Hadron-Pair Photoproduction in Longitudinally Polarized Lepton-Nucleon Collisions

C. Hendlmeier1, M. Stratmann1a, and A. Schäfer1
1 Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany

Abstract. We present a detailed phenomenological study of photoproduction of two hadrons, both with high transverse momentum, in longitudinally polarized lepton-nucleon collisions. We consistently include “direct” and “resolved” photon contributions and examine the sensitivity of the relevant spin asymmetries to the gluon polarization in the nucleon and to the completely unknown parton content of circularly polarized photons. Our results are relevant for the COMPASS and HERMES fixed-target experiments as well as for a possible future polarized lepton-proton collider like eRHIC at BNL. So far, all studies are limited to the lowest order approximation of QCD.

PACS. 13.88.+e – 12.38.Bx – 13.85.Ni

1 Motivation and Introduction

The fundamental question of how the spin of the proton is composed of the spins and orbital angular momenta of its constituents, quarks and gluons, still remains unanswered. Over the past 25 years, a series of polarized deep-inelastic scattering (DIS) experiments has revealed that the quark spins contribute remarkably little to the nucleon spin [1]. Measuring $\Delta g(x, \mu)$, the spin-dependent gluon distribution in the nucleon, in an as large as possible range of momentum fractions x, is the prime goal of all current experimental programs with polarized beams and targets. In the light-cone gauge the first moment of $\Delta g(x, \mu)$, i.e., $\int_0^1 \Delta g(x, \mu) dx$, can be interpreted as the gluon spin contribution to the nucleon spin at a momentum scale μ [2]. The missing piece, the orbital angular momenta of quarks and gluons, might be accessible in exclusive processes, but precise measurements are challenging and rather distant at this point.

The advent of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL), has opened up unequivoked possibilities to access Δg over a broad range in x in a variety of high-transverse momentum, “high-p_T”, processes such as, for example, inclusive hadron or jet, prompt photon, and heavy flavor production [3]. In each case, the gluon density prominently contributes through gluon-gluon fusion and quark-gluon scattering processes already at the lowest order (LO) approximation of QCD. Center-of-mass system (c.m.s.) energies of up to $\sqrt{S} = 500$ GeV guarantee that the standard framework of perturbative QCD (pQCD) can be used reliably to learn about all aspects of helicity-dependent parton densities at RHIC. A series of unpolarized “benchmark” measurements at RHIC has nicely confirmed the applicability of pQCD methods [4] and are the foundation for similar, ongoing measurements with polarization. First, very recent results from the PHENIX and STAR collaborations at RHIC [5] indicate that large and positive gluon distributions are disfavored in the range of momentum fractions x, $0.03 \lesssim x \lesssim 0.2$, dominantly probed in these experiments. Future, more precise measurements will extend the range in x and further close in on Δg.

The gluon polarization can be accessed also in low energy fixed-target experiments like COMPASS [6] at CERN and HERMES [7] at DESY. Here one scatters a beam of longitudinally polarized leptons off longitudinally polarized nucleons at c.m.s. energies of $\sqrt{S} \simeq 18$ GeV and $\sqrt{S} \simeq 7.5$ GeV, respectively. Compared to RHIC, $\Delta g(x, \mu)$ is probed in a more limited x-range, $0.1 \lesssim x \lesssim 0.2$, but at smaller momentum scales μ which makes results complementary. In particular, high-p_T hadron pairs, both in photoproduction and in deep-inelastic electroproduction, have been identified to be the most promising processes for a determination of Δg at the low energies available at fixed-target experiments [8]. First results for double-spin asymmetries are available from HERMES [9] (for all photon virtualities), SMC [10] (electroproduction), and, most recently, COMPASS [11] (photoproduction). These data are consistent with only moderate gluon polarizations as we will discuss in detail later.

However, at the smaller c.m.s. energies of fixed-target experiments it is much less obvious that standard pQCD methods are applicable as straightforwardly as at collider energies to analyze data. In fact, experimental results for high-p_T processes in, e.g., hadron-hadron fixed-target scattering have been a serious challenge in the past for the standard factorized framework where the perturbative series is truncated at a given fixed order in the strong cou-
pling and where possible power corrections are assumed to be negligible \cite{12}. It is therefore crucial to demonstrate first that standard pQCD methods can be used to learn about the parton and/or spin content of nucleons in a given kinematical regime, for instance, by analyzing unpolarized cross sections. Otherwise conclusions about, e.g., the gluon polarization might be incorrect.

In this paper we present a detailed phenomenological study of photoproduction of hadron pairs at LO accuracy of QCD. Quasi-real photons have the advantage of yielding much higher rates than deeply-inelastic electroproduction of hadrons. The price to pay is the more involved theoretical framework for photoproduction, where so-called “direct” and “resolved” photons contribute to the cross section as depicted in Figs. 1 (a) and (b), respectively. In (a) the photon simply interacts as an elementary pointlike particle, whereas in the latter case the photon “resolves” into its parton content prior to the hard QCD interaction, for instance, by fluctuating into a vector meson with the same quantum numbers. Here, cross section estimates require knowledge of the parton content of circularly polarized photons which is lacking completely at the moment. We will demonstrate below, that this does not seriously limit the usefulness of this process for the kinematical region specific to both COMPASS and HERMES. Since the theoretical framework for hadron-pair production is significantly more complex than for single-inclusive cross sections, next-to-leading order (NLO) QCD corrections are still not complete in the polarized case at the moment \cite{13}. We note that there had been earlier studies of hadron-pair production \cite{13} in the wake of first experimental results from HERMES \cite{16}. However, the phenomenological results presented in \cite{13} cannot be compared easily with the recent (and upcoming) results from COMPASS \cite{11} we are aiming at.

Investigations of interactions between polarized leptons and nucleons will, hopefully, continue to play a vital role in spin physics also in the future. A polarized lepton-nucleon collider such as the eRHIC project at BNL \cite{15}, which is currently under discussion, would be the next logical step. Besides the unique possibility to access \(\Delta g(x, \mu) \) down to \(x \approx 10^{-3} \) in studies of scaling violations in DIS, photoproduction processes are particularly interesting also at collider energies \cite{17}. As we shall show below, they will allow to probe for the first time different models for the parton content of circularly polarized photons.

The paper is organized as follows: in Sec. 2 we briefly recall the theoretical framework for photoproduction of hadron pairs. Section 3 is devoted to detailed phenomenological studies. Here we mainly focus on the COMPASS and HERMES experiments, where first data are already available. We present results for spin asymmetries and discuss their possible sensitivity to \(\Delta g \) but also focus on predictions for unpolarized reference or “benchmark” cross sections which allow to probe the validity of the pQCD framework at low c.m.s. energies and transverse momenta \(p_T \). We include all relevant experimental cuts in our calculations. We close this section by studying the prospects for hadron-pair photoproduction at eRHIC. We briefly conclude in Sec. 4.

2 Technical Framework

We consider the spin-dependent inclusive photoproduction cross section for the process

\[
 l(p_l)\, N(p_N) \rightarrow l'(p_{l'})\, H_c(p_c)\, H_d(p_d)\, X \; ,
\]

(1)

where a longitudinally polarized lepton beam \(l \) scatters off a longitudinally polarized nucleon target \(N \) producing two observed hadrons \(H_c \) and \(H_d \) in the final state. The \(p_i \) denote the four-momenta of the particles. Both hadrons \(H_c \) and \(H_d \) are assumed to have high transverse momenta \(p_{T,c} \) and \(p_{T,d} \), respectively, ensuring large momentum transfer. Invoking the factorization theorem \cite{17} we may then write the differential cross section as a convolution of nonperturbative parton distribution and fragmentation functions and partonic hard scattering cross sections,

\[
d\Delta \sigma \equiv \frac{1}{2} [d\sigma_{++} - d\sigma_{+-}] =
\sum_{abcd} \int dx_a\, dx_b\, dz_c\, dz_d\, \Delta f^a(x_a, \mu_f)\, \Delta f^b(x_b, \mu_f)
\times d\Delta \sigma^{ab\rightarrow cdX'}(S, x_a, x_b, p_c, z_c, p_d, z_d, \mu_f, \mu_f', \mu_r)
\times D^{H_c}_{x_c}(z_c, \mu_f')\, D^{H_d}_{x_d}(z_d, \mu_f') \; .
\]

(3)
In Eq. (2) the subscripts “++” and “+-” denote the helicities of the colliding leptons and nucleons. \(S \) is the total c.m.s. energy squared available, i.e., \(S = (p_1 + p_N)^2 \). The sum in Eq. (3) runs over all possible partonic channels \(ab \rightarrow cd \) with \(d \Delta \sigma^{ab \rightarrow cd} \) the associated spin-dependent LO partonic hard scattering cross sections. The latter can be calculated in pQCD order-by-order in the strong coupling \(\alpha_s(\mu_c) \), with \(\mu_e \) denoting the renormalization scale.

The \(\Delta f^N(x_b, \mu_f) \) are the usual spin-dependent parton distributions of the nucleon

\[
\Delta f^N(x_b, \mu_f) = f^N_+ (x_b, \mu_f) - f^N_- (x_b, \mu_f),
\]

(4) evolved to a factorization scale \(\mu_f \), with \(x_b \) the momentum fraction of the nucleon carried by the parton \(f \). The subscript \([-\] in Eq. (4) indicates that the parton’s spin is aligned [anti-aligned] to the spin of the parent nucleon. The other non-perturbative functions \(D_{H c,d}^H (z_{c,d}, \mu_f') \) describe the collinear fragmentation of the partons \(c \) and \(d \) into the observed hadrons \(H_c \) and \(H_d \), respectively, with \(z_{c,d} \) the fraction of the parton’s momentum carried by the produced hadron. \(\mu_f' \) denotes the final-state factorization scale which can be different from \(\mu_f \).

The experimentally measured cross section for (1) is the sum of the so-called “direct” and “resolved” photon contributions, cf. Figs. (a) and (b), respectively,

\[
d \Delta \sigma = d \Delta \sigma_{\text{dir}} + d \Delta \sigma_{\text{res}}.
\]

(5) We shall note that neither \(d \Delta \sigma_{\text{dir}} \) nor \(d \Delta \sigma_{\text{res}} \) are measurable individually. Both, \(d \Delta \sigma_{\text{dir}} \) and \(d \Delta \sigma_{\text{res}} \), can be cast into the form of Eq. (3) by defining the parton distribution functions for a lepton, \(\Delta f^\gamma(x_a, \mu_f) \), appropriately. Most generally, they can be written as convolutions,

\[
\Delta f^\gamma(x_a, \mu_f) = \int_{x_a}^1 \frac{dy}{y} \Delta P_{\gamma l}(y) \Delta f^\gamma \left(x_a = x a \ y, \mu_f \right),
\]

(6) with

\[
\Delta P_{\gamma l}(y) = \frac{\alpha_{em}}{2 \pi} \left[1 - \left(1 - y \right)^2 \right] \ln \frac{Q_{\text{max}}^2 (1 - y)}{m_l^2 y^2} + 2 m_l^2 (\frac{1}{Q_{\text{max}}^2} - \frac{1 - y}{m_l^2 y^2})
\]

(7) being the spin-dependent Weizsäcker-Williams equivalent photon spectrum that describes the collinear emission of a quasi-real photon with momentum fraction \(y \) and virtuality less than some (small) upper limit \(Q_{\text{max}} \) off a lepton of mass \(m_l \). \(Q_{\text{max}} \) is determined by the experimental conditions.

The explicit form of the polarized photon structure function \(\Delta f^\gamma(x_l, \mu) \) in Eq. (6) depends on the specifics of the interaction that the quasi-real photon undergoes in the hard scattering with the nucleon. In the “direct” case, depicted in Fig. 1 (a), parton \(a \) in (3) has to be identified with an elementary photon and hence \(x_a \) with the momentum fraction \(y \) of the photon w.r.t. the parent lepton, i.e.,

\[
\Delta f^\gamma(x_l, \mu) = \delta(1 - x_l)
\]

(8) in Eq. (6). If the photon resolves into its hadronic structure before the hard scattering takes place, the \(\Delta f^\gamma \) in Eq. (6) represent the parton densities of a circularly polarized photon. The latter are defined in complete analogy to the ones for a nucleon target in Eq. (4). Unlike hadronic parton distributions, photonic densities consist of a perturbatively calculable “pointlike” contribution, which dominates their behavior at large momentum fractions \(x_l \), and a non-perturbative “hadronic” contribution dominating in the low-to-mid \(x_l \) region. Nothing is known about the latter, such that we have to invoke some model for it in our calculations below. This will become important in the discussion of the numerical results in the remainder of the paper. We will demonstrate that measurements at low c.m.s. energies, i.e., at COMPASS and HERMES, are to a large extent not affected by the actual details of the model. At higher c.m.s. energies, like at a future polarized ep collider, one of the physics goals would be a first determination of the partonic structure of circularly polarized photons.

Finally, the experimentally relevant double-spin asymmetry \(A_{\text{LL}} \) is defined as

\[
A_{\text{LL}} \equiv \frac{d \Delta \sigma}{d \sigma} = \frac{d \sigma_{++} - d \sigma_{--}}{d \sigma_{++} + d \sigma_{--}}.
\]

(9) The required spin-averaged cross section \(d \sigma \) in Eq. (9) straightforwardly obtained from Eqs. (3)-(7) by replacing all polarized quantities by their appropriate unpolarized counterparts.

3 Phenomenological Applications

In our phenomenological studies based on the framework laid out in Eqs. (3)-(7) we concentrate on the production of pairs of charged hadrons made of light quark flavors. In fact, we sum over pions, kaons, and (anti-)protons and use the fragmentation functions of KKP [19] throughout to model hadronization. All our results will be differential in the transverse momentum \(p_{T,c} \) of hadron \(H_c \) and integrated over all kinematically and experimentally allowed transverse momenta \(p_{T,d} \) of hadron \(H_d \) and pseudo-rapidities \(\eta_{c,d} \) unless stated otherwise. The pseudo-rapidities of the hadrons are measured w.r.t. the direction of the incident lepton beam.

For the unpolarized parton densities of the nucleon and photon we adopt the LO CTEQ6L [20] and GRV [21] sets, respectively. To study the sensitivity to the unknown gluon polarization of the nucleon we use four different sets of spin-dependent parton distributions emerging from the GRSV analysis [22]. These sets span a rather large range of gluon densities \(\Delta g \) all very much consistent with present DIS data. Apart from our default “standard” set of GRSV with a moderately large, positive \(\Delta g \), the three other sets “\(\Delta g = g \text{ input} \)”, “\(\Delta g = 0 \) input”, and “\(\Delta g = -g \) input” are characterized by a large positive, a vanishing, and a large negative gluon polarization, respectively, at the input scale of the evolution.
The unknown parton densities of circularly polarized photons are estimated with the help of two extreme models [23] based on maximal, \(\Delta f^+ (x, \mu_0) = f^+ (x, \mu_0) \), or minimal, \(\Delta f^+ (x, \mu_0) = 0 \), saturation of the positivity bound at the starting scale \(\mu_0 \) for the evolution to scales \(\mu > \mu_0 \).

Both models result in very different parton distributions \(x, \mu \) as \(\mu \to \infty \) when we study the sensitivity of the photoproduction cross sections and spin asymmetries to the details of the non-perturbative hadronic input to the evolution of \(\Delta f^+ \).

Unless stated otherwise, all factorization and renormalization scales, \(\mu_f, \mu_F, \) and \(\mu_r \), in Eq. (3) are set equal to \(\mu^2 \equiv \mu_r^2 = \mu_f^2 = \mu_F^2 = p_{T,c}^2 + p_{T,d}^2 \).

3.1 Two-Hadron Production at COMPASS

With the present setup, the COMPASS experiment scatters polarized muons with a beam energy of \(E_\mu = 160 \) GeV off the deuterons in a polarized \(^4\text{LiD}\) solid-state target corresponding to a c.m.s. energy of \(\sqrt{s} \equiv 18 \) GeV. On average the beam polarization is \(P_\mu \approx 76\% \), and about \(F_d \approx 50\% \) of the deuterons can be polarized with an average polarization of \(P_d \approx 50\% \).

Hadrons can be detected if their scattering angle is less than \(\theta\text{max} = 70 \) mrad in the laboratory frame. This acceptance was recently upgraded to \(\theta\text{max} = 180 \) mrad for all future runs. In the event selection for a “high-\(p_T \)” sample, the charged hadrons have to pass further cuts [11]: the invariant mass \(m(H_c, H_d) \) of the two produced hadrons has to be larger than 1.5 GeV and the sum of the transverse momenta squared must exceed \(p_{T,c}^2 + p_{T,d}^2 > 2.5 \) GeV\(^2\) with both \(p_{T,c} \) and \(p_{T,d} \) larger than 0.7 GeV. In addition, the fractions \(z_{c,d} \) of the parent parton’s momenta carried by the detected hadrons \(H_c,d \) are chosen to be \(z_{c,d} > 0.1 \).

The maximal virtuality of the quasi-real photons in Eq. (4) is taken to be \(Q_{\text{max}}^2 = 0.5 \) GeV\(^2\). The fraction \(y \) of the lepton’s momentum taken by the photon is restricted to be in the range \(0.1 \leq y \leq 0.9 \). We note that the often omitted non-logarithmic pieces in Eq. (7) result in a small but non-negligible contribution for muons.

Figure 2 shows the dependence of both the unpolarized and polarized LO photoproduction cross section [3] on the unphysical factorization/renormalization scales varied in the range \((p_{T,c}^2 + p_{T,d}^2) / 4 \leq \mu^2 \leq 4(p_{T,c}^2 + p_{T,d}^2) \). Both cross sections exhibit a very large scale dependence which is, however, not uncommon for LO estimates. Sets of polarized parton densities with a moderate gluon polarization like GRSV “standard” result in an almost vanishing cross section as the two “direct” subprocesses, photon-gluon-fusion and QCD-Compton scattering, cancel each other almost entirely, see also Fig. 3 and the discussions below. Even the sign of the polarized cross section cannot be determined within the scale uncertainty here. As always, the computation of the relevant NLO QCD corrections is a mandatory task as theoretical uncertainties associated with the residual scale dependence are due to the truncation of the perturbative series at a given order and are expected to decrease significantly beyond the LO approximation. Such a calculation for hadron-pair production is a formidable task and still not complete at present [13].

From a recent calculation of the NLO QCD corrections to spin-dependent, single-inclusive photoproduction of high-\(p_T \) hadrons [24] we know though that theoretical scale uncertainties are only marginally reduced, if at all, at the NLO level at c.m.s. energies relevant for COMPASS and HERMES. This is in sharp contrast to what one generally expects and what indeed happens at collider energies, see, e.g., [25,26]. In addition, the NLO corrections...
The dotted lines in Fig. 2 correspond to the unpolarized (a) and polarized (b) cross sections computed without imposing the experimental cut on $p_{T,c}^2 + p_{T,d}^2 > 2.5 \text{ GeV}^2$. This cut, which ensures hard scattering, is responsible for the cusp observed at around $p_{T,c} \simeq 1.4 \text{ GeV}$ and for the significant reduction of the cross section for smaller $p_{T,c}$.

Figure 3 shows our expectations for the double-spin asymmetry A_{LL}, Eq. (9), at LO based on the cross sections shown in Fig. 2 for the default choice of scales. Apart from the “standard” set of GRSV polarized parton densities [24], we also use the three other sets, introduced at the beginning of Sec. 3, with very different assumptions about the gluon polarization. In the upper panel of Fig. 3 we study the importance of the “resolved” photon contribution to the photoproduction cross section [19]. By comparing the experimentally relevant spin asymmetry for the sum of “direct” and “resolved” contributions (solid lines) with A_{LL} computed for the “direct” part alone (dashed lines) one can infer that irrespective of the chosen Δg the “resolved” part is non-negligible. It leads to a significant shift in the absolute value of the spin asymmetry and neglecting it in the analysis would clearly lead to wrong conclusions about Δg.

The impact of the unknown, non-perturbative parton content of the circularly polarized photon on A_{LL} is examined in the lower panel of Fig. 3 by making use of the two extreme models [24] also introduced at the beginning of Sec. 3. As can be seen, the actual choice of the model barely affects the results for the spin asymmetry. Any difference between the two results diminishes further towards larger $p_{T,c}$. This can be readily understood as the photonic parton densities are probed on average at medium-to-large momentum fractions x. In this region the partonic content of the photon is dominated by the “pointlike” contribution which is independent of the details of the unknown non-perturbative input [23]. Certainly, this finding somewhat simplifies the theoretical analysis of the spin asymmetry in terms of Δg.

Figure 3 also demonstrates that the double-spin asymmetry A_{LL} is sensitive to different model assumptions for the gluon polarization. A large and positive gluon polarization yields a sizable negative asymmetry whereas a large and negative Δg leads to a positive asymmetry. For the “standard” set of GRSV or when $\Delta g = 0$ is imposed at the input scale of the evolution we find asymmetries close to zero. To judge whether a measurement of A_{LL} can be actually turned into a constraint on Δg we estimate the expected statistical accuracy δA_{LL} for COMPASS in certain bins of $p_{T,c}$, calculated from

$$\delta A_{LL} \simeq \frac{1}{P_{\rho P_d F_d} \sigma_{\text{bin}} L} \frac{1}{\ln^2 \mu}. \quad (10)$$

Here, σ_{bin} denotes the unpolarized cross section integrated over the bin considered and L the integrated luminosity for which we assume $L = 1 \text{ fb}^{-1}$. All other quantities are as specified at the beginning of Sec. 3. Clearly, the region of $1 < p_{T,c} < 2 \text{ GeV}$ is the most promising one to obtain information about the gluon polarization. At higher $p_{T,c}$'s
the achievable statistical precision deteriorates as the cross section drops steeply with \(p_{T,c} \).

First experimental results \[11\] find that the spin asymmetry (integrated also over \(p_{T,c} \) for the time being) is close to zero. From this measurement a value of \(\Delta g/q = 0.024 \pm 0.089 \text{(stat.)} \pm 0.057 \text{(sys.)} \) at \(x = 0.095 \pm 0.08 (-0.04) \) and scale \(\mu^2 = 3 \text{ GeV}^2 \) was extracted with the help of “purities”, i.e., a “signal-to-background” separation based on Monte-Carlo simulations \[11\]. Compared to our theoretical expectations in Fig. 3 the COMPASS result of \(A_{\text{LL}} \approx 0 \) \[11\] is consistent with a moderate gluon polarization like in the GRSV “standard” set. However, as discussed above, one should take this result with a grain of salt unless an unpolarized reference cross section becomes available from COMPASS to verify the applicability of pQCD methods. In particular, one has to exclude that the observed smallness of the spin asymmetry is due to the presence of large non-perturbative effects. If these are spin-independent they would naturally lead to \(A_{\text{LL}} \approx 0 \) irrespective of \(\Delta g \).

Next we turn to a closer analysis of how the results in Figures 2 and 3 can be understood. To this end we study the different contributions to the polarized photoproduction cross section separately as illustrated in Figure 4. The upper and lower panel show the fractional contributions of \(d\Delta \sigma_{\text{dir}} \) and \(d\Delta \sigma_{\text{res}} \) of the different partonic LO channels \(a + b \to c + d \), respectively. Here we use the maximal positive gluon polarization of GRSV with \(\Delta g = g \) at the input scale, for which the cancellation between the photon-gluon fusion and QCD Compton subprocesses mentioned above is less relevant. For our “default” gluon polarization used in Fig. 2 (b) the polarized cross section has a node at some \(p_{T,c} \) such that ratios are difficult to visualize. From Fig. 4 one infers that the “direct” part dominates in absolute value in the entire \(p_{T,c} \)-range shown and that the “resolved” and “direct” contributions have opposite signs. Turning to the individual subprocesses in the lower panel of Fig. 4 we note that the QCD Compton \(\gamma q \)-channel always gives a positive contribution to the cross section\(^1\) whereas the sign of the photon-gluon fusion channel is anti-correlated with the sign of \(\Delta g \) and its relevance scales with the magnitude of the unknown gluon polarization. This leads to a partial cancellation between the two “direct” channels for positive gluon polarizations which explains the smallness of the polarized cross section for the GRSV “standard” gluon observed in Fig. 2 (b). Of the “resolved” processes only the scattering of a quark with large momentum fraction in the photon off a gluon in the nucleon makes a significant contribution, other channels are negligible. We note that in the unpolarized case (not shown here) all contributions to the cross section are positive with the “direct” part accounting for 80 percent or more.

We also wish to comment on the momentum fractions \(x_0 \) predominantly probed in the nucleon in a measurement

\[^1\] \(d\Delta \sigma_{\text{tot}} < 0 \) for the large and positive gluon polarization used in Fig. 4 such that \(d\Delta \sigma_{\gamma q}/d\Delta \sigma_{\text{tot}} < 0 \).
of hadron-pair photoproduction at COMPASS. For the unpolarized cross section this can be easily specified by looking at the distribution in x_T for a given bin of $p_{T,c}$. For example, for $p_{T,c}$ around 1 GeV we find $⟨x_T⟩ = 0.12 \pm 0.05$ which is consistent with the x-range estimated by COMPASS [11]. However, similar estimates for the polarized cross section and hence for $Δg/g$ are impossible without knowing $Δg$ beforehand as both the polarized cross sections and the helicity parton distributions are not positive definite. The relevance of contributions of opposite sign to the cross section strongly depends on the gluon polarization and completely obscures the meaning of an averaged $⟨x_T⟩$ here. This issue can be only consistently resolved in a future global analysis of polarized parton densities.

Next it is interesting to check whether the upgrade of the angular acceptance of the COMPASS experiment to $θ_{max} = 180$ mrad will enhance their sensitivity to $Δg$. In Fig. 5 we present our expectations for the double-spin asymmetry A_{LL} as a function of the transverse momentum $p_{T,c}$ of one of the hadrons. Except for $θ_{max} = 180$ mrad all other settings and cuts are the same as in Fig. 3. The statistical precision for such a measurement is again estimated with the help of Eq. (3) for an integrated luminosity of 1 fb$^{-1}$. From the upper panel of Fig. 5 one infers that the “resolved” contribution modifies the asymmetry even more significantly than for $θ_{max} = 70$ mrad. Even worse, there is now also a strong dependence on the model used to describe the parent content of the circularly polarized photon as can be seen in the lower panel of Fig. 5. This can be readily understood by noticing that due to the larger angular coverage one now probes the partonic structure of the photon also at momentum fractions x_T where the details of the unknown non-perturbative input do matter.

Only in the high-$p_{T,c}$-region, where $x_T \rightarrow 1$, the dependence on the model for $Δf^{γ}$ becomes small. Clearly, a viable strategy would be to analyze data with different cuts on $θ_{max}$ or for bins in $θ$ and to learn as much as possible about $Δg$ first. Data up to $θ_{max} = 180$ mrad might then be used for studying the non-perturbative structure of circularly polarized photons. Needless to mention again, that the validity of the pQCD framework for two-hadron production at COMPASS has to be confirmed prior to studies of A_{LL}.

3.2 Two-Hadron Production at HERMES

At the HERMES experiment at DESY longitudinally polarized electrons/positrons with a beam energy of $E_e \approx 27.5$ GeV were scattered off both, a polarized deuterium or a polarized hydrogen gas target. The available c.m.s. energy of about $\sqrt{S} \approx 7.5$ GeV is lower than at COMPASS which even further limits the range of accessible transverse momenta. On average the lepton beam polarization is $P_e \approx 53\%$. For the polarization of the gas target we take $P_d \approx P_p \approx 85\%$, and, contrary to a solid-state target, there is no dilution, i.e., $F_p = F_d = 1$.

We concentrate on phenomenological studies for a polarized deuterium target in line with the data sample with the highest statistics in the HERMES spin physics program which came to an end recently. The HERMES experiment has an angular acceptance of 40 mrad $≤ θ_{lab} ≤ 220$ mrad for hadrons. For all our numerical studies we demand a transverse momentum of at least 1 GeV for both detected hadrons $H_{c,d}$. We choose a maximal photon virtuality of $Q^2_{max} = 0.1$ GeV2 in Eq. (7) and restrict y to $0.2 ≤ y ≤ 0.9$. The fractions of the parent parton’s momenta carried by the produced hadrons are $z_{c,d} ≥ 0.1$. Again, all scales in Eq. (3) are set equal to $μ^2 = p_{T,c}^2 + p_{T,d}^2$ unless stated otherwise.

Figure 6 shows the dependence of both the unpolarized and polarized LO photoproduction cross section, Eq. (3), on the unpysical factorization/renormalization scales varied in the range $(p_{T,c}^2 + p_{T,d}^2)/4 ≤ μ^2 ≤ 4(p_{T,c}^2 + p_{T,d}^2)$. Not unexpectedly, due to the smaller c.m.s. energy of the HERMES experiment, the scale dependence is even larger than for COMPASS, cf. Fig. 2. All remarks about potential problems with the applicability of perturbative meth-
We finish this section with a detailed study of the different contributions to the polarized photoproduction cross section. The upper and lower panel of Fig. 8 show the fractional contributions of \(d\Delta\sigma_{\text{dir}}/d\Delta\sigma_{\text{tot}}\) and \(d\Delta\sigma_{\text{res}}/d\Delta\sigma_{\text{tot}}\) and of the different partonic LO channels \(a + b \rightarrow c + d\), respectively. As for Fig. 4 we use the maximal positive gluon polarization of GRSV with \(\Delta g = g\) at the input scale. Again the choice is due to the fact that for our “default” gluon polarization, GRSV “standard”, the cross section develops a node at some \(p_{T,c}\) such that ratios are difficult to visualize. As is already expected from Fig. 7, the “resolved” photon cross section is fairly small throughout, though not completely negligible. Again it contributes with the opposite sign than the “direct” cross section, cf. Fig. 4. As for COMPASS kinematics before, we observe a partial cancellation of the two “direct” channels: photon-gluon fusion and QCD Compton scattering. None of the four “resolved” contributions makes a significant contribution at LO.

3.3 Prospects for a Future Polarized \(ep\) Collider

The most interesting option for a future experimental spin physics facility is a first polarized lepton-proton collider such as the eRHIC project at BNL [15] currently under discussion. Here we consider the asymmetric collider option using the existing 250 GeV proton beam of RHIC and a new 10 GeV electron beam, i.e., a c.m.s. energy of \(\sqrt{S} = 100\) GeV. The physics program of such a machine is
Based on the extensive and highly successful exploration of unpolarized ep collisions at the DESY-HERA collider. The determination of the gluon density from scaling violations in DIS down to very small x and establishing the concept of photonic parton densities in photoproduction processes are some of the many physics highlights of HERA.

From similar precision studies of scaling violations in polarized DIS at eRHIC it would be possible to access the gluon polarization down to $x \approx 10^{-3}$, about one decade in x lower than in pp collisions at RHIC. In photoproduction processes it is expected that “resolved” contributions play a much more significant role at eRHIC than at fixed-target experiments. This offers exciting prospects to learn about the $f^{g \gamma}$ densities as was already demonstrated in case of single-inclusive pion photoproduction in Ref.

Studies of hadron-pair production have the advantage that one has a better control on the momentum fractions probed in the hadron and in the photon. For instance, by demanding a “trigger hadron” in the proton’s forward direction and scanning the other hadron’s rapidity one can select kinematical regions which are particularly sensitive to the non-perturbative structure of the photon. This is demonstrated in Fig. 9 where we give estimates for A_{LL} at $\sqrt{S} = 100 \text{ GeV}$. The laboratory rapidity of the “trigger” hadron is integrated in the range $0.6 \leq \eta_d \leq 2.6$ and $2.6 \leq \eta_d \leq 3.6$ in the upper and lower panel, respectively, and the rapidity of the other hadron is left unintegrated. For $\eta_c \lesssim 0$ our results are fairly independent of the choice of a particular model for $\Delta f^{g \gamma}$ while for $\eta_c \gtrsim 1$ the results strongly depend on $\Delta f^{g \gamma}$. This is in particular the case if the trigger hadron is detected more forward in the incoming proton’s direction, i.e., for $2.6 \leq \eta_d \leq 3.6$ (lower panel of Fig. 9). Note that in this subsection positive rapidities denote the proton direction, in line with common conventions usually used at HERA. Again this behavior can be understood by looking at the typical momentum fractions x_γ probed in Eq. 3: for $\eta_{c,d}$ large and positive one finds $x_\gamma \ll 1$ and for $\eta_{c,d}$ large and negative x_γ approaches one.

We also give estimates for the statistical accuracy in Fig. 9 based on beam polarizations of $\mathcal{P}_{e,p} = 0.7$ and an integrated luminosity of 1 fb^{-1}. The latter is expected to be accumulated within only a few weeks of running eRHIC so that the statistical accuracy can be eventually much better than the one shown in Fig. 9. In addition, we demand a minimum transverse momentum for both hadrons of 2 GeV and $z_{c,d} > 0.1$. For the equivalent photon spectrum in Eq. 7 we use similar parameters as the H1 and ZEUS experiments at HERA: $Q_{\text{max}}^2 = 0.5 \text{ GeV}^2$ and the momentum fraction taken by the photon is limited to $0.2 \leq y \leq 0.85$. Note that the “boost” factor between the laboratory and the ep-c.m.s. frame is very similar for the asymmetric collider option for eRHIC and for HERA. Keeping in mind that the polarized gluon distribution Δg should be known fairly well in the range relevant in Fig. 9, i.e. $x \gtrsim 0.01$, from RHIC by the time eRHIC would start to operate, there are excellent prospects to study the so far unknown parton content of circularly polarized photons.

4 Conclusions

In summary, we have presented a phenomenological study of spin-dependent photoproduction of hadron pairs at c.m.s. energies relevant for the COMPASS and HERMES experiments as well as for a possible future polarized ep collider. So far, our studies are limited to the LO approximation of QCD but will be amended to NLO accuracy in due time.

We have consistently included the “direct” and “resolved” photon contributions to the photoproduction cross section. It turned out that the “resolved” part leads to a significant shift in the experimentally relevant double-spin asymmetries and has to be accounted for in future analyzes of data. Fixed-target experiments are, however, mainly sensitive to the perturbative “pointlike” part of the photon structure. This simplifies attempts to extract the gluon polarization Δg which is the main goal of COMPASS and one of the goals of HERMES. The non-perturbative parton content of circularly polarized photons can be probed in detail in photoproduction processes at higher c.m.s. energies which hopefully will become available at some point in the future. By that time we most likely have a...
good knowledge of the spin structure of the nucleon, in particular, from ongoing measurements at RHIC.

The double-spin asymmetries for both COMPASS and HERMES show the expected sensitivity to the gluon polarization in the nucleon. Keeping in mind the very sizable scale dependence at LO all results for A_{LL} have to be taken with a grain of salt unless the applicability of perturbative methods for two-hadron production at comparatively low transverse momenta and c.m.s. energies has been thoroughly investigated and demonstrated. This is best achieved by comparing the underlying unpolarized cross sections for the production of hadron-pairs with theoretical expectations. If these checks are passed, the production of hadron pairs in lepton-nucleon collisions will be an interesting and complementary tool to further constrain the polarization gluon density at momentum fractions of about $x = 0.1 \div 0.2$. If it turns out that data and theory do not match, these measurements will open up a window to study the effects of all-order resummations, the relevance of higher-twist corrections, and perhaps the transition to the non-perturbative regime so far little explored and understood.

Acknowledgements

We are grateful to E.C. Aschenauer, P. Liebing, and V. Mexner (HERMES) and to H. Fischer, S. Hedicke, F.-H. Heinsius and J.-M. Le Goff (COMPASS) for valuable discussions and information about the experimental details of their photoproduction measurements. C.H. was supported in part by the “Bayerische Eliteförderung”. This work was supported in part by the “Deutsche Forschungsgemeinschaft (DFG)”.

References

1. See, for example: K. Rith, in proceedings of the 12th International Workshop on Deep Inelastic Scattering (DIS2004), Strbske Pleso, Slovakia, D. Bruncko et al. (eds.), 2004, p. 183.
2. See, for example: R.L. Jaffe and A. Manohar, Nucl. Phys. B337 (1990) 509.
3. See, for example: G. Bunce, N. Saito, J. Soffer, and W. Vogelsang, Annu. Rev. Nucl. Part. Sci. 50, 525 (2000); C. Aidala et al., Research Plan for Spin Physics at RHIC, 2005, BNL report BNL-73798-2005.
4. PHENIX Collaboration, S.S. Adler et al., Phys. Rev. Lett. 91, 241803 (2003); ibid. 95, 202001 (2005); Phys. Rev. D71, 071102(R) (2005); STAR Collaboration, J. Adams et al., Phys. Rev. Lett. 92, 171801 (2004); [nucl-ex/0602011] M.L. Miller, STAR Collaboration, [hep-ex/0604001] to appear in the proceedings of the Particles and Nuclei International Conference (PANIC 05), Santa Fe, New Mexico, Oct. 2005.
5. PHENIX Collaboration, S.S. Adler et al., Phys. Rev. Lett. 93, 202002 (2004); [hep-ex/0602004] K. Boyle, PHENIX Collaboration, talk presented at the Particles and Nuclei International Conference (PANIC 05), Santa Fe, New Mexico, Oct. 2005, to appear in the proceedings; J. Kiryluk, STAR Collaboration, [hep-ex/0512040] to appear in the proceedings of the Particles and Nuclei International Conference (PANIC05), Santa Fe, NM, Oct. 2005.
6. COMPASS Collaboration, G. Baum et al., CERN/SPSLC 96-14 (1996).
7. HERMES Collaboration, The HERMES Physics Program & Plans for 2001-2006, DESY-PRC, 2000.
8. A. Bravar, D. von Harrach, and A. Kotzinian, Phys. Lett. B421, 349 (1998).
9. HERMES Collaboration, A. Airapetian et al., Phys. Rev. Lett. 84, 2584 (2000).
10. Spin Muon Collaboration (SMC), B. Adeva et al., Phys. Rev. D70, 012002 (2004).
11. COMPASS Collaboration, E.S. Ageev et al., Phys. Lett. B633, 25 (2006).
12. E706 Collaboration, L. Apanasevich et al., Phys. Rev. Lett. 81, 2642 (1998); P. Aurencche et al., Eur. Phys. J. C9, 107 (1999); ibid. 13, 347 (2000); U. Baur et al., hep-ph/0005226.
13. C. Hendlmeier et al., work in progress.
14. J.J. Peralta, A.P. Contogouris, B. Kamal, and F. Lebessis, Phys. Rev. D49, 3148 (1994); G. Grispos, A.P. Contogouris, and G. Veropoulos, Phys. Rev. D62, 014023 (2000).
15. See http://www.bnl.gov/eic for information concerning the eRHIC/EIC project, including the “whitepaper”, BNL-report 68933, Feb. 2002; A. Deshpande, R. Milner, R. Vemugopalan, and W. Vogelsang, Ann. Rev. Nucl. Part. Sci. 55, 165 (2005).
16. M. Stratmann and W. Vogelsang, Z. Phys. C74, 641 (1997).
17. S.B. Libby and G. Sterman, Phys. Rev. D18, 3252 (1978); R.K. Ellis, H. Georgi, M. Machacek, H.D. Politzer, and G.G. Ross, Phys. Lett. 78B, 281 (1978); Nucl. Phys. B152, 285 (1979); D. Amati, R. Petronzio, and G. Veneziano, Nucl. Phys. B140, 54 (1980); Nucl. Phys. B146, 29 (1978); G. Curi, W. Furmanski, and R. Petronzio, Nucl. Phys. B175, 27 (1980); J.C. Collins, D.E. Soper, and G. Sterman, Phys. Lett. B343, 263 (1984); Nucl. Phys. B261, 104 (1985); J.C. Collins, Nucl. Phys. B394, 169 (1993).
18. D. de Florian and S. Frixione, Phys. Lett. B457, 236 (1999).
19. B.A. Kniehl, G. Kramer, and B. Pötter, Nucl. Phys. B582, 514 (2000).
20. CTEQ Collaboration, J. Pumplin et al., JHEP 0207, 012 (2002).
21. M. Glück, E. Reya, and A. Vogt, Phys. Rev. D46, 1973 (1992).
22. M. Glück, E. Reya, M. Stratmann, and W. Vogelsang, Phys. Rev. D63, 094005 (2001).
23. M. Glück and W. Vogelsang, Z. Phys. C55 (1992) 353; Z. Phys. C57 (1993) 309; M. Glück, M. Stratmann, and W. Vogelsang, Phys. Lett. B337 (1994) 373; M. Stratmann and W. Vogelsang, Phys. Lett. B386 (1996) 370.
24. B. Jäger, M. Stratmann, and W. Vogelsang, Eur. Phys. J. C44 (2005) 533.
25. B. Jäger, A. Schäfer, M. Stratmann, and W. Vogelsang, Phys. Rev. D67 (2003) 054005.
26. B. Jäger, M. Stratmann, and W. Vogelsang, Phys. Rev. D68 (2003) 114018.
27. See, e.g., D. de Florian and W. Vogelsang, Phys. Rev. D71 (2005) 114004; Phys. Rev. D72 (2005) 014014; and references therein.
28. E.C. Aschenauer and P. Liebing, private communications.