Highly heterogeneous-related genes of triple-negative breast cancer: potential diagnostic and prognostic biomarkers

Yiduo Liu†, Linxin Teng†, Shiyi Fu1, Guiyang Wang1, Zhengjun Li2, Chao Ding1, Haodi Wang1 and Lei Bi1*

Abstract

Background: Triple-negative breast cancer (TNBC) is a highly heterogeneous subtype of breast cancer, showing aggressive clinical behaviors and poor outcomes. It urgently needs new therapeutic strategies to improve the prognosis of TNBC. Bioinformatics analyses have been widely used to identify potential biomarkers for facilitating TNBC diagnosis and management.

Methods: We identified potential biomarkers and analyzed their diagnostic and prognostic values using bioinformatics approaches. Including differential expression gene (DEG) analysis, Receiver Operating Characteristic (ROC) curve analysis, functional enrichment analysis, Protein-Protein Interaction (PPI) network construction, survival analysis, multivariate Cox regression analysis, and Non-negative Matrix Factorization (NMF).

Results: A total of 105 DEGs were identified between TNBC and other breast cancer subtypes, which were regarded as heterogeneous-related genes. Subsequently, the KEGG enrichment analysis showed that these genes were significantly enriched in ‘cell cycle’ and ‘oocyte meiosis’ related pathways. Four (FAM83B, KITLG, CFD and RBM24) of 105 genes were identified as prognostic signatures in the disease-free interval (DFI) of TNBC patients, as for progression-free interval (PFI), five genes (FAM83B, EXO1, S100B, TYMS and CFD) were obtained. Time-dependent ROC analysis indicated that the multivariate Cox regression models, which were constructed based on these genes, had great predictive performances. Finally, the survival analysis of TNBC subtypes (mesenchymal stem-like [MSL] and mesenchymal [MES]) suggested that FAM83B significantly affected the prognosis of patients.

Conclusions: The multivariate Cox regression models constructed from four heterogeneous-related genes (FAM83B, KITLG, RBM24 and S100B) showed great prediction performance for TNBC patients’ prognostic. Moreover, FAM83B was an important prognostic feature in several TNBC subtypes (MSL and MES). Our findings provided new biomarkers to facilitate the targeted therapies of TNBC and TNBC subtypes.

Keywords: Triple-negative breast cancer, Biomarkers, Targeted therapies, Heterogeneous-related genes

* Correspondence: bella_nj@163.com; lbi@njucm.edu.cn
† Yiduo Liu and Linxin Teng contributed equally to this work.
1School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, Jiangsu, China
Full list of author information is available at the end of the article

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Background
Judging from the immunohistochemistry (IHC) expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor2 (HER2), breast cancer can be broadly classified into luminal-like (luminal A/B-like), HER2-positive, and triple-negative [1–4]. Triple-negative (ER−, PR−, and HER2−) breast cancer (TNBC), a heterogeneous disease, comprises approximately 10–20% of all breast cancers [5–8] and can be further grouped into distinct subtypes by gene expression profiling [9]. TNBC has higher histopathological grade, proliferation index and risk of invasion than other breast cancer subtypes [10, 11], posing a great challenge for public health.

Due to the peculiar phenotype of TNBC, patients with the conventional anti-cancer treatment strategies may not show effective outcomes. Chemotherapy currently is the standard treatment [12–14], while TNBC patients frequently develop resistance to the chemotherapy drugs [15–17]. Over 50% are likely to recur after chemotherapy regimens [18, 19], which gives rise to great difficulty for the treatment of TNBC. Furthermore, the accurate diagnosis of early-stage TNBC is still tricky, and the advanced stage may accompany a poor prognosis [7, 10, 20]. Previous studies reported that the 5-year survival rate of TNBC patients dramatically decreased from stage II to stage III (from 76% to 45%) [21], which suggested that early diagnosis could improve the survival rate of TNBC [22]. Hence, it is urgent to find the specific and sensitive biomarkers to diagnose TNBC.

Recently, bioinformatics methods were widely used in cancer research and applied to study the molecular mechanisms of diseases [23–28]. The pathogenesis of TNBC may be a series of modifications of genetic, genomic and expression profiles [29]. Therefore, transcriptome based genetic perspective research is helpful to understand the occurrence and development of TNBC [30]. Biomarkers may have a great accurate prediction of metastatic behaviors in TNBC [31]. Furthermore, they can evaluate the diagnosis and prognosis of TNBC subtypes [32]. Overall, bioinformatics would contribute to the precise treatment of TNBC. In this study, transcriptome data were used to explore potential biomarkers of TNBC and TNBC subtypes. The workflow showed in Fig. 1.

Methods
Acquisition of gene expression data and patient’s clinical information
Gene expression microarray datasets were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/geo/) according to the following requirements: (1) dataset was mRNA expression profile data; (2) the information of the platform annotation was accessible; (3) the expression data of microarray had been published. Therefore, the datasets including GSE115275 [33] and GSE62931 [34] were downloaded by GEO query package in R software (version 3.6.1, https://www.r-project.org). Meanwhile, mRNA sequencing data of 1247 samples of breast cancer and normal breast tissue were acquired from the TCGA database (http://portal.gdc.cancer.gov/). Subsequently, the data from TCGA and GEO datasets were filtered, and a total of 120 normal tissue samples, 176 TNBC samples, and 916 non-TNBC samples were finally brought into our study (Additional file 1: Table S1).

Differential expression gene analysis
Before differential expression gene (DEG) analysis, tumor purity estimation and principal component analysis (PCA) were used to evaluate the samples. The limma package was used to perform DEG analysis, and DEGs (FDR < 0.05 & |log2FC| ≥ 1) were considered to be significantly changed. Then, the up- and down-regulated DEGs were further verified in sequencing data of TCGA.

Receiver operating characteristic curve analysis and enrichment analysis
The plotROC package was employed to predict the ability of DEGs to identify TNBC from breast cancer via Receiver Operating Characteristic (ROC) curve analysis. DEGs with Area Under the Curve (AUC) higher than 0.7 were further used for GO and KEGG (www.kegg.jp/kegg/kegg1.html) [35, 36] pathway enrichment analyses through FunRich (version 3.1.3, http://www.funrich.org) software [37].

Protein-protein interaction network and module analysis
In the meanwhile, DEGs with discriminative ability to TNBC were used to download protein interaction information from STRING (https://string-db.org/). After that, Cytoscape (version 3.6.0, https://cytoscape.org) software was employed to build the protein-protein interaction (PPI) network. Molecular Complex Detection (MCODE) plug-in was used to detect modules in the network [38, 39]. Models with score ≥ 5 were considered for further enrichment analysis, which could help to explore the potential biological functions of DEGs. Subsequently, the CytoNCA was applied to evaluate betweenness centrality (BC), degree centrality (DC), and closeness centrality (CC) of the nodes in the network modules [40].

Univariate and multivariate cox regression analysis
Survival package in R software was performed to univariate Cox regression analysis of DEGs, and DEGs with p < 0.05 were considered as prognosis signatures. Then, multivariate Cox regression models for the DFI (DFI defined as the time between the treatment of primary cancer and the development of regional metastases [41]) and PFI (PFI defined as the time from randomization to the first documentation of objective tumor progression
or death [42]) were established based on these DEGs. And the risk score was calculated according to the following formula: risk score = \sum_{i=1}^{n} (coef_i \times Expr_i), where coef was the regression coefficient of genes and expr represented the gene expression values. According to the median risk score, TNBC samples were divided into high- and low-risk groups. Besides, the time-dependent ROC curve was plotted, which presented the predictive accuracy of multivariate Cox regression models. Furthermore, rms package was used to integrate the clinical information (including age, pathological stage, menopause and ethnicity) into the multivariate Cox regression model, and the sensitivity and specificity of the model were calculated.

Survival analyses of TNBC subtypes

TNBCtype (https://cbc.app.vumc.org/tnbc/) tool [43] and the TNBC subtype-specific genes [44] were respectively used to identify TNBC subtypes. Six distinct subtypes were discovered by TNBCtype, including two basal-like (BL1 and
BL2), an immunomodulatory (IM), a mesenchymal (M), a mesenchymal stem-like (MSSL), and a luminal androgen receptor (LAR). And four TNBC clusters, such as Luminal Androgen Receptor (LAR), mesenchymal (MES), basallike immunosuppressed (BLIS), and basal-like immune-activated (BLIA) were obtained based on TNBC subtype-specific genes. Finally, the prognostic value of TNBC prognostic factors was evaluated according to these classifications.

Results
Identification of DEGs in TNBC tissue samples
The tumor purity of 1092 breast cancer tissues were between 0.159 and 0.994, and 56.4% of them had a purity value greater than the mean of 0.741 (Fig. 2a-b). Additionally, the results of PCA demonstrated that in the selected datasets, the experimental group and the control group could be well distinguished (Fig. 2c-f), which suggested the selected samples were suitable for further analysis. As shown in Fig. 2g-j, 2158 DEGs were identified between TNBC and normal breast tissues (FDR < 0.05 and $|\log2\text{FC}| \geq 1$) were identified in GSE115275, including 1291 up-regulated genes and 867 down-regulated genes, while 1170 DEGs between TNBC and non-TNBC (558 up-regulated genes and 612 down-regulated genes) were obtained from GSE62931. After validation with the TCGA database, 991 DEGs (482 up-regulated genes and 509 down-regulated genes) were identified for further screening, the verification efficiency of the DEGs were evaluated according to these classifications.

As shown in Fig. 4a, KEGG pathway enrichment analysis revealed that they were primarily enriched in 'cell cycle, mitotic, ‘mitotic M-M/G1 phases’, and ‘DNA replication’ related pathways. In terms of biological process, these genes were significantly enriched in 'spindle assembly', 'chromosome segregation' and 'cell communication' (Fig. 4b). As for cellular composition, the heterogeneous-related genes were significantly related to 'chromosome, centromeric region', 'microtubule', and 'outer kinetochore of condensed chromosome' (Fig. 4c). Additionally, these genes were mainly involved in 'Pprotein serine/threonine kinase activity', 'motor activity' and 'lipoprotein receptor activity' of molecular functions (Fig. 4d).

PPI network establishment and pathway analysis of network module
Through inputting the 105 heterogeneous-related genes into the STRING, the PPI network of 79 genes was constructed (combined score > 0.4, Fig. 4e). The highest-scoring module (module 1), a cluster with score = 50.755, was detected by MCODE, which including 54 genes. Furthermore, the hub nodes (DLGAP5, KIF20A, CENPA, NUF2, and CDCA8) of module 1 were determined by CytoNCA (Fig. 4f). Finally, according to enrichment analysis, the heterogeneous-related genes in module 1 were enriched in ‘cell cycle’ and ‘oocyte meiosis’ related pathways, as well as ‘chromosome segregation’ and ‘mitotic nuclear division’ related gene functions (Fig. 4g-j).

Univariate cox regression analysis and identification of prognostic factors
To identify prognostic features among the 105 heterogeneous-related genes in TNBC patients' DFI and PFI, the univariate Cox regression models and plotted Kaplan-Meier curves were constructed accordingly. As shown in Fig. 5a-b and Additional file 5: Table S5, four genes (FAM83B, KITLG, CFD and RBM24) were significantly ($p < 0.05$) correlated with the DFI of 109 TNBC patients and five genes (FAM83B, EXO1, S100B, TYMS and CFD) significantly ($p < 0.05$) affected the PFI of 120 TNBC patients. As shown in Additional file 6: Table S6, among four critical clinical parameters (age, menopause, ethnicity, and the pathological stage), and found that the pathological stage was a prognostic factor in both DFI and PFI models ($p < 0.05$).

Multivariate cox regression analysis and establishment of prognostic risk model
Based on the results from the above analysis, multivariate Cox regression analysis was performed to establish a DFI model with the four prognostic features. The following formula was used to calculate the risk score: risk score = expression of FAM83B + (-1.584) + expression of

Enrichment analysis of heterogeneous-related genes
We then performed GO functional annotation and KEGG pathway enrichment analysis of the heterogeneous-related genes (Additional file 4: Table S4) were performed then.
Fig. 2 (See legend on next page.)
Fig. 2 The results of DEGs analyses in GSE62931, GSE115275 and TCGA cohort. a Boxplot of tumor purity in TCGA, GES115275 and GES62931. b Histograms of tissues’ tumor purity. PCA plot of c GSE115275, d normal and TNBC samples from TCGA, e GSE62931, f non-TNBC and TNBC samples from TCGA. Volcano plot of g GSE115275, h normal and TNBC samples from TCGA, i GSE62931, j non-TNBC and TNBC samples from TCGA. Upregulated genes and downregulated genes are represented by red and blue dots in the volcano map, however, the genes having no obvious difference are represented by gray. Heatmap of k GSE115275, l normal and TNBC samples from TCGA, m GSE62931, n non-TNBC and TNBC samples from TCGA.

Fig. 3 The top ten heterogeneous-related genes screened out from DEGs.
Fig. 4 (See legend on next page.)
KITLG $\times 1.225 + \text{expression of RBM24 } \times 1.182$. After ranking the risk scores, the result showed that the high-risk group showed high expression of KITLG and RBM24 as well as low expression of FAM83B (Fig. 5c-e). As shown in Fig. 5f, survival analysis manifested that the high-risk groups exhibited worse prognosis than the low-risk groups. Furthermore, the corresponding AUC value of the risk score for the 3-year, 5-year, and 7-year DFI were 0.711, 0.702, and 0.717, respectively (Fig. 5g).

Besides, we also performed multivariate Cox regression analysis was performed according to the prognostic factors of PFI. The calculation formula was as follows: risk score = expression of FAM83B $\times (-1.437) + \text{expression of S100B } \times (-1.020)$. As shown in Fig. 5h-k, high risk scores were associated with poor prognosis. Meanwhile, the AUC values of 3-, 5-, and 7-year (0.758, 0.709 and 0.733) were shown in Fig. 5i, which suggested that the risk score had a good predictive ability for prognosis.

Clinic correlation and of prognostic factors

Nomograms were plotted to further evaluate the predictive significance of the clinical prognosis factor, combining the results of multivariate Cox regression analysis (Fig. 6a-b). As shown in Fig. 6c, the AUC values of the 3-, 5-year, and 7-year DFI were 0.877, 0.836 and 0.829, respectively, and 0.775, 0.751 and 0.757 for PFI for 3-, 5-year and 7-year, respectively (Fig. 6d). It indicated that the nomograms had a good predictive performance of TNBC patients.

Survival analyses of TNBC subtypes

Based on the Non-negative Matrix Factorization (NMF) algorithm, TNBC tissues were divided into four clusters stably (Fig. 7a-b). As shown in Fig. 7c, (1) all MSL and LAR TNBC subtypes were included in MSL and LAR clusters respectively; (2) most IM and M were included in BLIA and BLIS clusters respectively; (3) BL1 appeared in both BLIA and BLIS. The result of survival analysis showed that BLIA had a better prognosis than other TNBC subtypes, whereas MSL and MES clusters were associated with poor prognosis (Fig. 7d-g). Moreover, the expression differences of FAM83B, KITLG, RBM24 and S100B between different classifications were shown in Fig. 7h-i. Of note, compared with LAR (both in TNBC subtypes and TNBC clusters), S100B was significantly up-regulated in IM (BLIA), MSL (MES) and M (BLIS).

Thus, S100B might be used for TNBC subtypes identification. Not only that, our results showed that FAM83B significantly affected the prognosis of both MSL and MSE ($p < 0.05$, Fig. 7j-m). Moreover, KITLG, RBM24 and S100B also had an effect on the prognosis of some TNBC subtypes with no significant difference ($0.05 < p < 0.2$, Additional file 7: Fig. S1).

Discussion

TNBC displays a worse prognosis than other breast cancer subtypes on account of more aggressive behaviors, higher risk of recurrences and the absence of targeted therapeutic options [10, 11, 45, 46]. The present study, we focused on heterogeneous-related genes of TNBC to find new biomarkers, which might facilitate the development of TNBC treatments.

Our result showed that 105 heterogeneous-related genes had good performances in distinguishing TNBC from other breast cancer subtypes. The top 5 of them were AURKA, ADAM33, NUF2, CDCA3 and CDCA8. AURKA is a key regulator of mitosis and a kinase that promotes cancer migration and invasion [47]. It might facilitate TNBC cell proliferation by regulating the ‘cell cycle, mitotic’ signaling pathway (Fig. 4a) and played a major role in promoting TNBC metastatic phenotype [48]. It’s believed that ADAM33 may inhibit aggressiveness and metastasis inof TNBC, thus it has the function of tumor suppression [49, 50]. NUF2 may regulate the carcinogenesis and progression of breast cancer via ‘cell cycle’ related pathways [51]. Recent studies also showed that the expression level of NUF2 was higher in TNBC than that in non-TNBC [52]. Cell division cycle (CDCA) genes could lead to malignancy through dislocating cell division [53–55]. High expression of CDCA3 and CDCA8 had been found in breast cancer, resulting in a poor prognosis [55]. Of note, compared with normal tissues, these five genes showed the same regulation trend in TNBC and non-TNBC, especially biggish in TNBC (Fig. 3b), which might lead to higher malignancy of TNBC and/or other phenotypes.

DFI and PFI have crucial roles in assessing cancer prognosis once the disease has recurred [56, 57]. Thus, DFI and PFI were considered as outcome indicators in this study. In the DFI model, up-regulated KITLG, RBM24 and CFD were correlated with poor prognoses, while FAM83B exhibited the contrary effect. Moreover, high expression of FAM83B, EXO1, S100B and TYMS prolonged the PFI, while CFD shortened the PFI of
Fig. 5 (See legend on next page.)
TNBC patients. A recent study suggested FAM83B could inhibit cancer chemotherapy resistance through inhibiting the Wnt pathway [58]. However, FAM83B might activate the MAPK and PI3K/Akt pathways [59, 60]. Up-regulated FAM83B could cause poor OS in pancreatic ductal adenocarcinoma (PDAC) [61] and non-small cell lung cancer (NSCLC) [62]. Overall, little is known about the role of FAM83B in cancers, especially in TNBC. Our result showed that FAM83B could be a prognostic feature of both TNBC and TNBC subtypes. Therefore, it is urgently required to explore the mechanism between FAM83B and TNBC development. There was a negative correlation between FAM83B and CFD (Additional file 8: Fig. S2), which indicated that they might play opposite roles in the progression of TNBC. Complement factor D (CFD) was a rate-limiting enzyme [63], implicating in the alternative complement pathway activation and involving in an innate immune pathway in numerous cancers [63–65]. Like CFD, KITLG could also be considered as a predictive marker for multiple cancers [66, 67]. Our findings showed CFD and KITLG (an immunostimulatory molecule [68]) enriched in the ‘immune system’ pathway (Additional file 4: Table S4). This pathway could influence breast tumor progression and immune surveillance [69]. Thus, it could be seen that they might synergistically promote breast cancer progression. S100B is an inflammatory mediator [70]. The previous study had demonstrated that a high S100B expression predicted a good distant metastases-free survival in all patients with breast cancer [70], which was in line with our result.

EXO1 and TYMS were closely correlated with CFD (Additional file 8: Fig. S2). TYMS plays a crucial role in DNA synthesis and repair [71]. And a recent study demonstrated that a high TYMS level predicted a good prognosis in TNBC patients [72]. EXO1 is a core gene of DNA metabolism [73]. Its polymorphism is related to clinical outcome and susceptibility of multiple tumors [74, 75]. Qi, L. et al. [76] suggested that a higher expression level of EXO1 came with a shorter OS in TNBC. We also confirmed the relationship between EXO1 expression and OS in TNBC (Additional file 9: Table S7), and the result was the same as that of Qi, L. et al. It has been reported that PFI might not be positive correlated with OS [77], which seems to be reasonable that the high level of EXO1 accompanied by long PFI in our result. Collectively, TYMS might be considered as a potential biomarker of TNBC, but the role of EXO1 was waiting for the further reveal.

RBM24 might relate to ‘regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism’ of biological process (Additional file 4: Table S4). What’s more, several studies demonstrated that RBM24 might regulate the stability of mRNA transcripts in different human cancer cell lines [78, 79]. Thus, it could be speculated that RBM24 might have an effect on promoting cancer. However, the association between RBM24 and TNBC is not yet well understood. It warranted further investigation regarding its precise molecular mechanism.

In conclusion, our study provided potential biomarkers for TNBC and TNBC subtypes, which might provide new treatment strategies for the research and clinical treatment of TNBC. However, this study had several limitations as well. First of all, we were unable to determine the reasons for the significant changes of the heterogeneous-related genes in TNBC patients (i.e., we cannot distinguish between expression changes that are due to tumor-specific mutations or epigenetic modification). Secondly, because the publicly available gene microarray from different databases could inevitably introduce bias, our conclusions need to be verified in more datasets. Finally, the findings of the present study need to demonstrate in vivo and in vitro experiments.

Conclusions

In conclusion, we identified nine (four for DFI, five for PFI) of 105 heterogeneous-related genes were identified that acted as promising diagnostic and prognostic biomarkers in patients with TNBC via integrated bioinformatics analysis. It is worth mentioning that FAM83B might be further used to predict the prognosis of MSL and MES subtypes. Both DFI and PFI models presented great performances in predicting 3-, 5-, and 7-year prognoses. Our findings may provide new diagnostic and prognostic
Fig. 6 Establishment and evaluation of nomogram model. a-b The nomograms for DFI and PFI. c-d 3-year, 5-year and 7-year time-dependent ROC curves of the nomogram model.
Fig. 7 (See legend on next page.)
b biomarkers to facilitate the targeted therapies of TNBC and TNBC subtypes.

Abbreviations
TNBC: Triple-negative breast cancer; DEG: Differential expression gene; ROC: Receiver operating characteristic; PPI: Protein-protein interaction; DFI: Disease-free interval; PFI: Progression-free interval; IHC: Immunohistochemistry; PR: Progesterone receptor; ER: Estrogen receptor; HER2: Human epidermal growth factor receptor2; GEO: Gene Expression Omnibus; TCGA: The Cancer Genome Atlas; PCA: Principal component analysis; AUC: Area under the curve; MCODE: Molecular Complex Detection; DC: Degree centrality; CC: Closeness centrality; BC: Betweenness centrality; BL1/2: Basal-like 1/2; IM: Immunomodulatory; M: Mesenchymal; MSL: Mesenchymal stem-like; LAR: Luminal androgen receptor; BLJ: Basal-like immunosuppressed; BLA: Basal-like immune-activated; NMF: Non-negative Matrix Factorization; CDCA: Cell division cycle-associated; PDAC: Pancreatic ductal adenocarcinoma; NSCLC: Non-small cell lung cancer; CFD: Complement factor D

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12885-021-08318-1.

Additional file 1: Table S1. Statistics of microarray datasets from GEO and TCGA.

Additional file 2: Table S2. The DEGs in GEO and TCGA datasets.

Additional file 3: Table S3. ROC analysis of DEGs based on TCGA samples.

Additional file 4: Table S4. Related information of all genes involved in GO and KEGG analysis.

Additional file 5: Table S5. Related information of all genes involved in univariate Cox regression analysis.

Additional file 6: Table S6. The clinical data and the result of Cox regression analysis in DFI and PFI models.

Additional file 7: Figure S1. Survival analysis of TNBC subtypes.

Additional file 8: Figure S2. Scatter plots of correlation analysis of prognostic factors.

Additional file 9: Table S7. OS analysis of TNBC and Breast cancer.

Acknowledgements
Not applicable.

Authors’ contributions
Lei Bi designed the study, Yiduo Liu, Linxin Teng and Lei Bi contributed to the writing of the manuscript. Linxin Teng and Yiduo Liu performed the data analysis. Shiyi Fu, Haodui Wang and Zhengjun Li revised the images. Yiduo Liu, Guiyang Wang and Chao Ding performed the literature search and collected data for the manuscript. Lei Bi provided manuscript revision, scientific research fund declaration and fund support. All authors have read and agreed to the published version of the manuscript.

Funding
This work was supported by grants from National Natural Sciences Foundation of China (81873219, 81774180), Natural Science Foundation of Jiangsu Province (BK20181425), Young Elite Scientists Sponsorship Program by CACM (CACM-2018-QNRC2-807), National Innovation and Entrepreneurship training Program for College Students (20190135006). In addition, this work was also financially supported in part by the grants from a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Availability of data and materials
The datasets generated and/or analysed during the current study are available in the Gene Expression Omnibus (GEO) https://www.ncbi.nlm.nih.gov/geo/ R software (version 3.6.1, https://www.r-project.org), The Cancer Genome Atlas (TCGA) http://portal.gdc.cancer.gov/), The Gene Ontology (GO) http://geneontology.org/), KEGG database (https://www.kegg.jp/kegg/kegg1.html), FunRICH (version 3.1.3, http://www.funrich.org), STRING (https://string-db.org/), Cytoscape (version 3.6.0, https://cytoscape.org/), and TNBCtype (https://cbc.app.vumc.org/tNBC/).

The RNA-seq raw data are available at the GEO database under accession number GSE115275 and GSE62931.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
No potential conflicts of interest were disclosed.

Author details
1School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, Jiangsu, China. 2College of Health Economics Management, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, Jiangsu, China.

Received: 5 November 2020 Accepted: 4 May 2021
Published online: 31 May 2021

References
1. de Ronde JJ, Hannemann J, Halfwerk H, Mulder L, Stranger BE, Van den Belt-Dick, et al. Concordance of clinical and molecular breast cancer subtyping in the context of preoperative chemotherapy response. Breast Cancer Res Treat. 2010;119(1):119–26. https://doi.org/10.1007/s10549-009-0499-6.
2. Lee A, Moon BI, Kim TH. BRCA1/BRCA2 pathogenic variant breast Cancer: treatment and prevention strategies. Ann Lab Med. 2020;40(2):114–21. https://doi.org/10.3343/alm.2020.40.2.114.
3. Fan M, Chen J, Gao J, Xue W, Wang Y, Li W, et al. Triggering a switch from basal- to luminal-like breast cancer subtype by the small-molecule diptindirenosine G via induction of GABARAP1. Cell Death Dis. 2020;11(8):635. https://doi.org/10.1038/s41419-020-0287-b-z.
4. Vagia E, Mahalingam D, Cristofanilli M. The Landscape of Targeted Therapies in TNBC. Cancers 2020;12(4):916.
5. Chuan T, Li T, Yi C. Identification of CXCR4 and CXCL10 as potential predictive biomarkers in triple negative breast cancer (TNBC). Med Sci Monitor. 2020;26:e918281.
6. Righiaccio DC, Nohata N, Lappano R, Grillo F, Talia M, Scordamaglia D, Gullkind JS, Maggiolini M. IGF-1/IGF-IR/FAK/YAP Transduction Signaling Prompts Growth Effects in Triple-Negative Breast Cancer (TNBC) Cells. Cells. 2020;9(1):4101.
7. De-la-Cruz-Ku G, Luyo M, Morante Z, Enriquez D, Möller MG, Chambert-Michilot D, et al. Triple-negative breast cancer in Peru: 2000 patients and 15 years of experience. PLoS One. 2020;15(8):e0237811. https://doi.org/10.1371/journal.pone.0237811.
8. Morris GJ, Naido S, Topham AK, Guiles F, Xu Y, McCue P, et al. Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients: a single-institution compilation compared with the National Cancer Institute's surveillance, epidemiology, and end results database. Cancer. 2007;110(4):876–84. https://doi.org/10.1002/cncr.22396.

9. Lehmann BD, Jovanovic B, Chen X, Estrada MV, Johnson KN, Shyr Y, et al. Refinement of triple-negative breast Cancer molecular subtypes: implications for Neoadjuvant chemotherapy selection. PLoS One. 2016;11(6): e0157368. https://doi.org/10.1371/journal.pone.0157368.

10. Li HY, Li J, Luo Y, Guan N, Liu M, Zhang H, et al. miR-105-93-3p promotes chemoresistance and circulates miR-105-93-3p acts as a diagnostic biomarker for triple negative breast Cancer. Breast Cancer Res. 2019;17(1):133. https://doi.org/10.1186/s13058-019-0918-2.

11. Ryan D, Paul BT, Koziol J, ElShamy WM. The pro- and anti-tumor roles of mesenchymal stem cells toward BRCA1-IRIS-overexpressing TNBC cells. Breast Cancer Res. 2019;21(1):53. https://doi.org/10.1186/s13058-019-1131-2.

12. Liedtke C, Mazouni C, Hess KR, André F, Tardat M, Meija JA, et al. Response to Neoadjuvant therapy and long-term survival in patients with triple-negative breast Cancer. J Clin Oncol. 2008;26(8):1275–81. https://doi.org/10.1200/JCO.2007.14.4147.

13. Tan DS, Marchio C, Jones RL, Savage K, Smith IE, Dowsett M, Reis-Filho JS. Triple negative breast cancer: molecular profiling and prognostic impact in adjuvant anthracycline-treated patients. Breast Cancer Res Treat 2008, 111(1):27–44, 1 DOI. https://doi.org/10.1007/s10549-007-9756-8.

14. Randi FF, Biancanelli S, Falsetta A, Martinetti A, Casi C, Basconi R, et al. Triple-negative breast cancer: current state of the art. Tumorn. 2010;96(6):875–88. https://doi.org/10.1177/548.6505.

15. Chen J, Zhu M, Zou L, Xia J, Huang J, Deng Q, et al. Long non-coding RNA LINC-PINT attenuates paclitaxel resistance in triple-negative breast cancer cells via targeting the RNA-binding protein NONO. Acta Biochim Biophys Sin. 2020;52(8):801–9. https://doi.org/10.1093/abra/bmaa072.

16. Mir M, Khan H, Uyar U, Nisar S, Bhat B, Wani N. Targeting different pathways using novel combination therapy in triple negative breast cancer. Curr Cancer Drug Targets. 2020;20(8):586–602. https://doi.org/10.2174/15704786206518081953.

17. Sharma P. Biology and Management of Patients with Triple-Negative Breast Cancer. Oncologist. 2016;21(9):1050–62. https://doi.org/10.1634/theoncologist.2016-0067.

18. Xiong G, Stewart RL, Chen J, Gao T, Scott TL, Samayoa LM, et al. Collagen prolyl 4-hydroxylase 1 is essential for HIF-1α stabilization and TNBC chemoresistance. Nat Commun. 2018;9(1):4465. https://doi.org/10.1038/s41467-018-0699-9.

19. O'Reilly EA, Gubbins L, Sharma S, Tully R, Guang MH, Weiner-Gorzel K, et al. The fate of chemoresistance in triple negative breast cancer (TNBC). BBA Clin. 2015;3:257–62. https://doi.org/10.1016/j.bbac.2015.07.001.

20. Sporkova Z, KoudelaKova V, Treadean R, Hujdaci M. Genetic markers in triple-negative breast Cancer. Clin Breast Cancer. 2018;18(5):841–50. https://doi.org/10.1016/j.clbc.2018.07.023.

21. PolakY K, Metzger Filho O. SnapShot: breast cancer. Cancer Cell. 2012;22(2):562–562e561.

22. Soundararajan R, Fradette JJ, Konen JM, Moulder S, Zhang X, Gibbons DL, et al. Interplay between Epithelial-to-Mesenchymal-Transition and the Immune System for Effective Immunotherapy. Cancers 2019;11(5):714.

23. Li S, Yang R, Sun X, Maos S, Lu T, Wang Y, et al. Identification of SPP1 as a promising biomarker to predict clinical outcome of lung adenocarcinoma. Sci Rep. 2019;9(1):17496. https://doi.org/10.1038/s41598-019-5369-0.

24. Schlumberger M, Tahara M, Wirth LJ, Robinson B, Brose MS, Elisei R, et al. Failure patterns using novel combination therapy in triple negative breast cancer. Clin. 2015;3:257–62. https://doi.org/10.1016/j.clbc.2018.07.023.

25. Li MX, Jin LT, Wang TJ, Feng YJ, Pan CP, Zhao DM, et al. Identification of potential core genes in triple negative breast cancer using bioinformatics analysis. OncoTargets Ther. 2018;11:4105–12. https://doi.org/10.2147/OTT.S166567.

26. Liu X, Wu J, Zhang D, Bing Z, Tian J, Ni M, et al. Identification of potential key genes associated with the pathogenesis and prognosis of gastric Cancer based on integrated bioinformatics analysis. Front Genet. 2018;9:265. https://doi.org/10.3389/fgene.2018.00265.

27. Zeng F, Fu J, Hu F, Tang Y, Fang X, Zeng F, et al. Identification of key pathways and genes in response to trastuzumab treatment in breast cancer using bioinformatics analysis. Oncotarget. 2018;9(32):31490–60. https://doi.org/10.18632/oncotarget.24605.

28. Vargo-Gogola T, Rosen JM. Modelling breast cancer: one size does not fit all. Breast Cancer Res. 2017;26(2):37. https://doi.org/10.1077/978-978-160-020-5_2.

29. Pedersen MH, Hood BL, Ehmssen S, Beck HC, Conrads TP, Bak M, et al. CYPOR is a novel and independent prognostic biomarker of recurrence-free survival in triple-negative breast cancer patients. Int J Cancer. 2019;144(3): 891–40. https://doi.org/10.1002/ijc.32798.

30. Polyak K, Metzger Filho O. SnapShot: breast cancer. Cancer Cell. 2012;22(2):562–562e561.

31. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67. https://doi.org/10.1172/JCI45014.

32. Bannati NML, Okonji D, Manickavasagan A, Mohammed K, Allen M, Ring A. Outcomes of systemic therapy for advanced triple-negative breast cancer. A single centre experience. Breast (Edinburgh, Scotland). 2018;40:60–6.

33. Wang X, Lu N, Niu B, Chen X, Xie J, Cheng N. Overexpression of Aurora-a enhances invasion and matrix metalloproteinase-2 expression in esophageal
squareumous cell carcinoma. Mol Cancer Res. 2012;10(5):588–96. https://doi.org/10.1158/1541-7786.MCR-11-0416.

48. Leonovitch AA, Jalalirad M, Salisbury JL, Mills L, Haddo C, Schroeder M, et al. NOTCH3 expression is linked to breast cancer seeding and distant metastasis. Breast Cancer Res. 2018;20(1):105. https://doi.org/10.1186/s13058-018-1020-0.

49. Senisuk GG, Camargo AA, Ierard DF, Ramos EA, Grochoski M, Ribeiro ES, et al. ADAM33 gene silencing by promoter hypermethylation as a molecular marker in breast invasive lobular carcinoma. BMC Cancer. 2009;9(1):80. https://doi.org/10.1186/1471-2407-9-80.

50. Manica GC, Ribeiro CF, Oliveira MA, Pereira IT, Chequim A, Ramos EA, et al. Down regulation of ADAM33 as a predictive biomarker of aggressive breast cancer. Sci Rep. 2017;7(1):14414. https://doi.org/10.1038/srep44414.

51. Xu W, Wang Y, Wang Y, Lv S, Xu X, Dong X. Screening of differentially expressed genes and identification of NUF2 as a prognostic marker in breast cancer. Int J Mol Med. 2019;44(2):390–400. https://doi.org/10.3892/ijmm.2019.4239.

52. Zhai H, Yang Z, Liu X, Dong Z, Zhao D. Identification of NF2 and FAM3B as potential biomarkers in triple-negative breast cancer. PeerJ. 2020;8:e9579. https://doi.org/10.7717/peerj.9579.

53. Chen C, Chen S, Pang L, Yan H, Luo M, Zhao Q, et al. Analysis of the expression of cell division cycle-associated genes and its prognostic significance in human lung carcinoma: a review of the literature databases. Biomed Res Int. 2020;2020:6412953.

54. Wu ZH, Fang M, Zhou Y. Comprehensive analysis of the expression and inhibition in cynomolgus monkeys by lampalizumab for the treatment of geographic atrophy. J Pharmacol Exp Ther. 2015;355(2):288–96. https://doi.org/10.1124/jpet.115.227223.

55. Cipriano R, Graham J, Miskimen KL, Bryson BL, Bruntz RC, Scott SA, et al. FAM83B inhibits inhibition in cynomolgus monkeys by lampalizumab for the treatment of geographic atrophy. J Pharmacol Exp Ther. 2015;355(2):288–96. https://doi.org/10.1124/jpet.115.227223.

56. Blanco G, Holli K, Heikkinen M, Kallioniemi OP, Taskinen P. Prognostic factors in recurrent breast cancer: relationships to site of recurrence, disease-free interval, female sex steroid receptors, ploidy and histological malignancy grading. Br J Cancer. 1990(6)(2):142–6. https://doi.org/10.1038/bjc.1990.247.

57. Cao Y, Zhang G, Bao H, Zhang S, Zhang J, Zhao Z, et al. Development of a dual-energy spectral CT based nomogram for the preoperative discrimination of mutated and wild-type KRAS in patients with colorectal cancer. Clin Imaging. 2021;69:205–12. https://doi.org/10.1016/j.clinimag.2020.08.023.

58. He S, Wang W, Wan Z, Shen H, Zhao Y, You Z, et al. FAM83B inhibits ovarian cancer cisplatin resistance through inhibiting Wnt pathway. Oncogenesis. 2021;10(1):6. https://doi.org/10.1038/s41389-020-00301-y.

59. Cipriano R, Grahame J, Miskimen KL, Blyson BL, Bruntz SC, Scott SA, et al. FAM83B mediates EGFR- and RAS-driven oncogenic transformation. J Clin Invest. 2012;122(9):3164–70. https://doi.org/10.1172/JCI65017.

60. Cipriano R, Miskimen KL, Blyson BL, Foy CR, Bartel CA, Jackson MW. FAM83B-mediated activation of PI3K/AKT and MAPK signaling cooperates to promote epithelial cell transformation and resistance to targeted therapies. Oncotarget. 2013;4(5):729–38. https://doi.org/10.18632/oncotarget.1027.

61. Shen CQ, Yan TT, Liu W, Zhu XQ, Liu W, Xu Q, et al. High expression of Cipriano R, Graham J, Miskimen KL, Bryson BL, Bruntz RC, Scott SA, et al. FAM83B-mediated activation of PI3K/AKT and MAPK signaling cooperates to promote epithelial cell transformation and resistance to targeted therapies. Oncotarget. 2013;4(5):729–38. https://doi.org/10.18632/oncotarget.1027.

62. Seniski GG, Camargo AA, Ierardi DF, Ramos EA, Grochoski M, Ribeiro ES, et al. Alterations in the expression pattern of MTHFR, DHFR, TYMS, and SLC19A1 genes after treatment of laryngeal cancer cells with high and low doses of methotrexate. Tumour Biol. 2013;34(6):3765–71. https://doi.org/10.1007/s13277-013-0960-3.

63. Le K, Guo H, Zhang Q, Huang X, Xu M, Huang Z, et al. Gene and InRNA co-expression network analysis reveals novel cell RNA network for triple-negative breast cancer. Sci Rep. 2019;9(1):15122. https://doi.org/10.1038/s41598-019-51626-7.

64. Chen W, Liao L, Lai H, Yi X, Wang D. Identification of core biomarkers associated with pathogenesis and prognostic outcomes of laryngeal squamous-cell cancer using bioinformatics analysis. Eur Arch Oto-rhino-laryngol. 2020;277(5):1397–408.

65. Shi T, Jiang R, Wang P, Xu Y, Yin S, Cheng X, et al. Significant association of the EXO1 rs81797 polymorphism with clinical outcome of ovarian cancer. Oncotargets Ther. 2017;10:4841–51. https://doi.org/10.2174/OTST.614168.

66. Zhang M, Zhao D, Yan C, Zhang L, Liang C. Associations between nine polymorphisms in EXO1 and Cancer susceptibility: a system review and meta-analysis of 39 case-control studies. Sci Rep. 2016;6(1):29270. https://doi.org/10.1038/srep29270.

67. Qi L, Zhou B, Chen J, Hu W, Bai R, Ye C, et al. Significant prognostic values of differentially expressed aberrantly methylated hub genes in breast cancer. J Cancer. 2019;10(26):6618–34. https://doi.org/10.7150/jca.33433.

68. Franzese C, Di Brina L, D’Agostino G, Franceschini D, Comito T, De Rose F, et al. Predictive factors for survival outcomes of oligometastatic prostate cancer patients treated with metastases-directed therapy: a recursive partitioning-based analysis. J Cancer Res Clin Oncol. 2019;145(10):2469–79. https://doi.org/10.1007/s00432-019-03007-w.

69. Yang J, Zhang M, Qian Y, Xu E, Zhang J, Chen X. RNA-binding protein and a target of P33, regulates p21 expression via mRNA stability. J Biol Chem. 2014;289(6):3164–75. https://doi.org/10.1074/jbc.M113.524413.

70. Xu E, Zhang J, Zhang M, Jiang Y, Cho SJ, Chen X. RNA-binding protein RBM24 regulates p63 expression via mRNA stability. Mol Cancer. 2014;13:205. https://doi.org/10.1186/1476-4598-13-205.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.