A Further (Itakura-Saito/\(\beta = 0\)) Bi-stochasticization and Associated Clustering/Regionalization of the 3,107-County 1995-2000 U. S. Migration Network

Paul B. Slater

University of California, Santa Barbara, CA 93106-4030

(Dated: October 26, 2012)

Abstract

We extend to the \(\beta\)-divergence (Itakura-Saito) case \(\beta = 0\), the comparative bi-stochasticization analyses–previously conducted (arXiv:1208.3428) for the (Kullback-Leibler) \(\beta = 1\) and (squared-Euclidean) \(\beta = 2\) cases–of the 3,107-county 1995-2000 U. S. migration network. A heuristic, "greedy" algorithm–using the \(\beta = 1\) results as an initial configuration–is devised. While the largest 25,329 entries of the 735,531 non-zero entries of the bi-stochasticized table–in the \(\beta = 1\) case–are required to complete the widely-applied two-stage (double-standardization and strong-component hierarchical clustering) procedure, 105,363 of the 735,531 are needed (reflective of greater uniformity of entries) in the \(\beta = 0\) instance. The North Carolina counties of Mecklenburg (Charlotte) and Wake (Raleigh) are considerably relatively more cosmopolitan in the \(\beta = 0\) study. The Colorado county of El Paso (Colorado Springs) replaces the Florida Atlantic county of Brevard (the "Space Coast") as the most cosmopolitan, with Brevard becoming the second-most. Honolulu County splinters away from the other four (still-grouped) Hawaiian counties, becoming the fifth most cosmopolitan county nation-wide. The five counties of Rhode Island remain intact as a regional entity, but the eight counties of Connecticut fragment, leaving only five counties clustered.

PACS numbers: Valid PACS 02.10.Ox, 02.10.Yn, 89.65.Cd, 89.75.Hc

*Electronic address: slater@kitp.ucsb.edu
We continue our comparative investigations of bi-stochaticizations of weighted, directed networks—in particular, the network of 1995-2000 migration flows between 3,107 U. S. counties—and their associated clustering/regionalization properties [1].

We have previously "bi-stochasticized" the $3,107 \times 3,107$ matrix of flows by minimizing each of two forms of β-divergence. "The β-divergence is a family of cost functions parameterized by a single shape parameter β that takes the (squared)-Euclidean distance, the Kullback-Leibler divergence and the Itakura-Saito divergence as special cases ($\beta = 2, 1, 0$ respectively)" [2].

We—in the extensive series [3, 4] of applications of the two-stage (double-standardization [5], followed by strong-component hierarchical clustering [6]) algorithm—had always employed the well-established Kullback-Leibler-based procedure ($\beta = 1$) for double-standardization [7]. In [1], we, for the first time, implemented the $\beta = 2$ approach [8, 9], and found strong differences between the $\beta = 2$ and $\beta = 1$ results. In particular, in the $\beta = 2$ case, there were 2,707 entries of the associated doubly-stochastic matrix equal to the (maximum possible value of) 1, while in the doubly-stochastic matrix for $\beta = 1$, there was only a single such entry.

Here, we seek to expand this pair of analyses to also include the $\beta = 0$ (Itakura-Saito) case. Not being aware of any specific effective algorithm for this purpose [9, p. 357], we developed a heuristic "greedy" procedure. It relies upon the availability (as a starting point) of the previous results of the $\beta = 1$ bi-stochasticization.

We proceed by randomly choosing a pair (m_{ij}, m_{kl}) of the 735,531 non-zero entries in the original data (flow) table. If $i \neq k$ and $j \neq l$, then we ask if m_{il} and m_{kj} are also non-zero. If so (which occurs about 9.22% of the time), we seek that (arbitrarily-signed) value of x which when added to m_{ij} and m_{kl} and subtracted from m_{il} and m_{kl} minimizes the (Burg-entropy-based [11, Table 2.1]) objective function

\[
\frac{m_{ij}}{s_{ij} + x} - \log \frac{m_{ij}}{s_{ij} + x} + \frac{m_{kl}}{s_{kl} + x} - \log \frac{m_{kl}}{s_{kl} + x} + \frac{m_{il}}{s_{il} - x} - \log \frac{m_{il}}{s_{il} - x} + \frac{m_{kj}}{s_{kj} - x} - \log \frac{m_{kj}}{s_{kj} - x},
\]

(1)

where we impose the constraints, $0 < s_{ij} + x < 1, 0 < s_{kl} + x < 1, 0 < s_{il} - x < 1, 0 < s_{kj} - x < 1$. Here the s's, initially, are chosen to be the corresponding entries of the $\beta = 1$ bi-stochasticized table, previously obtained (using the well-known Sinkhorn-Knopp iterative algorithm [7]). Then, the four indicated entries are updated by either adding or subtracting the optimal value of x. This procedure, importantly, preserves the bi-stochasticity of the
\(\beta = 1 \) bi-stochastic table from which we have started our heuristic, ”greedy” procedure.

The initial value of the sum

\[
\sum_{i,j}^{n=3107} \left(\frac{m_{ij}}{s_{ij}} - \log \frac{m_{ij}}{s_{ij}} - 1 \right),
\]

which is taken (thus, avoiding singularities) only over the 735,531 non-zero entries \((m_{ij} > 0)\) of the \(3,107 \times 3,107\) table, was \(4.71219 \times 10^{11}\). Implementing the minimization operation \((1)\) 82 million times, and updating the values of the \(s\)'s as we proceed, we reduced this sum to \(1.59538 \times 10^{11}\). (On the other hand, the objective function—the Kullback-Leibler divergence [that is, \(x \log \frac{y}{x} + y - x\)]—in the \(\beta = 1\) case, achieving a minimum value of \(4.92974 \times 10^8\) there, increases to \(5.01181 \times 10^8\), if the \(\beta = 0\) bi-stochastic table, derived from the \(\beta = 1\) table as its starting point, is substituted in the objective-function calculation.) To indicate the strong convergence of the algorithm, the objective function after 80 million iterations was \(1.59541 \times 10^{11}\).

Next, applying the strong-component hierarchical clustering step [6] of the two-stage algorithm [3, 4]—with 2,517 non-trivial mergings occurring (2,497 for \(\beta = 1\))—the largest 105,363 entries of the \(\beta = 0\) table were required to complete the clustering, while only 25,239 were needed in the \(\beta = 1\) case [10]. (This appears to be indicative of the greater uniformity of entries in the \(\beta = 1\) analysis. The \(\beta = 2\) case, on the other hand, did not seem to lend itself meaningfully to the application of the hierarchical clustering procedure, due to the large concentration [87.1284\%] of its non-zero entries equalling 1, as well as its relatively small number [57,153 vs. 735,531] of strictly non-zero entries.)

We, now, present the (ordinally-ranked) dendrogram associated with the \(\beta = 0\) analysis, while its \(\beta = 1\) counterpart can be viewed in [10]. The North Carolina counties of Mecklenburg (Charlotte) and Wake (Raleigh) are considerably relatively more cosmopolitan in the \(\beta = 0\) study than in the \(\beta = 1\) analysis, as well as Franklin County, Ohio (Columbus, the state capital). The Colorado county of El Paso (Colorado Springs) replaces the Florida Atlantic county of Brevard (the "Space Coast") as the most cosmopolitan, with Brevard becoming the second-most. Only five of the eight counties of Connecticut are clustered in the \(\beta = 0\) analysis, while all eight form a well-defined region in the \(\beta = 1\) case. The five counties of Rhode Island are grouped in both studies, but the fifth county (Honolulu) of Hawaii is now omitted from the state grouping in the \(\beta = 0\) study, becoming the fifth most cosmopolitan nation-wide.
Some “fine-tuning” of our clustering results may be subsequently reported, as we continue to run our algorithm, obtaining ever-increasing degrees of the already high convergence already achieved.

We are also exploring the use of additional forms of Bregman divergences—such as the inverse ($\frac{1}{2}$) type [11, Table 2.1].
I. COUNTY-LEVEL DENDROGRAM

El Paso, CO
Brevard, FL
Maricopa, AZ
Mecklenburg, NC
Honolulu, HI
Lee, FL
Collier, FL
Virginia Beach, VA
Chesapeake, VA
Pulaski, FL
Onslow, NC
Bexar, TX
San Diego, CA
Wake, NC
Franklin, OH
Marion, FL
Hillsborough, FL
Clark, NV
San Bernardino, CA
Riverside, CA
Orange, CA
Los Angeles, CA
Volsia, FL
Davidson, TN
Palm Beach, FL
Miami–Dade, FL
Broward, FL
Cumberland, NC
Seminole, FL
Orange, FL
Lake, FL
Osceola, FL
Tarrant, TX
Dallas, TX
Harris, TX
Denton, TX
Collin, TX
Duval, FL
Tulsa, OK
Sarasota, FL
Manatee, FL
Fayette, WA
Snohomish, WA
King, WA
Lake, IL
Gwinnett, GA
Fulton, GA
Dekalb, GA
Cobb, GA
Lancaster, NE
Dane, WI
Marion, IN
DuPage, IL
Cook, IL
Guilford, NC
Greenville, SC
Pinellas, FL
Pasco, FL
Hernando, FL
Lancaster, OR
Fayette, KY
Charleston, SC
Escambia, FL
Weld, CO
Sedgwick, KS
Jackson, MO
Larimer, CO
Genesee, MI
Washinton, MI
Williamson, TX
Travis, TX
Salt Lake, UT
Montgomery, TX
St. Louis City, MO
St. Louis, MO
Yavapai, AZ
Prince William, VA
Fairfax, VA
Arlington, VA
Cuyahoga, OH
Citrus, FL
Bernalillo, NM
El Paso, TX
Hennepin, MN
Adams, CO
Allegheny, PA
Johnson, KS
Santa Rosa, FL
Oklahoma, OK
Pulaski, AR
Story, IA

5
State	County
Massachusetts	Franklin, MA
Massachusetts	Hampshire, MA
Massachusetts	Hampden, MA
Massachusetts	Berkshire, MA
Vermont	Bennington, VT
New Hampshire	Cheshire, NH
Vermont	Windham, VT
New Hampshire	Sullivan, NH
Vermont	Orange, VT
Vermont	Washington, VT
New Hampshire	Sullivan, NH
New Hampshire	Cheshire, NH
New York	Albany, NY
New York	Amsterdam, NY
New York	Aurora, NY
New York	Batavia, NY
New York	Cohoes, NY
New York	Clifton Park, NY
New York	Clinton, NY
New York	Cortland, NY
New York	Cooperstown, NY
New York	Dannemora, NY
New York	DeRuyter, NY
New York	Dryden, NY
New York	Egypt, NY
New York	Fallsburg, NY
New York	Fulton, NY
New York	Gouverneur, NY
New York	Herkimer, NY
New York	Ilion, NY
New York	Johnstown, NY
New York	Kirkwood, NY
New York	Little Falls, NY
New York	Lyons Falls, NY
New York	Montgomery, NY
New York	Morrisville, NY
New York	New York, NY
New York	Ogdensburg, NY
New York	Oneida, NY
New York	Oriskany, NY
New York	Otsego, NY
New York	Pamelia, NY
New York	Penn Yan, NY
New York	Rome, NY
New York	Sandy Creek, NY
New York	Seneca Falls, NY
New York	Sherburne, NY
New York	Sherrill, NY
New York	Skaneateles, NY
New York	Star Point, NY
New York	Utica, NY
New York	Utica, NY
New York	Verona, NY
New York	Wellsville, NY
New York	Wayne, NY
New York	Westmore, NY
New York	Willowwood, NY
New York	Wilmington, NY
New York	Wilmot, NY
New York	Winchester, NY
New York	Windsor, NY
New York	Woodstock, NY
New York	Youngsville, NY
Rhode Island	Newport, RI
Rhode Island	Kent, RI
Rhode Island	Narragansett, RI

Counties in New York:
- Albany, NY
- Amsterdam, NY
- Aurora, NY
- Batavia, NY
- Cohoes, NY
- Clifton Park, NY
- Clinton, NY
- Cortland, NY
- Cooperstown, NY
- Dannemora, NY
- Dryden, NY
- Egypt, NY
- Fallsburg, NY
- Fulton, NY
- Gouverneur, NY
- Herkimer, NY
- Ilion, NY
- Johnstown, NY
- Kirkwood, NY
- Little Falls, NY
- Montgomery, NY
- Morrisville, NY
- Ogdensburg, NY
- Oriskany, NY
- Otsego, NY
- Pamelia, NY
- Penn Yan, NY
- Rome, NY
- Sandy Creek, NY
- Seneca Falls, NY
- Sherburne, NY
- Sherrill, NY
- Skaneateles, NY
- Star Point, NY
- Utica, NY
- Wellsville, NY
- Wayne, NY
- Westmore, NY
- Willowwood, NY
- Wilmington, NY
- Wilmot, NY
- Winchester, NY

Counties in Rhode Island:
- Newport, RI
- Kent, RI
- Narragansett, RI
| Location | County |
|------------|----------|
| Kanabec, MN| Pine, MN |
| Pine, MN | Mille Lacs, MN |
| Berkeley, WV| Jefferson, WV |
| Cherokee, OK| Murray, GA |
| Murray, GA | Whitfield, GA |
| Beaverhead, MT| Madison, MT |
| Madison, MT| Richland, TX |
| Richland, TX| Bedford, VA |
| Bedford, VA| Madison, MT |
| Madison, MT| Beaverhead, MT |
| Beaverhead, MT| Whitfield, GA |
| Whitfield, GA| Murray, GA |
| Murray, GA | Cherokee, OK |
| Cherokee, OK| Jefferson, WV |
| Jefferson, WV| Berkeley, WV |
| Berkeley, WV| Milk Lacs, MN |
| Milk Lacs, MN| Pine, MN |
| Pine, MN | Kanabec, MN |
| County | Population |
|--------------|------------|
| Wheeler, OR | |
| Morrow, OR | |
| Umatilla, OR | |
| Atascosa, TX | |
| Borden, TX | |
| Gaines, TX | |
| Terry, TX | |
| Glasscock, TX| |
| Sterling, TX | |
| Howard, TX | |
| Lynn, TX | |
| Martin, TX | |
| Yoakum, TX | |
| Zavala, TX | |
| Dimmitt, TX | |
| Crosby, TX | |
| Crane, TX | |
| Garza, TX | |
| Howard, TX | |
| Sterling, TX | |
| Gaines, TX | |
| Borden, TX | |
| Atascosa, TX | |
| Umatilla, OR | |
| Morrow, OR | |
| Wheeler, OR | |
Acknowledgments

I would like to express appreciation to the Kavli Institute for Theoretical Physics (KITP) for computational support in this research.

[1] P. B. Slater, *Comparative bi-stochastizations and associated clustering/regionalizations of the U. S. intercounty migration network*, arXiv:1208.3428.

[2] C. Févotte and J. Idier, Neural Computation 23, 2456 (2011).

[3] P. B. Slater, Proc. Natl. Acad. Sci. 106, E66 (2009).

[4] R. C. Dubes, J. Classif. 2, 141 (1985).

[5] F. Mosteller, J. Amer. Statist. Assoc. 63, 1 (1968).

[6] R. E. Tarjan, Info. Proc. Lett. 17, 37 (1983).

[7] P. A. Knight, SIAM. J. Matrix Anal. Appl. 30, 261 (2008).

[8] F. Wang, P. Li, and A. C. König, in *IEEE International Conference on Data Mining* (IEEE Computer Society, 2010), pp. 551–560.

[9] F. Wang, P. Li, A. C. König, and M. Wan, Knowl. Inf. Syst. 32, 351 (2012).

[10] P. B. Slater, *Dendrogram/regionalization of U. S. counties based upon migration flows*, arXiv:1207.0437.

[11] I. S. Dhillon and J. A. Tropp, SIAM J. Matrix Anal. Appl. 29, 1120 (2007).