Energy Efficiency Optimization for MIMO-OFDM Mobile Multimedia Communication Systems with QoS Constraints

Xiaoahu Ge, Senior Member, IEEE, Xi Huang, Yuming Wang, Member, IEEE, Min Chen, Senior Member, IEEE, Qiang Li, Member, IEEE, Tao Han, Member, IEEE, and Cheng-Xiang Wang, Senior Member, IEEE

Abstract—It is widely recognized that besides the quality of service (QoS), the energy efficiency is also a key parameter in designing and evaluating mobile multimedia communication systems, which has catalyzed great interest in recent literature. In this paper, an energy efficiency model is first proposed for multi-input multiple-output orthogonal-frequency-division-multiplexing (MIMO-OFDM) mobile multimedia communication systems with statistical QoS constraints. Employing the channel matrix singular-value-decomposition (SVD) method, all subchannels are classified by their channel characteristics. Furthermore, the multi-channel joint optimization problem in conventional MIMO-OFDM communication systems is transformed into a multi-target single channel optimization problem by grouping all subchannels. Therefore, a closed-form solution of the energy efficiency optimization is derived for MIMO-OFDM mobile multimedia communication systems. As a consequence, an energy-efficiency optimized power allocation (EEOPA) algorithm is proposed to improve the energy efficiency of MIMO-OFDM mobile multimedia communication systems. Simulation comparisons validate that the proposed EEOPA algorithm can guarantee the required QoS with high energy efficiency in MIMO-OFDM mobile multimedia communication systems.

I. INTRODUCTION

As the rapid development of the information and communication technology (ICT), the energy consumption problem of ICT industry, which causes about 2% of worldwide CO₂ emissions yearly and burdens the electrical bill of network operators [1], has drawn universal attention. Motivated by the demand for improving the energy efficiency in mobile multimedia communication systems, various resource allocation optimization schemes aiming at enhancing the energy efficiency have become one of the mainstreams in mobile multimedia communication systems, including transmission power allocation [2], [3], bandwidth allocation [4]–[6], subchannel allocation [7], and etc. Multi-input multi-output (MIMO) technologies can create independent parallel channels to transmit data streams, which improves spectrum efficiency and system capacity without increasing the bandwidth requirement [8]. Orthogonal-frequency-division-multiplexing (OFDM) technologies eliminate the multipath effect by transforming frequency selective channels into flat channels. As a combination of MIMO and OFDM technologies, the MIMO-OFDM technologies are widely used in mobile multimedia communication systems. However, how to improve energy efficiency with quality of service (QoS) constraint is an indispensable problem in MIMO-OFDM mobile multimedia communication systems.

The energy efficiency has become one of the hot studies in MIMO wireless communication systems in the last decade [9]–[14]. An energy efficiency model for Poisson-Voronoi tessellation (PVT) cellular networks considering spatial distributions of traffic load and power consumption was proposed [9]. The energy-bandwidth efficiency tradeoff in MIMO multihop wireless networks was studied and the effects of different numbers of antennas on the energy-bandwidth efficiency tradeoff were investigated in [10]. An accurate closed-form approximation of the tradeoff between energy efficiency and spectrum efficiency over the MIMO Rayleigh fading channel was derived by considering different types of power consumption model [11]. A relay cooperation scheme was proposed to investigate the spectral and energy efficiencies tradeoff in multicell MIMO cellular networks [12]. The energy-efficiency-spectral efficiency tradeoff of the uplink of a multi-user cellular V-MIMO system with decode-and-forward type protocols was studied in [13]. The tradeoff between spectral and energy efficiency was investigated in the relay-aided multicell MIMO cellular network by comparing both the signal forwarding and interference forwarding relaying paradigms [14]. In our earlier work, we explored the tradeoff between the operating power and the embodied power contained...
in the manufacturing process of infrastructure equipments from a life-cycle perspective [1]. In this paper, we further investigate the energy efficiency optimization for MIMO-OFDM mobile multimedia communication systems.

Based on the Wishart matrix theory [15]–[18], numerous channel models have been proposed in the literature for MIMO communication systems [19]–[26]. A closed-form joint probability density function (PDF) of eigenvalues of Wishart matrix was derived for evaluating the performance of MIMO communication systems [19]. Moreover, a closed-form expression for the marginal PDF of the ordered eigenvalues of complex noncentral Wishart matrices was derived to analyze the performance of singular value decomposition (SVD) in MIMO communication systems with Ricean fading channels [20]. Based on the distribution of eigenvalues of Wishart matrix, the performance of high spectrum efficiency MIMO communication systems with M-PSK (Multiple Phase Shift Keying) signals in a flat Rayleigh-fading environment was investigated in terms of symbol error probabilities [21]. Furthermore, the cumulative density functions (CDF) of the largest and the smallest eigenvalue of a central correlated Wishart matrix were investigated to evaluate the error probability of a MIMO maximal ratio combing (MRC) communication system with perfect channel state information at both transmitter and receiver [22]. Based on PDF and CDF of the maximum eigenvalue of double-correlated complex Wishart matrices, the exact expressions for the PDF of the output signal-to-noise ratio (SNR) were derived for MIMO-MRC communication systems with Rayleigh fading channels [23]. The closed-form expressions for the outage probability of MIMO-MRC communication systems with Rician-fading channels were derived under the condition of the largest eigenvalue distribution of central complex Wishart matrices in the noncentral case [24]. Furthermore, the closed-form expressions for the outage probability of MIMO-MRC communication systems with and without co-channel interference were derived by using CDFs of Wishart matrix [25]. Meanwhile, the PDF of the smallest eigenvalue of Wishart matrix was applied to select antennas to improve the capacity of MIMO communication systems [26]. However, most existing studies mainly worked on the joint PDF of eigenvalues of Wishart matrix to measure the channel performance for MIMO communication systems. In our study, subchannels’ gains derived from the marginal probability distribution of Wishart matrix is investigated to implement energy efficiency optimization in MIMO-OFDM mobile multimedia communication systems.

In conventional mobile multimedia communication systems, many studies have been carried out [27]–[33]. In terms of the corresponding QoS demand of different throughput levels in MIMO communication systems, an effective antenna assignment scheme and an access control scheme were proposed in [27]. A downlink QoS evaluation scheme was proposed from the viewpoint of mobile users in orthogonal frequency-division multiple-access (OFDMA) wireless cellular networks [28]. To guarantee the QoS in wireless networks, a statistical QoS constraint model was built to analyze the queue characteristics of data transmissions [29]. The energy efficiency in fading channels under QoS constraints was analyzed in [30], where the effective capacity was considered as a measure of the maximum throughput under certain statistical QoS constraints. Based on the effective capacity of the block fading channel model, a QoS driven power and rate adaptation scheme over wireless links was proposed for mobile wireless networks [31]. Furthermore, by integrating information theory with the effective capacity, some QoS-driven power and rate adaptation schemes were proposed for diversity and multiplexing systems [32]. Simulation results showed that multi-channel communication systems can achieve both high throughput and stringent QoS at the same time. Aiming at optimizing the energy consumption, the key tradeoffs between energy efficiency and link-level QoS metrics were analyzed in different wireless communication scenarios [33]. However, there has been few research work addressing the problem of optimizing the energy efficiency under different QoS constraints in MIMO-OFDM mobile multimedia communication systems.

Motivated by aforementioned gaps, this paper is devoted to the energy efficiency optimization with statistical QoS constraints in MIMO-OFDM mobile multimedia communication systems with statistical QoS constraints which uses a statistical exponent to measure the queue characteristics of data transmission in wireless systems. All subchannels in MIMO-OFDM communication systems are first grouped by their channel gains. On this basis, a novel subchannel grouping scheme is developed to allocate the corresponding transmission power to each of subchannels in different groups, which simplifies the multi-channel optimization problem to a multi-target single channel optimization problem. The main contributions of this paper are summarized as follows.

1) An energy efficiency model with statistical QoS constraints is proposed for MIMO-OFDM mobile multimedia communication systems.

2) A subchannel grouping scheme is designed by using the channel matrix single-value-decomposition (SVD) method, which simplifies the multi-channel optimization problem to a multi-target single channel optimization problem. Based on marginal probability density functions (MPDFs) of subchannels in different groups, a closed-form solution of energy efficiency optimization is derived for MIMO-OFDM mobile multimedia communication systems.

3) A novel algorithm is developed to optimize the energy efficiency in MIMO-OFDM mobile multimedia communication systems. Numerical results validate that the proposed algorithm improves the energy efficiency of MIMO-OFDM mobile multimedia communication systems with statistical QoS constraints.

The remainder of this paper is organized as follows. The system model is introduced in Section IV. In Section V, the energy efficiency model of MIMO-OFDM mobile multimedia communication systems with statistical QoS constraints is proposed. Based on the subchannel grouping scheme, a closed-form solution of energy efficiency optimization is derived for MIMO-OFDM mobile multimedia communication systems in Section VI. Moreover, a novel transmission
A power allocation algorithm is presented. Numerical results are illustrated in Section V. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

The MIMO-OFDM mobile multimedia communication system is illustrated in Fig. 1. It contains a $M_r \times M_t$ antenna matrix, N subcarriers and S OFDM symbols, where M_t is the number of transmit antennas and M_r is the number of receive antennas. We denote B as the system bandwidth and T_f as the frame duration. The OFDM signals are assumed to be transmitted within a frame duration. Then the received signal of MIMO-OFDM communication system can be expressed as follows:

$$y_k[i] = H_k x_k[i] + n,$$ \hspace{1cm} (1)

where $y_k[i]$ and $x_k[i]$ are the received signal vector and transmitted signal vector at the kth $(k = 1, 2, ..., N)$ subcarrier of the ith $(i = 1, 2, ..., S)$ OFDM symbol, respectively. H_k is the frequency-domain channel matrix at the kth subcarrier and n is the additive noise vector. Let \mathbb{C} denote the complex space, then we have $y_k \in \mathbb{C}^{M_r}$, $x_k \in \mathbb{C}^{M_t}$, $H_k \in \mathbb{C}^{M_r \times M_t}$, and $n \in \mathbb{C}^{M_r}$. Without loss of generality, we assume $E\{nn^H\} = \mathbf{I}^{M_r \times M_r}$, where $E\{\cdot\}$ denotes the expectation operator.

Discrete-time channels are assumed to experience a block-fading, in which the frame duration is shorter than the channel coherence time. Based on this assumption, the channel gain is invariant within a frame duration T_f, but varies independently from one frame to another. In each frame duration, the channel at each subcarrier is divided into M ($M = \min(M_t, M_r)$) parallel SISO channels by the SVD method. As a consequence, a total number of $M \times N$ parallel space-frequency subchannels can be generated in each OFDM symbol. Transmitters are assumed to obtain the channel state information (CSI) from receivers without delay via feedback channels. Furthermore, an average transmission power constraint \mathcal{P} is configured for each subchannel in the MIMO-OFDM communication system. With this average transmission power constraint, transmitters are able to perform power control adaptively according to the feedback CSI and system QoS constraints, so that the energy efficiency in the MIMO-OFDM mobile multimedia communication system can be optimized. To facilitate reading, the notations and symbols used in this paper are listed in TABLE I.

III. ENERGY EFFICIENCY MODELING OF MIMO-OFDM MOBILE MULTIMEDIA COMMUNICATION SYSTEMS

Applying the SVD method to the channel matrix H_k at each subcarrier, where $H_k \in \mathbb{C}^{M_r \times M_t}$ $(k = 1, 2, ..., N)$, we have

$$H_k = U_k \sqrt{\Lambda_k} V_k^H,$$ \hspace{1cm} (2)

where U_k and V_k are the left and right singular matrices of H_k, respectively, and Λ_k is a diagonal matrix containing the singular values of H_k.
TABLE I
NOTATIONS AND SYMBOLS USED IN THE PAPER

Symbol	Definition/explanation
M_r	The number of transmit antennas
M_t	The number of receive antennas
M	$M = \min(M_r, M_t)$
N	The number of subcarriers
S	The number of OFDM symbols
B	The system bandwidth
T_f	The frame duration
\mathbf{y}_k	The received signal vector at the kth subcarrier of the ith OFDM symbol
\mathbf{x}_k	The transmitted signal vector at the kth subcarrier of the ith OFDM symbol
\mathbf{H}_k	The frequency-domain channel matrix at the kth subcarrier
n	The additive noise vector
M	The number of parallel SISO channels at each subcarrier
P	The average transmission power constraint for a subchannel
λ	The subchannel gain
$\lambda_{m,k}$	The channel gain of the mth subchannel at the kth subcarrier
Δ	The transmission power allocation threshold over a subchannel
$\Delta_{m,k}$	The transmission power allocation threshold of the mth subchannel at the kth subcarrier
λ_n	The transmission power allocation threshold of the nth grouped subchannels
η	The energy efficiency of MIMO-OFDM mobile multimedia communication systems
η_{opt}	The optimized energy efficiency
β	The QoS statistical exponent
μ	The normalized QoS exponent
$C_{\text{total}}(\theta)$	The total effective capacity
$C(\theta)$	The effective capacity of the mth subchannel over the kth subcarrier
$C_0(\theta)$	The effective capacity for a subchannel with QoS constraint
$C_{0}\theta_{\text{opt}}$	The optimized effective capacity of the nth grouped subchannels
$\mathbb{E}\{P_{\text{total}}\}$	The expectation of the total transmitted power
$p_{\mu}(\theta, \lambda)$	The instantaneous bit rate within a frame duration
$p_{\mu,k}(\theta, \lambda)$	The transmission power allocated over a subchannel
$p_{\mu,k}(\theta, \lambda)$	The transmission power allocated over the mth subchannel at the kth orthogonal subcarrier
$p_{\text{opt},k}(\theta, \lambda)$	The optimized transmission power allocated over a channel
$p_{\text{opt},k}(\theta, \lambda)$	The optimized transmission power allocated for subchannels in the nth group
$p_{\text{mpdf}}(\theta, \lambda)$	The channel gain MPDF of the mth subchannel at the kth orthogonal subcarrier
$p_{\text{mpdf}}(\theta, \lambda)$	The channel gain MPDF of the subchannels over the nth grouped subchannels
$p(\lambda_1, \lambda_2, ..., \lambda_M)$	The joint PDF of ordered eigenvalues of a Wishart matrix
$K_{M,Q}$	The normalizing factor

where $\mathbf{U}_k \in \mathbb{C}^{M_t \times M_r}$ and $\mathbf{V}_k \in \mathbb{C}^{M_t \times M_t}$ are unitary matrices. When $M_t \geq M_r$, we have block matrix $\mathbf{\Delta}_k = [\mathbf{\Delta}_k, \mathbf{0}_{M_r,M_t-M_r}]$; otherwise when $M_r < M_t$, we have $\mathbf{\Delta}_k = [\mathbf{\Delta}_k, \mathbf{0}_{M_t,M_r-M_t}]^T$, where $\mathbf{\Delta}_k = \text{diag}(\lambda_1, k, ..., \lambda_M)$ and $\lambda_{m,k} \geq 0, \forall m = 1, ..., M, k = 1, ..., N$. $\{\lambda_{m,k}\}_{m=1}^M$ denotes the subchannel gain set at the kth subcarrier. In this way, the MIMO channel at each subcarrier is decomposed into M parallel SISO subchannels by SVD method. Therefore, $M \times N$ parallel space-frequency subchannels are obtained at N orthogonal subcarriers for each OFDM symbol.

In traditional energy efficiency optimization researches, Shannon capacity is usually used as the index which measures the system output. However, in any practical wireless communication systems, the system capacity is obviously less than Shannon capacity, especially in the scenario with strict QoS constraint. In this paper, the effective capacity of each subchannel is taken as the practical data rate with certain QoS constraint. The total effective capacity of $M \times N$ subchannels is configured as the system output and the total transmission power allocated to $M \times N$ subchannels is configured as the system input. As a consequence, the energy efficiency of MIMO-OFDM mobile multimedia communication systems is defined as follows

$$\eta = \frac{C_{\text{total}}(\theta)}{\mathbb{E}\{P_{\text{total}}\}} = \frac{\sum_{m=1}^M \sum_{k=1}^N C_0(\theta)_{m,k}}{\mathbb{E}\{P_{\text{total}}\}},$$

where $C_0(\theta)_{m,k}(m = 1, 2, ..., M, k = 1, 2, ..., N)$ is the effective capacity of the mth subchannel over the kth subcarrier, and $\mathbb{E}\{P_{\text{total}}\}$ is the expectation of the total transmission power allocated to all $M \times N$ subchannels. θ is the QoS statistical exponent, which indicates the exponential decay rate of QoS violation probabilities. A smaller θ corresponds to a slower decay rate, which implies that the multimedia communication system provides a looser QoS guarantee; while a larger θ leads to a faster decay rate, which means that a higher QoS requirement should be supported.

Practical MIMO-OFDM mobile multimedia communication systems involve multiple services, such as speech and video services, which are sensitive to the delay parameter. Different services in MIMO-OFDM mobile multimedia communication systems have different QoS constraints. In view of this, the effective capacity of each subchannel depends on the corresponding QoS constraint. A statistical QoS constraint is adopted to evaluate the effective capacity of each subchannel which is calculated as the system practical output in MIMO-OFDM mobile multimedia communication systems. Assuming the fading process over
MIMO-OFDM mobile multimedia communication systems is expressed as follows [31]

\[C_e(\theta) = -\frac{1}{\theta} \log \left(\mathbb{E} \left\{ e^{-\theta R} \right\} \right) , \quad (4a) \]

\[R = T_f B \log_2 (1 + \mu(\theta, \lambda) \lambda) , \quad (4b) \]

where \(R \) denotes the instantaneous bit rate within a frame duration, \(\lambda \) denotes the subchannel gain, and \(\mu(\theta, \lambda) \) denotes the transmission power allocated to a subchannel.

After SVD of channel matrices at \(N \) orthogonal subcarriers, \(M \times N \) parallel subchannels are obtained. The channel gain over each of these \(M \times N \) parallel subchannels follows a marginal probability distribution (MPDF). Assuming \(p_{r,m,k}(\lambda) \) as the MPDF of channel gain over the \(m \)th \((m = 1, 2, \ldots, M) \) subchannel at the \(k \)th \((k = 1, 2, \ldots, N) \) orthogonal subcarrier, then the corresponding effective capacity \(C_e(\theta)_{m,k} \) over the \(m \)th subchannel at the \(k \)th orthogonal subcarrier is derived as (5), where \(\mu_{m,k}(\theta, \lambda) \) is the transmission power allocated to the \(m \)th subchannel at the \(k \)th orthogonal subcarrier.

Considering the practical power consumption limitation at transmitters, an average transmission power constraint \(\Theta \) over each subchannel is derived as (6). With the average transmission power constraint, the expectation of transmission power \(\mathbb{E} \{ P_{\text{total}} \} \) is given by

\[\mathbb{E} \{ P_{\text{total}} \} = \Theta \times M \times N . \quad (7) \]

Substituting expression (6) and (7) into (3), we derive the effective capacity expression (4).

A. Optimization Solution of Energy Efficiency

To maximize the energy efficiency of MIMO-OFDM mobile multimedia communication systems with statistical QoS constraints, the optimization problem can be formulated as (9).

\[\eta_{\text{opt}} = \max_{\Theta} \frac{\log_2 (1 + \mu(\theta, \lambda) \lambda)}{\Theta} , \quad (9) \]

where \(\eta_{\text{opt}} \) is the optimized energy efficiency.

From the problem formulation in (9) and (10), it is remarkable that the energy efficiency of MIMO-OFDM mobile multimedia communication systems depends on transmission power allocation results \(\mu_{m,k}(\theta, \lambda) \) over \(M \times N \) subchannels. In this case, the optimization problem in (9) and (10) is a multi-channel optimization problem, which is intractable to obtain a closed-form solution in mathematics.

In most studies on MIMO wireless communication systems, the energy efficiency optimization problem is solved by a single channel optimization model [32]. How to change the multi-channel energy efficiency optimization problem into the single channel energy efficiency optimization problem and derive a closed-form solution are great challenges in this paper. Without loss of generality, the optimized transmission power allocation of single subchannel \(\mu_{\text{opt}}(\theta, \lambda) \) is expressed as follows [32]

\[\mu_{\text{opt}}(\theta, \lambda) = \begin{cases} \frac{1}{\Lambda + \lambda} - \frac{\lambda}{\beta}, & \lambda \geq \Lambda \\ 0, & \lambda < \Lambda \end{cases} , \quad (11a) \]

\[\beta = \theta T_f B / \log 2 , \quad (11b) \]

where \(\Lambda \) is the transmission power allocation threshold over a subchannel and \(\beta \) is the normalized QoS exponent.

It is critical to determine the transmission power allocation threshold \(\Lambda \) for the implementation of optimized transmission power allocation in (11a). An average transmission power constraint \(\Theta \) is configured for each subchannel, thus the transmission power allocation threshold of each subchannel should satisfy the following constraint

\[\int_{\Lambda_{m,k}}^{\infty} \left(\frac{1}{\Lambda_{m,k} + \lambda} - \frac{1}{\lambda} \right) p_{r,m,k}(\lambda) d\lambda \leq \Theta , \quad (12) \]

where \(\Lambda_{m,k} (m = 1, 2, \ldots, M, k = 1, 2, \ldots, N) \) is the transmission power allocation threshold of the \(m \)th subchannel at the \(k \)th subcarrier.

Assuming that the channel matrix \(H_k (k = 1, 2, \ldots, N) \) at each subcarrier is a complex matrix and its elements are complex valued with real and imaginary parts each governed by a normal distribution \(\mathcal{N}(0, 1/2) \) with mean value \(0 \) and variance value \(1/2 \), then elements of \(H_k \) follow an independent and identically distributed (i.i.d.) circular symmetric complex Gaussian distribution with zero-mean
\begin{equation}
C_e(\theta)_{m,k} = -\frac{1}{\theta} \log \left(\int_0^\infty e^{-\theta T_j B \log_2(1 + \mu_{m,k}(\theta,\lambda))} p_{T_{m,k}}(\lambda) d\lambda \right),
\end{equation}

\begin{equation}
\overline{P} = \int_0^\infty \mu_{m,k}(\theta,\lambda) p_{T_{m,k}}(\lambda) d\lambda \quad (\forall m = 1, 2, \ldots, M, k = 1, 2, \ldots, N),
\end{equation}

\begin{equation}
\eta = \frac{\sum_{m=1}^{M} \sum_{k=1}^{N} \frac{1}{\theta} \log \left(\int_0^\infty e^{-\theta T_j B \log_2(1 + \mu_{m,k}(\theta,\lambda))} p_{T_{m,k}}(\lambda) d\lambda \right)}{\overline{P} \times M \times N}.
\end{equation}

\begin{equation}
\eta_{\text{opt}} = \max \left\{ \frac{\sum_{m=1}^{M} \sum_{k=1}^{N} \frac{1}{\theta} \log \left(\int_0^\infty e^{-\theta T_j B \log_2(1 + \mu_{m,k}(\theta,\lambda))} p_{T_{m,k}}(\lambda) d\lambda \right)}{\overline{P} \times M \times N} \right\}
\end{equation}

\begin{equation}
\text{s.t.:}
\int_0^\infty \mu_{m,k}(\theta,\lambda) p_{T_{m,k}}(\lambda) d\lambda \leq \overline{P}, \forall m = 1, 2, \ldots, M, k = 1, 2, \ldots, N.
\end{equation}

and unit-variance. In this case, wireless channels between transmit and receive antennas are Raleigh fading channels with unit energy.

Denote \(Q = \max(M_t, M_r) \), and set \(\widetilde{W} \) as a \(M \times M \) Hermitian matrix:

\begin{equation}
\widetilde{W} = \left\{ \begin{array}{ll} H_k H_k^H & M_r < M_t \\ H_k^H H_k & M_r \geq M_t \end{array} \right.,
\end{equation}

then \(\widetilde{W} \) is a central Wishart matrix. The joint PDF of ordered eigenvalues of \(\widetilde{W} \) follows Wishart distributions [37] as (14), where \(\lambda_1, \lambda_2, \ldots, \lambda_M \) are ordered eigenvalues of \(\widetilde{W} \), \(K_{M,Q} \) is a normalizing factor which is denoted as follows:

\begin{equation}
K_{M,Q} = \prod_{i=1}^{M} ((Q - i)! (M - i)!).
\end{equation}

Based on SVD results of channel matrix \(H_k \), ordered eigenvalues of matrix \(H_k^H H_k \) are denoted by elements \(\lambda_{1,k}, \lambda_{2,k}, \ldots, \lambda_{M,k} \) of diagonal matrix \(\Delta_k \). That means subchannel gains \(\lambda_{1,k}, \ldots, \lambda_{M,k} \) at the \(k \)th subcarrier can be denoted by eigenvalues of the Wishart matrix \(\widetilde{W} \). When subchannel gains at each subcarrier are sorted in a descending order, i.e., \(\forall 1 \leq i < j \leq M, 1 \leq k \leq N, \lambda_{i,k} \geq \lambda_{j,k}, \) the ordered subchannel gains can be denoted by the ordered eigenvalues \(\lambda_1, \lambda_2, \ldots, \lambda_M \) of Wishart matrix \(\widetilde{W} \), which follow the joint PDF \(p(\lambda_1, \lambda_2, \ldots, \lambda_M) \) of the ordered eigenvalues of Wishart matrix \(\widetilde{W} \). After subchannel gains at each subcarrier are sorted in a descending order, the MPDF of the \(m \)th (\(1 \leq n \leq M \)) subchannel gain at the \(k \)th subcarrier \(p_{T_{m,k}}(\lambda) \) is derived as (16). After subchannels at each subcarrier are sorted by subchannel gains, subchannels with the same order position at different orthogonal subcarriers have the identical MPDF based on [16]. According to this property, a subchannel grouping scheme is proposed for subchannels at different orthogonal subcarriers:

1) Sort subchannels at each orthogonal subcarriers by a descending order of subchannel gains: \(\lambda_{1,k} \geq \lambda_{2,k} \geq \ldots \geq \lambda_{M,k} \geq 0, k = 1, 2, \ldots, N \).
2) For \(n = 1 : M \), select the subchannels with the same order position at different orthogonal subcarriers (\(\lambda_{n,1}, \lambda_{n,2}, \ldots, \lambda_{n,N} \)) into different channel groups.
3) Repeat steps 1) and 2) for all OFDM symbols.
4) \(M \) groups with the same order position subchannels are obtained.

Since subchannels in the same group have an identical MPDF, the MPDF of subchannels in the \(n \)th group \(p_{T_{n,k}}(\lambda) \) (\(1 \leq n \leq M, 1 \leq k \leq N \)) is simply denoted as \(p_{T_{n}}(\lambda) \).

Based on the proposed subchannel grouping scheme, we can optimize the effective capacity of each grouped subchannels according to their MPDF in (16), in which all subchannels in the same group have an identical MPDF. In this process, the multi-channel joint optimization problem is transformed into a multi-target single channel optimization problem, which significantly reduces the complexity of energy efficiency optimization. Substituting (16) into (12), the average power constraint is derived as (17). Where \(\Lambda_n, (1 \leq n \leq M) \) is the transmission power allocation threshold of the \(n \)th grouped subchannels. Based on the transmission power allocation threshold for each grouped subchannels in...
\[
p(\lambda_1, \lambda_2, \ldots, \lambda_M) = K_{M, Q}^{-1} \sum_{i=1}^{M} \lambda_i^{-\theta} \prod_{1 \leq i \leq j \leq M} (\lambda_i - \lambda_j)^{2},
\]
(14)

\[
p_{\Gamma_{m,n}}(\lambda) = \int_{M-1}^{\lambda} p(\lambda_1, \lambda_2, \ldots, \lambda_M) d\lambda_d \lambda_{i+1} \ldots d\lambda_j \quad (1 \leq i < j \leq M \text{ and } i \neq n, j \neq n).
\]
(16)

\[
\int_{\Lambda_n}^{\infty} \left(\frac{1}{\Lambda_n^{-\theta} \lambda^{\theta-1}} \right) \left(\int_{M-1}^{\lambda} p(\lambda_1, \lambda_2, \ldots, \lambda_M) d\lambda_d \lambda_{i+1} \ldots d\lambda_j \right) d\lambda \leq \bar{P},
\]
(17)

where \(\mu_{\text{opt}}(\theta, \lambda) \) is the optimized transmission power allocated for subchannels in the \(n \)-th group. Therefore, the optimized energy efficiency of MIMO-OFDM mobile multimedia communication systems with statistical QoS constraints is derived as (19) and (20).

\[
\eta_{\text{opt}} = \frac{\sum_{n=1}^{M} \frac{1}{\theta \times \bar{P} \times M} \sum_{n=1}^{M} \log \left(\int_{0}^{\infty} e^{-\theta T_f B \log_2(1 + \mu_{\text{opt}}(\theta, \lambda))} p_{\Gamma_{m,n}}(\lambda) d\lambda \right)}{\bar{P} \times M \times N}
\]
(19)

\[
\eta_{\text{opt}} = \frac{1}{\theta \times \bar{P} \times M} \sum_{n=1}^{M} \log \left(\int_{0}^{\infty} e^{-\theta T_f B \log_2(1 + \mu_{\text{opt}}(\theta, \lambda))} p_{\Gamma_{m,n}}(\lambda) d\lambda \right).
\]
(20)

In the proposed algorithm, the transmission power allocation threshold \(\Lambda_n \) is the core parameter to optimize the energy efficiency of MIMO-OFDM mobile multimedia communication systems. The configuration of the transmission power allocation threshold \(\Lambda_n \) depends on the MPDF of each grouped subchannels. Without loss of generation, the number of transmitter and receiver antennas is configured as \(M_t = 4 \) and \(M_r = 4 \), respectively. Based on the extension of (16), MPDFs of each grouped subchannels are extended as (27)-(30).

Substituting (27), (28), (29) and (30) into (12), the transmission power allocation threshold \(\Lambda_n \) can be calculated. To analyze the performance of the transmission power allocation threshold, some default parameters are configured as: \(T_f = 1 \) ms and \(B = 1 \) MHz. The numerical results are illustrated in Fig. 2 and Fig. 3. Fig. 2 shows numerical results of the transmission power allocation threshold \(\Lambda_n \) with respect to each grouped subchannels considering different QoS statistical exponents \(\theta \). For each grouped subchannels, the transmission power allocation threshold \(\Lambda_n \) decreases with the increase of the QoS exponent \(\theta \). Considering subchannels are sorted by the descending order of subchannel gains, the subchannel gain of subchannel groups decreases with the increase of group indexes. Therefore, the transmission power allocation threshold \(\Lambda_n \) increases with the increase of subchannel gains in subchannel groups when the QoS exponent \(\theta \leq 10^{-2} \). When the QoS exponent \(\theta > 10^{-3} \), the transmission power allocation threshold \(\Lambda_n \) start to decrease with the increase of subchannel gains in subchannel groups.

V. Simulation Results and Performance Analysis

The core idea of energy efficiency optimization algorithm (EEOPA) with statistical QoS constraints for MIMO-OFDM mobile multimedia communication systems is described as follows. Firstly, the SVD method is applied for the channel matrix \(\mathbf{H}_k \), \(k = 1, 2, \ldots, N \), at each orthogonal subcarrier to obtain \(M \times N \) parallel space-frequency subchannels. Secondly, subchannels at each subcarrier are pushed into a subchannel gain set, where subchannels are sorted by the subchannel gain in a descending order. And then subchannels with the same order position in the subchannel gain set are selected into the same group. Since subchannels within the same group have the identical MPDF, the transmission power allocation threshold for subchannels within the same group is identical. Therefore, the optimized transmission power allocation for the grouped subchannels is implemented to improve the energy efficiency of MIMO-OfDM mobile multimedia communication systems. The detailed EEOPA algorithm is illustrated in Algorithm 1.

Algorithm Design

The optimized transmission power allocation for the grouped subchannels is described as (EEOPA) with statistical QoS constraints for MIMO-OFDM mobile multimedia communication systems is described as follows. Firstly, the SVD method is applied for the channel matrix \(\mathbf{H}_k \), \(k = 1, 2, \ldots, N \), at each orthogonal subcarrier to obtain \(M \times N \) parallel space-frequency subchannels. Secondly, subchannels at each subcarrier are pushed into a subchannel gain set, where subchannels are sorted by the subchannel gain in a descending order. And then subchannels with the same order position in the subchannel gain set are selected into the same group. Since subchannels within the same group have the identical MPDF, the transmission power allocation threshold for subchannels within the same group is identical. Therefore, the optimized transmission power allocation for the grouped subchannels is implemented to improve the energy efficiency of MIMO-OFDM mobile multimedia communication systems. The detailed EEOPA algorithm is illustrated in Algorithm 1.
Algorithm 1 EEOPA.

Input: $M_t, M_r, N, H_k, \overline{P}, B, T_f, \theta$

Initialization: Decompose the MIMO-OFDM channel matrix $H_k(k = 1, 2, ..., N)$ into $M \times N$ space-frequency subchannels through the SVD method.

Begin:

1) Sort subchannel gains of each subcarrier in a decreasing order:
 \[
 \lambda_{1,k} \geq \lambda_{2,k} \geq \ldots \geq \lambda_{M,k}(k = 1, 2, \ldots, N). \tag{21}
 \]

2) Assign $\lambda_{n,1}, \lambda_{n,2}, \ldots, \lambda_{n,N}$ from all N subcarriers into the nth grouped subchannel set:
 \[
 \text{Group}_n = \{ \lambda_{n,1}, \lambda_{n,2}, \ldots, \lambda_{n,N} \}(n = 1, 2, \ldots, M). \tag{22}
 \]

3) for $n = 1 : M$ do

 Calculate the optimized transmission power allocation threshold Λ_n for Group$_n$
 according to the average power constraint as follows:
 \[
 \int_{\Lambda_n}^{\infty} \left(\frac{1}{\Lambda_n^{\frac{1}{\beta}} \lambda^{\frac{1}{\alpha}}} - \frac{1}{\lambda} \right) p_{r_n}(\lambda) d\lambda \leq \overline{P}. \tag{23}
 \]

 Execute the optimized transmission power allocation policy for Group$_n$:
 \[
 \mu_{\text{opt}_n}(\theta, \lambda) = \begin{cases}
 0, & \lambda \geq \Lambda_n \\
 \frac{1}{\Lambda_n^{\frac{1}{\beta}} \lambda^{\frac{1}{\alpha}}} - \frac{1}{\lambda}, & \lambda < \Lambda_n
 \end{cases}. \tag{24}
 \]

 Calculate the optimized effective-capacity for Group$_n$:
 \[
 C_e(\theta)_{\text{opt}_n} = -\frac{N}{\theta} \log \left(\int_0^{\infty} e^{\theta T_f B \log_2(1 + \mu_{\text{opt}_n}(\theta, \lambda))} p_{r_n}(\lambda) d\lambda \right). \tag{25}
 \]

end for

4) Calculate the optimized energy-efficiency of the MIMO-OFDM mobile multimedia communication system:
 \[
 \eta_{\text{opt}} = -\frac{1}{\theta \times P \times M} \sum_{n=1}^{M} \log \left(\int_0^{\infty} e^{-\theta T_f B \log_2(1 + \mu_{\text{opt}_n}(\theta, \lambda))} p_{r_n}(\lambda) d\lambda \right). \tag{26}
 \]
end Begin

Output: $\Lambda_n, \eta_{\text{opt}}$.

\[
pr_1(\lambda) = -4e^{-4\lambda} - (1/36)e^{-\lambda}(144 - 432\lambda + 648\lambda^2 - 408\lambda^3 + 126\lambda^4 - 18\lambda^5 + \lambda^6) + (1/12)e^{-3\lambda}(144 - 144\lambda + 72\lambda^2 + 56\lambda^3 + 46\lambda^4 + 10\lambda^5 + \lambda^6) - (1/72)e^{-2\lambda}(864 - 1728\lambda + 1728\lambda^2 - 192\lambda^3 + 96\lambda^4 - 96\lambda^5 + 32\lambda^6 - 4\lambda^7 + \lambda^8), \tag{27}
\]

\[
pr_2(\lambda) = 12e^{-4\lambda} - (1/6)e^{-3\lambda}(144 - 144\lambda + 72\lambda^2 + 56\lambda^3 + 46\lambda^4 + 10\lambda^5 + \lambda^6) + (1/72)e^{-2\lambda}(864 - 1728\lambda + 1728\lambda^2 - 192\lambda^3 + 96\lambda^4 - 96\lambda^5 + 32\lambda^6 - 4\lambda^7 + \lambda^8), \tag{28}
\]

\[
pr_3(\lambda) = -12e^{-4\lambda} + (1/12)e^{-3\lambda}(144 - 144\lambda + 72\lambda^2 + 56\lambda^3 + 46\lambda^4 + 10\lambda^5 + \lambda^6), \tag{29}
\]

\[
pr_4(\lambda) = 4e^{-4\lambda}. \tag{30}
\]

Fig. [3] illustrates the transmission power allocation threshold Λ_n with respect to each grouped subchannels considering different average power constraints \overline{P}. For each grouped subchannels, the transmission power allocation threshold Λ_n.
Fig. 2. Transmission power allocation threshold Λ_n with respect to each grouped subchannels considering different QoS statistical exponents θ.

Fig. 3. Transmission power allocation threshold Λ_n with respect to each grouped subchannels considering different average power constraints P.

decreases with the increase of the average power constraint P. When $P \leq 13$, the transmission power allocation threshold Λ_n increases with the increase of subchannel gains in subchannel groups. When $P > 13$, the transmission power allocation threshold Λ_n start to decrease with the increase of subchannel gains in subchannel groups.

To evaluate the energy efficiency and the effective capacity of MIMO-OFDM mobile multimedia communication systems, three typical scenarios with different antenna numbers are configured in Fig. 4 and Fig. 5. (1) $M_t = 2, M_r = 2$; (2) $M_t = 3, M_r = 2$; (3) $M_t = 4, M_r = 4$. Fig. 4 shows the impact of QoS statistical exponents θ on the effective capacity of MIMO-OFDM mobile multimedia communication systems in three different scenarios. From curves in Fig. 4 the effective capacity decreases with the increase of the QoS statistical exponent θ. The reason of this result is that the larger values of θ correspond to the higher QoS requirements, which result in a smaller number of subchannels are selected to satisfy the higher QoS requirements. When the QoS statistical exponent θ is fixed, the effective capacity increases with the number of antennas in MIMO-OFDM mobile multimedia communication systems. This result indicates the channel spatial multiplexing can improve the effective capacity of MIMO-OFDM mobile multimedia communication systems.

Fig. 5 illustrates the impact of QoS statistical exponents θ on the energy efficiency of MIMO-OFDM mobile multimedia communication systems in three different scenarios. From curves in Fig. 5 the energy efficiency decreases with the increase of the QoS statistical exponent θ. The reason of this result is that the larger values of θ correspond to the higher QoS requirements, which result in a smaller number of subchannels are selected to satisfy the higher QoS requirements. This result conduces to the effective capacity is decreased. If the total transmission power is constant, the decreased effective capacity will lead to the decrease of the energy efficiency in communication systems. When the QoS statistical exponent θ is fixed, the energy efficiency increases with the number of antennas in MIMO-OFDM mobile multimedia communication systems. This result indicates the channel spatial multiplexing can improve the energy efficiency of MIMO-OFDM mobile multimedia communication systems.

When the QoS statistical exponent is fixed as $\theta = 10^{-3}$, the impact of the average power constraint on the energy efficiency and the effective capacity of MIMO-OFDM mobile multimedia communication systems is investigated in Fig. 6. From Fig. 6 the energy efficiency decreases with the increase of the average power constraint and the effective capacity increases with the increase of the average power constraint. This result implies there is an optimization tradeoff between the energy efficiency and effective capacity.
in MIMO-OFDM mobile multimedia communication systems: as the transmission power increases which leads to larger effective capacity, the energy consumption of the system also rises; therefore, the larger power input results in the decline of energy efficiency.

To analyze performance of the EEOPA algorithm, the traditional average power allocation (APA) algorithm [38], i.e., every subchannel with the equal transmission power algorithm is compared with the EEOPA algorithm by Fig. 7–Fig. 10. Three typical scenarios with different antenna numbers are configured in Fig. 7–Fig. 10: (1) \(M_t = 2, M_r = 2 \); (2) \(M_t = 3, M_r = 2 \); (3) \(M_t = 4, M_r = 4 \). In Fig. 7 the effect of the QoS statistical exponent \(\theta \) on the energy efficiency of EEOPA and APA algorithms is investigated with constant average power constraint \(P = 0.1 \) Watt. Considering changes of the QoS statistical exponent, the energy efficiency of EEOPA algorithm is always higher than the energy efficiency of APA algorithm in three scenarios. In Fig. 8 the impact of the average power constraint on the energy efficiency of EEOPA and APA algorithms is evaluated with the fixed QoS statistical exponent \(\theta = 10^{-3} \). Considering changes of the average power constraint, the energy efficiency of EEOPA algorithm is always higher than the energy efficiency of APA algorithm in three scenarios. In Fig. 9 the effect of the QoS statistical exponent \(\theta \) on the effective capacity of EEOPA and APA algorithms is compared with constant average power constraint \(P = 0.1 \) Watt. Considering changes of the QoS statistical exponent, the effective capacity of EEOPA algorithm is always higher than the effective capacity of APA algorithm in three scenarios. In Fig. 10 the impact of the average power constraint on the effective capacity of EEOPA and APA algorithms is evaluated with the fixed QoS statistical exponent \(\theta = 10^{-3} \). Considering changes of the average power constraint, the effective capacity of EEOPA algorithm is always higher than the effective capacity of APA algorithm in three scenarios.
Optimization problem is simplified into a multi-target single optimization scheme is presented based on the subchannel systems with statistical QoS constraints. An energy efficiency for MIMO-OFDM mobile multimedia communication systems. Compared with the traditional APA algorithm, simulation results demonstrate that our proposed algorithm has advantages on improving the energy efficiency and effective capacity of MIMO-OFDM mobile multimedia communication systems with QoS constraints.

Based on above comparison results, our proposed EEOPA algorithm can improve the energy efficiency and effective capacity of MIMO-OFDM mobile multimedia communication systems.

VI. CONCLUSIONS

In this paper, an energy efficiency model is proposed for MIMO-OFDM mobile multimedia communication systems with statistical QoS constraints. An energy efficiency optimization scheme is presented based on the subchannel grouping method, in which the complex multi-channel joint optimization problem is simplified into a multi-target single channel optimization problem. A closed-form solution of the energy efficiency optimization is derived for MIMO-OFDM mobile multimedia communication systems. Moreover, a novel algorithm, i.e., EEOPA, is designed to improve the energy efficiency of MIMO-OFDM mobile multimedia communication systems. Compared with the traditional APA algorithm, simulation results demonstrate that our proposed algorithm has advantages on improving the energy efficiency and effective capacity of MIMO-OFDM mobile multimedia communication systems with QoS constraints.

REFERENCES

[1] J. Humar, X. Ge, X. Lin, M. Jo and M. Chen, “Rethinking energy-efficiency models of cellular networks with embodied energy,” IEEE Netw. Mag., vol. 25, no. 2, pp. 40–49, March 2011.
[2] C.-X. Wang, F. Haider, X. Gao, X.-H. You, Y. Yang, D. Yuan, H. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag., vol. 52, no. 2, pp. 122–130, Feb. 2014.
[3] S. Raghavendra, B. Daneshrad, “Performance analysis of energy-efficient power allocation for MIMO-MRC systems,” IEEE Trans. Commun., vol. 60, no. 8, pp. 2048–2053, Aug. 2012.
[4] J. Liu, Y. T. Hou, Y. Shi and D. S. Hanif, “Cross-layer optimization for MIMO-based wireless ad hoc networks: routing, power allocation, and bandwidth allocation,” IEEE J. Sel. Areas Commun., vol. 26, no. 6, pp. 913–926, Aug. 2008.
[5] J. Ding, D. Deng, T. Wu and H. Chen, “Quality-aware bandwidth allocation for scalable on-demand streaming in wireless networks,” IEEE J. Sel. Areas Commun., vol. 28, no. 3, pp. 366–376, Apr. 2010.
[6] X. Su, S. Chan and J. H. Manton, “Bandwidth allocation in wireless ad hoc networks: challenges and prospects,” IEEE Commun. Mag., vol. 48, no. 1, pp. 80–85, Jan. 2010.
[7] D. Helonde, V. Wadhai, V. S. Deshpande and H. S. Ohal, “Performance analysis of hybrid channel allocation scheme for mobile cellular network,” in Proc. IEEE ICRTIT 2011, pp. 245–250, June 2011.
[8] C.-X. Wang, M. Patzold, and D. Yuan, “Accurate and efficient simulation of multiple uncorrelated Rayleigh fading waveforms,” IEEE Trans. Wireless Commun., vol. 6, no. 3, pp. 833–839, March 2007.
[9] L. Xiang, X. Ge, C.-X. Wang, F. Li, and F. Reichert, “Energy Efficiency Evaluation of Cellular Networks Based on Spatial Distributions of Traffic Load and Power Consumption,” IEEE Trans. Wireless Commun., vol. 12, no. 3, pp. 961–973, March 2013.
[10] C. Chen, W. Stark and S. Chen, “Energy-bandwidth efficiency tradeoff in MIMO multi-hop wireless networks,” IEEE J. Sel. Areas Commun., vol. 29, no. 8, pp. 1537–1546, Sep. 2011.
[11] E. A. Heliot, M. A. Imran and R. Tafazolli, “On the energy efficiency-spectral efficiency trade-off of the MIMO Rayleigh fading channel,” IEEE Trans. Commun., vol. 60, no. 5, pp. 1345–1356, May 2012.
[12] I. Ku, C. Wang, and J. S. Thompson, “Spectral-energy efficiency tradeoff in relay-aided cellular networks,” IEEE Trans. Wireless Commun., vol. 12, no. 10, pp. 4970–4982, Oct. 2013.
[13] X. Hong, Y. Jie, C. Wang, J. Shi, and X. Ge, “Energy-spectral efficiency trade-off in virtual MIMO cellular systems,” IEEE J. Sel. Areas Commun., vol. 31, no. 10, pp. 2128–2140, Oct. 2013.
[14] I. Ku, C. Wang, and J. S. Thompson, “Spectral, energy and economic efficiency of relay-aided cellular networks,” IET Commun., vol. 7, no. 14, pp. 1476–1487, Sept. 2013.
[15] R. A. Fisher, “Frequency distribution of the values of the correlation coefficient in samples from an infinitely large population,” Biometrika, vol. 10, pp. 507–521, 1915.
[16] J. Wishart, “The generalized product moment distribution in samples from a normal multivariate population,” Biometrika, vol. 20A, pp. 32–52, 1928.
[17] J. Wishart, “Proofs of the distribution law of the second order moment statistics,” Biometrika, vol. 35, pp. 56–57, 1948.
[18] M. Matthaiou, D. I. Laurenson, and C.-X. Wang, “On analytical derivations of the condition number distributions of dual non-central Wishart matrices,” IEEE Trans. Wireless Commun., vol. 8, no. 3, pp. 1212–1217, Mar. 2009.
[19] A. Zanella, M. Chiani and M. Z. Win, “A general framework for the distribution of the eigenvalues of Wishart matrices,” in Proc. IEEE ICC 2008, pp. 1271–1276, May 2008.
[20] S. Jin, X. Gao and R. M. Matthew, “Ordered eigenvalues of complex noncentral Wishart matrices and performance analysis of SVD MIMO systems,” in Proc. IEEE ISIT 2006, pp. 1564-1568, July 2006.
Min Chen is a professor in School of Computer Science and Technology at Huazhong University of Science and Technology (HUST). He was an assistant professor in School of Computer Science and Engineering at Seoul National University (SNU) from Sep. 2009 to Feb. 2012. He was R&D director at Confederal Network Inc. from 2008 to 2009. He worked as a Post-Doctoral Fellow in Department of Electrical and Computer Engineering at University of British Columbia (UBC) for three years. Before joining UBC, he was a Post-Doctoral Fellow at SNU for one and half years. He received Best Paper Award from IEEE ICC 2012, and Best Paper Runner-up Award from QShine 2008. He has more than 180 paper publications, including 85 SCI papers. He is a Guest Editor for IEEE Network, IEEE Wireless Communications Magazine, etc. He is Co-Chair of IEEE ICC 2012-Communications Theory Symposium, and Co-Chair of IEEE ICC 2013-Wireless Networks Symposium. He is General Co-Chair for the 12th IEEE International Conference on Computer and Information Technology (IEEE CIT-2012). He is Keynote Speaker for CyberC 2012 and MobiQuitous 2012. His research focuses on Internet of Things, Machine to Machine Communications, Body Area Networks, Body Sensor Networks, E-healthcare, Mobile Cloud Computing, Cloud-Assisted Mobile Computing, Ubiquitous Network and Services, Mobile Agent, and Multimedia Transmission over Wireless Network, etc.

Cheng-Xiang Wang (S’01-M’05-SM’08) received the BSc and MEng degrees in Communication and Information Systems from Shandong University, China, in 1997 and 2000, respectively, and the PhD degree in Wireless Communications from Aalborg University, Denmark, in 2004. He has been with Heriot-Watt University, Edinburgh, UK, since 2005, first as a Lecturer, then as a Reader in 2009, and was promoted to a Professor in 2011. He is also an Honorary Fellow of the University of Edinburgh, UK, and a Chair/Guest Professor of Shandong University and Southeast University, China. He was a Research Fellow at the University of Agder, Grimstad, Norway, from 2001–2005, a Visiting Researcher at Siemens AG-Mobile Phones, Munich, Germany, in 2004, and a Research Assistant at Technical University of Hamburg-Harburg, Hamburg, Germany, from 2000–2001. His current research interests include wireless channel modeling and simulation, green communications, cognitive radio networks, vehicular communication networks, massive MIMO, millimetre wave communications, and 5G wireless communication networks. He has edited 1 book and published 1 book chapter and over 190 papers in refereed journals and conference proceedings.

Prof. Wang served or is currently serving as an editor for 8 international journals, including IEEE Transactions on Vehicular Technology (2011–) and IEEE Transactions on Wireless Communications (2007–2009). He was the leading Guest Editor for IEEE Journal on Selected Areas in Communications, Special Issue on Vehicular Communications and Networks. He served or is serving as a TPC member, TPC Chair, and General Chair for over 70 international conferences. He received the Best Paper Awards from IEEE Globecom 2010, IEEE ICCT 2011, ISIT 2012, and IEEE VTC 2013-Fall. He is a Fellow of the IET, a Fellow of the HEA, and a member of EPSRC Peer Review College.

Qiang Li received his B.Eng degree in communication engineering from the School of Communication and Information Engineering, University of Electronic Science and Technology of China, in 2007, and the Ph.D. degree in electrical and electronic engineering from Nanyang Technological University, in 2011. From 2011-2013, he was with Nanyang Technological University as a Research Fellow. From 2013, he is an Associate Professor at Huazhong University of Science and Technology. His research focuses on Internet of Things, Machine to Machine Communications, Body Area Networks, Body Sensor Networks, E-healthcare, Mobile Cloud Computing, Cloud-Assisted Mobile Computing, Ubiquitous Network and Services, Mobile Agent, and Multimedia Transmission over Wireless Network, etc.

Tao Han received the Ph.D. degree in communication and information engineering from Huazhong University of Science and Technology (HUST), Wuhan, China in December, 2001. He is currently an Associate Professor with the Department of Electronics and Information Engineering, HUST. From August, 2010 to August, 2011, he was a Visiting Scholar with University of Florida, Gainesville, FL, USA, as a Courtesy Associate Professor. His research interests include wireless communications, multimedia communications, and computer networks. Dr. Han is currently serving as an Area Editor for the EAI Endorsed Transactions on Cognitive Communications. He is a Reviewer for the IEEE Transactions on Vehicular Technology and other journals.