Die “pull-back Technik” für die 532 slim modiolar Elektrode
Conrad Riemann, Ingo Todt, Holger Sudhoff

Einleitung: Der Abstand zwischen dem Modiolus und dem Elektrodenarray ist ein Faktor, der im Mittelpunkt vieler Diskussionen und Studien steht. Das Einbringen des Elektrodenarrays näher zum Spiralganglion, mit dem Ziel die Stromausbreitung zu reduzieren, konnte bessere Hörergebnisse demonstrieren. Perimodioläre Elektrodenarrays können durch ein vorsichtiges chirurgisches Manöver, die sogenannte “pull-back” Technik, ergänzt werden. Diese Studie konzentriert sich auf die neu entwickelte 532 slim modiolar Elektrode.

Objektiv: Die Untersuchung der intracochleären Bewegungen und der “pull-back” Technik für die 532 slim modiolar Elektrode.

Material und Methoden: In 5 humanen Felsenbeinen wurde ein Decapping-Verfahren durchgeführt. Die Elektrodenarrays wurden eingeführt und die intracochleären Bewegungen wurden mikroskopisch und digital erfasst. Drei Situationen wurden analysiert: die initiale Insertion, die Überinsertion und die “pull-back” Position. Die Position der drei weißen Marker der Elektrodenarrays in Bezug auf das Runde Fenster (RF) wurde während die Durchführung diese drei Aktionen untersucht.

Ergebnisse: Die initiale Insertion erreichte eine akzeptable perimodioläre Position des Elektrodenarrays (Bild 1), jedoch wurde immer noch eine Distanz zwischen dem mittleren Bereich des Arrays und dem Modiolus beobachtet (der erste weiße Marker wurde in dem RF gesehen). Als wir die Elektrode etwas tiefer einführten (Bild 2), wurde der mittlere Teil des Arrays vom Modiolus weggedrückt (der zweite und dritte weiße Marker waren in dem RF zu sehen). Nach Anwendung der “pull-back” Technik verschwand die Lücke (Bild 3), die während der initialen Insertion beobachtet wurde. Diese Technik führte zu einer optimalen perimodiolären Position (der erste weiße Marker war wieder in dem RF sichtbar).

Fazit: Diese Studie in Felsenbeinen zeigte, dass beim Anwenden der “pull-back” Technik für die 532 slim modiolar Elektrode, eine engere Beziehung zum Modiolus erreicht wurde, wenn der erste weiße Marker des Elektrodenarrays in dem runden Fenster sichtbar war.

Literatur
1. Shepherd WR. Electrical stimulation of the auditory nerve: The effect of electrode position on neural excitation. 2. Auchendorf A. Clinical investigation of the Nucleus Slim Modular Electrode. 3. Cuda D. Cochlear implantation with the nucleus slim modiolar electrode (CS12): a preliminary experience. 4. McIlwrath Jr. Early Outcomes With a Slim, Modular Cochlear Implant Electrode Array. 5. Todt I. Helsinki electrode pull-back: electrophysiology and surgical results. 6. Basta D. Audiological Outcome of the Pull-Back Technique in Cochlear Implants. 7. Todt I. The pull-back technique for Nucleus 24 perimodiolar electrode insertion. 8. Todt I. Advances in Electrode Pullback in Cochlear Implant Surgery. 9. Ramos-Arias A. Mechanisms of electrode fold-over in cochlear implant surgery when using a flexible and slim perimodiolar electrode array. 10. Saunders E. Threshold, comfortable level and impedance changes as a function of electrode-modiolar distance. Ear and Hearing. 2002;23(1):28-40.