Women with urinary tract infections (UTIs) in California, USA (1999–2001), were infected with closely related or indistinguishable strains of *Escherichia coli* (clonal groups), which suggests point source dissemination. We compared strains of UTI-causing *E. coli* in California with strains causing such infections in Montréal, Québec, Canada. Urine specimens from women with community-acquired UTIs in Montréal (2006) were cultured for *E. coli*. Isolates that caused 256 consecutive episodes of UTI were characterized by antimicrobial drug susceptibility profile, enterobacterial repetitive intergenic consensus 2 PCR, serotyping, XbaI and NotI pulsed-field gel electrophoresis, multilocus sequence typing, and phylogenetic typing. We confirmed the presence of drug-resistant, genetically related, and temporally clustered *E. coli* clonal groups that caused community-acquired UTIs in unrelated women in 2 locations and 2 different times. Two clonal groups were identified in both locations. Epidemic transmission followed by endemic transmission of UTI-causing clonal groups may explain these clusters of UTI cases.

Community-acquired extraintestinal infections with *Escherichia coli* range in frequency from 6 to 8 million cases of uncomplicated cystitis per year to 127,500 cases of sepsis per year in the United States (1). Urinary tract infections (UTIs) caused by *E. coli* are one of the most common extraintestinal infections in women and, because of their high incidence, are the focus of most epidemiologic studies. The source of *E. coli* for these infections is a person’s intestinal tract; however, how these *E. coli* are acquired by the gut is unclear. Risk factors that lead to intestinal colonization with extraintestinal *E. coli* differ from factors associated with development of infection.

Young, otherwise healthy, sexually active women have the highest risk for community-acquired UTIs. The main risk factors for UTI are recent and frequent sexual intercourse, contraceptive use, and a history of UTIs (2,3). Treatment for UTIs usually involves a short course of an antimicrobial drug, such as trimethoprim-sulfamethoxazole (TMP-SMZ). Over the past decade, the prevalence of drug resistance in *E. coli* has increased dramatically, complicating management of these infections. Across the United States and Canada, urinary tract isolates of *E. coli* from outpatient clinics showed increased resistance to TMP-SMZ and ampicillin (4). A more serious concern has been the gradual increase in fluoroquinolone (e.g., ciprofloxacin) resistance among UTI isolates (5).

There is increasing evidence that the *E. coli* that cause UTIs and other extraintestinal infections may be responsible for community-wide epidemics. In 1986–1987, *E. coli* O15:K52:H1 caused an outbreak of community-acquired UTIs and septicemia in South London, England (6). The distinctive drug resistance profile of this clonal group contributed to its recognition in London and other areas of Europe and the United States (7,8). Other outbreaks of UTI caused by *E. coli* have been described and include a cluster of UTI cases in Copenhagen, Denmark, caused by *E. coli* O78:H10 and a larger outbreak in Calgary, Alberta, Canada, caused by extended-spectrum β-lactamase (ESBL)–producing *E. coli* (9,10).

In 2001, we reported that a multidrug-resistant *E. coli* clonal group designated clonal group A (CgA), defined by an enterobacterial repetitive intergenic consensus 2 (ERIC2) PCR and characterized by O11, O77, O17, and O73:K52:H18 serotypes, caused 11% of all *E. coli* UTIs and 49% of all TMP-SMZ–resistant *E. coli* UTIs in 1
California, USA, community over a 4-month period (11). Members of this clonal group were responsible for drug-resistant UTIs in university communities in Michigan and Minnesota and a community in Colorado (12), and for pyelonephritis in several states (13). We also identified additional clonal groups in a second cross-sectional study in Berkeley, California (14).

Identification of outbreak strains of E. coli that cause extraintestinal infections suggests that point sources, possibly contaminated food, may be responsible for local spread of genetically related E. coli strains in the United Kingdom. Recent work in the United Kingdom has focused on a possible link between the increase in ESBL-producing E. coli and food animal production. An estimated 30,000 cases of human infection with ESBL-producing E. coli occur each year in the United Kingdom, and studies have found epidemic strains of ESBL-producing E. coli in the United Kingdom and throughout the world (15–17). The Health Protection Agency has suggested that imported chicken may be a route for introduction of ESBL-producing E. coli into the United Kingdom. Recent research by this agency did not identify a direct link between ESBL-positive strains of E. coli and chickens and humans (18), but other investigators found evidence for a link between drug resistance and specific genotypes of extratintestinal E. coli in animal food products and human infections in Minnesota and Washington, DC (19–21).

To further investigate the molecular epidemiology of disseminated E. coli clonal groups that cause UTIs, we conducted a cross-sectional study in a population of university women from Montréal, Québec, Canada, with UTI caused by E. coli and compared these organisms with those isolated from women with UTI in California. We sought to identify women in similar risk groups, but at different times and in different locations, to determine whether unrelated women with UTIs caused by indistinguishable strains of E. coli could be identified, and to determine whether the distribution was identical of clonal groups that were causing UTIs in these 2 communities.

Methods

Study Design

We conducted a cross-sectional study in collaboration with the Student Health Services at McGill University in Montréal in 2006. Eligible women 18–45 years of age who came to the health center with a suspected UTI were enrolled in the study. A UTI was clinically defined as ≥2 symptoms suggestive of this infection and included dysuria, increased urinary frequency or urgency, pyuria, hematuria, and >10^5 CFUs of E. coli/mL of clean-catch urine. If a woman had ≥1 UTIs during the study period, only data concerning the first UTI was eligible for inclusion in the analyses. Details of studies in California have been reported (11,14). The study protocol was reviewed and approved by the McGill University, Institutional Review Board (A01-M04–05A).

Isolation of E. coli

Urine samples were immediately cultured on Uricult (Orion Diagnostica, Espoo, Finland) MacConkey/cysteine lactose electrolyte–deficient agar dip slides. One arbitrarily selected colony (or multiple if morphologically different colonies were present) was selected from the MacConkey side. Lactose- and indole-positive colonies were presumptively identified as E. coli (22). Those isolates that were either lactose or indole negative were cultured on CHROMagar orientation plates (Becton Dickinson BBL Diagnostics, Sparks, MD, USA) and tested for lysine and ornithine decarboxylases (Moeller decarboxylase tests; PML Microbiologicals, Mississauga, Ontario, Canada). The reference strain used for carboxylase testing included Klebsiella pneumoniae (American Type Culture Collection [ATCC] no. 13883) and Enterobacter cloacae (ATCC no. 13047). Those isolates that were classified as E. coli on the CHROMagar plates and positive for lysine and ornithine decarboxylases were presumptively identified as E. coli. One E. coli isolate from each urine culture was arbitrarily selected for further analysis.

Antimicrobial Drug Susceptibility

Isolates were screened for susceptibility to TMP-SMZ, ciprofloxacin, cephalothin, nitrofurantoin, ampicillin, chloramphenicol, streptomycin, and tetracycline by the disk diffusion assay (Becton Dickinson BBL Diagnostics). E. coli strain ATCC 25922 was used as the reference strain. Isolates were defined as resistant, intermediate, or susceptible to each antimicrobial drug according to Clinical and Laboratory Standards Institute interpretive criteria (23). Isolates with intermediate resistance were defined as susceptible.

ERIC2 PCR Fingerprinting

All E. coli isolates were screened by using the ERIC2 PCR fingerprinting assay (24). Images of electrophoretic patterns were scanned into a software program (GelCompar II version 3.5; Applied Maths Inc., Austin, TX, USA) for analysis. Dendrograms based on ERIC2 PCR patterns were inferred from the Dice similarity coefficient matrix generated by GelCompar by the unweighted pair group method with arithmetic averages. Isolates with fingerprints that were indistinguishable on visual inspection or by GelCompar II version 3.5 (Applied Maths Inc.) analysis were grouped and selected for further typing.

Pulsed-Field Gel Electrophoresis

XbaI and NotI pulsed-field gel electrophoresis (PFGE) was conducted on all putative clonal isolates, as defined
by ERIC2 PCR (25). Isolates showing <6 band differen-
tces in their patterns were considered to be possibly related
according to the criteria of Tenover et al. (26). Images of
patterns were scanned into GelCompar II version 3.5 and
analyzed as for ERIC2 PCR.

Serotypes
Serotyping was performed for Montréal E. coli isolates
that were indistinguishable by ERIC2 PCR. O and H sero-
typing was performed by the Enteric Diseases Program at
the National Microbiology Laboratory, Winnipeg, Manitoba,
Canada, by using established protocols. Isolates from Cali-
ifornia were evaluated for serogroup only at the
Reference Center (Pennsylvania State University, University Park,
PA, USA). Isolates that were motile but non reactive with O
or H antiserum were classi-
fed as nontypeable (OUTTYPE) and those that were nonmotile were denoted (HNM).

Multilocus Sequence Typing and
Determination of Phylogenetic Group
Multilocus sequence typing (MLST) was performed
as described (27). Gene amplification and sequencing were
performed by using the primers specified at the E. coli
MLST website (http://web.mpiib-berlin.mpg.de/mlst/dbs/
Ecoli). Allelic profile and sequence type (ST) determina-
tions were assigned according to the E. coli MLST website
scheme. The major E. coli phylogenetic group (A, B1, B2,
and D) was determined by using a multiplex PCR (28).

Clonal Group
A clonal group was defined as ≥2 E. coli isolates show-
ing indistinguishable patterns by ERIC2 PCR. These groups
were given letter designations, such as CgA. Clonal group
designations assigned for the California study isolates
were retained (CgA to CgG), and clonal groups identified
in Montréal were assigned new letter designation begin-
ing with CgH. To support categorization of these clonal
groups, isolates showing indistinguishable ERIC2 PCR
patterns were also evaluated by PFGE, serotyping, drug
susceptibility testing, MLST, and phylogenetic typing.

Statistical Analyses
All analyses were conducted by using Stata version 9.0
(Stata Corporation, College Station, TX, USA). Proportions
and 95% confidence intervals (CIs) were estimated. Differ-
ences in proportions were assessed by χ² tests. Statistical
significance was defined by p<0.05.

Results
Study Participants
From January 2006 to January 2007, 656 urine samples
were submitted. E. coli was isolated from 300 urine sam-
ples obtained from 256 women in Montréal. Only samples
from the first UTI were included in the analyses. A total of
311 (47%) samples yielded no bacteria, and 45 (7%) con-
tained an organism other than E. coli. Results for the E. coli
isolated from these 256 women with UTIs were compared
with results for E. coli isolated from 434 women with UTIs
in California (1999–2001).

Antimicrobial Drug Susceptibility
Antimicrobial drug resistance for the Montréal and Cali-
ifornia isolates is summarized in Table 1. For the drugs tested,
isolates from Montréal showed comparable resistance levels
to those from California, although resistance to TMP-SMZ
was higher in isolates from California (20% in California vs.
14% in Montréal; p = 0.07) and ciprofloxacin resistance was
slightly higher in isolates from Montréal (2% in California
vs. 4% in Montréal; p = 0.06). Resistance to nitrofurantoin
was not detected in isolates from either location.

ERIC2 PCR Fingerprinting
ERIC2 PCR fingerprinting identified 4 clonal groups
(CgA, CgC, CgH, and CgI) among Montréal isolates (data
not shown). The prevalence of these clonal groups in Mon-
tréal in 2006 was 13 CgA (5%, 95% CI 0.03–0.09), 10 CgC
(4%, 95% CI 0.02–0.07), 7 CgI (3%, 95% CI 0.01–0.06),
and 5 CgH (2%, 95% CI 0.01–0.04). CgA and CgC were
identiﬁed from both study sites. In the California studies, 32
CgA isolates (7%, 95% CI 0.05–0.10) and 12 CgC isolates
(3%, 95% CI 0.01–0.05) were identiﬁed. Clonal groupings
were conﬁrmed by PCR re ampliﬁcation, and these group-
ing also included representatives of clonal groups identi-
fied in the California studies (11,14).

CgH was uniformly resistant to ampicillin and strep-
tomycin and susceptible to all other drugs tested. CgC was
susceptible to all drugs tested (except for 1 isolate that was
resistant to ampicillin). CgA was primarily resistant to TMP-

Table 1. Antimicrobial drug resistance of Escherichia coli*
Characteristic	Berkeley, California, USA†	Montréal, Québec, Canada‡	p value§
Total primary E. coli	434	256	
Drug	No. (%) resistant		
Trimethoprim-sulfamethoxazole	85 (20)	36 (14)	0.07
Cephalothin	11 (3)	7 (3)	0.90
Ciprofloxacin	8 (2)	11 (4)	0.06
Nitrofurantoin	0	0	
Ampicillin	ND	83 (32)	ND
Tetracycline	ND	40 (16)	ND
Chloramphenicol	ND	7 (3)	ND
Streptomycin	ND	48 (19)	ND

*ND, not done. †October 1999–January 2000 and October 2000–January 2001. ‡January 2006–January 2007 §By χ² test.
SMZ and ampicillin; resistance to the other drugs varied. CgI showed the most extensive resistance. This group was resistant to ciprofloxacin and TMP-SMZ, and 2 members of CgI were resistant to 5 drugs. Drug-resistance profiles for each clonal group member from both study sites are shown in Table 2 and the online Appendix Table (available from www.cdc.gov/EID/content/14/10/1575-appT.htm).

Pulsed-Field Gel Electrophoresis

PFGE confirmed the presence of 4 clonal groups among the Montréal isolates. CgH was found only in Montréal and showed indistinguishable XbaI and NotI PFGE patterns (Figure 1). CgI was also found only in Montréal and could be considered possibly related by the criteria of Tenover et al. (26) (Figure 2). Patterns of CgC isolates (Figure 3) identified in California and Montréal differed by <6 bands, regardless of restriction enzyme used. The PFGE results for CgA varied the most among all clonal groups from Montréal; in some cases, the PFGE patterns showed >6 band differences (Figure 4).

Isolate no.	Genotype*	Serotype	MLST†	Phy‡	Date of infection	CIP	CEP	NIT	TMP-SMZ	AMP	CAM	STR	TET
362 C	O1:H7	ST95	B2		2006 Jan 23	0	0	0	0	0	0	0	0
363 C	O1:H7				2006 Jan 23	0	0	0	0	0	0	0	0
413 C	O18:H7	ST95	B2		2006 Feb 13	0	0	0	0	0	0	0	0
414 C	O1:H7				2006 Feb 13	0	0	0	0	0	0	0	0
439 C	O1:H7				2006 Feb 28	0	0	0	0	0	0	0	0
762 C	O1:H17	ST95	B2		2006 Sep 28	0	0	0	0	0	0	0	0
767 C	O1:H17				2006 Sep 29	0	0	0	0	0	0	1	0
782 C	O2:H17	ST95	B2		2006 Oct 10	0	0	0	0	0	0	0	0
957 C	O1:H7				2007 Jan 1	0	0	0	0	0	0	0	0
958 C	O1:H7	ST95	B2		2007 Jan 5	0	0	0	0	0	0	0	0
412 H	O6:H1	ST73	B2		2006 Feb 13	0	0	0	0	0	1	0	1
415 H	O6:H1				2006 Feb 13	0	0	0	0	0	1	0	1
422 H	O6:H1				2006 Feb 16	0	0	0	0	1	0	1	0
459 H	O6:H1				2006 Mar 10	0	0	0	0	1	0	1	0
471 H	O6:H1				2006 Mar 16	0	0	0	0	1	0	1	0
385 A	OR:H18	ST69	D		2006 Jan 30	0	0	0	0	0	0	1	0
434 A	O73:H18	ST69	D		2006 Feb 27	0	0	0	0	0	0	0	0
498 A	O77/71:H18	ST69	D		2006 Mar 24	0	0	0	1	1	0	1	0
713 A	OUNTYPE: HNM	ST69	D		2006 Sep 11	0	0	0	0	1	0	1	0
724 A	O15:H18	ST69	D		2006 Sep 13	0	0	0	0	0	0	0	0
799 A	OUNTYPE: H18	ST69	D		2006 Oct 16	0	0	0	1	1	0	1	0
839 A	O17:H18	ST69	D		2006 Nov 2	0	0	0	0	1	0	1	0
860 A	O25:H18	ST69	D		2006 Nov 11	0	0	0	0	0	1	0	1
868 A	OUNTYPE: H18	ST69	D		2006 Nov 15	0	0	0	0	0	0	0	0
908 A	O17:H18	ST69	D		2006 Nov 30	0	0	0	1	1	0	1	0
912 A	O17:H18	ST69	D		2006 Nov 30	0	0	0	0	1	1	0	0
913 A	O17:HNM	ST69	D		2006 Dec 1	0	0	0	0	0	0	1	0
956 A	OUNTYPE: H18	ST69	D		2007 Jan 3	0	0	0	0	0	0	1	1
375 I	O25:H4	ST131	B2		2006 Jan 25	1	0	0	0	1	0	0	0
452 I	O25:H4	ST131	B2		2006 Mar 8	1	0	0	1	1	0	0	0
544 I	O25:H4				2006 Apr 19	1	0	0	0	0	0	0	0
550 I	O25:HNM	ST131	B2		2006 Apr 20	1	0	0	1	1	0	1	0
760 I	O25:H4				2006 Sep 28	1	0	0	1	1	0	0	1
783 I	O25:H4				2006 Oct 11	1	0	0	0	1	0	0	0
841 I	O25:H4	ST131	B2		2006 Nov 3	1	0	0	1	1	0	1	1

*Determined by ERIC2 PCR (24).
†MLST, multilocus sequence typing, according to Tartof et al. (27); ST, sequence type.
‡Phy, phylogenetic group, determined by multiplex PCR (28).
§0, sensitive; 1, resistant, according to Clinical and Laboratory Standards Institute interpretative criteria (23). CIP, ciprofloxacin; CEP, cephalothin; NIT, nitrofurantoin; TMP-SMZ, trimethoprim-sulfamethoxazole; AMP, ampicillin; CAM, chloramphenicol; STR, streptomycin; TET, tetracycline.
UTI-causing *Escherichia coli*

Serotypes

Serotype results for all clonal *E. coli* isolates identified in California and Montréal are shown in Table 2 and the Appendix Table. Serotyping was consistent within each clonal group, except for CgA, which showed 6 serogroups (O11, O77, O17, O73, O25, and O15) although O25 and O15 occurred only once. The complete serotype for CgA was O11/O17/O77/O73:K52:H18. CgC from both study locations showed the same serotype (O1/O18/O2:K1:H7).

MLST

Sequence types for selected members of each clonal group from the California and Montréal studies were determined (Table 2; Appendix Table). All sequence types were internally consistent within the clonal group. CgC and CgA isolates from both study sites showed the same sequence types (ST95 and ST69, respectively). CgH, CgB, and CgD showed the same sequence type (ST73). These 3 clonal groups also showed similar serogroups and phylogenetic groups but showed variable ERIC2 PCR and PFGE patterns; thus, they were not placed in the same clonal grouping.

Phylogenetic Group

Phylogenetic group was determined for selected members of each clonal group (Table 2 and Appendix Table). All phylogenetic group assignments were internally consistent within the clonal group and classified as either phylogenetic group B2 or D; both are typically associated with extraintestinal *E. coli*.

Time Cluster Analyses

In considering the hypothesis of endemic versus epidemic transmission of these clonal groups, temporal clus-

Figure 1. XbaI and NotI pulsed-field gel electrophoresis patterns for clonal group H *Escherichia coli* isolated from women with urinary tract infections in Montréal, Québec, Canada, 2006. The 5 isolates shown were serogroup O6:H1. First and last lanes, bacteriophage λ.

Figure 2. XbaI and NotI pulsed-field gel electrophoresis patterns for clonal group I *Escherichia coli* isolated from women with urinary tract infections in Montréal, Québec, Canada, 2006. The 6 isolates shown were resistant to ciprofloxacin and in serogroup O25:H4. First and last lanes, bacteriophage λ; lane +, positive control.
tering is a useful factor. Figure 5 shows the temporal pattern by week of UTI cases for all clonal groups in Montréal (Figure 5, panel A) and in California (Figure 5, panel B). Fluctuation in the number of *E. coli* UTIs over time corresponds closely to observation of clonal group–associated UTI cases. These results show clustering of some clonal groups, e.g., 3 of the 5 UTIs caused by CgH occurred in Montréal during week 7, and CgH did not appear again in Montréal after week 11. In California, CgA was present more frequently between October 1999 and February 2000 and dropped by 39% between the 2 sampling periods (14). CgB and CgD occurred exclusively in the second phase of the California study (Figure 5, panel B). Other clonal groups appeared throughout the year, although they often clustered by week. CgC was present during both data collection periods in California and caused UTIs throughout 2006 in Montréal. No clonal group members were identified during the summer in Montréal. However, this period corresponded to a decrease in the number of UTI cases at the student health services because of lower summer university enrollment (see total *E. coli* UTI by week, Figure 5).

Discussion

This study confirms the presence of drug-resistant, genetically related, and, in some cases, temporally clustered *E. coli* clonal groups (CgH, CgI, CgC, and CgA) that caused community-acquired UTIs in unrelated women in 2 locations and at different times. Drug resistance did not differ considerably between the 2 study sites, nor did the overall percentage of UTI caused by clonal groups: 4% (95% CI 0.10–0.18) in Montréal and 16% (95% CI 0.13–0.20) in California. Two clonal groups (CgA and CgC) were identified in both study locations, indicating widespread dissemination. These clonal groups shared common serogroups, PFGE patterns, drug-susceptibility profiles, MLST patterns, and phylogenetic groups. CgA isolates identified in Montréal did not show the same degree of genetic homogeneity as CgA isolates identified in the original California studies (11,14). CgA has also been
recognized in many other locations and may represent a lineage that has been spreading over a longer period than other more genetically homogenous clonal groups identified (6,11,14,29). CgC members isolated from both study locations showed similar PFGE patterns, as well as common serotypes, MLST patterns, and phylogenetic groups, which suggest that these isolates are likely related. The fully susceptible nature of the CgC group and the similar drug resistance levels at the 2 study sites suggest that drug resistance or pressure may not have contributed to its selection and dissemination.

Of the 4 clonal groups, 3 showed resistance to ≥1 antimicrobial drugs. Most worrisome was CgI, which was resistant to ciprofloxacin and TMP-SMZ, drugs commonly used to treat patients with UTIs. Two members of CgI were resistant to 5 drugs. Identification of CgI serotype O25:H4 is also important because this serogroup and its drug resistance profile have been identified in a recent report on an emerging CTX-M type ESBL-producing *E. coli* (serotype O25:H4 and ST131) found worldwide (30). A possible link between the O25:H4 *E. coli* clonal group identified in Montréal and this emerging ESBL-producing *E. coli* clonal group should be investigated.

Temporal clustering (Figure 5) of these clonal groups from the 2 study sites was observed. Clonal groups tended to be identified in women on the same day and week or in adjacent weeks; CgH in Montréal and CgA in California followed this pattern. However, many of the clusters caused by these clonal groups did occur sporadically across the entire study period. The observed correlation between increased incidence of total *E. coli* UTIs and increased incidence of clonal group–associated UTIs may be a function of having sufficient numbers of UTIs to be able to detect these clonal groups of *E. coli*. However, underlying fluctuations in community-wide dynamics of these *E. coli* clonal groups (in a human or environmental reservoir) may influence the overall number of clinical infections.

One strength of our study is the ability to directly estimate the proportion of UTIs caused by each clonal group in the study communities. Because the study included all consecutive UTI specimens from a defined population and all *E. coli* were cultured and analyzed, it was possible to produce unbiased estimates of these proportions. Laboratory-based studies may overestimate prevalence of drug resistance, which in turn may bias the estimated proportion of clonal groups detected when specimens from recurrent, relapse, or complicated UTIs are disproportionately represented in the study samples.

One limitation of our study is the lack of epidemiologic data on possible *E. coli* transmission routes. Lack of epidemiologic information makes it impossible to determine what specific risk factors led groups of women to become infected with indistinguishable strains of *E. coli*. Therefore, detection of a specific transmission route (e.g., foodborne) could not be directly addressed in this study. However, an earlier study, on the basis of epidemiologic data, has implicated frequent consumption of chicken and pork in the development of drug-resistant UTIs (31). Also, limited reproducibility of the ERIC2 PCR may have contributed to an underestimation of the number of clonal groups, particularly those clonal groups with only a few members (32). However, additional genotypic and phenotypic analyses applied to these isolates contributed to the valid classification of these clonal groups.
Genetic homogeneity of the clonal groups identified in this study (CgH, CgC, and CgL), in addition to similar observations from other reports (6,10,17), suggests that these clonal groups are circulating in humans, most probably as part of the intestinal reservoir, and that they contribute to a sizable fraction of UTIs in the community. However, the degree of relatedness within each clonal group varied. For example, certain clonal groups (notably CgH) were highly clustered in time and showed indistinguishable genetic and other characteristics, which suggests local and recent transmission. Other clonal groups showed more diversity (e.g., CgA), possibly reflecting long-term, endemic transmission.

These results suggest 3 competing or coincident questions. First, do local, punctuated epidemics of specific strains or clonal groups occur as observed in this and earlier studies (6,10,33)? Second, do these clonal groups belong to a set of fairly conserved endemic clonal groups that are adapted for persistent and predominant colonization of the intestinal tract, and which have spread widely in human communities over varying periods of time (6,10–14,29,33,34)? Third, a combination of the first and second questions, are there periodic (epidemic) introductions of E. coli clonal groups in a community by an external source followed by endemic transmission? Already some evidence has indicated that animal-based foods or retail meats may contribute to the spread of these clonal groups (19–21). The number of infections, timing, and diverse locations in which these clonal groups are found argues against the possibility that person-to-person or household transmission contributes to our findings. However, limited local spread by these routes by certain clonal groups cannot be ruled out (35–38).

Positive and negative implications are associated with our results. One positive implication is that identification of lineages or clonal groups of E. coli that cause a sizeable fraction of community-acquired UTIs or extraintestinal infections may contribute to rational development of therapies and prevention strategies targeted toward these lineages. One negative implication is that tracing transmission routes and understanding the dynamics of these E. coli in external reservoirs and in human populations will be difficult and may impede possible control efforts, although ongoing attempts are under way to screen retail meats as a potential reservoir.

Annual incidence of UTIs and other community-acquired extraintestinal infections is high, in the millions, worldwide. Although each clonal group may account for a small fraction of all UTIs in a community, the high incidence of these infections implies that these clonal groups may contribute substantially to the overall extent of extraintestinal infections caused by E. coli. Furthermore, these clonal groups contribute, not only to uncomplicated infections such as cystitis, but also to severe infections such as pyelonephritis and septicemia (13,39,40). At a minimum, 10%–20% of these infections may be caused by 1 of a small set of extraintestinal pathogenic E. coli clonal groups, which are commonly resistant to ≥1 drugs. These facts point to the public health importance of understanding these E. coli lineages and their dynamics in the community and possible environmental reservoirs.

This study was supported by a New Investigator Award from the Canadian Association of Gastroenterology, Canadian Institutes of Health Research, and Nycomed International and by a Clinical, Evaluative and Public Health Research Award from the McGill University Health Centre, Research Institute.

Dr Manges is an assistant professor in the Department of Epidemiology, Biostatistics and Occupational Health at McGill University in Montréal. Her research interests include infectious disease and molecular epidemiology and the relationship between food safety and human extraintestinal infections.

References

1. Russo TA, Johnson JR. Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect. 2003;5:449–56. DOI: 10.1016/S1286-4579(03)00049-2
2. Foxman B, Geiger AM, Palin K, Gillespie B, Koopman JS. First-time urinary tract infection and sexual behavior. Epidemiology. 1995;6:162–8. DOI: 10.1097/00001648-199503000-00013
3. Remis RS, Gurwth MJ, Gurwth D, Hargrett-Bean NT, Layde PM. Risk factors for urinary tract infection. Am J Epidemiol. 1987;126:685–94.
4. Zhanel GG, Karlowskya JA, Harding GK, Carrie A, Mazzulli T, Low DE, et al. A Canadian national surveillance study of urinary tract isolates from outpatients: comparison of the activities of trimethoprim-sulfamethoxazole, amoxicillin, mecillinam, nitrofurantoin, and ciprofloxacin. Antimicrob Agents Chemother. 2000;44:1089–92. DOI: 10.1128/AAC.44.4.1089-1092.2000
5. Karlowskya JA, Kelly LJ, Thornberry C, Jones ME, Sahm DF. Trends in antimicrobial resistance among urinary tract infection isolates of Escherichia coli from female outpatients in the United States. Antimicrob Agents Chemother. 2002;46:2540–5. DOI: 10.1128/AAC.46.8.2540-2545.2002
6. Phillips I, Eykyn S, King A, Gransden WR, Rowe B, Frost JA, et al. Epidemic multiresistant Escherichia coli infection in West Lambeth Health District. Lancet. 1988;1:1038–41. DOI: 10.1016/S0140-6736(88)91853-3
7. Johnson JR, Stell AL, O’Bryan TT, Kuskowski M, Nowicki B, Johnson C, et al. Global molecular epidemiology of the O15:K52:H1 extraintestinal pathogenic Escherichia coli clonal group: evidence of distribution beyond Europe. J Clin Microbiol. 2002;40:1913–23. DOI: 10.1128/JCM.40.6.1913-1923.2002
8. Prats G, Navarro F, Mirelis B, Dalmau D, Margall N, Coll P, et al. Escherichia coli serotype O15:K52:H1 as a uropathogenic clone. J Clin Microbiol. 2000;38:201–9.
9. Olesen B, Kolmos HJ, Orskov F, Orskov I. Cluster of multiresistant Escherichia coli O78:H10 in Greater Copenhagen. Scand J Infect Dis. 1994;26:406–10. DOI: 10.3109/0036554940008613
10. Pitout JD, Gregson DB, Church DL, Elsayed S, Laupland KB. Community-wide outbreaks of clonally related CTX-M-14 beta-lactamase-producing Escherichia coli strains in the Calgary Health Region. J Clin Microbiol. 2005;43:2844–9. DOI: 10.1128/JCM.43.6.2844-2849.2005
11. Manges AR, Johnson JR, Foxman B, O’Bryan TT, Fullerton KE, Riley LW. Widespread distribution of urinary tract infections caused by a multidrug-resistant *Escherichia coli* clonal group. N Engl J Med. 2001;345:1007–13. DOI: 10.1056/NEJMoa011265

12. Burman WJ, Breese PE, Murray BE, Singh KV, Batal HA, MacKenzie TD, et al. Conventional and molecular epidemiology of trimethoprim-sulfamethoxazole resistance among urinary *Escherichia coli* isolates. Am J Med. 2003;115:358–64. DOI: 10.1016/S0002-9343(03)00372-3

13. Johnson JR, Manges AR, O’Bryan TT, Riley LW. A disseminated multidrug-resistant clonal group of uropathogenic *Escherichia coli* in pyelonephritis. Lancet. 2002;359:2249–51. DOI: 10.1016/S0140-6736(02)09264-4

14. Manges AR, Natarajan P, Solberg OD, Dietrich PS, Riley LW. The changing prevalence of drug-resistant *Escherichia coli* clonal groups in a community: evidence for community outbreaks of urinary tract infections. Epidemiol Infect. 2006;134:425–31. DOI: 10.1017/S0950268805005005

15. Coque TM, Novais A, Carattoli A, Poirel L, Pitout J, Peixe L, et al. Dissemination of clonally related *Escherichia coli* strains expressing extended-spectrum beta-lactamase CTX-M-15. Emerg Infect Dis. 2008;14:195–200.

16. Woodford N, Ward ME, Kaufmann ME, Turton J, Egan EJ, James D, et al. Community and hospital spread of *Escherichia coli* producing CTX-M-extended-spectrum beta-lactamases in the UK. J Antimicrob Chemother. 2004;54:735–43. DOI: 10.1093/jac/dkh424

17. Woodford N, Kaufmann ME, Karisik E, Hartley JW. Molecular epidemiology of multiresistant *Escherichia coli* isolates from community-onset urinary tract infections in Cornwall, England. J Antimicrob Chemother. 2007;59:106–9. DOI: 10.1093/jac/djk435

18. Health Protection Agency. Infections caused by ESBL-producing *Escherichia coli*. London: The Agency; 2007 Sep 24 [cited 2008 Jul 16]. Available from: http://www.hpa.org.uk/hpa/news/articles/press_releases/2007/070924_esbl.htm

19. Johnson JR, Kuskowski MA, Smith K, O’Bryan TT, Tatinis S. Antimicrobial-resistant and extraintestinal pathogenic *Escherichia coli* in retail foods. J Infect Dis. 2005;191:1040–9. DOI: 10.1086/428451

20. Johnson JR, Delavari P, O’Bryan TT, Smith KE, Tatinis S. Contamination of retail foods, particularly turkey, from community markets (Minnesota, 1999–2000) with antimicrobial-resistant and extraintestinal pathogenic *Escherichia coli*. Foodborne Pathog Dis. 2005;2:38–49. DOI: 10.1089/fpd.2005.2.38

21. Schroeder CM, White DG, Ge B, Zhang Y, McDermott PF, Ayers S, et al. Isolation of antimicrobial-resistant *Escherichia coli* from retail meats purchased in Greater Washington, DC, USA. Int J Food Microbiol. 2003;85:197–202. DOI: 10.1016/S0140-6736(03)00508-1

22. York MK, Baron EJ, Clarridge JE, Thompson RB, Weinstein MP. Multilaboratory validation of rapid spot tests for identification of *Escherichia coli*. J Clin Microbiol. 2000;38:3394–8.

23. National Committee for Clinical. Laboratory Standards. Disk diffusion. Supplemental tables. Report no. NCCLS M100–S10. Wayne (PA): The Committee; 2000.

24. Johnson JR, O’Bryan TT. Improved repetitive-element PCR fingerprinting for resolving pathogenic and nonpathogenic phylogenetic groups within *Escherichia coli*. Clin Diag Lab Immunol. 2000;7:265–73. DOI: 10.1128/CDLI.7.2.265-273.2000

25. Bender MB, Hedberg CW, Besser JM, Boxrud DJ, MacDonald KL, Osterholm MT. Surveillance for *Escherichia coli* O157:H7 infections in Minnesota by molecular subtyping. N Engl J Med. 1997;337:388–94. DOI: 10.1056/NEJM199708073370604

26. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacteria strain typing. J Clin Microbiol. 1995;33:2233–9.

27. Tartof SY, Solberg OD, Manges AR, Riley LW. Analysis of a uropathogenic *Escherichia coli* clonal group by multilocus sequence typing. J Clin Microbiol. 2005;43:5860–4. DOI: 10.1128/JCM.43.12.5860-5864.2005

28. Clermont O, Boncorasi S, Bingen E. Rapid and simple determination of the *Escherichia coli* phylogenetic group. Appl Environ Microbiol. 2000;66:4555–8. DOI: 10.1128/AEM.66.9.4555-4558.2000

29. Johnson JR, Murray AC, Kuskowski MA, Schubert S, Prere MF, Picard B, et al. Distribution and characteristics of *Escherichia coli* clonal group A. Emerg Infect Dis. 2005;11:141–5.

30. Nicolas-Chanoine MH, Blanco J, Leflon-Guibout V, Demarty R, Alonso MP, Canica MM, et al. Intercontinental emergence of *Escherichia coli* clone O25:H4–ST131 producing CTX-M-15. J Antimicrob Chemother. 2008;61:273–81. DOI: 10.1093/jac/dkm464

31. Manges AR, Smith SP, Lau BJ, Nuval CJ, Eisenberg JN, Dietrich PS, et al. Retail meat consumption and the acquisition of antimicrobial resistant *Escherichia coli* causing urinary tract infections: a case-control study. Foodborne Pathog Dis. 2007;4:419–31. DOI: 10.1089/fpd.2007.0026

32. Meacham KJ, Zhang L, Foxman B, Bauer RJ, Marrs CF. Evaluation of genotyping large numbers of *Escherichia coli* isolates by enterobacterial repetitive intergenic consensus-PCR. J Clin Microbiol. 2003;41:5224–6. DOI: 10.1128/JCM.41.11.5224-5226.2003

33. Warren RE, Doroshenko A, Carr R. Simultaneous bi-clonal outbreak of urinary infection with *E. coli* O25 with extended-spectrum β-lactamase CTX-M-15: community and hospital effects in two English Health Districts. Abstracts of the 14th European Congress of Clinical Microbiology and Infectious Diseases. Prague, Czech Republic. London: National Health Board; 2004. pp. 188–9.

34. Manges AR. Molecular epidemiology of acute, uncomplicated urinary tract infections in young women. Curr Infect Dis Rep. 2003;5:504–9. DOI: 10.1007/s11908-003-0095-6

35. Foxman B, Zhang L, Tallman P, Andrece BC, Geiger AM, Koopman JS, et al. Transmission of uropathogens between sex partners. J Infect Dis. 1997;175:989–92.

36. Johnson JR, Brown JJ, Carlino UB, Russo TA. Colonization with and acquisition of uropathogenic *Escherichia coli* as revealed by polymerase chain reaction-based detection. J Infect Dis. 1998;177:1120–4. DOI: 10.1086/513824

37. Johnson JR, Clabots C. Sharing of virulent *Escherichia coli* clones among household members of a woman with acute cystitis. Clin Infect Dis. 2006;43:e101–8. DOI: 10.1086/508541

38. Manges AR, Johnson JR, Riley LW. Intestinal population dynamics of UTI-causing *Escherichia coli* within heterosexual couples. Curr Issues Intest Microbiol. 2004;5:49–57.

39. Manges AR, Dietrich PS, Riley LW. Multidrug-resistant *Escherichia coli* clonal groups causing community-acquired pyelonephritis. Clin Infect Dis. 2004;38:329–34. DOI: 10.1086/380640

40. Manges AR, Perdreau-Remington F, Solberg O, Manges AR. Molecular epidemiology of acute, uncomplicated urinary tract infections in young women. Curr Infect Dis Rep. 2003;5:504–9. DOI: 10.1007/s11908-003-0095-6

41. All material published in Emerging Infectious Diseases is in the public domain and may be used and reprinted without special permission; proper citation, however, is required.
Appendix Table

Characteristics of clonal isolates of *Escherichia coli* from women with urinary tract infections, Berkeley, California, USA, 1999–2001

ID no.	Genotype*	O serogroup	MLST†	Phy‡	Date of infection	CIP	CEP	NIT	TMP-SMZ
3	A				1999 Oct 11	0	0	0	1
34	A	O17/O77			1999 Oct 18	0	0	0	0
38	A	O11			1999 Oct 18	0	0	0	1
44	A	O77	ST69		1999 Oct 19	0	0	0	1
46	A	O11	ST69	D	1999 Oct 19	0	0	0	1
102	A	O11	ST69		1999 Oct 29	0	0	0	1
120	A				1999 Nov 3	0	0	0	1
135	A				1999 Nov 4	0	0	0	1
203	A	O11			1999 Nov 16	0	0	0	1
220	A	O77	ST69		1999 Nov 17	0	0	0	1
264	A				1999 Nov 29	0	0	0	1
283	A	O77	ST69		1999 Nov 30	0	0	0	1
294	A	O11	ST69		1999 Dec 1	0	0	0	1
323	A	O11	ST69		1999 Dec 6	0	0	0	1
325	A				1999 Dec 6	0	0	0	0
354	A				1999 Dec 9	0	0	0	1
363	A				1999 Dec 11	0	0	0	1
383	A	O11			1999 Dec 16	0	0	0	1
403	A	O11	ST69		2000 Jan 7	0	0	0	1
431	A	O11	ST69		2000 Jan 18	0	0	0	1
470	A	O77	ST69		2000 Jan 25	0	0	0	1
476	A				2000 Jan 25	0	0	0	1
477	A	O11	ST69		2000 Jan 25	0	0	0	1
Number	Type	Code	Date	Value 1	Value 2	Value 3	Value 4		
--------	------	------	------------	---------	---------	---------	---------		
486	A	O11	2000 Jan 27	0	0	0	1		
490	A	O11	2000 Jan 27	0	0	0	1		
1663	A	Mixed	2000 Oct 16	0	0	0	1		
1683	A		2000 Oct 19	0	0	0	0		
1757	A		2000 Nov 6	0	0	0	0		
1792	A	O11	2000 Nov 14	0	0	0	1		
1868	A		2000 Dec 1	0	0	0	0		
2013	A	O11	2001 Jan 12	0	0	0	1		
2058	A	O11	2001 Jan 22	0	0	0	1		
1664	B	O2	2000 Oct 17	0	0	0	0		
1697	B	O6	ST73	B2	2000 Oct 23	0	0	0	
1699	B	O6	ST73	B2	2000 Oct 23	0	0	0	
1715	B	O6	ST73	B2	2000 Oct 25	0	0	0	
1756	B	O2	ST73	B2	2000 Nov 4	0	0	0	
1768	B	O6	ST73	B2	2000 Nov 8	0	0	0	
1814	B	O2	ST73	B2	2000 Nov 20	0	0	0	
2042	B	O6	ST73	B2	2001 Jan 19	0	0	0	
316	C	O1	ST95	B2	1999 Dec 3	0	0	0	
374	C	O18	ST95	B2	1999 Dec 13	0	0	0	
410	C	O1	ST95	B2	2000 Jan 11	0	0	0	
448	C	O18	ST95	B2	2000 Jan 19	0	0	0	
458	C	O1	ST95	B2	2000 Jan 21	0	0	0	
500	C	O1	ST95	B2	2000 Jan 31	0	0	0	
1642	C	O1	ST95	B2	2000 Oct 12	0	0	0	
1643	C	O18	ST95	B2	2000 Oct 12	0	0	0	
1688	C	O1	ST95	B2	2000 Oct 20	0	0	0	
1897	C	O2	ST95	B2	2000 Dec 5	0	0	0	
1996	C	O1	ST95	B2	2001 Jan 9	0	0	0	
2018	C	O1	ST95	B2	2001 Jan 16	0	0	0	
Year	Week	O	ST	B	Date	0	1	2	
------	------	-----	----	----	---------------	---	---	---	
1758	D	O6	ST73	B2	2000 Nov 6	0	0	0	
1789	D	O6	ST73	B2	2000 Nov 14	0	1	0	
1790	D	O6	ST73	B2	2000 Nov 14	0	0	1	
1793	D	O83	ST73	B2	2000 Nov 14	0	0	0	
1827	D	O6			2000 Nov 22	0	0	0	
1900	D	O6			2000 Dec 5	0	0	0	
1923	D	O6	ST73	B2	2000 Dec 11	0	0	0	
1994	D	O6			2001 Jan 8	0	0	0	
2056	D	O6	ST73	B2	2001 Jan 22	0	0	0	
1979	E	O82	ST420	D	2001 Jan 3	0	0	0	
2062	E	O82			2001 Jan 22	0	0	0	
61	F	O4:5W	ST12 complex	B2	1999 Oct 23	0	0	0	
228	F	O4			1999 Nov 18	0	1	2	
1694	F	Mixed			2000 Oct 23	0	0	0	
2077	F	O4	ST12 complex	B2	2001 Jan 25	0	0	0	
1702	G	O102,130			2000 Oct 24	1	1	0	
1893	G	O102,130			2000 Dec 5	1	1	0	
1991	G	O102,130	ST405	D	2001 Jan 8	1	1	0	

* Determined by pulsed-field gel electrophoresis.
†MLST, multilocus sequence typing, according to Tartof et al. (27). Sequence types clonal Group A were also reported in this reference.
‡Phy, phylogenetic group, determined by multiplex PCR (28). Clonal group F isolates 61 (no ST match) and 2077 (ST493) belong to the sequence type 12 complex. Clonal group A isolates have been confirmed to belong to phylogenetic group D; therefore, only 1 representative clonal group A isolate was subjected to phylogenetic testing.
§0, sensitive; 1, resistant, according to Clinical and Laboratory Standards Institute interpretative criteria (23). CIP, ciprofloxacin; CEP, cephalothin; NIT, nitrofurantoin; TMP-SMZ, trimethoprim-sulfamethoxazole.