Optimal Coding for the Erasure Channel with Arbitrary Alphabet Size

Shervan Fashandi, Shahab Oveis Gharan and Amir K. Khandani
ECE Dept., University of Waterloo, Waterloo, ON, Canada, N2L3G1
e-mail: \{sfashand,shahab,khandani\}@cst.uwaterloo.ca

Abstract

An erasure channel with a fixed alphabet size \(q \), where \(q \gg 1 \), is studied. It is proved that over any erasure channel (with or without memory), Maximum Distance Separable (MDS) codes achieve the minimum probability of error (assuming maximum likelihood decoding). Assuming a memoryless erasure channel, the error exponent of MDS codes are compared with that of random codes and linear random codes. It is shown that the envelopes of all these exponents are identical for rates above the critical rate. Noting the optimality of MDS codes, it is concluded that both random codes and linear random codes are exponentially optimal, whether the block sizes is larger or smaller than the alphabet size.

I. INTRODUCTION

Erasure channels with large alphabet sizes have recently received significant attention in networking applications. Different erasure channel models are adopted to study the performance of end-to-end connections over the Internet [1], [2]. In such models, each packet is seen as a \(q = 2^b \)-ary symbol where \(b \) is the packet length in bits. In this work, a memoryless erasure channel with a fixed, but large alphabet size is considered. The error probability over this channel (assuming maximum-likelihood decoding) for Maximum Distance Separable (MDS) and random codebooks are compared and shown to be exponentially identical for rates above the critical rate.

Shannon [3] was the first who observed that the error probability for maximum likelihood decoding of a random code (\(P_{E,ML}^{\text{rand}} \)) can be upper-bounded by an exponentially decaying function with respect to the code block length \(N \). This exponent is positive as long as the rate stays below the channel capacity, \(R < C \). Following this result, tighter bounds were proposed in the literature [4]–[6]. For rates below the critical rate, modifications of random coding are proposed to achieve tighter bounds [7]. Interestingly, the

\(^1\)Financial support provided by Nortel and the corresponding matching funds by the Natural Sciences and Engineering Research Council of Canada (NSERC), and Ontario Centres of Excellence (OCE) are gratefully acknowledged.
exponential upper-bound on $P_{E,ML}^{rand}$ remains valid regardless of the alphabet size q, even in the case where q is larger than the block size N (e.g. see the steps of the proofs in [6]). There is also a lower-bound on the probability of error using random coding which is known as the sphere packing bound [8]. For channels with a relatively small alphabet size ($q \ll N$), both the sphere packing lower-bound and the random coding upper-bound on the error probability are exponentially tight for rates above the critical rate [9]. However, the sphere packing bound is not tight if the alphabet size, q, is comparable to the coding block length N (noting the terms $o_1(N)$ and $o_2(N)$ in [8]).

Probability of error, minimum distance, and distance distribution of random linear codes are discussed in [10], [11]. Pierce studies the asymptotic behavior of the minimum distance of binary random linear codes [10]. Error exponent of random linear codes over a binary symmetric channel is analyzed in [11]. Barg et al. also study the minimum distance and distance distribution of random linear codes and show that random linear codes have better expurgated error exponent as compared to random codes for rates below the critical rate [11].

Maximum Distance Separable (MDS) [12] codes are optimum in the sense that they achieve the largest possible minimum distance, d_{min}, among all block codes of the same size. Indeed, any codeword in an MDS code of size $[N, K]$ can be successfully decoded from any subset of its coded symbols of size K or more. This property makes MDS codes suitable for use over erasure channels like the Internet [1], [2], [13]. However, the practical encoding-decoding algorithms for such codes have quadratic time complexity in terms of the code block length [14]. Theoretically, more efficient ($O(N \log^2 N)$) MDS codes can be constructed based on evaluating and interpolating polynomials over specially chosen finite fields using Discrete Fourier Transform [15]. However, in practice these methods can not compete with the quadratic methods except for extremely large block sizes. Recently, a family of almost-MDS codes with low encoding-decoding complexity (linear in length) is proposed and shown to provide a practical alternative for coding over the erasure channels like the Internet [16]. In these codes, any subset of symbols of size $K(1 + \epsilon)$ is sufficient to recover the original K symbols with high probability [16]. Fountain codes, based on the idea of almost-MDS codes with linear decoding complexity, are proposed for information multicasting to many users over an erasure channel [17], [18].

In this work, a memoryless erasure channel with a fixed, but large alphabet size is studied. First, it is proved that MDS block codes offer the minimum probability of decoding error over any erasure channel. Then, error exponents of MDS codes, random codes, and linear random codes for a memoryless erasure channel are analyzed and shown to be identical for rates above the critical rate. Combining the two results, we conclude that both random codes and linear random codes are exponentially as good as MDS codes (exponentially optimal) over a wide range of rates.
The rest of this paper is organized as follows. In section II, the erasure channel model is introduced, and the assumption of large alphabet sizes is justified. Section III proves that MDS codes are optimum over any erasure channel. Error exponents of MDS codes, random codes, and linear random codes over a memoryless erasure channel are compared in section IV. Finally, section V concludes the paper.

II. ERASURE CHANNEL MODEL

The memoryless erasure channel studied in this work has the alphabet size q and the erasure probability π (see Fig. 1). The alphabet size q is assumed to be fixed and large, i.e., $q \gg 1$.

The described channel model occurs in many practical scenarios such as the Internet. From an end to end protocol’s perspective, performance of the lower layers in the protocol stack can be modeled as a random channel called an Internet channel. Since each packet usually includes an internal error detection mechanism (for instance a Cyclic Redundancy Check), the Internet channel can be modeled as an erasure channel with packets as symbols [19]. If each packet contains b bits, the corresponding channel will have an alphabet size of $q = 2^b$ which is huge for typical packet sizes. Therefore, in practical networking applications, the block size is usually much smaller than the alphabet size. Algebraic computations over Galois fields \mathbb{F}_q of such large cardinalities is now practically feasible with the increasing processing power of electronic circuits. Note that network coding schemes, recently proposed and applied for content distribution over large networks, have a comparable computational complexity [20]–[26].

Note that all the known MDS codes have alphabets of a large size (growing at least linearly with the block length N). Indeed, a conjecture on MDS codes states that for every linear $[N, K]$ MDS code over the Galois field \mathbb{F}_q, if $1 < K < q$, then $N \leq q + 1$, except when q is even and $K = 3$ or $K = q - 1$, for which $N \leq q + 2$ [27]. To have a feasible MDS code over a channel with the alphabet size q, the block size N should satisfy $N \leq q + 1$.

![Fig. 1. Erasure memoryless channel model with the alphabet size q, probability of erasure π, and the erasure symbol ξ.]
III. Optimality of MDS Codes over Erasure Channels

Maximum Distance Separable (MDS) codes are optimum in the sense of achieving the largest possible minimum distance, d_{\min}, among all block codes of the same size [12]. The following proposition shows that MDS codes are also optimum over any erasure channel in the sense of achieving the minimum probability of decoding error.

Definition I. An erasure channel is defined as the one which maps every input symbol to either itself or to an erasure symbol ξ. More accurately, an arbitrary channel (memoryless or with memory) with the input vector $x \in \mathcal{X}^N$, $|\mathcal{X}| = q$, the output vector $y \in (\mathcal{X} \cup \{\xi\})^N$, and the transition probability $p(y|x)$ is defined to be erasure iff it satisfies the following conditions:

1) $p(y_j \notin \{x_j, \xi\}|x_j) = 0$, $\forall j$, where x_j, y_j, and e_j denote the j’th elements of the vectors x, y, and e.

2) Defining the erasure identifier vector e as

$$e_j = \begin{cases}
1 & y_j = \xi \\
0 & \text{otherwise}
\end{cases}$$

$p(e|x)$ is independent of x.

Proposition I. A block code of size $[N, K]$ with equiprobable codewords over an arbitrary erasure channel (memoryless or with memory) has the minimum probability of error (assuming optimum, i.e., maximum likelihood decoding) among all block codes of the same size if that code is Maximum Distance Separable (MDS).

Proof. Consider a $[N, K, d]$ codebook C with the q-ary codewords of length N, number of code-words q^K, and minimum distance d. The distance between two codewords is defined as the number of positions in which the corresponding symbols are different (Hamming distance). A codeword $x \in C$ is transmitted and a vector $y \in (\mathcal{X} \cup \{\xi\})^N$ is received. The number of erased symbols is equal to the Hamming weight of e denoted by $w(e)$. An error occurs if the decoder decides for a codeword different from x. Let us assume that the probability of having a specific erasure pattern e is $\mathbb{P}\{e\}$ which is independent of the transmitted codeword (depends only on the channel). We assume a specific erasure vector e of weight m. The decoder decodes the transmitted codeword based on the $N - m$ correctly received symbols. We partition the code-book, C, into q^{N-m} bins, each bin representing a specific received vector satisfying the erasure pattern e. The number of codewords in the i’th bin is denoted by $b_e(i)$ for $i = 1, ..., q^{N-m}$. Knowing the erasure vector e and the received vector y, the decoder selects the bin i corresponding to y. The set of possible transmitted codewords is equal to the set of codewords in bin i (all the codewords in bin i are equiprobable to be transmitted). If $b_e(i) = 1$, the transmitted codeword x can be decoded with no ambiguity. Otherwise, the optimum decoder randomly selects one of the $b_e(i) > 1$ codewords in
the bin. Thus, the probability of error is \(1 - \frac{1}{b_e(i)}\) when bin \(i\) is selected. Bin \(i\) is selected if one of the codewords it contains is transmitted. Hence, probability of selecting bin \(i\) is equal to \(\frac{b_e(i)}{q^K}\). Based on the above arguments, probability of decoding error for the maximum likelihood decoder of any codebook, \(C\), is equal to

\[
P_{E, ML}^C = \frac{1}{\sum_{m=d}^{N} \sum_{\mathbf{e}: w(\mathbf{e})=m} \mathbb{P}(\mathbf{e}) \mathbb{P}\{\text{error}\mid \mathbf{e}\}}
\]

\[
\sum_{m=d}^{N} \sum_{\mathbf{e}: w(\mathbf{e})=m} \mathbb{P}(\mathbf{e}) \sum_{i=1, b_e(i)>0}^{q^{N-m}} \left(1 - \frac{1}{b_e(i)}\right) \frac{b_e(i)}{q^K}
\]

\[
\sum_{m=d}^{N} \sum_{\mathbf{e}: w(\mathbf{e})=m} \mathbb{P}(\mathbf{e}) \left(1 - \frac{b_e^+}{q^K}\right)
\]

\[
\sum_{m=d}^{N} \sum_{\mathbf{e}: w(\mathbf{e})=m} \mathbb{P}(\mathbf{e}) \left(1 - \min\{q^K, q^{N-m}\} \right)
\]

(1)

where \(b_e^+\) indicates the number of bins containing one or more codewords. (a) follows from the fact that the transmitted codeword can be uniquely decoded if the number of erasures in the channel is less than the minimum distance of the codebook, and (b) follows from the fact that \(\sum_{i=1}^{q^{N-m}} b_e(i) = q^K\). (c) is true since \(b_e^+\) is less than both the total number of codewords and the number of bins.

According to (1), \(P_{E, ML}^C\) is minimized for a code-book \(C\) if two conditions are satisfied. First, the minimum distance of \(C\) should achieve the maximum possible value, i.e., \(d = N - K + 1\). Second, we should have \(b_e^+ = q^{N-m}\) for all possible erasure vectors \(\mathbf{e}\) with any weight \(d \leq m \leq N\). Any MDS code satisfies the first condition by definition. Moreover, it is easy to show that for any MDS code, we have \(b_e(i) = q^{K-N+m}\). We first prove this for the case of \(m = N - K\). Consider the bins of an MDS code for any arbitrary erasure pattern \(\mathbf{e}, w(\mathbf{e}) = N - K\). From the fact that \(d = N - K + 1\) and \(\sum_{i=1}^{q^K} b_e(i) = q^K\), it is concluded that each bin contains exactly one codeword. Therefore, there exists only one codeword which matches any \(K\) correctly received symbols. Now, consider any general erasure pattern \(\mathbf{e}, w(\mathbf{e}) = m > N - K\). For the \(i\)'th bin, concatenating any \(K - N + m\) arbitrary symbols to the \(N - m\) correctly received symbols results in a distinct codeword of the MDS codebook. Having \(q^{K-N+m}\) possibilities to expand the received \(N - m\) symbols to \(K\) symbols, we have \(b_e(i) = q^{K-N+m}\). This completes the proof ■

Remark I. Proposition I is valid for any \(N\) and \(1 \leq K < N\). However, it does not guarantee the existence of an \([N, K]\) MDS code for all such values of \(N\) and \(K\). In fact, as stated in section [II], a conjecture on MDS codes states that for every linear \([N, K]\) MDS code over the Galois field \(\mathbb{F}_q\), we have
$N \leq q + 1$ in most cases. Moreover, based on the Singleton bound, the inequality in (1) can be written as

$$P_{E,ML}^C \geq \sum_{m=N-K+1}^{N} \sum_{e:w(e)=m} P\{e\} \left(1 - \frac{q^{N-m}}{q^K}\right). \quad (2)$$

Interestingly, this lower-bound is valid for any codebook C of size $[N, K]$, whether an MDS code of that size exists or not.

Corollary I. For $N \leq q + 1$, converse of Proposition I is also true if the following condition is satisfied

$$\forall e \in \{0, \xi\}^N : P\{e\} > 0 \quad (3)$$

Proof. For $N \leq q + 1$ and $1 \leq K < N$, we know that an MDS code of size $[N, K]$ does exist (an $[N, K]$ Reed-Solomon code can be constructed over \mathbb{F}_q, see [28]). Let us assume the converse of Proposition I is not true. Then, there should be a non-MDS codebook, C, with the size $[N, K, d], d < N - K + 1$, which achieves the minimum probability of error ($P_{E,ML}^C = P_{E,ML}^{MDS}$). For any erasure vector e' with the weight $w(e') = N - K$, we can write

$$P\{e'\} \left(1 - \frac{b_{e'}^+}{q^K}\right) \overset{(a)}{\leq} \sum_{e:w(e)=N-K} P\{e\} \left(1 - \frac{b_e^+}{q^K}\right) \overset{(b)}{\leq} \sum_{m=d}^{N-K} \sum_{e:w(e)=m} P\{e\} \left(1 - \frac{b_e^+}{q^K}\right) \overset{(c)}{\leq} \sum_{m=d}^{N-K} \sum_{e:w(e)=m} P\{e\} \left(1 - \frac{b_e^+}{q^K}\right) + \sum_{m=N-K+1}^{N} \sum_{e:w(e)=m} P\{e\} \left(1 - \frac{b_e^+}{q^K} - 1 + \frac{q^{N-m}}{q^K}\right) \overset{(d)}{=} P_{E,ML}^C - P_{E,ML}^{MDS} = 0$$

where (a), (b), and (c) follow from the fact that $b_{e'}^+ \leq \min\{q^{N-m}, q^K\}$ if $w(e) = m$. (d) and (e) are based on (1) and the assumption that $P_{E,ML}^C = P_{E,ML}^{MDS}$. Combining (3) and (4) results in $b_{e'}^+ = q^K$. Thus, we have $b_{e'}(i) = 1$ for all $1 \leq i \leq q^K$ and any e' with the weight of $w(e') = N - K$.

On the other hand, we know that the minimum distance of C is d. Thus, there exist two codewords c_1 and c_2 in C with the distance of d from each other. We define the vector e_{12} as follows

$$e_{12} = \begin{cases} 0 & \text{if } c_1 = c_2 \\ 1 & \text{otherwise.} \end{cases} \quad (5)$$

It is obvious that $w(e_{12}) = d \leq N - K$. Then, we construct the binary vector e^* by replacing enough number of zeros in e_{12} with ones such that $w(e^*) = N - K$. The positions of these replacements can be arbitrary. In the binning corresponding to the erasure vector e^*, both c_1 and c_2 would be in the same bin
since they have more than K symbols in common. However, we know that $b_{e^*}(i) = 1$ for all $1 \leq i \leq q^K$ since $w(e^*) = N - K$. This contradiction proves the corollary \(\square\).

The memoryless erasure channel obviously satisfies the condition in (3). Combining Proposition I and Corollary I results in Corollary II.

Corollary II. A block code of size $[N, K]$ with equiprobable codewords over a memoryless erasure channel has the minimum probability of error (assuming optimum, i.e., maximum likelihood decoding) among all block codes of the same size iff that code is *Maximum Distance Separable* (MDS).

A. MDS codes with Suboptimal Decoding

In the proof of proposition I, it is assumed that the received codewords are decoded based on maximum likelihood decoding which is optimum in this case. However, in many practical cases, MDS codes are decoded by simpler decoders [28]. Such suboptimal decoders can perfectly reconstruct the codewords of a $[N, K]$ codebook if they receive K or more symbols correctly. In case more than $N - K$ symbols are erased, a decoding error occurs. Let $P_{E,\text{sub}}^{MDS}$ denote the probability of this event. $P_{E,\text{sub}}^{MDS}$ is obviously different from the decoding error probability of the maximum likelihood decoder denoted by $P_{E,\text{ML}}^{MDS}$. Theoretically, an optimum maximum likelihood decoder of an MDS code may still decode the original codeword correctly with a positive, but small probability, if it receives less than K symbols. More precisely, according to the proof of Proposition I, such a decoder is able to correctly decode an MDS code over \mathbb{F}_q with the probability of $\frac{1}{q}$ after receiving $K - i$ correct symbols. Of course, for Galois fields with large cardinality, this probability is usually negligible. The relationship between $P_{E,\text{sub}}^{MDS}$ and $P_{E,\text{ML}}^{MDS}$ can be summarized as follows.

\[
P_{E,\text{ML}}^{MDS} = P_{E,\text{sub}}^{MDS} - \sum_{i=1}^{K} \frac{\mathbb{P}\{K - i \text{ symbols received correctly}\}}{q^i} \geq P_{E,\text{sub}}^{MDS} - \sum_{i=1}^{K} \frac{\mathbb{P}\{K - i \text{ symbols received correctly}\}}{q} = P_{E,\text{sub}}^{MDS} \left(1 - \frac{1}{q} \right).
\]

Hence, $P_{E,\text{ML}}^{MDS}$ is bounded as

\[
P_{E,\text{sub}}^{MDS} \left(1 - \frac{1}{q} \right) \leq P_{E,\text{ML}}^{MDS} \leq P_{E,\text{sub}}^{MDS}.
\]
IV. ERROR EXPONENTS OF MDS, RANDOM, AND LINEAR RANDOM CODES

A. Error Exponent of MDS Codes over a Memoryless Erasure Channel

Consider a block code of size \([N, K]\) over the memoryless erasure channel of Fig. 1. Let \(\alpha = \frac{N-K}{N}\) denote the coding overhead. For a \(q\)-ary \([N, K]\) code, the rate per symbol, \(R\), is equal to

\[
R = \frac{K}{N} \log q = (1 - \alpha) \log q. \tag{8}
\]

In a block code of length \(N\), the number of lost symbols would be \(\sum_{i=1}^{N} e_i\) where \(e_i\) is defined in Proposition I. Thus, the probability of decoding error for the suboptimal decoder of subsection III-A can be written as

\[
P_{E,\text{sub}}^{\text{MDS}} = \mathbb{P}\left\{ \frac{1}{N} \sum_{i=1}^{N} e_i > \alpha \right\} = \sum_{i=0}^{K-1} P_i \tag{9}
\]

where \(P_i\) denotes the probability that \(i\) symbols are received correctly. Since \(e_i\)'s are i.i.d random variables with Bernoulli distribution, we have

\[
P_i = (1 - \pi)^i \pi^{N-i} \binom{N}{i}. \tag{10}
\]

if \(\alpha = \frac{N-K}{N} > \pi\). According to equation (8), the condition \(\alpha > \pi\) can be rewritten as \(R < (1 - \pi) \log q = C\) where \(C\) is the capacity of the memoryless erasure channel. Therefore, the summation terms in equation (9) are always increasing, and the largest term is the last one. Now, we can bound \(P_{E,\text{sub}}^{\text{MDS}}\) as

\[
P_{K-1} \leq P_{E,\text{sub}}^{\text{MDS}} \leq K P_{K-1}. \tag{11}
\]

The term \(\binom{N}{K-1}\) in \(P_{K-1}\) can be bounded using the fact that for any \(N > K > 0\), we have [29]

\[
\frac{1}{N+1} e^{NH\left(\frac{K}{N}\right)} \leq \binom{N}{K} \leq e^{NH\left(\frac{K}{N}\right)} \tag{12}
\]

where the entropy, \(H\left(\frac{K}{N}\right)\), is computed in nats. Thus, \(P_{E,\text{sub}}^{\text{MDS}}\) is bounded as

\[
\frac{\pi(1-\alpha)Ne^{-Nu(\alpha)}}{(1-\pi)(N+1)(\alpha N+1)} \leq P_{E,\text{sub}}^{\text{MDS}} \leq \frac{\pi(1-\alpha)^2 N^2 e^{-Nu(\alpha)}}{(1-\pi)(\alpha N+1)} \tag{13}
\]

where \(u(\alpha)\) is defined as

\[
u(\alpha) = \begin{cases}
0 & \text{for } \alpha \leq \pi \\
\alpha \log \left(\frac{\alpha(1-\pi)}{\pi(1-\alpha)}\right) & \text{for } \pi < \alpha \leq 1.
\end{cases} \tag{13}
\]

with the log functions computed in the Neperian base.

Using equation (8), the MDS coding error exponent, \(u(\cdot)\), can be expressed in terms of \(R\) instead of \(\alpha\). In (8), \(K\) should be an integer, and we should have \(q+1 \geq N\) for a feasible MDS code. Thus, the finest resolution of rates achievable by a single MDS codebook would be

\[
R = \frac{i}{q+1} \log q \text{ for } i = 1, 2, \ldots, q. \tag{14}
\]
course, it is also possible to achieve the rates in the intervals \(\frac{i}{q+1} \log q < R < \frac{i+1}{q+1} \log q \) by time sharing between two MDS codebooks of sizes \([q + 1, i]\) and \([q + 1, i + 1]\). However, in such cases, the smaller error exponent belonging to the codebook of the size \([q + 1, i + 1]\) dominates. Therefore, \(u(R) \) will have a stepwise shape of the form

\[
u(R) = \begin{cases}
0 & \text{for } 1 - \pi \leq \tilde{r} \\
-\tilde{r} \log \left(\frac{1 - \pi}{1 - \tilde{r}} \right) & \text{for } 0 < \tilde{r} \leq 1 - \pi
\end{cases}
\]

(14)

where \(\tilde{r} \) is defined as

\[\tilde{r} = \frac{1}{q + 1} \left\lceil \frac{(q + 1)R}{\log q} \right\rceil \]

(15)

B. Random Coding Error Exponent of a Memoryless Erasure Channel

It is interesting to compare the error exponent in (14) with the random coding error exponent as described in [6]. This exponent, \(E_r(R) \), can be written as

\[
E_r(R) = \max_{0 \leq \rho \leq 1} \left\{ -\rho R + \max_{Q} E_0(\rho, Q) \right\}
\]

(16)

where \(Q \) is the input distribution, and \(E_0(\rho, Q) \) equals

\[
E_0(\rho, Q) = -\log \left(\sum_{j=0}^{q} \left[\sum_{k=0}^{q-1} Q(k)P(j|k) \left(\frac{1}{1 + \rho} \right) \right]^{1 + \rho} \right).
\]

(17)

Due to the symmetry of the channel transition probabilities, the uniform distribution maximizes (16) over all possible input distributions. Therefore, \(E_0(\rho, Q) \) can be simplified as

\[
E_0(\rho, Q) = -\log \left(\frac{1 - \pi}{q^\rho + \pi} \right).
\]

(18)

Solving the maximization (16), gives us \(E_r(R) \) as

\[
E_r(R) = \begin{cases}
-\log \frac{1 - \pi + \pi q}{q} - r \log q & \text{for } 0 \leq r \leq \frac{R_c}{\log q} \\
- r \log \left(\frac{(1 - \pi)(1 - r)}{r \pi} \right) - \log \frac{\pi}{1 - r} & \text{for } \frac{R_c}{\log q} \leq r \leq 1 - \pi
\end{cases}
\]

(19)

where \(r = \frac{R}{\log q} \), and \(R_c = \frac{1 - \pi}{1 - (1 - \pi + \pi q) \log q} \) are the normalized and the critical rates, respectively.
Comparing (14) and (19), we observe that the MDS codes and the random codes perform exponentially the same for rates between the critical rate and the capacity. However, for the region below the critical rate, where the error exponent of the random code decays linearly with R, MDS codes achieve a larger error exponent. It is worth noting that this interval is negligible for large alphabet sizes. Moreover, the stepwise graph of $u(R)$ meets its envelope as the steps are very small for large values of q.

Figure 2 depicts the error exponents of random codes and MDS codes for the alphabet sizes of $q = 128$ and $q = 1024$ over an erasure channel with $\pi = 0.015$. As observed in Fig. 2(a), $u(R)$ can be approximated by its envelope very closely even for a relatively small alphabet size ($q = 128$). For a larger alphabet size (Fig. 2(b)), the graph of $u(R)$ almost coincides its envelope which equals $E_r(R)$ for the region above the critical rate. Moreover, as observed in Fig. 2(b), the region where MDS codes outperform random codes becomes very small even for moderate values of alphabet size ($q = 1024$).

C. Linear Random Coding Error Exponent of a Memoryless Erasure Channel

Maximum likelihood decoding of random codes generally has exponential complexity in terms of the block length (N). Linear random codes, on the other hand, have the advantage of polynomial decoding complexity (assuming maximum likelihood decoding) over any arbitrary erasure channel [30]. In a linear codebook of size $[N, K]$, any codeword, c, can be written as $c = bG$, where b is a row vector of length K, and indicates the information symbols. G is the generator matrix of size $K \times N$. In the case of a linear random codebook, every element in G is generated independently according to a distribution Q [10], [11]. For a memoryless erasure channel, due to the symmetry of the channel transition probabilities, the uniform distribution is applied to generate G.
Here, we describe a suboptimal decoder with polynomial complexity for decoding of linear block codes over erasure channels. This decoder is a slightly modified version of the optimum (maximum likelihood) decoder in [30]. In case that less than K symbols are received correctly, a decoding error is declared. When K or more correct symbols are received, the decoder determines the information vector b (and the transmitted codeword c) by constructing a new matrix called the reduced generator matrix, \tilde{G}. \tilde{G} consists of the columns in G whose corresponding symbols are received correctly. Thus, if the erasure identifier vector e has the weight of $w(e) = m \leq N - K$, \tilde{G} would have the size of $K \times (N - m)$. Then, the decoder computes the row or column rank of \tilde{G}. If this rank is less than K, a decoding error is reported. In case the rank is equal to K, the information symbol vector can be decoded uniquely by solving $b\tilde{G} = \tilde{y}$. In this case, \tilde{y} is the reduced received vector consisting of the correctly received symbols only.

Using the described suboptimal decoder, the probability of error is the probability that the rank of \tilde{G} is less than K. Thus, the probability of error conditioned on an erasure vector of weight $w(e) = m$ can be written as [31]

$$P \{ \text{error} | w(e) = m \} = 1 - \prod_{i=N-m-K+1}^{N-m} \left(1 - \frac{1}{q^i} \right).$$ \hspace{1cm} (20)

We bound the above probability as

$$P \{ \text{error} | w(e) = m \} \leq 1 - \left(1 - \frac{1}{q^{N-m-K+1}} \right)^K \leq \frac{K}{q^{N-m-K+1}} \hspace{1cm} (a)$$

where (a) follows from Bernoulli’s inequality [32] and the assumption that $w(e) = m \leq N - K$. The total probability of error is written as

$$P_{E, sub}^{lin} = \sum_{i=0}^{K-1} P_i + \sum_{i=K}^{N} P_i \cdot P \{ \text{error} | w(e) = N - i \} \leq \sum_{i=0}^{K-2} P_i + \sum_{i=K}^{N} K P_i \frac{1}{q^{i-K+1}}$$

$$= \sum_{i=0}^{K-2} P_i + Q_{K-1} + K \sum_{i=K}^{N} Q_i$$

(22)

where P_i denotes the probability that i symbols are received correctly as defined in subsection IV-A and $Q_i = \frac{P_i}{q^{i-K+1}}$. (a) follows from (21).

We define i_0 as $i_0 = \frac{(N+1)(1-\pi)}{1-\pi+q\pi}$. Of course, i_0 is not necessarily an integer. For the case where $i_0 \leq K$, similar to equation (10), we can write

$$\frac{Q_i}{Q_{i-1}} = \frac{(N - i + 1)(1-\pi)}{qi\pi} \leq 1 \hspace{1cm} \text{for} \hspace{1cm} i = K, \cdots, N.$$ \hspace{1cm} (23)
Thus, Q_i’s are decreasing, and we have
\[
P_{E,\text{sub}}^{\text{lin}} \leq \sum_{i=0}^{K-1} P_i + K(N - K + 1)Q_{K-1} \leq (N - K + 2)KP_{K-1}
\]
\[
= \frac{\pi K^2(N - K + 2)}{(1 - \pi)(N - K + 1)}e^{-NE_r(R)}
\]
\[
= \frac{\pi N^2r^2(N - Nr + 2)}{(1 - \pi)(N - Nr + 1)}e^{-NE_r(R)}
\]

(24)

where (a) follows from (23) and (22). (b) results from (10), and (c) is based on (11) and (8). The condition $i_0 \leq K$ can also be rewritten as $\frac{R}{\log q}(1 + \frac{1}{N}) \leq r$ where $r = \frac{R}{\log q}$ as in (19).

For the case where $K < i_0$, according to equation (23), the series of $\{Q_i\}_{i=K-1}^N$ has its maximum at $i^* = \lfloor i_0 \rfloor \geq K$. Thus, we have
\[
P_{E,\text{sub}}^{\text{lin}} \leq \sum_{i=0}^{K-1} P_i + K(N - K + 1)Q_{i^*}
\]
\[
\leq (N - K + 2)KQ_{i^*},
\]
\[
\leq (N - K + 2)K \exp \left(-N \left\{ \frac{i^*}{N} \log \left(\frac{i^* q \pi}{1 - \frac{i^*}{N}} \right) + \log \left(\frac{1 - \frac{i^*}{N}}{1 - \frac{i_0}{N}} \right) \right\} \right)
\]
\[
\leq (N - K + 2)K \exp \left(-N \left\{ \frac{i_0 - 1}{N} \log \left(\frac{i_0 - 1 q \pi}{1 - \frac{i_0 - 1}{N}} \right) + \log \left(\frac{1 - \frac{i_0}{N}}{1 - \frac{i_0}{N}} \right) \right\} \right)
\]
\[
= (N - r(N - 2))Ne^{-Nv(R,N)}
\]

(25)

where $\exp(x) = e^x$, and $v(R, N)$ is defined as below
\[
v(R, N) = \frac{N(1 - \pi) - \pi q}{N(1 - \pi + \pi q)} \log \left(\frac{N(1 - \pi) - \pi q}{N(1 - \pi + \pi q)} \right) - \log \frac{\pi N(1 - \pi + \pi q)}{N \pi q - 1 + \pi} - R
\]
\[
= - \log \frac{1 - \pi + \pi q}{q} - R + O\left(\frac{1}{N} \right). q.
\]

(26)

In (25), (a) follows from (23) and (22), and (b) results from (10). (c) is based on (11), and can derived similar to (12). (d) follows from (8). Combining (24) and (25) results in
\[
P_{E,\text{sub}}^{\text{lin}} \leq \left\{ \begin{array}{ll}
(N - r(N - 2))N \exp \left(-N \left\{ - \log \frac{1 - \pi + \pi q}{q} - R + O\left(\frac{1}{N} \right) q \right\} \right) & \text{for } R < R_c \left(1 + \frac{1}{N} \right) \\
\frac{\pi N^2r^2(N - Nr + 2)}{(1 - \pi)(N - Nr + 1)} \exp (-NE_r(R)) & \text{for } R \geq R_c \left(1 + \frac{1}{N} \right)
\end{array} \right.
\]

(27)
D. Exponential Optimality of Random Coding and Linear Random Coding

Using the sphere packing bound, it is shown that random coding is exponentially optimal for the rates above the critical rate over channels with relatively small alphabet sizes \(q \ll N \) [8], [9]. In other words, we know that

\[
P_{\text{rand}}^{\text{E,ML}} = e^{-N E_r(R)}
\]

(28)

where the notation \(\cong \) means \(\lim_{N \to \infty} -\log P_{\text{rand}}^{\text{E,ML}} / N = E_r(R) \). However, the sphere packing bound is not tight for the channels whose alphabet size, \(q \), is comparable to the block length. Here, based on Proposition I and the results of section IV we prove the exponential optimality of random coding and linear random coding over the erasure channels for all block sizes (both \(N \geq q + 1 \) and \(N < q + 1 \)).

The average decoding error probability for an ensemble of random codebooks with the maximum-likelihood decoding can be upper bounded as

\[
P_{\text{rand}}^{\text{E,ML}}(a) \leq e^{-N E_r(R)} (b) = e^{-N u(R)}
\]

(29)

where \((a) \) follows from [6], and \((b) \) is valid only for rates above the critical rate according to (14) and (19). The similar upper-bound for \(P_{\text{lin}}^{\text{E,sub}} \) is given in (24).

We can also lower bound \(P_{\text{rand}}^{\text{E,ML}} \) and \(P_{\text{lin}}^{\text{E,sub}} \) as

\[
P_{\text{rand}}^{\text{E,ML}}(a) \geq P_{\text{MDS}}^{\text{E,ML}}(b) \geq \left(1 - \frac{1}{q} \right) P_{\text{MDS}}^{\text{E,sub}}
\]

(30)

where \((a) \) follows from Proposition I and (2), \((b) \) from inequality (7), and \((c) \) from inequality (12). The inequality in (30) remains valid if \(P_{\text{rand}}^{\text{E,ML}} \) is replaced by \(P_{\text{lin}}^{\text{E,sub}} \).

Combining (29) and (30) guarantees that both the upper-bound and the lower-bound on \(P_{\text{rand}}^{\text{E,ML}} \) are exponentially tight, and the decaying exponent of \(P_{\text{rand}}^{\text{E,ML}} \) versus \(N \) is indeed \(u(R) \). Combining (24) and (30) proves the same result about the exponent of \(P_{\text{lin}}^{\text{E,sub}} \) versus \(N \). Moreover, we can write

\[
P_{\text{MDS}}^{\text{E,ML}}(a) \leq P_{\text{rand}}^{\text{E,ML}}(b) \leq \left(1 - \frac{1}{q} \right) \pi r N e^{-N u(R)} (c)
\]

(31)

where \((a) \) follows from Proposition I and (2), and \((b) \) results from inequalities (29) and (30). \((c) \) is based on (7), (12), and (25). Since the coefficients of \(P_{\text{MDS}}^{\text{E,ML}} \) in (31) do not include any exponential terms, it can be concluded that for rates above the critical rate, both random codes and linear random codes perform exponentially the same as MDS codes, which are already shown to be optimum.
V. CONCLUSION

Performance of random codes, linear random codes, and MDS codes over an erasure channel with a fixed, but large alphabet size is analyzed. We proved that MDS codes minimize the probability of decoding error (using maximum-likelihood decoding) over any erasure channel (with or without memory). Then, the decoding error probability of MDS codes, random codes, and linear random codes are bounded by exponential terms, and the corresponding exponents are compared. It is observed that the error exponents are identical over a wide range of rates. Knowing MDS codes are optimum, it is concluded that both random coding and linear random coding are exponentially optimal over a memoryless erasure channel for all block sizes (whether $N \geq q + 1$ or $N < q + 1$).

ACKNOWLEDGMENTS

The authors would like to thank Dr. Muriel Medard and Dr. Amin Shokrollahi for their helpful comments and fruitful suggestions to improve this work.

REFERENCES

[1] W. T. Tan and A. Zakhor, “Video Multicast Using Layered FEC and Scalable Compression,” *IEEE Transactions on Circuits and Systems for Video Technology*, vol. 11, no. 3, pp. 373–386, 2001.
[2] L. Dairaine, L. Lancrica, J. Lacan, and J. Fimes, “Content-Access QoS in Peer-to-Peer Networks Using a Fast MDS Erasure Code,” *Elsevier Computer Communications*, vol. 28, no. 15, pp. 1778–1790, 2005.
[3] C. E. Shannon, “A Mathematical Theory of Communications,” *Bell Systems Technical Journal*, vol. 27, pp. 379–423, 623–656, 1948.
[4] P. Elias, “Coding for Noisy Channels,” *IRE Convention Record*, vol. 4, pp. 37–46, 1955.
[5] C. E. Shannon, R. G. Gallager, and E. R. Berlekamp, “Lower bounds to Error Probability for Coding on Discrete Memoryless Channels,” *Information and Control*, vol. 10, pp. 65–103, 522–552, 1967.
[6] R. G. Gallager, *Information Theory and Reliable Communication*, 1st ed. New York, NY, USA: John Wiley & Sons, 1968, pp. 135–144.
[7] G. Forney, “Exponential Error Bounds for Erasure, List, and Decision Feedback Schemes,” *IEEE Transactions on Information Theory*, vol. 14, no. 2, pp. 206–220, 1968.
[8] R. G. Gallager, *Information Theory and Reliable Communication*, 1st ed. New York, NY, USA: John Wiley & Sons, 1968, pp. 157–158.
[9] R. Gallager, “The Random Coding Bound is Tight for the Average Code,” *IEEE Transactions on Information Theory*, vol. 19, no. 2, pp. 244–246, 1973.
[10] J Pierce, “Limit Distribution of the Minimum Distance of Random Linear Codes,” *IEEE Transactions on Information Theory*, vol. 13, no. 4, pp. 595–599, 1967.
[11] A. Barg and G. D. Forney, “Random codes: Minimum Distances and Error Exponents,” *IEEE Transactions on Information Theory*, vol. 48, no. 9, pp. 2568–2573, 2006.
[12] Ron M. Roth, *Introduction to Coding Theory*, 1st ed. Cambridge University Press, 2006, pp. 333–351.
[13] X. H. Peng, “Erasure-control Coding for Distributed Networks,” *IEE Proceedings on Communications*, vol. 152, pp. 1075 – 1080, 2005.
[14] N. Alon, J. Edmonds, and M. Luby, “Linear Time Erasure Codes with Nearly Optimal Recovery,” in IEEE Symposium on Foundations of Computer Science, Proc. IEEE Vol. 3, 1995, pp. 512–519.

[15] J. Justesen, “On the Complexity of Decoding Reed-Solomon Codes,” IEEE transactions on information theory, vol. 22, no. 2, pp. 237–238, 1993.

[16] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, “Efficient Erasure Correcting Codes,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 569–584, 2001.

[17] M. G. Luby, “LT Codes,” in IEEE Symposium on the Foundations of Computer Science (FOCS), 2002, pp. 271–280.

[18] A. Shokrollahi, “Raptor Codes,” IEEE Transactions on Information Theory, vol. 52, no. 6, pp. 2551–2567, 2006.

[19] S. Fashandi, S. Oveisgharan, and A.K. Khandani, “Path Diversity in Packet Switched Networks: Performance Analysis and Rate Allocation,” in IEEE Global Telecommunications Conference, GLOBECOM ’07, 2007, pp. 1840–1844.

[20] R. Koetter and M. Medard, “An Algebraic Approach to Network Coding,” IEEE transactions on Networking, vol. 11, no. 5, pp. 782–795, 2003.

[21] T. Ho, R. Koetter, M. Medard, D. R. Karger, and M. Effros, “The Benefits of Coding over Routing in a Randomized Setting,” in IEEE International Symposium on Information Theory, 2003, p. 442.

[22] P. A. Chou, Y. Wu, and K. Jain, “Practical Network Coding,” in 51st Allerton Conference on Communication, Control and Computing, 2003.

[23] C. Gkantsidis and P. R. Rodriguez, “Network coding for large scale content distribution,” in IEEE INFOCOM, Proc. IEEE Vol. 4, 2005, pp. 2235–2245.

[24] C. Gkantsidis, J. Miller, and P. Rodriguez, “Comprehensive View of a Live Network Coding P2P System,” in ACM SIGCOMM Conference on Internet Measurement, 2006, pp. 177 – 188.

[25] T. Ho, M. Mdard, R. Koetter, D. R. Karger, M. Effros, Shi Jun, and B. Leong, “A Random Linear Network Coding Approach to Multicast,” IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4413 – 4430, 2006.

[26] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and M. Medard, “Resilient Network Coding in the Presence of Byzantine Adversaries,” in IEEE International Conference on Computer Communications (INFOCOM), 2007, pp. 616 – 624.

[27] J. L. Walker, “A New Approach to the Main Conjecture on Algebraic-geometric MDS Codes,” Journal of Designs, Codes and Cryptography, vol. 9, no. 1, pp. 115–120, 1996.

[28] Ron M. Roth, Introduction to Coding Theory, 1st ed. Cambridge University Press, 2006, pp. 183–204.

[29] T. Cover and J. Thomas, Elements of Information Theory, 1st ed. New York: Wiley, 2006, pp. 284–285.

[30] I. I. Dumer and P. G. Farrell, “Erasure Correction Performance of Linear Block Codes,” Springer Lecture Notes in Computer Science, Algebraic Coding, vol. 781, pp. 316–326, 1994.

[31] F. Didier, “A New Upper Bound on the Block Error Probability After Decoding Over the Erasure Channel,” IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4496–4503, 2006.

[32] D. S. Mitrinovi and P. M. Vaic, Analytic Inequalities, 1st ed. Springer-Verlag, 1970.