SYSTEMATIC REVIEW AND META-ANALYSIS

Cancer Mortality in Trials of Heart Failure With Reduced Ejection Fraction: A Systematic Review and Meta-Analysis

Giacomo Tini, MD*; Edoardo Bertero, MD*; Alessio Signori, PhD; Maria Pia Sormani, MP, PhD; Christoph Maack, MD; Rudolf A. De Boer, MD, PhD; Marco Canepa, MD, PhD; Pietro Ameri, MD, PhD

BACKGROUND: The burden of cancer in heart failure with reduced ejection fraction is apparently growing. Randomized controlled trials (RCTs) may help understanding this observation, since they span decades of heart failure treatment.

METHODS AND RESULTS: We assessed cancer, cardiovascular, and total mortality in phase 3 heart failure RCTs involving ≥90% individuals with left ventricular ejection fraction <45%, who were not acutely decompensated and did not represent specific patient subsets. The pooled odds ratios (ORs) of each type of death for the control and treatment arms were calculated using a random-effects model. Temporal trends and the impact of patient and RCT characteristics on mortality outcomes were evaluated by meta-regression analysis. Cancer mortality was reported for 15 (25%) of 61 RCTs, including 33,709 subjects, and accounted for 6% to 14% of all deaths and 17% to 67% of noncardiovascular deaths. Cancer mortality rate was 0.58 (95% CI, 0.46–0.71) per 100 patient-years without temporal trend (P=0.35). Cardiovascular (P=0.001) and total (P=0.001) mortality rates instead decreased over time. Moreover, cancer mortality was not influenced by treatment (OR, 1.08; 95% CI, 0.92–1.28), unlike cardiovascular (OR, 0.88; 95% CI, 0.79–0.98) and all-cause (OR, 0.91; 95% CI, 0.84–0.99) mortality. Meta-regression did not reveal significant sources of heterogeneity. Possible reasons for excluding patients with malignancy overlapped among RCTs with and without published cancer mortality, and malignancy was an exclusion criterion only for 4 (8.7%) of the RCTs not reporting cancer mortality.

CONCLUSIONS: Cancer is a major, yet overlooked cause of noncardiovascular death in heart failure with reduced ejection fraction, which has become more prominent with cardiovascular mortality decline.

Key Words: cancer ■ comorbidities ■ heart failure ■ mortality

In the past years, analyses of community-based cohorts in the United States,1,2 Europe,3 and Japan4,5 highlighted a higher frequency of newly diagnosed cancer in subjects with heart failure (HF), as compared with those without HF. Although residual confounding cannot be excluded, these studies indicated an increased incidence of cancer in patients with HF, even after taking into account shared risk factors and cardiovascular medications. Furthermore, the higher rate of cancer diagnosis in individuals with HF did not appear to result from a surveillance bias, that is, a higher likelihood of tumor detection secondary to increased medical attention for subjects with HF.3 Mortality of patients with HF and cancer was also reported to be increased.1–5 The association with cancer was primarily observed in HF with reduced left ventricular ejection fraction (HFrEF) and was consistent for most common cancer types.1,3 This epidemiologic evidence is strengthened by preclinical data indicating that the failing heart may promote neoplastic development and...
Tini et al Cancer in HFrEF Randomized Controlled Trials

progression. Nonetheless, one investigation based on the Physicians’ Health Studies I and II population did not observe any relationship between HF and incident cancer among males.7

Clearly, recognition of the potential relation of HFrEF with cancer is growing, but understanding of the interconnection between these 2 entities remains limited. It is possible that cancer has gained importance in HFrEF because of the changes that occurred in the natural history of this syndrome over time. Advances in pharmacologic and device treatment have led to a significant decline in HF-related cardiovascular mortality, to the extent that overall mortality has also decreased. By contrast, HFrEF therapies do not affect noncardiovascular disorders, which have therefore progressively become more prominent. This may also be the case with cancer. Indeed, cancer has been recently pinpointed as a major cause of noncardiovascular death in contemporary HFrEF populations.

To better describe the relevance of cancer in HFrEF throughout the last decades, we systematically assessed cancer mortality in phase 3 randomized controlled trials (RCTs) and investigated whether it has been influenced by HFrEF therapies as compared with cardiovascular and total mortality.

METHODS

The authors declare that all supporting data are available within the article and its online supplementary files.

Search Strategy

We systematically searched the MEDLINE, Embase, Scopus, and Cochrane Library databases for phase 3 RCTs in HFrEF using the search strings “heart failure,” “congestive heart failure,” and “randomized controlled trial.” Moreover, we thoroughly screened the bibliographies of original research articles, guidelines, reviews, and meta-analyses to identify additional eligible studies. The search was limited to English language peer-reviewed publications and is updated to April 30, 2019.

Inclusion and Exclusion Criteria

We focused on HFrEF because this type of HF has primarily been the object of RCTs as well as of the investigations about comorbid cancer. After selecting phase 3 RCTs involving individuals with left ventricular ejection fraction <45%, we excluded those that included >10% of patients with HF with preserved left ventricular ejection fraction (HFpEF), enrolled subjects with or recently discharged after acutely decompensated HF, were not broadly representative of the HFrEF population (ie, investigating only specific subsets of patients), or did not have sufficient information about mortality. Two investigators (G.T., E.B.) independently reviewed the retrieved articles and collected information regarding number, sex and age of participants, follow-up duration, HF therapy including implantable cardioverter defibrillator and cardiac resynchronization therapy with defibrillator capacity, enrollment criteria with special attention to those regarding malignancy, and cause-specific and total mortality.

Data Synthesis and Statistical Analysis

Mortality rates were calculated per 100 patient-years with 95% CI. The odds ratios (ORs) of cancer, cardiovascular, and all-cause death were obtained from the number of events and the total number of patients in the control and treatment arms. The ORs were then pooled together using the random-effects model based on the method of DerSimonian and Laird. The estimate of heterogeneity was derived from the Mantel-Haenszel model and was reported using the I-square coefficient. Since the number of cancer deaths was low in several RCTs, the Mantel-Haenszel exact test on log OR was also used to evaluate the effect of treatment on cancer mortality. A random-effects
meta-regression analysis, with the between-studies variance (tau-squared) estimated by residual maximum likelihood, was performed to assess possible temporal trends of the mortality rates and to determine whether the following patient and trial characteristics had an impact on mortality outcomes: age and sex of recruited subjects; length of follow-up; number of disease-modifying drug classes in the background therapy (0–3: beta-blockers; inhibitors of the renin-angiotensin system including aliskiren, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and mineralocorticoid receptor antagonists); and proportion of patients with implantable cardioverter defibrillator or cardiac resynchronization therapy with defibrillator capacity. Statistical analysis was done using Stata (v.14; StataCorp, College Station, TX).

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram of the systematic search and selection process.
CV indicates cardiovascular; HF, heart failure; HFPpEF, heart failure with preserved left ventricular ejection fraction; HFpEF, heart failure with reduced left ventricular ejection fraction; and RCTs, randomized controlled trials.
Trial name and period	N (males) and age of patients	Follow-up y	Tested therapy	Background disease-modifying therapy	All-cause mortality N n/100 pts/y (95% CI)	Cardiovascular mortality N n/100 pts/y (95% CI)	Cancer mortality N n/100 pts/y (95% CI)	Non cardiovascular noncancer mortality N n/100 pts/y (95% CI)	Non cardiovascular deaths attributable to cancer
CONSENSUS 1985–1986	253 (178) 70 y	1	Enalapril vs placebo		118	117	0	0.4 (0.1–2.2)	0%
V-HeFT II 1986–1990	804 (604) 60.6 y	2.5	Enalapril vs hydralazine-isosorbide		285	249	18	18	0%
GESICA 1989–1993	516 (417) 58.8 y	1.1	Amiodarone vs standard therapy		193	185	2	6	25%
CABG Patch 1993–1997	900 (759) 63.5 y	2.7	ICD vs standard therapy		198	163	13	22	371%
DEFINITE 1998–2003	458 (326) 58.3 y	2.4	ICD vs standard therapy		68	43	10	15	66.7%
CHARM-Alternative 1999–2003	2028 (1382) 66.6 y	2.8	Candesartan vs placebo		561	471	43	47	47.8%
CHARM-Added 1999–2003	2548 (2006) 64.1 y	3.4	Candesartan vs placebo		789	649	54	86	38.6%
AF-CHF 2001–2002	1376 (1122) 67 y	3.1	Rhythm control vs rate control		445	357	34	54	38.6%

(Continued)
Trial name and period	N (males) and age of patients	Follow-up y	Tested therapy	Background disease-modifying therapy	All-cause mortality N n/100 pts/y (95% CI)	Cardiovascular mortality N n/100 pts/y (95% CI)	Cancer mortality N n/100 pts/y (95% CI)	Non cardiovascular noncancer mortality N n/100 pts/y (95% CI)	Non cardiovascular deaths attributable to cancer
GISSI-HF 2002–2008¹¹	6975 (5459) 67 y	3.9	n-3 PUFAs vs standard therapy	BB: 65%	7.2 (6.9–7.5)	5.4 (5.1–5.7)	0.8 (0.7–0.9)	1 (0.9–1.1)	
				ACEi: 77%					
				ARB: 19%					
				MRA: 39%					
				ICD: 7%					
STICH 2002–2010²²,²³	1212 (1064) 60 y	4.7	CABG vs standard therapy	BB: 86%	8.1 (7.4–8.9)	6.2 (5.6–6.8)	0.6 (0.4–0.9)	1.3 (1.1–1.7)	
				ACEi: 82%					
				ARB: 9.5%					
				MRA: 46%					
CORONA 2003–2007²³	5001 (3821) 73 y	2.7	Rosuvastatin vs placebo	BB: 75%	11 (10.5–11.5)	7.2 (6.8–7.7)	0.8 (0.6–0.9)	3 (2.8–3.3)	
				ACEi/ARB: 92%					
				MRA: 39%					
				ICD: 3%					
REVERSE 2004–2006²⁴	610 (478) 62.4 y	1	CRT vs standard therapy	BB: 95%	2 (1.3–3.4)	1 (0.5–2.1)	0.2 (0.1–0.9)	0.8 (0.4–1.9)	
				ACEi: 79%					
				ARB: 21%					
				ICD: 84%					
MADIT-CRT 2004–2008²⁵,²⁷	1830 (1367) 64.5 y	4	CRT-D vs ICD	BB: 92%	2.3 (2–2.7)	1.5 (1.2–1.8)	0.3 (0.2–0.4)	0.6 (0.4–0.8)	
				ACEi: 74%					
				ARB: 20%					
				MRA: 30%					
				ICD: 50%					
ECHO-CRT 2008–2013²⁶	809 (585) 58 y	1.6	CRT vs standard therapy	BB: 97%	5.5 (4.4–6.9)	3.7 (2.8–4.9)	0.4 (0.2–0.9)	1.4 (0.9–2.2)	
				ACE/ARB: 95%					
				MRA: 60%					
				ICD: 50%					

(Continued)
Table 1. Continued

Cancer	Non cardiovascular	All-cause mortality	Cardiovascular mortality						
N (%)	mortality N (%)	n/100 pts/y (95% CI)	n/100 pts/y (95% CI)						
Noncardiovascular	Noncancer								
N=8399 (6567)	63.8 y	2.3	ARNI vs ACEi	1546	1251	82	213	27.8%	
PARADIGM-HF	2009–2014								
BB: 93%	8 (7.6–8.4)	6.5 (6.1–6.8)	0.4 (0.3–0.5)	1.1 (1–1.3)					
ACEi: 77.8%									
ARB: 22.6%									
MRA: 56%									
ICD: 15%									

RESULTS

A total of 61 HFrEF RCTs were included in the analysis,13–73, Figure 1 shows the flow diagram of the selection process.

Cancer mortality was reported for 15 (25%) RCTs,13–27,24,74–78 These studies covered 29 years, from 1985 to 2014, and involved a total of 33,709 subjects aged between 58 and 70 years, with the exception of CORONA23 that included ≥60-year-old patients and, thereby, consisted of an older cohort (Table 1; risk of bias is summarized in Table S1). The number of participants, as well as the complexity of HFrEF treatment, progressively increased from the earliest to the latest RCTs. Duration of follow-up ranged from 1 to 4.7 years (Table 1). The proportion of patients with cancer at the enrollment was available for 3 RCTs and always small: CHARM Alternative18 (134 patients, 6.6% of total), CHARM Added19 (153 patients, 6%), and GISSI-HF21 (256 patients, 3.7%).

Except for 2 of the earliest RCTs with published information about cancer mortality (CONSENSUS13 and GESICA15), cancer accounted for 6% to 14% of all deaths and 17% to 67% of noncardiovascular deaths (Table 1). The inferred mortality rate was 0.58 (95% CI, 0.46–0.71) per 100 patient-years (I² for heterogeneity, 83.4%) and did not have a clear temporal trend (P=0.35; Figure 2). The cancer mortality rates for the population of corresponding age in the United States, provided in Table S2, were in general lower than in RCTs before the 2000s and then comparable. Similar to cancer mortality, no significant trend was noted for noncardiovascular noncancer mortality rates (P=0.24; Table 1). Conversely, cardiovascular (P=0.001) and total (P=0.001) mortality rates decreased over time (Table 1 and Figure 2). Furthermore, HFrEF therapies did not modify cancer mortality (OR, 1.08; 95% CI, 0.92–1.28; Figure 3A), but significantly diminished cardiovascular (OR, 0.88; 95% CI, 0.79–0.98; Figure 3B) and all-cause (OR, 0.91; 95% CI, 0.84–0.99; Figure 3C) mortality. The Mantel-Haenszel exact test for cancer mortality yielded similar results (OR, 1.09; 95% CI, 0.92–1.27). None of the patient or RCT characteristics taken into consideration reduced heterogeneity in the meta-regression analysis of treatment effect (Table S3). However, part of the heterogeneity for the cardiovascular death outcome was imputable to the ECHO-CRT and V-HeFT-II studies, since removing these 2 RCTs decreased heterogeneity from 64.5% to 54.4% and 57.9%, respectively. The leave-one-out approach with the other RCTs did not substantially modify the heterogeneity for cardiovascular death.

Information about cancer mortality was not given for 46 (75%) RCTs.28–73,79–91 The main features of these RCTs are presented in Table S4. Of note, only 4 of these studies34,44,63,72 (8.7%) of the RCTs without
published cancer mortality) formally excluded patients with current and/or prior malignancy (Figure 4 and Table S5). Most RCTs did not enroll individuals who might have had cancer, based on limited life expectancy (12 RCTs; 26% of those without data on cancer mortality), a predicted survival below a specific cutoff between 6 months and 5 years (11 RCTs; 24%), the presence of concomitant “major noncardiac diseases” (4 RCTs; 9%), or the assumption that complete follow-up would not be feasible (3 RCTs; 6.5%). In 12 studies, (26%) there was not even indirect indication that patients with cancer could not be recruited.

References 13, 29, 32, 35, 36, 38–40, 42, 47, 48, 59.

References 28, 33, 46, 52, 54–56, 58, 64, 71, 73.

References 31, 34, 37, 45, 50, 53, 57, 61, 62, 67, 68, 70.
Figure 3. Pooled OR for cancer, CV, and total mortality in HFrEF RCTs with published information about cancer mortality.

AF-CHF indicates atrial fibrillation and congestive heart failure; CABG, coronary artery bypass graft; CHARM-Added, candesartan in heart failure assessment of reduction in mortality and morbidity-added; CHARM-Alternative, candesartan in heart failure assessment of reduction in mortality and morbidity-alternative; CONSENSUS, cooperative north scandinavian enalapril survival study; CORONA, controlled rosvastatin multinational trial in heart failure; CRT(-D), cardiac resynchronization therapy (and ICD); CV, cardiovascular; DEFINITE, defibrillators in non-ischemic cardiomyopathy treatment evaluation; ECHO-CRT, echocardiography guided cardiac resynchronization therapy; GESICA, grupo de estudio de la sobrevida en la insuficiencia cardiaca en Argentina; GISSI-HF, gruppo Italiano per lo studio della sopravvivenza nell’insufficienza cardiaca heart failure; HFrEF, heart failure with reduced left ventricular ejection fraction; MADIT-CRT, multicenter automatic defibrillator implantation trial with cardiac resynchronization therapy; PARADIGM-HF, prospective comparison of ARNI with ACEI to determine impact on global mortality and morbidity in heart failure trial; RCTs, randomized controlled trials; REVERSE, resynchronization reverses remodeling in systolic left ventricular dysfunction; STICH, surgical treatment for ischemic heart failure; and V-HeFT II, vasodilator-heart failure trial II.
(Figure 4 and Table S5). Strikingly, very similar exclusion criteria were applied in the RCTs that instead reported cancer mortality, with a comorbidity expected to shorten life expectancy to less than the duration of follow-up or a variable amount of time being the most common reason to preclude the participation of patients with active cancer (Figure 4 and Table 2). In CONSENSUS13 and DEFINITE,17 noncardiac diseases leading to exclusion were explicitly listed, and cancer was not mentioned (Table 2).

DISCUSSION

There is increasing attention toward cancer in HFrEF. Contemporary registries suggest that at minimum 1 in 10 patients with HFrEF also has a malignant tumor at the first observation11,92,93 or is diagnosed with and dies from cancer during follow-up.1,5,11,12,92,93 In fact, the risk of malignancy may be even higher in subjects with than without HFrEF.1,4

Since RCTs provide robust and high-quality data, we systematically reviewed these studies to better define the burden of cancer in HFrEF. In the 15 HFrEF RCTs with published cancer mortality, the proportion of deaths ascribed to malignancy was not negligible, being 6% to 7% and peaking at over 14%. Up to 67% of noncardiovascular deaths were attributable to cancer. These results are consistent with those of recent investigations assessing cancer in HF out of RCTs. By reviewing the electronic health records from a representative sample of the UK population, Conrad and colleagues showed that cancer caused 15% of deaths within 1 year from HF diagnosis in 2013.11 Of about 1800 patients with HFrEF followed at one HF clinic in Spain and >2000 from another single center in Japan, 15% and 16%, respectively, died from cancer.92,93 Thus, our work confirms that cancer is a relevant cause of death in HFrEF, by integrating retrospective analyses of real-world cohorts with data from prospective RTCs, which have been extracted and examined here for the first time.

While there was no consistent trend in cancer mortality throughout HFrEF RCTs, cardiovascular and all-cause mortality decreased. This reduction has already been described for HFrEF RCTs in general9,94 and in population studies,9,11,12 and is explained by the sequential implementation of drugs and devices halting HF progression and death. In fact, the decline in cardiovascular and overall mortality in our analysis was driven by the 3 oldest RCTs,13–15 in which HF-specific therapy was simpler than in the following ones. By contrast, cancer mortality was not influenced by treatment, in line with the epidemiologic evidence that neurohormonal inhibitors do not substantially affect the risk of dying from malignant tumors.95 Hence, the emerging issue of cancer in HFrEF may be, at least in part, the consequence of curtailed cardiovascular death by virtue of therapeutic advances. This paradigm has also been proposed for other comorbidities that nowadays compete with HFrEF per se in dictating prognosis more than in the past and has prompted questions about the appropriateness of some treatment choices.10,17 It must be acknowledged that this interpretation of the results is speculative and needs to be verified. Nevertheless, the data presented here corroborate the debate and emphasize that cancer is a noncardiovascular disease complicating HFrEF, which deserves careful consideration.

Interestingly, a specular trend has been shown for cardiovascular mortality among oncologic patients,

![Figure 4. Potential reasons for exclusion of patients with malignancy from HFrEF RCTs.](image-url)

Note the overlap of criteria between trials for which cancer mortality was or was not reported. Cancer not considered means that cancer was not a direct or indirect cause of exclusion.
where cardiovascular deaths have become more frequent with the improvement of cancer prognosis. Thus, the reciprocal impact of the evolving epidemiology of cardiovascular disease and cancer must be borne in mind when addressing their interrelation.

Three RCTs reported the percentage of patients having cancer at baseline, which was 3.7% to 6.6% and lower than the ones found in the general population. Among subjects with incident HF in the United Kingdom between 2011 and 2013, 29% also had a history of cancer. In the United States, comorbid nonmetastatic cancer was recorded for 11% of all the admissions between 2003 and 2015 with a primary discharge diagnosis of HF. This discrepancy may depend on the inaccurate definition of HF in population studies, with no distinction between HFrEF and HFpEF. It is also likely that oncologic patients were somehow excluded from RCTs, but not from registries. However, it should also be noted that the representation of subjects with malignancy in HFrEF RCTs is largely unknown. Only 4 RCTs explicitly excluded these patients. In the great majority of RCTs, participation was precluded to individuals with a comorbid noncardiovascular condition, which would jeopardize follow-up or substantially decrease life expectancy according to the recruiting investigators. Obviously, such conditions could have been, but were not necessarily limited to, cancer. Therefore, it is conceivable that a number of individuals were enrolled in HFrEF RCTs in spite of having malignant tumors, although apparently cured or deemed indolent.

The majority of HFrEF RCTs also lack information about how many patients died from cancer. Modes of death were reported as cardiovascular or noncardiovascular, without further distinction of the noncardiovascular causes of death. This methodologic limitation generates a gap in knowledge about cancer in HFrEF and has negative implications for clinical practice. Since guidance may not be derived from RCTs, the management of patients with cancer in addition to HFrEF remains empirical and based on personal experience, when evidence-based data are instead warranted given the challenges portended by the co-occurrence of cancer and HF. We advocate for future RCTs better describing and adjudicating noncardiovascular events and mortality, including incident and fatal cancer.

From a conceptual standpoint, the results presented here lend support to the statement that the discipline of cardio-oncology should broaden goals and perspectives. The interfaces between cancer and HF and other cardiovascular disorders are manifold and not limited to the side effects of antitumor therapies. Basic and clinical science efforts are awaited to dissect these multiple levels of interaction and provide insights, which may be in turn translated into clinical improvements. Our analysis highlights how the extensive phenotyping offered by RCTs has

Table 2. Potential Reasons for Exclusion of Patients With Malignancy From HFrEF RCTs With Cancer Mortality Data Available

Exclusion Criteria Possibly Regarding Patients With Cancer	Table 2. Potential Reasons for Exclusion of Patients With Malignancy From HFrEF RCTs With Cancer Mortality Data Available
CONSENSUS13	Cancer not a direct or indirect reason for exclusion
V-HeFTI9	“Diseases likely to limit life expectancy”
GESICA9	“Concomitant serious disease”
CABG Patch16,74	“A noncardiovascular condition with expected survival of less than two years”
DEFINITE7	Cancer not a direct or indirect reason for exclusion
CHARMAnterio9,75	“Presence of any noncardiac disease (eg, cancer) that is likely to significantly shorten life expectancy to <2 years.”
CHARMAdded9,75	“Presence of any noncardiac disease (eg, cancer) that is likely to significantly shorten life expectancy to <2 years.”
AF-CHF27	“An estimated life expectancy of less than 1 year”
GISSI-HF27	“Presence of any noncardiac comorbidity (eg, cancer) unlikely to be compatible with a sufficiently long follow-up”
STICH9,78	“Noncardiac illness with a life expectancy of less than 3 years”
STICH9,78	“Noncardiac illness imposing substantial operative mortality”
CORONA23	“Any other condition that would substantially reduce life expectancy or limit compliance with the protocol”
REVERSE28	Life expectancy ≤12 months
MADI-T-CRT25,77	“Presence of any disease, other than the subject’s cardiac disease, associated with a reduced likelihood of survival for the duration of the trial, eg, cancer, uremia (BUN >70 mg/dL, or creatinine >3.0 mg/dL, liver failure, etc”
ECHO-CRT28	“Have a life expectancy of >6 months. Presence of any disease, other than the subject’s cardiac disease associated with a reduced likelihood of survival for the duration of the trial, (eg, cancer)”
PARADIGM-HF27	“Presence of any other disease with a life expectancy of <5 years”

AF-CHF indicates atrial fibrillation and congestive heart failure; BUN, blood urea nitrogen; CABG, coronary artery bypass graft; CHARM-Added, candesartan in heart failure assessment of reduction in mortality and morbidity-added; CHARM-Alternative, candesartan in heart failure assessment of reduction in mortality and morbidity-alternative; CONSENSUS, cooperative north scandinavian enalapril survival study; CORONA, controlled rosuvastatin multinational trial in heart failure; DEFINITE, defibrillators in non-ischemic cardiomyopathy treatment evaluation; ECHO-CRT, echocardiography guided cardiac resynchronization therapy; GESICA, grupo de estudio de la sobrevida en la insuficiencia cardiaca en Argentina; GISSI-HF, gruppo italiano per lo studio della sopravvivenza nell’insufficienza cardiaca heart failure; HFrEF, heart failure with reduced left ventricular ejection fraction; MADIT-CRT, multicenter automatic defibrillator implantation trial with cardiac resynchronization therapy; PARADIGM-HF, prospective comparison of ARNI with ACEI to determine impact on global mortality and morbidity in heart failure trial; RCTs, randomized controlled trials; REVERSE, resynchronization reverses remodeling in systolic left ventricular dysfunction; STICH, surgical treatment for ischemic heart failure; and V-HeFT II, vasodilator-heart failure trial II.
been minimally exploited to characterize cancer in HFrEF. In parallel, investigations are needed to understand whether a mechanistic link exists between the 2 conditions.95,98,99

Limitations
This systematic review collected information from RCTs, which were not specifically designed to evaluate cancer mortality in HFrEF. As such, adjudication and proper event description, by default, was of mediocre quality. Second, the competing risk explanation for the increasing relevance of cancer in HFrEF is strongly hampered by the lack of any analysis that directly address it. In this regard, this work should be considered hypothesis-generating. Third, we did not assess the burden of malignancy in HFrEF. However, a recent comprehensive paper examined noncardiovascular death in HFrEF RCTs and found that detailed data were available only for 3 studies.100 In these RCTs, 30% to 40% of noncardiovascular mortality was attributable to cancer, suggesting that death attributable to malignancy is also noticeable in this setting.

CONCLUSIONS
When assessed, cancer was a primary cause of noncardiovascular death in RCTs in patients with HFrEF, and it was unaffected by HF treatments. However, cancer mortality was often unreported. Given the increasing number of subjects with HF and cancer, restrictive exclusion criteria or inadequate data collection may hinder the appropriate representation of a relevant population in RCTs. A similar observation has been made for RCTs of anticancer therapies, where concomitant cardiovascular disease and especially HF are a common reason for exclusion.101 Upcoming HFrEF RCTs should consider including at least a subset of patients with thorough information about the prevalence, characteristics, and mortality of cancer, as this would allow better positioning of new therapies.

Sources of Funding
Pietro Ameri is supported by the Italian Ministry of Health (Ricerca Corrente 2018–2020 and GR-2018–12365661, Cancer in Heart failure: characterizing the association with a dual epidemiological and Experimental approach [CHANGE study]); Rudolf A. de Boer is supported by the European Research Council (ERC CoG 818715, Secreted factors in cardiac remodeling provoke tumorogenesis and end organ damage in heart failure [SECRETE-HF]).

ARTICLE INFORMATION
Received February 29, 2020; accepted May 27, 2020.

Affiliations
From the Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy (G.T., M.C., P.A.); Department of Internal Medicine, University of Genova, Italy (G.T., M.C., P.A.); Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany (E.B., C.M.); Department of Health Sciences, Section of Biostatistics, University of Genova, Italy (A.S., M.P.S.); and Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (R.A.D.B.).

Disclosures
None.

Supplementary Materials
Tables S1–S5

REFERENCES
1. Hasin T, Gerber Y, McNallan SM, Weston SA, Kushwaha SS, Nelson TJ, Cerhan JR, Roger VL. Patients with heart failure have an increased risk of incident cancer. J Am Coll Cardiol. 2013;62:881–886.
2. Hasin T, Gerber Y, Weston SA, Jiang R, Killian JM, Manemann SM, Cerhan JR, Roger VL. Heart failure after myocardial infarction is associated with increased risk of cancer. J Am Coll Cardiol. 2016;68:265–271.
3. Banki A, Schou M, Videbaek L, Møller JE, Torp-Pedersen C, Gustafsson F, Dahl JS, Kober L, Hildebrandt PR, Gissian GH. Incidence of cancer in patients with chronic heart failure: a long-term follow-up study. Eur J Heart Fail. 2016;18:260–266.
4. Sakamoto M, Hasegawa T, Asakura M, Kanzaki H, Takahama H, Amaki M, Mochizuki N, Anzai T, Hamasaki T, Kitakaze M. Does the pathophysiology of heart failure prime the incidence of cancer? Hypertens Res. 2017;40:831–836.
5. Oikawa T, Sakata Y, Nochioka K, Miura M, Abe R, Kasahara S, Sato M, Aoyanagi H, Shirato T, Sugimura K, et al.; CHART-2 Investigators. Increased risk of cancer death in patients with chronic heart failure with a special reference to inflammation-A report from the CHART-2 Study. Int J Cardiol. 2019;290:106–112.
6. de Boer RA, Meijers WC, van der Meer P, van Veldhuisen DJ. Cancer and heart disease: associations and relations. Eur J Heart Fail. 2018;21:1515–1525.
7. Selvaraj S, Bhatt DL, Claggett B, D’Agostino Sr, Chen J, Imran TF, Gaziano JM, et al. Lack of association between heart failure and incident cancer. J Am Coll Cardiol. 2018;71:1501–1510.
8. Bertero E, Ameri P, Maack C. Bidirectional relationship between cancer and heart failure: old and new issues in cardio-oncology. Card Fail Rev. 2019;5:106–111.
9. Rush CJ, Campbell RT, Jhund PS, Connolly EC, Preiss D, Gardner RS, Petrie MC, McMurray JJV. Falling cardiovascular mortality in heart failure with reduced ejection fraction and implications for clinical trials. JACC Heart Fail. 2015;3:603–614.
10. Iorio A, Senni M, Barbati G, Greene SJ, Poli S, Zambon E, Di Nora C, Cioffi G, Tarantini L, Gavazzi A, et al. Prevalence and prognostic impact of non-cardiac co-morbidities in heart failure outpatients with preserved and reduced ejection fraction: a community-based study. Eur J Heart Fail. 2018;20:1257–1266.
11. Conrad N, Judge A, Candy D, Tran J, Pinho-Gomes A-C, Millett ERC, Salimi-Khorshidi G, Cleland JQ, McMurray JJV, Rahimi K. Temporal trends and patterns in mortality after incident heart failure: a longitudinal analysis of 86 000 individuals. JAMA Cardiol. 2019;4:1102–1111.
12. Moliner P, Lopujón J, de Antonio M, Domingo M, Santiago-Vacas E, Zamora E, Cedeño G, Santamases J, Díez-Quevedo C, Troya M, et al. Trends in modes of death in heart failure over the last two decades: less sudden death but cancer deaths on the rise. Eur J Heart Fail. 2019;21:1259–1266.
13. CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med. 1987;316:1429–1435.
14. Cohn JN, Johnson G, Ziesche S, Cobb F, Francis G, Tristani F, Smith R, Dunkman WB, Loebl H, Wong M, et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med. 1991;325:303–310.
15. Doval HC, Nul DR, Granelli HO, Perrone SV, Bortman GR, Curiel R. Randomised trial of low-dose amiodarone in severe congestive heart failure. Grupo de Estudio de la Sobrevivida en la Insuficiencia Cardiaca en Argentina (GESICA). Lancet Lond Engl. 1994;344:493–498.

16. Bigger JT. Prophylactic use of implanted cardiac defibrillators in patients at high risk for ventricular arrhythmias after coronary-artery bypass graft surgery. N Engl J Med. 1997;337:1569–1575.

17. Kadish A, Dyer A, Daubert JP, Quigg R, Estes NM, Anderson KP, Calkins H, Hoch D, Goldberger J, Shalaby A, et al. Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy. N Engl J Med. 2004;350:2151–2158.

18. Granger CB, McMurray JJ, Yusuf S, Held P, Michelson EL, Oflosoin B, Östergren J, Pfeffer MA, Swedberg K. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting enzyme inhibitors: the CHARM-Alternative trial. Lancet. 2003;362:772–776.

19. McMurray JJ, Östergren J, Swedberg K, Granger CB, Held P, Michelson EL, Oflosoin B, Yusuf S, Pfeffer MA. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting enzyme inhibitors: the CHARM-Added trial. Lancet. 2003;362:767–771.

20. Roy D, Talajic M, Nattel S, Wyse DG, Dorian P, Lee KL, Bourassa MG, Arnold JMO, Buxton AE, Camm AJ, et al. Rhythm control versus rate control for atrial fibrillation and heart failure. N Engl J Med. 2008;358:2667–2677.

21. GISSI-HF Investigators. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372:1223–1230.

22. Velazquez EJ, Lee KL, Deja MA, Jain A, Sopko G, Marchenko A, Ali JS, Tini et al. Cancer in HFrEF Randomized Controlled Trials.

23. Singh SN, Fletcher RD, Fischer SG, Singh BN, Lewis HD, Deedwania P. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET); randomised controlled trial. Lancet. 2003;362:7–13.

24. Pitt B, Segal R, Martinez FA, Meurers G, Cowley AJ, Thomas I, Deedwania PC, Neri DE, Snively DB, Chang PT. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet. 1997;349:747–752.

25. Cohn JN, Goldstein SO, Greenberg BH, Lorell BH, Bourge RC, Jaski SM, Hendrix GH, Bommer WJ, Elkayam U, et al. Effect of spironolactone on morbidity and mortality in patients with chronic heart failure. N Engl J Med. 1999;341:2001–2007.

26. Pitt B, Segal R, Martinez FA, Meurers G, Cowley AJ, Thomas I, Deedwania PC, Neri DE, Snively DB, Chang PT. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet. 1997;349:747–752.

27. Cohn JN, Goldstein SO, Greenberg BH, Lorell BH, Bourge RC, Jaski SM, Hendrix GH, Bommer WJ, Elkayam U, et al. Effect of spironolactone on morbidity and mortality in patients with chronic heart failure. N Engl J Med. 1999;341:2001–2007.

28. Cohn JN, Ziesche S, Smith R, Anand I, Dunkman WB, Loeb H, Cintron G, Boden W, Baruch L, Rochin P, et al. Effect of the calcium antagonists felodipine as supplementary vasodilator therapy in patients with chronic heart failure treated with enalapril: V-HeFT III. Vasodilator-Heart Failure Trial (V-HeFT) Study Group. Circulation. 1997;96:856–863.

29. Pitt B, Segal R, Martinez FA, Meurers G, Cowley AJ, Thomas I, Deedwania PC, Neri DE, Snively DB, Chang PT. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet. 1997;349:747–752.

30. Pitt B, Segal R, Martinez FA, Meurers G, Cowley AJ, Thomas I, Deedwania PC, Neri DE, Snively DB, Chang PT. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet. 1997;349:747–752.

31. Packer M, O'Connor CM, Ghali JK, Pressler ML, Carson PE, Belkin RN, Miller AB, Neubeck GW, Friedman D, Wartherme JH, et al. Effect of amiodopidine on morbidity and mortality in severe chronic heart failure. N Engl J Med. 1996;335:1107–1114.

32. Hampton J, van Veldhuisen D, Kleber F, Cowley A, Ardina A, Block P, Cortina A, Cersahimi L, Follath F, Jensen G, et al. Randomised study of effect of ibopamine on survival in patients with advanced severe heart failure. Lancet. 1997;349:971–977.

33. Australia/New Zealand Heart Failure Research Collaborative Group. Randomised, placebo-controlled trial of carvedilol in patients with congestive heart failure due to ischaemic heart disease. Lancet. 1997;349:375–380.

34. Pitt B, Segal R, Martinez FA, Meurers G, Cowley AJ, Thomas I, Deedwania PC, Neri DE, Snively DB, Chang PT. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet. 1997;349:747–752.

35. Velazquez EJ, Lee KL, Deja MA, Jain A, Sopko G, Marchenko A, Ali JS, Tini et al. Cancer in HFrEF Randomized Controlled Trials.

36. Pitt B, Segal R, Martinez FA, Meurers G, Cowley AJ, Thomas I, Deedwania PC, Neri DE, Snively DB, Chang PT. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet. 1997;349:747–752.

37. Cohn JN, GOLDSTEIN SO, Greenberg BH, Lorell BH, Bourge RC, Jaski SM, Hendrix GH, Bommer WJ, Elkayam U, et al. Effect of spironolactone on morbidity and mortality in patients with chronic heart failure. N Engl J Med. 1999;341:2001–2007.

38. Pitt B, Segal R, Martinez FA, Meurers G, Cowley AJ, Thomas I, Deedwania PC, Neri DE, Snively DB, Chang PT. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet. 1997;349:747–752.

39. Pitt B, Segal R, Martinez FA, Meurers G, Cowley AJ, Thomas I, Deedwania PC, Neri DE, Snively DB, Chang PT. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet. 1997;349:747–752.

40. Pitt B, Segal R, Martinez FA, Meurers G, Cowley AJ, Thomas I, Deedwania PC, Neri DE, Snively DB, Chang PT. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet. 1997;349:747–752.

41. Levine TB, Bernink PJLM, Caspi A, Elkahyam U, Guttmann EM, Greenberg B, McKenzie WJ, Ghali JK, Giles TD, Marmar A, et al. Effect of bifebradil, a T-type calcium channel blocker, on morbidity and mortality in moderate to severe congestive heart failure. Circulation. 2000;101:758–764.

42. Pitt B, Segal R, Martinez FA, Meurers G, Cowley AJ, Thomas I, Deedwania PC, Neri DE, Snively DB, Chang PT. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet. 1997;349:747–752.

43. Levine TB, Bernink PJLM, Caspi A, Elkahyam U, Guttmann EM, Greenberg B, McKenzie WJ, Ghali JK, Giles TD, Marmar A, et al. Effect of bifebradil, a T-type calcium channel blocker, on morbidity and mortality in moderate to severe congestive heart failure. Circulation. 2000;101:758–764.

44. Pitt B, Segal R, Martinez FA, Meurers G, Cowley AJ, Thomas I, Deedwania PC, Neri DE, Snively DB, Chang PT. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet. 1997;349:747–752.

45. Levine TB, Bernink PJLM, Caspi A, Elkahyam U, Guttmann EM, Greenberg B, McKenzie WJ, Ghali JK, Giles TD, Marmar A, et al. Effect of bifebradil, a T-type calcium channel blocker, on morbidity and mortality in moderate to severe congestive heart failure. Circulation. 2000;101:758–764.
52. Cohn JN, Tognoni G. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure.
N Engl J Med. 2001;345:1667–1675.

53. Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, Domanski M, Troutman C, Anderson J, Johnson G, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure.
N Engl J Med. 2005;352:225–237.

54. Cohn JN, Pfeffer MA, Rouleau J, Sharpe N, Swedenberg K, Straub M, Witte C, Wright TJ; for the MOXCON Investigators. Adverse mortality effect of central sympathetic inhibition with sustained-release metoxipine in patients with heart failure (MOXCON).
Eur J Heart Fail. 2003;5:659–667.

55. Higgins SL, Hummel JD, Niazi IK, Guadici MC, Worley SJ, Saxon LA, Boehmer JP, Higginbotham MB, De Marco T, Foster J, et al. Cardiac resynchronization therapy for the treatment of heart failure in patients with intravenous conduction delay and malignant ventricular tachyarrhythmias.
J Am Coll Cardiol. 2003;42:1454–1459.

56. Bristow MR, Saxon LA, Boehmer J, Krueger S, Kacet S, De Marco T, Carson P, DiCarlo L, DeMets D, White BG, et al. Cardiac resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure.
N Engl J Med. 2004;350:2140–2150.

57. Komajda M, Lutiger B, Madeira H, Thygesen K, Bobbio M, Hildebrandt P, Jaarsma W, Riegger G, Rydlén L, Scherag A, et al. On behalf of the CARMEN investigators and co-ordinators. Tolerability of carvedilol and ACE-Inhibition in mild heart failure. Results of CARMEN (Carvedilol ACE-Inhibitor Remodelling Mild CHF Evaluation).
Eur J Heart Fail. 2005;7:646–651.

58. Cleland JGF, Daubert J-C, Erdmann E, Freemantle N, Gras D, Kappenberger L, Tavazzi L. The effect of cardiac resynchronization on morbidity and mortality in heart failure.
N Engl J Med. 2005;352:1539–1549.

59. Konstam MA, Neaton JD, Dickstein K, Dreuxler H, Komajda M, Martinez FA, Riegger GA, Malbecq W, Smith RD, Gutpha S, et al. Effects of high-dose versus low-dose losartan on clinical outcomes in patients with heart failure (HEAL study): a randomised, double-blind trial.
Lancet. 2009;374:1840–1848.

60. Willerhumer R, van Veldhuisen DJ, Silke B, Erdmann E, Hollath F, Krum H, Ponikowski P, Skene A, van den Vel, Verkennes P, et al. Effect on survival and hospitalization of initiating treatment for chronic heart failure with bisoprolol followed by enalapril, as compared with the opposite sequence.
Circulation. 2005;112:2426–2435.

61. Mortara A, Pinna GD, Johnson P, Maestri R, Capomolla S, La Rovere MT, Ponikowski P, Tavazzi L, Sleight P, on behalf of the HHH Investigators. Home telemonitoring in heart failure patients: the HHH study (Home or Hospital in Heart Failure).
Lancet. 2009;11:312–318.

62. Hare JM, Mant B, Brown J, Fisher C, Freudengerber R, Colucci WS, Mann DL, Liu P, Gövert MM, Schwarz RP. Impact of oxygenin in patients with symptomatic heart failure: results of the OPT-CHF study.
J Am Coll Cardiol. 2005;81:2301–2309.

63. Torre-Amione G, Anker SD, Bourge RC, Colucci WS, Greenberg BH, Hildebrandt P, Keren A, Motto M, Moye LA, Torstedorf J, et al. Results of a non-specific immunomodulation therapy in chronic heart failure (ACCLAIM trial): a placebo-controlled randomised trial.
Lancet. 2008;371:228–236.

64. O'Connor CM, Jiang W, Kuchibhatla M, Silva GS, Cuffe MS, Callwood AJ, Ziakos V, Bell MR, et al. The Digitalis Investigation Group. Rationale, design, implementation, and baseline characteristics of patients in the digitals in optimized therapy for chronic heart failure (SHIFT): a randomised placebo-controlled study.
Lancet. 2005;365:875–885.

65. Zannad F, McMurray JJV, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, Vincent J, Pocock SJ, Pitt B, Eplerenone in patients with systolic heart failure and mild symptoms.
N Engl J Med. 2010;364:11–21.

66. Hindricks G, Taborsky M, Glikson M, Heinrich U, Schumacher B, Katz A, Brachmann J, Lewalter T, Goette A, Block M, et al. Implant-based multiparameter telemonitoring of patients with heart failure (IN-TIME): a randomised controlled trial.
Lancet. 2014;384:583–590.

67. Koehler F, Winkler S, Schiebler M, Sechtem U, Stangl K, Böhm M, Boll H, Baumann G, Honold M, Koehler K, et al. Impact of remote telemedical monitoring on mortality and hospitalizations in ambulatory patients with chronic heart failure.
Circulation. 2011;123:1873–1880.

68. Bristow MR, Lunde J, Nielsen JC, Haarbo J, Vildebaek L, Korup E, Jensen G, Hildebrandt P, Stoffensen FH, Bruun NE, et al. Defibrillator implantation in patients with nonischemic systolic heart failure.
N Engl J Med. 2016;375:1211–1230.

69. Lutkis MLA, Jaarsma T, van Geel PP, Bruns M, Hillege HL, Hoes AW, de Jong R, Linsen G, Lok DJA, Berge M, et al. Long-term follow-up in optimally treated and stable heart failure patients: primary care vs. heart failure clinic. Results of the QAOAH-2 study: long-term follow-up in optimally treated and stable HF patients.
Eur J Heart Fail. 2014;16:1241–1248.

70. Bigger JT, Whang W, Rottman JN, Kleiger RE, Gottlieb CD, Namerow BI, Steinman RC, Estes NAM. Mechanisms of death in the CABG Patch trial: a randomized trial of implantable cardiac defibrillator prophylaxis in patients at high risk of death after coronary artery bypass graft surgery.
Circulation. 1999;99:1416–1421.

71. Solomon SD, Wang D, Finn P, Skali H, Zornoff L, McMurray JJV, Swedberg K, Yusuf S, Granger CB, Michelson EL, et al. Effect of candesartan on cause-specific mortality in heart failure patients: the Candesartan in Heart failure Assessment of Reduction in Mortality and morbidity (CHARM) program.
Circulation. 2004;110:2180–2183.

72. Carison P, Wertheimer J, Miller A, O'Connor CM, Pina IL, Selzmann C, Suetta C, She L, Greene D, Lee KL, et al. Surgical treatment for ischecmic heart failure (STICH) trial: mode of death results.
JACC Heart Fail. 2013;1:400–408.

73. Solomon SD, Wang D, Finn P, Skali H, Zornoff L, McMurray JJV, Swedberg K, Yusuf S, Granger CB, Michelson EL, et al. Effect of the angiotensin-receptor-neprilysin inhibitor LCZ696 compared with enalapril on mode of death in heart failure patients.
Eur J Heart Fail. 2015;17:1916–1922.

74. Bigger JT, Whang W, Rottman JN, Kleiger RE, Gottlieb CD, Namerow BI, Steinman RC, Estes NAM. Mechanisms of death in the CABG Patch trial: a randomized trial of implantable cardiac defibrillator prophylaxis in patients at high risk of death after coronary artery bypass graft surgery.
Circulation. 1999;99:1416–1421.

75. Solomon SD, Wang D, Finn P, Skali H, Zornoff L, McMurray JJV, Swedberg K, Yusuf S, Granger CB, Michelson EL, et al. Effect of candesartan on cause-specific mortality in heart failure patients: the Candesartan in Heart failure Assessment of Reduction in Mortality and morbidity (CHARM) program.
Circulation. 2004;110:2180–2183.

76. Carison P, Wertheimer J, Miller A, O'Connor CM, Pina IL, Selzmann C, Suetta C, She L, Greene D, Lee KL, et al. Surgical treatment for ischecmic heart failure (STICH) trial: mode of death results.
JACC Heart Fail. 2013;1:400–408.

77. Bristow MR, Feldman AM, Saxone LA. Haemorrhage management using implantable devices for ventricular resynchronization: Comparison of medical therapy, pacing, and defibrillation in chronic heart failure patients.
Circulation. 2004;109:2787–2796.

78. Remme WJ, CARMEN Steering Committee and Investigators. The Carvedilol and ACE-Inhibitor Remodelling Mild Heart Failure Evaluation trial (CARMEN)—rationale and design.
Cardiovasc Drugs Ther. 2001;15:69–77.

79. Cleland JGF, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, Koen W, Tavazzi L; The CARE-HF study Steering Committee. Cancer in HFrEF Randomized Controlled Trials.
Committee and Investigators. The CARE-HF study (CArdiac REsynchronisation in Heart Failure study): rationale, design and endpoints. Eur J Heart Fail. 2001;3:481–489.

87. Konstam MA, Poole-Wilson PA, Dickstein K, Drexler H, Justice SJ, Komajda M, Maillecq W, Martinez FA, Neaton JD, Riegger GAJ, et al. Design of the Heart failure Endpoint evaluation of All-Antagonist Losartan (HEAAL) study in patients intolerant to ACE-inhibitor. Eur J Heart Fail. 2008;10:999–506.

88. Willenheimer R, Erdmann E, Follath F, Krumb H, Ponikowski P, Silke B, van Velthuisen DJ, van de Ven L, Verkenne P, Lechat P; on behalf of the CIBIS-III investigators. Comparison of treatment initiation with bisoprolol vs. enalapril in chronic heart failure patients: rationale and design of CIBIS-III. Eur J Heart Fail. 2008;10:499–906.

89. Freudenberger RS, Schwarz RP Jr, Brown J, Moore A, Mann D, Givertz MM, Colucci WS, Hare JM. Rationale, design and organisation of an efficacy and safety study of oxypurinol added to standard therapy in patients with NYHA class III–IV congestive heart failure. Expert Opin Investig Drugs. 2004;13:1509–1516.

90. Torre-Amione G, Bourge RC, Colucci WS, Greenberg B, Pratt C, Rouleau J-L, Sestier F, Moyé LA, Geddes JA, Nemet AJ, et al.; IN-TIME investigators. Influence of Home Monitoring on the clinical status of heart failure patients: design and rationale of the IN-TIME study. Circulation. 2007;115:369–376.

91. Arya A, Block M, Kautzner J, Lewalter T, Mörtel H, Sack S, Schumacher B, Søgaard P, Taborsky M, et al.; Heart Failure Association Cardio-Oncology Study Group of the European Society of Cardiology. Cancer diagnosis in patients with heart failure: epidemiology, clinical implications and gaps in knowledge. Eur J Heart Fail. 2018;20:879–887.

92. Meijers WC, Maglione M, Bakker SJL, Oberhuber R, Kieneker LM, de Jong S, Haubner SJ, Lyon AR, van der Vegt B, et al. Heart failure stimulates tumor growth by circulating factors. Circulation. 2018;138:678–691.

93. Vaduganathan M, Patel RB, Michel A, Shah SJ, Senni M, Gheorghiade M, Butler J. Mode of death in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2017;69:556–569.

94. Meijers WC, de Boer RA. Common risk factors for heart failure and cancer. Cardiovasc Res. 2019;115:844–853.

95. Awan F, Woyach J, Yildiz V, Wei L, Jneid H, Addision D. Health care utilization and mortality associated with heart failure-related admissions among cancer patients. J Am Heart Assoc. 2019;8:e016309.
SUPPLEMENTAL MATERIAL
Table S1. Risk of bias in HFrEF RCTs with published cancer mortality.

Study	Random sequence generation (selection bias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data addressed (attrition bias)	Selective reporting (reporting bias)
CONSENSUS	Low	Low	Low	Low	Low	Low
V-HeFT 14	Low	Low	Low	Low	Low	Low
GESICA 15	Low	Low	High	High	Low	Low
CABG Patch 16,74	Low	Low	High	Low	Low	Low
DEFINITE 17	Low	Low	High	Low	Low	Low
CHARM-Alt 18,75	Low	Low	Low	Low	Low	Low
CHARM-Add 19,75	Low	Low	Low	Low	Low	Low
AF-CHF 20	Low	Low	High	Low	Low	Low
GISSI-HF 21	Low	Low	Low	Low	Low	Low
STICH 22,76	Low	Low	High	Low	High	Low
CORONA 23	Low	Low	Low	Low	Low	Low
REVERSE 24	Low	Low	Low	Low	Low	Low
MADIT-CRT 25,77	Low	Low	Low	Low	High	Low
ECHO-CRT 26	Low	Low	High	High	High	Low
PARADIGM-HF 27,78	Low	Low	Low	Low	Low	Low

HFrEF indicates heart failure with reduced left ventricular ejection fraction; RCTs, randomized controlled trials.
Trial name and period	Cancer mortality in the trial	Cancer mortality in the US population *	Cancer mortality in the US population of corresponding age **
	n/100 pts/yr	n/100 pts/yr (year)	n/100 pts/yr (age range/year)
CONSENSUS 1985-1986	0	0.2 (1985)	Not available
V-HeFT II 1986-1990	0.9	0.2 (1986)	0.5 (50-69 yrs; 1990)
GESICA 1989-1993	0.4	0.2 (1989)	0.5 (50-69 yrs; 1990-1993)
CABG Patch 1993-1997	0.5	0.2 (1993)	0.4 (50-69 yrs; 1993-1997)
DEFINITE 1998-2003	0.9	0.2 (1998)	0.4 (50-69 yrs; 1998-2003)
CHARM-Alternative 1999-2003	0.9	0.2 (1999)	0.4 (50-69 yrs; 1999-2003)
CHARM-Added 1999-2003	0.6	0.2 (1999)	0.4 (50-69 yrs; 1999-2003)
AF-CHF 2001-2007	0.8	0.2 (2001)	0.4 (50-69 yrs; 2001-2007)
GISSI-HF 2002-2008	0.8	0.2 (2002)	0.3 (50-69 yrs; 2002-2008)
STICH 2002-2010	0.6	0.2 (2002)	0.3 (50-69 yrs; 2002-2010)
CORONA 2003-2007	0.8	0.2 (2003)	1.3 (>70 yrs; 2003-2007)
REVERSE 2004-2006	0.2	0.2 (2004)	0.3 (50-69 yrs; 2004-2006)
MADIT-CRT 2004-2008	0.3	0.2 (2004)	0.3 (50-69 yrs; 2004-2008)
ECHO-CRT 2008-2013	0.4	0.2 (2008)	0.3 (50-69 yrs; 2008-2013)
PARADIGM-HF 2009-2014	0.4	0.2 (2009)	0.3 (50-69 yrs; 2009-2014)

* source: https://seer.cancer.gov/archive/csr/1975_2015/

** source: https://ourworldindata.org/cancer, in which cancer mortality rates are provided per each calendar year stratified according to age (all ages, 50-69 years or >70 years). The values presented in the table are the mean of the mortality rates in the years when the RCT was performed, for the corresponding age group. For
example, PARADIGM-HF was conducted from 2009 to 2014, and the mean age of the participants was 63.8 years: thus, 0.3/100 pts/yr is the mean of the cancer mortality rates in the US population aged 50 to 69 years in 2009, 2010, 2011, 2012, 2013 and 2014.

HFrEF indicates heart failure with reduced left ventricular ejection fraction; RCTs, randomized controlled trials.
Table S3. Univariate meta-regression analysis.

	Coefficient (95% CI)*	P value
Cancer mortality		
Age, 1-year increase	-0.0017 (-0.0491 to 0.0456)	0.94
Male sex	-0.0038 (-0.0469 to 0.0393)	0.86
Ischemic etiology, 10-unit increase	0.0036 (-0.0084 to 0.0091)	0.94
Follow-up (years)	-0.0398 (-0.2775 to 0.1978)	0.74
DMD control	-0.1138 (-0.3861 to 0.1585)	0.41
DMD treatment	-0.1421 (-0.5335 to 0.2492)	0.48
CRT-D/ICD control (%)	-0.0152 (-0.0355 to 0.0052)	0.14
CRT-D/ICD treatment (%)	-0.0013 (-0.0128 to 0.0103)	0.83

CV mortality		
Age, 1-year increase	-0.0051 (-0.0349 to 0.0247)	0.74
Male sex	0.0013 (-0.0162 to 0.0188)	0.89
Ischemic etiology, 10-unit increase	0.0020 (-0.0027 to 0.0068)	0.40
Follow-up (years)	-0.0007 (-0.1254 to 0.1239)	0.99
DMD control	-0.0300 (-0.1731 to 0.1131)	0.68
DMD treatment	-0.0360 (-0.2318 to 0.1598)	0.72
CRT-D/ICD control (%)	0.0030 (-0.0015 to 0.0076)	0.19
CRT-D/ICD treatment (%)	0.0010 (-0.0024 to 0.0044)	0.57

Overall mortality		
Age, 1-year increase	-0.0033 (-0.0228 to 0.0162)	0.74
Male sex	0.0021 (-0.0113 to 0.0156)	0.76
Ischemic etiology, 10-unit increase	0.0005 (-0.0027 to 0.0037)	0.75
Follow-up (years)	0.0071 (-0.0757 to 0.0898)	0.87
DMD control	-0.0518 (-0.1261 to 0.0225)	0.17
DMD treatment	-0.0791 (-0.1756 to 0.0174)	0.11
CRT-D/ICD control (%)	0.0025 (-0.0006 to 0.0057)	0.12
CRT-D/ICD treatment (%)	0.0016 (-0.0007 to 0.0039)	0.18

DMD indicates number of disease-modifying drug classes in the background therapy; CRT-D, cardiac resynchronization therapy with defibrillator; ICD, implanted cardioverter defibrillator.
Table S4. HFrEF RCTs without published cancer mortality.

Trial name and period	N. (males) and age of pts	Follow-up Yrs	Tested therapy	Background disease-modifying therapy	All-cause mortality N.	CV mortality N.	Non-CV mortality N.					
V-HeFT I 1980-1985	642 58.3 yrs	2.3	Prazosin vs hydralazine + isosorbide dinitrate vs placebo	None	283	267	16					
SOLVD-T 1986-1989	2569 61 yrs	3.4	Enalapril vs placebo	BB: 8% MRA*: 9%	962	860	102					
SOLVD-P 1986-1991	4228 59.1 yrs	3.1	Enalapril vs placebo	BB: 24% MRA*: 4%	647	563	84					
PROMISE 1989-1990	1088 63.7 yrs	0.5	Milrinone vs placebo	ACEi: 100%	295	284	11					
CIBIS-I 1989-1993	641 59.7 yrs	1.9	Bisoprolol vs placebo	ACEi: 90%	120	99	7					
CHF-STAT 1991-1994	674 66 yrs	3.8	Amiodarone vs placebo	BB: 4% ACEi: 78%	274	163	45					
DIG 1991-1995	6800 63.5 yrs	3.1	Digoxin vs placebo	ACEi: 95%	2375	2020	355					
V-HeFT III 1991-1995	450 63 yrs	1.5	Felodipine vs placebo	ACEi: 97%	60	48	12					
Trial	Duration	n	Age (yrs)	Treatment 1	Treatment 2	ACEi	BB %	No. Events	No. Patients	No. Deaths		
-------------	--------------	-----	-----------	-------------	-------------	------	------	------------	--------------	------------		
PRAISE I	1992-1994	1153	64.7 yrs	Amlodipine	Placebo	99%		413	368	45		
PRIME II	1992-1995	1906	64.7 yrs	Ibopamine	Placebo	92%		425	386	32		
AUST-NZ	1992-1995	415	67 yrs	Carvedilol	Placebo	86%		46	38	8		
ATLAS	1992-1997	3164	63.6 yrs	Lisinopril low-dose vs high-dose	100%		1383	1224	146			
USCP	1993-1995	1094	58 yrs	Carvedilol	Placebo	95%		53	51	2		
MACH-I	1994-1996	2590	62.8 yrs	Mibefradil	Placebo	99%	16%	669	599	70		
ELITE I	1994-1996	722	73.5 yrs	Losartan	Captopril		59%	49	36	13		
VEST	1995-1996	3833	63 yrs	Vesnarinone	Placebo	90%		802	750	52		
RALES	1995-1998	1663	65±12 yrs	Spironolactone	Placebo	95%	11%	670	565	70		
CIBIS-II	1995-1998	2647	61 yrs	Bisoprolol	Placebo	96%		384	280	51		
BEST	1995-1999	2708	60 yrs	Bucindolol	Placebo	96%		860	731	93		
Study	Duration	Population	ACEi	MRA	ARB	BB	MRA*	Treatment				
-------------	-----------	------------	------	-----	-----	----	------	-----------				
PRAISE II	1995-2000	1654	2.8					Amlodipine vs placebo				
	59 yrs							ACEi: 98%				
								MRA: 4%				
COMET	1996-2000	3029	4.8					Carvedilol vs metoprolol				
	62 yrs							ACEi: 93%				
								ARB: 6%				
								BB: 4%				
								MRA: 11%				
MERIT-HF	1997-1998	3991	1					Metoprolol vs placebo				
	63.8 yrs							ACEi/ARB: 96%				
								MRA: 8%				
ELITE II	1997-1999	3152	1.5					Losartan vs captopril				
	71.5 yrs							BB: 22%				
								MRA*: 22%				
COPERNICUS	1997-2000	2289	0.9					Carvedilol vs placebo				
	63.3 yrs							ACEi/ARB: 97%				
								MRA: 19%				
Val-HeFT	1997-2000	5010	1.9					Valsartan vs placebo				
	62.7 yrs							ACEi: 93%				
								BB: 35%				
SCD-HeFT	1997-2003	2521	3.8					Amiodarone vs ICD vs placebo				
	60.1 yrs							ACEi/ARB: 96%				
								BB: 69%				
								MRA*: 20%				
MOXCON	1998-1999	1934	NA					Moxonidine vs placebo				
	64.2 yrs							86				
								80				
								6				
Study	Years	Patient Count	Age	Follow-up	Outcome	ACEi (%)	BB (%)	MRA (%)	ACEi/ARB (%)	BB (%)	CRT (%)	ICD (%)
------------------	------------------------	---------------	-----	------------	--------------------------------	----------	---------	---------	--------------	---------	----------	---------
CONTAK-CD	1998-2000 55,83	490	66 yrs	0.5	CRT vs standard therapy	87	1	7	88	47	7	100
COMPANION	2000-2002 9,56,84	1520	67 yrs	1.3	CRT-D vs CRT-P vs standard therapy	89	47	100	80	68	80	39
CARMEN	2000-2003 57,85	572	62.3 yrs	1.7	Carvedilol vs enalapril vs carvedilol + enalapril	66	67	13	66	72	80	
CARE-HF	2001-2004 58,86	813	67 yrs	2.4	CRT vs standard therapy	95	72	56	95	72	95	
HEAAL	2001-2009 59,87	3846	66 yrs	4.7	Losartan low dose vs high dose	72	38	13	72	38	72	
CIBIS-III	2002-2005 9,60,88	1010	72.4 yrs	1.3	Bisoprolol followed by enalapril vs opposite sequence	72	38	13	72	38	72	100
Study	Date	Enrollment	Follow-up	MRA (%)	ACEi/ARB (%)	BB (%)	MRA (%)					
---------------	------------	------------	-----------	---------	--------------	--------	---------					
HHH	2002-2005	461	1	13%	87%	84%						
		60 yrs			Home telemonitoring ± transmission of vital signs ± periodic monitoring of cardio-respiratory activity	33	30	3				
OPT-CHF	2003-2004	405	0.5		96%	92%	35%					
		64.5 yrs			Oxypurinol vs placebo	16	12	4				
ACCLAIM	2003-2005	2426	0.8		94%	87%	49%					
		64.3 yrs			Immuno-modulation therapy vs placebo	245	202	43				
SADHART-CHF	2003-2008	469	0.3		79%	84%	19%					
		62.2 yrs			Sertraline vs placebo	33	26	7				
HF-ACTION	2003-2008	2331	2.5		94%	95%	18%					
		59 yrs			Aerobic exercise training vs standard therapy	387	274	113				
RAFT	2003-2009	1798	3.3		ICD vs CRT-D	422	292	130				
Study	Follow-up	Participants	Mean Age	ACEi/ARB	BB	CRT	ICD	MRA	Comparisons			
-----------------	-----------	--------------	----------	----------	----	-----	-----	-----	----------------------------			
FUSION-II	2004-2006	911	65 yrs	97%	90%	42%	59%	65%	Nesiritide vs placebo			
SHIFT	2006-2010	6505	60.4 yrs	93%	90%	1%	3%	60%	Ivabradine vs placebo			
EMPHASIS-HF	2006-2010	2737	68.8 yrs	93%	87%	9%	13%	50%	Eplerenone vs placebo			
IN-TIME	2007-2010	664	65.5 yrs	89%	92%	41%	59%		Remote telemedical vs standard therapy			
TIM-HF	2008-2009	710	66.9 yrs									

IN-TIME study data is from the reference [70,92].
Study	Patients	Age (yrs)	Antihypertensives	Heart Failure Device	vs
DANISH 2008-2014	1116	64	ACEi/ARB: 95%, BB: 93%, CRT: 16%, ICD: 46%, MRA: 64%	ICD vs standard therapy	
COACH-2 2012-2014	189	72	ACEi/ARB: 92%, BB: 92%, MRA: 48%	Primary care vs HF clinic	

HFrEF indicates heart failure with reduced left ventricular ejection fraction; RCTs, randomized controlled trials; CV, cardiovascular; BB, beta blocker; MRA, mineral receptor antagonist; ACEi, angiotensin-converting enzyme inhibitor; ICD, implanted cardioverter defibrillator; ARB, angiotensin receptor blocker; CRT-D, cardiac resynchronization therapy (and ICD).

* potassium-sparing diuretics, may have not been MRA
Table S5. Potential reasons for exclusion of patients with malignancy from HFrEF RCTs without cancer mortality data available.

Study	Exclusion criteria possibly regarding patients with cancer	
V-HeFT I 1980-1985	“Disease likely to limit 5 year survival”	
SOLVD-T 1986-1989	“Any other disease that may substantially shorten survival”. 39,924 patients identified, 12% excluded because of cancer or other life-threatening disease	
SOLVD-P 1986-1991	Same as SOLVD-P	
PROMISE 1989-1990	*Cancer not considered among exclusion criteria*	
CIBIS-I 1989-1993	“Patients whose life expectancy was shortened by a severe illness such as malignant disease”	
CHF-STAT 1991-1994	“Serious disease other than heart disease that was likely to be fatal within three years”	
DIG 1991-1995	*Cancer not considered among exclusion criteria*	
V-HeFT III 1991-1995	“Significant comorbidity which, in the investigator’s opinion, makes survival for the duration of the study unlikely or would otherwise interfere with adherence to the protocol”	
PRAISE I 1992-1994	“Other significant comorbidity that made survival or compliance with the protocol unlikely”	
PRIME II 1992-1995	*Cancer not considered among exclusion criteria*	
AUST-NZ 1992-1995	“Any other life-threatening non-cardiac disease”	
ATLAS 1992-1997	“Any non-cardiac disorder that could limit survival”	
USCP 1993-1995	“Any condition other than heart failure that could limit exercise or survival”	
MACH-I 1994-1996	“Any clinically significant disease other than HF”	
ELITE I 1994-1996	“Unlikely survival for length of study or risk to patient”	
VEST 1995-1996	“Cancer likely to limit life expectancy”	
Study	Start-End	Exclusion Criteria
--------------	-----------	--------------------
RALES	1995-1998	“Active cancer”
CIBIS-II	1995-1998	Cancer not considered among exclusion criteria
BEST	1995-1999	“Life expectancy of less than 3 years (..) or if they had hematologic, gastrointestinal, immunologic, endocrine, metabolic, or central nervous system disease that could adversely affect the safety or the efficacy of the study drug”
PRAISE II	1995-2000	“Any disease (other than heart failure) that might have limited survival”
COMET	1996-2000	“Any other serious systemic disease that might complicate management and reduce life expectancy”
MERIT-HF	1997-1998	“Any other serious disease that might complicate management and follow-up according to the protocol”
ELITE II	1997-1999	Cancer not considered among exclusion criteria
COPERNICUS	1997-2000	“Severe primary pulmonary, renal, or hepatic disease”
Val-HeFT	1997-2000	“Malignancies likely to limit 5-year survival”
SCD-HeFT	1997-2003	No information available
MOXCON	1998-1999	“Severe concomitant disease likely to reduce life expectancy to less than 5 years”
CONTAK-CR	1998-2000	“Life expectancy <6 months due to other medical conditions”
COMPANION	2000-2002	“Life expectancy <6 months because of any other medical conditions”
CARMEN	2000-2003	Cancer not considered among exclusion criteria
CARE-HF	2001-2004	“Life expectancy <1 year for disease unrelated to heart failure”
HEAAL	2001-2009	“Life-limiting disease other than heart failure”
CIBIS-III	2002-2005	“Significant disease, which in the investigator’s opinion would exclude the patient from the study”
HHH	2002-2005	Cancer not considered among exclusion criteria
Abbreviation	Years	Notes
--------------	-------	-------
OPT-CHF	2003-2004	Cancer not considered among exclusion criteria
ACCLAIM	2003-2005	“Malignancy: evidence of disease within the previous five years. Exceptions: basal cell carcinoma, provided it was neither infiltrating nor sclerosing, or carcinoma in situ of the cervix”
SADHART-CHF	2003-2008	“Life-threatening comorbidity (estimated 50% mortality within 1 year)”
HF-ACTION	2003-2008	“Comorbid disease or behavioral or other limitations that interfere with performing exercise training or prevent the completion of 1 y of exercise training”
RAFT	2003-2009	“Major coexisting illness”
FUSION-II	2004-2006	Cancer not considered among exclusion criteria
SHIFT	2006-2010	Cancer not considered among exclusion criteria
EMPHASIS-HF	2006-2010	“Any other clinically significant, coexisting condition”
IN-TIME	2007-2010	Cancer not considered among exclusion criteria
TIM-HF	2008-2009	“Any disease (HF excluded) reducing life expectancy to less than 1 year”
DANISH	2008-2014	“Receiving or having received cytotoxic or cytostatic chemotherapy and/or radiation therapy for treatment of a malignancy within 6 month before randomization or clinical evidence of current malignancy”
COACH-2	2012-2014	“The patient had a life expectancy < 6 months”

HFrEF indicates heart failure with reduced left ventricular ejection fraction; RCTs, randomized controlled trials; HF, heart failure.