Double Helicity Asymmetry in Inclusive Mid-Rapidity

$^3\!\Pb$ Production for Polarized $p + p$ Collisions at $\sqrt{s} = 200$ GeV

S.S. Adler, S. Afanasiev, C. Aidala, N.N. Ajitanand, Y. Akiba, A. Al-Jamel, J. Alexander, K. Aoki, L. Apechetchy, R. Armendariz, S.H. Aronson, R. Averbeck, T.C. Awes, V. Babintsev, A. Baltikseri, K.N. Barish, P.D. Barnes, B. Bassalleck, S. Batte, S. Batsoul, V. Baublis, F. Bauer, A. Bazilevsky, S. Belikov, M.T. Bjornsen, J.G. Boissevain, H. Borel, M.L. Brooks, D.S. Brown, N. Bruner, D. Bucher, H. Buesching, V. Buzahnov, G. Bunce, J.M. Burward-Hoy, S. Butsky, X. Camard, P. Chand, W.C. Chang, S. Chernichenko, C.Y. Chi, J. Chiba, M. Chiu, I.J. Choi, R.K. Choudhury, T. Chujo, C. Clanci, K. Cobigo, B.A. Cole, M.P. Comets, P. Constantin, M. Csanad, C. Csorgo, J.P. Cussonneau, D. Ent' Ent'Ent, K. Das, G. David, F. Deak, H. Delagrange, A. Denisov, E. Deshpande, E.J. Desmond, A. Devisse, O. Dietzsch, J.L. Drachenberg, O. Draper, A. Drees, A. Durum, D. Dutta, V. Dzhordzhadze, Y.V. Efremenko, H. En'yo, B. Espagnol, S. Esumi, D.E. Fields, C. Finck, F. Fleuret, S.L. Fokin, B.D. Fox, Z. Frenkel, J.E. Frantz, A. Franz, A.D. Frawley, Y. Fukao, S. Gadrat, M. Germain, A. Glenn, M. Gion, J. Gosset, Y. Goto, R. Granier de Cassagnac, N. Grau, S.V. Greene, M. Grosse Perdekamp, H.-A. Gustafsson, T. Hachia, I.S. Haggerty, H. Hamagaki, A.G. Hansen, E.P. Hartouni, M. Harvey, K. Hasuko, R. Hayano, X. He, H. Heffner, T.K. Hemmick, J.M. Heuser, P. Hidas, H. Hiejima, J.C. Hill, R. Hobbs, W. Holzmann, K. Homma, B. Hong, A. Hoover, T. Horaguchi, T. Ichihara, V.V. Ilkonikov, K. Imai, M. Inaba, M. Inouzuka, D. Isenhower, L. Isenhower, M. Issah, A. Isupov, B.V. Jacak, J. Jia, O. Jinnouchi, B.M. Johnson, S.C. Johnson, K.S. Joo, D. Jouan, F. Kajihara, S. Kametani, N. Kaminaka, M. Kaneta, J.H. Kang, K. Katou, T. Kawabata, A. Kazantzev, S. Kelly, B. Khachaturov, A. Khanzadeev, J. Kikuchi, D.J. Kim, E. Kim, G.-B. Kim, H.J. Kim, E. Kinney, A. Kiss, E. Kistenev, A. Kiyomi, C. Klein-Boesing, H. Kobayashi, V. Kochetkov, R. Kohara, B. Komkov, M. Konno, D. Kotchetkov, A. Kozlov, P.J. Koon, C.H. Kuberg, G.J. Kunde, K. Kurita, M.J. Kweon, G.S. Kyle, R. Lacey, J.G. Lajoie, Y. Lecoeur, A. Lebedev, S. Leckey, D.M. Lee, M.J. Leitch, M.A.L. Leite, X. Li, X.H. Li, H. Lim, A. Litvinenko, M.X. Liu, C.F. Maguire, Y.I. Makdisi, M. Malakoff, V.I. Manko, Y. Mao, G. Martinez, H. Masui, F. Matathias, T. Matsumoto, M.C. McCain, P.L. McGaughey, Y. Miyake, T.E. Miller, A. Milov, S. Moduszewski, G.C. Mishra, J.T. Mitchell, A.K. Mohanty, D.P. Morrison, J.M. Moss, D. Mukhopadhyay, M. Muniruzzaman, S. Nagamiya, J.L. Nagle, T. Nakamura, J. Newby, A.S. Nyanin, J. Nystrand, O. O'Brien, C.A. Ogilvie, H. Ohnishi, I.D. Ojha, H. Okada, A. Osakarson, I. Otterlund, K. Oyama, K. Ozawa, D. Pal, A.P.T. Palounek, V. Pantuyev, V. Papavassiliou, J. Park, W.J. Park, S.F. Pate, H. Pei, V. Penev, J.-C. Peng, H. Pereira, V. Peresedov, P. Pierson, C. Pinkenburg, R.P. Pisani, M.L. Purschke, A.K. Purwar, J. Qualls, J. Rak, I. Rabinovich, K.F. Read, M. Reuter, V. Riabov, R. Riabov, G. Roche, A. Romana, M. Rosati, S. Rosendahl, P. Rosnet, V.L. Rykov, S.S. Ryu, N. Saito, T. Sakaguchi, S. Sakai, V. Samsonov, L. Sanfra, R. Sato, H.D. Sato, S. Sawada, Y. Schutz, V. Semenov, R. Seto, T.K. She, I. Shein, T.A. Shibata, K. Shigaki, M. Shimomura, A. Sickles, C.L. Silva, D. Silvernny, K.S. Sim, A. Soldato, R.A. Soltz, W.E. Sondheim, S. Sorensen, I.V. Sourikova, F. Stal, P.W. Stanke, E. Stehlund, M. Stepanov, A. Ster, S.P. Stoll, T. Sugitate, J.P. Sullivan, S. Takagi, E.M. Takagui, A. Taketani, K.H. Tanaka, Y. Tanaka, K. Tanida, M.J. Tanenbaum, T. Tarunenko, P. Tarjan, T.L. Thomas, M. Togawa, H. Torii, R.S. Towell, V-N. Tran, I. Tserunyua, Y. Tsutsumo, H. Tyedsej, N. Tyurin, T.J. Uam, H.W. van Hecke, M. Velkovsk, V. Veszprémi, A.A. Vinogradov, M.A. Volkov, E. Vznuzda, X.R. Wang, Y. Watanabe, S.N. White, N. Willis, F.K. Woh, C.L. Woody, W. Xie, A. Yanovich, S. Yokkaichi, G.R. Young, E.E. Yushmanov, W.A. Zaje, C. Zhang, S. Zhou, J. Zimanyi, L. Zolin, Z. Zong, A. Yanovich, S. Zhou, J. Zimanyi, L. Zolin, Z. Zong (PHENIX Collaboration)

1. Abilene Christian University, Abilene, TX 79699, USA
2. Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
3. Department of Physics, Banaras Hindu University, Varanasi 221005, India
4. Bhabha Atomic Research Centre, Bombay 400 085, India
We present a measurement of the double longitudinal spin asymmetry in inclusive \(\pi^0 \) production in polarized proton-proton collisions at \(\sqrt{s} = 200 \text{ GeV} \). The data were taken at the Relativistic Heavy Ion Collider with average beam polarizations of 27%. The measurements are the first of a program to study the longitudinal spin structure of the proton, using strongly interacting probes, at collider energies. The asymmetry is presented for transverse momenta 1-5 GeV/c at mid-rapidity, where next-to-leading order perturbative quantum chromodynamic (NLO pQCD) calculations well describe the unpolarized cross section. The observed asymmetry is small and is compared with a NLO pQCD calculation with a range of polarized gluon distributions.

PACS numbers: 14.20.Dh, 13.60.Hb, 21.10.Hw, 25.40.Fq

Keywords: proton, spin, polarization, asymmetry, deep-inelastic
From polarized lepton-nucleon deep inelastic scattering (DIS) experiments over the past 20 years it is known that only $\sim 25\%$ of the proton spin is carried by quarks and anti-quarks [1]. The rest of the proton spin must hence be carried by the gluons and orbital angular momentum. DIS experiments have constrained the possible gluon polarization in the proton through the measurement of scaling violation in inclusive polarized scattering [2], and through semi-inclusive measurements of two hadrons to utilize the photon-gluon fusion process [3]. A fixed target experiment at Fermilab first presented a measurement with strongly interacting probes [4]. The reach of these measurements was limited, due to the low energy available for fixed target experiments. Presently, the gluon contribution to the proton spin is largely unknown.

The polarized proton collisions at the Relativistic Heavy Ion Collider (RHIC) provide a new laboratory to study the proton spin structure with strongly interacting probes. The PHENIX experiment has reported the unpolarized cross section for π^0 production at mid-rapidity for $p_T=1-14$ GeV/c, which is described well by next-to-leading-order perturbative QCD (NLO pQCD) calculations over 8 orders of magnitude [5]. In this Letter we report the first results on the double spin asymmetry, A_{LL}, for inclusive π^0 production at mid-rapidity in longitudinally polarized proton-proton collisions corresponding to 0.22 pb$^{-1}$ integrated luminosity with the PHENIX detector.

In perturbative QCD A_{LL} is directly sensitive to the polarized gluon distribution function in the proton through gluon-gluon and gluon-quark subprocesses [6]. The double spin asymmetry in π^0 production is given by

$$A_{LL}^{\pi^0} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} \quad (1)$$

where $\sigma_{++}(\sigma_{+-})$ is the cross section of the reaction when two colliding particles have the same (opposite) helicity. Here we neglect the parity violating difference in cross section between $(++) \leftrightarrow (--)$ and $(++) \leftrightarrow (+-)$ beam helicity configurations. Since the cross section can be obtained by dividing the experimental yield (N) by the integrated luminosity (L), A_{LL} is expressed as

$$A_{LL} = \frac{N_{++} - R \cdot N_{+-}}{N_{++} + R \cdot N_{+-}}; \quad R = \frac{L_{++}}{L_{+-}} \quad (2)$$

where $P_Y(B)$ are the polarizations of the RHIC “yellow” (“blue”) beams, and R is the ratio of luminosities of protons colliding with like to unlike helicities.

For the 2002-2003 RHIC run, 55 bunches of polarized protons, typically 5×10^{10} protons per bunch, were loaded into each of the yellow and blue counter-rotating accelerator/storage rings of RHIC and accelerated to 100 GeV. The bunch lengths and separations were ~ 1 ns and 213 ns, respectively. The beam polarization sign for each bunch was prepared independently at the source, with the successive bunches in one ring alternating in polarization sign, and with successive pairs of bunches in the other ring alternating in sign. The locations of the bunches were identified relative to a RHIC timing clock. In this way, the experiments collected data from collisions with all four combinations of blue-yellow ring beam polarization signs simultaneously.

The stable direction of the proton spin in RHIC is vertical, but the region around the PHENIX experiment includes sets of magnets (spin rotators) to rotate the spin to the longitudinal direction at the collision point, and then back to vertical after the interaction point, in order to provide collisions with longitudinal polarization, and to maintain the required vertical polarization around RHIC. The RHIC polarimeters measure the transverse beam polarization away from the interaction points, independent of the operation of the spin rotators.

The transverse beam polarization was measured in RHIC independently in each beam using proton-carbon elastic scattering in the coulomb nuclear interference (CNI) region [7]. The analyzing power A_N^{PC} was measured for 22 GeV beam energy, $A_N^{PC}(22)$, to $\pm 30\%$ [8]. The energy dependence of the analyzing power over the RHIC energies is expected to be small, $< 10\%$ [4]. For the results reported here, we have used the same analyzing power at 100 GeV as at 22 GeV, and 10% is added in quadrature to $\delta A_N^{PC}(22)$ to give a $\pm 32\%$ uncertainty for $A_N^{PC}(100)$. With these assumptions, the average polarization in the analyzed data set in this paper was $\sqrt{\langle P_B P_Y \rangle} = [27.0 \pm 0.3(stat) \pm 3(syst) \pm 8(A_N^{PC} syst)]\%$.

Local polarimeters, sensitive to the transverse polarization at collision, were used to set up the spin rotators, and to monitor the beam polarization direction at the PHENIX experiment. The local polarimeters utilized a transverse single spin asymmetry in neutron production in p-p collisions at $\sqrt{s} = 200$ GeV [10]. For vertically polarized beam a left-right asymmetry is observed for neutrons produced at very forward angles, with no asymmetry for production at very backward angles. A fully longitudinally polarized beam produces no asymmetry.

Neutrons with $E_n > 20$ GeV and production angle $0.3 < \theta_n < 2.5$ mrad were observed by two hadronic calorimeters located ± 18 meters from the interaction point (ZDC or Zero Degree Calorimeter [11]). Scintillator hodoscopes at 1.7 interaction length provided the neutron position at the ZDC, and thus the neutron production angle and azimuthal angle $\phi = \arctan(x/y)$ with \hat{y} vertically upward. The \hat{z} axis forms a right handed coordinate system with the \hat{z} axis defined by the beam direction for forward production. The single-spin asymmetry ϵ was calculated versus azimuth, from the four rates $N_{+\phi}, N_{+\phi+\pi}, N_{-\phi}, N_{-\phi+\pi}$, using the geometric mean [12]. This method largely cancels differences in
A separate run with the spin rotators set to give radial

luminosity between ↑ and ↓ polarization collisions and
between detector acceptance differences at \(\phi \) and \(\phi + \pi \).

Fig. 1 shows the observed asymmetry, for the spin rotators off and on, for the blue and yellow beams. With the spin rotators off, a left-right asymmetry is observed from the vertically polarized beam. With the spin rotators on, the transverse asymmetry is greatly reduced, indicating a high degree of longitudinal polarization.

A separate run with the spin rotators set to give radial polarization confirmed the direction of the polarization for each beam.

Collisions in PHENIX are defined by the coincidence of signals in two beam-beam counters (BBC) located at \(\pm 1.44 \text{ m} \) from the nominal interaction point and subtending a pseudo-rapidity range \(\pm (3.0 - 3.9) \) with full azimuthal coverage. The BBCs select about half of the inelastic proton-proton collisions. The vertex was reconstructed from the time difference of the hits in the two BBCs. The collision vertex was required to be within 30 cm of the nominal interaction point. Events satisfying this condition constitute the minimum bias (MB) trigger, which was used for relative luminosity measurements.

A coincidence of the two ZDCs was used to estimate the possible bias in the relative luminosity measurement from the BBCs. This was done by comparing the accumulated number of triggers in the ZDCs and BBCs for each bunch and each fill. The accuracy of relative luminosity measurements \(R \) (Eq. 2) was estimated to be \(2.5 \times 10^{-4} \), which for the average beam polarization of 27%, translated to \(\Delta A_{LL} = 1.8 \times 10^{-3} \), and, on the same uncertainty level, confirmed no \(A_{LL} \) asymmetry of BBC triggers relative to ZDC. The ratio \(R \) averaged over the data sample used in the analysis was within 0.5% of unity.

Neutral pions were reconstructed from the \(\pi^0 \to \gamma \gamma \) decays using finely granulated (\(\Delta \phi \times \Delta \eta \approx 0.01 \times 0.01 \)) electromagnetic calorimeters (EMCal) which consisted of two subsystems: a lead scintillator (PbSc) and a lead glass (PbGl) calorimeter covering three quarters and one quarter of the EMCal acceptance, respectively. Located at a radial distance of \(\approx 5 \text{ m} \) from the beam line, the EMCal covered the pseudorapidity range of \(|\eta| < 0.35 \) and two azimuthal angle intervals of \(\Delta \phi \approx 90^\circ \) separated by \(\phi \approx 70^\circ \) (nearly back-to-back).

High \(p_{T} \) \(\pi^{0} \)’s were collected using coincidences between a MB trigger and an EMCal-based high \(p_{T} \) photon trigger. The trigger efficiency for \(\pi^{0} \)’s varied from 8% in the 1-2 GeV/c \(p_{T} \) bin to 90% in the 4-5 GeV/c \(p_{T} \) bin.

The \(\pi^{0} \) reconstruction and photon identification cuts were optimized to minimize the background contribution under the \(\pi^{0} \) peak in the invariant mass distribution while keeping the \(\pi^{0} \) efficiency high. For photon identification we used the shower profile and the time-
of-flight measured by the EMCal, and charge veto cuts. The charge veto was set for those EMCal clusters associated with hit(s) in the pad chamber \(12\), which was located \(~ 20\) cm in front of the EMCal surface. In order to avoid the effects of electronic noise and suppress the very low energy background, only clusters with energy greater than 0.1 GeV in PbSc and 0.2 GeV in PbGl were used in the analysis.

The \(\pi^0\) yield was extracted by integrating the two photon invariant mass spectrum over a \(\pm 25\) MeV/\(c^2\) region around the \(\pi^0\) mass (signal region) as shown in Fig. 2 by the dark band. The EMCal resolution was such that the widths of the \(\pi^0\) mass peaks varied from 12 MeV/\(c^2\) in 1-2 GeV/\(c\) \(p_T\) bin to 9.5 MeV/\(c^2\) in 4-5 GeV/\(c\) \(p_T\) bin, in both PbSc and PbGl. In the \(p_T\) range of 1 to 5 GeV/\(c\), 4 million \(\pi^0\) candidates were collected. The background contribution (combinatorial+hadronic) under the \(\pi^0\) peak, \(r\), varied from 27% in the 1-2 GeV/\(c\) bin to 8% in the 4-5 GeV/\(c\) bin, as indicated in Table \(1\). The \(\pi^0\) reconstruction efficiency due to photon identification cuts varied from 84% in the lowest \(p_T\) bin to 93% in the highest \(p_T\) bin.

The asymmetry of the background in the signal region, \(A^{BG}_{LL}\), was evaluated using the asymmetry calculated from the grey bands on both sides of the signal (Fig. 2). The measured \(\pi^0\) asymmetry, \(A^{raw}_{LL}\), was corrected for the contribution of background using

\[
A^{\pi^0}_{LL} = \frac{A^{raw}_{LL} - rA^{BG}_{LL}}{1 - r}, \quad \sigma_{A^{\pi^0}_{LL}} = \frac{\sqrt{\sigma^2_{A^{raw}_{LL}} + r^2\sigma^2_{A^{BG}_{LL}}}}{1 - r}.
\]

The spin asymmetry for each beam fill \(10\) \(A^{full}_{LL}\) was calculated using Eq. 2. For the \(A^{full}_{LL}\) error evaluation, we considered only the \(N_{++}\) and \(N_{--}\) statistical errors. The resulting \(A_{LL}\) was obtained after fitting a constant to all \(A^{full}_{LL}\) \(s\). The fit \(\chi^2_{fit}\) and a “bunch shuffling” technique were used to check the uncertainties assigned to \(A_{LL}\). In each “bunch shuffling” we randomly assigned the helicity sign to every bunch crossing, keeping the balance between the number of bunches with correctly and inversely assigned helicities, so that the average polarization for each shuffled sample was nearly zero, and recalculated \(A_{LL}\). The widths of the distributions of \(A_{LL}\) values obtained in all bunch shuffles were consistent with errors assigned to \(A_{LL}\) indicating that all non-correlated bunch-to-bunch and fill-to-fill systematic errors were much smaller than the \(\pi^0\) yield statistical errors.

A number of systematic checks, including variation of photon identification criteria and mass window range for \(\pi^0\)’s and background, were performed to look for possible systematic effects on the measured \(A_{LL}\) values. None were found.

The double spin asymmetries between (+ +) and (− −) and between (+ −) and (− +) helicity configurations, as well as the single spin asymmetries for each polarized beam \((A_L = -\frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-})\) were evaluated. These measure parity violating asymmetries, if any. All of these asymmetries were consistent with zero.

The results of the asymmetry are presented in Table \(1\) and Fig. 3. Systematic uncertainties for the asymmetry measurement are negligible. A total scale uncertainty of ±65%, from the correlated polarization analyzing power uncertainty, \(\delta A^C_N\), for the two beams and the uncorrelated measurement uncertainties, is not shown.

Two theoretical curves based on NLO pQCD are also shown for comparison with the data (see text for details).

\(p_T\) (GeV/\(c\))	\(A^{raw}_{LL}\) (%)	\(A^{BG}_{LL}\) (%)	\(A^{\pi^0}_{LL}\) (%)
1-2	−1.5 ± 0.9 (27%)	1.6 ± 1.4	−2.7 ± 1.3 −0.2 ± 0.3
2-3	−1.5 ± 1.1 (15%)	−3.0 ± 2.4 −1.3 ± 1.3 −0.1 ± 0.3	
3-4	−1.8 ± 2.5 (9%)	−2.4 ± 6.8 −1.7 ± 2.8 −0.3 ± 0.6	
4-5	2.6 ± 5.7 (8%)	24 ± 17	0.7 ± 6.2 −1.0 ± 1.2

![FIG. 3: The measured double spin asymmetry \(A^{\pi^0}_{LL}\) versus mean \(p_T\) of \(\pi^0\)’s in each bin. A scale uncertainty of ±65% is not included. Two theoretical calculations based on NLO pQCD are also shown for comparison with the data (see text for details).](image-url)
theory curves reflects the uncertainty on gluon polarization from the inclusive DIS measurements \[18, 19, 20\]. The uncertainties from this measurement are similar in size to this range \[21\]. Both curves show positive A_{LL}. It was recently argued that a negative A_{LL} would be difficult to accommodate \[22\]. The present results are consistent with the GRSV-std curve, with CL=16-20%, for the range in polarization scale uncertainty. For GRSV-max, CL=0.02-5%. These confidence levels do not include a theoretical uncertainty. In addition, the lowest p_T data point, at $\langle p_T \rangle = 1.59$ GeV/c, may have a significant soft-physics contribution. The agreement of the NLO pQCD calculation for the cross section \[5\] can only be checked to within the uncertainties of the calculation, estimated to be a factor two at this p_T \[17, 22\].

In summary, the reported results of the double helicity asymmetries for π^0 production begin to explore the gluon polarization in the proton, using strongly interacting probes. The observed asymmetry is small, and the level of uncertainty of these data is comparable to that of the theoretical calculations adopting different sets of gluon polarizations deduced from global fits to the existing deep inelastic scattering data.

We thank the staff of the Collider-Accelerator Department, Magnet Division, and Physics Department at BNL and the RHIC polarimetry group for their vital contributions. We thank W. Vogelsang for informative discussions. We acknowledge support from the Department of Energy and NSF (U.S.A.), MEXT and JSPS (Japan), CNPq and FAPESP (Brazil), NSFC (China), IN2P3/CNRS, CEA, and ARMINES (France), BMBF, DAAD, and AvH (Germany), OTKA (Hungary), DAE and DST (India), ISF (Israel), KRF and CHEP (Korea), RAS, RMAE, and RMS (Russia), VR and KAW (Sweden), U.S. CRDF for the FSU, US-Hungarian NSF-OTKA-MTA, and US-Israel BSF.

* PHENIX Spokesperson: zajc@nevis.columbia.edu

[1] EMC, J. Ashman et al., Phys. Lett. B206 364 (1988), Nucl. Phys. B328, 1 (1989); E. Hughes and R. Voss, Ann. Rev. Nucl. Part. Sci. 49, 303 (1999).
[2] SMC, B. Adeva et al., Phys. Rev. D58, 112002 (1998); E155, P. L. Anthony et al., Phys. Lett. B 493, 19 (2000).
[3] HERMES, A. Airapetian et al., Phys. Rev. Lett. 84, 2584 (2000); SMC, B. Adeva et al., hep-ex/0402010.
[4] D.L. Adams et al., Phys. Lett. B261, 197, (1991).
[5] S.S. Adler et al., Phys. Rev. Lett. 91, 241803 (2003).
[6] G. Bunce et al., Ann. Rev. Nucl. Part. Sci. 50, 525 (2000).
[7] O. Jinnouchi et al., 15th Int. Spin Physics Symposium (SPIN 2002), AIP Conf. Proc. 675: 584-588, 2003; Xth Workshop on High Energy Spin Physics (SPIN 2003), Dubna, Russia, Sep. 16-20, 2003.
[8] J. Tojo et al., Phys. Rev. Lett. 89, 052302 (2002).
[9] T.L. Trueman, hep-ph/0203013.