Clinical value of cerebrospinal fluid neurofilament light chain in semantic dementia

Lieve H H Meeter,1 Rebecca M E Steketee,2 Dina Salkovic,1 Maartje E Vos,1 Murray Grossman,3 Corey T McMillan,3 David J Irwin,7 Adam L Boxer,4 Julio C Rojas,4 Nicholas T Olney,5 Anna Karydas,5 Bruce L Miller,4 Yolande A L Pijnenburg,6 Frederik Barkhof,7,8 Raquel Sánchez-Valle,9,10 Albert Llado,9,10 Sergi Borrego-Ecija,9,10 Janine Diehl-Schmid,11 Timo Grimmer,11 Oliver Goldhardt,11 Alexander F Santillo,12 Oskar Hansson,12 Susanne Vestberg,13 Barbara Borroni,14 Alessandro Padovani,14 Daniela Galimberti,15,16 Elio Scarpini,15,17 Jonathan D Rohrer,18 Ione O C Woollacott,18 Matthijs Synofzik,19,20 Carlo Wilke,19,20 Alexandre de Mendonça,19,21 Rik Vandenbergh,22,23 Luisa Benussi,24 Roberta Ghidoni,24 Giuliano Binetti,24,25 Wiro J Niessen,26,27 Janne M Papma,1 Harro Seelaar,1 Lize C Jiskoot,1 Frank Jan de Jong,1 Laura Donker Kaat,1,28 Marta Del Campo,29 Charlotte E Teunissen,29 Esther E Bron,26 Esther Van den Berg,1 John C Van Swieten1

ABSTRACT

Background Semantic dementia (SD) is a neurodegenerative disorder characterised by progressive language problems falling within the clinicopathological spectrum of frontotemporal lobar degeneration (FTLD). The development of disease-modifying agents may be facilitated by the relative clinical and pathological homogeneity of SD, but we need robust monitoring biomarkers to measure their efficacy. In different FTLD subtypes, neurofilament light chain (NFL) is a promising marker, therefore we investigated the utility of cerebrospinal fluid (CSF) NFL in SD.

Methods This large retrospective multicentre study compared cross-sectional CSF NFL levels of 162 patients with SD with 65 controls. CSF NFL levels of patients were correlated with clinical parameters (including survival), neuropsychological test scores and regional grey matter atrophy (including longitudinal data in a subset).

Results CSF NFL levels were significantly higher in patients with SD (median: 2326 pg/mL, IQR: 1628–3593) than in controls (577 (446–766), p<0.001). Higher CSF NFL levels were moderately associated with naming impairment as measured by the Boston Naming Test (r=−0.32, p=0.002) and with smaller grey matter volume of the parahippocampal gyri (r=−0.31, p=0.004). However, cross-sectional CSF NFL levels were not associated with progression of grey matter atrophy and did not predict survival.

Conclusion CSF NFL is a promising biomarker in the diagnostic process of SD, although it has limited cross-sectional monitoring or prognostic abilities.

INTRODUCTION

Semantic dementia (SD) is a sporadic neurodegenerative disorder characterised by loss of semantic knowledge, impaired naming and word comprehension, with preserved speech production.1 Compared with other disorders in the frontotemporal lobar degeneration (FTLD) spectrum, SD is relatively homogeneous because of the typical clinical presentation, the neuroimaging signature of asymmetrical anteroinferior temporal atrophy and the typical pathology of type C FTLD with TAR DNA binding protein 43 kDa inclusions (FTLD-TDP).1–3 This homogeneity provides opportunities for the development of disease-modifying agents, for which reliable biomarkers are essential to measure their efficacy.

A promising biomarker in frontotemporal dementia (FTD) is neurofilament light chain (NFL), a major component of the neuronal cytoskeleton involved in axonal and dendritic growth, signalling and transport.4 Previous studies have demonstrated elevated cerebrospinal fluid (CSF) NFL levels across the FTLD spectrum which are associated with disease severity, brain atrophy and survival.5–11 Moreover, CSF and serum NFL levels are strongly correlated, enabling repeated measurements in serum to assess disease progression or treatment response.5–12 Small series have shown high CSF and serum NFL concentrations exclusively in the group of patients with SD,7 13–15 but a larger cohort may be needed to detect associations with clinical variables. Another interesting question in this context is whether high NFL levels are also associated with survival in SD, considering that SD is a relatively slow progressive disease.16 17

In a large series of patients with SD from 14 different centres, we investigated our hypothesis that CSF NFL levels are elevated compared with controls and correlate with disease severity, atrophy and clinical progression in SD.
METHODS

Subjects
In total, 168 patients with SD with one CSF collection from 14 different centres in Europe and the USA (numbers per site in online supplementary table 1) were retrospectively included in this study. Patients with a CSF profile suggestive of Alzheimer’s pathology (a combination of low amyloid-β_{1-42} and high phospho-tau and/or total-tau, according to local references at time of CSF collection), were excluded from the study (n=6). Patients initially presented with language difficulties, characterised by fluent speech with impaired naming and word comprehension. The clinical diagnosis of SD was established using the international consensus criteria at the time of inclusion (either based on Neary et al. in those cases diagnosed before 2011 or Gorno-Tempini et al. from 2011 onwards). Some behavioural disturbances were present in a subset of patients (n=63), but language problems were the most prominent initial features in all. In addition to the clinical diagnosis of SD, the other inclusion criteria were: availability of CSF NfL concentrations (n=162) and survival (n=157), neuropsychological (n=147) and/or neuroimaging data available for analysis (n=87).

Asymmetric temporal atrophy on neuroimaging was used as a supportive feature; this was present in 141 patients (left-sided dominant atrophy in 108 patients; right-sided dominant atrophy in 33 patients). The remaining 21 patients with CSF NfL concentrations fulfilled the clinical diagnostic criteria of SD, but had no neuroimaging available (n=18) or had bilateral atrophy (n=3). TDP-pathology was confirmed in all seven deceased patients with brain autopsy.

To compare NfL levels between controls and patients with SD, 65 sex-matched and age-matched healthy controls from our previous studies were included. Controls had normal CSF amyloid-β_{1-42} levels and had either normal neurological examinations, neuropsychological testing scores and Clinical Dementia Rating (CDR) scores of 0 (n=44) or they were cognitively healthy family members without a mutation or spouses from patients with genetic FTD or a different neurodegenerative dementia (n=21).

Disease duration was defined as time between first symptoms noted by a caregiver (onset) and CSF collection. Survival was defined as time between CSF collection and death.

Standard protocol approvals, registrations and patient consents
The local ethics committees approved the study and all subjects or their legal representatives provided written informed consent.

Neuropsychological assessment
Most subjects (n=147) underwent global cognitive screening and/or neuropsychological assessment (NPA) at the local study site (for numbers per test, see figure 1); only assessments within 6 months of CSF collection were analysed. Screening instruments included the Mini-Mental State Examination (MMSE), global CDR scale, CDR-sum of boxes (CDR-SB) and the FTD-CDR-SB. When follow-up scores were available, annual progression rate after CSF collection was calculated by the change in MMSE, CDR, CDR-SB or FTD-CDR-SB divided by the number of years between baseline and follow-up (at least 6 months).

NPA batteries differed across the sites, and tests were only included when available in at least 30 patients (figure 1). A proportion of the test scores were transformed to uniformly and...
meaningfully combine different tests or versions, and thus use
the maximal amount of neuropsychological data. Short versions
of the Boston Naming Test (BNT) were multiplied to match the
total possible score of the full 60-item version. Trail-Making Test-
part A (TMT-A) and part B (TMT-B) were truncated to 300 s for
patients that exceeded the time limit of 300 s. For the Stroop
Color-Word Test (SCWT), some versions scored the number of
correct items within a set time, whereas others obtained the time
to complete 50 or 100 items. We transformed all scores into
the number of seconds needed to complete a 100-item version;
for SCWT versions that scored the number of correct items, we
used the following formula: number of seconds allowed * 100/
number of correct items. Next, the interference score (score on
interference card/score on colour naming) was calculated for all
SCWTs and used for analysis. Different word-list learning
tasks were transformed into a percentage of correct items (Rey
Auditory Verbal Learning Test n=34, California Verbal Learning
Test n=24, CERAD word list memory test n=2). In addition,
we converted scores on different versions of the Clock Drawing
Test (CDT) to percentages. Non-transformed tests included catego-
rical fluency (animal naming), verbal fluency (three letters),
digit span (forward+backward) and the Rey complex figure test.

CSF analyses
CSF was collected and stored according to standardised local
procedures. NfL was measured in duplicates by the ELISA (Uman
Diagnostics, Umeå, Sweden) according to the manufacturer’s
instructions. Measurements were performed in three different
laboratories: the Amsterdam University Medical Center (135
patients with SD, 21 controls), Bristol Myers Squib, Wallingford,
Connecticut, USA (19 patients with SD and 44 controls) and the
Washington University School of Medicine (8 patients with SD).
All laboratories used the same ELISA, but the latter two added
a dilution step (1:3 diluted, instead of 1:1 as the manual stipu-
lates). Thus, considering the optimal linearity of the assay used,23
a correction factor of two was used for all NfL levels determined
at these sites, resulting in comparable CSF NfL levels in patients
across the different laboratories (p=0.09). Controls from labo-
ratory two had slightly lower NfL concentrations, but with over-
lapping ranges (laboratory 1 (Amsterdam UMC): median 800
pg/mL, range 548–1093 pg/mL; laboratory 2 (Bristol Myers
Squib): median 511 pg/mL, range 99–1047 pg/mL). We covaried
analyses for each laboratory. Within all laboratories, the inter-
assay coefficient of variation was within the acceptance criteria
(±20%). The mean intra-assay coefficient of variation was 1.4%
(range 0%–11.3%, unavailable in 25 patients).

Magnetic resonance imaging (MRI)
In 87 patients, structural T1-weighted (T1w) 3T MR-images
within 6 months of CSF collection were available for neuroim-
aging analysis (mean CSF-MRI interval 0±1 months), and in
32 patients a follow-up scan ≥6 months was available (mean
interval between scans 13.5±7.0 months). Brain images were
acquired locally and scans from a scanner that only contributed
images to the subjects’ T1w images. All images were masked
with the brain extraction tool28 and non-uniformity corrected,
after which a majority-voting algorithm was used to fuse ROI
labels. We selected 11 specific cortical ROIs for further analysis
from the 83 ROIs previously implicated in SD.29,30 Processed
images were visually inspected for each subject and each
processing step; six scans had extensive segmentation errors and
were therefore excluded (figure 1). For the 11 ROIs, processed
images with outlying volumes (<25th percentile – 1.5 * IQR or
>75th percentile + 1.5 * IQR) were closely inspected by three
raters; if consensus was reached that the outlier was caused by a
segmentation error, the specific ROI was excluded from analysis.
Since SD is an asymmetric disorder, GM ROIs of the domi-
nant brain side (most atrophied, based on the smallest temporal
lobe GM volume for each patient on the baseline scan) were
used for analysis; secondary analyses were undertaken on bilateral
GM ROIs. All ROIs were corrected for head size by normalising
to intracranial volume (ICV) and reported as percentage of ICV.
The degree of asymmetry was assessed by calculating the ratio
of temporal lobar GM volume from the dominant side to that of
the non-dominant side, yielding a smaller ratio when more asym-
metry was present. For follow-up images, progression of atrophy
was assessed by change in volume (mL) per year uncorrected for
ICV: (volume follow-up – volume baseline)/interval between scans
(years).

Statistical analyses
SPSS Statistics 21.0 for Windows (Armonk, New York, USA)
was used to analyse the data. Statistical significance was set at
p<0.05 and Bonferroni correction for multiple testing was used
when appropriate. Continuous data were compared between two
groups by Mann-Whitney U or t-tests where appropriate; catego-
rical variables were compared by χ² tests. CSF NfL levels
were normalised by log transformation and compared between
patients with SD with controls using analysis of covariance,
correcting for sex, age at CSF collection and laboratory of NfL
measurement. Diagnostic performance was assessed by receiver
operating characteristic analysis, with optimal cut-off levels at
the highest Youden index.

Spearman’s correlation coefficient (r) was used to correlate
non-transformed NfL levels with age at CSF collection, disease
duration at CSF collection, cognitive screening scales (MMSE,
CDR-SB and FTD-CDR-SB), neuropsychological tests and GM
ROIs. Next, multivariate linear regression analysis (β) was also used
to assess the association between (1) non-transformed NfL levels
independent variable) and neuropsychological tests (dependent
variable), correcting for age, sex and laboratory and (2) non-trans-
formed NfL levels and GM ROIs, correcting for age, sex, labo-
atory and scanner. The Bonferroni method was used for correction
for multiple comparisons. NfL as predictor for survival (after CSF
collection) in patients was analysed using the Log Rank test and
Kaplan-Meier curves comparing NfL tertiles, and a Cox regression
with correction for age, sex and laboratory, both on tertiles and
NfL as continuous variable.

RESULTS
Demographical and clinical data
The group of 162 patients with SD and 65 healthy controls did
not differ in age or sex (table 1). The median disease duration at
CSF collection in patients with SD was 3.3 years, ranging from
0.3 to 15.2 years. The FTD-CDR-SB scores in patients with SD ranged from 1.0 to 22.0 with a median of 4.0 (n=34). Available neuropsychological data showed poor performances on the BNT (mean=20, n=89) and verbal fluency tasks (semantic fluency: mean=8, n=110; phonological fluency: mean=21, n=66). The median follow-up of living patients was 4.1 years (range 0.6–13.6, n=127; five patients were lost to follow-up) while median survival of deceased patients after CSF collection was 5.3 years (range 1.0–14.1, n=30).

NfL in relation to clinical characteristics and neuropsychological test scores

CSF NfL levels were higher in patients with SD than in controls (table 1, figure 2, p<0.001) and had a sensitivity of 93% and a specificity of 98% (cut-off level 1049 pg/mL, area under the curve 0.98 (95% CI 0.96 to 1.00)). Cross-sectional NfL correlated with the BNT (table 2, figure 3A, rs=0.31, p=0.003), and there was a trend for association with GM volume of the medial and inferior temporal gyri (rs=−0.28, p=0.06). Cross-sectional NfL levels did not correlate with progression of atrophy in the selected ROIs in the small series of patients with SD with follow-up scans (n=32) (table 4). When the analyses were repeated with bilateral volumes, a negative association with the parahippocampal gyrus was found once again (rs=−0.32, p=0.003). Additionally, the bilateral medial and inferior temporal gyri, temporal pole and hippocampus were negatively associated with NfL; however, after correction for covariates, the association did not withstand Bonferroni correction.

Survival analyses

Cox regression analysis with cross-sectional CSF NfL as a continuous variable showed a trend for association between NfL levels and survival (p=0.06, HR 1.22 (95% CI 0.99 to 1.51)). However, CSF NfL tertiles did not associate with survival after CSF collection (figure 3C, p=0.66 log rank test, p=0.80 Cox regression with correction for sex, age and laboratory). Excluding patients with an outlying long disease duration (>Q3+1.5*IQR) yielded the same results.

DISCUSSION

This large international multicentre SD study shows that the clinical value of cross-sectional CSF NfL differs from other FTLD subtypes noted in previous reports. Increased CSF NfL levels in patients with SD were associated with more severe naming impairment and smaller GM volume of the parahippocampal gyrus, both with a medium effect size (correlation coefficient of −0.3). In contrast to other FTLD subtypes, NfL did not associate with progression of GM atrophy or survival.

The elevated CSF NfL levels in patients with SD compared with controls is in line with those found in previous smaller SD series. The absence of a correlation between CSF NfL and age is probably caused by the disease effect overriding the age effect. The observed association between higher NfL levels and worse performance on the BNT may suggest that the variance in NfL is partly determined by disease severity,
Table 2 Associations between neurofilament light chain and neuropsychological test scores

Test	N	Correlation	Multivariate regression		
		rs	P value	β	P value
BNT	89	−0.32	0.002*	−0.34	0.002*
Categorical fluency	110	−0.17	0.08	−0.14†	0.14
Letter fluency	66	−0.03	0.83	−0.14†	0.28
Digit span	107	0.07	0.47	0.04	0.71
TMT-A	84	−0.23	0.04	−0.20†	0.07
TMT-B	78	−0.30	0.0007	−0.19†	0.09
SCWT interference	52	0.12	0.39	0.08†	0.57
Word list immediate recall	60	−0.17	0.20	−0.22†	0.08
Word list delayed recall	60	−0.23	0.07	−0.24§	0.08
Clock drawing test	30	0.23	0.23	0.21†	0.30
Rey figure copy	50	−0.05	0.71	0.04†	0.76
Rey figure delayed recall	44	−0.17	0.27	−0.24§	0.10

Multivariate regression is corrected for age, gender and laboratory. P<0.05 are in bold.
*Survived Bonferroni correction for multiple testing (p<0.004).
†Not corrected for laboratory as all samples were analysed in the same laboratory for these tests.
‡After additional correction for version seconds to complete versus number correct: β=0.15, p=0.27.
§Similar results with additional correction for test version.

BNT, Boston Naming Test; SCWT, Stroop Color-Word Task; TMT, Trail-making Test.

as naming impairments and semantic deficits are hallmarks of SD.22 31 32 Future studies will benefit from more extensive and more uniform testing of word comprehension.

While earlier studies found an association of NfL with CDR in different FTD types,5 7 we found no association with the CDR in our study. This may be explained by the fact that patients with problems confined to language remained independent in daily life activities.33 The FTD-CDR-SB does include a language domain as one of the eight items, but the number of patients with data on this scale was too small to draw strong conclusions. Likewise, the association between NfL and future decline in MMSE did not survive multiple testing correction and seems—combined with its medium effect size—therefore not suitable as a predictor for functional decline.

The significant association between higher CSF NfL levels and smaller parahippocampal GM volume in our study is in line with studies showing positive correlations with temporal cortical regions in FTD.5 7 This is in line with a large body of evidence that NfL levels reflect the extent of neuronal loss5 7 34 as supported by neurodegenerative mouse models.35 Of note, one previous study using blood found no association of GM volume with serum NfL in patients with SD,14 which could be explained by the larger power of our study, or that CSF NfL might be more sensitive than serum NfL.34 The parahippocampal gyrus is located in the core of the neurodegenerative process, which starts in the temporal pole and fusiform gyrus spreading to the orbitofrontal, inferior frontal, insular and anterior cingulate cortices as well as posteriorly to temporoparietal regions, and into homologous areas of the contralateral hemisphere.1 29 30 More regions were (borderline) significantly associated when analysing bilaterally rather than at the dominant side only. This may point towards an important difference between these markers: GM atrophy represents cumulative injury, while CSF NfL measures the current balance between release and clearance of NfL and thus reflects ongoing neuronal loss. Our notable lack of association of NfL with the anterior temporal lobe may then be explained by the striking atrophy at time of presentation (as illustrated by figure 4) precluding further release of neurofilaments from this region. Other studies report that NfL levels are elevated during active periods of multiple sclerosis and traumatic

Figure 3 Relationship of CSF NfL with language impairment, parahippocampal atrophy and survival in patients with SD. (A) Association between NfL and the BNT as measure for naming impairment. When the patient (who had a right dominant SD) with a high BNT score was excluded, the analyses remained significant. (B) Association between NfL and grey matter volume of the parahippocampal gyrus at the dominant side, displayed as percentage of ICV. (C) NfL was not associated with survival after CSF collection in SD as exemplified by this Kaplan-Meier curve of NfL levels stratified to lowest (green line), middle (blue line) and highest tertiles (red line). Vertical ticks represent living patients. BNT, Boston Naming test; CSF, cerebrospinal fluid; ICV, intracranial volume; NfL, neurofilament light chain; SD, semantic dementia.
brain injury and normalise afterwards or after treatment.16,37 If this hypothesis on NfL release is correct, the change of NfL over time would associate with progression of atrophy, as has previously been shown for primary progressive aphasia or FTD subtypes combined.5,13,14 We found no association between baseline NfL and progression of GM atrophy. This may be due to the relatively small subset of patients with longitudinal MRI data and/or to the slow decrease of GM atrophy over time. Larger series of longitudinal NfL levels with corresponding MRI scans are needed to elucidate these discrepancies, preferably including patients early in their disease process with multiple time-points, and by taking a possible non-linear relationship into account.

We showed a trend for a significant association between cross-sectional NfL levels and future survival in SD. This seems to be in contrast with the evidence of an association between cross-sectional NfL levels and future survival in SD.16,17 Since the follow-up time may have been too short to capture the differences in survival, we propose to reinvestigate the survival of the current cohort in approximately 3–5 years.

A major strength of this study was the large international series of CSF samples and clinical data from patients with this rare disease, which comprises 10%–15% of FTD cases.16 A second strength was the multimodal approach in correlating NfL to clinical, neuropsychological and imaging data. Moreover, we included only one FTD subtype—after exclusion of patients with CSF profiles suggestive of AD, making the results specific and not influenced by clinical or pathological heterogeneity.

Since SD is one of the most homogeneous subtypes of FTD, it is a promising target for developing novel treatments. Our results are also important for future trials, as they suggest a limited role for cross-sectional CSF NfL as a monitoring or progression marker in SD.

The multicentre approach also caused some limitations, especially considering the measurement of NfL levels at three different centres. Unfortunately, no controls are provided in the ELISA kit, and due to the current lack of a quality control programme, the assays of the different laboratories could not be compared directly. We accounted for differences between laboratories by normalisation and laboratory-correction, but in future multicentre studies, harmonisation of results could be improved by remeasuring a number of control and patient samples across the different laboratories.

Other possible limitations include the different neuropsychological test batteries per centre and this might have introduced variability and loss of sensitivity; however, we transformed different versions of the same test to analyse them together. Furthermore, the variation in scanners and parameters of the T1-weighted imaging was reduced by including 3T data only.

Table 3 Association between neurofilament light chain and clinical characteristics or global cognitive scales in patients with SD

Region of interest	N	\(r_s \)	P value	N	\(r_s \)	P value
Age at CSF collection	162	-0.002	0.98	157	-0.06	0.46
Age at onset	157	0.03	0.68	157		
Disease duration at CSF collection	157	0.03	0.68	157		
MMSE	135	-0.11	0.20	51	-0.29	0.04
Global CDR	78	0.15	0.18	33	-0.03	0.86
CDR-SB	65	0.23	0.07	33	-0.01	0.97
FTD-CDR-SB	34	0.05	0.79	10	0.33	0.37

For longitudinal analysis, annualised change of the scores was used. P<0.05 are in bold, none survived Bonferroni correction for multiple testing.

Table 4 Associations between neurofilament light chain and grey matter regions of interest of the dominant side*""
excluding data from scanners on which less than three datasets were acquired and correcting for scanner in the analysis. Additionally, we did not study different primary progressive aphasia subtypes and did not include serum—which is likely to replace CSF measurements in the near future. The lack of longitudinal NfL data did not allow us to draw conclusions about NfL and clinical or imaging markers over time; it is conceivable that a plateau phase or even a decrease of NfL may occur over time.

In conclusion, our results show that cross-sectional elevated CSF NfL may be a useful biomarker for the neurodegenerative process in SD, which could lead to the use of CSF NfL as a diagnostic biomarker. However, the use of CSF NfL to monitor disease progression in SD remains debatable, since we only found a moderate association with language deterioration and atrophy and no relation of CSF NfL with survival (in a relatively short follow-up time). This is in contrast with previous reports on NfL in other neurodegenerative diseases and should thus be taken into account when interpreting studies that combined different FTLD subtypes. Recently, it has become clear that NfL in blood and CSF strongly correlate, facilitating longitudinal monitoring. More longitudinal multicentre studies are needed to assess how serial NfL levels fluctuate over time in relation to longitudinal clinical and imaging changes in SD (and other FTLD subpopulations) and thereby their potential utility.

Author affiliations

1. Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
2. Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
3. Penn FTD Center, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
4. Neurology, Memory and Aging Center University of California San Francisco, San Francisco, California, USA
5. Neurology, University of California San Francisco Memory and Aging Center, San Francisco, California, USA
6. Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
7. Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
8. Neurology and Healthcare Engineering, University College London Medical School, London, UK
9. Department of Neurology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
10. Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
11. Institute d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
12. Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
13. Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
14. Psychology, Lund University, Lund, Sweden
15. Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
16. Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda, Ospedale Policlinico, Milan, Italy
17. Biomedical, Surgical and Dental Sciences, University of Milan, Centro Dino Ferrari, Milan, Italy
18. Pathophysiology and Transplantation, University of Milan, Centro Dino Ferrari, Milan, Italy
19. Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
20. Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, Tübingen, Germany
21. German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
22. Institute of Molecular Medicine and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
23. Department of Neurology, University Hospital Leuven, Leuven, Belgium
24. Laboratory for Cognitive Neurology, Department of Neurosciences, UZ Leuven, Leuven, Vlaanderen, Belgium
25. Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
26. MAC Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
27. Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
28. Imaging Physics, Applied Sciences, Delft University of Technology, Delft, The Netherlands
29. Department of Clinical Genetics, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
30. Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
31. Institute of Molecular Medicine and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
32. German center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
33. Biomedical, Surgical and Dental sciences, University of Milan, centro Dino Ferrari, Milan, Italy
34. Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
35. Psychology, Lund University, Lund, Sweden
36. Psychology, Lund University, Lund, Sweden
37. Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
38. Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda, Ospedale Policlinico, Milan, Italy
39. Pathophysiology and Transplantation, University of Milan, Centro Dino Ferrari, Milan, Italy
40. Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
41. Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, Tübingen, Germany
42. German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
43. Institute of Molecular Medicine and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
44. Department of Neurology, University Hospital Leuven, Leuven, Belgium
45. Laboratory for Cognitive Neurology, Department of Neurosciences, UZ Leuven, Leuven, Vlaanderen, Belgium
46. Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
47. MAC Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
48. Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
49. Imaging Physics, Applied Sciences, Delft University of Technology, Delft, The Netherlands
50. Department of Clinical Genetics, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
51. Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
52. Institute of Molecular Medicine and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
53. German center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
54. Biomedical, Surgical and Dental sciences, University of Milan, centro Dino Ferrari, Milan, Italy
55. Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
56. Psychology, Lund University, Lund, Sweden
57. Psychology, Lund University, Lund, Sweden
58. Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
59. Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda, Ospedale Policlinico, Milan, Italy
60. Pathophysiology and Transplantation, University of Milan, Centro Dino Ferrari, Milan, Italy
61. Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
62. Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, Tübingen, Germany
63. German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
64. Institute of Molecular Medicine and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
65. Department of Neurology, University Hospital Leuven, Leuven, Belgium
66. Laboratory for Cognitive Neurology, Department of Neurosciences, UZ Leuven, Leuven, Vlaanderen, Belgium
67. Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
68. MAC Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
69. Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
70. Imaging Physics, Applied Sciences, Delft University of Technology, Delft, The Netherlands
71. Department of Clinical Genetics, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
72. Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
73. Institute of Molecular Medicine and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
74. German center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
75. Biomedical, Surgical and Dental sciences, University of Milan, centro Dino Ferrari, Milan, Italy
76. Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
77. Psychology, Lund University, Lund, Sweden
78. Psychology, Lund University, Lund, Sweden
79. Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
80. Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda, Ospedale Policlinico, Milan, Italy
81. Pathophysiology and Transplantation, University of Milan, Centro Dino Ferrari, Milan, Italy
82. Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
83. Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, Tübingen, Germany
84. German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
85. Institute of Molecular Medicine and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
86. Department of Neurology, University Hospital Leuven, Leuven, Belgium
87. Laboratory for Cognitive Neurology, Department of Neurosciences, UZ Leuven, Leuven, Vlaanderen, Belgium
88. Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
89. MAC Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
90. Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
91. Imaging Physics, Applied Sciences, Delft University of Technology, Delft, The Netherlands
92. Department of Clinical Genetics, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
93. Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands

Correction notice This article has been corrected since it first published online. The open access licence type has been amended.

Acknowledgements JDR would like to thank Lucy L. Russell and Martina Bocchetta for their help in collecting clinical, imaging and CSF data. ADM would like to thank Carolina Maruta for her invaluable neuropsychological aid and Catarina Beatriz Ferreira for her assistance in the preparation of the samples.

Contributors LHMM and RMES: study concept and design, acquisition of data, analysis and interpretation of data, writing and revising the manuscript. DS: analysis and interpretation of data, revising the manuscript. MV: acquisition of data, analysis and interpretation of data, writing and revising the manuscript. EEB: study concept and design, acquisition of data, critical revision of manuscript for intellectual content and interpretation of data. EvdB: study concept and design, acquisition of data, critical revision of manuscript for intellectual content and interpretation of data. JCV: study concept and design, acquisition of data, analysis and interpretation of data.
Neurodegeneration

data, writing and revising the manuscript. All other authors, acquisition of data, critical revision of manuscript for intellectual content and interpretation of data. Funding This study was funded by a Memorabel grant from Deltaplan Demente (The Netherlands Organisation for Health Research and Development, and Alzheimer Nederland grant number 7330598105), National Institutes of Health (Grants AG010124, AG032953, AG043503, NS088341, AG107586, AG02943, AG038490, the Wyncote Foundation, Dana Foundation, BrightFocus Foundation, Penn Institute on Aging, Pia estratégic de recerca i innovació en salut 2016-2020, Catalan Department of Health (grant number ST00216/00408), Italian Ministry of Health (Ricerca Corrente) and the German Federal Ministry of Education and Research (FHLDC 01G1007A). MS was supported by the Else Kröner-Fresenius-Stiftung. CW was supported by the Vaillant Stiftung Competing interests The authors report no conflicts of interest relevant to this study. LHHM is supported by Alzheimer Nederland (grant number WE.09 2014 04). ALB and JCR are supported by the NIH (US5NS052089, R01AG031278, R01AG038791, R01AG032306, RO1AG022983) and the Association for Frontotemporal Degeneration. ALB, JCR and LDK are supported by the Bluefield Project to Cure Frontotemporal Dementia. The Dementia Research Centre is supported by Alzheimer's Research UK, Brain Research Trust and The Wolfson Foundation. This work was supported by the NIHR Queen Square Dementia Biomedical Research Unit, the NIHR UCLH Biomedical Research Centre and the Leonard Wolfson Experimental Neurology Centre (UWENC) Clinical Research Facility as well as an Alzheimer's Society grant (AS-PG-16-007). JDR is supported by an MRC Clinician Scientist Fellowship (MR/M008525/1) and has received funding from the NIHR Rare Disease Translational Research Collaboration (BRC14/NS/MH). IOWC is supported by an MRC Clinical Research Training Fellowship (MR/M018828/1). AS is supported by the Swedish Society for Medical Research. CET is supported by ZonMW Memorabel Program (grant number 733052026). JCV is supported by the Dioraphte Foundation. Patient consent for publication Obtained. Provenance and peer review Not commissioned; externally peer reviewed. Data availability statement Data are available on reasonable request. Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, and transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

REFERENCES
1 Landin-Romero R, Tan R, Hodges JR, et al. An update on semantic dementia: genetics, imaging, and pathology. Alzheimers Res Ther 2016;8.
2 Meeter LH, Kaat LD, Rohrer JD, et al. Imaging and fluid biomarkers in frontotemporal dementia. Nat Rev Neurol 2017;13:406–19.
3 Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Clinical diagnostic criteria for primary progressive aphasia and its variants. Neurology 2011;76:1006–14.
4 Yuan A, Sershen H, et al. Neurofilament subunits are integral components of synapses and modulate neurotransmission and behavior in vivo. Mol Psychiatry 2015;20:986–94.
5 Meeter LH, Dopper EG, Ijskoo LC, et al. Neurofilament light chain: a biomarker for genetic frontotemporal dementia. Ann Clin Traural Neurol 2016;3:823–36.
6 Skillberg T, Farahmand B, Bartlett JW, et al. Cerebrospinal fluid neurofilament light chain protein levels in subtypes of frontotemporal dementia. BMC Neurol 2013;13.
7 Goossens J, Bijke M, Van Molleveule, S, et al. Diagnostic value of cerebrospinal fluid tau, neurofilament, and progranulin in definite frontotemporal lobar degeneration. Alzheimers Res Ther 2018;10.
8 Pijnenburg YAL, Veney WA, van der Flier WM, et al. Discriminative and prognostic potential of cerebrospinal fluid phosphoTau181 tau ratio and neurofilaments for frontotemporal dementia subtypes. Alzheimers Dement 2015;1:505–12.
9 Skillberg T, Mattsson N, Blennow K, et al. Cerebrospinal fluid neurofilament light concentration in motor neuron disease and frontotemporal dementia predicts survival. Amyotroph Lateral Scler Frontotemporal Degener 2017;18:397–403.
10 Kuhle J, Disanto G, Lorscheider J, et al. Fingolimod and CSF neurofilament light chain protein is a measure of disease intensity in frontotemporal dementia. Neurology 2016;87:1329–36.
11 Steinacker P, Semler E, Annder-Stauber S, et al. Neurofilament as a blood marker for diagnosis and monitoring of primary progressive aphasias. Neurology 2017;88:961–9.
12 Meeter LH, Vrijenberg EG, De Campo M, et al. Clinical value of neurofilament and phospho-Tau181 ratio in the frontotemporal dementia spectrum. Neurology 2016;90:e1231–9.
13 Coyle-Gilchrist ITS, Dick KM, Patterson K, et al. Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology 2016;86:1736–43.
14 Kansal K, Maredy M, Sloane KL, et al. Survival in frontotemporal dementia phenotypes: a meta-analysis. Dement Geriatr Cogn Disord 2014;41:109–22.
15 Dubois B, Feldman HH, Jacova C, et al. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. Lancet Neurol 2014;13:614–29.
16 Neary D, Snowden JS, Gustafson L, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998;51:1540–5–4.
17 Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12:189–98.
18 Hughes CP, Berg L, Danziger WL, et al. A new clinical scale for the staging of dementia. Br J Psychiatry 1982;140:566–72.
19 Knopman DS, Kramer JH, Boeve BF, et al. Development of methodology for conducting clinical trials in frontotemporal lobar degeneration. Brain 2008;131:2957–68.
20 Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005;26:839–51.
21 Koel-simmelink MJa, Vennegoor A, Killestein J, et al. Impact of pre-analytical variables on the stability of neurofilament proteins in CSF, determined by a novel validated singplex Luminex assay and ELISA. J Immunol Methods 2014;402:43–9.
22 Bron EE, Steketeke RM, Houston GC, et al. Diagnostic classification of arterial spin labelling and structural MRI in presenile early stage dementia. Hum Brain Mapp 2014;35:4916–31.
23 Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005;26:839–51.
24 Gousias IS, Rueckert D, Heckemann RA, et al. Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest. Neuroimage 2008;40:672–84.
25 Hammers A, Allon M, Koepf MJ, et al. Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp 2002;19:224–47.
26 Smith SM. Fast robust automated brain extraction. Hum Brain Mapp 2002;17:143–55.
27 Bisienus S, Neumann J, Schroeter ML. Validating new diagnostic imaging criteria for primary progressive aphasia via anatomical likelihood estimation meta-analyses. Eur J Neurol 2016;23:704–12.
28 Gordon E, Rohrer JD, Fox NC. Advances in neuroimaging in frontotemporal dementia. J Neurochem 2016;138 Suppl 1:193–210.
29 Rogalski E, Cobia D, Harrison TM, et al. Progression of language decline and cortical atrophy in subtypes of primary progressive aphasia. Neurology 2011;76:1804–10.
30 Gorno-Tempini ML, Dronkers NF, Rankin KP, et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol 2004;55:335–46.
31 Kim EJ, Kim BC, Kim SL, et al. Clinical staging of semantic dementia in an FDG-PET study using ITLD-CMR. Dement Geriatr Cogn Disord 2012;34:300–6.
32 Pereira JB, Westman E, Hanson O, et al. Association between cerebrospinal fluid and plasma neurodegeneration biomarkers with brain atrophy in Alzheimer’s disease. Neurobiol Aging 2017;58:14–29.
33 Bacioglu M, Maia LE, Presiche O, et al. Neurofilament light chain in blood and CSF as maker of disease progression in mouse models and in neurodegenerative diseases. Neuron 2016;91:56–66.
34 Shahim P, Gren M, Liman V, et al. Serum neurofilament light chain protein predicts clinical outcome in traumatic brain injury. Sci Rep 2016;6.
35 Kühle J, Disanto G, Lorscheider J, et al. Fingolimod and CSF neurofilament light chain levels in relapsing-remitting multiple sclerosis. Neurology 2015;84:1639–43.