Increased hole mobility in anti-ThCr$_2$Si$_2$-type La$_2$O$_2$Bi co-sintered with alkaline earth metal oxides for oxygen intercalation and hole carrier doping

Kota Matsumoto,a Hideyuki Kawasoko,a Noriaki Kimurab and Tomoteru Fukumuraa,c

a Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
b Department of Physics, Graduate School of Science; Center for Low Temperature Science, Tohoku University, Sendai 980-8578, Japan.
c Advanced Institute for Materials Research and Core Research Cluster, Tohoku University, Sendai 980-8577, Japan.

* tomoteru.fukumura.e4@tohoku.ac.jp

Metallic anti-ThCr$_2$Si$_2$-type RE$_2$O$_2$Bi ($RE =$ rare earth) with Bi square nets show superconductivity while insulating La$_2$O$_2$Bi shows high hole mobility, by expanding the c-axis length through oxygen intercalation. In this study, alkaline earth metal oxides (CaO, SrO, and BaO) were co-sintered with La$_2$O$_2$Bi. CaO and BaO served as oxygen intercalants without incorporation of Ca and Ba in La$_2$O$_2$Bi. On the other hand, SrO served as not only oxygen intercalant but also hole dopant via Sr substitution with La in La$_2$O$_2$Bi. The oxygen intercalation and hole doping resulted in expansion of the c-axis length, contributing to improved electrical conduction. In addition, the hole mobility was enhanced up to 150 cm2/Vs in La$_2$O$_2$Bi, which almost doubles the mobility in previous study.

Introduction

Square net compounds attract a long-standing interest in broad fields of material science. Recently, Bi square net compounds have been extensively studied due to their fascinating electronic properties such as Dirac/Weyl fermion in AMnBi$_2$ ($A =$ alkaline earth or rare earth) and superconductivity in antiferromagnetic CeNi$_2$Bi$_2$. Bi square net compounds are also expected to be topological materials owing to the unusual negative valence state for Bi. Anti-ThCr$_2$Si$_2$ type RE$_2$O$_2$Bi ($RE =$ rare earth) consists of conducting Bi$^{2-}$ square nets and insulating RE$_2$O$_3$ layers. The Fermi surface contributed by only Bi 6p orbital represents a principal role of the monatomic Bi square nets in the electronic properties. Intriguingly, the electronic constants are significantly influenced by their lattice constants: metal-insulator transition induced by expanding a-axis length via RE substitution and superconducting transition of metallic RE$_2$O$_2$Bi ($RE =$ Y, Tb, Dy, Er, and Lu) induced by expanding c-axis length via excess oxygen intercalation. Recently, insulating La$_2$O$_2$Bi with the longest a-axis length was transformed into a metallic one with high hole mobility of 85 cm2/Vs by expanding the c-axis length via oxygen intercalation.

In this study, La$_2$O$_2$Bi was co-sintered with alkaline earth metal oxides (CaO, SrO, and BaO). CaO and BaO served as oxygen intercalants, while SrO served as not only oxygen intercalant but also hole dopant via Sr substitution with La. For all the La$_2$O$_2$Bi, the c-axis length was expanded via oxygen intercalation and Sr substitution, contributing to improved electrical conduction. In addition, the hole mobility increased up to 150 cm2/Vs in spite of the polycrystalline form.

Experimental

La$_2$O$_2$Bi and (La,Sr)$_2$O$_2$Bi polycrystals were synthesized by solid-state reaction. La$_2$O$_3$ (99.99%) and CaCO$_3$ (99.99%) powders were heated at 1273–1373 K in air for 10 hours to remove moisture and to decompose CaCO$_3$ into CaO. La (99.9%), La$_2$O$_3$, Bi (99.9%), CaO, SrO (98%), and BaO (99%) powders were mixed and pelletized under 10 MPa in a nitrogen-filled glovebox to form nominal compositions of (La$_{1−x}$AE)$_2$O$_2$Bi ($0 ≤ x <$ 0.20) ($AE =$ Ca, Sr, Ba), which transformed into stoichiometric or oxygen intercalated (La$_{1−x}$AE)$_2$O$_2$Bi after sintering as reported previously. The pellets covered with Ta foils were sintered in evacuated quartz tubes at 773 K for 7.5 hours and then at 1273 K for 10 hours. The sintered products were ground and pelletized under 20 MPa again in the glovebox, followed by the sintering in evacuated quartz tubes at 1273 K for 10 hours. The crystal structures were evaluated at room temperature by X-ray powder diffraction (XRD) using Cu Kα radiation (D8 DISCOVER, Bruker AXS). Rietveld analysis was performed by RIETAN-FP (Ref.16) to identify the crystal phases and their lattice parameters. The crystal structures were drawn with the VESTA. The chemical compositions were evaluated by scanning electron microscope equipped with energy dispersive X-ray spectroscopy (SEM-EDX; S-4300, Hitachi). The transport properties were evaluated by physical property measurement system (PPMS, Quantum Design) and a cryostat equipped with dilution refrigerator (Kelvinox TLM, Oxford).
respectively. For $x_{Ca} = 0.10, 0.20$, and $x_{Ba} = 0.10, 0.20$, respectively. Brown, green, and blue curves denote the measurement data, simulation pattern, and their difference, respectively. (g)-(i) Molar fractions of constituent phases as a function of $x_{Ca} (AE = Ca, Sr, and Ba)$, respectively. (j) and (k) c-axis lengths for La$_2$O$_3$Bi as a function of $x_{Ca} (AE = Ca, Sr, and Ba)$.

Table 1: Crystal structural parameters for La$_2$O$_3$Bi with x_{Ca}, x_{Sr}, and x_{Ba} obtained by Rietveld analyses.

Phase	x_{Ca} = 0.10	x_{Ca} = 0.20	x_{Sr} = 0.03	x_{Sr} = 0.10	x_{Sr} = 0.16	x_{Sr} = 0.20	x_{Ba} = 0.10	x_{Ba} = 0.20
Space group	$I4/mmm$							
a (Å)	4.0876(1)	4.0866(1)	4.0894(2)	4.0902(3)	4.0902(2)	4.0902(3)	4.0902(3)	4.0902(3)
c (Å)	14.0043(6)	14.0060(6)	14.0280(8)	14.0761(13)	14.1013(18)	14.1227(10)	14.0080(6)	14.0101(11)
c/a	3.4261	3.4273	3.4303	3.4419	3.4476	3.4528	3.4252	3.4252
La$_2$O$_3$Bi (mol%)	100	100	100	100	100	100	100	100
La$_2$O$_3$ (mol%)	0	0	0	0	0	0	0	0
Bi (mol%)	0	0	0	0	0	0	0	0
R_{wp}	2.147	2.304	2.275	2.267	1.749	2.267	2.840	2.454
R_s	1.872	1.869	1.863	1.751	1.584	1.780	1.868	1.892
S	1.1471	1.2326	1.2212	1.2949	1.1039	1.2739	1.5205	1.2969

a$m%: molar fraction of the phase, R_{wp}: R-factor, R_s: expected R-factor, S: goodness-of-fit indicator.

Result and discussions

Fig. 1a−f show XRD patterns for a selected series of La$_2$O$_3$Bi co-sintered with each nominal composition x_{Ca}, x_{Sr}, and x_{Ba} = 0.10, 0.20, whereas those with x_{Sr} = 0.03, 0.16 are shown in Fig. S1†. For $x_{Ca} = 0.10, 0.20$, and $x_{Sr} = 0.03, 0.10$, pure La$_2$O$_3$Bi phase was obtained, while impurity phases of La$_2$O$_3$ and Bi were observed for $x_{Sr} = 0.16, 0.20$ and $x_{Ba} = 0.10, 0.20$. These phase fractions as a function of x_{Ca}, x_{Sr}, and x_{Ba} are summarized in Fig. 1g−i. Fig. 1j and k show a- and c-axis lengths as a function of x_{Ca}, x_{Sr}, and x_{Ba}, respectively. The a-axis length was almost constant irrespective of x_{Ca}, x_{Sr}, and x_{Ba} values, while the c-axis length was expanded with increasing x_{Ca}, x_{Sr}, and x_{Ba}. The c-axis length was almost the same for each x_{Ca} and x_{Ba}, and those for each x_{Sr} showed a larger increase in proportion to x_{Sr}. From SEM-EDX measurements, Ca was fully precipitated from La$_2$O$_3$Bi matrix (Fig. S2†), indicating that CaO served as an oxygen intercalant without Ca substitution with La, as was reported in other RE_2O$_3$Bi.\cite{13,14} On the other hand, Sr was not significantly precipitated, but incorporated in La$_2$O$_3$Bi matrix (Fig. S3†), representing homogeneous Sr substitution with La. Therefore, the expansion
in c-axis length in Fig. 1k was explained by oxygen intercalation for La$_2$O$_2$Bi co-sintered with CaO and BaO, and by both oxygen intercalation and Sr substitution with La for La$_2$O$_2$Bi co-sintered with SrO. Crystal structural parameters of all the samples obtained by Rietveld analyses are summarized in Table 1.

The role of AEO in the synthesis of La$_2$O$_2$Bi is summarized in Fig. 2. All AEO serves as an oxidant to intercalate oxygen into La$_2$O$_2$Bi resulting in the longer c-axis length (> 14.00 Å) than those of La$_2$O$_2$Bi in previous study (Fig. 2a),15 in which the excess oxygen was intercalated by controlling the nominal oxygen composition together with significant amounts of impurity phases (Fig. S4† and Table S1†). In case of CaO (Fig. 2b), the phase purity of La$_2$O$_2$Bi was high probably due to Ca evaporation. In case of BaO (Fig. 2c), a large amount of Bi and La$_2$O$_3$ impurity phase was observed possibly due to higher reactivity of BaO than those of CaO and SrO, resulting in the formation of Ba:Bi alloy (Table S215). In case of SrO (Fig. 2d), SrO served also as a hole dopant as described below, although Bi and/or La$_2$O$_3$ impurity phase appeared for high x_{Sr}.

Here, we describe transport properties of La$_2$O$_2$Bi with x_{Ca} = 0.10, 0.20, and x_{Sr} = 0.03, 0.10, which are almost the single phase. La$_2$O$_2$Bi with x_{Ca} = 0.10, 0.20, and x_{Sr} = 0.03, 0.10 showed a lower resistivity at 2–300 K than those of La$_2$O$_{2.08}$Bi and La$_2$O$_{2.20}$Bi reported previously (Fig. 3a),15 in addition to absence of resistivity upturn with decreasing temperature. This result suggests a larger amount of intercalated oxygen in La$_2$O$_2$Bi with x_{Ca} = 0.10, 0.20 and x_{Sr} = 0.03, 0.10 than that in La$_2$O$_{2.08}$Bi, as was exemplified in the longer c-axis length (Fig. 1k). La$_2$O$_2$Bi with x_{Sr} = 0.10 showed the lowest resistivity, indicating hole carrier doping by Sr substitution, in spite of absence of superconducting transition down to 0.07 K (Fig. 3a inset) probably due to significantly lower carrier density of La$_2$O$_2$Bi in comparison with other superconducting RE$_2$O$_3$Bi like Y$_2$O$_3$Bi (1.0 × 1023 cm$^{-3}$ at 100 K).12 Magnetic field dependence of Hall resistivity for La$_2$O$_2$Bi with x_{Ca} = 0.10, 0.20 and x_{Sr} = 0.03, 0.10 at 10 K is shown in Fig. 3b. The Hall resistivity was positively proportional to magnetic field, corresponding to the hole carrier conduction. The similar slope of the Hall resistivity for La$_2$O$_2$Bi with x_{Ca} = 0.10, 0.20, and x_{Sr} = 0.03 to those of La$_2$O$_{2.08}$Bi and La$_2$O$_{2.20}$Bi indicated their similar amounts of hole carrier density, representing that the excess oxygen was not effective carrier dopant, as was discussed in the previous study.15 On the other hand, the smaller slope for La$_2$O$_2$Bi with x_{Sr} = 0.10 was caused by the increased hole carrier density due to Sr substitution with La, as was observed in other layered compounds such as La$_{2−x}$Sr$_x$CuO$_4$ and La$_{1−x}$Sr$_x$NiAsO.18,20

The resistivity and mobility at 10 K are summarized as a function of hole carrier density in Fig. 4a and b, respectively. The resistivity was decreased by co-sintering with CaO or SrO. For the case of CaO, the decrease in resistivity was mainly caused by the enhanced mobility up to 150 cm2V$^{-1}$s$^{-1}$ for La$_2$O$_2$Bi with x_{Ca} = 0.20, while the hole carrier density were similar to those of
La$_2$O$_2$Bi and La$_2$O$_{2.2}$Bi (Fig. 4b).15 This result suggests that excess oxygen served to increase the hole carrier mobility possibly due to the enhanced two-dimensionality of Bi square net.21 For the case of SrO, on the other hand, the lowest resistivity was obtained for La$_2$O$_2$Bi with $x_{\text{Sr}} = 0.10$ by heavy hole carrier doping (4.2×10^{20} cm$^{-3}$) while the hole carrier mobility was similar to those of La$_2$O$_{2.08}$Bi and La$_2$O$_{2.20}$Bi (Fig. 4b).15 Accordingly, there are two approaches to decrease resistivity of La$_2$O$_2$Bi through increasing either carrier mobility or hole carrier density.

Conclusions

In this study, La$_2$O$_2$Bi with longer c-axis length than previous study (Ref.15) was obtained by co-sintering with CaO, SrO, and BaO, which served as the oxygen intercalant. The use of CaO yielded pure phase of La$_2$O$_2$Bi with the enhanced hole mobility up to 150 cm2V$^{-1}$s$^{-1}$ at 10 K. SrO served as not only the oxygen intercalant but also as the hole dopant by substituting La, realizing the higher electric conductivity of La$_2$O$_2$Bi than ever.

Acknowledgements

The authors acknowledge Dr. D. Oka for technical support. This study was supported by JSPS KAKENHI (No. 26105002) and Yazaki Memorial Foundation for Science and Technology.

References

1. W. Tremel and R. Hoffmann, J. Am. Chem. Soc., 1987, 109, 124–140.
2. G. A. Pappion and R. Hoffmann, Angew. Chem. Int. Ed., 2000, 39, 2408–2448.
3. H. Mizoguchi, T. Kamiya and H. Hosono, Solid State Commun., 2012, 152, 666–670.
4. S. Klemenz, S. Lei and L. M. Schoop, Annu. Rev. Mater. Res., 2019, 49, 185–206.
5. J. Park, G. Lee, F. Wolff-Fabris, Y. Y. Koh, M. J. Eom, Y. K. Kim, M. A. Farhan, Y. J. Jo, C. Kim, J. H. Shim and J. S. Kim, Phys. Rev. Lett., 2011, 107, 126402.
6. H. Masuda, H. Sakai, M. Tokunaga, Y. Yamasaki, A. Miyake, J. Shiogai, S. Nakamura, S. Awaji, A. Tsukazaki, H. Nakao, Y. Murakami, T. H. Arima, Y. Tokura and S. Ishiwata, Sci. Adv., 2016, 2, e1501117.
7. S. Borisenko, D. Evtushinsky, Q. Gibson, A. Yaresko, K. Koepernik, T. Kim, M. Ali, J. van den Brink, M. Hoesch, A. Fedorov, E. Haubold, Y. Kushnirenko, I. Soldatov, R. Schäfer and R. J. Cava, Nat. Commun., 2019, 10, 3424.
8. H. Mizoguchi, S. Matsuishi, M. Hirano, M. Tachibana, E. Takayama-Muromachi, H. Kawaji and H. Hosono, Phys. Rev. Lett., 2011, 106, 057002.
9. S. Klemenz, A. K. Hay, S. M. L. Teicher, A. Topp, J. Cano and L. M. Schoop, J. Am. Chem. Soc., 2020, 142, 6350–6359.
10. H. Mizoguchi and H. Hosono, J. Am. Chem. Soc., 2011, 133, 2394–2397.
11. H. Kim, C. J. Kang, K. Kim, J. H. Shim and B. I. Min, Phys. Rev. B, 2016, 93, 125116.
12. R. Sei, S. Kitani, T. Fukumura, H. Kawaji and T. Hasegawa, J. Am. Chem. Soc., 2016, 138, 11085–11088.
13. K. Terakado, R. Sei, H. Kawasaki, T. Koretsune, D. Oka, T. Hasegawa and T. Fukumura, Inorg. Chem., 2018, 57, 10587–10590.
14. R. Sei, H. Kawasaki, K. Matsumoto, M. Arimitsu, K. Terakado, D. Oka, S. Fukuda, N. Kimura, H. Kasai, E. Nishibori, K. Ohoyama, A. Hoshikawa, T. Ishigaki, T. Hasegawa and T. Fukumura, Dalton. Trans., 2020, 49, 3321–3325.
15. K. Matsumoto, H. Kawasaki, H. Kasai, E. Nishibori and T. Fukumura, Appl. Phys. Lett., 2020, 116, 191901.
16. F. Izumi and K. Momma, Solid State Phenom., 2007, 130, 15–20.
17. K. Momma and F. Izumi, J. Appl. Crystallogr., 2011, 44, 1272–1276.
18. T. Lichtenstein, N. D. Smith, J. Gesualdi, K. Kumar and H. Kim, Electrochem. Acta, 2017, 228, 628–635.
19. H. Takagi, B. Batlogg, H. L. Kao, J. Kwo, R. J. Cava, J. J. Krajewski and W. F. Peck, Phys. Rev. Lett., 1992, 69, 2975–2978.
20. L. Fang, H. Yang, P. Cheng, X. Zhu, G. Mu and H. H. Wen, Phys. Rev. B, 2008, 78, 104528.
21. S. Latil and L. Henrard, Phys. Rev. Lett., 2006, 97, 036803.