Abstract. In tumor research, the occurrence and origin of tumors are the fundamental problems. In the 1970s, the basic discussion of the developmental biology problem of tumors was proposed, and it was believed that tumorigenesis is closely related to developmental biology. Tumors are abnormal biological structures in organisms, and their biological behavior is very similar to that of the early embryo. Many tumor-related genes also serve regulatory roles in the normal development and differentiation of embryos. However, it remains unclear whether gene expression in early embryos has any similarities with tumor cells. In this study, to compare the similarities and differences in gene expression between early embryos and tumor cells, reverse transcription-quantitative PCR was conducted to determine and compare the relative expression levels of nine tumor-related genes in the brain glioma cell line, T98G, and in the early embryo of Spodoptera litura, which is fast-growing, low-cost, easily accessible and easy to observe. The expression of tumor-related genes in early embryos and the similarity of regulatory mechanisms between early embryonic development and tumor growth were explored. In conclusion, tumor growth may be regarded as an abnormal embryogenic activation that happens in the organs of adult individuals.

Introduction

The treatment and prognosis of tumors has been a major focus of research in tumor-related studies, and the study of tumor pathogenesis and mechanisms of tumorigenesis is even more difficult than the study of tumor treatment. In the 1970s, Pierce and colleagues proposed that tumors are a developmental biology problem, and he believed that tumorigenesis is closely related to developmental biology (1,2). In 1892, Lobstein and Recamier presented a fundamental discussion on whether tumors are embryonic physiological disorders and their origin (3‑5). They argued that tumors are formed by the continuous proliferation of embryonic cells stored in the body for a long time and that there is a high degree of similarity between tumors and embryos (6). Moreover, a study has shown that genes related to tumors can affect the normal development and differentiation of cells (7). Tumors are the products of embryonic gene expression and the result of the activation and expression of numerous oncogenes in the body (7). Early studies have confirmed that interconversion between tumor cells and early embryonic cells is possible under specific conditions (8,9). In 2000, Hanahan and Weinberg (2) proposed six major characteristics of tumor cells, including unlimited replication, tissue invasion, insensitivity to growth resistance, self‑sufficient growth, evasion of apoptosis and sustained angiogenesis. Subsequently, in 2011, they added four more features of tumor cells, including genomic instability, promotion of inflammation, avoidance of immune response and energy dysregulation (10). These characteristics are very similar to the biological features of early embryonic cells. For example, gene methylation and demethylation, cell implantation, functional gene expression, cellular immune evasion and other such aspects in the early embryonic growth and development are strikingly like the biological function and behavior of tumor cells (11‑14). Both embryonic and tumor cells can be deprogrammed to achieve a proliferative stem cell state with potential for apoptosis and invasiveness. Therefore, it is hypothesized that the set of genes expressed in tumor cells may be the same as those expressed in embryonic cells, particularly those genes involved in deprogramming, proliferation and undifferentiation (4,15‑21).

Key words: tumor, embryo, developmental biology, evolutionary biology
The present study focused on the similarity of gene expression related to early embryonic development and tumor growth. Nine factors highly associated with tumor regulation, including MYC, MYB, BCL-2, BCL-2-interacting protein 3 (BNIP3), p53, PTEN, PI3K, AKT and mTOR were selected as experimental research subjects. These nine factors occupy important positions in the large regulatory network of the body (22-27). Changing of their expression may lead to changes or even loss of control of the regulatory network in the present study (22,26-37). In addition, these factors are highly related to the development and growth, regulatory mechanisms and microenvironment maintenance of early embryos (4,6,17,30-38-42). MYC (29,31,43), MYB (26), BCL-2 (44-46), BNIP3 (47), p53 (27,48), PI3K (22,28), AKT (23,49) and mTOR (32,50-53) are regarded as proto-oncogenes that serve important roles in cell proliferation and differentiation, apoptosis, cell cycle regulation and metabolic processes. In previous studies of mouse embryonic development, high mRNA and protein expression levels of these proto-oncogenes were also detected in mouse embryos. The expression of these proto-oncogenes was highly associated with the successful implantation of fertilized eggs into the uterus, which could be determined by observing whether the mice became pregnant (6,30,38-42,45,54-56).

The main function of the anti-oncogenic biomarker, PTEN, is to promote apoptosis and hinder cell proliferation, migration and local adhesion (57). Downregulation or loss of PTEN expression was found in a variety of tumors, such as non-small cell lung cancer and glioma (37,57). A previous study showed that PTEN has low expression levels in the zygote and blastocyst stages in early embryonic development of mice (58).

Since the early embryos used in the present study were those before gastrulation, it was impossible to obtain human or large primate early embryos due to ethical restrictions. Furthermore, retrieving the early embryos of mice could be painful for the mice (59). Therefore, the insect model was chosen in the present study. Drosophila could be a good model as much of the research on humans has been conducted with Drosophila (60). However, the eggs of Drosophila are too small to clearly distinguish the embryonic development stage within them (61).

Spodoptera litura breeding. S. litura were maintained in an artificial climate incubator in the following conditions: Temperature, 27±1°C; humidity, 60-80%; and 12-h light/dark cycle (67). Larvae were fed with artificial synthetic diet and adult moths were fed with 10% honey solution. The formulation of the artificial diet was the same as that used by the Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University (Kunming, China).

S. litura breeding. S. litura were maintained in an artificial climate incubator in the following conditions: Temperature, 27±1°C; humidity, 60-80%; and 12-h light/dark cycle (67). Larvae were fed with artificial synthetic diet and adult moths were fed with 10% honey solution. The formulation of the artificial diet was the same as that used by the Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations (67). Provision of food and water was ad libitum. Both the larvae and adult moths were fed with a diet containing a large amount of water, so additional drinking water was not provided. The feed and honey solution were refreshed every 2 days. Larvae between first and sixth instar were kept in breathable boxes until pupation began. Larvae were transferred to a fine sand box for pupation. The pupae were separated from the male and female according to the position of the cloaca on the pupae. After emergence, the adult S. litura were placed in glass boxes with a 1:1 sex ratio to mate and lay eggs; they were fed with honey solution at the bottom of the boxes. The mating and spawning of the eggs were recorded. Two hours after oviposition, the eggs for RNA extraction were harvested and put into liquid nitrogen for preservation. The hemocytes of 3rd instar larvae were extracted for use as a control. The hemolymph was allowed to escape by puncturing the hematopoietic cavity from the larval gastropods and collecting it in a 1.5-ml Eppendorf tube containing 5 µl 5% reduced glutathione. After obtaining 1 ml hemolymph, it was gently pipetted and centrifuged at 10,000 x g for 5 min at 4°C. The precipitated fraction was hemocytes.

Cell culture. T98G and HA cells were thawed at 37°C, centrifuged at 500 x g for 1 min at room temperature to remove DMSO, and cultured as follows: The T98G cells were cultured in DMEM/F12 (Gibco; Thermo Fisher Scientific, Inc.) with the addition of 10% (v/v) fetal bovine serum (FBS) (Lonza Group Ltd.) and 1% (v/v) solution of penicillin and streptomycin (Gibco; Thermo Fisher Scientific, Inc.) (65). HA cells were cultured in HA medium containing DMEM/F12 (Gibco; Thermo Fisher Scientific, Inc.), 10% (v/v) FBS (Gibco; Thermod Fisher Scientific, Inc.), 2% B27 supplements (Gibco; Thermo Fisher Scientific, Inc.), 3.5 mM glucose (Sigma-Aldrich), 10 ng/ml fibroblast growth factor 2 (Alomone Labs), 10 ng/ml epidermal growth factor (Alomone Labs), and 1% penicillin/streptomycin (Gibco; Thermo Fisher Scientific, Inc.) (66).

Reverse transcription-quantitative PCR (RT-qPCR). Total RNA samples for qPCR were extracted with RNA extraction kit (R6934-01; Omega Bio-Tek, Inc.), reverse transcription was carried out using a PrimeScript™ RT reagent Kit (RR047Q; Takara Bio, Inc.) according to the manufacturer’s protocol and the concentration was determined. The relative expression
levels of nine tumor-related genes and β-actin in early embryos and hemocytes of *S. litura*, the T98G and HA cell lines were measured by qPCR using an Applied Biosystems 7500 Fast Real-Time PCR System (Thermo Fisher Scientific, Inc.). The qPCR reaction procedure was as follows: 2 min at 50˚C and 10 min at 95˚C to activate the enzyme; 5 sec at 95˚C and 35 sec at 60˚C for 40 PCR cycles; 15 sec at 95˚C, 1 min at 60˚C, 30 sec at 95˚C and 15 sec at 60˚C to determine the melt curve. mRNA levels were quantified using the $2^{-\Delta\Delta Cq}$ method (68) and normalized to the internal quantitative reference gene β-actin. The primers used for T98G and HA cells are listed in Table SI, and those used for *S. litura* are listed in Table SII.

**Artemether (ART) treatment.** Hatching rate measurement, head width measurement and ART treatment were conducted under *S. litura* breeding conditions. Newly laid eggs of *S. litura* were soaked for 10 sec at 27˚C in 1 ml ART solution [300 ng/µl dissolved in 0.1% (v/v)] three times each day until eggs started hatching. As a blank control, newly laid eggs were soaked for 10 sec at 27˚C in 1 ml H₂O, and as a negative control, newly laid eggs were soaked for 10 sec at 27˚C in in 1 ml 0.1% DMSO solution. ART itself is slightly soluble in water and 0.1% DMSO was added to the solution to increase the solubility of ART, so a 0.1% DMSO negative control group was set up in this experiment. The hatching rate of eggs was counted after 2 days of treatment. For the experiment on larvae ART treatment, 270 healthy newly hatched larvae were reselected and were divided into three groups. The groups of larvae were fed with a normal diet, a diet containing 0.1% DMSO and a diet containing 300 ng/µl ART, respectively, for 14 days until they pupated. During the feeding period, the width of the larvae's head capsule was measured once a day. All ART treatment experiments included three independent replicates.

**Neighbor joining (NJ) tree construction.** The gene sequences of MYB, MYC, BCL-2, BNIP3, p53, PI3K, AKT, mTOR and

Figure 1. NJ phylogenetic tree of oncogenes and anti-oncogenes in 20 species. NJ phylogenetic trees of the oncogenes (A) MYB, (B) MYC, (C) BCL-2, (D) BNIP3, (E) p53, (F) PI3K, (G) AKT and (H) mTOR as well as for (I) the anti-oncogene PTEN in 20 species, including *Spodoptera litura* and *Homo sapiens*. BNIP3, BCL-2-interacting protein 3; NJ, neighbor joining.
PTEN of *S. litura*, *Homo sapiens* and 18 other invertebrates and vertebrates were downloaded from the NCBI database (https://www.ncbi.nlm.nih.gov/gene/?term=). The accession numbers of all downloaded sequences are listed in Table SIII. The FASTA file was analyzed with MEGA7.0 (69), and the systematic cluster tree was constructed by NJ.

**Statistical analysis.** mRNA expression levels between T98G cells and HA cells, and between early embryos and larval hemocytes were compared by unpaired Student's t-test. mRNA expression of H$_2$O-treated, DMSO-treated and artemether (ART)-treated eggs was compared using one-way ANOVA and Tukey. The hatch rate of H$_2$O-treated, DMSO-treated and ART-treated eggs was compared using one-way ANOVA and Tukey to confirm normal larval growth within the group (70). GraphPad Prism 9.0 (GraphPad Software, Inc.) was used for data analysis and graph plotting. P<0.05 was considered to indicate a statistically significant difference.

**Results**

*Gene building sequence alignment of S. litura.* As shown in Fig. 1, MYB, MYC, BCL-2, BNIP3, p53, PI3K, AKT, mTOR and PTEN genes are related between the 20 species, indicating
the evolutionary developmental conservation of the nine tumor-related factors.

### mRNA expression levels of tumor marker genes in T98G cells

The mRNA expression levels of eight oncogenes including MYB, MYC, BCL-2, BNIP3, p53, PI3K, AKT and mTOR in T98G and HA cells were detected (Fig. 2A-H). The results demonstrated that the mRNA expression levels of the eight oncogenes in T98G cells were significantly higher compared with that in the control group. The mRNA expression level of the anti-oncogene, PTEN, in T98G cells was significantly lower compared with that in the HA cell control group (Fig. 2I). These results demonstrated that seven of these nine genes may be excellent indicators of tumor cells. As soon as the expression of these marker genes is detected, it is possible to distinguish cells which are more like tumor cells, and which are not.

### mRNA expression of tumor marker genes in early embryos and larval hemocytes of *Spodoptera litura*

The mRNA expression levels of the eight oncogenes (MYB, MYC, BCL-2, BNIP3, p53, PI3K, AKT and mTOR) and the anti-oncogene (PTEN) were determined in *S. litura* early embryos and larval hemocytes (Fig. 3). The results demonstrated that the mRNA expressions of the eight oncogenes in early embryos were significantly higher compared with that in the larval control group (Fig. 3A-H). mRNA expression of the anti-oncogene, PTEN, in early embryos was significantly lower compared with that in the larval hemocytes control group (Fig. 3I). The expression levels of these oncogenes in early embryos of *S. litura* showed the
same trend in T98G cells, suggesting that the metabolisms of tumor cells are more like S. litura early embryos than differentiated cells such as hemocyte.

**Anti-cancer drugs cause the death of eggs but not fully developed larvae.** In our previous studies, ART was demonstrated to exhibit excellent antitumor effects in vitro and in vivo via targeting several oncogenes and anti-tumor genes (36,71-75). The results demonstrated that the hatching rate of eggs was significantly decreased after ART treatment compared with H2O treatment and DMSO treatment (Fig. 4A). Furthermore, following ART treatment, the mRNA expression levels of PI3K, AKT, mTOR and p53 in S. litura embryos treated with ART were reduced. *P<0.05; **P<0.01; ***P<0.001. (B) The head capsule width was measured and analyzed to evaluate the growth and the development of S. litura larvae in ART-treated, DMSO-treated and ART-treated larvae. To indicate normal larval growth within the group, the larval head capsule widths within a single group were also compared with those of newly hatched 1st instar larvae on day 1. All three groups of larvae showed the same growth trend. *P<0.01, **P<0.001 and ***P<0.0001 vs. day 1 (same group). No significant differences in growth trends were observed among the larvae of the ART, DMSO and control groups. ART, artemether; ns, not significant.

**Discussion**

Malignant glioma is one of the most serious tumors, yet little is known about the pathogenesis of malignant glioma and other tumors (36). The causes of tumor formation are a matter of developmental biology. In our perspective of view, oncogenic
factors in the environment and oncogenes in cells may initiate the rapid cell division, an ability obtained by cells after they became embryonic stem cells to ensure survival (76). In the absence of oncogenic stimulation, the rate of cell division would be reduced. Therefore, simply looking for carcinogenic factors and cancer suppressing drugs is not a solution to the cancer treatment problems such as side effects and drug resistance. From this perspective, the present study focused mainly on the similarity of the regulatory mechanisms between early embryonic development and tumor growth.

A number of in vitro systems have been established for the study of malignant gliomas, including the well-known U87, U251 and T98G cell lines. The glioma cell line used in this study was T98G because, morphologically, it is a fibroblast and is more likely to form cell clusters, which are more similar to the cellular division and proliferation of early embryos (77). In addition, this study detected expression levels of p53. Therefore, T98G cells, which could stably express p53, was an excellent candidate (78). Since p53 in S. litura has two opposite functions of both promoting and inhibiting apoptosis (79,80), we hypothesized that it could be determined whether similar mutations had occurred in p53 in early embryos and hemocytes of S. litura using the sequences of wild-type and mutant p53 in T98G cells as a reference. However, as the mutation sites could not be accurately identified by Sanger sequencing, transcriptome, proteome and SNP analyses will be performed in future studies.

Since the early embryos used in this study were those before gastrula, it was not possible to obtain human early embryos, as it is contrary to ethics and the original intention of treating diseases. The most commonly used human embryonic cell lines are not at this stage. Therefore, human embryonic cell lines were not selected. Retrieving the early embryos of mice could also be extremely painful for mice, which should be avoided. Other vertebrates such as chicken were also considered; however, due to the lack of suitable husbandry facilities and larger breeding sites, and the difficulty and expense of obtaining other vertebrate materials, an insect model organism was finally chosen for the present research. Therefore, we chose the insect S. litura, which is closely related to Drosophila, as it grows fast, is inexpensive and is easy to obtain. Besides, S. litura lay larger eggs and it is easy to observe the embryonic stage in the eggs with a low magnification dissecting microscope (62,67). However, S. litura is mainly used for specific innate immunity studies (67,70,79,81,83), and, to the best of our knowledge, this is the first time that S. litura is being used in oncology research. Therefore, organisms, such as Drosophila, are also included in the NJ tree to show that S. litura is related to Drosophila and could potentially be used in oncology research.

Nine factors highly associated with tumor regulation, including MYC, MYB, BCL-2, BINP3, p53, PTEN, PI3K, AKT and mTOR, were selected for investigation. These nine factors occupy very important positions in the large regulatory network as changes in their expression and function may lead to changes or even loss of control of the regulatory network (22-27). There is an obvious difference between the present and previous studies-the use of invertebrates as experimental materials (23,25-27,29,37,45,84) According to the NJ phylogenetic trees of 20 species presented in this study, these nine tumor-related key regulators are evolutionarily conserved in these species, suggesting that their functions may also be conserved.

The results of the present study revealed high expression levels of MYC, MYB, BCL-2 and BINP3 mRNA in T98G cells, which was also observed in early embryos. The oncogenes MYC and MYB may serve similar roles in the growth-promoting regulation mechanisms of early embryogenesis and tumor growth (25,26,29), and the oncogenes BCL-2 and BINP3 may serve anti-apoptotic and microenvironmental roles in both early embryonic stage and tumor growth (25,46,85,86). This conclusion supports the embryonic concept of a tumor and indicated that functional genes that serve a dominant role in the tumor and early embryos may be identical.

The high mRNA expression level of the BINP3 in early embryos and tumor cells suggested that the microenvironment of the early embryo may be highly similar to that of a tumor. BINP3 is a downstream target protein of hypoxia-inducible factor, HIF-1α (24). High expression of HIF-1α in hypoxic environments can directly promote the high expression of BINP3. HIF-1α and BINP3 serve important roles in the maintenance of the hypoxic microenvironment in early embryos and tumors (24,47,84). In a previous study, it was demonstrated that embryonic development and embryonic cell growth require a good healthy microenvironment rather than a hypoxic tumor-like microenvironment (87). Therefore, the high similarity of the microenvironment between early embryos and tumors suggests that there may be a high degree of similarity between the gene expression in early embryos and tumor cells, as the similar microenvironments are regulated by the similar expression of genes.

p53 mRNA expression in the early embryos of S. litura was also examined. Previous studies have reported that bracovirus could upregulate p53 in S. litura larval hemocytes to induce apoptosis, suggesting that p53 in hemocytes might function similarly to human wild-type p53 (67,80). However, p53 mRNA expression in early embryos of S. litura and T98G cells were higher compared with larval hemocytes and HA cells, respectively, suggesting that p53 in early embryos, consistent with tumors, lost its apoptotic function and serves a role as growth promoter (48). The high expression of p53 in early embryos suggested similarities in the expression and function of p53 between early embryos and tumors.

The expression of the anti-oncogene, PTEN mRNA in T98G cells and early embryos of S. litura exhibited the same trend of low expression, which suggested that PTEN is expressed at a very low level or not expressed at all in the early embryonic stage or in tumors, and the proapoptotic effect is inhibited. Previous studies demonstrated that PTEN expression was low in tumor cells compared with normal cells (37,57). The present results suggested that PTEN expression was also low in S. litura early embryos. The similarity of the early embryo and the tumor cell was further demonstrated by the low expression of PTEN in both compared with that in normal somatic cells.

The high expression levels of PI3K, AKT and mTOR in early embryos and T98G cells suggested that this signaling pathway may serve an important regulatory role in both, confirming the high similarity of signaling pathway regulation between early embryos and tumors. Previous studies have
demonstrated that PI3K, AKT and mTOR expression was high in tumor cells compared with normal cells (23). The present results suggested that these genes were also highly expressed in *S. litura* early embryos. mTOR is an important node at which multiple signaling pathways intersect and is therefore an important link in the regulatory network (23,88,89).

In the present study, the similarity in the expression trends of functionally important genes between the early embryos and tumor cells was discussed by comparing the mRNA expression levels of nine evolutionarily conserved tumor-associated regulatory factors in early embryos and T98G cell lines. In addition, when early embryos and developed larvae of *S. litura* were treated with artemether [It was considered a typical antitumor compound in our previous studies, which could cause apoptosis by inhibiting the expression of oncogenes such as mTOR and BCL-2 and increasing the expression of oncogenes such as PTEN in cancer cells; however, artemether has no effect on normal cells (36,72-75)], our results demonstrated that artemether killed the early embryos but not the larvae. In addition, the present study revealed that the expression of oncogenes was reduced, and the expression of the anti-tumor gene was increased in *S. litura* early embryos after treatment with artemether, and the hatching rate of eggs was reduced, and the mortality rate increased after treatment with artemether, which was similar to the increase in apoptosis of tumor cells after treatment with artemether (36). These data suggested that gene expression and metabolism of early embryos and glioma cells are extremely similar.

The results of the present experiments preliminarily confirm the concept of the embryonic origin of tumors, and place tumors from a cancer-based perspective into the perspective of individual development and evolution, that is, tumor-related regulatory factors are used to protect and promote early embryonic development and ensure the normal growth of living individuals in the early stages of their development (4,5). However, towards the end of an individual's life, tumor-associated regulatory factors are reactivated to create an embryonic-like mechanism, which competes strongly with the host and eventually outcompetes the host (90,91). The tumor is a life-regulating mechanism that has evolved over a long period of time and has been selected by natural selection and is both the beginning and the end of life (91,92).

The present study will help to reveal the gene expression regulating early embryonic development, expand the study of tumorigenesis, enrich the discourse that tumor-associated regulators are products of individual development and population evolution, and further contribute to the exploration of the nature of life and tumors and the complex relationship between them.

**Acknowledgements**

The authors are would like to thank Professor Li Wang for helpful discussions and revision of the manuscript (Department of Medicine, Oncological Sciences and Huntsman Cancer Institute, University of Utah, UT, USA). The authors would also like to thank Dr Xi-Cai Wang, Dr Cong-Guo Jin and Dr Xiao-qun Chen for their technical assistance (Yunnan Tumor Institute, The Third Affiliated Hospital of Kunming Medical University; Kunming, China) and Kunming Pharmaceutical Commercial Co., Ltd. for provision of the artemether.

**Funding**

This research was supported by The Science and Technology Project of the Yunnan Health Department (grant no. 2011WS0065) and The Research and Talent Training Open Foundation of Life Science College, Yunnan University (Grant no. 2013S213).

**Availability of data and materials**

All data generated or analyzed during this study are included in this published article.

**Authors' contributions**

QCC, QSZ and CHC conceived and designed the experiments. DLL performed the qPCR of *Spodoptera litura* samples and tumor cell samples. PF and YYZ bred *Spodoptera litura* for all experiments, harvested hemocytes and performed mRNA extraction of hemocytes. YKY and CH performed head capsule width measurement and collected all measurement data. CWG and SQZ prepared the ART solution for ART treatment of newly laid eggs and larvae and performed ART treatment of newly laid eggs. YZ and YYL analyzed all sequences, calculated genetic distances, variability and conservation between species, and constructed NJ trees in the article. QCC, DLL, YZ and YYL analyzed the data. QCC and DLL drafted the manuscript. CWG, QSZ and CHC and revised the manuscript. CWG, QSZ and CHC confirmed the authenticity of the data. All authors read and approved the final manuscript.

**Ethics approval and consent to participate**

Not applicable.

**Patient consent for publication**

Not applicable.

**Competing interests**

The authors declare that they have no competing interests.

**References**

1. Pierce GB: The cancer cell and its control by the embryo. Rous-Whipple Award lecture. Am J Pathol 113: 117-124, 1983.
2. Hanahan D and Weinberg RA: The hallmarks of cancer. Cell 100: 57-70, 2000.
3. Krebs ET: Cancer and the embryonal hypothesis. Calif Med 66: 270-271, 1947.
4.  Ma YL., Zhang P, Wang F, Yang JI, Yang Z and Qin HL: The relationship between early embryo development and tumourigenesis. J Cell Mol Med 14: 2697-2701, 2010.
5. Cofre J and Abdelhuy E: Cancer is to embryology as mutation is to genetics: Hypothesis of the cancer as embryological phenomenon. Sci World J 2017: 3578090, 2017.
6. Murray MJ and Lessey BA: Embryo implantation and tumor metastasis: Common pathways of invasion and angiogenesis. Semin Reprod Endocrinol 17: 275-290, 1999.
7. Vogelstein B and Kinzler KW: Cancer genes and the pathways they control. Nat Med 10: 789-799, 2004.
8. Williams JH III, Carlson DL, Gadson RG, Rollins-Smith L, Williams CS and McKinney RL: Cytogenetic analysis of triploid renal carcinoma in Rana pipiens. Cytogenet Cell Genet 64: 18-22, 1993.
9. Bignold LP, Coghlan BL and Jersmann HP: Hansemann, Boveri, chromosomes and the gametogenesis-related theories of tumours. Cell Biol Int 30-38, 2004.
10. Halahmam D and Weinberg RA: Hallmarks of cancer: The next generation. Cell 144: 646-674, 2011.
11. Nordstrom L, Andersson E, Kuki V, Gustavsson E, Holm K, Rönnm L, Guldberg P and Ek S: DNA methylation and histone modifications regulate SOX11 expression in lymphoid and solid cancer cells. Mol Cancer 15: 273, 2016.
12. Gobiadulinova A, Tothova V and Pastorekova S: Transcriptional regulation and functional implication of S100P in cancer. Amino Acids 41: 885-892, 2011.
13. Carosella ED, Rouas-Freiss N, Tronik-Le Roux D, Moreau P and Cartron J-P: Human embryonic genes re-expressed during carcinogenesis. Stem Cell Rev 3: 101, 2007.
14. Zhu L, Qi BX and Hou DR: Roles of HIF1-α-regulated signaling pathways during carcinogenesis. Stem Cell Rev 3: 444, 2007.
15. Monk M and Holding C: Human embryonic genes re-expressed during carcinogenesis. Stem Cell Rev 3: 444, 2007.
16. Zhang Y, Wang H, Ren C, Yu H, Fang W, Zhang N, Gao S and Chang Y: Effect of rapamycin treatment during post-activation and/or in vitro culture on embryonic development after parthenogenensis and in vitro fertilization in pigs. Reprod Domest Anim 52: 741-748, 2017.
17. Lee GK, Shin H and Lim HJ: Rapamycin influences the efficiency of in vitro fertilization and development in the mouse: A role for autophagic activation. Asian-Australas J Anim Sci 29: 1102-1110, 2016.
18. Pal SK, Crowell R, Kiessling AA and Cooper GM: Expression of proto-oncogenes in mouse eggs and preimplantation embryos. Mol Reprod Dev 35: 8-15, 1993.
19. Wang J, Ma X, Jones HM, Chan LL, Song F, Zhang W, Bae-Jump VL and Zhou C: Evaluation of the antitumor effects of c-Myc-Max heterodimerization inhibitor 100258-F4 in ovarian cancer cells. J Transl Med 12: 446, 2014.
20. Chami M, Prandi A, Campanella M, Pinton P, Szabadkai G, Levine AJ and Oren M: The first 30 years of p53: Growing ever more complex. Nat Rev Cancer 9: 749-758, 2009.
21. Xu LF, Wu ZP, Chen Y, Zhu QS, Hamidi S and Navab R: MicroRNA-21 (miR-21) regulates cellular proliferation, invasion, migration, and apoptosis by targeting PTEN, RECK and Bcl-2 in human squamous carcinoma, Gejiu City, China. PLoS One 9: e103698, 2014.
22. Chen Y, Yang JL, Xue ZZ, Cai QC, Hou C, Li HJ, Zhao LX, Zhang Y, Gao CW, Cong L, et al: Effects and mechanism of microRNA-218 against lung cancer. Mol Med Rep 23: 28, 2021.
23. Chen Y, Hou C, Zhao LX, Cai QC, Zhang Y, Li DL, Tang Y, Liu Y, Liu YY, Zhang YY, et al: The association of microRNA-34a with high incidence and metastasis of lung cancer in gejiu and xuanwei yunnan. Front Oncol 11: 691348, 2021.
24. Zhu QS, Cao CH, Yang JL, Li HJ, Zhang Y, Cai QC, Chen Y, Gao CW, Hou C, Li X, et al: Biological effects of artemether in U251 glioma cells. Jap J Oncol Clin Res 2: 1-10, 2020.
25. Alvarez-Garcia V, Tawil Y, Wise HM and Leslie NR: Mechanisms of PTEN loss in cancer: It's all about diversity. Semin Cancer Biol 59: 66-79, 2019.
26. Elahi F, Lee H, Lee J, Lee ST, Park CK, Hyun SH and Lee E: Effect of rapamycin treatment during post-activation and/or in vitro culture on embryonic development after parthenogenensis and in vitro fertilization in pigs. Reprod Domest Anim 52: 417-448, 2017.
56. Hu W, Feng Z, Teresky AK and Levine AJ: p53 regulates maternal reproduction through LIF. Nature 450: 721-724, 2007.

57. Gkountakos A, Sartori G, Falcone I, Piro G, Cluffreda L, Cantatore M, Soraci A, Birchall G: The cell biology of EGF receptors in lung cancer: Dealing with the problem, building on new knowledge and turning the game around. Cancers (Basel) 11: 1141, 2019.

58. Xu W: Localization and expression of PTEN during early embryonic development and its effects Northwest A & F University, 2010.

59. Moreno-Moya JM, Ramirez L, Villela F, Martinez S, Quiñónero A, Noguera I, Pellicer A and Simón C: Complete method to obtain, culture, and transfer mouse blastocysts nonsurgically to study implantation and development. Fertil Steril 101: e13, 2014.

60. Pandey UB and Nichols CD: Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 63: 411-436, 2011.

61. Markow TA, Beall S and Matzkin LM: Egg size, embryonic development time and ovoviviparity in Drosophila species. J Evol Biol 22: 430-454, 2009.

62. Cheng T, Wu J, Wu Y, Chilukuri RV, Huang L, Yamamoto K, Feng L, Li W, Chen Z, Guo H, et al: Genomic adaptation to polyphagy and insecticides in a major East Asian noxious pest. Nat Ecol Evol 1: 1747-1756, 2017.

63. Perveen F, Saeed M, Abbasi FM, Siddiqui NY and Gulu A: Identification of β-chain of F0 chain of FO of Spodoptera litura. J Agricultural Sci Technol 4: 469-477, 2016.

64. Bi HL, Xu J, Tan AJ and Huang YP: CRISPR/Cas9-mediated targeted genetic mutagenesis in Spodoptera litura. Insect Sci 23: 469-477, 2016.

65. Abate M, Scotti L, Nele V, Caraglia M, Biondi M, De Rosa G, Cai QC, Chen CX, Liu HY, Zhang W, Han YF, et al: Characterization of Embryonic Stages through Variations in the Egg's Contents in Spodoptera litura. J Agricultural Sci Technol 4: 430-434, 2010 (In Chinese).

66. Yin JC, Zhang L, Ma NX, Wang Y, Lee G, Hou XY, Lei ZF, Zhang FY, Dong FP, Wu GY and Chen G: Chemical conversion of human fetal astrocytes into neurons through modulation of multiple signaling pathways. Stem Cell Rep 12: 488-501, 2019.

67. Zhou GF, Chen CX, Cai QC, Yan X, Peng NN, Li XC, Cui JH, Zhang FY, Dong FP, Wu GY and Chen G: Chemical conversion of human fetal astrocytes into neurons through modulation of multiple signaling pathways. Stem Cell Rep 12: 488-501, 2019.

68. Raza O, Huang X, Zhou Z and Lin X: An improvement of the 2^-delta delta CT method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath 3: 71-85, 2013.

69. Kumar S, Stecher G and Tamura K: MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 1870-1874, 2016.

70. Kou TC, Liu YT, Li M, Yang Y, Zhang W, Cui JH, Zhang XW, Dou SA, Xu S, You S, et al: Detection of F0 chain of FO of Spodoptera litura. J Agricultural Sci Technol 4: 469-477, 2016.

71. Deng SM, Cai QC, Zhang W, Zhang XW, Kow TC, Cai QC, Xu S, You S, Yu DS, Ding L, et al: Inhibition of translation initiation factor eIF4A is required for apoptosis mediated by Microplitis bicoloratus bracovirus. Arch Insect Biochem Physiol: 96, 2017 doi: 10.1002/arch.21423.

72. Cai QC, Chen CX, Liu HY, Zhang W, Han YF, Zhang Q, Zhou GF, Xu S, Liu T, Xiao W, et al: Interactions of Vank proteins from Microplitis bicoloratus bracovirus with host Dip3 suppress eIF4E expression. Dev Comp Immunol 118: 103994, 2021.

73. Chen CX, He HJ, Cai QC, Zhang W, Kow TC, Zhang XW, You S, Chen YB, Liu T, Xiao W, et al: Bracovirus-mediated innexin hemichannel closure in cell disassembly. iScience 24: 102281, 2021.

74. Gorbunova AS, Yapryntseva MA, Deniskeno TV and Zhivotovsky B: BNIP3 in Lung cancer: To kill or rescue? Cancers (Basel) 12: 3590, 2020.

75. Wu Y and Tang L: Bcl-2 family proteins regulate apoptosis and epithelial to mesenchymal transition by calcium signals. Curr Pharm Des 22: 4700-4704, 2016.

76. Dlamini Z, Tshidino SC and Hull R: Abnormalities in alternative polyphagy and insecticides in a major East Asian noctuid pest. Sci 16: 27171-27190, 2015.

77. Hu W, Feng Z, Teresky AK and Levine AJ: p53 regulates maternal reproduction through LIF. Nature 450: 721-724, 2007.

78. Gu Z, Guo J, Wang H, Wen Y and Gu Q: Bioengineered microenvironment to culture early embryos. Cell Prolif 53: e12754, 2020.

79. Norambuena A, Wallrabe H, McMahon L, Silva A, Swanson E, Khan SS, Baerthlein D, Kodis E, Oddo S, Mandell JW and Bloom GS: mTOR and neuronal cell cycle reentry: How impaired brain insulin signaling promotes Alzheimer's disease. Alzheimers Dement 13: 152‑167, 2017.

80. Song L, Liu S, Zhang L, Yao H, Gao F, Xu D and Li Q: MiR-21 modulates radiosensitivity of cervical cancer through inhibiting autophagy via the PTEN/Akt/mTOR signaling pathway. Tumor Biol 37: 12161-12168, 2016.

81. Somarelli JA: The hallmarks of cancer as ecologically driven phenotypes. Front Ecol Evol 9: 661583, 2021.

82. Merlo LMF, Pepper JW, Reid BJ and Maley CC: Cancer as an evolutionary and ecological process. Nat Rev Cancer 6: 924-935, 2006.

83. Dujon AM, Aktipis A, Alix-Panabieres C, Amend SR, Boddy AM, Brown JS, Capp JP, DeGregori J, Ewald P, Gatenby R, et al: Interactions of Vank proteins from Microplitis bicoloratus bracovirus with host Dip3 suppress eIF4E expression. Dev Comp Immunol 118: 103994, 2021.

84. Wu Y and Tang L: Bcl-2 family proteins regulate apoptosis and epithelial to mesenchymal transition by calcium signals. Curr Pharm Des 22: 4700-4704, 2016.

85. Hu W, Feng Z, Teresky AK and Levine AJ: p53 regulates maternal reproduction through LIF. Nature 450: 721-724, 2007.

86. Dlamini Z, Tshidino SC and Hull R: Abnormalities in alternative polyphagy and insecticides in a major East Asian noctuid pest. Sci 16: 27171-27190, 2015.

87. Hu W, Feng Z, Teresky AK and Levine AJ: p53 regulates maternal reproduction through LIF. Nature 450: 721-724, 2007.

88. Dlamini Z, Tshidino SC and Hull R: Abnormalities in alternative polyphagy and insecticides in a major East Asian noctuid pest. Sci 16: 27171-27190, 2015.

89. Hu W, Feng Z, Teresky AK and Levine AJ: p53 regulates maternal reproduction through LIF. Nature 450: 721-724, 2007.