Domain Organization of Long Autotransporter Signal Sequences

Jan A. Hiss and Gisbert Schneider
Johann Wolfgang Goethe-University, Chair for Chem- and Bioinformatics, Centre for Membrane Proteomics, Siesmayerstr. 70, D-60323 Frankfurt am Main, Germany. Email: hiss@bioinformatik.uni-frankfurt.de

Abstract: Bacterial autotransporters represent a diverse family of proteins that autonomously translocate across the inner membrane of Gram-negative bacteria via the Sec complex and across the outer bacterial membrane. They often possess exceptionally long N-terminal signal sequences. We analyzed 90 long signal sequences of bacterial autotransporters and members of the two-partner secretion pathway in silico and describe common domain organization found in 79 of these sequences. The domains are in agreement with previously published experimental data. Our algorithmic approach allows for the systematic identification of functionally different domains in long signal sequences.

Keywords: bacterial autotransporter, sequence analysis, pattern, protein targeting, signal peptide, protein trafficking
Introduction
Bacterial autotransporters translocate via the Sec complex across the inner membrane of Gram-negative bacteria and translocate themselves across the outer membrane. This is accomplished by a translocator domain at the C-terminus of the autotransporter which adopts a β-barrel fold within the outer membrane resembling a porin-like domain. The trimeric autotransporter consist of an N-terminal signal sequence, a central “passenger domain”, and a β-barrel forming translocation unit. The β-barrel domain is necessary for the secretion of the passenger domain and connected via an α-helical linker region. Bacterial autotransporters have been found in many Gram-negative bacteria and are often associated with virulence factors such as adhesion, biofilm formation, aggregation, invasion, and toxicity. For translocation across the inner bacterial membrane autotransporters possess N-terminal signal sequences. In 2007 Dautin and Bernstein reported around 10% of the known autotransporters to contain a signal sequence with more than 50 residues. These N-terminal signal sequences exhibit a tripartite organization (n, h, c) as described by von Heijne. According to this nomenclature, “n” refers to an N-terminal region of the signal peptide which varies in length and often contains charged residues. The “h” or core region is a hydrophobic stretch required for the interaction between the signal peptide and SRP. “c” refers to the signal peptidase cleavage site. Additionally they can be roughly divided into two domains: i) an N-terminal extension of about 25 residues, ii) a C-terminal part that resembles a signal peptide. This division is in two domains, where one is like a functional signal peptide and is strikingly similar to the “NtraC model” which has recently been introduced by the writers as a general model of long eukaryotic signal peptides.

Henderson et al reported at least 80 proteobacterial autotransporters with a signal sequence of at least 40 residues and published a list containing 46 sequences. The authors propose four different regions based on hydrophobic and charged residue distribution (N1,H1,N2,H2) and a C region (cleavage site) following the standard n, h, c organization of export signals according to von Heijne. Desvaux et al continued this approach and termed the N2 and H2 region the “extended signal peptide region” (ESPR). They propose that the ESPR may be important for additional functions besides targeting. In this report, we extend and formalize this approach by proposing a dual domain organization proposed by our algorithm.

Materials and Methods
We analyzed 16 autotransporters and two-partner secretion sequences published by Szabady et al and 35 further long signal sequences of bacterial autotransporters taken from Henderson et al. Two-partner secreted proteins are known to possess an N-terminal conserved region important for their secretion. Additionally we performed a sequence database search in UniProtKB/SwissProt Release 14.7 using the sequence retrieval system (SRS, Release 7.1.3). We searched for proteobacterial sequences with an annotated similarity to an autotransporter domain and a signal sequence of at least 40 residues, resulting in 56 sequences. Of those 56 sequences 39 were not considered in the work of Henderson et al and Szabady et al. From the sequences considered suitable by the work of Henderson et al Szabady et al and our own database search we assembled a dataset of 90 sequences. The signal peptidase cleavage sites were used as suggested in Henderson et al for the 39 sequences retrieved via SRS as annotated in SwissProt UniProtKB/SwissProt Release 14.7, respectively. The SwissProt database entries contain sequences with predicted or putative signal sequences.

The following sequences were omitted from our analysis due to minor sequence aberrations between the publications and the UniProtKB database entry: O32591, Q47692, Q54151 and Q8VSL2. The following to YP_001161762 orthologous sequences were omitted since they possess an identical signal sequence: YP_001719317, YP_001874066, Q1C309, Q1CMJ2 and Q665P5. When two database entries contained the identical sequences one entry was omitted and both accession numbers are given.

In total, 90 signal sequences encompassing more than 40 residues from bacterial autotransporters were analyzed in this study and in regards to their possible internal domain organization.

The 28 long signal sequences not associated with autotransporters were retrieved from the UniProtKB/SwissProt Release 14.7 using the Sequence Retrieval System (SRS, Release 7.1.3). We searched for
“non-potential” bacterial signal sequences with evidence at protein level and a length of at least 40 residues. All retrieved sequences contain the twin-arginine (TAT) signal which leads to export to the periplasm or extracellular space (Suppl. Table 1).

The 228 short bacterial signal peptides associated with autotransporters were retrieved from the UniProtKB/SwissProt Release 14.7 using SRS (Release 7.1.3). We searched for proteobacterial signal sequences with less than 40 residues that contain annotated similarities to known autotransporters (Suppl. Table 2).

The detection of the domains was performed using the NtraC algorithm, an algorithmic approach to identifying domains in long eukaryotic signal peptides based on secondary structure aspects. The NtraC model proposes one domain to be essential and sufficient for targeting while rendering the other domain free for additional functions. Here, “N” and “C” denote two potential domains: an N-terminal “N-domain” and a C-terminal “C-domain” predicted by the algorithm. The transition area between both domains is referred to as “tra”. The algorithm works on the complete signal peptide sequence and suggests the domain positions. The N- and C-domains contain targeting signals that are not detectable when the whole signal sequence is regarded as an entity as performed by current prediction software. Until recently six predicted domains have already been tested experimentally in vitro, from which five exhibit the predicted targeting function (Resch and Hiss in preparation).

Results and Discussion
We analyzed 90 long signal sequences of bacterial autotransporters and the two-partner secretion pathway in regards to their potential two-domain (NtraC) organization.

Of the 16 signal sequences collected in Szabady et al. 14 are predicted to have a two-domain organization (Table 1). Of the 46 autotransporter signal sequences collected in Henderson et al. 35 are not listed in Szabady et al. Of those 35 sequences 32 are predicted to have a two-domain organization (Table 1). Of the 39 sequences we found via SRS and which are not described in Henderson et al. or Szabady et al. 2005, 31 are predicted to have a two-domain organization.

In total, from 90 long signal sequences considered in this study 77 (86%) are predicted, by our algorithm, to be organized in two domains.

For two additional sequences (Q2J0N4, CAR56027) an NtraC organization is predicted which in the context of this work could be regarded as a false-positive: No C-domain with a targeting capacity was detected. For Q2J0N4 an N-terminal mTP is predicted by TargetP and for CAR56027 a signal anchor by SignalP. If these two sequences are included a total of 79 of 90 (88%) signal sequences are predicted to be organized in two domains.

The two-domain organization proposed by the algorithm is in agreement with the ESPR of Desvaux et al. and the conservation of the “N-terminal extension” reported by Szabady et al. within a margin of ±5 residues.

Szabady et al. further reported a conserved sequence pattern in the N-terminal extension of autotransporter and two-partner secretion systems signal peptides. This conservation is also present in 43 of 46 sequences compiled by Henderson et al. For the long signals sequences extracted via SRS, the conserved pattern is only present in three sequences (Table 1, no. 52–54). One of these three (no. 54, Q8CWC7) is a Pic variant of a different E. coli strain (Table 1, Nr. 4). The remaining 36 sequences found via SRS do not show the conserved sequence motif reported by Szabady et al. although they are annotated to contain a domain similar to autotransporters. This might argue for the sequences of Szabady et al. to form a group. Nevertheless, we found that the SRS sequences have the same domain structure in their long signal peptide as the sequences reported by Szabady et al. and Henderson et al. The N-terminal region of this group of autotransporters may have a different function not requiring this conserved motif pattern.

We want to highlight the case of the long signal peptide of EspP. EspP is an extracellular serine protease of E. coli which is divided into four subtypes α, β, γ and δ of which α and γ are proteolytically active. The long signal peptide of subtype EspPα contains the conserved sequence pattern reported by Szabady et al. and for which experimental results were published by Peterson et al. These authors showed that residues 23–55 can act as an independent targeting signal. In 2006 Peterson proposed the N-terminal extension of the signal

Bioinformatics and Biology Insights 2009:3
Table 1. NtraC analysis of 90 long bacterial signal peptides.

Nr.	Accession number¹	SP length²	NtraC³	N-domain⁴	C-domain	Predicted C-domain targeting	Organism
1	NP_052685	55	yes	1–26	27–55	gram–	E. coli²
2	AAC44731/ AAG37043	53	yes	1–17(1–35)	18–53(36–53)	gram–	E. coli²
3	CAA11507	52	yes	1–17	17–52	gram–	E. coli²
4	AAD23953	55	yes	1–15(16)	17–55	SP/SA⁹	E. coli¹⁰
5	CAA88252	56	no	–	–	–	S. flexneri
6	CAA46156	42	yes	1–26	27(28, 29)–42	gram–	E. coli¹¹
7	CAC14227	75	yes	1–40	41–75	gram–	Y. pestis
8	AAC43721	50	no	–	–	–	H. influenzae
9	CAC14202	62	yes	1–27(–44)	28–62	gram–	P. multocida
10	AAK68872/ AAK09243	51	yes	1–26	27–51	gram–	N. meningitidis
11	AAG01335	66	yes	1–27	28–66	gram–	X. oryzae
12	CAD12824/ AAA22974	71	yes	1–28(–44)	29–71	gram–	B. pertussis
13	CAI77662	70	yes	1–27	28–70	gram–	H. influenzae
14	AAM88788	62	yes	1–38	39–62	gram–	P. luminescens
15	NP_253231	53	yes	1–24	25–53	mtp, SP, gram+	P. aeruginosa
16	NP_252771	52	yes	1–23	24–52	gram–	P. aeruginosa
17	AAA20254	68	yes	1–26(mTP); 1–35	35–68	gram–	H. influenza
18	AAB96359	48	yes	1–15(1–25)	16–48(26–48)	gram–	M. catarrhalis
19	AAF40927	78	yes	1–43(1–50)	44–78(51–78)	gram–	N. meningitidis
20	AAF67320	54	yes	1–30	31–54	gram–	S. flexneri
21	AAG30168	49	yes	1–29	30–49	gram–	E. coli¹²
22	AAK00474	52	yes	1–33(1–36) (mTP,SP)	37–52	–	S. flexneri
23	AAK77860	69	yes	1–43	44–69	gram–	Y. enterocolitica
24	AAL18821	52	yes	1–15(1–29)	16–52(30–52)	gram–	E. coli¹³
25	AAL78284	67	yes	1–30(39)	31(40)–67	gram–	M. catarrhalis
26	AAQ22366	56	no	–	–	–	A. actinomycetemcomitans
27	CAA88252	56	no	–	–	–	S. flexneri
28	CAC14203	71	yes	1–26	27–71	gram–	P. multicoda
29	CAC14218	84	yes	1–27 (48)	28(49)–81	SP	A. ferrooxidans
30	CAC39286	52	yes	1–16 (29)	17(30)–52	gram–	E. coli¹⁴
Accession	Length	Lipid	Start	End	Identity	Species	
-----------	--------	-------	------	-----	----------	-----------------------	
CAC92482	69	yes	1–37(41)	38(42)–69	gram–	Y.pestis	
NP_274768	80	yes	1–48(49)mTP	49(50)–80	gram–	N.meningitis	
NP_308389	48	yes	1–15(24)(38)	16(25)(39)–48	mTP15, SA, SP	E.coli16	
NP_519008	72	yes	1–36(37)(39)	33(40)–72	gram–	R.solanacearu	
NP_519896	60	yes	1–30(–38)	31(–39)–60	gram–	R.solanacearu	
NP_522634	66	yes	1–33(34)(41)	34(35, 42)–66	gram–	R.solanacearu	
NP_636050	66	yes	1–43(55,56,58)	27(28)(31)(44)–66	gram–	X.campestris	
NP_807449	50	yes	1–32(39)	29(30)–50	SP, mTP	S.enterica	
YP_553065	57	yes	1–37(mTP)	30(–38)–57	gram–	B.xenovarans	
ZP_00033562	57	yes	1–28(29)	29(30)–57	gram–	B.fungorum	
ZP_00041732	67	yes	1–58(mTP)	30(33, 35)–67	SP	X.campestris	
ZP_00088699	49	yes	1–32(mTP)	18(29, 32, 33)–49	gram–	A.vinelandii	
ZP_00122019	77	yes	1–40	41(43, 48, 52, 53)–77	gram–	H.somnus	
YP_719000	69	yes	1–37	38(39, 44, 49)–69	SP	H.somnus	
ZP_00132251	69	yes	1–40	41(42, 43)–69	gram–	H.somnus	
AAC26634	52	no	–	–	–	E.coli17	
AAC74583	61	yes	1–29(40, mTP)	30(41, 42)–61	gram–	E.coli18	
AAD41751	54	yes	1–15(27, 28, 29)	16(28, 29, 30)–54	gram–	E.coli19	
AAF43424	52	yes	1–32	33–52	gram–	E.coli20	
AAG53941	65	yes	1–38 (mTP)	23(29, 30, 39)–65	gram–	B.bronchiseptica	
AAP33781	52	yes	1–16	17–52	gramp+, SP	E.coli21	
Q84GK0	56	yes	1–16	17–56	gram+	E.coli22	
Q7BC4	52	yes	1–16(17)	18–52	gram+, SP	S.flexneri	
Q8CWC7	55	yes	1–16	17–55	SA	E.coli23	
YP_840389	41	yes	1–24(SA, mTP)	25–41	SP	B.cenocepacia	
YP_916859	40	yes	1–19(20)	21–40	gram–, SP	P.denitrificans	
YP_00110606	47	yes	1–18(19)	20–47	gram–, SP, gram+	B.vietnamiensis	
YP_001161762	50	yes	1–15(28)	16(32)–50	gram–, SP, gram+	Y.pestis	
YP_001165485	48	no	–	–	–	Enterobacter sp. 638	
YP_001281217	41	no	–	–	–	Psychrobacter sp. PRwf–1	
YP_001371305	40	no	–	–	–	O.anthropi	
YP_001371348	45	yes	1–25(mTP)	26–45	SP, gram–	O.anthropi	
YP_001373319	45	yes	1–20	21–45	gram–, SP, gram+	O.anthropi	
YP_001948780	41	yes	1–18(24)	25–41	gram–, SP, gram+	B.multivorans	
Nr.	Accession number¹	SP length²	NtraC³	N-domain⁴	C-domain	Predicted C-domain targeting	Organism
-----	-------------------	------------	--------	----------	----------	------------------------------	----------
65	YP_001683300	42	yes	1–13(23)	24–42	gram−, SP, gram+	Caulobacter sp. K31
66	YP_001766852	47	yes	1–28(mTP)	29–47	gran negative SP, SP	M.radiotolerans
67	ZP_02906872	42	no	–	–	–	B.ambifaria
68	YP_001811545	42	no	–	–	–	B.ambifaria
69	YP_001990882	50	yes	1–18(–23)	24–50	gram−, SP, gram+	R.palustris
70	YP_001993037	45	yes	1–19	20–45	gram−, SP, gram+	R.palustris
71	YP_001993508	46	yes	1–19	20–46	gram−, SP, gram+	R.palustris
72	YP_002027122	40	no	–	–	–	S.maltophilia
73	Q0AL61	45	yes	1–13(29,35)mTP	14(30, 36)–45	gram−, SP, gram+	M.maris
74	Q0B7F7	47	yes	1–17(1–33mTP)	18–47	gram−, SP, gram+	B.cepacia
75	QOPAN9	40	yes	1–17	18–40	gram−, SP, gram+	C.jejuni
76	Q1MKD9	40	yes	1–27(29)(mTP)	30–40	–	R.leguminosarum
77	Q20XG2	49	yes	1–15(–20)	21–49	gram−, SP, gram+	R.palustris
78	Q214C9	50	yes	1–19	20–50	gram−, SP, gram+, mTP	R.palustris
79	Q216F9	42	yes	1–14(–18)	19–42	gram−, SP, gram+	R.palustris
80	Q2JON4	44	(yes)	1–37(mTP)	38–44	–	R.palustris
81	Q48237	48	yes	1–25	26–48	gram−, SP, gram+	H.mustelae
82	CAR56027	41	(yes)	1–30(31)(SA)	32–40	–	B.cenocepacia
83	Q132B9	44	yes	1–17	18–44	gram−, SP, gram+	R.palustris
84	Q137J7	43	yes	1–26(27)	28–43	gram−, SP	R.palustris
85	Q2KVL9	47	yes	1–15	16–47	gram negative SP	B.avenum
86	Q4ZQ08	43	yes	1–29(mTP)	30–43	SP	P.syringae
87	Q6N2N9	46	yes	1–19	20–46	gram−, SP, gram+	R.palustris
88	Q6NSZ4	46	yes	1–17(–21)	24–46	gram−, SP, gram+	R.palustris
89	Q6N664	46	yes	1–18(23)	24–56	gram−, SP, gram+	R.palustris
90	P39180	52	yes	1–35(u.–29 mTP)	36–52	SP, gram− (30–52)	E.coli²⁴

¹Nr. 1–16 taken from Szabady et al.¹⁰; Nr. 17–51 taken from Henderson et al.¹⁰; Nr. 52–90 retrieved via SRS. ²gives the position of the last residue of the signal peptides as used in the publications or annotated in UniProKB v. 14.7. ³NtraC organization of the sequence. ⁴Length of the predicted N- or C-domain. Numbers in brackets refer to alternative possibilities for truncation of the domains. A targeting abbreviation in brackets means: only that length combination leads to the targeting function in brackets. Predicted C-domain targeting: predicted by SignalP or TargetP. ⁵/⁶: gram negative or gram positive signal peptide. ⁷strain = Sakai. ⁸strain = E2348/69. ⁹strain = EB1. ¹⁰SP: eukaryotic signal peptide, SA: signal anchor gram. ¹¹strain = 042. ¹²strain = K–12. ¹³strain = CFT073. ¹⁴strain = EH41. ¹⁵strain = 4797/97. ¹⁶mitochondrial targeting peptide. ¹⁷strain = Sakai. ¹⁸strain = 042. ¹⁹strain = K–12. ²⁰strain = H10407. ²¹strain = ML308–225. ²²strain = APEC13. ²³strain = O78:H11. ²⁴strain = O6:H1. ²⁵strain = K12.
sequences to mediate an interaction with an unknown cytosolic factor or to induce an unusual signal peptide conformation prior to protein translocation. Notably, the analysis of the 55 residue signal sequence of EspP by our algorithm identified a two-domain (NtraC) organization:

- N-Domain (residues 1–26): unknown function,
- C-domain (residues 27–55): predicted secretion signal for Gram-negative bacteria.

The algorithm thereby proposed the same functional domain Peterson et al described experimentally.

We would like to stress that the NtraC algorithm is based on sequence information only and not influenced by the existing proposed fragmentation of long signal peptides. Our prediction method is therefore unbiased for the analysis of new sequences.

A further surprising result is the prediction of mitochondrial targeting peptides (mTP) for the proposed N-domains of the long bacterial signal peptides. In 17 of 90 (19%) cases the N-domain of a bacterial signal sequence is predicted as mTP (Table 1). Short bacterial signal peptides associated with autotransporters are in 29 of 228 (13%) cases predicted as mTP. As the presence of arginine is a typical feature for mTPs this could, in our case, lead to a prediction of a sequence as mTP if arginine residues are abundant. The positive charged residues are thought to form amphiphilic α-helices. This high abundance of positive charges (Table 2) has also been observed in the extended N-region of bacterial autotransporter signal sequences by Peterson et al. They reported a high net positive charge to be common in the N-terminus of serine protease autotransporters.

The automatic assignment “mTP” should thus not to be regarded as a perfect functional prediction but as the detection of a feature, namely the high abundance of charged residues. In 1994 Izard and Kendall reported that although a positive charge in the N-terminus may not be absolutely required for secretion a net negative charge or zero charge could result in considerably decreased rates of export. While Dierstein and Wickner reported that the N-terminal regions is not strictly required for processing by signal peptidase, Peterson et al demonstrated that the positive charges in the N-terminal part of the bacterial signal sequences may influence SRP recognition.

To investigate the role of charged residues in silico in the context of long signal sequences of autotransporters and their potential domain organization we counted the occurrence of charged residues in the N- and C-domain of all 79 autotransporter sequences predicted to be two-domain organized (Table 2). The border between the N-domain and the C-domain (transition area, “tra”) often contains charged residues. To take this into account the border between both domains was alternating, and included (+tra) or excluded (−tra) from the domains for the calculation (Table 2).

If the border between the domains was regarded as part of the C-domain(+tra), positively charged residues (His, Lys, Arg) occur approximately 1.6 times more often in the N-domain compared to the C-domain. Negatively charged residues (Asp, Glu) occur 2.3 times more often in the N-domain(−tra) compared to the C-domain(+tra). This difference becomes even more prominent if the border between both domains is counted as part of the N-domain(+tra) leading to 2.8 times higher occurrence of positively charged residues and 4.2 times higher occurrence of negatively charged residues in the N-domain compared to the C-domain.

	Histidine (His)	Lysine (Lys)	Arginine (Arg)	Aspartic Acid (Asp)	Glutamic Acid (Glu)
N-domain	0.5 (±0.8)²⁶	1.9 (±1.5)	2.3 (±1.7)	0.4 (±0.6)	0.8 (±0.7)
C-domain (+tra)	0.3 (±0.5)	1.1 (±1.4)	1.5 (±1.4)	0.2 (±0.4)	0.3 (±0.6)
N-domain (+tra)	0.6 (±0.8)	2.3 (±1.8)	2.6 (±1.8)	0.4 (±0.7)	0.9 (±0.7)
C-domain (−tra)	0.2 (±0.5)	0.8 (±1.0)	1.1 (±1.2)	0.1 (±0.4)	0.2 (±0.5)

²⁶Domains of the NtraC algorithm. Excluding or including the transition area (domain border) predicted by the NtraC model. Standard deviation in brackets.
This charge bias is an argument that charged residues may represent an inherent difference between the N- and the C-domain. The nearly three-fold increase in deviance between the N-(+tra) and C-domain(−tra) indicates that not only the presence of charged residues is of importance but also their position, favoring the N-terminal domain or between the two domains. The relative position curtly before the targeting signal in the C-domain could represent a characteristic feature.

The observed abundance of charged residues in the N-domain was also reported for the long signal peptides from vertebrata analyzed by us previously.8,28 The authors therefore propose that a potential additional function of the N-domain in long signal peptides is related to the abundance of positively charged residues in Gram-negative bacteria as well as in vertebrata. This is in agreement with the observation made by Peterson et al.20,21 regarding a high net positive charge of the N-terminal part of the signal sequence and its potential influence on SRP recruitment. The NtraC algorithmic approach can be used to check individual observations, and pinpoint the sequence part that might be relevant for such an SRP interaction.

A further hint towards a mechanistic aspect arises from to the secondary structure aspect of the NtraC model. As the C-domain of the signal peptide with its hydrophobic core is embedded in the membrane or the Sec complex during translocation, the N-domain may be kept in a defined angle to the membrane due to a predicted β-turn in the border between the N- and C-domain. The positive net charged of the N-domain could have the effect of keeping it outside and on top of the membrane. This might provide the means for the recruitment of other proteins (Fig. 1). We further report preliminary in silico results that 43 out of the 90 (48%) long signal peptide sequences of long autotransporters and 21 out of 28 (75%) long bacterial signal peptides not associated with autotransporters could form an amphipathic helix. We compared this to short bacterial signal peptides associated with autotransporters and found that 34 out of 228 (15%) could form an amphipathic helix. The requirement to form an amphipathic helix was to possess nine adjacent amino acids in a helix in a window of 18 residues. In a second approach we allowed the adjacent nine e.g. polar residues to be interrupted by one e.g. non-polar residue and vice versa. Now 68 out of 90 (76%), 25 out of 28 (89%) and 58 out of 228 (25%) could form an amphipathic helix (Fig. 2). While one must keep in mind that short sequences in general provide less amino acids to form an amphipatic helix at all, we still report a tendency of long signal peptides to form alpha helices.

Conclusion

We present an extensive analysis of 90 long bacterial autotransporter signal sequences predicting in 86% of the sequences, a common two-domain organization. The described organization is in agreement with published experimental data and allows the identification of potential new domains in silico in long signal sequences. We corroborate the importance of charged residues in bacterial signal sequences and emphasize their position near the N-terminus as possible regularity. The approach highlights the relevance of charged residues in long signal sequences.
Figure 2. Multiple sequence alignment of 79 NraC-organized autotransporter signal sequences (Matlab R2009a, Bioinformatics Toolbox Version 3.3). Red: negatively charged residues. Blue: positively charged residues. Green: residues potentially part of an amphipatic helix.
Acknowledgement
We are most grateful to Dr. H. Bernstein for critical and constructive comments on the manuscript.

Disclosures
The authors report no conflicts of interest.

References
1. Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala’Aldeen D. Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev. 2004;68:692–744.
2. Yen YT, Stathopoulos C. Identification of autotransporter proteins secreted by type V secretion systems in gram-negative bacteria. Methods Mol Biol. 2009;370:33–46.
3. Dautin N, Bernstein HD. Protein secretion in gram-negative bacteria via the autotransporter pathway. Annu Rev Microbiol. 2007;61:89–112.
4. Jacob-Dubuisson F, Fernandez R, Coutte L. Protein secretion through autotransporter and two-partner pathways. Biochim Biophys Acta. 2004;1694:235–57.
5. Wells TJ, Tree JJ, Ulett GC, Schembri MA. Autotransporter proteins: novel targets at the bacterial cell surface. FEMS Microbiol Lett. 2007;274:163–72.
6. von Heijne G. Signal sequences. The limits of variation. J Mol Biol. 1985;184:99–105.
7. Clérico EM, Szmyńska A, Gierasch LM. Exploring the interactions between signal sequences and E. coli SRP by two distinct and complementary crosslinking methods. Biopolymers. 2009;92:201–11.
8. Hiss JA, Resch E, Schreiner A, Meissner M, Starzinski-Powitz A, Schneider G. Domain organization of long signal peptides of single-pass integral membrane proteins reveals multiple functional capacity. PLoS ONE. 2008;3:e2767.
9. Desvaux M, Cooper LM, Filenko NA, et al. The unusual extended signal peptide region of the type V secretion system is phylogenetically restricted. FEMS Microbiol Lett. 2006;264:22–30.
10. Szabady RL, Peterson JH, Skillman KM, Bernstein HD. An unusual signal peptide facilitates late steps in the biogenesis of a bacterial autotransporter. Proc Natl Acad Sci U S A. 2005;102:221–6.
11. Jacob-Dubuisson F, Locht C, Antoine R. Two-partner secretion in Gram-negative bacteria: a thrifty, specific pathway for large virulence proteins. Mol Microbiol. 2001;40:306–13.
12. Wu CH, Apweiler R, Barich A, et al. The Universal Protein Resource (UniProtKB): an expanding universe of protein information. Nucleic Acids Res. 2006;34:D187–91.
13. Harte N, Silventoinen V, Quevillon E, et al. Public web-based services from the European Bioinformatics Institute. Nucleic Acids Res. 2004;32:W3–9.
14. Bendtsen JD, Nielsen H, Widdick D, Palmer T, Brunak S. Prediction of twin-arginine signal peptides. BMC Bioinformatics. 2005;6:167–76.
15. Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 2000;300:1005–16.
16. Emanuelsson O, von Heijne G, Schneider G. Analysis and prediction of mitochondrial targeting peptides. Meth. Cell Biol. 2001;65:175–87.
17. Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol. 2004;340:783–95.
18. Brander W, Schmidt H, Karch H. EspT, a novel extracellular serine protease of enterohaemorrhagic Escherichia coli O157:H7 cleaves human coagulation factor V. Mol Microbiol. 1997;24:767–78.
19. Brockmeyer J, Spelten S, Kuczius T, Bielaszewska M, Karch H. Structure and function relationship of the autotransport and proteolytic activity of EspP from Shiga toxin-producing Escherichia coli. PLoS One. 2009;4:e6100.
20. Peterson JH, Woolhead CA, Bernstein HD. Basic amino acids in a distinct subset of signal peptides promote interaction with the signal recognition particle. J Biol Chem. 2003;278:46155–62.
21. Peterson JH, Szabady RL, Bernstein HD. An unusual signal peptide extension inhibits the binding of bacterial presecretory proteins to the signal recognition particle, trigger factor, and the SecYEG complex. J Biol Chem. 2006;281:9038–48.
22. Hammen PK, Weiner H. Mitochondrial leader sequences: structural similarities and sequence differences. J Exp Zool. 1998;282:280–3.
23. Izard JW, Kendall DA. Signal peptides: exquisitely designed transport promoters. Mol Microbiol. 1994;13:765–73.
24. Inouye S, Soberon X, Franceschini T, Nakamura K, Itakura K, Inouye M. Role of positive charge on the amino-terminal region of the signal peptide in protein secretion across the membrane. Proc Natl Acad Sci U S A. 1982;79:3438–41.
25. Vlasuk GP, Inouye S, Ito H, Itakura K, Inouye M. Effects of the complete removal of basic amino acid residues from the signal peptide on secretion of lipoprotein in Escherichia coli. J Biol Chem. 1983;258:7141–8.
26. Puziss JW, Fikes JD, Bassford PJ Jr. Analysis of mutational alterations in the hydrophilic segment of the maltose-binding protein signal peptide. J Bacterial. 1989;171:235–57.
27. Dierstein R, Wickner W. Requirements for substrate recognition by bacterial leader peptidase. EMBO J. 1986;5:427–31.
28. Hiss JA. Domänen Architektur langer Signalpeptide in silico und in vitro. PhD thesis, University of Frankfurt, Germany, 2008.
Table S1. 28 long signal sequences not associated with autotransporters.

Signal Sequence	Description
AAUA_ALCFA_1	Tat-type signal.
MRWLDKFGEMLSRVSVAHKTSRSRVSRLRSVGLMVGSAPVPLPVPLVVARA	
AFB2_STRCX_1	Tat-type signal.
MCTREAVRMSREHDPEIPSRRLKGGAAAGALTAVPGEAA	
CHOD_BREST_1	Tat-type signal.
MTDSDANRADAATRGAVS5RVRFLAGPLTAGAIALSMSTASASA	
CHOD_STRS0_1	Tat-type signal.
MTQQHLSRRRLMGMAAFGAAALAGTTTAAPRAAAAAAAAKSA	
CPRA_DESHA_1	Tat-type signal.
MENNQKRQQGRSRLKFVGAATTMGVIAGAKPAKVA	
DHAQ_ACEPO_1	Tat-type signal.
MRGLNRFLGKDGRREQASLSRGRFLVTSLGGAGVMGFARPSA	
DHLH_METEX_1	Tat-type signal.
MLGKSDFFDKEMRSMRVAHGTSRSRGFIGRGTAVAGVLPPLPDRGRGSRASANA	
DHLH_PARDE_1	Tat-type signal.
MLGNRFDVMEKLSRRAVGQTSRSRSVGLGTMALGIVPLPDRGRGSRASANA	
DHLH_PARVE_1	Tat-type signal.
MLGNRFDVMEKLSRRAVGQTRGIGRGTATGIVPLPDRGRGSRASANA	
DMSA_ECOLI_1	Tat-type signal.
MKTKIDAVLAASEVSRGVLTTAIGLAMASSAALTLPFSRIAHA	
DMSA_RHOCA_1	Tat-type signal.
MTKFSQGLELSRLSFALSYVATLGGALGLGMAPKIAWA	
DMSA_RHOSH_1	Tat-type signal.
MKLSEQHELHAELRSRLSFALSTYAAAGALGLGMAPKIAWA	
GADH3_PECGY_1	Tat-type signal.
MSKHGNGTREDFTLRTITLAPAMAVSTGAMALVAPAAGA	
GFO_ZYMO_1	Tat-type signal.
MTKISSSDNLNASMATPRTLALRAVGGVGLAAGALASGQLQ	
MBHS_AZOVI_1	Tat-type signal.
MNQETFQYVMRQGTVRSLKYSQMTSLAAGLAPAFAPFRAHA	
MBHS_ECOLI_1	Tat-type signal.
MNNEETFQYVMRQGTVRSLKYSQMTSLAAGLAPAFAPFRAHA	
MBHS_Olico_1	Tat-type signal.
MPFETQYVMRQGTVRSLKYSQMTSLAAGLAPAFAPFRAHA	
MBHS_RALEH_1	Tat-type signal.
MVEFETQYVMRQGTVRSLKYSQMTSLAAGLAPAFAPFRAHA	
NOSZ_AHCY_1	Tat-type signal.
MSKJHKLRASLFTATAGSAILGTVGAALSLGAAGLATPARA	
NOSZ_PARDE_1	Tat-type signal.
MSKJEKLRASLFTATAGSAILGTVGAALSLGAAGLATPARA	
NOSZ_PSEST_1	Tat-type signal.
MSKJDSKNTPQVPEKGLGSRGLGASVTGAAATTLGAGAVMTRESWAQA	
PHNS1_DESCV_1	Tat-type signal.
MRFSVGLGKGEAEERLARGRVSRRDFLKFCTAIAVTMGMGAPAEVAR	
PHNS1_DESCF_1	Tat-type signal.
MNSVGLGKREAEKRLVQNGVSRDFLKFCTAIAVTMGMGAPAEVAR	
PHNS1_DESCM_1	Tat-type signal.
MKISGLKGEVIERLAIERSGVRDFLKFCTAIAVTMGMGAPAEVAR	
PHNS1_STR_V_1	Tat-type signal.
MQQGDFQDRIKQSPAPLNGMRSRGRGLLGAGTLTALATASAGLPLLPGTAHA	
PHNS2_ECOLI_1	Tat-type signal.
MSNQQEYEPDNYKHEPDLLSLTRDILKSVAAATATAVVPHTLPLASVPA	
PHNS2_ECOLI_1	Tat-type signal.
MKKQFNFKESDKTAEVSFPMRQVBLKALGISATALSPLPAAHA	
PHNS2_ECOLI_1	Tat-type signal.
MSKNERMGISRRTLVSTAILSALAAAGGFLSPFLTRNAAAAA	
Table S2. 228 short bacterial signal peptides associated with autransporters.

Signal Peptide	Potentiality
>BIGA_SALTY_1 SIGNAL: Potential. MNMPQKKKLISIAALTLQSYIIPAIA	
>ESTA_PSEAR_1 SIGNAL: Potential. MRRMLKPLVAACLASSLSTAPQA	
>ESTA_PSEP0_1 SIGNAL: Potential. MRRMLKPLVAACLASSLSTAPQA	
>HAP1_HAEIN_1 SIGNAL: Potential. MKKTVFRLNFTACVSLGISASQANA	
>HAP2_HAEIN_1 SIGNAL: Potential. MKKTVFRLNFTACVSLGISASQANA	
>IGA0_HAEIN_1 SIGNAL: Potential. MLNKKFLNIALTAVAYLPTYYEA	
>IGA1_HAEIN_1 SIGNAL: Potential. MLNKKFLNIALTAVAYLPTYYEA	
>IGA3_HAEIN_1 SIGNAL: Potential. MLNKKFLNIALTAVAYLPTYYEA	
>IGA4_HAEIN_1 SIGNAL: Potential. MLNKKFLNIALTAVAYLPTYYEA	
>IGA_NEIGO_1 SIGNAL: MKAKRMKINAKSLSIFAYALTPYSEA	
>LIP1_PHOLU_1 SIGNAL: MKRSFIFAPGMLALSISAISNAHA	
>OMPA_RICCN_1 SIGNAL: Potential. MANISPKLFQAIQQGKFGYGLSLHSSLA	
>OMPA_RICFI_1 SIGNAL: Potential. MANISPKLFQAIQQGKFGYGLSLHSSLA	
>PERT_BOR1_1 SIGNAL: Potential. MNMMLRIVKAPPRGRTTLAMALGAAPAAHA	
>PERT_BOR2_1 SIGNAL: Potential. MNMMLRIVKAPPRGRTTLAMALGAAPAAYA	
>PERT_BORP_1 SIGNAL: Potential. MNMMLRIVKAPPRGRTTLAMALGAAPAAHA	
>PRTS_SERMA_1 SIGNAL: Potential. MILNKKKLYCFLYGSLISHSSLA	
>PRTT_SERMA_1 SIGNAL: By similarity. MILNKKKLYCFLYGSLISHSSLA	
>SCA1_RICCN_1 SIGNAL: Potential. MNKLTQHNLKSKRFLIESLALISISVGA	
>SCA1_RICFE_1 SIGNAL: Potential. MNKLTQHNLKSKRFLIESLALISISVGA	
>SCA2_RICCN_1 SIGNAL: Potential. MNLQNSHHKVKTLVTBMSTCLTLSSSLSTSA	
>SCA2_RICFE_1 SIGNAL: Potential. MLSQNSHHKVKTLVTBMSTCLTLSSSLSTSA	
>SCA2_RICS1_1 SIGNAL: Potential. MSTCLTLSSSLSTSA	
>SSA1_PASHA_1 SIGNAL: Potential. MYKIKHSFKNKLIAISISSSSLIA	
>VACA1_HELPP_1 SIGNAL: Potential. MEIQHTHRKINRPLVSLALVLGALVSITPPQOSHA	
>VACA2_HELPP_1 SIGNAL: Potential. MEIQHTHRKINRPLVSLALVLGALVSITPPQOSHA	
>VACA4_HELPP_1 SIGNAL: Potential. MEIQHTHRKINRPLVSLALVLGALVSITPPQOSHA	
>VACA7_HELPP_1 SIGNAL: Potential. MEIQHTHRKINRPLVSLALVLGALVSITPPQOSHA	
>YADA1_YEREN_1 SIGNAL: Potential. MTDFKISVSAALSLAFSSPYAFA	
>YADA2_YEREN_1 SIGNAL: Potential. MTDFKISVSAALSLAFSSPYAFA	
>YADA3_YEREN_1 SIGNAL: By similarity. MTDFKISVSAALSLAFSSPYAFA	
>YADA4_YEREN_1 SIGNAL: By similarity. MTDFKISVSAALSLAFSSPYAFA	

(Table S2. (Continued))
Table S2. (Continued)

Sequence	Signal	Potential
MTSNFRSLLAFAILTLTQTQIAK	Potential	
Q3RAY9_XYLF A_1	Potential	
MKTIFAPARTIALAALASACGD	Potential	
Q3R92_XYLF A_1	Potential	
MKNKRTTFPGPSLTVLTVFLASCGG	Potential	
Q3RE25_XYLF A_1	Potential	
MKIKKNIKFIVRTILATTVTTLASCGG	Potential	
Q3RE26_XYLF A_1	Potential	
MKTIAPARTIALAALASACGD	Potential	
Q3RGS6_XYLF A_1	Potential	
MTSKFRSLLAFAILTLTQTQIAK	Potential	
Q3RGT2_XYLF A_1	Potential	
MKTIFAPARTIALAALASACGD	Potential	
Q3RGG2_XYLF A_1	Potential	
MKNKRTTFPGPSLTVLTVFLASCGG	Potential	
Q3RGT6_XYLF A_1	Potential	
MKIKKNIKFIVRTILATTVTTLASCGG	Potential	
Q3RY73_SALB N_1	Potential	
MNKIYALKYSVRQGALVPV	Potential	
Q83YP8_ACTAC G_1	Potential	
MKIKKLFPRSVTTALTVFNPQAPA	Potential	
Q93S98_BORPE _1	Potential	
MKNNSRSRKPAPRRLRTMLMALGAGAAPAHA	Potential	
Q93S99_BORPE _1	Potential	
MKNNSRSRKPAPRRLRTMLMALGAGAAPAHA	Potential	
A0B1Z1_BURCH_1	Potential	
MFLALSAGIVPAHATSCSTAG	Potential	
A0LDC0_MAGSM_1	Potential	
MKRNSLTLTSLTTGLMGMTQPAV	Potential	
A1JM6W_YERE8 G_1	Potential	
MKIYRIFKTMPVSCPVLGFPSVDA	Potential	
Q1J5Q7_YERE8 G_1	Potential	
MNNINIALPCFRKTTLASLLVLPLAPL	Potential	
A1JJS0_BURV G_1	Potential	
MNHRSPFSLRTGGRALHAILAGAVMPASS AQ	Potential	
A4THP4_YERP P_1	Potential	
MNHMKVRLSAAVALLLSIGNSYAD	Potential	
A4TNM13_YERP P_1	Potential	
MNKTNLTLRLLPLSILSLVSgggAV	Potential	
A4TNM4_YERP P_1	Potential	
MKSRHHLNTRLLPLSILSLIPAVAALAA	Potential	
A4TP40_YERP P_1	Potential	
MDKTLGAGAALLSLGVLPVQVLAF	Potential	
A4T7Q3_YERP P_1	Potential	
MKSTNKLSPCFCRKMIALSLLVLPCSLP	Potential	
A4W648_Ent39_1	Potential	
MKTTFRLOQVATSLISSSSVSVIPOTAL	Potential	
A4W9S4_Ent39_1	Potential	
MIVCVVSCFGLASPAALAA	Potential	
A4WEB5_Ent39_1	Potential	
MKKVLCSQILSLVASTAAGGLTTHALAV	Potential	
A4WED8_Ent39_1	Potential	
MKKLKRSLCSQLCVLMSLTSLSAFAA	Potential	
A4WQQ4_Ent39_1	Potential	
MSKTNTPPATTDRKVLLGSGSGAALSSAE	Potential	
A4XFF0_NOVAD_1	Potential	
MKTNKSLGALAGAASAVAVGLAQAQQVAA	Potential	
A4XXQ8_PSEMY G_1	Potential	
MALRVALIGLQLLQVATGVGAV	Potential	

Table S2. (Continued)

Sequence	Signal	Potential
>A5FVP6_ACICJ_1	Potential	
MKSRRFSLLAATALSLSACSG	Potential	
>A5FX02_ACICJ_1	Potential	
MGSEMTTFTPCCVRLLAIGALAAGFGLAPAR	Potential	
>A5V6F0_SPHW_1	Potential	
MRYLLASTCLAIAAIAVFPVAE	Potential	
>A5VXL2_PSEP1_1	Potential	
MKRAPLRRFTLIALALACSAQAL	Potential	
>A5W1C9_PSEP1_1	Potential	
MKSTSNFLRFDSIFYAVSTSILLLATPVETIAY	Potential	
>A5W39_PSEP1_1	Potential	
MRLRMFLGLSLPLGLMVTFAQAN	Potential	
>A5W741_PSEP1_1	Potential	
MGIVKQORRGLVRAKVMSALMLSPIAQL	Potential	
>A5UC19_SINMRV_1	Potential	
MvA4VRKCFSTVLSGALLGLPFCVQGSEASAA	Potential	
A6X2Y0_OCHAA_1	Potential	
MTGVLRHKSMLMTTAALGFPYTATG	Potential	
A6X4K3_OCHAA_1	Potential	
MCRRNIGSARLRFSLTALSSLGTQLQSTPGMAA	Potential	
A6X7J0_OCHAA_1	Potential	
MKKLWLASTAISLPSFSAWASA	Potential	
A6X8H2_OCHAA_1	Potential	
MLKRLNGKVLFRFLPLFSLGATLAMPTVLQA	Potential	
A7H7Z2_PARLI_1	Potential	
MTARNRTAAARRHHIALMLGTLALAPHSQGASD	Potential	
A7IL68_XANP2_1	Potential	
MPALYASSRSLVLSLFLVMAAAPALAA	Potential	
A8G7T5_SERP5_1	Potential	
MPLKTRMPRPRLAVAILCMMNTSMTSLAY	Potential	
A8GG96_SERP5_1	Potential	
MASFPASFSRGCCALLATGTGSFPAVVNA	Potential	
A8GHU3_SERP5_1	Potential	
MKDKSISHLAVRPKLSIYALAPSFAPLMLMDSAMAR	Potential	
A8GIR8_SERP5_1	Potential	
MKRLALAI11AALPFCSAQAV	Potential	
A8GL40_SERP5_1	Potential	
MKQATQKINLAPWTKINALLCALLAAGGQVA	Potential	
>B0KJ8B_PSEP1_1	Potential	
MKRAPLRRFTLIALALACSAQAA	Potential	
>B0KM3U_PSEP1_1	Potential	
MKSTSNFLRFDSIFYAVSTSILLLATPVETFAY	Potential	
>B0KI28_PSEP1_1	Potential	
MRCRLLLLPLVPLLLTPLLHAHQ	Potential	
>B0KUR2_PSEP1_1	Potential	
MKRNNFSTLSPLASAOQGLLGSASVLFPGAGAL	Potential	
>B0KUS7_PSEP1_1	Potential	
MQVRKLVATVAPLMAFAQY	Potential	
>B0T124_CAUSK_1	Potential	
MMRTRSKRTILAGSSSLVMAIAAAAQPALAQ	Potential	
>B0U200_XYLFM_1	Potential	
MKNMKTTPFPFGISILVTLTLVAPLSACGG		

>B0U225_XYLFM_1 SIGNAL: Potential.		
>B0U2J0_XYLFM_1 SIGNAL: Potential.		
>B0U5B1_XYLFM_1 SIGNAL: Potential.		
>B0U5U7_XYLFM_1 SIGNAL: Potential.		
MERKKHKTTATLISVVLMGGAGATYAN		
>B0UED5_METS4_1 SIGNAL: Potential.		
MRFLSGVSLAIAVITAIMGVGAARAA		
>B1IV2_XECOL_1 SIGNAL: Potential.		
MRTPSPYCRSSVLSSLISLIAYPFGMAA		
>B1IY0_ECOL_1 SIGNAL: Potential.		
MHSWKKKLVSQLQQALTACTTSQANAA		
>B1J4X2_PSEPW_1 SIGNAL: Potential.		
MPSFSVPVRHLVHLSVAPK PLLTFPCA		
>B1J6X8_PSEPW_1 SIGNAL: Potential.		
MLQRFCSLSSLTLAAIASHHAA		
>B1J6R7_PSEPW_1 SIGNAL: Potential.		
MKSTSNMRFDRIFVYAVSSTMLATTPVET		
>B1JE37_PSEPW_1 SIGNAL: Potential.		
MKAPLRLFTTLATLACRQAA		
>B1JGR2_YERPY_1 SIGNAL: Potential.		
MDTKLAIASLSLTVLPQVVLAF		
>B1JHT7_YERPY_1 SIGNAL: Potential.		
MKRRNSTLSPCFRTKTLIASLVLPSLYS		
>B1JLC5_YERPY_1 SIGNAL: Potential.		
MNNHKWRLSVAVALLISGGYAD		
>B1JPQ0_YERPY_1 SIGNAL: Potential.		
MNNHKWRLSVAVALLISGGYAD		
>B1JS9_YERPY_1 SIGNAL: Potential.		
MNNSKKTYLSSILSILSILSILSIL		
>B1LT2_METRJ_1 SIGNAL: Potential.		
MTRGYYVSLAALAVGLGPGQAQ		
>B1YP8_BURCJ_1 SIGNAL: Potential.		
MNRRFPFSOARSSRGRLHSALIAGAVPVS		
>B2FHR8_STRM5_1 SIGNAL: Potential.		
MRMQFTPFPFSAKQDXDLARRIAATALLATSGAGA		
>B2F2I2_STRM5_1 SIGNAL: Potential.		
MNHPHGRSSHSPHRLSRLAVSSSLLLLAAAPA		
>B2F5VS_STRM5_1 SIGNAL: Potential.		
MERTMVRSVLATMALALAC		
>B2FSC8_STRM5_1 SIGNAL: Potential.		
MLLSRKPIRMLAAAILAALAPA		
>B2FU91_STRM5_1 SIGNAL: Potential.		
MKHSKLALAGLIAVAGAA		
>B2FU94_STRM5_1 SIGNAL: Potential.		
MYARVPRAFRRPLASVQLALAVPSLLTTGSCVA		
>B2I6G5_XYLF2_1 SIGNAL: Potential.		
MLKLFQKRFKFLTVVIFPSMYGGSVYVA		
>B2I753_XYLF2_1 SIGNAL: Potential.		
MKNMKTAPPFGISILVTLTLVAPLSACGG		

Table S2. (Continued)
Table S2. (Continued)

Signal Sequence	Signal: Potential
MPTPQNSPIAIAVSAALASMVFPQQA	
>B5RG96_SALG2_1	Potential.
MIVRKCRGRTLCCAGLMACSFFINTTYA	
>B8ENQ5_METBO_1	Potential.
MDSFNLKSLAAILLGVPLLLPASQLAA	
>B9ILY6_METBO_1	Potential.
MLGCESGRAHGLDRMLRLLLVFGAPLVLATSALQ	
>O86163_MORDE_1	Potential.
NHYNQMMRRATPGRGSHGLALLGAGMWTLSPPSAWA	
>Q07JX7_ROHOP_1	Potential.
MATNRKRGRTVLAAVAIGAPIAAPTFDAR	
MLTHARRNGAPRSTGWLLASLTLAIAVAYAPLSLAQ	
>Q0AKS3_MORM1_1	Potential.
MRRFLPASVLTVPTTAPAAD	
>Q0AT43_MORM1_1	Potential.
MAVNVGVRADAKAGPVRVSLMLAGALGFSAPVAA	
>Q11GI1_MESSB_1	Potential.
MKTAYKLGLSIALAATAVSAQHAQ	
>Q12FI0_POLSJ_1	Potential.
MTLNYSFYSFMQKPYRLSTAAACLAFLASFAQQA	
>Q132Z9_ROHOP_1	Potential.
MQRMTLPARIWLSRAALASASSAPQ	
>Q1397_ROHOP_1	Potential.
MGAHFRNLSTFLCCTTFLVSAPVSAALYAA	
>Q1C198_YERP_1	Potential.
MKTNRTLSPCRFTKMASSLVLVPCPLSPLSWAV	
>Q1C326_YERP_1	Potential.
MNHKIWRSAVALLISGNASY	
>Q1C4W8_YERP_1	Potential.
MTDKTLAGAILSSLVSILVPQVGLAF	
>Q1C510_YERP_1	Potential.
MMRHHLTRLPISLILASPAVLLAA	
>Q1C511_YERP_1	Potential.
MKNSNLTRLPSLILSLSVSGGAMAV	
>Q1CAV8_YERP_1	Potential.
MNHKFKNLTAISAIALLLSVSFSNTLAV	
>Q1CDG9_YERP_1	Potential.
MKDNRTLSPCRFTKMASSLVLVPCPLSPLSWAV	
>Q1CF77_YERP_1	Potential.
MNHKFKNLTAISAIALLLSVSFSNTLAV	
>Q1CK98_YERP_1	Potential.
MKNSNLTRLPSLILSLSVSGGAMAV	
>Q1CK99_YERP_1	Potential.
MMRHHLTRLPISLILASPAVLLAA	
>Q1CKV3_YERP_1	Potential.
MTDKTLAGAILSSLVSILVPQVGLAF	
>Q1CMH9_YERP_1	Potential.
MNHKIWRSAVALLISGNASY	
>Q1GU46_SPHAL_1	Potential.
MKTLLACATLLSTAVHAE	

(Continued)

Table S2. (Continued)

Signal Sequence	Signal: Potential
>Q1MHZ0_ROHIL3_1	Potential.
MRYRKLASAVGHVGLATIFALPAALMFLDAYG	
>Q1MK18_ROHIL3_1	Potential.
MSPFCGSPRTLVSLLIPTTGMD	
>Q1QCE5_PSYCK_1	Potential.
MRPNISAVTPTTTLKLTCLASLMLASMAQGAA	
>Q214Q0_ROHBP_1	Potential.
MGAFGRDVSKLLCTTFVLAVAPVSQALAA	
>Q2GAY1_NOVAD_1	Potential.
MDRRTTTILSTLGTAFVLALLVPQANAA	
>Q2J1P8_ROHBP_1	Potential.
MQRKARTLIAGFAMATSVSTGAAC	
>Q2KTY1_BORA1_1	Potential.
MTOPRSRPSHALVLSLSSLA	
>Q2Y820_NITMU_1	Potential.
MAIRKKSALSLYLHFIALLMVPASLSRSAQ	
>Q3BVT0_YANC5_1	Potential.
MKKOaVTVLASALVAATTC	
>Q3K4D0_PSEPF_1	Potential.
MPIQCKYKLQHLVLAVALVCVESLSL	
>Q3K4D1_PSEPF_1	Potential.
MPPFQRLSPFAIALLISAAHKG	
>Q3K5V0_PSEPF_1	Potential.
MKQTFLPVLPCALLMACAQANAA	
>Q3KC67_PSEPF_1	Potential.
MQKSKCQYRLDRWGLVLSFLAPFSQIAIG	
>Q3KCT0_PSEPF_1	Potential.
MKNNNTPAQSGGGFKLKTVLAVCAMATWSSAHA	
>Q3KCT1_PSEPF_1	Potential.
MDVRKIPISVTLTVLSIAATQAQAA	
>Q3KD77_PSEPF_1	Potential.
MKTSQSEEEKIPTFCVSSILSCSSMEEAQ	
>Q3KD66_PSEPF_1	Potential.
MFPRFCSLSLVSLSIAAVHAA	
>Q3SN6_PITW_1	Potential.
MNNVVRAPMNGALRRVRVAGAFALSSAGAA	
>Q4ZM16_PSEU2_1	Potential.
MTKTRNWPAECALLSSSCLAGTAAA	
>Q4ZQ07_PSEU2_1	Potential.
MQKSKCGVVRYSFKPVTGALCSFTFCGSAAYD	
>Q4UU5_PSEU2_1	Potential.
MNAFFVLPLKTLTVTPSLPLPSGAFA	
>Q4YT2_PSEU2_1	Potential.
MFPRFTLAMAATAVPCACE	
>Q6645_YERP_1	Potential.
MKQRNTLSPCRFTKMASSLVLVPLSPLSWAV	
>Q665R2_YERP_1	Potential.
MNNKIKWRSVALLISRSN	
>Q667C1_YERP_1	Potential.
MKKKQDVARTVLASALVAMATWSSAHA	
>Q667Z0_YERP_1	Potential.
MNNKIKWRSVALLISRSN	
>Q667Z1_YERP_1	Potential.
MKKKQDVARTVLASALVAMATWSSAHA	

(Continued)
Table S2. (Continued)

MKRSNLNLPLLISLISISLPLGAVLAA
Q667Z2_YERPS_1 SIGNAL: Potential.
MKNSNMLNLPLLISLISLSVSGAMAV
Q66DI5_YERPS_1 SIGNAL: Potential.
MDKTLGKAIISLSLVTLPQVLAF
Q6N1B5_RHOPA_1 SIGNAL: Potential.
MRRAASCQSACLPTVIPLSIAE
Q6N8G7_RHOPA_1 SIGNAL: Potential.
MSTVGRFRHLSSLCTTFLVSAPMSAVLYAA

Publish with Libertas Academica and every scientist working in your field can read your article

“I would like to say that this is the most author-friendly editing process I have experienced in over 150 publications. Thank you most sincerely.”

“The communication between your staff and me has been terrific. Whenever progress is made with the manuscript, I receive notice. Quite honestly, I’ve never had such complete communication with a journal.”

“LA is different, and hopefully represents a kind of scientific publication machinery that removes the hurdles from free flow of scientific thought.”

Your paper will be:

- Available to your entire community free of charge
- Fairly and quickly peer reviewed
- Yours! You retain copyright

http://www.la-press.com