DUALS OF NON-ZERO SQUARE

HANNAH R. SCHWARTZ

Abstract. In this short note, for each non-zero integer \(n \), we construct a 4-manifold containing a smoothly concordant pair of spheres with a common dual of square \(n \) but no automorphism carrying one sphere to the other. Our examples, besides showing that the square zero assumption on the dual is necessary in Gabai’s and Schneiderman-Teichner’s versions of the 4D Light Bulb Theorem, have the interesting feature that both the Freedman-Quinn and Kervaire-Milnor invariant of the pair of spheres vanishes. The proof gives a surprising application of results due to Akbulut-Matveyev and Auckly-Kim-Melvin-Ruberman pertaining to the well-known Mazur cork.

0. Introduction and Motivation

We work throughout in the smooth, oriented category. Begin by considering a pair of homotopic 2-spheres \(S \) and \(T \) embedded in a smooth 4-manifold \(X \), with an embedded 2-sphere \(G \subset X \) intersecting both \(S \) and \(T \) transversally in a single point. Such a sphere is called a common dual of \(S \) and \(T \). Recent work of Gabai [9] and Schneiderman-Teichner [17] has completely characterized the conditions under which the spheres \(S \) and \(T \) are isotopic, so long as their common dual \(G \) has square zero, i.e. a trivial normal bundle, in the 4-manifold \(X \). We call such a dual standard, and non-standard otherwise. The objective of this note is to show that the assumption of a standard dual is necessary one in [9] and [17].

Main Theorem. For each \(n \neq 0 \), there exists a 4-manifold \(X_n \) containing smoothly concordant embedded spheres \(S_n \) and \(T_n \) with a common dual of square \(n \) such that there is no automorphism of \(X_n \) carrying one sphere to the other.

The proof of our Main Theorem gives a surprising application of well-studied 4-dimensional objects called corks: compact contractible 4-manifolds \(C \) equipped with an orientation preserving diffeomorphism \(h: \partial C \to \partial C \). The study of corks was initially motivated by the fact that the cork twist \(X_{C,h} = (X - \operatorname{int}(C)) \cup_h C \) of an embedded cork \(C \subset X \) is homeomorphic to \(X \) by Freedman [7], but need not be diffeomorphic to \(X \) by Akbulut [1]. Such an embedding of a cork is called non-trivial. Our construction builds upon examples given by Akbulut and Matveyev [3] of non-trivial embeddings of corks.

Acknowledgements. The author is grateful to both Dave Gabai and Peter Teichner for their encouragement to write up this result, and for their thoughtful comments and advice.

1. Warm-up

The first example of a cork with a non-trivial embedding was produced by Akbulut in [1]. Now ubiquitous, the “Akbulut-Mazur cork” \((W, \tau) \) consists of the Mazur manifold \(W \) shown in Figure 1 and \(\tau \) the involution on its boundary induced by a rotation of \(\pi \) around the indicated axis of symmetry. Many 4-manifolds are now known to admit non-trivial embeddings of the Mazur cork; we outline one such embedding due to Akbulut and Matveyev [3] as a warm-up to the proof of the Main Theorem.

Let \(X \) denote the compact 4-manifold shown on the left in Figure 2 built from the Mazur manifold \(W \) by adding a single 2-handle. Note that \(X \) has a handlebody decomposition consisting

* Mazur’s [15] contractible 4-manifolds are each built with a single 0,1, and 2-handle. They are not homeomorphic to the 4-ball, but their products with the interval give the standard 5-ball.
of a single 1-handle, and two 2-handles each attached along knots in $S^1 \times S^2$ with framings less than their maximum Thurston-Bennequin numbers, as illustrated on the bottom right of Figure 3. Therefore X is a compact Stein domain\footnote{For a precise definition of what we mean by “compact Stein domain”, see \cite{Eliashberg2}.} by a result of Eliashberg \cite{Eliashberg1}; see also \cite{Eliashberg3} for more exposition.

On the other hand, the cork twist $X_{W,\tau}$ contains an embedded 2-sphere of square -1, seen in the diagram for $X_{W,\tau}$ in Figure 2 as the union of the shaded disk D and the core of the 2-handle attached along ∂D. Therefore $X_{W,\tau}$ must not be a compact Stein domain. This follows from a result due to Lisca and Matić \cite{Lisca1} that compact Stein domains embed in minimal, closed Kähler surfaces, which contain no smoothly embedded 2-spheres of square -1. Therefore, X and $X_{W,\tau}$ are not diffeomorphic.

\section{Main theorem}

To contextualize our main result, we outline the previous results about common duals referred to in Section 1. By Gabai \cite{Gabai1} and Schneiderman-Teichner \cite{Schneiderman1}, the existence of a common standard dual for homotopic spheres $S, T \subset X$ guarantees a smooth isotopy between S and T whenever the \textbf{Freedman-Quinn invariant}, a concordance invariant defined in \cite{Freedman1}, of the pair (S, T) vanishes. Recent work of Gabai \cite{Gabai2} shows an analogous result holds for certain properly embedded disks with a common standard dual and vanishing \textbf{Dax invariant}, an isotopy invariant of properly embedded disks recently formulated by Gabai in \cite{Gabai2} using homotopy theoretic work of Dax \cite{Dax1}.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{The Akbulut-Mazur cork (W, τ)}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{The manifold X (left) and the cork twist $X_{W,\tau}$ (right)}
\end{figure}
from the 70’s. To guarantee even a smoothly embedded concordance between S and T when their common dual is non-standard, it is also required that their Kervaire-Milnor invariant, defined by Stong in [20], vanishes.

2.1. Remark. Recently, Klug-Miller [13, Example 7.2] showed that it is necessary that the dual have square zero for Gabai [9] and Schneiderman-Teichner [17] to achieve an isotopy, by presenting a pair of spheres whose common dual of square +1, with vanishing Freedman-Quinn invariant but non-vanishing Kervaire-Milnor invariant. On the other hand, for each $n \neq 0$, the Main Theorem gives examples of pairs of spheres with dual of square n whose Freedman-Quinn invariant and Kervaire-Milnor invariants vanish, but that are not related by any automorphism of the ambient 4-manifold. Such an automorphism always exists for spheres when the common dual is standard by [18, Lemma 2.3], since in this case the common dual can be surgered (Gabai remarks after [10, Theorem 0.8] that by a similar proof, this also holds for properly embedded disks with a common standard dual).

Proof of Main Theorem. For $n \leq -1$, consider the 4-manifold X_n pictured in Figure 4. Since X_n is simply-connected, the spheres S_n and T_n are not only homologous, but also homotopic. It is also immediate that the both the Freedman-Quinn and Kervaire-Milnor invariants of the pair (S_n, T_n) vanish, since these invariants are elements of $H_1(X_n; \mathbb{Z}_2)$ and a quotient of $\mathbb{Z}[\pi_1(X)]$ respectively, which are both trivial in this case. Let R_n denote the sphere of square n gotten by capping off the red disk in Figure 1 with the core of the 2-handle attached with framing n along its boundary. The sphere R_n is dual to both S_n and T_n, since S_n and T_n each pass once (geometrically) over the 2-handle with framing 1 in the topmost diagram of Figure 4. Therefore, by [8] and [20], the spheres S_n and T_n are smoothly concordant in $X_n \times I$.

The manifold X_n contains Akbulut and Matveyev’s manifold X [4] discussed in Section 1. To show that there is no automorphism of X_n carrying S_n to T_n, we use an argument similar to one of Auckly-Kim-Melvin-Ruberman [4, Theorem A]; see in particular Figure 18 of their paper. For, blowing down S_n gives the bottom left manifold of Figure 5, which is not Stein since it contains an embedded sphere of square -1, as in the argument from Section 1. On the other hand, blowing down T_n gives the bottom right manifold of Figure 5, which is Stein whenever $n \leq -1$ by [6], since all 2-handles are attached along Legendrian knots whose framings are strictly less than their Thurston-Bennequin numbers.

Figure 3. Identical handlebody structures for X, drawn with (left and middle) and without (right) the dotted circle notation for 1-handles from [12, Chapter I.2]. The Thurston-Bennequin framing of the attaching circle of each 2-handle is computed from the rightmost diagram using the usual formula (writhe) - (number of right cusps).
As the manifolds that result from blowing down S_n and T_n are not diffeomorphic, there can be no automorphism of X_n carrying one sphere to the other when $n \leq -1$. The result therefore also holds for $n \geq 1$, setting $X_n = -X_{-n}$ and considering the spheres $S_n, T_n \subset X_n$ that are the images of the spheres $S_{-n}, T_{-n} \subset X_{-n}$ under the (orientation reversing) identity map.

\[\square \]

References

[1] S. Akbulut, *A fake compact contractible 4-manifold*, J. Differential Geom. **33** (1991), no. 2, 335 – 356.

[2] S. Akbulut and R. Matveyev, *A convex decomposition theorem for 4-manifolds*, Internat. Math. Res. Notices **7** (1998), 371–381.

[3] S. Akbulut and R. Matveyev, *Exotic structures and adjunction inequality*, Turkish J. of Math. **21** (1997), no. 1, 47 –53.

[4] D. Auckly, H-J. Kim, P. Melvin and D. Ruberman, *Stable isotopy in four dimensions*, J. Lond. Math. Soc. **91** (2015), 439 –463.

[5] J. P. Dax, *Étude homotopique des espaces de plongements*, Ann. Sci. Ecole Norm. Sup. (4) **5** (1972), 303–377.

[6] Y. Eliashberg, *A topological characterization of Stein manifolds of dimension \geq 2*, International J. of Math. **1** (1990), no. 1, 29–46.

[7] M. H. Freedman, *The topology of four-dimensional manifolds*, J. Diff. Geo. **17** (1982), 357–432.

[8] M. H. Freedman and F. Quinn, *Topology of 4-manifolds*, Princeton University Press, Princeton, 1990.

[9] D. Gabai, *The 4-Dimensional Lighthouse Theorem*, J. AMS **33** (2020), 609 – 652.

[10] D. Gabai, *Self-referential disks and the light bulb lemma*, [arXiv:2006.15450 [math.GT]], 2020.

[11] B. Gompf, *Constructing Stein manifolds after Eliashberg*, [arXiv:0810.4511 [math.GT]], 2008.

[12] R. C. Kirby, *The topology of 4-manifolds*, Lecture Notes in Mathematics, vol. 1374, Springer-Verlag, Berlin, 1989.
Figure 5. Blowing down the spheres S_n and T_n

[13] M. Klug and M. Miller, *Concordance of surfaces and the Freedman-Quinn invariant*, arXiv:1912.12286 [math.GT], 2019.

[14] P. Lisca and G. Matić, *Tight contact structures and Seiberg-Witten invariants*, Invent. Math. 129 (1997), 509–525.

[15] B. Mazur, *A note on some contractible 4-manifolds*, Ann. of Math. 73 (1961), 221–228.

[16] M. Miller, *A concordance analogue of the 4-dimensional light bulb theorem*, arXiv:1903.03055 [math.GT], 2019. To appear in Int. Math. Res. Notices IMRN.

[17] R. Schneiderman and P. Teichner, *Homotopy versus Isotopy: spheres with duals in 4-manifolds*, arXiv: 1904.12350 [math.GT], 2019.

[18] H. Schwartz, *Equivalent non-isotopic spheres in 4-manifolds*, J. of Top. 12 (2019), 1396–1412.

[19] S. Smale, *A classification of immersions of the two-sphere*, Trans. AMS (1957), 281–290.

[20] R. Stong, *Existence of π_1-negligible embeddings in 4-manifolds: A correction to Theorem 10.5 of Freedman and Quinn*, Proc. Amer. Math. Soc. 120 (1994), 1309–1314.

Princeton University, Princeton, NJ 08544

Email address: hs25@princeton.edu