Residential Radon Exposure and Cigarette Smoking in Association with Lung Cancer: a Matched Case-control Study in Korea

CURRENT STATUS: POSTED

Eung Joo Park
Yonsei University Wonju College of Medicine

Hokyou Lee
Yonsei University College of Medicine

Hyeon Chang Kim
Yonsei University College of Medicine

Seung soo Sheen
Ajou University Hospital

Sang Baek Koh
Yonsei University Wonju College of Medicine

Ki Soo Park
Gyeongsang National University Graduate School of Medicine

Nam Han Cho
Ajou University School of Medicine and Graduate School of Medicine

Cheol-Min Lee
Seokyeong University

Dae Ryong Kang dr.kang@yonsei.ac.kr
Corresponding Author
ORCiD: 0000-0002-8792-9730

DOI:
10.21203/rs.2.15523/v1

SUBJECT AREAS
Health Economics & Outcomes Research Health Policy

KEYWORDS
radon, cigarette smoking, lung cancer
Abstract

Background: Residential radon exposure and cigarette smoking are the two most important risk factors for lung cancer. The combined effects thereof were evaluated in a multi-center matched case-control study in South Korea.

Methods: A total of 1,038 participants were included, comprising 519 non-small cell lung cancer cases and 519 age- and sex- matched community-based controls. Residential radon levels were measured for all participants. Multivariate logistic regression was used to calculate odds ratios (OR) for lung cancer according to radon exposure (high ≥100 Bq/m3 vs. low <100 Bq/m3), smoking status, and combinations of the two after adjusting for age, sex, indoor hours, and other housing information.

Results: The median age of the participants was 64 years, and 51.3% were women. The adjusted ORs (95% confidence intervals [CIs]) for high radon and cigarette smoking were 1.56 (1.03-2.37) and 2.53 (1.60-3.99), respectively. When stratified according to combinations of radon exposure and smoking status, the adjusted ORs (95% CIs) for lung cancer in high-radon non-smokers, low-radon smokers, and high-radon smokers were 1.40 (0.81-2.43), 2.42 (1.49-3.92), and 4.27 (2.14-8.52), respectively, with reference to low-radon non-smokers.

Conclusion: Both residential radon and cigarette smoking were associated with increased odds for lung cancer, and the difference in ORs according to radon exposure was much greater in smokers than in non-smokers.

Background

An aggressive cancer, lung cancer is the most common cause of cancer death worldwide [1]. While prognoses of lung cancer at advanced stages remain disappointing [3], survival rates for early localized disease are often promising [2],
although early detection of lung cancer is uncommon. Therefore, current preventive strategies focus on controlling environmental hazards or routine radiologic screening of individuals at high risk for lung cancer [4].

The two most important environmental contributors to lung cancer development are cigarette smoking and radon exposure. Of these, exposure to radon indoors has garnered greater interest as a risk factor for lung cancer, as radon is a colorless and odorless gas that is ubiquitous in rocks and soils and, thus, can accumulate in buildings [5]. The association between radon exposure and lung cancer has been widely reported [6–8], and the combined effect of radon and tobacco smoke is thought to be higher than additive [9,10]. However, studies on the combined effect of radon and smoking on lung cancer have primarily focused on exposure to radon at high concentration sites, such as uranium mines [11–13]. Accordingly, we aimed to assess the interaction between residential radon exposure and cigarette smoking in association with lung cancer in a matched case-control study in Korea.

Methods

Study design and participants

The Korea-Integrated Radon Exposure Epidemiology Statistics (K-iREES) study enrolled a total of 6,582 individuals between October 2015 and March 2018 from seven tertiary hospitals and four community-based cohorts. The hospital-based participants were recruited from Severance Hospital, Seoul; Asan Hospital, Seoul; St. Mary’s Hospital, Seoul; Ajou University Hospital, Suwon; Wonju Severance Hospital, Wonju; Gyeongsang University Hospital, Changwon; and Pusan University Hospital, Yangsan. The community-based participants were recruited from the Cardiovascular and Metabolic Diseases Etiology Research Center (CMERC), Seoul [14]; the Ansung-Ansan Korean Genome and
Epidemiology Study (KoGES) [15]; the Namgaram cohort [16], Gyeongnam; and the Wonju-Pyeongchang KoGES [15]. The study regions were selected to include various regional radon exposure levels according to data obtained from the National Institute of Environmental Research (2011–2016). The selected study regions and their corresponding exposure levels are depicted in Figure 2, with correction for seasonal variations. From the study hospitals, patients aged 19 to 80 years who had been diagnosed with non-small cell lung cancer (NSCLC) stage I to IIIa were included. The controls were selected from community-based cohort participants aged 19 to 80 years who had no known diagnosis of lung cancer. All participants had lived in their homes for 2 years or longer. A total of 1,343 individuals, including 526 hospital-based and 817 community-based participants, had radon measurements taken in their homes. For each hospital-based lung cancer patient, a community-based control was matched for sex and age (<65 or ≥65 years), and 1:1 sampled using SAS proc surveyselect. Finally, 519 cases and 519 matched controls were analyzed. The study protocol was approved by the Institutional Review Board of Yonsei University College of Medicine (CR315030).

Measurement of residential radon levels

Residential radon levels were measured at two locations in each study home where individuals tend to spend most of their time: the living room and the bedroom. Alpha-track detectors (Raduet Model RSV–8; Radosys Ltd., Budapest, Hungary) were used as a passive radon measuring device. The measuring devices were positioned away from household electrical appliances, windows, or sealed drawers. The measurements were made over 3 months, and the average of measurements at both locations in the house was taken. Given that indoor radon levels are highest in the winter and lowest in the summer,
seasonal corrections were made with average temperature, wind speed, and other factors taken into consideration [17]. The residential radon levels were dichotomized into high (≥100 Bq/m3) or low (<100 Bq/m3) according to World Health Organization reference data [18].

Smoking history and covariables

The K-iREES study was designed to investigate factors associated with radon exposures and related health problems. Questionnaires were used to identify demographics, health-related behaviors, such as cigarette smoking, and the characteristics of individual homes, including indoor cracks, ventilation, housing types, construction year, etc. Cigarette smoking was defined as having smoked five or more packs in a lifetime. Second-hand smoking was defined as living together with or working in proximity to a current smoker.

Statistical analysis

Participant characteristics are reported as a mean ± standard deviation, median [interquartile range], or frequency (percent). Intergroup comparisons were conducted using T-tests for continuous variables and χ^2-tests for categorical variables. We used multivariate conditional logistic regression to calculate odds ratios (OR) and 95% confidence intervals (CI) for lung cancer according to residential radon exposure (high vs. low), smoking status, and combinations of the two (low-radon dwelling non-smokers [reference], high-radon dwelling smokers, low-radon dwelling smokers, and high-radon dwelling smokers), after adjusting for second-hand smoking, sleeping hours, indoor hours, housing type, floor, presence of cracks, and green ratio. All analyses were performed using SAS version 9.4 (SAS Institute Inc., Cary, NC, USA). Map-visualization of radon levels was computed using R version 3.4.3 (R Foundation for Statistical Computing, Vienna, Austria).
Results

Participant characteristics

Descriptive statistics of the 519 hospital-based lung cancer cases and the 519 age- and sex-matched community-based controls are reported in Table 1. In both the case and control groups, the median age was 64 years, and 51.3% were women. Mean residential radon levels were 65.46 Bq/m3 and 73.75 Bq/m3 ($P = 0.013$) in the case and control groups, respectively. Among the cases and controls, the proportions of individuals exposed to high levels of residential radon (≥ 100 Bq/m3) were 13.7% and 17.7% ($P = 0.007$); smokers comprised 42.8% and 34.9% ($P = 0.009$); and second-hand smokers accounted for 46.1% and 21.2% ($P < 0.001$), respectively. Participants in the case group reported longer sleeping and indoor hours and were more likely to live in apartments or other multi-family houses, with a lower green ratio (all $P < 0.001$), although with similar building ages, than participants in the control group.

Residential radon and cigarette smoking on lung cancer

In conditional logistic regression adjusted for second-hand smoking, sleeping and indoor hours, housing type and floor, house cracks, and green ratio, the ORs (95% CIs) for high radon and cigarette smoking were 1.56 (1.03–2.37) and 2.53 (1.60–3.99), respectively (Table 2). When stratified by combinations of radon exposure and smoking status (low-radon non-smokers [reference], high-radon smokers, low-radon smokers, and high-radon smokers), the difference in ORs for lung cancer by radon exposure was much greater in smokers than in non-smokers. That is, with low-radon non-smokers as the reference group, the adjusted ORs (95% CIs) for lung cancer were 1.40 (0.81–2.43), 2.42 (1.49–3.92), and
4.27 (2.14–8.52) in high-radon non-smokers, low-radon smokers, and high-radon smokers, respectively. Similar findings were observed when we used conventional, instead of conditional, logistic regression (Table 2).

Furthermore, we repeated the analysis with tobacco smoke-exposure reclassified into smoke-free group (neither smoking nor being exposed to second-hand smoke) and smoke-exposed group (active smoking and/or being exposed to second-hand smoke). Compared with the low-radon smoke-free group, the adjusted ORs for lung cancer in high-radon smoke-free, low-radon smoke-exposed, high-radon smoke-exposed groups were 1.01 (0.49–2.07), 2.39 (1.48–3.87), and 4.93 (2.57–9.45) from a conditional logistic model and 1.04 (0.51–2.13), 2.41 (1.49–3.89), and 4.65 (2.44–8.88) from a conventional logistic model, respectively (Table 3).

Finally, we checked the robustness of our data using a lower radon cut-off value of 74 Bq/m³ [19]. The adjusted ORs were 1.55 (1.02–2.34), 2.39 (1.45–3.95), and 4.16 (2.29–7.57) in high-radon non-smokers, low-radon smokers, and high-radon smokers, respectively (Table S1), and were comparable with ORs from the main analyses.

Discussion

In this matched case-control study, we discovered significant associations for lung cancer with residential radon exposure, with cigarette smoking, and with combinations of the two. Residential radon exposure and cigarette smoking were synergistically associated with a greater odds for lung cancer. Although multiplicative interaction did not reach statistical significance, the difference in ORs for lung cancer according to radon exposure was much greater in current smokers than in non-smokers. Such trend was more pronounced when environmental smoking was taken into account. In this regard, for both smoking- and radon-related lung cancer risk, the most important risk reduction strategy would be
smoking cessation and avoidance of environmental tobacco smoke. Conversely, among active or secondhand smokers, residential radon assessment and control should constitute a significant portion of lung cancer preventive measures, in addition to efforts supporting cessation and avoidance.

The carcinogenicity of radon and cigarette smoke may involve various mechanisms, including generation of DNA-reactive products, chromosomal instability and aberrations, and mutations of tumor-suppressor genes [20]. However, the current literature is, as of yet, inconsistent on mutation “hotspots” or unique cytogenetic markers associated with radon-related carcinogenicity or its interactions with tobacco smoke [21]. Some in vitro studies have suggested a synergistic increase of chromosomal aberrations and possibly a higher susceptibility to radon exposure in lymphocytes of smokers [22,23]. It has also been proposed that radon progeny may attach to tobacco smoke aerosols and increase potential doses to target organs [24,25]. Further molecular and cytogenetic studies are needed to elucidate the mechanism underlying the observed synergism between low-dose radon and smoking in association with lung cancer.

Epidemiologic evidence of interactions between radon exposure and cigarette smoking and their effects on lung cancer has been described in a number of studies [9,26,27]. However, many of these studies included persons exposed to a high doses of radon, such as those face by uranium miners [28–30]. Considering the non-linear dose-response relationship between radon and lung cancer, the modifying effect of low-dose radon on the smoking-lung cancer relationship may not be extrapolated from uranium miner results. In this study, we evaluated the interaction between residential radon and cigarette smoking, and our findings hold notable implications in lung cancer risk assessment and preventive measures. Furthermore, this is the first study in Korea to describe interactions between residential radon and cigarette smoking in association with lung cancer.
Our study has several limitations. First, the case-control design precludes causal inference between the exposure variables and lung cancer. Second, although we incorporated a matched case-control design and further adjustments for other imbalances, residual and unmeasured confounding may exist. Third, the number of female smokers in our study was too small for sex-specific analyses to be possible. Fourth, recall bias in smoking history is also possible. Finally, histopathologic subtypes of NSCLC were not differentiated in our study. Notwithstanding, this study also has some notable strengths. Foremost, we used individual-level residential radon measurements rather than ecologic data. Moreover, the cases and controls were gathered from multiple centers and cohorts of different geographic locations with varying regional radon levels. Therefore, our findings may provide some generalizability on radon exposure patterns and their associations with lung cancer in Korea.

Conclusion

In conclusion, we found both residential radon and cigarette smoking to be associated with increased odds for lung cancer, and the difference in ORs according to radon exposure was much greater in smokers than in non-smokers. Therefore, preventive strategies targeting radon-related lung cancer should emphasize, in addition to radon-reducing repairs and ventilation, both smoking cessation and withdrawing from second-hand smoking.

Abbreviations

CI: confidence interval
OR: Odds ratio
NSCLS: Non small cell lung cancer
K-iREES: The Korea-Integrated Radon Exposure Epidemiology Statistics
CMERC: Cardiovascular and Metabolic Diseases Etiology Research Center
KoGES: Korean Genome and Epidemiology Study

Declarations

Acknowledgments

Not applicable

Availability of data and materials

The datasets analyzed during the current study is available from the corresponding author on reasonable request.

Funding

This study was supported by the Korean Ministry of Environment as part of the “Environmental Health Action Program” (grant number: 2015001350002).

Author details

1 Department of Precision Medicine & Biostatistics, Yonsei University Wonju College of Medicine, Wonju, Korea

2 Center of Biomedical Data Science, Yonsei University Wonju College of Medicine, Wonju, Korea

3 Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea;

4 Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea;

5 Cardiovascular and Metabolic Disease Etiology Research Center, Yonsei University College of Medicine, Seoul, Korea;

6 Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine;

7 Department of Preventive Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea;

8 Department of Preventive Medicine, School of Medicine, Gyeongsang National University,
Jinju, Korea;

Department of Preventive Medicine, Ajou University School of Medicine, Suwon, Korea;

Department of Chemical and Biological Engineering, Seokyeong University, Seoul, Korea.

†Eung Joo Park and Hokyou Lee contributed equally to this work as first authors.

Corresponding author

Dae Ryong Kang, Department of Precision Medicine & Biostatistice, Yonsei University

Wonju College of Medicine. Ilsen-ro 20, Wonju, Republic of Korea 26426 Email:

dr.kang@yonsei.ac.kr

Authors’ contributions

Dae Ryong Kang and Eung Joo Park designed the study. Hyeon Chang Kim, Seung soo Sheen, Sang Baek Koh, Ki Soo Park, and Nam Han Cho collected data. Eung Joo Park and Hokyou Lee performed the analyses. Hokyou Lee and Eung Joo Park drafted the article. Hyeon Chang Kim, Seung soo Sheen, Sang Baek Koh, Ki Soo Park, Nam Han Cho, MD, and Cheol-Min Lee revised the manuscript for important intellectual content. Dae Ryong Kang approved the final version of the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Subjects were informed from the study design and purpose according to the Declaration of Helsinki. Written informed consent was obtained from all subjects, and the study was approved by the institutional review board at Yonsei University Wonju College of Medicine of Korea (IRB approval number; CR315030)

Consent for publication

Not applicable

Competing interests
The authors are research and development researchers at the same Korean environment ministry, and declare that they have no conflict of interest.

References

1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359-86.

2. International Early Lung Cancer Action Program I, Henschke CI, Yankelevitz DF, Libby DM, Pasmanter MW, Smith JP, et al. Survival of patients with stage I lung cancer detected on CT screening. N Engl J Med. 2006;355:1763-71.

3. Goldstraw P, Chansky K, Crowley J, Rami-Porta R, Asamura H, Eberhardt WE, et al. The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. J Thorac Oncol. 2016;11:39-51.

4. McKee BJ, Hashim JA, French RJ, McKee AB, Hesketh PJ, Lamb CR, et al. Experience with a CT screening program for individuals at high risk for developing lung cancer. J Am Coll Radiol. 2015;12:192-7.

5. Cancer IAfRo. Monographs on the evaluation of carcinogenic risk to humans: man-made mineral fibres and radon.: Lyon, France: International Agency for Research on Cancer; 1988.

6. Alavanja MC, Brownson RC, Lubin JH, Berger E, Chang J, Boice JD, Jr. Residential radon exposure and lung cancer among nonsmoking women. J Natl Cancer Inst. 1994;86:1829-37.

7. Auvinen A, Makelainen I, Hakama M, Castren O, Pukkala E, Reisbacka H, et al. Indoor radon exposure and risk of lung cancer: a nested case-control study in Finland. J Natl Cancer Inst. 1996;88:966-72.
8. Council NR. Health effects of exposure to radon: BEIR VI: National Academies Press; 1999.

9. Bohm R, Sedlak A, Bulko M, Holy K. Use of threshold-specific energy model for the prediction of effects of smoking and radon exposure on the risk of lung cancer. Radiat Prot Dosimetry. 2014;160:100-3.

10. Tomasek L. Lung cancer risk from occupational and environmental radon and role of smoking in two Czech nested case-control studies. Int J Environ Res Public Health. 2013;10:963-79.

11. Saccomanno G, Huth GC, Auerbach O, Kuschner M. Relationship of radioactive radon daughters and cigarette smoking in the genesis of lung cancer in uranium miners. Cancer. 1988;62:1402-8.

12. Leuraud K, Billon S, Bergot D, Tirmarche M, Caer S, Quesne B, et al. Lung cancer risk associated to exposure to radon and smoking in a case-control study of French uranium miners. Health Phys. 2007;92:371-8.

13. Amabile JC, Leuraud K, Vacquier B, Caer-Lorho S, Acker A, Laurier D. Multifactorial study of the risk of lung cancer among French uranium miners: radon, smoking and silicosis. Health Phys. 2009;97:613-21.

14. Shim JS, Song BM, Lee JH, Lee SW, Park JH, Choi DP, et al. Cardiovascular and Metabolic Diseases Etiology Research Center (CMERC) cohort: study protocol and results of the first 3 years of enrollment. Epidemiol Health. 2017;39:e2017016.

15. Kim Y, Han BG, group tK. Cohort Profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. Int J Epidemiol. 2017;46:e20.

16. Yoo JI, Park JS, Kim RB, Seo AR, Park YJ, Kim MJ, et al. WHO disability assessment schedule 2.0 is related to upper and lower extremity disease-specific quality of life. Qual Life Res. 2018;27:2243-50.
17. Park JH, Lee CM, Lee HY, Kang DR. Estimation of Seasonal Correction Factors for Indoor Radon Concentrations in Korea. Int J Environ Res Public Health. 2018;15:2251.

18. Angell WJ, Zeeb H, Shannon F. WHO handbook on indoor radon: a public health perspective. 2009.

19. Kim SH, Koh SB, Lee CM, Kim C, Kang DR. Indoor Radon and Lung Cancer: Estimation of Attributable Risk, Disease Burden, and Effects of Mitigation. Yonsei Med J. 2018;59:1123-30.

20. Alavanja MC. Biologic damage resulting from exposure to tobacco smoke and from radon: implication for preventive interventions. Oncogene. 2002;21:7365-75.

21. Robertson A, Allen J, Laney R, Curnow A. The cellular and molecular carcinogenic effects of radon exposure: a review. Int J Mol Sci. 2013;14:14024-63.

22. Mohanku MN, Meenakshi C. Radon-induced Chromosome Damage in Blood Lymphocytes of Smokers. Research Journal of Environmental Toxicology. 2012;6:51-8.

23. Meenakshi C, Mohankumar MN. Synergistic effect of radon in blood cells of smokers - an in vitro study. Mutat Res. 2013;757:79-82.

24. Morawska L, Phillips CR. Attachment of Radon Progeny to Cigarette-Smoke Aerosol. Aerosol Science and Technology. 1992;17:149-58.

25. Biermann AH, Sawyer SR. Attachment of radon progeny to cigarette-smoke aerosols. Lawrence Livermore National Laboratory; 1995.

26. Kreuzer M, Walsh L, Schnelzer M, Tschense A, Grosche B. Radon and risk of extrapulmonary cancers: results of the German uranium miners’ cohort study, 1960–2003. Br J Cancer. 2008;99:1946-53.

27. Denman AR, Rogers S, Ali A, Sinclair J, Phillips PS, Crockett RG, et al. Small area mapping of domestic radon, smoking prevalence and lung cancer incidence—A case study in Northamptonshire, UK. J Environ Radioact. 2015;150:159-69.
28. Hornung RW, Meinhardt TJ. Quantitative risk assessment of lung cancer in U.S. uranium miners. Health Phys. 1987;52:417–30.

29. Heidenreich WF, Tomasek L, Rogel A, Laurier D, Tirmarche M. Studies of radon-exposed miner cohorts using a biologically based model: comparison of current Czech and French data with historic data from China and Colorado. Radiat Environ Biophys. 2004;43:247–56.

30. Tomasek L, Darby SC, Swerdlow AJ, Placek V, Kunz E. Radon exposure and cancers other than lung cancer among uranium miners in West Bohemia. Lancet. 1993;341:919–23.

Tables

Table 1. Characteristics of the study participants

Variables	Case (N=519)
Age, years	64 [57-72]
Sex, n (%)	
Male	253 (48.75)
Female	266 (51.25)
Residential radon*, Bq/m³	65.46 ± 46.71
High-radon dwelling†, n (%)	71 (13.68)
Cigarette smoking, n (%)	222 (42.77)
Second-hand smoking, n (%)	239 (46.05)
Sleeping hours	7.20 ± 1.83
Indoor hours	15.88 ± 4.39
Housing type, n (%)	
Single-family house	178 (34.30)
Apartment	180 (34.68)
Other multi-family dwelling	161 (31.02)
Floor of residence	4.76 ± 5.09
Presence of house crack, n (%)	120 (23.12)
Construction year	1996 [1990-2003]
Green ratio	48.09 ± 21.09

*Corrected for seasonal variations.

†Residential radon ≥100 Bq/m³.

Table 2. Associations of residential radon exposure and cigarette smoking with lung cancer
Variables	Case, n	Control, n	OR (95% CI)*
Residential radon			
Low (<100 Bq/m³)	448	427	1.00 (reference)
High (≥100 Bq/m³)	71	92	1.56 (1.03-2.37)
Cigarette smoking			
Non-smokers	297	338	1.00 (reference)
Smokers	222	181	2.53 (1.60-3.99)
Radon and smoking			
Low-radon non-smokers	262	282	2.42 (1.49-3.92)
High-radon non-smokers	35	56	1.40 (0.81-2.43)
Low-radon smokers	186	145	4.27 (2.14-8.52)
High-radon smokers	36	36	4.27 (2.14-8.52)

*Conditional logistic regression was adjusted for second-hand smoking, sleeping hours, indoor hours, housing type, floor, presence of house cracks, and green ratio. CI, confidence interval; OR, odds ratio.
†Conventional logistic regression was further adjusted for age and sex.

Table 3. Associations of residential radon and tobacco smoke exposure with lung cancer

Variables	Case, n	Control, n	OR (95% CI)*
Residential radon			
Low (<100 Bq/m³)	448	427	1.00 (reference)
High (≥100 Bq/m³)	71	92	1.56 (1.03-2.37)
Smoke exposure			
Smoke-free	122	254	1.00 (reference)
Smoke-exposed	397	265	2.67 (1.69-4.21)
Radon and smoke exposure			
Low-radon smoke-free	109	204	1.00 (reference)
High-radon smoke-free	13	50	1.01 (0.49-2.07)
Low-radon smoke-exposed	339	223	2.39 (1.48-3.87)
High-radon smoke-exposed	58	42	4.93 (2.57-9.45)

*Adjusted for second-hand smoking, sleeping hours, indoor hours, housing type, floor, presence of house cracks, and green ratio. CI, confidence interval; OR, odds ratio.
†Conventional logistic regression was further adjusted for age and sex.

Figures
Figure 1

Flowchart of the study participants.
Map of the study area and research sites. Regional indoor radon levels were obtained from the National Institute of Environmental Research (2011-2016). Fill colors correspond to radon levels in five categories. Stars designate the locations of study sites.

Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

SupplementaryTable.docx