The norms of Bloch vectors and classification of four-qudits quantum states

MING LI¹,², ZONG WANG¹, JING WANG¹, SHUQIAN SHEN¹ and SHAO-MING FEI²,³

¹ College of the Science, China University of Petroleum - 266580 Qingdao, China
² Max-Planck-Institute for Mathematics in the Sciences - 04103 Leipzig, Germany
³ School of Mathematical Sciences, Capital Normal University - 100048 Beijing, China

received 29 August 2018; accepted in final form 15 January 2019
published online 18 February 2019

PACS 03.67.-a – Quantum information
PACS 02.20.Hj – Classical groups
PACS 03.65.-w – Quantum mechanics

Abstract – We investigate the norms of the Bloch vectors for any quantum state with subsystems less than or equal to four. Tight upper bounds of the norms are obtained, which can be used to derive tight upper bounds for entanglement measures defined by the norms of Bloch vectors. By using these bounds a trade-off relation of the norms of Bloch vectors is discussed. These upper bounds are then applied on separability. Necessary conditions are presented for different kinds of separable states in four-partite quantum systems. We further present a complete classification of quantum states for four-qudits quantum systems.

Copyright © EPLA, 2019

Introduction. – Quantum entanglement, as the remarkable nonlocal feature of quantum mechanics, is recognized as a valuable resource in the rapidly expanding field of quantum information science, with various applications [1,2] such as quantum computation, quantum teleportation, dense coding, quantum cryptographic schemes, quantum radar, entanglement swapping and remote states preparation.

It is known that the Bloch vectors give one of the possible descriptions of qudit states. The Bloch vectors are then generalized to composite quantum systems with many subsystems. From the norms of the Bloch vectors in the generalized Bloch representation of a quantum state, separable conditions for both bi- and multi-partite quantum states have been presented in [3–6]. Two multipartite entanglement measures for N-qubit and N-qudit pure states are given in [7,8]. A general framework for detecting genuine multipartite entanglement and nonfull separability in multipartite quantum systems of arbitrary dimensions has been introduced in [9]. In [10,11] it has been shown that the norms of the Bloch vectors have a close relationship to the maximal violation of a kind of multi-Bell inequalities and to the concurrence [12,13]. However, with the increase of the dimensions of the subsystems, the norms of Bloch vectors for density matrices become hard to describe [14–17].

In this paper, we study the Bloch representations of quantum states with the number of subsystems less than or equal to four. We present tight upper bounds for the norms of Bloch vectors. These upper bounds are then used to derive tight upper bounds for entanglement measures in [7,8]. A trade-off relation of the norms of Bloch vectors is also discussed by these bounds. Then we investigate different subclasses of bi-separable states in four-partite systems. Necessary conditions are presented for these kinds of separable states. By these analyses we present a complete classification of quantum states for four-qudits quantum systems.

Upper bounds of the norms of Bloch vectors. – Let λᵢ’s (i = 1, ..., d² - 1) be orthogonal generators of SU(d) which satisfy λᵢ⁺ = λᵢ, Tr(λᵢ) = 0, Tr(λᵢλⱼ) = 2δᵢⱼ. Denote the identity operator by I_d. One finds that I_d and λᵢ’s compose an orthogonal basis of the linear space consisting of all d × d Hermitian matrices with respect to the Hilbert-Schmidt inner product. By using Trρ = 1 and ⟨λᵢ⟩ = Tr(ρλᵢ), we get that any density operator ρ can be written in the form

$$\rho = \frac{1}{d}I_d + \frac{1}{2} \sum_{i=1}^{d^2-1} \langle \lambda_i \rangle \lambda_i. \quad (1)$$

The Bloch vector [14–22] is defined by b = (b₁, ..., b₅ₙ₋₁) ≡ (⟨λ₁⟩, ..., ⟨λ₅ₙ₋₁⟩). The state can...
be determined by measuring values of λ_i's, the state ρ can also be given by the map $\mathbf{b} \mapsto \rho = \frac{1}{d} I_d + \frac{1}{2} \sum_{i=1}^{d^2-1} b_i \lambda_i$. The set of all the Bloch vectors that constitute a density operator is known as the Bloch vector space $B(\mathbb{R}^{d^2-1})$.

A matrix of the form (1) is of unit trace and Hermitian, but it might not be positive. To guarantee the positivity, restrictions must be imposed on the Bloch vector \mathbf{b}. It is shown that $B(\mathbb{R}^{d^2-1})$ is a subset of the ball $D_R(\mathbb{R}^{d^2-1})$ of radius $R = \sqrt{2(1 - \frac{1}{d})}$, which is the minimum ball containing it, and that the ball $D_r(\mathbb{R}^{d^2-1})$ of radius $r = \frac{\sqrt{2}}{d(d-1)}$ is included in $B(\mathbb{R}^{d^2-1})$ [23], that is, $D_r(\mathbb{R}^{d^2-1}) \subseteq B(\mathbb{R}^{d^2-1}) \subseteq D_R(\mathbb{R}^{d^2-1})$.

Using the generators of $SU(d)$, any quantum state $\rho \in H^2_3 \otimes H^2_3$ can be written as

$$
\rho = \frac{1}{d^2} I \otimes I + \frac{1}{2d} \sum_{k=1}^{d^2-1} r_k \lambda_k \otimes I + \frac{1}{2d} \sum_{i=1}^{d^2} s_i I \otimes \lambda_i + \frac{1}{4d} \sum_{i=1}^{d^2-1} t_{ik} \lambda_k \otimes \lambda_i, \tag{2}
$$

where $r_k = \text{Tr}(\rho \lambda_k \otimes I)$, $s_i = \text{Tr}(\rho \lambda_k \otimes \lambda_i)$ and $t_{ik} = \text{Tr}(\rho \lambda_k \otimes \lambda_i)$. We denote by $T^{(12)}$ a vector with entries t_{ik}. By using $\text{Tr}(\rho^2) \leq 1$, one obtains that

$$
\|T^{(12)}\|^2 \leq \frac{4(d^2 - 1)}{d^2}, \tag{3}
$$

where $\| \cdot \|$ stands for the Hilbert-Schmidt norm or Frobenius norm.

We then consider the upper bounds of the Hilbert-Schmidt norm of the Bloch vectors for tripartite quantum systems. Let $\rho \in H^2_1 \otimes H^2_2 \otimes H^2_3$ be a quantum state, which can be represented by Bloch vectors as follows:

$$
\rho = \frac{1}{d^3} I \otimes I \otimes I + \frac{1}{2d^2} \left(\sum_{i=1}^{d^2} t_{il} \lambda_i \otimes \lambda_l \otimes I \right) + \frac{1}{4d^2} \left(\sum_{j=1}^{d^2} t_{lj} \lambda_l \otimes \lambda_j \otimes I \right) + \frac{1}{8d^2} \left(\sum_{k=1}^{d^2} t_{lk} \lambda_l \otimes \lambda_k \otimes I \right) + \frac{1}{8} \sum_{i,j,k} t_{ijk} \lambda_i \otimes \lambda_j \otimes \lambda_k, \tag{4}
$$

where $t_{il} = \text{Tr}(\rho \lambda_i \otimes \lambda_l \otimes I)$, $t_{lj} = \text{Tr}(\rho \lambda_j \otimes \lambda_l \otimes I)$, $t_{lk} = \text{Tr}(\rho \lambda_k \otimes \lambda_l \otimes I)$, $t_{ilj} = \text{Tr}(\rho \lambda_i \otimes \lambda_j \otimes \lambda_l)$, $t_{lijk} = \text{Tr}(\rho \lambda_i \otimes \lambda_j \otimes \lambda_k \otimes I)$, $t_{lijk} = \text{Tr}(\rho \lambda_l \otimes \lambda_i \otimes \lambda_j \otimes \lambda_k)$, $t_{ijkl} = \text{Tr}(\rho \lambda_i \otimes \lambda_j \otimes \lambda_k \otimes \lambda_l)$ in the above representation. Define further $T^{(x)}$, $T^{(xy)}$, $T^{(123)}$ as the vectors with entries $t_{il}^{(x)}$, $t_{ij}^{(y)}$, $t_{ijk}^{(123)}$, and $1 \leq x < y < z \leq 4$.

Theorem 1: For $\rho \in H^2_1 \otimes H^2_2 \otimes H^2_3$ with Bloch representation (4), we have

$$
\|T^{(123)}\|^2 \leq \frac{1}{d^3} \left(8d^3 - 24d + 16 \right) \tag{5}
$$

See supplemental material [Supplementarymaterial.pdf](#) (SM) for the proof of the theorem.

We further consider four-partite quantum states. Let $\rho \in H^2_1 \otimes H^2_2 \otimes H^2_3 \otimes H^2_4$ be a mixed quantum state with the Bloch representation

$$
\rho = \frac{1}{d^4} I \otimes I \otimes I \otimes I + \frac{1}{2d^3} M_1 + \frac{1}{4d^2} M_2 + \frac{1}{8d} M_3 + \frac{1}{16} M_4, \tag{6}
$$

where

$$
M_1 = \sum_{i,j} t_{ij}^{\lambda_i \lambda_j} I \otimes I \otimes I + \sum_{i,j} t_{ij}^{\lambda_i} I \otimes \lambda_j \otimes I + \sum_{i,j} t_{ij}^{\lambda_j} I \otimes I \otimes \lambda_i,
$$

$$
M_2 = \sum_{i,j} t_{ij}^{\lambda_i \lambda_j} I \otimes I \otimes I + \sum_{i,j} t_{ij}^{\lambda_i} I \otimes \lambda_k \otimes I + \sum_{i,j} t_{ij}^{\lambda_j} I \otimes I \otimes \lambda_k,
$$

$$
M_3 = \sum_{i,j} t_{ij}^{\lambda_i \lambda_j \lambda_k} I \otimes I \otimes I + \sum_{i,j} t_{ij}^{\lambda_i} I \otimes \lambda_j \otimes \lambda_k + \sum_{i,j} t_{ij}^{\lambda_j} I \otimes \lambda_i \otimes \lambda_k + \sum_{i,j} t_{ij}^{\lambda_k} I \otimes \lambda_i \otimes \lambda_j,
$$

$$
M_4 = \sum_{i,j} t_{ij}^{\lambda_i \lambda_j \lambda_k \lambda_l} I \otimes I \otimes I \otimes I + \sum_{i,j} t_{ij}^{\lambda_i} I \otimes \lambda_j \otimes \lambda_k \otimes I + \sum_{i,j} t_{ij}^{\lambda_j} I \otimes \lambda_i \otimes \lambda_k \otimes I + \sum_{i,j} t_{ij}^{\lambda_k} I \otimes \lambda_l \otimes I \otimes I.
$$

We have defined $t_{ij}^{\lambda_i} = \text{Tr}(\rho \lambda_i \otimes I \otimes I \otimes I)$, $t_{ij}^{\lambda_i \lambda_j} = \text{Tr}(\rho \lambda_i \otimes \lambda_j \otimes I \otimes I)$, $t_{ij}^{\lambda_i \lambda_j \lambda_k} = \text{Tr}(\rho \lambda_i \otimes \lambda_j \otimes \lambda_k \otimes I)$, $t_{ij}^{\lambda_i \lambda_j \lambda_k \lambda_l} = \text{Tr}(\rho \lambda_i \otimes \lambda_j \otimes \lambda_k \otimes \lambda_l)$ in the above representation. Define further $T^{(x,y)}$, $T^{(x,y,z)}$, $T^{(1234)}$ be the vectors with entries $t_{ij}^{x,y}$, $t_{ij}^{x,y,z}$, t_{ij}^{1234}, and $1 \leq x < y < z \leq 4$.

Theorem 2: For $\rho \in H^2_1 \otimes H^2_2 \otimes H^2_3 \otimes H^2_4$ with Bloch representation (6), we have

$$
\|T^{(1234)}\|^2 \leq \frac{16(d^2 - 1)^2}{d^4}. \tag{7}
$$

See SM for the proof of the theorem.

The two upper bounds for norms of Bloch vectors are tight and useful as will be shown in the following remarks.
Remark 1: The Bloch vectors are used to define a valid entanglement measure in [7,8] as follows. For a N-qudit pure state, the entanglement measure is defined as

$$E_T(|\psi\rangle) = \frac{d^N}{2^N} \|T^{(N)}\| - \left(\frac{d(d-1)}{2}\right)^{\frac{N}{2}},$$

where $T^{(N)}$ is defined as a tensor with elements $t_{ij\ldots}^{(N)} = \text{Tr}(\rho \lambda_i \otimes \lambda_j \otimes \cdots \otimes \lambda_N)$.

By Theorems 1 and 2, one obtains the upper bounds of $E_T(|\psi\rangle)$ for $N = 3$ and $N = 4$ as follows:

$$E_T(|\psi\rangle) \leq \begin{cases} \sqrt{\frac{d^3(d-1)^2}{8}(\sqrt{2} - d - 1)}, & N = 3, \\ \frac{d^2(d-1)}{2}, & N = 4. \end{cases}$$

By considering the tripartite-qutrit state $|\psi\rangle = \frac{1}{\sqrt{3}}(|000\rangle + |111\rangle + |222\rangle)$ and the four-qubit state $|\phi\rangle = \frac{1}{\sqrt{2}}(|0000\rangle + |1111\rangle)$, one computes that the upper bounds of $E_T(|\psi\rangle)$ are 3.01969 and 2, respectively (coinciding with that in [8]). Thus, the upper bounds of $E_T(|\psi\rangle)$ are tight.

Remark 2: We consider four-partite quantum systems. In [24] we have shown that for the state ρ with representation (6), we have

$$\sum_{1 \leq x < y < z \leq 4} \|T^{(xyz)}\|^2 \leq \frac{8(d^2 - 1)^3}{d^3(d^2 - 2)},$$

where $\|T\|$ stands for the l_2 norm of a vector.

By setting $d = 2$, we get $\sum_{1 \leq x < y < z \leq 4} \|T^{(xyz)}\|^2 \leq 13.5$. By theorem one has $\|T^{(xyz)}\|^2 \leq 4$. Thus we obtain that it is impossible for $\|T^{(12)}\|$, $\|T^{(123)}\|$, and $\|T^{(1234)}\|$ attaining 4 simultaneously.

Necessary conditions for bi-separable states. In this section, we investigate subclasses of the bi-separable states in four-partite quantum systems by the upper bounds of norms for Bloch vectors. Let us start with the following definition.

Definition: Let $\rho \in \mathcal{H}_d^4 \otimes \mathcal{H}_d^2 \otimes \mathcal{H}_d^3 \otimes \mathcal{H}_d^4$ be a quantum state with d being the dimension of the subsystems \mathcal{H}_i, $i = 1, 2, 3, 4$. If ρ can be written as $\rho = \sum_k p_k |x_k\rangle \langle x_k|$, where $\sum_k p_k = 1$, $|x_k\rangle$ is in one of the following sets: $\{\langle \phi_1 | \otimes | \phi_{34} \rangle, | \phi_2 | \otimes | \phi_{134} \rangle, | \phi_3 | \otimes | \phi_{124} \rangle, | \phi_4 | \otimes | \phi_{1234} \rangle\}$, $\{\langle \psi_1 | \otimes | \psi_{34} \rangle, | \psi_2 | \otimes | \psi_{134} \rangle, | \psi_3 | \otimes | \psi_{124} \rangle, | \psi_4 | \otimes | \psi_{1234} \rangle\}$, $\{|\xi_1 | \otimes |\xi_2 | \otimes |\xi_3 | \rangle, |\xi_1 | \otimes |\xi_2 | \otimes |\xi_3 | \rangle, |\xi_1 | \otimes |\xi_2 | \otimes |\xi_3 | \rangle, |\xi_1 | \otimes |\xi_2 | \otimes |\xi_3 | \rangle\}$ and $\{|\chi_1 | \otimes |\chi_2 | \otimes |\chi_3 | \rangle, |\chi_1 | \otimes |\chi_2 | \otimes |\chi_3 | \rangle, |\chi_1 | \otimes |\chi_2 | \otimes |\chi_3 | \rangle\}$, then ρ is called 1-3 separable, 2-2 separable, 1-1-2 separable, and 1-1-1-1 separable, respectively.

The following theorem gives the necessary conditions of these kinds of separable states.

Theorem 3: Let $\rho \in \mathcal{H}_d^4 \otimes \mathcal{H}_d^2 \otimes \mathcal{H}_d^3 \otimes \mathcal{H}_d^4$ be a four-qudit quantum state. We have

$$\|T^{(1234)}\|^2 \leq \begin{cases} \frac{16}{d^4} ((d-1)(d^3 - 3d + 2)), & \text{if } \rho \text{ is 1-3 separable;} \\ \frac{16}{d^4} (d^2 - 1)^2, & \text{if } \rho \text{ is 2-2 separable;} \\ \frac{16}{d^4} (d^2 - 1)(d - 1)^2, & \text{if } \rho \text{ is 1-1-2 separable;} \\ \frac{16}{d^4} (d - 1)^4, & \text{if } \rho \text{ is 1-1-1-1 separable.} \end{cases}$$

See SM for the proof of the theorem.

The following two examples show that the upper bounds in Theorem 3 are nontrivial and are tight.

Example 1: Consider the quantum state $\rho \in \mathcal{H}_d^4 \otimes \mathcal{H}_d^3 \otimes \mathcal{H}_d^4$, $\rho = x |\psi\rangle \langle \psi| + \frac{1 - x}{16} I$, (11)

where $|\psi\rangle = \frac{1}{\sqrt{3}}(|000\rangle + |111\rangle)$ and I stands for the identity operator. By Theorem 3, we compute that $\|T^{(1234)}\|^2 = 9x^2$. Thus, for $\frac{2}{3} < x \leq 1$ and $\frac{1}{d} < x \leq \frac{1}{2}$, ρ will be not 1-3 separable and not 1-2 separable, respectively. While for $\frac{1}{3} < x \leq \frac{1}{d}$, ρ is not 1-1-1-1 separable.

Example 2: Consider bi-separable state $\rho^d = |\psi_+^d\rangle \langle \psi_+^d|$ with $|\psi_+^d\rangle = \frac{1}{\sqrt{d}} \sum_{i=1}^d |ii\rangle \otimes \frac{1}{\sqrt{d}} \sum_{i=1}^d |ii\rangle$. One computes
that \(\| T^{(1234)} \|^2 = \frac{16}{d^2}(d^2 - 1)^2 \) which means that the upper bound for 2-2 separable states in Theorem 3 is saturated. Actually, the upper bound can be also attained by considering the maximal entangled states as shown in Remark 1.

Remark 3. With the above theorems and examples, we are ready to classify the four-partite quantum states by using the norms of the Bloch vector \(\| T^{(1234)} \| \), as shown in fig. 1. It is worth mentioning that the 1-3 separable quantum states are always in the interior of the bi-separable set, while for some 2-2 separable quantum states the boundary of the bi-separable set is attainable. Since the upper bound for 2-2 separable states is just the upper bound for any four-qudits states, we conclude that it is possible that the 2-2 separable state is on the boundary of the set of states (see fig. 1).

Conclusions and remarks. – It is a basic and fundamental question in quantum entanglement theory to classify and detect entanglement states. In this paper, we have investigated the norms of the Bloch vectors for any quantum state with subsystems less than or equal to four. Tight upper bounds of the norms have been derived, which are used to derive tight upper bounds for entanglement measures defined by the norms of Bloch vectors. A trade-off relation of the norms of Bloch vectors is also discussed by these bounds. Then these upper bounds have been applied on the separability. Necessary conditions have been presented for 1-3, 2-2, 1-1-2 and 1-1-1-1 separable quantum states in four-partite quantum systems. With these bounds a complete classification of four-qudits quantum states is presented.

This work is supported by the NSFC Nos. 11775306, 11701568 and 11675113; the Fundamental Research Funds for the Central Universities Grants Nos. 17CX02033A and 18CX02023A; the Shandong Provincial Natural Science Foundation Nos. ZR2016AQ06, ZR2016AM23, ZR2017BA019, and Key Project of Beijing Municipal Commission of Education under No. KZ201810028042.

References

[1] Nielsen M. A. and Chuang I. L., Quantum Computation and Quantum Information (Cambridge University Press, Cambridge) 2000.
[2] Di Vincenzo D. P., Science, 270 (1995) 255.
[3] Vicente J. D., Quantum Inf. Comput., 7 (2007) 624.
[4] Vicente J. D., J. Phys. A: Math. Theor., 41 (2008) 065309.
[5] Hassan A. S. M. and Joag P. S., Quantum Inf. Comput., 8 (2008) 0773.
[6] Li M., Wang J., Fei S.-M. and Li-Jost X. Q., Phys. Rev. A, 89 (2014) 022325.
[7] Hassan A. S. M. and Joag P. S., Phys. Rev. A, 77 (2008) 062334.
[8] Hassan A. S. M. and Joag P. S., Phys. Rev. A, 80 (2009) 042302.
[9] de Vicente J. I. and Huber M., Phys. Rev. A, 84 (2011) 062306.
[10] Horodecki R., Horodecki P. and Horodecki M., Phys. Lett. A, 200 (1995) 340.
[11] Li M. and Fei S. M., Phys. Rev. A, 86 (2012) 052119.
[12] Li M., Wang J., Fei S. M., Li-Jost X. Q. and Fan H., Phys. Rev. A, 92 (2015) 062338.
[13] Li M., Jia L. X., Wang J., Shen S. Q. and Fei S. M., Phys. Rev. A, 96 (2017) 052314.
[14] Mahler G. and WeberRuss V. A., Quantum Networks (Springer, Berlin) 1995.
[15] Jakorczyk L. and Siennicki M., Phys. Lett. A, 286 (2001) 383.
[16] Kimura G., J. Phys. Soc. Jpn., 72, Suppl. C (2003) 185.
[17] Kimura G., Phys. Let. A, 314 (2003) 339.
[18] Bloch F., Phys. Rev., 70 (1946) 460.
[19] Hoe F. T. and Eberly J. H., Phys. Rev. Lett, 47 (1981) 838.
[20] Pottinger J. and Lendi K., Phys. Rev. A, 31 (1985) 1299.
[21] Lendi K., Phys. Rev. A, 34 (1986) 662.
[22] Alicki R. and Lendi K., Quantum Dynamical Semigroups and Application, Lect. Notes Phys., Vol. 286 (Springer-Verlag, Berlin) 1987.
[23] Harriman J. E., Phys. Rev. A, 17 (1978) 1249.
[24] Wang Z., Qiao J. H., Wang J., Li M. and Shen S. Q., Quantum Inf. Process, 17 (2018) 220.