The Invisible COVID-19 Crisis: Post-Traumatic Stress Disorder Risk Among Frontline Physicians Treating COVID-19 Patients

Sayanti Mukherjee, PhD (corresponding author)
Department of Industrial and Systems Engineering, School of Engineering and Applied Sciences
University at Buffalo – The State University of New York, Buffalo NY
sayantim@buffalo.edu

Lance Rintamaki, PhD
Department of Communication, College of Arts and Sciences
University at Buffalo – The State University of New York, Buffalo NY
rlance@buffalo.edu

Janet L. Shucard, PhD
Department of Neurology, Jacobs School of Medicine and Biomedical Sciences
University at Buffalo – The State University of New York, Buffalo, NY
shucard@buffalo.edu

Zhiyuan Wei, MS
Department of Industrial and Systems Engineering, School of Engineering and Applied Sciences
University at Buffalo – The State University of New York, Buffalo, NY
zwei7@buffalo.edu

Lindsey E. Carlasare, MBA
Health Care Research and Policy Analysis
American Medical Association, Chicago, IL
Lindsey.Carlasare@ama-assn.org

Christine A. Sinsky, MD, FACP
Professional Satisfaction
American Medical Association, Chicago, IL
Christine.Sinsky@ama-assn.org

1 411 Bell Hall, Department of Industrial and Systems Engineering, University at Buffalo (SUNY), North Campus, Buffalo NY 14260; Ph: 716-645-4669
Abstract

This study evaluated posttraumatic stress disorder (PTSD) among frontline US physicians (treating COVID-19 patients) in comparison with second-line physicians (not treating COVID-19 patients), and identified the significance and patterns of factors associated with higher PTSD risk. A cross-sectional, web-based survey was deployed during August and September, 2020, to practicing physicians in the 18 states with the largest COVID-19 cases. Among 1,478 responding physicians, 1,017 completed the PTSD Checklist (PCL-5). First, the PCL-5 was used to compare symptom endorsement between the two physician groups. A greater percentage of frontline than second-line physicians had clinically significant endorsement of PCL-5 symptoms and higher PCL-5 scores. Second, logistic regression and seven nonlinear machine learning (ML) algorithms were leveraged to identify potential predictors of PTSD risk by analyzing variable importance and partial dependence plots. Predictors of PTSD risk included cognitive/psychological measures, occupational characteristics, work experiences, social support, demographics, and workplace characteristics. The ML algorithm, random forest, outperformed all other models, indicating presence of complex nonlinearity in the predictor—PTSD risk relationships. Importantly, this model identified patterns of both damaging and protective predictors of PTSD risk among frontline physicians. Key damaging factors included depression, burnout, negative coping, fears of contracting/transmitting COVID-19, perceived stigma, and insufficient resources to treat COVID-19 patients. Protective factors included resilience and support from employers/friends/family/significant others. This study underscores the value of ML algorithms to uncover nonlinear relationships among protective/damaging risk factors for PTSD in frontline physicians, which may better inform interventions to prepare healthcare systems for future epidemics/pandemics.

Keywords: depression; burnout; resilience; machine learning; nonlinear relationships
Highlights:

- Physicians working at the frontlines of COVID-19 are at high risk for PTSD
- Depression, burnout and negative coping strategies are top ranked PTSD risk factors
- Fears of contracting/transmitting COVID-19 and perceived stigma increase PTSD risk
- Higher resilience and support from employer, friends, and family decrease PTSD risk
- Nonlinear relationships exist between PTSD risk and specific risk/protective factors
1. Introduction

During previous epidemics, including SARS-2003, H1N1 Influenza-2009, and MERS-2012, frontline physicians (i.e., those treating infected patients) endured formidable social, psychological, and emotional stressors (De Brier et al., 2020; Goulia et al., 2010; Imai et al., 2010; Khalid et al., 2016); yet, COVID-19 far exceeds in scope and scale the devastation wrought by these earlier outbreaks. Physicians have been overrun by caseloads of acutely ill patients (Restauri and Sheridan, 2020; Wu et al., 2009), insufficient resources (Marco et al., 2020; Restauri and Sheridan, 2020), and risks inherent to working with a new and highly infectious disease, culminating in the deaths of over 596,857 Americans (Jun 11, 2021) (Centers for Disease Control and Prevention (CDC), 2021). A recent survey found that 30% of physicians experienced high stress, anxiety, or depression due to COVID-19's impact, and 62% had considerable fear of contracting or transmitting COVID-19 (Linzer et al., 2021). The traumatic nature of COVID-19 associated stressors makes post-traumatic stress disorder (PTSD) of special consequence for COVID-19 frontline physicians (Carmassi et al., 2020).

As defined by the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), PTSD is a psychiatric disorder that follows exposure to a traumatic event (Criterion A), and is characterized by four behavioral, cognitive, and emotional symptom criteria: (A) intrusive, distressing thoughts; (B) persistent avoidance of trauma-related stimuli; (C) alterations in cognitions and mood; and (D) heightened arousal and reactivity (American Psychiatric Association, 2013). These symptoms can persist for decades (Rintamaki et al., 2009). Physicians with PTSD are susceptible to negative coping strategies (e.g., substance abuse) in attempt to manage their symptoms, other mental health conditions (e.g., depression), and suicidality (Gradus et al., 2010; Gregory et al., 2019; Liebschutz et al., 2007). Thus, although physicians on
the frontlines of emergent infectious diseases are at high risk of PTSD (Chong et al., 2004; Maunder et al., 2003; Nickell et al., 2004; Wu et al., 2009); assessment of these phenomena in the context of COVID-19 is just emerging in the United States (Blekas et al., 2020; Kang et al., 2020; Lai et al., 2020; Li et al., 2020), which leads the world in COVID-19 cases.

The aims of the current research were to: 1) evaluate the symptoms of PTSD among frontline physicians compared to second-line physicians; 2) predict PTSD risk among frontline physicians using nonparametric machine learning algorithms; 3) identify and rank key predictors associated with PTSD risk of frontline physicians; and 4) determine the linear/nonlinear patterns of these predictors. Novel COVID-19 related social, emotional, and cognitive factors were assessed while accounting for other known factors influencing PTSD, which included psychological resilience (Colville et al., 2017; Hamid and Musa, 2017; Winkel et al., 2019), exposure rate (Jung et al., 2020; Kang et al., 2020; Lai et al., 2020), occupational role (Lai et al., 2020; Maunder et al., 2004), age (Sim et al., 2004; Wu et al., 2009), sex (Chong et al., 2004), marital status (Chan and Huak, 2004), isolation (Wu et al., 2009), coping strategies (Chan and Huak, 2004; Maunder et al., 2006; Wu et al., 2009), and social support from family (Chan and Huak, 2004; Su et al., 2007), colleagues and organization (Chan and Huak, 2004; Lancee et al., 2008; Maunder et al., 2006).

2. Material and methods

2.1. Study Design

Following IRB approval, a cross-sectional, web-based survey developed by our interdisciplinary team was deployed to physicians from the American Medical Association’s (AMA) Physician Masterfile database between August 7 and September 26, 2020. Sampling immediately followed
the second COVID-19 US contagion peak (Johns Hopkins University & Medicine, 2021).

Participation was voluntary and targeted physicians from states reporting the greatest COVID-19 caseloads (more than 40,000 COVID-19 cases as of June 2020) (CDC, 2020), including New York, California, New Jersey, Illinois, Texas, Massachusetts, Florida, Pennsylvania, Michigan, Georgia, Maryland, Virginia, North Carolina, Arizona, Louisiana, Connecticut, Ohio, and Indiana.

2.2. Participants

Physicians from all specialties were recruited using the AMA Physician Masterfile, a near-complete record of all US physicians, independent of AMA membership. Canvassing e-mails (including study description and survey link) were sent on August 7 and 26, 2020. From 36,372 physicians (opening invitation), 1,478 responses were recorded, of which 1,017 responses (completing PTSD Checklist: PCL-5) were analyzed (eFigure 1).

2.3. Outcome variable: Post-Traumatic Stress Disorder

We employed the PTSD Checklist, a commonly used research and clinical screening questionnaire based on the DSM-5 (PCL-5) (Weathers et al., 2013) to assess PTSD symptoms (see Table 2). Using this 20-item, 5-point scale (0=not at all to 4=extremely), respondents rated how bothered they were by PTSD symptoms in the past month. The total score range is 0–80, with 33 or greater indicating probable PTSD. A diagnosis of PTSD can only be made by a trained clinician using an in-person interview; thus, we use the term “probable PTSD” to indicate physicians with the highest symptom ratings who are likely to have PTSD.
To optimize the categorization of physicians into PTSD groups (low PTSD risk to high PTSD risk) for the predictive analyses, we combined the DSM-5 and PCL-5 scoring criteria, similar to methods suggested by the National Center for PTSD (Lu et al., 2006). This procedure included using only PCL-5 items rated as 2 (moderately) or higher, which constitutes clinically significant symptom endorsement, and then applying this level of endorsement to the number of DSM-5 items required for each of the four criterion: at least one item in Criterion B (re-experiencing), one in Criterion C (avoidance), two in Criterion D (negative beliefs), and two in Criterion E (hyperarousal) (American Psychiatric Association, 2013). Table 3 presents the frequency of physicians who endorsed PCL-5 symptoms as 2 or higher. Physicians working directly with COVID-19 patients were designated as frontline physicians and those who were not, as second-line physicians. For modeling analyses, the frontline physicians then were categorized into two groups: a “high risk group” (probable/subclinical PTSD symptoms), and a “low risk group” (none/pre-subclinical PTSD symptoms) (eMethods 1 details PTSD classification).

2.4. Predictor Candidates

The Patient Health Questionnaire (PHQ-9) [9 items, 4-level Likert scale: 0-3 score range per item, total score: 0-27] (Kroenke et al., 2001) and the single-item, 5-point burnout scale [1 item, 5-level Likert scale: 1-5 score range] (Dolan et al., 2015) were used to assess the severity of symptoms of depression and burnout, respectively. We categorized depression into five levels based on total PHQ-9 scores (Kroenke et al., 2001): minimal [total score=1-4]; mild [total score=5-9]; moderate [total score=10-14]; moderately severe [total score=15-19]; and severe [total score=20-27]. Resilience and stress coping characteristics were measured, respectively, with the Connor-Davidson Resilience Scale (CD-RISC-10) [10 items, 5-level Likert scale: 0-4}
score range per item, total score: 0-40] (Davidson, 2020) and, the Brief-C cope Scale [28-item, 4-level Likert scale: 1-4 score range per item] (Carver, 1997). The Brief-Cope scores indicate individuals’ negative/positive dominant coping strategies among 14 categories, each scored separately with a range of 2-8. The 14 categories include self-distraction, active coping, denial, substance abuse, use of emotional support, use of instrumental support, behavioral disengagement, venting, positive reframing, planning, humor, acceptance, religion, and self-blame (Carver, 1997).

Occupational characteristics and COVID-19 specific experiences included living arrangement changes, workload, non-routine work, resource availability, decision-making, exposure rates (e.g., time with COVID-19 patients, intubation/aerosol-generating procedures of suspected/confirmed COVID-19 patients), perceived stigma from treating COVID-19 patients, and turnover intent (switching units/teams, leaving current employer, or leaving healthcare entirely). **Perceived organizational and social support** was assessed using the 8-item 7-point Survey of Perceived Organizational Support scale [8 items, 7-level Likert scale: 1-7 score range per item] (SPOS; items 1, 3, 7, 9, 17, 21, 23, 27) (Eisenberger et al., 1986), which was classified into positive support (item numbers: 1, 9, 21, 27) (Eisenberger et al., 1986) and negative support (item numbers: 3, 7, 17, 23) (Eisenberger et al., 1986) for our analysis. Perceived available support from family, friends, and significant others was measured employing the 3-item Multidimensional Scale of Perceived Social Support (MSPSS) (Zimet et al., 1988).

Demographics included age, sex, ethnicity, race, immigration status, and marital status. **Workplace characteristics** included training/years of experience, primary work setting, hospital type, and work setting within hospital.
2.5. Statistical Analysis

Independent samples t-tests and Chi-square (χ^2 test) analyses were used to test the PCL-5 scores (Table 2) and frequency of endorsed symptoms (Table 3) between frontline and second-line physicians, respectively. Chi-square analyses (χ^2 test) and t-tests were also implemented after obtaining the key variables from the model implementation to determine if the findings were considered significant at 2-tailed $P \leq .05$.

If complex, nonlinear interplay exists for PTSD risk factors, then conventional, linear models (e.g., logistic regression) would likely fail to capture this phenomenon. Therefore, we trained and tested seven machine learning models alongside logistic regression, including random forest, bootstrap-aggregating (bagging), Naïve Bayes, gradient boosting method, Bayesian additive regression trees, support vector machines, and neural networks. Selection of an optimal predictive model was based on the generalization performance of the models (Hastie et al., 2008; James et al., 2013) (details in eMethods 2).

Next, to identify the key factors of PTSD risk, we conducted variable importance (VI) analysis, where importance of each PTSD predictor variable was measured using the Gini index (Breiman, 2001). We implemented partial dependency analysis to evaluate the marginal effect of a particular predictor on PTSD risk, while keeping other variables constant (Breiman, 2001; Greenwell, 2017). Quantified marginal effects could indicate an increase/decrease in PTSD risk with increase/decrease in magnitude of the predictor, thus helping to categorize predictors as damaging/protective factors, respectively. All analyses were performed in R (version-3.1) and RStudio (version-1.1.463).
3. Results

3.1. Participants’ Socio-demographic Characteristics

Table 1 presents demographic data and statistical comparisons between frontline and second-line physicians. The groups differed across age, years in practice, sex, primary work setting, current work status, and underlying conditions. Frontline physicians were younger and less experienced than second-line physicians. Sex composition of frontline physicians was similar, whereas second-line skewed female. Most frontline physicians worked in hospitals, group-practice, or academic medical centers, whereas second-line physicians worked in group-practice, academic medical centers, or solo-practice. Lastly, more frontline than second-line physicians were employed full-time, whereas more second-line than frontline physicians worked part-time.

Table 1. Demographics of the sample population (^ = t-test; * = χ^2 test)

Sample Demographic Characteristics	Frontline Physicians: No. (%) (n= 717)	Second-line Physicians: No. (%) (n= 300)	Significance test (P value)
Age, mean (SD)	51.35 (11.3)	54.57 (11.81)	0.0283^
Missing	160	53	
Sex			
Male	317 (44.21)	98 (32.67)	
Female	323 (45.05)	181 (60.33)	
Non-conforming, non-binary, transgender	1 (0.14)	0 (0)	< .001*
Prefer not to answer	6 (0.84)	1 (0.33)	
Missing	70	20	
Ethnicity			
Hispanic / Latino	59 (8.23)	22 (7.33)	
Non-Hispanic	589 (82.15)	258 (86.0)	0.623*
Missing	69	20	
Race			
American Indian or Alaskan Native	1 (0.14)	0 (0)	
Asian	91 (12.69)	26 (8.67)	
Black or African American	25 (3.49)	14 (4.67)	
Native Hawaiian or Pacific Islander	1 (0.14)	0 (0)	0.166*
White	466 (64.99)	222 (74.0)	
Others	55 (7.67)	17 (5.67)	
Missing	78	21	
Immigration Status			
U.S. immigrant	109 (15.20)	40 (13.33)	
Not an U.S. immigrant	540 (75.31)	240 (80.0)	0.390*
Missing	68	20	
Sample Demographic Characteristics

	Frontline Physicians: No. (%) (n= 717)	Second-line Physicians: No. (%) (n= 300)	Significance test (P value)
Relationships Status			
Single	94 (13.11)	30 (10.0)	0.096*
Married	512 (71.41)	230 (76.67)	
Partnered	38 (5.3)	12 (4.0)	
Widow / Widower	5 (0.7)	6 (2.0)	
Missing	68	22	
Number of years practicing, mean (SD)	21.76 (10.94)	25.49 (12.57)	0.003^
Missing	81	22	
Primary Work Setting			
Academic medical center	146 (20.36)	57 (19.0)	
Group practice	150 (20.92)	82 (27.33)	
Hospital	182 (25.38)	24 (8.0)	
Solo practice	55 (7.67)	40 (13.33)	< .001*
Two-physician practice	24 (3.35)	18 (6.0)	
Outpatient center	42 (5.86)	27 (9.0)	
Others	41 (5.72)	30 (10.0)	
Missing	77	22	
Current Working Status			
Full-time	567 (79.08)	209 (69.67)	
Part-time	62 (8.65)	59 (19.67)	
Furloughed	5 (0.7)	1 (0.33)	< .001*
Laid off	1 (0.14)	3 (1.0)	
On leave	7 (0.98)	6 (2.0)	
Missing	75	22	
Having underlying health conditions			
Yes	242 (33.75)	124 (41.33)	0.024*
No	452 (63.04)	162 (54.0)	
Not sure	23 (3.21)	14 (4.67)	
Pregnancy (self or partner)			
Yes, pregnant or with a newborn	50 (6.97)	14 (4.67)	0.215*
No	667 (93.03)	286 (95.3)	

3.2. Comparison of PTSD Symptoms Between Physician Groups

Overall, 717 frontline physicians and 300 second-line physicians completed the PCL-5. Table 2 presents the PCL-5 data using the full-scale scores of 0 to 4. Section 1 lists the means (SDs) of frontline vs. second-line physicians for each of the 20 PCL-5 items. More frontline than second-line physicians had significantly higher scores for all of the items in Criterion B (re-experiencing) and C (avoidance), four of seven items in Criterion D (negative cognition and mood), and four of six items in Criterion E (heightened arousal). Section 2 of Table 2 lists PCL-5 composite criterion scores and the PCL-5 total score (calculated by summing all PCL-5 item
scores) for both groups. Frontline compared to second-line physicians had significantly higher criterion scores and PCL-5 total score.

Table 2. PTSD Checklist (PCL-5) mean score and standard deviation differences between frontline and second-line physicians

PCL-5 items for each DSM-5 Symptom cluster (Criterion B, C, D, E)	Frontline physicians (n= 717)	Second-line physicians (n= 300)	Significance (P value)
Section 1			
Criterion B: Re-experiencing Symptoms			
1. Disturbing memories	0.82 (0.98)	0.49 (0.82)	< .001
2. Disturbing dreams	0.59 (0.91)	0.35 (0.75)	< .001
3. Flashbacks	0.35 (0.80)	0.17 (0.53)	< .001
4. Feeling upset when reminded of event	0.72 (0.97)	0.50 (0.86)	< .001
5. Physical reactions when reminded of event	0.47 (0.86)	0.33 (0.75)	0.009
Criterion C: Avoidance Symptoms			
6. Avoiding memories related to event	0.64 (0.95)	0.44 (0.85)	0.001
7. Avoiding external reminders of event	0.53 (0.90)	0.37 (0.78)	0.003
Criterion D: Negative alterations in cognitions, mood			
8. Trouble remembering part of event	0.35 (0.77)	0.16 (0.59)	< .001
9. Negative beliefs about self, other, world	0.60 (1.03)	0.49 (0.87)	0.1
10. Blaming yourself	0.57 (0.94)	0.40 (0.83)	0.005
11. Feeling fear, horror, anger, guilt, shame	0.66 (1.00)	0.55 (0.88)	0.07
12. Loss of interest in activities	0.78 (1.06)	0.60 (0.86)	0.006
13. Feeling distant from others	1.23 (1.21)	1.09 (1.16)	0.086
14. Trouble feeling positive feelings	0.76 (1.05)	0.58 (0.91)	0.005
Criterion E: Heightened arousal and reactivity			
15. Irritable behavior	0.89 (1.01)	0.69 (0.88)	0.002
16. Taking risks	0.25 (0.65)	0.12 (0.39)	< .001
17. Hypervigilance: super alert, on guard	0.88 (1.11)	0.69 (0.97)	0.006
18. Feeling jumpy, or easily startled	0.53 (0.94)	0.41 (0.77)	0.028
19. Difficulty concentrating	0.83 (1.04)	0.74 (0.91)	0.195
20. Trouble falling or staying asleep	1.16 (1.19)	1.03 (1.12)	0.1
Section 2			
PCL-5 Criterion and Total Scores (range)			
Criterion B: Total score (0-20)	2.95 (3.87)	1.83 (3.11)	< .001
Criterion C: Total score (0-8)	1.17 (1.76)	0.81 (1.56)	0.001
Criterion D: Total score (0-28)	4.94 (5.67)	3.88 (4.69)	0.002
Criterion E: Total score (0-24)	4.54 (4.53)	3.68 (3.7)	0.002
Total PCL-5 Score (0-80)	13.61 (14.39)	10.2 (11.39)	< .001

Table 3 lists the number (percentage) of frontline vs. second-line physicians who endorsed each of the PCL-5 items with scores of 2 or higher (considered clinically significant). Chi-square (χ^2 test) analyses indicated that a greater number of frontline than second-line physicians endorsed
four items in Criterion B, one item in Criterion C, three items in Criterion D, and two items in Criterion E.

Table 3. PTSD Checklist (PCL-5) frequency and percentage differences between frontline and second-line physicians

PCL-5 items for each DSM-5 Symptom cluster (Criterion B, C, D, E)	Frontline physicians (n= 717)	Second-line physicians (n= 300)	Significance (P value)
	No. (%) who endorsed score ≥ 2	No. (%) who endorsed score ≥ 2	χ² test
Section 1			
Criterion B: Re-experiencing Symptoms			
1. Disturbing memories	144 (20.08)	30 (10.0)	< .001
2. Disturbing dreams	100 (13.95)	23 (7.67)	0.007
3. Flashbacks	59 (8.23)	9 (3.0)	0.004
4. Feeling upset when reminded of event	124 (17.29)	32 (10.67)	0.010
5. Physical reactions when reminded of event	79 (11.02)	25 (8.33)	0.240
Criterion C: Avoidance Symptoms			
6. Avoiding memories related to event	110 (15.34)	27 (9.0)	0.009
7. Avoiding external reminders of event	85 (11.85)	28 (9.33)	0.290
Criterion D: Negative alterations in cognitions, mood			
8. Trouble remembering part of event	59 (8.23)	10 (3.33)	0.007
9. Negative beliefs about self, other, world	117 (16.32)	35 (11.67)	0.072
10. Blaming yourself	98 (13.67)	30 (10.0)	0.132
11. Feeling fear, horror, anger, guilt, shame	105 (14.64)	35 (11.67)	0.247
12. Loss of interest in activities	147 (20.5)	41 (13.67)	0.013
13. Feeling distant from others	265 (36.96)	95 (31.67)	0.124
14. Trouble feeling positive feelings	150 (20.92)	41 (13.67)	0.009
Criterion E: Heightened arousal and reactivity			
15. Irritable behavior	154 (21.48)	50 (16.67)	0.097
16. Taking risks	34 (4.74)	3 (1.0)	0.006
17. Hypervigilance: super alert, on guard	168 (23.43)	52 (17.33)	0.038
18. Feeling jumpy, or easily startled	94 (13.11)	29 (9.67)	0.153
19. Difficulty concentrating	142 (19.8)	53 (17.67)	0.482
20. Trouble falling or staying asleep	239 (33.33)	83 (27.67)	0.090

Table 4 presents categorization of physicians into four PTSD symptom groups, as described in Section 2.3. The frontline physicians were then divided into two groups for subsequent machine learning analyses (see Table 4, low risk group and high risk group). For additional confirmation of the difference between the low risk group and the high-risk group, PCL-5 total scores were calculated for each group. The mean [SD] of the total PCL-5 score was 6.05 [5.36] for low risk group, and 30.59 [13.81] for high risk group. The physicians in low risk
group (n=309) and high risk group (n=137) answered all questions for each of the predictor measures (eFigure 1). This dataset was then used to train and test the machine learning algorithms to predict and evaluate the factors associated with higher PTSD risk.

Table 4: PTSD symptom groups: Frequency (percent) of PCL-5 scores for physicians in each PTSD group.

PTSD Symptom Severity Groups*	Frontline physicians** (n= 717)	Second-line physicians (n= 300)	p value	Chi Square
No PTSD	413 (57.6)	202 (67.33)	.005	.998
Pre-subclinical	83 (11.58)	34 (11.33)	.192	.005
Sub-clinical	144 (20.08)	49 (16.33)		
Probable PTSD	77 (10.74)	15 (5.0)		
Low risk group ***	496 (69.18)			
High risk group	221 (30.82)			

* The four groups were determined by combining scoring methods of the DSM-5 and PCL-5 (see eMethods 1)

** Only data for Frontline physicians were used in the machine learning analyses (Low risk group and High risk group).

*** Low risk group = No PTSD group and pre-subclinical PTSD group; High risk group = Sub-clinical PTSD group and probable PTSD group

Model selection

As discussed previously, selection of an optimal predictive model was based on generalization performance of the models (Hastie et al., 2008; James et al., 2013). This included assessment of goodness-of-fit (eTable 2) and predictive accuracy (eTable 3). We conducted significance tests of F1 scores (eTable 4) and Area Under the Curve (AUC) measures (eTable 5) across every pairing of predictive models. Ultimately, we selected random forest, given it offered: 1) best goodness-of-fit performance among all the models (eTable 2); 2) highest overall predictive accuracy (accuracy=82.52%, 95% CI, 81.16-83.89; recall=93.11%, 95% CI, 91.92-94.31) (eTable 3, eFigure 2); 3) best prediction performance determined by F1 score (eTable 4); and, 4)
more interpretability than its competitors such as the support vector machine and other black-box algorithms (Rustam et al., 2019) (eTable 5).

3.3. Key Predictors for Increased Risk of PTSD in Frontline Physicians

The central aim of this study was to determine which variables best predict PTSD risk among frontline physicians and how these variables relate to higher risk of PTSD, or possible protection from PTSD. Fig. 1 depicts the variable rankings (rank no.1—most important predictor) (see eMethods 3 for details). Table 5 illustrates statistical significance of the top 20 variables indicated in Fig. 1. For the continuous variables, we used the t-test whereas for the ordered variables we used the χ^2 test for comparing if the factors were significantly different between the low risk group and high risk group of frontline physicians. Our findings are organized into two categories: 1) damaging variable/risk factors (higher scores associated with higher PTSD risk); and, 2) protective variables (higher scores associated with lower PTSD risk). The relationships were obtained using the partial dependence plots (PDPs) (see eMethods 3 for details). The PDPs of the top 20 variables are illustrated in Fig. 2.

Table 5. Top 20 predictors of PTSD risk in frontline US physicians treating COVID-19 patients ($^\wedge = t$-test; $^* = \chi^2$ test)

Rank	Variable names	Scale Range	Low risk group (N=309)	High risk group (N=137)	VIP	Statistical analysis	p-value
1	PHQ-9 Depression score	0 – 27	3.7 (3.5)	11.4 (5.6)	100	$t = -14.77$	<.001$^\wedge$
2	Burnout score	1 – 5	2.3 (0.8)	3.4 (1.0)	51	$t = -11.50$	<.001$^\wedge$
3	Self-blame—Brief COPE Score	2 – 8	2.8 (1.2)	4.3 (1.7)	48	$t = -8.88$	<.001$^\wedge$
4	Fear to contract COVID-19	0 – 4	1.9 (1.2)	2.9 (0.9)	47	$t = -9.47$	<.001$^\wedge$
5	Concern to spread COVID-19	0 – 4	2.4 (1.2)	3.4 (0.9)	42	$t = -9.77$	<.001$^\wedge$
6	Intend to leave healthcare field	0 – 4	0.4 (0.8)	1.2 (1.2)	34	$t = -7.15$	<.001$^\wedge$
Rank	Variable names	Scale Range	Low risk group (N=309)	High risk group (N=137)	VIP	Statistical analysis	p-value
------	--	-------------	------------------------	-------------------------	-----	----------------------	---------
7	Job difficulty	0 – 4	2.1 (1.0)	2.9 (1.0)	27	\(t = -7.92\)	<.001^
8	Organizational support	0 – 24	16.1 (6.9)	10.8 (8.1)	23	\(t = 6.58\)	<.001^
9	Intend to switch units / teams	0 – 4	0.5 (1.0)	1.4 (1.4)	20	\(t = -5.98\)	<.001^
10	Feel stigmatized	0 – 4	0.9 (1.0)	1.5 (1.4)	19	\(t = -5.14\)	<.001^
11	Provided psychosocial care training (employer)					\(\chi^2 = 14.81\)	<.001^
	Yes	120 (38.8)	30 (21.9)		18		
	No	90 (29.1)	61 (44.5)				
	Not sure	99 (32.0)	46 (33.6)				
12	Behavioral disengagement—Brief COPE Score	2 – 8	2.5 (0.9)	3.4 (1.6)	17	\(t = -6.30\)	<.001^
13	Years of practicing	-	20.8 (10.7)	20.4 (10.6)	15	\(t = 0.33\)	0.74^
14	Venting—Brief COPE Score	2 – 8	4.2 (1.6)	5.0 (1.4)	13	\(t = -5.57\)	<.001^
15	Support from family	1 – 7	6.0 (1.3)	5.4 (1.6)	12	\(t = 3.74\)	<.001^
16	Insufficient resources	1-5	2.3 (1.1)	2.8 (1.2)	11	\(t = -4.80\)	<.001^
17	CD-RISC 10 Resilience score	0 – 40	32.2 (5.0)	30.0 (5.6)	11	\(t = 3.83\)	<.001^
18	Denial—Brief COPE score	2 – 8	2.4 (0.8)	2.9 (1.4)	11	\(t = -4.18\)	<.001^
19	Support from significant others	1 – 7	6.2 (1.4)	5.8 (1.6)	11	\(t = 2.13\)	0.034^
20	Intend to leave employer	0 – 4	0.8 (1.1)	1.4 (1.4)	10	\(t = -4.89\)	<.001^

Fig. 1. Key predictors associated with PTSD risk in practicing physicians during COVID-19 pandemic
A cohort of cognitive/psychological variables—depression, burnout, fear—top the list of variables associated with higher risk of PTSD (Fig. 1). PTSD risk increased dramatically even when mild–moderate depressive symptoms were present (Fig. 2-1). PTSD risk became significantly prevalent with moderate–high burnout levels (burnout score ≥ 3) (Fig. 2-2). Also, two types of fear—fear of contracting COVID-19 (Fig. 2-4), fear of transmitting it to loved ones (Fig. 2-5)—coincided with higher PTSD risk, presenting a “V-shaped,” nonlinear relationship. Additionally, three coping strategies that were associated with increased PTSD risk include self-blame, venting, and behavioral disengagement. Self-blame (Fig. 2-3) and behavioral disengagement (Fig. 2-12) demonstrated a strong linear correlation with PTSD risk, whereas, venting presented a “V-shaped” curvilinear relationship with PTSD risk (Fig. 2-14). Three occupational characteristics—increases in job difficulty (Fig. 2-7), lack of resources (Fig. 2-16), perceived stigma for working with COVID-19 patients (Fig. 2-10)—were also associated with increases in PTSD risk. Physicians demonstrated resilience to all the challenges until they reached their highest levels. Among demographics, only age influenced PTSD risk, where service beyond 30 years demonstrated a positive association with higher risk of PTSD (Fig. 2-13). Lastly, attrition variables, represented by physician’s intention to switch medical units (Fig. 2-9), leave their employer (Fig. 2-20), or leave healthcare entirely (Fig. 2-6), were positively associated with increased risk of PTSD. Our data show that frontline physicians with higher risk of PTSD have higher intentions to switch medical units (1 in 2.5\(^2\)), leave current employer (1 in 2.2), or even leave the healthcare industry altogether (1 in 3.2) compared to their

\(^2 \) “1 in X” can be interpreted as 1 out of X US physicians, who are working at the frontlines treating COVID-19 patients and have displayed higher levels of PTSD symptoms, have moderate to high likelihood of switching the teams or leaving their current employer or leaving the healthcare industry altogether in the next 2 years.
peers with lower risk of PTSD (switch teams=1 in 6.5; leave current employer=1 in 4.75; leave healthcare industry=1 in 10).

Numerous variables appeared to be protective in nature. The degree to which people felt supported by loved ones, such as friends/family (Fig. 2-15), significant others (Fig. 2-19) and their organization (Fig. 2-8) coincided with lower risk of PTSD (Blekas et al., 2020). PTSD risk spiked slightly as participants reported higher degrees of organizational support (Fig. 2-8). Participants who received training from employers in psychosocial care reported lower risk of PTSD (Fig. 2-11) compared to their peers who didn’t receive any such care or were unsure of receiving such care. Increases in resiliency were associated with drops in PTSD risk (Fig. 2-17); however, PTSD risk begins to climb at the highest resilience levels. Lastly, Fig. 2-18 suggests that as participants relied more on denial, PTSD risk was higher.
Fig. 2. Relationships of top 20 predictors to increase the likelihood of developing subclinical and probable PTSD symptoms (black curve is the average marginal effect of the predictor variable; red lines indicate the 95% confidence intervals)
4. Discussion

Physicians on the frontlines of COVID-19 are in crisis. In our study, among physicians across multiple specialties and states working directly with COVID-19 patients, 10.74% were classified as having probable PTSD and 20.08% as having sub-clinical PTSD, for a combined total of 30.82%. By comparison, in the US general population the lifetime risk of developing PTSD by age 75 is 8.7% and the twelve-month prevalence is 3.5% (American Psychiatric Association, 2013).

Table 2 shows frontline physicians had significantly higher PCL-5 item scores and total scores when the full range of scoring was used. These results revealed the symptoms associated with an increased risk of PTSD for frontline physicians, as well as the need to identify the at-risk physicians for interventions. Our results also support the assumption that working with COVID-19 patients meets PTSD Criterion A of the DSM-5 (having experienced a traumatic event).

The findings in Table 2 underscore not only how overall rates of PTSD differ between frontline and second-line physicians, but also how symptoms vary between these groups. The International Classification of Diseases, 11th Edition (World Health Organization, 2018) in aiming to create an abbreviated symptom assessment for PTSD, selected six items (among the 20 symptoms of PTSD included in DSM-5 and PCL-5) that are the most specific to PTSD (Stein et al., 2014). These six items include flashbacks and nightmares (Criterion B, Re-experiencing), avoiding memories and avoiding external reminders (Criterion C, Avoidance), and hypervigilance and exaggerated startle response (Criterion D, Hyperarousal). Our analysis indicated that all six of these items differed significantly between frontline and second-line physicians (Table 2). Interestingly, three items on which both the physician groups endorsed
similar and considerable rates (negative beliefs, difficulty concentrating, and trouble sleeping), are highly correlated with other dysphoric conditions, such as depression and anxiety (Silverstein et al., 2020). Rather than being specific to PTSD, these three items may instead indicate concurrent stress-related symptoms among physicians, which warrant further examination.

Table 3 presents a non-traditional way of examining PCL-5 scores by looking at the frequency of individuals who score items in the clinically significant range (≥2, moderate to severe). While PCL-5 mean score comparisons are typically used to analyze differences between groups using the full range of scoring (0 to 4), they do not reveal the number of participants who endorse a particular score or range of scores. We chose to examine the number (percent) of frontline and second-line physicians who endorsed symptoms in the range of 2 to 4, out of the total number of physicians in each group who participated in the survey and answered all the PCL-5 questions. Use of the frequency data provides additional information about the number of physicians who have a clinically significant PTSD symptom. For example, from Table 3, it can be inferred that 33.3% of the frontline physicians and 27.67% of the second-line physicians reported having moderate to severe problems with sleep (PCL-5; item # 20) which is not statistically significant at 95% confidence level, whereas 20.08% of frontline physicians and only 10.0% of second-line physicians endorsed disturbing memories (PCL-5; item # 1), which is statistically significant at 95% confidence level. Further exploration of frequency data could allow for the identification of the most relevant clinical symptoms associated with PTSD-related disturbances in physicians.

Of major consequence, the modeling analysis indicated that the cognitive outcomes such as depression and burnout were the greatest predictors of increased PTSD risk in the physicians working with COVID-19 patients. Previous studies have also shown that PTSD risk among
physicians is positively associated with depression and burnout (Jackson et al., 2019; Restauri and Sheridan, 2020). Although burnout often coincides with depression among physicians (Jackson et al., 2019), it has been shown to have a different construct (Menon et al., 2020).

Consistent with this, burnout and depression were independent predictors of PTSD risk in our analyses. In fact, depression, which has long been found to co-occur with PTSD in the aftermath of traumatic events (Gainer et al., 2021; Liebschutz et al., 2007; Pajonk et al., 2012; Shih et al., 2010), was the greatest predictor of higher risk of PTSD in physicians treating COVID-19 patients in the aftermath of the pandemic. Its significance underscores the need for physicians and healthcare administration to remain vigilant for indicators of depression, potentially engaging in active monitoring of its presence. Unlike with depression, PTSD risk was positively associated with only high burnout levels. In addition, PTSD risk levels were observed to be high when fears of contracting or transmitting COVID-19 were minimal, dipped when these fears were moderate, then dramatically spiked when the fears were great. Although moderate fear appears protective, low and high levels of fear may follow patterns similar to those discussed earlier, with high fear triggering trauma and low fear serving as a proxy for negative coping strategies such as denial.

Although the cross-sectional nature of the data prevents inferring causality, the higher intention of the frontline US physicians with higher PTSD risk to switch units, leave their employer, or leave healthcare completely compared to their peers with lower PTSD risk or even all the physicians in general (Sinsky et al., 2017) have important implications for the future of the physician workforce. With up to 50% of physicians already suffering from chronic stress and burnout entering the pandemic (Badahdah et al., 2020; Blekas et al., 2020; Elbay et al., 2020;
Mosheva et al., 2020; West et al., 2018; Yates, 2020), these new, trauma-related burdens for frontline physicians may herald an exodus from the already strained US healthcare system.

Despite their considerable predictive power and increasing popularity in public health (Lo-Ciganic et al., 2019; Mukherjee et al., 2021, 2020; Mukherjee and Wei, 2021; Parikh et al., 2019; Wei and Mukherjee, 2020), to our knowledge, this is the first study to leverage state-of-the-art, machine learning algorithms to predict and evaluate the factors associated with higher risk of PTSD in frontline physicians. Our results demonstrate the value of nonparametric, nonlinear machine learning algorithms to reveal complex relationships between predictor variables and PTSD risk, outperforming more conventional linear logistic regression in sophistication and precision (Liu and Salinas, 2017; Wshah et al., 2019). Our modeling approach not only revealed interplay between damaging and protective factors for PTSD risk, but also invites speculation on the nature of curvilinear relationships between the key factors and PTSD risk. For instance, physicians who vented (complained or processed trauma experiences with others) the least are the ones who suffered from higher PTSD risk, while those who vented a moderate amount presented lower PTSD risk. We speculate that minimal venting may forego the benefits of externally processing the traumatizing events and provoke trauma-induced symptoms (Bodie and Burleson, 2008; Mallinckrodt et al., 2012), whereas high levels of venting are a proxy for turmoil, a phenomenon found in other high stress-contexts (Coyne and DeLongis, 1986; Mallinckrodt et al., 2012). Similarly, increased institutional support largely decreased the risk of PTSD; however, our modeling reveals a spike in the PTSD risk at the highest degrees of organizational support. As with venting, the highest levels of organizational support may be provided for those, who are in the greatest need. Lastly, the spike in PTSD risk at the highest levels of resilience may come from physicians coping via a form of denial—another factor
within the top 20 PTSD risk predictors. Understanding and exploring such nuances will further inform both theory and practice, helping support the frontline physicians through such crises.

Among demographics, only age was found to be a key predictor of PTSD risk. Previous research suggests younger physicians are less resilient to COVID-related trauma (Chong et al., 2004; Lai et al., 2020; Lancee et al., 2008; Sim et al., 2004; Su et al., 2007; Wu et al., 2009); however, the extant literature argues trauma is additive, suggesting older physicians would be more vulnerable following COVID-related trauma exposure (Ogle et al., 2014). Our findings offer support for both bodies of work, with the younger suffering the most, but PTSD risk markedly increasing among the older physicians.

However, there are certain limitations of our study. It is to be noted that the cross-sectional nature of these analyses prevents us from drawing conclusions about the causal relationship between predictor variables and the PTSD risk. In the future, longitudinal studies that bolster participant uptake are needed to confirm and expound upon these findings. Additionally, the study provoked a relatively low response rate, which is common for unincentivized, voluntary surveys.

In summary, our study identified some of the key factors associated with higher risk of PTSD among practicing physicians in the US due to the prolonged impact of the COVID-19 pandemic. Identifying key intervention variables can help stakeholders develop the means to proactively support individuals at higher PTSD risk. Thus, either through mitigating damaging variables and/or bolstering protective variables, this research provides both physicians and their institutions useful information to defend against the trauma-related threats to physicians resulting from the current and possible future epidemics/pandemics. The stability and future of the US healthcare system may depend on it.
Conflict of Interest

The authors report no conflict of interest.

Funding

The study was supported by the 2019-20 SUNY Research Seed Grant Program RFP #20-03-COVID, Proposal ID # COVID202060.

Disclaimer

The ideas expressed in the article are those of the authors and may not be interpreted as AMA policy.

References

American Psychiatric Association, 2013. Diagnostic and Statistical Manual of Mental Disorders.
Badahdah, A.M., Khamis, F., Al Mahyijari, N., 2020. The psychological well-being of physicians during COVID-19 outbreak in Oman. Psychiatry Res. 289, 113053.
Blekas, A., Voitsidis, P., Athanasiadou, M., Parlapani, E., Chatzigeorgiou, A.F., Skoupra, M., Syngelakis, M., Holeva, V., Diakogiannis, I., 2020. COVID-19: PTSD symptoms in Greek health care professionals. Psychol. Trauma Theory, Res. Pract. Policy.
Bodie, G.D., Burleson, B.R., 2008. Explaining variations in the effects of supportive messages a dual-process framework. Ann. Int. Commun. Assoc. 32, 355–398.
Breiman, L., 2001. Random Forests. Mach. Learn. 45, 5–32.
https://doi.org/10.1023/A:1010933404324
Carmassi, C., Foghi, C., Dell’Oste, V., Cordone, A., Bertelloni, C.A., Bui, E., Dell’Osso, L,
2020. PTSD symptoms in healthcare workers facing the three coronavirus outbreaks: What can we expect after the COVID-19 pandemic. Psychiatry Res. 113312.

Carver, C.S., 1997. You want to measure coping but your protocol’too long: Consider the brief cope. Int. J. Behav. Med. 4, 92.

CDC, 2020. Cases of Coronavirus Disease (COVID-19) in the U.S. [WWW Document]. Coronavirus Dis. 2019. URL https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html (accessed 4.17.20).

Centers for Disease Control and Prevention (CDC), 2021. COVID Data Tracker [WWW Document]. Data Tracker. URL https://covid.cdc.gov/covid-data-tracker/#datatracker-home (accessed 2.23.21).

Chan, A.O.M., Huak, C.Y., 2004. Psychological impact of the 2003 severe acute respiratory syndrome outbreak on health care workers in a medium size regional general hospital in Singapore. Occup. Med. (Chic. Ill). 54, 190–196.

Chong, M.-Y., Wang, W.-C., Hsieh, W.-C., Lee, C.-Y., Chiu, N.-M., Yeh, W.-C., Huang, T.-L., Wen, J.-K., Chen, C.-L., 2004. Psychological impact of severe acute respiratory syndrome on health workers in a tertiary hospital. Br. J. Psychiatry 185, 127–133.

Colville, G.A., Smith, J.G., Brierley, J., Citron, K., Nguru, N.M., Shaunak, P.D., Tam, O., Perkins-Porras, L., 2017. Coping with staff burnout and work-related posttraumatic stress in intensive care. Pediatr. Crit. Care Med. 18, e267–e273.

Coyne, J.C., DeLongis, A., 1986. Going beyond social support: the role of social relationships in adaptation. J. Consult. Clin. Psychol. 54, 454.

Davidson, J., 2020. Connor-Davidson Resilience Scale (CD-RISC) Manual.

De Brier, N., Stroobants, S., Vandekerckhove, P., De Buck, E., 2020. Factors affecting mental
health of health care workers during coronavirus disease outbreaks (SARS, MERS & COVID-19): A rapid systematic review. PLoS One 15, e0244052.

Dolan, E.D., Mohr, D., Lempa, M., Joos, S., Fihn, S.D., Nelson, K.M., Helfrich, C.D., 2015. Using a single item to measure burnout in primary care staff: a psychometric evaluation. J. Gen. Intern. Med. 30, 582–587.

Eisenberger, R., Huntington, R., Hutchison, S., Sowa, D., 1986. Perceived organizational support. J. Appl. Psychol. 71, 500.

Elbay, R.Y., Kurtulmuş, A., Arpacıoğlu, S., Karadere, E., 2020. Depression, anxiety, stress levels of physicians and associated factors in Covid-19 pandemics. Psychiatry Res. 290, 113130.

Gainer, D.M., Nahhas, R.W., Bhatt, N. V, Merrill, A., McCormack, J., 2021. Association Between Proportion of Workday Treating COVID-19 and Depression, Anxiety, and PTSD Outcomes in US Physicians. J. Occup. Environ. Med. 63, 89.

Goulia, P., Mantas, C., Dimitroula, D., Mantis, D., Hyphantis, T., 2010. General hospital staff worries, perceived sufficiency of information and associated psychological distress during the A/H1N1 influenza pandemic. BMC Infect. Dis. 10, 1–11.

Gradus, J.L., Qin, P., Lincoln, A.K., Miller, M., Lawler, E., Sørensen, H.T., Lash, T.L., 2010. Posttraumatic stress disorder and completed suicide. Am. J. Epidemiol. 171, 721–727.

Greenwell, B.M., 2017. pdp: An R Package for Constructing Partial Dependence Plots. R J. 9, 421.

Gregory, J., de Lepinau, J., de Buyer, A., Delanoy, N., Mir, O., Gaillard, R., 2019. The impact of the Paris terrorist attacks on the mental health of resident physicians. BMC Psychiatry 19, 1–8.
Hamid, A.A.R.M., Musa, S.A., 2017. The mediating effects of coping strategies on the relationship between secondary traumatic stress and burnout in professional caregivers in the UAE. J. Ment. Heal. 26, 28–35.

Hastie, T., Tibshirani, R., Friedman, J.H., 2008. The Elements of Statistical Learning, Second. ed. Springer.

Imai, H., Matsuishi, K., Ito, A., Mouri, K., Kitamura, N., Akimoto, K., Mino, K., Kawazoe, A., Isobe, M., Takamiya, S., 2010. Factors associated with motivation and hesitation to work among health professionals during a public crisis: a cross sectional study of hospital workers in Japan during the pandemic (H1N1) 2009. BMC Public Health 10, 1–8.

Jackson, T.N., Morgan, J.P., Jackson, D.L., Cook, T.R., McLean, K., Agrawal, V., Taubman, K.E., Truitt, M.S., 2019. The crossroads of posttraumatic stress disorder and physician burnout: a national review of United States trauma and nontrauma surgeons. Am. Surg. 85, 127–135.

James, G., Witten, D., Hastie, T., Tibshirani, R., 2013. An Introduction to Statistical Learning - with Applications in R. Springer.

Johns Hopkins University & Medicine, 2021. Outbreak evolution for the current most affected countries [WWW Document]. Maps Trends New COVID-19 Cases Worldw. URL https://coronavirus.jhu.edu/data/new-cases

Jung, H., Jung, S.Y., Lee, M.H., Kim, M.S., 2020. Assessing the presence of post-traumatic stress and turnover intention among nurses post–Middle East respiratory syndrome outbreak: the importance of supervisor support. Workplace Health Saf. 68, 337–345.

Kang, L., Ma, S., Chen, M., Yang, J., Wang, Y., Li, R., Yao, L., Bai, H., Cai, Z., Yang, B.X., 2020. Impact on mental health and perceptions of psychological care among medical and
nursing staff in Wuhan during the 2019 novel coronavirus disease outbreak: A cross-sectional study. Brain. Behav. Immun. 87, 11–17.

Khalid, I., Khalid, T.J., Qabajah, M.R., Barnard, A.G., Qushmaq, I.A., 2016. Healthcare workers emotions, perceived stressors and coping strategies during a MERS-CoV outbreak. Clin. Med. Res. 14, 7–14.

Kroenke, K., Spitzer, R.L., Williams, J.B., 2001. The PHQ-9: validity of a brief depression severity measure. J. Gen. Intern. Med. 16, 606–613. https://doi.org/10.1046/j.1525-1497.2001.016009606.x

Lai, J., Ma, S., Wang, Y., Cai, Z., Hu, J., Wei, N., Wu, J., Du, H., Chen, T., Li, R., Tan, H., Kang, L., Yao, L., Huang, M., Wang, H., Wang, G., Liu, Z., Hu, S., 2020. Factors Associated With Mental Health Outcomes Among Health Care Workers Exposed to Coronavirus Disease 2019. JAMA Netw. Open 3, e203976–e203976. https://doi.org/10.1001/jamanetworkopen.2020.3976

Lancee, W.J., Maunder, R.G., Goldbloom, D.S., 2008. Coauthors for the Impact of SARS Study. Prevalence of psychiatric disorders among Toronto hospital workers one to two years after the SARS outbreak. Psychiatr Serv 59, 91–95.

Li, X., Li, S., Xiang, M., Fang, Y., Qian, K., Xu, J., Li, J., Zhang, Z., Wang, B., 2020. The prevalence and risk factors of PTSD symptoms among medical assistance workers during the COVID-19 pandemic. J. Psychosom. Res. 139, 110270.

Liebschutz, J., Saitz, R., Brower, V., Keane, T.M., Lloyd-Travaglini, C., Averbuch, T., Samet, J.H., 2007. PTSD in urban primary care: high prevalence and low physician recognition. J. Gen. Intern. Med. 22, 719–726.

Linzer, M., Stillman, M., Brown, R., Taylor, S., Nankivil, N., Poplau, S., Goelz, E., Sinsky, C.,
Barbouche, M., Buhr, C., Byrne, F., Lim, B., Tutty, M., McLoughlin, C., Cappelucci, K., Audi, C., LeClaire, M., DeBaene, K., Guffey, K., Joerres, D., Ravi, S., 2021. Preliminary Report: US Physician Stress During the Early Days of the COVID-19 Pandemic. Mayo Clin. Proc. Innov. Qual. Outcomes 5, 127–136.
https://doi.org/10.1016/j.mayocpiqo.2021.01.005

Liu, N.T., Salinas, J., 2017. Machine learning for predicting outcomes in trauma. Shock Inj. Inflammation, Sepsis Lab. Clin. Approaches 48, 504–510.

Lo-Ciganic, W.-H., Huang, J.L., Zhang, H.H., Weiss, J.C., Wu, Y., Kwoh, C.K., Donohue, J.M., Cochran, G., Gordon, A.J., Malone, D.C., 2019. Evaluation of machine-learning algorithms for predicting opioid overdose risk among medicare beneficiaries with opioid prescriptions. JAMA Netw. open 2, e190968–e190968.

Lu, Y.-C., Shu, B.-C., Chang, Y.-Y., 2006. The mental health of hospital workers dealing with severe acute respiratory syndrome. Psychother. Psychosom. 75, 370–375.

Mallinckrodt, B., Armer, J.M., Heppner, P.P., 2012. A threshold model of social support, adjustment, and distress after breast cancer treatment. J. Couns. Psychol. 59, 150.

Marco, C.A., Larkin, G.L., Feeser, V.R., Monti, J.E., Vearrier, L., Committee, A.E., 2020. Post-traumatic stress and stress disorders during the COVID-19 pandemic: Survey of emergency physicians. J. Am. Coll. Emerg. Physicians Open.

Maunder, R., Hunter, J., Vincent, L., Bennett, J., Peladeau, N., Leszcz, M., Sadavoy, J., Verhaeghe, L.M., Steinberg, R., Mazzulli, T., 2003. The immediate psychological and occupational impact of the 2003 SARS outbreak in a teaching hospital. Cmaj 168, 1245–1251.

Maunder, R.G., Lancee, W.J., Balderson, K.E., Bennett, J.P., Borgundvaag, B., Evans, S.,
Fernandes, C.M.B., Goldbloom, D.S., Gupta, M., Hunter, J.J., 2006. Long-term psychological and occupational effects of providing hospital healthcare during SARS outbreak. Emerg. Infect. Dis. 12, 1924.

Maunder, R.G., Lancee, W.J., Rourke, S., Hunter, J.J., Goldbloom, D., Balderson, K., Petryshen, P., Steinberg, R., Wasylkeni, D., Koh, D., 2004. Factors associated with the psychological impact of severe acute respiratory syndrome on nurses and other hospital workers in Toronto. Psychosom. Med. 66, 938–942.

Menon, N.K., Shanafelt, T.D., Sinsky, C.A., Linzer, M., Carlasare, L., Brady, K.J.S., Stillman, M.J., Trockel, M.T., 2020. Association of Physician Burnout With Suicidal Ideation and Medical Errors. JAMA Netw. Open 3, e2028780–e2028780.

https://doi.org/10.1001/jamanetworkopen.2020.28780

Mosheva, M., Hertz-Palmor, N., Dorman Ilan, S., Matalon, N., Pessach, I.M., Afek, A., Ziv, A., Kreiss, Y., Gross, R., Gothelf, D., 2020. Anxiety, pandemic-related stress and resilience among physicians during the COVID-19 pandemic. Depress. Anxiety 37, 965–971.

Mukherjee, S., Boamah, E.F., Ganguly, P., Botchwey, N., 2021. A multi-level scenario-based predictive analytics framework to model community mental health—built environment nexus.

Mukherjee, S., Botchwey, N., Boamah, E.F., 2020. Towards Mental Wellbeing in Cities: A Data-driven Learning from Mental Health–Environment Nexus, in: Proceedings of the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management Conference.

https://www.rpsonline.com.sg/proceedings/esrel2020/html/4473.xml.

Mukherjee, S., Wei, Z., 2021. Suicide disparities across metropolitan areas in the U.S.: A
comparative assessment of socio-environmental factors using a data-driven predictive approach. arXiv Prepr. - arXiv2011.08171.

Nickell, L.A., Crighton, E.J., Tracy, C.S., Al-Enazy, H., Bolaji, Y., Hanjrah, S., Hussain, A., Makhloof, S., Upshur, R.E.G., 2004. Psychosocial effects of SARS on hospital staff: survey of a large tertiary care institution. Cmaj 170, 793–798.

Ogle, C.M., Rubin, D.C., Siegler, I.C., 2014. Cumulative exposure to traumatic events in older adults. Aging Ment. Health 18, 316–325.

Pajonk, F.G., Cransac, P., Müller, V., Teichmann, A., Meyer, W., 2012. Trauma and stress-related disorders in German emergency physicians: the predictive role of personality factors. Int. J. Emerg. Ment. Health 14, 257–268.

Parikh, R.B., Manz, C., Chivers, C., Regli, S.H., Braun, J., Draugelis, M.E., Schuchter, L.M., Shulman, L.N., Navathe, A.S., Patel, M.S., 2019. Machine learning approaches to predict 6-month mortality among patients with cancer. JAMA Netw. open 2, e1915997–e1915997.

Restauri, N., Sheridan, A.D., 2020. Burnout and posttraumatic stress disorder in the coronavirus disease 2019 (COVID-19) pandemic: intersection, impact, and interventions. J. Am. Coll. Radiol. 17, 921–926.

Rintamaki, L.S., Weaver, F.M., Elbaum, P.L., Klama, E.N., Miskevics, S.A., 2009. Persistence of Traumatic Memories in World War II Prisoners of War: (See editorial comments by Dr. Jules Rosen, on pp 2346–2347). J. Am. Geriatr. Soc. 57, 2257–2262.

Rustam, Z., Sudarsono, E., Sarwinda, D., 2019. Random-Forest (RF) and Support Vector Machine (SVM) Implementation for Analysis of Gene Expression Data in Chronic Kidney Disease (CKD), in: IOP Conference Series: Materials Science and Engineering. IOP Publishing, p. 52066.
Shih, R.A., Schell, T.L., Hambarsoomian, K., Marshall, G.N., Belzberg, H., 2010. Prevalence of PTSD and major depression following trauma-center hospitalization. J. Trauma 69, 1560.

Silverstein, M.W., Petri, J.M., Kramer, L.B., Weathers, F.W., 2020. An item response theory analysis of the PTSD checklist for DSM-5: Implications for DSM-5 and ICD-11. J. Anxiety Disord. 70, 102190.

Sim, K., Chong, P.N., Chan, Y.H., Soon, W.S.W., 2004. Severe acute respiratory syndrome-related psychiatric and posttraumatic morbidities and coping responses in medical staff within a primary health care setting in Singapore. J. Clin. Psychiatry 65, 1120–1127.

Sinsky, C.A., Dyrbye, L.N., West, C.P., Satele, D., Tutty, M., Shanafelt, T.D., 2017. Professional satisfaction and the career plans of US physicians, in: Mayo Clinic Proceedings. Elsevier, pp. 1625–1635.

Stein, D.J., McLaughlin, K.A., Koenen, K.C., Atwoli, L., Friedman, M.J., Hill, E.D., Maercker, A., Petukhova, M., Shahly, V., Van Ommeren, M., 2014. DSM-5 and ICD-11 definitions of posttraumatic stress disorder: Investigating “narrow” and “broad” approaches. Depress. Anxiety 31, 494–505.

Su, T.-P., Lien, T.-C., Yang, C.-Y., Su, Y.L., Wang, J.-H., Tsai, S.-L., Yin, J.-C., 2007. Prevalence of psychiatric morbidity and psychological adaptation of the nurses in a structured SARS caring unit during outbreak: a prospective and periodic assessment study in Taiwan. J. Psychiatr. Res. 41, 119–130.

Weathers, F.W., Litz, B.T., Keane, T.M., Palmieri, P.A., Marx, B.P., Schnurr, P.P., 2013. The PTSD checklist for DSM-5 (PCL-5). Scale available from Natl. Cent. PTSD www.ptsd.va.gov 10.

Wei, Z., Mukherjee, S., 2020. Health-behaviors associated with the growing risk of adolescent
suicide attempts: A data-driven cross-sectional study. Am. J. Heal. Promot. PMID-33297721.

West, C.P., Dyrbye, L.N., Shanafelt, T.D., 2018. Physician burnout: contributors, consequences and solutions. J. Intern. Med. 283, 516–529.

Winkel, A.F., Robinson, A., Jones, A.-A., Squires, A.P., 2019. Physician resilience: a grounded theory study of obstetrics and gynaecology residents. Med. Educ. 53, 184–194.

World Health Organization, 2018. International classification of diseases for mortality and morbidity statistics (11th Revision).

Wshah, S., Skalka, C., Price, M., 2019. Predicting posttraumatic stress disorder risk: a machine learning approach. JMIR Ment. Heal. 6, e13946.

Wu, P., Fang, Y., Guan, Z., Fan, B., Kong, J., Yao, Z., Liu, X., Fuller, C.J., Susser, E., Lu, J., 2009. The psychological impact of the SARS epidemic on hospital employees in China: exposure, risk perception, and altruistic acceptance of risk. Can. J. Psychiatry 54, 302–311.

Yates, S.W., 2020. Physician stress and burnout. Am. J. Med. 133, 160–164.

Zimet, G.D., Dahlem, N.W., Zimet, S.G., Farley, G.K., 1988. The multidimensional scale of perceived social support. J. Pers. Assess. 52, 30–41.
Supplementary Online Content

eMethods 1. Classification of PTSD symptoms

eMethods 2. Machine Learning Models and Model Selection Process

eMethods 3. Statistical Inference: Variable Importance and Partial Dependence Plots

eTable 1. Ranking of all variables included in the analysis

eTable 2. Comparison of Goodness-of-fit among a library of machine learning models

eTable 3. Comparison of prediction performance among a library of machine learning models

eTable 4. Significant test of F1 Score in out-of-sample prediction performance

eTable 5. Significant test of AUC in out-of-sample prediction performance

eFigure 1. Flow of data preprocessing

eFigure 2. Model performance (F1 Score and AUC) distribution in out-of-sample
eMethods 1. Classification of PTSD symptoms

The different groups of PTSD risk were created by using a combination of the PCL-5 score and DSM criteria. This produced four levels of PTSD symptom severity: (1) “Probable PTSD,” scoring 2 or higher in three or more DSM-5 categories and a total PCL-5 score ≥ 33; (2) “Subclinical PTSD,” scoring 2 or higher in two categories and a PCL-5 score ≥ 12 and ≤ 33 (three respondents had a score of 34 or 35, but in less than 4 categories); (3) “Pre-subclinical,” scoring 2 or higher in none or one category and a PCL-5 score ≥ 12 and < 33; and (4) “No PTSD,” a PCL-5 total score < 12, irrespective of DSM-5 item scores.

eMethods 2. Machine Learning Models used in the Study

Introduction

In the study, we leveraged eight models to predict the likelihood of developing PTSD symptoms, including the traditionally-used parametric Logistic regression (Glonek and McCullagh, 1995; Hosmer Jr et al., 2013), nonparametric tree-based models (i.e., random forest (Breiman, 2001), bagging (James et al., 2014), gradient boosting method (Friedman, 2002), Bayesian additive regression trees (Chipman et al., 2008)), and black-box methods (i.e., Naïve Bayes (Rish, 2001), support vector machines (Gunn, 1998; Hearst et al., 1998; Steinwart and Christmann, 2008), neural networks (Nielsen, 2015)). Machine learning algorithms have been gaining more attention in the field of public health recently (Lo-Ciganic et al., 2019; Mooney and Pejaver, 2018). Compared with the conventional linear statistical models, the major advantages of applying machine learning models are: 1) the ability to capture the underlying interdependent and nonlinear relationships of the data (Beam and Kohane, 2018; Mooney and Pejaver, 2018); 2) capable of discovering specific
patterns and trends that could be unknown to humans, and producing the strong predictive ability (Char et al., 2018).

Logistic regression

Logistic regression (Glonek and McCullagh, 1995; Hosmer Jr et al., 2013) is a parametric model that assumes a linear relationship between the feature vector $X_i^T = (x_{i1}, x_{i2}, \ldots, x_{in})$ and the log-odds of the response variable y being a success or a failure. In this study, the response variable is representative of the likelihood of developing the PTSD symptoms among physicians and can be treated as a binary categorical variable, i.e., $y \in \{+1, -1\}$. Let $\Pr(y_i = 1|X_i, \beta) = p_i$. And, the mathematical formula is given by

$$
\text{logit}(p_i) = \log \frac{p_i}{1 - p_i} = s_i = \beta_0 + \sum_{j=1}^{n} \beta_jx_{ij}.
$$

Then,

$$
p_i = \text{sigmoid}(s_i) = \frac{e^{s_i}}{1 + e^{s_i}} = \frac{1}{1 + e^{-s_i}}
$$

where the sigmoid function is the inverse of the logit function.

Random Forest

Random forest (Breiman, 2001) is a non-parametric ensemble tree-based model that aggregating B bootstrapped decision trees denoted as T_b. By constructing a set of single decision trees, random forest takes the average of every output generated by each tree, which usually yields the better predictive accuracy than the single decision tree model. The formulation is denoted as

$$
f(X) = \frac{1}{B} \sum_{b=1}^{B} T_b(X).
$$
Random forest randomly selects a subset of the predictor variables that can potentially avoid the issue of overfitting the data, but this model is sensitive to outliers.

Bagging

Bootstrap aggregation or Bagging (James et al., 2014) for short is another ensemble method that used decision tree-based classifiers to reduce the variance. B different bootstrapped training data are generated by sampling from the training data with replacement. Each of the training set is used to develop the single classification tree, and in total B different classifiers are constructed. Each constructed tree is considered weak learner, and is independent of each other. Then, the test data is used to validate each single tree model among B trees, and the final output is determined by the majority vote across all B trees for the classification problem. The major advantage of Bagging is to reduce the variance and it can provide an unbiased estimate of the test error (a.k.a. out-of-bag error).

Gradient Boosting Method (GBM)

Boosting is also the ensemble technique that the predictors are made sequentially, and are dependent upon previous trees, whereas a random forest is a collection of decision trees that are built in parallel. Gradient boosting method (Friedman, 2002) is another popular machine learning technique for both regression and classification problems. In GBM, a loss function is typically defined as squared error in the regression problem and logarithmic loss in the classification problem. Each decision tree is considered as weak learner that fitted to a smaller number of terminal nodes. The first tree model is fitted using the small data, and the second tree is developed using the residuals from the first tree that attempts to reduce the error. This process is being
implemented through a sequence of trees, and during each iteration, gradient descent is used to minimize the loss function when sequentially adding more trees.

Bayesian Additive Regression Trees

Bayesian additive regression tree (BART) (Chipman et al., 2008) is a non-parametric, tree-ensemble method, where a set of single tree models are aggregated to approximate the outcome variable denoted by Y. Generally speaking, the BART model has two main parts: a sum-of-tree model and a regularization prior. The single regression tree T is constructed by partitioning the space of a set of predictors into different sub-regions that are representative of nodes, where the decision rules (in this study, the classification rules) are determined by the sequence of splits from root node to leaf node. Mathematically, the BART can be given by the sum of m regression trees, that is,

$$G(X) = \sum_{j=1}^{m} g(X; T_j, M_j),$$

where $g(X; T_j, M_j)$ assigns the parameters $\mu_{ij} \in M_j$ of the regression tree T_j to the predictor X. We applied probit function to map a set of predictor variables into a binary probability denoting the likelihood of developing PTSD symptoms among healthcare physicians. The regularization prior term is leveraged to control the complexity of tree’s structure, balancing between computationally cost and the accuracy of the function approximation.

Naïve Bayes

Naïve Bayes (Rish, 2001) is grounded in the Bayes’ theorem with an assumption of independence among a set of predictors. Bayesian classification provides prior knowledge in probabilistic model to capture uncertainty about the model in predicting the outcome response. In the classification
problem, we aim to estimate the function that maps from X to Y, or equivalently $P(Y|X)$. By applying the Bayes rule, $P(Y = y_i|X)$ can be given by

$$P(Y = y_i|X = x_k) = \frac{P(X = x_k|Y = y_i)P(Y = y_i)}{\sum_j (X = x_k|Y = y_j)P(Y = y_j)}.$$

Where y_m indicates the m-th possible class for outcome variable Y, and x_k is the k-th predictor variable. The final response label is denoted as

$$Y \leftarrow \arg\max_{y_k} P(Y = y_k) \prod_i P(X_i|Y = y_k).$$

Support Vector Machines (SVM)

Support vector machine (SVM) (Gunn, 1998; Hearst et al., 1998; Steinwart and Christmann, 2008) is a generalization the maximal margin classifier which essentially maximizes the soft margin. It essentially extends the support vector classifier by using a larger feature space using higher order polynomials of the predictors. To introduce non-linearity a smarter way is to use kernels. SVM is known to be robust to the outliers and computationally efficient when the number of feature dimensions is greater than the number of total data points.

Neural Networks

Neural networks (Nielsen, 2015) are the widely-used machine learning models that basically simulate the nature of the biological neurons. Typically, it has three common layers for data processing: input layer, hidden layer and output layer. Data are first passed through the input layer. Hidden layer is used for intermediate processing, and translates the weights from the input layer to the next layer (it could be either another hidden layer or output layer). Using an activation function to map the information from the hidden layer to the final output layer, the predictive
values could be obtained. The activation function is used to incorporate the non-linearity of the data. We used feedforward neural network to develop models for the training set.

Model Selection Process

To achieve optimal generalization performance and select the most robust predictive model (i.e., the model which accurately predicts without overfitting the data), the complexity of a statistical model should be controlled through bias-variance trade-off using the most widely used cross validation technique (Hastie et al., 2008; James et al., 2013). More specifically, predictive accuracy of each model was calculated by implementing 30-fold\(^3\) random hold-out validation tests where in each iteration, 20% of the data was randomly held out and the model was trained with the remaining data and tested using the held-out sample (Hastie et al., 2008; James et al., 2013). To evaluate the performance of the classification models, we leveraged the widely-used statistical metrics based on the Confusion matrix, such as F1 score, Area Under the Curve (AUC, or C-statistic), Accuracy (%), Recall (%) and Precision (%), for both goodness-of-fit and predictive accuracy (Forman and Scholz, 2010). F1 score computed by the harmonic mean of Precision and Recall was applied to balance between positive predictive value and the true positive rate. AUC was calculated by the area under the receiver operating characteristic (ROC) curve. F1 score and AUC, which are mainly used in unbalanced datasets, were leveraged in this study to evaluate models’ performance (Forman and Scholz, 2010). Finally, the model that outperformed all the other models in terms of goodness-of-fit and predictive accuracy was

\(^3\) Given that cross-validation is based on randomized sub-sectioning of the data into 80–20% portions, 30 times repetition is naturally a conservative measure to ensure all the values have been used at least once. (Hastie et al., 2008; James et al., 2013)
selected as the final predictive model for statistical inferencing. This is a well-known statistical process that ensures that the machine learning models do not overfit the data and provide accurate predictive performance, while providing interpretability benefits (Hastie et al., 2008; James et al., 2013).

eMethods 3. Statistical Inference: Variable Importance (VI) and Partial Dependence Plots (PDP)

Although the non-parametric models outperform parametric models in terms of predictive performance, the improved predictability comes at the cost of reduced interpretability. However, statistical inferencing can be conducted for the non-parametric models using the variable importance ranking and partial dependence plots (PDPs) (Hastie et al., 2008; James et al., 2013). The importance of the variables is depicted by the inclusion proportion of the variables which denote the number of times a particular variable has been selected to develop the model. To understand how a particular predictor variable, affect the response variable, the PDPs are used. The PDP is estimated as follows:

\[
p_j(x_j) = \frac{1}{n} \sum_{i=1}^{n} p_j(x_j, x_{-j}, i)
\]

Here, \(p \) is the statistical response surface; \(n \) denotes the number of observations, \(x_{-j} \) represents all the independent variables except \(x_j \).
eTable 1. Description of Variables

Rank	Variable Names	Variable Description	Score range [min-max] / Levels	Low risk group (N=309)	High risk group (N=137)	P-value
1	PHQ-9 Depression Score	PHQ-9 Depression Score	0-27	3.7 (3.5)	11.4 (5.6)	<0.001
2	Burnout Score	Burnout Score	1-5	2.3 (0.8)	3.4 (1.0)	<0.001
3	Self-blame—Brief COPE Score	Self-blame—Brief COPE Score	2-8	2.8 (1.2)	4.3 (1.7)	<0.001
4	Fear to contract COVID-19	Extent of fear to contract COVID-19 due to working on the frontlines	0-4	1.9 (1.2)	2.9 (0.9)	<0.001
5	Concern to spread COVID-19	Extent of concern for transmitting COVID-19 to family, friends, or relatives	0-4	2.4 (1.2)	3.4 (0.9)	<0.001
6	Intend to leave healthcare field	Likelihood to leave healthcare field entirely in the next 2 years	0-4	0.4 (0.8)	1.2 (1.2)	<0.001
7	Job difficulty	Increase in job difficulty due to COVID-19	0-4	2.1 (1.0)	2.9 (1.0)	<0.001
8	Organizational support	Positive support from the employer / organization since the outbreak of COVID-19 pandemic	0-24	16.1 (6.9)	10.8 (8.1)	<0.001
9	Intend to switch units/teams	Likelihood to switch units/teams in the next 2 years	0-4	0.5 (1.0)	1.4 (1.4)	<0.001
10	Feel stigmatized	Extent of feeling stigmatized by others because of working with COVID-19 patients	0-4	0.9 (1.0)	1.5 (1.4)	<0.001
11	Provided psychosocial care training	Whether employer offered online training programs to their employees on psychosocial care principles	Yes	120 (38.8)	30 (21.9)	0.001
			No	90 (29.1)	61 (44.5)	
			Not sure	99 (32.0)	46 (33.6)	
12	Behavioral Disengagement—Brief COPE Score	Behavioral Disengagement—Brief COPE Score	2-8	2.5 (0.9)	3.4 (1.6)	<0.001
13	Years of practicing	Years of practicing medicine (including residency)	3-46	20.8 (10.7)	20.4 (10.6)	0.74
14	Venting—Brief COPE Score	Venting—Brief COPE Score	2-8	4.2 (1.6)	5.0 (1.4)	<0.001
15	Support from family	Extent of getting emotional help and support from family	1-7	6.0 (1.3)	5.4 (1.6)	<0.001
16	Insufficient resources	Likelihood of having sufficient resources to take care of all the COVID-19 patients	1-5	2.3 (1.1)	2.8 (1.2)	<0.001
17	CD-RISC 10 Resilience Score	CD-RISC 10 Resilience Score	0-40	32.2 (5.0)	30.0 (5.6)	<0.001
18	Denial—Brief COPE Score	Denial—Brief COPE Score	2-8	2.4 (0.8)	2.9 (1.4)	<0.001
19	Support from significant others	Extent of receiving emotional help and support from significant others	1-7	6.2 (1.4)	5.8 (1.6)	0.027
20	Intend to leave employer	Likelihood to leave current employer in the next 2 years	0-4	0.8 (1.1)	1.4 (1.4)	<0.001
21	Employer evenly distributes your workload	Employer adequately implemented shifting of tasks to evenly distribute your workload	Yes	147 (47.6)	45 (32.8)	0.001
			No	76 (24.6)	56 (40.9)	
			Not sure	86 (27.8)	36 (26.3)	
22	No support from the employer	No support from the employer / organization since the outbreak of COVID-19 pandemic	0-24	9.2 (7.3)	12.9 (7.9)	<0.001
23	Age	Age	29-75	50.7 (11.0)	50.3 (11.1)	0.701

43
		Use of Emotional Support—Brief COPE Score	Use of Emotional Support—Brief COPE Score	2-8	5.4 (1.8)	5.5 (1.8)	0.457
25	Substance Use—Brief COPE Score	Substance Use—Brief COPE Score	2-8	2.6 (1.2)	3.2 (1.8)	<0.001	
26	Planning—Brief COPE Score	Planning—Brief COPE Score	2-8	5.2 (1.8)	5.9 (1.8)	0.001	
27	Concern while working with patients	Having underlying health condition(s) that was of concern while working with patients during the COVID-19 pandemic	Yes	87 (28.2)	60 (43.8)		
			No	213 (68.9)	73 (53.3)	0.005	
			Not sure	9 (2.9)	4 (2.9)		
28	Working status	Working status	Full-time	276 (89.3)	115 (83.9)	0.245	
			Part-time	28 (9.1)	16 (11.7)		
			Furloughed	2 (0.6)	3 (2.2)		
			Laid off	0 (0.0)	1 (0.7)		
			On leave	3 (1.0)	2 (1.5)		
29	Use of Instrumental Support—Brief COPE Score	Use of Instrumental Support—Brief COPE Score	2-8	4.4 (1.7)	4.6 (1.8)	0.3	
30	Support from friends	Extent of receiving emotional help and support from friends	1-7	5.9 (1.3)	5.4 (1.6)	<0.001	
31	Exposed to aerosol generating procedures with COVID-19 patients	Exposed to aerosol generating procedures (e.g., Nebulizer, HFNC, NIPPV, etc.) with suspected or known COVID-19 patients	0	146 (47.2)	54 (39.4)	0.152	
			>= 1	163 (52.8)	83 (60.6)		
32	Assist in deciding to allocate ICU bed/ventilators	Frequency of being part of the decision-making process about allocating ICU bed and/or ventilators	1(always)-5(never)	4.4 (1.2)	4.4 (1.2)	0.795	
33	Primary work setting	Primary work setting	Academic medical center	84 (27.2)	24 (17.5)		
			Group practice	75 (24.3)	37 (27.0)		
			Hospital	81 (26.2)	40 (29.2)		
			Solo practice	28 (9.1)	12 (8.8)		
			Two-physician practice	12 (3.9)	5 (3.6)		
			Outpatient center	12 (3.9)	12 (8.8)		
			Others	17 (5.5)	7 (5.1)		
34	Hours worked in an average week before COVID-19	Hours worked in an average week before COVID-19 outbreak	0-100	48.6 (14.5)	49.3 (15.2)	0.642	
35	Employer provides psychological support hotline	If the employer arranged for a psychological support hotline for the employees’ wellbeing at the organization	Yes	164 (53.1)	57 (41.6)	0.068	
			No	73 (23.6)	37 (27.0)		
			Not sure	72 (23.3)	43 (31.4)		
36	Self-Distraction—Brief COPE Score	Self-Distraction—Brief COPE Score	2-8	4.9 (1.7)	5.5 (1.6)	<0.001	
37	Felt mistreated due to race or ethnicity	Felt mistreated or stigmatized by patients and/or their family members because of race or ethnicity	No	296 (95.8)	125 (91.2)	0.088	
			Yes	13 (4.2)	12 (8.8)		
38	Pregnant or have a new born during COVID-19	If pregnant (self/partner) or had (have) a new born while working with patients during the COVID-19 pandemic	No	287 (92.9)	126 (92.0)	0.887	
			Yes	22 (7.1)	11 (8.0)		
39			No	211 (68.3)	78 (56.9)	0.027	
	Extra hours worked during COVID-19	If worked extra hours to care for COVID-19 patients when the practice received largest volume of COVID-19 patients					
---	----------------------------------	---	-------	-------	-------		
40	Religion—Brief COPE Score	Religion—Brief COPE Score	2-8	4.2 (2.1)	4.3 (2.1)	0.767	
41	Active Coping—Brief COPE Score	Active Coping—Brief COPE Score	2-8	5.1 (1.7)	5.4 (1.8)	0.148	
42	Acceptance—Brief COPE Score	Acceptance—Brief COPE Score	2-8	6.6 (1.4)	6.4 (1.4)	0.333	
						0.477	
43	Race	Race				0.427	
	American Indian or Alaska Native	1 (0.3)	0 (0.0)	0.001			
	Asian	46 (14.9)	16 (11.7)				
	Black or African American	12 (3.9)	5 (3.6)				
	Native Hawaiian or Pacific Islander	0 (0.0)	1 (0.7)				
	White	222 (71.8)	106 (77.4)				
	Others	28 (9.1)	9 (6.6)				
44	Immigrant Status	Immigrant Status				0.049	
	No	265 (85.8)	122 (89.1)				
	Yes	44 (14.2)	15 (10.9)				
45	Living arrangements changes during COVID-19	Made any changes to living arrangements (even if temporarily) during the pandemic, due to concerns of transmitting COVID-19 to family / others	No	188 (60.8)	53 (38.7)	<0.001	
	Yes	121 (39.2)	84 (61.3)				
46	Positive Reframing—Brief COPE Score	Positive Reframing—Brief COPE Score	2-8	4.8 (1.7)	4.7 (1.7)	0.616	
47	Relationship status	Relationship status				0.521	
	Single	49 (15.9)	18 (13.1)				
	Married	240 (77.7)	102 (74.5)				
	Partnered	17 (5.5)	17 (12.4)				
	Widow / Widower	3 (1.0)	0 (0.0)				
48	Ethnicity	Ethnicity				0.178	
	No	273 (88.3)	128 (93.4)				
	Yes	36 (11.7)	9 (6.6)				
49	Sex / Gender	Sex / Gender				0.187	
	Male	151 (48.9)	61 (44.5)				
	Female	156 (50.5)	74 (54.0)				
	Prefer not to answer	2 (0.6)	2 (1.5)				
50	Exposed to COVID-19 patients during intubation	Exposed to suspected or known COVID-19 patients during the process of intubation	0	207 (67.0)	82 (59.9)		
	>= 1	102 (33.0)	55 (40.1)				
51	Number of months worked with COVID patients	Number of months worked with COVID patients	1-10	4.6 (1.5)	4.8 (1.6)	0.23	
52	Worked outside normal scope of clinical practice	If worked outside normal scope of clinical practice when the practice received highest volume of COVID-19 patients	No	221 (71.5)	85 (62.0)	0.06	
	Yes	88 (28.5)	52 (38.0)				
53	Humor—Brief COPE Score	Humor—Brief COPE Score	2-8	4.3 (1.8)	4.3 (1.8)	0.793	

45
eTable 2. Comparison of Goodness-of-fit among a library of machine learning models

	Logistic	Random Forest	Bagging	Naive Bayes	GBM	BART	SVM	NN
F1 Score	0.94	1.00	1.00	0.87	1.00	0.93	0.94	0.98
AUC	0.89	1.00	1.00	0.81	1.00	0.85	0.86	0.96
Accuracy, %	91.27	100.00	99.80	82.62	100.00	89.21	90.65	97.03
Recall, %	95.17	100.00	99.97	85.92	100.00	95.96	98.24	98.37
Precision, %	92.48	100.00	99.75	88.71	100.00	89.31	89.35	97.41

Abbreviations: AUC, area under the curve; GMB, gradient boosting method; BART, Bayesian additive regression trees; NN, natural network.

eTable 3: Comparison of Prediction Performance among a library of machine learning models

	Logistic	Random Forest	Bagging	Naive Bayes	GBM	BART	SVM	NN
F1 Score	0.84	0.88	0.86	0.85	0.86	0.87	0.88	0.85
AUC	0.76	0.76	0.76	0.78	0.78	0.77	0.76	0.77
Accuracy, %	78.87	82.52	80.65	80.16	81.27	81.48	81.97	79.95
Recall, %	84.18	93.11	88.78	84.17	87.26	89.58	92.79	85.64
Precision, %	84.81	83.40	84.06	86.53	85.75	84.46	82.98	85.26

Abbreviations: AUC, area under the curve; GMB, gradient boosting method; BART, Bayesian additive regression trees; NN, neural network.

Based on the prediction performance, the tree-based models (interpretable machine learning models) such as random forest (F1=0.88; 95% CI, 0.87-0.89), bagging (F1= 0.86; 95% CI, 0.85-0.87), gradient boosting method (F1=0.86; 95% CI, 0.85-0.88) and Bayesian additive regression trees (F1=0.87; 95% CI, 0.86-0.88), outperformed the black-box algorithms (i.e., non-interpretable machine learning models) such as Naïve Bayes (F1=0.85; 95% CI, 0.84-0.87) and neural network (F1=0.85; 95% CI, 0.84-0.86). On the other hand, the traditionally used logistic regression performed worst with the least F1 score (F1=0.84; 95% CI, 0.83-0.86). Note, although the support vector machine algorithm demonstrated a superior predictive performance to the random forest in terms of F1 score (F1=0.88; 95% CI, 0.86-0.89), it was not selected because the
superior performance was obtained at the cost of reduced interpretability. Moreover, in terms of AUC measure, random forest also exhibited a higher predictive power (AUC=0.76; 95% CI, 0.75-0.78) than the other models, although they were not statistically different based on the paired t-test (eTable 5).

eTable 4. Significant test of F1 Score in out-of-sample prediction performance

	Logistic	Random Forest	Bagging	Naive Bayes	GBM	BART	SVM	NN
Logistic	1.000	0.000	0.042	0.414	0.036	0.010	0.001	0.284
Random Forest	0.000	1.000	0.034	0.004	0.074	0.271	0.648	0.001
Bagging	0.042	0.034	1.000	0.252	0.841	0.397	0.113	0.221
Naive Bayes	0.414	0.004	0.252	1.000	0.210	0.076	0.016	0.893
GBM	0.036	0.074	0.841	0.210	1.000	0.538	0.194	0.183
BART	0.010	0.271	0.397	0.076	0.538	1.000	0.520	0.054
SVM	0.001	0.648	0.113	0.016	0.194	0.520	1.000	0.007
NN	0.284	0.001	0.221	0.893	0.183	0.054	0.007	1.000

Paired t-test is used to test the statistical significance in mean of F1 Score between any two models in out-of-sample prediction performance across 30 iterations. The null hypothesis is: there is no difference between in population mean of F1 Score. The p-values are shown in the eTable 3, and the significant difference is highlighted in red (p<0.05).
eTable 5. Significant test of AUC in out-of-sample prediction performance

	Logistic	Random Forest	Bagging	Naive Bayes	GBM	BART	SVM	NN
Logistic	1.000	0.505	0.772	0.076	0.071	0.224	0.957	0.370
Random Forest	0.505	1.000	0.699	0.188	0.182	0.488	0.526	0.827
Bagging	0.772	0.699	1.000	0.112	0.106	0.318	0.807	0.537
Naive Bayes	0.076	0.188	0.112	1.000	0.965	0.576	0.075	0.226
GBM	0.071	0.182	0.106	0.965	1.000	0.591	0.070	0.219
BART	0.224	0.488	0.318	0.576	0.591	1.000	0.229	0.581
SVM	0.957	0.526	0.807	0.075	0.070	0.229	1.000	0.382
NN	0.370	0.827	0.537	0.226	0.219	0.581	0.382	1.000

Paired t-test is used to test the statistical significance in mean of AUC between any two models in out-of-sample prediction performance across 30 iterations. The null hypothesis is: there is no difference between in population mean of AUC. The p-values are shown in the eTable 3, and there is no significant difference among models in terms of AUC.
eFigure 1. Flow of data preprocessing

1467 recorded responses

450 Excluded
91 did not give consent for the survey
31 participants were retired physicians
2 failed to report whether or not worked with COVID-19 patients
326 failed to complete PTSD questions

1017 physicians completed PTSD questions

717 physicians directly worked with COVID-19 patients

300 physicians did not directly work with COVID-19 patients

271 failed to complete the survey

446 physicians completed all the survey questions
eFigure 2. Model performance (F1 Score and AUC) distribution in out-of-sample
References

Beam, A.L., Kohane, I.S., 2018. Big data and machine learning in health care. Jama 319, 1317–1318.

Breiman, L., 2001. Random Forests. Mach. Learn. 45, 5–32.

Char, D.S., Shah, N.H., Magnus, D., 2018. Implementing machine learning in health care—addressing ethical challenges. N. Engl. J. Med. 378, 981.

Chipman, H.A., George, E.I., McCulloch, R.E., 2008. BART: Bayesian Additive Regression Trees.

Forman, G., Scholz, M., 2010. Apples-to-apples in cross-validation studies: pitfalls in classifier performance measurement. Acm Sigkdd Explor. Newsl. 12, 49–57.

Friedman, J.H., 2002. Stochastic gradient boosting. Comput. Stat. Data Anal. 38, 367–378.

Glonek, G.F. V, McCullagh, P., 1995. Multivariate logistic models. J. R. Stat. Soc. Ser. B 57, 533–546.

Gunn, S.R., 1998. Support vector machines for classification and regression. ISIS Tech. Rep. 14, 85–86.

Hastie, T., Tibshirani, R., Friedman, J.H., 2008. The Elements of Statistical Learning, Second. ed. Springer.

Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B., 1998. Support vector machines. IEEE Intell. Syst. their Appl. 13, 18–28.

Hosmer Jr, D.W., Lemeshow, S., Sturdivant, R.X., 2013. Applied logistic regression. John Wiley & Sons.

James, G., Witten, D., Hastie, T., 2014. An Introduction to Statistical Learning: With
Applications in R.

James, G., Witten, D., Hastie, T., Tibshirani, R., 2013. An Introduction to Statistical Learning - with Applications in R. Springer.

Lo-Ciganic, W.-H., Huang, J.L., Zhang, H.H., Weiss, J.C., Wu, Y., Kwoh, C.K., Donohue, J.M., Cochran, G., Gordon, A.J., Malone, D.C., 2019. Evaluation of machine-learning algorithms for predicting opioid overdose risk among medicare beneficiaries with opioid prescriptions. JAMA Netw. open 2, e190968–e190968.

Mooney, S.J., Pejaver, V., 2018. Big data in public health: terminology, machine learning, and privacy. Annu. Rev. Public Health 39, 95–112.

Nielsen, M.A., 2015. Neural networks and deep learning. Determination press San Francisco, CA.

Rish, I., 2001. An empirical study of the naive Bayes classifier, in: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence. pp. 41–46.

Steinwart, I., Christmann, A., 2008. Support vector machines. Springer Science & Business Media.