Резюме

Вступ. Білок CC16 секретується Club клітинами епітелію бронхіол, підтримує гомеостаз епітелію дихальних шляхів і має протизапальну дію в легенях. Важливим є вивчення рівня білка CC16 в сироватці крові з метою розуміння цілісності бронхіального епітелію та розвитку бронхиальної дисфункції саме у дітей раннього віку, хворих на бронхіоліт.

Мета дослідження. Провести аналіз рівня білка CC16 в сироватці крові дітей раннього віку, хворих на бронхіоліт.

Матеріал і методи дослідження. Проведено клінічне обстеження 70 дітей раннього віку. Основну групу склали 35 дітей із бронхіолітом без обтяжених алергологічних анамнезу. Групу порівняння становили 25 дітей, хворих на бронхіоліт, які мали обтяжений алергологічний анамнез. До контрольної групи було включено 10 дітей з умовно здорових дітей. Середній вік дітей основної групи становив 8,4 ± 1,6 міс, групи порівняння – 6,2 ± 1,4 міс та контрольної групи 6,4 ± 1,2 міс.

Результати дослідження. Встановлено, що у дітей раннього віку підвищений рівень білка CC16 може розглядатися як маркер ураження дихальних шляхів бронхіолітом. У дітей хворих на бронхіоліт, які мали обтяжений алергологічний анамнез, рівень білка CC16 в сироватці крові був достовірно вищим (14,2 ± 2,12 нг/мл), (р < 0,05). Разом з тим, у дітей контрольної групи середній рівень білка CC16 в сироватці крові був достовірно нижчим, ніж у дітей контрольної групи (14,2 ± 2,12 нг/мл), (р < 0,05). У дітей контрольної групи середній рівень білка CC16 становив 8,4 ± 1,6 міс, в групі порівняння – 6,2 ± 1,4 міс.

Висновки. У дітей раннього віку підвищений рівень білка CC16 може розглядатися як маркер ураження дихальних шляхів бронхіолітом. У дітей хворих на бронхіоліт, які мали обтяжений алергологічний анамнез, рівень білка CC16 в сироватці крові був достовірно вищим, ніж у дітей контрольної групи (14,2 ± 2,12 нг/мл), (р < 0,05). Натомість, у 13 (51,8 ± 14,4 %) дітей хворих на бронхіоліт залишалося провідним чинником госпіталізації.

Ключові слова: бронхіоліт; дитячий бронхіоліт; білок CC16.
сіданту дію в різних клітинах, включаючи епітеліальні клітини та лейкоцити [7]. Протизапальна активність білка СС16 полягає в його здатності інгібувати каталітичну активність секреторної фосфоліпази А2 (sPLA2), потужного проазапального фактору, шляхом зв’язування з кофакторами, необхідними для повної каталітичної активності цього ферменту [8].

Визначення рівня білка СС16 дає можливість оцінити ступінь пошкодження Club клітин, а отже, пошкодження респіраторного епітелію та бронхіальної дисфункції [9]. Таким чином, у наукових джерелах відбувається різкі вивчення нових лабораторних маркерів діагностики бронхіоліту у дітей раннього віку.

Мета дослідження
Провести аналіз рівня білка СС16 у сироватці крові дітей раннього віку, хворих на бронхіоліт.

Матеріал та методи дослідження
Проведене клінічне обстеження 70 дітей раннього віку. Основну групу склали 35 дітей із бронхіолітом без обтяженого алергологічного анамнезу. Групу порівняння становили 25 дітей, хворих на бронхіоліт, які мали обтяжений алергологічний анамнез. До контрольної групи було включено 10 університетських та 10 відомих дітей. Середній вік дітей основної групи становив 8,4±1,6 міс, групи порівняння — 6,2±1,4 міс та дітей контрольної групи 6,4±1,2 міс.

Критеріями включення до дослідження були: діти віком від 0 до 12 міс., інформована згодна від батьків на участю у дослідженні. Критеріями виключення були діти з обтяженим алергологічним анамнезом (риск бронхіоліту). Встановлено письмову згоду на участь у дослідженні.

Результати дослідження
При проведенні дослідження встановлено, що в дітей, хворих на бронхіоліт із обтяженого алергологічного анамнезу середнє значення білка СС16 (38,9 ± 4,5 нг/мл) було достовірно вищим, ніж у дітей, хворих на бронхіоліт із обтяженим алергологічним анамнезом (22,9 ± 3,3 нг/мл), (OR=1,667; 0,854 - 3,250 95% CI; p < 0,05). У дітей контрольної групи середнє значення рівня білка СС16 знаходилося у межах референтних значень (14,2 ± 2,12 нг/мл).

Необхідно зазначити, що у більшості дітей основної групи (22 (62,8 ± 6,4 %) обстежених) виявлено відмінний рівень білка СС16 від його середнім значенням (53,9 ± 4,6 нг/мл). Тоді як, лише у 13 (37,2 ± 14,4 %) дітей основної групи, рівень даного білка знаходився у межах референтних показників із його середнім значенням (12,15 ± 2,1 нг/мл), (OR=1,272; 0,435 - 3,717 95% CI; p < 0,05). Щодо дітей групи порівняння, то у більшості обстежених дітей (13 (51,8 ± 14,4 %) обстежених) середнє значення білка СС16 було вищим, ніж у дітей, хворих на бронхіоліт без обтяженого алергологічного анамнезу середнє значення (8,53 ± 1,69 нг/мл). У решті дітей групи порівняння (12 (48,2 ± 15,2 %) рівень білка СС16 був в межах норми iз його середнім значенням (19,2 ± 2,62 нг/мл), (OR=2,708; 0,925 - 7,927 95% CI; p < 0,05).

Необхідно зазначити, що хоча у дітей групи порівняння середне значення білка СС16 знаходилось у межах референтних значень (22,9 ± 3,3 нг/мл), проте було достовірно вищим, ніж у дітей контрольної групи (14,2 ± 2,12 нг/мл), (OR=1,153; 0,342 - 3,884 95% CI; p < 0,05).

У подальшому нами проведений аналіз специфічності та чутливості показника білка СС16 у сироватці крові дітей, хворих на бронхіоліт із обтяженим алергологічним анамнезом (рис.1).

Рисунок 1. ROC-curve визначення СС16
Аналіз оцінки специфічності та чутливості показника білка СС16 в сироватці крові дітей малюкового віку хворих на бронхіоліт, показав що площа AUC під ROC-кривою склада 0,904 [0,769-0,974 95 % ДІ]. Точка відсічки знаходиться в межах референтних значень (14,2 ± 2,12 нг/мл).
на рівні 16,2 нг/мл (чутливість 83,3 %, specificity 95,5%). Тоді як у дітей, хворих на бронхіоліт без обтяженого алергологічного анамнезу чутливість значень білка CC16 значно знижувалася (чутливість 55,0 %) при збереженні специфічності (82,0 %), площа AUC під ROC-кривою склає 0,706 [0,344-0,706 95 % ДІ]. Точка відсічки знаходиться на рівні 11,6 нг/мл.

Обговорення результатів досліджень

На сьогодні доведено, що рівень білка CC16 в сироватці крові може свідчити про цілісність бронхіального епітелію та розвиток бронхіальної дисфункції [10]. Згідно наукових досліджень останніх років, підвищення рівня білка CC16 у сироватці крові у відповідь на дію токсичних речовин, які відділяються вірусами, бактеріями та шкідливими факторами навколишнього середовища свідчать про його потенційну корисність як надійного маркера для раннього виявлення гострих пошкоджень дихальних шляхів і в тому числі бронхіоліту [11]. Сучасні дані літератури свідчать про зниження рівня білка CC16 у сироватці крові у пацієнтів, які мають схильність до ранньої алергічної сенсібілізації та розвитку клінічних проявів алергічного захворювання [12].

Відомо, що білок CC16 володіє противірусними та імунорегуляторними властивостями і вважається ендогенним захисним білок при захворюваннях дихальних шляхів [13].

У нашому дослідженні ми мали на меті дослідити можливу роль білка CC16 як діагностичного маркера у дітей хворих на бронхіоліт у залежності від обтяжених алергологічним анамнезу. Враховуючи поширеність бронхіоліту у дітей раннього віку, схильність дітей із обтяженим алергологічним анамнезом до важкої інфекції RSV та ризиком розвитку бронхіальної дисфункції, використання біомаркерів для раннього перебачення та прогнозу має клінічне значення [14]. Мутація в гені білка CC16 була пов’язана з підвищеним ризиком алергічних захворювань в дитинстві, що супроводжується значним зниженням рівня білка CC16 у сироватці крові [15]. Загалом, нижні рівні білка CC16 у сироватці крові були пов’язані з алергічною сенсібілізацією та астмою [16].

У ході нашого дослідження було виявлено, що у дітей раннього віку хворих на бронхіоліт, підвищення рівня білка CC16 асоціюється із запальним процесом у бронхах. Необхідно зазначити, що підвищення рівня білка CC16 у дітей, хворих на бронхіоліт без обтяжених алергологічних, був достовірно вищим, ніж у дітей із обтяженим алергологічним анамнезом.

Під час проведення дослідження, встановлено підвищення рівня білка CC16 у сироватці крові дітей раннього віку, які знаходились на стационарному лікуванні. Отримані нами дані щодо підвищення рівня білка CC16 в сироватці крові дітей, хворих на бронхіоліт без обтяжених алергологічного анамнезу узгоджується із даними літератури [17].

У ході нашого дослідження була визначена роль білка CC16, як діагностичного маркера при бронхіоліті у дітей раннього віку. Так, відповідно, до проведених досліджень, CC16 має високу специфічність та чутливість у дітей раннього віку хворих на бронхіоліт. На нашу думку, залишається сургальним вітаміну Д та ендотеліальною дисфункцією, що підвищується в рівні білка CC16 та рівні вітаміну D, показниками ендотеліальної дисфункції, що й визначає перспективи подальших досліджень.

Висновки

У дітей раннього віку підвищений рівень білка CC16 може розглядатися як маркер ураження дихальних шляхів при бронхіоліті. У дітей хворих на бронхіоліт, які мали обтяжений алергологічний анамнез, у рівні білка CC16 в сироватці крові був достовірно вищим, ніж у дітей без обтяженного алергологічного анамнезу. Чутливість та специфічність визначення рівня білка CC16 в сироватці крові була достовірно вищою у дітей, хворих на бронхіоліт без обтяженної алергологічної аномії (АUC 0,904 (p<0,01)).

Перспективи подальших досліджень: проведение дослідження допомагає діагностичні можливості бронхіоліту, але залишається актуальним питанням визначення зв’язку рівня білка CC16 із рівнем вітаміну D та ендотеліальною дисфункцією.

Конфлікт інтересів: відсутній.

Джерела фінансування: самофінансування.

Література:
1. Kou M, Hwang V, Ramkellawan N. Bronchiolitis: From practice guideline to clinical practice. Emerg Med Clin North Am. 2018;36(2):275-86. doi: 10.1016/j.emc.2017.12.006
2. Walsh EE. Respiratory syncytial virus infection: an illness for all ages. Clin Chest Med. 2017;38(1):29-36. doi: 10.1016/j.ccm.2016.11.010
3. Guerra S, Vasquez MM, Spangenberg A, Halonen M, Martin RJ. Club cell secretory protein in serum and bronchoalveolar lavage of patients with asthma. J Allergy Clin Immunol. 2016;138(3):932-4.e1. doi: 10.1016/j.jaci.2016.03.047
4. Egren C, Labbé A, Rochette E, Mulliez A, Bernard A, Flore A. Urinary club cell protein 16 (CC16): Utility of its assay during acute bronchiolitis. Pediatr Pulmonol. 2020;55(2):490-5. doi: 10.1002/ppul.24584
5. Genies MC, Kim JM, Pyclik K, Rossi S, Spicyn N, Serwint JR. Impact of an educational intervention to improve pediatric adherence to bronchiolitis clinical practice guidelines: A pre-post intervention study. Clin Pediatr (Phila). 2018;57(3):253-8. doi: 10.1177/0009922817708804
6. Fukumo T, Soudararajan R, Leung J, Cox R, Mahendrasah S, Muthavarapu N, et al. The role of club cell phenoconversion and migration in idiopathic pulmonary fibrosis. Aging. 2016;8(11):3091-9. doi: 10.18632/aging.101115
7. Tata PR, Rajagopal J. Plasticity in the lung: making and breaking cell identity. Development. 2017;144(5):755-66. doi: 10.1242/dev.143784
8. Rokicki W, Rokicki M, Wojtacha J, Dzeliłjii A. The role and importance of club cells (Clara cells) in the pathogenesis of some respiratory diseases. Kardiochir Torakochirurgia Pol. 2016;13(1):26-30. doi: 10.5114/ktp.2016.58961
9. Liu M, Lu J, Zhang Q, Zhang Y, Guo Z. Clara cell 16 KDa protein mitigates house dust mite-induced airway inflammation and damage via regulating airway epithelial cell apoptosis in a manner dependent on HMGB1-mediated signaling inhibition. Mol Med [Internet]. 2021[cited 2022 Jun 11];27(1):11. Available from: https://molmed.biomedcentral.
CC16 ROLE IN BRONCHIOLITIS IN YOUNG CHILDREN

N.I. Tokarchuk, A.A. Overchuk
National Pirogov Memorial Medical University (Vinnytsya, Ukraine)

Summary

Introduction. CC16 protein is secreted by Club epithelial cells of the bronchioles, maintains homeostasis of the airway epithelium and has anti-inflammatory effects in the lungs. It is important to study the level of CC16 protein in the serum in order to understand the integrity of the bronchial epithelium and the development of bronchial dysfunction in young children with bronchiolitis.

Aim of the study. Analysis of blood serum CC16 concentration in younger bronchiolitis patients.

Material and methods. We clinically examined 70 young children. The main group consisted of 35 non-allergic bronchiolitis patients. The comparison group included 25 young bronchiolitis patients with a history of allergies. The control group comprised 10 conditionally healthy children. The average age of patients was 8.4 ± 1.6 months, 6.2 ± 1.4, and 6.4 ± 1.2 months in the main, comparison, and control group, accordingly. The complex of clinical-and-laboratory examination of children included 10 conditionally healthy children. The average age of patients was 8.4 ± 1.6 months, 6.2 ± 1.4, and 6.4 ± 1.2 months in the main, comparison, and control group, accordingly. The complex of clinical-and-laboratory examination of children included 10 conditionally healthy children.

Results of the study. It should be noted that the most main group patients (22 (62.8 ± 6.4%) of all examined) had elevated CC16 readings. Whereas in the comparison group we did not find an increase in CC16 protein in any case. In contrast, 13 (51.8 ± 14.4%) children with bronchiolitis with a history of allergy had a decrease in CC16 protein, which may be a sign of endothelial dysfunction (p < 0.01).

The study showed that young non-allergic bronchiolitis patients had the mean CC16 (38.9 ± 4.5 ng/ml) significantly higher than those with a history of allergies (22.9 ± 3.3 ng/ml), (OR=1,667; 0,854 - 3,250 95% CI; p < 0.05). The control group patients had the mean CC16 within the reference interval (14.2 ± 2.12 ng/ml).

Conclusions. In young children, elevated CC16 may be considered a marker of respiratory failure in bronchiolitis patients. Bronchiolitis patients with a history of allergies had statistically significantly lower serum CC16 levels than those in children without a history of allergies.

Key words: Bronchiolitis; Young Children; Protein CC16.

Contact Information:
Nadezhda Tokarchuk – MD, Professor of the Department of Pediatrics №1 of the National Pirogov Memorial Medical University (Vinnytsya, Ukraine)
e-mail: nadezhda.tokarchuk@ukr.net
ORCID: http://orcid.org/0000-0001-6688-6596
Researcher ID: http://www.researcherid.com/rid/U-4036-2017

© N.I. Tokarchuk A.A. Overchuk, 2022