There is no square-complementary graph of girth 6

Ratko Darda*

April 1, 2014

Abstract

A graph is square-complementary (squco, for short) if its square and complement are isomorphic. We prove that there is no squco graph of girth 6, thus answering a question asked by Milanič et al. [Discrete Math., 2014, to appear], and leaving $g = 5$ as the only possible value of g for which the existence of a squco graph of girth g is unknown.

1 Introduction

Given two graphs G and H, we say that G is the square of H (and denote this by $G = H^2$) if their vertex sets coincide and two distinct vertices x, y are adjacent in G if and only if x, y are at distance at most two in H. Squares of graphs and their properties are well-studied in literature (see, e.g., Section 10.6 in the monograph [3]). A graph G is said to be square-complementary (squco for short) if its square is isomorphic to its complement. That is, $G^2 \cong \overline{G}$, or, equivalently, $G \cong \overline{G^2}$. The question of characterizing squco graphs was posed by Seymour Schuster at a conference in 1980 [10]. Since then, squco graphs were studied in the context of graph equations in terms of operators such as the line graph and complement (see [1,2,4–6,9]). The entire set of solutions of some of these equations was found (see for example [1] and references quoted therein). However, the set of solutions of the equation $G^2 \cong \overline{G}$ remains unknown, despite several attempts to describe it (see for example [2, 5, 8]). The problem of determining all squco graphs was also posed as Open Problem No. 36 in Prisner’s book [9].

Examples of squco graphs are K_1, C_7, and a cubic vertex-transitive bipartite squco graph on 12 vertices, known as the Franklin graph (see Fig. 1).

![Figure 1: The Franklin graph.](image)

The following two propositions, due to Baltić et al. [2] (and partially due to Capobianco and Kim [5]), summarize the results regarding the connectivity, radius, and diameter of squco graphs.

Proposition 1. Every squco graph is connected and has no cut vertices.

*University of Primorska, UP FAMNIT, Glagoljaška 8, 6000 Koper, Slovenia. E-mail: ratko.darda@student.upr.si
Proposition 2. If \(G \) is a nontrivial squco graph, then \(\text{rad}(G) = 3 \) and \(3 \leq \text{diam}(G) \leq 4 \). Moreover, if \(G \) is regular, then \(\text{diam}(G) = 3 \).

It is not known whether a squco graph of diameter 4 exists. In the paper \([8]\), several other questions regarding squco graphs were posed, and a summary of the known necessary conditions for squco graphs was given. Among them is the following result expressing a condition on the girth. (Recall that the girth of a graph \(G \) is the length of a shortest cycle in \(G \), or \(\infty \) if \(G \) is acyclic.)

Proposition 3. If \(G \) is a nontrivial squco graph with girth at least 7, then \(G \) is the 7-cycle.

This proposition leaves only 5 possible values for the girth \(g \) of a squco graph \(G \), namely \(g \in \{3, 4, 5, 6, 7\} \). The case \(g = 7 \) is completely characterized by Proposition 2. Baltić et al. \([2]\) and Capobianco and Kim \([5]\) asked whether there exists a squco graph of girth 3. An affirmative answer to this question was provided in \([8]\) by a squco graph on 41 vertices with a triangle (namely, the circulant \(C_{41}(\{4, 5, 8, 10\}) \)). As shown by the Franklin graph, there also exists a squco graph of girth 4. The questions regarding the existence of squco graphs of girth 5 or 6 were left as open questions in \([8]\). In this note, we answer one of them, by proving that there is no squco graph of girth 6. This leaves \(g = 5 \) as the only possible value of \(g \) for which the existence of a squco graph of girth \(g \) is unknown.

We briefly recall some useful definitions. Given two vertices \(u \) and \(v \) in a connected graph \(G \), we denote by \(d_G(u, v) \) the distance in \(G \) between \(u \) and \(v \) (that is, the number of edges on a shortest \(u \)-\(v \) path). For a positive integer \(i \), we denote by \(N_i(v, G) \) the set of all vertices \(u \) in \(G \) such that \(d_G(u, v) = i \), and by \(N_{\geq i}(v, G) \) the set of all vertices \(u \) in \(G \) such that \(d_G(u, v) \geq i \).

We use standard graph terminology \([7]\).}

2 The result

Theorem 1. There is no squco graph of girth 6.

Proof. Suppose for a contradiction that \(G \) is a squco graph of girth 6. First, we observe that if \(x \) is a vertex of \(G \), then there are no edges in any of sets \(N_i(x, G) \) for \(i = 1, 2 \) and no two distinct vertices in \(N_1(x, G) \) have a common neighbor in \(N_2(x, G) \). Let \(k = \Delta(G) \) be the maximum degree of \(G \), and let \(w \) be a vertex of degree \(k \). Since the only squco graphs with maximum degree at most 2 are \(K_1 \) and \(C_7 \) \([8]\), we have \(k \geq 3 \).

We consider two cases.

Case 1. \(w \) has a neighbor of degree at least three.

Let \(v \) be a neighbor of \(w \) of degree at least three, and let \(p \) and \(q \) be two neighbors of \(v \) other than \(w \). If one of them, say \(p \), is of degree at least 3, then \(p \) has at least two neighbors in \(N_2(v, G) \) and thus \(\Delta(G') \geq |N_1(q, G')| \geq k + 1 \), contrary to the fact that \(G' \cong G \). Hence, both \(p \) and \(q \) are of degree 2. (Notice that Proposition 1 excludes the possibility of having degree 1 vertices.) Let \(a \) and \(b \) be the unique neighbors of \(p \) and \(q \) in \(N_2(v, G) \), respectively. The set \(N_3(v, G) \) is nonempty, because radius of \(G \) is 3 by Proposition 2. Vertices \(a \) and \(b \) must be adjacent to all of vertices in \(N_2(v, G) \), otherwise \(\Delta(G') \geq \max(|N_1(p, G')|, |N_1(q, G')|) \geq k + 1 \), contrary to the fact that \(G' \cong G \). To avoid a 4-cycle in \(G \), we conclude that \(|N_3(v, G)| = 1 \). But now, the degree of \(v \) in \(G' \) is 1, which implies that \(G' \) has a cut vertex, contrary to the fact that \(G \) is squco and Proposition 1.

Case 2. All neighbors of \(w \) are of degree at most two.

In this case, all neighbors of \(w \) are of degree exactly two. In particular, \(|N_2(w, G)| = |N_1(w, G)| = k \geq 3 \). Now we will show that every vertex \(x \) from \(N_2(w, G) \) is of degree at least
Let $x \in N_2(w, G)$, and let y be the unique neighbor of x in $N_1(w, G)$. Vertex x
has at least $|N_3(w, G)| - 1$ neighbors in $N_3(w, G)$, since otherwise $|N_1(y, \overline{G^2})| \geq k + 1$. This
implies that any two vertices from $N_2(w, G)$ (the size of $N_2(w, G)$ is at least 3) have at least
$|N_3(w, G)| - 2$ common neighbors in $N_3(w, G)$. This bounds $|N_3(w, G)| \leq 3$, otherwise we would
have a 4-cycle.

Suppose $|N_3(w, G)| = 3$. To each of the three pairs of vertices in $N_3(w, G)$, associate, if possible,
their common neighbor in $N_2(w, G)$. Because, each vertex in $N_2(w, G)$ is connected to at least two vertices in $N_3(w, G)$, it is surely associated with some pair. If $|N_2(w, G)| \geq 4$
then some two vertices from $N_2(w, G)$ are associated with the same pair and we get a 4-cycle, a
contradiction. We thus have $|N_1(w, G)| = |N_2(w, G)| = k \leq 3$ and $|N_{\geq 4}(w, G)| = 0$ (otherwise
we would have a vertex of degree at least $4 > k$ in $\overline{G^2}$). This implies that our graph has at most
ten vertices. All squco graphs with at most 11 vertices are known \[8\]: none of them has girth 6. Hence this is a contradiction with G having girth 6.

Suppose $|N_3(w, G)| = 2$. If $k \leq 4$, then we our graph has no more than 11 vertices, which
is not possible. Hence $k \geq 5$. There must be at least $2k - 1$ vertices of degree two in G (all k
vertices in $N_1(w, G)$; at most one of k vertices in $N_2(w, G)$ has both vertices from $N_3(w, G)$ for
neighbors, otherwise we have a 4-cycle as before). In $\overline{G^2}$ at most $k + 3$ of them are of degree
two, because every vertex in $N_1(w, G)$ will be connected to all but one vertex in $N_2(w, G)$ in $\overline{G^2}$,which is a contradiction, because $k \geq 5$.

The last possibility is that $|N_3(w, G)| = 1$, but then w would be of degree 1 in $\overline{G^2}$, again a
contradiction. This completes the proof.\Box

References

[1] Jin Akiyama, Hiroshi Era, and Geoffrey Exoo. Further results on graph equations for line
graphs and nth power graphs. Discrete Math., 34(3):209–218, 1981.

[2] Vladimir Baltić, Slobodan Simić, and Velibor Tintor. Some remarks on graph equation
$G^2 = \overline{G}$. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 5:43–48 (1995), 1994.

[3] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph classes: a survey. SIAM Monographs on
Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 1999.

[4] M. Capobianco, M. Karasinski, and M. Randazzo. On some quadratic graph equations. In
Proceedings of the thirteenth Southeastern conference on combinatorics, graph theory and
computing (Boca Raton, Fla., 1982), volume 35, pages 149–156, 1982.

[5] Michael Capobianco and Suh-Ryung Kim. More results on the graph equation $G^2 = \overline{G}$.
In Graph theory, combinatorics, and algorithms, Vol. 1, 2 (Kalamazoo, MI, 1992), Wiley-
Intersci. Publ., pages 617–628. Wiley, New York, 1995.

[6] Michael F. Capobianco, Karen Losi, and Beth Riley. $G^2 = \overline{G}$ has no nontrivial tree solu-
tions. In Combinatorial Mathematics: Proceedings of the Third International Conference
(New York, 1985), volume 555 of Ann. New York Acad. Sci., pages 103–105. New York
Acad. Sci., New York, 1989.

[7] R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer, Heidel-
berg, fourth edition, 2010.

[8] Martin Milanič, Anders Sune Pedersen, Daniel Pellicer, and Gabriel Verret. Graphs whose
complement and square are isomorphic. Discrete Math. To appear.
[9] Erich Prisner. *Graph dynamics*, volume 338 of *Pitman Research Notes in Mathematics Series*. Longman, Harlow, 1995.

[10] Seymour Schuster. Problem 10. In *Theory and Applications of Graphs (Proc. of the Fourth Inter. Conf. on the Graph Theory and Applications of Graphs)*, Eds. G. Chartrand, Y. Alavi, D.L. Goldsmith, L. Lesniak-Foster, D.R. Lick), page 611. John Wiley Sons, New York - Chichester - Brisbane - Toronto - Singapore, 1981.