On the 4-girth-thickness of the line graph of the complete graph

Christian Rubio-Montiel *

August 11, 2021

Abstract

The g-girth-thickness $\theta(g, G)$ of a graph G is the minimum number of planar subgraphs of girth at least g whose union is G. In this note, we give the 4-girth-thickness $\theta(4, L(K_n))$ of the line graph of the complete graph $L(K_n)$ when n is even. We also give the minimum number of subgraphs of $L(K_n)$, which are of girth at least 4 and embeddable on the projective plane, whose union is $L(K_n)$.

Keywords: girth-thickness, S-thickness, planar decomposition, line graph, token graph.

2010 Mathematics Subject Classification: 05C10.

1 Introduction

The thickness $\theta(G)$ of a graph G is the minimum number of elements in any partition of $E(G)$ such that the induced subgraph of each part is a planar graph. Equivalently, $\theta(G)$ is defined as the minimum number of planar subgraphs whose union is G.

The thickness has drawn the attention of several researchers since its introduction in the 60s [20] because it is an NP-hard problem [16] and it has many applications, for instance, in the design of circuits [1], in the Ringel’s earth-moon problem [14] and to bound the achromatic numbers of planar graphs [3], see the survey [17].

*División de Matemáticas e Ingeniería, FES Acatlán, Universidad Nacional Autónoma de México, 53150, Naucalpan, Mexico, christian.rubio@apol.aticlan.unam.mx.
Only some exact results are known, for example, when G is a complete graph \[2, 5, 6\], a hypercube \[15\], or a complete multipartite graph \[7, 13, 21, 22\]. And some generalizations of the thickness also have been studied such that the outerthickness θ_o, defined similarly but with outerplanar instead of planar \[12\], and the S-thickness θ_S, considering the thickness on a surfaces S instead of the plane \[4\].

The g-girth-thickness $\theta(g, G)$ of a graph G, introduced in \[18\], is the minimum number of elements in any partition of $E(G)$ such that the induced subgraphs of each part is a planar graph of girth at least g. The g-girth-thickness is the usual thickness when $g = 3$ and it is the *arboricity number* when $g = \infty$. Recall that the *girth* of a graph is the size of its shortest cycle or ∞ if it is acyclic.

Exact results also are known when $g > 3$ and finite, for instance, the 4-girth-thickness of the complete graph \[9, 11, 18\], the 4-girth-thickness of the complete multipartite graph \[11, 19\] and the 6-girth-thickness of the complete graph \[9\]. Owing to the fact that the hypercube and the complete bipartite are triangle-free graphs, their thickness equal their 4-girth-thickness which were calculate in \[15\] and partially calculate in \[7, 13\], respectively.

We define the S-g-girth-thickness $\theta_S(g, G)$ of a graph G as the minimum number of subgraphs embeddable on a surface S of girth at least g whose union is G. Of course, if G has girth g then $\theta_S(g, G)$ is $\theta_S(G)$ as in the case of $K_{n,n}$ for $g = 4$, see \[4\].

In this note, we obtain the 4-girth-thickness $\theta(4, L(K_n))$ of the line graph $L(K_n)$ of the complete graph K_n when n is even. To achieve this, in Section 2 we recall some properties about token graphs $F_k(G)$. In Section 3, we determine $\theta(4, F_2(G))$ when G contains a factorization into Hamiltonian paths, in particular

$$\theta(4, L(K_n)) = \frac{n}{2} \text{ and } \theta(4, F_2(K_{n-1,n})) = \frac{n}{2}$$

for n even. Finally, in Section 4 we determine $\theta_S(4, F_2(G))$ when S is the projective plane and G contains a Hamiltonian-factorization, in consequence

$$\theta_S(4, L(K_n)) = \left\lfloor \frac{n}{2} \right\rfloor \text{ and } \theta(4, F_2(K_{2n,2n})) = n$$

for all n.

2 Token graphs

Consider the following graph $F_k(G)$ called the *k-token graph* introduced in \[10\], for given an integer $k \geq 1$ and a graph G of order n. The vertex set $V(F_k(G))$ is the family of k subsets of $V(G)$, therefore $|V(F_k(G))| = \binom{n}{k}$. Two such k-subsets X and Y are adjacent if its symmetric difference $X \Delta Y = \{x, y\}$ such that $x \in X$, $y \in Y$ and $xy \in E(G)$. The size of
Figure 1: The 2-token graph of the path of order 6.

$F_k(G)$ is $(\frac{n-2}{k-1})|E(G)|$, see [10]. An example of a 2-token graph is showed in Figure 1, which is the $F_2(P_6)$.

The 2-token graph $F_2(K_n)$ of the complete graph K_n is the line graph $L(K_n)$ of the complete graph K_n because each pair of incident edges xz and zy has symmetric difference the set $\{x,y\}$ which is the edge xy of the complete graph. In general, the Johnson graph $J(n,k) \cong F_k(K_n)$ owing to the fact that it is the graph whose vertices are the k-subsets of an n-set, where two such subsets X and Y are adjacent whenever $|X \cap Y| = k - 1$.

In [8], the authors remark that the 2-token graph $F_2(P_n)$ of the path graph P_n of n vertices is planar of girth at least 4 for every n.

Now, we prove that an edge-partition of a graph G induces an edge partition of $F_k(G)$.

Lemma 2.1. Let G be a non empty graph and $P = \{E_1, \ldots, E_l\}$ an edge-partition of G. Then the set $\{E'_1, \ldots, E'_l\}$ is an edge-partition of $F_k(G)$ where $E'_i = E(F_k(G[E_i]))$ for all $i \in \{1, \ldots, l\}$.

Proof. Let XY be an edge of $F_k(G)$, that is, X and Y are k-subsets of $V(G)$ such that for some $x \in X$ and some $y \in Y$, the symmetric difference of X and Y is $\{x,y\}$, and xy is an edge of G. Let j the unique index in the set $\{1, \ldots, l\}$ such that $xy \in E_j$. Thus xy is an edge of $G[E_j]$ and in consequence XY is an edge of $F_k(G[E_j]) = E'_j$. Then $XY \in E'_j$. Moreover, if $XY \in E_i$ for some $i \in \{1, \ldots, l\}$, then $xy \in E(G[E_i]) = E_i$. But $P = \{E_1, \ldots, E_l\}$ is an edge-partition of G, and $xy \in E_j$, so $i = j$. Therefore each edge of $F_k(G)$ is in a unique element of $\{E'_1, \ldots, E'_l\}$. In order to guarantee that every E'_i is a non empty set, we need that G has order at least $k + 1$. In that case, if $xy \in E_i$ and $U = \{g_1, \ldots, g_{k-1}\} \subseteq V(G) \setminus \{x,y\}$, then $X' = U \cup \{x\}$ and $Y' = U \cup \{y\}$ are two k-subsets of $G[E_i]$ such that its symmetric difference is $\{x,y\}$, and then $E'_i \neq \emptyset$, because $X'Y' \in E'_i$. \square
\section{Determining $\theta(4, L(K_n))$ for n even}

A planar graph of n vertices and girth at least 4 has at most $2(n - 2)$ edges for $n \geq 4$ and at most $n - 1$, otherwise. In consequence, the 4-girth-thickness $\theta(4, G)$ of a graph G is at least $\lceil \frac{|E(G)|}{2(n-2)} \rceil$ for $n \geq 4$ and at least $\lceil \frac{|E(G)|}{n-1} \rceil$, otherwise.

Therefore we have the following theorem.

\textbf{Theorem 3.1.} If G contains a factorization into k Hamiltonian paths, then $\theta(4, F_2(G)) = k$.

\textbf{Proof.} For $G = K_2$ or $G = P_3$, it is easy to check that $\theta(4, F_2(G)) = 1$. Assume that G is a graph of order $n \geq 4$ containing a factorization into Hamiltonian paths. Then G has size $e = (n - 1)k \leq \binom{n}{2}$, then $k \leq n/2$ and

$$k < \frac{n}{2} + 1 + \frac{1}{n-3}.$$

Since, the 2-token graph $F_2(G)$ has order $\binom{n}{2}$ and size $(n - 2)(n - 1)k$, it follows that

$$\theta(4, F_2(G)) \geq \lceil \frac{(n - 2)(n - 1)k}{2\binom{n}{2}} \rceil = \left\lfloor k - \frac{2nk - 6k}{n^2 - n - 4} \right\rfloor.$$

Because $k < \frac{n}{2} + 1 + \frac{1}{n-3} = \frac{n^2 - n - 4}{2n - 6}$ then

$$0 < \frac{k(2n - 6)}{n^2 - n - 4} < 1$$

and we have

$$\theta(4, F_2(G)) \geq k.$$

By Lemma 2.1, the partition of k Hamiltonian paths $\{G_1, \ldots, G_k\}$ of G induces a partition of $F_2(G)$ into k planar subgraphs of girth at least 4, $\{F_2(G_1), \ldots, F_2(G_k)\}$ and the result follows.

We have the following corollaries.

\textbf{Corollary 3.2.} If n is even then $\theta(4, F_2(K_{n-1,n})) = n/2$.

\textbf{Corollary 3.3.} If n is even then $\theta(4, L(K_n)) = n/2$.

\section{$\theta_S(4, L(K_n))$ when S is the projective plane}

Although the problem of finding the minimum number of planar graphs of girth at least 4 into which the line graph of the complete graph can be decomposed remains partially
solved, the corresponding problem can be solved for the surface called the projective plane. A similar proof provide the solution.

On one hand, a maximal graph of order \(n \) and girth at least 4 embeddable in the projective plane \(S \) has size at most \(2n - 2 \). On the other hand, since the 2-token graph of a cycle is a graph embeddable in \(S \) with girth 4, see Figure 2 for an example, we can give the following theorem.

Figure 2: The 2-token graph of the cycle of order 6.

Theorem 4.1. If \(G \) is a graph of order \(n \geq 4 \) and contains a factorization into \(k \) Hamiltonian cycles, then \(\theta_S(4, F_2(G)) = k \) when \(S \) is the projective plane.

Proof. Let \(G \) be a graph of order \(n \geq 4 \) containing a Hamiltonian-factorization, that is, a factorization into Hamiltonian cycles. Then \(G \) has size \(e = nk \leq \binom{n}{2} \), then \(k \leq (n - 1)/2 \) and

\[
k < n + 1 + 2/(n - 2).
\]

Since, the 2-token graph \(F_2(G) \) has order \(\binom{n}{2} \) and size \((n - 2)nk \), it follows that

\[
\theta_S(4, F_2(G)) \geq \left\lceil \frac{(n - 2)nk}{2\binom{n}{2} - 2} \right\rceil = \left\lceil k - \frac{nk - 2k}{n^2 - n - 2} \right\rceil.
\]

Because \(k < n + 1 + \frac{2}{n-2} = \frac{n^2-n-2}{n-2} \) then

\[
0 < \frac{k(n-2)}{n^2-n-2} < 1
\]

and we have

\[
\theta_S(4, F_2(G)) \geq k.
\]

By Lemma 2.1, the partition of \(k \) Hamiltonian cycles \(\{G_1, \ldots, G_k\} \) of \(G \) induces a partition of \(F_2(G) \) into \(k \) planar subgraphs of girth at least 4 embeddable in \(S \), \(\{F_2(G_1), \ldots, F(G_k)\} \) and the result follows. \(\square \)
We have the following corollaries.

Corollary 4.2. If n is even then $\theta_S(4, F_2(K_n,n)) = n/2$.

Corollary 4.3. For all n, we have that $\theta_S(4, L(K_n)) = \lfloor \frac{n}{2} \rfloor$.

Acknowledgments

Part of the work was done during the Reunión de Optimización, Matemáticas y Algoritmos ROMA 2017, held at Casa Rafael Galván, Universidad Autónoma de Metropolitana, Mexico City, Mexico on July 24–28, 2017.

The author wishes to thank F. Esteban Contreras-Mendoza for his useful discussions.

Research partially supported by PAPIIT of Mexico grant IN107218.

References

[1] A. Aggarwal, M. Klawe and P. Shor, *Multilayer grid embeddings for VLSI*, Algorithmica 6 (1991), no. 1, 129–151.

[2] V. B. Alekseev and V. S. Gončakov, *The thickness of an arbitrary complete graph*, Mat. Sb. (N.S.) 101(143) (1976), no. 2, 212–230.

[3] G. Araujo-Pardo, F. E. Contreras-Mendoza, S. J. Murillo-García, A. B. Ramos-Tort and C. Rubio-Montiel, *Complete colorings of planar graphs*, preprint arXiv:1706.03109 (2017).

[4] L. W. Beineke, *Minimal decompositions of complete graphs into subgraphs with embeddability properties*, Canad. J. Math. 21 (1969), 992–1000.

[5] L. W. Beineke and F. Harary, *On the thickness of the complete graph*, Bull. Amer. Math. Soc. 70 (1964), 618–620.

[6] L. W. Beineke and F. Harary, *The thickness of the complete graph*, Canad. J. Math. 17 (1965), 850–859.

[7] L. W. Beineke, F. Harary and J. W. Moon, *On the thickness of the complete bipartite graph*, Proc. Cambridge Philos. Soc. 60 (1964), 1–5.

[8] W. Carballosa, R. Fabila-Monroy, J. Leaños and L. M. Rivera, *Regularity and planarity of token graphs*, Discuss. Math. Graph Theory 37 (2017), no. 3, 573–586.
[9] H. Castañeda-López, P. C. Palomino, A. B. Ramos-Tort, C. Rubio-Montiel and C. Silva-Ruiz, *The 6-girth-thickness of the complete graph*, in review.

[10] R. Fabila-Monroy, D. Flores-Peñaloza, C. Huemer, F. Hurtado, J. Urrutia and D. Wood, *Token graphs*, Graphs Combin. 28 (2012), no. 3, 365–380.

[11] X. Guo and Y. Yang, *A note on the 4-girth-thickness of $K_{n,n,n}$*, in review, ArXiv: 1709.06854.

[12] R. K. Guy and R. J. Nowakowski, *The outerthickness & outercoarseness of graphs. I. The complete graph & the n-cube*, Topics in combinatorics and graph theory (Oberwolfach, 1990), Physica, Heidelberg, 1990, pp. 297–310.

[13] S. Isao and H. Ozaki, *On the planar decomposition of a complete bipartite graph*, Siam J. Appl. Math. 16 (1968), no. 2, 408–416.

[14] B. Jackson and G. Ringel, *Variations on Ringel’s earth-moon problem*, Discrete Math. 211 (2000), no. 1-3, 233–242.

[15] M. Kleinert, *Die Dicke des n-dimensionalen Würfel-Graphen*, J. Combin. Theory 3 (1967), 10–15.

[16] A. Mansfield, *Determining the thickness of graphs is NP-hard*, Math. Proc. Cambridge Philos. Soc. 93 (1983), no. 1, 9–23.

[17] P. Mutzel, Odenthal T. and M. Scharbrodt, *The thickness of graphs: a survey*, Graphs Combin. 14 (1998), no. 1, 59–73.

[18] C. Rubio-Montiel, *The 4-girth-thickness of the complete graph*, Ars Math. Contem. 14 (2018), no. 2, 319–327.

[19] C. Rubio-Montiel, *The 4-girth-thickness of the complete multipartite graph*, in review, ArXiv: 1709.03932.

[20] W. T. Tutte, *The thickness of a graph*, Indag. Math. 25 (1963), 567–577.

[21] Y. Yang, *A note on the thickness of $K_{l,m,n}$*, Ars Combin. 117 (2014), 349–351.

[22] Y. Yang, *Remarks on the thickness of $K_{n,n,n}$*, Ars Math. Contemp. 12 (2017), no. 1, 135–144.