Quality of Reporting in Oncology Randomized Controlled Trials: From 2011 to 2015

Huiyun Zhu, MD, PhD1, Si Chen, MD, PhD2, Pei Xie, MD1, Geliang Yang, MD, PhD3, Zhenqiang Zhong, MD4, Huiqing Zhang, MD, PhD3, and Yiqi Du, MD, PhD1

Abstract
Randomized controlled trials (RCTs) are important for evidence-based medicine; however, their quality of reporting remains to be evaluated. The aim of this study was to assess the quality of the report concerning solid tumor medication. Articles were searched in PubMed to identify all oncology phase III RCTs published from 2011 to 2015, and the results were classified manually through Endnote X7.0 software. Registration rate, primary end point (PEP) consistency, positive result rate, enrollment time point, outcome feedback in the registry, and publish time zone were extracted and assessed. The overall registration rate was higher than years before; nevertheless, a portion of trials showed PEP discrepancies and enrolled patients before registration in either journal formats. Trials published in top 5 general medical journals paid more attention to results feedback on registration websites and were more prompt with publication after study accomplishment. Our data suggested general medical journals may be more rigorous compared to oncology journals but identified a preference for positive results. On the whole, RCTs published between 2011 and 2015 seemed fairly standardized. Surveillance in registry and outcome feedback still needs to be strengthened for the stringency and reliability of clinical trials in solid tumor medication territory.

Keywords
RCTs, oncology, registration, reporting, characteristic

Introduction
Based on GLOBOCAN estimates, about 14.1 million new cancer cases and 8.2 million deaths occurred in 2012 worldwide, which constitutes an enormous burden on society.1 The past 2 decades witnessed the ascension of new drugs2 and the increase in 5-year relative survival rates.3 New cancer drug development is characterized by a high-investment (averagely US$1042 million), long-cycle, high-risk, complicated process of research and development with low approval rates (13.4%).4

Randomized controlled trials (RCTs) are the gold standard to assess the effectiveness and safety of new treatments. Unfortunately, scandals such as selective reporting of trials as well as neglecting unfavorable evidence did occur,5,6 which would lead to overestimates of the benefits of treatments and underestimates of their harmful effects, distort the body of evidence

1 Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
2 Department of Respiratory and Critical Care Medicine, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
3 Department of Integrative Oncology, Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University/Naval Medical University, Shanghai, China
4 Department of Laboratory, Fengcheng Hospital, Shanghai, People’s Republic of China

Corresponding Authors:
Yiqi Du, Department of Gastroenterology, Changhai Hospital, 168 Changhai Road, Shanghai 200433, China.
Email: duyiqi006@126.com
Huiqing Zhang, Department of Integrative Oncology, Changhai Hospital of Traditional Chinese Medicine, 168 Changhai Road, Shanghai 200433, China.
Email: newdew628@aliyun.com

Received March 13, 2018. Received revised May 03, 2018. Accepted for publication May 11, 2018.
available for clinical decision-making, and put patients at risk
and waste health-care resources.

Honest reporting begins with revealing the existence of all
clinical studies, as studies cannot influence clinical practice
guidelines when concealed by research sponsors or investigators.
However, trial registration was largely voluntary a decade ago;
registry data sets, completion quality, and public access varied.
To make all trials and clinical evidence searchable by anyone, the
members of the International Committee of Medical Journal Edi-
tors (ICMJE) published a joint editorial in September 2004 aimed
at fostering a comprehensive, publicly available database of clinical
trials. To eliminate substandard and perfunctory registry, the
International Clinical Trials Registry Platform (the Registry Plat-
form), based at World Health Organization, achieved consensus
on a minimum trial registration data set of 20 items. Also, the
Food and Drug Administration Amendments Act (FDAAA) of
2007 mandated public registration and the deadline of results
disclosure and paper publishing after trial completion.

The ultimate goal of registration is full transparency and
performance guarantee of clinical trials. Previous studies had
disclosed significant deficiencies such as incomplete registra-
tion and primary end point (PEP) discrepancies (at an average
rate of 14%), but with miscellaneous research objectives. Some
of these studies had problems with retrieval method and journal
selection. An updated assessment restricted to solid tumor
medication RCTs is indispensable for guiding present percep-
tions and promoting the advancement of future research.

The specific objectives of this study are to examine and
compare the report quality of registered RCTs concerning solid
tumor medications published both in leading general medical
journals and leading oncology journals, to assess the consist-
ency of registered and published PEPs in RCTs, and to analyze
the reasons of PEP discrepancies.

Methods

Selection of Articles

Articles were searched in PubMed to identify all phase III
RCTs of oncology published between January 1, 2011, and
December 31, 2015. “Controlled Clinical Trial” and “Clinical
Trial, Phase III” were selected for screening relevant articles.
All the relative articles published in the top 5 general medical
journals and the top 5 oncology journals (Table 1) according to
the Journal Citation Report 2014 released by Thomson Reuters
were included in our study. The search result was systemati-
cally reviewed by 2 authors (H.Z. and S.C.) through the use of
Endnote X7.0 software. Articles with studies identified as
phase III RCTs (which assigned participants randomly and
implemented different interventions) were included. We
reviewed the title and abstract of each article and the full-text
if necessary to select out articles about oncology. Any disagree-
ment was resolved by consulting Y.D. and H.Z. Exclusion
criteria included hematologic or pediatric studies; meta-
analyses, overviews, or studies with ≥2 trials; phase I, II, or
IV trials; pilot, protocol, ongoing or follow-up trials; treatment
solely with radiotherapy or surgery trials; screening or diag-
nostic trials; secondary reports of completed trials; supportive
or care; or prevention trials.

Table 1. Distribution of Included Trials in the Selected Journals
According to the Journal Citation Report 2014.

Rank	General Medical Journal	Included Trials, No (%)	Oncology Journal	Included Trials, No (%)
1	New England Journal of Medicine	43 (11.3)	Lancet Oncology	97 (25.5)
2	Lancet	20 (5.2)	Journal of Clinical Oncology	153 (40.1)
3	Journal of the American Medical Association	3 (0.8)	Journal of the National Cancer Institute	6 (1.6)
4	Annals of Internal Medicine	0	Clinical Cancer Research	3 (0.8)
5	British Medical Journal	0	Annals of Oncology	56 (14.7)

Data Extraction

First author’s name, journal name, publication year, first
author’s origin, study type (international, which means centers
were from more than 1 country; multicenter, which means
patients were enrolled in at least 2 sites; or study group, which
means the study was designed and conducted by a study group),
number of study arms, type of control arm, type of blinding
method, sample size, type of result, funding source, PEP, and
the result for sample size calculation were extracted separately
by 2 authors (H.Z. and S.C.). Registration information for each
included article was also checked by 2 authors separately.
Firstly, the article was read to see if provided trial registration
number; if not, we searched the article in the registries that
were accepted by the ICMJE. Articles were considered as
did not registered, if registration number could not be found
after reading and searching. Secondly, trial results were
checked to justify whether they were posted in the registries
and cross-checked basic information in the registries to ensure
the registration number matched the published articles. Each
trial was checked whether it was published within 24 months
after completion of the study. We also recorded the registered
PEP with a clear description and extracted PEP described in
registries and classified into 2 groups according to the regist-
eder number, separately. As the ICMJE required, the ICMJE
journals accept “retrospective registration” of trial that began
before July 1, 2005 (retrospective means registration occurs
after patient enrollment begins); and for trials began on or after
July 1, 2005, registration should occur before the first patient
was enrolled (prospective registration). All the registered
trials were divided into 3 groups “registered before the enroll-
ment of the first patient,” “registered after study begin but
before study ends,” and “registered after study ends.” We com-
pared registered with published PEP to analyze the consistency
of each article. Different types of inconsistencies were used as
previously defined. All discrepancies that appeared between the registered and published PEP were recorded, and inconsistent PEPs were examined to identify whether the discrepancies favor statistically significant results. Others could not judge for what reasons the author changed the PEP, which was classified as “impossible to conclude.”

Statistical Analysis

The number of articles (percentage) and median were used for categorical variables to describe the basic characteristics of included studies. Comparisons of categorical variables between general medical journals and oncology journals were performed using χ^2 test and Fisher exact test where appropriate. $P < .05$ (2 tailed) was considered statistically significant. Analyses were performed using SPSS 21.0 software (Chicago, Illinois).

Results

A total of 381 RCTs were included in this analysis (Figure 1). Sixty-six (17.3%) were published in general medical journals, and the other 315 (82.7%) were published in oncology journals. The number of included trials of each journal and the percentage of the total are listed in Table 1. The basic characteristics of the included studies are presented in Table 2. From 2011 to 2015, the number of oncology RCTs published is roughly consistent. About half of the first authors’ affiliations were in European countries (193/381, 50.7%). Most of the trials are multicenter studies with 2 study arms. Regarding the funding source, 223 (58.5%) reported a sole industry funding source, with 49 published in general medical journals and the other 174 published in oncology journals; 168 of 381 included studies published positive results; 358 (94.0%) studies published only 1 PEP.

Registration Information of the Included Studies

Table 3 shows the registration information of the included studies. A total of 339 studies were found to have registration numbers, either identified by reading (312/339, 92.0%) or by searching (27/339, 8.0%). The http://ClinicalTrials.gov was the most popular registry for authors of oncology RCTs (302/339, 89.1%). Of the included 339 RCTs published, 174 (51.3%) of

Figure 1. Flowchart for study screening and selection of solid tumor randomized controlled trials (RCTs).
the trials put results in registries; 219 (64.6%) trials were published within 24 months after study completion; and 255 (75.2%) registered trials with adequate information about PEP. Most RCTs registered 1 PEP in the registry (294/355, 87.8%), a few others registered 2 (41/355, 12.2%) or more. For the trial registration time, 55.8% (188/337) RCTs met the ICMJE’s requirement on prospective registration.

Primary End Point Consistency Analysis

A total of 335 registered RCTs were included in the PEP consistency analysis; 4 of 339 registered studies cannot find detail information about PEP and were excluded. Table 4 shows the results of PEP consistency analysis of the 325 RCTs. A total of 35 (10.4%) RCTs had discrepancies between registered and
Table 3. Registration Characteristics of 339 Registered Studies.

Variable	Articles All (N = 339)	General Medical Journals (n = 66)	Oncology Journals (n = 269)
Registration number identified by, no (%)			
Reading	312 (92.0)	66 (100.0)	246 (90.1)
Searching	27 (8.0)	0	27 (9.9)
Trial registry, no (%)			
http://ClinicalTrials.gov	302 (89.1)	61 (92.4)	241 (88.3)
ISRCTN	16 (4.7)	5 (7.6)	11 (4.0)
UMIN	10 (2.9)	0	10 (3.7)
ANZCTR	3 (0.9)	0	3 (1.1)
Other	8 (2.4)	0	8 (2.9)
Trial results put in			
http://ClinicalTrials.gov	174 (51.3)	48 (72.7)	126 (46.2)
Trial published within 24 months after study completion, no (%)b			
	219 (64.6)	64 (97.0)	155 (56.8)
Adequate information about the study assessment period in registry, no (%)			
	255 (75.2)	53 (80.3)	202 (74.0)
PEP registered, no (%)c			
1	294/335 (87.8)	56/66 (84.8)	238/269 (88.5)
≥2	41/335 (12.2)	10/66 (15.2)	31/269 (11.5)
Trial registration time, no (%)d,e			
Registered before enrollment of the first patient			
	188/337 (55.8)	48/66 (72.7)	140/271 (51.7)
Registered after study begin but before study end			
	135/337 (40.1)	16/66 (24.2)	119/271 (43.9)
Registered after study end	14/337 (4.2)	2/66 (3.0)	12/271 (4.4)

Table 4. Difference Between PEP in Trial Registration and in Published Article.

Variable	Articles All (N = 335)	General Medical Journals (n = 66)	Oncology Journals (n = 269)
Articles with different PEP in trial registration and in published articles, no (%)a			
	35 (10.4)	3 (4.5)	32 (11.9)
Omit registered PEP in the text			
	21 (6.3)	1 (1.5)	21 (7.8)
New PEP introduced in text			
	10 (3.0)	2 (3.0)	8 (3.0)
Registered PEP reported as secondary in text			
	3 (0.9)	0	3 (1.1)
Different timing of assessment of PEP			
	1 (0.3)	0	1 (0.4)
Published PEP described as secondary in registry			
	1 (0.3)	0	1 (0.4)

Discrepancies in PEP favoring statistically significant results, no (%)b

	Yes 6/35 (17.1)	2/3 (66.7)	4/32 (12.5)
	No 21/35 (60.0)	0	21/32 (65.6)
Impossible to conclude	8/35 (22.9)	1/3 (33.3)	7/32 (21.9)

Abbreviations: ANZCTR, Australian New Zealand Clinical Trials Registry; ISRCTN, International Standard Randomized Controlled Trial Number Registry; PEP, primary end point; UMIN, University Hospital Medical Information Network Clinical Trial Registry.

*P < .0001, for comparison between general medical journals and oncology journals.

*P < .0001, for comparison between general medical journals and oncology journals.

Four studies in oncology journals could not find information about PEP.

*P = .003, for comparison between general medical journals and oncology journals.

Two studies in oncology journals could not find registration time.

The discrepancies included omitting registered PEP in the text (21/335, 6.3%), introducing a new PEP into text (10/335, 3.0%), reporting registered PEP as secondary in the text (3/335, 0.9%), different timing of assessment (1/335, 0.3%), and reporting registered secondary outcome as PEP in the text (1/335, 0.3%). There were 17.1% (6/35) inconsistent PEPs published due to statistical reasons.

General Medical Journals Versus Oncology Journals

All of the articles published in general medical journals were multicenter studies; 81.8% (54/66) and 27.3% (18/66) were international cooperative studies and published in a study group, respectively, compared with 95.9% (302/315), 55.9% (176/315), and 36.2% (114/315) of those published in oncology journals, respectively. Fifty-nine (86.8%) study results published in general medical journals were positive, compared with 109 (34.4%) in oncology journals (P < .0001). All the included RCTs published in general medical journals provided the trial registration number in the published articles, while 90.1% (246/273) of those published in oncology journals. As the included RCTs have already been published, 72.7% (48/66) of trials in general medical journals put results in registries, significantly higher than those published in oncology journals (126/273, 46.2%; P < .0001); 97.0% (64/66) of trials were published within 24 months after study completion in general medical journals, while 56.8% (155/273) were published in oncology journals (P < .0001). The amount of trials with adequate information about the assessment period in registry was similar in general medical journals (53/66, 80.3%) and oncology journals (202/273, 74.0%; P = .287). For the trial...
registration time, 72.7% (48/66) of RCTs published in general medical journals met the ICMJE’s requirement on prospective registration higher than oncology journals (140/271, 51.7%) significantly ($P = .003$). Three (4.5%) and 32 (11.9%) RCTs had discrepancies between registered and published PEP in general medical journals and oncology journals, respectively. The inconsistent PEPs due to statistical reasons were 66.7% (2/3) for the articles published in general medical journals and 12.5% (4/32) for those in oncology journals ($P = .03$).

Discussion

Over the past 3 decades, the 5-year survival rate for all cancers combined has increased. Progress has been most rapid for hematopoietic and lymphoid malignancies, while it has been slow for solid tumors such as lung and pancreatic cancers. With improvements in new treatment, a growing number of oncology trials are being conducted, but vary in quality. Randomized controlled trials are considered to provide evidence of the highest grade in the hierarchy of research designs, yet rely on accurate reporting and correct interpretation. Trial results may not coincide with each other; thus, we usually rely on a body of evidence from many studies to guide medical practice. Decreasing publication of trials with negative results would distort the body of evidence available for clinical decision-making, lead to overestimate or underestimate of the real effects, and violate patients’ interests.

The introduction of the ICMJE registration policy in 2004 has helped provide an open access repository of registered trials and promote transparency and accountability in the planning, conducting, and reporting of clinical trials, thus minimizing selective reporting bias. Assessing characteristics of published RCTs and comparing their consistencies with originally registered versions could provide deep insight into the status of global health research over time, highlighting both progress and disparity. Recent studies focusing on registration rates and outcome consistency in high-impact medical journals in different specialties have demonstrated some deficiencies. This study conducted the most comprehensive assessment about solid tumor RCTs in the past 5 years and is the first study to make comparisons between leading general medical journals and oncology journals.

We identified a sample of 381 RCTs by searching PubMed. An increase in registration rate (89.0%, 339/381) compared with former research (58.7%, 215/366) was found, and the rate in 2015 (97.7%, 86/88) was significantly higher than that in 2011 (62.3%, 38/61). Clinicaltrials.gov remained the most popular registration site. Some data in registries were neither qualified nor adequate and even lacked important items such as the primary outcome. Strengthening registry systems and making every item of a data set explicitly specified could be a method to enhance standards of the implementation of research registration.

Authors are required to report results for trials of drugs in the United States subject to Food and Drug Administration regulation and there is a deadline for research publishing. We recorded that 51.3% of investigators upload result information in ClinicalTrials.gov and 64.4% of articles were published within 24 months after study completion by comparing the publication date and the study completion date. This study demonstrated a fair percentage of negative results (54.8%) overall. What is noteworthy is that 86.8% of RCTs published in general medical journals showed positive results, which indicated that statistically significant outcomes of a new treatment were more likely to be published in top general medical journals than non-significant outcomes.

Using multiple PEPs in a clinical trial often indicates that investigators have potential result reporting biases. It should be noted that each clinical trial should only have a single PEP, which should be defined before initiating the study. In this study, 41 RCTs registered and published more than 1 PEP. Discrepancy types range from omitting registered PEP in the text to report registered secondary outcome as PEP in the text. According to this study, 10.4% of included articles had PEP discrepancies in trial registration and the published version, among which 17.1% favored significant primary outcomes.

Besides, most of the trials’ sponsors and principal investigators were from Europe and America; Asia only accounts for 12.9%. Therapeutic reaction varies with race, ethnicity, and socioeconomic status. Although multicenter studies may have Asian participants, we appeal to see some more rigorous RCTs reflecting Asian populations.

In general, RCTs concerning solid tumor medication are in continuous improvement. Randomized controlled trials published in the top 3 general medical journals are considered more standardized as compared with oncology journals, reflected by the number of PEPs, clear PEP description, PEP consistency, timely publishing rate, higher result uploading rate, and a fair percentage of the positive result. However, as previously stated, editors and reviewers of leading general medical journals seemed more enthusiastic about positive results.

What we want to emphasize here is that the trial registration policy is neither a trivial process to take nor a meaningless procedure merely to upload information; it is an inseparable part of a canonical clinical trial. The policy and concrete practice make every trial searchable to anyone and make clinical research more standardized and more reliable, which provides more powerful evidence to guide clinical practice and ultimately benefit patients. We maintain that quality assurance and management cannot be left only to the registries, and the investigators and journals should continue to make every item of a data set explicitly specified. Explanations for significant discrepancies are required before final approval for publication.

This study has some limitations. Firstly, we only selected trials published in journals with high impact factors, most of which were members of the ICMJE and required trial registration. We were not able to speculate the results from normal impact journals. But we have our own considerations; journals...
with high impact factors have a wider range of readers and have a greater influence on clinical practice and decision-making. Secondly, a proportion of RCTs included in our review initiated before 2005. Therefore, the improvement of RCT registration was expected to be even more remarkable since the implementation of ICMJE policy, and the incidence of enrollment prior to registration was overestimated to some extent. Thirdly, we only included phase III RCTs of solid tumor medication, while the characteristics of trials in other territories remained unknown. Furthermore, our study found that a high percentage of studies reported negative results. Whereas, it is not qualified to evaluate the publication bias and to what extent the direction of the results is associated with a higher probability of publishing or not.

Conclusion

In this study, we have provided the most comprehensive assessment about solid tumor medication RCTs published in leading journals. The registration and completion status had improved concerning the implementation of ICMJE policy, the minimum reporting standards by CONSORT Group, and the FDAAA legal requirements for Clinical Trials Registration and Results Information Submission. Problems such as unsatisfactory outcome feedback in the registry and general medical journals’ preference for reporting positive results remain to improve. Joint efforts of investigators, medical journal editors, peer reviewers, as well as related institutions and organizations and consensus are needed to achieve full transparency of clinical trials.

Author Contributions

Huiyun Zhu, Si Chen, and Pei Xie contributed equally to this article.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Dr. Huiyun Zhu is supported by Innovative Fund for PhD granted by Second Military Medical University/Naval Medical University. Dr. Yiqi Du is supported by the National Natural Science Foundation of China (Grant no 81770643).

References

1. DeSantis CE, Lin CC, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2014. *CA Cancer J Clin*. 2014;64(4):252-271.
2. DiMasi JA, Reichert JM, Feldman L, Malins A. Clinical approval success rates for investigational cancer drugs. *Clin Pharmacol Ther.* 2013;94(3):329-335.
3. Bala S, Petrasek J, Mundkur S, et al. Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. *Hepatology*. 2012;56(5):1946-1957.
4. Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. *Nat Biotechnol*. 2014;32(1):40-51.
5. Chalmers I. Underreporting research is scientific misconduct. *JAMA*. 1990;263(10):1405-1408.
6. A consensus statement on research misconduct in the UK. *BMJ*. 2012;344:e1111.
7. De Angelis C, Drazen JM, Frizelle FA, et al. Clinical trial registration: a statement from the International Committee of Medical Journal Editors. *N Engl J Med*. 2004;351(12):1250-1251.
8. De Angelis CD, Drazen JM, Frizelle FA, et al. Is this clinical trial fully registered?—A statement from the International Committee of Medical Journal Editors. *N Engl J Med*. 2005;352:2436-2438.
9. Food and Drug Administration Amendments Act of 2007. In: *Public Law 110-85*. https://www.gpo.gov/fdsys/pkg/PLAW-110publ85/pdf/PLAW-110publ85.pdf. Accessed December 27, 2007.
10. You B, Gan HK, Pond G, Chen EX. Consistency in the analysis and reporting of primary end points in oncology randomized controlled trials from registration to publication: a systematic review. *J Clin Oncol*. 2012;30(2):210-216.
11. Bourgeois FT, Murthy S, Mandl KD. Outcome reporting among drug trials registered in http://ClinicalTrials.gov. *Ann Intern Med*. 2010;153(3):158-166.
12. Grayling MJ, Wason JM, Mander AP. Stepped wedge cluster randomized controlled trial designs: a review of reporting quality and design features. *Trials*. 2017;18(1):33.
13. Viergever RF, Karam G, Reis A, Gherzi D. The quality of registration of clinical trials: still a problem. *PLoS One*. 2014;9(1):e84727.
14. Zarin DA, Ide NC, Tse T, Harlan WR, West JC, Lindberg DA. Issues in the registration of clinical trials. *JAMA*. 2007;297(19):2112-2120.
15. Mathieu S, Boutron I, Moher D, Altman DG, Ravaud P. Comparison of registered and published primary outcomes in randomized controlled trials. *JAMA*. 2009;302(9):977-984.
16. Chalmers I, Glasziou P, Godlee F. All trials must be registered and the results published. *BMJ*. 2013;346:f105.
17. Decullier E, Lheritier V, Chapuis F. Fate of biomedical research: conclusions from the OPEN (Overcome failure to Publish negative findings) project based on an international consensus meeting. *BMJ Open*. 2015;5(5):e006666.