ANTIMICROBIAL RESISTANCE AMONG CHILDREN IN SUB-SAHARAN AFRICA

Dr Phoebe C.M. Williams MBBS(Hons.), Nuffield Department of Medicine, The University of Oxford, UK.

Prof David Isaacs MD, Department of Infectious Diseases & Microbiology, Children’s Hospital at Westmead, Westmead, NSW, Australia.

Prof James A. Berkley FRCPCH, Kenya Medical Research Institute (KEMRI)/Wellcome Trust Research Programme, Kilifi, Kenya; the Childhood Acute Illness & Nutrition (CHAIN) Network; and the Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, The University of Oxford, UK.

Corresponding Author:

Dr Phoebe Williams
Nuffield Department of Medicine, The University of Oxford, UK
Email: phoebe.williams@univ.ox.ac.uk
Phone: +61 2 9382 1111
ABSTRACT

Background: Antimicrobial resistance (AMR) is an important threat to international health, potentially undermining nearly a century of gains since antibiotics were discovered. Sub-Saharan Africa (sSA) has high paediatric mortality rates due to infectious diseases, and has been identified as a region particularly lacking in diagnostic capacity and AMR surveillance. Therapeutic guidelines for empiric treatment of common life-threatening infections are dependent on the available information regarding microbial aetiology and antimicrobial susceptibility.

Methods: We conducted a review of the current published literature reporting AMR among the general paediatric population in sub-Saharan Africa since 2005, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Guidelines.

Findings: 1,075 articles were reviewed, of which 18 met the inclusion criteria. These data included 67,451 invasive bacterial isolates from inconsistently defined populations in predominantly urban tertiary settings. Among neonates, Gram-negative organisms were the predominant cause of early-onset neonatal sepsis with a high reported prevalence of extended-spectrum beta-lactamase producing organisms (up to 76%). Gram-positive bacteria were responsible for a high proportion of infection among older paediatric patients, with high reported prevalences of non-susceptibility to current WHO therapeutic guidelines (Staphylococcus aureus exhibits non-susceptibility to ampicillin [IQR 85-100%], gentamicin [IQR 10-60%], and cloxacillin [IQR 10-55%]; while Streptococcus pneumoniae exhibits resistance to ampicillin (20-22%) and gentamicin (77-78%). Inherent biases exist, including failure to delineate community-acquired from hospital-acquired infections, or identify pre-treatment with antimicrobials.

Interpretation: There is a striking paucity of recent or population-representative literature given the potential magnitude of the problem, especially with regard to community-acquired infections. What is known comes from very few centres where microbiological facilities are available. Although limited in its geographic distribution and with poorly identified denominators, the recent literature reports widespread in vitro non-susceptibility to recommended empiric antimicrobials from children in sSA. Improved collaboration and standardised reporting are urgently required to address
increasing AMR among children in sSA. Further research should focus on identifying differential resistance patterns for community- versus hospital-acquired infections, implementing standardised reporting systems such as the WHO Global Antimicrobial Resistance Surveillance System (GLASS), and pragmatic clinical trials to assess the efficacy of alternative treatment regimens.

Funding: Nuffield Department of Medicine (The University of Oxford); General Sir John Monash Foundation; The MRC/DfID/Wellcome Trust Joint Global Health Trials Scheme [MR/M007367/1] and the Bill & Melinda Gates Foundation [OPP1131320].
INTRODUCTION

Of the pressing threats to international health, antimicrobial resistance (AMR) is of increasing importance. AMR threatens to undermine nearly a century of gains made since the discovery of antibiotics and their contribution to improvements in childhood survival in the developing world, particularly among neonates.\(^1\) AMR is reported in both community-acquired (CA) and health-care associated (HA) infections worldwide.\(^3\) However, in low- and middle-income countries (LMICs), surveillance is often inconsistent due to a lack of integration, non-representativeness of localised data, inconsistent laboratory quality, and limited microbiological diagnostic facilities.\(^3\)

Recently, sub-Saharan Africa (sSA; defined as per the boundaries set by the World Bank’s World Development Indices)\(^4\) has been identified as the region with the most limited implementation of antimicrobial surveillance strategies, alongside limited infection prevention and control programmes. Only 6 (13\%) of the 41 World Health Organization (WHO) Africa region member states conduct surveillance for bacterial AMR, and external quality assurance of laboratory procedures is unusual.\(^5\)–\(^7\)

The problem of AMR in sSA is set against a background of an ongoing high incidence of acute respiratory infections, diarrhoeal diseases, parasitic and invasive bacterial infections as well as chronic conditions such as HIV, tuberculosis and malnutrition,\(^8\)–\(^11\) which increase the demand for both preventative and therapeutic antimicrobials.\(^12\) Unregulated antibiotics are readily available in most communities through shops and drug stores, and are widely used in domestic and commercial animal husbandry.\(^13\) In clinics and hospitals, limited diagnostic resources and consequent therapy based on clinical syndromes that are sensitive (rather than specific) for serious bacterial infections (are are therefore likely to capture viral, parasitic and/or self-limiting illnesses) also drive antibiotic consumption – a key factor in promoting resistance.\(^18\)

Moreover, the spread of *Enterobacteriaceae* producing extended-spectrum beta-lactamases (ESBL) and other multi-drug resistant (MDR) organisms in both community- and hospital-based populations potentially limits the availability of suitable antimicrobials to treat such infections.\(^14,15\) Escalation of resistance may also occur when therapies normally reserved for second, third or fourth-line treatment in resource-rich settings (such as third-generation cephalosporins, carbapenems and polymyxins) begin to be used widely in sSA without supportive microbiological facilities, expert advice, or adequate prescription controls.\(^16,17\)
Conversely, when higher-level treatment is required, it is often unavailable or too expensive for a majority of the population of sSA. Decreased susceptibility to antimicrobials is therefore important, not just due to the health care implications of limited treatment options (especially in resource-poor settings such as sSA) and the potentially poorer clinical outcomes,3,18,19 but also due to the costs associated with utilising more expensive therapies across a wider spectrum of patients and prolonging hospitalisation.20

The WHO recommends penicillin (or ampicillin) plus gentamicin as empiric therapy in suspected neonatal and paediatric sepsis in resource-limited settings (Table 1), and advises tailoring therapy to local resistance patterns.21 However, in practice, this is usually impossible due to restricted local data secondary to a lack of reliable laboratory facilities with external quality assurance or collaborative surveillance.3 A high prevalence of non-susceptibility to recommended empiric therapies has previously been reported amongst invasive bacterial isolates throughout sSA,3,6,7,22 however the vast majority of research has been limited to tertiary settings. Despite urgent calls for updated WHO guidelines to limit avoidable mortality due to AMR, they have remained unchanged for the majority of causes of invasive paediatric bacterial infections.23,24

The 2014 ‘Global Report on Antimicrobial Surveillance’ highlights the pressing need to strengthen knowledge and surveillance mechanisms for AMR – reiterating a theme which has resonated in the literature for over a decade.25,26 Therefore, we aimed to systematically review data published since 2005 on antimicrobial susceptibility for the commonest bacteria causing serious infections amongst children in sSA, with a focus on the current WHO recommendations for empiric treatment among children without specific risk factors (HIV or tuberculosis, TB) to increase the knowledge and evidence base regarding local non-susceptibility patterns among a generalisable paediatric population.
METHODS

After conferring on the search terms, the primary investigator (PW) conducted a review of published and grey literature, originally performed on 12th December 2015 and later updated in December 2016. Included reports were reviewed by JB. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement for systematic reviews was followed.\(^27\) Pubmed, Embase, Medline and Cochrane databases were searched, as well as the reference lists of relevant articles. The search strategy is documented in Figure 1. To ensure current susceptibility patterns were investigated, articles were restricted to those reporting data collated since 2005 to ensure emerging threats to susceptibility – such as the spread of ESBL – were captured.

![Figure 1: Flow Diagram Summarising the Selection of Publications for Review](image-url)

Inclusion criteria were pre-defined as: research providing information on bacterial infections (including either aetiology or disease burden / incidence); paediatric data specified (or clearly

Figure 1: Flow Diagram Summarising the Selection of Publications for Review

Excluded due to non-relevance or duplicates (n = 1,010)

- Paediatric data not analysed separately to adult data
- Data not specific to sub-Saharan Africa
- Data specific to children infected with HIV or TB
- Data pertaining to carriage rates only
- Systematic reviews including studies outside of research date range

14 Additional Papers found via reference list searches and grey literature review
delineated from adult data); and information on antimicrobial testing methodologies documented. Pre-defined exclusion criteria were: data aggregated with regions beyond sSA; literature focussed on solely analysing sub-populations with potentially confounding comorbidities (such as HIV or TB); poor methodological study design; data collection occurring significantly prior to search period; and data pertaining to carriage rates only (rather than invasive isolates). After abstracts were screened for these criteria, information was extracted from selected articles and documented into tabulated form (Appendix 1), including study year, location, setting, population age group, study design, microbiological methods (bacterial isolation methods and antibiotic susceptibility testing) and level of evidence, as per the Grades of Recommendation, Assessment, Development and Evaluation Working Group (GRADE) methodology; which was utilised to summarise the quality of the evidence for each study by assessing study type, quality, limitations, inconsistency or possibility of bias.28 Grading was performed by both PW and JB; any disagreements were resolved by consensus.

RESULTS

Search strategy and selection criteria:
Data for this Review were identified by searches of the databases MEDLINE, PubMed, Embase and Cochrane, and references from relevant articles using the search terms “child*”, “pediat*”, “paediat*”. “Africa*”, “sub-Sahara*”, “antimicrobial” or “antibiotic”, “resistance”, “susceptibility” or “sensitivity”. Only articles conducted in humans published since 2005 were included.

The initial search identified 1,075 potentially relevant papers. Abstract review excluded 1,010 papers not meeting inclusion criteria or the identification of duplicate studies. Of the 65 papers that underwent full text review, four met the inclusion criteria. Fourteen further studies were identified from reference lists, resulting in a total of 18 studies for inclusion.

STUDY CHARACTERISTICS

The 18 reports included were from 11 nations throughout sub-Saharan Africa (represented topographically in Figure 2). Seven studies29–35 were conducted in rural settings and the remaining 10 in urban settings; while one was a laboratory-based study collating data across both urban and rural settings.36 The hospital-based studies were almost exclusively conducted in tertiary health facilities, while one study also included patients presenting to a secondary health facility.37 There was one cross sectional study,38 one case control study39 and six case series;19,34,36,40–42 the remaining ten were cohort designs. Six studies examined only one genus of pathogen,30,32,36,40,43 while the remaining examined invasive disease. Due
to the heterogeneity of the studies (in terms of settings, inclusion criteria, laboratory methods, reported outcomes and the quality of evidence) a formal meta-analysis was not possible; however, where possible, interquartile ranges were calculated for specific pathogen susceptibilities.

Six of the studies were of moderate-quality evidence (GRADE Level B); seven were low-quality evidence (Grade Level C); and the remaining five were classified as very low-quality evidence (GRADE level D). All studies described the microbiological techniques used (an inclusion criterion), although culture media and methods for identification of organisms and definitions of non-susceptibility varied between studies. Twelve studies utilised automated culture techniques,18,19,29–35,37,40,45 while the remainder used manual methods. Only three studies (17\%) ascertained recent antimicrobial exposure (and took this into account when analysing their data).18,26,30 Five papers (28\%) reported external quality control of their laboratory.18,30,34,37,40 The majority of isolates were identified from blood cultures, although one study included induced sputum samples46 and four studies investigated both blood and CSF samples in patients presenting with meningitis.34,35,40,43 Across the studies, a total of 67,451 cultures were collected, of which 5,607 (8.3\%) were positive for a bacterial pathogen. Further information on non-susceptibility prevalence was obtained from 236 laboratory-stored isolates36 and 149 diarrhoeal isolates of children infected with \textit{Shigella} spp. or \textit{Salmonella} spp.32

\textbf{AGE RANGE}

The studies covered the full paediatric age range of 0-18 years, with a focus on young childhood (0-5 years). Four studies exclusively investigated infections in infants within the first 90 days of life.34,38,40,41

\textbf{COMMUNITY ACQUIRED (CA) & HOSPITAL ACQUIRED (HA) INFECTION}

Ten studies specifically examined CA infections only,29–32,35,37,39,43,44,46 while three others investigated antibiotic susceptibility patterns distinguishing CA and HA infection18,19,34 (and while the incidence of differing infectious aetiologies may have been clarified within these studies, only two studies analysed the resistance patterns for each subset independently18,19). The remaining five studies did not identify whether the infections were community or nosocomial in nature.
KEY PATHOGENS & SUSCEPTIBILITY PATTERNS IN NEONATES

Aetiology-based systematic reviews identify Gram-negative organisms (*E. coli, Klebsiella spp.*) and (less commonly) *S. agalactiae* as the predominant causes of early-onset neonatal sepsis in sSA, which is defined as sepsis occurring <72 hours of age (aside from sepsis due to *S. agalactiae* which was defined as occurring from day 0 to day 6). S. aureus is an important cause of late-onset sepsis (with an ongoing burden caused by *E. coli, Klebsiella spp.* and *S. agalactiae*, and other Gram-positive organisms such as *S. pyogenes*). Early-onset infections are usually due to vertically transmitted infections, yet they may also be secondary to nosocomial acquisition (in which case resistance is more likely to be an issue); while late-onset infections are due to horizontal (either CA or HA) infection. While the understanding of susceptibility patterns according to the time of onset of neonatal infection is important, the majority of included studies investigating invasive neonatal infections failed to clearly delineate whether these were early- or late-onset, and whether the patient population was transferred from the delivery ward or presenting for admission from the community. This is well documented within the literature as a common issue when analysing data pertaining to neonatal infection in sub-Saharan Africa.

Four studies specifically investigated neonatal patient populations born within hospital environs and at home. As anticipated, these studies found a predominance of infections caused by Gram-negative bacteria and in particular *Klebsiella* spp., which was responsible for approximately half of all blood stream infections (especially in early-onset illness). Other common neonatal pathogens identified included *S. aureus* (range 27%-39%), *E. coli* (21%), and *S. agalactiae* (6.9%; 20%).

Resistance patterns for these organisms are outlined below. Of note, a high prevalence of MDR organisms was documented in a prospective cross-sectional study of 300 neonates in Tanzania, with 40% (36/91) of Gram-negative organisms exhibiting ESBLs while 30% (9/30) of *S. aureus* samples were methicillin-resistant; however these were not identified as CA or HA. MDR organisms were associated with increased mortality rates for both populations (52% vs 25% in ESBL producing organisms; and 55% vs 21% mortality in MRSA organisms; p=0.0008).
Studies investigating specific pathogens in neonates, isolating *S. agalactiae* from 57 infants in Malawi and 37 in Mozambique, reveal an approximately equal incidence of early-onset (EOD) and late-onset disease (LOD), with a higher case fatality for EOD. All isolates were susceptible to β-lactams. Only one study was based in a rural setting, which investigated invasive bacterial infections in infants born outside the hospital, but did not delineate infections as CA or HA. An important finding in this study was diminishing *in vitro* susceptibility of all isolates to the WHO recommended ampicillin and gentamicin over the study period (from 88% susceptibility in 2001 to 66% in 2009; p<0.001).

KEY PATHOGENS & SUSCEPTIBILITY PATTERNS IN PAEDIATRIC PATIENTS

A. Gram-Negative Organisms

i. *Salmonella* spp.

Salmonella spp. are the most frequently isolated Gram-negative pathogen in children greater than 1 month of age in sSA, with a predominance in the wet season. The majority of studies did not analyse *S. typhi* and non-typhoidal species independently for susceptibility patterns against individual antibiotics. Nine of the included papers investigated susceptibility patterns to *Salmonella* spp., revealing non-susceptibility to penicillin/ampicillin (IQR 39-73%; median 66), gentamicin (IQR 23-32%; median 28), co-trimoxazole (IQR 48-67%; median 60); amoxicillin-clavulanate (20%42; 38%29; 74%30); and chloramphenicol (IQR 15-54%; median 27). Only one paper delineated CA and HA infections, with a slightly higher prevalence of non-susceptibility amongst HA isolates. MDR organisms are of increasing concern, with up to 65% of *S. typhi* and up to 98% of non-typhoidal isolates exhibiting combined resistance to ampicillin, co-trimoxazole and chloramphenicol.

ii. *Klebsiella* spp.:

Klebsiella spp. causes a significant amount of morbidity among paediatric patients in sSA, accounting for almost half of all Gram-negative infections in neonates and a significant overall burden of HA infection. Nine studies assessed *Klebsiella* spp. susceptibility patterns, of which two delineated HA and CA acquisition while other research specifically evaluated HA strains, CA strains, or did not clarify the mode of acquisition. This research revealed a consistently high prevalence of non-susceptibility to commonly used antimicrobial therapies, including gentamicin (IQR 48-58%; median 49) and ceftriaxone (range 33-50%). Non-susceptibility was similar between CA and HA strains,
and high frequencies of ESBL-producing *Klebsiella* spp. were documented (from 76% for CA isolates to 82% among HA isolates\(^\text{26,39}\)).

iii. *Escherichia coli*:

E. coli causes a significant burden of disease in sSA, responsible for approximately 11% of all paediatric blood stream infections\(^\text{19}\) and predominating as a cause of CA sepsis.\(^\text{54,56}\) Eight papers assessed non-susceptibility of *E. coli*, documenting non-susceptibility to penicillin/ampicillin of 50-100% (IQR 78-96%; median 93); gentamicin (IQR 20-46%; median 29); and ceftriaxone (IQR 12-34%; median 16).\(^\text{34,38,41,42,46}\) One paper delineated CA and HA acquisition, revealing a higher frequency of non-susceptibility among HA isolates (gentamicin non-susceptibility of 29% among CA isolates compared to 46% among HA isolates).\(^\text{18}\) ESBL-producing *E. coli* infections were also more frequent among HA isolates (22%\(^\text{19}\), 58%\(^\text{39}\)) compared to CA isolates (12%\(^\text{19}\)).

iv. *Shigella spp.*

Although *Shigella spp.* are an important cause of CA bacteraemia\(^\text{25,37,57}\) only one paper assessed susceptibility of *Shigella* spp. to commonly available antimicrobials, documenting resistance to co-trimoxazole (87%), ampicillin (56%) and chloramphenicol (52%) alongside high levels of MDR (non-susceptibility to >2 antimicrobials from different classes).\(^\text{32}\) However, when analysed together with other *Enterobacteriaceae*, there was evidence of sensitivity to ciprofloxacin.\(^\text{18}\)

v. *Haemophilus influenzae* type b:

While the advent of the conjugate vaccine has considerably diminished the burden of *Haemophilus influenzae* type b,\(^\text{58}\) its case fatality rate has the potential to remain high due to significant antimicrobial resistance to first-line therapies. Three papers assessed resistance among *Haemophilus* isolates, documenting non-susceptibility to ampicillin and chloramphenicol ranging from 50% to 100%, rendering these antimicrobials as largely ineffective in treating *Haemophilus influenzae* meningitis.\(^\text{29,35,46}\)

vi. *Acinetobacter spp.*

While a rarer cause of sepsis, *Acinetobacter* is nonetheless clinically significant due to its high mortality rate when causing bacteraemia (up to 25%), with 78% of HA *Acinetobacter* isolates (and 25% of CA isolates) displaying MDR in a large study of paediatric blood stream
infections in South Africa (which included a small cohort of patients [13%] who were HIV-positive, in whom there was no statistically significant difference in the likelihood of bloodstream infections). A large case series of 4,849 neonates in rural Kenya identified Acinetobacter as a cause of 10% of positive blood cultures in outborn infants, with documented resistance to penicillin/ampicillin (56%; 95% CI 42 to 70), gentamicin (27%; 95% CI 14 to 39) and ceftriaxone (35%; 95% CI 22 to 48). A further review of 1,787 paediatric patients in Tanzania reported higher rates of non-susceptibility to ampicillin (100% for both CA and HA), gentamicin (44% and 67% for HA and CA, respectively), and ceftazidime (22% among HA isolates and 33% among CA isolates; susceptibility profiles revealed by three CA invasive isolates and nine HA isolates).

B. Gram-Positive Bacteria:

i. Streptococcus pneumoniae

S. pneumoniae is the most common Gram-positive organism isolated in positive blood cultures in children in sSA, responsible for up to 35% of clinical episodes of sepsis with a predominance in the dry season. While the burden of disease caused by this pathogen is declining as the pneumococcal conjugate vaccine is introduced, it nevertheless continues to cause significant morbidity and mortality. Three papers analysed susceptibility patterns of S. pneumoniae, documenting non-susceptibility (which was not classified into intermediate- versus high-level resistance) to penicillin/ampicillin (range 6% to 24%) and chloramphenicol (range 11% to 25%); yet full susceptibility to ceftriaxone was revealed by 2 studies. Although no longer part of the WHO treatment guidelines, co-trimoxazole and macrolide antibiotics are still often prescribed in LMICs to treat pneumonia (and as prophylaxis for children infected with HIV). A high prevalence of non-susceptibility to co-trimoxazole was documented (IQR 56-100%; median 100); although susceptibility to erythromycin remains adequate.

ii. Staphylococcus aureus

S. aureus causes a significant burden of bloodstream infections in paediatric patients in sSA. The WHO recommendation is for first-line treatment with cloxacillin which was found to exhibit non-susceptibility rates of (IQR) 10-55% (median 20); with similar susceptibility patterns between CA and HA isolates. Chloramphenicol and flucloxacillin are listed as the treatment of choice for osteomyelitis, with reported non-susceptibility rates
of (IQR)21-81% (chloramphenicol; median 47) and 17% (flucloxacillin; based on a sample of 32 positive blood cultures in children aged <5 years in rural Ghana).18,31,46

Alongside its impact within the community, S. aureus has been identified as the most common HA infection,18 and there is an increased propensity for these strains be multi-resistant (defined as exhibiting both oxacillin and cefoxitin resistance – identified among 15% (20/131) of CA and 65% (85/131) of HA isolates from a study of invasive infection in children in South Africa; however, this research did not identify if prior antibiotic exposure confounded these blood culture results).19 A laboratory review of 248 methicillin-resistant isolates (not differentiated by CA versus HA) collected throughout South Africa revealed high frequencies of non-susceptibility to gentamicin (85%), erythromycin (58%), nitrofurantoin (38%), clindamycin (21%), yet isolates were fully sensitive to vancomycin.36

iii. Enterococci

Research which arose from a Tanzanian cohort study of 1,828 blood stream infections assessed susceptibility patterns of Enterococci, revealing these organisms were responsible for 15% of culture-confirmed causes of bacteraemia and resulted in case fatalities rates of 29% and 7% for Enterococcus faecalis and Enterococcus faecium (respectively). A small number of invasive isolates (n=21 for E. faecium and n=15 for E. faecalis) suggested more frequent non-susceptibility in HA infection to ampicillin (89% HA, 75% CA) and gentamicin (67% HA, 33% CA) for E. faecium; while E. faecalis exhibited ampicillin susceptibility.18

DISCUSSION

Our results, summarised in Table 2, highlight a dramatic lack of data on antimicrobial non-susceptibility patterns in the general paediatric population of SSA, particularly in the area of CA infection. Based on the estimated prevalence of non-susceptibility amongst positive cultures, current empirical treatment guidelines – relying heavily on commonly-available antibiotics such as penicillin and gentamicin – need review, as highlighted and summarised in Table 1. Considering that the paediatric population in SSA constitutes approximately 429 million children62 the 67,451 cultures tested in the literature identified in this review (of which approximately 8% were culture-positive) reveal the paucity of investigations (particularly for CA infections) documented for such a large population at risk. Furthermore, a large proportion of research fails to clearly delineate the denominator of their study population,
making the attribution of the prevalence of non-susceptible pathogens difficult. Whilst our review focussed on a generalised paediatric population, estimates of non-susceptibility are likely to be higher in specific populations at risk (such as children living with HIV and TB) and warrant further reviews to identify non-susceptibility rates in these high-risk groups; as children with immunocompromising conditions have been identified as a unique population in their acquisition of antimicrobial resistant infections due to their exposure to empiric antimicrobials, frequent encounters with health care settings, and overall immune dysfunction.63–66

Increasing evidence highlighting a lack of sensitivity to the current WHO antibiotic guidelines has been a recurring theme in the international literature,23,55 and together with the data presented here (Table 1), a review of currently-recommended empirical therapies is warranted. In the 2013 WHO guideline revisions, updated antibiotic therapy in relation to susceptibility were instituted for some organisms (for example, from chloramphenicol67 to ciprofloxacin21 to treat *Shigella* and *Salmonella* spp. infections); yet many common organisms continue to be treated with regimens with reportedly high frequencies of *in vitro* non-susceptibility due to a lack of an evidence base (or local data) to support further changes. Such an evidence base needs to comprise antimicrobial susceptibility patterns (identified from standardised reporting of defined populations) and the results of clinical trials that include safety data and patient outcomes.

Our review has several limitations, including heterogeneity among the included studies and a possible sampling bias, with the majority of studies arising from tertiary centres in urban settings, underestimating the significant burden of CA infections. This would likely overestimate the burden of morbidity caused by Gram-negative bacteria, which have a higher propensity to result in hospital presentation due to the more severe clinical presentation and failure of oral therapy in the community; and introduces the possibility of a non-representative population selection, as increased population density may be independently associated with AMR.68 The majority of research failed to identify whether isolates were secondary to CA or HA infections, an issue previously highlighted in analysing resistance patterns in paediatric patients in Africa;49,51,69 and while documentation of prior exposure to antimicrobials was minimal, it is uncertain how pre-treatment (a common practice prior to tertiary presentation in sSA) affects the validity of the findings of these studies.
Publication bias is also likely to be an issue, and although our search generated a large number of results, papers published in regard to individual pathogens may have not been captured by our search terms – for example, while susceptibility for *Shigella* spp. to ciprofloxacin was revealed, the possibility of increasing non-susceptibility should be considered in light of the increasing burden of the *S. typhi* MDR haplotype H58, which is widely evident throughout Asia and with reports of this species arising in parts of sSA. There is also likely to be an element of geographical publication bias, as although eleven nations were represented in the results, one third of these arose from Southern Africa and despite their large population base, Central and West African nations were under-represented – an issue previously revealed by other reviews on antimicrobial data in Africa. Finally, non-susceptibility estimates were calculated based on a small number of isolates, which is representative of the proportions documented through the cascade of hospital-based admissions – that is, of the large number of hospital presentations, a very small proportion will have positive blood cultures, of which an even smaller proportion will be positive for a particular pathogen for which non-susceptibility to antimicrobials can be tested. This may result in imprecision of results, and has been documented in recent publications. The tension between high prevalence of non-susceptibility amongst a few isolates and a low overall incidence amongst all seriously ill children poses a further challenge for interpretation.

Nevertheless, the data available is conclusive that AMR is an increasing and real threat among children admitted to hospital in sSA, and prevalent MDR organisms are likely to become progressively pathogenic due to their well-documented swift spread within both CA and HA infections. Recent research has documented frequent (up to 45%) community carriage of ESBLs, as well as nosocomial acquisition occurring at a rate of 20% for every 48 hours spent in hospital. In light of the increasing prevalence of MDR organisms in hospital environs, simple improvements in local hospital-based infection control measures are important. To this end, our findings support a recently published systematic review and meta-analysis assessing the most effective strategies for implementing antimicrobial stewardship policies in local settings identified strategies which could be extrapolated to LMICs to tackle antimicrobial resistance. These include (i) the more rigorous use of empirical therapy that follows appropriately formulated local antimicrobial guidelines; (ii) consistently taking blood cultures (where possible) prior to the commencement of antimicrobial therapy (to allow earlier cessation of antibiotics if negative), and (iii) de-escalation of therapy (from intravenous to oral) as soon as clinical improvement occurs.
Within sSA there are few AMR awareness programmes, with limited national and regional coordination. These considerations should be incorporated into revisions of international treatment guidelines and monitoring of antimicrobial usage; while at the community-level, infection control requires addressing more pervasive and challenging issues inextricably linked with under-development, such as poor sanitation and hygiene, overcrowding, and strategies aimed at limiting the availability of freely available over-the-counter antibiotics. Historically, several effective surveillance systems have successfully been instituted for high profile diseases (such as malaria, HIV and MDR-tuberculosis), providing evidence that a paediatric-focused AMR-surveillance programme could be achieved with adequate commitment.

How increasing AMR contributes to neonatal and child mortality is a difficult association to currently draw firm conclusions upon in light of the challenges of attributing mortality to AMR versus the underlying condition (which may be nosocomial in nature or a more severe illness), or a lack of access to appropriate antibiotics; and it is interesting to note that increasing AMR has occurred over the last two decades concurrent with substantial progress in child mortality rates in LMICs. Furthermore, in vitro non-susceptibility does not necessarily correlate with a lack of clinical therapeutic effect. Nevertheless, excessive mortality rates attributable to AMR have been reported, highlighting the importance of enhanced research in this area.

Until new antimicrobial strategies are discovered and tested, the focus must remain on adherence to tailored local guidelines, educating physicians on prescribing practices, improving laboratory infrastructure, and promoting collaboration between regional sites. Future research should focus on identifying appropriate local empirical therapies with improved susceptibility profiles, providing clear clinical indications for timely second-line therapy when empirical therapy fails, establishing guidelines for the de-escalation and cessation of antibiotic therapy and regular surveillance of antimicrobial usage within integrated, coordinated international surveillance programmes. Standardised research methods adhering to the WHO’s Global Antimicrobial Resistance Surveillance System (GLASS) must be pursued, clearly delineating resistance patterns for CA versus HA infections, while assessing for possible biases such as prior antibiotic exposure and ensuring systematic selection of patients for inclusion, with clearly identified population denominators. This will allow non-susceptibility patterns and antimicrobial usage to be monitored on a
continental scale, and ensure this issue of utmost public health concern is effectively addressed.

AUTHORS' CONTRIBUTIONS:
PW: Literature search, Figures (excluding Figure 2), data analysis and interpretation, writing of the first draft of the paper.
DI: Regular review of multiple drafts, with significant contributions to each draft as comments and suggestions for improvement.
JB: Original concept, study design, data analysis, data interpretation, significant reviews of multiple drafts, design of Figure 2.

DECLARATION OF INTERESTS:
We declare that we have no conflicts of interest.
References:

1. Laxminarayan R, Matsoso P, Pant S, et al. Access to effective antimicrobials: A worldwide challenge. *Lancet*. 2016;387(10014):168-75.

2. Laxminarayan R, Duse A, Wattal C, et al. Antibiotic resistance - the need for global solutions. *Lancet Infect Dis*. 2017;13(12):1057-1098. doi:10.1016/S1473-3099(13)70318-9.

3. The World Health Organization. Antimicrobial Resistance Global Report on Surveillance. http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf. Published 2014. Accessed August 20, 2016.

4. The World Bank. *Metadata World Development Indicators*; 2015. [Online]: http://databank.worldbank.org/data/reports.aspx?source=2&country=SSF. Accessed 13th February 2017.

5. Ashley E, Lubell Y, White N, Turner P. Antimicrobial susceptibility of bacterial isolates from community-acquired infections in sub-Saharan Africa and Asian low and middle income countries. *Trop Med Int Heal*. 2011;16(9):1167-79.

6. Leopold S, van Leth F, Terekegn H, Schultsz C. Antimicrobial drug resistance among clinically relevant bacterial isolates in sub-Saharan Africa: A systematic review. *J Antimicrob Chemother*. 2014;69:2337-2353.

7. The World Health Organization. Worldwide Country Situation Analysis: Response to Antimicrobial Resistance. WHO Libr Cat in-Publication Data. 2015. http://apps.who.int/iris/bitstream/10665/163468/1/9789241564946_eng.pdf?ua=1&ua=1.

8. Bahwere P, Levy J, Hennart P, et al. Community-acquired bacteraemia among hospitalised children in rural central Africa. *Int J Infect Dis*. 2001;5(4):180-8.

9. Reddy E, Shaw A, Crump J. Community-acquired bloodstream infections in Africa: A systematic review and meta-analysis. *Lancet Infect Dis*. 2010;10(6):417-32.

10. Plakas A, Davies M, Anampiu K, et al. Invasive Group A Streptococcus Infection among children, rural Kenya. *Emerg Infect Dis*. 2016;22(2):224-233.

11. Kissoon N, Uyeki T. Sepsis and the Global Burden of Disease in Children. *JAMA Pediatr*. 2016;170(2):107-8. doi:10.1001/jamapediatrics.2015.3241.

12. Omulo S, Thumbi S, Njenga M, Call D. A review of 40 years of enteric antimicrobial resistance research in Eastern Africa: What can be done better? *Antimicrob Resist Infect Control*. 2015;4(1).

13. Eager H, Swan G, van Vuuren M. A survey of antimicrobial usage in animals in South Africa with specific reference to food animals. *J S Afr Vet Assoc*. 2012;83(1).

14. Storberg V. ESBL-producing *Enterobacteriaceae* in Africa - a non-systematic literature review of research published 2008-2012. *Infect Ecol Epidemiol*. 2014;4(20342).

15. Pitout J, Laupland K. Extended-spectrum beta-lactamase- producing *Enterobacteriaceae*: an emerging public-health concern. *Lancet Infect Dis*. 2008;8:159-66.

16. Murunga E, Reriani M, Otieno C, Wanyoike N. Comparison of antibiotic use between an “open” and a “closed” intensive care unit. *East Afr Med J*. 2005;82(8):414-7.

17. Versporten, A, Bielicki, J, Drapier, N, Sharland M. The Worldwide Antibiotic Resistance and Prescribing in European Children (ARPEC) point prevalence survey: developing hospital-quality indicators of antibiotic prescribing for children. *J Antimicrob Chemother*. 2016;71(4):1106-1117.

18. Blomberg B, Manji K, Urassam W, et al. Antimicrobial resistance predicts death in Tanzanian children with bloodstream infections: a prospective cohort study. *BMC Infect Dis*. 2007;22(7):43.

19. Dramowski A, Cotton M, Rabie H, Whitelaw A. Trends in paediatric bloodstream infections at a South African referral hospital. *BMC Pediatr*. 2015;15(33).

20. Smith J, Coast R. The true cost of antimicrobial resistance. *BMJ*. 2013;346(f1493). doi:http://dx.doi.org/10.1136/bmj.f1493.

21. The World Health Organization. Pocket Book of Hospital Care for Children: Guidelines for the Management of Common Illnesses with Limited Resources. 2013. http://apps.who.int/iris/bitstream/10665/43206/1/9241546700.pdf.
22. Usha G, Chunderika M, Prashini M, Willem S, Yusuf E. Characterisation of extended-spectrum beta-lactamases in *Salmonella* spp. at a tertiary hospital in Durban, South Africa. *Diagnostic Microbiol Infect Dis*. 2008;62:86-91.

23. Downie L, Armiento R, Subhi R, Kelly J, Clifford V, Duke T. Community-acquired neonatal and infant sepsis in developing countries: efficacy of WHO’s currently recommended antibiotics - systematic review and meta-analysis. *Arch Dis Childhood*. 2013;98(2):146-54.

24. Zaidi A, Huskins W, Thaver D, Bhutta Z, Abbas Z, Goldmann D. Hospital-acquired neonatal infections in developing countries. *Lancet*. 2005;365(9465):1175-88.

25. Lubell Y, Turner P, Ashley E, White N. Susceptibility of bacterial isolates from community-acquired infections in sub-Saharan Africa and Asia to macrolide antibiotics. *Trop Med Int Heal*. 2011;16(10):1192-1205.

26. Schaumberg F, Alabi A, Kokou C, et al. High burden of extended-spectrum beta-lactamase producing *Enterobacteriaceae* in Gabon. *J Antimicrob Chemother*. 2013;68. doi:10.1093/jac/dkt164.

27. Liberati A, Altman D, Tetzlaff J, et al. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. *PLOS Med*. 2009;6(7):e1000097. doi:doi:10.1371/journal.pmed1000097.

28. Balshem H, Schunemann, H. Oxman, A, Kunz, R, Brozek, J. Vist, G, Falck-Ytter, Y, Meerpoohl, J. Norris, S, Guyatt, H., Helfand H. Grade Guidelines 3: Rating the quality of the evidence – introduction. *J Clin Epidemiol*. 2011;54(4):401-406.

29. Sigauque B, Roca A, Mandomando I, et al. Community-acquired bacteraemia among children admitted to a rural hospital in Mozambique. *Pediatr Infect Dis J*. 2009;28(2):108-13.

30. Schwarz N, Sarpong N, Hunger F, et al. Systemic bacteraemia in children presenting with clinical pneumonia and the impact of non-typhoid salmonella (NTS). *BMJ Infect Dis*. 2010;10(319).

31. Nielsen M, Sarpong N, Krumkamp R, et al. Incidence and Characteristics of Bacteremia among Children in Rural Ghana. *PLoS One*. 2012;7(9):e44063-44071.

32. Mandomando I, Jaintilal D, Pons M, et al. Antimicrobial susceptibility and mechanisms of resistance in *Shigella* and *Salmonella* isolates from children under five years of age with diarrhoea in rural Mozambique. *Antimicrob Agents Chemother*. 2009;53(6):2450-2454.

33. Vlieghe E, Phoba M, Tamfun J, Jacobs J. Antibiotic resistance among bacterial pathogens in Central Africa: A review of the published literature between 1955-2008. *Int J Antimicrob Agents*. 2009;34:295-303.

34. Talbert A, Mwaniki M, Mwarumba S, Newton C, Berkley J. Invasive bacterial infections in neonates and young infants born outside hospital admitted to a rural hospital in Kenya. *Pediatr Infect Dis J*. 2010;29(10):945-950.

35. Roca A, Bassat Q, Morais L, et al. Surveillance of Acute Bacterial Meningitis among Children Admitted to a District Hospital in Rural Mozambique. *Clin Infect Dis*. 2009;48(Supp 2):S172-181.

36. Marais E, Aithma N, Perovic O, Oosthuysen W, Musenge E, A. D. Antimicrobial susceptibility of methicillin-resistant *Staphylococcus Aureus* isolates from South Africa. *South African Med J*. 2009;99:170-173.

37. Enwere G, Biney E, Cheung Y, et al. Epidemiologic and clinical characteristics of community-acquired invasive bacterial infections in children aged 2-29 months in The Gambia. *Pediatr Infect Dis J*. 2006;25(8):700-5.

38. Kayange N, Kamugisha E, Mwizamholya D, Jeremiah S, Mshana S. Predictors of positive blood culture and deaths among neonates with suspected neonatal sepsis in a tertiary hospital, Mwanza-Tanzania. *BMJ Pediatr*. 2010;10(39).

39. Ndir A, Faye, P. Cisse, M. Ndoye, B. Astagneau, P. et al. Epidemiology and Burden of bloodstream infections caused by extended-spectrum beta-lactamase producing *Enterobacteriaceae* in a pediatric hospital in Senegal. *PLoS One*. 2016;11(2):e0143729. doi:10.1371/journal.pone.0143729.

40. Gray S, French, N. Phiri, A & Graham, S. KB. Invasive Group B *Streptococcal* infection in infants, Malawi. *Emerg Infect Dis*. 2007;13(2):223-230.

41. Mhada F. Matee, M. & Massawe, A. et al. Neonatal sepsis at Muhimbili National Hospital,
42. Nwaidoha E, Kashibu, E. Odimoayo, M. Okwori, E. et al. A review of bacterial isolates in blood cultures of children with suspected septicaemia in a Nigerian tertiary hospital. *African J Microbiol Res*. 2010;4(4):222-225.

43. Falade A, Ayede, A. Epidemiology, aetiology and management of childhood acute community-acquired pneumonia in developing countries – a review. *African J Med Sci*. 2011;40(4):293-308.

44. Phoba H, Ifeka, B. Dawiilli, J. Lunguya, O. et al. Epidemic increase in *Salmonella* bloodstream infection in children, Bwamanda, the Democratic Republic of Congo. *European J Clin Microbiol Infect Dis*. 33:79-87.

45. Woerther C, Jacquier, H. Hugede, H. et al. Massive increase, spread and exchange of extended spectrum beta-lactamase-encoding genes among intestinal *Enterobacteriaceae* in hospitalised children with severe acute malnutrition in Niger. *Clin Infect Dis*. 2011;53(7):677-85.

46. Nantanda H, Peterson, S. Kaddu-Mulindwa, D. et al. Bacterial aetiology and outcome in children with severe pneumonia in Uganda. *Ann Trop Paediatr*. 2008;28:253-260.

47. Huynh M, Garin, B. Herindrainy, P. et al. Burden of bacterial resistance among neonatal infections in low income countries: how convincing is the epidemiological evidence? *BMC Infect Dis*. 2015;15(127).

48. Sinha L, Tomczyk, S. Verani, J. et al. Disease burden of Group B *Streptococcus* among infants in sub-Saharan Africa: A systematic review and meta-analysis. *Pediatr Infect Dis J*. 2016.

49. Hamer G, Carlin, J. Zaidi, A. Yeboah-Antwi, K. Saha, S. Ray, P. et al. (Young Infants Clinical Signs Study Group). Etiology of bacteraemia in young infants in six countries. *Pediatr Infect Dis J*. 2015;34(1):e1-8.

50. Zaidi D, Ali, S. Khan, T. Pathogens associated with sepsis in newborns and young infants in developing countries. *Pediatr Infect Dis J*. 2009;28(1 Suppl):S10-8.

51. Waters I, Ahmad, A. Luksic, I. Nair, et al. Aetiology of community-acquired neonatal sepsis in low and middle-income countries. *J Glob Heal*. 2011;1(2):154-70.

52. Kabwe J, Chilotuku, L. Ngulube, F. et al. Etiology, antibiotic resistance and risk factors for neonatal sepsis in a large referral centre in Zambia. *Pediatr Infect Dis J*. 2016. doi:DOI: 10.1097/INF.0000000000001154.

53. The World Health Organization. Causes of Child Mortality. 2013. [Online], Available: http://www.who.int/gho/child_health/mortality/causes/en. Accessed 10th January 2016.

54. Alcoba M, Breysse, S. Salpeteur, C. et al. Do children with uncomplicated severe acute malnutrition need antibiotics? A systematic review and meta-analysis. *PLoS One*. 2013;8(1):e53184.

55. Le Doare J, Heath, P. and Sharland, M. Systematic review of antibiotic resistance rates among Gram-negative bacteria in children with sepsis in resource-limited countries. *J Paediatr Infect Dis Soc*. 2014;4(1):11-20.

56. Aamodt S, Maselle, S. Manji, K. Willems, R. et al. Genetic relatedness and risk factor analysis of ampicillin-resistant and high-level gentamicin-resistant *enterococci* causing bloodstream infections in Tanzanian children. *BMC Infect Dis*. 2015;15(107).

57. Davies A, N& K. *Shigella* bacteraemia over a decade in Soweto, South Africa. *Trans R Soc Trop Med Hyg*. 2008;102:1269-73.

58. Ginsburg L, Riley, K. Kay, N. Klugman, K. et al. Antibiotic non-susceptibility among *Streptococcus Pneumoniae* and *Haemophilus Influenzae* isolates identified in African children: a meta-analysis of three decades of published studies. *Int J Antimicrob Agents*. 2013;42(6). doi:10.1016/j.ijantimicag.2013.08.012.

59. Usuf C, Adegbola, R. Hall, A. Pneumococcal carriage in sub-Saharan Africa – A systematic review. *PLoS One*. 2014;9(1):e85001.

60. Gottberg L, Tempia, S. Quan, V. Mering, S. et al. Effects of vaccination on invasive pneumococcal disease in South Africa. *NEJM*. 2014;371:1889-1899.

61. Falade I, Bakere, R. Odemanmi, A. et al. Invasive Pneumococcal disease in children aged
<5 years admitted to 3 urban hospitals in Ibadan, Nigeria. Clin Infect Dis. 2009;48(Suppl 2):S190-6.

62. The World Bank. World Development Indicators: Population Dynamics. [Online], Available: http://data.worldbank.org/indicator/SP.POP.0014.TO.ZS?locations=ZG. Accessed December 10, 2016.

63. McNeil J. Staphylococcus aureus – antimicrobial resistance and the immunocompromised child. Infect Drug Resist. 2014;7:117-27.

64. Cotton E, Smit, J. Whitelaw, A. & Zar, H. High incidence of antimicrobial resistant organisms including extended spectrum beta-lactamase producing Enterobacteriaceae and methicillin-resistant Staphylococcus aureus in nasopharyngeal and blood isolates of HIV-infected children from Cape Town, South. BMC Infect Dis. 2008;8(40).

65. Groome M, Alrich W, Wadula J, et al. Community-onset Staphylococcus aureus bacteraemia in hospitalized African children: high incidence in HIV-infected children and high prevalence of multidrug resistance. Paediatr Int Child Heal. 2012;32(3):140-6.

66. Tan C. Increased rifampicin resistance in blood isolates of methicillin-resistant Staphylococcus aureus (MRSA) amongst patients exposed to rifampicin-containing antituberculosis treatment. Int J Antimicrob Agents. 2011;37(6):550-3.

67. The World Health Organization. Pocket book of hospital care for children: Guidelines for the management of common illnesses with limited resources. 2005. [Online], Available: http://www.who.int/maternal_child_adolescent/documents/9241546700/en/.

68. Bruinsma N, Hutchinson JM, van den Bogaard AE, et al. Influence of population density on antibiotic resistance. J Antimicrob Chemother. 2003;51(2):385-390.

69. Huynh Garin B. Delarocque-Astagneau, E et al. Bacterial neonatal sepsis and antibiotic resistance in low-income countries. Lancet. 2016;388(10051):533-534.

70. Kariuki S, Revathi G, Kiiru J, et al. Typhoid in Kenya Is Associated with a Dominant Multidrug-Resistant Salmonella enterica Serovar Typhi Haplotype that is also widespread in Southeast Asia. J Clin Microbiol. 2010;48(6):2171-2176. doi:10.1128/JCM.01983-09.

71. Sangare SA, Rondinaud E, Maataoui N, et al. Very high prevalence of extended-spectrum beta-lactamase-producing Enterobacteriaceae in bacteriemic patients hospitalized in teaching hospitals in Bamako, Mali. PLoS One. 2017;12(2):e0172652. https://doi.org/10.1371/journal.pone.0172652.

72. Schuts M. Mouton, J. Verduin, C. et al. Current evidence on hospital antimicrobial stewardship objectives: a systematic review and meta-analysis. Lancet Infect Dis. 2016. doi:http://dx.doi.org/10.1016/S1473-3099(16)00065-.

73. Laxminarayan R, Bhutta ZA. Antimicrobial resistance: A threat to neonate survival. Lancet Glob Heal. 2017;4(10):e676-e677. doi:10.1016/S2214-109X(16)30221-2.

74. Thaver D, Ali SA, Zaidi AKM. Antimicrobial resistance among neonatal pathogens in developing countries. Pediatr Infect Dis J. 2009;28(1 Suppl):S19-21. doi:10.1097/INF.0b013e3181958780.

75. The World Health Organization. Global Antimicrobial Resistance Surveillance System: Manual for Early Implementation. WHO Libr Cat Data. 2015. http://apps.who.int/iris/bitstream/10665/188783/1/9789241549400_eng.pdf?ua=1.

76. The World Health Organization. Managing possible serious bacterial infection in young infants when referral is not feasible: Guidelines and WHO/UNICEF recommendations for implementation. doi:ISBN: 978 92 4 150926 8 WHO reference number: WHO/MCA/17.01.
Diagnosis | Antibiotic | Dosage | Reported non-susceptibility for most likely organisms (IQR% where available); Median
--- | --- | --- | ---
Sepsis in a child aged <2 months | Ampicillin IV plus | 50mg/kg QID for 7-10 days (21 days for meningitis) | Most likely organisms:8,23,54,55
Gentamicin IV or | 5-7.5mg/kg daily 7-10 days (21 days for meningitis) |
Ceftriaxone IV Or | 50mg/kg BD (<7 days) or QID (>7 days) for 21 days |
If skin conditions suggest S. aureus: Cloxacillin IV plus Gentamicin | 25-50mg/kg BD-QID (age dependent) for 7-10 days |
5-7.5mg/kg daily 7-10 days (21 days for meningitis) |
Where referral is not possible | Amoxicillin PO Gentamicin IM | 50mg/kg BD for 7 days |
5-7.5mg/kg daily for 2 - 7 days |
Sepsis in a child aged >2 months | Ampicillin IV plus | 50mg/kg QID for 7-10 days |
Gentamicin IV or | 7.5mg/kg daily for 7-10 days |
Ceftriaxone IV | 50mg/kg BD; or 100mg/kg daily for 7-10 days |
If skin conditions suggest *Staphylococcus aureus*: Flucloxacillin IV plus Gentamicin | 50mg/kg QID for 7-10 days |
7.5mg/kg daily |
Most likely organisms:9,23,29,37,54
1. *Klebsiella* spp.: -Ampicillin IQR 71-100%; 10018,34,38,41,42
 -Gentamicin IQR 48-58%; 4918,34,38,42,46
 -Ceftriaxone 43%34; 50%38
2. *Staphylococcus aureus*: -Ampicillin IQR 85-100%; 9018,29,31,38,41
-Gentamicin IQR 10-60%; 2918,31,36,46
-Cloxacillin IQR 10-50%; 2018,38,41
3. *Streptococcus agalactiae*: -Ampicillin: 0%29,40
-Gentamicin: Not reported
-Ceftriaxone: 0%40
4. *Escherichia coli*: -Ampicillin IQR 78-96%; 9318,34,38,39,41,42
-Gentamicin: IQR 20-46%; 2918,29,34,38,41,42
-Ceftriaxone IQR 12-34%; 1634,38,41,42
Non-susceptibility as documented above
3. *Streptococcus pneumoniae*: |
| Diagnosis | Antibiotic | Dosage | Reported non-susceptibility for most likely organisms (IQR% where available); Median |
|--------------------|-------------------------------------|--|---|
| **Typhoid Fever** | Ciprofloxacin PO 2nd line: | 15mg/kg BD for 7-10 days 80-100mg/kg/day for 5-7 days 20mg/kg/day for 5-7 days | See ‘Pneumonia’ guidelines below |
| | IV Ceftriaxone or Azithromycin PO | | 4. *Klebsiella spp.*: Non-susceptibility as documented above |
| | | | 5. *Staphylococcus aureus*: Non-susceptibility as documented above |
| **Pneumonia** | Ampicillin IV *plus* Gentamicin IV or Ceftriaxone IV or | 50mg/kg QID for 7-10 days 7.5mg/kg daily for 7-10 days 80mg/kg daily for 7-10 days; if Amp/Gent fails | Most commonly due to: |
| | If *S. aureus* pneumonia is suggested: Cloxacillin IV *plus* Gentamicin | 50mg/kg QID for 7-10 days As above | 1. *Salmonella typhi*: Non-susceptibility to: |
| | | | -Ciprofloxacin: 0%-30,31,31,35,46,46,46 |
| | | | -Ceftriaxone: 0%-30,31,35,46,46,46 |
| | | | -Azithromycin: Not reported |
| | | | 2. *Staphylococcus aureus*: Non-susceptibility as documented above |
| **Dysentery (presumed due to *Shigella* spp.)** | Ciprofloxacin PO 2nd line: Ceftriaxone IV | 15mg/kg BD for 3 days 50-80mg/kg daily for 3 days | 1. *Shigella* spp.: |
| | | | -Ciprofloxacin resistance: 0% (CA); 11% (HA), when analysed in conjunction with other *Enterobacteriaceae*18 |
| | | | -Ceftriaxone resistance: not documented |
| **Osteomyelitis** | Chloramphenicol or Cloxacillin / Flucloxacillin IV | 25mg/kg TDS 50mg/kg QID for up to 5 weeks (step down to PO once clinically improving) | Most likely due to: |
| | | | 1. *Staphylococcus aureus*: Non-susceptibility to: |
| | | | -Chloramphenicol: 18-87%-30,31,35,46 |
| Diagnosis | Antibiotic | Dosage | Reported non-susceptibility for most likely organisms (IQR% where available); Median |
|-----------|------------|--------|--|
| Additionally -
"Clindamycin or 3rd generation cephalosporins may be given"
(Clear circumstances of when such therapy would be appropriate are not outlined) | No dosages given | - Cloxacillin: 9-68%^{18,38,41}
- Clindamycin: 21%³⁶, 44%³⁸
- 3rd generation cephalosporins: Not reported |

Meningitis

Neonates: Ampicillin and Gentamicin for 3 weeks
or
Ceftriaxone IV
Cefotaxime IV
With gentamicin

Older Children:
Ceftriaxone IV
Cefotaxime IV

Or: if no known resistance to Chloramphenicol or β-lactams locally:
Chloramphenicol IV
Ampicillin IM/IV

Or:
Chloramphenicol IV
Benzylpenicillin IV

(Doses as above)
50mg-75mg/kg daily for 3 weeks
50mg/kg BD-QID (age dependent) for 3 weeks
For 3 weeks

50mg/kg IM or IV bd for 7-10 days
50mg/kg IM or IV qid for 7-10 days

25mg/kg QID for 10 days
50mg/kg QID for 10 days

25mg/kg QID for 10 days
60mg/kg QID for 10 days

As above
Diagnosis	Antibiotic	Dosage	Reported non-susceptibility for most likely organisms (IQR% where available); Median
Urinary Tract Infection	Co-trimoxazole PO (2nd line: Ampicillin plus Gentamicin)	4mg/kg plus 20mg/kg BD for 5 days	Most likely organisms: 19, 54, 56
	Dosages as above		1. *Escherichia coli*:
	- Co-trimoxazole Resistance: 87-90% (CA); 18, 29 77% (HA) 18		- Ampicillin and Gentamicin resistance: as above
	2. *Klebsiella* spp.:		
	- Co-trimoxazole Resistance: 63% (CA); 94% (HA) 18		- Ampicillin and Gentamicin resistance: as above

Table 1: Antibiotic Recommendations from the WHO Pocket Book of Hospital Care for Children, 2013 (2nd) Edition and WHO Guideline for Managing Possible Serious Bacterial Infection in Young Infants When Referral is Not Feasible (2015), with efficacy based on non-susceptibility patterns documented by this review 21, 76

BD = twice daily; TDS = three times daily; QID = four times daily; IV = intravenous; IM = intramuscular; PO = *per os* (by mouth)
GRAM-NEGATIVE ORGANISMS	Number of isolates not susceptible (n) / Number tested (N)	(Non-Susceptibility Rate; %)	Interquartile Range (IQR;%); Median
Klebsiella spp.			
Penicillin/Ampicillin	45/100	45%[42] 96%[34]	71-100%; 100
	55/57		
	17/17		
	53/53	100%[41] (CA & HA)	
	50/50	100%[38] (CA)	
Gentamicin	49/100	49%[42] 49%[34]	48-58%; 49
	28/57	49%[42]	
	25/53	47%[18] (CA & HA)	
	33/50	66%[38]	
Ceftriaxone	25/57	43%[34]	
	25/50	50%[38]	
	1/3	33%[46]	
Cefotaxime	24/50	48%[34]	
	12/53	22%[18] (CA)	
	8/53	15%[18] (HA)	
Ceftazidime	28/57	49%[34]	
	11/53	21%[18] (CA)	
	8/53	15%[18] (HA)	
Ciprofloxacin	4/50	8%[38]	
	0/3	0%[38]	
Chloramphenicol	10/19	53%[18] (CA)	
	15/34	44%[18] (HA)	
Co-trimoxazole	12/19	63%[18] (CA)	
	32/34	94%[18] (HA)	
ESBL producing (Proportion; %)	27/35	76%[19] (CA)	78-96%; 93
	93/119	78%[19] (HA)	
	33/40	83%[39] (HA)	
Escherichia coli			
Penicillin/Ampicillin	155/310	50%[42] 78%[34]	78-96%; 93
	32/41		
	11/13		
	13/14	85%[18] (HA)	
	148/154	93%[41] (CA)	
	23/24	96%[20] (CA)	
	22/22	100%[36] (CA)	
Amoxicillin-Clavulanate	6/24	25%[18] (CA)	
	9/13	69% (HA)[18]	
Gentamicin	4/10	10%[34]	20-46%; 20
Antimicrobial	Proportion (Proportion; %)	Proportion (Proportion; %)	
---------------------------	----------------------------	----------------------------	
Ceftriaxone			
31/310	10% (CA)	20% (HA)	
2/14	14% (HA)		
7/41	17% (CA)		
15/22	50% (CA)		
Cefotaxime			
11/22	50% (CA)		
Ceftazidime			
11/22	50% (CA)		
Chloramphenicol	120/155	78% (CA)	
Co-trimoxazole	21/24	87% (CA)	
	10/13	77% (HA)	
	128/142	90% (CA)	
ESBL producing	9/76	12% (CA)	
(Proportion; %)	4/19	22% (HA)	
Penicillin/Ampicillin			
10/40	25% (CA)	39-73% (CA)	
10/30	30% (CA)		
13/27	48% (CA)		
60/92	65% (CA)		
8/12	67% (HA)		
74/103	72% (CA)		
296/401	74% (CA)		
107/128	84% (CA)		
Amoxicillin-	6/30	20% (CA)	
Clavulanate	152/401	38% (CA)	
	95/128	74% (CA)	
Gentamicin	6/30	20% (CA)	
	7/27	26% (CA)	
	38/128	30% (CA)	
	4/12	33% (CA)	
Co-trimoxazole	7/40	18% (CA)	
	17/30	55% (CA)	
	13/27	48% (CA)	
	8/12	67% (CA)	
	55/92	60% (CA)	
	264/401	66% (CA)	
	98/128	77% (CA)	
Tetracycline	14/128	11% (CA)	
Antibiotic	Value	Proportion (%)	Multi-drug Resistant (Proportion; %)
---------------------	-------------	----------------	--------------------------------------
Chloramphenicol	6/40	15%	6/40
	6/30	20%	6/40
	4/27	15%	6/40
	4/12	33%	4/27
	216/401	54%	4/12
	105/128	82%	216/401
Ciprofloxacin	0/128	0%	0/128
	0/129	0%	0/128
Ceftriaxone	0/128	0%	0/128
	0/129	0%	0/128
Multi-drug Resistant	**34/133**	**33%**	**34/133**
	84/129	**65%**	**84/129**
S. Typhi			
Shigella spp.			
Ampicillin/Penicillin	61/109	56%	61/109
Co-trimoxazole	92/109	84%	92/109
Tetracycline	72/109	66%	72/109
Chloramphenicol	57/109	52%	57/109
Multi-drug Resistant	**71/109**	**65%**	**71/109**
Non-Typhoidal Salmonella			
Haemophilus Influenza type b			
Penicillin/Ampicillin	7/14	50%	7/14
	61/113	54%	61/113
Chloramphenicol	56/113	100%	56/113
	9/10	50%	9/10
	6/6	90%	6/6
		100%	6/6
Co-trimoxazole	26/113	23%	26/113
Penicillin/Ampicillin	37/66	56%	37/66
	0/3	0%	0/3
	0/9	0%	0/9
Multi-drug Resistant	**4/16**	**25%**	**4/16**
Acinetobacter spp.			
Penicillin/Ampicillin	18/66	27%	18/66
	2/3	67%	2/3
	4/9	44%	4/9
Gentamicin	23/66	35%	23/66
	2/9	22%	2/9
	1/3	33%	1/3
Multi-drug Resistant	**4/16**	**25%**	**4/16**

(Proportion; %)	49/68	72%19 (HA)			
GRAM-POSITIVE ORGANISMS					
Streptococcus pneumoniae					
Penicillin/Ampicillin	4/20	20%30 (CA)			
	5/22	23%31			
Amoxicillin-Clavulanate	2/18	11%30 (CA)			
Gentamicin	17/22	77%31			
	16/20	78%30 (CA)			
Chloramphenicol	2/18	11%30 (CA)			
	5/20	25%31			
Co-trimoxazole	20/116	17%37 (CA)			
	19/20	95%31 (CA)			
	17/17	100%30 (CA)			
	11/11	100%43			
	29/29	100%29			
Ciprofloxacin	9/21	43%31			
Tetracycline	14/19	74%31			
	15/20	75%30 (CA)			
Ceftriaxone	0/20	0%30 (CA)			
Penicillin/Ampicillin	0/35	0%29			
	0/57	0%40			
Chloramphenicol	10/35	29%29			
	11/57	19%29			
Erythromycin	12/57	21%40			
Co-trimoxazole	5/34	15%29			
Ceftriaxone	0/57	0%40			
Streptococcus agalactae					
Penicillin/Ampicillin	10/35	29%29			
	11/57	19%29			
Chloramphenicol	12/57	21%40			
Erythromycin	5/34	15%29			
Ceftriaxone	0/57	0%40			
Staphylococcus aureus					
Ampicillin/Penicillin	17/32	52%31			
	23/27	85%41			
	170/189	90%29			
	29/32	90%38			
	13/13	100%18 (CA)			
	17/17	100%16 (HA)			
Flucloxacillin	5/30	17%31			
Oxacillin	17/189	9%29			
Cloxacillin	1/13	8%38 (CA)			
	2/17	12%18 (HA)			
	9/32	28%38			
	22/27	81%41			
Pathogen	Resistance	Sensitivity	CA (%)	HA (%)	Total (%)
-------------------------------	------------	-------------	--------	--------	-----------
Co-trimoxazole	11/24	54%			60%
	19/32				
Gentamicin	0/13	0%	18%	29%	10%
	3/17		33%	46%	
	9/32				
	3/9				
	210/248				
Nitrofurantoin	94/248	38%			
Clindamycin	52/248	21%			
	14/32				
Erythromycin	0/13	0%	18%	29%	12%
	2/9		33%	46%	
	5/17				
	144/248				
	21/32				
Ciprofloxacin	NA/32	14%			
	10/31				
Chloramphenicol	2/13	15%	36%	58%	21%
	5/17		29%	58%	
	6/9		67%		
	30/32				
Methicillin-Resistant	58/131	44%			
Staphylococcus aureus					
Oxacillin + cefoxitin	9/32	28%			
resistance	14/95				
	23/36				

Table 2 Non-susceptibility Patterns of Key Pathogens;
CA = Community-acquired; HA = Hospital-acquired, where specified in the literature (blank=not specified); NA = Not Available.
Appendix 1: Characteristics of Included Studies

Author	Year Published	Study Design	Title	Setting (primary / secondary / tertiary); Community v’s Hospital Acquired Infections	Location	Age Range (Neonate / Paediatric)	Microbiology Techniques / Quality	Findings	GRADE Level of Evidence (Comments)
Blomberg et al.16	2007; patients presenting 2001-2002.	Cohort	Antimicrobial resistance predicts death in Tanzanian children with bloodstream infections: A prospective cohort study	Urban tertiary setting; Both community- and hospital-acquired infections	Tanzania	0-7 years (average age 8.5 months); n=1,787 of n=1,828 admissions presenting with signs of sepsis were included in the study to have blood cultures collected	1-5ml of Blood inoculated in BACTEC blood-culturing vials were incubated for 6 weeks, then subcultured in agar and isolates identified by AEI20E/API20NE/API20AUX systems (aerobic cultures only). Susceptibilities against antimicrobial agents were tested by disk diffusion methods according to the CLSI guidelines. Gram-negative bacteria were investigated for extended-spectrum beta-lactamases with E-test; PCR and DNA sequencing. Enterococcal isolates were investigated by PCR to affirm identity and vancomycin resistance.	• At least 2/3 of the included patients had received antimicrobial therapy prior to blood cultures being collected	
• The incidence of laboratory-confirmed bloodstream infection was 13.9% (255 of 1,828 admissions)									
• A single pathogen was identified in 224 children (12.3%); 31 children (1.7%) had polymicrobial infection with 2-4 isolates identified									
• Half of all laboratory-confirmed bloodstream infections were identified as potentially hospital-acquired									
• *Salmonella* and *E Coli* were the most common isolates in community-acquired infections; and *Klebsiella* and *Staphylococcus Aureus* were the most common hospital-acquired infections									
• *Klebsiella* was the most common cause of neonatal bloodstream infection (54%)									
• In children >1 month *Salmonella* spp. were the most frequently isolated pathogen									
• Children with laboratory-confirmed bloodstream infection had a 3-fold increased risk of mortality; with Gram-negative blood stream infection being twice as fatal as malaria (45.6% vs 20.2%) and Gram-positive sepsis being the least common cause of mortality (16.7%)									
• *Enterobacteriaceae* displayed high frequency of resistance to commonly-used antimicrobials;	B (Large sample size; prospective design; identification of prior treatment with antibiotics)								
• Salmonella spp. Non-susceptibility:									
o 33% to Chloramphenicol									
o 50% to ampicillin and co-trimoxazole									
• ESBL was found in 18% of Enterobacteriaceae phenotypes; and these isolates were resistant to almost all tested antimicrobials aside from Ciprofloxacin and Meropenem									
• The majority of Staphylococcus aureus isolates were sensitive to commonly used anti-staphylococcal agents (including cloxacillin and gentamicin)									
• Antimicrobial treatment prior to blood culture collection was significantly associated with resistance to co-trimoxazole and chloramphenicol in Gram-negative isolates; with resistance to erythromycin (36% vs 0%) and chloramphenicol (46% vs 0%) identified in Staphylococcus aureus isolates									
• Hospital-acquired infections were significantly associated with resistance to amoxicillin-clavulanate and Cephalosporins in E Coli infection; and with co-trimoxazole resistance in Klebsiella infection									
• 53% of all Klebsiella isolates were resistant to gentamicin (as well as inherent resistance to ampicillin), rendering empiric therapy of limited utility; subsequently there was a high incidence of case-fatality of Klebsiella bloodstream infections									
2	Enwere et al.†	2006; Recruited 2000-2003	Cohort	Epidemiologic and Clinical Characteristics of Community-Acquired Invasive Bacterial Infections in children 2-29 months in The Gambia	Urban secondary and tertiary Settings; Community-acquired infections	The Gambia	2-29 months (7,369 specimens were cultured); infants presenting to a government vaccination post with signs of an acute lower respiratory tract infection who were investigated for invasive bacterial infection.	Bacteria were isolated from blood using automated blood-culture system (Bactec 9050) and inoculated under aerobic and 5% CO2 conditions for 18-24 hours. Identification of S. Pneumoniae and Salmonella species was by cultural morphology, & susceptibility to analytical profile indices. Resistance to antimicrobials was assessed by disk diffusion for all bacteria and was investigated further by measuring MICs for Pneumococci and non-typhoidal Salmonella, but not for other bacteria.	• Malnutrition: 1/6 (243/1,603) of the patients were malnourished, and this was a risk factor for death; while in those who survived, it was associated with a prolonged hospital stay • *E. Faecium* and *E. Faecalis* isolates commonly displayed high-level gentamicin resistance (overall 44%) and ampicillin resistance (overall 47%)

E. Faecium and *E. Faecalis* isolates commonly displayed high-level gentamicin resistance (overall 44%) and ampicillin resistance (overall 47%)

| 2 | Enwere et al.37 | 2006; Recruited 2000-2003 | Cohort | Epidemiologic and Clinical Characteristics of Community-Acquired Invasive Bacterial Infections in children 2-29 months in The Gambia | Urban secondary and tertiary Settings; Community-acquired infections | The Gambia | 2-29 months (7,369 specimens were cultured); infants presenting to a government vaccination post with signs of an acute lower respiratory tract infection who were investigated for invasive bacterial infection. | Bacteria were isolated from blood using automated blood-culture system (Bactec 9050) and inoculated under aerobic and 5% CO2 conditions for 18-24 hours. Identification of S. Pneumoniae and Salmonella species was by cultural morphology, & susceptibility to analytical profile indices. Resistance to antimicrobials was assessed by disk diffusion for all bacteria and was investigated further by measuring MICs for Pneumococci and non-typhoidal Salmonella, but not for other bacteria. | • The most community-acquired common organism isolated was *Streptococcus Pneumonia* (35% of episodes) • Non-Typhoidal Salmonella was cultured in 28% of isolates • In order of decreasing frequency, the most common other organisms (frequency not specified) were: - *E Coli* - *S. Aureus* - *Meningococcus* - *Streptococcus spp.* - *Shigella spp.* - *Pseudomonas spp.* - *Klebsiella spp.* • Among isolates of non-typhoidal Salmonella, resistance was high to ampicillin (65%), co-trimoxazole (60%) and chloramphenicol (24%); yet all isolates were susceptible to cefotaxime • Among Pneumococcal isolates, resistance was found to chloramphenicol (9.6%), co-trimoxazole (16.5%) and tetracycline (44.3%) but no isolates were resistant to penicillin, ampicillin or cefotaxime |

(Data collected as part of a randomised, double-blinded, placebo-controlled trial; prospective design; systematic patient recruitment; external quality assurance)
Blood cultures were collected for children with axillary temperatures >39°C on admission, inoculated into paediatric culture bottles and incubated in an automated BACTEC 9050 system for 4 days. Positive cultures were examined by Gram stain and subcultured on agar plates then identified according to standard microbiologic procedures. Antibiotic susceptibility was determined by disk diffusion according to CLSI guidelines; and MICs were estimated for *Pneumococcus* using E-strips.

- Bloodstream infections were identified in 8% of paediatric hospital admissions. Non-typhoidal *Salmonella* (26%) and *Pseudomonas* (25%) were the most prevalent pathogens isolated overall.
- In neonates, *Staphylococcus aureus* (39%) and Group B *Streptococcus* (20%) predominated.
- Community-acquired bacteraemia associated mortality accounted for 21% of all hospital deaths.
- Resistance to antibiotics commonly used in Mozambique was high: *Pneumococcal* isolates were predominantly susceptible to penicillin (89%) and chloramphenicol (93%) but resistant to trimethoprim-sulfamethoxazole.
- Among non-typhoidal *Salmonella* isolates, 74% were resistant to ampicillin, 66% to trimethoprim-sulfamethoxazole and 54% to chloramphenicol; while 38% were resistant to amoxicillin-clavulanic acid.
- *Staphylococcus aureus* isolates were 90% resistant to ampicillin and 9% resistant to Oxacillin.
- *Haemophilus Influenzae* exhibited high resistance to chloramphenicol (50%), penicillin/ampicillin (54%) and co-trimoxazole (23%).
- *Group B Streptococcus* isolates exhibited 100% susceptibility to penicillin/ampicillin; 71% susceptibility to chloramphenicol, and 85% susceptibility to co-trimoxazole.
| | Falade et al. | 2009; patients presenting 2005-2006 Cohort | Invasive Pneumococcal disease in Children aged <5 years admitted to 3 Urban hospitals in Ibadan, Nigeria. | Tertiary Urban; Community-acquired infections | Nigeria | Age 2-59 months; n=1,210 cases of suspected community-acquired pneumococcal disease investigated with blood and/or CSF cultures | Inoculated blood culture bottles were incubated in the laboratory for 24-48 hours and then until day 7 if there was no initial growth. Subcultures were performed twice (on days 2 and 3). Further identification of bacterial cultures was conducted by morphological and biochemical methods. Serotyping of Pneumococcal isolates was performed with capsular and factor-typing sera. MIC susceptibility testing was performed using E-strips | • 1,210 children with suspected bacterial disease were investigated over a 24-month period. There were 481 cases of meningitis clinical syndrome, 299 cases of pneumonia and 200 cases of septicemia; 21 children had invasive pneumococcal disease. • 11 S. pneumoniae serotype isolates from CSF and blood specimens were susceptible to penicillin, chloramphenicol, cefotaxime, erythromycin and ciprofloxacin; they all showed intermediate resistance to tetracycline and were fully resistant to trimethoprim-sulfamethoxazole |
|---|---|---|---|---|---|---|---|---|
| 4 | Falade et al. | 2009; patients presenting 2005-2006 Cohort | Invasive Pneumococcal disease in Children aged <5 years admitted to 3 Urban hospitals in Ibadan, Nigeria. | Tertiary Urban; Community-acquired infections | Nigeria | Age 2-59 months; n=1,210 cases of suspected community-acquired pneumococcal disease investigated with blood and/or CSF cultures | Inoculated blood culture bottles were incubated in the laboratory for 24-48 hours and then until day 7 if there was no initial growth. Subcultures were performed twice (on days 2 and 3). Further identification of bacterial cultures was conducted by morphological and biochemical methods. Serotyping of Pneumococcal isolates was performed with capsular and factor-typing sera. MIC susceptibility testing was performed using E-strips | • 1,210 children with suspected bacterial disease were investigated over a 24-month period. There were 481 cases of meningitis clinical syndrome, 299 cases of pneumonia and 200 cases of septicemia; 21 children had invasive pneumococcal disease. • 11 S. pneumoniae serotype isolates from CSF and blood specimens were susceptible to penicillin, chloramphenicol, cefotaxime, erythromycin and ciprofloxacin; they all showed intermediate resistance to tetracycline and were fully resistant to trimethoprim-sulfamethoxazole |
Schwarz et al. 2010

Prospective cohort

Systemic bacteraemia in children presenting with clinical pneumonia and the impact of non-typhoid salmonella (NTS)

Patients presenting 2007-2009	Ghana	Blood cultures were incubated in a BACTEC automated BC system for 5/7 or until positive. Broth from positive bottles was directly examined by Gram stain and 20 μl were cultured further on agar. Identification of S. pneumoniae was based on morphology of colonies and the optochin test. Antibiotic susceptibility testing was performed using the disc diffusion method with the susceptibility breakpoints suggested by CLSI. Lab undertakes external quality assurance programme.
n=1,032 blood cultures were collected between children 2 months – 5 years of age presenting with clinical pneumonia; of which n=90 (9%) were positive with presumed contaminants and n=209 (20%) were positive with presumed pathogenic bacteria.	n=1,196 children aged 0-5 years admitted to a rural hospital in Ghana had blood cultures collected; of which n=238 (20%) were culture positive	The most common isolates were non-typhoidal Salmonella (n=16; 9.3%); S. pneumoniae (n=8; 4.8%); S. aureus (n=5; 2.9%); S. Typhi (n=4; 2.3%); Klebsiella spp. (n=2; 1.2%)

Non-typhoidal Salmonella Susceptibility:
- Amoxicillin/Ampicillin: 15.5%
- Co-amoxiclav: 25.7%
- Cefuroxime: 46.5%
- Ceftriaxone: 100%
- Co-trimoxazole: 23.5%
- Ciprofloxacin: 100%
- Gentamicin: 70.9%
- Chloramphenicol: 18%
- Multi-drug resistance against the three standard drugs amoxicillin, chloramphenicol and co-trimoxazole was 75.5%

Streptococcal pneumoniae Susceptibility:
- Amoxicillin/Ampicillin: 80%
- Augmentin: 88.9%
- Cefuroxime: 100%
- Ceftriaxone: 100%
- Co-trimoxazole: 0%
- Ciprofloxacin: 52.6%
- Gentamicin: 22.2%
- Tetracycline: 25%
- Chloramphenicol: 88.9%

Nielsen et al. 2012

Prospective Cohort

Incidence and Characteristics of Bacteremia among Children in Rural Ghana

Patients presenting 2007-2009	Ghana	Blood cultures were incubated using automated BACTEC for 5/7 or until positive; then examined directly by Gram stain microscopy and sub-cultured on standard media plates. Identification of the organisms was obtained by biochemical and serological tests. Isolates of non-pathogenic microorganisms or skin flora were considered to be contaminants. Susceptibility to penicillin, amoxicillin/ampicillin, amoxicillin & clavulanic acid, fluoxacillin, cefuroxime, ceftriaxone, erythromycin/azithromycin.
n=328 (20%) were culture positive	Blood cultures were incubated using automated BACTEC for 5/7 or until positive; then examined directly by Gram stain microscopy and sub-cultured on standard media plates. Identification of the organisms was obtained by biochemical and serological tests. Isolates of non-pathogenic microorganisms or skin flora were considered to be contaminants. Susceptibility to penicillin, amoxicillin/ampicillin, amoxicillin & clavulanic acid, fluoxacillin, cefuroxime, ceftriaxone, erythromycin/azithromycin.	The most frequently (community-acquired) isolated pathogens were:
- Non-typhoidal Salmonella (n=129; 53.3%)
- S. aureus (n=32; 13.2%)
- S. pneumoniae (n=22; 9.1%)
- S. Typhi (n=17; 7%)
- Yearly cumulative incidences per 1,000 was 46.6 cases per 1,000 (CI 40.9-52.2)
- Wasting was positively associated with bacteremia and systemic non-typhoidal Salmonellae infection

NON-SUSCEPTIBILITY:
- Salmonella Typhi: 65% multidrug resistant; yet

B (Prospective study design; systematic patient recruitment; external quality control of laboratory procedures)
7	Mando-mando et al.32	2009; patients presenting 2001-2003.	Cohort	Antimicrobial Susceptibility and Mechanisms of resistance to *Shigella* and *Salmonella* isolates from children under five years of age with diarrhea in rural Mozambique	Tertiary; Community-acquired	Rural Mozambique	n=109 *Shigella* spp. isolates and n=49 *Salmonella* spp. isolates children <5 years who presented to the outpatient department with diarrhea. Number who attended (denominator) and number with bloody diarrhea not given; PCR detection of genes encoding beta-lactamases associated in *Shigella* and *Salmonella* isolates presenting with full resistance.	• Very high levels of resistance in *Shigella* isolates to trimethoprim-sulfamethoxazole (84%), tetracycline (66%), ampicillin (56%) and chloramphenicol (52%)	• *Salmonella* exhibited resistance to ampicillin (25%) and trimethoprim-sulfamethoxazole (18%), tetracycline (15%), and chloramphenicol (15%)	Multi-drug resistance was detected within 65% of *Shigella* isolates and 23% of *Salmonella* isolates	C (Limitations in study design; no denominator identifying number of patients sampled or proportion presenting with bloody diarrhoea)
8	Phoba et al.44	2014; patients presenting 2008-2012	Retro-reflective cohort study	Epidemic increase in *Salmonella* bloodstream infection in children, Bwamanda, the Democratic Republic of Congo	Rural Tertiary; Community-acquired infections	Democratic Republic of Congo	Between 2008-2012; 3,311 children <5 years old were admitted, n=626 blood cultures were collected of which n=168 were positive	More than three-quarters (169 out of 209) children >28/7 with axillary temperature ≥ 38 °C or ≤ 35.5 °C, with suspected septic shock, or signs of invasive bacterial infection. BC samples were cultured via BacT and shipped to Kinshassa INRB, where they were incubated at 35 °C and checked daily for growth by visual inspection of the chromogenic growth indicator	The most common causes of community-acquired bacteremia were (in order of frequency): -NTS -Salmonella Typhi -Klebsiella spp. -Staphylococcus Aureus -Escherichia Coli -Enterobacter	NON-SUSCEPTIBILITY	C (Retrospective study design; evidence of prior antibiotic use which biases towards non-susceptibility; infections not delineated as...
of 216, 78.2% were on antibiotics ≤ 48 h prior to sampling (mostly ampicillin, chloramphenicol or TMP-SMX), but yield of CSO in this group did not significantly differ from those who were not on antibiotics (70 out of 169 [41.4%] versus 18/47 [38.3%] respectively at the bottom of the vials. Skin or environmental bacteria were categorised as contaminants; the other bacteria were considered as clinically significant organisms (CSO). Isolates were further identified to the species level using standard biochemical methods.

- 72.2% of Salmonella typhi were co-resistant to ampicillin and co-trimoxazole; with 33% of these showing additional resistance to chloramphenicol (Classified as MDR)
- NTS: 95% MDR (resistant to ampicillin, chloramphenicol and co-trimoxazole)
- 96.7% of NTS isolates were MDR

Blood samples were drawn from all inpatients with suspected bloodstream infections (n=1,800) and considered hospital acquired if this occurred 48h after admission (72h for neonates). The BSI were defined as ESBL-positive when the blood sample yielded ESBL-producing Enterobacteriaceae and ESBL-negative when the strain was Enterobacteriaceae susceptible to beta-lactams; identified with API 20E strips and double disc diffusion method using antibiotic discs of cefepime, cefotaxime and ceftazidime

- The overall incidence rate of hospital-acquired-BSI caused by ESBL-E strains was 1.52 cases/1,000 patient-days (95% CI 1.2-5.6)
- ESBLs were produced by 88% of Enterobacteriaceae isolates, 52% of Klebsiella spp. isolates and 58.3% of E Coli isolates
- Patients with ESBL-positive BSI were significantly younger than patients with ESBL-negative BSI (2.5 yrs vs 4.4 yrs, p=0.021) and were more likely to suffer from sickle cell disease (33.3% vs 11.5%, p=0.044) and be malnourished (38.1% vs 15.4%, p=0.034)
- Initial antibiotic therapy (with a third generation cephalosporin in 90% of cases) was inadequate to treat 79.1% of BSI infections (n=87)
- 50 patients with a BSI caused by Enterobacteriaceae died during the study period (45.5%). The case fatality rate was significantly higher in ESBL-positive patients (54.6%) than in ESBL-negative patients (15.4%, p<0.001).
- Rates of ESBL (at 1.52 cases/1,000 patient days) were much higher than recently documented in developed world settings, such as France (0.054/1,000 patient days in 2012)

9 Ndir et al. 2016; patients admitted 2012-2013 Case Control Epidemiology and Burden of Bloodstream Infections caused by Extended-Spectrum Beta-Lactamase Producing Enterobacteriaceae in a Paediatric Hospital in Senegal

Ages 0-16yrs; n=1,800 suspected patients with bloodstream infections yielded n=84 cases of patients with ESBL-E positive infections and n=26 ESBL negative Enterobacteriaceae infections

- CA vs HA; referral pathways unclear

(Skin or environmental bacteria were categorised as contaminants; the other bacteria were considered as clinically significant organisms (CSO). Isolates were further identified to the species level using standard biochemical methods.

- 72.2% of Salmonella typhi were co-resistant to ampicillin and co-trimoxazole; with 33% of these showing additional resistance to chloramphenicol (Classified as MDR)
- NTS: 95% MDR (resistant to ampicillin, chloramphenicol and co-trimoxazole)
- 96.7% of NTS isolates were MDR

Blood samples were drawn from all inpatients with suspected bloodstream infections (n=1,800) and considered hospital acquired if this occurred 48h after admission (72h for neonates). The BSI were defined as ESBL-positive when the blood sample yielded ESBL-producing Enterobacteriaceae and ESBL-negative when the strain was Enterobacteriaceae susceptible to beta-lactams; identified with API 20E strips and double disc diffusion method using antibiotic discs of cefepime, cefotaxime and ceftazidime

- The overall incidence rate of hospital-acquired-BSI caused by ESBL-E strains was 1.52 cases/1,000 patient-days (95% CI 1.2-5.6)
- ESBLs were produced by 88% of Enterobacteriaceae isolates, 52% of Klebsiella spp. isolates and 58.3% of E Coli isolates
- Patients with ESBL-positive BSI were significantly younger than patients with ESBL-negative BSI (2.5 yrs vs 4.4 yrs, p=0.021) and were more likely to suffer from sickle cell disease (33.3% vs 11.5%, p=0.044) and be malnourished (38.1% vs 15.4%, p=0.034)
- Initial antibiotic therapy (with a third generation cephalosporin in 90% of cases) was inadequate to treat 79.1% of BSI infections (n=87)
- 50 patients with a BSI caused by Enterobacteriaceae died during the study period (45.5%). The case fatality rate was significantly higher in ESBL-positive patients (54.6%) than in ESBL-negative patients (15.4%, p<0.001).
- Rates of ESBL (at 1.52 cases/1,000 patient days) were much higher than recently documented in developed world settings, such as France (0.054/1,000 patient days in 2012)
This raises the question as to the choice of third generation cephalosporins as systemic empirical treatment, which is inadequate to treat ESBL-positive BSIs.

| 10 | Gray et al. | 2007; patients presenting 2004-2005. | Case Series | Invasive Group B Streptococcal Infection in Infants, Malawi | Urban tertiary centre; Hospital- v's community-acquired not clearly specified | Blantyre District, Malawi | 0-90 days; n=57 neonates with blood and CSF cultures isolating Group B Streptococcus | Disc diffusion antimicrobial susceptibility testing performed in accordance with the British Society for Antimicrobial Chemotherapy Guidelines on Isosensitex agar; in a laboratory enrolled in the UK National External Quality Assessment Service for Microbiology | Of neonates presenting with invasive group B Streptococcus infection, cultures exhibited:
 - 100% sensitivity to penicillin
 - 100% sensitivity to ceftriaxone
 - 81% sensitivity to chloramphenicol
 - 79% sensitivity to erythromycin
 - 4% sensitivity to tetracycline | C
(Prospective case series yet external quality control of laboratory; noted issues in clarifying numerator and denominator)
| 11 | Talbert et al.34 | 2010; patients admitted 2001-2009 | Case Series | Invasive bacterial infections in neonates and young infants born outside hospital admitted to a rural hospital in Kenya. | Rural tertiary centre; Both community- and hospital-acquired (neonates born in hospital and at home) | Kilifi District, Kenya | 0-60 days; n=4,849 blood cultures (systematic, all outborn admissions) and 2,140 CSF cultures | Antibiotic sensitivity was assessed using British Society for Antimicrobial Chemotherapy methods; with external quality monitoring via the UK National External Quality Assessment Service. | Non-susceptibility of Acinetobacter spp. (with 95% CI) were: | Penicillin/Ampicillin: 56% (42-70) | Gentamicin 27% (14-39) | Ceftriaxone 35% (22-48) | Non-susceptibility of Klebsiella Pneumoniae were: | Penicillin/Ampicillin: 96% (91-100) | Gentamicin 49% (35-63) | Ceftriaxone 43% (29-57) | Non-susceptibility of E. Coli were: | Penicillin/Ampicillin: 78% (65-91) | Gentamicin 10% (1-19) | Ceftriaxone 17% (5-29) | There was a reduction in the sensitivity of isolates to ampicillin/gentamicin (WHO Guidelines) over the study period from 86% susceptibility in 2001 to 66% susceptibility in 2009 (p<0.001) | C | (Case series of prospectively collected data on a large number of systematically collected participants over prolonged study period; internal and external quality control of laboratory procedures) |
| Study | Year | Design | Participants | Setting | Cohort | Study Details | Outcomes | |
|---|---|---|---|---|---|---|---|---|
| Nantanda et al. | 2008 | Cohort | Patients presenting 2005-2006 | Uganda | Nantanda et al. | 157 children aged 2-59 months with symptoms of severe pneumonia (according to WHO guidelines) were recruited over a 4-month period in 2005-2006. Blood and induced sputum were obtained for culture after premedication with Salbutamol and hypertonic saline. Culture and sensitivity for blood and sputum was via manual disk diffusion methods after inoculation on agar plates and incubation for >24/24. | • The mortality rate was 15.3% (n=24) • The most common organisms causing clinically severe pneumonia were: *Strep Pneumoniae* (46%), *Staphylococcus Aureus* (36%), *Haemophilus Influenzae* (24%) and *Klebsiella* species (22%). • *Staphylococcus Aureus* was positive on 36% of blood cultures and was positively associated with severe malnutrition. SENSITIVITY PATTERNS: o Erythromycin: 77% o Chloramphenicol (1st line therapy in the unit): 33% o Gentamicin: 66% • *Streptococcal Pneumoniae* SENSITIVITY PATTERNS: o Chloramphenicol: 87% o Erythromycin: fully sensitive o Ampicillin: 94% • *Haemophilus Influenzae* isolates were completely resistant to Ampicillin and Chloramphenicol • *Klebsiella* spp. SENSITIVITY PATTERNS: o Ampicillin: 0% o Chloramphenicol: 40% o Ceftriaxone: 100% o Gentamicin: 50% • *Escherichia Coli* SENSITIVITY PATTERNS o Chloramphenicol: 10% o Erythromycin: 75% o Ceftriaxone: 100% |
| Dramowski et al. | 2015 | Case Series | Patients presenting 2008-2013 | Cape Town, South Africa | Case Series | Trends in Paediatric Bloodstream Infections at a South African referral hospital | 94.7% of blood stream infections were monomicrobial and 5% were polymicrobial (2-3 pathogens) • The median age of affected patients was 7.5 months • Blood culture contamination rates were high (6.6%), most commonly with coagulase negative *staphylococci* | (Retrospective review of patients presenting over extended [5 year] period; yet large sample size, analysed CA infections) |
| Infections (analysed separately) | Children with suspected sepsis or severe infection with a focal site. | **•** Nearly half of all infectious were hospital-acquired (46.8%; classified as positive >72 hours post hospitalization)
• Gram-negative organisms predominated (60%) followed by Gram–positives (32.4%) and fungi (7.4%).
• The most common organisms were Klebsiella (17%), Staphylococcus Aureus (14%) and Escherichia coli (11%).
• Overall mortality for blood stream infections was 20.4% (176/864); patients with HA BSI experienced **higher mortality than CA BSI** (25% [101/404] vs 16.3% [75/460]; p=0.002).
• Acinetobacter spp. were associated with the highest BSI mortality.
• No carbapenem resistant Enterobacteriaceae (CRE) or Vancomycin-resistant Enterococci (VRE) were isolated.
• Overall, the prevalence of antimicrobial resistance was much higher in hospital-acquired infections (65.8%) than community acquired isolates (25%) p<0.0001. This was an overall figure based on a subset of four pathogens: MRSA, multi-drug resistant Acinetobacter baumannii and ESBL-producing Escherichia coli and Klebsiella pneumoniae.
• There was not a significant increase in antimicrobial resistance between 2008 and 2013.
• ESBL Resistance Rates:
-Klebsiella;
CA: 75.7%; HA 78.3% (p=0.82)
-Escherichia coli;
CA:11.7%; HA 21.7% (p=0.3)
• 75% of Acinetobacter Baumannii samples were multi-drug resistant.
• 44% of Staphylococcus Aureus samples were methicillin resistant. | size; CA vs HA clearly delineated; ICU vs ward-based patient population analysed) |
|---|---|---|
| ID | Authors | Year | Location | Study Type | Population Details | Methods | Findings |
|----|---------|------|----------|------------|--------------------|---------|----------|
| 14 | Mhada et al. | 2012 | Dar es Salaam, Tanzania | Case Series | Neonatal sepsis at Muhimbili National Hospital, Dar es Salaam, Tanzania: An etiology, antimicrobial sensitivity pattern and clinical outcome | Urban tertiary centre; Did not clearly specify hospital- vs community-acquired patient population (or location of neonatal birth) | Culture positive infection of which 69% were bacteria isolated from swabs (umbilical cord stump and skin pustules), 1.5% from blood and 20.9% from both swabs and blood. Details as to antimicrobial susceptibility testing was not provided. | Resistance patterns of Klebsiella spp. (based on blood culture isolates): - Penicillin/Ampicillin 100% - Gentamicin 77% (57-90) - Ceftriaxone 19% (7-39) Resistance patterns for Escherichia Coli (based on blood culture isolates): - Penicillin/ampicillin 93% (69-99) - Gentamicin: 43% (1-19) - Ceftriaxone 14% (4-40) Resistance patterns for Staphylococcus Aureus: - Cloxacillin 81.5% (blood culture); 80.3% (skin swab) - Ampicillin 85% (blood); 88% (swab) Only single cases of Group B Streptococcus and Pseudomonas infections were found; these data were not included due to sample size |
| 15 | Marais et al. | 2009 | South Africa | Case series | Antimicrobial susceptibility of methicillin-resistant Staphylococcus Aureus isolates from South Africa | Laboratory-based study (did not present clinical cases) | Non-susceptibility for Staphylococcus aureus to: - Nitrofurantoin (38%) - Gentamicin (85%) - Clindamycin (21%) - Erythromycin (58%) were found. - Non-susceptibility was higher in NHLS laboratories than private laboratories | Non-susceptibility was higher in NHLS laboratories than private laboratories |

Note: Information on laboratory-based studies and clinical outcomes were not clearly delineated for hospital- vs community-acquired patient population (or location of neonatal birth) and urban vs rural settings.
| | Kayange et al.38 | 2010; Neonates admitted in 2009 | Cross-Sectional | Predictors of positive blood culture and deaths among neonates with suspected neonatal sepsis in a tertiary hospital, Mwanza-Tanzania | Urban Tertiary: Did not specify community-v’s hospital-acquired infections | Tanzania n=300 neonates admitted with clinical sepsis; of which n=57 and n=92 had positive blood cultures due to early and late onset sepsis (respectively). | Blood cultures were inoculated agar and incubated for 7 days or until positive. Antimicrobial susceptibility of isolates was determined by disk diffusion methods according to the CLSI. Isolates were screened for ESBL production using MacConkey agar with 30µg/ml Cefotaxime and confirmed using disc approximation methods. | • Gram-negative bacteria were more frequently isolated than gram positive bacteria (n=91; 61.1%) • Gram-negative sepsis had higher mortality than gram positive sepsis (36.3% case fatality vs 19% case fatality; p=0.0001), with increased mortality seen in ESBL (52% case fatality vs 25% case fatality; p=0.008) and MRSA isolates (56% vs 21% case fatality; p=0.008) • The most common isolates were Klebsiella pneumoniae, Staphylococcus aureus and Escherichia coli. • Most Klebsiella pneumoniae and Escherichia coli were resistant to ampicillin and gentamicin: • Klebsiella: Ampicillin resistance 100%; Gentamicin resistance 67%; Ceftriaxone resistance 50%; Cefotaxime 49%; Ceftazidime 49%; Ciprofloxacin 8% • Escherichia Coli: Ampicillin resistance 100%; gentamicin resistance 68%; Ceftriaxone resistance 50%; Cefotaxime 50%; Ceftazidime 50%; Ciprofloxacin 4.5% • The majority of Klebsiella spp. and Escherichia coli species were ESBL producers (49% and 50% respectively) • The majority of Gram-negative isolates were sensitive to ciprofloxacin and meropenem • Among 32 Staphylococcus aureus isolates, 9 (28%) were found to be Methicillin Resistant Staphylococcus aureus (MRSA) (i.e resistant to oxacillin and cefoxitin) Penicillin resistance 90%; Erythromycin resistance 86%; Clindamycin resistance 44%; Cloxacillin resistance 28%; Bacitracin resistance: 60%; Ciprofloxacin resistance 14% | D (Prospective cross-sectional study; systematic patient recruitment yet small sample size; EOS vs LOS and location of delivery not taken into account in analysis yet CA vs HA infections not specified) |
| 17 | Roca et al. | 2009; patients presenting 2006-2007 | Cohort | Surveillance of Acute Bacterial Meningitis among Children Admitted to a District Hospital in Rural Mozambique | Rural Tertiary; Community-acquired infections only | Maputo, Mozambique | n=642 children aged 0-15 years with suspected meningitis, of whom n=43 (7%) had positive CSF cultures. | CSF analysis using two sterile tubes to assess CSF glucose, Gram staining, bacterial culture, cell count, protein measurement and latex agglutination for detection of pneumococcus; HIB meningococcus A, B, C, and W135; and streptococcus B antigens. Blood samples were cultured using an automated blood culture system (Bactec 9050; Becton Dickinson) while the CSF samples were cultured using manual (conventional) methods) and bacterial isolates were identified by colony morphologic analysis and growth requirements. Antibiotic susceptibility testing was performed by disk diffusion or E test. | • The most common causes of bacterial meningitis were *Haemophilus Influenzae* Type B (n=14); *Pneumococcus* (n=9); *Meningococcus* (n=7). • All 9 pneumococci isolates were susceptible to chloramphenicol, and 8 were susceptible to penicillin (1 had intermediate resistance) • Of the 10 HIB isolates tested, only 1 was susceptible to chloramphenicol (90% resistance); and 5 were susceptible to ampicillin (50% resistance) • *Neisseria meningitidis* exhibited 50% resistance to Amoxicillin and 90% resistance to Chloramphenicol. | D (Systematic collection of LPs on all children presenting with defined symptoms of meningitis; yet large proportion had concurrent malaria parasitaemia; HIV status of children unclear; data collated over a short period which may affect variations of disease occurrence for specific pathogens) |
Reference	Study Design	Setting	Country	Sample Size	Methodology	Outcomes
Nwadioha et al.	Retrospective blood culture analysis (laboratory-based)	Tertiary; Did not specify community- vs hospital-acquired infections	Nigeria	n=3840 blood cultures were collected in children presenting with clinical signs of sepsis, of which n=700 were positive	Blood culture samples were incubated for 7 days on MacConkey, blood and chocolate agar media. Organisms were isolated by conventional methods. Antibiotic susceptibility tests were done against locally available antibiotics by using disk diffusion method in accordance with the NCCLS / CLSI criteria.	• Out of a total of 3840 blood culture samples, only 18.2% (n=700) were culture positive. • Gram-negative and Gram-positive bacteria constituted 69.3% (n=2661) and 30.7% (n=1179) respectively. • The most prevalent bacterial isolates were *Escherichia coli* with 44.3% (n=310/700) and *Staphylococcus aureus* 30.7% (n=215/700). • *Escherichia coli* were sensitive to ceftriaxone *Escherichia coli* SENSITIVITY: o Ampicillin 50%, o Gentamicin 80%, o Ceftriaxone 90% *Klebsiella* spp. NON-SUSCEPTIBILITY: • Ampicillin 45% • Gentamicin 49%