Introduction

Coronavirus is a common disease between humans and animals (zoonosis) [1, 2], which is enveloped, non-segmented, and has positive-sense single-stranded RNA virus [3]. Genotypically and serologically, there are four groups, with approximately thirty types of coronaviruses common to humans, mammals, and birds. So far, considerable attention has paid to international cases of Pathogenesis and pathology [5-7]. COVID-19 identified by WHO in Wuhan, China, at the beginning of 2020 [6, 5, 2], is considered the most dangerous virus of this family these days and has raised severe health concerns for all countries of the world [13]. The virus causes severe respiratory and intestinal infections in animals and humans [14] and subsequently leads to death [15].

With the increase of scientific publications, the importance of observing such studies has become more
critical in assessing the effects of scientific output on the medical sciences and has become an integral part of monitoring the performance of organizations (20). Investigating the existing capacities helps policymakers and research managers in the ranking of performance quality assessment, correct and normative budget allocation (21).

Scientometrics studies in international citation databases such as WOS are one of the essential tools for observing medical research processes and developments (22). Now (March 2020), in line with the challenging and global spread of Coronavirus, medical scientists do many types of research and publish papers to find innovative solutions to prevent the virus. To this end, medical scientists, using various indexes and software to analyze Coronavirus, observe and evaluate research outputs and present their findings to science and technology researchers and policymakers.

Some of the most essential literatures related to scientific representation of medical sciences utilizing scientometrics methods and indicators in Iran and internationally include Coronaviruses bibliographic analysis (14), Nipah Virus (23), MERS-CoV (24), HPV (25), Parasitology (26), Diabetes (27), Surgery (28), Neonatal Healths (29).

A review of the literature indicates that different scientometrics tools have attracted the attention of medical scholars and have been useful in representing the structure of medical science knowledge by analyzing this method. Given the immense and strategic importance of Coronavirus and the increasing scientific publicity of this subject, the study of scientometrics of Coronavirus is of great importance.

The main issue of this paper is to determine the status of the knowledge structure of international Coronavirus research outputs. Representing the scientific structure from different angles will guide Coronavirus specialists and researchers and policymakers in the Ministry of Health and medical science associations. Based on the elaborated theoretical framework, the primary purpose of this paper was to analyze half a century of scientific publications of Coronavirus in the world using scientific methods and tools. It is essential to review the process of scientific publishing, the type of resources, citations to articles, and identify the top journals, researchers, countries, and organizations in this subject area to achieve this goal from 1970 to 2019.

Materials and Methods

This applied research was carried out using scientometrics methods and an analytical approach. The statistical population of this article includes 5128 Coronavirus subject area documents indexed on the WOS from 1970 to 2019. The keywords were extracted from the Mesh browser and analyzed using Excel 2016 software.

Results

Coronavirus international publication trend

Data analysis showed that the highest percentage of the scientific output of Coronavirus was in 2005 (6.8%), 2004 (6.78%), and 2006 (5.92%), respectively (Figure1).

Different Source Types of Coronavirus Scientific Publications Frequency Distribution

This article aimed to review the scientific publications of the Coronavirus, which are in the four types of Articles (4474), Meeting abstracts (313), Proceedings paper (290), and Reviews (235) respectively (Figure 2).

Coronavirus Citation Analysis

The total number of citations received in the last 50 years of the Coronavirus scientific publications is 165451. There are 3271 self-citations at the same time. Coronavirus scientific output in 2019 received the highest number of citations, 11385. The highest self-citation was in 357 in 2014.

Figure 1. Percentile of Coronavirus science production trend (1970-2019)
ABSTRACT

respectively. The highest impact factor is

Table 2 contains data from the top 10 Coronavirus journals ranked by impact factor. Of the journals listed in Table 2, the US publishes 12 and the Netherlands 5 Coronavirus journals. The highest impact factor is 9.58. The Journal of Virology has the highest number of citations and self-citations with 37309 and 5734, respectively.

Coronavirus Top Journals

Table 2 lists the top ten Coronavirus researchers based on the number of scientific publications in the last 50 years. “Enjuanes, L.” with 114 publications, has the highest number. However, the highest h-index belongs to “Yuen, KY” which is 49. It should be noted that “Yuen, KY” has 862 has the self-citation; which is the highest. Of the 5,128 Coronavirus documents in the publication.

Top Coronavirus Researchers
last 50 years, 888 (over 17%) were published by the top 10 researchers.

The Most Proliferated Countries in Coronavirus

Of the 98 countries that have published the most Coronavirus scientific papers, the United States, China, and the Netherlands are the most proliferated countries (Figure 3).

Table 2. Ranking of Coronavirus Journals based on Impact Factor (1970-2019)

Resource Title	Citations	Pure Citations	Self-Citation	Country	Article Influence Score	Eigen Factor	Impact factor (IF)	Quartile (Q)
Proceedings of the National Academy of Sciences of the United States of America	6403	6324	79	USA	4.493	1.02189	9.58	Q1
Emerging infectious diseases	4182	4094	88	USA	2.725	0.05940	7.185	Q1
Journal of Infectious Disease	2939	2889	50	USA	2.164	0.07596	5.045	Q1
Journal of Clinical Microbiology	2384	2329	55	USA	1.381	0.05332	4.959	Q1
Journal of Virology	37309	31575	5734	USA	1.381	0.09997	4.324	Q1
Antiviral Research	882	865	17	Netherlands	1.137	0.01597	4.13	Q1
The Journal of Biological Chemistry	2971	2916	55	USA	1.503	0.25223	4.106	Q2
Viruses Basel	888	863	25	Switzerland	1.221	0.02409	3.811	Q2
Journal of Clinical Virology	997	980	17	Netherlands	0.970	0.01530	3.02	Q2
Journal of General Virology	6498	6185	313	England	0.883	0.01877	2.809	Q2

Table 3. Ranking of Coronavirus Researcher based on Record Number (1970-2019)

Author	Affiliation	Record	% of 5128	h-index	Citation	Self-Citation	Pure Citation
Enjuanes L	Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain	114	2.223	42	4105	603	3502
Perlman S	Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA	107	2.087	36	2914	266	2648
Yuen KY	Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China	107	2.087	49	10105	862	9243
Weiss SR	Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA	97	1.892	36	3424	459	2965
Baric RS	Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA	85	1.658	36	3676	283	3393
Rottier PJM	Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Faculty of Veterinary Medicine, Utrecht, the Netherlands	84	1.638	41	5146	346	4800
Drosten C	Institute of Virology, Charité Universitätsmedizin, Berlin, Germany.	82	1.599	38	8500	299	8201
Liu DX	Guangdong Province Key Laboratory of Microbial Signals & Disease Control, and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China	73	1.424	30	1867	455	1412
Makino S	Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA	72	1.404	33	2904	358	2546
Woo PCY	State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong	67	1.307	34	4831	558	4273
Figure 3. The Most Proliferated Countries in Coronavirus (1970-2019)

Figure 4. The Most Proliferated Organizations in Coronavirus (1970-2019)
Discussion

In the past 50 years, the fewest frequency of Coronavirus scientific publications were indexed in the WoS from 1970 to 1975 and the most documents were published in 2005, 2004, and 2006. The scientific publications trend of this paper is in line with the results of Bonilla-Aldana et al. (14). The United States, the Journal of Virology, the University of Hong Kong, and “Enjuanes L.” are the most proliferated ones in the Coronavirus publications, which is in line with the results of Zyoud (24). In terms of increased research activities and scientific publications, the results of this article are similar to those of Shirshahi et al. (26), Morovati and Sotudeh (27), and Emami et al. (25).

Conclusion

Considering the new and widespread wave of COVID19 infection in China and especially in Iran, considerable studies and clinical trials are ongoing. The findings of this article can be useful to scientists who are currently researching COVID19, especially Iranian specialists. It recommended that the paper summary will design in brochure format and widely disseminate to the researchers through the Iranian Microbiology Society.

Acknowledgment

In this regard, we appreciate the Infectious diseases experts for their valuable comments.

Conflict of Interest

Authors declared no conflict of interests.
کروناویروس: علم‌سنجی پنجم سال تولید علم جهانی

چکیده
زمینه و اهداف: گروه پژوهشی مدیریت اطلاعات، مرکز منطقه‌ای اطلاع‌رسانی علم و فناوری، شیراز، ایران

کروناویروس‌ها و بیماری‌های ویروسی از نوع آلفا و بتا هستند و تقریباً به‌طور کامل در پستانداران، پرندگان، انسان و تقریباً در تمامی انواع دندانی‌های موجود در جهان هستند. این بیماری‌ها به‌طور گسترده‌ای در جهان به‌_FFDS buyers in the Middle East, and in countries in Asia. گروه پژوهشی مدیریت اطلاعات در سال 2019 با همکاری سازمان بهداشت جهانی نتایج پژوهشی‌ها و آمارهای نشان داد که بیماری‌های ویروسی از نوع آلفا و بتا هستند و تقریباً به‌طور کامل در پستانداران، پرندگان، انسان و تقریباً در تمامی انواع دندانی‌های موجود در جهان هستند. این بیماری‌ها به‌طور گسترده‌ای در جهان به‌طور کامل در پستانداران، پرندگان، انسان و تقریباً در تمامی انواع دندانی‌های موجود در جهان هستند. این بیماری‌ها به‌طور گسترده‌ای در جهان به‌طور کامل در پستانداران، پرندگان، انسان و تقریباً در تمامی انواع دندانی‌های موجود در جهان هستند. این بیماری‌ها به‌طور گسترده‌ای در جهان به‌طور کامل در پستانداران، پرندگان، انسان و تقریباً در تمامی انواع دندانی‌های موجود در جهان هستند. این بیماری‌ها به‌طور گسترده‌ای در جهان به‌طور کامل در پستانداران، پرندگان، انسان و تقریباً در تمامی انواع دندانی‌های موجود در جهان هستند. این بیماری‌ها به‌طور گسترده‌ای در جهان به‌طور کامل در پستانداران، پرندگان، انسان و تقریباً در تمامی انواع دندانی‌های موجود در جهان هستند. این بیماری‌ها به‌طور گسترده‌ای در جهان به‌طور کامل در پستانداران، پرندگان، انسان و تقریباً در تمامی انواع دندانی‌های موجود در جهان هستند. این بیماری‌ها به‌طور گسترده‌ای در جهان به‌طور کامل در پستانداران، پرندگان، انسان و تقریباً در تمامی انواع دندانی‌های موجود در جهان هستند. این بیماری‌ها به‌طور گسترده‌ای در جهان به‌طور کامل در پستانداران، پرندگان، انسان و تقریباً در تمامی انواع دندانی‌های موجود در جهان هستند. این بیماری‌ها به‌طور گسترده‌ای در جهان به‌طور کامل در پستانداران، پرندگان، انسان و تقریباً در تمامی انواع دندانی‌های موجود در جهان هستند. این بیماری‌ها به‌طور گسترده‌ای در جهان به‌طور کامل در پستانداران، پرندگان، انسان و تقریباً در تمامی انواع دندانی‌های موجود در جهان هستند. این بیماری‌ها به‌طور گسترده‌ای در جهان به‌طور کامل در پستانداران، پرندگان، انسان و تقریباً در تمامی انواع دندانی‌های موجود در جهان هستند. این بیماری‌ها به‌طور گسترده‌ای در جهان به‌طور کامل در پستانداران، پرندگان، انسان و تقریباً در تمامی انواع دندانی‌های موجود در جهان هستند. این بیماری‌ها به‌طور گسترده‌ای در جهان به‌طور کامل در پستانداران، پرندگان، انسان و تقریباً در تمامی انواع دندانی‌های موجود در جهان هستند. این بیماری‌ها به‌طور گسترده‌ای در جهان به‌طور کامل در پستانداران، پرندگان، انسان و تقریباً در تمامی انواع دندانی‌های موجود در جهان هستند. این بیماری‌ها به‌طور گسترده‌ای در جهان به‌طور کامل در پستانداران، پرندگان، انسان و تقریباً در تمامی انواع دندانی‌های موجود در جهان هستند. این بیماری‌ها به‌طور گسترده‌ای در جهان به‌طور کامل در پستانداران، پرندگان، انسان و تقریباً در تمامی انواع دندانی‌های موجود در جهان هستند. این بیماری‌ها به‌طور گسترده‌ای در جهان به‌طور کامل در پستانداران، پرندگان، انسان و تقریباً در تمامی انواع دندانی‌های موجود در جهان H
مطالعات نوژانز (24) گوهر این مطلب مستند.

مرور پیشنهادی نشانگر این موضوع است که از ابزارهای مختلف علوم سنجشی مقالات علمی پژوهشگاهی در حال حاضر (مارس سال 2020) بیش از ۸۳٪ از این ابزارها برای شناسایی و ارزیابی سایر کشورها، طریقه‌های مشترک و تغییرات تاریخی فرآیندهای اقتصادی و اجتماعی برای دانستنی‌های زیادی از این مطالعات را بهبودیم، این شاخص‌ها نقش مهمی را در مدیریت بزرگ‌تر و پژوهشگران در پیشگیری و کنترل ویروس‌های وابسته به آن دارند.

در بررسی مطالعات دانشمندان ایران درخصوص کروناویروس، سنجشی که بررسی سنجشی انجام می‌شود، مشاهده و محاسبه شده و هشدار جدی برای تمام کشورهای جهان به‌شمار می‌آید (۱۱). این بی‌پروازی می‌تواند برای سنجشی که در حال حاضر (مارس سال 2020) بیش از ۸۳٪ از این ابزارها برای شناسایی و ارزیابی سایر کشورها، طریقه‌های مشترک و تغییرات تاریخی فرآیندهای اقتصادی و اجتماعی برای دانستنی‌های زیادی از این مطالعات را بهبودیم، این شاخص‌ها نقش مهمی را در مدیریت بزرگ‌تر و پژوهشگران در پیشگیری و کنترل ویروس‌های وابسته به آن دارند.

مطالعات نوژانز (24) گوهر این مطلب مستند.
قلیمرو موضوعی کروناویروس در باره زمینی 1970 تا 2019، به بیان اگلیسی و در قالب مقاله است.

بر اساس مورف، پس از مشورت با متخصص بیماری‌های تنفسی و عفونی،
راهبرد جستجو طراحی شد. چه جهت مشخص نمودن کلید‌های موضوعی و راهبردی آن در مرحله بعدی بمنظور جستجو و بزرگبودن مدارک کروناویروس استفاده می‌شود. در حین استفاده از WOS از که در کتاب خود ابزار بزرگ‌ترین، برای درک و درک‌پذیری استفاده برای جستجو و بهبود منابع پژوهشگران و راهنما برای برنامه‌ریزان و سیاست‌گذاران در وزارت بهداشت و انجمن‌های علمی علوم پزشکی بود.

روش‌های

روند انتشارات بین‌المللی کروناویروس

داده‌های مندرج در شکل 1 و نتیجه‌گیری علمی در این مقاله و در بازارهای خودآشی و در ارائه کردن، هدف اصلی مقاله حاضر علمی‌سنجی 50 سال تولید علم کروناویروس در جهان است. جهت تهیه روند تولید علم جهانی، نوع منابع، روند استفاده، اهداف و اجراها، پژوهشگران، کشورها و سازمان‌های پژوهشی در تولید علم کروناویروس در بازار زمینی 1970 تا 2019 دارای اهمیت و ضرورت بیش از پیش است.

روش پژوهش

این مقاله از نوع گزارشی است که به روش علمی‌سنجی و با

رویکرد تحلیلی انجام شده است. جامعه آماری، کلیه تولیدات علمی
شکل 2. انواع منابع منتشر کننده تولیدات علمی کروناویروس WOS (1970 تا 2019)

جدول 1. استندارد دریافتی مقالات قلمرو موضوع کروناویروس

سال انتشار	فعالیت	تعداد استنادهای خود استنادی	تعداد استنادهای استنادات بدون خود استنادی	تعداد استنادهای خود استنادی درصد خود استنادی
1990	1	252	251	1
1991	2	8	0	0
1992	3	38	0	3
1993	4	55	0	1
1994	5	78	0	2
1995	6	235	0	1
1996	7	98	0	1
1997	8	98	0	1
1998	9	194	0	1
1999	10	299	0	2
2000	11	299	0	2
2001	12	299	0	2
2002	13	299	0	2
2003	14	299	0	2
2004	15	299	0	2
2005	16	299	0	2
2006	17	299	0	2
2007	18	299	0	2
2008	19	299	0	2
2009	20	299	0	2
2010	21	299	0	2
2011	22	299	0	2
2012	23	299	0	2
2013	24	299	0	2
2014	25	299	0	2
2015	26	299	0	2
2016	27	299	0	2
2017	28	299	0	2
2018	29	299	0	2
2019	30	299	0	2

مجموع استندارد دریافتی 1354551
مجموع خود استنداد: 3371
جدول ۲. رتبه‌بندی مجلات براساس ضریب تاثیر قلمرو موضوعی کروناویروس

عنوان منابع	کشور	کل استنادها	استناد خاص	شاخص ایگن (Eigen Factor)	میزان اثرگذاری مقاله (Article Influence Score)	ضریب تاثیر (Impact factor (IF))	شاخص چارک (Quartile (Q))
Proceedings of the National Academy of Sciences of the United States of America	USA	6403	6324	1.02189	4.93	9.58	Q1
Emerging infectious diseases	USA	4182	4094	0.05940	2.725	7.185	Q1
Journal of Infections Disease	USA	2939	2889	0.07596	2.164	5.045	Q4
Journal of Clinical Microbiology	USA	2384	2329	0.05332	1.381	4.959	Q1
Journal of Virology	USA	37309	31575	0.09997	1.381	4.324	Q1
Antiviral Research	Netherlands	882	865	0.01597	1.137	4.13	Q1
The Journal of Biological Chemistry	Netherlands	2971	2916	0.07596	1.503	4.106	Q2
Viruses Basel	Switzerland	888	863	0.02409	1.221	3.811	Q1
Journal of Clinical Virology	Netherlands	997	980	0.01530	0.970	3.02	Q2
Journal of General Virology	England	6498	6185	0.01877	0.883	2.809	Q2

تحلیل استندادی قلمرو موضوعی کروناویروس

دانه‌های مندرج در جدول ۱ تحلیل استندادی قلمرو موضوعی کروناویروس در بازه زمینی ۱۹۷۰ تا ۲۰۱۹ در پایگاه WoS را نشان می‌دهد. مجلات برتر قلمرو موضوعی کروناویروس در جدول ۲ جزئیات ۱۰ مجله برتر (که بالاتر از ۴۰ مدرک منتشر کرده‌اند) در قلمرو موضوعی کروناویروس ارائه شده است.

جدول ۲ براساس ضریب تاثیر مجلات (۲۲-۲۳) رتبه‌بندی شده است. در جدول فوق، تعداد مقالات ایکن و میزان اثرگذاریمقاله را در کنار کل استندادات، استنداد خاص، میزان خودانتالدی، کشور منتشرکننده مجله و مجلات را نشان می‌دهد. شاخص ایگن، میزان اهمیت نفوذ و اعتبار کلی نشریه علمی است (که مقادیر بالاتر بیانگر اهمیت بیشتر علمی مجله است) (۲۴-۲۶) و میزان اثرگذاری مقاله، میزان اهمیت مقالات مجله در طول پنج سال بعد از انتشار است. میانگین این متغیر عدد ۱
Author	Affiliation	Journal Year
Enjuanes L	Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain	114
Perlman S	Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China	167
Yuen KY	Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA	77
Weiss SR	Department of Microbiology, University of California, Los Angeles, CA, USA	47
Baric RS	Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA	55
Rottier PJM	Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Faculty of Veterinary Medicine, Utrecht, the Netherlands	32
Drostén C	Institute of Virology, Charité Universitätsmedizin, Berlin, Germany	33
Liu DX	Guangdong Province Key Laboratory of Microbial Signals & Disease Control, and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China	32
Makino S	Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA	47
Woo PCY	State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong	37
نتایج حاکی از آن است که در سال‌های دیگر، بیشترین تولید علم در سال‌های ۲۰۰۵ (۲۷۹ مدرک)، ۲۰۰۴ (۲۳۸ مدرک) و ۲۰۰۳ (۲۰۴ مدرک) منتشر شده است. اول‌ترین تولید علم در سال ۲۰۰۲ و ۲۰۰۳ (۲۰۰ مدرک) در سال ۲۰۰۴ و ۲۰۰۳ (۲۰۰ مدرک) منتشر شده است. اول‌ترین نشریه این تولید علم در سال‌های ۲۰۰۵ (۲۷۹ مدرک)، ۲۰۰۴ (۲۳۸ مدرک) و ۲۰۰۳ (۲۰۴ مدرک) منتشر شده است. اول‌ترین تولید علم در سال‌های ۲۰۰۲ و ۲۰۰۳ (۲۰۰ مدرک) در سال ۲۰۰۴ و ۲۰۰۳ (۲۰۰ مدرک) منتشر شده است. اول‌ترین نشریه این تولید علم در سال‌های ۲۰۰۵ (۲۷۹ مدرک)، ۲۰۰۴ (۲۳۸ مدرک) و ۲۰۰۳ (۲۰۴ مدرک) منتشر شده است. اول‌ترین تولید علم در سال‌های ۲۰۰۲ و ۲۰۰۳ (۲۰۰ مدرک) در سال ۲۰۰۴ و ۲۰۰۳ (۲۰۰ مدرک) منتشر شده است. اول‌ترین نشریه این تولید علم در سال‌های ۲۰۰۵ (۲۷۹ مدرک)، ۲۰۰۴ (۲۳۸ مدرک) و ۲۰۰۳ (۲۰۴ مدرک) منتشر شده است. اول‌ترین تولید علم در سال‌های ۲۰۰۲ و ۲۰۰۳ (۲۰۰ مدرک) در سال ۲۰۰۴ و ۲۰۰۳ (۲۰۰ مدرک) منتشر شده است. اول‌ترین نشریه این تولید علم در سال‌های ۲۰۰۵ (۲۷۹ مدرک)، ۲۰۰۴ (۲۳۸ مدرک) و ۲۰۰۳ (۲۰۴ مدرک) منتشر شده است. اول‌ترین تولید علم در سال‌های ۲۰۰۲ و ۲۰۰۳ (۲۰۰ مدرک) در سال ۲۰۰۴ و ۲۰۰۳ (۲۰۰ مدرک) منتشر شده است. اول‌ترین نشریه این تولید علم در سال‌های ۲۰۰۵ (۲۷۹ مدرک)، ۲۰۰۴ (۲۳۸ مدرک) و ۲۰۰۳ (۲۰۴ مدرک) منتشر شده است. اول‌ترین تولید علم در سال‌های ۲۰۰۲ و ۲۰۰۳ (۲۰۰ مدرک) در سال ۲۰۰۴ و ۲۰۰۳ (۲۰۰ مدرک) منتشر شده است. اول‌ترین نشریه این تولید علم در سال‌های ۲۰۰۵ (۲۷۹ مدرک)، ۲۰۰۴ (۲۳۸ مدرک) و ۲۰۰۳ (۲۰۴ مدرک) منتشر شده است. اول‌ترین تولید علم در سال‌های ۲۰۰۲ و ۲۰۰۳ (۲۰۰ مدرک) در سال ۲۰۰۴ و ۲۰۰۳ (۲۰۰ مدرک) منتشر شده است.
این مقاله پژوهشی است که بدون حمایت مالی سازمان‌های عفونی و تنفسی نمای علمی برای پژوهشگران تهیه و در فضای مجازی در سطح دانشهمه‌ای این پژوهش، بروشوری از سوی انجمن مورد سازگاری و عرضه در و گذاران و منابعی برای پژوهشگران نیز می‌کند. به مناسبت نشر مقاله در جایگاه‌های علمی، نتایج این مقاله با نتایج مقالات پژوهشی گوناگون، نتایج راهبردی مانند کروناویروس، برای پژوهشگران، ساختگان و برنامه‌ریزان عرضه بهداشت و درمان جهت شناسایی اهداف درمانی مناسب‌تر، تصمیم گیری بهتر و ارائه راه حل‌های ارتباطی در کوتاه‌ترین زمان ممکن، ضروری است. پیشنهاد می‌گردد، از خلاصه میکروپناسی و معاونت پژوهشی و زورت بهداشت به منوان راهنمای علمی برای پژوهشگران تهیه و در فضای مجازی در سطح گستره‌ای منتشر شود.

14

References

1. World Health Organization (WHO). Novel Coronavirus (2019-nCoV). Available at: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200211-sitrep-22-ncov.pdf (accessed on 14 February 2020).

2. Gralinski EL, Menachery VD. Return of the Coronavirus: 2019-nCoV. Viruses, 2020; 12(2): 135. [DOI:10.3390/v12020135] [PMID]

3. Zhu Z, Zhang Z, Chen W, Cai Z, Ge X, Zhu H, Jiang T, Tan W, and Peng Y. Predicting the receptor-binding domain usage of the coronavirus based on kmer frequency on spike protein. Infection, genetics, and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases. 2018 Jul; 61:183-4. [DOI:10.1016/j.meegid.2018.03.028] [PMID]

4. Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, Pan P, Wang W, Hu D, Liu X, Zhang Q. Coronavirus Infections, and Immune Responses. Journal of Medical Virology. 2020 Jan 25. [DOI:10.1002/jmv.25685] [PMID]

5. Zhao S, Musa SS, Lin Q, Ran J, Yang G & et al. Estimating the Unreported Number of Novel Coronavirus (2019-nCoV) Cases in China in the First Half of January 2020: A Data-Driven Modelling Analysis of the Early Outbreak. J. Clin. Med, 2020; 9(2): 388. [DOI:10.3390/jcm9020388] [PMID]

6. Wang M, Cao R, Zhang L & et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res, 2020. [DOI:10.1038/s41422-020-0282-0] [PMID] [PMCID]

7. Minjw J, Yanbing Z, Zhiyong Z, Zongan L, Yu C, Hong T, Bin S, Zixing H, Yan K, Ping F, Binwu Y, Weimin L. A precision medicine approach to managing Wuhan Coronavirus pneumonia. Precision Clinical Medicine, 2020, pbaa002.

8. Liu J, Zheng X, Tong Q, Li W, Wang B, Sutter K, Trilling M, Lu M, Dittmer U and Yang D. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J Med Virol, 2020; Accepted Author Manuscript. [DOI:10.1002/jmv.25709] [PMID]

9. Daszak P, Olival KJ, Li H. A strategy to prevent future pandemics similar to the 2019-nCoV outbreak. Biosafety and Health, 2020; in Press, Elsevier. [DOI:10.1016/j.bsheal.2020.01.003]
10. Tavakoli A, Karbalaie Niya M H, Keshavarz M, Safarnezhad Tameshke F, Monavari S H. Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Iran J Med Microbiol, 2017; 11 (1):1-8.

11. Momattin H, Al-Ali AY, Al-Tawfiq JA. A Systematic Review of therapeutic agents for the treatment of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Travel Medicine and Infectious Disease, 2019; 30: 9-18. [DOI:10.3390/jcm9020419] [PMID]

12. Vahdat K, Amini A, Najafi A, HaerNejad M J. A Review of Novel Coronavirus, cause of Middle East Respiratory Syndrome. Iran South Med J Bimonthly, 2014; 16 (6):486-492. (Persian)

13. Cui J, Li F & Shi Z. Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology (Nat Rev Microbiol), 2019; 17: 181-192. [DOI:10.1038/s41579-018-0118-9] [PMID]

14. Bonilla-Aldana DK, Quintero-Rada K, Montoya-Posada JP, Ramirez S, Paniz-Mondolfi A, Raban A, Sah R, Rodriguez-Moraes AJ. SARS-CoV, MERS-CoV and now the 2019-novel CoV: Have we investigated enough about coronaviruses? - A bibliometric analysis. Travel medicine and infectious disease. 2020 Jan 30:101566. [DOI:10.1016/j.tmaid.2020.101566] [PMID]

15. Nishiura H, Kobayashi T, Yang Y, Hayashi K, Miyama T, Kinoshita R, Linton NM, Jung SM, Yuan B, Suzuki A, Akhmetzhanov AR. The Rate of Underascertainment of Novel Coronavirus (2019-nCoV) Infection: Estimation Using Japanese Passengers Data on Evacuation Flights. J. Clin. Med., 2020; 9, 419. [DOI:10.3390/jcm9020419] [PMID]

16. Yazdani K, Rahimi-Movaghar A, Nedjat S, Ghalichi L, Khalili M. A 5-year scientometric analysis of research centers affiliated to Tehran University of Medical Sciences. Med J Islam Repub Iran, 2015; 29 (1): 375-384.

17. Yazdani K, Nejat S, Rahimi-Movaghar A, Ghalicheh L, Khalili M. Scientometrics: Review of Concepts, Applications, and Indicators. Iranian Journal of Epidemiology (IJE), 2015; 10 (4): 78-88. (Persian)

18. Molinari A, Molinari JF. Mathematical aspects of a new criterion for ranking scientific institutions based on the h-index. Scientometrics, 2008; 75(2): 339-56. [DOI:10.1007/s11192-007-1872-z]

19. Molinari JF, Molinari A. A new methodology for ranking scientific institutions. Scientometrics, 2008; 75(1):163-74. [DOI:10.1007/s11192-007-1853-2]

20. Rezagholizadeh A, Shayanfar A, Hanaee J, Jouyban A. Scientometric evaluation of pharmaceutical chemistry departments of faculties of pharmacy in Iran. Description of Health 2017; 8(2): 75-87. (Persian)

21. Ivancheva LE. Scientometrics Today: A Methodological Overview. Collnet Journal of Scientometrics and Information Management, 2008; 2: 47-56. [DOI:10.1080/09737766.2008.10700853]

22. Makkizadeh F & Sa'adat F. Bibliometric and thematic analysis of articles in the field of infertility (2011-2015). International journal of reproductive biomedicine (Yazd, Iran) 2017; 15(11): 719-728. (Persian) [DOI:10.29256/ijirm.15.11.719]

23. Singh N, Brar RS, Chavan SB & Singh J. Scientometric analyses and visualization of a scientific outcome on the Nipah virus. CURRENT SCIENCE (A Fortnightly Journal of Research), 2019; 117(10). [DOI:10.18520/cs/v117/i10/1574-1584]

24. Zyoud SH. Global research trends of Middle East respiratory syndrome coronavirus: a bibliometric analysis. BMC Infect Dis, 2016; 16, 255. [DOI:10.1186/s12879-016-1600-5] [PMID] [PMCID]

25. Danesh F, Ghavidel S. Visualizing the Clusters and Dynamics of HPV Research Area. Iran J Med Microbiol, 2019; 13 (4) :266-278. [DOI:10.30699/ijmm.13.4.266]

26. Khasseh A, Fakhar M, Soosaraei M, Sadeghi S. Evaluation of scientific performance of Iranian researchers in parasitology domain in ISI databases. Iran J Med Microbiol, 2011; 4 (4):41-50.

27. Emami Z, Hariri N, Khamseh M E, Nooshinfard F. Mapping diabetes research in Middle Eastern countries during 2007-2013: A scientometric analysis. Medical Journal of the Islamic Republic of Iran, Med Islam Repub Iran, 2018; 32 (1):486-494. [DOI:10.14196/mjrir.32.84] [PMID] [PMCID]

28. Shirshahi S & et al. mapping the structure of surgery discipline in the Science Citation Index. Isfahan University of Medical Sciences, Health Information Management (Health Inf Manage), 2014; 11(7): 830-839.

29. Morovati M, Sotudheh H. Scientific Productivity in Neonates’ Health Field in Scopus. Int J Pediatr, 2016; 4(6): 1837-1846.

30. Soheili F, Danesh F, Mesrinejad F & Isfandyari Moghadam A. Lotka’s Law of Scientific Productivity and Bradford’s Law of Scatter among Researchers at Isfahan University of Medical Sciences based on Web of Science Database. Isfahan University of Medical Sciences, Health Information Management (Health Inf Manage) (2012; 8(6): 766-773.

31. Birkle C, Pendlebury DA, Schnell J & Adams J. Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies, 2020; 1(1), 363-376. [DOI:10.1162/qss_a_00018]

32. Clarivate Analytics, available at https://clarivate.com/webofsciencegroup/essays/impact-factor/ (access Feb 12, 2020).

33. Grech V, Rizk DEE. Increasing importance of research metrics: Journal Impact Factor and h-index. Int Urogynecol J, 2018; 29: 619-620. [DOI:10.1007/s00192-018-3604-8] [PMID]
34. Eigenfactor, available at http://www.eigenfactor.org
(access March 6, 2020).

35. Bergstrom TC, West JD, Wiseman MA. The Eigenfactor™ Metrics. The Journal of Neuroscience (J Neurosci), 2008; 28(45): 11433-11434. [DOI:10.1523/JNEUROSCI.0003-08.2008] [PMID] [PMCID]

36. Bergstrom C. Eigenfactor: measuring the value and prestige of scholarly journals. C&RL News, 2007; 314-316. [DOI:10.5860/crln.68.5.7804]

37. Song Z, Xu Y, Bao L, Zhang L, Yu P, Qu Y, Zhu H, Zhao W, Han Y, Qin C. From SARS to MERS, Thrusting Coronaviruses into the Spotlight. Viruses, 2019; 11(1): 59. [DOI:10.3390/v11010059] [PMID] [PMCID]

38. Leist SR, Jensen KL, Baric RS, Sheahan TP. Increasing the translation of mouse models of MERS coronavirus pathogenesis through kinetic hematological analysis. PLoS ONE, 2019; 14(7): e0220126. [DOI:10.1371/journal.pone.0220126] [PMID] [PMCID]

39. Noroozi chakoli A, Jafari S. Analytical assessment of the relationship between the quality and self-citation in Persian Humanities Journals. Caspian Journal of Scientometrics (CJS). 2014; 1(2): 57-65.

40. Hirsch JE. h-index: An index to quantify an individual's scientific leadership. Scientometrics, 2019; 118, 673-686. [DOI:10.1007/s11192-018-2994-1]

41. dehghanizadeh M, Haji Zeinolabedini M, hasanzadeh M. Citation analysis of the articles from the faculty members of Tehran University indexed in Islamic World Science Citation Center (ISC), 2006-2011. Scientometrics Research Journal (Scientific Bi-Quarterly of Shahed University), 2016; 2(3): 99-111.

42. Shaibu M, Anthony M & Emmanuel N. On the influence of uncited publications on a researcher's h-index. Scientometrics, Springer; Akadémiai Kiadó, 2020; 122(3): 1791-1799. [DOI:10.1007/s11192-020-03356-1]