Distance teaching of experimental scientific methodology and scientific thinking

Abstract

Objective: The aim of this project was to convert a traditional face-to-face seminar for the teaching of experimental scientific methodology to remote teaching in a timely manner due to the COVID-19 related restrictions to teaching in presence.

Methodology: The main focus of the course was on flow cytometry. Basics were developed in a virtual presence phase. Specific teaching contents were taught by an interactive presentation, which came very close to the user experience of a flow cytometer and interactively illustrated the influence of different experimental conditions on the obtained results.

Video sequences of authentic sample acquisitions were integrated into Adobe Captivate®. These “virtual acquisitions” were not distinguishable from the original procedure. For interpretation of the resulting diagrams, interactions were inserted, which allowed direct comparison of the obtained results.

Implementation: A presentation with interactive elements and video sequences was created and used for the virtual presence phases. After publishing on a web server in HTML 5, contents were made available to the students for post-processing of learning contents by self-paced learning with full (interactive) functionality.

Conclusion: Contributions elaborated by the students during the course demonstrate a learning outcome comparable to that archived in the last years in presence mode. While implementation of this solution represented a highly time-consuming process, narrative feedback was consistently positive. Due to the short time available for implementation, no systematic evaluation could be conducted, which represents a clear limitation of this work.

Keywords: distance teaching, scientific thinking and reasoning, flow cytometry, biochemical methods

Introduction

The course presented here represents a compulsory elective course of the 10th semester (seminar/practical course 809.086, Fluorescence-based methods in cell biological research) of 15 academic hours, which was held for 3 groups of 5 participants each within different weeks.

The learning objective was to promote scientific thinking. For this purpose, different biochemical methods were presented to the students. Based on selected problems, students had to discuss which scientific questions can (not) be answered by means of the respective methodology. In the practical part of the face-to-face course, students were instructed in the use of a flow cytometer (antibody staining of their own blood samples) followed by basal analysis and interpretation of the obtained results.

Due to the COVID-19 prohibition of classroom teaching, this course had to be adapted to remote teaching.

Project description

This was realized by assigning an individual topic to each of the five students of each group (see legend in figure 1). While preparing these individual topics, students received feedback and advice regarding structure and intended level of detail of the presentation they had to prepare (maximum of 4 slides). In addition to a concise summary of the given topics, scientific thinking was promoted by the requirement to consider the applicability of the respective methodology to specific scientific questions (“Formulate different scientific questions which could be investigated with...”).

For a subsequent virtual presence phase, a group jigsaw puzzle was used and the prepared topics were taught to the whole group in a (supervised) peer-teaching session. This was followed by a discussion on content, applicability...
of the methodology and the scientific questions proposed for the topics. Since the main focus of the course was on applied flow cytometry, great efforts were made to compensate for the loss of face-to-face teaching – and the resulting inability to operate the cytometer by hand – as effective as possible.

Concrete goal was to make virtual sample acquisition appear as realistic as possible and to illustrate the influence of different experimental conditions on the results obtained.

The theoretical basics of flow cytometry were specifically taught in an independent virtual presence phase. A presentation created in Adobe Captivate® was used for the subsequent cytometry-specific teaching content. Video sequences of authentic sample acquisitions were integrated into Adobe Captivate®. After documentation and verbal explanations of the respective experimental conditions, this “virtual acquisition” could be started by pressing a button – the visual presentation of sample acquisition was not distinguishable from the original process. In addition, interactions were inserted for the interpretation of the (virtually) obtained scatter plots, which allowed to directly compare the plots obtained during sample acquisition (basal demonstration available on http://educativo.at/DemoFACS/).

This presentation was shared via WebEx from the screen of the lecturer with the students of the respective group; for the individual examination of the interactive elements as well as for post-processing of learning contents, the presentation was available to the students for self-paced learning and full (interactive) functionality on the internet.

For a user experience as close as possible to the original sample acquisition, video sequences of authentic sample acquisitions were recorded at a frame rate of 30 frames per second on the control computer of the flow cytometer. The software used was easyscreencastrecorder (freeware, [https://www.portablefreeware.com/index.php?id=2840]), which allows the recording of videos also in defined subareas of the screen. The resulting mpeg (Audio Codec Engine PCM) was converted with OpenShot (free-ware, [https://www.portablefreeware.com/index.php?id=2840]) to mp4 (h.264) with video profile HDV 720 24p (1280x720) in high quality and integrated into Captivate in this format.

Discussion
Adobe Captivate® was used to create an interactive presentation that was also made available to students via the internet. Due to the short time available for the required implementation, no systematic evaluation could be conducted, which is a clear limitation of this work. Narrative feedback from students was consistently positive; contributions elaborated by the students during the course demonstrate a learning outcome comparable to that achieved in the last years in presence mode. Implementation of this solution represented a highly time-consuming process of about 35 hours for a resulting teaching time of 4 hours. The interactive course described here will also be implemented when returning to classroom teaching.

Competing interests
The authors declare that they have no competing interests.
Vermittlung wissenschaftlich-experimenteller Methodik und Förderung wissenschaftlichen Denkens mittels Distanzlehre

Zusammenfassung

Zielsetzung: Die Zielsetzung des dargestellten Projekts bestand darin, ein Seminar zur Vermittlung experimentell-wissenschaftlicher Methodik zeitnah auf Distanzlehre umstellen. Anlass dafür war der COVID-19-bedingte Entfall der Präsenzlehre.

Methodik: Der inhaltliche Schwerpunkt der Lehrveranstaltung lag in der Durchflusszytometrie. Die Grundlagen dazu wurden in einer virtuellen Präsenzphase erarbeitet. Für die weiteren spezifischen Unterrichtsinhalte wurde eine interaktive Präsentation verwendet, welche dem Bedienerlebnis eines Durchflusszytometers sehr nahe kam und den Einfluss unterschiedlicher experimenteller Bedingungen auf die erhaltenen Ergebnisse interaktiv veranschaulichte. Dazu wurden unter anderem Videosequenzen authentischer Probenaufnahmen in Adobe Captivate eingebunden. Diese „virtuellen Aquisitionen“ waren in ihrer optischen Darstellung vom Originalvorgang nicht unterscheidbar. Für die Interpretation der damit erhaltenen Diagramme wurden Interaktionen eingefügt, welche ein vergleichendes Gegenüberstellen der erhaltenen Ergebnisse ermöglichten.

Umsetzung: Eine Präsentation mit interaktiven Elementen und Videosequenzen wurde erstellt und in den virtuellen Präsenzphasen verwendet. Nach Veröffentlichung im HTML 5-Format stand sie den Studierenden für eine Nachbearbeitung der Lerninhalte in selbstbestimmter Ablaufsteuerung und voller (interaktiver) Funktionalität über das Internet zur Verfügung.

Schlussfolgerung: Die durch die Studierenden erarbeiteten Inhalte lassen ein inhaltliches Verständnis erkennen, welches mit dem der letzten Jahre (in Präsenzmodus) vergleichbar ist. Das erhaltene narrative Feedback war durchwegs positiv, der für die Implementierung dieser Lösung notwendige Arbeitsaufwand war unverhältnismäßig hoch. Aufgrund der Kurzfristigkeit der Umsetzung konnte keine systematische Evaluation durchgeführt werden, was eine klare Limitation dieser Arbeit darstellt.

Schlüsselwörter: Fernunterricht, wissenschaftliches Denken und Argumentieren, Durchflusszytometrie, Biochemie

Einleitung

Die hier dargestellte Lehrveranstaltung stellt ein Wahlpflichtfach des 10. Studiensemesters (Seminar/Praktikum 809.086, Flureszenzbasierte Methoden in der zellbiologischen Forschung) im Umfang von 15 akademischen Stunden dar, welches für 3 Gruppen mit jeweils 5 TeilnehmerInnen zu unterschiedlichen Zeiten abgehalten wurde. Das Lernziel lag in einer Förderung des wissenschaftlichen Denkens. Den Studierenden wurden dafür unterschiedliche biochemische Methoden vorgestellt und anhand konkreter Fragestellungen diskutiert, welche Forschungsfragen mit jeder dieser Methoden (nicht) beantwortbar sind. In einem (im Präsenzkonzept) praktischen Teil der LV erfolgte die angeleitete Bedienung eines Durchflusszytometers (Antikörper-Färbung eigener Blutproben) und eine basale Analyse und Interpretation der erhaltenen Ergebnisse.

Durch das COVID-19 bedingte Verbot von Präsenzlehre musste diese Lehrveranstaltung für eine Abhaltung im Distanzmodus adaptiert werden.
Abbildung 1: Schematische Darstellung des Ablaufs der Lehrveranstaltung im Präsenz- (links) und im Distanzmodus (rechts).

Zu den fünf im Distanzmodus zu erarbeitenden Themen (Antikörper, Detektionsstrategien, Zell-Zell Interaktionen und Inflammation, Detektion von Proteinen, Mikroskopie: die Untersuchung von Zellen) erhielten die Studierenden inhaltliche Präzisierungen und eine Auswahl empfohlener Quellen (pdf, Links zu text- oder videobasierten Inhalten). Vorgabe war die zusammenfassende Darstellung des jeweiligen Themas und Überlegungen zur Anwendbarkeit auf spezifische wissenschaftliche Fragestellungen. Dargestellt ist nur die curricularrelevante Dauer der einzelnen Phasen, diese kann für die individuelle Erarbeitung der Themen nicht exakt angegeben werden. aS: akademische Stunden; VL: Vorlesung; SE: Seminar; PR: Praktikum.

Projektbeschreibung

Die Umsetzung dieser Lehrveranstaltung zu Distanzlehre wurde realisiert, indem jeder der fünf Studierenden der jeweiligen Gruppe ein individuelles Thema zugewiesen bekam (siehe Legende in Abbildung 1). Bei der Ausarbeitung dieser individuellen Themen erhielten die Studierenden nach Bedarf Feedback zu geplantem Aufbau und Detailgrad der Präsentation sowie allfälligen Fragen und hatten eine Präsentation im Umfang von maximal 4 Folien zu erstellen. Neben einer prägnanten Zusammenfassung der vorgegebenen Themen sollte durch eingeforderte Überlegungen zur Anwendbarkeit der betreffenden Methodik auf spezifische wissenschaftliche Fragestellungen auch das wissenschaftliche Denken gefördert werden (“Formulieren Sie unterschiedliche wissenschaftliche Fragestellungen, welches mit ... untersucht werden könnten”).

In einer anschließenden virtuellen Präsenzphase wurde nach dem Prinzip eines Gruppenpuzzles vorgegangen und die Themen im Rahmen eines (beaufsichtigten) peer-teaching der ganzen Gruppe vermittelt. Es folgte eine Diskussion zu Inhalt, Anwendbarkeit der Methodik und den zu den Themen vorgeschlagenen wissenschaftlichen Fragestellungen.

Da ein inhaltlicher Schwerpunkt in der experimentellen Durchführung der Durchflusszytometrie lag, wurden gerade dazu große Anstrengungen unternommen, um den Wegfall der Präsenzlehre – und die damit verbundene Möglichkeit zur eigenständigen Bedienung des Gerätes - möglichst vollständig zu kompensieren.

Konkretes Ziel war, die virtuelle Probenanquisition im Rahmen der Distanzlehre möglichst realistisch erscheinen zu lassen und den Einfluss unterschiedlicher experimenteller Bedingungen auf die erhaltenen Ergebnisse zu veranschaulichen.

Die theoretischen Grundlagen der Durchflusszytometrie wurden gezielt in einer eigenständigen virtuellen Präsenzphase gelehrt. Für die darauf folgenden weiteren Zytometrie-spezifischen Unterrichtsinhalte wurde eine in Adobe Captivate erstellte Präsentation verwendet.

Dafür wurden Videosequenzen authentischer Probenauquisitionen in Captivate eingebunden; nach schriftlicher Darstellung und verbalen Erklärungen zu den jeweiligen experimentellen Bedingungen konnte diese „virtuelle Aquisition“ durch Drücken einer Schaltfläche gestartet werden – die optische Darstellung der Probenauquisition war dabei vom Originalvorgang nicht unterscheidbar. Zusätzlich wurden für die Interpretation der (virtuell) erhaltenen Punktdiagramme Interaktionen eingefügt, wodurch die im Rahmen der Probenerfassung erhaltenen Diagramme direkt gegenübergestellt werden konnten (basale Demonstration auf http://educativo.at/DemoFACS/)

Diese Präsentation wurde für die per WebEx zugeschaltete Gruppe vom Bildschirm des jeweiligen Lehrenden mit den Studierenden geteilt; für die individuelle Auseinandersetzung mit den interaktiven Elementen sowie eine Nachbearbeitung der Lerninhalte stand die Präsentation den Studierenden in selbstbestimmter Ablaufsteuerung und voller (interaktiver) Funktionalität im Internet zur Verfügung.

Methodik

Es wurde in Adobe Captivate eine Präsentation mit interaktiven Elementen und Videosequenzen erstellt. Diese wurde zum HTML 5-Format auf einem Webserver publiziert und war damit in jedem Webbrowser (auch auf Tablets, unabhängig vom Betriebssystem) darstellbar. Für eine möglichst originalgetreue Darstellung der Probenerfassung wurden authentische Probenauquisitionen als Videosequenzen mit einer Framrate von 30 Bildern pro Sekunde auf dem mit dem Durchflusszytometer verbundenen PC aufgezeichnet. Als Software dafür wurde easy screencast recorder (Freeware, [https://www.portablefreeware.com/index.php?id=2840]) eingesetzt, welches die Aufzeichnung von Videos auch in definierten Unterbereichen des Bildschirms erlaubt. Das resultierende mpeg (Audio Codec Engine PCM) wurde mit OpenShot (Freeware, [https://www.portablefreeware.com/])
index.php?id=2840)) in mp4 (h.264) mit Video Profile HDV 720 24p (1280x720) in hoher Qualität konvertiert und so in Captivate eingebunden.

Diskussion

Adobe Captivate wurde genutzt, um eine interaktive Präsentation zu schaffen, welche den Studierenden auch über das Internet zugänglich gemacht wurde. Aufgrund der Kurzfristigkeit der erforderlichen Umsetzung konnte keine systematische Evaluation durchgeführt werden, was eine klare Limitation dieser Arbeit darstellt. Unaufgefordert erhaltenes narratives Feedback der Studierenden war durchgehend positiv, die durch die Studierenden erarbeiteten Inhalte lassen ein inhaltliches Verständnis erkennen, welches mit dem der letzten Jahre (in Präsenzmodus) vergleichbar ist.

Der für die Implementierung dieser Lösung notwendige Arbeitsaufwand war mit etwa 35 Stunden in Relation zu der damit bespielten Unterrichtszeit (4 Stunden) unverhältnismäßig hoch. Die beschriebene elektronische Lerneinheit soll auch bei einer Rückkehr zur Präsenzlehre eingesetzt werden.

Interessenkonflikt

Die Autor*innen erklären, dass sie keinen Interessenkonflikt im Zusammenhang mit diesem Artikel haben.

Korrespondenzadresse:

Ivo Volf
Medizinische Universität Wien, Institut für Physiologie, Schwarzspanierstr. 17, A-1090 Wien, Österreich
ivo.volf@meduniwien.ac.at

Bitte zitieren als
Assinger A, Grasí M, Volf I. Distance teaching of experimental scientific methodology and scientific thinking. GMS J Med Educ. 2021;38(1):Doc15.
Dlj: 10.3205/zma001411, URN: urn:nbn:de:0183-zma0014112

Artikel online frei zugänglich unter https://www.egms.de/en/journals/zma/2021-38/zma001411.shtml

Eingereicht: 31.07.2020
Überarbeitet: 23.10.2020
Angenommen: 24.11.2020
Veröffentlicht: 28.01.2021

Copyright ©2021 Assinger et al. Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.