Severity of gastric mucosal atrophy affects the healing speed of post-endoscopic submucosal dissection ulcers

Taketo Otsuka, Mitsushige Sugimoto, Hiromitsu Ban, Toshiro Nakata, Masaki Murata, Atsushi Nishida, Osamu Inatomi, Shigeki Bamba, Akira Andoh

DOI: 10.4253/wjge.v10.i5.83
ISSN 1948-5190 (online)
Manuscript source: Invited manuscript
Correspondence to: Mitsushige Sugimoto, MD, PhD, Associate Professor, Division of Digestive Endoscopy, Shiga University of Medical Science Hospital, Seta Tsukinowa-cho, Otsu 520-2192, Japan. sugimo@belle.shiga-med.ac.jp
Telephone: +81-77-5482618
Fax: +81-77-5482618
Received: January 30, 2018
Peer-review started: January 31, 2018
First decision: February 27, 2018
Revised: March 4, 2018
Accepted: March 20, 2018
Article in press: March 20, 2018
Published online: May 16, 2018

Abstract

AIM
To investigate factors associated with the healing of endoscopic submucosal dissection (ESD)-induced ulcers.

METHODS
We enrolled 132 patients with gastric tumors scheduled for ESD. Following ESD, patients were treated with daily lansoprazole 30 mg or vonoprazan 20 mg. Ulcer size was endoscopically measured on the day after ESD and at 4 and 8 wk. The gastric mucosa was endoscopically graded according to the Kyoto gastritis scoring system. We assessed the number of patients with and without a 90% reduction in ulcer area at 4 wk post-ESD and scar formation at 8 wk, and looked for risk factors for slower healing.

RESULTS
The mean size of gastric tumors and post-ESD ulcers was 17.4 ± 12.1 mm and 32.9 ± 13.0 mm. The mean
reduction rates in ulcer area were 90.4% ± 0.8% at 4 wk and 99.8% ± 0.1% at 8 wk. The reduction rate was associated with the Kyoto grade of gastric atrophy at 4 wk (A0: 97.9% ± 0.6%, A1: 93.4% ± 4.1%, and A2: 89.7% ± 1.0%, respectively). In multivariate analysis, the factor predicting 90% reduction at 4 wk was gastric atrophy (Odds ratio: 5.678, 95%CI: 1.190-27.085, \(P = 0.029 \)).

CONCLUSION
The healing speed of post-ESD ulcers was associated with the degree of gastric mucosal atrophy, and *Helicobacter pylori* eradication therapy is required to perform at younger age.

Key words: *Helicobacter pylori*; Gastric mucosal/AB; Endoscopic submucosal dissection; Gastric ulcer

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: It is important to investigate factors influencing the healing speed of endoscopic submucosal dissection (ESD)-induced ulcers to prevent gastrointestinal bleeding. Although previous studies have looked at many factors related to ESD-induced ulcer healing, such as location of the tumor, submucosal fibrosis, initial ulcer size, diabetes, and method of gastric acid suppression, this report showed that the severity of gastric atrophy is possible factor to affect speed of ESD-induced ulcer healing. Therefore, *Helicobacter pylori* (*H. pylori*) eradication therapy is required to perform at younger age before progression of gastric mucosal atrophy to prevent development of *H. pylori*-related diseases and bleeding from ESD-induced ulcer.

INTRODUCTION
The efficacies of endoscopic submucosal dissection (ESD) and surgical gastrectomy for early-stage gastric cancer are generally similar[31]. ESD, being less invasive, is the first-line treatment for early-stage gastric cancer. ESD allows en bloc resection and is associated with a lower recurrence rate than endoscopic mucosal resection (EMR)[2,3].

Gastrointestinal bleeding from ESD-induced ulceration is a common complication[4-7]. Factors associated with an increased risk of post-ESD gastrointestinal bleeding include the size, location, and histology of the gastric cancer; kinds of gastric acid suppressant; patient use of dialysis; and long procedure time[4-7]. The risk of bleeding is reduced by endoscopic coagulation of exposed vessels at the base of ESD-induced ulcers and potent acid inhibition over the first 24 h post-treatment[4-7]. When ESD is performed for gastric cancer, proton pump inhibitors (PPIs) are used to treat ESD-induced ulcers[7]. However, PPIs may not suppress gastric acid secretion over 24 h, especially at night. Administration is required over several days to maximize gastric acid inhibition. More recently, interindividual genetic variations (e.g., CYP2C19 genotype)[8,9] have been linked to different metabolism rates of PPIs. Vonoprazan, a potassium-competitive acid blocker (P-CAB) with more potent and sustained acid inhibition than PPIs, has been approved in Japan[10-12]. Although vonoprazan inhibits gastric H⁺/K⁺-ATPase similarly to PPIs, its mechanism of acid inhibition involves inhibition of H⁺, K⁺-ATPase by binding reversibly and competitively with K⁺[13]. It remains unclear whether vonoprazan is associated with improved ulcer healing speed and prevention of post-ESD bleeding, due to the low statistical power of the most recent studies[13,14].

Previous studies have looked at many factors related to ESD-induced ulcer healing, such as location of the tumor[15], submucosal fibrosis[16], initial ulcer size[17,18], diabetes[18], coagulation abnormality[18], electrocoagulation during ESD[18], and method of gastric acid suppression[19].

Concurrent *Helicobacter pylori* (*H. pylori*) infection has been found to influence the speed of peptic ulcer healing[20,21]. However, it is unclear whether current *H. pylori* infection and eradication therapy affect the healing of ESD-induced ulcers[22,23]. In addition, there may be an association with the severity of gastritis/gastric atrophy and post-ESD ulcer healing[22,24].

Rapid healing of ESD-induced ulcers is key to the prevention of delayed bleeding. We investigated factors that might be associated with healing of post-ESD ulcers, including *H. pylori* status, profile of the gastric tumor, kinds of acid inhibitory drugs, and severity of gastritis (e.g., gastric atrophy and intestinal metaplasia).

MATERIALS AND METHODS

Patients
We enrolled 132 Japanese patients who underwent ESD for clinical early-stage gastric cancer and adenoma between March 2013 and October 2016 at our institution. Approval for the study protocol was given in advance by the Institutional Review Board of the Shiga University of Medicine Science (Number 27-36). This trial was registered in the University Hospital Medical Information Network, UMIN000018188.

ESD was performed if cases met the following criteria of early-stage gastric cancer and gastric adenoma according to the Union for International Cancer Control/American Joint Committee on Cancer stages: (1) Intramucosal intestinal-type neoplasm without ulceration, regardless of tumor size; (2) intramucosal...
intestine-type cancer with ulceration, ≤ 3 cm; (3) intestinal-type cancer invading the submucosa < 500 μm from the muscularis mucosa, ≤ 3 cm in size; and (4) intramucosal diffuse-type cancer without ulceration, ≤ 2 cm. Exclusion criteria were patients with advanced-stage gastric cancer, patients who refuse follow-up endoscopy at both 4 and 8 wk after ESD treatment and patients with lack of informed consent.

Although severity of anemia and oxygenation were expected to affect the healing speed of ESD-induced ulcer, there were no patients with severe anemia of less than 10 g/mL or hypoxemia.

Study protocol
For this study, we enrolled patients who had undergone ESD for resection of gastric tumor and provided blood samples for an anti-H. pylori IgG serological testing and CYP2C19 genotyping. The endoscopic severity of gastritis was characterized by the Kyoto classification[25]. According to the Kyoto classification of gastritis, patients are scored according to atrophy (None: A0, atrophic patterns with a margin between the non-atrophic fundic mucosa and atrophic mucosa located in the lesser curvature of the stomach: A1, and atrophic patterns, whose margin does not cross the lesser curvature: A2), intestinal metaplasia (none: IM0, within antrum: IM1, and up to corpus: IM2), hypertrophy of gastric folds (negative: H0, positive: H1), and diffuse redness (negative: DR0, mild: DR1, severe: DR2)[25].

ESD was performed with a single-channel magnifying endoscope (GIF-H290Z or GIF-H260Z; Olympus, Tokyo, Japan). We used a fixed-length disc-tipped knife (Dual knife®, KD-650L/Q; Olympus, Tokyo, Japan) or an insulated-tip diathermic knife (IT knife 2®, KD-611L, Olympus, Tokyo, Japan) and applied electric current using an electrosurgical generator (VIO300D®; ERBE Elektromedizin GmbH, Tubingen, Germany). Visible vessels were heat-coagulated using hemostatic forceps (FD-412LR®; Olympus, Tokyo, Japan). After ESD, 73.5% of patients were dosed with lansoprazole 30 mg and 26.5% were dosed with vonoprazan 20 mg (Table 1) for 8 wk.

The major and minor axes of ESD-induced ulcers were endoscopically measured the day after ESD by each subject as belonging to one of the following four genotype groups: extensive metabolizers (EMs, *1/ *1), intermediate metabolizers (IMs; *1/ *2 or *1/ *3), or poor metabolizers (PMs; *2/ *2, *2/ *3 or *3/ *3).

Statistical analysis
Age, ESD procedure time and ESD-induced ulcer area are expressed as mean ± SD. The healing rates of ulcers were calculated as (1-ulcer area/ulcer area at Day 1). Procedure time for lesions in the lower third of the stomach (47.5 ± 3.2 min) was significantly shorter than those for the middle and upper thirds [vs middle (85.7 ± 6.6 min), P = 0.001, vs upper (131.3 ± 17.9 min), P < 0.001, respectively]. The initial ulcer area in the lower third (456.4 ± 265.2 mm²) was significantly smaller than that of the middle third (822.0 ± 922.2 mm², P = 0.008).

After ESD, mean ESD-induced ulcer areas at 4 and 8 wk were 71.3 ± 135.6 mm² and 2.8 ± 15.6 mm², respectively, and mean healing rates were 90.4% ± 0.8% at 4 wk and 99.8% ± 0.1% at 8 wk (Figures 1A and 2A). At 8 wk, mean healing rate in the H. pylori-positive group (99.7% ± 0.1%) was significantly lower than that in the negative group (99.9% ± 0.0%, P = 0.035). There were no significant differences between mean healing rates for lansoprazole and vonoprazan treatment at 4 and 8 wk (Figures 1B and C, 2B and C).

Healing rate was associated with the severity of gastric atrophy at 4 wk (A0: 97.9% ± 0.6%, A1: 93.4% ± 4.1%, and A2: 89.7% ± 1.0%, respectively).

In patients with severe gastric atrophy, the healing
rate was significantly lower than that in patients with mild or no atrophy (A0 + A1) (P < 0.001 and P = 0.010) (Figures 1D and 2E). In addition, at 4 wk, the mean healing rate in the lower third (92.8% ± 1.2%) was significantly delayed compared to the upper two-thirds (83.7% ± 5.3%, P = 0.013) (Figure 1E and 2F). After 8 wk, ESD-induced ulcers were scarred in 85.7% (12/14) in the upper third, 89.2% (58/65) of the middle third, and 83.3% (40/48) of the lower third (P = 0.657) of the stomach. There was no significant association of healing rates at 4 wk with CYP2C19 genotypes (Figure 2D).

Factors affecting ESD-induced ulcer healing

We investigated the healing rate of ESD-induced ulcers by setting up over 90% of ESD-induced ulcer area at 4 wk and 100% at 8 wk. ESD-induced ulcers with ≥ 90% healing at 4 wk were associated with absence of atrophy (P = 0.010), depth of gastric tumor (P = 0.004), and procedure time (P = 0.026) (Table 2). The mean procedure time in the ≥ 90% healing group was significantly shorter than that in the < 90% healing group (65.6 ± 41.1 min vs 89.7 ± 64.0 min, P = 0.026). The prevalence of patients with open-type atrophic gastritis in the ≥ 90% healing group was 78.0% (64/82), which was significantly lower than that in the < 90% healing group (96.0%, 43/45, P = 0.01).

In achievement of scar formation at 8 wk, the rates were associated with gender (P = 0.021) and age (P = 0.047), but not gastritis or tumor-related factors (Table 2).

In the univariate analysis to identify possible factors related to achievement of 90% healing at 4 wk, healing was associated with gastric atrophy (OR = 6.047, 95%CI: 1.334-27.403, P = 0.019), procedure time (OR = 1.009, 95%CI: 1.002-1.017, P = 0.018) and initial ESD-induced ulcer size (OR = 0.001, 95%CI: 1.000-1.001, P = 0.032) (Table 3). At 8 wk, gender and initial ESD-induced ulcer size significantly correlated with the achievement of scarring at 8 wk (P = 0.021 and P = 0.013, respectively) (Table 3).

In the multivariate analysis including gender, H. pylori infection, endoscopic severity of atrophy, tumor location, mean procedure time, and mean initial ESD-induced ulcer size, the factor associated with 90% healing at 4 wk was gastric atrophy (OR = 5.678, 95%CI: 1.190-27.085, P = 0.029) (Table 4). The factors associated with scarring at 8 wk were gender (female, OR = 4.438, 95%CI: 1.253-15.724, P = 0.021) and initial ESD-induced ulcer size (1.001, 1.000-1.002, P = 0.023) (Table 4).

ESD-related adverse events

Two patients (1.5%) experienced delayed bleeding with tarry stool and only one patient received transfusion treatment after ESD treatment. Although the prevalence of patients received anti-coagulants was 16.7% and no cases with hematologically abnormal coagulation ability were observed (Table 1), intake of aspirin of non-steroidal anti-inflammatory drug did not increase incidence of gastric bleeding after ESD. There were no other major ESD-related adverse events.

DISCUSSION

The healing speed of ESD-induced ulcers may be a...
Table 2 Characteristics of patients who achieved early healing of artificial ulcer area after endoscopic submucosal dissection

Characteristic	Reduction rate over 90% at 4 wk	Reduction rate 100% at 8 wk				
	Achieved (n = 82)	Not achieved (n = 45)	P value	Achieved (n = 110)	Not achieved (n = 16)	P value
Age (yr)	70.9 ± 9.3	71.2 ± 7.3	0.831	70.4 ± 8.9	74.1 ± 6.2	0.047
Gender (male/female)	62/20 (75.6%/24.4%)	33/12 (73.3%/26.7%)	0.777	86/24 (78.2%/21.8%)	8/8 (50.0%/50.0%)	0.021
H. pylori (positive/negative)	42/40 (51.2%/48.8%)	24/21 (53.3%/46.7%)	0.82	54/36 (49.1%/50.9%)	12/4 (75.0%/25.0%)	0.035
Anti-coagulants	13 (15.9%)	8 (17.8%)	0.78	16 (14.5%)	4 (25.0%)	0.231
PPI or PCAB (post-ESD)	60/22 (73.2%/26.8%)	32/13 (71.1%/28.9%)	0.804	82/28 (74.5%/25.5%)	14/2 (87.5%/12.5%)	0.210
CYP2C19 type (EM/IM/PM)	27/28/15 (38.6%/40/21.4)	12/20/7 (30.8/51.3/17.9)	0.522	(35.9/19.1)	4/9/1	0.249

Characteristic	Reduction rate over 90% at 4 wk	Reduction rate 100% at 8 wk				
	Achieved (n = 82)	Not achieved (n = 45)	P value	Achieved (n = 110)	Not achieved (n = 16)	P value
Age (yr)	70.9 ± 9.3	71.2 ± 7.3	0.831	70.4 ± 8.9	74.1 ± 6.2	0.047

EM: Extensive metabolizer; ESD: Endoscopic submucosal dissection; IM: Intermediate metabolizer; PCAB: Potassium competitive acid blocker; PM: Poor metabolizer.

Table 3 Univariate analysis of factors preventing healing of ulcers after endoscopic submucosal dissection

Variable	Reduction rate over 90% at 4 wk	Reduction rate 100% at 8 wk		
	Not achieved (n = 45)	P value	Not achieved (n = 16)	P value
Age (yr)	1.064 (0.963-1.048)	0.841	1.058 (0.987-1.135)	0.113
Gender (female vs male)	1.127 (0.491-2.588)	0.777	3.583 (1.218-10.545)	0.021
Helicobacter pylori	1.088 (0.525-2.255)	0.820	3.111 (0.945-10.244)	0.053
Lansoprazole vs vonoprazan	1.108 (0.492-2.488)	0.804	0.418 (0.089-1.956)	0.210
Anti-coagulants	1.148 (0.436-3.018)	0.780	1.958 (0.561-6.832)	0.231
CYP2C19 type (EM vs IM/PM)	1.084 (0.635-1.850)	0.768	0.921 (0.420-2.020)	0.838
Atrophy (Kyoto A0+Al/Kyoto A2)	6.047 (1.334-27.403)	0.010	3.132 (0.390-25.163)	0.233
Tumor located in upper and middle third (vs lower third)	0.465 (0.211-1.026)	0.055	1.361 (0.471-3.934)	0.568
Mean procedure time (min)	1.009 (1.002-1.017)	0.018	1.001 (0.991-1.011)	0.871
Mean resected ulcer area (mm²)	1.001 (1.000-1.001)	0.032	1.001 (1.000-1.001)	0.013

EM: Extensive metabolizer; IM: Intermediate metabolizer; PM: Poor metabolizer.

Table 4 Multivariate analysis of factors preventing healing of ulcers after endoscopic submucosal dissection

Variable	Reduction rate over 90% at 4 wk	Reduction rate 100% at 8 wk		
	Not achieved (n = 45)	P value	Not achieved (n = 16)	P value
Gender (male vs female)	1.833 (0.715-4.698)	0.207	4.438 (1.253-15.724)	0.021
Helicobacter pylori	1.012 (0.463-2.213)	0.976	3.340 (0.866-12.885)	0.080
Atrophy (Kyoto A0+Al/Kyoto A2)	5.678 (1.190-27.085)	0.029	2.764 (0.309-24.711)	0.363
Tumor located in upper and middle third (vs lower third)	0.698 (0.283-1.724)	0.436	1.848 (0.493-6.933)	0.362
Mean procedure time (min)	1.007 (0.997-1.017)	0.194	0.998 (0.982-1.015)	0.850
Mean resected ulcer area (mm²)	1.000 (1.000-1.001)	0.443	1.001 (1.000-1.002)	0.023

key factor in preventing ESD-related bleeding. In this study, we investigated possible risk factors associated with healing of ESD-induced ulcers and found that of all possible factors, severe gastric atrophy at 4 wk post-ESD and initial ulcer size at 8 wk were independent risk factors in multivariate analysis. However, we found no significant association of healing of ESD-induced ulcers and tumor location[15], initial ulcer size[17,18], coagulation abnormality[19], electrocoagulation during ESD[18], or kind of gastric acid suppressant[19]. Because the healing rate of ESD-induced ulcers was affected by tumor size, post-ESD ulcer size and severity of gastritis (e.g., gastric atrophy), attention should be paid to the incidence of complications (i.e., bleeding and perforation) in patients with severe gastric atrophy and a large size of gastric tumor.

In this study, we focused on the influence of the severity of gastric atrophy on the healing rate of ESD-
induced ulcers. Previously, Fujiwara et al.[24] reported improved healing at 8 wk post-ESD for patients with severe atrophic gastritis when treated concomitantly with a PPI and rebamipide. In this study, at 4 wk after ESD, we revealed that severe gastric atrophy, especially of the A2 type according to the Kyoto classification, slowed healing speed. Kakushima et al.[23] failed to show a significant association between the severity of gastric atrophy and ESD-induced ulcer healing with administration with omeprazole and sucralfate for 8 wk post-ESD; our study also did not demonstrate significant differences at 8 wk post-ESD. At 8 wk, mean reduction rates were 99.8% ± 0.1% and ESD-induced ulcers were scarred in 83.3% (110/132). We therefore hypothesize that the severity of gastric atrophy may influence healing of ESD-induced ulcers at 4 wk, but not at 8 wk.

Intestinal metaplasia is often observed in patients

![Figure 1](image_url)

Figure 1 After endoscopic submucosal dissection, endoscopic submucosal dissection, mean endoscopic submucosal dissection-induced ulcer areas at 4 and 8 wk in all patients (A), between \textit{Helicobacter pylori}-positive patients and \textit{Helicobacter pylori}-negative patients (B), between lansoprazole and vonoprazan (C), among patients with no atrophy, mild atrophy and severe atrophy (D), and among different locations of tumor (E). ESD: endoscopic submucosal dissection; \textit{H. pylori}: \textit{Helicobacter pylori}.
with severe gastric atrophy and is a well-known risk factor for gastric cancer, similar to severe gastric atrophy alone. The prevalence of intestinal metaplasia in *H. pylori*-positive patients is 57% in Japanese aged approximately 70 years.\(^{26}\) Although we saw no significant association between the severity of intestinal metaplasia and ulcer healing speed in this study, Chen *et al.*\(^{27}\) reported that patients with intestinal metaplasia had a higher healing rate of gastric ulcers than those without intestinal metaplasia, suggesting that patients with severe gastric atrophy accompanied by intestinal metaplasia should be considered as likely candidates for ESD-related complication, due to delayed ulcer healing.

In general, peptic ulcer healing has been correlated with intragastric pH, \(^{28}\) *H. pylori* infection,\(^{29}\) gastric motility,\(^{29}\) microcirculation in gastric mucosa,\(^{30-32}\) and...
gastric mucosal levels of growth factors[33,34] and prostaglandins (PGs)[35]. The aggressive factors induced gastric mucosal injury resulting in loss of mucosal barrier can be quickly healed if adequate supply of PGE2, epidermal growth factor and tumor growth factor (TGF) α takes place. Although it is unclear whether peptic ulcers and ESD-induced ulcers share a similar healing mechanism, because severity of gastric mucosal atrophy reduced microcirculation in gastric mucosa and gastric mucosal levels of prostaglandin and growth factors, resulted that advanced gastric atrophy perturbs the process of ulcer healing in the presence of these above factors.

Association with intragastric pH and speed of post-ESD ulcer healing

Vonoprazan has a longer half-life (7.7 h) than PPIs, due to its slow dissociation from H’/K’-ATPase[36]. In addition, vonoprazan inhibits H’/K’-ATPase activity with 400-fold greater potency than lansoprazole at pH 6.6[37]. Therefore, use of vonoprazan for treatment of ESD-induced ulcers is expected to confer an advantage over the conventional regimen with a PPI. This is despite the finding of Kagawa et al[38], who reported that the rates of ESD-related ulcer healing were 96.0% ± 6.7% at 6 wk with vonoprazan and 94.7% ± 11.6% at 8 wk with PPI, despite the fact the post-ESD bleeding incidence in the vonoprazan group (1.3%) was less than that in the PPI group (10.0%, P = 0.01). In a prospective randomized controlled trial, the rate of scar formation attained with vonoprazan at 8 wk was significantly higher than that for esomeprazole (94.9% vs 78.0%, P = 0.049), and in a multivariate analysis, only vonoprazan was correlated with scar formation (OR = 6.33; 95%CI: 1.21-33.20)[39]. However, although we have two kinds of clinical pathways scheduled to use lansoprazole or vonoprazan after ESD treatment for gastric tumors and investigated to analyze the healing speed of ulcer after ESD by use of only the two kinds of acid inhibitory drugs, lansoprazole and vonoprazan, there was no significant difference between vonoprazan and lansoprazole at 4 wk and 8 wk after ESD in this study. Given that one factor associated with healing of ESD-induced ulcers at 8 wk in multivariate analysis was initial ulcer size, this discrepancy may be due to differences in the size of lesions. Although potent acid inhibition is required to heal ESD-induced ulcers, 90% reduction in ESD-induced ulcers was achieved at 28 d, irrespective of acid inhibitors. It is important to investigate whether the kind of acid inhibitor influences the speed of artificial ulcer reduction in an earlier phase (i.e., within 2 wk).

Limitations

Several limitations of this study warrant mention. First, the sample size is not large. Second, we did not gather data regarding the reduction rate at 2 wk post-ESD. In this study, most ESD-induced ulcers had already healed by 4 wk post-ESD, which means evaluation at an earlier phase is required. Third, although we investigated the influence of CYP2C19 genotype, which impacts the pharmacodynamics of PPI, on the healing of ulcers, we did not clarify whether the CYP3A4/5 genotype, which is related to vonoprazan-dependent pharmacodynamics, influenced healing[38]. Forth, although minerals (e.g., Zn) and vitamins (e.g., Vitamin C) may affect the healing speed of ulcer after ESD, unfortunately, we have no data of minerals and vitamins in all patients[39,40].

In conclusions, we conducted a study to investigate factors influencing the healing speed of ESD-induced ulcers. Healing speed was affected by the severity of gastric atrophy, but not by H. pylori status, kinds of acid inhibitory drugs, or CYP2C19 genotype. These results suggest that eradication of H. pylori can be carried out at any time in terms of ulcer healing and that PPI or vonoprazan treatment for ESD-induced ulcers can be administered at the standard dose irrespective of CYP2C19 genotype.
Research conclusions

The healing speed of ESD-induced ulcers was affected by the severity of gastric atrophy, but not by H. pylori status, kinds of acid inhibitory drugs, or CYP2C19 genotype. Patients with severe gastric atrophy accompanied by intestinal metaplasia should be considered as likely candidates for ESD-related complication, due to delayed ulcer healing. Therefore, H. pylori eradication therapy is required to perform at younger age before progression of gastric mucosal atrophy to prevent development of H. pylori-related diseases and bleeding from ESD-induced ulcer.

Research perspectives

Eradication of H. pylori can be carried out at any time in terms of ulcer healing and that PPI or vonoprazan treatment for ESD-induced ulcers can be administered at the standard dose irrespective of healing and that PPI or vonoprazan treatment for ESD-induced ulcer.

REFERENCES

1 Uedo N, Iishi H, Tatsuta M, Ishihara R, Higashino K, Takeuchi Y, Imanaka K, Yamada T, Yamamoto S, Yamamoto S, Tsukuma H, Ishiguro S. Long-term outcomes after mucosal resection for early gastric cancer. Gastric Cancer 2006; 9: 88-92 [PMID: 16767363 DOI: 10.1007/s10120-005-0357-0]

2 Tanabe S, Ishido K, Higuchi K, Sasaki T, Katada C, Azuma M, Naruke A, Kim M, Koizumi W. Long-term outcomes of endoscopic submucosal dissection for early gastric cancer: a retrospective comparison with conventional endoscopic resection in a single center. Gastric Cancer 2014; 17: 130-136 [PMID: 23576197 DOI: 10.1007/s10120-013-0343-2]

3 Ono H, Yao K, Fujishiro M, Oda I, Nimura S, Yahagi N, Iishi H, Oka M, Ajioka Y, Ichinose M, Matsu T. Guidelines for endoscopic submucosal dissection for early gastric cancer: a prospective comparison with conventional endoscopic resection in a single center. Digest Endosc 2016; 28: 3-15 [PMID: 26234303 DOI: 10.1111/den.12518]

4 Higashiyama M, Oka S, Tanaka S, Sanomura Y, Imagawa H, Shishido T, Yoshida S, Chaya K. Risk factors for bleeding after endoscopic submucosal dissection of gastric epithelial neoplasm. Digest Endosc 2011; 23: 290-295 [PMID: 21951088 DOI: 10.1111/j.1443-1661.2011.01515.x]

5 Kagawa T, Ishikawa H, Ichikawa S, Muraoka S, Sasaki K, Sakakihara I, Izunuki K, Yamamoto K, Takahashi S, Tanaka S, Matsuura M, Hasui T, Wato M, Inaba T. Vonoprazan prevents bleeding from endoscopic submucosal dissection-induced gastric ulcers. Aliment Pharmacol Ther 2016; 44: 583-591 [PMID: 27464849 DOI: 10.1111/apt.13747]

6 Takizawa K, Oda I, Gotoda T, Yokoi C, Matsuda T, Saito Y, Saito D, Ono H. Routine coagulation of visible vessels may prevent delayed bleeding after endoscopic submucosal dissection—an analysis of risk factors. Endoscopy 2008; 40: 179-183 [PMID: 18322872 DOI: 10.1055/s-2007-995530]

7 Yang Z, Wu Q, Liu Z, Wu K, Fan D. Proton pump inhibitors versus histamine-2-receptor antagonists for the management of iatrogenic gastric ulcer after endoscopic mucosal resection or endoscopic submucosal dissection: a meta-analysis of randomized trials. Digestion 2011; 84: 315-320 [PMID: 22075541 DOI: 10.1159/000331338]

8 Shirai N, Furuta T, Xiao F, Kajimura M, Hanai H, Ohashi K, Ishizaki T. Comparison of lansoprazole and famotidine for gastric acid inhibition during the daytime and night-time in different CYP2C19 genotype groups. Aliment Pharmacol Ther 2002; 16: 837-846 [PMID: 11929404]

9 Sugimoto M, Furuta T, Shirai N, Kajimura M, Hishida A, Sakurai M, Ohashi K, Ishizaki T. Different dosage regimens of rabeprazole for nocturnal gastric acid inhibition in relation to cytochrome P450 2C19 genotype status. Clin Pharmacol Ther 2004; 76: 290-301 [PMID: 15470328]

10 Ashida K, Sakurai Y, Hori T, Kudou K, Nishimura A, Hiramatsu N, Umegaki E, Ikawai K. Randomised clinical trial: vonoprazan, a novel potassium-competitive acid blocker, vs. lansoprazole for the healing of erosive oesophagitis. Aliment Pharmacol Ther 2016; 43: 240-251 [PMID: 26595837 DOI: 10.1111/apt.13461]

11 Sakurai Y, Mori Y, Okamoto H, Nishimura A, Komura E, Araki T, Shiramoto M. Acid-inhibitory effects of vonoprazan 20 mg compared with esomprazole 20 mg or rabeprazole 10 mg in healthy adult male subjects—a randomised open-label crossover study. Aliment Pharmacol Ther 2015; 42: 719-730 [PMID: 26193978 DOI: 10.1111/apt.13325]

12 Kagami T, Sahara S, Ichikawa H, Uotani T, Yamade M, Sugimoto M, Hamaya Y, Iwaiumi M, Osawa S, Sugimoto K, Miyajima H, Furuta T. Potent acid inhibition by vonoprazan in comparison with esomprazole, with reference to CYP2C19 genotype. Aliment Pharmacol Ther 2016; 43: 1048-1059 [PMID: 26991399 DOI: 10.1111/apt.13588]

13 Andersson K, Carlsson E. Potassium-competitive acid blockade: a new therapeutic strategy in acid-related diseases. Pharmacol Ther 2005; 108: 294-307 [PMID: 16600224 DOI: 10.1016/j.pharmthera.2005.05.005]

14 Tsuchiya I, Kato Y, Tanida E, Masui Y, Kato S, Nakajima A, Izumi M. Effect of vonoprazan on the treatment of artificial gastric ulcers after endoscopic submucosal dissection: Prospective randomized controlled trial. Dig Endosc 2017; 29: 576-583 [PMID: 28267236 DOI: 10.1111/den.12857]

15 Yoshizawa Y, Sugimoto M, Sato Y, Sahara S, Ichikawa H, Kagami T, Hosoda Y, Kinmata M, Tamura S, Kobayashi Y, Osawa S, Sugimoto K, Miyajima H, Furuta T. Factors associated with healing of artificial ulcer after endoscopic submucosal dissection with reference to Helicobacter pylori infection, CYP2C19 genotype, and tumor location: Multicenter randomized trial. Digest Endosc 2016; 28: 162-172 [PMID: 26331711 DOI: 10.1111/den.12544]

16 Horikawa Y, Mimori N, Mizutamari H, Kato Y, Shimazu K, Sawaguchi M, Tawaraya S, Igarashi K, Okubo S. Proper muscle layer damage affects ulcer healing after gastric endoscopic submucosal dissection. Dig Endosc 2015; 27: 747-753 [PMID: 26043759 DOI: 10.1111/den.12501]

17 Oh TH, Jung HY, Choi KD, Lee GH, Song HJ, Choi KS, Chung JW, Byeon JS, Myung SJ, Yang SK, Kim HJ. Degree of healing and healing-associated factors of endoscopic submucosal dissection-induced ulcers after pantoprazole therapy for 4 weeks. Dig Dis Sci 2009; 54: 1494-1499 [PMID: 19005762 DOI: 10.1007/s10620-008-0506-5]

18 Lim JH, Kim SG, Choi J, Lim JP, Kim JS, Jung HC. Risk factors of delayed ulcer healing after gastric endoscopic submucosal dissection. Surg Endosc 2015; 29: 3666-3673 [PMID: 25740642 DOI: 10.1007/s00464-015-4223-9]

19 Maruoka D, Arai M, Kasamatsu S, Ishigami H, Taida T, Okimoto K, Saito K, Matsuura T, Nakagawa Y, Kato Y, Yokosuka O. Vonoprazan is superior to proton pump inhibitors in healing artificial ulcers of the stomach post-endoscopic submucosal dissection: A propensity score-matching analysis. Digest Endosc 2017; 29: 57-64 [PMID: 27492962 DOI: 10.1111/den.12705]

20 Labenz J, Börsch G. Evidence for the essential role of Helicobacter pylori in gastric ulcer disease. Gut 1994; 35: 19-22 [PMID: 8307443]

21 Satoh K, Yoshino J, Akamatsu T, Itou T, Kato M, Kamada T, Takagi A, Chiba T, Nomura S, Mizokami Y, Murakami K, Sakamoto C, Hiraihi H, Ichinose M, Uemura G, Noto H, Joh T, Miwa H, Sugano K, Shimosegawa T. Evidence-based clinical practice guidelines for peptic ulcer disease 2015. J Gastroenterol 2016; 51: 177-194 [PMID: 26879862 DOI: 10.1007/s00535-016-1166-4]
Gastric atrophy and ESD ulcer healing

22 Kim SG, Song HJ, Choi IJ, Cho WY, Lee JH, Keum B, Lee YC, Kim JG, Park SK, Park BJ, Jung HC; Korean College of Helicobacter. Helicobacter pylori eradication on iatrogenic ulcer by endoscopic resection of gastric tumour: a prospective, randomized, placebo-controlled multicentre trial. *Dig Liver Dis* 2013; 45: 385-389 [PMID: 23331044 DOI: 10.1016/j.dld.2012.12.009]

23 Kakushima N, Fujishiro M, Yahagi N, KodASHIMA S, Nakamura M, Omata M. Helicobacter pylori status and the extent of gastric atrophy do not affect ulcer healing after endoscopic submucosal dissection. *J Gastroen Hepatol* 2006; 21: 1586-1589 [PMID: 16928221 DOI: 10.1111/j.1440-1746.2006.04321.x]

24 Fujiiwara S, Morita Y, Toyonaga T, Kawakami F, Itoh T, Yoshida M, Kutsumi H, Azama T. A randomized controlled trial of rebamipide plus rabeprazole for the healing of artificial ulcers after endoscopic submucosal dissection. *J Gastroenterol* 2011; 46: 595-602 [PMID: 21359522 DOI: 10.1007/s00535-011-0372-3]

25 Sugimoto M, Ban H, Ichikawa H, Sahara S, Otsuka T, Inatomi O, Bamba S, Furuta T, Andoh A. Efficacy of the Kyoto Classification of Gastritis in Identifying Patients at High Risk for Gastric Cancer. *Intern Med* 2017; 56: 579-586 [PMID: 28321054 DOI: 10.2169/internalmedicine.56.7775]

26 Asaka M, Sugiyama T, Nobuta A, Kato M, Takeda H, Graham DY. Atrophic gastritis and intestinal metaplasia in Japan: results of a large multicenter study. *Helicobacter* 2001; 6: 294-299 [PMID: 11843961]

27 Chen LW, Chang LC, Hua CC, Hsieh BJ, Chen SW, Chien RN. Analyzing the influence of gastric intestinal metaplasia on gastric ulcer healing in Helicobacter pylori-infected patients without atrophic gastritis. *BMC Gastroenterol* 2017; 17: 1 [PMID: 28049442 DOI: 10.1186/s12876-016-0563-8]

28 Howden CW, Hunt RH. The relationship between suppression of acidity and gastric ulcer healing rates. *Aliment Pharmacol Ther* 1990; 4: 25-33 [PMID: 2151756]

29 Takeuchi K, Ueki S, Okabe S. Importance of gastric motility in the pathogenesis of indomethacin-induced gastric lesions in rats. *Dig Dis Sci* 1986; 31: 1114-1122 [PMID: 3463496]

30 Akimoto M, Hashimoto H, Shigemoto M, Maeda A, Yamashita K. Effects of antisecretory agents on angiogenesis during healing of gastric ulcers. *J Gastroenterol* 2005; 40: 685-689 [PMID: 16082584 DOI: 10.1007/s00535-005-1611-2]

31 Tsuchida T, Tsukamoto Y, Segawa K, Goto H, Hase S. Effects of cimetidine and omeprazole on angiogenesis in granulation tissue of acetic acid-induced gastric ulcers in rats. *Digestion* 1990; 47: 8-14 [PMID: 1705257]

32 Szabo S, Folkmann J, Vattay P, Morales RE, Pinkus GS, Kato K. Accelerated healing of duodenal ulcers by oral administration of a mutein of basic fibroblast growth factor in rats. *Gastroenterology* 1994; 106: 1106-1111 [PMID: 8143978]

33 Tarnawski A, Stachura J, Durbin T, Sarfeh IJ, Gergely H. Increased expression of epidermal growth factor receptor during gastric ulcer healing in rats. *Gastroenterology* 1992; 102: 695-698 [PMID: 1732139]

34 Konturek SJ. Role of growth factors in gastrointestinal protection and healing of peptic ulcers. *Gastroenterol Clin North Am* 1990; 19: 41-65 [PMID: 1970337]

35 Shigeta J, Takahashi S, Okabe S. Role of cyclooxygenase-2 in the healing of gastric ulcers in rats. *J Pharmacol Exp Ther* 1998; 286: 1383-1390 [PMID: 9732401]

36 Scott DR, Munson KB, Marcus EA, Lambrecht NW, Sachs G. The binding selectivity of vonoprazan (TAK-438) to the gastric H+, K+-ATPase. *Aliment Pharmacol Ther* 2015; 42: 1315-1326 [PMID: 26423447 DOI: 10.1111/apt.13414]

37 Hori Y, Imami S, Matsukawa J, Tsukimi Y, Nishida H, Arikawa Y, Hirase K, Kajino M, Inatomi N. 1-[5-(2-Fluorophenyl)-1-pyrrol-3-yl]-N-methylmethanamine monofumarate (TAK-438), a novel and potent potassium-competitive acid blocker for the treatment of acid-related diseases. *J Pharmacol Exp Ther* 2010; 335: 231-238 [PMID: 20624992 DOI: 10.1124/jpet.110.170274]

38 Sugimoto M, Ban H, Hira D, Kaniwa T, Otsuka T, Inatomi O, Bamba S, Terada T, Andoh A. Letter: CYP3A4/5 genotype status and outcome of vonoprazan-containing Helicobacter pylori eradication therapy in Japan. *Aliment Pharmacol Ther* 2017; 45: 1009-1010 [PMID: 28256012 DOI: 10.1111/apt.13959]

39 Yu C, Mei XT, Zheng YP, Xu DH. Gastroprotective effect of taurine zinc solid dispersions against absolute ethanol-induced gastric lesions is mediated by enhancement of antioxidative activity and endogenous PGE2 production and attenuation of NO production. *Eur J Pharmacol* 2014; 740: 329-336 [PMID: 25041839 DOI: 10.1016/j.ejphar.2014.07.014]

40 Owu DU, Obembe AO, Nwokocha CR, Edohoe IE, Osim EE. Gastric ulceration in diabetes mellitus: protective role of vitamin C. *ISRN Gastroenterol* 2012; 2012: 362805 [PMID: 22778975 DOI: 10.5402/2012/362805]

P- Reviewer: Bugaj AM, Dinc T, Li Y, Sun LM S- Editor: Wang XJ L- Editor: A E- Editor: Li D
