Extracorporeal Membrane Oxygenation in Severe Acute Respiratory Distress Syndrome: Possible Late Indication for Coronavirus Disease 2019?

Thibaud Soumagne, MD, PhD; Franck Grillet, MD; Gaël Piton, MD, PhD; Hadrien Winiszewski, MD, MSc; Gilles Capellier, MD, PhD

Background: There is now substantial evidence to support venovenous extracorporeal membrane oxygenation efficacy and safety for patients with severe acute respiratory distress syndrome. However, recent guidelines recommend against the initiation of extracorporeal membrane oxygenation in patients with mechanical ventilation for coronavirus disease 2019 severe acute respiratory distress syndrome for greater than 7–10 days.

Case Summary: We report the case of a patient with coronavirus disease 2019 severe acute respiratory distress syndrome with successful late venovenous extracorporeal membrane oxygenation initiation after 20 days of mechanical ventilation. Respiratory compliance, arterial blood gases, and radiological lesions improved progressively under venovenous extracorporeal membrane oxygenation and ultraprotective ventilation. The patient was discharged from ICU.

Conclusions: As coronavirus disease 2019 is a new and incompletely understood entity, we believe that late extracorporeal membrane oxygenation may be considered in selected patients as a bridge to recovery. Further prospective studies are, however, needed.

Key Words: acute respiratory distress syndrome; coronavirus disease 2019; extracorporeal membrane oxygenation; severe acute respiratory syndrome coronavirus 2
but otherwise unremarkable. Initial laboratory work demonstrated lymphopenia and high fibrinogen and C-reactive protein levels (Fig. 1). CT chest demonstrated diffuse ground-glass opacities in the periphery of both lungs and was suggestive of COVID-19 (Fig. 2). Furthermore, a nasopharyngeal swab for severe acute respiratory syndrome coronavirus 2 was found positive, confirming COVID-19.

He progressively worsened and was admitted to the ICU department 6 days after hospital admission. A treatment including hydroxychloroquine, azithromycin, and tazobactam-piperacillin was given for 5 days. In addition, invasive mechanical ventilation and neuromuscular blockers were started. No nosocomial infection was identified.

Despite optimal ARDS therapy, including eight prone-positioning sessions, respiratory gas exchange and respiratory compliance progressively worsened. Steroids at 1 mg/kg per day were, therefore, initiated. After 20 days of invasive mechanical ventilation, VV-ECMO was required because of arterial blood pH less than 7.24 with a Paco$_2$ at 69 mm Hg for greater than 6 hours (with respiratory rate increased to 35/min), whereas Pplat was in the 30-cm H$_2$O range (1, 9). In addition, the patient experienced severe hypoxemia (Pao$_2$/Fio$_2$ at 98 mm Hg) and very low respiratory system compliance (17.5 mL/cm H$_2$O). VV-ECMO was performed percutaneously at bedside by cannulating the right femoral vein for the drainage of the blood and the right internal jugular vein for venous return. Placement was facilitated by using transesophageal echocardiography. CardioHelp device with HLS Set Advanced 5.0 circuit was used (Maquet Getinge, Hirrlingen, Germany). Anticoagulation was achieved with unfractionated heparin that was adjusted to a target antiXa activity between 0.3 and 0.5 international units per milliliter. In addition to ECMO, ultraprotective ventilation (tidal volume at 3 mL/kg) was initiated.

Figure 1. Time-course of respiratory system mechanics, ventilator setting, blood gases, and laboratory findings during ICU hospitalization. Day 1 represents the onset of COVID-19 symptoms. Asterisk indicates prone positioning session. ACV = assisted controlled ventilation, APRV = airway pressure release ventilation, CRP = C-reactive protein, CstRS = static compliance of the respiratory system, ECMO = extracorporeal membrane oxygenation, H-A = hydroxychloroquine + azithromycine, PEEP = positive end-expiratory pressure, PSV = pressure support ventilation.
Respiratory compliance and arterial blood gases improved progressively under VV-ECMO and ultraprotective ventilation (Fig. 1). The patient was tracheotomized and was weaned from VV-ECMO after 17 days of ECMO. No complication of ECMO was noticed (infection, severe hemorrhagic complications, cannula thrombosis, and intravascular hemolysis) except need for red cell transfusion (2 units). In addition, mechanical ventilation was stopped at day 54 and tracheotomy was removed at day 60. The patient was discharged from ICU at day 60 and from hospital at day 90 after post-ICU rehabilitation (performance status 1, no need for oxygen supply).

Regarding radiological evolution, ground glass opacities progressively resolved (Fig. 2) but slight fibrotic appeared over time. In addition, quantitative radiological assessment showed progressive pulmonary improvement (Fig. 3).

DISCUSSION

Recent studies have reported that mortality in patients requiring ECMO for COVID-19 severe ARDS ranged from 40% to 60% (3–5, 10, 11). This mortality is somewhat higher than that in non-COVID-19 ARDS patients including bacterial pneumonia and severe influenza A (H1N1) ARDS (1, 12, 13). This higher mortality rate should, however, be interpreted with caution as large studies are lacking.

In reported cases of COVID-19, the time between the onset of symptoms and cannulation was of approximately 10–17 days (3, 10, 14). In addition, all reported cases of COVID-19 had a duration from invasive mechanical ventilation to ECMO of less than 7 days (3, 10, 14). Furthermore, Yang et al (3) suggested that in the setting of COVID-19, earlier initiation of ECMO (evaluated by the length of mechanical ventilation

![Figure 2. Time-course of chest CT from ICU admission to hospital discharge.](image)
The lung parenchyma was divided into two volumes thanks to maps based on HU values as follows: normal = (–1024 HU; –730 HU) and hyperdense lung (i.e., abnormal) = (–729 HU; +1024 HU).

Figure 3. Quantitative assessment of chest CT. Pulmonary analysis was done on a dedicated spectral imaging postprocessing software (Thoracic VCAR, Advantage Workstation platform, Version 3.2 Ext 3.3, GE Healthcare, Milwaukee, WI). Initial post-treatment was lung segmentation, excluding small pulmonary vessels, and airways. The lung parenchyma was divided into two volumes thanks to maps based on HU values as follows: normal = (–1024 HU; –730 HU) and hyperdense lung (i.e., abnormal) = (–729 HU; +1024 HU).
13. Vaquer S, de Haro C, Peruga P, et al: Systematic review and meta-analysis of complications and mortality of veno-venous extracorporeal membrane oxygenation for refractory acute respiratory distress syndrome. *Ann Intensive Care* 2017; 7:51

14. Sultan I, Habertheuer A, Usman AA, et al: The role of extracorporeal life support for patients with COVID-19: Preliminary results from a state-wide experience. *J Card Surg* 2020; 35:1410–1413

15. Rozencwaig S, Guihot A, Franchineau G, et al: Ultra-protective ventilation reduces biotrauma in patients on venovenous extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. *Crit Care Med* 2019; 47:1505–1512

16. Güldner A, Kiss T, Bluth T, et al: Effects of ultraprotective ventilation, extracorporeal carbon dioxide removal, and spontaneous breathing on lung morphofunction and inflammation in experimental severe acute respiratory distress syndrome. *Anesthesiology* 2015; 122: 631–646

17. Hartman ME, Hernandez RA, Patel K, et al: COVID-19 respiratory failure: Targeting inflammation on VV-ECMO support. *ASAIO J* 2020; 66:603–606

18. Ojha V, Mani A, Pandey NN, et al: CT in coronavirus disease 2019 (COVID-19): A systematic review of chest CT findings in 4410 adult patients. *Eur Radiol* 2020 May 30:1–10. [online ahead of print]