Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease

Ralf Gilsbach1,*, Sebastian Preissl1,2,*, Björn A. Grüning3,4, Tilman Schnick1,5, Lukas Burger6,7, Vladimir Benes8, Andreas Würch9, Ulrike Bönisch9, Stefan Günther4, Rolf Backofen3, Bernd K. Fleischmann10, Dirk Schübeler6,11 & Lutz Hein1,12

The heart is a highly specialized organ with essential function for the organism throughout life. The significance of DNA methylation in shaping the phenotype of the heart remains only partially known. Here we generate and analyse DNA methylomes from highly purified cardiomyocytes of neonatal, adult healthy and adult failing hearts. We identify large genomic regions that are differentially methylated during cardiomyocyte development and maturation. Demethylation of cardiomyocyte gene bodies correlates strongly with increased gene expression. Silencing of demethylated genes is characterized by the polycomb mark H3K27me3 or by DNA methylation. De novo methylation by DNA methyltransferases 3A/8 causes repression of fetal cardiac genes, including essential components of the cardiac sarcomere. Failing cardiomyocytes partially resemble neonatal methylation patterns. This study establishes DNA methylation as a highly dynamic process during postnatal growth of cardiomyocytes and their adaptation to pathological stress in a process tightly linked to gene regulation and activity.

1 Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany. 2 Hermann Staudinger Graduate School, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany. 3 Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany. 4 Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences, University of Freiburg, Hermann-Herder-Strasse 9, 79104 Freiburg, Germany. 5 University Heart Center Freiburg/Bad Krozingen, Department of Congenital Heart Defects and Paediatric Cardiology, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany. 6 Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland. 7 Swiss Institute of Bioinformatics, Maulbeerstrasse 66, 4058 Basel, Switzerland. 8 European Molecular Biology Laboratory, Genomics Core Facility, Meyerhofstraße 1, 69117 Heidelberg, Germany. 9 Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany. 10 Institute of Physiology I, Life and Brain Center, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany. 11 University of Basel, Petersplatz 1, 4003 Basel, Switzerland. 12 BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to L.H. (email: lutz.hein@pharmakol.uni-freiburg.de).
During its development and postnatal life, the heart has to adapt to diverse physiological and pathophysiological needs. Cardiomyocytes arise from progenitors in early development and mature with limited cell division after birth. The transition from pre- to postnatal life demands a number of contractile and metabolic adaptations to facilitate organ growth in the presence of optimal contractile function. Due to its limited regenerative capacity, cardiomyocytes respond to these challenges during development and disease with characteristic gene expression programmes. Several epigenetic processes, including microRNAs, chromatin and histone proteins as well as DNA methylation, have been implicated as modulators of cardiac gene expression in development and disease.

DNA methylation is a stable hallmark of cell type identity and is essential for mammalian development. It occurs mainly in palindromic CpG dinucleotides. Whereas most regions of the genome are depleted for CpGs, they are clustered in CpG islands. CpG islands mark 70% of annotated mammalian promoters. DNA methylation is essential for proper gene expression, development and genome stability. DNA methylation patterns are maintained during cell division by DNA methyltransferase 1 (DNMT1). De novo DNA methylation is mediated by DNMT3A and DNMT3B. Removal of DNA methylation involves oxidation of 5-methyl-cytosine. The key enzymes for this initial step are the recently discovered ten-eleven translocation enzymes TET1-3.

Here we show that DNA methylation is highly dynamic during cardiomyocyte development, postnatal maturation and disease. Demethylated regions in neonatal and adult cardiomyocytes are localized in cell type-specific enhancer regions and in gene bodies of cardiomyocyte genes. Postnatal DNA demethylation correlates with active histone marks and increased gene expression. Repression of demethylated genes is achieved by polycomb-mediated histone H3K27 trimethylation or by de novo methylation by DNA methyltransferases DNMT3A/B. Dynamic DNA methylation is important for the perinatal switch in sarcomere protein isoforms and postnatal cardiomyocyte maturation and adaptation.

Results

Epigenetic characterization of cardiomyocytes. To adapt to the requirements of the growing organism, cardiomyocytes increase dramatically in size during physiological postnatal growth. In response to cardiac injury, for example, during chronic ventricular pressure overload, cardiomyocytes may initiate further pathological growth. To provide insight into the dynamics of DNA methylation in development and disease of cardiomyocytes as a prototypical terminally differentiated cell type, we generated DNA methylation maps for four histone modifications (H3K4me1, H3K4me3, H3K27ac and H3K27me3) from purified cardiomyocyte nuclei. Dmi reads were mapped to the mouse genome (Fig. 1e). Ninety percent of these CpGs were generated from myosin heavy chains (MMyh6 and MMyh7), revealed a progressive CpG demethylation in cardiomyocytes purified from newborn as compared with adult and failing hearts (Fig. 1d). Almost complete demethylation of gene body CpGs of MMyh6 and MMyh7 was apparent in purified cardiomyocyte nuclei but could not be detected in cardiac tissue, which contains several additional cell types (Fig. 1d). To validate this finding, methylation of CpGs of the cardiomyocyte-specific gene encoding for the sarcomplasmic reticulum Ca\(^{2+}\) ATPase (SERCA2A, gene Atp2a2) was analysed by pyrosequencing. Atp2a2 methylation levels greatly differed between myocyte and non-myocyte cell fractions with intermediate levels in cardiac tissue.

In total, we identified 79,655 differentially methylated regions (DMRs) with an average size of 840 bp when comparing adult healthy cardiomyocytes and undifferentiated ES cells. This amounted to 5% of all CpGs in the mouse genome (Fig. 1e). Ninety percent of these CpGs were hypomethylated and 10% were hypermethylated in cardiomyocytes versus ES cells (Fig. 1e). Remarkably, a substantial number of CpGs were differentially methylated between newborn and adult cardiomyocytes (6,436 DMRs; Fig. 1e). These data indicate that differential CpG methylation was not restricted to cell type specification during embryonic development, but extended well into the postnatal period of cardiomyocytes. Genomic annotation of cardiomyocyte DMRs showed a predominance for intragenic and CpG island-flanking regions.

Hypomethylated regions with cardiomyocyte enhancer signature. Previous studies have identified transcription factor-binding sites and histone marks, which are characteristic for enhancers in demethylated regions. This prompted us to analyse the enrichment of transcription factor (TF)-binding motifs in DMRs. Demethylated regions in ES cells (Fig. 1f) were significantly enriched (\(P < 10^{-20}\), hypergeometric test) for binding sites of stem cell transcription factors including OCT4 (gene symbol Pou5f1), NANOG and others. We generated transgenic mice with inducible cardiac transgene expression (Supplementary Fig. 1d). Isolated cardiac nuclei of these animals and wild-type mice were stained with PC1 antibody or isotype control IgG (immunoglobulin G) and were analysed by FACS (Supplementary Fig. 1e–g). The overlap of mCherry and PC1-positive nuclei was >95% confirming that PC1 specifically stains cardiomyocyte nuclei (Supplementary Fig. 1g). Furthermore, a molecular beacon targeting cardiac troponin T type 2 (Tmtn2) mRNA stained the major fraction of PC1-positive nuclei (Supplementary Fig. 1h). Analysis of different developmental and disease stages revealed that the proportion of cardiomyocyte nuclei decreased from 68.7 ± 0.6% in newborn hearts to 29.7 ± 0.5% in adult healthy hearts and to 19.7 ± 0.7% in adult failing hearts (mean ± s.e.m., n = 6; Fig. 1c; Supplementary Fig. 1i–k). DNA from these purified cardiomyocyte nuclei was bisulfite converted and DNA methylation levels were obtained at base-pair resolution using deep sequencing. Three independent experiments with high reproducibility (Supplementary Fig. 2) resulted in high-coverage methylation maps (Supplementary Fig. 3; Supplementary Table 1). DNA methylation from murine embryonic stem (ES) cells and from total cardiac tissue were used for comparison.

To gain further insight into the epigenetic landscape, we mapped reads for four histone modifications (H3K4me1, H3K4me3, H3K27ac and H3K27me3) from purified cardiomyocyte nuclei (Supplementary Table 2). To generate matching cardiomyocyte-specific transcriptomes, hearts were digested enzymatically, vital cardiomyocytes were sorted by FACS and cardiomyocyte mRNA was subjected to RNA sequencing.

Differential CpG methylation. Visual inspection of two prototypical cardiomyocyte genes, \(\alpha\) - and \(\beta\)-myosin heavy chains (MMyh6 and MMyh7), revealed a progressive CpG demethylation in cardiomyocytes purified from newborn as compared with adult and failing hearts (Fig. 1d). Almost complete demethylation of gene body CpGs of MMyh6 and MMyh7 was apparent in purified cardiomyocyte nuclei but could not be detected in cardiac tissue, which contains several additional cell types (Fig. 1d). To further validate this finding, methylation of CpGs of the cardiomyocyte-specific gene encoding for the sarcomplasmic reticulum Ca\(^{2+}\) ATPase (SERCA2A, gene Atp2a2) was analysed by pyrosequencing (Supplementary Fig. 4). Atp2a2 methylation levels greatly differed between myocyte and non-myocyte cell fractions with intermediate levels in cardiac tissue (Supplementary Fig. 4a–d).
Data 1). In contrast, demethylated regions of adult cardiomyocytes were significantly enriched ($P<10^{-50}$, hypergeometric test) for TF motifs of known cardiac transcription factors including MEF2C, GATA1-4 and others (Fig. 1f; Supplementary Fig. 7a–c; Supplementary Data 1). These TF included the recently identified master regulators of cellular identity of ES cells or hearts, respectively23. In the demethylated cis-regulatory sites21,24 (Fig. 1f). In line with being regulatory, these DMRs were located within distal regulatory regions of genes characteristic for ES cells or cardiomyocytes, respectively (Supplementary Fig. 7d,e).

Figure 1 | **Analysis of DNA methylation in cardiomyocytes isolated from newborn and adult murine hearts.** (a) Hematoxylin–eosin staining (upper panels; scale bar, 1 mm) of mouse hearts 1 day after birth (newborn), at 8 weeks of age (adult) and 3 weeks after chronic pressure overload in adult mice (failing). WGA-stained ventricular sections (middle panels; scale bar, 20 μm) to determine cardiomyocyte cross-sectional areas ($n=10$ hearts per group). Nuclei were stained with propidium iodide (PI). (b) Identification of cardiomyocyte nuclei by PCM1 immunostaining in adult mouse cardiac tissue (insert, arrows; scale bar, 20 μm) and purification of cardiomyocyte nuclei (red) by flow cytometry (histogram). (c) Percentage of cardiomyocyte nuclei in ventricular biopsies identified by PCM1 flow cytometry in newborn, adult healthy and failing hearts and at postnatal days 5–28 ($n=3$–6 hearts per group). (d) IGV (integrative genomics viewer) traces of CpG methylation of the myosin-6 ($\text{Myh}6$) and myosin-7 ($\text{Myh}7$) gene region in ES cells, newborn, adult and failing cardiomyocytes and in murine heart tissue. (e) Differentially methylated CpGs during fetal and postnatal development in percent of assessed CpGs. (f) Density of CpG methylation, histone H3K4me1 and H3K27ac at transcription factor (TF)-binding sites (± 5 kbp). Data shown as mean ± s.e.m., ***$P<0.001$, analysis of variance, Bonferroni post hoc test.

Genic CpG demethylation affects specific gene programmes. Since many sites of dynamic DNA methylation occurred within genic regions (Supplementary Fig. 6), we explored this aspect in more detail (Fig. 2a,b). At 765 genes, genic DMRs extended to more than 25% of the entire gene body (Fig. 2a,b). In 78 cases, gene bodies were demethylated in ES cells, yet they were methylated to a higher degree in cardiomyocytes (Fig. 2b, group I; Supplementary Data 2). Gene ontology analysis of this group revealed a predominance of genes involved in embryonic pattern specification and morphogenesis (Supplementary Fig. 8) containing known pluripotency factors like Pou5f1 and Nanog (Fig. 2c; Supplementary Data 2). However, the inverse case with 687 genes, which were demethylated in cardiomyocytes versus ES
cells, was much more prevalent (Fig. 2a,b, group II). This group was highly enriched in genes involved in cardiac transcriptional regulation, cardiac development, muscle contraction and energy supply (Fig. 2d–f; Supplementary Fig. 9). Genes that were further demethylated during postnatal maturation of cardiomyocytes were involved in cardiac contraction or mitochondrial function (Fig. 2e,f).

Genic CpG methylation correlates with gene expression. To gain more insight into the kinetics of DNA methylation, we analysed the time course of gene body demethylation of the Atp2a2 gene by pyrosequencing (Fig. 3a–f; Supplementary Fig. 4). Demethylation of Atp2a2 in cardiomyocytes was initiated at the 5’ end and progressed towards the 3’ region of the gene (Fig. 3a–d). While the 5’ end of the gene body and upstream TF motifs were already demethylated at birth, the 3’ region lost its CpG methylation by adulthood (Fig. 3b–f). Gene body demethylation correlated with increased expression of Atp2a2 during postnatal cardiomyocyte maturation (Fig. 3g). Adult failing cardiomyocytes expressed lower levels of Atp2a2 than adult control myocytes (Fig. 3g) without significant changes in gene body methylation (Fig. 3b–g).

Figure 2 | Differentially methylated gene bodies in neonatal and adult cardiomyocytes versus ES cells. (a,b) Heat maps of gene expression (a) and CpG methylation (b) of gene bodies and flanking regions (± 5 kbp) with differential methylation in neonatal and adult cardiomyocytes versus ES cells. Group I, genes with hypermethylated gene bodies in adult cardiomyocytes versus ES cells; group II, genes with hypomethylated gene bodies. (c–f) CpG methylation profiles of grouped genes with selected biological function and flanking regions (± 5 kbp). Coloured circles refer to Supplementary Figs 8 and 9. TSS, transcription start site; TES, transcription end site.
To search for a possible relationship between gene body CpG methylation status and gene expression, we ranked all genes according to their expression level in adult cardiomyocytes and determined the changes in gene expression and DNA methylation after birth (Fig. 4a,b). Those genes that showed the greatest increase in expression after birth (Fig. 4a; expression increase > 250 fragments per kilobase of transcript per million reads, FPKM) were most strongly demethylated at their gene bodies during postnatal development (Fig. 4b). Genes with demethylation of gene bodies after birth were involved in several metabolic processes (Supplementary Fig. 10). Inactive genes showed a higher level of CpG methylation at the promoter and the first exon when compared with expressed genes (Fig. 4c). CpG methylation of the first exon and the remainder of the gene was inversely correlated with gene expression (Fig. 4c). Actively expressed genes were decorated with H3K4me1, H3K27ac and H3K4me3 and they lacked H3K27me3 (Fig. 4d–g). In contrast, gene bodies of inactive genes showed abundant H3K27me3 in addition to high levels of CpG methylation (Fig. 4c,g). These genes were grouped into distinct functional categories (Supplementary Fig. 11). Taken together, these data demonstrate that a demethylation wave runs through the gene body of actively transcribed genes. This wave is initiated at the 5’ end of cardiomyocyte genes, becomes further extended until adulthood and correlates with gene expression.

Polycomb-mediated silencing of early developmental genes.

The group of genes, which were demethylated in their gene bodies in cardiomyocytes as compared with ES cells (Fig. 2a,b, group II), contained genes that were known to be expressed during cardiac development but showed no significant expression in adult cardiomyocytes. Thus, we asked whether specific histone marks characterize demethylated genes that are inactive in postnatal cardiomyocytes. First, two prototypic genes with either high levels of expression in adult cardiomyocytes (Tnnt2) or expression restricted to early cardiac development (Isl1) were analysed (Fig. 5a,b). Visual inspection of the Tnnt2 locus revealed a demethylated gene body in adult cardiomyocytes, which was covered with active chromatin marks H3K27ac, H3K4me3 and H3K4me1 (Fig. 5a). The cardiac differentiation factor Isl1 gene, which is expressed at embryonic day (E) 8.25 but not in postnatal cardiomyocytes, remained demethylated until adulthood too. Thus, DNA methylation was not restored on gene inactivation. However, the Isl1 gene was covered with the repressive chromatin mark H3K27me3 in newborn (Supplementary Fig. 12) and adult cardiomyocytes (Fig. 5b). The gain of this repressive mark set by the enzymatically active subunit enhancer of zeste homologue 2 (EZH2) of the polycomb repressive complex 2 (PRC2) was not restricted to this gene but rather typical for demethylated genes that were not expressed (< 1 FPKM; Fig. 2a, group II) in adult cardiomyocytes (Fig. 5c, group 1). Affected genes were expressed either in early embryogenesis, such as the transcription factors of the Hox cluster26, or at early stages of cardiac development, such as Isl1 and Pitx2 (ref. 27).

We asked whether the affected genes were already marked by H3K27me3 in developmental stages. Analysis of H3K27me3 in newborn cardiomyocytes as well as reanalysis of previously published data sets28 were performed. These data revealed enrichment of H3K27me3 in embryonic hearts at E12.5 (ref. 28) and in newborn cardiomyocytes (Supplementary Fig. 12a). In addition, EZH2 was found to be localized at these genes in embryonic hearts at E12.5 (ref. 28) (Supplementary Fig. 12a). Recently, the functional importance of PRC2 for proper heart development was shown by cardiac ablation of EZH2 (refs 28,29). Remarkably, a subset of genes including Cdkn2a, Isl1 and the previously described polycomb target genes Six1 and Pax6 (refs 28,29), which were decorated by H3K27me3, showed increased gene expression on EZH2 ablation28,29 (Supplementary Fig. 12b–e; Supplementary Table 3). Interestingly, these alterations were even more evident in E12.5 hearts as compared with right ventricles of adult hearts28,29 (Supplementary Table 3). In contrast, none of the CpG-demethylated and actively transcribed genes (> 250 FPKM; Fig. 2a, group II) were marked by H3K27me3, but all of these genes were decorated with H3K27ac, H3K4me3 and H3K4me1 (Fig. 5c, group 2).
Postnatal de novo DNA methylation requires DNMT3A/B.

Postnatal maturation of cardiomyocytes was not only accompanied by demethylation of gene bodies but also by de novo DNA methylation (Supplementary Data 2). Overall, 127 genes gained methylation and 313 lost methylation of their gene bodies during the postnatal period (Fig. 6a). These changes in postnatal DNA methylation of gene bodies correlated inversely with gene expression (Fig. 6a; Supplementary Data 2). Genes that were hypermethylated in cardiomyocytes after birth were involved in myocyte contraction (Fig. 6b), cardiac morphogenesis, cell differentiation and other processes (Supplementary Fig. 11). Functional adaptation of the heart during the postnatal period includes isoform switches in the expression of sarcomere proteins. As postnatal cardiomyocyte maturation is accompanied by cell cycle arrest, we analysed postnatal DNA methylation dynamics of all genes, which were contained in the gene ontology group 'cell cycle' (GO:0007049; Supplementary Fig. 14). Twenty-one out of these 1,279 genes in this group were differentially methylated during postnatal development (Supplementary Fig. 14a). Most of the differentially methylated cell cycle-associated genes showed opposite changes of DNA methylation and RNA expression after birth (Supplementary Fig. 14b) as further illustrated for Ccnd3 and Bmp7 (Supplementary Fig. 14c,d). Both genes showed their highest expression levels at E14.5. Postnatal de novo DNA methylation of Ccnd3 and Bmp7 was absent in cardiomyocytes from Dnmt3a/b-deficient mice. However, in these cases, Dnmt3a/b ablation did not affect gene expression (Supplementary Fig. 14c,d).

Analysis of expression of the group of cell cycle-associated genes revealed that 502 genes were differentially expressed in adult and neonatal cardiomyocytes according to adult gene expression levels. Data are shown as mean ± s.e.m., n = 3, **P < 0.001 adult versus newborn.
adult versus newborn cardiomyocytes (Supplementary Fig. 15a). Thus, we asked whether polycomb-mediated gene silencing is involved in the regulation of these cell cycle genes. However, postnatally repressed cell cycle genes were not decorated with the repressive mark H3K7me3 and did not show increased genic CpG methylation (Supplementary Fig. 15b).

DNA methylation changes after chronic pressure overload. To explore how the cardiac methylome changes in heart disease, we analysed differential CpG methylation of cardiomyocyte nuclei that were purified from failing murine hearts after chronic left ventricular pressure overload (Supplementary Fig. 16a–e). Compared with developmental alterations, the observed changes in CpG methylation were smaller in scale (Fig. 7a,b). We therefore adjusted the cutoff criteria for DMR detection to 20% differential methylation. Using these less-stringent criteria, we identified 5,346 disease-associated DMRs (Fig. 7c). These DMRs were mostly intergenic (Fig. 7d). Disease-associated DMRs (5.9%) showed an overlap with enhancer or promoter regions marked by H3K27ac, H3K4me1 and H3K4me3 in adult cardiomyocytes (Fig. 7e). Disease-associated DMRs overlapping with postnatal DMRs were adjacent to genes involved in cardiac muscle cell development, cardiac morphogenesis and energy metabolism (Fig. 7f), indicating adaptation of DNA methylation in disease-relevant regions. Methylation levels of these disease-associated DMRs partially resembled the newborn CpG methylation pattern (Fig. 7g).

Discussion

The present study resolves the DNA methylome of cardiomyocytes at base-pair resolution from embryonic development to postnatal maturation and disease. For this purpose, cardiomyocyte nuclei were highly purified from frozen heart tissue by FACS and magnetic-assisted sorting. One of the most intriguing features of the cardiomyocyte DNA methylome is a demethylation wave running through gene bodies of cardiomyocyte genes, which orchestrate with de novo DNA methylation and activation of polycomb marks to shape the epigenome of maturing cardiomyocytes after birth (Fig. 8).

Bisulfite sequencing has uncovered distinct patterns of DNA methylation in different genomic contexts, including promoters, gene bodies and regulatory elements. We identified several distinct features of DNA methylation also in cardiomyocytes. When compared with ES cells as a model for an undifferentiated, pluripotent cell type, cardiomyocytes contained short regions of specific DNA binding pattern specification, such as

![Figure 5](https://example.com/fig5.png)

Figure 5 Repression of genes by the polycomb mark H3K27me3. (a,b) IGV (integrative genomics viewer) traces of CpG methylation of the cardiac troponin T type 2 (Tnnt2) gene and the Isl1 gene in adult cardiomyocytes and ES cells and traces of histone modifications and RNA expression. (c) Heat maps of gene expression, CpG methylation and histone modifications of genes demethylated in adult cardiomyocytes as compared with ES cells. Displayed genes (derived from Fig. 2a, group II) had either very low (≤ 1 FPKM, group 1) or high gene expression (≥ 250 FPKM, group 2) in adult cardiomyocytes (Supplementary Data 2). Right panel, enriched gene ontology terms (P < 10^-15, hypergeometric test, Bonferroni step down correction) and representative genes. TSS, transcription start site; TES, transcription end site; 5 m CpG, GpG methylation.
Figure 6 | Repression of genes by de novo DNA methylation. (a) Inverse correlation of DNA methylation changes in cardiac myocytes and gene expression changes during postnatal development (P < 0.0001, linear regression). (b) Schematic view of a cardiac myofilament at birth (left) and in adult heart (right). Sarcomere components, which are differentially methylated in their genes during postnatal development from birth to adulthood, are filled with green or blue colour. Green colour indicates genes that have low levels of CpG methylation at birth and are significantly higher methylated in adult cardiomyocytes. Blue colour indicates genes with lower methylation in adult versus neonatal cardiomyocytes. Values next to sarcomere components indicate the difference in gene expression (exp) and CpG methylation (me) in adult versus newborn cardiomyocytes. (c,d) DNA methylation traces of troponin I genes Tnni1 (c) and Tnni3 (d) in ES cells, newborn and adult cardiomyocytes (upper panels). Time course of genic DNA methylation (left graphs) and mRNA expression (right graphs). Data are shown as mean ± s.e.m., n = 3–4 per group, *P < 0.05, ***P < 0.001 compared with adult, analysis of variance, Bonferroni post hoc test; Dnmt3ab−/− versus adult control, Student’s t-test.
Figure 7 | Developmental pattern of CpG methylation in cardiomyocytes in experimental murine heart failure. (a,b) Overlay plot of CpG methylation in DMRs and surrounding regions of cardiomyocytes isolated from healthy or failing adult hearts displaying hypomethylated (a) and hypermethylated (b) DMRs. (c) Venn diagram showing partial overlap (‘common DMRs’) of disease DMRs (differential methylation between failing and healthy cardiomyocytes) and postnatal DMRs (differential methylation between healthy newborn and adult cardiomyocytes). (d) Genome annotation of DNA regions with differential CpG methylation between failing and healthy adult cardiomyocytes. (e) Intersection of disease DMRs with H3K27ac, H3K4me1 and H3K4me3 peaks in adult cardiomyocytes. (f) Functional annotation of common DMRs in postnatal development and disease (hypergeometric test, Bonferroni step down correction, P value per GO term < 0.02). (g) Density plot of common DMRs showing direction of methylation changes in postnatal development and failure. TTS, transcription termination site (region −100 bp to +1 kb); UTR, untranslated region.

However, not all genes that were demethylated in cardiomyocytes versus ES cells were also expressed in postnatal cardiomyocytes. More than one hundred genes were DNA demethylated and decorated by trimethylation of H3K27 (Fig. 8, middle trace). This histone mark is associated with polycomb-mediated gene repression, and EZH2 is one of the core proteins of the PRC2 in the heart. Deficiency of EZH2 in cardiomyocytes caused lethal heart malformations or postnatal development and failure. TTS, transcription termination site (region −100 bp to +1 kb); UTR, untranslated region.

Genes that were hypo- or hypermethylated in cardiomyocytes after birth were involved in multiple physiological processes including the transition from fetal to adult sarcomeric gene expression. To adapt to the specific demands of pre- versus postnatal life, several protein isoforms of the sarcomere are switched during the perinatal phase by an unknown mechanism. Indeed, we found the slow skeletal troponin I isoform (Tnni1) to be repressed by postnatal DNA methylation, which was mediated by DNMT3A/B. Cardiomyocyte-specific ablation of DNMT3A/B completely prevented Tnni1 methylation after birth and partially reactivated gene expression. The perinatal switch from fetal to adult sarcomere protein isoforms has been associated with important aspects of myocyte development and contractile function. In particular, the decrease in Ca²⁺ sensitivity of the sarcomere has been linked with the transition from slow skeletal (Tnni1) to cardiac troponin I (Tnni3). In addition to the fetal sarcomere isoforms, genes involved in the fetal to adult transition of energy metabolism and several other processes were differentially methylated in their gene body after birth. These findings suggest that dynamic gene methylation may play an important role in cardiomyocyte switching and maturation after birth.

To determine possible alterations in the DNA methylome during cardiac disease, we have subjected mice to 3 weeks of cardiac pressure overload. Constriction of the aortic arch resulted in ventricular hypertrophy, interstitial fibrosis and pulmonary oedema, thus partially resembling the phenotype of chronic

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6288 | www.nature.com/naturecommunications

© 2014 Macmillan Publishers Limited. All rights reserved.
human heart failure. While DNA methylation in failing cardiomyocytes returned to a fetal methylation pattern, the observed changes were less prominent and abundant compared with physiological postnatal myocyte maturation. Thus, future studies will be important to determine whether the human cardiomyocyte DNA methylome shows similar features during development and in disease. Recent studies have investigated DNA methylation in human cardiac tissue biopsies from patients with chronic heart failure of different etiologies. Both studies described distinct signatures of DNA methylation in failing versus non-failing hearts. The present study describes a path to assign such alterations to a specific cell type in the heart. Future studies will be important to uncover the DNA methyliomes of other cardiac cell types, for example, fibroblasts, endothelial cells, immune cells and so on, to determine their epigenetic contribution to cardiac development and disease.

The present study establishes DNA methylation in cardiomyocytes as dynamic and reversible during development, postnatal maturation and disease. Future studies unravelling the signals and mechanisms involved in shaping the cardiac DNA methylome will be essential for a better understanding of cardiac myocyte biology.

Methods

Animal procedures. All animal procedures were approved by the responsible animal care committee (Regierungspräsidium Freiburg, Germany) and they conformed to the Guide for the Care and Use of Laboratory Animals published by the National Academy of Sciences, 2011. Mice with cardiomyocyte-specific ablation of DNMT3A/B expression were generated by crossing Dnmt3afl/flox and Dnmt3bfl/flox mice with mice expressing cre recombinase under control of the cardiac Mlc2a promoter. Male mice of the indicated ages were dissected to obtain cardiac tissues. To induce cardiac pressure overload by transverse aortic constriction for 3 weeks, male mice (8 weeks old) were anaesthetized with 2% (vol) isoflurane in air and 1% (vol) 2-chlorobutane and 1% (vol) oxygen. After thoracotomy, a 7.0 silk suture was placed around a 27-G hypodermic needle to constrict the transverse aorta.

ES cells. Murine ES cells, which are originally derived from blastocysts of mixed 129/8C57Bl6 background, were maintained in ES cell medium (DMEM, 15% fetal calf serum (FCS), non-essential amino acids, 10 ng ml^{-1} leukemia inhibiting factor, 0.1% β-mercaptoethanol) on gelatine-coated plates.

Echocardiography. Echocardiography was performed using a Vivid 7 Dimension (GE Healthcare, Munich, Germany) echocardiograph equipped with a 14-MHz transducer. Parasternal short-axis views were used for M-mode analysis. Enddiastolic and endystolic left ventricular inner diameters (LVIDd, LVIDs) were measured and fractional shortening (FS) and ejection fraction (EF) were calculated using the following equations: FS = (LVIDd−LVIDs)/LVIDd, EF = (LVIDd^3 − LVIDs^3)/LVIDd^3 (ref. 42).

Histology. Hearts were fixed with 4% paraformaldehyde in phosphate-buffered saline (PBS), embedded in paraffin, cut into 3 μm slices and stained with haematoxylin–eosin, Sirius-red or fluorescent wheat germ agglutinin (WGA; Sigma, Munich, Germany). For immunohistochemical staining, hearts were snap frozen, embedded in optimum cutting temperature (OCT) medium (Tissue-Tek), cut into 3 μm slices and stained with an antibody against PCAM (1:1,000, HPA023370, Sigma) in combination with a Cy3-labelled anti-rabbit antibody (1:1,000, Invitrogen). Glycocalyx was stained with WGA (Alexa Fluor 488 conjugate, Invitrogen) and nuclei were counterstained with DAPI (4',6-diamidino-2-phenylindole, Invitrogen).

Flow cytometric analysis and sorting of cardiomyocyte nuclei. Cardiomyocyte nuclei were isolated from cardiac tissue and were stained by an antibody directed against PCAM (1:1,000, HPA023370, Sigma) and an Alexa488-labelled secondary anti-rabbit antibody (1:1,000, Invitrogen) or a molecular beacon targeting mRNA of Tnni2 (Supplementary Data 3; 50 nM) for 30 min. Nuclei were identified by 7-aminoactinomycin D (7-AAD) (1:500, Invitrogen). For analysis of 2MH-C2BBnCherry transgenic mice, an Alexa647-labelled secondary anti-rabbit antibody (1:1,000, Invitrogen) and for nuclei-staining DAPI (1:1,000, Invitrogen) and nuclei were counterstained with DAPI (4',6-diamidino-2-phenylindole, Invitrogen). Nuclei were analysed or sorted by flow cytometry (CyFlow Space, Partec, Münster, Germany; BD Influx cell sorter, BD Biosciences, Heidelberg, Germany; Bio-Rad S3 cell sorter, Bio-Rad Laboratories, Munich, Germany).

Magnetic-assisted sorting. Magnetic-assisted cell sorting (MACS) of myocyte nuclei was performed after isolation and staining of nuclei with a PCAM antibody (1:1,000, HPA023370, Sigma). Nuclei were centrifuged and resuspended in 80 μl MACS buffer. Anti-rabbit IgG MicroBeads (20 μl; Miltenyi, Bergisch Gladbach, Germany) were added and incubated for 15 min at 4°C. MACS buffer (900 μl) was added and the nuclei suspension was applied to an M column (Miltenyi), washed with 3 ml MACS buffer and eluted with 1 ml MACS buffer after removal of the magnet. The eluate was applied to another M column, washed again and eluted in 1 ml elution buffer (1 mM EDTA in PBS). Sorting efficiency was determined by staining aliquots before and after cell separation with an Alexa488-labelled secondary anti-rabbit antibody (1:1,000, Invitrogen) and by flow cytometric analysis (CyFlow Space, Partec).

Isolation of cardiomyocytes for transcriptome analysis. Adult and neonatal hearts were dissected to obtain a single-cell suspension. Adult hearts were dissociated by retrograde perfusion with Tyrode’s solution supplemented with 25 mM BSA, 0.1 mM EGTA, 2 mM CaCl_2, 0.8 mg ml^{-1} collagenase B (Roche, Mannheim, Germany), 0.4 mg ml^{-1} hyaluronidase (Sigma) and 3 μg ml^{-1} trypsin (Sigma) for 12 min. Hearts were gently dissected and enzymatic digestion was...
stopped by addition of Tyrode’s buffer supplemented with 5% FCS, 25 mM butanedione monoxime and 2 mM CaCl2. Newborn hearts were dissociated by several rounds of digestion with trypsin (Gibco) in Hank’s Balanced Salt Solution (HBSS, Life Technologies). Digestion was stopped by resuspension in HBSS containing 4% FCS. Cell suspensions of adult and neonatal hearts were kept at 4 ºC until sorting. Sorting of cardiomyocytes from cardiac cell suspensions was carried out at 4 ºC using a Bio-Rad 53 cell sorter. Cardiomyocytes and non-cardiomyocytes were visualized by staining the cell-permeable dye Vybrant DiD (Life Technologies). Non-viable cells were identified by counterstaining with the cell-impermeable nucleic acid stain Sytox Green or 7-AAD (Life Technologies). Cardiomyocytes were discriminated from other cardiac cells by high forward scatter (FSC) and high side scatter (SSC) signals. FSC pulse width was used to exclude doublets from sorting. Gates were selected to sort viable cardiomyocytes directly into RLT lysis buffer (Qiagen, Hilden, Germany). To confirm the gating strategy, small aliquots were permeabilized with 0.1% saponin (Sigma) and stained with antibodies against cardiac troponin 1 (ab47003, Abcam) and α-actinin (A7811, Sigma) in combination with secondary Alexa Fluor-coupled antibodies (Life Technologies).

External data sets. Previously published MethylC-seq data from murine ES cells (GSE36026)26 and mouse newborn heart (GSM1511549)27 were downloaded, mapped and analysed in the same way as the methylomes generated in this study. Previously published chromatin immunoprecipitation-sequencing (ChIP-seq) data for H3K27ac (GSM851290) and H3K4me1 (GSM851287) for embryonic heart (E14.5)28 and ES cells (GSM945777 and GSM945793)29 were reanalysed. ChIP-seq data from H3K27me3 and EZH2 for E12.5 hearts (GSE29994) were reanalysed30 RNA-seq data of Ehm2 mutant mice and corresponding controls were reanalysed (GSE29992)28,29.

Whole-genome bisulphite sequencing. MethylC-seq was performed as described26. In brief, 1 μg of genomic DNA was extracted from purified nuclei (AllPrep DNA/RNA Mini Kit, Qiagen). DNA-seq libraries were prepared with methylation adapters (ILMN ME-100-0010, Illumina, San Diego, USA), bisulphite conversion was carried out with the EZ DNA methylation kit (D5010, Zymo Research, Freiburg, Germany) for 16h and final PCR was performed with the KAPA Uarac1 + system (16 cycles, KAPA/Abi systems KK2801). All libraries were sequenced on a paired-end 101-bp sequencing run (Illumina HiSeq 2000).

Cpg methylation analysis. All bioinformatic tools used in this study were integrated into the Galaxy web server47–49. The generated data format is compliant from the Homer tool and were validated by ChIP-seq. Motifs lacking this information was defined as the region starting 5 kbp upstream and ending 1 kbp downstream of the TSS. The gene regulatory domain was extended in both directions up to 50 kbp to the nearest gene’s basal domain.

Gene ontology analysis. ClueGo31 was used to find over-represented GO terms in the categories ‘biological process’, ‘cellular component’ and ‘molecular function’. Benjamin–Hochberg correction was performed for multiple testing-controlled P values. Significantly enriched terms were functionally grouped and visualized. The GO term connectivity threshold was set to > 0.3 (Kappa value). The highest significant term of the group was displayed as leading term.

Cpg island and genomic annotation. Random sequences from MethylC-seq assessable genomic regions were selected to analyse genome representation of genomic features and Cpg islands. Genomic feature annotation was performed using Homer tools32. Cpg island annotation33 and UCSC gene prediction annotation34 were downloaded from UCSC.

Gene expression analysis. Polyadenylated RNA was isolated from 500 ng of total RNA with magnetic beads (NEBNext Poly(A) mRNA Magnetic Isolation Module, NEB). Libraries were constructed (NEBNext Ultra RNA Library Prep Kit for Illumina, NEB) and size selection was performed with AMPure XP Beads (Beckman Coulter, Krefeld, Germany). Thirteen PCR cycles were used for library creation and were sequenced on a HiSeq 2500 (Illumina, San Diego, USA). RNA-seq data were mapped to the mm9 genome assembly using TopHat35. FPKM values were calculated by Cufflinks36 as an estimate of transcript expression. Differential gene expression was calculated using Cuffdiff5. The analysis was performed with default parameters and the UCSC gene annotation36 as a reference.

Quantitative real-time PCR was carried out as described60. Primer sequences are listed in Supplementary Data 3.

ChIP-seq analysis. ChIP-seq was performed as described with modifications67. Lysis buffers for preparation of nuclei were supplemented with 10 mM sodium butyrate (Sigma). MACS-purified nuclei were fixed with 1% freshly prepared paraformaldehyde (Sigma) for 2 min at room temperature. Fixation was stopped by adding glycine to a final concentration of 125 mM. Nuclei were washed three times with PBS and were lysed in SDS buffer (50 mM Tris–HCl, pH 8.0, 10 mM EDTA, 1% SDS) supplemented with protease inhibitors (Roche Complete Protease Inhibitor Cocktail, Roche). Chromatin was sheared using a Bioruptor (Diagenode, Liege, Belgium) with 30 high-energy cycles (30 s on/30 s off) to an average size of 200–400 bp. Lysates were diluted 1:10 with buffer (22 mM Tris–HCl, pH 8.0, 150 mM NaCl, 2 mM EDTA, 1% Triton X-100, prechilled with 0.1% bovine serum albumin for 2 h at 4 ºC). Antibodies were preincubated with Protein A Dynabeads (Invitrogen) for 2 h at 4 ºC. For immunoprecipitation, either 5 μg of chromatin was incubated with antibodies directed against H3K4me3 (2 μg, monomethylation, 0-50, Diagenode) and H3K27ac (2 μg, ab4729, Abcam, Cambridge, UK) overnight at 4 ºC or 2.5 μg of chromatin was incubated with an anti-H3K4me4 antibody (1 μg, ab8895, Abcam) or an anti-H3K27me3 antibody (1 μg, pAb-069-050, Diagenode). Immunocomplexes were washed for 10 min each with buffer 1 (20 mM Tris–HCl, pH 8.0, 150 mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.1% SDS), buffer 2 (20 mM Tris–HCl, pH 8.0, 500 mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.1% SDS), buffer 3 (20 mM Tris–HCl, pH 8.0, 250 mM LiCl, 2 mM EDTA, 1% IGEPEL CA 630, 1% sodium deoxycholate) and three times with TE buffer (20 mM Tris–HCl, pH 8.0, 2 mM EDTA) at 4 ºC. Elution from beads was carried out by shaking in elution buffer (100 mM NaHCO3, 1% SDS) at 1,400 rpm (c) at room temperature for 1 h. DNA was treated with 30 μg/ml RNase A (Sigma) for 30 min at 37 ºC and crosslinks were reversed by adding 0.5 μg/ml 100 mM Tris–HCl, pH 8.0, Dynabeads M-280 Streptavidin (Invitrogen) and incubation at 65 ºC for 5 h. DNA was purified using phenol/chloroform followed by ethanol precipitation at −20 ºC overnight. DNA was quantified using Quant-iT PicoGreen dsDNA Reagent (Invitrogen). Sequencing libraries were prepared from 5 ng DNA with the NEBNext ChIP-seq Library Prep Master Mix Set for Illumina (NEB) with 15 PCR cycles and sequenced on a HiSeq 2500 (Illumina, San Diego, USA).
Acknowledgements

We thank Claudia Köbele (University of Freiburg, Germany) for technical assistance, the European Molecular Biology Laboratory GeneCore, Genomics Core Facility staff (Heidelberg, Germany) for performing MethylC-seq and Julia K. Ellis for manuscript editing. This study was supported by the Deutsche Forschungsgemeinschaft SFB 992 project B03 (L.H.) and the BIOSS Centre for Biological Signalling Studies (L.H.).

Author contributions

R.G. and S.P. designed and performed the experiments. T.S. performed surgery and physiology. V.B. and U.B. performed sequencing and A.W. performed FACS. B.A.G. developed bioinformatic tools and B.A.G., R.G. and S.P. performed computational analysis. L.B., S.G., R.B. and B.K.F. interpreted the data and edited the manuscript. L.H. conceived the project and L.H., D.S., R.G. and S.P. wrote the manuscript.

Additional information

Accession codes: DNA methylomes, ChIP-Seq and RNA-seq files have been submitted to the NCBI BioSample databases under accessions SRP033288 (MethylC-seq), SRP033385 (ChIP-seq) and SRP033386 (RNA-seq).

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Gilsbach, R. et al. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat. Commun. 5:5288 doi: 10.1038/ncomms6288 (2014).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/