Adversarial Learning for Neural Dialogue Generation

Li, Jiwei, Will Monroe, Tianlin Shi, Alan Ritter, and Dan Jurafsky

EMNLP’17

Presented by Yiren Wang (CS546, Spring 2018)
Main Contributions

• Goal
 • End-to-end neural dialogue generation system
 • To produce sequences that are indistinguishable from human-generated dialogue utterances

• Main Contributions
 • Adversarial training approach for response generation
 • Cast the task in a reinforcement learning framework.
Outline

• Model Architecture
• Adversarial Reinforce Learning:
 • Adversarial REINFORCE
 • Reward for Every Generation Step (REGS)
 • Teacher Enforcing
 • Overall Algorithm (Pseudocode)
• Experiment Results
• Summary
Adversarial Model

• Overall Architecture

Human Dialogues

Discriminator

\(Q_+(\{x, y\}')\)

By human

By machine

\(Q_-(\{x, y\}')\)

Generator

{\(x, y\)}

\{\(x, y'\}\)

Dialogue History

\(x\)
Generative Model

- Model: Standard Seq2Seq model with Attention Mechanism
- Input: dialogue history x
- Output: response y

\[
\text{Loss} = -\log p(\text{target}|\text{source})
\]

(Sutskever et al., 2014; Jean et al., 2014)
Discriminative Model

• Model: binary classifier
 • Hierarchical encoder + 2-class softmax
• Input: dialogue utterances \(\{x, y\} \)
• Output: label indicating whether generated by human or by machine
 • \(Q_+ (\{x, y\}) \) (by human)
 • \(Q_- (\{x, y\}) \) (by machine)
Adversarial REINFORCE

• Policy Gradient Training
 • Discriminator score is used as reward for generator
 • Generator is trained to maximize the expected reward

\[J(\theta) = E_{y \sim p(y|x;\theta)}(Q_+\{x, y\}) \]
Policy Gradient Training

\[J(\theta) = \mathbb{E}_{y \sim p(y|x;\theta)} (Q_+({\{x, y\}})) \]

Approximated by likelihood ratio

\[\nabla J(\theta) \approx [Q_+({\{x, y\}}) - b({\{x, y\}})] \]
\[\nabla \log \pi(y|x) \]
\[= [Q_+({\{x, y\}}) - b({\{x, y\}})] \]
\[\nabla \sum_t \log p(y_t|x, y_{1:t-1}) \]
Policy Gradient Training

\[J(\theta) = E_{y \sim p(y|x;\theta)} (Q_+ (\{x, y\})) \]

Approximated by likelihood ratio

\[\nabla J(\theta) \approx [Q_+ (\{x, y\}) - b(\{x, y\})] \]
\[\nabla \log \pi(y|x) \]
\[= [Q_+ (\{x, y\}) - b(\{x, y\})] \]
\[\nabla \sum_t \log p(y_t|x, y_1:t-1) \]

Baseline value to reduce the variance of the estimate while keeping it unbiased

Policy updates in the parameter space
Problem with vanilla REINFORCE

• Expectation of reward is approximated by only one sample
• Reward associated with the sample is used for all actions

\[Q_+(\{x, y\}) - b(\{x, y\}) \]

Input: What’s your name
Human: I am John
Machine: I don’t know (negative reward)
Problem with vanilla REINFORCE

• Expectation of reward is approximated by only one sample
• Reward associated with the sample is used for all actions

Input : What’s your name
Human : I am John
Machine : I don’t know (negative reward)
Machine : I don’t know (neutral reward) (negative reward)
Reward for Every Generation Step (REGS)

• Strategies
 • Monte Carlo (MC) Search
 • Training Discriminator For Rewarding Partially Decoded Sequences
Strategy I: Monte Carlo (MC) Search

• Repeats sampling N times
• Average score is the reward
Strategy I: Monte Carlo (MC) Search

- Repeats sampling N times
- Average score is the reward
Strategy I: Monte Carlo (MC) Search

- Repeats sampling N times
- Average score is the reward

More accurate ✔️
Time consuming ❌
Strategy II: Reward Partially Decoded Seqs

- Break generated sequences into partial subsequences
- Sample one positive and one negative subsequence

\[
\nabla J(\theta) \approx [Q_+\{x, y\} - b\{x, y\}]
\]

- Time efficient
- Less accurate score for each partial sequence
Unstable Training

Generator only indirectly exposed to the gold-standard target

- When generator deteriorates:
 - Discriminator does an excellent job distinguishing – from +
 - Generator only knows generated sequences are bad
 - But get lost what are good and how to push itself towards good
 - Loss of reward signals leads to a breakdown in training
Teacher Forcing

• Teacher Forcing:
 "having a teacher intervene and force it to generate true responses"

• Discriminator:
 • assigns a reward of 1 to the human responses

• Generator:
 • uses this reward to update itself on human generated examples

✓ more direct access to the gold-standard targets
Overall Algorithm

For number of training iterations do
 For i=1,D-steps do
 Sample (X,Y) from real data
 Sample $\hat{Y} \sim G(\cdot|X)$
 Update D using (X,Y) as positive examples and (X,\hat{Y}) as negative examples.
 End

 For i=1,G-steps do
 Sample (X,Y) from real data
 Sample $\hat{Y} \sim G(\cdot|X)$
 Compute Reward r for (X,\hat{Y}) using D.
 Update G on (X,\hat{Y}) using reward r
 Teacher-Forcing: Update G on (X,Y)
 End
End
Input	tell me ... how long have you had this falling sickness?	i’m not a doctor.
Vanilla-MLE	well everything you did was totally untrue.	
Vanilla-Sample	i don’t know how long it’s been.	
REINFORCE	A few months, I guess.	
REGS Monte Carlo	so i had the doctors test sammy’s response to conditioning.	
	sammy wrote the test sammy wrote the test.	
	objects pick objects up objects objects objects objects objects objects	
	i’m not sure that’s relevant.	
	so he took the pills.	
	what are you going to do?	
	i’m going to the movies.	
	get him outta here first!	
	i’m going to get you.	
	i’m going to get you a new car.	
	they fear your power your intellect.	
	you’re the only one who knows what’s going on.	
	when they are conquered and you surrender they will control all of us.	
	i’m afraid i’m not ready yet.	
	i’m not afraid of your power.	

Table 1: Sampled responses from different models. More in Appendix Tables 5 and 6.
Summary

• Adversarial training for response generation
• Cast the model in the framework of reinforcement learning
 • Discriminator: Turing test
 • Generator: trained to maximize the reward from discriminator
Thanks!