Formulation and evaluation of transdermal patches of torasemide

Rajesh Asija1*, Avinash Gupta 1, Bhagwan Swaroop Maheshwari1,
1 Department of Pharmaceutics, Maharishi Arvind Institute of Pharmacy, Mansarovar, Jaipur-302020, Rajasthan, India

Received 18 February 2015; Accepted 03 March 2015

ABSTRACT
The main advantage of Transdermal drug delivery system is to bypass the first pass metabolism, adversity of the risk and annoyance of intravenous therapy and of the varied conditions of absorption, like pH changes, gastric emptying time and presence of enzyme. The Transdermal drug delivery scheme is generally used where the others system of drug administration fails or it is mainly used in edema associates congestive heart failure. The transdermal drug delivery has advantage to deliver medicines via skin to systemic circulation at a predetermined rate and maintain therapeutic concentration for prolong period of time. This review describes the assorted formulation aspects, a variety of excipients, evaluation tests, challenges and drugs explored in the pasture of topical drug delivery.

Key words: Transdermal patches, Skin, Controlled Drug Delivery System

INTRODUCTION
Controlled drug delivery
Controlled drug delivery technology represents one of the most rapidly advancing areas of science in which chemists and chemical engineers are contributing to human health care. Such delivery systems offers various advantages compared to conventional dosage forms including, improved patient, reduced toxicity, and improved efficacy compliance and convenience.1 The different classification of controlled drug delivery systems (CDDS) can be given as follows:2,3
1. Rate-preprogrammed drug delivery systems
2. Activation-modulated drug delivery systems
3. Feedback-regulated drug delivery systems
4. Site-targeting drug delivery systems
Out of these classes, first class contains new drug delivery systems as transdermal delivery,ocular inserts, intra uterine delivery and sub dermal implants. The transdermal drug deliveries have advantages to deliver medicines via skin to systemic circulation at a predetermined rate and maintain therapeutic concentration for long time. Transdermal patch or adhesive patch or skin patch used to deliver a controlled dose of a drug through the skin over a period of time. A skin patch uses a special membrane to control the rate at which the liquid drug contained in the reservoir within the patch can pass through the skin and into the blood circulation. Few drugs should be combined with substances, like as alcohol that enhances their ability to penetrate the skin in order to be used in the skin patches. Drugs administered through skin patches include scopolamine (for motion sickness), nicotine (for quitting smoking), estrogen (for menopause and to prevent osteoporosis after menopause), nitroglycerin (for angina), lidocaine to relieve the pain of shingles and many more drugs.

Rationale and Objective Study:4-6 Some chronic diseases like diabetes, hypertension, tuberculosis, cancer require prolong administration of drugs and frequent dosing to maintain constant drug plasma concentration level and may lead to poor patient compliance. Many orally administered drugs can irritate the GI tract or undergo first pass metabolism and leads to poor bioavailability. This led to development of transdermal drug delivery system (TDDS). TDDS provides continuous administration of drug through the skin, which maintains constant plasma drug levels and avoids the peaks and troughs seen with oral administration. TDDS offers no first-pass hepatic metabolism and enzymatic degradation in the gastrointestinal tract. Continuous delivery of drug may reduce systemic side effects associated with high plasma drug levels. The multiday dosing that is made possible by the sustained delivery of drugs with short half-life. It includes a non oral route of administration for patients who are unable to take oral medications and the immediate cessation of drug administration with removal of the patch.

Torasemide is sulfonyl urea loop diuretics which has been shown to be effective in the treatment of edema associated with congestive heart failure, renal disease, or hepatic disease. Also used for treatment of hypertension alone. The most frequently reported side
effects are gastric disturbances like nausea, anorexia, vomiting, and enhanced appetite after oral treatment. Because these drugs are generally intended to take for a long period, patient compliance is very important. The plasma half life of this drug is very short i.e. about 3.5 hours which makes frequent dosing necessary to maintain the therapeutic blood levels of the drug for a long term treatment. Therefore to avoid conventional multiple oral dosing, controlled release transdermal patch of Torasemide can be prepared.

Objective of the study
1. Preparation of matrix transdermal patches by using combination of appropriate polymers.
2. To study the effect of varying concentration of polymers and plasticizer on in vitro drug release.
3. Characterization of prepared matrix transdermal patches.
4. The main objective of this transdermal dosage form is to deliver drug into systemic circulation at a predetermined rate with less side effects and skin irritation.

Material and Methods

Selection of Drug and polymers

Selection of drug for transdermal drug delivery:
- Drug should have a molecular weight less than approximately 1000 daltons. Drug should have affinity for both hydrophilic and lipophilic phases. An adequate solubility in lipid and water is necessary for better penetration of drug. (1mg/ml)
- The pH of the saturated solution should be in between 5-9.
- The potent drug with dose less than 10mg/day is desired
- The drug should have low melting point (<200ºC).
- Optimum partition coefficient is required for good therapeutic action.

Torasemide

The suitability of torasemide with respect to dose, partition coefficient, biological half life, molecular weight was considered to be incorporated into matrix type transdermal delivery system.

![Figure 1: Selection of polymers for film formation.](image)

A) **Selection of polymers for film formation.**

The blank polymeric films were formed using commonly film forming polymers using solvent evaporation technique. The detail composition of films is shown in table Table 6.4 Trial formulation for selection of polymer.

Sr. No.	Polymer blends (500 mg)	Solvent(15 ml)	Plasticizer (30%)
1.	HPMC E15+EC(2:1)	methanol	Dibutylphthalate
2.	HPMC+ERS 100(3:2)	methanol	Dibutylphthalate
3.	HPMC+EC(3:2)	methanol	Dibutylphthalate
4.	HPMC+ERL100(3:2)	methanol	Dibutylphthalate
5.	ERS 100+ ERL100(3:2)	methanol	Dibutylphthalate
6.	ERL100+EC(9:1)	methanol	Dibutylphthalate
7.	ERS100+EC(9:1)	methanol	Dibutylphthalate
8.	HPMC+ERS 100(3:2)	Water: methanol(1:1)	PEG400
9.	HPMC+EC(3:2)	Methanol: water(1:1)	PEG400

Films were formed by solvent evaporation technique and visually inspected for its texture, uniformity in
thickness and flexibility. Film No.11 was found to best
for the said parameters which is then selected to prepare
drug loaded film.

Preformulation study

Preformulation testing is the first step in the rationale
development of dosage forms of a drug. It can be
defined as an investigation of physical and chemical
properties of drug substance, alone and when in
combined with excipients. The overall objective of the
preformulation testing is to generate information useful
to the formulator in developing stable and bio availability
dosage forms which can be mass produced.

The goals of preformulation studies are:

- To establish the necessary physicochemical
 characteristics of a new drug substance.
- To determine its kinetic release rate profile.
- To establish it’s compatibility with different
 excipients.

Hence, preformulation studies on the obtained sample
of drug include colour, taste, solubility analysis, melting
point determination and compatibility studies.

Description: The sample was evaluated visually for
appearance, colour and odor.

Melting point: The melting point of drug was
estimated with the help of melting point apparatus
and compared with values given in literature.

Determination of partition coefficient

A] Calibration of drug in 7.4pH phosphate buffer and n-
octanol

Calibration of drug in 7.4 pH phosphate buffer using UV
spectrophotometer

a) Preparation of 7.4 pH phosphate buffer:

1. 0.2 M potassium dihydrogen phosphate-
0.2 M potassium dihydrogen phosphate prepared by
adding 27.21 gm of potassium dihydrogen phosphate
in distilled water and volume was made upto 1000ml.

2. 0.2 M Sodium hydroxide-
The 0.2 M NaOH was prepared by dissolving 4 gm of
NaOH in distilled water and the volume was made up
to 100 ml with distilled water.Place 50 ml 0.2M
potassium dihydrogen phosphate in 200ml volumetric
flask with 39.1ml of 0.2M NaOH solution and add
distilled water to make the volume upto 1000ml to
prepare 7.4 pH phosphate buffer.

The standard plot was developed as follows:

1. Torasemide (10 mg) was accurately weighed on an
electronic weighing balance.
2. The weighed amount of Torasemide was dissolved
in 5ml of methanol and volume was made up to 100 ml
by 7.4 pH phosphate buffer using a volumetric flask to
yield a stock solution containing 100µg/ml drug.
3. An appropriate aliquot portion of 0.2-1.4 ml of the
above stock solution was transferred to separate 10ml
volumetric flask and volume was made up with
7.4 pH phosphate buffer to obtain 2-14 µg/ml of GLB.
4. Samples were prepared in triplicate and absorbance
was checked in UV Spectrophotometer at 284.5 nm
wavelength against phosphate buffer as a blank

Solubility Studies
The solubility studies were performed in phosphate
buffer solution, pH 6.4 by adding excess amounts of
drug in each case and keeping the excess drug
containing phosphate buffer flasks on a water bath
shaker NSW-133 for 24 h at 32°C . After 24 h, solutions
were analyzed spectrometrically at 284.5 nm, which was
the absorption maxima determined earlier and drug
concentrations were calculated. The same study was
done to determine solubility of drug in methanol.

Infrared spectroscopy: The potassium bromide (KBr)
disks with Torasemide were prepared manually by
press method. About 1 mg of drug was triturated with
about 10 mg of dry KBr and then pressed into the pallet
manually. Jasco FTIR-5300 was used to obtain IR spectra
of the prepared disc of Torasemide. The scanning range
was 4000-400 cm⁻¹. The spectrum was compared with
that reported in literature.

Ultraviolet spectroscopy:
The drug was standardized for its UV spectrum in
methanol. Accurately weighed 10mg sample of
Torasemide was dissolved in 10ml of methanol (HPLC
grade), and the sample was suitably diluted to obtain
10µg/ml solution and scanned in the UV range from
200-400 nm on UV/Visible spectrometer against
methanol as blank. The spectrum was compared with
that reported in literature.

Analytical method development:

Development of standard curve of the drug in
methanol using UV- Spectrometer:
The standard plot was developed as follows:

1. Torasemide (10 mg) was accurately weighed on an
electronic weighing balance.
2. The weighed amount of Torasemide was dissolved
in 5ml of methanol and volume was made up to 100 ml
by 7.4 pH phosphate buffer using a volumetric flask to

RESULTS AND DISCUSSION
Preformulation study of Torasemide

Description: White crystalline powder and odorless.

Melting Point: Melting point was found to be 163.5°C. The reported melting point 163.5°C to 164.5°C.

Determination of partition coefficient

Table 2: partition coefficient of Torasemide

Partition coefficient of drug	Solvent system	Values
Torasemide	Phosphate buffer –N-octanol	2.404

Solubility studies

The solubility of Torasemide was found to be very less as 78.94 ug/ml in phosphate buffer. The solubility of torasemide in methanol was found better than in pH 7.4 phosphate buffers.

Table 3: The solubility data

Solubility medium	Duration	Solubility (ug/ml)
Phosphate buffer 7.4	After 24 hr	49.03
Phosphate buffer 7.4	After 48 hr	78.94
Methanol	After 24 hr	77.8
Methanol	After 48 hr	92.21

Infrared spectroscopy

The IR spectrum of the drug recorded on Jasco FTIR-5300 spectrophotometer by KBr disk method (Figure). The result shows the presence of characteristic peaks as shown in Which was compared with standard peaks. It was confirmed that the drug molecule was 1-Isopropyl-3-[[(4-m-toluidino-3-pyridyl)sulfonyl]urea. A sharp peak corresponding to the N-H stretch, O-H stretch, C-H stretch, C-O, N-H, CH2, CH2 , C=O stretch, C-O aromatic C-H bands were observed at 3427 to 686 cm−1, respectively as shown in Figure No. () and Table No () Characteristic peaks of functional groups were observed in IR spectrum of excipients. So, identity of excipients were confirmed and no impurity was detected in the IR spectrum of excipients as shown in Figure No . IR spectra of excipients and Drug showed no interaction as the major peaks of drug was observed in IR spectrum as shown as:
Table 4: Identification of functional group for Torasemide

IR frequency (cm\(^{-1}\))	Assignment
3427.42	N-H
3284.88	O-H
2978.31	C-H
1738.90	C-O
1528.53	N-H
1376.83	CH\(_2\) & CH\(_2\)
882.18	=C-H & =CH\(_2\), NH\(_2\)
771.85	O-H
686.11	C-H

Drug excipients compatibility study

The FTIR analysis showed no change in endothermic peak of drug. The study indicated that there was no drug-excipient incompatibility/interaction. FTIR spectrum is shown as:

![FTIR spectrum](image)

Figure 3: Graph n The IR spectra of physical mixture of Torasemide with EC and HPMC

Formulation development

Part a: Formulation of trial batches

The transdermal films were formed and evaluated for physical imperfections. Physical appearance of the polymers (Ethyl cellulose and hydroxypropyl methyl cellulose) used for the fabrication of transdermal systems showed good film forming properties. The method adopted for casting the systems was found satisfactory.

Table 5:

Sr. no	Polymer(mg)	Plasticizer (PEG-400)	Drug (mg)	
	HPMC	EC		
1	650 mg	300 mg	0.2 ml	160
2	650 mg	300 mg	0.3 ml	160
3	650 mg	300 mg	0.4 ml	160
4	700 mg	300 mg	0.2 ml	160
5	700 mg	300 mg	0.3 ml	160
6	700 mg	300 mg	0.4 ml	160
7	750 mg	250 mg	0.2 ml	160
8	750 mg	250 mg	0.3 ml	160
9	750 mg	250 mg	0.4 ml	160
Part b: polymer selection of trial batches: 18
HPMC and EC were used as a polymer in patch. All the films were transparent. All the trial Batches were formulated using various types and proportion of polymer. When the concentration of polymer was increased, so drug release & appearance decrease

Formulation	Polymer Ratio	Appearance
F1	9:1	Film not form
F2	8:2	Film sticky form
F3	7:3	Good film form
F4	6:4	Film not form
F5	5:5	Average film form

Part c: plasticizer variation of trial batches:
PEG 400 and Glycerin were used as a Plasticizer in films. All the films were transparent. All the trial Batches were formulated using various types and proportion of plasticizer. Plasticizer also affects the film separation property of the film. When the concentration of Glycerin was increased, it also increases the flexibility of the film as compare to the PEG 400 films. Also Glycerin resulted in better film separation than PEG 400. Thus, it will be concluded that film separation could be improved in the presence of plasticizer Glycerin. The plasticizer affects the flexibility of the films hence folding endurance was also gets affected. The glycerin showed the good effect on folding endurance

Formulation	Plasticizer Ratio (PEG-400)	Appearance
F1	0.1	Good
F2	0.3	Average
F3	0.5	Sticky

Weight uniformity: 19-20
The weights of all transdermal patches were found to be uniform with their low standard deviation values. For each formulation, the weight of 3 patches was taken on a digital balance.

Formulation code	Weight uniformity
F-1	0.0426
F-2	0.0336
F-3	0.0336
F-4	0.0333
F-5	0.0313
F-6	0.0210
F-7	0.0208
F-8	0.0203
F-9	0.0201

Tensile Strength: Tensile strength of the patch (Table) was calculated by using following formula,

\[
TS = \frac{Break \ force}{a \times b} \times \frac{1 + L}{l}
\]
Where a, b and L are the width, thickness and length of the film and l is the elongation of film at break point

\[\% \text{Elongation} = \frac{\text{Final length} - \text{Initial length}}{\text{Initial length}} \times 100 \]

Formulation code	Tensile strength
F-1	2.13
F-2	3.30
F-3	3.88
F-4	2.96
F-5	3.27
F-6	3.41
F-7	2.89
F-8	3.21
F-9	3.34

Percent moisture absorption The % moisture content was found to be between 2.45 to 4.52 (Table). The moisture content was found to increase with increasing concentration of hydrophilic polymers

Formulation Code	Percent moisture absorption
F1	2.45
F2	3.98
F3	6.97
F4	1.73
F5	3.63
F6	3.63
F-7	1.68
F-8	3.24
F-9	4.52

Preliminary trials for vitro drug release:
In trial batches dissolution medium like 6.4 phosphate buffer used for the dissolution study of optimized M1 formulation. The cumulative % drug release of F1 to F5 formulation indicated the drug release in ph 6.4 phosphate buffer

Time	F1	F2	F3	F4	F5
0	0.00	0.00	0.00	0.00	0.00
30	4.22	7.04	2.81	1.40	0.89
45	13.57	14.07	10.37	7.29	4.38
60	20.09	22.00	15.20	13.04	10.52
120	28.77	30.42	23.03	20.61	16.58
180	36.28	39.25	30.43	29.30	23.11
240	54.93	48.77	38.17	36.94	31.06
360	73.37	60.38	46.45	45.22	39.34
420	95.25	76.86	60.38	57.35	49.91
480	94.29	75.71	68.51	59.73	

Effect of folding endurance on drug release profile: All the polymers were able to give the acceptable folding endurance values. The observed folding endurance was in the range of 50 to 250
Table 12:

FORMULATION	FOLDING ENDURANCE
F1	221
F2	202
F3	188
F4	173
F5	192

Optimization study: For the optimization of transdermal patches, the 32 factorial design was used using polymer ratio and penetration enhancer concentration as independent variables. These formulations were prepared by the same method and further evaluated.

Table 13:

TIME (Min)	Cumulative % Drug Release									
	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10
0.25	5.63	1.40	1.14	2.56	2.17	2.94	7.04	4.99	4.99	
0.5	10.87	7.29	8.66	10.32	9.74	8.98	12.48	7.93	7.93	
0.75	17.12	11.63	12.73	16.44	16.54	14.85	17.45	14.96	14.96	
1	25.19	16.13	17.65	21.80	22.20	19.96	24.22	21.48	20.09	
2	31.31	23.80	23.22	29.08	29.44	26.98	31.62	29.01	27.09	
3	37.11	29.10	30.49	35.44	35.87	35.50	38.72	35.55	34.61	
4	45.66	35.54	36.73	41.36	42.76	40.17	47.53	42.69	41.69	
5	54.56	40.81	44.30	47.97	50.62	47.63	59.66	53.17	50.81	
6	63.28	48.21	53.10	56.35	58.26	54.33	69.15	64.77	62.38	
7	67.06	67.06	66.08	73.56	72.08	78.89	82.13	82.77	79.38	
8	82.64	82.64	79.99	93.75	91.32	87.54	97.62	96.12	94.13	

Effects of folding endurance on optimized batch of in-vitro release: The observed folding endurance was in the range of 50 to 250.

Table 14:

Formulation	Folding Endurance
F1	179.00
F2	196.00
F3	227.00
F4	167.00
F5	188.00
F6	216.00
F7	164.00
F8	183.00
F9	207.00

Kinetics of Drug Release

In the present study, the dissolution were analyzed by PCP Disso Version 2.08 software to study the kinetics of drug release. The results showed that some of the formulations followed zero order kinetics and some followed Peppas. The R2 value of all dissolution models is shown in Table 8.11. The value of R (i.e., release exponent) was found in the range of 0.70 to 0.95. From the mathematical treatment of the in vitro release data of Torasemide patch, the values of R (coefficient of determination) have been obtained as presented in Table no 45. The values of n were obtained by the linear regression of log (Mt/M) vs. log t and were between 0.5 to 1 indicating non-fickian diffusion or anomalous transport for all
formulations. The best fit with the highest correlation r and determination ssR coefficients was shown by Peppas model closely followed by the matrix model. None of the formulation followed first order model. All the formulations followed zero order model, except F1, F8 and F9 whose drug release conforms to Peppas model.

Dissolution kinetics (R values) of formulations F1 to F9:

Formulation	Regression coefficient (R²)	Release exponent (n)	Best fit model				
Zeo order	First order	Matrix	Korsmeyer-Peppas	Hixon Crowell			
F1	0.9711	0.9723	0.9751	0.9875	0.9853	0.7088	Peppas
F2	0.9819	0.9205	0.9269	0.9626	0.9514	0.9547	Zero
F3	0.9876	0.9516	0.9448	0.9448	0.9731	0.9547	Zero
F4	0.9748	0.8635	0.9408	0.9625	0.9263	0.8366	Zero
F5	0.9781	0.8995	0.9512	0.9581	0.9581	0.8698	Zero
F6	0.9815	0.9221	0.9448	0.9771	0.9568	0.8308	Zero
F7	0.9833	0.8585	0.9612	0.9935	0.9421	0.7027	Zero
F8	0.9880	0.8729	0.9420	0.9893	0.9400	0.7995	Peppas

CONCLUSION:
The Torasemide drug in the form of transdermal drug delivery system appeared to be promising as far as in vitro studies are concerned. This TDDS form can substantially reduce the dosing frequency and oral side effects of Torasemide as compared to its conventional dosage form. This transdermal patch will surely increase patient compliance due to its benefits over oral dosage forms. This system can be further explored for combination with other suitable drugs.

REFERENCES:
1. Kathryn E U, Scott M C, Robert S L, et al. Polymeric systems for controlled drug release. Chemical Review. 1999; 99, 3181-3198.
2. Kathryn E U, Scott M C, Robert S L, et al. Polymeric systems for controlled drug release. Chemical Review. 1999; 99, 3181-3198.
3. Chain Y W, et al. Sustained and controlled release drug delivery systems. International Journal and Review.1978; 223-227.
4. Saroha K, Yadav B, Sharma B. Transdermal patch: a discrete dosage form, International Journal of Current Pharmaceutical Research. 2011; 3(3), 98-108.
5. Morrow D I J, McCarron P A. et al. Innovative strategies for enhancing topical and transdermal drug delivery, The Open Drug Delivery Journal.2007; 1, 36-59.
6. Finnin B C, Morgan T M, Trasdermal penetration. Journal of Pharmaceutical Science .1999; 88(10):955-958.
7. Barry B. Transdermal drug delivery. The Science of Dosage Form Design.2002; 499-533.
8. Cleary G W. Transdermal controlled release systems. Medical Applications of Controlled Release. 2001; 203-251.
9. Vyas S P, Khar R K, Controlled drug delivery: concepts and advances, Vallabh Prakashan.2002; 411-447.
10. Allen L V, Popovich N G, Ansel H C. Ansel’s Pharmaceutical Dosage Forms and Drug Delivery Systems, 8th Edition, Lippincott Williams & wilkins, 2005; 298-315.
11. Matt V, Waterman J, Ian McNab, et al. Basic physiology of the skin, Basic Science, Surgery.2010; 469-472.
12. Keleb E, Sharma R K, Mosa E B, et al. Transdermal drug delivery system- design and evaluation, International Journal of Advances in Pharmaceutical Sciences, 2010;1, 201-211.
13. Sheth N S, Mistry R B, et al. Formulation and evaluation of transdermal patches and to study permeation enhancement effect of Eugenol. Journal of Applied Pharmaceutical Science, 2011;1 (3): 96-101.
14. Active Transdermal Delivery, Greystone Associates, 2007; 125. Available at www.researchandmarkets.com/reports/661618/active_transdermal.delivery.pdf
15. Kandavilli S, Nair Vinod and Panchagnula Ramesh, Polymers in transdermal drug delivery systems, Pharmaceutical Technology. 2002;26(5), 62-80.

16. Singh Somnath. An overview of transdermal drug delivery. Industry Overview and Deals. Drug Delivery Report Autumn/Winter 2005;35-40. Available at: http://www.drugdeliveryreport.com/articles/ddr_w2005_article06.pdf

17. Prausnitz Mark. R., Mitragotri Samir., Langer Robert. Current status and future potential of transdermal drug delivery. Nature Review. Drug Discovery, 2004; 3: 115-124.

18. Benson H A E. Transdermal drug delivery: penetration enhancement techniques. Current Drug Delivery. 2005; 2, 23-33.

19. Agarwal S S , Pruthi J. Development and evalution of matrix type transdermal patch of ethinylestradiol & medroxyprogesterone acetate for anti implantation activity in femal wistar rats, Contraception, 2011; 84(5): 533 – 538.

20. Yanli Gao, Jinying Liang, Jianping Liu, Yan Xiao. Double layer weekly sustained release transdermal patch containing gestodene and ethinylestradiol. International Journal of Pharmaceutics. 2009; 377, 128-134.

21. Ji Hui Zhao, Ji-Hua Fu, Shu-Ming Wang, A novel transdermal patch incorporating isosorbide dinitrate with bisoprolol: In vitro and in vivo characterization, Int. J. of pharmaceutics, 2007; 337(1-2): 88-101.

22. Vormfelde SV, et al. Torsemide renal clearance and genetic variation in luminal and basolateral organic anion transporters. British Journal of Clinical Pharmacology. 2006; 323-335.

23. Posina Anitha, Sundarapandiyam R. et. al., preparation in vitro and in vivo characterization of transdermal patch containing glibenclamide and atenolol : A combination approach, Pakistan Journal Pharmaceutical Sciences. 2011; 24 (2) : 155 – 163.

24. Fortuno A, et al. The loop diuretic torsemide interfere with endothelin-1 actions in the aorta of hypertensive rats. Nephrology Dialysis Transplantation. 2009;342-348.

25. Karagueuzian H S, et al. Targeting cardiac fibrosis: a new frontier in antiarrhythmic therapy. American Journal of Cardiovascular Disease. 2011; 101-109.

26. Sankar V, Sivanand V, Ravichandran V. Design and evaluation of nifedipine transdermal patches. Indian Journal of Pharmaceutical Sciences. 2003; 65(5):510-5.