MGB and the new Galactic O-Star Spectroscopic Survey spectral classification standard grid

J. Maíz Apellániz1, E. J. Alfaro2, J. I. Arias3, R. H. Barbá3, R. C. Gamen1, A. Herrero5,6, J. R. S. Leão7, A. Marco8, I. Negueruela8, S. Simón-Díaz5,6, A. Sota2, and N. R. Walborn9

1Centro de Astrobiología, INTA-CSIC, Spain
2Instituto de Astrofísica de Andalucía-CSIC, Spain
3Universidad de La Serena, Chile
4Instituto de Astrofísica de La Plata, Argentina
5Instituto de Astrofísica de Canarias, Spain
6Universidad de La Laguna, Spain
7Universidade Federal do Rio Grande, Brazil
8Universidad de Alicante, Spain
9Space Telescope Science Institute, USA

Abstract

In this poster we present three developments related to the Galactic O-Star Spectroscopic Survey (GOSSS). First, we are making public the first version of MGB, an IDL code that allows the user to compare observed spectra to a grid of spectroscopic standards to measure spectral types, luminosity classes, rotation indexes, and spectral qualifiers. Second, we present the associated grid of standard stars for the spectral types O2 to O9.7, with several improvements over the original GOSSS grid of Sota et al. (2011). Third, we present a list of egregious classification errors in SIMBAD: stars that are or have been listed there as being of O type but that in reality are late-type stars.

1 What is GOSSS?

GOSSS stands for Galactic O-Star Spectroscopic Survey (Maíz Apellániz et al. 2011). In this project we are observing all Galactic stars that anybody has ever classified as O (if we get time on a large enough telescope) with $R \sim 2500$ spectroscopy in the blue-violet region and a $S/N \sim 300$ (in \sim90\% of the cases). The telescopes used so far are: 1.5 m OSN, 3.5 m CAHA, WHT, and GTC (north); 2.5 m LCO and Gemini (south). We have 2000+ stars observed so far, with completeness to $B=8$ ($B=10$ by 2015) and objects as dim as $B=16$.
MGB and the new GOSSS spectral classification standard grid

Figure 1: Example of fitting an SB2 system with MGB. Eight parameters can be adjusted: the spectral subtypes, luminosity classes, and velocities of both the primary and secondary, the flux fraction of the secondary, and the rotation index n. Here HD 93161 A (black) is fitted with a combination (red) of 60% of HD 152590 and 40% of 10 Lac separated by 325 km/s.

(B = 19 planned). In some cases we have multiple epochs for extreme SB2s and variables. GOSSS uses a devoted pipeline and quality control systems.

2 GOSSS goals

The primary goal of GOSSS is spectral classification. More specifically, we aim to:

- Identify and classify all optically accessible Galactic O stars.
- Improve classification criteria and possibly define new special types.
- Identify objects wrongly classified as O.

GOSSS also has five secondary goals:

- Derive physical properties of O stars.
- Study SB2s in collaboration with high-resolution sister surveys (OWN, CAFÉ-BEANS, IACOB, and NoMaDS, see contributions by I. Negueruela and S. Simón-Díaz in these proceedings).
- Study the extinction law and study its relationship with the ISM (see contribution by J. Maíz Apellániz in these proceedings).
Table 1: The OB2500 v2.0 grid of standards.

O2	HD 64 568	...	V	IV	III	H	Lr	LA/H	Ls
O3	HD 93 128	Cyg OB2-7					
O4	HD 46 223	HD 168 076 AB	HD 93 050 AB	HD 190 429 A					
O4.5	HD 15 629	...	HD 14 947						
O5	HDE 319 699	HD 108 112	CPD -43 3965						
O5.5	HD 93 204	...	Cyg OB2-11						
O6	CFD -39 9600	HD 101 190	...	HDE 229 196	HD 169 582		
O6.5	HD 157 833	HDE 322 417	HD 198 864	HD 157 857	HD 163 758	
O7	HD 93 146 A	HDE 242 926	HD 93 160	Cyg OB2-4 A	HD 94 964	HD 69 484	
O7.5	HD 156 990	...	HD 167 633	HD 64 966			
O8	HD 101 223	HD 156 154	HD 152 590	HD 163 800	...				
O8.5	HDE 298 429	HD 154 594	HD 152 424	HD 152 424					
O9	HD 157 528	...	HD 154 811	HD 154 268					
O9.5	HDE 322 196	HD 202 124	HD 202 124	HD 202 124					
O9.7	HD 46 202	...	HD 163 808	HD 163 808					
O9.7	HD 207 538	HD 154 811	HD 154 811	HD 163 808					
Notes	Normal, italic, and bold typefaces are used for stars with $\delta > +20^\circ$, $\delta < -20^\circ$, and the equatorial intermediate region, respectively.								

- Analyze the spatial distribution of massive stars and dust.
- Obtain the massive-star IMF.

3 MGB

MGB is a code that attacks spectral classification (Maíz Apellániz et al. 2012) by doing classical visual (non-automatic) spectral classification by interactively comparing with a standard grid. The MGB user can adjust four parameters:

- Spectral subtype (horizontal classification).
- Luminosity class (vertical classification).
- n index (broadening).
Table 2: Stars classified as O in SIMBAD that are actually of spectral types A to K.

Name	Spectral type	SIMBAD	New	SIMBAD reference	Notes
BD -03 2178	O5	K		MacConnell & Bidelman (1976)	Recently fixed in SIMBAD, confusion with BD -03 2179, a sdO
BD +01 3974	O5	F		Kelly & Kilkenny (1986)	
BD -03 3929	O8f	F		Hiltner & Johnson (1956)	Confusion with BD +37 3927
BD +40 4213	O9.5 I	F		Massey & Thompson (1991)	
BD +45 4132 A	O	F		Not given*	
BD +61 100 AB	O/B2		G	Radoslavova (1989)	
CPD -61 4623	O	K		Not given*	
HDE 226 144	O9 V		A	Mikolajewska & Mikolajewski (1980)	
Tyc 0468-02112-1	O...	F		Not given*	

* These classifications were removed from SIMBAD after this poster was presented.

- Alternative standards at each grid point (e.g. ONC or f variants).

MGB also includes fitting of SB2 systems (Figure 1). The default grid covers the O2-O9.7 spectral subtypes using GOSSS data (see below). Other grids (O-type or other) at various resolutions using the original or degraded spectra from different ongoing high-resolution surveys (e.g. IACOB, OWN, IACOBsweG) are planned. MGB v1.0 is available now from http://jmaiz.iaa.es.

4 The new GOSSS standard grid

We present the OB2500 v2.0 GOSSS standard grid, which is integrated with MGB. It covers the spectral subtypes from O2 to O9.7 and the luminosity classes from V to Ia (Table 1). The grid has two types of gaps: non-existing types (blank) and standards not yet found (...). It is similar to OB2500 v1.0, the grid in Sota et al. (2011), but with some small changes introduced by Sota et al. (2014) e.g. the addition of O9.2 and new standards. The grid is available from http://jmaiz.iaa.es with MGB v1.0. A future extension to A0 (including all B stars) and luminosity class Ia+ is planned.

5 Spectral classification errors

During the course of GOSSS we have discovered a large number of classification errors in the literature. More specifically:

- 24.9% of the alleged O stars observed by mid 2013 were not of that type (false positives, Maíz Apellániz et al. 2013).
Figure 2: Spectrograms for the stars in Table 2.
The current number of false positives is closer to 30%.

False negatives are much lower (6.4%, Maíz Apellániz et al. 2013).

SIMBAD has many errors in O-type spectral classifications, which are related to different issues:

- Some spectral types are actually of photometric, not spectroscopic origin.
- Other classifications are of unknown origin (no reference is provided).
- Misidentifications (in the source or in SIMBAD) are present.
- Sometimes the lower quality classification is shown at the top, leaving the higher quality one “hidden” in the text below.

The most egregious errors we have found are A-K stars that appear or have appeared in SIMBAD as O stars (Table 2 and Figure 2).

References

- Hiltner, W. A. & Johnson, H. L. 1956, ApJ 124, 367
- Kelly, B. D. & Kilkenny, D. 1986, SAAOC 10, 27
- MacConnell, D. J. & Bidelman, W. P. 1976, AJ 81, 225
- Maíz Apellániz, J. et al. 2011, Highlights of Spanish Astrophysics VI, 467
- Maíz Apellániz, J. et al. 2012, ASP conference series 465, 484
- Maíz Apellániz, J. et al. 2013, Massive Stars: From α to Ω, 198
- Massey, P. & Thompson, A. B. 1991, AJ 101, 1408
- Mikolajewska, J. & Mikolajewski, M. 1980, AcA 30, 347
- Radoslavova, T. 1989, AbaOB 66, 33
- Sota, A. et al. 2011, ApJS 193, 24.
- Sota, A. et al. 2014, ApJS 211, 10.