Two recent correspondences published in the Journal (1,2) labeled the MCF-7/ADR cell line—a multidrug-resistant (MDR) human breast cancer MCF-7 subline—as having a non-MCF-7 origin, which led to a change in the nomenclature of this cell line to NCI/ADR. We believe the original nomenclature of MCF-7/ADR should be retained.

Although the two MDR MCF-7 sublines (MCF-7/ADR and MCF-7 TH) used by the investigators whose work prompted the nomenclature change were independently established, they showed several genotypic and phenotypic similarities. Both contained a full-length functional caspase-3 protein (2), despite complete loss of this protein in the parental MCF-7 cells because of a 47-base-pair deletion in exon 3 of the CASP-3 gene (3). Interestingly, several features of the MCF-7/DOX subline established in our laboratory several years ago (4) were identical to those of the MCF-7/ADR and MCF-7 TH cells but different from those of the parental MCF-7 cells (5). For example, similar to MCF-7/ADR and MCF-7 TH cells, the MCF-7/DOX cells showed high expression levels of P-glycoprotein (P-gp) and of a protein cross-linking enzyme, tissue transglutaminase; they also contained the full-length caspase-3 protein (6). We thus sought to determine whether the development of drug resistance in MCF-7 cells represents selective selection and expansion of an inherently resistant...
clone in the parental MCF-7 cell population. We purchased MCF-7 cells from the American Type Culture Collection (lot 2015862; Manassas, VA) and treated them with doxorubicin at 1 μg/mL. More than 99% of the MCF-7 cells died within 1 week, but a few colonies (an average of two colonies per T-75 flask were observed to grow in the presence of doxorubicin) of cells survived about 3 weeks of continuous culture in the presence of the drug. We expanded these colonies and, to our surprise, the newly established MCF-7 cell subline (MCF-7/WT/DOX) exhibited several biochemical features similar to those of the MCF-7/DOX and MCF-7/ADR cells but different from those of the parental MCF-7 cells. The MCF-7/WT/DOX cells showed high expression levels of both P-gp and tissue transglutaminase and contained full-length functional caspase-3 protein (Fig. 1, A). Karyotypic analysis of the MCF-7, MCF-7/DOX, and MCF-7/WT/DOX cell lines revealed unique features that were highly conserved in the drug-resistant sublines but were quite distinct in the parental MCF-7 cells (5).

MCF-7 cells express a truncated isoform of caspase-3 transcript, whereas drug-resistant sublines express full-length caspase-3 transcript. Thus, we amplified the complementary DNA (cDNA) from MCF-7 and MCF-7/WT/DOX cells by polymerase chain reaction (PCR) using primers specific for full-length caspase-3 cDNA to further validate the presence of a drug-resistant clone in the parental MCF-7 cells. The resulting PCR products were analyzed for the presence of caspase-3 transcripts by agarose gel electrophoresis and ethidium bromide staining. The PCR products of the MCF-7 cells contained a predominant band corresponding to truncated caspase-3 transcript (Fig. 1, B); a minor band corresponding to full-length caspase-3 transcript became evident after many PCR cycles on the amplified cDNA (Fig. 1, B, arrow). The PCR-amplified products from the MCF-7/DOX cells showed only a single band, corresponding to the full-length caspase-3 transcript. These results confirmed the presence of one or more inherently resistant subclones in the parental MCF-7 cells that harbor the full-length CASP-3 gene and are likely to propagate into drug-resistant cell lines in the presence of MDR-related drugs. This possibility was further supported by our inability to establish any doxorubicin-resistant cell lines from two MCF-7 single-cell clones. These results appeared to be consistent with the findings that caspase-3-deficient MCF-7 cells, when reconstituted with caspase-3 cDNA, become more susceptible to chemotheraphy-induced apoptosis (6). It is likely that caspase-3-adequate MCF-7 subclones that propagate into drug-resistant sublines have additional pathways that confer selective resistance of these cells to chemotherapeutic agents. Despite their high resistance to doxorubicin, these cells are exquisitely sensitive to certain apoptosis-inducing agents. For example, Leoni et al. (7) observed that MCF-7/ADR cells were more sensitive to indanone-induced apoptosis than were the drug-sensitive MCF-7 cells. In our experience, the MCF-7/DOX cells were much more sensitive to a staurosporine-induced apoptosis than were the parental MCF-7 cells (5).

Our research has demonstrated that drug-resistant MCF-7 cell lines result from parental MCF-7 cells that harbor the full-length CASP-3 gene. In view of these results, we suggest that the original nomenclature of MCF-7/ADR for MCF-7-derived drug-resistant sublines be retained to reveal the fact that various clones in a given tumor population can be extremely diverse in terms of their genotype and phenotypic characteristics.

KAPIL MEHTA
ESWARAN DEVARAJAN
JACK CHEN
ASHA MULTANI
SEN PATHAK

REFERENCES

(1) Scudiero DA, Monks A, Sausville EA. Cell line designation change: multidrug-resistant cell line in the NCI anticancer screen. J Natl Cancer Inst 1998;90:862.
(2) Pirnia F, Breuleux M, Schneider E, Hochmeister M, Bates SE, Marti A, et al. Uncertain identity of doxorubicin-resistant MCF-7 cell lines expressing mutated p53. J Natl Cancer Inst 2000;92:1535–6.
(3) Janike RU, Sprengart ML, Wai MR, Porter AG. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 1998;273:9357–60.
(4) Mehta K. High levels of transglutaminase expression in doxorubicin-resistant human breast carcinoma cells. Int J Cancer 1994;58:400–6.
(5) Devarajan E, Chen J, Multani AS, Pathak S, Sahin AA, Mehta K. Human breast cancer MCF-7 cell line contains inherently drug-resistant subclones with distinct genotypic and phenotypic features. Int J Oncol 2002;20:913–20.
(6) Yang XH, Sladek TL, Liu X, Butler BR, Froelich CJ, Thor AD. Reconstitution of caspase-3 sensitizes MCF-7 breast cancer cells to doxorubicin- and etoposide-induced apoptosis. Cancer Res 2001;61:348–54.
(7) Leoni LM, Hame AM, Genini D, Shih H, Carrera CJ, Cottam HB, et al. Indanocine, a microtubule-binding indanone and a selective inducer of apoptosis in multidrug-resistant cancer cells. J Natl Cancer Inst 2000;92:217–4.

NOTES

Editor’s note: Dr. Scudiero declined to comment.

Fig. 1. Tissue transglutaminase (tTGase) and caspase-3 expression in MCF-7, MCF-7/WT/DOX, and MCF-7/DOX cell lines. A) tTGase and caspase-3 protein expression levels were examined by western blot analysis in the parental MCF-7 cells (purchased from American Type Culture Collection; lane 1), in drug-resistant MCF-7/WT/DOX cells (obtained by continuous culture of the parental MCF-7 cells in doxorubicin at 1 μg/mL; lane 2), and in MCF-7/DOX cells (obtained from Dr. Ken Cowan, National Cancer Institute; lane 3). B) Caspase-3 transcripts in MCF-7 cells (lane 1) and MCF-7/WT/DOX cells (lane 2), as determined after many polymerase chain reaction cycles of the complementary DNA from the respective cell lines. Arrow indicates the presence of full-length caspase-3 transcript in MCF-7 cells.
RESPONSE

We read with great interest the correspondence by Mehta et al. These authors propose the hypothesis that the various doxorubicin (ADR)-selected MCF-7 sublines may result from the selective expansion of inherently resistant subclones that contaminate the parental MCF-7 cell line and harbor the full-length CASP-3 gene. Although this theory is quite interesting, we have some caveats (1). Because the CASP-3 gene is deleted in parental MCF-7 (1), it is difficult to understand how this genotype could have been reverted in the hypothetically inherently resistant subclones (2). In our original description, we assessed the nonidentity of MCF-7 and MCF-7 TH by DNA fingerprinting (2). This method is more reliable than phenotypic karyotyping (3).

When they claim that an inherently resistant subclone contains functional caspase-3, Mehta et al. somehow contradict the finding that caspase-3 restores chemotherapy sensitivity in MCF-7 cells (3). Most importantly, Mehta et al. explain their hypothesis with a contamination of the parental MCF-7 cell line. Thus, we strongly caution against retaining the original nomenclature—MCF-7/ADR or MCF-7 TH—for these sublines of unknown origin. Good research cannot be performed with tools of uncertain identity.

FARZANEH PIRNIA
MARKUS M. BORNER

REFERENCES

(1) Janicke RU, Sprengart ML, Wati MR, Porter AG. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 1998;273:9357–60.

(2) Pirnia F, Breuleux M, Schneider E, Hochmeister M, Bates SE, Marti A, et al. Uncertain identity of doxorubicin-resistant MCF-7 cell lines expressing mutated p53. J Natl Cancer Inst 2000;92:1535–6.

(3) Yang XH, Sladek TL, Liu X, Butler BR, Froelich CJ, Thor AD. Reconstitution of caspase-3 sensitizes MCF-7 breast cancer cells to doxorubicin- and etoposide-induced apoptosis. Cancer Res 2001;61:348–54.

NOTES

Affiliation of authors: F. Pirnia, M. M. Borner, Institute of Medical Oncology, Inselspital, Bern, Switzerland.

Correspondence to: Markus M. Borner, M.D., University of Bern, Institute of Medical Oncology, Inselspital, CH-3010 Bern, Switzerland (e-mail: markus.borner@insel.ch).