Metastasis of pulmonary adenocarcinoma to right occipital parafalcine meningioma
A case report and literature review

Tianhao Hu, MDa, Run Wang, MDa, Yifu Song, MDa, Juanhan Yu, MDb, Zongze Guo, MDa, Sheng Han, MD, PhDa, *

Abstract
Rationale: Tumor-to-tumor metastasis is a rare clinical phenomenon. Although meningioma is the most common intracranial recipient of cancer metastasis, only a few cases have been reported. We present a case of metastasis of lung adenocarcinoma into intracranial meningioma and review the published literature.

Patient concerns: A 70-year-old woman was admitted to our hospital for a 1-month history of headache and pain in her lower extremities.

Diagnosis: Brain and lumbar vertebral magnetic resonance imaging showed an intracranial space-occupying lesion in the right occipital region and spinal canal stenosis. Pulmonary computed tomography showed an irregular mass in the right upper lobe of the lung. The postoperative histological examination demonstrated adenocarcinoma metastasis to meningioma.

Intervention: The patient underwent right occipital craniotomy for tumor removal and lumbar spinal canal decompression.

Outcomes: There were no initial abnormal conditions after the operation. However, the patient died suddenly 7 days after surgery.

Lessons: Tumor-to-meningioma metastasis is a rare but important phenomenon. According to previous reports, it is associated with rapid onset of symptoms and a poor prognosis. Histological examination is of great importance in diagnosis. The history and process of malignant carcinoma should be closely monitored.

Abbreviations: CT = computed tomography, MRI = magnetic resonance imaging, TMM = tumor-to-meningioma metastasis, TTM = tumor-to-tumor metastasis.

Keywords: lung carcinoma, meningioma, tumor-to-tumor metastasis

1. Introduction
Metastasis from one tumor to another is known as tumor-to-tumor metastasis (TTM), which is a rare phenomenon.[1] Meningioma, which constitutes 20% of intracranial tumors, is the most common intracranial recipient of systemic metastases.[2] Breast and lung carcinomas are the most common origins of TTM.[2,3] Because there have been few reported cases of metastasis to meningioma, the clinical characteristics of such patients are still unclear. According to previous reports, patients suffering from TTM have an extremely poor prognosis. Therefore, the accumulation of such cases is clinically relevant. Here, we report a case of lung adenocarcinoma metastasizing to meningioma.

2. Case report
This study was approved by the institutional review board at The First Hospital of China Medical University. Written consent was obtained from the patient’s relatives for publication of this report.

A 70-year-old woman was admitted to our institution with headache and pain in her lower extremities for 1 month, with the left side being more severe. Brain and lumbar vertebral magnetic resonance imaging (MRI) at the local hospital suggested an intracranial space-occupying lesion and spinal canal stenosis. Recently, she had suffered from pain in her waist and both hips and experienced laborious defecation. The patient had no history of smoking or drinking. She had grade 1 hypertension but no diabetes. We performed brain contrast-enhanced MRI and lumbar vertebral (L1–S1) 3-dimensional computed tomography (3D-CT). Brain MRI showed a well-circumscribed mass (4.5 ×
3.6 × 4.7 cm) that had isointense signals on T1-weighted images and isointense signals with heterogeneity on T2-weighted image in the right occipital parafalcine region (Fig. 1A). Lumbar vertebral 3D-CT showed L3–S1 intervertebral disc bulge, ligamentum flavum thickening, and spinal canal stenosis. Lumbar CT showed an irregular mass in the upper lobe of the right lung (3.6 × 3.3 cm), bone destruction in the bilateral ribs, inflammation in the lower field of both lungs, and pleural effusion, which suggested a malignant lesion derived from the lung (Fig. 1B). Comprehensive analysis of pulmonary function showed mixed ventilation dysfunction, small airway dysfunction, and a ventilation reserve of 89%. Following the advice of a respiratory physician, the patient underwent atomization inhalation treatment with ipratropium bromide aerosol, budesonide suspension, and ambarroxol hydrochloride for inhalation during the perioperative period. According to the imaging examination, the preoperative diagnosis of the patient was lung cancer, lumbar spinal stenosis, and right occipital meningioma or metastatic tumor. Although lung biopsy was recommended, the patient refused.

Subsequently, the patient underwent right occipital craniotomy for tumor removal (Simpson grade II resection) and lumbar spinal canal decompression. Postoperative brain CT revealed normal postoperative changes, and the tumor was totally removed (Fig. 2A). There were no initial abnormal conditions after the operation. However, the patient died suddenly of a cardiopulmonary accident 7 days after surgery. Due to the rapid deterioration of the patient, treatment for the lung lesion was not performed.

Immunohistochemically, the brain tumor stained positive for epithelial membrane antigen (EMA), progesterone receptor (PR), vimentin, and E-cadherin (Fig. 2B) and negative for glial fibrillary acidic protein (GFAP), S-100, p53, and oligodendrocyte transcription factor 2 (Olig2), which was consistent with WHO grade I meningioma. The focus within the meningioma stained positive for cytokeratin 7 (CK7) and thyroid transcription factor 1 (TTF-1; Fig. 2B) and negative for CK5/6, p63, CD56, and synaptophysin. TTF-1 and CK7 are markers expressed in adenocarcinoma of lung. Histologically, the brain tumor was psammomatous meningioma characterized by numerous psammoma bodies (Fig. 2C, yellow arrow). Furthermore, there were hyperchromatic nuclei and prominent nucleoli cancer cells (Fig. 2C, red arrow) among meningioma cells (Fig. 2C, white arrow), which was consistent with metastatic carcinoma. The adenocarcinoma cells showed dense papillary hyperplasia with nuclear atypia (Fig. 2C, red arrow). Therefore, histopathological examination demonstrated adenocarcinoma metastasis to meningioma (Fig. 2C). Immunohistochemical and histopathological examinations were performed and reported by the Department of Pathology at China Medical University.

3. Discussion

TTM is a rare and well-recognized phenomenon.[4,5] The most common malignant recipient tumor is renal cell carcinoma.[1,2] Meningiomas are the most common benign tumors to harbor systemic metastases,[6] but tumor-to-meningioma metastasis (TMM) has rarely been reported since the first case reported by Fried in 1930.[7–9] To the best of our knowledge, there are fewer than 30 reports of lung carcinoma metastasis to meningioma.[3–5,7,10–34] The epidemiology of TMM is still unknown. From January 2011 to January 2019, there were 2922 consecutive patients diagnosed with meningioma and 540 consecutive patients diagnosed with intracranial metastatic tumor at the Department of Neurosurgery at The First Hospital of China Medical University. There was only 1 TMM patient, accounting for 0.03% of meningioma and 0.19% of intracranial metastasis cases.

For diagnosis of TTM, Campbell et al proposed the following criteria: at least 2 primary tumors must exist, the metastatic focus must show established growth inside the host tumor and not be of contiguous growth, and the host tumor must be a true neoplasm and cannot be a lymph node involved in leukemia or lymphoma.[1,33] Our case fulfilled the inclusion criteria for TTM established by Campbell et al. Previous studies presented different hypotheses related to the reasons why meningioma is the
most common intracranial host in TTM. Meningiomas can provide an accessible and favorable environment for growth to receive metastases\(^ {19} \) because they are highly vascular tumors\(^ {36} \) and exhibit slow growth and an indolent nature.\(^ {19,37} \) Furthermore, their high collagen and lipid content may provide a “fertile soil” for the seeding of malignant cells.\(^ {6,19,20,38} \) Some researchers have suggested that cell–cell adhesion molecules, such as E-cadherin,\(^ {39,40} \) may play a role in TMM.\(^ {2,26,38,39} \) E-cadherin expression is downregulated when carcinoma cells escape from the primary tumor.\(^ {41} \) Metastatic cells resume E-cadherin expression upon seeding their destination.\(^ {14} \) It has been demonstrated that meningiomas highly express E-cadherin.\(^ {40,42} \) Moreover, meningiomas harboring metastases are more likely to express E-cadherin than meningiomas in general.\(^ {6} \) Therefore, the above evidence reveals that E-cadherin may play a role in TMM. Consistent with previous reports, in the present case, the tumor also exhibited high expression of E-cadherin, as demonstrated by immunohistochemistry (Fig. 2B). However, the relationship and underlying mechanism between E-cadherin and TMM requires further research. Psammoma bodies are concentric whorl calcification structures that exist in 45% of meningiomas.\(^ {43} \) The possible protective role of psammoma bodies in the spread of TMM has been discussed in previous reports,\(^ {11,22} \) and the meningioma in our case was rich in psammoma bodies.

We summarize the published lung carcinoma TMM cases in Table 1 and immunohistochemical results in Table 2. The mean age of patients was 65.03 years (range, 39–91 years), and there were 15 women and 14 men among the published cases (female: male = 1.07:1). According to the available immunohistochemical results of published cases, the meningioma components were often positive for EMA, PR, and vimentin (except for 1 case of secretory meningioma), and the pulmonary carcinoma components were frequently positive for TTF-1 and CK7. All the cases were supratentorial lesions. Except for 1 case of atypical meningioma, the others were benign meningiomas. The most common type of lung carcinoma was adenocarcinoma (69.0%). Most of them were discovered by chance at surgery or autopsy and had the feature of a previously existing malignant tumor. However, cases of TMM of occult lung malignant tumors have
Table 1

Summary of cases of lung carcinoma metastasis to intracranial meningioma.

References	Age	Sex	Symptom	Size of meningioma (cm)	Psammoma bodies	Type of meningioma	Location of meningioma	Type of lung carcinoma	Two tumors discovered concurrently	Surgery	Postoperative therapy	Survival time
Fried et al., 1960	57	F	Pain in the lumbar region and left leg, inability to walk	2	+	Meningothelial	Right frontal lobe	Adenocarcinoma	No	No	None	2 mo
Osterberg et al., 1967	71	M	Generalized weakness and loss of appetite, loss of weight	5 × 3 × 2.5	+	NA	Left frontoparietal	Paranglioma	Yes	None	None	4 mo
Best et al., 1963	48	M	Headache, nausea, loss of appetite	3 × 2 × 2	+	Meningothelial	Right temporal lobe	Squamous cell carcinoma	Yes	Cranectomy for meningioma with metastatic carcinoma	Radiotherapy	70 d
Wilson et al., 1966	39	M	A single generalized seizure 1 mo earlier	6 × 6 × 5	+	Meningothelial	Bilateral surrounding	Adenocarcinoma	Yes	Cranectomy for meningioma with metastatic carcinoma	None	NA
Wolintz and Matri, 1970	64	M	NA	NA	+	Psammomatous	Sphenoid ridge	Adenocarcinoma	NA	NA	NA	NA
Gyor et al., 1976	69	F	Fainting and dizziness	5 × 3 × 2	+	Transitional	Parasagittal	Carcinoma	No	No	None	6 d
Weems and Gardner, 1977	68	F	Hemiparesis	2 × 2 × 1	+	Meningothelial	Sphenoid wing	Adenocarcinoma	No	No	None	40 d
Hope and Symon, 1979	61	F	Tiredness and lethargy for 3 weeks, diplopia for 10 d	NA	+	Meningothelial	Sphenoid ridge	Adenocarcinoma	Yes	Cranectomy for meningioma with metastatic carcinoma	None	30 h
Chambers et al., 1980	72	M	Shortness of breath and hemoptysis	2.5	5	Meningothelial	Left frontoparietal	Small cell carcinoma	No	Died	None	NA
Lodris and Savianto, 1981	59	M	Headache and right subarachnoidic pain on inspiration for 3 weeks	NA	+	Fibrous	Right parietal	Adenocarcinoma	No	No	None	2 mo
Smith et al., 1981	65	F	Increasing shortness of breath, hemiparesis, dyspnea, and fatigue of 4 weeks	2 × 2 × 1.5	5	Fibrous	Right frontal lobe	Malignant carcinoid	No	None	None	16 d
Schmidt, 1984	60	M	Episodic headache and occasional grand-mal seizures	NA	5	Angiomatous	Left frontoparietal	Paranglioma	Yes	None	None	2 mo
Pamphlett, 1984	79	M	Increasing cough and shortness of breath for 1 mo, confusion for 1 week	3 × 2.5 × 2.5	5	Angiomatous	Left fronto temporal	Adenocarcinoma	Yes	None	None	2 weeks
Conran et al., 1986	69	M	Progressive right hemiparesis	2.7 × 2.3 × 1.3	5	Mixed	Left frontoparietal	Paranglioma	No	Pneumonectomy for lung carcinoma (6 mo before), cranectomy for meningioma with metastatic carcinoma	None	NA
Arnold et al., 1995	71	F	Progressive visual loss	2.3	+	Meningothelial	Optic nerve sheath	Adenocarcinoma	No	Pneumonectomy for lung carcinoma (1 yr before)	None	9 mo
Gardiman et al., 1996	62	M	NA	NA	6	Transitional	None	None	NA	None	None	NA
Bhargava et al., 1999	52	M	Recurrent left-sided seizures accompanied by progressive weakness in the left extremities	5 × 3.5	5	Transitional	Right paranglioma	Adenocarcinoma	Yes	Cranectomy for meningioma with metastatic carcinoma	Radiotherapy	3 mo
Cserni et al., 2002	48	F	Severe headache with 2 weeks onset	2	5	Transitional	Right temporal lobe	Adenocarcinoma	No	Labectomy for lung carcinoma (4 mo ago), cranectomy for meningioma with metastatic carcinoma	Radiotherapy	NA
Takei and Powell, 2009	69	F	Headache and altered mental status	3.7	5	Microcystic	Left temporal lobe	Adenocarcinoma	No	Chemotherapy, radiotherapy	NA	
Kim et al., 2013	71	F	Left arm weakness for 3 weeks	NA	+	Fibrous	Right frontal lobe	Adenocarcinoma	No	Chemotherapy	NA	

(continued)
References	Age	Sex	Symptom	Size of meningioma (cm)	Psammoma bodies	Type of meningioma	Location of meningioma	Type of lung carcinoma	Two tumors discovered concurrently	Surgery	Postoperative therapy	Survival time
Glass et al. [36] 2013	57	M	Mental status change, ataxia and 20 pound weight loss	5.1	--	Meningothelial	--	Adenosquamous carcinoma	Yes	Craniotomy for meningioma with metastatic carcinoma	Radiotherapy	NA
Chatani et al. [27] 2014	74	F	Amnesia and abnormal gait	3	--	Meningothelial	Falcotentorial	Adenocarcinoma	No	Craniotomy for meningioma with metastatic carcinoma, lobectomy for lung carcinoma	None	NA
Talukdar et al. [28] 2014	65	M	Focal seizure involving right side of body for 3 h	2.9 × 1.8 × 1.7	+ NA	NA	Left parietal parasagittal	Adenosquamous carcinoma	Yes	Craniotomy for meningioma with metastatic carcinoma	None	NA
Hampel et al. [29] 2015	69	F	Loss of weight and fatigue	NA	+ Meningothelial	Sphenoid wing	Adenosquamous carcinoma	Yes	Craniotomy for meningioma with metastatic carcinoma	Chemotherapy, radiotherapy	NA	
Ranik et al. [28] 2015	77	F	Rigid deterioration of left-sided hemiparesis, headache and nausea	3	--	Angiomatous	Right parietal parasagittal	Adenosquamous carcinoma	No	Craniotomy for meningioma with metastatic carcinoma	None	NA
Nadeem et al. [31] 2016	68	F	Progressively worsening right-sided hemiparesis and multiple episodes of adult onset epilepsy	NA	--	NA	Left frontal lobe	Adenosquamous carcinoma	No	Craniotomy for meningioma with metastatic carcinoma	Chemotherapy, radiotherapy	6 mo
Schall et al. [32] 2018	61	M	Worsening dysmetria, unintentional weight loss and poor exercise tolerance	NA	--	Meningothelial	Right parietal parasagittal	Adenosquamous carcinoma	Craniotomy for meningioma with metastatic carcinoma	Chemotherapy, radiotherapy	NA	
Nakaya et al. [33] 2019	91	F	Right limbs weakness and gait disturbance	3	--	Meningothelial	Left frontal lobe	Adenosquamous carcinoma	No	Hysterectomy for metastatic lung carcinoma (2 mo before), craniotomy for meningioma with metastatic carcinoma	None	NA
Danisman Specialist et al. [34] 2019	70	M	Oligemia	2.5	--	Atypical	Left frontal lobe	Small cell carcinoma	NA	Craniotomy for meningioma with metastatic carcinoma	None	NA
Our case	70	F	Headache and lower extremities pain	4.5 × 3.6 × 4.7	+ Psammomatous	Right occipital parafalcine	Adenosquamous carcinoma	Yes	Craniotomy for meningioma with metastatic carcinoma	None	7 d	

F = female, M = male, NA = nonassessed.
Table 2

No.	Reference	Histopathology	Lung carcinoma	Immunohistochemistry	Meningioma	Immunohistochemistry
1	Cserni et al, [24] 2002	Adenocarcinoma	CK20, Vimentin, ER	EMA, CEA, CK7, CK, PR	NA	NA
2	Takei and Powell, [25] 2009	Adenocarcinoma	NA	EMA, Ki-67:1%	Inhibin-alpha, CK	NA
3	Kim et al, [26] 2013	Adenocarcinoma	NA	EMA, Vimentin	NA	NA
4	Glass et al, [3] 2013	Adenosquamous carcinoma	NA	CK, GFAP, S-100	Adenocarcinoma	CK7, TTF-1
5	Chatani et al, [27] 2014	Adenocarcinoma	NA	EMA, Vimentin, Ki-67:3.9%	E-cadherin	NA
6	Talukdar et al, [29] 2014	Adenocarcinoma	NA	NA	P63	NA
7	Hamperl et al, [28] 2015	Adenocarcinoma	NA	Vimentin	NA	NA
8	Ravnik et al, [30] 2015	Angiomatous	NA	NA	NA	NA
9	Nadeem et al, [31] 2016	Adenocarcinoma	EMA, Vimentin	NA	CK	NA
10	Sohail et al, [34] 2018	Adenocarcinoma	NA	NA	TTF-1	NA
11	Nakaya et al, [32] 2019	Adenocarcinoma	E-cadherin	NA	CK7, Surfactant protein A, TTF-1, E-cadherin	NA
12	Our case	Psammomatous	GFAP, S-100, Vimentin	EMA, PR, Vimentin, E-cadherin	NA	NA

CEA = carcinoembryonic antigen, CK = cytokeratin, EMA = epithelial membrane antigen, ER = estrogen receptor, GFAP = glial fibrillary acidic protein, NA = nonassessed, Olig2 = oligodendrocyte transcription factor 2, PR = progesterone receptor, TTF-1 = thyroid transcription factor 1.
References

[1] Campbell L, Gilbert E, Chamberlain C, et al. Metastases of cancer to the central nervous system. Cancer 1968;22:635–43.
[2] Sayegh ET, Burch EA, Henderson GA, et al. Tumor-to-tumor metastasis: breast carcinoma to meningioma. J Clin Neurosci 2015; 22:268–74.
[3] Glass R, Hukku S, Gershenson B, et al. Metastasis of lung adenocarcinoma to meningioma: case report with literature review. Int J Clin Exp Pathol 2013;6:2625–30.
[4] Pamphlett R. Carcinoma metastasis to meningioma. J Neurol Neurosurg Psychiatry 1984;47:561–3.
[5] Bhargava P, McGrail K, Mane H, et al. Lung carcinoma presenting as metastasis to intracranial meningioma: case report and review of the literature. Am J Clin Oncol 1999;22:199–202.
[6] Aghi M, Kiehl TR, Brismann JL. Breast adenocarcinoma metastatic to epidual cervical spine meningioma: case report and review of the literature. J Neurooncol 2005;75:149–55.
[7] Fried B. Metastatic inoculation of a meningioma by cancer cells from a bronchogenic carcinoma. Am J Pathol 1930;6:47–52.
[8] Erdogan H, Aydin M, Tasdemiroglu E. Tumor-to-tumor metastasis: a report of a case. Neurosurg Clin N Am 2011;22:1
[9] Neville IS, Solla DF, Oliveira AM, et al. Suspected tumor-to-meningioma metastasis: adenocarcinoma of lung metastatic to meningioma. J Postgrad Med 2014;60:403–5.
[10] Best P. Metastatic carcinoma in a meningioma: report of a case. J Neurosurg 1963;20:892.
[11] Osterberg D. Metastases of carcinoma to meningioma. J Neurosurg 1957;14:337–43.
[12] Wolintz A, Matri A. Metastasis of carcinoma of lung to sphenoid ridge meningioma. J Neurol Neurosurg Psychiatry 1981;47:1872.
[13] Kim KH, Hong EK, Lee SH, et al. Non small cell carcinoma metastasis to meningioma. J Korean Neurosurg Soc 2013;53:43–5.
[14] Chambers P, Davis R, Blanding MJ, et al. Metastases to primary operated meningiomas. J Neurol 2008;255:891–5.
[15] Caroli E, Salvati M, Giangaspero F, et al. Intrameningioma metastasis as a clinical phenomenon. Virchows Arch 1984;405:75–8.
[16] Figarella-Branger D, Pellissier J, Bouillot P, et al. Expression of neural cell-adhesion molecule isoforms and epithelial cadherin adhesion molecules in 47 human meningiomas: correlation with clinical and morphological data. Mod Pathol 1994;7:4028–37.
[17] Das DK. Psammoma body: a product of dystrophic calcification or of a biologically active process that aims at limiting the growth and spread of tumor? Diagn Cytopathol 2009;37:354–41.
[18] Villano JL, Durbin EB, Normandeau C, et al. Epidemiology of metastatic brain tumors. Neurosurg Clin N Am 2011;22:1
[19] Fox BD, Cheung VJ, Patel AJ, et al. Epidemiology of metastatic brain tumors. Neurosurg Clin N Am 2011;22:1.
[20] Stelzer KJ. Epidemiology and prognosis of brain metastases. Surg Neurol Int 2013;4:5192–202.
[21] Kim KH, Hong EK, Lee SH, et al. Non small cell carcinoma metastasis to meningioma. J Korean Neurosurg Soc 2013;53:43–5.