Should vitamin B\textsubscript{12} status be considered in assessing risk of neural tube defects?

Anne M. Molloy
School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
Address for correspondence: Anne M. Molloy, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Room 5.07, Pearse Street, Dublin 2, Ireland. amolloy@tcd.ie

There is a strong biological premise for including vitamin B\textsubscript{12} with folic acid in strategies to prevent neural tube defects (NTDs), due to the closely interlinked metabolism of these two vitamins. For example, reduction of B\textsubscript{12} deficiency among women of reproductive age could enhance the capacity of folic acid to prevent NTDs by optimizing the cellular uptake and utilization of natural folate cofactors. Vitamin B\textsubscript{12} might also have an independent role in NTD prevention, such that adding it in fortification programs might be more effective than fortifying with folic acid alone. Globally, there is ample evidence of widespread vitamin B\textsubscript{12} deficiency in low- and middle-income countries, but there is also considerable divergence of vitamin B\textsubscript{12} status across regions, likely due to genetic as well as nutritional factors. Here, I consider the evidence that low vitamin B\textsubscript{12} status may be an independent factor associated with risk of NTDs, and whether a fortification strategy to improve B\textsubscript{12} status would help reduce the prevalence of NTDs. I seek to identify knowledge gaps in this respect and specify research goals that would address these gaps.

Keywords: vitamin B\textsubscript{12}; cobalamin; folic acid; folate; maternal blood

Introduction

Evidence that folic acid can prevent neural tube defects (NTDs) is based on consistent results from well-conducted randomized trials, backed up by evidence that food fortification with folic acid can lower the prevalence of NTDs at the population level.1 In sharp contrast to this, the available evidence relating to its metabolic partner vitamin B\textsubscript{12} is mainly confined to observational data on blood concentrations of the vitamin in NTD-affected women, partially because vitamin B\textsubscript{12} was never assessed as a factor in early studies of the topic. This is unfortunate considering current knowledge of the extent of B\textsubscript{12} deficiency worldwide and the likelihood that B\textsubscript{12} may play a role in NTD prevention along with folic acid.

Evidence supporting biological plausibility on a link between vitamin B\textsubscript{12} status and risk of NTDs

Vitamin B\textsubscript{12} is an enzymic cofactor for only two biochemical reactions in humans. One of these enzymes (methylmalonylCoA mutase) is involved in catabolism of some fats and amino acids and is not linked to folate metabolism. The metabolic interaction between folate and vitamin B\textsubscript{12} is positioned at the other B\textsubscript{12}-dependent enzyme—methionine synthase—which converts homocysteine to methionine using 5-methyl tetrahydrofolate (methyl folate) as the methyl donor.2 The continuous recycling of homocysteine to methionine through this enzyme is an essential cellular reaction wherein folate-derived methyl groups are transferred to a multitude of products, including methyl-DNA and methylated proteins that contribute to gene expression and gene silencing mechanisms (i.e., epigenetic control of cellular functions). One current hypothesis for the role of folate in neural tube formation relates to the importance of such epigenetic processes in orchestrating the flow of molecular processes that must be achieved during neural tube closure.3,4 Vitamin B\textsubscript{12}-dependent methionine synthase is also the checkpoint reaction through which folate molecules are incorporated into cells, because
folate in the circulation exists predominantly as methyl folate. Once within the cell, having released the methyl group to homocysteine through the methionine synthase reaction, folate cofactors then can function in the transfer of other one-carbon groups (e.g., formyl- or methylene-) to nucleotide molecules destined for synthesis of DNA (i.e., cell proliferation) or to other molecular products.

The other main hypothesis relating folates to neural tube formation is based on the requirement for folate in DNA synthesis and cell proliferation. A portion of the formyl- or methylene folate derivatives is also converted to the methyl-form, which is channeled through the methionine synthase reaction for methionine regeneration, as noted above. The methyl folate trap hypothesis was proposed in 1972 to explain the similarity of some clinical features of folate and vitamin B\textsubscript{12} deficiencies. In this scenario, impaired methionine synthase results in a cellular accumulation of the substrate methyl folate, which does not have an alternative metabolic outlet. The cell therefore becomes functionally deficient in folates, and folate-dependent DNA synthesis is compromised, leading to the classic megaloblastic anemia that characterizes folate and B\textsubscript{12} deficiency. It is important to note that folic acid can bypass vitamin B\textsubscript{12}-dependent methionine synthase to enter the cellular folate pool and resume folate functions in relation to DNA synthesis, but it cannot contribute to the provision of methyl groups for methylation functions described above. An awareness of this intertwined biochemistry of folate and vitamin B\textsubscript{12} underlies the strong biological premise for considering vitamin B\textsubscript{12} as well as folic acid in strategies for NTD prevention.

Historical perspective in relation to vitamin B\textsubscript{12} and NTD prevention studies

The studies on vitamin deficiencies and NTDs conducted by Smithells and coworkers in the 1970s were relatively inclusive within the framework of the type of micronutrient deficiency that was expected to be present in young women in nutritionally deprived social groups. Concentrations of serum vitamins A, riboflavin, B\textsubscript{6}, and folate, plus red cell folate (RCF) and white blood cell ascorbic acid, were measured in the blood of NTD-affected women in the study by Smithells et al. in 1976. Although folate deficiency was a top candidate for causality, Smithells always speculated that one or more vitamins could also be involved. The preparation (Pregnavite Forte F) that he used in his follow-up intervention trials to test the hypothesis that preconceptional vitamin supplementation would prevent NTDs contained eight vitamins and was taken three times a day to deliver a daily dose of vitamin A (4000 IU), vitamin D\textsubscript{2} (400 IU), vitamin C (40 mg), and the B vitamins thiamine (1.5 mg), riboflavin (1.5 mg), nicotinamide (15 mg), pyridoxamine (1 mg), folic acid (0.36 mg), ferrous sulfate (252 mg), and calcium phosphate (480 mg). The results showed a highly protective effect of treatment, with an approximate sevenfold reduction in recurrence rate among fully treated women. For completeness, his group also measured changes in maternal status of the vitamins after intervention and demonstrated substantial improvements in the blood vitamin profiles. For example, they observed a doubling of RCF (from 566 to 1083 nmol/L) and a tripling of serum folate (from 19 to 59 nmol/L) after intervention. The subsequent Medical Research Council (MRC) randomized controlled trial included a similar cocktail of vitamins (B\textsubscript{1}, B\textsubscript{2}, B\textsubscript{3}, B\textsubscript{6}, A, C, and D plus folic acid). While vitamin B\textsubscript{12} was not included for the reasons given below, it is worth noting that the MRC trial did include the other B vitamins that are involved in folate-dependent one-carbon metabolism: B\textsubscript{6} (pyridoxal), B\textsubscript{12} (riboflavin), and B\textsubscript{3} (as nicotinamide). The multivitamin combination without folic acid had no protective effect (relative risk 0.80; 95% confidence interval (CI) 0.32–1.72); ruling out these vitamins as important factors. This was an important guide to future research directions.

The link between folate and vitamin B\textsubscript{12} was understood at the time of Smithells’ work in the mid-1970s. However, vitamin B\textsubscript{12} deficiency was thought to be confined mainly to persons with pernicious anemia—a condition that was known to be largely prevalent in older persons and extremely rare in women of reproductive age. Indeed, several reports documenting case series suggested that pernicious anemia was incompatible with pregnancy. Pernicious anemia remains a rare and serious disease that is not particularly relevant to the occurrence of NTDs. However, it is now known that vitamin B\textsubscript{12} deficiency (usually defined as serum total vitamin B\textsubscript{12} < 148 pmol/L) is a problem of global scale, affecting all populations studied. It is mainly due to inadequate intake or intestinal parasitic infections and reportedly present in up to 70% of adolescents.
and women of reproductive age in low-income and predominantly vegetarian countries. This means that millions of women enter pregnancy with inadequate vitamin B₁₂ tissue stores to allow for optimal folate functionality. Pregnancy-related changes in serum total vitamin B₁₂ concentrations occur (and are discussed later), but the critical point is that the neural tube closes in the first 21–28 days of pregnancy, therefore the nonpregnant vitamin B₁₂ status that exists immediately before a woman enters pregnancy is the key factor in relation to NTDs.

What evidence exists for an association of B₁₂ with NTDs?

The first suggestion in the literature of an association between NTDs and vitamin B₁₂ was a short letter in *Lancet* by Schorah et al. in 1980. The women described by Schorah et al. were a subset of those studied by Smithells et al., who reported lower RCF concentrations in women who were pregnant with an NTD-affected fetus compared with unaffected controls. In a follow-up study, Schorah et al. reported that of six NTD mothers and 48 control mothers who had serum total vitamin B₁₂ concentrations measured in early pregnancy, three mothers of anencephalic infants had the lowest vitamin B₁₂ concentrations (all less than 185 pmol/L compared with a mean (95% range) of 308 (166–5460) pmol/L in pregnant controls). The authors proposed that a more marked vitamin depletion might be associated with more severe NTDs. This study was too small to form any opinion on the relevance of low vitamin B₁₂ in relation to NTDs, and at the time Smithells was well into his intervention study with Pregnavite Forte supplements that did not contain vitamin B₁₂ but that demonstrated an approximate sevenfold reduction in NTD recurrence rates compared with women who did not take these supplements.

Case–control studies

In the following two decades, more than 20 studies addressed the question of whether vitamin B₁₂ status might be of relevance to NTD prevention (Table 1). In some of these studies, blood was taken postpartum or at a time for case mothers that was remote from the affected pregnancy. This was not unreasonable in the context of the leading hypothesis to explain the cause of NTDs and the efficacy of folic acid: that an underlying genetic susceptibility in mothers, fathers, or the developing fetus, exacerbated by low nutritional status, acts to influence folate-sensitive metabolic processes at the time of neural tube closure. Such a genetic susceptibility might be observed in altered vitamin status in blood or altered plasma total homocysteine (a sensitive biomarker of both folate and vitamin B₁₂ status), at any time in an individual’s life. Indeed, because of its known toxicity and reactivity, an elevation in homocysteine at the neural crest was an early hypothesis proposed to explain the failure of neural tube closure, and both folate and vitamin B₁₂ were measured as factors that, if inadequate, might cause elevation of homocysteine.

Most of the earlier studies included relatively few case mothers and were probably underpowered to detect the small differences in serum vitamin B₁₂ or in plasma total homocysteine that might have been expected (Table 1). However, several studies reported elevated homocysteine in plasma and amniotic fluid. It is of interest that six studies examined concentrations of vitamin B₁₂ or its binding proteins in amniotic fluid, all around 20 weeks of gestation (Table 2). The numbers were small, but nevertheless five reported significantly lower concentrations of total vitamin B₁₂ or vitamin B₁₂ bound to its transport protein transcobalamin (TCII) in pregnancies affected by NTDs. In some of these studies, vitamin B₁₂ in serum was not significantly changed. Although these reports provided intriguing new data on the role of vitamin B₁₂ in relation to NTDs, there is a high risk of confounding because of poor case–control matching. Publication bias is also extremely likely in the studies reported over this period given the lack of negative reports despite low power to detect effects.

The best evidence for an involvement of low vitamin B₁₂ status comes from the large population-based studies (>80 cases) that could assess separate and combined risk with low blood folate status. There are six such publications, and, importantly, they cover a range of ethnicities, including Irish, Chinese, predominately Hispanic (Mexico–Texas border), Canadian (mixed population), Tunisian, and Finnish. All of them, apart from the study in Finland, found positive associations, in that they linked low maternal serum vitamin B₁₂ status to increased risk of NTDs, but it may be relevant that the negative study was conducted in a population in which the average serum B₁₂ concentration of

*Ann. N.Y. Acad. Sci. 1414 (2018) 109–125 © 2018 The Authors. *Annals of the New York Academy of Sciences* published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.*
Table 1. Studies that examined maternal serum or plasma vitamin B₁₂ status in relation to neural tube defects

Study	Country	Sample	Time of sampling	Cases/controls (n)	Cases/controls concentrations pmol/L	Significant difference: P value (if given)
Nasri et al.	Tunisia	Serum B₁₂	2nd–3rd trimester	75/75	218/264 (median)	P = 0.009
Molloy et al.	(three cohorts)	Serum B₁₂	15 weeks median	95/265	155/179 (median)	P = 0.003
	(1) Ireland (1983–1984)	Serum B₁₂	15 weeks median	76/222	180/221 (median)	P = 0.024
	(2) Ireland (1986–1990)	Plasma B₁₂	15 weeks median	107/414	199/232 (median)	P = 0.003
Zhang et al.	China (Shanxi) (2004–2005)	Serum B₁₂	20 weeks median	84/110	73/91 (geometric mean)	P < 0.01
Ray et al.	Canada (1993–2004)	Serum holo-transcobalamin	15–20 weeks	89/422	68/81 (geometric mean)	Yes; OR 2.9 (95% CI: 1.2–6.9)
Gaber et al.	Egypt	Serum B₁₂	Not pregnant	27/25	207/258 (median)	P = 0.025
Gaber et al.	Egypt	Serum B₁₂	Second trimester	9/10	185/240 (median)	P = 0.003
Suarez et al.	Texas–Mexico border (1995–2000)	Serum B₁₂	Postpartum	225/378	317/367 (median)	P = 0.001
Afman et al.	Netherlands	Plasma B₁₂	Not pregnant	46/73	220/220 (median)	No
Afman et al.	Netherlands	Plasma holo-transcobalamin	Not pregnant	46/73	41/50 (median)	No
Wilson et al.	Canada (pre-1998)	Serum B₁₂	Not pregnant	58/89	298/350 (mean)	P = 0.05
Wright et al.	Northern Ireland	Serum B₁₂	Postpartum	15/15	148/218 (mean)	P = 0.004
van der Put et al.	Netherlands	Serum B₁₂	Not pregnant (includes men)	60/94	245/255 (median)	No
Wald et al.	UK MRC Trial (International)	Serum B₁₂	12 weeks	18/75	170/177 (mean)	P = 0.05
Adams et al.	USA	Serum B₁₂	Second trimester	33/132	297/319 (median)	No
Steegers-Theunissen et al.	Netherlands	Serum B₁₂	Not pregnant	41/50	198/195 (mean)	No
Steegers-Theunissen et al.	Netherlands	Serum B₁₂	Second trimester	27/31	219/238 (mean)	No
Wild et al.	UK	Serum B₁₂	Not pregnant	29/29	331/361 (median)	No
Mills et al.	Finland (1983–1989)	Serum B₁₂	6–16 weeks	78/150	356/384 (mean)	No; OR 1.05 (95% CI: 0.9–1.2)
Economides et al.	Oxford, UK	Serum B₁₂	14–21 weeks	8/24	151/170 (median)	No
Yates et al.	Scotland, UK (1980s)	Serum B₁₂	Not pregnant	20/20	221/236 (mean)	No
Molloy et al.	Ireland (1980–1982)	Serum B₁₂	15 weeks median	28/363	219/204 (median)	No
Schorah et al.	UK (1970–1972)	Serum B₁₂	<13 weeks	6/48	213/308 (mean)	No

participants was higher than in any of the other studies noted in Table 1.34

The studies that showed a significant association between vitamin B₁₂ status and NTD risk were carried out (1) on three Irish early-pregnancy populations before voluntary fortification of foods was common in Ireland;35 (2) on a middle-to-late pregnancy population of high-risk Chinese women in the Luliang mountain region of Shanzi province;36 (3) on a postpartum population of women living on the Texas–Mexico border during the introduction of folic acid fortification in the United States;14 (4) on a postfortification early-pregnancy population of women in Canada;37 and (5) on a population of women attending a national maternity and neonatology center in Tunis that represents all NTD cases observed throughout Tunisia.38 All studies observed significantly lower maternal blood concentrations of vitamin B₁₂ or holoTC (the fraction of vitamin B₁₂ that is transported in the blood circulation on TCII and is destined for tissue uptake). All studies reported
an approximate tripling (or greater) of risk between the lowest and highest quartile or quintile of serum vitamin B\textsubscript{12} or quartile of holoTC (Table 3). Two recent meta-analyses were carried out on existing data. Both concluded that maternal B\textsubscript{12} deficiency is an important consideration in relation to NTDs, although it must be said that discrepancies and lack of clarity between the data included in the meta-analyses and data reported in the original studies indicate that these meta-analyses were limited in scope. The derived estimates should be interpreted with caution.39,40

Observations from clinical trials

From the above studies, it seems reasonable to assume, albeit based on observational blood data (low-grade evidence), that inadequate maternal vitamin B\textsubscript{12} status is a risk factor for having an NTD-affected pregnancy. Two additional anecdotal comments support this assumption. First, in contrast to the MRC randomized trial noted earlier (which reported six NTD recurrences among 593 women who received folic acid and 21 NTDs among 602 women who did not receive folic acid), vitamin B\textsubscript{12} was included in the daily supplement for the contemporary Hungarian randomized clinical trial that found a protective effect of multivitamins against first occurrence of NTDs.41 This latter trial (in which women received supplements containing 12 vitamins, including 0.8 mg of folic acid and 4 μg vitamin B\textsubscript{12}) appeared to show 100% protection (zero occurrences among 2104 women who received multivitamins compared with six occurrences among 2052 women who received the trace-element placebo). The underlying NTD rate in the Hungarian study population was approximately two per thousand at the time, so finding no NTDs in over 2000 pregnancies seemed to show a greater protective effect than would have been expected, assuming a 70% protective effect for folic acid alone, as recorded in the MRC trial10,41 (although zero occurrences would have been within the CI of a true 70% effect). Therefore, while the result could be due to chance, it is also possible that a portion of the risk reduction was due to an independent or synergistic effect of vitamin B\textsubscript{12} (see further discussion below).

Observations from genetic studies

Second, there is a potential corroboration of the above evidence in studies of genetic factors that might be associated with increased risk of NTDs. To date, the search for genetic polymorphisms that might contribute to the risk of NTDs has had little success in identifying singularly important genes or polymorphisms that confer a major portion of the genetic risk for these birth defects.5,42 The best-described genetic variant in folate metabolism is a single-nucleotide polymorphism within the gene MTHFR (rs1801133, c.677C>T), which is a moderate maternal risk factor for having an NTD-affected pregnancy in some populations,43,44 but apparently not in others.45 Genes involved in vitamin B\textsubscript{12} metabolism, transport, and absorption have also been studied,45–51 and it seems that common genetic variation in genes involved in trafficking of vitamin B\textsubscript{12} may be associated with increased maternal risk of having an NTD-affected pregnancy.51–53 Possibly, the most interesting of these is one report of a strong association between risk of NTD and polymorphisms in the TCII receptor gene (TCblR; CD320) that facilitates holoTC uptake into tissues.53 In this study, the most significant risk factors were two tightly linked rare variants (rs2336573 and rs9426) that were highly significant in a recessive model and were not detected in nearly 1000 controls but were present in eight and seven cases with spina bifida, respectively.53 The variants conferred an approximate sixfold risk to cases;53 however, because of low frequency, it must be said that they are unlikely to contribute greatly to the

Table 2. Studies that examined maternal amniotic fluid vitamin B\textsubscript{12} status in relation to neural tube defects

Study	Country	Time of sampling	Cases/controls (n)	Cases/controls concentrations pmol/L	Significant difference: P value (if given)
Dawson et al.30	USA (>30% Hispanic population)	15–20 weeks	11/29	226/618 (mean)	P < 0.001
Steen et al.31	Georgia, USA	14–18 weeks	16/64	111/399 (mean)	P = 0.02
Steegers-Theunissen et al.26	Netherlands	Second trimester	27/31	481/379 (mean)	No
Weekes et al.32	Alabama, USA	14–22 weeks	8/47	140/600 (mean)	P < 0.001
Economides et al.33	UK	14–21 weeks	8/24	92/207 (median)	P < 0.01
Gardiki-Koudou and Seller29	UK (1982–1987)	15–22 weeks	26/65	110/162 (median)	P < 0.04

Ann. N.Y. Acad. Sci. 1414 (2018) 109–125 © 2018 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.
general risk of NTD in the population. Nevertheless, the study helps to establish the importance of vitamin B₁₂ as a relevant vitamin, and the data are consistent with the notion of impaired vitamin B₁₂ metabolism being a risk factor that might be overcome by folic acid supplementation, depending on whether the primary event that is disrupted during neural tube formation relates to the provision of formyl- or methenyl-groups for DNA synthesis or the provision of methyl-groups for epigenetic signaling events or other methylation reactions (as outlined in the introductory paragraph).

Is the reported effect of vitamin B₁₂ independent of folate?

It has been considered that low levels of vitamin B₁₂ may reflect low levels of folate; however, analysis of both vitamins in the large studies noted above suggests that they are independent risk factors. For example, the studies carried out in the United States during the introduction of folic acid fortification and postfortification in Canada found no increased risk by serum folate status, which was relatively high in both studies (serum folate above 25 nmol/L for cases and controls in the U.S. study and above 30 nmol/L for cases and controls in the Canadian study). In the Canadian study, the researchers calculated an odds ratio of 2.9 (95% CI 1.2–6.9) for serum holoTC in the lowest versus highest quartile in NTD-affected mothers, after adjusting for serum folate and other relevant confounders. They suggested that, in postfortification Canada, about 34% of NTDs could be due to low maternal vitamin B₁₂ status.

Table 3. Odds ratios for effect of low vitamin B₁₂ status on maternal risk of having an NTD-affected pregnancy

Study	Quantile of distribution in controls					
	1	2	3	4	5	
Suarez et al.	B₁₂ (pmol/L)	92–275	276–324	325–404	405–484	485–2021
(3–6 weeks postpartum)	Crude OR [95% CI]	3.0 [1.4–6.3]	1.6 [0.7–3.6]	1.7 [0.8–3.8]	1.1 [0.5–2.6]	Referent
	Case/control (n)	55/37	30/37	32/37	21/37	19/38
Ray et al.	holoTC (pmol/L)	≤55.3	>55.3–84	>84–121	>121	Referent
(15–20 weeks gestation)	Crude OR [95% CI]	2.0 [1.1–3.9]	1.1 [0.6–2.3]	1.0 [0.5–2.1]	Referent	
	d Adjusted OR [95% CI]	2.9 [1.2–6.9]	2.0 [0.8–5.1]	1.1 [0.4–2.9]	Referent	
Zhang et al.	B₁₂ (pmol/L)	<55	≥55	Referent		
(3–41 weeks gestation)	Crude OR [95% CI]	3.7 [1.6–8.7]	Referent			
	b Adjusted OR [95% CI]	5.0 [1.9–12.7]	Referent			
	Case/control (n)	21/9	63/101	Referent		
Molloy et al.	B₁₂ (pmol/L)	<140	140–178	179–221	>221	Referent
(11–20 weeks gestation)	Crude OR [95% CI]	3.2 [1.5–6.8]	2.8 [1.3–6.0]	1.8 [0.8–4.1]	Referent	
	c Adjusted OR [95% CI]	3.1 [1.5–6.7]	2.6 [1.4–5.7]	1.8 [0.8–4.1]	Referent	
Molloy et al.	B₁₂ (pmol/L)	<186	187–232	233–298	>298	Referent
(11–21 weeks gestation)	Crude OR [95% CI]	2.9 [1.5–5.5]	1.4 [0.7–2.9]	1.9 [1.0–3.7]	Referent	
	d Adjusted OR [95% CI]	2.8 [1.4–5.3]	1.3 [0.7–2.8]	1.8 [0.9–3.6]	Referent	
	Case/control (n)	43/103	21/104	28/104	15/103	Referent
Molloy et al.	B₁₂ (pmol/L)	<175	175–221	222–270	>270	Referent
(12–20 weeks gestation)	Crude OR [95% CI]	3.0 [1.4–6.4]	1.5 [0.7–3.4]	1.2 [0.5–2.8]	Referent	
	d Adjusted OR [95% CI]	2.5 [1.1–5.3]	1.6 [0.7–3.6]	1.1 [0.5–2.7]	Referent	
	Case/control (n)	34/55	18/57	12/55	12/55	Referent
Nasri et al.	B₁₂ (pmol/L)	33–230	231–316	317–575	Referent	
(2nd–3rd trimester)	Crude OR [95% CI]	2.6 [1.2–5.7]	1.1 [0.5–2.7]	Referent		
	Case/control (n)	41/25	18/25	16/25	Referent	

a Adjusted for serum folate, anthropometric, and demographic factors.
b Adjusted for anthropometric/demographic factors.
c Adjusted for serum folate.
d Adjusted for red cell folate.
Further evidence of an independent role for vitamin B\textsubscript{12} comes from the studies carried out in Ireland and China on high-risk populations before the implementation of folic acid fortification. In a nested case–control study of folate and vitamin B\textsubscript{12} status in early-pregnancy samples (average 15 weeks of gestation) from 81 Irish women with an NTD-affected pregnancy and 247 pregnant controls, Kirke \textit{et al.} found no interaction between plasma folate and plasma vitamin B\textsubscript{12}.54 Moreover, when assessed simultaneously, having separated risk groups by quartile of folate or vitamin B\textsubscript{12} concentration using control data as the reference cutoffs, the risk increased with decreasing B\textsubscript{12} at each quartile of plasma folate, and the highest odds ratio of an NTD-affected birth was for mothers in the bottom quartile of both plasma folate and plasma vitamin B\textsubscript{12} (5.4 (95% CI 1.2–25.2) using mothers in the top quartile for both vitamins as the reference).34 Zhang \textit{et al.}36 reported results from 89 pregnant case mothers and 122 controls that agree closely with the Irish study above,54 and they also highlight the independent nature of the association of NTDs with low vitamin B\textsubscript{12} status.

A subset of the Kirke \textit{et al.} cohort (76 case and 222 control mothers in whom supplement use could be excluded) was included in the later Irish study that specifically examined serum vitamin B\textsubscript{12} status in relation to the risk of NTDs in three independent cohorts.35 In that study, two of the independent cohorts consisted of women currently undergoing an NTD-affected pregnancy. The third cohort included women who had previously experienced an NTD-affected pregnancy, but the sample on this occasion was taken during an unaffected pregnancy. These women also had significantly lower B\textsubscript{12} status compared with matched controls, but their median RCF, while lower, was not significantly different (578 versus 659 nmol/L; \textit{P} = 0.079).35 It is difficult to interpret the lower B\textsubscript{12} status in these women, since the pregnancies did not result in NTDs, but one possibility is that an underlying long-term deficiency or inadequacy of vitamin B\textsubscript{12} acts synergistically with folate to precipitate NTDs on a sporadic basis. In other words, low vitamin B\textsubscript{12} status (or a genetic predisposition based on vitamin B\textsubscript{12}-related genetic variability) may confer an underlying risk that is manifested in an NTD-affected pregnancy in combination with low folate status—but sufficiently low folate status on its own could also be sufficient to precipitate an event. This type of gene–nutrient interaction has been speculated in several studies related to NTDs, particularly in relation to the \textit{MTHFR} 677C>T polymorphism.55,56

\textbf{Vitamin B\textsubscript{12}–folate interaction in relation to NTD risk}

One further point relevant to this argument relates to the known intracellular interaction of vitamin B\textsubscript{12} with folate. As noted earlier, vitamin B\textsubscript{12} deficiency results in an intracellular folate deficiency, due to an inability of cells to incorporate new folate molecules from the circulation and a trapping of existing intracellular folates as methyl folate. This is seen clinically as vitamin B\textsubscript{12} deficiency being associated with lower RCF, whereas serum folate may be unchanged or even elevated. Examining this effect in the case of NTDs, Daly \textit{et al.}57 and Crider \textit{et al.}58 observed that risk of having an NTD-affected pregnancy is strongly associated with maternal RCF and that improving RCF concentrations to beyond 906 nmol/L provides optimal protection against having an NTD-affected pregnancy. Because of its interaction with folate, lower vitamin B\textsubscript{12} status in women of reproductive age can act as a constraint toward achieving an RCF concentration that would be optimally protective against NTDs. This is borne out in the Kirke \textit{et al.} study described above, where serum folate and vitamin B\textsubscript{12} were not significantly associated, but the authors observed RCF to be positively associated with vitamin B\textsubscript{12} in cases (\textit{P} = 0.004) but not in controls (\textit{P} = 0.73).54 The authors suggested that there may be a genetic predisposition linked to a folate and B\textsubscript{12} interaction in women who had NTD-affected pregnancies. This type of scenario was recently replicated in a population-based study examining folate and vitamin B\textsubscript{12} status in 937 women of reproductive age in Belize.59 RCF concentrations were examined after stratification by serum B\textsubscript{12} concentration and other adjustment factors. Both folate and vitamin B\textsubscript{12} deficiencies were widespread, and having vitamin B\textsubscript{12} deficiency was shown to be an important obstacle to achieving optimal RCF concentrations.

To summarize, acknowledging that all the data presented above are observational and therefore must be considered low-grade evidence, there is a strong argument to support the notion that low vitamin B\textsubscript{12} status increases maternal risk for having an NTD-affected pregnancy, independent of...
folate, and, in addition, that the known interaction between vitamin B₁₂ and folate can create a synergism in relation to the magnitude of risk. This argument suggests that it would be wise to consider improving vitamin B₁₂ status in conjunction with folic acid intervention to optimize the reduction of NTDs, although it is also possible that risk caused by low B₁₂ could be overcome by supplementation with sufficient folic acid alone. To be specific, if the mechanism of folic acid protection against NTDs is primarily related to DNA synthesis and cell proliferation, folic acid, when converted to tetrahydrofolate (THF), could maintain a flow of one-carbon units to purines and pyrimidines even in the situation of low vitamin B₁₂ status, where methionine synthase is functional but not at an optimal level, and there is an increased flux of one-carbon units to methyl folate (as noted earlier in the section on biological plausibility). Such a possibility does not suggest that very high doses of folic acid would be required but highlights the point that the concept of sufficient folic acid has not been addressed in any study and may vary on the basis of both nutrient and genetic factors.

Is it likely that adding vitamin B₁₂ in fortification programs would further reduce NTDs?

In addition to the comments raised in the previous section, there are other relevant data from the large prospective studies noted above that help to address the likely utility of adding vitamin B₁₂ to fortification programs. There is a general consistency in the data from the studies noted in Table 3 in terms of the magnitude of risk conferred by low vitamin B₁₂ status, in that none of the studies found a significant progression of risk reduction across the full range of B₁₂ status quantiles. This contrasts with data on RCF status and risk of NTDs. In all the reported vitamin B₁₂–related studies, it appears that risk is constrained to blood concentrations that would be considered deficient or marginally deficient (i.e., concentrations below 200 pmol/L in the published studies). The observation is also supported by the absence of association of vitamin B₁₂ with NTDs in the Finnish study in which maternal vitamin B₁₂ status was high (mean > 350 pmol/L). Such an effect is biologically plausible and consistent with the known relationship of vitamin B₁₂ status to metabolic function of B₁₂–dependent enzymes. The relationship is demonstrated by observations from several studies that serum vitamin B₁₂ concentrations above approximately 250 pmol/L have no significant relationship with the vitamin B₁₂ metabolic biomarker methylmalonic acid (MMA). In other words, once there is optimal activity of the two vitamin B₁₂–dependent enzymes, adding additional vitamin B₁₂ has no relevant biological function. In practice, the actual concentration of added vitamin B₁₂ to achieve this goal may vary in different settings, such as the presence of malabsorption due to diverse factors and the effect of genetic factors that might impair the trafficking of B₁₂ to its final destination.

It should be noted that, during pregnancy, the concentration of vitamin B₁₂ in maternal blood undergoes a natural physiological drop to between 70% and 75% of nonpregnant levels by about 20 weeks gestation. The data noted above relate to a sample collection period in the region of 15–20 weeks gestation. To extrapolate the study findings to maternal prepregnancy status, the data imply that women entering pregnancy with vitamin B₁₂ blood status below about 250 pmol/L are at highest risk, and there may be little additional benefit in improving B₁₂ status beyond these values. This cutoff agrees very well with calculated cutoffs for the association of vitamin B₁₂ status with MMA. Therefore, the question of whether it is likely that adding vitamin B₁₂ in fortification programs would further reduce NTDs would have to be considered in the context of the prevalence of vitamin B₁₂ deficiency (or low vitamin B₁₂ status) in women of reproductive age across different populations and ethnic groups.

Vitamin B₁₂ deficiency

Severe clinical vitamin B₁₂ deficiency is characteristically observed in individuals who have gastrointestinal disorders that affect their capacity to absorb B₁₂ from all food sources, including oral supplements. Diagnosis is usually based on classical hematological or neurological symptoms, and the condition requires medical intervention. While the most common cause (pernicious anemia) can affect individuals of all ages, it is rare in women of reproductive age. The main contribution to the worldwide prevalence of vitamin B₁₂ deficiency results from two factors: low intake of food sources that are rich in vitamin B₁₂ (meat and dairy products) and infections with intestinal parasites.
Diagnosis issues
The diagnosis of vitamin B\textsubscript{12} deficiency in population studies is generally not based on classical clinical symptoms but on low concentrations of serum total vitamin B\textsubscript{12}, typically defined as total serum B\textsubscript{12} < 148 pmol/L72. Other blood biomarkers can also be used but are much less widely reported. These include holoTC, which measures vitamin B\textsubscript{12} available for tissue uptake, plus plasma MMA and plasma total homocysteine, which measure functional or metabolic stress on the two vitamin B\textsubscript{12}–dependent enzymes72–77. While all four biomarkers have merit and are important guides to assessing population vitamin B\textsubscript{12} status, all have limitations in sensitivity and specificity.72 Recently, a test based on a combination of these markers has received interest and may improve the diagnosis of deficiency,78 but it is not widely used. There are considerable financial and technical obstacles to setting up methodologies for the two functional biomarkers in situations of limited resources, and these are infrequently measured in population studies, so published estimates to date are based mainly on serum total vitamin B\textsubscript{12}, which is reasonably standardized across laboratories as a measure72 but is possibly the least reliable biological indicator, particularly when values fall into an indeterminate range that is neither adequate nor deficient,79 as discussed further below.

The prevalence of anemia in a population is an important additional aspect and is sometimes included in population studies of vitamin B\textsubscript{12} and folate status, but iron deficiency is a common cause of anemia that often coincides with areas of low folate and/or vitamin B\textsubscript{12} status,67,80–82 such that the presence of anemia to infer folate or vitamin B\textsubscript{12} deficiency is unjustified. The prevalence of macrocytic anemia is generally regarded as a poor indicator of vitamin B\textsubscript{12} status.66,83 Because diagnosis beyond measurement of blood status is not performed, the presence of overt clinical symptoms due to vitamin B\textsubscript{12} deficiency is not known. There is a considerable literature on what is termed subclinical vitamin B\textsubscript{12} deficiency, where serum total vitamin B\textsubscript{12} concentrations fall into a diagnostically uncertain range between 110 pmol/L and approximately 250 pmol/L, and objective clinical or metabolic features, such as anemia, are absent.75,84 Subclinical deficiency is challenging to address either at a clinical or a public health level85 and is made even more uncertain in children and women of reproductive age, because different cutoff levels defining both subclinical and clinical cobalamin deficiency need to be used.86

The limitations noted above (i.e., biomarker insensitivity, lack of age- and physiology-specific cutoffs) reflect a serious knowledge gap that needs to be addressed in order to properly understand the extent and urgency of the problem in relation to vitamin B\textsubscript{12} deficiency and associated risk of NTDs (or other adverse pregnancy outcomes) in women of reproductive age. Collection of reliable data on vitamin B\textsubscript{12} status, including data from intervention studies in different population groups and regions, is an important research goal. Notwithstanding these needs, in areas of high endemic anemia and a high prevalence of vitamin B\textsubscript{12} concentrations lower than 250 pmol/L in women of reproductive age, indicating at least suboptimal function of vitamin B\textsubscript{12}–dependent enzymes, there is a strong case for immediate fortification of food or supplementation with vitamin B\textsubscript{12}. Such a strategy should be accompanied by collection of data on folate and B\textsubscript{12} status to monitor the performance and effects of implementation.

Global prevalence of vitamin B\textsubscript{12} deficiency in women of reproductive age
Population and cohort or convenience-based data indicate that there is a high prevalence of vitamin B\textsubscript{12} deficiency (usually defined as serum total vitamin B\textsubscript{12} < 148 pmol/L) among women of reproductive age in many parts of the world, and while this is not confined to low-income countries,87,88 such countries are at greatest risk of lifelong adverse consequences. The underlying reasons vary from unintended low intake of vitamin B\textsubscript{12}–rich food owing to poverty and limited access to deliberate exclusion of such food because of cultural or religious customs and to personal restraints (e.g., vegetarianism). A comprehensive review of the global prevalence of vitamin B\textsubscript{12} deficiency is not intended here, but some examples are presented to give a sense of the problem to be addressed. For example, in South and Central America, national rates of deficiency plus marginal deficiency (i.e., serum vitamin B\textsubscript{12} < 221 pmol/L) among women of reproductive age vary between 3% in Costa Rica, 8% in Mexico, 12% in Argentina, and 37% in Colombia.89 In Belize, the national prevalence of deficiency using the same upper cutoff was 50% in a recent study,39 and, in
Venezuela, vitamin B₁₂ deficiency was reported to be 11% nationwide. In India, Nepal, and Bhutan, the prevalence of vitamin B₁₂ deficiency is reported to be extremely high and was more than 80% in one study of Indian adolescents in a low-income area. It has been speculated that maternal vitamin B₁₂ deficiency could be the most important risk factor for NTDs in vegetarian countries like India. In China, one recent population-based study of 1170 women aged 10–49 years from Shanxi Province in Northern China reported a prevalence of 45.5% vitamin B₁₂ deficiency (<148 pmol/L), and a further 25% of women had marginal deficiency (<220 pmol/L). Of these, approximately 10% had combined folate and vitamin B₁₂ deficiencies.

Studies on adolescents and women of reproductive age in Africa show that there is considerable divergence of vitamin B₁₂ status across regions. This is likely due to genetic as well as nutritional factors. Deficiency is highly prevalent in some regions, and this seems to be associated with malnutrition and low consumption of animal-source foods. For example, in Cameroon, 29% of women nationally had vitamin B₁₂ concentrations <221 pmol/L, but low status was most prevalent (40%) in poorer regions. By contrast, vitamin B₁₂ deficiency does not appear to be a problem in other areas. For example, in a population study of 871 women of reproductive age in Sierra Leone, vitamin B₁₂ status was high (mean (SD) of 556 (263) pmol/L), and the prevalence of deficiency (<150 pmol/L) was extremely low (<0.5%). In the Democratic Republic of the Congo, folate and vitamin B₁₂ deficiencies were reported to be <5%, and in Ghana they were also negligible.

Influence of genetic factors on vitamin B₁₂ status

The apparent conundrums in relation to the prevalence of vitamin B₁₂ deficiency across different populations might be explained to some extent by genetic differences between racial and ethnic groups. Studies both from the African continent and the United States consistently demonstrate significantly higher concentrations of total vitamin B₁₂ and the two serum B₁₂-binding proteins TCII and haptocorrin in black compared with white subjects. These racial differences are observed across the life span, from cord blood samples in newborn infants to healthy elderly. Data from the NHANES study also suggest that Mexican American populations have higher serum vitamin B₁₂ concentrations than non-Hispanic whites, but not as high as non-Hispanic blacks. For example, compared with non-Hispanic whites, Mexican Americans and non-Hispanic blacks have serum B₁₂ concentrations that are 10% and 21% higher, respectively. It is unlikely that the differences between black and white populations are environmental, and therefore genetic factors are likely to be involved. The genetic architecture of serum vitamin B₁₂ in humans has been explored in several genome-wide association studies. As expected, known genes involved in vitamin B₁₂ trafficking from dietary intake to cellular uptake are involved, but the strongest signal determining serum B₁₂ status is the fucosyltransferase gene (FUT2). This controls the secretion of ABH blood group antigens into body fluids, such as saliva and gastrointestinal fluids, and may be an important modifier of disease and infection. It is not clear whether the relationship of FUT2 with serum vitamin B₁₂ is due to microbiome interactions or other factors. One study examined the relationship between polymorphisms in FUT2 and helicobacter infection, a known cause of lower vitamin B₁₂ status, but there was no significant association. Such gene–nutrient–infection interactions remain poorly explored. The main point here is that, while differences due to genetic variability may be small in magnitude, it is not known how subtle alterations in vitamin B₁₂ status might change the equilibrium that exists between the human host and gastrointestinal parasites or how much vitamin B₁₂ should be included in a fortification program to optimize improvement in status and to ensure that no adverse interaction with infectious parasites is promoted. This area constitutes a major research need.

Genetic variability across different racial groups is known to be an important element determining the risk for NTDs. The role of genes in determining micronutrient status could be an important factor in determining the risk for NTDs, but this is a hypothesis, not a proven fact. For example, the well-described MTHFR 677C > T polymorphism, noted earlier in relation to NTD risk, is a cause of low serum and RCFs. This polymorphism has a wide variation in prevalence worldwide, with the rare TT genotype being extremely low in African populations studied to date, moderately prevalent
(5–15%) in Caucasian populations, and high in Hispanics and some Chinese ethnic groups. Of interest, but not biologically understood, is the paradox in the United States of non-Hispanic black women who have the highest vitamin B_{12} status and a 10- to 20-fold lower prevalence of the $MTHFR$ TT genotype than other measured racial groups but also have the lowest risk for an NTD-affected pregnancy among U.S. population groups, in the face of also having the lowest folate and RCF status among women of reproductive age. Of further interest is the observation of the least change in prevalence of NTDs among non-Hispanic black women following mandatory folic acid fortification. One might speculate that low folate status is of less consequence if vitamin B_{12} status is adequate, but such an interpretation seems to contradict data discussed earlier suggesting that low folate status per se is sufficient to cause increased maternal risk of having an NTD-affected pregnancy. These conundrums highlight the fact that interactions between genetic and nutritional factors in relation to risk of NTDs are highly complex and poorly understood. It is highly likely that underlying racial/ethnic predisposition to NTD occurrence and/or to low vitamin B_{12} status will be important factors in establishing the benefit of adding vitamin B_{12} to a fortification program.

Research issues in relation to vitamin B_{12} in fortification programs

Research gaps in relation to need

Concern has been raised in regard to supplementing women of reproductive age in low vitamin B_{12}–intake areas with folic acid but not vitamin B_{12}. This is an active research area, and the question of whether supplementation with vitamin B_{12} can counteract apparent adverse metabolic effects of high-dose folic acid supplementation in mothers or offspring (such as insulin resistance/“diabesity”) is currently being addressed, although much more research is needed. However, as briefly outlined earlier, there are large variations in the extent and even in the apparent susceptibility to vitamin B_{12} deficiency between populations. Therefore, while targeted programs of fortification or supplementation should be implemented in areas of high endemic need, a general global strategy of recommending fortification with vitamin B_{12} along with folic acid could be premature or perhaps purposeless in advance of more research. There is an argument that it will do no harm and will at least address potential adverse effects of excessive folic acid intakes. This argument is also speculation in the absence of more research on appropriate dosage or on potential interactions of oral vitamin B_{12} with the human microbiome and with parasitic or infectious agents, as noted below.

Research gaps in relation to dosage

The gastrointestinal process leading to the absorption of vitamin B_{12} is intricate and culminates in B_{12} receptors in the terminal ileum. Under physiological conditions, these receptors become saturated at between 1.5 and 2 μg per dose. There is good evidence from intervention studies that an intake of 4–6 μg/day is adequate to achieve a normal status in healthy individuals, and, interestingly, the amount of vitamin B_{12} in the supplement given to women in the Hungarian trial was 4 μg/day. However, a recent evaluation of the existing Palestinian vitamin B_{12} fortification program suggests that the very small amounts currently added to food products aiming to achieve an intake of 4 μg/day may not be sufficient to eliminate B_{12} deficiency where consumption of animal-derived proteins is extremely low. The proportion of oral B_{12} that is absorbed drops dramatically as the dose is increased, such that, for example, about 15% of a 10 μg dose and less than 1% of a 25–50 μg dose is absorbed. The fraction of vitamin B_{12} absorbed passively is limited to about 1–2% of the dose. These data suggest that there is little value in giving large doses to persons with healthy gastrointestinal function. A variety of intervention studies have examined the effect of daily vitamin B_{12} supplements from 2.5 to 1000 μg on blood vitamin B_{12} status and other health outcomes. Several publications have also examined cofortification with low doses of vitamin B_{12} (10–20 μg) and folic acid in relation to improvement in dietary status. Some of these have shown efficacy in increasing the serum vitamin B_{12} concentration of participants but not necessarily improvements in medical outcomes being measured. In an analysis of the optimal amount of vitamin B_{12} to add in a fortification program, based on available evidence, an intake of 20 μg/day was recently recommended. This seems like a reasonable balance between ensuring some effect and preventing unnecessary excess.
Nevertheless, given NTD prevention as a primary outcome in relation to vitamin B_{12} status, intervention studies in women of reproductive age remain an important research target. In relation to this, some recent vitamin B_{12} intervention studies have been carried out on pregnant and lactating women, using B_{12} supplements up to 50 μg/day. These have demonstrated increased vitamin B_{12} status of mothers and infants, but the specific goal of ensuring adequate B_{12} status for women entering pregnancy has not been specifically addressed.

Research gaps in relation to toxicity

To date, there is no known toxicity of vitamin B_{12}. Long-term intake (either oral or parenteral) of high doses of the vitamin, as documented in patients with pernicious anemia, has not been associated with adverse effects, and vitamin B_{12} has not been reported to be teratogenic, carcinogenic, or toxic. However, as noted earlier, a large fraction of a vitamin B_{12} dose is not absorbed and will be available to the human microbiome for further metabolism to biologically inactive compounds or to parasites that consume the vitamin. More research is needed on potential interactions between vitamin B_{12}, the human microbiome, and parasitic infections of the gastrointestinal tract to confirm that no unexpected negative consequences emerge from altering the balance between host and parasite vitamin B_{12} status and to establish a beneficial regimen of fortification in areas where such diseases are endemic.

Summary

In relation to reducing the risk of NTDs, the present state of scientific knowledge does not support food fortification with vitamin B_{12} with the same degree of certainty as that for folic acid, although the existing evidence strongly suggests a relationship between low maternal vitamin B_{12} status and increased risk of NTDs. Nevertheless, the known synergy between vitamin B_{12} and folate makes it highly probable that fortification with vitamin B_{12} will improve the efficacy of current folic acid fortification programs in the prevention of NTDs. The case is much stronger in parts of the world where low and deficient vitamin B_{12} status is endemic in women of reproductive age, but, even in high-income countries, the benefit of low-dose vitamin B_{12} fortification probably outweighs any speculated negative consequences, although more research is needed to establish the efficacy of low-dose fortification, the potential interactions of vitamin B_{12} with microbiome and parasitic agents, and the influence of genetic variability on vitamin B_{12} status. In countries with a high prevalence of B_{12} deficiency, consideration of B_{12} inclusion with folic acid in fortification programs should be a top priority.

Acknowledgments

This paper was developed in support of the technical consultation *Folate Status in Women and Neural Tube Defect Prevention*, convened by the Micronutrient Forum and supported through Nutrition International by a grant provided by the Bill & Melinda Gates Foundation. An earlier version of this manuscript was presented to members of the technical on April 12–13, 2017, held at the Nutrition International headquarters in Ottawa, Ontario, Canada. This paper is being published individually but will be consolidated with other manuscripts as a special issue of *Annals of the New York Academy of Sciences*, under the coordination of Homero Martinez and Aliki P. Weakland. The special issue is the responsibility of the editorial staff of *Annals of the New York Academy of Sciences*, who delegated to the coordinators preliminary supervision of both technical conformity to the publishing requirements of *Annals of the New York Academy of Sciences* and general oversight of the scientific merit of each article. The authors alone are responsible for the views expressed in this paper; they do not necessarily represent the views, decisions, or policies of the institutions with which they are affiliated or the decisions, policies, or views of the Micronutrient Forum. The opinions expressed in this publication are those of the authors and are not attributable to the sponsors, publisher, or editorial staff of *Annals of the New York Academy of Sciences*. A.N.M. acknowledges ongoing long-term collaboration with Dr Jim Mills, Division of Intramural Population Health Research, Eunice Shriver NICHD (Bethesda, MD), and Dr Lawrence Brody, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute (Bethesda, MD).

Competing interests

The author declares no competing interests.
References

1. Blencowe, H., S. Cousens, B. Modell, et al. 2010. Folic acid to reduce neonatal mortality from neural tube disorders. Int. J. Epidemiol. 39(Suppl. 1):110–112.
2. Matthews, R.G. 1999. Cobalamin-dependent methionine synthase. In Chemistry and Biochemistry of B12 R. Banerjee, Ed.: 681–706. New York: John Wiley & Sons, Inc.
3. Rocthus, A., B. Izi, E. Vangeel, et al. 2015. DNA methylation analysis of Homeobox genes implicates HOXB7 hypomethylation as risk factor for neural tube defects. Epigenetics 10: 92–101.
4. Hu, N., P.H. Strobl-Mazzulla & M.E. Bronner. 2014. Epigenetic regulation in neural crest development. Dev. Biol. 396: 159–168.
5. Molloy, A.M., F. Pangilinan & L.C. Brody. 2017. Genetic risk factors for folate-responsive neural tube defects. Ann. Rev. Nutr. 37: 269–291.
6. Scott, J.M. & D.G. Weir. 1981. The methyl folate trap. A physiological response in man to prevent methyl group deficiency in kwashiorkor (methionine deficiency) and an explanation for folic-acid induced exacerbation of subacute combined degeneration in pernicious anaemia. Lancet 2: 337–340.
7. Smithells, R.W., S. Sheppard & C.J. Schorah. 1976. Vitamin deficiencies and neural tube defects. Arch. Dis. Child. 51: 944–950.
8. Smithells, R.W., N.C. Nevin, M.J. Seller, et al. 1983. Further experience of vitamin supplementation for prevention of neural tube defect recurrences. Lancet 1: 1027–1031.
9. Schorah, C.J., J. Wild, R. Hartley, et al. 1983. The effect of periconceptional supplementation on blood vitamin concentrations in women at recurrence risk for neural tube defect. Br. J. Nutr. 49: 203–211.
10. MRC Vitamin Study Research Group. 1991. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet 338: 131–137.
11. Molloy, A.M., P.N. Kirke, L.C. Brody, et al. 2008. Effects of folate and vitamin B12 deficiencies during pregnancy on fetal, infant, and child development. Food Nutr. Bull. 29(2 Suppl.): S101–S111; discussion S112–S115.
12. Allen, L.H. 2009. How common is vitamin B-12 deficiency? Am. J. Clin. Nutr. 89: 693s–696s.
13. Schorah, C.J., R.W. Smithells & J. Scott. 1980. Vitamin B12 and anencephaly. Lancet 1: 880.
14. Suarez, L., K. Hendricks, M. Felkner, et al. 2003. Maternal serum B12 levels and risk for neural tube defects in a Texas–Mexico border population. Am. J. Epidemiol. 13: 81–88.
15. Wright, M.E. 1995. A case–control study of maternal nutrition and neural tube defects in Northern Ireland. Midwifery 11: 146–152.
16. Gaber, K.R., M.K. Farag, S.E. Soliman, et al. 2007. Maternal vitamin B12 and the risk of fetal neural tube defects in Egyptian patients. Clin. Lab. 53: 69–73.
17. Steegers-Theunissen, R.P., G.H. Boers, E.J. Trijbels, et al. 1994. Maternal hyperhomocysteinemia: a risk factor for neural-tube defects? Metabolism 43: 1475–1480.
18. Yates, J.R., M.A. Ferguson-Smith, A. Shenkin, et al. 1987. Is disordered folate metabolism the basis for the genetic predisposition to neural tube defects? Clin. Genet. 31: 279–287.
19. Afman, L.A., N.M. Van Der Put, C.M. Thomas, et al. 2001. Reduced vitamin B12 binding by transcobalamin II increases the risk of neural tube defects. QJM 94: 159–166.
20. Wild, J., C.J. Schorah, T.A. Sheldon, et al. 1993. Investigation of factors influencing folate status in women who have had a neural tube defect-affected infant. Br. J. Obstet. Gynecol. 100: 546–549.
21. Wilson, A., R. Platt, Q. Wu, et al. 1999. A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida. Mol. Genet. Metab. 67: 317–323.
22. van der Put, N.M., C.M. Thomas, T.K. Eskes, et al. 1997. Altered folate and vitamin B12 metabolism in families with spina bifida offspring. QJM 90: 505–510.
23. Steegers-Theunissen, R.P., G.H. Boers, E.J. Trijbels, et al. 1991. Neural-tube defects and derangement of homocysteine metabolism. N. Engl. J. Med. 324: 199–200.
24. Molloy, A.M., P. Kirke, I. Hillary, et al. 1985. Maternal serum folate and vitamin-B12 concentrations in pregnancies associated with neural-tube defects. Arch. Dis. Child. 60: 660–665.
25. Wald, N.J., A.D. Hackshaw, R. Stone, et al. 1996. Blood folic acid and vitamin B12 in relation to neural tube defects. Br. J. Obstet. Gynecol. 103: 319–324.
26. Steegers-Theunissen, R.P., G.H. Boers, H.J. Blom, et al. 1995. Neural tube defects and elevated homocysteine levels in amniotic fluid. Am. J. Obstet. Gynecol. 172: 1436–1441.
27. Adams, M.J., Jr., M.J. Khoury, K.S. Scanlon, et al. 1995. Elevated midtrimester serum methylmalonic acid levels as a risk factor for neural tube defects. Teratology 51: 311–317.
28. Mills, J.L., J.M. McPartlin, P.N. Kirke, et al. 1995. Homocysteine metabolism in pregnancies complicated by neural-tube defects. Lancet 345: 149–151.
29. Gardiki-Koundou, P. & M.J. Seller. 1988. Amniotic fluid folate, vitamin B12 and transcobalaminis in neural tube defects. Clin. Genet. 33: 441–448.
30. Dawson, E.B., D.R. Evans & J.W. Van Hook. 1998. Amniotic fluid B12 and folate levels associated with neural tube defects. Am. J. Perinatol. 15: 511–514.
31. Steen, M.T., A.M. Boddie, A.J. Fisher, et al. 1998. Neural-tube defects are associated with low concentrations of cobalamin (vitamin B12) in amniotic fluid. Prenat. Diagn. 18: 545–555.
32. Weekes, E.W., T. Tamura, R.O. Davis, et al. 1992. Nutrient levels in amniotic fluid from women with normal and neural tube defect pregnancies. Biol. Neonate 61: 226–231.
33. Economides, D.L., J. Ferguson, I.Z. Mackenzie, et al. 1992. Folate and vitamin B12 concentrations in maternal and fetal blood, and amniotic fluid in second trimester pregnancies complicated by neural tube defects. Br. J. Obstet. Gynecol. 99: 23–25.
34. Mills, J.L., J. Tuomilehto, K.F. Yu, et al. 1992. Maternal vitamin levels during pregnancies producing infants with neural tube defects. J. Pediatr. 120: 863–871.
35. Molloy, A.M., P.N. Kirke, J.F. Troendle, et al. 2009. Maternal vitamin B12 status and risk of neural tube defects in a
population with high neural tube defect prevalence and no folic acid fortification. *Pediatrics* **123**: 917–923.
36. Zhang, T., R. Xin, X. Gu, et al. 2009. Maternal serum vitamin B12, folate and homocysteine and the risk of neural tube defects in the offspring in a high-risk area of China. *Public Health Nutr.* **12**: 680–686.
37. Ray, J.G., P.R. Wyatt, M.D. Thompson, et al. 2007. Vitamin B12 and the risk of neural tube defects in a folic-acid-fortified population. *Epidemiology* **18**: 362–366.
38. Nasri, K., M.K. Ben Fradj, A. Touati, et al. 2015. Association of maternal homocysteine and vitamins status with the risk of neural tube defects in Tunisia: a case–control study. *Birth Defects Res. A Clin. Mol. Teratol.* **103**: 1011–1020.
39. Tang, K.F., Y.L. Li & H.Y. Wang. 2015. Quantitative assessment of maternal biomarkers related to one-carbon metabolism and neural tube defects. *Sci. Rep.* **5**: 8510.
40. Peker, E., N. Demir, O. Tuncer, et al. 2016. The levels of vitamin B12, folate and homocysteine in mothers and their babies with neural tube defects. *J. Matern. Fetal Neonatal Med.* **29**: 2944–2948.
41. Czeizel, A.E. & I. Dudas. 1992. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. *N. Engl. J. Med.* **327**: 1832–1835.
42. Molloy, A.M., L.C. Brody, J.L. Mills, et al. 2009. The search for genetic polymorphisms in the homocysteine/folate pathway that contribute to the etiology of human neural tube defects. *Birth Defects Res. A Clin. Mol. Teratol.* **85**: 285–294.
43. Amorim, M.R., M.A. Lima, E.E. Castilla, et al. 2007. Non-Latin European descent could be a requirement for association of NTDs and MTHFR variant 677C > T: a meta-analysis. *Am. J. Med. Genet. A* **143A**: 1726–1732.
44. Shields, D.C., P.N. Kirke, J.L. Mills, et al. 1999. The “thermolabile” variant of methylenetetrahydrofolate reductase and neural tube defects: an evaluation of genetic risk and the relative importance of the genotypes of the embryo and the mother. *Am. J. Hum. Genet.* **64**: 1045–1055.
45. Boyles, A.L., A.V. Billups, K.L. Deak, et al. 2006. Neural tube defects and folate pathway genes: family-based association tests of gene–gene and gene–environment interactions. *Environ. Health Perspect.* **114**: 1547–1552.
46. Pangilinan, F., D. Swanson, A. Weller, et al. 2003. Transcobalamin II polymorphisms influence plasma levels of vitamin B12 but are not major risk factors for neural tube defects. *Am. J. Hum. Genet.* **73**: 525–525.
47. Candito, M., R. Rivet, B. Herbeth, et al. 2008. Nutritional and genetic determinants of vitamin B and homocysteine metabolisms in neural tube defects: a multicenter case–control study. *Am. J. Med. Genet. A* **146A**: 1128–1133.
48. Pangilinan, F., A.M. Molloy, J.L. Mills, et al. 2014. Replication and exploratory analysis of 24 candidate risk polymorphisms for neural tube defects. *BMC Med. Genet.* **15**: 102.
49. Winkels, R.M., I.A. Brouwer, R. Clarke, et al. 2008. Bread fortified with folic acid and vitamin B-12 improves the folate and vitamin B-12 status of healthy older people: a randomized controlled trial. *Am. J. Clin. Nutr.* **88**: 348–355.
50. Swanson, D.A., F. Pangilinan, J.L. Mills, et al. 2005. Evaluation of transcobalamin II polymorphisms as neural tube defect risk factors in an Irish population. *Birth Defects Res. A Clin. Mol. Teratol.* **73**: 239–244.
51. Afman, L.A., K.J. Lievers, N.M. van der Put, et al. 2002. Single nucleotide polymorphisms in the transcobalamin gene: relationship with transcobalamin concentrations and risk for neural tube defects. *Eur. J. Hum. Genet.* **10**: 433–438.
52. Pangilinan, F., A.M. Molloy, J.L. Mills, et al. 2012. Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects. *BMC Med. Genet.* **13**: 62.
53. Pangilinan, F., A. Mitchell, J. VanderMeer, et al. 2010. Transcobalamin II receptor polymorphisms are associated with increased risk for neural tube defects. *J. Med. Genet.* **47**: 677–685.
54. Kirke, P.N., A.M. Molloy, L.E. Daly, et al. 1993. Maternal plasma folate and vitamin B12 are independent risk factors for neural tube defects. *Q. J. Med.* **86**: 703–708.
55. Afman, L.A., K.J. Lievers, I.A. Kluirimans, et al. 2003. Gene–gene interaction between the cystathionine beta-synthase 31 base pair variable number of tandem repeats and the methylenetetrahydrofolate reductase 677C > T polymorphism on homocysteine levels and risk for neural tube defects. *Eur. J. Hum. Genet.* **11**: 211–215.
56. Bjorke-Monsen, A.L., P.M. Ueland, J. Schnedeke, et al. 1997. Elevated plasma total homocysteine and C677T mutation of the methylenetetrahydrofolate reductase gene in patients with spina bifida. *QJM* **90**: 593–596.
57. Daly, L.E., P.N. Kirke, A. Molloy, et al. 1995. Folate levels and neural tube defects. Implications for prevention. *JAMA* **274**: 1698–1702.
58. Crider, K.S., O. Devine, L. Hao, et al. 2014. Population red blood cell folate concentrations for prevention of neural tube defects: Bayesian model. *BMJ* **349**: g4554.
59. Rosenthal, J., N. Largaespada, L.B. Bailey, et al. 2017. Folate deficiency is prevalent in women of childbearing age in Belize and is negatively affected by coexisting vitamin B-12 deficiency: Belize National Micronutrient Survey 2011. *J. Nutr.* **147**: 1183–1193.
60. Bailey, R.L., R.A. Durazo-Arvizu, R. Carmel, et al. 2013. Modeling a methylmalonic acid-derived change point for serum vitamin B-12 for adults in NHANES. *Am. J. Clin. Nutr.* **98**: 460–467.
61. Metz, J. 2013. Haematological implications of folate food fortification. *S. Afr. Med. J.* **103**: 978–981.
62. Hazra, A., P. Kraft, J. Selhub, et al. 2008. Common variants of FUT2 are associated with plasma vitamin B12 levels. *Nat. Genet.* **40**: 1160–1162.
63. Tanaka, T., P. Scheet, B. Giusti, et al. 2009. Genome-wide association study of vitamin B6, vitamin B12, folate, and homocysteine blood concentrations. *Am. J. Hum. Genet.* **84**: 477–482.
64. Murphy, M.M., A.M. Molloy, P.M. Ueland, et al. 2007. Longitudinal study of the effect of pregnancy on maternal and fetal cobalamin status in healthy women and their offspring. *J. Nutr.* **137**: 1863–1867.
65. Green, R., L.H. Allen, A.L. Bjorke-Monsen, et al. 2017. Vitamin B12 deficiency. *Nat. Rev. Dis. Primers* **3**: 17040.
66. Benson, J., C. Phillips, M. Kay, et al. 2013. Low vitamin B12 levels among newly-arrived refugees from Bhutan, Iran and
98. Shahab-Ferdows, S., R. Engle-Stone, D. Hampel, et al. 2015. Regional, socioeconomic, and dietary risk factors for vitamin B-12 deficiency differ from those for folate deficiency in Cameroonian women and children. J. Nutr. 145: 2587–2595.

99. Wirth, J.P., F. Rohner, B.A. Woodruff, et al. 2016. Anemia, micronutrient deficiencies, and malaria in children and women in Sierra Leone prior to the Ebola outbreak—findings of a cross-sectional study. PLoS One 11:e0155031.

100. Harvey-Leeson, S., C.D. Karakochuk, M. Hawes, et al. 2016. Anemia and micronutrient status of women of childbearing age and children 6–59 months in the Democratic Republic of the Congo. Nutrients 8: 98.

101. Dei-Adomako, Y., J.K. Acquaye, I. Ekem, et al. 2014. Second trimester anaemia in pregnant Ghanaians. West Afr. J. Med. 33: 229–233.

102. Fernandes-Costa, F. & J. Metz. 1982. A comparison of serum transcobalamin levels in white and black subjects. Am. J. Clin. Nutr. 35: 83–86.

103. Fleming, A.F., Y.A. Ogunfunmilade & R. Carmel. 1978. Serum vitamin B12 levels and vitamin B12-binding proteins of serum and saliva of healthy Nigerians and Europeans. Am. J. Clin. Nutr. 31: 1732–1738.

104. Saxena, S. & R. Carmel. 1987. Racial differences in vitamin B12 levels in the United States. Am. J. Clin. Pathol. 88: 95–97.

105. Stabler, S.P., R.H. Allen, L.P. Fried, et al. 1999. Racial differences in prevalence of cobalamin and folate deficiencies in disabled elderly women. Am. J. Clin. Nutr. 70: 911–919.

106. Pfeiffer, C.M., C.L. Johnson, R.B. Jain, et al. 2007. Trends in blood folate and vitamin B-12 concentrations in the United States, 1988–2004. Am. J. Clin. Nutr. 86: 718–727.

107. Oussalah, A., C. Besseau, C. Chery, et al. 2012. Helicobacter pylori serologic status has no influence on the association between fucosyltransferase 2 polymorphism (FUT2 461 G→A) and vitamin B12 in Europe and West Africa. Am. J. Clin. Nutr. 95: 514–521.

108. Kelly, R.J., S. Rouquier, D. Giorgi, et al. 1995. Sequence and expression of a candidate for the human Secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J. Biol. Chem. 270: 4640–4649.

109. Marionneau, S., A. Cailleau-Thomas, J. Rocher, et al. 2001. ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world. Biochimie 83: 565–573.

110. Segurel, L., E.E. Thompson, T. Flutre, et al. 2012. The ABO blood group is a trans-species polymorphism in primates. Proc. Natl. Acad. Sci. USA 109: 18493–18498.

111. Molloy, A.M., J.L. Mills, P.N. Kirke, et al. 1998. Low blood folates in NTD pregnancies are only partly explained by thermolabile 5,10-methylene-tetrahydrofolate reductase: low folate status alone may be the critical factor. Am. J. Med. Genet. 78: 155–159.

112. Molloy, A.M., S. Daly, J.L. Mills, et al. 1997. Thermolabile variant of 5,10-methylene-tetrahydrofolate reductase associated with low red-cell folates: implications for folate intake recommendations. Lancet 349: 1591–1593.

113. Yang, Q.H., L.D. Botto, M. Gallagher, et al. 2008. Prevalence and effects of gene–gene and gene–nutrient interactions on serum folate and serum total homocysteine concentrations in the United States: findings from the third National Health and Nutrition Examination Survey DNA Bank. Am. J. Clin. Nutr. 88: 232–246.

114. Wilcken, B., F. Bamforth, Z. Li, et al. 2003. Geographical and ethnic variation of the 677C→T allele of 5,10-methylene-tetrahydrofolate reductase (MTHFR): findings from over 7000 newborns from 16 areas world wide. J. Med. Genet. 40: 619–625.

115. Botto, L.D. & Q. Yang. 2000. 5,10-Methylene-tetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review. Am. J. Epidemiol. 151: 862–877.

116. Mutchnick, O.M., M.A. Lopez, L. Luna, et al. 1999. High prevalence of the thermolabile methylentetrahydrofolate reductase variant in Mexico: a country with a very high prevalence of neural tube defects. Mol. Genet. Metab. 68: 461–467.

117. Crider, K.S., J.H. Zhu, L. Hao, et al. 2011. MTHFR 677C→T genotype is associated with folate and homocysteine concentrations in a large, population-based, double-blind trial of folic acid supplementation. Am. J. Clin. Nutr. 93: 1365–1372.

118. Williams, L.J., S.A. Rasmussen, A. Flores, et al. 2005. Decline in the prevalence of spina bifida and anencephaly by race/ethnicity: 1995–2002. Pediatrics 116: 580–586.

119. Zaganjor, I., A. Sekkarie, B.L. Tsang, et al. 2016. Describing the prevalence of neural tube defects worldwide: a systematic literature review. PLoS One 11:e0151586.

120. Besser, L.M., L.J. Williams & J.D. Cragan. 2007. Interpreting changes in the epidemiology of anencephaly and spina bifida following folic acid fortification of the U.S. grain supply in the setting of long-term trends, Atlanta, Georgia, 1968–2003. Birth Defects Res. A Clin. Mol. Teratol. 79: 730–736.

121. Shah, T., K. Joshi, S. Mishra, et al. 2016. Molecular and cellular effects of vitamin B12 forms on human trophoblast cells in presence of excessive folate. Biomed. Pharmacother. 84: 526–534.

122. Katre, P., D. Bhat, H. Lubree, et al. 2010. Vitamin B12 and folic acid supplementation and plasma total homocysteine concentrations in pregnant Indian women with low B12 and high folate status. Asia Pac. J. Clin. Nutr. 19: 335–343.

123. Yajnik, C.S., S.S. Deshpande, A.A. Jackson, et al. 2008. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia 51: 29–38.

124. Carmel, R. 2011. Mandatory fortification of the food supply with cobalamin: an idea whose time has not yet come. J. Inherit. Metab. Dis. 34: 67–73.

125. Refsum, H. & A.D. Smith. 2008. Are we ready for mandatory fortification with vitamin B-12? Am. J. Clin. Nutr. 88: 253–254.

126. Carmel, R. 2008. Efficacy and safety of fortification and supplementation with vitamin B12: biochemical and physiological effects. Food Nutr. Bull. 29: S177–S187.

127. Chanarin, I. 1969. The Megaloblastic Anaemia. Oxford and Edinburgh: Blackwell Scientific Publications.
128. Bor, M.V., E. Lydeking-Olsen, J. Moller, et al. 2006. A daily intake of approximately 6 microg vitamin B-12 appears to saturate all the vitamin B-12-related variables in Danish postmenopausal women. *Am. J. Clin. Nutr.* 83: 52–58.

129. Abdeen, Z., A. Ramlawi, R. Qaswari, et al. 2015. Predicted efficacy of the Palestinian wheat flour fortification programme: complementary analysis of biochemical and dietary data. *Public Health Nutr.* 18: 1358–1368.

130. Dullemeijer, C., O.W. Souverein, E.L. Doets, et al. 2013. Systematic review with dose–response meta-analyses between vitamin B-12 intake and European Micronutrient Recommendations Aligned’s prioritized biomarkers of vitamin B-12 including randomized controlled trials and observational studies in adults and elderly persons. *Am. J. Clin. Nutr.* 97: 390–402.

131. Dangour, A.D., E. Allen, R. Clarke, et al. 2011. A randomised controlled trial investigating the effect of vitamin B12 supplementation on neurological function in healthy older people: the Older People and Enhanced Neurological function (OPEN) study protocol [ISRCTN54195799]. *Nutr. J.* 10: 22.

132. Hill, M.H., J.E. Flatley, M.E. Barker, et al. 2013. A vitamin B-12 supplement of 500 μg/d for eight weeks does not normalize urinary methylmalonic acid or other biomarkers of vitamin B-12 status in elderly people with moderately poor vitamin B-12 status. *J. Nutr.* 143: 142–147.

133. Deshmukh, U.S., C.V. Joglekar, H.G. Lubree, et al. 2010. Effect of physiological doses of oral vitamin B12 on plasma homocysteine: a randomized, placebo-controlled, double-blind trial in India. *Eur. J. Clin. Nutr.* 64: 495–502.

134. Eussen, S.J., L.C. de Groot, R. Clarke, et al. 2005. Oral cyanocobalamin supplementation in older people with vitamin B12 deficiency: a dose-finding trial. *Arch. Intern. Med.* 165: 1167–1172.

135. Allen, L.H., I.H. Rosenberg, G.P. Oakley, et al. 2010. Considering the case for vitamin B12 fortification of flour. *Food Nutr. Bull.* 31: S36–S46.

136. Taneja, S., T.A. Strand, T. Kumar, et al. 2013. Folic acid and vitamin B-12 supplementation and common infections in 6–30-mo-old children in India: a randomized placebo-controlled trial. *Am. J. Clin. Nutr.* 98: 731–737.

137. Bae, S., A.A. West, J. Yan, et al. 2015. Vitamin B-12 status differs among pregnant, lactating, and control women with equivalent nutrient intakes. *J. Nutr.* 145: 1507–1514.

138. Duggan, C., K. Srinivasan, T. Thomas, et al. 2014. Vitamin B-12 supplementation during pregnancy and early lactation increases maternal, breast milk, and infant measures of vitamin B-12 status. *J. Nutr.* 144: 758–764.

139. Institute of Medicine Standing Committee on the Scientific Evaluation of Dietary Reference, I., O.B.V. its Panel on Folate & Choline. 1998. The National Academies Collection: reports funded by National Institutes of Health. In *Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline*. Washington, DC: National Academies Press (US), National Academy of Sciences.

140. Carmel, R. 2008. How I treat cobalamin (vitamin B12) deficiency. *Blood* 112: 2214–2221.

141. Allen, R.H. & S.P. Stabler. 2008. Identification and quantitation of cobalamin and cobalamin analogues in human feces. *Am. J. Clin. Nutr.* 87: 1324–1335.

142. Anonymous. 1976. Pathogenesis of the tapeworm anaemia. *Br. Med. J.* 2: 1028.