Targeting Tumor Microenvironment by Small-Molecule Inhibitors

Shangwei Zhong*,†, Ji-Hak Jeong†, Zhikang Chen*, Zihua Chen* and Jun-Li Luo†

*The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Hunan, 410008, China; †Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA

Abstract

The tumor microenvironment (TME) is a hypoxic, acidic, and immune/inflammatory cell–enriched milieu that plays crucial roles in tumor development, growth, progression, and therapy resistance. Targeting TME is an attractive strategy for the treatment of solid tumors. Conventional cancer chemotherapies are mostly designed to directly kill cancer cells, and the effectiveness is always compromised by their penetration and accessibility to cancer cells. Small-molecule inhibitors, which exhibit good penetration and accessibility, are widely studied, and many of them have been successfully applied in clinics for cancer treatment. As TME is more penetrable and accessible than tumor cells, a lot of efforts have recently been made to generate small-molecule inhibitors that specifically target TME or the components of TME or develop special drug-delivery systems that release the cytotoxic drugs specifically in TME. In this review, we briefly summarize the recent advances of small-molecule inhibitors that target TME for the tumor treatment.

Translational Oncology (2020) 13, 57–69

Introduction

The tumor microenvironment (TME) is a hypoxic and acidic milieu constituted of cellular and noncellular components. The cellular component is composed of various stromal cells, including endothelial cells (ECs), cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), tumor-infiltrating lymphocytes (TILs), and tumor-associated macrophages (TAMs). The noncellular component includes nonsoluble or semisoluble substances, such as the extracellular matrix (ECM), and soluble substances, such as interstitial fluids, various cytokines and chemokines, growth factors, and metabolites [1–5]. TME is not only intrinsically immunosuppressive to protect tumor cells from immune surveillance but also dynamically adaptive to accommodate rapid tumor growth and progression and to counter any stress and insult conditions, such as chemotherapy [6,7]. TME is an essential part of the tumor mass, which is important for tumor growth, progression, metastasis, and therapy resistance [4,6,8]. Therefore, targeting TME would be an efficient way for the treatment of cancer. Indeed, many strategies have been developed to target the TME. As small molecules can easily access TME than can penetrate into tumor cells, development of small-molecule inhibitors that specifically target TME is one of the rapidly growing areas in this field.

Small-molecule inhibitors are compounds with a small size (<500 Da). Compared with macromolecule agents, small-molecule inhibitors are more penetrative to the targets and usually can be engineered to be suitable for oral administration [9–12]. Many small-molecule inhibitors have been successfully applied to treat a wide range of cancers, and much more are currently in either clinical trials or ongoing development. For example, sunitinib (Sutent), a multiple-tyrosine kinase inhibitor of vascular endothelial growth factor receptor (VEGFR), oncogene c-KIT (KIT), receptor tyrosine kinase and platelet-derived growth factor receptor (PDGFR), has been approved as a potent antiangiogenesis drug and is applied to treat various tumors [9,13].

Recently, many small-molecule inhibitors have been developed to specifically or mainly target TME. These small molecules are designed...
to interrupt the specific features of TME, including the hypoxic, acidic, inflammatory milieu, as well as the abnormal ECM network in TME. Here, we briefly review the recent advances in the development of therapeutic small-molecule inhibitors that target TME.

Targeting Hypoxia in the TME

Hypoxia is one of the prominent features of TME. The rapid proliferation of cancer cells speeds up the consumption of oxygen, resulting in reduced oxygen level in solid tumor areas [14]. The disorganized vascular networks in tumor site that induce diffusion distance of oxygen also contribute to low oxygen level in TME [6,14,15]. In addition, tumor-associated and/or therapy-induced anemia causes a decreased O₂ transport capacity of the blood, leading to hypoxia in tumor sites [16]. Hypoxia is associated with tumor metastasis, radiotherapy/chemotherapy resistance, and poor prognosis [15,17]. In hypoxic environment, tumor cells can use many mechanisms to survive, including shifting from aerobic to anaerobic metabolism, erythropoietin (EPO) production, deregulating DNA repair systems, recruiting the stromal components, as well as upregulating protooncogenes and hypoxia-inducible factor (HIF) 1α and HIF 2α [18,19]. For a detailed review of targeting hypoxia in cancer therapy, please refer to a recent publication by Wilson and Hay [20]. To exploit the unique feature of hypoxia in TME, the therapeutic agents are often designed as low-toxicity prodrugs in normoxia environment while selectively activated in hypoxic tumor areas (Figure 1). Papadopoulos et al. [21] designed the hypoxia-activated prodrug AQ4N (banoxantrone) that is converted into AQ4, a potent inhibitor of topoisomerase II, in hypoxic areas. This prodrug is applied to treat advanced solid tumors such as bronchoalveolar lung cancer and ovarian cancer. Weiss et al. [22] designed a hypoxia-activated prodrug TH-302 that is consisted of 2-nitroimidazole, a hypoxia trigger, and a brominated version of isophosphoramide mustard (Br-IPM). This prodrug remains intact in normal oxygen conditions and can be activated in severe hypoxic conditions (<0.5% O₂).

Figure 1. Hypoxia-targeted therapy. The hypoxia in TME is resulted from several factors. Some hypoxia-activated prodrugs or hypoxia-targeting nanoparticle drug-delivery system are developed to inhibit the growth of cancer cells. TME, tumor microenvironment; ECM, extracellular matrix; EPR, enhanced permeability and retention effect.
O$_2$) to release Br-IPM, a DNA cross-linking agent. TH-302 shows antitumor activities in metastatic melanoma and small cell lung cancer (SCLC). Another hypoxic cell toxin is tirapazamine (TPZ), which preferentially shows cytotoxic activity to hypoxic cancer cells. The underlying mechanism is that TPZ forms a radical by adding an electron under the catalytic action of various intracellular reductases. This TPZ radical is highly reactive and can lead to DNA single- or double-strand breaks in hypoxic environment. However, under aerobic conditions, the TPZ radical is back-oxidized into its nontoxic parent, and its cytotoxicity is rapidly reduced [15,23]. Another strategy is to design a delivery system that releases the carried-on drug preferentially in hypoxic microenvironment. For instance, Huo et al. [24] reported a size-tunable nanocluster bomb with an initial size of approximately 33 nm featuring a long half-life during blood circulation and destructed to release small hypoxia microenvironment-targeting nanoparticles (NPs) to achieve deep tumor penetration. The small-molecule inhibitors that target hypoxic TME are summarized in Table 1 [21–23,25].

Targeting the Acidic TME

The extracellular pH in normal tissues is ~7.4, while the pH value in TME is much lower (~6.7–7.1) [26]. There are many mechanisms for the formation of acidic pH in tumors. Tumor cells use aerobic glycolysis as a major energy metabolism pathway in hypoxic environment, leading to increased production of lactic acid and H$^+$ which are subsequently released in TME through passive diffusion and active membrane-based ion transport [27]. The H$^+$-ATPases, Na$^+${/}-H$^+$ exchanger NHE1, as well as monocarboxylate-H$^+$ efflux cotransporter MCT1 and MCT4 are highly increased or/and activated in tumor cells, which drive H$^+$ efflux [26,28–30]. In addition, the carbonic anhydrase 9 (CA9), which is overexpressed in many types of cancer, also participates in the maintenance of low pH in TME [31,32]. In addition, tumor cells can induce oxidative stress to their neighboring stromal cells such as CAFs and TAMs by producing reactive oxygen species (ROS), which lead to mitochondrial dysfunction in CAFs and TAMs, resulting in accumulation of lactate in TME [33,34] (Figure 2). In addition, several mechanisms including the adaptation to hypoxia, oncogene activation, uncontrolled cell growth, and deficiencies in tumor perfusion due to the disorganized vascular networks also contribute to the tumor acidic microenvironment [35].

The dysregulated pH in TME contributes to tumor progression, invasion, metastasis, and chemoresistance, and therefore, targeting acidic TME is a desirable tumor therapeutic strategy [26,35–39]. Some small-molecule inhibitors targeting acidic TME are developed (Table 1) (Figure 2) [40–52]. In addition, efforts have recently been made to develop pH-responsive drug-release systems that deliver cytotoxic chemotherapy drugs specifically to acidic microenvironment (Figure 2). Zhang et al. [53] established a drug delivery system for targeting tumor acidic microenvironment via modifying pH (low) insertion peptide (pHLIP) on mesoporous organosilica nanoparticles (MONs), in which the doxorubicin (DOX) is loaded and can be released in response to glutathione and low pH in TME. Chen et al. developed another pH-responsive delivery system using polyethylene glycol (PEG)–DOX-encapsulated aza-BODIPY nanotheranostic agent. They linked DOX with PEG-benzaldehyde (PEG–CHO) via $\text{–HC=\text{N}–}$ bond to form a Schiff’s base, and then a near-infrared photosensitizer aza-BODIPY (AB) was encapsulated to form hydrophilic nanoparticles (DAB NPs). The $\text{–HC=\text{N}–}$ bond can be broken in acidic TME, resulting in the release of DOX specifically in the tumor site [54].

Targeting Immune and Inflammatory Signaling in TME

The immune system is implicated in both tumor initiation and progression, and immune cells are enriched in TME in some solid tumor such as prostate cancer [57,58]. Some immune cells in TME, for instance TAMs and myeloid-derived suppressor cells (MDSC$_2$), are tumor-promotive, while the immune activity of other cells, for instance CD8$^+$ cells of TILs, is suppressed in TME [5,59,60]. Many therapeutic strategies have been tested for the treatment of cancer through inhibiting the tumor-promotive cells and their signaling or reversing/reconstituting the function of TILs. The small-molecule inhibitors that target immune cells or/and the inflammatory signaling are developed and summarized in Table 2 [61–76].

TAMs are one of the most abundant and crucial cell components in TME. A high presence of TAMs in TME is significantly associated with poor prognosis of patients [77,78]. The phenotype of TAMs is diverse and plastic. There are 17 TAM phenotypes being identified based on single-cell analysis [79], and these subsets are potential targets for therapy. The strategies that suppress M2-type TAM recruitment, survival, and the relevant signaling cascades or reprogram M2-type TAMs to an M1 phenotype have been proposed for the treatment of cancer [3,80–82]. Some small-molecule inhibitors that target TAMs or TAM-associated signals have been developed (Table 2) [61–67].

MDSCs are a heterogeneous group of myeloid cells with an immature phenotype that expand in response to various tumor-derived cytokines such as granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-6 [83–86]. MDSCs are associated with tumor progression, metastasis, and poor clinical prognosis [87–89]. MDSCs play important roles in the maintenance of the immunosuppressive TME through affecting the interactions between cancer cells and immune effectors [90]. MDSCs can release high levels of Arginase-1 in TME, leading to L-arginine depletion (a crucial nutrient for lymphocytes) that inhibits T-cell function. MDSCs also suppress dendritic cells (DCs)–mediated activation of T cells [91–93]. DCs act as a key cellular sensor to capture danger events such as invading microbes in the environment and provide necessary signals for T-cell activation, thereby shaping immune responses [94,95]. Targeting MDSC expansion or inhibiting their protumorigenic functions is a promising strategy to inhibit tumor progression. Some small-molecule inhibitors that target MDSCs or/and their associated signals have been developed and are summarized in Table 2 [68–72].

TILs are a complex group of T lymphocytes infiltrated in TME [96]. TILs have different subpopulations with different even opposite roles in immune responses. For instance, the subset of CD4$^+$CD25$^+$FOXP3$^+$ regulatory T (Treg) cells suppress tumor-specific T-cell immunity and are associated with poor prognosis in ovarian carcinoma [97], and tumor-infiltrating CD4$^+$CD25$^+$FOXP3$^+$ Treg cells showed promotastatic function in receptor activator of nuclear factor-κB (RANK)-expressing breast/mammary cancer cells [98]. However, the CD8$^+$ TILs are positively correlated with patients’ overall survival in many cancer types, including cutaneous angiosarcoma, esophageal carcinomas, and non-small cell lung cancers (NSCLCs) [99–101]. Some small-molecule inhibitors that either enhance the function of CD8$^+$ T cells or inhibit Treg cell proliferation and cytokine production have been developed (Table 2) [73–76].
Target	Small-molecular Inhibitor	Target Strategy	Mechanism of Action	Cancer Target	References
Hypoxia	Hypoxia-activated prodrug AQ4N (banoxantrone)	Inhibit tumor growth and progression	Be converted into AQ4, a potent inhibitor of topoisomerase II, in hypoxic areas	Bronchoalveolar lung cancer and ovarian cancer	[21]
Hypoxia	Hypoxia-activated prodrug TH-302	Inhibit tumor growth	Release brominated version of isophosphoramide mustard (Br-IPM) in hypoxic areas	Small cell lung cancer (SCLC) and melanoma	[22]
Tirapazamine (TPZ)	TH-302	Show preferentially cytotoxic activity to hypoxic cells	Form a reactive radical under the catalytic action of various intracellular reductases	Squamous cell carcinoma	[23]
PR-104	[2-((2-bromoethyl)-2-((2-hydroxyethyl)aminocarbonyl-4,6-dinitroanilino)ethyl methanesulfonate phosphate ester]	Be converted into cytotoxic drug, hydroxylamine PR-104H, selectively under hypoxia, resulting in suppression of growth of hypoxic and aerobic cells	DNA cross-linking	Pancreatic and prostate tumors	[25]
AcidicMICROENVIRONMENT	Esomeprazole (ESOM)	pH neutralization	Alter tumor pH by inhibiting proton extrusion	Melanoma	[40]
	Omeprazole	pH neutralization	Inhibit V＋H＋-ATPase activity and alter extracellular pH	Colon, breast, ovarian cancer, melanoma	[41]
	Bicarbonate	pH neutralization	Increase tumor extracellular pH and reduce the formation of spontaneous metastases	Breast and prostate cancer	[42]
	4,4’-Disothiocyanostilbene-2,2'-disulfonic acid (DIDS)	Induce cell growth arrest and cell apoptosis	Inhibit anion exchangers (AEs)	Hepatocellular carcinoma	[55]
	2-Cyano-4-hydroxycinnamate (CHC) (combined with radiotherapy)	Retard tumor growth and render the remaining cancer cells sensitive to irradiation	Inhibit monocarboxylate transporter 1 (MCT1)	Lung carcinoma and colorectal adenocarcinoma	[56]
	Sulfonamide-based CAIX inhibitors (CAI17 and U-104)	Inhibit tumor growth, metastasis formation and deplete cancer stem cells	Inhibit CAIX activity	Breast cancer	[43-45]
	Glycosylcoumarins (GC-204 and GC-205)	Inhibit tumor growth and metastasis formation	Inhibit CAIX activity	Breast cancer	[43]
	Small organic ligands (such as AAZ)	Retard tumor growth, reduce metastasis and tumor stem cell expansion	Inhibit CAIX activity	Renal cell carcinoma	[50]
	Acetazolamide (combined with ramapycin)	Inhibit tumor growth and potentiate the anticancer activity of rapamycin	Inhibit CAIX activity	Colorectal adenocarcinoma	[51]
	SLC-0111 (combined with dacarbazine, temozolomide, doxorubicin, and 5-fluorouracil)	Potentiate the cytotoxic effects of conventional chemotherapeutic drugs	Inhibit CAIX activity	Melanoma, breast and colon cancer	[52]
	2-Aminophenoxazine-3-one (Phx-3)	Disturb intracellular pH homeostasis, leading to apoptotic and cytotoxic events	Inhibit NHE1 activity	Gastric cancer	[46]
	Cariporide	Regulate intracellular pH reduce proliferation and induce apoptosis	Inhibit NHE1 activity	Cholangiocarcinoma, breast cancer	[47-49]
	S3705	Regulate intracellular pH reduce proliferation, and induce apoptosis	Inhibit the Na＋-dependent Cl－/HCO3 exchange activity	Cholangiocarcinoma	[48]
Targeting immune checkpoint, for instance, antibodies binding to programmed death 1 (PD-1) or programmed cell death 1 ligand 1 (PD-L1), has shown remarkable efficacy for cancer therapy. However, most immune checkpoint inhibitors currently used in clinic or in clinical trials are antibody drugs, which have some disadvantages such as immunogenicity. Immune checkpoint small-molecule inhibitors could offer inherent advantages in terms of pharmacokinetics and druggability. Many efforts have been made to develop immune checkpoint small-molecule inhibitors. The small-molecule inhibitors targeting PD-1 or PD-L1 have been well summarized by Li and Tian [102] in a recent review.

Targeting CAFs and ECs

CAFs are heterogeneous with various origins, including resident fibroblasts, mesenchymal cells, epithelia, and endothelia cells via epithelial/endothelial—mesenchymal transition [104,105]. CAFs are an essential component of TME and play an indispensable role in tumor development [105,106]. CAFs secrete various cytokines, chemokines, growth factors, and other factors such as WNT16B, which promote tumorogenesis, metastasis, chemoresistance, angiogenesis, and cancer stem cell self-renewal [105,107]. CAFs express several specific markers, such as fibroblast activation protein (FAP), alpha smooth muscle actin (α-SMA), vimentin, S100A4 protein, fibroblast-specific protein-1 (FSP-1), insulin-like growth factor—binding protein 7 (IGFBP7), and Thy-1 [108–112]. These CAF markers not only make CAFs identifiable from normal counterparts but also can be used as specific therapeutic targets for tumor treatment. Some small-molecule inhibitors that target CAFs have been developed (Table 3) [113–120]. In addition, the CAFs markers can be exploited as a drug delivery tool. For example, an FAP-specific peptide is coupled to a potent cytotoxic natural plant product thapsigargin (TG), which can be cleaved by the membrane-bound post-prolyl endopeptidase FAP in TME, resulting in TG release specifically in TME [121].

Endothelial cells (ECs) are mostly quiescent and slowly proliferated in normal tissues of adults [122,123], while ECs in tumors are activated and possess high proangiogenic properties [124]. As a result, the morphologies and gene expression of tumor-associated ECs are very different compared with those in normal ECs. The tumor-associated ECs upregulate several angiogenesis-related genes and markers, such as aminopeptidase N (APN) and tumor endothelial marker 8 (TEM8) [125]. The tumor vessels are disorganized, irregular, fragile, and leaky, resulting in abnormal blood flow in tumor [126]. The disorganized tumor vessels hinder the delivery of drugs to some tumor sites and impair the efficacy of chemotherapy. Therefore, some therapeutic strategies are designed to normalize tumor vasculature, which can alleviate hypoxia in tumor and increase the efficacy of therapies [127]. Because the tumor endothelium dysfunction helps to sculpt the microenvironment and establish an immunosuppressed TME necessary for tumor progression and metastasis [128], targeting tumor-associated ECs is a very promising strategy for the tumor treatment. It has been reported that some naturally occurring endogenous angiogenesis inhibitors act as tumor suppressor proteins or peptides that block the angiogenic switch in tumors [129]. Small-molecule inhibitors designed to specifically target tumor-associated ECs are summarized in Table 3 [130–138].
TAMs, tumor-associated macrophages; TILs, tumor-infiltrating lymphocytes; DCs, dendritic cells; CSF, cerebrospinal fluid; MDSCs, myeloid-derived suppressor cells; IL, interleukin.

TILs SB415286 Enhance the function of CD8

DCs Paclitaxel (noncytotoxic dose) Attenuate the propagation of regDC Target Rho GTPase remodeling Lung cancer [72]

The ECM contains more than one hundred proteins, which are organized into a structural framework and act as a scaffold [144,145]. The major components of the ECM are fibrous proteins and proteoglycans including fibronectin, collagen, and hyaluronan (HA). The ECM also contains various growth factors, cytokines, and chemokines secreted by tumor cells and stromal cells. For example, vascular endothelial growth factor (VEGF) in TME, secreted by tumor cells, CAFs, and inflammatory cells, plays important roles in ECM remodeling. The combination of chemotherapeutic regimen gemcitabine with PEGPH20 for the treatment of pancreatic ductal adenocarcinoma has shown objective tumor responses and nearly doubled overall survival [159,160]. HYAL, an enzyme that catalyzes the degradation of HA, promotes DOX penetration and its cell killing effect [161]. In addition, HA is an anionic cell surface—associated polysaccharide, which facilitates HA binding to the CD44 receptor overexpressed in most of cancer cells. Thus, HA has been exploited as a part of delivery tool to transport drug to tumor cells [162–164].

Matrix Metalloproteinase Protein

Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases. MMPs are synthesized as inactivezymogens, which are subsequently activated by serine proteinases or other MMPs in the microenvironment [165]. Because MMPs can cleave almost all components of the ECM, they play important roles in ECM remodeling. Accumulated evidence has shown that increased expression or/and activation of MMPs is involved in the processes of carcinogenesis, invasion, and metastasis [166]. Several small-molecule inhibitors selectively targeting MMPs have been developed (Table 4) [150,151]. In addition to being a direct target for cancer therapy, MMPs have also been used as part of drug delivery tools that release the cytotoxic drugs specifically in TME. Sun et al. integrated the chemotherapy drug paclitaxel into nanoparticles that is modified with an MMP-cleavable linker and a cell-penetrating peptide. This functionalized nanoparticle showed a high affinity to both tumor cells and TAMs, and the integrated paclitaxel was effectively delivered and released into the tumor site owing to high levels of MMPs in TME [167].

Lysophosphatidic Acid

Lysophosphatidic acid (LPA) is a crucial component of TME. LPA is mainly produced from lysophosphatidylcholine (LPC) by a secreted enzyme, autotaxin (ATX). LPA activates six G protein–coupled
Table 3. Small-Molecule Inhibitors Target Cancer-associated Fibroblasts and Endothelial Cells in TME

Target	Small-molecular Inhibitor	Target Strategy	Mechanism of Action	Cancer Target	References
CAFs	PT-100 (combined with oxaliplatin)	Inhibit CAFs and reduce chemoresistance	Target fibroblast activation protein	Colon cancer	[113]
CAFs	RNK5755	Inhibit CAF migration	Bind to β-arrestin 1 and interfere with β-arrestin 1—mediated cofilin signaling pathways.	Breast cancer	[114]
CAFs	mPGES-1 inhibitor compound III (CIII)	Reduce tumor growth, impair angiogenesis, inhibit CAFs migration and infiltration, and favor shift in the M1/M2 macrophage ratio	Block CAF-derived prostaglandin E2 (PGE2) production	Neuroblastoma tumor	[115]
CAFs	Scrippta	Repress TGFβ-mediated CAF differentiation and inhibit ECM secretion	Alter the cellular epigenetic regulatory machinery via HDAC inhibition	Melanoma	[116]
CAFs	LE135 and bicalutamide (combined with ciplatin)	Suppress CAF-facilitated oncogenesis and reduce chemoresistance	Retinoic acid receptor β and androgen receptor antagonists	Squamous cell carcinoma	[117]
CAFs	AC1MMYR2 (combined with taxol)	Reprogram CAFs, suppress tumor migration and invasion ability	Reprogram CAFs via the NF-κB/miR-21/VHL axis	Breast cancer	[118]
CAFs	SOM230 (combined with gencatnine)	Reprogram CAFs and reduce chemoresistance	Activate the sst1 receptor and inhibit the mTOR/4E-BP1 pathway and the resultant synthesis of secreted CAF proteins	Pancreatic cancer	[119]
CAFs	Navitoclax	Trigger CAF apoptosis and suppress tumor outgrowth	Upregulate the proapoptotic protein Bax and diminish expression of the desmoplastic extracellular matrix protein tenasin C	Cholangiocarcinoma	[119]
CAFs	WRG-28	Inhibit tumor invasion and migration	Inhibit receptor–ligand interactions via allosteric modulation of the collagen receptor discoidin domain receptor 2 (DDR2)	Breast cancer	[120]
ECs	PD173074 (combined with verteporfin)	Reduce proliferation of CAFs and ECs suppress fibroblast-enhanced tumor cell growth and inhibit tumor growth	Inhibit fibroblast growth factor receptor (FGFR)	Head and neck squamous cell carcinoma (HNSCC)	[120]
ECs	DIMP35-1	Induce cancer cell apoptosis, inhibit the migration and tube formation of ECs and inhibit angiogenesis	Bind to p53 inhibiting its interaction with MDM2 and MDMX	Colon cancer	[130]
ECs	BEZ235 (combined with verapamil)	Enrich vascular-targeted photodynamic therapy inhibit endothelial cell proliferation and suppress tumor growth	Inhibit PI3K pathway activation	Prostate cancer	[141]
ECs	Biochanin A	Inhibit ECs functions such as cell viability, migration, invasion, and tumor progression	Inhibit activation of prosangiogenic proteins (ERK/β-catenin), inhibit chemical hypoxia-inducible factor-1α and vascular endothelial growth factor	Angiogenic gliomas	[131]
ECs	LLLL12	Reduce proliferation/migration of ECs and inhibit VEGF-induced tube formation, suppress tumor growth	Inhibit VEGF-stimulated STAT3 phosphorylation in ECs	Osteosarcoma	[132]
ECs	TW-37 (combined with radiotherapy)	Abrogate new endothelial cell sprouting, inhibit tumor growth	Inhibit Bcl-2	Head and neck cancer	[133]
ECs	CX-4945	Inhibit EC migration, tube formation, cause cell-cycle arrest and selectively induce apoptosis in cancer cells	Attenuate P13K/Akt signaling and block CK2-dependent HIF-1α transcription	Breast and pancreatic cancer	[134]
ECs	CC-5079	Inhibit ECs, fibroblast, cancer cell proliferation and migration, inhibit microvesSEL formation	Stimulate MKP1 expression in ECs and fibroblast	Colon cancer	[135]
ECs	Duatinib	Inhibit mortality and other functions of ECs and myeloid cells, suppress tumor growth associated with increased tumor cell apoptosis, decreased microvesSEL density	Inhibit phosphorylation of SFKs and downstream signaling, reduce matrix metalloproteinase (MMP)-9 levels in TME	Prostate cancer and colon cancer	[136]
ECs	Pazopanib (GW786034B)	Block cancer cell growth, survival, and migration, and inhibit VEGF-induced up-regulation of adhesion molecules on ECs and tumor cells and decrease angiogenesis	Inhibit VEGF-triggered signaling pathways	Multiple myeloma and metastatic renal-cell cancer	[137,142]
ECs	TNP-470	Inhibit vascular hyperpermeability of tumor blood vessels	Inhibit VPF/VEGF-induced phosphorylation of vascular endothelial growth factor receptor-2, calcium influx, and RhoA activation in ECs	Melanoma, glioblastoma and breast cancer	[138]
ECs	Sunitinib(SU11248)	Cause regression, growth arrest, or substantially reduced growth of cancer cells	Target the vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), KIT, and FLT3 receptor tyrosine kinases	Epidermoid carcinoma, colon carcinoma and metastatic renal-cell cancer	[142,143]

CAFs, cancer-associated fibroblasts; ECs, endothelial cells; TME, tumor microenvironment.
Small-Molecule Inhibitors Target Extracellular Matrix Components

Target	Small-molecular Inhibitor	Mechanism of Action	Reference(s)	
Hyaluronan (HA)	4-methylumbelliferone (MU)	Lower HA levels	[145,147–149]	
		Inhibit HAS to synthesize HA		
		Abrogate MMP-9 homodimerization and block hemopexin (PEX) domain of matrix	[147,149]	
		Inhibit MMP-9-mediated cell migration related signaling pathway		
Lysophosphatidic acid (LPA)	ONO-8430506	Decrease lysophosphatidate signaling	[150]	
		Inhibit activity of secreted enzyme, autotaxin (ATX)		
		Inhibit activity of secreted enzyme, urokinase	[150]	
		Target non-collagenous proteinase 1 (NCSP1)		
Collagen	3-[4-(difluoromethoxy)phenyl]-2-[(4-oxo-6-propyl-1H-pyrimidin-2-yl)sulfanyl]-acetamide	Impair the formation of mesh collagen IV and impede tumor EMT	[152]	
		Target mesenchymal goodpasture antigen-binding protein (GPBP) and disturb its multimerization		

Conclusions and Perspectives

Conventional cancer chemotherapies are mostly designed to directly kill cancer cells, and the effectiveness is always compromised by their penetration and accessibility to cancer cells. Small-molecule inhibitors, which exhibit good penetration and accessibility as compared with other large molecules, are widely studied, and most of them are designed to attack cancer cells directly. TME is a complicated and dynamic system, which is an indispensable part of tumor as a whole. As TME is more penetrable and accessible than tumor cells, many efforts have been made to develop therapeutic strategies that target TME. A large number of small-molecule inhibitors that target TME have been developed, many of which are still at the early stages in preclinical and clinical trials. These small-molecule inhibitors are designed to specifically target TME or the components of TME or to be delivered and released specifically in TME.

As there are rapid advances in understanding the underlying mechanisms of the interaction between tumor cells and TME, more and more specific targets in TME will be emerged as druggable targets. As there are rapid advances in understanding the underlying mechanisms of the interaction between tumor cells and TME, more and more specific targets in TME will be emerged as druggable targets.

Inhibition of immune regulatory checkpoints, such as CTLA-4 and the PD-1–PD-L1 axis, is currently at the forefront of immunotherapy for cancers of various histological types. However, the CTLA-4 and PD-1/PD-L1 antibodies currently available for tumor immunotherapy are only effective for 20–30% of patients with solid tumor [180–182]. The complexity and heterogeneity of
the TME suggest that there would be other unknown important mechanisms leading to inhibition of T-cell killing and immune suppression. For the immune system to mount an adequate response to cancer, it must overcome a slew of obstacles. First, T cells that recognize tumor antigens must be sufficiently activated by antigen-presenting cells, and they need to (leave lymphoid system and reside beyond the lymphoid system) migrate and amass within tumors. Second, signals present within the harsh TME undermine the ability of the tumor-infiltrating lymphocytes (TILs), the CD8+ T cells, to fight cancer. Therefore, any strategies, particularly small-molecule inhibitors (or activators) that target TME to promote CD8+ T-cell infiltration in tumors and to prevent the development of a dysfunctional or "exhausted" T-cell state or reverse the function of dysfunctional or "exhausted" T cells, to fight cancer. Therefore, any strategies, particularly small-molecule inhibitors (or activators) that target TME to promote CD8+ T-cell infiltration in tumors and to prevent the development of a dysfunctional or "exhausted" T-cell state or reverse the function of dysfunctional or "exhausted" T-cells, would be highly desirable.

Conflicts of interests

The authors declare no conflicts of interests.

Acknowledgements

This work is supported by a postdoctoral scholarship from China Science Foundation (2018M633001) and the grant from the Frenchman's Creek Women for Cancer Research. Our study was also supported by the Natural Science Foundation of China (81573012).

References

[1] Fan F, Schimming A, Jaeger D and Podar K (2012). Targeting the tumor microenvironment: focus on angiogenesis. J Ocul 2012, 281261.
[2] Benesch MGK, Yang Z, Tang X, Meng G and Brindley DN (2017). Lyso phosphatidyl signaling: the tumor microenvironment's new nemesis. Trends Cancer 3, 748–752.
[3] Quail DF and Joyce JA (2013). Microenvironmental regulation of tumor progression and metastasis. Nat Med 19, 1423–1437.
[4] Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, Gong Z, Zhang S, Zhou J and Cao K, et al (2017). Role of tumor microenvironment in tumorigenesis. J Cancer 8, 761–773.
[5] Rokavec M, Wu W and Luo JL (2012). IL6-mediated suppression of miR-200c directs constitutive activation of inflammatory signaling circuit driving transformation and tumorigenesis. Mol Cell 45, 777–789.
[6] Gilles DM, Semenza GL and Wirtz D (2014). Hypoxia and the extracellular matrix: drivers of tumour metabolism. Nat Rev Cancer 14, 430–449.
[7] Luo JL, Tan W, Ricomo JM, Korczynski O, Zhang M, Gonias SL, Cheresh DA and Karin M (2007). Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Msp1. Nature 446, 690–694.
[8] Pickup MW, Mouw JK and Weaver VM (2014). The extracellular matrix modulates the hallmarks of cancer. EMBO Rep 15, 1243–1253.
[9] Imai K and Takaoaka A (2006). Comparing antibody and small-molecule therapies for cancer. Nat Rev Cancer 6, 714–727.
[10] Mackenzie MJ, Hirte HW, Glenwood G, Jean M, Goel R, Major PP, Miller JR WH, Panasci L, Lorimer IA and Battist G, et al (2005). A phase II trial of ZD1839 (Iressa) 750 mg per day, an oral epidermal growth factor receptor-tyrosine kinase inhibitor, in patients with metastatic colorectal cancer. Invest New Drugs 23, 165–170.
[11] Dancey J and Sausville EA (2003). Issues and progress with protein kinase inhibitors for cancer treatment. Nat Rev Drug Discov 2, 296–313.
[12] Li J, Huang J, Jeong JH, Park SJ, Wei R, Peng J, Luo Z, Chen YT, Feng Y and Luo JL (2014). Selective TBK1/IKKi dual inhibitors with anticancer potenc. Int J Cancer 134, 1972–1980.
[13] Marx J (2005). Cancer. Encouraging results for second-generation antiangiogenesis drugs. Science 308, 1248–1249.
[14] Vaupel P, Mayer A and Hockel M (2004). Tumor hypoxia and malignant progression. Methods Enzymol 381, 335–354.
[15] Brown JM (2000). Hypoxic cytotoxic agents: a new approach to cancer chemotherapy. Drug Resist Updates 3, 7–13.
[16] Hockel M and Vaupel P (2001). Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93, 266–276.
[17] Vaupel P (2009). Prognostic potential of the pre-therapeutic tumor oxygenation status. Adv Exp Med Biol 645, 241–246.
[18] Casazza A, Di Conza G, Wenes M, Finisguerra V, Deschoemaecker S and Mazzone M (2014). Tumor stroma: a complexity dictated by the hypoxic tumor microenvironment. Oncogene 33, 1743–1754.
[19] Bristow RG and Hill RP (2008). Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8, 180–192.
[20] Wilson WR and Hay MP (2011). Targeting hypoxia in cancer therapy. Nat Rev Cancer 11, 393–410.
[21] Papadopoulos KP, Goel S, Beerman M, Wong A, Desai K, Haigentz M, Milian ML, Mani S, Tolcher A and Lanali AS, et al (2008). A phase I open-label, accelerated dose-escalation study of the hypoxia-activated prodrug AQ4N in patients with advanced malignancies. Clin Cancer Res 14, 7110–7115.
[22] Weiss GJ, Inafante JR, Chioerean EG, Borad MJ, Bendell JC, Molina JR, Ties R, Ramanathan RK, Lewandowski K and Jones SF, et al (2011). Phase I study of the safety, tolerability, and pharmacokinetics of TH-302, a hypoxia-activated prodrug, in patients with advanced solid malignancies. Clin Cancer Res 17, 2997–3004.
[23] Brown JM (1999). The hypoxic cell: a target for selective cancer therapy—a hundredth Bruce F. Cain Memorial Award lecture. Cancer Res 59, 5863–5870.
[24] Luo Z, Liu S, Zhang C, He J, Zhou Z, Zhang H and Hu Y (2017). Hypoxia-targeting, tumor microenvironment responsive nanocluster bomb for radical-enhanced radiotherapy. ACS Nano 11, 10159–10174.
[25] Patterson AV, Ferry DM, Edmunds SJ, Go Y, Singleton RS, Patel K, Pullen SM, Hicks KO, Syddall SP and Arweil JG, et al (2007). Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA cross-linking agent PR-104. Clin Cancer Res 13, 3922–3932.
[26] Webb BA, Chimeneti M, Jacobson MP and Barber DL (2011). Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer 11, 671–677.
[27] Tannock IF and Rotin D (1989). Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49, 4373–4384.
[28] Martinez-Zagullan R, Lynch RM, Martinez GM and Gillies R (1993). Vacular-type H(+)–ATPases are functionally expressed in plasma membranes of human tumor cells. Am J Physiol 265, C1015–C1029.
[29] McLean LA, Roscoe J, Jorgensen NK, Gorin FA and Cala PM (2000). Malignant gliomas display alterations in pH regulation by NHE1 compared with nontransformed astrocytes. Am J Physiol Cell Physiol 278, C676–C688.
[30] Pinheiro C, Longatto-Filho A, Ferreira L, Pereira SM, Edling D, Moreira MA, Jube LF, Queiroz GS, Schmitt F and Baltazar F (2008). Increasing expression of monocarboxylate transporters 1 and 4 along progression to invasive cerebral carcinoma. Int J Gynecol Pathol 27, 568–574.
[31] Swietach P, Patiar S, Supuran CT, Harris AL and Vaughan-Jones RD (2009). The role of carbonic anhydride 9 in regulating extracellular and intracellular ph in three-dimensional tumor cell growths. J Biol Chem 284, 20299–20310.
[32] Chiche J, Ile K, Laferriere J, Trottier E, Dayan F, Masure NM, Brahim-Horn MC and Pouyssegur J (2009). Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res 69, 358–368.
[33] Bristow RG and Bosshoff AK (2016). Acidaic tumor microenvironment in human melanoma. Pigment Cell Melanoma Res 29, 588–523.
[34] Pavlides S, Whitaker-Menezes D, Castillo-Cros R, Flomenberg N, Winkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P and Addya S, et al (2009). The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8, 3984–4001.
[35] De Milato A and Fais S (2005). Tumor acidity, chemoresistance and proton pump inhibitors. Future Oncol 1, 779–796.
[36] Vander Heiden MG, Cantley LC and Thompson CB (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033.
[37] Chiche J, Brahim-Horn MC and Pouyssegur J (2010). Tumor hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med 14, 771–794.
induces human poorly-differentiated malignant hepatocellular carcinoma HA22T cell apoptosis. Mol Cell Biochem 308, 117–125.

[38] Sonveaux P, Vegrán F, Schroeder T, Wergin MC, Verraz J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C and Jordan BF, et al. (2008). Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Investig 118, 3930–3942.

[39] Ammirante M, Luo JL, Grivennikov S, Nedospasov S and Karin M (2010). B-cell-derived lymphoxygen promotes castration-resistant prostate cancer. Nature 464, 302–305.

[40] Vikas P, Borcharding N and Zhang W (2018). The clinical promise of immunotherapy in triple-negative breast cancer. Cancer Manag Res 10, 6823–6835.

[41] Luo J, Maeda S, Hsu LC, Yagita H and Karin M (2004). Inhibition of NF-κB by pentafluorophenyl thiophosphate converts inflammation-induced tumor growth mediated by TNFα/IL-6 to a TRAIL-mediated tumor regression. Cancer Cell 6, 297–305.

[42] Majesty M, Runza V, Lehmann C, Hoves S and Ries CH (2018). A drug development perspective on targeting tumor-associated myeloid cells. FEBS J 285, 763–776.

[43] Zollo M, Di Dato V, Spano D, De Martino D, Lugli O, Marinò N, Vastolo V, Navas L, Gavone R and Manganò G, et al. (2012). Targeting monocyte chemotactic protein-1 synthesis with bindarit induces tumor regression in prostate and breast cancer animal models. Clin Exp Metastasis 29, 585–601.

[44] Binnemans-Postma K, Bansal R, Storm G and Prakash J (2018). Targeting the Stat3 pathway in tumor-associated macrophages reduces tumor growth and metastatic niche formation in breast cancer. FASEB J 32, 969–978.

[45] Shen L, Sundstrom A, Gieselski M, Miles KM, Celander M, Adelaiye R, Ovillion A, Ciamperico E, Ramazdiznan S and Ellis L, et al. (2015). Tasquinimod modulates suppressive myeloid cells and enhances cancer immunotherapies in murine models. Cancer Immunol Res 3, 136–148.

[46] Germano G, Frapollì R, Belgiojone C, Anselmo A, Pesce S, Lugròi M, Erba E, Uboldi S, Zucchetti M and Pasqualini F, et al. (2013). Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 23, 249–262.

[47] Lugari M, Buracchi C, Pasqualini F, Bergomas F, Pesce S, Sironi M, Grizzi F, Mantovani A, Belgiojone C and Allavena P (2016). Functional TRAIL receptors in monocytes and tumor-associated macrophages: a possible lifestyle pathway in the tumor microenvironment. Oncotarget 7, 41662–41676.

[48] Shen S, Li HJ, Chen KG, Wang YC, Yang XZ, Lian ZX, Du JZ and Wang J (2017). Spatial targeting of tumor-associated macrophages and tumor cells with a pH-sensitive carbon nanotube for cancer chemoimmunotherapy. Nano Lett 17, 3822–3829.

[49] Edwards JP and Emens LA (2010). The multitasking inhibitor sorafenib reverses the suppression of IL-12 and enhancement of IL-10 by PG2(E) in murine macrophages. Int Immunopharmacol 10, 1220–1228.

[50] Xu J, Escamilla J, Mok S, David J, Priceman S, West B, Bollag G, McBride W and Wu L (2013). CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res 73, 2782–2794.

[51] Xin H, Zhang C, Herrmann A, Du Y, Figlin R and Yu H (2009). Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res 69, 2506–2513.

[52] Yuan H, Cai P, Li Q, Wang W, Sun Y, Xu Q and Gu Y (2014). Axitinib inhibits renal cell carcinoma cells through the Stat6 pathway in tumor-associated macrophages and promotes cancer cell apoptosis and inhibits myeloid-derived suppressor cell accumulation. Biomed Pharmacother 68, 945–955.

[53] Seestaller-Wehr L, Zhang SY and Hopson C, et al. (2015). The BRAF and MEK inhibitors vemurafenib and cobimetinib reverse of myeloid-derived suppressor cell accumulation augments antitumor activity in renal cell carcinoma via STAT3-dependent reversal of myeloid-derived suppressor cell function. J Exp Med 209, 2691–2702.

[54] Zheng H, Gurtkin DW, Han B, Ma Y, Keskinov AA, Shurin MR and Shurin GV (2014). Origin and pharmacological modulation of tumor-associated regulatory dendritic cells. Int J Cancer 134, 2633–2645.

[55] Taylor A, Rothstein D and Rudd CE (2018). Small-molecule inhibition of PD-1 transcription is an effective alternative to antibody blockade in cancer therapy. Cancer Res 78, 706–717.

[56] Liu L, Mayes PA, Eastman S, Shi H, Yadavilli S, Zhang T, Yang J, Seestaller-Wehr L, Zhang SY and Hopson C, et al. (2015). The BRAF and
MEK inhibitors dabrafenib and trametinib: effects on immune function and in combination with immunomodulatory antibodies targeting PD-1, PD-L1, and CTLA-4. *Clin Cancer Res* **21**, 1639–1651.

[75] Hirschhorn-Cymerman D, Rizzuto GA, Mergiou T, Cohen AD, Avogadri F, Lesokhin AM, Weinberg AD, Wolchok JD and Houghton AN (2009). OX40 engagement and chemotherapy combination provides potent antitumor immunity with concomitant regulatory T cell apoptosis. *J Exp Med* **206**, 1103–1116.

[76] Abu-Eid R, Samara RN, Ozubn L, Abdalla MY, Berzofsky JA, Friedman KM, Mkrtchyan M and Khleif SN (2014). Selective inhibition of regulatory T cells by targeting the PI3K-Akt pathway. *Cancer Immunol Immunother* **2**, 1080–1089.

[77] Stiell C, Lee T, Shah SP, Farinpa H, Han G, Nayar T, Delaney A, Jones SJ, Iqbal J and Weisenburger DD, et al (2010). Tumor-associated macrophages and survival in classic Hodgkin's lymphoma. *N Engl J Med* **362**, 875–885.

[78] Campbell MJ, Tonlaar NY, Garwood ER, Huo D, Moore DH, Khamrastai AV, Au B, Bachner F, Chen Y and Malaka DO, et al (2011). Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome. *Breast Canc Res Treat* **128**, 703–711.

[79] Chevrier S, Levine JH, Zanottelli VRT, Silina K, Schulz D, Bacac M, Ries CH, Ailles L, Jewett MAS and Moch H, et al (2017). An immune atlas of clear cell renal cell carcinoma. *Cell* **169**, 736–749 e718.

[80] Sica A and Mantovani A (2012). Macrophage plasticity and polarization: in vivo veritas. *J Clin Investig* **122**, 787–795.

[81] Lewis C and Murdoch C (2005). Macrophage responses to hypoxic implications for tumor progression and anti-cancer therapies. *Am J Pathol* **167**, 627–635.

[82] Poh AR and Ernst M (2018). Targeting macrophages in cancer: from bench to bedside. *Front Oncol* **8**, 49.

[83] Gabrilovich DI, Ostrand-Rosenberg S and Bronte V (2012). Coordinated regulation of myeloid cells by tumours. *Nat Rev Immunol* **12**, 253–268.

[84] Pyzer AR, Cole L, Rosenblatt J and Avigan DE (2016). Myeloid-derived suppressor cells as effectors of immune suppression in cancer. *Int J Cancer* **139**, 1915–1926.

[85] Vuk-Pavlović S, Bular PA, Lin Y, Qin R, Szumlanski CL, Zhao X and Dietz AB (2010). Immunosuppressive CD14+HLA-DRlow/- monocytes in prostate cancer. *Prostate* **70**, 443–455.

[86] Aliper AM, Frieden-Korovkina VP, Buzdin A, Roumiantsev SA and Zhavoronkov A (2014). Interactome analysis of myeloid-derived suppressor cells. *Front Biosci Landmark Ed* **19**, 627–11353.

[87] Zhang G, Huang H, Zhu Y, Yu G, Gao X, Xu Y, Liu C, Hou J and Zhang X (2015). A novel subset of B7-H3(+)+CD14+HLA-DRlow/- myeloid-derived suppressor cells are associated with progression of human NSCLC. *OncoImmunology* **4**,e377164.

[88] Li ZL, Ye SB, OuYang LY, Zhang H, Chen YS, He J, Chen QY, Qian CN, Zhang XS and Cui J, et al (2015). COX-2 promotes metastasis in nasopharyngeal carcinoma by mediating interactions between cancer cells and myeloid-derived suppressor cells. *OncoImmunology* **4**,e1044712.

[89] Huang H, Zhang G, Li G, Ma H and Zhang X (2015). Circulating CD14+HLA-DRlow/- myeloid-derived suppressor cell is an indicator of poor prognosis in patients with ESCC. *Tumour Biol* **36**, 7987–7996.

[90] Schupp J, Krebs FK, Zimmer N, Trzeciak E, Schuppan D and Wu G and Morris Jr SM (1998). Arginine metabolism: nitric oxide and CD14(-)HLA-DR(-/low) myeloid-derived suppressor cell is an indicator of poor prognosis in patients with ESCC. *OncoImmunology* **4**,e377164.

[91] Tran Janco JM, Lamichhane P, Karyampudi L and Knutson KL (2015). Tumor-infiltrating dendritic cells in cancer pathogenesis. *J Immunol* **194**, 2985–2991.

[92] Chen J and Chen Z (2014). The effect of immune microenvironment on the progression and prognosis of colorectal cancer. *Med Oncol* **31**, 82.

[93] Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Edvemon-Hogun M, Conejo-Garcia JR, Zhang L and Burrow M, et al (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. *Nat Med* **10**, 942–949.

[94] Tan W, Zhang W, Strasner A, Grivennikov S, Cheng QJ, Hoffmann RM and Karin M (2011). Tumor-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL–RANK signalling. *Nature* **470**, 548–553.

[95] Fujii H, Arakawa A, Usunami D, Sumiyoshi S, Yamamoto Y, Kitoh A, Ono M, Matsumura Y, Kato M and Konishi K, et al (2014). CD8(+) tumor-infiltrating lymphocytes at primary sites as a possible prognostic factor of cutaneous angiosarcoma. *Int J Cancer* **134**, 2393–2402.

[96] Schumacher K, Haensch W, Roedazza C and Schlog PM (2001). Prognostic significance of activated CD8(+) T cell infiltrations within esophageal carcinomas. *Cancer Res* **61**, 3932–3936.

[97] Zhuang X, Xia X, Wang C, Gao F, Shan N, Zhang L and Zhang L (2010). A high number of CD8+ T cells infiltrated in NSCLC tissues is associated with a favorable prognosis. *Appl Immunohistochem Mol Morphol* **18**, 24–28.

[98] Li K and Tian HQ (2019). Development of small-molecule immune checkpoint inhibitors of PD-1/PD-L1 as a new therapeutic strategy for tumour immunotherapy. *J Drug Target* **27**, 244–256.

[99]FAivre S, Niccoli P, Castellano D, Valle JW, Hammel P, Raoul JL, Vinik A, Van Cutsen E, Bang YJ and Lee SH, et al (2017). Sunitinib in pancreatic neuroendocrine tumors: updated progression-free survival and final overall survival from a phase III randomized study. *Ann Oncol* **28**, 339–343.

[100] Anderberg C and Pietras K (2009). On the origin of cancer-associated fibroblasts. *Cell Cycle* **8**, 1461–1462.

[101] XingF Sajoudian W and arakb2010. Cancer-associated fibroblasts (CAFs) in tumour microenvironment. *FrontBiosci Landmark Ed* **15**, 166–179.

[102] Liu J, Chen S, Wang W, Ning BF, Chen F, Shen W, Ding J, Chen W, Xie WF and Zhang X (2016). Cancer-associated fibroblasts promote hepatocellular carcinoma metastasis through chemokine-activated hedgehog and TGF-beta pathways. *Cancer Lett* **379**, 49–59.

[103] Tao L, Huang G, Song H, Chen Y and Chen L (2017). Cancer associated fibroblasts: an essential role in the tumor microenvironment. *OncoLett* **14**, 2611–2620.

[104] Sugimoto H, Mundel TM, Kieran MW and Kalluri R (2006). Identification of fibroblast heterogeneity in the tumor microenvironment. *Cancer Biol Ther* **5**, 1640–1646.

[105] Park JE, Lenter M, Zimmermann RN, Garin-Chesa P, Old LJ and Rettig WJ (1999). Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. *J Biol Chem* **274**, 36505–36512.

[106] Kim HM, Jung WH and Koo JS (2015). Expression of cancer-associated fibroblast related proteins in metastatic breast cancer: an immunohistochemical analysis. *J Transl Med* **13**, 222.

[107] Rupp C, Scherzer M, Rudisch A, Unger C, Schweiher N, Artaker M, Nivarthi H, Morrig R and Hengstschläger M, et al (2015). IGFBP7, a novel tumor stroma marker, with growth-promoting effects in colon cancer through a paracrine tumor-stroma interaction. *Oncogene* **34**, 815–825.

[108] Schliekelman MJ, Creighton CJ, Baird BN, Chen Y, Banerjee P, Bota- Rabassadas N, Ahn YH, Rovald JD, Chen F and Zhang Y, et al (2017). Thy-1(+) cancer-associated fibroblasts adversely impact lung cancer progression. *Sci Rep* **7**, 6478.

[109] Li M, Li M, Yin T, Shi H, Wen Y, Zhang B, Chen M, Xu G, Ren K and Wei Y (2016). Targeting of cancer-associated fibroblasts enhances the efficacy of cancer chemotherapy by regulating the tumor microenvironment. *Med Res Rep* **2016**, 36512.

[110] Suvarna K, Honda K, kondoh Y, osada H and watanabe N (2018). Identification of a small-molecule ligand of beta-arrestin1 as an inhibitor of stromal fibroblast cell migration accelerated by cancer cells. *Cancer Cell* **27**, 883–893.

[111] Kock A, Larsson K, Bergqvist P, Eissler N, Moriger R, Amour C, Korkotova M, Johnsen JL, Jakobsson PJ and Kogner P (2018). Inhibition of microsomal prostaglandin E synthase-1 in cancer-associated fibroblasts suppresses neovascular tumor growth. *EBioMed* **32**, 84–92.
[116] Kim DJ, Dunleavy JM, Xiao L, Ollila DW, Troester MA, Otey CA, Li W, Barker TH and Dudley AC (2018). Suppression of TGFbeta-mediated conversion of endothelial cells and fibroblasts into cancer associated (myo) fibroblasts via HDAC inhibition. *Br J Cancer* **118**, 1359–1368.

[117] Chan JSK, Sng MK, Teo ZQ, Chong HC, Twang JS and Tan NS (2018). Targeting nuclear receptors in cancer-associated fibroblasts as concurrent therapy to inhibit development of chemoresistant tumors. *Oncogene* **37**, 160–173.

[118] Ren Y, Zhou X, Liu X, Jia HH, Zhao XH, Wang QX, Han L, Song X, Zhu ZY and Sun T, et al (2016). Reprogramming carcinoma associated fibroblasts by AC1MMYR2 impedes tumor metastasis and improves chemotherapy efficacy. *Cancer Lett* **374**, 96–106.

[119] Mertens JC, Fingas CD, Christensen JD, Smoot RL, Bronk SF, Wang F, Musgrove EA, Deacon MM and Stirling DI (2011). The matrisome: in silico definition and in vivo characterization of the matrix proteome and its potential clinical relevance. *Mol Cell Proteom* **10**(Suppl 3), 4–10.

[120] Matsuda K, Ohta N, Yoshida T, Kuroda M, Tsuchiya K, Koike K, Akino T, Shiba T, Tokiwa Y and Hasegawa M, et al (2010). Inhibition of tumor-microenvironment angiogenesis by caplostatin, an inhibitor of DDR2 extracellular domain. *Proc Natl Acad Sci USA* **107**, 1544–1549.

[121] Breen SE, O’Malley AM, Trivedi M, Mitchell TG and Hallahan DE (2013). Suppression of TGFbeta-mediated conversion of endothelial cells and fibroblasts into cancer associated (myo) fibroblasts via HDAC inhibition. *Br J Cancer* **118**, 1359–1368.

[122] Aird WC (2006). Mechanisms of endothelial cell heterogeneity in health and disease. *Circ Res* **98**, 159–162.

[123] Hida K, Maishi N, Annan DA and Hida Y (2018). Contribution of tumor endothelial cells in cancer progression. *Int J Mol Sci* **19**, 323–343.

[124] Cunningham D (2005). VEGF as a key mediator of angiogenesis in cancer. *Oncolgy* (Suppl) 4, 1–10.

[125] Matsuda K, Ohta N, Yoshida T, Kuroda M, Tsuchiya K, Koike K, Akino T, Shiba T, Tokiwa Y and Hasegawa M, et al (2010). Isolated tumor endothelial cells maintain specific characteristics during long-term culture. *Biochem Biophys Res Commun* **394**, 947–954.

[126] Dudley AC (2012). Tumor endothelial cells. *Cold Spring Harb Perspect Med* **2**, a006536.

[127] Ren Y, Zhou X, Liu X, Jia HH, Zhao XH, Wang QX, Han L, Song X, Zhu ZY and Sun T, et al (2016). Reprogramming carcinoma associated fibroblasts by AC1MMYR2 impedes tumor metastasis and improves chemotherapy efficacy. *Cancer Lett* **374**, 96–106.

[128] Aird WC (2006). Mechanisms of endothelial cell heterogeneity in health and disease. *Circ Res* **98**, 159–162.

[129] Breen SE, O’Malley AM, Trivedi M, Mitchell TG and Hallahan DE (2013). Suppression of TGFbeta-mediated conversion of endothelial cells and fibroblasts into cancer associated (myo) fibroblasts via HDAC inhibition. *Br J Cancer* **118**, 1359–1368.

[130] Cunningham D (2005). VEGF as a key mediator of angiogenesis in cancer. *Oncolgy* (Suppl) 4, 1–10.

[131] Matsuda K, Ohta N, Yoshida T, Kuroda M, Tsuchiya K, Koike K, Akino T, Shiba T, Tokiwa Y and Hasegawa M, et al (2010). Isolated tumor endothelial cells maintain specific characteristics during long-term culture. *Biochem Biophys Res Commun* **394**, 947–954.

[132] Dudley AC (2012). Tumor endothelial cells. *Cold Spring Harb Perspect Med* **2**, a006536.

[133] Yeo TK, Tognazzi K and Dvorak HF (1999). Vascular stroma formation in carcinomas in situ, invasive carcinoma, and metastatic carcinoma of the breast. *Clin Cancer Res* **5**, 1041–1056.

[134] Lokeshwar VB, Lopez LE, Munoz D, Chi A, Shirodkar SP, Lokeshwar SD, Sasaki M, Endo M, Grither WR and Longmore GD (2018). Inhibition of tumor-microenvironment interaction and tumor invasion by small-molecule allosteric inhibitor of DDR2 extracellular domain. *Proc Natl Acad Sci USA* **115**, E7786–E7794.

[135] Kraus D, Palubinskas P and Chen B (2017). Targeting phosphatidylinositol-3-kinase signaling pathway for therapeutic enhancement of vascular-targeted photodynamic therapy. *Mol Cancer Ther* **16**, 2422–2431.

[136] Cotran K, Rowan SE, Stotts RJ, Goyal A, Katz H, Radziszewski D, Ford JD, Costello GL, Zergiotis C and Schiller B (2015). Pharmacological targeting of the protein synthesis mTOR/GABPA pathway in cancer-associated fibroblasts abrogates pancreatic tumour chemoresistance. *EMBO Mol Med* **7**, 735–753.

[137] Gritzer WR and Longmore GD (2018). Inhibition of tumor-microenvironment interaction and tumor invasion by small-molecule allosteric inhibitor of DDR2 extracellular domain. *Proc Natl Acad Sci USA* **115**, E7786–E7794.

[138] Satchi-Fainaro R, Mamluk R, Wang L, Short SM, Nagy JA, Feng D, Dvorak AM, Dvorak HF, Puder M and Mukhopadhyay D, et al (2005). Inhibition of vessel permeability by TNP-470 and its polymer conjugate, caplostatin. *Cell Cancer J* **7**, 251–261.

[139] Dudic C, Moatassim-Billah S, Chalabi-Dchar M, Perraud A, Samain R, Breibach F, Gayral M, Cordelier P, Delisle MB and Bouquet-Douchep M, et al (2015). Pharmacological targeting of the protein synthesis mTOR/4E-BP1 pathway in cancer-associated fibroblasts abrogates pancreatic tumour chemoresistance. *EMBO Mol Med* **7**, 735–753.

[140] Gritzer WR and Longmore GD (2018). Inhibition of tumor-microenvironment interaction and tumor invasion by small-molecule allosteric inhibitor of DDR2 extracellular domain. *Proc Natl Acad Sci USA* **115**, E7786–E7794.

[141] Kraus D, Palubinskas P and Chen B (2017). Targeting phosphatidylinositol-3-kinase signaling pathway for therapeutic enhancement of vascular-targeted photodynamic therapy. *Mol Cancer Ther* **16**, 2422–2431.
et al (2018). Selective targeting of collagen IV in the cancer cell microenvironment reduces tumor burden. Oncotarget 9, 11020–11045.

[155] Toole BP (2004). Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4, 528–539.

[156] Whatcott CJ, Han H, Posner RG, Hostetter G and Von Hoff DD (2011). Targeting the tumor microenvironment in cancer: why hyaluronidase deserves a second look. Cancer Discov 1, 291–296.

[157] Minchinton AI and Tannock IF (2006). Drug penetration in solid tumours. Nat Rev Cancer 6, 583–592.

[158] Singhia NC, Nekoroski T, Zhao C, Symons R, Jiang P, Frost GI, Huang Z and Shepard HM (2015). Tumor-associated hyaluronan limits efficacy of monoclonal antibody therapy. Mol Cancer Ther 14, 523–532.

[159] Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD and Hingorani SR (2012). Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21, 418–429.

[160] Jacobetz MA, Chan DS, Neesse A, Bapito TE, Cook N, Frese KK, Feig C, Nakagawa T, Caldwell ME and Zecchini HI, et al (2013). Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut 62, 112–120.

[161] Kohno N, Ohnna T and Trugo P (1994). Effects of hyaluronidase on doxorubicin penetration into squamous carcinoma multicellular tumor spheroids and its cell lethality. J Cancer Res Clin Oncol 120, 293–297.

[162] Song S, Chen F, Qi H, Li F, Xin T, Xu J, Ye T, Sheng N, Yang X and Pan W (2014). Multifunctional tumor-targeting nanocarriers based on hyaluronic acid-mediated and pH-sensitive properties for efficient delivery of do cetaxel. Pharm Res 31, 1032–1045.

[163] Cohen ZR, Ramishetti S, Peshes-Yaloz N, Goldsmith M, Wohl A, Zibih Z and Peer D (2015). Localized RNAi therapeutics of chemoresistant grade IV glioma using hyaluronan-grafted lipid-based nanoparticles. ACS Nano 9, 1581–1591.

[164] Yang L, Song X, Gong T, Jiang K, Hou Y, Chen T, Sun X, Zhang Z and Gong T (2018). Development a hyaluronic acid ion-pairing liposomal nanoparticle for enhancing anti-glioma efficacy by modulating glioma microenvironment. Drug Deliv 25, 388–397.

[165] Sternlicht MD and Werb Z (2001). How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17, 463–516.

[166] Egeblad M and Werb Z (2002). New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2, 161–174.

[167] Sun Z, Li R, Sun J, Peng Y, Xiao L, Zhang X, Xu Y and Wang M (2017). Matrix metalloproteinase cleavable nanoparticles for tumor microenvironment and tumor cell dual-targeting drug delivery. ACS Appl Mater Interfaces 9, 40614–40627.

[168] Benesch MG, Zhao YY, Curtis JM, McMullen TP and Brindley DN (2015). Regulation of autotaxin expression and secretion by lysophosphatidate and sphingosine 1-phosphate. J Lipid Res 56, 1134–1144.

[169] Rancoule C, Espenel S, Trone JC, Langrand-Escure J, Vallard A, Rehailia-Blanchard A, El Meddeb Hamrouni A, Xia Y, Guy JB and Ben-Mrad M, et al (2017). Lysophosphatidic acid (LPA) as a pro-fibrotic and pro-oncogenic factor: a pivotal target to improve the radiotherapy therapeutic index. Oncotarget 8, 43543–43554.

[170] Benesch MGK, MacIntyre ITK, McMullen TPW and Brindley DN (2018). Coming of age for autotaxin and lysophosphatidate signaling: clinical applications for preventing, detecting and targeting tumor-promoting inflammation. Cancers (Basel) 10.

[171] Hu YL, Tee MK, Goetzl EJ, Auersperg N, Mills GB, Ferrara N and Jaffe RB (2001). Lysophosphatidic acid induction of vascular endothelial growth factor expression in human ovarian cancer cells. J Natl Cancer Inst 93, 762–768.

[172] Sengupta S, Kim KS, Berk MP, Oates R, Escobar P, Belinson J, Li W, Lindner DJ, Williams B and Xu Y (2007). Lysophosphatic acid downregulates tissue inhibitor of metalloproteinases, which are negatively involved in lysophosphatic acid-induced cell invasion. Oncogene 26, 2894–2901.

[173] Schneider G, Sellers ZP, Abdell-Latif A, Morris AJ and Ratajczak MZ (2014). Bioactive lipids, LPC and LPA, are novel prometastatic factors and their tissue levels increase in response to radio/chemotherapy. Mol Cancer Res 12, 1560–1573.

[174] Hynes RO (2009). The extracellular matrix: not just pretty fibrils. Science 326, 1216–1219.

[175] Yue B (2014). Biology of the extracellular matrix: an overview. J Glaucosa 23, S20–S23.

[176] Cox TR and Erler JT (2011). Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dia Model Mech 4, 165–178.

[177] Riegler J, Labyed Y, Rosenzweig S, Javinal V, Castiglioni A, Dominguez CX, Long JE, Li Q, Sandoval W and Junttila MR, et al (2018 Sep 15). Tumor elastography and its association with collagen and the tumor microenvironment. Clin Cancer Res 24(18), 4455–4467. https://doi.org/10.1158/1078-0432.CCR-17-3262.

[178] Evans A, Wheelan P, Thomson K, Brauer K, Jordan L, Purdie C, McLean D, Baker L, Vinnicombe S and Thompson A (2012). Differentiating benign from malignant solid breast masses: value of shear wave elastography according to lesion stiffness combined with greyscale ultrasound according to BI-RADS classification. Br J Canc 107, 224–229.

[179] Raja AM, Xu S, Zhuo S, Tai DC, Sun W, So PT, Welsch RE, Chen CS and Yu H (2015). Differential remodeling of extracellular matrices by breast cancer initiating cells. J Biophot 8, 804–815.

[180] Pandoll DM (2012). The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12, 252–264.

[181] Drake CG, Lipson EJ and Brahmer JR (2014). Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nat Rev Clin Oncol 11, 24–37.

[182] Sharma P and Allison JP (2015). Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161, 205–214.

[183] Sowell RT and Kaech SM (2016). Probing the diversity of T cell dysfunction in cancer. Cell 166, 1362–1364.