Potential Factors Enabling Human Body Colonization by Animal 
*Streptococcus dysgalactiae* subsp. *equisimilis* Strains

Marcin Ciszewski¹ · Eligia M. Szewczyk¹

Received: 26 September 2016 / Accepted: 14 March 2017 / Published online: 18 March 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract *Streptococcus dysgalactiae* subsp. *equisimilis* (SDSE) is a pyogenic, Lancefield C or G streptococcal pathogen. Until recently, it has been considered as an exclusive animal pathogen. Nowadays, it is responsible for both animal infections in wild animals, pets, and livestock and human infections often clinically similar to the ones caused by group A streptococcus (*Streptococcus pyogenes*). The risk of zoonotic infection is the most significant in people having regular contact with animals, such as veterinarians, cattlemen, and farmers. SDSE is also prevalent on skin of healthy dogs, cats, and horses, which pose a risk also to people having contact with companion animals. The main aim of this study was to evaluate if there are features differentiating animal and human SDSE isolates, especially in virulence factors involved in the first stages of pathogenesis (adhesion and colonization). Equal groups of human and animal SDSE clinical strains were obtained from superficial infections (skin, wounds, abscesses). The presence of five virulence genes (*prtF1, prtF2, lbm, cbp, emm* type) was evaluated, as well as ability to form bacterial biofilm and produce BLIS (bacteriocin-like inhibitory substances) which are active against human skin microbiota. The study showed that the presence of genes coding for fibronectin-binding protein and M protein, as well as BLIS activity inhibiting the growth of *Corynebacterium* spp. strains might constitute the virulence factors which are necessary to colonize human organism, whereas they are not crucial in animal infections. Those virulence factors might be horizontally transferred from human streptococci to animal SDSE strains, enabling their ability to colonize human organism.

Keywords *Streptococcus dysgalactiae* subsp. *equisimilis* · Animal-to-human transfer · Virulence factors · Adhesion · Colonization resistance · Biofilm formation

Introduction

*Streptococcus dysgalactiae* subsp. *equisimilis* (SDSE) is a pyogenic pathogen possessing Lancefield C or G antigens. Until recently, it has been considered as an exclusive animal pathogen. Nowadays, it is responsible for both animal infections in wild animals, pets, and livestock [1–4] and human infections often clinically similar to the ones caused by group A streptococcus (*Streptococcus pyogenes*) [5–7]. According to the outline of evolutionary changes involved in crossing an animal-to-human interspecies barrier, presented by Wolfe et al. in *Nature* [8], SDSE is probably located on the second stage of this process—it is being isolated from humans, what has already been reported [9, 10]; however, there is no evidence for human-to-human transfer. Due to the similarity of SDSE and *S. pyogenes* virulence factors identified so far, as well as clinical pictures of human infections caused by these pathogens, horizontal gene transfer (HGT) between these species has been suggested [11], especially via bacteriophage transduction process [12]. HGT might also occur between SDSE strains, as an element of adaptation to the new ecological niche, i.e., human organism [13].

Bacterial pathogenesis consists of complex set of mechanisms, comprising adhesion, colonization, and spreading in the human organism, inactivation of human immunological
system elements as well as production of toxins [14]. The first process, which involves various virulence factors of animal and human SDSE strains, is adhesion which comprises biofilm formation, the presence of M protein, fibronectin, laminin, and collagen binding proteins as well as the production of BLIS (bacteriocin-like inhibitory substances) enabling colonization of human skin microbiota [15, 16].

In order to determine factors that might be specific markers enabling animal SDSE strains to break interspecies barrier and colonize human organism, the prevalence of virulence factors involved in adhesion and colonization processes both in groups of human and animal clinical SDSE strains has been evaluated and compared.

**Materials and Methods**

**Bacterial Strains**

Six human SDSE isolates from superficial infections (from dermatitis, wounds, bedsores, skin abscesses) were obtained from Synevo Medical Laboratory in Łódź, Poland. Six animal SDSE isolates from clinical cases in pets (dogs—from wounds, skin abscesses) were obtained from VETCOMPLEX Veterinary Diagnostic Centre in Łódź, Poland.

**Identification**

MALDI-TOF technique (matrix-assisted laser desorption ionization-time of flight) [17] which compares cell proteins specters with database (bioMérieux VITEK® MS) was used to identify the analyzed clinical strains. All bacterial strains were also identified by means of RISA (16S–23S rDNA intergenic spacer region) method, as previously described [18, 19]. Genetic identification of the selected strains was additionally confirmed by means of amplification of 16S rDNA from the selected strains, using specific primers [20].

**Virulence Genes Detection**

PCR reactions were conducted with primers as described in Table 1 and with 2xPCR Master Mix Plus kit (A&A Biotechnology, Poland). PCR reaction temperature profile was as follows: initial denaturation 2:30 min. −94 °C, 30 cycles (denaturation 0:30 min. −94 °C, annealing 0:30 min. −56 °C, elongation 1:00 min. −72 °C), final elongation 10:00 min. −72 °C. The products of PCR reactions were separated in agarose gel electrophoresis [1% agarose, Midori Green Advance DNA Stain (NIPPON Genetics Europe GmbH)]. Negative controls were provided for all reactions, as well as positive controls in order to evaluate the presence of DNA—primers specific for the fragment of gene coding for 16S rRNA. The evaluation of M protein types was conducted according to CDC emm typing protocol [21].

**Biofilm Formation**

Biofilm formation assay was performed using crystal violet (CV) method described by Courtney et al. [24] with minor modifications. SDSE cultures were grown overnight in THY (Todd-Hewitt Broth with 2% Yeast Extract). 100 µl of the suspension was added to wells of a polystyrene microtiter plate (type F). The plates were incubated in a humidified environment for 48 h at 37 °C. Afterwards, the plates were washed four times with PBS.

### Table 1

| Virulence factor | Primer | Oligonucleotide sequence (5′–3′) | Amplicon size (bp) | Reference |
|-----------------|--------|----------------------------------|-------------------|-----------|
| Fibronectin binding protein 1 (prtF1) | prtF1_F | TATCAAAATCTTCTAAGTGTGAG | 930 | [22] |
| | prtF1_R | AATGGAAACACTAACCTCGGACGG | | |
| Fibronectin binding protein 2 (prtF2) | prtF2_F | ATAGGATTGTCGGAGTATCA | 2000 | [22] |
| | prtF2_R | TATGTTGTCTTCCAAC | | |
| Laminin binding protein (lmb) | lmb_F | GATGTGAGGATGATCCAATC | 135 | [23] |
| | lmb_R | GCTTCTAAGGTATGTAATG | | |
| Collagen binding protein (cbp) | cbp_F | GACAAACTCTGGAGAAGCTCA | 240 | [23] |
| | cbp_R | TCTGTGTCGACGAGTGG | | |
| M protein (emm) | emm_F | TATT(C/G)GCTTAGAAATTTA | ~1200 | [21] |
| | emm_R | GCAAGTTCTTCAAGCTTGGT | | |
| | emmseq2 | TATTCGCTTGGAAAAAATATTAAACAGG | – | |
| DNA positive control (16S rDNA fragment) | 16S_frag_F | GGGACCAACAGGATTAG | 235 | This study |
| | 16S_frag_R | GTGCAGGAGGATGTCAG | | |
(phosphate-buffered saline), residual fluid was carefully removed, and then the plates were heated at 60 °C for 1 h. Crystal violet solution (100 µl) was added to each well. After 2 min, the wells were washed with distilled water until the water became clear. Then, 100 µl of destain solution (10% methanol, 7.5% acetic acid in distilled water) was added; the plates were shaken for 1 min, and the absorbance at 540 nm was measured (Microplate Reader 680, Bio-rad). Wells incubated with THY without bacteria were used as blanks.

**BLIS Production**

BLIS activity of SDSE strains has been evaluated against five *Staphylococcus epidermidis* strains (ZMF R69, ZMF P37, ZMF R156, ZMF P89, ZMF R57) and five *Corynebacterium* spp. strains (ZMF LA80, ZMF LB80, ZMF LK54, ZMF LA43, ZMF LB81) isolated from healthy human skin.

According to the method described by Mohankumar et al. [25] with minor modifications, overnight cultures of skin microbiota strains were suspended in 0.9% NaCl solution, obtaining, respectively, 0.5 McFarland density for staphylococci and 1.0 McFarland for *Corynebacterium* spp. BHI agar plates (for staphylococci) and TSA agar plates with Yeast Extract and Tween-80 (for *Corynebacterium* spp.) were thoroughly inoculated with microbiota strain suspensions. SDSE strains were then spotted onto plates. The plates were incubated at 37 °C for 24–72 h. Inhibition zones around SDSE cultures were measured and recorded.

**Results**

The identification of all SDSE strains was confirmed using several methods: MALDI-TOF, RISA, and 16S rDNA sequencing. The prevalence of virulence factors was various in analyzed groups of strains. Genes coding for fibronectin binding protein (*prtF1* or *prtF2*) were present only in human isolates. Also *emm* gene, using CDC typing protocol, was found only in genomic DNA of strains isolated from human superficial infection. The most prevalent *emm* type was STC6746.0 type (4/6 strains). Gene coding for laminin binding protein was present in both human and animal isolates, whereas collagen binging protein gene was not detected in any of the analyzed strains. Agarose gel electrophoresis results are shown in Fig. 1.

The ability to form biofilm was common in all SDSE strains. None of the analyzed strains produced BLIS substances inhibiting *S. epidermidis* growth; however, 4/6 of human SDSE isolates presented inhibiting activity against *Corynebacterium* spp. skin microbiota strains. BLIS activity was not detected in animal SDSE isolates. Example of BLIS detection result is shown in Fig. 2. The detailed comparison of collected results is presented in Table 2.

**Discussion**

*Streptococcus dysgalactiae* subsp. *equisimilis* (SDSE) has been observed to be an etiological factor of infections in humans with increasing frequency, including severe systemic ones, such as sepsis, streptococcal toxic shock syndrome (STSS), and necrotizing fasciitis (NF) [20, 26, 27]. SDSE is known to be a zoonotic pathogen but...
its current position in the evolutionary outline published by Wolfe et al. [8] is not certain because of insufficient data. The horizontal transfer of virulence genes between SDSE strains and from S. pyogenes to SDSE strains has already been reported [11, 28]. Animal SDSE strains might asymptotically transfer to human skin, acquire virulence genes from human streptococci, and develop full infection in favorable conditions, i.e., skin damage or immunological system impairment. The risk of zoonotic infection is the most significant in people having regular contact with animals, such as veterinarians, cattlemen, and farmers. SDSE is also prevalent on a skin of healthy dogs, cats, and horses [1], which poses a risk also to people having contact with domestic (companion) animals.

Due to the presented threat caused by SDSE strains, this study tried to evaluate if there is any feature differentiating animal and human SDSE isolates, especially in virulence factors involved in the first stages of pathogenesis; therefore, SDSE strains isolated from superficial infections have been selected. Fibronectin binding protein and M protein genes might be horizontally transferred to animal SDSE strains ahead of causing human infection. Also the ability to combat skin microbiota, in which Corynebacterium spp. plays a vital role [29], was detected only in SDSE human isolates. The number of analyzed animal and human SDSE isolates is certainly not enough to draw general conclusions about this subspecies and presented results should be followed by further analyses. However, obtained in this research, results clearly indicate that certain virulence factors might be necessary to colonize human organism, whereas they are not crucial in animal infections. The results undoubtedly show that SDSE colonizes human body and during the adaptation process it is changing its virulence characteristics. Also strains causing animal infections should be conscientiously observed, because in non-distant future they might become an ethological factor of serious human infections, especially due to the proven similarity to solely human pathogen S. pyogenes.

**Acknowledgements** This study was funded by Medical University of Łódź (Grant No. 502-03/3-012-03/502-34-051).

**Compliance with Ethical Standards**

**Conflict of interest** None.

| Strain          | Virulence genes | Biofilm formation | BLIS against S. epidemidis | BLIS against Corynebacterium spp. |
|-----------------|-----------------|-------------------|-----------------------------|----------------------------------|
|                 | prtF1   | prtF2   | lmb    | cbp    | emm |                  |                      |                    |
| Human SDSE isolates |            |          |        |        |     |                  |                      |                    |
| ZMF SV279       | –      | +       | –      | –      | –   | + STC6979.0     | +                    | –                   |
| ZMF SV296       | –      | +       | +      | –      | –   | + STG6.1        | +                    | –                   |
| ZMF SV376       | +      | –       | +      | –      | +   | + STC6746.0     | –                    | +                   |
| ZMF SV469       | +      | –       | +      | –      | +   | + STC6746.0     | +                    | –                   |
| ZMF SV515       | +      | –       | +      | –      | +   | + STC6746.0     | –                    | +                   |
| ZMF SV668       | +      | –       | +      | +      | +   | + STC6746.0     | –                    | –                   |
| Animal SDSE isolates |            |          |        |        |     |                  |                      |                    |
| ZMF VC-K1       | –      | –       | +      | –      | –   | + STC6746.0     | –                    | –                   |
| ZMF VC-K2       | –      | –       | +      | –      | –   | + STC6746.0     | –                    | –                   |
| ZMF VC-K3       | –      | –       | +      | –      | –   | + STC6746.0     | –                    | –                   |
| ZMF VC-Z1       | –      | –       | +      | –      | –   | + STC6746.0     | –                    | –                   |
| ZMF VC-Z2       | –      | –       | +      | –      | –   | + STC6746.0     | –                    | –                   |
| ZMF VC-Z6       | –      | –       | +      | –      | –   | + STC6746.0     | –                    | –                   |
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Acke E, Midwinter AC, Lawrence K et al (2015) Prevalence of Streptococcus dysgalactiae subsp. equisimilis and S. equi subsp. zooepidemics in a sample of healthy dogs, cats and horses. NZ Vet J 63:265–271. doi:10.1080/00480169.2015.1016133
2. Kasuya K, Yoshida E, Harada R et al (2014) Systemic Streptococcus dysgalactiae subsp. equisimilis infection in a Yorkshire pig with severe disseminated suppurative meningoencephalomyelitis. J Vet Med Sci 76:715–718
3. Lamm CG, Ferguson AC, Lehenbauer TW, Love BC (2010) Streptococcal infection in dogs: a retrospective study of 393 cases. Vet Pathol 47:387–395. doi:10.1177/0300985809359601
4. Prezioso S, Laus F, Tejeda AR et al (2010) Detection of Streptococcus dysgalactiae subsp. equisimilis in equine nasopharyngeal swabs by PCR. J Vet Sci 11:67–72
5. Brandt CM, Spellerberg B (2009) Human infections due to Streptococcus dysgalactiae Subspecies equisimilis. Clin Infect Dis 49:766–772. doi:10.1086/605085
6. Gherardi G, Imperi M, Palmieri C et al (2014) Genetic diversity and virulence properties of Streptococcus dysgalactiae subsp. equisimilis from different sources in Italy. J Med Microbiol 63:90–98. doi:10.1099/jmm.0.062109-0
7. Milito C, Carello R, Fantauzzi A, Vullo V, Mezzaroma I (2014) Characterization and virulence properties of Streptococcus dysgalactiae Subspecies equisimilis. Infez Med 22:241–246
8. Wolfe ND, Dunavan CP, Diamond J (2007) Origins of major human infectious diseases. Nature 447:279–283. doi:10.1038/nature05775
9. Schrieber L, Towers R, Muscatello N, Speare R (2009) Genomic recombination in Streptococcus dysgalactiae subsp. equisimilis. PLoS ONE 4:e4166. doi:10.1371/journal.pone.0004166
10. Ambur OH, Davidsen T, Frye S et al (2009) Genome dynamics in major bacterial pathogens. FEMS Microbiol Rev 33:453–470. doi:10.1111/j.1574-6976.2009.00173.x
11. Wiedenbeck J, Cohan FM (2011) Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev 35:957–976. doi:10.1111/j.1574-6976.2011.01029.x
12. Szczypta K, Wilemska J, Hryniewicz W, Sitkiewicz I (2012) Patogenicity mechanisms of Streptococcus pyogenes. Post Mikrobiol 51:3–15
13. Courteney HS, Hasty DL, Dale JB (2002) Molecular mechanisms of adhesion, colonization, and invasion of group A streptococci. Ann Med 34:77–87
14. Rendueles O, Ghigo J (2015) Mechanisms of competition in biofilm communities. Microbiol Spectr 3:1–18. doi:10.1128/microbiolspec.MB-0009-2014.11
15. Cherkoue A, Emonet S, Fernandez J et al (2011) Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid identification of beta-hemolytic streptococci. J Clin Microbiol 49:3004–3005. doi:10.1128/JCM.00240-11
16. Hassan A, Khan IU, Lammler C (2003) Identification of Streptococcus dysgalactiae strains of Lancefield’s group C, G and L by polymerase chain reaction. J Vet Med Ser B 50:161–165. doi:10.1046/j.1439-0450.2003.00650.x
17. Prezioso S, Pinho MD, Attili AR et al (2014) PCR based differentiation between Streptococcus dysgalactiae subsp. equisimilis strains isolated from humans and horses. Comp Immunol Microbiol Infect Dis 37:169–172. doi:10.1016/j.cimid.2014.04.001
18. Tsai C-T, Chi C-Y, Ho C-M et al (2014) Correlation of virulence genes to clinical manifestations and outcome in patients with Streptococcus dysgalactiae subsp. equisimilis bacteraemia. J Microbiol Immunol Infect 47:462–468. doi:10.1016/j.jmii.2013.08.019
19. CDC StrepLab (2015) Protocol for emm typing. http://www.cdc.gov/streplab/protocol-emm-type.html Accessed 1 September 2016
20. Horomi M, Billal DS, Towaga A et al (2009) Distribution of fibronectin-binding protein genes (prfF1 and prfF2) and streptococcal pyrogenic exotoxin genes (spe) among Streptococcus pyogenes in Japan. J Infect Chemother 15:367–373. doi:10.1007/s10156-009-0724-6
21. Lo H-H, Cheng W-S (2015) Distribution of virulence factors and association with emm polymorphism or isolation site among beta-hemolytic group G Streptococcus dysgalactiae subsp. equisimilis. APMS 123:45–52. doi:10.1111/apm.12305
22. Courtney HS, Ofek I, Penfound T et al (2009) Relationship between expression of the family of M proteins and lipoteichoic acid to hydrophobicity and biofilm formation in Streptococcus pyogenes. PLoS ONE 4:e4166. doi:10.1371/journal.pone.0004166
23. Mohankumar A, Murugalatha N (2011) Characterization and antibacterial activity of bacteriocin producing Lactobacillus isolated from raw cattle milk sample. Int J Biol 3:2005–2006. doi:10.5539/ijb.v3n3p128
24. Bruun T, Kittang BR, de Hoog BJ et al (2013) Necrotizing soft tissue infections caused by Streptococcus pyogenes and Streptococcus dysgalactiae subsp. group C and G in western Norway. Clin Microbiol Infect 19:E545–E550. doi:10.1111/1469-0691.12276
25. Rantalä S, Vahakuopu S, Vuopio-Varkila J et al (2010) Streptococcus dysgalactiae subsp. equisimilis Bacteremia. Finnish Ann Med 34:77–87. doi:10.1111/j.1600-0691.2009.00248-016-0789-6
26. Lefebure T, Richards VP, Lang P et al (2012) Gene repertoire analysis with Streptococcus canis and Streptococcus dysgalactiae. PLoS ONE 7:e37607. doi:10.1371/journal.pone.0037607
27. Rantala S, Vahakouppu S, Vuopio-Varkila J et al (2010) Streptococcus dysgalactiae subsp. equisimilis Bacteremia. Ann Med 42:77–87.
28. Tsai C-T, Chi C-Y, Ho C-M et al (2014) Correlation of virulence genes to clinical manifestations and outcome in patients with Streptococcus dysgalactiae subsp. equisimilis bacteraemia. J Microbiol Immunol Infect 47:462–468. doi:10.1016/j.jmii.2013.08.019
29. CDC Streplab (2015) Protocol for emm typing. http://www.cdc.gov/streplab/protocol-emm-type.html Accessed 1 September 2016