Comparative expression profiling of testis-enriched genes regulated during the development of spermatogonial cells

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation
Ahn, J., Y. Park, P. Chen, T. J. Lee, Y. Jeon, C. M. Croce, Y. Suh, et al. 2017. “Comparative expression profiling of testis-enriched genes regulated during the development of spermatogonial cells.” PLoS ONE 12 (4): e0175787. doi:10.1371/journal.pone.0175787. http://dx.doi.org/10.1371/journal.pone.0175787.

Published Version
doi:10.1371/journal.pone.0175787

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:33029848

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Comparative expression profiling of testis-enriched genes regulated during the development of spermatogonial cells

Jinsoo Ahn¹, Yoo-Jin Park², Paula Chen¹, Tae Jin Lee³, Young-Jun Jeon⁴, Carlo M. Croce³, Yeunsu Suh¹, Seongsoo Hwang⁵, Woo-Sung Kwon⁶,⁷, Myung-Geol Pang⁷, Cheorl-Ho Kim⁸, Sang Suk Lee⁹, Kichoon Lee¹*

¹ Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America,
² Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Boston, MA and Harvard Medical School, Boston, Massachusetts, United States of America,
³ Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, United States of America,
⁴ Stanford Cancer Institute, Stanford University, Stanford, California, United States of America,
⁵ Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju-gun, Jeonbuk, Republic of Korea,
⁶ Department of Animal Biotechnology, Kyungpook National University, Sangju, Republic of Korea,
⁷ Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea,
⁸ Department of Biological Sciences, SungKyunKwan University, Chunchun-Dong, Jangan-Gu, Suwon City, Kyunggi-Do, Republic of Korea,
⁹ Department of Animal Science and Technology, Suncheon National University, Suncheon, Republic of Korea

Abstract

The testis has been identified as the organ in which a large number of tissue-enriched genes are present. However, a large portion of transcripts related to each stage or cell type in the testis still remains unknown. In this study, databases combined with confirmatory measurements were used to investigate testis-enriched genes, localization in the testis, developmental regulation, gene expression profiles of testicular disease, and signaling pathways. Our comparative analysis of GEO DataSets showed that 24 genes are predominantly expressed in testis. Cellular locations of 15 testis-enriched proteins in human testis have been identified and most of them were located in spermatocytes and round spermatids. Real-time PCR revealed that expressions of these 15 genes are significantly increased during testis development. Also, an analysis of GEO DataSets indicated that expressions of these 15 genes were significantly decreased in teratozoospermic patients and polyubiquitin knockout mice, suggesting their involvement in normal testis development. Pathway analysis revealed that most of those 15 genes are implicated in various sperm-related cell processes and disease conditions. This approach provides effective strategies for discovering novel testis-enriched genes and their expression patterns, paving the way for future characterization of their functions regarding infertility and providing new biomarkers for specific stages of spermatogenesis.
Introduction

The testis has been identified by RNA sequencing as the organ in which the largest number of tissue-enriched genes is expressed among various organs. It has been estimated that expressions of more than 1000 genes are enriched in the testis [1]; whereas, on average, there are approximately 200 signature genes in each tissue [2]. Tissue-enriched or tissue-specific genes are essential for the growth and development of specific cells and organs [3]. Thus, characteristic processes that occurred in germinal cells in the testis, including meiosis, genetic recombination, spermatogenesis, and spermiogenesis may largely be attributed to a number of differential gene expressions. Spermatogenesis is a complex process that is orchestrated by expression of multiple genes at various stages containing particular cell types, such as spermatogonial stem cells, spermatogonia, spermatocytes, and spermatids [4]. In addition to germinal cells, the somatic Sertoli cells play a role in testis formation and provide an essential environment for spermatogenesis [5], and Leydig cells produce androgen, which plays a key role in the regulation of spermatogenesis and undergo changes in gene expression [6, 7]. However, a large portion of transcripts and proteins related to each stage or cell type as well as their functions still remains unknown.

Investigation of gene expression and function during spermatogenesis has been hampered by a lack of immortalized cell lines for each stage [8]. Alternatively, testis transcriptome microarray analysis based on Gene Expression Omnibus (GEO) repository (www.ncbi.nlm.nih.gov/geo) followed by protein profiling using immunohistochemical data from the Human Protein Atlas portal (www.proteinatlas.org) is a useful tool for discovering highly expressed genes in each stage of spermatogenesis in the testis. Furthermore, gene expression profiles under various developmental, disease, and knockout conditions produced in GEO microarray datasets offer a platform for functional genomic studies of spermatogenesis stage-specific gene expression.

Using these sources combined with confirmatory gene expression measurements and pathway analysis, in this study, protein localization and signaling pathways of 15 testis-enriched genes were analyzed. The objectives of this study were to identify novel testis-enriched genes using gene expression profiles and analyze protein localization, developmental regulation and biological implications of testis-enriched genes in humans and mice. The current approach provides an effective strategy for discovering novel testis-enriched genes and their unique stage-specific expression, paving the way for future studies of normal development of the testis and associated diseases.

Materials and methods

Microarray data mining

The microarray-based, high-throughput gene expression data were obtained from the GDS DataSet (GDS) of the GEO repository in the National Center for Biotechnology Information (NCBI) archives (www.ncbi.nlm.nih.gov/geo). For analyzing tissue distribution pattern of gene expression in 12 male mouse tissues and 10 man tissues, GDS3142 for mice and GDS596 for humans were downloaded and sorted (Tables 1 and 2) as described in our previous reports [9, 10]. Also, gene expression patterns in mouse sperm cells (GDS2390), developing mouse testis (GDS605, GDS606 and GDS607), semen samples collected from 14 teratozoospermic individuals aged 21–57 (GDS2697), and polyubiquitin knockout mice (GDS3906) were examined.

Animal use and sample preparation

All animal care and procedures were approved by the Institutional Animal Care and Use Committee (IACUC) at The Ohio State University. Mice were raised under ad libitum feeding.
conditions in a mice housing facility at The Ohio State University. Mice were euthanized by carbon dioxide inhalation followed by cervical dislocation. For isolation of total RNAs, testis,
Table 2. Human testis-enriched genes based on GDS596.

Gene	Fold	Testis	Ovary	Muscle	Liver	Brain	Lung	Kidney	Adipocyte	Thymus	Heart	P value	Testis enrichment	Location in human testis	Location in mouse Testis (Table 1)
PRM2	861	12387	6	55	13	12	8	12	7	4	13	< 0.0001	Fig 1	[64]	[46]
PRM1	800	37144	42	135	24	11	63	47	15	11	68	< 0.0001	[65] [64]	[45]	
TNP1	186	17960	27	284	66	22	47	135	94	21	174	< 0.0001	Fig 1	[66]	–
ODF2	181	4179	6	67	27	13	12	18	16	11	37	< 0.0001	[67] [67]	[52]	
SPATA6	107	1742	8	44	15	8	7	22	13	9	20	< 0.0001	Fig 1	Fig 2B	[57, 58]
PHF7	77	7891	82	417	47	77	47	62	53	46	86	< 0.0001	[17] [64]	Fig 2A	[17]
CRISP2	68	4526	53	396	43	25	8	10	47	4	14	< 0.0001	[68] [69]	–	
SPINK2	63	7706	52	257	134	86	106	67	63	125	215	< 0.0001	[70] [20]	Fig 2A	[20]
NEK2	47	1427	28	71	13	29	7	16	7	75	28	< 0.0001	Fig 1	[71] [60, 61]	
LDHC	46	3625	40	254	70	22	38	19	134	25	102	< 0.0001	Fig 1	Fig 2A	[14, 15]
SMCP	39	2082	25	172	53	29	15	64	31	18	76	< 0.0001	[72] [72]	[48–50]	
YBX2	37	8120	67	719	224	258	70	337	108	46	160	< 0.0001	Fig 1	Fig 2C	–
ZPBP	35	3012	87	128	50	64	73	74	24	31	236	< 0.0001	[26] [20]	Fig 2B	[56]
ACTL7A	35	1938	17	245	38	27	21	59	28	16	55	< 0.0001	[73] [54]	Fig 2B	[54]
TCP11	33	7549	37	632	227	160	122	293	196	78	340	< 0.0001	[74] [53]	Fig 2A	[53]
ZMYND10	32	1505	10	165	42	18	29	66	22	8	60	< 0.0001	[75] [20]	Fig 2C	–
ACTL7B	30	1876	41	184	79	73	17	38	62	37	27	< 0.0001	[73] [54]	Fig 2B	[54]
ODF1	25	5549	183	493	223	130	80	300	145	72	361	< 0.0001	[76] [76]	Fig 2D	–
AKAP3	24	1166	23	120	59	39	33	61	18	16	69	< 0.0001	[77–79] [77]	Fig 2D	–
GAPDH5	21	3357	29	250	216	192	86	96	120	73	401	< 0.0001	[80] [81]	Fig 2D	–
DDX4	19	447	7	115	6	6	3	33	5	4	27	< 0.0001	[81] [81]	–	
TCFL5	14	2611	11	259	79	562	109	251	216	182	57	< 0.0001	[82] [20]	Fig 2A	[51]
STAG3	13	1885	44	216	140	130	92	217	57	224	141	< 0.0001	[62] [20]	Fig 2C	–
EFHC1	13	407	18	98	53	16	10	32	13	29	14	< 0.0001	Fig 1	Fig 2A	[23]

https://doi.org/10.1371/journal.pone.0175787.t002

muscle, liver, brain, lung, kidney, adipose tissue, thymus, spleen, and small intestine were collected from 3-month-old FVB mice (n = 3) using Trizol reagent (Invitrogen, Carlsbad, CA,
USA) [11]. Total RNAs from the adult human kidney, liver, lung, heart, muscle, testis, thymus, and brain were purchased from Agilent Technologies (Santa Clara, CA, USA) and adult human RNA from adipose tissue was purchased from Clontech Laboratories (Mountain View, CA, USA). For RNA isolation from mouse testis at 10 days postpartum (dpp), 21 dpp, and 91 dpp (three months postpartum), C57BL/6 mice (n = 4) were euthanized and both testes were harvested.

Reverse transcription PCR (RT-PCR)

To measure the quantity of RNA, a Nanodrop spectrophotometer (Thermo Scientific, Wilmington, DE) was used. The RNA samples were stored at -80°C until use. Approximately 1 µg of RNA was reverse-transcribed in a 20 µL total reaction to cDNA using Moloney murine leukemia virus (M-MLV) reverse transcriptase (Invitrogen). The thermal cycle of the reverse transcription was 65°C for 5 min, 37°C for 52 min, and 70°C for 15 min. Exactly 1 µL of cDNA samples was used as a template for PCR in a 25 µL total reaction with AmpliTaq Gold DNA polymerase (Applied Biosystems, Carlsbad, CA). The conditions for this reaction were 95°C for 1 min 30 s, 33 cycles of 94°C for 30 s, 55°C for 1 min, 72°C for 1 min, with an additional extension step at 72°C for 10 min. PCR products were separated by using 1% agarose gel electrophoresis. Forward and reverse primers for both humans and mice listed in supporting information were designed on different exons for multi-exon genes to avoid genomic DNA contamination.

Analysis of protein expression profiles from the Human Protein Atlas

Data visualizing immunohistochemically the expression patterns of selected proteins in human testes were obtained from the Human Protein Atlas portal (www.proteinatlas.org). A total of 15 testis-enriched proteins were analyzed for their localization in the human testis: ten of them have been published in terms of their localization in mouse testis, but not in human testis, and the rest of them have not been published regarding their localization in both human and mouse testis.

Real-time PCR

Quantitative real-time PCR (qPCR) was performed on an ABI 7300 Real-Time PCR instrument (Applied BioSystems, Foster City, CA) by using AmpliTaq Gold polymerase (Applied BioSystems) with SYBR green detection dye. Cyclophilin (CYC) was used as a housekeeping gene. Reactions were performed in duplicate 25µL volumes and conditions for the qPCR were 95°C for 10 minutes followed by 40 cycles of 94°C for 15 seconds, 60°C for 40 seconds, 72°C for 30 seconds, and 82°C for 33 seconds. Relative quantification of gene expression was determined by using the 2^ΔΔCT method [12].

Signaling pathway analysis

Signaling pathways of spermatocyte- or spermatid-enriched proteins were analyzed using Pathway Studio (v 11.2.5.9, Elsevier, Amsterdam, Netherland). A list of 15 testis-enriched proteins was entered into Pathway Studio. The resulting pathways were verified through the PubMed/Medline hyperlink embedded in each node.

Statistical analysis

For comparison of gene expression in testis versus other tissues, one-way ANOVA followed by a Fisher’s protected least significant difference test was performed using SAS version 9.2 (SAS
Institute Inc., Cary, NC). A Student’s t test was conducted to compare the difference between two means. Comparison of multiple means was conducted by one-way ANOVA followed by a Tukey’s post hoc test. The significance level was set at \(p < 0.05 \).

Results

Microarray analyses identified common testis-enriched genes for the mouse and human

Comparative analysis of GEO DataSets (GDS3142 for mice and GDS596 for humans), a public microarray repository, revealed that expressions of 24 genes in both the mouse and human testis are more than 10-fold higher than an average expression value of other tissues (Tables 1 and 2). For example, murine *Tnp1* and human *TNP1* expressions are 276- and 186-fold greater in the mouse and human testis, respectively, than an average value of other tissues. In addition, these 24 genes are expressed at very low levels in the ovary, showing that they are male-specific genes. Our literature search revealed that some, but not all, genes were reported for testis enrichment and protein cellular location in testis. For instance, testis-specific expression of murine *Ldhc* gene and cellular protein location of LDHC were reported in the mouse testis [13–15], but not in human testis. In this study, testis enrichment of selected genes was confirmed by RT-PCR (Fig 1) and their localization profiles in humans were explored through the Human Protein Atlas (Fig 2).

RT-PCR confirmed testis enrichment of selected genes

To validate the microarray data, RT-PCR was performed for murine *Smcp, Odf1, Crisp2, Phf7, Gapdhs, Ddx4 and Zmynd10* and human *PRM2, TNP1, SPATA6, NEK2, LDHC, YBX2 and*

![Image of RT-PCR results](https://doi.org/10.1371/journal.pone.0175787.g001)

Fig 1. RT-PCR of mouse and human testis-enriched genes. Expression of mouse and human testis-enriched genes in various tissues are presented. Te: testis, M: muscle, Li: liver, Br: brain, Lu: lung, K: kidney, F: fat, H: heart, Sp: spleen, Int: intestine, Thy: thymus. Murine cyclophilin (*Cyc*) and human cyclophilin (*CYC*) genes were used as loading controls for an equal amount of cDNA.

https://doi.org/10.1371/journal.pone.0175787.g001
EFHC1, which have not been reported previously for expression in the testis. To prevent PCR saturation effects during amplification, the number of PCR cycles was reduced until the saturation no longer occurs. These genes showed testis-enriched expression patterns among various tissues (Fig 1), which is consistent with the GEO DataSets (Tables 1 and 2).

Analysis of immunohistochemical data showed protein expression in specific stages of human testis

With the very latest version of the Human Protein Atlas, cellular location of several testis-enriched genes in humans was analyzed. When these locations were reported in mouse, they were grouped in Fig 2A and 2B; otherwise they were grouped in Fig 2C and 2D. As shown in Fig 2, PHF7, SPINK2, LDHC, TCP11, EFHC1, and TCFL5 proteins were located in earlier stage cells (Fig 2A) than cells expressing ZPBP, ACTL7A, ACTL7B, and SPATA6 (Fig 2B). PHF7, SPINK2, LDHC, TCP11, EFHC1, and TCFL5 were localized in pachytene spermatocytes (PC) and round spermatids (RS). In detail, SPINK2 was expressed strongly in the cytoplasm of pachytene spermatocytes, LDHC showed expression in the tail of spermatozoa (SZ), and EFHC1 was highly expressed in Sertoli cells (ST) (Fig 2A). ZPBP was uniquely detected in the developing acrosomal granules (AG) of round spermatids. ACTL7A was expressed in round spermatids and exclusively in the acrosome granules, with a lesser degree in spermatozoa tails. ACTL7B showed a stronger expression than SPATA6 in round spermatids (Fig 2B).
Table 3. Differential gene expression in four types of spermatic cells according to GDS2390.

Gene	Type A spermatogonia	Type B spermatogonia	Pachytene spermatocytes	Round spermatids
Testis-enriched				
Phf7	62.3 ± 4.3^a	385.0 ± 327.7^ab	2877.8 ± 316.3^ab	3073.8 ± 14.9^a
Spink2	36.2 ± 4.7^b	414.7 ± 392.7^b	2576.3 ± 181.8^a	2527.2 ± 45.7^a
Ldhc	34.5 ± 5.1^b	2462.1 ± 2433.8^ab	6269.1 ± 294.1^a	6783.0 ± 205.1^a
Tcp11	87.1 ± 4.6^c	435.2 ± 356.3^bc	2659.4 ± 144.6^d	4347.4 ± 19.3^c
Efhc1	66.1 ± 5.5^b	288.3 ± 242.1^ab	2012.3 ± 19.5^ab	2476.6 ± 69.3^a
Tcl5	635.4 ± 68.0^c	943.9 ± 247.0^b	2967.8 ± 81.8^a	2408.3 ± 77.9^b
Zpbp	24.1 ± 1.4^bc	204.4 ± 164.8^d	1629.2 ± 224.3^ab	3194.8 ± 49.0^c
Actl7a	15.2 ± 4.0^d	48.8 ± 36.0^bc	131.7 ± 22.6^c	2097.9 ± 28.8^a
Actl7b	58.8 ± 11.2^c	253.1 ± 180.5^bc	1120.6 ± 67.4^d	3337.9 ± 223.4^a
Spata6	47.2 ± 1.8^b	133.3 ± 68.9^c	784.1 ± 14.7^b	2767.5 ± 143.3^a
Ybx2	131.7 ± 39.9^b	651.6 ± 508.2^ab	3982.7 ± 107.3^a	4034.0 ± 130.1^a
Zmynd10	2.4 ± 0.6^c	323.0 ± 321.6^bc	2457.2 ± 121.3^a	997.2 ± 44.6^a
Stag3	725.9 ± 34.6^b	984.0 ± 124.2^c	2231.6 ± 124.7^a	1762.4 ± 169.8^ab
Odf1	3.7 ± 0.4^a	62.0 ± 58.0^d	275.9 ± 69.5^b	3558.2 ± 185.0^a
Gapdhs	71.3 ± 8.8^c	122.1 ± 71.8^bc	270.3 ± 0.3^b	3604.4 ± 141.2^a

Non-testis-enriched				
Col1a2	2743.6 ± 314.6^a	3338.4 ± 173.2^a	111.0 ± 18.6^b	146.4 ± 1.0^p
Zbtb16	304.7 ± 42.8^a	178.9 ± 56.9^ab	21.0 ± 1.2^b	33.8 ± 13.0^p

Means ± SEM are shown. Different superscript letters indicate significant differences between types of cells.

https://doi.org/10.1371/journal.pone.0175787.t003

Other testis-enriched proteins shown in Fig 2C and 2D, such as YBX2, ZMYND10, STAG3, ODF1, and GAPDHS, have not been published regarding their localization in both human and mouse testis. YBX2 and ZMYND10 were strongly localized in the cytoplasm of pachytene spermatocytes (PC) and, to a lesser degree, the nucleus of pachytene spermatocytes in the case of ZMYND10. STAG3 was expressed in the nucleus of pachytene spermatocytes. These proteins were also present in round spermatids (RS) except for low expression of ZMYND10 in round spermatids. In addition, YBX2 was detected in the tail of spermatooza (SZ), and ZMYND10 showed expression in Leydig cells (LD) (Fig 2C). ODF1 and GAPDHS were expressed in round spermatids (RS). Also, GAPDHS showed expression in the tail of spermatooza (SZ). ODF1 was expressed in elongating spermatids (ES) with developing tails (Fig 2D).

In summary, most testis-enriched proteins selected in this study are expressed after the spermatogenesis stage. Their gene expression profiles curated in GDS2390 also showed a significant increase of expression during the stages of pachytene spermatocytes and round spermatids (Table 3). On the other hand, two non-testis-enriched proteins, COL1A2 and ZBTB16, were mainly expressed in the early-stage cells such as type A and type B spermatogonia (Fig 2E) and similarly, their gene expression profiles showed significantly higher mRNA expression in spermatogonia stages (Table 3). Therefore, whether expression of testis-enriched genes is regulated during testis development was further analyzed.

Expression of testis-enriched genes showed an increasing pattern during normal testis development

qPCR revealed that expression of selected testis-enriched genes is significantly increased during testis development. To investigate stage-specific expression patterns, 10 days postpartum (dpp) with mostly spermatogonia, 21 dpp when spermatocytes are the most abundant cell type.
type, and 91 dpp representing an adult stage with spermatids were selected. Compared to 10 days postpartum (dpp), expression of these selected genes was significantly increased at 21 dpp after weaning and/or at 91 dpp (three months postpartum) when sexual maturation occurs (Fig 3A–3D). These data are consistent with the microarray database in GDS605, GDS606, and GDS607, which also shows an increasing pattern of these genes during the period of 0 through 35 dpp (Table 4). It suggests that expression of these testis-enriched genes is up-regulated during testis development and plays a role in later stages of spermatogenesis. In contrast, expression of both Col1a2 and Zbtb16 was significantly decreased at 21 dpp (Fig 3E), and this pattern was also shown in GDS605, GDS606, and GDS607 (Table 4), suggesting that these non-testis-enriched genes may be involved in early stages of spermatogenesis rather than the later stages.

In addition, our further data analysis showed that, compared to fertile normal males, expression of these testis-enriched genes was significantly decreased in teratozoospermic patients with abnormal sperm morphology according to GDS2697 (S1 Table). It appears that those testis-enriched genes are involved in normal testis development without morphological defects and may serve as a biomarker for teratozoospermic condition. Moreover, according to GDS3906, polyubiquitin knockout resulted in a decreased expression pattern of testis-enriched genes at 28 dpp compared to wild-type (S1 Table).
Table 4. Differential gene expression during testis development based on GDS605, GDS606 and GDS607.

Gene	0–3 dpp	8–10 dpp	18–20 dpp	30–35 dpp
Testis-enriched genes				
Phf7	151.7 ± 22.5b	153.2 ± 7.2b	5045.2 ± 421.8a	6208.0 ± 450.3a
Spink2	122.5 ± 8.7b	99.1 ± 8.6b	1708.5 ± 221.6a	2506.2 ± 596.5a
Ldhc	48.4 ± 45.4c	5.4 ± 1.5c	5935.9 ± 669.2b	8665.4 ± 572.5a
Tcp11	23.9 ± 1.6c	26.9 ± 1.3c	1256.9 ± 243.3b	4906.3 ± 307.0a
Efhc1	46.7 ± 10.8c	40.3 ± 4.8c	829.2 ± 175.9b	1299.2 ± 58.4a
Tcfl5	68.8 ± 8.0b	139.0 ± 14.1b	845.1 ± 201.5a	1272.3 ± 50.8a
Zpbb	8.8 ± 2.3d	7.5 ± 3.1d	265.0 ± 91.9b	1004.4 ± 33.0a
Actl7a	29.0 ± 6.1b	32.3 ± 6.5b	40.6 ± 18.6b	1705.5 ± 183.3a
Actl7b	18.0 ± 4.8c	12.0 ± 0.8c	427.2 ± 152.6b	1892.4 ± 96.4a
Spata6	96.7 ± 10.8b	98.0 ± 8.4b	525.0 ± 103.2a	687.2 ± 28.6a
Ybx2	10.7 ± 1.8c	19.5 ± 4.8c	1957.4 ± 601.1b	4059.9 ± 158.9a
Zmynd10	6.1 ± 1.5b	5.3 ± 0.9b	1574.3 ± 553.7a	989.3 ± 70.0a
Stag3	6.6 ± 0.9b	177.8 ± 30.1b	611.0 ± 93.2a	560.8 ± 11.0a
Odf1	62.7 ± 9.4b	51.8 ± 6.3b	72.0 ± 9.6b	5039.2 ± 517.1a
Gapdhs	37.4 ± 4.1b	33.9 ± 5.2b	38.0 ± 3.8b	4990.9 ± 434.5a
Non-testis-enriched genes				
Col1a2	3456.8 ± 240.3a	2132.2 ± 104.3b	604.7 ± 72.6a	280.0 ± 29.2c
Zbtb16	98.2 ± 19.2b	254.2 ± 18.0a	61.7 ± 16.1bc	32.8 ± 2.9c

Means ± SEM are shown. Different superscript letters indicate significant differences between developmental time points.

Testis-enriched genes are associated with various biological pathways in sperm

Signaling pathway analysis was conducted to identify corresponding pathways related to sperm-related biological functions and disease conditions. Schematic illustration was drawn to identify cellular and metabolic processes regulated by testis-enriched genes and showed that at least 12 out of 15 spermatocyte- or spermatozoa-enriched proteins were putatively associated with various sperm-related cell processes, clinical parameters, and disease conditions (Fig 4).

Discussion

In this study, testis-enriched genes in human and mouse were arranged based on microarray based-GEO database, and 15 genes that have not been published regarding their localization in human (Table 2) were selected to analyze their protein expression in testis using immunohistochemical data from the Human Protein Atlas portal.

Several proteins expressed in pachytene spermatocytes and round spermatids of human testis were analyzed

Proteins localized in pachytene spermatocytes (PC) and round spermatids (RS) were shown in Fig 2A and 2C. PHF7 is a male-specific transcription factor for germ cell development and sexual identity [16, 17]. SPINK2 is a Kazal-type serine protease inhibitor or an acrosin-trypsin inhibitor that is synthesized in the testis [18–20]. LDHC is an enzyme related to aerobic glycolysis in spermatozoa for energy production, and it regulates the sperm motility and capacitation [21]. Based on its localization, we postulated that LDHC is associated, not only with ATP generation in mature spermatozoa, but also with development of germ cells. TCP11 is a receptor...
EFHC1 has been found in mouse sperm flagella and is present in motile cilia, but not in immotile cilia [23]. In this study, EFHC1 was expressed in cytoplasmic regions of testicular cells. It suggests that EFHC1 may be associated with germ cell development and sperm motility. TCFL5 has been found in the testis during spermiogenesis, and it is associated with spermato genesis and the formation of sperm flagellum in the mouse [24]. YBX2, also known as contrin, is a germ cell specific protein and required for the formation of functional spermatozoa and has been implicated as a potential cause of azoospermia [25, 26]. ZMYND10 has been found in motile cilia of Drosophila, and it is associated with male fertility [27]. STAG3 is the meiosis-specific cohesion subunit and is associated with meiotic division of gametes [28].

Some proteins expressed in the acrosome or cytoplasmic region of spermatids of human testis were presented

The acrosome reaction is required for zona pellucida penetration and fertilization with oocytes [29], and four proteins, ZPBP [30], ACTL7A (T-ACTIN2), ACTL7B (T-ACTIN1), and SPATA6, were localized in the acrosome or cytoplasmic region of spermatids (Fig 2B), implicating their roles in fertility. Other proteins that may also be involved in spermatogenesis during the spermatid phase are shown in Fig 2D. ODF1 is one of the heat shock proteins that play an important role as molecular chaperones in spermatozoa, and it is located in the sperm tails and supports the flagella motility [31, 32]. GAPDHS is a testis-specific glycolytic enzyme and generally known to be present in the principal piece of spermatozoa, and it is associated with ATP production and flagella motility and capacitation [33, 34].

Expression of testis-enriched genes increased during normal testis development

Those selected testis-enriched proteins were mostly expressed in cells in the late spermatogenesis stages. The stage-specific mRNA expression of these genes showed similar patterns as
shown in the GDS2390 dataset (Table 3). Their expression was further analyzed during the testis development. During postnatal testicular growth, the proportion of germ cell types in seminiferous tubules changes. Before 10 dpp, testes of the mouse (Mus musculus) contain mostly spermatogonia. Between 21 and 24 dpp (weaning ages), spermatocytes become the most abundant cell type, round spermatids develops as the most advanced germ cells, and in adults, spermatids are a predominant cell type stage [35, 36]. Based on the changes in types of spermatogenic cells, qPCR was performed at the stage of spermatogonia (10 dpp), spermatocytes and round spermatids (21 dpp), and spermatids (91 dpp). Our qPCR data showed that expression of these testis-enriched genes was significantly increased around weaning ages when spermatocytes and round spermatids are present in testis (Fig 3). Some of them were further increased at 91 dpp when the mouse is sexually matured and spermatids are the predominant form of spermatogenic cells. These expression patterns were consistent with gene expression profiles in GDS605, GDS606, and GDS607 (Table 4). These results suggest that testis-enriched genes may be involved in advanced stages of spermatogenesis when spermatocytes and spermatids are dominant types of spermatogenic cells.

Testis-enriched genes tend to be repressed in diseases associated with male infertility

Expression of all of these testis-enriched genes was decreased in teratozoospermic patients compared to normal individuals (S1 Table). Spermatogenic cells are susceptible to impairment which causes spermatogenic cells to become arrested at a certain developmental stage. For example, spermatogenic arrest at spermatogonia leads to total germ cell depletion and Sertoli cell only (SCO) syndrome with a lack of germ cells, arrest at spermatocytes gives rise to azoospermia (no spermatozoa) and oligozoospermia (a reduced number of spermatozoa), and arrest at spermatids results in teratozoospermia (an abnormal shape of spermatozoa) [37]. Thus, decreased expression of genes enriched in spermatids in this study could be used as biomarkers for spermatid arrest, teratozoospermia, and subsequent infertility. In addition, polyubiquitin knockout mice showed a decreased expression of these testis-enriched genes compared to wild-types (S1 Table). The ubiquitin-proteasomal pathway (UPP) has been regarded to be a critical process for the successful maturation of spermatids into spermatozoa by tagging and degrading proteins related to morphological defects [38]. In addition, post-testicular presence of ubiquitin plays a role in disposal of defective mature spermatozoa [39, 40]. It has been reported that total knockout of the polyubiquitin gene in mice resulted in a developmental arrest of spermatogenesis followed by infertility [41]. Therefore, the decreased expression of testis-enriched genes in polyubiquitin knockout models can be used as an indicator of failure in sperm maturation. A recent study has shown that knockout mice lacking several testis-enriched genes were fertile [42]; however, the relationship between these genes and normal testis development remains to be explored. Genes presented in the current study that are related to testis development may provide appropriate targets for future knockout studies.

Various signaling pathways in sperm are linked to testis-enriched genes

Pathway analysis, in this study, provided comprehensive insight into the underlying biological functions and diseases involved in spermatocyte- or spermatozoa-enriched expression. As such, most of spermatocyte- or spermatozoa-enriched proteins being analyzed were implicated in a variety of sperm functions, including motility and capacitation, and multiple disease conditions such as infertility. On the other hand, three proteins (ZMYND10, ACTL7B, and TCFL5) out of those 15 spermatocyte- or spermatozoa-enriched proteins were not implicated in the biological conditions possibly due to incomplete functional annotations (Fig 4).
In conclusion, testis-enriched genes were found based on GEO profiles, and among them, protein localization of 15 genes was identified using the Human Protein Atlas. Mostly, these testis-enriched proteins were expressed in spermatocytes and/or round spermatids, and their expression significantly increased during testis development. In testicular disease conditions, expressions of these genes were significantly decreased suggesting their relation to normal spermatogenesis and testis development. Moreover, in our pathway analysis, most of these proteins exhibited multiple biological implications related to sperm function. Future studies should ascertain the potential involvement of these testis-enriched genes in male infertility.

Supporting information

S1 Table. Microarray analysis of testicular transcriptome. Samples were derived from normal and teratozoospermic individuals aged 21–57 (GDS2697) and from wild-type and polyubiquitin knockout mice at 28 dpp (GDS3906).

S2 Table. Primer sequences for RT-PCR and real-time PCR.

Acknowledgments
We are grateful to the staff members of University Laboratory Animal Resources (ULAR) at The Ohio State University for their care and effort for the proper use of animals.

Author Contributions

Conceptualization: JA KL.
Formal analysis: W-SK M-GP JA KL.
Funding acquisition: SH SSL.
Investigation: JA YS PC.
Methodology: C-HK.
Resources: TJL Y-JJ CC SH SSL.
Supervision: KL.
Visualization: JA W-SK M-GP.
Writing – original draft: JA Y-JP.
Writing – review & editing: M-GP SSL KL.

References

1. Uhlen M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015; 347: 1260419. https://doi.org/10.1126/science.1260419 PMID: 25613900

2. Yu X, Lin J, Zack DJ, Qian J. Computational analysis of tissue-specific combinatorial gene regulation: predicting interaction between transcription factors in human tissues. Nucleic Acids Res. 2006; 34: 4925–4936. https://doi.org/10.1093/nar/gkl595 PMID: 16982645

3. Ben-Tabou de-Leon S, Davidson EH. Gene regulation: gene control network in development. Annu Rev Biophys Biomol Struct. 2007; 36: 191–212. https://doi.org/10.1146/annurev.biophys.35.040405.102002 PMID: 17291181

PLOS ONE | https://doi.org/10.1371/journal.pone.0175787 April 17, 2017 13 / 18
4. Djureinovic D, Fagerberg L, Hallström B, Danielsson A, Lindskog C, Uhlén M, et al. The human testis-specific proteome defined by transcriptomics and antibody-based profiling. Mol Hum Reprod. 2014; 20: 476–488. https://doi.org/10.1093/molehr/gau018 PMID: 24598113

5. Griswold MD. The central role of Sertoli cells in spermatogenesis. Semin Cell Dev Biol. 1998; 9: 411–416. https://doi.org/10.1006/scdb.1998.0203 PMID: 9813187

6. Dufau ML. Endocrine regulation and communicating functions of the Leydig cell. Annu Rev Physiol. 1980; 50: 483–508. https://doi.org/10.1146/annurev.ph.50.030188.002411 PMID: 3288102

7. O’Shaughnessy PJ, Willerton L, Baker PJ. Changes in Leydig cell gene expression during development in the mouse. Biol Reprod. 2002; 66: 966–975. PMID: 11906915

8. Fok KL, Chen H, Ruan YC, Chan HC. Novel regulators of spermatogenesis. Semin Cell Dev Biol. 2014; 29: 31–42. https://doi.org/10.1016/j.semcdb.2014.02.008 PMID: 24594193

9. Song Y, Ahn J, Suh Y, Davis ME, Lee K. Identification of novel tissue-specific genes by analysis of microarray databases: a human and mouse model. PLoS One. 2013; 31: e64483.

10. Zhang J, Suh Y, Choi YM, Ahn J, Davis ME, Lee K. Differential expression of cyclin G2, cyclin-dependent kinase inhibitor 2C and peripheral myelin protein 22 genes during adipogenesis. Animal. 2014; 8: 800–809. https://doi.org/10.1017/S17517311114000469 PMID: 24739352

11. Li B, Shin J, Lee K. Interferon-stimulated gene ISG12b1 inhibits adipogenic differentiation and mitochondrial biogenesis in 3T3-L1 cells. Endocrinology. 2009; 150: 1217–1224. https://doi.org/10.1210/en.2008-0727 PMID: 18948406

12. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods. 2001; 25: 402–408. https://doi.org/10.1006/meth.2001.1262 PMID: 11846609

13. Sakai I, Sharief FS, Li SS. Molecular cloning and nucleotide sequence of the cDNA for sperm-specific lactate dehydrogenase-C from mouse. Biochem J. 1987; 242: 619–622. PMID: 2439071

14. Tang H, Kung A, Goldberg E. Regulation of murine lactate dehydrogenase C (Ldhc) gene expression. Biol Reprod. 2008; 78: 455–461. https://doi.org/10.1095/bioreprod.107.064964 PMID: 18057313

15. Goldberg E, Eddy EM, Duan C, Odet F. LDHC: the ultimate testis-specific gene. J Androl. 2010; 31: 86–94. https://doi.org/10.2164/jandrol.109.008367 PMID: 19875487

16. Yang SY, Baxter EM, Van Doren M. Phf7 controls male sex determination in the Drosophila germline. Dev Cell. 2012; 22: 1041–1051. https://doi.org/10.1016/j.devcel.2012.04.013 PMID: 22595675

17. Xiao J, Xu M, Li J, Chang Chan H, Lin M, Zhu H, et al. NYD-SP6, a novel gene potentially involved in regulating testicular development/spermatogenesis. Biochem Biophys Res Commun. 2002; 291: 101–110. https://doi.org/10.1006/bbrc.2002.6396 PMID: 11829468

18. Möritz A, Grzeschik KH, Wingender E, Fink E. Organization and sequence of the gene encoding the human acrosin-trypsin inhibitor (HUSSI-II). Gene. 1993; 123: 277–281. PMID: 8428671

19. Chen T, Lee TR, Liang WG, Chang WS, Lyu PC. Identification of trypsin-inhibitory site and structure determination of human SPINK2 serine proteinase inhibitor. Proteins. 2009; 77: 209–219. https://doi.org/10.1002/prot.22432 PMID: 19422058

20. Lee B, Park I, Jin S, Choi H, Kwon JT, Kim J, et al. Impaired spermatogenesis and fertility in mice carrying a mutation in the Spink2 gene expressed predominantly in testes. J Biol Chem. 2011; 286: 29108–29117. https://doi.org/10.1074/jbc.M111.244905 PMID: 21705336

21. Tang H, Duan C, Bleher R, Goldberg E. Human lactate dehydrogenase A (LDHA) rescues mouse Ldhc-null sperm function. Biol Reprod. 2013; 88: 96. https://doi.org/10.1095/bioreprod.112.107011 PMID: 23467744

22. Fraser LR. The modulation of sperm function by fertilization promoting peptide. Hum Reprod. 1988; 13 Suppl 4: 1–10.

23. Ikeda T, Ikeda K, Enomoto M, Park MK, Hiro M, Kamiya R. The mouse ortholog of EFHC1 implicated in juvenile myoclonic epilepsy is an axonemal protein widely conserved among organisms with motile cilia and flagella. FEBS Lett. 2005; 579: 819–822. https://doi.org/10.1016/j.febslet.2004.12.070 PMID: 15670853

24. Shi Y, Zhang L, Song S, Teves ME, Li H, Wang Z, et al. The mouse transcription factor-like 5 gene encodes a protein localized in the manchette and centriole of the elongating spermatid. Andrology. 2013; 1: 431–439. https://doi.org/10.1111/j.2047-2927.2013.00069.x PMID: 23444080

25. Tekur S, Pawlak A, Guelain G, Hecht NB. Contrin, the human homologue of a germ-cell Y-box-binding protein: cloning, expression, and chromosomal localization. J Androl. 1999; 20: 135–144. PMID: 10100484
26. Najafipour R, Moghbinejad S, Samimi Hashjin A, Rajaei F, Rashvand Z. Evaluation of mRNA Contents of YBX2 and JHDM2A Genes on Testicular Tissues of Azoospermic Men with Different Classes of Spermatogenesis. Cell J. 2015; 17: 121–128. https://doi.org/10.22074/cellj.2015.518 PMID: 25870841

27. Moore DJ, Onoufriadis A, Shoemark A, Simpson MA, zur Lage PI, de Castro SC, et al. Mutations in ZMYND10, a gene essential for proper axonemal assembly of inner and outer dynein arms in humans and flies, cause primary ciliary dyskinesia. Am J Hum Genet. 2013; 93: 346–356. https://doi.org/10.1016/j.ajhg.2013.07.009 PMID: 23891471

28. Hopkins J, Hwang G, Jacob J, Sapp N, Bedigian R, Oka K, et al. Meiosis-specific cohesin component, Stag3 is essential for maintaining centromere chromatin cohesion, and required for DNA repair and synapsis between homologous chromosomes. PLoS Genet. 2014; 10: e1004413. https://doi.org/10.1371/journal.pgen.1004413 PMID: 24992337

29. Florman HM, Jungnickel MK, Sutton KA. Shedding light on sperm fertility. Cell. 2010; 140: 310–312. https://doi.org/10.1016/j.cell.2010.01.035 PMID: 20144756

30. Lin YN, Roy A, Yan W, Burns KH, Matzuk MM. Loss of zona pellucida binding proteins in the acrosomal matrix disrupts acrosome biogenesis and sperm morphogenesis. Mol Cell Biol. 2007; 27: 6794–6805. https://doi.org/10.1128/MCB.01029-07 PMID: 17664285

31. Baltz JM, Williams PO, Cone RA. Dense fibers protect mammalian sperm against damage. Biol. Reprod. 1990; 43: 485–491. PMID: 2271730

32. Yang K, Meinhardt A, Zhang B, Grzmił P, Adham IM, Hoyer-Fendeler S. The small heat shock protein ODF1/HSPB10 is essential for tight linkage of sperm head to tail and male fertility in mice. Mol cell Biol. 2012; 32: 216–225. https://doi.org/10.1128/MCB.06158-11 PMID: 22037768

33. Toshimori K, Ito C, Maekawa M, Toyama Y, Suzuki-Toyota F, Saxena DK. Impairment of spermatogenesis leading to infertility. Anat Sci Int. 2004; 79: 101–111. https://doi.org/10.1111/j.1447-073x.2004.00076.x PMID: 15453611

34. Sogawa C, Fujiwara Y, Tsukamoto S, Ishida Y, Yoshii Y, Furukawa T, et al. Mutant phenotype analysis suggests potential roles for C-type natriuretic peptide receptor (NPR-B) in male mouse fertility. Mol Endocrinol. 2014; 12: 64. https://doi.org/10.1186/1477-7827-10-64 PMID: 225012822

35. Sutovsky P, Aarabi M, Miranda-Vizuete A, Oko R. Negative biomarker based male fertility evaluation: Sperm phenotypes associated with molecular-level anomalies. Asian J Androl. 2015; 17: 554–560. https://doi.org/10.4103/1008-682X.153847 PMID: 25999356

36. Miyata H, Castaneda JM, Fujihara Y, Yu Z, Archambault DR, Isotani A, et al. Genome engineering uncovers 54 evolutionarily conserved and testis-enriched genes that are not required for male fertility in mice. Proc Natl Acad Sci USA. 2016; 113: 7704–7710. https://doi.org/10.1073/pnas.1608458113 PMID: 27357688

37. Yelick PC, Kwon YH, Flynn JF, Borzorgzadeh A, Kleene KC, Hecht NB. Mouse transition protein 1 is translationally regulated during the postmeiotic stages of spermatogenesis. Mol Reprod Dev. 1998; 1: 193–200. https://doi.org/10.1002/mrd.1080010307 PMID: 9827368

38. Tanaka H, Yoshimura Y, Nishina Y, Nozaki M, Nojima H, Nishimune Y. Isolation and characterization of cDNA clones specifically expressed in testicular germ cells. FEBS Lett. 1994; 355: 4–10. PMID: 7957698
45. Zhong J, Peters AH, Kafer K, Braun RE. A highly conserved sequence essential for translational repression of the protamine 1 messenger RNA in murine spermatids. Biol Reprod. 2001; 64: 1784–1789. PMID: 11369609

46. Esakky P, Hansen DA, Drury AM, Moley KH. Molecular analysis of cell type-specific gene expression profile during mouse spermatogenesis by laser microdissection and qRT-PCR. Reprod Sci. 2013; 20: 238–252. https://doi.org/10.1177/1933719112452939 PMID: 22941942

47. Vijayaraghavan S, Liberty GA, Mohan J, Winfrey VP, Olson GE, Carr DW. Isolation and molecular characterization of AKAP110, a novel, sperm-specific protein kinase A-anchoring protein. Mol Endocrinol. 1999; 13: 705–717. https://doi.org/10.1210/mend.13.5.0278 PMID: 10319321

48. Cataldo L, Baig K, Oko R, Mastrangelo MA, Kleene KC. Developmental expression, intracellular localization, and selenium content of the cysteine-rich protein associated with the mitochondrial capsules of mouse sperm. Mol Reprod Dev. 1996; 45: 320–331. https://doi.org/10.1002/mrd.20039 PMID: 14991737

49. Nam SY, Maeda S, Ogawa K, Kurohmaru M, Hayashi Y. Expression pattern of the mitochondrial capsule selenoprotein mRNA in the mouse testis after puberty; in situ hybridization study. J Vet Med Sci. 1997; 59: 983–988. PMID: 9409512

50. Nayernia K, Diaconu M, Aumüller G, Wennemuth G, Schwandt I, Kleene K, et al. Phospholipid hydroperoxide glutathione peroxidase: expression pattern during testicular development in mouse and evolutionary conservation in spermatozoa. Mol Reprod Dev. 2004; 67: 458–464. https://doi.org/10.1002/mrd.20039 PMID: 14991737

51. Siep M, Sleddens-Linkels E, Mulders S, van Eenennaam H, Wassenaar E, Van Cappellen WA, et al. Basic helix-loop-helix transcription factor Tcfl5 interacts with the Calmegin gene promoter in mouse spermatogenesis. Nucleic Acids Res. 2004; 32: 6425–6436. https://doi.org/10.1093/nar/gkh979 PMID: 15586666

52. Hoyer-Fender S, Petersen C, Brohmann H, Rhee K, Wolgemuth DJ. Mouse Odf2 cDNAs consist of evolutionary conserved as well as highly variable sequences and encode outer dense fiber proteins of the sperm tail. Mol Reprod Dev. 1998; 51: 167–175. https://doi.org/10.1002/(SICI)1098-2795(199810)51:2<167::AID-MRD6>3.0.CO;2-O PMID: 9740324

53. Hosseini R, Ruddy S, Bains S, Hynes G, Marsh P, Pizzy J, et al. The mouse t-complex gene, Tcp-11, is under translational control. Mech Dev. 1994; 47: 73–80. PMID: 79473737

54. Tanaka K, Parvinen M, Nigg EA. The in vivo expression pattern of mouse Nek2, a NIMA-related kinase, indicates a role in both mitosis and meiosis. Exp Cell Res. 1997; 237: 264–274. https://doi.org/10.1006/excr.1997.3788 PMID: 9434622

55. Yuan S, Stratton CJ, Bao J, Zheng H, Bhetwal BP, Yanagimachi R, et al. Spata6 is required for normal assembly of the sperm connecting piece and tight head-tail conjunction. Proc Natl Acad Sci U S A. 2015; 112: E430–9. https://doi.org/10.1073/pnas.1424648112 PMID: 25605924

56. Fu J, Wang Y, Fok KL, Yang D, Qiu Y, Chan HC, et al. Anti-ACTL7a antibodies: a cause of infertility. Fertil Steril. 2012; 97: 1226–1233, e1-8. https://doi.org/10.1016/j.fertnstert.2012.02.023 PMID: 22386842

57. Tanaka K, Panvinen M, Nigg EA. The in vivo expression pattern of mouse Nek2, a NIMA-related kinase, indicates a role in both mitosis and meiosis. Exp Cell Res. 1997; 237: 264–274. https://doi.org/10.1006/excr.1997.3788 PMID: 9434622

58. Rhee K, Wolgemuth DJ. The NIMA-related kinase 2, Nek2, is expressed in specific stages of the meiotic cell cycle and associates with meiotic chromosomes. Development. 1997; 124: 2167–2177. PMID: 9187143

59. Pizzey J, Hynes G, Marsh P, Pizzy J, et al. The mouse t-complex gene, Tcp-11, is under translational control. Mech Dev. 1994; 47: 73–80. PMID: 79473737
63. Prieto I Suja JA, Pezzi N, Kremer L, Martínez-A C, Rufas JS, et al. Mammalian STAG3 is a cohesin specific to sister chromatid arms in meiosis I. Nat Cell Biol. 2001; 3: 761–766. https://doi.org/10.1038/35087082 PMID: 1143863

64. Wykes SM, Nelson JE, Visscher DW, Djakiew D, Krawetz SA. Coordinate expression of the PRM1, PRM2, and TNP2 multigene locus in human testis. DNA Cell Biol. 1995; 14: 155–161. https://doi.org/10.1089/dna.1995.14.155 PMID: 786513

65. Meklat F, Zhang Y, Shahriar M, Ahmed SU, Li W, Youkakis N, et al. Identification of proteamine 1 as a novel cancer-testis antigen in early chronic lymphocytic leukaemia. Br J Haematol. 2009; 144: 660–666. https://doi.org/10.1111/j.1365-2457.2008.07502.x PMID: 19036087

66. Steger K, Klonisch T, Gavenis K, Drabent B, Donenecke D, Bergmann M. Expression of mRNA and protein of nucleoproteins during human spermogenesis. Mol Hum Reprod. 1998; 4: 939–945. PMID: 9809674

67. Petersen C, Füzesi L, Hoyer-Fender S. Outer dense fibre proteins from human sperm tail: molecular cloning and expression analyses of two cDNA transcripts encoding proteins of approximately 70 kDa. Mol Hum Reprod. 1999; 5: 627–635. PMID: 1038117

68. Krätzschmar J, Haendler B, Eberspecher U, Roosterman D, Donner P, Schleuning WD. The human cysteine-rich secretory protein (CRISP) family. Primary structure and tissue distribution of CRISP-1, CRISP-2 and CRISP-3. Eur J Biochem. 1996; 235: 827–836. PMID: 8665901

69. Du Y, Huang X, Li J, Hu Y, Zhou Z, Sha J. Human testis specific protein 1 expression in human spermatogenesis and involvement in the pathogenesis of male infertility. Fertil Steril. 2006; 85: 1852–1854. https://doi.org/10.1016/j.fertnstert.2005.11.064 PMID: 16759931

70. Möritz A, Schwemmer M, Tessmann D, Murphy D, Mattei G, Engel W, et al. Isolation, expression, and chromosomal localization of the human mitochondrial capsule selenoprotein gene (MCSP). Genomics. 1996; 32: 184–190. PMID: 8833144

71. Chadwick BP, Mull J, Helbling LA, Gill S, Leyne M, Robbins CM, et al. Cloning, mapping, and expression of two novel actin genes, actin-like -7A (ACTL7A) and actin-like -7B (ACTL7B), from the familial dysautonomia candidate region on 9q31. Genomics. 1999; 58: 302–309. https://doi.org/10.1006/geno.1999.5848 PMID: 10373328

72. Liu Y, Jiang M, Li C, Yang P, Sun H, Tao D, et al. Human t-complex protein 11 (TCP11), a testis-specific gene product, is a potential determinant of the sperm morphology. Tohoku J Exp Med. 2011; 224: 111–117. PMID: 21597245

73. Agathanggeou A, Dallol A, Zöchbauer-Müller S, Morrissey C, Honorio S, Hessons L, et al. Epigenetic inactivation of the candidate 3p21.3 suppressor gene BLU in human cancers. Oncogene. 2003; 22: 1850–1858. https://doi.org/10.1038/sj.onc.1206243 PMID: 12629521

74. Leffere A, Duquenne C, Rousseau-Mercier MF, Rogier E, Finaz C. Cloning and characterization of SOB1, a new testis-specific cDNA encoding a human sperm protein probably involved in oocyte recognition. Biochem Biophys Res Commun. 1999; 259: 60–66. https://doi.org/10.1006/bbrc.1999.0728 PMID: 10334916

75. Song MH, Choi KU, Shin DH, Lee CH, Lee SY. Identification of the cancer/testis antigens AKAP3 and CTP11 by SEREX in hepatocellular carcinoma. Oncol Rep. 2012; 28: 1792–1798. https://doi.org/10.3892/or.2012.2002 PMID: 22941507

76. Welch JE, Brown PL, O’Brien DA, Magyar PL, Bunch DO, Mori C, et al. Human glyceraldehyde 3-phosphate dehydrogenase-2 gene is expressed specifically in spermatogenic cells. J Androl. 2000; 21: 328–338. PMID: 10714828

77. Castrillon DH, Quade BJ, Wang TY, Quigley C, Crum CP. The human VASA gene is specifically expressed in the germ cell lineage. Proc Natl Acad Sci U S A. 2000; 97: 9585–9590. https://doi.org/10.1073/pnas.160274797 PMID: 10920202
82. Maruyama O, Nishimori H, Katagiri T, Miki Y, Ueno A, Nakamura Y. Cloning of TCFL5 encoding a novel human basic helix-loop-helix motif protein that is specifically expressed in primary spermatocytes at the pachytene stage. Cytogenet Cell Genet. 1998; 82: 41–45. PMID: 9763657