186-192.

Martire S, Mosca L, and d’Erme M. 2015. PARP-1 involvement in neurodegeneration: A focus on Alzheimer’s and Parkinson’s diseases. *Mech Ageing Dev* 146-148:53-64. 10.1016/j.mad.2015.04.001

Mudo G, Belluardo N, Mauro A, and Fuxe K. 2007. Acute intermittent nicotine treatment induces fibroblast growth factor-2 in the subventricular zone of the adult rat brain and enhances neuronal precursor cell proliferation. *Neuroscience* 145:470-483. 10.1016/j.neuroscience.2006.12.012

O’Reilly EJ, McCullough ML, Chao A, Henley SJ, Calle EE, Thun MJ, and Ascherio A. 2005. Smokeless tobacco use and the risk of Parkinson’s disease mortality. *Mov Disord* 20:1383-1384. 10.1002/mds.20587

Outeiro TF, Grammatopoulos TN, Altmann S, Amore A, Standaert DG, Hyman BT, and Kazantsev AG. 2007. Pharmacological inhibition of PARP-1 reduces alpha-synuclein- and MPP+-induced cytotoxicity in Parkinson’s disease in vitro models. *Biochem Biophys Res Commun* 357:596-602. 10.1016/j.bbrc.2007.03.163

Parain K, Hapdey C, Rousselet E, Marchand V, Dumery B, and Hirsch EC. 2003. Cigarette smoke and nicotine protect dopaminergic neurons against the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Parkinsonian toxin. *Brain Res* 984:224-232.

Peng X, Katz M, Gerzanich V, Anand R, and Lindstrom J. 1994. Human alpha 7 acetylcholine receptor: cloning of the alpha 7 subunit from the SH-SY5Y cell line and determination of pharmacological properties of native receptors and functional alpha 7 homomers expressed in Xenopus oocytes. *Mol Pharmacol* 45:546-554.

Perez XA. 2015. Preclinical Evidence for a Role of the Nicotinic Cholinergic System in Parkinson’s Disease. *Neuropsychol Rev* 25:371-383. 10.1007/s11065-015-9303-z

Polito L, Greco A, and Seripa D. 2016. Genetic Profile, Environmental Exposure, and Their Interaction in Parkinson’s Disease. *Parkinsons Dis* 2016:6465793. 10.1155/2016/6465793

Qiao C, Zhang LX, Sun XY, Ding JH, Lu M, and Hu G. 2016. Caspase-1 Deficiency Alleviates Dopaminergic Neuronal Death via Inhibiting Caspase-7/AIF Pathway in MPTP/p Mouse Model of Parkinson’s Disease. *Mol Neurobiol.* 10.1007/s12035-016-9980-5

Quik M, Chen L, Parameswaran N, Xie X, Langston JW, and McCallum SE. 2006. Chronic oral nicotine normalizes dopaminergic function and synaptic plasticity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned primates. *J Neurosci* 26:4681-4689. 10.1523/jneurosci.0215-06.2006
Quik M, Zhang D, McGregor M, and Bordia T. 2015. Alpha7 nicotinic receptors as therapeutic targets for Parkinson's disease. Biochem Pharmacol 97:399-407. 10.1016/j.bcp.2015.06.014

Rapier C, Lunt GG, and Wonnacott S. 1990. Nicotinic modulation of [3H]dopamine release from striatal synaptosomes: pharmacological characterisation. J Neurochem 54:937-945.

Ritz B, Ascherio A, Checkoway H, Marder KS, Nelson LM, Rocca WA, Ross GW, Strickland D, Van Den Eeden SK, and Gorell J. 2007. Pooled analysis of tobacco use and risk of Parkinson disease. Arch Neurol 64:990-997. 10.1001/archneur.64.7.990

Ritz B, Lee PC, Lassen CF, and Arah OA. 2014. Parkinson disease and smoking revisited: ease of quitting is an early sign of the disease. Neurology 83:1396-1402. 10.1212/wnl.0000000000000879

Searles Nielsen S, Gallagher LG, Lundin JI, Longstreth WT, Jr., Smith-Weller T, Franklin GM, Swanson PD, and Checkoway H. 2012. Environmental tobacco smoke and Parkinson's disease. Mov Disord 27:293-296. 10.1002/mds.24012

Shi Y. 2004. Caspase activation: revisiting the induced proximity model. Cell 117:855-858. 10.1016/j.cell.2004.06.007

Shimoke K, and Chiba H. 2001. Nerve growth factor prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced cell death via the Akt pathway by suppressing caspase-3-like activity using PC12 cells: relevance to therapeutical application for Parkinson's disease. J Neurosci Res 63:402-409. 10.1002/jnr.1035

Shukla AK, Pragya P, Chaouhan HS, Tiwari AK, Patel DK, Abdin MZ, and Chowdhuri DK. 2014. Heat shock protein-70 (Hsp-70) suppresses paraquat-induced neurodegeneration by inhibiting JNK and caspase-3 activation in Drosophila model of Parkinson's disease. PLoS One 9:e98886. 10.1371/journal.pone.0098886

Srinivasan R, Henley BM, Henderson BJ, Indersmitten T, Cohen BN, Kim CH, McKinney S, Deshpande P, Xiao C, and Lester HA. 2016. Smoking-Relevant Nicotine Concentration Attenuates the Unfolded Protein Response in Dopaminergic Neurons. J Neurosci 36:65-79. 10.1523/jneurosci.2126-15.2016

Suzuki S, Kawamata J, Matsushita T, Matsumura A, Hisahara S, Takata K, Kitamura Y, Kem W, and Shimohama S. 2013. 3-[[2,4-Dimethoxy]benzyldiene]-anabaseine dihydrochloride protects against 6-hydroxodopamine-induced parkinsonian neurodegeneration through alpha7 nicotinic acetylcholine receptor stimulation in rats. J Neurosci Res 91:462-471. 10.1002/jnr.23160

Sveinbjornsdottr S. 2016. The clinical symptoms of Parkinson's disease. J Neurochem 139 Suppl 1:318-324. 10.1111/jnc.13691

Thatcher NA. 2000. Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson's disease. Exp Neurol 166:29-43. 10.1006/exnr.2000.7489

Thacker EL, O'Reilly EJ, Weisskopf MG, Chen H, Schwarzschild MA, McCullough ML, Calle EE, Thun MJ, and Ascherio A. 2007. Temporal relationship between cigarette smoking and risk of Parkinson disease. Neurology 68:764-768.
Thiele SL, Warre R, Khademullah CS, Fahana N, Lo C, Lam D, Talwar S, Johnston TH, Brotchie JM, and Nash JE. 2011. Generation of a model of L-DOPA-induced dyskinesia in two different mouse strains. *J Neurosci Methods* 197:193-208. S0165-0270(11)00087-2 [pii] 10.1016/j.jneumeth.2011.02.012

Thiele SL, Warre R, and Nash JE. 2012. Development of a unilaterally-lesioned 6-OHDA mouse model of Parkinson’s disease. *J Vis Exp*. 3234 [pii] 10.3791/3234

Tong Q, Wu L, Jiang T, Ou Z, Zhang Y, and Zhu D. 2016. Inhibition of endoplasmic reticulum stress-activated IRE1alpha-TRAF2-caspase-12 apoptotic pathway is involved in the neuroprotective effects of telmisartan in the rotenone rat model of Parkinson’s disease. *Eur J Pharmacol* 776:106-115. 10.1016/j.ejphar.2016.02.042

Viswanath V, Wu Y, Boonplueang R, Chen S, Stevenson FF, Yantiri F, Yang L, Beal MF, and Andersen JK. 2001. Caspase-9 activation results in downstream caspase-8 activation and bid cleavage in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease. *J Neurosci* 21:9519-9528.

Wang H, Shimoji M, Yu SW, Dawson TM, and Dawson VL. 2003. Apoptosis inducing factor and PARP-mediated injury in the MPTP mouse model of Parkinson’s disease. *Ann N Y Acad Sci* 991:132-139.

Wang J, Cui W, Wei J, Sun D, Gutaia R, Gu J, and Li MD. 2011. Genome-wide expression analysis reveals diverse effects of acute nicotine exposure on neuronal function-related genes and pathways. *Front Psychiatry* 2:5. 10.3389/fpsyt.2011.00005

Wang W, Nguyen LT, Burlak C, Chegini F, Guo F, Chataway T, Ju S, Fisher OS, Miller DW, Datta D, Wu F, Wu CX, Landier A, Wells JA, Cookson MR, Boxer MB, Thomas CJ, Gai WP, Ringe D, Petsko GA, and Hoang QQ. 2016. Caspase-1 causes truncation and aggregation of the Parkinson’s disease-associated protein alpha-synuclein. *Proc Natl Acad Sci U S A* 113:9587-9592. 10.1073/pnas.1610099113

Xie HR, Hu LS, and Li GY. 2010. SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson’s disease. *Chin Med J (Engl)* 123:1086-1092.

Xue MQ, Liu XX, Zhang YL, and Gao FG. 2014. Nicotine exerts neuroprotective effects against beta-amyloid-induced neurotoxicity in SH-SY5Y cells through the Erk1/2-p38-JNK-dependent signaling pathway. *Int J Mol Med* 33:925-933. 10.3892/ijmm.2014.1632

Yamada M, Kida K, Amutuhaire W, Ichinose F, and Kaneki M. 2010. Gene disruption of caspase-3 prevents MPTP-induced Parkinson's disease in mice. *Biochem Biophys Res Commun* 402:312-318. 10.1016/j.bbrc.2010.10.023

Yuan J, Ren J, Wang Y, He X, and Zhao Y. 2016. Acteoside Binds to Caspase-3 and Exerts Neuroprotection in the Rotenone Rat Model of Parkinson’s Disease. *PLoS One* 11:e0162696. 10.1371/journal.pone.0162696

Zawada WM, Mrak RE, Biedermann J, Palmer QD, Gentleman SM, Aboud O, and Griffin WS. 2015. Loss of angiotensin II receptor expression in dopamine neurons in Parkinson’s disease correlates with pathological progression and is accompanied by increases in Nox4- and 8-OH guanosine-related nucleic acid oxidation and caspase-3 activation. *Acta Neuropathol Commun* 3:9. 10.1186/s40478-015-0189-z
Zheng X, Xie Z, Zhu Z, Liu Z, Wang Y, Wei L, Yang H, Yang H, Liu Y, and Bi J. 2014. Methyllycaconitine alleviates amyloid-beta peptides-induced cytotoxicity in SH-SY5Y cells. *PLoS One* 9:e111536. 10.1371/journal.pone.0111536
Nicotine protects SH-SY5Y cells against MPP⁺-induced cell death

A. MPP⁺ treatment (500 μM, 24 hrs) in SH-SY5Y cells increased the level of cell death, as compared to control cells. *p<0.05 as compared to those in control group, n=5, t-test. **B.** Pretreatment of nicotine (2 mM, 30 min) prior to MPP⁺ exposure in SH-SY5Y cells decreased the level of cell death as compared to those treated with MPP⁺ only. *p<0.05 as compared to those of control group, ##p<0.01 as compared to MPP⁺ group, n=5 for control and MPP⁺ groups, n=3 for nicotine and MPP⁺ with nicotine groups, two-way ANOVA followed by Bonferroni post-tests. All data are shown as mean ± SEM. The level of cell death was detected using PI (50 μg/ml) and Hoechst33342 (20 μg/ml) double staining, and was defined as the ratio of fluorescent intensity of PI: Hoechst33342.
Figure 2 (on next page)

Choline protects SH-SY5Y cells against MPP\(^+\)-induced cell death.

Pre-treatment with choline (1 mM, 30 min), a specific nAChR agonist, followed by MPP\(^+\) treatment (500 μM, 24 hrs) in SH-SY5Y cells decreased the level of cell death as compared to those treated with MPP\(^+\) only. *p<0.05 as compared to those of control group, ###p<0.001 as compared to MPP\(^+\) group, n=5, two-way ANOVA followed by Bonferroni posttests. All data are shown as mean ± SEM. The level of cell death was detected using PI and Hoechst33342 double staining, and was defined as the ratio of fluorescent intensity of PI: Hoechst33342.
Control MPP

Cell Death Index (Percent of Control Group)

Control

MPP

Control

Choline

*

Blockade of α7 nAChR inhibits the protective effect of nicotine and choline against MPP⁺-induced SH-SY5Y cell death.

A. MLA (20 μM, 30 min), a specific antagonist of α7 nAChR, increased the level of cell death when administered prior to nicotine (2 mM, 30 min) and MPP⁺ (500 μM, 24 hrs) treatments in SH-SY5Y cells, as compared to those treated with nicotine and MPP⁺ alone. ***p<0.001 as compared to those of control group, # p<0.05 as compared to MPP⁺ group, n=4, one-way ANOVA followed by Tukey’s test.

B. MLA (20 μM, 30 min), a specific antagonist of α7 nAChR, increased the level of SH-SY5Y cell death when administered prior to choline (1 mM, 30 min) and MPP⁺ (500 μM, 24 hrs) treatments, as compared to those treated with choline and MPP⁺ alone. ***p<0.001 compared to the control group, # p<0.05 as compared to the MPP⁺ group, n=4, one-way ANOVA followed by Tukey’s test. All data are shown as mean ± SEM. The level of cell death was detected using PI and Hoechst33342 double staining, and was defined as the ratio of fluorescent intensity of PI: Hoechst33342.
A

Cell Death Index
(Percent of Control Group)

Control
MPP
MPP+ Nicotine
MPP+ Nicotine + MLA

B

Cell Death Index
(Percent of Control Group)

Control
MPP
MPP+ Choline
MPP+ Choline + MLA

Manuscript to be reviewed
Nicotine pre-treatment inhibits PARP-1 and caspase-3 cleavage in MPP\(^{+}\)-treated SH-SY5Y neuroblastoma cells

A. Western blot analysis showing that cleaved caspase-3 decreased in SH-SY5Y cells pre-treated with nicotine before MPP\(^{+}\) treatment, as compared to those treated with MPP\(^{+}\) only. \(\alpha\)-Tubulin was used as a loading control. **B and C.** Densitometric analysis of expression levels of full length (B) and cleaved (C) caspase-3. The expression level of caspase-3 was defined as the ratio of the intensity of caspase-3: \(\alpha\)-Tubulin, and was normalized as percentage of the control group, **\(p<0.01\), \(n=3\), two-way ANOVA.**

D. Western blot analysis showing that cleaved PARP-1 was decreased in SH-SY5Y cells pre-treated with nicotine before MPP\(^{+}\) treatment, as compared to those treated with MPP\(^{+}\) only. \(\alpha\)-Tubulin was used as a loading control. **E and F.** Densitometric analysis of the intensity of expression levels of full length (E) and cleaved (F) PARP-1. The expression level of PARP-1 was defined as the ratio of the intensity of PARP-1: \(\alpha\)-Tubulin, and was normalized as percentage of the control group, ***\(p<0.001\), \(n=3\), two-way ANOVA.** All data are shown as mean ± SEM.
Figure 5 (on next page)

Tyrosine Hydroxylase expression level decreased in lesioned hemisphere of 6-OHDA mouse model of PD

A. Western blot analysis showing that tyrosine hydroxylase expression level decreased in striatal tissues of lesioned hemisphere from mice exposed to 6-OHDA only, but did not change in mice pretreated with nicotine before 6-OHDA exposure. α-Tubulin was used as a loading control. B Densitometric analysis of expression levels of tyrosine hydroxylase. The expression level of tyrosine hydroxylase was defined as the ratio of the intensity of tyrosine hydroxylase: α-Tubulin, and was normalized as percentage of non-lesioned hemisphere exposed to 6-OHDA only, n=3, two-way ANOVA. All data are shown as mean ± SEM. *p<0.05 as compared to Non-lesioned hemisphere in 6-OHDA mice.
A

	Non-lesioned Hemisphere	Lesioned Hemisphere
Anti-TH		
Anti-α-Tubulin		
6-OHDA		
6-OHDA+ Nicotine		
6-OHDA		
6-OHDA+ Nicotine		

B

Tyrosine Hydroxylase / α-Tubulin (Percent of 6-OHDA Non-lesioned Group)

- Non-lesioned
- Lesioned

* Significant difference
Figure 6 (on next page)

Nicotine pre-treatment inhibits PARP-1 and caspase-3 cleavage in striatal tissue from 6-OHDA mouse model of PD

A. Western blot analysis showing that cleaved PARP-1 decreased in striatal tissues from mice pre-treated with nicotine before 6-OHDA exposure, as compared to those exposed to 6-OHDA only. α-Tubulin was used as a loading control. B and C. Densitometric analysis of expression levels of full length (B) and cleaved (C) PARP-1. The expression level of PARP-1 was defined as the ratio of the intensity of PARP-1: α-Tubulin, and was normalized as percentage of the 6-OHDA group, *p<0.05 compared to the 6-OHDA group, n=3, t-test. D. Western blot analysis showing that cleaved caspase-3 was decreased in striatal tissues from mice pre-treated with nicotine prior to 6-OHDA exposure, as compared to those exposed to 6-OHDA only. α-Tubulin was used as a loading control. E and F. Densitometric analysis of the intensity of expression levels of full length (E) and cleaved (F) caspase-3. The expression level of caspase-3 was defined as the ratio of the intensity of caspase-3: α-Tubulin, and was normalized as percentage of the 6-OHDA group, **p<0.01 compared to the 6-OHDA group, n=3, t-test. All data are shown as mean ± SEM.
A Anti-PARP-1

- **Full length**: 113 kDa
- **Cleaved**: 89 kDa

Anti-α-Tubulin

- **6-OHDA**: 50 kDa
- **6-OHDA+Nicotine**: 50 kDa

B

- **PARP-1 (Full length)/α-Tubulin**
 - 6-OHDA: 1.0
 - 6-OHDA+Nicotine: 1.5

C

- **PARP-1 (Cleaved)/α-Tubulin**
 - 6-OHDA: 1.0
 - 6-OHDA+Nicotine: *1.5

D Anti-Caspase-3

- **Full length**: 35 kDa
- **Cleaved**: 17 kDa

Anti-α-Tubulin

- **6-OHDA**: 50 kDa
- **6-OHDA+Nicotine**: 50 kDa

E

- **Caspase-3 (Full length)/α-Tubulin**
 - 6-OHDA: 1.0
 - 6-OHDA+Nicotine: **1.5

F

- **Caspase-3 (Cleaved)/α-Tubulin**
 - 6-OHDA: 1.0
 - 6-OHDA+Nicotine: **2.0**
Figure 7 (on next page)

Nicotine pre-treatment does not change PARP-1 and caspase-3 cleavage in striatal tissue from non-lesioned hemisphere of 6-OHDA mouse model of PD

A. Western blot analysis showing no difference of cleaved caspase-3 in striatal tissues of non-lesioned hemisphere from mice pre-treated with nicotine before 6-OHDA exposure, as compared to those exposed to 6-OHDA only. α-Tubulin was used as a loading control. B and C. Densitometric analysis of expression levels of full length (B) and cleaved (C) caspase-3. The expression level of caspase-3 was defined as the ratio of the intensity of caspase-3: α-Tubulin, and was normalized as percentage of the 6-OHDA group, n=3, t-test. D. Western blot analysis showing no difference of cleaved PARP-1 was decreased in striatal tissues of the non-lesioned hemisphere from mice pre-treated with nicotine prior to 6-OHDA exposure, as compared to those exposed to 6-OHDA only. α-Tubulin was used as a loading control. E and F. Densitometric analysis of the intensity of expression levels of full length (E) and cleaved (F) PARP-1. The expression level of PARP-1 was defined as the ratio of the intensity of PARP-1: α-Tubulin, and was normalized as percentage of the 6-OHDA group, n=3, t-test. All data are shown as mean ± SEM.
Non-lesioned Hemisphere

Full-length
Cleaved
6-OHDA 6-OHDA+
Nicotine

Anti-Caspase-3

Anti-α-Tubulin

Full-length Caspase-3 / α-Tubulin
(Percent of 6-OHDA Group)

6-OHDA 6-OHDA+
Nicotine

Full length Caspase-3 / α-Tubulin
(Percent of 6-OHDA Group)

35 kDa 17 kDa

Cleaved Caspase-3 / α-Tubulin
(Percent of 6-OHDA Group)

6-OHDA 6-OHDA+
Nicotine

50 kDa

50 kDa

35 kDa 35 kDa

17 kDa

17 kDa

50 kDa

113 kDa 89 kDa

Full-length PARP-1 / α-Tubulin
(Percent of 6-OHDA Group)

Anti-PARP-1

Non-lesioned Hemisphere

Full-length
Cleaved
6-OHDA 6-OHDA+
Nicotine

Anti-PARP-1

Anti-α-Tubulin

Full-length PARP-1 / α-Tubulin
(Percent of 6-OHDA Group)

6-OHDA 6-OHDA+
Nicotine

1.25

1.25

1.00

0.10

Full-length PARP-1 / α-Tubulin
(Percent of 6-OHDA Group)

6-OHDA 6-OHDA+
Nicotine