REVIEW

Natural compounds modulate the autophagy with potential implication of stroke

Anil Ahsan, Mengru Liu, Yanrong Zheng, Wenping Yan, Lin Pan, Yue Li, Shijia Ma, Xingxian Zhang, Ming Cao, Zhanxun Wu, Weiwei Hu, Zhong Chen*, Xiangnan Zhang*

Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou 310058, China

Received 9 June 2020; received in revised form 12 August 2020; accepted 21 August 2020

KEY WORDS
Autophagy; Cerebral ischemia; Neuroprotection; Mitochondria; Lysosomal activation; Mitophagy; Natural compounds; Neurological disorders

Abstract
Stroke is considered a leading cause of mortality and neurological disability, which puts a huge burden on individuals and the community. To date, effective therapy for stroke has been limited by its complex pathological mechanisms. Autophagy refers to an intracellular degrading process with the involvement of lysosomes. Autophagy plays a critical role in maintaining the homeostasis and survival of cells by eliminating damaged or non-essential cellular constituents. Increasing evidence support that autophagy protects neuronal cells from ischemic injury. However, under certain circumstances, autophagy activation induces cell death and aggravates ischemic brain injury. Diverse naturally derived compounds have been found to modulate autophagy and exert neuroprotection against stroke. In the present work, we have reviewed recent advances in naturally derived compounds that regulate autophagy and discussed their potential application in stroke treatment.

Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; AMPK, 5'-adenosine monophosphate-activated protein kinase; ATG, autophagy related genes; BCL-2, B-cell lymphoma 2; BNIP3L, BCL2/adenovirus; COPII, coat protein complex II; ER, endoplasmic reticulum; eIF2α, eukaryotic translation-initiation factor 2; FOXO, forkhead box O; FUNDCl, FUN14 domain containing 1; GPCR, G-protein coupled receptor; HD, Huntington’s disease; IRE1, inositol-requiring enzyme 1; IPC, ischemic preconditioning; JNK, c-Jun N-terminal kinase; LAMP, lysosomal-associated membrane protein; LC3, light chain 3; LKB1, liver kinase B1; mTOR, mechanistic target of rapamycin; ΔΨm, mitochondrial membrane potential; TIGAR, TP53-induced glycolysis and apoptosis regulator; PD, Parkinson’s disease; PERK, protein kinase R (PKR)-like endoplasmic reticulum kinase; PINK1, phosphatidylinositol 3-kinase; OGD/R, oxygen and glucose deprivation-reperfusion; ROS, reactive oxygen species; SQSTM1, sequestosome 1; TFEB, transcription factor EB; ULK, Unc-51-like kinase; Uro-A, urolithin A.

*Corresponding authors. Tel./fax: +86 571 88208228.
E-mail addresses: chenzhong@zju.edu.cn (Zhong Chen), xiangnan_zhang@zju.edu.cn (Xiangnan Zhang).

Peer review under responsibility of Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences.
1. Introduction

Ischemic stroke is characterized by the prompt loss of blood supply to brain regions, which leads to neuronal death, serious neurological deficiency, disability, and even mortality. Ischemic stroke has been considered as one of the leading causes of neurological deficit and mortality worldwide. To date, recombinant tissue plasminogen activator (tPA) is the only therapeutically approved drug for cerebral ischemic stroke. This strategy, however, is limited by a 3–4.5 hours’ time window after ischemia onset and increases risk of intracerebral hemorrhage, making only a few patients (5%) benefit from it. Besides thrombolysis, a variety of neuroprotectants that were effective in the pre-clinical stage, are found ineffective for human stroke. This gap may partly attribute to the complex mechanisms underlying cerebral ischemia. Therefore, cutting-edge research for a better understanding of ischemic neuronal injury will provide opportunities to develop novel drugs protecting against stroke.

In ischemic brains, there is a deficiency of nutrients and oxygen, which potentially activates autophagy, a term refers to the intracellular catabolic mechanism via lysosomes. Canonically, autophagy is activated by starvation situations like nutrient deprivation. Autophagy consequently leads to the removal of organelles and proteins to compensate for the starvation. The crucial function of autophagy has been documented in a broad spectrum of human diseases including cerebral ischemia. Either ischemia or the reperfusion process after ischemia has been associated with autophagy activation. A variety of biomarkers of activated autophagy have been identified in the ischemic brains of mice. It is still under debate, however, regarding the contribution of autophagy to cerebral ischemia. Autophagy has been reported to induce neuronal death in ischemic brains and blockage of autophagy protected brains from focal ischemic injury. However, emerging evidence support the neuroprotective roles of autophagy by degrading neuronal organelles and proteins. In addition, inhibition of autophagy either by deletion of Park 2 or Sirtuin 1 or by silencing of Atg 7 or Tsc1, further aggravated the ischemic neuronal injury. Conversely, autophagy activation exerts the neuroprotective effect in ischemic brains and neuronal cells. Accumulating evidence indicated the benefits of autophagy-activating drugs, including rapamycin, carbamazepine, and tyrosine kinase inhibitors in reducing ischemic brain injury. Nevertheless, the prominent adverse effects of these drugs may impede their application in stroke therapy. Overall, autophagy was intimately linked to the pathology of stroke, and the contribution of autophagy in ischemic brains has been comprehensively reviewed recently.

Natural products are derived from different natural sources. Increasing evidence emphasize a beneficial role of these naturally derived compounds for the prevention and therapy of human diseases including stroke. Little is known about the role of natural products as modulators of autophagy for the treatment of ischemic stroke, although an epidemiological study suggested a direct correlation between a natural product-rich diet and neuro-protection, as well as a lower risk and severity of stroke. The identification of compounds that can modulate autophagy is valuable for the development of novel therapy for ischemic stroke. In this review, we summarize the natural compounds that attenuate cerebral ischemia with properties of modulating the autophagy, and their application, pharmacological mechanisms, as well as the limitations. In addition, some natural compounds that showed potential application for neurological diseases by modulating autophagy, but have not been identified as potential anti-stroke drugs were also discussed.

2. Molecular machinery of autophagy

Because the detailed mechanisms underlying autophagy has been elegantly reviewed elsewhere, here we only briefly overview the machinery of autophagy. Autophagy can be divided into several steps and finely controlled by distinct autophagy-linked genes (ATGs). Up to now, at least 32 ATG genes have been identified, and they play a critical role in regulating autophagy processes, including vesicle initiation, vesicle nucleation, elongation and completion, vesicle docking and fusion with lysosomes, and degradation of vesicle contents.

2.1. Formation of phagophore and vesicle initiation

The source of phagophore membranes is enigmatic. Multiple sources have been proposed, including the endoplasmic reticulum (ER), the endoplasmic reticulum—Golgi intermediate compartment, the plasma membrane, recycling endosomes, the Golgi complex, and lipid droplets. The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins allow the recruitment of proteins that enable the maturation of phagophores.

The Unc-51-like kinase (ULK) complex, which is crucial for autophagy initiation, consists of ULK1, ULK2, a mammalian homolog of Atg 13 (mATG13), the scaffold protein FIP200, and Atg 101 (an Atg 13-binding protein). In steady-state, the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) is bound to the ULK complex and phosphorylates ULK1 (or ULK2) and mATG13, resulting in autophagy inhibition. However, during nutrients deprivation, mTORC1 is disassociated from the ULK1 complex and thus triggers autophagy.

2.2. Vesicle nucleation

In vesicle nucleation, phosphatidylinositol 3-kinase (PI3K) complexes serve as a signaling hub and regulate autophagy diversely. The class I PI3K complex suppresses while the class III PI3K complex promotes autophagy. In particular, beclin 1 regulates autophagy as a component of class III PI3K complex.
2.3. Vesicle expansion and completion

Two ubiquitin-like conjugation systems are required to complete the vesicle expansion, namely the Atg12–Atg5–Atg16L1 complex and the Atg8s-phosphatidylethanolamine conjugation. The Atg12–Atg5 conjugation further interacts with Atg16L to form the Atg16L complex. On the other hand, the ATG8s (including LC3, GABARAP, GABARAPL1, etc.) are cleaved by ATG4 to generate cytosolic LC3-I which subsequently converts into LC3-II (the lipidated form of LC3-I) by conjugating to PE. The LC3-II is then recruited to the membrane of phagophore.

2.4. Maturation (fusion with lysosomes) and autophagosome degradation

Autophagosomes maturation process refers to the autophagosomes fusion with endosomes/lysosomes, and the subsequent acidification of these fused autophagic vesicles. This process is regulated by the lysosomal-associated membrane protein 1 (LAMP-1), LAMP-2 and the small GTPase Rab 7, which participate in the recycling of lysosomal metabolites. The autophagic pathway depends on these steps for the autophagy flux. Autophagosomes and their containing are degraded by lysosomal acid hydrolases including cathepsins B, D and L, and the degraded materials are diffused back into the cytosol from autophagolysosomes.

3. Regulation of autophagy

In mammalian cells, autophagy is precisely controlled by multiple signaling pathways, e.g., mTOR and serine/threonine kinase pathways, which can be regulated by a variety of small molecules that affect autophagy.

3.1. mTOR-dependent signaling pathways

mTOR involves in two protein complexes with diverse functions, mTORC1 that impedes autophagy and mTOR complex 2 (mTORC2) which is not closed with autophagy regulation. mTORC1 senses amino acids, ATP and growth factors and suppresses autophagy in normal condition. mTORC1 integrates upstream signals that inhibit autophagy via the class I PI3K-AKT/protein kinase B (PKB). The activated class I PI3K phosphorylates plasma membrane lipids which trigger the AKT by PDK1. Then the activated AKT further phosphorylates the tuberous sclerosis protein 2 (TSC2) and obstruct its interplay with TSC1, and ultimately results in mTORC1 activation. AMP-activated protein kinase (AMPK) also regulates the mTORC1 and serves as an energy sensor. AMPK is stimulated by a decline in ATP concentration during starvation that increases the AMP/ATP ratio. Consequently, TSC1/2 is phosphorylated by AMPK and inhibits mTORC1 activity through Rheb.

3.2. mTOR-independent signaling pathways

Autophagy is also regulated independently of the mTOR pathway. In nutrient-rich environments, beclin 1 binds to B-cell lymphoma 2 (BCL-2), which is an antiapoptotic BCL-2 family protein. Upon nutrient deprivation, BCL-2 is phosphorylated by Jun N-terminal kinase 1 (JNK1) and thus separate from beclin 1, which promotes autophagosome maturation. Noteworthy, beclin 1 may also play a part in autophagosomes maturation. Besides, two downstream cascades of RAS, namely RAS–Pdhs3K and RAS–RAF–1–ERK1/2 pathways, serve as effectors in regulating autophagy oppositely. These signaling pathways provide an alternative manner to sense growth factor or amino acids absence in mTOR-independent way.

3.3. Transcription factor EB (TFEB)

Autophagy–lysosome pathway is controlled by the transcriptional factor TFEB. TFEB modulates cellular anabolism and catabolism by coordinating lysosomal and nucleus function. In steady state, TFEB locates in the cytosol and translocates into the nucleus during starvation. The translocated TFEB promotes the transcription of target genes that encode critical proteins for autophagosomes and lysosomes biogenesis.

4. Autophagy activation in ischemic stroke

Once a stroke episode occurs, a variety of stress factors may participate in autophagy activation in ischemic neurons. These factors may include, but not limited to, the production of reactive oxygen species (ROS), the aggregation of misfolded proteins, the intracellular calcium overload, bioenergetic crisis, and dramatic loss of amino acids. Unfolded proteins induce ER stress, which triggers autophagy via several signaling pathways. Among the response to the protein to ER stress, protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6) serve as sensor proteins that are bound and suppressed by the ER chaperone glucose-regulated proteins (GRP-78) under normal conditions. In the occurrence of ER stress, GRP-78 is detached from these sensor proteins and interacts with misfolded proteins, consequently activating the sensors. Specifically, in the case of ischemia, PERK phosphorylates eukaryotic translation-initiation factor 2 (eIF2α) and upregulates the autophagy-related proteins like ATG12. Additionally, ischemia also triggers the pathways downstream of TRAF2 and IRE1. After being translocated and cleaved in Golgi apparatus, ATF6 is activated and further induces the transcription of ER chaperones and other components to degrade proteins that are essential to the ER.

As a result of calcium overload and ATP exhaustion in ischemic neurons, CaMKK and LKB1 are activated and phosphorylate AMPK. AMPK phosphorylates Raptor or TSC2 and thus inhibits the mTOR pathway to induce autophagy. Additionally, β-arrestin 1, a scaffold protein that enables Vps34 and beclin 1 interaction, is upregulated in the context of cerebral ischemia. Moreover, β-arrestin 1 knockout enhanced the vulnerability of mice to ischemic brain injury, which may be resulted from the autophagy deficiency.

Oxidative stress caused by accumulated ROS is an inevitable consequence of ischemic brains. Increasing ROS upregulates TP53, which functions as an autophagy inducer. The TP53-induced glycolysis and apoptosis regulator (TIGAR) and DNA damage-regulated autophagy modulator (DRAM), both of which mediate the transcription of TP53, play crucial roles in autophagy.
regulation. Besides, as a result of reduced oxygen supply, the hypoxia sensor HIF-1α triggers the transcription of mitophagy receptors including FUNDC1, BNIP3 and NIX. Moreover, ROS activates NRF2, which further upregulates the expression of sequestosome 1 (SQSTM1), the adapter protein involved in selective autophagy. ROS accumulation also activates FOXO3, which increases the abundance of LC3 to promote autophagosomes generation. In addition, ROS accumulation causes PERK pathway activation. All these above-mentioned pathways link oxidative stress with autophagy induction in ischemic neurons.

5. The role of autophagy in cerebral ischemia

Autophagy activation has been proved in several animal models of brain ischemia although the role of autophagy remains controversial. The contribution of autophagy to ischemic stroke is likely to rely on the activity of autophagy whilst overactivated autophagy promotes neuronal cell demise. Autophagy has also been identified in brains subjected to ischemia/reperfusion (I/R) injury. As revealed in focal brain ischemia models, autophagy activation was observed at the lesion boundary and treatment of 3-methyladenine, an autophagy inhibitor, significantly decreases injury. As revealed in focal brain ischemia models, autophagy has also been identified in brains subjected to ischemia/reperfusion (I/R) injury. As revealed in focal brain ischemia models, autophagy activation was observed at the lesion boundary and treatment of 3-methyladenine, an autophagy inhibitor, significantly decreases injury. As revealed in focal brain ischemia models, autophagy activation was observed at the lesion boundary and treatment of 3-methyladenine, an autophagy inhibitor, significantly decreases injury. In addition, in a chronic phase after ischemia 12,82, autophagy has also been identified in brains subjected to ischemia/reperfusion (I/R) injury.

6. Natural compounds modulating autophagy with potential implication for cerebral ischemia

A variety of natural compounds are reported to modulate autophagy in neuronal cells. Interestingly, most of the literature described the efficacy of natural compounds in autophagy induction, but only a few researches documented autophagy inhibition by natural compounds. Here we collected the current evidence indicating the neuroprotective effect of these natural compounds in experimental stroke models. Besides, the autophagy-modulating compounds showing beneficial effects in other neurological disorders except for ischemia were also introduced (Table 1).

6.1. Uroolithin A (Uro-A)

Uro-A is a natural polyphenol that is rendered with ellagitannins and ellagic acid by human gut microbiota. Several types of research indicated that Uro-A induced autophagy in human colorectal cancer cells and macrophages, and protects against kidney injury though TFEB activation. Emerging data have showed that Uro-A protects against Parkinson’s disease by enhancement of neuronal survival. Uro-A induces mitophagy in Caenorhabditis elegans and murine cells. In addition, our previous study showed that in neuronal ischemic models, pretreatment with Uro-A triggers autophagy in both cultured cells and mice brains. Uro-A-induced autophagy attenuated ER stress and thus prevented neuronal cell demise. Autophagy induction by Uro-A was required for its neuroprotective effect. Interestingly, Uro-A failed to induce mitophagy in ischemic neurons as it does in C. elegans. It is possible due to that Uro-A failed to reinforce the loss of mitochondrial membrane potential in ischemic neurons, whose ΔΨm has extensively lost. As a comparison, Uro-A caused the loss of ΔΨm in intact cells, which might be sufficient for mitophagy induction.

6.2. Tomatidine

Tomatidine is a steroidal alkaloid derived from the Solanaceae family. It has documented that in SH-SY5Y cells, tomatidine abolished oxidative stress by increasing the antioxidant enzyme activity as well as reducing apoptosis. Emerging studies have indicated that tomatidine activates autophagic degradation in a variety of species. Further researches demonstrated that both PARK2 and NIX involve in the mitophagy induction in a mutually independent manner. Most recently the intracellular process of mitophagy in ischemic neurons has been revealed. Thus, autophagy has a neuroprotective role in ischemic models, both in vitro and in vivo. Additionally, it comes to a consensus that autophagosomes do not simply pick its cargo “randomly”. Rather, several types of selective autophagy have been identified in ischemic brains. Besides the afore mentioned mitophagy, current evidence implies the involvement of ER-phagy, pexophagy and ribophagy in the pathology of cerebral ischemia. However, the underlying mechanisms and contribution of these selective autophagy processes to ischemia were not fully understood.

6.3. Spermidine

Spermidine can be found in a variety of food. Several clinical trials have revealed the benefits of spermidine in improving cognition and memory, but its neuroprotective effect is undetermined in the patients experienced cerebral ischemia. Previous research suggested that spermidine improved cardiac dysfunction following myocardial infarction through enhanced autophagic flux via AMPK/mTOR signaling pathway. Furthermore, spermidine increases the many species’ lifespan by autophagy induction. It has been revealed that spermidine also increased the neuron number following the ischemia in chicks. Moreover, spermidine was found to effectively reduce...
Natural compound	Autophagy regulation	Potential implication	Ref.
Urolithin A	Autophagy flux ↑	Parkinson’s disease	94, 93–96
	LC3-II ↑	Cerebral stroke	96
	SQSTM1 ↓		
Tomatidine	Autophagy flux ↑	Alzheimer’s disease	97, 97–100
	Lysosomal activation ↑		
Spermidine	Autophagy flux ↑	Parkinson’s disease	98, 99
	Beclin 1 ↑	Cerebral stroke	100
	SQSTM1 ↓		
Anthocyanidin	LC3-II ↑	Parkinson’s disease	100
	ROS ↓	Depression	106
		Cerebral ischemia	108
Curcumin	Autophagy flux ↓	Parkinson’s disease	100
	LC3-II ↓	Cerebral stroke	109–112
	SQSTM1 ↑		
Schizandrin A	Beclin 1 ↓	Parkinson’s disease	106–115
	LC3-II ↓	Cerebral stroke	113–115
	mTORC 1 ↑		
	AMPK ↓		
Ascorbic acid	Beclin 1 ↓	Neurotoxicity	116, 117
	LC3-II ↓	Seizure	117
Ginkgolic acid	mTORC 1 ↓	Parkinson’s disease	118–120
	LC3-II ↑		
	Beclin 1 ↑		
	ATG-5 ↑		
α-Arbutin	ROS ↓	Parkinson’s disease	118–120
	AMPK-p62		
	autophagy pathway		
Glycyrrhizic acid	LC3-II ↑	Parkinson’s disease	118–120
	Beclin 1 ↑		
the neuronal injury by autophagy induction either in cultured cells or in animals. Mechanically, spermidine attenuated the staurosporine-induced caspase 3 activation and prevented beclin 1 from cleavage and thus retained beclin 1-mediated autophagy. 104

6.4. Anthocyanidin

Anthocyanidins are common plant pigments. Previous research indicated that anthocyanidin switched autophagy to apoptosis in cancer cells. 158 Mounting evidence from epidemiological studies has suggested that anthocyanins improved cognitive, memory and motor performance of patients with neurodegeneration. 130, 131 Anthocyanins activated autophagy, decreased oxidative stress and protected glial cells that subjected to OGD. Depletion of Atg 5, an essential regulator of autophagy, abolished the neuroprotection conferred by anthocyanin, indicating autophagy is indispensable in the neuroprotective effect of anthocyanin. 105 Thus, these data provided a rationale for the use of anthocyanin as a preventive agent for ischemic brain dysfunction.

6.5. Astragaloside IV

Astragaloside IV is a saponin isolated from the Astragalus membranaceus. 161 Studies have shown that astragaloside IV protects dopaminergic neuron from neuroinflammation and oxidative stress in a Parkinson’s disease mouse model. 106 and showed the anti-
depression effect. A recent study revealed that astragaloside IV plays a neuroprotective role against cerebral I/R injury in rats by down-regulating apoptosis. Astragaloside IV promoted autophagy flux by downregulating SQSTM1 in these models, which is required to counteracting ischemia-induced neuronal cell apoptosis. Intriguingly, SQSTM1-dependent autophagy triggered the intracellular anti-oxidation defenses by releasing the NRF2 from KEAP1, which is a master factor for controlling the transcription of several anti-oxidative enzymes. Overall, the current data suggested that astragaloside IV could be a potential implication for stroke therapy by induction of autophagy.

6.6. Curcumin

Curcumin is extracted from Curcuma longa Linn. Several reports have documented that curcumin has antioxidant and anti-inflammatory properties. Curcumin protected against ischemia—reperfusion injury in cardiomyocytes by inhibiting autophagy and apoptosis. Curcumin can penetrate the blood–brain barrier and emerging data showed that curcumin has a neuroprotective effect against ischemic brain injury via anti-apoptotic effect. Furthermore, curcumin significantly reversed the MCAO-induced increase in the level of LC3-II/I ratio and decrease in SQSTM1 protein expression. Thus, curcumin is a known bioactive agent capable of protecting against cerebral ischemia through suppressing overactivated autophagy. Given the multiple bioactivities of curcumin, it was not clear how curcumin modulate autophagy in ischemic neurons, and whether this is a direct effect of curcumin on autophagy regulation.

6.7. Schizandrin A

Schizandrin A is a bioactive lignin compound that is refined from Schisandra chinensis. Previous research demonstrated that schizandrin A attenuated cerebral ischemia—reperfusion injury by inhibiting the caspase 3 activity of neuronal cells induced by OGD/R. Furthermore, SMXZF, a combination of Rb1, Rg1, schizandrin, and DT-13 demonstrated the neuroprotection against I/R injury by suppression of autophagy through the AMPK/mTOR and JNK pathways. Notably, schizandrin A alone was sufficient to inhibit autophagy through the AMPK/mTOR pathway in OGD/R model. These data suggest the autophagy modulating effect of schizandrin A and highlight its potential implication for stroke therapy.

6.8. Ascorbic acid

Ascorbic acid, also known as vitamin C and ascorbate, is a vitamin found in various food. Ascorbic acid plays an essential role as an antioxidant, enzyme cofactor, and neuromodulator in brain. The current evidence from bench work supports a neuroprotective role of ascorbic acid against cerebral ischemia. Nevertheless, ascorbic acid supplementary has little impact on the final outcome of stroke patients, regardless the significantly increased the total antioxidative capacity in the serum from stroke patients. The antioxidative property of ascorbic acid is critical for its efficacy against methamphetamine-induced neurotoxicity and pilocarpine-induced seizure in rats. Interestingly, it seems that ascorbic acid may either induce or inhibit autophagy in different models. Overall, the apparent discrimination from bench work and clinical trials of ascorbic acid on stroke need further explanation.

6.9. Ginkgolic acid

Ginkgolic acid is a natural compound that is extracted from Ginkgo biloba leaves. Previous research showed that ginkgolic acid has an anti-cancer effect in human colon cancer by triggering intrinsic apoptosis and autophagy through ROS generation. The cytotoxicity of ginkgolic acid against HepG2 cells was reversed by 3-MA or beclin 1-specific siRNAs, suggesting the critical role of autophagy. Recently, the neuroprotective effect of ginkgolic acid was revealed. GA decreased intracytoplasmic aggregates of α-synuclein, a model related to Parkinson’s disease (PD) that characterized by impaired mitophagy. The efficacy of ginkgolic acid was accompanied by increased autophagosomes, and autophagy inhibitors blocked ginkgolic acid-dependent clearance of α-synuclein. It remained unexplored whether ginkgolic acid can serve as a neuroprotectant against ischemic neuronal injury by autophagy activation.

6.10. α-Arbutin

α-Arbutin is a natural polyphenol that is derived from Ericaceae species. Interestingly, α-arbutin was used as a cosmetic whitening agent due to its antioxidant effects. The α-arbutin was thus assumed to have potential implications for PD. Indeed, recent research confirmed the effect of α-arbutin on PD models. In addition, α-arbutin was found to activate AMPK and induction of autophagy pathway. Given the AMPK also played a key role in regulating autophagy in ischemic neurons, whether these molecular mechanisms of α-arbutin can be recapitulated in stroke models is worth further verification.

6.11. Glycyrrhizic acid

Glycyrrhizic acid is the main bioactive component of Glycyrrhiza Radix. Previous study revealed that glycyrrhizic acid induced autophagy by PI3K/AKT/mTOR pathway to reduce inflammatory lung injury. Glycyrrhizic acid impeded rotenone-induced dopaminergic neurodegeneration. Furthermore, the study also showed that glycyrrhizic acid upregulated LC3B II/I conversion, beclin 1 expression, and further autophagy in SH-SY5Y neuroblastoma cells, which were reversed by the 3-MA autophagy inhibitor. Further investigation needs to explore the efficacy of glycyrrhizic acid in ischemic neuronal injury and the potential involvement of autophagy modulation.

6.12. Euxanthone

Euxanthone is a xanthone derivative extracted from plant Polygala caudate. Euxanthone suppressed ovarian cancer by inducing apoptosis and autophagy. Furthermore, euxanthone also stimulates neurite outgrowth, suggesting its therapeutic potential for neurological disorders. Recently research proved that euxanthone displayed the protective effects against neurotoxicity triggered by Aβ in vivo and in vitro. Euxanthone reversed Aβ1–42-reduced...
neuronal autophagy in the hippocampus. Furthermore, euxanthone also showed the protection against Aβ42-induced oxidative stress and apoptosis by autophagy induction in the neuroblastic PC12 cells. Its efficacy on ischemic brains needs identification.

6.13. Cornel iridoid glycoside

Cornel iridoid glycoside is the main ingredient of traditional medicinal plant Cornus officinalis. Cornel iridoid glycoside treatment improved the learning and memory in rats suffered from chronic cerebral hypoperfusion and it also protected against traumatic brain injury. Emerging data indicate that cornel iridoid glycoside promotes the clearance of neurotoxic tau oligomers via autophagy and thus counteracted memory deficits. Mechanically, it upregulated the expressions of ATG7, ATG12, beclin 1, and LC3II both in vivo and in vitro. Given the autophagy-regulating and neuroprotection properties of cornel iridoid glycoside, its potential implications for cerebral stroke are worth further investigation.

6.14. Resveratrol

Resveratrol is a common dietary polyphenol. Accumulating evidence shows that resveratrol has neuroprotective properties against neurological disorder. Resveratrol extended the therapeutic time window of r-tPA and improved the outcome of stroke patients, although it remained unknown whether these effects were attributed to autophagy modulation. Resveratrol showed the protection against spinal cord injury through the activation of the SIRT1/AMPK autophagy signaling pathway. Previous studies showed that it is useful for the treatment of Huntington’s disease. Recently research demonstrated that trehalose regulated autophagy by PPP3- and TFEB-dependent manner in mouse motoneuron-like hybrid cell line. However, its potential protective effect against cerebral ischemia needs to be further examined in future studies.

6.15. Genistein

Genistein is an isoflavone isolated from Dyer’s Broom (Genista tinctoria). Previous research showed that genistein induced autophagy by inactivating mTOR signaling against podocyte injury. It has been previously proved that genistein enhanced the lysosomal activities via TFEB against GAGs accumulation in CNS and neuroprotective effects of genistein against Alzheimer’s disease and overexpressing A53T mutant α-synuclein. Recently research proved that genistein significantly decreased both mutated huntingtin level and a number of aggregates through stimulating autophagy on an HD cellular model but at doses as high as 150 mg/kg/day. Genistein is a potent neuroprotectant, thus, it would be necessary to further investigate its protection against stroke.

6.16. Trehalose

Trehalose is an essential natural disaccharide that is found in sunflower seeds, moonwort, Selaginella plants and sea algae. Trehalose promoted the clearance of A53T mutant α-synuclein in PC12 cells, which was reversed by 3-methyladenine, indicating the involvement of autophagy in trehalose-induced neuroprotection. Besides, trehalose reverted protein processing abnormalities by lowering the ROS generation, caspase 3 levels and elevating LC3 levels in Huntington’s disease. Trehalose regulated autophagy by PPP3- and TFEB-dependent manner in mouse motoneuron-like hybrid cell line. However, its potential protective effect against cerebral ischemia needs to be further examined in future studies.

6.17. p-Coumaric acid

p-Coumaric acid is a phenolic compound found in Gnetum cleistostachyum. Previous research confirmed that p-coumaric acid induced growth arrest by activating the autophagy and ROS production. Furthermore, p-coumaric acid protects against...
doxorubicin induced cardiotoxicity in H9c2 cells by activating autophagy. Recently research showed that p-coumaric acid raised the LC3-II level and reduced the SQSTM1 protein level in ALS cell models. Given the autophagy-regulating and neuro-protection properties of p-coumaric acid, its potential implications for cerebral stroke need to be determined.

6.18. Diallyl trisulfide

Diallyl trisulfide is a major organosulfur compound that found in garlic oil. Diallyl trisulfide inhibits apoptosis in macrophages by inhibiting mTOR phosphorylation and further autophagy activation. Diallyl trisulfide also has a neuroprotective effect against SOD1-G93A transgenic mice. Recently, it has been confirmed that diallyl trisulfide is a promising neuroprotective agent by inducing autophagy and suppressing the increase levels of ROS in ALS. However, the potential implications of diallyl trisulfide against cerebral stroke remained undetermined.

7. Conclusions

The role of autophagy in cerebral ischemia remains controversial and there are no clinical trials related to modulation of autophagy in treating stroke due to the paucity of knowledge in this field. Nevertheless, autophagy is considered as an endogenous strategy to protect neurons in response to ischemia. Remarkably, some natural compounds serve as neuroprotectants, at least in part, via autophagy modulation (Fig. 1). It should be noted that it cannot be excluded that other mechanisms, e.g., antioxidation and anti-apoptosis, may also contribute greatly to the potential neuro-protection of these natural compounds. The use of natural compounds may lay the foundation for a new pharmacological approach to stroke treatment. Such natural compounds can have the advantage of reducing ischemic brain injury by modulating autophagic processes through multiple targets. Nevertheless, there are a variety of natural compounds known with autophagy-modulating properties that have not been identified as potential anti-stroke drugs. Given the documented neuroprotection of these compounds for the other neurological disorders, their potential implication for stroke would be promising and surely need further investigation.

Acknowledgments

This work was funded by the National Natural Science Foundation of China (81822044, 81773703 and 81630098), the Fundamental Research Funds for the Central Universities (2019XZZX004-17, China).

Author contributions

Xiangnan Zhang and Zhong Chen were responsible for the conception and design of the review. Anil Ahsan analyzed the literatures, summarized the results and drafted the manuscript. Mengru Liu, Yanrong Zheng, Wenping Yan, Lin Pan, Yue Li, Shijia Ma, Xingxian Zhang, Ming Cao, Zhanxun Wu, and Weiwei Hu provided critical discussion on the literatures and revised the manuscript.

Conflicts of interest

The authors declare no conflicts of interest.

References

1. Guo ZH, Li F, Wang WZ. The mechanisms of brain ischemic insult and potential protective interventions. *Neurosci Bull* 2009;25:139–52.
2. Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of ischemic brain damage. *Neuropsychopharmacology* 2008;35:310–8.
3. Feiglin VL, Norring B, Mensah GA. Global burden of stroke. *Circ Res* 2017;120:439–48.
4. Donnan GA, Fisher M, Macleod M, Davis SM. *Stroke. Lancet* 2008;371:1612–23.
5. Gladstone DJ, Black SE, Hakim AM. Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. *Stroke* 2002;33:2123–36.
6. California Acute Stroke Pilot Registry (CASPR) Investigators. Prioritizing interventions to improve rates of thrombolysis for ischemic stroke. *Neurology* 2005;64:654–9.
7. Galluzzi L, Bravo-San Pedro JM, Levine B, Green DR, Kroemer G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. *Nat Rev Drug Discov* 2017;16:487–511.
8. Galluzzi L, Bravo-San Pedro JM, Blomgren K, Kroemer G. Autophagy in acute brain injury. *Nat Rev Neurosci* 2016;17:467–84.
9. Sheng R, Zhang LS, Han R, Liu XQ, Gao B, Qin ZH. Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning. *Autophagy* 2010;6:482–94.
10. Wang P, Guan YF, Du H, Zhai QW, Su DF, Miao CY. Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. *Autophagy* 2012;8:77–87.
11. Zhang X, Yan H, Yuan Y, Gao J, Shen Z, Cheng Y. et al. Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. *Autophagy* 2013;9:1321–33.
12. Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, et al. Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagy and lysosomal pathways. *Autophagy* 2008;4:762–9.
13. Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, et al. Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. *Am J Pathol* 2006;169:566–83.
14. Xing S, Zhang Y, Li J, Zhang J, Li Y, Dang C, et al. Beclin 1 knockdown inhibits autophagic activation and prevents the secondary neurodegenerative damage in the ipsilateral thalamus following focal cerebral infarction. *Autophagy* 2012;8:63–76.
15. Gabryel B, Kost A, Kasprowska D. Neuronal autophagy in cerebral ischemia—a potential target for neuroprotective strategies?. *Pharmacol Rep* 2012;64:1–15.
16. Zhang X, Yuan Y, Ji J, Zhang J, Gao J, Zhou Z, et al. Endoplasminic reticulum stress induced by tunicamycin and thapsigargin protects against transient ischemic brain injury: involvement of PARK2-dependent mitophagy. *Autophagy* 2014;10:1801–13.
17. Papadakis M, Hadley G, Xilouri M, Hoyte LC, Nagel S, McMenamin MM, et al. Tsc1 (hamartin) confers neuroprotection against ischemia by inducing autophagy. *Nat Med* 2013;19:351–7.
18. Wang P, Xu TY, Guan YF, Tian WW, Violett B, Rui YC, et al. Nicotinamide phosphoribosyltransferase protects against ischemic stroke through SIRT1-dependent adenosine monophosphate-activated kinase pathway. *Ann Neurol* 2011;69:360–74.
19. Shen Z, Zheng Y, Wu J, Chen Y, Wu X, Zhou Y, et al. PARK2-dependent mitophagy induced by acidic postconditioning protects against focal cerebral ischemia and extends the reperfusion window. *Autophagy* 2017;13:473–85.
20. Wang P, Shao BZ, Deng Z, Chen S, Yue Z, Miao CY. Autophagy in ischemic stroke. *Prog Neurobiol* 2018;163–164:98–117.
Natural compounds modulate autophagy in stroke

21. Levine B, Packer M, Codogno P. Development of autophagy inducers in clinical medicine. *J Clin Invest* 2015;125:14–24.

22. Sunart I, Sureda A, Belwal T, Sanches Silva A, Vacca RA, Tewari D, et al. Natural products, PGC-1α, and Duchenne muscular dystrophy. *Acta Pharm Sin B* 2020;10:734–45.

23. Nasi H, Baradaran A, Shirzad H, Rafieian-Kopaei M. New concepts in nutraceuticals as alternative for pharmacological. *Int J Prev Med* 2014;5:1487–99.

24. Sewell RDE, Rafieian-Kopaei M. The history and ups and downs of herbal medicines usage. *J HerbMed Pharmacol* 2014;3:1–3.

25. Ashafaq M, Raza SS, Khan MM, Ahmad A, Javed H, Ahmad ME, et al. Catechin hydrate ameliorates redox imbalance and limits inflammatory response in focal cerebral ischemia. *Neurochem Res* 2012;37:1747–60.

26. Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. *Nat Rev Mol Cell Biol* 2018;19:349–64.

27. Yu L, Chen Y, Tzuoe SA. Autophagy pathway: cellular and molecular mechanisms. *Autophagy* 2018;14:207–15.

28. Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, Fujita N, et al. Autophagosomes form at ER–mitochondria contact sites. *Nature* 2013;495:389–93.

29. Ge L, Zhang M, Schekman R. Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER–Golgi intermediate compartment. *Elife* 2014;3:e01135.

30. Moreau K, Ravikumar B, Renna M, Puri C, Rubinsztein DC. Autophagosome precursor maturation requires homotypic fusion. *Cell* 2011;146:303–17.

31. Pozueta J, Lefort R, Ribe EM, Troy CM, Arancio O, Shelanski M. SNARE proteins are required for macroautophagy. *Curr Opin Cell Biol* 2013;25:193–205.

32. Nair U, Jotwani A, Geng J, Gammoh N, Richerson D, Yen WL, et al. SNARE proteins are required for macroautophagy. *Cell* 2011;146:290–302.

33. Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, et al. ULK–Atg 13–FIP200 complexes mediate mTORC1 signaling to the autophagy machinery. *Mol Cell Biol* 2009;29:1992–2003.

34. Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X. ULK1/ATG13/FIP200 complex mediates mTORC1 signaling and is essential for autophagy. *J Biol Chem* 2009;284:12297–305.

35. Hosokawa N, Harra T, Kazukata T, Kishi C, Takamura A, Miura Y, et al. Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis. *EMBO J* 2015;34:2117–31.

36. Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. *Mol Biol Cell* 2008;19:2092–100.

37. Jager S, Bucci C, Tanida I, Ueno T, Komaminii E, Safigt P, et al. Role for Rab 7 in maturation of late autophagic vacuoles. *J Cell Sci* 2004;117:4837–48.

38. Tanaka Y, Guhde G, Suter A, Eskelinen EL, Hartmann D, Lullmann-Rauch R, et al. Accumulation of autophagic vacuoles and cardio-myopathy in LAMP-2-deficient mice. *Nature* 2000;406:902–6.

39. Codogno P, Meijer AJ. Autophagy and signaling: their role in cell survival and cell death. *Cell Death Differ* 2005;12(Suppl 2):1509–18.

40. Guerlin DA, Sabatini DM. The pharmacology of mTOR inhibition. *Sci Signal* 2009;2:pe24.

41. Schmelzel T, Hall MN. TOR, a central controller of cell growth. *Cell* 2000;103:253–62.

42. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Ba. *Curr Biol* 1997;7:261–9.

43. Stokoe D, Stephens LR, Copeland T, Gaffney PR, Reese CB, Painter GF, et al. Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. *Science* 1997;277:567–70.

44. Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J. Rhb5 binds and regulates the mTOR kinase. *Curr Biol* 2005;15:702–13.

45. Heyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadai G, Farkas T, et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. *Mol Cell* 2007;28:4008.

46. Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M, et al. The energy sensing LKB1–AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. *Nat Cell Biol* 2007;9:218–24.

47. Wei Y, Pattingre S, Sinha S, Bassik M, Levine B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. *Mol Cell* 2008;30:678–88.

48. Liang C, Lee JS, Inn KS, Gack MU, Li Q, Roberts EA, et al. Beclin1–binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytotic trafficking. *Nat Cell Biol* 2008;10:776–87.

49. Cao Y, Klionsky DJ. Physiological functions of Atg 6/Beclin 1: a unique autophagy-related protein. *Cell Res* 2007;17:839–49.

50. He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. *Annu Rev Genet* 2009;43:67–93.

51. Settembre C, Di Malta C, Politic VA, Garcia Arencibia M, Vetrini F, Erdin S, et al. TFEB links autophagy to lysosomal biogenesis. *Science* 2011;332:1429–33.

52. Golstein P, Kroemer G. Cell death by necrosis: towards a molecular definition. *Trends Biochem Sci* 2007;32:37–43.

53. Wang J, Davis S, Menon S, Zhang J, Ding J, Cervantes S, et al. Ypt1/Rab 1 regulates Hrs25/Ceki/Idelta kinase activity in ER–Golgi traffic and macroautophagy. *J Cell Biol* 2015;210:273–85.

54. Hoyer-Hansen M, Jaattela M. Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. *Cell Death Differ* 2007;14:1576–82.

55. Yin Y, Sun G, Li E, Kiselev Y, Sun K. Drug stress and impaired autophagy flux in neuronal degeneration and brain injury. *Ageing Res Rev* 2017;34:3–14.

56. Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. *Nat Rev Drug Discov* 2008;7:1013–30.

57. Rao RV, Bredesen DE. Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. *Curr Opin Cell Biol* 2004;16:653–62.
68. Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell 2006;21:521–31.

69. Todd DJ, Lee AH, Glimcher LH. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol 2008;8:663–74.

70. Flamment M, Hajduch E, Ferre P, Foulle F. New insights into ER stress-induced insulin resistance. Trends Endocrinol Metab 2012;23:381–90.

71. Gabryel B, Kost A, Kasprowska D, Liber S, Machnik G, Wiaderkiewicz R, et al. AMP-activated protein kinase is involved in induction of protective autophagy in astrocytes exposed to oxygen-glucose deprivation. Cell Biol Int 2014;38:1086–97.

72. Jiang T, Yu JT, Zhu XC, Wang HF, Tan MS, Cao L, et al. Acute metformin preconditioning confers neuroprotection against focal cerebral ischaemia by pre-activation of AMPK-dependent autophagy. Br J Pharmacol 2014;171:3146–57.

73. Wang P, Xu TY, Wei K, Guan YF, Wang X, Xu H, et al. ARRB1-beta-arrestin-1 mediates neuroprotection through coordination of BECN1-dependent autophagy in cerebral ischaemia. Autophagy 2014;10:1535–48.

74. Cheung EC, Ludwig RL, Voudens KH. Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc Natl Acad Sci U S A 2012;109:20491–6.

75. Mahalingaiah PK, Singh KP. Chronic oxidative stress increases growth and tumorigenic potential of MCF-7 breast cancer cells. PLoS One 2014;9:e87371.

76. Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 2012;14:177–85.

77. Puisant A, Fenouille N, Aubeger P. When autophagy meets cancer. CNS Neurosci Ther 2014;20:91–101.

78. Kim KA, Shin D, Kim JH, Shin YJ, Rajanikant GK, Majid A, et al. Role of autophagy in endothelial damage and blood–brain barrier disruption in ischemic stroke. Stroke 2018;49:1571–9.

79. Carloni S, Albertini MC, Galluzzi L, Buonocore G, Pietroffi F, Balduini W. Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischaemia: role of protein synthesis and autophagic pathways. Exp Neurol 2014;255:103–12.

80. Cheung EC, Ludwig RL, Voaden KH. Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc Natl Acad Sci U S A 2012;109:20491–6.

81. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Achuba A, Achilles A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016;12:1–222.

82. Wang JY, Xia Q, Chu KT, Pan J, Sun LN, Zeng B, et al. Severe global cerebral ischemia-induced programmed necrosis of hippocampal CA1 neurons in rats is prevented by 3-methyladenine: a widely used inhibitor of autophagy. J Neuropathol Exp Neurol 2011;70:314–22.

83. Wu XL, Lu SS, Liu MR, Tang WD, Chen JZ, Zheng YR, et al. Melatonin receptor agonist ramelteon attenuates mouse acute and chronic ischemic brain injury. Acta Pharmacol Sin 2020;41:1016–24.

84. Carloni S, Buonocore G, Balduini W. Protective role of autophagy in endothelial damage and blood–brain barrier disruption in ischemic stroke. Stroke 2018;49:1571–9.

85. Cheung EC, Ludwig RL, Voudens KH. Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc Natl Acad Sci U S A 2012;109:20491–6.

86. Carloni S, Albertini MC, Galluzzi L, Buonocore G, Pietroffi F, Balduini W. Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischaemia: role of protein synthesis and autophagic pathways. Exp Neurol 2014;255:103–12.

87. Wang JY, Xia Q, Chu KT, Pan J, Sun LN, Zeng B, et al. Severe global cerebral ischemia-induced programmed necrosis of hippocampal CA1 neurons in rats is prevented by 3-methyladenine: a widely used inhibitor of autophagy. J Neuropathol Exp Neurol 2011;70:314–22.

88. Cheung EC, Ludwig RL, Voudens KH. Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc Natl Acad Sci U S A 2012;109:20491–6.

89. Su Y, Li F. Endoplasmic reticulum stress in brain ischemia. Am J Pathol 2011;179:329–39.

90. Rami A, Langhagen A, Steiger S. Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. Neurobiol Dis 2008;29:132–41.

91. Gitel V, Puyal J, Clarke PG, Trumtann AC. Enhancement of autophagic flux after neonatal cerebral hypoxia–ischemia and its region-specific relationship to apoptotic mechanisms. Am J Pathol 2009;175:1962–74.

92. Yuan Y, Zheng Y, Zhang X, Chen Y, Wu X, Wu J, et al. BNIP3L/-NIX-mediated mitophagy protects against ischemic brain injury independent of PARK2. Autophagy 2017;13:1754–66.
Natural compounds modulate autophagy in stroke

107. Song MT, Ruan J, Zhang RY, Deng J, Ma QZ, Ma SP. Astragaloside IV ameliorates neuroinflammation-induced depressive-like behaviors in mice via the PPARγ/NF-κB/NLRP3 inflammasome axis. Acta Pharmacol Sin 2018;39:1559–70.

108. Zhang Y, Zhang Y, Jin XF, Zhou XH, Dong XH, Yu WT, et al. The Role of Astragaloside IV against cerebral ischemia/reperfusion injury: suppression of apoptosis via promotion of P62-LC3- autophagy. Molecules 2019;24:1838.

109. Lim CS, Jin DQ, Mok H, Oh SJ, Lee JU, Hwang JK, et al. Anti-oxidant and anti-inflammatory activities of xanthorrhizol in hippocampal neurons and primary cultured microglia. J Neurosci Res 2005;82:831–8.

110. Huang Z, Ye B, Dai Z, Wu X, Lu Z, Shan P, et al. Curcumin inhibits autophagy and apoptosis in hypoxia/oxygenation-induced myocytes. Mol Med Rep 2015;11:4678–84.

111. Miao Y, Zhao S, Gao Y, Wang R, Wu Q, Wu H, et al. Curcumin pretreatment attenuates inflammation and mitochondrial dysfunction in experimental stroke: the possible role of Sirt1 signaling. Brain Res Bull 2016;121:9–15.

112. Zhang Y, Fang M, Sun Y, Zhang T, Shi N, Li J, et al. Curcumin attenuates cerebral ischemia injury in Sprague–Dawley rats and PC12 cells by suppressing overactivated autophagy. J Photochem Photobiol B 2018;184:1–6.

113. Wang CP, Li GC, Shi YW, Zhang XC, Li JL, Wang ZW, et al. Neuroprotective effect of schizandrin A on oxygen and glucose deprivation/reperfusion-induced cell injury in primary culture of rat cortical neurons. J Physiol Biochem 2014;70:735–47.

114. Guo Z, Cao G, Yang H, Zhou H, Li L, Cao Z, et al. A combination of four active compounds alleviates cerebral ischemia–reperfusion injury in correlation with inhibition of autophagy and modulation of AMPK/mTOR and JNK pathways. J Neurosci Res 2014;92:1295–306.

115. Liu Y, Yang B, Zhang L, Cong X, Liu Z, Hu Y, et al. Kiglineic acid induces interplay between apoptosis and autophagy regulated by ROS generation in colon cancer. Biochem Biophys Res Commun 2018;498:246–53.

116. Qi GM, Xue YC, Lv J, Sun D, Du JX, Cai SQ, et al. Kiglineic acids induce HepG2 cell death via a combination of apoptosis, autophagy and the mitochondrial pathway. Oncol Lett 2018;15:6400–8.

117. Vijayakumaran S, Nakamura Y, Henley JM, Pountney DL. Kiglineic acid promotes autophagy-dependent clearance of intracellular α-synuclein aggregates. Mol Cell Neurosci 2019;101:103416.

118. García-Jimenez A, Teruel-Puche JA, Berna J, Rodriguez-Lopez JN, Tudela J, Garcia-Canovas F. Action of tyrosinase on alpha and beta-arbutin: a kinetic study. PLoS One 2017;12:e0177330.

119. Tessari I, Bisaglia M, Valle F, Samori B, Bergantino E, Mammi S, et al. The reaction of alpha-synuclein with tyrosinase: possible implications for Parkinson disease. J Biol Chem 2008;283:16808–17.

120. Ding Y, Kong D, Zhou T, Yang ND, Xin C, Xu J, et al. α-Arbutin protects against Parkinson's disease-associated mitochondrial dysfunction in vitro and in vivo. NeuroMolecular Med 2020;22:56–67.

121. Qu L, Chen C, He W, Chen Y, Li Y, Wen Y, et al. Glycyrhrizinic acid ameliorates LPS-induced acute lung injury by regulating autophagy through the PI3K/Akt/mTOR pathway. Am J Transl Res 2019;11:2042–55.
144. Fernandez-Estevez MA, Casarejos MJ, Lopez Sendon J, Garcia Caldentey J, Ruiz C, Gomez A, et al. Trehalose reverses cell malfunction in fibroblasts from normal and Huntington’s disease patients caused by protease inhibition. PLoS One 2014;9:e90202.

145. Rusmini P, Cortese K, Crippa V, Cristofani R, Cicardi ME, Ferrari V, et al. Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration. Autophagy 2019;15:631–51.

146. Shailasree S, Venkataramana M, Niranjan SR, Prakash HS. Cytoxic effect of p-coumaric acid on neuroblastoma, N2a cell via generation of reactive oxygen species leading to dysfunction of mitochondria inducing apoptosis and autophagy. Mol Neurobiol 2015;51:119–30.

147. Sunitha MC, Dhanyakrishnan R, PrakashKumar B, Nevin KG. p-Coumaric acid mediated protection of H9c2 cells from doxorubicin-induced cardiotoxicity: involvement of augmented Nrf 2 and autophagy. Biomed Pharmacother 2018;102:823–32.

148. Ueda T, Ito T, Kurita H, Inden M, Hozumi I. p-Coumaric acid has protective effects against mutant copper-zinc superoxide dismutase 1 via the activation of autophagy in N2a cells. J Integr Med 2019;20:2942.

149. Wu Y, Hu Y, Zhou H, Zhu J, Qin S, et al. Organosulfur compounds induce cytoprotective autophagy against apoptosis by inhibiting mTOR phosphorylation activity in macrophages. Acta Biochim Biophys Sin 2018;50:1085–93.

150. Guo Y, Zhang K, Wang Q, Li Z, Yin Y, Xu Q, et al. Neuroprotective effects of diallyl trisulfide in SOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis. Brain Res 2011;1374:110–5.

151. Liu C, Leng B, Li Y, Jiang H, Duan W, Guo Y, et al. Diallyl trisulfide protects motor neurons from the neurotoxic protein TDP-43 via activating lysosomal degradation and the antioxidant response. Neurochem Res 2018;43:2304–12.

152. Cerda B, Periago P, Espin JC, Tomas-Barberan FA. Identification of urolithin a as a metabolite produced by human colon microflora from ellagic acid and related compounds. J Agric Food Chem 2005;53:5571–6.

153. Boakye YD, Groyer L, Heiss EH. An increased autophagic flux contributes to the anti-inflammatory potential of urolithin A in macrophages. Biochim Biophys Acta 2018;1862:61–70.

154. Aitai Ali M, Poortvliet E, Storemberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res 2011;55:5572.

155. Wirth M, Schwarz C, Gessner B, Horn N, Buchert R, Lange C, et al. Effects of spermidine supplementation on cognition and biomarkers in older adults with subjective cognitive decline (SmartAge)-study protocol for a randomized controlled trial. Alzheimer’s Res Ther 2019;11:36.

156. Wirth M, Benson G, Schwarz C, Kohé T, Grittner U, Schmitz D, et al. The effect of spermidine on memory performance in older adults at risk for dementia: a randomized controlled trial. Cortex 2018;109:181–8.

157. Gupta VK, Scheunemann L, Eisenberg T, Mertel S, Bhukel A, Koemans TS, et al. Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nat Neurosci 2013;16:1453–60.

158. Lin BW, Gong CC, Song HF, Cui YY. Effects of anthocyanins on the prevention and treatment of cancer. Br J Pharmacol 2017;174:1226–43.

159. Youdim KA, Shukitt-Hale B, Joseph JA. Flavonoids and the brain: interactions at the blood–brain barrier and their physiological effects on the central nervous system. Free Radic Biol Med 2004;37:1683–93.

160. Hung TC, Chang TT, Fan MJ, Lee CC, Chen CY. In silico insight into potent of anthocyanin regulation of FBKP52 to prevent Alzheimer’s disease. Evid Based Complement Alternat Med 2014;2014:450592.