Search for CP violation and observation of P violation in $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-$ decays

R. Aaij et al.*
(LHCb Collaboration)

(Received 6 January 2020; revised 11 May 2020; accepted 6 August 2020; published 8 September 2020)

A search for CP violation in the $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-$ decay is performed using LHCb data corresponding to an integrated luminosity of 6.6 fb$^{-1}$ collected in pp collisions at center-of-mass energies of 7, 8 and 13 TeV. The analysis uses both triple product asymmetries and the unbinned energy test method. The highest significances of CP asymmetry are 2.9 standard deviations from triple product asymmetries and 3.0 standard deviations for the energy test method. Once the global p-value is considered, all results are consistent with no CP violation. Parity violation is observed at a significance of 5.5 standard deviations for the triple product asymmetry method and 5.3 standard deviations for the energy test method. The reported deviations are given in regions of phase space.

DOI: 10.1103/PhysRevD.102.051101

The violation of CP symmetry, where C and P are the charge-conjugation and parity operators, is a well-established phenomenon in the decays of K and B mesons [1–3]. Recently, it has also been observed in the decays of D mesons by the LHCb collaboration [4]. However, CP violation has yet to be established in baryonic decays, although first evidence was recently found [5]. Such decays offer a novel environment to probe the mechanism for quark-flavor mixing and for CP violation, which is regulated by the Cabibbo-Kobayashi-Maskawa (CKM) matrix in the Standard Model (SM) [6,7].

In this paper searches for CP and P violation with $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-$ decays are reported. Throughout, the inclusion of charge-conjugate processes is implied, unless otherwise indicated. This decay is mediated mainly by tree and loop processes of similar magnitudes, proportional to the product of the CKM matrix elements $V_{ub}V_{ub}^*$ and $V_{ub}V_{ub}^*$, respectively. This allows for significant interference effects with a relative weak phase α of the unitary triangle between the amplitudes. If matter and antimatter exhibit different effects, CP violation manifests as either global asymmetries in decay rates, or as local asymmetries within the phase space. The $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-$ decay is particularly well suited for CP -violation searches [8] due to a rich resonant structure in the decay. The dominant contributions proceed through the $N^+ \rightarrow \Delta^{++}(1234)\pi^-$ (referred as Δ^{++} hereinafter), $\Delta^{++} \rightarrow p\pi^+$, $\Delta^{++}(1260) \rightarrow \rho^0(770)\pi^-$ and $\rho^0(770) \rightarrow \pi^+\pi^-$ decays, where the proton excited states are indicated as N^{++}. The searches for CP violation are performed by separating the P-odd and P-even contributions [9], as discussed below. In these studies, a large control sample of Cabibbo-favored $\Lambda_b^0 \rightarrow \Lambda^+_c(\rightarrow pK^-\pi^+)\pi^-$ decays is used, where no CP violation is expected, to assess potential experimental biases and systematic effects.

The LHCb collaboration has previously studied the $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-$ decay and found evidence for CP violation with a significance of 3.3 standard deviations including systematic uncertainties [5]. This paper supersedes the previous results using pp collision data corresponding to an integrated luminosity of 6.6 fb$^{-1}$ collected from 2011 to 2017 at center-of-mass energies of 7, 8 and 13 TeV that represents a four times larger sample in signal yield.

The LHCb detector [10,11] is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing b or c quarks. The detector elements that are particularly relevant to this analysis are: a silicon-strip vertex detector surrounding the pp interaction region that allows hadrons to be identified from their characteristically long flight distance; a tracking system that provides a measurement of the momentum, p, of charged particles; and two ring-imaging Cherenkov detectors that are able to discriminate between different species of charged hadrons. Simulation is required to model the effects of the detector acceptance and the selection requirements. The pp collisions are generated using PYTHIA [12] with a specific LHCb configuration [13], and neither CP—nor P-violating effects are present in the signal channel. Decays of unstable particles are described by EVTGEN [14], in which final-state radiation is generated.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.
using PHOTOS [15]. The interaction of the generated particles with the detector, and its response, are implemented using the GEANT4 toolkit [16] as described in Ref. [17].

The analysis searches for CP and P violation by measuring triple product asymmetries (TPA) and by exploiting the unbinned energy test method [18–24]. In the TPA analysis, both local and integrated asymmetries are considered. The analysis also benefits from additional studies of amplitude models [9,25] to maximize the considered. The analysis also benefits from additional studies of amplitude models [9,25] to maximize the sensitivity. The energy test method is designed to look for localized differences in the phase space between two samples. The Λ_0 polarization has been measured to be compatible with zero in a previous LHCb analysis [26] and is neglected in these measurements.

The scalar triple products are defined as $C_\hat{T} \equiv \vec{p}_p \cdot (\vec{p}_{\text{fast}} \times \vec{p}_{\text{fast}})$ and $\tilde{C}_\hat{T} \equiv \vec{p}_p \cdot (\vec{p}_{\text{slow}} \times \vec{p}_{\text{slow}})$, for Λ_0 and $\tilde{\Lambda}_0$ respectively. Hereafter π_{fast} (π_{slow}) refers to the faster (slower) of two negative pions in the Λ_0 rest frame. Following these definitions, four statistically independent subsamples are considered, labeled with I for $C_\hat{T} > 0$, II for $C_\hat{T} < 0$, III for $-\tilde{C}_\hat{T} > 0$ and IV for $-\tilde{C}_\hat{T} < 0$. Samples I and III are related by a CP transformation, as are samples II and IV. Samples I and II are related by a P transformation, as are samples III and IV. Both CP—and P-violating effects appear as differences between the triple product observables related by CP and P transformations. The \hat{T} operator reverses momentum and spin three-vectors [27,28]. The quantities $C_\hat{T}$ and $\tilde{C}_\hat{T}$ are odd under this operator. This enables studies of the P-odd CP violation, which occurs via interference of the \hat{T} -even and \tilde{T} -odd amplitudes with different CP -odd (“weak”) phases [9,25,27,28].

The TPA are defined as

$$A_T = \frac{N(C_\hat{T} > 0) - N(C_\hat{T} < 0)}{N(C_\hat{T} > 0) + N(C_\hat{T} < 0)},$$

$$\tilde{A}_T = \frac{\tilde{N}(-\tilde{C}_\hat{T} > 0) - \tilde{N}(-\tilde{C}_\hat{T} < 0)}{\tilde{N}(-\tilde{C}_\hat{T} > 0) + \tilde{N}(-\tilde{C}_\hat{T} < 0)},$$

where N and \tilde{N} are the yields of Λ_0 and $\tilde{\Lambda}_0$ decays, respectively. The CP—and P-violating asymmetries are then defined as

$$a_{Cp}^{T\text{odd}} = \frac{1}{2}(A_T - \tilde{A}_T), \quad a_{P}^{T\text{odd}} = \frac{1}{2}(A_T + \tilde{A}_T).$$

Two types of asymmetries are determined from data. The first are localized in the phase space in order to enhance sensitivity to local effects and the second are integrated over the whole phase space. By construction, such asymmetries are largely insensitive to particle-antiparticle production and detector-induced asymmetries [29].

The previous LHCb result [5] showed evidence for a dependence of the CP asymmetry as a function of $|\Phi|$, the absolute value of the angle between the planes defined by the $p\pi^+\pi^-\pi^0$ and $\pi^+\pi^-\pi^-\pi^0$ systems in the Λ_0^0 rest frame. In the present analysis a binning scheme, labeled A, is considered, based on the results of an approximate amplitude analysis performed on $\Lambda^0 \rightarrow p\pi^+\pi^-\pi^-$ decays. The binning scheme consists in dividing the data sample into 16 subsamples to explore the distribution of the polar and azimuthal angles of the proton (Δ^{++}) in the Δ^{++} (N^{++}) rest frame. A detailed description can be found in the Appendix. A second binning scheme, labeled B, is used to probe the asymmetries as a function of $|\Phi|$, dividing the data sample into ten subsamples uniformly distributed in the range $[0, \pi]$. The invariant-mass regions $m(p\pi^+\pi^-\pi^0) > 2.8$ GeV/c^2 (samples A_1, B_1), dominated by the a_1 resonance, and $m(p\pi^+\pi^-\pi^0) < 2.8$ GeV/c^2 (samples A_2, B_2), dominated by the N^{++} decay, are studied separately. The compatibility of the measured asymmetries with CP and P conservation is checked by means of a χ^2 test taking into account statistical and systematic effects.

The energy test is a model-independent unbinned test sensitive to local differences between two samples, as might arise from CP violation. It can provide superior discriminating power between different samples than traditional χ^2 tests [21,22]. The test is performed through the calculation of a test statistic

$$T \equiv \frac{1}{2n(n-1)} \sum_{i \neq j} \psi_{ij} + \frac{1}{2n(n-1)} \sum_{i \neq j} \psi_{ij} - \frac{1}{n-1} \sum_{i=1}^{n} \sum_{j=1}^{n} \psi_{ij},$$

where there are n (ii) candidates in the first (second) sample. The first (second) term sums over pairs of candidates drawn from the first (second) sample and the final term sums over pairs with one candidate drawn from each sample. Each pair of candidates ij is assigned a weight $\psi_{ij} = e^{-d_{ij}/2\delta^2}$, where d_{ij} is their Euclidean distance in phase space, while the tunable parameter δ determines the distance scale probed using the energy test. The phase space is defined using the squared masses $m^2(p\pi^+)$, $m^2(\pi^+\pi^-\pi^0)$, $m^2(p\pi^+\pi^-\pi^0)$, $m^2(\pi^+\pi^-\pi^0_{\text{fast}})$, $m^2(\pi^+\pi^-\pi^0_{\text{slow}})$, and $m^2(\pi^+\pi^-\pi^0_{\text{fast}})$. The value of T is large when there are significant localized differences between samples and has an expectation of zero when there are no differences. The distribution of T under the hypothesis of no sample differences, and the assignment of p-values, are determined using a permutation method [21,23].

Similarly to the TPA method, the comparison of subsamples I and IV to subsamples II and III allows for a P-odd and CP -odd test; the comparison of subsamples I and II to subsamples III and IV for a P-even and CP-odd test. The P violation is also tested by comparing the combination of subsamples I and III with the combination of subsamples II and IV. This provides three test configurations described in detail in Ref. [22] and illustrated in
The invariant-mass distribution of the signal is modelled by an exponential function where the parameters are left free to vary in the fits. Partially reconstructed $\Lambda^0_b \to p\pi^-\pi^+\pi^-$, as for example $\Lambda^0_b \to p\pi^-\pi^+\pi^0$, are described by an ARGUS function [32] convolved with a Gaussian function to account for resolution effects. The shapes of backgrounds from other b-hadron decays due to incorrectly identified particles, e.g., kaons identified as pions or protons identified as kaons, are modeled using simulated events. These consist mainly of $\Lambda^0_b \to pK^-\pi^+\pi^-$ and $B^0 \to K^+\pi^-\pi^+$ decays. Their yields are obtained from fits to data where the invariant-mass distributions are reconstructed under the appropriate mass hypotheses and then fixed in the baseline fits. The signal yields for the $\Lambda^0_b \to p\pi^-\pi^+\pi^-$ decay and the $\Lambda^0_b \to \Lambda^+_b (\to pK^-\pi^+)\pi^-$ control sample are 27600 ± 200 and 434500 ± 800, respectively. Fits in bins of phase space are also performed to determine asymmetries A_T and \tilde{A}_T. The asymmetries A_T and \tilde{A}_T are found to be uncorrelated. Corresponding asymmetries for each of the background components are also determined in the fit; they are found to be consistent with zero, and do not lead to significant systematic uncertainties in the signal asymmetries. Artificial asymmetries are generated for signal events using a parametrized simulated sample, and used to perform checks of the sensitivity of the methods applied. When P-odd CP violation is injected via the N^* resonances in such studies, both the triple product asymmetry and the energy test are able to provide a clear rejection of the no-CP violation hypothesis. When P-even CP violation is injected in the simulated samples via the a_1 resonance, the energy test is also able to observe this effect.

For the energy test, Λ^0_b candidates are selected in a window corresponding to 2.5 standard deviations of the Gaussian function around the known Λ^0_b mass [33], which optimizes the sensitivity to CP violation. The background component with this selection is small and does not affect the analysis.

The reconstruction efficiency for signal candidates with $C_T > 0$ is consistent with that for candidates with $C_T < 0$. This indicates that the detector and the reconstruction algorithms do not bias the measurements. This is confirmed using the control sample and a large sample of simulated events. The same check is performed for the \tilde{C}_T observable. As a general cross-check, the CP asymmetry is measured in the control sample and found to be compatible with zero, $a_T^{CP,\Lambda^0_b(p\pi^-\pi^+\pi^-)} = (-0.04 \pm 0.16)\%$.

The main sources of systematic uncertainties in the TPA analysis are selection criteria, reconstruction and detector acceptance. They are evaluated using the control sample. In the TPA analysis, a systematic uncertainty of 0.16% is assigned for the integrated measurements, while uncertainties in the range (0.6–2.5)% are assigned for local
measurements. The systematic uncertainty arising from the experimental resolution of the triple products C_p and \bar{C}_p, which could introduce a migration of candidates between bins, is estimated from simulation. The difference between the reconstructed and generated asymmetries, 0.01%, is taken as a systematic uncertainty in the TPA analysis. To assess the systematic uncertainty associated with the fit model, an alternative is used to compare the results measured on pseudoexperiments with respect to the baseline model. A value of 0.06% (0.08%) for $a^{T,\text{odd}}_{CP}/a^{T,\text{odd}}_{P}$ is assigned as systematic uncertainty. No significant differences are observed comparing results from different running conditions, trigger requirements and selection criteria.

Several studies are made to confirm the reliability of the energy test method. The method is insensitive to global asymmetries, and so is not affected by differences between Λ^0_b and Λ_b^+ production rates. However, local asymmetries due to detector effects may yield significant results that would lead to an incorrect conclusion. The potential presence of such effects is studied using the control sample. No evidence is found for any local asymmetry.

Contributions from background decays are considered, in case they contain localized asymmetries not related to CP violation. A high-mass selection is applied ($5.75 < m(p\pi^-\pi^+\pi^-) < 6.10$ GeV/c^2) to identify candidates predominantly produced by random combinations of particles. No significant effect is found in the six configurations of the energy test probing the CP-conserving hypothesis. Moreover, a small independent sample of the dominant peaking background ($\Lambda^0_b \rightarrow pK^-\pi^+\pi^-$) is selected using the same requirements as in Ref. [5], with the number of candidates corresponding to the size of the relevant background in the $\Lambda^0_b \rightarrow p\pi^-\pi^+\pi^-$ sample. Again, no p-values corresponding to a significance above 3 standard deviations are observed when the six configurations of the energy test probing CP violation are applied to this sample. The background contribution from the $B^0 \rightarrow K^+\pi^-\pi^+\pi^-$ decay is negligible within the mass window selected for the energy test.

Finally, the proton detection asymmetry in simulation is replicated in the $\Lambda^0_b \rightarrow p\pi^-\pi^+\pi^-$ data sample by setting the Λ^0_b flavor in the data sample at random to create the same asymmetry. The P-even and P-odd configurations of the energy test are then run for all three distance scales to test for effects that might lead to an incorrect rejection of the CP-conserving hypothesis. This is repeated multiple times for each test with different flavor assignments for the Λ^0_b candidates. In all six tests the distribution of p-values is consistent with being uniform, so no evidence for any bias from the proton detection asymmetry is found.

The measured TPA from the fit to the full data set are $a^{T,\text{odd}}_{CP} = (-0.7 \pm 0.7 \pm 0.2\%)$ and $a^{T,\text{odd}}_{P} = (-4.0 \pm 0.7 \pm 0.2\%)$. Consistency with the CP-conserving hypothesis is observed, while a significant nonzero value for the $a^{T,\text{odd}}_{P}$ asymmetry is found. The effect, estimated with the profile likelihood-ratio test, has a significance of 5.5 standard deviations and indicates parity violation in the $\Lambda^0_b \rightarrow p\pi^-\pi^+\pi^-$ decay.

The values of the TPA for the binning schemes A_1, A_2, B_1 and B_2 are shown in Fig. 2. In the binning schemes A_2 and B_2 the contribution from multiple N^+/C_3^+ resonances dominates and therefore larger CP asymmetries are possible relative to the A_1 and B_1 binning schemes where the single a_1 resonance contributes. However, in the A_2 and B_2 phase-space regions, p-values with respect to the CP-conserving hypothesis corresponding to statistical significances of 0.5 and 2.9 standard deviations are measured, respectively. The evidence of CP violation previously observed [5] is therefore not established.

Table 1
Bin	Asymmetry [%]	Asymmetry [%]	Asymmetry [%]	Asymmetry [%]
0	-10	5	-15	-5
5	-5	-10	-15	0
10	-10	-5	-15	-5
15	-5	-10	-15	0
20	-5	-10	-15	-5
25	-5	-10	-15	0
30	-5	-10	-15	-5

Figure 2
- **A**. Measured asymmetries for the binning scheme (top) A_1 and A_2 and (bottom) B_1 and B_2. The error bars represent the sum in quadrature of the statistical and systematic uncertainties. The χ^2 per ndof is calculated with respect to the null hypothesis and includes statistical and systematic uncertainties.
The binning scheme B, which does not separate the a_i and the N^{++} contributions, provides a deviation at 2.8 and 5.1 standard deviations from the CP and P conserving hypothesis, respectively. The compatibility of these results with the previous published measurements [5], based on the same binning scheme, is determined to be at 2.6 standard deviations, a value which decreases to 2.1 when the same BDT selection is applied. Pseudoexperiments are generated using both methods, locally with a significance of over 5 standard deviations, and, when the triple product asymmetries are evaluated having integrated over the entire sample, with a significance of 5.5 standard deviations.

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNilSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); DOE NP and NSF (USA). We acknowledge the computing resources that are provided by CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNilSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); DOE NP and NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany); EPLANET, Marie Sklodowska-Curie Actions and ERC (European Union); ANR, Labex P2IO and OCEVU, and Région Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, and the Thousand Talents Program (China); RFBR, RSF and Yandex LLC (Russia); GVA, XuntaGal and GENCAT (Spain); the Royal Society and the Leverhulme Trust (United Kingdom).

APPENDIX: DEFINITION OF THE BINNING SCHEME A

The definition of the binning scheme A is reported in Table II.
TABLE II. Definition of binning scheme A. This binning scheme is based on the helicity angles of the decay topology $\Lambda_0^0 \rightarrow (N^{*+} \rightarrow (\Delta^{++} \rightarrow p\pi^+)\pi^-)\pi^-$. Where ϕ is the azimuthal angle of the proton in the Δ^{++} rest frame and $\theta_{\Delta^{++}} (\theta_p)$ is the polar angle of the Δ^{++} (p) in the $N^{*+} (\Delta^{++})$ rest frame.

Bin number	Polar angles	Azimuthal angles
1	$\theta_p \in [0, \pi/4]$ and $\theta_{\Delta^{++}} \in [0, \pi/4]$	$\phi \in [0, \pi/2]$
	$\theta_p \in [\pi/2, 3\pi/4]$ and $\theta_{\Delta^{++}} \in [\pi/2, 3\pi/4]$	
2	$\theta_p \in [0, \pi/4]$ and $\theta_{\Delta^{++}} \in [\pi/4, \pi/2]$	$\phi \in [0, \pi/2]$
	$\theta_p \in [\pi/2, 3\pi/4]$ and $\theta_{\Delta^{++}} \in [\pi/2, 3\pi/4]$	
3	$\theta_p \in [0, \pi/4]$ and $\theta_{\Delta^{++}} \in [\pi/2, 3\pi/4]$	$\phi \in [0, \pi/2]$
	$\theta_p \in [\pi/2, 3\pi/4]$ and $\theta_{\Delta^{++}} \in [0, \pi/4]$	
4	$\theta_p \in [0, \pi/4]$ and $\theta_{\Delta^{++}} \in [3\pi/4, \pi]$	$\phi \in [0, \pi/2]$
	$\theta_p \in [\pi/2, 3\pi/4]$ and $\theta_{\Delta^{++}} \in [\pi/4, \pi/2]$	
5	$\theta_p \in [\pi/4, \pi/2]$ and $\theta_{\Delta^{++}} \in [0, \pi/4]$	$\phi \in [0, \pi/2]$
	$\theta_p \in [3\pi/4, \pi]$ and $\theta_{\Delta^{++}} \in [\pi/2, 3\pi/4]$	
6	$\theta_p \in [\pi/4, \pi/2]$ and $\theta_{\Delta^{++}} \in [\pi/2, 3\pi/4]$	$\phi \in [0, \pi/2]$
	$\theta_p \in [3\pi/4, \pi]$ and $\theta_{\Delta^{++}} \in [0, \pi/4]$	
7	$\theta_p \in [\pi/4, \pi/2]$ and $\theta_{\Delta^{++}} \in [\pi/2, 3\pi/4]$	$\phi \in [0, \pi/2]$
	$\theta_p \in [3\pi/4, \pi]$ and $\theta_{\Delta^{++}} \in [0, \pi/4]$	
8	$\theta_p \in [\pi/4, \pi/2]$ and $\theta_{\Delta^{++}} \in [3\pi/4, \pi]$	$\phi \in [0, \pi/2]$
	$\theta_p \in [3\pi/4, \pi]$ and $\theta_{\Delta^{++}} \in [\pi/4, \pi/2]$	
9	$\theta_p \in [0, \pi/4]$ and $\theta_{\Delta^{++}} \in [0, \pi/4]$	$\phi \in [\pi/2, \pi]$
	$\theta_p \in [\pi/2, 3\pi/4]$ and $\theta_{\Delta^{++}} \in [\pi/2, 3\pi/4]$	
10	$\theta_p \in [0, \pi/4]$ and $\theta_{\Delta^{++}} \in [\pi/4, \pi/2]$	$\phi \in [\pi/2, \pi]$
	$\theta_p \in [\pi/2, 3\pi/4]$ and $\theta_{\Delta^{++}} \in [\pi/2, 3\pi/4]$	
11	$\theta_p \in [0, \pi/4]$ and $\theta_{\Delta^{++}} \in [\pi/2, 3\pi/4]$	$\phi \in [\pi/2, \pi]$
	$\theta_p \in [\pi/2, 3\pi/4]$ and $\theta_{\Delta^{++}} \in [0, \pi/4]$	
12	$\theta_p \in [0, \pi/4]$ and $\theta_{\Delta^{++}} \in [3\pi/4, \pi]$	$\phi \in [\pi/2, \pi]$
	$\theta_p \in [\pi/2, 3\pi/4]$ and $\theta_{\Delta^{++}} \in [\pi/4, \pi/2]$	
13	$\theta_p \in [\pi/4, \pi/2]$ and $\theta_{\Delta^{++}} \in [0, \pi/4]$	$\phi \in [\pi/2, \pi]$
	$\theta_p \in [3\pi/4, \pi]$ and $\theta_{\Delta^{++}} \in [\pi/2, 3\pi/4]$	
14	$\theta_p \in [\pi/4, \pi/2]$ and $\theta_{\Delta^{++}} \in [\pi/4, \pi/2]$	$\phi \in [\pi/2, \pi]$
	$\theta_p \in [3\pi/4, \pi]$ and $\theta_{\Delta^{++}} \in [3\pi/4, \pi]$	
15	$\theta_p \in [\pi/4, \pi/2]$ and $\theta_{\Delta^{++}} \in [\pi/2, 3\pi/4]$	$\phi \in [\pi/2, \pi]$
	$\theta_p \in [3\pi/4, \pi]$ and $\theta_{\Delta^{++}} \in [0, \pi/4]$	
16	$\theta_p \in [\pi/4, \pi/2]$ and $\theta_{\Delta^{++}} \in [3\pi/4, \pi]$	$\phi \in [\pi/2, \pi]$
	$\theta_p \in [3\pi/4, \pi]$ and $\theta_{\Delta^{++}} \in [\pi/4, \pi/2]$	

[1] J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Phys. Rev. Lett. 13, 138 (1964).
[2] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 86, 2515 (2001).
[3] K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 87, 091802 (2001).
[4] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 122, 211803 (2019).
[5] R. Aaij et al. (LHCb Collaboration), Nat. Phys. 13, 391 (2017).
[6] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
[7] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[8] M. Gronau and J. L. Rosner, Phys. Lett. B 749, 104 (2015).
[9] G. Durieux, J. High Energy Phys. 10 (2016) 005.
[10] A. A. Alves, Jr. et al. (LHCb Collaboration), J. Instrum. 3, S08005 (2008).
SEARCH FOR CP VIOLATION AND OBSERVATION OF P …

PHYS. REV. D 102, 051101 (2020)

C. J. G. Onderwater,74 J. D. Osborn,79 A. Ossowska,33 J. M. Otarola Goicochea, T. Ovsiannikova,38 P. Owen,49 A. Oyanguren,46 P. R. Pais,48 T. Pajero,28,u A. Palano,18 M. Palutan,22 G. Panshin,78 A. Papaneatis,56 M. Pappagallo,57 L. L. Pappalardo,20,g Parker,65 C. Parkes,61,47 G. Passaleva,21,47 A. Pastore,18 M. Patel,60 C. Patrignani,19,d A. Pearce,47 A. Pellegrino,31 G. Penso,30 M. Pepe Altarelli,47 S. Perazzini,19 D. Pereira,28,u A. Pegg,67 M. A. Penuelas,49 P. Perret,9 L. Pescatore,48 K. Petridis,53 A. Petrolini,23,c A. Petrov,75 S. Petrucci,57 M. Petruzzo,25,o B. Pietrzyk,8 G. Pietrzyk,48 M. Pikies,33 M. Pliakova,67 A. Poluektov,10 N. Polukhina,76,x I. Polyakov,67 E. Polycarpo,2 G. J. Pomery,53 S. Ponce,47 A. Popov,43 D. Popov,52 S. Popov,41,77 G. Raven,32 M. Ravonel Salzgeber,47 M. Reboud,8 F. Redi,48 S. Reichert,14 F. Reiss,12 C. Remon Alepuz,46 Z. Ren,3 V. Renaudin,62 S. Ricciardi,56 S. Richards,53 K. Rinnert,59 P. Robbe,11 A. Robert,12 A. B. Rodrigues,84 E. Rodriguez Lopez,72 M. Roehrken,47 S. Roiser,47 A. Rollings,62 V. Romanovskiy,33 L. Romero Ramos,45 A. Romero Vidal,45 J. D. Roth,70 M. Rotondo,22 M. S. Rudolph,67 T. Ruf,47 J. Ruiz Vidal,46 J. Ryzka,34 J. J. Saborido Silva,45 N. Sagidova,37 B. Saitta,26,m C. Sanchez Gras,31 C. Sanchez Mayordomo,46 B. Sanmartin Sedes,45 C. Santamarina Rios,65 M. Santimaria,22 E. Santovetti,29,g S. Saripis,61 A. Sarti,30 C. Satriano,30,x A. Satta,33 M. Saur,25,v L. Scantlebury Smead,62 S. Schael,13 M. Schellenberg,14 M. Schiller,47 M. Schilling,15 T. Schmelzer,14 B. Schmidt,47 O. Schneider,48 A. Schopper,47 H. F. Schreiner,64 M. Schubiger,31 S. Schulte,48 M. H. Schune,11 R. Schwemmer,47 B. Sciascia,22 A. Sciumbba,30,a S. Sellam,68 A. Semennikov,38 A. Sergi,47 N. Serra,49 J. Serrano,10 L. Sestini,27 A. Seuthe,14 P. Seyfert,47 D. M. Shangase,29 M. Shapkin,43 T. Shears,59 L. Shekhtman,42,l V. Shevchenko,75,76 E. Shmanin,76 J. D. Shuppler,67 B. G. Siddi,20 R. Silva Coutinho,49 L. Silva de Oliveira,2 G. Simi,27,s A. Skiba,20 N. Skidmore,16 T. Skwarnicki,84 M. W. Slater,52 J. G. Smeaton,54 E. Smith,13 I. T. Smith,57 M. Smith,60 A. Snoh,31 M. Soares,19 L. Soares Lavra,1 M. D. Sokoloff,64 F. J. P. Soler,38 B. Souza De Paula,2 B. Spaan,19 E. Spadaro Noirella,25,o P. Spradlin,58 F. Stagni,47 M. Stahl,64 Stahl,47 P. Steffen,48 S. Steffen,60 O. Steinkamp,49 S. Stemmler,16 O. Stenyak,47 M. Stepanova,37 H. Stevens,14 S. Stone,67 S. Stracka,28 M. E. Stramaglia,48 M. Straticiuc,6 U. Straumann,49 S. Stahl,47 P. Stefko,48 S. Stefkova,60 O. Steinmarch,49 J. Sun,3 L. Sun,71 Y. Sun,65 P. Sviria,61 K. Swientek,34 A. Szabelski,35 T. Szumlak,34 M. Szymanski,5 S. Taneja,41 Z. Tang,3 T. Tekampe,14 G. Tellarini,20 F. Teubert,47 E. Thomas,47 K. A. Thomason,59 M. J. Tilley,48 V. Tisserand,9 S. T. Jampens,8 M. Tobin,6 S. Tolk,47 L. Tomassetti,20,g D. Tonelli,28 D. Y. Tou,12 E. Tournefier,8 M. Traill,58 M. T. Tran,48 A. Trisovic,54 A. Tsaregorodtsev,10 G. Tuci,28,43 A. Tully,48 N. Tuning,31 A. Ukleja,35 A. Usachov,11 A. Ustyuzhanin,41 U. Uwer,16 A. Vagner,78 V. Vagnoni,19 A. Valassi,47 G. Valenti,19 M. van Beuzekom,31 H. Van Hecke,66 E. van Herwijnen,47 C. B. Van Hulse,17 J. van Tilburg,31 M. van Vlegel,27 R. Vazquez Gomez,47 P. Vazquez Regueiro,45 C. Vázquez Sierra,31 S. Vecchi,20 J. J. Velthuis,53 M. Velti,21,bb A. Venkateswaran,67 M. Vernet,9 M. Veronesi,31 M. Vesterinen,55 J. V. Viana Barbosa,47 D. Vieira,5 M. Vitecs Díaz,48 H. Viemann,71 X. Vilasís-Cardona,44,41 A. Vitkovskiy,31 A. Vollhardt,49 D. Vom Bruch,12 A. Vorobyev,47 V. Vorobyev,47 N. Voropaev,37 R. Waldi,75 J. Walsh,28 J. Wang,3 J. Wang,6 M. Wang,3 W. Wang,7 Z. Wang,49 D. R. Ward,49 H. M. Ward,59 N. K. Watson,52 D. Websdale,60 A. Weider,49 C. Weisser,63 B. D. C. Westheny,53 D. J. Whitehead,13 W. Weidner,14 G. Wilkinson,62 M. Wilkinson,67 I. Williams,54 M. Williams,63 M. R. J. Williams,61 T. Williams,55 F. F. Wilson,56 M. Winn,11 W. Wislicki,35 M. Witek,33 G. Wormser,11 S. A. Wotton,54 H. Wu,67 K. Wylhe,47 Z. Xiang,5 D. Xiao,7 Y. Xie,47 H. Xing,70 A. Xu,3 L. Xu,6 M. Xu,3 Q. Xu,3 Z. Xu,3 Z. Yang,3 Z. Yang,65 Y. Yao,67 L. E. Yeomans,59 H. Yin,7 J. Yu,7,c X. Yuan,67 O. Yushchenko,53 K. A. Zarebski,52 M. Zavertyaev,15,x M. Zdybal,33 M. Zeng,3 D. Zhang,7 L. Zhang,3 S. Zhang,3 W. C. Zhang,3,dd Y. Zhang,47 A. Zhelezov,16 Y. Zheng,5 X. Zhou,5 Y. Zhou,5 X. Zhu,3 V. Zhukov,13,39 J. B. Zonneveld,57 and S. Zucchelli

(LHCb Collaboration)

1Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3Center for High Energy Physics, Tsinghua University, Beijing, China
4School of Physics State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
5University of Chinese Academy of Sciences, Beijing, China
Institute Of High Energy Physics (IHEP), Beijing, China
Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France
Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
L. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
School of Physics, University College Dublin, Dublin, Ireland
INFN Sezione di Bari, Bari, Italy
INFN Sezione di Ferrara, Ferrara, Italy
INFN Sezione di Firenze, Firenze, Italy
INFN Laboratori Nazionali di Frascati, Frascati, Italy
INFN Sezione di Genova, Genova, Italy
INFN Sezione di Milano-Bicocca, Milano, Italy
INFN Sezione di Milano, Milano, Italy
INFN Sezione di Cagliari, Monserato, Italy
INFN Sezione di Padova, Padova, Italy
INFN Sezione di Pisa, Pisa, Italy
INFN Sezione di Roma Tor Vergata, Roma, Italy
INFN Sezione di Roma La Sapienza, Roma, Italy
Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands
Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
AGH—University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
National Center for Nuclear Research (NCBJ), Warsaw, Poland
Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
Petersburg Nuclear Physics Institute NRC Kurchatov Institute (PNPI NRC KI), Gatchina, Russia
Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia
Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia
Yandex School of Data Analysis, Moscow, Russia
Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
Institute for High Energy Physics NRC Kurchatov Institute (IHEP NRC KI), Protvino, Russia
ICCB, Universitat de Barcelona, Barcelona, Spain
Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia—CSIC, Valencia, Spain
European Organization for Nuclear Research (CERN), Geneva, Switzerland
Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Physik-Institut, Universität Zürich, Zürich, Switzerland
NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
University of Birmingham, Birmingham, United Kingdom
H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Department of Physics, University of Warwick, Coventry, United Kingdom
STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Imperial College London, London, United Kingdom
Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
SEARCH FOR CP VIOLATION AND OBSERVATION OF P ... PHYS. REV. D 102, 051101 (2020)

62 Department of Physics, University of Oxford, Oxford, United Kingdom
63 Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
64 University of Cincinnati, Cincinnati, Ohio, USA
65 University of Maryland, College Park, Maryland, USA
66 Los Alamos National Laboratory (LANL), Los Alamos, USA
67 Syracuse University, Syracuse, New York, USA
68 Laboratory of Mathematical and Subatomic Physics, Constantine, Algeria
 (associated with Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil)
69 Pontificia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
 (associated with Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil)
70 Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China
 Normal University, Guangzhou, China (associated with Center for High Energy Physics,
 Tsinghua University, Beijing, China)
71 School of Physics and Technology, Wuhan University, Wuhan, China
 (associated with Center for High Energy Physics, Tsinghua University, Beijing, China)
72 Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia
 (associated with LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité,
 CNRS/IN2P3, Paris, France)
73 Institut für Physik, Universität Rostock, Rostock, Germany (associated with Physikalisches Institut,
 Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany)
74 Van Swinderen Institute, University of Groningen, Groningen, Netherlands (associated with Nikhef
 National Institute for Subatomic Physics, Amsterdam, Netherlands)
75 National Research Centre Kurchatov Institute, Moscow, Russia (associated with Institute of Theoretical
 and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia, Moscow, Russia)
76 University of Science and Technology “MISIS”, Moscow, Russia
 (associated with Institute of Theoretical and Experimental Physics NRC Kurchatov Institute
 (ITEP KRC KI), Moscow, Russia, Moscow, Russia)
77 National Research University Higher School of Economics, Moscow, Russia
 (associated with Yandex School of Data Analysis, Moscow, Russia)
78 National Research Tomsk Polytechnic University, Tomsk, Russia
 (associated with Institute of Theoretical and Experimental Physics NRC Kurchatov Institute
 (ITEP NRC KI), Moscow, Russia, Moscow, Russia)
79 University of Michigan, Ann Arbor, USA
 (associated with Syracuse University, Syracuse, New York, USA)

a Deceased.
b Also at Laboratoire Leprince-Ringuet, Palaiseau, France.
c Also at Università di Genova, Genova, Italy.
d Also at Università di Bologna, Bologna, Italy.
e Also at Università di Modena e Reggio Emilia, Modena, Italy.
f Also at Novosibirsk State University, Novosibirsk, Russia.
g Also at Università di Ferrara, Ferrara, Italy.
h Also at Università di Milano Bicocca, Milano, Italy.
i Also at DS4DS, La Salle, Universitat Ramon Llull, Barcelona, Spain.
j Also at Università di Pisa, Pisa, Italy.
k Also at Universidad Nacional Autonoma de Honduras, Tegucigalpa, Honduras.
I Also at Università di Bari, Bari, Italy.
I Also at Università di Cagliari, Cagliari, Italy.
I Also at INFN Sezione di Trieste, Trieste, Italy.
I Also at Università degli Studi di Milano, Milano, Italy.
I Also at Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.
I Also at AGH—University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications,
 Kraków, Poland.
I Also at Università di Siena, Siena, Italy.
I Also at Lanzhou University, Lanzhou, China.
I Also at Università di Padova, Padova, Italy.
I Also at Scuola Normale Superiore, Pisa, Italy.
I Also at MSU—Iligan Institute of Technology (MSU-IIT), Iligan, Philippines.
I Also at Hanoi University of Science, Hanoi, Vietnam.
I Also at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.
7 Also at Università di Roma Tor Vergata, Roma, Italy.
8 Also at Università della Basilicata, Potenza, Italy.
9 Also at Università di Roma La Sapienza, Roma, Italy.
bb Also at Università di Urbino, Urbino, Italy.
cc Also at Physics and Micro Electronic College, Hunan University, Changsha City, China.
dd Also at School of Physics and Information Technology, Shaanxi Normal University (SNNU), Xi’an, China.