Majid, Shahn; Tomašić, Ivan

On braided zeta functions. (English) Zbl 1258.14030

Bull. Math. Sci. 1, No. 2, 379-396 (2011).

The general setting of the paper under review is the analysis of braided zeta functions in q-deformed geometry. In this framework, the authors define a zeta function for any rigid object in a ribbon braided category. In the ribbon case, they define braided Hilbert series for objects in an abelian braided category.

The organization of the interesting paper is as follows: 1. Introduction. 2. Classical ζ-functions for finite sets. 3. Braided dimension. 4. Braided zeta function of \mathbb{C}^n. 5. Braided Hilbert series.

We recall that Dedekind has defined a zeta function for polynomials over prime finite fields. This zeta function is trivial and equal to $1 - \frac{1}{1 - p^z}$. However, combining the zeta function with the Chebyshev-Möbius inversion formula we obtain the number of monic irreducible polynomials over \mathbb{F}_p of natural degree m.

Riemann and Dedekind zeta functions are first examples of motivic zeta functions.

Following the motivic approach by J. Krajiček and T. Scanlon [Bull. Symb. Log. 6, No. 3, 311–330 (2000; Zbl 0968.03036)], one can attach to schemes over a field k motivic zeta functions. In the introduction, the author of the paper under review consider how the motivic version might be generalized for noncommutative geometry. Section 3 is devoted to the study of the categorical rank or ‘braided dimension’ of an object in a braided category and the authors’ variant of the multiplicative categorical rank in the case of a ribbon braided category.

In Section 4, the authors establish the main result of the paper, formulas for zeta in the ribbon braided category of finite-dimensional $U_q(sl_n)$-modules (q is generic) and compute $\zeta_t(\mathbb{C}^n)$ in this case. They show that this coincides with $\zeta_t(\mathbb{C}^n)$ where \mathbb{C}^n is the n-dimensional representation in the category of $U_q(sl_2)$-modules and that this equality of two braided zeta functions is equivalent to the classical Cayley-Sylvester formula for the decomposition into irreducible of the symmetric tensor products $S^j(V)$ for V an irreducible representation of sl_2. The authors obtain functional equations for the associated generating function. The case of $\zeta_t(C_q[S^2])$ is also discussed.

In Section 5, the interpretation of the braided ζ-function in the q-deformed case for generic q as a braided Hilbert series is considered.

The technique of the paper under review is category-theoretic, combinatorial and representation-theoretic, involving (among others) results of V. Drinfeld [Quantum Groups, Proc. ICM-1986, 798–820 (1987)], S. Majid and Y. Soibelman [Commun. Math. Phys. 137, No. 2, 249–262 (1991; Zbl 0726.17011)], and from the book [S. Majid, Foundations of quantum group theory. Cambridge: Cambridge Univ. Press. (2000; Zbl 0857.17009)].

Reviewer: Nikolaj M. Glazunov (Kyiv)

MSC:

14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
58B32 Geometry of quantum groups
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)

Keywords:

q-deformed geometry; quantum group; motivic zeta function; finite field; braided category; ribbon category

Full Text: DOI arXiv

References:
Connes A.: Noncommutative Geometry. Academic Press, London (1994) · Zbl 0818.46076
Deligne, P., La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math., 43, 273-307, (1974) · Zbl 0287.14001 · doi:10.1007/BF02684373
Deligne, P., La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math., 52, 137-252, (1980) · Zbl 0456.14014 · doi:10.1007/BF02684780
Drinfeld, V.G.: Quantum Groups. In: Proceedings of International Congress of Mathematicians (1986) · Zbl 0974.17018
Fomin, S.; Kirillov, A.N., Quadratic algebras, Dunkl elements, and Schubert calculus, Adv. Geom. Progr. Math., 172, 147-182, (1989) · Zbl 0940.05070
Fulton, W., Harris, J.: Representation Theory: A first Course. Graduate Texts in Mathematics, vol. 129. Springer, Berlin (1991) · Zbl 0744.22001
Deligne, P., La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math., 52, 137-252, (1980) · Zbl 0456.14014 · doi:10.1007/BF02684780
Drinfeld, V.G.: Quantum Groups. In: Proceedings of International Congress of Mathematicians (1986) · Zbl 0974.17018
Fomin, S.; Kirillov, A.N., Quadratic algebras, Dunkl elements, and Schubert calculus, Adv. Geom. Progr. Math., 172, 147-182, (1989) · Zbl 0940.05070
Fulton, W., Harris, J.: Representation Theory: A first Course. Graduate Texts in Mathematics, vol. 129. Springer, Berlin (1991) · Zbl 0744.22001
Gateva-Ivanova, T.; Majid, S., Quantum spaces associated to multipermutation solutions of level two, Algebr. Represent. Theor., 14, 341-376, (2011) · Zbl 1241.81106 · doi:10.1007/s10468-009-9192-z
Kapranov, M.: The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups. arXiv:math/0001005v2 · Zbl 1241.81106
Krajíček, J.; Scanlon, T., Combinatorics with definable sets: Euler characteristics and Grothendieck rings, Bull. Symbol. Log., 6, 311-330, (2000) · Zbl 0968.03036 · doi:10.2307/421058
Majid, S., Double bosonisation of braided groups and the construction of $U_q\mathfrak{sl}_n$, $U_q\mathfrak{sl}_2$ and $U_q\mathfrak{sl}_n$, Math. Proc. Camb. Phil. Soc., 125, 151-192, (1999) · Zbl 0974.17018 · doi:10.1017/S0305004198002576
Majid, S.: Noncommutative differentials and Yang-Mills on permutation groups S_N, S_N, Lecture Notes in Pure and Applied Mathematics, vol. 239, pp. 167-188. Marcel Dekker, New York (2004) · Zbl 1076.58004
Majid, S., Classification of differentials on quantum doubles and finite noncommutative geometry. Lecture Notes in Pure and Applied Mathematics, vol. 239, pp. 167-188. Marcel Dekker, New York (2004) · Zbl 1076.58003
Majid, S., Noncommutative Riemannian and spin geometry of the standard S_{q^2}-sphere, Commun. Math. Phys., 256, 255-285, (2005) · Zbl 1075.58004 · doi:10.1007/s00220-005-1295-8
Majid, S.: Foundations of quantum group theory, CUP (2000) · Zbl 0857.17009
Majid, S.; Soibelman, Y.S., Rank of quantized universal enveloping algebras and modular functions, Commun. Math. Phys., 137, 249-262, (1991) · Zbl 0726.17011 · doi:10.1007/BF02318800
Springer, T.A.: Invariant Theory. Lecture Notes in Mathematics, vol. 585. Springer, Berlin (1977) · Zbl 0346.20020
Woronowicz, S.L., Differential calculus on compact matrix pseudogroups (quantum groups), Commun. Math. Phys., 122, 125-170, (1989) · Zbl 0751.58042 · doi:10.1007/BF01221411

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.