A Cell-surface Phylome for African Trypanosomes

Andrew P. Jackson1,2, Harriet C. Allison3, J. David Barry4, Mark C. Field3, Christiane Hertz-Fowler5, Matthew Berriman1

1 Pathogen Genomics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, England, United Kingdom, 2 Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, England, United Kingdom, 3 Department of Pathology, University of Cambridge, Cambridge, England, United Kingdom, 4 Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom, 5 Centre for Genomic Research, Institute of Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, England, United Kingdom

Abstract

The cell surface of Trypanosoma brucei, like many protistan blood parasites, is crucial for mediating host-parasite interactions and is instrumental to the initiation, maintenance and severity of infection. Previous comparisons with the related trypanosomatid parasites T. cruzi and Leishmania major suggest that the cell-surface proteome of T. brucei is largely taxon-specific. Here we compare genes predicted to encode cell surface proteins of T. brucei with those from two related African trypanosomes, T. congolense and T. vivax. We created a cell surface phylome (CSP) by estimating phylogenies for 79 gene families with putative surface functions to understand the more recent evolution of African trypanosome surface architecture. Our findings demonstrate that the transferrin receptor genes essential for bloodstream survival in T. brucei are conserved in T. congolense but absent from T. vivax and include an expanded gene family of insect stage-specific surface glycoproteins that includes many currently uncharacterized genes. We also identify species-specific features and innovations and confirm that these include most expression site-associated genes (ESAGs) in T. brucei, which are absent from T. congolense and T. vivax. The CSP presents the first global picture of the origins and dynamics of cell surface architecture in African trypanosomes, representing the principal differences in genomic repertoire between African trypanosome species and provides a basis from which to explore the developmental and pathological differences in surface architectures. All data can be accessed at: http://www.genedb.org/Page/trypanosoma_surface_phylome.

Introduction

African trypanosomes (Trypanosoma spp. section Salivaria) are unicellular hemoprotozoea of vertebrates. They are transmitted by Tsetse flies (Glossina spp.) and cause endemic disease throughout sub-Saharan Africa. African trypanosomes include T. brucei which causes Human African Trypanosomiasis (‘sleeping sickness’) and, along with two related species T. congolense and T. vivax, a similar disease in domestic and wild animals (‘nagana’). Although the incidence of human disease has recently declined [1], there remains an estimated 30,000 cases per year [2]; while total losses in agricultural productivity due to animal disease across Tsetse-infested Africa are estimated to be US$4.75 billion per annum [3]. The combined effects of African trypanosomes on humans and livestock are a significant threat to public and veterinary health, and wider socio-economic development [4].

The first genomic comparisons between T. brucei and related trypanosomatid parasites, T. cruzi and Leishmania major, which cause Chagas disease and leishmaniasis in humans respectively, showed that most genes were widespread and arranged into regions of conserved synteny [5–7]. By contrast, it was also apparent that the gene families likely encoding cell surfaces molecules were non-homologous and largely lineage-specific [8–9]. In the vertebrate host, the T. brucei surface is dominated by the Variant Surface Glycoprotein (VSG); serial replacement of VSG (i.e. antigenic variation) is a means of immune evasion and results in chronic infection [10]. African trypanosome genomes contain large VSG gene families [11–12], but mono-allelic expression of a single gene is ensured because transcription is restricted to telomeric VSG expression sites (ES) [13–15]. Several other Expression Site-Associated Genes (ESAG1-12; [16–18]) are located in the ES and are co-transcribed with the active VSG [19–20]; all but ESAG8 are predicted or known to be cell surface-expressed [21]. T. cruzi and L. major also possess multi-copy surface glycoprotein families (i.e. mucins and amastins respectively) but these are unrelated to VSG [8–9]. Indeed, Leishmania promastigotes have a largely non-proteinaceous, lipophosphoglycan-based surface coat [9].

Hence, while T. brucei, T. cruzi and L. major have physiological similarities associated with shared ancestry, the cell-surface architectures are highly divergent, reflecting the evolution of specific mechanisms for immune evasion and survival by each parasite [22]. A principal objective of comparative genomics is to identify taxon-specific features that may plausibly explain such phenotypic differences. Despite their similarities T. brucei, T. cruzi and L. major diverged long ago; so surface features that appear exclusive when their genomes are compared are not necessarily species-specific, or diagnostic of the diseases they cause. In particular, it remains to be determined if the T. brucei-specific
The African trypanosome (Trypanosoma brucei) is a single-celled, vector-borne parasite that causes African Trypanosomiasis (or ‘sleeping sickness’) throughout sub-Saharan Africa and, along with related species T. congolense and T. vivax, a similar disease in wild and domestic animals. Together, the African trypanosomes have significant effects on human and animal health and associated costs for socio-economic development in Africa. Genes expressed on the trypanosome cell surface are instrumental in causing disease and sustaining infection by resisting the host immune system. Here we compare repertoires of genes with predicted cell-surface expression in T. brucei, T. congolense and T. vivax and estimate the phylogeny of each predicted cell-surface gene family. This ‘cell-surface phylome’ (CSP) provides a detailed analysis of species-specific gene families and of gene gain and loss in shared families, aiding the identification of surface proteins that may mediate specific aspects of pathogenesis and disease progression. Overall, the CSP suggests that each trypanosome species has modified its surface proteome uniquely, indicating that T. brucei, T. congolense and T. vivax have subtly distinct mechanisms for interacting with both vertebrate and insect hosts.

surface features identified from these initial comparisons are truly species- or disease-specific, or general features of all African trypanosomes. Comparisons between more closely related species are essential to resolving this issue.

We recently reported the draft genome sequences for T. congolense, the closest known relative of T. brucei, and T. vivax, a more distantly related species, and described the evolution of FSG genes in African trypanosomes [12–23]. All species cause chronic animal trypanosomiasis characterized by recurrent parasitaemia and antigenic variation, but subtle differences are present in their pathology, life cycle and host range. For example, T. vivax can cause hyperacute hemorrhagic disease in cattle typically with much higher mortality than other species [24]. In the Tsetse, T. brucei and T. congolense infect the midgut but then migrate to the salivary glands and proboscis respectively prior to transmission to the vertebrate. In contrast, T. vivax avoids the insect midgut, a feature that seems to facilitate wholly mechanical transmission and its colonization of Tsetse-free areas [24]. Further, all three species infect a wide range of domestic animals but only T. brucei has evolved human infectivity, probably on at least two occasions in east (T. b. rhodesiense) and west Africa (T. b. gambiense) respectively [25].

Cell surface-expressed gene families encode abundant proteins at the forefront of host-parasite interactions [8–9,22,26–27]. The major surface protease (MSP, or gp63) has multiple isoforms, one of which (MSP-B) is responsible for cell-surface remodelling prior to transmission into the vector [28–29]. Papain-type cysteine peptidase B and C (also known as cathepsin-L and -B) are strongly associated with virulence phenotypes, degrading host proteins [30–31] and facilitating parasite transversal of the blood-brain barrier [32]. Other gene families encode diverse cell surface receptors, e.g. adenylyl cyclases [33], and membrane transporters that are essential for normal cell physiology, e.g. transferrin receptors (TFR) [34]. Hence, the cell surface is an intuitive place to begin exploring species differences and here we present phylogenetic analyses of all gene families with predicted cell-surface roles in African trypanosomes. Although we do not include low-copy number features or non-protein cell-surface components, which may be equally important in function, our detailed analysis of the principal cell-surface gene families presents a global picture of evolutionary change on the trypanosome cell-surface.

Methods

Data sources

The African trypanosome cell surface phylome is a collection of phylogenies for gene families with predicted cell surface expression. The approach is summarized in Figure S1. Phylogenies were estimated from sequence data accessed through the GeneDB portal [35] and extracted from four genome sequences: Trypanosoma brucei TREU927 [11], T. congolense IL3000 and T. vivax YM46 [12] and, to provide an outgroup in phylogenetic comparisons, T. cruzi CL Brener [5]. Genome sequencing and annotation methods have been described previously [6,12].

Sequence clustering and cluster refinement

All T. brucei genes with cell surface motifs, (i.e. a predicted signal peptide, a predicted GPI anchor or a trans-membrane helix) were extracted from the T. brucei 927 genome sequence. Genes annotated as ‘unlikely’ or with fewer than 100 codons were removed. Homologs to each T. brucei ‘surface’ gene were identified among all T. brucei, T. congolense, T. vivax and T. cruzi predicted genes using wuBLAST [36]. Where at least four homologs occurred in at least one species, this constituted a ‘family’ amenable to phylogenetic analysis. Surface-expressed genes with fewer than four homologs are recorded as singleton, paired and triplet sequences in tables available from the CSP webpage. After removing genes already identified as homologous to T. brucei genes (i.e. widespread gene families), the BLAST exercise was repeated for T. congolense and T. vivax genes to identify cases absent in T. brucei. Signal peptides were predicted using SignalP [37], GPI anchors were predicted using Fragaranch [38] and trans-membrane helices were predicted using TMHMM [39]. 205 ‘surface expressed’ families were reduced to 79 by removing cases of poor alignment (i.e. sequences that could not be aligned by eye), of mis-annotation (i.e. non-coding sequence), of redundancy (i.e. technical duplicates arising from alleles in the T. congolense genome that were separately assembled), of genes with known expression in mitochondrial, lysosomal or other internal membranes, and by combining families with overlapping homology. Surface-expressed families may have been omitted because they possess signal peptides, GPI anchors, or trans-membrane helices that cannot be reliably recognized by current methods, or because their 5’ or 3’ regions are mis-specified. Equally, spurious recognition of these domains in hypothetical proteins (mostly T. vivax families) cannot be excluded. Each family is given a ‘Fam’ number (0–81) as described in Table S1; note that for historical reasons, there is no Fam48 or 68.

Evidence for transcription

Given that most species-specific genes are putative and encode hypothetical proteins, evidence in support of their coding status was gathered from three sources: i) transcriptomic studies of T. brucei [40]; ii) Expressed Sequence Tags (EST) in multiple life stages of T. congolense [41]; and iii) partial RNASeq data for bloodstream form T. vivax [12] mapped against the T. vivax genome using SMART [42].

Multiple sequence alignment

Translated nucleotide sequences for each family were aligned in ClustalW [43]; all multiple alignments were then manually edited in BioEdit 7.1.3. [44]. In most cases, the amino acid sequence alignment was used in phylogenetic analysis to reduce homoplasy, but nucleotide sequences were examined in cases of low sequence divergence. The rates of synonymous (k_s) and non-synonymous (k_a) mutations were estimated using the F81 model of evolution [45].
substitutions \((k)\) per site were calculated for each alignment using KaKs Calculator 2.0 [45] to estimate within-family sequence diversity.

Phylogenetic analysis

Bayesian phylogenies were estimated using MrBayes v3.2.1 [46] under these settings: \(N_{\text{runs}} = 4\), \(N_{\text{gen}} = 5000000\), samplefreq = 500 and default prior distribution. Nucleotide and amino acid sequence alignments were analyzed using GTR+\(\Gamma\) and WAG+\(\Gamma\) models respectively. Maximum likelihood phylogenies were estimated using PHYML v3.0 [47] under an LG+\(\Gamma\) model [48] for amino acid sequences or a GTR+\(\Gamma\) model for nucleotide sequences. Node support was assessed using 100 non-parametric bootstrap replicates in addition to Bayesian posterior probabilities. Trees were rooted using \(T. cruzi\) sequences, or otherwise mid-point rooted. FSG phylogenies were estimated using alignments of selected, full-length sequences representative of global diversity under different conditions, as described previously [12].

Phylogenetic reconciliation

The CSP contains phylogenies of gene families drawn from multiple species. We can infer historical gene duplications and losses from comparison of gene family phylogenies with the overlying species evolution [49–50]. For each gene family, a fully binary, rooted gene tree was integrated across the species tree (i.e. [\(T. brucei\), \(T. congolense\), \(T. vivax\), \(T. cruzi\)]) using NOTUNG 2.6 [51]. A parameter \(p\), was calculated from the ratio of speciation duplications (i.e. nodes supporting orthologs in daughter species) to unilateral duplications (i.e. nodes supporting in-paralogs in the same species), adjusted for gene family size. \(p\) reflects the degree of gene family turnover (combined incidence of gene gain and loss); high values of \(p\) indicate a phylogeny with minimal turnover, in which most lineages are represented by orthologs in all species. Low values indicate a phylogeny with high turnover, in which ancestral genes are frequently lost and replaced by novel duplicates, resulting in clades of species-specific in-paralogs and minimal orthology.

Relative rate analysis

Significant differences in evolutionary rate between two lineages were examined using relative rates tests (RRTs) [52]. Nucleotide sequence alignments combining a given lineage, its sister taxon and an out-group (as described in Tables 1 and 2) were created and evaluated with MEGA v5.05 [53]. Where a test lineage consisted of multiple paralogous genes, the average rate difference between all comparisons is reported.

Recombination analysis

Phylogenetic incompatibility describes the presence of multiple phylogenetic signals within a single sequence alignment and is the historical signature of recombination. The Pair-wise Homoplaspy Index (PHI) detects incompatibility between sites and is robust in the presence of rate heterogeneity [54], which might otherwise simulate the effects of recombination. \(P<0.05\) for PHI indicates significant incompatibility between sites within an alignment, consistent with recombination. For each \(EMG\) family, the index was calculated using PhilPack [54] for separate alignments of \(EMG{s\ sensa\ stricto}\) and of homologous sequences from non-ES loci (unless these are largely absent, i.e. \(EAMG67/7, 8\ and 12\)).

Analysis of gene expression

To determine mRNA expression levels for a single Fam50 family member (Th927.7.380), quantitative real-time polymerase chain reaction (qRT-PCR) was carried out on total RNA extracted using RNeasy Mini Kit (QIAGEN). cDNA was generated using SuperScript II reverse transcriptase according to the manufacturer’s instructions. qRT-PCR was carried out using three different isolated mRNA samples from four life-cycle stages (in vitro cultured bloodstream-stage and procyclic forms; in vivo cultured short stumpy bloodstream-stage; and in vivo cultured \(T. brucei\) bloodstream-stage). \(T. brucei\) Rab11 was used as a control to determine relative quantities of mRNA. The relative abundance of specific RNA was subsequently determined.

Transfection and protein localization

Fam1 (i.e. Th927.6.1310) and Fam30 (i.e. Th927.7.380) genes were synthesized by Eurogentec. Th927.6.1310 is the most divergent of all Fam1 gene copies, so it was selected for the benefit of targeting a single copy gene in localization experiments. Th927.7.380 is also one of five tandem copies, and was selected because it was expressed to the greatest level for all paralogs in qPCR analyses. \(T. brucei\) single marker bloodstream line cells were cultured in HMI-9 medium as described previously [35]. Ectopic expression of haemagglutinin (HA) epitope-tagged Th927.6.1310/Th927.7.380 at the N-terminus (following the predicted signal peptide sequence) was carried out using pXS5/pDEX-577 [56] constitutive and inducible expression vectors respectively. For Western blotting, proteins were transferred onto Immobilon (polyvinylidene fluoride) membranes and incubated with primary mouse anti-HA antibody (1:3,000) and subsequently with secondary antibody anti-mouse peroxidase conjugate antibody (1:10,000, Sigma). Immunofluorescence microscopy was carried out on permeabilised and non-permeabilised transfected cells harvested at log phase.

Results

We estimated phylogenies using Maximum Likelihood and Bayesian methods for 79 gene families in African trypanosomes with known or predicted cell-surface location. This cell-surface phylome describes how these families have diversified during the evolution of African trypanosomes, and also identifies species-specific gene families, many of which remain uncharacterized. Taken together, the CSP shows that the cell-surface architecture evolved in the common ancestor of all African trypanosomatids, and has subsequently experienced subtle changes in individual lineages, suggesting the adaptation of their common inheritance. The CSP is described in a Venn diagram (Figure 1) and in Table S1. Throughout, gene families are referred to by their ‘Fam’ number (0–81; see methods). All sequence alignments, Hidden Markov Models (HMMs) and phylogenetic trees can be accessed at: http://www.genedb.org/Page/trypanosoma_surface_phylome.

Phylogenetic diversity in conserved cell-surface-expressed gene families

The conserved elements of the CSP, at the centre of Figure 1, generally contain cell-surface features that have been well described, including most known principal parasite effectors (i.e. MSPs, cathepsins and trans-sialidases) [26–27]. By contrast, genes at the periphery of Figure 1 are species-specific and mostly uncharacterized, even when they have given names in \(T. brucei\); only 8/43 species-specific families (Fam0, 2, 3, 8, 12, 14–16) are characterized to some extent (e.g. by cellular localization) and function is only well known for two (VSG and \(EMG6/7\)). Naturally, many trypanosome cell-surface proteins perform basic functions that are constrained by selection, resulting in small species differences (e.g. Fam54–56, 59–60, 62–65, 69–76 and 78–81). However, a widespread family is not necessarily un-
changed, and the phylogenies of several conserved families involved in host-parasite interaction indicate surface proteome differences between species that could have functional implications.

In *T. vivax*, whole lineages have been lost, and on multiple occasions; for example among trans-sialidase genes (see Fam47 CSP page), there are no *T. vivax* orthologs to basal-branching lineages represented in *T. brucei* by Tb927.5.440 and Tb927.2.5280, which are otherwise widespread. Similarly, there are only three Major Facilitator Superfamily (MFS) transporters loci in *T. vivax* compared with six in *T. brucei* (see Fam58 CSP page), and no orthologs to the Proteins Associated with Differentiation (PAD) genes, one of which encodes a carbonyl transporter implicated in differentiation from vertebrate to insect life stages in *T. brucei* (i.e. Tb927.7.5930; [57]). Such within-family losses may coincide with the expansion of the remaining lineages. For instance, *MSP-B* (Fam46) is present in *T. brucei*, *T. congolense* and the outgroup *T. cruzi*, but is absent from *T. vivax* (a result confirmed by searching *T. vivax* unassembled reads for reciprocal BLASTx matches to *MSP-B*). This coincides with the evolution of 11 MSP-C genes in *T. vivax*, a gene that is single-copy in all other species (see Fam46 CSP page, and Table S1).

The surface functional repertoire also diverges through gene gain, for example among Fam61 genes (*nucleoside/nucleobase transporters*), required to scavenge host purines and are functionally differentiated with respect to both parasite life stage and substrate [38–61]. The Fam61 phylogeny shows that multiple gene duplications have occurred in both *T. brucei* and *T. congolense* sister clade, diverged earlier than the *T. brucei* ortholog, and five in *T. vivax*. This is not simply a difference in gene dosage, or an artifact of sequence assembly, since seven of these *T. congolense*-specific transporters (e.g. TclL3000.0.12740) have a highly derived predicted protein sequence, lacking ~130 amino acids from the N-terminus, and displaying only 39% amino acid identity with the *T. congolense* chromosome 11 isoform (54% similarity), and which itself displays 54% identity and 66% similarity with its *T. brucei* ortholog.

Therefore, these genes are predicted to encode proteins with signal peptides and eight trans-membrane helices, but lack the canonical C-terminus of the conserved nucleobase transporter including its GPI-anchor signal.

The combined effect of gene gains and losses, i.e. gene family turnover, is reflected in the topology of phylogenies. Typically, gene families predate contemporary genomes, and orthologs in each species of each ancestral gene form a clade in the phylogeny. Examples of this familiar pattern in trypanosomes naturally include structural or metabolic gene families displaying little innovation [62–64], as well as some CSP families including Fam56 (ABC transporters) and Fam65 (aldehyde dehydrogenase), although the majority of these genes are likely intracellular. Many cell surface-expressed gene families similarly originate prior to contemporary species, but their tree topologies indicate greater post-speciation innovation. To investigate the extent to which species derive novel genes post-speciation, we calculated ρ for each family, the ratio of orthology (DIV) to paralogy (DUP), corrected for gene family size, and where DIV is the incidence of gene divergence through speciation and DUP is the incidence of gene duplication, inferred through phylogenetic reconciliation (Table S1). Families like Fam56 ($\rho = 0.67$) and Fam65 ($\rho = 0.73$) possess high ρ values, indicating that most loci are retained in all species; for example, across 22 ABC transporter loci there are no unilateral gene duplications and only 7 gene losses (2 in *T. brucei*/*T. congolense*, 1 in *T. congolense* and 4 in *T. vivax*). While these losses probably have functionally consequence, Fam56 and similar examples have a relatively constant gene complement.

Conversely, many familiar cell surface components have $\rho < 0.05$, indicating that gene copies cluster more by species than by locus, i.e. recent paralogy rather than ancient orthology. Fam54 (amino acid transporters; $\rho = 0.006$), Fam58 (MFS transporters; $\rho = 0.018$) and Fam61 (nucleoside transporters; $\rho = 0.01$) all display low ρ values due to *T. brucei*-specific expansions (see individual CSP pages), which occurs against a general background of conservation. This cannot be said for phylogenies for other families, e.g. Fam46 ($\rho = 0.013$), Fam49 ($\rho = 0.002$), Fam50 ($\rho = 0.003$), Fam67 ($\rho = 0.003$), and Fam77 ($\rho = 0.002$), which

Table 1. Examples of significant substitution rate asymmetry inferred by relative rates tests.

Fam Relative rates test:	In-group 1	In-group 2	Out-group
46 *T. vivax*-specific MSP-C genes	TbY486_0023730	*T. congolense* ortholog	TclL3000.10.2050
58 *T. brucei*-specific MFS transporter genes	Tb927.7.5950	*T. congolense* sister clade	TclL3000.7.5000
61 *T. congolense*-specific nucleobase transporter genes	TclL3000.0.59630	Conserved chr11 locus	TclL3000.11.3580
61 *T. brucei*-specific subtelomeric nucleotide transporter genes	Tb09.v4.0106	Conserved chr9 locus	Tb09.160.5480
67 *T. congolense*-specific cysteine peptidase C genes*	TclL3000.0.48140	*T. brucei* sister clade	Tb927.6.560
72 *T. congolense* tandem gene copies of a hypothetical protein	TclL3000.8.6610	Positional homologs in *T. brucei*	Tb927.8.6710
75 *T. congolense* tandem gene copies of a hypothetical protein	TclL3000.0.05220	Positional homologs in *T. brucei*	Tb927.8.3880

Note: results are averaged across multiple comparisons of paralogous genes (n).

*Previously described [107] and divided into functionally distinct variants ‘CBs’ and ‘CBc’; this significant result relates only to ‘CBs’ genes. ‘CBc’ genes returned a non-significant result.

Note: results are averaged across multiple comparisons of paralogous genes (n).

DOI:10.1371/journal.pntd.0002121.t001
Table 2. Taxonomic distribution and sequence properties of ESAG gene families in African trypanosomes.

ESAG	n	Taxonomic distribution	Reciprocal monophyly	Sequence diversity	Relative rates test	PHI statistic	PHI statistic								
		Tb	Tco	Tv	Tc	Sites (bp)	ESAG	In-group	Out-group	χ^2	p	ESAG	non-ES		
1	21	+				1014	-	-	-	-	-	-	<0.0001		
2	18	+	+	-		1308	211	Tcl3000.0.12020 (195)	Tcl3000.0.58770	0.63	0.427	<0.0001	<0.0001		
3	112	+	-	-	-	882	176	Tb09.244.2060 (111)	Tc486_0042500	14.72	<0.0001	<0.0001			
4	53	+	-	-	-	3429	259	Tcl11.01.8820 (160)	Tcl3000.11.16970	23.39	<0.0001	<0.0001			
5	8	+	+	~	~	1237	252	Tb27.5.340 (212)	Tb27.4.810	6.32	0.012	<0.0001	0.267		
6	1	+	+	~	~	906	119	Tcl3000.0.105020 (131)	Tcl3000.0.03060	0.58	0.448	<0.0001	-		
7	1	+	+	~	~	894	34	ESAG6 (30)	Tcl3000.0.10790	0.25	0.617	<0.0001	-		
8	2	+	+	+	+	0.0328	(0.01)	-	-	-	-	<0.0001	-		
9	17	+	+	-	+	0.7639	(0.70)	972	-	-	-	<0.0001	0.777		
10	7	+	+	-	+	0.0168	(0.01)	1812	44	Tb27.8.3620 (58)	Tcl3000.0.06950	1.92	0.165	1	0.106
11	12	+	+	+	+	0.1117	(0.05)	1134	-	-	-	-	0.127	<0.0001	
12	1	+	+	+	+	0.0998	(0.05)	300	-	-	-	-	0.142	-	

Note: ESAG family size is given for non-ES linked (i.e. core or subtelomeric) copies.

*Plus and tilde symbols indicate the presence of orthologs and homologs respectively in T. brucei (Tb), T. congolense IL3000 (Tco), T. vivax Y486 (Tv) and T. cruzi CL Brener (Tc).

*The closest relatives of ESAG2 are in T. congolense, orthologs cannot be precisely defined among the T. congolense VSG repertoire.

*Reciprocal monophyly is confirmed where mutually exclusive clades of ES-linked and non-ES gene copies occur.

*Average pair-wise sequence divergence estimated from Bayesian phylogenies using RAxML 7.0.4 [108].

*Estimated using MEGA v5 [53] where appropriate out-groups are present; the number of unique differences per lineage given is given in brackets.

*Estimated using PhiPack [54] for separate alignments of ESAGs and related, non-ES gene copies (where non-ES copies are present).

doi:10.1371/journal.pntd.0002121.t002
Gene family diversification is a product of both gene duplication and sequence divergence [65], so even where gene repertoire is constant, significant asymmetry in nucleotide substitution rates between ancestral and duplicated lineages may indicate that important functional change has occurred in either lineage. Previously, we have identified frequent rate asymmetry following gene duplication of amino acid transporters (Fam54) in *T. brucei* [66]. Further examples are evident in the CSP. For instance,
branch lengths among cysteine peptidase B (Fam67) genes in T. congolense (average genetic distance = 0.092, n = 16) are significantly longer than in T. brucei (0.0037, n = 11, p<0.0001; t-test) or T. vivax (0.016, n=6, p<0.0001). T. congolense cysteine peptidase B includes structural variants with distinct catalytic functionality [67], which is clearly absent from T. brucei. Table 1 records this and other cases of rate asymmetry involving species-specific expansions, further details of which are provided in each CSP family page.

The transferrin receptor (TFR) gene family evolved in the ancestor of T. brucei and T. congolense

A TFR is expressed in bloodstream form T. brucei and is required for iron uptake [68]. It is not homologous with its mammalian counterpart, and they function quite differently [68]. The trypanosome TFR is a GPI-anchored heterodimer encoded by paralogous gene families Exi66 and 7 (Fam15; [68–70]). Exi67 is 57 amino acids shorter than Exi66 and encodes a protein without a GPI-anchor signal, but otherwise the genes are very closely related [71]. When present, Exi66 and 7 are found in tandem immediately downstream of the ES promoter. Outside of the ES, genes homologous to Exi66/7 in T. brucei 927 consist of a single Exi66/7 tandem pair (Tb927.5.3250/3260) at a strand-switch region on chromosome 7, probably representing a secondary transposition from an ES, and the Procyclin-Associated Genes (PAG1, 2, 4 and 5; Fam14), which are adjacent to the procyclin loci [72]. Exi66 and 7 and the PAGs are homologous to the a-type VSGs (a-VSG) (in T. brucei, [69,71]), leading to the suggestion that the TFR derives from VSG [26,73].

The T. congolense genome contains 45 genes (in Fam15) that are homologous to ESA66/7, plus 31 genes (in Fam14) whose closest sequence match is to PAGs in T. brucei. We refer to both Fam14 and Fam15 as TFR-like genes. Figure 2 describes the phylogeny for TFR-like genes and shows that the T. congolense genes are paraphyletic, that is, there are two clades (Fam14 and 15) each comprising a tandem gene array on chromosome 8 (marked ‘i’; notably, these genes may be preferentially expressed in insect salivary glands [82], i.e. the location of T. brucei epimastigotes. An ortholog to CESP gene family (Fam50) in the CSP. We identified conserved sequence regions that unite these familiar families with other insect stage-specific genes and several hypothetical or uncharacterized genes (Figure 3B). The region at positions 262–274 contains a ubiquitous cysteine residue, followed four positions downstream by a V1xxSL motif in BARP and GARP, which is present with slight variations in all family members. A single-copy locus on chromosome 11 (i.e. Tb11.02.2370/TcIL3000.11.4860; marked ‘ii’) is the sister clade to BARP/GARP and may be present in T. vivax also (TvY486_11149440). The Congolense Epimastigote-Specific Protein (CESP) gene family is expressed in T. congolense epimastigotes only, where it may have a role in adhesion to host surfaces [81]. Figure 3A shows that CESP has a sister clade in T. brucei comprising a tandem gene array on chromosome 8 (marked ‘iii’; notably, these genes may be preferentially expressed in insect salivary glands [82], i.e. the location of T. brucei epimastigotes. An ortholog to CESP may be present in T. vivax (i.e. TvY486_0016400), although the position of this gene is not robust.

In addition to BARP and CESP, the CSP identified two related subfamilies encoding hypothetical proteins, (marked ‘iiii’ and ‘iiiiii’), which comprise subtelomeric tandem gene arrays. Analysis of stage-defined T. congolense EST (Figure 3C; [41]) proteomic analysis [83] found that subfamily ‘iiii’ is preferentially expressed in T. congolense procyclic stage (see Figure 3C). Accordingly, the single-copy ortholog to subfamily ‘iiii’ in T. brucei (Tb927.5.4020) is also preferentially expressed in procyclic cells based on transcriptome data [40,84]; and a recent qRT-PCR analysis identified transcripts corresponding to Tb927.5.4020 in the insect midgut, although protein expression was not examined [82]. Subfamily ‘iiiiii’ comprises sequences on chromosome 7 in T. brucei (i.e. Tb927.7.360) and a single-copy ortholog in T. congolense (i.e. TcIL3000.0.02370). In transcriptomic studies of T. brucei, expression data for these genes was weak and inconclusive [40]. However, qRT-PCR in various insect tissues suggests significant up-regulation of Tb927.7.360 (and paralogs) in the insect salivary gland and in metacyclic trypanostigotes [82]. Quantitative proteomic analysis in T. congolense indicated 13-fold higher expression of TcIL3000.0.02370 in epimastigotes over procyclics [83]. Hence, it seems likely that subfamily ‘iiiiii’ genes are expressed during the insect-to-vertebrate transition.

An expanded insect stage-specific surface glycoprotein gene family conserved across African trypanosomes

In addition to procyclin and VSG, T. brucei and T. congolense possess a third, highly abundant major surface glycoprotein expressed during the insect stage. These are known as Brucei Alanine-Rich Protein (BARP; [74]) and Glutamine Alanine-Rich Protein (GARP; [75–78]) respectively. Although GARP was initially thought analogous to procyclin in T. brucei [76], a procyclin ortholog was subsequently identified in T. congolense [78] and the CSP confirms a widespread procyclin family (Fam12). Structural affinities between GARP, which is expressed most strongly in epimastigotes [79], and BARP, which is epimastigote-specific [74], have been demonstrated [80], and the CSP confirms these two gene families as sister taxa (see Figure 3A). T. vivax contains 15 genes encoding BARP/GARP-like proteins that form three distinct subfamilies; each subfamily encodes proteins with distinctive repetitive domains towards the N-terminus that are absent in other species. Unfortunately, poor assembly in these regions prevents us from discerning their genomic organization, but at least some are arranged in tandem as in T. brucei and T. congolense. BARP, GARP and their T. vivax homologs are part of a larger gene family (Fam50) in the CSP. We identified conserved sequence regions that unite these familiar families with other insect stage-specific genes and several hypothetical or uncharacterized genes (Figure 3B). The region at positions 262–274 contains a ubiquitous cysteine residue, followed four positions downstream by a V1xxSL motif in BARP and GARP, which is present with slight variations in all family members. A single-copy locus on chromosome 11 (i.e. Tb11.02.2370/TcIL3000.11.4860; marked ‘ii’) is the sister clade to BARP/GARP and may be present in T. vivax also (TvY486_11149440). The Congolense Epimastigote-Specific Protein (CESP) gene family is expressed in T. congolense epimastigotes only, where it may have a role in adhesion to host surfaces [81]. Figure 3A shows that CESP has a sister clade in T. brucei comprising a tandem gene array on chromosome 8 (marked ‘iii’; notably, these genes may be preferentially expressed in insect salivary glands [82], i.e. the location of T. brucei epimastigotes. An ortholog to CESP may be present in T. vivax (i.e. TvY486_0016400), although the position of this gene is not robust.

In addition to BARP and CESP, the CSP identified two related subfamilies encoding hypothetical proteins, (marked ‘iiii’ and ‘iiiiii’), which comprise subtelomeric tandem gene arrays. Analysis of stage-defined T. congolense EST (Figure 3C; [41]) proteomic analysis [83] found that subfamily ‘iiii’ is preferentially expressed in T. congolense procyclic stage (see Figure 3C). Accordingly, the single-copy ortholog to subfamily ‘iiii’ in T. brucei (Tb927.5.4020) is also preferentially expressed in procyclic cells based on transcriptome data [40,84]; and a recent qRT-PCR analysis identified transcripts corresponding to Tb927.5.4020 in the insect midgut, although protein expression was not examined [82]. Subfamily ‘iiiiii’ comprises sequences on chromosome 7 in T. brucei (i.e. Tb927.7.360) and a single-copy ortholog in T. congolense (i.e. TcIL3000.0.02370). In transcriptomic studies of T. brucei, expression data for these genes was weak and inconclusive [40]. However, qRT-PCR in various insect tissues suggests significant up-regulation of Tb927.7.360 (and paralogs) in the insect salivary gland and in metacyclic trypanostigotes [82]. Quantitative proteomic analysis in T. congolense indicated 13-fold higher expression of TcIL3000.0.02370 in epimastigotes over procyclics [83]. Hence, it seems likely that subfamily ‘iiiiii’ genes are expressed during the insect-to-vertebrate transition.

To localize expression of a single gene copy of subfamily ‘iiii’ in T. brucei, Tb927.7.380 was haemagglutinin (HA) epitope-tagged at
Expression site-associated gene families (ESAGs) evolved uniquely in *T. brucei*

ESAGs have homologs outside of *T. brucei* [85–86], but these may only represent distant relationships within widely conserved protein families. With complete genome sequences for *T. congolense* and *T. vivax* we can now examine evidence for true orthology and therefore, the possibility that ESAG phylogenetic lineages predate *T. brucei* (Table 2). Orthologous lineages of TFR genes (i.e. ESAG6/7) are present in *T. congolense* and we have previously argued that ESAG2 belongs to a widespread lineage most closely related to b-type VSG in *T. congolense* [12]. Altogether, we find evidence that the *T. congolense* and *T. vivax* genomes contain homologous sequences to 9 of 12 ESAG families, while ESAG9 may have homologs in *T. cruzi* [87] (Table 2). Two trends emerge from phylogenies for each ESAG family shown in their individual CSP pages. First, ESAGs from multiple *T. brucei* strains are monophyletic and therefore, have a single origin; and second, with the exception of ESAG6/7, the sister clades to ESAGs are not orthologs in other species but chromosomal-intragenic genes in *T. brucei*. We interpret this as evidence for origins post-speciation, i.e. ESAGs are *T. brucei*-specific. Examining these closest relatives outside of the expression sites provides some indication of the origins of ESAGs, as demonstrated by Fam51, i.e. ESAG4 and the adenylate cyclases.

Trans-membrane adenylate cyclases are conserved across Trypanosomatids [88–89], and comprise a large gene family with diverse roles in *T. brucei* [85,90–91]. ESAG4 is one lineage expressed specifically in the bloodstream stage, and instrumental in inhibiting host innate immunity [91]. The *T. congolense* and *T. vivax* genome sequences include 34 and 24 adenylate cyclase genes respectively. The adenylate cyclase phylogeny (Figure 5) shows that *T. brucei* and *T. congolense* lineages are paraphyletic, and in 10 cases *T. brucei* genes have orthologs in *T. congolense* that are positionally conserved. However, there are no orthologs of ESAG4 among *T. congolense* homologs. Indeed, the most closely related gene to ESAG4 is Tb11.01.3820, located at the subtelomeric boundary of chromosome 11. This gene has an ortholog in *T. congolense* (TcIL3000.11.16970), which is syntetic. Recent rates tests show that the substitution rate of ESAG4 has accelerated significantly compared with Tb11.01.3820 (p=0.0001; Table 2).

Comparison of Tb11.01.3820 and ESAG4 sequences (Figure S2) shows that this remodelling has primarily affected the intracellular domains. 245 amino acid differences are distributed preferentially towards the C-terminal, with 69% occurring after the putative tran-membrane helix (a portion accounting for only 35% of total characters). Furthermore, of 54 sites where Tb11.01.3820 and TcIL3000.11.16970 are conserved, but ESAG4 is derived (i.e. unambiguous ESAG4 apomorphies), 41 occur in the intracellular domain. While the adenylate cyclase catalytic domain is intracellular, the evolution of ESAG4 has not altered the 8 residues identified as important for catalytic function [92]. Hence, ESAG4 represents a *T. brucei*-specific expansion of adenylate cyclase genes, most likely initiated through the transposition of a conserved locus to the ES, and coinciding with derivation of the protein structures associated with signal transduction within the cell but not catalysis.

Species-specific genes include a family derived from b-type VSG and expressed in the flagellar pocket of *T. brucei*

Besides ESAGs, the CSP contains various species-specific genes (Table S1). *T. brucei*-specific gene families include Fam4-7 encoding hypothetical proteins with predicted signal peptides but no similarity to known proteins. Fam4-7 genes are all adjacent to strand-switch regions and typically arrayed in tandem; transcriptomic studies suggest that they are expressed preferentially or solely in bloodstream forms. VSG-related (VR) genes (i.e. Tb927.1.3670 and Tb927.3.580), that are chromosome-internal and include nuclear localization signal and RING motifs, which are diagnostic of ESAGs [93]. While these two genes are *T. brucei*-specific, they are more closely related to conserved LRRP genes, suggesting that they may be progenitors of ESAGs. Finally, on the Fam3 CSP page, a structural comparison of ESAG11 and Invariant Surface Glycoprotein (ISG) sequences indicates that ESAG11 is homologous to ISG and so perhaps a highly modified derivative of these widespread surface proteins [94]. As Table 2 shows, only ESAG1 and ESAG12 appear to have no homology beyond *T. brucei*, suggesting that they have evolved de novo within the ES.
Figure 3. Bayesian phylogeny and expression of BARP/GARP-like genes (Fam50). A. The phylogram was estimated from a multiple protein sequence alignment of 307 characters. The tree is midpoint rooted. Selected nodes are supported by posterior probability values and non-parametric bootstraps generated from a maximum likelihood analysis using an LG model with rate heterogeneity. B. Cartoon of sequence conservation across the Fam50 protein sequence alignment, darker shading reflects conservation. Two conserved regions are expanded to show sequence motifs in WebLogo v2.8.2. format [106]; ubiquitous residues are shaded red. C. Histograms showing the number of T. congolense EST corresponding to each of four clades in A, (CESP, GARP, subfamily ‘iii’ and subfamily ‘iv’), recovered from four life stages: procyclic (PC), metacyclic (MC), epimastigote (EPM) and bloodstream form (BSF); data from [41].

doi:10.1371/journal.pntd.0002121.g003
the insect salivary gland [82], but this remains to be verified at the protein level.

We expressed the gene product of Tb927.6.1310 using a constitutive expression system (pXS5), and tagged at the N-terminus of the mature protein with an HA-9 epitope (Figure 6C). The HA epitope was placed two residues downstream of the predicted N-terminus of the mature protein following signal sequence processing. By Western analysis a single band was detected migrating at 45kDa in whole cell lysates. However, the predicted molecular weight of the protein is 39kDa, suggesting glycosylation at either or both predicted N-glycosylation sites. Cells were stained with a monoclonal antibody against HA and counterstained with FITC-concanavalin A. At 4°C, the fusion protein clearly colocalized with conA, conditions which block endocytosis and so retain the lectin exclusively within the flagellar pocket, a subdomain of the plasma membrane, and therefore demonstrating access to the cell surface. When cells were permeabilised with detergent, it was clear that Tb927.6.1310 protein was also present in additional internal compartments, and based on partial overlap of conA at 12°C (which retains conA in the flagellar pocket and early endosomes) and HA signals, these structures likely correspond to early and/or recycling endosomes. Hence, we conclude that the Tb927.6.1310 gene product is present at the parasite surface and may be restricted to the flagellar pocket, which is frequently observed for low abundance GPI-anchored proteins in this organism, and Tb927.6.1310 is also present within the endosomal apparatus.

In *T. congolense*, Fam22 is the most abundant species-specific gene family with >100 copies. Fam22 genes are distributed throughout putative subtelomeric regions and are typically situated immediately downstream of VSG. *T. congolense* VSG 3’UTR’s are too short, (often only 15–30 bp; [41]) for Fam22 to fall within these regions. qRT-PCR analysis identified Fam22 sequences in all life stages except bloodstream forms (J. Donelson, unpublished data), but it is unclear whether Fam22 is a novel family of coding sequences or a non-coding, regulatory sequence. Nevertheless, Fam22 sequences are highly abundant. *Trypanosoma vivax* has substantially more species-specific gene families (19; Fam27-45) than either other species, which may be expected given that *T. vivax* is the natural outgroup to *T. brucei* and *T. congolense*. None have any significant similarity with known protein structures and more transcriptomic and proteomic surveys will be required to confirm that these sequence families genuinely encode *T. vivax*-specific proteins. However, many of these putative gene families are abundant (e.g. Fam31 and Fam34 have 38 and 34 members...
respectively) and transcripts corresponding to several gene families are among bloodstream-form RNA-seq data (Fam29-32, 34-35, 38-39; see Table S1).

Discussion

The ancestor of *T. brucei*, *T. congolense* and *T. vivax* was very likely a hemoparasite of vertebrates, spread by Tsetse flies, and likewise fully exposed to the host immune response during its period in the mammalian host. Most familiar cell-surface features – both physiological regulators such as membrane transporters and disease effectors such as MSP and cathepsin – were already present in the ancestor. This is intuitive given that these features are typically present in *T. cruzi*. However, the CSP shows that the peculiar nature of the *T. brucei* cell surface, dominated by VSG [12], BARP/GARP-like genes and procyclin (Fam12) during

Figure 5. Bayesian phylogeny of adenylate cyclase genes from African trypanosomes (Fam51). The phylogeny was estimated from an amino acid sequence alignment of 1239 characters including all adenylate cyclase proteins from *T. brucei* 927, *T. congolense* IL3000 and *T. vivax* Y486, as well as ESAG4 sensu stricto from *T. brucei* 927, 427 and *T. b. gambiense* 972. A mixed amino acid substitution strategy was applied with default settings using MrBayes v3.2.1. The phylogeny is rooted using an outgroup of selected *T. cruzi* homologs that represent total diversity. Bayesian posterior probability/non-parametric bootstrap values are provided for selected nodes. Black arrows denote the positions of previously named ‘GRESAG4’ sequences, as well as an ESAG4-like cDNA from *T. congolense* (Z67964; [85]).

doi:10.1371/journal.pntd.0002121.g005

Figure 6. Phylogeny and expression of a *T. brucei*-specific, VSG-like hypothetical protein (Fam1). A. Fam1 consists of five, non-identical tandem gene copies at a strand-switch region on chromosome 5, which is unique to *T. brucei*. B. A Bayesian phylogram estimated from a multiple nucleotide sequence alignment of 1068 characters. The tree is midpoint-rooted. Nodes are supported by posterior probability values and non-parametric bootstraps generated from a maximum likelihood analysis using a GTR+G model. C. Immunofluorescence analysis of Tb927.6.1310 expression in *T. brucei*. Tb927.6.1310 was N-terminally HA epitope-tagged and expressed in bloodstream-form cells. Cells expressing HA::Tb927.6.1310 were loaded with FITC-concanavalin-A in serum-free media and incubated at either 4°C (upper panel) or 12°C (lower panel). ConA is restricted to the flagellar pocket at the lower temperature, whereas it is transported to, and trapped within, Rab5A positive early endosomes at 12°C. Columns in each panel (from left to right); fluorescent stain of HA epitope tag (red); FITC-ConA fluorescence (green); merged images for fluorescence; merged images from phase and fluorescence. DAPI-stain of the nucleus and kinetoplast is shown in blue. HA::Tb927.6.1310 co-localizes with ConA at the flagellar pocket (indicated with arrow head) and early endosomes (indicated with a whole arrow).

doi:10.1371/journal.pntd.0002121.g006
various life-stages, also appears to have originated in the ancestral African trypanosome.

The role of the TFR on the ancestral cell-surface is more debatable. ESAG6/7 are thought to have evolved from a-FSG variant antigens [26,73] but we show that the sister clade to ESAG6/7 are T. congolense Fam15 genes, which do not encode any known variant antigens [12]. Rather than originating from a-FSG in T. brucei, phylogenetic analysis of all FSG-like sequences [see Fam6 CEP pages] indicates that TFR-like sequences evolved from an a-FSG-like gene, and further differentiated into ESAG6- and PAG-like genes, in the T. brucei/T. congolense ancestor, after separation from the lineage leading to T. vivax. While there are no TFR-like sequences in T. vivax, this does not preclude an analogous transferrin receptor in this species, since there is a large and structurally diverse a-FSG-like family (Fam23 [12]), the functional diversity of which is unknown. In short, we predict that Fam15 genes in T. congolense also encode a heterodimeric transferrin receptor, orthologous to the T. brucei TFR.

However, if the T. brucei/T. congolense ancestor possessed an orthologous heterodimeric TFR comprising GPI+ and GPI− monomers, we would expect GPI+ genes from T. brucei and T. congolense to be sister taxa reflecting their ancestry, and likewise for GPI−. Yet a literal interpretation of Figure 2 suggests separate expansions of Fam15 genes in each species, and thus independent origins of GPI+/− isofoms. Furthermore, branches separating ESAG6 and 7 (average genetic distance \(p = 0.114, n = 21 \)) are much shorter than distances among the T. congolense genes \(p = 0.604, n = 49 \), implying a recent origin for ESAG7 from ESAG6 through the deletion of its C-terminus. We consider this to reflect rapid turnover post-speciation of TFR-like genes that evolved in the ancestor, rather than independent origins, which is less parsimonious. Indeed, the same pattern of reciprocal monophyly between species is seen in other phylogenies (e.g. FSG, Fam50, Fam67), but it is clearly unparsimonious to suggest recent origins for these widely conserved families. Gene turnover replaces ancestral-type genes with more derived types post-speciation resulting in concerted evolution, a process exacerbated by recombination among tandem gene duplicates [97], and causing any signature of orthology to be ‘overwritten’ [98]. Such processes are known to affect ESAG6/7 routinely [20,99] and frequent transposition of Fam15 genes between T. brucei/T. congolense subtelomeres is also apparent (data not shown). Given that this molecular evolution introduces phylogenetic artefacts, the Fam15 phylogeny need not refute the most parsimonious hypothesis that a TFR protein originated in the T. brucei/T. congolense ancestor.

While the essential character of the cell surface was established in the ancestral trypanosome, this common inheritance has been adapted subsequently. The evolution of ESAGs in T. brucei, uniquely linked to the telomeric FSG expression site, is a principal example of species-specific genomic adaptation. In some cases we can identify the likely origin of ESAG lineages among chromosomal loci; ESAGs 3, 4, 5 and 10 are derived from conserved loci that can be located precisely [83–86,100], ESAGs 2 and 6/7 are derived from variant antigen genes that evolved in the T. brucei/T. congolense ancestor [12]. ESAGs 8, 9 and 11 have more remote homology to conserved subtelomeric gene families, i.e. LRRP [101], MASP [87] and ISG (see Fam3 CEP page) respectively. This suggests a scenario in which genes with existing subtelomeric distributions (except ESAG10) and cell-surface roles (except ESAG8) were progressively compartmentalized into an independently-promoted telomeric locus, possibly to provide a more precise regulatory environment.

Like the origin of Fam1 in T. brucei, the evolution of the ES demonstrates how novel cell-surface genes are repeatedly derived from existing major surface glycoproteins, whose abundance seems to provide a reservoir of raw material for neofunctionalization. Although ESAG functions are obscure, ESAG phylogenies suggest that they are distinct from those of conserved genes from which ESAGs evolved and indispensable on an evolutionary timescale. ESAGs from different T. brucei strains are monophyletic (except ESAG9), indicating no frequent transposition of sequences between ES and non-ES loci. ESAG-related genes at chromosome-internal loci are not observed in the ES and do not recombine with ESAGs, despite very frequent recombination among ES and non-ES copies respectively [20,99,102]. So although previous work has reported that ESAGs are not essential in the short term [101–102], the association between ESAG sequences sensu stricto and the telomeric ES has been preserved by selection over the long term, suggesting that ESAG and ESAG-like functions are distinct and non-redundant.

The CSP emphasizes dramatic cases of gene gain such as ESAGs in T. brucei, but significant phenotypic differences, such as life cycle variation, could be due to relatively subtle differences in conserved gene families such as Fam50. Given that BARP, GARP and CESP are preferentially expressed in the epimastigote stage [74,79,81] and that transcriptome data for both T. congolense and T. brucei indicate that subfamilies ‘ii’ and ‘ii’ are associated with insect mid-gut and salivary gland stages respectively [92], we suggest that Fam50 ranks alongside procyclin and VSG as a major surface glycoprotein, specifically related to the insect-to-vertebrate transition in multiple species. This is especially interesting because of the developmental variation among African trypanosomes during this transition. Unlike T. brucei and T. congolense, T. vivax remains within the insect mouthparts after feeding; this could reflect the basal-branching position of T. vivax in the species phylogeny (i.e. T. vivax is plesiomorphic and never evolved a mid-gut stage) or secondary loss (i.e. a mid-gut stage is the ancestral state). T. vivax also has a relatively small Fam50 repertoire, lacking orthologs to orthologs to three clades: BARP/GARP and subfamilies ‘ii’ and ‘ii’. These genes might have evolved in the T. brucei/T. congolense ancestor if T. vivax is plesiomorphic, in which case all T. vivax genes should branch towards the root. Yet two of five Fam50 lineages in T. vivax, (i.e. TVY486_0016400 and TVY486_1114940), are nested among the would-be T. brucei/T. congolense gains. Reconciliation of this topology with the species tree indicates that if functionality is absent in T. vivax, this is due to secondary loss, rather than T. brucei/T. congolense gain.

Having systematically analyzed protein coding sequences for species differences, it is particularly important to remember that the cell-surface architecture comprises much more than the proteins encoded by the genes in the CSP and that non-proteinaceous elements, not least the surrounding glycolcayl composed of the carbohydrate moieties attached to membrane glycoproteins and glycolipids, might be equally important in determining phenotypic variation. Experimental studies of the cell-surface demonstrate that non-protein glycoconjugates could play an equal role in regulating host-parasite interactions, for example, a protease-resistant surface molecule (PRS) is known to dominate the surface of procyclic-stage T. congolense [79]. T. brucei expresses various glycoconjugates on their surfaces that only become apparent in null mutants that cannot express the major surface glycoprotein [103–104]. Even considering the protein component, low abundance genes not considered in the CSP may still perform a vital role; for example, the haptoglobin-hemoglobin receptor (Tb927.6.440; [103]) responsible for resistance to trypanolytic factor by T. brucei is single-copy.
Conclusion
The essential character of genes expressed on African trypanosomes cell-surfaces was largely established in the common ancestor. Subsequently, prominent families have experienced rapid turnover of phylogenetic diversity, indicating both functional dynamism and redundancy. As we distinguish the functions of family members, we should be mindful of where orthology is absent and where it is retained; the latter, for example among MSP subtypes, cathepsin-L and B, or ESAG-like and PAG-like TTR genes, is a strong indication of long-term functional differentiation and non-redundancy among paralogs. Truly species-specific genes represent adaptations of this shared inheritance and, in *T. brucei*, include almost all ESAGs as well as various GPI-anchored glycoproteins associated with strand-switch regions (Fam4-7). We anticipate that with improved genome assembly, species-specific genes, perhaps analogous to ESAGs, will be revealed in *T. congolense* and *T. evansi* also. To this extent, comparative genomics has met its objectives and the challenge now is to define how these unique genes and variants influence phenotypic differences in biology and disease.

Supporting Information
Figure S1 Flowchart describing how the cell-surface phylome was compiled.

Figure S2 Distribution of unambiguous, amorphic characters in ESAG4. The figure shows an amino acid sequence alignment for four ESAG4 proteins and Tb11.01.8820, the most related non-ES homolog (at top). Identical residues are represented with a dot. Positions conserved in ESAG4 only are shaded red. The location of the predicted trans-membrane helix (green) and adenyl cyclase catalytic Flam domain (yellow) are marked on the Tb11.01.8820 sequence. ESAG4 apomorphies, i.e. characters that have changed in ESAG4 but remained constant in Tb11.01.8820 and its ortholog in *T. congolense* (TcIL3000.11.16970), are marked with an asterisk.

References
1. Barrett MP (2006) The rise and fall of sleeping sickness. Lancet 367:1377–1378.
2. World Health Organization (2012) Human African trypanosomiasis (sleeping sickness). Factsheet 259. Available: http://www.who.int/mediacentre/factsheets/fs259/en/. Accessed: 11 February 2013.
3. Build LT (1999) DFID-funded nete and trypanosomiasis research and development since 1980 (V. 2. Economic analysis). London: Department for International Development.
4. Brun R, Blum J, Chappuis F, Burri C (2010) Human African trypanosomiasis. Lancet 375:148–159.
5. El-Sayed NM, Myler PJ, Bartholomew DC, Nilson D, Aggarwal G, et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309:409–415.
6. Hertz-Fowler C, Renault H, Berriman M (2007) The genome of Trypanosoma brucei. In: Barry JD, McCulloch R, Mottram JC, Acosta-Serrano A, editors. African Trypanosomes:After the Genome. Wymondham:Horizon Bioscience. pp. 5–47.
7. Myler PJ (2008) Genome structure and content. In: Myler PJ, Fasel N, editors. Leishmania:After the Genome. Norfolk:Caister Academic Press. pp 15–28.
8. Acosta-Serrano A, Hutchinson C, Nakayasu ES, Almeida I, Carrington M (2007) Comparison and evolution of the surface architecture of trypanosomatid parasites. In: Barry JD, McCulloch R, Mottram JC, Acosta-Serrano A, editors. African Trypanosomes:After the Genome. Wymondham:Horizon Bioscience. pp. 319–338.
9. Handman E, Papenfuss AT, Speed TP, Godding JW (2008) Leishmania surface proteins. In: Myler PJ, Fasel N, editors. Leishmania:After the Genome. Norfolk:Caister Academic Press. pp. 177–204.
10. Morrison IJ, Marcello L, McCulloch R (2009) Antigenic variation in the African trypanosomes: molecular mechanisms and phenotypic complexity. Cell Microbiol 11:1724–1734.
11. Berriman M, Ghedin E, Hertz-Fowler C, Renaud H et al. (2005) The genome of the African trypanosome Trypanosoma brucei. Science 309:416–422.
12. Jackson AP, Berry A, Adeti M, Allison HC, Burton P, et al. (2012) Antigenic diversity is generated by distinct evolutionary mechanisms in African trypanosome species. Proc Nat Acad Sci USA, 109:3416–3421.
13. Horn D (2004) The molecular control of antigenic variation in Trypanosoma brucei. Curr Mol Med 4:563–576.
14. Pays E (2006) The variant surface glycoprotein as a tool for adaptation in African trypanosomes. Microbes Infect 8:930–937.
15. Horn D, McCulloch R (2010) Molecular mechanisms underlying the control of antigenic variation in African trypanosomes. Curr Opin Microbiol 13:700–705.
16. Alexandre S, Guyaux M, Murphy NB, Coquelet H, Pays A, et al. (1988) Putative genes of a variant-specific antigen gene transcription unit in Trypanosoma brucei. Mol Cell Biol 8:2367–2373.
17. Son HJ, Cook GA, Hall T, Donelson JE (1989) Expression site associated genes of Trypanosoma brucei brucei. Mol Biochem Parasitol 35:59–66.
18. Pays E, Trabah P, Pays A, Coquelet H, Revelard P, et al. (1989) The genes and transcripts of an antigen gene expression site from *T. brucei*. Cell 57:835–845.
19. Berriman M, Hall N, Shede K, Bringaud F, Tiwari B, et al. (2002) The architecture of variant surface glycoprotein gene expression sites in Trypanosoma brucei. Mol Biochem Parasitol 122:131–140.
20. Hertz-Fowler C, Figuerido LM, Quaal MA, Becker M, Jackson A, et al. (2008) Telomeric expression sites are highly conserved in *Trypanosoma brucei*. PLoS One 3:e3527.
21. McCallum R, Horn D (2009) What has DNA sequencing revealed about the VSG expression sites of African trypanosomes? Trends Parasitol 25:359–363.
22. Ferguson MA (1997) The surface glycoconjugates of trypanosomatid parasites. Philos Trans R Soc Lond B Biol Sci 352:1293–1302.
23. Jackson AP, Barry JD (2012) The evolution of antigenic variation in African trypanosomes. In: Sibley D, Howlett BJ, Heitman J, editors. Evolution of virulence in eukaryotic microbes. Wiley-Blackwell. pp 324–337.
24. Uilenberg G (1998) A field guide for the diagnosis, treatment and prevention of African animal trypanosomosis. FAO corporate document repository. Available: http://www.fao.org/DOCREP/006/X0413E/X0413E00.HTM. Accessed: 11 February 2013.
25. Vanhamme L (2010) The human trypanolytic factor: a drug shaped naturally. Infect Disord Drug Targets 10:266–282.
26. Borst P, Fairlamb AH (1998) Surface receptors and transporters of Trypanosoma brucei. Annu Rev Microbiol 52:745–778.
27. Pays E, Nolan DP Expression and function of surface proteins in *Trypanosoma brucei*. Mol Biochem Parasitol 91:3–36.
28. LaCount DJ, Gruszynski AE, Grandgenett PM, Bangs JD, Donelson JE (2003) Expression and function of the *Trypanosoma brucei* major surface protease (GP63) gene. J Biol Chem 278:24628–24644.
29. Yao C (2010) Major surface protease of trypanosomatid-cine size fits all? Infect Immun 78:22–31.
30. Mackey ZB, O’Brien TC, Greenbaum DC, Blank RB, McKerrow JH (2006) A chaperonin B-like protease is required for host protein degradation in *Trypanosoma brucei*. J Biol Chem 279:48426–48433.
31. O’Brien TC, Mackey ZB, Fetter RD, Choe Y, O’Donoghue AJ, et al. (2008) A parasite cytosine protease is key to host protein degradation and iron acquisition. J Biol Chem 283:28934–28943.

Author Contributions
Conceived and designed the experiments: APJ HCA MCF. Performed the experiments: APJ HCA. Analyzed the data: APJ HCA. Contributed reagents/materials/analysis tools: CHF MCF MB JDB. Wrote the paper: APJ.
90. Salmon D, Bachmaier S, Krumbholz C, Kador M, Gossmann JA, et al. (2012) Cytokinesis of Trypanosoma brucei bloodstream forms depends on expression of adenyl cyclases of the ESAG4 or ESAG4-like subfamily. Mol Microbiol 84:225–242.

91. Salmon D, Vanwalleghem G, Morias Y, Denoeud J, Krumbholz C, et al. (2012) Adenylate cyclases of Trypanosoma brucei inhibit the innate immune response of the host. Science, 337(6093):463–466.

92. Bieger B, Essen LO (2001) Structural analysis of adenylate cyclases from Trypanosoma brucei in their monomeric state. EMBO J 20(3):433–445.

93. Revelard P, Lips S, Pays E (1990) A gene from the FSG expression site of Trypanosoma brucei encodes a protein with both leucine-rich repeats and a putative zinc finger. Nucleic Acids Res 18: 7299–7303.

94. Jackson DG, Windle HJ, Voorheis HP (1993) The identification, purification, and characterization of two invariant surface glycoproteins located beneath the surface coat barrier of bloodstream forms of Trypanosoma brucei. J Biol Chem 268:8085–8095.

95. Veitch NJ, Johnson PC, Trivedi U, Terry S, Wildridge D, et al. (2010) Digital gene expression analysis of two life cycle stages of the human-infective parasite, Trypanosoma brucei gambiense reveals differentially expressed clusters of co-regulated genes. BMC Genomics 11:124.

96. Marcello L, Barry JD (2007) Analysis of the FSG gene silent archive in Trypanosoma brucei reveals that mosaic gene expression is prominent in antigenic variation and is favored by archive substructure. Genome Res 17:1344–1352.

97. Jackson AP (2007) Tandem gene arrays in Trypanosoma brucei: comparative phylogenomic analysis of duplicate sequence variation. BMC Evol Biol 7:54.

98. Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–132.

99. Young R, Taylor JE, Kenrick A, Becker M, Louis EJ, et al. (2000) Isolation and analysis of the genetic diversity of repertoires of FSG expression site containing telomeres from Trypanosoma brucei gambiense, T. b. brucei and T. equiperdum. BMC Genomics 9:385.

100. Gottesdiener KM (1994) A new VSG expression site-associated gene (EXAG) in the promoter region of Trypanosoma brucei encodes a protein with 10 potential transmembrane domains. Mol Biochem Parasitol 63: 143–151.

101. Hoek M, Cross GA (2001) Expression-site-associated-gene-8 (EXAG8) is not required for regulation of the VSG expression site in Trypanosoma brucei. Mol Biochem Parasitol 117:211–215.

102. Carruthers VB, Navarro M, Cross GA (1996) Targeted disruption of expression site-associated gene-1 in bloodstream-form Trypanosoma brucei. Mol Biochem Parasitol 81:65–79.

103. Vassella E, Bünköfer P, Enguler M, Jell J, Roditi I (2000) Procyclin null mutants of Trypanosoma brucei express free glycosylphosphatidylinositol on their surface. Mol Biol Cell 14:1308–1318.

104. Güther ML, Beattie K, Lamont DJ, James J, Prescott AR, Ferguson MA (2009) Fate of glycosylphosphatidylinositol (GPI)-less procyclin and characterization of sialylated non-GPI-anchored surface coat molecules of procyclic-form Trypanosoma brucei. Eukaryot Cell 8:1407–1417.

105. Vanhollebeke B, De Meylder G, Nicken MJ, Pays A, Tchabi P, et al. (2008) A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans. Science 320:677–681.

106. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: A sequence logo generator. Genome Res 14:1188–1190.

107. Mendola-Palomares C, Buteau N, Giraud C, Coustou V, Coetzer T, et al. (2008) Molecular and biochemical characterization of a cathepsin B-like protease family unique to Trypanosoma congolense. Eukaryot Cell 7:684–697.

108. Stamatakis A (2006) RAxML-VI-HPC:maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2686–2690.