TOTALLY REFLEXIVE MODULES OVER CONNECTED SUMS WITH $m^3 = 0$

ADELA VRACIU

Abstract. We give a criterion for rings with $m^3 = 0$ which are obtained as connected sums of two other rings to have non-trivial totally acyclic modules.

1. INTRODUCTION

Convention 1.1. The rings in this paper are Noetherian standard graded algebras over a field k. We will use $[R]_i$ to denote the ith graded component of R, and m_R will denote the unique maximal homogeneous ideal of R.

A complex $\cdots \to R^{b_i}_i \xrightarrow{d_i} R^{b_{i-1}}_{i-1} \to \cdots$ of free modules is called minimal if $\text{im}(d_i) \subseteq m_R R^{b_{i-1}}_i$ for all i.

$(\cdot)^*$ denotes the functor $\text{Hom}_R(\cdot, R)$, and is called the dual.

Totally reflexive modules were introduced in [1]:

Definition 1.2. A finitely generated module M is totally reflexive if it is isomorphic to a syzygy in a doubly infinite exact complex of free R-modules

$$\mathcal{F} : \cdots \xrightarrow{d_{i+1}} R^{b_i}_i \xrightarrow{d_i} R^{b_{i-1}}_{i-1} \xrightarrow{d_{i-1}} \cdots,$$

such that the dual \mathcal{F}^* is also exact. Such a complex is called totally acyclic.

Equivalently, M is totally reflexive if $\text{Ext}^i_R(M, R) = \text{Ext}^i_R(M^*, R) = 0$ for all $i \geq 1$, and $M \cong M^{**}$.

A ring R is Gorenstein if and only if the totally reflexive R-modules are precisely the maximal Cohen-Macaulay modules. Totally reflexive modules play an important role in the theory of Gorenstein dimension, which is a generalization of projective dimension.

Exact zero divisors provide a particularly simple example of totally reflexive modules:

Definition 1.3. A pair of elements $a, b \in R$ is a pair of exact zero divisors if $\text{ann}_R(a) = (b)$ and $\text{ann}_R(b) = (a)$. Then $R/(a)$ and $R/(b)$ are totally reflexive modules.
reflexive modules, and

\[\cdots \to R \xrightarrow{a} R \xrightarrow{b} R \to \cdots \]

is a totally acyclic complex.

The following result motivates the investigation in this paper.

Theorem 1.4 ([6], Theorem 4.3). Assume that \(R \) is not Gorenstein. Then there are either infinitely many isomorphism classes of indecomposable totally reflexive modules, or the only totally reflexive modules are free.

Note that existence of non-free totally reflexive modules is equivalent to existence of minimal totally acyclic complexes.

Definition 1.5. A ring \(R \) is called *G-regular* if the only totally reflexive modules are the free modules.

There is no known criterion for deciding if a given non-Gorenstein ring is G-regular or not. In the case when \(m^3_R = 0 \), the following conditions are proved to be necessary for the existence of minimal totally acyclic complexes:

Theorem 1.6 ([9], Theorem 3.1). Let \((R, m_R)\) be such that \(R \) is not Gorenstein and \(m^3_R = 0 \). Assume that \(R \) is not G-regular. Then:

a. \(R \) is isomorphic to a graded \(k \)-algebra \(k \oplus [R]_1 \oplus [R]_2 \) and Koszul; in particular, the defining ideal of \(R \) is generated by polynomials of degree 2.

b. \(\dim_k([R]_2) = \dim_k([R]_1) - 1 \)

c. If \(\cdots \to R^{b_i} \to R^{b_{i-1}} \to \cdots \) is a minimal totally acyclic complex, then \(b_i = b_{i-1} \) for all \(i \), and the maps \(d_i \) are represented by matrices with entries in \([R]_1\).

Even for rings with \(m^3_R = 0 \), there are no known necessary and sufficient conditions for G-regularity. In [4], it was shown that rings obtained from Stanley-Reisner rings of graphs after modding out by a linear system of parameters satisfy \(m^3_R = 0 \), and some conditions for G-regularity of such rings were studied. Example (4.1) in [4] prompted us to consider the class of rings studied in this paper.

Fiber product rings have come to the attention of homological commutative algebraists in recent years. It was shown in [8] that if \(\text{Tor}_i^R(M, N) = 0 \) for all \(i \gg 0 \), where \(M \) and \(N \) are finitely generated modules over a ring \(R \) which is a local Artinian fiber product ring over a field, then at least one of \(M \) or \(N \) is free. Since the condition \(\text{Ext}_i^R(M, R) = 0 \) in the definition of a totally reflexive module is equivalent by Matlis duality to \(\text{Tor}_i(M, \omega_R) = 0 \), where \(\omega_R \) is the canonical module of \(R \) (see Observation 2.10.2 in [7]), it follows that every such ring is either Gorenstein or G-regular.
Fiber product rings can be characterized by the condition that the maximal ideal is decomposable, i.e. $m_R = a \oplus b$ for some ideals a, b. In this paper, we look at rings with the property that $m_R = a + b$ for some ideals a, b with $a \cdot b = (0)$ and $a \cap b = (\delta)$, with $\delta \in m_R^2$ (if $\delta \in m_R \setminus m_R^2$, we could write m_R as a direct sum of some smaller ideals a', b'). We show that such rings can be obtained as quotients of fiber products by one element. These rings are connected sums in the sense of [2]. We study the existence of totally reflexive modules for such rings under the additional assumption that $m_R^3 = 0$ in terms of the existence of totally reflexive modules for the two rings involved in the fiber product.

Numerous examples of such rings can be obtained from graphs. Let Γ be a connected bipartite graph with vertex set $\{x_1, \ldots, x_n, y_1, \ldots, y_m\}$ such that every edge connects an x_i to a y_j. Assume that the induced graph on $\{x_1, \ldots, x_{n-1}, y_1, \ldots, y_{m-1}\}$ is disconnected and it has two connected components, A and B. Also assume that x_n and y_m are not connected by an edge.

Let R_Γ denote the Stanley-Reisner ring of Γ over a fixed field k, and $R = R_\Gamma/(l_1, l_2)$, where $l_1 = \sum_{i=1}^n x_i$ and $l_2 = \sum_{j=1}^m y_j$. We can view R as a quotient of $k[X_1, \ldots, X_{n-1}, Y_1, \ldots, Y_{m-1}]$. It was shown in [4] that (R, m) has $m_R^3 = 0$. Let δ denote the ideal generated by the images of variables corresponding to vertices in A and b the ideal generated by the images of variables corresponding to vertices in B. We have $m = a + b$ and $a \cdot b = (0)$. Let $f = \sum_{i=1}^{n-1} x_i = -x_n$ and $g = \sum_{j=1}^{m-1} y_j = -y_m$, where x_i and y_j denote the images of X_i and respectively Y_j in R. Since x_n and y_m are not connected by an edge, we have $fg = 0$. We write $f = f_A + f_B$, $g = g_A + g_B$, where f_A is the sum of the x_j's that are in A, etc.

We have $0 = fg = f_A g_A + f_B g_B$ therefore, $\delta := f_A g_A = -f_B g_B \in a \cap b$. There are no other elements in $a \cap b$. Since $m_R^3 = (0)$, a non-zero element in the intersection would have to be $\sum_{x_i, y_j \in A} x_i y_j = \sum_{x_i', y_j' \in B} x_i' y_j'$. Inspecting the defining equations of the Stanley-Reisner ring, we see that no such relation exists other than $fg = 0$.

Proposition 3.9 in [4] shows that rings obtained from the construction described above do not have exact zero divisors. On the other hand, Example 4.1 in [4] is an example of such a ring that has non-free totally reflexive modules. The rings studied in this paper can be viewed as generalizations of this example.

2. Construction and set up

Observation 2.1. The following are equivalent:
1. The maximal homogeneous ideal \(m_R \) can be decomposed as \(m_R = a + b \) with \(ab = (0) \) and \(a \cap b = (\delta_1, \ldots, \delta_s) \).

2. \(R \) is isomorphic to a ring of the form

\[
P = \frac{R_1 P + I_2 P + (f_1 - g_1, \ldots, f_s - g_s) + (x_i y_j \mid 1 \leq i \leq n, 1 \leq j \leq m)}{(f_1 - g_1, \ldots, f_s - g_s)}
\]

where \(P = k[x_1, \ldots, x_n, y_1, \ldots, y_m] \), \(I_1, I_2 \) are ideals in \(P_1 := k[x_1, \ldots, x_n] \), respectively \(P_2 := k[y_1, \ldots, y_m] \), \(f_1, \ldots, f_s \in P_1, g_1, \ldots, g_s \in P_2 \).

Proof. Assume 1. Write \(R = P/J \) with \(P = k[x_1, \ldots, x_n, y_1, \ldots, y_m] \), \(a = (x_1, \ldots, x_n) \), \(b = (y_1, \ldots, y_m) \). The assumption that \(ab = (0) \) shows that \(J_0 := (x_i y_j \mid 1 \leq i \leq n, 1 \leq j \leq m) \subset J \). We have canonical homomorphisms \(P_1 \to R \) and \(P_2 \to R \); let \(I_1 \), respectively \(I_2 \) denote the kernels of these homomorphisms. Then \(I_1 P + I_2 P \subset J \). Let \(R_0 := P_1/I_1 \) and \(S_0 := P_2/I_2 \); these are isomorphic to subrings of \(R \). We identify elements in \(R_0, S_0 \) with their images in \(R \). Modulo \(J_0 \), every element of \(P \) can be written as \(f - g \) with \(f \in P_1 \) and \(g \in P_2 \). Thus we write \(J = I_1 P + I_2 P + J_0 + (f_1 - g_1, \ldots, f_t - g_t) \) for some \(f_1, \ldots, f_t \in P_1, g_1, \ldots, g_t \in P_2 \). We may assume that all \(f_j, g_j \) are nonzero (if \(f_j = 0 \), then \(g_j \in J \Leftrightarrow g_j \in I_2 P \)). Note that \(f_j \) and \(g_j \) have the same image in \(R \), which is therefore in \(a \cap b \). A minimal generating set for \(J/I_1 P + I_2 P + J_0 \) corresponds to a minimal generating set of \(a \cap b \), thus \(t = s \).

The proof of the converse follows along similar lines. \(\square \)

Note 2.2. The ring \(R \) described in (1) is a quotient of a fiber product:

\[
R = \frac{R_0 \times_k S_0}{(f_1 - g_1, \ldots, f_s - g_s)}
\]

where \(R_0 = P_1/I_1, S_0 = P_2/I_2 \), and

\[
R_0 \times_k S_0 = \frac{P}{I_1 P + I_2 P + (x_i y_j \mid 1 \leq i \leq n, 1 \leq j \leq m)}
\]

is the fiber product of \(R_0 \) and \(S_0 \) over \(k \). By abusing notation, we use \(f_1, \ldots, f_s \) to denote the images of \(f_1, \ldots, f_s \in P_1 \) in \(R_0 \). Similarly for \(g_1, \ldots, g_s \).

Note 2.3. If \(f_1, \ldots, f_s \in \text{Soc}(R_0) \) and \(g_1, \ldots, g_s \in \text{Soc}(S_0) \), then \(R \) is a connected sum in the sense of [2].

Connected sums of Gorenstein rings have received a lot of attention lately (see [2], [3], [5]). However, the connected sums we study in this paper are non-Gorenstein.

We will focus on the case \(s = 1 \). The following notation will be in effect for the rest of the paper.
Setup 2.4. Let R be as in (1), with $s = 1$. Assume moreover that $m_R^3 = 0$, and $f := f_1, g := g_1$ are nonzero elements of R_0, respectively S_0 of degree two.

Denote

\[R_0 = \frac{P_1}{I_1}, \quad R_1 = \frac{P_1}{I_1 + (f)}, \quad S_0 = \frac{P_2}{I_2}, \quad S_1 = \frac{P_2}{I_2 + (g)}, \]

\[a = (x_1, \ldots, x_n)R, \quad b = (y_1, \ldots, y_m)R. \]

We have injective homomorphisms $\phi_1 : R_0 \to R$ and $\phi_2 : S_0 \to R$ induced by the inclusions $P_1 \subseteq P$ and $P_2 \subseteq P$. We will identify R_0 with $\text{im}(\phi_1)$, which is the subring of R generated by a, and S_0 with $\text{im}(\phi_2)$, which is the subring of R generated by b. Note that $m_R^3 = 0 \iff a^3 = b^3 = 0 \iff m_{R_0}^3 = m_{S_0}^3 = 0$.

Assume $d : R_b^b \to R^c$ is a degree one homomorphism of graded R-modules. There is a matrix representation of d of the form $A' + B'$, where A' is a $c \times b$ matrix with entries in a and B' is a $c \times b$ matrix with entries in b.

We can view A' as a map $\text{im}(\phi_1)^b \to \text{im}(\phi_1)^c$, and B' as a map $\text{im}(\phi_2)^b \to \text{im}(\phi_2)^c$. When R_0 is identified with $\text{im}(\phi_1)$ and S_0 is identified with $\text{im}(\phi_2)$, A' and B' correspond to maps $\tilde{A} : R_0^b \to R_0^c$ and $\tilde{B} : S_0^b \to S_0^c$ respectively.

The assumption $m_{R_0}^3 = 0$ guarantees that \tilde{A} and \tilde{B} map every element of degree two to zero, and therefore there are induced maps $A : R_1^b \to R_1^c$, and $B : S_1^b \to S_1^c$.

The process can be reversed as follows: given maps $A : R_1^b \to R_1^c$ and $B : S_1^b \to S_1^c$ which are graded homomorphisms of degree one, there are unique liftings $\tilde{A} : R_0^b \to R_0^c$ and $\tilde{B} : S_0^b \to S_0^c$ which map f and g to zero, and these can be identified with $c \times b$ matrices A' and B' with entries in a and respectively b, giving rise to a homomorphism $d : R_b^b \to R^c$ represented by the matrix $A' + B'$.

Similarly, a vector in R_b^b can be written (uniquely, if all entries are linear) as $x' + y'$ where x' has all components in a and y' has all components in b. These are identified with vectors $\bar{x} \in R_0^b$ and $\bar{y} \in S_0^b$. The images of \bar{x} in R_1^b and of \bar{y} in S_1^b will be denoted x and y respectively.

Observation 2.5. R is Gorenstein if and only if R_0 and S_0 are Gorenstein.

Proof. Note that our assumptions imply $\delta \in \text{Soc}(R)$. Assume that R is Gorenstein. If $x' \in \text{Soc}(R_0)$, then the image of x' in R must be in (δ), and therefore $x' \in (f)$, which shows that R_0 is also Gorenstein. The argument for S_0 is similar.

Now assume that R_0 and S_0 are Gorenstein. Every element of m_R can be represented as $x' + y'$ with $x' \in a$ and $y' \in b$. According to the convention in (2.1), $x' \in a$ corresponds to an element $\bar{x} \in R_0$ and $y' \in b$ corresponds to an element $\bar{y} \in S_0$. We have $x' + y' \in \text{Soc}(R) \iff ax' = by' = 0 \iff \bar{x} \in (\delta) \iff \bar{y} \in (\delta)$.
Soc(R_0), $\bar{y} \in$ Soc(S_0). Indeed, $x' + y' \in$ Soc(R) implies that $ax' = -by' \in (\delta)$ for every choice of $a \in \alpha$ and $b \in \beta$, and this can only happen if $ax' = by' = 0$. Therefore, $\bar{x} \in$ Soc(R_0) = (f), $\bar{y} \in$ Soc(S_0) = (g), which implies $x' + y' \in (\delta)$. □

From this point on, we will assume that R is not Gorenstein.

We will think of R_1, S_1, and choices of generators for their defining ideals as the data from which R is constructed.

Construction 2.6. Given rings $R_1 = P_1/(a_1, \ldots, a_t), S_1 = P_2/(b_1, \ldots, b_u)$ with $m_{R_1}^3 = m_{S_1}^3 = 0$, we let $I_1 = mp_a a_1 + (a_2, \ldots, a_t), I_2 = mp_b b_1 + (b_2, \ldots, b_u)$ and define R to be the ring given by (1), with $s = 1, f := a_1, g := b_1$.

Note that $mp_a a_1 = 0$ and $mp_b b_1 = 0$ are redundant in the defining equations of R (since they follow from $mp_b b_1 = 0$ and $mp_a a_1 = 0$). The same R would be obtained by using $I_1 = (a_2, \ldots, a_t), I_2 = (b_2, \ldots, b_u)$ in (1). However, the choice $I_1 = mp_a a_1 + (a_2, \ldots, a_t), I_2 = mp_b b_1 + (b_2, \ldots, b_u)$ guarantees that $R_0 := P_1/I_1$ and $S_0 := P_2/I_2$ satisfy $m_{R_0}^3 = m_{S_0}^3 = 0$.

Example 2.7. Let

\[
R_1 = \frac{k[x_1, y_1, z_1]}{(x_1^2, y_1^2, z_1^2, x_1y_1)}, \quad S_1 = \frac{k[x_2, y_2, z_2]}{(x_2^2, y_2^2, z_2^2, x_2y_2)}.
\]

We use the construction given in (2.6), using $f = z_1^2, g = z_2^2$.

The resulting ring is

\[
R = \frac{k[x_1, y_1, z_1, x_2, y_2, z_2]}{(x_1, x_2, y_1, y_2)^2 + z_1(x_2, y_2, z_2) + z_2(x_1, y_1, z_1) + (z_1^2 - z_2^2)}.
\]

3. Main Results

We study conditions on R_1 and S_1 that are necessary and sufficient for R to admit minimal totally acyclic complexes.

More precisely, consider a sequence of maps

\[
\cdots \rightarrow R_{b_i+1} \xrightarrow{d_{i+1}} R_{b_i} \xrightarrow{d_i} R_{b_i-1} \xrightarrow{d_{i-1}} \cdots
\]

and the induced sequences (recalling the notation from (2.4)):

\[
\cdots \rightarrow S_{b_i+1} \xrightarrow{A_{i+1}} S_1 \xrightarrow{A_i} S_{b_i-1} \xrightarrow{A_{i-1}} \cdots \quad \text{and} \quad \cdots \rightarrow S_{b_i+1} \xrightarrow{B_{i+1}} S_{b_i} \xrightarrow{B_i} S_{b_i-1} \xrightarrow{B_{i-1}} \cdots
\]

Conversely, given the maps in (3), we construct the maps in (2) by letting $d_i = A_i + B_i$ (where $A_i, B_i : R_{b_i} \rightarrow R_{b_i-1}$ are obtained by lifting A_i, B_i to $R_{b_i}^0$ and $S_{b_i}^0$ respectively, and then identifying R_0, S_0 with subrings of R).
We investigate the relationship between (2) being an exact complex and (3) being exact complexes.

Observation 3.1. If (2) is a complex, then the two sequences in (3) are also complexes.

Proof. We have $d_i d_{i+1} = A_i' A_{i+1}' + B_i' B_{i+1}'$. Assume $d_i d_{i+1} = 0$. Then $A_i' A_{i+1}' = -B_i' B_{i+1}'$ and therefore the images of both $A_i' A_{i+1}'$ and $B_i' B_{i+1}'$ are contained in $(\delta)R^{b_i-1}$. This is equivalent to $A_i A_{i+1} = B_i B_{i+1} = 0$. □

Note that the converse of Observation (3.1) is not true, since the images of $A_i' A_{i+1}'$ and $B_i' B_{i+1}'$ can be contained in (δ), but $A_i' A_{i+1}' \neq -B_i' B_{i+1}'$ (for instance replacing B_i' by $-B_i'$ will cause this to occur).

There will be an additional assumption that we will impose in the course of this investigation, namely

$$(f) R^{b_i}_0 \subseteq \text{im}(\tilde{A}_{i+1}) \quad \text{and} \quad (g) S^{b_i}_0 \subseteq \text{im}((\tilde{B}_{i+1}) \quad \text{for all} \quad i.$$

Before stating the results, we illustrate our conclusions using the following two examples:

Example 3.2. Consider the rings from Example (2.7). Note that z_1 is an exact zero divisor for R_1, z_2 is an exact zero divisor for R_2, and $z_1 + z_2$ is an exact zero divisor for R. Consider the following complexes in the roles of the complexes in (3)

$$\cdots \to R^{b_i+1}_i \xrightarrow{z_1} R^{b_i}_i \xrightarrow{z_1} R^{b_i-1}_i \xrightarrow{z_2} \cdots \quad \text{and} \quad \cdots \to S^{b_i+1}_i \xrightarrow{z_2} S^{b_i}_i \xrightarrow{z_2} S^{b_i-1}_i \xrightarrow{z_2} \cdots$$

and we obtain

$$\cdots \to R^{b_i+1}_i \xrightarrow{z_1+z_2} R^{b_i}_{i+1} \xrightarrow{z_1+z_2} R^{b_i-1}_{i+1} \xrightarrow{z_1+z_2} \cdots$$

in the role of (2) (which is a complex). Note that all these complexes are exact, and condition (4) holds, where \tilde{A}_i is given by multiplication by z_1 and \tilde{B}_i is given by multiplication by z_2.

Example 3.3. Consider

$$R_1 = \frac{k[x_1, x_2, y_1, y_2, y_3]}{(x_1, x_2)^2 + (y_1, y_2, y_3)^2 + x_1 (y_1, y_2)}$$

$$S_1 = \frac{k[x_3, x_4, x_5, y_4, y_5]}{(x_3, x_4, x_5)^2 + (y_4, y_5)^2 + y_4 (x_3, x_4)}$$

Construct R as in (2.6), using $f := x_1 y_1, g := x_4 y_4$. Assume $d_i d_{i+1} = 0$. Then $A_i A_{i+1} = B_i B_{i+1} = 0$.

Note that R_1 and S_1 have exact zero divisors. The following elements are a pair of exact zero divisors in R_1:

$$l_1 = x_1 + x_2 + y_1 + y_2 + y_3 \quad l'_1 = x_1 + x_2 - y_1 - y_2 - y_3$$
and the following elements are a pair of exact zero divisors in S_1:
\[
\begin{align*}
 l_2 &= x_3 + x_4 + x_5 + y_4 + y_5, \\
 l'_2 &= x_3 + x_4 + x_5 - y_4 - y_5
\end{align*}
\]
(this has been checked using Macaulay 2). Thus, the complexes
\[
\begin{align*}
 (5) & \cdots R_1 \xrightarrow{l'_1} R_1 \xrightarrow{l_1} R_1 \xrightarrow{l'_1} R_1 \xrightarrow{l_1} R_1 \cdots \\
 (6) & \cdots S_1 \xrightarrow{l'_2} S_1 \xrightarrow{l_2} S_1 \xrightarrow{l'_2} S_1 \xrightarrow{l_2} S_1 \cdots
\end{align*}
\]
are exact.

Note that $\tilde{l}_1\tilde{l}'_1 = 0$, and $\tilde{l}_2\tilde{l}'_2 = 0$, so condition (4) does not hold. In fact, more is true: for every choice of $l_1, l'_1 \in R_1$ and $l_2, l'_2 \in R_2$ which are pairs of exact zero divisors, we will have $\tilde{l}_1\tilde{l}'_1 = \tilde{l}_2\tilde{l}'_2 = 0$. To see this, write $l_1 := l_{1x} + l_{1y}$, where l_{1x} is a linear combination of x_1, x_2, and l_{1y} is a linear combination of y_1, y_2, y_3, and note that setting $l'_1 := l_{1x} - l_{1y}$ gives $\tilde{l}_1\tilde{l}'_1 = 0$. Since the annihilator of l_1 is a principal ideal, it follows that l'_1 is the generator of that annihilator. A similar argument applies to l_2.

The complexes (5) and (6) can be used to build a complex of R-modules:
\[
\begin{align*}
 (7) & \cdots l_1 + l_2 \xrightarrow{l_1 + l'_2} R \xrightarrow{l'_1 + l_2} R \xrightarrow{l_1 + l_2} \cdots
\end{align*}
\]
However, this complex is not exact. In fact, R does not have exact zero divisors. To see this, assume that $L := L_a + L_b \in R$ is an exact zero divisor, where L_a is a linear combination of x_1, x_2, y_1, y_2, y_3, and L_b is a linear combination of x_3, x_4, x_5, y_4, y_5. Note L_a and L_b must be nonzero ($x_1, x_2, y_1, y_2, y_3 \in \text{ann}(L_b)$, and thus L_b cannot be an exact zero divisor). Further, write $L_a := L_{ax} + L_{ay}$, where L_{ax} is a linear combination of x_1, x_2, and L_{ay} is a linear combination of y_1, y_2, y_3. Similarly, $L_b := L_{bx} + L_{by}$. Note that $(x_1, \ldots, x_5)^2 R = (y_1, \ldots, y_5)^2 R = 0$, and therefore $(L_{ax} + L_{ay})(L_{ax} - L_{ay}) = 0, (L_{bx} + L_{by})(L_{bx} - L_{by}) = 0$. Since we also have
\[
(x_1, x_2, y_1, y_2, y_3)(x_3, x_4, x_5, y_4, y_5) R = 0,
\]
it follows that $L_{ax} - L_{ay}, L_{bx} - L_{by} \in \text{ann}(L)$, thus $\text{ann}(L)$ cannot be a principal ideal.

We shall see in Lemma (3.4) that the failure of (7) to be exact is due to the failure of condition (4). We shall see in Corollary (4.3) that even though R does not have exact zero divisors, it does have totally reflexive modules of higher rank.

Now we prove that condition (4) is necessary for (2) to be totally acyclic.

Lemma 3.4. Assume that R is not Gorenstein and (2) is a totally acyclic complex. Then (4) holds.
Proof. We know from Theorem (1.6) that the betti numbers in a totally acyclic complex are constant, say \(b_i = b \), and the entries in the matrices representing the maps \(d_i \) are linear.

Let \(u \in R^b \) be a nonzero vector with linear entries belonging to \(a \). We claim that \(A'_i u \neq 0 \) for all \(i \). In other words, the restriction of \(A'_i \) to the degree one component of \(a^b \) is injective. Otherwise, we would have \(u \in \ker(d_i) = \im(d_{i+1}) \). Say \(u = d_{i+1}(e) \), where \(e \in R^b \) has degree 0. Since \(ab = 0 \), we have \(y_1 e, \ldots, y_m e \in \ker(d_{i+1}) = \im(d_{i+2}) \). Say \(y_j e = d_{i+2}(f_j) \), where \(f_j \in R^b \) has degree zero. Then \(x_i f_j \in \ker(d_{i+2}) \) for all \(1 \leq l \leq n, 1 \leq j \leq m \). This shows that \(\ker(d_{i+1}) \) has at least \(m \) minimal generators, and \(\ker(d_{i+2}) \) has at least \(nm \) minimal generators. Continuing along the same lines, we see that \(\ker(d_{i+3}) \) will have at least \(nm^2 \) minimal generators, etc. This contradicts the fact that the betti numbers are constant.

Similarly, if \(v \in R^b \) is a nonzero vector with linear entries belonging to \(b \), we have \(B'_i v \neq 0 \).

A nonzero vector with linear entries in \(R^b \) can be written as \(u' + v' \), where \(u' \) has entries in \(a \) and \(v' \) has entries in \(b \). We have \(u' + v' \in \ker(d_i) \) if and only if \(A'_i u' = -B'_i v' \), and this is a nonzero vector in \((\delta)R^b \). Due to the injectivity of \(A'_i \) and \(B'_i \), for every \(\delta e \in (\delta)R^b \cap \im(A'_i) \cap \im(B'_i) \), there exist unique \(u', v' \) with \(A'_i u' = -B'_i v' = \delta e \), and therefore a unique \(u' + v' \in \ker(d_i) \). Since the \(\ker(d_i) \) is generated by \(b \) linearly independent vectors with linear entries, it follows that \((\delta)R^b \subseteq \im(A'_i) \cap \im(B'_i) \), which is equivalent to the desired conclusion.

\[\square \]

Theorem 3.5. Assume that (2) is a complex and condition (4) holds. Then (2) is exact if and only if both of the complexes in (3) are exact.

Proof. We know from Observation (3.1) that the sequences in (3) are complexes.

The hypothesis (4) is equivalent to \((\delta)R^{b_i-1} \subseteq \im(A'_i) \cap \im(B'_i) \) for all \(i \). Assume (2) is exact. We show that the first complex in (3) is exact. Consider \(x \in \ker(A_i) \). We lift \(x \) to an element \(\tilde{x} \in R^b_0 \) such that \(A_i \tilde{x} = (f) \delta R_0^{b_i-1} \). This corresponds to an element \(x' \in R^b \) such that all components of \(x' \) are in \(a \), and \(A'_i x' \in (\delta)R^{b_i-1} \subseteq \im(B'_i) \) by assumption (4). Therefore, there exists \(y' \in R^b \) with all components in \(b \) such that \(A'_i x' + B'_i y' = \delta e \). This implies \(x' - y' \in \ker(d_i) \). Since (2) is exact, there exist \(x'_2 \in R^{b_{i+1}} \) with entries in \(a \) and \(y'_2 \in R^{b_{i+1}} \) with entries in \(b \) such that

\[x' - y' = d_{i+1}(x'_2 + y'_2) = A'_{i+1}x'_2 + B'_{i+1}y'_2 \]
We have $x' - A_{i+1}'x_2' = B_{i+1}'y_2'$, $y' \in (\delta)R^b$. Translating to elements of R^b_0, we have $\bar{x} - \bar{A}_{i+1}\bar{x}_2 \in (f)R^b_0$, and therefore $x = A_{i+1}(x_2)$, which is the desired conclusion.

Now assume that the complexes of (3) are exact. Consider an element $x' + y' \in \ker(d_i)$, where x' has all components in a and y' has all components in b. We have $d_i(x' + y') = A'_i x' + B'_i y'$, and therefore $A'_i x' = -B'_i y' \in (\delta)R^b_0$.

Translating to elements of R_0, S_0, we have $\bar{A}_i(\bar{x}) \in (f)R_0^{b_i-1}, \bar{B}_i(\bar{y}) \in (g)S_0^{b_i-1}$, i.e. $x \in \ker(A_i)$ and $y \in \ker(B_i)$. The assumption that the complexes of (3) are exact implies that there are elements $x_2 \in R_1^{b_i+1}, y_2 \in S_1^{b_i+1}$ such that $x = A_{i+1}(x_2)$ and $y = B_{i+1}(y_2)$. We can lift to elements $\bar{x}_2 \in R_1^{b_i+1}, \bar{y}_2 \in S_1^{b_i+1}$ such that

$$\bar{x} = \bar{A}_{i+1}(\bar{x}_2) \mod((f)R_0^b), \quad \bar{y} = \bar{B}_{i+1}(\bar{y}_2) \mod((g)S_0^b)$$

The assumption (4) allows us to conclude that $\bar{x} \in \text{im}(\bar{A}_{i+1}), \bar{y} \in \text{im}(\bar{B}_{i+1})$, which translates into $x' \in \text{im}(A'_{i+1}), y' \in \text{im}(B'_{i+1})$, and therefore $x' + y' \in \text{im}(d_{i+1})$.

The next result allows us to restate condition (4):

Proposition 3.6. Let $R_1 = P_1/I_1 + (f)$ be a non-Gorenstein quotient of a polynomial ring P_1. Assume that $m_{R_1}^2 = 0$ and f has degree 2. Assume that there is a minimal totally acyclic complex

$$\cdots \rightarrow R_1^{b_{i+1}} \rightarrow R_1^{b_i} \rightarrow R_1^{b_{i-1}} \rightarrow \cdots$$

and let $\bar{A}_i : R_0^b \rightarrow R_0^b$ be liftings of the maps A_i to $R_0 := P_1/(I_1 + m_{P_1}f)$. We have

$$(f)R_0^b \subseteq \text{im}(\bar{A}_{i-1}) \Leftrightarrow \text{im}(\bar{A}_{i-1}\bar{A}_i) = (f)R_0^b$$

If the above conditions hold, we can construct a minimal totally acyclic complex

$$\cdots \rightarrow R_1^{b_{i+1}} \rightarrow R_1^{b_i} \rightarrow R_1^{b_{i-1}} \rightarrow \cdots$$

over R_1 such that $\bar{A}'_{i-1}\bar{A}'_i = I_{b_i}$, where I_b is the identity map on R^b_0.

Proof. (\Leftarrow) is obvious. We prove (\Rightarrow). Recall that the matrices A_i have linear entries and every homogeneous element of degree two of $R_1^{b_i}$ is in $\text{ker}(A_{i-2}) = \text{im}(A_{i-1})$. The assumption that $(f)R_0^b \subseteq \text{im}(\bar{A}_{i-1})$ implies that every homogeneous element of degree two of R_0^b is in $\text{im}(\bar{A}_{i-1})$.

From Theorem (1.6), we have $\dim_k([R_1]_2) = \dim_k([R_1]_1) - 1$, and therefore $\dim_k([R_0]_2) = \dim_k([R_0]_1)$.

Consider the map of k-vector spaces $L_1 : ([R_0]_1)^b \rightarrow ([R_0]_2)^b$ induced by \bar{A}_{i-1}. We know that this map is surjective, and therefore also injective. We also have a k-linear map $L_0 : ([R_0]_0)^b \rightarrow ([R_0]_1)^b$ which sends the standard
basis vectors to the columns of \tilde{A}_i. L_0 is also injective, and therefore the composition $L_1L_0: (R_0)^b \rightarrow (R_0)^b$ is injective. Note that $\operatorname{im}(\tilde{A}_{i-1}\tilde{A}_i) = \operatorname{im}(L_1L_0)$, and it is contained in $(f)R_0^b$ (since $A_{i-1}A_i = 0$). Viewing L_1L_0 as a map $[R_0]^b \rightarrow (f)R_0^b$, we see that this map is surjective, because the domain and codomain have the same dimension as vector spaces over k.

To prove the last statement, note that we have $\tilde{A}_i\tilde{A}_{i+1} = fU_i$ where $U_i: R_0^b \rightarrow R_0^b$ are invertible. We define $\tilde{A}_i^t := V_i\tilde{A}_iW_i$ where $V_i,W_i: R_0^b \rightarrow R_0^b$ are invertible. For $i = 0$, we let $V_0,W_0 = I_b$. For $i > 0$, we define V_i,W_i recursively as follows: $V_{i+1} := W_i^{-1}$, $W_{i+1} := (V_iU_i)^{-1}$. For $i < 0$, say $i = -j$, we define V_{-j},W_{-j} recursively as follows: $V_{-j-1} := (U_{-j}W_{-j})^{-1}$, $W_{-j-1} := V_{-j}$. We now have $\tilde{A}_i^t\tilde{A}_{i+1} = fI_b$ for all i. The complex with the maps A_i^t (where $A_i^t: R_0^b \rightarrow R_0^b$ is obtained from \tilde{A}_i by modding out f) is still totally acyclic because the operations involved in constructing A_i^t from A_i do not change the dimensions of the kernel and the image.

\[\square\]

Corollary 3.7. Let R_1,S_1 be non-Gorenstein rings with $m_1^3 = m_1^3 = 0$, and let f,g be part of minimal systems of generators for the defining ideals of R_1, respectively S_1. Let R be constructed as in (2.6). Assume that R is not Gorenstein.

Then R has minimal totally acyclic complexes if and only if both R_1 and S_1 have minimal totally acyclic complexes such that conditions (4) are satisfied.

Proof. Assume that R has a minimal totally acyclic complexes. Then the conclusion follows immediately from Theorem (3.5) and Lemma (4).

Conversely, assume that R_1 and S_1 admit minimal totally acyclic complexes such that condition (4) is satisfied. Replacing each of these complexes by direct sums of copies of themselves if necessary, we may assume that the free modules in both complexes have the same rank (condition (4) will continue to hold). Let $A_i: R_i^b \rightarrow R_i^b$ denote the maps in a minimal totally acyclic complex over R_1, and let $B_i: S_i^b \rightarrow S_i^b$ be the maps in the complex over S_1. It follows from Proposition (3.6) that we may assume $\tilde{A}_{i-1}\tilde{A}_i = fI_{g_0}$ and $\tilde{B}_{i-1}\tilde{B}_i = -gI_{g_0}$, where I_{g_0}, I_{g_0} denote the identity functions on these modules.

We have established in Setup (2.4) that the maps A_i and B_i can be used to construct $d_i: R_i^b \rightarrow R_i^b$, $d_i = A_i^t + B_i$. Since $d_{i-1}d_i = A_{i-1}^tA_i^t - B_{i-1}^tB_i = 0$, these maps give rise to a complex of free R-modules. Theorem (3.5) now tells us that this complex is totally acyclic.

\[\square\]

As we have seen in Example (3.3), the hypothesis (4) cannot be omitted in the statement of Theorem (3.5).
The next example shows that it is possible for R_1, S_1 to have minimal totally acyclic complexes, but for the ring R constructed as in (2.6) to not have any.

Example 3.8. Let

$$R_1 = \frac{k[x_1, y_1, z_1]}{(x_1^2, y_1^2, z_1^2 - x_1y_1, x_1z_1, y_1z_1)}, S_1 = \frac{k[x_2, y_2, z_2]}{(x_2^2, y_2^2, z_2^2 - x_2y_2, x_2z_2, y_2z_2)}$$

Construct R as in (2.6), using any choice of f_1, g_1 from a minimal system of generators for the defining ideals of R_1 and S_1.

Note that R_1, S_1 are Gorenstein, and therefore they have minimal totally acyclic complexes. However, $\dim k[\mathbb{Q}(R_1)] = 6$ and $\dim k[\mathbb{Q}(R_2)] = 3 \neq \dim k(\mathbb{Q}(R_1)) - 1$, so R does not have minimal totally acyclic complexes by Theorem (1.6).

We do not know any examples of non-Gorenstein rings R_1, S_1 with $m_3^{R_1} = m_3^{S_1} = 0$ that have minimal totally acyclic complexes such that the ring R constructed as in (2.6) does not.

4. **Totally acyclic complexes with prescribed liftings**

Let $R_1 = P/I + (f)$ denote a quotient of a polynomial ring $P = k[x_1, \ldots, x_n]$ with $m_3^{R_1} = 0$. Assume that R_1 is not Gorenstein and has minimal totally acyclic complexes. Let $R_0 = P/(I + m_P f)$.

The results of the previous section prompt us to ask the following:

Question 4.1. Is there a minimal totally acyclic complex

$$\cdots R_i^b \xrightarrow{A_i} R_i^b \xrightarrow{A_i^{-1}} R_i^b \cdots$$

such that

$$ (f)R_i^b \subseteq \text{im}(\tilde{A}_{i-1}\tilde{A}_i) \ \forall i?$$

Here, \tilde{A}_i denotes a lifting of A_i to R_0.

Example (3.3) shows that it is possible for R_1 to have a minimal totally acyclic complex consisting of modules of rank $b = 1$, but not have any such complex (with free modules of the same rank) satisfying (8). However, if we are willing to increase the rank of the free modules in the complex (and under additional assumptions on the minimal totally acyclic complex) we have the following:

Theorem 4.2. Let $R_1 = P/I + (f), R_0 = P/(I + m_P f)$ be as above, where P is a polynomial ring over an algebraically closed field k. Assume that R_1
has a minimal totally acyclic complex which is periodic with period two, i.e. it has the form

\[
\cdots \to R_1^b X_1 \to R_1^b W_1 \to R_1^b X_2 \to R_1^b W_2 \to \cdots
\]

Moreover, assume that

\[
(9) \quad \tilde{X}\tilde{W} = \tilde{W}\tilde{X},
\]

where \(\tilde{X}, \tilde{W}\) denote liftings of \(X, W\) to \(R_0\).

Assume that \(f = y_1 z_1 + \ldots + y_k z_k\), where \(y_i, z_i \in R_0\) are linear. Then there is a totally acyclic complex

\[
(10) \quad \cdots \to R_1^{2k_b} A_1 \to R_1^{2k_b} B_1 \to R_1^{2k_b} A_2 \to \cdots
\]

such that

\[
(11) \quad (f)R_0^{2k_b} \subseteq \text{im}(\tilde{A}\tilde{B}) \cap \text{im}(\tilde{B}\tilde{A}),
\]

where \(\tilde{A}, \tilde{B}\) denote matrices with entries in \(R_0\) obtained by lifting each entry of \(A\), respectively \(B\), to \(R_0\).

\textbf{Proof.} Since \(XW = WX = 0\), the matrices representing \(\tilde{X}\tilde{W}\) and \(\tilde{W}\tilde{X}\) have entries in \((f)\). By choosing bases, we may assume that

\[
\tilde{X}\tilde{W} = \tilde{W}\tilde{X} = \text{diag}(0, \ldots, 0, f, \ldots, f),
\]

with the last \(b - v\) diagonal entries equal to \(f\). If \(v = 0\), there is nothing to show. Assume \(v > 0\). For each \(1 \leq j \leq k\), define \(Y_j^1\) and \(Z_j^1\) to be the \(b \times b\) matrices \(Y_j^1 := \text{diag}(y_j, \ldots, y_j, 0, \ldots, 0)\), with \(v\) diagonal entries equal to \(y_j\), and \(Z_j^1 := \text{diag}(z_j, \ldots, z_j, 0, \ldots, 0)\) with \(v\) diagonal entries equal to \(z_j\). Let \(Y_j = \text{diag}(Y_j^1, \ldots, Y_j^1)\), \(Z_j = \text{diag}(Z_j^1, \ldots, Z_j^1)\) consisting of \(j\) diagonal blocks equal to \(Y_j^1\) and respectively \(Z_j^1\).

Let \(\alpha \in k\). For \(1 \leq j \leq k\), we define \(2^j b \times 2^j b\) matrices \(\tilde{A}_j, \tilde{B}_j\) recursively as follows:

\[
\tilde{A}_1 = \begin{pmatrix} \tilde{X} & \alpha Y_1 \\ -\alpha Z_1 & \tilde{W} \end{pmatrix}, \quad \tilde{B}_1 = \begin{pmatrix} \tilde{W} & -\alpha Y_1 \\ \alpha Z_1 & \tilde{X} \end{pmatrix}
\]

\[
\tilde{A}_{j+1} = \begin{pmatrix} \tilde{A}_j & \alpha Y_{j+1} \\ -\alpha Z_{j+1} & \tilde{B}_j \end{pmatrix}, \quad \tilde{B}_{j+1} = \begin{pmatrix} \tilde{B}_j & -\alpha Y_{j+1} \\ \alpha Z_{j+1} & \tilde{A}_j \end{pmatrix}
\]

We see that

\[
\tilde{A}_1\tilde{B}_1 = \tilde{B}_1\tilde{A}_1 = \begin{pmatrix} \tilde{X}\tilde{W} + \alpha^2 Y_1 Z_1 & 0 \\ 0 & \tilde{W}\tilde{X} + \alpha^2 Y_1 Z_1 \end{pmatrix},
\]

and we get by induction that

\[
\tilde{A}_j\tilde{B}_j = \tilde{B}_j\tilde{A}_j = \text{diag}(\Delta_j, \ldots, \Delta_j),
\]
where Δ_j is the $b \times b$ matrix $\Delta_j = \text{diag}(\alpha^2 \sum_{i=1}^{j} y_i z_i, \ldots, \alpha^2 \sum_{i=1}^{j} y_i z_i, f, \ldots, f)$ (with the last $b - v$ entries of each block being equal to f), and there are 2^j blocks equal to Δ_j along the diagonal.

In particular, $\tilde{A}_k \tilde{B}_k = \tilde{B}_k \tilde{A}_k$ consists of 2^k blocks of size $b \times b$ equal to $\text{diag}(\alpha f, \ldots, \alpha f, f, \ldots, f)$ (with the last $b - v$ entries of each block being equal to f), and there are 2^k blocks equal to Δ_j along the diagonal.

Letting A and B be the matrices obtained by taking the images of the entries of \tilde{A}_k and \tilde{B}_k respectively in R_0, it is now clear that (10) is a complex over R_0, and condition (11) is satisfied if $\alpha \neq 0$.

It remains to prove that there are choices of $\alpha \neq 0$ such that (10) is totally acyclic.

It was shown in [4], Theorem 5.1 that there is a countable intersection \mathcal{U} of nonempty Zariski open sets in $k = A_k^1$ such that (10) is totally acyclic if and only if $\alpha \in \mathcal{U}$. Due to the periodic nature of the complex (10), in this case we may take \mathcal{U} to be a finite intersection of Zariski open sets. We summarize the argument from [4] for the convenience of the reader.

Note that A and B give rise to k-linear maps $A', B': [R_1]^D_1 \to [R_1]^D_2$, where $D = 2^k b$. The condition that these k-linear maps have maximal rank can be described as the non-vanishing of certain minors (after choosing vector space bases for $[R_1]^D_1$ and $[R_1]^D_2$), and therefore are open conditions in terms of α. Having maximal rank is equivalent to surjectivity, and, recalling that $\dim_k([R_1]^D_2) = \dim_k([R_1]^D_1) - 1$, it is also equivalent to the fact that the kernel of the k-linear maps is D-dimensional. Since we have $\text{im}(B) \subseteq \ker(A)$ and $\text{im}(A) \subseteq \ker(B)$, this is equivalent to exactness of the complex (10) (note that $[\ker(A)]_1 = \ker(A')$, and $[\ker(A)]_2 = ([R_1]^D_2)$).

Similar open conditions imposed on the transpose matrices A' and B' ensure the acyclicity of the dual complex.

These open sets are non-empty because (10) is totally acyclic for $\alpha = 0$.

Corollary 4.3. Let R_1, S_1, R be as in the hypothesis of Corollary (3.7). Assume that R_1 and S_1 have minimal totally acyclic complexes that are periodic of period two, and condition (9) is satisfied (for instance, this holds if R_1 and S_1 have exact zero divisors). Then R has minimal totally acyclic complexes.

Note 4.4. Note that the complex (10) constructed in the proof of Theorem (4.2) under the assumption that R_1 has a pair of exact zero divisors is periodic with period two and satisfies condition (9). Therefore one may start with rings R_1, S_1 as above, and construct a family of rings that have minimal totally acyclic complexes by iterating the construction of (2.6).

Example 4.5. We illustrate the construction of totally acyclic complexes for rings as in Corollary (4.3) in the case of the ring R from Example (3.3).
Recall that R was constructed as a connected sum of R_1, S_1, where R_1 has a pair of exact zero divisors $l_1 = x_1 + x_2 + y_1 + y_2 + y_3$, $l'_1 = x_1 + x_2 - y_1 - y_2 - y_3$, and S_1 has a pair of exact zero divisors $l_2 = x_3 + x_4 + x_5 - y_4 - y_5$. We use the construction given in the proof of Corollary (3.7) to obtain a totally acyclic complex over R. The first step is to find totally acyclic complexes over R_1 and S_1 that satisfy condition (4). Using the procedure described in the proof of Theorem (4.2), we find that

$$
\cdots \to R^2_1 \xrightarrow{X_1} R^2_1 \xrightarrow{W_1} R^2_1 \xrightarrow{X_1} R^2_1 \xrightarrow{W_1} R^2_1 \xrightarrow{X_1} R^2_1 \xrightarrow{W_1} \cdots
$$

and

$$
\cdots \to S^2_1 \xrightarrow{X_2} S^2_1 \xrightarrow{W_2} S^2_1 \xrightarrow{X_2} S^2_1 \xrightarrow{W_2} S^2_1 \xrightarrow{X_2} S^2_1 \xrightarrow{W_2} S^2_1 \xrightarrow{X_2} S^2_1 \xrightarrow{W_2} \cdots
$$

satisfy these requirements, where

$X_1 = \begin{pmatrix} l_1 & x_1 \\ -y_1 & l'_1 \end{pmatrix}$,

$W_1 = \begin{pmatrix} l'_1 & -x_1 \\ y_1 & l_1 \end{pmatrix}$,

$X_2 = \begin{pmatrix} l_2 & x_4 \\ -y_4 & l'_2 \end{pmatrix}$,

$W_2 = \begin{pmatrix} l'_2 & -x_4 \\ y_4 & l_2 \end{pmatrix}$.

More precisely, we have $\bar{X}_1 \bar{W}_1 = \bar{W}_1 \bar{X}_1 = f I_{R^2_1}$, and $\bar{X}_2 \bar{W}_2 = \bar{W}_2 \bar{X}_2 = g I_{S^2_1}$. This will ensure that using $d := X_1 + W_1, d' := X_2 - W_2$ gives a complex

$$
\cdots \to R^2 \xrightarrow{d} R^2 \xrightarrow{d'} R^2 \xrightarrow{d} R^2 \xrightarrow{d'} R^2 \xrightarrow{d} \cdots
$$

and Theorem (3.5) shows that this complex is exact. The same reasoning applies for the dual; therefore this is a totally acyclic complex over R.

REFERENCES

[1] M. Auslander and M. Bridger, *Stable module theory*, Memoirs of the American Mathematical Society no. 94, American Mathematical Society, Providence R.I.1969

[2] H. Ananthnarayan, L. Avramov, and F. Moore, *Connected sums of Gorenstein rings*, Crelle’s Journal 667 (2012), 149–176.

[3] H. Ananthnarayan, E. Celikbas, J. Laxmi, Z. Yang, *Decomposing Gorenstein rings as connected sums*, arXiv:1406.7600

[4] C. Atkins and A. Vraciu, *On the existence of non-free totally reflexive modules*, J. of Commutative Algebra, to appear.

[5] E. Celikbas, J. Laxmi, J. Weyman, *Embeddings of canonical modules and resolutions of connected sums*, arXiv:1704.03072

[6] L. W. Christensen, G. Piepmeyer, J. Striuli and R. Takahashi, *Finite Gorenstein representation type implies simple singularity*, Adv. Math. 218 (2008), no. 4, 1012–1026.

[7] , A. Kustin and A. Vraciu *Totally reflexive modules over rings that are close to Gorenstein*, J. of Algebra, to appear.

[8] S. Nasseh and S. Sather-Wagstaff, *Vanishing of Ext and Tor over fiber products*, Proceedings of the Amer. Math. Soc. 145 (2017), no. 11, 4661–4674.
[9] Y. Yoshino, *Modules of G-dimension zero over local rings with the cube of the maximal ideal being zero*, Commutative algebra, singularities and computer algebra, (Sinaia 2002), 255–273, NATO Sci. Ser. II Math. Phys. Chem. 115, Kluwer Acad. Publ., Dordrecht, 2003.

Adela Vraciu, Department of Mathematics, University of South Carolina, Columbia, SC 29208, U.S.A.

E-mail address: vraciu@math.sc.edu