SUPPLEMENTAL DATA

SEXUAL DIMORPHISM IN THE LATE MIOCENE MIHIRUNG DROMORNIS STIRTONI (AVES: DROMORNITHIDAE) FROM THE ALCOOTA LOCAL FAUNA OF CENTRAL AUSTRALIA

WARREN D. HANDLEY,*1 ANUSUYA CHINSAMY,2 ADAM M. YATES,3 and TREVOR H. WORTHY1

1School of Biological Sciences, Flinders University, General Post Office Box 2100, Adelaide 5001, South Australia, warren.handley@flinders.edu.au; trevor.worthy@flinders.edu.au;
2Department of Biological Sciences, University of Cape Town, Private Bag X3, Rhodes Gift 7701, South Africa, anusuya.chinsamy-turan@uct.ac.za;
3Museums and Art Galleries of the Northern Territory, Museum of Central Australia, Post Office Box 831, Alice Springs 0871, Northern Territory, Australia, adamm.yates@nt.gov.au

* Corresponding author.

Journal of Vertebrate Paleontology
TABLE S1. *Dromornis stirtoni* femora, tibiotarsi and tarsometatarsi: Physical measurements vs. Inferred measurements derived from landmark coordinate data. Assessment of the accuracy of inferred measurements derived from landmark coordinate data compared with the corresponding physical measurements recovered from preserved fossil structures. Normality of distribution was tested by the Shapiro-Wilks test, where P-values (P) > 0.05 indicate data are normally distributed; One-way ANOVAs include comparisons where P-values (P) > 0.05 indicate no significant difference was found between the assessed data. **Abbreviations:** CV, coefficient of variation; mm, millimeters; SD, standard deviation.

Physical measurements vs. Corresponding inferred measurements	A. Femora	Trochlea metatarsi III width	Maximum length	Proximal width	Distal width	Condylus lateralis-collar	Condylus medialis-collar	
Summary statistics	Measured	Inferred	Measured	Inferred	Measured	Inferred	Measured	Inferred
n	15	15	33	33	18	18	17	17
Mean (SD) (mm)	400 (20.2)	416 (22.6)	165 (15.2)	169 (16.8)	198 (15.9)	200 (16.9)	365 (21.1)	374 (24.2)
Range (CV) (mm)	365-435 (5.1)	382-463 (5.4)	140-205 (9.2)	144-205 (9.9)	180-240 (8.1)	174-236 (8.5)	340-420 (5.8)	330-420 (6.5)
Distribution	Shapiro-Wilk W (P)	0.97 (0.88)	0.97 (0.88)	0.97 (0.42)	0.96 (0.296)	0.91 (0.08)	0.97 (0.73)	0.92 (0.12)
One-way ANOVA	Degrees of freedom	F statistic	P (same) > 0.05	4.273	0.048			
Proximal width: Measured vs. Inferred	29	0.965	0.329					
Distal width: Measured vs. Inferred	35	0.105	0.748					
Condylus lateralis-collar: Measured vs. Inferred	35	1.591	0.216					
Condylus medialis-collar: Measured vs. Inferred	33	1.765	0.193					

B. Tibiotarsi	Maximum length	Articular length	Proximal width	Distal width				
Summary statistics	Measured	Inferred	Measured	Inferred	Measured	Inferred	Measured	Inferred
n	10	10	14	14	9	9	13	13
Mean (SD) (mm)	798 (38.8)	880 (75.9)	733 (29.8)	821 (60.2)	224 (20.1)	243 (14.8)	153 (9.7)	156 (12.5)
Range (CV) (mm)	740-870 (4.9)	769-989 (8.6)	680-780 (4.1)	727-951 (7.3)	200-250 (8.9)	224-268 (6.1)	135-165 (6.3)	136-172 (7.9)
Distribution	Shapiro-Wilk W (P)	0.97 (0.85)	0.93 (0.39)	0.96 (0.63)	0.97 (0.86)	0.88 (0.17)	0.96 (0.76)	0.91 (0.19)
One-way ANOVA	Degrees of freedom	F statistic	P (same) > 0.05	19	9.394	**667E-03**		
Articular length: Measured vs. Inferred	27	23.98	**4.42E-05**					
Proximal width: Measured vs. Inferred	17	5.474	**0.033**					
Distal width: Measured vs. Inferred	25	0.447	0.510					

C. Tarsometatarsi	Maximum length	Proximal width	Distal width	Trochlea metatarsi III width				
Summary statistics	Measured	Inferred	Measured	Inferred	Measured	Inferred	Measured	Inferred
n	17	17	13	13	24	24	24	24
Mean (SD) (mm)	418 (30.9)	443 (36.2)	153 (13.4)	155 (15.1)	144 (12.1)	148 (11.9)	61 (5.5)	64 (5.9)
Range (CV) (mm)	360-480 (7.4)	374-506 (8.1)	125-175 (8.7)	128-180 (9.7)	125-170 (8.4)	130-174 (8.1)	54-72 (8.9)	54-75 (9.3)
Distribution	Shapiro-Wilk W (P)	0.99 (0.99)	0.96 (0.7)	0.96 (0.78)	0.98 (0.99)	0.93 (0.12)	0.95 (0.28)	0.94 (0.16)
One-way ANOVA	Degrees of freedom	F statistic	P (same) > 0.05	33	4.902	**0.034**		
Proximal width: Measured vs. Inferred	47	0.922	0.342					
Distal width: Measured vs. Inferred	25	0.128	0.724					
Trochlea metatarsi III width: Measured vs. Inferred	47	2.792	0.102					
TABLE S2. Summary statistics of the complete inferred measurement data sets for *Dromornis stirtoni*: \textbf{A}, femora (n = 34), \textbf{B}, tibiotarsi (n = 19) and \textbf{C}, tarsometatarsi (n = 29) including linear measurements that were derived from coordinates for landmarks that were estimated. Normality of distribution was tested by the Shapiro-Wilks test, where P-values (P) > 0.05 indicate data are normally distributed. \textbf{Abbreviations: CV}, coefficient of variation; \textbf{mm}, millimeters; \textbf{SD}, standard deviation; \textbf{Troc}, trochlea.

Complete inferred measurement data sets.	\textbf{A. Femora}	\textbf{B. Tibiotarsi}	\textbf{C. Tarsometatarsi}							
\textbf{Summary statistics}	Maximum length	Proximal width	Distal width	Condylius lateralis-collum	Condylius medialis-collum	Maximum length	Articular length	Proximal width	Distal width	Troc. metatarsi III width
Mean (SD) (mm)	411.9 (31.5)	169.5 (16.7)	196.8 (16.1)	371.8 (28.4)	335.8 (24.5)	894.7 (67.2)	832.8 (58.9)	242.8 (22.4)	154.26 (13.0)	132-172 (8.5)
Range (CV) (mm)	352-476 (7.7)	144-205 (9.8)	170-236 (8.2)	315-426 (7.6)	294-378 (7.3)	769-1007 (7.5)	727-951 (7.1)	201-293 (9.2)	132-172 (8.5)	132-172 (8.5)
Distribution	Shapiro-Wilk W (P)	0.983 (0.856)	0.961 (0.263)	0.957 (0.197)	0.987 (0.942)	0.959 (0.236)	0.970 (0.911)	0.979 (0.930)	0.971 (0.789)	0.934 (0.208)
\textbf{Summary statistics}	Maximum length	Proximal width	Distal width	Troc. metatarsi III width						
Mean (SD) (mm)	437.3 (38.3)	151.3 (14.6)	148.5 (11.9)	63.1 (5.9)						
Range (CV) (mm)	359-506 (8.8)	126-180 (9.6)	130-174 (8)	54-75 (9.4)						
Distribution	Shapiro-Wilk W (P)	0.949 (0.175)	0.971 (0.591)	0.962 (0.362)	0.946 (0.148)					
TABLE S3. A, assessment of four body mass estimation algorithms from Anderson et al. (1985), Dickison (2007), Campbell and Marcus (1992) and Field et al. (2013) using femora least-shaft circumference measurements for Dromornis stirtoni. B, assessment of two body mass estimation algorithms from Dickison (2007), and Campbell and Marcus (1992) using tibiotarsi least-shaft circumference measurements for D. stirtoni. C, estimated body mass for Aepyornis maximus using the algorithms of Campbell and Marcus (1992) for femora and tibiotarsi. Shaft circumference metrics for A. maximus are sourced from Monnier (1913:140) who published only the range of the femora and tibiotarsi shaft circumferences that were measured. Normality of distribution was tested by the Shapiro-Wilks test, where P-values (P) > 0.05 indicate data are normally distributed; One-way ANOVAs include Tukey’s pairwise comparisons where P-values (P) > 0.05 indicate the means of the assessed data are the same. Kruskal-Wallis test assessment of non-parametric data includes pairwise comparisons where P-values (P) > 0.05 indicate the means of the assessed data are the same.

Abbreviations: SD, standard deviation; CV, coefficient of variation; Ave. EBM, average estimated body mass; EBM, estimated body mass; No., number.

A. D. stirtoni estimated body mass: Femora least-shaft circumference measurements (n = 50)

Summary Statistics	Anderson et al.	Dickison	Campbell and Marcus	Field et al.	Ave. EBM (excl. Anderson)
Mean (Range) SD (kg)	305.5 (190.5-444.3) 60.2	477 (286-713.5) 101.4	501.5 (303.9-744.5) 104.5	491.1 (298.3-727.8) 101.9	489.9 (296.1-728.6) 102.6
Distribution					
Shapiro-Wilk W (P)	0.972 (0.289)	0.971 (0.263)	0.972 (0.269)	0.972 (0.272)	0.972 (0.268)

One-way ANOVA No.1: Tukey’s pairwise comparisons; Q below diagonal, P (mean = same > 0.05) above diagonal

Ave. EBM (excl. Anderson)	Anderson et al.	Dickison	Campbell and Marcus	Field et al.
Ave. EBM (excl. Anderson)	0.924	0.942	0.999	
Dickison	0.886	0.631	0.924	
Field et al.	0.801	1.687	0.958	
Field et al.	0.085	0.971	0.716	

B. D. stirtoni estimated body mass: Tibiotarsi least-shaft circumference measurements (n = 46)

Summary statistics	Campbell and Marcus	Dickison	Average EBM
Mean (Range) SD (kg)	477 (348.9-632.1) 80.3	483 (340.2-659.4) 90.5	480.1 (344.6-645.8) 85.4
Distribution			
Shapiro-Wilk W (P)	0.931 (0.009)	0.931 (0.009)	0.931 (0.009)

Non-parametric Kruskal-Wallis test for equal medians: P (mean = same > 0.05) above diagonal

Ave. EBM (excl. Anderson)	Campbell and Marcus	Dickison	Average EBM
Ave. EBM (excl. Anderson)	0.687	0.687	0.687
Dickison	1	0.687	
Average EBM	1	1	

C. Aepyornis maximus estimated body mass: Femora and tibiotarsi shaft circumference measurements

Element	Femora	Tibiotarsi
Median (Range) (kg)	527.9 (341.9-713.9)	360.6 (242.9-478.3)
TABLE S4: Published measured body mass (g) of Australian anseriforms and palaeognaths from the sources listed below. Livezey and Humphrey’s (1984:371) and Livezey’s (1993:196, 1996a:79, 1996b:420, 1997:55) “dimorphism ratio” (DR) of males (δ) to females (φ) is presented for each taxon for comparison with the DR returned in this study for *Dromornis stirtoni* calculated using the results for sex assigned tibiotarsi, and display, breeding and nesting behavior characteristics (see Table S5). Phylogeny follows Dickinson and Remsen (2013) except where indicated (*).

Neognathae	Family	Sub-Family	Tribe	Genus/species	δ (g) [n]	φ (g) [n]	DR δ/φ	Source
Anseriformes	Dromornithidae†			*Dromornis stirtoni* †	528400 [10]	451100 [9]	1.17:1	1
	Anseranatidae			*Anseranas semipalmata*	2766 [402]	2071 [359]	1.34:1	2
	Anatidae	Dendrocygninae		*Dendrocygna acuata*	866 [287]	732 [293]	1.18:1	2
				Dendrocygna eytoni	788 [63]	792 [65]	0.99:1	2
		Oxyurinae		*Biziura lobata* †	2398 [243]	1551 [292]	1.55:1	2
				Stictonetta naevosa †	969 [63]	842 [31]	1.15:1	2
				Malacorhynchus membranaceus †	404 [77]	344 [81]	1.17:1	2
	Anserinae			*Branta canadensis*	4078 [58]	3320 [45]	1.23:1	2
	Cercopside	Cereopsidis		*Cereopsis novaehollandiae*	4400 [14]	4290 [1]	1.03:1	2
				Cygnus atratus	6270 [247]	5100 [219]	1.23:1	2
		Anatinae	Anas castanea		683 [67]	593 [50]	1.15:1	2
				Anas gracilis	507 [210]	474 [138]	1.07:1	2
				Anas platyrhynchos	1735 [30]	1580 [19]	1.1:1	2
				Anas rhynchosits	667 [76]	665 [70]	1:1	2
				Anas superciliosa	1114 [131]	1025 [207]	1.09:1	2
				Aythya australis	902 [105]	838 [88]	1.08:1	2
				Tadorna tadornoides	1559 [67]	1291 [185]	1.21:1	2
				Tadorna radjah	934 [46]	839 [49]	1.11:1	2
				Chenonetta jubata	815 [45]	800 [26]	1.02:1	2
				Nettapus coromandelianus	403 [52]	380 [37]	1.06:1	2
				Nettapus pulchellus	310 [47]	304 [26]	1.02:1	2
Palaeognathae	Family	Sub-Family	Tribe	Genus/species	δ (g) [n]	φ (g) [n]	DR δ/φ	Source
Struthioniformes	Struthionidae			*Struthio camelus*	115000 [7]	100000 [7]	1.15:1	4
Rheiformes	Rheidae			*Rhea americana alboscertis*	28706 [4]	22507 [6]	1.28:1	4
Apterigiformes	Apterigidae			*Apterix australis*	2120 [15]	2540 [31]	0.83:1	3
				Apterix owenii	1135 [51]	1351 [41]	0.84:1	2
				Apterix haastii	1692 [12]	2418 [12]	0.7:1	3
Casuariiformes	Casuariidae			*Casuarius novaehollandiae*	137500 [2]	116800 [2]	1.17:1	2
		Dromaiinae		*Dromaius novaehollandiae*	31500 [11]	36900 [11]	0.85:1	4
Palaeognathae: New Zealand Moa	Family	Sub-Family	Tribe	Genus/species	δ (g) [n]	φ (g) [n]	DR δ/φ	Source
Dinornithiformes †	Dinornithidae			*Dinornis novaezealandiae* †	55800 [22]	109900 [49]	0.51:1	6
				Dinornis robustus †	84000 [27]	166000 [72]	0.51:1	6

Abbreviations: †, Extinct Order/family/species; *, phylogenetic relationships proposed by Worthy and Lee (2008); δ, male; φ, female; g, grams; n, number of specimens measured; DR δ/φ, dimorphism ratio–males/females; Vols., Volumes. **Sources:** 1, this study; 2, Marchant and Higgins, Vols. 1A and 1B (1990); 3, Dunning (2008); 4, Davies (2002); 5, Navarro et al. (2005); 6, Worthy et al. (2005).
TABLE 5S: Published display, breeding and nesting behavior characteristics of Australian anseriforms and palaeognaths for association with Livezey and Humphrey’s (1984:371) and Livezey’s (1993:196, 1996a:79, 1996b:420, 1997:55) “dimorphism ratio” (DR) results (see Table S4). Phylogeny follows Dickinson and Remsen Jr. (2013) except where indicated (*).

Family	Sub Family	Species	Monogamy	Display	Incubation	Parental care	Nest defence	Nest Type	Nest Loc.	
Anseranatidae		D. semipalmata	Lifelong	♂♀ (T)	♂♀ (♂+	♂♀ (♂+	♂♀ (♂+	Platform veg.	P	
Anatidae	Dendrocyginae	D. arcuata	Lifelong	♂♀ (Cryp)	♂♀ (♂+	♂♀ (♂+	♂♀ (♂+	No data	In reeds/Ground	P
		D. eytoni	Lifelong	♂♀ (Cryp)	♂♀ (♂+	♂♀ (♂+	♂♀ (♂+	No data	In grass/Ground	>D
Oxyurinae	Biziaria loba *		No	♂♂♂ (Lek)	♂♀ (♀+	♂♀ (♀+	♂♀ (♀+	Dense veg/Logs	P/O	
	Stictotena naevosa *		Seasonal +	♂♀ (Cryp)	♂♀ (♀+	♂♀ (♀+	♂♀ (♀+	Dense veg/Grassland	O	
	M. membranaceus *		Prob. Lifelong	♂♀ (♂+	♂♀ (♀+	♂♀ (♀+	♂♀ (♀+	Hollow trees	P/O	
Anserinae	Branca canadensis		Sustained	♂♀ (T)	♂♂♂ (♂+	♂♂♂ (♂+	♂♂♂ (♂+	Grassland/Ground	>D	
	C. novaehollandiae		Lifelong	♂♀ (T)	♂♂♂ (♂+	♂♂♂ (♂+	♂♂♂ (♂+	Grassland/Ground	>D	
	Cygnus atratus		Sustained	♂♀ (T)	♂♂♂ (♂+	♂♂♂ (♂+	♂♂♂ (♂+	Platform veg.	P/O	
Anatinae	Anas castanea		Lifelong	♂♀ (♂+	♂♀ (♂+	♂♀ (♂+	♂♀ (♂+	Hollow trees	P/O	
	Anas gracilis		Lifelong	♂♀ (♂+	♂♀ (♂+	♂♀ (♂+	♂♀ (♂+	Hollow trees	P/O	
	Anas platyrhynchos		Prob. Lifelong	♂♀ (♂+	♂♀ (♂+	♂♀ (♂+	♂♀ (♂+	Ground	P	
	Anas rhynchos		Probably	♂♀ (♂+	♂♀ (♂+	♂♀ (♂+	♂♀ (♂+	Concealed/Concealment	IP	
	Anas superciliosa		Probably	♂♀ (♂+	♂♀ (♂+	♂♀ (♂+	♂♀ (♂+	Hollow trees	D	
	Aythya australis		Seasonal	♂♂♂ (No lek)	♂♀ (♀+	♂♀ (♀+	♂♀ (♀+	No data	Dense veg.	O
	Tadorna tadornoides		Prob. Lifelong	♂♀ (T)	♂♂♂ (♂+	♂♂♂ (♂+	♂♂♂ (♂+	Hollow trees	P/O>/D	
	Tadorna radjah		Prob. Lifelong	♂♀ (T)	♂♂♂ (♂+	♂♂♂ (♂+	♂♂♂ (♂+	Hollow trees	P	
Anatinae Genera Incertae sedis	Chenonetta jubata		Sustained	♂♀ (♂+	♂♀ (♂+	♂♀ (♂+	♂♀ (♂+	Hollow trees	P/O	
	Nettapus pulchellus		Sustained	♂♀ (♂+	♂♀ (♂+	♂♀ (♂+	⿈♀ (♂+	Hollow trees	P/O	
	N. coromandelianus		Seasonal +	No data	⿈♀ (♂+	⿈♀ (♂+	⿈♀ (♂+	No data	Hollow trees	P/O
Struthionidae	Strathio camelus		None	⿈♀ (♂+	⿈♀ (♂+	⿈♀ (♂+	⿈♀ (♂+	Ground	>D	
Rheidae	Rheaa americana		None	⿈♀ (♂+	⿈♀ (♂+	⿈♀ (♂+	⿈♀ (♂+	Layer veg/Ground	>D	
	Rhea pennata		None	⿈♀ (♂+	⿈♀ (♂+	⿈♀ (♂+	⿈♀ (♂+	Layer veg/Ground	>D	
Apterygidae	Apteryx australis		Seasonal +	⿈♀ (Cryp)	⿈♀ (♂+	Weak	Concealment	Burrow/Hole	D	
	Apteryx ovienii		No data	⿈♀ (Cryp)	⿈♀ (♂+	Weak	Concealment	Burrow/Hole	D	
	Apteryx haasti		Sustained	⿈♀ (♂+	⿈♀ (♂+	Weak	Concealment	Burrow/Hole	D	
Casuariidae	Casuarius casuarius		None	⿈♀ (♂+	⿈♀ (♂+	⿈♀ (♂+	⿈♀ (♂+	Layer veg/Ground	>D	
	D. novaehollandiae		None	⿈♀ (♂+	⿈♀ (♂+	⿈♀ (♂+	⿈♀ (♂+	Layer veg/Ground	>D	

Abbreviations: ♂, male; ♀, female. **Monogamy:** Lifelong, predominately monogamous for life; Prob. Lifelong, probably lifelong monogamy; Seasonal +, generally seasonal, but some pairing maintained for multiple seasons; Sustained, generally lifelong monogamy, but some divorce/re-pairing observed. **Display:** T, triumph ceremony; ♂♂♂, multiple males display to unpaired female--female mate choice; ♂♀ (♂+), both sexes display, males more so. **Parental care/Nest defence:** ⿈♀ (♂+), both sexes provide, males more so; ⿈♀ (♂+), both sexes provide, females more so; ⿈♀ (♂+), male aggressive; ⿈♀ (♂+), female aggressive. **Nest type:** Ground, on ground level, often in a shallow depression; Veg, vegetation. **Nest Loc:** nest location with respect to body of water; D, distal from water (within 1200 metres); >D, distant to water (generally further than 1200 metres); O, over water; P, proximal to water; IP, in proximity of water (within 200 metres). **DR M/F:** Dimorphism ratio--males/females. **Vols., volumes.** *, phylogenetic relationships proposed by Worthy and Lee (2008). **Sources:** Marchant and Higgins, Vols. 1A and 1B (1990); Davies (2002); Kear, Vols. 1 and 2 (2005).
Anderson, J. F., A. Hall-Martin, and D. A. Russell. 1985. Long-bone circumference and weight in mammals, birds and dinosaurs. Journal of Zoology 207:53–61.

Campbell, K. E., Jr. and L. Marcus. 1992. The relationship of hindlimb bone dimensions to body weight in birds; pp. 395–412 in K. E. Campbell Jr. (ed.), Papers in Avian Paleontology Honoring Pierce Brodkorb. Natural History Museum of Los Angeles County, Sciences Series 36.

Davies, S. J. F. 2002. Bird Families of the World. Ratites and Tinamous: Tinamidae, Rheidae, Dromaiidae, Casuariidae, Apterygidae, Struthionidae. Oxford University Press, New York, 310 pp.

Dickinson, E. C., and J. V. Remsen Jr. (eds.). 2013. The Howard & Moore Complete Checklist of the Birds of the World. Fourth edition. Volume 1: Non-Passerines. Aves Press. Eastbourne, 461 pp.

Dickison, M. R. 2007. The allometry of giant flightless birds: Ph.D. dissertation. Duke University, Durham, North Carolina, 114 pp.

Dunning, J. B., Jr. 2008. CRC Handbook of Avian Body Masses. Second edition. CRC press. Taylor & Francis, Florida, 655 pp.

Field, D. J., C. Lynner, C. Brown, and S. A. Darroch. 2013. Skeletal correlates for body mass estimation in modern and fossil flying birds. PloS ONE 8:e82000. doi: 10.1371/journal.pone.0082000.

Kear, J. 2005. Bird Families of the World. Ducks, Geese and Swans. Volumes 1 and 2. Oxford University Press, Oxford, 1006 pp.

Livezey, B. C. 1993. Morphology of flightlessness in Chendytes, fossil seaducks (Anatidae: Mergini) of coastal California. Journal of Vertebrate Paleontology 13:185–199.

Livezey, B. C. 1996a. A phylogenetic analysis of modern pochards (Anatidae: Aythyini). Auk 113:74–93.

Livezey, B. C. 1996b. A phylogenetic analysis of geese and swans (Anseriformes: Anserinae), including selected fossil species. Systematic Biology 45:415–450.

Livezey, B. C. 1997. A phylogenetic analysis of modern sheldgeese and shelducks (Anatidae: Tadornini). Ibis 139:51–66.

Livezey, B. C., and P. S. Humphrey. 1984. Sexual dimorphism in continental steamer-ducks. Condor 86:368–377.

Marchant, S., and P. J. Higgins (coords.). 1990. Handbook of Australian, New Zealand and Antarctic Birds. Volumes 1A and 1B. Rattites to Ducks. Oxford University Press, Melbourne, 1400 pp.

Monnier, L. 1913. Paléontologie de Madagascar VII, les Aepyornis. Annales De Paléontologie 8:125–172.

Navarro, J. L., P. E. Vignolo, M. R. Demaría, N. O. Maceira, and M. B. Martella. 2005. Growth curves of farmed Greater Rheas (Rhea americana albeschens) from central Argentina. Archiv fur Geflugelkunde 69:90–93.
Worthy, T. H., and M. S. Lee. 2008. Affinities of Miocene waterfowl (Anatidae: *Manuherikia, Dunstanetta* and *Miotadorna*) from the St Bathans Fauna, New Zealand. Palaeontology 51:677–708.

Worthy, T. H., M. Bunce, A. Cooper, and P. Scofield. 2005. *Dinornis*-an insular oddity, a taxonomic conundrum reviewed. In J. A. Alcover, and P. Bover, (eds.) Proceedings of the International Symposium “Insular Vertebrate Evolution: the Palaeontological Approach”. Monografies de la Societat d’Història Natural de les Balears 12:377–390.