Clinical Distribution Characteristics of 1439 Carbapenem-Resistant Escherichia coli Strains in China: Drug Resistance, Geographical Distribution, Antibiotic MIC50/90

Wei Zhang,1,2 Zhirong Li,3 Na Wang,4 Zhicong Yang,1 Jia Li,1 Caiping Li,1 Xuying Han,1 Jinli Liu,1 Liping Li,6 Shuowang Wang,4 Zhirong Li,2 Zhicong Yang,1 Jinli Liu,1 Minghua Zhan1,5

1Microbiology Department, The First Affiliated Hospital of Hebei North University, Zangjiakou, Hebei Province, People’s Republic of China; 2Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China; 3Clinical Laboratory, Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China; 4Clinical Laboratory, Zangjiakou Xuan Gang Hospital, Zangjiakou, Hebei Province, People’s Republic of China; 5Clinical Laboratory, Peking University People’s Hospital, Beijing, People’s Republic of China

Purpose: To explore the clinical distribution characteristics and antimicrobial susceptibilities of carbapenem-resistant Escherichia coli (CR-ECO) in Hebei Province, China, from 2017 to 2019, and provide data on the treatment of this bacterial infection and the prevention of its spread.

Materials and Methods: A total of 1439 CR-ECO strains were collected from 2017 to 2019 in Hebei Province, China. Drug sensitivity tests were performed using the minimum inhibitory concentration (MIC) method, and the data were analyzed statistically using WHONETS.6 software.

Results: A total of 54,377 strains of Escherichia coli were isolated in Hebei Province from 2017 to 2019, of which 1439 strains were CR-ECO (2.65%). The highest proportion (33.78%) of strains was isolated from urine, and the detection rate showed a slow downward trend over the past 3 years. CR-ECO was mainly detected in densely populated and economically developed areas. Of all the patients, 54.2% were from the medical ward; the ratio of male to female patients with CR-ECO infections was 1.35:1; elderly patients and adults accounted for 59.6% and 30.8%, respectively, whereas minors and newborns accounted for 4.9% and 4.7%, respectively. For CR-ECO, the drug resistance rates to β-lactams were all higher than 80% and there was an annual increasing trend, while the drug resistance rates to quinolones remained nearly unchanged. The rate of resistance to aminoglycosides was relatively low, especially to amikacin (approximately 22%). The MIC50 of other antibacterial drugs, except amikacin, was equal to or higher than the break point of drug resistance.

Conclusion: From 2017 to 2019, the isolation rate of CR-ECO in Hebei Province, China, remained stable; however, the drug resistance rate showed an upward trend, primarily in cases of urinary tract infections in older men; the resistance rate to amikacin was the lowest.

Keywords: Enterobacteriales bacteria, multidrug resistance, MIC50/MIC90, regional distribution

Introduction

Since the advent of penicillin, human beings have discovered and invented various types of antibacterial drugs, which play an extremely important role in the treatment of different infections. However, evidence that reduced susceptibility to antibiotics has been increasing worldwide.1 In Spain, the resistance rate of Klebsiella pneumoniae to imipenem increased nearly 13 times from 2010 to 2014.2 Data on bacteremia

Correspondence: Minghua Zhan
Department of Clinical Laboratory, The First Affiliated Hospital of Hebei North University and Peking University People’s Hospital, No. 11 South Street, Xi Zhi Men, Beijing, 100044, People’s Republic of China
Tel +86-15531311750
Fax +86-1088326317
Email minghuazhan02@163.com

Infection and Drug Resistance 2021:14 4717–4725

© 2021 Zhang et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).
patients from 90 Swiss hospitals showed a linear increase in *staphylococcus aureus* resistance to oxacillin during hospitalization.\(^3\) From 2010 to 2017, the proportion of *Escherichia coli* isolated from 25 tertiary hospitals in Greece insensitive to third-generation cephalosporins, carbapenems, and fluoroquinolones was increasing.\(^4\) There are even strains that are insensitive to many antibiotics, such as “multi-drug-resistant bacteria, pan-drug-resistant bacteria, and super bacteria”.\(^5–8\) Carbapenem antibiotics, as broad-spectrum β-lactam drugs, can treat infections caused by *Enterobacteriales* bacteria and are regarded as the “last line of defense” for infection treatment.\(^9–11\) Unfortunately, the resistance rate of *Enterobacteriales* bacteria to carbapenems has been increasing year by year.\(^12–14\) Carbapenem-resistant *Enterobacteriales* (CRE) is a serious public health threat with significant morbidity and mortality, and it has been listed as an urgent threat to bacterial drug resistance by the World Health Organization.\(^15–18\) In a study of 138 CRE infected patients treated with ceftazidime/avibactam, the 30-day mortality rate was still as high as 34%.\(^19\) β-lactamase gene transport on mobile components is a key mechanism for the rapid global spread of CRE.\(^11,18\) With the extensive use of carbapenem antibiotics, carbapenem resistant *Escherichia coli* (CR-ECO) has evolved, resulting in a dilemma in the selection of antimicrobials for infections with this bacterium. *Escherichia coli* ST131 producing *Klebsiella pneumoniae* carbapenemase (KPC) was isolated in Italy. Sequencing showed that the strain contained the kpc-2 variant and TEM-1 β-lactamase.\(^20\) In 2020, *Escherichia coli* ST131 O16: H5 producing oxa-244 was isolated from German patients for the first time.\(^21\) The spread of such variants thus poses a serious threat to public health.\(^4,21\) Compared with CRKP, CR-ECO has obviously not attracted enough attention, and its resistance rate, geographical distribution, and other data are unknown in Hebei Province, China. Therefore, the aims of this study were to explore the clinical distribution characteristics and antimicrobial susceptibility of CR-ECO in Hebei Province, China, from 2017 to 2019, and to provide data supporting the treatment of this bacterial infection and the prevention of its spread.

**Materials and Methods**

**General Information**

The strains were isolated from the urine, sputum, blood, secretions, and other clinical specimens of patients in 43 tertiary hospitals in Hebei Province, China, from 2017 to 2019. A total of 1439 CR-ECO strains were obtained. To avoid duplication of statistics in the same patient, the first CR-ECO isolated from this patient was screened with WHONET5.6 software for the study. *Escherichia coli* ATCC25922 and *Pseudomonas aeruginosa* ATCC 27853 were obtained from the Clinical Inspection Center of the National Health and Wellness Committee of the People’s Republic of China. The bacterial drug sensitivity test recommended by the American Institute of Clinical and Laboratory Standardization (CLSI) was used, and drug sensitivity was determined using the CLSI drug sensitivity break point of the 2019 edition.\(^22\)

**Instruments and Reagents**

We used the Bact/ALERT 3D120 automatic blood culture instrument (BIO PARTICIPATIONS Co., LTD, Marcyl'étiole, France). The blood culture bottles were obtained from the original factory. The bacterial identification instrument, Phoenix100, FX-200 automatic blood culture instrument (Becton, Dickinson and Company, New Jersey, USA) was used and the biochemical reaction tubes and drug sensitive reaction tubes were all obtained from the original factory. The bacterial solid culture medium used was the MacConkey Agar Medium (Dijing Microbiology Technology Co., LTD, Guangzhou, China).

**Research Methods**

The strains were inoculated into the MacConkey Agar Medium at 35 °C for 24 h. The bacterial solution was prepared to 0.5 McFarland Standards, and 20 μL was added to the drug sensitive broth. This was mixed well, and the mixture was poured onto the drug sensitive reaction plate. The remaining bacterial solution was poured onto the biochemical reaction plate. These plates were then placed in the bacterial identification instrument, the Phoenix 100, for the identification and drug sensitivity tests, and the results were read after 24 hours.

The bacterial drug sensitivity test recommended by the American Institute of Clinical and Laboratory Standardization (CLSI) was used, and drug sensitivity was determined using the CLSI drug sensitivity break point of the 2019 edition. CR-ECO was defined as an isolate with imipenem and/or meropenem (MICs ≥4 μg/mL).

**Statistical Processing**

WHONET5.6 software was used for data analysis (World Health Organization, Geneva, Switzerland). Images were
formed with GraphPad prism software (Version 8.4.0, InsightfulScience Co., LTD, San Diego, CA, USA) and Adobe Illustrator 2019 software (Adobe Systems Incorporated Co., LTD, SAN Jose, California, USA).

Results

A total of 54,377 strains of *Escherichia coli* were isolated in Hebei Province, China, from 2017 to 2019, including the 1439 strains of *CR-ECO* (2.65%). Among the 1439 strains of *CR-ECO*, 439 strains (2.81%, 439/15,599) were isolated in 2017, 461 strains (2.40%, 461/19,241) in 2018, and 539 strains (2.76%, 539/1999) in 2019. Among these, 486 urine samples (33.77%) ranked first, 419 sputum samples (29.12%) second, and 131 (9.10%) blood samples third. Furthermore, 73 catheters and 72 secretions ranked fourth (5.10%) and fifth places (5.00%), respectively (Table 1).

Between 2017 and 2019, the characteristics of the 1439 patients with *CR-ECO* infection were as follows: 828 (57.5%) males, 611 (42.5%) females, and the ratio of males to females was 1.35:1. There were 858 (59.6%) older people (>60 years old), 443 (30.8%) adults (18–60 years old), 71 (4.9%) minors (1–18 years old) and 68 (4.7%) newborns (<1 year old), respectively. The 1439 strains of *CR-ECO* were isolated from internal medicine 780 (54.20%), surgery 384 (26.69%), ICU 139 (9.66%), pediatrics 80 (5.56%), emergency 43 (2.99%), and outpatient 11 (0.76%) (Figure 1).

From 2017 to 2019, 1439 strains of *CR-ECO* were isolated from Hebei Province, China, according to administrative regions, with Shijiazhuang ranking first with 445 strains (30.92%); Tangshan second with 341 strains (23.70%); Cangzhou third with 172 strains (11.95%), and Handan fourth with 103 strains (7.16%), as shown in Table 2.

Analysis of trend results of drug resistance rates from 2017 to 2019 yielded the following: all β-lactamides showed an increasing trend, except ertapenem, which first decreased and then increased. Among the three aminoglycosides, amikacin first increased and then decreased; gentamicin and tobramycin first decreased and then increased; and the two quinolones, levofloxacin and ciprofloxacin, showed an upward trend first and then a downward trend (Table 3).

Analysis of mean drug resistance rates from 2017 to 2019 yielded the following: piperacillin/tazobactam relative to piperacillin (69.5% vs 92.5%) and ampicillin/sulbactam relative to ampicillin (89.9% vs 96.6%) were significantly reduced; the first to fourth generation cephalosporins represented by cefazolin, cefuroxime, ceftriaxone, cefotaxime, ceftazidime, and cefepime showed a downward trend (91.3% vs 91.2% vs 91.6% vs 88.2% vs 85.7% vs 85.6%). Among carbapenems, ertapenem, imipenem, and meropenem were different (91.3% vs 77.3% vs 72.2%). Among the three aminoglycosides, gentamicin, tobramycin, and amikacin were significantly different (65.0% vs 56.8% vs 22.2%). Levofloxacin was slightly lower than ciprofloxacin (81.0% vs 84.6%); compound sulfa was relatively low (76.9%) (Table 3).

**Table 1** Distribution Characteristics of *CR-ECO* Specimens from 2017 to 2019

| Specimen Type | 2017 | 2018 | 2019 |
|---------------|------|------|------|
|               | N    | P (%)| N    | P (%)| N    | P (%)|
| Urine         | 152  | 34.6 | 156  | 33.8 | 178  | 33.0 |
| Sputum        | 132  | 30.0 | 126  | 27.3 | 161  | 29.8 |
| Blood         | 44   | 10.0 | 48   | 10.4 | 39   | 7.2  |
| Catheter      | 11   | 2.5  | 26   | 5.6  | 36   | 6.6  |
| Secretion     | 15   | 3.4  | 28   | 6.0  | 29   | 5.3  |
| Ascites       | 6    | 1.3  | 18   | 3.9  | 21   | 3.8  |
| Pus           | 26   | 5.8  | 27   | 5.7  | 16   | 2.9  |
| Bile          | 14   | 3.1  | 9    | 1.9  | 8    | 1.4  |
| Drainage      | 1    | 0.2  | 3    | 0.6  | 12   | 2.2  |
| Fecal         | 9    | 2.0  | 2    | 0.4  | 3    | 0.5  |
| Vagina        | 7    | 1.5  | 0    | 0.0  | 1    | 0.1  |
| Other         | 23   | 5.2  | 21   | 4.5  | 35   | 6.4  |
| Total         | 439  | 100  | 461  | 100  | 539  | 100  |

**Abbreviations:** N, number; P, proportion.

**Discussion**

In recent years, due to the irregular use of antibacterial drugs, the resistance rate of *Escherichia coli* to antibacterial drugs has increased. Further, there has been an increase in appearance of multi-drug resistant *Escherichia coli*. While carbapenem antibiotics have become the last line of defense against multi-drug resistant *Escherichia coli*, *CR-ECO* has appeared all over the world, resulting in difficulties in the treatment of this bacterial infection. Carbapenase production is the main mechanism of drug resistance of *Enterobacteriales* to carbapenems. Carbapenems can be destroyed by direct hydrolysis. Because most carbapenase genes are located on mobile gene elements, they are easily transferred between *Enterobacteriales* and other gram-negative bacilli, leading to widespread epidemic spread in a short period of time.
Modified carbapenem inactivation method in conjunction with EDTA-modified carbapenem inactivation method and simplified carbapenem inactivation method can be used to detect carbapenems. KPC, NDM, IPM, VIM and OXA-48 are common carbapenem resistance genotypes. In 2018, Escherichia coli ST131 producing KPC and TEM carbapenemase was isolated from the urine of patients with urinary tract infection for the first time in Italy. This study showed that CR-ECO accounted for 2.65% of all Escherichia coli that caused clinical infections in Hebei Province, China, from 2017 to 2019. From 2009 to 2014, 593 strains of Escherichia coli were isolated from pig feces and rivers in Heilongjiang Province, China, of which CR-ECO accounted for 6.74%. Moreover, the CR-ECO isolated in 10 public pig farms in India accounted for 20.5% of all the strains of Escherichia coli between 2014 and 2016. This indicates that CR-ECO spreads in the environment, and that the separation rate is higher than that of human patients. In Hebei Province, China, the highest separation rate of CR-ECO was from urine, accounting for about 33% of the total. Studies have

**Table 2** Regional Distribution Characteristics of CR-ECO Specimens from 2017 to 2019

| Territory Name | Year | Total (N) | Proportion (%) |
|----------------|------|-----------|----------------|
| Shijiazhuang | 2017 | 145 | 30.92 |
| | 2018 | 142 | 23.70 |
| | 2019 | 158 | 11.95 |
| Tangshan | 2017 | 107 | 23.70 |
| | 2018 | 113 | 19.88 |
| | 2019 | 121 | 10.73 |
| Cangzhou | 2017 | 29 | 11.95 |
| | 2018 | 60 | 23.70 |
| | 2019 | 83 | 14.01 |
| Handan | 2017 | 20 | 11.95 |
| | 2018 | 36 | 23.70 |
| | 2019 | 47 | 20.51 |
| Xingtai | 2017 | 22 | 11.95 |
| | 2018 | 21 | 23.70 |
| | 2019 | 18 | 14.01 |
| Chengde | 2017 | 28 | 11.95 |
| | 2018 | 18 | 23.70 |
| | 2019 | 14 | 20.51 |
| Qinhuangdao | 2017 | 19 | 11.95 |
| | 2018 | 17 | 23.70 |
| | 2019 | 11 | 14.01 |
| Zhangjiakou | 2017 | 7 | 11.95 |
| | 2018 | 7 | 23.70 |
| | 2019 | 32 | 20.51 |
| Langfang | 2017 | 11 | 11.95 |
| | 2018 | 11 | 23.70 |
| | 2019 | 18 | 20.51 |
| Total | 2017 | 439 | 100 |
| | 2018 | 461 |
| | 2019 | 539 |

**Figure 1** Clinical distribution characteristics of CR-ECO. (A) Gender distribution characteristics of CR-ECO. (B) Distribution characteristics of CR-ECO departments. (C) Age distribution characteristics of CR-ECO.
shown that the most common pathogen found in urine is *Escherichia coli*, of which 70.3% are multi-drug resistant bacteria, 1.65% *CR-ECO*, while 0.8% produce the blaOXA-48 gene. In Hebei Province, China, there are more male than female patients with *CR-ECO* infection (1.35 vs 1), while in the United States, 59% were women. In addition, the majority (90.4%) of the *CR-ECO* infected people in Hebei Province, China, are older persons and adults, with only 9.6% being newborns and minors. According to the statistics of two teaching hospitals in London, 51.2% of the *CR-ECO* patients are between 16 and 64 years old, while 48.8% patients were over 64 years old. The median age of the *CR-ECO* infected people in the United States was 66 years old.

According to the above data, *CR-ECO* causes infections mainly in older patients. In this study, the *CR-ECO* inpatients accounted for 99.2%, with the highest proportion being in internal medicine, exceeding 50%, while the ICU accounted for approximately 10%. Johnson et al. showed that patients with *CR-ECO* infection mainly were admitted to the ICU. In Table 2, the *CR-ECO* isolated clinically from Shijiazhuang and Tangshan in 2017–2019 showed first and second places in all the cities in Hebei Province, China, respectively, while the total proportions of the two cities exceeded half of the province; Langfang and Zhangjiakou were the last and penultimate places, respectively. The total proportion was about 6%. In 2019, the China Antimicrobial Resistance Surveillance Network (CARS) showed that the top five provinces and cities in China with respect to the *CR-ECO* separation rates were Beijing, Liaoning, Henan, Jiangsu, and Shanghai, and the five provinces and cities with the lowest separation rates were Tibet, Gansu, Ningxia, Inner Mongolia, and Shanxi. In America, the *CR-ECO* separation rates in Georgia, Maryland, and New York were significantly higher than those in Colorado, New Mexico, and Oregon. This indicates that *CR-ECO* is distributed mainly in densely populated and economically developed areas.

At present, the antibiotics used to treat CRE are limited. Polymyxin, tigecycline, fosfomycin and aminoglycosides are the drugs of choice for the treatment of CRE infections; however their clinical use is limited by their pharmacokinetics and side effects. The drug resistance rate of piperacillin/tazobactam was 23% lower than those in Colorado, New Mexico, and Oregon.

| Antibiotic Name | 2017 | 2018 | 2019 | Average Value |
|-----------------|------|------|------|---------------|
|                 | N    | R (%)| S (%)| N    | R (%)| S (%)| N    | R (%)| S (%)|
| Ampicillin      | 346  | 95.1 | 3.5  | 339  | 97.1 | 1.2  | 471  | 97.2 | 1.7  | 1148 | 96.6 | 2.1  |
| Piperacillin    | 278  | 91   | 5.8  | 220  | 91.8 | 3.2  | 226  | 94.7 | 4.4  | 719  | 92.5 | 4.6  |
| Ceftazolin      | 343  | 84.6 | 15.5 | 383  | 93.5 | 6.5  | 374  | 95.2 | 4.8  | 1092 | 91.3 | 8.7  |
| Cefuroxime      | 315  | 88.9 | 9.8  | 343  | 92.1 | 6.4  | 353  | 92.6 | 6.8  | 1004 | 91.2 | 7.7  |
| Ceftriaxone      | 322  | 87.6 | 12.1 | 305  | 93.1 | 6.2  | 375  | 93.9 | 5.6  | 996  | 91.6 | 7.9  |
| Cefotaxime      | 167  | 81.4 | 18   | 153  | 92.8 | 7.2  | 140  | 91.4 | 8.6  | 458  | 88.2 | 11.6 |
| Compound sulfamethoxazole | 336  | 81 | 19  | 382  | 72.8 | 27.2 | 439  | 77.9 | 22.1 | 1149 | 76.9 | 23.1 |
| Ciprofloxacine  | 349  | 80.8 | 16.3 | 408  | 87   | 11.5 | 477  | 85.3 | 10.9 | 1226 | 84.6 | 12.7 |
| Levofloxacine   | 349  | 77.7 | 18.1 | 417  | 82.5 | 13.7 | 513  | 82.3 | 14   | 1271 | 81.0 | 15.1 |
| Ampicillin/sulbactam | 267  | 92.5 | 4.1  | 368  | 87.5 | 7.1  | 466  | 90.1 | 4.9  | 1093 | 89.8 | 5.5  |
| Gentamicin      | 348  | 67   | 30.5 | 414  | 62.1 | 34.3 | 473  | 66.2 | 28.3 | 1227 | 65.0 | 30.9 |
| Tobramycin      | 245  | 55.9 | 31.8 | 255  | 53.3 | 29.4 | 248  | 61.7 | 19.4 | 743  | 56.8 | 27.1 |
| Aztreonam       | 283  | 82.3 | 15.2 | 236  | 77.5 | 19.9 | 286  | 82.5 | 16.4 | 801  | 81.0 | 17   |
| Cefepime        | 352  | 84.9 | 13.4 | 426  | 84.5 | 10.6 | 514  | 87.2 | 8    | 1284 | 85.6 | 10.4 |
| Ceftazidine     | 351  | 79.5 | 18.5 | 344  | 89   | 9.6  | 510  | 88   | 10   | 1197 | 85.7 | 12.4 |
| Amoxicillin/clavulanic acid | 137  | 39.4 | 49.6 | 97   | 89.7 | 8.2  | 120  | 86.7 | 9.2  | 353  | 69.1 | 24.6 |
| Piperacillin/tazobactam | 355  | 62.5 | 31.3 | 422  | 69   | 18.5 | 507  | 75.1 | 16.2 | 1276 | 69.5 | 21.2 |
| Meropenem       | 361  | 62.3 | 32.7 | 402  | 74.9 | 17.9 | 472  | 78   | 18.2 | 1227 | 72.2 | 22.4 |
| Imipenem        | 357  | 66.1 | 30.5 | 424  | 79.7 | 13   | 511  | 82.8 | 12.7 | 1284 | 77.3 | 17.8 |
| Ertapenem       | 91   | 91.2 | 8.8  | 88   | 90.9 | 9.1  | 84   | 91.7 | 7.1  | 263  | 91.3 | 8.3  |
| Amikacin        | 351  | 22.8 | 72.9 | 425  | 35.5 | 58.6 | 513  | 19.3 | 78.6 | 1281 | 22.2 | 70.6 |

Abbreviations: N, number of strains; R, drug resistance rate; S, sensitivity rate.
than that of piperacillin, and the drug resistance rate of ampicillin/sulbactam was 6.8% lower than that of ampicillin, which proved that the antibacterial activity of penicillin plus enzyme inhibitor was higher than that of a single drug preparation. For carbapenem-sensitive *Escherichia coli*, the resistance rate of piperacillin/tazobactam is less than one tenth of that of piperacillin.\(^\text{34}\) In this study, the resistance rate of the first to the fourth generation cephalosporins to *CR-ECO* showed a downward trend, indicating that the level of cephalosporins increased with the increase in antibacterial activity. However, it is worth noting that the overall drug resistance rate of *CR-ECO* to cephalosporins is still very high, over 85%. Among the third generation cephalosporins, the antibacterial activity of ceftazidime against *CR-ECO* was superior to that of cefotaxime and ceftaxone. In North America, the sensitivity of ceftazidime/avibactam to *CR-ECO* was much higher than that of ceftazidime (92% vs 19%).\(^\text{35}\) In this study, the drug resistance rates of *CR-ECO* to ertapenem, imipenem, and meropenem were 91.3%, 77.3%, and 72.2%, respectively. Johnston et al\(^\text{35}\) showed that the sensitivity rates of meropenem, imipenem, and ertapenem were 59%, 29%, and 4%, respectively. It can be seen that the antibacterial activity of the above three carbapenems against *CR-ECO* descending order is meropenem, imipenem, and ertapenem. When treating infections caused by multidrug-resistant gram-negative bacteria, aminoglycosides are recommended, especially for urinary tract infections caused by renal accumulation. Considering the ototoxicity and nephrotoxicity of such drugs, drug MIC should be monitored for individualized treatment.\(^\text{13}\) In this study, the antibacterial activity of amikacin against *CR-ECO* was 41.1 and 42.4 percentage points higher than that of tobramycin and gentamicin, respectively. Amikacin showed higher antimicrobial activity against *CR-ECO* than gentamicin in Asia-Pacific (68% vs 31%) and Europe (78% vs 50%).\(^\text{35}\) The resistance rates of *CR-ECO* to gentamicin and amikacin in China were 59.3% and 13.2%, respectively.\(^\text{33}\) Amikacin has shown high activity against *CR-ECO* and can be used as an empirical drug candidate for the treatment of *CR-ECO* infections. However, we should pay close attention to its adverse reactions such as ototoxicity and nephrotoxicity.

The MIC50/MIC90 refers to the minimum inhibitory concentration of antibacterial drugs that can inhibit the growth of pathogens by 50%/90%.\(^\text{36}\) In this study (Table 4), the *CR-ECO* MIC50 in Hebei Province, China, was equal to or slightly higher than the resistance break points of most antibiotics. The MIC50 of cefotaxime and ceftaxone was 16 times that of the resistance break point, but the MIC50 of amikacin was far lower than that of the resistance break point, which was 6.25% of the resistance break point and 25% of the sensitivity break point. In this study, amikacin had a higher activity against *CR-ECO* than other antibacterial drugs (Table 3). Unfortunately, *CR-ECO* still showed a high drug resistance rate to new antibacterial drugs, with sensitivity rates of 45% (MIC50 \(\geq\)256 \(\mu\)g/mL) and only 10% (MIC50 \(\geq\)256 \(\mu\)g/mL) to ceftazidime/tazobactam.\(^\text{37}\)

**Conclusion**

In conclusion, the detection rate of *CR-ECO* in Hebei Province, China, remained relatively stable from 2017 to 2019, while the drug resistance to commonly used antibiotics in the clinic was high, especially the drug resistance rate to penicillins and cephalosporins, which was as high as 90.0%. To treat this bacterial infection, sensitive antibacterial agents should be selected according to the results of drug sensitivity tests. *CR-ECO* mainly causes urinary tract infections in older male inpatients. In addition, *CR-ECO* is distributed mainly in densely populated and economically developed areas in Hebei Province, China. To understand the epidemiological characteristics of the *CR-ECO* area, it is necessary to monitor drug resistance data. A limitation of this study is that the isolates were not sequenced for drug-resistant genotypes, so the transmission trajectories could not be accurately tracked.

The administration of carbapenems should be strengthened to delay the generation of *CR-ECO*. To prevent the spread of *CR-ECO*, medical and government agencies need to work together to develop scientific prevention and control measures.

**Data Sharing Statement**

The data used and/or analyzed in this study are available from the corresponding author on reasonable request.

**Ethics Approval and Informed Consent**

The protocol has been reviewed by the Ethics Committee (IRB) of the First Affiliated Hospital of Hebei North University. Since the project is an observational study and all
bacterial strains are from strains cultured from residual samples used in clinical diagnosis, it involves the confidentiality of patient data and compliance with the Declaration of Helsinki. Since the data did not affect patient care, it was determined that the exemption criteria were met. After consulting the IRB of the First Affiliated Hospital of Hebei North University, a formal ethical review was approved, and written informed consent from the patient was not required (ethical approval No.: K2019147).

**Acknowledgments**
The author thanks all his colleagues who have helped this project, and thanks Editage for English language editing.

**Author Contributions**
All authors contributed to data analysis, drafting or revising article agree to submit the articles to infection and drug resistance magazine, finally approve the version to be published, and agree to be accountable for all aspects of the work.

**Funding**
This work was supported by the Youth Science and Technology Project from Department of Health of Hebei Province in China (registration number: 20180843, 20190904 and 20210702) and Key R&D project of Zhangjiakou City (2121098D, 2121064D).

**Disclosure**
The authors report no conflicts of interest in this work.

**References**

1. Acevedo R, Bai X, Borrow R, et al. The global meningococcal initiative meeting on prevention of meningococcal disease worldwide: epidemiology, surveillance, hypervirulent strains, antibiotic resistance and high-risk populations. Expert Rev Vaccines. 2019;18(1):15–30. doi:10.1080/14760584.2019.1555520

2. Aracil-García B, Oto-Iglesias J, Cuevas-Lobato Ó, et al. Rapid increase in resistance to third generation cephalosporins, imipenem and co-resistance in Klebsiella pneumoniae from isolated from 7140 blood-cultures (2010–2014) using EARS-Net data in Spain. Enfom Infect Microbiol Clin. 2017;35(8):480–486. doi:10.1016/j.eimc.2016.06.007

3. Buetti N, Marschall J, Timsit JF, Atkinson A, Kronenberg A, Sommerstein R. Distribution of pathogens and antimicrobial resistance in bacteraemia according to hospitalization duration: a nationwide surveillance study in Switzerland. Clin Microbiol Infect. 2021;27(3):472–478. doi:10.1016/j.clinmicinfection.2020.09.018

4. Polemis M, Tryfonopoulou K, Giakkoupi P, Vatopoulos A. Eight-year trends in the relative isolation frequency and antimicrobial susceptibility among bloodstream isolates from Greek hospitals: data from the Greek electronic system for the surveillance of antimicrobial resistance - WHONET-Greece, 2010 to 2017. Euro Surveill. 2020;25(34). doi:10.2807/1560-7917.ES.2020.25.34.1900516

5. Liu Y, Li R, Xiao X, Wang Z. Antibiotic adjuvants: an alternative approach to overcome multi-drug resistant Gram-negative bacteria. Crit Rev Microbiol. 2019;45(3):301–314. doi:10.1080/1040841X.2019.1599813

6. Mühlberg E, Umstätter F, Kleist C, Donhan C, Mier W, Uhl P. Renaissance of vancomycin: approaches for breaking antibiotic resistance in multidrug-resistant bacteria. Can J Microbiol. 2020;66(1):11–16. doi:10.1139/cjm-2019-0309

**Table 4 CR-ECO MIC50 and MIC90 in 2017–2019**

| Antibiotic Name | Quantity | Break Point | MIC50 | MIC90 | MIC Range |
|-----------------|----------|-------------|-------|-------|-----------|
| Tigecycline     | 159      | S≤0.03 R=0.25 | 0.5   | 1     | 0.025–8   |
| Ertapenem       | 262      | S≤0.5 R=2     | 2     | 8     | 0.12–32   |
| Cefotaxime      | 458      | S≤1 R=4       | 64    | 64    | 0.12–128  |
| Piperacillin     | 719      | S≤16 R=8–128  | 128   | 128   | 2–256     |
| Tobramycin      | 743      | S≤4 R=16      | 16    | 16    | 0.5–32    |
| Atracenom       | 801      | S≤4 R=16      | 32    | 64    | 0.25–128  |
| Ceftriaxone      | 996      | S≤1 R=4       | 64    | 128   | 0.25–128  |
| Cefazolin       | 1092     | S≤16 R=32     | 32    | 64    | 2–128     |
| Ampicillin/sulbactam | 1093 | S≤8 R=32     | 32    | 64    | 2–128     |
| Ampicillin      | 1148     | S≤8 R=32      | 32    | 64    | 2–128     |
| Compound sulfamethoxazole | 1149 | S≤2 R=4   | 8     | 16    | 0.25–32   |
| Ceftazidime     | 1197     | S≤4 R=16      | 32    | 64    | 0.12–128  |
| Ciprofloxacin   | 1226     | S≤1 R=4       | 4     | 4     | 0.06–32   |
| Meropenem       | 1227     | S≤1 R=4       | 8     | 16    | 0.06–32   |
| Gentamicin      | 1227     | S≤4 R=16      | 16    | 16    | 0.5–32    |
| Levofloxacin    | 1271     | S≤2 R=8       | 8     | 16    | 0.12–16   |
| Piperacillin/tazobactam | 1276 | S≤16 R=8–128 | 128   | 128   | 1–256     |
| Amikacin        | 1281     | S≤16 R=32     | 4     | 64    | 0.25–128  |
| Cefepime        | 1284     | S≤2 R=16      | 32    | 64    | 0.12–128  |
| Imipenem        | 1284     | S≤1 R=4       | 8     | 16    | 0.0625–64 |

**Abbreviations:** MIC, minimum inhibitory concentration; MIC50/MIC90, MIC50 and MIC90 can inhibit 50% or 90% of the tested bacteria.
Zhang et al

10. Doi Y. Treatment options for carbapenem-resistant gram-negative bacterial infections. Clin Infect Dis. 2019;69(Suppl 7):S521–S528. doi:10.1093/cid/ciz824

11. Potter RF, D’Souza AW, Dantas G. The rapid spread of carbapenem-resistant Enterobacteriaceae. Drug Resist Updat. 2016;29:30–46. doi:10.1016/j.drup.2016.09.002

12. Freeman R, Moore LS, Charlett A, Donaldson H, Holmes AH. Exploring the epidemiology of carbapenem-resistant gram-negative bacteria in west London and the utility of routinely collected hospital microbiology data. J Antimicrob Chemother. 2015;70(4):1212–1218. doi:10.1093/jac/dku050

13. Fritznerwanker M, Imirzalioglu C, Herold S, Wagenlehner FM, Zimmer KP, Chakraborty T. Treatment options for carbapenem-resistant gram-negative infections. Dtsch Arztebl Int. 2018;115(20–21):345–352. doi:10.3238/arztebl.2018.0345

14. Wang Q, Wang X, Wang J, et al. Phenotypic and genotypic characterization of carbapenem-resistant Enterobacteriaceae: data from a longitudinal large-scale CRE Study in China (2012–2016). Clin Infect Dis. 2018;67(suppl 2):S196–S205. doi:10.1093/cid/ciy660

15. Cassini A, Högborg LD, Plachouras D, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56–66. doi:10.1016/S1473-3099(18)30605-4

16. Peri AM, Doi Y, Potoski BA, Harris PNA, Paterson DL, Righi E. Antibiotic-resistant bacteria in west London and the utility of routinely collected hospital microbiology data. J Antimicrob Chemother. 2019;1(4):413–425. doi:10.1093/jac/diy660

17. Wenzler E, Scoble PJ. An appraisal of the pharmacokinetic and pharmacodynamic properties of meropenem-vaborbactam. Infect Dis Ther. 2020;9(4):769–784. doi:10.1007/s40121-020-00344-z

18. Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis. 2017;215(suppl 1):S28–S36. doi:10.1093/infdis/jiw282

19. Tumbarello M, Trecarichi EM, Corona A, et al. Efficacy of Ceftazidime-Avibactam salvage therapy in patients with infections caused by Klebsiella pneumoniae Carabapenemase-producing K. Clin Infect Dis. 2019;68(3):355–364. doi:10.1093/cid/ciy492

20. Ripabelli S, Sammarco ML, Scutellà M, Felice V, Tamburro M. Carbapenem-resistant KPC- and TEM-producing Escherichia coli ST131 isolated from a hospitalized patient with urinary tract infection: first isolation in Molise Region, Central Italy, July 2018. Microb Drug Resist. 2020;26(4):38–45. doi:10.1089/mdr.2019.0085

21. Welker S, Boutin S, Mietinke T, Heeg K, Nurjadi D. Emergence of carbapenem-resistant ST131 Escherichia coli carrying blX (OXA-244) in Germany, 2019 to 2020. Euro Surveill. 2020;25(46). doi:10.28617/1560-7917.ES.2020.25.46.2001815

22. Wayne P. The Clinical and Laboratory Standards Institute antimicrobial susceptibility testing standards. CLSI. 2019;3:M100–ED29.
