Transition in Deformation Mechanism during High-Temperature Tensile Testing of Friction-Stir-Processed 5083 Aluminum Alloy

by

Takashi MIZUGUCHI*, Tsutomu ITO**, Kota KIMURA***, Tokiko KURISAKA****, and Hiroaki OHFUJI*****

The stress–strain relationship and microstructural evolution of a fine-grained 5083 aluminum alloy produced via friction-stir processing (FSP) during high-temperature tensile deformation were investigated. The FSP of the 5083 aluminum alloy resulted in the formation of a homogeneous fine-grained microstructure. Based on the stress–strain relationship, it was found that the 5083 aluminum alloy exhibited a large elongation, especially at a temperature above 693 K. The stress exponent and the activation energy for deformation, which were determined by the flow stress at a nominal strain of 0.03, were approximately 2.5 and 123 kJ/mol, respectively. These results suggest that grain boundary sliding accommodated by the solute drag motion of dislocations was the rate-controlling process in the early stages of deformation. The largest elongation of 350% occurred at 743 K and an initial strain rate of 1.0 × 10−3 s⁻¹. In this case, the grain aspect ratio increased with increasing nominal strain, which indicated that equiaxed grains continuously elongated along the tensile axis during high-temperature deformation because of dislocation creep. The value of the stress exponent increased with increasing strain. From our experimental results, the dominant deformation mechanism was determined to change during the tensile test, and the contribution of dislocation creep to the high-temperature deformation increased as the deformation proceeded.

Key words:
High-temperature deformation, Al–Mg alloy, Grain-boundary sliding, Solute-drag creep, Friction-stir processing

1 Introduction

5083 aluminum alloy is a typical Al–Mg alloy that has been used for automotive body-sheet applications because it has excellent strength, corrosion resistance, and weldability. High-temperature forming of 5083 aluminum alloy into sheet metal parts has attracted considerable interest because conventional plastic forming at room temperature is limited by its lower formability. Thus, many studies have investigated the tensile deformation behavior at high temperature of Al–Mg alloys 3-11. It is widely believed that the combination of an equiaxed, stable, fine-grained structure with a grain size of less than 10 µm and surrounded by high-angle grain boundaries (GBs) is the most important requirement for excellent elongation. According to the deformation-mechanism map developed by Ito for the Al-6 mol%Mg alloy at 673 K 11, the deformation mechanism of an Al-6 mol%Mg alloy can change from solute drag to GB sliding with decreasing grain size. If the grain size is refined, high ductility can be expected because of the combination of GB sliding and slip controlled by the solute-drag motion of dislocations.

In this study, the stress–strain relationship of a fine-grained 5083 aluminum alloy was investigated using high-temperature tensile testing over various temperatures and strain rates to demonstrate the high ductility achieved by combining GB sliding and dislocation slip controlled by the solute-drag motion of dislocations. Moreover, the transition in the deformation mechanism during high-temperature deformation of fine-grained 5083 aluminum alloy was investigated. A friction-stir processing (FSP), which was developed by Mishra 12,13, are known to reduce the grain size of metallic materials. In this study, FSP was used to obtain a fine-grained microstructure.

2 Experimental Procedure

An annealed 5083 aluminum alloy rolled sheet with dimensions of 6 mm (thickness) × 50 mm (width) × 300 mm (length) was used as the starting material for FSP. The
composition of the alloy in mass% was Al-4.5Mg-0.68Mn-0.19Fe-0.13Si-0.11Cr-0.02Cu.

FSP was carried out using an SHH204-720 FSW machine (Hitachi Setsubi Engineering Co., Ltd.). Single-pass FSP was performed on the sheet along the rolling direction (RD) at a rotation rate of 1200 rpm (revolutions per minute) and a speed of 6.7 mm·s⁻¹, followed by air cooling. A schematic drawing showing the orientation of the tensile test specimen relative to the track of the FSP is shown in Fig. 1. The welding tool was fabricated from a tool steel and comprised a concave shoulder 14 mm in diameter and an M6-threaded cylindrical pin 5.8 mm in length. The tool tilting angle was forward 3°, and the tool plunge depth was controlled to be 5.9 mm.

Specimens for tensile testing with gage dimensions of 6 mm (length) × 2 mm (width) × 2 mm (thickness) were cut out of the normal direction (ND)-transverse direction (TD) surface of the stir zone, as shown in Fig. 1. Next, tensile specimens were annealed at 473 K for 0.5 h to obtain a recovered microstructure. Tensile tests were conducted using a conventional testing machine (Instron Model 5586, Instron Corp.) at 643, 668, 693, 718, and 743 K with a constant crosshead speed corresponding to initial strain rates of 1.0 × 10⁻³, 1.0 × 10⁻² and 1.0 × 10⁻¹ s⁻¹. The tensile direction was parallel to the TD of the sheet. Moreover, to clarify the microstructural evolution and transition in deformation mechanism during the high-temperature deformation, the tensile specimens at 743 K with a strain rate of 1.0 × 10⁻³ s⁻¹ were deformed to nominal strains of 0.48, 0.95, and 1.40. Prior to applying the load, the specimens were kept for 1200 s at the testing temperature to reach thermal equilibrium, which was measured using a thermocouple clamped close to the specimen. The tensile direction was parallel to the TD. Upon completion of the tests, the specimens were immediately cooled with a blower to preserve the microstructure.

The samples for microstructural observation were electropolished at 13 V for 180 s in a solution containing 10 vol.% HClO₄ + 20 vol.% C₂H₅OH + 70 vol.% C₂H₅OH at 255 K. Microstructural observations and crystal orientation measurements were conducted on the ND-TD plane from the RD using a field-emission-scanning electron microscope (FE-SEM; JEOL JSM–7001F, JEOL Ltd.) equipped with an electron backscattering diffraction (EBSD) detector. EBSD observations with a scanned area of 80 μm × 80 μm were carried out using an accelerating voltage of 15 kV with a step size of 0.1 μm. The crystal orientation analyses were conducted by HKL Channel 5 software (Oxford Instruments).

3 Results and discussion
3.1 Microstructure of FSP samples before and after annealing

Figure 2(a) shows the inverse-pole-figure (IPF) map and GB map constructed from the EBSD data for the stirred zone after FSP but before annealing. In the IPF map, the correspondence between the color and the crystallographic direction for each point is indicated in the standard stereographic triangle parallel to the RD of the FSP sheet. In the GB map, high-angle boundaries with a misorientation angle of >15° are shown as green lines, and low-angle boundaries between 2° and 15° are shown as red lines. Boundaries less than 2° were not taken into account because of the limited angular resolution of the EBSD system 13). Moreover, noise-reduction treatment was applied in order to more clearly show the GBs. In these maps, horizontal and vertical directions are TD and ND, respectively. An equiaxed, fine-grained microstructure, surrounded by high-angle boundaries, formed homogeneously in the stirred zone. The mean grain sizes and grain aspect ratio (AR) are shown in Fig. 2. In this figure, d₁₀₀ and d₁₁₁ are the grain sizes determined from GB maps by the linear-intercept method in the TD and ND, respectively. The value of AR was defined as the ratio of d₁₁₁ to d₁₀₀. The mean grain size and AR of FSPed 5083 aluminum alloy before annealing were about 4 μm and 1.1, respectively. (See Fig.2(a)) It was confirmed that FSP produced fine grains with an equiaxed homogeneous grain-size distribution throughout the processed region, and that FSP was an effective route to produce a fine-grained microstructure in a commercial 5083 aluminum alloy. It is widely believed that during FSP, the material experiences dynamic recrystallization, which is contributed to by the severe deformation from the intense stirring effect and a dynamic recovery and recrystallization process. It was observed that there were many low-angle boundaries present in the grains. This is in agreement with the occurrence of the dynamic recrystallization that takes places under continuous strain, coupled with the rapid recovery and migration of sub-grain/GBs during FSP 14).

Figure 2(b) shows the IPF map and GB map for the stirred zone after FSP and annealing. There were some low-angle boundaries remaining after annealing. This indicates that this recovered microstructure composes of large subgrains. The mean grain size increased from 4 to 5 μm during annealing. The sample maintained a fine-grained equiaxed microstructure separated by high-angle boundaries after annealing.

3.2 Stress–strain relationship

Figure 3 shows the nominal stress–nominal strain curves from the tensile tests performed at 643, 668, 693, 718 and 743 K with initial strain rates of 1.0 × 10⁻³, 1.0 × 10⁻² and 1.0 × 10⁻¹ s⁻¹ after FSP and annealing. The yield stress and tensile stress increased with increasing strain rate and decreasing temperature. After reaching the maximum stress at
In the present study, the deformation activation energy could be estimated. For the magnesium alloy processed under the condition of deformation activation energy close to that of Mg alloys with grain sizes of the order of 1000 nm, it was estimated as 126 kJ/mol, which is close to the value reported for Mg. In contrast, for the Al alloy processed under similar conditions, the deformation activation energy was estimated to be 164 kJ/mol, which is close to the value reported for Al. This suggests that GB sliding was the dominant deformation mechanism during the high-temperature deformation of the present specimens of Al.

Generally, plastic deformation at high temperature is GB sliding, which incorporates microstructural features other than the grain size. Therefore, the deformation activation energy can be evaluated using the following equation:

\[\sigma = \frac{G b}{kT} \left(\frac{d}{a} \right)^{\frac{n}{p}} \]

where \(\dot{\varepsilon} \) is a strain rate, \(A \) is a dimensionless constant, \(G \) is the shear modulus, \(D \) is the diffusion coefficient, \(b \) is the Burgers vector, \(k \) is Boltzmann’s constant, \(T \) is the absolute temperature, and \(\sigma \) is the flow stress. The activation energy for deformation is estimated as 43 kJ/mol, which is close to the value reported for Mg. In contrast, the deformation activation energy was estimated to be 164 kJ/mol, which is close to the value reported for Al. This suggests that GB sliding was the dominant deformation mechanism during the high-temperature deformation of the present specimens of Al.

3.3 Deformation mechanism in the early stages of deformation

Generally, plastic deformation at high temperature is GB sliding, which incorporates microstructural features other than the grain size. Therefore, the deformation activation energy can be evaluated using the following equation:

\[\sigma = \frac{G b}{kT} \left(\frac{d}{a} \right)^{\frac{n}{p}} \]

where \(\dot{\varepsilon} \) is a strain rate, \(A \) is a dimensionless constant, \(G \) is the shear modulus, \(D \) is the diffusion coefficient, \(b \) is the Burgers vector, \(k \) is Boltzmann’s constant, \(T \) is the absolute temperature, and \(\sigma \) is the flow stress. The activation energy for deformation is estimated as 43 kJ/mol, which is close to the value reported for Mg. In contrast, the deformation activation energy was estimated to be 164 kJ/mol, which is close to the value reported for Al. This suggests that GB sliding was the dominant deformation mechanism during the high-temperature deformation of the present specimens of Al.

Generally, plastic deformation at high temperature is GB sliding, which incorporates microstructural features other than the grain size. Therefore, the deformation activation energy can be evaluated using the following equation:

\[\sigma = \frac{G b}{kT} \left(\frac{d}{a} \right)^{\frac{n}{p}} \]

where \(\dot{\varepsilon} \) is a strain rate, \(A \) is a dimensionless constant, \(G \) is the shear modulus, \(D \) is the diffusion coefficient, \(b \) is the Burgers vector, \(k \) is Boltzmann’s constant, \(T \) is the absolute temperature, and \(\sigma \) is the flow stress. The activation energy for deformation is estimated as 43 kJ/mol, which is close to the value reported for Mg. In contrast, the deformation activation energy was estimated to be 164 kJ/mol, which is close to the value reported for Al. This suggests that GB sliding was the dominant deformation mechanism during the high-temperature deformation of the present specimens of Al.

In order to clarify the transition in deformation mechanism during the high-temperature deformation, the deformation activation energy was evaluated by plotting the natural logarithm of the stress-strain relationship against the reciprocal of the absolute temperature. The deformation activation energy was evaluated by plotting the natural logarithm of the stress-strain relationship against the reciprocal of the absolute temperature. The deformation activation energy was evaluated by plotting the natural logarithm of the stress-strain relationship against the reciprocal of the absolute temperature. The deformation activation energy was evaluated by plotting the natural logarithm of the stress-strain relationship against the reciprocal of the absolute temperature.
Transition in Deformation Mechanism during High-Temperature Tensile Testing of Friction-Stir-Processed 5083 Aluminum Alloy

\[E = 2G(1 + \nu) \] \hspace{1cm} (2)

where \(\nu \) is Poisson’s ratio. The elastic modulus was calculated based on the temperature dependence of the elastic modulus of pure aluminum \(^{10}\). \[E(\text{MPa}) = 8.039 \times 10^4 - 42.6 \times T \] \hspace{1cm} (3)

The mean grain size was slightly increased during annealing. However, in our study, it was assumed that the grain size was constant during annealing after FSP. The diffusion coefficient can be expressed using the following equation:

\[D = D_0 \exp \left(- \frac{Q}{RT} \right) \] \hspace{1cm} (4)

where \(D_0 \) is a frequency factor, \(R \) is the molar gas constant, and \(Q \) is the activation energy for deformation. Using Eq. (4), Eq. (1) can be rewritten as:

\[\dot{\varepsilon} = B \frac{\sigma^n}{E} \exp \left(- \frac{Q}{RT} \right) \] \hspace{1cm} (5)

where \(B \) is a constant. Therefore, the stress exponent can be calculated using:

\[n = \frac{\partial \ln \varepsilon}{\partial \ln (\sigma/E)} \] \hspace{1cm} (6)

Figure 4 shows a double-logarithmic plot of strain rate against normalized flow stress. The nominal stress at a nominal strain of 0.03 was used as the value of the flow stress because uniform deformation ended at a nominal strain of about 0.05, after which the flow stress gradually decreased. The stress exponent was evaluated directly from the plots in Fig. 4, and their values are also shown in the figure. The stress exponent gradually decreased with increasing temperature, and exhibited 2.5 at 743 K. These results indicate that GB sliding is enhanced at higher temperatures. Generally, the dominant deformation mechanism in fine-grained materials at high temperature is GB sliding, which corresponds to a stress exponent of 2.5 \(^{19}\) and is in good agreement with the stress exponent obtained in the present study. This suggests that GB sliding contributed to the large ductile deformation at 743 K. Other researchers have reported that the deformed fine-grained structure exhibits superplastic characteristics during the early stages of deformation \(^{17-18}\), and that conventional superplasticity in fine-grained Al-Mg alloys with grain sizes of the order of 10 \(\mu m \) is based on GB sliding as the primary deformation mechanism \(^{19-21}\). Our experimental results are in agreement with this previous research.

The deformation activation energy can be evaluated according to the following equation.

\[Q = nR \left(\frac{\ln(\sigma/E)}{1000/T} \right) \] \hspace{1cm} (7)

Figure 5 shows the Arrhenius plot for the normalized flow stress in the temperature range from 693 to 743 K at a constant strain rate of \(1.0 \times 10^{-3} \text{s}^{-1} \) at a nominal strain of 0.03. The slope of the plots indicates \(C\ln(\sigma/E)/C\ln(1000/T) \) in eq. (7). Using the value of the slope, \(n \) (2.5) and \(R \), the value of deformation activation energy could be estimated. For the calculation of the slope, the normalized stress in the temperature range from 693 to 743 K was used because \(n \) value was found to be similar (2.5–3), as shown in Fig. 4. The estimated activation energy for deformation at a constant strain rate was 123 kJ/mol, which is close to that of Mg diffusion in an Al matrix (126 kJ/mol \(^{21}\)), and much higher than that for dislocation pipe diffusion in Al (82 kJ/mol \(^{22}\)) and GB diffusion in Al (84 kJ/mol \(^{22}\)). It can be concluded that, in the initial stages of deformation, the dominant deformation mechanism giving rise to the superplastic-like deformation in the present specimens of friction-stir-processed 5083 aluminum alloy was GB sliding, which is rate-controlled by interdiffusion of Mg in Al, that is to say, the deformation is accommodated by solute-drag creep.

3.4 Deformation-mechanism transition during tensile testing

In order to clarify the transition in deformation mechanism during the high-temperature deformation, the microstructural evolution and the change of the stress component during the tensile test at 743 K were investigated. Figure 6 shows IPF maps and GB maps of the microstructure at nominal strains of 0.48, 0.95, and 1.40 at 743 K with a...
strain rate of 1.0×10^{-3} s$^{-1}$. Figure 7 shows the value of the strain exponent evaluated at nominal strains of 0.48, 0.95, and 1.40 at 743 K. For comparison, the value of the strain exponent at a nominal strain of 0.03 is also plotted in Fig. 7. Figure 3 shows that the nominal strain of 0.03 corresponds to the strain hardening stage in the initial stages of deformation. Up to the maximum flow stress, the deformation along the gauge section within the tensile specimen is uniform; however, after the maximum flow stress, the deformation will localize and necking will begin. In this study, the stress component after the maximum stress was evaluated without taking the localization into account.

At a nominal strain of 0.03, GB sliding was the dominant deformation mechanism, as shown in Fig. 4. At this strain, GB sliding can be accommodated by solute-drag creep because the GBs are able to emit and absorb dislocations. After the maximum stress, propagation of necking accompanied by grain elongation occurred. Equiaxed grains continuously elongated along the tensile axis during high-temperature deformation, therefore, the AR increased with increasing nominal strain. Accordingly, the value of the stress exponent increased with increasing strain. It is reported that the GB sliding is difficult to occur along the direction of the elongated grains. The increase of AR means that dislocation creep would be the important deformation mechanism during the high temperature deformation and that the dominant deformation mechanism changed during the tensile test from the GB sliding to dislocation creep. It is widely considered that a slight necking occurs and propagates through the gauge section of the tensile specimen during high temperature deformation by GB sliding after the maximum stress of a nominal stress-nominal strain curve. The transition of deformation mechanism would be enhanced by necking. The low-angle boundaries found inside grains indicate that the dislocations generated during high-temperature deformation inside the grains that were converted into a fine sub-grain structure by the recovery process. This fine-grained 5083 aluminum alloy produced by FSP exhibited microstructural stability during high-temperature deformation because abnormal grain growth did not occur. However, as shown in Fig. 6, the grains grew slightly to over 10 μm. We believe that the change in deformation mechanism may be due to this grain growth.

4 Conclusions

In this study, the stress–strain relationship and microstructural evolution of a fine-grained 5083 aluminum alloy produced by FSP were investigated. The results can be summarized as follows:

(1) EBSD results showed that the FSP of the 5083 aluminum alloy resulted in the formation of a homogeneous fine-grained structure with an average grain size of about 4 μm.

(2) The stress–strain relationship indicated that the FSP 5083 aluminum alloy exhibited highly ductile behavior, especially above 693 K, with a maximum elongation of 350% at 743 K and an initial strain rate of 1.0×10^{-3} s$^{-1}$.

(3) The experimentally determined stress exponent and the activation energy for deformation were about 2.5 and 123 kJ/mol, respectively. These results suggest that GB sliding accommodated by solute-drag motion of dislocations was the

Fig. 6 IPF maps and GB maps obtained from EBSD measurements showing the microstructural evolution during deformation at 743 K with a strain rate of 1.0×10^{-3} s$^{-1}$ at elongations of 0.48, 0.95, and 1.40. Loading was in the horizontal direction.

Fig. 7 Strain-rate dependencies of normalized flow stress to evaluate the transition of the stress exponent during deformation at 743 K.
rate-controlling process in the early stages of deformation.

(4) The grain AR increased with increasing nominal strain. Equiaxed grains continuously elongated along the tension axis during high-temperature deformation because of dislocation creep. The value of the stress exponent increased with increasing strain. The dominant deformation mechanism changed during the tensile test, and the contribution of dislocation creep to the high-temperature deformation increased as the deformation proceeded.

This study was financially supported by Research Grant from the Japan Aluminium Association and Grant-in-Aid for Scientific Research (C) from Japan Society for the Promotion of Science, JSPS (Grant Number: 15K06494). This paper presents a result of a joint research program carried out at Geodynamics Research Center, Ehime University. The author gratefully appreciates the support received.

References
1) M. A. Garcia-Bernal, R. S. Mishra, R. Verma and D. Hernandez-Silva, “Hot deformation behavior of friction-stir processed strip cast 5083 aluminum alloys with different Mn contents”, Materials Science and Engineering A, Vol.534, pp. 186-192 (2012)
2) R. Verma, A. K. Ghosh, S. Kim and C. Kim, “Grain refinement and superplasticity in 5083 Al”, Materials Science and Engineering A, Vol.191, pp. 143-150 (1995).
3) K. T. Park, H. J. Lee, C. S. Lee, B. D. Ahn, H. S. Cho and D. H. Shin, “Effect of ECAP strain on deformation behavior at low temperature superplastic regime of ultrafine grained 5083 Al alloy fabricated by ECAP”, Materials Transactions, vol.45, No.3, pp. 958-963 (2002).
4) M. Noda, M. Hirohashi and K. Funami, “Low temperature superplasticity and its deformation mechanism in grain refinement of Al-Mg alloy by multi-axial alternative forging”, Materials Transactions, Vol.44, No.11, pp. 2288-2297 (2003).
5) I. C. Hsiao and J. C. Huang, “Deformation mechanisms during low- and high-temperature superplasticity in 5083 Al-Mg alloy”, Metallurgical and Materials Transactions A, Vol.33, No.5, pp. 1373-1384 (2002).
6) N. Tsuji, K. Shiotzaki and Y. Saito, “Superplasticity of ultra-fine grained Al-Mg alloy produced by accumulative roll-bonding”, Materials Transactions, JIM, Vol.40, No.8, pp. 765-771 (1999).
7) I. C. Hsiao and J. C. Huang, “Development of low temperature superplasticity in commercial 5083 Al-Mg alloys”, Scripta Materialia, Vol.40, No.6, pp. 697-703 (1999).
8) H. Iwasaki, R. Kariya, M. Mabuchi, T. Tagata and K. Higashi, “Effects of temperature and strain rate on elongation at elevated temperature in Al-4.3Mg alloy”, Materials Transactions, Vol.42, No.8, pp. 1771-1776 (2001).
9) M. A. Kulas, W. P. Green, E. M. Taleff, P. E. Krajewski and T. R. McNelley, “Deformation mechanisms in superplastic AA5083 materials”, Metallurgical and Materials Transactions A, Vol.36, No.5, pp. 1249-1261 (2005).
10) P. A. Friedman and A. K. Ghosh, “Microstructural evolution and superplastic deformation behavior of fine grain 5083AI”, Metallurgical and Materials Transactions A, Vol.27, No.12, pp. 3827-3839 (1996).
11) T. Ito and M. Otsuka, “Superplasticity in class I type solid solution alloys”, The Japan Institute of Metals and Materials, Vol.43, No.11, pp. 931-937 (2004).
12) R. S. Mishra and Z. Y. Ma, “Friction stir welding and processing”, Materials Science and Engineering R, Vol.50, No.1-2, pp. 1-78 (2005).
13) F. J. Humphreys, “Grain and subgrain characterisation by electron backscatter diffraction”, Journal of Materials Science, Vol.36, No.16, pp. 3853-3854 (2001).
14) F. J. Humphreys and M. Hatherly, “Recrystallization and Related Annealing Phenomena”, pp. 61-170 (1996) Pergamon Press.
15) O. D. Sherby and J. Wadsworth, “Superplasticity - Recent advances and future directions”, Progress in Materials Science, Vol.33, No.3, pp. 169-221 (1989).
16) P. M. Sutton, “The variation of the elastic constants of crystalline aluminium with temperature between 63 K and 773 K”, Physical Review, Vol.91, pp. 816-821 (1953).
17) T. Mohri, M. Mabuchi, M. Nakamura, T. Asahina, H. Iwasaki, T. Aizawa and K. Higashi, “Microstructural evolution and superplasticity of rolled Mg-9Al-1Zn”, Materials Science and Engineering A, Vol.290, No.1-2, pp. 139-144 (2000).
18) R. Kailyshev, E. Artokratova, A. Apollonov, and R. Davies, “High strain rate superplasticity in an Al-Mg-5.8Cu alloy subjected to simple thermomechanical processing”, Scripta Materialia, Vol.54, No.12, pp. 2119-2124 (2006).
19) J. W. Edington, “Microstructural aspects of superplasticity”, Metallurgical Transactions A, Vol.13, No.5, pp. 703-715 (1982).
20) J. W. Edington, K. N. Melton and C. P. Cutler, “Superplasticity”, Progress in Materials Science, Vol.21, No.1-2, pp. 61-170 (1976).
21) H. Oikawa, N. Matsuno and S. Karashima, “Creep mechanism of Al-Mg alloys at high temperatures”, Metal Science, Vol.9, pp. 209-212 (1975).
22) H. J. Frost and M. F. Ashby, “Deformation-mechanism maps of the plasticity and creep of metals and ceramics”, pp. 20-29 (1982) Pergamon Press.
23) F. Li, D. H. Bae and A. K. Ghosh, “Grain elongation and anisotropic grain growth during deformation alloy”, Acta Materialia, Vol.45, No.9, pp. 3887-3895 (1997).