Algorithms for the Computing Determinants in Commutative Rings *

Gennadi I. Malaschonok

Abstract

Two known computation methods and one new computation method for matrix determinant over an integral domain are discussed. For each of the methods we evaluate the computation times for different rings and show that the new method is the best.

1 Introduction

Among the set of known algorithms for the determinant computation, there is a subset, which allows us to carry out computations within the commutative ring generated by the coefficients of the system. Recently, interest in these algorithms grew due to computer algebra computations. These algorithms may be used (a) to find determinant of the matrix with numerical coefficients, (b) to find determinant of the matrix over the rings of polynomials with one or many variables over the integers or over the reals, (c) to find determinant of the matrix over finite fields and etc.

The first effective method for calculation of the matrix determinant with numerical coefficients was introduced by Dodgson [1]. Further this method was used in [2] – [4]. Another method (one-pass method) was proposed by the author [5]. Here will be proposed more effective combined method for calculation of the matrix determinant over an integral domain.

Let $A = (a_{ij}), i = 1 \ldots n, j = 1 \ldots n$, be the given matrix of order n over an integral domain \mathbb{R}.

$$\delta^k = |a_{ij}|, \quad i, j = 1 \ldots k, \quad k = 1 \ldots n,$$

denote corner minors of the matrix A of order k, δ^k_{ij} denotes minors obtained after a substitution in the minors δ^k of the column i for the column j of the matrix A, $k = 1 \ldots n, i = 1 \ldots k, j = 1 \ldots n.$

We examine these three algorithms, assuming that all corner minors δ^k, $k = 1 \ldots n - 1$, of the matrix A are different from zero and zero divisors. For each of the algorithms we evaluate:

*This is English version of the paper in: Diskretnaya Matematika, 7, No.4, 1995, 68–76.
1. The general computing time, taking into consideration only arithmetic operations and assuming moreover, the execution time for multiplication, division and addition/subtraction of two operands, the first of which is a minor of order \(i \) and the second one, a minor of order \(j \), will be \(M_{ij}, D_{ij}, A_{ij} \) correspondingly.

2. The exact number of operations of multiplications, division and addition/subtraction over the matrix coefficient.

3. The number of operations of multiplication/division (M), when \(R = R[x_1 \ldots x_r] \) is a ring of polynomials with \(r \) variables with real coefficients and only one computer word is required for storing any one of the coefficients.

4. The number of operations of multiplication/division (\(M_Z \)), when \(R = Z[x_1 \ldots x_r] \) is a ring of polynomials with \(r \) variables with integer coefficients and these coefficients are stored in as many computer words as are needed.

5. The number of operations of multiplication/division (\(M_M \)), when \(R = Z[x_1 \ldots x_r] \) is a ring of polynomials with \(r \) variables with integer coefficients, but for computation the modular method is applied, which is based on the remainder theorem.

2 Dodgson’s algorithm

Dodgson’s algorithm [1], [2] consists of \(n - 1 \) steps. In the first step all minors of second order are computed

\[
a_{ij}^2 = a_{11}a_{ij} - a_{1j}a_{i1}, \quad i = 2 \ldots n, \quad j = 2 \ldots m,
\]

which surround the corner element \(a_{11} \). At the \(k \)-th step, \(k = 2 \ldots n - 1 \), and according to the formula

\[
a_{ij}^{k+1} = (a_{kk}^ka_{ij} - a_{ik}^ka_{kj}^k)/a_{k-1,k-1}^{k-1},
\]

\[
i = k + 1 \ldots n, \quad j = k + 1 \ldots m,
\]

all the minors \(a_{ij}^{k+1} \) of order \(k + 1 \) are computed, which are formed by surrounding the corner minor \(\delta^k \) by row \(i \) and column \(j \), that is the minors which are formed by the elements, located at the intersection of row \(1 \ldots k, i \) and of columns \(1 \ldots k, j \).

Obviously, \(a_{n,ij}^n = \delta_{n,ij}^n \), \(j = n \ldots m \), holds.

Corner minors \(\delta^k = a_{kk}^k \), \(k = 1 \ldots n - 1 \), must be different from zero and zero divisors. In order to do so, they can be controlled by choice of the pivot row or column.

Let us evaluate the computing time of the algorithm

\[
T_D = \sum_{k=1}^{n-1} T_k^D.
\]

\[
T_1^D = (n - 1)^2(2M_{11} + A_{22}), \quad T_k^D = (n - i)^2(2M_{k,k} + A_{2k,2k} + D_{2k,k-1}), \quad k = 2 \ldots n - 1.
\]

\(T_k^D \) denote the computing time of the \(k \) step for Dodgson’s algorithm.
3 One-pass algorithm

Dodgson’s algorithm makes zero elements under the main diagonal of the matrix. One-pass algorithm [5] makes diagonalisation of the coefficient matrix minor-by-minor and step-by-step.

This algorithm consists of \(n - 1\) steps. In the first step the minors of the second order are computed

\[
\delta^2_{2j} = a_{11}a_{2j} - a_{21}a_{1j}, \quad j = 2 \ldots n, \quad \delta^2_{1j} = a_{1j}a_{22} - a_{2j}a_{12}, \quad j = 3 \ldots n.
\]

In the \(k\)-th step, \(k = 2 \ldots n - 1\), the minors of order \(k + 1\) are computed according to the formulae

\[
\delta^{k+1}_{k+1,j} = a_{k+1,k+1}\delta^k_{kk} - \sum_{p=1}^k a_{k+1,p}\delta^k_{pj}, \quad j = k + 1 \ldots n,
\]

\[
\delta^{k+1}_{ij} = \frac{\delta^{k+1}_{k+1,k+1}\delta^k_{kk} - \delta^{k+1}_{k+1,j}\delta^k_{i,k+1}}{\delta^k_{kk}}, \quad i = 1 \ldots k, \quad j = k + 2 \ldots n.
\]

In this way, at the \(k\)-th step the coefficients of the first \(k + 1\) rows of the matrix take part. Corner minors \(\delta^k\) can be controlled by the choice of the pivot row or column.

The general computing time of the one-pass algorithm is

\[
T^D_1 = (2n - 3)(2M_{1,1} + A_{2,2}),
\]

\[
T^D_k = (n-k)((k+1)M_{k,1}+kA_{k+1,k+1})+k(n-k-1)(2M_{k,k+1}+A_{2k+1,2k+1}+D_{2k+1,k}),
\]

\(k = 2, \ldots, n - 1\), \(T^D = \sum_{k=1}^{n-1} T^D_k\).

\(T^O_k\) denote the computing time of the \(k\)-step for one-pass algorithm.

4 Combined algorithm

We can get more effective algorithm if we will combine one-pass algorithm (it will be first part) and Dodgson’s algorithm (it will be the second part).

We shall make diagonalisation of the first part (upper part) of the matrix and then we shall make zero elements under the main diagonal of the second part (lower part) of the matrix.

In the first part we will execute \(r - 1\) steps of the one-pass algorithm. In the first step the minors of order 2 are computed

\[
\delta^2_{2j} = a_{11}a_{2j} - a_{21}a_{1j}, \quad j = 2 \ldots n,
\]

\[
\delta^2_{1j} = a_{1j}a_{22} - a_{2j}a_{12}, \quad j = 3 \ldots n.
\]

In the \(k\)-th step, \(k = 2 \ldots r - 1\), the minors of order \(k + 1\) are computed

\[
\delta^{k+1}_{k+1,j} = a_{k+1,k+1}\delta^k_{kk} - \sum_{p=1}^k a_{k+1,p}\delta^k_{pj}, \quad j = k + 1 \ldots n,
\]
Then, in the r-th step, we can compute all minors a_{ij}^{r+1} of the order $r+1$, which are formed by surrounding the corner minor δ^{r}_{rr} of order r by row i and column j ($i > r, j > r$)

$$a_{ij}^{r+1} = a_{i,r+1}^{r} \delta^{r}_{rr} - \sum_{p=1}^{r} a_{i,p}^{r} \delta^{r}_{pj}, i, j = r+1, \ldots, n.$$

In the second part we will execute last $n - r - 1$ steps of Dodgson’s algorithm according to the formula

$$a_{ij}^{k+1} = \frac{a_{kk}^{k}a_{ij}^{k} - a_{ik}^{k}a_{kj}^{k}}{a_{k-1,k-1}^{k}}, k = r + 2 \ldots n - 1, i, j = k + 1, \ldots, n.$$

Obviously, $a_{kk}^{k} = \delta^{k}$, $k = 2 \ldots n$, holds and a_{kk}^{k} is the matrix determinant.

Here we have $n - 3$ different variants of the combined algorithm, because r may be equal to 2, 3, ..., $n - 2$. We will have one-pass algorithm if r will be equal $n - 1$.

The computing time of this algorithm is

$$T = \sum_{k=1}^{n-1} T_{k}$$

$T_{r} = (n - r)^2((r + 1)M_{r,1} + rA_{r+1,r+1}), T_{k} = T_{k}^{O}$ for $k = 1 \ldots r - 1$. $T_{k} = T_{k}^{D}$ for $k = r + 1 \ldots n - 1$. T_{k}^{O} and T_{k}^{D} denote the computing time of the k-th step for one-pass algorithm and Dodgson’s algorithm correspondingly.

5 Evaluation of the quantity of operations over the matrix elements

We have now $n - 1$ different methods, if Dodgson’s method is considered as one of them. And we will evaluate the calculation time for each method.

We begin the comparison of the algorithms considering the general number of multiplications N_{m}^{n}, divisions N_{d}^{n} and additions/subtractions N_{a}^{n}, which are necessary for calculation of the matrix determinant. Moreover, we will not make any assumptions regarding the computational complexity of these operations; that is we will consider that during the execution of the whole computational process, all multiplications of the coefficients are the same, as are the same all divisions and all additions/subtractions.

The quantity of operations, necessary for Combined algorithm with arbitrary r will be

$$\begin{align*}
N_{a}^{r} &= (2n^3 - 3n^2 + n)/6, \\
N_{m}^{r} &= (4n^3 - 4n - 4r^3 + 9r^2n - 6rn^2 - 3rn + 4r)/6, \\
N_{d}^{r} &= (2n^3 - 3n^2 - 5n + 12 - 4r^3 + 9r^2n - 3r^2 - 6rn^2 + 3rn + r)/6.
\end{align*}$$
It is easy to see, the most effective algorithm is combined algorithm with \(r = n/2 \) if \(n \) is odd and \(r = (n + 1)/2 \) if \(n \) is even \((n > 2)\).

Then we can compare all three algorithms

Algorithm	Quantity of operations
Dodgson’s	\(N_m^a \)
One-pass	\((3n^3 - 3n^2)/6 \)
Combined, \(r = (n + v)/2 \)	\((11n^3 - 6n^2 - (8 + 3v)n + 6v)/24 \)
	\(N_d^a \)
	\((n^3 - 3n^2 - 4n + 12)/6 \)
	\((3n^3 - 9n^2 - (18 - 3v)n + 48 - 3v)/24 \)

\(v = 0 \) if \(n \) is odd and \(v = 1 \) if \(n \) is even \((n > 2)\). The quantity of the additions/subtractions \((N^a) \) operations is the same for these three algorithms

\[N_a^D = N_a^O = N_a^C = (2n^3 - 3n^2 + n)/6. \]

If we evaluate quantity of operations, considering only the third power, then we obtain the evaluation \(N_m^D : N_m^O : N_m^C = 16 : 12 : 11, N_d^D : N_d^O : N_d^C = 8 : 4 : 3. \)

If we evaluate according to the general quantity of multiplication and division operations, considering only the third power, then we obtain the evaluation \(12n^3/12 : 8n^3/12 : 7n^3/12. \)

So, according to this evaluation, combined algorithm is to be preferred.

6 Evaluation of the algorithms in the ring \(\mathbf{R}[x_1 \ldots x_s] \)

Let \(\mathbf{R} \) be the ring of polynomials of \(s \) variables over an integral domain and let us suppose that every element \(a_{ij} \) of the matrix \(A \) is a polynomial of degree \(p \) in each variable

\[a_{ij} = \sum_{u=0}^{p} \sum_{v=0}^{p} \sum_{w=0}^{p} a_{uvw}x_1^u x_2^v x_r^w. \]

Then it is possible to define, how much time is required for the execution of the arithmetic operations over polynomials which are minors of order \(i \) and \(j \) of the matrix \(A \)

\[A_{ij} = (jp + 1)^s a_{ij}, \]

\[M_{ij} = (ip + 1)^s (jp + 1)^s (m_{ij} + a_{i+j,i+j}), \]

\[D_{ij} = (ip - jp + 1)^s (d_{ij} + (jp + 1)^s (m_{i-j,j} + a_{ii})). \]

Here we assume, that the classical algorithms for polynomial multiplication and division are used. And besides, we consider that the time necessary for execution of the arithmetic operations of the coefficients of the polynomials is \(m_{ij}, d_{ij}, a_{ij} \), for the operations of multiplication, division and addition/subtraction, respectively, when the first operand is coefficient of the polynomial, which is a minor of order \(i \), and the second - of order \(j \).

Let us evaluate the computing time for each of the \(n-1 \) algorithms, considering that the coefficients of the polynomials are real numbers and each one is stored...
We will assume that $a_{ij} = 0, m_{ij} = d_{ij} = 1, A_{ij} = 0, M_{ij} = i^s j^s p^{2s}, D_{ij} = (i - j)^s j^s p^{2s}, \sum_{k=1}^{n-1} \frac{i^p}{p} = n^{p+1}/(p+1) - n^p/2 + O(n^{p-1})$, and we will consider only the leading terms in n and r:

$$M(r) = 3p^{2s}\left(\frac{2n^{2s+3}}{(2s+1)(2s+2)(2s+3)} - \frac{r^{2s}}{2}\left(\frac{4r^3}{2s+3} - 6r^2\frac{n+s+1}{2s+2} + nr\frac{2n+12s+7}{2s+1} - n^2\right)\right)$$

We have $M^D = M(r)$ for $r = 0, M^O = M(r)$ for $r = n, M^O = M^D(2s+1)/2$. M^O and M^D denote the computing time for one-pass algorithm and Dodgson’s algorithm.

It is easy to see, the most effective algorithm is combined algorithm with $r_{\text{best}} = n/2 - 3s/2 + 2 + O(n^{-1})$. For $n, r >> s > 1$ we obtain $r_{\text{best}} = n/2$.

7 Evaluation of the algorithm in the ring $\mathbb{Z}[x_1 \ldots x_s]$, standard case

As before we suppose that every coefficient of the matrix is a polynomial. However, the coefficients of these polynomials are now integers and each one of these coefficients $a_{ij...w}$ is stored in l computer words. Then, the coefficients of the polynomial, which is a minor of order i, are integers of length il of computing words.

Under the assumption that classical algorithms are used for the arithmetic operations on these long integers, we obtain: $a_{ij} = 2jla, m_{ij} = ij l^2(m + 2a), d_{ij} = (il - jl + 1)(d + jl(m + 2a))$, where a, m, d - are the execution time of the single-precision operations of addition/subtraction, multiplication, and division.

Assuming that $a = 0, m = d = 1$, we obtain the following evaluation of the execution times of polynomial operations: $M_{ij} = ij l^2(ijp^2)^s, D_{ij} = (i - j)^s j^{s+1}l^2 p^{2s}, A_{ij} = 0$.

In this way, the evaluation of the computing time will be the same as that for the ring $\mathbb{R} = \mathbb{R}[x_1, x_2 \ldots x_s]$, if we replace everywhere s by $s + 1$ and p^s by lp^s.

Therefore, the most effective algorithm is combined algorithm with $r_{\text{best}} = n/2 - 3s/2 + 1/2 + O(n^{-1})$. For $n, r >> s > 1$ we obtain $r_{\text{best}} = n/2$.

8 Evaluation of the algorithms in the ring $\mathbb{Z}[x_1 \ldots x_s]$, modular case

Let us evaluate the time for the solution of the same problem, for the ring of polynomials with s variables with integer coefficients $\mathbb{R} = \mathbb{Z}[x_1 \ldots x_s]$, when the modular method is applied – based on the remainder theorem. In this case we will not take into consideration the operations for transforming the problem in the modular form and back again.
It suffices to define the number of moduli, since the exact quantity of operations on the matrix elements for the case of a finite field has already been obtained in section 5.

We will consider that every prime modulus m_i is stored in exactly one computer word, so that, in order to be able to recapture the polynomial coefficients, which are minors of order n, the $n(l + \log(np^3)/2\log m_i)$ moduli are needed, what is easy to see due to Hadamar’s inequality.

Further, we need up moduli for each unknown x_j, which appears with maximal degree np. There are s such unknowns, and therefore, in all, $\mu = psn^2(l + \log(np^3)/2\log m_i)$ moduli are needed.

If we now make use of the table in section 4, denote the time for modular multiplication by m and the time for modular division by d, then not considering addition/subtraction and considering only leading terms in n, we obtain:

$$M_D^M = (16m + 8d)\nu, \quad M_O^M = (12m + 4d)\nu, \quad M_C^M = (11m + 3d)\nu,$$

where $\nu = \mu n^3/3$.

9 Conclusion

We see, Dodgson’s method is better than the one-pass method for non-modular computation in polynomial rings, and one-pass method is better than Dodgson’s method in other cases, but combined method with $r = n/2$ is the best in all cases.

References

[1] C. L. Dodgson. Condensation of determinants, being a new and brief method for computing their arithmetic values, Proc. Royal Soc. Lond. A. 15, 1866, 150–155.

[2] F. V. Waugh, P. S. Dwyer. Compact computation of the inverse of a matrix, The Annals of Math. Statistics, V.16, N 3, 1945, 256 - 271.

[3] E. H. Bareiss. Sylvester’s Identity and Multistep Integer-Preserving Gaussian Elimination, Math. Comp. 22 (103), 1968, 565–578.

[4] G. I. Malaschonok. On the solution of a linear equation system over commutative ring, Math. Notes of the Acad. Sci. USSR, Vol. 42, N.4, 1987, 543–548.

[5] G. I. Malaschonok. A new solution method for linear equation systems over the commutative ring, Int. Algebraic Conf., Theses on the ring theory, algebras and modules, Novosibirsk, Aug. 21-26, 1989, 82.