Fermentation profile, nutritional value, and microbial population of C4 grasses silages with or without bacterial additive

Sarah E. E. Bernardo1. Paulo H. B. Chrisostomo2. Michele G. Camilo1. Danielle F. Baffa1. Elizabeth F. Processi2. Alberto M. Fernandes1. Tadeu S. Oliveira1

Abstract - The objective of the present study was to evaluate the use of bacterial additive (Lactobacillus plantarum and Propionibacterium acidipropionici) on chemical composition, in vitro gas production, pH, losses, aerobic stability, and microbial population of corn, pearl millet, and sorghum silages in plastic bags silos (without vacuum). The experiment was carried out in a randomized block design, in a 2 × 3 factorial scheme, with or without additive ([Control] without additive and Lactobacillus plantarum [2.5 × 1010 cfu/g] and Propionibacterium acidipropionici [2.5 × 1010 cfu/g] Biomax corn, Lallemand, Saint-Simon, France [LP]) and three crops of agricultural interest; pearl millet, sorghum, and corn, with four replicates per treatment. We performed chemical analyses and in vitro gas production to determine the nutritional value of the silages. We also evaluated the aerobic stability, ammoniacal nitrogen (NH3), pH, and microbial population of the silages. The additive increased the crude protein content (P = 0.0062) in corn and sorghum and decreased the LIG content (P = 0.0567). The gas production was not affected (P > 0.05) by the additive and neither between crops. In aerobic stability, we observed that the additive affected the temperature of the sorghum silage (P = 0.0123). The additive decreased NH3 (P = 0.0095) content. The additive increased (P = 0.0441) the lactic acid bacteria population in the pearl millet, corn, and sorghum silages. Thus, the bacterial additive did not improve the fermentation profile and nutritional value of corn, pearl millet, and sorghum silages in plastic bag silos.

Keywords: Conservation. Fermentation capacity. Inoculant. Lactic acid bacteria

Introduction

In Brazil, milk and beef productions are based on pastures, as they are a less expensive feed source for the farmers. However, the seasonality of forage production is a critical

Tadeu S. de Oliveira
tsoleiveira@uenf.br
1Laboratory of Animal Science, State University of Northern of Rio de Janeiro, Campos dos Goytacazes, RJ 28013-602, Brazil.
2Federal Rural University of Rio de Janeiro, Campos dos Goytacazes, 28022-560, Brazil.
point for planning livestock activity. Under such conditions, it is necessary to establish feeding strategies for the herds in which the production and conservation of supplementary forage must be considered (Chaudhry, 2008). The most widespread methods for preserving feed are haymaking and ensiling.

The storage of forage through the ensiling technique receives a greater emphasis on the part of the farmers for presenting excellent results. Still, some factors must be considered, and the main one is respecting the characteristics of each crop, as they can directly influence the silage quality. Specifically for the ensiling, the final quality of the feed is directly related to the material that gave rise to it and the conditions in which it was ensiled (Jobim et al., 2007).

During the ensiling process, another critical factor is the additive. The microbial inoculants are recommended to reduce losses in silage of tropical grasses since homolactic bacteria compete with epiphytic microorganisms, increasing the fermentation efficiency (Kung Jr et al., 2003; Borreani et al., 2018). Inoculants are one of the main additives in the ensiling, aiming to dominate fermentation through the rapid production of lactic acid (homolactic bacteria) and consequent pH decrease, inhibiting the growth of undesirable microorganisms and production of acetic and propionic acid (Kung Jr. et al., 2003). Other bacteria, such as heterofermentative, can increase acetic and propionic acid (Kung Jr. et al., 2003; Zopollatto et al., 2009; Bernardes and Rêgo, 2014). There are several compositions of inoculants on the market. As a rule, those produced from homolactic bacteria improve the fermentation pattern, whereas heterolactic bacteria inoculants are used to increase aerobic stability (Queiroz et al., 2018). *Lactobacillus plantarum* is one of the most used among homolactic bacteria due to its vigorous growth, acid tolerance, and a high potential for lactic acid production (Muck, 2010). In the heterofermentative bacteria group, the *Propionibacterium acidipropionici* uses lactic acid
and glucose as substrates to produce acetic and propionic acid, which effectively control fungi under low pH (Zopollatto et al., 2009).

Therefore, we hypothesized that the bacterial additive would not affect the fermentation of C4 grasses silages. Thus, the objective of the present study was to evaluate the bacterial additive (*Lactobacillus plantarum* and *Propionibacterium acidipropionici*) on chemical composition, in vitro gas production, pH, losses, aerobic stability, and microbial population of corn, pearl millet, and sorghum silages in plastic bag silos (without *vacuum*).

Material and Methods

Location

The experiment was carried out at the Universidade Federal Rural do Rio de Janeiro (UFRRJ) - Campos dos Goytacazes *Campus*, RJ, Brazil (21°47'54"S and 41°17'34"W, 12 m a.s.l.) and at the Animal Science Laboratory of the Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF) - Campos dos Goytacazes, RJ, Brazil (21°45'41"S and 41°17'27"W, 10 m a.s.l.). According to Köppen's classification (Alvares et al., 2013), the climate in the North of the Rio de Janeiro State is classified as Aw, i.e., humid tropical with a rainy summer, dry winter, and annual rainfall around 1,020 mm. The soil of the experimental area is classified as Cambisol.

Ensiling, additive, and experimental design

The pearl millet, corn, and sorghum were harvested and processed in a stationary forage chopper (JF Maxxium Model, JF Máquinas Agrícolas LTDA, Brazil) with an average particle size of ± 1.5 cm. We used plastic bags (polyethylene 51 cm wide × 110 cm long and 200 microns) for ensiling the forages. The silos were closed with nylon clamps and stored at
an ambient temperature of 25±2.3 °C for 90 days. The silos were packed with a density of
600 kg/m3 (fresh forage ensiled).

The experiment was carried out in randomized blocks in a 2 × 3 factorial scheme, with or
without the additive ([Control, CON] without additive and *Lactobacillus plantarum* [2.5 ×
1010 cfu/g] and *Propionibacterium acidipropionici* [2.5 × 1010 cfu/g] Biomax corn,
Lallemand, Saint-Simon, France [LP]) and three crops of agricultural interest: pearl millet
(*Pennisetum glaucum* L.), cv. BRS 1501; sorghum (*Sorghum bicolor* × *Sorghum sudanense*),
hybrid BRS810; and corn (*Zea Mays* L.), cv. PR1150. We used four replicates per treatment,
totaling 48 experimental units. The treatments were randomly distributed in the silos. The
microbial inoculant was used according to the manufacturer's recommendations (2 g/ton of
forage), it was diluted in water and sprayed on the forages to be ensiled.

Chemical composition

After opening the silos, the silage samples were dried in a forced-air oven at ±55 °C for 72
hours to yield the partially dried samples. Then, the samples were ground in a Wiley mill
fitted with a 1-mm-sieve. We determined the contents of total dry matter (DM, AOAC
Method 967.03, AOAC, 1990), crude fat (CF, AOAC Method 2003.06; Thiex et al., 2003),
ash (ASH, AOAC Method 942.05, AOAC, 1990), crude protein ([N×6.25]CP, AOAC
Method 984.13 and AOAC Method 2001.11; Thiex et al., 2002), neutral detergent fiber
using a standardized heat stable amylase solution and the expressed results with residual ash
(aNDF, AOAC Method 2002.04; Mertens, 2002) and lignin (LIG) (Möller, 2009). The non-
fibrous carbohydrate (NFC) content was estimated as:

\[
NFC (g/kg) = 1000 - CP - CF - Ash - NDF.
\]

The hemicellulose was calculated by the difference between the NDF and ADF contents,
and the cellulose by the difference between ADF and Lignin contents, expressed in g/kg.
Gas production kinetics

The Ethics Committee on the Use of Experimental Animals approved all experimental procedures, 419 protocol. We collected the ruminal fluid from three sheep, 45 kg (standard deviation = 3.2 kg), with permanent rumen cannulas. The animals were housed in collective pens with troughs and drinkers. The sheep were adapted to a diet with Tifton 85 hay and concentrate feed for 14 days to meet the maintenance requirements. After this period, the collection of ruminal fluid began, and it took place moments before daytime feeding, as recommended by Yáñez-Ruiz et al. (2016). The ruminal fluid (liquid and solid) was collected at several points of the liquid-solid interface of the ruminal environment for each incubation battery. We used about 500 mg (standard deviation = 10 mg) of silage sample in amber penicillin flasks together with 50 ml of an inoculum (1:4 ratio, ruminal fluid, and buffer solution, respectively). The buffer solution was prepared as described by McDougall (1948).

The flasks were immediately filled with CO$_2$, closed, and placed in a water bath.

The time profiles of gas production were obtained using a non-automated device, similar to Abreu et al. (2014). We measured pressure and volume at times 0; 1; 2; 3; 4; 6; 8; 10; 12; 16; 20; 24; 30; 36; 48; 72 and 96 hours after the addition of ruminal inoculum. The cumulative pressure and volume of fermentation gases were obtained by summing the corrected readings throughout the measurement times.

We used the model described by Groot et al. (1996) to explain the cumulative gas production profiles:

\[G = A / (1 + (B^c / t^c)) \]
\[R_M (mLh^{-1}) = B \times (C - 1)^{1/c} \]

Where, the parameter G represents the amount of gas produced per unit of organic matter incubated at time t after the incubation period; the parameter A represents the asymptotic gas
production (mg/g OM); the parameter B is the time (h) after incubation in which half of the asymptotic gas was produced, it represents the gas production speed; the parameter C is a constant that determines the sharpness of the curve change characteristic. The R_M represents the maximum gas production rate when the microbial population does not limit the fermentation and digestion is not reduced by chemical or structural barriers of the potentially digestible matter.

Aerobic stability test

About 2.0 kg of silage was packed in plastic bags of 5.0 kg capacity, where it remained for seven days in a room with a controlled temperature (25°C) to assess aerobic stability. For this, we used a data logger (Log 110 EXF Inconterm; Brazil) inserted in the ensiled mass at a depth of 10 cm in the central portion, and the temperature recording was carried out at intervals of 8 hours. Aerobic stability was calculated as the time, in hours, in which the silages had a temperature 2 °C higher than the ambient temperature after opening the silo. In addition, we collected samples from each silo during the aerobic stability assessment at 24-hour intervals to determine DM (AOAC Method 967.03, AOAC, 1990) (Kung Jr. et al., 2003).

Fermentative parameters

After opening each silo, the material was homogenized, a sample of 25 g of fresh silage was taken, and 225 ml of saline solution (8.5 g of NaCl/L of distilled water) was added and homogenized for 1 minute in an industrial processor. The extract was filtered through a double layer of gauze, and pH was measured with a pH meter (MPA-210, Tecnopon, Brazil) (Kung Jr., 1996). Aliquots of 2 mL of extract were transferred to test tubes with 1 mL of
sulfuric acid (1N) and stored at −20°C. Ammoniacal nitrogen analysis was performed according to the methodology of Fenner (1965).

Microbial population
A 10 ml aliquot of the aqueous extract was submitted to serial dilutions (10⁻¹ to 10⁻⁶). The cultivation of microorganisms was performed in sterile Petri dishes. We used the VRB (Violet Red Bile) culture media to count enterobacteria with an incubation period of 24 h at 37 °C; for the fungi counting, we used the PDA (Potato Dextrose Ágar) culture media with an incubation period of four days at 25 °C; and we used the MRS (De Man, Rogosa, Sharpe) culture media, for 48 h at 37 °C, to count lactic acid bacteria. We counted the dishes that showed between 30 and 300 colony-forming units (CFU). The results were transformed into a logarithmic basis (log₁₀ cfu) for the data evaluation and interpretation.

Statistical Analysis
Data regarding chemical composition, losses, ammoniacal nitrogen, pH, temperature, microbial population, and cumulative gas production were analyzed in randomized blocks in a 3 × 2 factorial scheme with four replicates. The data were compared through the Tukey test with a 0.05 significance level using the SAS MIXED package (SAS University Edition, SAS Institute Inc., Cary, NC, USA).

We used the following statistical model:

\[Y_{ijk} = \mu + \alpha_i + \beta_j + \alpha\beta_{ij} + b_k + e_{ijk} \]

Where: \(Y_{ijk} \) is the value observed for the variable under study referring to the \(k \)-th replicate of the combination of the \(i \)-th level of factor \(\alpha \) with the \(j \)-th level of factor \(\beta \); \(\mu \) is the mean of all experimental units for the variable under study; \(\alpha_i \) is the use or not of additive in the silage with \(i = 1,2 \); \(\beta_j \) is the crop effect, with \(j = 1,2,3 \); \(\alpha\beta_{ij} \) is the interaction between the use or not
of additive and crops; \(b_k \) is the effect of the \(k-th \) block on the observation; and \(e_{ijkl} \) is the error associated with observation \(Y_{ijkl} \).

The pH and temperature data (aerobic stability) were analyzed as repeated measures over time, and we applied regression analysis with a significance level of 0.05 using the SAS MIXED package (SAS University Edition, SAS Institute Inc., Cary, NC, USA).

We used the following statistical model:

\[
Y_{ijkl} = \mu + \alpha_i + \beta_j + \tau_k + \alpha \beta_{ij} + \alpha \tau_{ik} + \beta \tau_{jk} + \alpha \beta \tau_{ijk} + b_k + e_{ijkl}
\]

Where: \(Y_{ijkl} \) is the value observed for the variable under study referring to the \(l-th \) replicate of the combination of the \(i-th \) level of factor \(\alpha \) with the \(j-th \) level of factor \(\beta \) in the \(k-th \) hour; \(\mu \) is the mean of all experimental units for the variable under study; \(\alpha_i \) is the use or not of additive in the silage with \(i = 1,2 \); \(\beta_j \) is the crop effect, with \(j = 1,2,3 \); \(\tau_k \) is the random effect of the evaluation hours with \(k = 0.24,\ldots,144 \) for pH and \(0.8,16,\ldots,162 \) for temperature; \(\alpha \beta_{ij} \) is the interaction between the use or not of additive and crops; \(\alpha \tau_{ik} \) is the interaction between the use of additive or not and the evaluation hours; \(\beta \tau_{jk} \) is the interaction between crops and evaluation hours; \(\alpha \beta \tau_{ijk} \) is the interaction between the use of additive or not, crops, and evaluation hours; \(b_k \) is the effect of the \(l-th \) block on the observation; and \(e_{ijkl} \) is the error associated with observation \(Y_{ijkl} \).

Results

Chemical composition and gas production

There was no interaction effect (\(P > 0.05 \)) between additive and crops (Tables 1), except for CP content (\(P = 0.0357 \)). The use of additive increased the CP content (\(P = 0.0062 \)) and reduced the LIG content (\(P = 0.0567 \)) in corn (19.65\% [42.06/52.35]) and sorghum (14.43\% [50.15/58.61]) silages. The CF (\(P = 0.7695 \)), NDF (\(P = 0.0607 \)), and NCF (\(P = 0.1429 \)) contents did not show any statistical difference (Tables 1 and 2) between crops.
The gas production kinetics was not affected ($P > 0.05$) by the additive and neither between crops (Tables 1 and 3).

Aerobic stability test

There was no interaction effect ($P > 0.05$) between additive and crops (Tables 1) and additive and time for aerobic stability (Figure 2). Regarding the aerobic stability, we observed that the additive did not affect the temperature of the corn ($P = 0.6419$) and pearl millet ($P = 0.8527$) silages over the days. However, the additive affected ($P = 0.0123$) the temperature of the sorghum silage (Figure 2C). The additive only affected the pH of the pearl millet silage ($P = 0.0065$) (Figure 2D).

Fermentation parameters

There was no interaction effect ($P > 0.05$) between additive and crops (Tables 1). The temperature right after the opening of the silos and dry matter losses were not affected ($P > 0.05$) by the additive ($P > 0.05$) or between crops ($P > 0.05$) (Tables 1 and 4). The additive decreased by 1.09% the pH of corn silage, 10.67% of sorghum silage, and 3.37% of pearl millet silage. There was a statistical difference ($P < 0.0001$) between crops (Tables 1 and 4).

Ammoniacal nitrogen followed a similar behavior to pH. The additive increased 44.15% of the ammonia nitrogen content in corn silage, 25.91% in sorghum silage, and decreased about 5% in pearl millet silage. The crops differed significantly ($P = 0.0095$) (Tables 1 and 4).

Microbial population

There was no interaction effect ($P > 0.05$) between additive and crops (Tables 1). There was no appearance of enterobacteria in the silages with or without the additive. The additive increased ($P = 0.0441$) by 9.63%, 19.46%, and 31.27% the population of lactic acid bacteria
in the pearl millet, corn, and sorghum silages, respectively (Table 5). Corn silage presented a
more significant amount of fungi ($P < 0.0001$) than pearl millet and sorghum silages,
regardless of the use of additive (Table 5).

Discussion

The nutritional value of silage depends mainly on three factors: the genetic material (plant
biomass, grain production, drought tolerance, and disease resistance), the stage at which the
forage was harvested (it affects the composition and the final quality of the preserved forage,
and the stage indicated for ensiling is between the doughy and farinaceous stages) and the
microorganisms (epiphytic) present in the forage during the ensiling process (Oliveira et al.,
2011; Behling Neto et al., 2017). Thus, we observed the chemical composition of the silages
and noticed a difference between the crops, except for the CF, NDF, and NCF contents (Table
2). The lower DM content observed in pearl millet and sorghum silages can be explained by
the higher resistance to drought due to an adaptive process that prevents excessive
dehydration such as smaller stomata, early stomatal closure, low stomatal density, and
increased leaf serosity, retaining more water in the plant (Levitt, 1980). In addition to the
difference between crops, we also observed that the additive increased the CP contents (Table
2), but the additive could not reduce losses caused by proteolysis. Analyzing the ammoniacal
nitrogen (Table 4), we observed that the CP degradation was between 25 and 30%. For Kung
Jr et al. (2018), the rapid pH decline is crucial to reduce protein degradation during ensiling,
which probably happened in corn silage without additive, as it had a low degradation rate
(21.11% [8.88/42.06]). Another factor that may have influenced the protein degradation is the
material of the silo (polyethylene) in terms of oxygen permeability, i.e., gas exchanges
between the silage and the external environment, with oxygen entering even without the
plastic bags present any physical damage (Amaral et al., 2014) which may have allowed the
increase of undesirable microorganisms such as mold (Table 5). These microorganisms have their activity intensified in the presence of soluble carbohydrates, acids, and proteins, increasing the silage pH (Table 4). The hemicellulose degradation has been neglected for many years (Ning et al., 2017), but some studies have shown this degradation occurs during the ensiling (Muck, 1990; Chen et al., 2015). Melvin (1965) and Yahaya et al. (2001) reported that the degradation products of hemicellulose (xylose) and starch (glucose) could be substrates for microorganisms to produce acids during the ensiling; this fact was observed in our study (Table 2). LIG and CEL contents were lower in corn silage (Table 2). These values can be explained by the carbon translocation from the leaf to the formation and filling of grains, causing an increase in starch contents (Di Fonzo et al., 1982). In our study, the NFC contents were not different \((P = 0.1429)\) between crops, but corn silage was 2.35\% higher than pearl millet silage and 11.36\% higher than sorghum silage without additive (Table 2). Corn silage presented the lowest ash content (Table 2). According to Ashbell (1995), the low ash content indicates excellent forage conservation, as the occurrence of inadequate fermentation results in losses of organic matter, increasing the share of ash in DM.

The \textit{in vitro} gas production allows evaluating the kinetics of ruminal fermentation, providing information on the rate and extent of feed degradation in the rumen (Theodorou et al., 1994). In our study, the gas production was not affected \((P > 0.05)\) by the additive and neither between crops (Table 1 and Figure 1). For Bach et al. (2005), crude protein concentrations below 70 g/kg may restrict microbial activity due to lack of nitrogen. In this study (Table 2), these concentrations were from 40 to 60 g/kg. However, we observed that although there was no difference \((P > 0.05)\), the time taken for half of the asymptotic gas to be produced (Parameter B) in the corn silage with or without additive was shorter than the other silages (Table 3). Gas production rates peaked in the first hours of incubation, being
longer in the corn silage without additive (Figure 1C), but all silages had a final rate below 0.1 ml/h (Figure 1).

The aerobic stability of the silage is expressed as the resistance of forage mass to deterioration after opening the silo, i.e., the speed at which the mass deteriorates after its contact with the air (Jobim et al., 2007). Thus, we observed that the silages’ temperature at the opening was not affected by the additive ($P = 0.8911$) and neither between crops ($P = 0.3196$). However, pH was affected by the additive ($P = 0.0013$) and crops ($P < 0.0001$) (Table 4). *Lactobacillus plantarum*, one of the inoculants in this study, aims to increase lactic acid production, consequently reducing the pH of the ensiled mass and inhibiting the growth of unwanted microorganisms (McDonald et al., 1991; Muck, 2010). Analyzing the temperature over the days, we observed that in the first 36 hours, there was a peak temperature in sorghum silage regardless of the additive. However, the silage with an additive reduced its temperature more quickly (Figure 2C). For Woolford (1990), the initial increase in temperature is caused by the growth of yeasts and filamentous fungi, but after some time, according to Muck and Pitt (1992), the increase in pH (above 5.0) can favor the growth of bacilli that can cause a second increase in the temperature, this fact was observed in our study (Figures 2 B and C). The plastic bag (polyethylene) silos can present oxygen permeability at a temperature of 25 °C. Gas exchange between the interior of the silo and the environment is close to 1 liter/m2, which is a value for an intact bag without any physical damage (Greenhill, 1964). This exchange can make the silage more prone to aerobic deterioration due to the increase in the permeability of the bags, as the aeration of this mass allows the action of yeasts that oxidize the silage's preservative organic acids triggering aerobic degradation and increasing pH. In our study, the pearl millet, corn, and sorghum silages without additive increased 2.0 points in pH in 24, 96, and 96 hours, respectively, whereas those with additive,
increased 2.0 points in pH in 48 hours (Figures 2D, E, and F). The aerobic stability loss of silages is usually manifested by an increase in temperature and a change in pH.

Ammoniacal nitrogen (NH₃-N) indicates the amount of protein degraded during the fermentation. It is an indicator of the extent of clostridial activity since it is produced in small amounts by other microorganisms in the silage and plant enzymes (Borreani et al., 2018). According to Blajman et al. (2020), the combination of hetero and homofermentative bacteria favors reducing pH values, ammoniacal nitrogen, and fermentative losses in silages. The NH₃-N levels were affected by the additive (0.0040) and between crops (\(P = 0.0095 \)) (Table 4). According to Tomich et al. (2003), NH₃-N values below 10 g/kg CP indicate good fermentation, and above 15 g/kg CP of NH₃-N in silage indicate a significant amount of proteolysis. In the present study, only corn silage without additive (8.88 g/kg CP) presented NH₃-N values below 10 g/kg CP. This fact may indicate a higher intensity of proteolysis, especially by amino acid degradation by bacteria of the genus Clostridium (Diether and Willing, 2019).

It is also essential to understand the microbial population, as the ensiling will preserve the forage and inhibit undesired microorganisms (Clostridium sp, enterobacteria, yeasts, and fungi), influencing the silage quality (Muck, 2010). In this study, we observed there were no counts for enterobacteria in the silos. This fact is related to the active growth of lactic acid bacteria (LAB) during the fermentation process, as the pH decrease to values between 3.35 and 3.75 (Table 4), it favors the population decline of enterobacteria rapidly, turning LAB the main microorganisms in silage (McDonald et al., 1991). The additive increased the LAB population and decreased the pH of the silos. Lactobacillus plantarum (one of the microorganisms in the additive of this study) aims to increase the lactic acid production, consequently reducing the pH of the ensiled mass and inhibiting the growth of unwanted microorganisms (McDonald et al., 1991; Muck, 2010). Analyzing the crops, we observed that
corn silage presented the highest \((P < 0.001)\) fungi population, about 37.75% more than pearl millet silage and 29.27% more than sorghum silage (Table 5). This fact is probably because the plastic bag (polyethylene) silos can present oxygen permeability, and most fungi are strictly aerobic. They can use sugars (glucose, sucrose, and maltose) and more complex compounds (starch, cellulose, and hemicellulose) as substrates for their growth (Wang et al., 2020).

Conclusion

The bacterial additive did not improve the fermentation profile and nutritional value of corn, pearl millet, and sorghum silages in plastic bag silos.

Declarations

Authors' contributions

Conceptualization: A. M. Fernandes and T.S. Oliveira. Data curation: T.S. Oliveira. Formal analysis: T.S. Oliveira. Investigation: E.F. Processi, and T.S. Oliveira. Methodology: S.E.E. Bernardo, E.F. Processi, M.G. Camilo, D.F. Baffa, and P.H.B. Chrisostomo. Resources: T.S. Oliveira. Supervision: T.S. Oliveira. Writing-original draft: T.S. Oliveira. Writing-review & editing: A. M Fernandes, S.E.E. Bernardo, and T.S. Oliveira.

Funding: This research was supported by Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJ (RJ, Brazil), processes numbers E-26/010.100974/2018 and E-26/010.002458/2019.

Conflict of Interest: The authors declare that they have no conflict of interest.

Consent to participate: Not applicable.

Consent for publication: Not applicable.

Availability of data and material: Not applicable.
Code availability: Not applicable.

Research involving human participants and/or animals

Ethical Approval: All experimental procedures were approved by the Ethics Committee on the Use of Experimental Animals of the Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), registered under protocol 419-2017.

References

Abreu, M.L.C., Vieira, R.A.M., Rocha, N.S., Araújo, R.P., Glória, L.S., Fernandes, A.M., Lacerda, P.D. and Júnior, A.G. 2014. Clitoria ternatea L. as a potential high quality forage legume. Asian-Australasian Journal of Animal Science, 27, 169-178. https://doi.org/10.5713/ajas.2013.13343.

Amaral, R.C., Santos, M.C., Daniel, J.L.P., Sá Neto, A., Bispo, A.W., Cabezas-Garcia, E.H., Bernardes, T.F. and Nussio, L.G. 2014. The influence of covering methods on the nutritive value of corn silage for lactating dairy cows. Revista Brasileira de Zootecnia, 43, 471-478. https://doi.org/10.1590/S1516-35982014000900003.

Association of Official Analytical Chemists (AOAC). 1990. Official method of analysis. 15th ed. Washington, DC, USA: Association of Official Analytical Chemists.

Ashbell, G. 1995. Basic principles of preservation of forage, by-products and residues as silage or hay. Agricultural Research Organization, Israel.

Alvares, C.A., Stape, J.L., Sentelhas, P.C., Moraes, J.L.G., Sparovek, G. 2013. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, 22, 711-728. https://doi.org/10.1127/0941-2948/2013/0507.

Bach, A., Calsamiglia, S. and Stern, M.D. 2005. Nitrogen Metabolism in the Rumen. Journal of Dairy Science, 88, 9-21. http://doi.org/10.3168/jds.S0022-0302(05)73133-7.
Bernardes, T.F. and Rêgo, A.C. 2014. Study on the practices of silage production and utilization on Brazilian dairy farms. Journal of Dairy Science, 97, 1852–1861. https://doi.org/10.3168/jds.2013-7181.

Behling Neto, A., Reis, R.H.P., Cabral, L.S., Abreu, J.G., Sousa, D.P. and Sousa, F.G. 2017. Nutritional value of sorghum silage of different purposes. Ciência e Agrotecnologia 41, 288-299. https://doi.org/10.1590/1413-70542017413038516.

Blajman, J.E., Vinderola, G., Páez, R.B. and Signorini, M.L. 2020. The role of homofermentative and heterofermentative lactic acid bacteria for alfalfa silage: a meta-analysis. The Journal of Agricultural Science, 1-12. https://doi.org/10.1017/S0021859620000386.

Borreani, G., Tabacco, E., Schmidt, R.J., Holmes, B.J. and Muck, R.E. 2018. Silage review: Factors affecting dry matter and quality losses in silages. Journal of Dairy Science, 101, 3952-3979. https://doi.org/10.3168/jds.2017-13837.

Chaudhry, A.S. 2008. Forage based animal production systems and sustainability, an invited keynote. Revista Brasileira de Zootecnia, 37, 78-84. https://doi.org/10.1590/S1516-3598200801300010.

Chen, L., Guo, G., Yu, C.Q., Zhang, J., Shimojo, M. and Shao, T. 2015. The effects of replacement of whole-plant corn with oat and common vetch on the fermentation quality, chemical composition and aerobic stability of total mixed ration silage in Tibet. Animal Science Journal, 86, 69-76. https://doi.org/10.1111/asj.12245.

Diether, N.E. and Willing, B.P. 2018. Microbial fermentation of dietary protein: An important factor in diet–microbe–host interaction. Microorganisms, 7, 1-14. https://doi.org/10.3390/microorganisms7010019.
Di Fonzo, N., Motto, M., Maggiore, T., Sabatino, R. and Salamini, F. 1982. N-uptake, translocation and relationships among N-related traits in maize as affected by genotype. Agronomie, 2, 789-796. https://doi.org/10.1051/agro:19820901.

Fenner, H. 1965. Methods for determining total volatile base in rumen fluid by steam distillation. Journal of Dairy Science, 48, 249-251. https://doi.org/10.3168/jds.S0022-0302(65)88206-6.

Greenhill, W.L. 1964. Plant juice in relation to silage fermentation. I – The role of the juice. Journal of the British Grassland Society, 19, 30-37. https://doi.org/10.1111/j.1365-2494.1964.tb01137.x.

Groot, J.C., Cone, J.W., Williams, B.A., Debersaques, F.M. and Lantinga, E.A. 1996. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Animal Feed Science and Technology, 64, 77-89. https://doi.org/10.1016/S0377-8401(96)01012-7.

Jobim, C.C., Nussio, L.G., Reis, R.A. and Schmidt, P. 2007. Avanços metodológicos na avaliação da qualidade da forragem conservada. Revista Brasileira de Zootecnia, 36, 101-119.

Kung Jr., L. 1996. Preparation of silage water extracts for chemical analysis: Standard operating procedure. University of Delaware, Worrlow, USA.

Kung Jr., L., Stokes, M.R. and Lin, C.J. 2003. Silage additives. In: Buxton D.R., Muck R.E. and Harrison J.H. (eds). Silage Science and Technology, 305-360.

Kung Jr., L., Shaver, R.D., Grant, R.J. and Schmidt, R.J. 2018. Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science, 101, 4020-4033. https://doi.org/10.3168/jds.2017-13909.
Levitt, J. 1980. Responses of Plants to Environmental Stresses. 2nd ed. Academic Press, New York, USA.

McDonald, P., Henderson, A.R. and Heron, S. 1991. The biochemistry of silage. 2nd ed. Chalcombe Publications, Marlow, UK.

McDougall, E.I. 1948. The composition and output of sheep’s saliva. Biochemical Journal, 43, 99-109.

Mertens, D.R. 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. Journal of AOAC International, 517, 1217-1240.

Melvin, J.F. 1965. Variations in the carbohydrate content of lucerne and the effect on ensilage. Australian Journal of Agricultural Research, 16, 951-9. https://doi.org/10.1071/AR9650951.

Möller, J. 2009. Gravimetric determination of acid detergent fiber and lignin in feed: interlaboratory study. Journal of AOAC International, 92, 74-90. https://doi.org/10.1093/jaoac/92.1.74.

Muck, R.E. 1990. Dry matter level effects on alfalfa silage quality. II. Fermentation products and starch hydrolysis. American Society of Agricultural and Biological Engineers 33, 373-381. https://doi.org/10.13031/2013.31340.

Muck, R.E. and Pitt RE. 1992. Aerobic losses at the silo face. American Society of Agricultural and Biological Engineers, 92, 21-24.

Muck, R.E. 2010. Silage microbiology and its control through additives. Revista Brasileira de Zootecnia, 39, 183-191. https://doi.org/10.1590/S1516-35982010001300021.

Ning, T., Wang, H., Zheng, M., Niu, D., Zuo, S. and Xu, C. 2017. Effects of microbial enzymes on starch and hemicellulose degradation in total mixed ration silages. Asian-
Oliveira, F.C.L., Jobim, C.C., Silva, M.S., Calixto Jr., M., Bumbieris Jr., V.H. and Roman, J. 2011. Produtividade e valor nutricional da silagem de híbridos de milho em diferentes alturas de colheita. Revista Brasileira de Zootecnia, 40, 720-727.

Queiroz, O.C.M., Ogunade, I.M., Weinberg, Z. and Adesogan, A.T. 2018. Silage review: Foodborne pathogens in silage and their mitigation by silage additives. Journal of Dairy Science, 101, 4132-4142. https://doi.org/10.3168/jds.2017-13901.

Thiex, N.J., Manson, H., Anderson, S. and Persson, J.A. 2002. Determination of crude protein in animal feed, forage, grain, and oilseeds by using block digestion with a copper catalyst and steam distillation into boric acid: collaborative study. Journal of AOAC International, 85, 309-317.

Thiex, N. J., Anderson, S. and Gildemeister, B. 2003. Crude fat, hexanes extraction, in feed, cereal grain, and forage (Randall/soxtec/submersion method): collaborative study. Journal of AOAC International, 86, 899-908.

Tomich, T.R., Pereira, L.G.R., Gonçalves, L.C., Tomich, R.G.P. and Borges, I. 2003. Características químicas para avaliação do processo fermentativo de silagens: Uma proposta para qualificação da fermentação. Embrapa Pantanal, Corumbá, Brazil.

Theodorou, M.K., Williams, B.A., Dhanoa, M.S., McAllan, A.B. and France, J. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal feed science and technology, 48, 185-197. https://doi.org/10.1016/0377-8401(94)90171-6.

Zopollatto, M., Daniel, J.L.P. and Nussio, L.G. 2009. Aditivos microbiológicos em silagens no Brasil: revisão dos aspectos da ensilagem e do desempenho de animais. Revista...
Brasileira de Zootecnia, 38, 170-189. https://doi.org/10.1590/S1516-35982009001300018.

Wang, B., Hu, S., Yu, X., Jin, L., Zhu, Y. and Jin, F. 2020. Studies of Cellulose and Starch Utilization and the Regulatory Mechanisms of Related Enzymes in Fungi. Polymers, 12, 1-17. https://doi.org/10.3390/polym12030530.

Woolford, M.K. 1990. The detrimental effects of air on silage. Journal of Applied Bacteriology, 68, 101-116. https://doi.org/10.1111/j.1365-2672.1990.tb02554.x.

Yahaya, M.S., Kimura, A., Harai, J., Nguyen, H.V., Kawai, M., Takahashi, J. and Matsuoka S. 2001. Effect of length of ensiling on silo degradation and digestibility of structural carbohydrates of lucerne and orchardgrass. Animal Feed Science and Technology, 92, 141-8. https://doi.org/10.1016/S0377-8401(01)00265-6.

Yáñez-Ruiz, D.R., Bannink, A., Dijkstra, J., Kebreab, E., Morgavi, D.P., O’kiely, P., Reynolds, C.K., Schwarm, A., Shingfield, K.J., Yu, Z. and Hristov, A.N. 2016. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—a review. Animal Feed Science and Technology, 216, 1-18. https://doi.org/10.1016/j.anifeedsci.2016.03.016.