面外ガセット溶接継手のUIT疲労強度改善効果に対する鋼材静的強度の影響

森 猛1・島貫 広志2・田中 睦人3

1 正会員 法政大学教授 都市環境デザイン工学科（〒160-0843 東京都新宿区市谷田町2-23）
E-mail: mori@hosei.ac.jp

2 正会員 新日鐵住金(株) 鉄鋼研究所材料信頼性研究部（〒293-8511 千葉県富津市新富20-1）

3 正会員 新日鐵住金(株) 厚板技術部厚板商品技術室（〒100-8071 東京都千代田区丸の内2-6-1）

UIT (Ultrasonic Impact Treatment) による高い疲労強度改善効果はいくつかの実験的研究により確かめられている。また、UITが疲労強度を向上させる要因は、止端形状改善よりも圧縮残留応力の導入にあることが知られている。鋼材静的強度を高くすることで、導入できる圧縮残留応力は高くなり、より高い疲労強度改善効果が得られると期待される。

本研究では、溶接継手の中でも疲労強度が低いとされる面外ガセット溶接継手を対象として、UIT処理を施した溶接継手の疲労強度に対する鋼材静的強度の影響について検討する。また、圧縮残留応力の効果のメカニズムを明らかにする目的で溶接止端に生じた疲労き裂の進展挙動と開閉口挙動についても検討する。

Key Words: fatigue strength enhancement by UIT, static strength of steel, residual stress

1. はじめに

一般に、鋼素材の疲労強度はその静的強度に比例して高くなるが、溶接継手の疲労強度は静的強度の影響を受けていないと考えられている2,3。そのため、鋼構造物の軽量化のために高強度鋼を有効に利用するには、溶接継手の疲労強度改善が必要である。溶接継手の疲労強度改善技術の一つにピーニング法がある。これは、硬い金属でできたハンマーで溶接止端を強く打撃し、引張の塑性変形を与えることで、止端形状を滑らかにするとともに、圧縮残留応力を導入することで、疲労強度の改善を狙ったものである。ここで注目するUIT（Ultrasonic Impact Treatment）は超音波振動を利用したピーニング法の一つである。なお、UITが面外ガセット溶接継手の疲労強度向上させる要因は、止端形状改善よりも圧縮残留応力の導入にあることが知られている3。

UITの疲労強度改善効果に関する検討は数多く行われており、通常疲労試験が行われる応力比R=-1～0といった条件では、高い疲労強度改善効果が確認されている4-8。しかし、応力比が高い（例えばR=0.5）条件で行った疲労試験では疲労強度改善効果は小さいという結果9や、応力比が低くても応力範囲が大きく最大応力が高い場合には疲労強度改善効果が小さいという結果9も示されている。これは、高い応力を受け続けることにより、UIT処理した溶接止端部の圧縮残留応力が軽減あるいは消失するためと考えられる。したがって、このように疲労強度改善効果の低減はUITによる圧縮残留応力を高くすることによりある程度回避できるとも考えられる。また、UITによる圧縮残留応力は、鋼材の降伏点と同程度になると考えられるため、鋼材の静的強度が高い場合には圧縮残留応力の導入と疲労強度改善が期待される。しかし、UITによる疲労強度改善効果と鋼材静的強度の関係は、十分に明らかとなっていない。

本研究では、静的強度の異なる3種類の高降伏点橋梁用鋼材SBHS400・SBHS500・SBHS700を母板とした面外ガセット溶接継手を対象として、溶接のままでUIT処理を施した状態で疲労試験を行うことにより、UITによる疲労強度改善効果に対する鋼材静的強度の影響について検討する。UIT処理を施した試験体については、これまでの多くの研究と同様に応力比をR=0とした一定振幅応力試験に加えて、UITによる疲労強度改善効果が低減するとされる上限応力が高い状態でも一定振幅応力試験を行う。その際、いくつかのレベルで上限応力を一定として応力範囲を変えた試験を行う。さらに、各試験体の残留応力測定を行うとともに、残留応力が疲労き裂発生・進展挙動に及ぼす影響および疲労き裂の開閉口挙動に及ぼす影響を明らかにする目的で、疲労き裂の進展に伴う溶接止端部のひずみの変化を3次元有限要素解析によって明らかにすることを目的としている。
かにした上で、疲労試験中にひずみ、そして荷重とひずみの関係を測定する。

2. 試験体

供試鋼材は、板厚12mmの橋梁用高降伏点鋼材SBHS400、SBHS500とSBHS700の3種類である。ミルシートに示された鋼材の機械的性質を表-1に示す。これらの鋼材を用いて面外ガセット溶接継手をモデル化した試験体を製作した。図-1に試験体の形状・寸法を示す。各試験体の脚長平均(主板側、ガセット側)は、SBHS400で426、572、753mm、SBHS500で555、661、810mm、SBHS700で21、27、27mmである。しゅうじいが、主板側溶接止端形状は、45度角を施した。溶接のままの試験体の脚長平均は、主板側で9.5、9.4、9.4mm、ガセット側で9.1、8.8、9.3mmである。溶接のままの試験体の開き角は、SBHS400で121度、SBHS500で128度、SBHS700で119度である。（なお、写真-1に各試験体の角廻し溶接部の外観の例を示す。）

写真-1 溶接部外観

供試鋼材の機械的性質

鋼材	降伏応力(N/mm²)	引張強度(N/mm²)	伸び(%)
SBHS400	426	555	21
SBHS500	752	661	27
SBHS700	753	810	27

図-1 試験体の形状と寸法

表-2 溶接部形状測定結果

試験体	測定数	脚長平均(主板側)	脚長平均(ガセット側)	止端曲率半径平均	止端曲率半径標準偏差	開き角(度)	開き角標準偏差
400AW	96	9.5	9.4	0.6	0.37	121	20
400UIT	420	10.0	9.1	1.6	0.41	128	11
500AW	96	10.7	8.8	0.5	0.25	138	5.9
500UIT	432	11.6	9.3	1.7	0.34	147	3.2
700AW	120	9.7	9.6	0.5	0.2	119	8.9
700UIT	180	11.0	9.3	1.9	0.5	123	5.7

表-1 供試鋼材の機械的性質

鋼材	降伏応力(N/mm²)	引張強度(N/mm²)	伸び(%)
SBHS400	456	555	21
SBHS500	572	661	27
SBHS700	753	810	27

材料は、SBHS400でJIS-Z3313 T4910T1-1CA-UH5、SBHS500でT5910T1-1CA-N1-U、SBHS700でG78JA2UCN5M3Tである。溶接電流と電圧は、それぞれ280Aと28V、250Aと28V、260-280Aと28-30Vとした。溶接のままの試験体、その試験体の角廻し溶接部の止端にUITを施し400UIT試験体、SBHS700を母板とし500UIT試験体、そしてSBHS500を母板とした500AW試験体と700UIT試験体の6種類である。なお、UITの施工は、無負荷の状態で行っている。
を用いた場合には140度程度と,若干異なっている。

各種試験体1体ずつX線残留応力測定法（sin²φ法）により残留応力の測定を行った。その際の1測定位置の大きさ（コリメータのサイズ）は直径3mmとしている。溶接時にスケールを除去するために用いたグラインダーによって生じた塑性ひずみ層を除去するため、図-2の写真に示すように、表面から100μm程度の深さまで電解研磨している。測定位置は、溶接止端から5mm離れた位置を試験体幅方向に10mmピッチ、また試験体中央縦方向に溶接止端から2, 3, 4, 5, 8mm（SBHS400とSBHS700）あるいは2, 5, 8mm（SBHS500）離れた位置としている。

試験体長手方向の残留応力の測定結果を図-2(a),(b)に示す。図-2(a)は、止端から試験体長手方向に5mm離れた位置の幅方向の残留応力分布を示したものである。いずれの鋼材を用いた場合においても、溶接のままでは試験体中央近傍に高い引張残留応力が生じている。UITを施した場合には、試験体中央近傍の引張残留応力が軽減され、SBHS500とSBHS700では圧縮残留応力が生じている。図-2(b)は、角廻し溶接止端から長手方向に沿う試験体長手方向の残留応力分布を示している。いずれの溶接のままの試験体とも、溶接止端から2〜8mmの範囲ではほぼ一定の引張残留が生じている。その値は、700AWで高く、500AWと400AWでは同程度となっている。一方、UITを施した試験体では、溶接止端に近づくにしたがって圧縮残留応力が高くなっている。図中の破線は、残留応力が圧縮となっている溶接止端から2, 3, 4mm（400UIT）あるいは2, 5mm（500UIT）のデータから直線外挿した溶接止端での残留応力を示している。さほど明確でないが、鋼材の静的強度が高いほど溶接止端の残留応力が高い傾向が認められる。

3. 疲労試験

(1) 試験方法

疲労試験は、動的能力500kNの電気油圧サーボ式試験装置を用いて、軸引張荷重下で行った。試験条件を表-3に示す。AW試験体については、下限応力を8N/mm²で一定（応力比R≒0）とした条件で疲労試験を行っている。UIT試験体については、R≒0の試験に加えて、試験体の種類によって異なるが、上限応力σmaxを400, 352, 300, 268, 208, 180, 138, 108 N/mm², 応力範囲をΔσ=80, 100, 130, 172, 200, 260, 292 N/mm²とした条件で疲労試験を行った。応力波形は正弦波、繰返し速度は2〜13Hzである。

(2) 試験結果

疲労試験結果の一覧を表-3に示す。表中の破断位置は、1試験体につき4か所ある廻し溶接止端の内どの止端から主たる疲労き裂が生じたかを示している。止端位置の定義は図-1（FL, BL, FR, BR）に示す通りである。表中の疲労寿命は試験体が破断するまでの荷重繰返し数である。なお、500AW, 500UIT試験体の疲労試験結果の多くは既報において報告済みである。

a) AW試験体

図-3は400AW, 500AWと700AW試験体の疲労試験結果を示している。試験体の種類によらず、応力範囲と疲労寿命の関係はほぼ同じとなっている。したがって、従来から知られているように溶接のままの維手の疲労強度
表-3 疲労試験の条件と結果

試験体番号	下限応力 (N/mm²)	化学成分範囲 (N/mm²)	疲労寿命	破断位置
400AW				
1	8	172	228,270	FR
2	8	172	175,059	FR
3	8	130	494,873	FL
4	8	130	446,733	FL
5	8	100	1,379,074	FL
6	8	100	1,490,610	FL
7	8	80	3,033,125	FL
8	8	80	3,076,594	FR
500AW				
1	8	172	171,724	FR
2	8	172	192,184	FL
3	8	130	454,519	BL
4	8	130	370,292	BL
5	8	100	1,332,709	FL
6	8	100	2,552,028	FL
7	8	80	2,473,419	FL
8	8	80	2,850,766	FR
700AW				
1	8	200	154,971	FR
2	8	200	219,702	FR
3	8	172	241,025	BL
4	8	172	286,430	FL
5	8	130	559,249	FL
6	8	130	684,455	FL
7	8	100	1,028,156	FR
8	8	100	1,475,932	BR
9	8	80	2,161,563	BL
10	8	80	10,000,000未破断	

試験体番号	上限応力	応力範囲	疲労寿命	破断位置
400UIT				
1	300	292	41,267	FR
2	300	292	97,519	FR
3	300	200	121,418	FL
4	300	200	181,781	FR
5	300	172	224,666	FR
6	300	130	367,949	FL
7	300	130	490,239	FL
8	300	100	1,164,014	FR
9	300	80	75,880	FR
10	268	172	213,311	FR
11	268	172	235,084	BL
12	268	130	417,634	FR
13	268	130	569,897	FL
14	268	100	972,664	FR
15	268	100	1,107,998	FR
16	268	200	192,259	FR
17	268	172	331,186	BR
18	268	172	527,015	BL
19	268	130	504,059	FR
20	268	130	753,621	FR
21	268	100	1,251,075	FR
22	268	100	1,137,938	BR
23	268	172	373,557	BR
24	268	130	799,643	BR
25	268	100	3,127,165	FR
26	138	130	4,064,155	FL
27	108	100	10,000,000未破断	
500UIT				
1	300	292	93,217	BL
2	300	200	97,932	FL
3	300	100	823,111	BL
4	352	200	138,357	FL
5	352	200	144,749	FL
6	352	172	256,407	FL
7	352	172	340,264	FR
8	352	130	496,387	FL
9	352	130	474,822	BL
10	352	100	1,291,382	BR
11	352	100	1,247,876	FR
12	300	292	1,018,15	FR

赤字はひずみ測定を行った試験体
に対する鋼材の静的強度の影響はないと言える。

図中の実綫は、すべてのデータを対象とし、最小二乗法によって求めた疲労寿命に対する応力範囲の回帰直線である。ただし、未破断のデータは回帰直線の計算に含めていない。この回帰直線を、溶接のままの継手の疲労強度曲線とみなし、以後の検討に用いる。

b) UIT試験体

図4.C ∼ R のUIT試験体の疲労試験結果を示す。

図中に前項で示したAW試験体の回帰直線も示している。すべての応力範囲においてUIT試験体の疲労寿命はAW試験体より大きく、400UIT試験体では、応力範囲においてUITによる疲労寿命改善効果は小さいものの、低応力範囲では、それらに比べて高い効果が生じている。また、400UIT試験体に比べて、500UIT試験体での疲労寿命改善効果は大きく、700UIT試験体ではさらに大きくなっている。未破断となった応力範囲を疲労限とみなせば、その値は700UITで200 N/mm²、500UITで172 N/mm²、400UITで100 N/mm²である。以上のようにUITによる疲労強度・寿命改善効果は、鋼材の静的強度が高いほど大きくなっている。なお、UITを行った場合の残留応力と疲労強度改善に影響する感受性は、応力範囲と疲労寿命改善については、溶接金属の影響でも影響すると考えられるが、その影響が小さいことは既に確かめられている(1)。

図5(a)は上限応力の値ごとに上限応力一定試験の結果を示している。上限応力を400 N/mm²とした場合(図5(a))、700UIT、500UIT、400UIT試験体ともに、疲労強度はAW試験体とほぼ同じであり、疲労強度の改善は認められない。

上限応力352 N/mm²の場合(図5(b))、500UIT試験体の疲労強度はAW試験体とほぼ同じとなっている。これに対し、700UIT試験体の疲労寿命は応力範囲が小さい領域ではAW試験体とほぼ同じとなっているものの、応力範囲が大きい領域では、若干ではあるが疲労寿命が長くなっている。

上限応力を300 N/mm²とした場合(図5(c))、SBHS400鋼材ではUIT試験体の疲労強度はAW試験体と同程度となっている。SBHS500鋼材では、応力範囲が小さい領域でも疲労寿命が改善し、すべての応力範囲においてUITによる疲労寿命改善効果が認められる。上限応力を288 N/mm²の場合(図5(d))、SBHS400鋼材では、疲労強度はAW試験体と同程度である。SBHS500鋼材においても上限応力300 N/mm²の場合と同じ挙動を示している。SBHS700鋼材においても、上限応力300 N/mm²の場合にさらに疲労寿命改善効果が認められる。

上限応力を268 N/mm²(図5(e))の場合、SBHS400鋼材では上限応力が300 N/mm²の場合よりもさらに疲労寿命改善効果が認められる。SBHS500鋼材においても上限応力268 N/mm²の場合と同じ挙動を示している。

上限応力を208 N/mm²(図5(f))の場合、SBHS400鋼材では、疲労強度はAW試験体よりも若干長くなっているが、応力範囲が小さい領域では、応力範囲が大きい領域で疲労寿命はさらに長くなっている。SBHS500鋼材においても、上限応力208 N/mm²の場合と同じ挙動を示している。

上限応力を180 N/mm²(図5(g))、400UIT試験体の疲労寿命はすべての応力範囲でAW試験体よりも長くなっているが、その改善度は小さい。500UIT試験体の未破断データを疲労限とみなせば、その値はAW試験体の2倍程度となっている。

以上のように、静的強度が高い鋼材ほど、UITによる疲労強度・寿命改善効果は高くなっている。なお、上限応力を一定とした場合に応力範囲が小さい領域においては、疲労寿命はAW試験体よりも長くなる。
疲労き裂の発生・進展挙動と開閉口挙動

溶接止端近傍のひずみ測定

ひずみゲージを溶接止端近傍に貼付し、ひずみ範囲と荷重繰返し数の関係を測定することにより、疲労き裂の発生・進展挙動、また荷重とひずみの関係を測定することによりき裂の開閉口挙動を観察することを目指す。用いたひずみゲージはゲージ長1mmの単軸ゲージである。

図-5 UIT試験体の疲労試験結果（上限応力一定試験）

4. 疲労き裂の発生・進展挙動と開閉口挙動

1) 溶接止端近傍のひずみ測定

ひずみゲージを溶接止端近傍に貼付し、ひずみ範囲と荷重繰返し数の関係を測定することにより、疲労き裂の発生・進展挙動、また荷重とひずみの関係を測定することによりき裂の開閉口挙動を観察することを目指す。用いたひずみゲージはゲージ長1mmの単軸ゲージである。

(a) $\sigma_{\text{max}} = 400 \text{ N/mm}^2$

(b) $\sigma_{\text{max}} = 352 \text{ N/mm}^2$

(c) $\sigma_{\text{max}} = 300 \text{ N/mm}^2$

(d) $\sigma_{\text{max}} = 268 \text{ N/mm}^2$

(e) $\sigma_{\text{max}} = 208 \text{ N/mm}^2$

(f) $\sigma_{\text{max}} = 180 \text{ N/mm}^2$
それを角度し溶接中央の端から2mm離れた位置に貼付した。ただし、UIT試験体はUITによる四部の端から2mmの位置とした。1つの試験体で疲労き裂が生じると考えられる4か所の溶接止端（FL, FR, BL, BR、図1参照）近傍すべてにゲージを貼付している。そして、所定の荷重繰返し数ごとに荷重とひずみを動ひずみ計で数サイクル分測定した。荷重とひずみのサンプリング速度は500または1000Hzとした。このようなひずみ測定を行った試験体は、400AW試験体で2体（試験体番号2, 4）、400UIT試験体で13体（1, 3, 4, 9, 11, 12, 15, 16, 18, 20, 22, 24, 26）、500UIT試験体で1体（12）、700UIT試験体で9体（3, 12, 23, 39, 40, 41, 43, 44）である。

測定したひずみ範囲と荷重繰返し回数の関係の例を図6(a),(b)に示す。図6(a)は400AW-4試験体の結果を示している。まず溶接止端FRでひずみ範囲が減少しており、次いでBR, FL, BLの順にひずみ範囲が減少している。このようなひずみ範囲の減少は、き裂が生じることにより、またそれが大きくなることによって、ひずみ貼付位置（溶接止端から2mm離れた位置）に応力が伝達されにくくなるためである。したがって、4ヵ所すべての溶接止端に上記の順番で疲労き裂が生じたと考えられる。なお、破面観察により破断の原因となった疲労き裂がFRから生じたものであること、その裏となるBRからも疲労き裂が生じていたことを確かめている。また、FLとBLからも疲労き裂が生じていたことを、破粉探傷試験によって確かめている。なお、ひずみ測定を行ったすべての試験体において、破断の原因となった疲労き裂が生じた位置で、最も早くひずみ範囲が減少していた。

図6(b)は400UIT-24試験体で測定したひずみ範囲と荷重繰返し数の関係を示している。FRでのひずみ範囲の減少が最も早く、その裏のBRではひずみ範囲がほとんど一定となった後に増大している。このひずみ範囲の増大はFRから生じた疲労き裂が深くなることによる断面減少によるものと考えられる。

(2) き裂寸法とひずみ範囲の関係に関する解析

前節で示したように疲労き裂が大きくなるにしたがって、溶接止端近傍のひずみ範囲は減少する。ここでは、このひずみ範囲の減少とき裂の大きさの関係を明らかにする目的で、溶接止端あるいはUITによる四部に疲労き裂を導入したモデルの弾性有限要素解析を行う。解析には汎用解析プログラムCAFEMを用いた。ヤング率は2.0×10^5 N/mm^2、ポアソン比は0.3、溶接止端近傍の要素寸法は30.25mmとした。なお、解析においては残留応力を考
ここでは、試験体の長手方向と幅方向の対称性を考慮し、1/4モデルとして解析を行った。ただし、板厚方向についてはき裂的存在および厚さが対称とはならないことが通常であることから、1/8モデルではなく、1/4モデルとしている。UITを施した試験体の解析モデルについてはUITによる凹みも考慮し、その先端曲率半径を2mm、深さを0.2mmとした。解析は、き裂なしに加えて、深さを1, 2, 3, 4, 5, 6mmとした半楕円形き裂を溶接止端中央に設けた。き裂の表面での幅は深さの4倍としている。）（アスペクト比0.5）.

解析より得られたひずみ範囲減少率とき裂深さの関係を図8に示す。ひずみ範囲減少率αの定義は以下のとおりである。

\[\alpha = \frac{\Delta \varepsilon_0 - \Delta \varepsilon_n}{\Delta \varepsilon_0} \]

\[\Delta \varepsilon_0: \text{き裂がない場合のひずみ範囲} \]

\[\Delta \varepsilon_n: \text{き裂を有する場合のひずみ範囲} \]

ひずみを求めた位置は、ひずみゲージを貼付した位置（溶接止端から2mm，UITによる凹部端から2mm）である。

参考のために、5mm位置でのひずみ範囲減少率とき裂深さの関係も示している。5mm位置でのひずみ範囲減少率は、き裂発生寿命を求めるために用いられることが多く、減少率5%時のき裂深さは1.0mm程度とされている11,12)。

2mm位置のひずみ範囲減少率は5mm位置よりも大きくなっている。また、2mm位置でのひずみ範囲減少率は、き裂深さ3mmあるいは4mm以下の領域では、き裂が深くなるにしたがって大きくなっているが、それ以上の領域では逆に小さく、ある一定値となっている。これは、き裂深さがある程度以上になると、着目位置に試験体長手方向の応力がほとんど伝達されず、またき裂端から回り込んだ応力によって着目位置の試験体長手方向のひずみが圧縮となるためである。圧縮ひずみは小さいものであるが、AWモデルでき裂深さ3mmから、UITモデルでは4mmから生じていた。

き裂深さに伴うひずみ範囲減少率の変化はUITモデルよりAWモデルで大きくなっている。これは、疲労き裂の位置から着目部までの距離の違いおよびき裂の板厚方向の位置の違いによるものと考えられる。すなわち、着目位置をAWモデルでは疲労き裂が生じる溶接止端から2mmとしているのに対し、UITモデルではUITによる4部端から2mmとしていること（き裂は図部中心に仮定），またUITモデルでは四部の底にき裂を仮定しているためと考えられる。

圧縮残留応力によりき裂閉口が生じる場合には、き裂進展に伴うひずみ範囲の変化をも考慮すると考えられるが、後述の図10に示すように、亀裂閉口前の後で荷重一部かびの曲率に大きな違いはない。また、荷重一部かびの関係は線形である。したがって、残留応力を考慮しない弾性解析からでも、図8に示した関係からある程度の精度でき裂深さを推定できると考えられる。

（3）疲労き裂発生・進展挙動

図8に示した関係と図6に示した関係を利用し、き裂深さと荷重繰返し数の関係を求めた。その際、図8に示した関係から、AW試験体についてはき裂深さ3mm、UIT試験体についてはき裂深さ4mmでのひずみ範囲減少率を1.0するとともに、それ以上の深さのき裂は対象外とした。また、図8に示すデータは離散的であるが、データ間のひずみ範囲減少率−き裂深さ関係は線形補完することにより求めている。以上のように求めた主き裂の深さと荷重繰返し数の関係の例を図9(a)-(d)に示す。これらの図では、荷重条件で行われた各種試験体の結果を比較している。また、図中の縦軸は試験体が破断したときの荷重繰返し数を示している。

図9(a)は、400AW試験体と400UIT試験体の疲労き裂進展曲線を示している。AW試験体では、比較的早い段階で疲労き裂が発生し進展しているのに対し、UIT試験体では疲労き裂が生じるまでに多くの荷重繰返し数を要している。き裂発生後の進展速度はAW試験体とUIT試験体ではほぼ同じとなっている。なお、UIT試験体では、き裂深さが負となっている部分がある。これは、疲労き裂の発生位置が亀裂溶接点中心ではないために、ゲージ貼付位置に応力集中が生じて一旦ひずみ範囲が上昇したた
めと考えられる。

図-9(b)は、400UIT、500UITと700UIT試験体の疲労き裂進展曲線を比較している。き裂が発生したと考えられる荷重繰返し数は鋼材の静的強度が高いほど長く、またき裂深さ0.3～1.0mm程度以下の領域での進展が遅くなっている。その後の進展は、500UIT試験体で多少遅いものの、供試鋼材による差は小さい。このように、UITを施した面外ガセット溶接継手の疲労強度・寿命に対する影響は、き裂発生およびき裂が微小な間の進展の違いによるものと考えられる。

図-9(c),(d)は、400UITと700UIT試験体の疲労き裂進展曲線を示している。これらの結果からも、UITを施した場合の疲労強度・寿命に対する影響は、き裂発生およびき裂が微小な間の進展の違いに生じると考えられる。図-9(c)の700UIT試験体については、2つの試験体の結果を示しているが、両者のき裂発生寿命は大きく異なっている。これは、試験体によってUITによって導入される圧縮残留応力の大きさに違いがあったためとも考えられる。このことは、UITの施工方法および品質管理条件をさらに明確にすべきということを意味しているとも考えられる。

(4) 疲労き裂閉開口挙動
溶接のままの溶接継手においては疲労き裂が生じる溶接止端に引張残留応力が生じると考えられる。UITにより導入される圧縮残留応力により、疲労き裂は閉じやすくなると考えられる。ここでは、疲労き裂の開閉口挙動を調べる目的で、荷重-ひずみ関係を図-10に示す。この開閉口挙動を調べるためには、除荷弾性コンプライアンス法14)を適用した。この方法は、除荷弾性コンプライアンスを用いて疲労き裂の進展を検出するものである。
近似し、この直線から求められるある荷重でのひずみと実測されたひずみの差を求め、それと荷重の関係を図化することにより折れ曲がり点を明確にするものである。

除荷弾性コンプライアンス法によって求めた荷重-ひずみ差関係の例を図-11(a)と(b)に示す。これらは、図-9(b)に進展曲線を示した3体の試験体で得られた荷重-ひずみ差関係である。荷重-ひずみ差関係はき裂深さが0.5mm（図-11(a)）および1.0mm（図-11(b)）に最も近いと判断される時点で測定結果を用いている。図-11中には、測定時点で推定されるき裂深さも示している。このように、試験体によって荷重-ひずみ関係を測定した時点でき裂深さは異なっている。ここでは、図-11(a)と図-11(b)の結果を区別するため、き裂深さ0.5mmと1.0mmでの測定結果と呼ぶ。

いずれの場合にも履歴曲線に幅があるが、き裂深さ0.5mmに比べて1.0mmで履歴曲線の幅が小さくなっている。これはき裂が深くなるにしたがってひずみ貼付位置の応力が小さくなるためと考えられる。

き裂深さ0.5mmの場合、400UIT試験体の履歴曲線の幅が他の試験体に比べて大きい。これは、公称最大応力が300N/mm²と高く、他の試験体で用いた400UIT試験体では塑性変形が生じていたためと考えられる。また、0.12mmき裂深さが深いことも原因していると考えられる。400UIT試験体の履歴曲線の形状は傾斜型となっており、疲労き裂の開口点が明確ではない。これに対し、500UITと700UIT試験体では明確に疲労き裂の開閉口位置が確認できる。この開閉口点は、500UIT試験体と700UIT試験体でほぼ同じとなっている。き裂深さが1.0mm近くとなると、500UIT試験体のき裂開閉口点は0.5mmとほぼ同じであるが、700UIT試験体では低くなっている。これより、図-9(b)に示した進展曲線の傾向と対応している。これらの結果は、700UIT試験体ではき裂が浅いほど残留応力の影響を受けやすいこと、また400UIT試験体は深くまで高い圧縮残留応力が生じていた。深くまで引張荷重が与えられていたためと考えられる。400UIT試験体の履歴曲線の形状は円形となっており、疲労き裂の開閉口点が明確ではない。これに対し、500UITと700UIT試験体では明確に疲労き裂の開閉口位置が確認できる。この開閉口点は、500UIT試験体と700UIT試験体でほぼ同じとなっている。き裂深さが1.0mm近くとなると、500UIT試験体のき裂開閉口点は0.5mmとほぼ同じであるが、700UIT試験体では低くなっている。これは、図-9(b)に示した進展曲線の傾向に対応している。これらの結果は、700UIT試験体ではき裂が浅いほど残留応力の影響を受けやすいこと、また500UIT試験体は深くまで高い圧縮残留応力が生じていた。深くまで引張荷重が与えられていたためと考えられる。400UIT試験体の履歴曲線の形状は円形となっており、疲労き裂の開閉口点が明確ではない。これに対し、500UITと700UIT試験体では明確に疲労き裂の開閉口位置が確認できる。この開閉口点は、500UIT試験体と700UIT試験体でほぼ同じとなっている。き裂深さが1.0mm近くとなると、500UIT試験体のき裂開閉口点は0.5mmとほぼ同じであるが、700UIT試験体では低くなっている。これは、図-9(b)に示した進展曲線の傾向に対応している。これらの結果は、700UIT試験体ではき裂が浅いほど残留応力の影響を受けやすいこと、また500UIT試験体は深くまで高い圧縮残留応力が生じていた。深くまで引張荷重が与えられていたためと考えられる。400UIT試験体の履歴曲線の形状は円形となっており、疲労き裂の開閉口点が明確ではない。これに対し、500UITと700UIT試験体では明確に疲労き裂の開閉口位置が確認できる。この開閉口点は、500UIT試験体と700UIT試験体でほぼ同じとなっている。き裂深さが1.0mm近くとなると、500UIT試験体のき裂開閉口点は0.5mmとほぼ同じであるが、700UIT試験体では低くなっている。これは、図-9(b)に示した進展曲線の傾向に対応している。これらの結果は、700UIT試験体ではき裂が浅いほど残留応力の影響を受けやすいこと、また500UIT試験体は深くまで高い圧縮残留応力が生じていた。深くまで引張荷重が与えられていたためと考えられる。400UIT試験体の履歴曲線の形状は円形となっており、疲労き裂の開閉口点が明確ではない。これに対し、500UITと700UIT試験体では明確に疲労き裂の開閉口位置が確認できる。この開閉口点は、500UIT試験体と700UIT試験体でほぼ同じとなっている。き裂深さが1.0mm近くとなると、500UIT試験体のき裂開閉口点は0.5mmとほぼ同じであるが、700UIT試験体では低くなっている。これは、図-9(b)に示した進展曲線の傾向に対応している。これらの結果は、700UIT試験体ではき裂が浅いほど残留応力の影響を受けやすいこと、また500UIT試験体は深くまで高い圧縮残留応力が生じていた。深くまで引張荷重が与えられていたためと考えられる。
UITを施した面外ガセット溶接継続の疲労強度改善効果は、静的強度が高い鋼材を用いた場合に高くなることを疲労試験により明らかにした。また、鋼材の静的強度を高くすることで、UITにより導入される圧縮残留応力が高くなることをX線残留応力測定により明らかめた。

鋼材の静的強度によらず、UITによる疲労強度改善効果は、上限応力が低い場合に、また上限応力が同じ場合には応力範囲が大きい場合に高くなることを疲労試験により明らかにした。

疲労き裂発生点である溶接止端近傍のき裂進展に伴うひずみ範囲の変化を、疲労試験とFEM解析で求め、き裂進展形状を明らかにした。その結果に基づき、UITの効果はき裂発生過程ととき裂が微小な間の進展過程で生じることを明らかにした。また、発生過程における効果は、鋼材の強度レベルが高いほど大きいことを明らかにした。

溶接のままの継続では疲労き裂の閉口は生じないとされているものの、UITを施した場合には疲労き裂が閉じやすくなることを疲労き裂発生位置近傍のひずみ測定により確認した。

謝辞：本研究の一部は、中村甚翔氏、増田薫氏、町田正信氏の卒業論文として行われたものである。実験の準備および実施には前法政大学技術嘱託の濱田栄氏に多大なる協力をいただいた。ここに記して、深謝します。

参考文献
1) 征矢勇夫：溶接構造用鋼の母材と基本的溶接継続の疲労強度特性とその影響因子，JSSC「鋼構造物の疲労設計指針・同解説」資料編，第1章，技報堂出版，1993。
2) 日本鋼構造協会編：鋼構造物の疲労設計指針・同解説2012年度改定版，技報堂出版，2012。
3) 森進，島貫宏志，田中広人，宇佐美龍一：UITを施した面外ガセット溶接継続の疲労強度に対する施工時の応力レベルと応力比の影響，土木学会論文集A1（構造・地震工学），Vol. 67, No. 2, pp. 421-429, 2011。
4) 奥永武雄，松岡和也，佐藤嘉明：補修溶接を施した既設クレーンランウェイエイダーノの超音波衝撃処理による疲労寿命向上，鋼構造論文集，Vol. 14, No. 55, pp. 47-58, 2007。
5) Statnikov, E. S., Vityazev, V. and Korolkov, O.: Ultrasonic impact treatment ESONIX versus ultrasonic peening, IWI Document No. XIII-2050-05, 2005。
6) Statnikov, E. S., Korostel, V., Vekshin, N. and Marquis, G.: Development of Esonix ultrasonic impact treatment techniques, IWI Document No. XIII-2098-06, 2006。
7) Roy, S., Fisher, J. W. and Yen, B. T.: Fatigue resistance of welded details enhanced by ultrasonic impact treatment (UIT), International Journal of Fatigue, Vol. 25, No. 9, pp. 1239-1247, 2003。
8) 野瀬哲郎：疲労強度向上向け超音波ピンニング法，溶接学会論文集，Vol. 77, No. 3, pp. 210-213, 2008。
9) Martinez, L. L. and Haagensen, P. J.: Life Extension of Class F and Class F2 Detail Using Ultrasonic Peening, IWI Doc. XIII-2143-06, 2006。
10) 日本材料学会（X線材料強度部門委員会）：X線応力測定法標準（2002年版）－鉄鋼編－，JSMS-SD-5-02。
11) 島貫宏志，大川鉄平，野瀬哲郎：大型溶接構造モデルの回し溶接部の疲労特性に及ぼす超音波衝撃処理の効果，溶接構造シンポジウム2009講演論文集，pp. 479-482, 2009。
12) 勝田順一，河野和芳，吉田卓也，堀越健：溶接継続における極微小疲労き裂の検知と評価，日本造船学会論文集，第192号，pp. 507-517, 2002。
13) 本田尚，佐々木哲也，山口良志，吉久悅二：赤外線法による溶接止端に発生する疲労き裂の検出と応力拡大係数範囲の評価，日本機械学会論文集（A編），73卷735号，pp. 80-87, 2007。
14) 菊川真，城野政弘，田中健一，高谷勝：除荷弾性コンプライアンス法による低進展速度領域における疲労き裂進展速度とき裂閉開口挙動の測定，材料学会論文集，Vol. 25, No. 276, pp. 899-903, 1976。

(2013. 8. 5 受付)

INFLUENCE OF STEEL STATIC STRENGTH ON FATIGUE STRENGTH OF WEB-GUSSET WELDED JOINTS WITH UIT

Takeshi MORI, Hiroshi SHIMANUKI and Mutsuto TANAKA

It was confirmed that UIT (Ultrasonic Impact Treatment) gives excellent fatigue strength enhancement of welded joints through a lot of experimental researches. Main factor of increasing the fatigue strength by UIT is the introduction of compressive residual stress rather than the improvement of weld toe shape. Further improvement of fatigue strength is expected by introducing high compressive residual stress which can be realized by increasing the static strength of steel.

The purpose of the present study is to clarify the influence of static strength of steel on the fatigue strength of web-gusset welded joints with UIT. For this purpose, fatigue tests on the joint specimens made of SBHS400, SBHS500 and SBHS700 steel have been performed, and fatigue crack initiation and propagation behavior and crack opening-closing behavior due to the compressive residual stresses have been examined.