INTRODUCTION

Variations in the arterial pattern of the upper limb are commonly encountered in routine dissections, and the superficial brachial artery (SBA) is one of the major variations (1-11). According to the literature, its frequency and branching pattern vary among ethnic groups.

The SBA originates from the axillary artery and runs superficial to the median nerve (12). The presence of the SBA can be hazardous because it is very vulnerable to injury (5). An accidental intra-arterial injection via the SBA can cause thrombosis or gangrene, leading to amputation of the arm or fingers (7). Conversely, the SBA can be used as a feeding artery to a free flap from medial arm skin (13). Considering these possible complications and benefits, investigations of the arterial pattern in patients’ arms before any invasive procedures may be helpful in avoiding iatrogenic injury or in using an SBA for some procedures. Doppler ultrasound imaging or angiography can assist healthcare providers in treating patients with an SBA. Whether those devices are available or not, anatomical knowledge of the SBA is essential.

Since the publication of the study by Adachi et al. (1), data on the SBA in Asian populations have been rare, especially in Korean cadavers. This study was performed to provide the first large series data of the SBA in Korean cadavers.

MATERIALS AND METHODS

We observed 304 extremities of 154 adult Korean cadavers (94 males, 60 females). In an anatomy lab for medical students, the upper arm was examined for variations. The upper arms suspected to have variations were further dissected. The course and branches of the SBA of axillary origin were recorded.

RESULTS

Thirty-seven SBAs emerging from the axillary artery were found in 304 Korean arms (12.2%). Unilateral occurrence was detected in 16 cadavers and bilateral in 10. SBAs gave rise to radial and ulnar arteries in the cubital fossa (8.9%), continued in the forearm as the radial artery (2.3%), or ended in the upper arm (1.0%). The SBA ended as ulnar artery was not found in any of the cadavers. The bifurcation of the SBA into the radial and ulnar arteries, presence of an SBA that ends in the upper arm, and the lack of continuation as the ulnar artery are characteristics of SBAs in Korean cadavers.

Key Words : Superficial Brachial Artery; Axillary Artery; Superficial Radial Artery; Anatomical Variation

Hee-Jun Yang, Young-Chun Gil, Won-Sug Jung, and Hye-Yeon Lee

Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea

Received : 27 November 2007
Accepted : 29 January 2008

Address for correspondence
Hye-Yeon Lee, M.D.
Department of Anatomy, Yonsei University College of Medicine, 134 Sinchon-dong, Seodaemun-gu, Seoul 120-752, Korea
Tel : +82.2-2228-1645, Fax : +82.2-365-0700
E-mail : leehy@yumc.yonsei.ac.kr

J Korean Med Sci 2008; 23: 884-7
ISSN 1011-8934
DOI: 10.3346/jkms.2008.23.5.884
Copyright © The Korean Academy of Medical Sciences

Variations of the Superficial Brachial Artery in Korean Cadavers

The superficial brachial artery (SBA), a branch of the axillary artery, is one of the most common arterial variations in this area. While it is more vulnerable to accidental arterial injection or injury, it could be useful for the nourishment of a medial arm skin free flap. To analyze the relationship between the SBA of axillary origin and segmental variation of the axillary artery, we dissected 304 arms of Korean cadavers. We found an SBA of axillary origin in 12.2% of cadaveric arms. Unilateral occurrence was detected in 16 cadavers and bilateral in 10. SBAs gave rise to radial and ulnar arteries in the cubital fossa (8.9%), continued in the forearm as the radial artery (2.3%), or ended in the upper arm (1.0%). The SBA ended as ulnar artery was not found in any of the cadavers. The bifurcation of the SBA into the radial and ulnar arteries, presence of an SBA that ends in the upper arm, and the lack of continuation as the ulnar artery are characteristics of SBAs in Korean cadavers.
scapular artery, anterior humeral circumflex artery, and posterior humeral circumflex artery (Fig. 2A). Type Ib: the SBA emerged from the axillary artery distal to the stem of the subscapular artery, proximal to the stems of the humeral circumflex arteries. In this type, the subscapular artery arose from the second part of the axillary artery, not third (Fig. 2B). Type Ic: the SBA emerged after the direct appearance of the thoracodorsal artery from the second part of the axillary artery. The circumflex scapular artery appeared from the third part of the axillary artery, distal to the stem of the SBA (Fig. 2C). The proportions of Type Ia, Ib, and Ic were 54.2%, 33.3%, and 12.0% of total Type I, respectively.

Type II SBA (i.e. superficial radial artery) was found on seven sides (2.3%). This artery continued as the radial artery after branching off into muscular branches to the biceps brachii and brachialis muscles (Fig. 3).

In Type III, the slender superficial brachial artery supplied the arm musculature and ended in the arm (Fig. 4). It was found in three cases (1.0%).

Table 1. SBAs observed in this Study

	Male	Female	Total		
	Right	Left	Right	Left	
	(n=93)	(n=93)	(n=59)	(n=59)	
Type I	10.8%	7.5%	10.2%	6.8%	8.9%
Type II	3.2%	1.1%	1.7%	3.4%	2.3%
Type III	2.2%	0.0%	1.7%	0.0%	1.0%
Total	16.1%	8.6%	13.6%	10.2%	12.2%

SBA, superficial brachial artery.

In normal morphogenesis, the superficial brachial artery

Fig. 1. Photograph (A) and illustration (B) of type I SBA. The SBA bifurcated into the radial and the ulnar arteries after giving muscular branches to the biceps brachii and brachialis muscles. AA, axillary artery; LC, lateral cord; MC, medial cord; M, median nerve; U, ulnar nerve; R, radial nerve; SBA, superficial brachial artery; RA, radial artery; UA, ulnar artery.

Fig. 2. Type Ia, Ib, and Ic superficial brachial arteries. Type Ia (A): the SBA emerged proximal to the stem of the subscapular artery, anterior humeral circumflex artery, and posterior humeral circumflex artery. Type Ib (B): the SBA emerged from the axillary artery distal to the stem of the subscapular artery in the second part, proximal to the stems of the circumflex arteries. Type Ic (C): the SBA emerged distal to the thoracodorsal artery from the second part of the axillary artery, proximal to the circumflex scapular artery appearing from the third part. AA, axillary artery; SBA, superficial brachial artery; SA, subscapular artery; AH, anterior humeral circumflex artery; PH, posterior humeral circumflex artery; TA, thoracodorsal artery; CA, circumflex scapular artery; LC, lateral cord; MC, medial cord; M, median nerve.
is not an erroneous variation but an essential blood vessel. The SBA is an important vessel in fetal life for replacing or supporting the definitive brachial artery (11). Rodríguez-Baeza et al. (14) suggested that the hemodynamic predominance of certain arterial segments during development determines whether the SBA will remain.

The SBA emerges from the axillary artery during stage IV of upper limb vascular development (5). It is joined to the axillary artery via several deep branches at the level of the axilla, upper arm, and elbow (15).

A surviving SBA will have one of three possible outcomes. The SBA may overtake the territory of the definitive brachial artery, it may form a parallel artery to the deep brachial artery, or it can disappear as it turns into small cutaneous blood vessels (16). The first outcome corresponds with our Type I, the second to Type II, and the third to Type III (Fig. 5).

In our cases, the frequency of Type I SBAs (8.9%) is similar to the highest frequency in the literature. Fuss et al. recorded 17 cases from 200 arms (8.5%, “Type 3” in their report) (4). The corresponding frequency found by Skopakoff et al.

Fig. 3. Photograph (A) and illustration (B) of type II SBA. After giving muscular branches to the biceps brachii and brachialis muscles, the SBA continued as the radial artery in the forearm. AA, axillary artery; BA, brachial artery; LC, lateral cord; MC, medial cord; M, median nerve; SBA, superficial brachial artery; RA, radial artery; UA, ulnar artery.

Fig. 4. Photograph (A) and illustration (B) of type III SBA. The slender SBA supplied the arm musculature and ended in the upper arm. AA, axillary artery; BA, brachial artery; LC, lateral cord; MC, medial cord; M, median nerve; U, ulnar nerve; SBA, superficial brachial artery; RA, radial artery; UA, ulnar artery.

Fig. 5. The development of the brachial artery and the superficial brachial artery in embryonic upper limb. (A) Absent superficial brachial artery. (B) Type I superficial brachial artery. (C) Type II superficial brachial artery. (D) Type III superficial brachial artery. During the limb development, the survival or regression of the arteries are decided by hemodynamic dominance of primitive arterial networks. BA, brachial artery; SBA, superficial brachial artery; RA, radial artery; UA, ulnar artery.
Anatomical relationship between the superficial brachial arterial system and the brachial plexus in humans, and their morphological significance. Folia Morphol (Warsz) 2004; 63: 465-71.

10. Coskun N, Sarikcioglu L, Donmez BO, Sindel M. Arterial, neural and muscular variations in the upper limb. Folia Morphol (Warsz) 2005; 64: 347-52.

11. Yalcin B, Kocabiyik N, Yazar F, Kirici Y, Ozan H. Arterial variations of the upper extremities. Anat Sci Int 2006; 81: 62-4.

12. Hollinshead WH. Anatomy for surgeons: vol 3, the back and limbs, 3rd ed. Philadelphia: Harper & Row, 1982; 362.

13. Karamursel S, Bagdatli D, Demir Z, Tuccar E, Celebioglu S. Use of medial arm skin as a free flap. Plast Reconstr Surg 2005; 115: 2025-31.

14. Rodriguez-Baeza A, Nebot J, Ferreira B, Reina F, Perez J, Salado JR, Roig M. An anatomical study and ontogenetic explanation of 23 cases with variations in the main pattern of the human brachio-antebrachial arteries. J Anat 1995; 187: 473-9.

15. Singer E. Human brachial plexus united into a single cord description and interpretation. Anat Rec 1933; 55: 411-9.

16. Melling M, Wilde J, Schnallinger M, Karinian-Theherani D, Behnam M, Firbas W. Rare variant of the brachial artery: superficial lateral inferior type VII EAB. Clin Anat 2000; 13: 216-22.

17. Skopakoff C. Uber die Variabilitat der Ab-und Verzweigung der A. brachialis superficialis. Anat Anz 1959; 106: 356-68.