CIPANP 2009: Closing Talk

W. C. Haxton

Institute for Nuclear Theory and Department of Physics,
University of Washington, Seattle, WA 98195

Abstract. CIPANP 2009 is the tenth meeting of this series. I look back at some of the key events of past meetings, comment on a few of the presentations of this meeting, and look forward to the next CIPANP gathering, when first data from the LHC will be in hand.

Keywords: neutrinos, ultra-high-energy cosmic rays, electric dipole moments, family number

PACS: 26.65.+t,26.60.+c,98.80.Ft,26.50.+x,26.30.+k

CIPANP RETROSPECTIVE

Alan Krisch, encouraged by Louis Rosen among others, began CIPANP, the Conference on the Intersections of Particle and Nuclear Physics, with a meeting held in Steamboat Springs, Colorado, twenty-five years ago. Every since, this meeting has been characterized by two constants, great locations and interesting intersections – the questions found at the boundaries of nuclear, particle, and astrophysics, and the mix of theory, experiment, and instrumentation needed to answer those questions.

As the San Diego meeting is a milestone, the tenth in the series and the end of a quarter century of such efforts, I start this talk with a retrospective of past meetings. I omit the "travelogue" slides of the original, but the physics highlights remain:

- Steamboat Springs, 1984: CIPANP celebrated the discovery of the W and Z and the ground-breaking for LEP.
- Lake Louise, 1986: The MSW mechanism was changing views of the solar ν problem, while claims for a 17 keV ν caused lively debates among experimentalists.
- Rockport, Maine, 1988: Theory papers on SN1987A greatly outnumbered the ν burst events recorded by IMB and Kamiokande.
- Tucson, 1991: COBE data marked a transition into an era of precision cosmology.
- St. Petersburg, 1994: We struggled to reconcile the cancellation of the SSC with US aspirations to lead exploration of the high-energy frontier.
- Big Sky, Montana, 1997: The top quark discovery gave us six quarks, and the newly inaugurated CEBAF was delivering first beam.
- Quebec City, 2000: Super-Kamiokande had announced the discovery of ν mass, supernova data showed an expanding universe, and RHIC was engaged in Run I.
- New York, NY, 2003: WMAP year-one data, LIGO commissioning, and first results from the Sudbury Neutrino Observatory were among the highlights.
- Rio Grande, Puerto Rico, 2006: RHIC finds a perfect fluid, and astronomers find the first double pulsar.
• San Diego, 2009: Underground science facilities (SNOLab opening, DUSEL site selection), ultra-high-energy cosmic rays, and the start of Fermi’s program to map the universe in high-energy gamma rays are among the highlights.

As in baseball, I will try to be a good “closer” by finishing quickly, while asking the question, what should we take away from this meeting as “homework” for 2012?

INNER SPACE, OUTER SPACE

One of CIPANP’s growing intersection areas is the inner space/outer space one, deep questions in particle physics that arise from cosmology and astrophysics:

- What is the dark matter and what role did it play in the evolution of large-scale structure?
- Why does the universe have a net baryon number, that is, an excess of baryons over antibaryons? What determines the baryon-to-photon ratio?
- What are the mechanisms by which nature generates mass, and how can cosmology constrain unknowns such as the absolute scale of \(\nu \) mass?
- What is dark energy?

Neutrino physics plays a role in the first three questions, while in the case of the fourth, it is curious that the dark energy density is \(\sim m_\nu^4 \).

Inner Space/Outer Space I: Neutrinos

The \(\nu \) is unique among the standard-model (SM) fermions in lacking a charge or any other additively conserved quantum number. The freedom from a conserved lepton number allows the \(\nu \) both Majorana and Dirac mass terms, leading to a natural explanation from the anomalous scale of \(\nu \) masses, \(m_\nu/m_\ell \sim 10^{-6} \). On diagonalizing the seesaw mass matrix, one finds a light \(\nu \) of mass \(m_D(m_D/m_R) \). For a heavy right-handed Majorana mass \(m_R \), a natural suppression factor, \(m_D/m_R \), emerges to explain why \(\nu \)s are so much lighter than other SM (Dirac) fermions. If one associates the third-generation \(\nu \) mass with the atmospheric mass scale

\[
m_\nu^{(3)} \sim \sqrt{m_{23}^{\text{atmos}}} \sim 0.05 \text{ eV} \sim m_D^{(3)} \left(\frac{m_D^{(3)}}{m_R} \right),
\]

and fixes \(m_D^{(3)} \sim m_{\text{top quark}} \sim 180 \text{ GeV} \), one finds \(m_R \sim 0.3 \times 10^{15} \text{ GeV} \). That is, the atmospheric mass\(^2\) splitting is consistent with an \(m_R \) very close to the unification scale of SUSY grand-unified theories, \(\sim 10^{16} \text{ GeV} \).

Several key experimental challenges in \(\nu \) physics are clear:

- Demonstrate that there are no \(\nu \) “charges,” that is, that lepton number (LN) is violated. The fortunate existence of even-even isotopes where the first-order weak decay \((A,Z) \rightarrow (A,Z+1) + e^- + \bar{\nu}_e \) is energetically forbidden allows sensitive searches for the second order, LN-violating decay \((A,Z) \rightarrow (A,Z+2) + 2e^- \). Talks at this meeting described new experiments [11], such as Majorana/GERDA,
CUORE, EXO, and SNO+, that use large volumes and strive for excellent radiopurity and energy resolution (important for distinguishing $0\nu \beta \beta$ decay from the tail of the two-electron energy distribution of the LN-conserving 2ν process).

- Determine the absolute scale of ν mass. As oscillations test only mass differences $m_i^2 - m_j^2$, this remains an open question. Tritium β decay provides the best current laboratory limit on the ν_e mass, 2.2 eV, or equivalently $\sum_{i=1}^{3} m_i \lesssim 6.6$ eV. KATRIN could lower the m_{ν_e} mass limit to about 0.2 eV, and thus the bound on the sum of ν masses to ~ 0.6 eV. But more stringent constraints may come from cosmological analyses [2]: lighter νs remain relativistic longer, travel further, and thus suppress the growth of structure for smaller wave numbers k (larger distance scales),

$$k_{\text{free streaming}} \sim 0.004 \sqrt{m_{\nu}/0.05 \text{eV}} \text{ Mpc}^{-1}.$$

While cosmological analyses differ somewhat in their treatments of parameter correlations, typically limits are

$$\sum_{i=1}^{3} m_i \lesssim 0.7 \text{ eV} \text{ or equivalently } \rho_{\nu} \lesssim 0.013 \rho_{\text{crit}}$$

where ρ_{crit} is the critical density that just closes the universe. To “measure” ν mass cosmologically at the lower bound determined by the atmospheric neutrino m^2 difference, 0.05 eV, ones needs a sensitivity to ν dark matter at $\sim 0.001 \rho_{\text{crit}}$. This seems possible, given the advances anticipated in the next decade, including much more ambitious large-scale, high-Z structure surveys; additional constraints on large scales from improved CMB probes such as Planck; Lyman alpha forest focused on small scales and $Z < 6$; and weak lensing studies probing medium to small scales – provided, of course, that one knows how to combine data sets with somewhat different systematics.

- Determine the mass hierarchy, and measure CP violation. Two orderings of the mass eigenstates, normal and inverted, are consistent with oscillation results. This ambiguity could be resolved by a sufficiently precise cosmological measurement of the ν mass scale: if the cosmological mass is determined to be below 0.10 eV, this would rule out the inverted hierarchy (as at least two eigenstates are then required to have masses $\gtrsim \sqrt{3}\delta m_{\text{atmos}} \sim 0.05$ eV).

A program of long baseline neutrino oscillation studies could resolve questions about the ν mass hierarchy as well as the size of ν CP violation. Matter effects – the ν feels a flavor-dependent potential when it passes through the Earth – depend on the hierarchy. For long baselines, 1000-3000 km, the effects are large, and could be explored with ν super beams couple to far detectors of mass $\gtrsim 100$ ktons. In the case of a broad-band beam a distinctive oscillation pattern is imprinted on the spectrum, that allows one to separate the various effects of interest [3].

Long-baseline experiments are also sensitive to new sources of CP violation. As other SM sources of CP violation appear too weak to account for the observed baryon number asymmetry, models in which the required CP violation resides among the leptons (leptogenesis) are in favor. A low-energy manifestation of this
CP violation would be phases in the ν mass matrix: three such phases exist in the three-generation case, one (Dirac) that could be measured in long-baseline experiments and two (Majorana) that enter in processes like $0\nu\beta\beta$-decay. The quantity that could be tested by, e.g., comparing $\nu_\mu \rightarrow \nu_\tau$ with $\bar{\nu}_\mu \rightarrow \bar{\nu}_\tau$, involves a product of ν mixing angles, all of which are large except for θ_{13}. Unless θ_{13} is very small, there are long-baseline strategies (super beams for $\theta_{13} \gtrsim 10^{-2}$, a ν factory for $\gtrsim 10^{-4}$) for isolating the CP violation. A demonstration that θ_{13} is nonzero in current reactor ν experiments, such as Double Chooz and Daya Bay, would spur efforts to mount long-baseline oscillation experiments.

This is an exciting science program: $\beta\beta$ decay to determine whether the ν carries a LN, precision cosmology to determine the absolute scale of ν mass, and long-baseline experiments to measure CP violation and determine the mass hierarchy. We need to get on with this program, now that we are eleven years into the massive ν era.

One concern I have about long-baseline ν physics concerns the nuclear physics. Envisioned ν super beams will peak at energies ~ 2 GeV. This is a complicated energy for the nuclear response, with both quasi-elastic and resonance contributions being important. If we are constrained to do measurements at such energies, rather than in a deep inelastic regime of $\gtrsim 10$ GeV, adequate analysis tools must be developed. Even with calibration tests, it is difficult to envision an oscillation program achieving great precision in the absence of an adequate theoretical framework for parameterizing response functions. Experimental analysis teams and nuclear theorists should be collaborating to develop the needed tools, including a program of validation against JLab electron scattering data.

Inner Space/Outer Space II: The High Energy Limits of the Universe

We heard wonderful talks on the importance of high energy/nuclear physics instrumentation to astrophysics efforts like Fermi/GLAST, IceCube, and Pierre Auger. This is an exciting, emerging field that is testing the extremes of our universe. Pierre Auger results suggest – though the collaboration has not made a definite claim – that the GZK cutoff (the threshold for protons to produce pions through interactions with cosmic microwave background (CMB) photons) is appearing at about $10^{19.5}$ eV. If the cosmos is opaque to ultra-high-energy (UHE) protons and nuclei, how will we determine its high energy limits?

Neutrinos propagate almost unaffected by matter or fields, and point back to their sources at cosmological distances. The field has begun to develop very capable, large volume detectors for high energy νs. IceCube, nearing completion, is focused on energies well below the GZK cutoff, where potential neutrino sources include AGNs and the explosive events in which gamma ray bursts are born. IceCube complements cosmic ray observatories such as Pierre Auger: the km3 volume was motivated by arguments that connect the flux of νs to those of hadronic cosmic rays, assuming a source that is optically thin with respect to high energy proton-meson and photo-meson interactions.

The existence of a GZK cutoff implies one source of UHE νs, the secondary produced in the decay of pions and neutrons that result from CMB photoproduction off cosmic ray (CR) protons and photo-dissociation of nuclei. In addition to these GZK νs, there could be sources that, because of their extreme energies and radiation fields, are optically thin only to νs. There may be "top-down" scenarios where super-energetic νs are produced
directly in the decays of exotic particles. New methods under development to detect UHE vs include radio detection in ice and in the lunar limb, and fluorescence in the atmosphere. One of the future challenges will be to use such methods to monitor very large detector volumes.

The interactions of UHE CRs (and vs) with our atmosphere and with ice and water targets involve center-of-mass energies significantly beyond the limits of terrestrial colliders like RHIC and the LHC. The cascade codes developed to model such interactions – including discriminating between UHE proton and nuclear collisions – depend on extrapolations of laboratory data. The uncertainties this induces in analyses is well appreciated \cite{4}. This is another example where close collaboration between the astrophysics and nuclear/particle physics communities may be important: the composition of UHE CRs is an important problem, affecting both our understanding of the sources and of CR propagation through the CMB.

Inner Space/Outer Space III: Are We Done with Solar Neutrinos? Here I mention a topic of personal interest, the prospect that future solar ν experiments might help us learn more about properties of the solar interior relevant to the Sun’s very early history. Recent improved analyses of photospheric absorption lines have led to a significant revision in abundances of volatile elements such as C, N, O, and Ne. This has created a problem for the standard solar model (SSM), as sound speeds in the Sun’s interior radiative zone are in good agreement with helioseismology only for the older abundances. Surface (photospheric lines) and interior (helioseismology) abundances are connected in the SSM through the assumption of a homogeneous zero-age-main-sequence (ZAMS) Sun: the protoSun is thought to have passed through a fully convective Hayashi phase.

The discrepancy corresponds naively to a deficit in the convective zone’s total metal content of about 40 M$_\odot$. One can speculate about mechanisms that might segregate metals at this level, subsequent to the Hayashi phase. Results from the Galileo and Cassini probes and planetary modeling show that significant metal differentiation occurred in the late-stage solar system disk. Jupiter and Saturn are enriched (~ factor of four) in C, N, Ne, and similar elements, and the net giant-planet excess of metals is ~ 40-90 M$_\odot$. This is thought to be a consequence of disk processes that concentrate larger grains and ice in the disk’s midplane “dead zone” (where the rocky cores of the giant planets form) and metal-poor gas in the disk’s outer layers. Planetary formation occurs late in solar system evolution, after the protoSun is well formed, with ~ 5% of the nebular gas remaining in the disk. While midplane material is incorporated in planets, there are plausible mechanisms, including ionization of the surface by cosmic rays and x-rays, that could lead to deposition of the disk’s surface gas onto the Sun. If the Sun has developed a radiative core by this point, this could produce a two-zone sun with a convective zone relatively depleted in metals.

Future solar neutrino experiments – e.g., SNO+, a proposed larger, deeper version of Borexino – may determine the metallicity of the core to an accuracy approaching ~ 10%. This could be done by measuring the CN solar vs. The analysis \cite{5} makes use of 1) the accurate measurements of the 8B neutrino flux by Super-Kamiokande, which constrains the core temperature, and 2) recent progress in reducing uncertainties in the flavor physics and in the nuclear cross sections for the pp chain and CN cycle.
Three subjects discussed frequently at this meeting – CP violation, flavor physics, and dark matter – involve complementary efforts at the low-energy precision and high-energy intensity frontiers.

Low Energy/High Energy I: CP Violation CP-violation was the theme of talks on low-energy searches for nonzero electric dipole moments, collider signals for supersymmetry, and the generation of a net baryon number through leptogenesis.

Electric dipole moment (edm) experiments look for an interaction energy of the form

$$H_{edm} = d \vec{E} \cdot \vec{s},$$

where \vec{s} is a particle’s spin. Because of the time reversal properties $\vec{E}(t \rightarrow -t) \rightarrow \vec{E}$ and $\vec{s}(t \rightarrow -t) \rightarrow -\vec{s}$, H_{edm} is manifestly odd under $t \rightarrow -t$. One of the highlights of this meeting is shown in the last row of Table I, the recent factor-of-seven improvement in the edm of 199Hg, which previously competed with the neutron edm limit as the best constraint on a variety of sources of hadronic CP violation. The Hg experiment was done in a vapor cell carefully prepared to minimize leakage currents (0.5-1.0 pA at 10 kV) and maximize the time for spin relaxation (100-200 s).

Over the next ten years significant progress is expected in this field. The Hg experiment might be improved by another factor ~ 4 before leakage current limitations are reached. New ultracold neutron experiments by groups at ILL, PSI, Munich and the SNS should improve neutron edm limits by about a factor of 20, to $\sim 5 \times 10^{-28}$ e cm, by 2015. The Princeton group is developing a new technique for measuring the edm of 129Xe in a high-density liquid state. Techniques for measuring edms in traps are being developed for 213,225Ra and 223Rn at Argonne, KVI, and TRIUMF. BNL is considering a proposal to measure the edms of deuterons circulating in a ring.

Some of these methods will allow one to use systems where edms may be substantially enhanced, through level degeneracies or through nuclear collectivity. The $5/2^+ - 5/2^-$ 160 eV ground state parity doublet in 229Pa could produce an edm enhancement of $\sim 10,000$. A similar factor could arise in 225Ra, a nucleus where parity doublets arise from octupole deformation: in analogy with the more familiar quadrupole deformation in nuclei, the nucleus minimizes its energy in pear-shaped T-odd configurations, with the symmetry then restored by forming the even or odd combinations of these configurations. With new techniques like traps, one can use systems with nonzero atomic spins and higher nuclear spins: in a vapor cell, a nonzero atomic spin would lead to rapid loss of spin polarization, due to scattering off cell walls. This opens up more opportunities to find enhancements and to probe higher-order T-odd nuclear moments such as the M2. When one takes into account the screening of a nuclear edm in a neutral atom, one finds that the M2 response is enhanced by R_A/R_N, the ratio of atomic and nuclear sizes, relative to the C1 (edm) response. (Part of this enhancement is lost because the M2 coupling is relativistic, but this suppression is not large in a heavy atom.)

Edm studies complement high energy efforts to find new sources of CP violation. As identified SM sources of CP violation are not strong enough to account for the observed baryon number asymmetry, new sources of CP violation are expected. We
TABLE 1. Electric dipole moment limits vs. SM predictions for the CKM phase.

Particle	edm limit (e cm)	system	SM prediction
e	1.9×10^{-27}	atomic 205Tl	10^{-38}
p	6.5×10^{23}	molecular TlF	10^{-31}
n	2.9×10^{-26}	ultracold n	10^{-31}
199Hg	$2.1 \times 10^{-28} \rightarrow 3.1 \times 10^{-29}$	atom vapor cell	10^{-33}

have already mentioned the phases in the ν mass matrix. Extensions of the SM, such as supersymmetry, are another very likely source of new CP violation. Making the connections between low-energy observables and fundamental CP-violating phases requires significant theory. In the case of edm studies of diamagnetic atoms such as Hg or Ra, one is required to “peel back” through layers involving atomic screening and the CP-odd NN interaction, to get to quantities like the quark and squark edms and $\bar{\theta}$ that can be more readily related to the fundamental CP-violating phases. The prospect that the LHC may soon constrain leading candidate theories that introduce new sources of CP violation, such as SUSY theories, could greatly stimulate this field.

Low Energy/High Energy II: Flavor Physics At this meeting we have heard a variety of talks on flavor physics. One of the fundamental questions in particle physics is why we have three families. At low energies new puzzles have emerged, such as the origin of the large ν mixing angles (in contrast to the small ones among quarks): to the extent we have been able to measure, $\theta_{23} \sim 45^\circ$.

Table 2 shows the current limits on a variety of lepton flavor violating (LFV) decays. Facilities such as JPARC and FermiLab are considering high intensity, next-generation experiments to significantly extend limits on $\mu \rightarrow e$ conversion. The experiments would make use of high-intensity pulsed proton beams to remove pion backgrounds by timing, large acceptance capture solenoids to increase the useful muon flux, and bent solenoids to transport muons while removing neutrals and separating charge. The FermiLab experiment with an 8 GeV proton beam could reach a branching ratio sensitivity of $\sim 4 \times 10^{-17}$, an improvement of four orders of magnitude over current bounds. This would, for example, push sensitivities to tree-level LFV exchanges from the current mass of ~ 1 TeV to ~ 10 TeV [7] – complementing the LHC’s efforts to probe TeV-scale physics directly. JPARC’s experiment would use 40 GeV protons and might reach even further, to $\sim 5 \times 10^{-19}$.

Low Energy/High Energy III: Dark Matter A third low energy/high energy interface is the nature of the dark matter. This is perhaps the coming decade’s greatest physics opportunity. It potentially unites some of our most exciting frontiers: finding SUSY at the LHC, explaining the evolution of the large-scale structure of the universe, and developing ultra-low-background counting techniques for direct detection of dark matter at Gran Sasso, SNOLab, DUSEL, and other underground locations. We know this problem is real and must involve beyond-the-SM new particles, perhaps the lightest SUSY particle. Underground detection technologies now under development, such as
cryogenic noble gas detectors, hopefully can be scaled to large volumes. The problem being solved – identifying the bulk of the matter in the cosmos – has the “wow” factor.

THEORY, MODELING, AND COMPUTATION

My last comments, on theory and computation, are inspired in part by the progress in lattice QCD and in cosmological/astrophysical modeling that we heard summarized at this meeting. In lattice QCD, for example, NN phase shifts are now being calculated in fully dynamical QCD, and properties of the chiral phase transition are being determined in finite temperature calculations with pion masses near the physical value. The resources for computing are expanding, and new algorithms (including improved lattice actions) are making computation more efficient.

Theoretical modeling is sometimes undervalued with respect to more traditional theory, which is focused on new concepts. But in fact this difference is exaggerated, as numerical modeling is a testing ground for new theory and provides opportunities for exploring theory consequences. The acceptance of and critical role played by numerical modeling in cosmology and astrophysics in notable – this young field grew up with high performance computing (HPC), and has easily integrated HPC into its core. Similarly, particle and nuclear physics have many problems for which numerical simulation is the only way to quantitatively connect underlying theory to observation: examples include the properties of RHIC collisions, the nucleon form factors measured at JLab, and the BaBaR and Belle searches for exotics.

This “editorial” is appropriate for CIPANP because computation is entering a new phase. New machine technologies could increase the power of computation by a factor of 1000 over the next decade. This would have extraordinary implications for the physical sciences, allowing rapid advancements in core nuclear/particle/astrophysics applications such as lattice QCD, core collapse supernovae, and the formation of the first stars. Some quantities –one example is NN phase shifts – will be calculable from fundamental theory to an accuracy that may surpass experiment.

But these changes will require adjustments. Machines will utilize advanced architectures and be as costly as some of our flagship experimental facilities. A new style of collaborative computation will be needed, partnerships between physical scientists, applied mathematicians, and computational scientists to define the underlying mathematics
of physical processes, develop algorithms optimized to new architectures, and validate
the results. This is a new kind of intersection for our field – one that if embraced, could
make physics a leading discipline in computational research.

CONCLUSIONS

In three years, when we next meet at CIPANP, we will have entered the LHC era. It
should be an exciting time, with the high energy frontier taking center stage as TeV-
scale physics is revealed.

Let me conclude by thanking our hosts, the CIPANP 2009 organizing committee,
for their efforts to bring us together in the attractive environment of San Diego. Marvin
Marshak, the organizing committee chair, has invested a great deal of his time and energy
to make this meeting a great success. He was assisted by his very able team, Dan Cronin-
Hennessy, Priscilla Cushman, Joseph Kapusta, Peter Litchfield, Jeremy Mans, and Yong
Qian. We owe Marvin and his colleagues a hearty thanks for a job well done!

REFERENCES

1. See, for example, the DNP/DPF/DAP/DPB Joint Study on the Future of NeutrinoPhysics,
 http://www.aps.org/policy/reports/multidivisional/neutrino/
2. S. Hannestad and Y. Y. Y. Wong, J. Cosmology and Astroparticle Phys. 4, 0707 (2007).
3. M. V. Diwan et al., arXiv:hep-ex/0211001 and Phys. Dev. D 68, 012002 (2003).
4. I. C. Maris et al., arXiv:0907:0409 (to be published in the proceedings of ISVHECRI 2008).
5. W. C. Haxton and A. M. Serenelli, Ap. J. 687, 678 (2008).
6. W. C. Griffiths, M. D. Swallows, T. H. Loftus, M. V. Romalis, B. R. Heckel, and E. N. Fortson, Phys.
 Rev. Lett. 102, 101601 (2009).
7. M. Raidal et al., Eur. Phys. J. C 57, 13 (2008).