A Chinese Multi-type Complex Questions Answering Dataset over Wikidata

Jianyun Zou† and Min Yang† and Lichao Zhang† and Yechen Xu†
Qifan Pan† and Fengqing Jiang‡ and Ran Qin† and Shushu Wang†
Yifan He# and Songfang Huang# and Zhou Zhao†
Zhejiang University†
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences‡
Alibaba Group#

Abstract

Complex Knowledge Base Question Answering is a popular area of research in the past decade. Recent public datasets have led to encouraging results in this field, but are mostly limited to English and only involve a small number of question types and relations, hindering research in more realistic settings and in languages other than English. In addition, few state-of-the-art KBQA models are trained on Wikidata, one of the most popular real-world knowledge bases.

We propose CLC-QuAD, the first large scale complex Chinese semantic parsing dataset over Wikidata to address these challenges. Together with the dataset, we present a text-to-SPARQL baseline model, which can effectively answer multi-type complex questions, such as factual questions, dual intent questions, boolean questions, and counting questions, with Wikidata as the background knowledge. We finally analyze the performance of SOTA KBQA models on this dataset and identify the challenges facing Chinese KBQA.

1 Introduction

Knowledge Base Question Answering (KBQA) aims at answering factoid questions based on a knowledge base (KB) and has attracted considerable attention due to its popular downstream applications (Cai and Yates, 2013; Berant et al., 2013; Yih et al., 2016; Trivedi et al., 2017). Previous KBQA methods have achieved remarkable progress when dealing with simple question types and relations. For example, current state-of-the-art methods (Yih et al., 2015; Yin et al., 2016; Yu et al., 2017) on the SimpleQuestion dataset (Bordes et al., 2015), which consists of simple questions and corresponding facts from Freebase, have achieved 90% accuracy. However, real-world KBQA applications often involve multi-type complex questions (e.g., fact questions, dual intent questions, boolean questions and counting questions), which are underexplored by previous KBQA methods.

Recently, several approaches have been proposed for answering complex questions (Hao et al., 2017; Usbeck et al., 2018; Hu et al., 2018; Luo et al., 2018). Despite the effectiveness of previous studies, there are two major limitations for answering multi-type complex questions in practice. First, current KBQA datasets such as ComplexQuestions (Bao et al., 2016) and ComplexWebQuestions (Talmor and Berant, 2018) mostly focus on multi-hop questions and questions with various constraints, while many question types in real-world KBQA applications are still not covered: e.g., most existing datasets and models do not cover boolean questions (e.g. “Was Stevie Nicks a musical composer?”) and questions with multiple intentions (e.g. “What is the job title of Gregory VII and when did he start working?”). Second, most existing KBQA models are not generalizable enough to process different types of questions. For example, information retrieval-based methods (Yao and Durme, 2014; Dong et al., 2015) attempt to rank candidate answers with respect to the given question, and therefore cannot answer boolean and dual-intention questions. The staged query graph generation methods (Bordes et al., 2014; Yih et al., 2015; Lan and Jiang, 2020) aim at generating the query graph and the answer nodes representing final answers. However, as the generation process is base on true relations in KB, these methods cannot effectively answer boolean questions since the corresponding query graph may be inaccurate.

In this paper, we construct the CLC-QuAD dataset to address these challenges. CLC-QuAD is the first Chinese large scale KBQA dataset over Wikidata that covers a wide variety of questions types, obtained by translating, verifying, and filtering LC-QuAD 2.0. We also propose a text-to-SPARQL model to handle the additional complexities in CLC-QuAD. In particular, we translate ques-
Table 1: Our corpus contains different types of questions in Chinese, including multi-hop questions, dual-intention questions, fact questions and boolean questions.

2 Related Work

2.1 KBQA Datasets

Earlier KBQA datasets, such as Free917 (Cai and Yates, 2013) that contains 917 pairs of question and formal query in FREEBASE, are too small to train neural networks models. The larger scale dataset WebQuestions (Berant et al., 2013) consists of natural language question-answer pairs only, without formal queries. WebQuestionsSP (Yih et al., 2016) extracts part of the WebQuestions dataset and supplements it with the corresponding formal query and improves the multi-relation questions. SimpleQuestions (Bordes et al., 2015) builds a large-scale dataset, but only has one type of relation. Recently, ComplexWebQuestions (Talmor and Berant, 2018) presents a complex dataset that covers more components in the SPARQL grammar, but it only covers limited types of questions. LC-QUAD (Trivedi et al., 2017) is the first complex KBQA dataset based on DBpedia. It starts by generating formal queries for DBpedia and then converts these template-based questions into natural language questions. QALD-9 (Usbeck et al., 2018) is another well-known KBQA dataset based on DBpedia, which has more complex and colloquial questions than LC-QUAD. LC-QuAD 2.0 (Dubey et al., 2019) is created in 2019, which expanded the number of data and increased formal query types.

2.2 KBQA Systems

In earlier work, Bordes et al. (2014) starts to use neural networks to train question and answer vector representation, calculating the matching scores between question and candidate answers. Dong et al. (2015); Hao et al. (2017) uses CNN and attention to learn the relation and type features and obtains some improvement. These methods are based on information retrieval provide a simple solution by strengthening the connection between the question and the answer. But their candidate answer space can be huge for complex question. By contrast, semantic parsing methods can achieve much better score in complex KBQA dataset. Yih et al. (2015) puts forward a query graph structure, mapping the semantic parsing process to generate query graph process, which defines several operations to extend, including entity linking, attaching constraints, attribute recognition and so on. Following this idea, Bao et al. (2016); Yu et al. (2017) adds new type constraints as well as dominant and recessive time constraints to solve more complex questions. Re-
In our dataset, these prefix URLs are used to describe a single item which are a part of Wikidata prefix URLs. In Wikidata, the prefixes are used in RDF formats that allow short prefixes (such as Turtle and RDF). In order to execute the SPARQL query on Wikidata correctly, algorithms are required to generate both the right item and its right prefix.

Recently, Hu et al. (2018); Xu et al. (2019); Chen et al. (2020); Lan and Jiang (2020) continues this line of research by defining new abstract query graph and designing stronger query graph representation to further improve predicted query graph accuracy.

3 Corpus Construction

We translate all effective English questions in the LC-QuAD 2.0 dataset into Chinese. This work is distributed to 20 computer science students, supervised by 3 NLP researchers. Each item in LC-QuAD 2.0 has three paraphrased versions of questions, which provides more natural language variations for models to learn from and avoid over-fitting. We split three questions of each item and mix all questions to translate in order to guarantee Chinese question variations. Each question is first translated by one student, and then cross-checked and corrected by another student. Finally, a third student is in charge of verifying the original and corrected versions. As for the Chinese knowledge graph, we rely on Chinese descriptions in Wikidata. In addition, we also double check the gold SPARQL queries in LC-QuAD 2.0 and correct mistakes whenever we can. We check the correctness of the SPARQL queries from two aspects. First, we check all SPARQL queries in Wikidata Query Service to find syntax errors and get the answer labels at the same time. Second, we read both questions and SPARQL queries to make sure that questions are matched with queries.

3.1 Knowledge Graph Statistics

We show the statistics of three knowledge graphs in Table 2. Freebase (Bollacker et al., 2008) is a collaboratively edited knowledge base designed to be a public repository of the world’s knowledge. DBpedia (Bizer et al., 2009) is a knowledge graph mainly based on the English Wikipedia. Wikidata (Vrandecic, 2012) is a free, open, and massively linked knowledge base. Compared with above two knowledge graphs, we can find that Wikidata contains a larger number of entities and relations. More importantly, Wikidata defines prefixes to describe the IRIs of the RDF resources, that are suitable for variety of SQARQL queries, shown in Figure 1.

	Freebase	DBpedia	Wikidata
Entities	41 million	6.6 million	93 million
Triples	596 million	13 billion	13.9 billion
Relations	19456	10000	40276
Size (GB)	56.9	9.25	2030

Table 2: Statistics of main knowledge graphs from number of entities, number of triples, number of relations and size of knowledge graphs.

3.2 Data Statistics and Analysis

We compute the statistics of both LC-QuAD 2.0 and CLC-QuAD, and carry out a data analysis focusing on semantic coverage and question types. In this section, we will also compare them with other complex knowledge base question answering datasets.

Data statistics Table 3 summarizes the statistics of nine datasets. LC-QuAD contains 28k+ pairs of question and SPARQL query in total, which is comparable to or bigger than most commonly used KBQA datasets. As for dataset variation, FREE917, WebQuestions and SimpleQuestion focus on simple questions without constraints, so most of data in these datasets even don’t have corresponding formal queries. LC-QuAD contains more question types and its SPARQL components cover SELECT, COUNT, ASK and DISTINCT. ComplexWebQuestions builds a complex dataset by adding different and complicated constraints and its SPARQL components cover SELECT, DISTINCT, FILTER, LANG, DATATIME etc. In LC-QuAD 2.0 and CLC-QuAD, we ensure that
Data Set	Size	Variation	Target KG	formal query	language
FREE917	917	low	Freebase	yes	English
WebQuestions	5810	low	Freebase	no	English
WebQuestionsSP	4737	medium	Freebase	yes	English
SimpleQuestions	100k	low	Freebase	no	English
ComplexWebQuestions	34K	medium	Freebase	yes	English
LC-QuAD	5K	medium	DBpedia	yes	English
QALD-9	350	high	DBpedia	yes	English
LC-QuAD 2.0	30K	high	Wikidata, DBpedia	yes	English
CLC-QuAD(Ours)	28k	high	Wikidata	yes	Chinese

Table 3: A comparison of existing datasets having questions and corresponding formal queries

CLC	LC2.0	CWQ	LC	
# Question	28,409	30,226	34,689	5,000
Avg.# Q Len	20.1	10.7	13.4	11.4
# Vocab	32,683	45,476	30,627	9,682
# Entities	20,577	21,485	12,500	3,968
# Relations	3,447	3,660	825	748
# Keyword	11	11	6	4
Dual Intent	✓	✓	✗	✗
Boolean Intent	✓	✓	✗	✓
Constraint	✓	✓	✓	✗

Table 4: Statistics of knowledge base question answering with more details. The number are counted over the entire datasets. For CLC-QuAD, we use professional Chinese word segmentation tool to compute the number of vocab.

The corpus contains enough examples for all common SPARQL patterns in order to describe the question correctly. CLC-QuAD covers all the following SPARQL components: SELECT with one or multiple variable, COUNT, ASK, DISTINCT, FILTER, CONTAINS, YEAR, STRSTARTS, LIMIT, ORDER BY, LANG. Noticeably, most of datasets are built on Freebase and DBpedia, which makes datasets based on Wikidata more distinctive and challenging, as researchers need to explore the connection between questions and the structure of the Wikidata knowledge graph. In addition, CLC-QuAD provides Chinese questions that help study KBQA in a cross-lingual setting. Since the same question can be expressed quite differently in Chinese and in English, we also present statistics of characters for each language.

Semantic Coverage As shown in Table 4, we make a statistical comparison against previous KBQA datasets in this task. Obviously, CLC-QuAD and LC-QuAD 2.0 is vast in coverage of knowledge graph entities and relations, which can enable better generalization in model training. In addition, the SPARQL queries in CLC-QuAD and LC-QuAD 2.0 cover all common SPARQL keywords. As for vocabulary in datasets, we believe our translating work is much better than machine translation, as the translators make their focus on both questions and correct SPARQL queries so that they can use suitable word in different situations, as demonstrated by the vocabulary used in our dataset.

Question Distribution As shown in Figure 2, CLC-QuAD contains a fairly diverse set of question types over knowledge graphs. Unsurprisingly, FACT and FACT_DEDUPLICATION questions are the two most commonly seen in KBQA systems. Among the rest of question types, approximately 35% are DUAL INTENTION questions, which pose huge challenges to semantic parsing. Another 20% of this subgroup is BOOLEAN question, which is also very common in real-world applications, but is often ignored by researchers. BOOLEAN questions can be hard to handle traditional algorithms, because it is more like a classification problem rather than mapping to existing knowledge graphs. Also, DATE,
4 Approach

In this section, we describe our text-to-SPARQL model in two parts: relation-aware attention and multi-types pointer network. Figure ?? illustrates the overview of the model.

4.1 Relation-aware Attention Encoder

As for the embedding layer, we consider two options as input to the next layer. First choice is pretrained word embedding (Song et al., 2018). Alternatively, we use BERT (Devlin et al., 2019) as the initial representations of the word. Formally, we concatenate question \(Q \) and all entities \(E \) and relations \(R \) by this structure:

\[
[CLS], q_1, ..., [SEP], e_1, [SEP], ..., r_1, [SEP]
\]

This sequence is fed into the pretrained BERT model and use the last hidden states as the initial representations.

To capture graph information across the question, we use relation-aware self attention layers (Shaw et al., 2018) to compute new contextual representations of questions, entities and relations item. We define the input \(X = \{x_i\}_{i=1}^n \) where \(x_i \in \{q_i, ..., e_i, ..., r_i\} = Q \cup E \cup R \). This is the relation-aware self-attention process for each layer (consisting of \(H \) heads):

\[
\begin{align*}
 e_{ij}^{(h)} &= x_i W_Q^{(h)} x_j W_K^{(h)} + r_{ij}^T \\
 \alpha^{(h)} &= \text{Softmax}(e^{(h)}) \\
 c_i^{(h)} &= \sum_{j=1}^n \alpha_{ij}^{(h)} (x_j W_V^{(h)} + r_j^T)
\end{align*}
\]

where \(W_Q^{(h)}, W_K^{(h)}, W_V^{(h)} \in \mathbb{R}^{d_h \times (d_h/H)}, r_K = r_V \in \mathbb{R}^{n \times n \times (d_V/H)}, r_{ij} \) is the vector which represent the relation type between the two item \(x_i \) and \(x_j \) in the input. And in our model, \(r_{ij} \) is designed as a learned parameter for edge types in graph, such as \(<wdt-wd>\) and \(<wdt-p>\). After the attention procedure, we use fully connected feed-forward networks to transform the attention output and the ReLU activation is used between the two fully connected networks.

In sum, every relation-aware self attention layer use the corresponding graph \(G_Q \) and compute a new contextual representations of question word, entities and relations.

4.2 Pointer Network Decoder

Because the output SPARQL query consists of entities, relations and SPARQL keywords, we use pointer networks with three separate independent scaled dot-product attention for different components. During the decoding process, we use Long Short Term Memory (LSTM) with attention to generate SPARQL queries by incorporating the representation of entities, relations and SPARQL keywords.

Denote the decoding step as \(t \), we provide the decoder input as a concatenation of the embedding of the SPARQL query token \(S_t \) and the context vector \(c_t \):

\[
h_{t+1} = \text{LSTM}([S_t; c_t], h_t)
\]

where \(h_t \) is the hidden state of the decoder LSTM and the hidden state \(h_0 \) is initialized as random, as well as \(S_t, c_t \). And \(S_t \) is generated by the types of the SPARQL query token.

\[
S_t = \begin{cases}
W_k^{\text{keyword}} + b_k & \text{token} \in \text{Keyword} \\
W_e^{h_{\text{entity}}} + b_e & \text{token} \in \text{Entity} \\
W_r^{h_{\text{relation}}} + b_r & \text{token} \in \text{Relation}
\end{cases}
\]

where \(h_{\text{entity}}, h_{\text{relation}} \) are extracted from encoder result \(h^{\text{enc}} \) and \(h^{\text{keyword}} \) is a learnable embedding. In addition, we compute \(c_t \) by multi-head attention with combined components representation as follows:

\[
\begin{align*}
 h_{i} &= [h^{\text{enc}}; h^{\text{keyword}}] \\
 c_t &= \sum_{i=1}^{n} \alpha_t^{cb}(h_i, W_V^{cb})
\end{align*}
\]

where \(h_{i} \) is equal to \(h_t \) in Equation 2 and \(d_k \) is the dimension of \(h_t \). The context vector \(c_t \) consists of attentions to both the question, entities, relations and SPARQL keywords for current step \(k \).

As for output layer, our decoder is designed to generate an entity, a relation or a SPARQL keyword (eg. COUNT, ASK, FILTER, ORDER BY). In addition, entities and relations will be changeable based on different candidate graph so that we
choose three separate independent layer for different components and then use softmax function to compute the output probability distribution:

\[
\begin{align*}
o^k &= \frac{h_{\text{keyword}}^k([t; e]W^k_{\text{e}})}{\sqrt{d_h}} \\
o^e &= \frac{h_{\text{entity}}^e([t; e]W^e_{\text{e}})}{\sqrt{d_h}} \\
o^r &= \frac{h_{\text{relation}}^r([t; e]W^r_{\text{e}})}{\sqrt{d_h}} \\
\end{align*}
\]

As for loss computing, we compute the output character with ground truth SPARQL query character by the cross entropy loss function.

5 Experimental Results

We implemented our model in PyTorch. We use pretrained model BERT (Devlin et al., 2019) as the embedding layer and set \(h_{\text{keyword}} = 256 \), \(h_{\text{entity}} = h_{\text{relation}} = 768 \). We use 6 relation-aware attention layers to capture graph information. Within attention layers, the hidden size \(d_z \) is set as 256 and the number of head is 8. And we use 2 LSTM layers with 0.2 dropout for decoder and all hidden size \(h_t \) is 512. As for dropout rate, we set 0.1 for all attention layers and 0.2 for LSTM layers. To show that the effectiveness of our model is not mainly due to the use of the pre-trained model, we also experiment replacing BERT with the 200-dimensional Chinese word embedding (Song et al., 2018).

We used the Adam optimizer (Kingma and Ba, 2015) with the default hyperparameters. During the first 2 epochs, the model learning rate linearly increases from 0 to 1 × 10^{-3}. Afterwards, it will be multiplied by 0.8 if the validation loss increases compared with the previous epoch. We use a batch size of 16 and train for up to 15 epochs. When using BERT, we use a separate constant learning rate of 3 × 10^{-6} to fine-tune it, a batch size of 4 and train for up to 25 epochs.

5.1 Baselines

Because there is no model aiming at multi-type KBQA datasets, we modify two state-of-the-art models based on earlier datasets for our model to compare to. Due to limitation of their models, some types of questions cannot be handled, so we test them with specific types of questions.

AQG-net proposed by Chen et al. (2020) first uses a neural network-based generative model to generate an abstract query graphs that describes logical query structures, filling up it with all possible candidate permutations and then utilizes existing ranking model to get the most suitable query. In our experiment, we redesign the abstract query graphs due to the question types and relations are different and more complicated.

Multi-hop QGG proposed by Lan and Jiang (2020) explores a new strategy to expand the candidate query graph with both constraints and core paths. And it applies the REINFORCE algorithm to learn a policy function by using the F1 score of the predicted score with respect to the ground truth answers as reward. In our experiment, we totally redefine the way of extending the current SPARQL path and adapt the model features to meet the our dataset.

5.2 Evaluation Metrics

We evaluate models from two aspects. First, we use the F1 scores metrics to calculate the accuracy between ground truth answer and answers obtained from predicted SPARQL queries. Second, as semantic parsing methods model aim to predict correct SPARQL queries by question analysis, the answer accuracy can not represent its analytical capability. Instead of simply taking string match, we decompose predicted SPARQL queries into different triples such as (\(?ans1\), \(\text{wd:}P31\), \(\text{wd:}Q22675015\)), (\(?var1\), \(\text{order by, ascend}\)) and compute scores for the triples set using exact set match, which measures whether the predicted query is entirely equivalent to the gold query. The predicted SPARQL query is correct only if all of the components are right. Because we employ a triples set comparison, this exact matching metric is invariant to the order of the components.

5.3 Overall Result

LC-QuAD 2.0 We report the overall results of our approach and others on LC-QuAD 2.0 in Table 5. Our method achieves the performance of 55.4% query exact match scores and 59.3% answer F1 scores, which is better than other methods. This demonstrates the effectiveness of our approach and that the text-to-SPARQL method can handle the semantics of multi-type questions to generate complex SPARQL queries. Furthermore, from the ablation study, we find that model without BERT has 7.0% decline but still achieves state-of-the-art. This shows that the effectiveness of our model is
Table 5: Performance of various methods over all answers and all queries on both LC-QuAD 2.0 and CLC-QuAD.

	LC-QuAD 2.0		CLC-QuAD	
	answer F1	query match	answer F1	query match
AQG-net [13]	44.9	37.4	38.5	32.1
Multi-hop QGG [12]	52.6	43.2	46.5	39.7
Our approach + Tencent Word	52.9	48.4	45.6	40.2
Our approach + Bert	59.3	55.4	51.8	45.4
w/o graph relation-aware self-attention	50.1	46.6	42.0	36.7
w/o decoder separate attention	55.5	51.2	48.9	42.7

Table 6: Performance of various question types on CLC-QuAD. Some item is empty which represent that model can not deal with such type questions.

Split	Dual	Boolean	Fact	Max/Minimum	COUNTING	Qualifier
AQG-net [13]	-	50.6	34.3	41.2	25.8	17.2
Multi-hop QGG [12]	-	-	42.3	45.4	-	25.6
Our approach	**51.3**	**55.3**	**46.6**	**47.1**	**30.1**	**18.8**

not simply because of the use of BERT. We also test two components of our method. Without the relation-aware self attention, the score is nearly 9% lower and it shows that the information of knowledge graph is very important to the model and the relation-aware self attention can effectively encode the items in the graph. Without the separate attention in pointer networks, the model has a little drop in results.

CLC-QuAD Table 5 also shows the results of models in our new dataset CLC-QuAD. Similar to LC-QuAD 2.0, our model with BERT achieves 51.8% answer F1 score and 45.4% query exact matching accuracy. In addition, we find that all models get pretty weak scores compared with results in LC-QuAD 2.0. In the results of our approach with BERT, there is 10% decline which is a huge gap. This demonstrates that the Chinese representation is still a big challenge for model semantic parsing.

In addition, we split our dataset into six question types. Table 6 shows the performance of various question types on CLC-QuAD. We find that there is a huge gap in accuracy between different types of questions. We find that Counting and Qualifier questions are harder due to more complex semantics, which brings challenges to semantic parsing. Our approach achieves 51.3%, 55.3% and 47.1% accuracy in Dual, Boolean and Max/Minimum questions relatively, but the accuracy for Qualifier and Counting questions is only 18.8% and 30.1%. As for other methods, Multi-hop QGG is designed for complex questions with constraints and it achieves best performance in Qualifier questions, but it cannot handle Dual, Boolean and Counting questions. AQG-net is designed to generate abstract query graphs, which can answer most of types questions, but the performance is inferior to our proposed approach. This also demonstrates our model is more competitive in answering different types of questions.

6 Conclusion

In this paper, we introduced CLC-QuAD, a large-scale dataset of Chinese Complex Knowledge base question answer dataset. The dataset features wide coverage with regard to question semantics and types. To improve semantic parsing research with large knowledge graph, our dataset provided the pair of a question and its corresponding SPARQL query based on Wikidata. In addition, we proposed a multi-type KBQA model by generating the SPARQL query directly. This approach achieves state of the art on LC-QuAD 2.0 and CLC-QuAD.

Acknowledgements

This work was supported by Alibaba Group through Alibaba Innovative Research Program.

References

Junwei Bao, Nan Duan, Zhao Yan, Ming Zhou, and Tiejun Zhao. 2016. Constraint-based question answering with knowledge graph. In COLING 2016, 26th International Conference on Computational Linguistics, Proceedings of the Conference: Technical Papers, December 11-16, 2016, Osaka, Japan, pages 2503–2514. ACL.
Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic parsing on freebase from question-answer pairs. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, EMNLP 2013, 18-21 October 2013, Grand Hyatt Seattle, Seattle, Washington, USA, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 1533–1544. ACL.

Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker, Richard Cyganiak, and Sebastian Hellmann. 2009. Dbpedia - A crystallization point for the web of data. J. Web Semant., 7(3):154–165.

Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. 2008. Freebase: a collaboratively created graph database for structuring human knowledge. In Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, pages 1247–1250. ACM.

Antoine Bordes, Sumit Chopra, and Jason Weston. 2014. Question answering with subgraph embeddings. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 615–620. ACL.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. 2015. Large-scale simple question answering with memory networks. CoRR, abs/1506.02075.

Qingqing Cai and Alexander Yates. 2013. Large-scale semantic parsing via schema matching and lexicon extension. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, ACL 2013, 4-9 August 2013, Sofia, Bulgaria, Volume 1: Long Papers, pages 423–433. The Association for Computer Linguistics.

Yongrui Chen, Huizing Li, Yuncheng Hua, and Guilin Qi. 2020. Formal query building with query structure prediction for complex question answering over knowledge base. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages 3751–3758. ijcai.org.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186. Association for Computational Linguistics.

Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2015. Question answering over freebase with multicolumn convolutional neural networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers, pages 260–269. The Association for Computer Linguistics.

Mohnish Dubey, Debayan Banerjee, Abdelrahman Abdelkawi, and Jens Lehmann. 2019. Le-quad 2.0: A large dataset for complex question answering over wikidata and dbpedia. In The Semantic Web - ISWC 2019 - 18th International Semantic Web Conference, Auckland, New Zealand, October 26-30, 2019, Proceedings, Part II, volume 11779 of Lecture Notes in Computer Science, pages 69–78. Springer.

Yanchao Hao, Yuanzhe Zhang, Kang Liu, Shizhu He, Zhanyi Liu, Hua Wu, and Jun Zhao. 2017. An end-to-end model for question answering over knowledge base with cross-attention combining global knowledge. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, pages 221–231. Association for Computational Linguistics.

Sen Hu, Lei Zou, and Xinbo Zhang. 2018. A state-transition framework to answer complex questions over knowledge base. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018, pages 2098–2108. Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Yunshi Lan and Jing Jiang. 2020. Query graph generation for answering multi-hop complex questions from knowledge bases. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 969–974. Association for Computational Linguistics.

Xi Victoria Lin, Richard Socher, and Caiming Xiong. 2020. Bridging textual and tabular data for cross-domain text-to-sql semantic parsing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings, EMNLP 2020, Online Event, 16-20 November 2020, pages 4870–4888. Association for Computational Linguistics.

Kangqi Luo, Fengli Lin, Xusheng Luo, and Kenny Q. Zhu. 2018. Knowledge base question answering via encoding of complex query graphs. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018, pages 2185–2194. Association for Computational Linguistics.
Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018. Self-attention with relative position representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 2 (Short Papers), pages 464–468. Association for Computational Linguistics.

Yan Song, Shuming Shi, Jing Li, and Haisong Zhang. 2018. Directional skip-gram: Explicitly distinguishing left and right context for word embeddings. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 2 (Short Papers), pages 175–180. Association for Computational Linguistics.

Alon Talmor and Jonathan Berant. 2018. The web as a knowledge-base for answering complex questions. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), pages 641–651. Association for Computational Linguistics.

Priyansh Trivedi, Gaurav Maheshwari, Mohnish Dubey, and Jens Lehmann. 2017. Lc-quad: A corpus for complex question answering over knowledge graphs. In The Semantic Web - ISWC 2017 - 16th International Semantic Web Conference, Vienna, Austria, October 21-25, 2017, Proceedings, Part II, volume 10588 of Lecture Notes in Computer Science, pages 210–218. Springer.

Ricardo Usbeck, Ria Hari Gusmita, Axel-Cyrille Ngonga Ngomo, and Muhammad Saleem. 2018. 9th challenge on question answering over linked data (QALD-9) (invited paper). In Joint proceedings of the 4th Workshop on Semantic Deep Learning (SemDeep-4) and NLIWoD4: Natural Language Interfaces for the Web of Data (NLIWOD-4) and 9th Question Answering over Linked Data challenge (QALD-9) co-located with 17th International Semantic Web Conference (ISWC 2018), Monterey, California, United States of America, October 8th - 9th, 2018, volume 2241 of CEUR Workshop Proceedings, pages 58–64. CEUR-WS.org.

Denny Vrandecic. 2012. Wikidata: a new platform for collaborative data collection. In Proceedings of the 21st World Wide Web Conference, WWW 2012, Lyon, France, April 16-20, 2012 (Companion Volume), pages 1063–1064. ACM.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson. 2020. RAT-SQL: relation-aware schema encoding and linking for text-to-sql parsers. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 7567–7578. Association for Computational Linguistics.

Kun Xu, Yuxuan Lai, Yansong Feng, and Zhiguo Wang. 2019. Enhancing key-value memory neural networks for knowledge based question answering. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 2937–2947. Association for Computational Linguistics.

Xuchen Yao and Benjamin Van Durme. 2014. Information extraction over structured data: Question answering with freebase. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014, June 22-27, 2014, Baltimore, MD, USA, Volume 1: Long Papers, pages 956–966. The Association for Computer Linguistics.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao. 2015. Semantic parsing via staged query graph generation: Question answering with knowledge base. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers, pages 1321–1331. The Association for Computer Linguistics.

Wen-tau Yih, Matthew Richardson, Christopher Meek, Ming-Wei Chang, and Jina Suh. 2016. The value of semantic parse labeling for knowledge base question answering. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 2: Short Papers. The Association for Computer Linguistics.

Wenpeng Yin, Mo Yu, Bing Xiang, Bowen Zhou, and Hinrich Schütze. 2016. Simple question answering by attentive convolutional neural network. In COLING 2016, 26th International Conference on Computational Linguistics, Proceedings of the Conference: Technical Papers, December 11-16, 2016, Osaka, Japan, pages 1746–1756. ACL.

Mo Yu, Wenpeng Yin, Kazi Saudul Hasan, Cícero Nogueira dos Santos, Bing Xiang, and Bowen Zhou. 2017. Improved neural relation detection for knowledge base question answering. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, 2017, Volume 1: Long Papers, pages 571–581. Association for Computational Linguistics.

Rui Zhang, Tao Yu, Heyang Er, Sungrok Shim, Eric Xue, Xi Victoria Lin, Tianze Shi, Caiming Xiong, Richard Socher, and Dragomir R. Radev.
2019. Editing-based SQL query generation for cross-domain context-dependent questions. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 5337–5348. Association for Computational Linguistics.