The Ubiquitous Digital File: A Review of File Management Research

Jesse David Dinneen*
School of Information Management, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand. E-mail: jesse.dinneen@vuw.ac.nz

Charles-Antoine Julien
School of Information Studies, McGill University, 3661 Peel Street, Montreal, Quebec, H3A 1X1, Canada. E-mail: charles.julien@mcgill.ca

Computer users spend time every day interacting with digital files and folders, including downloading, moving, naming, navigating to, searching for, sharing, and deleting them. Such file management has been the focus of many studies across various fields, but has not been explicitly acknowledged nor made the focus of dedicated review. In this article we present the first dedicated review of this topic and its research, synthesizing more than 230 publications from various research domains to establish what is known and what remains to be investigated, particularly by examining the common motivations, methods, and findings evinced by the previously furtive body of work. We find three typical research motivations in the literature reviewed: understanding how and why users store, organize, retrieve, and share files and folders, understanding factors that determine their behavior, and attempting to improve the user experience through novel interfaces and information services. Relevant conceptual frameworks and approaches to designing and testing systems are described, and open research challenges and the significance for other research areas are discussed. We conclude that file management is a ubiquitous, challenging, and relatively unsupported activity that invites and has received attention from several disciplines and has broad importance for topics across information science.

Introduction

Computer users spend time every day interacting with digital files and folders, including creating, downloading, naming, moving, saving, copying, reviewing, navigating, searching for, sharing, and deleting them. This activity, called file management (FM), is so fundamental and common to knowledge work specifically and modern computer use generally that one could consider a citizen of the information age who never has cause to interact with files to be exceptional. FM is also difficult, personal, deeply psychological in nature (Lansdale, 1988), and increasingly complex, as additions and improvements to FM such as desktop search, tagging functions, networked storage, and cloud services have expanded the number possible user interactions and challenges. For example, users can keep files locally, remotely, and in the cloud, synchronize them across devices, organize them as files or as format-specific collections using local and web-based applications, and navigate and search through them in multiple ways, and they can do all of this as individual users or in collaboration with others. FM is therefore one of the most central activities involved in using a computer, and is thus a fundamental aspect of living in the information society.

FM can be supported by personal information management (PIM) systems and software, especially so if their design is informed by an understanding of the behavior that users exhibit and its determinant factors. Many studies have worked toward improving this understanding and implementing its lessons in improved systems, and yet this literature and their subject have not been formally acknowledged, reviewed, summarized, synthesized, or reflected upon in a dedicated review. It would aid work in this area to explicate what is known about the phenomenon, how it can be investigated, which aspects could or should be explored next, and how the study of FM can benefit from and contribute to various scholarly disciplines. The goal of this article is therefore to provide a review of the relevant literature, and in doing so to demarcate the body of scholarly work about FM and understand the current state and limits of its knowledge.
As PIM is the research area most closely related to FM, with FM possibly constituting a subset of PIM research (that is, with a particular focus on files and folders), many works of PIM are included in this review. FM research is nonetheless the review target; more precise scope and inclusion criteria are provided in the review methodology, and the relationship of FM to PIM and other areas is explicated in greater depth in the Discussion section. A description of the composition of the review follows. In the remainder of the Introduction we provide a history and context of files leading to definitions and necessary background information, and then detail our review methodology (goals, literature sources, keywords, and so forth). The results of our review begin with a detailed synthesis of the motivations of FM research, comprised of understanding user behavior (storing, organizing, retrieving, sharing), understanding internal and external factors determining FM, and designing augmented, novel, or alternative FM systems. We then review the theory, methods, and frameworks seen in the FM literature reviewed, before turning to discuss the review results as a whole. The Discussion is composed of two parts, beginning with an explication of the overlap and therefore the importance of FM research to related areas within and beyond the info sciences, wherein we suggest particular topics for future research. In the second half of the Discussion we comment on particular challenges awaiting future FM research, including those relevant to each of the areas reviewed (for example, improved systems, theory, and methods, and so forth), with subsections dedicated to mobile FM and the future of files and FM systems. In the Conclusion we summarize the review.

History and Context of Files

The word file can have multiple senses related to computer files (Harper et al., 2013), but the sense used in the reviewed literature and adopted here refers to what is perhaps the most common: representations of digital content stored in file systems and presented to users through the metaphor of a paper file (for example, a physical document, not to be confused with the British use of file to mean a folder). In simple cases, files are used to represent, for example, a document, an image, some audio data, an executable program, a database, an ongoing session in some software, or an archive of any of such files. Folders extend the file metaphor to provide categorized access to files and to more folders by containing them, and are presented to the user as though arranged in a spatial hierarchy that starts at a common root folder and may contain a minimal default folder structure. Although the term directory is often used interchangeably with folder (and is the conventional term in some operating systems, OSes), in this article we use folder to refer to what the user sees or otherwise experiences (for example, what they see in their file manager, what they move and rename) and directory when referring to applications’ view of or interaction with locations within the file system.

The focus of this review is thus research into how users interact with digital files as described above, including actions such as the following, although additional relevant actions are conceivable and may become common in the future: creating, naming, renaming, downloading, uploading, attaching, copying, organizing, cutting, pasting, tagging, linking via symlink or shortcut, navigating, searching, deleting, and restoring. Such actions are done in contexts that may be occupational (for example, personally managing company files), personal (for example, maintaining files for personal use), or both. In other words, what concerns this review is what is seen in FM software, including the common dedicated graphical interfaces (for example, File Explorer and Finder), command line interfaces, and applications’ file open and save dialogs, but not in related contexts where digital items only resemble files; for example, emails presented to a user in a web-based mail client, although likely sortable into folders, are not the focus of this article as such until they are downloaded and stored as files, for example, by a user saving them to their laptop as eml files. Digital items may also be viewed and managed with items of the same format in particular applications, for example as a collection of songs in iTunes or photos in a photo viewer. Although these items likely also exist as files, we do not regard managing the items within the format-specific application as FM, at least for the purpose of this review, but because such contexts are highly relevant to FM, we address them later in this article.

Today’s metaphor for digital content as files organized in folders dates back to the 1960s (Corbato, Merwin-Daggett, & Daley, 1962) and reflects the memex envisioned by Vannevar Bush (1945) by providing a “private file and library ... in which an individual stores ... books, records, and communications” (§6), albeit without the associative access Bush had hoped for. Perhaps as a consequence of this utility, the file metaphor has been successful and indeed pervasive in computing for more than 40 years (Harper et al., 2013). Although this metaphor for digital content has been questioned (Halasz & Moran, 1982) and warrants critical reflection and refinement (Harper et al., 2013), it is one of the oldest in computing, is widely used (for example, in Windows, Mac OS, GNU/Linux, BSD, Solaris, Android, iOS, Windows Mobile, and so on), and is currently without a serious alternative. However, OSes store, handle, represent, and manage files and folders in a related but different way to how they are presented to, handled, and managed by the typical user (Harter, Dragga, Vaughn, Arpaci-Dusseau, & Arpaci-Dusseau, 2012); for example, in POSIX systems (Mac OS, GNU/Linux), folders (directories) are actually files, devices are represented as files, and the OS and its applications may read and write to a file many times while the user is simply viewing it. This review focuses primarily on files and folders as they are presented to the user, but user–file interaction is of concern as much to those designing file systems as it is to those seeking to understand users’ behavior and improve the relevant software and interfaces.

The original method for performing FM was to enter commands, like mv for moving and cp for copying, into a
prompts today, although given the popularity of graphical desktop environments and windowed applications it is likely that most FM is done in graphical file manager applications and dialogs initiated, for example, when opening a file in an application, to directly manipulate file and folder icons. In Microsoft and Apple’s current desktop OSEs, graphical software for managing files is provided by default (namely, File Explorer and Finder, respectively), and while alternative file managers are available, each with different features and views of files, it is currently unclear to what extent users install or are aware of these.

Regardless of the OS, users likely spend much time performing the actions described above; so far as we know the exact time spent managing files per day or year has never been calculated for an individual or collectively, but given the most recent estimate from the US Census Bureau is that 78.5% of all households have at least one desktop or laptop computer (File & Ryan, 2014), it is reasonable to assume the aggregate time spent interacting with files is considerable. As we detail below, the phenomenon of FM has received considerable attention from various fields of study, but the resulting body of research has never before been explicitly identified, acknowledged, or synthesized. We next describe our methodology for reviewing the relevant literature, and then proceed to the review.

Review Methodology

The goal of this review is to demarcate the body of scholarly work about the management of digital files and folders in common computing environments (that is, desktops, laptops, tablets, and mobile phones) and understand the current state of knowledge about the immediately relevant phenomena identified in such work. We pursued this goal by identifying and searching scholarly research databases (for example, Web of Science, Scopus, Google Scholar, and so on) that index journal articles and conference proceedings dealing with, for example, personal information management, human–computer interaction (for example, proceedings of ACM conferences), desktop interface design, information behavior, information science (for example, Information Research and JASIST), software development, and personal digital archiving. We searched with keywords including personal information management, file management, file system, desktop management, folder organization, and file retrieval and various additional permutations. We then scanned the articles’ references to identify additional relevant articles and proceedings (that is, citation pearl growing; Ramer, 2005). We included articles describing information management, personal or otherwise, or general computer use where the management or presentation of files were primary topics of the work, excluding those that did not contain such content. Although some works discussed may be associated with patents, patents were not explicitly searched and included. As the literature to be reviewed could (and indeed did) come from various disciplines, we attempted to include any articles describing cognate and relevant concepts with varying terminology (that is, performed knowledge translation when possible). We also included in our review any tangentially related works if they commented on or helped to elucidate trends or topics seen in the included literature.

The result of our literature search was more than 200 articles with publications dates from 1960 to 2018, including reports of quantitative and qualitative empirical studies, the development of novel systems at various stages of completion, opinion pieces (for example, reflection on interface design), and reviews of PIM. We are not aware of any prior, dedicated review of FM (that is, beyond a subsection in a PIM review or targeted literature review section in an FM study). Table 1 summarizes characteristics of the review, its procedure, and its outcomes. Although the works reviewed here are numerous, we accept as a limitation of our review that the fundamental and ubiquitous nature of digital files means that potentially many additional studies exploring cognate issues with differing terminology may not have been seen, despite our best efforts, and thus would be missing from our review. We analyzed the included articles to capture common themes, such as motivations and findings, concepts and methods, limitations, and directions identified for future research. The results of our analyses are discussed in turn.

Motivations of File Management Research

In this section, we present FM literature showing three common research motivations: understanding user behavior (or what users do, including when and where they do it), understanding the individual differences and external factors relevant to this behavior (or why they do it), and aiming to improve FM systems and software (or how to better support users). Each motivation is discussed and presented with tables summarizing the relevant literature, and the theoretical and conceptual frameworks and methodologies employed across the studies are examined in the following section. Two considerations should be kept in mind about our presentation of FM research in this section. First, the works presented span decades during which the nature of computing has evolved, and thus to some extent FM has evolved and users’ behavior likely has as well. It is nevertheless sometimes useful to present together the results of studies from disparate eras of computing; readers should therefore take care when considering the overall results of such studies. Second, as our review revealed that studies of mobile FM are still quite rare (that is, there is not yet a relevant trend in the literature), we largely omit such work from this section and instead discuss it below in the section on future research directions.

Understanding User Behavior

Many works have sought to understand the behavior users exhibit and challenges they face while managing digital files, often following the spirit of research from the 1980s
examining how individuals manage paper documents (Case, 1986; Cole, 1982; Malone, 1983). This is done under various research topic labels, including but not limited to personal information management, personal digital document management, and personal archiving (or personal digital archiving). Subcategorization of this literature reveals four common themes or types of user behavior examined: file and folder storage (for example, creating, downloading, naming, managing backups), organization (for example, organizing the folder structure and categorizing files into it), retrieval (for example, searching, navigating, and tagging), and sharing (for example, managing shared folders, sending files). The first three of these categories are arguably synonymous with keeping, meta-level, and refining activities (Jones, 2007b), or alternatively with keeping, organizing, and exploiting activities (Whittaker, 2011), while sharing activities entail and happen across all other activities. The literature reviewed is reported here along these four behavior themes, each entailing characterizing users’ behavior (or the visible outcomes of their behavior) and the challenges users face in performing relevant actions. Discussion of users’ behavior within the broader purview of PIM research can be found in the entry on PIM in the *Encyclopaedia of Library and Information Sciences* (Jones, Dinnen, Capra, Perez-Quinones, & Diekema, 2017).

Storing. Actions done to store files and folders include creating, downloading, naming, moving, copying, backing up, and synchronizing (or syncing). Although reports of the number of files users store vary greatly, the number is always large: recent studies have found averages from \(\sim 4,700\) (Hicks, Dong, Palmer, & McAlpine, 2008) to 15,000 files per user (Massey, TenBrook, Tatum, & Whittaker, 2014), with minimums as low as 1,000 (GonQalves & Jorge, 2003) and maximums as high as 56,994 (Whitham & Cruickshank, 2017). The number of folders stored also varies across studies, for example from 56 (Boardman & Sasse, 2004) to 1,044 (Henderson, 2005), and in a study of one organization the average increased 370% (from 2,400 to 8,900) over a 5-year period (Agrawal, Bolosky, Douceur, & Lorch, 2007).

Users’ files come from various sources, including the web (Huvila, Eriksson, Häusner, & Jansson, 2014; Jones, Bruce, & Dumais, 2001), external devices (Capra, Vardell, & Brennan, 2014), and peer-to-peer or cloud software (Marshall & Tang, 2012), although do not often come from their cell phones, despite the ability to download files to smart phones from the web (Capra, 2009). Several studies have sought to understand the contents of users’ collections, finding, for example, that document and image files are the most common types kept by students and knowledge workers (GonQalves & Jorge, 2003; Hicks et al., 2008), and that files may be regarded by users as ephemeral, archived, or current for their intended use (Nardi, Anderson, & Erickson, 1995).

Understanding the challenges of storing so many files is a primary concern of FM studies, and several challenges have been identified. Some challenges are due to the imperfect analog between the digital desktop and its files with the physical counterparts they are modeled after. For example, some users do not understand the desktop’s location in relation to the rest of the accessible disk (Ravasio, Schar, & Krueger, 2004), and for some it is not an attractive place to store files because it is often covered with other windows and does not have the multiple flexible views of its content that the file manager provides (Kaptelinin, 1996). Other challenges are due to the proliferation of digital files—with
so many files stored, it is difficult to remember that a file exists when it is needed (Jones, Dumais, & Bruce, 2002)—and to the limited support from systems for linking digital documents (that is, files) to related physical documents (Tayeh & Signer, 2018).

Another aspect to storing files and folders is how they are named, which has drawn attention in FM research, as generating meaningful and descriptive names for files and folders helps users find and understand files (Crowder, Marion, & Reilly, 2015), but is also difficult, especially if trying to create names that are concise and unique. In studying file-naming behavior, users have been found to exhibit considerable creativity in file naming (Carroll, 1982), although patterns are identifiable: files are named to display the document they represent, their purpose, a project title, or a relevant creation date or deadline (Hicks et al., 2008), but may also contain characters to facilitate file sorting (Jones et al., 2015).

Folder names have been found to represent their files’ genre, a relevant task, a particular topic meaningful to the user, or a period of time (Chaudhry, Rehman, & Al-Sughair, 2015; Henderson, 2005), and may also represent a priority ranking, their use as storage of information contents, or a combination of these and other themes (Khoo et al., 2007). Folder names may also reflect categories of an external document (for example, the sections of a curriculum vitae) and, like files, may contain characters to facilitate sorting by name (Jones et al., 2015). Beyond alphabetical characters, users also make use of numbers and punctuation such as white space, the underscore, and the hyphen (GonÇalves & Jorge, 2003). The mean length of users’ file names may be increasing as the system’s limits increase: studies have shown an increase from 6 characters (Carroll, 1982) to 12.6 (GonÇalves & Jorge, 2003) and recently to 18.8 (Fitchett & Cockburn, 2015). Despite all the creativity and possibilities in file naming, duplicated file and folder names are common (Henderson, 2005; Hicks et al., 2008) and are further increased by system-generated folders (Henderson & Srinivasan, 2009); this duplication poses a challenge to retrieving files whether by navigating or searching (for example, by file name).

The introduction of the cloud and desktop synchronizing software, such as Dropbox, has likely changed the nature of users’ file storage behavior, although the nature of this change is still being investigated. Users find synchronization across devices tedious (Santosa & Wigdor, 2013) and are confused by the cloud and by syncing software: they do not understand what such software is, does, or how it interacts with their local storage or other cloud software (Marshall, Wobber, Ramasubramanian, & Terry, 2012). They may conceive of it as a file repository, shared repository, personal replication store, shared replication store, and synchronization mechanism (Marshall & Tang, 2012), and try to understand it as it relates to their local storage (Tang, Brubaker, & Marshall, 2013). Users’ storage behavior on the cloud requires further study, as we discuss again below in the context of file-sharing behavior.

A growing portion of studies have examined how and when users back up their files and folders. Although what exactly constitutes a backup is conceived of variedly in the literature, it typically refers to copies of valuable portions of a collection made to provide redundancy or version control, stored on separate physical media of various formats, and not frequently accessed or modified. When backing up their files, people may rely on dedicated backup, sharing, or syncing services such as Dropbox or Apple’s Time Capsule to make their backups (Marshall & Tang, 2012). However, some people feel these methods are not reliable or do not fit well into their schedules or operations, and so may initiate and make backups manually (Capra et al., 2014; Dearman & Pierce, 2008), for example as a consequence of related activities (Kljun, Mariani, & Dix, 2016). Not all users make backups (Kljun et al., 2016), but may nonetheless feel that they should be doing so or doing so more frequently (Kearns, Frey, Tomer, & Alman, 2014).

Organizing. Organizing actions include renaming, creating subfolders, creating shortcuts, symlinks or hard links, filing (for example, downloading and then moving to a more permanent location), copying directly or by pasting, moving directly or by cut and paste, and deleting (Oh, 2012b). This is typically done using the folder hierarchy, and with various motivations, including giving the user a place for files to persist (Whitham & Cruickshank, 2017) and to help them make sense of, summarize, group, and maintain an overview of the files (Jones, Phuwanartmurak, Gill, & Bruce, 2005; Ravasio et al., 2004; Whitham & Cruickshank, 2017), which in turn aids memory about the files organized so that they may be retrieved later (Whitham & Cruickshank, 2017; Xie, Sonnenwald, & Fulton, 2015). The file manager software installed on virtually every computer aims to facilitate this process, but with uncertain results: some users have reported that the locations of OS-provided default folders are confusing and that the system-ascribed metadata was not useful for understanding their collections (Ravasio et al., 2004), whereas others make distinct use of the desktop, default folders, and secondary folders (Pare, 2011). Despite this confusion, some users do indeed store files in default folders, including files that are active or currently being frequently accessed (Bergman, Whittaker, Sanderson, Nachmias, & Ramamoorthy, 2010), in locations such as My Documents and on the desktop (Khoo et al., 2007); one study found use of the default folders among users at one organization grew over 5 years, accounting for 40% of all files (Agrawal et al., 2007).

Users also create, arrange, and remove folders (for example, when revising their folder structure to accommodate files that were previously difficult to categorize; Oh & Belkin, 2014) in locations beyond the default folders, such as the root of their hard drives (Ravasio et al., 2004) or at the root of their home folders. A developing line of research into the process of organizing files has begun to identify discrete stages in FM organization, including initiation; identification; temporary categorization; examination and comparison; selection, modification, and creation; and categorization (Oh, 2012a, 2013), and has begun to extend characterizations of users’ organizational styles (for example, filers and pilers as...
first suggested by Malone, 1983) with descriptors like fuzzy, rigid, or flexible (Oh, 2017).

In performing organization actions, users determine the shape of the overall folder tree with which they interact, and that shape can be described by measuring properties of the tree like its height, depth (the maximum number of steps taken when navigating into consecutive subfolders), and consistency (deviation in shape among its main branches). Such measurements comprise a tree topography, or quantitative description of how people organize their digital items, from which descriptions of particular aspects of user behavior can be identified, measured, and described (for example, 2,000 files outside of default locations but within the user’s folders imply that they have chosen to create or acquire and store as many). Descriptions such as these have been provided in many studies, including in those using quantitative data to complement and give scale to qualitative findings. Among disparate contexts, participant groups, and file system measures used in previous studies, users’ organizing behavior has been found to vary wildly.

As mentioned above, users may be spreading their files across as few as 56 folders or as many as 9,000. Figures reflecting the total number of folders are of limited use in analyzing the organization behavior, however, as folders can contain any number of files; they can, for example, contain many files, acting as traditional storage locations, or only other folders, thus acting as a navigation fork (Bergman et al., 2010).

User-created hierarchies may vary greatly in maximum depth; a range from one level of depth (that is, no subfolders) to 16 levels deep was found in a single study (Henderson & Srinivasan, 2011). Deeper structures are in part a result of larger collections (Henderson & Srinivasan, 2009), and depth in turn contributes to an increase in file name redundancy (Henderson, 2011) and time required to retrieve files (Bergman et al., 2010). Users may create hierarchies that display consistency among their internal branches (GonQalves & Jorge, 2003) or not (Henderson, 2005). Hierarchies may present the user with many navigation decisions by having a high average branching factor, or number of subfolders per folder, of 41.8 (Hicks et al., 2008), or a very low branching factor, for example of only 1.84 (GonQalves & Jorge, 2003).

The location of files within the folder hierarchy is another object of inquiry in FM studies, as where users put their files later affects how long it takes to retrieve them (Bergman, Gradovitch, Bar-Ilan, & Beyth-Marom, 2013a, 2013b). Users may file every single document despite each classification action being cognitively demanding (Ravasio et al., 2004), or may leave up to 6.5% unfiled (Henderson & Srinivasan, 2011), sometimes called dumping, perhaps because they are unsure where to put a file, do not have time to file it, or want it to be easily accessible (for example, on the desktop; Kamaruddin & Dix, 2010). Depending on the user, filing the average file may mean storing it just two levels down from the root of the tree (Bergman, Whittaker, & Falk, 2014), whereas others store most files in deeper levels (Hicks et al., 2008). As the number of files in a folder increases, so does the work required to review them all, and although users report creating new subfolders when a folder contains 3 to 7 items (Ravasio et al., 2004), the average number of files found in folders has ranged from low figures such as 0 (Henderson & Srinivasan, 2009) or 4 (Zhang & Hu, 2014) to 12 (Bergman et al., 2010; Henderson & Srinivasan, 2009) or 16 (GonQalves & Jorge, 2003; Hardof-Jaffe, Hershkovitz, Abu-Kishk, Bergman, & Nachmias, 2009b). Factors that likely influence the number of items in a folder include, among others, the amount of time that has passed since the collection or folder was created (that is, more time provides more chances to add files; Boardman & Sasse, 2004) and the format of the files (for example, users may store all their photos in one folder but are less likely to store all documents in one folder; Jones et al., 2015). Default folders have been found to have a mean of 19.42 files per folder (Bergman et al., 2010), and so may be fuller than folders in completely user-created branches, perhaps because they are more likely to be used to store frequently accessed documents (for example, active project files); a complete comparison will require examining and comparing folder structures beyond those housing recently accessed files, including on devices where backups or personal archives are stored.

Studies have conflicting reports of users creating folders without putting files into them: Although one study found users typically do not create empty folders (Khoo et al., 2007), another found that most users do, with 8% (mean) of folders being empty (Henderson & Srinivasan, 2009), and higher percentages being reported in other studies, including 14% (Sienknecht, Friedrich, Martinka, & Friedenbach, 1994) to 18% (Douceur & Bolosky, 1999). Empty folders may be made, for example, by putting nothing in them at the point of their creation, perhaps in anticipation of forthcoming projects (Kamaruddin, Dix, & Martin, 2006; Khoo et al., 2007), or by not deleting them when the last file or folder is removed. Users thus appear to differ widely regarding most FM actions; what they seem to have in common, however, is a lack of reliance on soft file linking features such as aliases in Mac, shortcuts in Windows, and symlinks in Linux (GonQalves & Jorge, 2003; Ravasio et al., 2004). Nonetheless, different approaches or strategies to organizing have been identified among the varied findings, albeit rather broadly, so that we can describe organizers as: neat or messy (Boardman & Sasse, 2004), prone to saving or deleting (Berlin, Jeffries, O’Day, Paepcke, & Wharton, 1993), and prone to filing or piling (Malone, 1983), extensive filing or single folder filing (Henderson & Srinivasan, 2011), or mixing approaches (Trullemans & Signer, 2014a).

To draw conclusions beyond these, studies are needed with commensurable contexts, participant characteristics, file system measures, and results reporting (Dinneen, Odoni, Frissen, & Julien, 2016).

Retrieving. Retrieving files and folders may be done to find them for the first time (for example, in a shared drive) or to return to them (Dumais et al., 2016); returning to an item is
also called refinding, and is distinct from simply finding an item again because the user has additional information about their existence and location and thus may have additional retrieval methods available (Capra, Pinney, & Perez-Quinones, 2005). Specifically, retrieving can be done manually, for example by navigating through the folder hierarchy to a file’s location, or by searching, for example by file property, keyword, or tag label. Both approaches to retrieval require remembering something about the object to be retrieved, such as its location, name, or other properties.

Much FM research has been motivated by understanding navigation and comparing it with search, typically by examining users’ behavior and preferences and their influences. A preference for navigating to files is much more common than a preference for searching (Fitchett & Cockburn, 2015; Song & Ling, 2011), even among users who prefer to search rather than navigate folders when retrieving their emails (Jones, Wenning, & Bruce, 2014). There are numerous potential causes for this; users report that they feel desktop search tools are too complicated (Ravasio et al., 2004), the search results are too numerous and not meaningfully ranked (Fitchett & Cockburn, 2015) and that navigating through folders provides important reminding cues about their collections (Barreau & Nardi, 1995).

These reports are reflected in users’ behavior: Users perform navigation far more than searching (Bergman, Beyth-Marom, Nachmias, Gradovitch, & Whittaker, 2008; Fitchett & Cockburn, 2015), even when they knew the name of what they were looking for (Teevan, Alvarado, Ackerman, & Karger, 2004), are given improved search engines (Bergman, Beyth-Marom, & Nachmias, 2008), or have not made the effort to maintain a highly structured information organization (Teevan et al., 2004). Users typically search their files only as a last resort in rare cases when navigation fails (Bergman, Beyth-Marom, & Nachmias, 2008; Fitchett & Cockburn, 2015; Nardi et al., 1995), for example when a folder structure has become unfamiliar over time (Copic Pucihar, Kljun, Mariani, & Dix, 2016; Narayan & Olsson, 2013). The tendency not to search unless it is necessary is likely due, in part, to navigation being easier to perform: it allows users to explicate less of their information need and the folders presented at each step provide additional context to guide the navigation (Teevan et al., 2004). A neurocognitive explanation of the relative ease of navigation has been explored in recent studies (summarized by Bergman & Benn, 2018): navigating tasks require less cognitive effort than searching tasks (Bergman, Tene-Rubinstein, & Shalom, 2013), and large portions of the brain dedicated to spatial cognition and used in real-world navigation are activated during FM navigation, whereas smaller areas dedicated to linguistic processing are activated during search tasks (Benn et al., 2015).

A third option for retrieving files is to search by tags; tagging provides an alternative to classifying files into folders by allowing users to assign numerous labels to files that can later be searched or browsed and taxing classification and navigation tasks can be avoided, for example, deciding which single folder a file should be placed within. Because of its promise and use in web-based contexts and email, tagging has been studied in those contexts, where navigation was still preferred by users to searching tags (Civan, Jones, Klasnja, & Bruce, 2008), and tagging entailed cognitive load for the user (for example, when deriving label names; Gao, 2011). This has been reflected in FM research into tagging, where users report being less frustrated with folders than tags, and in the end use folders more than tags (Bergman, Gradovitch, et al., 2013) even when their reported preference was for tagging and they were provided both systems (Bergman, Gradovitch, et al., 2013b). Experienced users may tag faster than they file (Voit, Andrews, & Slany, 2012b), but rarely apply more than one tag (Bergman, Gradovitch, et al., 2013a), thus losing some of the value of the potential for multiple classification of files. The takeaway is somewhat unclear, as noted by Bergman, Gradovitch, et al. (2013b): From the findings of many studies of tagging, one can see that both folders and tags are better, worse, and no different than their alternative at any given aspect of retrieval. Therefore, work remains to provide the kind of explanation for tagging-vs.-filing behavior and preferences that have recently been done for searching-vs.-filing.

Despite relatively clear indications that users prefer and perform navigation in FM contexts, desktop search has a discrete purpose and tagging shows promise, and therefore search and tagging systems will likely continue to develop in the coming years. Improved FM tools may, for example, usefully integrate search and navigation functions (Fitchett, Cockburn, & Gutwin, 2014; Julien, Asadi, Dinneen, & Shu, 2016), or improve searching capabilities by utilizing the extensive metadata that users are more likely to remember (GonQalves & Jorge, 2008a), such as file provenance (Jensen et al., 2010), file type (Blanc-Brude & Scapin, 2007), and time (Dumais et al., 2016).

Sharing. Interacting with shared files and folders involves sharing them or having them be shared with you, and then performing the usual storage, organization, and retrieval tasks in a way influenced by the fact that they are shared (that is, comanaging, also known as Group Information Management or GIM). Sharing files may be a relatively simple and singular act, for example, when users share files on USB sticks or in email attachments for personal purposes (Capra et al., 2014) or to circumvent institutional access control policies or difficult software interactions (Johnson, Bellovin, Reeder, & Schechter, 2009). It may, however, be a complex negotiation of a shared information space (for example, a Dropbox folder or company intranet) and organizational needs, which leaves the files fragmented across multiple locations or services (Copic Pucihar et al., 2016; Tang et al., 2013; Voida, Olson, & Olson, 2013).

Various problems arise in shared FM contexts. Some problems are relatively simple and likely easy to fix; for example, some interfaces for shared files (for example, Google Drive) do not always implement the typical
features of file managers, like a dialog for saving files to a particular location (that is, instead saving files to an implicit root folder rather than a user-created folder). The problem that arises from this particular example is that users retrieve their files from such spaces less successfully and less quickly, but the issue is successfully resolved by implementing the missing dialog (Bergman, Whittaker, & Frishman, 2018).

Other issues with shared FM are more complicated. For example, individuals’ personal information access strategies break down when managing group information, and people struggle to find files in unfamiliar or unintelligible information structures created by others for their own use (Berlin et al., 1993; Copic Pucihar et al., 2016). Such difficulties may be due to a lack of mutual intelligibility; customization done to make information structures more meaningful for one person often makes them less accessible or intelligible to others (Dourish, Lamping, & Rodden, 1999). If the management of shared folders is treated with an inclusive approach where nothing is deleted, files become copies across multiple versions and locations (that is, forked), folders may get messy, users may run out of hard drive space (Capra et al., 2014), and users may forget what is shared and thus forget to maintain or cease sharing it (Khan, Hyun, Kanich, & Ur, 2018). If, however, users intend to tidy the shared space, it may be unclear to them who owns any given file (Zhang & Twidale, 2012), and they will typically face a lack of policy and direction regarding deletion, naming, and organization (Capra et al., 2014).

Making changes to item names and moving or deleting items entails changes that other users will be unaware of and possibly frustrated with (Copic Pucihar et al., 2016; Zhang & Twidale, 2012). In turn, retrieval in shared folders is more time-consuming and prone to error than retrieval from one’s own folders, and users may prefer peer-to-peer sharing acts to co-managing a shared information space (Bergman et al., 2014), so long as retrieving comanaged files appears more complicated than retrieving one’s own. These problems sometimes lead to the establishment of explicit conventions, strategies, and even tools (Massey, Lennig, & Whittaker, 2014) for managing the shared space, which may tie usefully into other aspects of group work (for example, establishing a division of labor with the files’ contents; Wulf, 1997), but these can be difficult to identify, establish, and follow (Mark & Prinz, 1997). Therefore, implicit and assumed rules often guide users’ behavior (Zhang & Twidale, 2012), and thus warrant further study.

Table 2 presents studies that have examined user behavior, categorized by the FM behavior theme.

Understanding Individual Differences and External Factors

Understanding user behavior and supporting it with improved software both entail understanding how users’ individual differences and broader contexts could determine their behavior. The few studies of these factors’ roles in FM are discussed below; a review of their roles in standard PIM contexts such as email, the web, and paper documents is provided by Gwizdka and Chignell (2007).

Individual differences. Although it is acknowledged that PIM is deeply personal and psychological (Lansdale, 1988), the current knowledge about how individual differences affect users’ behavior is still minimal, especially with regard to FM.

Some of the concern for individual differences in FM contexts has been on spatial cognition, which is appropriate to the file and folder metaphor: folders are represented as being contained within one another and displayed in a twodimensional space (that is, represented spatially), users navigate through the folder hierarchy space, and users can (and do) arrange files and folders on the desktop as part of their organizational strategy (Ravasio et al., 2004). In virtue of the spatial presentation of files, FM stands to benefit from a large body of work on spatial layout and navigation in computer graphics (cf. Chalmers, 1993; Dourish & Chalmers, 1994); due to space constraints, we restrict this discussion to individual spatial cognition in FM. An early study of FM found that participants with low spatial ability took twice as long to complete navigation tasks in terminal-based (that is, textonly, without icons) hierarchical file systems (Vicente, Hayes, & Williges, 1987), although this difference could be partially alleviated with the addition of a simple map (Vicente & Williges, 1988). The terminal-based paradigm for file interaction is no longer the predominant one, and as of yet no work has specifically looked for similar effects in the modern graphical paradigm. It has, however, been noted that users develop preferences toward using either the spatial layout of their folders or patterns in file names when retrieving their files (Krishnan & Jones, 2005), suggesting an active role of spatial ability in modern FM. As discussed above, some work has recently found neurocognitive indicators of why spatial cognition plays such a role (Benn et al., 2015), and so future studies may carry out finer-grained investigations of how different FM actions are affected by this role.

Works complementing the discussed above focus on the antecedent to retrieval and navigation, namely, organization, and the individual differences that may influence it. So far such works have, for example, begun to consider that an individual’s flexibility in thinking may influence their organizational strategy (Oh, 2017). Notable works have also examined the role of personality style and emotion in FM. Extending into the digital domain work on the influence of personality on the organization of physical spaces (Gosling, Ko, Mannarelli, & Morris, 2002), one study examined features of file organization that participants assumed would predict personality (Massey, TenBrook, et al., 2014), and found that conscientious participants were more active organizers, keeping fewer files overall and more files per folder (that is, fewer folders), but also more files on the desktop. Surprisingly, neuroticism and openness were not correlated with organizational or storage behavior; future studies examining additional measures of FM may complement these findings. Across two studies examining mood (Massey,
TABLE 2. FM studies seeking to understand user behavior, presented along common themes.

FM theme	Example actions	Studies
Storing	Creating, downloading, filing, naming, backing up files	Barreau (1995); Capra (2009); Capra et al. (2014); Carroll (1982); Crowder et al. (2015); Dearman and Pierce (2008); GonQalves and Jorge (2003); Henderson (2005); Henderson and Srinivasan (2009); Hicks et al. (2008); Huylia et al. (2014); Jones et al. (2001); Jones et al. (2002); Jones et al. (2015); Kaptelinin (1996); Kearns et al. (2014); Kho et al. (2007); Kljun et al. (2016); Marshall et al. (2012); C. Marshall and Tang (2012); Nardi et al. (1995); Ravasio et al. (2004); Santos and Wigdor (2013); Tang et al. (2013); Tayeh and Signer (2018)
Organizing	Creating subfolders, moving and deleting files and folders	Boardman and Sasse (2004); Bergman et al. (2010); Berlin et al. (1993); Chaudhry et al. (2015); Henderson and Srinivasan (2009); Henderson (2011); Henderson and Srinivasan (2011); Hicks et al. (2008); Kamaruddin et al. (2006); Kamaruddin and Dix (2010); Kaptelinin (1996); Malone (1983); Oh (2012a, 2013); Oh and Belkin (2014); Oh (2017); Pare (2011); Trullemans and Signer (2014a); GonQalves and Jorge (2003); Hardof-Jaffe et al. (2009b); Henderson (2005); Jones et al. (2005); Ravasio et al. (2004); Whitham and Cruickshank (2017); Zhang and Hu (2014)
Retrieving	Navigating, searching, tagging files and folders	Barreau and Nardi (1995); Benn et al. (2015); Bergman, Beyth-Marom, Nachmias, Gradovitch, and Whittaker (2008); Bergman, Gradovitch, et al. (2013a, 2013b); Bergman, Tene-Rubinstein, and Shalom (2013); Bergman et al. (2014); Cuthrell (2006); Cuthrell, Dumais, and Teevan (2006); Fitchett and Cockburn (2015); Jensen et al. (2010); Jones et al. (2014); Narayan and Olsson (2013); Nardi et al. (1995); Ravasio et al. (2004); Song and Ling (2011); Teevan et al. (2004); Voiit, Andrews, and Slany (2011); Voiit et al. (2012)
Sharing	Sending files, negotiating storage, organization, retrieval in shared space	Bergman et al. (2014); Bergman et al. (2018); Berlin et al. (1993); Capra et al. (2014); Copic Puchihar et al. (2016); Dourish, Lamping, and Rodden (1999); M. L. Johnson et al. (2009); Khan et al. (2018); Mark and Prinz (1997); Massey, TenBrook, et al. (2014); Tang et al. (2013); A. Voida et al. (2013); Wulf (1997); Zhang and Twidale (2012)

2017), it was found that momentary changes in mood can affect a user’s FM behavior, as “sad participants made significantly more folders than happy participants” (p. vii), but that there was no clear relationship between organization and longer-term trait emotional tendency (for example, generally happy people did not have significantly fewer folders or shallower hierarchies than generally unhappy people).

In addition to revealing determining factors that may generalize to other contexts where users organize and retrieve information, studies of individual differences in FM may also discover effective ways to support individuals in FM and similar tasks, for example through detailed user modeling and software personalization. Further such directions for this line of research are discussed below.

External factors. It is established that external or contextual factors such as occupation, information task, or time are important to understanding the use of paper documents (Kwaznik, 1991) and digital PIM systems (Capra & Perez-Quinones, 2006). This is a concern in FM research as well, but these factors are not yet well understood. For example, the specific effects of occupation are unclear: although participants’ occupations have been suggested to be a factor in determining folder naming strategies (Khoo et al., 2007), folder tree height (Zhang & Hu, 2014), and folder organization (Pare, 2011), occupation seems to have no effect on branching factor (GonQalves & Jorge, 2003), and findings disagree about the effect of occupation on the total number of files stored (Agrawal et al., 2007; GonQalves & Jorge, 2003; Henderson & Srinivasan, 2009).

The specific effects of occupation may become clearer as they are explored more narrowly. This may include specific occupational traits like regular activities, demands, and patterns and constraints on time spent organizing and retrieving information. Notably, the personal or collaborative management of work files is likely determined in part by institutional policy, for example to delete anything older than 2 years, or keep everything for at least 5 years; such policy may be followed, thus determining the contents of a file collection as they do with email (Johnson et al., 2009), or circumvented if employees find them too onerous (Johnson et al., 2009).

Another external factor of concern in FM research is the tools used to perform FM: The PIM tool adopted for some task enables, restricts, and affects behavior of the user (Boardman & Sasse, 2004; Fertig, Freeman, & Gelernter, 1996a), as do tools’ surrounding software environments (Kaptelinin, 1996) and the hardware they are housed in. In the context of FM, this includes the computer or hardware device, hard disks, file manager software (sometimes called a file browser—the most popular of which are File Explorer in Windows and Finder in Mac OS), windowing environment (if any), and the OS. For example, limited disk space and even limited cloud storage space can force users to decide what to store locally and what to archive externally (Barreau & Nardi, 1995; Kljun et al., 2016), and the available views of files provided by the file manager may influence how files are organized and retrieved. Although the exact differences between the software relevant to FM have yet to be thoroughly catalogued—for example, the differing OSes and their respective file manager applications allow, encourage, discourage, and forbid different interactions with files—it has been suggested by ancillary analyses in several studies (Agrawal et al., 2007; Barreau & Nardi, 1995; Massey, TenBrook, et al., 2014) that such differences may affect users’ file storage, management, retrieval, and sharing behavior. For example, an additional finding of Massey,
TenBrook, et al. (2014) was that among participants using Windows, conscientiousness was positively correlated with the number of files kept on the desktop, but no such correlation existed for Mac users.

Only one study has explicitly investigated such potential effects (Bergman, Whittaker, Sanderson, Nachmias, & Ramamoorthy, 2012): While participants retrieved files from their own computers, the researchers noted participants’ OS, file manager presentation mode, retrieval times and success rates, and file and folder organization. Although collecting data only about recently accessed files, they found that Mac users retrieve files faster than Windows users as a result of a differing organizational strategy: they keep more folders close to the root, with fewer files but more subfolders per folder. They also found that the file manager presentation style with which users performed retrievals best was the icons view, regardless of the OS, and therefore suggested that the Windows default should therefore be changed from the details-based view; users rarely change such defaults (Barreau, 1995). This constitutes a good starting point for understanding the effect of the tool on FM behavior, and future studies may therefore seek to understand the effects of the OS, file manager, and cloud storage software on storage behavior and additional variables in organizational behavior exhibited across participants’ recent and archived files.

Hardware, too, may affect users’ FM behavior; limited available hard drive space may cause users to save fewer large files or transfer files to the cloud or external physical drives, and users may be less likely to perform intensive FM actions (such as navigating deep trees or making backups) when using a laptop (that is, using a touch pad, relatively small monitor, and small hard drive) than they would be with typical desktop hardware. Few FM studies have touched upon such topics, but the growth of hard drive capacity, and thus of file storage capacity, can be seen over time in the FM literature. For example, in the mid-1990s users had, roughly, only 80 MB to 1.5 GB of storage space (Nardi et al., 1995), but in a study of one workplace taking place a decade later, the mean capacity per participant increased from 8 to 46 GB over a 5-year period (Agrawal et al., 2007). In that study, mean hard drive consumption grew from only 3 to 18 GB across 5 years, suggesting that at least the employees at that organization are not restricted by hard drive space, but the adoption of faster, smaller solid state hard drives may introduce another factor into this trend.

A table summarizing the individual differences and external factors that have been examined for their role in determining FM behavior are presented in Table 3.

Improving FM Systems

One of the main goals of FM research, as with broader PIM research, is to save users time and effort, and to understand and support their behavior through improved FM software. There have been many attempts at this, generally either in the form of augmentations to existing FM software or new and alternative metaphors for handling digital content intended to replace some or all of the hierarchical arrangement of files and folders. In both cases the systems are generally purposefully designed, prototypes are built, and these are then tested with live users in seminatural use or structured experiments (such methodologies are reviewed below). Although these systems typically have short lives and do not transfer into mainstream use, the novel concepts they develop and evaluate often do eventually trickle into commonly used software (Klijun, Mariani, & Dix, 2015). We review here both augmentations to FM existing software and alternative approaches to managing personal digital content.

FM software augmentations

One approach to facilitating FM is to design augmentations to existing FM software to test intuitions about improvements in FM interaction and treat challenges identified in previous studies. By aiming to incrementally improve the current FM paradigm, this approach benefits from not overloading users with the task of learning a new system (Bondarenko & Janssen, 2005) or surprising them with unfamiliar metaphors or interfaces (Seebach, 2001).

One motivation in augmenting the file manager is to aid the user when navigating through the folder hierarchy. The oldest of these augmentations improved navigating the folder hierarchy in the command line by providing a map of the hierarchy with the user’s current location (Vicente & Williges, 1988), and this was found to enable users with low spatial ability to perform retrieval tasks with the same efficacy as users with high spatial ability. More recent attempts improve graphical navigation, for example by highlighting a path to folders that contain file search matches (Fitchett et al., 2014; Fitchett, Cockburn, & Gutwin, 2013). Navigation has also been improved by allowing users to de-emphasize files (Bergman, Elyada, Dvir, Vaitzman, & Ami, 2015; Bergman, Tucker, Beyth-Maram, Cutrell, & Whittaker, 2009) and by hiding unused folders (Lee & Bederson, 2003) so that fewer navigation decisions are required during refining tasks.

As discussed above, there are instances where refining by navigation fails and a desktop search may be used as a...
last resort; several studies have sought to augment the relevant software used in such cases. Most of these have focused on improving general search algorithms and interfaces (Cole, 2005; Kim & Croft, 2010; Liu, Rioul, McGrenere, Mackay, & Beaudouin-Lafon, 2018; Ghorashi & Jensen, 2012; Sauermann, Bernardi, & Dengel, 2005; Seenu, Rao, & Padma, 2014) or applying semantic search to the desktop (Adrian, Klinkigt, Maus, & Dengel, 2009; Handschuh, Møller, & Groza, 2007; Sauermann et al., 2006), for example by using semantic attributes to enhance search ranking (Chirita, Costache, Nejdl, & Pau, 2006). Others, however, have sought to support specific search contexts, such as finding similar or duplicate files (Manber, 1994) or supporting search with a more interactive interface and drawing on a detailed file metadata index (Liu, Jiang, & Feng, 2017). Further tools for searching across PIM objects beyond files and folders are reviewed by Cутrella (2006).

Several FM software augmentations have been motivated by improving the social and networked aspect of FM by supporting the management of shared and cloud-based files and folders. Some augmentations simplify the users’ interactions, for example by providing a unified view of local and cloud folders (Jones, Thorsteinson, Thevongsa, & Garrett, 2016), using content and task analysis to suggest locations for new documents to be placed (Prinz & Zaman, 2005), or unifying synchronization across a users’ devices and across multiple users (Marshall et al., 2012). Other augmentations have aimed to make the complexity of social FM more intelligible to users, for example by allowing them to review the permissions of all shared files (Voida, Edwards, Newman, Grinter, & Ducheneaut, 2006), storing the history of shared files (Whalen, Toms, & Blustein, 2008), and visualizing the history and permissions metadata (Rode et al., 2006); these augmentations therefore help to clarify the consequences of users’ actions on other users’ interactions and on the security of their own digital possessions.

In addition to aiding users in understanding shared files, increased file metadata has been used to try to improve the usefulness of files and their retrieval. So far, this has been done manually, by allowing users to link their files to web resources (Tayeh, Ebrahim, & Signer, 2018) and assign annotations and images to their folders (Jones, Hou, Sethanandha, Bi, & Gemmell, 2010; Jones, Thorsteinson, et al., 2016), and automatically, by enriching files and folders with content taken from a relevant web source (He, Li, & Shen, 2013; Voida & Greenberg, 2009), or reading file contents to assign them representative icons (Roy, Singh, Chawla, Saxena, & Sinha, 2017). Finally, small but ubiquitous FM actions have not been overlooked, as augmentations have aimed to: make filing new files easier by suggesting locations (Prinz & Zaman, 2005; Sinha & Basu, 2012b), improve file copying tasks by adding a many-to-one feature (Sinha & Basu, 2012c), make moving sensitive files to external destinations more, secure alerting users if the files have remained in the original location (that is, if files have been copied rather than moved; Ishizawa, Andoh, & Nishida, 2010), facilitate planned backups (Cox, Murray, & Noble, 2002), increase the likelihood of retrieving cloud files by prompting users to store them in folders (Bergman et al., 2018), and allow multiple selection of files across simultaneously open folders (Sinha & Basu, 2012a).

Alternative FM interaction paradigms. Files and folders do not exist in the computer as literal, physical paper files and folders, of course, but are presented in this metaphorical way to provide users with a familiar idea of what digital objects are like and what can be done with them. The paper metaphor and the hierarchy provided with it are not the only possible ways to represent and enable interaction with digital objects, and since the adoption of digital files many systems have been developed to implement alternative approaches (Burton, 1981; Burton, Russell, & Yerke, 1969). Some inherent limitations to nonhierarchical approaches like flat, linear, and spatial networks are discussed by Indratmo and Vassileva (2008). Below we review studies of systems implementing and testing these and additional approaches.

One theme among systems using nonstandard approaches is metaphors that rely on common phenomena in human experience, such as space and time. This is achieved, for example, by putting the files into a different 2D space, such as a topic map (Yang, Zhou, Wang, & Lee, 2012), or a 3D space where users can arrange and automatically rearrange (Agarawala & Balakrishnan, 2006) their documents into piles (Mander, Salomon, & Wong, 1992) and other arrangements (Robertson et al., 1998) in the same way they may be in physical space. This utilizes the spatial metaphor already popular in modern computing while avoiding the folder hierarchy, and enables highly personalized user-made reminding cues (Bondarenko & Janssen, 2005).

Research done in information visualization on how to display hierarchies of various kinds in efficient and usable ways is also directly applicable to the display of the folder hierarchy, and in fact folder tree structures are often the specific cases used to demonstrate various general approaches (Turo & Johnson, 1992; Xu, Esteva, & Jain, 2010). Such work has typically consisted of designing a novel approach and comparing it to various baselines (Kobsa, 2004; Mercun & Zumer, 2013) and has generally focused on visualizing especially large trees (Plaisant, Grosjean, & Bederson, 2003) using various 2- and 3D approaches. The most prototypical of these visualizations include treemaps (space-filling rectangles; Johnson & Shneiderman, 1991), of which several variations exist (Stasko, Catrambone, Guzdial, & McDonald, 2000; Turo & Johnson, 1992), and animated 3D trees (Robertson, Mackinlay, & Card, 1991).

Files may also be presented chronologically, for example by allowing the user to specify a subset of documents based on some property (file access time or otherwise) and presenting them as a chronologically sorted, 2D array (Fertig, Freeman, & Gelernter, 1996b; Freeman & Gelernter, 1996; Wideroos & Pekkola, 2007). Both spatial and chronological representations of files entail compromise: presenting time as locations in space (on the screen) mixes metaphors, while
piles are unstructured containers that are functionally identical to a flat list of folders (Treglown, 2000).

Novel systems also represent digital items without metaphors, however, and typically do so simply as discrete items (whether called files or otherwise) in flat lists or tables sorted, arranged, or grouped by their properties, such as name, type, size, author, content, topic, and so on (Collins, 2007; Collins, Apted, & Kay, 2007; Collins et al., 2009; Dourish, Lamping, & Rodden, 1999; Dourish, Edwards, LaMarca, & Salisbury, 1999a; Dubey & Zhang, 2012; Xu & Chen, 2011). By utilizing items’ properties beyond name and folder location, and the fact that users remember these additional properties (Gonçalves & Jorge, 2008a), new interactions are enabled: users may retrieve from their collection by recalling an item’s narrative (Gonçalves & Jorge, 2006), or following a path of associations, for example from a user-remembered event to an email in which it is discussed and then to a document that was attached to the email (Kim, Croft, Smith, & Bakalov, 2011). Classifying by property also allows users to assign items to multiple groups, rather than a single folder (Quan, Bakshi, Huynh, & Karger, 2003), thus avoiding the single classification problem of the folder hierarchy. Items’ properties can then be used to present items according to a logical division of content, such as in easily understood Venn diagrams (De Chiara, Erra, & Scarano, 2003), or in robust relational databases (Marsden & Cairns, 2003). One broad possibility enabled by focusing on item properties has been to unify digital items of all types (emails, files, web documents, and so forth) and present them together (Völkel & Haller, 2009), for example, grouped by their properties (Dong, 2005; Dumas et al., 2016); if effective in its execution, an integrated presentation of files and documents across local storage and the web would help to alleviate issues of information fragmentation (Bergman, Beyth-Marom, & Nachmias, 2006; Capra et al., 2014) and provide a flexibility that more closely resembles the physical world (Bondarenko & Janssen, 2005).

Another approach is to utilize properties of the user, rather than properties of the digital items, and for this user activity, task, and context have been the most popular thus far. With this approach, digital items need not be categorized in the folder hierarchy, but instead can be presented in a 2D space in clusters representing their relevant activity or task (Krishnan & Jones, 2005; Widerooos & Pekkola, 2006). This can be taken even further by providing computing environments and workplaces dedicated to specific work-and PIM-related activities (Jeuris, Houben, & Bardram, 2014), where only relevant programs are displayed, and suspended while changing tasks. However, demarcating a single task or activity is challenging; approaches to this include allowing users to generate activity names and apply them to files with tags (voida, Mynatt, & Edwards, 2008; Voida & Mynatt, 2009), determining an activity by analyzing the times when files are in use (Krishnan & Jones, 2005), and logging the instances and times of common software interactions (Chernov, Demartini, Herder, Kopycki, & Nejdl, 2008).

As discussed above, tagging has been investigated for its potential use in providing multiple classification of files, thus obviating maintaining a folder hierarchy. Several systems have implemented this, either by using tags without the folder hierarchy (Seltzer & Murphy, 2009) or in tandem with it (Albadri, Watson, & Dekeyser, 2016; Voit et al., 2011). The ubiquity of the tagging concept means it can be offered as an unobtrusive feature (Oleksik et al., 2009) in both local and web-based FM systems (Hsieh, Chen, Lin, & Sun, 2008) and in document management systems (Ma & Wiedenbeck, 2009).

Most of these novel approaches have had little effect on FM beyond their initial testing. A tagging feature has been introduced to Mac’s Finder application, however, where it is offered alongside the folder hierarchy. This may be the most drastic change that FM will encounter in the near future; because current OSes deal with files, any software that aims to replace them must still provide users with some access to them (Kaptelinin, 2003), thus prolonging the habit of managing them and therefore the need for such functionality.

A table summarizing the system augmentations, alternative FM metaphors, and related hierarchy visualization studies is presented in Table 4.

Theory and Methodology in File Management Research

In this section, we discuss on how FM research is carried out, first by noting the current theoretical underpinnings adopted, second by examining the methods used to study user behavior, and third by examining how systems and services are compared and improved.

Theoretical and Conceptual Frameworks

There do not currently exist any explicit theories about FM or theoretical frameworks specifically for understanding it. Similarly, to our knowledge no philosophical positions have been discussed in relation to FM or PIM, and the predominant implicit positions taken in FM research are postpositivist or constructivist. Put very briefly, postpositivism takes human perceptions and scientific measurements to be of a real world where causes reliably determine effects, but acknowledges the impact of various biases in our knowledge about that world and the methods we use to acquire such knowledge. This position is generally assumed when using quantitative approaches to scientific inquiry. By contrast, a constructivist position, which holds that the world is constructed by and consists only of perceptions and interpretations, is typical of qualitative approaches seeking to identify how meaning and behavior are constructed and conceived of (Bryman, 2012). Both approaches may be useful in FM, depending on the research questions being asked, as may the many positions in the spectrum between the two, but careful consideration of how these influence the questions, methods, and conclusions of FM research has yet to be carried out.

There are, however, two models for broadly characterizing user behavior in PIM, and these account for and thus
apply straightforwardly to FM contexts. Each characterizes user behavior as describable according to one of three categories; for Jones (2007a), these categories are keeping, finding or refining, and organizing (also called metalevel) behavior, whereas for Whittaker (2011) these are keeping, exploiting, and managing. The two models are similar, and because exploiting or utilizing information often entails (re)finding it, those categories could be collapsed into one (for example, refining and utilizing), making the approaches roughly equivalent. Alternatively, exploiting and refining could be kept distinct and serialized (for example, one refinds and then utilizes information), making the models complementary. Regardless, these models capture the main concerns of traditional PIM and FM, as is reflected in the sections above that summarize user behavior. Currently missing from each model, however, is explicit mention of the increasingly social aspect of personal information, which consists not only of comanaging (captured by metalevel or managing) but also of sharing (that is, sending, receiving, and so on) information.

The conceptual frameworks and as-of-yet inactive theoretical landscape of FM are summarized in Table 5.

Methods for Understanding User Behavior

Three general approaches to studying FM behavior can be identified in the literature, and are often used together: ask participants about their behavior, observe the behavior directly, and infer the behavior from the file system. We examine each in turn.

Asking

Asking participants about their FM behavior has typically been done to discover user behavior and challenges and understand the relevant contexts, usually by capturing participants’ responses with digital questionnaires or recorded interviews. For example, studies using this approach have examined the challenge of coordinating files across multiple devices (Capra, 2009; Song & Ling, 2011), difficulties in managing files in Mac OS (Ravasio et al., 2004), students’ habits in downloading documents (Huvila et al., 2014), opinions about graphical FM (Kaptelinin, 1996), and user perceptions about searching for files (Bergman, Beyth-Marom, & Nachmias, 2008; Teevan et al., 2004). It is rarely the only approach used in a study; rather, it is combined with the approaches described below.
TABLE 5. Conceptual and theoretical frameworks that have been discussed for PIM and are applicable to FM.

Concept	Summary
Theories, philosophical positions	There has not yet been discussion of theory or philosophical positions as they relate to file management research. Philosophical positions are generally implicit, and either postpositivist in quantitative studies or constructivist in qualitative ones.
Author	Conceptual framework of PIM keeping, (re)finding, and managing (metalevel) information
Jones (2007b)	keeping, exploiting, managing information
Whittaker (2011)	keeping, exploiting, managing information

when user perceptions are needed to understand the observed or inferred behavior (Whitham & Cruickshank, 2017, for example, combine all three approaches).

This approach is direct, as data about user perceptions and behavior can be gleaned from participants rather than inferred from their behavior. As with other forms of ethnographic study, the data collected can be rich and useful for understanding contextual factors and informing the design of relevant systems and services. One disadvantage, however, is that users may not have accurate knowledge about their own behavior: one study found a large discrepancy between users’ attitudes about tagging their files (for example, very positive) and their actual tagging behavior (for example, they typically did not tag files even when a good tagging system was presented and explained to them; Bergman, Gradovitch, et al., 2013a; Bergman, Gradovitch, et al., 2013b). Furthermore, they may simply not be aware of any number of details about their own behavior; for example, it is unlikely that anyone is cognizant of the number of redundant files they keep.

Observing. Observation is a popular approach to investigating fine-grained phenomena and specific challenges in FM. Studies using this approach have, for example, sought to understand if digital documents are organized like paper documents (Barreau, 1995), how information from the web is stored in files (Jones et al., 2001; 2002), and various challenges of file retrieval (Bergman et al., 2014). This is typically done by recording participants as they perform ordinary work, prompted retrieval tasks (for example, elicited personal information retrieval or EPIR tasks as in Bergman et al., 2018, among others), or a guided tour (Thomson, 2015), where they navigate and explain their folder arrangement to an observer and perform common FM tasks along the way. Observation notes stored on paper, video recordings, and screen shots are all relatively straightforward methods that have been used to capture data, although unclear recordings have resulted in lost data (Bergman et al., 2010). Complex methods for observing users in more fine-grained ways have also recently been used (Benn et al., 2015).

Using this approach, actions are observed as they occur seminaturally (for example, during work) or when solicited (for example, in a structured task or guided tour). Observation of this sort always takes place during some time, however, and thus necessarily does not see what participants are doing when not observed. This may be alleviated by supplementing observations with logs and inferences drawn, as discussed next; for example, file creation, access, and modify times stored by the OS can provide evidence of what participants do between immediate observations.

Inferring. Users’ actions determine properties of their file systems and the files and folders; for example, the folder hierarchy depth, the types of files stored, and the size of the collection in bytes and in total files and folders are each the result of specific user actions to store and organize their digital items, and their properties provide traces of this behavior. The file system therefore serves as an artifact from which we may infer users’ past behavior, and studies have used this to study FM since the 1980s. They have, for example, observed file sizes (Smith, 1981) and names (Carroll, 1982), examined how files are organized into folders (Khoo et al., 2007), explored the role of provenance in file retrieval (Jensen et al., 2010), studied the document management behavior of students (Henderson & Srinivasan, 2011), and examined the effect of folder depth on file retrieval (Bergman, Whittaker, et al., 2012).

This approach has been implemented in two ways, which are used approximately as frequently and sometimes together. First, researchers have examined the file system as it appeared in the recordings of the interviews, guided tours, or structured tasks described above. This method is accessible, as it does not require developing software, but given the large number of observable file system properties discussed below, manual notation of the properties is necessarily either highly laborious to collect and analyze or else limited to a small number, and it does not allow for capturing properties of portions of the file system not seen during the task or tour (Bergman et al., 2010). A second way is to use custom software to traverse the folder tree, recording data about the files and folders encountered, or to log user actions or changes to files and folders.

Automated methods facilitate studying a large sample and many variables (for example, file system properties), including temporal data, but are a technical challenge to develop and implement (Dinneen, Odoni, Frissen, & Julien, 2016). Both manual and automatic collection methods require participant trust to let the researcher, possibly perceived as an expert in PIM, see their digital organization or perceived lack thereof (Barreau, 1995). Automatic methods may also require researcher supervision to use, thus restricting sample size by being difficult to administer, or may be an obstacle to recruitment because it is difficult to find users willing to expose and share their digital possessions and desktops, entailing that participants are from an available but niche group like trusting colleagues. It is also difficult to develop such software to support multiple OSes; perhaps as a result, researchers have instead relied on tools packaged with the OS (for example, Evans & Kuening, 2002) that provide minimal functionality, and typically focused on a single OS (for example, Khoo et al., 2007).
TABLE 6. Studies observing participants’ file systems, number of participants, data collection method, and file system measures reported. “Simple” in this case is not evaluative but, rather, distinguishes, for example, data collection scripts from persistent logging software.

Study	n	Data collection methods	FM properties examined
Satyanarayan (1981)	8	Simple software	Collection size; file size
Carroll (1982)	22	Structured task	File type; collection size; file name; length of name
Akin, Baykan, and Rao (1987)	171	Structured task	Branching factor; folder fullness; folder depth; file and folder names
Bennett, Bauer, and Kinchlea (1991)	3	Simple software	Collection size; file size; use of symbolic links; file types; number of folders
Sienknecht et al. (1994)	267	Simple software	File size; collection size; files per folder; branching factor; file access
Barreau (1995)	7	Guided tour	File names; file access times; use of default locations
Nardi et al. (1995)	15	Guided tour	File type (ephemeral, working, or archive)
Douceur and Bolosky (1999)	10,568	Simple software	File size; file type; collection size
Vogels (1999)	45	Simple software	File size; file type; collection size
Downey (2001)	562	Simple software	File size
Evans and Kuenning (2002)	22	Simple software	File type; file size
GonQalves and Jorge (2003)	11	Simple software, interview	Tree depth; total file count; branching factor; files per folder; file types; file size; file creation, modified, accessed times; use of numbers, whitespace, and punctuation in names; length of file names; use of shortcuts/symlinks
Boardman and Sasse (2004)	31	Simple software, guided tour, diary	Total folders; folder depth; unfiled files
Ravasio et al. (2004)	16	Guided tour	Total folders; file names; duplicate file names; duplicate folder names; branch consistency
Henderson (2005)	6	Simple software, interview	Branching factor; file types; file names
Jones et al. (2005)	14	Guided tour	File size; collection size; file types; file creation and modification; files per folder; use of default locations; file depth; folder count
Agrawal et al. (2007)	62,744	Simple software	Use of default folders; roots per user; use of desktop; tree height and breadth; files per folder; file names
Khoo et al. (2007)	12	Simple software, interview	File names; tree depth; file size; collection size in bytes; file types; file and folder duplication (by name); file access times
Hicks et al. (2008)	40	Simple software, questionnaire	Collection size; tree dimensions; files per folder; file depth; unfiled files
Hardorf-Jaffe et al. (2009b)	518	Custom online environment	Collection size; tree dimensions; files per folder; file depth; unfiled files
Henderson and Srinivasan (2009)	73	Simple software	Collection size; tree height; file depth; branching factors; root folders; file name duplication, folder name duplication; empty folders
Bergman et al. (2010)	296	Structured task	File depth; use of desktop; use of shortcuts; files per folder; branching factor; use of default locations; files per folder
Henderson (2011)	73	Interview	Unfiled files; tree height; file name duplication; folder name duplication; use of desktop; use of default locations
Henderson and Srinivasan (2011)	10	Interview, simple software	Unfiled files; tree height; file name duplication; folder name duplication; use of desktop; use of default locations
Bergman, Whittaker, et al. (2012)	289	Structured task	File depth; files per folder; branching factor
Bergman et al. (2014)	275	Structured task	File depth; file type; file access time
Massey, TenBrook, et al. (2014)	62	Simple software	Total files; use of desktop; file types
Zhang and Hu (2014)	12	Guided tour, simple software	Tree breadth, tree shape, files per folder, branching factor, total files, folder depth
Fitchett and Cockburn (2015)	26	Interview, logging	File access; file types; file name length; file depth; use of desktop
Benn et al. (2015)	17	Structured task	Folder depth
Whitham and Cruickshank (2017)	12	Guided tour, scan and logging software	Total files, total folders; file and folder access and modify times

A look at 31 studies examining the file system reveals the use of these methods, the number of participants in the sample, and the file system properties examined (presented together in Table 6). It should be noted that a low number of file system properties or a small sample size does not necessarily indicate an ineffective FM study or researcher oversight, as studies have explored differing research questions requiring collecting data about only particular file system properties.

Twenty-eight properties of the file system have been examined across the studies mentioned above, regardless of the data collection method used. This includes five...
variables that are particularly important to general PIM contexts: collection size, folder depth, folder breadth, folder size, and redundancy (for example, in file and folder names; Bergman, 2013). Twelve additional properties were suggested by Dinneen, Odoni, Frissen, and Julien (2016), resulting in 40 properties available for use in FM research (presented in Table 7).

Together, these properties characterize each category of FM behavior discussed above, and in smaller groups provide insight into particular actions and challenges users regularly encounter. The most commonly made measurements include folder tree height, breadth, number of subfolders per folder (sometimes called branching factor), and consistency (usually defined as deviation of branches from the average), which inform us, respectively, of the maximum depth to which users may need to traverse to find a file, the maximum (breadth) and average (branching factor) number of folders competing for a user’s attention at any depth, and the likelihood of the user encountering an unfamiliarly structured area (or branch) of the tree during navigation. The time of last access of files and their depth in the folder hierarchy can help to quantitatively describe users’ archiving habits, and the number of duplicated file and folder names indicate the difficulty they face in differentiating and naming similar items in their collections (Henderson, 2011). Properties can also be examined for correlation with individual difference and external factors, for example, to see if certain occupations or personality styles correlate with the average length of file names or total number of files (Massey, TenBrook, et al., 2014). The varied goals and research questions present across studies of this type entail that, despite collectively looking at many of these properties, a complete quantitative description of general FM behavior (that is, storage, organization, retrieval, and so on) does not yet exist and cannot be derived from cross-study analyses (for example, meta-analyses). The implications of and suggested solution to this are discussed in the Future Research Directions, below.

Methods for Designing and Evaluating FM Systems

As noted above, the general process for improving existing and novel FM systems and approaches entails evaluating systems’ performance or users’ performance or preference, for example during structured tasks and in comparison to some baseline system. However, it is agreed among researchers that meaningfully evaluating and comparing PIM systems is extremely challenging (Kelly, 2006), due to four factors that apply as much to FM as they do to broader PIM contexts. First, PIM behavior is complex and idiosyncratic, so the relative effects of the many factors can be difficult to understand and it is not always clear which tasks are best for an experiment (Capra & Perez-Quinones, 2006; Kelly, 2006). This is compounded when performing longitudinal studies, as user behavior across time is not well understood; longitudinal approaches to evaluating FM are thus rare (Dinneen, Odoni, & Julien, 2016). Second, representative data sets (that is, test collections) do not currently exist, preventing apples-to-apples comparisons in evaluating FM systems (for example, system and user performance), and one may reasonably doubt the possibility (or usefulness) of generalized FM collections—and also of generalized PIM models—given that PIM is, by definition, such a highly personalized domain. Such efficacy may soon be empirically tested, however, as the possibility of creating such collections and models draws near: recent methodological contributions have enabled observing extensive file system properties across many participants (Dinneen, Odoni, Frissen, & Julien, 2016), thus constituting a step toward generating representative and generalized test collections, and activity logging may be used to model user behavior (Chernov et al., 2008). Third, traditional evaluation measures do not apply straightforwardly to FM contexts; for example, recall and precision are of limited use in FM retrieval evaluation, as most FM retrievals are looking for a particular file rather than a large batch of files (Fitchett & Cockburn, 2015), and it is impractical to ask a single participant to make relevancy judgments for all of their documents and invalid to ask third parties to help in this (GonQalves & Jorge, 2008b). Fourth, although it is essential for carrying out valid comparative evaluations, it can be difficult to make fair comparisons between systems and approaches when they are created with differing affordances and intended interactions (Voit, Andrews, & Slany, 2012a). One approach to comparing efficacy, efficiency, and usability across disparate systems is by doing an evaluation called

TABLE 7. Forty properties of file system (for example, as measured to study personal digital collections and infer users’ FM behavior).

FM topic	Data about	Properties
Storage	Hardware (4)	# of available drives, hard drive capacity, use, and free space; file extensions/types; file sizes; file age; folder age; shortcuts/symlinks, hidden files, hidden folders; duplicate files (by hard link), duplicate folders (by hard link)
Collection	total files, total folders; collection size (in bytes), collection size (files + folders); file age, folder age; shortcuts/symlinks, hidden files, hidden folders; duplicate files (by hard link), duplicate folders (by hard link)	
Semantics	File or folder name, length of name, numbers in names, punctuation or special characters in names, duplication of names; Letters in names, whitespace in names	
organization	Root folders; tree breadth, tree depth; folders in each folder (branching factor), files in each folder; file depths, folder depths; branch consistency or skewness; use of desktop for storage, use of default folders; inaccessible folders in user space; folders excluded by participants from study	
Retrieval	File access times, file modify times; folder access times, folder modify times	

DOI: 10.1002/asi
TABLE 8. Examples of literature relevant to the design and evaluation of FM systems.

Topic	Examples
System design	Bergman et al. (2003); Bergman, Beyth-Maram, and Nachmias (2008); Bergman (2012)
Experiment, task, data set design	Capra and Perez-Quinones (2006); Chernov et al. (2008); Dinneen, Odoni, Frissen, and Julien (2016); Dinneen, Odoni, and Julien (2016); GonQalves and Jorge (2008b); Kelly (2006); Voit et al. (2012a)

GOMS (Goals, Operators, Methods, Selection rules) model analysis (Kieras, 1997), which can provide an outcome-based comparison in cases where possible user behavior can be enumerated and predicted with some confidence. This has been used, for example, for testing the efficiency in moving and deleting files in a new file manager as compared with the existing File Explorer (Sinha & Basu, 2012a).

Evaluation aside, an explicit approach to the general design of PIM systems that clearly applies to FM systems is the user-subjective approach (Bergman, Beyth-Maram, & Nachmias, 2003), which emphasizes that PIM tool design should be concerned with what the users find important, rather than studying only how users behave with current, limited systems. This approach has been explicitly utilized in several studies (Bergman, 2012; Bergman et al., 2009; Bergman, Beyth-Maram, & Nachmias, 2008), and so shows promise for FM-specific software design. Examples of literature pertaining to reflection on the design and evaluation of FM systems are presented in Table 8.

Discussion

We discuss here the importance and relation of FM research to various research areas, and then discuss the future directions and challenges facing FM research.

Importance to Other Research Areas

By virtue of studying how humans use computers to manage information, FM research shares the concerns and methods of research areas such as personal information management, computer-supported collaborative work, information retrieval, and human–computer interaction. FM also has broad import for core subfields in information sciences, like information behavior, information organization, and personal archiving, and closely related fields like management information systems. Finally, its greater context and wide range of possible determining factors entail that it even has overlap and potential implications for psychology, computer science, and philosophy. To further explain the importance of FM and begin suggesting future research directions, we discuss such overlaps in this section. Some particular topics within the overlaps have been suggested in past work, and some are newly proposed here, but most remain relatively unexamined; we hope discussing these topics here spurs readers to undertake work on them, thus realizing the potential value in FM research.

Personal information management. The research area most closely related to FM research is PIM, which can be argued to be the broader parent topic to which FM research belongs, although this has not yet been explicitly posited and defended. For example, in this view FM can be seen as a subset of PIM focusing specifically on how people manage information at the file and folder level. The contexts of files and folders is arguably of crucial importance in PIM, given that much of the information of our daily lives resides in the digital domain, specifically in files. Indeed, the categories of research described above could be used to describe common concerns in PIM: to understand peoples’ behavior when personally managing information, to understand what gives rise to differences in this behavior, and to improve the design of the relevant systems and services that support this. Typical FM activity accords with the various conceptions of personal fundamental to and used in PIM literature; for example, that personal includes being controlled by, owned by, about, directed toward, sent by, experienced by, or potentially relevant to an individual (Jones et al., 2017). Unsurprisingly, files and folders have been present in and are relevant to many PIM studies that focus on the management of digital items by type or format, including digital music collections (Brinegar & Capra, 2010, 2011), digital photo collections (Rodden & Wood, 2003), and scholarly references (Fastrez & Jacques, 2015). Although users have the option to manage these digital items within their respective format-specific applications, they may also manage them as files, and insights gleaned from FM studies have implications for their general management. More about these two modes of management, of digital items as files or as specific formats, is discussed below.

Human–computer interaction, information retrieval, computer-supported cooperative work. FM research has relevance to human–computer interaction (HCI), information retrieval (IR), and computer-supported cooperative (or collaborative) work (CSCW), and this is reflected in the presence of PIM workshops in the last decade at the relevant HCI (2008 at SIGCHI, 2016 at CHI), IR (SIGIR 2006), and CSCW (2012) workshops. Managing files is a required activity for anything beyond the simplest computer usage. Due to this ubiquity and fundamental nature, it is of considerable relevance to research in HCI, where the file-folder metaphor has been a common example of typical user interactions, for example, in debates about digital design and manipulation philosophies (Frohlich, 1997) and the broader desktop metaphor (Johnson, 1987; Ravasio & Tschertner, 2007). It is within the HCI community primarily that the debate about the use of the file and folder metaphor, summarized above, has taken place. FM may also serve as an excellent context for advancing our knowledge of information foraging theory (Pirolli, 2007), which is of interest to those studying HCI and information behavior (IB) alike; with folders and files...
serving as metaphorical bushes and berries, it is reasonable to describe users’ FM behavior as enriching their file systems by storing and organizing, following scents by navigating, and foraging by retrieving.

Because much FM activity consists of retrieval or is done to support later retrieval, it is reasonable that FM research also has a close connection with IR research. The role of search (both for files and through files) in FM has been a focal point of FM research, and this has provided insights into how users retrieve files with search, navigation, or both, as discussed above. FM systems and their users benefit from innovations in IR research, for example in the retrieval and ranking algorithms and improved full-text and faceted search. Similarly, FM research may benefit from methods used in IR research; for example, by analyzing desktop search logs to understand users’ file search strategies (Jansen, Spink, & Saracevic, 2000). Because the findings and system augmentations in FM research may save users time when retrieving files, FM is also likely relevant to narrower, applied areas of HCI and IR—especially those dealing with time-sensitive tasks—such as browsing and retrieving medical documents (Baker, 2012).

FM is relevant also to research into CSCW and a topic within PIM known as group information management (GIM), as the opportunities, challenges, and implications of managing shared files, especially for collaborative work, are likely generalizable to broader contexts. For example, a study (Bergman et al., 2014) of the impact of shared files on retrieval success participates in and has implications for FM in understanding users’ refining behavior, IR in supporting user behavior with better file search algorithms, and CSCW in understanding how the shared files have supported shared tasks.

Information behavior and information seeking. FM research also has relevance to core areas in information science, such as IB and information-seeking behavior (ISB), as is reflected by the presence of two PIM workshops at the ASIS&T annual meeting (in 2009 and 2013). IB research, understood as investigating “how people need, seek, manage, give, and use information” (Fisher, Erdelez, & McKechnie, 2005, p. xix), is clearly related to both PIM and FM, where users create, manage, and retrieve information stored in files, thus exhibiting particular patterns of IB. Thus, unsurprisingly, typical IB patterns like filing, archiving, and organizing collected information (Meho & Tibbo, 2003) match very closely what users do with files as described in the FM strategies previously characterized (Berlin et al., 1993; Boardman & Sasse, 2004; Malone, 1983). The role files play in greater IB and ISB patterns has been touched upon tangentially in many studies of PIM and ISB, but given the prevalence of files this should be investigated further; changes in ubiquitous and fundamental information software such as a file manager will likely affect the information behavior of various groups.

Personal archiving. FM research also has a promising but so far largely implicit overlap with work in personal archiving (PA) or personal digital archiving (PDA). One cause of this overlap is evident in the fact that:

what we have written, what we have read, where we have been, who has met with us, who has communicated with us, what we have purchased, and much else is recorded digitally in increasingly greater detail in personal digital archives, whether they are held by individuals, institutions, or commercial organizations, and whether we are aware of those archives or not. (Hawkins, 2013, p. 2)

For those digital archives that are personal by virtue of being managed or owned by an individual person, FM is very likely taking place, and may be done either neglectfully, thus under-facilitating later reuse, or painstakingly, and could thus benefit from thoughtfully designed software support.

Numerous studies consider a person’s files as being part of their personal archive or digital possessions collection (Cushing, 2013; Kaye et al., 2006; Marshall, Bly, & Brun-Cottan, 2006; Siddiqui & Turley, 2006; Marshall, McCown, & Nelson, 2007; Massey, TenBrook, et al., 2014), and some have begun to describe problems shared by FM and PA research alike, such as file ownership and disambiguation (Haun & Nürnberg, 2013). That some files are kept and preserved is certainly of interest to FM research, and it is clear that, say, FM augmentations could be designed specifically to support PA. The potential for PIM and FM research to increase understanding of PA has previously been suggested (Bass, 2013), and the overlap between the fields is being increasingly explored (for example, at the Personal Digital Archiving 2017 conference, wherein PIM was a topic of discussion).

Knowledge organization. FM research also has potential import for research in the organization of information or knowledge, also called knowledge organization (KO), which is concerned with the nature and quality of systems used to organize knowledge (usually in documents). Labeled folders and their parent–child relationships present users with a free-form way to structure and name information as they want to, and so identifying how and why they do so may produce insights for KO systems design in general. Identifying trends across adequate numbers of users would mean establishing reflections of current practices and expectations of document organization tools (folder trees in this specific case), which should be considered when designing KO systems. For example, there is an open question in KO about how to best organize knowledge structures to aid interactions like retrieval, browsing, and exploration (Julien, Tirilley, Dinneen, & Guastavino, 2013); FM studies characterizing people’s folder trees (for example, mean depth and breadth) tell us what kind of structures they are most accustomed to navigating, and thus suggest what shape KO hierarchies could take to leverage that familiarity. Conversely, works in KO have demonstrated the benefits to users of making dynamic changes to unfamiliar knowledge structures (Dinneen,
Asadi, Frissen, Shu, & Julien, 2018), and so perhaps similar dynamic changes could be made in file-folder contexts (for example, to facilitate new users’ familiarization with and use of shared drives).

Research in KO has also been concerned with identifying highly skewed (for example, power law) distributions (Smiraglia, 2002) in collections organized by groups of individuals; for example, the assignment of documents to Library of Congress subject headings is highly skewed, with most documents being assigned to a small number of subjects, and the many remaining (that is, most) subjects therefore providing access to only a few documents each (Julien et al., 2013). Such distributions may be present in file systems as well (that is, most folders may contain small numbers of files while a small group of folders contain most files), suggesting that structures created by an individual reflect those created by groups, or conversely, individually created structures may not be distributed like group-created structures, implying that group-made structures are unfamiliar in an additional way. Finally, the field of KO has begun to focus on individual differences relatively recently (Rowley & Hartley, 2008), and so this too may be a valuable topic for which FM research could provide input (for example, factors determining the creation and use of one’s own folder structure may be relevant when browsing folder or subject heading structures made by others).

Library services and cultural heritage institutions. Many aspects of PIM, including FM, and the resulting tasks, may manifest in the identification, use, and instruction of library services. Therefore, it is perhaps unsurprising that PIM and FM have explicitly concerned those looking to improve such services (Fourie, 2011, 2012; Otopah & Dadzie, 2013), even recognizing in 1989 that it is a natural extension of librarians’ duties to teach personal file management skills (Strube, Antoniewicz, Glick, & Asu, 1989).

To our knowledge, PIM is not a part of the instruction librarians receive (for example, in a master’s of information studies), but the works discussed here suggest such instruction would be useful. This suggests that work remains to identify relevant PIM (or PFM) skills, determine how to best convey them to patrons or clients in a position to benefit from them, and evaluate the benefit of doing so.

Similarly, FM and personal archives likely interest cultural heritage institutions (especially digital cultural heritage institutions), which are concerned with, among other things, the personal collections of relevant individuals and the ways in which those collections are organized and therefore preserved (for example, original order). This, in turn, influences what value can later be made of such collections by libraries, archives, and museums. The potential overlap of FM research with library services and cultural heritage indicates the relative importance of FM for the study of such fields, or library and information sciences (LIS). Although the exact relationship of LIS to the more general information studies (IS) is beyond the scope of the present discussion, it could be argued that considering the relevance of FM to LIS, and personal digital archiving and information behavior, as discussed above, FM is therefore of broad import in information studies or sciences (IS).

Information systems. FM research may also be of import to information systems research (that is, management information systems), where special attention is paid to the use, adoption, implementation, and so on, of IT, including software, in organizational contexts. Example topics likely of interest include the adoption or resistance to adoption of content management systems (Johnson et al., 2009) for securely sharing files, and decreasing onboarding time by simplifying shared drives (for example, Dinneen et al., 2018). Conversely, influential information systems research examining the factors determining IT adoption, such as the technology acceptance model and its recent extensions (Marangunić & Granić, 2015), may be useful in studying the adoption of FM software or cloud storage. The intersection of information systems and information behavior has also received some attention (Johnstone, Bonner, & Tate, 2004), further suggesting the potential for IB, and consequently PIM and FM, in information systems research. It is perhaps unsurprising, then, that several of the works reviewed above have appeared in information systems venues like ACM Transactions on Information Systems.

Computer science. It is also reasonable to infer a possible relevance of FM to computer science, where a considerable body of existing literature aims to understand the contents and access patterns of file systems, such as file size distribution (Tanenbaum, Herder, & Bos, 2006), to optimize hardware, firmware, and software. FM studies focusing on real-world file systems that users have interacted with may provide valuable data sets for such design goals, especially given that most of such computer science studies have examined only files stored on servers and software development machines.

Psychology and philosophy. FM research and the file-folder paradigm may also be useful in fields beyond those concerned with the information and information systems. We have discussed above the psychological aspects of FM previously examined, but the relevance of FM to psychology may extend beyond this. For example, metaphors, metaphorical thinking, and categories and categorical thinking are common objects of study in psychology and prominent in FM (digital and analog) and PIM generally (Case, 1991). It is not a stretch to think that other dimensions of individual difference are factors in FM, including those concerning psychology, such as cognitive styles, and decision-making processes (Kozhevnikov, 2007). At its broadest, general trends in FM studies may also be of interest to those studying topics like Philosophy of Information and Philosophy of Computing, which seek to understand what is possible in the digital realm, how much information we are storing as a society (Lyman &
TABLE 9. List of fields and disciplines connected to file management research, with field abbreviations used in this article.

Field or discipline related to FM	Abbreviation
Computer science	CS
Computer-supported cooperative work	CSCCW
Group information management	GIM
Human-computer interaction	HCI
Information behavior, information-seeking behavior	IB, ISB
Information retrieval	IR
Information science or studies	IS
Library and information sciences	LIS
Organization of information, knowledge organization	OI/IO, KO
Personal archiving, personal digital archiving	PA, PDA
Personal information management	PIM

Varian, 2003), and to what extent humanity has moved into the infosphere (Floridi, 2010).

Summary of importance to other research areas. FM has significance and potential import for several fields, including those within and nearby to information science. The problem—and opportunity—of having implicit and unrealized connections to nearby areas is perhaps inherited from PIM research: over a decade ago William Jones commented on the unrealized synergies between PIM and other fields, pointing out in particular that works on information seeking (including sense-making) and information encountering have clear but unexplored import for PIM, and vice versa (Jones, 2007b). Here we have identified further synergies between FM (and so PIM) and other topics; a crucial next step is to explore these potential synergies, both conceptually and in practice (for example, by purposefully applying relevant information-seeking models to FM studies). Table 9 lists the fields and disciplines, discussed in this section, that have connections to FM research. We next discuss the future of FM and its study.

Future Challenges and Research Directions

In this section, we present a discussion of the future challenges and directions in FM research that is structured to reflect the existing areas of research identified above, and have included at the end a discussion of the future of files and their management systems.

Improved understanding of user behavior. Future research into users’ behavior will likely benefit from combining complementary insights from qualitative and quantitative studies, providing a complete picture of the various aspects, scope, and contexts of behavior. Particularly, a broad quantitative description of the artifact produced by such behavior (that is, the file collection) would be useful for complementing the rich characterizations of users’ FM behavior that has emerged from the many qualitative descriptions, and may unify the disparate quantitative descriptions discussed above. This could comprise, for example, an extensive quantitative description of digital file collections’ scale, structure, and contents. The results of such a description may then enable further methods for understanding user behavior, like principal component analysis, user modeling, and the generation of a standardized, representative data set (that is, test collection) for FM system evaluation (Chernov et al., 2008).

Such a quantitative picture cannot currently be produced by meta-analysis or collation of results, however. As noted above, one consequence of the varying goals and research questions of previous studies is that many study contexts are fundamentally incomparable; for example, where one study examines the retrieval of recently used files seen during a controlled experiment (Bergman et al., 2010), another examines the folder structures created by students in an online learning environment during a class assignment (Mackenzie, 2000). Future research may examine as many of the available file system measures collected and reported have typically differed; for example, studies of the file system have collectively looked at 28 of the 40 (or more) potential file system measures (Dimmen, Odoni, Frissen, & Julien, 2016), but typically with few measures per study (mean 4.4), and whereas one study reports (among other measures) the maximum depth at which folders are stored (Henderson & Srinivasan, 2011), another reports the average depth of currently used files (Fitchett & Cockburn, 2015).

Although the description of digital collections outlined here cannot be derived from existing studies, it could be the explicit goal of future studies; specifically, future studies may examine as many of the available file system measures as possible, including those to help identify the scale, structure, and contents of collections, and in as generalizable a context as possible. Such study will require data collection tools capable of overcoming or circumventing the limitations of the current tools identified above. Once a more complete understanding of FM behavior is achieved, fueled by both qualitative and quantitative insights, it will be possible to compare aspects of FM user behavior (for example, the structure of the collections created) to those in similar contexts, such as the management of web browser bookmarks (Kaye et al., 2006) or emails (Ducheneaut & Bellotti, 2001; Kalman & Ravid, 2015; Mackenzie, 2000).

Finally, time remains a challenge for understanding FM behavior. Some of what is known about FM behavior was established in studies that are now dated and possibly obsolete; for example, several (10) of the file system studies described above took place 20 years ago or more when the entire computing paradigm was drastically different: graphical interfaces were relatively new, storage was expensive, file name limits were much shorter, and perhaps more important, prior to the proliferation of Internet connections and individuals owning multiple computing devices, files were in greater isolation between machines. In other words,
although the essential nature of FM has not changed, several aspects of it have; this is reflected in the now obscure media and terminology of older studies (for example, tape storage; Smith, 1981). Beyond up-to-date studies, longitudinal studies will also help to address gaps in knowledge about how users’ file collections and FM behavior change over time. Although long-term management is a general concern of PIM (Jones et al., 2016) and notable, longitudinal PIM studies reflect that concern (Boardman & Sasse, 2004; Copic Pucihar et al., 2016; Dumais et al., 2016), longitudinal studies dedicated to FM have been scarce, perhaps because conducting such studies is a technical challenge (Dinneen, Odoni, & Julien, 2016).

Improved understanding of determinant factors. From the above summary of research into the individual differences and external factors influencing FM behavior, one may reasonably conclude that further research is needed to understand and support these factors. Factors such as occupational traits, task and information type, the OS, computer literacy, spatial ability, and personality style are not yet well understood, but may play significant roles in how users struggle or succeed in managing their files. Even the principled differences between the OSes in how users can manage files has not been made explicit. The default FM presentation style differs between the OSes, and this seems to affect the retrieval of recently used files (Bergman et al., 2010), but what of other system-based differences? Most of the details of these differences are scattered across user manuals and release notes, and have not been at the forefront of FM research despite their obvious influence.

The effects of individual differences on FM behavior are also good candidates for future FM research, as no specific difference is well understood. For example, the two previous studies of spatial ability suggest that FM is influenced by general spatial cognition (Vicente et al., 1987; Vicente & Williges, 1988), but it is unclear if this extends beyond folder navigation (for example, to folder organization) and to what extent spatial ability specifically is responsible for such influence. The full relationship between personality and FM also remains unclear, as discussed above, and further additional individual differences are also likely playing determining roles in FM (for example, personal need for structure; Neuberg & Newsom, 1993).

One particularly notable individual difference that may affect FM, but has yet to receive research interest in that context, is cognitive style, or the general way people think about information (Sternberg & Sternberg, 2017). Cognitive style has been studied for how it affects learning (Tsianos, Germanakos, Lekkas, Mourlas, & Samaras, 2009), decision-making (Kozhevnikov, 2007), information-seeking behavior (Ford, Wilson, Foster, Ellis, & Spink, 2002), web browsing (Chen & Rada, 1996), and web search behavior (Hariri, Asadi, & Mansourian, 2014; Kinley, Tjodronegoro, Partridge, & Edwards, 2014). It is reasonable to infer that FM behavior may be influenced by cognitive style, and in particular, Riding’s view of cognitive style, which integrates several views (Riding & Cheema, 1991), may be useful for examining this; it defines cognitive style as a preference for verbal- or image-based and analytic or holistic information and thinking (Riding, 1997). This seems well suited to studying FM, where users have opportunities to act on these styles and producing file and folder arrangements that reflect their style, for example by categorizing files with many folders or synthesizing them into a few, or by relying on folder names or images for retrieval.

Improved systems and services. Applying the findings of previous studies to improved systems is a fertile area for future FM research. One direction for this is in helping users understand, whether analytically through information literacy or intuitively through system transparency, the FM metaphor and FM system capabilities. Users often do not understand files, digital content, the actions that can be done with a file, when those actions are appropriate or reliable, or who owns and can access a file (Brostoff et al., 2005; Harper et al., 2013; Odom, Zimmerman, & Forlizzi, 2011). Future systems should therefore not only be faster, enabling greater productivity, but also simpler, either enabling more accurate and easier mental modeling or precluding the need for it. This, in turn, requires continuing to identify specific confusions.

The development of future FM systems may be guided by existing considerations and opinions, for example, that systems should improve upon existing systems by facilitating flexible, familiar, ad hoc restructuring (Bondarenko & Janssen, 2005; Indratmo & Vassileva, 2008; Jones et al., 2005), further unify personal information items from various sources (Warren, 2014), and act as a prosthesis for human memory to support intuitive and natural interaction (Trullemans & Signer, 2014b). The usability of FM software has not been previously touched upon, and is thus a promising direction for improving FM systems. This may be achieved, for example using a GOMS model or by designing FM software for specific users or user groups, such as new and casual computer users (Sinha & Basu, 2012a). Furthermore, the design of such systems may benefit from being more deliberately and explicitly design-like, for example by applying the methods and iterative design cycles of design science research (for example, as outlined by Peffers, Tuunanen, Rothenberger, & Chatterjee, 2007), which has, to our knowledge, not been explicitly done in FM or PIM research.

Although it has been identified as mainly supporting navigation rather than replacing it, search will likely continue to be an important research area. There are many potential improvements to be made to search, for example by improving the display and interactivity of file search results (Smith et al., 2006), further integrating search with navigation by using queries to guide navigation (Fitchett et al., 2014), or further still, creating two-way interactions between the file tree and search results, as has been done with Library of Congress subject heading (LCSH; Julien et al., 2016). The evaluation of desktop search, where recall and precision are imperfect measures, for reasons discussed above, may find benefit in the application of alternative measures, like mean reciprocal rank.
Building systems to support GIM and the social aspects of FM is promising. Currently, Dropbox and such software allows for synchronization of individual file spaces, but as discussed above, users often misunderstand where exactly these files are and what can be done with them. Something like the Dogear social bookmarking system (Millen, Yang, Whittaker, & Feinberg, 2007), but with successful integration of files, would likely be valuable in supporting users in tasks requiring collaborative FM. Views, or on-the-fly, ephemeral display of sets of folders and files, may help with this and with overcoming problems of mutual intelligibility (Dourish, Lamping, & Rodden, 1999), especially if unfamiliar folder structures are modified with hierarchy pruning algorithms (for example, Dinneen et al., 2018; Julien et al., 2013), but it remains to be verified if such systems would empower or confuse users.

Designing and improving services, such as library services (Fourie, 2011), to support PIM and FM is a promising but difficult future research direction. Although information literacy and education initiatives may be designed to include FM and other aspects of PIM, it is first necessary to identify best practices so that recommendations can be made. That few prescriptions are derived from PIM research is surprising, given the vast array of strategies for categorizing and filing paper records and documents that were present and promoted in the 1980s (Gill, 1988) and the subsequent proliferation of the digital computer file; some individuals now have more files in the digital domain than organizations once had in paper, but fewer resources for organizing them. These office FM strategies of the past may serve as inspiration for future digital organization strategies, as they could accommodate a wide range of organizational approaches, but would need to be updated to account for the current, digital format, and subsequently tested comparatively to establish their relative efficacy. To our knowledge, the contemporary works closest to achieving this goal are guides on how to use the FM features of a specific OS (for example, Moran, 2015), but these do not engage with the results of FM or PIM research.

Mobile FM. Although some research has examined the problem of the fragmentation of information across devices of varying kinds, and some PIM research has examined tasks like managing contacts on mobile phones (Bergman, Komninos, Liarokapis, & Clarke, 2012), very few works have explicitly examined FM in mobile contexts. When mobile phones (specifically, the kind capable of storing files, that is, smartphones) were first popularized, it was not yet clear if traditional FM would be necessary or how practical FM would be given the constraints of the device like its screen size, resolution, and input options (that is, the interactions afforded by mobile devices entail unique challenges; Tungure & Perez-Quinones, 2008). Perhaps as a consequence, end user FM software was initially scarcely available for mobile phones; early work on mobile FM thus looked to develop prototype mobile FM systems (for example, by taking inspiration from records management rather than typical desktop FM; Ballesteros & Moreno, 2007). When mobile FM software was largely unavailable, participants in a study of file synchronization expressed the desire to have access to the file systems on their mobile devices (Santosa & Wigdor, 2013). Eventually such functionality was provided in default applications on some builds of Android (that is, depending on the interface overlay) and Apple’s iOS (for example, the Files application on OS 11, iPad build), and is also provided by many third-party applications. To our knowledge, only one study has examined mobile FM functionality, finding that file retrieval on phones fails more often and is less efficient than on the computer (Bergman & Yanai, 2017).

It is possible that for many users, cell phones and other mobile devices are used both for casual media consumption and intensive computing; this is suggested, for example, by the plethora of input peripherals for Android devices (for example, device-specific docking stations with inbuilt keyboards), the availability of mobile versions of office software (for example, Microsoft Word and Powerpoint), and more generally by device convergence. Consequently, it is possible that on such devices files are being obtained from the web, email, and cloud storage applications and are stored, edited, backed up, shared, and so on. As the Internet of Things movement continues to grow, mobile FM will likely also expand in scope to include devices beyond mobile phones; for example, if your smart fridge takes a photograph (for example, of its contents or of your kitchen), is the photo file stored in the fridge? In a folder? Will it later be moved to another device, and then into a folder? Can it be copied or renamed? How will users conceive of and interact with the photo if it is not presented as a file? The less a device resembles a traditional computer, the less straightforward it will be to help users understand and perform FM with that device. Mobile FM is therefore an important direction for future research.

Improving theory, concepts, methods. FM concepts, models, and theories all stand to benefit from refinement in future research. Even the most basic concepts used in FM research can and have reasonably been debated for their precise definitions and general usefulness and vocabulary (Harper et al., 2013): What is a file, what can be done with it, and how should we talk about it? This is no trivial task, as understanding and defining digital objects is very challenging (Hui, 2012), but may be essential if we hope to present clear concepts to FM system users.

The creation of models and theories useful for understanding FM seems a desirable direction for future research. It is yet unclear if existing models or theories could be adapted to FM from broader fields or cognate areas of study; although there is currently no theory available in PIM research, because the basic phenomena of FM may be interesting to many fields (several of which are identified and discussed above), an exploration of the various potential theories seems both possible and valuable. For example, future work may consider adapting information foraging theory (as mentioned above) or other models from nearby
topics (for example, the records continuum model, as explored by Huvila et al., 2014). Another interesting approach could be to generate theories from the data of FM studies with an inductive methodology (for example, grounded theory).

We have noted above that most FM studies implicitly employ postpositivist or constructivist epistemologies. Although we do not see obvious problems this might imply for particular studies, differing philosophical assumptions do lend themselves to different interpretations of findings (Hjørland, 2005), and so FM research would likely benefit from careful consideration of this effect. An explication of how different epistemologies would result in different findings in FM research specifically could thus be helpful.

We discussed above the nature and limitations of various approaches to collecting data about users’ FM behavior (that is, asking, observing, inferring). Dedicated efforts to improve data collection tools may help to overcome such limitations to the benefit of future research. For example, we noted above that the tools currently available for collecting quantitative data (that is, used to infer user behavior) do not collect data about many of the available file system properties, and that they are difficult to administer. Should new tools or improvements to existing tools be developed, sharing these for reuse in FM research would benefit the field.

FM research has seen some recent advances in data collection, including the use of functional magnetic resonance imaging (fMRI) technology for observing users during navigation and search tasks (Benn et al., 2015) and dedicated software for collecting file system data (Dinneen, Odoni, Frissen, & Julien, 2016). Future research may further benefit from considering adapting sophisticated methods from HCI and computer science research, such as logging and system traces, to record fine-grained data about user behavior that a file scan does not reveal, such as file open times and changes in the size of particular files (Ousterhout et al., 1985; Baker, Hartman, Kupfer, Shririff, & Ousterhout, 1991; Roselli, Lorch, & Anderson, 2000). Above, we noted that it is desirable to collect longitudinal, or at least time-stamped, FM data (for example, logging data, file access times, and so on). If this challenge is met, new analytical techniques will be available for analyzing and finding insights within such data; for example, methods for tracking information flows across time (for example, as provided by Luczak-Roesch, Tinati, Van Kleek, & Shadbolt, 2015) may be used to understand the movement of information over time within and across file collections.

The future of files and FM systems. In time, the ideas tested in FM prototypes trickle into both commonly used software and specialized PIM software (Klijn et al., 2015). This fact and the research areas described above might together imply that over the coming years FM software will simply continue to improve incrementally until all FM is performed optimally. But these improvements have come slowly and require a more detailed description of FM behavior and its component and determining factors than is currently available, and changes in computing initiated by software developers may well modify or replace the FM metaphor before such knowledge is identified. Preliminary conceptions and rumors about such ideas have led to some common questions (for example, at scholarly conferences) about the future of FM, including:

- Desktop search is improving and my Mac now comes with support for tagging; will this solve all of our FM problems and preclude the need for folders?
- I do not organize my music because iTunes does it for me; cannot we take the same approach with every file format so that traditional FM becomes unnecessary?
- Organizing folders is old fashioned—have not you heard of System X?

We discuss each of these potential future directions in turn.

That search, tagging, or any other feature will replace or preclude the need for folders and organizing one’s files is an alluring but likely spurious hope for the majority of users. Consider the conclusion of the above discussion about search and navigation: although desktop search is undoubtedly useful when navigation fails, folders and navigation aid recognition and reminding more than searching, which lets memories become foggy and thus difficult to recall later. Further established drawbacks to search (for example, insufficiently distinguishing similar project files) and advantages of folders (for example, reminding about tasks) are summarized above. Ill-defined information needs, too, are better supported by navigation (or browsing) than by methods requiring the user to explicate that need (Julien et al., 2013) or remember an attribute of an item (for example, its name or tag), and sense-making is supported by a division of the collection, achieved by folders and reinforced by navigation (Jones et al., 2005). Desktop search is powerful, especially when equipped with full-text indexing, but it lacks the data set that makes web searching so powerful (for example, billions of pages and past queries).

Recent work provides further evidence toward this, finding that over a 2-week period of attempting to perform FM tasks without navigating their folders, some participants were unable to abstain from using folders, later claiming a dependency and implicating folders as essential in PIM task execution and the high-level conceptualization of their collections (Whitham & Cruickshank, 2017). The previously discussed work (Benn et al., 2015) provides clues about why folder arrangement may become so ingrained in user behavior: the human brain has better built-in support for spatial cognition and recognition than for linguistic processing and recall. The likelihood that searching will replace navigating folders is therefore nicely summarized in the article titled “The Perfect Search Engine Is Not Enough” (Teevan et al., 2004).

In addition to search, other changes in specific computing contexts to how FM is done may lead some to think FM will soon be obsolete, and possibly therefore something that only power users do, like using the command line. This may be motivated by, for example, software that hides FM from the
user in favor of managing at the level of a collection or format, like iTunes, as discussed in the Introduction. The thought may go as such: why not forego FM entirely, and instead interact with files only when viewed as digital objects of a certain type, in the applications relevant to each type? This is the paradigm, for example, in Apple’s mobile OS, iOS: applications are generally sandboxed, or restricted to only seeing files they are responsible for.

It is telling that Apple has not implemented this approach in their desktop OS, and even added a file manager to the iPad in iOS 11. On the desktop, beyond iTunes, the Photos application, and a few other program files, are still interacted with as files, and the Finder file manager application is regularly updated. Arguably, a strict sandbox only moves the general problem of item organization from the file manager to the format-specific application (for example, iTunes): Items of some format must still be stored, named, organized, assigned metadata, and so on, and once a sufficient number of such items has been stored, it becomes necessary to organize the items with various divisions (that is, folders or something like them) to facilitate accessing individual items and understanding the whole collection. Interacting with such items without viewing them as files may also be inconvenient; for example, when being sent an email attachment to edit and return, iOS users must download it and hope it appears within the application they intend to use to edit it, and must then push it back to their email from that application. This may be why Google’s Chrome OS, despite encouraging the user to do everything in web-based applications within the web browser, has a dedicated, if minimal, file manager application.

The guise of avoiding FM is thus lost once interactions beyond basic access to items are desired: when a user wants to send specific songs or photos to another person or device, they may use Dropbox or a USB connection, and will be sending the items as files. But for users of iTunes, this is not a trivial task: the functionality for synchronization provided by iTunes is to sync an entire collection, songs’ file paths are not created by or familiar to the user, and flexible groups of file paths that would have been created by folders (such as an Artist X folder) are not readily available. Interestingly, the previously mentioned study by Whitham and Cruickshank (2017), in which participants failed a focused attempt to stop using their folders, took place exclusively in Mac OS. Sandboxing also entails design choices about file type associations, and these are typically motivated by political and commercial desires rather than usability concerns; for example, Apple’s music application on iOS does not, without extensive modification, play FLAC format files, and so users must use another application or convert their FLAC files to Apple’s proprietary lossless format.

Sandboxing may also make anything beyond lightweight, casual media consumption challenging. For example, in POSIX systems (Mac OS X, GNU/Linux, Unix, BSD; that is, everything but Windows), everything is regarded as a file—even drives that read removable media. And so, at least for developers, there are too many digital items to not have some abstraction for interacting with, sorting, and accessing them.

Thus, the file and folder paradigm is not easily replaced: there is a need for a common method for interacting with digital items and for organizing those items. Sandboxing seems to avoid some of the entailed difficulties of FM, and does so cleverly by drawing on rich file metadata (the sandbox approach works much better for music in standardized formats than for documents), but creates problems of its own for both user interaction (for example, pushing content) and PIM (for example, greater fragmentation of a project’s files because of their differing formats). The file is a fundamental cohering concept between engineers and users that provides a common method for interacting with digital content, and thus “remains central to systems architecture and to the concerns of users” (Harper et al., 2013, p. 1125). Improving upon it therefore likely requires incremental change rather than abandonment: “new abstractions are needed, ones which reflect what users seek to do with their digital data” (Harper et al., 2013, p. 1125).

Finally, in light of the problems identified above in using FM, it is reasonable to think that a revolutionary idea would be desirable for changing how we interact with digital content, and could come about at any moment. Such revolutions are present in the history of computing interfaces, including, for example, systems Jef Raskin built on his HCI principles (Raskin, 2000): Canon Cat avoided files by presenting data as a persistent and searchable stream, and Archy added an infinitely zoomable graphical interface. As is common in revolutionary interaction paradigms, although promising, Raskin’s projects were not widely adopted and development eventually ceased. Even as early as the 1960s, the controversial Project Xanadu (Nelson, 1965) aimed to avoid the paper metaphor by implementing a hypertext system, which was further revolutionary as it pre-dated the web (Nelson, 1965). The original aim of Project Xanadu was to “make a file for writers and scientists, much like the personal side of Bush’s Memex, that would do the things such people need with the richness they would want ... [via] a simple and generalised building-block structure, user-oriented and wholly general-purpose” (Nelson, 1965, p. 84). Guided by 17 rules, documents in the Xanadu model contain any kind of digital content (precluding the need for files as such), are linked to other documents based on similar content, and are intended to be edited while being compared with such items; this is meant to utilize the digital nature of the documents to support nonsequential authoring and minimize writing efforts being doubled across documents. Project Xanadu has proven to be as complex as it is promising, and is still in development; it therefore remains unclear how the average user, struggling to meet the challenges of classical FM, would feel about using a Xanalogical (Nelson, 1999) interface.

In summary, several incremental and revolutionary prospects show promise for changing the nature of FM, but the traditional file and folder metaphor also seems likely to persist. It is tempting to feel that innovative software could at
any moment dramatically change the way we interact with digital objects, and that files will therefore soon disappear, and yet the existence of equivalent speculation about FM in the 1980s (for example, Burton, 1985) suggests that this state of uncertainty and promise is not new. Perhaps the staying power of FM is a consequence of it being a standard, if imperfect, computing feature, much like the Sholes (that is, QWERTY) keyboard layout, which has proven difficult to transition away from. Although the above literature shows traditional FM is laden with challenges, it nonetheless provides an essential computing function by allowing users to store, organize, retrieve, share, and interact with many digital items, and FM and its challenges both seem to make for an interesting and productive object of study. Finally, as noted above, many novel and potentially beneficial FM augmentations and interfaces are never adopted by users or integrated into default FM applications. Increasing the use of such software, perhaps through more direct engagement with OS vendors, is therefore an outstanding long-term goal for the PIM and HCI research communities.

Conclusion

FM is a ubiquitous and challenging activity. In this article we have synthesized works from various disciplines examining this activity, and have identified that such work typically aims to understand users’ FM behavior, the factors determining it, and how these results can be used to improve the relevant systems and services. Such works have been undertaken by researchers active in information science, personal information management, human–computer interaction, computer science, and more, and have drawn upon various methods from these fields; the study of FM is thus interdisciplinary and potentially highly impactful for these fields and those with overlapping interests, such as psychology and information visualization, retrieval, and organization. This is perhaps unsurprising, given the apparent fundamental nature of the file and folder context, where users manage items in bespoke information structures.

What the study of FM faces in the future is a shifting landscape where user behavior is difficult to study, analyze, and support, because it is nuanced, private, personal, and changing along with its technological context. The implications of increases in use of the cloud, available storage space, fragmentation of information across devices, and complex social information management on FM are unclear. Several advances are needed to better understand and support users’ FM activities: new data collection tools, further studies, models of user behavior, and theories. Through such advances and the findings of FM studies (like those presented above), FM research holds connections to and implications for other areas of study surrounding information behavior and structures, and shows promise for improving the ubiquitous task of FM through the informed designed of new software and services.

Acknowledgments

The authors thank Jamshid Beheshti, Rob Capra, Ilja Frissen, Ben Hanrahan, Maja Krtalić, and Shane McIntosh for their comments on drafts of this article. The authors also thank Lauren Bennett and Rodreck David for their help in preparing the article for submission.

References

Adrian, B., Klinkigt, M., Maus, H., & Dengel, A. (2009). Using iDocument for document categorization in Nepomuk Social Semantic Desktop. In 5th International Conference on Semantic Systems, Graz, Austria, September 2–4, 2009. Proceedings of I-SEMANTICS (pp. 638–643).

Adrian, B., Sauermann, L., & Roth-Berghofer, T. (2007). Contag: A semantic tag recommendation system. In Proceedings of I-Semantics (Vol. 7, pp. 297–304).

Agarwala, A. & Balakrishnan, R. (2006). Keepin’it real: pushing the desktop metaphor with physics, piles and the pen. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1283–1292). New York: ACM.

Agrawal, N., Bołosky, W.J., Douceur, J.R., & Lorch, J.R. (2007). A five-year study of file-system metadata. ACM Transactions on Storage (TOS), 3(3), 9.

Akin, O., Baykan, C., & Rao, D.R. (1987). Structure of a directory space: A case study with a UNIX operating system. International Journal of Man-Machine Studies, 26(3), 361–382.

Albadri, N., Watson, R., & Dekeyser, S. (2016). TreeTags: Bringing tags to the hierarchical file system. In Proceedings of the Australasian Computer Science Week Multiconference (pp. 21:1–21:10). New York: ACM.

Altm, T., Buher, M., Downey, M., & Faiola, A. (2004). Using 3D landscapes to navigate file systems: The MountainView interface. In Proceedings of the Eighth International Conference on Information Visualization (pp. 645–649). San Diego, CA: IEEE.

Baker, J.D. (2012). Yellow pages: It is all about file management. Perioperative Nursing Clinics, 7(2), 223–235.

Baker, M.G., Hartman, J.H., Kupfer, M.D., Shir riff, K.W., & Ousterhout, J.K. (1991). Measurements of a distributed file system. In ACM SIGOPS operating systems review (Vol. 25, No. 5, pp. 198–212). Pacific Grove: ACM.

Ballesteros, A.R. & Moreno, L.A.G. (2007). Measurements of a distributed file system. In ACM SIGOPS operat- ingsystems review (Vol. 25, No. 5, pp. 198–212). Pacific Grove: ACM.

Barreau, D., & Nardi, B.A. (1995). Finding and reminding: File organization from the desktop. ACM SIGCHI Bulletin, 27(3), 39–43.

Barrea, D., & Nardi, B.A. (1995). Finding and reminding: File organization from the desktop. ACM SIGCHI Bulletin, 27(3), 39–43.

Bass, J. (2013). A PIM perspective: Leveraging personal information management research in the archiving of personal digital records. Archivaria, 75, 49–76 Retrieved from https://archivaria.ca/archivar/index.php/archivaria/article/view/13433

Bauer, D., Fastrez, P., & Hollan, J. (2005). Spatial tools for managing personal information collections. In System Sciences, 2005. HCICS’05. Proceedings of the 38th Annual Hawaii International Conference on (pp. 104b). San Diego, CA: IEEE.

Benn, Y., Bergman, O., Glazer, L., Arent, P., Wilkinson, I.D., Varley, R., & Whitaker, S. (2015). Navigating through digital folders uses the same brain structures as real world navigation. Scientific Reports, 5, 14719. https://doi.org/10.1038/srep14719

Bennett, J.M., Bauer, M.A., & Kinchlea, D. (1991). Characteristics of files in NTS environments. In Proceedings of the 1991 ACM SIGSMA L/ PC Symposium on Small Systems (pp. 33–40). New York: ACM.

Bergman, O. (2012). The user-subjective approach to personal information management: From theory to practice. In M. Zacarias & J.V. Oliveira (Eds.), Human-computer interaction: The agency perspective Studies in
Bergman, O., & Yanai, N. (2017). Personal information retrieval: Smart...
Bergman, O., & Benn, Y. (2018). A neuro-cognitive explanation for the...
Bergman, O. (2013). Variables for personal information management...
Bergman, O., Elyada, O., Dvir, N., Vaitzman, Y., & Ami, A.B. (2015).
Bergman, O., Beyth-Marom, R., Nachmias, R., Gradovitch, N., &...
Bergman, O., Beyth-Marom, R., & Nachmias, R. (2006). The project frag-
Bergman, O., Gradovitch, N., Bar-Ilan, J., & Beyth-Marom, R. (2013a).
Bergman, O., Tene-Rubinstein, M., & Shalom, J. (2013). The use of atten-
E26 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY
Bergman, O., Whittaker, S., & Falk, N. (2018). Let...
Bergman, O., Whittaker, S., Sanderson, M., Nachmias, R., &...
Bergman, O., Tene-Rubinstein, M., & Shalom, J. (2013). The use of atten-
E26 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY
Bergman, O., Whittaker, S., & Frishman, Y. (2018). Let...
Bergman, O., Whittaker, S., & Frishman, Y. (2018). Let...
Bergman, O., Whittaker, S., Sanderson, M., Nachmias, R., &...
Bergman, O., Tene-Rubinstein, M., & Shalom, J. (2013). The use of atten-
Bergman, O., Whittaker, S., & Frishman, Y. (2018). Let...
Bergman, O., Whittaker, S., & Falk, N. (2014). Shared...
Bergman, O., Beyth-Marom, R., & Nachmias, R. (2003). The user-subjective approach to personal information management systems. Journ-
Bergman, O., Beyth-Marom, R., & Nachmias, R. (2008). The user-subjective approach to personal information management systems design: Evidence and implementations. Journal of the American Society for Information Science and Technology, 59(2), 235–246.
Bergman, O., Beyth-Marom, R., Nachmias, R., Gradovitch, N., &...
Bergman, O., Elyada, O., Dvir, N., Vaitzman, Y., & Ami, A.B. (2015).
Bergman, O., Beyth-Marom, R., & Nachmias, R. (2011). Managing music across multiple devices and computers. In Proceedings of the 2011 Conference (pp. 489–495). Seattle, WA: ACM.
Bryman, A. (2012). Social research methods (4th ed.). Oxford, United Kingdom: Oxford University Press.
Burton, H.D. (1981). FAMULUS revisited: Ten years of personal information systems. Journal of the Association for Information Science and Technology, 32(6), 440–443.
Burton, H.D. (1985). The changing environment of personal information systems. Journal of the Association for Information Science and Technology, 36(1), 48–52.
Burton, H.D., Russell, R.M., & Yerke, T.B. (1969). FAMULUS: A computer-based system for augmenting personal documentation efforts. Proceedings of the American Society for Information Science, 6, 53–56.
Bush, V. (1945). As we may think. The Atlantic Monthly, 176(1), 101–108.
Capra, R. (2009). A survey of personal information management practices. In PIM Workshop at ASIS&T 2009, Vancouver, BC, Canada.
Capra, R. & Perez-Quinones, M. (2006). Factors and evaluation of refining behaviors. In Personal Information Management: Now That We’re Talking, What Are We Learning? A SIGIR 2006 Workshop on Personal Information Management, Seattle, WA (pp. 16–19).
Capra, R., Pinney, M., & Perez-Quinones, M. (2005). Refining is not finding again (Technical Report No. TR-05-10). Blacksburg, VA: Computer Science Department, Virginia Tech.
Capra, R., Vardell, E., & Brennan, K. (2014). File synchronization and sharing: User practices and challenges. Proceedings of the American Society for Information Science and Technology, 51(1), 161.1–161.10.
Carroll, J.M. (1982). Creative names for personal information systems and personal computing environment. International Journal of Man-Machine Studies, 16(4), 405–438.
Case, D.O. (1986). Collection and organization of written information by social scientists and humanists: A review and exploratory study. Journal of Information Science, 12(3), 97–104.
Case, D.O. (1991). Conceptual organization and retrieval of text by historians: The role of memory and metaphor. Journal of the American Society for Information Science, 42(9), 657–668.
Chalmers, M. (1993). Using a landscape metaphor to represent a corpus of documents. In European Conference on Spatial Information Theory (pp. 377–390). Berlin: Springer.
Chaudhry, A.S., Rehman, S.u., & Al-Sughair, L. (2015). Personal information management practices in the Kuwaiti corporate sector. Malaysian Journal of Library and Information Science, 20(3), 27–42.
Chen, C., & Rada, R. (1996). Interacting with hypertext: A meta-analysis of experimental studies. Human-Computer Interaction, 11(2), 125–156.

Chernov, S., Demartini, G., Herder, E., Kopycki, M., & Nejdl, W. (2008). Evaluating personal information management using an activity logs enriched desktop dataset. In Proceedings of 3rd Personal Information Management Workshop (PIM 2008), Florence, Italy (Vol. 155). Citeseer.

Chitra, P.-A., Costache, S., Nejdl, W., & Pain, R. (2006). Beagle + +: Semantically enhanced searching and ranking on the desktop. In The semantic web: Research and applications (pp. 348–362). Berlin, Heidelberg: Springer.

Civan, A., Jones, W., Klasnja, P., & Bruce, H. (2008). Better to organize than to accumulate: An empirical analysis of organizational and hierarchical approaches. In TABLETOP ’07: Second Annual IEEE International Workshop on Horizontal Interactive Human-Computer Systems (pp. 113–120). San Diego, CA: IEEE.

Collins, A. (1982). Human aspects of of office filing: Implications for the electronic office. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 26, No. 1, pp. 59–63). SAGE Publications.

Collins, A. (2005). Exploring tabletop file system interaction. In CHI’07: Extended Abstracts on Human Factors in Computing Systems (pp. 2171–2176). New York: ACM.

Collins, A., Apted, T., & Kay, J. (2007). Tabletop file system access: Associative and hierarchical approaches. In TABLETOP’07: Second Annual IEEE International Workshop on Horizontal Interactive Human-Computer Systems (pp. 113–120). San Diego, CA: IEEE.

Collins, A., Bezerianos, A., McEwan, G., Wasinger, R., & Kay, J. (2009). Understanding file access mechanisms for embedded ubi-comp collaboration interfaces. In UBICOMP’09: Proceedings of the 11th International Conference on Ubiquitous Computing (pp. 135–144). New York: ACM.

Copic Pucihar, K., Klijun, M., Mariani, J., & Dix, A.J. (2016). An empirical study of long-term personal project information management. Aslib Journal of Information Management, 68(4), 495–522.

Corbato, F.J., Merwin-Daggert, M., & Duley, R.C. (1962). An experimental time-sharing system. In Proceedings of the May 1-3, 1962, Spring Joint Computer Conference. AIEE-IRE ’62 (Spring; pp. 335–344). San Francisco, CA: ACM.

Cox, L.P., Murray, C.D., & Noble, B.D. (2002). Pastiche: Making backup cheap and easy. ACM SIGOPS Operating Systems Review, 36(SI), 285–298.

Crowder, J.W., Marion, J.S., & Reilly, M. (2015). File naming in digital media research: Examples from the humanities and social sciences. Journal of Librarianship and Scholarly Communication, 3(3), e1260.

Cushing, A.L. (2013). “It’s stuff that speaks to me”: Exploring the characteristics of digital possessions. Journal of the American Society for Information Science and Technology, 64(8), 1723–1734.

Cutrell, E. (2006). Search user interfaces for PIM. In Personal Information Management: Now that we’re talking, what are we learning? A SIGIR 2006 Workshop on Personal Information Management, Seattle, WA (pp. 32–35).

Cutrell, E., Dumas, S.T., & Tvee, J. (2006). Searching to eliminate personal information management. Communications of the ACM, 49(1), 58–64.

Cutrell, E., Robbins, D., Dumas, S., & Sarin, R. (2006). Fast, flexible filtering with philat. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 261–270). New York: ACM.

De Chiara, R., Erra, U., & Scarno, V. (2003). VENNFS: A Venn-diagram file manager. In Proceedings on Seventh International Conference on Information Visualization, 2003 (pp. 120–125). Citeseer.

Dearman, D. & Pierce, J.S. (2008). It’s on my other computer!: computing with multiple devices. In CHI ’08 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 767–776). New York: ACM.

Dinneen, J.D., Asadi, B., Frisken, I., Sha, F., & Julien, C.-A. (2018). Improving exploration of topic hierarchies: Comparative testing of simplified library of congress subject heading structures. In CHIIR ’18 Proceedings of the 2018 Conference on Human Information Interaction & Retrieval (pp. 102–109). New York: ACM.

Dinneen, J.D., Odoni, F., Frisken, I., & Julien, C.-A. (2016). Cardinal: Novel software for studying file management behaviour. In ASIST ’16 Proceedings of the 79th ASIS&T Annual Meeting: Creating Knowledge, Enhancing Lives through Information & Technology (pp. 62:1–62:10).

Dinneen, J.D., Odoni, F., & Julien, C.-A. (2016). Towards a desirable data collection tool for studying long-term pm. In Personal Information Management Workshop at CHI ’16: ACM Conference on Human Factors in Computing Systems. New York: ACM.

Dittrich, J.-P. & Salles, M.A.V. (2006). idm: a unified and versatile data model for personal dataspace management. In VLDB ’06 Proceedings of the 32nd International Conference on Very Large Data Bases (pp. 367–378). VLDB Endowment.

Dong, X.L. (2005). A platform for personal information management and integration. In Proceedings of VLDB 2005 PhD Workshop (p. 26). Citeseer.

Doucet, J.R., & Bolosky, W.J. (1999). A large-scale study of file-system contents. ACM SIGMETRICS Performance Evaluation Review, 27(1), 59–70.

Dourish, P. & Chalmers, M. (1994). Running out of space: Models of information navigation. In Human Computer Interaction (Vol. 94, pp. 23–26).

Dourish, P., Edwards, W.K., LaMarca, A., Lamping, J., Petersen, K., Salisbury, M., … Thornton, J. (2000). Extending document management systems with user-specific active properties. ACM Transactions on Information Systems (TOIS), 18(2), 140–170.

Dourish, P., Edwards, W.K., LaMarca, A., & Salisbury, M. (1999a). Presto: An experimental architecture for fluid interactive document spaces. ACM Transactions on Computer-Human Interaction (TOCHI), 6(2), 133–161.

Dourish, P., Edwards, W.K., LaMarca, A., & Salisbury, M. (1999b). Using properties for uniform interaction in the Presto document system. In Proceedings of the 12th Annual ACM Symposium on User Interface Software and Technology (pp. 55–64). New York: ACM.

Dourish, P., Lamping, J., & Rodden, T. (1999). Building bridges: customization and mutual intelligibility in shared category management. In Proceedings of the International ACM SIGGROUP Conference on Supporting Group Work (pp. 11–20). New York: ACM.

Downey, A.B. (2001). The structural cause of file size distributions. In MASCOTS 2001, Proceedings of the Ninth International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (pp. 361–370). San Diego, CA: IEEE.

Dragunov, A.N., Dieterich, T.G., Johnsrude, K., McLaughlin, M., Li, L., & Herlocker, J.L. (2005). TaskTracker: a desktop environment to support multi-tasking knowledge workers. In Proceedings of the 10th International Conference on Intelligent User Interfaces (pp. 75–82). New York: ACM.

Dubey, G., & Zhang, X.L. (2012). A personal information management scheme using shared labels and implication links. Proceedings of the Association for Information Science and Technology, 49(1), 1–7.

Ducheneaut, N., & Bellotti, V. (2001). E-mail as habitat: An exploration of embedded personal information management. Interactions, 8(5), 30–38.

Dumas, S., Cutrell, E., Cadiz, J.J., Jancke, G., Sarin, R., & Robbins, D.C. (2016). Stuff I’ve seen: a system for personal information retrieval and re-use. ACM SIGIR Forum, 49(2), 28–35.

Evans, K.M. & Kuennning, G.H. (2002). A study of irregularities in file-size distributions. In Proceedings of the 2002 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS). San Diego, CA: IEEE.

Fastrez, P., & Jacques, J. (2015). Managing references by re-use. ACM SIGIR Bulletin, 49(2), 28–35.

Fertig, S., Freeman, E., & Gelernter, D. (1996a). “Finding and reminding” reconsidered. ACM SIGCHI Bulletin, 28(1), 66–69.

Fertig, S., Freeman, E., & Gelernter, D. (1996b). Lifestreams: An alternative to the desktop metaphor. In Conference Companion on Human Factors in Computing Systems (pp. 410–411). New York: ACM.

File, T. & Ryan, C. (2014). Computer and Internet use in the United States: 2013. In American Community Survey Reports. Retrieved from https://www.census.gov/content/dam/Census/library/publications/2014/acs/acs-28.pdf

Fisher, K.E., Erdelez, S., & McKechnie, L. (2005). Theories of information behavior. Medford: American Society for Information Science and Technology by Information Today.
Jansen, B.J., Spink, A., & Saracevic, T. (2000). Real life, real users, and real needs: A study and analysis of user queries on the web. Information Processing & Management, 36(2), 207–227.

Jensen, C., Lonsdale, H., Wynn, E., Cao, J., Slater, M., & Dietterich, T.G. (2010). The life and times of files and information: a study of desktop provenance. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 767–776). New York: ACM.

Jeuris, S., Houben, S., & Bardram, J. (2014). Laevo: A temporal desktop interface for integrated knowledge work. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology (pp. 679–688). New York: ACM.

Johnson, B. & Shneiderman, B. (1991). Tree-maps: A space-filling approach to the visualization of hierarchical information structures. In Proceeding Visualization ’91 (pp. 284–291). San Diego, CA: IEEE.

Johnson, J. (1987). How faithfully should the electronic office simulate real one? ACM SIGCHI Bulletin, 19(2), 21–25.

Johnson, M.L., Bellov, S.M., Reeder, R.W., & Schechter, S.E. (2009). Laissez-faire file sharing. In New Security Paradigms Workshop (Vol. 2009).

Johnstone, D., Bonner, M., & Tate, M. (2004). Bringing human information behaviour into information systems research: An application of systems modelling. Information Research, 9(4). Retrieved from http://www.informationr.net/ir/9-4/paper191.html

Jones, W. (2007a). Keeping found things found: The study and practice of personal information management. San Francisco: Morgan Kaufmann Publishers.

Jones, W. (2007b). Personal information management. Annual Review of Information Science and Technology, 41(1), 453–504.

Jones, W., Bellotti, V., Capra, R., Dinneen, J.D., Mark, G., Marshall, C., ... Van Kleek, M. (2016). For richer, for poorer, in sickness or in health…: The long-term management of personal information. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems (pp. 3508–3515). New York: ACM.

Jones, W., Bruce, H., & Dumnais, S. (2001). Keeping found things found on the web. In Proceedings of the Tenth International Conference on Information and Knowledge Management (CIKM ’01; pp. 119–126). New York: ACM.

Jones, W., Capra, R., Diekema, A., Teevan, J., Perez-Quinones, M., Dinneen, J.D., & Hemminger, B. (2015). "For telling" the present: Using the Delphi method to understand personal information management practices. In CHI ’15: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (pp. 3513–3522). New York: ACM.

Jones, W., Dinneen, J.D., Capra, R., Perez-Quinones, M., & Diekema, A. R. (2017). Personal information management (PIM). In J. McDonald & M. Levine-Clark (Eds.), Encyclopedia of library and information sciences (4th ed.). New York: CRC Press.

Jones, W., Dumnais, S., & Bruce, H. (2002). Once found, what then? A study of “keeping” behaviors in the personal use of web information. Proceedings of the American Society for Information Science and Technology, 39(1), 391–402.

Jones, W., Hou, D., Sethanandha, B.D., Bi, S., & Ggemell, J. (2010). Planz to put our digital information in its place. In Chi ’10 Extended Abstracts on Human Factors in Computing Systems (pp. 2803–2812). New York: ACM.

Jones, W., Phuwantartruk, A.J., Gill, R., & Bruce, H. (2005). Don’t take my folders away!: Organizing personal information to get things done. In CHI ’05 Extended Abstracts on Human Factors in Computing Systems (pp. 1505–1506). New York: ACM.

Jones, W., Thorsteinsson, C., Thepvaonga, B., & Garrett, T. (2016). Making it real: Towards practical progress in the management of personal information. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems (pp. 571–582). New York: ACM.

Jones, W., Wenning, A., & Bruce, H. (2014). How do people re-find files, emails and web pages? In Conference 2014 Proceedings (pp. 552–567). iSchools.
Krishna, A., & Jones, S. (2005). TimeSpace: Activity-based temporal visualization of personal information spaces. Personal and Ubiquitous Computing, 9(1), 46–65.

Kwak, B.H. (1991). The importance of factors that are not document attributes in the organization of personal documents. Journal of Documentation, 47(4), 389–398.

Lansdale, M.W. (1988). The psychology of personal information management. Applied Ergonomics, 19(1), 55–66.

Lee, B., & Bederson, B.B. (2003). Favorite folders: A con...

Ma, S. & Wiedenbeck, S. (2009). File management with hierarchical folders and tags. In CHI'09 Extended Abstracts on Human Factors in Computing Systems (pp. 3745–3750). New York: ACM.

McKernan, G., & Prinz, W. (1997). What happened to our document in the file system. In Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems (pp. 627–634). New York: ACM.

Marangunic, N., & Granic, A. (2015). Technology acceptance model: A literature review from 1986 to 2013. Universal Access in the Information Society, 14(1), 81–95.

Mark, G., & Prinz, W. (1997). What happened to our document in the shared workspace? The need for Groupware conventions. In S. Howard, J. Hammond, & G. Lindgaard (Eds.), Human-computer interaction INTERACT'97 (pp. 413–420). Boston: Springer.

Marsden, G. & Cairns, D.E. (2003). Improving the usability of the hierarchical file system. In Proceedings of the 2003 Annual Research Conference of the South African Institute of Computer Scientists and Information Technologists on Enablement Through Technology (pp. 122–129). South African Institute for Computer Scientists and Information Technologists.

Marshall, C. & Tang, J.C. (2012). That syncing feeling: Early user experiences with the cloud. In Proceedings of the Designing Interactive Systems Conference (pp. 544–553). New York: ACM.

Marshall, C.C., Bly, S., & Brun-Cottan, F. (2006). The long term fate of our digital belongings: Toward a service model for personal archives. In Archiving Conference (Vol. 1, pp. 25–30). Society for Imaging Science and Technology.

Marshall, C.C., McCown, F., & Nelson, M.L. (2007). Evaluating personal archiving strategies for Internet-based information. In Archiving Conference (Vol. 1, pp. 151–156). Society for Imaging Science and Technology.

Marshall, C.C., Wobber, T., Rasamusbramanian, V., & Terry, D.B. (2012). Supporting research collaboration through bi-level file synchronization. In Proceedings of the 17th ACM International Conference on Supporting Group Work (pp. 165–174). New York: ACM.

Massey, C. (2017). Does mood change how we organize digital files? (Doctoral dissertation). UC Santa Cruz.

Massey, C., Lennig, T., & Whittaker, S. (2014). Cloudy forecast: An exploration of the factors underlying shared repository use. In Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems (pp. 2461–2470). New York: ACM.

Massey, C., TenBrook, S., Tatum, C., & Whittaker, S. (2014). PIM and personality: What do our personal file systems say about us? In Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems (pp. 3695–3704). New York: ACM.

Meho, L.I., & Tihbo, H.R. (2003). Modeling the information-seeking behavior of social scientists: Ellis’s study revisited. Journal of the American Society for Information Science and Technology, 54(6), 570–587.

Mercun, T. & Zumer. M. (2013). User perception of 4 hierarchical layouts. In Proceedings of the 76th ASIS&T Annual Meeting: Beyond the Cloud: Rethinking Information Boundaries (pp. 127:1–127:3).

Milen, D.R., Yang, M., Whittaker, S., & Feinberg, J. (2007). Social bookmarking and exploratory search. In L.J. Bannon, I. Wagner, C. Gutwin, R.H.R. Harper, & K. Schmidt (Eds.), ECSCW 2007. London: Springer.

Moran, J. (2015). File management made simple, windows edition. New York: Apress.

Moswewanye, G., Carr, L., & Gibbins, N. (2011). A tag-like, linked navigation approach for retrieval and discovery of desktop documents. In Digital information and communication technology and its applications. DICTAP 2011. Communications in Computer and Information Science (Vol. 167, pp. 692–706). Berlin, Heidelberg: Springer.

Narayan, B., & Olsson, M. (2013). Sense-making across space and time: Implications for the organization and findability of information. Proceedings of the American Society for Information Science and Technology, 50(1), 1–9.

Nardi, B., Anderson, K., & Erickson, T. (1995). Filing and finding computer files. In Proceedings of the East-West HCI, Moscow, Russia (pp. 162–179). Berlin: Springer.

Nelson, T.H. (1965). Complex information processing: A file structure for the complex, the changing and the indeterminate. In Proceedings of the 1965 20th National Conference of the ACM (pp. 84–100). New York: ACM.

Nelson, T.H. (1999). Xanalogue structure, needed now more than ever: Parallel documents, deep links to content, deep versioning, and deep reuse. ACM Computing Surveys, 31(4es), 33:1–33:32.

Neuberg, S.L., & Newsom, J.T. (1993). Personal need for structure: Individual differences in the desire for simpler structure. Journal of Personality and Social Psychology, 65(1), 112–131.

Odum, W., Zimmerman, J., & Forlizzi, J. (2011). Teenagers and their virtual possessions: Design opportunities and issues. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1491–1500). New York: ACM.

Oh, K.E. (2012a). Exploring the process of organizing personal information. In Proceedings of the 2012 Conference (pp. 433–434). New York: ACM.

Oh, K.E. (2012b). What happens once you categorize files? Proceedings of the Association for Information Science and Technology, 49(1), 1–4.

Oh, K.E. (2013). The process of organizing personal information (Doctoral dissertation). Rutgers.

Oh, K.E. (2017). Types of personal information categorization: Rigid, fuzzy, and flexible. Journal of the Association for Information Science and Technology, 68(6), 1491–1504.

Oh, K.E., & Belkin, N.J. (2014). Understanding what personal information items make categorization difficult. Proceedings of the American Society for Information Science and Technology, 51(1), 1–3.

Oleskisik, G., Wilson, M.L., Tashman, C., Mendes Rodrigues, E., Kasai, G., Smyth, G., ... Jones, R. (2009). Lightweight tagging expands information and activity management practices. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 279–288). New York: ACM.

Otopah, F.O., & Dadzie, P. (2013). Personal information management practices of students and its implications for library services. Aslib Proceedings, 65(2), 143–160.
Ousterhout, J.K., Da Costa, H., Harrison, D., Kunze, J.A., Kupfer, M., & Thompson, J.G. (1985). A trace-driven analysis of the UNIX 4.2 BSD file system. SIGOPS Operating Systems Review, 19(5), 15–24.

Pare, F.-X. (2007). The many facets of document importance: A case study of office workers. In CAIS 2007: Proceedings of the Annual Conference of the Canadian Association for Information Science — Actes du congrès annuel de l’ACSI. Citeseer.

Pare, F.-X. (2011). Personal information management among office support staff in a university environment: An exploratory study (Doctoral dissertation). McGill University, Montreal.

Peffer, K., Tannen, T., Rothenberger, M.A., & Chatterjee, S. (2007). A design science research methodology for information systems research. Journal of Management Information Systems, 24(3), 45–77.

Pirolli, P. (2007). Information foraging theory: Adaptive interaction with information. Oxford, UK: Oxford University Press.

Plaisant, C., Grosjean, J., & Bederson, B.B. (2003). SpaceTree: Supporting exploration in large node link trees, design evolution and empirical evaluation. In The craft of information visualization (pp. 287–294). San Francisco: Morgan Kaufmann.

Prinz, W. & Zaman, B. (2005). Proactive support for the organization of shared workspaces using activity patterns and content analysis. In Proceedings of the 2005 International ACM SIGGROUP Conference on Supporting Group Work (pp. 246–255). New York: ACM.

Quan, D., Bakshi, K., Huyinth, D., & Karger, D.R. (2003). User interfaces for supporting multiple categorization. In M. Rauterberg, M. Menozzi, & J. Wesson (Eds.), International Conference on Human-Computer Interaction, Proceedings of INTERACT (pp. 228–235).

Ramer, S.L. (2005). Site-ation pearl growing: Methods and librarianship history and theory. Journal of the Medical Library Association, 93(3), 397–400.

Raskin, J. (2000). The humane interface: New directions for designing interactive systems. Reading, MA: Addison-Wesley Professional.

Ravasio, P., Schar, S.G., & Krueger, H. (2004). In pursuit of desktop evolution: User problems and practices with modern desktop systems. ACM Transactions on Computer-Human Interaction (TOCHI), 11(2), 156–180.

Ravasio, P., & Tschertler, V. (2007). Users’ theories of the desktop metaphor, or why we should seek metaphor-free interfaces. Cambridge: MIT Press.

Riding, R. (1997). On the nature of cognitive style. Educational Psychology, 17(1–2), 29–49.

Riding, R., & Cheema, I. (1991). Cognitive styles: An overview and integration. Educational Psychology, 11(3–4), 193–215.

Robertson, G., Czerwinski, M., Larson, K., Robbins, D.C., Thiel, D., & van Dantzig, M. (1998). Data mountain: Using spatial memory for document management. In Proceedings of the 11th Annual ACM Symposium on User Interface Software and Technology (pp. 153–162). New York: ACM.

Robertson, G., Mackinlay, J.D., & Card, S.K. (1991). Cone Trees: Animated 3D visualizations of hierarchical information. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 189–194). New York: ACM.

Rodden, K. & Wood, K.R. (2003). How do people manage their digital photographs? In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 409–416). New York: ACM.

Rode, J., Johansson, C., DiGoia, P., Nies, K., Nguyen, D. H., Ren, J., ... Redmiles, D. S. (2006). Seeing further: Extending visualization as a basis for usable security. In Proceedings of the Second Symposium on Usable Privacy and Security (pp. 145–155). New York: ACM.

Roselli, D.S., Lorch, J.R., & Anderson, T.E. (2000). A comparison of file system workloads. In USENIX Annual Technical Conference.

Rowley, J., & Hartley, R. (2008). Organizing knowledge: An introduction to managing access to information. London: Routledge.

Roy, R.S., Singh, A., Chawla, P., Saxena, S., & Sinha, A.R. (2017). Automatic assignment of topological icons to documents for faster file navigation. In 14th IAPR International Conference on Document Analysis and Recognition (ICDAR; Vol. 1, pp. 1338–1345). San Diego, CA: IEEE.

Sajedi, A., Afzali, S.H., & Zabardast, Z. (2012). Can you retrieve a file on the computer in your first attempt? Think to a new file manager for multiple categorization of your personal information. In CSCW 2012 Workshop on Personal Information Management.

Salmon, B.W. (2009). Putting home data management into perspective (Doctoral dissertation). Carnegie Mellon University, Pittsburgh, PA.

Santosa, S. & Wigdor, D. (2013). A field study of multi-device workflows in distributed workspaces. In Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 63–72). New York: ACM.

Satyanarayanan, M. (1981). A study of file sizes and functional lifetimes. ACM SIGOPS Operating Systems Review, 15(5), 96–108.

Sauermann, L., Bernardi, A., & Dengel, A. (2005). Overview and outlook on the semantic desktop. In Proceedings of the 2005 International Conference on Semantic Desktop Workshop: Next Generation Information Management and Collaboration Infrastructure (pp. 74–91).

Sauermann, L., Grimmes, G.A., Kiesel, M., Fluit, C., Maus, H., Heim, D., ... Dengel, A. (2006). Semantic desktop 2.0: The gnosis experience. Lecture Notes in Computer Science, 4273, 887–900.

Schaffer, D. & Greenberg, S. (1993). Sifting through hierarchical information. In INTERACT’93 and CHI’93 Conference Companion on Human Factors in Computing Systems (pp. 173–174). New York: ACM.

Schebach, P. (2001). The cranky user: The principle of least astonishment. Retrieved from https://www.ibm.com/developerworks/web/library/us-cranky10/index.html

Seenu, A., Rao, M.N., & Padma, U. (2014). A system for personal information management using an efficient multidimensional fuzzy search. International Journal of Advanced Research in Computer Science, 5(2), 5–12.

Seltzer, M.I. & Murphy, N. (2009). Hierarchical file systems are dead. In Proceedings of the 12th Conference on Hot Topics in Operating Systems.

Sheneiderman, B., & Plaisant, C. (1994). The future of graphic user interfaces: Personal role managers. Cambridge, United Kingdom: Cambridge University Press.

Siddiqui, S., & Turvel, D. (2006). Extending the self in a virtual world. In C. Pechmann & L. Price (Eds.), Na-advances in consumer research (Vol. 33, pp. 647–648). Duluth, MN: Association for Consumer Research.

Sienknecht, T.F., Friedrich, R.J., Martinka, J.J., & Friedenbach, P.M. (1994). The implications of distributed data in a commercial environment on the design of hierarchical storage management. Performance Evaluation, 1(1), 3–25.

Sinha, D., & Basu, A. (2012a). Design and evaluation of a cognition aware file browser for users in rural India. Lecture Notes in Computer Science, 7143, 129–136.

Sinha, D. & Basu, A. (2012b). Gardener: A file browser assistant to help users maintaining semantic folder hierarchy. In 2012 4th International Conference on Intelligent Human Computer Interaction (IHCI; pp. 1–6). San Diego, CA: IEEE.

Sinha, D. & Basu, A. (2012c). Natural arrangement: A novel and intuitive perspective on file system re-organization. In 2012 4th International Conference on Intelligent Human Computer Interaction (IHCI; pp. 1–4). San Diego, CA: IEEE.

Smiraglia, R.P. (2002). The progress of theory in knowledge organization. Library Trends, 50(3), 330–349.

Smith, A.J. (1981). Analysis of long term file reference patterns for application to file migration algorithms. IEEE Transactions on Software Engineering, SE-7(4), 403–417.

Smith, M., Czerwinski, M., Meyers, B., Robbins, D., Robertson, G., & Tan, D.S. (2006). FacetMap: A scalable search and browse visualization. IEEE Transactions on Visualization and Computer Graphics, 12 (5), 797–804.

Song, G., & Ling, C. (2011). Users’ attitude and strategies in information management with multiple computers. International Journal of Human-Computer Interaction, 27(8), 762–792.

Stasko, J., Catrambone, R., Guzdial, M., & McDonald, K. (2000). An evaluation of space-filling information visualizations for depicting hierarchical structures. International Journal of Human-Computer Studies, 53(5), 663–694.

Stenberg, R.J., & Sterberg, K. (2017). Cognitive psychology. Boston: Cengage.
