Prevalence of *Toxoplasma gondii* infection among small mammals in Tatarstan, Russian Federation

Nikolai D. Shamaev¹,², Eduard A. Shuralev¹,³,⁵, Oleg V. Nikitin⁵, Malik N. Mukminov¹,³, Yuri N. Davidyuk¹, Alexander N. Belyaev⁶, Guzel Sh. Isaeva⁷,⁸, Vasil B. Ziatdinov⁷, Nail I. Khammadoy⁷,⁹, Regina F. Safina⁴, Gaysha R. Salmanova⁴, Guzel M. Akhmedova³, Kamil S. Khaertynov¹,⁴, Taizo Saito⁹, Katsuya Kitoh²,⁹,¹⁰ & Yasuhiro Takashima²,⁹,¹⁰

Toxoplasma gondii is a zoonotic parasite with a wide host range that includes humans, domestic animals and wild animals. Small mammals serve as intermediate hosts for *T. gondii* and may contribute to the persistence of this parasite in the environment. Mass mortality in wild animals and deaths in rare endemic species make the study of this parasite of growing importance. In this study, *T. gondii* infection prevalence was evaluated in brain tissues from 474 small mammals captured at 26 trapping points in urban and rural areas of Tatarstan, Russian Federation. Nested PCR was used to detect the *T. gondii* B1 gene in the samples. Overall, 40/474 samples (8.44%) showed B1 gene positivity. *T. gondii* infection among the wild small mammals trapped in the rural area was significantly higher as a whole than that of the urban area as a whole. Multivariate logistical regression analysis also showed that the trapping area (rural or urban) significantly contributed to *T. gondii* positivity. Vegetation in the trapping points, small mammal species, sex, age or distance from the trapping points to the nearest human settlements did not significantly affect *T. gondii* positivity in the sampled small mammals.

Toxoplasma gondii is one of the most wide-spread parasites in the world. With its broad-host-range, it infects almost all mammals and birds including humans, domestic animals and wild animals. Although toxoplasmosis in humans and domestic animals is not usually symptomatic¹, mass mortality in wild animals and deaths in rare endemic species have been reported²–⁶. Hence, attempts to understand the prevalence of *T. gondii* in wild animals are warranted. In a study conducted in Panama City, it was reported that *T. gondii* prevalence among small mammals was higher than in humans and birds from the same area⁸. Cats, the definitive hosts for *T. gondii*, shed huge numbers of environmentally-resistant oocysts in their feces, and small mammals are more frequently preyed upon by domestic cats than other intermediate hosts⁹. Therefore, it is important to understand the status of *T. gondii* prevalence among wild small mammals to understand the local situation for *T. gondii* distribution.

Tatarstan, Russian Federation is located on the East European Plain in the middle reaches of the Volga River (Fig. 1A). In this area, the Volga-Kama Nature Reserve in Tatarstan contains approximately a quarter of the World’s animal species¹⁰. Understanding the situation regarding infectious pathogens among wild animals in Tatarstan is therefore worthwhile. We have previously reported the high seroprevalence of toxoplasmosis in humans, cats and domestic animals in Tatarstan, including in the capital city, Kazan¹¹,¹². However, very little is...
known about *T. gondii* prevalence among wild animals. Thus, in this study, we investigated *T. gondii* infection prevalence among wild small mammals in the Tatarstan.

Results

T. gondii prevalence among small mammals in Tatarstan, Russian Federation. To assess the prevalence of *T. gondii* among small mammals in Tatarstan, Russian Federation, we captured 474 of these animals at 26 trapping places (Fig. 1, Supplementary Table S1) and detected the *T. gondii* B1 gene in brain DNA from them using nested PCR. Altogether, 40/474 (8.44%, 95% confidence interval; CI: [6.16–11.4]) of the brain samples from the small mammals showed *T. gondii* B1 gene positivity (Table 1). We found that 13.56% (24/176) and 5.37% (16/298) of the small mammals trapped in the rural and urban areas showed *T. gondii* positivity, respectively, 16.66% (2/12) and 8.35% (38/455) of the individuals trapped in fields and forests, respectively, were positive, and 6.04% (9/149) and 4.16% (6/144) were male and female, respectively. *T. gondii* positivity among their ages was 8.77% (5/57) for juveniles (aged 0–2 months), 3.94% (5/127) for mature adults (aged 3–6 months), and 6.17% (10/162) for adults (aged > 6 months). Positivity among the small mammal species was 7.95% (24/302) for *Myodes glareolus* (hereafter called *My. glareolus*), 12.50% (1/8) for *Apodemus agrarius*, 11.29% (14/124) for *A. uralensis*, and 9.09% (1/11) for *A. flavicollis*. Although five *Microtus arvalis* (hereafter called *Mi. arvalis*), 13 *Sorex araneus*, and one *Dryomys nitedula* were also examined, no individuals showed *T. gondii* positivity. The distances from the trapping points to the nearest human settlements varied by 170–3890 m. As shown in Fig. 2, unlike reports from other regions\(^2\), no clear correlation was found between proximity to human settlements and high infection rates.

Risk factors for *T. gondii* infection. We performed multivariate logistic regression analysis to separately validate the following as risk factors for *T. gondii* infection: trapping point area (urban or rural), vegeta-
tion (forest or field), small mammal species type (alien or non-alien species), age (0–2 months-old juveniles, 3–6 months-old adults or ≥ 6 months–old), sex (male or female) and distance from the trapping point to the nearest human settlement. In the classification of small mammal species, small mammal species were classified as alien ($A. agrarius, A. uralensis, A. flavicollis, M. arvalis$) and non-alien ($M. glareolus, S. araneus, D. nitedula$)13.

The forward selection procedure generated a model that included area, vegetation and the type of small mammal species that best fitted the data (Model 3, Supplementary Table S2). Other factors such as age, sex and distance from the trapping point to the nearest human settlement were not significant.

Table 1. *T. gondii* prevalence in small mammals trapped in Tatarstan, Russian Federation.

AreaCategory	Examined	Positive	Negative	Prevalence (%)	95% CI
Area					
Urban					
Kazan city	294	15	279	7.95	5.26–11.74
Naberezhnye Chelny city	3	1	2	33.33	1.76–87.46
Unknown	1	0	1	0	0–94.54
Rural					
Vysozkogorsky district	22	1	21	4.54	0.24–24.88
Pestrechinsky district	17	3	15	17.64	4.67–44.2
Laishevsky district	16	3	13	18.75	4.97–46.3
Mamadyshsky district	40	5	35	12.5	4.7–27.6
Telabuzhsky district	14	1	13	7.14	0.37–35.8
Nizhnekamsky district	37	6	31	16.21	6.77–32.68
Tukayevsky district	25	5	20	20	7.6–41.3
Unknown	5	0	5	0	0–53.7
Vegetation					
Urban					
Forest	294	15	279	7.95	5.26–11.74
Field	3	1	2	33.33	1.76–87.46
Rural					
Unknown	1	0	1	0	0–94.54
Forest	161	23	138	14.29	9.45–20.87
Field	9	1	8	11.11	0.58–49.33
Unknown	6	0	6	0	0–48.32
Sex					
Male	149	9	140	6.04	2.97–11.5
Female	144	6	138	4.16	1.7–9.24
Unknown	181	25	156	13.81	9.3–19.9
Species					
Myodes glareolus	302	24	278	7.95	5.26–11.74
Apodemus uralensis	124	14	110	11.29	6.54–18.53
Apodemus agrarius	8	1	7	12.5	0.65–53.32
Microtus arvalis	5	0	5	0	0–53.7
Sorex araneus	13	0	13	0	0–28.34
Apodemus flavicollis	11	1	10	9.09	0.47–42.88
Dryomys nitedula	1	0	1	0	0–94.54
Unknown	8	0	8	0	0–40.23
Age					
Juveniles 0–2 months old	57	5	52	8.77	3.27–20.04
Mature adult 3–6 months old	127	5	122	3.94	1.45–9.4
Adult older than 6 months old	162	10	152	6.17	3.16–11.37
Unknown	128	20	108	15.62	10–23.34
Total	474	40	434	8.44	6.16–11.4

Figure 2. Prevalence of *T. gondii* B1-positive small mammals in each distance range to the nearest human settlement. Observed prevalence (black circles) and 95% confidence intervals (black lines) are shown.
from trapping points to the nearest human settlements were not included in the model. In this best fitted model, the only significant factor was the area, with neither vegetation nor species deemed significant (Table 2). The model identified rural area as a risk factor (Fig. 3). The actual observed prevalence of
T. gondii infection was also significantly higher in the rural area than the urban area (Fig. 3).

Discussion

In this study, we surveyed *T. gondii* infection among small mammals in Tatarstan, Russian Federation. The overall *T. gondii* prevalence in these small mammals was 8.44%. In addition to nested-PCR targeting the B1 gene, highly sensitive *T. gondii* DNA detection methods such as the LAMP method have been reported, but the sensitivities of these methods are similar with that of nested-PCR targeting the B1 gene.

It was reported that more than 30% house mice, *Mus musculus* and *Rattus rattus*, in the Omsk city, Russian Federation were infected with *T. gondii*. However, as far as we know, there is no report about *T. gondii* prevalence among wild rodents in other area of Russian Federation. In several European countries (France, Czech Republic, Sweden and Switzerland) the prevalence of *T. gondii* among wild small mammals living in rural forests was 3–7%, which is not dissimilar to our results. Using logistical regression analysis, we found that the trapping area (rural/urban), but not the vegetation in the trapping spots, species, sex, age or distance from the trapping points to the nearest human settlements, significantly contributed to the prevalence of *T. gondii* among the small mammals. This result is reinforced by the fact that *T. gondii* infection prevalence among the small mammals trapped in the rural area was significantly higher statistically than that in the urban area.

Although the reason why small mammals in the rural area were more frequently infected with *T. gondii* is unknown, the ranging behavior of wild small mammals in the urban and rural areas might differ, thereby affecting the possibility of their exposure to *T. gondii* oocysts. Each small mammal species has a different habitat and range. However, in this study, similar species were captured in rural and urban areas (Supplement Fig. S1). In this study, species-specific behavior cannot explain the higher prevalence of *T. gondii* infections in the rural-captured small mammals. If small mammals in rural areas have a bigger ranging behavior than those in urban areas it could result in more frequent exposure to *T. gondii*. However, it is not yet known whether the ranging behavior of the same small mammal species in rural and urban areas differs. It will therefore be necessary to investigate the behavior of each small mammal species living in such areas.

T. gondii infection in small mammals might also depend on the defecation habits of stray and free-ranging domestic cats in urban and rural areas. It was reported in France that the cat feces density in rural areas is higher than that in urban areas. A similar situation may also exist in Tatarstan. In the present study, *T. gondii* infection was confirmed in a small mammal captured in a rural area 3.8 km from the nearest human settlement. *T. gondii*-infected rodents were also found 2.5 km from the nearest human settlement in a rural area of London, UK. In rural areas, the home-range size of free-ranging domestic cats is wider than that in urban areas. Thus, it is possible that in the rural areas of the Tatarstan, Russian Federation, stray or free-ranging domestic cats deeply invade the forests and spread *T. gondii* oocysts in their fecal droppings. As far as we know, there are no reports of cat numbers or infection rates in the area and further investigation is needed.
In addition to oocyst dissemination by cats, the methods used for garbage disposal in urban and rural areas might also affect *T. gondii* infection prevalence among wild animals. Unauthorized small-scale garbage collection sites are used in the rural forests of the Tatarstan, which both free-ranging domestic cats and wild animals can freely access. Hence, cysts contained in meat-derived food waste might be an infection source in these rural areas. In this study, we show that *T. gondii* infection among wild small mammals in the rural area is, as a whole, significantly higher than in the urban area as a whole, regardless of the former being a greater distance from human activity zones. Therefore, further research is needed to clarify the source and route of *T. gondii* transmission in wild animals.

Methods

Study area and sampling. Small mammals (murid rodents and shrews) were captured using mouse-type snap traps in Tatarstan, Russian Federation (Fig. 1, Table S1). Area type (urban or rural), vegetation (forest or field) and distance from trapping points to the nearest human settlement were recorded. The distinction between forest and field was made based on the UN Food and Agriculture Organization’s criteria. Each administrative division in the Tatarstan was defined to be urban or rural by the Federal Service of State Statistics of Russian Federation. Based on these criteria, Kazan city and Naberezhnye Chelny city were classified as urban districts and Vysokogorsky district, Yelabuzhsky district, Laishhevsky district, Mamadyshsky district, and Nizhnekamsky district were classified as rural districts. Small mammals were captured during the spring and fall periods of 2016 and 2017. Fifty traps were placed in a line every 5 m in one place. Traps were baited and left for one night. Animal suffering was minimized as snap traps cause rapid death in murid rodents and shrews. Each captured small mammal’s species, age, and sex were morphologically identified using a reference guide, and the animals were then stored at −20 °C until their brains were isolated.

DNA extraction and PCR. Brain tissue samples were prepared as described previously. Brain samples stored at −20 °C were transferred to a −86 °C deep freezer. Each deep-frozen whole brain sample was homogenized in 1 ml of a 0.9% saline solution. Total DNA was extracted from the brain tissues of each small mammal using a Genomic DNA Purification Kit (Promega, Madison, WI, USA), following the manufacturer's instructions. Nested PCR was performed with the Takara PCR Amplification Kit (Takara Bio Inc., Foster City, California, USA) according to the manufacturer’s instructions. The primer sets and PCR conditions used to detect the B1 gene from *T. gondii* were those described previously.

Mapping. Spatial referencing of the sampling sites was conducted using global positioning system navigation with a Garmin eTrex 10 device. Visualization of cartographic data and measurements of the distances from the trapping points to the nearest human settlements were performed using QGIS 3.12 software. Geodetic coordinates were projected into planar rectangular coordinates in the Universal Transverse Mercator projection on the WGS-84 ellipsoid (Universal Transverse Mercator, zone 39N). The overview map of the European part of Russia was made in the Lambert Conformal Conic Projection. Map coordinates are represented as geodetic coordinates (WGS-84, degrees and minutes north latitude and east longitude). To visualize thematic objects (administrative boundaries, forests, agricultural lands, and water bodies), a set of vector data layers, NextGIS (Russia), was purchased from OpenStreetMap and contributors, 2021. Data license: ODbL.

Dataset and statistical analyses. Multivariate logistic regression was performed using the R statistical software package (version 3.6.3) to assess the trapping point area (urban or rural), vegetation (forest or field), small mammal species type (alien or non-alien species), age (0–2 months-old juveniles, 3–6 months-old adults or ≥ 6 months old), sex (male or female) and distance from trapping points to the nearest human settlements as risk factors for PCR positivity. According to previous reports, four species, *Mi. arvalis*, *A. flavicollis*, *A. agrarius*, *A. uralensis*, and three species, *My. glareolus*, *S. araneus* and *D. nitelula* are considered alien and non-alien species, respectively. Quantitative data were replaced with 0 or 1 dummy variables, and age data were replaced by 0, 1 and 2 for juveniles, adults and elders, respectively. Multicollinearity of the explanatory variables was evaluated using Spearman’s coefficient calculated using dplyr, FSA and psych packages. None of the Spearman’s coefficients were >0.6. To find the best fit model, a forward selection procedure was used. Predictive performance and model fitting were assessed using the area under the receiver operating characteristic (ROC) curve, area under the curve (AUC) and corrected Akaike’s information criterion (AICc) with Akaike weight (Wi). AICc and Wi were calculated using the MuMIn package, and the AUC was calculated using the R pROC package. P-values of <0.05 were considered statistically significant. The delta method was used to compute the standard errors for the predicted probabilities based on the multinomial logit model. *T. gondii* prevalence confidence intervals (95% CI) were estimated based on 468/474 samples (6 samples were excluded from analysis because they lacked information).
Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request. All data analyzed during this study are included in this published article (and its Supplementary Information files).

Received: 16 February 2021; Accepted: 18 October 2021
Published online: 12 November 2021

References

1. Tenter, A. M., Heckeroth, A. R. & Weiss, L. M. Toxoplasma gondii: from animals to humans. Int. J. Parasitol. 30, 1217–1258. https://doi.org/10.1016/S0020-7519(00)00114-7 (2000) (published correction appears in Int. J. Parasitol. 31, 217–20 (2001)).
2. Dubey, J. P., Murata, F. H. A., Cerqueira-Cézar, C. K., Kwok, O. C. H. & Su, C. Epidemiological significance of Toxoplasma gondii infections in wild rodents: 2009–2020. J. Parasitol. https://doi.org/10.1645/20-121 (2021).
3. Conrad, P. A. et al. Transmission of Toxoplasma: Clues from the study of sea otters as sentinels of Toxoplasma gondii flow into the marine environment. Int. J. Parasitol. https://doi.org/10.1016/j.ijpara.2005.07.002 (2005).
4. Loss, S. R., Will, T. & Marra, P. P. The impact of free-ranging domestic cats on wildlife of the United States. Nat. Commun. https://doi.org/10.1038/sncomm0032380 (2013).
5. Howe, L., Hunter, S., Burrows, E. & Roe, W. Four cases of fatal toxoplasmosis in three species of endemic New Zealand birds. Avian Dis. https://doi.org/10.1637/10625-080413-Case.1 (2014).
6. Loss, S. R., Will, T. & Marra, P. P. The impact of free-ranging domestic cats on wildlife of the United States. Nat. Commun. https://doi.org/10.1038/sncomm0032380 (2013).
7. Krauze-Gryz, D., Żmihorski, M. & Gryz, J. Annual variation in prey composition of domestic cats in rural and urban environment. Urban Ecosyst. 20, 945–952. https://doi.org/10.1007/s11252-016-0634-1 (2017).
8. Shuralev, E. A. The impact of free-ranging domestic cats on wildlife of the United States. Nat. Commun. https://doi.org/10.1038/sncomm0032380 (2013).
9. Shamaev, N. D. The impact of free-ranging domestic cats on wildlife of the United States. Nat. Commun. https://doi.org/10.1038/sncomm0032380 (2013).
10. Tolkachev, O. V. A study on the migrations of murine rodents in urban environments. Russ. J. Ecol. 47, 399–404. https://doi.org/10.1134/S1067413616040147 (2016).
11. Tenter, A. M., Heckeroth, A. R. & Weiss, L. M. Toxoplasma gondii seroprevalence in goats, cats and humans in Russia. Parasitol. Int. https://doi.org/10.1016/j.ijpara.2017.10.014 (2018).
12. Shuralev, E. A. Toxoplasma gondii seroprevalence in goats, cats and humans in Russia. Parasitol. Int. https://doi.org/10.1016/j.ijpara.2020.102067 (2020).
13. Khiyap, L. A., Echikspicy, V. T. & Bobrov, V. V. Diversity of alien mammal species in different regions of Russia. Russ. J. Biol. Invasions. https://doi.org/10.1134/s2075111711014059 (2011).
14. Fallahi, S., Seyyed Tabaei, S. J., Pournia, V., Zebardast, N. & Kazemi, R. Comparison of loop-mediated isothermal amplification (LAMP) and nested-PCR assay targeting the 18S and B1 gene for detection of Toxoplasma gondii in blood samples of children with leukaemia. Diagn. Microbiol. Infect. Dis. 84, 321–326. https://doi.org/10.1016/j.diagmicrobio.2014.02.014 (2014).
15. Sidorov, G. N. Zoonoticheskie infekcii i invazii domovoi myshi i seroj krysy v urbocenozah [Zoonotic infections and invasions of house mice and gray rats in urban cenoses. Veterinarnaya patologiya 2(17), 35–40 (2006).
16. Tolkachev, O. V. A study on the migrations of murine rodents in urban environments. Russ. J. Ecol. 47, 399–404. https://doi.org/10.1134/S1067413616040147 (2016).
17. Vukčević-Radić, O., Matic, R., Kataranovski, D. & Stamenković, S. Spatial organization and home range of Apodemus flavicollis and A. agrarius on Mt. Avala, Serbia. Acta Zoologica Academiae Scientiarum Hungaricae. 52, 81–96 (2006).
18. Musser, G. G. & Carleton, M. D. Superfamily Muroidea. In: Musser, G. G. & Carleton, M. D. (eds) Families of mammals. New York: Columbia University Press, 747–943 (2005).
19. Andreychev, A. V. & Kiyaykina, O. S. Homing in the forest dormouse (Muscardinus avellanarius). - 3rd edition. -Kazan: Ideal-press, 759 p. (2016).
20. Ogle, D. H., Wheeler, P. & Dinno, A. FSA: Fisheries Stock Analysis (2020).
21. Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research. Northwestern University, Evanston, Illinois. R package version 2.0.9, https://github.com/drlencang/FSA (2020).
22. Bartók, K. MuMIn: Multi-model inference. R package, version 0.12.2. http://rforge.r-project.org/proj-ects/mumin/ (2009).
23. Robin, X. et al. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. https://doi.org/10.1186/1471-2105-12-77 (2011).
24. Liu, X. Mixed-effects multinomial logit model for nominal outcomes. Methods Appl. Longit. Data Anal. https://doi.org/10.1016/b978-0-12-801342-7.00011-3 (2016).
Acknowledgements
This study was funded in part by the Russian Foundation for Basic Research (RFBR), Project No. 19-34-90024, and in part by the Research Program on Emerging and Re-emerging Infectious Diseases of the Japan Agency for Medical Research and Development (18fk0108010j0003 and 19fk0108047h0003), and the Joint Research Program of the Research Center for Zoonosis Control, Hokkaido University. We thank Sandra Cheesman, PhD, from Edanz Group (https://en-author-services.edanz.com/ac) for editing a draft of this manuscript.

Author contributions
N.D.S., Y.T., E.A.S. designed the experiments, investigated, analyzed and validated the data, and wrote the original draft of the manuscript. O.V.N., M.N.M., Y.N.D., A.N.B., G.Sh.I., V.B.Z., N.I.K., R.E.S., G.R.S., G.M.A., K.S.K., T.S., K.K. provided resources, and collected and curated the data. N.D.S., Y.T., E.A.S. acquired the funding for the experiments, administrated the project, wrote and revised the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-01582-y.

Correspondence and requests for materials should be addressed to Y.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021