The analysis of stellar populations has, by and large, been developed for two limiting cases: spatially resolved stellar populations in the color–magnitude diagram, and integrated light observations of distant systems. In between these two extremes lies the semi-resolved regime, which encompasses a rich and relatively unexplored realm of observational phenomena. Here we develop the concept of pixel color–magnitude diagrams (pCMDs) as a powerful technique for analyzing stellar populations in the semi-resolved regime. pCMDs have the advantage of connecting imaging data in the plane of pixel luminosity versus pixel color. A key feature of pCMDs is that they are sensitive to all stars, including both the evolved giants and the un-evolved main sequence stars. An important variable in this regime is the mean number of stars per pixel, \(N_{\text{pix}} \). Simulated pCMDs demonstrate a strong sensitivity to the star formation history (SFH) and have the potential to break degeneracies between age, metallicity and dust based on two filter data for values of \(N_{\text{pix}} \) up to at least \(10^4 \). We extract pCMDs from Hubble Space Telescope optical imaging of M31 and derive SFHs with seven independent age bins from \(10^9 \) to \(10^{10} \) year for both the crowded disk and bulge regions (where \(N_{\text{pix}} \approx 30–30^3 \)). From analyzing a small region of the disk we find a SFH that is smooth and consistent with an exponential decay timescale of 4 Gyr. The bulge SFH is also smooth and consistent with a 2 Gyr decay timescale. pCMDs will likely play an important role in maximizing the science returns from next generation ground and space-based facilities.

Key words: galaxies: stellar content

1. INTRODUCTION

Analysis of the stellar populations of both star clusters and galaxies has provided the foundation for much of our understanding of the formation and evolution of galaxies. Interpreting observations of complex stellar populations relies on two key ingredients—stellar evolution models and stellar spectral libraries. The task of comparing observations to models is reduced fundamentally to the task of searching for linear combinations of these two key ingredients (usually cast as the star formation history, SFH, and metallicity, Z), often with the inclusion of additional ingredients such as dust attenuation and emission.

Despite these underlying common ingredients, the analysis of stellar populations in practice is almost universally treated in one of two limiting cases. In the first case, fully resolved stellar populations are available, where one is able to robustly measure fluxes of each star in the system (down to some limit). One then models these observations in the color–magnitude diagram (CMD) by fitting stellar evolution models to the data (e.g., Dolphin 2002; Tolstoy et al. 2009). In the second case, fully unresolved stellar populations are assumed, e.g., when observing distant galaxies. In this case all of the stars add together to contribute to an integrated spectrum which is then modeled with stellar population synthesis techniques (e.g., Walcher et al. 2011; Conroy 2013). Poisson fluctuations are generally negligible and one can assume a fully populated initial mass function (IMF).

A useful way to describe these two extremes within a common framework is by considering the mean number of stars per pixel, \(N_{\text{pix}} \). In the case of fully resolved stellar populations this number is very small, e.g., \(\lesssim 10^{-2} \). In contrast, distant galaxies are typically in the regime where \(10^6 \lesssim N_{\text{pix}} \lesssim 10^{12} \). The intermediate, “semi-resolved” regime where \(1 \lesssim N_{\text{pix}} \lesssim 10^6 \), is relatively unexplored territory. An example at the upper end of this regime includes surface brightness fluctuations (SBF; Tonry & Schneider 1988), fluctuation spectroscopy (van Dokkum & Conroy 2014), pixel-level time variability due to the finite number of long period variables per pixel (Conroy et al. 2015), and “disintegrated” light analysis of stellar halos (Mould 2012). At the lower end of this regime, Beerman et al. (2012) demonstrated that strong constraints on the ages of low mass star clusters could be obtained by analyzing the integrated light of the un-evolved main sequence stars after isolating and removing the rare luminous evolved stars.

Even with the exquisite angular resolution and point-spread function (PSF) stability delivered by Hubble Space Telescope (HST) imaging, the main body of every galaxy beyond the closest dwarfs and out to at least the Virgo cluster are in the semi-resolved regime. For example, HST imaging of M31, obtained by the Panchromatic Hubble Andromeda Treasury (PHAT) Survey is crowding-limited well above the oldest main sequence turnoff point across the entire disk of M31 (Dalcanton et al. 2012). Producing a complete photometric catalog down to the oldest main sequence turnoff point is considered the gold standard in resolved star analysis because the turnoff point is the most reliable age indicator, and hence resolving the oldest main sequence turnoff point enables the most precise and accurate SFHs for the entire age range. In spite of this crowding, strong constraints on the detailed SFH can still be obtained in such regions by modeling the upper main sequence and evolved giants that are above the crowding limit (e.g., Lewis et al. 2015; Williams et al. 2015). The situation in the
bulge of M31 is much worse—the data are so crowded in the optical and NIR that point source photometry of even the brightest giants is difficult to interpret without extensive simulations to map the completeness and bias resulting from crowding (Dalcanton et al. 2012; Williams et al. 2014). This is not surprising—the mean number of stars per pixel in the bulge is \(\sim10^2\) to \(10^3\) at HST resolution.

The goal of this paper is to develop a new analysis framework that enables seamless transition from the fully resolved to fully unresolved regimes. The basic idea is to forego point source photometry and instead construct pixel CMDs (pCMDs) directly from the imaging data. This approach requires generating models in the image plane, which entails creating complex stellar populations pixel-by-pixel and then convolving the model image with the PSF. In many other respects the analysis procedure is similar to modeling resolved stellar populations, in which one converts the photometric catalog into a Hess diagram in CMD space.

We expect that pCMDs will be an important tool for analyzing future data. On the near horizon are an array of new facilities, instruments, and observatories, including the James Webb Space Telescope (JWST), WFIRST, Euclid, the Large Synoptic Survey Telescope, and three 30 m class ground-based telescopes (ELTs). While these facilities will revolutionize many aspects of extragalactic astrophysics, it is important to underline the fact that almost none of these facilities will deliver significantly better spatial resolution than HST. The only possibility for real gain is with the ELTs, provided that they can deliver diffraction-limited imaging over wide fields with a highly stable PSF (see e.g., Olsen et al. 2003; Greggio et al. 2012; Schreiber et al. 2014, for the expected gains in the limit of a perfectly known and stable PSF). Even in this case the regime of semi-resolved populations will simply be pushed to somewhat larger distances, such as the Virgo and Coma clusters. In order to maximize returns from these new facilities, we must therefore develop new tools specifically for the semi-resolved universe.

This paper is organized as follows. In Section 2 we provide a brief review of the crowding limit. Section 3 describes the modeling of pCMDs and in Section 4 we describe our approach to fitting models to data in pCMD space. Section 5 contains a comparison between models and observations of M31. A discussion and summary are provided in Sections 6 and 7. Where necessary we adopt the AB magnitude zeropoint system (Oke & Gunn 1983).

2. THE CROWDING LIMIT

Crowding of sources will limit the flux at which one can reliably estimate photometry. This crowding, or confusion limit, has been studied extensively in both the radio and optical astronomy communities (e.g., Scheuer 1957; Condon 1974; Renzini 1998; Hogg 2001; Olsen et al. 2003). Olsen et al. (2003) provided detailed simulations of the crowding limit for realistic stellar populations as a function of many of the controlling parameters (age, metallicity, IMF, wavelength). In this paper we are only interested in an approximate crowding limit in order to provide perspective on the delineation between the resolved and semi-resolved regime. For this purpose we adopt the rule of thumb which states that photometry becomes confusion-limited when the background flux level is equal to that which would be produced if light from the source were spread out over 30 resolution elements (Hogg 2001). In our case we assume that one resolution element is equal to 10 HST ACS pixels, as 10 pixels contain \(\approx60\%\) of the total flux. We have compared this simple estimate of the crowding limit to the models presented in Olsen et al. (2003) and find that the simple rule of thumb reproduces the predictions from the detailed models generally to within 0.5 mag, which, for the purposes of guiding the eye, is sufficient.

We note that the use of artificial star tests to assess the degree of completeness and photometric bias in crowded regions allows one to develop average correction maps throughout the CMD. It is therefore possible to photometer resolved sources significantly below the nominal crowding limit quoted above (e.g., Dalcanton et al. 2012; Williams et al. 2014; Gregersen et al. 2015).

The \(N_{\text{pix}}\) parameter depends on the distance, surface brightness (which is proportional to the stellar surface density), mass-to-light ratio, and the IMF. Figure 1 shows the relation between \(N_{\text{pix}}\), distance, and surface brightness. We have assumed a mass-to-light ratio of 4.0 and a mass-to-number ratio of 2.0 in order to convert luminosities into numbers, and a pixel resolution element of 0\(\prime\)05 (i.e., the pixel scale of ACS). Also shown in this figure is the approximate crowding limit for three important stellar phases: the main sequence turnoff (MS TO), the red clump, and the tip of the RGB. Above these limits in CMD, the red clump, and the tip of the red giant branch (RGB). These are generally to within 0.5 mag, which, for the purposes of guiding the eye, is sufficient.

As mentioned in the Introduction, most of the next-generation facilities, including WFIRST and JWST, will not deliver significant improvements in spatial resolution compared to HST, and so we can expect the landscape depicted in Figure 1 to remain largely unchanged for the next 10–20 years.

![Figure 1](image-url)
3. PIXEL COLOR MAGNITUDE DIAGRAMS

3.1. Methods

pCMDs are constructed by simply measuring magnitudes within a pixel and plotting those pixel magnitudes in a color–magnitude diagram. Obviously this requires the pixels from different images, bands, etc. to be registered to the exact same reference frame and to have the same pixel scale. The modeling of stellar populations in pCMD space is in principle straightforward. Our goal is to model the image plane, and from that image construct pCMDs. In order to model the image plane we must create stellar populations at each pixel and then convolve the model image with the PSF. At each pixel we draw stars according to weights specified by the product of the IMF, the SFH, and the mean number of stars per pixel. The flux of each star can be reddened according to a reddening law. The stars within a pixel are summed together to produce the final spectral energy distribution of the pixel.

In practice we adopt a Salpeter IMF (Salpeter 1955) with a lower-mass cutoff of 0.08 M_\odot and isochrones from the MIST project (Choi et al. 2016). The SFH is set by weights supplied in 7 age bins and can either be specified as 7 independent parameters or via parametric relations (a constant model or an exponential model with a decay timescale denoted by τ_SF). Note that the SFH extends from 10^6 to 10^{10} year. We allow for a single reddening parameter, $E(B-V)$, that is applied to all stars equally, with an $R_V = 3.1$ reddening law from Schlaufy & Finkbeiner (2011). Bandpass filters are adopted from the HST ACS camera and for brevity we refer to the HST filters with the following abbreviations: $g_{814} = F475W$ and $i_{814} = F814W$. We adopt a single PSF derived from ACS F814W imaging when convolving images (the F475W and F814W PSFs are very similar and so this simplification is unlikely to impact our comparison to observations in later sections).

In most respects the modeling process is similar to modeling resolved stellar populations. However, there are key differences: first, since we are modeling the image plane, we must take into account the PSF in the modeling procedure. Second, computational considerations require us to model a finite image plane, which implies that the model contains a non-trivial stochastic noise component (we return to this point in Section 4). Third, the key variable N_{pix} must be modeled. In reality one might need to consider a distribution function for N_{pix} rather than a single value. A simplifying feature of modeling in pCMD space is that one need not explicitly consider stellar binarity since we are not attempting to resolve individual stars. For these reasons the number of free parameters is not necessarily much larger, although the modeling of populations in pCMD space is substantially more computationally intensive.

3.2. Information Content of pCMDs

In this section we illustrate the information content of pCMDs as a function of N_{pix}, SFH, and metallicity.

We begin with Figure 2, which shows the image plane and pCMDs as a function of N_{pix} in the g_{814} and i_{814} filters. We show pCMDs both with and without convolution with the PSF in order to illustrate the critical role played by the PSF. Models were generated for solar metallicity 10 Gyr single-age stellar populations with zero reddening. The distribution of points in the pCMD is represented by a Hess diagram with a logarithmic color mapping. Some of the discrete features evident in the top right panel are the result of the finitely sampled isochrone, PSF and image-plane (by $N_{\text{pix}} \geq 10^2$ these numerical issues become negligibly small).

One sees clearly from this figure that the morphology in the pCMD varies smoothly from $N_{\text{pix}} = 1$ to $N_{\text{pix}} = 10^4$, indicating that the information content in these diagrams also varies smoothly. The approximate crowding limit is shown in the PSF-convolved pCMDs in order to underline the rich morphology that lies in the regime that is not included in resolved stellar population analysis. We also show in the top right panel the stars that are recoverable as resolved sources above the crowding limit. By $N_{\text{pix}} \geq 10^2$ there are no stars in the entire image above the (approximate) crowding limit.

Figures 3 and 4 show the effect of different SFHs in pCMD space for two values of N_{pix}. In each figure we compare a single age population at 10 Gyr to two exponentially declining (τ-model) SFHs with timescales of $\tau_\text{SF} = 2$ and 5 Gyr, and a constant SFH. All models are reddening-free and at solar metallicity. Several important trends are evident. First, there is clearly a varying balance between luminous red and blue pixels, due to the varying influence of upper main sequence and RGB stars. Second, the distribution of stars along the upper main sequence is clearly changing with the SFH. Third, the mean color of the faintest pixels and the faint limit of the faintest pixels also varies with SFH. Also notice that some of the finger-like features extending vertically toward brighter fluxes are the result of one or a few rare bright stars. In pixel space a single bright star will occupy many pixels owing to the effect of the PSF. These pixels will vary in brightness at approximately constant color (depending in detail on the level of similarity of the PSFs of the two filters). In many cases those finger-like structures would be recoverable as resolved sources above the crowding limit.

Direct comparison of Figures 3 and 4 suggests that there is less information at $N_{\text{pix}} = 10^2$ compared to $N_{\text{pix}} = 10^4$, which should not be surprising. However, there is still clearly significant information content in pCMDs at $N_{\text{pix}} = 10^2$ (which will be quantified with mock tests in the following section), as one can see by carefully inspecting the pCMDs in Figure 4. It is important to remember that observational uncertainties in the pixel CMDs of nearby galaxies will generally be very small, especially for large values of N_{pix}, because one only requires the integrated luminosities and colors of pixels rather than luminosities and colors of individual stars.

In later sections we will apply these models to observations in order to measure the SFH within 7 age bins with the following boundaries: (6.0, 7.0, 8.0, 8.5, 9.0, 9.5, 10.0, 10.2) in units of log age (year). In order to gauge the sensitivity of the pCMD to these individual age components we have computed a series of partial models in which the SFR within one of these bins is set to zero. The underlying reference model has a constant SFH with $N_{\text{pix}} = 10^2$ and solar metallicity. The result of this exercise are shown in Figure 5. Here we show ratios between these partial models and the underlying reference model for each age bin. It is clear that individual age bins have a complex “response” in the pCMDs. The advantage is that many features in the pCMD contribute to the sensitivity to a particular age bin. On the other hand, the complexity of the behavior makes it difficult to build qualitative understanding of particular features observed in pCMDs of actual stellar populations. Nonetheless, we can expect to be able to measure...
at least 7 distinct age populations from the pCMD of a composite population. Figure 6 shows pCMDs as a function of metallicity. Models were generated for a 10 Gyr single-age solar metallicity population with zero reddening. Also shown is a reddening vector assuming the reddening law of Schlafly & Finkbeiner (2011) for a reddening of $E(B-V) = 0.3$ and $R_V = 3.1$. As is well-known, an increase in dust or metallicity will result in redder colors. In unresolved data it is generally impossible to separate the effects of dust, metallicity, and age with a single color. However, with semi-resolved data there is clearly much more information. Notice that while the pCMDs become redder overall with increasing metallicity, the morphology of the data in pCMD space also changes, becoming more horizontally aligned with increasing metallicity. We therefore expect that pCMDs will enable the disentangling of metallicity and dust effects even when only two imaging bands are available. Though not shown, we have made similar diagrams for $I_{814} - H_{60}$ colors and find an even stronger sensitivity to metallicity, suggesting that optical–NIR colors may be better suited for jointly estimating metallicities and reddening.

We have demonstrated in this section that pCMDs contain sensitivity to the SFH and metallicity of the population for a wide range in N_{pix}, up to at least $N_{\text{pix}} = 10^4$. The most obvious limitation of pCMDs is that the combination of overlapping sources and the smoothing by the PSF results in much less information content than the fully resolved, uncrowded limit. This is demonstrated most clearly in Figure 2. The effect of the PSF implies that the properties of nearby pixels are strongly correlated. This is seen most clearly in the finger-like structure of the brighter pixels in Figures 3 and 4. It may be possible to take the additional information that is contained on scales smaller than the PSF into account, so that the method defaults to the equivalent of individual-star photometry in the limit of $N_{\text{pix}} \to 0$. We plan to explore such extensions to the pCMD framework in the future.

Figure 2. Model images and pCMDs as a function of the number of stars per pixel, N_{pix}. All models adopt a solar metallicity, 10 Gyr stellar population (shown as a gray line in each pCMD to guide the eye). Simulated pCMDs contain 10^24 pixels; 400^2 pixel subregions are shown in the PSF-convolved images in the left panels. Middle and right panels show the resulting pCMDs without and with convolution with the HST ACS F814W PSF. The pCMDs are displayed as Hess diagrams with a logarithmic color mapping. Horizontal dashed lines in the right panels mark the approximate crowding limit, above which PSF photometry is possible. In the upper right panel, blue symbols denote what would be recoverable from PSF photometry; there are 1062 stars above the crowding limit for $N_{\text{pix}} = 1$ but none for $N_{\text{pix}} \geq 10^2$. The Astrophysical Journal, 827:9 (13pp), 2016 August 10 Conroy & van Dokkum
The Astrophysical Journal, 827:9 (13pp), 2016 August 10

Figure 3. Sensitivity of pCMDs to the star formation history. Solar metallicity models with \(N_{\text{pix}} = 10^2\) are shown for four SFHs: a 10 Gyr single-age model, \(\tau\)-model SFHs with \(\tau_{\mathrm{SF}} = 2\) and 5 Gyr, and a constant SFH. The pCMDs are displayed as Hess diagrams with a logarithmic color mapping. Isochrones at 0.01 and 10 Gyr are shown in gray to guide the eye. There is clear sensitivity to the different age components in these SFHs in the mean color of the faint pixels, the relative numbers of RGB and upper main sequence stars, and the distribution of stars along the upper main sequence.

4. FITTING DATA IN PCMD SPACE

In this section we describe our approach to fitting data in pCMD space and demonstrate its effectiveness by testing against mock observations.

4.1. Fitting Technique

The basic framework for fitting observations in pCMD space is as follows. One must simulate an image plane (actually two, one for each band) of some dimension for a given input SFH, reddening, and \(N_{\text{pix}}\), convolve with the appropriate PSF, add observational errors, bin into a Hess diagram in pCMD space, compute the likelihood of this model given the data, and iterate. We implement this in practice in the following manner. The image plane is simulated at a resolution of 256\(^2\) pixels. The SFH has a free form discretized into 7 age bins with the following boundaries: (6.0, 7.0, 8.0, 8.5, 9.0, 9.5, 10.0, 10.2) in units of log age (year). We assume that the SFR is constant within each bin. The mass in each bin, \(M_i\), constitutes 7 free parameters (\(N_{\text{pix}}\) is derived from the integral of the SFH). The reddening is taken to be a single parameter: \(E(B-V)\). The final free parameter is the metallicity, [Z/H]. We fit for a single metallicity by interpolating within the isochrone tables (which include the bolometric corrections). There are thus 9 free parameters in total. The priors on the parameters are flat in log space over the boundaries: \([Z/H] = (-1.1, 0.5), \log E(B-V) = (-6.0, 0.0), \log M_i/M_{\odot} = (-10.0, 0.0)\). The lower limit on the metallicity was simply a practical consideration given that we are interested in this paper in metal-rich regions within M31.

The PSF is implemented by dividing the image into 16 subregions. Within each subregion the image is convolved with a PSF that has been shifted by 1/4 of a pixel. We do this because we have assumed in the model that the stellar populations reside at the center of each pixel, whereas in reality the stars can of course fall anywhere in the image plane, not only at pixel centers.

Observational (photon counting) errors are applied to the model by converting the pixel fluxes into counts by specifying a distance to the object of interest and an exposure time. At each pixel we then draw from a Poisson distribution with a mean given by the number of counts in each pixel.

The default MIST isochrones are densely sampled in mass at each age (see Dotter 2016, for details). In order to ease the computational burden in the fitting we have made use of isochrones that are sampled with 5\(\times\) fewer equivalent evolutionary points, resulting in \(\sim 100\)–200 points per isochrone. In testing we have found that this reduction in isochrone points has a very minor effect on the resulting pCMD, mostly affecting the rare and luminous stars, which in any event do not receive significant weight in the fit.

Errors on both the data and the model Hess diagrams are computed directly from the number of pixels at each point (assuming Poisson statistics). Both the model and data Hess diagrams are normalized to unity.

We begin the fitting procedure by fitting only for \(N_{\text{pix}}\) and a smooth exponentially declining SFH specified by \(\tau_{\text{SF}}\). We fix the reddening to zero and the metallicity to solar. This two parameter fit provides a good starting position for the main fitting routine, which employs the Markov chain Monte Carlo (MCMC) technique emcee (Foreman-Mackey et al. 2013). We use 256 walkers and find that the solution is typically well-converged after \(10^3\) iterations.

Fitting pCMD data presents several unique challenges not encountered when fitting resolved CMD data. Chief among them is the Poisson nature of drawing stars and populating them in a finite image. For 256\(^2\) image pixels and \(N_{\text{pix}} \approx 3000\) isochrone points this requires \(\sim 10^8\) Poisson draws per likelihood call. This is computationally very expensive. Moreover, the stochastic nature of the model implies that the exact same set of parameters will result in a somewhat different model, and hence a different \(\chi^2\) value. Such a model would require more sophisticated search techniques than standard
MCMC. This latter issue could be mitigated by simulating an image of sufficiently large number of pixels, but in our testing even 1024^2 pixels was not sufficient to overcome the Poisson noise. In order to circumvent these two issues (the expense of drawing many Poisson numbers and the stochastic nature of the model), we decided to make the following approximation. Rather than drawing random numbers for the computation of each Poisson draw, we created a fixed set of 256^2 × N_100 random numbers at the beginning of the program. This ensures that each isochrone point has a unique random number at each image pixel, and it also guarantees that the model is deterministic and is computationally faster by about a factor of 3. We then fit each dataset 10 times with a different random number seed and combine the 10 posteriors in an attempt to account for the uncertainties in the model induced by stochastic effects (note that when we generate mock data, we use a random number seed different the 10 used in the fitting).

We make two additional simplifications. We assume that isochrone points with a mass $< 0.7 M_\odot$ or a mean number $< 0.1 N_100$ contain no pixel-to-pixel variation and hence are not discretely drawn. For the rest, we draw from a Poisson distribution if $N_100 < 100$ and a Gaussian distribution otherwise. With these simplifications each likelihood call takes ~ 1 s.

As this is the first attempt to fit observations in pCMD space, we have taken a somewhat simplified approach to fitting the data. Areas for future improvement include the following: (1) exploring techniques for rapidly generating models that do not suffer from stochastic effects, e.g., by simulating images of much larger numbers of pixels; (2) allowing for more metallicity components, either in the form of a metallicity distribution function at a fixed age or the freedom for each age component to have its own metallicity; (3) a dust model characterized by more than a single $E(B-V)$ value, e.g., allowing for a distribution function of reddening values as in Dalcanton et al. (2015); (4) fitting not just N_{pix} but $P(N_{\text{pix}})$, i.e., allowing for the fact that a given physical region will in nearly all cases have a distribution of N_{pix} values; (5) a more detailed modeling of the PSF, including e.g., its spatial variation across the image. All of these improvements are straightforward to implement although most will significantly increase the computational expense of each likelihood evaluation.
4.2. Tests With Mock Data

Figure 7 shows the results of several tests of SFH recovery with mock data. The mock data were constructed assuming a solar metallicity population with zero reddening. In each panel the resulting best-fit cumulative SFH is shown as a solid line with the gray bands marking the 1σ uncertainties. The input SFH is also shown as a dashed line. While we focus here on the SFH recovery, we are simultaneously also fitting for metallicity and dust content. The metallicities are recovered to within 0.05 dex, the reddening is constrained to be <0.01, and the overall normalization, \(N_{\text{pix}} \), is recovered to within 0.1 dex.

In the top panels we fit mock pCMDs generated with a constant SFH for two values of \(N_{\text{pix}} \). The upper left panel shows results for \(N_{\text{pix}} = 10^3 \) where the total mass of the population is fixed, so the total number of pixels in the upper right panel is 100× fewer than in the left. The bottom left panel shows the recovered SFH for an input model with a \(\tau \)-model SFH with \(\tau_{\text{SF}} = 1 \) Gyr. The bottom right panel shows results for a constant SFH with a burst in the second youngest age bin resulting in 5× more mass. Also shown in this panel is a constant SFH (dotted line) for comparison.

In the bottom left panel, we see that the recovered SFH agrees well with the input model. The recovered SFH is shown as a solid line, with the gray bands marking the 1σ uncertainties. The input SFH is also shown as a dashed line. While we focus here on the SFH recovery, we are simultaneously also fitting for metallicity and dust content. The metallicities are recovered to within 0.05 dex, the reddening is constrained to be <0.01, and the overall normalization, \(N_{\text{pix}} \), is recovered to within 0.1 dex.

In the top panels, we fit mock pCMDs generated with a constant SFH for two values of \(N_{\text{pix}} \). The upper left panel shows results for \(N_{\text{pix}} = 10^3 \), where the total mass of the population is fixed, so the total number of pixels in the upper right panel is 100× fewer than in the left. The bottom left panel shows the recovered SFH for an input model with a \(\tau \)-model SFH with \(\tau_{\text{SF}} = 1 \) Gyr. The bottom right panel shows results for a constant SFH with a burst in the second youngest age bin resulting in 5× more mass. Also shown in this panel is a constant SFH (dotted line) for comparison.

5. COMPARISON TO OBSERVATIONS

Having laid out the basic idea behind pCMDs and demonstrated that one can quantitatively recover SFHs by
fitting models to data in pCMD space, we now turn to a comparison with observations. For this purpose we utilize HST observations of M31 obtained through the PHAT survey (Dalcanton et al. 2012). Specifically, we use the brick-level drizzled mosaics available in the MAST archive. We adopt a distance modulus to M31 of 24.47 (McConnachie et al. 2005). In order to simulate the effect of photon noise we adopt an exposure time in the g_{475} and I_{814} bands of 3620 s and 3235 s, respectively (Dalcanton et al. 2012).

5.1. The Bulge of M31

We first consider the old stellar population in the bulge of M31. We selected two regions from Brick 1 spanning a factor of ≈ 10 in N_{pix}. The first region lies ≈ 200 pc from the center of M31 and has $N_{\text{pix}} \sim 10^5$ (note that this is well beyond the inner ≈ 10 pc where a young cluster of blue stars resides; Lauer et al. 2012). The second region lies 1 kpc from the center and has $N_{\text{pix}} \sim 10^2$. Regions were selected over a relatively narrow range in radius from the center in order to identify groups of pixels that would have a relatively narrow distribution of N_{pix}. The first and second regions include 253,000 and 79,000 pixels, respectively. No attempt was made to remove artifacts, clearly resolved bright stars, or other features. Note that the crowding limit is so severe in the bulge of M31 that it is only possible to reliably photometer the most luminous giants based on optical–NIR HST data (Dalcanton et al. 2012; Williams et al. 2014).

The left panels of Figure 8 show a comparison of pCMDs between two regions of the bulge of M31 and the best-fit models. The effect of the PSF and observational (photon counting) uncertainties are included in the models. Figure 9 shows the residuals between the models and data where the color-coding is proportional to $\log \chi^2$. Overall the best-fit models do a good job of reproducing the features in the observed pCMDs. In detail the observations appear to span a slightly wider range in colors at a fixed luminosity, perhaps to compensate, the faintest pixels in the models are fainter than the faintest pixels in the data. This may be pointing to the fact that our models are too simplistic. For example, allowing for a metallicity distribution function would result in a broader range of colors at fixed luminosity. We defer these complications to future work.

The right panel of Figure 8 shows the derived cumulative SFHs for these two regions after fitting the observed pCMD to models. Also shown are simple SFHs to guide the eye. The derived SFHs are steeply declining with time and are broadly consistent with a τ-model SFH with $\tau_{\text{SF}} \approx 2$ Gyr. It is also interesting to note that the recovered SFHs are not declining as fast as possible, i.e., a $\tau_{\text{SF}} = 1$ Gyr model appears to be ruled out by the data. This is noteworthy in light of the integrated light analysis presented in Dong et al. (2015). These authors modeled FUV–NIR photometry in the bulge of M31 and presented evidence for a young stellar population with an age...
of ∼600–800 Myr and a mass fraction of ∼1%–2% in the inner 700 pc. We show their derived age and mass fraction for the young component in the right panel of Figure 8 for their 50″–55″ bin, which corresponds closely to our 0.2 kpc region. Their result agrees very well with our derived SFH for this region.

The existence of hot stars associated with old stellar populations (including blue stragglers hot horizontal branch stars, and post-AGB stars) has long complicated the measurement of low levels of SF in such systems, as these hot evolved stars can, in certain circumstances, masquerade as young main sequence stars. Such stars, if present in significant numbers in the bulge of M31, could also bias our derived SFHs high at young and intermediate ages. The most conservative interpretation of our results is that they represent upper limits, as some of the bluest pixels could be due to the hot evolved stars not currently included in our models. We will explore the effect of hot evolved stars on the derived SFHs from pCMDs if future work.

The best-fit metallicities are close to solar and the reddening values are $E(B - V) \lesssim 0.01$. There is some age-dust degeneracy. In light of Figure 6 it would be preferable to use an optical–NIR color in order to more strongly separate these two variables. Nonetheless, the modest degeneracy between age and metallicity does not have a significant impact on the recovery of the SFH.

5.2. The Star-forming Disk of M31

We now consider the stellar population in the star forming disk of M31. For this comparison we selected a single ∼100 pc × 100 pc region from Brick 6 data. The region corresponds to one of the 9000 regions analyzed by Lewis et al. (2015), who used the resolved stars in this region to constrain the SFH over the past 500 Myr. The resulting pCMD is shown in the upper left panel of Figure 10. We compare these observed pCMD to three models: the best-fit model, and two simple models. The latter two models are solar metallicity, reddening-free, and have a constant SFH and a τ-model SFH with $\tau_{SF} = 2$ Gyr. These simple models were generated with $N_{\text{pix}} = 10^{1.5}$, which is very close to the best-fit N_{pix} value.

Figure 11 shows the map of residuals between the data and best-fit model, where the color-coding is proportional to $\log \chi^2$. There is interesting structure throughout the diagram. This is likely pointing to one or more missing ingredients in the model, e.g., our simplified treatment of dust attenuation and/or the assumption of a single metallicity for the entire population. These issues will be explored in greater depth in future work.

The right panel of Figure 10 shows the derived cumulative SFH for this region. We also show several simple SFHs in order to guide the eye. The derived SFH agrees well with a smooth exponential model with $\tau_{SF} = 4$ Gyr. The best-fit metallicity is close to solar and the reddening is low, $E(B - V) \sim 0.01$.

The region that we have analyzed was chosen so that a direct comparison could be made with the resolved star analysis in Lewis et al. (2015). The results are shown in Figure 12. The top panel shows an I_{814}-band image of a 40 × 90 pc subregion of the full 100 × 100 pc region used in the analysis. The middle panels show the resolved star CMD and the pixel CMD for the full 100 × 100 pc region. Lewis et al. (2015) fit the region of the resolved CMD blueward of the dotted line in order to focus on the main sequence, which is easier to model than the evolved giants. There are 1800 stars in the fitted region of the diagram. The sharp cutoff at $I_{814} \approx 2$ corresponds to the 50% completeness limit of the resolved star catalog (Lewis et al. 2015).

The derived SFHs from these two approaches are compared in the bottom panel of Figure 12. The resolved star SFH from Lewis et al. is based on modeling the main sequence and hence

4 These are projected distances; the de-projected regions are approximately 100 × 450 pc.
is limited to the most recent \(\approx 500\) Myr; the main sequence turnoff is below the crowding limit for older stellar populations (see Williams et al. 2015, for SFHs derived to older ages in M31 based on modeling the evolved giants). The 1\(\sigma\) uncertainties on the resolved star SFHs are statistical only; at the youngest age they are dominated by Poisson uncertainties in the number of stars above the crowding limit. The resolved star SFH was re-computed specifically for this comparison for the exact same age bins as the pixel CMDs (courtesy of A. Lewis), and the results were multiplied by 1.5 to convert from a Kroupa (2001) IMF to our adopted Salpeter IMF.

The overall agreement is encouraging. Three of the four age bins agree very well within the errors. The third age bin differs more significantly. In addition to the overall differences in techniques, there are a variety of issues that could drive these differences. First and foremost, we adopt a different set of stellar evolution models than those in Lewis et al. (2015), who adopt the Padova models. It would be interesting to repeat both analysis with a common set of stellar evolution models, as different isochrone tables can induce non-trivial systematics (e.g., Dolphin 2012; Weisz et al. 2014). Second, Lewis et al. (2015) adopt a more sophisticated dust model than employed herein. They consider a model that allows for a distribution of dust that includes foreground extinction and differential extinction; the extinction PDF is a step function between the foreground and differential extinction values. For this particular region they find a foreground extinction of \(E(B-V) = 0.1\) (assuming \(R_V = 3.1\)) and a differential extinction of \(E(B-V) = 0.23\). Our best-fit reddening is very low by comparison: \(E(B-V) \sim 0.01\). We do not yet know what is responsible for driving our reddening values so low, but it could be related to our simplified treatment of reddening (one value applied to all stars equally). In future work we will explore the more sophisticated dust model employed in Lewis et al. (2015). However, we have tested the impact of our low derived reddening values on the inferred SFH. We re-ran the fitting with a lower limit on the \(E(B-V)\) prior of 0.08. The resulting SFRs agree with those shown for our default model in Figure 12 within 1\(\sigma\) even though the best-fit \(E(B-V)\) is closer to 0.1. This test suggests that the derived SFHs are not overly sensitive to the best-fit reddening. Another potential systematic uncertainty is our use of a PSF that does not take into account the effects of the drizzling process that was used to create the final mosaic images.

As a further test of the pCMD-based results, we have used our best-fit parameters to predict the integrated fluxes within this region from the FUV through NIR. For the F475W, F814W, F110W, and F160W filters our predicted fluxes agree to within 3\%, 8\%, 13\%, and 15\%, respectively. We have also synthesized FUV and NUV fluxes from GALEX images and find that our predicted fluxes are about a factor of 3 too bright. If we adopt a reddening of \(E(B-V) = 0.13\) then the model and observed fluxes are in much better agreement, providing additional support to the conclusion that our best-fit reddening values are too low.

Finally, we note that the metallicities derived in the two techniques agree well and both return metallicities within \(\approx 0.05\) dex of solar.

We summarize this comparison by concluding that the broad agreement between the resolved star and pCMD-based fitting for the SFH and metallicity is encouraging, but that our model for dust is likely too simplistic. Preliminary tests suggest that this shortcoming does not unduly bias our derived SFH but further tests are needed.

6. DISCUSSION

We envision pCMDs being employed in at least two related but distinct regimes. First, in the regime where resolved photometry is not possible even for the brightest stars, pCMDs offers a unique opportunity to extract stellar population information. We presented one example here for the bulge of M31. Other examples include more distant systems (e.g., massive galaxies in the Virgo cluster). As we have remarked earlier, the pCMD concept is in some sense a generalization of the SBF technique, which has been used both as a distance indicator and as a probe of stellar populations (e.g., Tonry et al. 2001; Cantiiello et al. 2005; Blakeslee et al. 2010). By analogy with the SBF technique, one could imagine including distance as an additional free parameter when fitting pCMDs. Distance results in an overall vertical shift in the pCMD, and no other parameter induces a similar vertical shift in the pCMD. For this reason we anticipate that pCMDs will deliver strong constraints on the distance.

Second, in the regime in which bright stars are resolvable but the oldest main sequence turnoff point remains below the crowding limit, as is the case in the optical–NIR throughout the disk of M31, pCMDs offer a valuable complementary tool that can be used in combination with classic resolved star techniques. In this regime the key point is that for a given age, if the crowding limit is above the turnoff point then there is additional age information in between the crowding limit and the turnoff point that is not used in traditional resolved star analysis but is contained in pCMDs. For example, Williams et al. (2007) used the surface brightness below the magnitude limit of their resolved star data to place additional constraints on the SFH of intracluster stars in the Virgo cluster. As an example of the possible synergy between resolved star and pCMD analyses, the dust model from the resolved star analysis as a prior on the dust model in the pCMD analysis. Ultimately, one could imagine jointly fitting the resolved CMD and pCMD.
data within the same model, thereby providing the strongest possible constraints on physical parameters of the system.

We emphasize that pCMDs provide a much less obstructed view of the main sequence than is available from standard integrated light observations. For example, for an old stellar population viewed in integrated light, the main sequence comprises 50%–60% of the light at 0.5–0.6 μm, and ≈30% at 0.8 μm (e.g., Conroy 2013). We computed similar numbers for our pCMDs as a function of pixel luminosity, for the case of a 7 Gyr SFH and $N_{\text{pix}} = 10^2$. At the faintest pixels ($I_{\text{814}} \approx 2$), the main sequence contributes 80% of the flux at 0.8 μm. The key point is that the pCMDs are sensitive both to the evolved giants and to the sea of main sequence stars. With pCMDs one can separately extract the age and metallicity-

Figure 12. Direct comparison between resolved and pixel CMDs, and SFHs derived therefrom. Top panel: I_{814}-band image of a 40 × 90 pc subregion of the full 100 × 100 pc region used in the analysis. Middle left panel: CMD of resolved sources. The resolved sources are truncated at $I_{\text{814}} \approx 2$ which corresponds to the 50% completeness limit of the catalog (fainter stars are crowding-limited). Stars redder than the dotted line were excluded from the resolved star CMD analysis in Lewis et al. (2015). Middle right panel: Pixel CMD, represented as a Hess diagram with a logarithmic color map. Bottom panel: SFHs derived from the resolved star CMD (points) and from the pCMD (solid line). The shaded region and error bars represent 1σ uncertainties. The resolved star SFH was modeled with the exact same age binning used for the pCMD-based SFHs. The overall agreement is encouraging given the different systematic uncertainties between the two techniques. The resolved CMD-based SFH was derived from fitting the main sequence and so is limited to younger ages because the main sequence turnoff point for older ages is below the crowding limit.
sensitive information from these components, or, if one is concerned about e.g., uncertainties associated with evolved giants, then one can mask these stars in the pCMD. We thus expect that pCMDs will be less impacted by the systematic uncertainties associated with stellar evolution than integrated light analyses.

A natural extension of the pCMD technique involves obtaining spectra at the pixel level. One could then analyze pCMDs in which the axes of the CMDs are not colors and broadband magnitudes but rather spectroscopic features, absorption lines, etc. In essence this is the marriage of the pCMD technique described herein and the “fluctuation spectroscopy” idea presented in van Dokkum & Conroy (2014). It is worth underlining that collecting spectra at the pixel level is collecting all of the available information from stellar populations for a given telescope aperture.

The majority of ground and space-based facilities coming online in the next two decades will not deliver substantially increased angular resolution compared to current facilities, and as a consequence they will not improve upon the crowding limit offered by HST. The ELTs do offer the hopes of dramatically increased angular resolution. In this case many more galaxies will be in the semi-resolved regime (e.g., the central regions of galaxies in the Virgo cluster). In light of this, we believe that one must embrace crowding-limited data and develop tools for extracting information in that regime. pCMDs offer one such example in this direction.

This is the first attempt to fit observations in pCMD space, and, as a consequence, a number of simplifying assumptions have been made. Due to computational limitations we have made several shortcuts; we are optimistic that solutions to these have been made. Due to computational limitations we have and, as a consequence, a number of simplifying assumptions.

5. We also compared our SFHs to those derived from fitting the resolved star CMD in one disk field and found overall good agreement for ages 10^6−10^7 year, where the resolved star results were available. The comparison revealed notable disagreement in the derived reddening, suggesting that there are important systematic uncertainties in our current approach to fitting pCMDs. Going forward, the combination of resolved star and pCMD data should provide the strongest possible constraints on the full SFH.

We thank Julianne Dalcanton, Ben Johnson, Alexia Lewis, Phil Rosenfield and Dan Weisz for helpful discussions throughout the development of this work and for comments on an earlier draft, Jieun Choi for providing custom-made isochrones, Alexia Lewis for providing the custom-made PHAT SFHs and resolved star photometry, Dan Foreman-Mackey for advise on statistical matters, and the referee for a helpful report. CC acknowledges support from NASA grant NNX15AK14G, NSF grant AST-1313280, and the Packard Foundation. Support from grants HST-GO-12523 and HST-GO-13681 is gratefully acknowledged. The computations in this paper were run on the Odyssey cluster supported by the FAS Division of Science, Research Computing Group at Harvard University.

7. SUMMARY

We have presented the concept of pixel color–magnitude diagrams (pCMDs) as a powerful tool for analyzing stellar populations in the crowding-limited regime. We constructed stellar population models and highlighted the main dependencies on the key parameters. We also compared the model pCMDs to HST imaging of M31 obtained through the PHAT survey. We now summarize our main results.

1. A key parameter governing the behavior of pCMDs is the mean number of stars per pixel, N_{pix}. This parameter governs how mottled or smooth the image appears, and when combined with the measured flux, can provide a strong constraint on the distance to the system. This is not surprising as the “magnitude” part of pCMDs is essentially equivalent to the information contained in SBFs.

2. pCMDs show strong sensitivity to the underlying SFH with the ability to resolve bursts of star formation and place strong constraints on old stellar populations even when the data are strongly crowding-limited. Our simulations have demonstrated that one can recover at least 7 age components of the SFH with only two filter data.

3. In addition to the SFH, the metallicity and dust content can also be reliably separated with pCMDs, especially with optical–NIR colors. While both metallicity and dust result in redder colors, the detailed structure of the data in pCMD space offers strong, separable constraints on both the metallicity and the overall reddening. Again, all of this can be measured with only two filter data.

4. We have developed machinery to fit model pCMDs to observations. We then constructed pCMDs from HST imaging of M31 in several small regions in the bulge and disk. We derived SFHs in these regions extending from 10^6 to 10^10 year. These are the strongest constraints to date on the full SFH in the bulge of M31.

REFERENCES

Beers, E. C., Johnson, L. C., Fouesneau, M., et al. 2012, ApJ, 760, 104
Blakeslee, J. P., Cantiello, M., Mei, S., et al. 2010, ApJ, 724, 657
Cantiello, M., Blakeslee, J. P., Raimondo, G., et al. 2005, ApJ, 634, 239
Choi, J., Dotter, A., Conroy, C., et al. 2016, ApJ, submitted
Condon, J. J. 1974, ApJ, 188, 279
Conroy, C. 2013, ARA&A, 51, 393
Conroy, C., van Dokkum, P. G., & Choi, J. 2015, Natur, 527, 488
Dalcanton, J. J., Williams, B. F., Lang, D., et al. 2012, ApJS, 200, 18
Dalcanton, J. J., Fouesneau, M., Hogg, D. W., et al. 2015, ApJ, 814, 3
Dolphin, A. E. 2002, MNRAS, 332, 91
Dolphin, A. E. 2012, ApJ, 751, 60
Dong, H., Li, Z., Wang, Q. D., et al. 2015, MNRAS, 451, 4126
Dotter, A. 2016, ApJS, 222, 8
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306
Gregersen, D., Seth, A. C., Williams, B. F., et al. 2015, AJ, 150, 189
Greggio, L., Falomo, R., Zaggia, S., Fantinel, D., & Uslenghi, M. 2012, PASP, 124, 653
Hogg, D. W. 2001, AJ, 121, 1207
Kroupa, P. 2001, MNRAS, 322, 231
Lauer, T. R., Bender, R., Kormendy, J., Rosenfield, P., & Green, R. F. 2012, ApJ, 745, 121
Lewis, A. R., Dolphin, A. E., Dalcanton, J. J., et al. 2015, ApJ, 805, 183
McConnachie, A. W., Irwin, M. J., Ferguson, A. M. N., et al. 2005, MNRAS, 356, 979
Mould, J. 2012, ApJL, 755, L14
Oke, J. B., & Gunn, J. E. 1983, ApJ, 266, 713
Olsen, K. A. G., Blum, R. D., & Rigaut, F. 2003, AJ, 126, 452
Renzini, A. 1998, AJ, 115, 2459
Salpeter, E. E. 1955, ApJ, 121, 161
Scheuer, P. A. G. 1957, PCPS, 53, 764
Schlafly, E. F., & Finkbeiner, D. P. 2011, ApJ, 737, 103
Schreiber, L., Greggio, L., Falomo, R., Fantinel, D., & Uslenghi, M. 2014, MNRAS, 437, 2966
Tolstoy, E., Hill, V., & Tosi, M. 2009, ARA&A, 47, 371
Tonry, J., & Schneider, D. P. 1988, AJ, 96, 807
Tonry, J. L., Dressler, A., Blakeslee, J. P., et al. 2001, ApJ, 546, 681
van Dokkum, P. G., & Conroy, C. 2014, ApJ, 797, 56
Walcher, J., Groves, B., Budavári, T., & Dale, D. 2011, Ap&SS, 331, 1
Weisz, D. R., Dolphin, A. E., Skillman, E. D., et al. 2014, ApJ, 789, 147
Williams, B. F., Ciardullo, R., Durrell, P. R., et al. 2007, ApJ, 656, 756
Williams, B. F., Lang, D., Dalcanton, J. J., et al. 2014, ApJS, 215, 9
Williams, B. F., Dalcanton, J. J., Dolphin, A. E., et al. 2015, ApJ, 806, 48