Cat swarm optimization for solving the open shop scheduling problem

Abdelhamid Bouzidi1,2 · Mohammed Essaid Riffi2 · Mohammed Barkatou3

Received: 27 February 2018 / Accepted: 22 October 2018 © The Author(s) 2018

Abstract
This paper aims to prove the efficiency of an adapted computationally intelligence-based behavior of cats called the cat swarm optimization algorithm, that solves the open shop scheduling problem, classified as NP-hard which its importance appears in several industrial and manufacturing applications. The cat swarm optimization algorithm was applied to solve some benchmark instances from the literature. The computational results, and the comparison of the relative percentage deviation of the proposed metaheuristic with other’s existing in the literature, show that the cat swarm optimization algorithm yields good results in reasonable execution time.

Keywords Scheduling problem · Swarm optimization · Behavior of cats · Computationally intelligence · Discrete

Introduction
To solve real optimization problems such as in industrial and manufacturing applications, the problem should be formulated as a theoretical problem. In 1974, Gonzalez and Sahni (1976) had introduced one of the most known complex combinatorial problem called the open shop scheduling problem (OSSP). There are several real-world applications of the OSSP, such as system-on-a-chip testing (Iyengar and Chakrabarty 2002), the area of satellite-switched time-division multiple access (Dell’Amico and Martello 1996), routing packets (Suel 1995), the scheduling and wavelength assignment problem in optical networks that are based on the wavelength-division-multiplexing technology (Bampis and Rouskas 2002), routing in optical transpose interconnect system (Lucas 2010), in routing in heterogeneous networks to model communications schedules (Bhat et al. 2000).

The OSSP problem is classified as NP-hard (Gonzalez and Sahni 1976), that is why some researchers had tried to solve it by introducing some methods, such as exact methods, polynomial time algorithm proposed by Gonzalez and Sahni (1976), and the branch and bound developed by Brucker et al. (1997). In general, the exact methods can attain some local solutions and rarely a global solution. The metaheuristic has proven its efficiency to reach the global solution of some problems such as the OSSP. Some metaheuristics are used to solve the OSSP problem, such as simulated annealing (Liaw 1999a) and Tabu search algorithm proposed by Liaw (1999b), genetic algorithm proposed by Prins (2000), extended genetic algorithm proposed by Rahmani Hosseinabadi et al. (2018), hybrid ant colony optimization proposed by Blum (2005), bee colony optimization proposed by Huang and Lin (2011), particle swarm optimization proposed by Sha and Hsu (2008).

This paper presents a new approach for solving the open shop scheduling problem, which is called the cat swarm optimization. In order to prove that the proposed method is efficient, the result obtained by its application to solve some benchmarks instances is compared with those existing in the literature. The rest of the paper is organized as follows; Section two is a description and formulation of the open shop scheduling problem, with an example. Section three presents the cat swarm optimization algorithm, its used parameters, and its process. Section four describes the proposed adaptation of cat swarm optimization to solve the open shop scheduling problem.
Section five shows the results obtained by the application of the adapted cat swarm optimization to solve some benchmark instances and a discussion. Finally, a conclusion is presented.

Open shop scheduling problem

Presentation of the problem

The OSSP (Gonzalez and Sahni 1976) involves a collection of m machines $M = \{M_1,\ldots, M_m\}$ and a collection of n jobs $\{J_1,\ldots, J_n\}$. Each job J_i ($i \in [1,n]$) consists of m operations $O = \{o_{i1}, o_{i2}, \ldots, o_{im}\}$, each operation o_{ij} from job J_i should be executed in machine $M_j \in M$ in a determinate execution time t_{ij}. One performance measure which is considered to be minimized is the total execution time of all process called makespan.

Problematic assumptions

- All operations should be processed.
- Each machine can process at most one operation at a time in determining operation process time.
- The operations in the same job cannot process simultaneously.
- Two operations of the same job cannot be processed at the same time.

Formulation of the problem

Let’s consider n jobs $J = \{J_1,\ldots, J_n\}$ and m machines $\{M_1,\ldots, M_m\}$, and each job consists of $n \times m$ operations $O = \{o_{11}, o_{12}, \ldots, o_{im}\}$, each operation o_{ij} from the job I should be executed in machine $M_j \in M$ in a determinate execution time t_{ij}. The solution is a schedule presented by a sequence of $n \times m$ operations, numbered from 1 to $n \times m$. To calculate the makespan, the data is presented with a matrix of information $Minfo$ that has $m \times n$ four columns and four rows. The $Minfo$ matrix presenting the information of each operation is described in Fig. 1. Let’s use:

- O_i: The name (number) of operation i in schedule ($i \in [1,(m \times n)]$).
- J_{oi}: The job of selected operation o_i.
- M_{oi}: The machine name where the operation o_i should be processed.
- T_{oi}: The processing time of operation o_i.

Example

Let’s consider the following: 3×3 OSSP, where $n = 3$, $m = 3$, $J = \{J_1, J_2, J_3\}$, $M = \{1,2,3\}$, and for every J_i in J, $J_i = \{(m_{ik}, t_{ik})\}$ for $k \in [1,3]$.
substitution by Wang et al. (2012), optimal placement of multiple UPFC’s in voltage stability enhancement under contingency by Kumar and Kalavathi (2014), direct and inverse modeling of plants by Panda et al. (2011a), single bitmap block truncation coding of color images by Cui et al. (2013), linear antenna array synthesis by Pappula and Ghosh (2014), improved metaheuristic techniques for simultaneous capacitor and DG allocation in radial distribution networks by Kawtar et al. (2015).

This paper aims to give an improved CSO algorithm to solve the OSSP problem, and to prove its efficiency, it was applied to solve some benchmark problems.

CSO to OSSP

To solve the OSSP problem by the CSO, its operators and operations (elementary and global) were enhanced. The improvements are described as follows:

Cat’s parameters

In CSO algorithm, the solution presents the global best solution (Gbest) found by the cats in the swarm; for each cat, the position presents the solution that should be a schedule in OSSP problem. The velocity is used to move from a position to another; in OSSP, a novel solution is obtained by applying a set of swaps to the solution, and thus, the set of swaps is presented by the velocity, and the flag is used to know the cat mode. To sum up, the used operators of each cat in a swarm are:

Mode	Parameter	Role
SM and TM	Position	The schedule solution presented by a sequence of all operations
Flag		The cat mode (seeking or tracing mode)
TM	Velocity	Set of couple permutation \((i,j)\) that will be applied to a position, where \(i\) and \(j\) are a range of two velocities in the selected position
SM	SMP	Number copies of cats in the SM
CDC		Percent length of the mutation
SRD	First rang in the selected solution vector	
SPC	A Boolean value	

Cat’s process

The metaheuristic is known by its intelligent combination of two principal concepts which are exploring and exploiting. For the CSO metaheuristic, in each mode, we find the concept of exploration and exploitation. The two modes are combined intelligently with the mixture ratio (MR). The proposal CSO process respects the definition proposed by Chu and Tsai (2006), but some improvements are provided to solve the open shop scheduling problem, and these improved modes are described as follows:

Seeking mode

The seeking mode (SM) presents the cat at rest and also as being alert-looking around its environment for its next move. The position is presented by a vector of schedule, and for that the four parameters of this mode were adapted, and the new role of each one is:

1. Put \(j\) copies of the present position of the cat \(k\), with \(j = \text{SMP}\). If the value of \(\text{SPC}\) is true or \(j = \text{SMP} - 1\), and retain the cat as one of the candidates.
2. Generate a random value of \(\text{SRD}\)
3. If the fitness (FS) is not equal, calculate the probability of each candidate by Eq. (a), and the default probability value of each candidate is 1.
4. Perform mutation and replace the current position.

\[
\text{Pi} = \frac{|\text{FS}_i - \text{FS}_{\text{min}}|}{\text{FS}_{\text{max}} - \text{FS}_{\text{min}}} \quad \text{where } 0 < i < j
\]

where \(\text{FS}_i\) is the fitness of cat \(i\), \(\text{FS}_{\text{max}}\) is the maximum fitness in the swarm and \(\text{FS}_{\text{min}}\) is the minimal fitness in the swarm.

Example

Let’s consider in the SM, that the position (solution) \(x = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}\). The size is \(n = 12\), \(\text{SMP} = 5\), \(\text{SPC} = \text{True}\) and the first value of \(\text{SRD} = 2\).

Step 1: The program makes four copies of the selected cat position and considering the selected position as a candidate, because \(\text{SPC} = \text{True}\).
Step 2: For each copy, according to the CDC, randomly increase or decrease the current SRD percentage value, and replace the old values by the application of a swap between the SRD position and the second position that is (CDC + SRD) if the sum is less than 12 (the total size of the problem), else the second position is (CDC + SRD) − (12 + 1).

- **The first candidate:**
 \[x_1 = \{1,2,3,4,5,6,7,8,9,10,11,12\} \]
 is the cat position that has been taken into account since SPC=True.

- **The second candidate:**
 \[x_2 = \{1,2,3,4,5,6,7,8,9,10,11,12\} \]
 \[CDC = 10 \]
 \[x_2 = \{1,2,11,10,9,8,7,6,5,4,3,12\} \]

- **The third candidate:**
 \[x_3 = \{1,2,3,4,5,6,7,8,9,10,11,12\} \]
 \[CDC = 10 \]
 \[x_3 = \{1,2,3,4,5,6,7,8,9,12,11,10\} \]

- **The fourth candidate:**
 \[x_4 = \{1,2,3,4,5,6,7,8,9,10,11,12\} \]
 \[CDC = 10 \]
 \[x_4 = \{1,2,5,4,3,6,7,8,9,10,11,12\} \]

- **The fifth candidate:**
 \[x_5 = \{1,2,3,4,5,6,7,8,9,10,11,12\} \]
 \[CDC = 10 \]
 \[x_5 = \{1,4,3,2,5,6,7,8,9,10,11,12\} \]
The tracing mode

The mode tracing (TM) presents the cat at the quick movement, according to its own velocity, while chasing a pray or any moving object. This section is devoted to describing the parameters, the process and elementary operations used in this mode.

Tracing mode parameters

The used parameters in this mode are:

- X_{best}: The best solution/position of the cat who has the best fitness value
- V_k: The old speed value (current value)
- V_k': The new value velocity of the cat
- w: The inertia weighted parameter
- c: A constant
- r: A random value in the range [0, 1]
- X_k': The new value of the position of the cat k
- X_k: The actual position of the cat k
- V_k: The velocity of the cat k

(a) **Tracing mode process:**

The process of TM is given as:

1. **Update the velocities of each cat** k According to the equation:

 $$V_k' = w \times V_k + r \times c \times (X_{\text{best}} - X_k)$$

2. **check if the velocities are of the highest order.**

3. **update the position of the cat** k according to equation:

 $$X_k' = X_k + V_k$$

Elementary operations:

The elementary operations (addition, subtraction and multiplication) used in tracing mode to solve the OSSP are not the same as those defined by Chu and Tsai (2006) to solve continuous optimization problem. The used operations are like the elementary operations defined to PSO algorithm, by Clerc (2004), to solve the combinatorial optimization problem. These operations will be performed on the velocity and the position of each cat in the TM mode.

Let’s put x and x' two positions (schedules), and a velocity v represents all permutations to perform.

Let’s put: $X = \{1, 2, 3, 4, 5\}$ and $v = \{(2, 5), (3, 1), (4, 3)\}$

Opposite of velocity:

Let’s put lvl presents the size (number of permutations couple (i, j)) of the velocity $v = \{(i_k, j_k)[k: 0 \rightarrow lvl]\}$.

The opposite is defined by: $\neg v = \{(i_k, j_k)[k: lvl \rightarrow 0]\}$, with: $v + \neg v = \emptyset$.

Addition:

This is done between a position x and velocity v, in order to have a new position x'.

$$x + v = x'$$

Adding operation which translates the movement represents the set of permutations to be applied to the position x to getting a new position x'. Example

$$x + v = \{4, 5, 1, 3, 2\}$$

Subtraction (position–position):

This operation is performed between two positions to get a velocity.

$$x' - x = v$$

The subtraction is the opposite of the addition operation $(x' - x = v \iff x + v = x')$. In this case, by two positions x and x', the result is all permutations performed on x, to obtain x'. These pairs of permutations are the velocity v. Example

Let’s $x'=x+v=\{4, 5, 1, 3, 2\} \Rightarrow x'-x=v$

Multiplication:

This operation is performed between a real r and velocity $v=(i_k, j_k)[k: 0 \rightarrow lvl];$ the result is a velocity. The different possible cases, according to the real r, are:

- If $r=0$: $r \times v = 0$
- If $(r > 0)$ and $(r \leq 1)$: Then $r \times v = (i_k, j_k)[k: 0 \rightarrow (c \times lvl)]$
- If $(r>1)$: then separate. Decimal and integer part, $r=n+x$. Where n is the integer part of r, and x corresponds to decimal parts. And returns to each party to the previous cases.
- If $(r<0)$: $r \times v = (-r) \times -v$. Now $(-r)>0$, and you will consider one of the previous case.

Example

Let’s put $v=(2, 5), (3, 1), (4, 3)$ and $r=0, 4 \Rightarrow r \times v = \{(2, 5)\}$.

The complete mode process:

The flowchart represents the description of the complete CSO process as shown in Fig. 4.

Computational results and discussion

This section presents the obtained results and the discussion of the proposal of CSO to solve some benchmark instances proposed by Taillard (1993) and Guéret and Prins (1999). This proposed adaptation is coded in Visual C++, which runs on an Ultrabook characteristic’s 2.1 GHz 2.59 Ghz Intel Core i7 PC with 8G of RAM. Each instance runs for 10 times in the maximum time of 1 h.
Parameter tuning

The used parameters values in CSO process are the SMP, CDC used in the seeking mode, the parameters \(w, r \) and \(c \) used in tracing mode, and the MR used in the general process.

For respecting the real life of cats, this paper dose not have to change the SMP, CDC, MR, \(c \) values and also the range of the variation of the random value \(r \).

About the inertia weighted parameter \(w \), this paper had used a fix parameter values such that it was consider in the proposal of CSO to solve combinatorial problem (Bouzidi and Riffi 2014b), that values were analyzed and discussed by the application to solve the TSP problem (Bouzidi and Riffi 2013). After that it was applied to solve other combinatorial problems by using this parameters values, such as the QAP (Rifi and Bouzidi 2014), JSSP (Bouzidi and Riffi 2014a) and FSSP (Bouzidi and Riffi 2015).

To resume, the used parameters values are shown in Table 1.

Evaluation of the proposed algorithm

This section presents two tables that show the collected results by the application of the adapted CSO algorithm to the benchmark instances of Taillard (1993) in Table 2, and Guéret and Prins (1999) in Table 3. For each instance, the number of job \(J \) and machines \(M \) is defined \((J \times M)\), the best-known fitness solution (BKS) is found by the existing methods to solve the OSSP to the selected problem instance, the best obtained solution (BS) is found by applying CSO algorithm got in ten runs of the program, and the BS lower than the BKS is marked by * after the instance name. To prove the efficiency of the CSO, the relative percentage deviation (RPD) is calculated. And the average execution time (Aver \(_T \)) is taken into seconds.

The RPD is calculated by:

\[
\text{RPD} = \frac{\text{BS} - \text{BKS}}{\text{BKS}}
\]

Table 2 shows the obtained results by the application of proposed CSO to solve the Taillard (1993) benchmark instances.

Table 2 shows that the application of CSO to solve all proposed Taillard instances problems has a lower-to-negligible RPD value, and each instance problem solution is obtained in a reasonable execution time.

Table 3 shows the obtained results by the application of CSO to solve the OSSP benchmark instances proposed by Guéret and Prins (1999).

Also the CSO can find the optimal solution of many benchmark instance problems of Guéret and Prins that have the lower values of RPD, and the solutions are obtained in a reasonable execution time. Also, when the application takes more time running, the CSO algorithm gives better solutions to all selected benchmark instances. Table 4 proves that CSO application with more time (more than 900 s) can find the best optimal solutions. Table 4 shows some benchmark instance, its size (number of jobs \(J \) and number of machines \(M \)), the best-known solution BKS for each one, the best solution (BS) found by the application of CSO method, the number of jobs \(J \) and the number of machines \(M \); the RPD1 presents the relative percentage deviation by executing the application for a maximal time 900 s, and the RPD2 presents the relative percentage deviation by executing the application more than 900 s, and

Parameter	SMP	CDC	MR	w	r	c
Value	5	0.8	0.3	0.7	[0.1]	2.05
Instance	\(J \times M\)	BKS	BS.	WS	RPD	Aver_T (s)
-----------	----------------	-----	-----	----	-----	------------
tail41	4 \times 4	193	193	193	0.00	0.001
tail42	4 \times 4	236	236	236	0.00	0.001
tail43	4 \times 4	271	271	271	0.00	0.001
tail44	4 \times 4	250	250	250	0.00	0.156
tail45	4 \times 4	295	295	295	0.00	0.125
tail46	4 \times 4	189	189	189	0.00	0.003
tail47	4 \times 4	201	201	201	0.00	0.109
tail48	4 \times 4	217	217	217	0.00	0.359
tail49	4 \times 4	261	261	261	0.00	0.219
tail410	4 \times 4	217	217	217	0.00	0.156
Average RPD:					0.00	
tail51	5 \times 5	300	300	300	0.00	0.610
tail52	5 \times 5	262	262	262	0.00	0.735
tail53	5 \times 5	323	323	323	0.00	2.235
tail54	5 \times 5	310	310	310	0.00	8.906
tail55	5 \times 5	326	326	326	0.00	1.344
tail56	5 \times 5	312	312	312	0.00	13.813
tail57	5 \times 5	303	303	303	0.00	14.688
tail58	5 \times 5	300	300	300	0.00	35.236
tail59	5 \times 5	353	353	353	0.00	4.032
tail510	5 \times 5	326	326	326	0.00	2.453
Average RPD:					0.00	
tail71	7 \times 7	435	435	435	0.00	24.375
tail72	7 \times 7	443	443	443	0.00	26.065
tail73	7 \times 7	468	468	477	0.00	51.658
tail74	7 \times 7	463	463	464	0.00	227.313
tail75	7 \times 7	416	416	416	0.00	169.751
tail76	7 \times 7	451	452	458	0.22	640.466
tail77	7 \times 7	422	426	432	0.95	349.208
tail78	7 \times 7	424	424	424	0.00	21.567
tail79	7 \times 7	458	458	458	0.00	83.953
tail710	7 \times 7	398	398	398	0.00	112.39
Average RPD:					0.12	
tail101	10 \times 10	637	645	650	1.26	160.762
tail102	10 \times 10	588	588	588	0.00	474.782
tail103	10 \times 10	598	599	606	0.17	68.567
tail104	10 \times 10	577	577	577	0.00	41.04
tail105	10 \times 10	640	640	645	0.00	679.018
tail106	10 \times 10	538	538	538	0.00	126.936
tail107*	10 \times 10	616	616	619	0.00	22.877
tail108	10 \times 10	595	595	601	0.00	375.292
tail109	10 \times 10	595	595	599	0.00	263.801
tail1010	10 \times 10	596	596	600	0.00	112.65
Average RPD:					0.14	
tail151	15 \times 15	937	937	937	0.00	250.323
tail152	15 \times 15	918	920	926	0.22	501.669
tail153	15 \times 15	871	871	871	0.00	498.766
tail154	15 \times 15	934	934	934	0.00	112.994
tail155	15 \times 15	946	952	959	0.63	834.63
tail156	15 \times 15	933	933	933	0.00	149.578
tail157	15 \times 15	891	891	898	0.00	867.539
Table 2 (continued)

Instance	J×M	BKS	BS.	WS	RPD	Aver_T (s)
tail158	15×15	893	893	893	0.00	176.073
tail159	15×15	899	913	931	1.56	658.615
tail1510	15×15	902	902	910	0.00	891.272
Average RPD:					0.24	
tail201	20×20	1155	1166	1170	0.95	457.839
tail202	20×20	1241	1260	1267	1.53	618.409
tail203	20×20	1257	1257	1257	0.00	340.266
tail204	20×20	1248	1253	1259	0.40	816.467
tail205	20×20	1256	1256	1256	0.00	432.391
tail206	20×20	1257	1257	1257	0.00	342.391
tail207	20×20	1257	1257	1257	0.00	432.391
tail208	20×20	1257	1257	1257	0.00	432.391
tail209	20×20	1257	1257	1257	0.00	432.391
tail2010	20×20	1257	1257	1257	0.00	432.391
Average RPD:					0.69	

Best results are shown in bolditalics

Table 3 Result obtained by applying CSO to solve OSSP instances of Guéret and Prins

Instance	J×M	BKS	BS.	WS	%RPD	Aver_T (s)
gp03-01	3×3	1168	1168	1168	0.00	0.001
gp03-02	3×3	1170	1170	1170	0.00	0.001
gp03-03	3×3	1168	1168	1168	0.00	0.001
gp03-04	3×3	1166	1166	1166	0.00	0.001
gp03-05	3×3	1170	1170	1170	0.00	0.001
gp03-06	3×3	1169	1169	1169	0.00	0.001
gp03-07	3×3	1165	1165	1165	0.00	0.001
gp03-08	3×3	1167	1167	1167	0.00	0.001
gp03-09	3×3	1162	1162	1162	0.00	0.001
gp03-10	3×3	1165	1165	1165	0.00	0.001
Average RPD:					0.00	
gp04-01	4×4	1281	1281	1281	0.00	0.002
gp04-02	4×4	1270	1270	1270	0.00	0.002
gp04-03	4×4	1288	1288	1288	0.00	0.001
gp04-04	4×4	1261	1261	1261	0.00	0.003
gp04-05	4×4	1289	1289	1289	0.00	0.003
gp04-06	4×4	1269	1269	1269	0.00	0.001
gp04-07	4×4	1267	1267	1267	0.00	0.007
gp04-08	4×4	1259	1259	1259	0.00	0.002
gp04-09	4×4	1280	1280	1280	0.00	0.005
gp04-10	4×4	1263	1263	1263	0.00	0.001
Average RPD:					0.00	
gp05-01	5×5	1245	1245	1245	0.00	0.008
gp05-02	5×5	1247	1247	1247	0.00	0.003
gp05-03	5×5	1265	1265	1265	0.00	0.006
gp05-04	5×5	1258	1258	1258	0.00	0.009
gp05-05	5×5	1280	1280	1280	0.00	0.005
gp05-06	5×5	1269	1269	1269	0.00	0.009
gp05-07	5×5	1267	1267	1269	0.00	0.002
Instance	J×M	BKS	BS	WS	%RPD	Aver_T (s)
------------	-----	------	-----	-----	-------	------------
gp05-08	5×5	1287	1287	1287	0.00	0.002
gp05-09	5×5	1262	1262	1262	0.00	0.003
gp05-10	5×5	1254	1254	1254	0.00	0.422
Average RPD:						**0.00**
gp06-01	6×6	1264	1264	1264	0.00	0.281
gp06-02	6×6	1285	1285	1285	0.00	1.014
gp06-03	6×6	1255	1255	1255	0.00	0.484
gp06-04	6×6	1275	1275	1275	0.00	0.390
gp06-05	6×6	1299	1299	1299	0.00	0.187
gp06-06	6×6	1284	1284	1284	0.00	0.250
gp06-07	6×6	1290	1290	1290	0.00	0.140
gp06-08	6×6	1265	1265	1265	0.00	0.506
gp06-09	6×6	1243	1243	1243	0.00	0.203
gp06-10	6×6	1254	1254	1254	0.00	0.234
Average RPD:						**0.00**
gp07-01	7×7	1159	1159	1159	0.00	0.406
gp07-02	7×7	1185	1185	1185	0.00	0.375
gp07-03	7×7	1237	1237	1237	0.00	0.391
gp07-04	7×7	1167	1167	1167	0.00	5.756
gp07-05	7×7	1157	1157	1157	0.00	0.797
gp07-06	7×7	1193	1193	1193	0.00	0.688
gp07-07	7×7	1185	1185	1185	0.00	1.030
gp07-08	7×7	1180	1180	1180	0.00	12.813
gp07-09	7×7	1220	1220	1220	0.00	0.437
gp07-10	7×7	1270	1270	1270	0.00	0.250
Average RPD:						**0.00**
gp08-01	8×8	1130	1130	1130	0.00	27.373
gp08-02	8×8	1135	1135	1135	0.00	3.646
gp08-03	8×8	1110	1110	1110	0.00	76.871
gp08-04	8×8	1153	1153	1153	0.00	6.652
gp08-05	8×8	1218	1218	1218	0.00	5.288
gp08-06	8×8	1115	1115	1115	0.00	198.506
gp08-07	8×8	1126	1126	1126	0.00	214.562
gp08-08	8×8	1148	1148	1148	0.00	13.500
gp08-09	8×8	1114	1114	1114	0.00	240.140
gp08-10	8×8	1161	1161	1161	0.00	50.338
Average RPD:						**0.00**
gp09-01	9×9	1129	1129	1129	0.00	209.037
gp09-02	9×9	1110	1110	1110	0.00	72.290
gp09-03*	9×9	1116	1115	1116	0.00	9.028
gp09-04	9×9	1130	1130	1130	0.00	57.012
gp09-05	9×9	1180	1180	1180	0.00	3.723
gp09-06	9×9	1093	1193	1093	0.00	122.432
gp09-07*	9×9	1091	1090	1090	0.00	89.763
gp09-08*	9×9	1106	1105	1105	0.00	200.877
gp09-09	9×9	1123	1123	1139	0.00	84.270
gp09-10	9×9	1112	1120	1121	0.72	741.101
Average RPD:						**0.07**
gp10-01	10×10	1093	1111	1121	1.65	273.601
gp10-02	10×10	1097	1097	1097	0.00	84.298
Comparison with other metaheuristics and discussion

This part aims to compare the average RPD of seven methods, including the one obtained by applying CSO to OSSP. Those other methods are two of hybrid variable neighborhood search methods (VNS), which are VNS-based curtailed fashion VNS (CLS) and VNS-based greedy local search VNS (GLS), two-phase solution method (TPSM), genetic algorithm (GA), the genetic algorithm incorporating the mutation (MGA) (Naderi and Zandieh 2014) and the electromagnetism algorithm (EA). All these methods run in a PC with 2.0 GHz Intel Core 2 Duo and 2 GB of RAM memory.

The average RPD obtained by each metaheuristic for the different problem size of two known benchmark instances (Taillard 1993; Guéret and Prins 1999) is presented as follows:

In order to do the comparative study, the best way used is the graphical representation that provides a visual display to more assess the collected average RPD results to solve the differentes benchmark instances by the metaheuristics in study. For this reason, the results in Table 5 were translated into two graphs; Fig. 5 represents the variation of RPD of the seven methods for the different size of Taillard benchmark instances problems; Fig. 6 is like the first but of the benchmark instances are of Guéret and Prins.

Figure 5 shows that the CSO algorithm had the lower RPD for the different problem size instances, which means that it has more efficiency than the others.

Again, Fig. 6 shows that the CSO algorithm had the lower RPD for the different problem sizes, which means that the CSO is more efficient than other methods.

Conclusion

To conclude, this paper presented the efficiency of the cat swarm optimization algorithm to solve the theoretical problem, open shop scheduling problem, by its ability to find the best-known solution for some benchmark instances and to find the new best solutions. The comparison of the results of the CSO method to some recent existing methods to solve OSSP problem has also proved the efficiency of the CSO algorithm to solve the OSSP
problem. That is why, the aim is to extend the proposed metaheuristic to be applied to various real applications based on OSSP.

Table 5 The average RPD obtained of each of the methods against two well-known benchmarks

Benchmark instances size	Algorithms	CSO	VNS (CLS)	VNS (GLS)	GA	MGA	TPSM	EA
Taillard								
4×4		0.00	0.00	2.26	3.53	0.00	3.89	0.42
5×5		0.00	1.30	3.51	4.49	2.48	5.54	2.20
7×7		0.55	1.67	3.17	4.76	3.11	6.08	1.68
10×10		0.16	2.66	4.46	3.68	0.13	6.35	2.10
15×15		0.67	–	–	–	–	–	2.03
20×20		1.22	4.08	5.64	3.46	1.66	8.46	1.72
Guèret and Prins								
3×3		0.00	0.00	2.97	2.41	0.00	3.21	0.75
4×4		0.00	0.00	3.98	3.05	0.00	4.80	0.89
5×5		0.00	0.48	3.90	4.50	1.89	5.06	1.47
6×6		0.00	1.56	3.49	4.93	2.34	5.18	1.99
7×7		0.00	2.15	3.10	5.33	2.49	4.73	2.08
8×8		0.00	1.26	3.77	4.91	1.53	5.05	1.36
9×9		0.06	2.32	4.54	4.83	1.06	5.10	1.64
10×10		1.94	3.05	5.69	5.43	2.80	6.82	2.74

Compliance with ethical standards

Conflict of interest There is no conflict of interest with this research as known by the authors.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Bampis E, Rouskas GN (2002) The scheduling and wavelength assignment problem in optical WDM networks. J Lightwave Technol 20(5):782–789
Bhat PB, Prasanna VK, Raghavendra CS (2000) Block-cyclic redistribution over heterogeneous networks. Cluster Comput 3(1):25–34
Blum C (2005) Beam-ACO-Hybridizing ant colony optimization with beam search: an application to open shop scheduling. Comput Oper Res 32(6):1565–1591
Bouzidi A, Riffi ME (2013) Discrete cat swarm optimization to resolve the traveling salesman problem. Int J Adv Res Comput Sci Softw Eng 3(9):13–18
Bouzidi A, Riffi ME (2014) Cat swarm optimization to solve job shop scheduling problem. In: Information Science and Technology (CIST), 2014 third IEEE international colloquium in information, pp 202–205
Bouzidi A, Riffi ME (2014). Discrete cat swarm optimization algorithm applied to combinatorial optimization problems. 5th Workshop on Codes, cryptography and communication systems (WCCC5), pp. 30–34
Bouzidi A, Riffi ME (2015) Cat swarm optimization to solve flow shop scheduling problem. J Theor Appl Inf Technol 72(2):239–243

Brucker P, Hurink J, Jurisch B, Wöstmann B (1997) A branch and bound algorithm for the open-shop problem. Discrete Appl Math 76(1–3):43–59

Chu S-C, Tsai P-W (2006) Cat swarm optimization. In: Pacific Rim international conference on artificial intelligence, pp 854–858

Clerc M (2004) Discrete particle swarm optimization, illustrated by the traveling salesman problem. New optimization techniques in engineering, pp 219–239

Cui S-Y, Wang Z-H, Tsai P-W, Chang C-C, Yue S (2013) Single bitmap block truncation coding of color images using cat swarm optimization. In: Recent advances in information hiding and applications, pp. 119–138

Dell’Amico M, Martello S (1996) Open shop, satellite communication and a theorem by Egerváry (1931). Oper Res Lett 18(5):207–211

Gonzalez T, Sahni S (1976) Open shop scheduling to minimize finish time. J ACM 23(4):665–679

Guéret C, Prins C (1999) A new lower bound for the open-shop problem. Ann Oper Res 92:165–183

Huang Y-M, Lin J-C (2011) A new bee colony optimization algorithm with idle-time-based filtering scheme for open shop-scheduling problems. Expert Syst Appl 38(5):5438–5447

Iyengar V, Chakrabarty K (2002) System-on-a-chip test scheduling with precedence relationships, preemption, and power constraints. IEEE Trans Comput Aided Des Integr Circuits Syst 21(9):1088–1094

Kanwar N, Gupta N, Niazik K, Swarnkar A (2015) Improved meta-heuristic techniques for simultaneous capacitor and DG allocation in radial distribution networks. Int J Electr Power Energy Syst 73:653–664

Kumar GN, Kalavath MS (2014) Cat swarm optimization for optimal placement of multiple UPFC’s in voltage stability enhancement under contingency. Int J Electr Power Energy Syst 57:97–104

Liaw C-F (1999a) A tabu search algorithm for the open shop scheduling problem. Comput Oper Res 26(2):109–126

Liaw C-F (1999b) Applying simulated annealing to the open shop scheduling problem. IEEE Trans 31(5):457–465

Lucas KT (2010) Parallel enumeration sort on OTIS-hypercube. In: International conference on contemporary computing, pp 21–31

Naderi B, Zandieh M (2014) Modeling and scheduling no-wait open shop problems. Int J Prod Econ 158:256–266

Orouskhani M, Mansouri M, Teshnehlab M (2011) Average-inertia weighted cat swarm optimization. In: International conference in swarm intelligence, 321–328

Panda G, Pradhan PM, Majhi B (2011a) Direct and inverse modeling of plants using cat swarm optimization. Handb Swarm Intell 8:469–485

Panda G, Pradhan PM, Majhi B (2011b) IIR system identification using cat swarm optimization. Expert Syst Appl 38(10):12671–12683

Pappula L, Ghosh D (2014) Linear antenna array synthesis using cat swarm optimization. AEU-Int J Electron Commun 68(6):540–549

Pradhan PM, Panda G (2012) Solving multiobjective problems using cat swarm optimization. Expert Syst Appl 39(3):2956–2964

Pprins C (2000) Competitive genetic algorithms for the open-shop scheduling problem. Math Methods Oper Res 52(3):389–411

Rahmani Hosseinabadi AA, Vahidi J, Saemi B, Sangaiah AK, Elhoseny M (2018) Extended genetic algorithm for solving open-shop scheduling problem. Soft Comput. https://doi.org/10.1007/s00500-018-3177-y

Razzaq S, Maqbool F, Hussain A (2016) Modified cat swarm optimization for clustering. In: International conference on brain inspired cognitive systems, pp 161–170

Riffi ME, Bouzidi A (2014) Discrete cat swarm optimization for solving the quadratic assignment problem. Int J Soft Comput Softw Eng 4(6):85–92

Sha D, Hsu C-Y (2008) A new particle swarm optimization for the open shop scheduling problem. Comput Oper Res 35(10):3243–3261

Suel T (1995) Permutation routing and sorting on meshes with row and column buses. Parallel Process Lett 5(1):63–80

Taillard E (1993) Benchmarks for basic scheduling problems. Eur J Oper Res 64(2):278–285

Tsai P-W, Pan J-S, Chen S-M, Liao B-Y, Hao S-P (2008) Parallel cat swarm optimization. 2008 international conference on machine learning and cybernetics, vol 6, pp 3328–3333

Tsai P-W, Pan J-S, Chen S-M, Liao B-Y (2012) Enhanced parallel cat swarm optimization based on the Taguchi method. Expert Syst Appl 39(7):6309–6319

Wang J (2015) A new cat swarm optimization with adaptive parameter control. In: Sun H, Yang CY, Lin CW, Pan JS, Snasel V, Abraham A (eds) Genetic and evolutionary computing. Advances in intelligent systems and computing, vol 329, Springer, Cham, pp 69–78

Wang Z-H, Chang C-C, Li M-C (2012) Optimizing least-significant-bit substitution using cat swarm optimization strategy. Inf Sci 192:98–108