CORRELATION BETWEEN QUALITY OF LIFE AND THE CLINICAL RESULTS OF PATIENTS WITH LEPROSY WITH DROP FOOT AFTER TENDON TRANSFER

ABSTRACT

Objective: To evaluate the functional results of surgically correcting drop foot in patients with leprosy and compare their SALSA, Social Participation, and AOFAS score. Methods: Overall, 22 patients were subjected to posterior tibial tendon transfer via the subcutaneous route to the foot dorsum with an average follow-up of 56 months (min 12, max 70). In our sample, 15 of the enrolled patients were men and seven, women, aged between 20 and 73 years old who were operated on from January 2014 to December 2017. The Pearson's correlation test (r) was used to measure the correlation among those scales. A p < 0.05 was considered significant between the pre- and post-operative AOFAS scale scores. Results: Pre-operative average AOFAS score was 59.6 (min 35, max 74) and 77.2 postoperative (min 36, max 97) (p < 0.0001), postoperative Salsa and Social Participation scale, 30.6 and 22.5, respectively. Statistical analysis suggests a strong positive correlation between AOFAS and Salsa scales (r = −0.83) and AOFAS and social participation (r = −0.78). Average dorsiflexion was 5.4 degrees. Conclusion: The surgical correction of drop foot positively affects the quality of life and social participation of patients with leprosy. Level of Evidence III, Retrospective Study.

Keywords: Peroneal Neuropathies. Leprosy. Tendon Transfer. Drop foot.

INTRODUCTION

Leprosy remains an important public health problem in many countries in the world. Currently, Brazil continues to show a high incidence rate of the disease, behind only India in number of new cases. According to a WHO annual report, in 2018, 208,641 new cases were diagnosed in the world, of which 30,957 were in Brazil.
MATERIALS AND METHODS

Ethical aspects

This study complied with the ethical recommendations of the Research Ethics Committee of HUCFF/FM-UFRJ and CNS/MS 196/96. Research was initiated after its approval and registration under no. 96/13. All patients included in this study were duly informed of it and those who agreed to participate gave us their consent by signing informed consent forms, a copy of which was given to them.

Study design

This is a retrospective and cross-sectional study with functional evaluation, as well as measurement of activity levels and social participation of patients with leprosy subjected to the surgical correction of foot drop via transfer of the posterior tibial tendon to the foot dorsum. The following questionnaires were used and validated in Brazil: SALSA, social participation, and the AOFAS ankle-hindfoot scales.

Study population

Between January 2014 and December 2017, 29 patients with leprosy underwent surgery to correct foot drop. Of these, one died, another suffered amputation below the knee due to complications unrelated to tendon transfer or leprosy, three were lost in follow-up, and two refused to participate in this study. Thus, our sample totaled 22 patients. Among these, 15 individuals were men and seven, women aged from 20 to 83 years old with a minimum of one-year follow-up (mean of 39.1 months, minimum of 12 and maximum of 70 months).

Inclusion criteria were patients aged 18 years or older with foot drop in patients with leprosy, and aiming to recognize social and labor market reintegration, we used the American Orthopaedic Foot and Ankle Society (AOFAS) ankle-hindfoot scale4 which specifically evaluates lower limb function and symptoms, comparing it with the already established Salsa and Social Participation scales.

Table 1. Patients with leprosy subjected to posterior tibial tendon transfer to treat foot drop. Clinical form of the disease, postoperative time, gender, operated side, and age at the time of surgery.

Patient	Gender	Side	Age	Postoperative time (months)	Clinical manifestation
1	F	L	73	52	PN, PB
2	M	R	61	17	RT, MB
3	M	R	64	14	PN, MB
4	M	L	35	46	RT, MB
5	M	R	58	28	RV, MB
6	M	R	65	28	RT, MB
7	M	R	50	17	RV, MB
8	M	R	34	51	RV, MB
9	F	L	53	66	RT, MB
10	F	R	59	64	PN, PB
11	F	R	65	38	RV, MB
12	M	R	20	29	PN, MB
13	M	R	57	60	RT, MB
14	M	L	68	37	RT, MB
15	M	R	40	59	RT, PB
16	F	R	50	28	RV, MB
17	M	L	39	69	RV, MB
18	M	R	54	28	RV, MB
19	F	L	46	70	RV, MB
20	M	R	71	12	RV, MB
21	F	R	68	35	RV, MB
22	M	L	62	13	RV, MB

M: male; F: female; R: right; L: left; PN: pure neural; DT: dimorphic tuberculoid; DV: dimorphic virchowian; PB: paucibacillary; MB: Multibacillary.

Statistical analysis

AOFAS scores were separately compared with SALSA and SOCIAL PARTICIPATION scores by the Pearson’s statistical correlation test. A p < 0.05 was considered statistically significant when comparing pre- and postoperative AOFAS.

Acta Ortop Bras.2022;30(3):e244354
Surgical technique
Transfer of the posterior tibial tendon (TTP) to the foot dorsum was performed as described by Srinivasan, Mukherjee, and Subramanian. The TTP is sectioned next to its insertion in the navicular bone and a second posteromedial incision is performed eight to 12 cm above the medial malleolus to identify the tibialis posterior muscle belly. Next, the TTP is proximally stretched and longitudinally divided (Figure 1). An incision is made in the dorsal region of the foot to individualize the hallucis longus and extensor digitorum longus tendons. Then, two tunnels are constructed in the subcutaneous tissue, superficial to the retinaculum of the extensors and the TTP is then transferred to the foot dorsum (Figure 2). The medial tape is sutured to the extensor hallucis longus (Figure 3) and the lateral tape to the extensor digitorum longus tendon with the foot in dorsiflexion between 20 and 30 degrees (Achilles lengthening is performed if necessary) (Figure 4), maintaining traction in the distal direction of the TTP tapes and in the proximal direction of the extensor hallucis longus and extensor digitorum longus tendons for good transfer tension (Figures 5 and 6). Postoperative treatment is performed via a cast immobilization boot set in a 20-degree dorsiflexion during the first two weeks, followed by another four weeks with an unsupported cast boot in a neutral position. After this period, rehabilitation begins with a removable boot used for an additional six weeks for protection.
RESULTS

Table 2 shows the respective pre- and postoperative AOFAS, SALSA, and postoperative social participation scale scores. According to the SALSA scale results, 14 patients showed no limitations, three, mild ones, one, moderate ones, two, severe ones, and two, very severe ones. Social participation was very active, considering that patients’ average score was only 22.5 points, with the lowest value of 0 and a maximum of 80 (higher scores indicate greater difficulty in daily activities, working, and social isolation). We found 12 patients with no restrictions, four, with mild ones, no patients with moderate ones, one, with severe ones, and five, with extreme ones. Average active dorsiflexion was 5.4 degrees (maximum of 20, minimum of −10 degrees) and plantar flexion, −27.9 degrees (maximum of −35, minimum of −12 degrees), with a mean ROM of 28.3 degrees (dorsiflexion + plantar flexion) (Figures 7 and 8). Only two patients failed to reach a neutral dorsiflexion position (0 degree), reflecting a low AOFAS scale score (36 and 52). Mean AOFAS scores were 59.6 in the pre- and 77.2 in the postoperative period with a p < 0.0001. In total, two patients showed inversion deformities due to loss of lateral tape tension, one evolving hindfoot stiffness with varus and forefoot adduction, whereas the other showed a mild deformity which failed to affect the final transfer result, with an 83 AOFAS score. Muscle strength after the minimum six-month follow-up was at least grade three in all patients, and 15 patients reached grade four. Clinically, no patient showed plantar arch fall. Figures 9 and 10 show the relation between AOFAS and the SALSA and Social Participation scale scores, respectively. We observed an inversely linear relation between AOFAS and other scale scores. The higher the AOFAS, the lower the other scores. The Pearson’s correlation coefficient showed a strong correlation for AOFAS with SALSA (r = −0.83447) and for AOFAS with the social participation scale (r = −0.78638), showing that foot drop correction positively affects the daily lives and social reintegration of patients with leprosy.

Table 2. Sample patients’ Activity Limitation and Safety Awareness, social participation, and the American Orthopaedic Foot and Ankle Society ankle-hindfoot scale scores.

Patient	SALSA score	Social Participation Scale	AOFAS Pre-op AOFAS
1	24	5	88
2	60	72	52
3	31	9	86
4	23	5	90
5	27	20	83
6	21	8	85
7	17	22	87
8	22	0	72
9	76	69	36
10	22	5	75
11	39	60	66
12	19	4	90
13	45	80	60
14	21	0	78
15	12	9	97
16	22	1	85
17	23	21	66
18	24	1	78
19	15	13	90
20	59	55	67
21	23	2	88
22	50	36	80

Figure 7. Case 15 performing active plantar flexion.

Figure 8. Case 15 performing active dorsiflexion.

Figure 9. American Orthopaedic Foot and Ankle Society scores by Social Participation scores.

Figure 10. American Orthopaedic Foot and Ankle Society scores by the Screening of Activity Limitation and Safety Awareness scores.
DISCUSSION

The stigma caused by the disease still represents an important factor of social isolation, negatively affecting the relationship of leprosy patients with their families and peers in their community. Most patients show self-stigmatization and self-deprecation, evidenced from three most common aspects: those linked to individuals’ representations about leprosy, those related to impairments in physical appearance, and those resulting from disabling and deforming injuries whose effects go beyond aesthetic issues. In this context, the reparative surgery of lower limbs to correct foot drop in patients with leprosy is of fundamental importance to improve foot function and quality of life and promote their subsequent social reintegration.

Correcting foot drop due to leprosy by transferring TTP is well established in the literature; but there is controversy between the interosseous or subcutaneous routes. Some authors recommend the subcutaneous pathway since it is easier to perform than to show no risk of neurovascular injury, provides a larger lever arm, and allows the tendon to slide smoothly, decreasing the possibility of adhesions or invagination of the muscle in the interosseous membrane. Other authors defend the interosseous pathway since, in it, the tensile force is more direct, thus producing less inversion and longer insertion and avoiding the effects of tenodesis related to excessive tension at the suture site. In our sample, we observed two cases which showed inversion deformities after subcutaneous TTP transfer. Ishida, Lwin, and Myint reported similar results in 33 patients subjected to TTP transfer. They found four poor results due to loss of lateral tape tension causing inversion deformity. It is interesting to note that of these four cases, three were subjected to interosseous transfer and only one to the subcutaneous one, showing that the interosseous pathway is also liable to this complication.

Soares compared subcutaneous and interosseous pathways in TTP transfers to treat foot drop in patients with leprosy, reporting a high rate of inversion in the group subjected to the subcutaneous pathway, which led to ulceration of the lateral edge of the foot. This author recommends that the subcutaneous pathway should be reserved for patients with calcified and inflexible interosseous membranes. Aiming to standardize the choice of the best route for each patient, Das et al. recommend subcutaneous posterior tibial tendon transfers for patients with leprosy who show selective deep fibular nerve paralysis with fibular strength of grade 4 or higher, reserving the interosseous pathway for patients with a lower degree of fibular strength (3 or less).

We used insertion in the extensor hallucis longus (medial tape) and extensor digititorum longus/third fibular (lateral tape) as recommended by Srinivasan. The advantage of this technique is that, since they are more distal, their insertion sites allow a better lever arm, reactivating the extension of the paralyzed hallux and toes, even if only partially. Moreover, the TTP is sutured to the receptor site with the maximum degree of tension, allowing it to naturally stretch by finding its equilibrium point, thus maximizing its functional response. Other authors recommend insertion in more proximal sites, with the medial tape inserted in the anterior tibial tendon and the lateral tape in the short or long fibular tendon. The advantage of this method is a greater tendon excursion, though with a smaller lever arm, reducing dorsiflexion force.

Our statistical analysis showed a strong positive correlation (via Pearson’s test) between AOFAS and SALSA and social participation scales ($r = -0.83447$, and $r = -0.78638$, respectively). We observed that each analyzed patient obtained compatible scores in the Salsa, social participation, and AOFAS scales since they follow the same linear regression curve, i.e., they are numerically proportional since the higher the score, the better the function. Much is known about the disabilities related to leprosy, but very little about how they affect the daily lives of affected people.

The SALSA and social participation scales aim to evaluate the extent of the limitation to patients’ activities, considering several social, psychological, and physical aspects, and their disability. We observed four patients with severe or very severe limitations on the SALSA scale and five, with extreme restrictions in the social participation scale. We believe that these patients show these limitations due to their relation to other psychosocial aspects of living with leprosy rather than disabilities caused by the condition of their feet, evidenced by the significant improvement to AOFAS scores ($p < 0.0001$). The limitations of our study are its retrospective nature, the absence of a more objective method to evaluate muscle strength after tendon transfer, and the lack of pre-operative data on the social participation and SALSA scales.

CONCLUSION

Improving function via the surgical correction of foot drop has a direct correlation to improving the quality of life of patients with leprosy, as shown by the strong correlation between both SALSA and social participation scales with the AOFAS scale after the subcutaneous transfer of the posterior tibial tendon to the foot dorsum.

AUTHORS’ CONTRIBUTIONS: Each author contributed individually and significantly to the development of this article. JCC, NCR, EFC, STM: writing of the draft or the critical review of its intellectual content; AJLAC, MKG: critical review.
14. Hove LM, Nilsen PT. Posterior tibial tendon transfer for drop-foot. 20 cases followed for 1-5 years. Acta Orthop Scand. 1998;69(6):608-10.
15. Shah RK. Tibialis posterior transfer by interosseous route for the correction of foot drop in leprosy. Int Orthop. 2009;33(6):1637-40.
16. Ishida Y, Lwin S, Myint K. Follow-up of tibialis posterior transfer surgery (TPT) for drop-foot in leprosy. Nihon Hansenbyo Gakkai Zasshi. 2007;76(3):219-26.
17. Soares D. Tibialis posterior transfer for the correction of foot drop in leprosy. Long-term outcome. J Bone Joint Surg Br. 1996;78(1):61-2.
18. Das P, Kumar J, Karthikeyan G, Rao PS. Peroneal strength as an indicator in selecting route of tibialis posterior transfer for foot drop correction in leprosy. Lepr Rev. 2013;84(3):186-93.
19. Hansen ST Jr. Functional reconstruction of the foot and ankle. Philadelphia: Lippincott Williams & Wilkins; 2000.
20. Steinau HU, Tofaute A, Huellmann K, Goertz O, Lehnhardt M, Kammier J, et al. Tendon transfers for drop foot correction: long-term results including quality of life assessment, and dynamometric and pedobarographic measurements. Arch Orthop Trauma Surg. 2011;131(7):903-10.