Existing cost-effectiveness analyses for diseases caused by Group A Streptococcus: A systematic review to guide future research [version 1; peer review: awaiting peer review]

Jung-Seok Lee, Sol Kim, Jean-Louis Excler, Jerome Kim, Vittal Mogasale

International Vaccine Institute, Seoul, Seoul, 08226, South Korea

Abstract

Background: Group A Streptococcus (Strep A) causes a broad spectrum of disease manifestations, ranging from benign symptoms including throat or skin infections, to fatal illness such as rheumatic heart disease, or chronic renal failure. Currently, there is no vaccine available against Strep A infections. Despite the high burden of Strep A-associated infections worldwide, little attention has been paid to the research of these diseases, including standardized surveillance programs, resulting in a lack of economic evaluations for prevention efforts. This study aims at identifying existing cost-effectiveness analyses (CEA) on any Strep A infections.

Methods: A systematic literature review was conducted by searching the PubMed electronic database.

Results: Of a total of 321, 44 articles met the criteria for inclusion. Overall, CEA studies on Strep A remain limited in number. In particular, a number of available CEA studies on Strep A are disproportionately lower in low-income countries than in high-income countries. Decision-analytic models were the most popular choice for CEA on Strep A. A majority of the models considered pharyngitis and acute rheumatic fever, but it was rare to observe a model which covered a wide range of disease manifestations.

Conclusions: Future research is needed to address missing clinical outcomes, imbalance on study locations by income group, and the transmission dynamic of selected diseases.

Keywords
cost-effectiveness analysis, Group A Streptococcus, S. Pyogenes, economic evaluation, decision analytic models, Strep A
Corresponding author: Jung-Seok Lee (jungseoklee@gmail.com)

Author roles: Lee JS: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Validation, Writing – Original Draft Preparation, Writing – Review & Editing; Kim S: Formal Analysis, Validation, Writing – Review & Editing; Excler JL: Writing – Review & Editing; Kim J: Funding Acquisition, Investigation, Writing – Review & Editing; Mogasale V: Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by the Wellcome Trust [215490/Z/19/Z; to JK]

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2021 Lee JS et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Lee JS, Kim S, Excler JL et al. Existing cost-effectiveness analyses for diseases caused by Group A Streptococcus: A systematic review to guide future research [version 1; peer review: awaiting peer review] Wellcome Open Research 2021, 6:211 https://doi.org/10.12688/wellcomeopenres.17116.1

First published: 20 Aug 2021, 6:211 https://doi.org/10.12688/wellcomeopenres.17116.1
Introduction

Group A Streptococcus (Strep A), also known as Streptococcus pyogenes (S. pyogenes) is a Gram-positive bacterium, often identified in the throat or on the skin. Strep A is a major public health concern causing significant morbidity and mortality worldwide. While the World Health Organization (WHO) prioritized Group A Strep vaccine development in 2014, there are no vaccines available. Strep A infections include a broad spectrum of diseases. Relatively minor infections can be a precursor for acute and invasive diseases, both of which can lead to long-term morbidity. Acute conditions include throat and skin diseases, as well as toxin-mediated diseases. If relatively benign infections (i.e. Strep throat or skin infections) are not properly treated, the infection may further develop into post infectious autoimmune diseases (i.e. acute rheumatic fever (ARF), glomerulonephritis), which can lead to chronic diseases such as rheumatic heart disease (RHD) and chronic renal failure.

The absolute numbers of episodes of Strep A throat infections and skin infections are much higher than those associated with more severe illness. This raises the possibility that although the symptoms of pharyngitis or skin infections may not be as severe as the ones of ARF or RHD, their economic and social burdens at the population level could be noticeably high considering direct treatment costs and indirect costs.

While vaccines against Strep A are absent, the use of antibiotics such as oral or intramuscular penicillin has proved effective and been recommended to treat patients with Strep A infections. In addition, several prevention strategies were developed. Primary prevention of ARF involves the detection and timely treatment of streptococcal pharyngitis. In order to identify patients with Strep A infections, the following test options are often considered: clinical diagnosis (with or without the use of clinical scoring algorithms), throat or skin cultures, and point of care testing (e.g., rapid Strep A antigen detection test and nucleic acid amplification tests). Once confirmed positive, antibiotics are prescribed to treat patients. However, this process may result in prescription and consumption of unnecessary antibiotics for those tests who are false positives or in missing true cases (false negative). While this primary prevention strategy is effective, this approach is also costly considering only 10–20% of pharyngitis is caused by Strep A. A study estimating the rates of inappropriate outpatient antibiotic use in the United States reported that 56.2% and 72.4% of ambulatory care visits for pharyngitis were associated with antibiotic prescribing in children (0–19 years) and adults (20–64 years), respectively. However, streptococcal prevalence for pharyngitis was 37% for children and 18% for adults, indicating the existence of inappropriate use of antibiotics in pharyngitis treatment.

The secondary prevention strategy is to use intramuscular antibiotics as a prophylaxis to prevent recurrent ARF, but it was shown that increasing patients’ compliance to the recommended schedule of injections occurring every 28 days over a minimum of 10 years is challenging. The tertiary prevention scenario involves increasing the coverage of valve surgery by building local surgical capacity especially in resource-limited settings. While the tertiary approach will enhance local health capacity to treat patients with severe illness, this process will require a long-term plan and consensus among decision makers who need to consider various competing health problems in a nation.

Few health economic studies have been conducted on the entire spectrum of Strep A diseases. This may be due in part to the significant reduction in the rates of autoimmune diseases (i.e., acute rheumatic fever) and its sequelae (i.e., RHD) in high-income countries (HIC) during the late 20th century. The reduction was mainly attributable to improvements in socioeconomic conditions and to the increase in the use of antibiotics. However, the diseases are still highly prevalent in lower- and middle-income countries, and the burden of Strep A throat or skin infections is not negligible in HIC either. It is also worth noting that Strep A causes a wide range of disease manifestations, and there is a lack of available data points for each disease category, making it difficult to establish a universal model that covers all symptoms which progress over time.

The primary interest of the current review lies in identifying existing health economic models (i.e., those used in cost-effectiveness analyses) for Strep A-associated diseases. This review aims to summarize the types of model structures and evaluation perspectives which have been frequently emphasized by others, as well as to identify the gap in existing literature.

Methods

A systematic literature review was conducted by searching the PubMed electronic database. Search terms were divided into two groups and developed separately: (1) disease category and (2) economic evaluation terminology category. Considering that Strep A causes a broad spectrum of diseases from seemingly benign throat and skin infections to chronic RHD or CHF, search strategies in the disease category closely followed the terms previously defined in texts on the burden of group A streptococcal diseases. For the current search, “group A streptococcus” was additionally included as a separate search term to expand the search to papers which did not mention the specific names of Strep A-related diseases. In addition to the disease category, all search terms related to health-economic evaluation were developed in the economic evaluation category. Table 1 summarizes the search terms used for the current review.

All lines of the search terms in each of the two categories were combined using “OR”, and the two categories were eventually joined by “AND” in order to identify papers associated with health-economic models for Strep A-related diseases. The search terms were not limited to a title or an abstract. Any papers published up to May 2020 were included, and papers written in non-English languages were excluded. Additional search was done by going through bibliographies for eligible articles. The initial screening was carried out by going through all abstracts and shortlisting the papers that indicated the use of a CEA in the economic analyses. For the shortlisted papers, a more comprehensive (full-length) assessment was carried...
out by reviewing the full text against a list of inclusion and exclusion criteria. The search was performed independently by JSL and cross-checked by JSL and SK. Any discrepancies were discussed and resolved between the two independent reviewers.

Given that the studies were conducted under varying conditions (i.e. different country-contexts, study designs, disease types), a standardized set of criteria would be useful to make systematic assessments among the articles identified at the final stage of the literature review. First, disease category was defined. Sanyahumbi et al. (2016) previously categorized Strep A-related diseases into four groups: superficial and locally invasive disease, immune-mediated disease, disease sequelae, and invasive- and toxin-mediated disease. The same categorization was applied for the current study. Second, given that Strep A causes a wide range of disease presentations, age groups chosen for an intervention may also differ depending on disease types and the peak incidence of a disease. Thus, target cohorts were also identified. Third, given that model structure is one of the key factors that determine the final outcome of an intervention (i.e. cost-effectiveness strategy), the types of health economic models were compared. Fourth, cost perspective was identified. For the current review, any costs related to healthcare costs such as drug, hospitalization, treatment, etc. were termed “health system perspective”. On the other hand, any studies which considered broader cost items such as healthcare costs, productivity losses, caregiving, etc. were defined as “societal perspective”. Fifth, a CEA model often compares total costs with intervention benefits which can be measured in various ways. For example, while some studies use the Quality-Adjusted Life Year (or Day) (QALY(D)) as an outcome measure, others adopt the Disability-Adjusted Life Year (DALY). In addition, there are studies which directly utilize the number of episodes prevented by converting into saved costs. Hence, outcome measure was described for each study. Lastly, while some studies calculated cost-effectiveness based on primary data sources obtained from a trial, many studies estimated cost-effectiveness outcomes by constructing a decision analytic model. Given that such a model often utilizes multiple health states, more details on health states were further investigated for these studies.

Results

The initial search using the key words identified 321 articles from the database, as shown in Figure 1. After going through the abstracts and titles, 274 articles were omitted, resulting in 47 articles for a more comprehensive review. The full-length assessment was carried out for these articles. Of the 47 articles, nine studies were further excluded, and six articles were additionally identified through the bibliography search of the eligible articles. A total of 44 articles were selected at the final stage of the current literature review search. These final papers were assessed based upon the six criteria described above.

Table 2 summarizes the final 44 articles identified by the systematic literature review. The majority of studies (93%) were done in countries classified as high-income or upper-middle-income by the World Bank. There were only three studies that were carried out in lower-middle-income economies or below: two studies from Africa and one study from India. While most studies conducted a cost-effectiveness analysis for a single country or sub-population of a country, Watkins et al. and Manji et al. covered multiple African countries by taking into account evidence reported in existing
Literature. About 25% of the studies (n = 11) solely considered superficial diseases such as throat or skin infections. Among those 11 studies, six of them were not Strep A-specific but more general, resulting in only five studies with a specific focus on Strep A. Another 34% of the studies (n = 15) included immune-mediated- (i.e. acute rheumatic fever) or locally invasive diseases (i.e. peritonsillar abscess) in addition to superficial diseases. As described above, Strep A causes a broad spectrum of diseases from benign superficial infections to severe cardiac failures. Five studies investigated disease sequelae (i.e. RHD) along with superficial- and immune-mediated-diseases, and two studies further included locally invasive diseases on top of these. There was only one study that covered at least a subset of each of the four disease categories: superficial and locally invasive, immune-mediated, sequelae, and invasive- and toxin-mediated diseases.

Forty-one percent and 43% of the studies applied a health system perspective and a societal perspective, respectively. Of the 44 articles, five studies adopted both perspectives. For example, the health system perspective was chosen for a primary analysis, but the societal perspective was also considered as a sensitivity or scenario analysis. A total of 18 studies used health-related quality of life such as QALY(D) or DALY as an outcome measure, and others directly utilized the number of episodes prevented or the number of patients free of recurrence which were in most cases converted into saved costs. While some studies conducted cost-effectiveness analyses alongside (randomized) clinical trials (n = 7) or simple comparisons between costs and benefits (n = 8), the majority of the studies (66%) used decision analytic models. Among the studies with decision analytic models, 72% of them (n = 21) adopted decision tree models, and eight studies employed Markov models.

Since decision analytic models take into account multiple health states and transition probabilities from one health state to another, more details on health states were further investigated as shown in Table 3. The most common health states chosen for the models were Strep A pharyngitis and ARF.
No.	Article	Year	Region	Country	Disease category	Target cohort	Model type	Cost perspective	Outcome measure	Source
1	Ubels et al.	2020	Latin America	Brazil	Sequelae	Adults aged 11 years (socioeconomically disadvantaged children)	Markov cohort	Health system perspective	DALY	17
2	Oetzel et al.	2019	Asia & Pacific	New Zealand	Immune-mediated; Sequelae	14-21 years; Waikato RF registry receiving secondary prophylaxis, Maori and Pacific Island populations	Decision tree (cohort)	Health system perspective	QALD	3
3	Behnamfar et al.	2019	Middle East	Iran	Superficial; Local invasive; Immune-mediated	Children, adults	Decision tree (cohort)	Health system perspective	QALD	3
4	Cannon et al.	2018	Asia & Pacific	Australia	Superficial; Local invasive; Immune-mediated; Sequelae; Invasive	Three vaccination scenarios: (1) Infants, (2) 5 years old, (3) 65 years (non-indigenous), (4) 65 years (indigenous)	Markov cohort	Societal perspective	DALY	4
5	Burns et al.	2018	Europe	UK	Superficial	Adults between 18 and 70 years with acute sore throat and painful swallowing	RCT	Health system perspective excluding out-of-pocket expense, societal perspective analysis	QALY	14
6	CADTH Common drug review	2018	North America	Canada	Superficial	Patients with impetigo aged two months and older	Decision tree (cohort)	Health system perspective	QALY	20
7	Roberts et al.	2017	Asia & Pacific	Australia	Immune-mediated; Sequelae	Indigenous populations in the Northern Territory of Australia, (1) 8 and 12 years (Echo A), (2) 5 to 12 years (Echo B)	Markov patient-level	Health system perspective	QALY	21
8	Watkins et al.	2016	Africa	Pinnel del Bio	Immune-mediated; Sequelae	5-24 years; hypothetical African cohort for the application of the model	Decision tree (cohort)	Health system perspective	QALY	22
9	Watkins et al.	2015	South America	Cuba	Immune-mediated; Sequelae	5-24 years	Decision tree (cohort)	Health system perspective	QALY	23
10	Zachariah et al.	2014	Asia & Pacific	Australia	Superficial	Indigenous children aged 5 years	Markov cohort	Societal perspective	DALY	24
11	Little et al.	2014	Europe	UK	Superficial	Adults, children aged 5 years	RCT	Health system perspective	QALY	25
No	Article	Year	Region	Country	Disease category	Target cohort	Model type	Cost perspective	Outcome measure	Source
----	---------	------	--------	---------	------------------	---------------	------------	-----------------	----------------	--------
12	Irlam et al.	2013	Africa	South Africa	Superficial; Local invasive; Immune-mediated; Sequelae	3–15 years (presenting with an acute sore throat (pharyngitis) and no history of ARF; Urban primary care clinics)	Markov cohort	Societal perspective (base analysis); Health system perspective (sub-analysis)	QALY	25
13	Klepser et al.	2012	North America	USA	Superficial; Local invasive; Immune-mediated	Adults	Decision tree (cohort)	Health system perspective	QALD	26
14	Manji et al.	2013	Africa	Sub-Saharan Africa	Superficial; Local invasive; Immune-mediated; Sequelae	5 years	Decision tree (cohort)	Health system perspective	QALD	27
15	Wilson et al.	2011	Europe	UK	Superficial	4–15 years; five secondary care otolaryngology Departments in the northern UK	RCT	Health system perspective	QAL	28
16	Gilzadeh-Sarrafzadeh et al.	2007	Asia & Pacific	India	Superficial; Local invasive; Immune-mediated; Sequelae	5–15 years; Pondicherry Union Territory	Decision tree (cohort)	Health system perspective	QALD	29
17	Saudarsanam et al.	2006	North America	USA	Superficial; Local invasive; Immune-mediated	Children & adolescents	Decision tree (cohort)	Societal perspective (also, Health system perspective)	QALD	30
18	Howe et al.	2006	Europe	Spain	Superficial; Local invasive; Immune-mediated; Sequelae	Cost-effectiveness analysis	Break-even analysis	Societal perspective	QALD	31
19	Fujihara et al.	2002	Asia & Pacific	Japan	Superficial	2–15 years (109 children); 15–66 (123 adults), Wakayama	Break-even analysis	Societal perspective	QALD	32
20	Neuner et al.	2003	North America	USA	Superficial; Local invasive; Immune-mediated	Adults	Decision tree (cohort)	Societal perspective	QALD	33
21	King et al.	2002	North America	USA	Superficial; Local invasive; Immune-mediated; Sequelae	Hypothetical 2,000 birth cohort	Decision tree (cohort)	Health system perspective	QALD	34
22	Ehrlich et al.	1999	North America	USA	Superficial; Local invasive; Immune-mediated	Children older than 3 years with signs or symptoms of pharyngitis	Decision tree (cohort)	Societal perspective	QALD	35
23	Tsevat et al.	1999	North America	USA	Superficial; Local invasive; Immune-mediated	Decision tree (cohort)	Health system perspective (baseline); societal perspective in the sensitivity analysis	QALD	36	
No	Article	Year	Region	Country	Disease category	Target cohort	Cost perspective	Model type	Outcome measure	
---	---------	------	--------	---------	-----------------	---------------	----------------	------------	----------------	
24	Giraldes	1999	Europe	Portugal	Superficial	Overall	Cost-utility analysis (cost of a healthy day) (Cost / Utility changes between treatment and non-treatment)	Decision tree (cohort)	Own measure	
25	Webb	1998	North America	USA	Superficial	Children with symptoms of pharyngitis (n = 1000 children with pharyngitis)	Health system perspective (baseline)	RCT (cost-minimization approach)	Societal perspective	Own measure
26	Carbon et al.	1996	Europe	France	Superficial	18-65 years with symptoms of pharyngitis (n = 259-362)	Decision tree (cohort)	RCT	Societal perspective	
27	Pelc et al.	1996	Europe	France	Superficial	515 adults (older than 15 years)	Decision tree (cohort)	RCT	Societal perspective	
28	Majed et al.	1993	Middle East	Kuwait	Superficial	1-14 years with symptoms of pharyngitis (n = 1016)	Decision tree (cohort)	RCT	Societal perspective	
29	Rice et al.	1992	North America	USA	Superficial	5-14 years with symptoms of pharyngitis (n = 83)	RCT	Patient perspective (no financial costs of treatment-related components)	Decision tree (cohort)	QALD
30	Dippel et al.	1992	Not mentioned	Not mentioned	Superficial	14 years hypothetical patients with sore throat	Decision tree (cohort)	RCT	Societal perspective	
31	Makela et al.	1991	Europe	Finland	Superficial	All (n = 2,016; 22-28% of less than 15 years, 1-2% of greater than 65 years)	Decision tree (cohort)	RCT	Societal perspective	
No	Article	Year	Region	Country	Disease category	Target cohort	Model type	Cost perspective	Source	Outcome measure
----	---------	-------	----------------	----------	--	--	-------------------------------------	-----------------------------------	--------------------------	--
32	Li et al.	1990	North America	USA	Superficial; Local invasive; Immune-mediated; Sequelae	Children (hypothetical cohort of 100,000 children with pharyngitis)	Decision tree (cohort)	Health system perspective	Lieu et al.	Number of patients with ARF and suppurative complications prevented
43	DeNeef et al.	1987	North America	USA	Superficial; Immune-mediated	Hypothetical cohort of 1,000 adults with pharyngitis	Decision tree (cohort)	Societal perspective	DeNeef et al.	Number of episodes of illness (ARF and suppurative complications prevented)
33	DeNeef et al.	1987	North America	USA	Superficial; Immune-mediated	1,000 hospital employees	Decision tree (cohort)	Health system perspective	DeNeef et al.	Number of episodes (ARF and suppurative complications prevented)
44	DeNeef et al.	1987	North America	USA	Superficial; Immune-mediated	Adults with pharyngitis	Decision tree (cohort)	Societal perspective	DeNeef et al.	Number of episodes (ARF and suppurative complications prevented)
34	DeNeef et al.	1986	North America	USA	Superficial; Immune-mediated	Hypothetical cohort of 1,000 patients with pharyngitis	Decision tree (cohort)	Health system perspective	DeNeef et al.	Number of days (illness) saved
45	DeNeef et al.	1986	North America	USA	Superficial; Immune-mediated	Non-mentioned	Decision tree (cohort)	Societal perspective	DeNeef et al.	Number of days (illness) saved
35	Hillner et al.	1987	North America	USA	Superficial; Local invasive; Immune-mediated; Sequelae	Adults with pharyngitis	Decision tree (cohort)	Health system perspective	Hillner et al.	Number of days (illness) saved
46	Hillner et al.	1987	North America	USA	Superficial; Immune-mediated	Adults with pharyngitis	Decision tree (cohort)	Societal perspective	Hillner et al.	Number of days (illness) saved
36	DeNeef et al.	1986	North America	USA	Superficial; Immune-mediated	310 patients with sore throat during the study period	Decision tree (cohort)	Health system perspective	DeNeef et al.	Number of days (illness) saved
47	DeNeef et al.	1986	North America	USA	Superficial; Immune-mediated	Non-mentioned	Decision tree (cohort)	Societal perspective	DeNeef et al.	Number of days (illness) saved
37	Hedges et al.	1986	North America	USA	Superficial; Immune-mediated	310 patients with sore throat during the study period	Decision tree (cohort)	Societal perspective	Hedges et al.	Number of days (illness) saved
48	Hedges et al.	1986	North America	USA	Superficial; Immune-mediated	Non-mentioned	Decision tree (cohort)	Health system perspective	Hedges et al.	Number of days (illness) saved
38	Cebul et al.	1986	North America	USA	Superficial; Immune-mediated	310 patients with sore throat during the study period	Decision tree (cohort)	Societal perspective	Cebul et al.	Number of days (illness) saved
49	Cebul et al.	1986	North America	USA	Superficial; Immune-mediated	Non-mentioned	Decision tree (cohort)	Health system perspective	Cebul et al.	Number of days (illness) saved
39	Brant et al.	1986	North America	USA	Superficial; Immune-mediated	Inuit children of 3–18 years old in Alaska (Norton Sound, Yukon-Kuskokwim, Bristol Bay)	Cost-benefit analysis	Health system perspective	Brant et al.	Number of days (illness) saved
50	Brant et al.	1986	North America	USA	Superficial; Immune-mediated	Inuit children of 3–18 years old in Alaska (Norton Sound, Yukon-Kuskokwim, Bristol Bay)	Cost-benefit analysis	Societal perspective	Brant et al.	Number of days (illness) saved
40	Coulehan et al.	1982	North America	USA	Superficial; Immune-mediated	Navajo patients of 5–16 years hospitalized for ARF or chorea	Cost-benefit analysis	Societal perspective	Coulehan et al.	Number of days (illness) saved
No	Article	Year	Region	Country	Disease category	Target cohort	Model type	Cost perspective	Outcome measure	Source
----	------------------	------	------------	---------	----------------------------------	--	--------------------	-------------------------------	--	--------
41	Smith et al.	1981	North America	USA	Superficial	86 patients with clinical diagnosis of pharyngitis; Missouri	Cost comparison	Health system perspective	Treatment cost comparison	52
42	Tompkins et al.	1977	North America	USA	Superficial; Immune-mediated; Sequelae	Children, adults	Decision tree (cohort)	Societal perspective	Costs of medical evaluation and treatment (dollar costs) by strategy	53
43	Forsyth	1975	North America	USA	Superficial; Immune-mediated	Adult (15 and over) and Pediatric (14 and under)	Cost-risk analysis	Societal perspective	Risk of incorrect clinical diagnosis (clinical accuracy was compared to throat culture outcomes)	54
44	Saslaw et al.	1965	North America	USA	Immune-mediated; Sequelae	Children of 6 - 15 years	Cost-benefit analysis	Societal perspective	ARF episodes prevented (expressed as a cost)	55
Table 3. Health states considered in existing decision analytic models.

Existing models	Year	Healthy (stable)	Superficial infections	Strep A Pharyngitis	Suppurative complications	Strep A skin infections	ARF1	ARF>1^a	RHD	Severe RHD (or heart failure, surgery, etc.)	Death	Allergic reaction	Others	
Ubels et al.	2020	✓	✓	✓ (pharyngitis)	✓ (PTA)	✓	✓ (differentiated by diagnosis, severity, treatment, and confirmation)	✓	✓					
Behnamfar et al.	2019	✓ (pharyngitis)	✓	✓ (PTA)	✓	✓	✓ (moderate, severe)	✓						
CADTH	2018	✓ (impetigo)	✓	✓ (PTA, tonsillitis)	✓ (multiple)	✓	✓ (moderate, severe)	✓						
Roberts et al.	2017	✓	✓	✓ (PTA, tonsillitis)	✓ (multiple)	✓	✓ (moderate, severe)	✓						
Watkins et al.	2016	✓	✓	✓ (PTA, tonsillitis)	✓ (multiple)	✓	✓ (moderate, severe)	✓						
Watkins et al.	2015	✓	✓	✓ (PTA, tonsillitis)	✓ (multiple)	✓	✓ (moderate, severe)	✓						
Zachariah et al.	2015	✓	✓	✓ (PTA, tonsillitis)	✓ (multiple)	✓	✓ (moderate, severe)	✓						
Islam et al.	2013	✓	✓	✓ (PTA)	✓ (sub-clinical, clinical)	✓ (moderate, severe)	✓ (moderate, severe)	✓						
Manji et al.	2013	✓	✓	✓ (PTA)	✓ (moderate, severe)	✓ (moderate, severe)	✓ (moderate, severe)	✓						
Klepser et al.	2012	✓ (pharyngitis)	✓	✓ (PTA)	✓ (ARF, valve damage due to ARF)	✓ (moderate, severe)	✓ (moderate, severe)	✓						
Giraldez-Garcia et al.	2011	✓ (acute pharyngitis)	✓	✓	✓	✓	✓ (moderate, severe)	✓						
Howe et al.	2006	✓	✓ (PTA)	✓	✓ (moderate, severe)	✓ (moderate, severe)	✓ (moderate, severe)	✓						
Neuner et al.	2003	✓ (pharyngitis)	✓	✓ (PTA)	✓ (ARF, valve damage due to ARF)	✓ (moderate, severe)	✓ (moderate, severe)	✓						
Existing models	Year	Year	Healthy (stable)	Superficial infections	Strep A Pharyngitis	Suppurative complications	Strep A skin infections	ARF1	ARF>1	RHD	Severe RHD (or heart failure, surgery, etc.)	Death	Allergic reaction	Others
-----------------	------	------	------------------	------------------------	---------------------	--------------------------	-------------------------	-------	-------	------	---	-------	-------------------	--------
King et al.	2002	√						√		√	(RF among high risk subjects)	√		
Ehrlich et al.	2002	√		(sore throat suspected GAS)				√		√		√	(severe, mild)	
Tsevat et al.	1999	√	(pharyngitis)		√	(PTA or retropharyngeal abscess)		√		√		√	(anaphylaxis, rash, death)	
Webb et al.	1998	√	(pharyngitis)		√	(PTA)		√		√		√	(severe, mild)	
Dippel et al.	1992	√	(acute pharyngitis)		√	(PTA, retropharyngeal abscess, otitis)		√		√	(carditis)	√	(severe, mild, death)	
Makela et al.	1991	√	(pharyngitis)							√	(severe, mild, death)			
Lieu et al.	1990	√	(pharyngitis)							√		√	(severe, mild, death)	
DeNeef (a)	1987	√	(pharyngitis)							√		√	(severe, mild)	
DeNeef (b)	1987	√	(pharyngitis)							√		√		
Hillier et al.	1987	√	(pharyngitis)		√	(PTA)				√		√	(severe, mild, death)	
DeNeef	1986	√	(pharyngitis)							√		√	(severe, mild)	
Cebul et al.	1986	√	(pharyngitis)		√	(infected, carrier)				√		√	(severe, mild, death)	
Hedges et al.	1986	√	(pharyngitis)							√		√	(serious, mild, death)	
Tompkins et al.	1977	√	(pharyngitis)		√	(infected, carrier)				√		√	(serious, mild, death)	

| Total | 7 | 19 | 22 | 13 | 1 | 22 | 6 | 14 | 8 | 21 | 18 | 2 |

* Superficial infections prior to Strep A confirmation
* Recurrent ARF
* Peritonsillar abscess
* Acute post-streptococcal glomerulonephritis
* Invasive GAS
followed by death, superficial infections prior to Strep A con-
firmation, and allergic reactions due to antibiotics. Health
states such as RHD, and suppurative complications were also
moderately selected. Six models included a health state of recur-
rent ARF. Eight models took account of severe RHD or other
manifestations of cardiovascular disease. It should be noted
that the inclusion of this health state is relatively new, reflect-
ing that six of these models have been developed since 2015.
It was rare to observe models that included Strep A skin
infection, acute post-streptococcal glomerulonephritis (APSGN),
or invasive and toxin-mediated diseases, showing that there
was only one model with each of these health states. This rar-
ity reflects the complex nature of Strep A infections and
implies the limited number of surveillance data points for each
health state.

Discussion
The current review focuses on the identification of exist-
ing CEA studies on Strep A infection. Given a wide range of
disease presentations caused by Strep A, a large variation exists
across the identified models in terms of disease types cov-
ered in the studies. Overall, CEA studies on Strep A remain
limited in number. In particular, the number of the existing stud-
ies was highly concentrated in upper-middle income coun-
tries or higher, and there were only four studies focused on
lower-middle income countries or below. This is problematic
because the burden of more severe illnesses caused by Strep A
(i.e. RHD and CHF) has been greatly reduced in advanced
countries but remains disproportionately high in developing
countries. This does not mean that high income econom-
ies are free of Strep A. Superficial diseases such as pharyngi-
tis or impetigo are sometimes thought of as small-time players
compared to the ensuing diseases that cause more severe ill-
ness. However, pharyngitis is one of the most common diseases
observed globally, including in more advanced countries. In
addition, there is a growing concern that Strep A skin infections
may play a significant role in developing ARF. Unlike dur-
ing an episode of immune-mediated diseases or its sequelae,
Strep A can be transmitted from host to host during episodes
of acute diseases such as sore throat, which puts emphasis on
the dynamic nature of the disease; that is, preventing or treat-
ing an acute Strep A infection in an individual can reduce the
risk of transmission, resulting in indirect benefits for the broader
population. None of the existing studies identified through this
review took into account the indirect benefits from reducing
Strep A transmission.

Some areas of uncertainty deserve attention. The current study
used one database which may have excluded potentially eli-
gible articles. However, we compared our findings with the
ongoing systematic review of the broader societal and economic
evaluations of Group A Streptococcus under the Strep A Vac-
cine Global Consortium (SA VAC), and confirmed that there
was no difference in terms of the final set of articles which
reported CEA on Strep A. It should be also noted that the cur-
rent review only included articles written in English, and this
may have omitted eligible articles published in non-English
languages.

In the context of health economic models on Strep A-associated
diseases, cohort-level models have been widely used by
incorporating varying health-states and predicting disease
progression among patient groups. While there were more
decision tree models observed than Markov models in this
review, a decision tree model may not be appropriate when
dealing with the long-term progression of diseases and treat-
ment effects. On the other hand, a Markov-cohort model is suit-
able for chronic diseases because the model can incorporate
repetitive cycles. With the Markov-cohort model, events are
considered stochastic processes over time, allowing to evalu-
ate costs and effects of intervention strategies over a long time
period. However, Markov-cohort models are limited to the
lack of memory when transitioning from one health state to
another (i.e. Markovian assumption). While this property can
be circumvented by setting up temporary tunnel states, this
procedure results in a more complex model due to dividing
one health state into multiple sub health states. Patient-level
(or microsimulation) models can improve the drawback of
the cohort model as patient-level models follow an individual
trajectory across multiple health states. However, this type of
microsimulation model often requires a high level of com-
putational power, more input parameters, and detailed data
sources at the individual-level, which is often challenging in
resource-constrained settings.

While health officials have implemented various intervention
strategies (i.e., primary, secondary, and/or tertiary prevention
strategies) to reduce the burden of the diseases associated
with Strep A, the existing control strategies almost always
involve the use of antibiotics. The use of oral or intramuscular
penicillin has proved effective in reducing the disease pro-
gression and treating rheumatic fever. However, it should
be noted that the use of such drugs may also cause allergic
reactions such as rash, anaphylaxis, or sometimes, death.
In addition, antibiotics can be unnecessarily prescribed to
patients who are false positive or carriers, which may contrib-
ute to the increasing trend of antimicrobial resistance. Thus,
there is no doubt that preventive measures such as a safe vac-
cine will reduce the concerns raised by excessive antibiotic
uses. Currently, there is no vaccine available for Strep A
infections. The development of safe, efficacious, and afford-
able vaccines may open a new era to control Strep A infections
in a more effective manner. In other words, with a vaccine that
protects populations from contracting superficial Strep A infec-
tions, vaccination will likely limit chances for benign symp-
toms to be developed further into more severe illnesses such
as autoimmune diseases or its sequelae, and reduce not only
the burden of a broad spectrum of the Strep A diseases but also
antimicrobial resistance.

Data availability
Underlying data
No data are associated with this article.

Reporting guidelines
Zenodo: PRISMA checklist for “Existing cost-effectiveness
analyses for diseases caused by Group A Streptococcus: A
systematic review to guide future research”, https://doi.org/10.5281/zenodo.5178543

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Acknowledgements

We would like to thank all members in the Strep A Vaccine Global Consortium (SAVAC) for their suggestions and contributions.

References

1. Sims Sanyahumbi A, Colquhoun S, Wyber R, et al.: Global Disease Burden of Group A Streptococcus. In: Ferretti J, Stevens DL, Fischetti VA, eds. Streptococcus pyogenes: Basic Biology to Clinical Manifestations. Oklahoma City (OK), 2016. PubMed Abstract
2. Cannon JW, Zhung J, Bennett J, et al.: The economic and health burdens of diseases caused by group A Streptococcus in New Zealand. Int J Infect Dis. 2021; 103: 176–81. PubMed Abstract Publisher Full Text
3. Cannon JW, Jack S, Wu Y, et al.: An economic case for a vaccine to prevent group A streptococcus skin infections. Vaccine. 2018; 36(46): 6966–78. PubMed Abstract Publisher Full Text
4. Watkins D, Lubinga SJ, Mayosi BM, et al.: A Cost-Effectiveness Tool to Guide the Prioritization of Interventions for Rheumatic Fever and Rheumatic Heart Disease Control in African Nations. PLoS Negl Trop Dis. 2016; 10(8): e0004860. PubMed Abstract Publisher Full Text Free Full Text
5. Manji RA, Witt J, Tappia PS, et al.: Cost-effectiveness analysis of rheumatic heart disease prevention strategies. Expert Rev Pharmacoecon Outcomes Res. 2013; 13(6): 715–24. PubMed Abstract Publisher Full Text
6. Fleming-Dutra KE, Hersh AL, Shapiro DJ, et al.: Prevalence of Inappropriate Antibiotic Prescriptions Among US Ambulatory Care Visits, 2010-2011. JAMA. 2016; 315(17): 1864–73. PubMed Abstract Publisher Full Text
7. Watkins DA, Johnson CO, Colquhoun SM, et al.: Global, Regional, and National Burden of Rheumatic Heart Disease, 1990-2015. N Engl J Med. 2017; 377(8): 713–22. PubMed Abstract Publisher Full Text
8. Gordts L: The virtual disappearance of rheumatic fever in the United States: lessons in the rise and fall of disease. T. Duckett Jones memorial lecture. Circulation. 1985; 72(6): 1155–62. PubMed Abstract Publisher Full Text
9. Massell BF, Chute CG, Walker AM, et al.: Penicillin and the Marked Decrease in Morbidity and Mortality from Rheumatic Fever in the United States. N Engl J Med. 1988; 318(5): 280–6. PubMed Abstract Publisher Full Text
10. Zühle L, Karthikeyan G, Engel ME, et al.: Clinical Outcomes in 3343 Children and Adults With Rheumatic Heart Disease From 14 Low- and Middle-Income Countries: Two-Year Follow-Up of the Global Rheumatic Heart Disease Registry (the REMEDY Study). Circulation. 2016; 134(19): 1456–66. PubMed Abstract Publisher Full Text
11. Oliver J, Mallaia Wadu E, Pirece H, et al.: Group A Streptococcus pharyngitis and pharyngeal carriage: A meta-analysis. PLoS Negl Trop Dis. 2018; 12(3): e0006335. PubMed Abstract Publisher Full Text Free Full Text
12. World Health Organization: The current evidence for the burden of group A streptococcal diseases. World Health Organization, 2005. Reference Source
13. Carapetis JR, Steer AC, Mulholland EK, et al.: The global burden of group A streptococcal diseases. Lancet Infect Dis. 2005; 5(11): 685–94. PubMed Abstract Publisher Full Text
14. Burns RM, Wolstenholme J, Jawad S, et al.: Economic analysis of oral dexamethasone for symptom relief of sore throat: the UK TOAST study. BMJ Open. 2018; 8(4): e019184. PubMed Abstract Publisher Full Text Free Full Text
15. The World Bank: World Bank Country and Lending Groups. The World Bank, 2021. Reference Source
16. Sournasanne MB, Kathigreeny M, Mahalakshmy T, et al.: Rheumatic fever and rheumatic heart disease: primary prevention is the cost effective option. Indian J Pediatr. 2007; 74(6): 567–70. PubMed Abstract Publisher Full Text
17. Ubels J, Sable C, Beaton AZ, et al.: Cost-Effectiveness of Rheumatic Heart Disease Echocardiographic Screening in Brazil: Data from the PROVAR+ Study: Cost-effectiveness of RHD screening in Brazil. Glob Heart. 2020; 15(1): 18. PubMed Abstract Publisher Full Text Free Full Text
18. Oetzel JG, Lao C, Morley M, et al.: Efficacy of an incentive intervention on secondary prophylaxis for young people with rheumatic fever: a multiple baseline study. BMC Public Health. 2019; 19(1): 385. PubMedAbstract Publisher Full Text Free Full Text
19. Behnamfar Z, Shakarkari V, Sohrabi S, et al.: Cost and effectiveness analysis of the diagnostic and therapeutic approaches of group A Streptococcus pharyngitis management in Iran. J Family Med Prim Care. 2019; 8(9): 2942–9. PubMedAbstract Publisher Full Text Free Full Text
20. CADTH Common Drug Reviews: Pharmacoeconomic Review Report: Ozenoxacin 1% Cream (Ozanex); (Ferrer International, SA): Indication: The topical treatment of impetigo in patients aged two months and older. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health. Copyright (c) 2018 Canadian Agency for Drugs and Technologies in Health, 2018.
21. Roberts K, Cannon J, Atkinson D, et al.: Echocardiographic Screening for Rheumatic Heart Disease in Indigenous Australian Children: A Cost-Utility Analysis. J Am Heart Assoc. 2017; 6(3): e004516. PubMedAbstract Publisher Full Text Free Full Text
22. Watkins DA, Muvundura M, Nordet P, et al.: A cost-effectiveness analysis of a program to control rheumatic fever and rheumatic heart disease in Pinar del Rio, Cuba. PLoS One. 2015; 10(3): e0121363. PubMedAbstract Publisher Full Text Free Full Text
23. Zachariash P, Samalovir M: Echo-based screening of rheumatic heart disease in children: a cost-effectiveness Markov model. J Med Econ. 2015; 18(6): 410–9. PubMedAbstract Publisher Full Text Free Full Text
24. Little P, Hobbs FD, Moore M, et al.: PRImary care Streptococcal Management (PRISM) study: in vitro study, diagnostic cohorts and a pragmatic adaptive randomised controlled trial with nested qualitative study and cost-effectiveness study. Health Technol Assess. 2014; 18(6): vii-xiv, 1–101. PubMedAbstract Publisher Full Text Free Full Text
25. Irlam J, Mayosi BM, Engel M, et al.: Primary prevention of acute rheumatic fever and rheumatic heart disease with penicillin in South African children with pharyngitis: a cost-effectiveness analysis. Circ Cardiovasc Qual Outcomes. 2015; 6(3): 343–51. PubMedAbstract Publisher Full Text Free Full Text
26. Klepsner DG, Bisanz SE, Klepsner ME: Cost-effectiveness of pharmacist-provided treatment of adult pharyngitis. Am J Manag Care. 2012; 18(4): e145–54. PubMedAbstract
27. Wilson JA, Steen BN, Lock CA, et al.: Tonsillectomy: a cost-effective option for childhood sore throat? Further analysis of a randomized controlled trial. Otolaryngol Head Neck Surg. 2012; 146(1): 122–8. PubMedAbstract Publisher Full Text
28. Giraldez-Garcia C, Rubio B, Gallegos-Braun JF, et al.: Diagnosis and management of acute pharyngitis in a paediatric population: a cost-effectiveness analysis. Eur J Pediatr. 2011; 170(8): 1059–67. PubMedAbstract Publisher Full Text Free Full Text
29. Van Hoeve RS, Kusnier 2nd LP: Diagnosis and management of pharyngitis in a pediatric population based on cost-effectiveness and projected health outcomes. Pediatrics. 2006; 117(3): 609–19. PubMedAbstract Publisher Full Text Free Full Text
30. Fujihara K, Koltai PJ, Hayashi M, et al.: Cost-effectiveness of tonsillectomy for recurrent acute tonsillitis. Ann Otol Rhinol Laryngol. 2006; 115(5): 365–9. PubMedAbstract Publisher Full Text Free Full Text
31. Neuner JM, Hamel MB, Phillips RS, et al.: Diagnosis and management of adults with pharyngitis. A cost-effectiveness analysis. Ann Intern Med. 2003; 139(2): 113–22. PubMedAbstract Publisher Full Text Free Full Text
32. King CH, Fischler DF, Gerkin RD: Will genetic testing alter the management of disease caused by infectious agents? A cost-effectiveness analysis of gene-testing strategies for prevention of rheumatic fever. Clin Infect Dis. 2002; 34(1): 1491–9.
Published Abstract | Publisher Full Text

33. Ehrlich JE, Demopoulos BP, Daniel Jr KR, et al.: Cost-effectiveness of treatment options for prevention of rheumatic heart disease from Group A streptococcal pharyngitis in a pediatric population. Prev Med. 2002; 35(3): 250–7.
Published Abstract | Publisher Full Text

34. Tsevat J, Kotagal UR: Management of sore throats in children: a cost-effectiveness analysis. Arch Pediatr Adolesc Med. 1999; 153(7): 681–8.
Published Abstract | Publisher Full Text

35. do Rosário Giraldes M: Allocative efficiency in the use of health resources in Portugal. J Public Health Med. 1999; 21(1): 55–9.
Published Abstract | Publisher Full Text

36. Webb KH: Does culture confirmation of high-sensitivity rapid streptococcal tests make sense? A medical decision analysis. Pediatrics. 1998; 101(2): E2.
Published Abstract | Publisher Full Text

37. Carbon C, Hotton JM, Pépin LF, et al.: Economic analysis of antibiotic regimens used in the treatment pharyngitis: a prospective comparison of azithromycin versus roxithromycin. J Antimicrob Chemother. 1996; 37 Suppl C: 151–61.
Published Abstract | Publisher Full Text

38. Pelc A, Portier H, Gehanno P, et al.: Cost saving of 5-day therapy with cepodoxime proxetil versus standard 10-day beta-lactam therapy for recurrent pharyngotonsillitis in adults. A prospective general practice study. Pharmacoeconomics. 1996; 10(3): 239–50.
Published Abstract | Publisher Full Text

39. Majeed HA, al-Quwaisly J, Moussa MM, et al.: Office diagnosis and management of group A streptococcal pharyngitis employing the rapid antigen detecting test. A 1-year prospective study of reliability and cost in primary care centres. Ann Trop Paediatr. 1993; 13(1): 65–72.
Published Abstract | Publisher Full Text

40. Rice TD, Duggan AK, DeAngelis C: Cost-effectiveness of erythromycin versus mupirocin for the treatment of impetigo in children. Pediatrics. 1992; 89(2): 210–4.
Published Abstract

41. Dippel DW, Touw-Otten E, Habbema JD: Management of children with acute pharyngitis: a decision analysis. J Fam Pract. 1992; 34(2): 149–59.
Published Abstract

42. Makelä M, Sintonen H: Rationality and cost-effectiveness of diagnosis and treatment of group A streptococcal in primary care patients with pharyngitis. Scand J Infect Dis. 1991; 23(1): 47–53.
Published Abstract | Publisher Full Text

43. Lieu TA, Fleisher GR, Schwartz JS: Cost-effectiveness of rapid latex agglutination testing and throat culture for streptococcal pharyngitis. Pediatrics. 1990; 85(3): 246–56.
Published Abstract

44. DeNeef P: Selective testing for streptococcal pharyngitis in adults. J Fam Pract. 1987; 25(4): 347–53.
Published Abstract

45. DeNeef P: Role of rapid tests for streptococcal pharyngitis in hospital infection control. Am J Infect Control. 1987; 15(1): 20–5.
Published Abstract | Publisher Full Text

46. Hillier B, Centor R, Clancy CJ: What is the difference a day makes: the importance of turnaround time of diagnostic tests in sore throats. 1987; 2: 244–50.
Published Abstract

47. DeNeef P: Comparison of tests for streptococcal pharyngitis. J Fam Pract. 1986; 23(6): 551–5.
Published Abstract

48. Hedges JR, Lowe RA: Streptococcal pharyngitis in the emergency department: analysis of therapeutic strategies. Am J Emerg Med. 1986; 4(2): 107–15.
Published Abstract | Publisher Full Text

49. Cebul RD, Poses RM: The comparative cost-effectiveness of statistical decision rules and experienced physicians in pharyngitis management. JAMA. 1986; 256(24): 3353–7.
Published Abstract

50. Brant LJ, Bender TR, Bross DS: Evaluation of an Alaskan streptococcal control program: importance of the program’s intensity and duration. Prev Med. 1986; 15(6): 632–42.
Published Abstract | Publisher Full Text

51. Coulehan JL, Baacke G, Welty TK, et al.: Cost-benefit of a streptococcal surveillance program among Navajo Indians. Public Health Rep. (Washington, DC: 1974) 1982; 97(1): 73–7.
Published Abstract | Publisher Full Text

52. Smith DL, Brauer WA: Comparative costs of diagnosis and treatment in acute pharyngitis. South Med J. 1981; 74(3): 332–4.
Published Abstract | Publisher Full Text

53. Tompkins RK, Burns DC, Cable WE: An analysis of the cost-effectiveness of pharyngitis management and acute rheumatic fever prevention. Ann Intern Med. 1977; 86(4): 481–92.
Published Abstract | Publisher Full Text

54. Forsyth RA: Selective utilization of clinical diagnosis in treatment of pharyngitis. J Fam Pract. 1975; 2(3): 173–7.
Published Abstract

55. Sasiaw MS, Vieta A, Myerburg RJ: Cost of Rheumatic Fever and of Its Prevention. Am J Public Health Nations Health. 1965; 55(3): 429–34.
Published Abstract | Publisher Full Text | Free Full Text

56. Bennett J, Moreland NJ, Oliver J, et al.: Understanding group A streptococcal pharyngitis and skin infections as causes of rheumatic fever: protocol for a prospective disease incidence study. BMC Infect Dis. 2019; 19(1): 633.
Published Abstract | Publisher Full Text | Free Full Text

57. Jit M, Ng DHL, Luangasanatip N, et al.: Quantifying the economic cost of antibiotic resistance and the impact of related interventions: rapid methodological review, conceptual framework and recommendations for future studies. BMC Med. 2020; 18(1): 38.
Published Abstract | Publisher Full Text | Free Full Text

58. Sevilla JP, Bloom DE, Cadarette D, et al.: Toward economic evaluation of the value of vaccines and other health technologies in addressing AMR. Proc Natl Acad Sci U S A. 2018; 115(51): 12911–9.
Published Abstract | Publisher Full Text | Free Full Text

59. Clift C, Salisbury DH: Enhancing the role of vaccines in combatting antimicrobial resistance. Vaccines. 2017; 5(2): E8.
Published Abstract | Publisher Full Text | Free Full Text

60. Lewnard JA, King LM, Reining-Dutra KE, et al.: Incidence of pharyngitis, sinusitis, acute otitis media, and outpatient antibiotic prescribing preventable by vaccination against group A Streptococcus in the United States. Clin Infect Dis. 2021; 73(1): e47–e58.
Published Abstract | Publisher Full Text

61. Lipsitch M, Sauer GR: How Can Vaccines Contribute to Solving the Antimicrobial Resistance Problem? mBio. 2016; 7(3): e00428–16.
Published Abstract | Publisher Full Text | Free Full Text

62. Jung-Seok L, Sol K, Jean-Louis E, et al.: PRISMA checklist for: Existing cost-effectiveness analyses for diseases caused by Group A Streptococcus: A systematic review to guide future research. Zenodo. 2021.
http://www.doi.org/10.5281/zenodo.5178543