We give an explicit affine algebraic variety whose coordinate ring is isomorphic (as a W-algebra) with the equivariant cohomology of some Springer fibers.

1. Introduction

Let G be a connected simply-connected semisimple complex algebraic group with a Borel subgroup B and a maximal torus $T \subset B$. Let $P \supseteq B$ be a (standard) parabolic subgroup of G. Let $L \supset T$ be the Levi subgroup of P and let S be the connected center of L (i.e., S is the identity component of the center of L). Then, $S \subset T$. We denote the Lie algebras of G, T, B, P, L, S by the corresponding Gothic characters: $\mathfrak{g}, \mathfrak{t}, \mathfrak{b}, \mathfrak{p}, \mathfrak{l}, \mathfrak{s}$ respectively. Let W be the Weyl group of G and $W_L \subset W$ the Weyl group of L. Let $\sigma = \sigma_l$ be a principal nilpotent element of \mathfrak{l}. Let $X = G/B$ be the full flag variety of G and let $X_\sigma \subset X$ the Springer fiber corresponding to the nilpotent element σ (i.e., X_σ is the subvariety of X fixed under the left multiplication by $\text{Exp} \sigma$ endowed with the reduced subscheme structure). Observe that S keeps the variety X_σ stable under the left multiplication of S on X.

Definition 1.1. Let Z_l be the reduced closed subvariety of $\mathfrak{t} \times \mathfrak{t}$ defined by:

$$Z_l := \{ (x, wx) : w \in W, x \in \mathfrak{s} \}.$$

Since Z_l is a cone inside $\mathfrak{t} \times \mathfrak{t}$, the affine coordinate ring $\mathbb{C}[Z_l]$ is a non-negatively graded algebra. Moreover, the projection $\pi_1 : Z_l \to \mathfrak{s}$ on the first factor gives rise to a $S(\mathfrak{s}^*)$-algebra structure on $\mathbb{C}[Z_l]$. Also, define an action of W on Z_l by:

$$v \cdot (x, wx) = (x, vwx), \text{ for } x \in \mathfrak{s}, v, w \in W.$$

This action gives rise to a W-action on $\mathbb{C}[Z_l]$, commuting with the $S(\mathfrak{s}^*)$ action on $\mathbb{C}[Z_l]$.

In fact, even though we do not need it, W is precisely the automorphism group of $\mathbb{C}[Z_l]$ as $S(\mathfrak{s}^*)$-algebra.

For $\mathfrak{p} = \mathfrak{b}$, the Levi subalgebra \mathfrak{l} coincides with \mathfrak{t}, $\sigma_l = 0$ and $X_\sigma = X$. In this case, $\mathfrak{s} = \mathfrak{t}$ and we abbreviate Z_l by Z. Clearly, Z_l (for any Levi subalgebra \mathfrak{l}) is a closed subvariety of Z.

The following theorem is our main result.

Theorem 1.2. With the notation as above, assume that the canonical restriction map $H^*(X) \to H^*(X_\sigma)$ is surjective, where H^* denotes the singular cohomology with complex coefficients. Then, there is a graded $S(\mathfrak{s}^*)$-algebra isomorphism

$$\phi_l : \mathbb{C}[Z_l] \to H_S^*(X_\sigma),$$

where H_S^* denotes the S-equivariant cohomology with complex coefficients.

1S.K. was supported by NSF grants.
Moreover, the following diagram is commutative:

$$
\begin{array}{ccc}
\mathbb{C}[Z] & \xrightarrow{\phi_l} & H^*_T(X) \\
\downarrow & & \downarrow \\
\mathbb{C}[Z_l] & \xrightarrow{\phi_l} & H^*_S(X_\sigma),
\end{array}
$$

where the vertical maps are the canonical restriction maps.

In particular, we get an isomorphism of graded algebras

$$\phi^o_l : \mathbb{C} \otimes_{S(s^*)} \mathbb{C}[Z_l] \to H^*(X_\sigma),$$

making the following diagram commutative:

$$
\begin{array}{ccc}
\mathbb{C} \otimes_{S(t^*)} \mathbb{C}[Z] & \xrightarrow{\phi^o_l} & H^*(X) \\
\downarrow & & \downarrow \\
\mathbb{C} \otimes_{S(s^*)} \mathbb{C}[Z_l] & \xrightarrow{\phi^o_l} & H^*(X_\sigma),
\end{array}
$$

where the vertical maps are the canonical restriction maps and \mathbb{C} is considered as a $S(s^*)$-module under the evaluation at 0.

Moreover, the isomorphism ϕ^o_l is W-equivariant under the Springer’s W-action on $H^*(X_\sigma)$ and the W-action on $\mathbb{C} \otimes_{S(s^*)} \mathbb{C}[Z_l]$ induced from the W-action on $\mathbb{C}[Z_l]$ defined above.

Acknowledgements. We thank Eric Sommers for the example given in Remark 2.3 (3).

2. Proof of the Theorem

Before we come to the proof of the theorem, we need the following lemma. (See, e.g., [C, Theorem 2].)

Lemma 2.1. For any $w \in W$, there exists a unique $w' \in W_L$ such that

$$w'wB \in X_\sigma^S \subset X.$$

Moreover, this induces a bijection

$$W_L \backslash W \leftrightarrow X_\sigma^S.$$

We also need the following simple (and well known) result.

Lemma 2.2. Let $S = S(V^*)$ be the symmetric algebra for a finite dimensional vector space V and let M, N, R be three S-modules. Assume that N and R are S-free of the same finite rank and M is a S-submodule of R. Then, any surjective S-module morphism $\phi : M \to N$ is an isomorphism.

We now come to the proof of the theorem.

Proof of the theorem. Consider the equivariant Borel homomorphism

$$\beta : S(t^*) \to H_T(X)$$
obtained by $\lambda \mapsto c_1(\mathcal{L}_\lambda)$, where $\lambda \in \mathfrak{t}^*$ and $c_1(\mathcal{L}_\lambda)$ is the T-equivariant first Chern class of the line bundle $\mathcal{L}(\lambda)$ on X corresponding to the character e^λ, and extended as a graded algebra homomorphism. This gives rise to an algebra homomorphism

$$\chi: \mathbb{C}[t \oplus t] \simeq S(\mathfrak{t}^*) \otimes S(\mathfrak{t}^*) \to H_T(X), \quad p \otimes q \mapsto p \cdot \beta(q),$$

where \cdot denotes the multiplication in the T-equivariant cohomology by $p \in S(\mathfrak{t}^*) \simeq H_T(pt)$. It is well known that χ is surjective. Moreover, both the restriction maps

$$H_T(X) \to H_S(X) \to H_S(X_\sigma)$$

are surjective; this follows since both the spaces X and X_σ have cohomologies concentrated in even degrees (cf. [DLP]). (Use the degenerate Leray-Serre spectral sequence and the assumption that the restriction map $H^*(X) \to H^*(X_\sigma)$ is surjective.)

Consider the canonical surjective map $\theta: \mathbb{C}[t \oplus t] \twoheadrightarrow \mathbb{C}[Z_\pi]$. Then, of course,

$$(3) \quad \text{Ker } \theta = \left\{ \sum_i p_i \otimes q_i : p_i, q_i \in S(\mathfrak{t}^*) \text{ and } \sum_i p_i(x) q_i(wx) = 0, \text{ for all } x \in \mathfrak{s} \text{ and } w \in W \right\}.$$

We claim that

$$(4) \quad \text{Ker } \theta \subset \text{Ker } \gamma,$$

where γ is the composite map

$$\mathbb{C}[t \oplus t] \xrightarrow{\chi} H_T(X) \to H_S(X_\sigma).$$

Since X_σ has cohomologies only in even degrees, by the degenerate Leray-Serre spectral sequence, $H_S(X_\sigma)$ is a free $S(\mathfrak{s}^*)$-module. In particular, by the Borel-Atiyah-Segal Localization Theorem (cf. [AP, Theorem 3.2.6]),

$$H_S(X_\sigma) \hookrightarrow H_S(X_\sigma^S).$$

Thus, to prove the claim (4), it suffices to prove that for any $\sum_i p_i \otimes q_i \in \text{Ker } \theta$,

$$\gamma \left(\sum_i p_i \otimes q_i \right) \big|_{X_\sigma^S} \equiv 0.$$

It is easy to see that the Borel homomorphism β restricted to the T-fixed points X^T satisfies:

$$\beta(q)(wB) = wq, \quad \text{for any } q \in S(\mathfrak{t}^*) \text{ and } w \in W.$$

Thus, for any $w \in W$,

$$\gamma \left(\sum_i p_i \otimes q_i \right)(w'wB) = \left(\sum_i (p_i)(w'wq_i) \right)|_w,$$

where w' is as in Lemma 2.1. From the description of $\text{Ker } \theta$ given in (3), we thus get that the claim (4) is true. Hence, the map θ descends to a surjective $S(\mathfrak{s}^*)$-module map

$$\phi_\theta: \mathbb{C}[Z_\pi] \twoheadrightarrow H_S(X_\sigma).$$

Again using the Localization Theorem, the free $S(\mathfrak{s}^*)$-module $H_S(X_\sigma)$ is of rank $= \#W_L \setminus W$, since $\#X_\sigma^S = \#W_L \setminus W$ by Lemma 2.1. Also, the projection on the first factor $\pi_1: Z_\pi \to \mathfrak{s}$ is a finite morphism with all its fibers of cardinality $\leq \#W_L \setminus W$. To see this, consider the surjective morphism $\alpha: \mathfrak{s} \times W/W_L \to Z_\pi$, $(x, wW_L) \mapsto (x, wx)$. Then, $\pi_1 \circ \alpha: \mathfrak{s} \times W/W_L \to \mathfrak{s}$ is again the projection on the first factor, which is clearly a finite morphism and hence so is π_1.
Now, taking $M = \mathbb{C}[Z]$, $N = H^*_S(X_\sigma)$, $R = \mathbb{C}[s \times W/W_L]$ and $V = s$ in Lemma 2.2, we get that ϕ is an isomorphism, where the inclusion $M \subset R$ is induced from the surjective morphism $\alpha : s \times W/W_L \rightarrow Z$.

The commutativity of the diagram (1) clearly follows from the above proof.

Since $H^*(X_\sigma)$ is concentrated in even degrees, by the degenerate Leray-Serre spectral sequence, we get that

$$H^*(X_\sigma) \simeq \mathbb{C} \otimes_{S(l^*)} H^*_S(X_\sigma).$$

From this the ‘In particular’ part of the theorem follows.

From the definition of the map ϕ, it is clear that ϕ^σ is W-equivariant with respect to the action of W on $\mathbb{C} \otimes_{S(l^*)} \mathbb{C}[Z]$ induced from the action of W on $\mathbb{C}[Z]$ as defined in Definition 1.1 and the standard action of W on $H^*(X)$. Moreover, the restriction map $H^*(X) \rightarrow H^*(X_\sigma)$ is W-equivariant with respect to the Springer’s W action on $H^*(X_\sigma)$ (cf. [HS, §2]). Thus, the W-equivariance of ϕ^σ follows from the commutativity of the diagram (2). This completes the proof of the theorem.

\[\square\]

Remark 2.3. (1) By the Jordan block decomposition, any nilpotent element $\sigma \in sl(N)$ (up to conjugacy) is a regular nilpotent element in a standard Levi subalgebra l of $sl(N)$. Moreover, the canonical restriction map $H^*(X) \rightarrow H^*(X_\sigma)$ is surjective in this case. In fact, as proved by Spaltenstein [S], in this case there is a paving of X by affine spaces as cells such that X_σ is a closed union of cells (cf. also [DLP]). Thus, the above theorem, in particular, applies to any nilpotent element σ in any special linear Lie algebra $sl(N)$.

(2) A certain variant (though a less precise version) of our Theorem 1.2 for $\mathfrak{g} = sl(N)$ is obtained by Goresky-MacPherson [GM, Theorem 7.2].

(3) For a general semisimple Lie algebra \mathfrak{g}, it is not true that the restriction map $H^*(X) \rightarrow H^*(X_\sigma)$ is surjective for any regular nilpotent element in a Levi subalgebra l. Take, e.g., \mathfrak{g} of type C_3 and σ corresponding to the Jordan blocks of size $(3, 3)$. In this case, the centralizer of σ in the symplectic group $Sp(6)$ is connected and X_σ is two dimensional. The cohomology of X_σ as a W-module is given as follows:

Of course, $H^0(X_\sigma)$ is the one dimensional trivial W-module; $H^2(X_\sigma)$ is the sum of the three dimensional reflection representation with a one dimensional representation; and $H^4(X_\sigma)$ is a three dimensional irreducible representation.

References

[AP] C. Allday and V. Puppe, *Cohomological Methods in Transformation Groups*, Cambridge Studies in Advanced Mathematics 32, Cambridge University Press, 1993.

[C] J. Carrell, Orbits of the Weyl group and a theorem of De Concini and Procesi, *Compositio Math.* 60 (1986), 45–52.

[DLP] C. De Concini, G. Lusztig and C. Procesi, Homology of the zero-set of a nilpotent vector field on a flag manifold, *J. Amer. Math Soc.* 1 (1988), 15–34.

[GM] M. Goresky and R. MacPherson, On the spectrum of the equivariant cohomology ring, *Canad. J. Math.* 62 (2010), 262–283.

[HS] R. Hotta and T. A. Springer, A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups, *Invent. Math.* 41 (1977), 113–127.

[S] N. Spaltenstein, The fixed point set of a unipotent transformation on the flag manifold, *Nederl. Akad. Wetensch. Proc. Ser. A* 79 (1976), 452–456.
