$D = 5$ Simple Supergravity on $AdS_2 \times S^3$

Akira Fujii1 and Ryuji Kemmoku2

\textit{Institute of Particle and Nuclear Studies}
\textit{High Energy Accelerator Research Organization (KEK)}
\textit{Tanashi, Tokyo 188-8501, Japan}

Abstract

The Kaluza-Klein spectrum of $D = 5$ simple supergravity compactified on S^3 is studied. A classical background solution which preserves maximal supersymmetry is fulfilled by the geometry of $AdS_2 \times S^3$. The physical spectrum of the fluctuations is classified according to $SU(1,1|2) \times SU(2)$ symmetry, which has a very similar structure to that in the case of compactification on $AdS_3 \times S^2$.
1. Introduction Maldacena’s conjecture \cite{1} is one of the most attractive subjects among recent progress in the non-perturbative string/M-theory. In this paper, we consider $D = 5$ simple supergravity (SUGRA) with 0-brane solution whose near-horizon geometry is the direct product of two-dimensional anti-de-Sitter space and three-sphere ($AdS_2 \times S^3$), and investigate its Kaluza-Klein spectrum. Assuming that the AdS_2/CFT_1 correspondence holds \cite{2}-\cite{5}, we show that the spectrum possesses $SU(1,1|2) \times SU(2)$ symmetry. It must be remarked that Gauntlett et.al.\cite{6} has recently evinced the super-Poincaré group of $AdS_2 \times S^3$ SUGRA to be $SU(1,1|2) \times SU(2)$. Our results provide each Kaluza-Klein mode with the precise assignment to the certain representation of $SU(1,1|2) \times SU(2)$.

On the other hand, $D = 5$ simple SUGRA possesses a very similar structure to that of $D = 11$ SUGRA \cite{7}-\cite{10}. In particular, the former theory allows solitonic string (1-brane) and particle (0-brane) solutions that respectively correspond to M5- and M2-brane solutions in the latter \cite{11}. While the near-horizon geometry of the solitonic 1-brane in $D = 5$ simple SUGRA is $AdS_3 \times S^2$, that of the solitonic 0-brane is $AdS_2 \times S^3$. In the previous work \cite{12}, the Kaluza-Klein spectrum in this $AdS_3 \times S^2$ compactification is studied and its $SU(1,1|2)_R \times SU(1,1)_L$ symmetry, which can be regarded as the finite-dimensional subalgebra of chiral $N = (4,0)$ superconformal algebra, is found. Interestingly enough, two different compactifications are endowed with quite similar symmetries, chiral $SU(1,1|2)_R \times SU(1,1)_L$ and single $SU(1,1|2) \times SU(2)$. It originates in the magnetic/electric duality between $AdS_3 \times S^2$ and $AdS_2 \times S^3$ simple SUGRA theories.

2. Field equations In terms of the metric g_{MN}, $U(1)$ gauge field A_M, and the spin-3/2 field ψ_M, $D = 5$ simple SUGRA is defined by the Lagrangian

$$\begin{align*}
\mathcal{L} &= e_5 \left[-\frac{1}{4} R - \frac{1}{4} F_{MN} F^{MN} \\
&\quad - \frac{i}{2} \left(\bar{\psi}_M \Gamma^{MNP} D_N \left(\frac{3 \omega - \hat{\omega}}{2} \right) \psi_P + \bar{\psi}_P \Gamma^{MNP} D_M \left(\frac{3 \omega - \hat{\omega}}{2} \right) \psi_N \right) \\
&\quad - \frac{1}{6 \sqrt{3}} e_5^{-1} \epsilon^{MNPQR} F_{MN} F_{PQ} A_R \\
&\quad - \frac{\sqrt{3} i}{8} \psi_M (\Gamma^{MNPQ} + 2 g_M^{[P} g_Q^{N]} \psi_N (F_{PQ} + \hat{F}_{PQ}) \right],
\end{align*}$$

where the notations used here follow those in \cite{8} and the signature is $(+ - - - -)$. Capital Roman letters run from 0 to 4. In the absence of the ψ_M field, Einstein-Maxwell’s equation is shown to be

$$R_{MN} - \frac{1}{2} g_{MN} R = - \left(2 F_{MP} F^P_N - \frac{1}{2} g_{MN} F^2 \right),$$

1
The equation of motion for the bosonic fields reads

\[F^{MN} = \frac{1}{2\sqrt{3}} e^{-1} \epsilon^{NPQRS} F_{PQ} F_{RS}. \] (2)

The above equation of motion enjoys Freund-Rubin-like solutions \[13\] that preserve the maximal number of the supersymmetries after three-dimensional compactification. One of these such solutions over which we will be considering the Kaluza-Klein spectrum possesses the geometry of \(AdS_2 \times S^3 \), namely,

\[\hat{R}_{\mu\nu\rho\sigma} = \frac{4}{3} f^2 \left[\hat{g}_{\mu\rho} \hat{g}_{\nu\sigma} - \hat{g}_{\mu\sigma} \hat{g}_{\nu\rho} \right], \]

\[\hat{R}_{\mu\nu pq} = -\frac{1}{3} f^2 \left[\hat{g}_{mp} \hat{g}_{nq} - \hat{g}_{mq} \hat{g}_{np} \right], \] (3)

\[\hat{g}_{\mu m} = \hat{F}^{\mu m} = 0, \quad \hat{F}_{\mu\nu} = f \hat{e}_{2\epsilon_{\mu\nu}}, \quad \hat{F}_{mn} = 0, \]

where Greek letters are used for 0 or 1, small Roman letters for 2, 3 or 4, and \(^{o} \) means the background. Let us set the free parameter \(f \) to be \(\sqrt{3} \).

3. Kaluza-Klein spectrum: bosonic modes The spectrum of small variations around the above \(AdS_2 \times S^3 \) background is derived from Einstein-Maxwell’s equation (2). We docket the small variations of the bosonic fields, \(g_{MN} \) and \(A_M \), like

\[\delta g^{MN} = h^{MN}, \quad \delta A_M = a_M. \] (4)

After fixing the gauge and diffeomorphism degrees of freedom in the way that

\[a_m;^m = 0, \quad h^{\mu m}_{\nu m} = 0, \quad h^{\mu m}_{;m} = 0, \quad h^m_m = 0, \] (5)

the equation of motion for the bosonic fields reads

\[-\frac{1}{2} \left(h^\lambda_{\mu;\nu;\lambda} + h^\lambda_{\nu;\mu;\lambda} - h^\lambda_{\lambda;\mu;\nu} - h^\lambda_{\mu\nu;\lambda} \right) = 0, \]

\[+4 h_{\mu\nu} - 5 \hat{g}_{\mu\nu} h^\lambda_{\lambda} + \frac{1}{2} \hat{g}_{\mu\nu}(h^{\mu\nu}_{;;\mu\nu} + h_{;;m}^{mn} - h^\lambda_{\lambda;\mu\nu}) + 4\sqrt{3} \left\{ \hat{e}_{2\epsilon^{\lambda}} a_{[\lambda;\nu]} + \hat{e}_{2\epsilon^{\lambda}} a_{[\lambda;\mu]} \right\} - 2\sqrt{3} \hat{g}_{\mu\nu} \hat{e}_{2\epsilon^{\lambda}} a_{\sigma;\lambda} = 0, \] (6)

\[-\frac{1}{2} (h^\lambda_{\mu,\lambda} + h^r_{m;\mu;\nu} - h^\lambda_{\lambda;\mu;\nu} - h^m_{\mu;\lambda}) - 3 h_{\mu\nu} + 4\sqrt{3} \hat{e}_{2\epsilon^{\lambda}} a_{[\lambda;\mu]} = 0, \] (7)

\[-\frac{1}{2} (h^r_{m;\mu;\nu} + h^r_{n;\mu;\nu} - h^\lambda_{\lambda;\mu;\nu} - h^m_{\mu;\lambda}) - 2 h_{mn} + \hat{g}_{mn} h^\lambda_{\lambda} + \frac{1}{2} \hat{g}_{mn}(h^{\mu\nu}_{;\mu\nu} + h_{;,m}^{mn} - h^\lambda_{\lambda;\mu\nu}) - 2\sqrt{3} \hat{g}_{mn} \hat{e}_{2\epsilon^{\lambda}} a_{\sigma;\lambda} = 0, \] (8)

\[a^{\mu;\lambda}_{;M} - 4 a^{\mu\nu} - \frac{\sqrt{3}}{2} \hat{e}_{2\epsilon^{\sigma}} h^\lambda_{\lambda;\sigma} = 0, \] (9)

\[a^{m;\lambda}_{;M} + 2 a^m + 4 \hat{e}_{2\epsilon} a_{\phi;\nu} + \sqrt{3} \hat{e}_{2\epsilon} h^m_{\sigma;\lambda} = 0. \] (10)
To diagonalize the mass matrices derived from the above equation, we adopt the spherical harmonics on S^3 with the rank-0, 1 and 2. To begin with, let us summarize the properties of three-dimensional spherical harmonics. Because the isometry group of S^3 is $SO(4)$, eigenfunctions of the three-dimensional Laplacian $\Delta = \nabla^m \nabla_m$, and the three-dimensional spherical harmonics, simultaneously belong to a certain representation of $SO(4)$. On the other hand, $SO(4)$ is decomposed into a direct product of two $SU(2)$’s, namely $SU(2) \times SU(2)$. Therefore, we are able to use spins of two $SU(2)$’s to classify the Kaluza-Klein spectrum. Let \vec{J} ($\vec{\bar{J}}$) denote the Casimir operator of $SU(2)$ ($SU(2)$) with eigenvalues $j (j + 1)$ for $j, \bar{j} = 0, 1/2, 1, 3/2, \cdots$. $\Phi (\bar{\Phi})$ is the representation of $SU(2)$ ($SU(2)$) with spin j (\bar{j}). In general, j and \bar{j} can take different half-integer values. The difference $|j - \bar{j}|$ is called the rank of the spherical harmonic. This rank corresponds to that of the tensor structure not on AdS_2 but on S^3. Spherical harmonics with rank-0, 1, and 2 are explicitly constructed as follows.

1. rank-0 harmonics

First, for scalar functions on S^3, one can confirm the equality among \vec{J}^2, $\vec{\bar{J}}^2$, and Δ

$$- \Delta = 4 \vec{J}^2 = 4 \vec{\bar{J}}^2. \quad (11)$$

It is shown that a product $Y^{(k)} = \Phi^{(k/2)} \bar{\Phi}^{(k/2)}$ behaves as a scalar on S^3 and is an eigenfunction of Δ. In fact, its eigenvalue for Δ is given by $-k(k+2) = -4j(j+1) = -4\bar{j}(\bar{j}+1)$, where $k = 2j = 2\bar{j} = 0, 1, 2, \cdots$.

2. rank-1 harmonics

In a similar way to the case for rank-0 harmonics, one can prove that $Y_m^{(k, \pm)} = \Phi^{(k+1/2)} \bar{\Phi}^{(k-1/2)}$ are vector functions on S^3 and, simultaneously, eigenfunctions of the Laplacian with the eigenvalue $-\Delta = k(k+2) - 1$ for $k = 1, 2, 3, \cdots$. Introducing the rotational derivative for vector fields $(\text{rot } v)^m = \varepsilon_{mnp} v^p; n$, we should remark that

$$\text{rot } Y_m^{(k, \pm)} = \pm (k+1) Y_m^{(k, \pm)}. \quad (12)$$

3. rank-2 harmonics

$Y_m^{(k, \pm)} = \Phi^{(k+3/2)} \bar{\Phi}^{(k-3/2)}$ are rank-2 tensors on S^3 and are eigenfunctions of Δ with the eigenvalue $-\Delta = k(k+2) - 2$ for $k = 2, 3, 4, \cdots$.

By expanding the bosonic fields a_M and h_{MN} in terms of the above spherical harmonics, the field equation (6)-(10) is separated into three sets with rank-0, 1 and 2. The $SO(4)$-charge of each bosonic mode is inherited from the used spherical harmonic with a certain rank. The results are summarized in the following.
1. rank-0
The eigenvalues of the two-dimensional d’Alembertian \square on AdS_2 for $h_{mn}^{\cdot \cdot}; h_{\mu\nu}^{\cdot \cdot}$, $\hat{\eta}^{\lambda\sigma} a_{\sigma, \lambda}$ and $h^{\lambda}_{\cdot \cdot}$ are

$$\lambda^2 = -\square = k^2 - 2k \quad \text{for} \quad k = 2, 3, 4, \cdots \quad (13)$$

and

$$\lambda^2 = k^2 + 6k + 8 \quad \text{for} \quad k = 0, 1, 2, \cdots . \quad (14)$$

The reason why the tower (13) begins from $k = 2$ is because at $k = 0$ the mass-matrix is degenerated, and at $k = 1$ the eigenvalue corresponding to this tower is inconsistent with the tensor structure of $h_{mn}^{\cdot \cdot}$ which is the origin of $h_{mn}; h_{\mu\nu}^{\cdot \cdot}$. The $SO(4)$-charges corresponding to both of the above two branches prove identically

$$(j, \bar{j}) = (\frac{k}{2}, \frac{k}{2}). \quad (15)$$

2. rank-1
Let us consider the mass-matrices on $\hat{\eta}^{\lambda\sigma} h_{m\lambda, \sigma}$ and a_m. One can immediately see that the mass matrices take different forms for $Y^{(k, +)}_m$ or $Y^{(k, -)}_m$. The eigenvalues for $Y^{(k, +)}_m$ are

$$\lambda^2 = k^2 + 8k + 15 \quad \text{or} \quad k^2 - 1 \quad (16)$$

with the same $SO(4)$ charge

$$(j, \bar{j}) = (\frac{k+1}{2}, \frac{k-1}{2}) \quad (17)$$

for $k = 1, 2, 3, \cdots$. The eigenvalues for $Y^{(k, -)}_m$ are

$$\lambda^2 = k^2 - 4k + 3 \quad \text{for} \quad k = 2, 3, 4 \cdots \quad (18)$$

and

$$\lambda^2 = k^2 + 4k + 3 \quad \text{for} \quad k = 1, 2, 3 \cdots \quad (19)$$

with the $SO(4)$-charges

$$(j, \bar{j}) = (\frac{k-1}{2}, \frac{k+1}{2}). \quad (20)$$

We should remark that the eigenvalue (18) for $k = 1$ is missing. At $k = 1$, this mode is massless and degenerates into that of $k^2 - 1$ ($k = 1$). However, the dynamical degree of freedom for massless scalars in the present case is merely one, and the three-dimensional chirality such that $j - \bar{j} < 0$ is not consistent with the two-dimensional parity of the scalar fields. Therefore, we drop that mode.
3. rank-2

On the rank-2 field h_{mn}, the d’Alembertian has the eigenvalue

$$\lambda^2 = k^2 + 2k \quad \text{for} \quad k = 2, 3, 4 \cdots,$$

(21)

for both

$$(j, \bar{j}) = (\frac{k+2}{2}, \frac{k+2}{2}).$$

(22)

4. Kaluza-Klein spectrum: fermionic modes

The fermionic fluctuation around the $AdS_2 \times S^3$ background, $\psi_M = 0$, is labeled simply by ψ_M itself. Its linearized equation of motion is drawn from the Lagrangian $[I]$:

$$i \Gamma^{MNP} \psi_{P, N} - \frac{\sqrt{3}}{4} i (\Gamma^{MNPQ} + 2 \hat{g}^{[P} \hat{g}^{Q]} N) \psi_N \hat{F}_{PQ} = 0.$$

(23)

To analyze the Kaluza-Klein spectrum from (23), we utilize rank-1/2 spherical harmonic ξ^m on S^3 which is an eigenspinor of the equation

$$\Gamma^m \nabla_n \xi^m + \Gamma^m \kappa \xi^m = \kappa \xi^m.$$

(24)

Once such rank-1/2 spherical harmonic ξ^m and eigenvalue κ are found, the field equation (23) is reduced to the following two-dimensional Dirac equation for ψ^m,

$$\gamma^5 \gamma^\mu \psi^m_{;\mu} + \left(\kappa - \frac{1}{2} \right) \psi^m = 0.$$

(25)

Therefore, the fermionic spectrum is obtained by solving the eigenvalue problem (24).

The rank-1/2 spherical harmonic ξ^m can be expanded by the product of rank-1 harmonics and Killing spinors on S^3, i.e. the separation of the total angular momentum into the orbital and the internal ones. By proceeding this expansion with the help of the gauge fixing $\Gamma_M \psi^M = 0$, we see that the eigenvalue κ can take one of the values

$$\kappa = -k - \frac{5}{2}, \quad (j, \bar{j}) = (\frac{k+2}{2}, \frac{k-1}{2}) \quad \text{for} \quad k = 1, 2, 3 \cdots,$$

(26)

$$\kappa = k - \frac{1}{2}, \quad (j, \bar{j}) = (\frac{k-2}{2}, \frac{k+1}{2}) \quad \text{for} \quad k = 2, 3, 4 \cdots,$$

(27)

$$\kappa = -k - \frac{1}{2}, \quad (j, \bar{j}) = (\frac{k}{2}, \frac{k-1}{2}) \quad \text{for} \quad k = 1, 2, 3 \cdots,$$

(28)

$$\kappa = k + \frac{3}{2}, \quad (j, \bar{j}) = (\frac{k}{2}, \frac{k+1}{2}) \quad \text{for} \quad k = 1, 2, 3 \cdots.$$

(29)

Several remarks are in order. First, for the two towers (26) and (27), the gamma-traceless condition, $\Gamma_m \xi^m = 0$, which means $|j - \bar{j}| = 3/2$, is satisfied while it is not satisfied for the
other two. Secondly, the eigenstate for (27) at $k = 1$ is absent because one can show that for that tower, $\xi^m = 0$ at $k = 1$ by using its explicit form.

The way to assign the $SO(4)$-charge to each mode indicated in (26)-(29) may need some explanation. To see this, one should utilize the above mentioned fact that ξ^m can be expanded by the product of $Y_m^{(k,\pm)}$ with $SO(4)$-charge $(k/2 \pm 1/2, k/2 \mp 1/2)$ and Killing spinors with $(1/2, 0)$. Let us note here that the Killing spinors with $(1/2, 0)$ possess the negative chirality for \mathbb{R}^4 in which S^3 is embedded. In summary, the rank-1/2 spherical harmonic ξ^m has one of the $SO(4)$ charges in the following decomposition.

\[
\left(\frac{k+1}{2}, \frac{k-1}{2}\right) \otimes \left(\frac{1}{2}, 0\right) \oplus \left(\frac{k-1}{2}, \frac{k+1}{2}\right) \otimes \left(\frac{1}{2}, 0\right) = \left(\frac{k+2}{2}, \frac{k-2}{2}\right) \oplus \left(\frac{k+2}{2}, \frac{k+1}{2}\right) \oplus \left(\frac{k-2}{2}, \frac{k+1}{2}\right) \oplus \left(\frac{k}{2}, \frac{k+1}{2}\right),
\]

where the representation as $\left(\frac{k+1}{2}, \frac{k-2}{2}\right)$ starts from $k = 2$ while the others from $k = 1$. The irreducible decomposition (30) gives the charges in (26)-(29).

5. Symmetry of the spectrum

Let us classify the acquired Kaluza-Klein spectrum by a certain symmetry group. By considering the super-Poincaré group consisting of the isometry and the supercharges, the symmetry of the modes is shown to be a superalgebra $SU(1,1|2) \times SU(2)$ \cite{3}. We should remark that the bosonic part of $SU(1,1|2) \times SU(2)$ is $SU(1, 1) \times SU(2) \times SU(2) \cong SO(1,2) \times SO(4)$, which is nothing but the product of the isometry group of AdS_2 and that of S^3. Moreover, let us note that $SU(1,1|2)$ is a finite-dimensional subalgebra of $N = 4$ super-Virasoro algebra. The oscillator representations \cite{15}, which is very helpful to visualize the representations, of $SU(1,1|2)$ has already appeared in the analysis of the Kaluza-Klein spectrum on $AdS_3 \times S^3$ and also on $AdS_3 \times S^2$ \cite{16}-\cite{20}.

Assuming that this SUGRA is coupled to a one-dimensional conformal field theory at the boundary of AdS_2, we can translate each Kaluza-Klein mode into a conformal weight h by means of the formula in \cite{14, 21}

\[
h = \frac{1 + \sqrt{1 + \lambda^2}}{2}. \tag{31}
\]

Hence we can make Table 1.
On the other hand, we can carry on the same mapping for the fermionic modes by using
the asymptotic form of ψ^m determined by (25),
\[
h = \frac{1}{2} \left| \kappa - \frac{1}{2} \right| + \frac{1}{2},
\]
(32)

The table for the fermionic modes turns out as Table 2.

κ	h	(j, \bar{j})	$j - \bar{j}$	Fig.
$k + \frac{3}{2}$ (k ≥ 1)	$\frac{k+\frac{3}{2}}{2}$	$(\frac{k}{2}, \frac{k+1}{2})$	$-\frac{1}{2}$	1
$-k - \frac{1}{2}$ (k ≥ 1)	$\frac{k+\frac{1}{2}}{2}$	$(\frac{k}{2}, \frac{k-1}{2})$	$\frac{1}{2}$	2
$k - \frac{1}{2}$ (k ≥ 2)	$\frac{k+\frac{1}{2}}{2}$	$(\frac{k-2}{2}, \frac{k+1}{2})$	$-\frac{3}{2}$	3
$-k - \frac{5}{2}$ (k ≥ 1)	$\frac{k+\frac{5}{2}}{2}$	$(\frac{k+2}{2}, \frac{k-1}{2})$	$\frac{3}{2}$	4

Table 2: Fermionic modes.

Finally we can fit these results into representations of $SU(1,1|2) \times SU(2)$. In [13], we
dealt with a chiral $SU(1,1|2)_R \times SU(1,1)_L$ symmetry. Upon replacing the $SU(1,1)_L$ by
$SU(2)$, we confirm that all Kaluza-Klein modes fall into four supermultiplets of $SU(1,1|2) \times
SU(2)$ in a similar manner to the case of $AdS_3 \times S^2$. Every spectrum obeying this single
$SU(1,1|2) \times SU(2)$ symmetry is summarized in Figs. 1-4. In those four figures, one of
the two $SU(2)$-charges, namely \bar{j} is fixed at a certain value. For example, the fields with
the same $\bar{j} = k/2$ and $j - \bar{j} = 0, -1/2, -1$ are gathered in Fig. 1. In each figure,
one can notice a multiplet-shortening very similar to that for the chiral primary fields in
two-dimensional $N = 4$ superconformal theories. The shortest supermultiplet appears as a
doubleton in Fig. 3 (k = 1). The massless multiplets exist in Figs. 1, 2, 3 (k = 2).
6. Discussions From the explicit calculation of the Kaluza-Klein spectrum of the \(AdS_2 \times S^3\) simple SUGRA, we have seen that the two different compactifications, \(AdS_3 \times S^2\) and \(AdS_2 \times S^3\), are characterized by closely related superalgebras, \(SU(1,1|2)_R \times SU(1,1)_L\) and \(SU(1,1|2) \times SU(2)\), respectively, each of which allows short representations. The similarity between the spectra of \(AdS_3 \times S^2\) and \(AdS_2 \times S^3\) is not accidental but owing to the magnetic/electric duality for the solitonic 1-brane and the 0-brane in \(D = 5\) simple SUGRA. Einstein-Maxwell’s equation (2) allows two kinds of solitonic objects. One is the solitonic 1-brane solution as follows. The metric with a solitonic 1-brane is

\[
ds_5^2 = H_1^{-1} (-dt^2 + dy^2) + H_1^2 (dr^2 + r^2 d\Omega_2^2), \quad H_1 = 1 + \frac{Q_1}{r},
\]

where \((t,y)\) is the coordinate of the world-sheet, \(r\) is the distance from the soliton, and \(Q_1\) is a constant. The non-zero field strength of the gauge field is

\[
F^{ij} = -\sqrt{3} \varepsilon^{ijk} H_1^{-4} \partial_k H_1,
\]

where both indices \(i\) and \(j\) denote transverse directions, \(i.e.\) not \(t\) or \(y\).

From the form of the field strength, this soliton corresponds to a magnetic monopole. It is worthwhile to mention that the near-horizon geometry is nothing but \(AdS_3 \times S^2\). The other one is the solitonic 0-brane solution. The metric and the field strength in this configuration are

\[
ds_5^2 = -H_0^{-2} dt^2 + H_0 (dr^2 + r^2 d\Omega_3^2), \quad F^{\mu\nu} = (\delta_\mu^t \delta_\nu^r - \delta_\mu^r \delta_\nu^t) \cdot \sqrt{3} \frac{Q_0}{r^3 H_0},
\]

\[
H_0 = 1 + \frac{Q_0}{r^2},
\]

where \(t\) parameterizes the world-line, \(r\) is the distance from the 0-brane, and \(Q_0\) is the charge of the solitonic 0-brane. One can see that the gauge field corresponds to that induced by an electric charge and that the near-horizon geometry turns out to be \(AdS_2 \times S^3\). Therefore, the similarity of the spectra can be regarded as a reminiscent of the five-dimensional magnetic/electric duality.

On the other hand, as is discussed in [3], the \(SU(1,1)\) isometry of \(AdS_2\) can be enlarged to a single infinite-dimensional Virasoro symmetry in the boundary similarly to that in the case of \(AdS_3/CFT_2\) [22]. This single (super-)Virasoro algebra has been explicitly constructed in the study of conformal mechanics that describes the behavior of a test particle near the horizon of a four-dimensional extreme Reissner-Nordström black hole [2]. It would be interesting to explore the relation between the conformal mechanics and \(AdS_2 \times S^3\) simple SUGRA.
Acknowledgements
The authors would like to thank Shun’ya Mizoguchi for his helpful discussions and comments on the manuscript. They also acknowledge Hisaye Hosokawa for her reading the manuscript.

References

[1] J. Maldacena, Adv. Theor. Math. Phys. 2 (1998) 231.
[2] P. Claus, M. Derix, R. Kallosh, J. Kumar, P.K. Townsend and A. Van Proeyen, Phys. Rev. Lett. 81 (1998) 4553.
[3] A. Strominger, JHEP 9901 (1999) 007.
[4] T. Nakatsu and N. Yokoi, hep-th/9812047.
[5] J. Maldacena, J. Michelson and A. Strominger, hep-th/9812073.
[6] J.P. Gauntlett, R.C. Myers and P.K. Townsend, Phys. Rev. D59 (1999) 025001; Class. Quant. Grav. 16 (1999) 1; P.K. Townsend, hep-th/9901102.
[7] E. Cremmer, in: Cambridge 1980, Proceedings, Superspace and Supergravity, eds. S. W. Hawking and M. Rocˇ ek (Cambridge University Press, 1981) 267.
[8] A.H. Chamseddine and H. Nicolai, Phys. Lett. B96 (1980) 89.
[9] G.W. Gibbons, G. Horowitz and P.K. Townsend, Class. Quant. Grav. 12 (1995) 297.
[10] S. Mizoguchi and N. Ohta, Phys. Lett. B441 (1998) 123.
[11] G.W. Gibbons and P.K. Townsend, Phys. Rev. Lett. 71 (1993) 3754.
[12] A. Fujii, R. Kemmoku and S. Mizoguchi, hep-th/9811147.
[13] P.G.O. Freund and M.A. Rubin, Phys. Lett. B97 (1980) 233.
[14] P. Breitenlohner and D.Z. Freedman, Ann. Phys. (NY) 144 (1982) 249.
[15] M. Günaydin, in Group theoretical methods in physics, Istanbul, 1982. Lecture Notes in Physics, Vol. 180, (Springer, New York); M. Günaydin, G. Sierra and P.K. Townsend, Nucl. Phys. B274 (1986) 429.
[16] J. de Boer, hep-th/9806104.
[17] A. Giveon, D. Kutasov and N. Seiberg, Adv. Theor. Math. Phys. 2 (1998) 733.

[18] Y. Sugawara, hep-th/9903120.

[19] S. Deger, A. Kaya, E. Sezgin and P. Sundell, Nucl. Phys. B536 (1998) 110.

[20] F. Larsen, Nucl. Phys. B536 (1998) 258.

[21] E. Witten, Adv. Theor. Math. Phys. 2 (1998) 253.

[22] J.D. Brown and M. Henneaux, Comm. Math. Phys. 104 (1986) 207.
Figure Captions

Fig.1 Multiplet of boundary fields with $j - \bar{j} = 0, -\frac{1}{2}, -1$.

Fig.2 Multiplet of boundary fields with $j - \bar{j} = 1, \frac{1}{2}, 0$.

Fig.3 Multiplet of boundary fields with $j - \bar{j} = -1, -\frac{3}{2}, -2$.

Fig.4 Multiplet of boundary fields with $j - \bar{j} = 2, \frac{3}{2}, 1$.
\[j - \tilde{j} = -1 \quad \frac{k+2}{2}, \frac{k-2}{2} \]
\[j - \tilde{j} = -\frac{1}{2} \quad \frac{k+1}{2}, \frac{k-1}{2} \]
\[j - \tilde{j} = 0 \quad \frac{k}{2}, \frac{k}{2} \]
\[j - \tilde{j} = 1 \quad \frac{k+2}{2}, \frac{k-2}{2} \]

\[\tilde{j} = \frac{k+2}{2} \quad (k \geq 2) \]

Fig. 1

\[j - \tilde{j} = 0 \quad \frac{k+2}{2}, \frac{k-2}{2} \]
\[j - \tilde{j} = \frac{1}{2} \quad \frac{k+1}{2}, \frac{k-1}{2} \]
\[j - \tilde{j} = 1 \quad \frac{k}{2}, \frac{k}{2} \]

\[\tilde{j} = \frac{k+2}{2} \quad (k \geq 2) \]

Fig. 2
\[j = \frac{k+2}{2} \quad (k \geq 1) \]

Fig. 3

\[j = \frac{k+4}{2} \quad (k \geq 4) \]

Fig. 4