Aerobic Exercise for Parkinson’s Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

Hai-Feng Shu, Tao Yang, Si-Xun Yu, Hai-Dong Huang, Ling-Li Jiang, Jian-Wen Gu, Yong-Qin Kuang*

Department of Neurosurgery, General Hospital of the People's Liberation Army Chengdu Military Region, Chengdu, Sichuan, China

Abstract

Background: Although some trials assessed the effectiveness of aerobic exercise for Parkinson’s disease (PD), the role of aerobic exercise in the management of PD remained controversial.

Objective: The purpose of this systematic review is to evaluate the evidence about whether aerobic exercise is effective for PD.

Methods: Seven electronic databases, up to December 2013, were searched to identify relevant studies. Two reviewers independently extracted data and assessed methodological quality based on PEDro scale. Standardised mean difference (SMD) and 95% confidence intervals (CI) of random-effects model were calculated. And heterogeneity was assessed based on the I^2 statistic.

Results: 18 randomized controlled trials (RCTs) with 901 patients were eligible. The aggregated results suggested that aerobic exercise should show superior effects in improving motor actions (SMD, -0.57; 95% CI -0.94 to -0.19; $p = 0.003$), balance (SMD, 2.02; 95% CI 0.45 to 3.59; $p = 0.01$), and gait (SMD, 0.33; 95% CI 0.17 to 0.49; $p < 0.0001$) in patients with PD, but not in quality of life (SMD, 0.11; 95% CI -0.23 to 0.46; $p = 0.52$). And there was no valid evidence on follow-up effects of aerobic exercise for PD.

Conclusion: Aerobic exercise showed immediate beneficial effects in improving motor action, balance, and gait in patients with PD. However, given no evidence on follow-up effects, large-scale RCTs with long follow-up are warrant to confirm the current findings.

Introduction

Parkinson's disease (PD) is a relatively progressive and neurodegenerative movement disorder that is characterized by many motor and non-motor symptoms such as resting tremor, bradykinesia, balance decrements, gait disruption, and reduced quality of life [1]. It is estimated that PD affects approximately 340,000 adults in the United States and this number would be probably doubled by the year of 2030 [2]. Although the causes of PD are still under investigation, its incidence obviously increases among people aged more than 50 years old [3]. In China, for example, PD prevalence is 1.70% in people aged more than 65 years old [4].

In recent years, aerobic exercise is widely used in assisting pharmacological treatments of PD. It may promote brain health by reducing inflammation, suppressing oxidative stress, and stabilizing calcium homeostasis [5]. Studies in healthy older rodents have shown that regular aerobic exercise triggered plasticity-related changes in the central nervous system, including synaptogenesis, enhanced glucose utilization, angiogenesis, and neurogenesis [6]. Other studies have shown that aerobic exercise, such as treadmill training, dancing, etc, may be beneficial in improving balance, gait, physical function, and quality of life in individuals with PD [7–9].

Some systematic reviews and meta-analyses supported that exercise therapies were effective in improving both motor and non-motor impairments of patients with PD [10,11], but no review has addressed the specific effectiveness of aerobic exercise for PD. In the previous reviews, it is difficult to extract accurate information regarding the contribution of aerobic exercises in patients with PD because multiple exercise therapies were often involved.

Therefore, this systematic review aims to evaluate the evidence about whether aerobic exercise is effective for patients with PD. And we conducted meta-analyses of randomized controlled trials...
Table 1. Characteristics of randomized controlled trials of aerobic exercise for PD.

First author, year, country	Hoehn and Yahr stage	Mean duration of PD (year)	Sample size, mean age (year)	Duration (week)	Follow-up (week)	Main outcome assessments	Experimental group intervention	Control group intervention	
Thaut, 1996, US	NR	7	37, 71	3	—	Gait	Walking (30 min/9sessions)	1) Walking plus rhythmic auditory stimulation (30 min/9sessions); 2) Usual care	
Miyai, 2000, Japan	2.5–3	4.2	10, 68	4	—	Gait	UPDRS, Gait	Body-weight-supported treadmill (45 min/12sessions); Physical therapy (45 min/12sessions)	
Miyai, 2002, Japan	2.5–3	4.3	20, 70	4	24	Gait	UPDRS, Gait	Body-weight-supported treadmill (45 min/12sessions); Physical therapy (45 min/12sessions)	
Protas, 2005, US	2–3	7.6	18, 72	8	—	Gait	UPDRS, Gait, Gait and step training (60 min/24sessions)	Usual care	
Burini, 2005, Italy	2–3	11	26, 64	7	—	UPDRS, Gait, PDQ-39	Aerobic exercise (45 min/20sessions)	Ogong (50 min/20sessions)	
Calit, 2007, Turkey	2–3	3.6	31, 72	8	—	Gait, BBT	UPDRS, Gait	Treadmill training	Usual care
Fisher, 2008, US	1–2	1	30, 63	8	—	UPDRS, Gait	Body-weight-supported treadmill (45 min/24sessions)	1) Traditional physical therapy (45 min/24sessions); 2) Education (60 min/6sessions)	
Hackney, 2008, US	1.5–3	7.1	33, 64	13	—	UPDRS, Gait, BBS, Gait	UPDRS, Gait	Treadmill training associated with auditory and visual cues (20 min/28sessions)	No intervention
Frazzitta, 2009, Italy	3	13	40, 71	4	—	UPDRS, Gait	UPDRS, Gait	Tai Chi (60 min/20sessions)	No intervention
Hackney, 2009, US	1–3	7.3	48, 67	13	—	UPDRS, BBS, Gait	UPDRS, Gait, Gait	1) Tango; 2) Waltz/Foxtrot (60 min/20sessions)	No intervention
Sage, 2009, Canada	NR	3.5	36, 66	12	—	UPDRS, Gait	UPDRS, Gait	Aerobic exercise (30 min/36sessions)	1) Sensory attention focused exercise (40–60 min/30–34sessions); 2) Waiting list
Reuter, 2011, Germany	2–3	5.5	90, 63	24	—	UPDRS, Gait, PDQ-39	UPDRS, Gait, Gait	1) Nordic walking (70 min/24sessions); 2) Walking (70 min/24sessions)	Flexibility and relaxation (70 min/24sessions)
Canning, 2012, Australia	1–2	5.5	20, 62	6	6	UPDRS, Gait, PDQ-39	Home-based treadmill training (30–40 min/24sessions)	Usual care	
Li, 2012, US	1–4	7	195, 69	24	—	UPDRS, Gait	UPDRS, Gait	Tai Chi (60 min/48sessions)	1) Stretching; 2) Resistance training (60 min/48sessions)
Picelli, 2012, Italy	3–4	7.5	34, 68	4	4	UPDRS, Gait, BBS	UPDRS, Gait	Robot-assisted gait training (40 min/12sessions)	Physical therapy
Schenkman, 2012, US	1–3	4.5	121, 64	64	—	UPDRS, FRT, PDQ-39	UPDRS, Gait	Aerobic exercise (45–60 min/320–448sessions)	1) Flexibility/balance/function exercise; 2) Home-based exercise (45–60 min/320–448sessions)
Shulman, 2013, US	1–3	6.2	67, 66	12	—	UPDRS, Gait	UPDRS, Gait	1) Higher-intensity treadmill (30 min/36sessions); 2) Lower-intensity treadmill (50 min/36sessions)	Stretching and resistance
Amano, 2013, US	2–3	8	45, 66	16	—	UPDRS, Gait	UPDRS, Gait	Tai Chi (60 min/32–48sessions)	1) Ogong (60 min/32–48sessions); 2) No exercise

PD: Parkinson’s disease; NR: No reported; UPDRS: Unified Parkinson’s Disease Rating Scale; PDQ-39: Parkinson’s Disease Questionnaire 39; BBT: Berg Balance Test; BBS: Berg Balance Scale; FRT: Functional Reach Test.

doi:10.1371/journal.pone.0100503.t001
RCTs focusing specifically on balance, gait, and quality of life in patients with PD.

Methods

Search Strategy

The following electronic databases were searched from their inception to December 2013: PubMed, EMBASE, OVID-MEDLINE, Cochrane Library, CNKI (China Knowledge Resource Integrated Database), Weipu Database for Chinese Technical Periodicals, and Wan Fang Data. The following keywords were used in combinations: Parkinson, Parkinson’s disease, Parkinsonism, exercise, physical activity, and physical therapy. Literature was also identified by citation tracking using reference lists from papers and internet searching. In order to include unpublished studies in our review, dissertations and trial registrations were also searched, and we contacted experts in this field. Two authors (HFS and TY) undertook the initial literature search and identified eligible studies. If it was unclear as to whether the study met the inclusion criteria, advice was sought from a third author and any disagreement was settled down by a consensus after discussion.

Figure 1. Flow chart for this meta-analysis. RCTs: randomized controlled trials.
 doi:10.1371/journal.pone.0100503.g001

Study Selection

The studies that met the following criteria were included: (1) RCTs of aerobic exercise for PD; (2) the target population was aged 20–85 years and confirmed diagnosis of PD; (3) the main intervention should be aerobic exercise and the exercise should be specifically suitable for the challenges and difficulties presented by PD; (4) the effect of aerobic exercise intervention was compared with any comparator, including other forms of exercise or physical activity; (5) the outcomes included at least one of the following: balance, gait, or health-related quality of life; (6) RCTs should contain available data for the meta-analysis; (7) the paper was available in either English or Chinese.

A study was excluded if: (1) the effect of a non-aerobic exercise intervention was evaluated (such as resistance training, behavioral interventions, music therapy, cueing strategies); (2) the paper did not report outcomes for the first assessment period (cross-over studies only) so as to prevent any bias of carry over or order effects.

Data Extraction

Two reviewers (HFS and SXY) independently extracted data onto predefined criteria in Table 1. We contacted primary authors when relevant information was not reported. Differences were settled by discussion with reference to the original article. For crossover studies, we considered the risk for carryover effects to be prohibitive, so we selected only the first phase of the study. First
Table 2. PEDro scale of quality for eligible randomized controlled trials.

Study	Eligibility criteria	Random allocation	Concealed allocation	Similar at baseline	Subjects blinded	Therapists blinded	Assessors blinded	<15% dropouts	Intention-to-treat analysis	Between-group comparisons	Point measures and variability data	Total
Thaut, 1996 US	1	1	0	1	0	0	0	1	1	1	1	6
Miyai, 2000, Japan	1	1	0	1	0	0	0	1	1	1	1	6
Miyai, 2002, Japan	1	1	0	1	0	0	0	0	0	0	1	4
Protasa, 2005, US	1	1	0	1	0	1	1	1	1	1	1	7
Burini, 2006, Italy	1	1	1	1	0	0	0	1	0	1	1	6
Cakir, 2007, Turkey	1	1	0	1	1	1	1	0	0	0	1	5
Fisher, 2008, US	1	1	1	1	0	0	0	1	1	1	1	8
Hackney, 2008, US	1	1	0	1	0	1	1	0	0	1	1	5
Frazzitta, 2009, Italy	1	1	0	1	0	0	0	1	1	1	1	6
Hackney, 2009, US	1	1	0	1	0	0	0	1	0	1	1	5
Sage, 2009, Canada	1	1	0	1	0	0	0	1	1	1	1	6
Reuter, 2011, Germany	1	1	0	1	0	0	1	1	1	1	1	7
Canning, 2012, Australia	1	1	1	1	0	0	0	1	1	1	1	8
Li, 2012, US	1	1	0	1	0	1	1	1	1	1	1	7
Picelli, 2012, Italy	1	1	0	1	0	0	1	1	0	1	1	6
Schenkmann, 2012, US	1	1	1	1	0	1	0	0	0	0	1	6
Shulman, 2013, US	1	1	0	1	0	0	0	1	1	1	1	5
Amano, 2013, US	1	1	0	1	0	0	1	1	1	1	1	7

Criteria (2–11) were used to calculate the total PEDro score. Each criterion was scored as either 1 or 0 according to whether the criteria was met or not, respectively.
doi:10.1371/journal.pone.0100503.t002
author, country, and year of the study were extracted as general study information. Population data, outcome assessments, interventions, and length of follow-up were taken to analyze the study characteristics.

Quality Assessment

The methodological quality of RCTs was assessed independently by two reviewers (SXY and HDH) with PEDro scale, which is based on the Delphi list and has been reported to have a fair-to-good reliability for RCTs of the physiotherapy in systematic reviews [12,13]. The PEDro score ranged from 0 to 10 points. A cut point of 6 on the PEDro scale was used to indicate high-quality studies as this had been reported to be sufficient to determine high quality versus low quality in previous studies [12]. Disagreements were resolved by discussion between the reviewers, with the information of the primary author being sought if necessary. The PEDro scores were all settled down by consensus.

Figure 2. Forest plot showing the effect of aerobic exercise on unified Parkinson's disease rating scale (UPDRS).

doi:10.1371/journal.pone.0100503.g002
Data Analysis
Meta-analysis was conducted with Cochrane Collaboration software (Review Manager Version 5.1). For continuous data, standardized mean difference (SMD) and 95% confidence intervals (CI) of random-effects model were calculated for all eligible trials. Heterogeneity across studies was tested based on the I^2 statistic, a quantitative measure of inconsistency across studies, and studies with I^2<40% was considered to have low heterogeneity, I^2 of 40% to 75% was considered moderate heterogeneity, and I^2>75% was considered high heterogeneity. Trials, including 2 similar intervention or control groups, had the groups combined with computational formula provided by the Cochrane handbook.2 similar intervention or control groups, had the groups combined with computational formula provided by the Cochrane handbook. The quality of the included studies was summarized in Table 2.

Results
Study Selection
Searching identified 310 records, of which 35 documents were retrieved from the screening of titles and abstracts. At last, 18 trials published between 1996 and 2013 were included in our meta-analysis [7–9,14–28]. 17 literatures were eliminated for the reasons that 2 of them failed to randomize [29,30], 8 without available data for the meta-analyses [31–38], and 7 violated the inclusion criteria [39–45]. Detailed selection process was showed in Figure 1. In course of document screening, no divergent views were found between the reviewers.

Study Characteristics
Participants. There were 901 patients in the 18 eligible RCTs. Mean and standard deviation (SD) of age for all participants was 67±3.3 years, and the PD duration was 6.4±2.7 years. Most trials recruited participants with mild-to-moderate PD, including 14 with Hoehn and Yahr stage I to III [7,8,15–22,24–26,28] and 2 with Hoehn and Yahr stage I to IV [9,25].

Interventions. All the eligible literatures reported aerobic exercise interventions including treadmill training, Tai Chi, walking, dancing, etc. The interventions in control group were various, such as no intervention, usual care, stretching, resistance exercises, physical therapy, and other exercise. The intervention time spanned from 3 weeks to 16 months. Detailed characteristics of the included trials were summarized in Table 1.

Methodological Quality
The quality of the included studies was summarized in Table 2. The total scores for the methodological quality ranged from 4 to 8 points. No studies reported subjects-blinding and therapists-blinding, which were the common failing for the non-pharmacological clinical trials. However, most of them (78%) performed assessors-blinding [7–9,17–21,23–28]. Although all trials adopted random assignment of patients, only 4 used adequate method of allocation concealment [8,18,20,26]. The expulsion of 7 studies was definitely higher than 15% [7,16,18,19,21,26,27]. As for the intention-to-treat analysis, 9 trials were failed for cancelling the dropout data in the last results [7,16,18,19,21,23,25–27]. For the remaining items on PEDro scale, the eligible studies showed a high methodological quality.

Quantitative Data Synthesis
Unified Parkinson’s disease rating scale (UPDRS). UPDRS, as the most common marker in the clinical study of PD, was employed in most eligible RCTs. The aggregated result showed a statistically significant benefit in favor of aerobic exercise for PD in UPDRS III (SMD, −0.57; 95% CI −0.94 to −0.19; p = 0.003; Figure 2) [7–9,15,16,20–23,25,26,28]. But it was not associated with significant improvements in UPDRS I (SMD, −0.33; 95% CI −0.87 to 0.22; p = 0.24; Figure 2) [15,16,20], UPDRS II (SMD, −0.31; 95% CI −0.97 to 0.33; p = 0.36; Figure 2) [15,16,20,26], UPDRS IV (SMD, −0.56; 95% CI −1.26 to 0.13; p = 0.11; Figure 2) [15,16], nor UPDRS tot (SMD, −0.28; 95% CI −0.73 to 0.18; p = 0.23; Figure 2) [15,16,20,26]. This suggested that aerobic exercise could positively improve motor actions in patients with PD.

Balance. 5 studies assessed equilibrium function of patients with PD. Nearly half of trials showed favorable effects of aerobic exercise in improving balance in patients with PD, and the aggregated result also supported it (SMD, 0.15; p = 0.28; Figure 4) [14,17,20,23,28].

Gait. Aerobic exercise showed superior effects in improving gait in patients with PD (SMD, 0.33; 95% CI 0.17 to 0.49; p< 0.0001; Figure 4). 6-minute walking test, stride/step length, gait velocity, cadence, and time up and go were analyzed in eligible studies. The aggregated results suggested that aerobic exercise should show significant effects compared with control therapies in 6-minute walking test (SMD, 0.72; 95% CI 0.08 to 1.36; p = 0.03; Figure 4) [7,8,21,22,27], stride/step length (SMD, 0.31; 95% CI 0.08 to 0.53; p = 0.008; Figure 4) [7–9,17,21–23,28], gait velocity (SMD, 0.35; 95% CI 0.10 to 0.60; p = 0.005; Figure 4) [7–9,14,15,17,20–24,28], and time up and go (SMD, 0.42; 95% CI 0.08 to 0.76; p = 0.02; Figure 4) [7,9,21,23,25]. However, none of the trials indicated the evidence in favor of aerobic exercise for PD in the assessment of the cadence (SMD, −0.18; 95% CI −0.52 to 0.13; p = 0.28; Figure 4) [14,17,20,23,28].

Quality of life. Four trials reported beneficial effects of aerobic exercise for PD in the quality of life, but there was no difference between aerobic exercise and control therapies.
Figure 4. Forest plot showing the effect of aerobic exercise on gait in patients with Parkinson’s disease.

doi:10.1371/journal.pone.0100503.g004
Discussion

This is the first systematic review to evaluate the effectiveness of aerobic exercise for PD. Our meta-analyses suggested that aerobic exercise significantly improve motor action, balance, and gait including gait velocity, stride/step length, and walking ability in patients with PD. Currently, there was no sufficient evidence to support or refute the value of aerobic exercise in improving quality of life in patients with PD compared with other therapies. And there was no valid evidence on follow-up effects of aerobic exercise intervention [26].

Follow-up Effect

3 trials reported the follow-up effects of aerobic exercise for PD. The follow-up duration ranged from 4 weeks to 24 weeks. 1 study showed persistency effects of aerobic exercise in the number of steps for the 10-m walk [16], 1 in quality of life [9], and 1 in balance, gait, and motor action [25].

Adverse Events

Only two studies reported non-serious adverse events during the aerobic exercise training period. Two patients experienced hypotension in hot weather, four fell due to obstacles, five twisted ankles during cross-country walking, and one complained of pain in Reuter’s study [24]. The other study reported one non-injurious fall and two complaints of soreness or pain during aerobic exercise intervention [26].

Follow-up Effect

3 trials reported the follow-up effects of aerobic exercise for PD. The follow-up duration ranged from 4 weeks to 24 weeks. 1 study showed persistency effects of aerobic exercise in the number of steps for the 10-m walk [16], 1 in quality of life [9], and 1 in balance, gait, and motor action [25]. The other study reported one non-injurious fall and two complaints of soreness or pain during aerobic exercise intervention [26].

Discussion

This is the first systematic review to evaluate the effectiveness of aerobic exercise for PD. Our meta-analyses suggested that aerobic exercise significantly improve motor action, balance, and gait including gait velocity, stride/step length, and walking ability in patients with PD. Currently, there was no sufficient evidence to support or refute the value of aerobic exercise in improving quality of life in patients with PD compared with other therapies. And there was no valid evidence on follow-up effects of aerobic exercise intervention [26].

Follow-up Effect

3 trials reported the follow-up effects of aerobic exercise for PD. The follow-up duration ranged from 4 weeks to 24 weeks. 1 study showed persistency effects of aerobic exercise in the number of steps for the 10-m walk [16], 1 in quality of life [9], and 1 in balance, gait, and motor action [25]. The other study reported one non-injurious fall and two complaints of soreness or pain during aerobic exercise intervention [26].

Adverse Events

Only two studies reported non-serious adverse events during the aerobic exercise training period. Two patients experienced hypotension in hot weather, four fell due to obstacles, five twisted ankles during cross-country walking, and one complained of pain in Reuter’s study [24]. The other study reported one non-injurious fall and two complaints of soreness or pain during aerobic exercise intervention [26].

Discussion

This is the first systematic review to evaluate the effectiveness of aerobic exercise for PD. Our meta-analyses suggested that aerobic exercise significantly improve motor action, balance, and gait including gait velocity, stride/step length, and walking ability in patients with PD. Currently, there was no sufficient evidence to support or refute the value of aerobic exercise in improving quality of life in patients with PD compared with other therapies. And there was no valid evidence on follow-up effects of aerobic exercise intervention [26].

Follow-up Effect

3 trials reported the follow-up effects of aerobic exercise for PD. The follow-up duration ranged from 4 weeks to 24 weeks. 1 study showed persistency effects of aerobic exercise in the number of steps for the 10-m walk [16], 1 in quality of life [9], and 1 in balance, gait, and motor action [25]. The other study reported one non-injurious fall and two complaints of soreness or pain during aerobic exercise intervention [26].

Adverse Events

Only two studies reported non-serious adverse events during the aerobic exercise training period. Two patients experienced hypotension in hot weather, four fell due to obstacles, five twisted ankles during cross-country walking, and one complained of pain in Reuter’s study [24]. The other study reported one non-injurious fall and two complaints of soreness or pain during aerobic exercise intervention [26].

Discussion

This is the first systematic review to evaluate the effectiveness of aerobic exercise for PD. Our meta-analyses suggested that aerobic exercise significantly improve motor action, balance, and gait including gait velocity, stride/step length, and walking ability in patients with PD. Currently, there was no sufficient evidence to support or refute the value of aerobic exercise in improving quality of life in patients with PD compared with other therapies. And there was no valid evidence on follow-up effects of aerobic exercise intervention [26].

Follow-up Effect

3 trials reported the follow-up effects of aerobic exercise for PD. The follow-up duration ranged from 4 weeks to 24 weeks. 1 study showed persistency effects of aerobic exercise in the number of steps for the 10-m walk [16], 1 in quality of life [9], and 1 in balance, gait, and motor action [25]. The other study reported one non-injurious fall and two complaints of soreness or pain during aerobic exercise intervention [26].

Adverse Events

Only two studies reported non-serious adverse events during the aerobic exercise training period. Two patients experienced hypotension in hot weather, four fell due to obstacles, five twisted ankles during cross-country walking, and one complained of pain in Reuter’s study [24]. The other study reported one non-injurious fall and two complaints of soreness or pain during aerobic exercise intervention [26].
interventions could influence our analysis. So it is difficult to conduct subgroup analyses on the different durations of aerobic exercise and determine the optimal size of aerobic exercise for PD. And there was insufficient data for the follow-up effect of aerobic exercise for PD, which is important for final decision of the clinicians. In addition, we could not get rid of the publication bias due to retrieval of documents in English and Chinese databases only.

Conclusions

This systematic review shows the positive evidence that aerobic exercise has immediate beneficial effects in improving motor action, balance, and gait in patients with PD. However, this is not sufficient to reach any definitive conclusion because there are very few studies with a follow-up evaluation. Large-scale RCTs with long follow-up are warrant to confirm the current findings of aerobic exercise for PD.

Supporting Information

Checklist S1 PRISMA Checklist. (DOC)

Author Contributions

Conceived and designed the experiments: HFS JWG YQK. Performed the experiments: HFS TY SXH DHJ. Analyzed the data: HFS SXH LJ. Contributed reagents/materials/analysis tools: HFS TY SXH DHJ. Wrote the paper: HFS YQK.
41. Frazzitta G, Bertotti G, Riboldazzi G, Turla M, Uccellini D, et al. (2012) Effectiveness of intensive inpatient rehabilitation treatment on disease progression in parkinsonian patients: a randomized controlled trial with 1-year follow-up. Neurorehabil Neural Repair 26: 144–150.

42. Yousefi B, Tadibi V, Khoei AF, Montazeri A (2009) Exercise therapy, quality of life, and activities of daily living in patients with Parkinson disease: a small scale quasi-randomised trial. Trials doi:10.1186/1745-6215-10-67

43. Ashburn A, Fazakarley L, Ballinger C, Pickering R, McLellan LD, et al. (2007) A randomized controlled trial of a home based exercise programme to reduce the risk of falling among people with Parkinson’s disease. J Neurol Neurosurg Psychiatry 78: 678–684.

44. Ellis T, de Goede CJ, Feldman RG, Wolters EG, Kwakkel G, et al. (2005) Efficacy of a physical therapy program in patients with Parkinson’s disease: a randomized controlled trial. Arch Phys Med Rehabil 86: 626–632.

45. Nadeau A, Pourcher E, Corbeil P (2013) Effects of 24 weeks of treadmill training on gait performance in Parkinson disease. Med Sci Sports Exerc (In press).

46. Herman T, Giladi N, Hausdorff JM (2009) Treadmill training for the treatment of gait disturbances in people with Parkinson’s disease: a mini-review. J Neural Transm 116:307–318.

47. Mehrholz J, Friis R, Kugler J, Twork S, Storch A, et al. (2010) Treadmill training for patients with Parkinson’s disease. Cochrane Database Syst Rev 1, Art. No.: CD007030. doi: 10.1002/14651858.CD007030.pub2

48. Goodwin VA, Richards SH, Taylor RS, Taylor AH, Campbell JL (2008) The effectiveness of exercise interventions for people with Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 23:631–640.

49. Roy I, Roy SS (2012) A systematic review on various models of exercise on people with Parkinson disease. JAMSP 18:1–10.

50. Frazzitta G, Balbi P, Maestri R, Bertotti G, Boveri N, et al. (2013) The beneficial role of intensive exercise on Parkinson disease progression. Am J Phys Med Rehabil 92:523–532.

51. Petzinger GM, Fisher BE, McEvoy S, Beeler JA, Walsh JP, et al. (2013) Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease. Lancet Neurol 12:716–726.

52. van Praag H, Shubert T, Zhao C, Gage FH (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25:8680–8685.

53. Physical Activity Guidelines Advisory Committee (2008) Physical activity guidelines advisory committee report, 2008. Washington, DC: US Department of Health and Human Services, 2008.

54. US Department of Health and Human Services (2008) 2008 physical activity guidelines for Americans. Be active, healthy, and happy.

55. Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, et al. (2007) Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc 39:1435–1445.

56. Hall EE, Ekelkakis P, Petruzzello SJ (2002) The affective beneficence of vigorous exercise revisited. Br J Health Psychol 7:47–66.