Whole Genome Comparison of *Thermus* sp. NMX2 A1 Reveals Principle Carbon Metabolism Differences With Closest Relation *Thermus scotoductus* SA-01

W.J. Müller¹, N. Tlalajoe¹, E.D. Cason¹, D. Litthauer², O. Reva³, E. Brzuszkiewicz⁴, E. van Heerden¹

¹University of the Free State, Department of Microbial, Biochemical and Food Biotechnology

²National Control Laboratory for Biological Products, University of the Free State

³Centre for Bioinformatics and Computational Biology, Department of Biochemistry, University of Pretoria

⁴Georg-August-Universität Göttingen, Department of Genomic and Applied Microbiology
Whole Genome Comparison of *Thermus* sp. NMX2 A1 With Other Member From the Genus *Thermus*

Keywords: *Thermus* sp. NMX2 A1, *Thermus scotoductus* SA-01, Genome, Roche 454, Comparison, Calvin-Benson-Bassham

Corresponding Author:

Prof E. van Heerden

Department of Microbial, Biochemical and Food Biotechnology

Biotechnology building, Swot Road

University of the Free State

205 Nelson Mandela Drive

Park West

Bloemfontein

9301

South Africa

Tel: + 27(0) 51 401 2472

Fax: +27(0) 51 401 9376

E-mail: vanheerde@ufs.ac.za
Genome sequencing of the yellow-pigmented, thermophilic bacterium *Thermus* sp. NMX2.A1 resulted in a 2.29 Mb draft genome which encodes for 2312 proteins. The genetic relationship between various strains from the genus *Thermus* was assessed based on phylogenomic analyses using a concatenated set of conserved proteins. The resulting phylogenetic tree illustrated that *Thermus* sp. NMX2 A.1 clusters together with *T. scotoductus* SA-01 despite being isolated from vastly different geographical locations. The close evolutionary relationship and metabolic parallels between the two strains has previously been recognized, however, neither strain's genome data was available at that point in time. Genomic comparison of the *Thermus* sp. NMX2.A1 and *T scotoductus* SA-01, as well as other closely related *Thermus* strains revealed a high degree of synteny, on both genomic and proteomic level, with processes such as denitrification and natural cell competence appearing to be conserved. However, despite this high level of similarity, analysis revealed a complete, putative Calvin-Benson-Bassham cycle in NMX2.A1 which is absent in SA-01. Analysis of horizontally transferred gene islands provide evidence that NMX2 selected these genes due to pressure from its HCO$_3^-$ rich environment which is in stark contrast to that of the deep subsurface isolated SA-01.
INTRODUCTION

The rapid growth in the number of completely sequenced bacterial and archaeal genomes has made the field of comparative genomics more feasible than ever. This in turn has started to highlight the importance of studying the micro-evolutionary relationship between closely related genomes. Micro-evolutionary processes are central to our understanding of the mechanisms of evolution, specifically the differential effects of selection on different types of genomic sequences (Jordan et al. 2002).

Databases contain multiple sets of closely related genomes from the genus Thermus for micro-evolutionary studies (Chung et al. 2000; Bricio et al. 2011). Especially relevant to this study are the strains Thermus sp. NMX2 A.1 and T. scotoductus SA-01. These two strains, isolated from a hot spring in New Mexico (USA), and a deep gold mine in South Africa respectively, share high 16S rRNA gene sequence similarity (>98%) in spite of their vast geographical separation (Hudson et al. 1989; Kieft et al. 1999). Furthermore, Kieft and co-workers (Kieft et al. 1999) showed that the two strains displayed distinct metabolic similarities: both strains were able to grow on lactate with O_2, NO_3^-, Mn(IV), S^0 and Fe(III)-NTA as terminal electron acceptors and both grew optimally at ca. 65°C (pH 6.5 - 7.0). Dissimilatory reduction of iron (Bester et al. 2010) and other metals, by unique protein functionalities (Opperman and Van Heerden 2007; Cason et al. 2012), in these two Thermus strains is unusual within this genus thus prompting further microevolutionary studies.

The genome of T. scotoductus SA-01 was recently fully sequenced and assembled (Gounder et al. 2011). Along with the genome sequence of Thermus sp. NMX2 A.1, presented in this paper, an opportunity now exists to identify the genetic differences
between these metabolically similar strains, as well as other available Thermus genomes. In the present study we illustrate that, despite the genomic similarities of T. scotoductus SA-01 and Thermus sp. NMX2 A.1, they do harbour unexplored species differences when compared to each other as well as with other members in the genus Thermus. The most striking differences were observed when comparing the genes of the putative Calvin-Benson-Bassham (CBB) cycle.

MATERIALS AND METHODS

Genome sequence and annotation. Thermus sp. NMX2.A1 was generously provided by Prof. T.L Kieft (New Mexico Tech, USA), (Hudson et al. 1989). Cell mass for DNA isolation was obtained by aerobic culture in ATTC medium 697 [4 g/L yeast extract, 8 g/L peptone and 2 g/L NaCl; pH 7.5] at 68°C. The bacterial strain was verified by 16S rRNA gene sequencing and comparing it to the deposited GenBank sequence (accession number L09661.1). Genomic DNA of Thermus sp. NMX2 A.1 was sequenced by GATC Biotech using a ¼ FLX plate, providing an approximate 87-fold coverage. De novo assembly was performed using the Roche 454 Newbler software. Annotation was performed using the NCBI Prokaryotic Genome Annotation Pipeline (released 2013).

Identification and analysis of horizontally acquired genomic islands. Identification of genomic islands in concatenated contigs was performed using SeqWord Gene Island Sniffer (SWGIS) (Bezuidt et al. 2009). Genomic islands sharing DNA sequence similarities were searched by BLASTN through the Pre_GI database (Pierneef et al. 2015).

Phylogenomic inference. Complete genome sequences of Thermus sp. NMX2 A.1 strain was compared against complete genomes of 10 reference
Thermus/Meiothermus strains (T. scotoductus SA-01, T. igniterra ATCC 700962, Thermus sp. CBB US3 UF1, T. aquaticus Y51MC23, Thermus sp. RL, T. thermophilus HB27, T. thermophilus HB8, T. oshimai JL-2, M. ruber DSM 1279, M. silvanus DSM 9946). BLASTP search revealed 1,389 clusters of orthologous proteins shared by all these organisms. All protein sequences were aligned by MUSCLE and each alignment was edited by Gblocks (Talavera and Castresana 2007). The resulting edited alignments were concatenated into an artificial amino acid super-alignment of 377,241 residues. A phylogenetic tree was inferred by the Neighbour-Joining algorithm implemented in MEGA 6.0 (Tamura et al. 2013).

Homologous protein phylogenetic tree. Three sequential orthologous sequences from the Calvin-Benson-Bassham cycle from Thermus spp. were manually concatenated into an artificial amino acid sequence. The selected proteins were: ribulose bisphosphate carboxylase small chain (EC 4.1.1.39), ribulose bisphosphate carboxylase large chain (EC 4.1.1.39) and the fructose-1,6-bisphosphate, GlpX type (EC 3.1.3.11). Thermus strains utilized were T. antranikianii DSM 12462, T. igniterra ATCC 700962, T. islandicus DSM 21543, T. oshimai DSM 12092, T. oshimai JL-2, Thermus sp. NMX2.A1 and Thermus sp. YIM 77409. A phylogenetic tree was inferred by the Neighbour-Joining algorithm implemented in MEGA 6.0 using Paracoccus yeei ATCC BAA-599 as an outlier group (Tamura et al. 2013).

Chromosomal alignment. Contigs obtained from the de novo assembly were aligned and ordered with MAUVE by using the T. scotoductor SA-01 chromosome as template (Darling et al. 2004).

Bi-directional BLAST. The annotated proteome from the Thermus sp. NMX2 A.1 contigs was compared with those from other Thermus strains: T. scotoductus SA-01, T. scotoductus KI2, T. scotoductus DSM 8553, T. thermophilus HB-27, T.
thermophilus HB-8, *T. thermophilus* JL-18, *T. thermophilus* ATCC 33923, *T. thermophilus* SGO.5JP17-16, *T. antranikianii* DSM 12462, *T. igniterrae* ATCC 700962, *T. oshimai* DSM 12092, *T. oshimai* JL-2, *Thermus* sp., *Thermus* sp. 2.9, *Thermus* sp. CCB_US3_UF1, *Thermus* sp. RL, YIM 77409, *T. islandicus* DSM 21543. The bidirectional best hits were selected using the proteome comparison tool in PATRIC (https://www.patricbrc.org) (Wattam *et al.* 2014).

Pathway Genome Database Construction. A Pathway Genome Database (PGDB) was constructed using the Pathologic module of the Pathway Tools software (http://brg.ai.sri.com/ptools/) (Karp 2001; Karp *et al.* 2002). Genes and proteins were imported into Pathologic from the annotated genome sequences in Genbank file format and MetaCyc (Caspi *et al.* 2014) was selected as the reference pathway database. Comparisons of the putative Calvin-Benson-Bassham cycles of *Thermus* sp. NMX2.A1 and *Thermus* spp. available in the BioCyc PGDB database (*T. antranikianii* DSM 12462, *T. igniterrae* ATCC 700962, *T. islandicus* DSM 21543, *T. oshimai* JL-2, *T. scotoductus* SA-01, *T. aquaticus* Y51MC23, *T. caliditerrae*, *T. filiformis*, *T. sp. CCB_US3_UF1*, *T. thermophilus* HB27, *T. thermophilus* HB8, *T. thermophilus* JL-18 and *T. thermophilus* SGO.5JP17-16) were performed using the Species Compare tool in Pathway Tools.

RESULTS AND DISCUSSION

Assembly of sequenced data The results for the *de novo* genome assembly yielded 132 contigs and showed an approximate genome size of 2,293 Mbp (NCBI Accession ATNI00000000.1) which is similar to the genome size of *T. scotoductus* SA-01 consisting of 2,346 Mbp. Table 1 illustrates some genome features of sequenced *Thermus* strains including *Thermus* sp. NMX2.A1.
Thermus strain	Chromosome size (Mb)	Plasmid name	Plasmid size (bp)	GC %	tRNA	rRNA	Other RNA	Genes	Proteins	Pseudogene
T. aquaticus Y51MC23	2.34			68	50	4		2593	2539	
T. antranikianii DSM 12462	2.16			64.8	47	8	1	2298	2220	22
T. caliditerra YIM 77777	2.22			67.2	50	8	1	2306	2198	49
T. filiformis ATT43280	2.39			69	47	6	1	2405	2211	140
T. igniterra ATCC 700962	2.23			68.8	43	7	1	2339	2276	12
T. islandicus DSM 21543	2.26			68.3	47	9	1	2401	2303	41
T. oshimai JL-2	2.07			68.6	50	6	2	2188	2116	14
T. scotoductus SA-01	2.35			64.9	48	5	1	2467	2384	29
T. scotoductus K12	2.48			65.5	47	1		2611	2418	139
T. scotoductus DSM 8553	2.07			64.8	47	8	1	2242	2156	30
T. tengchongensis YIM 77401	2.56			66.4	47	6	1	2729	2552	123
(T. yunnanensis)										
T. thermophilus HB27	1.89	pTT27	232605	69.2				224	213	11
T. thermophilus HB8	1.85	pTT27	256992	69.4				251	251	
T. thermophilus JL-18	1.9	pTT8	9322	69				14	14	
T. thermophilus SG0.5JP17-16	1.86	pTTJL1801	265886	68.5				282	269	13
T. thermophilus ATCC 33923	2.15	pTHTHE1601	440026	67.4				445	429	16

Note: number of rRNAs represent number of operons (5S-16S-23S)
Taxonomic position of Thermus sp. NMX2.A1. The resulting 1,389 clusters of orthologous proteins from the BLASTP search over available Thermus and *Meiothermus* genomes were used in MUSCLE alignments. The MUSCLE alignments were concatenated into a super-alignment of 377,241 amino acid residues and this alignment was used to construct a Neighbour-Joining phylogenetic tree in MEGA 6.0. The resulting phylogenetic tree (Figure 1) illustrates that *Thermus* sp. NMX2 A.1 clusters together with *T. scotoductus* SA-01 that was the closest species in terms of phylogeny. The close evolutionary relationship and metabolic parallels between the two strains has previously been recognized despite the fact that neither strain’s genome data was available at that point in time (Kieft et al. 1999; Balkwill et al. 2004).

![Phylogenetic tree](image)

Fig. 1. Neighbour-Joining tree designed based on the super-alignment of amino acid sequences of 1,389 orthologous genes in given bacterial genomes. The phylogenetic position of the strain *Thermus* sp. NMX2 A.1 is highlighted.

Comparative genome features. The current genome of *Thermus* sp. NMX2 A.1 comprises 132 contigs (Genbank accession number: ATNI00000000.1). MAUVE was
used to order the contigs of the *Thermus* sp. NMX2 A.1 using the chromosome of *T. scotoductus* SA-01 as the template (Figure 2).

Fig 2. Alignment of the contigs of *Thermus* NMX2 (B) against the *T. scotoductus* SA-01 (A) chromosome by Mauve 2.3.1. Red bars indicate genomic islands predicted in the SA01 genome by SWGIS.

There are many similarities between *T. scotoductus* SA-01 (A) and *Thermus* sp. NMX2 A.1 (B). The boundaries of the different coloured blocks indicate break points in the chromosomes while the vertical red lines indicate contig boundaries. A high degree of synteny is observed. Additionally, the red blocks above the depiction of the *T. scotoductus* SA-01 chromosome indicates genomic islands acquired by horizontal gene transfer (Gounder *et al*. 2011), which were absent in the contigs of the genome of *Thermus* sp. NMX2 A.1. Finally, *Thermus* sp. NMX2 A.1 also has genes (toward the extreme right of the *Thermus* sp. NMX2 A.1 depiction) which are not present within the *T. scotoductus* SA-01 chromosome. These may be either genomic islands acquired by *Thermus* sp. NMX2 A.1 or the genes that were lost by SA-01 after separation of the two lines from the common ancestor (Gounder *et al*. 2011).
The Bi-Directional BLAST (Bi-Di BLAST) results (Table S1) indicate the comparison of the forward and reverse ORFs of *Thermus* sp. NMX2 A.1 against the selected related strains. An inspection of Table S1 shows that *Thermus* sp. NMX2 A.1 is highly similar to *T. scotoductus* SA-01, as already illustrated by MAUVE and phylogenetic analysis (see Fig. 1 and 2).

A total of 1153 genes are shared by all the *Thermus* strains used in the analysis. *Thermus* sp. NMX2 A.1 contains unique genes not present in any of the other *Thermus* strains used in the analysis. All the genes (54 in total) which were unique to *Thermus* sp. NMX2 A.1 were annotated as hypothetical proteins, except for a Nitrate ABC transporter (TNMX_11560). Of special interest are 12 ORFs (TNMX_12205 to TNMX_RS11770) which form a gene cluster encoding for putative enzyme homologues of the Calvin-Benson-Bassham pathway (Fig. S2). Although these Calvin-Benson-Bassham genes were identified in other *Thermus* strains, it was surprisingly not observed in the closely related *T. scotoductus* SA-01.

Search for horizontally transferred genomic islands using SWGIS predicted only one genomic island of 7 hypothetical genes in the contig 123. DNA similarity search through Pre_GI revealed similar genes in the genomic island #2 in the genome of *Cellvibrio gilvus* ATCC 13127 (NC_015671). In the latter genome all these genes were annotated as heavy metal translocation proteins. Finding of only one genomic island was unexpected as 8.3% of the ORFs in *Thermus* sp. NMX2 A.1 had no homologues in the NCBI non-redundant database. However, it is known that *Thermus* organisms are prone
to exchange of genetic material by uptake of naked DNA molecules from the environment, especially the genes of closely related bacteria of *Thermus/Meiothermus* (Kumwenda *et al.* 2014). It is possible that the prediction methods did not detect putative alien genes because the genome was only partially assembled or because of amelioration if the genes were acquired a long time ago.

Genes involved in DNA uptake.

Some *Thermus* strains have been shown to possess natural competence and are able to take up both linear and circular DNA with high efficiency (Friedrich *et al.* 2003; Murugapiran *et al.* 2013). This was also demonstrated for *T. scotoductus* SA-01 (Gounder *et al.* 2011). *Thermus* sp. NMX2 A.1, just like *T. scotoductus* SA-01, contains all the homologs of DNA transport genes, suggesting that *Thermus* sp. NMX2 A.1 is naturally competent. These include the genes that encode homologues for: PilC (TNMX_02375), PilD (TNMX_02985), PilF (TNMX_03090), PilM (TNMX_08400), PilN (TNMX_08405), PilO (TNMX_08410), PilQ (TNMX_08420) and PilW (TNMX_08415). Similarly to *T. scotoductus* SA-01, the NMX2.A1-strain does not contain the gene encoding for PilA which is present in *T. thermophilus* HB27 (Gounder *et al.* 2011). In addition, genes encoding for homologues of competence proteins ComEA (TNMX_10095), ComEC (TNMX_10100), ComF (TNMX_06510), DprA (TNMX_09235) and FimA (TNMX_04555) were also identified in *Thermus* sp. NMX2.A1. Bi-Di BLAST analyses of 17 sequenced *Thermus* genomes also revealed that the majority of genes involved with DNA uptake are present in all 17 genomes. Twelve of these DNA uptake genes share at least a 75% protein identity across all the above-mentioned genomes.
When surveying the core proteome (75% protein identity cut off for all proteins) of the 17 strains, the proteins responsible for natural competence are present. This indicates that natural competence in the Thermus genus is strongly conserved and will undoubtedly afford these bacteria the opportunity to potentially expand their metabolic repertoire.

Genes involved in denitrification

Several studies have illustrated the partial denitrification pathways in different strains of Thermus (Cava et al. 2008; Gounder et al. 2011; Murugapiran et al. 2013; Paraiso and Hedlund 2013; Alvarez et al. 2014). In most Thermus strains, the genes required in the first step of the denitrification process (reducing nitrate to nitrite) is encoded on a self-transferable DNA element called the Nitrate respiration Conjugation Element (NCE). The NCE encodes the complete nitrate respiratory apparatus comprising two heterotetrameric enzymes: NrC and Nar as well as their regulatory components required for their expression under anoxic conditions in the presence of nitrate (Cava and Berenguer 2006).

Like a large number of Thermus strains, Thermus sp. NMX2.A1 also displays a truncated denitrification phenotype, terminating in the production of nitrous oxide instead of dinitrogen. This is probably due to the absence of a periplasmic nitrous oxide reductase (NosZ) (Gounder et al. 2011; Murugapiran et al. 2013; Alvarez et al. 2014). Bi-Di BLAST analyses revealed that Thermus sp. NMX2.A1, just as the very closely related T. scotoductus SA-1 possesses a complete nar operon (narGHJIKT) with high sequence identity between the two operons (> 90%). Seven other Thermus strains: T. igniterrae ATCC700962, both T. oshimai strains (DSM12092 and JL-2), T. antranikianii, T. thermophilus YIM77409, Thermus sp 2.9 and two strains of T. scotoductus
(DSM8553 and DSM21543) all have complete *nar* operons with similarly high sequence identities (all >75%) when compared to *Thermus* sp. NMX2.A1. All 17 strains’ genomes encode for the membrane-bound nitrate reductase NarG catalytic subunit homologue that is responsible for nitrate reduction but with varying sequence identities in comparison to the *Thermus* sp. NMX2.A.1 NarG [TMNX_11710] (Cava *et al.* 2008; Alvarez *et al.* 2014). All 17 strains also contain the NarC homologue - a cytochrome *c* containing nitrate reductase that allows the transfer of electrons from menaquinol to extracellular acceptors when intracellular nitrate becomes scarce (Cava *et al.* 2008; Alvarez *et al.* 2014).

Genes encoding homologues of nitrite respiration proteins NirD (large subunit) and NirJ appear to be present in all 17 sequenced genomes, including NMX2.A1, albeit differently dispersed amongst the strains. Strikingly, the small subunit of NirD is only found in *Thermus* sp. NMX2.A1 (TNMX_11570) and *T. thermophilus* SG0.5JP17-16 albeit with a low sequence identity of 32%. DELTA-BLAST using TNMX_11570 as the query indicated that the closest match (68% identity) was with a protein containing a Rossman fold NAD(P)$^+$ binding site from *Deinococcus deserti*. Interestingly, the simultaneous presence of homologues of cytochrome *cd*$_1$ nitrite reductase (NirS) and copper nitrite reductase (NirK) could only be found in *T. oshimai* JL-2 and DSM12092 and *T. scotoductus* SA-01 and *Thermus* sp. NMX2.A1. The reduction of nitrite in bacteria is performed by either NirK or NirS, but not both (Murugapiran *et al.* 2013). Thus, the presence of both NirS and NirK homologues in the above-mentioned denitrificant *Thermus* strains is exceptional (Gounder *et al.* 2011; Alvarez *et al.* 2014).

As previously mentioned, *Thermus* sp. NMX2.A1 displayed an incomplete denitrification phenotype which terminated with the formation of nitrous oxide. The formation of nitrous
oxide from nitric oxide is facilitated by a heterotrimeric nitric oxide reductase (large subunit NorB and two small subunits NorC and NorH). NorB, NorC and NorH are present in Thermus sp. NMX2A.1 (TNMX_05775, TMNX_05780 and TNMX_05770) as well as T. thermophilus (strains JL-18, SG0.5JP17-16 and YIM77409), Thermus sp. 2.9, T. scotoductus SA-01 and both strains of T. oshimai (JL-2 and DSM12092).

The current genome data of sequenced Thermus strains highlight the variability of denitrification and that incomplete denitrification pathways appear to be common phenotypes in Thermus. Given the fact that Thermus is naturally competent, the variability in denitrification phenotype is indicative of a dispensable Thermus genome.

Genes involved with pigment metabolism

A common characteristic of several Thermus strains is their yellow pigmentation due to β-carotene biosynthesis. β-carotene and its hydroxylated products have been implicated in membrane stability and DNA protection from UV-radiation in Thermus (Yokoyama et al. 1995; Tian and Hua 2010). It is now known that the initial oxidized products of β-carotene in Thermus are produced with the aid of a cytochrome P450 monooxygense (CYP450) (Momoi et al. 2006). Bi-Di BLAST analyses showed that 15 out of the 17 strains had a CYP450 homologue – only T. scotoductus strains SA-01 and DSM8553 (also known as strain SE-1) did not possess a CYP450 homologue. This result seems plausible given where these strains were isolated: the SA-01 strain was isolated in a mine 3.2 km below the surface (Kieft et al. 1999) and strain DSM8553 was isolated from tap water (Kristjánsson et al. 1994).
The native electron transport system for CYP175A1 in *T. thermophilus* HB27, namely a ferredoxin NAD(P)+ reductase and [3Fe-4S], [4Fe-4S] ferredoxin has been described and shown to effectively shuttle electrons to CYP175A1 to catalyze the hydroxylation of β-carotene (Mandai *et al.* 2009).

Thermus sp. NMX2A.1 possesses homologues of [3Fe-4S], [4Fe-4S] ferredoxin (TNMX_07470) and ferredoxin NAD(P)+ reductase (locus tag: TNMX_01055) proteins that display 99 % and 91 % identity respectively towards the known *T. thermophilus* HB27 electron transport proteins.

Based on DELTA-BLAST results, it would seem as if *Thermus* species typically harbour one cytochrome P450 monooxygenase gene. The genome of *Thermus* sp. NMX2A.1 revealed two cytochrome P450 monooxygenase gene homologues (TNMX_06310 and TNMX_12660, partially sequenced) which displayed 98 % and 63 % amino acid identity respectively when compared to CYP175A1. Based on the high amino acid sequence identity and the fact that the substrate binding sites (Yano *et al.* 2003) for both CYP175A1 and TNMX_06310 are identical, it is plausible to suggest that TNM_06310 also encodes a putative β-carotene hydroxylase.

Genes involved in carbon fixation

The Calvin–Benson–Bassham (CBB) cycle is a series of enzyme-catalyzed reactions responsible for the fixing of carbon. The limiting reaction in this cycle is carried out by the multimeric enzyme ribulose 1,5 bisphosphate carboxylase/oxygenase or ‘rubisco’ which catalyzes the first major step of carbon fixation in the CBB cycle: a process in which ribulose 1,5 bisphosphate reacts with atmospheric CO₂ and H₂O to form two
molecules of 3-phosphoglycerate (Badger and Price 2003; McNevin et al. 2007). The
ability to perform this reaction is the defining step in identifying the presence of the CBB-
cycle in most organisms. Multimeric rubisco (comprising large and small subunits) is
found in plants and most autotrophic organisms, photosynthetic bacteria, algae and
even in some archaea (Andersson 2008; Ichikawa et al. 2008).

Homologues of CBB cycle genes, including type 1 rubisco were identified in a gene
cluster of *Thermus* sp. NMX2A.1. A search through the Pre_GI database for sequence
similarity with known genomic islands revealed a similar syntenic operon in the genomic
island #6 on the second chromosome of the genome of *Ralstonia eutropha* H16
(NC_008314). However in contrast to *Ralstonia*, DNA composition comparison showed
that these genes were native for *Thermus* genomes and most likely this operon in
NMX2A.1 emerged in result of recombination of genes with other *Thermus* organisms
by DNA uptake (Kumwenda et al. 2014).

Bi-Di BLAST analyses indicated that, excluding rubisco, the putative CBB cycle enzyme
homologues could be identified in all 17 *Thermus* strains except for one enzyme which
is responsible for regenerating ribulose-1,5-bisphosphate from ribulose-5-phosphate
namely phosphoribulokinase (PRK). Pathway Tools was also unable to annotate a PRK
to complete the CBB-cycle (Fig. S1). A survey of several *Thermus* genomes revealed
two adjacent ribulose-phosphate 3-epimerases in the CBB-gene cluster (Fig. S2) and
further Pathway Tools analyses indicated that one of these is the enzyme responsible
for the reaction 2.7.1.19 usually catalyzed by the PRK (Fig. S1). DELTA-BLAST using
the smaller of the two epimerases from *Thermus* sp. NMX2.A1 (TNMX_12225)
produced at least 500 positive results for ribulose-phosphate 3-epimerase from a wide
variety of bacteria. When the larger epimerase (TNMX_12230) was subjected to the same DELTA BLAST, it showed that about 3% of the results were for ribulose-phosphate 3-epimerases, containing a conserved protein domain called nucleoside/nucleotide kinase (NK), which were almost exclusively confined to Meiothermus/Thermus strains. Strikingly, the remaining BLAST results were for PRKs from various bacteria and cyanobacteria. TNMX_12230 was also analysed in the BRENDA enzyme information system and was surprisingly identified as a PRK. BRENDA also identified THEOS_RS08585 and N686_RS06455, from T. oshimai JL-2 and T. scotoductus K12 respectively (Fig. S2), as PRKs. The results are indicative of a possible misannotation of these proteins as epimerases instead of putative PRKs. However, given the location of TNMX_12230 and other NK-region containing epimerases in the CBB-gene cluster and the BLAST results, it could be argued that these epimerases are possibly PRKs – a crucial enzyme for regenerating the sugar substrate for rubisco and thus completing the CBB-cycle.

Bi-Di BLAST (Table S1) indicated that the rubisco homologue is not ubiquitously found in all species of Thermus. For example, the rubisco homologue is not present in any T. thermophilus strain except for T. thermophilus YIM77409. As for the T. scotoductus strains: Bi-Di BLAST analyses revealed that both rubisco subunits are present in T. scotoductus DSM21543 but that T. scotoductus K12 only possesses the large rubisco subunit (Fig. S2). No homologues of the rubisco subunits were identified in T. scotoductus strain DSM8553 and SA-01. The absence of rubisco in the latter strain was surprising, given the very close similarity displayed between Thermus sp. NMX2.A1 and T. scotoductus SA-01 on protein level (Figure 1). Figure 3 shows the phylogenetic
analysis of the artificially concatenated amino acid sequence containing the two ribulose bisphosphate carboxylase subunit and the fructose-1,6-bisphosphate, GlpX type proteins.

These CBB-cycle proteins were selected for phylogenetic analyses due to their adjacent gene topology and orientation on the selected *Thermus* genomes (Fig. S2). An evolutionary relationship between the proteins from *Thermus* sp. NMX2.A1 and the 6 other *Thermus* proteins is evident. Interestingly, a close evolutionary relationship with the proteins from *T. islandicus* DSM 21543 is observed with that from *Thermus* sp. NMX2.A1.

The *Thermus* strains depicted in Figure 3 were isolated from vastly different geographical locations that range from Iceland, Portugal and the USA (Hudson et al. 1989; Williams et al. 1996; Chung et al. 2000; Bjornsdottir et al. 2009). Reviewing the environments from which these *Thermus* strains were isolated could illuminate the
reasons for the presence of these carboxylases in a few *Thermus* strains. Table S2 and S3 contains some geographical and physico-chemical data of sites from which rubisco-containing *Thermus* strains were isolated. Although the hot spring water these various *Thermus* spp. reside in are from wide-spread geographical locations, there seems to be a common thread: appreciable amounts of HCO$_3^-$ and CO$_2$ coupled with water pH ranging from neutral to alkaline. The HCO$_3^-$ in these hot springs has its origin from various carbonates in rocks, sediments and soils that are heated from ultra-deep geothermal activity, biogenic CO$_2$ that dissolves in water or even CO$_2$ escaping from the soil (McGee et al. 2006). It would seem as if *Thermus* strains that harbour rubisco genes were isolated from hot springs that have readily available HCO$_3^-$. Further supporting this hypothesis is that *T. thermophilus* HB27, *T. thermophilus* HB8 and *T. scotoductus* SA-01 were all isolated from environments with very low levels of HCO$_3^-$. and do not contain the complete CBB cycle, having never had the need to acquire them, as was the case for *Thermus* sp. NMX2 A1. Further, *T. scotoductus* SA-01 was isolated from the deep subsurface, an environment where it was shown that the CBB cycle genes were almost completely absent and carbon metabolism occurs predominantly by the reductive acetyl-CoA pathway (Simkus et al. 2016).

Thermus strains containing the type I rubisco homologue were isolated from hot springs with temperatures that range from 50 – 88°C. These high temperatures decrease oxygenation levels in the water. Given rubisco’s binding preference for O$_2$ as opposed to CO$_2$, the less oxygenated water could mean that rubisco would be able to bind CO$_2$ more freely. This might explain why no homologues for carboxysome proteins were identified for any of the rubisco-containing *Thermus* strains (Table S2). Interestingly,
homologues for carbonic anhydrases were identified for most rubisco-containing
Thermus strains but for none of the rubisco-devoid *Thermus* strains (Table S2 and S3).

We speculate that the putative CBB-cycle could be active to fix carbon in rubisco-
containing *Thermus* strains in the presence of bi-carbonate, carbonic anhydrase and
low oxygenation. Since carbon fixation requires energy, a possible source of energy for
chemolithotrophic growth could be the oxidation of sulfur compounds (Gounder *et al.*
2011; Murugapiran *et al.* 2013; Table S1).

We conclude that rubisco-containing *Thermus* strains can probably fix carbon as
chemolithotrophes and that rubisco-devoid *Thermus* strains are likely obligate chemo-
heterotrophs.
ACKNOWLEDGEMENTS

We thank Prof T.L. Kieft for providing the Thermus NMX2 A1 strain for sequencing.
This research was supported by the National Research Foundation and the Technology Innovation Agency, South Africa.

REFERENCES

Alvarez L., Bricio C., Blesa A., Hidalgo A., Berenguer J., 2014 Transferable denitrification capability of Thermus thermophilus. Appl. Environ. Microbiol. 80: 19-28.

Andersson I., 2008 Catalysis and regulation in Rubisco. J. Exp. Bot. 59: 1555-1568.

Badger M.R., and G.D. Price, 2003 CO₂ concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J. Exp. Bot. 54: 609-622.

Balkwill D.L., Kieft T.L., Tsukuda T., Kostandarithes H.M., Onstott T.C., et al., 2004 Identification of iron-reducing Thermus strains as Thermus scotoductus. Extremophiles 8: 37-44.

Bester P.A., Litthauer D., Piater L.A., Van Heerden E., 2010 A thioredoxin reductase-like protein from the thermophile, Thermus scotoductus SA-01, displaying iron reductase activity. FEMS Microbiol. Lett. 302: 182–188.

Bezuidt O., Lima-Mendez G., Reva O.N., 2009 SEQWord Gene Island Sniffer: a program to study the lateral genetic exchange among bacteria. World Academy of Science, Engineering and Technology 58: 1169-1174.

Bjornsdottir S.H., Petursdottir S.K., Hreggvidsson G.O., Skirnisdottir S., Hjörleifsdóttir S., et al., 2009 Thermus islandicus sp. nov., a mixotrophic
sulfur-oxidizing bacterium isolated from the Torfajokull geothermal area. *Int J Syst Evol Microbiol* **59**: 2962-2966.

Bricio C., Alvarez L., Gómez M.J., Berenguer J., 2011 Partial and complete denitrification in *Thermus thermophilus*: lessons from genome drafts. *Biochem. Soc. Trans.* **39**: 249-253.

Cason E.D., Piater L.A., Van Heerden E., 2012 Reduction of U(VI) by the deep subsurface bacterium, *Thermus scotoductus* SA-01, and the involvement of the ABC transporter protein. *Chemosphere* **86**: 572-577.

Caspi R., Altman T., Billington R., Dreher K., Foerster H., *et al*., 2014 The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. *Nucleic Acids Res.* **42**: D459-D471.

Cava F., and J. Berenguer, 2006 Biochemical and regulatory properties of a respiratory island encoded by a conjugative plasmid in the extreme thermophile *Thermus thermophilus*. *Biochem. Soc. Trans.* **34**: 97-100

Cava F., Zafra O., da Costa M.S., Berenguer J., 2008 The role of the nitrate respiration element of *Thermus thermophilus* in the control and activity of the denitrification apparatus. *Environ. Microbiol.* **10**: 522-533.

Chung A.P., Rainey F.A., Valente M., Nobre M.F., da Costa M.S., 2000 *Thermus igniterrae* sp. nov. and *Thermus antranikianii* sp. nov., two new species from Iceland. *Int. J. Syst. Evol. Microbiol.* **50**: 209-217.

Darling A.C.E., Mau B., Blattner F.R., Perna N.T., 2004 Mauve: multiple alignment of conserved genomic sequence with rearrangements. *Genome Res.* **14**: 1394-1403.
Friedrich A., Rumszauer J., Henne A., Averhoff B., 2003 Pilin-like protein in the extremely thermophilic bacterium *Thermus thermophilus* HB-27: implication in competence for natural transformation and links to type IV pilus biogenesis. *Appl. Environ. Microbiol.* **69**: 3695-3700.

Gounder K., Brzuszkiewicz E., Liesegang H., Wollherr A., Daniel R., *et al*., 2011 Sequence of the hyperplastic genome of the naturally competent *Thermus scotoductus* SA-01. *BMC Genomics* **12**: 577.

Hudson J.A., Morgan H.W., Daniel R.M., 1989 Numerical classification of *Thermus* isolates from globally distributed hot springs. *Syst. Appl. Microbiol.* **11**: 250-256.

Ichikawa K., Miyake C., Iwano M., Sekine M., Shinmyo A., *et al*., 2008 Ribulose 1,5-bisphosphate carboxylase/oxygenase large subunit translation is regulated in a small subunit-independent manner in the expanded leaves of tobacco. *Plant Cell Physiol* **49**: 214-225.

Jordan I.K., Rogozin I.B., Wolf Y.I., Koonin E.V., 2002 Microevolutionary genomics of bacteria. *Theor. Popul. Biol.* **61**: 435-447.

Karp P., Paley S., Romero P., 2002 The pathway tools software. *Bioinformatics* **18**: S225-S232.

Karp P.D., 2001 Pathway databases: A case study in computational symbolic theories. *Science* **293**: 2040-2044.

Kieft T.L., Fredrickson J.K., Onstott T.C., Gorby Y.A., Kostandarithes H.M., *et al*., 1999 Dissimilatory reduction of Fe(III) and other electron acceptors by a *Thermus* isolate. *Appl. Environ. Microbiol.* **65**: 1214-1221.

Kristjánsson J.K., Hjörleifsdóttir S., Marteinsson V.T., Alfredsson G.A., 1994 *Thermus scotoductus*, sp. nov., a pigment-producing thermophilic bacterium
from hot tap water in Iceland and including *Thermus* sp. X-1. *Syst Appl Microbiol* 17: 44–50.

Kumwenda B., Litthauer D., Reva O., 2014 Analysis of genomic rearrangements, horizontal gene transfer and role of plasmids in the evolution of industrial important *Thermus* species. *BMC Genomics* 15: 813.

Mandai T., Fujiwara S., Imaoka S., 2009 A novel electron transport system for thermostable CYP175A1 from *Thermus thermophilus* HB27. *FEBS J.* 276: 2416-2429.

McGee K.A., Sutton A.J., Elias T., Doukas M.P., Gerlach T.M., 2006 Puhimau thermal area: a window into the upper East Rift Zone of Kilauea Volcano, Hawaii? *Pure Appl. Geophys.* 163: 837-851.

McNevin D.B., Badger M.R., Whitney S.M., von Caemmerer S., Tcherkez G.G., et al., 2007 Differences in carbon isotope discrimination of three variants of D-ribulose-1,5-bisphosphatecarboxylase/oxygenase reflect differences in their catalytic mechanisms. *J. Biol. Chem.* 282: 36068-36076.

Momoi K., Hofmann U., Schmid R.D., Urlacher V.B., 2006 Reconstitution of beta-carotene hydroxylase activity of thermostable CYP175A1 monooxygenase. *Biochem. Biophys. Res. Commun.* 339: 331-336.

Murugapiran S.K., Huntemann M., Wei C., Han J., Detter J.C., et al., 2013 *Thermus oshimai* JL-2 and *T. thermophilus* JL-18 genome analysis illuminates pathways for carbon, nitrogen, and sulfur cycling. *Stand. Genomic Sci.* 7: 449–468.

Opperman D.J. and E. Van Heerden, 2007 Aerobic Cr(VI) reduction by *Thermus scotoductus* strain SA01. *J. Appl. Microbiol.* 103: 1907–1913.
Paraiso J.J., and B.P. Hedlund, 2013 Are incomplete denitrification pathways a common trait in *Thermus* Species from geothermal springs in China? Poster presentation: Available at: http://digitalscholarship.unlv.edu/mcnair_posters/35

Pierneef R., Cronje L., Bezuidt O., Reva O.N., 2015 Pre_GI: a global map of ontological links between horizontally transferred genomic islands in bacterial and archaeal genomes. *Database* (Oxford) **2015**: bav058.

Simkus D.N., Slater G.F., Sherwood Lollar B., Wilkie K., Kieft T.L., *et al*., 2016 Variations in microbial carbon sources and cycling in the deep continental subsurface. *Geochim. Cosmochim. Acta*. **173**: 264-283.

Talavera G., and J. Castresana, 2007 Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. *Syst. Biol.* **56**: 564-577.

Tamura K., Stecher G., Peterson D., Filipski A., Kumar S., 2013 MEGA6: molecular evolutionary genetics analysis version 6.0. *Mol. Biol. Evol.* **30**: 2725-2729.

Tian B., and Y. Hua, 2010 Carotenoid biosynthesis in extremophilic *Deinococcus-Thermus* bacteria. *Trends Microbiol.* **18**: 512-520.

Wattam A.R., Abraham D., Dalay O., Disz T.L., Driscoll T., *et al*., 2014 PATRIC, the bacterial bioinformatics database and analysis resource. *Nucleic Acids Res.* **42**: D581-591.

Williams R.A.D., Smith K.E., Welch S.G., Micallef J., 1996 *Thermus oshimai* sp. nov., isolated from hot springs in Portugal, Iceland, and the Azores, and comment on the concept of a limited geographical distribution of *Thermus* species. *Int. J. Syst. Bacteriol.* **46**: 403-408.
Yano J.K., Blasco F., Li H., Schmid R.D., Henne A., Poulos T.L., 2003. Preliminary characterization and crystal structure of a thermostable cytochrome P450 from *Thermus thermophilus*. *J. Biol. Chem.* 278: 608-616.

Yokoyama A, Sandmann G, Hoshino T, Adachi K, Sakai M, et al., 1995. Thermozeaxanthins, new carotenoid-glycoside-esters from thermophilic eubacterium *Thermus thermophilus*. *Tetrahedron Lett.* 36: 4901–4904.