The CoRoT Exoplanet program: status & results

M. Deleuil¹, C. Moutou¹, P. Bordé² & the CoRoT exoplanet science team

¹Laboratoire d’Astrophysique de Marseille, 38 rue F. Joliot-Curie, 13388 Marseille Cedex 13, France

²Institut d’Astrophysique Spatiale, Bât. 121, 91405 Orsay, France

Abstract. The CoRoT satellite is the first instrument hunting for planets from space. We will review the status of the CoRoT/Exoplanet program. We will then present the CoRoT exoplanetary systems and how they widen the range of properties of the close-in population and contribute to our understanding of the properties of planets.

1. Introduction

CoRoT¹ has been designed with two distinct scientific objectives which both require continuous observations and ultra-high precision relative stellar photometry: one is the detection of extrasolar planets by the transit method; the second is the study of stellar interiors by asteroseismology (Baglin et al. 2009). In addition, the long duration of the observation periods together with the exquisite photometric precision allow number of stellar physics studies. The instrument started the scientific observations on February 2nd 2007. The mission was initially scheduled for 3 years but extended for 3 additional years, that is till March 2013. Auvergne et al. (2008) give a complete description of the instrument in flight based on raw and calibrated data. In the present paper, we will just recall the main characteristics of the mission.

¹The CoRoT space mission has been developed and is operated by CNES, with contributions from Austria, Belgium, Brazil, ESA, Germany and Spain.
2. CoRoT, brief summary

2.1 Photometry

The typical exoplanet targets have a V-magnitude in the range \(\approx 11\) up to 16. The photometry is performed on board for up to 6000 selected targets per CCD, 2 CCDs being dedicated to the exoplanet program. For a given target, the flux is thus integrated over a pre-designed photometric mask that encompassed the quite large PSF of the exoplanet channel, whose typical size is about 35 arcsec x 23 arcsec. For stars brighter than magnitude 15, the pixels within the photometric mask are separated in 3 sub-sets according to the percentage of stellar flux. The co-addition of the pixels intensity over these 3 areas provides 3 different light curves, referred to as the red, the green and the blue light curves. These light curves have however no direct correspondence to any standard photometric system. For fainter stars, only the standard single-band photometry (white) is performed. The integration time on board is 32 sec but the flux of 16 read-outs is coadded on board over an 8.5 min time span before being downloaded. The elementary 32 sec

Run	Date start	duration [d]	Nb of Targets	Nb of Cand	Nb to FUp	Status
IRa01	02/2007	45	9 921	254	40	Public
SRc01	04/2007	26	7 015	261	62	Public
LRe01	05/2007	152	11 448	229	29	Public
LRa01	10/2007	150	11 448	304	79	Public
SRa01	03/2008	25	8 189	163	29	Public
LRe02	04/2008	150	11 448	286	56	Public
SRc02	09/2008	21	11 448	336	45	Public
SRa02	10/2008	32	10 305	217	32	Public
LRa02	11/2008	115	11 448	362	36	Public
LRe03	04/2009	89	5 724	244	61	Public
LRe04	07/2009	83	5 724	173	51	CoIs
LRa03	10/2009	148	5 329	124	22	CoIs
SRa03	03/2010	24	4 169	100	15	on alarm
LRe05	04/2010	84	5 724	89	22	on alarm
LRe06	07/2010	77	5 724	100	21	on alarm

Column 5: number of transit candidates detected; Column 6: number of candidates assessed worth for follow-up observations. Following the DPU 1 break down in March 2009, the number of light curves is divided per 2 in the last fields.
integration time is however preserved for selected targets, whose list is regularly updated during CoRoT observations thanks to the Alarm mode (Surace et al. 2008). In March 2009, one of the two DPUs which pilot the on-board photometric treatment had a break down and could not be switched in operation again. As a consequence, the field-of-view for exoplanet search is yet half-reduced to $(1.35^\circ)^2$.

2.2 Observation strategy

The instrument has 2 continuous viewing zones which are two circles of $\simeq 10^\circ$ of radius, centered in the galactic plane and separated by 180° in right ascension. This ensures a level of background light due to the Earth reflected light as low as possible. In addition, in order to avoid to be blinded by the Sun, twice a year the instrument is rotated and is pointed in the opposite direction. The strategy of observation is flexible but consists mainly in one long run (LR) lasting for about 140 days and one shorter run (SR) whose duration is between 20 and 30 days per half-year. The fields observed in the circle centered at $6^h 50^m$ in right ascension are referred as "anti-center fields", and those in the circle at $18^h 50^m$, as "center fields". Table 1 gives a summary of the stellar fields that have been observed since the beginning of the operations. With only one CCD left in operation, the strategy of observation has been adapted and some of the long runs have been replaced by two runs of a shorter duration.

Figure 1 shows the location of the various CoRoT exoplanet fields inside the two CoRoT continuous viewing zones overplotted on a dwarf density
map. The two regions have different stellar content in terms of dwarf and giant but also in their distribution over the various spectral type (Gazzano et al. 2010). This allows to probe regions in the galactic plane with different stellar properties in terms of metallicity but also in terms of age. Once the statistics of planets found by CoRoT will be much more significant, this should bring some insights into the physical conditions that prevail for planet formation mechanisms.

3. Detection capacity

In summer 2010, a total of 129 326 light curves was collected (Table 1). These light curves show a fascinating diversity with various kind of stellar behavior: quiet stars display nearly constant a flux while others exhibit a strong variability over a time scale of a few minutes (Fig. 2). All these light curves are however analyzed for transit searches. Transits are detected in about 100 up to 300 light curves per run, that is in about 3000 light curves for the whole mission to date. They present various depth, shape and duration. These detected transits are however predominantly transiting stellar systems. About 80% to 90% of these stellar systems are pinpointed thanks to the long duration of the light curves, through the identification of the secondary transits or light curve modulation. The remaining candidates are screened out by follow-up observations, using various techniques from photometric observations to radial velocity measurements. These follow-up observations play a major role in the CoRoT science and require a huge observational effort. They allow to assess the nature of the detected transiting body, stellar or planetary and, in the later case, to measure its mass. Bouchy et al. (2009) give a complete overview of the strategy for radial velocity
observations and Deeg et al. (2009) present the ground-based photometric follow-up ones. Whatever their nature, stellar or planetary, one can use the detected transits to assign the performance of the transit detection from the CoRoT light curves. Figure 3 shows the transit signal defined here as the product of the relative depth of the transit and the square root of the number of points in the transit, as a function of the target magnitude. The colored circles are the candidates identified in the various runs according to the color codes in the bottom right and the black stars the planets. It shows that Neptune size planets can be detected whatever the magnitude of the star is, whereas super-Earth size planets, such as CoRoT-7b can be discovered in the light curves of stars brighter than $R \simeq 14$ only.

4. The CoRoT planets

Table 2 gives the main characteristics of the CoRoT planets published by the end of summer 2010. These planets correspond to the first discoveries in the first two years of data. A large fraction of the candidates are indeed still in the screening process by follow-up observations. Their properties, compared to the other published exoplanets are illustrated in Fig 4. The mass-radius diagram shows that most of these planets are in the domain of gaseous giants but the long duration of the light curves and the high duty cycle greater than 90% of space-based observations.
allow to explore the transiting systems over an extended orbital domain. The CoRoT discoveries indeed account for half of the transiting systems with an orbital period greater than 8 days.

Table 2.: CoRoT discoveries main characteristics.

Ref	Run	Radius R_{Jup}	Mass M_{Jup}	Density g cm^{-3}	Period days	Nb	Sp. Type	Star $[\text{Fe/H}]$	Comment
1	IRA01	1.49	1.03	0.34	1.509	34	G0V	-0.20	bloated HJ
2	LRT01	1.46	3.31	1.31	1.743	78	G7V	0.00	bloated HJ
3	LRT01	1.01	21.6	28.4	1.26	34	F3V	-0.02	BD or planet
4	IRA01	1.19	0.72	0.52	9.20	7	F8-9V	-0.05	synchronized
5	LRT01	1.39	0.46	0.22	4.04	27	F9V	-0.25	metal poor HS
6	LRT02	1.16	2.96	2.32	8.89	15	F9V	-0.20	metal poor HS
7	IRA01	0.14	0.007-0.02	3.4-9.6	0.85	153	G9V	0.12	Super-Earth
8	LRT01	0.57	0.22	1.6	6.21	33	K1V	0.30	Icy giant
9	LRT02	1.05	0.84	0.90	95.27	2	G3V	-0.01	temperate
10	LRT01	0.97	2.75	3.70	13.24	10	K1V	0.26	eccentric
11	LRT02	1.43	2.33	0.99	2.99	49	F6V	-0.03	$v\sin i = 40 \text{ km/s}$
12	IRA01	1.44	0.92	0.31	2.83	47	G4V	0.16	bloated low density HJ
13	LRT02	0.9	1.3	2.34	4.04	31	G0V	0.01	dense HJ
14	LRT02	1.09	7.6	7.3	1.15	89	F9V	0.05	extreme density
15	SRV02	1.12	63.3	59	3.06	10	F7V	0.10	BD

The planets are ordered by increasing CoRoT number. HJ stands for Hot Jupiter and HS for host star. Column 7 gives the number of transits in the CoRoT light curve.(1) Barge et al. (2008); (2) Alonso et al. (2008); (3) Deleuil et al. (2008); (4) Aigrain et al. (2008); (5) Rauer et al. (2008); (6) Fridlund et al. (2010); (7) Léger et al. (2009); (8) Bordé et al. (2010); (9) Deeg et al. (2010); (10) Bonomo et al. (2010); (11) Gandolfi et al. (2010); (12) Gillon et al. (2010); (13) Cabrera et al. (2010); (14) Tingley et al. (2010); (15) Bouchy et al. (2010).

4.1 Extending the orbital domain of transiting planets

The first discoveries, CoRoT-4b and 6b are apart from the pile up of the period histogram below 5 days (Fig. 4). In the case of CoRoT-4b, the continuous photometry allow to measure the rotation period of the star and to establish that it is a synchronized system (Aigrain et al. 2008; Lanza et al. 2009). Among the CoRoT planets, it remains the only system for which the synchronization could be clearly detected. Being not synchronized despite a similar orbital period, makes CoRoT-6b a good case to probe possible star-planet magnetic interactions. Lanza et al. (2010) used the light curve to map the longitudinal distribution of the photospheric active regions and trace their evolution. They reported some statistical evidences of active regions lagging the sub-planetary point during some temporal intervals. While the detection is still marginal, it is however a good illustration of the interest of uninterrupted sequence of photometric observations to probe the star - planet
interaction and the evolution of planetary systems. With an orbital period of 13 days, CoRoT-10b belongs to the class of the few transiting exoplanets with highly eccentric orbit (Bonomo et al. 2010). The large variation in the orbital distance along the planet’s year, results in a tenfold increase in the amount of stellar radiation received by the planet. Its eccentricity could have been produced by Kozai oscillations with a distant companion of stellar nature or by planet - planet scattering. No hint of non-transiting companion has been reported so far but clearly this system would deserve radial velocity monitoring in order to put further constrain on the origin of the planet’s eccentricity.

CoRoT-9b is the first long orbital period transiting planet discovered by a transit survey (Deeg et al. 2010). The planet orbits its solar like G3-type star in 95 days. Unlike the two other long-period transiting planets, HD 17156b (Barbieri et al. 2007) and HD 80606b (Moutou et al. 2009), this Jupiter’s size planet has a low eccentricity. It makes it a perfect representative of the largest known population of planets (Fig. 5). CoRoT-9b is a very worthwhile object for further deeper studies to probe the properties of this exoplanet population.

4.2 Populating the brown dwarf desert

Exploring the exoplanet population at short orbital periods CoRoT has unexpectedly started to populate the so called brown-dwarf desert. While, with a mass of 21.6 M_{Jup} for a Jupiters size, the exact nature of CoRoT-3b could be questioned as it lies in the overlapping region between the planet population and the low mass star regime (Deleuil et al. 2008), CoRoT-15b appears as a bona fide brown dwarf (Bouchy et al. 2010). Just as the most massive planets discovered so far, such

Figure 4.: Mass - radius diagram for the transiting planets. Filled circles and the hashed histogram are the CoRoT planets.
4.3 Opening the small-size planet domain

At the other extremity of the mass function, the recently discovered CoRoT-8b has a size in between Saturn’s and Neptune’s one (Bordé et al. 2010) but a density comparable to that of Neptune. It suggests a massive core with a mass in the range 47 up to 64 M⊕ and a much smaller H - He envelope. Like HD 149026b, the parent star is metal rich, confirming the suspected trend for the formation of giant planets with high content of heavy elements for metal rich stars. In the mass - period diagram this planet lies in between the hot-Jupiter and the Super-Earth as HAT-P-2b or CoRoT-14b (Tingley et al. 2010), these two massive companions orbit an F-type star with a marked vsini value. The significant rotational line broadening of the host star could be the cause of the lack of previous discovery of such massive companions from radial velocity surveys. It would have affected the search strategy of radial velocity surveys, either by removing these objects after one measurement or by setting them aside with a very low observation ranking priority. This would have resulted in a selection bias towards slow rotators that transit surveys have started to remove, allowing to enlarge the space of parameters for host stars. It reinforces the trend that the close-orbiting companions to host stars with mass above 1.1 M⊙ could be more massive than companions to lower mass hosts. Probing the physical properties of such objects could bring the missing clues to the understanding of the link between the population of planets and low-mass stars.
population, in a region where formation models predict a lack of planets. It might belong to the distribution tail of gaseous giants but clearly, with the intensive exoplanet searches, it would be interesting to see if this region of the diagram remains so sparsely populated in agreement with the bimodal distribution.

Even smaller is CoRoT-7b, first planet discovered in the domain of Super-Earth size planets. The planet orbits in 0.8 days a K0 main sequence star which is one of the brightest star in the first long run in the anti-center direction. The transit is 0.35 mmag deep but is clearly detected in the Fourier transform of the light curve with all its harmonics. The star’s light curve is modulated by spots at the surface of the star dragged by the star’s rotation. This stellar activity produces a stellar jitter that competed the radial velocity measurements. More than 100 hundred HARPS spectra were collected over an one-year period. Different methods have been used to analyze the radial velocity signal and understand the stellar activity (Queloz et al. 2008; Hatzes et al. 2010; Boisse et al. 2010; Pont et al. 2010). Whatever the study, they confirmed the planetary nature of CoRoT-7b with a mass that appears consistent with a rocky planet but a poor precision, larger than 20%. Not only the exact mass is subject to controversy but also the exact number of planets in the system. There are indeed some evidences in the radial velocity signal for a second non-transiting planet (Queloz et al. 2008) and even a third (Hatzes et al. 2010). Clearly to depict this system and accurately measure the mass of CoRoT-7b, additional velocity measurements are required with an adapted observation strategy so that the stellar activity imprint could be properly modeled.

5. Conclusion

For more than 3 years CoRoT has been collecting high precision photometry light curves. The first discoveries from the analysis of the first two years of data proved the instrument capability to fully explore the domain of extra-solar planets at short orbital periods and detect planets over a wide range of size and properties from the first Super-Earth, CoRoT-7b, to CoRoT-9b the first temperate hot Jupiter. Continuous observations over long time spans also demonstrate their potential to probe different aspects of the planetary systems with, for example, the search for planet - host stars interactions. With a few tenths of planet candidates in the follow-up process and new light curves to be analyzed and acquired in the two forthcoming years, new exciting results can be expected.
References

Aigrain, S., Collier-Cameron, A., Ollivier, M. et al. 2008, A&A, 488, L43
Alonso, R., Auvergne, M., Baglin, A. et al. 2008, A&A, 482, L21
Auvergne, M., Bodin, P., Boisnard, L. et al. 2009, A&A, 506, 411
Baglin, A., Auvergne, M., Barge, P. et al. 2009, in IAU Symp. 253, Transiting Planets, 71 ed. F. Pont et al.
Barbieri, M., Alonso, R., Laughlin, G. et al. 2007, A&A, 476, 13
Barge, P., Baglin, A., Auvergne, M. et al. 2008, A&A, 482, L17
Bonomo, A.S., Santerne,A., Alonso,R. et al. 2010, A&A, 520, 65
Bordé, P., Bouchy, F., Deleuil, M. et al. 2010, A&A, 520, 97
Bruntt, H., Deleuil, M., Fridlund, M., et al. 2010, A&A, 519, 51
Boisse, I. et al. this volume
Bouchy, F., Moutou, C., Queloz, D. 2009 in IAU Symp. 253, Transiting Planets, 129 ed. F. Pont et al.
Bouchy, F., Deleuil, M., Guillot,T. et al. 2010, A&A, 525, 68
Cabrera, J., Fridlund, M., Ollivier, M. et al. 2009, A&A506, 501
Cabrera, J., Bruntt, H., Ollivier, M. et al. 2010, A&A522, 110
Deeg, H. J., Gillon, M., Shporer, A., et al. 2009, A&A, 506, 343
Deeg, H. J., Moutou, C., Erikson, A. et al. 2010, Nature, 464, 384
Deleuil, M., Deeg, H. J., Alonso, R. et al. 2008 A&A, 491, 889
Fridlund, M., Hébrard, G., Alonso, R. et al. 2010, A&A, 512, 14
Gandolfi, D., Hébrard, G.; Alonso, R. et al. 2010, A&A, 524, 55
Gazzano, J.-C., de Laverny P., Deleuil M. et al. 2010, A&A, 523, 91
Hatzes, A. P.; Dvorak, R., Wuchterl, G. et al. 2010, A&A, 520, 93
Gillon, M., Lanotte, A. A., Barman, T. et al. 2010, A&A, 511, 3
Léger, A., Rouan, D., Schneider, J. et al. 2009, A&A, 506, 287
Lanza, A. F., Bonomo, A. S., Pagano, I. et al. 2010, A&A, 525, 14L
Moutou, C., Hébrard, G., Bouchy, F. et al. 2009, A&A, 498, 5
Pont, F., Aigrain, S. & Zucker S. 2010, arXiv:1008.3859v2
Queloz,D., Bouchy,F., Moutou,C. et al. 2009, A&A, 506, 303
Rauer, H., Queloz, D., Csimadua, Sz. et al. 2009, A&A, 506, 281
Surace, C., Alonso, R., Barge, P. et al. 2008, SPIE, 7019, 111
Tingley, B., Endl , M., Gazzano J.-C., et al., 2010, A&A, in press