Systematic identification of recognition motifs for the hub protein LC8

Nathan Jespersen1, Aidan Estelle1, Nathan Waugh1, Norman E Davey2, Cecilia Blikstad3, York-Christoph Ammon4, Anna Akhmanova4, Ylva Ivarsson3, David A Hendrix1,5, Elisar Barbar1

Hub proteins participate in cellular regulation by dynamic binding of multiple proteins within interaction networks. The hub protein LC8 reversibly interacts with more than 100 partners through a flexible pocket at its dimer interface. To explore the diversity of the LC8 partner pool, we screened for LC8 binding partners using a proteomic phage display library composed of peptides from the human proteome, which had no bias toward a known LC8 motif. Of the identified hits, we validated binding of 29 peptides using isothermal titration calorimetry. Of the 29 peptides, 19 were entirely novel, and all had the canonical TQT motif anchor. A striking observation is that numerous peptides containing the TQT anchor do not bind LC8, indicating that residues outside of the anchor facilitate LC8 interactions. Using both LC8-binding and nonbinding peptides containing the motif anchor, we developed the “LC8Pred” algorithm that identifies critical residues flanking the anchor and parses random sequences to predict LC8-binding motifs with ~78% accuracy. Our findings significantly expand the scope of the LC8 hub interactome.

DOI 10.26508/lsa.201900366 | Received 5 March 2019 | Revised 21 June 2019 | Accepted 24 June 2019 | Published online 2 July 2019

Introduction

Most proteins interact with few partners, but a class of proteins referred to as hubs interact with a large number of partners in complex protein–protein interaction networks (Jeong et al, 2001, 2000). Hubs can be static or dynamic. Static hubs bind a large number of partners simultaneously at different sites, for example, BRCA2 (Komurov & White, 2007). Dynamic hubs bind multiple partners that compete for the same site (Wu et al, 2009; Patil et al, 2010). Well-known examples of dynamic hubs include calmodulin and 14–3–3 proteins (Aitken, 2006; Uchikoga et al, 2016; Uhart et al, 2016). A more recently discovered member of dynamic hub proteins is the dynein light chain LC8 (Barbar, 2008).

There are more than 280 binary interactions for human LC8 in the Mentha database (Calderone et al, 2013), some of which have been extensively studied, including the dynein intermediate chain (IC) (Makokha et al, 2002; Benison et al, 2006; Nyarko & Barbar, 2011) and the transcription factor ASCIZ (Jurado et al, 2012; Zaytseva et al, 2014; Clark et al, 2018). In addition, expression patterns show that LC8 is highly expressed across a wide variety of cell types (Petryszak et al, 2016) and is broadly distributed within individual cells (Chen et al, 2009; Wang et al, 2016).

LC8 is an 89–amino acid homodimeric protein first identified as a subunit of the dynein motor complex. Colocalization and binding studies with dynein led to a common perception that LC8 functions as a dynein “cargo adaptor” to facilitate transport of dynein cargo (Rodríguez-Crespo et al, 2001; Theerawatanasirikul et al, 2017). However, further studies have shown that LC8 interacts with many proteins not associated with dynein at the same symmetrical grooves in the LC8 dimer interface (Fig 1A). Because of the symmetry of the binding sites of the LC8 dimer, and its association with dimeric proteins, it is now generally accepted that LC8 serves not as a cargo adaptor in the dynein machinery but rather as a dimerization hub in a variety of systems (Barbar, 2008).

LC8 interacts with an 8–amino acid recognition motif within intrinsically disordered regions of its partners. Sequences bound to LC8 form a single β-strand structure integrated into an LC8 anti-parallel β-sheet (Clardy et al, 1999; Fig 1). Although there is some variation in the binding motif, it is most frequently anchored by a TQT sequence (Clark et al, 2016). The glutamine in the TQT anchor is typically numbered as position 0 because it is the most highly conserved amino acid (Benison et al, 2007). The flanking threonines are therefore defined as positions −1 and +1. The TQT anchor is highly enriched among known LC8 partners and will be referred to in this article as the “motif anchor” (Fig 1B; Clark et al, 2016).

A dynamic binding interface, determined from nuclear magnetic resonance (NMR) relaxation and hydrogen/deuterium exchange experiments (Fan et al, 2002; Benison et al, 2007; Hall et al, 2008), allows for large sequence variation in LC8 binding partners; however, several steric and enthalpic restrictions are placed on binding sequences. One restriction is inferred from analysis of solvent accessible surface areas of peptides bound to LC8 (Fig 1C;...
LCB binding site. In addition, by selecting for the tightest binder, many weaker binders were likely outcompeted and therefore not visible in their study. Our goal in this work is to determine the extent of the variability in LCB binding sequences flanking the motif anchor.

LCB motif prediction analyses have increased the number of known binding sequences, and enhanced our understanding of the motif specificity (Erdős et al., 2017; Rapali et al., 2011); however, algorithms generated in these studies were designed for initial screening and are therefore not sufficiently stringent for general use nor made publicly available. Here, we use a combination of proteomic peptide phage display (ProP-PD) technology and position-specific scoring matrices (PSSMs) to determine likely LCB binding sequences. Interestingly, although our methods were unbiased with respect to the presence of a TQT anchor, sequences experimentally validated to bind LCB all contained a TQT or variation of the TQT triplet. A database that includes partners identified in this work along with published interactions is now available and contains all 82 validated LCB interactions. Finally, we used this database to develop an algorithm that incorporates both binding and nonbinding sequences to effectively predict LCB partners and define rules for LCB partner recognition that underscore the plasticity of the LCB binding pocket.

Results

LCB is broadly distributed in cells

To examine the subcellular distribution of LCB, we used HeLa cells stably expressing endogenous levels of a C-terminally tagged LCB-GFP fusion generated by BAC TransgeneOmics (Poser et al., 2008). In interphase cells, LCB-GFP is present throughout the cytoplasm, within the cell nucleus, and enriched in patch-like structures at the cell cortex located in the vicinity of focal adhesions (Fig 2A). In mitotic cells, LCB-GFP is present at the spindle and enriched at the spindle poles and prometaphase kinetochores (Fig 2B). Although the mitotic LCB-GFP localization is consistent with LCB being part of the cytoplasmic dynein complex (Cianfrocco et al., 2015), the nuclear localization and cortical accumulations in interphase cells are not observed for the other core subunits of cytoplasmic dynein, such as the heavy, intermediate, or light ICs, which were previously tagged with GFP and detected in a similar manner (Splinter et al., 2012).

In agreement with the imaging data, analysis of localization patterns for known LCB partners performed using the COMPARTMENTS database (Binder et al., 2014) show that they can be found in multiple cellular compartments, such as the cytoplasm, nucleus, and vesicles (Fig 2C). Surprisingly, LCB partners can even be found in extracellular space. Localization within the various categories of subcellular structures supports the conclusion that LCB is broadly distributed throughout the cell irrespectively of dynein and concentrates at certain subcellular sites where LCB partners are enriched.

ProP-PD selections identify 16 new LCB interactions

For broad mapping of the LCB interaction network, we used a ProP-PD assay, in which a library is created that encodes sequences for
peptides drawn from a genome of interest. These peptides are then synthesized by bacteriophages and displayed externally on bacteriophage coats. Our ProP-PD library is composed of 479,846, synthesized by bacteriophages and displayed externally on bacteriophage particles. Each phage particle displays hundreds of peptide copies on its surface. This avidity allows the capture of low-/medium-affinity peptides, in the range of 40–150 μM (Davey et al., 2017; Wu et al., 2017). In addition, because LC8 binds much more tightly to dimeric partners than to monomeric partners because of the bivalency effect (Hall et al., 2008), the presence of multiple peptides in close proximity on the phage surface could facilitate binding to otherwise weak motifs. Thus, it is possible that the anchor-containing peptides that failed to bind in our ITC experiments, in fact do bind LC8, but with affinities weaker than 40 μM.

Available crystal structures of LC8 bound to partner peptides indicate that partners require amino acids on the N-terminal of the TQT anchor motif for the necessary backbone H-bonds to form a β-strand. Therefore, for the phage display identified peptides that had the TQT anchor at the N-terminus, the corresponding synthesized peptide sequence was shifted to have the TQT motif at the 10–12 position, and the flanking regions were replaced with the actual protein sequence at these positions to allow for at least 5 amino acids on the N-terminal side of the TQT sequence.

This design may partially explain why some peptides that were pulled down in the ProP-PD experiments did not bind via ITC, as the sequences used in these experiments were not identical. Many of the nonbinding ProP-PD hits have their TQT anchor located near the N-terminus of the peptide. As each ProP-PD peptide is N-terminally anchored by an SSSG linker, their binding behavior might be expected to differ from native sequences, wherein flanking regions are different...
Table 1. Peptides synthesized based on their binding in phage display experiments.

UniProt	Gene	Sequence	Start	End	Binder?	Citation
O43521	BCL2L11	APMSCDKSTQTPSP	108	117	Y	Puthalakath et al (1999)
Q9UPAS	BSN4	PRATAEFSTQTPSP	1,498	1,511	Y	Fejtova et al (2009)
Q86VQ1	GLCC1	SSTSTRIDTQTPSV	340	353	Y	Hutchins et al (2010)
Q96R06	SPAG5	HPTEQDSSQTPDVTS	463	476	Y	Schmidt et al (2010)
Q6MN6	CAPRIN2	NQSFQTPSQTPQ	791	804	Y	
Q75665	OFD1	AKECSMNETQTSST	153	166	Y	Boldt et al (2016)
Q2505	MUC3A	PVLTSAATQTPSPA	1,800	1,813	Y	
Q9UB0	SLC9A2	DSRTVDTQTPGM	749	804	Y	
Q9ULV3	CI2	ARAGRSVSTQTGSM	13	26	Y	den Hollander & Kumar (2006)
Q99102	MUC4	SQNHWTRSDTQTTRE	200	213	Y	
Q99102	MUC4	DDDNHWRSDTQTTRE	200	213	Y	
P07359	GP1BA	GQGAAALTATQHTHEL	566	581	Weak*	
Q9Y4F4	TOGARAM1	SKTQYTFGQTCQ	788	801	Weak*	
Q8WWN8	ARAP3	SP5PTGTPQTPGF	1,514	1,527	Weak*	
Q01973	ROR1	DSQNNATQTQTSD	760	774	Weak*	
Q8NEZ4	KMT2C	IVCSVSTQASD	205	218	N	
Q9UPAS	BSN-shift3	STQTTPSAPASDMP	1,505	1,518	N	
Q7222	EFL1	DRLMCTGSQTFDD	375	386	N	
Q2817	MUC2	TPFTPTGQTPTTT	2,000	2,013	N	
Q9HC84	MUC5B-3	SMATPSSSTQTSGT	2,673	2,686	N	
Q8TEC5	SH3RF2	TLYSTASQQTQVF	714	727	N	
Q9P2G1	ANKIB1	RGDSDVSSQTPQT	1,065	1,078	N	
O43526	KCNQ2	DDPMYSSQTQGYGD	370	380	N	
P14859	POZ2F1	ESGDGNTQTQNL	13	26	N	
P35688	IRS1	LRKVQTAQQTNSR	841	854	N	
Q2XHR3	QSER1	KTLTFGGSGQTQTP	374	387	N	
Q99814	EPAS1	TEAKDQSCSTQTDFN	509	522	N	
Q9Y4K1	CRYPG1	RSFVLNPESMTQDVSSQ	550	565	N	
P49862	KL7	SFBRPHGSTQTHVN	98	111	N	
Q2904	DAZL	TQDDYFKDRVHHFRRS	272	288	N	
Q96FV2	SCR2	VRTPRFTQOVQR	342	355	N	
Q96FV2	SCR2	DTTLPRTQVDVQR	344	355	N	
Q7ZS89	EMSY	KITFKPSTQITNT	261	274	N	
Q13952	NFYC	CLEKTLQITQTEQ	289	302	N	
Q9HC84	MUC5B-1	TLPVLSTAKST	3,049	3,062	N	
P53350	PLK1	AASLQKMLQTDPTAR	278	293	N	
Q92499	DDX1	DDDGNAQVTQTF	271	282	N	
Q8NH82	KY	ITSYSQGCTOLVE	81	94	N	
Q06190	PPP2R3A	LQETLTTSGQANLS	625	638	N	
Q13618	CUL3	KHSGRQTLQHMG	542	555	N	
Q9H4B6	SAV1	NOQFLRTLPQTPH	70	83	N	
Q2TV78	MIST1	EGFRGANTQMTTAYLA	259	274	N	

(Continued on following page)
Table 1. Continued

UniProt	Gene	Sequence	Start	End	Binder?	Citation
Q6ZU6S	UBN2	PLOATKSQTNPV	942	955	N	
Q96SC8	DMRTA2	SSSAFSPLOPNAS	433	446	N	
Q6ZR10	OTOG	TLQQPLETAQLPAG	1,541	1,556	N	
Q96J9	ZNF649	RAAALPEETSSRR	1,014	1,027	N	

Anchor motifs are underlined. Asparagines shown in italics were added to increase solubility.

and might contain amino acids that impair LC8 binding. This effect is most clearly demonstrated by our results for two partially complementary peptides derived from the protein bassoon (BSN). Two versions of this peptide were synthesized for this experiment: one version exactly matching the ProP-PD hit with the TQT motif at the N-terminus (minus the SSSG tag, STQTSPAPASDMP) and a modified version with the TQT motif near the C-terminus (PRATAFSTQTPSP). The modified BSN peptide with a C-terminal TQT demonstrated strong binding to LC8, whereas the original phage-determined peptide with N-terminal TQT failed to demonstrate even weak binding to LC8. This example provides strong evidence that LC8-partner binding interactions are sensitive to the positioning of the TQT anchor within the full binding motif and validate our concern that the SSSG linker erroneously facilitated binding for some sequences in the ProP-PD experiment.

Position-specific scoring and disorder prediction identifies seven new LC8 interactions

We scanned Homo sapiens and viral proteomes for potential LC8-binding sequences based upon: (1) their propensity for disorder, (2) their sequence conservation across related species, and (3) the sequence’s similarity to known motifs. This final parameter used a PSSM based on the relative enrichment or depletion of each residue in a potential sequence, weighted by amino acid frequency. Enrichment and depletion PSSMs were populated using sequences that interact with LC8, verified either by mutagenesis or in vitro assays. ITC experiments were performed on 19 synthetic peptides with high-scoring sequences, but only seven bound (Table 2). These include the human papillomavirus E6 protein, the rotavirus VP4, and human CCL2, CCL7, SON, MAST1, and ZFPM1 proteins. Notably, a previous study also predicted a binding site within the rotavirus A VP4 protein (Martínez-Moreno et al, 2003) at residue position 644–651 (IDMSTQIG), however, the synthesized peptide sequence tested in that study did not bind LC8. Here, we predict an alternative site at positions 605–612 (NDNSTQTS) based on disorder propensity and motif similarity. ITC experiments confirmed that the site predicted here binds with a K_d of 4.2 μM (Fig 3B).

Common motif features that promote LC8 binding

Because only 7 of the 19 PSSM-predicted binding sequences actually interact with LC8, it is clear that an additional filtering method should be introduced to minimize false positives. To assess common features for binding from this growing dataset of interactions, we overlaid all known tight binding partners (50 sequences with K_d < 10 μM, Fig 4B) and all nonbinding sequences (determined here, Fig 4C). This comparison revealed some conspicuous differences between binders and nonbinders, allowing for the determination of the position-based rules that follow (Fig 4A and D).

The anchor is extremely well conserved in both amino acid type and volume. There is a strong preference for a mid-sized H-bonding/hydrophobic residue at positions −1 and +1 and a clear preference for a glutamine at position 0. Any deviation from this anchor, such as the RQT seen in EIF4G3, leads to a nonbinding sequence. Both threonines are completely buried in crystalline structures (Fig 1C), and therefore, deviations to a charged group are highly unfavorable (Fig 4D, Poor Anchor).

Position +2, which has no β-strand backbone interactions in any crystal structures, shows a large preference for proline, aspartate, and glutamate residues. Interestingly, these three residues are classical ly depleted in β-strands (Chou and Fasman, 1974; Kumar, 2013), providing a potential explanation for these residues acting as “strand-breaking” amino acids at the periphery of the LC8 binding pocket. An alternative explanation for their enrichment is that the negative charge for E and D can interact with the positive electrostatic charge on LC8 (Fig 1B). Proline, however, might energetically assist in binding by reducing the change in entropy, as both proline and pre-proline residues are conformationally restricted (Ho & Brasseur, 2005). Hydrophobic amino acids are not well accommodated at this position (Fig 4D, Hydrophobic +2).

Position −2 shows little charge preference and allows positive, negative, and hydrophobic residues; however, there are no examples of bulky aromatic side chains at this position among the tightly binding peptides, indicating that there are some steric constraints (Fig 4D, Bulky Hydrophobic −2).

Position −3 favors large side chains as nearly all tight binders contain an amino acid at least as large as valine at this position, with only two occurrences of an alanine. Fig 1B reveals a binding pocket where large side chains can fit, which is often occupied by lysines or arginines. A small side chain at the −3 position does not immediately exclude a sequence from binding, as in CAPRIN2 (Table 1), but seems to be less favorable based on the depletion of these residues (Fig 4D, Small −3).

Position −4 favors amino acids capable of making a polar contact, such as aspartate, and no sequences identified to date have hydrophobic residues larger than alanine at this position (Fig 4D, Hydrophobic −4). Finally, the −5 position shows a slight bias toward positively charged residues (Fig 4B and C), but it is unclear whether this effect is significant.
In general, partners must bind within a deep hydrophobic pocket and form a β-strand structure; therefore, multiple similar charges within a peptide, or sterically challenging prolines at any internal position, makes binding unfavourable. Even with this systematic comparison, a number of the nonbinding sequences could not be categorized (Fig 4D).

The partner-binding pocket is conserved in LC8 sequences but is structurally variable

A comparison of LC8 amino acid sequences from 58 different eukaryotic species using the ConSurf program (Ashkenazy et al, 2016) reveals that the partner binding site is strictly conserved across these diverse organisms (Fig 5A). Interestingly, the conservation of residues creates a noticeable gradient pattern that radiates out from the dimeric interface/partner binding site, with the most conserved residues near the core (maroon), and the least conserved residues at the peripheries (blue).

We used the Ensemblerator program (Brereton & Karplus, 2018), which aligns independently determined 3D structures and identifies regions of structural conservation or plasticity, to visualize how a sequence that is strictly conserved is capable of binding such a wide variety of sequences. By overlaying the protomers from five

Figure 3. Thermodynamic analysis of binding peptides. (A) Representative ITC thermograms of LC8 bound to 14–amino acid–long synthetic peptides. The data were collected at 25°C in 50 mM NaCl, 50 mM NaPO4, and 1 mM NaN3, pH 7.5. Experiments were performed in triplicate. We categorized peptides as strong binders (Kd reliably determined; SPAG5), weak binders (heat generated, but unable to fit the data; TOGARAM1), and nonbinders (QSER1). Weak binders are those with affinities >25 μM. (B) Binding affinities and thermodynamic parameters for strong LC8 binders identified in this study. Thermodynamic parameters for all binding peptides at 25°C are shown. ΔG (black), ΔH (orange), and TΔS (blue) kcal/mol values are the average of two to three independent ITC experiments. Kd are shown in μM. 8 amino acid motifs are shown, with residues capable of making conserved hydrogen bonding interactions highlighted in grey. Sequences are ordered by descending ΔH values.
published crystal and NMR structures of free LC8, we observed that the β-strand that directly binds to partners is highly variable (Fig 5B; Fan et al, 2002; Benison et al, 2007; Hall et al, 2008) and has the highest root mean squared deviation (RMSD) values between structures. It is of note that the most sequence-conserved region is also the most structurally variable part of the protein. This structural plasticity allows accommodation of a diverse set of partners with a wide range of properties and sheds light on why definitive identification of LC8-binding motifs is such a difficult task.

Enthalpic and entropic modes of binding

Crystal structures of LC8 bound to different peptides reveal surprisingly few conserved backbone and side chain H-bonds. Backbone H-bonding between the antiparallel β-strands occurs only for residues between positions −5 and −1 (Fig 5C and D). Tellingly, there are only five frequently observed side chain H-bonds, and four of these occur within the anchor (Fig 5E). The remaining interaction occurs at position −4, which is often an aspartate residue. The conspicuous lack of conserved side chain polar contacts, along with LC8’s dynamic binding interface, suggests that most disordered (or extended) anchor-containing sequences should be capable of binding LC8.

Incorporation of physicochemical features and nonbinder data improves binding predictions

Based on position preferences described above, we developed an LC8Pred algorithm that captures common features observed in binding peptides, including size and charge preferences, and features present in the 32 anchor-containing nonbinding peptide sequences (Fig 6A). For each matrix, positive values within the matrix indicate that the given amino acid is enriched in binding sequences and depleted in nonbinding sequences, whereas high negative values signify depletion of that amino acid in binding sequences and enrichment in nonbinding sequences. The addition of nonbinding sequence information significantly improved the algorithm’s capacity to differentiate between binding and nonbinding sequences, however, with only 32 nonbinding sequences,
our data were notably sparse, and separation between the two groups was incomplete. To improve our differentiation capacity, we binned the 20 amino acids into four categories and developed additional PSSMs using these bins, thereby reducing the overall number of matrix terms. The first PSSM separated amino acids based on polarity, whereas the second PSSM separated according to volume. These matrices largely confirm groupings as described in the “common feature” section above, but with some exceptions. Notably, although there is a preference for large amino acids at the −3 position, the polarity matrix also shows an enrichment in positively charged residues. In addition, although the −5 position is the most varied in the matrix, it has a high score for positively charged residues (Fig 6A). This discrepancy is because of the lack of positively charged residues at −5 in the nonbinding sequences rather than from any strong enrichment of positive charge in the binding sequences. The −5 position also shows a slight enrichment for very large amino acids and is the only position to do so. Crystal structures show that the −5 position is not buried within LC8’s binding groove and therefore experiences much less steric restriction (Fig 1B).

Using the described matrices, we scored all known binders and nonbinders to determine the discriminatory capabilities of the PSSMs (Fig 6B). Although the amino acid, volume, and polarity matrices were each moderately successful at separating binding from nonbinding sequences in isolation, the best separation was achieved when every matrix was combined. We combined the volume and polarity matrices to determine a volume and polarity score, and the amino acid matrix was used to determine an amino acid score (Fig 6B).

Because our goal is to predict partners with high reliability, strict thresholds were used to determine what constitutes a binder and a nonbinder. A minimal score of 12.9 on the amino acid matrix, and 0.1 on the volume and polarity matrix, is used to determine whether a sequence is likely to be considered a binder. These thresholds result in only four false positives and 20 false negatives with our available data set, corresponding to a 75% true-positive rate and an 88% true negative rate (Fig 6B). Interestingly, although the volume and polarity matrices only provide a small increase in accuracy overall at these thresholds, they are extremely proficient at separating binders from nonbinders when applied stringently. A threshold of 2.7 on the volume and polarity matrix alone results in a 0% false-positive rate, while retaining 57% of the true positives (Fig 6B).

Although we achieve an accuracy of 78%, there are a number of outliers: both high-scoring nonbinders and low-scoring binders. Within the binders, the first sequence, DDKNTMTD, is from Myosin Va (Fig 6B). It is unsurprising that this sequence scores poorly, as it is the only “TMT” anchor with verified binding data, and therefore has a low score because of the M instead of Q. However, binding is likely salvaged by the presence of the highly favourable amino acids at the other positions and by the presence of adjacent coiled-coil domains in the full-length protein. The remaining three lowest scores belong to proteins with multiple LC8-binding sequences.
proximal to one another (namely ASCIZ/ATMIN, and BSN), which would facilitate binding of weaker motifs because of bivalency. Within the nonbinders, three of the four well-scoring nonbinders are listed in Fig 4D as "other," indicating that there is consistency between algorithm predictions and our ability to recognize binders/nonbinders based on sequence. This also suggests that there are some deleterious interactions that we have yet to understand and will require more data to decipher. The fourth sequence contains a hydrophobic valine at the +2 position (Fig 6B, sequence 8), which is very rare, as this position is often fully solvent exposed and prefers β-strand breaking residues (Fig 1B). Although LC8Pred weights valine at +2 negatively (Fig 6A), the remaining residues score well enough to result in the erroneous categorization of this sequence as a binder. Further accumulation of LC8-binding and nonbinding sequences will no doubt help to clarify the importance of one poorly scoring residue and improve LC8Pred accuracy. Our LC8 motif algorithm is available on the database web page for public use (http://lc8hub.cgrb.oregonstate.edu/LC8Pred.php) for any sequence of interest.

Predictive scores for the human protein Chica: a known LC8 binder

To test the ability of LC8Pred to identify binding sequences, we scored a test protein on each matrix using a sliding window. For this test, we selected Chica, a protein that contains a series of LC8-binding sequences between residues 400 and 475 (Clark et al, 2016). To prevent algorithmic bias, peptides from Chica were not used in the development of our scoring matrix. Upon applying the LC8Pred algorithm, six positive scores were returned within Chica (Fig 6C).

Figure 5. LC8 is structurally variable but conserved in sequence. (A) Surface representation of LC8 colored by sequence conservation using ConSurf. More sequence-conserved regions are shown in magenta, less sequence-conserved regions are shown in cyan. Highly conserved residues map to those within the LC8 binding site. (B) Surface representation of LC8 colored by structural conservation in the free protein using the Ensemblator. Regions that are more structurally variable are shown in red, whereas more structurally conserved regions are shown in blue. An overlay of NMR and crystal structure protomers used for the structural analysis is shown as a cut-out in (B). (C) 2D depiction of the binding interface between an example peptide (orange) and the binding β-strand within LC8 (Teal). (D, E) Polar bonds between LC8 and peptides from crystal structures are shown in (D) (top down view, only backbone interactions) and (E) (pocket view). Colors of polar contacts are based on whether the polar contacts stem from backbone (yellow) or side chain (purple) residues on the peptide. Peptide residues with frequent side chain interactions are labeled in red. (C, E) Residues outside of the binding β-strand that are important interaction sites shown in (C) are labeled in (E).
One of these scores fell far below threshold and was ignored. The remaining five scores were within the LC8-binding region; four of which have previously been determined experimentally to bind LC8 (Clark et al., 2016). The other is an SQT-containing sequence that scored below the designated threshold in the amino acid matrix, indicating that although this particular sequence may bind LC8, the prediction is of low confidence (Fig 6C). These test results provide strong evidence of the discriminatory power of our algorithm, as it can successfully recognize sequences that bind LC8 while excluding those that do not.

Human proteome scan identifies 374 potential binding sequences

After determining LC8Pred’s reliability and ability to distinguish potential motifs, we used it to scan the human proteome to identify high-confidence binding partners. In total, 785 sequences scored above our PSSM thresholds. These sequences were then further filtered using IUpred to eliminate motifs within ordered regions. This process yielded 374 high-confidence hits from 338 proteins (Table S2). Of these, 36 have been previously described in direct interaction studies and are listed on our LC8Hub database (Fig 6D). A further 19 partners have been identified in high throughput proteomics studies, such as pull-down mass spectrometry, including the highest scoring hit (FAM117B; Hein et al., 2015; Boldt et al., 2016). Our data validate these interactions and define likely binding regions within these partners. It is of note that several of the identified partners contain multiple putative LC8 sites in close succession. The ability of LC8 to “zip up” partners with multiple recognition motifs has been described for both Nup159 (Nyarko et al., 2013) and ASCI Z (Clark et al., 2018), and it is possible that many partners within this list contain weaker LC8 sites proximal to these tight-binding motifs.
Prior studies on LC8 interactions have noted an enrichment in LC8 partners within the Hippo signalling pathway (Erdős et al, 2017). Our proteome scan has identified these same partners (e.g., AMOT, WWC1, and WWC2) and additional novel binders from the hippo pathway, such as STKs and DLG5. Interestingly, this pathway is the only “biological process” significantly enriched in LC8 binding partners, based on gene ontology analysis using the WebGestalt program (Wang et al, 2017).

To verify that LC8Pred is correctly predicting partners, we synthesized three peptides from Table S2 and tested their capacity to interact with LC8 via ITC. The three peptides were derived from the human proteins: HIV Tat-specific factor 1 (HTATSF1), a cofactor required for the Tat protein activation of human immunodeficiency virus transcription; otoferlin (OTOF), a calcium ion sensor involved in vesicle-plasma membrane fusion and neurotransmitter release, associated with hearing loss; and ninein (NIN), a component of the core centrosome and a dynein activator protein. These peptides were selected based on their mid-level scores and lack of prior data detailing LC8 interactions (Table S2). All three peptides bound to LC8, although only HTATSF1 was a “strong” binder with a fitted thermogram (K_D of 10 μM). These data support the effectiveness of our LC8Pred algorithm and demonstrate that it is capable of predicting binding partners of varying affinities despite noncanonical motifs (Table S3).

Discussion

Hub proteins are essential for cell viability as they are central in protein–protein interaction networks. Dynamic hubs such as LC8 often have a recognizable binding motif, which should allow for the prediction of binding partners without the need for exhaustive testing of each individual interaction (Madeira et al, 2015); however, no such program is available for LC8. Instead, binding partners are often identified via high-throughput pull-down experiments. For example, the interaction between LC8 and OFD1 was initially identified via pull-down mass spectrometry study in cilia (Boldt et al, 2016). In most cases, follow-up experiments for validation of direct binding are not performed, as it is prohibitively expensive to verify these interactions in a systematic fashion. Here, we validate purported and previously unreported LC8 binding partners (including OFD1), measure their binding affinities and thermodynamic properties, and establish a database of known LC8–partner interactions to define and describe generalizable requirements for LC8 motif recognition. We use these rules, along with amino acid preferences in nonbinding sequences, to develop an algorithm that effectively distinguishes between binding and nonbinding sequences, with the aim of facilitating a priori prediction and discovery of LC8–partner interactions with much greater confidence and accuracy than has been possible before now. Furthermore, we validate interactions that reinforce the importance of LC8 within a wide variety of systems and demonstrate that LC8 is both localized ubiquitously throughout the cell and enriched in distinct regions unrelated to the dynein complex.

Of the 72 synthesized tetradecameric peptides, we verified binding for 29 peptides derived from 27 distinct proteins (Table S3). Of these 27 proteins, 19 are newly identified LC8 binding partners. It is of note that all of our validated sequences contain the canonical TQT anchor (or variation thereof) at the C-terminus of the peptide, supporting the idea that a C-terminal anchor is vital for LC8 binding. Although the LC8 binding site is structurally dynamic, there are distinct preferences and exclusions for each position within the binding motif (Fig 4). In addition to the presence of an anchor, binders often have −4 positions capable of H-bonding, larger positive side chains at −3 positions, and strand breaking sites. However, the presence of pre-anchor prolines, a high concentration of charges, or bulky hydrophobic groups at the −2 position will each limit the likelihood that a sequence will bind LC8 (Fig 4).

Algorithms for motif identifications have been developed for both 14–3–3 and calmodulin to efficiently predict potential binding partners. In the case of calmodulin, its diverse set of binding motifs has led to multiple programs (Yap et al, 2000; Mruk et al, 2014; Abbasi et al, 2017), which predict potential binding partners via a mixture of sequence similarity to known binders, α-helical propensity, or the number of canonical calmodulin-binding motifs within a given sequence. In the case of 14–3–3, which binds phosphorylated sequences within disordered segments of proteins, the algorithm makes use of support vector machines and artificial neural networks (Madeira et al, 2015) and scores potential binding sequences using a PSSM. Here we succeeded in generating LC8Pred, an algorithm with a 78% accuracy rate, by incorporating nonbinder data and by reducing the PSSM dimensionality from 20 amino acids to four physicochemical categories, based on either polarity or volume. We have tested LC8Pred on the known LC8 binder Chica and by scanning the human proteome. In case of Chica, LC8Pred efficiently recognized known binding sites and excluded all other regions (Fig 6C). Our proteome scan identified 338 potential LC8 binding partners, including 19 binding partners that have been identified previously via high-throughput proteomics studies (Fig 6D and Table S2), providing a new set of high-confidence LC8-interacting proteins. Three peptides were selected from these potential partners and shown to indeed bind LC8.

The ability to bind a wide variety of sequences despite an extremely conserved binding interface is a hallmark of dynamic hubs, as exemplified by calmodulin (Frederick et al, 2007) and 14–3–3 proteins (Johnson et al, 2010). Crystal and NMR structures for LC8 show that the β3 strand at the partner binding interface has the highest sequence conservation (Fig 5A), and surprisingly, it is also the most dynamic region (Fig 5B). Consistent with the dynamic nature of the binding grooves, thermodynamic analyses of tight binding sequences demonstrate a wide range of entropy/enthalpy compensation, including some sequences that bind with a favorable change in entropy, such as ICE1 and VP4. Previous studies on LC8 dynamics of binding to dynein IC and the protein swallow (Swa) show that increases in ordered structure upon binding are peptide dependent (Hall et al, 2008). With Swa, the complex is more compact, rigid, and homogeneous than with IC, indicating that the IC peptide retains more freedom of motion in the bound state than does the Swa peptide. Consistent with these observations, IC binds with a favorable entropy, whereas Swa does not. Our work here demonstrates that these different modes of binding are not limited to IC and Swa but rather that entropic factors commonly modulate LC8 binding to accommodate extraordinary variation in binding sequences.
Hub proteins like LC8 are essential for cell homeostasis as they sit at the center of complex interaction networks; therefore, it is imperative to understand the rules that govern hub protein interactions. The dynamic nature of the LC8 pocket, and entropic imperative to understand the rules that govern hub protein in-situ at the center of complex interaction networks; therefore, it is Live and Microscopy and image analysis assay (Lonza). The identity of the cell line was monitored by immunofluorescence staining–based analysis with multiple markers.

Materials and Methods

Cell culture and transfection

HeLa Kyoto cells stably expressing LC8-GFP were a kind gift from I Poser and A Hyman (Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany) (Poser et al, 2008). The cells were cultured in DMEM with 10% (vol/vol) fetal calf serum and with 1% (vol/vol) penicillin/streptomycin. The cell line was routinely checked for mycoplasma contamination using LT07-518 Mycoalert assay (Lonza). The identity of the cell line was monitored by immunofluorescence staining–based analysis with multiple markers.

Microscopy and image analysis

Live and fixed samples were imaged with spinning disk microscopy, which was performed on an inverted research microscope Eclipse Ti-E with the Perfect Focus System (Nikon), equipped with Nikon Plan Apo VC 100× NA. 1.4 oil objective, Yokogawa CSU-X1-A1 spinning disc, Vortran Stradus 405 nm (100 mW), Cobolt Calypsy 491 nm (100 mW) and Cobolt Jive 561 nm (100 mW) lasers, Chroma emission filters ET460/50m (part of 49021 filter set), ET525/50m (part of 49002 filter set) and ET630/75m (part of 49068 filter set), ASI motorized stage MS-2000-XY2 with Piezo Top Plate (ASI), Photo metrics Evolve 512 EMCCD camera (Photometrics), and controlled by MetaMorph 7.7 software (Molecular Devices). Images were projected onto the camera chip with intermediate lens 2.0× (Edmund Optics) at a magnification of 0.067 mm/pixel. To keep cells at 37°C, we used the stage top incubator INUBG2E-ZILCS (Tokai Hit). Z-series of live and fixed samples were acquired using a 0.1-μm-step confocal-based scan. Side views were reconstructed by projecting maximum fluorescence intensities of 24 X 12-μm side view slices.

Alternatively, fixed samples were imaged using wide-field fluorescence illumination on a Nikon Ni upright microscope equipped with DS-Qi2 camera (Nikon), Intensilight C-HGFI illuminator (Nikon), ET-DAPI, ET-EGFP and ET-mCherry filters (Chroma), Nikon NIS Br software, and a Plan Apo Lambda 100× oil NA 1.45 (Nikon) objective. For presentation, images were adjusted for brightness and contrast using ImageJ 1.47v (NIH).

Localization prediction

Localization information is derived from the COMPARTMENTS program (Binder et al, 2014), using the curated “Knowledge-based” evidence category. The list of LC8 binding proteins used matches the curated list on the LC8 database, described in this article. Only data with confidence scores of three or higher (out of five) are included. Cellular compartments are simplified for depiction purposes (e.g., “other organelles” includes Golgi bodies, mitochondria, and so on).

Phage display selections were performed using a proteomic library designed from the disordered regions of the human proteome described in the study by Davey et al (2017). Selections were performed with minor adjustments. GST-LC8 (0.1 mg/ml in 100 μl TBS, 50 mM Tris–HCl, 150 mM NaCl, pH 7.4) was coated on a Maxisorp 96-well plate (Nunc) via overnight shake-incubation at 4°C. Plates were blocked with 0.5% BSA in TBS for 1 h at 4°C and washed with TBS. The phage library was added to the well (100 μl) and incubated for 2 h at 4°C. Unbound phages were removed by washing plates five times with 300 μl TBS + 0.05% Tween. Bound phages were eluted by infection into 100 μl log-phase Escherichia coli Omnimax cells (Invitrogen; OD: 0.3–0.8) in 2xYT media (10 g bacto-yeast extract, 16 g bacto-tryptone, 5 g NaCl per liter) supplemented with 10 μg/ml tetracyclin. After a 30-min shake-incubation at 37°C, the bacteria were hyperinfected with M13K07 helper phages for 45 min to allow phage production. Cultures were transferred into 5 ml 2xYT, 0.3 mM IPTG, and grown overnight with antibiotics (25 μg/ml kanamycin and 100 μg/ml carbenicillin). The bacteria were pelleted by centrifugation. 1 ml of the phage supernatant was extracted and heat inactivated at 65°C for 20 min. Finally, the solution was pH neutralized using 10× TBS, and the phage pool was used in the next round of selection. Five rounds of phage selections were performed in total. The phage pool from the fourth day of selection was used for clonal phage ELISAs and sequencing. For next-generation sequencing, 5 μl of the phage pool from the fourth day of selection was used as template in a barcoding PCR. The sample was prepared and analyzed as described in detail elsewhere (Wu et al, 2017).

Peptide synthesis

A total of 72 putative binding partners identified from ProP-PD selections and algorithm predictions were commercially synthesized from either Genscript, or Synpeptide, as 14–16 amino acid
sequences. Non-native residues were added to the termini of some peptides to facilitate solubility and peptide concentration determination (Tables 1 and 2, italics). All peptides were derived from either human or viral proteins.

ITC

ITC experiments for the interactions of LC8 with peptides were performed using a Microcal VP-ITC microcalorimeter at 25°C in buffer composed of 50 mM sodium phosphate, 50 mM NaCl, 1 mM sodium azide, and 5 mM β-mercaptoethanol, pH 7.5. Some peptides contained cysteine residues, so 5 mM β-mercaptoethanol was included in all solutions for consistency. In all experiments, an initial 2 μl injection was followed by 26–50 injections of 3–10 μl peptide (500 μM) into 25 μM LC8 in the sample cell. Number and volume of injections were adjusted for each experiment to minimize ambiguity in the shape behaviour of isotherms and thermograms. Peptide concentrations were determined from absorbances at 280 nm using molar extinction coefficients.

To determine how effective each individual matrix was at separating binding and nonbinding sequences, we scored our available sequences using leave-one-out cross validation, where a given sequence was excluded from the matrix and then scored. The leave-one-out approach was used to combat the difficulty of our limited dataset.

We used receiver operating characteristic (ROC) curves (Supplemental Data 1) as a metric of the effectiveness of each score. The area under these curves corresponds to the ability of each matrix to separate binding sequences from nonbinding sequences. We then combined scores into the S_{aa} and S_{vp} scores described above, where each individual matrix score was weighted through a grid search of possible weights, where the largest area under the ROC was taken to be the optimal weight for each score. Surprisingly, the area under the ROC curve was highest when the binder-only polarity matrix was removed from the S_{vp} score. Positions $−1, 0, 1$ are therefore not weighted in the polarity matrix (Fig 6A) because the nonbinder normalized matrix was also excluded at those positions because of a lack of anchor enrichment, as discussed above.

The LC8 motif repository

We have manually curated a database that compiles information for all known LC8 binding partners. Including the 19 binding partners identified in this work, there are currently 80 experimentally confirmed LC8 interacting partners containing 116 individual anchor motifs. Of these binding motifs, 98 have been confirmed by in vivo or in vitro experiments, with a further 18 identified through biochemical screening methods. The database serves to (1) provide a source of up-to-date information on LC8 and its cellular role, (2) organize and classify LC8 binding proteins in an easily searchable manner, and (3) list the sequences of all TQT peptides.

To simplify our scoring system, we combined the matrices into a single-site binding model. Final values for binding parameters are averages of two to three independent experiments.
either bind or not bind LCB despite the presence of an anchor sequence can be submitted for incorporation into the database. It is our hope that the information in this database will facilitate research on LCB and, by enhancing our understanding of the TQT motif, enable more robust prediction of new binding partners.

Structure and motif analysis

Structures of LCB were obtained from the PDB (free LCB PDB codes: 1PWJ, 1PWK, 1RE6, 3BRL, 5WOF; bound to peptides: 2XQQ, 4QH7, 3E2B, 2P2T, 3BRL, 3DVP, 3P8M, 32KE, 4D07, 4HT6, 5E0M). All images were generated using PyMol (Schrödinger, 2010). Peptides without structures available were built in silico using Chimera (Pettersen et al., 2004). Peptides in Fig 4 are colored according to enrichment and depletion tables for amino acids, shown in Fig 6A (blue for scores >1, white for scores between 1 and -1, and red for scores <1). Solvent accessible surface area analysis was performed using a representative LCB crystal structure (2XQQ) with the GETAREA program (Fraczkiewicz & Braun, 1998). Protein charge potential was calculated for LCB using PyMol’s built-in charge-smoothed potential calculator. Two-dimensional lig-plots were generated using ChemDraw.

Alignment of LCB structures was done using the Ensemblerator (Brereton & Karplus, 2018) program, and the RMSD for residues in free LCB structures (listed above) was calculated using the built-in local alignment tool. This tool works by aligning each dipeptide within the protein and calculating the RMSD for the next amino acid within the protein sequence. A representative structure was then colored based on these values to demonstrate structural conservation. Sequence-based conservation was performed using ConSurf (Ashkenazy et al., 2016), with LCB sequences from 58 different eukaryotic species.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.201900366.

Acknowledgements

This work was supported by the National Science Foundation grant MCB 1617019 to E Barbar, by the Swedish Research Council (C0509201) to Y Ivarsson, by Lemanders foundation and Ingegerd Bergh’s foundation to C Blikstad. The NGS was performed in collaboration with Eduard Resch, Fraunhofer Institute for Molecular Biology and Applied Ecology IME TMP, Frankfurt am Main, Germany. Y-C Ammon is supported by the MARIE SKŁODOWSKA-CURIE ACTIONS Innovative Training Network 675407 PolarNet.

Author Contributions

N Jespersen: data curation, formal analysis, investigation, and writing—original draft, review, and editing.
A Estelle: data curation, software, formal analysis, methodology, and writing—original draft.
N Waugh: data curation.

NE Davey: formal analysis and methodology.
C Blikstad: data curation, investigation, and writing—review and editing.
Y-C Ammon: data curation.
A Akhmanova: data curation, supervision, and writing—review and editing.
Y Ivarsson: data curation, formal analysis, supervision, funding acquisition, and writing—original draft, review, and editing.
DA Hendrix: supervision, methodology, and writing—review and editing.
E Barbar: conceptualization, resources, supervision, funding acquisition, project administration, and writing—original draft, review, and editing.

Conflict of Interest Statement

The authors declare that they have no conflict of interest.

References

Abbasi WA, Asif A, Andleeb S, Minhas FUAA (2017) CaMELS: In silico prediction of calmodulin binding proteins and their binding sites. Proteins 85: 1724–1740. doi:10.1002/prot.25330
Aitken A (2006) 14–3-3 proteins: A historic overview. Semin Cancer Biol 16: 162–172. doi:10.1016/j.semcancer.2006.03.005
Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, Ben-Tal N (2016) ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 44: W344–W350. doi:10.1093/nar/gkw408
Barbar E (2008) Dynemin light chain LCB is a dimerization hub essential in diverse protein networks. Biochemistry 47: 503–508. doi:10.1021/bi701995m
Barbar E, Kleinman B, Imhoff D, Li M, Hays TS, Hare M (2001) Dimerization and folding of LCB, a highly conserved light chain of cytoplasmic dynein. Biochemistry 40: 1596–1605. doi:10.1021/bi002278+
Benison G, Karplus PA, Barbar E (2007) Structure and dynamics of LCB complexes with KXT-QT-motif peptides: Swallow and dynein intermediate chain compete for a common site. J Mol Biol 371: 457–468. doi:10.1016/j.jmb.2007.05.046
Benison G, Nyarko A, Barbar E (2006) Heteronuclear NMR identifies a Nascent helix in intrinsically disordered dynein intermediate chain: Implications for folding and dimerization. J Mol Biol 362: 1082–1093. doi:10.1016/j.jmb.2006.08.006
Binder JK, Pletscher-Frankild S, Tsafou K, Stolte C, O’Donoghue SJ, Schneider R, Jensen Li (2016) COMPARTMENTS: Unification and visualization of protein subcellular localization evidence. Database 2014: bau012. doi:10.1093/database/bau012
Boltk D, van Reeuwijk J, Lu Q, Koutroupas K, Nguyen T-MT, Texier Y, van Beersum SEC, Horn N, Willer JR, Mans DA, et al (2016) An organelle-specific protein landscape identifies novel diseases and molecular mechanisms. Nat Commun 7: 11491. doi:10.1038/ncomms11491
Brereton AE, Karplus PA (2018) Ensemblerator v3: Robust atom-level comparative analyses and classification of protein structure ensembles. Protein Sci 27: 41–50. doi:10.1002/pro.3249
Calderone A, Castagnoli L, Cesareni G (2013) mentha: a resource for browsing integrated protein-interaction networks. Nat Methods 10: 690–691. doi:10.1038/nmeth.2561
Motif recognition of the dynamic hub LCB

Chen Y-M, Gerwin C, Sheng Z-H (2009) Dynine light chain LCB regulates syntaphilin-mediated mitochondrial docking in axons. J Neurosci 29: 9429–9438. doi:10.1523/jneurosci.1472-09.2009

Chou PY, Fasman GD (1974) Prediction of protein conformation. Biochemistry 13: 222–245. doi:10.1021/bi00699a002

Cianfrocco MA, DeSantis ME, Leschziner AE, Reck-Peterson SL (2015) Mechanism and regulation of cytoplasmic dynein. Annu Rev Cell Dev Biol 31: 83–108. doi:10.1146/annurev-cellbio-100814-125438

Clardy J, Liang J, Jaffrey SR, Guo W, Snyder SH (1999) Structure of the PIN/LCB dimer with a bound peptide. Nat Struct Biol 6: 735–740. doi:10.1038/11501

Clark S, Myers JB, King A, Fiala R, Novacek J, Pearce G, Heierhorst J, Reichow SL, Barbar EJ (2018) Multivalency regulates activity in an intrinsically disordered transcription factor. Elife 7: e40684. doi:10.7554/elife.40684

Clarys S, Nyarko A, Lühr F, Barbar E (2016) The anchored flexibility in molecular recognition by proteins. J Comput Chem doi:10.1038/nature05959

Davey NE, Seo M-H, Yadav VK, Jeon J, Nim S, Krystkowiak I, Blikstad C, Dong D, den Hollander P, Kumar R (2006) Dynein light chain 1 contributes to cell cycle progression by increasing cyclin-dependent kinase 2 activity in estrogen-stimulated cells. Cancer Res 66: 5941–5949. doi:10.1158/0008-5472.can-05-3480

Erdős G, Szaniłowicz T, Pajkos M, Hajdu-Soltész B, Kiss B, Pál G, Nyitrai L, Dolszányi Z (2017) Novel linear motif filtering protocol reveals the role of the LC8 dynein light chain in the Hippo pathway. PLoS Comput Biol 13: e1005588. doi:10.1371/journal.pcbi.1005588

Fan J-S, Zhang Q, Tochio H, Zhang M (2002) Backbone dynamics of the 8 kDa dynein light chain dimer reveals molecular basis of the protein’s functional diversity. J Biomol NMR 23: 103–114. doi:10.1023/a:1016332918187

Fetová A, Davydova D, Bischof F, Lazarevic V, Altrock WD, Romorini S, Schönefeld JJ, Marlow MS, Valentine KG, Wand AJ (2007) Conformational entropy in molecular recognition by proteins. The Proteomics Protocols Handbook: 571–607. doi:10.1002/0470036600.ch23

Frederick KK, Marlow MS, Valentine KG, Wand AJ (2007) Conformational entropy in molecular recognition by proteins. Nature 448: 325–329. doi:10.1038/nature06059

Gasteiger E, Hoogland C, Attwood TK, Gattiker A, Hofmann S, Hulo N, Féron F, Bateman A (2005) Protein Identification and Analysis Tools on the ExPASy Server. The Proteomics Protocols Handbook: 571–607. doi:10.1385/1-59259-890-5:71

Hall J, Hall A, Pursifull N, Barbar E (2008) Differences in dynamic structure of LC8 monomer, dimer, and dimer–peptide complexes. Biochemistry 47: 11940–11952. doi:10.1021/bi801093k

Hein MY, Hubner NC, Poser I, Cox J, Nagaraj N, Toyoda Y, Gak IA, Weisswange I, Mansfeld J, Buchholz F, et al (2015) A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163: 712–723. doi:10.1016/j.cell.2015.09.053

Höcker BH, Brasseur R (2005) The Ramachandran plots of glycine and pro-proline. BMC Struct Biol 5: 14. doi:10.1186/1427-680X-5-14

Hutchins JRA, Toyoda Y, Hegemann B, Poser I, Hériché JK, Sukora MM, Augsburg M, Hudec O, Buschhorn BA, Buikescher J, et al (2010) Systematic analysis of human protein complexes identifies chromosome segregation proteins. Science 328: 593–599. doi:10.1126/science.1181348

Jeong H, Mason SP, Barabási A-L, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411: 41–42. doi:10.1038/35075138

Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási A-L (2000) The large-scale organization of metabolic networks. Nature 407: 651–654. doi:10.1038/35036627

Johnson C, Crowther S, Campbell DG, Toth R, MacIntosh C (2010) Bioinformatic and experimental survey of 14–3–3 binding sites. Biochem J 427: 69–78. doi:10.1042/bj20091834

Jurado S, Conlan LA, Baker EK, Ng JL, Tenis N, Hoch NC, Gleeson K, Smeets M, Ison D, Heierhorst J (2012) ATM substrate Chk2-interacting Zinc 2+ finger (ASCIZ) is a bi-functional transcriptional activator and feedback sensor in the regulation of dynein light chain (DYNLCL). J Biol Chem 287: 3156–3164. doi:10.1074/jbc.m111.306019

Komurov K, White M (2007) Revealing static and dynamic modular architecture of the eukaryotic protein interaction network. Mol Syst Biol 3: 110. doi:10.1038/msb4101469

Kumar A T (2013) CFSSP. Chou and Fasman Secondary Structure Prediction Server. WIDE SPECTRUM: Research Journal 1: 15–19. doi:10.5281/zenodo.50733

Madeira F, Tinti M, Murugesan G, Berrett E, Stafford M, Toth R, Cole C, MacIntosh C, Barton GI (2015) 14–3–3-Pred: Improved methods to predict 14–3–3 binding phosphopeptides. Bioinformatics 31: 2276–2283. doi:10.1093/bioinformatics/btv133

Makokha M, Hare M, Li M, Hays T, Barbar E (2002) Interactions of cytoplasmic dynein light chain Tctex-1 and LC8 with the intermediate chain IC74. Biochemistry 41: 4302–4311. doi:10.1021/bi011970h

Martínez-Moreno M, Navarro-Lérida I, Roncal F, Albar JP, Alonso C, Gavilanes F, Rodríguez-Crespo I (2003) Recognition of novel viral sequences that associate with the dynein light chain LC8 identified through a pepscan technique. FEBS Lett 544: 262–267. doi:10.1016/s0014-5793(03)00516-7

Mruk K, Farley BM, Ritacco AW, Kobertz WR (2014) Calmodulin meta-analysis: Predicting calmodulin binding via canonical motif clustering. J Gen Physiol 144: 105–114. doi:10.1085/jgp.201311140

Navarro-Lérida I, Martínez Moreno M, Roncal F, Gavilanes F, Albar JP, Rodríguez-Crespo I (2004) Proteomic identification of brain proteins that interact with dynein light chain LC8. Proteomics 4: 339–346. doi:10.1002/pmic.200300528

Nyarko A, Barbar E (2011) Light chain-dependent self-association of dynein intermediate chain. J Biol Chem 286: 1556–1566. doi:10.1074/jbc.m110.177686

Nyarko A, Song Y, Nováček J, Židek L, Barbar E (2013) Multiple recognition motifs in nucleoparin Nup159 provide a stable and rigid Nup159-Dyn2 assembly. J Biol Chem 288: 264–2624. doi:10.1074/jbc.M112.432831

Patil A, Kinoshita K, Nakamura H (2010) Hub promiscuity in protein–protein interaction networks. Int J Mol Sci 11: 1930–1943. doi:10.3390/ijms11041930

Peytszak R, Keays M, Tang YA, Fonseca NA, Barrera E, Burdett T, Fillgrave A, Fuentes AM-P, Jupp S, Koskinen S, et al (2016) Expression Atlas update: An integrated database of gene and protein expression in humans, animals and plants. Nucleic Acids Res 44: D746–D752. doi:10.1093/nar/gkv1045

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera: A visualization system for exploratory research and analysis. J Comput Chem 25: 1605–1621. doi:10.1021/jc0490384

Piovesan D, Tabaro F, Mićetic I, Necci M, Quaglia F, Oldfield CJ, Aspromonte MC, Davey NE, Davidovic R, Dosztányi Z, et al (2017) DisProt 7.0: A major update of the database of disordered proteins. Nucleic Acids Res 45: D219–D227. doi:10.1093/nar/gkw1056

Jespersen et al. https://doi.org/10.26508/lsa.201900366 vol 2 | no 4 | e201900366 15 of 16
Poser I, Sarov M, Hutchins JRA, Hériché J-K, Toyoda Y, Pozniakovsky A, Weigl D, Nitzsche A, Hegemann B, Bird AW, et al (2008) BAC TransgeneOmics: A high-throughput method for exploration of protein function in mammals. *Nat Methods* 5: 409–415. doi:10.1038/nmeth.1199

Puthalakath H, Huang DC, ’Reilly LA, King SM, Strasser A (1999) The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. *Mol Cell* 3: 287–296. doi:10.1016/s1097-2765(00)80456-6

Rapali P, Radnai L, Süveges D, Harmat V, Tölgyesi F, Wahlgren WY, Katona G, Nyitray L, Pál G (2011) Directed evolution reveals the binding motif preference of the LC8/DYNLL hub protein and predicts large numbers of novel binders in the human proteome. *PLoS One* 6: e18818. doi:10.1371/journal.pone.0018818

Rodríguez-Crespo I, Yélamos B, Roncal F, Albar JP, Ortiz de Montellano PR, Gavilanes F (2001) Identification of novel cellular proteins that bind to the LC8 dynein light chain using a pepscan technique. *FEBS Lett* 503: 135–141. doi:10.1016/s0014-5793(01)02718-1

Schmidt JC, Kiyomitsu T, Hori T, Backer CB, Fukagawa T, Cheeseman IM (2010) Aurora B kinase controls the targeting of the Astrin–SKAP complex to bioriented kinetochores. *J Cell Biol* 191: 269–280. doi:10.1083/jcb.201006129

Schrodinger L (2010) *The Pymol Molecular Graphics System*. New York City, New York: Schrodinger LLC.

Uchikoga N, Matsuzaki Y, Ohue M, Akiyama Y (2016) Specificity of broad protein interaction interfaces for proteins with multiple binding partners. *Biophys. Physicochem. Biol.* 13: 105–115. doi:10.2142/biophysico.13.0_105

Uhart M, Flores G, Bustos DM (2016) Controllability of protein–protein interaction phosphorylation-based networks: Participation of the hub 14–3–3 protein family. *Scientific Rep.* 6: 26234. doi:10.1038/srep26234

Wang J, Vasaikar S, Shi Z, Greer M, Zhang B (2017) WebGestalt 2017: A more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. *Nucleic Acids Res* 45: W130–W137. doi:10.1093/nar/gkx356

Wang X, Olson JR, Rasoloson D, Ellenbecker M, Bailey J, Voronina E (2016) Dynein light chain DLC-1 promotes localization and function of the PUF protein FBF-2 in germline progenitor cells. *Development* 143: 4643–4653. doi:10.1242/dev.140921

Wu C-G, Chen H, Guo F, Yadav VK, Mciwain SJ, Rowe M, Choudhary A, Lin Z, Li Y, Gu T, et al. (2017) PP2A-B’ holoenzyme substrate recognition, regulation and role in cytokinesis. *Cell Discov* 3: 17027. doi:10.1038/celldisc.2017.27

Wu X, Guo J, Zhang D-Y, Lin K (2009) The properties of hub proteins in a yeast-aggregated cell cycle network and its phase sub-networks. *Proteomics* 9: 4812–4824. doi:10.1002/pmic.200900053

Yap KL, Kim J, Truong K, Sherman M, Yuan T, Ikura M (2000) Calmodulin target database. *J Struct Funct Genomics* 1: 8–14. doi:10.1023/a:1011320027914

Zaytseva O, Tenis N, Mitchell N, Kanno SI, Yasui A, Heierhorst J, Quinn LM (2014) The novel zinc finger protein dASCIZ regulates mitosis in Drosophila via an essential role in dynein light-chain expression. *Genetics* 196: 443–453. doi:10.1534/genetics.113.159541

License: This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).