Detecting systematic anomalies affecting systems when inputs are stationary time series

Ričardas Zitikis

School of Mathematical and Statistical Sciences
Western University, Ontario

Risk and Insurance Studies Centre
York University, Ontario

March 10, 2021
You are most welcome to e-mail: rzitikis@uwo.ca
Life as usual: ups and downs...

...or is it?

- Inputs \((X_t)_{t \in \mathbb{Z}}\)

- Transfer function \(h\)

- Outputs \((Y_t)_{t \in \mathbb{Z}}\)

- Observable pairs \((X_1, Y_1), \ldots, (X_n, Y_n)\)

Think of \((X_t)_{t \in \mathbb{Z}}\) as a stationary and causal time series
\[X_0, X_1, \ldots, X_n, X_{n+1}, \ldots \xrightarrow{(\delta_t)} h \xrightarrow{(\varepsilon_t)} Y_0, Y_1, \ldots, Y_n, Y_{n+1}, \ldots \]

- Input risks \((\delta_t)_{t \in \mathbb{Z}}\)
- Output risks \((\varepsilon_t)_{t \in \mathbb{Z}}\)

Think of risks as measurement errors → miscalculations
oversights

- \(Y_t = \begin{cases}
 h(X_t + \delta_t) & \text{when only inputs are directly affected} \\
 h(X_t) + \varepsilon_t & \text{when only outputs are affected} \\
 h(X_t + \delta_t) + \varepsilon_t & \text{when inputs & outputs are affected}
\end{cases} \)
If h were known, we could use, e.g.,

$$\frac{1}{n} \sum_{i=1}^{n} (h(X_i) - Y_i)^2 \begin{cases} = 0 & \text{when the system is risk free} \\ > 0 & \text{when the system is risk affected} \end{cases}$$

But we only know that $h \in \mathcal{H}$ (model uncertainty)
Our philosophy

We check (for risks) only those systems that were in reasonable order when newly installed

What does “be in reasonable order” mean?

Whose definition to use?

- Manufacturer’s definition? Maybe, but likely only indirectly
- Our definition? Yes, because it is aligned with our goals

...and it is on the next slide
Definition. The risk-free outputs $Y_t = h(X_t)$ are in reasonable order if

$$B_n^0 := \frac{1}{n^{1/2}} \sum_{i=2}^{n} |h(X_{i:n}) - h(X_{i-1:n})| = O_P(1)$$

where $X_{1:n} \leq \cdots \leq X_{n:n}$ are the ordered inputs X_1, \ldots, X_n.

Example (to work out intuition). If $h \in \text{Lipschitz}$, then the risk-free outputs are in reasonable order because

$$B_n^0 \leq \|h\|_{\text{Lip}} \frac{n^{1/2}}{n^{1/2}} \sum_{i=2}^{n} |X_{i:n} - X_{i-1:n}| = \|h\|_{\text{Lip}} \frac{X_{n:n} - X_{1:n}}{n^{1/2}} = \|h\|_{\text{Lip}} \frac{\text{Range}(X_1, X_2, \ldots, X_n)}{n^{1/2}} = O_P(1)$$
Suppose that a brand new system was in reasonable order

- If it is still risk free, then $l_n \to \mathbb{P} \text{ somewhere } \neq 0.5$
- If it gets risk affected, then $l_n \to \mathbb{P} 0.5$

What is this magical l_n?

The system-monitoring index (statistic)

$$l_n = \frac{\sum_{i=2}^{n} (Y_{i,n} - Y_{i-1,n})_+}{\sum_{i=2}^{n} |Y_{i,n} - Y_{i-1,n}|}$$

where $Y_{1,n}, \ldots, Y_{n,n}$ are the concomitants of X_1, \ldots, X_n

Example |
---|---|
(X_i, Y_i)	$(X_{i:n}, Y_{i:n})$
$(5, 3)$ | $(1, 9)$
$(1, 9)$ | $(2, 6)$
$(4, 2)$ | $(4, 2)$
$(2, 6)$ | $(5, 3)$
A mathematical insight into the meaning of I_n

$$I_n = \frac{\sum_{i=2}^{n} (Y_{i,n} - Y_{i-1,n})^+}{\sum_{i=2}^{n} |Y_{i,n} - Y_{i-1,n}|} = \frac{1}{2} \left(1 + \frac{Y_{n,n} - Y_{1,n}}{\sum_{i=2}^{n} |Y_{i,n} - Y_{i-1,n}|} \right)$$

because $x_+ = (|x| + x)/2$

$$= \frac{1}{2} \left(1 + \frac{\text{Pseudo Range}(Y_1, Y_2, \ldots, Y_n)}{\text{Total Variation}(Y_1, Y_2, \ldots, Y_n)} \right)$$

if there are no risks and n is large

$$\approx \frac{1}{2} \left(1 + \frac{\int h'(x)dx}{\int |h'(x)|dx} \right)$$
Introduction

ARMA inputs and AVR transfer

How far beyond ARMA can we go?

Final notes
Example. Let risk free (X_t) be ARMA(1, 1) and follow

$$(X_t - 120) = 0.6(X_{t-1} - 120) + \eta_t + 0.4\eta_{t-1}$$

with iid Gaussian innovations $\eta_t \sim \mathcal{N}(0, \sigma^2_{\eta})$ where σ^2_{η} is such that

$$X_t \sim \mathcal{N}(120, 9)$$
Automatic voltage regulators (AVR’s) often keep voltage between

\[120 \pm 6 \text{ volts} \quad (\pm 5\% \text{ of the nominal voltage}) \]

The transfer function

\[
h(x) = \begin{cases}
 x_{\text{min}} & \text{when } x < x_{\text{min}} \\
 x & \text{when } x_{\text{min}} \leq x \leq x_{\text{max}} \\
 x_{\text{max}} & \text{when } x > x_{\text{max}}
\end{cases}
\]

with

\[x_{\text{min}} = 114 \quad \& \quad x_{\text{max}} = 126 \]

Note. Insurance layers often have similar transfer functions: deductible \(x_{\text{min}} \), policy limit \(x_{\text{max}} \), etc.
When the risk-free AVR is in reasonable order, we see

\[I_n^0 = \frac{\sum_{i=2}^{n} (h(X_{i:n}) - h(X_{i-1:n})) + \sum_{i=2}^{n} |h(X_{i:n}) - h(X_{i-1:n})|}{\sum_{i=2}^{n} |h(X_{i:n}) - h(X_{i-1:n})|} \]

\[= 1 \neq 0.5 \text{ (risk free)} \]

\[B_n^0 = \frac{1}{n^{1/2}} \sum_{i=2}^{n} |h(X_{i:n}) - h(X_{i-1:n})| \]

\[= O_p(1) \text{ (in reasonable order)} \]
Illustrative risk specifications: let \((\delta_t)\) and \((\varepsilon_t)\) be

- independent of \((X_t)\)
- independent of each other
- iid Lomax\((\alpha, 1)\) and thus have the means

\[
\mathbb{E}(\delta_t) = \mathbb{E}(\varepsilon_t) = \frac{1}{\alpha - 1}
\]

Examples:

\(\alpha = 1.2 \implies \mathbb{E}(\delta_t) = \mathbb{E}(\varepsilon_t) = 5\)

\(\alpha = 11 \implies \mathbb{E}(\delta_t) = \mathbb{E}(\varepsilon_t) = 0.1\)
\[\mathbb{E}(\delta_t) = \mathbb{E}(\epsilon_t) = 5 \] (fast converging \(I_n \) and \(B_n \))

\[I_n = \frac{\sum_{i=2}^{n} (Y_{i,n} - Y_{i-1,n}) + \sum_{i=2}^{n} |Y_{i,n} - Y_{i-1,n}|}{\sum_{i=2}^{n} |Y_{i,n} - Y_{i-1,n}|} \]

\[\rightarrow \mathbb{P} \ 0.5 \] (risk affected)

\[B_n = \frac{1}{n^{1/2}} \sum_{i=2}^{n} |Y_{i,n} - Y_{i-1,n}| \]

\[\rightarrow \mathbb{P} \ \infty \] (out of reasonable order)
\[\mathbb{E}(\delta_t) = \mathbb{E}(\epsilon_t) = 0.1 \] (slowly converging \(I_n \) and \(B_n \))

\[I_n = \frac{\sum_{i=2}^{n} (Y_{i,n} - Y_{i-1,n})}{\sum_{i=2}^{n} |Y_{i,n} - Y_{i-1,n}|} \rightarrow \mathbb{P} 0.5 \text{ (risk affected)} \]

\[B_n = \frac{1}{n^{1/2}} \sum_{i=2}^{n} |Y_{i,n} - Y_{i-1,n}| \rightarrow \mathbb{P} \infty \text{ (out of reasonable order)} \]
	Introduction	ARMA inputs and AVR transfer	How far beyond ARMA can we go?	Final notes
1	Introduction			
2	ARMA inputs and AVR transfer			
3	How far beyond ARMA can we go?			
4	Final notes			
The answer depends on the validity of

\[l_n = \frac{\sum_{i=2}^{n} (Y_{i,n} - Y_{i-1,n})}{\sum_{i=2}^{n} |Y_{i,n} - Y_{i-1,n}|} \xrightarrow{\mathbb{P}} l_\infty \]

\[\begin{cases} = 0.5 & \text{when risk affected} \\ \neq 0.5 & \text{when risk free} \end{cases} \]

assuming

\[B_0^n = \frac{1}{n^{1/2}} \sum_{i=2}^{n} |h(X_i:n) - h(X_{i-1:n})| = O_{\mathbb{P}}(1) \]

i.e., when risk-free outputs are in reasonable order

Definition. The outputs \((Y_t)\) are **out of reasonable order** if

\[B_n := \frac{1}{n^{1/2}} \sum_{i=2}^{n} |Y_{i,n} - Y_{i-1,n}| \xrightarrow{\mathbb{P}} \infty \]

...and then necessarily \(l_n \xrightarrow{\mathbb{P}} 0.5 \)
When do Y_t’s become out of reasonable order?

Roughly speaking, this happens when X_t’s are stationary and at least one of the risks does not vanish from I_n, that is, when δ_t’s and ε_t’s are

- noticeable (e.g., if $h(x) = c$, then δ_t’s vanish from I_n)
- non-degenerate (e.g., if $\varepsilon_t = c$, then they vanish from I_n)
- not disguised as X_t’s (e.g., if $\delta_t = X_t$, $\varepsilon_t = X_t$, and $h(x) = x$, then $Y_t = 3X_t$ and the risk-identifying “3” vanishes from I_n)
In the risk-free scenario, when do we have

\[I_n \xrightarrow{\mathbb{P}} I_\infty \neq 0.5 \]

Let the stationary inputs \((X_t)\) satisfy the Glivenko-Cantelli property and be temperately dependent (next two slides).

Let \(h\) be almost everywhere differentiable with vanishing derivative outside an interval \([a, b]\) (recall the AVR function).

Then in the risk-free scenario we have

\[
I_n \xrightarrow{\mathbb{P}} I_\infty := \frac{\int_a^b (h'(x))_+ \, dx}{\int_a^b |h'(x)| \, dx} = \frac{1}{2} \left(1 + \frac{\int_a^b h'(x) \, dx}{\int_a^b |h'(x)| \, dx} \right) \\
\neq 0.5 \quad \text{unless} \quad h(b) = h(a)
\]
Definition. Inputs \((X_t)\) with the same marginal cdf’s \(F\) satisfy the Glivenko-Cantelli property if \(X_1, \ldots, X_n\) asymptotically identify \(F\), that is,

\[
\sup_{x \in \mathbb{R}} |F_n(x) - F(x)| \xrightarrow{P} 0 \quad \text{when} \quad n \to \infty
\]

where \(F_n\) is the empirical cdf based on \(X_1, \ldots, X_n\)

- If the inputs \((X_t)\) follow the stationary ARMA\((p, q)\) model driven by iid innovations \((\eta_n)\) with densities, then they satisfy the Glivenko-Cantelli property
Definition. Inputs \((X_t)\) with the same marginal cdf’s \(F\) are temperately dependent if

\[
P(X_{1:n} \geq x) \to 0 \quad \text{and} \quad P(X_{n:n} \leq x) \to 0
\]

for all \(x\) such that \(F(x) \in (0,1)\)

Examples

- If \((X_t)\) are iid, then they are temperately dependent.
- If \(X_t = X\) for all \(t \in \mathbb{Z}\), then they are not temperately dependent (they are super-strongly dependent).
- If \((X_t)\) are strictly stationary and \(\alpha\)-mixing, then they are temperately dependent.
1. Introduction

2. ARMA inputs and AVR transfer

3. How far beyond ARMA can we go?

4. Final notes
The system-monitoring index (statistic)

\[I_n = \frac{\sum_{i=2}^{n} (Y_{i,n} - Y_{i-1,n}) + \sum_{i=2}^{n} |Y_{i,n} - Y_{i-1,n}|}{\sum_{i=2}^{n} |Y_{i,n} - Y_{i-1,n}|} \rightarrow _{P} I_{\infty} \]

\(\begin{align*}
= 0.5 & \quad \text{risk affected} \\
\neq 0.5 & \quad \text{risk free}
\end{align*} \)

- is simple to implement
- works as intended in practically plausible situations
- jointly with another index, helps to determine \textit{when} the system gets affected by risks: at the input, output, or both stages

A “stopping” question

When to sound the alarm?

\(n = 50? \ 100? \ \ldots \)