Standards of Medical Care in Diabetes—2011

American Diabetes Association

CONTENTS

I. CLASSIFICATION AND DIAGNOSIS OF DIABETES, p. S12
 A. Classification of diabetes
 B. Diagnosis of diabetes
 C. Categories of increased risk for diabetes (prediabetes)
II. TESTING FOR DIABETES IN ASYMPTOMATIC PATIENTS, p. S13
 A. Testing for type 2 diabetes and risk of future diabetes in adults
 B. Testing for type 2 diabetes in children
 C. Screening for type 1 diabetes
III. DETECTION AND DIAGNOSIS OF GESTATIONAL DIABETES MELLITUS, p. S15
IV. PREVENTION/Delay of type 2 diabetes, p. S16
V. DIABETES CARE, p. S16
 A. Initial evaluation
 B. Management
 C. Glycemic control
 1. Assessment of glycemic control
 a. Glucose monitoring
 b. A1C
 2. Glycemic goals in adults
 D. Pharmacologic and overall approaches to treatment
 1. Therapy for type 1 diabetes
 2. Therapy for type 2 diabetes
 E. Diabetes self-management education
 F. Medical nutrition therapy
 G. Physical activity
 H. Psychosocial assessment and care
 1. When treatment goals are not met
 2. Hypoglycemia
 3. Intercurrent illness
 4. Bariatric surgery
 5. Immunization
VI. PREVENTION AND MANAGEMENT OF DIABETES COMPLICATIONS, p. S27
 A. Cardiovascular disease

1. Hypertension/blood pressure control
2. Dyslipidemia/lipid management
3. Antiplatelet agents
4. Smoking cessation
5. Coronary heart disease screening and treatment
B. Nephropathy screening and treatment
C. Retinopathy screening and treatment
D. Neuropathy screening and treatment
E. Foot care

VII. DIABETES CARE IN SPECIFIC POPULATIONS, p. S38
 A. Children and adolescents
 1. Type 1 diabetes
 a. Screening and management of chronic complications in children and adolescents with type 1 diabetes
 i. Nephropathy
 ii. Hypertension
 iii. Dyslipidemia
 iv. Retinopathy
 v. Celiac disease
 vi. Hypothyroidism
 b. Self-management
 c. School and day care
 d. Transition from pediatric to adult care
 2. Type 2 diabetes
 3. Monogenic diabetes syndromes
 B. Preconception care
 C. Older adults
 D. Cystic fibrosis–related diabetes

VIII. DIABETES CARE IN SPECIFIC SETTINGS, p. S43
 A. Diabetes care in the hospital
 1. Glycemic targets in hospitalized patients
 2. Anti-hyperglycemic agents in hospitalized patients
 3. Preventing hypoglycemia
 B. Diabetes care providers in the hospital
 C. Self-management in the hospital
 D. Diabetes self-management education in the hospital
 E. Medical nutrition therapy in the hospital
 F. Bedside blood glucose monitoring
 G. Discharge planning

IX. STRATEGIES FOR IMPROVING DIABETES CARE, p. S46

Diabetes is a chronic illness that requires continuing medical care and ongoing patient self-management education and support to prevent acute complications and to reduce the risk of long-term complications. Diabetes care is complex and requires that many issues, beyond glycemic control, be addressed. A large body of evidence exists that supports a range of interventions to improve diabetes outcomes.

These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, general treatment goals, and tools to evaluate the quality of care. While individual preferences, comorbidities, and other patient factors may require modification of goals, targets that are desirable for most patients with diabetes are provided. These standards are not intended to preclude clinical judgment or more extensive evaluation and management of the patient by other specialists as needed. For more detailed information about management of diabetes, refer to references 1–3.

The recommendations included are screening, diagnostic, and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. A grading system (Table 1), developed by the American Diabetes Association (ADA) and modeled after existing methods, was utilized to clarify and codify the evidence that forms the basis for the recommendations. The level of evidence that supports each recommenda-
The classification of diabetes includes:

A. Classification of diabetes

B. Diagnosis of diabetes

Diabetic retinopathy as has been shown for the DCCT reference assay. Point-of-care A1C assays are not sufficiently accurate at this time to use for diagnostic purposes.

Epidemiologic datasets show a similar relationship between A1C and risk of retinopathy. A1C levels can vary with patients’ ethnicity and the incomplete correlation between A1C and average glucose in certain individuals. A1C levels may be influenced by factors such as fasting and postprandial states, as well as other conditions that may affect glucose metabolism.

The established glucose criteria for the diagnosis of diabetes (FPG and 2-h PG) remain valid as well (Table 2). Just as there is less than 100% concordance between the FPG and 2-h PG tests, there is not perfect concordance between A1C and either glucose-based test. Analyses of National Health and Nutrition Examination Survey (NHANES) data indicate that, assuming universal screening of the undiagnosed, the A1C cut point of ≥6.5% identifies one-third fewer cases of undiagnosed diabetes than a fasting glucose cut point of ≥126 mg/dl (7.0 mmol/L).

For decades, the diagnosis of diabetes was based on plasma glucose criteria, either the fasting plasma glucose (FPG) or the 2-h value in the 75-g oral glucose tolerance test (OGTT) (4).

In 2009, an International Expert Committee that included representatives of the A1C, the International Diabetes Federation (IDF), and the European Association for the Study of Diabetes (EASD) recommended the use of the A1C test to diagnose diabetes, with a threshold of ≥6.5% (5), and ADA adopted this criterion in 2010 (4). The diagnostic test should be performed using a method that is certified by the National Glycohemoglobin Standardization Program (NGSP) and standardized or traceable to the Diabetes Control and Complications Trial (DCCT) reference assay. Point-of-care A1C assays are not sufficiently accurate at this time to use for diagnostic purposes.

Epidemiologic datasets show a similar relationship between A1C and risk of retinopathy. A1C levels can vary with patients’ ethnicity (5) as well as with certain anemias and hemoglobinopathies. For patients with an abnormal hemoglobin but normal red cell turnover, such as sickle cell trait, an A1C assay without interference from abnormal hemoglobins should be used (an updated list is available at www.ngsp.org/interf.asp). For conditions with abnormal red cell turnover, such as pregnancy, recent blood loss or transfusion, or some anemias, the diagnosis of diabetes must employ glucose criteria exclusively.

The established glucose criteria for the diagnosis of diabetes (FPG and 2-h PG) remain valid as well (Table 2). Just as there is less than 100% concordance between the FPG and 2-h PG tests, there is not perfect concordance between A1C and either glucose-based test. Analyses of National Health and Nutrition Examination Survey (NHANES) data indicate that, assuming universal screening of the undiagnosed, the A1C cut point of ≥6.5% identifies one-third fewer cases of undiagnosed diabetes than a fasting glucose cut point of ≥126 mg/dl (7.0 mmol/L).
Table 2—Criteria for the diagnosis of diabetes

A1C ≥ 6.5%	The test should be performed in a laboratory using a method that is NGSP certified and standardized to the DCCT assay.
FPG ≥ 126 mg/dl (7.0 mmol/l)	Fasting is defined as no caloric intake for at least 8 h.
2-h plasma glucose ≥ 200 mg/dl (11.1 mmol/l)	during an OGTT. The test should be performed as described by the World Health Organization, using a glucose load containing the equivalent of 75 g anhydrous glucose dissolved in water.

*In the absence of unequivocal hyperglycemia, result should be confirmed by repeat testing.

However, in practice, a large portion of the diabetic population remains unaware of their condition. Thus, the lower sensitivity of A1C at the designated cut point may well be offset by the test’s greater practicality, and wider application of a more convenient test (A1C) may actually increase the number of diagnoses made.

As with most diagnostic tests, a test result diagnostic of diabetes should be repeated to rule out laboratory error, unless the diagnosis is clear on clinical grounds, such as a patient with a hyperglycemic crisis or classic symptoms of hyperglycemia and a random plasma glucose ≥ 200 mg/dl. It is preferable that the same test be used to rule out laboratory error, such patients are likely to have test results near the margins of the threshold for a diagnosis. The healthcare professional might opt to follow the patient closely and repeat the testing in 3–6 months.

The current diagnostic criteria for diabetes are summarized in Table 2.

C. Categories of increased risk for diabetes (prediabetes)

In 1997 and 2003, The Expert Committee on Diagnosis and Classification of Diabetes Mellitus (8,9) recognized an intermediate group of individuals whose glucose levels, although not meeting criteria for diabetes, are nevertheless too high to be considered normal. These persons were defined as having impaired fasting glucose (IFG) (FPG levels 100–125 mg/dl [5.6–6.9 mmol/l]) or impaired glucose tolerance (IGT) (2-h PG values in the OGTT of 140–199 mg/dl [7.8–11.0 mmol/l]). It should be noted that the World Health Organization (WHO) and a number of other diabetes organizations define the cutoff for IFG at 110 mg/dl (6.1 mmol/l).

Individuals with IFG and/or IGT have been referred to as having prediabetes, indicating the relatively high risk for the future development of diabetes. IFG and IGT should not be viewed as clinical entities in their own right but rather risk factors for diabetes as well as cardiovascular disease (CVD). IFG and IGT are associated with obesity (especially abdominal or visceral obesity), dyslipidemia with high triglycerides and/or low HDL cholesterol, and hypertension.

As is the case with the glucose measures, several prospective studies that used A1C to predict the progression to diabetes demonstrated a strong, continuous association between A1C and subsequent diabetes. In a systematic review of 44,203 individuals from 16 cohort studies with a follow-up interval averaging 5.6 years (range 2.8–12 years), those with an A1C between 5.5 and 6.0% had a substantially increased risk of diabetes with 5-year incidences ranging from 9–25%. An A1C range of 6.0–6.5% had a 5-year risk of developing diabetes between 25–50% and relative risk 20 times higher compared with an A1C of 5.0% (10). In a community-based study of black and white adults without diabetes, baseline A1C was a stronger predictor of subsequent diabetes and cardiovascular events than fasting glucose (11). Other analyses suggest that an A1C of 5.7% is associated with diabetes risk similar to that of the high-risk participants in the Diabetes Prevention Program (DPP).

Hence, it is reasonable to consider an A1C range of 5.7–6.4% as identifying individuals with high risk for future diabetes, a state that may be referred to as prediabetes (4). As is the case for individuals found to have IFG and IGT, individuals with an A1C of 5.7–6.4% should be informed of their increased risk for diabetes as well as CVD and counseled about effective strategies to lower their risks (see IV. PREVENTION/Delay of TYPE 2 DIABETES). As with glucose measurements, the continuum of risk is curvilinear—as A1C rises, the risk of diabetes rises disproportionately at higher ends of the range.

Table 3 summarizes the categories of increased risk for diabetes.

II. TESTING FOR DIABETES IN ASYMPTOMATIC PATIENTS

Recommendations

- Testing to detect type 2 diabetes and assess risk for future diabetes in asymptomatic people should be considered in adults of any age who are overweight or obese (BMI ≥ 25 kg/m²) and who have one or more additional risk factors for diabetes (Table 4). In those without these risk factors, testing should begin at age 45 years. (B)
- If tests are normal, repeat testing carried out at least at 3-year intervals is reasonable. (E)
In those identified with increased risk

- To test for diabetes or to assess risk of future diabetes, A1C, FPG, or OGTT is appropriate. (B)
- In those identified with increased risk for future diabetes, identify and, if appropriate, treat other CVD risk factors. (B)

For many illnesses, there is a major distinction between screening and diagnostic testing. However, for diabetes, the same tests would be used for “screening” as for diagnosis. Diabetes may be identified anywhere along a spectrum of clinical scenarios ranging from a seemingly low-risk individual who happens to have glucose testing, to a higher-risk individual whom the provider tests because of high suspicion of diabetes, to the asymptomatic patient. The discussion herein is primarily framed as testing for diabetes in those without symptoms. Testing for diabetes will also detect individuals at increased future risk for diabetes, herein referred to as having prediabetes.

A. Testing for type 2 diabetes and risk of future diabetes in adults

Type 2 diabetes is frequently not diagnosed until complications appear, and approximately one-fourth of all people with diabetes in the U.S. may be undiagnosed. The effectiveness of early identification of prediabetes and diabetes through mass testing of asymptomatic individuals has not been proven definitively, and rigorous trials to provide such proof are unlikely to occur. However, mathematical modeling studies suggest that screening independent of risk factors beginning at age 30 or 45 years is highly cost-effective (<$11,000 per quality-adjusted life-year gained) (12). Prediabetes and diabetes meet established criteria for conditions in which early detection is appropriate. Both conditions are common and increasing in prevalence and impose significant public health burdens. There is a long presymptomatic phase before the diagnosis of type 2 diabetes is usually made. Relatively simple tests are available to detect preclinical disease. Additionally, the duration of glycemic burden is a strong predictor of adverse outcomes, and effective interventions exist to prevent progression of prediabetes to diabetes (see IV. PREVENTION/Delay of Type 2 Diabetes) and to reduce risk of complications of diabetes (see VI. PREVENTION AND MANAGEMENT OF DIABETES COMPLICATIONS).

Recommendations for testing for diabetes in asymptomatic, undiagnosed adults are listed in Table 4. Testing should be considered in adults of any age with BMI ≥25 kg/m² and one or more of the known risk factors for diabetes. Because age is a major risk factor for diabetes, testing of those without other risk factors should begin no later than age 45 years.

Either A1C, FPG, or the 2-h OGTT is appropriate for testing. The 2-h OGTT identifies people with either IFG or IGT and thus more people at increased risk for the development of diabetes and CVD. It should be noted that the two tests do not necessarily detect the same individuals. The efficacy of interventions for primary prevention of type 2 diabetes (13–19) have primarily been demonstrated among individuals with IGT, not for individuals with IFG (who do not also have IGT) or for individuals with specific A1C levels.

The appropriate interval between tests is not known (20). The rationale for the 3-year interval is that false negatives will be repeated before substantial time elapses, and there is little likelihood that an individual will develop significant complications of diabetes within 3 years of a negative test result. In the modeling study, repeat screening every 3 or 5 years was cost-effective (12).

Because of the need for follow-up and discussion of abnormal results, testing should be carried out within the health care setting. Community screening outside a health care setting is not recommended because people with positive tests may not seek, or have access to, appropriate follow-up testing and care. Conversely, there may be failure to ensure appropriate repeat testing for individuals who test negative. Community screening may also be poorly targeted, i.e., it may fail to reach the groups most at risk and inappropriately test those at low risk (the worried well) or even those already diagnosed.

B. Testing for type 2 diabetes in children

The incidence of type 2 diabetes in adolescents has increased dramatically in the last decade, especially in minority populations (21), although the disease remains rare in the general pediatric population (22). Consistent with recommendations for adults, children and youth at increased risk for the presence or the development of type 2 diabetes should be tested within the health care setting. The recommendations of the ADA Consensus Statement on Type 2 Diabetes in Children and Youth (23), with some modifications, are summarized in Table 5.

C. Screening for type 1 diabetes

Generally, people with type 1 diabetes present with acute symptoms of diabetes and markedly elevated blood glucose levels, and most cases are diagnosed soon after the onset of hyperglycemia. However, evidence from type 1 prevention studies suggests that measurement of islet autoantibodies identifies individuals who are at risk for developing type 1 diabetes. Such testing may be appropriate in high-risk individuals, such as those with prior transient hyperglycemia or those who have relatives with type 1 diabetes, in the context of clinical research studies (see, for example, http://www2.diabetestrialnet.org). Widespread clinical testing of asymptomatic low-risk individuals cannot currently be recommended, as it would identify very few individuals in the general population who are at risk. Individuals who screen positive should be counseled about their risk of developing diabetes. Clinical studies are being conducted to
Women with a history of GDM should
● In pregnant women not known to have diabetes, screen for undiagnosed type 2 diabetes
Recommendations
- Screen for undiagnosed type 2 diabetes at the first prenatal visit in those with risk factors, using standard diagnostic criteria. (B)
- In pregnant women not known to have diabetes, screen for GDM at 24–28 weeks of gestation, using a 75-g 2-h OGTT and the diagnostic cut points in Table 6. (B)
- Screen women with GDM for persistent diabetes 6–12 weeks postpartum. (E)
- Women with a history of GDM should have lifelong screening for the development of diabetes or prediabetes at least every 3 years. (E)

For many years, GDM was defined as any degree of glucose intolerance with onset or first recognition during pregnancy (8), whether or not the condition persisted after pregnancy, and not excluding the possibility that unrecognized glucose intolerance may have antedated or begun concomitantly with the pregnancy. This definition facilitated a uniform strategy for detection and classification of GDM, but its limitations were recognized for many years. As the ongoing epidemic of obesity and diabetes has led to more type 2 diabetes in women of childbearing age, the number of pregnant women with undiagnosed type 2 diabetes has increased (24). Because of this, it is reasonable to screen women with risk factors for type 2 diabetes at their initial prenatal visit, using standard diagnostic criteria (Table 2). Women with diabetes found at this visit should receive a diagnosis of overt, not gestational, diabetes.

GDM carries risks for the mother and neonate. The Hyperglycemia and Adverse Pregnancy Outcomes (HAPO) study (25), a large-scale (~29,000 pregnant women) multinational epidemiologic study, demonstrated that risk of adverse maternal, fetal, and neonatal outcomes continuously increased as a function of maternal glycemia at 24–28 weeks, even within ranges previously considered normal for pregnancy. For most complications, there was no threshold for risk. These results have led to careful reconsideration of the diagnostic criteria for GDM. After deliberations in 2008–2009, the International Association of Diabetes and Pregnancy Study Groups (IADPSG), an international consensus group with representatives from multiple obstetrical and diabetes organizations, including ADA, developed revised recommendations for diagnosing GDM. The group recommended that all women not known to have diabetes undergo a 75-g OGTT at 24–28 weeks of gestation. Additionally, the group developed diagnostic cut points for the fasting, 1-h, and 2-h plasma glucose measurements that conveyed an odds ratio for adverse outcomes of at least 1.75 compared with the mean glucose levels in the HAPO study. Current screening and diagnostic strategies, based on the IADPSG statement (26), are outlined in Table 6.

These new criteria will significantly increase the prevalence of GDM, primarily because only one abnormal value, not two, is sufficient to make the diagnosis. The ADA recognizes the anticipated significant increase in the incidence of GDM to be diagnosed by these criteria and is sensitive to concerns about the “medicalization” of pregnancies previously categorized as normal. These diagnostic criteria changes are being made in the context of worrisome worldwide increases in obesity and diabetes rates, with the intent of optimizing gestational outcomes for women and their babies.

Admittedly, there are few data from randomized clinical trials regarding therapeutic interventions in women who will now be diagnosed with GDM based on only one blood glucose value above the specified cut points (in contrast to the older criteria that stipulated at least two abnormal values.) Expected benefits to their pregnancies and offspring is inferred from intervention trials that focused on women with more mild hyperglycemia than identified using older GDM diagnostic criteria and that found modest benefits (27,28). The frequency of their follow-up and blood glucose monitoring is not yet clear, but likely to be less intensive than women diagnosed by the older criteria. Additional well-designed clinical studies are needed to determine the optimal intensity of monitoring and treatment of women with GDM diagnosed by the new criteria (that would not have met the prior definition of GDM). It is important to note that 80–90% of women in both of the mild GDM studies (whose glucose values overlapped with the thresholds recommended herein) could be managed with lifestyle therapy alone.

Because some cases of GDM may represent preexisting undiagnosed type 2 diabetes, women with a history of GDM should be screened for diabetes 6–12 weeks postpartum, using nonpregnant OGTT criteria. Women with a history of GDM have a greatly increased subsequent risk for diabetes (29) and should be followed up with subsequent screening for the development of diabetes or prediabetes, as outlined in II. TESTING FOR DIABETES IN ASYMPTOMATIC PATIENTS.
Prevent Non-Insulin Dependent Diabetes: XENDOS, Xenical in the prevention of Diabetes in Obese Subjects.

I, individual; G, group; D&E, diet and exercise.

Prevention Program; DPS, Diabetes Prevention Study; DREAM, Diabetes Reduction Assessment with Ramipril and Rosiglitazone Medication; STOP-NIDDM, Study to compare the risk of diabetes progression in those with impaired glucose tolerance.

*Number of participants in the indicated comparisons, not necessarily in entire study. †Calculated from information in the article. DPP, Diabetes Prevention Program; DPS, Diabetes Prevention Study; DREAM, Diabetes Reduction Assessment with Ramipril and Rosiglitazone Medication; STOP-NIDDM, Study to Prevent Non-Insulin Dependent Diabetes; XENDOS, Xenical in the prevention of Diabetes in Obese Subjects.

IV. PREVENTION/DELAY OF TYPE 2 DIABETES

Recommendations

- Patients with IGT (A), IFG (E), or an A1C of 5.7–6.4% (E) should be referred to an effective ongoing support program targeting weight loss of 7% of body weight and increasing physical activity to at least 150 min/week of moderate activity such as walking.
- Follow-up counseling appears to be important for success. (B)
- Based on potential cost savings of diabetes prevention, such programs should be covered by third-party payors. (E)
- Metformin therapy for prevention of type 2 diabetes may be considered in those at the highest risk for developing diabetes, such as those with multiple risk factors, especially if they demonstrate progression of hyperglycemia (e.g., A1C ≥6%) despite lifestyle interventions. (B)
- Monitoring for the development of diabetes in those with prediabetes should be performed every year. (E)

Randomized controlled trials have shown that individuals at high risk for developing diabetes (those with IFG, IGT, or both) can be given interventions that significantly decrease the risk of onset of diabetes (13–19). These interventions include intensive lifestyle modification programs that have been shown to be very effective (58% reduction after 3 years) and use of the pharmacologic agents metformin, α-glucosidase inhibitors, orlistat, and thiazolidinediones (TZDs), each of which has been shown to decrease incident diabetes to various degrees. A summary of major diabetes prevention trials is shown in Table 7.

Follow-up of all three large studies of lifestyle intervention has shown sustained reduction in the rate of conversion to type 2 diabetes, with 43% reduction at 20 years in the Da Qing study (30), 43% reduction at 7 years in the Finnish Diabetes Prevention Study (DPS) (31) and 34% reduction at 10 years in the U.S. Diabetes Prevention Program Outcomes Study (DPPOS) (32). A cost-effectiveness analysis suggested that lifestyle interventions as delivered in the DPP are cost-effective (33). Group delivery of the DPP intervention in community settings has the potential to be significantly less expensive while still achieving similar weight loss (34).

Study (ref.)	n	Population	Mean age (years)	Duration (years)	Intervention (daily dose)	Incidence in control subjects (%/year)	Relative risk reduction (%) (95% CI)	3-Year number needed to treat (Rx)
Finnish DPS (14)	522	IGT, BMI ≥25 kg/m²	55	3.2	1-D&E	6	58 (30–70)	8.5
DPP (13)	2,161	IGT, BMI ≥25 kg/m², FPG >5.3 mmol/l	51	3	1-D&E	10.4	58 (48–66)	6.9
Da Qing (15)	259	IGT (randomized groups)	45	6	G-D&E	14.5	38 (14–56)	7.9
Indian DPP (19)	269	IGT	46	2.5	1-D&E	23	29 (21–37)	6.4
Medications								
DPP (13)	2,155	IGT, BMI ≥24 kg/m², FPG >5.3 mmol/l	51	2.8	Metformin (1,700 mg)	10.4	31 (17–43)	13.9
Indian DPP (19)	269	IGT	46	2.5	Metformin (500 mg)	23	26 (19–35)	6.9
STOP-NIDDM (17)	1,419	IGT, FPG >5.6 mmol/l	54	3.2	Acarbose (300 mg)	12.4	25 (10–37)	9.6
XENDOS (36)	3,277	BMI ≥30 kg/m²	43	4	Orlistat (360 mg)	2.4	37 (14–54)	45.5
DREAM (18)	5,269	IGT or IFG	55	3.0	Rosiglitazone (8 mg)	9.1	60 (54–65)	6.9
Voglibose Ph-3 (37)	1,780	IGT	56	3.0 (1-year)	Voglibose (0.2 mg)	12.0	40 (18–57)	21 (1-year)

Modified and reprinted with permission (38). Percentage points: Number needed to treat to prevent 1 case of diabetes, standardized for a 3-year period to improve comparisons across studies. *Number of participants in the indicated comparisons, not necessarily in entire study. †Calculated from information in the article. DPP, Diabetes Prevention Program; DPS, Diabetes Prevention Study; DREAM, Diabetes Reduction Assessment with Ramipril and Rosiglitazone Medication; STOP-NIDDM, Study to Prevent Non-Insulin Dependent Diabetes; XENDOS, Xenical in the prevention of Diabetes in Obese Subjects.

V. DIABETES CARE

A. Initial evaluation

A complete medical evaluation should be performed to classify the diabetes, detect the presence of diabetes complications, review previous treatment and glycemic control in patients with established diabetes, assist in formulating a management plan, and provide a basis for continuing care. Laboratory tests appropriate to the evaluation of each patient’s medical con-
dation should be performed. A focus on the components of comprehensive care (Table 8) will assist the health care team to ensure optimal management of the patient with diabetes.

B. Management
People with diabetes should receive medical care from a physician-coordinated team. Such teams may include, but are not limited to, physicians, nurse practitioners, physician’s assistants, nurses, dietitians, pharmacists, and mental health professionals with expertise and a special interest in diabetes. It is essential in this collaborative and integrated team approach that individuals with diabetes assume an active role in their care.

The management plan should be formulated as a collaborative therapeutic alliance among the patient and family, the physician, and other members of the health care team. A variety of strategies and techniques should be used to provide adequate education and development of problem-solving skills in the various aspects of diabetes management. Implementation of the management plan requires that each aspect is understood and agreed to by the patient and the care providers and that the goals and treatment plan are reasonable. Any plan should recognize diabetes self-management education (DSME) and ongoing diabetes support as an integral component of care. In developing the plan, consideration should be given to the patient’s age, school or work schedule and conditions, physical activity, eating patterns, social situation and cultural factors, and presence of complications of diabetes or other medical conditions.

C. Glycemic control

1. Assessment of glycemic control

Two primary techniques are available for health providers and patients to assess the effectiveness of the management plan on glycemic control: patient self-monitoring of blood glucose (SMBG) or interstitial glucose, and A1C.

a. Glucose monitoring

Recommendations
- SMBG should be carried out three or more times daily for patients using multiple insulin injections or insulin pump therapy. (A)
- For patients using less-frequent insulin injections, noninsulin therapies, or medical nutrition therapy (MNT) alone, SMBG may be useful as a guide to the success of therapy. (E)
- To achieve postprandial glucose targets, postprandial SMBG may be appropriate. (E)
- When prescribing SMBG, ensure that patients receive initial instruction in, and routine follow-up evaluation of, SMBG technique and their ability to use data to adjust therapy. (E)
- Continuous glucose monitoring (CGM) in conjunction with intensive insulin regimens can be a useful tool to lower A1C in selected adults (age ≥25 years) with type 1 diabetes. (A)
- Although the evidence for A1C-lowering is less strong in children, teens, and younger adults, CGM may be helpful in these groups. Success correlates with adherence to ongoing use of the device. (C)
- CGM may be a supplemental tool to SMBG in those with hypoglycemia unawareness and/or frequent hypoglycemic episodes. (E)

Table 8—Components of the comprehensive diabetes evaluation

Medical history
• Age and characteristics of onset of diabetes (e.g., DKA, asymptomatic laboratory finding)
• Eating patterns, physical activity habits, nutritional status, and weight history; growth and development in children and adolescents
• Diabetes education history
• Review of previous treatment regimens and response to therapy (A1C records)
• Current treatment of diabetes, including medications, meal plan, physical activity patterns, and results of glucose monitoring and patient’s use of data
• DKA frequency, severity, and cause
• Hypoglycemic episodes
• Hypoglycemia awareness
• Any severe hypoglycemia: frequency and cause
• History of diabetes-related complications
• Microvascular: retinopathy, nephropathy, neuropathy (sensory, including history of foot lesions; autonomic, including sexual dysfunction and gastroparesis)
• Macrovascular: CHD, cerebrovascular disease, PAD
• Other: psychosocial problems*, dental disease*

Physical examination
• Height, weight, BMI
• Blood pressure determination, including orthostatic measurements when indicated
• Fundoscopic examination*
• Thyroid palpation
• Skin examination (for acanthosis nigricans and insulin injection sites)
• Comprehensive foot examination:
• Inspection
• Palpation of dorsalis pedis and posterior tibial pulses
• Presence/absence of patellar and Achilles reflexes
• Determination of proprioception, vibration, and monofilament sensation

Laboratory evaluation
• A1C, if results not available within past 2–3 months
• If not performed/available within past year:
• Fasting lipid profile, including total, LDL and HDL cholesterol and triglycerides
• Liver function tests
• Test for urine albumin excretion with spot urine albumin-to-creatinine ratio
• Serum creatinine and calculated GFR
• Thyroid-stimulating hormone in type 1 diabetes, dyslipidemia, or women over age 50 years

Referrals
• Annual dilated eye exam
• Family planning for women of reproductive age
• Registered dietitian for MNT
• DSME
• Dental examination
• Mental health professional, if needed

*See appropriate referrals for these categories.
Major clinical trials of insulin-treated patients that demonstrated the benefits of intensive glycemic control on diabetes complications have included SMBG as part of multifactorial interventions, suggesting that SMBG is a component of effective therapy. SMBG allows patients to evaluate their individual response to therapy and assess whether glycemic targets are being achieved. Results of SMBG can be useful in preventing hypoglycemia and adjusting medications (particularly prandial insulin doses), MNT, and physical activity.

The frequency and timing of SMBG should be dictated by the particular needs and goals of the patient. SMBG is especially important for patients treated with insulin to monitor for and prevent asymptomatic hypoglycemia and hyperglycemia. For most patients with type 1 diabetes and pregnant women taking insulin, SMBG is recommended three or more times daily. For these populations, significantly more frequent testing may be required to reach A1C targets safely without hypoglycemia. The optimal frequency and timing of SMBG for patients with type 2 diabetes on noninsulin therapy is unclear. A meta-analysis of SMBG in non–insulin-treated patients with type 2 diabetes concluded that some regimen of SMBG was associated with a reduction in A1C of 0.4%. However, many of the studies in this analysis also included patient education with diet and exercise counseling and, in some cases, pharmacologic intervention, making it difficult to assess the contribution of SMBG alone to improved control (40). Several recent trials have called into question the clinical utility and cost-effectiveness of routine SMBG in non–insulin-treated patients (41–43).

Because the accuracy of SMBG is instrument and user dependent (44), it is important to evaluate each patient’s monitoring technique, both initially and at regular intervals thereafter. In addition, optimal use of SMBG requires proper interpretation of the data. Patients should be taught how to use the data to adjust food intake, exercise, or pharmacological therapy to achieve specific glycemic goals, and these skills should be reevaluated periodically.

CGM through the measurement of interstitial glucose (which correlates well with plasma glucose) is available. These sensors require calibration with SMBG, and the latter are still recommended for making acute treatment decisions. CGM devices also have alarms for hypo- and hyperglycemic excursions. Small studies in selected patients with type 1 diabetes have suggested that CGM use reduces the time spent in hypo- and hyperglycemic ranges and may modestly improve glycemic control. A larger 26-week randomized trial of 322 type 1 patients showed that adults age 25 years and older using intensive insulin therapy and CGM experienced a 0.5% reduction in A1C (from ~7.6% to 7.1%) compared to usual intensive insulin therapy with SMBG (45). Sensor use in children, teens, and adults up to age 24 years did not result in significant A1C lowering, and there was no significant difference in hypoglycemia in any group. Importantly, the greatest predictor of A1C-lowering in this study for all age groups was frequency of sensor use, which was lower in younger age-groups. In a smaller randomized controlled trial of 129 adults and children with baseline A1C <7.0%, outcomes combining A1C and hypoglycemia favored the group utilizing CGM, suggesting that CGM is also beneficial for individuals with type 1 diabetes who have already achieved excellent control with A1C <7.0 (46). Although CGM is an evolving technology, emerging data suggest that, in appropriately selected patients who are motivated to wear it most of the time, it may offer benefit. CGM may be particularly useful in those with hypoglycemia unawareness and/or frequent episodes of hypoglycemia, and studies in this area are ongoing.

b. A1C

Recommendations

- Perform the A1C test at least two times a year in patients who are meeting treatment goals (and who have stable glycemic control). (E)
- Perform the A1C test quarterly in patients whose therapy has changed or who are not meeting glycemic goals. (E)
- Use of point-of-care testing for A1C allows for timely decisions on therapy changes, when needed. (E)

Because A1C is thought to reflect average glycemia over several months (47,48), and has strong predictive value for diabetes complications (47,48), A1C testing should be performed routinely in all patients with diabetes, at initial assessment and then as part of continuing care. Measurement approximately every 3 months determines whether a patient’s glycemic targets have been reached and maintained. For any individual patient, the frequency of A1C testing should be dependent on the clinical situation, the treatment regimen used, and the judgment of the clinician. Some patients with stable glycemia well within target may do well with testing only twice per year, while unstable or highly intensively managed patients (e.g., pregnant type 1 women) may be tested more frequently than every 3 months. The availability of the A1C result at the time that the patient is seen (point-of-care testing) has been reported to result in increased intensification of therapy and improvement in glycemic control (49,50).

The A1C test is subject to certain limitations. Conditions that affect erythrocyte turnover (hemolysis, blood loss) and hemoglobin variants must be considered, particularly when the A1C result does not correlate with the patient’s clinical situation (44). In addition, A1C does not provide a measure of glycemic variability or hypoglycemia. For patients prone to glycemic variability (especially type 1 patients, or type 2 patients with severe insulin deficiency), glycemic control is best judged by the combination of results of SMBG testing and the A1C. The A1C may also serve as a check on the accuracy of the patient’s meter (or the patient’s reported SMBG results) and the adequacy of the SMBG testing schedule.

Table 9 contains the correlation between A1C levels and mean plasma glucose levels based on data from the international A1C-Derived Average Glucose (ADAG) trial utilizing frequent SMBG and CGM in 507 adults (83% Caucasian) with type 1, type 2, and no diabetes.

A1C (%)	Mean plasma glucose	
	mg/dl	mmol/l
6	126	7.0
7	154	8.6
8	183	10.2
9	212	11.8
10	240	13.4
11	269	14.9
12	298	16.5

These estimates are based on ADAG data of ~2,700 glucose measurements over 3 months per A1C measurement in 507 adults with type 1, type 2, and no diabetes. The correlation between A1C and average glucose was 0.92 (51). A calculator for converting A1C results into estimated average glucose (eAG), in either mg/dl or mmol/l, is available at http://professional.diabetes.org/eAG.
tes (51). The American Diabetes Association and American Association of Clinical Chemists have determined that the correlation ($r = 0.92$) is strong enough to justify reporting both an A1C result and an estimated average glucose (eAG) result when a clinician orders the A1C test. The table in previous versions of the Standards of Medical Care in Diabetes describing the correlation between A1C and mean glucose was derived from relatively sparse data (one 7-point profile over 1 day per A1C reading) in the primarily Caucasian type 1 diabetic participants in the DCCT (52). Clinicians should note that the numbers in the table are now different, as they are based on ~2,800 readings per A1C in the ADAG trial.

In the ADAG trial, there were no significant differences among racial and ethnic groups in the regression lines between A1C and mean glucose, although there was a trend toward a difference between African/African American participants and Caucasian ones that might have been significant had more African/African American participants been studied. A recent study comparing A1C with CGM data in 48 type 1 diabetic children found a highly statistically significant correlation between A1C and mean blood glucose, although the correlation ($r = 0.7$) was significantly lower than in the ADAG trial (53). Whether there are significant differences in how A1C relates to average glucose in children or in African American patients is an area for further study. For the time being, the question has not led to different recommendations about testing A1C or to different interpretations of the clinical meaning of given levels of A1C in those populations.

For patients in whom A1C/eAG and measured blood glucose appear discrepant, clinicians should consider the possibilities of hemoglobinopathy or altered red cell turnover, and the options of more frequent and/or different timing of SMBG or use of CGM. Other measures of chronic glycemia such as fructosamine are available, but their linkage to average glucose and their prognostic significance are not as clear as is the case for A1C.

2. Glycemic goals in adults

Recommendations

- Lowering A1C to below or around 7% has been shown to reduce microvascular and neuropathic complications of diabetes and, if implemented soon after the diagnosis of diabetes, is associated with long-term reduction in macrovascular disease. Therefore, a reasonable A1C goal for many nonpregnant adults is <7%. (B)
- Because additional analyses from several randomized trials suggest a small but incremental benefit in microvascular outcomes with A1C values closer to normal, providers might reasonably suggest more stringent A1C goals for selected individual patients, if this can be achieved without significant hypoglycemia or other adverse effects of treatment. Such patients might include those with short duration of diabetes, long life expectancy, and no significant CVD. (B)
- Conversely, less stringent A1C goals may be appropriate for patients with a history of severe hypoglycemia, limited life expectancy, advanced microvascular or macrovascular complications, extensive comorbid conditions, and those with longstanding diabetes in whom the general goal is difficult to attain despite DSME, appropriate glucose monitoring, and effective doses of multiple glucose-lowering agents including insulin. (C)

Glycemic control is fundamental to the management of diabetes. The DCCT (47) (in patients with type 1 diabetes), the Kumamoto study (54), and the UK Prospective Diabetes Study (UKPDS) (55,56) (both in patients with type 2 diabetes) were prospective, randomized, controlled trials of intensive versus standard glycemic control in patients with relatively recently diagnosed diabetes. These trials showed definitively that improved glycemic control is associated with significantly decreased rates of microvascular (retinopathy and nephropathy) and neuropathic complications. Follow up of the DCCT cohorts in the Epidemiology of Diabetes Interventions and Complications (EDIC) study (57,58) and of the UKPDS cohort (59) has shown persistence of these microvascular benefits in previously intensively treated subjects, even though their glycemic control has been equivalent to that of previous standard arm subjects during follow-up.

Subsequent trials in patients with more long-standing type 2 diabetes, designed primarily to look at the role of intensive glycemic control on cardiovascular outcomes also confirmed a benefit, although more modest, on onset or progression of microvascular complications. The Veterans Affairs Diabetes Trial (VADT) showed significant reductions in albuminuria with intensive (achieved median A1C 6.9%) compared to standard glycemic control, but no difference in retinopathy and neuropathy (60,61). The Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) study of intensive versus standard glycemic control in type 2 diabetes found a statistically significant reduction in albuminuria with an A1C target of <6.5% (achieved median A1C 6.3%) compared to standard therapy achieving a median A1C of 7.0% (62). Recent analyses from the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial have shown lower rates of measures of microvascular complications in the intensive glycemic control arm compared with the standard arm (63,64).

Epidemiological analyses of the DCCT and UKPDS (47,48) demonstrate a curvilinear relationship between A1C and microvascular complications. Such analyses suggest that, on a population level, the greatest number of complications will be averted by taking patients from very poor control to fair or good control. These analyses also suggest that further lowering of A1C from 7 to 6% is associated with further reduction in the risk of microvascular complications, albeit the absolute risk reductions become much smaller. Given the substantially increased risk of hypoglycemia (particularly in those with type 1 diabetes, but also in the recent type 2 trials), the concerning mortality findings in the ACCORD trial (65), and the relatively much greater effort required to achieve near-normoglycemia, the risks of lower targets may outweigh the potential benefits on microvascular complications on a population level. However, selected individual patients, especially those with little comorbidity and long life expectancy (who may reap the benefits of further lowering of glycemia below 7%) may, at patient and provider judgment, adopt glycemic targets as close to normal as possible as long as significant hypoglycemia does not become a barrier.

Whereas many epidemiologic studies and meta-analyses (66,67) have clearly shown a direct relationship between A1C and CVD, the potential of intensive glycemic control to reduce CVD has been less clearly defined. In the DCCT, there was a trend toward lower risk of CVD events with intensive control. However, 9-year post-DCCT follow-up of the cohort has
shown that participants previously randomized to the intensive arm had a 42% reduction ($P = 0.02$) in CVD outcomes and a 57% reduction ($P = 0.02$) in the risk of nonfatal myocardial infarction (MI), stroke, or CVD death compared with those previously in the standard arm (68). The benefit of intensive glycemic control in this type 1 cohort has recently been shown to persist for several decades (69).

The UKPDS trial of type 2 diabetes observed a 16% reduction in cardiovascular complications (combined fatal or nonfatal MI and sudden death) in the intensive glycemic control arm, although this difference was not statistically significant ($P = 0.052$), and there was no suggestion of benefit on other CVD outcomes such as stroke. However, 10 years of follow-up of the UKPDS cohort demonstrated, for participants originally randomized to intensive glycemic control compared with those randomized to conventional glycemic control, long-term reductions in MI (15% with sulfonylurea or insulin as initial pharmacotherapy, 33% with metformin as initial pharmacotherapy, both statistically significant) and in all-cause mortality (13 and 27%, respectively, both statistically significant) (59).

Results of three large trials (ACCORD, ADVANCE, and VADT) suggested no significant reduction in CVD outcomes with intensive glycemic control in these populations, who had more advanced diabetes than UKPDS participants. Details of these three studies are reviewed extensively in a recent ADA position statement (70).

The glycemic control arm of ACCORD was halted early due to the finding of an increased rate of mortality in the intensive arm compared with the standard arm (1.41% vs. 1.14% per year; HR 1.22 [95% CI 1.01 to 1.46]); with a similar increase in cardiovascular deaths. The primary outcome of ACCORD (MI, stroke, or cardiovascular death) was lower in the intensive glycemic control group, due to a reduction in nonfatal MI, but this reduction was not statistically significant when the study was terminated (65).

The potential cause of excess deaths in the intensive group of the ACCORD has been difficult to pinpoint. Exploratory analyses of the mortality findings of ACCORD (evaluating variables including weight gain, use of any specific drug or drug combination, and hypoglycemia) were reportedly unable to identify a clear explanation for the excess mortality in the intensive arm. The ACCORD investigators subsequently published additional analyses showing no increase in mortality in the intensive arm participants who achieved A1C levels <7% or in those who lowered their A1C quickly after trial enrollment. In fact, the converse was observed—those at highest risk for mortality were participants in the intensive arm with the highest A1C levels (71).

The primary outcome of ADVANCE was a combination of microvascular events (nephropathy and retinopathy) and major adverse cardiovascular events (MI, stroke, and cardiovascular death). Intensive glycemic control significantly reduced the primary end point, although this was due to a significant reduction in the microvascular outcome, primarily development of macroalbuminuria, with no significant reduction in the macrovascular outcome. There was no difference in overall or cardiovascular mortality between the intensive compared with the standard glycemic control arms (62).

The VADT randomized participants with type 2 diabetes uncontrolled on insulin or maximal dose oral agents (median entry A1C 9.4%) to a strategy of intensive glycemic control (goal A1C <6.0%) or standard glycemic control, with a planned A1C separation of at least 1.5%. The primary outcome of the VADT was a composite of CVD events. The cumulative primary outcome was nonsignificantly lower in the intensive arm (60).

Unlike the UKPDS, which was carried out in patients with newly diagnosed diabetes, all three of the recent type 2 cardiovascular trials were conducted in participants with established diabetes (mean duration 8–11 years) and either known CVD or multiple risk factors, suggesting the presence of established atherosclerosis. Subset analyses of the three trials suggested a significant benefit of intensive glycemic control on CVD in participants with shorter duration of diabetes, lower A1C at entry, and/or absence of known CVD. The DCCT-EDIC study and the long-term follow-up of the UKPDS cohort both suggest that intensive glycemic control initiated soon after diagnosis of diabetes in patients with a lower level of CVD risk may impart long-term protection from CVD events. As is the case with microvascular complications, it may be that glycemic control plays a greater role before macrovascular disease is well developed and minimal or no role when it is advanced. Consistent with this concept, data from an ancillary study of the VADT demonstrated that intensive glycemic control was quite effective in reducing CVD events in individuals with less atherosclerosis at baseline (assessed by coronary calcium) but not in persons with more extensive baseline atherosclerosis (72).

The evidence for a cardiovascular benefit of intensive glycemic control primarily rests on long-term follow-up of study cohorts treated early in the course of type 1 and type 2 diabetes and subset analyses of ACCORD, ADVANCE, and VADT. A recent group-level meta-analysis of the latter three trials suggests that glucose lowering has a modest (9%) but statistically significant reduction in major CVD outcomes, primarily nonfatal MI, with no significant effect on mortality. A prespecified subgroup analysis suggested that major CVD outcome reduction occurred in patients without known CVD at baseline (HR 0.84 [95% CI 0.74–0.94]) (73). Conversely, the mortality findings in ACCORD and subgroup analyses of VADT suggest that the potential risks of very intensive glycemic control may outweigh its benefits in some patients, such as those with very long duration of diabetes, known history of severe hypoglycemia, advanced atherosclerosis, and advanced age/frailty. Certainly, providers should be vigilant in preventing severe hypoglycemia in patients with advanced disease and should not aggressively attempt to achieve near-normal A1C levels in patients in whom such a target cannot be reasonably easily and safely achieved.

Recommended glycemic goals for many nonpregnant adults are shown in Table 10. The recommendations are based on those for A1C values, with listed blood glucose levels that appear to correlate with achievement of an A1C of <7%. Less-stringent treatment goals may be appropriate for adults with limited life expectancies or advanced vascular disease. Glycemic goals for children are provided in VIL.A.1.a. Glycemic control. Severe or frequent hypoglycemia is an absolute indication for the modification of treatment regimens, including setting higher glycemic goals.

The issue of pre- versus postprandial SMBG targets is complex (74). Elevated postchallenge (2-h OGTT) glucose values have been associated with increased cardiovascular risk independent of FPG in some epidemiological studies. In diabetic subjects, some surrogate measures of vas-
Background

Circulating concentrations of glucose are a primary regulator of insulin secretion, and their postprandial rise is an important predictor of microvascular complications in diabetes. As a result, the National Glycohemoglobin Standardization Program recently recommended that the A1C target for type 2 diabetes be 7% or less (70 mg/dl* or 5.7% with the new HbA1c assay) (63).

Current glycemic recommendations for many nonpregnant adults with diabetes consist of the following components: 1) use of multiple dose insulin injections (three to four injections per day of basal and prandial insulin) or CSII therapy; 2) matching of prandial insulin to carbohydrate intake, premeal blood glucose, and anticipated activity; and 3) for many patients (especially if hypoglycemia is a problem), use of insulin analogs. There are excellent reviews available that guide the initiation and management of insulin therapy to achieve desired glycemic goals (7,9,81).

Because of the increased frequency of other autoimmune diseases in type 1 diabetes, screening for thyroid dysfunction, vitamin B12 deficiency, or celiac disease should be considered based on signs and symptoms. Periodic screening in absence of symptoms has been recommended, but the effectiveness and optimal frequency are unclear.

Table 10—Summary of glycemic recommendations for many nonpregnant adults with diabetes

A1C	Preprandial capillary plasma glucose	Peak postprandial capillary plasma glucose†
		<7.0%*
		70–130 mg/dl* (3.9–7.2 mmol/l)
		<180 mg/dl* (<10.0 mmol/l)

Postprandial glucose measurements should be made 1–2 h after the beginning of the meal, generally peak levels in patients with diabetes.

2. Therapy for type 2 diabetes

The ADA and the EASD published an expert consensus statement on the approach to management of hyperglycemia in individuals with type 2 diabetes (82). Highlights of this approach are: intervention at the time of diagnosis with metformin in combination with lifestyle changes (MNT and exercise) and continuing timely augmentation of therapy with additional agents (including early initiation of insulin therapy) as a means of achieving and maintaining recommended levels of glycemic control (i.e., A1C <7% for most patients). As A1C targets are not achieved, treatment intensification is based on the addition of another agent from a different class. The overall objective is to achieve and maintain glycemic control and to change interventions when therapeutic goals are not being met.

The algorithm took into account the evidence for A1C-lowering of the individual interventions, their additive effects, and their expense. The precise drugs used and their exact sequence may not be as important as achieving and maintaining glycemic targets safely. Medications not included in the consensus algorithm, owing to less glucose-lowering effectiveness, limited clinical data, and/or relative expense, still may be appropriate choices in individual patients to achieve glycemic goals. Initiation of insulin at time of diagnosis is recommended for individuals presenting with weight loss or other severe hyperglycemic symptoms or signs.
E. Diabetes self-management education

Recommendations
- People with diabetes should receive diabetes self-management education (DSME) according to national standards when their diabetes is diagnosed and as needed thereafter. (B)
- Effective self-management and quality of life are the key outcomes of DSME and should be measured and monitored as part of care. (C)
- DSME should address psychosocial issues, since emotional well-being is associated with positive diabetes outcomes. (C)
- Because DSME can result in cost-savings and improved outcomes (B), DSME should be adequately reimbursed by third-party payors. (E)

DSME is an essential element of diabetes care (83–88), and national standards for DSME (89) are based on evidence for its benefits. Education helps people with diabetes initiate effective self-management and cope with diabetes when they are first diagnosed. Ongoing DSME and support also help people with diabetes maintain effective self-management throughout a lifetime of diabetes as they face new challenges and treatment advances become available. DSME helps patients optimize metabolic control, prevent and manage complications, and maximize quality of life in a cost-effective manner (90).

DSME is the ongoing process of facilitating the knowledge, skill, and ability necessary for diabetes self-care. This process incorporates the needs, goals, and life experiences of the person with diabetes. The overall objectives of DSME are to support informed decision-making, self-care behaviors, problem-solving, and active collaboration with the health care team to improve clinical outcomes, health status, and quality of life in a cost-effective manner (89).

Current best practice of DSME is a skills-based approach that focuses on helping those with diabetes to make informed self-management choices. DSME has changed from a didactic approach focusing on providing information to more theoretically based empowerment models that focus on helping those with diabetes make informed self-management decisions. Care of diabetes has shifted to an approach that is more patient centered and places the person with diabetes and his or her family at the center of the care model working in collaboration with health care professionals. Patient-centered care is respectful of and responsive to individual patient preferences, needs, and values and ensures that patient values guide all decision making (91).

Evidence for the benefits of DSME

Multiple studies have found that DSME is associated with improved diabetes knowledge and improved self-care behavior (83), improved clinical outcomes such as lower A1C (84,85,87,88,92), lower self-reported weight (83), improved quality of life (86,93), healthy coping (94), and lower costs (95). Better outcomes were reported for DSME interventions that were longer and included follow-up support (83,96–99), that were culturally (100,101) and age appropriate (102,103) and tailored to individual needs and preferences, and that addressed psychosocial issues and incorporated behavioral strategies (83,87,104–106). Both individual and group approaches have been found effective (107–110). There is growing evidence for the role of community health workers and peer (111,112) and lay leaders (113) in delivering DSME and support in addition to the core team (114).

Diabetes education is associated with increased use of primary and preventive services and lower use of acute, inpatient hospital services (95). Patients who participate in diabetes education are more likely to follow best practice treatment recommendations, particularly among the Medicare population, and have lower Medicare and commercial claim costs (115).

National standards for DSME

National standards for DSME are designed to define quality DSME and to assist diabetes educators in a variety of settings to provide evidence-based education (89). The standards, most recently revised in 2007, are reviewed and updated every 5 years by a task force representing key organizations involved in the field of diabetes education and care.

Reimbursement for DSME

DSME, when provided by a program that meets the national standards for DSME and is recognized by the ADA or other approval bodies, is reimbursed as part of the Medicare program as overseen by the Centers for Medicare and Medicaid Services (CMS) (www.cms.hhs.gov/DiabetesSelfManagement). DSME is also covered by a growing number of other health insurance plans.

F. Medical nutrition therapy

General recommendations
- Individuals who have prediabetes or diabetes should receive individualized medical nutrition therapy (MNT) as needed to achieve treatment goals, preferably provided by a registered dietitian familiar with the components of diabetes MNT. (A)
- Because MNT can result in cost-savings and improved outcomes (B), MNT should be adequately covered by insurance and other payors. (E)

Energy balance, overweight, and obesity
- In overweight and obese insulin-resistant individuals, modest weight loss has been shown to reduce insulin resistance. Thus, weight loss is recommended for all overweight or obese individuals who have or are at risk for diabetes. (A)
- For weight loss, either low-carbohydrate, low-fat calorie-restricted, or Mediterranean diets may be effective in the short-term (up to 2 years). (A)
- For patients on low-carbohydrate diets, monitor lipid profiles, renal function, and protein intake (in those with nephropathy), and adjust hypoglycemic therapy as needed. (E)
- Physical activity and behavior modification are important components of weight loss programs and are most helpful in maintenance of weight loss. (B)

Recommendations for primary prevention of diabetes
- Among individuals at high risk for developing type 2 diabetes, structured programs that emphasize lifestyle changes that include moderate weight loss (7% body weight) and regular physical activity (150 min/week), with dietary strategies including reduced calories and reduced intake of dietary fat, can reduce the risk for developing diabetes and are therefore recommended. (A)
- Individuals at high risk for type 2 diabetes should be encouraged to achieve the U.S. Department of Agriculture (USDA) recommendation for dietary fiber (14 g fiber/1,000 kcal) and foods containing whole grains (one-half of grain intake). (B)
Recommendations for management of diabetes

Macronutrients in diabetes management

- The best mix of carbohydrate, protein, and fat may be adjusted to meet the metabolic goals and individual preferences of the person with diabetes. (E)
- Monitoring carbohydrate, whether by carbohydrate counting, choices, or experience-based estimation, remains a key strategy in achieving glycemic control. (A)
- For individuals with diabetes, the use of the glycemic index and glycemic load may provide a modest additional benefit for glycemic control over that observed when total carbohydrate is considered alone. (B)
- Saturated fat intake should be <7% of total calories. (A)
- Reducing intake of trans fat lowers LDL cholesterol and increases HDL cholesterol (A), therefore intake of trans fat should be minimized. (E)

Other nutrition recommendations

- If adults with diabetes choose to use alcohol, daily intake should be limited to a moderate amount (one drink per day or less for adult women and two drinks per day or less for adult men). (E)
- Routine supplementation with antioxidants, such as vitamins E and C and carotene, is not advised because of lack of evidence of efficacy and concern related to long-term safety. (A)
- Individualized meal planning should include optimization of food choices to meet recommended dietary allowance (RDA)/dietary reference intake (DRI) for all micronutrients. (E)

MNT is an integral component of diabetes prevention, management, and self-management education. In addition to its role in preventing and controlling diabetes, ADA recognizes the importance of nutrition as an essential component of an overall healthy lifestyle. A full review of the evidence regarding nutrition in preventing and controlling diabetes and its complications and additional nutrition-related recommendations can be found in the ADA position statement, “Nutrition Recommendations and Interventions for Diabetes,” published in 2007 and updated for 2008 (116). Achieving nutrition-related goals requires a coordinated team effort that includes the active involvement of the person with prediabetes or diabetes. Because of the complexity of nutrition issues, it is recommended that a registered dietitian who is knowledgeable and skilled in implementing nutrition therapy into diabetes management and education be the team member who provides MNT.

Clinical trials/outcome studies of MNT have reported decreases in A1C at 3–6 months ranging from 0.25% to 2.9% with higher reductions seen in type 2 diabetes of shorter duration. Multiple studies have demonstrated sustained improvements in A1C at 12 months and longer when an Registered Dietitian provided follow-up visits ranging from monthly to three sessions per year (117–124). Studies in nondiabetic people suggest that MNT reduces LDL cholesterol by 15–25 mg/dl up to 16% (125) and support a role for lifestyle modification in treating hypertension (125,126).

Because of the effects of obesity on insulin resistance, weight loss is an important therapeutic objective for overweight or obese individuals with prediabetes or diabetes (127). Short-term studies have demonstrated that moderate weight loss (5% of body weight) in subjects with type 2 diabetes is associated with decreased insulin resistance, improved measures of glycemia and lipemia, and reduced blood pressure (128); longer-term studies (52 weeks) showed mixed effects on A1C in adults with type 2 diabetes (129–131), and in some studies results were confounded by pharmacologic weight loss therapy. A systematic review of 80 weight loss studies of ≥1 year in duration demonstrated that moderate weight loss achieved through diet alone, diet and exercise, and meal replacements can be achieved and maintained (+8–8% weight loss at 12 months) (132). The multifactorial intensive lifestyle intervention employed in the DPP, which included reduced intake of fat and calories, led to weight loss averaging 7% at 6 months and maintenance of 5% weight loss at 3 years, associated with a 58% reduction in incidence of type 2 diabetes (13). A recent randomized controlled trial looking at high-risk individuals in Spain showed the Mediterranean dietary pattern reduced the incidence of diabetes in the absence of weight loss by 52% compared to the low-fat control group (133). Look AHEAD (Action for Health in Diabetes) is a large clinical trial designed to determine whether long-term weight loss will improve glycemia and prevent cardiovascular events in subjects with type 2 diabetes. One-year results of the intensive lifestyle intervention in this trial show an average 8.6% weight loss, significant reduction of A1C, and reduction in several CVD risk factors (134), with benefits sustained at 4 years (135). When completed, the Look AHEAD study should provide insight into the effects of long-term weight loss on important clinical outcomes.

The optimal macronutrient distribution of weight loss diets has not been established. Although low-fat diets have traditionally been promoted for weight loss, several randomized controlled trials found that subjects on low-carbohydrate diets (<130 g/day of carbohydrate) lost more weight at 6 months than subjects on low-fat diets (136,137); however, at 1 year, the difference in weight loss between the low-carbohydrate and low-fat diets was not significant, and weight loss was modest with both diets. A study comparing low-fat to low-carbohydrate diets, both combined with a comprehensive lifestyle program, showed the same amount of weight loss (7%) at 2 years in both groups (138). Another study of overweight women randomized to one of four diets showed significantly more weight loss at 12 months with the Atkins low-carbohydrate diet than with higher-carbohydrate diets (139). Changes in serum triglyceride and HDL cholesterol were more favorable with the low-carbohydrate diets. In one study, those subjects with type 2 diabetes demonstrated a greater decrease in A1C with a low-carbohydrate diet than with a low-fat diet (137). A recent meta-analysis showed that at 6 months, low-carbohydrate diets were associated with greater improvements in triglyceride and HDL cholesterol concentrations than low-fat diets; however, LDL cholesterol was significantly higher on the low-carbohydrate diets (140). In a 2-year dietary intervention study, Mediterranean and low-carbohydrate diets were found to be effective and safe alternatives to a low-fat diet for weight reduction in moderately obese participants (141).

The RDA for digestible carbohydrate is 130 g/day and is based on providing adequate glucose as the required fuel for the central nervous system without reliance on glucose production from ingested protein or fat. Although brain fuel needs can be met on lower-carbohydrate diets, long term metabolic effects of very-low-carbohydrate diets are unclear, and such diets eliminate many foods that are im-
portant sources of energy, fiber, vitamins, and minerals and are important in dietary palatability (142).

Although numerous studies have attempted to identify the optimal mix of macronutrients for meal plans of people with diabetes, it is unlikely that one such combination of macronutrients exists. The best mix of carbohydrate, protein, and fat appears to vary depending on individual circumstances. It must be clearly recognized that regardless of the macronutrient mix, total caloric intake must be appropriate to weight management goal. Further, individualization of the macronutrient composition will depend on the metabolic status of the patient (e.g., lipid profile, renal function) and/or food preferences. Plant-based diets (vegan or vegetarian) that are well planned and nutritionally adequate have also been shown to improve metabolic control (143,144).

The primary goal with respect to dietary fat in individuals with diabetes is to limit saturated fatty acids, trans fatty acids, and cholesterol intake so as to reduce risk for CVD. Saturated and trans fatty acids are the principal dietary determinants of plasma LDL cholesterol. There is a lack of evidence on the effects of specific fatty acids on people with diabetes, so the recommended goals are consistent with those for individuals with CVD (125,145).

Reimbursement for MNT
MNT, when delivered by a registered diettitian according to nutrition practice guidelines, is reimbursed as part of the Medicare program as overseen by the Centers for Medicare and Medicaid Services (CMS) (www.cms.hhs.gov/medicalnutritiontherapy).

G. Physical activity

Recommendations
- People with diabetes should be advised to perform at least 150 min/week of moderate-intensity aerobic physical activity (50–70% of maximum heart rate). (A)
- In the absence of contraindications, people with type 2 diabetes should be encouraged to perform resistance training three times per week. (A)

Exercise is an important part of the diabetes management plan. Regular exercise has been shown to improve blood glucose control, reduce cardiovascular risk factors, contribute to weight loss, and improve well-being. Furthermore, regular exercise may prevent type 2 diabetes in high-risk individuals (13–15). Structured exercise interventions of at least 8 weeks' duration have been shown to lower A1C by an average of 0.66% in people with type 2 diabetes, even with no significant change in BMI (146). Higher levels of exercise intensity are associated with greater improvements in A1C and in fitness (147). A new joint position statement of the American Diabetes Association and the American College of Sports Medicine summarizes the evidence for the benefits of exercise in people with type 2 diabetes (148).

Frequency and type of exercise
The U.S. Department of Health and Human Services’ Physical Activity Guidelines for Americans (149) suggest that adults over age 18 years do 150 min/week of moderate-intensity, or 75 min/week of vigorous aerobic physical activity, or an equivalent combination of the two. In addition, the guidelines suggest that adults also do muscle-strengthening activities that involve all major muscle groups two or more days per week. The guidelines suggest that adults over age 65 years, or those with disabilities, follow the adult guidelines if possible or (if this is not possible) be as physically active as they are able. Studies included in the meta-analysis of effects of exercise interventions on glycemic control (146) had a mean number of sessions per week of 3.4, with a mean of 49 min/session. The DPP lifestyle intervention, which included 150 min/week of moderate intensity exercise, had a beneficial effect on glycemia in those with prediabetes. Therefore, it seems reasonable to recommend that people with diabetes try to follow the physical activity guidelines for the general population.

Progressive resistance exercise improves insulin sensitivity in older men with type 2 diabetes to the same or even a greater extent as aerobic exercise (150). Clinical trials have provided strong evidence for the A1C-lowering value of resistance training in older adults with type 2 diabetes (151,152) and for an additive benefit of combined aerobic and resistance exercise in adults with type 2 diabetes (153).

Evaluation of the diabetic patient before recommending an exercise program
Prior guidelines suggested that before recommending a program of physical activity, the provider should assess patients with multiple cardiovascular risk factors for coronary artery disease (CAD). As discussed more fully in VI.A.5. Coronary heart disease screening and treatment, the area of screening asymptomatic diabetic patients for CAD remains unclear, and a recent ADA consensus statement on this issue concluded that routine screening is not recommended (154). Providers should use clinical judgment in this area. Certainly, high risk patients should be encouraged to start with short periods of low intensity exercise and increase the intensity and duration slowly.

Providers should assess patients for conditions that might contraindicate certain types of exercise or predispose to injury, such as uncontrolled hypertension, severe autonomic neuropathy, severe peripheral neuropathy or history of foot lesions, and unstable proliferative retinopathy. The patient's age and previous physical activity level should be considered.

Exercise in the presence of nonoptimal glycemic control

Hypoglycemia. When people with type 1 diabetes are deprived of insulin for 12–48 h and are ketogenic, exercise can worsen hyperglycemia and ketosis (155); therefore, vigorous activity should be avoided in the presence of ketosis. However, it is not necessary to postpone exercise based simply on hyperglycemia, provided the patient feels well and urine and/or blood ketones are negative.

Hypoglycemia. In individuals taking insulin and/or insulin secretagogues, physical activity can cause hypoglycemia if medication dose or carbohydrate consumption is not altered. For individuals on these therapies, added carbohydrate should be ingested if pre-exercise glucose levels are <100 mg/dl (5.6 mmol/l). Hypoglycemia is rare in diabetic individuals who are not treated with insulin or insulin secretagogues, and no preventive measures for hypoglycemia are usually advised in these cases.

Exercise in the presence of specific long-term complications of diabetes

Retinopathy. In the presence of proliferative diabetic retinopathy (PDR) or severe nonproliferative diabetic retinopathy (NPDR), vigorous aerobic or resistance exercise may be contraindicated because of the risk of triggering vitreous hemorrhage or retinal detachment (156).

Peripheral neuropathy. Decreased pain sensation in the extremities results in in-
creased risk of skin breakdown and infection and of Charcot joint destruction. Prior recommendations have advised non-weight-bearing exercise for patients with severe peripheral neuropathy. However, studies have shown that moderate-intensity walking may not lead to increased risk of foot ulcers or ulceration in those with peripheral neuropathy (157). All individuals with peripheral neuropathy should wear proper footwear and examine their feet daily to detect lesions early. Anyone with a foot injury or open sore should be restricted to non-weight-bearing activities.

Autonomic neuropathy. Autonomic neuropathy can increase the risk of exercise-induced injury or adverse event through decreased cardiac responsiveness to exercise, postural hypotension, impaired thermoregulation, impaired night vision due to impaired papillary reaction, and unpredictable carbohydrate delivery from gastroparesis predisposing to hypoglycemia (158). Autonomic neuropathy is also strongly associated with CVD in people with diabetes (159,160). People with diabetic autonomic neuropathy should undergo cardiac investigation before beginning physical activity more intense than that to which they are accustomed.

Albuminuria and nephropathy. Physical activity can acutely increase urinary protein excretion. However, there is no evidence that vigorous exercise increases the rate of progression of diabetic kidney disease, and there is likely no need for any specific exercise restrictions for people with diabetic kidney disease (161).

H. Psychosocial assessment and care

Recommendations

- Assessment of psychological and social situation should be included as an ongoing part of the medical management of diabetes. (E)
- Psychosocial screening and follow-up should include, but is not limited to, attitudes about the illness, expectations for medical management and outcomes, affect/mood, general and diabetes-related quality of life, resources (financial, social, and emotional), and psychiatric history. (E)
- Screen for psychosocial problems such as depression and diabetes-related distress, anxiety, eating disorders, and cognitive impairment when self-management is poor. (C)

Psychological and social problems can impair the individual’s (162–165) or family’s ability to carry out diabetes care tasks and therefore compromise health status. There are opportunities for the clinician to assess psychosocial status in a timely and efficient manner so that referral for appropriate services can be accomplished.

Key opportunities for screening of psychosocial status occur at diagnosis, during regularly scheduled management visits, during hospitalizations, at discovery of complications, or when problems with glucose control, quality of life, or adherence are identified. Patients are likely to exhibit psychological vulnerability at diagnosis and when their medical status changes, e.g., the end of the honeymoon period, when the need for intensified treatment is evident, and when complications are discovered (164).

Issues known to impact self-management and health outcomes include but are not limited to: attitudes about the illness, expectations for medical management and outcomes, affect/mood, general and diabetes-related quality of life, diabetes-related distress (166), resources (financial, social, and emotional) (167), and psychiatric history (168–170). Screening tools are available for a number of these areas (105). Indications for referral to a mental health specialist familiar with diabetes management may include: gross noncompliance with medical regimen (by self or others) (170), depression with the possibility of self-harm, debilitating anxiety (alone or with depression), indications of an eating disorder (171), or cognitive functioning that significantly impairs judgment. It is preferable to incorporate psychological assessment and treatment into routine care rather than waiting for identification of a specific problem or deterioration in psychological status (105). Although the clinician may not feel qualified to treat psychological problems, utilizing the patient-provider relationship as a foundation for further treatment can increase the likelihood that the patient will accept referral for other services. It is important to establish that emotional well-being is part of diabetes management.

1. When treatment goals are not met

For a variety of reasons, some people with diabetes and their health care providers do not achieve the desired goals of treatment (Table 10). Re-thinking the treatment regimen may require assessment of barriers including income, health literacy, diabetes distress, depression, and competing demands, including those related to family responsibilities and dynamics. Other strategies may include culturally appropriate and enhanced DSME, co-management with a diabetes team, referral to a medical social worker for assistance with insurance coverage, or change in pharmacological therapy. Initiation of or increase in SMBG, utilization of CGM, frequent contact with the patient, or referral to a mental health professional or physician with special expertise in diabetes may be useful. Providing patients with an algorithm for self-titration of insulin doses based on SMBG results may be helpful for type 2 patients who take insulin (172).

J. Hypoglycemia

Recommendations

- Glucose (15–20 g) is the preferred treatment for the conscious individual with hypoglycemia, although any form of carbohydrate that contains glucose may be used. If SMBG 15 min after treatment shows continued hypoglycemia, the treatment should be repeated. Once SMBG glucose returns to normal, the individual should consume a meal or snack to prevent recurrence of hypoglycemia. (E)
- Glucagon should be prescribed for all individuals at significant risk of severe hypoglycemia, and caregivers or family members of these individuals should be instructed in its administration. Glucagon administration is not limited to health care professionals. (E)
- Individuals with hypoglycemia unawareness or one or more episodes of severe hypoglycemia should be advised to raise their glycemic targets to strictly avoid further hypoglycemia for at least several weeks, to partially reverse hypoglycemia unawareness and reduce risk of future episodes. (B)

Hypoglycemia is the leading limiting factor in the glycemic management of type 1 and insulin-treated type 2 diabetes (173). Mild hypoglycemia may be inconvenient or frightening to patients with diabetes, and more severe hypoglycemia can cause acute harm to the person with diabetes or others, if it causes falls, motor vehicle accidents, or other injury. A large cohort study suggested that among older adults with type 2 diabetes, a history of severe hypoglycemia was associated with greater
risk of dementia (174). Conversely, evidence from the DCCT/EDIC trial, which involved younger type 1 patients, suggested no association of frequency of severe hypoglycemia with cognitive decline (175). Treatment of hypoglycemia (plasma glucose <70 mg/dl) requires ingestion of glucose- or carbohydrate-containing foods. The acute glycemic response correlates better with the glucose content than with the carbohydrate content of the food. Although pure glucose is the preferred treatment, any form of carbohydrate that contains glucose will raise blood glucose. Added fat may retard and then prolong the acute glycemic response. Ongoing activity of insulin or insulin secretagogues may lead to recurrence of hypoglycemia unless further food is ingested after recovery.

Severe hypoglycemia (where the individual requires the assistance of another person and cannot be treated with oral carbohydrate due to confusion or unconsciousness) should be treated using emergency glucagon kits, which require a prescription. Those in close contact with, or having custodial care of, people with hypoglycemia-prone diabetes (family members, roommates, school personnel, child care providers, correctional institution staff, or coworkers), should be instructed in use of such kits. An individual does not need to be a health care professional to safely administer glucagon. Care should be taken to ensure that unexpired glucagon kits are available.

Prevention of hypoglycemia is a critical component of diabetes management. Teaching people with diabetes to balance insulin use, carbohydrate intake, and exercise is a necessary but not always sufficient strategy. In type 1 diabetes and severely insulin-deficient type 2 diabetes, the syndrome of hypoglycemia unawareness, or hypoglycemia-associated autonomic failure, can severely compromise stringent diabetes control and quality of life. The deficient counterregulatory hormone release and autonomic responses in this syndrome are both risk factors for, and caused by, hypoglycemia. A corollary to this “vicious cycle” is that several weeks of avoidance of hypoglycemia has been demonstrated to improve counterregulation and awareness to some extent in many patients (176). Hence, patients with one or more episodes of severe hypoglycemia may benefit from at least short-term relaxation of glycemic targets.

K. Intercurrent illness

The stress of illness, trauma, and/or surgery frequently aggravates glycemic control and may precipitate diabetic ketoacidosis (DKA) or nonketotic hyperosmolar state, life-threatening conditions that require immediate medical care to prevent complications and death. Any condition leading to deterioration in glycemic control necessitates more frequent monitoring of blood glucose and (in ketosis-prone patients) urine or blood ketones. Marked hyperglycemia requires temporary adjustment of the treatment program and, if accompanied by ketosis, vomiting, or alteration in level of consciousness, immediate interaction with the diabetes care team. The patient treated with noninsulin therapies or MNT alone may temporarily require insulin. Adequate fluid and caloric intake must be assured. Infection or dehydration are more likely to necessitate hospitalization of the person with diabetes than the person without diabetes.

The hospitalized patient should be treated by a physician with expertise in the management of diabetes. For further information on management of patients with hyperglycemia in the hospital, see VIII.A. Diabetes care in the hospital. For further information on management of DKA or nonketotic hyperosmolar state, refer to the ADA consensus statement on hyperglycemic crises (172).

L. Bariatric surgery

Recommendations

- **Bariatric surgery may be considered for adults with BMI >35 kg/m² and type 2 diabetes, especially if the diabetes or associated comorbidities are difficult to control with lifestyle and pharmacologic therapy.** (B)
- **Patients with type 2 diabetes who have undergone bariatric surgery need lifelong lifestyle support and medical monitoring.** (E)
- **Although small trials have shown glycemic benefit of bariatric surgery in patients with type 2 diabetes and BMI of 30–35 kg/m², there is currently insufficient evidence to generally recommend surgery in patients with BMI <35 kg/m² outside of a research protocol.** (E)
- **The long-term benefits, cost-effectiveness, and risks of bariatric surgery in individuals with type 2 diabetes should be studied in well-designed controlled trials with optimal medical and lifestyle therapy as the comparator.** (E)

Gastric reduction surgery, either gastric banding or procedures that involve bypassing, transposing, or resecting sections of the small intestine, when part of a comprehensive team approach, can be an effective weight loss treatment for severe obesity, and national guidelines support its consideration for people with type 2 diabetes who have BMI exceeding 35 kg/m². Bariatric surgery has been shown to lead to near- or complete normalization of glycemia in ~55–95% of patients with type 2 diabetes, depending on the surgical procedure. A meta-analysis of studies of bariatric surgery involving 3,188 patients with diabetes reported that 78% had remission of diabetes (normalization of blood glucose levels in the absence of medications), and that the remission rates were sustained in studies that had follow-up exceeding 2 years (177). Remission rates tend to be lower with procedures that only constrict the stomach, and higher with those that bypass portions of the small intestine. Additionally, there is a suggestion that intestinal bypass procedures may have glycemic effects that are independent of their effects on weight, perhaps involving the incretin axis.

One randomized controlled trial compared adjustable gastric banding to “best available” medical and lifestyle therapy in subjects with type 2 diabetes diagnosed less than 2 years before randomization and BMI 30–40 kg/m² (178). In this trial, 73% of surgically treated patients achieved “remission” of their diabetes, compared with 13% of those treated medically. The latter group lost only 1.7% of body weight, suggesting that their therapy was not optimal. Overall the trial had 60 subjects, and only 13 had a BMI under 35 kg/m², making it difficult to generalize these results widely to diabetic patients who are less severely obese or with longer duration of diabetes. In a more recent study involving 110 patients with type 2 diabetes and a mean BMI of 47 kg/m², Roux-en-Y gastric bypass resulted in a mean loss of excess weight of 63% at 1 year and 84% at 2 years (179).

Bariatric surgery is costly in the short term and has some risks. Rates of morbidity and mortality directly related to the surgery have been reduced considerably in recent years, with 30-day mortality rates now 0.28%, similar to those of lapa-
Safe and effective vaccines are available that can greatly reduce the risk of serious complications from these diseases (186,187). In a case-control series, influenza vaccine was shown to reduce diabetes-related hospital admission by as much as 79% during flu epidemics (186). There is sufficient evidence to support that people with diabetes have appropriate serologic and clinical responses to these vaccinations. The Centers for Disease Control and Prevention (CDC) Advisory Committee on Immunization Practices recommends influenza and pneumococcal vaccines for all individuals with diabetes (http://www.cdc.gov/vaccines/recs/).

VI. PREVENTION AND MANAGEMENT OF DIABETES COMPLICATIONS

A. CVD
CVD is the major cause of morbidity and mortality for individuals with diabetes, and the largest contributor to the direct and indirect costs of diabetes. The common conditions coexisting with type 2 diabetes (e.g., hypertension and dyslipidemia) are clear risk factors for CVD, and diabetes itself confers independent risk. Numerous studies have shown the efficacy of controlling individual cardiovascular risk factors in preventing or slowing CVD in people with diabetes. Large benefits are seen when multiple risk factors are addressed globally (188,189). Risk for coronary heart disease (CHD) and for CVD in general can be estimated using multivariable risk factor approaches, and such a strategy may be desirable to undertake in adult patients prior to instituting preventive therapy.

1. Hypertension/blood pressure control

Recommendations

Screening and diagnosis
• Blood pressure should be measured at every routine diabetes visit. Patients found to have systolic blood pressure ≥130 mmHg or diastolic blood pressure ≥80 mmHg should have blood pressure confirmed on a separate day. Repeat systolic blood pressure ≥130 mmHg or diastolic blood pressure ≥80 mmHg confirms a diagnosis of hypertension. (C)

Goals
• A goal systolic blood pressure <130 mmHg is appropriate for most patients with diabetes. (C)
• Based on patient characteristics and response to therapy, higher or lower systolic blood pressure targets may be appropriate. (B)
• Patients with diabetes should be treated to a diastolic blood pressure <80 mmHg. (B)

Treatment
• Patients with a systolic blood pressure of 130–139 mmHg or a diastolic blood pressure of 80–89 mmHg may be given lifestyle therapy alone for a maximum of 3 months and then, if targets are not achieved, be treated with addition of pharmacological agents. (E)
• Patients with more severe hypertension (systolic blood pressure ≥140 or diastolic blood pressure ≥90 mmHg) at diagnosis or follow-up should receive pharmacologic therapy in addition to lifestyle therapy. (A)
• Lifestyle therapy for hypertension consists of: weight loss, if overweight; Dietary Approaches to Stop Hypertension (DASH)-style dietary pattern including reducing sodium and increasing potassium intake; moderation of alcohol intake; and increased physical activity. (B)
• Pharmacologic therapy for patients with diabetes and hypertension should be with a regimen that includes either an ACE inhibitor or an ARB. If one class is not tolerated, the other should be substituted. If needed to achieve blood pressure targets, a thiazide diuretic should be added to those with an estimated GFR (eGFR) (see below) ≥30 ml/min/1.73 m² and a loop diuretic for those with an eGFR <30 ml/min/1.73 m². (C)
• Multiple drug therapy (two or more agents at maximal doses) is generally required to achieve blood pressure targets. (B)
• If ACE inhibitors, ARBs, or diuretics are used, kidney function and serum potassium levels should be monitored. (E)
• In pregnant patients with diabetes and chronic hypertension, blood pressure target goals of 110–129/65–79 mmHg are suggested in the interest of long-term maternal health and minimizing impaired fetal growth. ACE inhibitors and ARBs are contraindicated during pregnancy. (E)
Hypertension is a common comorbidity of diabetes, affecting the majority of patients, with prevalence depending on type of diabetes, age, obesity, and ethnicity. Hypertension is a major risk factor for both CVD and microvascular complications. In type 1 diabetes, hypertension is often the result of underlying nephropathy, while in type 2 diabetes it usually coexists with other cardiometabolic risk factors.

Screening and diagnosis

Measurement of blood pressure in the office should be done by a trained individual and should follow the guidelines established for nondiabetic individuals: measurement in the seated position, with feet on the floor and arm supported at heart level, after 5 min of rest. Cuff size should be appropriate for the upper arm circumference. Elevated values should be confirmed on a separate day. Because of the clear synergistic risks of hypertension and diabetes, the diagnostic cut-off for a diagnosis of hypertension is lower in people with diabetes (blood pressure ≥130/80) than those without diabetes (blood pressure 140/90 mmHg) (190).

Home blood pressure self-monitoring and 24-h ambulatory blood pressure monitoring may provide additional evidence of “white coat” and masked hypertension and other discrepancies between office and ‘true’ blood pressure, and in studies in nondiabetic populations, home measurements may better correlate with CVD risk than office measurements (191,192). However, the preponderance of the clear evidence of benefits of treatment of hypertension in people with diabetes is based on office measurements.

Treatment goals

Epidemiologic analyses show that blood pressure values >115/75 mmHg are associated with increased cardiovascular event rates and mortality in individuals with diabetes (190,193,194). Randomized clinical trials have demonstrated the benefit (reduction in CHD events, stroke, and nephropathy) of lowering blood pressure to <140 mmHg systolic and <80 mmHg diastolic in individuals with diabetes (190,195–197). The ACCORD trial examined whether lowering blood pressure to a systolic <120 mmHg provides greater cardiovascular protection than a systolic blood pressure level of 130–140 mmHg in patients with type 2 diabetes at high risk for CVD (198). The blood pressure achieved was 119/64 mmHg in the intensive group and 133/70 mmHg in the standard group; the difference achieved was attained with an average of 3.4 medications per participant in the intensive group and 2.1 in the standard therapy group. The primary outcome was a composite of nonfatal MI, nonfatal stroke, and CVD death; the hazard ratio for the primary end point in the intensive group was 0.88 (95% CI 0.73–1.06; P = 0.20). Of the prespecified secondary end points, only stroke and nonfatal stroke were statistically significantly reduced by intensive blood pressure treatment, with a hazard ratio of 0.59 (95% CI 0.39–0.89, P = 0.01) and 0.63 (95% CI 0.41–0.96, P = 0.03), respectively. If this finding is real, the number needed to treat to prevent one stroke over the course of 5 years with intensive blood pressure management is 89.

In predefined subgroup analyses, there was a suggestion of heterogeneity (P = 0.08) based on whether participants were randomized to standard or intensive glycemia intervention. In those randomized to standard glycemic control, the event rate for the primary end point was 1.89 per year in the intensive blood pressure arm and 2.47 in the standard blood pressure arm, while the respective rates in the intensive glycemia arm were 1.85 and 1.73. If this observation is true, it suggests that intensive management to a systolic blood pressure target of <120 mmHg may be of benefit in those who are not targeting an AIC of <6% and/or that the benefit of intensive blood pressure management is diminished by more intensive glycemia management targeting an AIC of <6%.

Other recent randomized trial data include those from ADVANCE, in which treatment with an angiotensin-converting enzyme inhibitor and a thiazide-type diuretic reduced the rate of death but not the composite macrovascular outcome. However, the ADVANCE trial had no specified targets for the randomized comparison, and the mean systolic blood pressure in the intensive group (135 mmHg) was not as low as the mean systolic blood pressure in the ACCORD standard therapy group (199). A post hoc analysis of blood pressure control in 6,400 patients with diabetes and CAD enrolled in the International Verapamil-Trandolapril (INVEST) trial demonstrated that “tight control” (<130 mmHg) was not associated with improved CV outcomes compared with “usual care” (130–140 mmHg) (200).

Only the ACCORD blood pressure trial formally has examined treatment targets <130 mmHg in diabetes. It is possible that lowering systolic blood pressure from the low-130s to less than 120 mmHg does not further reduce coronary events or death, and that most of the benefit from lowering blood pressure is achieved by targeting a goal of <140 mmHg. However, this has not been formally assessed.

The absence of significant harm, the trends toward benefit in stroke, and the potential heterogeneity with respect to intensive glycemia management suggests that previously recommended targets are reasonable pending further analyses and results. Systolic blood pressure targets more or less stringent than <130 mmHg may be appropriate for individual patients, based on response to therapy, medication tolerance, and individual characteristics, keeping in mind that most analyses have suggested that outcomes are worse if the systolic blood pressure is >140 mmHg.

Treatment strategies

Although there are no well-controlled studies of diet and exercise in the treatment of hypertension in individuals with diabetes, the Dietary Approaches to Stop Hypertension (DASH) study in nondiabetic individuals has shown antihypertensive effects similar to pharmacologic monotherapy. Lifestyle therapy consists of reducing sodium intake (to <1,500 mg/day) and excess body weight; increasing consumption of fruits, vegetables (8–10 servings/day), and low-fat dairy products (2–3 servings/day); avoiding excessive alcohol consumption (no more than 2 servings/day in men and no more than 1 serving/day in women) (201); and increasing activity levels (190). These nonpharmacological strategies may also positively affect glycemia and lipid control. Their effects on cardiovascular events have not been established. An initial trial of nonpharmacologic therapy may be reasonable in diabetic individuals with mild hypertension (systolic blood pressure 130–139 mmHg or diastolic blood pressure 80–89 mmHg). If systolic blood pressure is ≥140 mmHg and/or diastolic is ≥90 mmHg at the time of diagnosis, pharmacologic therapy should be initiated along with nonpharmacologic therapy (190).

Lowering of blood pressure with regimens based on a variety of antihypertensive drugs, including ACE inhibitors, ARBs, β-blockers, diuretics, and calcium
channel blockers, has been shown to be effective in reducing cardiovascular events. Several studies suggested that ACE inhibitors may be superior to dihydropyridine calcium channel blockers in reducing cardiovascular events (202–204). However, a variety of other studies have shown no specific advantage to ACE inhibitors as initial treatment of hypertension in the general hypertensive population, but rather an advantage on cardiovascular outcomes of initial therapy with low-dose thiazide diuretics (190,205,206).

In people with diabetes, inhibitors of the renin-angiotensin system (RAS) may have unique advantages for initial or early therapy of hypertension. In a nonhypertension trial of high-risk individuals, including a large subset with diabetes, an ACE inhibitor reduced CVD outcomes (207). In patients with congestive heart failure (CHF), including diabetic subgroups, ARBs have been shown to reduce major CVD outcomes (208–211), and in type 2 patients with significant nephropathy, ARBs were superior to calcium channel blockers for reducing heart failure (212). Though evidence for distinct advantages of RAS inhibitors on CVD outcomes in diabetes remains conflicting (195,206), the high CVD risks associated with diabetes, and the high prevalence of undiagnosed CVD, may still favor recommendations for their use as first-line hypertension therapy in people with diabetes (190). Recently, the blood pressure arm of the ADVANCE trial demonstrated that routine administration of a fixed combination of the ACE inhibitor perindopril and the diuretic indapamide significantly reduced combined microvascular and macrovascular outcomes, as well as CVD and total mortality. The improved outcomes could also have been due to lower achieved blood pressure in the perindopril-indapamide arm (199). In addition, the Avoiding Cardiovascular Events through Combination Therapy in Patients Living with Systolic Hypertension (ACCOMPLISH) trial showed a decrease in morbidity and mortality in those receiving benazapril and amlodipine versus benazapril and hydrochlorothiazide. The compelling benefits of RAS inhibitors in diabetic patients with albuminuria or renal insufficiency provide additional rationale for use of these agents (see VI.B. Nephropathy screening and treatment).

An important caveat is that most patients with hypertension require multidrug therapy to reach treatment goals, especially diabetic patients whose targets are lower. Many patients will require three or more drugs to reach target goals (190). If blood pressure is refractory to optimal doses of at least three antihypertensive agents of different classifications, one of which should be a diuretic, clinicians should consider an evaluation for secondary forms of hypertension.

During pregnancy in diabetic women with chronic hypertension, target blood pressure goals of systolic blood pressure 110–129 mmHg and diastolic blood pressure 65–79 mmHg are reasonable, as they contribute to long-term maternal health. Lower blood pressure levels may be associated with impaired fetal growth. During pregnancy, treatment with ACE inhibitors and ARBs is contraindicated, since they can cause fetal damage. Antihypertensive drugs known to be effective and safe in pregnancy include methyldopa, labetalol, diltiazem, clonidine, and prazosin. Chronic diuretic use during pregnancy has been associated with restricted maternal plasma volume, which might reduce uteroplacental perfusion (213).

2. Dyslipidemia/lipid management

Recommendations

Screening

- In most adult patients, measure fasting lipid profile at least annually. In adults with low-risk lipid values (LDL cholesterol <100 mg/dl, HDL cholesterol >50 mg/dl, and triglycerides <150 mg/dl), lipid assessments may be repeated every 2 years. (E)

Treatment recommendations and goals

- Lifestyle modification focusing on the reduction of saturated fat, trans fat, and cholesterol intake; increase of omega-3 fatty acids, viscous fiber, and plant stanols/stereols; weight loss (if indicated); and increased physical activity should be recommended to improve the lipid profile in patients with diabetes. (A)

- Statin therapy should be added to lifestyle therapy, regardless of baseline lipid levels, for diabetic patients:
 - with overt CVD. (A)
 - without CVD who are over age 40 years and have one or more other CVD risk factors. (A)
 - For patients at lower risk than above (e.g., without overt CVD and under age 40 years), statin therapy should be considered in addition to lifestyle therapy if LDL cholesterol remains above 100 mg/dl or in those with multiple CVD risk factors. (E)

- In individuals without overt CVD, the primary goal is an LDL cholesterol <100 mg/dl (2.6 mmol/l). (A)

- In individuals with overt CVD, a lower LDL cholesterol goal of <70 mg/dl (1.8 mmol/l), using a high dose of a statin, is an option. (B)

- If drug-treated patients do not reach the above targets on maximal tolerated statin therapy, a reduction in LDL cholesterol of ~30–40% from baseline is an alternative therapeutic goal. (A)

- Triglyceride levels <150 mg/dl (1.7 mmol/l) and HDL cholesterol >40 mg/dl (1.0 mmol/l) in men and >50 mg/dl (1.3 mmol/l) in women, are desirable. However, LDL cholesterol–targeted statin therapy remains the preferred strategy. (C)

- If targets are not reached on maximally tolerated doses of statins, combination therapy using statins and other lipid-lowering agents may be considered to achieve lipid targets but has not been evaluated in outcome studies for either CVD outcomes or safety. (E)

- Statin therapy is contraindicated in pregnancy. (E)

Evidence for benefits of lipid-lowering therapy

Patients with type 2 diabetes have an increased prevalence of lipid abnormalities, contributing to their high risk of CVD. For the past decade or more, multiple clinical trials demonstrated significant effects of pharmacologic (primarily statin) therapy on CVD outcomes in subjects with CHD and for primary CVD prevention (214). Sub-analyses of diabetic subgroups of larger trials (215–219) and trials specifically in subjects with diabetes (220,221) showed significant primary and secondary prevention of CVD events ± CHD deaths in diabetic populations. As shown in Table 11, and similar to findings in nondiabetic subjects, reduction in “hard” CVD outcomes (CHD death and nonfatal MI) can be more clearly seen in diabetic subjects with high baseline CVD risk (known CVD and/or very high LDL cholesterol levels), but overall the benefits of statin therapy in people with diabetes at moderate or high risk for CVD are convincing.

Low levels of HDL cholesterol, often associated with elevated triglyceride lev-
and should focus on the reduction of saturated fat, cholesterol, and trans unsaturated fat intake and increases in omega-3 fatty acids, viscous fiber (such as in oats, legumes, citrus), and plant sterols/stanols/stanoles. Glycemic control can also modify plasma lipid levels, particularly in patients with very high triglycerides and poor glycemic control.

In those with clinical CVD or over age 40 years with other CVD risk factors, pharmacological treatment should be added to lifestyle therapy regardless of baseline lipid levels. Statins are the drugs of choice for LDL cholesterol lowering.

In patients other than those described above, statin treatment should be considered if there is an inadequate LDL cholesterol response to lifestyle modifications and improved glucose control, or if the patient has increased cardiovascular risk (e.g., multiple cardiovascular risk factors or long duration of diabetes). Very little clinical trial evidence exists for type 2 diabetic patients under age 40 years or for type 1 patients of any age. In the Heart Protection Study (lower age limit 40 years), the subgroup of 600 patients with type 1 diabetes had a proportionately similar reduction in risk as patients with type 2 diabetes, although not statistically significant (216). Although the data are not definitive, consideration should be given to similar lipid-lowering goals in type 1 diabetic patients as in type 2 diabetic patients, particularly if they have other cardiovascular risk factors.

Dyslipidemia treatment and target lipid levels

For most patients with diabetes, the first priority of dyslipidemia therapy (unless severe hypertriglyceridemia is the immediate issue) is to lower LDL cholesterol to a target goal of <100 mg/dl (2.60 mmol/l) (227). Lifestyle intervention, including MNT, increased physical activity, weight loss, and smoking cessation, may allow some patients to reach lipid goals. Nutritional intervention should be tailored according to each patient’s age, type of diabetes, pharmacological treatment, lipid levels, and other medical conditions and should focus on the reduction of saturated fat, cholesterol, and trans unsaturated fat intake and increases in omega-3 fatty acids, viscous fiber (such as in oats, legumes, citrus), and plant sterols/stanols/stanoles. Glycemic control can also modify plasma lipid levels, particularly in patients with very high triglycerides and poor glycemic control.

In those with clinical CVD or over age 40 years with other CVD risk factors, pharmacological treatment should be added to lifestyle therapy regardless of baseline lipid levels. Statins are the drugs of choice for LDL cholesterol lowering.

In patients other than those described above, statin treatment should be considered if there is an inadequate LDL cholesterol response to lifestyle modifications and improved glucose control, or if the patient has increased cardiovascular risk (e.g., multiple cardiovascular risk factors or long duration of diabetes). Very little clinical trial evidence exists for type 2 diabetic patients under age 40 years or for type 1 patients of any age. In the Heart Protection Study (lower age limit 40 years), the subgroup of 600 patients with type 1 diabetes had a proportionately similar reduction in risk as patients with type 2 diabetes, although not statistically significant (216). Although the data are not definitive, consideration should be given to similar lipid-lowering goals in type 1 diabetic patients as in type 2 diabetic patients, particularly if they have other cardiovascular risk factors.

Alternative LDL cholesterol goals

Virtually all trials of statins and CVD outcomes tested specific doses of statins against placebo, other doses of statin, or other statins, rather than aiming for specific LDL cholesterol goals (228). As can be seen in Table 11, placebo-controlled trials generally achieved LDL cholesterol reductions of 30–40% from baseline. Hence, LDL cholesterol lowering of this magnitude is an acceptable outcome for patients who cannot reach LDL cholesterol goals due to severe baseline elevations in LDL cholesterol and/or intolerance of maximal, or any, statin doses. Additionally for those with baseline LDL cholesterol minimally above 100 mg/dl, prescribing statin therapy to lower LDL cholesterol about 30–40% from baseline is probably more effective than prescribing just enough to get LDL cholesterol slightly below 100 mg/dl.

Recent clinical trials in high-risk patients, such as those with acute coronary syndromes or previous cardiovascular events (229–231), have demonstrated that more aggressive therapy with high doses of statins to achieve an LDL cholesterol of <70 mg/dl led to a significant re-

Table 11—Reduction in 10-year risk of major CVD endpoints (CHD death/non-fatal MI) in major statin trials, or substudies of major trials, in diabetic subjects (n = 16,032)

Study (ref.)	CVD	Statin dose and comparator	Risk reduction (%)	Relative risk reduction (%)	Absolute risk reduction (%)	LDL cholesterol reduction (mg/dl)	LDL cholesterol reduction (%)
4S-DM (215)	2°	simvastatin 20–40 mg vs. placebo	85.7 to 43.2	50	42.5	186 to 119	36
ASPEN 2° (220)	2°	atorvastatin 10 mg vs. placebo	39.5 to 24.5	34	15	112 to 79	29
HPS-DM (216)	2°	simvastatin 40 mg vs. placebo	43.8 to 36.3	17	7.5	123 to 84	31
CARE-DM (217)	2°	pravastatin 40 mg vs. placebo	40.8 to 35.4	13	5.4	136 to 99	27
TNT-DM (218)	2°	atorvastatin 80 mg vs. 10 mg	26.3 to 21.6	18	4.7	99 to 77	22
HPS-DM (216)	1°	simvastatin 40 mg vs. placebo	17.5 to 11.5	34	6.0	124 to 86	31
CARDS (221)	1°	atorvastatin 10 mg vs. placebo	11.5 to 7.5	33	4	118 to 71	40
ASPEN 1° (220)	1°	atorvastatin 10 mg vs. placebo	9.8 to 7.9	19	1.9	114 to 80	30
ASCOT-DM (219)	1°	atorvastatin 10 mg vs. placebo	11.1 to 10.2	8	0.9	125 to 82	34

Studies were of differing lengths (3.3–5.4 years) and used somewhat different outcomes, but all reported rates of CVD death and nonfatal MI. In this tabulation, results of the statin on 10-year risk of major CVD endpoints (CHD death/nonfatal MI) are listed for comparison between studies. Correlation between 10-year CVD risk of the control group and the absolute risk reduction with statin therapy is highly significant (P = 0.0007). Analyses provided by Craig Williams, PharmD, Oregon Health & Science University, 2007.
duction in further events. Therefore, a reduction in LDL cholesterol to a goal of <70 mg/dl is an option in very-high-risk diabetic patients with overt CVD (232).

In individual patients, LDL cholesterol lowering with statins is highly variable, and this variable response is poorly understood (233). Reduction of CVD events with statins correlates very closely with LDL cholesterol lowering (214). When maximally tolerated doses of statins fail to significantly lower LDL cholesterol (<30% reduction from patients baseline), the primary aim of combination therapy should be to achieve additional LDL cholesterol lowering. Niacin, fenofibrate, ezetimibe, and bile acid sequestrants all offer additional LDL cholesterol lowering. The evidence that combination therapy provides a significant increment in CVD risk reduction over statin therapy alone is still elusive.

In 2008, a consensus panel convened by the American Diabetes Association and the American College of Cardiology recommended a greater focus on non-HDL cholesterol and apo lipoprotein B (apo B) in patients who are likely to have small LDL particles, such as people with diabetes (234). The consensus panel suggested that for statin-treated patients in whom the LDL cholesterol goal would be <70 mg/dl (non-HDL cholesterol <100 mg/dl), apo B should be measured and treated to <80 mg/dl. For patients on statins with an LDL cholesterol goal of <100 mg/dl (non-HDL cholesterol <130 mg/dl), apo B should be measured and treated to <90 mg/dl.

Treatment of other lipoprotein fractions or targets
Severe hypertriglyceridemia may warrant immediate therapy of this abnormality with lifestyle and usually pharmacologic therapy (fibric acid derivative, niacin, or fish oil) to reduce the risk of acute pancreatitis. In the absence of severe hypertriglyceridemia, therapy targeting HDL cholesterol or triglycerides has intuitive appeal but lacks the evidence base of statin therapy. If the HDL cholesterol is <40 mg/dl and the LDL cholesterol between 100 and 129 mg/dl, gemfibrozil or niacin might be used, especially if a patient is intolerant to statins. Niacin is the most effective drug for raising HDL cholesterol. It can significantly increase blood glucose at high doses, but recent studies demonstrate that at modest doses (750–2,000 mg/day), significant improvements in LDL cholesterol, HDL cholesterol, and triglyceride levels are accompanied by only modest changes in glucose that are generally amenable to adjustment of diabetes therapy (235,236).

Combination therapy
Combination therapy, with a statin and a fibrate or statin and niacin, may be efficacious for combination therapy for all three lipid fractions, but this combination is associated with an increased risk for abnormal transaminase levels, myositis, or rhabdomyolysis. The risk of rhabdomyolysis is higher with higher doses of statins and with renal insufficiency and seems to be lower when statins are combined with fenofibrate than gemfibrozil (237). In the recent ACCORD study, the combination of fenofibrate and simvastatin did not reduce the rate of fatal cardiovascular events, nonfatal myocardial infarction, or nonfatal stroke, as compared with simvastatin alone, in patients with type 2 diabetes who were at high risk for CVD. However, prespecified subgroup analyses suggested heterogeneity in treatment effects according to sex, with a benefit for men and possible harm for women, and a possible benefit of combination therapy for patients with both triglyceride level ≥204 mg/dl and HDL cholesterol level ≤34 mg/dl (238). Other ongoing trials may provide much-needed evidence for the effects of combination therapy on cardiovascular outcomes.

Table 12 summarizes common treatment goals for A1C, blood pressure, and HDL cholesterol.

Position Statement
Table 12—Summary of recommendations for glycemic blood pressure and lipid control for most adults with diabetes
A1C
Blood pressure
Lipids

*More or less stringent glycemic goals may be appropriate for individual patients. Goals should be individualized based on: duration of diabetes, age, life expectancy, comorbid conditions, known CVD or advanced microvascular complications, hypoglycemia unawareness, and individual patient considerations. †Based on patient characteristics and response to therapy, higher or lower systolic blood pressure targets may be appropriate. ‡In individuals with overt CVD, a lower LDL cholesterol goal of <70 mg/dl (1.8 mmol/l), using a high dose of a statin, is an option.

Multiple other risk factors (e.g., 10-year risk 5–10%), clinical judgment is required. (E)

- Use aspirin therapy (75–162 mg/day) as a secondary prevention strategy in those with diabetes with a history of CVD. (A)
- For patients with CVD and documented aspirin allergy, clopidogrel (75 mg/day) should be used. (B)
- Combination therapy with ASA (75–162 mg/day) and clopidogrel (75 mg/day) is reasonable for up to a year after an acute coronary syndrome. (B)

ADA and the American Heart Association (AHA) have, in the past, jointly recommended that low-dose aspirin therapy be used as a primary prevention strategy in those with diabetes at increased cardiovascular risk, including those who are over 40 years of age or those with additional risk factors (family history of CVD, hypertension, smoking, dyslipidemia, or albuminuria) (188). These recommendations were derived from several older trials that included small numbers of patients with diabetes.

Aspirin has been shown to be effective in reducing cardiovascular morbidity and mortality in high-risk patients with previous myocardial infarction or stroke (secondary prevention). Its net benefit in primary prevention among patients with no previous cardiovascular events is more controversial, both for patients with and without a history of diabetes (239). Two recent randomized controlled trials of aspirin specifically in patients with diabetes failed to show a significant reduction in CVD end points, raising further questions about the efficacy of aspirin for primary prevention.
prevention in people with diabetes (240, 241).

The Anti-thrombotic Trialists’ (ATT) collaborators recently published an individual patient-level meta-analysis of the six large trials of aspirin for primary prevention in the general population. These trials collectively enrolled over 95,000 participants, including almost 4,000 with diabetes. Overall, they found that aspirin reduced the risk of vascular events by 12% (RR 0.88 [95% CI 0.82–0.94]). The largest reduction was for nonfatal myocardial infarction with little effect on CHD death (RR 0.95 [95% CI 0.78–1.15]) or total stroke. There was some evidence of a difference in aspirin effect by sex. Aspirin significantly reduced CHD events in men but not in women. Conversely, aspirin had no effect on stroke in men but significantly reduced stroke in women. Notably, sex differences in aspirin’s effects have not been observed in studies of secondary prevention (239). In the six trials examined by the ATT collaborators, the effects of aspirin on major vascular events were similar for patients with or without diabetes: RR 0.88 (95% CI 0.67–1.15) and 0.87 (0.79–0.96), respectively. The CI was wider for those with diabetes because of their smaller number.

Based on the currently available evidence, aspirin appears to have a modest effect on ischemic vascular events with the absolute decrease in events depending on the underlying CVD risk. The main adverse effects appear to be an increased risk of gastrointestinal bleeding. The excess risk may be as high as 1–5 per 1,000 per year in real-world settings. In adults with CVD risk greater than 1% per year, the number of CVD events prevented will be similar to or greater than the number of episodes of bleeding induced, although these complications do not have equal effects on long-term health (242).

In 2010, a position statement of the ADA, AHA, and American College of Cardiology Foundation (ACCF) updated prior joint recommendations for primary prevention (243). Low dose (75–162 mg/day) aspirin use for primary prevention is reasonable for adults with diabetes and no previous history of vascular disease who are at increased CVD risk (10-year risk of CVD events over 10%) and who are not at increased risk for bleeding. This generally includes most men over age 50 years and women over age 60 years who also have one or more of the following major risk factors: smoking, hypertension, dyslipidemia, family history of premature CVD, and albuminuria.

However, aspirin is no longer recommended for those at low CVD risk (women under age 60 years and men under age 50 years with no major CVD risk factors; 10-year CVD risk under 5%) as the low benefit is likely to be outweighed by the risks of significant bleeding. Clinical judgment should be used for those at intermediate risk (younger patients with one or more risk factors, or older patients with no risk factors; those with 10-year CVD risk of 5–10%) until further research is available. Use of aspirin in patients under the age of 21 years is contraindicated due to the associated risk of Reye’s syndrome.

Average daily dosages used in most clinical trials involving patients with diabetes ranged from 50 to 650 mg but were mostly in the range of 100 to 325 mg/day. There is little evidence to support any specific dose, but using the lowest possible dosage may help reduce side effects (244). Although platelets from patients with diabetes have altered function, it is unclear what, if any, impact that finding has on the required dose of aspirin for cardioprotective effects in the patient with diabetes. Many alternate pathways for platelet activation exist that are independent of thromboxane A2 and thus not sensitive to the effects of aspirin (245). Therefore, while “aspirin resistance” appears higher in the diabetic patients when measured by a variety of ex vivo and in vitro methods (platelet aggregometry, measurement of thromboxane B2), these observations alone are insufficient to empirically recommend higher doses of aspirin be used in the diabetic patient at this time.

Clopidogrel has been demonstrated to reduce CVD events in diabetic individuals (246). It is recommended as adjunctive therapy in the first year after an acute coronary syndrome or as alternative therapy in aspirin-intolerant patients.

4. Smoking cessation

Recommendations

- Advise all patients not to smoke. (A)
- Include smoking cessation counseling and other forms of treatment as a routine component of diabetes care. (B)

A large body of evidence from epidemiological, case-control, and cohort studies provides convincing documentation of the causal link between cigarette smoking and health risks. Much of the work documenting the impact of smoking on health did not separately discuss results on subsets of individuals with diabetes, but suggests that the identified risks are at least equivalent to those found in the general population. Other studies of individuals with diabetes consistently demonstrate that smokers have a heightened risk of CVD, premature death, and increased rate of microvascular complications of diabetes. Smoking may have a role in the development of type 2 diabetes.

The routine and thorough assessment of tobacco use is important as a means of preventing smoking or encouraging cessation. A number of large randomized clinical trials have demonstrated the efficacy and cost-effectiveness of brief counseling in smoking cessation, including the use of quit lines, in the reduction of tobacco use. For the patient motivated to quit, the addition of pharmacological therapy to counseling is more effective than either treatment alone. Special considerations should include assessment of level of nicotine dependence, which is associated with difficulty in quitting and relapse (247).

5. CHD screening and treatment

Recommendations

Screening

- In asymptomatic patients, routine screening for CAD is not recommended, as it does not improve outcomes as long as CVD risk factors are treated. (A)

Treatment

- In patients with known CVD, ACE inhibitor (C) and aspirin and statin therapy (A) (if not contraindicated) should be used to reduce the risk of cardiovascular events.

- In patients with a prior myocardial infarction, β-blockers should be continued for at least 2 years after the event (B).

- Longer term use of β-blockers in the absence of hypertension is reasonable if well tolerated, but data are lacking. (E)

- Avoid TZD treatment in patients with symptomatic heart failure. (C)

- Metformin may be used in patients with stable CHF if renal function is normal. It should be avoided in unstable or hospitalized patients with CHF. (C)
Screening for CAD is reviewed in a recently updated consensus statement (154). To identify the presence of CAD in diabetic patients without clear or suggestive symptoms, a risk factor-based approach to the initial diagnostic evaluation and subsequent follow-up has intuitive appeal. However, recent studies concluded that using this approach fails to identify which patients with type 2 diabetes will have silent ischemia on screening tests (159,248).

Candidates for cardiac testing include those with 1) typical or atypical cardiac symptoms and 2) an abnormal resting ECG. The screening of asymptomatic patients remains controversial, especially as intensive medical therapy, indicated in diabetic patients at high risk for CVD, has an increasing evidence base for providing equal outcomes to invasive revascularization, including in diabetic patients (249,250). There is also some evidence that silent myocardial ischemia may reverse over time, adding to the controversy concerning aggressive screening strategies (251).

Finally, a recent randomized observational trial demonstrated no clinical benefit to routine screening of asymptomatic patients with type 2 diabetes and normal ECGs (252). Despite abnormal myocardial perfusion imaging in more than one in five patients, cardiac outcomes were essentially equal (and very low) in screened versus unscreened patients. Accordingly, the overall effectiveness, especially the cost-effectiveness, of such an indiscriminate screening strategy is now questioned.

Newer noninvasive CAD screening methods, such as computed tomography (CT) and CT angiography have gained in popularity. These tests infer the presence of coronary atherosclerosis by measuring the amount of calcium in coronary arteries and, in some circumstances, by direct visualization of luminal stenoses. Although asymptomatic diabetic patients found to have a higher coronary disease burden have more future cardiac events (253–255), the role of these tests beyond risk stratification is not clear. Their routine use leads to radiation exposure and may result in unnecessary invasive testing such as coronary angiography and revascularization procedures. The ultimate balance of benefit, cost, and risks of such an approach in asymptomatic patients remains controversial, particularly in the modern setting of aggressive CVD risk factor control.

In all patients with diabetes, cardiovascular risk factors should be assessed at least annually. These risk factors include dyslipidemia, hypertension, smoking, a positive family history of premature coronary disease, and the presence of micro- or macroalbuminuria. Abnormal risk factors should be treated as described elsewhere in these guidelines. Patients at increased CHD risk should receive aspirin and a statin and ACE inhibitor or ARB therapy if hypertensive, unless there are contraindications to a particular drug class. While clear benefit exists for ACE inhibitor and ARB therapy in patients with nephropathy or hypertension, the benefits in patients with CVD in the absence of these conditions is less clear, especially when LDL cholesterol is concomitantly controlled (256,257).

B. Nephropathy screening and treatment

Recommendations

General recommendations
- To reduce the risk or slow the progression of nephropathy, optimize glucose control. (A)
- To reduce the risk or slow the progression of nephropathy, optimize blood pressure control. (A)

Screening
- Perform an annual test to assess urine albumin excretion in type 1 diabetic patients with diabetes duration of 5 years and in all type 2 diabetic patients starting at diagnosis. (E)
- Measure serum creatinine at least annually in all adults with diabetes regardless of the degree of urine albumin excretion. The serum creatinine should be used to estimate GFR and stage the level of chronic kidney disease (CKD), if present. (E)

Treatment
- In the treatment of the nonpregnant patient with micro- or macroalbuminuria, either ACE inhibitors or ARBs should be used. (A)
- While there are no adequate head-to-head comparisons of ACE inhibitors and ARBs, there is clinical trial support for each of the following statements:
 - In patients with type 1 diabetes, with hypertension and any degree of albuminuria, ACE inhibitors have been shown to delay the progression of nephropathy. (A)
 - In patients with type 2 diabetes, hypertension, and microalbuminuria, both ACE inhibitors and ARBs have been shown to delay the progression to macroalbuminuria. (A)
 - In patients with type 2 diabetes, hypertension, macroalbuminuria, and renal insufficiency (serum creatinine >1.5 mg/dl), ARBs have been shown to delay the progression of nephropathy. (A)
- If one class is not tolerated, the other should be substituted. (E)
- Reduction of protein intake to 0.8–1.0 g·kg body wt⁻¹·day⁻¹ in individuals with diabetes and the earlier stages of CKD and to 0.8 g·kg body wt⁻¹·day⁻¹ in the later stages of CKD may improve measures of renal function (urine albumin excretion rate, GFR) and is recommended. (B)
- When ACE inhibitors, ARBs, or diuretics are used, monitor serum creatinine and potassium levels for the development of acute kidney disease and hyperkalemia. (E)
- Continued monitoring of urine albumin excretion to assess both response to therapy and progression of disease is recommended. (E)
- When eGFR <60 ml/min/1.73 m², evaluate and manage potential complications of CKD. (E)
- Consider referral to a physician experienced in the care of kidney disease when there is uncertainty about the etiology of kidney disease (heavy proteinuria, active urine sediment, absence of retinopathy, rapid decline in GFR), difficult management issues, or advanced kidney disease. (B)

Diabetic nephropathy occurs in 20–40% of patients with diabetes and is the single leading cause of end-stage renal disease (ESRD). Persistent albuminuria in the range of 30–299 mg/24 h (microalbuminuria) has been shown to be the earliest stage of diabetic nephropathy in type 1 diabetes and a marker for development of nephropathy in type 2 diabetes. Microalbuminuria is also a well-established marker of increased CVD risk (258,259). Patients with microalbuminuria who progress to macroalbuminuria (300 mg/24 h) are likely to progress to ESRD (260,261). However, a number of interventions have been demonstrated to re-
duce the risk and slow the progression of renal disease.

Intensive diabetes management with the goal of achieving near-normoglycemia has been shown in large prospective randomized studies to delay the onset of microalbuminuria and the progression of micro- to macroalbuminuria in patients with type 1 (262,263) and type 2 (35,56) diabetes. The UKPDS provided strong evidence that control of blood pressure can reduce the development of nephropathy (195). In addition, large prospective randomized studies in patients with type 1 diabetes have demonstrated that achievement of lower levels of systolic blood pressure (<140 mmHg) resulting from treatment using ACE inhibitors provides a selective benefit over other antihypertensive drug classes in delaying the progression from micro- to macroalbuminuria and can slow the decline in GFR in patients with macroalbuminuria (264–266). In type 2 diabetes with hypertension and normoalbuminuria, RAS inhibition has been demonstrated to delay onset of microalbuminuria (267).

In addition, ACE inhibitors have been shown to reduce major CVD outcomes (i.e., myocardial infarction, stroke, death) in patients with diabetes (207), thus further supporting the use of these agents in patients with microalbuminuria, a CVD risk factor. ARBs do not prevent microalbuminuria in normotensive patients with type 1 or type 2 diabetes (268,269); however, ARBs have been shown to reduce the rate of progression from micro- to macroalbuminuria as well as ESRD in patients with type 2 diabetes (270–272). Some evidence suggests that ARBs have a smaller magnitude of rise in potassium compared with ACE inhibitors in people with nephropathy (273,274). Combinations of drugs that block the renin-angiotensin-aldosterone system (e.g., an ACE inhibitor plus an ARB, a mineralocorticoid antagonist, or a direct renin inhibitor) have been shown to provide additional lowering of albuminuria (275–278). However, the long-term effects of such combinations on renal or cardiovascular outcomes have not yet been evaluated in clinical trials, and they are associated with increased risk for hyperkalemia.

Other drugs, such as diuretics, calcium channel blockers, and β-blockers should be used as additional therapy to further lower blood pressure in patients already treated with ACE inhibitors or ARBs (212), or as alternate therapy in the rare individual unable to tolerate ACE inhibitors or ARBs.

Studies in patients with varying stages of nephropathy have shown that protein restriction of dietary protein helps slow the progression of albuminuria, GFR decline, and occurrence of ESRD (279–282). Dietary protein restriction should be considered particularly in patients whose nephropathy seems to be progressing despite optimal glucose and blood pressure control and use of ACE inhibitor and/or ARBs (282).

Assessment of albuminuria status and renal function

Screening for microalbuminuria can be performed by measurement of the albumin-to-creatinine ratio in a random spot collection; 24-h or timed collections are more burdensome and add little to prediction or accuracy (283,284). Measurement of a spot urine for albumin only, whether by immunoassay or by using a dipstick test specific for microalbumin, without simultaneously measuring urine creatinine, is somewhat less expensive but susceptible to false-negative and -positive determinations as a result of variation in urine concentration due to hydration and other factors.

Abnormalities of albumin excretion are defined in Table 13. Because of variability in urinary albumin excretion, two of three specimens collected within a 3- to 6-month period should be abnormal before considering a patient to have crossed one of these diagnostic thresholds. Exercise within 24 h, infection, fever, CHF, marked hyperglycemia, and marked hypertension may elevate urinary albumin excretion over baseline values.

Information on presence of abnormal urine albumin excretion in addition to level of GFR may be used to stage CKD. The National Kidney Foundation classification (Table 14) is primarily based on GFR levels and therefore differs from other systems, in which staging is based primarily on urinary albumin excretion (285). Studies have found decreased GFR in the absence of increased urine albumin excretion in a substantial percentage of adults with diabetes (286). Serum creatinine should therefore be measured at least annually in all adults with diabetes, regardless of the degree of urine albumin excretion.

Serum creatinine should be used to estimate GFR and to stage the level of CKD, if present. eGFR is commonly reported by laboratories or can be estimated using formulae such as the Modification of Diet in Renal Disease (MDRD) study equation (287). Recent reports have indicated that the MDRD is more accurate for the diagnosis and stratification of CKD in patients with diabetes than the Cockcroft-Gault formula (288). GFR calculators are available at http://www.nkidep.nih.gov.

The role of continued annual quantitative assessment of albumin excretion after diagnosis of microalbuminuria and institution of ACE inhibitor or ARB therapy and blood pressure control is unclear. Continued surveillance can assess both response to therapy and progression of disease. Some suggest that reducing abnormal albuminuria (>30 mg/g) to the normal or near-normal range may improve renal and cardiovascular prognosis, but this approach has not been formally evaluated in prospective trials.

Table 13—Definitions of abnormalities in albumin excretion

Category	Spot collection (µg/mg creatinine)
Normal	<30
Microalbuminuria	30–299
Macro (clinical)-albuminuria	≥300

Table 14—Stages of CKD

Stage	Description	GFR (ml/min per 1.73 m² body surface area)
1	Kidney damage* with normal or increased GFR	≥90
2	Kidney damage* with mildly decreased GFR	60–89
3	Moderately decreased GFR	30–59
4	Severely decreased GFR	15–29
5	Kidney failure	<15 or dialysis

*Kidney damage defined as abnormalities on pathologic, urine, blood, or imaging tests. Adapted from ref. 284.
Complications of kidney disease correlate with level of kidney function. When the eGFR is less than 60 ml/min/1.73 m², screening for complications of CKD is indicated (Table 15). Early vaccination against hepatitis B is indicated in patients likely to progress to end-stage kidney disease.

Consider referral to a physician experienced in the care of kidney disease when there is uncertainty about the etiology of kidney disease (heavy proteinuria, active urine sediment, absence of retinopathy, rapid decline in GFR, resistant hypertension), difficult management issues, or advanced kidney disease. The threshold for referral may vary depending on the frequency with which a provider encounters diabetic patients with significant kidney disease. Consultation with a nephrologist when stage 4 CKD develops has been found to reduce cost, improve quality of care, and keep people off dialysis longer (289). However, nonrenal specialists should not delay educating their patients about the progressive nature of diabetic kidney disease; the renal preservation benefits of aggressive treatment of blood pressure, blood glucose, and hyperlipidemia; and the potential need for renal replacement therapy.

C. Retinopathy screening and treatment

Recommendations

General recommendations
- To reduce the risk or slow the progression of retinopathy, optimize glycemic control. (A)
- To reduce the risk or slow the progression of retinopathy, optimize blood pressure control. (A)

Screening
- Adults and children aged 10 years or older with type 1 diabetes should have an initial dilated and comprehensive eye examination by an ophthalmologist or optometrist within 5 years after the onset of diabetes. (B)
- Patients with type 2 diabetes should have an initial dilated and comprehensive eye examination by an ophthalmologist or optometrist shortly after the diagnosis of diabetes. (B)
- Subsequent examinations for type 1 and type 2 diabetic patients should be repeated annually by an ophthalmologist or optometrist. Less frequent exams (every 2–3 years) may be considered following one or more normal eye exams. Examinations will be required more frequently if retinopathy is progressing. (B)
- High-quality fundus photographs can detect most clinically significant diabetic retinopathy. Interpretation of the images should be performed by a trained eye care provider. While retinal photography may serve as a screening tool for retinopathy, it is not a substitute for a comprehensive eye exam, which should be performed at least initially and at intervals thereafter as recommended by an eye care professional. (E)
- Women with preexisting diabetes who are planning a pregnancy or who have become pregnant should have a comprehensive eye examination and should be counseled on the risk of development and/or progression of diabetic retinopathy. Eye examination should occur in the first trimester with close follow-up throughout pregnancy and for 1 year postpartum. (B)

Treatment
- Promptly refer patients with any level of macular edema, severe NPDR, or any PDR to an ophthalmologist who is knowledgeable and experienced in the management and treatment of diabetic retinopathy. (A)
- Laser photocoagulation therapy is indicated to reduce the risk of vision loss in patients with high-risk PDR, clinically significant macular edema, and in some cases of severe NPDR. (A)
- The presence of retinopathy is not a contraindication to aspirin therapy for cardioprotection, as this therapy does not increase the risk of retinal hemorrhage. (A)

Diabetic retinopathy is a highly specific vascular complication of both type 1 and type 2 diabetes, with prevalence strongly related to the duration of diabetes. Diabetic retinopathy is the most frequent cause of new cases of blindness among adults aged 20–74 years. Glaucoma, cataracts, and other disorders of the eye occur earlier and more frequently in people with diabetes.

In addition to duration of diabetes, other factors that increase the risk of, or are associated with, retinopathy include chronic hyperglycemia (290), the presence of nephropathy (291), and hypertension (292). Intensive diabetes management with the goal of achieving near normoglycemia has been shown in large prospective randomized studies to prevent and/or delay the onset and progression of diabetic retinopathy (47,55, 56,64). Lowering blood pressure has been shown to decrease the progression of retinopathy (195). Several case series and a controlled prospective study suggest that pregnancy in type 1 diabetic patients may aggravate retinopathy.

Table 15—Management of CKD in diabetes

GFR (ml/min/1.73 m²)	Recommended
All patients	Yearly measurement of creatinine, urinary albumin excretion, potassium
45–60	Referral to nephrology if possibility for nondiabetic kidney disease exists (duration type 1 diabetes <10 years, heavy proteinuria, abnormal findings on renal ultrasound, resistant hypertension, rapid fall in GFR, or active urinary sediment)
30–44	Consider need for dose adjustment of medications
30–44	Monitor eGFR every 6 months
<30	Monitor electrolytes, bicarbonate, hemoglobin, calcium, phosphorus, parathyroid hormone at least yearly
	Assure vitamin D sufficiency
	Consider bone density testing
	Referral for dietary counselling
30–44	Monitor eGFR every 3 months
<30	Monitor electrolytes, bicarbonate, calcium, phosphorus, parathyroid hormone, hemoglobin, albumin, weight every 3–6 months
<30	Consider need for dose adjustment of medications
	Referral to nephrologist

Adapted from http://www.kidney.org/professionals/KDOQI/guideline_diabetes/
Standards of Medical Care

(293,294); laser photocoagulation surgery can minimize this risk (294).

One of the main motivations for screening for diabetic retinopathy is the established efficacy of laser photocoagulation surgery in preventing vision loss. Two large trials, the Diabetic Retinopathy Study (DRS) and the Early Treatment Diabetic Retinopathy Study (ETDRS), provide the strongest support for the therapeutic benefits of photocoagulation surgery.

The DRS (295) showed that panretinal photocoagulation surgery reduced the risk of severe vision loss from PDR from 15.9% in untreated eyes to 6.4% in treated eyes, with greatest risk-to-benefit ratio in those with baseline disease (disc neovascularization or vitreous hemorrhage).

The ETDRS (296) established the benefit of focal laser photocoagulation surgery in eyes with macular edema, particularly those with clinically significant macular edema, with reduction of doubling of the visual angle (e.g., 20/50 to 20/100) from 20% in untreated eyes to 8% in treated eyes. The ETDRS also verified the benefits of panretinal photocoagulation for high-risk PDR and in older-onset patients with severe NPDR or less-than-high-risk PDR.

Laser photocoagulation surgery in both trials was beneficial in reducing the risk of further vision loss, but generally not beneficial in reversing already diminished acuity. This preventive effect and the fact that patients with PDR or macular edema may be asymptomatic provide strong support for a screening program to detect diabetic retinopathy.

As retinopathy is estimated to take at least 5 years to develop after the onset of hyperglycemia, patients with type 1 diabetes should have an initial dilated and comprehensive eye examination within 5 years after the onset of diabetes. Patients with type 2 diabetes, who generally have had years of undiagnosed diabetes and who have a significant risk of prevalent DR at time of diabetes diagnosis, should have an initial dilated and comprehensive eye examination soon after diagnosis. Examinations should be performed by an ophthalmologist or optometrist who is knowledgeable and experienced in diagnosing the presence of diabetic retinopathy and is aware of its management. Subsequent examinations for type 1 and type 2 diabetic patients are generally repeated annually. Less-frequent exams (every 2–3 years) may be cost effective after one or more normal eye exams, while examinations will be required more frequently if retinopathy is progressing.

The use of retinal photography with remote reading by experts has great potential in areas where qualified eye care professionals are not available, and may also enhance efficiency and reduce costs when the expertise of ophthalmologists can be utilized for more complex examinations and for therapy (298). In-person exams are still necessary when the photos are unacceptable and for follow-up of abnormalities detected. Photos are not a substitute for a comprehensive eye exam, which should be performed at least initially and at intervals thereafter as recommended by an eye care professional.

Results of eye examinations should be documented and transmitted to the referring health care professional. For a detailed review of the evidence and further discussion of diabetic retinopathy, see the ADA’s technical review and position statement on this subject (297,300).

D. Neuropathy screening and treatment (301)

Recommendations

- All patients should be screened for distal symmetric polyneuropathy (DPN) at diagnosis and at least annually thereafter, using simple clinical tests. (B)
- Electrophysiological testing is rarely needed, except in situations where the clinical features are atypical. (E)
- Screening for signs and symptoms of autonomic neuropathy should be instituted at diagnosis of type 2 diabetes and 5 years after the diagnosis of type 1 diabetes. Special testing is rarely needed and may not affect management or outcomes. (E)
- Medications for the relief of specific symptoms related to DPN and autonomic neuropathy are recommended, as they improve the quality of life of the patient. (E)

The diabetic neuropathies are heterogeneous with diverse clinical manifestations. They may be focal or diffuse. Most common among the neuropathies are chronic sensorimotor DPN and autonomic neuropathy. Although DPN is a diagnosis of exclusion, complex investigations to exclude other conditions are rarely needed.

The early recognition and appropriate management of neuropathy in the patient with diabetes is important for a number of reasons: 1) nondiabetic neuropathies may be present in patients with diabetes and may be treatable, 2) a number of treatment options exist for symptomatic diabetic neuropathy, 3) up to 50% of DPN may be asymptomatic and patients are at risk of insensate injury to their feet, and 4) autonomic neuropathy and particularly cardiovascular autonomic neuropathy is associated with substantial morbidity and even mortality. Specific treatment for the underlying nerve damage is currently not available, other than improved glycemic control, which may modestly slow progression (63) but not reverse neuronal loss. Effective symptomatic treatments are available for some manifestations of DPN and autonomic neuropathy.

Diagnosis of neuropathy

Distal symmetric polyneuropathy. Patients with diabetes should be screened annually for DPN using tests such as pin-prick sensation, vibration perception (using a 128-Hz tuning fork), 10-g monofilament pressure sensation at the distal plantar aspect of both great toes and metatarsal joints, and assessment of ankle reflexes. Combinations of more than one test have >87% sensitivity in detecting DPN. Loss of 10-g monofilament perception and reduced vibration perception predict foot ulcers (301). Importantly, in patients with neuropathy, particularly when severe, causes other than diabetes should always be considered, such as neurotoxic medications, heavy metal poisoning, alcohol abuse, vitamin B12 deficiency (especially in those taking metformin for prolonged periods (302), renal disease, chronic inflammatory demyelinating neuropathy, inherited neuropathies, and vasculitis (303).

Diabetic autonomic neuropathy (304). The symptoms and signs of autonomic dysfunction should be elicited carefully during the history and physical examination. Major clinical manifestations of diabetic autonomic neuropathy include resting tachycardia, exercise intolerance, orthostatic hypotension, constipation, gastroparesis, erectile dysfunction, sudomotor dysfunction, impaired neurovascular function, and, potentially, autonomic failure in response to hypoglycemia.

Cardiovascular autonomic neuropathy, a CVD risk factor (93), is the most studied and clinically important form of diabetic autonomic neuropathy. Cardio-
vascular autonomic neuropathy may be indicated by resting tachycardia (>100 bpm) or orthostasis (a fall in systolic blood pressure >20 mmHg upon standing without an appropriate heart rate response); it is also associated with increased cardiac event rates.

Gastrointestinal neuropathies (e.g., esophageal enteropathy, gastroparesis, constipation, diarrhea, fecal incontinence) are common, and any section of the gastrointestinal tract may be affected. Gastroparesis should be suspected in individuals with erratic glucose control or with upper gastrointestinal symptoms without other identified cause. Evaluation of solid-phase gastric emptying using double-isotope scintigraphy may be done if symptoms are suggestive, but test results often correlate poorly with symptoms. Constipation is the most common lower-gastrointestinal symptom but can alternate with episodes of diarrhea.

Diabetic autonomic neuropathy is also associated with genitourinary tract disturbances. In men, diabetic autonomic neuropathy may cause erectile dysfunction and/or retrograde ejaculation. Evaluation of bladder dysfunction should be performed for individuals with diabetes who have recurrent urinary tract infections, pyelonephritis, incontinence, or a palpable bladder.

Symptomatic treatments

DPN. The first step in management of patients with DPN should be to aim for stable and optimal glycemic control. Although controlled trial evidence is lacking, several observational studies suggest that neuropathic symptoms improve not only with optimization of control, but also with the avoidance of extreme blood glucose fluctuations. Patients with painful DPN may benefit from pharmacological treatment of their symptoms: many agents have efficacy confirmed in published randomized controlled trials, several of which are Food and Drug Administration (FDA)-approved for the management of painful DPN.

Treatment of autonomic neuropathy

Gastroparesis symptoms may improve with dietary changes and prokinetic agents such as metoclopramide or erythromycin. Treatments for erectile dysfunction may include phosphodiesterase type 5 inhibitors, intracorporeal or intrarectal prostaglandins, vacuum devices, or penile prostheses. Interventions for other manifestations of autonomic neuropathy are described in the ADA statement on neuropathy (301). As with DPN treatments, these interventions do not change the underlying pathology and natural history of the disease process, but may have a positive impact on the quality of life of the patient.

E. Foot care

Recommendations

- For all patients with diabetes, perform an annual comprehensive foot examination to identify risk factors predictive of ulcers and amputations. The foot examination should include inspection, assessment of foot pulses, and testing for loss of protective sensation (10-g monofilament plus testing any one of: vibration using 128-Hz tuning fork, pinprick sensation, ankle reflexes, or vibration perception threshold). (B)
- Provide general foot self-care education to all patients with diabetes. (B)
- A multidisciplinary approach is recommended for individuals with foot ulcers and high-risk feet, especially those with a history of prior ulcer or amputation. (B)
- Refer patients who smoke, have loss of protective sensation and structural abnormalities, or have history of prior lower-extremity complications to foot care specialists for ongoing preventive care and life-long surveillance. (C)
- Initial screening for peripheral arterial disease (PAD) should include a history for claudication and an assessment of the pedal pulses. Consider obtaining an ankle-brachial index (ABI), as many patients with PAD are asymptomatic. (C)
- Refer patients with significant claudication or a positive ABI for further vascular assessment and consider exercise, medications, and surgical options. (C)

Amputation and foot ulceration, consequences of diabetic neuropathy and/or PAD, are common and major causes of morbidity and disability in people with diabetes. Early recognition and management of risk factors can prevent or delay adverse outcomes.

The risk of ulcers or amputations is increased in people who have the following risk factors:
- Previous amputation
- Past foot ulcer history
- Peripheral neuropathy
- Foot deformity
- Peripheral vascular disease

- Visual impairment
- Diabetic nephropathy (especially patients on dialysis)
- Poor glycemic control
- Cigarette smoking

Many studies have been published proposing a range of tests that might usefully identify patients at risk of foot ulceration, creating confusion among practitioners as to which screening tests should be adopted in clinical practice. An ADA task force was therefore assembled in 2008 to concisely summarize recent literature in this area and then recommend what should be included in the comprehensive foot exam for adult patients with diabetes. Their recommendations are summarized below, but clinicians should refer to the task force report (305) for further details and practical descriptions of how to perform components of the comprehensive foot examination.

At least annually, all adults with diabetes should undergo a comprehensive foot examination to identify high-risk conditions. Clinicians should ask about history of previous foot ulceration or amputation, neuropathic or peripheral vascular symptoms, impaired vision, tobacco use, and foot care practices. A general inspection of skin integrity and musculoskeletal deformities should be done in a well lit room. Vascular assessment would include inspection and assessment of pedal pulses.

The neurologic exam recommended is designed to identify loss of protective sensation (LOPS) rather than early neuropathy. The clinical examination to identify LOPS is simple and requires no expensive equipment. Five simple clinical tests (use of a 10-g monofilament, vibration testing using a 128-Hz tuning fork, tests of pinprick sensation, ankle reflex assessment, and testing vibration perception threshold with a biothesiometer), each with evidence from well-conducted prospective clinical cohort studies, are considered useful in the diagnosis of LOPS in the diabetic foot. The task force agrees that any of the five tests listed could be used by clinicians to identify LOPS, although ideally two of these should be regularly performed during the screening exam—normally the 10-g monofilament and one other test. One or more abnormal tests would suggest LOPS, while at least two normal tests (and no abnormal test) would rule out LOPS. The last test listed, vibration assessment using a biothesiometer or similar instrument, is widely used.
in the U.S.; however, identification of the patient with LOPS can easily be carried out without this or other expensive equipment.

Initial screening for PAD should include a history for claudication and an assessment of the pedal pulses. A diagnostic ABI should be performed in any patient with symptoms of PAD. Due to the high estimated prevalence of PAD in patients with diabetes and the fact that many patients with PAD are asymptomatic, an ADA consensus statement on PAD (306) suggested that a screening ABI be performed in patients over 50 years of age and be considered in patients under 50 years of age who have other PAD risk factors (e.g., smoking, hypertension, hyperlipidemia, or duration of diabetes >10 years). Refer patients with significant symptoms or a positive ABI for further vascular assessment and consider exercise, medications, and surgical options (306).

Patients with diabetes and high-risk foot conditions should be educated regarding their risk factors and appropriate management. Patients at risk should understand the implications of the LOPS, the importance of foot monitoring on a daily basis, the proper care of the foot, including nail and skin care, and the selection of appropriate footwear. Patients with LOPS should be educated on ways to substitute other sensory modalities (hand palpation, visual inspection) for surveillance of early foot problems. Patients’ understanding of these issues and their physical ability to conduct proper foot surveillance and care should be assessed. Patients with visual difficulties, physical constraints preventing movement, or cognitive problems that impair their ability to assess the condition of the foot and to institute appropriate responses will need other people, such as family members, to assist in their care.

People with neuropathy or evidence of increased plantar pressure (e.g., erythema, warmth, callus, or measured pressure) may be adequately managed with well-fitted walking shoes or athletic shoes that cushion the feet and redistribute pressure. Callus can be debrided with a scalpel by a foot care specialist or other health professional with experience and training in foot care. People with bony deformities (e.g., hammertoes, prominent metatarsal heads, bunions) may need extra-wide or -depth shoes. People with extreme bony deformities (e.g., Charcot foot) who cannot be accommodated with commercial therapeutic footwear may need custom-molded footwear.

Foot ulcers and wound care may require care by a podiatrist, orthopedic or vascular surgeon, or rehabilitation specialist experienced in the management of individuals with diabetes.

VII. DIABETES CARE IN SPECIFIC POPULATIONS

A. Children and adolescents

1. Type 1 diabetes

Three-quarters of all cases of type 1 diabetes are diagnosed in individuals <18 years of age. It is appropriate to consider the unique aspects of care and management of children and adolescents with type 1 diabetes. Children with diabetes differ from adults in many respects, including changes in insulin sensitivity related to sexual maturity and physical growth, ability to provide self-care, supervision in child care and school, and unique neurological vulnerability to hypoglycemia and DKA. Attention to such issues as family dynamics, developmental stages, and physiological differences related to sexual maturity are all essential in developing and implementing an optimal diabetes regimen. Although recommendations for children and adolescents are less likely to be based on clinical trial evidence, expert opinion and a review of available and relevant experimental data are summarized in the ADA statement on care of children and adolescents with type 1 diabetes (307).

Ideally, the care of a child or adolescent with type 1 diabetes should be provided by a multidisciplinary team of specialists trained in the care of children with pediatric diabetes. At the very least, education of the child and family should be provided by health care providers trained and experienced in childhood diabetes and sensitive to the challenges posed by diabetes in this age-group. At the time of initial diagnosis, it is essential that diabetes education be provided in a timely fashion, with the expectation that the balance between adult supervision and self-care should be defined by, and will evolve according to, physical, psychological, and emotional maturity. MNT and psychological support should be provided at diagnosis, and regularly thereafter, by individuals experienced with the nutritional and behavioral needs of the growing child and family.

a. Glycemic control

Recommendations

- Consider age when setting glycemic goals in children and adolescents with type 1 diabetes. (E)

While current standards for diabetes management reflect the need to maintain glucose control as near to normal as safely possible, special consideration should be given to the unique risks of hypoglycemia in young children. Glycemic goals may need to be modified to take into account the fact that most children <6 or 7 years of age have a form of “hypoglycemic unawareness,” including immaturity of and a relative inability to recognize and respond to hypoglycemic symptoms, placing them at greater risk for severe hypoglycemia and its sequelae. In addition, and unlike the case in adults, young children under the age of 5 years may be at risk for permanent cognitive impairment after episodes of severe hypoglycemia (308–310). Furthermore, findings from the DCCT demonstrated that near-normalization of blood glucose levels was more difficult to achieve in adolescents than adults. Nevertheless, the increased frequency of use of basal-bolus regimens and insulin pumps in youth from infancy through adolescence has been associated with more children reaching ADA blood glucose targets (311,312) in those families in which both parents and the child with diabetes participate jointly to perform the required diabetes-related tasks. Furthermore, recent studies documenting neurocognitive sequelae of hyperglycemia in children provide another compelling motivation for achieving glycemic targets (313,314).

In selecting glycemic goals, the benefits on long-term health outcomes of achieving a lower A1C should be balanced against the risks of hypoglycemia and the developmental burdens of intensive regimens in children and youth. Age-specific glycemic and A1C goals are presented in Table 16.

b. Screening and management of chronic complications in children and adolescents with type 1 diabetes

i. Nephropathy

Recommendations

- Annual screening for microalbuminuria, with a random spot urine sample
for albumin-to-creatinine (ACR) ratio, should be considered once the child is 10 years of age and has had diabetes for 5 years. (E)

- Confirmed, persistently elevated ACR on two additional urine specimens from different days should be treated with an ACE inhibitor, titrated to normalization of albumin excretion if possible. (E)

ii. Hypertension

Recommendations
- Treatment of high-normal blood pressure (systolic or diastolic blood pressure consistently above the 90th percentile for age, sex, and height) should include dietary intervention and exercise aimed at weight control and increased physical activity, if appropriate. If target blood pressure is not reached with 3–6 months of lifestyle intervention, pharmacologic treatment should be considered. (E)
- Pharmacologic treatment of hypertension (systolic or diastolic blood pressure consistently above the 95th percentile for age, sex, and height or consistently greater than 130/80 mmHg, if 95% exceeds that value) should be initiated as soon as the diagnosis is confirmed. (E)
- ACE inhibitors should be considered for the initial treatment of hypertension, following appropriate reproductive counseling due to its potential teratogenic effects. (E)
- The goal of treatment is a blood pressure consistently <130/80 or below the 90th percentile for age, sex, and height, whichever is lower. (E)

It is important that blood pressure measurements are determined correctly, using the appropriate size cuff, and with the child seated and relaxed. Hypertension should be confirmed on at least three separate days. Normal blood pressure levels for age, sex, and height and appropriate methods for determinations are available online at www.nhlbi.nih.gov/health/prof/heart/hbp/hbp_ped.pdf.

iii. Dyslipidemia

Screening
- If there is a family history of hypercholesterolemia (total cholesterol >240 mg/dl) or a cardiovascular event before age 55 years, or if family history is unknown, then a fasting lipid profile should be performed on children >2 years of age soon after diagnosis (after glucose control has been established). If family history is not of concern, then the first lipid screening should be considered at puberty (≥10 years). All children diagnosed with diabetes at or after puberty should have a fasting lipid profile performed soon after diagnosis (after glucose control has been established). (E)
- For both age-groups, if lipids are abnormal, annual monitoring is recommended. If LDL cholesterol values are within the accepted risk levels (<100 mg/dl [2.6 mmol/l]), a lipid profile should be repeated every 5 years. (E)
Treatment

- Initial therapy should consist of optimization of glucose control and MNT using a Step 2 AHA diet aimed at a decrease in the amount of saturated fat in the diet. (E)
- After the age of 10 years, the addition of a statin in patients who, after MNT and lifestyle changes, have LDL cholesterol >160 mg/dl (4.1 mmol/l), or LDL cholesterol >130 mg/dl (3.4 mmol/l) and one or more CVD risk factors, is reasonable. (E)
- The goal of therapy is an LDL cholesterol value <100 mg/dl (2.6 mmol/l). (E)

People diagnosed with type 1 diabetes in childhood have a high risk of early subclinical (315–317) and clinical (318) CVD. Although intervention data are lacking, the AHA categorizes children with type 1 diabetes in the highest tier for cardiovascular risk and recommends both lifestyle and pharmacologic treatment for those with elevated LDL cholesterol levels (319,320). Initial therapy should be with a Step 2 AHA diet, which restricts saturated fat to 7% of total calories and restricts dietary cholesterol to 200 mg/day. Data from randomized clinical trials in children as young as 7 months of age indicate that this diet is safe and does not interfere with normal growth and development (321,322).

Neither long-term safety nor cardiovascular outcome efficacy of statin therapy has been established for children. However, recent studies have shown short-term safety equivalent to that seen in adults, and efficacy in lowering LDL cholesterol levels, improving endothelial function, and causing regression of carotid intimal thickening (323–325). No statin is approved for use under the age of 10 years, and statin treatment should generally not be used in children with type 1 diabetes prior to this age.

iv. Retinopathy

Recommendations

- The first ophthalmologic examination should be obtained once the child is 10 years of age and has had diabetes for 3–5 years. (E)
- After the initial examination, annual routine follow-up is generally recommended. Less frequent examinations may be acceptable on the advice of an eye care professional. (E)

Although retinopathy most commonly occurs after the onset of puberty and after 5–10 years of diabetes duration, it has been reported in prepubertal children and with diabetes duration of only 1–2 years. Referrals should be made to eye care professionals with expertise in diabetic retinopathy, an understanding of the risk for retinopathy in the pediatric population, and experience in counseling the pediatric patient and family on the importance of early prevention/intervention.

v. Celiac disease

Recommendations

- Children with type 1 diabetes should be screened for celiac disease by measuring tissue transglutaminase or anti-endomysial antibodies, with documentation of normal total serum IgA levels, soon after the diagnosis of diabetes. (E)
- Testing should be repeated in children with growth failure, failure to gain weight, weight loss, diarrhea, flatulence, abdominal pain, or signs of malabsorption, or in children with frequent unexplained hypoglycemia or deterioration in glycemic control. (E)
- Children with positive antibodies should be referred to a gastroenterologist for evaluation with endoscopy and biopsy. (E)
- Children with biopsy-confirmed celiac disease should be placed on a gluten-free diet and have consultation with a dietitian experienced in managing both diabetes and celiac disease. (E)

Celiac disease is an immune-mediated disorder that occurs with increased frequency in patients with type 1 diabetes (1–16% of individuals compared with 0.3–1% in the general population) (326,327). Symptoms of celiac disease include diarrhea, weight loss or poor weight gain, growth failure, abdominal pain, chronic fatigue, malnutrition due to malabsorption, other gastrointestinal problems, and unexplained hypoglycemia or erratic blood glucose concentrations.

The advent of routine periodic screening has led to the diagnosis of celiac disease in asymptomatic children. While several studies have documented short-term benefits of gluten restriction on growth and bone mineral density in asymptomatic children diagnosed with celiac disease by routine screening, there is little literature available regarding the long-term benefit of gluten-free diets in this population.

vi. Hypothyroidism

Recommendations

- Children with type 1 diabetes should be screened for thyroid peroxidase and thyroglobulin antibodies at diagnosis. (E)
- TSH concentrations should be measured after metabolic control has been established. If normal, they should be re-checked every 1–2 years, or if the patient develops symptoms of thyroid dysfunction, thyromegaly, or an abnormal growth rate. (E)

Auto-immune thyroid disease is the most common autoimmune disorder associated with diabetes, occurring in 17–30% of patients with type 1 diabetes (328). The presence of thyroid auto-antibodies is predictive of thyroid dysfunction, generally hypothyroidism but less commonly hyperthyroidism (329). Subclinical hypothyroidism may be associated with increased risk of symptomatic hypoglycemia (330) and with reduced linear growth (331). Hyperthyroidism alters glucose metabolism, potentially resulting in deterioration of metabolic control.

c. Self-management

No matter how sound the medical regimen, it can only be as good as the ability of the family and/or individual to implement it. Family involvement in diabetes remains an important component of optimal diabetes management throughout childhood and into adolescence. Health care providers who care for children and adolescents, therefore, must be capable of evaluating the behavioral, emotional, and psychosocial factors that interfere with implementation and then must work with the individual and family to resolve problems that occur and/or to modify goals as appropriate.

d. School and day care

Because a sizable portion of a child’s day is spent in school, close communication with and cooperation of school or day care personnel is essential for optimal diabetes management, safety, and maximal academic opportunities. See the ADA position statement on Diabetes Care in the School and Day Care Setting (332) for further discussion.
2. Type 2 diabetes

The incidence of type 2 diabetes in adolescents is increasing, especially in ethnic minority populations (21). Distinction between type 1 and type 2 diabetes in children can be difficult, since the prevalence of overweight in children continues to rise and since autoantigens and ketosis may be present in a substantial number of patients with features of type 2 diabetes (including obesity and acanthosis nigricans). Such a distinction at the time of diagnosis is critical since treatment regimens, educational approaches, and dietary counsel will differ markedly between the two diagnoses.

Type 2 diabetes has a significant prevalence of comorbidities already present at the time of diagnosis (338). It is recommended that blood pressure measurement, a fasting lipid profile, microalbuminuria assessment, and dilated eye examination be performed at the time of diagnosis. Thereafter, screening guidelines and treatment recommendations for hypertension, dyslipidemia, microalbuminuria, and retinopathy in youth with type 2 diabetes are similar to those for youth with type 1 diabetes. Additional problems that may need to be addressed include polycystic ovary disease and the various comorbidities associated with pediatric obesity such as sleep apnea, hepatic steatosis, orthopedic complications, and psychosocial concerns. The ADA consensus statement on this subject (23) provides guidance on the prevention, screening, and treatment of type 2 diabetes and its comorbidities in young people.

3. Monogenic diabetes syndromes

Monogenic forms of diabetes (neonatal diabetes or maturity-onset diabetes of the young) represent a small fraction of children with diabetes (<5%), but the ready availability of commercial genetic testing is now enabling a true genetic diagnosis with increasing frequency. It is important to correctly diagnose one of the monogenic forms of diabetes, as these children may be incorrectly diagnosed with type 1 or type 2 diabetes, leading to nonoptimal treatment regimens and delays in diagnosing other family members.

The diagnosis of monogenic diabetes should be considered in the following settings: diabetes diagnosed within the first 6 months of life; in children with strong family history of diabetes but without typical features of type 2 diabetes (nonobese, low-risk ethnic group); in children with mild fasting hyperglycemia (100–150 mg/dl [5.5–8.5 mmol/L]), especially if young and nonobese; and in children with diabetes but without negative autoantibodies without signs of obesity or insulin resistance. A recent international consensus document discusses in further detail the diagnosis and management of children with monogenic forms of diabetes (339).

B. Preconception care

Recommendations

- A1C levels should be as close to normal as possible (<7%) in an individual patient before conception is attempted. (B)
- Starting at puberty, preconception counseling should be incorporated in the routine diabetes clinic visit for all women of child-bearing potential. (C)
- Women with diabetes who are contemplating pregnancy should be evaluated and, if indicated, treated for diabetic retinopathy, nephropathy, neuropathy, and CVD. (E)
- Medications used by such women should be evaluated prior to conception, since drugs commonly used to treat diabetes and its complications may be contraindicated or not recommended in pregnancy, including statins, ACE inhibitors, ARBs, and most noninsulin therapies. (E)
- Since many pregnancies are unplanned, consider the potential risks and benefits of medications that are contraindicated in pregnancy in all women of childbearing potential, and counsel women using such medications accordingly. (E)

Major congenital malformations remain the leading cause of mortality and serious morbidity in infants of mothers with type 1 and type 2 diabetes. Observational studies indicate that the risk of malformations increases continuously with increasing maternal glycemia during the first 6–8 weeks of gestation, as defined by first- trimester A1C concentrations. There is no threshold for A1C values below which risk disappears entirely. However, malformation rates above the 1–2% background rate of nondiabetic pregnancies appear to be limited to pregnancies in which first-trimester A1C concentrations are >1% above the normal range for a nondiabetic pregnant woman.

Preconception care of diabetes appears to reduce the risk of congenital malformations. Five nonrandomized studies compared rates of major malformations in infants between women who participated in preconception diabetes care programs and women who initiated intensive diabetes management after they were already pregnant. The preconception care programs were multidisciplinary and designed to train patients in diabetes self-management with diet, intensified insulin therapy, and SMBG. Goals were set to achieve normal blood glucose concentrations, and >80% of subjects achieved normal A1C concentrations before they became pregnant. In all five studies, the incidence of major congenital malformations in women who participated in preconception care (range 1.0–1.7% of infants) was much lower than the incidence in women who did not participate (range 1.4–10.9% of infants) (78). One limitation of these studies is that participation in preconception care was self-selected rather than randomized. Thus, it is impossible to be certain that the lower malformation rates resulted fully from improved diabetes care. Nonetheless, the evidence supports the concept that malformations can be reduced or prevented by careful management of diabetes before pregnancy.

Planned pregnancies greatly facilitate preconception diabetes care. Unfortunately, nearly two-thirds of pregnancies in women with diabetes are unplanned, leading to a persistent excess of malformations in infants of diabetic mothers. To minimize the occurrence of these devastating malformations, standard care for all women...
with diabetes who have child-bearing potential, beginning at the onset of puberty or at diagnosis, should include 1) education about the risk of malformations associated with unplanned pregnancies and poor metabolic control; and 2) use of effective contraception at all times, unless the patient has good metabolic control and is actively trying to conceive.

Women contemplating pregnancy need to be seen frequently by a multidisciplinary team experienced in the management of diabetes before and during pregnancy. The goals of preconception care are to 1) involve and empower the patient in the management of her diabetes, 2) achieve the lowest A1C test results possible without excessive hypoglycemia, 3) assure effective contraception until stable and acceptable glycemia is achieved, and 4) identify, evaluate, and treat long-term diabetes complications such as retinopathy, nephropathy, neuropathy, hypertension, and CHD (78).

Among the drugs commonly used in the treatment of patients with diabetes, a number may be relatively or absolutely contraindicated during pregnancy. Statins are category X (contraindicated for use in pregnancy) and should be discontinued before conception, as should ACE inhibitors (340). ARBs are category C (risk cannot be ruled out) in the first trimester but category D (positive evidence of risk) in later pregnancy and should generally be discontinued before pregnancy. Since many pregnancies are unplanned, health care professionals caring for any woman of childbearing potential should consider the potential risks and benefits of medications that are contraindicated in pregnancy. Women using medications such as statins or ACE inhibitors need ongoing family planning counseling. Among the oral antidiabetic agents, metformin and acarbose are classified as category B (no evidence of risk in humans) and all others as category C. Potential risks and benefits of oral antidiabetic agents in the preconception period must be carefully weighed, recognizing that data are insufficient to establish the safety of these agents in pregnancy.

For further discussion of preconception care, see the ADA’s consensus statement on preexisting diabetes and pregnancy (78) and the position statement (341) on this subject.

C. Older adults

Recommendations

- Older adults who are functional, cognitively intact, and have significant life expectancy should receive diabetes care using goals developed for younger adults. (E)
- Glycemic goals for older adults not meeting the above criteria may be relaxed using individual criteria, but hyperglycemia leading to symptoms or risk of acute hyperglycemic complications should be avoided in all patients. (E)
- Other cardiovascular risk factors should be treated in older adults with consideration of the time frame of benefit and the individual patient. Treatment of hypertension is indicated in virtually all older adults, and lipid and aspirin therapy may benefit those with life expectancy at least equal to the time frame of primary or secondary prevention trials. (E)
- Screening for diabetes complications should be individualized in older adults, but particular attention should be paid to complications that would lead to functional impairment. (E)

Diabetes is an important health condition for the aging population; at least 20% of patients over the age of 65 years have diabetes, and this number can be expected to grow rapidly in the coming decades. Older individuals with diabetes have higher rates of premature death, functional disability, and coexisting illnesses such as hypertension, CHD, and stroke than those without diabetes. Older adults with diabetes are also at greater risk than other older adults for several common geriatric syndromes, such as polypharmacy, depression, cognitive impairment, urinary incontinence, injurious falls, and persistent pain.

The American Geriatric Society’s guidelines for improving the care of the older person with diabetes (342) have influenced the following discussion and recommendations. The care of older adults with diabetes is complicated by their clinical and functional heterogeneity. Some older individuals developed diabetes years earlier and may have significant complications; others who are newly diagnosed may have had years of undiagnosed diabetes with resultant complications or may have few complications from the disease. Some older adults with diabetes are frail and have other underlying chronic conditions, substantial diabetes-related comorbidity, or limited physical or cognitive functioning. Older individuals with diabetes have little comorbidity and are active. Life expectancies are highly variable for this population, but often longer than clinicians realize. Providers caring for older adults with diabetes must take this heterogeneity into consideration when setting and prioritizing treatment goals.

There are few long-term studies in older adults demonstrating the benefits of intensive glycemic, blood pressure, and lipid control. Patients who can be expected to live long enough to reap the benefits of long-term intensive diabetes management and who are active, have good cognitive function, and are willing should be provided with the needed education and skills to do so and be treated using the goals for younger adults with diabetes.

For patients with advanced diabetes complications, life-limiting comorbid illness, or substantial cognitive or functional impairment, it is reasonable to set less-intensive glycemic target goals. These patients are less likely to benefit from reducing the risk of microvascular complications and more likely to suffer serious adverse effects from hypoglycemia. However, patients with poorly controlled diabetes may be subject to acute complications of diabetes, including dehydration, poor wound healing, and hyperglycemic hyperosmolar coma. Glycemic goals at a minimum should avoid these consequences.

Although control of hyperglycemia may be important in older individuals with diabetes, greater reductions in morbidity and mortality may result from control of other cardiovascular risk factors rather than from tight glycemic control alone. There is strong evidence from clinical trials of the value of treating hypertension in the elderly (343,344). There is less evidence for lipid-lowering and aspirin therapy, although the benefits of these interventions for primary and secondary prevention are likely to apply to older adults whose life expectancies equal or exceed the time frames seen in clinical trials.

Special care is required in prescribing and monitoring pharmacologic therapy in older adults. Metformin is often contraindicated because of renal insufficiency or significant heart failure. TZDs can cause fluid retention, which may exacerbate or lead to heart failure. They are contraindicated in patients with CHF (New York
Heart failure (class III and class IV) and if used at all should be used very cautiously, in those with, or at risk for, milder degrees of CHF. Sulfonilureas, other insulin secretagogues, and insulin can cause hypoglycemia. Insulin use requires that patients or caregivers have good visual and motor skills and cognitive ability. Drugs should be started at the lowest dose and titrated up gradually until goals are reached or side effects develop.

Screening for diabetes complications in older adults also should be individualized. Particular attention should be paid to complications that can develop over short periods of time and/or that would significantly impair functional status, such as visual and lower-extremity complications.

D. Cystic fibrosis–related diabetes

Cystic fibrosis–related diabetes (CFRD) is the most common comorbidity in persons with CF, occurring in about 20% of adolescents and 40–50% of adults. The additional diagnosis of diabetes in this population is associated with worse nutritional status, more-severe inflammatory lung disease, and greater mortality from respiratory failure. For reasons that are not well understood, women with CFRD are particularly vulnerable to excess morbidity and mortality. Insulin insufficiency related to partial fibrotic destruction of the islet mass is the primary defect in CFRD. Genetically determined function of the remaining β-cells and insulin resistance associated with infection and inflammation may also play a role. Encouraging new data suggest that early detection and aggressive insulin therapy have narrowed the gap in mortality between CF patients with and without diabetes, and have eliminated the sex difference in mortality.

A consensus conference on CFRD was co-sponsored in 2009 by the American Diabetes Association, the Cystic Fibrosis Foundation, and the Pediatric Endocrine Society. Recommendations for the clinical management of CFRD can be found in an ADA position statement (344a).

VIII. DIABETES CARE IN SPECIFIC SETTINGS

A. Diabetes care in the hospital

Recommendations

- All patients with diabetes admitted to the hospital should have their diabetes clearly identified in the medical record. (E)
- All patients with diabetes should have an order for blood glucose monitoring, with results available to all members of the health care team. (E)
- Goals for blood glucose levels:
 - Critically ill patients: Insulin therapy should be initiated for treatment of persistent hyperglycemia starting at a threshold of no greater than 180 mg/dl (10 mmol/l). Once insulin therapy is started, a glucose range of 140–180 mg/dl (7.8–10 mmol/l) is recommended for the majority of critically ill patients. (A)
 - More stringent goals, such as 110–140 mg/dl (6.1–7.8 mmol/l) may be appropriate for selected patients, as long as this can be achieved without significant hypoglycemia. (C)
 - Critically ill patients require an intravenous insulin protocol that has demonstrated efficacy and safety in achieving the desired glucose range without increasing risk for severe hypoglycemia. (E)
 - Non–critically ill patients: There is no clear evidence for specific blood glucose goals. If treated with insulin, the premeal blood glucose target should generally be <140 mg/dl (7.8 mmol/l) with random blood glucose <180 mg/dl (10.0 mmol/l), provided these targets can be safely achieved. More stringent targets may be appropriate in stable patients with previous tight glycemic control. Less stringent targets may be appropriate in those with severe comorbidities. (E)
 - Scheduled subcutaneous insulin with basal, nutritional, and correction components is the preferred method for achieving and maintaining glucose control in noncritically ill patients. (C)
 - Using correction dose or “supplemental” insulin to correct premeal hyperglycemia in addition to scheduled prandial and basal insulin is recommended. (E)
 - Glucose monitoring should be initiated in any patient not known to be diabetic who receives therapy associated with high risk for hyperglycemia, including high-dose glucocorticoid therapy, initiation of enteral or parenteral nutrition, or other medications such as octreotide or immunosuppressive medications. (B)
 - If hyperglycemia is documented and persistent, treatment is necessary. Such patients should be treated to the same glycemic goals as patients with known diabetes. (E)
- A hypoglycemia management protocol should be adopted and implemented by each hospital or hospital system. A plan for treating hypoglycemia should be established for each patient. Episodes of hypoglycemia in the hospital should be documented in the medical record and tracked. (E)
- All patients with diabetes admitted to the hospital should have an A1C obtained if the result of testing in the previous 2–3 months is not available. (E)
- Patients with hyperglycemia in the hospital who do not have a diagnosis of diabetes should have appropriate plans for follow-up testing and care documented at discharge. (E)

Hypercglycemia in the hospital is extensively reviewed in an ADA technical review (345). A recent updated consensus statement by the American Association of Clinical Endocrinologists (AACE) and the ADA (346) forms the basis for the discussion and guidelines in this section.

The literature on hospitalized patients with hyperglycemia typically describes three categories:

1. Medical history of diabetes: diabetes has been previously diagnosed and acknowledged by the patient’s treating physician.
2. Unrecognized diabetes: hyperglycemia (fasting blood glucose ≥126 mg/dl or random blood glucose ≥200 mg/dl) occurring during hospitalization and confirmed as diabetes after hospitalization by standard diagnostic criteria but unrecognized as diabetes by the treating physician during hospitalization.
3. Hospital-related hyperglycemia: hyperglycemia (fasting blood glucose ≥126 mg/dl or random blood glucose ≥200 mg/dl) occurring during the hospitalization that reverts to normal after hospital discharge.

The management of hyperglycemia in the hospital has often been considered secondary in importance to the condition that prompted admission (345). However, a body of literature now supports targeted glucose control in the hospital setting for potential improved clinical outcomes. Hyperglycemia in the hospital may result from stress, decompensation of type 1 or type 2 or other forms of diabetes, and/or may be iatrogenic due to withholding of anti-hyperglycemic medi-
critically ill participants, the majority of 144 mg/dl) on outcomes among 6,104 patients. Mean blood glucose attained 115 mg/dl (7.8 mmol/l) is the standard definition in outpatients and correlates with the initial threshold for the release of counterregulatory hormones. Severe hypoglycemia in hospitalized patients has been defined by many as <40 mg/dl (2.2 mmol/l), although this is lower than the ~50 mg/dl (2.8 mmol/l) level at which cognitive impairment begins in normal individuals (359). As with hyperglycemia, hypoglycemia among inpatients is also associated with adverse short- and long-term outcomes. Early recognition and treatment of mild to moderate hypoglycemia (40 and 69 mg/dl) (2.2 and 3.8 mmol/l) can prevent deterioration to a more severe episode with potential adverse sequelae (346).

Critically ill patients

Based on the weight of the available evidence, for the majority of critically ill patients in the ICU setting, insulin infusion should be used to control hyperglycemia, with a starting threshold of no higher than 180 mg/dl (10.0 mmol/l). Once intravenous insulin is started, the glucose level should be maintained between 140 and 180 mg/dl (7.8 and 10.0 mmol/l). Greater benefit maybe realized at the lower end of this range. Although strong evidence is lacking, somewhat lower glucose targets may be appropriate in selected patients. However, targets less than 110 mg/dl (6.1 mmol/l) are not recommended. Use of insulin infusion protocols with demonstrated safety and efficacy, resulting in low rates of hypoglycemia, are highly recommended (346).

Noncritically ill patients

With no prospective RCT data to inform specific glycemic targets in noncritically ill patients, recommendations are based on clinical experience and judgment. For the majority of noncritically ill patients treated with insulin, premeal glucose targets should generally be <140 mg/dl (7.8 mmol/l) with random blood glucose levels <180 mg/dl (10.0 mmol/l), as long as these targets can be safely achieved. To avoid hypoglycemia, consideration should be given to reassessing the insulin regimen if blood glucose levels fall below 100 mg/dl (5.6 mmol/l). Modification of the regimen is required when blood glucose values are <70 mg/dl (3.9 mmol/l), unless the event is easily explained by other factors (such as a missed meal, etc.). Occasional patients with a prior history of successful tight glycemic control in the outpatient setting who are clinically
stable may be maintained with a glucose range below the above cut points. Conversely, higher glucose ranges may be acceptable in terminally ill patients or in patients with severe comorbidities, as well as in those in patient-care settings where frequent glucose monitoring or close nursing supervision is not feasible.

Clinical judgment, combined with ongoing assessment of the patient’s clinical status, including changes in the trajectory of glucose measures, the severity of illness, nutritional status, or concurrent use of medications that might affect glucose levels (e.g., steroids, octreotide) must be incorporated into the day-to-day decisions regarding insulin dosing (346).

2. Anti-hyperglycemic agents in hospitalized patients
In the hospital setting, insulin therapy is the preferred method of glycemic control in majority of clinical situations (346). In the ICU, intravenous infusion is the preferred route of insulin administration. When the patient is transitioned off intravenous insulin to subcutaneous therapy, precautions should be taken to prevent hyperglycemia escape (360,361). Outside of critical care units, scheduled subcutaneous insulin which delivers basal, nutritional, and correction (supplemental) components is preferred. Prolonged therapy with sliding scale insulin (SSI) as the sole regimen is ineffective in the majority of patients, increases risk of both hypoglycemia and hyperglycemia, and has recently been shown to be associated with adverse outcomes in general surgery patients with type 2 diabetes (362). SSI is potentially dangerous in type 1 diabetes (346). The reader is referred to several recent publications and reviews that describe currently available insulin preparations and protocols and provide guidance in use of insulin therapy in specific clinical settings including parenteral nutrition (363), enteral tube feedings, and with high-dose glucocorticoid therapy (346).

There are no data on the safety and efficacy of oral agents and injectable non-insulin therapies such as GLP1 analogs and pramlintide in the hospital. They are generally considered to have a limited role in the management of hyperglycemia in conjunction with acute illness. Continuation of these agents may be appropriate in selected stable patients who are expected to consume meals at regular intervals and they may be initiated or resumed in anticipation of discharge once the patient is clinically stable. Specific caution is required with metformin, due to the possibility that a contraindication may develop during the hospitalization, such as renal insufficiency, unstable hemodynamic status, or need for an imaging study that requires a radio-contrast dye.

3. Preventing hypoglycemia
Hypoglycemia, especially in insulin-treated patients, is the leading limiting factor in the glycemic management of type 1 and type 2 diabetes (173). In the hospital, multiple additional risk factors for hypoglycemia are present. Patients with or without diabetes may experience hypoglycemia in the hospital in association with altered nutritional state, heart failure, renal or liver disease, malignancy, infection, or sepsis. Additional triggering events leading to iatrogenic hypoglycemia include sudden reduction of corticosteroid dose, altered ability of the patient to report symptoms, reduction of oral intake, emesis, new NPO status, inappropriate timing of short- or rapid-acting insulin in relation to meals, reduction of rate of administration of intravenous dextrose, and unexpected interruption of enteral feedings or parenteral nutrition.

Despite the preventable nature of many inpatient episodes of hypoglycemia, institutions are more likely to have nursing protocols for the treatment of hypoglycemia than for its prevention. Tracking such episodes and analyzing their causes are important quality improvement activities (346).

4. Diabetes care providers in the hospital
Inpatient diabetes management may be effectively championed and/or provided by primary care physicians, endocrinologists, intensivists, or hospitalists. Involvement of appropriately trained specialists or specialty teams may reduce length of stay, improve glycemic control, and improve outcomes (346). In the care of diabetes, implementation of standardized order sets for scheduled and correction-dose insulin may reduce reliance on sliding-scale management. As hospitals move to comply with “meaningful use” regulations for electronic health records, as mandated by the Health Information Technology Act, efforts should be made to assure that all components of structured insulin order sets are incorporated into electronic insulin order sets (364,365).

A team approach is needed to establish hospital pathways. To achieve glycemic targets associated with improved hospital outcomes, hospitals will need multidisciplinary support to develop insulin management protocols that effectively and safely enable achievement of glycemic targets (366).

5. Self-management in the hospital
Self-management of diabetes in the hospital may be appropriate for competent adult patients who: have a stable level of consciousness, have reasonably stable daily insulin requirements, successfully conduct self-management of diabetes at home, have physical skills needed to successfully self-administer insulin and perform SMBG, have adequate oral intake, and are proficient in carbohydrate counting, use of multiple daily insulin injections or insulin pump therapy, and sick-day management. The patient and physician, in consultation with nursing staff, must agree that patient self-management is appropriate under the conditions of hospitalization.

Patients who use CSII pump therapy in the outpatient setting can be candidates for diabetes self-management in the hospital, provided that they have the mental and physical capacity to do so (346). A hospital policy and procedures delineating inpatient guidelines for CSII pump therapy are advisable. The availability of hospital personnel with expertise in CSII therapy is essential. It is important that nursing personnel document basal rates and bolus doses taken on a regular basis (at least daily).

6. DSME in the hospital
Teaching diabetes self-management to patients in hospitals is a challenging task. Patients are ill, under increased stress related to their hospitalization and diagnosis, and in an environment not conducive to learning. Ideally, people with diabetes should be taught at a time and place conducive to learning—as an outpatient in a recognized program of diabetes education.

For the hospitalized patient, diabetes “survival skills” education is generally a feasible approach. Patients and/or family members receive sufficient information and training to enable safe care at home. Those newly diagnosed with diabetes or who are new to insulin and/or blood glucose monitoring need to be instructed before discharge. Those patients hospitalized because of a crisis related to diabetes management or poor care at home need education to prevent subsequent episodes of hospitalization. An assessment of the
need for a home health referral or referral to an outpatient diabetes education program should be part of discharge planning for all patients.

7. MNT in the hospital

The goals of MNT are to optimize glycemic control, to provide adequate calories to meet metabolic demands, and to create a discharge plan for follow-up care (345,367). ADA does not endorse any single meal plan or specified percentages of macronutrients, and the term “ADA diet” should no longer be used. Current nutrition recommendations advise individualization based on treatment goals, physiologic parameters, and medication usage. Consistent carbohydrate meal plans are preferred by many hospitals since they facilitate matching the prandial insulin dose to the amount of carbohydrate consumed (368). Because of the complexity of nutrition issues in the hospital, a registered dietitian, knowledgeable and skilled in MNT, should serve as an inpatient team member. The dietitian is responsible for integrating information about the patient’s clinical condition, eating, and lifestyle habits and for establishing treatment goals in order to determine a realistic plan for nutrition therapy (369,370).

8. Bedside blood glucose monitoring

Point-of-care (POC) blood glucose monitoring performed at the bedside is used to guide insulin dosing. In the patient who is receiving nutrition, the timing of glucose monitoring should match carbohydrate exposure. In the patient who is not receiving nutrition, glucose monitoring is performed every 4 to 6 h (371,372). More frequent blood glucose testing ranging from every 30 min to every 2 h is required for patients on intravenous insulin infusions.

Safety standards should be established for blood glucose monitoring, prohibiting sharing of fingerstick lancing devices, lancets, and needles to reduce the risk of transmission of blood borne diseases. Shared lancing devices carry essentially the same risk as shared syringes and needles (373).

Accuracy of blood glucose measurements using POC meters has limitations that must be considered. Although the FDA allows a ±20% error for blood glucose meters, questions about the appropriateness of these criteria have been raised (388). Glucose measures differ significantly between plasma and whole blood, terms that are often used interchangeably and can lead to misinterpretation. Most commercially available capillary blood glucose meters introduce a correction factor of ~1.12 to report a “plasma adjusted” value (374).

Significant discrepancies between capillary, venous, and arterial plasma samples have been observed in patients with low or high hemoglobin concentrations, hypoperfusion, and the presence of interfering substances particularly maltose, as contained in immunoglobulins (375). Analytical variability has been described with several POC meters (376). Increasingly, newer generation POC blood glucose meters correct for variation in hematocrit and for interfering substances. Any glucose result that does not correlate with the patient’s status should be confirmed through conventional laboratory sampling of plasma glucose. The FDA has become increasingly concerned about the use of POC blood glucose meters in the hospital and is presently reviewing matters related to their use.

9. Discharge planning

Transition from the acute care setting is a high-risk time for all patients, not just those with diabetes or new hyperglycemia. Although there is an extensive literature concerning safe transition within and from the hospital, little of it is specific to diabetes (377). It is important to remember that diabetes discharge planning is not a separate entity, but part of an overall discharge plan. As such, discharge planning begins at admission to the hospital and is updated as projected patient needs change.

Inpatients may be discharged to varied settings, including home (with or without visiting nurse services), assisted living, rehabilitation, or skilled nursing facilities. The latter two sites are generally staffed by health professionals; therefore diabetes discharge planning will be limited to communication of medication and diet orders. For the patient who is discharged to assisted living or to home, the optimal program will need to consider the type and severity of diabetes, the effects of the patient’s illness on blood glucose levels, and the capacities and desires of the patient. Smooth transition to outpatient care should be ensured. The Agency for Healthcare Research and Quality recommends that at a minimum, discharge plans include:

- Medication reconciliation: The patient’s medications must be cross-checked to ensure that no chronic medications were stopped and to ensure the safety of new prescriptions. Whenever possible, prescriptions for new or changed medication should be filled and reviewed with the patient and family at or before discharge
- Structured discharge communication: Information on medication changes, pending tests and studies, and follow-up needs must be accurately and promptly communicated to outpatient physicians, as soon as possible after discharge

Ideally the inpatient care providers or case managers/discharge planners will schedule follow-up visit(s) with the appropriate professionals, including primary care provider, endocrinologist, and diabetes educator (378).

An outpatient follow-up visit with the primary care provider, endocrinologist, or diabetes educator within 1 month of discharge is advised for all patients having hyperglycemia in the hospital. Clear communication with outpatient providers either directly or via hospital discharge summaries facilitates safe transitions to outpatient care. Providing information regarding the cause of the problem or determining the cause of hyperglycemia, related complications and comorbidities, and recommended treatments can assist outpatient providers as they assume ongoing care.

It is important that patients be provided with appropriate durable medical equipment, medication, supplies, and prescriptions at the time of discharge in order to avoid a potentially dangerous hiatus in care. These supplies/prescriptions should include:

- Insulin (vials or pens) (if needed)
- Syringes or pen needles (if needed)
- Oral medications (if needed)
- Blood glucose meter and strips
- Lancets and lancing device
- Urine ketone strips (type 1)
- Glucagon emergency kit (insulin-treated)
- Medical alert application/charm

IX. STRATEGIES FOR IMPROVING DIABETES CARE — There has been steady improvement in the proportion of diabetic patients achieving recommended levels of A1C, blood pressure, and LDL-cholesterol
in the last 10 years, both in primary care settings and in endocrinology practices. Mean A1C nationally has declined from 7.82% in 1999–2000 to 7.18% in 2004 based on National Health and Nutrition Examination Survey (NHANES) data (379). This has been accomplished by improvements in lipids and blood pressure control and led to substantial reductions in end-stage microvascular complications in those with diabetes (380). Nevertheless, in some studies only 57.1% of adults with diagnosed diabetes achieved an A1C of <7%, only 45.5% had a blood pressure <130/80 mmHg, and just 46.5% had a total cholesterol <200 mg/dl, with only 12.2% of people with diabetes achieving all three treatment goals (381). Moreover, there is persistent variation in quality of diabetes care across providers and across practice settings even after adjusting for patient factors that indicates the potential for substantial further improvements in diabetes care.

While numerous interventions to improve adherence to the recommended standards have been implemented, a major contributor to suboptimal care is a delivery system that too often is fragmented, lacks clinical information capabilities, often duplicates services, and is poorly designed for the delivery of chronic care. The Chronic Care Model (CCM) includes six core elements for the provision of optimal care of patients with chronic disease: 1) delivery system design (moving from a reactive to a proactive care delivery system, where planned visits are coordinated through a team-based approach); 2) self-management support; 3) decision support (basing care on consistent, effective care guidelines); 4) clinical information systems (using registries that can provide patient-specific and population-based support to the care team); 5) community resources and policies (identifying or developing resources to support healthy lifestyles); and 6) health systems (to create a quality-oriented culture). Alterations in reimbursement that reward the provision of quality care, as defined by the attainment of evidence-based quality measures, will also be required to achieve desired outcome goals. Redefinition of the roles of the clinic staff and promoting self-management on the part of the patient are fundamental to the successful implementation of the CCM (382). Collaborative, multidisciplinary teams are best suited to provide such care for people with chronic conditions like diabetes and to facilitate patients’ performance of appropriate self-management.

A rapidly evolving literature suggests that there are three major strategies to successfully improve the quality of diabetes care delivered by a team of providers. NDEP maintains an online resource (www.betterdiabetescare.nih.gov) to help health care professionals design and implement more effective health care delivery systems for those with diabetes.

Three specific objectives, with references to literature that outlines practical strategies to achieve each, are outlined below.

Objective 1
Provider and team behavior change: Facilitate timely and appropriate intensification of lifestyle and/or pharmaceutical therapy of patients who have not achieved beneficial levels of blood pressure, lipid, or glucose control.

- Clinical information systems including registries that can prospectively identify and track those requiring assessments and/or treatment modifications by the team.
- Electronic medical record-based clinical decision support at the point of care, regardless of the educational methodology (89).
- Use of checklists and/or flow sheets that mirror guidelines.
- Detailed treatment algorithms enabling multiple team members to “treat to target” and appropriately intensify therapy.
- Availability of care or disease management services (384) by nurses, pharmacists, and other providers using detailed algorithms often catalyzing reduction in A1C, blood pressure, and LDL cholesterol (383,386).

Objective 2
Patient behavior change: Implement a systematic approach to support patients’ behavior change efforts as needed including 1) healthy lifestyle (physical activity, healthy eating, nonuse of tobacco, weight management, effective coping, medication taking and management); 2) prevention of diabetes complications (screening for eye, foot, and renal complications; immunizations); and 3) achievement of appropriate blood pressure, lipid, and glucose goals.

- Delivery of high-quality DSME, which has been shown to improve patient self-management, satisfaction, and glucose control (115,387).
- Delivery of ongoing diabetes self-management support (DSMS) to ensure that gains achieved during DSME are sustained (128–129). National DSME standards call for an integrated approach that includes clinical content and skills, behavioral strategies (goal-setting, problem solving), and addressing emotional concerns in each needed curriculum content area. Provision of continuing education and support (DSMS) improves maintenance of gains regardless of the educational methodology (89).
- Provision of automated reminders via multiple communication channels to various subgroups of diabetic patients (96).

Objective 3
Change the system of care: Research on the comprehensive CCM suggests additional strategies to improve diabetes care, including the following:

- Basing care on consistent, evidence-based care guidelines
- Redefining and expanding the roles of the clinic staff (382)
- Collaborative, multidisciplinary teams to provide high-quality care and support patients’ appropriate self-management
- Audit and feedback of process and outcome data to providers to encourage population-based care improvement strategies
- Care management, one of the most effective diabetes quality improvement strategies to improve glycemic control (384).
- Identifying and/or developing community resources and public policy that support healthy lifestyles
- Alterations in reimbursement that reward the provision of appropriate and high-quality care and accommodate the need to personalize care goals, providing additional incentives to improve diabetes care (382,388–392)

The most successful practices have an institutional priority for quality of care, expanding the role of teams and staff, redesigning their delivery system, activating and educating their patients, and using electronic health record tools (393,394). Recent initiatives such as the
Patient Centered Medical Home show promise in improving outcomes through coordinated primary care and offer new opportunities for team-based chronic disease care (395).

It is clear that optimal diabetes management requires an organized, systematic approach and involvement of a coordinated team of dedicated health care professionals working in an environment where patient-centered high-quality care is a priority.

References

1. American Diabetes Association: Medical Management of Type 1 Diabetes. Alexandria, VA, American Diabetes Association, 2008
2. American Diabetes Association: Medical Management of Type 2 Diabetes. Alexandria, VA, American Diabetes Association, 2008
3. American Diabetes Association: Intensive Diabetes Management. Alexandria, VA, American Diabetes Association, 2009
4. American Diabetes Association: Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2010;33(Suppl. 1):S62–S69
5. International Expert Committee: International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 2009;32:1327–1334
6. Ziemic DC, Kolm P, Weintraub WS, Vaccarino V, Rhee MK, Twombly JG, Narayan KM, Koch DD, Phillips LS. Glucose-independent, black-white differences in hemoglobin A1c levels: a cross-sectional analysis of 2 studies. Ann Intern Med 2010;152:770–777
7. Cowie CC, Rust KF, Byrd-Holt DD, Gregg EW, Ford ES, Geiss LS, Bainbridge KE, Fradkin JE. Prevalence of diabetes and high risk for diabetes using A1C criteria in the U.S. population in 1988–2006. Diabetes Care 2010;33:562–568
8. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus: Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 1997;20:1183–1197
9. Gennuth S, Alberti KG, Bennett P, Buse J, DeFronzo R, Kahn R, Kitzmiller J, Knoberle WC, Lebovitz H, Lerner A, Nathan D, Palmer J, Rizza R, Saudek C, Shaw J, Steffes M, Stern M, Tuomilehto J, Zimmet P. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus: Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 2003;26:3160–3167
10. Zhang X, Gregg EW, Williamson DF, Barker LE, Thomas W, Bullard KM, Imperatore G, Williams DE, Albright AL. A1C level and future risk of diabetes: a systematic review. Diabetes Care 2010;33:1665–1673
11. Selvin E, Steffes MW, Zhu H, Matsushita K, Wagenknecht L, Pankow J, Coresh J, Brancati FL. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N Engl J Med 2010;362:800–811
12. Kahn R, Alperin P, Eddy D, Borch-Johnsen K, Buse J, Feigelman J, Gregg E, Holman RR, Kirkman MS, Stern M, Tuomilehto J, Wareham NJ. Age at initiation and frequency of screening to detect type 2 diabetes: a cost-effectiveness analysis. Lancet 2010;375:1365–1374
13. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM, Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002;346:393–403
14. Tuomilehto J, Lindstrom J, Eriksson JJ, Valle TT, Hamalainen H, Ilanne-Parikka P, Keinanen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, Uusitupa M. Finnish Diabetes Prevention Study Group. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001;344:1343–1349
15. Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX, Hu ZK, Lin J, Xiao JZ, Cao HB, Liu PA, Jiang XG, Jiang YY, Wang JP, Zheng H, Zhang H, Bennett PH, Howard BE. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 1997;20:537–544
16. Buchanan TA, Xiang AH, Peters RK, Kjos SL, Marroquin A, Goico J, Ochoa C, Tan S, Berkowitz K, Hodis HN, Azen SP. Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk Hispanic women. Diabetes 2002;51:2796–2803
17. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M, STOP-NIDDM Trial Research Group. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 2002;359:2072–2077
18. DREAM (Diabetes REduction Assessment with ramipril and rosiglitazone Medication) Trial Investigators, Gerstein HC, Yusuf S, Bosch J, Pogue J, Sheridan P, Dincag C, Hanefeld M, Hoogwerf B, Laakso M, Mohan V, Shaw J, Zinman B, Holman RR. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet 2006;368:1096–1105
19. Ramachandran A, Snehalatha C, Mary S, Mukesh B, Bhaskar AD, Vijay V, Indian Diabetes Prevention Programme (IDPP). The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia 2006;49:289–297
20. Johnson SL, Tabaei BP, Herman WH. The efficacy and cost of alternative strategies for systematic screening for type 2 diabetes in the U.S. population 45–74 years of age. Diabetes Care 2005;28:307–311
21. Dabelea D, D’Agostino RB Jr, Mayer-Davis EJ, Pettit D, Imperatore G, Dolan LM, Phoker C, Hillier TA, Marcovina SM, Linder B, Ruggiero AM, Hamman RF, SEARCH for Diabetes in Young Study Group. Testing the accelerator hypothesis: body size, beta-cell function, and age at onset of type 1 (autoimmune) diabetes. Diabetes Care 2006;29:290–294
22. SEARCH for Diabetes in Young Study Group, Liese AD, D’Agostino RB Jr, Hamman RF, Kilgo PD, Lawrence JM, Liu LL, Loos B, Linder B, Marcovina S, Rodriguez B, Sandiford D, Williams DE. The burden of diabetes mellitus among US youth: prevalence estimates from the SEARCH for Diabetes in Young Study. Pediatrics 2006;118:1310–1318
23. American Diabetes Association: Type 2 diabetes in children and adolescents (Consensus Statement). Diabetes Care 2002;25:381–389
24. Lawrence JM, Contraseras R, Chen W, Sacks DA. Trends in the prevalence of preexisting diabetes and gestational diabetes mellitus among a racially/ethnically diverse population of pregnant women, 1999–2005. Diabetes Care 2008;31:899–904
25. HAPO Study Cooperative Research Group, Metzger BE, Lowe LP, Dyer AR, Trimble ER, Chaovanindr U, Coustan DR, Hadden DR, McCance DR, Hod M, McIntyre HD, Oats JJ, Persson B, Rogers MS, Sacks DA. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med 2008;358:1991–2002
26. International Association of Diabetes and Pregnancy Study Groups Consensus Panel, Metzger BE, Gabbe SG, Persson B, Buchanan TA, Catalano PA, Damm P, Dyer AR, Leiva A, Hod M, Kitzmiller JL, Lowe LP, McIntyre HD, Oats JJ, Omori Y, Schmidt MI. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 2010;33:676–682
27. Landon MB, Spong CY, Thom E, Carpenter MW, Ramin SM, Casey B, Wapner RJ, Varner MW, Rouse DJ, Thorp JM Jr, Sciaccione A, Catalano P, Harper M,
Saade G, Lain KY, Sorokin Y, Peaceman AM, Tolosa JE, Anderson GB, Eunice Kennedy Shriver National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. A multicenter, randomized trial of treatment for mild gestational diabetes. N Engl J Med 2009;361:1339–1348

28. Crowther CA, Hiller JE, Moss JR, McPhee AJ, Jeffries WS, Robinson JS, Australian Carbohydrate Intolerance Study in Pregnant Women (ACCHOS) Trial Group. Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. N Engl J Med 2005;352:2477–2486

29. Kim C, Newton KM, Knopp RH. Gestational diabetes and the incidence of type 2 diabetes: a systematic review. Diabetes Care 2002;25:1862–1868

30. Li G, Zhang P, Wang J, Gregg EW, Yang W, Gong Q, Li H, Li H, Jiang Y, An Y, Shuai Y, Zhang B, Zhang J, Thompson TJ, Gerzoff RB, Roglic G, Hu Y, Bennett PH. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study. Lancet 2008;371:1783–1789

31. Lindstrom J, Ilanne-Parikka P, Peltonen M, Aunola S, Eriksson JG, Hamalainen H, Harkonen P, Keinanen-Kiukaanniemi S, Laska M, Louheranta A, Mantzoros C, Patrini M, Sundvall J, Vallo TT, Uusitupa M, Tuomilehto J. Finnish Diabetes Prevention Study Group. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. Lancet 2006;368:1673–1679

32. Diabetes Prevention Program Research Group, Knowler WC, Fowler SE, Hamman RF, Christophi CA, Hoffman HJ, Brenneman AT, Brown-Friday JO, Goldberg R, Venditti E, Nathan DM. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 2009;374:1677–1686

33. Herman WH, Hoerger TJ, Brandle M, Hicks K, Sorensen S, Zhang P, Hamman RF, Ackermann RT, Engelgau MM, Ratnam FF, Diabetes Prevention Program Research Group. The cost-effectiveness of lifestyle modification or metformin in preventing type 2 diabetes in adults with impaired glucose tolerance. Ann Intern Med 2005;142:323–332

34. Ackermann RT, Finch EA, Brzendine E, Zhou H, Marrero DG. Translating the Diabetes Prevention Program into the community: the DEPLOY Pilot Study. Am J Prev Med 2008;35:357–363

35. Kosaka K, Noda M, Kuzuya T. Prevention of type 2 diabetes by lifestyle intervention: a Japanese trial in IGT males. Diabetes Res Clin Pract 2005;67:132–162

36. Torgerson JS, Hauptman J, Boldrin MN, Sjosvold L. XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care 2004;27:155–161

37. Kawamori R, Tajima N, Iwamoto Y, Kashiwagi A, Shimamoto K, Kaku K, Voglibose Ph-3 Study Group. Voglibose for prevention of type 2 diabetes mellitus: a randomised, double-blind trial in Japanese individuals with impaired glucose tolerance. Lancet 2009;373:1607–1614

38. Gerstein HC. Point: If it is important to prevent type 2 diabetes, it is important to consider all proven therapies within a comprehensive approach. Diabetes Care 2007;30:432–434

39. Nathan DM, Davidson MB, DeFronzo RA, Heine RJ, Hany LL, Pratley R, Zinman B, American Diabetes Association. Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care 2007;30:753–759

40. Wolschen LM, Bloemendal E, Nijpels G, Dekker JM, Heine RJ, Stalmans WA, Bouwer LM. Self-monitoring of blood glucose in patients with type 2 diabetes who are not using insulin: a systematic review. Diabetes Care 2005;28:1310–1315

41. Farmer A, Wade A, Goyder E, Yudkin P, French D, Craven A, Holman R, Kimland AL, Neil A. Impact of self monitoring of blood glucose in the management of patients with non-insulin treated diabetes: open parallel group randomised trial. BMJ 2007;335:132

42. O’Kane MJ, Bunting B, Copeeland M, Coates VE, ESMON study group. Efficacy of self monitoring of blood glucose in patients with newly diagnosed type 2 diabetes (ESMON study): randomised controlled trial. BMJ 2008;336:1174–1177

43. Simon J, Gray A, Clarke P, Wade A, Neil A, Farmer A, Diabetes Glycaemic Education and Monitoring Trial Group. Cost effectiveness of self monitoring of blood glucose in patients with non-insulin treated type 2 diabetes: economic evaluation of data from the DiGEM trial. BMJ 2008;336:1177–1180

44. Sacks DB, Bruns DE, Goldstein DE, Maclaren NK, McDonald JM, Parrott M. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem 2002;48:436–472

45. The Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group: Continuous glucose monitoring and intensive treatment of type 1 diabetes. N Engl J Med 2008;359:1464–1476

46. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group: The effect of continuous glucose monitoring in well-controlled type 1 diabetes. Diabetes Care 2009;32:1378–1383

47. DCCT: The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 1993;329:977–986

48. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC, Holman RR. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 33): prospective observational study. BMJ 2000;321:405–412

49. Cagliero E, Levina EV, Nathan DM. Immediate feedback of HbA1c levels improves glycemic control in type 1 and insulin-treated type 2 diabetic patients. Diabetes Care 1999;22:1785–1789

50. Miller CD, Barnes CS, Phillips LS, Ziemer DC, Gallina DL, Cook CB, Maryman SD, El-Kebbi IM. Rapid A1c availability improves clinical decision-making in an urban primary care clinic. Diabetes Care 2003;26:1158–1163

51. Nathan DM, Kuenen J, Borgan R, Zheng H, Schmidt D, Heise RJ, A1c-Derived Average Glucose Study Group. Translating the A1c assay into estimated average glucose values. Diabetes Care 2008;31:1473–1478

52. Rohlting CL, Wiedmeyer HM, Little RR, England JD, Tennell A, Goldstein DE. Defining the relationship between plasma glucose and HbA1c: analysis of glucose profiles and HbA1c in the Diabetes Control and Complications Trial. Diabetes Care 2002;25:273–278

53. Diabetes Research in Children Network (DirecNet) Study Group, Wilson DM, Kollman. Relationship of A1c to glucose concentrations in children with type 1 diabetes: assessments by high-frequency glucose determinations by sensors. Diabetes Care 2008;31:381–385

54. Ohkubo Y, Kishikawa H, Araki E, Miyata T, Shimomura S, Motoyoshi S, Kojima Y, Fujiyoshi N, Shichiri M. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract 1995;28:103–117

55. UKPDS: Intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998;352:854–865

56. UKPDS: Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998;352:854–865

57. UKPDS: Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998;352:854–865

58. UKPDS: Intensive blood-glucose control
80. Rosenstock J, Dailey G, Massi-Benedetti M, Fritsche A, Lin Z, Salzman A. Reduced hypoglycemia risk with insulin glargine: a meta-analysis comparing insulin glargine with human NPH insulin in type 2 diabetes. Diabetes Care 2005; 28:950–955

81. Mooradian AD, Bernbaum M, Albert SG. Narrative review: a rational approach to starting insulin therapy. Ann Intern Med 2006;145:125–134

82. Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, Zinman B. American Diabetes Association, European Association for Study of Diabetes. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2009; 32:193–203

83. Norris SL, Engelgau MM, Narayan KM. Effectiveness of self-management training in type 2 diabetes: a systematic review of randomized controlled trials. Diabetes Care 2003;26:561–587

84. Norris SL, Lau J, Smith SJ, Schmid CH, Engelgau MM. Self-management education for adults with type 2 diabetes: a meta-analysis of the effect on glycemic control. Diabetes Care 2004;27:1150–1171

85. Gary TL, Genkinger JM, Guallar E, Peyrot M, Brancati FL. Meta-analysis of randomized educational and behavioral interventions in type 2 diabetes. Diabetes Educ 2003;29:488–501

86. Steed L, Cooke D, Newman S. A systematic review of psychosocial outcomes following education, self-management and psychological interventions in diabetes mellitus. Patient Educ Couns 2003;51: 5–15

87. Ellis SE, Speroff T, Dittus RS, Brown A, Pichert JW, Elasy TA. Diabetes patient education: a meta-analysis and meta-regression. Patient Educ Couns 2004;52: 97–105

88. Warsi A, Wang PS, LaValley MP, Avorn J, Solomon DH. Self-management education programs in chronic disease: a systematic review and methodological critique of the literature. Arch Intern Med 2004;164:1641–1649

89. Funnell MM, Brown TL, Childs BP, Haas LB, Hosey GM, Jensen B, Maryniuk M, Peyrot M, Pette GD, Reader D, Siminerio LM, Weinger K, Weiss MA. National standards for diabetes self-management education. Diabetes Care 2007;30: 1630–1637

90. Mulcahy K, Maryniuk M, Peeples M, Peyrot M, Tomky D, Weaver T, Yarborough P. Diabetes self-management education core outcomes measures. Diabetes Educ 2003;29:768–784

91. Glasgow RE, Peeples M, Skovlund SE. Where is the patient in diabetes performance measures? The case for including patient-centered and self-management measures. Diabetes Care 2008;31:1046–1050

92. Barker JM, Goehrig SH, Barriga K, Hoffman M, Slover R, Eisenbarth GS, Norris JM, Klingensmith GJ, Rewers M, DAISY study. Clinical characteristics of children diagnosed with type 1 diabetes through intensive screening and follow-up. Diabetes Care 2004;27:1399–1404

93. Cochrane J, Conn VS. Meta-analysis of quality of life outcomes following diabetes self-management training. Diabetes Educ 2008;34:815–823

94. Fisher EB, Thorpe CT, Deveills BM, Devellis RF. Healthy coping, negative emotions, and diabetes management: a systematic review and appraisal. Diabetes Educ 2007;33:1080–1103

95. Robbins JM, Thatcher GE, Webb DA, Valdmanis NV. Nutritionist visits, diabetes classes, and hospitalization rates and charges: the Urban Diabetes Study. Diabetes Care 2008;31:655–660

96. Renders CM, Valk GD, Griffin SJ, Wagner EH, Eijk Van JT, Assendelft WJ. Interventions to improve the management of diabetes in primary care, outpatient, and community settings: a systematic review. Diabetes Care 2001;24:1821–1831

97. Polonsky WH, Earlles J, Smith M, Pease DJ, Macmillan M, Christensen R, Taylor T, Dickert J, Jackson RA. Integrating medical management with diabetes self-management training: a randomized control trial of the Diabetes Outpatient Intensive Treatment program. Diabetes Care 2003;26:3048–3053

98. Anderson RM, Funnell MM, Nwankwo R, Gillard ML, Oh M, Fitzgerald JT. Evaluating a problem-based empowerment program for African Americans with diabetes: results of a randomized controlled trial. Ethn Dis 2005;15:671–678

99. Brown SA, Blozis SA, Kouzekanani K, Garcia A, Winchell M, Hans CL. Dosage effects of diabetes self-management education for Mexican Americans: the Starr County Border Health Initiative. Diabetes Care 2005;28:2732–2737

100. Glazier RH, Bajard M, Cavallo F, Porta M. A 5-year randomized controlled study of learning, problem solving ability, and quality of life in Mexican Americans with type 2 diabetes managed by group care. Diabetes Care 2004;27:670–675

101. Deakin T, McShane CE, Cade JE, Williams RD: Group based training for self-management strategies in people with type 2 diabetes mellitus. Cochrane Database Syst Rev CD003417, 2005

102. Duke SA, Colagiuri S, Colagiuri R. Individual patient education for people with type 2 diabetes mellitus. Cochrane Database Syst Rev CD005268, 2009

103. Heisler M, Vijan S, Malki F, Piette JD. Diabetes control with reciprocal peer support versus nurse care management: a randomized trial. Ann Intern Med 2010;153:507–515

104. Heisler M. Different models to mobilize peer support to improve diabetes self-management and clinical outcomes: evidence, logistics, evaluation considerations and needs for future research. Fam Pract 2010;27(Suppl. 1):i23–i32

105. Foster G, Taylor SJ, Eldridge SE, Ramsay J, Griffiths CJ: Self-management education programmes by lay leaders for people with chronic conditions. Cochrane Database Syst Rev CD005108, 2007

106. Norris SL, Chowdhury FM, Van Le K, Horsley T, Brownstein JN, Zhang X, Jack L Jr, Satterfield DW. Effectiveness of community health workers in the care of persons with diabetes. Diabet Med 2006;23:544–556

107. Duncan I, Birkmeyer C, Coughlin S, Li
Standards of Medical Care

116. Bantle JP, Wylie-Rosett J, Albright AL, Apovian CM, Clark NG, Franz MJ, Hoogwerf BJ, Lichtenstein AH, Mayer-Davis E, Mooradian AD, Wheeler ML. Nutrition recommendations and interventions for diabetes: a position statement of the American Diabetes Association. Diabetes Care 2008;31(Suppl. 1):S61–S78

117. DAFNE Study Group. Training in flexible intensive insulin management to enable dietary freedom in people with type 1 diabetes: dose adjustment for normal eating (DAFNE) randomised controlled trial. BMJ 2002;325:746

118. Franz MJ, Monk A, Barry B, McClain K, Weaver T, Cooper N, Upham P, Bergenstal R, Mazze RS. Effectiveness of medical nutrition therapy provided by dietitians in the management of non-insulin-dependent diabetes mellitus: a randomized, controlled clinical trial. J Am Diet Assoc 1995;95:1009–1017

119. Goldhaber-Fiebert JD, Goldhaber-Fiebert SN, Tristán ML, Nathan DM. Randomized controlled community-based nutrition and exercise intervention improves glycemia and cardiovascular risk factors in type 2 diabetic patients in rural Costa Rica. Diabetes Care 2003;26:24–29

120. Miller CK, Edwards L, Kissling G, Sanville L. Nutrition education improves metabolic outcomes among older adults with diabetes mellitus: results from a randomized controlled trial. Prev Med 2002;34:252–259

121. Wilson C, Brown T, Acton K, Gilliland S. Effects of clinical nutrition education and educator discipline on glycemic control outcomes in the Indian health service. Diabetes Care 2003;26:2500–2504

122. Graber AL, Elasy TA, Quinn D, Wolff K, Brown A. Improving glycemic control in adults with diabetes mellitus: shared responsibility in primary care practices. South Med J 2002;95:684–690

123. Gaetke LM, Stuart MA, Truszczynska H. A single nutrition counseling session with a registered dietitian improves short-term clinical outcomes for rural Kentucky patients with chronic diseases. J Am Diet Assoc 2006;106:109–112

124. Van Horn L, McCoin M, Kris-Etherton PM, Burke F, Carson JA, Champagne CM, Karmally W, Sikand G. The evidence for dietary prevention and treatment of cardiovascular disease. J Am Diet Assoc 2008;108:287–331
MJ. Dietary Intervention Randomized Controlled Trial (DIRECT) Group. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med 2008;359:229–241.

142. Institute of Medicine: Dietary Reference Intakes: Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington, D.C., National Academies Press, 2002.

143. Barnard ND, Cohen J, Jenkins DJ, Turner-McGrievy GM, Barnard ND, Cohen J, Jenkins DJ, Gloede L, Green AA, Georg P, Prager R, Kostner K, Wagner O, Georg P, Prager R, Kostner K, Metz-Schimmerl S, Pacini G, Ludvik B, Metz-Schimmerl S, Pacini G, Wagner O, Georg P, Prager R, Kostner K, Dunky A, Haber P. Changes in nutrient intake and dietary quality among participants with type 2 diabetes following a low-fat vegan diet or a conventional diabetes diet for 22 weeks. J Amy Diet Assoc 2008;108:1636–1645.

144. Franz MJ, Bantle JP, Beebe CA, Brunzell JD, Choisson JL, Garg A, Holzmeister LA, Hoogwerf B, Mayer-Davis E, Mooradian AD, Parnell JQ, Wheeler M. Evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes and related complications. Diabetes Care 2002;25:148–198.

145. Boulé NG, Haddad E, Kenny GP, Wells GA, Sigal RJ. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA 2001;286:1218–1227.

146. Boulé NG, Kenny GP, Haddad E, Wells GA, Sigal RJ. Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in Type 2 diabetes mellitus. Diabetologia 2003;46:1071–1081.

147. Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ, Rubin RR, Chasan-Taber L, Albright AL, Braun B. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care 2010;33:2692–2696.

148. U.S. Department of Health and Human Services: 2008 Physical Activity Guidelines for Americans. [article online]. 2008. Available from http://www.health.gov/paguidelines/guidelines/default.aspx. Accessed December 2010.

149. Cauza E, Hansch-Enserer U, Strasser B, Ludvik B, Metz-Schimmerl S, Pacini G, Wagner O, Georg P, Prager R, Knostkner, Dunky A, Haber P. The relative benefits of endurance and strength training on the metabolic factors and muscle function of people with type 2 diabetes mellitus. Arch Phys Med Rehabil 2005;86:1527–1533.

150. Dunstan DW, Daly RM, Owen N, Jolley D, De Courten M, Shaw J, Zimmet P. High-intensity resistance training improves glycaemic control in older patients with type 2 diabetes. Diabetes Care 2002;25:1729–1736.

151. Castaneda C, Layne JE, Munoz-Orians L, Gordon PL, Walsmith J, Foldvari M, Roubenoff R, Tucker KL, Nelson ME. A randomized controlled trial of resistance exercise training to improve glycaemic control in older adults with type 2 diabetes. Diabetes Care 2002;25:2333–2341.

152. Sigal RJ, Kenny GP, Wasserman DH, Castaneda-Sceppa C. Physical activity/exercise and type 2 diabetes. Diabetes Care 2004;27:2518–2539.

153. Bax JJ, Young LH, Frye RL, Bonow RO, Steinberg HO, Barrett-Es, ADA. Screening for coronary artery disease in patients with diabetes. Diabetes Care 2007;30:2729–2736.

154. Berger M, Berchtold P, Coppers HH, Drost H, Kley HK, Muller WA, Wiegelmann W, Zimmerman-Telschow H, Gries FA, Kriskepmper HL, Zimmermann H. Metabolic and hormonal effects of muscular exercise in juvenile type diabetes. Diabetologia 1977;13:355–365.

155. Aiello LP, Wong J, Cavallerano J, Bursett SE, Aiello LM. Retinopathy in Handbook of Exercise in Diabetes. 2nd ed. Ruderman N, Devlin J, Kriska A, Eds. Alexandria, VA, American Diabetes Association, 2002, p. 401–413.

156. Lemaster JW, Reiber GE, Smith DG, Heagerty PJ, Wallace C. Daily weight-bearing activity does not increase the risk of diabetic foot ulcers. Med Sci Sports Exerc 2003;35:1093–1099.

157. Vinik A, Erbas T. Neuropathy. In Handbook of Exercise in Diabetes. 2nd ed. Ruderman N, Devlin J, Kriska A, Eds. Alexandria, VA, American Diabetes Association, 2002, p. 463–496.

158. Wackers FJ, Young LH, Inzucchi SE, Chasen-Taber L, Albright AL, Braun B. Exercise and diabetes: a potentially lethal combination. J Gen Intern Med 2008;23:1571–1575.

159. Fishler L, Skaff MM, Mullan JT, Arean P, Mohr D, Masharani U, Glasgow R, Laurentson G. Clinical depression versus distress among patients with type 2 diabetes: not just a question of semantics. Diabetes Care 2007;30:542–548.

160. Fisher L, Safford MM, Gerzoff RB, Etter SL, Karter AJ, Beckles GL, Brown AF. Perception of neighborhood problems, health behaviors, and diabetes outcomes among adults with diabetes in managed care: the Translating Research Into Action for Diabetes (TRIAD) study. Diabetes Care 2008;31:273–278.

161. Katon W, Fan MY, Unutzer J, Taylor J, Pincus H, Schoenbaum M. Depression and diabetes: a potentially lethal combination. J Gen Intern Med 2008;23:1571–1575.

162. Zhang X, Norris SL, Gregg EW, Cheng YJ, Beckles G, Kahn HS. Depressive symptoms and mortality among persons with and without diabetes. Am J Epidemiol 2005;161:652–660.

163. Rubin RR, Peyrot M. Psychological issues and treatments for people with diabetes. J Clin Psychol 2001;57:457–478.

164. Young-Hyman DL, Davis CL. Disordered eating behavior in individuals with diabetes: importance of context, evaluation, and classification. Diabetes Care 2010;33:683–689.

165. Blonde L, Merlaimen M, Karwe V, Raskin P, TITRATE Study Group. Patient-directed titration for achieving glycaemic goals using a once-daily basal insulin analogue: an assessment of two different fasting plasma glucose targets - the TITRATE study. Diabetes Obes Metab 2009;11:623–631.

166. Cryer PE. Hypoglycemia: the limiting factor in the glycemic management of...
Standards of Medical Care

Type I and Type II diabetes. Diabetesologia 2002;45:937–948

174. Whitmer RA, Karter AJ, Yaffe K, Quen-eberry CP, Jr, Selby JV. Hypoglycemic ep-isodes and risk of dementia in older pa-tients with type 2 diabetes mellitus. JAMA 2009;301:1565–1572

175. Diabetes Control and Complications Trial/Epidemiology of Diabetes In-terventions and Complications Study Re-search Group, Jacobson AM, Musen G, Ryan CM, Silvers N, Cleary P, Waberski B, Burwood A, Weinger K, Bayless M, Dahms W, Harth J. Long-term effect of diabetes and its treatment on cognitive function. N Engl J Med 2007;356:1842–1852

176. Cryer PE. Diverse causes of hypoglycemia-associated autonomic failure in dia-betes. N Engl J Med 2004;350:2272–2279

177. Buchwald H, Estok R, Fahrbach K, Banel D, Jensen MD, Pories WJ, Bantle JP, Sledge I. Trends in mortality in bari-atric surgery: a systematic review and meta-analysis. Am J Surg 2009;198:248–256

178. Dixon JB, O’Brien PE, Playfair J, Chap-man L, Schachter LM, Skinner S, Proiet-etto J, Bailey M, Anderson M. Adjust-able gastric banding and conventional ther-aPy for type 2 diabetes: a randomized controlled trial. JAMA 2008;299:316–323

179. Hall TC, Pellen MG, Sedman PC, Jain PK. Preoperative factors predicting re-mission of type 2 diabetes mellitus after Roux-en-Y gastric bypass surgery for obesity. Obes Surg 2010;20:1245–1250

180. Buchwald H, Estok R, Fahrbach K, Banel D, Sledge I. Weight and type 2 diabetes af-ter bariatric surgery: a systematic review and meta-analysis. Surgery 2007;142:621–628

181. Sjöström L, Narbro K, Sjöström CD, Lindroos AK, Wedel H, Westerling S, Lindgren C, Dallman R, Gudbjartsson T, Gudnason V, Holgersson K, Jörgensson T, Kritchevsky S, Magnusson A, Meirhaeghe A, Niskanen L, Nordestgaard BG, Norrving B, Nyberg G, Ohlsson C, Ohlsson PO, Pedersen O, Pfeiffer blinds, and Cardin C, et al. Reductions in the incidence of type 2 diabetes mellitus after gastric bypass surgery: the Danish National Registry for Bariatric Surgery and Weight Management. JAMA 2007;298:2238–2248

182. Sjöström L, Narbro K, Sjöström CD, Lindroos AK, Wedel H, Westerling S, Lindgren C, Dallman R, Gudbjartsson T, Gudnason V, Holgersson K, Jörgensson T, Kritchevsky S, Magnusson A, Meirhaeghe A, Niskanen L, Nordestgaard BG, Norrving B, Nyberg G, Ohlsson C, Ohlsson PO, Pfeiffer blinds, and Cardin C, et al. Reductions in the incidence of type 2 diabetes mellitus after gastric bypass surgery: the Danish National Registry for Bariatric Surgery and Weight Management. JAMA 2007;298:2238–2248

183. Makary MA, Clarke JM, Shore AD, Mag-nuson TH, Richards T, Bass EB, Domini-cki F, Weiner JP, Wu AW, Segal JB. Medication utilization and annual health care costs in patients with type 2 diabe-tes mellitus before and after bariatric surgery. Arch Surg 2010;145:726–731

184. Keating CL, Dixon JB, Moodie ML, Peeters A, Playfair J, O’Brien PE. Cost-efficiency of surgically induced weight loss for the management of type 2 diabetes: a randomized controlled trial. Diabetes Care 2009;32:580–584

185. Smith SA, Poland GA. Use of influenza and pneumococcal vaccines in people with diabetes. Diabetes Care 2000;23:95–108

186. Colquhoun AJ, Nicholson KG, Botha JL, Raymond NT. Effectiveness of influenza vaccine in reducing hospital admissions in people with diabetes. Epidemiol In-fect 1997;119:335–341

187. Bridges CB, Fuad K, Uyeki TM, Cox NJ, Singleton JA. Prevention and control of influenza. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recom Rep 2002;51:1–31

188. Buse JB, Ginsberg HN, Bakris GL, Clark NG, Costa F, Eckel R, Fonseca V, Ger-sten HC, Grundy S, Lever H, Rostand G, Stit-zel LF, Stone NJ, American Heart Asso-ciation, American Diabetes Association. Primary prevention of cardiovascular diseases in people with diabetes mel-litus: a scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care 2007;30:162–172

189. Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial interventional program on mortality in type 2 diabetes. N Engl J Med 2008;358:380–391

190. Chobanian AV, Bakris GL, Black HR, Cushman WC, Egan BM, Go AS, GordonDJ, Haase J, et al. The Seventh Revisions to the Joint National Committee on Preventive Medicine and Public Health. JAMA 2003;289:2560–2572

191. Cooper-DeHoff RM, Gong Y, Handberg EM, Bavry AA, Denardo SJ, Bakris GL, Pirog-Mann E, Carney MA, Corson MA, Probstfield JL, Katz L, Peterson KA, Friedewald WT, Buse JB, Bigger JT, Gerstein HC, Ismail-Beigi F. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med 2010;362:1575–1585

192. ACCORD Study Group, Cushman WC, Evans GW, Byington RP, Golf DC Jr, Grimm RH Jr, Cutler JA, Simons-Morton DG, Basile JN, Corson MA, Probstfield JL, Katz L, Peterson KA, Friedewald WT, Buse JB, Bigger JT, Gerstein HC, Ismail-Beigi F. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med 2010;362:1575–1585

193. Patel A, ADVANCE Collaborative Group, MacMahon S, Chalmers J, Neal B, Woodward M, Billot L, Harrap S, Poulter N, Marre M, Cooper M, Glasziou P, Grobbbee DE, Hamet P, Heller S, Liu LS, Mancia G, Mogensen CE, Pan CY, Rodgers A, Williams B. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet 2007;370:829–840

194. Cooper-DeHoff RM, Gong Y, Handberg EM, Bavry AA, Denardo SJ, Bakris GL, Pirog-Mann E, Carney MA, Corson MA, Probstfield JL, Katz L, Peterson KA, Friedewald WT, Buse JB, Bigger JT, Gerstein HC, Ismail-Beigi F. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med 2010;362:1575–1585

195. UKPDS: Tight blood pressure control and risk of macrovascular and microvascu-lar complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ 317:703–713, 1998

196. Hansson L, Zanchetti A, Carruthers SG, Dahlof B, Elmfeldt D, Julius S, Menard J, Rahn K, Wedel H, Westerling S. Effects of intensive blood-pressure-lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group. Lancet 1998;351:1755–1762

197. Adler AI, Stratton IM, Neil HA, Yudkin JS, Matthews DR, Cull CA, Wright AD, Turner RC, Holman RR. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 30): prospective observational study. BMJ 2000;321:382–387

198. ACCORD Study Group, Cushman WC, Evans GW, Byington RP, Golf DC Jr, Grimm RH Jr, Cutler JA, Simons-Morton DG, Basile JN, Corson MA, Probstfield JL, Katz L, Peterson KA, Friedewald WT, Buse JB, Bigger JT, Gerstein HC, Ismail-Beigi F. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med 2010;362:1575–1585

199. Patel A, ADVANCE Collaborative Group, MacMahon S, Chalmers J, Neal B, Woodward M, Billot L, Harrap S, Poulter N, Marre M, Cooper M, Glasziou P, Grobbbee DE, Hamet P, Heller S, Liu LS, Mancia G, Mogensen CE, Pan CY, Rodgers A, Williams B. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet 2007;370:829–840

200. Cooper-DeHoff RM, Gong Y, Handberg EM, Bavry AA, Denardo SJ, Bakris GL, Pirog-Mann E, Carney MA, Corson MA, Probstfield JL, Katz L, Peterson KA, Friedewald WT, Buse JB, Bigger JT, Gerstein HC, Ismail-Beigi F. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med 2010;362:1575–1585

201. Sacks FM, Svetkey LP, Vollmer WM, Ap-pell LJ, Bray GA, Harsha D, Obarzanek E, Conlin PR, Miller ER 3rd, Simons-Morton DG, Karanja N, Lin PH, DASH-So- Dium Collaborative Research Group.
Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med 2001;344:3–10

202. Tatti P, Pahor M, Byington RP, Di Mauro P, Guarisco R, Strollo G, Strollo P. Outcome results of the Fosinopril Versus Amlodipine Cardiovascular Events Randomized Trial (FACET) in patients with hypertension and NIDDM. Diabetes Care 1998;21:597–603

203. Estacio RO, Jeffers BW, Hiatt WR, Biggestaff SL, Gifford N, Schrier RW. The effect of nisoldipine as compared with enalapril on cardiovascular outcomes in patients with non-insulin-dependent diabetes and hypertension. N Engl J Med 1998;338:645–652

204. Schrier RW, Estacio RO, Mehler PS, Hiatt WR. Appropriate blood pressure control in hypertensive and normotensive type 2 diabetes mellitus: a summary of the ABCD trial. Nat Clin Pract Nephrol 2007;3:428–438

205. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial: Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 288:2981–2997, 2002

206. Psaty BM, Smith NL, Siscovick DS, Koepsell TD, Weiss NS, Heckbert SR, Lemaitre RN, Wagner EH, Furberg CD. Health outcomes associated with antihypertensive therapies used as first-line agents. A systematic review and meta-analysis. JAMA 1997;277:739–745

207. HOPE: Effects of candesartan on mortality S, CHARM Investigators and Committees. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: the CHARM-Overall programme. Lancet 2003;362:759–766

208. Granger CB, McMurray JJ, Yusuf S, Held P, Michelson EL, Olofsen B, Ostergren J, Pfeffer MA, Swedberg K, CHARM Investigators and Committees. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: the CHARM-Alternative trial. Lancet 2003;362:772–776

209. Lindholm LH, Ibsen H, Dahlöf B, Devereux RB, Beevers G, de Faire U, Fytliquist F, Julius S, Kjeldsen SE, Kristiannsson K, Lederballe-Pedersen O, Nieminen MS, Omvik P, Oparil S, Wedel H, Aurup P, Edelman J, Snapinn S, LIFE Study Group. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002;359:1004–1010

210. Berl T, Hunsicker LG, Lewis JB, Pfeffer MA, Porush JG, Rouleau JL, Drury PL, Esmatjes E, Hricik D, Parikh CR, Raz I, Vanhille P, Wiegmann TB, Wolfe BM, Locatelli F, Goldhaber SZ, Lewis EJ, IRBESARTAN Diabetic Nephropathy Trial. Collaborative Study Group. Cardiovascular outcomes in the IRBESARTAN Diabetic Nephropathy Trial of patients with type 2 diabetes and overt nephropathy. Ann Intern Med 2003;138:542–549

211. Sibai BM. Treatment of hypertension in pregnant women. N Engl J Med 1996;335:257–265

212. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, Kirby A, Sourij T, Peto R, Collins R, Simes R, Cholesterol Treatment Trials in type 2 Diabetes (CTT) Collaborators. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 2005;366:1267–1278

213. Pyörälä K, Pedersen TR, Kjekshus J, Faergeman O, Olsson AG, Thorgeirsson G. Cholesterol lowering with simvastatin in 5963 people with diabetes mellitus: results of the Scandinavian Simvastatin Survival Study (4S). Diabetologia 1997;40:614–620

214. Collins R, Armitage J, Parish S, Simes R, Peto R, Heart Protection Study Collaborative Group. Reducing cardiac events with atorvastatin in 2,532 patients with type 2 diabetes: the Anglo-Scandinavian Cardiac Outcomes Trial—lipid-lowering arm (ASCOT-LLA). Diabetes Care 2005;28:1151–1157

215. Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HA, Livingstone SJ, Thomson MJ, Maclellan MS, Charlton-Menys V, Fuller JH, CARDS investigators. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet 2004;364:685–696

216. Singh IM, Shisselbom MH, Ansell BJ. High-density lipoprotein as a therapeutic target: a systematic review. JAMA 2007;298:786–798

217. Canner PL, Berge KG, Wenger NK, Stamler J, Friedman L, Prineas RJ, Friedewald W. Fifteen year mortality in Coronary Drug Project patients: long-term benefit of improved blood cholesterol levels. J Am Coll Cardiol 1986;8:1245–1255

218. Rubins HB, Robins SJ, Collins D, Fye CL, Anderson JW, Elam MB, Faas FH, Linares E, Schafer EJ, Schectman G, Wilt TJ, Wittes J. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med 1999;341:410–418

219. Frick MH, Elo O, Haapa K, Heinonen OP, Heinsalmi P, Helo P, Huhtunen JK, Kaitaniemi P, Koskinen P, Manninen V.
Standards of Medical Care

Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 1987;317:1237–1245

Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, Forder P, Pillai A, Davis T, Glasziou P, Drury P, Kesaniemi YA, Sullivan D, Hunt D, Colman P, d’Emedin M, Whiting M, Ehnholm C, Laakso M, FIELD study investigators. Effects of long-term fenofibrate therapy on cardiovascular events in 9799 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 2005;366:1849–1861

Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults: Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001;285:2486–2497

Hayward RA, Hofer TP, Vijn S. Narrative review: lack of evidence for recommended low-density lipoprotein treatment targets: a solvable problem. Ann Intern Med 2006;145:520–530

Cannon CP, Braunwald E, McCabe CH, Rader DJ, Rouleau JL, Belder R, Joyal SV, Hulten EA, Pfeffer MA, Califf RM, Granger CB, Braunwald E, A to Z Investigators. Early intensive vs a delayed conservative simvastatin strategy in patients with acute coronary syndromes: phase Z of the A to Z trial. JAMA 2004;292:1307–1316

Nissen SE, Tuzcu EM, Schoenhagen P, Cannon CP, Braunwald E, McCabe CH, Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, Forder P, Pillai A, Davis T, Glasziou P, Drury P, Kesaniemi YA, Sullivan D, Hunt D, Colman P, d’Emedin M, Whiting M, Ehnholm C, Laakso M, FIELD study investigators. Effects of long-term fenofibrate therapy on cardiovascular events in 9799 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 2005;366:1849–1861

Program Adult Treatment Panel III Guidelines. Circulation 2004;110:227–239

Chasnian DI, Posada D, Subramanyan L, Cook NR, Stanton VP, Jr, Riddler PM. Pharmacogenetic study of statin therapy and cholesterol reduction. JAMA 2004;291:2821–2827

Brunnzell JD, Davidson M, Furberg CD, Goldberg RB, Howard BV, Stein JH, Wittzum JL. American Diabetes Association, American College of Cardiology Foundation. Lipoprotein management in patients with cardiometabolic risk: consensus statement from the American Diabetes Association and the American College of Cardiology Foundation. Diabetes Care 2008;31:811–822

Elam MB, Hunninghake DB, Davis KB, Garg R, Johnson C, Egan D, Kostis JB, Sheps DS, Brinton EA. Effect of niacin on lipid and lipoprotein levels and glycemic control in patients with diabetes and peripheral arterial disease: the ADMIT study: a randomized trial. Arterial Disease Multiple Intervention Trial. JAMA 2000;284:1263–1270

Grundy SM, Vega GL, McGovern ME, Tulloch BR, Kendall DM, Fitz-Patrick D, Ganda OP, Rosenson RS, Buse JB, Robertson DD, Sheehan JP, Diabetes Multicenter Research Group. Efficacy, safety, and tolerability of once-daily niacin for the treatment of dyslipidemia in adults with type 2 diabetes: results of the assessment of diabetes control and evaluation of the efficacy of niacin trial. Arch Intern Med 2002;162:1568–1576

Jones PH, Davidson MH. Reporting rate of rhabdomyolysis with fenofibrate + statin versus gemfibrozil + any statin. Am J Cardiol 2005;95:120–122

ACCORD Study Group, Ginsberg HN, Elam MB, Lovato LC, Crouse JR 3rd, Leitner LA, Linz P, Friedewald WT, Buse JB, Gerstein HC, Probstfield JF, Grimm RH, Ismail-Beigi F, Bigger JT, Golf DC Jr, Cushion WC, Simons-Morton DG, Byington RP. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 2011;364:1563–1574

Hokanson JE, Selvin E, Roger VL, Wang D, Benjamin EJ, Anderson KM, Beltrami E, Blaha MJ, Cushman M, D’Agostino RB, 2 diabetes: a randomized controlled trial. JAMA 2008;300:2134–2141

Belch J, MacCuisath A, Campbell I, Cobbe S, Taylor R, Prescott R, Lee R, Bancroft J, MacEwan S, Shepherd J, Macfarlane P, Morris A, Jung R, Kelly C, Connacher A, Peden N, Jameson A, Matthews D, Leese G, McKnight J, O’Brien I, Semple C, Petrie J, Gordon D, Pringle S, MacRae W. The prevention of progression of arterial disease and diabetes (POPADAD) trial: factorial randomised placebo controlled trial of aspirin and antioxidants in patients with diabetes and asymptomatic peripheral arterial disease. BMJ 2008;337:a1840

Pignone M, Earnshaw S, Tice JA, Fletcher MJ. Aspirin, statins, or both drugs for the primary prevention of coronary heart disease events in men: a cost-utility analysis. Ann Intern Med 2006;144:326–336

Pignone M, Alberts MJ, Colwell JA, Cushman M, Inzucchi SE, Mukherjee D, Rosenson RS, Williams CD, Wilson PW, Kirkman MS, American Diabetes Association, American Heart Association, American College of Cardiology Foundation. Aspirin for primary prevention of cardiovascular events in people with diabetes: a position statement of the American Diabetes Association, a scientific statement of the American Heart Association, and an expert consensus document of the American College of Cardiology Foundation. Diabetes Care 2010;33:1395–1402

Campbell CL, Smyth S, Montalescot G, Steinshubl SR. Aspirin dose for the prevention of cardiovascular disease: a systematic review. JAMA 2007;297:2018–2024

Davi G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med 2007;357:2482–2494

Bhatt DL, Marso SP, Hirsch AT, Ringleb PA, Hacke W, Topol EJ. Ameliorated benefit of clopidogrel versus aspirin in patients with diabetes mellitus. Am J Cardiol 2002;90:625–628

Runyan L, Melvin C, Lux L, McClain E, Lohr KN. Systematic review: smoking cessation interventions: strategies for adults and adults in special populations. Ann Intern Med 2006;145:845–856

Scognamiglio R, Negut C, Ramondo A, Tiengo A, Avogaro A. Detection of coronary artery disease in asymptomatic patients with type 2 diabetes mellitus. J Am Coll Cardiol 2006;47:65–71

Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, Knudsson M, Dada M, Casperson P, Harris CL, Chaitman BR, Shaw L, Gosselin G, Nawaz S, Title LM, Gau G, Blaustein AS, Booth DC, Bates ER, Svertus JA, Berman DS, Mancini GB, Weintraub WS, care.diabetesjournals.org
COURAGE Trial Research Group. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med 2007;356:1503–1516

250. BARR 2D Study Group, Frye RL, August P, Brooks MM, Hardison RM, Kelsey SF, MacGregor JM, Orchard TJ, Chaitman BR, Genthim SM, Goldberg SH, Hlatky MA, Jones TL, Moltch ME, Nesro NW, Sako ET, Sobel BE. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med 2009;360:2503–2515

251. Wackers FJ, Chyun DA, Young LH, Heller GV, Iskandrian AE, Davey JA, Barrett EJ, Taillie R, Wittlin SD, Filippchuk N, Ratner RE, Inzucchi SE. Detection of Ischemia in Asymptomatic Diabetics (DIAD) Investigators. Resolution of asymptomatic myocardial ischemia in patients with type 2 diabetes in the Detection of Ischemia in Asymptomatic Diabetics (DIAD) study. Diabetes Care 2007;30:2892–2898

252. Young LH, Wackers FJ, Chyun DA, Davey JA, Barrett EJ, Taillie R, Heller GV, Iskandrian AE, Wittlin SD, Filippchuk N, Ratner RE, Inzucchi SE, DIAD Investigators. Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA 2009;301:1547–1555

253. Haddycky M, Hein F, Meyer T, Bischoff B, Martinoff S, Schöning A, Hausleiter J. Prognostic value of coronary computed tomographic angiography in diabetic patients without known coronary artery disease. Diabetes Care 2010;33:1398–1363

254. Ellekjaer RS, Godskland IF, Feher MD, Rubens MB, Roughton M, Nugara F, Humphries SE, Richmond W, Flather MD, PREDICT Study Group. Coronary calcium measurement improves prediction of cardiovascular events in asymptomatic patients with type 2 diabetes: the PREDICT study. Eur Heart J 2008;29:2244–2251

255. Choi EK, Chun EJ, Choi SI, Chang SA, Choi SH, Lim S, Rivera JJ, Nasir K, Blumenthal RS, Jang HC, Chang HJ. Assessment of subclinical coronary atherosclerosis in asymptomatic patients with type 2 diabetes mellitus with single photon emission computed tomography and coronary computed tomographic angiography. Am J Cardiol 2009;104:890–896

256. Braunwald E, Domanski MJ, Fowler SE, Geller NL, Gersh BJ, Hsia J, Pfeffer MA, Rice MM, Rosenberg YD, Roughton D, RE, Inzucchi SE, DIAD Investigators. Angiotensin-converting enzyme inhibition in stable coronary artery disease. N Engl J Med 2004;351:2058–2068

257. Telmisartan Randomised AssessmeNt Study in ACE iNtolerant subjects with cardiovascular Disease (TRANSCEND) Investigators, Yusuf S, Teo K, Anderson C, Pogue J, Dyal L, Copland I, Schumacher H, Dagenais G, Sleight P. Effects of the angiotensin-receptor blocker telmisartan on cardiovascular events in high-risk patients intolerant to angiotensin-converting enzyme inhibitors: a randomised controlled trial. Lancet 2008;372:1174–1183

258. Garg JP, Bakris GL. Microalbuminuria: marker of vascular dysfunction, risk factor for cardiovascular disease. Vasc Med 2002;7:35–43

259. Klaasu S, Borch-Johnsen K, Fleth-Rasmussen B, Jensen G, Clausen P, Schierling H, Appleward M, Jensen J. Very low levels of microalbuminuria are associated with increased risk of coronary heart disease and death independently of renal function, hypertension, and diabetes. Circulation 2004;110:32–35

260. Gall MA, Hougaard P, Borch-Johnsen K, Parving HH. Risk factors for development of incipient and overt diabetic nephropathy in patients with non-insulin dependent diabetes mellitus: prospective, observational study. BMJ 1997;314:783–788

261. Ravid M, Lang R, Rachmani R, Lishner M. Long-term renoprotective effect of angiotensin-converting enzyme inhibitory in non-insulin-dependent diabetes mellitus. A 7-year follow-up study. Arch Intern Med 1996;156:280–289

262. Reichard P, Nilsson BY, Rosenqvist U. The effect of long-term intensified insulin treatment on the development of microvascular complications of diabetes mellitus. N Engl J Med 1993;329:304–309

263. DCCT: Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial. The Diabetes Control and Complications Trial Research Group. Am J Med 1995;99:497–504

264. Lewis EJ, Hunsicker LG, Bain RP, Rohde WW, INVEST Investigators. A calcium antagonist vs a non-calcium antagonist among high-risk patients intolerant to angiotensin-receptor blocker. JAMA 2003;290:2805–2816

265. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, Rennizzi G, Snappin SM, Zhang Z, Shahinfar S, RENAAL Study Investigators. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001;345:851–860

266. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, Ritz E, Atkins RC, Rohde R, Raz I, Collaborative Study Group. Renoprotective effects of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001;345:861–869

267. Parving HH, Lethnert H, Bröchner-Mortensen J, Gomis R, Andersen S, Arner P. Irbesartan in Patients with type 2 Diabetes and Microalbuminuria Study Group. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 2001;345:870–878

268. Pepine CJ, Handberg EM, Cooper-DeHoll RM, Marks RG, Kowey P, Messeri FH, Mancia G, Cangiano JL, Garcia-Barreto D, Keltai M, Erdine S, Yok Y, Kolb HR, Bakris GL, Cohen JD, Parmley WW, INVEST Investigators. A calcium antagonist vs non-calcium antagonist hypertension treatment strategy for patients with coronary artery disease: the Intertrial Outcomes. Vergleichender Vergleich der Wirkung von Losartan und Trandolapril study (INVEST): a randomized controlled trial. JAMA 2003;290:2805–2816

269. Bakris GL, Siomos M, Richardson D, Janssen I, Bolton WK, Hebert L, Agarwal R, Catanzano D. ACE inhibition or angiotensin receptor blocker: impact on potassium in renal failure. VAL-K Study Group. Kidney Int 2000;58:2084–2092

270. Mogensen CE, Neldam S, Tikkanen I, Bakris GL, Siomos M, Richardson D, Janssen I, Bolton WK, Hebert L, Agarwal R, Catanzano D. ACE inhibition or angiotensin receptor blocker: impact on potassium in renal failure. VAL-K Study Group. Kidney Int 2000;58:2084–2092

271. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, Rennizzi G, Snappin SM, Zhang Z, Shahinfar S, RENAAL Study Investigators. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001;345:861–869

272. Parving HH, Lethnert H, Bröchner-Mortensen J, Gomis R, Andersen S, Arner P. Irbesartan in Patients with type 2 Diabetes and Microalbuminuria Study Group. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 2001;345:870–878

273. Pepine CJ, Handberg EM, Cooper-DeHoll RM, Marks RG, Kowey P, Messeri FH, Mancia G, Cangiano JL, Garcia-Barreto D, Keltai M, Erdine S, Yok Y, Kolb HR, Bakris GL, Cohen JD, Parmley WW, INVEST Investigators. A calcium antagonist vs non-calcium antagonist hypertension treatment strategy for patients with coronary artery disease: the Intertrial Outcomes. Vergleichender Vergleich der Wirkung von Losartan und Trandolapril study (INVEST): a randomized controlled trial. JAMA 2003;290:2805–2816

274. Bakris GL, Siomos M, Richardson D, Janssen I, Bolton WK, Hebert L, Agarwal R, Catanzano D. ACE inhibition or angiotensin receptor blocker: impact on potassium in renal failure. VAL-K Study Group. Kidney Int 2000;58:2084–2092

275. Mogensen CE, Neldam S, Tikkanen I, Oren S, Viskoper R, Watts RW, Cooper ME. Randomised controlled trial of dual blockade of renin-angiotensin system in
patients with hypertension, microalbuminuria, and non-insulin dependent diabetes: the candesartan and lisinopril microalbuminuria (Calm) study. BMJ 2000;321:1440–1444

276. Schjoedt KJ, Jacobsen P, Rossing K, Boomsma F, Parving HH. Dual blockade of the renin-angiotensin-aldosterone system in diabetic nephropathy: the role of aldosterone. Horm Metab Res 2005;37(Suppl. 1):4–8

277. Schjoedt KJ, Rossing K, Juul TR, Boomsma F, Rossing P, Tarnow L, Parving HH. Beneficial impact of spironolactone in diabetic nephropathy. Kidney Int 2005;68:2829–2836

278. Parving HH, Persson F, Lewis JB, Lewis EJ, Hollenberg NK. AVOID Study Investigators. Aliskiren combined with losartan in type 2 diabetes and nephropathy. N Engl J Med 2008;358:2433–2446

279. Pijls LT, de Vries H, Donker AJ, van Eijk JM. The effect of protein restriction on albuminuria in patients with type 2 diabetes mellitus: a randomized trial. Nephrol Dial Transplant 1999:14:1445–1453

280. Pedrini MT, Levey AS, Lau J, Chalmers TC, Wang PH. The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal diseases: a meta-analysis. Ann Intern Med 1996;124:627–632.

281. Hansen HP, Tauber-Lassen E, Jensen BR, Parving HH. Effect of dietary protein restriction on prognosis in patients with diabetic nephropathy. Kidney Int 2002;62:220–228

282. Kasiske BL, Lakatua JD, Ma JZ, Louis TA. Diabetes: the candesartan and lisinopril microalbuminuria (Calm) study. BMJ 2000;321:1440–1444

283. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 1999;130:461–470

284. Rigalleau V, Lasseur C, Perlehomme C, Barthe N, Raffaïtin C, Liu C, Chauveau P, Baillet-Blanco L, Beauvieux MC, Combe C, Gin H. Estimation of glomerular filtration rate in diabetic subjects: Cockcroft formula or modification of Diet in Renal Disease study equation? Diabetes Care 2005;28:838–843

285. Levinson NY. Specialist evaluation in chronic kidney disease: too little, too late. Ann Intern Med 2002;137:542–543

286. Klein R. Hyperglycemia and microvascular and macrovascular disease in diabetes. Diabetes Care 1995;18:258–268

287. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 1999;130:461–470

288. Rigalleau V, Lasseur C, Perlehomme C, Barthe N, Raffaïtin C, Liu C, Chauveau P, Baillet-Blanco L, Beauvieux MC, Combe C, Gin H. Estimation of glomerular filtration rate in diabetic subjects: Cockcroft formula or modification of Diet in Renal Disease study equation? Diabetes Care 2005;28:838–843

289. Levinsky NG. Specialist evaluation in chronic kidney disease: too little, too late. Ann Intern Med 2002;137:542–543

290. Klein R. Hyperglycemia and microvascular and macrovascular disease in diabetes. Diabetes Care 1995;18:258–268

291. Estacio RO, McFarling E, Biggerstaff S, Jeffers BW, Johnson D, Schrier RW. Overt albuminuria predicts diabetic retinopathy in Hispanics with NIDDM. Am J Kidney Dis 1998;31:947–953

292. Leske MC, Wu SY, Hennis A, Hyman L, Marmor MF, Johnson M, Fishman GA. The Barbados Eye Study: Evaluation of diabetic retinopathy: the Barbados Eye Studies. Ophthalmology 2005;112:799–805

293. Fong DS, Aiello LP, Ferris FL 3rd, Klein R. Diabetic retinopathy. Diabetes Care 2004;27:2540–2553

294. Diabetes Control and Complications Trial Research Group. Effect of pregnancy on microvascular complications in the diabetes control and complications trial. The Diabetes Control and Complications Trial Research Group. Diabetes Care 2000;23:1084–1091

295. Preliminary report on effects of photocoagulation therapy. The Diabetic Retinopathy Study Research Group. Am J Ophthalmol 1985;103:1796–1806

296. ETDRS: Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Early Treatment Diabetic Retinopathy Study research group. Arch Ophthalmol 1995;113:1796–1806

297. American Diabetes Association: Retinopathy in diabetes (Position Statement). Diabetes Care 2004;27(Suppl. 1):S84–S87

298. Ahmed J, Ward TP, Bursell SE, Aiello LM, Cavallerano JD, Vigersky RA. The sensitivity and specificity of nonmydriatic digital stereoscopic retinal imaging in detecting diabetic retinopathy. Diabetes Care 2006;29:2205–2220

299. Ciulla TA, Amador AG, Zinman B. Diabetic retinopathy and diabetic macular edema: pathophysiology, screening, and novel therapies. Diabetes Care 2003;26:2653–2664

300. Boulton AJ, Vinik AI, Arezzo JC, Bril V, Feldman EL, Freeman R, Malik RA, Masere R, Sosenko JM, Ziegler D, American Diabetes Association. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care 2005;28:956–962

301. Wiley DJ, Toth C. Association of metformin, elevated homocysteine, and methylmalonic acid levels and clinically worsened diabetic peripheral neuropathy. Diabetes Care 2010;33:156–161

302. Freedman R. Not all neuropathy in diabetes is of diabetic etiology: differential diagnosis of diabetic neuropathy. Curr Diab Rep 2009;9:423–431

303. Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care 2003;26:1553–1579

304. Boulton AJ, Armstrong DG, Albert SF, Frykberg RG, Hellman R, Kirkman MS, Lavery LA, Lemaster JW, Mills JL Jr, Mueller MJ, Sheehan P, Wukich DK, American Diabetes Association, American Association of Clinical Endocrinologists. Comprehensive foot examination and risk assessment: a report of the task force of the foot care interest group of the American Diabetes Association, with endorsement by the American Association of Clinical Endocrinologists. Diabetes Care 2008;31:1679–1685

305. American Diabetes Association: Peripheral arterial disease in people with diabetes (Consensus Statement). Diabetes Care 2003;26:3333–3341

306. Silverstein J, Klingsennath G, Copeland KC, Plotnick L, Kaufman F, LaFell L, Deeb LC, Gray M, Anderson BJ, Holzmeister LA, Clark NG. Care of children and adolescents with type 1 diabetes mellitus: a statement of the American Diabetes Association. Diabetes Care 2005;28:186–212

307. Northam EA, Anderson PJ, Werther GA, Warne GL, Adler RG, Andrews D. Neuropsychological complications of IDDM in children 2 years after disease onset. Diabetes Care 1998;21:379–384

308. Rodet J, Alvarez M. Attentional functioning in children and adolescents with IDDM. Diabetes Care 1998;21:379–384

309. Bjergaas M, Gimse R, Vik T, Sand T. Cognitive function in type 1 diabetic children with and without episodes of severe hypoglycaemia. Acta Paediatr 1997;86:148–153

310. Nimri R, Weintrob N, Benzaquen H, Ofan R, Fayman G, Phillip M. Insulin pump therapy in youth with type 1 diabetes: a retrospective paired study. Pediatr Diabetes 2005;6(4):303–310

311. Boyle EA, Weinzierl SA, Steffen AT, Ahern JA, Vincent M, Tamborlane W. A randomized, prospective trial comparing the efficacy of continuous subcutaneous insulin infusion with multiple
daily injections using insulin glargine. Diabetes Care 2004;27:1554–1558
313. Perantie DC, Wu J, Koller JM, Lim A, Warren SL, Black KJ, Sadler M, White NH, Hershey T. Regional brain volume differences associated with hyperglycemia and severe hypoglycemia in youth with type 1 diabetes. Diabetes Care 2007;30:2331–2337
314. Mäkimattila S, Malmberg-Ceder K, Hakkinen AM, Vuori K, Salonen O, Summanen P, Yki-Järvinen H, Kaste M, Heikkinen S, Lundbom N, Roine RO. Brain metabolic alterations in patients with type 1 diabetes-hyperglycemia-induced injury. J Cereb Blood Flow Metab 2004;24:1393–1399
315. Krantz JS, Mack WJ, Hodis HN, Liu CR, Liu CH, Kaufman FR. Early onset of subclinical atherosclerosis in young persons with type 1 diabetes. J Pediatr 2004;145:452–457
316. Jarvisalo MJ, Putto-Laurila A, Jartti L, Heikkinen AM, Leinonen P, Louhivuori H, Routi T, Roennemaa T, Raitakari OT. Carotid artery intima-media thickness in children with type 1 diabetes. Diabetes 2002;51:493–498
317. Haller MJ, Samyn M, Nichols WW, Brusko T, Wasserfall C, Schwartz RF, Atkinson M, Shuster JJ, Pierce GL, Silverstein JH. Radial artery tonometry demonstrates arterial stiffness in children with type 1 diabetes. Diabetes Care 2003;26:2030–2037
318. Orchard TJ, Forrest KY, Kuller LH, Becker DJ, Pittsburgh Epidemiology of Diabetes Complications Study. Lipid and blood pressure treatment goals for type 1 diabetes 10-year incidence data from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetes Care 2001;24:1053–1059
319. Kavey RE, Allada V, Daniels SR, Hayman LL, McCrindle BW, Newburger JW, Parekh RS, Steinberger J, American Heart Association Expert Panel on Population and Prevention Science, American Heart Association Council on Cardiovascular Disease in the Young, American Heart Association Council on Epidemiology and Prevention, American Heart Association Council on Nutrition, Physical Activity and Metabolism, American Heart Association Council on High Blood Pressure Research, American Heart Association Council on Cardiovascular Nursing, American Heart Association Council on the Kidney in Heart Disease, Interdisciplinary Working Group on Quality of Care and Outcomes Research. Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the American Heart Association Expert Panel on Population and Prevention Science; the Councils on Cardiovascular Disease in the Young, Epidemiology and Prevention, Nutrition, Physical Activity and Metabolism, High Blood Pressure Research, Cardiovascular Nursing, and the Kidney in Heart Disease; and the Interdisciplinary Working Group on Quality of Care and Outcomes Research: endorsed by the American Academy of Pediatrics. Circulation 2006;114:2710–2738
320. McCrindle BW, Urbina EM, Dennison BA, Jacobson MS, Steinerberger J, Rocchini AP, Hayman LL, Daniels SR, American Heart Association Atherosclerosis, Hypertension, and Obesity in Youth Committee, American Heart Association Council on Cardiovascular Disease in the Young, American Heart Association Council on Cardiovascular Nursing. Drug therapy of high-risk lipid abnormalities in children and adolescents: a scientific statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in Youth Committee, Council of Cardiovascular Disease in the Young, with the Council on Cardiovascular Nursing. Circulation 2007;115:1948–1967
321. Salo P, Viikari J, Hääläinen M, Lapinleimu H, Routi T, Ronnemaa T, Sippapanen R, Jokinen E, Valimäki I, Simell O. Serum cholesterol ester fatty acids in 7- and 13-month-old children in a prospective randomized trial of a low-saturated fat, low-cholesterol diet: the STRIP baby study. J Pediatr 2003;142:292–299
322. Efficacy and safety of lowering dietary intake of fat and cholesterol in children with elevated low-density lipoprotein cholesterol. The Dietary Intervention Study in Children (DISC). The Writing Group for the DISC Collaborative Research Group. JAMA 1995;273:1429–1435
323. McCrindle BW, Ose L, Marais AD. Efficacy and safety of atorvastatin in children and adolescents with familial hypercholesterolemia or severe hyperlipidemia: a multicenter, randomized, placebo-controlled trial. J Pediatr 2003;143:74–80
324. de Jongh S, Lilien MR, op’t Roodt J, Stroes ES, Bakker HD, Kastelein JJ. Early statin therapy restores endothelial function in children with familial hypercholesterolemia. Am J Cardiol 2002;89:2117–2121
325. Wiegen A, Huten BA, de Groot E, Rodenburg J, Bakker HD, Buller HR, Si-brand EJ, Kastelein JJ. Efficacy and safety of statin therapy in children with familial hypercholesterolaemia: a randomised controlled trial. JAMA 2004;292:331–337
326. Holmes GK. Screening for coeliac disease in type 1 diabetes. Arch Dis Child 2002;87:495–498
327. Rewers M, Liu E, Simmons J, Redondo MJ, Hoffenberg EJ. Celiac disease associated with type 1 diabetes mellitus. Endocrinol Metab Clin North Am 2004;33:197–214, xi
328. Roldán MB, Alonso M, Barrio R. Thyroid autoimmunity in children and adolescents with Type 1 diabetes mellitus. Diabetes Nutr Metab 1999;12:27–31
329. Kordonouri O, Deiss D, Danne T, Dorow A, Bassir C, Grütters-Kieselich A. Predictivity of thyroid autoantibodies for the development of thyroid disorders in children and adolescents with Type 1 diabetes. Diabet Med 2002;19:518–521
330. Mohn A, Di Michele S, Di Luzio R, Tumini S, Chiarelli F. The effect of subclinical hypothyroidism on metabolic control in children and adolescents with Type 1 diabetes mellitus. Diabet Med 2002;19:70–73
331. Chase HP, Garg SK, Cockerham RS, Wilcox WD, Walravens PA. Thyroid hormone replacement and growth of children with subclinical hypothyroidism and diabetes. Diabet Med 1990;7:299–303
332. American Diabetes Association: Diabe-
tes care in the school and day care setting (Position statement). Diabetes Care 2010;33(Suppl. 1):S70–S74
333. Bryden KS, Peveler RC, Stein A, Neil A, Mayou RA, Dunger DB. Clinical and psychological course of diabetes from adolescence to young adulthood: a longitudinal cohort study. Diabetes Care 2001;24:1536–1540
334. Laing SP, Jones ME, Swerdlow AJ, Burden AC, Gatling W. Psychosocial and socioeconomic risk factors for premature death in young people with type 1 diabetes. Diabetes Care 2005;28:1618–1623
335. Pacadu d, Yale JF, Stephure D, Trussell R, Davies HD. Problems in transition from pediatric care to adult care for individuals with diabetes. Can J Diabetes 2005;29:13–18
336. American Academy of Pediatrics, American Academy of Family Physicians, American College of Physicians-American Society of Internal Medicine. A consensus statement on health care transitions for young adults with special health care needs. Pediatrics 2002;110:1304–1306
337. Wolpert HA, Anderson BJ, Weissberg-Benchell J. Transitions in care: Meeting the challenges of type 1 diabetes in young adults. Alexandria VA, American Diabetes Association, 2009
338. Eppens MC, Craig ME, Cusumano J, Hing S, Chan AK, Howard NJ, Silink M, Donaghe KC. Prevalence of diabetes complications in adolescents with type 2 compared with type 1 diabetes. Diabetes Care 2006;29:1300–1306
339. Hattersley A, Bruining J, Shield J, Nijssen P, Donaghe KC. The diagnosis and
management of monogenic diabetes in children and adolescents. Pediatr Diabetes 2009;10(Suppl.):33–42

340. Cooper WO, Hernandez-Diaz S, Arborgast PG, Dudley JA, Dyer S, Gideon PS, Hall K, Ray WA. Major congenital malformations after first-trimester exposure to ACE inhibitors. N Engl J Med 2006; 354:2443–2451

341. American Diabetes Association: Preconception care of women with diabetes (Position Statement). Diabetes Care 2004;27(Suppl. 1):S76–S78

342. Brown AF, Mangione CM, Saliba D, Sarkisian CA, California Healthcare Foundation/American Geriatrics Society Panel on Improving Care for Elders with Diabetes. Guidelines for improving the care of the older person with diabetes mellitus. J Am Geriatr Soc 2003;51: S265–S280

343. Curb JD, Pressel SL, Cutler JA, Savage PJ, Applegate WB, Black H, Camel G, Davis BR, Frost PH, Gonzalez N, Guthrie G, Oberman A, Rutan GH, Stamler J. Effect of diuretic-based antihypertensive treatment on cardiovascular disease risk in older diabetic patients with isolated systolic hypertension. Systolic Hypertension in the Elderly Program Cooperative Research Group. JAMA 1996;276: 1886–1892

344. Beckett NS, Peters R, Fletcher AE, Staes J, Buysschaert M, L. Dumitrascu D, Stoyanovsky V, Antikainen RL, Nikitin Y, Anderson C, Belhani A, Forette F, Rajkumar C, Thijs L, Banya W, Bulpitt CJ, HYVET Study Group. Treatment of hypertension in patients 80 years of age or older. N Engl J Med 2008;358: 1887–1898

344a. Moran A, Brunzell C, Cohen RC, Katz M, Marshall BC, Onady G, Robinson KA, Sabadosa KA, Steeneken A, Slovis B, the CFRD Guidelines Committee. Clinical care guidelines for cystic fibrosis–related diabetes: a position statement of the American Diabetes Association and a clinical practice guideline of the Cystic Fibrosis Foundation, endorsed by the Pediatric Endocrine Society. Diabetes Care 2010;33:2697–2708

345. Clement S, Braithwaite SS, Magee MF, Anderson A, Smith EP, Schaf FR, Hirsh IB, Hirsh IB, American Diabetes Association Diabetes in Hospitals Writing Committee. Management of diabetes and hyperglycemia in hospitals. Diabetes Care 2004;27:553–591

346. Moghissi ES, Korytkowski MT, DiNardo M, Einhorn D, Hellman R, Hirsch IB, Inzucchi SE, Ismail-Beigi F, Kirkman MS, Umpeirerez GE, American Association of Clinical Endocrinologists, American Diabetes Association. American Association of Clinical Endocrinologists and American Diabetes Association consensus statement on inpatient glycemic control. Diabetes Care 2009;32:1119–1311

347. American Diabetes Association: Economic costs of diabetes in the U.S. in 2007. Diabetes Care 2008;31:596–615

348. Levetan CS, Passaro M, Jablonski K, Kass M, Ratner RE. Unrecognized diabetes among hospitalized patients. Diabetes Care 1998;21:246–249

349. Umpierrez GE, Isaacs SD, Bazargan N, You X, Thaler LM, Kitaabchei A. Hyperglycemia: an independent marker of in-hospital mortality in patients with undiagnosed diabetes. J Clin Endocrinol Metab 2002;87:978–982

350. van den Berge G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinand P, Lauwers P, Bouillon R. Intensive insulin therapy in the critically ill patients. N Engl J Med 2001;345:1339–1367

351. Malmberg K, Norhammar A, Wedel H, Ryden L. Glycemic state at admission: important risk marker of mortality in conventionally treated patients with diabetes mellitus and acute myocardial infarction: long-term results from the Diabetes and Insulin-Glucose Infusion in Acute Myocardial Infarction (DIGAMI) study. Circulation 1999;99:2626–2632

352. Wiener RS, Wiener DC, Larson RJ. Benefits and risks of tight glucose control in critically ill adults: a meta-analysis. JAMA 2009;301:1429–1438

353. Brunerkor H, Engel C, Brooks F, Meier-Hellmann A, Ragaller M, Weiler N, Moerer O, Gruendling M, Oppert M, Grond S, Othof H, Jaschinsky U, John S, Rosaiant R, Welte T, Schaedler M, Kern P, Kuhnt E, Kiehntopf M, Hartog C, Nathanon C, Loeffler M, Reinhard K, German Competence Network Sepsis (SepNet). Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 2008;358:125–139

354. NICE-SUGAR Study Investigators, Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, Bellomo R, Cook D, Dodek P, Henderson WR, Hebert PC, Heritier S, Heyland DK, McArthur C, Dodek P, Henderson WR, Hebert PC, Heritier S, Heyland DK, McArthur C, McDonald E, Mitchell I, Myburgh JA, Norton R, Potter J, Robinson BG, Ronco C, Rowe E. Effectiveness of a computerized order set on the inpatient management of diabetes and insulin-glucose infusion in critically ill adults: a randomized controlled trial. N Engl J Med 2009;360:1283–1297

355. Krinsley JS, Grover A. Severe hypoglycemia in critically ill patients: risk factors and outcomes. Crit Care Med 2007;35: 2262–2267

356. van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, Van Wijngaerden E, Van Ranst M, Poter, J. Intensive insulin therapy in the medical ICU. N Engl J Med 2001;345:1339–1367

357. Griesdale DE, de Souza RJ, van Dam RM, Scher MA, Tyrrell DB, Fizdale A, Huxley R, Eikelboom J, Huxley R, Eikelboom J, Huxley R, Eikelboom J. NICE-SUGAR Study Investigators, Finfer S, Chittock DR, Finfer S, Chittock DR, Finfer S, Chittock DR, Finfer S, Chittock DR. Intensive insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data. CMAJ 2009; 180:821–827

358. Saudek CD, Herman WH, Sacks DB, Bergenstal RM, Edelman D, Davidson MB. A new look at screening and diagnosing diabetes mellitus. J Clin Endocrinol Metab 2008;93:2447–2453

359. Cryer PE, Davis SN, Shaman H. Hyperglycemia in diabetes. Diabetes Care 2003;26:1902–1912

360. Czonsnowski QA, Swanson JM, Lobo BL, Broyles JE, Deaton PR, Finch CK. Evaluation of glycemic control following discontinuation of an intensive insulin protocol. J Hosp Med 2009;4:28–34

361. Shomali MI, Herr DL, Hill PC, Pelkmanova M, Sharretts JM, and Magee MF. Transition to Target: A randomized trial comparing three formu for determination of subcutaneous basal insulin dosing at the time of transition from intravenous insulin therapy following cardiac surgery. Diabetes Science and Technology 2010. In press

362. Umpierrez GE, Smiley D, Jacobs S, Peng L, Temponi A, Newton C, Umpierrez D, Mulligan P, Olson D, Mcleod J, Rizzo M. Randomized study of basal bolus insulin therapy in the inpatient management of patients with type 2 diabetes undergoing general surgery (RABBIT 2 Surgery) (Abstract). Diabetes 2010;59(Suppl. 1):A9

363. Pasquel FJ, Spiegelman R, McCaulley M, Smiley D, Umpierrez D, Johnson R, Rhee M, Gatcliffe C, Lin E, Umpierrez E, Peng L, Umpierrez GE. Hyperglycemia during total parenteral nutrition: an important marker of poor outcome and mortality in hospitalized patients. Diabetes Care 2010;33:739–741

364. Schnipper JL, Liang CL, Ndumele CD, Pendergrass ML. Effects of a computerized order set on the inpatient management of hyperglycemia: a cluster-randomized controlled trial. Endocr Pract 2010;16:209–218

365. Wexler DJ, Shradrer P, Burns SM, Cagliero E. Effectiveness of a computerized insulin order template in general medical inpatients with type 2 diabetes: a cluster-randomized trial. Diabetes Care 2010;33:2181–2183

366. Furnary AP, Braithwaite SS. Effects of outcome on in-hospital transition from intravenous insulin infusion to subcutaneous therapy. Am J Cardiol 2006;98:557–564

367. Schafer RG, Bohannon B, Franz MJ, Freeman J, Holmes A, McLaughlin S, Haas LB, Kruger DF, Lorenz RA, McMahan MM. Diabetes nutrition recommendations for health care institutions. Diabetes Care 2004;27(Suppl. 1):S55–S57

368. Curl M, Dinardo M, Noschese M, Ko-
rykowski MT. Menu selection, glycaemic control and satisfaction with standard and patient-controlled consistent carbohydrate meal plans in hospitalized patients with diabetes. Qual Saf Health Care 2010;19:355–359

369. American Diabetes Association: Diabetes nutrition recommendations for health care institutions (Position Statement). Diabetes Care 2010;27(Suppl. 1):S55–S57

370. Boucher JL, Swift CS, Franz MJ, Kulkarni K, Schafer RG, Pritchett E, Clark NG. Inpatient management of diabetes and hyperglycemia: implications for nutrition practice and the food and nutrition professional. J Am Diet Assoc 2007;107:105–111

371. Korytkowski MT, Salata RA, Koerbel GL, Selzer F, Karslioglu E, Idri ss AM, Lee KK, Moser AJ, Toledo FG. Insulin therapy and glycemic control in hospitalized patients with diabetes during enteral nutrition therapy: a randomized controlled clinical trial. Diabetes Care 2009;32:594–596

372. Umpierrez GE. Basal versus sliding-scale regular insulin in hospitalized patients with hyperglycemia during enteral nutrition therapy. Diabetes Care 2009;32:751–753

373. Klonoff DC, Perz JF. Assisted monitoring of blood glucose: special safety needs for a new paradigm in testing glucose. J Diabetes Sci Technol 2010;4:1027–1031

374. D’Orazio P, Burnett RW, Fogh-Andersen N, Jacobs E, Kuwa K, Kulpmann WR, Larsson L, Lewenstam A, Maas AH, Mager G, Naskalski JW, Okorodudu AO, International Federation of Clinical Chemistry Scientific Division Working Group on Selective Electrodes and Point of Care Testing. Approved IFCC recommendation on reporting results for blood glucose (abbreviated). Clin Chem 2005;51:1573–1576

375. Dungan K, Chapman J, Braithwaite SS, Buse J. Glucose measurement: confounding issues in setting targets for inpatient management. Diabetes Care 2007;30:403–409

376. Boyd JC, Bruns DE. Quality specifications for glucose meters: assessment by simulation modeling of errors in insulin dose. Clin Chem 2001;47:209–214

377. Shepperd S, Mcclaran J, Phillips CO, Lannin NA, Clemson LM, McCluskey A, Cameron ID, Barras SL. Discharge planning from hospital to home. Cochrane Database Syst Rev CD00313, 2010

378. Agency for Healthcare Research and Quality [article online]. Available from http://psnet.ahrq.gov/primer.aspx?primerID=11. Accessed 17 August 2010

379. Hoerger TJ, Segel JE, Gregg EW, Saad-dine JB. Is glycemic control improving in U.S. adults? Diabetes Care 2008;31:81–86

380. Beaulieu N, Cutler DM, Ho K, Isham G, Lindquist T, Nelson A, O’Connor P. The business case for diabetes disease management for managed care organizations. Forum for Health Economics and Policy 2006;9:article 1

381. Cheung BM, Ong KL, Cherny SS, Sham PC, Tso AW, Lam KS. Diabetes prevalence and therapeutic target achievement in the United States, 1999 to 2006. Am J Med 2009;122:443–453

382. Coleman K, Austin BT, Brach C, Wagner EH. Evidence on the Chronic Care Model in the new millennium. Health Aff (Millwood) 2008;27:85–89

383. O’Connor PJ. Electronic medical records and diabetes care improvement: are we waiting for Godot? Diabetes Care 2003;26:942–943

384. Shojaiania KG, Ranji SR, McDonald KM, Grimshaw JM, Sundaram V, Rushakoff RJ, Owens DK. Effects of quality improvement strategies for type 2 diabetes on glycemic control: a meta-regression analysis. JAMA 2006;296:427–440

385. Davidson MB. How our current medical care system fails people with diabetes: lack of timely, appropriate clinical decisions. Diabetes Care 2009;32:370–372

386. McLean DL, McAlister FA, Johnson JA, King KM, MAKowsky J, Jones CA, Tsuyuki RT, SCRIP-HTN Investigators. A randomized trial of the effect of community pharmacist and nurse care on improving blood pressure management in patients with diabetes mellitus: study of cardiovascular risk intervention by pharmacists-hypertension (SCRIP-HTN). Arch Intern Med 2008;168:2355–2361

387. Berikai P, Meyer PM, Kazlauksaita R, Savoy B, Kozik K, Fogelfeld L. Gain in patients’ knowledge of diabetes management targets is associated with better glycemic control. Diabetes Care 2007;30:1587–1589

388. Sperl-Hillen JM, O’Connor PJ. Factors driving diabetes care improvement in a large medical group: ten years of progress. Am J Manag Care 2005;11:S177–S185

389. Siminero LM. Implementing diabetes self-management training programs: breaking through the barriers in primary care. Endocr Pract 2006;12(Suppl. 1):124–130

390. Maloney JJ. Reducing patient drug acquisition costs can lower diabetes health claims. Am J Manag Care 2005;11:S170–S176

391. Maney M, Tseng CL, Safford MM, Miller DR, Pogach LM. Impact of self-reported patient characteristics upon assessment of glycemic control in the Veterans Health Administration. Diabetes Care 2007;30:245–251

392. Bergenstal RM. Treatment models from the International Diabetes Center: advancing from oral agents to insulin therapy in type 2 diabetes. Endocr Pract 2006;12(Suppl. 1):98–104

393. Feiler C, Nemeth L, Nietert PJ, Wessell AM, Jenkins RG, Royleance L, Ornstein SM. Different paths to high-quality care: three archetypes of top-performing practice sites. Ann Fam Med 2007;5:233–241

394. Ornstein S, Nietert PJ, Jenkins RG, Wessell AM, Nemeth LS, Feiler C, Corley ST. Improving diabetes care through a multicomponent quality improvement model in a practice-based research network. Am J Med Qual 2007;22:34–41

395. Parchman ML, Zeber JE, Romero RR, Pugh JA. Risk of coronary artery disease in type 2 diabetes and the delivery of care consistent with the chronic care model in primary care settings: a STARNet study. Med Care 2007;45:1129–1134