Semi-implicit subgrid modelling of three-dimensional free-surface flows

Vincenzo Casulli1,*† and Guus S. Stelling2

1Laboratory of Applied Mathematics, Department of Civil and Environmental Engineering, University of Trento—38050 Mesiano di Trento, Italy
2Environmental Fluid Mechanics Section, Faculty of Civil Engineering and Geosciences, Delft University of Technology—P.O. Box 5048, 2600 GA Delft, The Netherlands

SUMMARY

In this paper, a semi-implicit numerical model for two- and three-dimensional free-surface flows will be formulated in such a fashion as to intrinsically account for subgrid bathymetric details. It will be shown that with the proposed subgrid approach the model accuracy can be substantially improved without increasing the corresponding computational effort. Copyright © 2010 John Wiley & Sons, Ltd.

Received 24 December 2009; Revised 15 April 2010; Accepted 16 April 2010

KEY WORDS: subgrid resolution; semi-implicit methods; free-surface; shallow water; wetting and drying; finite volume

1. INTRODUCTION

Numerical modelling of free-surface hydrodynamics for environmental applications has been a challenging task for several decades. The ever increasing computer power has stimulated researchers to formulate stable and efficient numerical models for accurate two- and three-dimensional flow simulations.

To bypass the severe restriction imposed on the time step size by the Courant–Friedrichs–Lewy stability condition, an alternating direction implicit method was proposed by Leendertse in 1970 [1]. This successful method has been extensively studied by several authors (see, e.g. [2] and the numerous references contained therein).

A detailed characteristic analysis on the two-dimensional governing equations was carried out in [3] to determine the precise terms that have to be discretized implicitly in order to obtain a semi-implicit method that is stable at a minimal computational cost. The resulting algorithm, which is relatively simple and robust, was soon extended to three-dimensional problems [4] and was employed in several applications. This method has been further extended to apply on orthogonal unstructured grids, which provide higher flexibility for fitting boundaries and for local mesh refinements [5].

Nowadays data of land heights and water depths can be collected with a very high resolution. Airborne scanning laser altimetry, for instance, can produce maps of surface height over large areas with a height precision of about ±15 cm and a spatial resolution of 1 m (see, e.g. [6]). Consequently, data bases with bathymetric data are built with a remarkably fine resolution.

*Correspondence to: Vincenzo Casulli, Laboratory of Applied Mathematics, Department of Civil and Environmental Engineering, University of Trento—38050 Mesiano di Trento, Italy.
†E-mail: vincenzo.casulli@unitn.it

Copyright © 2010 John Wiley & Sons, Ltd.
The availability of superior computing power, solid and stable semi-implicit methods, structured or flexible unstructured grids are useful tools but, alone, are still insufficient to faithfully account for complex topographic features. The availability of detailed bathymetric data within a coarser grid model can and should be used to further improve a model accuracy.

Accounting for subgrid-scale variations in numerical models is a longstanding problem that has been the subject of inquiry for at least four decades. Some of the earlier work is related to celerity but no new terms arising from body forces. As recently shown in Reference [9], the use of subgrid bathymetric details permits efficient and very accurate simulation of the wetting and drying dynamic with a simple, semi-implicit two-dimensional shallow water model.

In the present investigation, the subgrid approach presented in [9] is intrinsically extended to three-dimensional flow modelling. Subgrid bathymetric resolution is incorporated into the semi-implicit numerical method described in [5] in order to account for detailed bottom location and local bottom shear stress, thus permitting a substantial improvement of model accuracy without increasing the computational effort.

2. A SUBGRID FINITE VOLUME MODEL

2.1. Governing differential equations

For convenience, unless otherwise stated, the notation used here is taken from References [5, 9]. Thus, the momentum equations and the incompressibility condition for hydrostatic flows are taken to be

\[u_t + uu_x + v u_y + w u_z - f v = -g \eta_x + (v^h u_x)_x + (v^h u_y)_y + (v^h u_z)_z \]
\[v_t + uv_x + v v_y + w v_z + f u = -g \eta_y + (v^h v_x)_x + (v^h v_y)_y + (v^h v_z)_z \]
\[u_x + v_y + w_z = 0 \]

where \(u, v \) and \(w \) are the velocity components in the horizontal \(x, y \) and vertical \(z \)-directions, respectively; \(t \) is the time; \(\eta \) is the water surface elevation; \(f \) is the Coriolis parameter; \(g \) is the gravitational acceleration; and \(v^h \) and \(v^v \) are prescribed non-negative coefficients of horizontal and vertical eddy viscosity, respectively.

Integrating the continuity equation over depth, and using a kinematic condition at the free-surface, leads to the following free-surface equation:

\[H_t + \left[\int_{-h}^{\eta} u \, dz \right]_x + \left[\int_{-h}^{\eta} v \, dz \right]_y = 0 \]

where \(h \) is the specified bathymetry and \(H = \max(0, h + \eta) \) is the total water depth.

The boundary condition at the free-surface and at the sediment–water interfaces are assumed to be

\[\begin{align*}
 v^h u_z &= 0 && \text{at } z = \eta, \\
 v^h v_z &= 0 && \text{at } z = -h
\end{align*} \]

where \(\gamma \) is a non-negative bottom friction coefficient and \(u^* \) and \(v^* \) are the velocity components near the bottom.

When wetting or drying is expected, the differential equations (1)–(4) are defined on a time-dependent horizontal domain \(D(t) \) defined as \(D(t) = \{ (x, y) : H(x, y, t) > 0 \} \) [9].

2.2. Unstructured orthogonal grid

To solve Equations (1)–(4) numerically, a fixed domain \(\Omega \) is chosen in such a fashion that \(\Omega(t) \subseteq \Omega \) for all \(t \geq 0 \). \(\Omega \) is then covered by an unstructured orthogonal grid [5] consisting of a set of
non-overlapping convex polygons Ω_i, $i = 1, 2, \ldots, N$, separated by N_s sides Γ_j, $j = 1, 2, \ldots, N_s$. Within each polygon, a center must be identified in such a way that the segment joining the centers of two adjacent polygons and the side shared by the two polygons have a non-empty intersection and are orthogonal to each other.

Once Ω has been covered with an unstructured orthogonal grid, each polygon Ω_i may have an arbitrary number of sides. Let S_i denote the set of sides of the ith polygon. The left and the right polygons that share the jth internal side are identified by the indices $\ell(j)$ and $r(j)$, respectively. Moreover, $s(i, j)$ denotes the neighbor of polygon i that shares side j with the ith polygon. The non-zero distance between the centers of two adjacent polygons that share the jth internal side is denoted with δ_j.

Along the vertical direction a simple finite difference discretization, not necessarily uniform, is adopted. By denoting with z_k the discrete water surface elevation, assumed to be constant within each polygon, is located at the center of the ith polygon.

2.3. Semi-implicit finite volume discretization

In the present derivation, rather than assuming constant depth, constant velocity, and constant friction coefficient along each edge of the grid, a spatial variability is allowed. Hence, in a properly oriented co-ordinate system where the jth edge is aligned with the y axis, the local horizontal velocity components perpendicular to the jth edge and at the kth vertical layer will be denoted with $u^n_{j,k}(y)$. Thus, assuming a constant pressure gradient along each edge of the computational grid, a detailed momentum balance, previously given by Equation (7) in [5], is now modified to account for spatial variability:

$$
\Delta z^n_{j,k}(y) u^n_{j,k+1}(y) = G^n_{j,k}(y) - g \theta \Delta t \frac{\eta^{n+1}_r(y) - \eta^{n+1}_l(y)}{\delta_j} \Delta z^n_{j,k}(y)
$$

$$
+ \Delta t \left[v^n_{j,k+1}(y) \frac{u^n_{j,k+1}(y) - u^n_{j,k}(y)}{\Delta z^n_{j,k+1/2}(y)} - v^n_{j,k-1/2}(y) \frac{u^n_{j,k}(y) - u^n_{j,k-1}(y)}{\Delta z^n_{j,k-1/2}(y)} \right]
$$

$$
k = m_j(y), \quad m_j(y) + 1, \ldots, M^n_j, \quad j = 1, 2, \ldots, N_s
$$

(6)

where $\Delta z^n_{j,k}(y)$ is, in general, the distance between two consecutive level surfaces, unless the bottom or the free-surface comes first; $G^n_{j,k}(y)$ is a finite difference operator that accounts for the explicit contributions from the discretized Coriolis, advection, horizontal viscosity, and hydrostatic pressure; Δt is the time step; θ is an implicitness factor to be taken in the range $\theta \in [\frac{1}{2}, 1]$ [10]; and $m_j(y)$ and M^n_j indicate the bottom and the top layers, respectively.

A formulation for $G^n_{j,k}(y)$ can be specified in several ways, such as by using a stable Eulerian–Lagrangian scheme [5, 9] or a conservative formulation that allows for accurate simulation of rapidly varied flows at every Froude number [11, 12]. When an Eulerian–Lagrangian discretization is used, a form for $G^n_{j,k}(y)$ is taken to be

$$
G^n_{j,k}(y) = \Delta z^n_{j,k}(y) \left\{ \frac{[1 - \theta(1 - \theta) f^2 \Delta t^2] u^n_{j,k}(y) + f \Delta t v^n_{j,k}(y)}{1 + \theta f^2 \Delta t^2} \right. \\
- \left[(1 - \theta) g \Delta t \frac{\eta^n_{l(j)} - \eta^n_{r(j)}}{\delta_j} + \Delta t v^h \Delta h u^n_{j,k}(y) \right] \right\}
$$

(7)

where $u^n_{j,k}(y)$ denotes the velocity component normal to the jth side of the grid and $v^n_{j,k}(y)$ is the tangential velocity component in a right-hand coordinate system [13]. Both components are
of the horizontal viscosity terms.

The Lagrangian trajectory is calculated by integrating the velocity backwards in time from the \(y \) position along the \(j \)th edge at \(t_{n+1} \) to its location at time \(t_n \). \(\Delta h \) is the explicit discretization of the horizontal viscosity terms.

The values of \(u_j^{n+1}(y) \) above the free-surface and below the bottom in Equation (6) are eliminated by means of the boundary conditions (5), which yield the following difference formulae:

\[
\frac{u_{j+1}^{n+1}(y) - u_j^{n+1}(y)}{2 \Delta y_j} = 0, \quad \frac{u_{j-1}^{n+1}(y) - u_j^{n+1}(y)}{2 \Delta y_j} = v_j^{n+1}(y)u_j^{n+1}(y) \tag{8}
\]

After including the boundary conditions (8), Equations (6) can be written in compact matrix form as

\[
A_j^n(y) U_j^{n+1}(y) = G_j^n(y) - \theta g \Delta y_j [\eta^{n+1}_{j,i(j)} - \eta^{n+1}_{j,k(j)}] \Delta Z_j^n(y), \quad j = 1, 2, \ldots, N_e
\]

where \(A_j^n(y) \) is a symmetric, positive definite, tridiagonal matrix that includes bottom friction and vertical viscosity terms; \(U_j^{n+1}(y) \) is a vector containing the unknown velocities \(u_j^{n+1}(y) \); \(\Delta Z_j^n(y) \) is a vector whose entries are the vertical increments \(\Delta z_{j,k}^n \); and \(G_j^n(y) \) is a vector containing the known explicit terms \(G_j^n(y) \).

Of course, Equations (9) are defined on wet points only, i.e. where \(\Delta Z_j^n(y) > 0 \). On dry points \(U_j^{n+1}(y) = 0 \) is assumed. On wet points, Equations (9) constitute a set of \(M_j^n - m_{j,c} + 1 \) linear equations that involves the unknowns \(U_j^{n+1}(y), \eta_{j,i(j)}^{n+1} \), and \(\eta_{j,k(j)}^{n+1} \). Hence, the new free-surface elevation needs to be computed in order to determine the new velocity field.

Having assumed a constant free-surface elevation within each polygon, upon integration of the free-surface equation (4) over \(\Omega_i \), one obtains the following semi-implicit finite volume approximation:

\[
V_i(\eta_i^{n+1}) = V_i(\eta_i^n) - \Delta t \sum_{j \in \Omega_i} s_{i,j} \int_{\Gamma_j} [\Delta Z_j^n(y)]^T [\theta U_j^{n+1}(y) + (1 - \theta)U_j^n(y)] dy
\]

where

\[
V_i(\eta_i^n) = \int_{\Omega_i} \max[0, h(x,y) + \eta_i^n] dx dy
\]

is a nonlinear function representing the water volume within the \(i \)th water column for a specified water level \(\eta_i^n \) and for any given bathymetric detail; and \(s_{i,j} \) is a sign function associated with the orientation of the normal velocity defined on the \(j \)th edge [9].

It is worth noting that, other than assuming a constant pressure gradient along each edge of the computational grid, Equations (6)–(8) correctly represent the interaction of bottom friction with the vertical viscosity for any bathymetric distribution. Likewise, other than assuming a constant water level within each computational polygon, Equation (10) represents a precise mass balance over each computational cell and for any subgrid specification (see [9], Section 4.3, for further details).

2.4. Solution algorithm

Substitution of \(U_j^{n+1}(y) \) from (9) into (10) yields the following discrete wave equation:

\[
V_i(\eta_i^{n+1}) - g \Delta t^2 \theta^2 \sum_{j \in \Omega_i} s_{i,j} \psi_j^{n+1}(\eta_{j,i,j}) - \eta_i^{n+1} = b_i^n, \quad i = 1, 2, \ldots, N_p
\]

where \(\psi_j^n \) and \(b_i^n \) are scalar quantities given by

\[
\psi_j^n = \int_{\Gamma_j} [\Delta Z_j^n(y)]^{T} A^{-1}(y) \Delta Z_j^n(y) dy
\]
and

\[b_{i}^{n} = V_{i}(n_{i}^{n}) - \Delta t \sum_{j \in S_{i}} s_{i,j} \int_{\Gamma_{j}} \left\{ A^{T} (y) \theta A^{-1} (y) G (y) + (1 - \theta) U (y) \right\} n_{j} dy \] \hspace{1cm} (14)

Equations (12) can be assembled into a sparse, mildly nonlinear system of \(N_{p} \) equations for \(n_{i}^{n+1, i} = 1, 2, \ldots, N_{p} \). Details of an efficient iterative solver for this system have been given in Reference [9].

Once the new free-surface elevations \(n_{i}^{n+1} \) have been computed, the local velocities along each edge of the computational grid are readily derived from Equation (9).

Finally, the new vertical component of the velocity is diagnostically derived from a finite volume discretization of the incompressibility condition (3).

In practical applications where the bathymetric data are specified as a piecewise constant function over sub-polgons and over sub-edges, respectively, the integral in (11) might be replaced by a summation over sub-polgons, whereas the integrals in (13)–(14) might be replaced by a summation over sub-edges. Figure 1 shows a simple grid where each edge has 4 sub-edges and each polygon has 16 sub-polgons.

It should be noted that if only one vertical layer is specified, then \(m_{j} (y) = M_{j}^{n} = 1 \), \(\Delta z_{j,1}^{n} (y) = H_{j}^{n} (y) \) and the present algorithm reduces to a semi-implicit scheme that is consistent with the two-dimensional, vertically integrated shallow water equations [9].

Another interesting aspect of the present formulation is given by the fact that the size and the structure of the mildly nonlinear system (12) is independent of the vertical resolution and of the prescribed subgrid details. Subgrid and vertical resolution affect the assembly of Equation (12) and the number of equations for horizontal velocities. Moreover, since a major part of the computational effort is required to determine the free-surface elevation from Equations (12), a fine subgrid and vertical resolution can be adopted with an acceptable increase of the corresponding computing time.

In essence, a constant pressure gradient is assumed on each edge but velocity, friction, and depth are variable. This assumption not only allows to reduce the number of surface elevation points but also removes all the subgrid motions. Subgrid dynamic and near critical or supercritical flows where the pressure gradient variability cannot be neglected can be resolved by refining the computational grid.

Finally, to be noted is that the possible presence of dry sub-edges or dry sub-polgons has no influence on the computed velocities and water levels. Thus, when the subgrid approach is adopted, boundary fitting is naturally obtained, also in the presence of wetting and drying, without resorting to complex grid adaptation strategies [9].

In summary, the resulting algorithm described by Equations (9) and (12) is almost as simple as (13) and (15) from Reference [5]. The only, but important difference being that subgrid resolution greatly enhances the model accuracy.
3. NUMERICAL TEST

The above method has been tested on a number of realistic field-scale problems where bottom shear stress and wetting and drying are extremely important. The Venice Lagoon, for example, is a very complex system whose area covers about 420 km2 and consists of several interconnected narrow channels with a maximum width of 1 km and up to 50 m deep encircling large tidal flats. The average water depth is less than 1.5 m. The Lagoon is connected to the Adriatic Sea through three narrow inlets, namely Lido, Malamocco, and Chioggia. Tides propagate from the Adriatic Sea into the Lagoon through the inlets. The historical city of Venice is located in the Lagoon near the Lido inlet and is constantly threatened by storm surges, which often inundate the city.

The bathymetric data, available on a fine regular grid with 25 m resolution, appears to represent the tree-like structure of the main channels with sufficient accuracy (see Figure 2). With such a fine grid, the entire Lagoon can be covered by $N_p = 671030$ square polygons separated by $N_s = 1361331$ edges. The flow is driven by an idealized M_2 tide of 0.5 m amplitude and 12 h period that is specified as a boundary condition at the three inlets. By using a time step $\Delta t = 300$ s and a vertical resolution of 1 m, the three-dimensional flow is simulated for 10 tidal cycles and the corresponding results were assumed as a reference solution.

In a first simulation, four runs have been completed by using a regular horizontal grid of 25, 50, 100 and 300 m resolutions without subgrid refinement. As the grid is coarsened, the corresponding bathymetric data are taken as the average depth computed from the fine grid. Figure 3 shows the computed water volume for three consecutive tidal cycles. As expected, with coarser meshes the tide decays as it propagates to remote shallow areas. This is clearly seen by the computed surface elevation (Figure 4) observed at a remote station located in the Northern part of the Lagoon indicated by a mark in Figure 2.
The previous simulations were repeated by using the available bathymetric data with 25 m resolution to provide subgrid details to coarser grid simulations. The resulting volumes and surface elevations shown in Figures 5 and 6 indicate that the proposed algorithm is much less sensitive to the grid size.

The above calculation were performed on a PC with a 2.16 GHz Core 2 Duo processor using an OpenMP implementation. Table I summarizes the problem size and the model performance. As indicated, a considerable saving in computational effort can be achieved by coarsening the grid while retaining subgrid details.

It should be noted that, without subgrid specifications, accurate bathymetry fitting can only be accomplished by using very fine meshes and/or highly distorted unstructured grids. Extreme mesh refinement and excessive grid distortion, however, lead to large and often ill-conditioned nonlinear systems (12) that have to be solved at every time step. Additionally, an overrefined spatial
discretization also requires an adequately small time step size (see, e.g. [11]) that contributes to an increase in the computational cost.

Other than keeping good accuracy at a drastically reduced computational cost, the present subgrid approach appears to be a very promising tool for applications to three-dimensional morphological
models [14] and to multiscale numerical modelling. Additionally, the scalar transport algorithm described in [15] can be readily adapted to the present formulation so that mass conservation and maximum principle of any transported constituent can be assured.

4. CONCLUSIONS

A semi-implicit algorithm for three-dimensional free-surface flows has been generalized to intrinsically account for detailed bathymetric data at subgrid level.

Accurate mass and momentum balance in shallow flows over complex geometries is assured also in the presence of wetting and drying. The resulting algorithm is numerically stable, relatively simple, and extremely efficient.

The given example demonstrates that the present formulation can generate very accurate results, even with a coarse and structured finite difference mesh, without resorting to costly and unnecessary grid refinements.

The interested reader should readily see how to apply the present subgrid concept to his/her own advantage. Thus, for example, the development of a three-dimensional subgrid model in σ-coordinates should be rather straightforward.

REFERENCES

1. Leendertse JJ. A water-quality simulation model for well-mixed estuaries and coastal seas. Principles of computation. vol. 1. RM-6230-RC, Rand, Santa Monica, 1970.
2. Stelling GS. On the construction of computational methods for shallow water equations. Rijkswaterstaat Communications 35r1984, 1984.
3. Casulli V. Semi-implicit finite difference methods for the two-dimensional shallow water equations. Journal of Computational Physics 1990; 86:56–74.
4. Casulli V, Cheng RT. Semi-implicit finite difference methods for three-dimensional shallow water flow. International Journal for Numerical Methods in Fluids 1992; 15:629–648.
5. Casulli V, Walters RA. An unstructured grid, three-dimensional model based on the shallow water equations. International Journal for Numerical Methods in Fluids 2000; 32:331–348.
6. Mason DC, Cobby DM, Horritt MS, Bates PD. Floodplain friction parameterization in two-dimensional river flood models using vegetation heights derived from airborne scanning laser altimetry. Hydrological Processes 2003; 17:1711–1732.
7. Nikora V, McEwan I, McLean S, Coleman S, Pokrajac D, Walters R. Double-averaging concept for rough-bed open-channel and overland flows: theoretical background. Journal of Hydraulic Engineering (ASCE) 2007; 133:873–883.
8. Nikora V, McLea S, Coleman S, Pokrajac D, McEwan I, Campbell L, Aberle J, Clunie D, Koll K. Double-averaging concept for rough-bed open-channel and overland flows: applications. Journal of Hydraulic Engineering (ASCE) 2007; 133:884–895.
9. Casulli V. A high-resolution wetting and drying algorithm for free-surface hydrodynamics. International Journal for Numerical Methods in Fluids 2009; 60:391–408.
10. Casulli V, Cattani E. Stability, accuracy and efficiency of a semi-implicit method for three-dimensional shallow water flow. Computers and Mathematics with Applications 1994; 27:99–112.
11. Stelling GS, Duynmeyer SPA. A staggered conservative scheme for every Froude number in rapidly varied shallow water flows. International Journal for Numerical Methods in Fluids 2003; 43:1329–1354.
12. Ham DA, Kramer SC, Stelling GS, Pietrzak J. The symmetry and stability of unstructured mesh C-grid shallow water models under the influence of Coriolis. Ocean Modelling 2007; 16:47–60.
13. Kleptsova O, Pietrzak J, Stelling GS. On the accurate and stable reconstruction of tangential velocities in C-grid ocean models. Ocean Modelling 2009; 28:118–126.
14. Lesser GR, Roelvink JA, van Kester JATM, Stelling GS. Development and validation of a three-dimensional morphological model. Coastal Engineering 2004; 51:883–915.
15. Casulli V, Zanolli P. High resolution methods for multidimensional advection-diffusion problems in free-surface hydrodynamics. Ocean Modelling 2005; 10:137–151.