HYPERBOLIC DEEP REINFORCEMENT LEARNING

Edoardo Cetin∗
King’s College London
edoardo.cetin@kcl.ac.uk

Benjamin Chamberlain, Michael Bronstein & Jonathan J Hunt
Twitter
{bchamberlain,mbronstein,jjh}@twitter.com

ABSTRACT

We propose a new class of deep reinforcement learning (RL) algorithms that model latent representations in hyperbolic space. Sequential decision-making requires reasoning about the possible future consequences of current behavior. Consequently, capturing the relationship between key evolving features for a given task is conducive to recovering effective policies. To this end, hyperbolic geometry provides deep RL models with a natural basis to precisely encode this inherently hierarchical information. However, applying existing methodologies from the hyperbolic deep learning literature leads to fatal optimization instabilities due to the non-stationarity and variance characterizing RL gradient estimators. Hence, we design a new general method that counteracts such optimization challenges and enables stable end-to-end learning with deep hyperbolic representations. We empirically validate our framework by applying it to popular on-policy and off-policy RL algorithms on the Procgen and Atari 100K benchmarks, attaining near universal performance and generalization benefits. Given its natural fit, we hope future RL research will consider hyperbolic representations as a standard tool.

Project website: sites.google.com/view/hyperbolic-rl

1 INTRODUCTION

Reinforcement Learning (RL) achieved notable milestones in several game-playing and robotics applications (Mnih et al., 2013; Vinyals et al., 2019; Kalashnikov et al., 2018; OpenAI et al., 2019; Lee et al., 2021). However, all these recent advances relied on large amounts of data and domain-specific practices, restricting their applicability in many important real-world contexts (Dulac-Arnold et al., 2019). We argue that these challenges are symptomatic of current deep RL models lacking a proper prior to efficiently learn generalizable features for control (Kirk et al., 2021). We propose to tackle this issue by introducing hyperbolic geometry to RL, as a new inductive bias for representation learning.

The evolution of the state in a Markov decision process can be conceptualized as a tree, with the policy and dynamics determining the possible branches. Analogously, the same hierarchical evolution often applies to the most significant features required for decision-making (e.g., presence of bricks, location of paddle/ball in Fig. 1). These relationships tend to hold beyond individual trajectories, making hierarchy a natural basis to encode information for RL (Flet-Berliac, 2019). Consequently, we hypothesize that deep RL models should prioritize encoding precisely hierarchically-structured features to facilitate learning effective and generalizable policies. In contrast, we note that non-evolving features, such as the aesthetic properties of elements in the environment, are often linked

∗Corresponding author, work done during Twitter internship.
with spurious correlations, hindering generalization to new states (Song et al., 2019). Similarly, human cognition also appears to learn representations of actions and elements of the environment by focusing on their underlying hierarchical relationship (Barker & Wright, 1955; Zhou et al., 2018).

Hyperbolic geometry (Beltrami, 1868; Cannon et al., 1997) provides a natural choice to efficiently encode hierarchically-structured features. A defining property of hyperbolic space is exponential volume growth, which enables the embedding of tree-like hierarchical data with low distortion using only a few dimensions (Sarkar, 2011). In contrast, the volume of Euclidean spaces only grows polynomially, requiring high dimensionality to precisely embed tree structures (Matoušek, 1990), potentially leading to higher complexity, more parameters, and overfitting. We analyze the properties of learned RL representations using a measure based on the δ-hyperbolicity (Gromov, 1987), quantifying how close an arbitrary metric space is to a hyperbolic one. In line with our intuition, we show that performance improvements of RL algorithms correlate with the increasing hyperbolicity of the discrete space spanned by their latent representations. This result validates the importance of appropriately encoding hierarchical information, suggesting that the inductive bias provided by employing hyperbolic representations would facilitate recovering effective solutions.

Hyperbolic geometry has recently been exploited in other areas of machine learning showing substantial performance and efficiency benefits for learning representations of hierarchical and graph data (Nickel & Kiela, 2017; Chamberlain et al., 2017). Recent contributions further extended tools from modern deep learning to work in hyperbolic space (Ganea et al., 2018; Shimizu et al., 2020), validating their effectiveness in both supervised and unsupervised learning tasks (Khrulkov et al., 2019; Guo et al., 2022; Nagano et al., 2019; Mathieu et al., 2019; Bose et al., 2020). However, most of these approaches showed clear improvements on smaller-scale problems that failed to hold when scaling to higher-dimensional datasets and representation sizes. Many of these shortcomings are tied to the practical challenges of optimizing hyperbolic and Euclidean parameters end-to-end (Guo et al., 2022). In RL, We show the non-stationarity and high-variance characterizing common gradient estimators exacerbates these issues, making a naive incorporation of hyperbolic layers with existing techniques yield underwhelming results.

In this work, we overcome the aforementioned challenges and effectively train deep RL algorithms with latent hyperbolic representations end-to-end. In particular, we design spectrally-regularized hyperbolic mappings (S-RYM), a simple recipe combining scaling and spectral normalization (Miyato et al., 2018) that stabilizes the learned hyperbolic representations and enables their seamless integration with deep RL. We use S-RYM to build hyperbolic versions of both on-policy (Schulman et al., 2017) and off-policy algorithms (Hessel et al., 2018), and evaluate on both Procgen (Cobbe et al., 2020) and Atari 100K benchmarks (Bellemare et al., 2013). We show that our framework attains near universal performance and generalization improvements over established Euclidean baselines, making even general algorithms competitive with highly-tuned SotA baselines. We hope our work will set a new standard and be the first of many incorporating hyperbolic representations with RL.

To this end, we provide our implementation at sites.google.com/view/hyperbolic-rl to facilitate future extensions.

2 PRELIMINARIES

In this section, we introduce the main definitions required for the remainder of the paper. We refer to App. A and (Cannon et al., 1997) for further details about RL and hyperbolic space, respectively.

2.1 REINFORCEMENT LEARNING

The RL problem setting is traditionally described as a Markov Decision Process (MDP), defined by the tuple $(S, A, P, p_{0}, r, \gamma)$. At each timestep t, an agent interacts with the environment, observing some state from the state space $s \in S$, executing some action from its action space $a \in A$, and receiving some reward according to its reward function $r : S \times A \rightarrow \mathbb{R}$. The transition dynamics $P : S \times A \times S \rightarrow \mathbb{R}$ and initial state distribution $p_{0} : S \rightarrow \mathbb{R}$ determine the evolution of the environment’s state while the discount factor $\gamma \in [0, 1)$ quantifies the agent’s preference for earlier rewards. Agent behavior in RL can be represented by a parameterized distribution function π_{θ}, whose sequential interaction with the environment yields some trajectory $\tau = (s_0, a_0, s_1, a_1, ..., s_{T}, a_{T})$. The agent’s
objective is to learn a policy maximizing its expected discounted sum of rewards over trajectories:

$$\arg\max_\theta \mathbb{E}_{\tau \sim \pi_\theta} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right].$$

We differentiate two main classes of RL algorithms with very different optimization procedures based on their different usage of the collected data. On-policy algorithms collect a new set of trajectories with the latest policy for each training iteration, discarding old data. In contrast, off-policy algorithms maintain a large replay buffer of past experiences and use it for learning useful quantities about the environment, such as world models and value functions. Two notable instances from each class are Proximal Policy Optimization (PPO) (Schulman et al., 2017) and Rainbow DQN (Hessel et al., 2018), upon which many recent advances have been built upon.

2.2 Machine Learning in Hyperbolic Spaces

A hyperbolic space \mathbb{H}^n is an n-dimensional Riemannian manifold with constant negative sectional curvature $-c$. Beltrami (1868) showed the equi-dimensionality of hyperbolic and Euclidean geometry using a model named after its re-discoverer, the Poincaré ball model. This model equips an n-dimensional open ball $B^n = \{ x \in \mathbb{R}^n : \|x\| < 1 \}$ of radius $1/\sqrt{c}$ with a conformal metric of the form $G_x = \lambda^2_x I$, where $\lambda^2_x = \frac{1-c\|x\|^2}{1-c}$ is the conformal factor (we will omit the dependence on the curvature $-c$ in our definitions for notion brevity). The geodesic (shortest path) between two points in this metric is a circular arc perpendicular to the boundary with the length given by:

$$d(x, y) = \frac{1}{\sqrt{c}} \cosh^{-1} \left(1 + 2c \|x - y\|^2 \left(1 - c\|y\|^2 \right) \right).$$

(2)

From these characteristics, hyperbolic spaces can be viewed as a continuous analog of trees. In particular, the volume of a ball on \mathbb{H}^2 grows exponentially w.r.t. its radius. This property mirrors the exponential node growth in trees with constant branching factors. Visually, this makes geodesics between distinct points pass through some midpoint with lower magnitude, analogously to how tree geodesics between nodes (defined as the shortest path in their graph) must cross their closest shared parent (Fig. 2).

Key operations for learning. On a Riemannian manifold, the exponential map $\exp_x(v)$ outputs a unit step along a geodesic starting from point x in the direction of an input velocity v. It thus allows locally treating \mathbb{H}^n as Euclidean space. We use the exponential map from the origin of the Poincaré ball to map Euclidean input vectors v into \mathbb{H}^n,

$$\exp_0(v) = \tanh \left(\frac{\sqrt{c}\|v\|}{\sqrt{c}} \right) \frac{v}{\sqrt{c}\|v\|}.$$

(3)

Following Ganea et al. (2018), we consider the framework of gyrovector spaces (Ungar, 2008) to extend common vector operations to non-Euclidean geometries, and in particular \mathbb{H}^n. The most basic such generalized operation is the M"obius addition \oplus of two vectors,

$$x \oplus y = \frac{(1 + 2c\langle x, y \rangle + c\|y\|^2)x + (1 + c\|x\|^2)y}{1 + 2c\langle x, y \rangle + c\|x\|^2\|y\|^2}.$$

(4)

Next, consider a Euclidean affine transformation $f(x) = (x, w) + b$ used in typical neural network layers. We can rewrite this transformation as $f(x) = (x - p, w)$ and interpret $w, p \in \mathbb{R}^d$ as the normal and shift parameters of a hyperplane $H = \{ y \in \mathbb{R}^d : \langle y - p, w \rangle = 0 \}$ (Lebanon & Lafferty, 2004). This allows us to further rewrite $f(x)$ in terms of the signed distance to the hyperplane H, effectively acting as a weighted ‘decision boundary’:

$$f(x) = \text{sign}(\langle x - p, w \rangle) \|w\| d(x, H).$$

(5)

This formulation allows to extend affine transformations to the Poincaré ball by considering the signed distance from a gyroplane in \mathbb{H}^d (generalized hyperplane) $H = \{ y \in \mathbb{H}^d : \langle y - p, w \rangle = 0 \}$:

$$f(x) = \text{sign}(\langle x \oplus -pw \rangle) \frac{2\|w\|}{\sqrt{1-c\|p\|^2}} d(x, H).$$

(6)
Figure 3: A geodesic space is δ-hyperbolic if every triangle is δ-slim, i.e., each of its sides is entirely contained within a δ-sized region from the other two. We illustrate the necessary δ to satisfy this property for $\triangle ABC$ in a tree triangle (Left), a hyperbolic triangle (Center) and an Euclidean triangle (Right); sharing vertex coordinates. In tree triangles, $\delta_{\text{tree}} = 0$ since AC always intersects both AB and BC.

where the distance to the hyperbolic hyperplane H be computed in closed form:

$$d(x, H) = \frac{1}{\sqrt{c}} \sinh^{-1} \left(\frac{2 \sqrt{c} |x \oplus -p, w|}{(1 - c \|x \oplus -p\|^2) \|w\|} \right).$$

(7)

In line with recent use of hyperbolic geometry in supervised (Khrulkov et al., 2020; Guo et al., 2022) and unsupervised (Nagano et al., 2019; Mathieu et al., 2019) deep learning, we employ these operations to parameterize hybrid neural networks: we first process the input data x with standard layers to produce some Euclidean velocity vectors $x_E = f_E(x)$. Then, we obtain our hyperbolic representations by applying the exponential map $x_H = \exp_0(x_E)$. Finally, we employ affine transformations $\{f_i\}$ of the form to output the set of policy and value scalars with $f_H(x_H) = \{f_i(x_H)\}$.

3 HYPERBOLIC REPRESENTATIONS FOR REINFORCEMENT LEARNING

In this section, we base our empirical RL analysis on Procgen (Cobbe et al., 2020). This benchmark consists of 16 visual environments, with procedurally-generated random levels. Following common practice, we train agents using exclusively the first 200 levels of each environment and evaluate on the full distribution of levels to assess agent performance and generalization.

3.1 THE INHERENT HYPERBOLICITY OF DEEP RL

Key quantities for each state, such as the value and the policy, are naturally related to its possible successors. In contrast, other fixed, non-hierarchical information about the environment such as its general appearance, can often be safely ignored. This divide becomes particularly relevant when considering the problem of RL generalization. For instance, Raileanu & Fergus (2021) found that agents can overfit to spurious correlations between the value and non-hierarchical features (e.g., background color) in the observed states. Hence, we hypothesize that effective representations should encode features directly related to the hierarchical state relationships of MDPs.

δ-hyperbolicity. We analyze the representation spaces learned by RL agents, testing whether they preserve and reflect this hierarchical structure. We use the δ-hyperbolicity of a metric space (X, d) (Gromov 1987; Bonk & Schramm 2011), which we formally describe in App. A.2. For our use-case, X is δ-hyperbolic if every possible geodesic triangle $\triangle xyz \in X$ is δ-slim. This means that for every point on any side of $\triangle xyz$ there exists some point on one of the other sides whose distance is at most δ. In trees, every point belongs to at least two of its sides yielding $\delta = 0$ (Figure 3). Thus, we can interpret δ-hyperbolicity as measuring the deviation of a given metric from an exact tree metric.

The representations learned by an RL agent from encoding the collected states span some finite subset of Euclidean space $x_E \in X_E \subset \mathbb{R}^n$, yielding a discrete metric space X_E. To test our hypothesis, we compute the δ-hyperbolicity of X_E and analyze how it relates to agent performance. Similarly to (Khrulkov et al., 2020), we compute δ using the efficient algorithm proposed by Fournier et al. (2015). To account for the scale of the representations, we normalize δ by $\text{diam}(X_E)$, yielding a relative hyperbolicity measure $\delta_{\text{rel}} = 2\delta/\text{diam}(X_E)$ (Borassi et al., 2015), which can span values between 0 (hyperbolic hierarchical tree-like structure) and 1 (perfectly non-hyperbolic spaces).
Figure 4: Performance and relative δ-hyperbolicity of the final latent representations of a PPO agent.

Results. We train an agent with PPO (Schulman et al., 2017) on four Procgen environments, encoding states from the latest rollouts using the representations before the final linear policy and value heads, $x_E = f_E(s)$. Hence, we estimate δ_{rel} from the space spanned by these latent encodings as training progresses. As shown in Figure 4, δ_{rel} quickly drops to low values ($0.22 - 0.28$) in the first training iterations, reflecting the largest relative improvements in agent performance. Subsequently, in the fruitbot and starpilot environments, δ_{rel} further decreases throughout training as the agent recovers high performance with a low generalization gap between the training and test distribution of levels. Instead, in bigfish and dodgeball, δ_{rel} begins to increase again after the initial drop, suggesting that the latent representation space starts losing its hierarchical structure. Correspondingly, the agent starts overfitting as test levels performance stagnates while the generalization gap with the training levels performance keeps increasing. These results validate our hypothesis, empirically showing the importance of encoding hierarchical features for recovering effective solutions. Furthermore, they suggest that PPO’s poor generalization in some environments is due to the observed tendency of the Euclidean latent space to encode spurious features that hinder its hyperbolicity.

Motivated by our findings, we propose employing hyperbolic geometry to model the latent representations of deep RL models. Representing tree-metrics in Euclidean spaces incurs non-trivial worse-case distortions, growing with the number of nodes at a rate dependent on the dimensionality (Matoušek, 1990). This property suggests that it is not possible to encode complex hierarchies in Euclidean space both efficiently and accurately, explaining why some solutions learned by PPO could not maintain their hyperbolicity throughout training. In contrast, mapping the latent representations to hyperbolic spaces of any dimensionality enables encoding features exhibiting a tree-structured relation over the data with arbitrarily low distortion (Sarkar, 2011). Hence, hyperbolic latent representations introduce a different inductive bias for modeling the policy and value function, stemming from this inherent efficiency of specifically encoding hierarchical information (Tifrea et al., 2018).

3.2 Optimization Challenges

Naive integration. We test a simple extension to PPO, mapping the latent representations of states $s \in S$ before the final linear policy and value heads $x_E = f_E(s)$ to the Poincaré ball with unitary curvature. As described in Section 2, we perform this with an exponential map to produce $x_H = \exp_{10}(x_E)$, replacing the final ReLU. To output the value and policy logits, we then finally perform a set of affine transformations in hyperbolic space, $\pi(s), V(s) = f_H(x_H) = \{f_i^1(x_H)\}_{i=0}^{|A|}$. We also consider a clipped version of this integration, following the recent stabilization practice from Guo et al. (2022), which entails clipping the magnitude of the latent representations to not exceed unit norm. We initialize the weights of the last two linear layers in both implementations to $100 \times$ smaller values to start training with low magnitude latent representations, which facilitates the network first learning appropriate angular layouts (Nickel & Kiela, 2017; Ganea et al., 2018).

Results. We analyze this naive hyperbolic PPO implementation in Figure 6. As shown in part (A.1), performance is generally underwhelming, lagging considerably behind the perfor...
Figure 6: Analysis of key statistics for our naive implementations of hyperbolic PPO agents using existing practices to stabilize optimization in hyperbolic space. On the left, we display performance (A.1) and negative entropy (A.2). On the right, we display magnitudes (B.1) and variances (B.2) of the backpropagated gradients.

Performance of standard PPO. While applying the clipping strategy yields some improvements, its results are still considerably inferior on the tasks where Euclidean embeddings appear to already recover effective representations (e.g. starpilot). In part (A.2) we visualize the negated entropy of the different PPO agents. PPO’s policy optimization objective includes both a reward maximization term, which requires an auxiliary estimator, and an entropy bonus term that can instead be differentiated exactly and optimized end-to-end. Its purpose is to push PPO agents to explore if they struggle to optimize performance with the current data. We note that the Hyperbolic PPO agents take significantly longer to reach higher levels of entropy in the initial training phases and are also much slower to reduce their entropy as their performance improves. These results appear to indicate the presence of optimization challenges stemming from end-to-end RL training with hyperbolic representations. Therefore, we turn our attention to analyzing the gradients in our hyperbolic models. In part (B.1), we visualize the magnitude of the gradients both as backpropagated from the final representations and to the convolutional encoder. In part (B.2), we also visualize the variance of the same gradients with respect to the different input states in a minibatch. We find that hyperbolic PPO suffers from a severe exploding gradients problem, with both magnitudes and variances being several orders of magnitude larger than the Euclidean baseline. Similar instabilities have been documented by much recent literature, as described in App. B. Yet, in the RL case, common stabilization techniques such as careful initialization and clipping are visibly insufficient, resulting in ineffective learning and inferior agent performance.

3.3 Stabilizing Hyperbolic Representations

We attribute the observed optimization challenges from our naive hyperbolic PPO implementation to the high variance and non-stationarity characterizing RL. Initialization and clipping have been designed for stationary ML applications with fixed dataset and targets. In these settings, regularizing the initial learning iterations enables the model to find appropriate angular layouts of the representations for the underlying fixed loss landscape. Without appropriate angular layouts, useful representations become very hard to recover due to the highly non-convex spectrum of hyperbolic neural networks, often resulting in failure modes with low performance (Ganea et al., 2018; López & Strube, 2020). We can intuitively see why this reliance is incompatible with the RL setting, where the trajectory data and loss landscape can change significantly throughout training, making early angular layouts inevitably suboptimal. This is further exacerbated by the high variance gradients already characterizing policy gradient optimization (Sutton & Barto, 2018; Wu et al., 2018) which facilitate entering unstable learning regimes that can lead to our observed failure modes.

Spectral norm. Another sub-field of ML dealing with non-stationarity and brittle optimization is generative modeling with adversarial networks (GANs) (Goodfellow et al., 2014). In GAN training, the generated data and discriminator’s parameters constantly evolve, making the loss landscape highly non-stationary as in the RL setting. Furthermore, the adversarial nature of the optimization
makes it very brittle to exploding and vanishing gradients instabilities which lead to common failure modes (Arjovsky & Bottou [2017], Brock et al. [2018]). In this parallel literature, spectral normalization (SN) (Miyato et al. [2018]) is a popular stabilization practice whose success made it ubiquitous in modern GAN implementations. Recent work (Lin et al. [2021]) showed that a reason for its surprising effectiveness comes from regulating both the magnitude of the activations and their respective gradients very similarly to LeCun initialization (LeCun et al. [2012]). Furthermore, when applied to the discriminator model, SN’s effects appear to persist throughout training, while initialization strategies tend to only affect the initial iterations. In fact, they also show that ablating SN from GAN training empirically results in exploding gradients and degraded performance, closely resembling our same observed instabilities. We provide details about GANs and SN in App. A.3.

S-RYM. Inspired by these connections, we propose to counteract the optimization challenges in RL and hyperbolic representations with SN. We make two main changes from its usual application for GAN regularization. First, we apply SN only in the Euclidean encoder sub-network (f_E), leaving the final linear transformation in hyperbolic space (f_H) unregularized since our instabilities appear to occur in the gradients from the hyperbolic representations. Furthermore, we add a scaling term to preserve stability for different latent representation sizes. In particular, modeling $x_E \in \mathbb{R}^n$ by an independent Gaussian, the magnitude of the representations follows some scaled Chi distribution $\|x_E\| \sim \chi_n$, which we can reasonably approximate with $E[\|x_E\|] = E[|x|] \approx \sqrt{n}$. Therefore, we propose to rescale the output of f_E by $1/\sqrt{n}$, such that modifying the dimensionality of the representations should not significantly affect their magnitude before mapping them \mathbb{H}^n. We call this general stabilization recipe spectrally-regularized hyperbolic mappings (S-RYM).

Results. As shown in Figure 7, integrating S-RYM with our hyperbolic RL agents appears to resolve their optimization challenges and considerably improve the Euclidean baseline’s performance (A). To validate that these performance benefits are due to the hyperbolic geometry of the latent space, we also compare with another Euclidean ablation making use of SN, which fails to attain any improvement. Furthermore, S-RYM maintains low gradient magnitudes (B), confirming its effectiveness to stabilize training. In App. E.1, we also show that SN and rescaling are both crucial for S-RYM. Thus, in the next section we evaluate our hyperbolic deep RL framework on a large-scale, analyzing its efficacy and behavior across different benchmarks, RL algorithms, and training conditions.

4 Extensions and Evaluation

To test the generality of our hyperbolic deep RL framework, in addition to the on-policy PPO we also integrate it with the off-policy Rainbow DQN algorithm (Hessel et al. [2018]). Our implementations use the same parameters and models specified in prior traditional RL literature, without any additional tuning. Furthermore, in addition to the full Procgen benchmark (16 envs.) we also evaluate on the popular Atari 100K benchmark (Bellemare et al. [2013], Kaiser et al. [2020]) (26 envs.), repeating for 5 random seeds. We provide all details about benchmarks and implementations in App. C.
Table 1: Performance comparison for the considered versions of PPO full Procgen benchmark

Task	Algorithm	PPO	PPO + data aug.	PPO + S-RYM	PPO + S-RYM, 32 dim.
	Levels distribution	train/test	train/test	train/test	train/test
bigfish	3.71±1 1.46±1	12.43±4 (+235%)	13.07±2 (+77%)	20.58±5 (+45%)	16.57±2 (+183%)
bossfight	8.18±1 7.04±2	3.38±1 (+59%)	2.96±1 (+58%)	3.61±1 (+3%)	8.19±1 (+125%)
cavefly	7.01±1 5.86±1	6.08±1 (+31%)	4.89±1 (+61%)	6.15±1 (+22%)	5.15±1 (+54%)
climber	6.66±2 5.11±1	7.61±1 (+12%)	5.74±2 (+12%)	8.91±1 (+3%)	6.64±1 (+30%)
cont rotor	9.50±0 8.25±0	8.40±1 (+12%)	9.00±1 (+9%)	9.30±1 (+2%)	8.40±1 (+2%)
dodgerball	5.07±1 1.87±1	3.94±1 (+22%)	3.20±1 (+71%)	7.10±1 (+34%)	6.52±1 (+248%)
fruitbot	30.10±2 26.33±2	27.56±3 (+8%)	27.98±1 (+66%)	30.43±1 (+17%)	29.15±1 (+12%)
heist	7.42±1 2.92±1	4.20±1 (+43%)	3.60±0 (+23%)	5.40±1 (−27%)	4.01±1 (−4%)
jumper	8.86±1 4.36±2	6.00±1 (+40%)	7.00±1 (+68%)	7.00±1 (+59%)	7.00±1 (+61%)
leaper	4.86±2 4.36±2	6.00±1 (+40%)	7.00±1 (+68%)	7.00±1 (+59%)	7.00±1 (+61%)
maze	9.25±0 6.50±0	8.50±1 (+45%)	7.10±1 (+9%)	9.50±0 (+3%)	6.10±1 (+6%)
miner	12.950±9.28±1	9.81±1 (+24%)	9.36±2 (+1%)	12.09±1 (+7%)	10.08±1 (+9%)
ninja	7.62±1 4.50±1	6.90±1 (+40%)	4.50±1 (+31%)	6.50±1 (+15%)	6.10±1 (+14%)
plankton	6.92±6.06±3	5.13±1 (+56%)	4.96±1 (+18%)	7.26±1 (+5%)	6.76±1 (+13%)
Average norm. score	0.5614 0.3476	0.5846 (+4%)	0.4940 (+29%)	0.6326 (+3%)	0.4730 (+36%)
Median norm. score	0.6085 0.3457	0.6065 (+4%)	0.4832 (+40%)	0.6527 (+7%)	0.4705 (+36%)
# Env. improvements	0/16 0/16 0/16 0/16	3/16 10/16 12/16 13/16	11/16 12/16 8/16 13/16		

Figure 8: Performance comparison for the considered versions of PPO agents with Euclidean and hyperbolic latent representations, increasingly lowering the number of training levels.

Generalization on Procgen. Given the documented representation efficiency of hyperbolic space, we evaluate our hyperbolic PPO implementation also reducing the dimensionality of the final representation to 32 (see App. E.2), with relative compute and parameter efficiency benefits. We compare our regularized hyperbolic PPO with using data augmentations, a more traditional way of encoding inductive biases from inducing invariances. We consider random crop augmentations from their popularity and success in modern RL. As shown in Table 1, our hyperbolic PPO implementation with S-RYM appears to yield conspicuous performance gains on most of the environments. At the same time, reducing the size of the representations provides even further benefits with significant improvements in 13/16 tasks. In contrast, applying data augmentations yields much lower and inconsistent gains, even hurting on some tasks where hyperbolic RL provides considerable improvements (e.g. bossfight). We also find that test performance gains do not always correlate with gains on the specific 200 training levels, yielding a significantly reduced generalization gap for the hyperbolic agents. We perform the same experiment but apply our hyperbolic deep RL framework to Rainbow DQN with similar results, also obtaining significant gains in 13/16 tasks, as reported in App. D.1.

We also evaluate the robustness of our PPO agents to encoding spurious features, only relevant for the training levels. In particular, we examine tasks where PPO tends to perform well and consider lowering the training levels from 200 to 100, 50, and 25. As shown in Figure 8, the performance of PPO visibly drops at each step halving the number of training levels, suggesting that the Euclidean representations overfit and lose their original efficacy. In contrast, hyperbolic PPO appears much more robust, still surpassing the original PPO results with only 100 training levels in fruitbot and 50 in starplot. While also applying data augmentation attenuates the performance drops, its effects appear more limited and inconsistent, providing almost null improvements for starplot.
Sample-efficiency on Atari 100K. We focus on the performance of our hyperbolic Rainbow DQN implementation, as the severe data limitations of this benchmark make PPO and other on-policy algorithms impractical. We show the absolute and relative per-environment performance changes from our hyperbolic RL framework in Figure 9 and provide aggregate statistics in Table 2. Also on this benchmark, the exact same hyperbolic deep RL framework provides consistent and significant benefits. In particular, we record improvements on 22/26 Atari environments over the Euclidean baseline, almost doubling the final human normalized score.

Considerations and comparisons. Our results empirically validate that introducing hyperbolic representations to shape the prior of deep RL models is both remarkably general and effective. We record almost universal improvements on two fundamentally different RL algorithms, considering both generalizations to new levels from millions of frames (Procgen) and to new experiences from only 2hrs of total play time (Atari 100K). Furthermore, our hyperbolic RL agents outperform the scores reported in most other recent advances, coming very close to the current SotA algorithms which incorporate different expensive and domain-specialized auxiliary practices (see App. D.2-D.3). Our approach is also orthogonal to many of these advances and appears to provide compatible and complementary benefits (see App. E.3). Taken together, we believe these factors show the great potential of our hyperbolic framework to become a standard way of parameterizing deep RL models.

Representations interpretation. We train our hyperbolic PPO agent with only 2-dimensional representations, which still remarkably provide concrete generalization benefits over Euclidean PPO (App. D.4). Then, we analyze how these representations evolve within trajectories, mapping them on the Poincaré disk and visualizing the corresponding states. We observe a recurring cyclical behavior, where the magnitude of the representations monotonically increases within subsets of the trajectory as more obstacles/enemies appear. We show this in Fig. 10 and Fig. 12 comparing the

Table 2: Aggregate results on Atari 100K

Metric	Rainbow	Rainbow + S-RYM
Human norm. mean	0.353	**0.686 (+93%)**
Human norm. median	0.259	**0.366 (+41%)**
Super human scores	2	**5**
representations of on-policy states sampled at constant intervals with trajectory deviations from executing random behavior. We observe the representations form tree-like structures, with the magnitudes in the on-policy states growing in the direction of the Value function’s gyroplane’s normal. This intuitively reflects that as new elements appear the agent recognizes a larger opportunity for rewards, yet, requiring a finer level of control as distances to the policy gyroplanes will also grow exponentially, reducing entropy. Instead, following random deviations, magnitudes grow in directions orthogonal to the Value gyroplane’s normal. This still reflects the higher precision required for optimal decision-making, but also the higher uncertainty to obtain future rewards from worse states.

5 RELATED WORK

Generalization is a key open problem in RL. End-to-end training of deep models with RL objectives appears has been shown prone to overfitting from spurious features only relevant in the observed transitions (Song et al., 2019; Bertran et al., 2020). To address this, prior work considered different data augmentation strategies (Laskin et al., 2020b; Yarats et al., 2021a; Cobbe et al., 2019), and online adaption methods on top to alleviate engineering burdens (Zhang & Guo, 2021; Raileanu et al., 2020). Alternative approaches have been considering problem-specific properties of the environment (Zhang et al., 2020; Raileanu & Fergus, 2021), auxiliary losses (Laskin et al., 2020a; Schwarz et al., 2020), and frozen pre-trained layers (Yarats et al., 2021b; Stooke et al., 2021). Instead, we propose to encode a new inductive bias making use of the geometric properties of hyperbolic space, something orthogonal and likely compatible with most such prior methods.

While hyperbolic representations found recent popularity in machine learning, there have not been notable extensions for deep RL (Peng et al., 2021). Most relatedly, Tiwari & Prannoy (2018) proposed to produce hyperbolic embeddings of the state space of tabular MDPs to recover options (Sutton et al., 1999). Yet, they did not use RL for learning, but fixed data and a supervised loss based on the co-occurrence of states, similarly to the original method by Nickel & Kiela (2017).

6 DISCUSSION AND FUTURE WORK

In this work, we introduce hyperbolic geometry to deep RL. We analyze training agents using latent hyperbolic representations and propose spectrally-regularized hyperbolic mappings, a new stabilization strategy that overcomes the observed optimization instabilities. Hence, we apply our framework to obtain hyperbolic versions of established on-policy and off-policy RL algorithms, which we show substantially outperform their Euclidean counterparts in two popular benchmarks. We provide numerous results validating that hyperbolic representations provide deep models with a more suitable prior for control, with considerable benefits for generalization and sample-efficiency. In this regard, we believe our work could also have strong implications for offline and unsupervised RL, where limited data and under-specified objectives make its observed properties of key relevance. We share our implementation to facilitate future RL advances considering hyperbolic space as a new, general tool.

REFERENCES

Martin Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial networks. In International Conference on Learning Representations, 2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gans. arXiv preprint arXiv:1701.07875, 2017.

Roger G Barker and Herbert F Wright. Midwest and its children: The psychological ecology of an american town. 1955.

Gary Bécigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. arXiv preprint arXiv:1810.00760, 2018.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47: 253–279, 2013.
Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement learning. In *International Conference on Machine Learning*, pp. 449–458. PMLR, 2017.

Richard Bellman. A markovian decision process. *Journal of mathematics and mechanics*, pp. 679–684, 1957.

Eugenio Beltrami. Teoria fondamentale degli spazii di curvatura costante. *Annali di Matematica Pura ed Applicata (1867-1897)*, 2(1):232–255, 1868.

Martin Bertran, Natalia Martinez, Mariano Phielipp, and Guillermo Sapiro. Instance-based generalization in reinforcement learning. *Advances in Neural Information Processing Systems*, 33:11333–11344, 2020.

Johan Bjorck, Carla P Gomes, and Kilian Q Weinberger. Towards deeper deep reinforcement learning. *arXiv preprint arXiv:2106.01151*, 2021.

Mario Bonk and Oded Schramm. Embeddings of gromov hyperbolic spaces. In *Selected Works of Oded Schramm*, pp. 243–284. Springer, 2011.

Silvere Bonnabel. Stochastic gradient descent on riemannian manifolds. *IEEE Transactions on Automatic Control*, 58(9):2217–2229, 2013.

Michele Borassi, Alessandro Chessa, and Guido Caldarelli. Hyperbolicity measures democracy in real-world networks. *Physical Review E*, 92(3):032812, 2015.

Joey Bose, Ariella Smofsky, Renjie Liao, Prakash Panangaden, and Will Hamilton. Latent variable modelling with hyperbolic normalizing flows. In *International Conference on Machine Learning*, pp. 1045–1055. PMLR, 2020.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural image synthesis. In *International Conference on Learning Representations*, 2018.

James W Cannon, William J Floyd, Richard Kenyon, Walter R Parry, et al. Hyperbolic geometry. *Flavors of geometry*, 31(59-115):2, 1997.

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G. Bellemare. Dopamine: A Research Framework for Deep Reinforcement Learning. 2018. URL http://arxiv.org/abs/1812.06110

Eedoardo Cetin, Philip J Ball, Stephen Roberts, and Oya Celiktutan. Stabilizing off-policy deep reinforcement learning from pixels. In *International Conference on Machine Learning*, pp. 2784–2810. PMLR, 2022.

Benjamin Paul Chamberlain, James Clough, and Marc Peter Deisenroth. Neural embeddings of graphs in hyperbolic space. *arXiv preprint arXiv:1705.10359*, 2017.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generalization in reinforcement learning. In *International Conference on Machine Learning*, pp. 1282–1289. PMLR, 2019.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to benchmark reinforcement learning. In *International conference on machine learning*, pp. 2048–2056. PMLR, 2020.

Karl W Cobbe, Jacob Hilton, Oleg Klimov, and John Schulman. Phasic policy gradient. In *International Conference on Machine Learning*, pp. 2020–2027. PMLR, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*, pp. 248–255. Ieee, 2009.

Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforcement learning. *arXiv preprint arXiv:1904.12901*, 2019.
Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures. In *International conference on machine learning*, pp. 1407–1416. PMLR, 2018.

Yannis Flet-Berliac. The promise of hierarchical reinforcement learning. *The Gradient*, 9, 2019.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo Hessel, Ian Osband, Alex Graves, Volodymyr Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell, and Shane Legg. Noisy networks for exploration. In *International Conference on Learning Representations*, 2018. URL https://openreview.net/forum?id=rywHCPkAW.

Hervé Fournier, Anas Ismail, and Antoine Vigneron. Computing the gromov hyperbolicity of a discrete metric space. *Information Processing Letters*, 115(6-8):576–579, 2015.

Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. *Advances in neural information processing systems*, 31, 2018.

Florin Gogianu, Tudor Berariu, Mihaela C Rosca, Claudia Clopath, Lucian Busoniu, and Razvan Pascanu. Spectral normalisation for deep reinforcement learning: an optimisation perspective. In *International Conference on Machine Learning*, pp. 3734–3744. PMLR, 2021.

Gene H Golub and Henk A Van der Vorst. Eigenvalue computation in the 20th century. *Journal of Computational and Applied Mathematics*, 123(1-2):35–65, 2000.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In *Advances in neural information processing systems*, pp. 2672–2680, 2014.

Mikhael Gromov. Hyperbolic groups. In *Essays in group theory*, pp. 75–263. Springer, 1987.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Improved training of wasserstein gans. *Advances in neural information processing systems*, 30, 2017.

Yunhui Guo, Xudong Wang, Yubei Chen, and Stella X Yu. Clipped hyperbolic classifiers are super-hyperbolic classifiers. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 11–20, 2022.

Anupam Gupta. Embedding tree metrics into low dimensional euclidean spaces. In *Proceedings of the thirty-first annual ACM symposium on Theory of computing*, pp. 694–700, 1999.

Hado Hasselt. Double q-learning. *Advances in neural information processing systems*, 23:2613–2621, 2010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770–778, 2016b.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in deep reinforcement learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 32, 2018.

Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina Precup. Reproducibility of benchmarked deep reinforcement learning tasks for continuous control. *arXiv preprint arXiv:1708.04133*, 2017.

Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay. In *International Conference on Machine Learning*, pp. 4940–4950. PMLR, 2021.
Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osiński, Roy H Campbell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin, Ryan Sepassi, George Tucker, and Henryk Michalewski. Model based reinforcement learning for Atari. In *International Conference on Learning Representations*, 2020.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Qt-opt: Scalable deep reinforcement learning for vision-based robotic manipulation. *arXiv preprint arXiv:1806.10293*, 2018.

Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and Victor Lempitsky. Hyperbolic image embeddings. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6418–6428, 2020.

Kacper Piotr Kielak. Do recent advancements in model-based deep reinforcement learning really improve data efficiency? 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of generalisation in deep reinforcement learning. *arXiv preprint arXiv:2111.09794*, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representations for reinforcement learning. pp. 5639–5650, 2020a.

Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Reinforcement learning with augmented data. *Advances in neural information processing systems*, 33: 19884–19895, 2020b.

Guy Lebanon and John Lafferty. Hyperplane margin classifiers on the multinomial manifold. In *Proceedings of the twenty-first international conference on Machine learning*, pp. 66, 2004.

Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In *Neural networks: Tricks of the trade*, pp. 9–48. Springer, 2012.

Alex X Lee, Coline Manon Devin, Yuxiang Zhou, Thomas Lampe, Konstantinos Bousmalis, Jost Tobias Springenberg, Arunkumar Byravan, Abbas Abdolmaleki, Nimrod Gileadi, David Khosid, et al. Beyond pick-and-place: Tackling robotic stacking of diverse shapes. In *5th Annual Conference on Robot Learning*, 2021.

Zinan Lin, Vyas Sekar, and Giulia Fanti. Why spectral normalization stabilizes gans: Analysis and improvements. *Advances in neural information processing systems*, 34:9625–9638, 2021.

Federico López and Michael Strube. A fully hyperbolic neural model for hierarchical multi-class classification. In *Findings of the Association for Computational Linguistics: EMNLP 2020*, pp. 460–475, 2020.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In *International Conference on Learning Representations*, 2017. URL https://openreview.net/forum?id=Skq89Scxx.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open problems for general agents. *Journal of Artificial Intelligence Research*, 61:523–562, 2018.

Shie Mannor, Duncan Simester, Peng Sun, and John N Tsitsiklis. Bias and variance approximation in value function estimates. *Management Science*, 53(2):308–322, 2007.

Emile Mathieu, Charline Le Lan, Chris J Maddison, Ryota Tomioka, and Yee Whye Teh. Continuous hierarchical representations with poincaré variational auto-encoders. *Advances in neural information processing systems*, 32, 2019.
Jiří Matoušek. Bi-lipschitz embeddings into low-dimensional euclidean spaces. *Commentationes Mathematicae Universitatis Carolinae*, 31(3):589–600, 1990.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for generative adversarial networks. *arXiv preprint arXiv:1802.05957*, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. *arXiv preprint arXiv:1312.5602*, 2013.

Sharada Mohanty, Jyotish Poonganam, Adrien Gaidon, Andrey Kolobov, Blake Wulfe, Dipan Chakraborty, Grazvydas Semetulskis, Joao Schapke, Jonas Kubilius, Jurgis Pasukonis, et al. Measuring sample efficiency and generalization in reinforcement learning benchmarks: Neurips 2020 procgen benchmark. *arXiv preprint arXiv:2103.15332*, 2021.

Yoshihiro Nagano, Shoichiro Yamaguchi, Yasuhiro Fujita, and Masanori Koyama. A wrapped normal distribution on hyperbolic space for gradient-based learning. In *International Conference on Machine Learning*, pp. 4693–4702. PMLR, 2019.

Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations. *Advances in neural information processing systems*, 30, 2017.

OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei Zhang. Solving rubik’s cube with a robot hand. *CoRR*, abs/1910.07113, 2019.

Mark D Pendrith, Malcolm RK Ryan, et al. *Estimator variance in reinforcement learning: Theoretical problems and practical solutions*. University of New South Wales, School of Computer Science and Engineering, 1997.

Wei Peng, Tuomas Varanka, Abdelrahman Mostafa, Henglin Shi, and Guoying Zhao. Hyperbolic deep neural networks: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2021.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. *arXiv preprint arXiv:1511.06434*, 2015.

Roberta Raileanu and Rob Fergus. Decoupling value and policy for generalization in reinforcement learning. In *International Conference on Machine Learning*, pp. 8787–8798. PMLR, 2021.

Roberta Raileanu, Max Goldstein, Denis Yarats, Ilya Kostrikov, and Rob Fergus. Automatic data augmentation for generalization in deep reinforcement learning. *arXiv preprint arXiv:2006.12862*, 2020.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved techniques for training gans. *Advances in neural information processing systems*, 29, 2016.

Rik Sarkar. Low distortion delaunay embedding of trees in hyperbolic plane. In *International Symposium on Graph Drawing*, pp. 355–366. Springer, 2011.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In *International Conference on Learning Representations*, 2016.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional continuous control using generalized advantage estimation. *arXiv preprint arXiv:1506.02438*, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *CoRR*, abs/1707.06347, 2017. URL http://arxiv.org/abs/1707.06347.
Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bachman. Data-efficient reinforcement learning with self-predictive representations. 2020.

Ryohei Shimizu, Yusuke Mukuta, and Tatsuya Harada. Hyperbolic neural networks++. arXiv preprint arXiv:2006.08210, 2020.

Xingyou Song, Yiding Jiang, Stephen Tu, Yilun Du, and Behnam Neyshabur. Observational overfitting in reinforcement learning. In International Conference on Learning Representations, 2019.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning from reinforcement learning. In International Conference on Machine Learning, pp. 9870–9879. PMLR, 2021.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

Alexandru Tifrea, Gary Becigneul, and Octavian-Eugen Ganea. Poincare glove: Hyperbolic word embeddings. In International Conference on Learning Representations, 2018.

Saket Tiwari and M Prannoy. Hyperbolic embeddings for learning options in hierarchical reinforcement learning. arXiv preprint arXiv:1812.01487, 2018.

Abraham Albert Ungar. A gyrovector space approach to hyperbolic geometry. Synthesis Lectures on Mathematics and Statistics, 1(1):1–194, 2008.

Hado P Van Hasselt, Matteo Hessel, and John Aslanides. When to use parametric models in reinforcement learning? Advances in Neural Information Processing Systems, 32, 2019.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Kaixin Wang, Bingyi Kang, Jie Shao, and Jiashi Feng. Improving generalization in reinforcement learning with mixture regularization. Advances in Neural Information Processing Systems, 33:7968–7978, 2020.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling network architectures for deep reinforcement learning. In International conference on machine learning, pp. 1995–2003. PMLR, 2016.

Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre M Bayen, Sham Kakade, Igor Mordatch, and Pieter Abbeel. Variance reduction for policy gradient with action-dependent factorized baselines. In International Conference on Learning Representations, 2018.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing deep reinforcement learning from pixels. In International Conference on Learning Representations, 2021a. URL https://openreview.net/forum?id=GY6-6sTvGaf.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improving sample efficiency in model-free reinforcement learning from images. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 10674–10681, 2021b.

Amy Zhang, Clare Lyle, Shagun Sedhani, Angelos Filos, Marta Kwiatkowska, Joelle Pineau, Yarin Gal, and Doina Precup. Invariant causal prediction for block mdps. In International Conference on Machine Learning, pp. 11214–11224. PMLR, 2020.

Hanping Zhang and Yuhong Guo. Generalization of reinforcement learning with policy-aware adversarial data augmentation. arXiv preprint arXiv:2106.15587, 2021.

Yuansheng Zhou, Brian H Smith, and Tatyana O Sharpee. Hyperbolic geometry of the olfactory space. Science advances, 4(8), 2018.
APPENDIX

A EXTENDED BACKGROUND

A.1 RL ALGORITHMS DESCRIPTIONS

Continuing from section 2.1, we provide an overview of standard RL definitions and the deep RL algorithms we use in this work.

Two important functions in RL are the value function and the action-value function (also called the Q function). These quantify, for policy π, the expected sum of discounted future rewards given any initial fixed state or state-action pair, respectively:

$$ V^\pi(s_t) = \mathbb{E}_{a_t,s_{t+1},a_{t+1},\cdots \sim \pi, P} \left[\sum_{t'=0}^{\infty} \gamma^{t'} r(s_{t+t'}, a_{t+t'}) \right], \quad (8) $$

$$ Q^\pi(s_t, a_t) = r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim P} [V^\pi(s_{t+1})]. \quad (9) $$

Relatedly, the advantage function $A^\pi(s_t, a_t) = Q^\pi(s_t, a_t) - V^\pi(s_t)$ quantifies the expected improvement from executing any given action a_t from s_t rather than following the policy. These functions summarize the future evolution of an MDP and are often parameterized and learned auxiliary to or even in-place of the policy model.

On-policy methods. Modern on-policy RL algorithms collect a new set of trajectories at each iteration with the current policy, discarding old data. They use these trajectories to learn the current policy’s value function and recover a corresponding advantage function from the observed Monte-Carlo returns, using techniques such as the popular Generalized Advantage Estimator (GAE) (Schulman et al., 2015). The estimated advantages A_{GAE} are then used to compute the policy gradient and update the policy, maximizing the probability of performing the best-observed actions (Sutton & Barto, 2018). Since the values of A_{GAE} are based on a limited set of trajectories, on-policy methods generally suffer from high-variance targets and gradients (Pendrith et al., 1997; Mannor et al., 2007; Wu et al., 2018). Proximal Policy Optimization (PPO) (Schulman et al., 2017) is one of the most established on-policy algorithms that attenuates these issues by taking conservative updates, restricting the policy update from making larger than ϵ changes to the probability of executing any individual action. PPO considers the ratio between the updated and old policy probabilities $R_\pi(a_t|s_t) = \frac{\pi_\theta(a_t|s_t)}{\pi_\theta'(a_t|s_t)}$ to optimize a pessimistic clipped objective of the form:

$$ \min \{ R_\pi(a_t|s_t)A_{\text{GAE}}(s_t, a_t), \text{clip}(R_\pi(a_t|s_t), 1 - \epsilon, 1 + \epsilon)A_{\text{GAE}}(s_t, a_t) \}. \quad (9) $$

As mentioned in the main text, PPO also includes a small entropy bonus to incentivize exploration and improve data diversity. This term can be differentiated and optimized without any estimator since we have full access to the policy model and its output logits, independently of the collected data.

Off-policy methods. In contrast, off-policy algorithms generally follow a significantly different optimization approach. They store many different trajectories collected with a mixture of old policies in a large replay buffer, B. They use this data to directly learn the Q function for the optimal greedy policy with a squared loss based on the Bellman backup (Bellman, 1957):

$$ E_{(s_t, a_t, s_{t+1}, r_t) \in B} \left[Q(s_t, a_t) - \left(r_t + \max_{a'} Q(s_{t+1}, a') \right) \right]^2 \quad (10) $$

(Bellman, 1957). Agent behavior is then implicitly defined by the epsilon-greedy policy based on the actions with the highest estimated Q values. We refer to the deep Q-networks paper (Mnih et al., 2013) for a detailed description of the seminal DQN algorithm. Rainbow DQN (Hessel et al., 2018) is a modern popular extension that introduces several auxiliary practices from proposed orthogonal improvements, which they show provide compatible benefits. In particular, they use n-step returns (Sutton & Barto, 2018), prioritized experience replay (Schaul et al., 2016), double Q-learning (Hasselt, 2010), distributional RL (Bellemare et al., 2017), noisy layers (Fortunato et al., 2018), and a dueling network architecture (Wang et al., 2016).
A.2 δ Hyperbolicity

δ-hyperbolicity was introduced by Gromov (1987) as a criterion to quantify how hyperbolic a metric space \((X, d)\) is. We can express δ-hyperbolicity in terms of the Gromov product, defined for \(x, y \in X\) at some base point \(r \in X\) as measuring the defect from the triangle inequality:

\[
(x|y)_r = \frac{1}{2} (d(x, r) + d(r, y) - d(x, y)).
\]

Then, \(X\) is δ-hyperbolic if for all base points \(r \in X\) and for any three points \(x, y, z \in X\) the Gromov product between \(x\) and \(y\) is lower than the minimum Gromov product of the other pairs by at most some slack variable \(\delta\):

\[
(x|y)_r \geq \min((x|y)_r, (x|y)_r) - \delta. \tag{12}
\]

In our case (a complete finite-dimensional path-connected Riemannian manifold, which is a geodesic metric space), δ-hyperbolicity means that for every point on one of the sides of a geodesic triangle \(\triangle x y z\), there exists some other point on one of the other sides whose distance is at most \(\delta\); or in other words, geodesic triangles are δ-slim. In trees, the three sides of a triangle must all intersect at some midpoint (Figure 5). Thus, every point belongs to at least two of its sides yielding \(\delta = 0\). Thus the δ-hyperbolicity can be interpreted as measuring the deviation of a given metric from an exact tree metric.

A.3 Generative Adversarial Networks and Spectral Normalization

GANs. In GAN training, the goal is to obtain a generator network to output samples resembling some ‘true’ target distribution. To achieve this, Goodfellow et al. (2014) proposed to alternate training of the generator with training an additional discriminator network, tasked to distinguish between the generated and true samples. The generator’s objective is then to maximize the probability of its own samples according to the current discriminator, backpropagating directly through the discriminator’s network. Since both the generated data and discriminator’s network parameters constantly change from this alternating optimization, the loss landscape of GANs is also highly non-stationary, resembling, to some degree, the RL setting. As analyzed by several works, the adversarial nature of the optimization makes it very brittle to exploding and vanishing gradients instabilities (Arjovsky & Bottou, 2017; Brock et al., 2018) which often result in common failure modes from severe divergence or stalled learning (Lin et al., 2021). Consequently, numerous practices in the GAN literature have been proposed to stabilize training (Radford et al., 2015; Arjovsky et al., 2017; Gulrajani et al., 2017). Inspired by recent work, in this work, we focus specifically on spectral normalization (Miyato et al., 2018), one such practice whose recent success made it ubiquitous in modern GAN implementations.

Spectral normalization. In the adversarial interplay characterizing GAN training, instabilities commonly derive from the gradients of the discriminator network, \(f_D\) (Salimans et al., 2016). Hence, Miyato et al. (2018) proposed to regularize the spectral norm of discriminator’s layers, \(l_j \in f_D\), i.e., the largest singular values of the weight matrices \(\|W_j\|_{SN} = \sigma(W_j)\), to be approximately one. Consequently, spectral normalization effectively bounds the Lipschitz constant of the whole discriminator network since, \(\|f_D\|_{Lip} \leq \prod_{j=1}^{L} \|l_j\|_{Lip} \leq \prod_{j=1}^{L} \|W_j\|_{SN} = 1\). In practice, the proposed implementation approximates the largest singular value of some original unconstrained weight matrices by running power iteration (Golub & Van der Vorst, 2000). Thus, it recovers the spectrally-normalized weights with a simple re-parameterization, dividing the unconstrained weights by their relative singular values \(W_j = \frac{W_j}{\sigma(W_j)}\). As mentioned in the main text, recent work (Lin et al., 2021) showed that one of the main reasons for the surprising effectiveness of spectral normalization in GAN training comes from effectively regulating both the magnitude of the activations and their respective gradients, very similarly to LeCun initialization (LeCun et al., 2012). Furthermore, when applied to the discriminator, spectral normalization’s effects appear to persist throughout training, while initialization strategies tend to only affect the initial iterations. In fact, in Figure 2 of their paper, they also show that ablating spectral normalization empirically results in exploding gradients and degraded performance, closely resembling our same observed instabilities in Figure 6(B).

Other recent works also studied the application of spectral normalization (Miyato et al., 2018) for reinforcement learning (Björck et al., 2021; Gogianu et al., 2021). In line with our results from Figure 7 they found that naively applying spectral normalization to traditional Euclidean architectures.
leads to underwhelming results for RL. Yet, they also observed performance benefits when applying spectral normalization exclusively to particular layers. These empirical insights could inform future improvements for S-RYM to retain the stability benefits of SN with less restrictive regularization.

B STABILIZATION OF HYPERBOLIC REPRESENTATIONS

One of the main challenges of incorporating hyperbolic geometry with neural networks comes from end-to-end optimization of latent representations and parameters located in hyperbolic space. For instance, numerical issues and vanishing gradients occur as representations get too close to either the origin or the boundary of the Poincaré ball (Ganea et al., 2018). Moreover, training dynamics can tend to push representations towards the boundary, slowing down learning and make optimization problems of earlier layers ineffective (Guo et al., 2022). A number of methods have been used to help stabilize learning of hyperbolic representations including constraining the representations to have a low magnitude early in training, applying clipping and perturbations (Ganea et al., 2018; Khrulkov et al., 2020), actively masking invalid gradients (Mathieu et al., 2019), and designing initial “burn-in” periods of training with lower learning rates (Nickel & Kiela, 2017; Bécigneul & Ganea, 2018). More recently Guo et al. (2022) also showed that very significant magnitude clipping of the latent representations can effectively attenuate these numerical and learning instabilities when training hyperbolic classifiers for popular image classification benchmarks.

B.1 Magnitude clipping

Guo et al. (2022) recently proposed to apply significant clipping of the magnitude of the latent representations when using hyperbolic representations within deep neural networks. As in our work, they also consider a hybrid architecture where they apply an exponential map before the final layer to obtain latent representations in hyperbolic space. They apply the proposed clipping to constrain the input vector of the exponential map to not exceed unit norm, producing hyperbolic representations via:

\[x_H = \exp_0 \left(\min \left\{ 1, \frac{1}{||x_E||} \right\} \times x_E \right). \]

(13)

The main motivation for this practice is to constrain representation magnitudes, which the authors linked to a vanishing gradient phenomenon when training on standard image classification datasets (Krizhevsky et al., 2009; Deng et al., 2009). However, a side effect of this formulation is that the learning signal from the representations exceeding a magnitude of 1 will solely convey information about the representation’s direction and not its magnitude. Since the authors do not share their implementation, we tested applying their technique as described in the paper. We found some benefits in additionally initializing the parameters of the last two linear layers (in Euclidean and hyperbolic space) to 100× smaller values to facilitate learning initial angular layouts.

B.2 Image classification experiments

To empirically validate and analyze our clipping implementation we consider evaluating deep hyperbolic representations on image classification tasks, following the same training practices and datasets from Guo et al. (2022). In particular, we utilize a standard ResNet18 architecture (He et al., 2016b) and test our network on CIFAR10 and CIFAR100 (Krizhevsky et al., 2009). We optimize the Euclidean parameters of the classifier using stochastic gradient descent with momentum and the hyperbolic parameters using its Riemmanian analogue (Bonnabel, 2013). We train for 100 epochs with an initial learning rate of 0.1 and a cosine schedule (Loshchilov & Hutter, 2017), using a standard batch size of 128. We repeat each experiment 3 times, recording the final top-1 classification accuracy together with the latent representations in Euclidean space right before applying the exponential map at the final layer.
Figure 11: Visualization of test images from CIFAR10, with the corresponding final latent representations magnitudes from our hyperbolic ResNet18 classifier implemented with S-RYM. We sample datapoints with the 5% highest magnitudes (Top) and the 5% lowest magnitudes (Bottom).

True label: Truck	True label: Bird	True label: Ship	True label: Dog
Predicted: Truck	Predicted: Bird	Predicted: Ship	Predicted: Dog
Magnitude: 0.5468	Magnitude: 0.4948	Magnitude: 0.5024	Magnitude: 0.4986

Table 3: Performance results on standard image classification benchmarks

Metric	CIFAR10 with ResNet18	CIFAR100 with ResNet18	
	Euclidean	Hyperbolic + Clipping	Hyperbolic + S-RYM
Top-1 accuracy	94.92 ± 0.19	94.81 ± 0.17	95.12 ± 0.09
L2 representations magnitudes	5.846	1.00	0.481
Magnitudes standard deviation	0.747	0.00	0.039
	CIFAR100 ResNet18	Hyperbolic + Clipping	Hyperbolic + S-RYM
Top-1 accuracy	76.86 ± 0.23	76.75 ± 0.23	77.49 ± 0.35
L2 representations magnitudes	11.30	1.00	0.852
Magnitudes standard deviation	1.571	0.00	0.076

In Table[3] we report the different classifiers’ performance together with the mean and standard deviation of the representations’ magnitudes from the images in the test set. The performance of the clipped hyperbolic classifier is very close to the performance of the Euclidean classifier, matching Guo et al. (2022)’s results and validating our implementation. However, the learned representations’ magnitudes soon overshoot the clipping threshold and get mapped to constant-magnitude vectors throughout training. Therefore, the model will effectively stop optimizing for the representations’ magnitudes and only focus on their unit direction. As volume and distances on the Poincaré ball grow exponentially with radius, the magnitude component of the hyperbolic representations is precisely what facilitates encoding hierarchical information, providing its intuitive connection with tree structures. Hence, the resulting clipped ‘hyperbolic’ space spanned by the clipped latent representations will lose its defining degree of freedom and approximately resemble an $n - 1$-dimensional Euclidean space with a rescaled metric, potentially explaining its performance similarity with standard Euclidean classifiers. Even though the focus of our work is not image classification, we find
S-RYM’s performance remarkably recovers and even marginally exceeds the performance of both the Euclidean and the clipped hyperbolic classifiers on these saturated benchmarks. Furthermore, its representations do not explode and maintain magnitude diversity, enabling to more efficiently capture the relative hierarchical nature of image-classification benchmarks (Khrulkov et al., 2020). Overall, these results suggest that clipping simply treats the symptoms of the instabilities caused by end-to-end large scale training by essentially resorting back to Euclidean representations for image classification.

Analyzing the magnitude component of the latent representations for our hyperbolic classifier with S-RYM, we find it correlates with classification performance. For instance, on CIFAR10 the test performance on the images with representations’s with the top 5% magnitudes is 97.17%, while for the bottom 5% is 79.64%. Furthermore, we display some samples from these two distinct groups in Figure 11. From these results and visualizations, it appears that the hyperbolic hierarchical structure serves to encode the degree of uncertainty to disambiguate between multiple image labels due to the blurriness and varying difficulty of the CIFAR10 datapoints. Hence, we believe the observed accuracy improvements of our hyperbolic classifier might be specifically due to more efficiently capturing this specific hierarchical property of the considered datasets.

C IMPLEMENTATION DETAILS

We provide a descriptions of the utilized benchmarks and implementations with the corresponding hyper-parameters for both our Proximal Policy Optimization (PPO) (Schulman et al., 2017) and Rainbow DQN experiments (Hessel et al., 2018). We consider these two main baselines since they are two of the most studied algorithms in the recent RL literature onto which many other recent advances also build upon (e.g., (Cobbe et al., 2021; Laskin et al., 2020b; Mohanty et al., 2021; Raileanu et al., 2020; Raileanu & Fergus, 2021; Yarats et al., 2021a; Van Hasselt et al., 2019; Laskin et al., 2020a; Schwarz et al., 2020)). Furthermore, PPO and Rainbow DQN are based on the main families of model-free RL algorithms, with very distinct properties as described in Appendix A.1. Hence, unlike most prior advances, we do not constrain our analysis to a single class of methods, empirically showing the generality of hyperbolic deep RL. Our implementations closely follow the reported details from recent research, and were not tuned to facilitate our integration of hyperbolic representations. The main reason for this choice is that we wanted to avoid introducing additional confounding factors from our evaluation of hyperbolic representations, as ad-hoc tuning frequently plays a significant role in RL performance (Islam et al., 2017). We would like to acknowledge the Geoopt optimization library (He et al., 2016a), which we used to efficiently train the network parameters located on Riemannian manifolds other than \(\mathbb{R}^n \).

C.1 BENCHMARKS

Procgen. The Procgen generalization benchmark (Cobbe et al., 2020) consists of 16 game environments with procedurally-generated random levels. The state spaces of these environments consist of the RGB values from the 64x64 rescaled visual renderings. Following common practice and the recommended settings, we consider training agents using exclusively the first 200 levels of each environment and evaluate on the full distribution of levels to assess agent performance and generalization. Furthermore, we train for 25M total environment steps and record final training/test performance collected across the last 100K steps averaged over 100 evaluation rollouts.

Atari 100K. The Atari 100K benchmark (Kaiser et al., 2020) is based on the seminal problems from the Atari Learning Environment (Bellemare et al., 2013). In particular, this benchmark consists of 26 different environments and only 100K total environment steps for learning each, corresponding roughly to 2hrs of play time. The environments are modified with the specifications from (Machado et al., 2018), making the state spaces of these environments 84x84 rescaled visual renderings and introducing randomness through sticky actions. We note that this is a significantly different setting than Procgen, testing the bounds for the sample efficiency of RL agents.

C.2 PPO IMPLEMENTATION

Our PPO implementation follows the original Procgen paper (Cobbe et al., 2020), which entails a residual convolutional network (Espeholt et al., 2018) and produces a final 256-dimensional latent...
representation with a shared backbone for both the policy and value function. Many prior improvements over PPO for on-policy learning have been characterized by either introducing auxiliary domain-specific practices, increasing the total number of parameters, or performing additional optimization phases - leading to significant computational overheads (Cobbe et al., 2021; Raileanu & Fergus, 2021; Mohanty et al., 2021). Instead, our approach strives for an orthogonal direction by simply utilizing hyperbolic geometry to facilitate encoding hierarchically-structured features into the final latent representations. Thus, it can be interpreted as a new way to modify the inductive bias of deep learning models for reinforcement learning.

Table 4: PPO hyper-parameters used for the Procgen generalization benchmark

PPO hyperparameters	Value
Parallel environments	64
Stacked input frames	1
Steps per rollout	16384
Training epochs per rollout	3
Batch size	2048
Normalize rewards	True
Discount γ	0.999
GAE λ (Schulman et al., 2015)	0.95
PPO clipping	0.2
Entropy coefficient	0.01
Value coefficient	0.5
Shared network	True
Impala stack filter sizes	16, 32, 32
Default latent representation size	256
Optimizer	Adam (Kingma & Ba, 2014)
Optimizer learning rate	5×10^{-4}
Optimizer stabilization constant (ϵ)	1×10^{-5}
Maximum gradient norm.	0.5

In Table 4, we provide further details of our PPO hyper-parameters, as also described by the original Procgen paper (Cobbe et al., 2020). When using hyperbolic latent representations, we optimize the hyperbolic weights of the final Gyroplane linear layer with the Riemannian Adam optimizer (Béginneul & Ganea, 2018), keeping the same learning rate and other default parameters. As per common practice win on-policy methods, we initialize the parameters of the final layer with $100 \times$ lower magnitude. We implemented the naive hyperbolic reinforcement learning implementations introduced in Subsection 3.2 by initializing also the weights of the preceding layer with $100 \times$ lower magnitudes to facilitate learning appropriate angular layouts in the early training iterations. We found our S-RYM stabilization procedure also enable to safely remove this practice with no effects on performance.

C.3 RAINBOW IMPLEMENTATIONS

Our implementation of Rainbow DQN uses the same residual network architecture as our PPO implementation (Espeholt et al., 2018) but employs a final latent dimensionality of 512, as again specified by Cobbe et al. (2020). Since Cobbe et al. (2020) do not open-source their Rainbow implementation and do not provide many of the relative details, we strive for a simple implementation removing unnecessary complexity and boosting overall efficiency. Following Castro et al. (2018), we only consider Rainbow DQN’s three most significant advances over vanilla DQN (Mnih et al., 2013): distributional critics (Bellemare et al., 2017), prioritized experience replay (Schaul et al., 2016), and n-step returns (Sutton & Barto, 2018). While the methodology underlying off-policy algorithms is fundamentally different from their on-policy counterparts, we apply the same exact recipe of integrating hyperbolic representations in the final layer, and compare against the same variations and baselines.
In Table 5, we provide details of our Rainbow DQN hyper-parameters. We note that sampling of off-policy transitions with n-step returns requires retrieving the future n rewards and observations. To perform this efficiently while gathering multiple transitions from the parallelized environment, we implemented a parallelized version of a segment tree. In particular, this extends the original implementation proposed by Schaul et al. (2016), through updating a set of segment trees implemented as a unique data-structure with a single parallelized operation, allowing for computational efficiency without requiring any storage redundancy. We refer to the shared code for further details. As with our hyperbolic PPO extensions, we also optimize the final layer’s hyperbolic weights with Riemannian Adam, keeping the same parameters as for the Adam optimizer used in the other Euclidean layers.

Table 6: Rainbow DQN hyper-parameters changes for the Atari 100K benchmark

The characteristics of the Atari 100K benchmark are severely different from Procgen, given by the lack of parallelized environments and the $250\times$ reduction in total training data. Hence, we make a minimal set of changes to the training loop hyper-parameters of our Rainbow DQN implementation to ensure effective learning, as detailed in Table 6. These are based on standard practices employed by off-policy algorithm evaluating on the Atari 100K benchmark (Van Hasselt et al., 2019; Laskin et al., 2020a; Yarats et al., 2021a) and were not tuned for our specific implementation.
Table 7: Detailed performance comparison for the Rainbow DQN algorithm on the full Procgen benchmark. We train for a total of 25M steps on 200 training levels and test on the full distribution of levels. We report the mean returns, the standard deviation, and relative improvements from the original Rainbow DQN baseline over 5 random seeds.

Task/Algorithm	Rainbow DQN	Rainbow DQN + data aug.	Rainbow DQN + S-RYM	Rainbow DQN + S-RYM, 32 dim.
	train/test	train/test	train/test	train/test
bigfish	23.17 ± 1.47	23.51 ± 1.47	23.03 ± 1.47	23.08 ± 1.47
boosight	7.17 ± 0.72	7.32 ± 0.72	7.25 ± 0.72	7.30 ± 0.72
cavefly	7.00 ± 0.92	7.32 ± 0.92	7.19 ± 0.92	7.25 ± 0.92
chaser	3.09 ± 2.31	3.26 ± 2.31	3.15 ± 2.31	3.21 ± 2.31
climber	3.68 ± 1.73	3.76 ± 1.73	3.65 ± 1.73	3.72 ± 1.73
coinrun	5.56 ± 4.33	5.72 ± 4.33	5.60 ± 4.33	5.76 ± 4.33
dodgeball	7.42 ± 4.67	7.59 ± 4.67	7.47 ± 4.67	7.63 ± 4.67
fruitbat	21.51 ± 16.94	22.29 ± 16.94	21.97 ± 16.94	22.24 ± 16.94
heist	0.67 ± 0.11	0.67 ± 0.11	0.67 ± 0.11	0.67 ± 0.11
leaper	5.33 ± 3.11	5.33 ± 3.11	5.33 ± 3.11	5.33 ± 3.11
miner	2.22 ± 2.33	2.30 ± 2.33	2.19 ± 2.33	2.27 ± 2.33
maze	3.21 ± 3.67	3.29 ± 3.67	3.17 ± 3.67	3.24 ± 3.67
ninja	3.33 ± 0.33	3.44 ± 0.33	3.33 ± 0.33	3.45 ± 0.33
plunder	8.69 ± 6.28	9.01 ± 6.28	8.83 ± 6.28	9.15 ± 6.28
starpilot	47.83 ± 42.24	51.79 ± 42.24	49.87 ± 42.24	52.83 ± 42.24
Average norm. score	0.2679 ± 0.0165	0.2698 ± 0.0165	0.2774 ± 0.0165	0.2893 ± 0.0165
Median norm. score	0.1856 ± 0.0328	0.1830 ± 0.0328	0.2171 ± 0.0328	0.2500 ± 0.0328
#Env. improvements	0/16 ± 0/16	0/16 ± 0/16	0/16 ± 0/16	0/16 ± 0/16

D.1 Rainbow DQN Procgen results

As shown in Table 7, our hyperbolic Rainbow DQN with S-RYM appears to yield conspicuous performance gains on the majority of the environments. Once again, we find that reducing the dimensionality of the representations to 32 provides even further benefits, outperforming the Euclidean baseline in 13 out of 16 environments. This result not only highlights the efficiency of hyperbolic geometry to encode hierarchical features, but also appears to validate our intuition about the usefulness of regularizing the encoding of non-hierarchical and potentially spurious information. While still inferior to our best hyperbolic implementation, data augmentations seem to have a greater overall beneficial effect when applied to Rainbow DQN rather than PPO. We believe this result is linked with recent literature (Cetin et al., 2022) showing that data-augmentation also provides off-policy RL with an auxiliary regularization effect that stabilizes temporal-difference learning.

D.2 SOTA comparison on Procgen

In Table 8, we compare our best hyperbolic PPO agent with the reported results for the current SOTA Procgen algorithms from Raileanu & Fergus (2021). All these works propose domain-specific practices on top of PPO (Schulman et al., 2017), designed and tuned for the Procgen benchmark: Mixture Regularization (MixReg) (Wang et al., 2020), Prioritized Level Replay (PLR) (Jiang et al., 2021), Data-regularized Actor-Critic (DraC) (Raileanu et al., 2020), Phasic Policy Gradient (PPG) (Cobbe et al., 2021), and Invariant Decoupled Advantage Actor Critic (Raileanu & Fergus, 2021). Validating our implementation, we see that our Euclidean PPO results closely match the previously reported ones, lagging severely behind all other methods. In contrast, we see that introducing our deep hyperbolic representations framework makes PPO outperform all considered baselines but IDAAC, attaining overall similar scores to this algorithm employing several domain-specific practices.
Table 8: Performance comparison on the test distribution of levels for our Euclidean and Hyperbolic PPO agents with the reported results of recent RL algorithms designed specifically for the Procgen benchmark.

Task	Algorithm	Random	Human	DER	OTR	Rainbow	CURL	DrQ	SPR	Rainbow DQN (Ours)	Rainbow DQN + S-RYM (Ours)
Alien	227.80	7127.70	739.9	824.7	558.2	771.2	801.5	548.33	679.20 (+41%)		
Amidar	5.80	1719.50	188.6	82.8	142.1	102.8	176.3	132.55	118.5 (+11%)		
Assault	220.40	742.00	431.2	351.9	600.6	452.4	571.0	539.87	706.26 (+52%)		
Asterix	210.00	850.30	470.8	626.5	734.5	603.5	977.8	448.33	535.00 (+66%)		
Bank Heist	14.20	853.50	51	182.1	313.6	161.8	380.9	255.00 (+49%)			
Battle Zone	2360.00	3718.50	10124.6	4060.6	14870.0	12954.8	16651.0	12466.7	25800.00 (+132%)		
Boxing	0.10	12.10	0.2	2.5	1.2	6.3	35.8	2.92	9.28 (+226%)		
Breakout	1.70	30.50	1.9	9.8	4.9	16.1	17.1	13.72	58.18 (+370%)		
Chopper Command	811.00	7387.80	861.8	1033.3	1058.5	780.3	974.8	791.67	888.00 (+49%)		
Crazy Climber	10780.50	35829.40	16185.3	21327.8	12146.5	20516.5	42923.6	20496.7	22226.00 (+18%)		
Demon Attack	152.10	1971.00	508	711.8	817.6	1113.4	565.2	1204.75	4031.60 (+269%)		
Freeway	0.00	29.60	27.9	25	26.7	9.8	24.4	30.5	29.50 (+3%)		
Frostbite	65.20	4344.70	866.8	231.6	1181.3	331.1	1821.5	318.17	1112.00 (+314%)		
Gaoler	257.60	4214.50	349.5	778	669.3	636.3	715.3	343.67	1132.00 (+917%)		
Hero	1027.00	80862.40	6857	6458.8	6279.3	3736.3	7019.2	9453.25	7654.00 (+21%)		
Jamesbond	29.00	302.80	301.6	112.3	471	236	365.4	190.83	380.00 (+117%)		
Kangaroo	52.00	3015.00	779.3	605.4	872.5	940.6	3276.4	1200	1020.00 (+16%)		
Krall	1598.00	2665.50	2851.5	3277.9	422.96	408.1	3688.9	3445.02	3885.02 (+24%)		
Kang Fu Master	258.50	22736.30	13446.1	5722.2	14307.8	9111	13192.7	7145	10064.00 (+50%)		
Mr. Do	307.30	6591.50	1204.1	941.9	1465.5	960.5	1313.2	1046.17	5250.00 (+12%)		
Pong	-20.70	14.60	-19.3	1.3	-16.5	-8.5	-5.9	3.85	11.98 (+33%)		
Private Eye	24.90	69571.30	978.7	100	218.4	-13.6	124	72.28	106.06 (+71%)		
Qbert	163.90	14355.00	11529.0	509.3	1024.2	834.4	669.1	860.83	2702.00 (+264%)		
Road Runner	11.50	7845.00	9600	26967	5661	8895.1	14220.5	6090	22256.00 (+266%)		
Seaquest	68.40	42054.70	354.1	286.9	384.5	301.2	568.1	259.33	476.80 (+114%)		
Up N Down	533.40	11693.20	2877.4	2847.6	2955.2	3180.8	28138.5	2935.67	3255.00 (+13%)		

Table 9: Performance comparison for our Euclidean and Hyperbolic Rainbow DQN agents with the reported results of recent RL algorithms designed specifically for the Atari 100K benchmark.

Task	Algorithm	Random	Human	DER	OTRainbow	CURL	DrQ	SPR	Rainbow DQN (Ours)	Rainbow DQN + S-RYM (Ours)
Human Norm. Mean	0.00	1.000	0.285	0.264	0.381	0.357	0.704	0.353	0.666 (+94%)	
Human Norm. Median	0.000	1.000	0.161	0.204	0.175	0.268	0.415	0.259	0.366 (+41%)	
# Super	N/A	N/A	2	1	2	2	7	2	5	

Particular, IDAAC not only makes use of a very specialized architecture, but also introduces an auxiliary objective to minimize the correlation between the policy representations and the number of steps until task-completion. Raileanu & Fergus [2021] found this measure to be an effective heuristic correlating with the occurrence of overfitting in many Procgen environments. Moreover, we see that our hyperbolic PPO attains the best performance on 7 different environments, more than any other method. Furthermore, in these environments the other Euclidean algorithms specifically struggle, again indicating the orthogonal effects of our approach as compared to traditional RL advances.

D.3 SOTA Comparison on Atari 100K

In Table 9 we provide detailed raw results for our hyperbolic Rainbow DQN agent, comparing with the results for recent off-policy algorithms for the Atari 100K benchmark, as reported by
Figure 12: Visualization of 2-dimensional hyperbolic embeddings in the starpilot Procgen environment. We sub-sample states from recorded agent trajectories every 15 timesteps. We show the evolution of the hyperbolic latent representations following the recorded policy transitions as compared to random transitions collected by resetting the environments from each state and executing a random policy for the same 15 timesteps.

Schwarzer et al. (2020). All the considered algorithms build on top of the original Rainbow algorithm (Hessel et al., 2018). We consider Data Efficient Rainbow (DER) (Van Hasselt et al., 2019) and Overtrained Rainbow (OTRainbow) (Kielak, 2019) which simply improve the model architectures and other training-loop hyper-parameters, for instance, increasing the number of update steps per collected environment step. We also compare with other more recent baselines that incorporate several additional auxiliary practices and data-augmentation such as Data-regularized Q (DrQ) (Yarats et al., 2021a), Contrastive Unsupervised Representations (CURL) (Laskin et al., 2020a), and Self-Predictive Representations (SPR) (Schwarzer et al., 2020). While our Euclidean Rainbow implementation attains only mediocre scores, once again we see that introducing our deep hyperbolic representations makes our approach competitive with the state-of-the-art and highly-tuned SPR algorithm. In particular, SPR makes use of several architectural advancements, data-augmentation strategies from prior work, and a model-based contrastive auxiliary learning phase. Also on this benchmark, our hyperbolic agent attains the best performance on 8 different environments, more than any other considered algorithm.

D.4 2-DIMENSIONAL REPRESENTATIONS PERFORMANCE AND INTERPRETATION

To visualize and allow us to interpret the structure of the learned representations, we analyze our hyperbolic PPO agents using only two dimensions to model the final latent representations. As mentioned in Section 4 and shown in Table 10, we find even this extreme implementation to provide performance benefits on the test levels over Euclidean PPO. Furthermore, the generalization gap with the training performance is almost null in three out of the four considered environments. As the 2-dimensional representation size greatly constraints the amount of encoded information, this results provides further validation for the affinity of hyperbolic geometry to effectively prioritize features useful for RL. We then observe how these 2-dimensional hyperbolic latent representations evolve within trajectories, mapping them on the Poincaré disk and visualizing the corresponding input states. As summarized in Section 4, we observe a recurring cyclical behavior, where the magnitude of the representations monotonically increases within subsets of the trajectory as more obstacles and/or enemies appear. Together with Figure 10 (on the bigfish environment), we provide another example visualization of this phenomenon in Figure 12 (on the starpilot environment). These plots compare the representations of on-policy states sampled at constant intervals within a trajectory, every 15 timesteps, and deviations from executing 15 timesteps of random behavior after resetting the environment to the previous on-policy

Task \ Algorithm	PPO + S-RYM, 2 dim.	
Levels distribution	train/test	
bigfish	5.65±4 (+52%)	2.34±3 (+60%)
dodgeball	2.62±0 (-48%)	2.36±1 (+26%)
fruitbot	27.18±4 (-10%)	25.75±1 (-2%)
starpilot	30.27±3 (-1%)	29.72±6 (+12%)

Table 10: Performance of 2-dimensional hyperbolic PPO as compared to the original PPO algorithm.
state. We observe the state representations form tree-like branching structures, somewhat reflecting the tree-like nature of MDPs. Within these sub-trajectory structures, we find that the magnitudes in the on-policy trajectory tends to grow in the direction of the Value function’s gyroplane’s normal. Intuitively, this indicates that as new elements appear (e.g., new enemies in Starpilot), the agent recognizes a larger opportunity for rewards (e.g., from defeating them) but requiring a much finer level of control. This is because as magnitude increases, the signed distances with the policy gyroplanes will also grow exponentially, and so will the value of the different action logits, decreasing entropy. In contrast, the magnitudes of the state representations following the random deviations grow in directions with considerably larger orthogonal components to the Value gyroplane’s normal. This still reflects the higher precision required for optimal decision-making, as magnitudes still increase, but also the higher uncertainty to obtain future rewards from these less optimal states.

E FURTHER EXPERIMENTS AND ABLE STUDIES

In this section, we further analyze the properties of our hyperbolic RL framework and its implementation, through additional experiments and ablations. We focus on our hyperbolic PPO algorithm and four representative tasks from the Procgen benchmark.

E.1 S-RYM’S COMPONENTS CONTRIBUTION

![Figure 13: Performance ablating either spectral normalization or rescaling from our Hyperbolic PPO agent stabilized with S-RYM.](image)

Our proposed spectrally-regularized hyperbolic mappings (S-RYM) relies on two main distinct components: spectral normalization and rescaling. As described in Section 3, we design our deep RL models to produce a representation by applying traditional neural network layers in Euclidean space $x_E = f_E(s)$. Before the final linear layer f_H, we then use an exponential map from the origin of the Poincaré to yield a final representation in hyperbolic space $x_H = \exp_0(x_E)$. As shown by Lin et al. (2021), applying spectral normalization to the layers of f_E regulates both the values and gradients similarly to LeCun initialization (LeCun et al., 2012). Hence, we make the regularization approximately dimensionality-invariant by rescaling $x_E \in \mathbb{R}^n$, simply dividing its value by \sqrt{n}. In Figure 13, we show the results from ablating either component from S-RYM. From our results, both components seem crucial for performance. As removing spectral normalization simply recovers the unregularized hyperbolic PPO implementation with some extra rescaling in the activations, its performance is expectedly close to the underwhelming performance of our naive implementations in Figure 6. Removing our dimensionality-based rescaling appears to have an even larger effect, with almost no agent improvements in 3 out of 4 environments. The necessity of appropriate scaling comes from the influence the representations magnitudes have on optimization. When applying spectral normalization, the dimensionality of the representations directly affects its expected magnitude. Thus, high-dimensional latents will result in high-magnitude representations, making it challenging to optimize for appropriate angular layouts in hyperbolic space (Nickel & Kiela, 2017; Ganea et al., 2018) and making the gradients of the Euclidean network parameters stagnate (Guo et al., 2022). These issues cannot even be alleviate with appropriate network initialization, since the magnitudes of all weights will be rescaled by the introduced spectral normalization.
E.2 REPRESENTATION SIZE

In Figure 14, we show the final train and test performance attained by our Euclidean and hyperbolic PPO agents with different dimensionalities for their final latent representations. We collect results on a log scale 2^n with $n \in \{3, 4, 5, 6, 7, 8\}$, i.e., ranging from $2^3 = 8$ to $2^8 = 256$ latent dimensions. Integrating our hyperbolic representations framework with PPO boosts performance across all dimensionalities. Moreover, in 3/4 environments we see both train and test performance of the Euclidean PPO agent considerably dropping as we decrease the latent dimensions. In contrast, the performance of hyperbolic PPO is much more robust, even attaining some test performance gains from more compact representations. As described in Section 2, Euclidean representations require high dimensionalities to encode hierarchical features with low distortion (Matoušek, 1990; Gupta, 1999), which might explain their diminishing performance. Instead, as hyperbolic representations do not have such limitation, lowering the dimensionality should mostly affect their ability of encoding non-hierarchical information, which we believe to counteract the agent’s tendency of overfitting to the limited distribution of training levels and observed states.

E.3 COMPATIBILITY WITH ORTHOGONAL PRACTICES

Introducing hyperbolic geometry to model the representations of RL agents is fundamentally orthogonal to most recent prior advances. Thus, we validate the compatibility of our approach with different methods also aimed at improving the performance and generalization of PPO.

Phasic Policy Gradient (PPG). We re-implement this recent PPO extension designed by Cobbe et al. (2021) specifically for the Procgen benchmark. PPG adds non-trivial algorithmic and computational complexity, by performing two separate optimization phases. In the first phase, it optimizes the same policy and value optimization objective as in PPO, utilizing the latest on-policy data. In the second phase, it utilizes a much larger buffer of past experience to learn better representations in its policy model via an auxiliary objective, while avoiding forgetting with an additional behavior cloning weighted term. The two phases are alternated infrequently after several training epochs. Once again, we incorporate our hyperbolic representation framework on top of PPG without any additional tuning. In Figure 15 we show the results from adding our deep hyperbolic representation framework to PPG. Even though PPG’s performance already far exceeds PPO, hyperbolic representations appear to have similar effects on the two algorithms, with performance on the 200 training
levels largely invaried, and especially notable test performance gains on the bigfish and dodgeball environments. Hence, in both PPO and PPG, the new prior induced by the hyperbolic representations appears to largely reduce overfitting to the observed data and achieve better generalization to unseen conditions. Our approach affects RL in an orthogonal direction to most other algorithmic advances, and our results appear to confirm the general compatibility of its benefits.

Data augmentation. Finally, we also test introducing data augmentation to our Hyperbolic PPO implementation. We consider the same popular random shifts from Yarats et al. (2021a), evaluated in Section 4. We note that the problem diversity characterizing procgen makes it challenging for individual hand-designed augmentations to have a generally beneficial effect, with different strategies working best in different environments (Raileanu et al., 2020). In fact, applying random shifts to PPO appears to even hurt performance on a considerable subset of environments (see Table 1), likely due to the agents losing information about the exact position and presence of key objects at the borders of the environment scene. This inconsistency is reflected onto the hyperbolic PPO agent. In particular, while the addition of random shifts further provides benefits on the bigfish environment, it appears to hurt performance on dodgeball. Overall, integrating our hyperbolic framework still appears considerably beneficial even for the test performance of the data-augmented agent, further showing the generality of our method.

ETHICS STATEMENT

We proposed to provide deep RL models with a more suitable prior for learning policies, using hyperbolic geometry. In terms of carbon footprint, our implementation does not introduce additional compute costs for training, and even appears to perform best with more compact representation sizes. Consequently, given the nature of our contribution, its ethical implications are bound to the implications of advancing the RL field. In this regard, as autonomous agents become more applicable, poor regulation and misuse may cause harm. Yet, we believe these concerns are currently out-weighted by the field’s significant positive potential to advance human flourishing.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our integration of hyperbolic space, experimental setups, and network architectures in Section 3 and also Appendix B. We provide all details, including a full list of hyper-parameters, in Appendix C. We currently provide a preliminary version of our code to reproduce the main experiments at the project website: sites.google.com/view/hyperbolic-rl. In the near future, we will open-source our full documented implementations.