The possible role of methylglyoxal metabolism in cancer

Khalid O. Alfarouka, Saad S. Alqahtanib, Saeed Alshahrani c, Jakob Morgenstern d, Claudiu T. Supuran e and Stephan J. Reshkin f

aDepartment of Evolutionary Pharmacology, and Tumor Metabolism, Hala Alfarouk Cancer Center, Khartoum, Sudan; bPharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, KSA; cPharmacology and Toxicology Department, College of Pharmacy, Jazan University, Jazan, KSA; dDepartment of Internal Medicine I, Endocrinology and Metabolism, Heidelberg University, Germany; eNeurofarba Department, Universita Degli Studi di Firenze, Florence, Italy; fDepartment of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy

ABSTRACT

Tumours reprogram their metabolism to acquire an evolutionary advantage over normal cells. However, not all such metabolic pathways support energy production. An example of these metabolic pathways is the Methylglyoxal (MG) one. This pathway helps maintain the redox state, and it might act as a phosphate sensor that monitors the intracellular phosphate levels. In this work, we discuss the biochemical step of the MG pathway and interrelate it with cancer.

Introduction

Reactive oxygen species (ROS) are highly reactive chemical species that target various biomolecules within the cell. ROS examples include superoxides, peroxides, singlet oxygen, hydroxyl radical, alpha-oxygen, and alkoxyl radicals. The prevailing unifying scientific theory is that ROS, especially at lower levels, supports malignant transformation, carcinogenesis, and invasion, which supports metastatic transformation. ROS at a higher dosage inhibits tumour growth, with some anticancer agents such a dosage inhibits tumour growth, with some anticancer agents including glycolysis, pentose phosphate pathway, as well as photosynthesis.

D-glyceraldehyde 3-phosphate is isomerised to dihydroxyacetone phosphate (DHAP) by triosephosphate isomerase. After that, DHAP is converted to MG (2-oxoaldehyde) and phosphate by the methylglyoxal synthase enzyme (MGS) activity.

MG is also known as glycerone-phosphate phosphate-lyase (methylglyoxal-forming). Although MGS is a bacterial enzyme, early data showed that MGS was isolated from the goat liver. The optimum pH for MGS activity is 7.5, i.e., alkaline pH.

Phosphate acts as a competitive allosteric inhibitor of MGS. Some data concludes that the methylglyoxal pathway supports cells by phosphate and acts as a phosphate sensor. ATP, 3-phosphoglycerate, and phosphoenolpyruvate inhibit MGS.

Therefore, it can be concluded that the MG pathway does not co-occur with the pay-off phase of the glycolysis pathway. Other MGS inhibitors include: phosphoglycolohydroxamic acid.

MG can be formed via several biochemical pathways. MG is involved in many disorders including, cancer, diabetes, CNS disorders, etc. MG is a highly toxic compound, and therefore, the body detoxifies the MG either through glutathione-dependent or glutathione-independent pathways.

Glutathione-Dependent pathway

Lactoylglutathione: MG is isomerised to hemithioacetal adducts and then form (R)-lactoylglutathione spontaneously in the presence of glutathione. The reaction is catalysed by a lactoylglutathione lyase (glyoxalase I). The optimum pH for Glyoxalase I (GLO1) is broad, but generally, the optimum pH is alkaline around 8.
GLO1 is over-expressed in many cancer types, such as, lung, colon, prostate, etc. GLO1 is also involved in their growth and progression, and resistance to the treatment. GLO1 inhibition showed promising results as anti-tumour property, as well as re-sensitizes the resistant tumours to the treatment. GLO1 inhibition showed promising results as anti-tumour property, as well as re-sensitizes the resistant tumours to the treatment. One of the supported observations is that GLO-1 is highly associated with tumorigenesis and tumour invasion, where GLO-1 is GSH dependent and NADPH-dependent methylglyoxal reductase does not utilise GSH (see below).

**D-Lactate**

(R)-S-lactoylglutathione in the presence of water produced reduced glutathione and D-lactate via Hydroxyacylglutathione hydrolase (glyoxalase II).

In cancer, the role of GLO2 might be more complex. Although, tumour suppressor genes, e.g., p63 and p73, up-regulate GLO2 expression by tumour genes, GLO2 supported pro-survival rate rather than apoptosis, which is paradoxical. Cytosolic GLO2, not mitochondrial, prevents the MG induced-apoptosis. Further contradiction is coming where GLO2 expression is lower in cancerous tissues than the normal parent tissue that might delve into other mysteries. Therefore, it will be wisely to reveal that GLO2 expression is associated with growth arrest. One of the suggested answers that release this chain sinnet knot is that the correlation between (i) D-lactate (presence of GLO2 supports D-lactate production), (ii) reduced glutathione (absence of GLO2 prevent the reduced GSH recycle), and (iii) the state of the cell (phases of cell cycle, whether in growth phase, or proliferation, or even dormancy), in a way that solves the redox paradox.

**Glutathione-independent pathway**

Due to the activity of NADPH dependent Aldose-ketose Reductase (AKR), MG can be metabolised into:

**Lactaldehyde formation**

In the presence of NADPH, AKR converts MG to lactaldehyde and produces NADP⁺. The NADP⁺ might be re-cycled to its reduced form (NADPH) using the pentose phosphate pathway (PPP). Therefore, the possible crosstalk between the MG and PPP is likely in the cell’s physiology to manage the cell’s redox state. In other words, there is a possibility of MG-PPP shunt to restore the NADPH.

AKR (NADPH) is also called NADPH-dependent methylglyoxal reductase Gre2, lactaldehyde:NADP⁺ oxidoreductase, and lactaldehyde dehydrogenase (NADP⁺).

The optimum pH for AKR (NADPH) is 6.5⁷⁴, and the range is 5 to 7.⁵⁷, which moves towards the acidic pH. Therefore, it would be wise to reveal if the AKR (NADPH) is associated with either (i)
cellular arrest neurodegeneration and/or renal impairment in case of acidic pH17–79 or (ii) cellular senescence in case of alkaline pH, and so the latter support the possibility of malignant transformation too80–83.

NAPDH inhibits NADPH-dependent MG-reductase; therefore it’s a negative feedback mechanism75,84. Calcium ion and 2-mercaptoethanol are examples of NADPH reductase inhibitors75,84.

Formation of lactic acid. In the presence of NADPH, lactaldehyde is converted to L-lactate by aldehyde dehydrogenase (ALDH) to produce L-lactate and NADH.

Aldehyde dehydrogenase is overexpressed in cancer85 and associated with resistance to chemotherapy and radiotherapy, as well86.

Dyclonine, N,N-diethylaminobenzaldehyde is an example of an ALDH inhibitor86,87. The optimum pH is around 7.488.

Acetol formation. MG is converted to hydroxyacetone (acetol) via Aldo–keto reductase (AKR)89. AKR summarizes a broad family of oxidoreductase enzymes with varying capacities for the detoxification of MG90.

The AKR metabolises the MG, and the product is 95% acetol and 5% D-lactaldehyde90. Acetol is further metabolised to L-1,2-propanediol90 by the same enzyme90.

The optimum pH for AKR depends on the organism, tissue within the organism, etc. that might reflect enzymatic resilience in its activity to confers the organismal adaptability (evolutionary advantageous), e.g., the optimum pH of AKR in Helicobacter is in a range from 4–9, the optimum one is 5.591, however, in more complex organisms the optimum is more basic in the small intestine92. Therefore, it will be challenging to detect or estimate the exact pH of AKR in cancer cells as these are characterised by their heterogeneity93.

AKR is overexpressed in many types of cancer, such as lung, uterine, colorectal, etc.92.

For AKR inhibitors, the Pharmacodiagnostics approach should be implemented for the rational use of selection for example, for

- AKR1B1 is inhibited by epalrestat94.
- AKR1C1 is inhibited by 3-bromo-5-phenylsalicylic acid95.
- AKR1C3 is inhibited by cinnamic acid96,97.

Notes on the MG metabolic pathway

Based on the reaction-diffusion kinetics, tumour neoplasms could be seen as multiple habitats. Tumour neoplasms show at least cline evolution from the macro-blood vessel (tumour cord). Therefore, tumour cells reprogram their metabolic machineries due to glucose, oxygen diffusion, and the lack of efficient removal of the metabolites (adaptive evolution)93,98,99. Therefore, it will not be surprising if the multi-regional biopsy to diagnose the tumours will not find the expression of the enzymes that are involved in MG metabolic pathways to the same degree (see Table 1), which is entirely predictable in the MG metabolic pathway as MG has a negative effect on the vasculature100.

Also, due to the reaction-diffusion kinetics, the hypoxic, necrotic regions within the tumour due to accumulation of lactate, and decreasing oxygen supply – at farther area from the blood vessel– the production of ROS increases101–103, and this might result in increasing the activity of NADPH oxidase (primary cellular source of ROS production)104–107. Therefore, the stimulation of oxidative stress-reducing agents is initiating the NAPDH oxidase – MG metabolic pathway cross-talk, which has risen to come in a way that might confer the cancer cell survival12,108–112.

Concluding remarks and future perspectives

MG is an intermediate product of many cross-roads’ biochemical pathways. The methylglyoxal products are toxic and must be detoxified consequently into many pathways based on various factors, e.g., the level of NADPH, GSH, pH, etc. many of the future perspectives in this issue include:

- Detailed studying the interactions between the Pentose Phosphate Pathway (PPP) – as a primary source of NADPH – and MG Pathway, and their possible interrelation with cancer12.
- The scientific community should focus in determining the cellular level of MG as a critical determinant of many cellular biochemical pathways (causation) and a powerful tool that tracks the cellular dynamics trajectory (consequences).
- Also, these pathways shed the light on importance of the stereochisemistry of the cellular metabolites and their impact on carcinogenesis, besides the stereochisemistry of the drugs.

These biochemical pathways are involved in carcinogenesis, cancer resistance, and treatment regimes. Therefore, implementing the methylglyoxal pathway in tumour biology represents a promising strategy in the therapeutic approaches against cancer, which can add useful anticancer candidates to the community. These suggested candidates might not be the target of Achilles heels of cancer, but it contributes to rationale of the cancer management.

Disclosure statement

CT Supuran is Editor-in-Chief of Journal of Enzyme Inhibition and Medicinal Chemistry, and he was not involved in the assessment, peer review or decision-making process of this paper. The authors have no relevant affiliations of financial involvement with any organisation or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants, or patents received or pending, or royalties.

Author contributions

K.O.A. contributed to the conceptualisation, data curation, formal analysis, investigation, resources, software, and writing (original draft). S.J.R. and C.T.S. contributed to the supervision, conceptualisation, data curation, formal analysis, research, resources, software, and writing (review and editing). S.S.A., S.A., J.M., and C.T.S. contributed to the conceptualisation, data curation, methodology, resources, software, resources, and writing (original draft). All authors have read and agreed to the published version of the manuscript.

ORCID

Khalid O. Alfarouk http://orcid.org/0000-0001-8656-6117
Saad S. Alqahtani http://orcid.org/0000-0002-6164-9095
Saeed Alshahrani http://orcid.org/0000-0002-9626-219X
Jakob Morgenstern http://orcid.org/0000-0001-7227-8958
Claudiu T. Supuran http://orcid.org/0000-0003-4262-0323
Stephan J. Reshkin http://orcid.org/0000-0001-9757-5908
References

1. Jakubczyk K, Dec K, Kalduńska J, et al. Reactive oxygen species - sources, functions, oxidative damage. Pol Merkur Lekarski 2020;48:124–7.

2. Halliwell B. Antioxidants in human health and disease. Annu Rev Nutr 1996;16:33–50.

3. Hayyan M, Hashim MA, AlNashef IM. Superoxide ion: generation and chemical implications. Chem Rev 2016;116:3029–85.

4. Verbon EH, Post JA, Boonstra J. The influence of reactive oxygen species on cell cycle progression in mammalian cells. Gene 2012;511:1–6.

5. Boonstra J, Post JA. Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene 2004;337:1–13.

6. Irani K, Xia Y, Zweier JL, et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science (80-) 1997;275:1649–52.

7. Luanpitpong S, Talbott SJ, Rojanasakul Y, et al. Regulation of lung cancer cell migration and invasion by reactive oxygen species and caveolin-1. J Biol Chem 2010;285:38832–40.

8. Yang H, Villani RM, Wang H, et al. The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res 2018;37:266.

9. Liou G-Y, Storz P. Reactive oxygen species in cancer. Free Radic Res 2010;44:479–96.

10. Mattson MP. Hormesis defined. Ageing Res Rev 2008;7:1–7.

11. Alfarouk KO, Verduzzo D, Rauch C, et al. Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question. Oncosciencie 2014;1:777–802.

12. Alfarouk KO, Ahmed SBM, Elliott RL, et al. The pentose phosphate pathway dynamics in cancer and its dependency on intracellular pH. Metab 2020;10:285.

13. Li Z-G. Methylglyoxal. In: plant signaling molecules. Kidlington: Elsevier; 2019. p. 219–33.

14. Bhagavan N, Ha C-E. Carbohydrate metabolism I. In: Essentials of medical biochemistry. 2nd ed. Waltham, MA: Elsevier; 2015. p. 165–85.

15. Hopper DJ, Cooper RA. The regulation of Escherichia coli methylglyoxal synthase; a new control site in glycolysis? FEBS Lett 1971;13:213–6.

16. Huang KK, Rudolph FB, Bennett GN. Characterization of methylglyoxal synthase from Clostridium acetobutylicum ATCC 824 and its use in the formation of 1, 2-propanediol. Appl Environ Microbiol 1996;62:3244–7.

17. Hopper DJ, Cooper RA. The purification and properties of Escherichia coli methylglyoxal synthase. Biochem J 1972;128:321–9.

18. Saadat D, Harrison DH. The crystal structure of methylglyoxal synthase from Escherichia coli. Structure 1999;7:309–17.

19. Falahati H, Pazhang M, Zareian S, et al. Transmitting the allosteric signal in methylglyoxal synthase. Protein Eng Des Sel 2013;26:445–52.

20. Marks GT, Harris TK, Massiah MA, et al. Mechanistic implications of methylglyoxal synthase complexed with phosphoglycolhydracid acid as observed by X-ray crystallography and NMR spectroscopy. Biochemistry 2001;40:6805–18.

21. McMurray KM, Distler MG, Sidhu PS, et al. GLO1 inhibitors for neuropsychiatric and anti-epileptic drug development. Biochem Soc Trans 2014;42:461–7.

22. Miyazawa N, Abe M, Souma T, et al. Methylglyoxal augments intracellular oxidative stress in human aortic endothelial cells. Free Radic Res 2010;44:101–7.

23. Allaman I, Bélanger M, Magistretti PJ. Methylglyoxal, the dark side of glycolysis. Front Neurosci 2015;9:23.

24. Talukdar D, Chaudhuri BS, Ray M, Ray S. Critical evaluation of toxic versus beneficial effects of methylglyoxal. Biochemistry 2009;74:1059–69.

25. Thornalley PJ. The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J 1990;269:1–11.

26. Thornalley PJ. The glyoxalase system in health and disease. Mol Aspects Med 1993;14:287–371.

27. Thornalley PJ. Glyoxalase I-structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 2003;31:1343–8.

28. Mannervik B. Molecular enzymology of the glyoxalase system. Drug Metabol Drug Interact 2008;23:13–27.

29. Uotila L, Koivusalo M. Purification and properties of glyoxalase I from sheep liver. Eur J Biochem 1975;52:493–503.

30. Davidson SD, Milanesa DM, Mollouh C, Choudhury MS, et al. A possible regulatory role of glyoxalase I in cell viability of human prostate cancer. Urol Res 2002; May30:116–21.

31. Davidson SD, Cherry JP, Choudhury MS, et al. Glyoxalase I activity in human prostate cancer: a potential marker and importance in chemotherapy. J Urol 1999;161:690–1.

32. Ranganathan S, Walsh ES, Tew KD. Glyoxalase I in detoxification: studies using a glyoxalase I transfectant cell line. Biochem J 1995;309 ( Pt 1):127–31.

33. Rulli A, Carli L, Romani R, et al. Expression of glyoxalase I and II in normal and breast cancer tissues. Breast Cancer Res Treat 2001;66:67–72.

34. Kreycy N, Gotzian C, Fleming T, et al. Glyoxalase 1 expression is associated with an unfavorable prognosis of oropharyngeal squamous cell carcinoma. BMC Cancer 2017;17:382.

35. Antognelli C, Mezzasoma L, Fettucciari K, et al. Role of glyoxalase I in the proliferation and apoptosis control of human LNCaP and PC3 prostate cancer cells. Prostate 2013;73:121–32.

36. Morgenstern J, Campos Campos M, Nawroth P, Fleming T. The glyoxalase system—new insights into an ancient metabolism. Antioxidants 2020;9:939.

37. Sakamoto H, Mashima T, Kizaki A, et al. Glyoxalase I is involved in resistance of human leukemia cells to antitumor agent-induced apoptosis. Blood 2000;95:3214–8.

38. Sakamoto H, Mashima T, Sato S, et al. Selective activation of apoptosis program by S-p-bromobenzylglutathione cyclopentyl diester in glyoxalase I-overexpressing human lung cancer cells. Clin Cancer Res 2001;7:2513–8.

39. Thornalley PJ, Edwards LG, Kang Y, et al. Antitumour activity of S-p-bromobenzylglutathione cyclopentyl diester in vitro and in vivo. Inhibition of glyoxalase I and induction of apoptosis. Biochem Pharmacol 1996;51:1365–72.

40. Santel T, Pflug G, Hemdan N, et al. Curcumin inhibits glyoxalase I: a possible link to its anti-inflammatory and anti-tumor activity. PloS One 2008;3:e3508.

41. Takasawa R, Takahashi S, Saeki K, et al. Structure-activity relationship of human GLO I inhibitory natural flavonoids
and their growth inhibitory effects. Bioorg Med Chem 2008;16:3969–75.
42. Chiba T, Ohwada J, Sakamoto H, et al. Design and evaluation of azaindole-substituted N-hydroxyppyridones as glyoxalase I inhibitors. Bioorg Med Chem Lett 2012;22:7486–9.
43. Antognelli C, Palumbo I, Aristei C, Talesa VN. Glyoxalase I inhibition induces apoptosis in irradiated MCF-7 cells via a novel mechanism involving Hsp27, p53 and NF-κB. Br J Cancer 2014;111:395–406.
44. Miller AG, Smith DG, Bhat M, Nagaraj RH. Glyoxalase I is critical for human retinal capillary pericyte survival under hyperglycemic conditions. J Biol Chem 2006;281:11864–71.
45. Meareni E, Romani R, Meareni L, et al. Differing expression of enzymes of the glyoxalase system in superficial and invasive bladder carcinomas. Eur J Cancer 2002;38:1946–50.
46. Cameron AR, Ridderström M, Olin B, Mannervik B. Crystal structure of human glyoxalase II and its complex with a glutathione thiolester substrate analogue. Structure 1999;7:1067–78.
47. Xu Y, Chen X. Glyoxalase II, a detoxifying enzyme of glycolysis byproduct methylglyoxal and a target of p63 and p73, is a pro-survival factor of the p53 family. J Biol Chem 2006;281:26702–13.
48. Antognelli C, Baldracchini F, Talesa VN, et al. Overexpression of glyoxalase system enzymes in human kidney tumor. Cancer J 2006;12:222–8.
49. Chaiswing L, St Clair WH, St Clair DK. Redox paradox: a novel approach to therapeutics-resistant cancer. Antioxid Redox Signal 2018;29:1237–72.
50. Frandsen JR, Narayanasamy P. Neuroprotection through flavonoid: Enhancement of the glyoxalase pathway. Redox Biol 2018;14:465–73.
51. Chang T, Wang R, Olson DJH, et al. Modification of Akt1 by methylglyoxal promotes the proliferation of vascular smooth muscle cells. Faseb J 2011;25:1746–57.
52. de Bari L, Scirià A, Minnelli C, et al. Interplay among oxidative stress, methylglyoxal pathway and s-glutathionylation. Antioxidants 2021;10:1
53. Braun JD, Pastene DO, Breidijk A, et al. Methylglyoxal down-regulates the expression of cell cycle associated genes and activates the p53 pathway in human umbilical vein endothelial cells. Sci Rep 2019;9:1152–14.
54. Da Veiga Moreira J, Peres S, Steyaert J-MM, et al. Cell cycle progression is regulated by intertwined redox oscillators. Theor Biol Med Model 2015;12:10.
55. Moreira J da V, Hamraz M, Abolhassani M, et al. The redox status of cancer cells supports mechanisms behind the Warburg effect. Metabolites 2016;6:333.
56. Reiger M, Lassak J, Jung K. Deciphering the role of the type II glyoxalase isoenzyme Ycbl (GxlII-2) in Escherichia coli. FEBS Microbiol Lett 2015;362:1–7.
57. Hsu YR, Norton SJ. S-carbobenzoxyglutathione: a competitive inhibitor of mammalian glyoxalase II. J Med Chem 1983;26:1784–5.
58. Al-Shar’i NA, Hassan M, Al-Balas Q, Almaayyah A. Identification of possible glyoxalase II inhibitors as anticancer agents by a customized 3D structure-based pharmacophore model. Jordan J Pharm Sci 2015;8:83–103.
59. Puwanant M, Mo-Suwan L, Patrapinyokul S. Recurrent D-lactic acidosis in a child with short bowel syndrome. Asia Pac J Clin Nutr 2005;14:195–8.
80. Beck J, Turnquist C, Horikawa I, Harris C. Targeting cellular senescence in cancer and aging: roles of p53 and its isoforms. Carcinogenesis 2020;41:1017–29.

81. Lee S, Schmitt CA. The dynamic nature of senescence in cancer. Nat Cell Biol 2019;21:94–101.

82. Kim YH, Park TJ. Cellular senescence in cancer. BMB Rep 2019;52:42–6.

83. Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol 2013;75:685–705.

84. Inoue Y, Rhee H, Watanabe K, et al. Metabolism of 2-oxoaldehyde in mold. Purification and characterization of two methylglyoxal reductases from Aspergillus niger. Eur J Biochem 1988;171:213–8.

85. Kang JH, Lee SH, Hong D, et al. Aldehyde dehydrogenase is used by cancer cells for energy metabolism. Exp Mol Med 2016;48:e272.

86. Dinavahi SS, Bazewicz CG, Gowda R, Robertson GP. Aldo-keto reductase AKR1C3: New lead compounds for the development of anticancer agents. Bioorg Med Chem Lett 2005;15:5170–5.

87. Alfarouk KO, Shayoub MEA, Muddathir AK, et al. Evolution of tumor metabolism might reflect carcinogenesis as a reverse evolution process (dismantling of multicellularity). Cancers (Basel) 2011;3:3002–17.

88. Sedeek M, Nasrallah R, Touyz RM, H. Mitochondrial ROS-PKCepsilon signaling axis in pulmonary artery smooth muscle cells. Free Radic Biol Med 2008;45:1233–31.

89. Clanton TL. Hypoxia-induced reactive oxygen species formation in the brain at different oxygen levels: the role of hypoxia inducible factors. Front Cell Dev Biol 2018;6:132.

90. Chen R, Lai UH, Zhu L, et al. Reactive oxygen species formation in the brain at different oxygen levels: the role of hypoxia inducible factors. Front Cell Dev Biol 2018;6:132.

91. Cornally D, Mee B, MacDonall C, et al. Aldo-keto reductase from Helicobacter pylori-role in adaptation to growth at acid pH. J Biol Chem 1992;267:4364–9.

92. Barski OA, Tipparaju SM, Bhatnagar A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev 2008;40:553–62.

93. Barski OA, Tipparaju SM, Bhatnagar A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev 2008;40:553–62.

94. Brozic P, Golob B, Gomboc N, et al. Cinnamic acids as new inhibitors of 17beta-hydroxysteroid dehydrogenase type 5 (AKR1C3). Mol Cell Endocrinol 2006;248:233–5.

95. Zeng C-M, Chang L-L, Ying M-D, et al. Aldo-Keto Reductase AKR1C1-AKR1C4: functions, regulation, and intervention for anti-cancer therapy. Front Pharmacol 2017;8:119.

96. Gobec S, Brozic P, Rižner TL. Nonsteroidal anti-inflammatory drugs and their analogues as inhibitors of aldo-keto reductase AKR1C3: New lead compounds for the development of anticancer agents. Bioorg Med Chem Lett 2005;15:5170–5.