Supporting Information

Surface engineering of gold nanorods for cytochrome c bioconjugation: an effective strategy to preserve protein structure

Tiziana Placido,a,‡ Lorenzo Tognaccini,b,‡ Barry D. Howes,b Alessandro Montrone,c Valentino Laquintana,d Roberto Comparelli,a M. Lucia Curri,a Giulietta Smulevich,b,* and Angela Agostiano,a,c*

a CNR-IPCF Istituto per I Processi Chimico-Fisici, U.O.S. Bari, c/o Dip. Chimica Via Orabona 4, 70126 Bari, Italy
b Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
c Università degli Studi di Bari – Dip. di Chimica, Via Orabona 4, 70126 Bari, Italy.
d Dipartimento di Farmacia – Scienze del Farmaco, Università degli Studi di Bari, Via Orabona 4, 70126 Bari, Italy
‡These authors contributed equally to this work.

Corresponding Authors
*angela.agostiano@uniba.it. *giulietta.smulevich@unifi.it.
Figure S1: Zeta potential distribution recorded for Au NR, AuNRs@PCC and AuHCc.

Figure S2: Size distribution by intensity recorded for Au NR, AuNRs@PCC and AuHCc.
Table S1: Assignments of the intense bands of the IR spectra.\(^1,2\)

A	B	C	D	Assignment
3415	3390	3340		v (O-H)
/	/	3288	/	v (N-H)
				Amide
/	2921	/	2921	v\(_s\) (C-H)
/	2852	/	2852	v\(_as\) (C-H)
1702	/	/	/	v (C=O)dimer
/	/	1652	1652	v (C=O)
				Amide I
/	/	1545	1541	v (C=O)
				Amide II
1558	1558	/	1558	v (C-O)
				asymmetrical
1450	1455	1455	1456	v (COO\(^-\))
1408	1410	1396	1417	v (C-O)
				symmetrical
1248	/	/	/	v (C-O)
				dimer
814	/	/	/	\(\delta\) (O-H)
				dimer
Figure S3: Resonance Raman spectra of AuHCC (b) compared with the spectra of pure (Fe$^{3+}$) (a) and (Fe$^{2+}$) (c) Cyt c solutions at the same concentration calculated from the electronic absorption spectra of AuHCC (1 μM, see Figure 1, green spectrum). Experimental conditions: 514.5 nm excitation wavelength, laser power at the sample 40 mW, 10 min integration time. The spectra have been shifted along the ordinate axis to allow better visualization.

Figure S4: Resonance Raman spectra of AuHCC compared with the spectra of pure (Fe$^{3+}$) and (Fe$^{2+}$) Cyt c solutions. Experimental conditions: 514.5 nm excitation wavelength; (Fe$^{3+}$) laser power at the sample 80 mW, average of 8 spectra with 40 min integration time; (AuHCC) laser power at the sample 70 mW, average of 15 spectra with 2 h 30 min integration time; (Fe$^{2+}$) laser power at the sample 35 mW, average of 2 spectra with 10 min integration time. The spectra have been shifted along the ordinate axis to allow better visualization.
Table S2: Resonance Raman frequencies and vibrational assignments of Cyt c and AuHCCa.

Mode	Symmetry	$\nu_{exc} = 406.7$ nm Cyt c	$\nu_{exc} = 514.5$ nm Cyt c	$\nu_{exc} = 406.7$ nm AuHCc	$\nu_{exc} = 514.5$ nm AuHCc
		Cyt c Fe$^{2+}$	Cyt c Fe$^{3+}$	AuHCc Fe$^{2+}$	AuHCc Fe$^{3+}$
v8	A_{1g}	346	348	348	348
v20	E_u	357	360	359	359
δ(CpC6Ca)		372,380	372,382	374,382	374,382
δ(CpC6aS)		391,400	391,400	398	398
δ(CpC6bC)		413,420	413,420	413,418	413,418
γ_{22}	E_g	445	446	446	446
ν_{33}	B_{2g}	478	480	480	480
γ_{12}	B_{1u}	520	522	522	522
γ_{21}	E_g	551,568	554,568	554,568	554,568
ν(C-S)		683,691	693	683,692	683,692
v7	A_{1g}	700	702	702	702
v15	B_{1g}	750	750	750	750
ν_{22}	A_{2g}	1130	1125	1130	1130
ν_{30}	B_{2g}	1173	1169	1173	1173
ν_{13}	B_{1g}	1230	1234	1230	1230
ν_{42}	E_u	1242	1247	1247	1247
ν_{21}	A_{2g}	1313	1316	1313	1313
ν_{4}	A_{1g}	1361	1375	1372	1363
ν_{20}	A_{2g}	1400	1409	1402	1402
ν_{3}	A_{1g}	1492	1504	1492,1502	1492,1502
ν_{11}	B_{1g}	1546	1564	1566	1547,1561
ν_{19}	A_{2g}	1584	1585	1583,1583	1585
ν_{2}	A_{1g}	1592	1584	1585	1585
ν_{37}	E_u	1604	1596	1604	1604
ν_{10}	B_{1g}	1622	1635	1622,1635	1621,1635

aThe band assignments have been made on the basis of Hu 1993. The bands assigned to Fe$^{2+}$ and Fe$^{3+}$ HCC are indicated in green and black, respectively.
Figure S5: AuNRs@PAA + HCc before washing (blue), after (pink) washing by centrifugation and after $K_3[Fe(CN)_6]$ addition (green).

Figure S6: Resonance Raman spectra of AuHCc (b) compared with the spectrum of pure (Fe^{3+}) (a) HCc solution at the same concentration calculated from the electronic absorption spectra of AuHCc (1 μM, see Figure 1, green spectrum). Experimental conditions: 406.7 nm excitation wavelength, laser power at the sample 10 mW, 5 min integration time.
Figure S7: Resonance Raman spectra of AuHCc obtained with 406.7 (panel A) and 514.5 (panel B) nm excitation wavelengths. The difference spectra (a, a’) were obtained by subtraction of the blank spectrum (b, b’) from that containing Cyt c (c, c’). Experimental conditions: (b, c) laser power at the sample 10 mW, (b) average of 9 spectra with 3 h integration time, (c) average of 48 spectra with 4 h integration time; (b’, c’) laser power at the sample 70 mW, (b’) average of 30 spectra with 5 h integration time (c’) average of 45 spectra with 7 h 30 min integration time. The spectra have been shifted along the ordinate axis to allow better visualization.
References

1. Jiang, X.; Jiang, J.; Jin, Y.; Wang, E.; Dong, S., Effect of Colloidal Gold Size on the Conformational Changes of Adsorbed Cytochrome c: Probing by Circular Dichroism, UV–Visible, and Infrared Spectroscopy. *Biomacromolecules* **2005**, *6*, 46-53.

2. Hu, Y.; Jiang, X.; Ding, Y.; Ge, H.; Yuan, Y.; Yang, C., Synthesis and characterization of chitosan–poly(acrylic acid) nanoparticles. *Biomaterials* **2002**, *23*, 3193-3201.

3. Hu, S.; Morris, I. K.; Singh, J. P.; Smith, K. M.; Spiro, T. G., Complete assignment of cytochrome c resonance Raman spectra via enzymic reconstitution with isotopically labeled hemes. *J. Am. Chem. Soc.* **1993**, *115*, 12446-12458.