Comparative Histological Observation of Liver Tissue Before and After Reproduction in Male and Female Frogs (Pelophylax ridibundus)

Article - June 2019
DOI: 10.26650/ASE2019537099

2 authors, including:

Ahmet Alkaya
Iskenderun Technical University
16 PUBLICATIONS 4 CITATIONS

All content following this page was uploaded by Ahmet Alkaya on 01 July 2019.
The user has requested enhancement of the downloaded file.
Comparative Histological Observation of Liver Tissue Before and After Reproduction in Male and Female Frogs (Pelophylax ridibundus)

Ahmet Alkaya1∗, Hülya Şerefişan1

Cite this article as: Alkaya, A., & Sereflisan, H. (2019). Comparative Histological Observation of Liver Tissue Before and After Reproduction in Male and Female Frogs (Pelophylax ridibundus). Aquatic Sciences and Engineering, 34(2), 46-50.

ORCID IDs of the authors:
A.A. 0000-0003-2117-7799;
H.Ş. 0000-0002-2510-3714

1İskenderun Technical University, Marine Sciences and Technology Faculty, İskenderun, Hatay, Turkey

Submitted: 07.03.2019
Revision Requested: 08.05.2019
Last Revision Received: 14.05.2019
Accepted: 21.05.2019
Online published: 28.06.2019

©Copyright 2019 by Aquatic Sciences and Engineering
Available online at https://dergipark.org.tr/ase

ABSTRACT
Histomorphological structure of the liver of Ranidae species during the reproduction period contribute significantly to the production rate in the frog culture studies. In this study, the cytoplasmic status of hepatocytes, lipid and melanin pigment in liver parenchyma of adult male and female Pelophylax ridibundus (Pallas, 1771) were investigated before and after reproduction. For histological studies, adult frogs were collected from nature and placed in production ponds to examine the reproduction process. In this study, twenty four breeding male frogs, with average weight 36.63±12.84 g and length 69.29±9.15 mm, and twenty four breeding females with average weight and length of 56.61±19.59 g and 79.54±7.07 mm were used. Samples from the liver tissue of frog were taken in 2015 during (March) and after reproduction (June) period. Histologically pictures of liver parenchyma were taken from the as homogeneous fields as possible. Before the reproduction, it was found that the liver parenchyma of the female frogs were cytoplasmically intense, with a low amount of melanin pigment and lipid droplets. Similarly, male frogs liver parenchyma and hepatocytes were found to be cytoplasmically intense, containing a low amount of melanin pigment and lipid droplets. Both female and male frogs completed the reproduction in April and May. After reproduction period, a great amount of melanin pigment in the liver parenchyma was observed and the cytoplasmic density of the hepatocytes decreased. As a result, cytoplasmic decrease in hepatocytes, structural changes and increase in melanin pigments supports the idea that glycogen and lipids stored in the liver parenchyma are used for reproduction.

Keywords: Pelophylax ridibundus, Ranidae, liver tissue, hepatocyte, histology, reproduction

INTRODUCTION
Examining the histological changes is one of the important research areas of biology and aquaculture laboratories (Wester & Canton, 1991). In addition, knowing the histophysiological structure of Ranidae species which are economically valuable and commonly cultivated contributes significantly to the reproduction rate of this species (Bambozzi et al., 2004; Arauco, De Stefani, Nakaghi & Oliveira-Bahia, 2007). Before and after reproduction differences in liver or gonads and alterations caused by environmental effects can be followed by histological studies in amphibians (Gemhofer, Pawet, Schramm, Müller & Triebskorn, 2001). The liver plays a number of indispensible functions in many body physiological processes such as the digestion of nutrients from other parts of the body and also a storage area for the nutrients. Therefore, it is perfect organ of a key to understand the health and nutritional status of the animals (Akiyoshi & Inoue, 2012). On the other hand, liver tissue is a very good reflector of health management caused diseases and infections in food processing and zootechnics (Hipolito, Leme & Bach, 2001; Hipolito, Martins & Bach, 2004). However, information about the
The female and male frogs were kept in ice containing containers for 30 minutes and then treated with 25 ml chloroform spilled cottons for the competition of anesthesia procedure in the laboratory. Then, the dissection procedure was carried out and the removed liver tissues were immediately stored in 10% formalin solution. Samples were then dehydrated through a series of graded alcohols, cleared in xylene, infiltrated, and embedded into paraffin. Liver paraffin wax blocks were cut into 4 μm thick sections, stained with hematoxylin and eosin (H&E), and then they were examined under Olympus CX 41 microscope (Akiyoshi & Inoue, 2012; Seixas Filho et al., 2013). Images were captured Olympus DP 20 digital camera. Pictures of liver parenchyma were taken the most homogeneous fields possible.

RESULTS AND DISCUSSIONS

In the liver of *P. ridibundus* is a single-layer plate and it contained hepatocytes with a multi-faceted structure and round core in the middle. Also, hepatocytes arranged in clusters and these structures were surrounded by sinusoid networks of liver cordon; portal venular, hepatic arterial and bile ducts were observed to be separated from each other by the presence of traditional. In histological observations of female frogs, the liver parenchyma was cytoplasmically intense, contained low amounts of melanin pigments and lipid droplets before reproduction (march) period (Figure 1, 2). Similarly, the livers of male frogs, liver parenchyma and hepatocytes were cytoplasmically intense, containing low amounts of melanin pigment and lipid droplets (Figure 3, 4).

The livers of female and male frogs, which completed reproduction in April and May were examined histologically in June and intense amount of melanin pigment was detected on liver parenchyma (Figures 5, 6, 7). Parallel to this, obvious changes in the shape of hepatocyte cells were observed and cytoplasmic density

![Figure 1. Low amounts of melanin pigments and lipid droplets in the liver of female frog before reproduction (H: Hepatocyte, M: Melanin, CV: Central vein, S: Sinusoid, L: Lipid, LP: Liver parenchyma. Stain: H & E, Magnification: 10X, original).](image-url)
of hepatocytes was decreased compared to pre-reproduction period in both male and female individuals (Figure 6, 8). As a result of cytoplasmic decrease, structural changes and increased melanin pigments in hepatocytes; support the idea that glycogen and liver parenchyma stored in hepatocytes are used in reproduction.

The liver is an important organ that serves as a storage for glycogen and lipids, particularly in temperate climatic conditions for hibernation species and manages the change in seasonal amounts of these two substances (Dinsmore & Swanson 2008; Fenoglio, Bernocchi & Barni,, 1992; Pasanen & Koskela, 1974; Singh & Sinha, 1989). Haar and Hightower (1976) reported that Notophthalmus viridescens hepatocytes contain great amount of lipid and glycogen inclusions. Chen et al. (2011) reported in anuran that glycogen and lipid reserves increased before the reproductive period and hibernation and linked the increase between hibernation and beginning of the reproductive period with reproductive strategy. In pre-reproduction period (March), is determined that the liver parenchymal and density of hepatocytes in cytoplasm was intense for both male and female breeding frogs and melanin pigments and lipid droplets in the liver pa-
RENCHYMA was found to be low. Therefore, it was concluded that the breeding frogs have the necessary energy reserves for reproduction and these reserves vary depending on the breeding strategy.

The concentration of glycogen and lipids is inversely related to the increase of melanin pigment in the liver cell and during the mating period of the anurans, glycogen, lipid and other substances stored in the liver were used for synthesis of egg-sperm formation related substances (Cadeddu & Castellano 2012; Cayuela et al., 2014; Mentino et al. 2014). In another study, it was reported that degenerative changes in some liver hepatocytes may be seen after an apoptotic process such as vitellogenesis (Assisi, 1999). It is known that melamins mediate indirectly to apoptosis during vitallonegenesis (Barni et al., 2002; Purrello et al., 2001). In this study, after the reproduction of the liver of the frogs was observed histologically and detected a large number of melanin pigment on the liver parenchyma. In addition, both male and female frogs showed significant changes in the shape of hepatocyte cells and decreased cytoplasmic density of hepatocytes.

As a result, these histomorphological changes observed in the liver parenchyma; support both the idea of glycogen and lipid in the liver parenchyma or hepatocyte are used in reproduction and liver parenchyma or hepatocyte are inversely related with melanin pigment abundance. Barni et al. (1991) reported the increase in the melanin area in the liver depending on increase in hypertrophy and melanin synthesis in hibernating frogs and linked this situation inversely with glycogen storage in hepatocytes.

Mentino et al. (2017), examined the seasonal changes in the glycogen P. esculentus and reported that the melanin pigments in the liver reached its maximum in May and June, which may be related to reproductive activities. Similarly, in this study, melanin pigments in the liver were found to be a large number and the increase in melanin pigment area is thought to be related to reproduction.

CONCLUSION

As a result of cytoplasmic decrease, structural change and increase in melanin pigments on liver parenchyma after the reproduction; lipids, protein and glycogen that stored in the hepatocytes were used for reproduction. Also, this study will contribute to the production rate for frog culture by shedding light on the preparation of pellet food rations according to the metabolic energy needs of the frogs in the frog breeding period.
Conflict of Interest: The authors have no conflicts of interest to declare.

Ethics Committee Approval: This study was conducted in accordance with ethics committee procedures of animal experiments.

REFERENCES

Akiyoshi, H. & Inoue, A. M. (2012). Comparative histological study of hepatic architecture in the three orders amphibian livers. Comparative Hepatology, 11(1), p. 1-8. [CrossRef]

Arauco, L. R. R., De Stefani, M. V., Nakaghi, L. S. O. & Oliveira-Bahia, V. R. L. D. (2007). Histology of kidney, liver and intestine of bullfrog tadpoles (Rana catesbeiana) fed with diets containing propolis. Ciência Rural, 37(5), 1436-1441. [CrossRef]

Assisi, L., Autuori, F., Botte, V., Farrace, M. G. & Piacentini, M. (1999). Hormonal control of “tissue” transglutaminase induction during programmed cell death in frog liver. Experimental Cell Research, 247(2), 339-346. [CrossRef]

Bambozzi, A. C., Seixas-Filho, J. D., Thomaz, L. A., Oshiro, L. M. Y., Braga, L. G. T. & Lima, S. L. (2004). Efeito do fotoperíodo sobre o desenvolvimento de gímnios de rã-touro (Rana catesbeiana Shaw, 1802). Revista Brasileira de Zootecnia, 33(1), 1-7. [CrossRef]

Barni, S. & Bernocchi, G. (1991). Internalization of erythrocytes into liver parenchymal cells in naturally hibernating frogs (Rana esculenta L.). J. Exp. Zool, 258(2), 143-150. [CrossRef]

Barni, S., Bertone, V., Croce, A. C., Bottiroli, G., Bernini, F. & Gerzeli, G. (1999). Increase in liver pigmentation during natural hibernation in some amphibians. The Journal of Anatomy, 195(1), 19-25. [CrossRef]

Barni, S., Vaccarone, R., Bertone, V., Fraschini, A., Bernini, F. & Fenoglio, C. (2002). Mechanisms of changes to the liver pigmentary component during the annual cycle (activity and hibernation) of Rana esculenta. L. Journal of Anatomy, 200(2), 185-194. [CrossRef]

Cadeddu, G. & Castellano, S. (2012). Factors affecting variation in the reproductive investment of female treefrogs, Hyla intermedia. Zoology, 115(6), 372-378. [CrossRef]

Cayuela, H., Besnard, A., Bonnaire, E., Perret, H., Rivoalen, J., Maud, C. & Joly, P. (2014). To breed or not to breed: past reproductive status and environmental cues drive current breeding decisions in a long-lived amphibian. Oecologia, 176(1), 107-116. [CrossRef]

Chen, W., Zhang, L-X. & Lu, X. (2011). Higher pre-hibernation energy storage in anurans from cold environments: A case study on a temperate frog Rana chensinensis along a broad latitudinal and altitudinal gradients. Annales Zoologici Fennici, 48(4), 214-220. [CrossRef]

Crawshaw, G. J. & Weinkle, T. K. (2000). Clinical and pathological aspects of the amphibian liver. Seminars in Avian and Exotic Pet Medicine, 9(3), 165-173. [CrossRef]

Dinsmore, S. C. & Swanson, D. L. (2008). Temporal patterns of tissue glycogen, glucose, and glycogen phosphorylase activity prior to hibernation in freeze-tolerant chorus frogs, Pseudacris triseriata. Canadian Journal of Zoology, 86(10), 1095-1100. [CrossRef]

Fenoglio, C., Bernocchi, G. & Barni, S. (1992). Frog hepatoocyte modifications induced by seasonal variations: a morphological and cytochemical study. Tissue and Cell, 24(1), 17-29. [CrossRef]

Gernhofer, M., Pawet, M., Schramm, M., Müller, E. & Triebskorn, R. (2001). Ultrastructural Biomarkers as Tools to Characterize the Health Status of Fish in Contaminated Streams. Journal of Aquatic Ecosystem Stress and Recovery, 8, 241-226. [CrossRef]

Haar, J. L. & Hightower, J. A. A. (1976). Light and electron microscopic investigation of the hepatic parenchyma of the adult newt, Notopthalmus viridescens. The Anatomical Record, 185(3), 313-323. [CrossRef]

Hipolito, M., Leme, M. C. M. & Bach, E. E. (2001). Lesões anatomo-histopatológicas em rãs-touro (Rana catesbeiana Shaw, 1802) associadas à deterioração da ração. Arquivos do Instituto de Biologia, 68(1), 111-114.

Hipolito, M., Martins, A. M. C. R. F. & Bach, E. E. (2004). Aspectos bioquímicos em fígado de rãs-touro (Rana catesbeiana Shaw, 1802) sadas e doentes. Arquivos do Instituto Biológico, 71(2), 147-153.

Mentino, D., Mastrodonato, M., Rossi, R. & Scillitani, G., (2014). Histochemical and structural characterization of egg extra-cellular matrix in bufonid toads, Bufo bufo and Bufotes balearensis: Molecular diversity versus morphological uniformity. Microscopy Research and Technique, 77(11), 910-917. [CrossRef]

Mentino, D., Scillitani, G., Marra, M. & Mastrodonato, M. (2017). Seasonal changes in the liver of a non-hibernating population of water frogs, Pelophylax kl. esculentus (Anura: Ranidae). The European Zoological Journal, 84(1), 525-535. [CrossRef]

Pasanen, S. & Koskela, P. (1974). Seasonal and age variation in the metabolism of the common frog, Rana temporaria L. in northern Finland. Comparative Biochemistry and Physiology Part A: Physiology, 47(2), 635-654. [CrossRef]

Purrello, M., Scalia, M., Corsaro, C., Di Pietro, C., Piro, S. & Sichel, G. (2001). Melanosynthesis, differentiation, and apoptosis in Kupffer cells from Rana esculenta. Pigment cell research, 14(2), 126-131. [CrossRef]

Seixas Filho, J. T., Hipolito, M., Pereira, M. M., Martins, A. M. C. R. F., Rodrigues, E. and Mello, S.C.R.P., (2013). Liver histopathological changes in breeding bullfrogs. Acta Scientiarum Animal Science, 35:461-465. [CrossRef]

Singh, R. P. & Sinha, R. C. (1989). Seasonal changes in energy reserves in the common frog, Rana tigrina. The Japanese Journal of Physiology, 39(6), 969-973. [CrossRef]

Wester, P. W. & Canton, J. H. (1991). The usefulness of histopathology in aquatic toxicity studies. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 100(1-2), 115-117. [CrossRef]