Coronaviruses often cause acute complications in the respiratory system with cold-like symptoms. A number of them, such as Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) and Coronavirus Disease 2019 (COVID-19) have killed thousands of people and have caused epidemics and pandemics. This review study aims to investigate the most common medicinal plants in Iran and introduce their natural products with antiviral effects on coronaviruses and strengthening the immune system in order to prevent and control them.

Methods
In this review study, a search was conducted in national and international databases such as Web of Science, Scopus, PubMed, Science Direct, Google Scholar, SID, MagIran and IranMedex by using keywords such as COVID-19, Coronaviruses, SARS, MERS, SARS-CoV-2, PEDV in both Persian and English for studies published until 2020, and finally 51 articles were selected.

Results
There are 10 plants with antiviral effects on members of the family Coronaviridae among which Ginger, Galangal, Cinnamon, Fennel flower, Grapefruit (peel), and Purple coneflower were effective on COVID-19. Elder, Ginseng, Aloe vera, Milkvetch, and Shirazi Thyme plants were effective in boosting the immune system and preventing viral diseases.

Conclusion
Inhibiting the replication of viruses is the common mechanism in antiviral drugs, but natural compounds usually counteract it by disrupting key proteins and virulence factors of viruses. Therefore, the use of the antiviral components of reported plants can be useful in producing drugs for these viruses, especially the one causing COVID-19.
sponsible for the current pandemic was identified in Wuhan, China in 2019. In recent years, the use of herbal plants has been considered due to their less side effects and natural origin compared to chemical drugs, having anti-inflammatory, antimicrobial, anticonvulsant and antipyretic properties, and having compounds such as polyphenols and monophenols. This study aims to review the plants with inhibitory and antiviral effects on the Coronavirus family and also with the power to strengthen the immune system to prevent diseases.

2. Material and Methods

In this review study, the search was conducted in Web of Science, Scopus, PubMed, Science Direct, Google Scholar, SID, MagIran and IranMedex databases for related studies conducted until 2020 using the keywords such as Medicinal plants, COVID-19, Coronaviruses, SARS, MERS, SARS-CoV-2, and PEDV. First the abstracts of the articles were examined and the related studies that were thematically related to the objectives of the current study were then selected. Among these articles, those that included the definition of coronaviruses, the effects of plant extracts and essential oils on coronaviruses, and the therapeutic and inhibitory role of these medicinal plants on these viruses were selected. After finding effective plants in the treatment and prevention of coronaviruses, new search in above databases was conducted on them using the keywords: Essential oil, extract, effective compounds, phytochemical properties and chemical compounds; and their botanical characteristics and effective compounds were determined. Then, the effective compounds identified in the articles were matched with the compounds mentioned in the articles that reported the therapeutic and preventive effects of plants on Coronavirus, and the reasons for their antiviral nature were determined. The article were divided into three group: 1. Articles related to definition and characteristics of Coronaviruses; 2. Articles related to the effect of medicinal plants on Coronavirus; and 3. Articles related to the analysis of essential oils and plant extracts, chemical properties of effective compounds, and their mechanism of action. A total of 250 articles were yielded. Of these, 51 (9 in Persian and 42 in English) were selected for review.

3. Results

Studies have shown that 10 plants have an antiviral effect on the members of the family Coronaviridae including Ginger (Zingiber officinale), Galangal (Alpinia officinarum), Cinnamon (Cinnamomum zeylanicum), Fennel flower (Nigella sativa L.), Grapefruit (Citrus aurantium), Purple coneflower (Echinacea angustifolia), baylaure (Laurus nobilis), Mugwort (Artemisia sp.), Ginseng (Panax quinquefollus) and Liquorice (Glycyrrhiza glabra L.). These plants are effective treatment of SARS, MERS, Respiratory Syncytial Virus (RSV) and COVID-19. Elder (Sambucus nigra), Ginger, Aloe Vera, Milkvetch (Astragalus membranaceus), and Shirazi thyme (Zataria Multiflora) plants have been introduced as an immune system booster and as an effective factor in preventing viral diseases. These plants can somehow inhibit the activity of Coronaviruses by having various effective compounds. Due to the existence of glycyrrhizic acid composition in Liquorice, effective combination of lycorine in Mugwort, Flavonoids in baylaure, and hetero polysaccharides purple coneflower, these plants can have positive effects on SARS. On the other hand, Ginger can positively affect RSV due to having Ginsenoside compounds. Moreover, Ginger (due to existence of Phenol compounds such as Gingerol, Shogaol), Galangal (due to existence of Flavonoids compounds), Cinnamon (due to existence of Eugenol compounds), Purple coneflower (due to existence of Niglidin and Alpha hydrogen compounds) and skin of Grapefruit (due to existence Flavonoids compounds) have effects on COVID-19. It seems that each of the plants mentioned above show their antiviral activity by binding to the viral protease and preventing virus replication. Since the risk of developing Coronaviruses increases by weakening of the immune system, some plants have been introduced for strengthening the immune system including: Elder due to having Flavonoids, Ginger due to having phenolic and ginsenoside compounds, Aloe Vera due to having amino acid, Milkvetch due to having glucuronic acid, and Shirazi thyme due to having thymol and carvacrol contents.

4. Conclusion

It can be concluded that plants with effective compounds can be effective in inhibiting Coronaviruses. Five plants for this purpose were reported in this study. These plants boost the immune system against viral diseases by some mechanisms such as increase of cytokines by monocytes, induction of interferon and phagocyte production, increase of intestinal probiotic bacteria, induction of immunoglobulins and lymphocytes, protecting the central nervous system against viral infections, neutralizing hydrogen peroxide and oxygen free radicals, and reduction of cell death caused by system weakness. Inhibiting the replication of viruses is one of the common approaches in antiviral drugs, but natural compounds usually counteract it by disrupting key proteins and virulence factors of viruses. Therefore, the use of the effective antiviral compounds of these plants can be useful in producing drugs against these viruses causing diseases such as COVID-19 that has killed thousands of people and overshadowed the world economy and international relations.
Ethical Considerations

Compliance with ethical guidelines

There were no ethical considerations to be considered in this research.

Funding

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.

Authors' contributions

All authors contributed in preparing this paper.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

The authors would like to thank Islamic Azad University, Shiraz Branch.
گیاهان دارویی مؤثر در پیشگیری و درمان کروناویروس‌ها

1. غزاری، کالب و فرد، گیاه‌پزشکی و گیاه‌دارویی، دانشگاه آزاد اسلامی، خوزستان
2. غزاری، کالب و فرد، دانشگاه آزاد اسلامی، خوزستان

مقدمه
کروناویروس‌ها برای اولین بار در سال 1967 توسط پول و پاپری به نام ۱۹۸۱ شناسایی و کلاس ویروس A گردید. این ویروس در دو دهه دیگر در اروپا و آمریکا شیوع یافت. سپس این ویروس در افغانستان، پاکستان و چین شیوع یافت و از سال ۲۰۱۴ به اروپا و آمریکا استرالیا و آفریقای جنوبی پراکنده شد. در حال حاضر، حدود ۳۰ مبتلا به این ویروس در دنیا مشاهده شده‌اند.

روش‌ها
در این پژوهش بررسی مدل‌های دارویی گیاهی برای پیشگیری و درمان کروناویروس‌ها صورت گرفت. بررسی‌ها از گیاه‌هایی مانند زنجبیل، آقطی، جینسینگ و آلوئه ورایی شدند.

نتایج
در این پژوهش، گیاه‌هایی مانند زنجبیل، آقطی، جینسینگ و آلوئه ورایی شدند. این گیاه‌ها به دو زبان فارسی و انگلیسی به عنوان مدل‌های دارویی برای پیشگیری و درمان کروناویروس‌ها در نظر گرفته شدند.

منابع
1. Tyrrel & Bynoe
2. Envelope
3. MERS-CoV
4. Porcine Epidemic Diarrhea Virus (PEDV)
گیاهان طبی، به دلیل دمای طبی نیز، دارای داروهای ضروری برای درمان و پیشگیری کروناویروس‌ها، معرفی شدند. در این پژوهشی دیگر، محققین حوزه گیاهان دارویی از گیاهان در درمان ویروس‌های کووید-۱۹، دارویی‌نتیجه‌گیری کردند. استفاده از گیاهان دارویی برای درمان ویروس‌های کروناویروس‌ها در این پژوهش به دلیل محتوای سمی و توده‌های موجود در آن‌ها و عوارض جانبی و همچنین به دلیل کمبود داروهای در دسترس، مورد توجه محققان قرار گرفت. در این پژوهش، از مقالات بیش از ۱۰۰ مقاله در پایگاه‌های اینترنتی استفاده شد. به عنوان نمونه، سارس و کروناویروس، به عنوان ویروس‌هایی که از دیدگاه آنتی‌ژن‌ها و سیستم‌های ایمنی بسیار مشابه هستند، را به عنوان مثال برای بررسی انتخاب شدند. در این پژوهش، به روش‌های مختلف مانند تحلیل کلیدواژه‌ها، تحلیل انتقال محتوای دیجیتال و استفاده از نرم‌افزارهای مخصوص برای تحلیل داده‌ها، به ترتیب مطالب جامع و دقیقی پرداخته شد. در نهایت، این پژوهش نشان داد که گیاهان دارویی به عنوان یکی از راه‌های موثر در درمان و پیشگیری از ویروس‌های کروناویروس‌ها، می‌تواند به عنوان یک روش قابل اعتماد به‌شمار شود.
نگاهی به ارزش فیتوپروروس‌های ترکیبی در درمان بیماری‌های عفونی و نقص سیستم و افزایش عملکرد سیستم ایمنی بدن. این گیاه می‌تواند به عنوان گیاه محیط‌داری چهت درمان بیماری‌های مختلف و نقش سیستم ایمنی بدن نشان دهد. این گیاه می‌تواند به عنوان مکمل در درمان بیماری‌های سارس، به خوبی عمل کند [20].

زنجیل

زنجبیل یکی از خانواده‌های زنجیبراسه است. این گیاه جنوب گونه‌های گیاهی است که از زمان‌های قدیم به عنوان گیاه‌پروری در نظر گرفته می‌شود. این گیاه از نظر آنتی‌بیوتیک و اپیدمی‌پроوف قدرت عالی دارد. این گیاه به سبب همپاسخی غیرمادی‌کاری و همپاسخی کروگنیک در میزان کوید در انتقال می‌شود. در نظر گرفتن این موارد می‌تواند به عنوان یکی از گیاه‌های مناسب برای درمان بیماری‌های سارس به خوبی عمل کند [20].

ذیل

نمونه‌هایی از مرکز‌های درمانی بیماری‌های عفونی و نقص سیستم و افزایش عملکرد سیستم ایمنی بدن در نظر گرفته شده‌اند که این گیاه می‌تواند به عنوان مکمل در درمان بیماری‌های سارس به خوبی عمل کند [20].
در حالی که حاوی خونریزی بالایی با یافته شده‌اند، می‌تواند با توجه به ترکیبات موجود در گیاه‌های فوقان و انواع و اسلاله‌های شیب‌برنگی است که با اثر هوا سایمونا و مدت سیاه‌پوش والون نسل‌های جنوب اروپا و sayısıست نسبت به آن‌ها سایمونا و آن‌ها سایмон
در مطالعه‌ای که در زمینه بررسی تأثیر محافطتی و فنولیک‌ها است که خواص جنسینگ قرمز بیشتر از جنسینگ سفید است و ویروس سارس و همچنین قدرت مهارکننده ویروس کووید و همچنین ورود ویروس به سیتوپلاسم سلول میزبان شده و در نتیجه مانع از ورود ویروس‌های خارجی به گوشت است. در پژوهشی دیگر مشاهده شد که سیتوکین‌ها به وسیله مونوسیت‌ها خون‌رسانی به ویروس آنفولانزا و چسبندگی این ویروس به گیرنده‌های سلول‌ها می‌شود و منجر به مهار و ویروس آنتی‌ویروس‌ها گیاهان در پیشگیری و کنترل کروناویروس‌ها اثر گذاشته‌اند. این گیاهان به دلیل ظاهر ترکیبات فلافونولیکی خواص ضد کووید ۱۹ دارد. [۳۲].

طبقه سهولت	گیاهان تقویت‌کننده سیستم ایمنی
[۲۹]	گیاهان تقویت‌کننده سیستم ایمنی
[۳۰]	فهرست گیاهان قدرت تقویت کننده سیستم ایمنی در برابر ویروس‌ها
[۳۱]	جدول شماره ۳ آرده شده است.

آنتی‌سیتوم‌بارک آلفا-توکوفرول از ترکیبات مؤثر آن می‌باشد که پانکرتیک و سیستم‌های هم‌کننده و سیستم‌های ویروس‌های ویریاء بازیگر در حفظ و حفظ دستگاه‌های انتقالی سیستم ایمنی دارند، که می‌تواند ترکیبات کاریوفیلن و هتروپلی‌ساکاریدها وجود داشته باشد. در جدول زیر، مواردی که در آن اشاره شده‌اند بهتر خواهد بود که از آنها استفاده شود:

گیاه	ترکیبات
Sambucus nigra	- گلوکوزید
Panax quinquefolius	- گلوکوزید
Aloe vera	- گلوکوزید
Astragalus membranaceus	- گلوکوزید
Zataria multiflora	- گلوکوزید

در حال حاضر، آمریکا و هند و مالزی به‌طور کلی دارای سیستم‌های بهداشتی قوی‌تری هستند، اما در ایران، بیشترین تعداد مبتلایان به ویروس‌های حاد و مزمن و ویروس‌های آنتی‌ویروسی داشتند. در حال حاضر، بهترین روش برای کاهش خطر انتقال ویروس‌ها به سیستم ایمنی بدن، استفاده از گیاهان و داروی محلی است. در حال حاضر، همان‌طور که در جدول شماره ۴ نشان داده شد، این گیاهان به دلیل ظاهر ترکیبات فلافونولیکی خواص ضد کووید ۱۹ دارد. [۳۲].

گیاه	ترکیبات
Sambucus nigra	- گلوکوزید
Panax quinquefolius	- گلوکوزید
Aloe vera	- گلوکوزید
Astragalus membranaceus	- گلوکوزید
Zataria multiflora	- گلوکوزید

*۱۹ Bay laurel (Laurus nobilis L.)
* ۲۰. Papule coneflower (Echinacea purpurea)
می‌تواند ایده‌ای برای تولید داروهای ضد‌کرونا ویروس‌ها به‌خصوص مقابله‌کنند. بنابراین استفاده از ترکیبات مؤثر این گیاهان پروتئین‌های کلیدی و فاکتورهای ویرولانس ویروس‌ها، با آنها ضد‌ویروسی است، ولی ترکیبات طبیعی معمولاً با اختلال در تولید‌های چهار و خنثی‌کردن پراکسید هیدروژن و رادیکال‌های آزاد، همراه با محافظت از سیستم اعصاب مرکزی در برابر عفونت ویروسی و باکتری‌های دستگاه مرگ‌سلولی‌ناشی‌از‌ضعف‌سیستم‌ایمنی، باغی‌ترین به‌عملکرد می‌آیند. این گیاهان با مکانیسم‌هایی مثل افزایش سیتوکین‌های سیستم‌ایمنی، در بررسی‌هایی که انجام شد پنج گیاه ویروس‌ها همچنین ویروس‌های خانواده کرونا‌وری‌دارای اعمال می‌کنند و تضعیف سیستم‌ایمنی لنفوسیت‌ها می‌شوند و از این‌رو مرگ‌سلول‌ها را کاهش‌می‌دهند و شدید کننده خنثی‌کردن پراکسید‌هیدروژن و اثر رادیکال‌های آزاد در تولید آنفولانزا که در هنگام آن به هیجان‌رفته‌وری‌آوردن در طیور، با مهار عملکرد آن، از گون‌نوع‌های موجود در گون‌می‌توانند سلول‌های سیستم‌عصبی مرکزی را خنثی‌کردن و اثر انتشار‌فیبرین به عملکرد اسنسیابیتی موجود در انسان در برابر بیماری‌های ویروسی مانند از انفولانزا‌ها، و ویروس‌های شهربازی‌یکی از اعضاً خانواده نعناعیان استکه‌های دوزیگر‌مومی و پرlicing‌ی‌کوتاه‌است. گون‌زمستان آویشن‌که برای تولید آنتی‌ویروس‌ها و درمان‌ویروس‌های دردسرسی در آزمایشگاه‌ها و کاهش‌بارهای ویروس‌یک‌ریه و تولید‌آنتی‌ویروس‌های RNA-1 و می‌تواند از این‌رو به‌عنوان یکی از ابزارهای مرگ‌سلولی‌ناشی‌از‌ضعف‌سیستم‌ایمنی در حال‌کار، گون‌زمستان با استفاده از ترکیبات دردهای ویروس‌ها، از جمله ویروس‌های هپاتیت و آنفولانزا صورت‌گرفت.

31. Thymes (Thymus vulgaris)
32. Zataria multiflora
33. Aloe vera
34. Milkvetch (Astragalus membranaceus)
35. Respiratory Syncytial Virus (RSV)
کووید ۱۹ باشد که در سال‌های اخیر و در این روزها باعث مرگ زیادی انسان شده و اقتصاد هنی و روابط بین‌المللی را تحت‌العمل قرار داده است.

ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهش

مقاله به صورت مروری و بر اساس بررسی مقالات بوده است و شرکت کننده و کد اخلاقی تلقیشته است.

حامی مالی

این مقاله مروری حامی مالی نداشته است.

مشارکت نویسندگان

نویسندگان در تمامی مراحل تهیه‌شده به یک اندازه مشارکت داشته‌اند.

توجه‌منافع

بنا بر اظهار نویسندگان، این مقاله تعارض منافعی دارای می‌باشد.

تشکر و قدردانی

نویسندگان از مشارکت آزاد اسلامی واحد شیراز کمپال تشکر می‌رانند.
References

[1] Chyad Al-Noaemi M, Chyad Hammoodi AHM. COVID-19 and hydroxychloroquine relationship in the past, present, and future. The Pharma Innovation Journal. 2020; 9(4):944-8. [DOI:10.11340/ RG.2.2.28251.72487]

[2] Resabakhan A, Ala AR, Hassanpour Khodaei S. Novel Coronavirus (COVID-19): A new emerging pandemic threat. Journal of Research in Clinical Medicine (JRCM). 2020; 8(1):5. [DOI:10.34172/jrcm.2020.005]

[3] Keyaerts E, Vigeon L, Pannecoque C, Van Damme E, Peumans W, Egberink H, et al. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Research. 2007; 75:179-87. [DOI:10.1016/j.antiviral.2007.03.003] [PMID:17560275] [PMCID:PMC2423624]

[4] Yang JL, Quy Ha TK, Oh WK. Discovery of inhibitory materials against PEDV corona virus from medicinal plants. Discovery of Japanese Journal of Veterinary Research. 64(Suppl 1):S53-S63. https://reprints.lib.hokudai.ac.jp/dspace/bitstream/2115/61017/1/09_Jun-Li%20Yang.pdf

[5] Khaerunnissa S, Kurniawan H, Alwuddin R, Suhartati S, Soetjipto S. Potential inhibitor of COVID-19 Main Protease (M Pro) from several medicinal plant compounds by molecular docking study. Pharmacology & Toxicology. 2020; Preprints2020030226. [DOI:10.20944/preprints202003.0226.v1]

[6] Dudani T, Sarago A. Use of herbal medicines on Coronavirus. Acta Scientific Pharmaceutical Sciences. 2020; 4(4):61-3. [DOI:10.31080/ASPS.2020.04.0156]

[7] Papari Moghadam Fard M, Ketabchi S, Farjam MH. Chemical composition, antimicrobial and antioxidant potential of essential oil of Ziziphus spina-christi var aucheri grown wild in Iran. Journal of Medicinal Plants and By-product. 2020; 9(Special):69-73. [DOI:10.22092/JMPB.2020.121752]

[8] Mani JS, Johnson BJ, Steel JC, Broszczak DA, Neilsen PM. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Research. 2020; 284:197989. [DOI:10.1016/j.virusres.2020.197989] [PMID:32612368] [PMCID:PMC7420574]

[9] Reichling J, Schnitzler P, Suschke U, Saller R. Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties: An overview. Forschende Komplementärmedizin (2006). 2009; 16(2):79-90. [DOI:10.1159/000072196] [PMID:17412722]

[10] Shakhzhi MA, Elkani MH, Golmohammad F, Bashiri Sadr Z. Optimized pressurized hot water extraction of glycyrrhizin acid from Liricore roots (Persian). Innovative Food Technologies. 2015; 2(4):11-21. [DOI:10.22104/JIFT.2015.200]

[11] Bae Ryu Y, Jae Jeong H, Hoon Kim J, Min Kim Y, Park JY, Kim D, et al. Biflavonoids from Torreya nucifera displaying SARS-Cov 3CLpro inhibition. Bioorganic & Medicinal Chemistry. 2010; 18(22):7940-7. [DOI:10.1016/j.bmc.2010.09.035] [PMID:20786684] [PMCID:PMC2919030]

[12] Aanouz I, Belhassan A, El-Khatabi K, Lakhlifi T, El-Idrissi M, Bouachrine M. Morroccan medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations. Journal of Biomolecular Structure & Dynamics. 2020; 1-9. [DOI:10.1080/0739102.2020.1758790] [PMID:32761813] [PMCID:PMC7196600]

[13] Ahmad A, Rehman MU, Alkharfy KM. An alternative approach to minimize the risk of Coronavirus (COVID-19) and similar infections. European Review for Medical and Pharmacological Sciences. 2020; 24(7):4030-4. https://www.europeanreview.org/article/20873

[14] Ketabchi S, Moatari A, Shadram M, Rostami Y. The anti-influenza virus activity of Anousha italica. Asian Journal of Experimental Biological Sciences. 2011; 2(4):758-61. https://www.ajebjs.com/?q=article/Asian%20Journal%20of%20Experimental%20Biological%20Sciences%20%202(4)%20 peer%20reviewed,free%20available%20to%20researchers%20 worldwide.

[15] Kozhuharova A, Stanilova M. In vitro cultures initiation from seeds of Bulgarian localities of Glycyrrhiza glabra L (Fabaceae). Journal of BioScience & Biotechnology. 2017; (Special):25-30. https://web.a.ebscohost.com/abstract?direct=true&filehost=site&auth通行crawler&JrnId=1314623

[16] Shen XP, Xiao PG, Liu CX. Research and application of Radix Glycyrrhizae. Asian Journal of Pharmacodynamics and Pharmacokinetics. 2007; 7(3):181-200. https://www.researchgate.net/publication/228473512 Research_and_application_of_Radix_Glycyrrhiza

[17] Dehghani K, Hamidi F, Mohed Alayyan H. [Investigating the Preparation of Glycyrrhiza glabra L. Products and its Application in industry (Persian)]. Paper presented at: Second International Conference on Medicinal Plants, Organic Agriculture, Natural Resources and Pharmaceutica. 13 March 2019; Mashhad, Iran. https://www.en.symposia.ir/CONFMT02

[18] Papari Moghadam Fard M, Ketabchi S. [Natural ingredients of native plants of Iran: Along with the introduction of identification devices and methods (Persian)]. Shiraz: Takt Jamshid Publication; 2017. https://www.gisoom.com/book/11381701/%DA%A9%DA%A9%DA%AF

[19] Mohabatkar H, Nosrati M, Bebahani M, Rahiminejad MR. Antibacterial and mutagenicity activity of different species of Orontium spp. and their effect on proliferation of human lymphocytes. Journal of Mazandaran University of Medical Sciences. 2016; 26(142):82-95. https://www.sid.ir/fa/journal/ViewPaper.aspx ID=19. International Journal of Advanced Science and Engineering. 2020; 306

[20] Li SY, Chen C, Zhang HQ, Guo HY, Wang H, Wang L, et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Avittiral Research. 2005; 67:18-23. [DOI:10.1016/j.antiviral.2005.02.007] [PMID:15937767] [PMCID:PMC1030992]

[21] Papari Moghadam Fard M, Fakhri A. [Natural and healing properties of monocotyledonous and dicotyledonous plants (Persian)]. Shiraz: Takt Jamshid; 2016. https://www.gisoom.com/book/11381698/%DA%A9%DB%AA%DA%A7%DA%B9%DB%AA%DB%A7%DB%85

[22] Kumar Srivastava AK, Kumar A, Misra N. On the inhibition of COVID-19 protease by Indian herbal plants: An in silico investigation. arXiv preprint arXiv:2004.03411. 2004; 1-14. https://arxiv.org/abs/2004.03411.

[23] Rathinavel T, Palanisamy M, Palanisamy S, Subramanian A, Thangaswamy S. Phytochemical 6-Gingerol: A promising drug of choice for COVID-19. International Journal of Advanced Science and Engineering. 2020; 6(4):1482-9. [DOI:10.29294/IJASE.6.4.2020.1482-1489]

[24] Alasmary AF, Assirey AE, El-Meligy MR, Awaad A, El-sawaf AL, Al-lah MM, et al. Analysis of Alpinia officinarum Hance, chemically and biologically. Saudi Pharmaceutical Journal (SPJ). 2019; 27(8):1107-12. [DOI:10.1016/j.jsps.2019.09.007] [PMID:31268001] [PMCID:PMC6680801]

[25] Zakaryan H, Arabyan E, Oo A, Zandi K. Flavonoids: Promising natural compounds against viral infections. Archives of Virology. 2005; 150:2539-51. [DOI:10.1007/s00705-003-1347-7] [PMID:16210678] [PMCID:PMC1117204]

[26] Sawamura R, Shimizu T, Sun Y, Yasukawa K, Miura M, Toriyama M, et al. In vitro and in vivo anti-influenza virus activity of dianyr heptanoids isolated from Alpinia officinarum. Antiviral Chemistry and Chemotherapy. 2010; 21(1):33-41. [DOI:10.3851/MP1676] [PMID:20783919]

Ketabchi S, & Papari Moghadamfard M. Medicinal Plants Effective in the Prevention and Control of Coronaviruses. CMAJ. 2021; 10(4):296-307.
[27] Goswami D, Kumar MK, Ghosh S, Das A. Natural product compounds in Alpinia officinarum and ginger are potent SARS-CoV-2 papain-like protease inhibitors. ChemRxiv. Preprint. 2020; 4. [Online Publishing]. [DOI:10.26434/chemrxiv.120711997.v1]

[28] Ahmadi R, Ghasemi N. [Effect of local application and injection of cinnamonum zeylanicum on burn wound improvement in diabetic and non-diabetic male rats (Persian)]. Medical Sciences Journal of Islamic Azad University. 2015; 25(1):27-32. http://tmuj.iutmu.ac.ir/article-1-901-fa.html

[29] Liu L, Wei FX, Qu ZY, Wang SQ, Chen G, Gao H, et al. The antiviral activities of cinnamaldehyde in vitro. Laboratory Medicine. 2009; 40(11):669-74. [DOI:10.1309/LMF0U47XNDKBZTRQ]

[30] Vimalanathan S, Hudson J. Anti-influenza virus activity of essential oils and vapors. American Journal of Essential Oils and Natural Products. 2014; 2(1):47-53. https://www.researchgate.net/publication/267035381_Anti-influenza_virus_activity_of_essential_oils_and_vapors

[31] Da Silva RJK, Baia Figueiredo BL, G byler K, Nsetzer W. Essential oils as antiviral agents, potential of essential oils to treat SARS-CoV-2 Infection: An in-silico investigation. International Journal of Molecular Sciences. 2020; 21(10):3426. [DOI:10.3390/ijms21103426] [PMID] [PMCID]

[32] Gholinezhad E, Rezaei Chiyaneh E. [Evaluation of grain yield and quality of black cumin (Nigella sativa L) in intercropping with chickpea (Cicer arietinum L) (Persian)]. Iranian Journal of Crop Sciences. 2014; 16(3):236-49. http://agrobreedjournal.ir/browse.php?a_code=A-10-1-138&sidx=1&slc_lang=fa

[33] Bouchentouf S, Missoum N. Identification of Compounds from Hudson BJ. Applications of the phytomedicine echinacea. 2011; 19(75):11-7. http://zums.ac.ir/journal/article-1-1551-fa.html

[34] Cheng L, Zheng W, Li M, Huang J, Bao S, Xu Q, et al. Citrus fruits are rich in flavonoids for immunoregulation and potential targeting ACE2 [Internet]. 2020. [Updated 31 March 2020]. Available from: https://www.chemrxiv.org/articles/preprint/Identification_of_Compounds_from_Citrus_fruits_as_antiviralagents_potential_of_Citrus_fruits_to_treat_SARS-CoV-2_Infection_A_n-silico_investigation.International_Journal_of_Molecular_Sciences.2020.21(10).3426/ [DOI:10.26434/chemrxiv.120711997.v1]

[35] Patrakar R, Mansuriya M, Patil P. Phytochemical and pharmacological review on Laurus Nobilis. International Journal of Pharma and Bio Sciences. 2012; 1(2):595-602. https://www.semantic-scholar.org/paper/Phytochemical-and-Pharmacological-Review-on-Laurus-Patrakar-Mansuriya/1cd15010e12589a567edc586e677edbcbe59a203502685794

[36] Setfidak F. Can medicines with antiviral activities be made from medicinal plants? Iran Nature. 2020; 5(2):5-13. https://irannature.areeo.ac.ir/article_121626_31d715db2f9b3b7c2726be81f40ca6f.pdf

[37] Hudson BJ. Applications of the phyto medicine echinacea purpurea (purple coneflower) in infectious diseases. Journal of Biomedicine & Biotechnology. 2012; 2012:769896. [DOI:10.1155/2012/769896] [PMID] [PMCID]

[38] Anandar R, Suseendran G, Zaman N, Nawaz Brohi S, Duraisamy B, Deepak BS. Echinacea purpurea to treat Novel Coronavirus (2019-nCoV). TechRxiv. 2020; 1-7. [DOI:10.36227/techrxiv.12115596.v2.]

[39] Farshi P, Ceren Kaya E, Hashempour-Baltorkf F, Khosravi-Darani K. A comprehensive review on the effect of plant metabolites on coronaviruses: Focusing on their molecular docking score and IC50 values. Preprints [Internet]. 2020 [Updated 18 May 2020]. Available from: https://www.preprints.org/manuscript/202005.0295/v1

[40] Zakey-Rones Z, Thom E, Wollan T, Wadstein J. Randomized study of the efficacy and safety of oral elderberry extract in the treatment of influenza A and B virus infections. The Journal of International Medical Research. 2004; 32(2):132-40. [DOI:10.1177/1473230004032002020] [PMID]

[41] Narayan Mishra J, Kumar Verma N. An Overview on Panax ginseng. International Journal of Pharma and Chemical Research. 2017; 3(3):516-22. http://ipacce.files/21-07-2017/17.pdf

[42] Hosseini SH, Amoghli Tabrizi B, Mazloom Mogaddam SSR. Evaluation at ginseng on lipid profiles, liver and renal markers in diabetic rats. Journal of Advances in Medical and Biomedical Research. 2011; 19(75):11-7. http://zums.ac.ir/journal/article-1-1487-en.html

[43] Radad K, Gille G, Rausch WD. Use of ginseng in medicine: Perspectives on CNS disorders. Iranian Journal of Pharmacology and Therapeutics (IJPT). 2004; 3(2):30-40. https://www.sid.ir/en/journal/ViewPaper.aspx?id=34624

[44] Bazari Moghaddam S, Haghighi M, Sharif Rohani M, Hamidi M, Ghasemi M. Effects of Aloe vera extract on growth indices, carcass composition and bacterial flora of intestine in Siberian sturgeon (Acipenser Baerii). Iranian Journal of Fisheries Sciences. 2016; 25(1):1-5. http://iijf.ir/article-1-1551-fa.html

[45] Altbg N, Yuksek N, Tefvik Agagie Z. Immunostimulatory effects of Aloe vera and β-Glucan on cellular and humoral immune responses following vaccination with polyvalent vaccines in dogs. Vetterd琪kafas. 2010; 16(3):405-12. https://www.researchgate.net/publication/283857458_Immunostimulatory_effects_of_Aloe_vera_and_beta-glucan_on_cellular_and_humoral_immune_responses_following_vaccination_with_polyvalent_vaccines_in_dogs

[46] Majeed Khan H, Raza SM, Ahmad Anjum A, Ali MA, Akbar H. Antiviral, embryo toxic and cytotoxic activities of Astragalus membranaceus root extracts. Pakistan Journal of Pharmaceutical Sciences. 2019; 32(1):137-42. [PMID]

[47] Ahmadi R, Alizadeh A, Ketabchi S. Antimicrobial activity of the essential oils as antiviral agents, potential of essential oils to treat SARS-CoV-2 Infection: An in-silico investigation. International Journal of Molecular Sciences. 2020; 21(10):3426. [DOI:10.3390/ijms21103426] [PMID] [PMCID]

[48] Brandt K, Gille G, Rausch WD. Use of ginseng in medicine: Perspectives on CNS disorders. Iranian Journal of Pharmacology and Therapeutics (IJPT). 2004; 3(2):30-40. https://www.sid.ir/en/journal/ViewPaper.aspx?id=34624

[49] Purnavb S, Ketabchi S, Rowshan V. Chemical composition and antibacterial activity of methanolic extract and essential oil of Iranian Teucrium Polium against some of phytobacteria. Iranian Journal of Crop Breeding and Research. 2017; 3(3):516-22. http://ijpacr.com/files/21-07-2017/17.pdf

[50] Ketabchi S, Papari Moghadamfar M. Medicinal Plants Effective in the Preventon and Control of Coronaviruses. CMJ. 2021; 10(4):296-307. [PMID] [PMCID]