Length problems for Bazilevič functions

Mamoru Nunokawa, Janusz Sokół*, and Huo Tang

Abstract: Let $C(r)$ denote the curve which is image of the circle $|z| = r < 1$ under the mapping f. Let $L(r)$ be the length of $C(r)$ and $A(r)$ the area enclosed by the curve $C(r)$. Furthermore $M(r) = \max_{|z|=r} |f(z)|$. We present some relations between these notions for Bazilevič functions.

Keywords: Bazilevič function, close-to-convex functions, convex functions, starlike function, convex function

MSC: 30C45, 30C80

1 Preliminaries

Let \mathcal{H} denote the class of functions f which are analytic in the unit disk $\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}$, and \mathcal{A} be the subclass of \mathcal{H} consisting of functions normalized by $f(0) = 0 = f'(0) - 1$. Let $S \subset \mathcal{A}$ be the class of functions univalent (i.e. one-to-one) in \mathbb{D}. Denote by S^* the subclass of S of starlike functions, i.e. the class of functions $f \in \mathcal{A}$ such that $f(\mathbb{D})$ is starlike with respect to the origin. It is well-known, since the work of [1], that $f \in S^*$ if, and only if, $f \in \mathcal{A}$ and

$$\Re \left\{ \frac{zf''(z)}{f'(z)} \right\} > 0, \ z \in \mathbb{D}.$$ \hfill (1.1)

Recall that a set $E \subset \mathbb{C}$ is said to be starlike with respect to to the origin if, and only if, the linear segment joining 0 to every other point $w \in E$ lies entirely in E. By \mathcal{P} we denote the class of Carathéodory functions p which are analytic in \mathbb{D}, satisfying the condition $\Re \left\{ p(z) \right\} > 0$ for $z \in \mathbb{D}$, with $p(0) = 1$.

Suppose now that $f \in \mathcal{A}$, then f is close-to-convex if, and only if, there exists $a \in (-\pi/2, \pi/2)$, and a function $g \in S^*$ such that

$$\Re \left\{ e^{ia} \frac{zf''(z)}{g(z)} \right\} > 0, \ z \in \mathbb{D}.$$ \hfill (1.1)

This class of close-to-convex functions was introduced in [2]. Functions defined by (1.1) with $a = 0$ were considered earlier by Ozaki [3], see also Umezawa [4, 5]. Moreover, Lewandowski [6, 7] defined the class of functions $f \in \mathcal{A}$ for which the complement of $f(\mathbb{D})$ with respect to the complex plane is a linearly accessible domain in the large sense. The Lewandowski class is identical with the class of close-to-convex functions. Here, we denote this class by \mathcal{K}, and note that $S^* \subset \mathcal{K} \subset S$. The class of close-to-convex functions forms an important subclass of S. Length problems for close-to-convex functions were recently considered in [8]. A proper subset of \mathcal{K} is the class of bounded boundary rotation of f such that $f'(z) \neq 0$ in the unit disc and

$$4\pi \leq \lim_{r \to 1} \int_{0}^{2\pi} \left| \Re \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} \right| \, d\theta, \ z = re^{i\theta}.$$
Another even larger subset of S is formed by the Bazilevič functions. Bazilevič [9] introduced a class of functions $f \in A$ which are defined by the following

$$f(z) = \left\{ \frac{\beta}{1 + \alpha^2} \int_0^z \left(h(z) - i \alpha \right) \chi^{(-\alpha \beta/(1 + \alpha^2)) - 1} g^{\beta/(1 + \alpha^2)}(\zeta) d\zeta \right\}^{(1+i)\alpha/\beta},$$

where $h \in P$ and $g \in S^*$, α is any real number and $\beta > 0$. Bazilevič showed that all such functions are univalent in D. Putting $\alpha = 0$ in (1) and differentiating it, we have

$$zf'(z) = (f(z))^{1-\beta} (g(z))^\beta h(z)$$

and

$$\Re \{ h(z) \} = \Re \left\{ \frac{zf'(z)}{f^{1-\beta}(z)g^\beta(z)} \right\} > 0, \quad z \in D. \quad (1.2)$$

Thomas [10] called a function satisfying condition (1.2) a Bazilevič function of type β. For further works on Bazilevič functions we refer to [11]-[15]. It is easy to see that Bazilevič functions of type $\beta = 1$ are close-to-convex functions, univalent in D. Furthermore, the set of starlike functions is contained in the set of Bazilevič functions of type β.

Let $C(r)$ denote the curve which is image of the circle $|z| = r < 1$ under the mapping f. Let $L(r)$ be the length of $C(r)$ and $A(r)$ the area enclosed by the curve $C(r)$. Furthermore $M(r) = \max_{|z|=r} |f(z)|$. In [16], Thomas has shown the following:

Theorem 1.1. [16, Th.1] If $g \in S^*$, then

$$L(r) \leq 2 \sqrt{\pi A(r)} \left(1 + \log \frac{1 + r}{1 - r} \right) \quad \text{as} \quad r \to 1.$$

Note that in [17], Thomas considered $L(r)$ for the class of bounded close-to-convex functions and asked the following question.

Does there exist a starlike function for which

$$\liminf_{r \to 1} \frac{L(r)}{M(r) \log \frac{1}{1-r}} > 0$$

or

$$\liminf_{r \to 1} \frac{L(r)}{\sqrt{A(r)} \log \frac{1}{1-r}} > 0? \quad (1.3)$$

Applying the result of [18], we give a negative partial result of the above open problem (1.3). Some related problems were considered in [19, 20].

2 On Bazilevič functions of bounded rotation

The following lemma is due to Pommerenke [21].

Lemma 2.1. [21] Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ be analytic and univalent in D. Then we have

$$M(r) = \frac{A}{\sqrt{\pi}} \left(A(r) \log \frac{3}{1-r} \right)^{1/2} \quad \text{as} \quad r \to 1.$$

Lemma 2.2. Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ be analytic in D. Then we have

$$M(r) \leq C \left(S(\sqrt{\tau}) \log \frac{1}{1-r} \right)^{1/2} \quad \text{as} \quad r \to 1,$$

(2.1)
where Ω means the Landau's symbol and

$$S(r) = \frac{1}{2\pi} \int_0^r \int_0^{2\pi} |f'(pe^{i\theta})|^2 d\theta dp.$$

Proof. Assume that $0 < r_1 < r$, $\zeta = \sqrt[p]{pe^{i\theta}}$, $0 \leq |t| \leq r$, $0 < p < r$ and throughout C will denote an absolute constant not necessarily the same each time. We have

$$|f(z)| = \left| \int_0^r f'(t) dt \right|.$$

Now, by using the substitution

$$t = pe^{i\theta}, \ dt = e^{i\theta} dp, \ \zeta = \sqrt[p]{pe^{i\theta}},$$
this becomes

$$|f(z)| = \left| \int_0^r f'(pe^{i\theta}) pe^{i\theta} dp \right|$$

$$\leq \int_0^r |f'(pe^{i\theta})| pe^{i\theta} dp$$

$$\leq \frac{1}{2\pi} \int_0^r \int_\zeta^{e^{i\theta}} \frac{|f'(\zeta)|}{|\zeta - pe^{i\theta}|} d\zeta dp$$

$$\leq \frac{1}{2\pi} \int_0^r \int_0^{2\pi} \sqrt[p]{|f'(\zeta)|} d\phi dp + \frac{1}{2\pi} \int_0^r \int_0^{2\pi} \sqrt[p]{|f'(\zeta)|} d\phi dp$$

$$\leq C + \frac{1}{2\pi \sqrt{r_1}} \int_0^r \int_0^{2\pi} \frac{|f'(\zeta)|}{|\zeta - pe^{i\theta}|} d\phi dp.$$

Further, because

$$\left(\int_D \int |f(x,y)g(x,y)| dxdy \right)^2 \leq \left(\int_D \int |f(x,y)|^2 dxdy \right) \left(\int_D \int |g(x,y)|^2 dxdy \right),$$
we have

$$C + \frac{1}{2\pi \sqrt{r_1}} \int_0^r \int_0^{2\pi} \frac{|f'(\zeta)|}{|\zeta - pe^{i\theta}|} d\phi dp$$

$$\leq C + \frac{1}{\sqrt{r_1}} \left(\frac{1}{2\pi} \int_0^r \int_0^{2\pi} \sqrt[p]{|f'(\sqrt[p]{pe^{i\theta}})|^2} d\phi dp \right)^{1/2} \left(\frac{1}{2\pi} \int_0^r \int_0^{2\pi} \frac{\sqrt[p]{p}}{|\sqrt[p]{pe^{i\theta}} - pe^{i\theta}|^2} d\phi dp \right)^{1/2}$$

$$= C + \frac{1}{\sqrt{r_1}} \left(\frac{1}{2\pi} \int_0^r \int_0^{2\pi} \sqrt[p]{|f'(\sqrt[p]{pe^{i\theta}})|^2} d\phi dp \right)^{1/2} \left(\frac{1}{2\pi} \int_0^r \int_0^{2\pi} \frac{\sqrt[p]{p}}{p - \rho^2} d\phi dp \right)^{1/2}$$

$$\leq C + \frac{1}{\sqrt{r_1}} \left(\frac{1}{2\pi} \int_0^r \int_0^{2\pi} \sqrt[p]{|f'(\sqrt[p]{pe^{i\theta}})|^2} d\phi dp \right)^{1/2} \left(\frac{1}{2\pi \sqrt{r_1}} \int_0^r \frac{1}{1 - \rho} d\rho \right)^{1/2}$$
\[L(r) \leq C + \frac{1}{\sqrt{r_1}} \sqrt{S(\sqrt{r}) \left(\frac{1}{2\pi\sqrt{r_1}} \int_0^r \frac{1}{1-\rho} \, d\rho \right)^{1/2}} = O \left(\sqrt{S(\sqrt{r}) \sqrt{\log \frac{1}{1-r}}} \right) \] as \(r \to 1, \)

where \(0 < r_1 < r < 1 \). Because \(M(r) = \max_{|z|=r} |f(z)| \), we finally obtain (2.1).

Remark 1. If \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \) is analytic and univalent in \(\mathbb{D} \), then it is trivial that \(S(r) = A(r) \) for \(0 < r < 1 \)

so in this case (2.1) becomes

\[M(r) \leq O \left(A(\sqrt{r}) \log \frac{1}{1-r} \right)^{1/2} \text{ as } r \to 1. \]

Theorem 2.3. Let \(f \) be a Bazilevič function of type \(\beta \) and let \(f \) be a function of bounded rotation on \(0 < |z| = r < 1 \), and suppose that

\[M(r) = O \left\{ (1-r)^{-\alpha} p(r) \right\} \text{ as } r \to 1 \] (2.2)

for all \(\alpha \), where \(0 < \alpha \leq 2 \), while \(p(r) \) is monotone increasing function of \(r \) in a wider sense, and \(O \) in (2.2) cannot be replaced by \(o \). We then have

\[L(r) = O \left(A(r) \log \frac{1}{1-r} \right)^{1/2} \text{ as } r \to 1. \]

Proof. From (2.2) and applying the same method as in the proof of Theorem 1 in [22], we have

\[L(r) = \int_0^{2\pi} |zf'(z)| \, d\theta = \int_0^{2\pi} |(f(z))^{1-\beta} (g(z))^\beta h(z)| \, d\theta \]

\[\leq \int_0^r \int_0^{2\pi} |(1-\beta)f'(z)(g(z))^\beta h(z)| \, d\theta \, d\rho + \int_0^r \int_0^{2\pi} |f^1(\beta)(g(z))^\beta h'(z)| \, d\theta \, d\rho \]

\[= I_1 + I_2 + I_3, \text{ say.} \]

Then, from [18, p.338], and from Lemma 2.1, we have the following

\[I_1 \leq 2\pi(1-\beta)M(r) = O \left(A(r) \log \frac{1}{1-r} \right)^{1/2} \text{ as } r \to 1. \]

Next, we have (2.3) below from [22, p.277] and Lemma 2.1:

\[I_2 = C \int_0^r \frac{M(\rho)}{1-\rho} \, d\rho + C \]

\[\leq C \int_0^r \frac{p(\rho)}{(1-\rho)^{1+\alpha}} \, d\rho + C \]

\[\leq \frac{Cp(r)}{\alpha} (1-r)^{-\alpha} + C \]
= \mathcal{O}(M(r)) = \mathcal{O}\left(A(r) \log \frac{1}{1-r}\right)^{1/2} \text{ as } r \to 1,

where \(\delta \) is fixed \(0 < \delta < \rho \leq r < 1 \). Applying the result of [22, p.277] and the same method as in the calculation (2.3), we have

\[
I_3 = 2\pi \left\{ |1-\beta| C + |\beta| \right\} \int_0^r \frac{M(\rho)}{1-\rho} d\rho
\]

= \mathcal{O}\left(A(r) \log \frac{1}{1-r}\right)^{1/2} \text{ as } r \to 1.

This completes the proof of Theorem 2.3. \(\square \)

From Theorem 2.3, we easily have the following corollary.

Corollary 2.4. Let \(f \) be a Bazilevič function of type \(\beta \) and let \(f \) be a function of bounded rotation on \(0 < |z| = r < 1 \) and suppose that

\[
M(r) = \mathcal{O}\left\{ (1-r)^{-\alpha} \left(\log \frac{1}{1-r}\right)^{1/2} \right\} \text{ as } r \to 1.
\]

Then there is no Bazilevič function of type \(\beta \) satisfying the condition (1.3).

References

[1] Study E., Konforme Abbildung Einfachzusammenhangender Bereiche, B. C. Teubner, Leipzig und Berlin, 1913
[2] Kaplan W., Close to convex schlicht functions, Michigan Math. J., 1952, 1, 169–185
[3] Ozaki S., On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daig. A, 1935, 2, 167–188
[4] Umezawa T., On the theory of univalent functions, Tohoku Math. J., 1955, 7, 212–228
[5] Umezawa T., Multivalently close-to-convex functions, Proc. Amer. Math. Soc., 1957, 8, 869–874
[6] Lewandowski Z., Sur l'identité de certaines classes de fonctions univalentes, I, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 1958, 12, 131–146
[7] Lewandowski Z., Sur l'identité de certaines classes de fonctions univalentes, II, Ann. Univ. Mariae Curie–Skłodowska Sect. A, 1960, 14, 19–46
[8] Nunokawa M., Sokół J., On some length problems for close-to-convex functions, Studia Scient. Math. Hungarica, 2018, 55(3), 293–304
[9] Bazilevič I. E., On the case of integrability in quadratures of Loewner-Kufariev equation, Mat. Sb., 1955, 37, 47–476 (in Russian)
[10] Thomas D. K., On Bazilevič functions, Trans. Amer. Math. Soc., 1968, 132, 353–361
[11] Arif M., Raza M., Noor K. I., Malik S. N., On strongly Bazilevič functions associated with generalized Robertson functions, J. Math. Comput. Model., 2011, 54(5-6), 1608–1612
[12] Haq W. U., Arif M., Khan A., Arc length inequality for a certain class of analytic functions related to conic regions, J. Complex Analysis, 2013 (2013), Article ID 407596
[13] Noor K. I., Al-Bany S. A., On Bazilevič functions, Inter. J. Math. Math. Sci., 1987, 10(1), 79–88
[14] Noor K. I., On generalized Bazilevič functions related with conic regions, Abstract Appl. Analysis, 2012(2012), Article ID 345261
[15] Noor K. I., Yousaf K., On uniformly Bazilevič and related functions, J. Appl. Math., 2012(2012), Article ID 982321
[16] Thomas D. K., A note on starlike functions, J. London Math. Soc., 1968, 43, 703–706
[17] Thomas D. K., On starlike and close-to-convex univalent functions, J. London Math. Soc., 1967, 42, 427–435
[18] Nunokawa M., On Bazilevič and convex functions, Trans. Amer. Math. Soc., 1969, 143, 337–341
[19] Nunokawa M., Soköl J., On some length problems for analytic functions, Osaka J. Math., 2014, 51, 695–707
[20] Nunokawa M., Soköl J., On some length problems for univalent functions, Math. Meth. Appl. Sci., 2016, 39(7), 1662–1666
[21] Pommerenke Ch., Über nahezu konvexe analytische Functionen, Arch. Math., 1965, 16, 344–347
[22] Nunokawa M., On Bazilevič functions of bounded boundary rotation, J. Math. Soc. Japan, 1972, 24(2), 275–278