Relativistic $k \cdot p$ Hamiltonians for centrosymmetric topological insulators from $ab\ initio$ wave functions

I. A. Nechaev$^{1,2,3}$ and E. E. Krasovskii$^{4,5,6}$

$^1$Centro de Física de Materiales CFM–MPC and Centro Mixto CSIC-UPV/EHU, 20018 San Sebastián/Donostia, Spain
$^2$Tomsk State University, 634050 Tomsk, Russia
$^3$Saint Petersburg State University, 198504 Saint Petersburg, Russia
$^4$Departamento de Física de Materiales UPV/EHU, Facultad de Ciencias Químicas, UPV/EHU, Apartado 1072, 20080 San Sebastián/Donostia, Spain
$^5$Donostia International Physics Center, 20018 San Sebastián/Donostia, Spain
$^6$IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain

We present a method to microscopically derive a small-size $k \cdot p$ Hamiltonian in a Hilbert space spanned by physically chosen $ab\ initio$ spinor wave functions. Without imposing any complementary symmetry constraints, our formalism equally treats three- and two-dimensional systems and simultaneously yields the Hamiltonian parameters and the true $Z_2$ topological invariant. We consider bulk crystals and thin films of Bi$_2$Se$_3$, Bi$_2$Te$_3$, and Sb$_2$Te$_3$. It turns out that the effective continuous $k \cdot p$ models with open boundary conditions often incorrectly predict the topological character of thin films.

DOI: 10.1103/PhysRevB.94.201410

The electronic structure of topological insulators (TIs) has been the focus of theoretical research regarding linear response, transport properties, Hall conductance, and the motion of Dirac fermions in external fields [1,2]. These problems call for a physically justified model Hamiltonian of small dimension. As in semiconductors, it is thought to be sufficient that the model accurately reproduces the TI band structure near the inverted band gap [3]. The desired Hamiltonian is derived either from the theory of invariants [4] or within the $k \cdot p$ perturbation theory using the symmetry properties of the basis states [5].

In Ref. [3], along with the pioneering prediction of the topological nature of Bi$_2$Se$_3$, Bi$_2$Te$_3$, and Sb$_2$Te$_3$, a four-band Hamiltonian was first constructed from the theory of invariants, which is presently widely used to analyze the properties of bulk TIs as well as their surfaces and thin films [6–14]. The Hamiltonian parameters in Ref. [3] were obtained by fitting $ab\ initio$ band dispersion curves. Later, an attempt was made [15] to recover the Hamiltonian of Ref. [3] by $k \cdot p$ perturbation theory with symmetry arguments and to derive its parameters from the $ab\ initio$ wave functions of the bulk crystals. Furthermore, in Ref. [15] the effective Landé $g$ factors for the Zeeman splitting [4,5] were introduced within the $k \cdot p$ theory of TIs.

To analyze how the properties of thin films are inherited from the bulk TI features, effective continuous models have been developed: They are based on the substitution $k_z \rightarrow -i \partial_z$ (originally introduced for slowly varying perturbations [16]) in the Hamiltonian of Ref. [3] and on the imposition of the open boundary conditions [15,17–19]. These models predict a variety of intriguing phenomena at the surfaces, interfaces, and thin films of TIs [20–23]. A fundamental issue here is the topological phase transition between an ordinary two-dimensional (2D) insulator and a quantum spin Hall insulator (QSHI). Apart from the theoretical prediction, the model parameters are fitted to the measured band dispersion to deduce the topological phase from the experiment [24,25]. By analyzing the signs and relative values of the parameters of the empirically obtained effective model, a judgment is made on whether the edge states would exist in a given TI film, the logic being similar to that of Ref. [26]: The valence band should have a positive and conduction band a negative effective mass.

In order to avoid any ambiguity in deriving the model Hamiltonian and to treat three-dimensional (3D) and 2D systems within the same formalism, one needs an $ab\ initio$ and internally consistent scheme that realizes the $k \cdot p$ theory with the full inclusion of the microscopic structure of the system and generates a compact and physically transparent form of the Hamiltonian of a given size. A few attempts have been recently undertaken to predictably construct model Hamiltonians for classical bulk semiconductors [27] and graphene-based systems [28].

In this Rapid Communication, we report a method to microscopically derive the relativistic Hamiltonian $H_{kp}$ accurate up to the second order in $k$ from the spinor wave functions obtained with the all-electron full-potential extended linearized augmented plane wave method (ELAPW). The size of $H_{kp}$ is determined by the dimension of the subspace spanned by the physically chosen basis states. The form of the Hamiltonian is dictated by the symmetry of the wave functions unitary transformed to diagonalize the $z$ component of the total angular momentum and by a universal prescription to choose their phases. Here, we apply this approach to centrosymmetric bulk crystals as well as to thin films of Bi$_2$Se$_3$, Bi$_2$Te$_3$, and Sb$_2$Te$_3$ up to six quintuple layers (QLs). For each film, we calculate the topological invariant, indicating whether it is a QSHI. We conclude on the validity of the topological analysis based on the effective models (including the $ab\ initio$ derived ones) by comparing the predictions made by the $k \cdot p$ Hamiltonian with the actual properties of the film. Furthermore, within our approach, we derive the $k \cdot p$ Zeeman term for the films.

We construct the model Hamiltonian as a second-order $k \cdot p$ expansion around the point $k = 0$. To avoid any ambiguity, we obtain the expansion coefficients directly from $ab\ initio$
eigenfunctions at $\Gamma$. For systems with inversion symmetry, the energy bands $E_{n}$ are doubly degenerate with two orthogonal wave functions $\Psi_{n1}$ and $\Psi_{n2}$ that are parity eigenfunctions at the time reversal invariant momenta (TRIM). The $k \cdot p$ Hamiltonian is represented in the basis of these functions in terms of the velocity operator $\hat{\mathbf{p}} = -i\hbar \nabla + [\mathbf{\sigma} \times \nabla V] / 4\pi\varepsilon_{0}$ [29]. Here, $\mathbf{\sigma}$ is the vector of Pauli matrices and $V(r)$ is the crystal potential. In the $k \cdot p$ expansion, $H_{kp} = H^{(0)} + H^{(1)} + H^{(2)}$, the zero-order term is just the band energy, $H_{nij}^{(0)} = E_{n} \delta_{ij}$, the linear term is $H_{nij}^{(1)} = (\hbar/m_{0}) k \cdot \mathbf{\sigma}_{nij}$, and the second-order term is

$$H_{nij}^{(2)} = \frac{\hbar^2 k^2}{2m_0} \delta_{mn} \delta_{ij} + \frac{\hbar^2}{m_0} \sum_{\alpha\beta} D_{nij}^{\alpha\beta} k_{\alpha} k_{\beta},$$

where $\alpha, \beta = x, y, z$, and

$$D_{nij}^{\alpha\beta} = \frac{1}{2} \sum_{n'i} \langle \Psi_{n'i}^{\alpha} | \mathbf{\sigma}_{n} | \Psi_{n'i}^{\beta} \rangle \left( \frac{1}{E_i - E_n} + \frac{1}{E_m - E_n} \right),$$

see Refs. [4,5]). Here, $n$ and $m$ number the degenerate Kramers pairs, and $i$ and $j$ number the members of a pair. The index $n'$ runs over all the bands excluding those forming the $k \cdot p$ basis (Löwdin’s partitioning). Thus, when the dimension of $H_{kp}$ equals the dimension of the original full Hamiltonian, the second-order term $H^{(2)}$ vanishes [30] (hereafter, we refer to this case as the full-size $k \cdot p$ calculation).

The $ab\ initio$ band structure was obtained with the ELAPW method [31] using the full potential scheme of Ref. [32] within the local density approximation (LDA). The spin-orbit interaction is treated by a second variation method [33] including the scalar-relativistic bands up to at least 300 eV. This ensures a good convergence of the inverse effective mass, with a deviation from the second derivative of the $k \cdot p$ lines with open rhombuses) $k \cdot p$ model. Results by the full-size Hamiltonian are shown by green lines for Bi$_2$Se$_3$. See also Figs. S1–S4 in the SM [34].

For the bulk crystals, the parameters in Eq. (1) are listed in Table I, and the eigenvalues $E(k)$ of the resulting four-band Hamiltonian are shown by green lines for Bi$_2$Se$_3$, Bi$_2$Te$_3$, and Sb$_2$Te$_3$ compared with the four-band (red lines with solid circles) and eight-band (blue lines with open rhombuses) $k \cdot p$ model. For the bulk crystals, the parameters in Eq. (1) are listed in Table I, and the eigenvalues $E(k)$ of the resulting four-band Hamiltonian are shown by green lines for Bi$_2$Se$_3$, Bi$_2$Te$_3$, and Sb$_2$Te$_3$ compared with the four-band (red lines with solid circles) and eight-band (blue lines with open rhombuses) $k \cdot p$ model. Results by the full-size Hamiltonian are shown by green lines for Bi$_2$Se$_3$. See also Figs. S1–S4 in the SM [34].

The $ab\ initio$ band structure was obtained with the ELAPW method [31] using the full potential scheme of Ref. [32] within the local density approximation (LDA). The spin-orbit interaction is treated by a second variation method [33] including the scalar-relativistic bands up to at least 300 eV. This ensures a good convergence of the inverse effective mass, with a deviation from the second derivative of the $k \cdot p$ curves within 3%. The experimental crystal lattice parameters were taken from Ref. [35] with the LDA relaxed atomic positions of Refs. [36–38]. Figure 1 compares the $ab\ initio$ bands with those obtained by diagonalizing our $k \cdot p$ Hamiltonians of small size (four- and eight-band) and of full size. Note that the full-size $k \cdot p$ calculation highly accurately reproduces the true bands: The error grows as $k^2$ [39], and at the Brillouin zone (BZ) boundary it is within 150 meV.

For each Kramers-degenerate level $n$, the spinor wave functions $\Psi_{nij}$ form a two-dimensional basis. Numerically obtained functions are arbitrarily ordered and have unphysical phases, which, however, affect the structure of $H_{kp}$ nondiagonal terms. In order to keep the same physically motivated ordering and to align the phases in different calculations, we first transfer to the basis that diagonalizes the $J_z$ eigenfunctions at $\Gamma$. One further pair of different parity, $n$ and $n'$, we turn the phases such that $i\pi_{n'i}^{\alpha\beta}$ be real.

For the bulk TIs we choose the basis of four states $\Psi_{v\uparrow}, \Psi_{c\downarrow}, \Psi_{c\uparrow}, \Psi_{v\downarrow}$, where $v$ and $c$ stand for the valence and conduction band, respectively. This leads to the Hamiltonian

$$H_{kp} = C_{0} \sigma_0 + M_{\tau} \sigma_0 - V_{1} \tau_{x}(\sigma_{x} k_{y} - \sigma_{y} k_{x}) - V_{2} \tau_{y} \sigma_{0} k_{z},$$

(1)

with $C = C_{0} + C_{1} k_{z}^{2} + C_{2} k_{y}^{2} + C_{3} k_{x}^{2}$, $M = M_{0} + M_{1} k_{y}^{2} + M_{2} k_{x}^{2}$, and $k_{y}^{2} = k_{z}^{2} + k_{x}^{2}$. The 3D TI Hamiltonian (1) is the same (to within a unitary transformation) as in Refs. [3,15,17–19] (the explicit matrix form is presented by Eq. (S1) in the SM [34]). The Pauli matrix $\sigma$ operates in valence-conduction band space, whereas $\sigma_0$ refers to the total angular momentum $J$. In Eq. (1) a direct product of these matrices is implied.

For the bulk crystals, the parameters in Eq. (1) are listed in Table I, and the eigenvalues $E(k)$ of the resulting four-band Hamiltonian are shown in Figs. 1(a)–1(c) by red lines with solid circles. Note that already this minimal dimension of $H_{kp}$ produces an absolute gap in the spectrum, and for Bi$_2$Se$_3$ and Sb$_2$Te$_3$ its width is very close to that obtained with the much more accurate eight-band Hamiltonian [see Eq. (S3) in the SM and blue lines with open rhombuses in the SM].

**Table I.** Parameters of the four-band $k \cdot p$ Hamiltonian (1) for the bulk TIs. We use Rydberg atomic units: $\hbar = 2m_{0} = e^{2}/2 = 1$.

|     | Bi$_2$Se$_3$ | Bi$_2$Te$_3$ | Sb$_2$Te$_3$ |
|-----|--------------|--------------|--------------|
| $V_{c}$ (a.u.) | 0.349 | 0.556 | 0.513 |
| $V_{c}$ (a.u.) | 0.255 | 0.125 | 0.163 |
| $C_{0}$ (eV) | 0.048 | -0.123 | 0.023 |
| $C_{1}$ (a.u.) | 0.37 | 0.70 | -3.73 |
| $C_{2}$ (a.u.) | 3.65 | 40.54 | -1.83 |
| $M_{0}$ (eV) | -0.169 | -0.296 | -0.182 |
| $M_{1}$ (a.u.) | 0.88 | 2.43 | 5.81 |
| $M_{2}$ (a.u.) | 7.71 | 46.55 | 13.47 |
Figs. 1(a)–1(c)]. An important point about the parameters of the Hamiltonian (1) is that they are very sensitive to details of the crystal geometry, as is the \textit{ab initio} band structure [36–38]: Even a small variation in atomic positions leads to considerable changes of the parameters (see Table S1 in the SM [34]). Furthermore, in all the 3D systems considered (see Table I), the parameters of \( H_{k\sigma} \) turned out to meet the conditions of the existence of the topological surface states [18]: The diagonal dispersion term \( M_z(t) \) is positive and is larger than the electron-hole asymmetry, \( M_\parallel(t) \geq |C_z(t)| \), although \( C_z \) and \( C_\parallel \) are not negligible contrary to the assumption in Ref. [12]. Thus, our \textit{ab initio} \( \mathbf{k} \cdot \mathbf{p} \) Hamiltonian correctly predicts the topological character of these crystals in accord with the \( Z_2 \) topological invariant \( v_{3D} \) obtained from the parities of the wave functions at the TRIM points [41].

We now use our second-order perturbation theory to calculate the effective \( g \) factors entering the Zeeman term (see Eq. (S2) in the SM [34]) that appears in the presence of a static magnetic field [4,5],

\[
\begin{align*}
\epsilon_{\sigma}^{B}(c) &= \frac{2}{im_0} (D^{xy}_{\sigma\chi\uparrow\sigma\downarrow} - D^{xy}_{\sigma\chi\downarrow\uparrow}), \\
\epsilon_{\sigma}^{B}(v) &= \frac{2}{im_0} (D^{xz}_{\sigma\chi\uparrow\sigma\downarrow} - D^{xz}_{\sigma\chi\downarrow\uparrow}).
\end{align*}
\]

The most important is that the calculated values are one or even two orders of magnitude larger than the free-electron \( g \) factor, \( g_0 \approx 2 \). (The values obtained with the four-band \( \mathbf{k} \cdot \mathbf{p} \) method are listed in Table S1 of the SM [34] for all the 3D TIs studied.) This result accords with the recent spin resonance measurements of the effective \( g \) factor in \( \text{Bi}_2\text{Se}_3 \) [42]: For the magnetic field parallel to the \( c \) axis, the experimental \( g \) factors are 27.30 ± 0.15 for electrons and 29.90 ± 0.09 for holes, while for the field perpendicular to the \( c \) axis the \( g \) factors are 19.48 ± 0.07 and 18.96 ± 0.04 for electrons and holes, respectively. In order to compare our theoretical effective-mass contributions to the \( g \) factors with the experiment, we should restrict to a two-band Hamiltonian in the basis \( \Psi_{\sigma\gamma\uparrow}, \Psi_{\sigma\gamma\downarrow} \). For \( \text{Bi}_2\text{Se}_3 \), the two-band results are in good qualitative agreement with the experiment: Our \( g \) values are 11.6 (17.7) for electrons and 19.3 (42.4) for holes. For \( g \) \( \parallel \) we get 10.4 (16.1) and 12.1 (16.5) for electrons and holes, respectively. Here, the values obtained with the LDA-relaxed atomic positions are followed (in brackets) by those with experimental atomic positions.

In contrast to the bulk TIs, for finite-thickness TI films an ambiguous behavior is observed: For a 2D system, in the basis \( \Psi^{slab}_{\sigma\gamma\uparrow}, \Psi^{slab}_{\sigma\gamma\downarrow}, \Psi^{slab}_{\text{c}t\uparrow}, \Psi^{slab}_{\text{c}t\downarrow} \), our \( \mathbf{k} \cdot \mathbf{p} \) Hamiltonian reads (cf. Refs. [26,43])

\[
H_{k\sigma}^{\text{lab}} = C \sigma_0 + M \tau_\tau \sigma_z - V_{\parallel} \tau_\tau (\sigma_k \gamma - \sigma_k \gamma),
\]

where \( C = C_0 + C_\parallel |k|^2 \), \( M = M_0 + M_\parallel |k|^2 \), and the operator \( \tau \) refers now to two decoupled sets of massive Dirac fermions. The last term in Eq. (2) ensures the characteristic spin-orbital texture of the TI surface states [44,45].

Figure 2 shows the film-thickness dependence of the parameters of the Hamiltonian (2) for the TIs considered (the plotted values are listed in Tables S2–S4 of the SM [34]). In contrast to the bulk TIs, for all thicknesses the four-band \( \mathbf{k} \cdot \mathbf{p} \) spectrum does not have an absolute gap [see the red lines with solid circles in Figs. 1(d)–1(f) for two-QL films and Figs. S2–S4 of the SM [34] for other thicknesses]. Note that only for two QLs and only for \( \text{Bi}_2\text{Te}_3 \) does the eight-band Hamiltonian (blue lines with open rhombuses) provide a quality close to that achieved in the 3D case.

Velocity \( V_\parallel \) and electron-hole asymmetry \( C_1 \) converge quite fast with the film thickness [Figs. 2(b) and 2(d)], changing only slightly after three QLs. The six-QL value of \( V_\parallel \) can thus be compared with the Fermi velocity from the effective models (see, e.g., Ref. [17]) in the large-thickness limit. In this limit the velocity is expressed in terms of the bulk parameters (Table I) as \( V_\parallel \sqrt{1 - C_\parallel^2/M_\parallel^2} \) [shown by the horizontal dashed line in Fig. 2(d)], obviously overestimating the calculated values. The parameter \( C_1 \) is positive everywhere, and it is notably larger than the absolute value of the diagonal dispersion term \( M_\parallel \).

FIG. 2. The parameters of the Hamiltonian (2) for film thicknesses from one QL to six QLs. Here, \( \Delta = 2M_0(-1)^{1+|y|} \) is the band gap at \( \Gamma \), with \( v_{3D} \) being the \( Z_2 \) topological invariant. The horizontal dashed lines in the \( V_\parallel \) panel show the prediction by the 2D continuous model in the large thickness limit.

FIG. 3. The parameters of the Hamiltonian (2) for the two-QL film as a function of the van der Waals spacing. The expansion for \( \text{Bi}_2\text{Te}_3 \) and compression for \( \text{Bi}_2\text{Se}_3 \) are given in percents of the bulk values. The dashed blue line in (a) shows the smooth behavior of \( |M_\parallel| \).
the relation between C and the same band structure.

that these oscillations do not correlate with the Zeeman term (3) as functions of the film thickness.

I. A. NECHAEV AND E. E. KRASOVSKII PHYSICAL REVIEW B 94, 201410(R) (2016)

For the same thickness, the parameter $M_\parallel$ may have different signs for different TIs, whereas for a given material $M_\parallel$ is found to “oscillate” with the number of QLs. It turns out that these oscillations do not correlate with the TRIMs of the 2D BZ. This becomes evident from a comparison with the behavior of the gap parameter $\Delta$, whose absolute value $|\Delta| = -2M_\parallel$ yields the gap width at $T = 0$ and the sign depends on $v_{2D}$, with $\Delta$ being negative for a topologically nontrivial film.

The Sb$_2$Te$_3$ film becomes a 2D TI at three QLs and preserves this property up to six QLs [Fig. 2(c)]. For Bi$_2$Te$_3$, the two-QL film is nontrivial, then three and four QLs are trivial, and five and six QLs are again nontrivial. The films of Bi$_2$Se$_3$ are, on the contrary, trivial for all the thicknesses, while the effective model of Ref. [17] predicts them to be a QSHI at some of the thicknesses. It should also be noted that for the effective model of Ref. [17] predicts them to be a QSHI.

To summarize, we have developed a fully ab initio $k \cdot p$ perturbation approach to generate model Hamiltonians of a desired size. This ensures a physically meaningful behavior of the model Hamiltonian parameters with the continuously varying geometry (van der Waals spacing) and for different numbers of the building layers. By applying our approach to Bi$_2$Se$_3$, Bi$_2$Te$_3$, and Sb$_2$Te$_3$ films, we have demonstrated that the widely used effective continuous models are not able to systematically predict the values and often even the relative sign of the model parameters. The failure to infer the general and certain criterion from $H_{kp}$ stems from its fundamental limitation: The topological properties of a crystal cannot be unambiguously determined from the behavior of a few bands in the vicinity of $k = 0$, even though the band inversion occurs just at that point.

This work was supported by the Spanish Ministry of Economy and Competitiveness MINECO (Project No. FIS2013-48286-C2-1-P) and Saint Petersburg State University (Grant No. 15.61.202.2015).

[1] X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011).
[2] H. Weng, R. Yu, X. Hu, X. Dai, and Zh. Fang, Quantum anomalous Hall effect and related topological electronic states, Adv. Phys. 64, 227 (2015).
[3] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Topological insulators in Bi$_2$Se$_3$, Bi$_2$Te$_3$, and Sb$_2$Te$_3$ with a single Dirac cone on the surface, Nat. Phys. 5, 438 (2009).
[4] R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, Berlin, 2003).
H.-Z. Lu, A. Zhao, and S.-Q. Shen, Quantum Transport in W.-Y. Shan, H.-Z. Lu, and S.-Q. Shen, Effective continuous H.-Z. Lu, W.-Y. Shan, W. Yao, Q. Niu, and S.-Q. Shen, J. C. Slater, Electrons in Perturbed Periodic Lattices, Phys. Rev. Z.-H. Zhu, C. N. Veenstra, S. Zhdanovich, M. P. Schneider, T. C.-X. Liu, X.-L. Qi, H. J. Zhang, X. Dai, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, Crossover of the three-dimensional topological insulator Bi$_2$Se$_3$ to the two-dimensional limit, Nat. Phys. 6, 584 (2010). T. Zhang, J. Ha, N. Levy, Y. Kuk, and J. Stroscio, Electric-Field Tuning of the Surface Band Structure of Topological Insulator Sh$_2$Te$_3$, Thin Films, Phys. Rev. Lett. 111, 056803 (2013). B. Zhou, H.-Z. Lu, R.-L. Chu, S.-Q. Shen, and Q. Niu, Finite Size Effect on Helical Edge States in a Quantum Spin-Hall System, Phys. Rev. Lett. 101, 246807 (2008). P. E. Faria, Jr., T. Campos, C. M. O. Bastos, M. Gmitra, J. Fabian, and G. M. Sipahi, Realistic multiband $k \cdot p$ approach from ab initio and spin-orbit coupling effects of InAs and InP in wurtzite phase, Phys. Rev. B 93, 235204 (2016). N. Ray, F. Rost, D. Weckbecker, M. Vogl, S. Sharma, R. Gupta, O. Pankratov, and S. Shallcross, Going beyond $k \cdot p$ theory: A general method for obtaining effective Hamiltonians in both high and low symmetry situations, arXiv:1607.00920. E. E. Krasovskii, Microscopic origin of the relativistic splitting of surface states, Phys. Rev. B 90, 115434 (2014). E. E. Krasovskii and W. Schattke, Semirelativistic technique for $k \cdot p$ calculations: Optical properties of Pd and Pt, Phys. Rev. B 63, 235112 (2001). The extension of the radial basis set provides a high accuracy of the energies and wave functions over a wide energy region from the semicore states to very high energies [see E. E. Krasovskii, Accuracy and convergence properties of the extended linear augmented-plane-wave method, Phys. Rev. B 56, 12866 (1997)]. E. E. Krasovskii, F. Starrost, and W. Schattke, Augmented Fourier components method for constructing the crystal potential in self-consistent band-structure calculations, Phys. Rev. B 59, 10504 (1999). D. D. Koeling and B. N. Harmon, A technique for relativistic spin-polarised calculations, J. Phys. C: Solid State Phys. 10, 3107 (1977). See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.94.201410 for the bulk TI and related films band structure, the matrix form of model Hamiltonians, the values of Hamiltonian parameters, the analysis of atomic layers maximally contributing to the valence and conduction bands at $k = 0$, and the effective Landé $g$ factors for two-QL films as a function of the van der Waals spacing. R. W. G. Wyckoff, Crystal Structures 2 (Wiley, New York, 1964). I. A. Nechaev, R. C. Hatch, M. Bianchi, D. Guan, C. Friedrich, I. Aguilera, J. L. Mi, B. B. Iversen, S. Blügel, Ph. Hofmann, and E. V. Chulkov, Evidence for a direct band gap in the topological insulator Bi$_2$Se$_3$ from theory and experiment, Phys. Rev. B 87, 121111(R) (2013). I. A. Nechaev and E. V. Chulkov, Quasiparticle band gap in the topological insulator Bi$_2$Te$_3$, Phys. Rev. B 88, 165135 (2013). I. A. Nechaev, I. Aguilera, V. De Renzi, A. di bona, A. Lodi Rizzini, A. M. Mio, G. Nicotra, A. Politano, S. Scalese, Z. S. Aliev, M. B. Babanly, C. Friedrich, S. Blügel, and E. V. Chulkov, Quasiparticle spectrum and plasmonic excitations...
in the topological insulator Sb$_2$Te$_3$, Phys. Rev. B 91, 245123 (2015).

[39] E. E. Krasovskii and W. Schattke, The extended-LAPW-based $\mathbf{k} \cdot \mathbf{p}$ method for complex band structure calculations Solid State Commun. 93, 775 (1995).

[40] Note that because the basis functions explicitly refer to the valence and conduction band rather than to atomic orbitals, the parameter $M_0 < 0$ that defines the band gap does not change sign upon moving from the topologically nontrivial insulator to the trivial one.

[41] L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Phys. Rev. B 76, 045302 (2007).

[42] A. Wolos, S. Szyszko, A. Drabinska, M. Kaminska, S. G. Strzelecka, A. Hruban, A. Materna, M. Piera, J. Borysiuk, K. Sobczak, and M. Konczykowski, $g$ factors of conduction electrons and holes in Bi$_2$Se$_3$ three-dimensional topological insulator, Phys. Rev. B 93, 155114 (2016).

[43] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science 314, 1757 (2006)

[44] H. Zhang, C.-X. Liu, and S.-C. Zhang, Spin-Orbital Texture in Topological Insulators, Phys. Rev. Lett. 111, 066801 (2013).

[45] Y. Cao, J. A. Waugh, X.-W. Zhang, J.-W. Luo, Q. Wang, T. J. Reber, S. K. Mo, Z. Xu, A. Yang, J. Schneeloch, G. D. Gu, M. Brahlek, N. Bansal, S. Oh, A. Zunger, and D. S. Dessau, Mapping the orbital wavefunction of the surface states in three-dimensional topological insulators, Nat. Phys. 9, 499 (2013).

[46] C.-X. Liu, H. J. Zhang, B. Yan, X.-L. Qi, T. Frauenheim, X. Dai, Z. Fang, and S.-C. Zhang, Oscillatory crossover from two-dimensional to three-dimensional topological insulators, Phys. Rev. B 81, 041307(R) (2010).

[47] K. Park, J. J. Heremans, V. W. Scarola, and D. Minic, Robustness of Topologically Protected Surface States in Layering of Bi$_2$Te$_3$ Thin Films, Phys. Rev. Lett. 105, 186801 (2010).

[48] M. Kim, C. H. Kim, H.-S. Kim, and J. Ihm, Topological quantum phase transitions driven by external electric fields in Sb$_2$Te$_3$ thin films, Proc. Natl. Acad. Sci. USA 109, 671 (2012).

[49] G. Bihlmayer, Yu. M. Koroteev, T. V. Menschikova, E. V. Chulkov, and S. Blügel, Ab Initio Calculations of Two-Dimensional Topological Insulators in Topological Insulators, Fundamentals and Perspectives (Wiley-VCH, Weinheim, 2015).

[50] T. Förster, P. Krüger, and M. Rohlfing, Two-dimensional topological phases and electronic spectrum of Bi$_2$Se$_3$ thin films from $GW$ calculations, Phys. Rev. B 92, 201404(R) (2015).

[51] T. Förster, P. Krüger, and M. Rohlfing, $GW$ calculations for Bi$_2$Te$_3$ and Sb$_2$Te$_3$ thin films: Electronic and topological properties, Phys. Rev. B 93, 205442 (2016).

[52] T. V. Menschikova et al. (unpublished).