A GENERALIZATION THEOREM OF KATZ AND MOTIVIC INTEGRATION

ANDREW STOUT

CONTENTS

Introduction 1
1. Two lemmas 1
2. The theorem 2
3. Application of result 5
References 5

INTRODUCTION

In what follows, we are interested in an extension of a theorem of Nicholas Katz, which will be useful in studying the cohomology of generalized arc spaces develop by Hans Schoutens in [5] and [6]. As is well known, one is typically interested in the motivic volume of a definable subset of $X \times X \times \mathbb{Z}^n$ where X is a scheme over $k((t))$ and X the special fiber of X, cf., [2]. Schoutens has introduced the possibility of developing a motivic integration for limit points other than $k[[t]]$. In this note, we are concerned with a special type of limit point $k[[T]]$ where $T = (t_i)_{i \in \mathbb{N}}$.

1. TWO LEMMAS

We start with a few lemmas from commutative algebra which we will need.

1.1. Lemma. Let $R := k[[x_1, x_2, \ldots, x_n, \ldots]]$ be the m-adic completion of the polynomial ring $k[x_1, x_2, \ldots, x_n, \ldots]$ along the maximal ideal $m = (x_1, x_2, \ldots, x_n, \ldots)$. For all $n \in \mathbb{N}$, let $R_n := k[[x_1, \ldots, x_n]] \cong R/(x_{n+1}, x_{n+2}, \ldots)$ and let $R_n \to R_{n-1}$ be the homomorphism with kernel $(x_n)R_n$. Then there is an isomorphism

$$R \cong \lim_{\longrightarrow} R_n$$

Date: May 1st, 2012.
Moreover, R is a local ring with maximal ideal mR.

Proof. It is straightforward to verify1 that mR is the maximal ideal of R. For the other claim, we define a homomorphism from R to $\lim_{\leftarrow n} R_n$ by $x_i \mapsto (y_j)_{j \in \mathbb{N}}$ where $y_j = 0$ if $j < i$ and $y_j = x_i$ if $i \geq j$. By definition of inverse limit, this map is injective. By the universal property of inverse limits, we conclude that it is surjective. \hfill \square

1.2. Remark. Note that this isomorphism takes place in the category of k-algebras and not the category of topological k-algebras.

Below we will state a version of Nakayama’s Lemma which will be important for our work below

1.3. Lemma. Let R be any local ring (or, in particular, the one above), and let M be a finitely generated R-module. Then there is a surjective homomorphism of R-modules

$$M/mM \otimes_{\mathbb{Z}} R \to M$$

Proof. This is a special case of Proposition 2.6 of [1] \hfill \square

2. The theorem

From now on, we assume that k is of characteristic zero. What follows is a natural extension, mutatis mutadis, of a theorem contained in a paper of Katz, cf., Proposition 8.9 of [3]. The original argument is originally due to Cartier, whereas my contribution is to show that it works with an inverse system.

2.1. Theorem. Let M be finite R-module with a connection ∇ arising from the continuous k-derivations coming from R to M. Then M^∇ is finitely generated and

$$M \cong M^\nabla \otimes_k R$$

Proof. For all $i \in \mathbb{N}$ we define

$$D_i = \nabla\left(\frac{\partial}{\partial x_i}\right)$$

and for each $j \in \mathbb{N}$ we define

$$D_i^{(j)} = \frac{1}{j!}(\nabla\left(\frac{\partial}{\partial x_i}\right))^j$$

For any n and any n-tuple $J_n = (j_1, \ldots, j_n) \subset \mathbb{N}^n$, we define the following1

1You can do this by verifying that m is the additive subgroup of non-units
\[D^J_n = \prod_{i=1}^n D_{i}^{j_i} \quad x^J_n = \prod_{i=1}^n x_i^{j_i} \quad (-1)^J_n = \prod_{i=1}^n (-1)^{j_i} \]

Then, for each \(n \in \mathbb{N} \) we successfully define an (additive) endomorphism \(P_n \) by

\[P_n : M \to M, \quad P_n = \sum_{J_n} (-1)^J_n x^J_n D^J_n \]

Now the action of \(R \) on \(M \) is actually the inverse limit homomorphisms \(\rho_n : R_n \to M \) of \(k \)-modules. In fact, \(P_n \) will be considered an additive endomorphism of \(M \) as an \(R_n \)-module (via the isomorphism established in Proposition 1). We define \(P : M \to M \) to be the inverse limit

\[P = \lim_{\leftarrow} P_n \]

More explicitly, consider \(f \in R \), which by Proposition 1, can be identified with a sequence \((f_n)_{n \in \mathbb{N}} \) where \(f_n \in R_n \), then

\[P(fm) = (P_n(f_n))P(m) \]

It is straightforward, that \(P_n(f_n) = f_n(0) \forall n \in \mathbb{N} \), from which it follows that for all \(f \in R \) and all \(m \in M \)

\[P(fm) = f(0)P(m) \]

Therefore, the kernel of \(P \) contains \(mM \) where \(m \) is the maximal ideal of \(R \).

As we will now pass to the quotient \(M/mM \), we mention that it is not hard to see that the inverse system defined in Proposition 1 and hence above satisfies the Mittag Leffler Condition. Therefore, there is an isomorphism

\[M/mM \cong \lim_{\leftarrow} M/(x_1, \ldots, x_n)M \]

Note that, for all \(n \), \(P_n \) induces the identity on \(M/(x_1, \ldots, x_n)M \), and so \(P \) induces the identity on \(M/mM \)− i.e.,

\[P(m) \equiv m \mod m \]

Therefore, the kernel of \(P \) is \(m \). In a similar fashion it is easy to check that \(P \) as the following properties

\[P|_{M^\nabla} = id_{M^\nabla} \quad P(M) \subset M^\nabla \quad P^2 = P \]

Therefore, \(P \) induces an isomorphism vector spaces over \(k \)

\[M/mM \cong M^\nabla \]
Therefore, M^∇ is a finite R-module. Using Nakayama’s Lemma (see Proposition 2 above), we have a surjective map

$$M^\nabla \otimes_k R \to M$$

Now, we will show that it is an isomorphism. Let m_1, \ldots, m_l be k-linearly independent elements of M^∇ and let f_1, \ldots, f_l be elements of R, we need to show

$$\sum_{k=1}^l f_k m_k \neq 0$$

In other words, writing f_k as its corresponding sequence $(f_n^{(k)})$ in the inverse system, we need to show that for sufficiently large n

$$\sum_{k=1}^l f_n^{(k)} m_k \neq 0 \quad (*)$$

The only reason we to specify that n be sufficiently large is to insure that there is an n so that $f_n^{(k)} \neq 0$ for some k, which is clearly satisfied or else there is nothing to prove. Thus, we may assume there exists an N such that for all $n > N$

$$f_n^{(1)} \neq 0$$

Then for all $n \geq N$ there exists a tuple $J_n = (j_1, \ldots, j_n)$ such that

$$\Pi_{\nu=1}^n \frac{1}{j_\nu!} \left(\frac{\partial}{\partial x_\nu} \right)^{j_\nu} (f_n^{(1)}(0)) \neq 0$$

Now, assume for the sake of contradiction that

$$\sum_{k=1}^l f_n^{(k)} m_k = 0$$

Applying D^{J_n} to this equation, we get

$$0 = D^{J_n} \left(\sum_{k=1}^l f_n^{(k)} m_k \right) = \sum_{k=1}^l \Pi_{\nu=1}^n \frac{1}{j_\nu!} \left(\frac{\partial}{\partial x_\nu} \right)^{j_\nu} (f_n^{(i)}) m_k$$

This is a sum of the form

$$\sum_{k=1}^l g_k m_k = 0, \quad g_1(0) \neq 0, \quad g_k \in R_n$$

Applying P to this sum, we obtain

$$\sum_{k=1}^l g_k(0) m_k = 0$$
which is impossible as \(g_1(0) \neq 0 \) and the \(m_1, \ldots, m_l \) are a \(k \)-linearly independent set. Therefore, this must be an isomorphism. \(\square \)

3. Application of result

To apply the above theorem, we take \(M = H_{DR}(X/S) \) to be finite sheaf of modules on \(S \), which is assured to us when we take \(f : X \to S \) to locally of finite type. We can define arc spaces by a universal property: we say that \(T \to X \) is the arc space of \(X \) along a scheme \(Z \), working in the category of \(k \)-schemes, if for every closed fat point \(\eta \) of \(T \) we have a unique morphism \(\eta \times_k Z \to X \) making the following diagram commute

\[
\begin{array}{ccc}
\eta & \xrightarrow{\cong} & \eta \times_k Z \\
\downarrow & & \downarrow \\
T & \to & X
\end{array}
\]

and which is unique in the sense that if \(T' \to X \) is any other such space, we have a unique map \(T' \to T \). When such a scheme exists, we write \(A_Z X \) for the arc space of \(X \) along \(Z \). This is a generalization of the notion of arc space found in \([6]\).

Using this description of \(A_Z \Spec(k) = Z \) to conclude that \(A_Z X \) is a scheme over \(Z \). In particular, if \(x \) is a limit point (the direct limit of an infinite sequence of fat points), then we have have the following relation

\[
H_{DR}(A_x X/x) \cong H_{DR}(X/k)
\]

when \(\nabla_x X \to x \) is smooth. This last condition implies, for suitable point systems, that \(X \) is rationally \(x \)-laxly stable – cf., \([4]\). Therefore, we would expect a further decomposition of \(H_{DR}(A_x X/x) \) which is captured motivically by the rational motivic measure as displayed loc. cit.

References

[1] M. Atiyah & I. Mcdonald Introduction to Commutative Algebra, Westview Press.
[2] R. Cluckers & F. Loeser Constructible motivic functions and motivic integration Invent. math. 173, 23-121 (2008)
[3] N. Katz Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin. Inst. Hautes tudes Sci. Publ. Math. No. 39, 175-232 (1970)
[4] A. Stout Stability theory for schemes of finite type and schemic motivic integration arXiv:1212.1375v3
[5] H. Schoutens Schematic Grothendieck Rings I
[6] H. Schoutens Schematic Grothendieck Rings II
Graduate Center, City University of New York, 365 Fifth Avenue, 10016, U.S.A.

E-mail address: astout@gc.cuny.edu