Sulfonylurea and K⁺-Channel Opener Sensitivity of K_ATP Channels

Functional Coupling of Kir6.2 and SUR1 Subunits

J.C. Koster, Q. Sha, and C.G. Nichols

From the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110

Abstract

The sensitivity of K_ATP channels to high-affinity block by sulfonylureas and to stimulation by K⁺ channel openers and MgADP (PCOs) is conferred by the regulatory sulfonylurea receptor (SUR) subunit, whereas ATP inhibits the channel through interaction with the inward rectifier (Kir6.2) subunit. Phosphatidylinositol 4,5-bisphosphate (PIP₂) profoundly antagonized ATP inhibition of K_ATP channels expressed from cloned Kir6.2+SUR1 subunits, but also abolished high affinity tobutamide sensitivity. By stabilizing the open state of the channel, PIP₂ drives the channel away from closed state(s) that are preferentially affected by high affinity tobutamide binding, thereby producing an apparent loss of high affinity tobutamide inhibition. Mutant K_ATP channels (Kir6.2[ΔN30] or Kir6.2[L164A]), coexpressed with SUR1 also displayed an "uncoupled" phenotype with no high affinity tobutamide block and with intrinsically higher open state stability. Conversely, Kir6.2[R176A]+SUR1 channels, which have an intrinsically lower open state stability, displayed a greater high affinity fraction of tobutamide block. In addition to antagonizing high-affinity block by tobutamide, PIP₂ also altered the stimulatory action of the PCOs, diazoxide and MgADP. With time after PIP₂ application, PCO stimulation first increased, and then subsequently decreased, probably reflecting a common pathway for activation of the channel by stimulatory PCOs and PIP₂. The net effect of increasing open state stability, either by PIP₂ or mutagenesis, is an apparent "uncoupling" of the Kir6.2 subunit from the regulatory input of SUR1, an action that can be partially reversed by screening negative charges on the membrane with polylysine.

Keywords: K⁺ current • sulfonylurea • MgADP • diazoxide • PIP₂

Introduction

The 10 yr that followed the discovery of ATP-sensitive (K_ATP) channels (Noma, 1983) led to the delineation of complex regulation by intracellular nucleotides and pharmacological agents (reviewed in Ashcroft, 1988; Nichols and Lederer, 1991; Terzic et al., 1994). The last 3 yr have seen a renewed interest in the regulation of ATP-sensitive potassium channels as a result of the cloning of the constituent subunits (Aguilar-Bryan et al., 1995; Inagaki et al., 1995, 1996). Uniquely, K_ATP channels are normally formed as a complex of sulfonylurea receptor (SUR) subunits (Inagaki et al., 1995, 1997; Clement et al., 1997; Shyng and Nichols, 1997). Recent studies demonstrate that the Kir6.x subunits form the pore, and control the hallmark inhibition by ATP (Shyng et al., 1997a; Tucker et al., 1997, 1998; Drain et al., 1998), whereas the SURx subunit controls the sensitivity to the inhibitory sulfonylurea drugs, and to activating nucleotide diphosphates and potassium channel opening drugs (Aguilar-Bryan et al., 1995; Inagaki et al., 1996; Isomoto et al., 1996; Nichols et al., 1996; Shyng et al., 1997b; Gribble et al., 1997a,b; Schwanstecher et al., 1998).

Deletion of up to ~36 amino acids from the COOH terminus of Kir6.2 results in the generation of ATP-sensitive channels in the absence of SURx subunits (Tucker et al., 1997; Zerangue et al., 1999), but these channels are not activated by MgADP or potassium channel openers (PCOs), nor are they inhibited at high affinity by sulfonylurea drugs, consistent with these agents acting through the SURx subunit (Gribble et al., 1997a). MgATP clearly binds to the nucleotide binding folds of SUR1 (Ueda et al., 1997), and ATP hydrolysis seems to be required for binding PCOs (Schwanstecher et al., 1998) and transduction (Nichols et al., 1996; Gribble et al., 1997b; Shyng et al., 1997a) of the stimulatory PCO signal to the channel. The physical nature of the coupling of SURx to Kir6.x subunits is essentially unknown at the present time, although intriguingly, Clement et al. (1997) demonstrated that Kir6.2 could be labeled with azido-glibenclamide only in the presence of SUR1 subunits, consistent with a tight physical association of the two subunits (Lorenz et al., 1998). In the present study, we have explored the functional coupling of SUR1 to Kir6.2. The results dem-
onstrate that the pharmacological control of K_{ATP} channel function through SUR1 subunits can be “uncoupled” when the channel open-state stability is increased, either by mutation of the Kir6.2 subunit, or by manipulation of the phospholipid composition of the membrane. The results also suggest that nucleotide hydrolysis and PCO binding stimulate the channel activity by a convergent pathway with phosphatidylinositol 4,5-bisphosphate (PIP$_2$). A preliminary report of these results was made to the Biophysical Society (annual meeting, Kansas City, MO, February, 1998).

Results

High Affinity Sulfonylurea Sensitivity Is Lost After Kir6.2 NH$_2$-Terminal Deletion

Gribble et al. (1997a) reported that tolbutamide inhibition of Kir6.2+SUR1 coexpressed channels in Xenopus oocytes is biphasic, consisting of low and high affinity components. The mechanistic basis of the biphasic response to tolbutamide is presently unknown (see discussion), but it is clear that high affinity sulfonylurea interaction is with the SUR1 subunit (Aguilar-Bryan et al., 1995), whereas a low affinity action may occur through direct interaction with the Kir6.2 subunit (Gribble et al., 1997a). As shown in Fig. 1, similar biphasic dose-response curves are seen for both wild-type Kir6.2+SUR1 (WT+SUR1) channels and for Kir6.2[K185Q]+SUR1 channels expressed in COSm6 cells. The K185Q mutation in Kir6.2 reduces ATP sensitivity, possibly by altering ATP binding affinity, but does not affect the ATP-independent open probability (Tucker et al., 1997; Koster et al., 1999). In contrast, Kir6.2[ΔN2-30]+SUR1 channels also have a reduced ATP sensitivity, which in this case results from open-state stabilization that is reflected by near continuous bursting at the single channel level (Koster et al., 1999), and these channels show only low affinity inhibition by tolbutamide (Fig. 1A). This raises alternate possibilities that high affinity tolbutamide block is lacking from Kir6.2[ΔN2-30] channels because the NH$_2$ terminus is physically involved in “coupling” to the regulatory effects of SUR1, and because the high affinity inhibitory effect of tolbutamide depends on channel open state stability.

High Affinity Sulfonylurea Sensitivity Is Lost After PIP$_2$ Treatment of Wild-Type Channels

We can explore the correlation between tolbutamide sensitivity and open-state stability2 of the channel by applying PIP$_2$. PIP$_2$ increases the channel open probability by increasing bursting behavior of the single channel and decreases the sensitivity to ATP (Baukrowitz et al., 1998; Shyng and Nichols, 1998). Although direct experimental proof is not available, both actions can be

2 The open state stability is the stability of the “bursting” state relative to a longer closed state that is accessible to ATP. As the open state stability increases, the open probability increases towards a saturating level of ~0.9 (i.e., the intraburst open probability), and the $K_{1/2 ATP}$ increases continually (Shyng et al., 1997a).
explained by models in which the action of PIP\textsubscript{2} is to stabilize the channel open or bursting state, with ATP binding to, and stabilizing, the channel closed state (Shyng et al., 1997a). As shown in Fig. 2, treatment of wild-type Kir6.2+SUR1 channels with PIP\textsubscript{2} leads to increased overall channel activity3 and loss of ATP sensitivity (Baukrowitz et al., 1998; Shyng and Nichols, 1998). Concomitant with this increase in open-state stability, there is a gradual and complete loss of high affinity tolbutamide block (Fig. 2, A and C). The rate of loss of both ATP sensitivity and high tolbutamide sensitivity (Fig. 2 B) are quite variable from patch to patch. However, there is a reasonable correlation between the tolbutamide inhibition and ATP sensitivity (Fig. 2 D).

3The increase in P_o that occurs after PIP\textsubscript{2} application is followed by a variable, very slow, loss of channel activity over many minutes (“terminal rundown”). Such rundown occurs in the presence or absence of PIP\textsubscript{2}. This terminal rundown may occur by channels terminally disappearing from the patch, the open probability estimated by noise analysis (i.e., the open probability of channels that remain functional) does not decline during this process, as quantified for the record in Fig. 6 A.

Figure 1. Tolbutamide sensitivity of I_{ATP} currents from cells co-expressing Kir6.2, Kir6.2[\Delta N2-30], or Kir6.2[K185Q] mutant subunits and SUR1. (A) Representative currents recorded from inside-out membrane patches containing wild-type or mutant I_{ATP} channels at \(-50\) mV in K\textsubscript{int} solution (see methods). Patches were exposed to differing [tolbutamide] or \(10\) mM ATP, as shown. (B) Steady state dependence of membrane current on [tolbutamide] [mean \pm SEM, relative to current in zero tolbutamide (Irel) for wild-type and mutant channels (from records such as those shown in Fig. 1 A). Data points represent the mean \pm SEM ($n = 3$–8 patches). For all channels, the lines are fits of the sum of two Hill components (as in Gribble et al., 1997a), each of the form $I_{\text{rel}} = I_{\text{max}} / [1 + ([\text{tolbutamide}]/K_{1/2}H)]$ with H fixed at 1.3 in each case, and the $K_{1/2} = 2 \mu$M (high affinity) and 4.2 mM (low affinity). The relative fraction of each component was varied. The high-affinity component was 40, 35, and 7% for wild-type, Kir6.2[K185Q]/SUR1, and Kir6.2[K185Q]/SUR1 channels, respectively.
As shown in Fig. 3, the latter explanation is correct; with time after addition of PIP$_2$, the dose–response relationship can be fit by assuming that the high affinity inhibition becomes a progressively smaller fraction of the [tolbutamide]-inhibition relationship. Data points at intermediate times cannot be fit by assuming a constant high affinity fraction, with reduced affinity. This is consistent with an effect of PIP$_2$ on the coupling of high affinity binding to channel inhibition, not on modifying tolbutamide binding itself.

High Affinity Sulfonylurea Sensitivity Depends on the Channel Open-State Stability

Since PIP$_2$ and NH$_2$-terminal deletion both increase the channel open state stability (Fan and Makielski, 1997; Shyng and Nichols, 1998; Koster et al., 1999), the loss of high affinity tolbutamide sensitivity in NH$_2$-terminal truncated channels, and on wild-type channels treated with PIP$_2$, suggests that the coupling of high affinity tolbutamide binding (at SUR1; Aguilar-Bryan et al., 1995) to channel inhibition may also depend on the open-state stability. To examine this possibility further, we have measured the tolbutamide sensitivity of channels expressed from Kir6.2[R176A]+SUR1, and Kir6.2[L164A]+SUR1 channels, which have intrinsically very low, and high, open-state stabilities, respectively (Shyng and Nichols, 1998). Kir6.2[R176A]+SUR1 channels have a much lower intrinsic open probability ($P_{\text{open}} \approx 0.1$) than wild-type channels ($P_{\text{open}} \approx 0.5$), due to reduced PIP$_2$ affinity (Fan and Makielski, 1997; Huang et al., 1998; Shyng and Nichols, 1998). As shown in Fig. 4 A, it is clear that these channels have a larger high affinity component of tolbutamide inhibition than wild-type channels, which is again lost as P_{open} increases after treatment with PIP$_2$ (Fig. 4 B). In contrast, Kir6.2[L164A]+SUR1 channels have a very high P_{open} (>0.85), corresponding to an intrinsic ATP sensitivity of $K_{1/2,\text{ATP}} \approx 1$mM (data not shown), due to the open-state stabilizing effect of this mutation. As shown in Fig. 4 A, there is essentially no high affinity component of tolbutamide inhibition of Kir6.2[L164A]+SUR1 channels. On average, 100 µM tolbutamide inhibited wild-type Kir6.2+SUR1,
Kir6.2[L164A] + SUR1, and Kir6.2[R176A] + SUR1 channels by 33 ± 3, 3 ± 2, and 77 ± 6%, respectively (n = 3 in each case).

MgADP Stimulation and Diazoxide Stimulation of Channel Activity Disappears with PIP2 Stimulation

Activation of wild-type Kir6.2+SUR1 channels by MgADP and diazoxide, at a fixed [ATP], is quite variable from patch to patch (Figs. 5 B and 6 B). As shown in Figs. 5 A and 6 A, the ability of these agents to stimulate channel activity changes after PIP2 stimulation, and in a qualitatively similar way for both Kir6.2[DN2-30]+SUR1 and wild-type (Kir6.2+SUR1) channels. In each case, the stimulation tends to increase, but then gradually falls to zero with time after PIP2 application. The time course of this effect is also quite variable from patch to patch (Figs. 5 B and 6 B), but is reasonably well correlated with the accompanying change of ATP sensitivity (Figs. 5 D and 6 D). This result indicates that the stimulatory action of the PCOs, like ATP sensitivity itself, is not a fixed parameter of channel function, but is probably dependent on the open-state stability of the channel (Shyng and Nichols, 1998). As PIP2 increasingly stabilizes the open state of the channel, sojourns in an ATP-accessible closed state become less and less frequent (Baukrowitz et al., 1998; Shyng and Nichols, 1998). The present results are also consistent with PCOs acting by shifting the equilibrium between the open and closed states (see Shyng et al., 1997b), such that as the channel open-state stability approaches maximal, the stimulatory effect of the PCOs saturates.

PIP2-induced Loss of Coupling Can Be Partially Restored with Poly-L-lysine Treatment

Treatment with polycations can reverse the stimulatory actions of PIP2 on open probability and ATP sensitivity (Deutsch et al., 1994; Shyng and Nichols, 1998), probably by shielding the negative charges introduced by PIP2. As shown in Fig. 7, some reversal of both tolbutamide insensitivity and loss of PCO action is observed.
when patches are subsequently treated with polylysine. However, some irreversible loss of high affinity tolbutamide sensitivity, as well as of diazoxide and MgADP stimulation, also occurs after prolonged PIP2 treatment, such that polylysine may only partially restore the SUR1 coupling (e.g., Fig. 7 A), even though ATP sensitivity can be restored to, or beyond, control levels (see discussion).

Discussion

Loss of High Affinity Tolbutamide Sensitivity with Increased Open Probability

A biphasic dose-response relationship for tolbutamide inhibition of K_{ATP} channels was demonstrated by Gribble et al. (1997a), but the mechanistic basis was not made clear. When the high affinity component is saturated, there is an $\sim40\%$ reduction of wild-type currents. The high affinity binding of sulfonylureas is to the SUR1 subunit (Aguilar-Bryan et al., 1995; Gribble et al., 1997a), and channel inhibition results from an allosteric effect on the channel. By contrast, the low affinity inhibitory effect results from a direct interaction with the Kir6.2 subunit itself (Gribble et al., 1997a), and might be a pore-blocking action. The present results demonstrate that the high affinity, physiologically relevant, action can be abolished by increasing the open state stability (and hence $P_{\text{o,zero}}$) with PIP2, or by deleting the channel NH$_2$ terminus. Kir6.2[ΔN2-30] channels, which have an intrinsically higher open state stability (Koster et al., 1999), show essentially no high affinity tolbutamide sensitivity (Fig. 1). Hence, although the high affinity sulfonylurea binding site is clearly on the SUR1 subunit (Aguilar-Bryan et al., 1995), the inhibitory effect on K_{ATP} channel activity will depend critically on the functional state and molecular nature of the Kir subunit. This prediction is dramati-
ally borne out by the results (Fig. 4), which show that a mutant with even higher intrinsic open-state stability (Kir6.2[|L164A|]), is almost completely insensitive to tolbutamide, with no high-affinity inhibition. By contrast, in a mutant with intrinsically low open probability (Kir6.2[|R176A|]), putatively due to reduced PIP₂ affinity, tolbutamide sensitivity is almost all high affinity, under ambient conditions after patch isolation. However, subsequent treatment with PIP₂ still abolishes high affinity tolbutamide inhibition, as the open-state stability increases to, and beyond, that of the wild-type channel (i.e., the open probability increases and $K_{1/2,ATP}$ decreases; Fig. 4 B).

The present findings are significant for understanding sulfonylurea sensitivity of K_{ATP} channels. They demonstrate that sulfonylurea sensitivity will depend critically on the open-state stability of the channels (manifested by open probability in the absence of ATP¹). This can change dramatically in inside-out membrane patches as a consequence of “run down” and “run up.” Run down is a gradual, variable, and probably multifactorial, reduction of channel activity, often associated with decreased open probability and increased $K_{1/2,ATP}$ (Thuringer and Escande, 1989; Deutsch and Weiss, 1993). A significant mechanism of run down is probably decreasing levels of phosphorylated phosphatidylinositols in the cell membrane. Such run down can be reversed, and the channels run up, by application of endogenous PIP₂ (Baukrowitz et al., 1998; Shyng and Nichols, 1998), MgATP (Takano et al., 1990), and by application of MgUDP (Tung and Kurachi, 1993; Terzic et al., 1994). Interestingly, Brady et al. (1998) reported an “operative condition-dependent response” of K_{ATP} channels to sulfonylureas, in which stimulation of channel activity by MgUDP led to a loss of glibenclamide sensitivity, but only if the channels had not previously run down. It is likely that in vivo variability of ATP sensitivity (Findlay and Fairv, 1991) reflects cell-to-cell
variability of the open state stability, resulting in turn from variability of membrane phospholipid levels. Similarly, in vivo variability of sulfonylurea sensitivity under different conditions (Findlay, 1993; Venkatesh et al., 1991; Mukai et al., 1998) is also likely to reflect changes in open-state stability and accessibility of the closed channel.

PIP$_2$ Activation Masks PCO Actions

It is clear that PIP$_2$ activation of K$_{ATP}$ channels and other inward rectifiers does not require the presence of a SUR1 subunit, and probably results from a direct interaction of PIP$_2$ with the cytoplasmic portion of the channel protein itself (Hilgemann and Ball, 1996; Fan and Makielski, 1997; Baukrowitz et al., 1998; Huang et al., 1998; Shyng and Nichols, 1998). The present results indicate that PCO sensitivity, like ATP sensitivity (Baukrowitz et al., 1998; Shyng and Nichols, 1998) is a variable, dynamically dependent on membrane phospholipid levels rather than a fixed parameter. After PIP$_2$ application to inside-out patches, there is generally first an increase in the stimulatory action of PCOs, and then a gradual disappearance of their action as the PIP$_2$ stimulation saturates, such that, even though ATP inhibition is still observable at high concentrations, there is no relief of this inhibition by PCOs (Figs. 5 and 6). As discussed in Shyng and Nichols (1998) and Baukrowitz et al. (1998), it is likely that membrane phospholipid levels are variable from cell to cell, and that such variability accounts for the cell-to-cell variability of ATP sensitivity that is observed physiologically (Findlay and Faivre, 1991). By the same reasoning, the variable stimulatory action of PCOs (see, e.g., Figs. 5B and 6B) might be a result of cell-to-cell variability of membrane
phospholipid levels. The results raise the question: How does the membrane phospholipid level determine the PCO sensitivity? One possibility is that PIP$_2$ affects ATP hydrolysis, or PCO binding to the SUR1 subunit. However, as we have previously suggested (Shyng et al., 1997b), it seems likely that PCOs act ultimately to stabilize the open state of the channel itself, just as the phospholipids do. Therefore, the lack of PCO effects after elevation of phospholipids, is likely to be a consequence of the convergent action of these two agents on the energetic stability of the open state relative to the ATP-accessible closed state.

The Role of SUR Subunits in Controlling K$_{ATP}$ Channel Function

It is now clear that the pore-forming (Kir6.2) subunits can generate ATP-sensitive K channels in the complete absence of expressed SUR subunits, even without truncation of the COOH terminus (Tucker et al., 1997; John et al., 1998; Mikhailov et al., 1998). So, what is the role of the SUR1 subunit? Clearly, there is evidence for a chaperoning action to bring the channel to the surface, and with which SUR1 remains in physical proximity (Clement et al., 1997; John et al., 1998; Zerangue et al., 1999). Moreover, the physiologically, and pharma-
coliologically, important regulators of the channel seem to act through an interaction with the SUR1 subunit (Aguilar-Bryan et al., 1995; Schwanstecher et al., 1998). The balance of evidence suggests that ATP hydrolysis at the nucleotide binding folds activates the channel, and that this activation is stabilized by binding of MgADP and other PCOs to the SUR1 subunit (Nichols et al., 1996; Gribble et al., 1997b; Shyng et al., 1997a,b; Schwanstecher et al., 1998). High-affinity sulfonylurea binding is to the SUR subunit (Aguilar-Bryan et al., 1995), and this effect is then transduced to inhibition of channel activity. The physical nature of the coupling between SURx and the Kir6.x subunits and the interacting regions of each subunit remain unknown. The present results show that deletion of the NH2 terminus of Kir6.2 can functionally uncouple the high affinity tolbutamide sensitivity from the channel. However, it is clear that PCO actions on the channel remain for the NH2-terminus truncated channel so that a physical coupling is still intact.

High affinity sulfonylurea sensitivity and PCO sensitivity is conferred by the SUR1 subunit, and is absent for Kir6.2 channels expressed in the absence of SUR1 (Gribble et al., 1997a; Tucker et al., 1997), which begs the question whether the effect of PIP2 is to cause a physical, or functional, uncoupling of Kir6.2 from SUR1. A physical uncoupling seems unlikely based on the observation that treatment with polylysine leads to (a) some reversal of the PIP2 abolition of pharmacological regulation, and (b) full restoration of the SUR1-dependent KeATP of $\sim 10 \mu M$. Nevertheless, we cannot exclude the possibility that the PIP2 action physically interrupts the transduction of the inhibitory signal from SUR1 to Kir6.2.

Conclusions

High affinity tolbutamide inhibition seems, like ATP inhibition, to be the result of a closed state stabilization, but, unlike ATP inhibition, is not likely to be a direct binding to the closed channel. Stabilizing the open state and raising the channel open probability, either by mutation or by application of PIP2, reduces high affinity tolbutamide sensitivity. Similarly, PCOs act on SUR1 to stabilize the channel in the open state, con vergent with PIP2 action, such that PIP2 treatment leads to channel activation without further activation in the presence of PCOs. Treatment with polylysine causes at least partial reversal of the uncoupling actions of PIP2 effect, restoring some high affinity tolbutamide sensitivity and PCO stimulation. These results indicate that, in native cells, the pharmacological and physiological control of channel activity by the SUR1 subunit will be critically dependent on the open-state stability, itself determined by the phospholipid content of the membrane.

We thank Jeremiah Shepard and Rebecca Dunlap for technical assistance with these experiments. We are grateful to Dr. S. Seino for providing us with the Kir6.2 clone.

This work was supported by a grant from the National Institutes of Health (NIH) (HL45742 to C.G. Nichols), a Career Development Award from the American Diabetes Association (S.-L. Shyng), the Washington University Diabetes Research and Training Center (NIH Training grant support of J.C. Koster, and reagents), and the Washington University Cardiovascular NIH Training Grant (fellowship support for Q. Sha).

Submitted: 3 February 1999 Revised: 17 June 1999 Accepted: 18 June 1999

References

Aguilar-Bryan, L., C.G. Nichols, S.W. Wechsler, J.P. Clement IV, A.E. Boyd III, G. Gonzalez, H. Herrera Sosa, K. Nguy, J. Bryan, and D.A. Nelson. 1995. The β cell high affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268:423–426.

Ashcroft, F.M. 1988. Adenosine 5′-triphosphate-sensitive potassium channels. Annu. Rev. Neurosci. 11:97–118.

Baukrowitz, T., U. Schulte, D. Oliver, S. Herlitze, T. Krauter, S.J. Tucker, J.P. Ruppersberg, and B. Fakler. 1998. PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science 282: 1141–1144.

Brady, P.A., A.E. Alekseev, and A. Terzic. 1998. Operative condition-dependent response of cardiac ATP-sensitive K+ channels toward sulfonylureas. Circ. Res. 82:272–278.

Clement, J.P., IV, K. Kunjilwar, G. Gonzalez, M. Schwanstecher, U. Panten, L. Aguilar-Bryan, and J. Bryan. 1997. Association and stoichiometry of KATP channel subunits. Neuron. 18:827–838.

Deutsch, N., S. Matsuoka, and J.N. Weiss. 1994. Surface charge and properties of cardiac ATP-sensitive K+ channels. J. Gen. Physiol. 104:773–800.

Deutsch, N., and J.N. Weiss. 1993. ATP-sensitive K+ channel modification by metabolic inhibition in isolated guinea-pig ventricular myocytes. J. Physiol. 465:163–179.

Drain, P., L.H. Li, and J. Wang. 1998. K-ATP channel inhibition by ATP requires distinct functional domains of the cytoplasmic C-terminus of the pore-forming subunit. Proc. Natl. Acad. Sci. USA. 95: 13953–13958.

Fan, Z., and J.C. Makielski. 1997. Anionic phospholipids activate ATP-sensitive potassium channels. J. Biol. Chem. 272:5388–5395.

Findlay, L. I. 1993. Sulphonylurea drugs no longer inhibit ATP-sensitive K+ channels during metabolic stress in cardiac muscle. J. Pharmacol. Exp. Th. 266:456–467.

Findlay, L., and J.F. Faivre. 1991. ATP-sensitive K channels in heart muscle. Spare channels. FBS Lett. 279:95–97.

Gribble, F.M., S.J. Tucker, and F.M. Ashcroft. 1997a. The interaction of nucleotides with tolbutamide block of cloned ATP-sensitive K channel currents expressed in Xenopus oocytes—a reinter-
Mukai, E., H. Ishida, S. Kato, Y. Tsuura, S. Fujimoto, A. Ishida-Takashi, M. Horie, K. Tsuda, and Y. Seino. 1998. Metabolic inhibition impedes ATP-sensitive K⁺ channel block by sulfonyleurea in pancreatic beta-cells. Am. J. Physiol. 274:E38–E44.

Nichols, C.G., and W.J. Lederer. 1991. ATP-sensitive potassium channels in the cardiovascular system. Am. J. Physiol. 261:H1675–H1686.

Nichols, C.G., S.-L. Shyng, A. Nestorowicz, B. Glaser, J. Clement IV, G. Gonzalez, L. Aguilar-Bryan, A.M. Permutt, and J.P. Bryan. 1996. Adenosine diphosphate as an intracellular regulator of insulin secretion. Science 272:1785–1787.

Noma, A. 1983. ATP-regulated K⁺ channels in cardiac muscle. Nature 305:147–148.

Schwanstecher, M., C. Sieverding, H. Dorschner, I. Gross, L. Aguilar-Bryan, C. Schwanstecher, and J. Bryan. 1998. Potassium channel openers require ATP to bind to and act through sulfonyleurea receptors. EMBO (Eur. Mol. Biol. Organ.) J. 17:5529–5535.

Shyng, S.-L., T. Ferrigni, and C.G. Nichols. 1997a. Control of rectification and gating of cloned KATP channels by the Kir6.2 subunit. J. Gen. Physiol. 110:141–153.

Shyng, S.-L., T. Ferrigni, and C.G. Nichols. 1997b. Regulation of KATP channel activity by diazoxide and MgADP: distinct functions of the two nucleotide binding folds of the sulfonyleurea receptor. J. Gen. Physiol. 110:643–654.

Shyng, S.L., and C.G. Nichols. 1997. Octameric stoichiometry of the KATP channel complex. J. Gen. Physiol. 110:655–664.

Shyng, S.L., and C.G. Nichols. 1998. Phosphatidyl inositol phosphates control of nucleotide-sensitivity of KATP channels. Science 282:1138–1141.

Takano, M., D.Y. Qin, and A. Noma. 1990. ATP-dependent decay and recovery of K⁺ channels in guinea pig cardiac myocytes. Am. J. Physiol. 258:H45–H50.

Terzic, A., I. Findlay, Y. Hosoya, and Y. Kurachi. 1994. Dualistic behavior of ATP-sensitive K⁺ channels toward intracellular nucleoside diphosphates. Neuron. 12:1049–1058.

Thuringer, D., and D. Escande. 1989. Apparent competition between ATP and the potassium channel opener RP 49356 on ATP-sensitive K⁺ channels of cardiac myocytes. Mol. Pharmacol. 36:897–902.

Tucker, S.J., F.M. Gribble, C. Zhao, S. Trapp, and F.M. Ashcroft. 1997. Truncation of Kir6.2 produces ATP-sensitive K⁺ channels in the absence of the sulfonyleurea receptor. Nature 387:179–183.

Tucker, S.J., F.M. Gribble, P. Proks, S. Trapp, T.J. Ryder, T. Haug, F. Reimann, and F.M. Ashcroft. 1998. Molecular determinants of KATP channel inhibition by ATP. EMBO (Eur. Mol. Biol. Organ.) J. 17:3290–3296.

Tung, R.T., and Y. Kurachi. 1993. On the mechanism of nucleotide diphosphate activation of the ATP-sensitive K⁺ channel in ventricular cell of guinea-pig. J. Physiol. 437:239–256.

Ueda, K., N. Inagaki, and S. Seino. 1997. MgADP antagonism of Mg²⁺-dependent ATP binding of the sulfonyleurea receptor. J. Biol. Chem. 272:22983–22986.

Venkatesh, N., S.T. Lamp, and J.N. Weiss. 1991. Sulfonyleureas, ATP-sensitive K⁺ channels, and cellular K⁺ loss during hypoxia, ischemia, and metabolic inhibition in mammalian ventricle. Circ. Res. 69:623–637.

Zerangue, N., B. Schwappach, Y.N. Jan, and L.Y. Jan. 1999. A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K-ATP channels. Neuron. 22:537–548.