Neural Crest Cell Migration: Requirements for Exogenous Fibronectin and High Cell Density

ROBERTO A. ROVASIO, ANNIE DELOUVEE, KENNETH M. YAMADA, RUPERT TIMPL, and JEAN PAUL THIERY
Institut d'Embryologie du Centre National de la Recherche Scientifique, et du College de France, 94130 Nogent/ Marne, France; Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20205; and Max-Planck Institut für Biochemie, D-8033 Martinsried bei München, Federal Republic of Germany

ABSTRACT Cells of the neural crest participate in a major class of cell migratory events during embryonic development. From indirect evidence, it has been suggested that fibronectin (FN) might be involved in these events. We have directly tested the role of FN in neural crest cell adhesion and migration using several in vitro model systems.

Avian trunk neural crest cells adhered readily to purified plasma FN substrates and to extracellular matrices containing cellular FN. Their adhesion was inhibited by antibodies to a cell-binding fragment of FN. In contrast, these cells did not adhere to glass, type I collagen, or to bovine serum albumin in the absence of FN. Neural crest cell adhesion to laminin (LN) was significantly less than to FN; however, culturing of crest cells under conditions producing an epithelioid phenotype resulted in cells that could bind equally as well to LN as to FN.

The migration of neural crest cells appeared to depend on both the substrate and the extent of cell interactions. Cells migrated substantially more rapidly on FN than on LN or type I collagen substrates; if provided a choice between stripes of FN and glass or LN, cells migrated preferentially on the FN. Migration was inhibited by antibodies against the cell-binding region of FN, and the inhibition could be reversed by a subsequent addition of exogenous FN. However, the migration on FN was random and displayed little persistence of direction unless cells were at high densities that permitted frequent contacts. The in vitro rate of migration of cells on FN-containing matrices was 50 μm/h, similar to their migration rates along the narrow regions of FN-containing extracellular matrix in migratory pathways in vivo.

These results indicate that FN is important for neural crest cell adhesion and migration and that the high cell densities of neural crest cells in the transient, narrow migratory pathways found in the embryo are necessary for effective directional migration.

The mechanisms involved in the directional migration of embryonic cell types is still poorly understood. The properties of migratory cells and their interactions with the environment through which they migrate can be studied particularly effectively with neural crest cells (22, 26, 28, 35, 50).

The neural crest is a transient structure that forms during embryonic development at the dorsal border of the closing neural tube. After extensive migration along a series of defined pathways, neural crest cells accumulate at specific sites (14, 44, and references therein). Thereafter, they differentiate into a variety of different types of tissues such as the peripheral nervous system, numerous cranio-facial structures, and melanocytes (reviewed by Le Douarin, 27).

During most of their migration, crest cells progress through an intricate network of fibrillar structures of differing diameters (5, 29, 48, 49). In avian embryos, it is thought that the 3-nm fibers contain large amounts of glycosaminoglycans especially hyaluronic acid, whereas fibronectin (FN) is present in the 10-nm fibers (31). There are also collagens type I and III possibly associated with the FN fibers (20; Duband et al., Manuscript in preparation). Immunohistological studies with anti-fibronectin antibodies reveal that crest cells migrate in narrow spaces which form transiently between FN-rich basement membranes of adjacent tissues. In all cases, available cell-free spaces are rapidly occupied by the crest cells, whereas compact epithelial tissues, surrounded by a laminin-rich basal lamina, are not
invaded (14, 44, and Duband et al., Manuscript in preparation). Grafting of neural crest cells into the middle of the presumptive trunk migratory pathway showed that migration could occur both forwards and backwards (17). Migration was much more restricted when the transplantation was performed in territories where host crest cells had completed their migration (51).

Taken together, all these data suggest that crest cells use transient, narrow, acellular pathways without encountering cues for directionalality such as haptotaxis or chemotaxis.

Numerous studies have documented the function of FN as an attachment protein for fibroblastic cells. FN has also been shown to stimulate the migration of fibroblastic cells (3, 53). Mesenchymal cells migrating from chick heart explants require both exogenous plasma- and cell-derived FN. However, cellular FN was found to be present only as small plaques at the cell surface, whereas cessation of migration correlated with the appearance of a dense fibrillar FN-rich matrix. Stationary anchorage was also promoted by the addition of cellular FN (11).

A general conclusion from these studies of the influence of FN on fibroblastic cells is that it can stimulate adhesion and/ or motility, depending on its type and local concentration. An unusual property of most neural crest cells is that they lack FN, and it has been suggested that they might be particularly sensitive to regulation by exogenous FN (33). Previous in vitro studies indicated that FN could mediate crest cell attachment to collagen and could act as an attractant in Boyden chamber assays (18). Migration on FN-containing substrates was favored (13) but it could be affected by the presence of undersulfated chondroitin sulfate (34).

In this work, we have studied the role of the adhesive glycoproteins FN and LN in the adhesion and motility of neural crest cells in vitro using various extracellular matrix (ECM) components and antibodies to the cell-binding fragment of FN. We found that FN was required for neural crest cell adhesion and motility. In contrast to fibroblasts, crest cell migration was enhanced in FN-rich ECM. An additional requirement for reproducing an in vivo rate of directional migration in these cell culture model systems was to maintain a high cell density similar to that found in vivo.

MATERIALS AND METHODS

Extracellular Matrix Components

COLLAGEN TYPE I: Rat tail tendon collagen was prepared according to Bornstein (6) using an acetic acid extraction procedure.

LAMININ: Laminin was extracted from an EHS sarcoma homogenate and further purified as described previously (47). Laminin was stored at 4°C, at a concentration of 0.2-0.4 mg/ml in 0.05 M Tris-HCl, 0.4 M NaCl, pH 7.4.

FIBRONECTIN: Plasma fibronectin was purified from human and chick plasma on a gelatin-Sepharose column (16). Fibronectin was eluted from the column with 8 M urea, 0.1 M citrate buffer pH 4.7, 2 mM phenyl methyl sulfonyl fluoride (PMSF) (25), dialyzed against 1 mM NH$_4$OH to avoid precipitation, and stored at −70°C.

FIBROBLAST ECM: Cell-derived fibronectin cultures were labeled with 10 μg/ml tetramethyl-rhodamine isothiocyanate (Research Organics Inc., Cleveland, Ohio) in 0.3 M NaCl 0.05 M borate buffer, pH 9.2, for 30 min at room temperature, and then washed extensively with PBS and DME.

Immunological Procedures

Preparation of Antibodies Against the Cell-Binding Fragment of Fibronectin: Rabbits were immunized intraperitoneally and subcutaneously with 90 μg of 160-kd cell-binding fragment in complete Freund's adjuvant followed by booster injections of 40 μg at 3-wk intervals in incomplete Freund's adjuvant. The sera were systematically tested 1 wk after each injection by an indirect immunofluorescence technique (see below). The anti-FN binding was assessed by the Western blotting procedure described in detail by Burnette (6). The Fab' monovalent fragments were extensively dialyzed for several days against PBS and then against water, lyophilized, and stored at −70°C.

Preparation of Antibodies Against the Cell-Binding Fragment of Fibronectin: The specificity of these antibodies was assessed by the absence of staining of the ECM when the immunoglobulins were preincubated with chick plasma FN and by immunoblotting.

Blotting: Chicken cellular fibronectin was cleaved by 2 or 10 μg/ml chymotrypsin for 60 min at 23°C to generate 160-kd cell-binding and 40-kd collagen-binding fragments; 10 μg of digest was loaded per lane of 4% to 10% SDS polyacrylamide gels and electrophoresed exactly as described previously (19). The polypeptides were electroblotted onto nitrocellulose filters according to Burnette (6) with 1:100 to 1:500 dilutions of the 160-kd antibody and 5 × 105 dpm of 125I-protein A (New England Nuclear, Boston, MA). Strong binding was assessed by the Western blotting technique described in detail previously by Burnette (6) and by immunoblotting. Antibody binding was assessed by the Western blotting procedure described in detail by Burnette (6) with 1:100 to 1:500 dilutions of the 160-kd antibody and 3 × 106 dpm of 125I-protein A (New England Nuclear, Boston, MA). Strong binding to the 160-kd fragment was detected, but none was found to the 40-kd fragment; a control using an anti-40-kd antiserum showed binding only to the 40-kd fragment in autoradiograms prepared from adjacent lanes of the same protein transfers.

Rovasio et al. CREST CELLS AND MIGRATION 463
Analysis of the binding of the 160-kd antibody to the ECM matrix from chick fibroblasts revealed binding only to the cellular fibronectin band.

Antibodies: Anti-LN antibodies were obtained by affinity chromatography on a LN-coupled Sepharose column (39).

Immunofluorescence: Fibroblast cultures were fixed with 3.7% formaldehyde in PBS for 30 min at room temperature and washed with PBS. Anti-160-kd antibodies (3-30 μg/ml of IgG or Fab’ fragments depending on the serum batch used) were incubated with cultures in PBS containing 5 mg/ml of BSA for 30 min at room temperature. After washing in PBS, sheep anti-rabbit IgG coupled to fluorescein (dilution 1/150; Institut Pasteur, Paris, France) was added and incubated for 30 min. After washing, the preparations were mounted with 90% glycerol in PBS containing p-phenylenediamine (1 mg/ml) to prevent bleaching (23). LN substrates were examined with the same protocol except that the formaldehyde fixation was omitted. The anti-LN antibody was used at 20 μg/ml.

Primary Neural Tube Culture Technique: The neural tubes were carefully removed with a tungsten needle before microcinematography on a LN-coupled Sepharose column (39).

Crest Cell Cultures

Preparation of Neural Tube Segments: Japanese quail (Coturnix coturnix japonica) eggs were incubated at 38°C for approximately 60 h to reach stage 10 to 13 of Zscheile (54), equivalent to 15 to 25 pairs of somites. Since trunk neural crest cannot be excised directly, whole neural tube segments from the most caudal region were cultivated in vitro to allow crest cells to migrate outwards on the substratum (10). Briefly, the embryos were removed and the caudal 5-7 somite regions were excised with a scalpel (Fig. 1a). The trunk fragments were incubated for 15 min at room temperature with 200 μg/ml Dispase (Godo Shusei Co. Ltd., Tokyo, Japan) in DME in 35-mm Petri dishes (Falcon Labware). The neural tube segments were freed of the notochord with pairs of sharp tungsten needles under a dissecting microscope (Weitzlar, W. Germany). Photographs were taken on Tri-X Kodak film with a Leitz Orthomax camera.

Preparation of Crest Cells for Secondary Cultures: Neural tubes were placed in Terasaki plates (one segment per well) and were cultured in DME supplemented with 10% FCS to inhibit the enzyme and cultured at 37°C in a humidified 5% CO2-95% air incubator.

Preparation of Crest Cells for Secondary Cultures: Neural tubes were placed in 24-well plates (one segment per well) and were cultured in DME supplemented with 10% FCS to inhibit the enzyme and cultured at 37°C in a humidified 5% CO2-95% air incubator.

Attachment Assays: Spots of different ECM components on bacteriological dishes were incubated with 100 μl of crest cell suspension (2 × 10⁴ cells) for specified times up to 4 h at 37°C in an air-CCO₂ incubator. At the end of the incubation, the cultures were washed extensively with PBS to remove the non-adherent cells and fixed with 3.7% formaldehyde in PBS for 30 min at room temperature.

The FN-containing substrates were treated with IgG or Fab’ fragments from preimmune or anti-160-kd sera for 30 min at 37°C and washed with DME before the cell attachment experiments or primary culture (see below). Depending on the titers of the sera, 5 to 10 mg/ml of IgG or 2.5 to 5 mg/ml of Fab’ fragments were used. In some experiments the antibodies were also added to the cell suspension before incubation.

All the attached cells were counted by phase microscopy, and each experiment was performed in triplicate. The Fisher’s t test was applied to all the results.

Migration Assays: Crest cells were incubated for 60 min at 37°C on 32-mm circular glass coverslips coated with the appropriate substrate and subsequently mounted in a Sykes-Moore chamber (Belco Glass Inc., Vineland, NJ). Inhibition of motility was studied with FN substrates pretreated with Fab’ preimmune antibodies or with anti-160-kd Fab’ antibodies. Time-lapse video microcinematography was performed with a Leitz Orthoplan microscope equipped with a video camera (x 3,400, 0.5 Lux, Sanyo Electronic Co., Ltd., Osaka, Japan) connected to a TV monitor (NW 5400, National Matsushita Co., Osaka, Japan), a time generator, and a time-lapse recorder (NV 8300, National Matsushita Co.).

Migration pathways were plotted on the TV monitor screen and then copied onto a transparent paper. The total distance of migration of each cell was measured with a map measurer. 20 to 40 cells were scored for each experiment. The speed of locomotion was calculated, taking into account the magnification on the TV monitor (900-fold for × 20 objective), and the real time recorded simultaneously. The degree of persistence was defined as the ratio between the linear distance and the total distance covered by the cells.

Behavior of Crest Cells in Primary Culture on Different Substrata: Neural tubes were explanted on glass coverslips (24 × 24 mm) coated with collagen, FN, LN, or fibroblast matrices. If explanted on FN and LN stripes, the neural tube segments were placed perpendicular to the stripes.

Cultures were also established on ECM pretreated with preimmune antibodies or anti-160-kd antibodies. After 17 h in FN-free medium, some of these cultures were washed with DME and incubated for an additional 7 h in the presence of FN-free medium plus 30 μg/ml plasma FN. In the case of FN stripes, 4 mg/ml of Fab’ anti-160-kd antibodies were added 6 h after explanting for 9 h of incubation, then the cultures were washed with DME and incubated in presence of 30 μg/ml plasma FN.

All these cultures were performed in Rose chambers (40) under a dialysis membrane according to Newgreen et al. (32) and Newgreen and Thierry (33). These conditions favor the immediate attachment of the neural tube to its substrate and greatly facilitate the emigration of crest cells. The Rose chambers were placed in a 37°C humidified chamber mounted on the microscope stage.

These cultures were photographed with an automatic camera (Olympus Optical Co., Ltd., Tokyo, Japan) on Ilford Pan-F 35-mm film with a Zeiss inverted microscope (equipped with phase contrast) and filmed with time-lapse video equipment.

Scanning Electron Microscopy: Cultures of crest cells on different substrates were fixed with 2.8% glutaraldehyde (Merck, Darmstadt, Germany) in PBS for 48 h. After washing in PBS, cultures were postfixed in 1% OsO₄ in PBS for 60 min. Followed by washing in PBS. Samples were dehydrated with a graded ethanol series, absolute ethanol, and acetone, critical point dried (Balzers Union, Switzerland), and coated with gold-palladium (50/00, Polaron Ltd., England). The specimens were examined with a Joel JSM-35 scanning electron microscope at 25 kV, and photographed with Ilford FP4, 125 ASA film.

Results

Culture of Crest Cells

After 1 to 2 hours of culture in Rose chambers in normal culture medium containing 10% FCS, crest cells could be identified along the dorsal side of the neural tube. These cells were rounded and blebbed intensively as seen by time-lapse microcinematography, but they rapidly acquired a stellate morphology after reaching the substratum. After 8 h of culture (Fig. 2a), several hundred crest cells had appeared; they remained close to the neural tube and only a few cells migrated ahead of the holoblasts. By 24 h (Fig. 2b), crest cells had migrated outward and accumulated to form a very dense monolayer of cells. Most crest cells maintained their characteristic stellate morphology with several long, active filopodia. In contrast to typical fibroblast migration, cells remained densely confluent; the front of migration was well delimited except for a few pioneer cells. Frequent, partial overlapping of cell bodies

Figure 1 Primary neural tube culture technique. (a) The most caudal somite-LN-containing region of stage 10 to 13 quail embryos were excised. (b) Trunk fragments were incubated with 200 μg/ml dispase in DME for 15 min at room temperature. The neural tube segments were isolated by micromanipulation under a dissecting microscope, then incubated in DME with 10% FCS to inactivate the enzyme. (c) Crest cells emigrate from the dorsal border of neural tube explants onto different substrates.
occurred within this dense cell mass. The size of the halo of cells reached a maximum by 48 h, containing approximately 1,000 cells for a neural tube segment corresponding to 1 pair of somites.

When 10% heat-inactivated FCS was used, crest cells remained more rounded and, within 24 h, formed two-dimensional aggregates rather than uniform sheet of cells. By 48 h, most crest cells formed epithelioid zones of cells separated from each other and from the neural tube (Fig. 2c). Many three-dimensional aggregates were also found under these conditions. In FN-free medium, crest cells remained at the edge of the neural tube without any significant emigration (data not shown).

Crest Cell Adhesion

TIME COURSE OF ATTACHMENT: Crest cells cultured for 24 h were dissociated and resuspended at 2×10^6 cells/ml in FN-free medium. Attachment to plasma FN and to the fibroblast ECM substrates was initiated within 5 min after addition of cell suspensions. Crest cells spread very rapidly on the substrate and developed numerous fine filopodia (Fig. 3a). In contrast, cells adhered more slowly to LN and LN fragments and very poorly to collagen, to the control substrate coated with BSA, or to bare glass. Most of these crest cells remained rounded with numerous blebs (Fig. 3b and c).

After 2 h of incubation, the number of attached cells reached a plateau (Fig. 4). Almost 80% of the crest cells adhered to plasma FN and to FN-containing matrices with similar kinetics. LN was substantially less effective than FN, and intact LN was more adhesive than its fragments. More than 35% of the total cell input adhered firmly to LN substrates, whereas <10% bound to a gel of native type I collagen.

AGE AND CULTURE CONDITIONS: Fig. 5 shows that crest cells cultured for only 8 h had properties similar to those cultured for 24 h as described above, although more cell bound to FN within the 2-h assay period (90% for 8-h cells and 80% for 24-h cells). A further decrease in adhesion to FN substrates was observed for cells cultured for 48 h (Fig. 5). Interestingly, the binding to LN was now found to be equal or slightly higher than to FN. In all cases the binding to native collagen, gels, glass, or BSA remained very low.

INHIBITION OF ATTACHMENT BY ANTI-160-KD ANTIBODIES: The time course of attachment of cells to plasma FN substrates in the absence of antibodies or in the presence of preimmune Fab' fragments was identical at all times (Fig. 6a).

Preincubation of the substrate with anti-160-kd Fab' fragments resulted in a marked reduction in adhesion (Fig. 6a). Complete inhibition was observed when the antibodies were also present in the culture medium (not shown). The few cells that did bind to anti-160-kd-treated fibronectin substrates remained rounded with many blebs at their surface (Fig. 6b). A similar extent of binding of cells was found with fibroblast...
Figure 4: Time course of attachment of crest cells to different substrates. Dissociated crest cells obtained from 24-h primary cultures were incubated on different substrates in the presence of DME, 10% FN-free FCS. At each time tested, the cultures were rinsed, fixed, and the attached cells were counted. The results were expressed as percent attached cells of the total number of cells incubated. Each point was the average of triplicates ±SEM. About 70% of the cells had attached to the FN-containing substrates within 2 h of incubation, but in contrast, collagen retained only 8% of the cells. LN was significantly more adhesive than its fragments. Glass or plastic coated with BSA, PBS, or DME served as controls. FN: fibronectin; ECM: fibroblast extracellular matrix; LN: laminin; LN fr.: laminin fragments produced by trypsin or elastase; Coll: collagen.

Figure 5: Adhesive properties of crest cells as a function of cell culture conditions. Cells were obtained from 8- and 24-h primary cultures in the presence of 10% FCS and from 48-h cultures in heat-inactivated FCS. Trypsin-dissociated cells were incubated for 2 h on the different substrates in FN-free medium. A change in crest cell adhesion to FN and LN was found with increasing time of culture. Crest cells from the 48-h epithelioid aggregates adhered as much to LN as to FN. Data are expressed as in Fig. 4. Cont: control.

Figure 6: Time course of attachment of crest cells in the presence of anti-FN antibodies. (a) FN-containing substrates were pretreated with Fab' fragments from preimmune sera (Fab' Cont.) or with Fab' anti-160-kdalton (kd) antibodies (Fab' anti-FN). Strong inhibition of cell attachment was observed with anti-160-kd antibodies as compared to the controls. Legends as in Fig. 4. (b) Scanning electron micrograph of a blebbing crest cell attached to a plasma FN substrate preincubated with Fab' anti-160-kd antibody. Bar, 5 μm. × 3,000.
continuously, and moved very slowly. Crest cells also migrated poorly from neural tubes around which a collagen gel had been polymerized. In contrast, when a 1:1 mixture of FN and collagen was used as substrate (Fig. 7b), many more crest cells migrated and formed a dense halo. Crest cells remained congegated into confluent, two-dimensional aggregates except at the front of migration.

A pure fibronectin substrate (Fig. 7c) caused crest cells to initiate their migration more rapidly and to assume a flattened shape, suggesting that their adhesiveness was much higher than to a collagen substrate.

When crest cells in FN-depleted medium were confronted with alternating FN and glass substrates, they migrated exclusively on the FN stripes (Fig. 7d and e). Crest cells migrated very poorly on alternating glass/LN stripes when cultured in the presence of FN-free serum. In normal FCS, crest cells migrated preferentially in regions containing FN derived from the serum, although some cells with a round morphology collected on the LN stripes (Fig. 7f and g).

A direct side-by-side comparison between substrates coated with equal amounts of plasma FN and LN substrates could not be achieved, since FN or LN stripes bound enough of the

FIGURE 7 Selective migration of crest cells on FN-containing substrates. Crest cells were cultured for 24 h in DME with 10% FN-free FCS (a–e). (a) Very few rounded and blebbed crest cells emigrated from the neural tube on type I collagen. (b) Many more crest cells migrated on a 1:1 collagen-FN mixture. (c) Plasma FN was the best substrate for migration; crest cells migrated more rapidly from the neural tube and acquired a flattened shape. Note that the halos of emigrating cells were much wider on FN-containing substrates. (d) Crest cells on alternating glass and FN stripes migrated exclusively on the FN substrate. (e) Same field, after staining with anti-FN antibodies, examined by immunofluorescence microscopy. (f) Crest cells cultured in DME with 10% FCS on LN stripes. Normal FCS was used instead of FN-free FCS since in the absence of FN crest cells could not emigrate from the neural tube. The crest cells migrated preferentially on the regions of glass devoid of a LN substrate where FN was deposited from the normal FCS. Crest cells which were accidentally trapped on LN stripes remained rounded and aggregated rapidly. Note active blebbing of the latter (arrow). (g) Same field after immunological localization of LN by incubation with anti-LN antibodies. nt: neural tube Bar, 100 μm. (a, b, c) × 137; (d, e, f, g) × 200.
protein added in the second step to obscure the alternating substrates.

Migration and Reorganization of the ECM Network: Cell-free fibroblast matrices allowed the first crest cells to emigrate within 30 min, partly as a consequence of faster attachment of the neural tube. Crest cells migrated as a dense mass, except for the pioneer cells which elongated after anchoring their filipodia to the FN-rich fibrillar matrix. Consequently, a progressive orientation of the three-dimensional fibrillar meshwork (Fig. 8b and c) occurred ahead of the pioneer cells (Fig. 8d and e). These fibers no longer appeared to be radially oriented in the proximal region of the neural tube, where the fibrils were in much thicker bundles and arranged in an alveolar pattern on crest cell surfaces (Fig. 8f and g).

Inhibition of Crest Cell Migration with Anti-160kd Antibodies: When the fibroblast ECM was pretreated with anti-160-kd Fab' antibodies, crest cells failed to emigrate effectively, and they accumulated at the edge of the neural tube explant. After 17 h of culture, only a few rounded...
cells were found (Fig. 9c and e). In contrast, a much wider area was occupied by well-spread crest cells in control explants (Fig. 9a).

Rinsing with DME and addition of plasma FN to the medium at a final concentration of 10 μg/ml allowed crest cells to resume their migration and to form a halo of migrating cells comparable to that observed in controls after an additional 7 h of culture (Fig. 9f), whereas no crest cells appeared in the cultures maintained in the presence of antibodies (Fig. 9d).

Time-lapse Analyses

ISOLATED CELLS: Dissociated crest cells prepared by trypsinization of primary culture outgrowths were plated at low cell density and monitored continuously. On collagen and LN, crest cells remained rounded and blebbed extensively. Their speed of locomotion was also very low (see Table I), although an appreciable persistence of movement was observed especially with laminin (Fig. 10a and b). In contrast, on FN substrates, individual crest cells migrated more rapidly (20 μm/h) but frequently changed their direction of movement (Fig. 10c). In the presence of anti-160-kd Fab' antibodies, the speed of locomotion was progressively reduced with increasing concentrations of the antibodies; at 5 mg/ml antibody, the crest cells were almost paralyzed, although the small amount of residual migration showed a relatively greater persistence of movement (Fig. 10d).

DENSE CELL POPULATIONS: Crest cells migrating on FN stripes remained confluent at all times in culture (Fig. 11a), except for a few pioneer crest cells at the migratory front, which escaped from the cell mass but remained on the FN stripes. The movement of isolated pioneer cells resembled that of individual, dissociated crest cells plated on an FN substrate (Fig. 10c) with frequent changes in the direction of migration (cell l in Fig. 11b and c). These directional changes were observed both when the cells reached the boundary between FN and glass and when the cells were at random positions within the FN stripes. In contrast, cells within the cell mass migrated with a substantially better persistence of movement,

TABLE I: Parameters of Isolated Crest Cell Migration

Substrate	Speed	Effective distance	Degree of persistence
	μm/h	μm/h	
Collagen	6.0 ± 0.4	2.0 ± 0.2	0.34
Laminin	8.4 ± 0.9	3.6 ± 0.6	0.43
Fibronectin	20.5 ± 0.7	3.3 ± 0.4	0.16
FN + Fab' anti-160 kd	9.5 ± 0.7	3.2 ± 0.3	0.33
(2.5 mg/ml)			
FN + Fab' anti-160 kd	3.9 ± 0.3	2.2 ± 0.3	0.55
(5.0 mg/ml)			

The absolute speed of locomotion was calculated taking into account the magnification on the TV monitor and the real time simultaneously. The effective distances were defined as the linear distance between initial and terminal points in 17- to 20-h cultures. The degree of persistence was calculated as the ratio between the effective distance and the total distance traversed by the cells. Average ± SEM were obtained for at least 30 cells in each experiment.
since their attempts to change direction appeared to be prevented by the surrounding cells (e.g., cell 2 in Fig. 11b and c).

It is noteworthy that crest cells did not move with leading lamellipodia analogous to fibroblasts, but instead with thin, firmly anchored filopodia; therefore contact inhibition of movement of the type described for fibroblasts was not observed. Collisions were followed immediately by activation of other filopodia that allowed the cell to modify its trajectory.

The addition of anti-160-kd antibodies to migrating crest cells provoked a strong decrease in their speed of locomotion and also resulted in more erratic movement (Fig. 12). The front of migration progressed for 83 μm for the first 6 h; thereafter it was reduced to 21 μm for the next 9 h during treatment with antibodies. Migration resumed after addition of FN to the culture, allowing crest cells to traverse 54 μm over the next 8 h. Under these conditions, crest cells left the original stripes of FN since the substrates were now uniformly coated with FN.

Table II summarizes the data obtained with FN-containing substrates. The average speed of locomotion was highest on the fibroblast ECM, and was drastically reduced in the presence of anti-160-kd antibodies. A similar degree of persistence of migration was found for cells within dense cell masses on plasma FN or on fibroblast matrices.

DISCUSSION

This study has analyzed the factors required in vitro to produce the characteristic directional cell migration of neural crest cells.
treated with anti-160-kd antibody, and recovery after addition of FN. Tracks beginning from the neural tube showed normal migration resumed after addition of plasma FN, although the crest cells could leave the stripes since the substrate was now uniformly coated with FN. Undulating line: edge of neural tube; dashed lines: limits of the FN stripe. Bar, 20 μm.

![Figure 12](image)

Table II

Substrate	Speed (μm/h)	Effective distance (μm/h)	Degree of persistence
FN stripes	18.5 ± 1.4	13.8 ± 0.7	0.67
FN + Fab' anti-160 kd	8.2 ± 0.6	2.3 ± 0.4	0.27
FN + Fab' anti-160 kd + FN	14.1 ± 0.9	6.8 ± 0.7	0.48
Fibroblast ECM	48.3 ± 2.1	22.0 ± 1.9	0.46
Fibroblast ECM + Fab' anti-160 kd	9.8 ± 0.7	5.2 ± 0.6	0.53

Description of parameters and expression of results as in Materials and Methods to Table I.

along narrow paths at rates similar to those found along the narrow crest migratory pathways in vivo. Our major findings are: (a) avian trunk neural crest cells preferentially utilize FN over LN or collagen for adhesion and motility; (b) adhesion and motility are inhibited by anti-FN cell-binding fragment antibodies in both simple and complex matrices; (c) in vitro manipulation of crest cells can produce cells capable of utilizing LN for adhesion but not for migration; (d) directional migration on FN requires an unusually high cell density; (e) rates of directional migration on purified FN were half those found in vivo, and rates equal to those found in vivo require other as yet undefined factors in the extracellular matrix.

Adhesive Properties of “Young” Crest Cells

The first neural crest cells that emigrated in trunk neural tube cultures adhered rapidly to plasma FN and to FN-containing ECM substrates but were poorly adhesive to glass coated with BSA, with collagen type I or with LN. Almost 80% of the crest cells attached within 2 h, a number substantially higher than in an earlier report using collagen and FN in calf serum (18). Part of this difference could be the result of using neural crest cells of differing axial origin. For example, it was shown that none of the crest cells from trunk levels used in the present work could synthesize FN in vitro, whereas more than 20% of the cranial crest cells were able to deposit a FN-rich matrix (33). Plasma FN, deposited as an amorphous substrate, had cell attachment properties very similar to those of cellular FN associated with collagens and proteoglycans in the fibroblast ECM. In addition, fibroblast ECM treated with specific monovalent antibodies to the FN cell-binding fragment became very poorly adhesive. Taken together, these results strongly suggest that FN is an essential component for the adhesion of crest cells to substrates in vitro. Trunk crest cells in vivo encounter an ECM deposited by the ectoderm, the somite, and the neural tube which has a similar chemical composition to the ECM deposited by fibroblasts (21, 33, 38). It therefore appears likely that in vivo crest cells also bind to FN, which is present in all the migration pathways.

Temporal Changes of Crest Cell Adhesive Properties

With increasing time in culture, crest cells accumulated at the periphery of the neural tube as a result of both active cell proliferation and continuous release from the neural epithelium. These older crest cells became progressively less adhesive to FN-containing substrates, whereas their capacity to bind to LN increased.

These changes in adhesive properties can be manipulated experimentally; since young crest cells grown on poor substrates were found to aggregate and to acquire equal or better adhesiveness to LN than to FN. Such poorly adhesive substrates could be obtained by coating glass with BSA or collagen although very few crest cells could emigrate from the neural tube in the absence of FN. In contrast, when heat-inactivated FCS was used, many crest cells appeared and formed two- and three-dimensional clusters of closely juxtaposed cells. We found that FN heated at 56°C, a temperature very close to its thermal denaturation (2), also produced the same effect (not shown). Therefore, denatured FN appeared to provide a substrate low enough to adhesion to permit rapid cell-to-cell adhesion while still allowing migration.

At the cessation of migration in vivo, crest cells were shown to accumulate in restricted areas where FN had disappeared. Thereafter, crest cells regrouped into epithelial structures with specialized junctions (37). Furthermore, the cell adhesion molecule N. CAM) (41, 43) appeared at the surface of aggregating crest cells both in vitro and in vivo (45). Therefore, it is tempting to suggest that our in vitro aggregation culture mimics the microenvironment necessary for development of the ganglia of the peripheral nervous system. It remains to be determined in vivo whether LN is also involved in the formation of ganglia as suggested for kidney tubular epithelium (15). Most importantly, further work should determine whether the loss of FN and the expression of N. CAM are the consequence or the cause of the rapid shift in crest cell adhesive properties.

In Vitro Migration

Of the substrates tested, plasma FN and FN-containing fibroblast ECM were the most effective in stimulating locomotion. However, the speed of locomotion was higher on ECM and reached 50 μm/h, a value which was also estimated in the

ROVASIO ET AL. Crest Cell Adhesion and Migration 471
embryo (4, 14, 44). In vitro, the fibroblast ECM was found to be reorganized by the migrating crest cells; filopodia from pioneer crest cells induced the formation of thick bundles from thin filaments. These cells had a tendency to follow radially arranged fibers, but the ECM structure was further modified to form an alveolar network above the regions of highest crest cell density.

Although there is some controversy as to whether this mechanism of structural reorganization may apply in vivo in the case of crest cells (29, 48), a similar mechanism has been found in the migration of endocardial cushion tissue (24, 30). Therefore, the speed of locomotion could be increased by the presence of fibers aligned in the direction of movement; other ECM factors besides FN, responsible for this increase, remain to be identified.

The persistence of movement of isolated cells differed, especially on the FN-containing substrates. On plasma FN, crest cells frequently changed their direction of movement, whereas a greater persistence was found on fibrillar matrices. On the latter, we observed that isolated crest cells had a tendency to migrate in association with fibers that became progressively oriented in the direction of migration (see below). On plasma FN, persistence of movement increased greatly when the crest cells formed a quasi-confluent monolayer with frequent cell contacts. Any attempt to change direction appeared to be prevented by the presence of surrounding cells. Crest cells did not exhibit either a contact inhibition of movement as originally defined by Abercrombie and Heaysman (1) or a contact inhibition of overlapping (46). Indeed, we noticed that crest cells within dense cultures overlapped frequently without their motility being affected.

An important finding was that the addition of anti-cell binding fragment antibodies induced a rapid rounding up of cells and arrest of their locomotion; this effect was reversed by addition of plasma FN. Since the antibody was specific, it is likely that FN present in the ECM promoted cell migration and that the blockade of its cell binding site by antibodies inhibited adhesion and migration.

In vivo, crest cell migration was considerably delayed in several FN-rich pathways (13, 33, 42, 44). Therefore, it should be considered that, even though FN may be present in the matrix to provide a suitable adhesive substrate for crest cells, emigration may be prevented by the presence of other components such as chondroitin sulfate (12, 34).

Mechanism of Migration

The in vitro social behavior of crest cells and previous in vivo studies of the structure of the route of migration allow us to propose a model in which crest cells are led to their final destinations by migration as confluent and increasingly crowded populations of cells along narrow, transient, FN-containing pathways. As presented diagrammatically in Fig. 13, FN is required for adhesion and motility. The ECM provides both space and substrate for migration, while unidirectionality of migration results from the unique property of crest cells to display persistence of movement at high cell density.

However, at the present time, we cannot exclude short range contact guidance of the type observed in our in vitro experiments as an additional factor contributing to unidirectional progression. Previous studies on the behavior of crest cells (17) and on the distribution of FN (44) indicated that haptotaxis or chemotaxis is unlikely to operate in vivo. Therefore, further studies might most profitably focus on the roles played by cell proliferation and by the intrinsic ability of crest cells, but not of other cell types such as fibroblasts (11, 17), to migrate in the FN-rich ECM in vivo and in vitro.

We thank Professor N. Le Douarin for discussions, and Louis Addade and Dorothy Kennedy for excellent technical assistance.

This work was supported by grants from the Délégation Générale à la Recherche Scientifique et Technique (D.G.R.S.T. N 81 E 1082), the Centre National à la Recherche Scientifique (ATP 3701) and the Ligue Nationale Française contre le Cancer.

R. A. Rovasio was a recipient of a post doctoral fellowship from the Consejo Nacional de Investigaciones Científicas y Tecnicaes de la Republica Argentina.

Received for publication 23 July 1982, and in revised form 15 October 1982.

REFERENCES

1. Abercrombie, M., and J. E. M., Heaysman. 1954. Observations on the social behavior of cells in tissue culture. II. Monolayering of fibroblasts. Exp. Cell Res. 2:293-306.
2. Alexander, S. S. Jr.; G. Colonna, and H. Edelhoch. (1979). The structure and stability of human plasma cold-insoluble globulin. J. Biol. Chem. 254:1501-1509.
3. Ali, I. U. and Hynes, R. O. 1978. Effects of LETS glycoprotein on cell motility. Cell. 14:439-446.
4. Allen, J. J., and D. F. Newgreen. 1980. The origin and differentiation of enteric neurons of the intestine of the fowl embryo. Am. J. Anat. 157:137-154.
5. Bancroft, M., and R. Bellairs. 1976. The neural crest of trunk region of the chick embryo studied by SEM and TEM. Zool. 4:73-85.
6. Bernstain, M. 1958. Rat tail collagen as a substrate. Lab. Invest. 7:134-137.
7. Brickenberg, R., J. P. Théry, U. Rothkästner, and G. M. Edelman. 1977. Adhesion among neural cells of the chick embryo. I. An immunological assay for molecules involved in cell-cell binding. J. Biol. Chem. 252:6835-6840.
8. Burnette, W. N. 1981. "Western blotting"; electrophoretic transfer of proteins from sodium dodecyl sulfae polyacrylamide gels to unmodified nuncosilose and radiographic detection with antibody and radiodinated protein. A. Anal. Biochem. 112:195-205.
28. Le Douarin, N. M. 1982. The Neural Crest. Cambridge University Press.

32. Newgreen, D. F., M. Ritterman, and G. E. Peters. 1979. Morphology and behavior of extracellular matrices within the extracellular environments encountered by migrating neural crest cells. Dev. Biol. 66:321–336.

33. Newgreen, D. F., and J. P. Thiery. 1980. Fibronectin in early avian embryos: synthesis and distribution along the migratory pathways of neural crest cells. Cell Tissue Res. 211:269–291.

34. Newgreen, D. F., F. L. I. Gibson, J. Sauter, B. W. Waliendels, and R. Wutz. 1982. Ultrastructural and tissue-culture studies on the role of fibronectin, collagen, and glycosaminoglycans in the migration of neural crest cells in the fowl embryo. Cell Tissue Res. 221:521–549.

35. Noden, D. M. 1978. Interactions directing the migration and the cytodifferentiation of avian neural crest cells. In Specificity of Embryological Interactions Vol. 4. (Receptors and Recognition, series B) D. R. Garrod, editor. Chapman and Hall, London. 1–49.

36. Ot, U., E. Oldendorf, J. Engel, H. Furchtmayr, and R. Timpl. 1982. Protease resistance and conformation of laminin. Eur. J. Biochem. 20:633–672.

37. Pasquone, E., L. Lasacuo, and E. Reale. 1978. Intercellular junctions in developing spinal ganglion. Z. Zellforsch. 219:129–158.

38. Farber, J. E. 1978. Distribution and synthesis of glycosaminoglycans during neural crest morphogenesis. Dev. Biol. 67:444–464.

39. Rohde, H., G. W. H., and R. Timpl. 1979. Immunocytochemical characterization of the basement membrane glycoprotein laminin. Eur. J. Biochem. 102:195–201.

40. Rose, G. C., M. Monnet, T. O. Sanduler, and J. B. Trumtel. 1956. A cellophane-strip technique for culturing tissue in multipurpose culture chambers. J. Biophys. Biochem. Cytol. 4:761–764.

41. Rothshausser, U., H. Hofman, and G. M. Edelman. 1982. Binding properties of a cell adhesion molecule from neural tissue. Proc. Natl. Acad. Sci. USA 79:685–689.

42. Trillet, A. M. 1971. Recherches sur le mode de migration et la differentiation des melanoblastes cutanés chez l'embryon d'oie. These experimentale par la methode des greffes hématochimiques entre embryons de caill et de poulet. Ann. Embryol. Morphog. 4:95–100.

43. Thiery, J. J., R. Brackenbury, U. R. Russel, and G. M. Edelman. 1977. Adhesions among neural cells of the chick embryo. II. Purification and characterization of a cell molecule from neural retina. J. Biol. Chem. 252:6841–6845.

44. Thiery, J. J., J. J. DuBard, and A. Delouve. 1982. Pathways and mechanism of trunk avian neural crest cell migration and localization. Dev. Biol. 93:324–345.

45. Thiery, J. J., J. J. DuBard, U. Russel, and G. M. Edelman. 1982. Cell adhesion molecules in early chicken embryogenesis. Proc. Natl. Acad. Sci. USA. 1979.73:439–474.

46. Timp¢, L., E. Martz, and M. S. Steinberg. 1978. Cell movement in a confluent monolayer of fibroblasts: analysis of detectable but transient lamina. J. Cell. Physiol. 93:101–103.

47. Timpl, R., E. Martz, and M. S. Steinberg. 1978. Cell movement in a confluent monolayer of fibroblasts: analysis of detectable but transient lamina. J. Cell. Physiol. 93:101–103.

48. Tosney, K. W. 1978. The early migration of neural crest cells in the trunk region of the avian embryo. An electron microscopic study. Dev. Biol. 63:317–333.

49. Tosney, K. W. 1982. The segregation and early migration of cranial neural crest cells in the avian embryo. Dev. Biol. 89:13–24.

50. Weston, J. A. 1970. The migration and differentiation of neural crest cells. Adv. Morphogenesis. 8:1–11.

51. Weston, J. A., and S. L. Butler. 1966. Temporal factors affecting localization of neural crest cells in the chick embryo. Dev. Biol. 14:264–266.

52. Yamada, K. M., S. S. Yamada, and I. Pastan. 1979. The major cell surface protein of chick embryo fibroblasts is an agglutinin. Proc. Natl. Acad. Sci. USA. 76:2158–2162.

53. Yamada, K. M., K. Oldendorf, and I. Pastan. 1978. Transformation sensitive cell surface protein: isolation, characterization, and role in cellular morphology and adhesion. Ann. N. Y. Acad. Sci. 132:256.

54. Zacchei, A. M. 1961. Lo sviluppo embrionale della quaglia giapponese (Coturnx coturnix japonica, T. S.,). Arch. Ital. Anat. Embryol. 66:36–62.