ON DAVENPORT EXPANSIONS, POPOV’S FORMULA, AND FINE’S QUERY

ALEXANDER E PATKOWSKI

Abstract. We establish an explicit connection between a Davenport expansion and the Popov sum. Asymptotic analysis follows as a result of these formulas. New solutions to a query of N.J. Fine are offered, and a proof of Davenport expansions is detailed.

Keywords: Davenport expansions; Riemann zeta function; von Mangoldt function

2010 Mathematics Subject Classification 11L20, 11M06.

1. Introduction and Main Formulas

Let \(\Lambda(n) \) denote the von Mangoldt function, \(\zeta(s) \) the Riemann zeta function, and \(\rho \) the non-trivial (complex) zeros of the Riemann zeta function [5, p. 43]. In a recent paper [10] we established a proof of Popov’s formula [12]:

\[
\sum_{n>x} \frac{\Lambda(n)}{n^2} \left(\left\lfloor \frac{n}{x} \right\rfloor - \left\{ \frac{n}{x} \right\} \right)^2 = 2 \frac{-\log(2\pi)}{x} + \sum_{\rho} \frac{x^{\rho-2}}{\rho(\rho - 1)} + \sum_{k \geq 1} \frac{k + 1 - 2k\zeta(2k + 1)}{2k(k + 1)(2k + 1)} x^{-2k-2},
\]

for \(x > 1 \). Here \(\{x\} \) is the fractional part of \(x \), sometimes written as \(\{x\} = x - \lfloor x \rfloor \), where \(\lfloor x \rfloor \) is the floor function. The proof relied on the Mellin transform formula

\[
\frac{1}{2} \left(\{x\}^2 - \{x\} \right) = \frac{1}{2\pi i} \int_{(b)} \left(\frac{s + 1}{2s(s - 1)} - \frac{\zeta(s)}{s} \right) \frac{x^{s+1}}{s+1} ds,
\]

which is valid for \(x > 0 \), \(-1 < b < 0 \). This can be observed by noting (1.2) is known [15, pg. 14, eq. (2.1.4)] for \(x > 1 \), and by [10, pg.405] for \(0 < x < 1 \),

\[
\frac{1}{2\pi i} \int_{(b)} \frac{x^s}{s(s - 1)} ds = 0.
\]

Let \(f(n) \) be a suitable arithmetic function such that \(L(s) = \sum_{n \geq 1} f(n)n^{-s} \) analytic for \(\Re(s) > 1 \), and \(S(x) = \sum_{n \leq x} f(n) \). Examining the right hand side of (1.2), it is
not difficult to see that
\[
\frac{1}{2} \sum_{n>x} \frac{f(n)}{n^2} \left(\left\{ \frac{n}{x} \right\} - \left\{ \frac{n}{x} \right\}^2 \right) = \frac{1}{2\pi i} \int_{(b)} \frac{x^{-s-1}}{2s-1} L(1-s)ds - \frac{1}{2\pi i} \int_{(b)} \frac{x^{-s-1} \zeta(s)}{s(s+1)} L(1-s)ds.
\]

If we replace \(s \) by \(1-s \) in the first integral in (1.3) and apply Fubini’s theorem to interchange the integrals, we see that this integral is equal to
\[
\frac{1}{2\pi} \int_0^x \left(\sum_{n \geq 1} \frac{f(n)}{n} \left\{ \frac{ny}{x} \right\} - \frac{1}{2} \right) dy = \frac{1}{2\pi} \int_0^x \frac{S(y)dy}{y^2},
\]
by the Mellin-Perron formula. If we generalize the formula of Segal [14, eq.(5)], we can see that the second integral on the right side of (1.3) is
\[
\int_0^x \left(\frac{1}{2\pi i} \int_{(1-b)} \frac{y^{s-2}}{s} L(s)ds \right) dy = \int_0^x \frac{S(y)dy}{y^2},
\]

assuming uniform convergence where \(F(n) = \sum_{d \mid n} f(d) \). Collecting (1.3), (1.4), and (1.5), we obtain the following theorem upon noting that Davenport’s proof of uniform convergence is dependent on a special estimate [4].

Theorem 1.1. Let \(f(n) \) be chosen such that \(L(s) \) is analytic for \(\Re(s) > 1 \), and that \(\sum_{n \leq N} f(n)e^{2\pi inx} = O(x(\log(x)^{-h}) \), for any fixed \(h \). We have for \(x > 1 \),
\[
\frac{1}{2} \sum_{n>x} \frac{f(n)}{n^2} \left(\left\{ \frac{n}{x} \right\} - \left\{ \frac{n}{x} \right\}^2 \right) = \frac{1}{2\pi} \int_0^x S(y)\frac{dy}{y^2} + \frac{1}{2\pi} \sum_{n \geq 1} \frac{F(n)}{n^2} \left(\cos\left(\frac{2\pi nx}{x}\right) - 1 \right).
\]

We have therefore proven the connection between Popov’s formula and the integral \(\int_0^x \frac{S(y)dy}{y^2} \) alluded to in [11] (see also [4, pg.69]). Perhaps even more fascinating is the connection to Davenport expansions [3, 8] through the sum on the far right hand side of (1.5). This Fourier series is known to be connected to the periodic Bernoulli polynomial \(B_2(x) - B_2 = (\{x\}^2 - \{x\}) \). For relevant material on Davenport expansions connected to Bernoulli polynomials, see [2, 9].

Recall that \(h(x) \sim g(x) \) means that \(\lim_{x \to \infty} \frac{h(x)}{g(x)} = 1 \). Letting \(x \to \infty \) and applying L’Hôpital’s rule to Theorem 1, and the Residue Theorem to (1.3)-(1.4), we have the following.
Corollary 1.1.1. Let \(f(n) \) be chosen such that \(L(s) \) is analytic for \(\Re(s) > 1 \).

Suppose that \(S(x) \sim \Delta(x) \) as \(x \to \infty \). Then

\[
\frac{1}{2} \sum_{n > x} \frac{f(n)}{n^2} \left(\left\{ \frac{n}{x} \right\} - \left\{ \frac{n}{x} \right\}^2 \right) - \frac{1}{2\pi^2} \sum_{n \geq 1} \frac{F(n)}{n^2} (\cos(\frac{2\pi nx}{x}) - 1) \sim \frac{\Delta(x)}{x^2},
\]

as \(x \to \infty \).

Notice that the sum on the left hand side of (1.1) is \(\sim \frac{1}{x} \), which corresponds to the Prime Number theorem \(\sum_{n \leq x} \Lambda(n) \sim x \) when coupled with our corollary.

The integral \(\int_0^x \frac{S(y)dy}{y^2} \) has appeared in many recent works in the analytic theory of numbers. Namely, in the case of the von Mangoldt function \(S(x) = \psi(x) = \sum_{n \leq x} \Lambda(n) \), see [13], where we find a study of the function

\[
\sum_{n \leq x} \frac{\Lambda(n)}{n} - \frac{\sum_{n \leq x} \Lambda(n)}{x} = \int_1^x \frac{\psi(y)dy}{y^2}.
\]

For the case of the Möbius function (i.e. \(S(x) = M(x) \) the Mertens function [15, pg.370]), Inoue [7, Corollary 3, \(k = 2 \)] gave, under the assumption of the weak Mertens Hypothesis,

\[
\int_1^x \frac{M(y)dy}{y^2} = x^{-\frac{1}{2}} \sum_{\rho} \frac{x^{s_\rho}}{\zeta'(\rho)\rho(\rho - 1)} + A(2) + O(x^{-1}).
\]

Here \(A(2) \) is a constant, and \(g(x) = O(h(x)) \) means \(|g(x)| \leq c_1 h(x) \), \(c_1 > 0 \) a constant.

We mention there is another form of the Fourier series on the far right side of Theorem 1.1. Note that [15, pg.14, eq.(2.1.5)]

\[
\{x\} = -\frac{1}{2\pi i} \int_{(c)} \frac{\zeta(s)}{s} x^s ds,
\]

where \(x > 0 \), and \(0 < c < 1 \). Integrating, we have that

\[
\frac{1}{2} \left(\{x\}^2 + \lfloor x \rfloor \right) = \frac{1}{2\pi i} \int_{(c)} \frac{\zeta(s)}{s(s+1)} x^{s+1} ds.
\]

Dividing by \(x \), computing the residue at the pole \(s = 0 \), and inverting the desired series in (1.7), we have

\[
\sum_{n \geq 1} \frac{f(n)}{n} \left(\frac{1}{x} \right) \left(\{nx\}^2 + [nx] \right) - \frac{1}{2} \right) = -\frac{1}{2\pi i} \int_{(c-1)} \frac{\zeta(s)}{s(s+1)} x^s L(1-s) ds.
\]

Here we used the fact that \(\zeta(0) = -\frac{1}{2} \). Hence, after comparing with our computation (1.5), we have proven the following result.
Theorem 1.2. For $x > 0$,
\[
\sum_{n \geq 1} \frac{f(n)}{n} \left(\frac{1}{x^2} (nx)^2 + |nx| \right) - \frac{1}{2} = \frac{1}{2x\pi^2} \sum_{n \geq 1} \frac{F(n)}{n^2} (\cos(2\pi nx) - 1).
\]

2. Solution to The N.J. Fine query

In [1], a positive answer was presented to a query of N.J. Fine, who asked for a continuous function $\varphi(x)$ on \mathbb{R}, with period 1, $\varphi(x) \neq -\varphi(-x)$, and
\[
\sum_{N \geq k \geq 1} \varphi\left(\frac{k}{N}\right) = 0.
\]
Namely, they gave the solutions
\[
\sum_{n \geq 1} \frac{f(n)}{n} \cos(2\pi nx),
\]
where $f(n)$ is chosen as the Möbius function $\mu(n)$ and the Liouville function $\lambda(n)$, [14]. Their proof utilizes a Ramanujan sum [15, pg.10]
\[
\sum_{N \geq k \geq 1} \cos\left(\frac{2\pi kn}{N}\right),
\]
which is N if $n \equiv 0 \pmod{N}$ and 0 otherwise. It is also dependent on $\sum_{n \geq 1} f(n)/n = 0$. In fact, it is possible to further generalize their result using these properties, which we offer in the following.

Theorem 2.1. Suppose $f(n)$ is a multiplicative arithmetic function chosen such that $\sum_{n \geq 1} f(n)/n = 0$. Then
\[
\sum_{n \geq 1} \frac{f(n)}{n} \cos^m(\pi nx),
\]
and
\[
\sum_{n \geq 1} \frac{f(n)}{n} \sin^{2m}(\pi nx),
\]
for each positive integer m satisfy the properties in Fine’s query.

Proof. We will use [6, pg.31, section 1.320, no.5 and 7] for (2.4) and (2.5) to obtain our $\varphi(x)$. Namely
\[
\cos^{2m}(x) = \frac{1}{2^{2m}} \left(\sum_{m-1 \geq k \geq 0} 2^m \binom{2m}{k} \cos(2(m-k)x) + \binom{2m}{m} \right).
\]
(2.7) \[\cos^{2m-1}(x) = \frac{1}{2^{2m-2}} \sum_{m \geq k \geq 0} \binom{2m}{k} \cos((2m - 2k - 1)x). \]

Putting \(x = \frac{2\pi lN}{N} \), and summing over \(N \geq l \geq 1 \) we see that the sum is a linear combination of zeros and \(N \)'s depending on whether \(n(2m - k) \) | \(N \). In the case where \(n(2m - k) \) | \(N \), we are left with a linear combination of terms which are independent of \(n \). The last term is simply \(\frac{N}{2^m} \binom{2m}{m} \).

Therefore, summing over \(n \) gives the result upon invoking \(\sum_{n \geq 1} f(n)/n = 0 \). Since (2.5) follows in the same way using another formula from [6, pg.31, section 1.320, no.1], we leave the details to the reader.

We were interested finding more solutions to Fine’s query by constructing a special arithmetic function with the possible property \(\sum_{n \geq 1} f(n)/n \neq 0 \). Define

(2.8) \[\chi_{m,l}^{\pm}(n) := \begin{cases} \pm (m^l \mp 1), & \text{if } n \equiv 0 \pmod{m}, \\ 1, & \text{if } n \not\equiv 0 \pmod{m}. \end{cases} \]

If \(f(n) \) is completely multiplicative, this tells us that

\[\sum_{n \geq 1} \frac{\chi_{m,l}^{\mp}(n)f(n)}{n^s} = L(s) - \frac{m^l}{s} \sum_{n \equiv 0 \pmod{m}} \frac{f(n)}{n^s} = (1 - f(m)m^{l-s})L(s). \]

Definition: A function is said to be of the class \(\mathcal{N} \) if: (i) it is continuous on \(\mathbb{R} \), (ii) is 1-periodic (iii) is not odd, and (iv) satisfies (2.1) for each \(N \) coprime to \(m \).

Theorem 2.2. Suppose that \(L(s) \) is analytic for \(\Re(s) > 1 \). For natural numbers \(m > 1, l > 1, \) and \(N \) is coprime to \(m \), we have \(D_1(x) \in \mathcal{N} \) where

(2.9) \[D_1(x) = \sum_{n \geq 1} \frac{\chi_{m,l}^{\pm}(n)f(n)}{n^l} \cos(2\pi nx), \]

for a completely multiplicative function with the property \(f(m) = -1 \), and \(D_2(x) \in \mathcal{N} \) where

(2.10) \[D_2(x) = \sum_{n \geq 1} \frac{\chi_{m,l}^{\pm}(n)f(n)}{n^l} \cos(2\pi nx), \]

for a completely multiplicative function with the property \(f(m) = 1 \).

Proof. First we consider (2.9). Note that because \(\chi_{m,l}^{\pm}(n) \) is not completely multiplicative, we need to restrict \(N \) to be coprime to \(m \), since then \(\chi_{m,l}^{\pm}(Nn) = \chi_{m,l}^{\pm}(n) \).

That is to say that \(Nn \equiv 0 \pmod{m} \) is solved by \(n \equiv 0 \pmod{m} \) provided that \(N \)
is coprime to m. The same argument applies in the case $Nn \not\equiv 0 \pmod{m}$. Using (2.3) and the method applied in [1] we compute that

$$
\sum_{N \geq k \geq 1} \sum_{n \geq 1} \frac{\chi_{m,l}(n)f(n)}{n^l} \cos(\frac{2\pi nk}{N}) = N \sum_{n \equiv 0 \pmod{N}} \frac{\chi_{m,l}(n)f(n)}{n^l} = f(N) \lim_{s \to 1} (1 - m^{-s})L(s) = 0.
$$

The computation for (2.10) is similar, and so we leave the details for the reader. □

An example for $D_2(x)$ is if $f(n) = \lambda(n)$, and $m = 4, l > 1$, since $\lambda(4) = 1$. One for $D_1(x)$ is if $f(n) = \mu(n)$, and $m = 5, l > 1$, since $\mu(5) = -1$.

3. Fourier Analysis of Davenport expansions

In [8, pg.280–281], it is noted that Davenport’s expansion may be obtained from standard Fourier techniques, and evaluating a Fourier integral involving the fractional part function. Here we will give a detailed proof to obtain a further expansion.

Lemma 3.1. Let $\phi(x)$ be a 1-periodic function on $[0,1]$. Then $\phi(x)$ admits the expansion

$$
\phi(x) = \sum_{n \geq 1} c_n \sin(\pi nx) \cos(\pi nx),
$$

where

$$
c_n = 8 \int_0^1 \phi(y) \sin(\pi ny) \cos(\pi ny) dy.
$$

Proof. A computation gives us

$$
\int_0^1 \sin(\pi ny) \cos(\pi ny) \sin(\pi my) \cos(\pi my) dy = \frac{1}{16\pi} \left(\frac{\sin(2\pi(m-n))}{m-n} - \frac{\sin(2\pi(m+n))}{m+n} \right)
$$

$$
= \begin{cases}
\frac{1}{8}, & \text{if } n = m, \\
0, & \text{if } n \neq m.
\end{cases}
$$

Hence, provided $\phi(x)$ satisfies the hypothesis of the Lemma, we find the result follows. □

We also require a formula to evaluate integrals involving the fractional function.
Lemma 3.2. ([15, pg.13]) Suppose $\phi(x)$ has a continuous derivative in $[a, b]$. Then we have,

\begin{equation}
\sum_{a < n \leq b} \phi(n) = \int_a^b \phi(y)dy + \int_a^b (\{y\} - \frac{1}{2})\phi'(y)dy + ((a) - \frac{1}{2})\phi(a) - ((b) - \frac{1}{2})\phi(b).
\end{equation}

Noting that $\sin(2x) = 2 \sin(x) \cos(x)$, it follows that we should have the following Davenport expansion.

Theorem 3.3. We have,

\[\sum_{n \geq 1} \frac{f(n)}{n} (\{nx\} - \frac{1}{2}) = 2 \sum_{n \geq 1} c_n \sin(\pi nx) \cos(\pi nx), \]

where

\[c_n = -\frac{1}{n\pi} \sum_{d|n} f(d). \]

Proof. In Lemma 3.2, we put $a = 0$, $b = N$, and set $\phi(x) = \sin(\frac{2\pi x}{N})^2$. In this case we have

\begin{equation}
\sum_{0 < n \leq N} \sin(\frac{\pi nm}{N})^2 = N^2/2 + 2\pi \int_0^N (\{y\} - \frac{1}{2})\sin(\frac{\pi ym}{N})\cos(\frac{\pi ym}{N})dy
\end{equation}

\[= \frac{N}{2} + 2\pi \int_0^1 (\{yN\} - \frac{1}{2})\sin(\pi ym)\cos(\pi ym)dy \]

The sum on the left side of (3.2) may be evaluated in the same way as (2.3) to find that

\begin{equation}
\sum_{0 < n \leq N} \sin(\frac{\pi nm}{N})^2 = \begin{cases}
0, & \text{if } m \equiv 0 \pmod{N}, \\
\frac{N}{4}, & \text{otherwise}.
\end{cases}
\end{equation}

Collecting (3.2) and (3.3), it follows that

\begin{equation}
\int_0^1 (\{yN\} - \frac{1}{2})\sin(\pi ym)\cos(\pi ym)dy = \begin{cases}
-\frac{N}{4\pi m}, & \text{if } m \equiv 0 \pmod{N}, \\
0, & \text{otherwise}.
\end{cases}
\end{equation}

Summing over the desired series in (3.4) for m and N gives the result. \qed
References

[1] P.T. Bateman and S. Chowla, *Some special trigonometric series related to the distribution of prime numbers*, J. London Math. Soc. 38 (1963), 372–374.

[2] K. Chakraborty, S. Kanemitsu, H. Tsukada, *Arithmetical Fourier series and the modular relation*, Kyushu Journal of Math. Vol. 66 (2012) No. 2 p. 411–427.

[3] H. Davenport, *On some infinite series involving arithmetic function*, Quarterly Journal of Mathematics, 8 (1937), pp. 8–13.

[4] H. Davenport, *On some infinite series involving arithmetical functions II*, Quart. J. Math. Oxf. 8 (1937), 313–320.

[5] H. M. Edwards. *Riemann’s Zeta Function*, 1974. Dover Publications.

[6] I. S. Gradshteyn and I. M. Ryzhik. *Table of Integrals, Series, and Products*. Edited by A. Jeffrey and D. Zwillinger. Academic Press, New York, 7th edition, 2007.

[7] S. Inoue, *Relations among some conjectures on the Möbius function and the Riemann zeta-function*, Acta Arith. 191 (2019), 1–32.

[8] S. Jaffard, On Davenport expansions, in Fractal geometry and applications: a jubilee of Benoit Mandelbrot, Part 1, vol. 72 of Proc. Sympos. Pure Math., pages 273–303, Amer. Math. Soc., Providence, RI, 2004.

[9] H.L. Li, J. Ma, W.P. Zhang, *On some Diophantine Fourier series*, Acta Math. Sinica (Engl. Ser.) 26 (2010) 1125–1132.

[10] R. B. Paris, D. Kaminski, Asymptotics and Mellin–Barnes Integrals. Cambridge University Press. (2001)

[11] A. Patkowski, *On Popov’s formula involving the von Mangoldt function*, The Pi Mu Epsilon Journal, Volume 15, No.1, pp.45–47, Fall 2019.

[12] A. I. Popov, *Several series containing primes and roots of \(\zeta(s)\)*, C. R. Acad. Sri. U.R.S.S., N.S. 41 (1943), 362–3.

[13] O. Ramaré, *Explicit estimates for the summatory function of \(\Lambda(n)/n\) from the one of \(\Lambda(n)\)*, Acta Arithmetica, vol 159, no. 2, pp. 113–122, (2013)

[14] S. Segal, *On an identity between infinite series of arithmetic functions*, Acta Arithmetica 28.4 (1976): 345–348

[15] E. C. Titchmarsh, *The theory of the Riemann zeta function*, Oxford University Press, 2nd edition, 1986.

1390 Bumps River Rd.
Centerville, MA 02632
USA
E-mail: alexpatk@hotmail.com, alexepatkowski@gmail.com