Clique-Coloring of $K_{3,3}$-Minor Free Graphs

Behnaz Omoomi· Maryam Taleb

Received: 12 October 2019 / Accepted: 8 December 2019
© Iranian Mathematical Society 2019

Abstract

A clique-coloring of a given graph G is a coloring of the vertices of G such that no maximal clique of size at least two is monocolored. The clique-chromatic number of G is the least number of colors for which G admits a clique-coloring. It has been proved that every planar graph is 3-clique colorable and every claw-free planar graph, different from an odd cycle, is 2-clique colorable. In this paper, we generalize these results to $K_{3,3}$-minor free ($K_{3,3}$-subdivision free) graphs.

Keywords Clique-coloring · Clique chromatic number · $K_{3,3}$-Minor free graphs · Claw-free graphs

Mathematics Subject Classification 05C15 · 05C10

1 Introduction

Graphs considered in this paper are all simple and undirected. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The number of vertices of G is called the order of G. The set of vertices adjacent to a vertex v is denoted by $N_G(v)$, and the size of $N_G(v)$ is called the degree of v and is denoted by $d_G(v)$. A vertex with degree zero is called an isolated vertex. The maximum degree of G is denoted by $\Delta(G)$. For a subset $S \subseteq V(G)$, the subgraph induced by S is denoted by $G[S]$. An independent set is a set of vertices in graph that does not induce any edge and the size of maximum independent set in G is written by $\alpha(G)$.

As usual, the complete bipartite graph with parts of cardinality m and n ($m, n \in \mathbb{N}$) is indicated by $K_{m,n}$. The graph $K_{1,3}$ is called a claw. The complete graph with n vertices

Communicated by Behruz Tayfeh-Rezaie.

Behnaz Omoomi
bomoomi@iut.ac.ir

Maryam Taleb
m.taleb@math.iut.ac.ir

1 Department of Mathematical Sciences, Isfahan University of Technology, 84156-83111 Isfahan, Iran

Published online: 20 December 2019
\{v_1, \ldots, v_n\} is denoted by K_n or $[v_1, \ldots, v_n]$. The graph \bar{G} is the complement of G with the same vertex set as G, and uv is an edge in \bar{G} if and only if it is not an edge in G. The path and the cycle of order n are denoted by P_n and C_n, respectively. The length of a path and a cycle is the number of its edges. A path with end vertices u and v is denoted by (u, v)-path.

Edge e is called an edge cut in connected graph G if $G\setminus\{e\}$ is disconnected. A block in G is a maximal 2-connected subgraph of G. A chord of a cycle C is an edge not in C whose end vertices lie in C. A hole is a chordless cycle of length greater than three. A hole is said to be odd if its length is odd; otherwise, it is said to be even. Given a graph F, a graph G is called F-free if G does not contain any induced subgraph isomorphic with F. A graph G is a (F_1, \ldots, F_k)-free graph if it is F_i-free for all $i \in \{1, \ldots, k\}$. A graph G is claw-free (resp. triangle-free) if it does not contain $K_{1,3}$ (resp. K_3) as an induced subgraph.

By a subdivision of an edge $e = uv$, we mean replacing the edge e with a (u, v)-path. Any graph derived from graph F by a sequence of subdivisions is called a subdivision of F or an F-subdivision. The contraction of an edge e with endpoints u and v is the replacement of u and v with a vertex such that edges incident to the new vertex are the edges that were incident with either u or v except e; the obtained graph is denoted by G/\overline{e}. Graph F is called a minor of G (or F-minor graph) if F can be obtained from G by a sequence of vertex and edge deletions and edge contractions. Given a graph F, graph G is F-minor free if F is not a minor of G. Obviously, any graph G which contains an F-subdivision also has an F-minor. Thus an F-minor free graph is necessarily F-subdivision free, although in general the converse is not true. However, if F is a graph of the maximum degree at most three, any graph which has an F-minor also contains an F-subdivision. Thus, a graph is $K_{3,3}$-minor free if and only if it is $K_{3,3}$-subdivision free. By the well-known Kuratowski’s theorem a graph is planar if and only if it is K_5-minor free and $K_{3,3}$-minor free. For further information on graph theory concepts and terminology we refer the reader to [17].

A vertex k-coloring of G is a function $c : V(G) \rightarrow \{1, 2, \ldots, k\}$ such that for every two adjacent vertices u and v, $c(u) \neq c(v)$. The minimum integer k for which G has a vertex k-coloring is called the chromatic number of G and is denoted by $\chi(G)$. A hypergraph \mathcal{H} is a pair (V, \mathcal{E}), where V is the set of vertices of \mathcal{H}, and \mathcal{E} is a family of non-empty subsets of V called hyperedges of \mathcal{H}. A k-coloring of $\mathcal{H} = (V, \mathcal{E})$ is a mapping $c : V \rightarrow \{1, 2, \ldots, k\}$ such that for all $e \in \mathcal{E}$, where $|e| \geq 2$, there exist $u, v \in e$ with $c(u) \neq c(v)$. The chromatic number of \mathcal{H}, $\chi(\mathcal{H})$, is the smallest k for which \mathcal{H} has a k-coloring. Indeed, every graph is a hypergraph in which every hyperedge is of size two and a k-coloring of such hypergraph is a usual vertex k-coloring.

A clique of G is a subset of mutually adjacent vertices of $V(G)$. A clique is said to be maximal if it is not properly contained in any other clique of G. We call a clique-hypergraph of G, the hypergraph $\mathcal{H}(G) = (V, \mathcal{E})$ with the same vertices as G whose hyperedges are the maximal cliques of G of cardinality at least two. A k-coloring of $\mathcal{H}(G)$ is also called a k-clique coloring of G, and the chromatic number of $\mathcal{H}(G)$ is called the clique-chromatic number of G, and is denoted by $\chi_c(G)$. In other words, a k-clique coloring of G is a coloring of $V(G)$ such that no maximal clique in G is monochromatic, and $\chi_c(G) = \chi(\mathcal{H}(G))$. A clique coloring of $\mathcal{H}(G)$ is strong if...
no triangle of G is monochromatic. A graph G is *hereditary k-clique colorable* if G and all its induced subgraphs are k-clique colorable. The clique-hypergraph coloring problem was posed by Duffus et al. in [6]. To see more results on this concept, see [2,3,7,8,15].

Clearly, any vertex k-coloring of G is a k-clique coloring, whence $\chi_c(G) \leq \chi(G)$. It is shown that in general, clique coloring can be a very different problem from usual vertex coloring and $\chi_c(G)$ could be much smaller than $\chi(G)$ [2]. On the other hand, if G is triangle-free, then $\mathcal{H}(G) = G$, which implies $\chi_c(G) = \chi(G)$. Since the chromatic number of triangle-free graphs is known to be unbounded [10], we get that the same is true for the clique-chromatic number of triangle-free graphs. In addition, clique-chromatic number of claw-free graphs or even line graphs is not bounded. For instance for each constant k, there exists $N_k \in \mathbb{N}$ such that for each $n \geq N_k$, $\chi_c(L(K_n)) \geq k + 1$ that $L(K_n)$ is line graph of complete graph K_n and is claw-free [2]. On the other hand, Défossez proved that a claw-free graph is hereditary 2-clique colorable if and only if it is odd-hole-free [5]. That is why recognizing the structure of graphs with bounded and unbounded clique-chromatic number could be an interesting problem.

For planar graphs, Mohar and Skrekovski in [9] proved the following theorem:

Theorem 1.1 [9] *Every planar graph is strongly 3-clique colorable.*

Moreover, Shan et al. in [12] proved the following theorem:

Theorem 1.2 [12] *Every claw-free planar graph, different from an odd cycle, is 2-clique colorable.*

Shan and Kang generalized the result of Theorem 1.1 to K_5-minor free graphs and the result of Theorem 1.2 to graphs which are claw-free and K_5-subdivision free [11] as follows:

Theorem 1.3 [11] *Every K_5-minor free graph is strongly 3-clique colorable.*

Theorem 1.4 [11] *Every graph which is claw-free and K_5-subdivision free, different from an odd cycle, is 2-clique colorable.*

In this paper, we generalize the result of Theorem 1.1 to $K_{3,3}$-minor free graphs and the result of Theorem 1.2 to claw-free and $K_{3,3}$-minor ($K_{3,3}$-subdivision) free graphs.

2 Preliminaries

In this section, we state the structure theorem of claw-free graphs that is proved by Chudnovsky and Seymour [4]. At first we need a number of definitions.

Two adjacent vertices u, v of graph G are called twins if they have the same neighbors in G, and if there are two such vertices, we say G admits twins. For a vertex v in G and a set $X \subseteq V(G) \setminus \{v\}$, we say that v is complete to X or X-complete if v is adjacent to every vertex in X; and that v is anticomplete to X or X-anticomplete if...
v has no neighbor in X. For two disjoint subsets A and B of $V(G)$, we say that A is complete, respectively, anticomplete, to B, if every vertex in A is complete, respectively, anticomplete, to B. A vertex is called singular if the set of its non-neighbors induces a clique.

Let G be a graph and A, B be disjoint subsets of $V(G)$, the pair (A, B) is called homogeneous pair in G, if for every vertex $v \in V(G) \setminus (A \cup B)$, v is either A-complete or A-anticomplete and either B-complete or B-anticomplete. If one of the subsets A or B, for instance B is empty, then A is called a homogeneous set.

Let (A, B) be a homogeneous pair, such that A, B are both cliques, and A is neither complete nor anticomplete to B, and at least one of A, B has at least two members. In these conditions the pair (A, B) is called a W-join. A homogeneous pair (A, B) is non-dominating if some vertex of $V(G) \setminus (A \cup B)$ has no neighbor in $A \cup B$, and it is coherent if the set of all $(A \cup B)$-complete vertices in $V(G) \setminus (A \cup B)$ is a clique.

Next, suppose that V_1, V_2 is a partition of $V(G)$ such that V_1, V_2 are non-empty and V_1 is anticomplete to V_2. The pair (V_1, V_2) is called a 0-join in G.

Next, suppose that V_1, V_2 is a partition of $V(G)$, and for $i = 1, 2$ there is a subset $A_i \subseteq V_i$ such that:

1. A_i is a clique, and $A_i, V_i \setminus A_i$ are both non-empty;
2. A_1 is complete to A_2;
3. $V_1 \setminus A_1$ is anticomplete to V_2, and $V_2 \setminus A_2$ is anticomplete to V_1.

In these conditions, the pair (V_1, V_2) is a 1-join.

Now, suppose that V_0, V_1, V_2 is a partition of $V(G)$, and for $i = 1, 2$ there are subsets A_i, B_i of V_i satisfying the following properties:

1. A_i, B_i are cliques, $A_i \cap B_i = \emptyset$, and A_i, B_i and $V_i \setminus (A_i \cup B_i)$ are all non-empty;
2. A_1 is complete to A_2, and B_1 is complete to B_2, and there are no other edges between V_1 and V_2;
3. V_0 is a clique, and, for $i = 1, 2$, V_0 is complete to $A_i \cup B_i$ and anticomplete to $V_i \setminus (A_i \cup B_i)$.

The triple (V_0, V_1, V_2) is called a generalized 2-join, and, if $V_0 = \emptyset$, the pair (V_1, V_2) is called a 2-join.

The last decomposition is the following: Let (V_1, V_2) be a partition of $V(G)$, such that for $i = 1, 2$, there are cliques $A_i, B_i, C_i \subseteq V_i$ with the following properties:

1. the sets A_i, B_i, C_i are pairwise disjoint and have union V_i;
2. V_1 is complete to V_2 except that there are no edges between A_1 and A_2, between B_1 and B_2, and between C_1 and C_2; and
3. V_1, V_2 are both non-empty.

In these conditions it is said that G is a hex-join of V_1 and V_2.

Now we define classes F_0, \ldots, F_7 as follows:

- F_0 is the class of all line graphs.
- The icosahedron is the unique planar graph with 12 vertices of all degree five. For $k = 0, 1, 2, 3$, $\text{icosa}(k)$ denotes the graph obtained from the icosahedron by deleting k pairwise adjacent vertices. The class F_1 is the family of all graphs G isomorphic to $\text{icosa}(0)$, $\text{icosa}(1)$, or $\text{icosa}(2)$.
Let H be the graph with vertex set $\{v_1, \ldots, v_{13}\}$, with the following adjacency: $v_1v_2 \ldots v_6v_1$ is a hole in G of length 6; v_7 is adjacent to v_1, v_2; v_8 is adjacent to v_4, v_5 and possibly to v_7; v_9 is adjacent to v_6, v_1, v_2, v_3; v_{10} is adjacent to v_5, v_4, v_5, v_6, v_9; v_{11} is adjacent to $v_3, v_4, v_6, v_1, v_9, v_{10}$; v_{12} is adjacent to $v_3, v_5, v_6, v_9, v_{10}$; v_{13} is adjacent to $v_1, v_2, v_4, v_5, v_7, v_8$ and no other pairs are adjacent. The class F_2 is the family of all graphs G isomorphic to $H \setminus X$, where $X \subseteq \{v_{11}, v_{12}, v_{13}\}$.

Let C be a circle, and $V(G)$ be a finite set of points of C. Take a set of subset of C homeomorphic to interval $[0, 1]$ such that there are not three intervals covering C and no two intervals share an end-point. Say that $u, v \in V(G)$ are adjacent in G if the set of points $\{u, v\}$ of C is a subset of one of the intervals. Such a graph is called circular interval graph. The class F_3 is the family of all circular interval graphs.

Let H be the graph with seven vertices h_0, \ldots, h_6, in which h_1, \ldots, h_6 are pairwise adjacent and h_0 is adjacent to h_1. Let H' be the graph obtained from the line graph $L(H)$ by adding one new vertex, adjacent precisely to the members of $V(L(H)) = E(H)$ that are not incident with h_1 in H. Then H' is claw-free. Let F_4 be the class of all graphs isomorphic to induced subgraphs of H'. Note that the vertices of H' corresponding to the members of $E(H)$ that are incident with h_1 in H form a clique in H'. So the class F_4 is the family of graphs that is either a line graph or has a singular vertex.

Let $n \geq 0$. Let $A = \{a_1, \ldots, a_n\}$, $B = \{b_1, \ldots, b_n\}$, $C = \{c_1, \ldots, c_n\}$ be three cliques, pairwise disjoint. For $1 \leq i, j \leq n$, let a_i, b_j be adjacent if and only if $i = j$, and let c_i be adjacent to a_j, b_j if and only if $i \neq j$. Let d_1, d_2, d_3, d_4, d_5 be five more vertices, where d_1 is $(A \cup B \cup C)$-complete; d_2 is complete to $A \cup B \cup \{d_1\}$; d_3 is complete to $A \cup \{d_2\}$; d_4 is complete to $B \cup \{d_2, d_3\}$; d_5 is adjacent to d_3, d_4; and there are no more edges. Let the graph just constructed be H. A graph $G \in F_5$ is (for some n) G is isomorphic to $H \setminus X$ for some $X \subseteq A \cup B \cup C$. Note that vertex d_1 is adjacent to all the vertices but the triangle formed by d_3, d_4 and d_5, so it is a singular vertex in G.

Let $n \geq 0$. Let $A = \{a_0, \ldots, a_n\}$, $B = \{b_0, \ldots, b_n\}$, $C = \{c_1, \ldots, c_n\}$ be three cliques, pairwise disjoint. For $0 \leq i, j \leq n$, let a_i, b_j be adjacent if and only if $i = j > 0$, and for $1 \leq i \leq n$ and $0 \leq j \leq n$ let c_i be adjacent to a_j, b_j if and only if $i \neq j \neq 0$. Let the graph just constructed be H. A graph $G \in F_6$ is (for some n) G is isomorphic to $H \setminus X$ for some $X \subseteq (A \setminus \{a_0\}) \cup (B \setminus \{b_0\}) \cup C$.

A graph G is prismatic, if for every triangle T of G, every vertex of G not in T has a unique neighbor in T. A graph G is antiprismatic if its complement is prismatic. The class F_7 is the family of all antiprismatic graphs.

The structure theorem in [4] is as follows:

Theorem 2.1 [4] If G is a claw-free graph, then either

- $G \in F_0 \cup \cdots \cup F_7$, or
- G admits either twins, a non-dominating W-join, a 0-join, a 1-join, a generalized 2-join, or a hex-join.
3 $K_{3,3}$-Minor Free Graphs

In this section, we focus on the clique chromatic number of $K_{3,3}$-minor free graphs. In particular, we prove that every $K_{3,3}$-minor free graph is strongly 3-clique colorable. Moreover, it is 2-clique colorable if it is claw-free and different from an odd cycle.

For this purpose, first we need the Wagner characterization of $K_{3,3}$-minor free graphs [14]. Let G_1 and G_2 be graphs with disjoint vertex-sets. Also, let $k \geq 0$ be an integer, and for $i = 1, 2$, let $X_i \subseteq V(G_i)$ be a set of cardinality k of pairwise adjacent vertices. For $i = 1, 2$, let G'_i be obtained from G_i by deleting a (possibly empty) set of edges with both ends in X_i. If $f : X_1 \rightarrow X_2$ is a bijection, and G is the graph obtained from the union of G'_1 and G'_2 by identifying x with $f(x)$ for all $x \in X_1$, then we say that G is a k-sum of G_1 and G_2.

Theorem 3.1 [13,14] A graph is $K_{3,3}$-minor free if and only if it can be obtained from planar graphs and complete graph K_5 by means of 0-, 1-, 2-sums.

In order to make the above characterization easier, we use the structural sequence for $K_{3,3}$-minor free graphs. In fact, graph G is $K_{3,3}$-minor free if and only if there exists a sequence $T = T_1, T_2, \ldots, T_r$, in which for each i, $1 \leq i \leq r$, T_i is either a planar graph or isomorphic with K_5, such that $G_1 = T_1$, and for each i, $2 \leq i \leq r$, G_i is obtained from disjoint union of G_{i-1} and T_i, or by gluing T_i to G_{i-1} on one vertex or one edge or two non-adjacent vertices and $G_r = G$. For a given $K_{3,3}$-minor free G, the sequence T is called a Wagner sequence.

Also we need following lemma proposed in [9]:

Lemma 3.2 [9] Let G be a connected plane graph such that its outer cycle, C, is a triangle. If $\phi : V(C) \rightarrow \{1, 2, 3\}$ is a clique coloring of induced subgraph C, then ϕ can be extended to a strong 3-clique coloring of G.

In the following, we use the Wagner sequence to provide a strong 3-clique coloring for $K_{3,3}$-minor free graphs.

Theorem 3.3 Every $K_{3,3}$-minor free graph is strongly 3-clique colorable.

Proof Let G be a $K_{3,3}$-minor free graph. The assertion is trivial for $|V(G)| \leq 3$. So let $|V(G)| \geq 4$ and $T = T_1, T_2, \ldots, T_r$ be a Wagner sequence of G. We use induction on r. If $r = 1$, then $G = T_1$ is either K_5 or a planar graph. If G is K_5, then the assertion is obvious, since by assigning color 1 to two vertices of K_5 and color 2 to two vertices of K_5 and color 3 to rest vertex, we have a strong 3-clique coloring of K_5. Also, if G is a planar graph, then the assertion follows directly from Theorem 1.1.

Now let $r \geq 2$. By the induction hypothesis G_{r-1} and T_r have strong 3-clique coloring. If G_r is 0-sum of G_{r-1} and T_r, then there is nothing to say. Suppose that G_r is obtained from G_{r-1} and T_r by gluing on vertex $\{v\}$. Thus, by a renaming of the colors, if it is necessary, we obtain a strong 3-clique coloring for G_r.

Next, we suppose that G_r is obtained from G_{r-1} and T_r by gluing on edge uv or two non-adjacent vertices u and v. If T_r is K_5, then we consider a strong 3-clique coloring of G_{r-1}, say ϕ, and extend it to a strong 3-clique coloring of G_r as follows: If $\phi(u) \neq \phi(v)$, then we assign three different colors $\{1, 2, 3\}$ to the other three vertices.
of K_5. If $\phi(u) = \phi(v)$, then we assign two different colors \{1, 2, 3\}$\setminus\{\phi(v)\}$ to the other three vertices of K_5. Obviously, the extended coloring is a strong 3-clique coloring of G_r.

Finally, let T_r be a planar graph. We consider a strong 3-clique coloring of G_{r-1}, say ϕ, and provide a strong 3-clique coloring of G_r as follows: If $\phi(u) \neq \phi(v)$ and $e = uv$ is a maximal clique of T_r, then suppose that ϕ' is a strong 3-clique coloring of T_r. In this case, by a renaming the color of $\phi'(u)$ and $\phi'(v)$ in T_r, if it is necessary, we obtain a strong 3-clique coloring of G_r. If $e = uv$ is not a maximal clique in T_r, then there exists a triangle T containing e in T_r. Now we consider a planar embedding of T_r in which T is an outer face in it. Hence, by Lemma 3.2, it is enough to give a strong 3-clique coloring of outer cycle T of plane graph T_r. That is obviously possible by coloring the third vertex of T properly.

If $\phi(u) = \phi(v)$, then let $e = uv$ and $T_r = T_r \cdot e$. If there is no triangle consisting of $e = uv$ in T_r, then we consider a strong 3-clique coloring ϕ' of plane graph T_r', such that $\phi'(u) = \phi'(v) = \phi(u) = \phi(v)$. Note that edge $e = uv$ is not maximal clique in G_{r-1}, so it is not maximal clique in G_r. Therefore, the coloring $\phi(x)$ for $x \in G_{r-1}$ and $\phi'(x)$ for $x \in T_r \cdot e$ is a strong 3-clique coloring for G_r. If $e = uv$ is in triangle T in T_r', then we consider a planar embedding of T_r' in which T is an outer face in it. By Lemma 3.2, it is enough to give a 3-clique coloring of outer cycle T of plane graph T_r'. Thus, we give $\phi'(u = v) = \phi(u) = \phi(v)$ and assign two different colors \{1, 2, 3\}$\setminus\{\phi(v)\}$ to other two vertices of T; then we extend ϕ' to a strong 3-clique coloring of T_r'. This implies a strong 3-clique coloring of T_r as desired, and again we obtain a strong 3-clique coloring of G_r.

The rest of this section deals with the proof that, every claw-free and $K_{3,3}$-minor free graph G, different from an odd cycle of order greater than three, is 2-clique colorable. For this purpose, we need two following theorems:

Theorem 3.4 [8] If $G \in F_1 \cup F_2 \cup F_3 \cup F_5 \cup F_6$ or G admits a hex-join, different from an odd cycle of order greater than three, then G is 2-clique colorable.

Theorem 3.5 [8] Every connected claw-free graph G with maximum degree at most seven, not an odd cycle of order greater than three, is 2-clique colorable.

From the proof of Theorem 3.5, we conclude the following corollary:

Corollary 3.6 If G is a connected $K_{3,3}$-minor free graph which admits either twins, or a non-dominating W-join, or a coherent W-join, or a 1-join, or a generalized 2-join, except an odd cycle of order greater than three, then G is 2-clique colorable.

According to Theorem 3.4 and Corollary 3.6, it is sufficient to show that every $K_{3,3}$-minor free graph $G \in F_0 \cup F_4 \cup F_7$ except an odd cycle of order greater than three, is 2-clique colorable. First we show this result for class F_0 (the class of line graphs).

Proposition 3.7 Every $K_{3,3}$-minor free graph in F_0, different from an odd cycle of order greater than three, is 2-clique colorable.
Proof Let G be a $K_{3,3}$-minor free line graph. The assertion is trivial for $|V(G)| \leq 3$. Now, let $|V(G)| \geq 4$. Let $T = T_1, T_2, \ldots, T_r$ be a Wagner sequence of G. We use induction on r. If $r = 1$, then $G = T_1$ is either K_5 or a planar graph. If G is K_5, then the assertion is obvious. If G is a planar graph, then by Theorem 1.2, G has a 2-clique coloring, since every line graph is claw-free.

Now let $r \geq 2$. By the induction hypothesis G_{r-1} and T_r have 2-clique coloring. If G_r is 0-sum or 1-sum of G_{r-1} and T_r, then the result is obvious. Now, we suppose that G_r is 2-sum of G_{r-1} and T_r on edge uv. Note that if uv is an edge cut, then G can be considered as 1-sum of two graphs. So, later on we assume that uv is not an edge cut. If T_r is K_5 and ϕ is a 2-clique coloring of G_{r-1}, then we assign the colors $\phi(u)$ and $\phi(v)$ to vertices u, v in K_5 and give two different colors $\{1, 2\}$ to the other three vertices of K_5.

If T_r is a planar graph, then we have four possibilities:

(i) there exists 2-clique colorings ϕ and ϕ' of G_{r-1} and T_r, such that $\phi(u) \neq \phi(v)$ and $\phi'(u) \neq \phi'(v)$;
(ii) there exists 2-clique colorings ϕ and ϕ' of G_{r-1} and T_r, such that $\phi(u) = \phi(v)$ and $\phi'(u) = \phi'(v)$;
(iii) in every 2-clique colorings ϕ and ϕ' of G_{r-1} and T_r, $\phi(u) \neq \phi(v)$ and $\phi'(u) = \phi'(v)$;
(iv) in every 2-clique colorings ϕ and ϕ' of G_{r-1} and T_r, $\phi(u) = \phi(v)$ and $\phi'(u) \neq \phi'(v)$.

In the first two cases, only by a color renaming, if it is necessary, we obtain a 2-clique coloring for G_r. In the following, without loss of generality we consider the case (iii) and show that it is impossible:

The assumption (iii) concludes that vertex u (and v) in T_r belongs to a maximal clique C_u (and C_v) such that in every 2-clique coloring of T_r, $C_u \setminus \{u\}$ (and $C_v \setminus \{v\}$) is monochromatic. Hence, $u \notin C_v$ and $v \notin C_u$. This implies that, u has a non-neighbor vertex in C_v, say v', also v has a non-neighbor vertex in C_u, say u'. Moreover, assumption (iii) implies that uv is a maximal clique in G_{r-1}. Thus, there exist vertex $u'' \in N_{G_{r-1}}(u)$ that $u'' \notin N_{G_{r-1}}(v)$ (or $v'' \in N_{G_{r-1}}(v)$ that $v'' \notin N_{G_{r-1}}(u)$). Hence, edge uv among edges uu' and uu'' (or vv' and vv'') is a claw in G_r, that is a contradiction.

If in the operation 2-sum, the edge uv is deleted, then by the following argument, we could change the coloring of vertices in T_r such that $\phi'(u) \neq \phi'(v)$, that contradicts the assumption (iii). Note that since uv is not an edge cut in G_{r-1} and T_r, there are shortest (u, v)-paths $P : u_0 = uu_1 \ldots uu_s = v$ in T_r/uv and $Q : v_0 = vv_1 \ldots vv_t = u$ in G_{r-1}/uv. Since G_r is claw-free, vertices u and v in T_r and G_{r-1} belong to only one maximal clique. If $dt_r(u_i) = 2, i = 1, \ldots, s - 1$ and $dG_{r-1}(v_j) = 2, j = 1, \ldots, t - 1$, then by (iii), the length of P is even and the length of Q is odd. This implies G_r is an odd cycle and contradicts our assumption. Thus, assume that $k \in \{0, 1, \ldots, s - 1\}$ is the smallest indices that $dt_r(u_k) \geq 3$ and $w \in N_{T_r}(u_k)$. Since G_r is claw free, we must have $w \in N_{T_r}(u_{k+1})$. Let C be a unique maximal clique consisting of $[u_k, u_{k+1}, w]$ (note that $N_{T_r}(u_k) \subseteq N_{T_r}(u_{k+1})$). If there exists a vertex in C that its color is $\phi(u_k)$, then we swap the colors of vertices on (u, u_k)-path in P. Thus, we will obtain a 2-
clique coloring of T_r such that u and v are assigned different colors. This contradicts the assumption (iii).

Now assume that the color of all vertices in C is different from $\phi'(u_k)$. In this case, if there exists a vertex in C, say $w' \notin u_k$, such that C is a unique maximal clique contains w', then we assign $\phi'(u_k)$ to w' and again swap the colors of vertices on (u, u_k)-path in P. Otherwise, every vertex in C belongs to a maximal clique other than C. In this case, if there exists a vertex $w' \in C$, such that $w' \in C'$, where C and C' are maximal cliques in different blocks of T_r, then we swap the color of vertices in the component of $T_r / \{w'\}$ consisting of C', assign $\phi'(u_k)$ to w' and again swap the colors of vertices on (u, u_k)-path in P. Thus, we will obtain a 2-clique coloring of T_r such that u and v are assigned different colors. This contradicts the assumption (iii).

The remaining case is that all vertices in C belong to some other maximal cliques and all cliques are in one block in T_r. In this case, let l be the smallest indices that there exists a path from u_l to some vertices in $C / \{u_k, u_{k+1}\}$, whih we call (w, u_l)-path $P' : wv_1 \ldots v_m = u_l$. Note that if there is no such a path, then we can consider graph G as a 2-sum of two graphs on edge u_ku_{k+1}, and we are done. If $m = 1$, then since P is a shortest path, we have $l = k + 2$. Therefore, the induced subgraph on vertices $\{u_{k-1}, u_k, u_{k+1}, u_{k+2}, u_{k+3}, w\}$ is one of the nine forbidden structures in line graphs (see [16]) (note that if $k = 0$ or $k = s - 2$, then vertex $u_{k-1} = v_{l-1}$ or $u_{k+3} = v_1$). Hence, $m \geq 2$. Also, w_{m-1} is adjacent to u_{l+1}, since T_r is claw free. Now, by considering the first internal vertices in P' and (u_{k+1}, u_l)-path in P with degree greater than two, we do the similar above discussion in order to change the color of vertices w or u_{k+1} and subsequently change the color of u. Therefore, if we could not do that, then we conclude that pattern of colors in these paths are a, b, a, b, \ldots, where $a, b \in \{1, 2\}$. Now, we have $\phi'(w_{m-1}) = \phi'(u_{l+1}) \neq \phi'(u_l) \text{ or } \phi'(w_{m-1}) \neq \phi'(u_{l+1})$.

In the former case, we swap the color of vertices in path $w_{m-1}w_{m-2} \ldots w_1wu_k \ldots u$. In the latter case, we swap the color of vertices in path $u_mu_{l-1} \ldots u_{k+1}u_{k+2}u_{k+1} \ldots u$. Thus, in both cases, we obtain a 2-clique coloring for T_r such that the vertices u and v receive different colors and this contradicts the assumption (iii). Therefore, the cases (iii) and (iv) are impossible and the proof is complete.

Now we show the 2-clique colorability of $K_{3,3}$-minor free graphs in class F_4. First, we need the following theorem:

Theorem 3.8 [2] For any graph $G \neq C_5$ with $\alpha(G) \geq 2$, we have $\chi_c(G) \leq \alpha(G)$.

Proposition 3.9 Every $K_{3,3}$-minor free graph in F_4 is 2-clique colorable.

Proof Let G be a graph in F_4. Since a graph in F_4 is a line graph or has a singular vertex, by Proposition 3.7 it is sufficient to consider graphs in F_4 with singular vertex. So by the construction of graphs in F_4, we have $\alpha(G) \leq 3$. For case $\alpha(G) = 1$, the statement is obvious. If $\alpha(G) = 2$, then by Theorem 3.8, G is 2-clique colorable; otherwise, $\alpha(G) = 3$. Let x be a singular vertex and $S = \{r, s, t\}$ be a maximum independent set in G. Note that $x \notin S$, and since non-neighbor vertices of x induce a clique, vertices r, s are adjacent to x and t is not adjacent to x.

Now we propose a 2-clique coloring ϕ for G as follows: let $\phi(x) = 1, \phi(t) = 2$ and assign color 1 to every non-neighbor vertex of x except t. Now if x and t have
more than one common neighbor, then assign color 2 to one of them and color 1 to the other vertices; otherwise, assign color 1 to their common neighbor. Finally, assign color 2 to the other adjacent vertices to \(x \). It is easy to see that this assignment is a 2-clique coloring of \(G \).

Finally, we show the 2-clique colorability of \(K_{3,3} \)-minor free graphs in class \(F_7 \).

Proposition 3.10 Every \(K_{3,3} \)-minor free graph in \(F_7 \) is 2-clique colorable.

Proof Let \(G \) be a graph in \(F_7 \). Since \(G \) is an antiprismatic, \(\bar{G} \) is prismatic. If \(\bar{G} \) has no triangle, then \(\alpha(G) = 2 \), and by Theorem 3.8, is 2-clique colorable. Now let \(T = [uvw] \) be a triangle in \(\bar{G} \), and \(S_1 = N_{\bar{G}}(v) \setminus \{u, w\} \), \(S_2 = N_{\bar{G}}(u) \setminus \{v, w\} \) and \(S_3 = N_{\bar{G}}(w) \setminus \{u, v\} \) be a partition of vertices \(V(G) \setminus \{v, u, w\} \).

Liang et al. in [8] prove that if

1. \(|S_i| = 0 \) for some \(i = 1, 2, 3 \), then \(G \) has a 2-clique coloring.
2. \(|S_i| = 1 \) for some \(i = 1, 2, 3 \), then \(G \) has a 2-clique coloring.
3. there is an edge \(xy \) in \(\bar{G} \) such that for \(i \neq j \in \{1, 2, 3\} \), \(x \) is an isolated vertex in \(\bar{G}[S_i] \) and \(y \) is an isolated vertex in \(\bar{G}[S_j] \), then there exists a 2-clique coloring of \(G \).
4. there exist \(i \neq j \in \{1, 2, 3\} \) such that \(S_i \cup S_j \) is an independent set in \(\bar{G} \), then \(G \) has a 2-clique coloring.

In the following for the remaining cases, we provide a 2-clique coloring for \(G \) or we show that \(G \) is \(K_{3,3} \)-minor that is a contradiction. Let \(S_1 = \{v_1, v_2\} \) and \(S_2 = \{u_1, u_2\} \) and \(S_3 = \{w_1, w_2\} \). There are \(i \neq j, i, j \in \{1, 2, 3\} \), say \(i = 1, j = 2 \), such that \(v_1 \) is adjacent to \(v_2 \) in \(\bar{G} \) and \(u_1 \) is adjacent to \(u_2 \) in \(\bar{G} \); otherwise by (iii) or (iv), we have \(\chi_c(G) \leq 2 \). Hence, we have triangles \([uu_1u_2]\) and \([vv_1v_2]\) in \(\bar{G} \). Since \(\bar{G} \) is a prismatic \(v_1, v_2, w_1, w_2 \) have a unique neighbor in \([uu_1u_2]\) and \(u_1, u_2, w_1, w_2 \) have a unique neighbor in \([vv_1v_2]\). Thus, \([u_1, u_2, v_1, v_2]\) induces a cycle in \(\bar{G} \) because, otherwise, for instance if \(u_1 \) and \(u_2 \) both are adjacent to \(v_1 \), then there exist two neighbors for \(u \) in triangle \([u_1u_2v_1]\). Without loss of generality, assume that \(u_1v_1 \) and \(u_2v_2 \) are edges in \(\bar{G} \). That means, \(u_1v_2 \) and \(u_2v_1 \) are edges in \(G \).

Now each two vertices \(w_1 \) and \(w_2 \) have unique neighbor in \([uu_1u_2]\) and \([vv_1v_2]\). If both vertices \(w_1 \) and \(w_2 \) are adjacent to \(u_1 \) (or \(u_2 \)) and \(v_1 \) (or \(v_2 \)) in \(\bar{G} \), then there exists two neighbors for \(w_2 \) in triangle \([v_1u_1w_1]\) (or \([v_2u_2w_1]\)) that contradicts \(\bar{G} \) is prismatic. If vertices \(w_1 \) and \(w_2 \) are both adjacent to \(u_1 \) (or \(u_2 \)) and \(v_2 \) (or \(v_1 \)) in \(\bar{G} \), then \(G \) has a \(K_{3,3} \)-minor, on vertices \([w, w_1, w_2; u, v, v_1]\) (or \([w, w_1, w_2; u, v, v_2]\)). Note that if \(w_1 \) is adjacent to \(w_2 \) in \(\bar{G} \), then we have triangle \([ww_1w_2]\) and since \(\bar{G} \) is prismatic, vertices \(w_1 \) and \(w_2 \) cannot be both adjacent to one vertex of \([v_1, v_2]\) or \([u_1, u_2]\). If \(w_1 \) is adjacent to \(u_1 \) (or \(u_2 \)) and \(v_1 \) (or \(v_2 \)) and \(w_2 \) is adjacent to \(u_2 \) (or \(u_1 \)) and \(v_2 \) (or \(v_1 \)) in \(\bar{G} \), then \(G \) has a \(K_{3,3} \)-minor, on vertices \([w, w_1, w_2; u, v, v_2]\) (or \([w, w_1, w_2; u, v, v_1]\)). Hence, all cases above contradict that \(G \) is \(K_{3,3} \)-minor free or \(\bar{G} \) is prismatic. Thus, it is enough to consider the two following remaining cases:

- \(w_1 \) is adjacent to \(u_1 \) and \(v_2 \), and \(w_2 \) is adjacent to \(u_2 \) and \(v_1 \) in \(\bar{G} \) (Fig. 1b shows graph \(G \)).
- \(w_1 \) is adjacent to \(u_2 \) and \(v_1 \), and \(w_2 \) is adjacent to \(u_1 \) and \(v_2 \) in \(\bar{G} \) (Fig. 1a shows graph \(G \)).
In both above cases G is a claw free planar graph and by Theorem 1.2 is 2-clique colorable (in Fig. 1, and the dashed lines show the edges that may exist or not exist in G).

Finally, let $|S_i| \geq 3$ for some $i = 1, 2, 3$, say $|S_1| \geq 2$, $|S_2| \geq 2$ and $S_3 = \{w_1, w_2, w_3\}$. Since such graphs contain the graphs with $|S_i| \leq 2$, $i = 1, 2, 3$ as subgraph, we only need to consider graphs that contains one of the two graphs shown in Fig. 1. By case (iv) there are $i \neq j \in \{1, 2, 3\}$ such that $G[S_i]$ and $\overline{G}[S_j]$ both are not independent. Liang et al. in [8] show that $\overline{G}[S_i]$, $i \in \{1, 2, 3\}$, is not path and triangle. So we need to consider the case that $[uu_1u_2]$ and $[vv_1v_2]$ are triangles in \overline{G}, and $v_1w_3 \in E(\overline{G})$ or $v_2w_3 \in E(\overline{G})$. This implies G has a $K_{3,3}$-minor, on vertex set $\{w, w_1, w_2; u, v, v_2\}$ or $\{w, w_1, w_2; u, v, v_1\}$, respectively. Note that, when $[uu_1u_2]$ and $[ww_1w_2]$ are triangles in \overline{G}, the proof is similar. Therefore, when $|S_i| \geq 3$ for some $i = 1, 2, 3$, G is a $K_{3,3}$-minor, that is a contradiction. □

By Theorem 3.4, Corollary 3.6 and Propositions 3.7, 3.9, 3.10, the main result in this section is proved.

Theorem 3.11 If G is claw-free and $K_{3,3}$-minor free graph except an odd cycle of order greater than three, then G is 2-clique colorable.

References

1. Andreae, T., Schughart, M., Tuza, Z.: Clique-transversal sets of line graphs and complements of line graphs. Discrete Math. 88(1), 11–20 (1991)
2. Bacsó, G., Gravier, S., Gyárfás, A., Preissmann, M., Sebo, A.: Coloring the maximal cliques of graphs. SIAM J. Discrete Math. 17(3), 361–376 (2004)
3. Bacsó, G., Tuza, Z.: Clique-transversal sets and weak 2-colorings in graphs of small maximum degree. Discrete Math. Theor. Comput. Sci. 11(2), 15–24 (2009)
4. Chudnovsky, M., Seymour, P.: Claw-free graphs. IV. Decomposition theorem. J. Combin. Theory Ser. B 98(5), 839–938 (2008)
5. Défossez, D.: Complexity of clique-coloring odd-hole-free graphs. J. Graph Theory 62(2), 139–156 (2009)
6. Duffus, D., Sands, B., Sauer, N., Woodrow, R.E.: Two-colouring all two-element maximal antichains. J. Combin. Theory Ser. A 57(1), 109–116 (1991)
7. Kratochvíl, J., Tuza, Z.: On the complexity of bicoloring clique hypergraphs of graphs. J. Algorithms 45(1), 40–54 (2002)
8. Liang, Z., Shan, E., Kang, L.: Clique-coloring claw-free graphs. Graphs Combin. 32(4), 1473–1488 (2016)
9. Mohar, B., Skrekovski, R.: The Grötzsch theorem for the hypergraph of maximal cliques. Electron. J. Combin. 6, Research Paper 26 (1999)
10. Mycielski, J.: Sur le coloriage des graphs. Colloq. Math 3, 161–162 (1955)
11. Shan, E., Kang, L.: Coloring clique-hypergraphs of graphs with no subdivision of K_5. Theoret. Comput. Sci. 592, 166–175 (2015)
12. Shan, E., Liang, Z., Kang, L.: Clique-transversal sets and clique-coloring in planar graphs. Eur. J. Combin. 36, 367–376 (2014)
13. Thomas, R.: Recent excluded minor theorems for graphs. Lond. Math. Soc. Lect. Note Ser. 1, 201–222 (1999)
14. Wagner, K.: Über eine Eigenschaft der ebenen Komplexe. Math. Ann. 114(1), 570–590 (1937)
15. Wichianpaisarn, T., Uiyyasathian, C.: Clique-chromatic numbers of claw-free graphs. East West J. Math. 15(2), 152–157 (2013)
16. Beineke, L.W.: Characterizations of derived graphs. J. Combin. Theory 9(2), 129–135 (1970)
17. Bondy J.A., Murty U.S.R.: Graph theory. Grad. Texts in Math (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.