Evidence for fungal and chemodenitrification based N$_2$O flux from nitrogen impacted coastal sediments

Scott D. Wankel1, Wiebke Ziebis2, Carolyn Buchwald1, Chawalit Charoenpong1, Dirk de Beer3, Jane Dentinger2, Zhenjiang Xu4 & Karsten Zengler4

Although increasing atmospheric nitrous oxide (N$_2$O) has been linked to nitrogen loading, predicting emissions remains difficult, in part due to challenges in disentangling diverse N$_2$O production pathways. As coastal ecosystems are especially impacted by elevated nitrogen, we investigated controls on N$_2$O production mechanisms in intertidal sediments using novel isotopic approaches and microsensors in flow-through incubations. Here we show that during incubations with elevated nitrate, increased N$_2$O fluxes are not mediated by direct bacterial activity, but instead are largely catalysed by fungal denitrification and/or abiotic reactions (e.g., chemodenitrification). Results of these incubations shed new light on nitrogen cycling complexity and possible factors underlying variability of N$_2$O fluxes, driven in part by fungal respiration and/or iron redox cycling. As both processes exhibit N$_2$O yields typically far greater than direct bacterial production, these results emphasize their possibly substantial, yet widely overlooked, role in N$_2$O fluxes, especially in redox-dynamic sediments of coastal ecosystems.
Nitrogen (N) loading from anthropogenic activities profoundly impacts ecosystems worldwide, with loading to coastal zones among the largest challenges facing humanity, as nearly half the global population lives within 100 km of the coast. Coastal sediments are known hotspots of biogeochemical transformations and recognized as effective agents for removing excess nitrogen12. However, biological removal of reactive nitrogen may also occur at the expense of increased production of nitrous oxide (N\textsubscript{2}O), a potent climatically active trace gas. Despite being the largest ozone depleting substance currently emitted to the atmosphere3, N\textsubscript{2}O remains unregulated by the international community and large uncertainties exist concerning N\textsubscript{2}O budgets (>100%), particularly for heterogeneous environments such as coasts4,5. Redox-dynamic estuarine and coastal sediments routinely experience high N loading and low dissolved oxygen (O\textsubscript{2}), conditions that are strongly linked to elevated N\textsubscript{2}O and underlie their estimated 10% contribution to the global N\textsubscript{2}O flux1,6–9. Thus, understanding their role in both nitrogen removal and N\textsubscript{2}O production is important for improving predictions of long-term impacts of human activity across globally relevant scales.

Many studies have focused on the relative contribution of bacterial denitrification (bDNF) or nitrification (oxidation of ammonia (NH\textsubscript{3}) to nitrite (NO\textsubscript{2}) or ‘AMO’), as controlling processes underlying N\textsubscript{2}O emissions (Fig. 1). While yields of N\textsubscript{2}O from both AMO and bDNF are low (<1% in terms of total moles of N converted), their magnitude and ubiquity across ecosystems translates into major atmospheric fluxes. Increasingly, however, the potential for other N\textsubscript{2}O production processes has become apparent, including production of N\textsubscript{2}O by fungi and/or abiotic reactions coupled to redox cycling of metals such as Fe(II)10–12. In particular, the organic-rich and redox-dynamic regimes of estuarine and coastal sediments may promote both fungal activity and rapid redox cycling of iron. To examine controls and mechanisms of N\textsubscript{2}O production in coastal sediments (Fig. 1), we incubated natural sediment cores under flow-through conditions, manipulating both dissolved O\textsubscript{2} and nitrate in the overlying water (using conditions typifying anthropogenically impacted ecosystems), while monitoring both porewater N\textsubscript{2}O profiles and stable isotopic fluxes of ammonium, nitrate, nitrite and N\textsubscript{2}O. Given the complexity of processes involved, we also leveraged the use of a less-traditional isotope system (17O,15N) that provides novel ‘isotope space’ for further disentangling operative N\textsubscript{2}O cycling mechanisms.

The steady-state emission flux of N\textsubscript{2}O (F\textsubscript{N\textsubscript{2}O}) is governed by six possible production fluxes (F) (Fig. 1; bacterial denitrification (bDNF), fungal denitrification (fDNF), chemodenitrification (cDNF; specifically the abiotic reduction of NO\textsubscript{2} to N\textsubscript{2}O by Fe(II)), ammonia oxidation by bacteria (bAMO) or archaea (aAMO) and nitrite-denitrification (nDNF)), as well as respiratory consumption by denitrifying bacteria (N\textsubscript{2}ORED) such that:

\[
F_{N_2O} = F_{bDNF} + F_{fDNF} + F_{cDNF} + F_{bAMO} + F_{aAMO} + F_{nDNF} - F_{N_2ORED}
\]

Stable isotopes of N\textsubscript{2}O have been widely used for studying its production and consumption, including both oxygen (18O/16O) and bulk nitrogen (15N/14N) (\(\delta = ((R_{sample}/R_{standard}) - 1) \times 1,000\)) and R = 15N/14N or 18O/16O13–19. In addition, the unique intra-molecular distribution of 15N within N\textsubscript{2}O molecules has emerged as a powerful tool for constraining N\textsubscript{2}O cycling, as differences in 15N content between the central ‘\textalpha’ and outer ‘\textbeta’ atoms of the N\textsubscript{2}O molecule (‘site preference’ or SP\textsubscript{N\textsubscript{2}O}, where SP\textsubscript{N\textsubscript{2}O} = \(\delta^{15}N^{\textbeta} - \delta^{15}N^{\textalpha}\)) have been shown to reflect formation pathways13,14,16,18. Numerous studies have measured the steady-state \(\delta^{15}N\) offset between precursor molecules (NO\textsubscript{3}, NO\textsubscript{2} and NH\textsubscript{4}+) and N\textsubscript{2}O (\(\Delta\delta^{15}N = \delta^{15}N_{\text{source}} - \delta^{15}N_{\text{N\textsubscript{2}O bulk}}\)), as well as SP\textsubscript{N\textsubscript{2}O} values towards characterizing signature compositions for the processes in equation 1.

Figure 1 | Schematic representation of N\textsubscript{2}O production pathways considered in this study. N\textsubscript{2}O can form during decomposition/reaction of intermediate hydroxylamine (NH\textsubscript{2}OH) produced during ammonia oxidation by bacteria (bAMO) or archaea (aAMO). Some of these nitrifying organisms may also produce N\textsubscript{2}O during reduction of product nitrite (NO\textsubscript{2}−), known as nitrifier-denitrification (nDNF). N\textsubscript{2}O may also be produced during reduction of nitrate and/or nitrite by denitrification catalysed by bacteria (bDNF), fungi (fDNF) and/or by chemical reaction with Fe(II) or ‘chemodenitrification’ (cDNF). Finally, N\textsubscript{2}O can also be reductively consumed by denitrifying bacteria (N\textsubscript{2}ORED), N\textsubscript{2}O produced having low or negative site preference values (~10% to 0%) are indicated in blue, while those with high site preference values (>20%) are indicated in green. Enzymes are indicated as ammonia monoxygenase (AMO), hydroxylamine oxidoreductase in bacterial nitrification (HAO), nitrate reductase (NAR), nitrite reductase (NIR), bacterial nitric oxide reductase (cNOR), nitrous oxide reductase (NOS) and fungal nitric oxide reductase (p450NOR). The detailed biochemical pathway of nitrite production by archael ammonia oxidation remains unclear.
Specifically, we find that the isotopic composition of increased N₂O fluxes resulting from elevated nitrate loading in our incubations requires substantial contribution by processes not regularly considered in coastal ecosystems, namely fungal and/or chemodenitrification. We suggest that variations in the contribution of these processes to N₂O fluxes from coastal and other ecosystems may help to explain the notorious variability that is frequently encountered in studies of N₂O dynamics.

Results

Microsensor and mass flux perspectives on N₂O. Microsensor profiles revealed shallow O₂ penetration (~2–3 mm) typical of high-respiration rates occurring in organic-rich sediments, with occasional subsurface peaks in O₂ reflecting bioturbation/bioirrigation (Fig. 2a). N₂O profiles revealed striking vertical and lateral heterogeneity in location, magnitude, and distribution of N₂O, reflecting the complexity of N₂O dynamics (Fig. 2b–f). Elevated N₂O was often observed near the sediment-water interface, suggesting oxidative production by AMO. However, zones of extremely high N₂O (>3 μM, not shown) were also observed much deeper, highlighting its spatial heterogeneity. In some cases, subsurface N₂O appeared connected with the overlying water, co-occurring near subsurface O₂ peaks and reflecting oxidative N₂O production despite reducing surroundings. In others, elevated N₂O coincided with anoxic conditions, suggesting N₂O production by reductive pathways (Fig. 2b). Several cores had active burrows extending into the sediment, likely contributing to this heterogeneity. In part, these observations extend the view of N₂O dynamics to slightly deeper sediment layers, in contrast to previous observations mostly focusing on dynamics in the upper 1 cm (refs 23,24). This remarkable heterogeneity, often even laterally within a single core, hinders straightforward N₂O flux calculations, yet emphasizes the utility of the whole core incubation stable isotope approach, which integrates this natural heterogeneity and provides a complementary and mechanistic perspective on underlying N₂O dynamics.

In contrast to the oxidative N₂O production captured by the micro-profiles at the sediment-water interface, mass fluxes suggest an important role for reductive N₂O production. Nitrate levels in the overlying water were closely related to N₂O fluxes from the sediment, with net efflux of N₂O from the sediment in all cases ranging from 1.4 up to 84.2 μmoles m⁻² d⁻¹ (Table 1; Supplementary Fig. 1; Supplementary Table 2). While fluxes of N₂O under low nitrate conditions averaged 17.8 μmoles m⁻² d⁻¹ (Table 1), decreasing dissolved O₂ saturation to ~30% reduced N₂O fluxes (5.9 μmoles m⁻² d⁻¹). In contrast, addition of NO₃⁻ to the overlying water significantly increased N₂O (as well as NO₂⁻) fluxes (Table 1) to the water column, consistent with other studies linking elevated coastal NO₃⁻ loading with efflux of N₂O to the atmosphere.6,8,25 Corresponding NO₃⁻ consumption also increased significantly, reflecting diffusion-limitation of organic matter respiration (Table 1; Supplementary Fig. 1; Supplementary Table 1).

Multi-isotope analysis of underlying N₂O cycling processes. The stable isotopic composition of N₂O and other nitrogen pools (Table 2; Supplementary Table 2) provides additional insight into specific biogeochemical mechanisms regulating sedimentary N₂O fluxes. Average SP_N₂O for low-nitrate (LN) and low-O₂/low-nitrate (LOLN) experiments were not significantly different (7.2 ± 3.4 and 6.2 ± 3.2‰, respectively) and, together with small differences between effluent NO₃⁻ and N₂O δ¹⁵N (Δ¹⁵N) indicate that N₂O fluxes were largely linked to bacterial denitrification (having low SP_N₂O) that was limited by diffusive supply of NO₃⁻ (yielding low Δ¹⁵N) (Fig. 3), a common characteristic of organic-rich sediments.26 Notably, SP_N₂O values were higher than values expected from bDNF alone, however, reflecting contribution by additional N₂O cycling processes.

In contrast, the increased N₂O fluxes under elevated NO₃⁻ exhibited higher SP_N₂O relative to low nitrate experiments, averaging 16.2 ± 5.0 and 12.9 ± 2.5‰ for the high-nitrate (HN) and low-O₂/high nitrate (LOHN), respectively (Fig. 3, Table 2), and indicating a shift in N₂O dynamics. This increase in SP_N₂O, however, was not accompanied by an increase in δ¹⁵N of the N₂O pool (no apparent decrease in Δ¹⁵N), as would be expected by increased N₂O reduction.21,27 This observation implicates the stimulation of processes that produce N₂O with high SP_N₂O—namely, b/aAMO, fDNF and/or cDNF. Below, we use the triple oxygen isotopes of co-existing NO₃⁻, NO₂⁻ and N₂O to further examine these candidate processes responding to elevated NO₃⁻ loading.
Triple oxygen isotopes as a tool for constraining nitrogen cycling. Our multi-pool 17O measurements enable disentangling of processes that are otherwise overlapping (in SP$_{N_{2}O}$ values, for example), providing a complementary perspective to the N isotope analyses. First, these analyses revealed that nitrification played a relatively small role in NO$_3^-$ production. As noted, amended nitrate had a high Δ^{17}ON$_2$O value (+18.5‰), which when combined with pre-existing nitrate in the supply seawater (Δ^{17}ON$_{N_{2}O}$ = 0‰) yielded a Δ^{17}ON$_{N_{3}O}$ of ~ +15.3‰ (Table 2). As changes to this Δ^{17}ON$_{N_{3}O}$ value occur only by production of new nitrate during nitrification28,29, the small differences in Δ^{17}ON$_{N_{3}O}$ between the inflow and effluent (at most 0.8‰; Table 2), reflect small relative contributions of newly produced NO$_3^-$ by nitrification.

Comparatively, Δ^{17}ON$_{N_{2}O}$ values averaged +6.5 and +5.4‰ for high nitrate (HN) and low O$_2$/high nitrate (LHN), respectively. These are lower than the corresponding Δ^{17}ON$_{N_{3}O}$ (Table 2), yet unequivocally reflect transfer of NO$_3^-$ derived O atoms into the N$_2$O flux. Whether the lower Δ^{17}ON$_{N_{2}O}$ (relative to Δ^{17}ON$_{N_{3}O}$) stems from production of N$_2$O by processes having a precursor other than NO$_3^-$ (for example, bAMO/aAMO) or from the equilibration of intermediate NO$_2^-$ with water (also causing Δ^{17}O to approach 0‰) cannot be ascertained by comparing Δ^{17}ON$_{N_{2}O}$ and Δ^{17}ON$_{N_{3}O}$ (equation 2). However, Δ^{17}ON$_{N_{2}O}$ values were also typically lower than steady-state Δ^{17}ON$_{N_{3}O}$, averaging +8.5 and +9.2‰, respectively (Table 2). While non-zero Δ^{17}ON$_{N_{2}O}$ values reflect reduction of NO$_3^-$ to NO$_2^-$ (since Δ^{17}O is conserved), Δ^{17}ON$_{N_{2}O}$ values lower than steady-state Δ^{17}ON$_{N_{3}O}$ values must reflect NO$_2^-$ production by ammonia oxidation (bAMO or aAMO) and/or partial equilibration of NO$_3^-$ with water. Regardless, comparison of steady-state Δ^{17}ON$_{N_{2}O}$ with Δ^{17}ON$_{N_{2}O}$ (equation 5) indicates an average of 70–80% of the N$_2$O derived from a NO$_3^-$ precursor under high NO$_3^-$ incubations and thus indicates that the increased production occurred via reductive pathways (Fig. 4) and not by a/bAMO. Together with the elevated SP$_{N_{2}O}$ and only small changes in Δ^{15}N, this suggests fungal and/or chemodenitrification as possible contributors (Fig. 4). Both IDNF and cDNF are dependent on supply of NO$_3^-$ and typically exhibit yields far greater than bacterial N$_2$O production (that is, the relative amount of N$_2$O emitted per mole of NO$_3^-$ or NO$_2^-$ reduced or NH$_3$ oxidized). Thus, only small levels of these processes would be required to contribute relatively large amounts of N$_2$O—setting the stage for a potentially important role for these biogeochemical processes in regulating N$_2$O fluxes wherever they occur.

Discussion

Diversity and abundance of fungi in oxygen-depleted coastal sediments is generally thought to represent a small fraction of their soil-hosted counterparts$^{30-32}$. Nevertheless, their ecological role remains unclear—with recent studies challenging the perspective that fungi are only ecologically significant under aerobic conditions$^{31-33}$. Adapted for organic-rich environments often depleted in O$_2$, many fungi have a range of cellular adaptations to life under suboxic conditions$^{32,34-36}$, including the ability to couple denitrification37 directly to mitochondrial
transformation—a metabolic capacity that has been documented in a variety of environments including coastal sediments. Given this respiratory flexibility, fDNF is poised to be especially important under hypoxic conditions and wetland environments, where access to O\textsubscript{2} in overlying water is juxtaposed with anoxic, carbon-rich conditions. The most characteristic feature of the fungal-denitrifying system is a P450 cytochrome operating as a nitric oxide reductase (P450nor) giving rise to the characteristic high SP of \sim 35–37‰ (refs 42,43), the biochemical nature of which was recently interrogated in the purified enzyme. Although assessment of fungal metabolic activity was beyond our scope, sequencing of the fungal ITS region revealed the presence of fungi across all incubations and study sites (Supplementary Fig. 3), indicating diverse sequences and hence important contributions to coastal N\textsubscript{2}O release. Given the importance of fungi in contributing to N\textsubscript{2}O production, this high yield mean that even small levels of fDNF could have disproportionately large impacts on N\textsubscript{2}O release.

Although biological N\textsubscript{2}O production has received much attention, abiotic production of N\textsubscript{2}O is also widely documented, typically via reactions involving intermediates such as NH\textsubscript{4}OH and NO\textsubscript{3}—though its environmental role remains unclear (Zhu-Barker et al.11, and references therein). Specifically, reduced iron (Fe(II)), especially mineral or surface-bound Fe(II), is an effective catalyst of NO\textsubscript{2}− reduction under a range of conditions, and the presence of mineral surfaces and elevated levels of Fe(II) has also been shown to increase N\textsubscript{2}O production. While their overall role in the reductive elimination of reactive N may be well-recognized across a range of terrestrial ecosystems, while their importance in contributing to N\textsubscript{2}O production appears to be physiologically widespread among fungi. Indeed, the production of reactive Fe(II) as the result of direct or indirect transformations, taken together our results point to an unexplored role of fungi in coastal sedimentary N cycling. In particular, as fungi lack N\textsubscript{2}O reductase38, yields from fDNF are also typically 1–2 orders of magnitude greater than for bDNF (generally <0.1%) and N\textsubscript{2}O production appears to be small relative to that of bacterial denitrification, these high yields mean that even small levels of fDNF could have disproportionately large impacts on N\textsubscript{2}O release, serving as an important, yet under-recognized source to the atmosphere.

Although biological N\textsubscript{2}O production has received much attention, abiotic production of N\textsubscript{2}O is also widely documented, typically via reactions involving intermediates such as NH\textsubscript{4}OH and NO\textsubscript{3}—though its environmental role remains unclear (Zhu-Barker et al.11, and references therein). Specifically, reduced iron (Fe(II)), especially mineral or surface-bound Fe(II), is an effective catalyst of NO\textsubscript{2}− reduction under a range of conditions, and the presence of mineral surfaces and elevated levels of Fe(II) has also been shown to increase N\textsubscript{2}O production. While their overall role in the reductive elimination of reactive N may be well-recognized across a range of terrestrial ecosystems, while their importance in contributing to N\textsubscript{2}O production appears to be physiologically widespread among fungi. Indeed, the production of reactive Fe(II) as the result of direct or indirect microbial activity is a ubiquitous feature of marine sediments. Our sites contained between 67 and 1344 \textmu M HCl-extractable Fe(II) g−1 wet sediment (Supplementary Fig. 4). However, prediction of reaction kinetics between Fe(II) and NO\textsubscript{3}− in these porewater environments is complex, particularly given the range of binding environments of Fe(II), which largely controls its reactivity32,55. Nonetheless, the positive flux of NO\textsubscript{3}− together

Figure 3 | Multiple isotope plot of N\textsubscript{2}O illustrating predicted compositional fields of various processes as well as steady-state composition of N\textsubscript{2}O fluxes from incubations. For illustrating representative compositional fields of N\textsubscript{2}O production processes (boxes), ranges are taken from literature reports of the offset between precursor molecule and predicted N\textsubscript{2}O (\Delta\delta15N), or the difference in \delta15N between NH\textsubscript{4}+ and N\textsubscript{2}O for bacterial and archaeal ammonia oxidation, between NO\textsubscript{2}− and N\textsubscript{2}O for chemodenitrification or between NO\textsubscript{3}− and N\textsubscript{2}O for denitrification. References (in parentheses) include for (A) bacterial denitrification20,83,84, (B) nitrifier-denitrification39, (C) bacterial ammonia oxidation20,59,84,85, (D) archaeal ammonia oxidation66–68, (E) chemodenitrification47–49, (F) fungal denitrification37,42–44 and (G) bacterial N\textsubscript{2}O reduction21,22,86, which has been shown to result in a coupled increase in \delta15N and SP of the remaining N\textsubscript{2}O pool (indicated by arrows). Experimental x-axis data are \delta15N\textsubscript{NO\textsubscript{3}−}−\delta15N\textsubscript{N\textsubscript{2}O} and SP. Error bars in the y-direction are 1 s.d., while the x-direction error is smaller than the symbols. Note that for mass balance calculations the actual measured steady-state isotope values of precursor molecules (for example, NH\textsubscript{4}+ or NO\textsubscript{3}−) were used as appropriate for constraining endmember values of each process. In general, addition of ~100 \mu M NO\textsubscript{3}− to the overlying water increased N\textsubscript{2}O fluxes with an accompanying increase in N\textsubscript{2}O site preference, while not decreasing the \Delta\delta15N (as would be expected from N\textsubscript{2}O reduction, arrows), implicating an increased production of N\textsubscript{2}O from a process deriving from NO\textsubscript{3}− (or NO\textsubscript{2}−) yet also one yielding an elevated site preference such as chemodenitrification and/or fungal denitrification.

Figure 4 | Comparison of steady state triple oxygen isotope composition of N\textsubscript{2}O and NO\textsubscript{3} with SP\textsubscript{N\textsubscript{2}O} for experiments amended with NO\textsubscript{3}. Endmember composition for the y-axis was based on the assumption that bacterial, fungal and chemodenitrification are utilizing the steady-state NO\textsubscript{3}− pool as a substrate (where \Delta\delta17O\textsubscript{N\textsubscript{2}O} = steady-state value), while nitrifier-denitrification uses only NO\textsubscript{2}− derived directly from NH\textsubscript{4}+ oxidation (\Delta\delta17ON\textsubscript{2}O = 0‰). Increases in SP\textsubscript{N\textsubscript{2}O} values may be caused by N\textsubscript{2}O reduction (Ostrom et al.21), Jinuntuya-Nortman et al.86, however, this mass dependent process will only impact SP\textsubscript{N\textsubscript{2}O} and not alter \Delta\delta17O values (horizontal arrow). Error bars represent ±1 σ for SP\textsubscript{N\textsubscript{2}O} and propagated error for \Delta\delta17O\textsubscript{N\textsubscript{2}O}/\Delta\delta17ON\textsubscript{2}O. Data demonstrate that associated increases in SP\textsubscript{N\textsubscript{2}O} upon elevated NO\textsubscript{3}− is not associated with ammonia oxidation, but instead is linked to increased contribution of fungal and/or chemodenitrification.
with the porewater Fe(II) levels suggests that cDNF may also have contributed to N2O production. Interestingly, however, despite its lower Fe(II), the sandy site (SD) exhibited similar overall N2O isotope dynamics to the other two more Fe-rich sites (Table 2), suggesting that perhaps the increased response of N2O production to NO3⁻/CO2 loading was perhaps not as tightly linked to Fe(II) content.

On the basis of the isotope systematics described, we use an isotope mass balance (based on equations 1, 2, 5 and 6 and defined endmember compositions (Supplementary Table 3)) to estimate relative contribution of operative N2O producing mechanisms (see Methods). While fDNF and cDNF are not mutually exclusive, we consider them separately to more robustly evaluate their potential contribution. Previous studies appear to demonstrate a strong relative dominance of ammonia oxidizing bacterial abundance compared to archaea in organic-rich coastal sediments. An assumed numerical dominance of bacterial ammonia oxidizers notwithstanding, pure culture studies of archaeal ammonia oxidizers typically produce N2O reflecting a isotopic compositional mixture of both the AMO and nDNF pathways, as has been more directly characterized in bacterial ammonia oxidizers. Ongoing studies of N2O production mechanisms in ammonia oxidizing archaea will undoubtedly provide more insight on their unique biochemical nature. Differences in biochemistry aside, however, given the apparent similarity in isotopic composition of N2O deriving from bAMO and aAMO (especially a high SPN2O value, Figs 3 and 4), here we opt to combine bacterial and archaeal AMO for consideration in our mass balance analysis—setting endmember values to those previously determined for bAMO, as these have been studied in far more detail. Thus, for elevated nitrate experiments (in which we can leverage the use of the positive Δ17O), we consider N2O production by bDNF, nDNF and AMO (bAMO + aAMO) together with either fDNF or cDNF (Supplementary Table 4), while also examining the relative influence of N2O reduction on the calculated steady-state contributions of each process (see Methods). Error was estimated using a Monte Carlo approach in R with 10,000 simulations (Supplementary Table 4; see Supplementary Information for a more detailed sensitivity analysis of endmember composition).

Under elevated nitrate, mass balance indicates N2O production predominantly driven by varying contribution of bacterial and fungal denitrification (Fig. 5; Supplementary Table 4). For the base case (Supplementary Table 3), fungal denitrification contributed on average 36% of the N2O flux (up to 70% in one core). In evaluating the sensitivity of these estimates to endmember composition, this average value increased to 41 or 56% (if using a lower SP value of 30.3% for fDNF or a lower Δ15N value for the nDNF endmember, respectively; Supplementary Table 5) or decreased to 28% (if all nDNF derived N2O were to originate from NO2⁻ having a positive Δ17O value instead of 0%; Supplementary Table 6). In contrast, ammonia-oxidation contributed on average only 3–12% (via NH2OH decomposition) and 8–17% (via nDNF) for the base case. Consideration of cDNF (in lieu of fDNF) as the endmember.
having both a high SP$_{N_{2}O}$ and a NO$_{2}^{-}$ precursor required an even higher proportion of this process to satisfy mass balance (Supplementary Table 4). However, two cores in this case exhibited isotopic compositions violating mass balance (those with highest SP$_{N_{2}O}$), evidently requiring at least some contribution of IDNF (having a higher endmember SP$_{N_{2}O}$) over cDNF. Although the LN and LOLN treatments did not involve the Δ^{17}O approach, the statistically higher SP$_{N_{2}O}$ values under elevated nitrate (relative to low nitrate; Fig. 3, Supplementary Table 2) point to a shift in N$_{2}$O production mechanisms in response to NO$_{3}^{-}$, which must have included increased contribution by IDNF and/or cDNF. Ultimately, while the precise contribution of N$_{2}$O pathways varies depending on prescribed endmember compositions, all scenarios indicated substantial contribution by these non-traditional N$_{2}$O production pathways.

Increased N$_{2}$O emissions from coastal systems receiving elevated NO$_{3}^{-}$ are well documented4,5 and the ‘central role’ of NO$_{3}^{-}$ in relation to N$_{2}$O has been emphasized by others8. For example, large increases in N$_{2}$O from sediments amended with NO$_{2}^{-}$ (relative to NO$_{3}^{-}$) was previously interpreted as evidence for ‘obligate nitrite-denitrifying bacteria’ that reduce NO$_{2}^{-}$ to N$_{2}$O (ref. 6). Similarly, based on SP$_{N_{2}O}$, it was concluded that N$_{2}$O production in estuarine sediments was controlled by an as yet unidentified process50, having an isotopic composition consistent with more recent studies of fungal and chemodenitrification. On the basis of our results, we suggest that these previously ‘missing’ and/or ‘unidentified’ pathways likely represent non-traditional pathways including denitrification catalysed either by fungi or reactions involving Fe(II).

To the degree that our sediment incubations reflect processes ongoing under natural conditions, elevated NO$_{3}^{-}$ loading to coastal sediments appears to increase N$_{2}$O fluxes largely through reactions involving a NO$_{3}^{-}$ intermediate, yet also exhibiting elevated SP values. This combination of characteristics pinpoints an increased involvement of processes not regularly considered in coastal ecosystems—namely fungal and chemodenitrification. We suggest that both may represent important, yet under-appreciated sources regulating N$_{2}$O fluxes from redox-dynamic, organic-rich environments and warrant further examination. Studies are frequently challenged by the dynamic nature of N$_{2}$O fluxes, which are often episodic and difficult to link to specific factors or processes (for example, refs 23,25). Although our study was conducted at steady-state (enabling our assessment of fDNF and cDNF), we posit that the commonly observed patchy and dynamic nature of N$_{2}$O fluxes may stem from a complex network of differential contribution by direct and indirect, biological and abiotic processes, including the metabolic activity of fungi and biogeochemical redox cycling of iron. In particular, compared to bacterial denitrification and/or ammonia oxidation, their especially high yields poise these processes to be important, yet under-recognized, contributors to N$_{2}$O dynamics in many systems.

Methods

Study site and experimental setup. Twenty-four sediment cores were collected in August of 2013, from three intertidal sites near Königshafen on the island of Sylt in the North Sea, Germany. Sites were ~ 100 m apart and chosen based on qualitative differences in sediment grain size and location characteristics. The ‘Schlickwatt (MD)’ and ‘Mischwatt (MX)’ sites were located inside a small lagoon, while the ‘Sandwatt (SD)’ site was more openly exposed to wind and waves (Supplementary Fig. 1). Thirty intact push cores (30 cm length, 10 cm OD, 1/8” wall thickness) were taken using polycarbonate core liners having vertical based of silicone sealed holes (3 mm) at 1-cm intervals to allow porewater collection using Rhizon samplers. Cores were retrieved leaving ~ 10 cm of overlying water and sealed with double o-ring Delrin caps to minimize gas exchange during transport, and brought immediately back to the laboratory. In addition to the cores used for the incubations, two additional cores were used from each site for immediate microsensor profiling of O$_{2}$, N$_{2}$O and pore-water extraction (‘field cores’). The remaining cores were prepared in parallel for incubations. On completion of the incubations, microsensor profiling of O$_{2}$ and N$_{2}$O was conducted immediately after extraction of porewaters.

Incubations. The gas-tight sealed sediment cores were incubated in the dark at in situ temperatures (19 °C) in a temperature-controlled room at the Alfred Wegener Institute—Weddensee Field Station. Throughout the incubations the overlying water of the cores was continuously supplied with filtered seawater from large carboys, which were refilled as needed. The o-ring sealed core tops contained inlet/outlet fittings for continual delivery of fresh seawater through gas impermeable PEEK tubing (1/8” OD). Peristaltic pumps were used to regulate flow rates at 1.8 ± 0.06 ml min$^{-1}$ (measured gravimetrically at each sampling point) for ~ 8 days. The inflow line was placed near the sediment–water interface to minimize stratification. For experimental manipulations, four different inflow seawater compositions were used: ‘Low nitrate’ (air sparged; ~ 20 μM LN), ‘Low oxygen, low nitrate’ (air sparged with N$_{2}$O; 35% O$_{2}$ saturation), ‘High oxygen, no nitrate’ (amended with NaN$_{3}$ to ~ 120 μM (above background nitrate)), ‘LN’ and ‘low oxygen, high nitrate’ (combined treatments; LOLN).

Sample collection. Samples of each sediment core effluent were taken twice per day. For dissolved ions, effluent was directed into HDPE bottles and allowed to fill for ~ 60 min before subsampling, filtering (0.2 μm) and freezing (~20 °C). Separate 20 ml aliquots were taken for measurement of dissolved inorganic nitrogen concentrations (nitrate, nitrite and ammonium) and stable isotopic composition. Concentrations of nitrite and ammonium were measured immediately (see below), while nitrate concentrations were measured later in the Wankel lab at WHOI. Samples for dissolved N$_{2}$O were directed through gas impermeable PEEK tubing directly into pre-evacuated Tedlar gas sampling bags followed by gentle transfer into 160 ml serum bottles using a 0° OD silicone tubing, filling from the bottom to minimize turbulence and gas exchange. Sample water was allowed to overflow the bottle volume for at least two volumes before crimp-sealing with grey butyl septa and preserving with 100 μl of a saturated HgCl$_{2}$ solution.

Porewater sampling. Pore water samples were collected from sediment cores in 1-cm depth intervals using Rhizons56, which were inserted into intact sediment cores through silicon-filled ports in the walls of the core tubes. Samples of 5-10 ml volume were taken starting at the sediment–water interface down to 16 cm depth and frozen immediately for later analysis. Parallel cores were sectioned in 1-cm depth intervals for the analyses of iron. HCl-extractable Fe(II) and the amorphous, poorly crystalline fraction of the Fe(III) minerals were measured by procedures described in ref. 63, with the modifications as in ref. 64.

Isotope measurements. All N and O isotopic composition measurements (δ^{15}N and δ^{18}O, where δ^{15}N = ((Rsample/RRAT) - 1) × 1,000 in units of ‰, and δ^{18}O = 15N/14N and where δ^{18}O = (18O/16O$_{VSMOW}$ - 1) × 1,000 in units of ‰, and δ^{18}O = 15N/14N and where δ^{18}O = (18O/16O$_{VSMOW}$ - 1) × 1,000 in units of ‰, and δ^{18}O = 15N/14N and where δ^{18}O = (18O/16O$_{VSMOW}$ - 1) × 1,000 in units of ‰, and δ^{18}O = 15N/14N and where δ^{18}O = (18O/16O$_{VSMOW}$ - 1) × 1,000 in units of ‰) were quantified using a Thermo Finnigan Delta Plus Advantage XLR mass spectrometer (IRMS). Nitrate. Nitrate was converted to N$_{2}$O using the denitrifier method57,58 after removal of nitrite by addition of sulfamic acid69. Corrections for drift, size and fractionation of O isotopes during bacterial conversion were carried out using N$_{2}$O reference materials USGS 32, USGS 34 and USGS 35 (refs 67,70), with a typical reproducibility of 0.2% and 0.4% for δ^{15}N and δ^{18}O, respectively, in the course of single run. Triple oxygen isotope measurements allow for the determination of anomalous δ^{17}O (the deviation from the terrestrial fractionation line) with the magnitude of this anomaly expressed as Δ^{17}O (after71), where:

$$\Delta^{17}O = \frac{1 + \left(\delta^{17}O/1000\right)}{\left[1 + \left(\delta^{18}O/1000\right)\right]} - 1 \times 1000$$

(2)

Nitrate Δ^{17}O measurements were made on separate aliquots by routing denitrifier-produced N$_{2}$O through a gold tube (1/16” OD) held at 780 °C, thermally decomposing the N$_{2}$O into N$_{2}$ and O$_{2}$, which were chromatographically separated using a 2 m column (1/16” OD) packed with molecular sieve (5 A) before analysis on the IRMS52,73. Nitrate reference materials USGS 35 and USGS 34 were used to...
normalize any scale contraction during conversion, with reproducibility of Δ^{17}O typically \pm0.8%.

Nitrite. All samples for nitrite N and O isotope measurements were converted to N_2O within 2 h of collection using the azide method. Parallel conversions of internal nitrite standards (WILS 10, 11 and 20) were conducted to assess potential changes in reagents with time. Internal nitrite standards were also used correct for any variations due to peak shape linearity and instrumental drift, with a typical reproducibility for both δ^{15}N and Δ^{17}O of \pm0.2%. On the basis of calibrations against isolate reference materials USGS 32, 34 and 35 for δ^{15}N (ref. 75) and N23, N7373 and N10129 for δ^{18}O (ref. 76), the values of WILS 10, 11 and 20 are reported here to be -1.7% and -7.8% for δ^{15}N and $+13.2\%$ and $+6.6\%$ and $+47.6\%$ for δ^{18}O, respectively. Nitrite measurements were made after conversion to N_2O using the azide method and normalized using a combination of N_2O and N_2 isotopic reference materials. $\Delta^{15}N$ values of NO$_2$ isotopic standards WILS 10 and WILS 11 were calibrated previously against USGS 34 and USGS 35 using the denitrifier method followed by thermal decomposition of NO$_2$ to N_2 and O$_2$ as described above—yielding $\Delta^{15}N$ values of 0% for both. For sample NO$_2$, raw δ^{15}N and Δ^{17}O values were first normalized for oxygen isotopic exchange with water during the azide reaction followed by the calibrated δ^{15}N and Δ^{17}O values of WILS 10 and WILS 11. During the same IRMS run, N$_2$O produced from USGS 34 and USGS 35 via the denitrifier method was also thermally converted and analysed as N_2 and O$_2$. Because any isotope fractionation occurring during these reactions is mass dependent (Δ^{17}O is unaffected), the $\Delta^{15}N$ of NO$_2$ can be calculated by normalizing to $\Delta^{15}N$ values of these NO$_2$ standards. We disregard the small amount of oxygen isotope exchange occurring during the denitrifier method, as this would have only a small impact on the calculated $\Delta^{15}N$ values.

Reduced nitrogen. Total reduced nitrogen (TRN = DON + NH_4^+) was measured in a subset of incubation cores by oxidation of the total dissolved nitrogen (TDN) pool to nitrate via perusal digest—followed by δ^{15}N analysis using the azide method. The δ^{15}N of the TRN pool was then calculated by mass balance by subtracting the molar contribution of the measured δ^{15}N of NO$_3^-$ and NO$_2^-$ pools to the TDN pool. On the basis of the measurement of NH_4^+ concentrations, the DON flux was generally of the same magnitude as the NH_4^+ flux (not shown). For use in the mass balance calculations (for estimation of the bAMO endmember Δ^{17}ON2O value), the δ^{18}O of the TRN pool was assumed to be a reasonable proxy for the δ^{18}O of the N$_2$O pool. In general, this assumption held when there had only a very small impact on the apportionment N$_2$O sources by mass balance (<1%).

Nitrous oxide. For dissolved N$_2$O samples, extracts were taken from the 160 ml serum bottles using a purge and trap approach. Liquid samples were quantitatively transferred from the extracted sample into a purging flask using a 20 psi He stream, followed by He-sparging (~45 min) and cryotrapping using the same system described above for nitrate and nitrite derived N$_2$O. Isotopic composition of the dissolved N$_2$O was measured by direct comparison against the N$_2$O reference tank, as no isotopic reference materials were available at the time of measurement (WILS 10, 11 and 20). The δ^{15}N and δ^{18}O values of WILS 10 and WILS 11 have since been publicly released: http://n2o-reference.tamu.edu/. Two previously calibrated N$_2$O tanks from the Ostrom Lab at Michigan State University (USGS 32, 34 and 35 for δ^{15}N and 69, 70 and 71 for δ^{18}O, respectively) were used to calibrate N$_2$O isotope measurements. Following N$_2$O extraction (by purging and trap), the δ^{15}N of N$_2$O was measured in the range of 0.4% to 3.9% and the δ^{18}O of N$_2$O was measured in the range of 4.1% to 6.8%. The $\Delta^{15}N$ of N$_2$O was calculated similar to that described above for NO$_2^-$.

Three oxygen isotopic tracing of N$_2$O production. While the Δ^{17}O of most terrestrial O-bearing materials tightly co-varies with δ^{15}N (along the ‘terrestrial fractionation line’), atmospheric N$_2$O, stemming from reactions involving stratospheric ozone, contains a large relative excess of ^{18}O giving rise to a composition falling above the terrestrial fractionation line (9) (with the magnitude of this anomaly expressed as Δ^{17}O; see equation 2). Since kinetic isotope effects lead to mass dependent changes in Δ^{17}O values approximately half as large as in δ^{15}N, the Δ^{17}O remains unchanged (42). Therefore N$_2$O produced from this NO$_2^-$ (whether by bDNF, fDNF or cDNF) will retain its Δ^{17}O, despite any kinetic isotope fractionation. Changes in isotope composition of an O-bearing N$_2$O pool for defining endmember compositions are given in Supplementary Table 3, as well as the expected Δ^{17}ON2O/$\Delta^{15}N_{N_2O}$ values for the high nitrate incubations.

Isotope mass balance approach. Isotope mass balance calculations were made for estimating the relative contribution of N$_2$O production pathways in the sediment incubations (denitrification by bacteria (bDNF), by fungi (fDNF), or by chemodenitrification (cDNF), as well as combined production by ammonia oxidizing bacteria and archaea via NH$_3$OH decomposition (AMO) or nitritifier denitrification (nDNF)). By combining four independent mass balance expressions (equations 5, 6, 9 and 11 below) we can solve for the contribution of four independent N$_2$O production processes (here we describe consideration of fDNF (case 1), with cDNF being considered separately (case 2)). Equation 1 can be expressed in terms of the fractional contribution (f) of each production process to the total flux of N$_2$O:}

$$\text{Total N}_2\text{O flux} = f_{\text{bDNF}} + f_{\text{fDNF}} + f_{\text{AMO}} + f_{\text{cDNF}} = 1$$

Equation 4, incorporating the $\Delta^{15}N$ measurements, is used but neglecting cDNF for this case:

$$\Delta^{15}N_{N_2O} = f_{\text{bDNF}} + f_{\text{AMO}}$$

For measured Δ^{15}N values, equation 7 describes the mass balance contribution of each process to the cumulative steady-state flux ($\Delta^{15}N_{N_2O}$):

$$\Delta^{15}N_{N_2O} = f_{\text{bDNF}} + f_{\text{fDNF}} + f_{\text{nDNF}} + f_{\text{AMO}} + f_{\text{cDNF}} + f_{\text{SP}}$$

where again f refers to the fractional contribution of a given process, Δ^{15}N is equal to the steady-state difference (or offset) between Δ^{15}N of NO$_3^-$ and N$_2$O, and where the endmember Δ^{15}N for given process is expressed based on measured steady-state Δ^{15}N values of NO$_3^-$, NO$_2^-$ or NH$_4^+$ and the isotope offsets for each process (Supplementary Table 3). For example, the difference between Δ^{15}N of reagent NH$_3$ and NO$_3^-$ produced by BAMO has been estimated to be $\sim 3.7 \pm 3\%$, with Δ^{15}N(NH$_3$) depleted in 15N relative to the NH$_3$ source. To express this in terms of a Δ^{15}N value for the NO$_3^-$/N$_2$O mass balance in equation 7, we also need to account for the steady-state difference between the Δ^{15}N of NO$_3^-$ and NH$_4^+$ such that:

$$\Delta^{15}N_{N_2O} = \Delta^{15}N_{NH_3} - \Delta^{15}N_{NO_3} - \Delta^{15}N_{NH_4^+}$$

As the isotopic composition of N$_2$O from bAMO and AMO are very similar in the context of the isotope space evaluated here (25–29), we choose to combine these terms into a single term (AMO), having the composition of bAMO (Supplementary Table 3). Together with the fact that we will treat cDNF separately, equation 7 thus simplifies to:

$$\Delta^{15}N_{N_2O} = f_{\text{bDNF}} + f_{\text{fDNF}} + f_{\text{nDNF}} + f_{\text{AMO}}$$

Similar to equation 7, the fractional contribution of each process to the measured $\Delta^{15}N_{N_2O}$ of the effluent can be expressed as:

$$\Delta^{15}N_{N_2O} = f_{\text{bDNF}} + f_{\text{fDNF}} + f_{\text{AMO}}$$

where f denotes the fractional contribution of a given process having a particular SP value, and where (N$_3$O$_2$ESR) is equal to 1 – ($f_{\text{bDNF}} + f_{\text{fDNF}} + f_{\text{cDNF}} + f_{\text{AMO}}$) and $\Delta^{15}N_{ENORD}$ is the kinetic isotope effect on SP for NO$_2^-$ reduction of $\sim 6\%$ (ref. 21, 22). As in equation 9, consideration of four processes simplifies equation 10 to:

$$\Delta^{15}N_{N_2O} = f_{\text{bDNF}} + f_{\text{fDNF}} + f_{\text{AMO}}$$

By combining equations 5, 6, 9 and 11— we can uniquely solve for the fractional contribution of four processes (bDNF, fDNF, AMO and nDNF) to the total observed N$_2$O fluxes of the core incubations (Fig. 5; Supplementary Table 4).
Fungal genetic sequencing. Sediment samples for fungal sequence analysis were collected and stored frozen at −80 °C. Genomic DNA from marine sediment samples was extracted using a bead beating protocol according to the manufacturer’s instructions (Mo Bio, Carlsbad, CA). ITS region sequences were amplified using the fungal ITS primer pair F (ITS5): GGAAGTAAAAGTCGTAAC and R (ITS4): TCTTCCCGGTATTGATATGC generating fragments of ~600 bps in length. PCR products were cloned using Zero Blunt TOPO PCR Cloning (Thermo Fisher, Carlsbad, CA). After a ligate buffer exchange the plasmid was transformed into TOP10 electrocompetent cells. Cells were plated and grown on LB agar containing kanamycin. Single colonies were recovered from each plate and amplified using M13F&R primers. The products were sequenced by Sangher method (EtonBio, San Diego, CA). Sequences were analysed using BLAST. Taxonomy was assigned for fungal sequences (Supplementary Figure S3) by comparison against untrimmed ITS in the UNITE database (01/08/2015 version), using QIIME v1.91. Sequences were analysed using BLAST. Taxonomy was assigned for fungal sequences (Supplementary Figure S3) by comparison against untrimmed ITS in the UNITE database (01/08/2015 version), using QIIME v1.91. Sequences were assigned only if the database match had a similarity of at least 90% and maximum e-value of 0.001.

Data availability. The data sets generated during this study are available by request from corresponding author.

References
1. Nixon, S. W. et al. The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. Biogeochemistry 35, 141–180 (1996).
2. Seitzinger, S. P. et al. Global patterns of dissolved inorganic and particulate nitrogen inputs to coastal systems: recent conditions and future projections. Estuaries 25, 640–665 (2002).
3. Ravi Shankara, A., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).
4. Seitzinger, S. P. & Kroeze, C. Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems. Glob. Biogeochem. Cycles 12, 93–113 (1998).
5. Bange, H. W. & Rapsomanikis, S. Nitrous oxide in coastal waters. Glob. Biogeochem. Cycles 10, 198–207 (1996).
6. Dong, L. F., Nedwell, D. B., Underwood, G. J. C., Thornton, D. C. O. & Rusmana, I. Nitrous oxide formation in the Colne Estuary, England: the central role of nitrite. Appl. Environ. Microbiol. 68, 1240–1249 (2002).
7. Kroeze, C. & Seitzinger, S. P. Nitrogen inputs to rivers, estuaries and continental shelves and related nitrous oxide emissions in 1990 and 2050: a global model. Nutr. Cycl. Agroecosyst. 52, 195–212 (1998).
8. Middelburg, J. J. et al. Nitrous oxide emissions from estuarine intertidal sediments. Hydrobiologia 311, 43–55 (1995).
9. Seitzinger, S. P. & Nixon, S. W. Eutrophication and the rate of denitrification and N2O production in coastal marine sediments. Limnol. Oceanogr. 30, 1332–1339 (1985).
10. Heil, J. et al. Site-specific 15N isotopic signatures of abiotically produced N2O. Geochim. Cosmochim. Acta 139, 72–82 (2014).
11. Zhu-Barker, X., Cazaux, A. R., Ostrowski, N. A., Horwath, W. R. & Glass, J. B. The importance of abiotic reactions for nitrous oxide production. Biogeochemistry 126, 251–267 (2015).
12. Laughlin, R. J. & Stevens, R. J. Evidence for fungal dominance of denitrification and co-denitrification in a grassland soil. Soil Sci. Soc. Am. J. 66, 1540–1548 (2002).
13. Frame, C. H., Deal, E., Nevison, C. & Casciotti, K. L. N2O production in the eastern South Atlantic: analysis of N2O stable isotopic and concentration data. Glob. Biogeochem. Cycles 22, GB2S20 (2008).
14. Koba, K. et al. Biogeochemistry of nitrous oxide in groundwater in a forested ecosystem elucidated by nitrous oxide isotopomer measurements. Geochim. Cosmochim. Acta 73, 3115–3133 (2009).
15. Ostrowski, N. E., Ross, M. E., Popp, B. N., Rust, T. M. & Karl, D. M. Mechanisms of nitrous oxide production in the subtropical North Pacific based on determinations of the isotopic abundances of nitrous oxide and di-oxygen. Chemosphere – Glob. Change Sci. 2, 281–290 (2000).
16. Popp, B. N. et al. Nitrogen and oxygen isotopomeric constraints on the origins and sea-to-air flux of N2O in the oligotrophic subtropical North Pacific gyre. Glob. Biogeochem. Cycles 16, 1064–1074 (2002).
17. Sutka, R. L., Ostrom, N. E., Ostrowski, P. H. & Phanikumar, M. S. Stable nitrogen isotope dynamics of dissolved nitrate in a transect from the North Pacific Subtropical Gyre to the Eastern Tropical North Pacific. Geochim. Cosmochim. Acta 68, 517–527 (2004).
18. Well, R., Flessa, H., Jaradat, F., Toyoda, S. & Yoshida, N. Measurement of isotopomer signatures of N2O in groundwater. J. Geophys. Res. 110, G02006 (2005).
19. Yamagishi, H. et al. Role of nitrification and denitrification on the nitrous oxide cycle in the eastern tropical North Pacific and Gulf of California. J. Geophys. Res. 112, G02007 (2007).
20. Sutka, R. L. et al. Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances. Appl. Environ. Microbiol. 72, 638–644 (2006).
21. Ostrowski, N. E. et al. Isotopologue effects during N2O reduction in soils and in pure cultures of denitrifiers. J. Geophys. Res. 112, G02005 (2007).
22. Well, R. & Flessa, H. Isotopologue enrichment effects of N2O reduction in soils. Rapid. Commun. Mass Spectrom. 23, 2996–3002 (2009).
23. Nielsen, M., Gieseke, A., de Beer, D. & Revsbech, N. P. Nitrate, nitrite, and nitrogen oxide transformations in sediments along a salinity gradient in the Weser Estuary. Aquat. Microbial. Ecol. 55, 39–52 (2009).
24. Meyer, R. L., Allen, D. E. & Schmidt, S. Nitrification and denitrification as sources of sediment nitrogen oxide production: a microcosm approach. Mar. Chem. 110, 68–76 (2009).
25. Mosemann-Valtierra, S. et al. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O. Atmosph. Environ. 45, 4390–4397 (2011).
26. Brandes, J. A. & DeVol, A. H. Isotopic fractionation of oxygen and nitrogen in coastal marine sediments. Geochim. Cosmochim. Acta 61, 1793–1801 (1997).
27. Well, R., Eschenbach, W., Flessa, H., von der Heide, C. & Weymann, D. Are dual isotope and isotopologue ratios of N2O useful indicators for N2O turnover during denitrification in nitrate-contaminated aquifers? Geochim. Cosmochim. Acta 90, 265–282 (2012).
28. Buchwald, C. & Casciotti, K. L. Oxygen isotopic fractionation and exchange during bacterial nitrite oxidation. Limnol. Oceanogr. 55, 1064–1074 (2010).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15595 | www.nature.com/naturecommunications
29. Casciotti, K. L., McIlvin, M. & Buchwald, C. Oxygen isotopic exchange and fractionation during bacterial ammonia oxidation. Limnol. Oceanogr. 55, 753–762 (2010).
30. Burens, G. et al. Deciphering the presence and activity of fungal communities in marine sediments using a model estuarine system. Aquat. Microb. Ecol. 70, 45–62 (2013).
31. Mouton, M., Postma, F., Wilsenach, J. & Botha, A. Diversity and characterization of culturable fungi from marine sediment collected from St. Helena, South Africa. Microb. Ecol. 64, 311–319 (2012).
32. Orsi, W., Biddle, J. F. & Edgcomb, V. Deep sequencing of subseafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces. PLoS ONE 8, e56335 (2013).
33. Edgcomb, V. P., Beaudoin, D., Gast, R., Biddle, J. F. & Teske, A. Marine subsurface eukaryotes: the fungal majority. Environ. Microb. 13, 172–183 (2010).
34. Jebaraj, C. S. & Raghukumar, C. Nitrate reduction by fungi in marine oxygen-depleted laboratory microcosms. Botanika Marina 53, 469–474 (2010).
35. Shoun, H., Kim, D., Uchiyama, H. & Sugiyama, J. Denitrification by fungi. Biogeosciences 9, 2419–2429 (2012).
36. Frame, C. & Casciotti, K. L. Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium. Biogeosciences 7, 2695–2709 (2010).
37. Bell, R., Rückmann, T., Blackwell, M. & Yamulki, S. Influence of flooding on δ15N, δ34S, δ18O and δ2H signatures of N2O released from estuarine soils - a laboratory experiment using tidal flooding chambers. Rapid. Commun. Mass Spectrometry 18, 1561–1568 (2004).
38. Seiberg-Erlefeldt, J., Schlüter, M., Feseker, T. & Kölling, M. Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. Limnol. Oceanogr.: Methods 3, 361–371 (2005).
39. Holmes, R., Aminot, A., Kerouel, R. & Peterson, B. J. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can. J. Fish Aquat. Sci. 56, 1801–1808 (1999).
40. Lovley, D. R. & Phillips, E. J. Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl. Environ. Microb. 53, 1536–1540 (1987).
41. Takaya, N. & Shoun, H. Multi-energy metabolic mechanisms of the fungus Fusarium oxysporum in low oxygen environments. Biosci. Biotechnol. Biochem. 74, 2437–2437 (2010).
42. Maeda, K. et al. N2O production, a widespread trait in fungi. Sci. Rep. 5, 9697 (2015).
43. Shoun, H., Fushinobu, S., Jiang, L., Kim, S.-W. & Wakagi, T. Fungal denitrification and nitric oxide reductase cytochrome P450nor. Philos. Trans. R. Soc. B 367, 1186–1194 (2012).
44. Jebaraj, C. S. & Raghukumar, C. Anaerobic denitrification in fungi from the coastal marine sediments off Goa, India. Mycol. Res. 113, 100–109 (2009).
45. Ito, S. & DeLaune, R. D. Fungal and bacterial mediated denitrification in wetlands: Influence of sediment redox condition. Water Res. 44, 2441–2450 (2010).
46. Takaya, N. & Shoun, H. Nitric oxide reduction, the last step in denitrification by Fusarium oxysporum, is obligatorily mediated by cytochrome P450nor. Mol. Genet. Genomics 263, 342–348 (2000).
47. Rohe, L. et al. Dual isotope and isotopomer signatures of nitrous oxide from fungal denitrification - a pure culture study. Rapid Commun. Mass Spectrometry 23, 3753–3762 (2009).
48. Sakurai, K. et al. A bacterial method for the nitrogen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal. Chem. 74, 4905–4912 (2002).
49. Sigman, D. M. & Houlton, B. Z. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Rapid. Commun. Mass Spectrometry 22, 1587–1596 (2008).
50. McIlvin, M. & Casciotti, K. L. Technical updates to the bacterial method for nitrate isotopic analyses. Anal. Chem. 83, 1850–1856 (2011).
51. Miller, M. F. Isotopic fractionation and the quantification of 15O anomalies in the oxygen three-isotope system: an appraisal and geochemical significance. Geochim. Cosmochim. Acta 66, 1881–1889 (2002).
52. Kaiser, J., Roekmann, T. & Sigman, D. M. Triple oxygen isotope analysis of nitrate using the denitrifier method and thermal decomposition of N2O. Anal. Chem. 79, 599–607 (2007).
53. Komatsu, D. D., Ishimura, T., Nakagawa, F. & Tsuchiya, D. Determination of the 15N/14N, 17O/16O, and 18O/16O ratios of nitrous oxide by using continuous-flow isotope ratio mass spectrometry. Rapid. Commun. Mass Spectrometry 22, 1587–1596 (2008).
54. McIlvin, M. & Altabet, M. A. Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Anal. Chem. 77, 5589–5595 (2005).
55. Böhlke, J., Mroczkowski, S. & Coplen, T. B. Oxygen isotopes in nitrate: new reference materials for 18O:17O:16O measurements and observations on nitrate-water equilibration. Rapid. Commun. Mass Spectrometry 17, 1835–1846 (2003).
56. Casciotti, K. L., Böhlke, J. K., McIlvin, M., Mroczkowski, S. & Hannon, J. Oxygen isotopes in nitrite: analysis, calibration and equilibration. Anal. Chem. 79, 2427–2436 (2007).
57. Knapp, A. N., Sigman, D. M. & Lipschultz, F. N isotopic composition of dissolved organic nitrogen and nitrate at the Bermuda Atlantic Time-series study site. Glob. Biogeochem. Cycles. 19, GB1018 (2005).
58. McIlvin, M. R. & Casciotti, K. L. Fully automated system for stable isotopic analyses of dissolved nitrite at natural abundance levels. Limnol. Oceanogr.: Methods 8, 54–66 (2010).
59. Thiemens, M. H. History and applications of mass-independent isotope effects. Annu. Rev. Earth Planet Sci. 34, 217–262 (2006).
60. Fang, Y. et al. Microbial denitrification dominates nitrate losses from forest ecosystems. Proc. Natl Acad. Sci. USA 112, 1470–1475 (2014).
61. Michalski, G. et al. Tracing atmospheric nitrate deposition in a complex semiarid ecosystem using Δ17O. Environ. Sci. Technol. 38, 2175–2181 (2004).
62. Tsunogai, U. et al. Production of oceanic nitrous oxide by ammonia-oxidizing archaea. Biogeosciences 8, 687–702 (2011).
83. Toyoda, S., Mutobe, H., Yamagishi, H., Yoshida, N. & Tanji, Y. Fractionation of N₂O isotopomers during production by denitrifier. *Soil Biol. Biochem.* 37, 1535–1545 (2005).
84. Yamazaki, T. et al. Isotopomeric characterization of nitrous oxide produced by reaction of enzymes extracted from nitrifying and denitrifying bacteria. *Biogeosciences* 11, 2679–2689 (2014).
85. Yoshida, N. ¹⁵N depleted N₂O as a product of nitrification. *Nature* 335, 528–529 (1988).
86. Jinuntuya-Nortman, M., Sutka, R. L., Ostrom, P. H., Gandhi, H. & Ostrom, N. E. Isotopologue fractionation during microbial reduction of N₂O within soil mesocosms as a function of water-filled pore space. *Soil Biol. Biochem.* 40, 2273–2280 (2008).

Acknowledgements

We would like to acknowledge the generosity and support of the Alfred Wegener Institute for the use of their facilities at the Wadden Sea Station on Sylt, with special thanks to Ragnhild Asmus. This work also benefitted from the diligent work of Zoe Sandwith and Lake Melas-Kyrazi in the lab at WHOI, undergraduate research assistants Sofia Danford, Abigail Lambretti and Jake Lehman in the lab at USC, as well as Dr Lubos Polerecky while in the field. Preparation of this manuscript also benefitted from fruitful discussions with Drs Julie Granger, Colleen Hansel and David Johnston. D.D.B. acknowledges support from the Max Planck Institute for Marine Microbiology. This work was supported by the National Science Foundation grants to W.Z. and S.D.W. (OCE-1260373) and to S.D.W. (EAR-1252161).

Author contributions

S.D.W. and W.Z. designed the study and secured funding for the project. S.D.W., W.Z., C.B., D.d.B. and J.D. carried out the fieldwork and conducted the experiments. S.D.W., W.Z., C.B., C.C. and J.D. generated various components of the chemical and isotopic data. W.Z., Z.X. and K.Z. characterized fungal DNA from core incubations. S.D.W. conducted the isotope mass balance modelling. S.D.W. and W.Z. wrote the manuscript with valuable input from C.B., C.C. and D.d.B.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing interests: The authors declare no competing financial interests.

How to cite this article: Wankel, S. D. et al. Evidence for fungal and chemodenitrification based N₂O flux from nitrogen impacted coastal sediments. *Nat. Commun.* 8, 15595 doi: 10.1038/ncomms15595 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017