First Observation of Diboson Production in Hadronic Final States at the Tevatron

Jennifer Pursley

University of Wisconsin, Madison

2009 Meeting of the Division of Particles and Fields of the American Physical Society

Wayne State University, July 27 - 31, 2009
Why Dibosons? Why with Jets?

- Road to Higgs paved with dibosons!
 - WW, WZ, ZZ
 - Not previously observed in final states with jets at hadron colliders
 - Same final state as for low mass Higgs
 - $H+W/Z \rightarrow bb+\ell\nu/\nu\nu$
 - Small signals in large backgrounds
 - Test of analysis techniques
- Sensitive to new physics
How do You Find Dibosons?

- **Strategy:**
 - Select dijet events with large missing transverse energy (MET)
 - Sensitive to $\ell\nu$ and $\nu\nu$ decay modes
 - Maximal use of data to estimate backgrounds
 - Simple but smart analysis techniques
 - Focus on deep understanding of backgrounds
 - It’s never late to add multivariate techniques
How do You Find Dibosons?

Strategy:
- Select dijet events with large missing transverse energy (MET)
 - Sensitive to $\ell\nu$ and $\nu\nu$ decay modes
- Maximal use of data to estimate backgrounds
- Simple but smart analysis techniques
 - Focus on deep understanding of backgrounds
 - It’s never late to add multivariate techniques

Challenges:
- Need lots of data
- High efficiency triggers at all luminosities
 - L2 trigger upgrade
- Large backgrounds dominated by multijet events with fake MET and Z/W+jets
 - Sophisticated technique to suppress QCD multijets and estimate systematics
- Extracting small signal
Calorimeter Trigger Upgrade

- Trigger designed for $30 \times 10^{30} \text{cm}^{-2}\text{s}^{-1}$... Tevatron now regularly achieving $300 \times 10^{30} \text{cm}^{-2}\text{s}^{-1}$

- Upgraded L2 trigger
 - More sophisticated algorithm (almost same as in offline)
 - Better resolution and turn-on
 - Better performance at high luminosity
Backgrounds

Electroweak

- Use MC to describe kinematics
- W+jets
 - $W \rightarrow e\nu, \mu\nu, \tau\nu$
- Z+jets
 - $Z \rightarrow \nu\nu$
 - $Z \rightarrow e\bar{e}, \mu\bar{\mu}, \tau\bar{\tau}$
- Top quark pair production
Backgrounds

Electroweak

- Use MC to describe kinematics
- \(W + \text{jets} \)
 - \(W \rightarrow e\nu, \mu\nu, \tau\nu \)
- \(Z + \text{jets} \)
 - \(Z \rightarrow \nu\nu \)
 - \(Z \rightarrow ee, \mu\mu, \tau\tau \)

- Top quark pair production
Backgrounds

- **Electroweak**
 - Use MC to describe kinematics
 - $W+$jets
 - $W \rightarrow e\nu, \mu\nu, \tau\nu$
 - $Z+$jets
 - $Z \rightarrow \nu\nu$
 - $Z \rightarrow e\bar{e}, \mu\bar{\mu}, \tau\bar{\tau}$
 - Top quark pair production

- **QCD multijets**
 - Fake MET, but large rate
 - Reject as much as possible
 - Use data to model remainder

- **Non-collision (cosmics)**
 - Negligible after timing requirement

Diboson signal swamped by QCD background with fake MET

Jet 1
Jet 2
Jet n
Mis-measured jet tends to align with MET: $\Delta\phi$ should help rejection
MET Resolution Model (Metmodel)

- Example of jet energy resolution
 - Mis-measurements of jet energy are leading source of fake MET
 - Obtain jet energy resolution as a function of E and η

- Select events with true MET:
 - Calculate MET-significance based on event configuration and known energy resolution
 - Use MET-significance to select events with true MET
Validation of Metmodel

- Use $W(\rightarrow e\nu) + \text{jet}$ data to validate MET-resolution

- Regions dominated by events with fake MET
 - Low MET-significance and small $\Delta\phi(\text{jet,MET})$
Diboson Candidate Selection

Variable	Cut values		
MET	> 60 GeV		
Jet -1,2 E_T	> 25 GeV		
Jet EmFr	< 0.9		
Jet -1,2 $	\eta	$	< 2.0
$\Delta \phi_{\text{closest}}$	> 0.4 rad		
MET-significance	> 4		
$\Delta R_{\text{lep-jet}}$	> 0.2		
E^{EM}/E^{tot}	0.3-0.85		
M_{jj}	40 GeV/c2 – 160 GeV/c2		
Jet timing	< 4.5 ns		

44,910 diboson candidate events after selection

QCD multijet rejection
Modeling Multijet Background

- Track MET (trkMET)
 - Analogous to MET
- True MET
 - Small $\Delta \varphi$(trkMET-MET)
- Fake MET
 - Large $\Delta \varphi$(trkMET-MET)

- Subtract EWK from data in $\Delta \varphi$(trkMET-MET) > 1.0 region
 - Address MC-data resolution and modeling effects with $Z \rightarrow \mu\mu$ events
 - EWK MC normalized to data in peak region
Checking Background Model

- Check distributions sensitive to fake MET
 - MET-significance
 - $\Delta \varphi(\text{jet}, \text{MET})$
- EWK background and signal have the same shapes in these variables
M$ _{jj}$ Templates: Multijet Background

- Shape & normalization (6144 events) taken from data in the region $\Delta \phi$(trkMET-MET) > 1.0 after EWK subtraction
 - Shape & normalization included as constraints in M$ _{jj}$ fit
- Uncertainties from extrapolation into $\Delta \phi$(trkMET-MET) < 1.0 region determined using dijet MC
M. Templates: EWK Background

- Shape taken from MC
- Total number of EWK events unconstrained in fit (~31000 expected)

Process	Expected % of sample
$Z \rightarrow \nu \nu$	28.9
$Z \rightarrow \tau \tau$	1.0
$Z \rightarrow \mu \mu$	0.7
$Z \rightarrow e e$	0.0
$W \rightarrow \tau \nu$	24.1
$W \rightarrow e \nu$	14.4
$W \rightarrow \mu \nu$	12.8
tt	0.9
Single top	0.5
Total	83.3
Systematics on Shape of EWK

- Use data γ+jets as alternative template
 - Many uncertainties cancel (detector effects, ISR/FSR...)
- Kinematics of V+jets and γ+jets similar but not identical:

$$V + jets(data) \approx \frac{V + jets(MC)}{\gamma + jets(MC)} \times \gamma + jets(data)$$
M$_{jj}$ Templates: Signal

Process	Expected % of sample
WW	2.2
WZ	0.7
ZZ	0.3
Total	3.2

- Shape from MC
- Number of signal events unconstrained in fit (~1400 expected)
- Jet energy scale included as Gaussian constraint in fit
Systematics

Systematic	% uncert.
Extraction	
EWK shape	7.7
Resolution	5.6
Total extraction	9.5
JES	8.0
JER	0.7
E_T resolution model	1.0
Trigger inefficiency	2.2
ISR/FSR	2.5
PDF	2.0
Total acceptance	9.0
Luminosity	5.9
Total	14.4

Uncertainties on extraction

Additional uncertainties that contribute to cross section
Signal Extraction

- Fit result:
 - $1516 \pm 239\text{(stat.)} \pm 144\text{(syst.)}$
 - Expected 1398 ± 243

- Significance
 - Naively, $\frac{1516}{\sqrt{(239^2 + 144^2)}} = 5.4\sigma$
 - Consider parameter variations for all sources of systematics:
 - Compare likelihood of background only with full fit result
 - Convert difference into probability
 - Lowest significance returned: 5.3σ
Cross Section

\[\sigma = \frac{N_{VV} \, \text{(extracted)}}{A \times \varepsilon \times \mathcal{L}} \]

- \(N_{VV} \, \text{(extracted)} = 1516 \)
- Acceptance, \(A \): weighted by VV cross sections
- Efficiency, \(\varepsilon \):
 - Trigger: 96%
 - Cosmics removal: 99%
- Luminosity, \(\mathcal{L} \): 3450 pb\(^{-1}\)
- Cross section:
 - Measured: \(18.0 \pm 2.8 \, \text{(stat.)} \pm 2.4 \, \text{(syst.)} \pm 1.1 \, \text{(lumi)} \) pb
 - SM prediction: \(16.8 \pm 0.5 \) pb

Process	Cross Section, pb	Acceptance, %
WW	11.7	2.48
WZ	3.6	2.64
ZZ	1.5	2.94
Summary

- First observation of vector boson pair production in hadronic final state at the Tevatron
 - Milestone in search for low mass Higgs
 - Developed and tested new effective techniques

- Measured diboson production cross section
 - Measured: $18.0 \pm 2.8\,\text{(stat.)} \pm 2.4\,\text{(syst.)} \pm 1.1\,\text{(lumi)}\,\text{pb}$
 - SM prediction: $16.8 \pm 0.5\,\text{pb}$

- Paper submitted to PRL
 - Available as arXiv:0905.4714
Extra Slides
Re-weighting $\gamma + \text{Jets}$

- Kinematics of photon+jets vs. W/Z + jets not IDENTICAL,
- however \rightarrow weight the photon+jets data to the
- ratio of W/Z+jets / pho+jets MC
Fit Results

Source	Nevents	Stat Uncert
Jes	0.985	0.019
Ewk	36140	1230
Jet bkg	7249	1130
Signal	1516	239

Source	Jet slope	jes	ewk	jet	sig
Jet slope	1	0.212	-0.419	0.437	0.062
jes	1	-0.010	0.037	-0.116	
Ewk	1	-0.967	-0.382		
Jet	1		0.206		
sig				1	
Fit Results

Floating parameter	Fitted value	Stat Uncert
Jet slope	0.724	0.047
jes	0.985	0.019
Ewk	36140	1230
Jet	7249	1130
sig	1516	239

- Jet bkg background template (6144 events in peak and out, slope -0.02)
 - Jet slope ~20% uncertainty
 - Jet norm ~20% uncertainty
 - (0.724x-0.02) is the fit result
Cosmic Removal

- Relying on EM and HAD timing
 - $|\text{JET EM timing}| < 4.5\text{ns}$
 - $|\text{JET HAD timing}| < 15\text{ns}$
- Treat this as systematic uncertainty.
 - The final fit will lump this into EWK

$Z \rightarrow ll$ to measure efficiency

$\varepsilon = 98.9 \pm 0.2\%$

Data to estimate bkgd.

$B = 97 \pm 6$

Similar to EWK

$\chi^2 / \text{ndf} = 14.39 / 18$

Prob = 0.7031

$p_0 = 34.92 \pm 2.61$

$p_1 = -0.221 \pm 0.022$