Supplementary Information

The Ubiquitous Paddle-Wheel Building Block in a Two-dimensional Coordination Polymer with Square Grid Structure

Anand Pariyar,† Joseph Stansbery,‡ Rajankumar L. Patel,‡ Xinhua Liang† and Amitava Choudhury†,*

†Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, United States.

‡Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO 65409, United States

*E-mail: choudhurya@mst.edu;

Table of Contents:

Sl. No	Contents	Page No.
1	Table S1. π-π Interaction in 1	S2
2	Table S2. Hydrogen bonds for 1	S2
3	Table S3. π-π Interaction in 2	S2
4	Table S4. Hydrogen bonds for 2	S2
5	Table S5. π-π Interaction in 3	S3
6	Table S6. Hydrogen bonds for 4	S3
7	Table S7. Hydrogen bonds for 5	S3
8	Table S8. CH…π Interaction in 6	S3
9	Table S9. Hydrogen bonds for 6	S4
10	Table S10. Dihedral angle θ between the benzene ring and carboxylate group of BDC moiety in the paddle wheel structure of 1 – 6.	S4
10	Figure S1. Structure of [Co(BDC)(Py)](2).	S5
11	Figure S2. Space filled model for 1 showing 1-D channels	S6
12	Figure S3. Structure of [Zn(BDC)(DMF)] (5).	S6
Table S1. π-π Interaction in 1, [Zn-BDC-Py].

Cg(I)…Cg(J)	d[Cg(I)…Cg(J)] Å	β-angle (°)	Symmetry code	Slippage
Cg(1)…Cg(1)	3.7476(3)	22.8	1-x,-y,-z	1.453
Cg(1)…Cg(2)	3.8951(4)	10.3	1-x,-1/2+y,1/2-z	
Cg(2)…Cg(1)	3.8951(2)	30.9	1-x,1/2+y,1/2-z	

β-angle = angle between Cg(I)-Cg(J) or Cg(I)--Me vector and normal to plane I. Centroid: Cg(1) = N(1)-C(9)-C(10)-C(11)-C(12)-C(13). Cg(2) = C(1)-C(2)-C(3)-C(4)-C(5)-C(6). Slippage = Distance between Cg(I) and Perpendicular Projection of Cg(J) on Ring I (Å).

Table S2. Hydrogen bonds for 1, [Zn-BDC-Py] [Å and °].

D-H...A	d(D-H)	d(H...A)	d(D...A)	<(DHA)
C(2)-H(2A)...O(4)#6	0.93	2.55	3.470(2)	171.8
C(5)-H(5A)...O(2)#7	0.93	2.59	3.5112(19)	172.2
C(9)-H(9A)...O(2)#8	0.93	2.54	3.405(2)	154.8

Symmetry transformations used to generate equivalent atoms:
#6 x,-y+3/2,z-1/2 ; #7 x,-y+3/2,z+1/2; #8 x-1,y,z

Table S3. π-π interaction in 2, [Co-BDC-Py].

Cg(I)…Cg(J)	d[Cg(I)…Cg(J)] Å	β-angle (°)	Symmetry code	Slippage
Cg(1)…Cg(1)	3.7199(5)	21.5	1-x,-y,-z	1.499
Cg(1)…Cg(2)	3.9255(5)	10.7	1-x,-1/2+y,1/2-z	
Cg(2)…Cg(1)	3.9255(5)	32.3	1-x,1/2+y,1/2-z	

β-angle = angle between Cg(I)-Cg(J) vector and normal to plane I. Centroid: Cg(1) = N(1)-C(9)-C(10)-C(11)-C(12)-C(13). Cg(2) = C(1)-C(2)-C(3)-C(4)-C(5)-C(6). Slippage = Distance between Cg(I) and Perpendicular Projection of Cg(J) on Ring I (Å).

Table S4. Hydrogen bonds for 2, [Co-BDC-Py] [Å and °].

D-H...A	d(D-H)	d(H...A)	d(D...A)	<(DHA)
C(2)-H(2A)...O(4)#6	0.93	2.49	3.410(4)	173.5
C(5)-H(5A)...O(2)#7	0.93	2.51	3.433(4)	174.2
C(9)-H(9A)...O(2)#8	0.93	2.53	3.390(4)	154.9
C(13)-H(13A)...O(3)#3(Intra)	0.93	2.53	3.085(5)	117.7

Symmetry transformations used to generate equivalent atoms:
#3 -x+2,y-1/2,-z+1/2 ; #6 x,-y+3/2,z-1/2 ; #7 x,-y+3/2,z+1/2; #8 x-1,y,z
Table S5. π-π interaction in 3, [Co-BDC-Mim]

Cg(I)…Cg(J)	d[Cg(I)…Cg(J)] Å	β-angle (°)	Symmetry code	Slippage
Cg(1)…Cg(1)	3.8747(10)	23.8	1-x,-y,-z	1.417
Cg(1)…Cg(2)	4.1219(11)	19.7	1-x,1/2+y,1/2-z	
Cg(2)…Cg(1)	4.1219(11)	37.6	1-x,1/2+y,1/2-z	

β-angle = angle between Cg(I)-Cg(J) vector and normal to plane I. Centroid: Cg(1) = N(1)-C(9)-C(10)-C(11)-N(2)-C(11). Cg(2) = C(1)-C(2)-C(3)-C(4)-C(5)-C(6). Slippage = Distance between Cg(I) and Perpendicular Projection of Cg(J) on Ring I (Å).

Table S6. Hydrogen bonds for 4, [Cu-BDC-DMF] [Å and °].

D-H…A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
C(5)-H(5A)...O(2)#6	0.93	2.53	3.355(4)	148.6
C(9)-H(9A)...O(1)	0.93	2.38	3.016(4)	125.2
C(11)-H(11A)...O(5)	0.96	2.38	2.791(6)	105.1

Symmetry transformations used to generate equivalent atoms: #6 x,-y+1/2,z-1/2

Table S7. Hydrogen bonds for 5, [Zn-BDC-DMF] [Å and °].

D-H…A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
C(5)-H(5A)...O(2)#6	0.93	2.53	3.327(3)	143.3
C(9)-H(9A)...O(1)	0.93	2.38	3.007(3)	124.7
C(11)-H(11A)...O(5)	0.96	2.35	2.767(4)	105.3

Symmetry transformations used to generate equivalent atoms: #6 x,-y+1/2,z-1/2

Table S8. CH…π interaction in 6, [Zn-AmBDC-DMF].

X-H…Cg(J)	d(H…Cg) \(\text{Å}\)	γ-angle \(^{\circ}\)	X-H…Cg \(^{\circ}\)	X…Cg \(\text{Å}\)	Symmetry code
C(6)-H(6C)…Cg(1)	2.86	23.27	142	3.6646(6)	x,y,-1+z
C(6)-H(6C)…Cg(1)	2.86	23.27	142	3.6646(6)	1/2-x,1/2-y,-z

Cg(J) = center of gravity of ring J; γ-angle = angle between Cg-H vector and ring J normal. Centroid: Cg(1) = C(2)-C(3)-C(4)'-C(2)'-C(3)'-C(4).

53
Table S9. Hydrogen bonds for 6, [Zn-AmBDC-DMF] [Å and °].

D-H...A	d(D-H)	d(H...A)	d(D...A)	<(DHA)
N(1)-H(1A)...O(2)#1	0.86	2.45	3.32937(5)	165
N(1)-H(1B)...O(1) (intra)	0.86	2.09	2.7109(4)	128
C(5)-H(5)...O(1) (intra)	0.96	2.60	3.3430(5)	135
C(6)-H(6A)...N(1)#2	0.96	2.60	3.0011(5)	105
C(6)-H(6B)...N(2)#2	0.96	2.33	3.1456(5)	143

Symmetry transformations used to generate equivalent atoms:
#2= 1-x, y, -z; #1= 1/2+x,-1/2-y,-z

Table S10. Dihedral angle θ between the benzene ring and carboxylate group of BDC moiety in the paddle wheel structure.

MOFs	Dihedral angle (°)	Reference	
	θ₁	θ₂	
1	19.7	22.9	This work
2	19.9	23.8	This work
3	19.1	22.9	This work
4	23.5	26.3	This work
5	23.1	25.6	This work
6	25.6	25.6	This work
MOF-2	5.5	5.5	Yaghi et. al. Chem Commun 2001, 2532
MOF-46	25	25	Yaghi et. al. Chem Commun 2001, 2532
Structure of 2:

Figure S1. Structure of [Co(BDC)(Py)](2). (a) Asymmetric unit of 2 at 50% probability level. (b) Paddle-wheeled coordination unit of 2 and (c) 2-D polymeric arrangement viewed along the c-direction. Color codes - cobalt: green; nitrogen: blue; oxygen: red and carbon: dark grey. Hydrogens are omitted from (b) and (c) for clarity.
Fig S2. Space-filled model showing 3D supramolecular array in isostructural 1 or 2 showing 1-D channel viewed towards (6 1 10) plane.

Structure of 5:

Figure S3: Structure of [Zn(BDC)(DMF)] (5). (a) Asymmetric unit of 5 shown at 50% probability level. (b) Paddle-wheeled coordination unit of 5 and (c) 2D polymeric arrangement viewed along c-directions. Color code; zinc: turquoise; nitrogen: blue; oxygen: red and carbon; dark grey. Hydrogen atoms are omitted from (b) and (c) for clarity.