Colchicine is a venerable drug used for centuries for the treatment and prevention of gouty attacks and rheumatic complaints and is one of the oldest drugs still currently available as recently reviewed [1]. The active compound was initially extracted from the plant autumn crocus [2] but the active chemical compound was isolated only in 1820 [3]. In 1889, a large dose of tincture of Colchicum was injected in two dogs leading to the observation that anaphases was blocked during mitosis and providing the first cellular explanation of the activity of the "poison-drug" [4]: this is functioning as a mitotic spindle poison. The structure of the active compound was elucidated only in 1955. Colchicine exerts its well-known effects including anti-cancer ones, first by blocking the tubules in the cell (spindle poison) [1]. Secondly, it could exert pleiotropic anti-inflammatory effects. Colchicine could have also direct anti-inflammatory effects (reviewed in [5]) by inhibiting key inflammatory signaling networks known as the inflammasome and proinflammatory cytokines. The crystals involved in the pathogeny of gout and chondrocalcinosis have been shown to engage the caspase-1-activating NALP3 inflammasome [6], resulting in the production of active interleukin-1β (IL-1β) and IL-18. Moreover, impaired neutrophil influx is observed in an in vivo model of crystal-induced peritonitis in inflammasome-deficient mice or IL-1β-receptor-deficient mice [6]. Although the most important effect of colchicine in gouty inflammation is inhibition of neutrophil migration [7], these data suggest an alternative mechanism for the effectiveness of colchicine through anti-inflammatory functions.

© 2015 ACT. All rights reserved.

Key words: Colchicine; Cardiovascular Disease; Heart; Heart Failure; Acute Coronary Syndromes; Cancer; Colchicine Derivatives

Lattuca B, Leclercq F, Macia JC, Gervasoni R, Cung TT, Pasquié JL, Massin F, Cade S, Cransac F, Akodad M, Roubille F. Colchicine: A Promising Drug in Clinical Translation, A Minireview Focused on Cardiovascular Diseases. Osteoarthritis and Cardiovascular Diseases: is Meta-Inflammation the Missing Link. Journal of Cardiology and Therapy 2015; 2(3): 311-314 Available from: URL: http://www.ghrnet.org/index.php/jct/article/view/1201
such as preventing the release of IL-1β by the neutrophils\textsuperscript{[8,9]} independently from the impact on cell migration.

One of the main concerns remains the tolerability. This aspect can be improved by avoiding the use of loading doses and using weight-adjusted doses (i.e. 0.5 mg twice daily for patients $\geq 70$ kg, but only 0.5 mg daily for patients $< 70$ kg) and the dosage should be adapted in case of concomitant administration with other medications\textsuperscript{[10]} or comorbidities such as renal impairment\textsuperscript{[11,12]} and advanced age\textsuperscript{[13,14]}. Nevertheless, its therapeutic window is narrow, and a high dosage can be life-threatening. Indeed, the treatment prescribed for one month (30 mg) could be lethal without any antidote (see for review\textsuperscript{[15]}). Chemical interactions are numerous, including some antibiotics or even statins as regards cardiovascular (CV) diseases, as recently confirmed\textsuperscript{[16]}. Improving its chemical properties in order to improve its pharmacodynamics is promising, all the more as colchicine has recently gained interest of the medical community for the treatment of various diseases, including cancer and cardiovascular diseases, two leaders of morbimortality worldwide.

**CHEMICAL IMPROVEMENTS HAVE BEEN PROPOSED**

As the therapeutic window is relatively narrow, several chemical improvements have been proposed to decrease its current toxicity. As colchicine has 3 different rings, various chemical modifications could induce chirality and planar changes in tridimensional conformation\textsuperscript{[16]}. Pharmacological parameters could also be modified including lipophilicity\textsuperscript{[17]}. Various in vitro assays can be proposed to pre-screen valuable compounds, such as the antitubulin assays for the initial evaluation of biological effects including potential antitumor impact\textsuperscript{[18]} and in vivo studies allow developing promising drugs. Among them, the 10-thiomethyl analogues of colchicine and derivatives have been reported to be less toxic and presenting a better therapeutic index. Among them, 3-demethylthiocolchicine has been presented as a broad-spectrum antitumor agent of considerable promise and possibly with a less toxicity\textsuperscript{[19]}. Indeed, 3-demethylcolchicine and 3-demethylthiocolchicine (3-demethyl-10-thiomethylcolchicine) and their glucosides have been shown to possess superior pharmacological properties, accompanied by decreased toxicity. In a mouse model of amyloidogenesis, 3-demethylthiocolchicine was equipotent to colchicine in the blockage of casein induced amyloidogenesis, but it was markedly less toxic\textsuperscript{[20]}. Thiocolchicine exerts its effect through interaction with tubulin at the same site as colchicine but probably with higher efficacy and affinity\textsuperscript{[21]} as well as the other derivative N-acetylcocolin O-methyl ether (NCME)\textsuperscript{[22]}. Finally, numerous derivatives have been proposed with a promising feature\textsuperscript{[23,24]} and some of more deeply modified derivatives have lost the tubulin interaction but are able of topoisomerase II inhibition\textsuperscript{[25]}. Similarly, some of the $7$-O-substituted deacetamidothiolecolchicine derivatives could exert stronger antiproliferative effect in some in vitro studies\textsuperscript{[20,22]}. Finally, colchicine derivatives have been also tested in conjugate-compounds\textsuperscript{[27]}.

Obviously nearly all the studies on derivatives were led in in vitro models of cytotoxicity, since colchicine and its derivatives are known to bind to tubulin. Its effects were then mainly evaluated first as regards antiproliferative agent capacity, whereas their potential anti-inflammatory properties have not been specifically explored. Taken these numerous preclinical works together, the most promising agents with therapeutic windows larger than colchicine could be good candidates for further developments.

This approach could help to propose candidates to further clinical translation, as colchicine, in spite of its present narrow therapeutic window is still under study and other large studies are planned.

**COLCHICINE PROMISES FOR CANCER THERAPY AND CARDIOVASCULAR DISEASES**

As briefly presented in the Table, several studies are currently going on with colchicine. With a better therapeutic window, both its anti-cancer (or derivatives\textsuperscript{[28]}) and anti-inflammatory effects are promising (Table 1). This venerable drug offers new benefits in pericardial disease\textsuperscript{[29-34]} and might be of interest for other cardiovascular diseases (for recent review, see\textsuperscript{[35]} where the authors present the main biochemical characteristics, mechanism of action and side-effects of colchicine, as well as its promising role in cardiovascular medicine beyond pericardial disease). In various pathophysiologies involves in CV disease, when inflammation plays a role, colchicine could be a promising candidate. For instance, post-surgical atrial fibrillation is largely mediated by inflammatory response\textsuperscript{[36]} and colchicine could be of interest including after pulmonary vein isolation\textsuperscript{[37,38]}. For example, colchicine was suspected to exert anti-atherosclerotic actions demonstrated both by macroscopic and microscopic investigation of the aorta in rabbits\textsuperscript{[39]} and was proposed to reduce inflammation in patients with stable coronary disease\textsuperscript{[40]}.

Beyond the classical anti-inflammatory effects summarized in the background section, the drug could efficiently depress the membrane addressing of high molecular mass molecules, especially the adhesion molecules\textsuperscript{[41]}. This mechanism is probably important. Theoretically, it could both exert non specific anti-inflammatory effects by inhibiting chemoattraction, but could also interfere with various cell-cell interactions depending on the very models and could underline pleiotropic effects (cellular proliferation, adhesion, migration, etc.).

Recently, a clinical trial supported this proposition, as colchicine was shown to be efficient to prevent restenosis after stent implantation\textsuperscript{[42]}. The favorable effect of colchicine against restenosis could be explained by (1) its ability to disrupt the mitotic spindle by inhibiting the self-assembly of microtubules; (2) its potent anti-inflammatory effect including the inhibition of neutrophils and macrophages; (3) the inhibition of the expression of cytokines (all of these aspects have been developed above); all of these processes have been largely involved in the pathophysiology of cellular hyperplasia and neointima formation leading to restenosis.

Beyond cell proliferation, pleiotropic effects could be useful in clinical settings. In patients with acute coronary syndromes, an important clinical proof-of-concept study, the LoDoCo study demonstrated a large effect of colchicine\textsuperscript{[43,44]}. This prospective randomized observer-blinded clinical trial studied the effect of colchicine 0.5 mg per day in 532 patients with stable coronary disease and optimal medical treatment. They were randomly assigned to colchicine or no colchicine. The primary outcome (composite incidence of acute coronary syndrome, out-of-hospital cardiac arrest, or noncardioembolic ischemic stroke) occurred in 15 of 282 patients (5.3%) who received colchicine versus 40 of 250 patients (16.0%) without colchicine (hazard ratio: 0.33; $p<0.001$; number needed to treat: 11). Very few patients withdrew within 30 days due to intestinal intolerance (32 patients; 11%). These results have to be confirmed in a large multicenter study: a cheap widely available compound could have a large impact on public health.
**Table 1** Ongoing clinical trials with colchicine.

| Field                  | Pathology                                      | Country | Number of patients | Dose of colchicine (orally) | Primary endpoint | Number in clinicaltrials.gov |
|------------------------|-------------------------------------------------|---------|--------------------|----------------------------|------------------|------------------------------|
| Cardiovascular diseases| Acute coronary syndrome                         | Italy   | 500                | 0.5 mg once daily for 24 months. Versus placebo | Clinical outcomes at 2 years | NCT01906749                |
|                        | PCI                                             | USA     | 400                | 1.2 mg 1 to 2 hours prior PCI, followed by 0.6 mg once daily | IL6 level 30 minutes to one hour after the procedure | NCT01709981                |
|                        | Atrial fibrillation Chronic/ablation            | USA     | 60                 | 0.6 mg BID Versus placebo | CRP one month | NCT01759949                |
|                        | Post-pericardiomy syndrome                      | Italy   | 360                | 0.5 mg BID or colchicine 0.5 mg (<70kg) 48 to 72 hours before surgery till 1 months after surgery Versus placebo | Clinical outcomes 3 months | NCT01552187                |
|                        | Post operative pericardial effusion             | France  | 190                | 1 mg once daily during 14 days Versus placebo | change in effusion grade at day 14 | NCT01266694                |
| Others                 | Diabetic nephropathy                            | Israel  | 12                 | 2 mg once daily for six months |                 | NCT01005321                |
|                        | Calciﬁc tendinitis                              | USA     | 80                 |                           |                 | NCT00983177                |

**CONCLUSION**

Many biologics, immunomodulatory or anti-oxydative strategies have been proposed in various settings of cardioprotection. By contrast with most of these expensive approaches, colchicine is cheap and easy to obtain worldwide. Furthermore, this venerable drug appears as a good candidate to offer cardioprotection in various clinical settings, especially in chronic heart failure, in acute coronary syndromes involving or not ischemia-reperfusion injuries. Whether its promises could be held in clinical translation is currently challenged in several clinical trials.

**CONFLICT OF INTERESTS**

There are no conﬂicts of interest with regard to the present study.

**REFERENCES**

1. Roubille F, Kritikou E, Busseuil D, Barrere-Lemaire S, Tardif JC. Colchicine: An old wine in a new bottle? Anti-inﬂammatory & anti-allergy agents in medicinal chemistry. 2013;12;14-23
2. Rodnan GP, Benedek TG. The early history of antirheumatic drugs. Arthritis Rheum. 1970;13:145-165
3. Pelletier PS CJ. Ann. Chim. Phys. 1820
4. Dustin P. [the centennial of the discovery of the antimitotic properties of colchicine]. Rev Med Brux. 1989;10:385-390
5. Pope RM, Tschopp J. The role of interleukin-1 and the inflammasome in gout: Implications for therapy. Arthritis and rheumatism. 2007;56:3183-3188
6. Martinon F, Pettrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the nALP3 inflammasome. Nature. 2006;440:237-241
7. Cronstein BN, Molad Y, Reibman J, Balakhane E, Levin RI, Weissmann G. Colchicine alters the quantitative and qualitative display of selectins on endothelial cells and neutrophils. J Clin Invest. 1995;96:994-1002
8. Marques-da-Silva C, Chaves MM, Castro NG, Coutinho-Silva R, Guimaraes MZ. Colchicine inhibits cationic dye uptake induced by atp in p2x2 and p2x7 receptor-expressing cells: Implications for its therapeutic action. British journal of pharmacology. 2011;163:912-926
9. Ferrua B, Manie S, Doglio A, Shaw A, Sonthonax S, Limouse M, Schaffar L. Stimulation of human interleukin 1 production and specific mRN expression by microtubule-disrupting drugs. Cellular immunology. 1990;131:391-397
10. Terkelhau RA, Furst DE, Digiacinto JL, Kook KA, Davis MW. Novel evidence-based colchicine dose-reduction algorithm to predict and prevent colchicine toxicity in the presence of cytochrome p450 3a4/p-glycoprotein inhibitors. Arthritis and rheumatism. 2011;63:2226-2237
11. Curiel RV, Guzman NJ. Challenges associated with the management of gouty arthritis in patients with chronic kidney disease: A systematic review. Seminars in arthritis and rheumatism. 2012
12. Marwah RK. Comorbidities in gouty arthritis. Journal of investigative medicine : the official publication of the American Federation for Clinical Research. 2011;59:1211-1220
13. Favel MA, Ernst ME. Management of gout in the older adult. The American journal of geriatric pharmacotherapy. 2011;9:271-285
14. Stamp LJ, Jordan S. The challenges of gout management in the elderly. Drugs & aging. 2011;28:591-603
15. Davis MW, Wason S. Effect of steady-state atorvastatin on the pharmacokinetics of a single dose of colchicine in healthy adults under fasted conditions. Clinical drug investigation. 2014
16. Lincoln P, Nordh J, Deinum J, Angstrom J, Norden B. Conformation of thiocolchicine and two b-ring-modiﬁed analogues bound to tubulin studied with optical spectroscopy. Biochemistry. 1991;30:1179-1187
17. Sun L, Hamel E, Lin CM, Hastie SB, Pyluck A, Lee HK. Antitumor agents. 141. Synthesis and biological evaluation of novel thiocolchicine analogs: N-acetyl-, n-aryl-, and n-(substituted benzyl)deacetylthiocolchichines as potent cytotoxic and antimitotic compounds. Journal of medicinal chemistry. 1993;36:1474-1479
18. Muzaffar A, Brossi A, Lin CM, Hamel E. Antitubulin effects of derivatives of 3-demethylthiocolchicine, methylbin ethers of natural colchicinoids, and thioacetone derivatives derived from thiocolchicine. Comparison with colchinoids. Journal of medicinal chemistry.
Lattuca B et al. Colchicine, promising drug in cardiovascular diseases

1990:33:567-571
19. Kerekes P, Sharma PN, Brossi A, Chignell CF, Quinn FR. Synthesis and biological effects of novel thiocolchicines. 3. Evaluation of n-acetylcatedhydrocolchicine, n-(alcoholcarbonyl) deacetylthiocilicines, and o-ethyldeamethylthiocilicines. New synthesis of thiodemecolcine and antileukemic effects of 2-demethyl- and 3-demethylthiocilicine. Journal of medicinal chemistry. 1985;28:1204-1208

20. Wolach B, Gottfried M, Jedeikin A, Lishner M, Brossi A, Ravid M. Colchicine analogues: Effect on amyloidogenesis in a murine model and, in vitro, on polymorphonuclear leukocytes. European journal of clinical investigation. 1992;22:630-634

21. Chabin RM, Hastie SB. Association of thiocolchicine with tubulin. Biochemical and biophysical research communications. 1989;161:544-550

22. Kang GJ, Getahun Z, Muzzaffar A, Brossi A, Hamel E. N-acetylcolcinol o-methyl ether and thiocolchicine, potent analogs of colchicine modified in the c ring. Evaluation of the mechanism of action of their enhanced biological properties. The Journal of biological chemistry. 1990;265:10255-10259

23. Lee SH, Park SK, Kim JM, Kim MH, Kim KH, Cho KH, Yoon JY, Namgoong SK. New synthetic thiocolchicine derivatives as low-toxic anticancer agents. Archiv der Pharmazie. 2005;338:582-589

24. Nakagawa-Goto K, Chen CX, Wu CC, Bastow KF, Brossi A, Lee KH. Antitumor agents. Part 236: Synthesis of water-soluble colchicine derivatives. Bioorganic & medicinal chemistry letters. 2005;15:235-238

25. Guan J, Zhu XK, Tachibana Y, Bastow KF, Brossi A, Hamel E, Lee KH. Antitumor agents. 185. Synthesis and biological evaluation of tridemethylthiocilicines analogues as novel topoisomerase ii inhibitors. Journal of medicinal chemistry. 1998;41:1956-1961

26. Shi Q, Verdier-Pinard P, Brossi A, Hamel E, McPhail AT, Lee KH. Antitumor agents. 172. Synthesis and biological evaluation of novel deacetamidothiocilicine-7-ols and ester analogs as antitubulin agents. Journal of medicinal chemistry. 1997;40:961-966

27. Passarella D, Peretto B, Blasco y Yepes R, Cappelletti G, Cartelli D, Ronchi C, Smith J, Fontana G, Danieli B, Borlak J. Synthesis and biological evaluation of novel thiocolchicine-podophyllotoxin conjugates. European journal of medicinal chemistry. 2010;45:219-226

28. Laroque K, Ovadje P, Djurdjevic S, Mehdi M, Green J, Panyed S. Novel analogue of colchicine induces selective pro-death autophagy and necrosis in human cancer cells. PloS one. 2014;9:e87064

29. Adler Y, Finkelstein Y, Guindo J, Rodriguez de la Serna A, Shoenfeld Y, Bayes-Genis A, Sagie A, Bayes de Luna A, Spodick DH. Colchicine treatment for recurrent pericarditis. A decade of experience. Circulation. 1998;97:2183-2185

30. Adler Y, Spodick DH, Shabetai R, Brucato A. Can colchicine prevent recurrence of new-onset acute pericarditis? Nat Clin Pract Cardiovasc Med. 2006;3:78-79

31. Flather M, Collinson J. First line treatment with colchicine reduced recurrent pericarditis. Evidence-based medicine. 2006;11:44

32. Imazio M, Bobbio M, Cecchi E, Demarie D, Demichelis B, Poniari F, Moratti M, Gacioso G, Giannarini M, Ghisio A, Belli R, Trinchero R. Colchicine in addition to conventional therapy for acute pericarditis: Results of the colchicine for acute pericarditis (cope) trial. Circulation. 2005;112:2012-2016

33. Imazio M, Brucato A, Trinchero R, Spodick D, Adler Y. Colchicine for pericarditis: Hype or hope? Eur Heart J. 2009;30:532-539

34. Algalarondro V, Boycott H, Eliahou L, Mabille M, Slama MS. Indications of anti-inflammatory drugs in cardiac diseases. Anti-inflammatory & anti-allergy agents in medicinal chemistry. 2013;12:3-13

35. Deftereos S, Giannopoulos G, Papoutsidakis N, Panagopoulou V, Kossyvakis C, Raisakis K, Cleman MW, Stefanadis C. Colchicine and the heart: Pushing the envelope. Journal of the American College of Cardiology. 2013;62:1817-1825

36. Jacob KA, Nathoo HM, Dieleman JM, van Osch D, Kluin J, van Dijk D. Inflammation in new-onset atrial fibrillation after cardiac surgery: A systematic review. European journal of clinical investigation. 2014

37. Deftereos S, Giannopoulos G, Efremidis M, Kossyvakis C, Katsivas A, Panagopoulou V, Papadimitriou C, Karageorgiou S, Doudoumis K, Raisakis K, Kaoukis A, Alexopoulos D, Manolis AS, Stefanadis C, Cleman MW. Colchicine for prevention of atrial fibrillation recurrence after pulmonary vein isolation: Mid-term efficacy and effect on quality of life. Heart rhythm : the official journal of the Heart Rhythm Society. 2014

38. Wojicki J, Henek I, Jaworska M, Samochowiec L. The effect of colchicine on the development of experimental atherosclerosis in rabbits. Polish journal of pharmacology and pharmacy. 1986;38:343-348

39. Nidorf M, Thompson PL. Effect of colchicine (0.5 mg twice daily) on high-sensitivity c-reactive protein independent of aspirin and atorvastatin in patients with stable coronary artery disease. Am J Cardiol. 2007;99:805-807

40. Perico N, Ostermann D, Bontempeill M, Morigi M, Amuchastei CS, Zoja C, Akalin E, Sayegh MH, Remuzzi G. Colchicine interferes with l-selectin and leukocyte function-associated antigen-1 expression on human t lymphocytes and inhibits t cell activation. Journal of the American Society of Nephrology : JASN. 1996;7:594-601

41. Deftereos S, Giannopoulos G, Raisakis K, Kossyvakis C, Kaoukis A, Panagopoulou V, Driva M, Halalis G, Pyrgakis V, Alexopoulos D, Manolis AS, Stefanadis C, Cleman MW. Colchicine treatment for the prevention of bare-metal stent restenosis in diabetic patients. J Am Coll Cardiol. 2013;61:1679-1685

42. Nidorf SM, Elkibolom JW, Budgeon CA, Thompson PL. Low-dose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol. 2013;61:404-410

43. Roubille F, Lacampagne A. New drug avenues for cardioprotection in patients with acute myocardial infarction. American journal of cardiovascular drugs : drugs, devices, and other interventions. 2014;14:73-77

44. Roubille F, Busseuil D, Merlet N, Kritikou EA, Rheaume E, Tardif JC. Investigational drugs targeting cardiac fibrosis. Expert review of cardiovascular therapy. 2014;12:111-125

45. Roubille F, Barrere-Lemaire S. Aprotosis following myocardial infarction: Cardiomyocytes and beyond--comment on the paper 'dynamics of serum-induced endothelial cell apoptosis in patients with myocardial infarction' by forteza et al. European journal of clinical investigation. 2014;44:1-3

Peer reviewers: Ying-Fu Chen, Division of Cardiovascular Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; 100 Shih-Chuan 1st Rd, Kaohsiung, 80708 Taiwan; Andel Gómez García, PhD., Clinic Research Division, Biomedical Research Center of Michoacan, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico; Diego Fernando Dávila, Instituto de Investigaciones Cardiovasculares, Hospital Universitario de los Andes. Ave. 16 de Septiembre, Universidad de los Andes. Mérida, Venezuela, Apartado Postal 590, Mérida, Venezuela.