Short Communication

SEVERE ANAPLASMA PHAGOCYTOPHILUM AND BABESIA DIVERGENS
CONCOMITANT INFECTION IN IMPORTED CAPTIVE REINDEER
(RANGIFER TARANDUS)

Lola Romanos, Renaud Pierre Maillard

Ruminant Health Management/Interaction of Host and Pathogen Agents (IHAP),
National Veterinary School of Toulouse (ENVT), 23 Chemin Des Capelles,
Toulouse 31076, France

Received 4 February 2020; Received in revised form 18 June 2020; Accepted 14 July 2020

ABSTRACT

Tick-borne diseases are highly prevalent in domestic and wild ruminants and they may be distributed in wide geographical ranges by animal transportation. The aim of the current study was to investigate the presence of European strains of Babesia spp. and/or Anaplasma spp. in oversea imported reindeer specimens. Imported specimens (n=7) were hospitalized with visible tick infestation (Ixodes ricinus) and signs of cachexia, anemia, and hemoglobinuria. Using blood smears, PCR, and BLAST comparisons, it was confirmed that the animals were infected with a French strain of Anaplasma phagocytophilum and Babesia divergens which is considered to be absent in the USA. We conclude that oversea importation of reindeers must be followed with a routine check for geographically-specific strains of pathogens from the place of origin. This monitoring process must be dynamic and according to recent reports of tick-borne pathogens.

Key words: Anaplasma, Babesia, Ixodes ricinus, reindeer

INTRODUCTION

Babesia divergens, Babesia spp. EU1, Borrelia (B. burgdorferi s.l.), Anaplasma (A. phagocytophilum) and Mycoplasma wenyonii (or other haemoplasma closely related to) are the main pathogens transmitted by Ixodes ricinus to ruminants in Europe (1, 2, 3, 4). These Ixodes-related pathogens are geographically related to forest pastures are therefore most highly present in wild-animal ruminant species (5, 6). Transport of such animals may contribute to wide dispersion of local geographical strains of these pathogens. Babesiosis in reindeer has been related either to Babesia odocoilei (USA) or B. divergens (Europe) (7), or more recently to Babesia spp.

EU1 (also known as Babesia venatorum) in the Netherlands (8). Moreover, up to 5 different Babesia species (B. venatorum, B. capreoli, B. capreoli-like, B. odocoilei-like and B. divergens) have been identified in asymptomatic captive reindeer in Germany (9). Infection by Anaplasma spp. is less reported despite the fact that A. phagocytophilum and A. ovis can infect reindeer (10, 11, 12).

We hypothesized that French strains of Babesia spp. or Anaplasma spp. may be diagnosed in imported, tick infested or non-infested reindeer specimens from an oversea geographical origin. Therefore, the aim of the current study was to investigate the correlation between severe clinical manifestation in imported reindeer specimens from the USA infested by Ixodes spp. and concomitant infection with Babesia spp. or Anaplasma spp.

MATERIAL AND METHODS

The study was conveyed on seven adult captive reindeers (Rangifer tarandus tarandus) that were hospitalized with medical history of anorexia, depression, pyrexia, and significant loss of weight.
They have been imported from the USA approximately 4 weeks prior the hospitalization. Three were admitted dead, two died within a few hours after admission, and two were successfully treated. The deceased animals were processed on necropsy examination.

Blood smears (Microscope Nikon type 104, 40x) and coprology were performed on the treated animals. Blood cell count, hematocrit and hemoglobin were also performed (Hematology analyser XT 200 iV, Sysmex France, F-95944 Roissy). Multiple PCRs on blood samples was performed for *Anaplasma* (1, 12, 14, 15) and *Babesia* (16), followed by sequence analysis and BLAST comparison with sequence databanks.

DNAs were extracted from 200 µl of EDTA blood samples collected from reindeer using a QIAamp DNA Blood Mini Kit (QIAGEN® France-91974 Courtabeuf), eluted with 100 µl of buffer AE and stored at – 20 °C until use.

For *Anaplasma* spp., 5 distinct PCR assays were employed through two steps (as described in 12, 14, and 15). First, the DNA extracts were screened with broad-spectrum PCR primers targeting 16S rRNA gene of *Anaplasmataceae*, and then with primers targeting major surface protein 4 gene: *msp4*. Secondly, positive samples were subjected to confirmation by 3 amplification assays: PCRs targeting *groESL* heat shock operon, *ankA* gene, and citrate synthase gene: *gltA*. For *Babesia* a genus-specific PCR based on the amplification of a fragment of an 18S rRNA gene was performed, using BJ1 and BN2 primers (as described in 16).

PCR assays were performed on an Eppendorf® Mastercycler ep-Gradient thermocycler (Eppendorf France-78360 Montesson).

PCR products were analyzed by gel electrophoresis in 2% agarose (SYBR® Safe DNA gel stain, Invitrogen, Carlsbad, USA).

Sequence analysis was performed with NCBI blast tools (see: https://blast.ncbi.nlm.nih.gov/).

Table 1. Blood analysis from reindeer USA Texas 109 (leukogram, red cell count, hemoglobin, clinical chemistry)

Parameter	Value	
Erythrocytes (10¹²/L)	5.80 (10.70)	
Haematocrit (%)	33 (47)	
Haemoglobin (g/dL)	10.20 (17.30)	
White blood cells (10⁹/L)	5.53 (2.96)	
Neutrophils (10⁹/L)	4.90 (1.91)	
Lymphocytes (10⁹/L)	0.48 (0.90)	
Monocytes (10⁹/L)	0.05 (0.01)	
Eosinophils (10⁹/L)	<0.05 (0.00)	
Basophils (10⁹/L)	<0.05 (0.05)	
Platelet count (10⁹/L)	51.00 (235.00)	
Fibrinogen (g/L)	4.61 (NA)	
Glucose (mmol/L)	3.97 (6.70)	
Urea (mmol/L)	13.60 (4.50)	
Sodium (mmol/L)	144.00 (144.00)	
Potassium (mmol/L)	3.70 (3.60)	
Chloride (mmol/L)	103.00 (101.00)	
Bicarbonate (mEq/L)	27.00 (NA)	
Protein: total serum (g/L)	64.70 (62)	
Albumin (g/L)	22.60 (NA)	
Aspartate aminotransferase (IU/L)	389 (104)	
Creatine phosphokinase (IU/L)	327 (356)	
Gamma glutamyl transferase (IU/L)	168 (24)	

In brackets: mean values adapted from Miller et al (13). NA: Not available. Hematology analyser XT 200 iV, Sysmex France, F-95944 Roissy. Biochemistry analyser VetTest, Iddex Europe, Hoofddorp, 2132 LR, The Netherlands
RESULTS

Clinical examinations revealed cachexia, dehydration (estimated >10%), polypnea (>50 movements per minute), tachycardia (>90 beatings per minute), and hemoglobinuria. The color of mucosae was normal to pale, without signs of icterus. Tens to thousands of engorged *Ixodes ricinus* were found on each animal (from reindeer 172: 34 ticks, to reindeer 282: countless >1000 ticks).

Blood analysis revealed moderate anemia (Table 1). Blood smears revealed intra-erythrocytic protozoa morphologically identified as *Babesia divergens* (Fig. 1).

Another blood smear a few hours after revealed the presence of intragranulocytic morulae identified as *Anaplasma phagocytophilum* (Fig. 2).

PCR results confirmed the morphological, bacteriological (Table 2) and parasitological findings (data not shown). After sequencing 5 genes of *A. phagocytophilum* (Genbank accession numbers JX841250 to JX841254, respectively), BLAST analyses of the sequences confirmed that the isolate was 100% identical to a French *A. phagocytophilum* isolate (strain BOV 10_179 CCXQ01000001 as deposited in the European Nucleotide Archive (see: https://www.ebi.ac.uk/ena/data/view/CCXQ01).

Figure 1. Multiple protozoa (arrows: pear-shaped intra-erythrocytic parasites) in a blood smear (from reindeer USA Texas 109) identified as *Babesia divergens*. Microscope Nikon type 104, 40x

Figure 2. *Anaplasma phagocytophilum* morula (arrow: blackberry-shaped intracytoplasmic foreign body) in a neutrophilic granulocyte (reindeer USA Texas 109). Microscope Nikon type 104, 100x
Table 2. Amplification of 4 genes and partial 16S rRNA from *Anaplasma phagocytophilum* isolated in reindeer USA Texas 109: primers used and fragment length

Gene or genome portion	Primers (name and sequence)	Fragment length (base pair)
16S rRNA	EHR16SD : GGT ACC YAC AGA AGA AGT CC EHR16SR : TAG CAC TCA TTC TTA ACA GC	346 bp
msp4	MAP4AP5 : ATG AAT TAC AGA GAA TGG CTT GTA GG MSP4AP3 R : TTA ATT GAA AGC AAA TCT TGC TCC TAT G	849 bp
gltA	PCR1 : CS7F2 : ATG R*TA GAA AAW *GCT GTT TT HG1085R : ACT ATA CCK GAG TAA AAG TC PCR2 : F1b : GAT CAT GAR* CAR* AAT GCT TC AnaCS1076R : GAG TAA AAG TCG ACR* TTK* GG	450 bp
groESL	E EgrolF : GAG TTC GAC GGT AAG AAG TTC A AnaGroESL240F : ATT AGY* AAG CCT TAT GGGTC	500 bp
ankA	U8 : TAA GAT AGG TTT AGT AAG ACG 1Rmod : CTT AGT GCT TCA GCG GTC AG	350 bp

DISCUSSION

We found that all animals suffered from coinfection with the two major pathogens transmitted in Western Europe to ruminants by *Ixodes ricinus* (17). Poor nutritional condition, parasitism and transport-related stress (such as “shipping fever” documented in cattle) were the factors contributing to the severity of the disease.

Babesia spp. infection in reindeer is not considered to have frequent clinical manifestation. In the USA, *B. odocoieli* is correlated with a high mortality rate in reindeers (18), but it can affect other wild ruminants as well (elk - *Cervus elaphus elaphus*, and white-tailed deer - *Odocoileus virginianus*) (19, 20). A larger *Babesia* has also been described in one fatal case in a reindeer (20). *B. divergens* infects ruminants in Europe but has never been reported in the USA. *B. divergens*-like/MO-1 in the USA is a distinct strain of *B. divergens*, which has a lower infection rate in cattle, and distinct morphology when grown *in vitro* (21, 22, 23).

In early reports in Europe, infection of roe deer with *Babesia* spp. was supposed to result in subclinical to mild symptoms (11, 24). It is possibly due to the lack of exposure to tick bites under natural conditions, as reindeers seem to be extremely sensitive to most tick-borne pathogens (7, 19). In Europe, babesiosis in reindeer is induced by the very common *B. divergens* (7), but some protozoa close to *B. odocoieli* have also been detected in European ticks collected on wild cervids (5, 24). A larger *Babesia* (*B. jakimovi*) has also been described in naturally infected reindeers in Siberia. The zoonotic large *Babesia* spp. EU1 has been reported in *Ixodes ricinus* in a roe deer (3, 25, 26, 27), and in a reindeer (8). *B. divergens*, *Babesia* sp. EU1 and *B. odocoieli* are genetically and/or morphologically similar (3, 26, 27, 28). Many of “*Babesia divergens*” infections in European cervids may have been also caused by *B. capreoli* (3, 29). Hence, formal molecular identification of *Babesia* sp. in wild ruminants is routinely performed (12).

Anaplasma ovis infection may result in a severe disease in reindeer (10). The vectors associated with this bacterium are not *Ixodes* spp (30). In our case, no specific sequence of the bacterium was found (30). Disease due to *Anaplasma phagocytophilum* infection has not been fully described in reindeer, even if the infection seems moderately prevalent (12). The infection in domestic and wild ruminants results in a seldom fatal disease unless complicated by other infections (2, 31). In our clinical observations, we hypothesized that the severe clinical manifestations in reindeer are a result of coinfection with *Babesia divergens*. Contributing factors were the supposed immune naivety and the shipping stressors.

Anaplasma phagocytophilum and/or *Babesia divergens* are frequently related to *Ixodes ricinus* infestations in Europe. The findings for *Anaplasma* range from 2 to 45% in various European countries (12, 32), for *Babesia divergens* from 0.9 to 6.7% (33), for both pathogens from 4 to 8% in Germany (12, 34), and up to 46.7% in Poland (6). These rates are correlated with the tick life-stage and sex, detection method, and geography (country) (4). The tick population in one geographical zone may
Tick borne disease in imported reindeer

contain one or more infective agents (6, 17, 35). The transmission cycle of *Anaplasma phagocytophilum* is not fully elucidated in Europe. If the documented vector is *Ixodes ricinus*, the reservoir is not precisely known (31, 34, 36, 37).

Tick bites in susceptible or weakened and immunologically compromised animals may therefore result in one or multiple infections. When introducing wild or domestic ruminants in a new pasture, a farm or country, it is important to consider which disease and which parasite they may introduce, but it is also imperative to consider the danger they incur when facing new parasites and new microbial pathogens.

CONCLUSION

This study identified the presence of *Babesia divergens* absent in the USA and French strain of *Anaplasma phagocytophilum* in reindeer specimen infested with *Ixodes ricinus* and imported from the USA. This concludes that tick-borne pathogens can be widely dispersed via vector transmission. The importation and transportation of wild animals is a significant risk factor.

Blood smears and molecular identification methods are effective in detection of tick-borne pathogens in suspect wild ruminants and should be routinely performed and updated.

CONFLICT OF INTEREST

The authors declared that they have no potential conflict of interest with respect to the authorship and/or publication of this article.

ACKNOWLEDGMENTS

The authors cordially thank C. Ferlat, DVM, who referred these cases. This work is part of the research project about haemobacteria in wild and domestic ruminants performed in the Interaction of Host and Pathogen Agents (IHAP) unit. It is also part of LR’s residency program (European College of Bovine Health Management-ECBHM).

AUTHORS’ CONTRIBUTIONS

LR performed the clinical examination, necropsies, blood smears, blood analysis and partially the PCR analysis. RPM performed the morphological diagnosis from the blood smears and part of PCR and blast analysis. Both authors contributed equally in writing this manuscript.

REFERENCES

1. Stoffregen, W.C., Alt, D.P., Olsen, S.C., Waters, S.C., Stasko, J.A. (2006). Identification of a haemoplasma species in anemic reindeer (Rangifer tarandus). J Wildl Dis. 42(2): 249-258. https://doi.org/10.7589/0090-3558-42.2.249 PMid:16870847

2. Stuen, S. (2007). Anaplasma phagocytophilum - the most widespread tick-borne infection in animals in Europe. Vet Res Commun. 31 (Suppl. 1): 79-84. https://doi.org/10.1007/s11259-007-0071-y PMid:17682851

3. Bastian, S., Jouglin, M., Brisseau, N., Malandrin, L., Klegou, G., L’Hostis, M., Chauvin, A. (2012). Antibody prevalence and molecular identification of Babesia spp. in roe deer in France. J Wildl Dis. 48(2): 416-424. https://doi.org/10.7589/0090-3558-48.2.416 PMid:22493116

4. Becker, C.A., Bouju-Albert, A., Jouglin, M., Chauvin, A., Malandrin, L. (2009). Natural transmission of zoonotic Babesia spp. by *Ixodes ricinus* ticks. Emerg Infect Dis. 15(2): 320-322. https://doi.org/10.3201/eid1502.081247 PMid:19193284 PMCid:PMC2657642

5. Hilpertshauser, H., Deplazes, P., Schnyder, M., Gern, L., Mathis, A. (2006). Babesia spp. identified by PCR in ticks collected from domestic and wild ruminants in southern Switzerland. Appl Environ Microbiol. 72(10): 6503-6507. https://doi.org/10.1128/AEM.00823-06 PMid:17021198 PMCid:PMC1610307

6. Asman, M., Nowak, M., Cuser, P., Strzeleczyk, J., Szilman, E., Szilman, P., Trapp, G., Siuda, K., Solarz, K., Wiczkowski, A. (2013). The risk of exposure to *Anaplasma phagocytophilum*, *Borrelia burgdorferi sensu lato*, Babesia sp. and co-infections in *Ixodes ricinus* ticks on the territory of Niepolomice forest (southern Poland). Ann Parasitol. 59(1): 13-19.

7. Langton, C., Gray, J.S., Waters, P.F., Holman, P.J. (2003). Naturally acquired babesiosis in a reindeer (Rangifer tarandus tarandus) herd in Great Britain. Parasitol Res. 89(3): 194-198. https://doi.org/10.1007/s00436-002-0737-x PMid:1254061
8. Kik, M., Nijhof, A.M., Balk, J.A., Jongejan, F. (2011). Babesia sp. EU1 infection in a forest reindeer, the Netherlands. Emerg Infect Dis. 17(5): 936-938. https://doi.org/10.3201/eid1705.101834 PMid:21529420 PMCid:PMC321791

9. Wiegmann, L., Silaghi, C., Obiegala, A., Karnath, C., Langer, S., Ternes, K., Kämmerling, J., Osmann, C., Pfeffer, M. (2015). Occurrence of Babesia species in captive reindeer (Rangifer tarandus) in Germany. Vet Parasitol. 211(1-2): 16-22. https://doi.org/10.1016/j.vetpar.2015.04.026 PMid:25986326

10. Haigh, J.C., Gerwing, V., Erdenebaatar, J., Hill, J.E. (2008). A novel clinical syndrome and detection of Anaplasma ovis in Mongolian reindeer (Rangifer tarandus). J Wildl Dis. 44(3): 569-577. https://doi.org/10.7589/0090-3558-44.3.569 PMid:18689641

11. Stuen, S. (1996). Experimental tick-borne fever infection in reindeer (Rangifer tarandus tarandus). Vet Rec. 138(24): 595-596. https://doi.org/10.1136/vr.138.24.595 PMid:8799988

12. Sánchez Romano, J., Grund, L., Obiegala, A., Nymo, I.H., Aincin-Murguzur, F.J., Li, H., Król, N., Pfeffer, M., Tryland, M. (2019). A multi-pathogen screening of captive reindeer (Rangifer tarandus) in Germany based on serological and molecular assays. Front Vet Sci. 6, 461. https://doi.org/10.3389/fvets.2019.00461 PMid:31921918 PMCid:PMC6933772

13. Miller, A.L., Evans, A.L., Os, Ø., Arnemo, J.M. (2013). Biochemical and hematologic reference values for free-ranging, chemically immobilized wild norwegian reindeer (Rangifer tarandus tarandus) during early winter. J Wildl Dis. 49(2): 221-228. https://doi.org/10.7589/2012-04-115 PMid:23568897

14. Leloy, E., Petit, E., Boulouis, H.J., Gandon, C., Bouillin, C., Gounot, G., Bonnet, S., Maillard, R. (2009). Dynamics of natural infection by Anaplasma phagocytophilum in a dairy cattle herd inBrittany, France. Clin Microbiol Infect. 15 (Suppl 2): 24-25. https://doi.org/10.1111/j.1469-0691.2008.02142.x PMid:19298405

15. Leloy, E., Petit, E., Boulouis, H.J., Lacroux, C., Corbiere, F., Schelcher, F., Bonnet, S., Maillard, R. (2009). First detection of Anaplasma phagocytophilum-like DNA in the French lizard Rupricapra pyrenaica. Clin Microbiol Infect. 15 (Suppl 2): 26-27. https://doi.org/10.1111/j.1469-0691.2008.02143.x PMid:19298404

16. Lempereur, L., De Cat, A., Caron, Y., Madder, M., Claerebout, E., Saegerman, C., Losson, B. (2011). First molecular evidence of potentially zoonotic Babesia microti and Babesia sp. EU1 in Ixodes ricinus ticks in Belgium. Vector Borne Zoonotic Dis. 11(2): 125-130. https://doi.org/10.1089/vbz.2009.0189 PMid:20575647

17. Andersson, M.O., Víchová, B., Tolf, C., Krzynowowska, S., Waldenström, J., Karlsson, M.E. (2017). Co-infection with Babesia divergens and Anaplasma phagocytophilum in cattle (Bos taurus), Sweden. Ticks Tick Borne Dis. 8(6): 933-935. https://doi.org/10.1016/j.ttbdis.2017.08.005 PMid:28869191

18. Mathieu, A., Pastor, A.R., Berkvens, C.N., Gara-Boivin, C., Hébert, M., Léveillé, A.N., Barta, J.R., Smith, D.A. (2018). Babesia odocoilei as a cause of mortality in captive cervids in Canada. Can Vet J. 59(1): 52-58.

19. Bartlett, S.L., Abou-Madi, N., Messick, J.B., Birkenheuer, A., Kollia, G.V. (2009). Diagnosis and treatment of Babesia odocoilei in captive reindeer (Rangifer tarandus tarandus) and recognition of three novel host species. J Zoo Wildl Med. 40(1): 152-159. https://doi.org/10.1638/2008-0011.1 PMid:19368255

20. Holman, P.J., Swift, P.K., Frey, R.E., Bennett, J., Cruz, D., Wagner, G.G. (2002). Genotypically unique Babesia spp. isolated from reindeer (Rangifer tarandus tarandus) in the United States. Parasitol Res. 88(5): 405-411. https://doi.org/10.1007/s00436-001-0576-1 PMid:12049456

21. Herwaldt, B.L., de Bruyn, G., Pieniazek, N.J., Homer, M., Lozy, K.H., Slemenda, S.B., Fritsche, T.R., Persing, D.H., Limaye, A.P. (2004). Babesia divergens-like infection, Washington State. Emerg Infect Dis. 10(4): 622-629. https://doi.org/10.3201/eid1004.030377 PMid:15200851 PMCid:PMC332086

22. Holman, P.J., Spencer, A.M., Telford, S.R 3rd, Goethert, H.K., Allen, A.J., Knowles, D.P., Goff, W.L. (2005). Comparative infectivity of Babesia divergens and a zoonotic Babesia divergens-like parasite in cattle. Am J Trop Med. 73(5): 865-870. https://doi.org/10.4269/ajtmh.2005.73.865 PMid:16282295

23. Herc, E., Pritt, B., Huizenga, T., Douce, R., Hysell, M., Newton, D., Sidge, J., Losman, E., Sherbeck, J., Kaul, D.R. (2018). Probable locally acquired Babesia divergens-like infection in Woman, Michigan, USA. Emerg Infect Dis. 24(8): 1558-1560. https://doi.org/10.3201/eid2408.180309 PMid:30016254 PMCid:PMC6056127
24. Duh, D., Petrovec, M., Avsic-Zupanc, T. (2001). Diversity of Babesia infecting European sheep ticks (Ixodes ricinus). J Clin Microbiol. 39(9): 3395-3397. https://doi.org/10.1128/JCM.39.9.3395-3397.2001 PMid:11526189 PMCid:PMC88357

25. Bonnet, S., Jouglin, M., L’Hostis, M., Chauvin, A. (2007). Babesia sp. EU1 from roe deer and transmission within Ixodes ricinus. Emerg Infect Dis. 13(8): 1208-1210. https://doi.org/10.3201/eid1308.061560 PMid:17953093 PMCid:PMC282078

26. Duh, D., Petrovec, M., Bidovec, A., Avsic-Zupanc, T. (2005). Cervids as Babesiae hosts, Slovenia. Emerg Infect Dis. 11(7): 1121-1123. https://doi.org/10.1645/GE-394R PMid:15986627

27. Zintl, A., Finnerty, E.J., Murphy, T.M., de Waal, T., Gray, J.S. (2011). Babesias of red deer (Cervus elaphus) in Ireland. Vet Res. 42(1): 7. https://doi.org/10.1186/1297-9716-42-7 PMid:21314977 PMCid:PMC3037898

28. Silaghi, C., Woll, D., Hamel, D., Pfister, K., Mahling, M., Pfeffer, M. (2012). Babesia spp. and Anaplasma phagocytophilum in questing ticks, ticks parasitizing rodents and the parasitized rodents - Analyzing the host-pathogen-vector interface in a metropolitan area. Parasit Vectors. 5, 191. https://doi.org/10.1186/1756-3305-5-191 PMid:22950642 PMCid:PMC3480827

29. Lagrée, A.C., Rouxel, C., Kevin, M., Dugat, T., Girault, G., Durand, G., Böck, G.Jr, Silaghi, C., Haddad, N. (2018). Co-circulation of different A. phagocytophilum variants within cattle herds and possible reservoir role for cattle. Parasit Vectors. 11, 163. https://doi.org/10.1186/s13071-018-2661-7 PMid:29523202 PMCid:PMC5845262

31. Woldehiwet, Z. (2010). The natural history of Anaplasmaphagocytophilum. VetParasitol. 167(2-4): 108-122. https://doi.org/10.1016/j.vetpar.2009.09.013 PMid:1981878

32. Blanco, J.R., Oteo, J.A. (2002). Human granulocytic ehrlichiosis in Europe. Clin Microbiol Infect. 8(12): 763-772. https://doi.org/10.1046/j.1469-0691.2002.00557.x PMid:12519349

33. Oines, O., Radzijevskaja, J., Paulauskas, A., Rosef, O. (2012). Prevalence and diversity of Babesia spp. in questing Ixodes ricinus ticks from Norway. Parasit Vectors. 5, 156. https://doi.org/10.1186/1756-3305-5-156 PMid:22862883 PMCid:PMC3439691

34. Lempereur, L., Lebrun, M., Cuvelier, P., Sépult, G., Caron, Y., Saegerman, C., Shiels, B., Losson, B. (2012). Longitudinal field study on bovine Babesia spp. and Anaplasma phagocytophilum infections during a grazing season in Belgium. Parasitol Res. 110(4): 1525-1530. https://doi.org/10.1007/s00436-011-2657-0 PMid:21947341

35. Overzier, E., Pfister, K., Herb, I., Mahling, M., Böck, G.Jr, Silaghi, C. (2013). Detection of tick-borne pathogens in roe deer (Capreolus capreolus), in questing ticks (Ixodes ricinus), and in ticks infesting roe deer in southern Germany. Ticks Tick Borne Dis. 4(4): 320-328. https://doi.org/10.1016/j.ttbdis.2013.01.004 PMid:23571115

37. Lagrée, A.C., Rouxel, C., Kevin, M., Dugat, T., Girault, G., Durand, B., Pfeffer, M., Silaghi, C., Nieder, M., Boulouis, H.J., Haddad, N. (2018). Co-circulation of different A. phagocytophilum variants within cattle herds and possible reservoir role for cattle. Parasit Vectors. 11, 163. https://doi.org/10.1186/s13071-018-2661-7 PMid:29523202 PMCid:PMC5845262

Please cite this article as: Romanos L., Maillard R.P. Severe Anaplasma phagocytophilum and Babesia divergens concomitant infection in imported captive reindeer (Rangifer tarandus). Mac Vet Rev 2020; 43 (2): 185-191. https://doi.org/10.2478/macvetrev-2020-0023