Genetic algorithms for finding the weight enumerator of binary linear block codes

Saïd NOUH¹* Mostafa BELKASMI²

¹Phd. Student, Department of Communication Technology, Mohammed V Souissi University, Rabat, National School of Computer Science and Systems Analysis (ENSIAS), 10000, Morocco, E-mail: nouh_ensias@yahoo.fr

²Professor, Department of Communication Technology, Mohammed V Souissi University, Rabat, National School of Computer Science and Systems Analysis (ENSIAS), 10000, Morocco, E-mail: belkasmi@ensias.ma

ABSTRACT

In this paper we present a new method for finding the weight enumerator of binary linear block codes by using genetic algorithms. This method consists in finding the binary weight enumerator of the code and its dual and to create from the famous MacWilliams identity a linear system (S) of integer variables for which we add all known information obtained from the structure of the code. The knowledge of some subgroups of the automorphism group, under which the code remains invariant, permits to give powerful restrictions on the solutions of (S) and to approximate the weight enumerator. By applying this method and by using the stability of the Extended Quadratic Residue codes (ERQ) by the Projective Special Linear group PSL₂, we find a list of all possible values of the weight enumerators for the two ERQ codes of lengths 192 and 200. We also made a good approximation of the true value for these two enumerators.

Keywords: Genetic algorithms, error correcting codes, weight enumerators, Monte Carlo method.
I. INTRODUCTION

Let $C(n,k,d)$ be a binary linear block code of length n, dimension k and minimum distance d. The error-correcting capability of a code C is directly related to its minimum distance d; if C is linear then d is its lowest non-zero weight; the weight of a word c is the number of non-zero elements it contains. The weights enumerator of C is the polynomial $A(x) = \sum_{i=0}^{n} A_i x^i$, where A_i denotes the number of codewords of weight i in C. The polynomial A provides valuable information about the performance of C and it is one of the keys to obtain an exact expression for the error detection and error correction performance of C [1-2].

C is said to be self dual if it is equal to its dual, and it is said to be formally self dual (f.s.d) if it has the same weight enumerator as its dual.

For a f.s.d codes, the weight enumerator is given by Gleason’s theorem [3]:

$$A(x) = \sum_{i=0}^{\lfloor n/8 \rfloor} K_i (1+x^2)^{n/2-4i} (x^2-2x^4+x^6)^i.$$ Then it is sufficient to find only the $\lfloor n/8 \rfloor + 1$ coefficients K_i to obtain A. The polynomial A is more simplified when the code is doubly even self dual i.e self dual when all weights are divisible by 4. In this case the polynomial A is given by the following expression: $A(x) = \sum_{i=0}^{\lfloor n/24 \rfloor} K_i (1+14x^4+x^8)^{n/8-3i} (x^4(1-x^4)^4)^i$ with only $\lfloor n/24 \rfloor + 1$ coefficients.

For random codes, which doesn’t have any particularity in their structures, it is known that there isn’t algorithms in polynomial time to compute A. The simplest way is to compute it by using an exhaustive research which is feasible only for small codes, i.e codes of dimension of about 45. In this paper we give a new method based on genetic algorithms to have information about the coefficients A_i; thus we find a threshold s for which it is sufficient to find only the coefficients A_i, with i less than s, to deduce all the others. We call the polynomial
A'(x, s) = \sum\limits_{i=d}^{r} A_i x^i \) the semi local weight enumerator of degree s. We show that the polynomial A can be deduced from the polynomial A'. Contrary to the Gleason’s theorem, this method is applicable to all binary linear block codes without any restrictions.

For some codes, the wealth of their algebraic structures permits to determine the weight enumerator; so many excellent studies and methods succeed in finding the weight enumerator of quadratic residue codes or their extended codes [4-7] and the weight enumerators are known for all lengths less than or equal to 167. These methods are based on some algorithms for computing the number of codewords of a given weight [4-6].

The minimum weight in quadratic residue code is 27, 27, 31 and 31 respectively for lengths 191, 193, 199 and 223 [8-9]. Here we apply our method in order to find the weight polynomial of two ERQ codes with lengths 192 and 200.

The remainder of this paper is organised as follows. In the next section, we describe briefly the genetic algorithms. In section 3 we present some algorithms for finding the binary weight enumerator and some methods for computing the codewords of a given weight. In section 4 we present a method for finding the weight enumerator from the binary weight enumerator and we give the results of its application on some quadratic residue codes. Finally, a conclusion and a possible future direction of this research are outlined in section 5.

II. GENETIC ALGORITHMS

Genetic algorithms are heuristic search algorithms premised on the natural selection and genetic [10-11]. It is defined by:

- Individual or chromosome: a potential solution of the problem, it’s a sequence of genes.
- Population: a set of points of the research space.
- Environment: the space of research.
- Fitness function: the function to maximise / minimise.
• Encoding of chromosomes: it depends on the treated problem, the famous known schemes of coding are: binary encoding, permutation encoding, value encoding and tree encoding.

• Operators of evolution:

Selection: it permits to select the best individuals to insert in the intermediate generation.

Crossover: For a pair of parents \((p_1, p_2)\) it permits to create two children \((c_{h1}; c_{h2})\), with a crossover probability \(p_c\).

Mutation: The genes of the individual are muted according to the mutation rate \(m_r\) and the mutation probability \(p_m\).

III. BINARY WEIGHT ENUMERATOR AND THE COMPUTING OF CODEWORDS OF A GIVEN WEIGHT

1) Binary weight enumerator:

In this section we try to give an answer for the following question:

Let \(w\) an integer less than the length of a code \(C\), is there a codeword of weight \(w\) in \(C\)?

Thus if \(C\) is linear then we can deduce its minimum distance.

We define the binary enumerator of \(C\) by the polynomial:
\[
P(X) = \sum_{i=0}^{n} P_i X^i
\]
with \(P_i=1\) if \(C\) contains a codeword of weight \(i\) and \(P_i=0\) if there is no codeword of weight \(i\) in \(C\).

1.1) Description of the WGA algorithm

In order to use genetic algorithms, in our work, we use binary encoding which consists to treat an individual as a binary sequence. The WGA algorithm permits to verify if a weight is in the code or no and we propose two variants of this algorithm. The first consists in starting with a generation of information vectors of a random weights and lengths equals to the dimension of the code and to try to converge toward a vector \(I\) of which the weight of the codeword \(C(I)\), obtained by coding \(I\) has weight equal to \(w\). The second variant consists in starting with a
generation of words with length equals to the length of the code and weights equal to \(w \) and to try to converge toward a codeword; all individuals keep the same weight \(w \).

In the sequel of this paper, we use the following notations:

\(N_i \) the cardinal of the population; \(N_g \) the number of generations; \(N_e \) the number of elites (better parents); \(N_{g_{\text{max}}} \) the maximum number of generations and \(C(I) \) is the codeword obtained by coding the information vector \(I \).

Algorithm A1: Let \(w \) be the objective weight, the WGA algorithm works as follows:

Inputs: \(w, P \);

1. **Generate the initial population, of** \(N_i \) **individuals; each individual is a word of length** \(k \) **and of a random weight**; \(N_g \leftarrow 1 \);

2. **While** (\(P_w \neq 1 \) and \(N_g < N_{g_{\text{max}}} \)):

2.1 **Compute the fitness of each individual**:

\[
\text{fitness (individual)} \leftarrow |\text{weight}(C(\text{individual})) - w|; \quad P_{W(C(\text{individual}))} \leftarrow 1
\]

2.2 **Sort the population by increasing order of the fitness.**

2.3 **Copy the best** \(N_e \) **individuals (of small fitness) in the intermediate population.**

2.4 **For** \(i = N_e \) **to** \(N_i \):

3.4.1. **Select a couple of parents** \((p_1, p_2) \)

3.4.2. **Cross** \(p_1 \) **and** \(p_2 \) **to generate** \(c_1 \) **and** \(c_2 \); **Mute** \(c_1 \) **and** \(c_2 \)

3.4.3. \(f_1 \leftarrow \text{weight}(C(c_1)); \quad f_2 \leftarrow \text{weight}(C(c_2)) ; \quad P_{f_1} \leftarrow 1, \quad P_{f_2} \leftarrow 1 \)

3.4.4. **if** \(f_1 < f_2 \) **then insert** \(c_1 \) **in the intermediate population else insert** \(c_2 \). **end if**;

End for;

3.5 \(N_g \leftarrow N_g + 1 \).

End while;

Outputs: \(P \)
Algorithm A2: Let w be the objective weight. The WGA algorithm works as follows:

Inputs: w, P

1. Generate an initial population, of N_i individuals, each individual is a word of length n and weight w and is not necessarily a codeword.

2. $Ng \leftarrow 1$

3. While ($P_w \neq 1$ and $Ng < Ng_{max}$):

 3.1 Compute the fitness of each individual:

 - $D = D($individual$)$ \leftarrow the nearest codeword to the individual, decided by a hard decision or a soft decision decoder.

 - fitness (individual) $\leftarrow |\text{weight}(D) - w|$,

 - $P_{W(D)} \leftarrow 1$

 3.2 Sort the population by increasing order of fitness.

 3.3 Copy the best N_e individuals (of small fitness) in the intermediate population.

 3.4 For $i = N_e$ to N_i:

 3.4.1. Select an individual indiv$_1$ among the best N_e individuals. Create and mute indiv$_2$ as follow:

 - indiv$_2$ \leftarrow indiv$_1$

 - Generate randomly a subset Γ: $\Gamma \cap \{1, 2, 3, ..., n\} = \Gamma$

 - Generate a random permutation σ over Γ: $\sigma(\Gamma) = \Gamma$

 - For j in Γ: indiv$_2[j] \leftarrow$ indiv$_1[\sigma(j)]$ end for;

 3.4.2. Among indiv$_1$ and indiv$_2$ select the word with the small fitness and insert it in the intermediate population.

 End for.

3.5 $Ng \leftarrow Ng + 1.$

Outputs: P
Remark R1: For the A1 algorithm, in the case where the coding is systematic, to generate the initial population it is preferable that the weight of each individual is lower than \(w+1\).

1.2) Description of the BEGA algorithm:

The BEGA algorithm permits to find all coefficients of the binary weight enumerator \(P\), by using the WGA algorithm. The BEGA algorithm works as follows:

1. For \(i=0\) to \(n\) \(P_i \leftarrow 0\) end for;

2. For \(i=0\) to \(n\) if \((P_i = 0)\) then execute WGA\((P, i)\) end if; end for;

1.3) Test and validation of the BEGA algorithm:

To validate the BEGA algorithm we tested it on some codes with known weight enumerators. We use WGA algorithm with following parameters:

- Selection: we use the selection by truncation; we select randomly two individuals, from the best current parents.
- Crossover: we chose one point from the individual.
- \(N_{g_{\text{max}}}=100\); \(N_i=1000\); \(N_c=500\); \(p_c=0.9\); \(p_m=0.15\) and \(m_r=0.25\).

We choose the two codes: \(\text{BCH (255, 207)}\) and \(\text{RQ (167, 84)}\).

For the BCH code we used the A2 algorithm and the Berlekamp-Massey decoder [12]. For the Quadratic Residue code, we used the A1 algorithm.

The results coincide with those found from the exact enumerator of the two codes [13], [6].

2) Computing the number of codewords of a given weight

Generally the weight enumerator \(A\) of a linear code has a form comparable to the binomial distribution, and then the number \(A_w\) of codewords of weight \(w\) grows with \(w\). To find \(A_w\)
there are three following methods: M1 for linear codes, M2 for half rate codes and M3 for cyclic codes.

M1 method: if the coding is systematic then to compute A_w it is sufficient to encode all information vectors with weight less than or equal to w. This method requires then to enumerate $\sum_{i=1}^{w} \binom{k}{i}$ codewords.

M2 method: suppose that C is a half rate code, i.e. the dimension $k = \frac{n}{2}$, this method begins by obtaining two generator matrices $G' = (I', A')$ and $G'' = (A'', I')$ for C having disjoint sets of full rank, i.e. the two diagonal matrices I' and I'' each have rank k. If C is self dual then G' and G'' always exist. This method requires the enumeration of $2 \sum_{i=0}^{w/2} \binom{n/2}{i} + \binom{n/2}{w/2}$ codewords. [4] and it is simplified in [18] to the enumeration of only $\sum_{i=0}^{w/2} \binom{n/2}{i}$ codewords, for quadratic double circulant self dual codes and for double circulant $f.s.d$ codes.

M3 method: supposing that C is a cyclic code. We have the following Chen’s theorem [14]:

Let c be a codeword of C of weight w. Then there exists a cyclic shift of c with exactly

$$r = \left\lfloor \frac{k.w}{n} \right\rfloor$$

nonzero coordinates among its first k coordinates.

Thus, let L be an initially empty list. To find the number of codewords of weight w, we encode all information vectors v of weight r. For each information vector v if the corresponding codeword is of weight w then we add all its shifts to L and we should guarantee no duplication of any codeword in L.

3) Approximating the number of codewords of a given weight

In [15] Sidel’nikov has proved that the weight enumerator of some binary primitive BCH codes can be given by the approximate following formula: $A_j = 2^{-mt} \binom{n}{j}.(1+R_j)$ where
$|R_i| \leq Kn^{-0.1}$ and K is a constant. n is the code length in the form 2^m-1 and t is the error correction capability of the code. In [16] Kasami et al, have given an approximation of the weight enumerator of linear codes with the binomial distribution by using a generalisation of the Sidel’nikov result.

In the case when C has a large length and dimension, the M1, M2 and M3 methods become very complex and unsuitable. If the weight enumerator A is unknown then it is interesting to give, at least, a good approximation of A. In this sub-section we apply a Monte Carlo method [17] in order to get an approximation of A.

In the general case, the Monte Carlo method consists in formulating a game of chance or a stochastic process which produces a random variable whose expected value is the solution of a certain problem. An approximation to the expected value is obtained by means of sampling from the resulting distribution. This method is used for example in the evaluation of some integrals [17].

In order to have a good approximation of A_w, we propose the following probabilistic method, which is a variant of Monte Carlo method.

M4 method: Let C_w be the set of all codewords of weight w and Γ a subset of C_w. We define the dominance rate of C_w related to Γ by: $R(\Gamma) = \frac{|C_w|}{|\Gamma|}$ With symbol $|.|$ denoting the cardinal.

The WGA algorithm allows finding a codeword of weight w in the code C. By reiterating this algorithm we can find a set $S1$ of codewords of weight w, and by using the automorphism group of C on the set $S1$ we find a large set $S2$ of codewords with the same weight w. $S2$ may contain multiple copies of some codewords. Let $S3$ be the largest subset of $S2$ which doesn’t contain any duplicated codeword. Then A_w is approximated by $|S3|.R(S3)$.
Remark R2: In the practice the dominance rate $R(S3)$ is evaluated statistically as following:

1. $s \leftarrow 1$; fix a number i_{max} to a large value.

2. For i from 1 to i_{max} do:
 - Find a codeword c of weight w by WGA algorithm.
 - If $c \in S2$ then $s \leftarrow s+1$ end if.

 end for.

3. Approximate $R(S3)$ by $(1 + i_{\text{max}})/s$.

We find the value of i_{max} statistically; it is the value of i for which the dominance rate $R(S3)$ becomes relatively invariant.

Remark R3: In the practice, $|S3|$ is also evaluated statistically as following:

1. $t \leftarrow 0$; For j from 1 to j_{max} do:
 - Randomly choose a codeword c from $S2$.
 - Compute the number v of the copies of c in $S2$;
 - $t \leftarrow t + v$

 end for.

2. Approximate $|S3|$ by $|S2|.j_{\text{max}}/t$.

We find the value of j_{max} statistically; it is the value of j for which the rate j_{max}/t becomes relatively invariant.

IV. FROM THE BINARY WEIGHT ENUMERATOR TO THE EXACT WEIGHT ENUMERATOR

1) Description of the method: Let A and B, respectively the weight enumerators of C and its dual, P and Q respectively the binary weight enumerators of C and its dual, which we find by the BEGA algorithm. We have the following equalities:
MacWilliams-identity [19]: \(\forall j \leq n : A_j = 2^{-k} \sum_{i=0}^{n} B_i \sum_{l=0}^{j} (-1)^{i} \binom{n-i}{i} \binom{j-i}{j-l} \) \((1) \)

This permits to pass from A to B and vice versa.

\(\forall j \leq n: P_j = 0 \Leftrightarrow A_j = 0 \quad \text{and} \quad Q_j = 0 \Leftrightarrow B_j = 0 \) \((2) \)

From (1) and (2) we construct a linear system (S) of integer variables A$_i$. The resolution of (S) permits to find a threshold s for which it is sufficient to find the semi local weight enumerator \(A'(x,s) \) and to deduce A. To obtain \(A'(x,s) \) we use M1, M2 or M3 methods. If it is very difficult to apply one of the three methods, it is possible to use the probabilistic method M4.

2) Application on the weight enumerators of quadratic residue codes:

2.1) Quadratic residue codes and their extensions

If n is a prime and \(n \equiv \pm 1 \pmod{8} \), the Quadratic Residue code \(QR(n) = QR\left(n,(n+1)/2,d\right) \) is a cyclic code with a generator polynomial \(g(x) = \prod_{i \in Q} (x - \beta^i) \), where \(Q = \{ j^2 \pmod{n} : 1 \leq j \leq n-1 \} \) is the collection of all nonzero quadratic residue integers modulo n and \(\beta \) is a primitive \(n^{th} \) root of unity in GF(2m), where m is the smallest positive integer such that n divides $2^m - 1$. A \(QR(n) \) code, where d is odd, can be extended to a \(EQR(n) = EQR\left(n+1,(n+1)/2,d+1\right) \) code whose codewords are obtained by adjoining a parity-check bit to a fixed position \(\infty \) of every codeword of the \(QR(n) \) code. It is well known that in the binary case all EQR codes, with lengths which are a multiple of 8, are doubly even self-dual; and all EQR codes with lengths not a multiple of 8 are formally self-dual.

Let A and E be, respectively the weight enumerator of the \(QR(n) \) and the \(EQR(n) \) codes.

By the Pless identity [20] we have: for \(j \leq (n-1)/2 \) : \(2j.A_{2j} = (n-(2j-1)).A_{2j-1} \) \((3) \)
By definition of EQR codes and (3) we have: for \(j \leq \frac{n-1}{2} \):
\[
E_{2j} = \frac{n+1}{n+1-2j} A_{2j} = \frac{n+1}{2j} A_{2j-1} \quad (4)
\]

2.2) The projective special linear group \(\text{PSL}_2(n) \)

For a prime \(n \equiv \pm 1(\mod 8) \), the set of permutations over \{0,1,2,\ldots,n-1,\infty\}, of the form
\[y \rightarrow (ay+b)/cy+d \] where \(a, b, c \) and \(d \) are elements of \(\text{GF}(n) \) verifying : \(ad-bc=1 \) form a group called the projective special linear group \(G=\text{PSL}_2(n) \), of order \(|G|=n.(n^2-1)/2 \).

\(\text{PSL}_2(n) \) can be generated by the three following permutations [19]:
\[
S : y \rightarrow y+1; \quad V : y \rightarrow \rho^2y; \quad T : y \rightarrow -1/y. \quad \text{where } \rho \text{ is a primitive element of } \text{GF}(n).
\]

For all values of \(n \), the binary EQR(n) code is invariant under \(G \) [19].

Remark R4: Let be \(c \) a codeword of weight \(w \) and length \(n+1 \) from the EQR(\(n \)) code with \(c(\infty)=1 \), then the word \(c' \) of length \(n \) and weight \(w-1 \), obtained from \(c \) by: \(\forall j \neq \infty : c'_j = c_j \) is an element of the QR(n) code.

2.3) Congruence of the Number of Codewords of a Given Weight

In [7], Mykkeltveit et al. have demonstrated that it is possible to compute the weight enumerator \(E \) of the binary EQR code, modulo \(|G| \) as follows:

i. Factor \(|G| \) in prime numbers:
\[
|G| = \prod_{i=1}^{l} q_i^{m_i}, \text{ where } q_i \text{ are prime numbers and } m_i \text{ is the highest power of } q_i \text{ that divides } |G|.
\]

ii. For each divisor \(q_i \neq 2 \):
 a) Find a permutation \(g_i \) of order \(q_i \) from \(G \), \(g_i \) is a generator of a group \(S_i \) called a Sylow \(q_i \)-subgroup of \(G \).
 b) Find \(E^{q_i} \) the weight enumerator of the subcode \(C_i \) fixed by \(g_i \).

iii. For the divisor \(q_i = 2 \):
a) Find the highest integer m such that \(2^m\) divide \(\frac{(n+1)}{2}\) or \(\frac{(n+1)}{2}\).

b) Find two permutations a and b verifying: \(a \in G\) and \(b \in G\), \(\; a^2 = 1, b^2 = 1, bab = a^{-1}\).

c) Find \(F^2\) the weight enumerator of the subcode \(C^2\) fixed by: \(H_2 = \{1, a^{2^m}\}\).

d) Find \(F^0\) the weight enumerator of the subcode \(C^0\) fixed by: \(G^0_{x} = \{1, a^{2^m}, b, a^{2^m}b\}\).

e) Find \(F^1\) the weight enumerator of the subcode \(C^1\) fixed by:
\[
G^1 = \{1, a^{2^m}, ab, a^1b^{2^m}b\}.
\]

f) Find \(E^2\) the weight enumerator of the subcode fixed by \(S_2\), a Sylow 2-subgroup of \(G\) by:
\[
\forall j \leq n: E^2_j = (2^m + 1).F_j^2 - 2^{m-1}.(F_j^0 + F_j^1)
\]

iv. For each divisor \(q_i\) of \(|G|\) and for each integer \(j\) less than or equal to \(n\), compute \(E_j\) modulo \(q_i^n\) according to the following equality:
\[
E_j \mod q_i^n = E^n_j \mod q_i^n.
\]

v. For each integer \(j \leq n\), compute \(E_j\) modulo \(|G|\) by using the Chinese remainder theorem.

This method can be applied to any linear code by using its automorphism group [19].

2.4) Weight enumerators of the QR (191) and EQR (191) codes

Let A and E be, respectively the weight enumerator of the QR (191) and the EQR(191) codes.

By using the BEGA algorithm based on A1 algorithm we find the binary weight enumerators \(P\) and \(Q\) for the QR(191) and its dual respectively:

\[
P_i = 1 \Leftrightarrow \{28 \leq i \leq 164 \text{ and } (i \mod 4 = 0 \text{ or } i \mod 4 = 3)\} \text{ or } i \in \{0, 192\};
\]

\[
Q_i = 1 \Leftrightarrow \{28 \leq i \leq 164 \text{ and } i \mod 4 = 0\} \text{ or } i \in \{0, 192\}.\]

By (3), we have found the solution A of (S) for the QR(191) code. A and E are related by (4) and we give in Table 1 the weight enumerator \(E\) of the EQR(191) code which we deduced from the solution A, with \(z_1\) and \(z_2\) two unknown integers. \(E\) is symmetric then we give only its first half.
Table 1: The form of the weight enumerator E of the EQR(191) code.

i	E_i
0	1
28	48 z_1
32	6 z_2
36	69065734464 + 11568 z_1 - 192 z_2
40	16681003659936 - 387072 z_1 + 2976 z_2
44	2638181865286080 + 4662144 z_1 - 29760 z_2
48	260118707412159120 - 30019584 z_1 + 215760 z_2
52	68891956345876819864 - 7108608 z_1 + 5437152 z_2
56	1921567021963529559744 - 2055291840 z_1 - 20195136 z_2
60	36629234679278194741815 + 13670572032 z_1 + 63109800 z_2
64	4798230291291549388046400 - 56511000000 z_1 - 168292800 z_2
72	4375373270369432025103840 + 175210813440 z_1 + 387073440 z_2
76	28014427417808915889150656 - 434619319680 z_1 - 774146880 z_2
80	126828970918971772145582224 + 890278318080 z_1 + 1354757040 z_2
84	4082464373929527973794806080 - 1533608219520 z_1 - 2084241600 z_2
88	9382224038665793129097020640 + 2246629754880 z_1 + 2828613600 z_2
92	15439604564036779974450436032 - 2818036032480 z_1 - 3394336320 z_2
96	18224832149069836877698945680 + 3037942333440 z_1 + 3606482340 z_2

Here we have the semi local weight enumerator $A'(x,s) = 48.z_1.x^{28} + 6.z_2.x^{32}$; the value of the threshold s is equal to 32 and A' contain only two unknowns.

Now we apply the method of Mikkelveit et al. in order to know the E_j modulo $|G|$.

We have $n=191$ therefore $|G| = 3483840 = 2^6.3.5.19.191$. Subcodes of the QR(191) code that are invariant under $H_2, G_i^0, G_i^1, S_3, S_5, S_{19}$ and S_{191} are found and the number of codewords of weight 28 and 32 in these subcodes are then computed. The results are summarised in Table 2, where k denotes the dimension of the corresponding subcode. We used the direct computing method for finding the weight enumerators E' of all fixed subcodes of dimension $k=48$. For $k=48$ we used the method M4, thus we found a set of 144 codewords of weight 28 in the corresponding subcode and we verified by the A1 algorithm that there isn’t no codeword of weight 28 in this subcode outside this set. As the same we have found that the number of codewords of weight 32 in this subcode is 5274.
Table 2: the results of applying the Mykkeltveit’s method on the EQR(191) code

	H_2	G^0_4	G^1_4	S_3	S_5	S_{19}	S_{191}
dimension	48	25	24	32	20	6	1
E_{28}	144	6	0	0	0	0	0
E_{32}	5274	30	42	0	19	0	0

By the Chinese remainder theorem: $E_{28} = 870960 \mod 3483840$ and $E_{32} = 239514 \mod 3483840$

Then $\exists \eta_1 \in IN: E_{28} = \eta_1 . 3483840 + 870960$ and $z_1 = \eta_1 . 72580 + 18145$

And $\exists \eta_2 \in IN: E_{32} = \eta_2 . 3483840 + 239514$ and $z_2 = \eta_2 . 580640 + 39919$

For this code it is difficult to use one of the first three methods and we will use the fourth method M4 for approximate A_{27} and A_{31}, the number of codewords of weight 27 and 31, respectively, in the QR(191) code. We have: $A_{27} = \frac{7}{48} E_{28}$ and $A_{31} = \frac{1}{6} E_{32}$ then we prefer to approximate A_{27} and A_{31} than to approximate E_{28} and E_{32}.

Approximation of A_{27} and A_{31}: According to the notations used in the method M4, we give in Table 3 the statistic results obtained by applying this method with the remarks R2 and R3 on the RQ(191) code for $w=27$ and $w=31$.

Table 3: Approximation of A_{27} and A_{31} for the QR(191) code

| w | $|S^2|$ | $|S^3|$ | R(S3) | R(S3).$|S^3|$ |
|-----|-------|-------|-------|--------|
| 27 | 127015 | 127015 | 1 | 127015 |
| 31 | 700000 | 5511811 | 3.57 | 19677165 |

From Table 3 an approximate value of η_1 is 0 and an approximate value of η_2 is 34.

By $\eta_1 = 0$ and $\eta_2 = 34$ we give in the Tables 4 and 5, respectively the corresponding likelihood weight enumerator of the QR(191) code and the EQR(191) code.
Table 4: A likelihood weight enumerator A of the QR(191) code

i	A_i
0	1
27	127015
28	743945
31	19781679
32	98908395
35	12277041273
36	53200512183
39	870960
40	13246839991200
43	604467819340440
44	2033209937781480
47	650306070046712
48	195091823101401360
51	4470424313241968328
52	12035757766420683960
55	20093490400835192966
56	48798476877426114976
59	601923955786765440500
60	13242327027308885969100
63	122097449429751176538885
64	244194898885902350377770
67	169937322662356114008300
68	3098857060313507031426900
71	16407649767948931125554400
72	27346082946581551875924000
75	110890441852977142538257608
76	169253832301912480716287928
79	528454045513612996010714160
80	73983566371905819414999824
83	178607816356395998783361560
84	2496386210296514855578607720
87	4300186017766151769781044999
88	5082038020996361182468507680
91	7398143855344281747921635802
92	804146071034721929121969350
95	9112416074598151308654131670

Table 5: A likelihood weight enumerator E of the EQR(191) code

i	E_i
0	1
28	870960
32	118690074
36	65477553456
40	16732850515200
44	2637677757121920
48	260122430801868408
52	16506182079662652288
56	688919670885778044672
60	19261566585176561409600
64	36629234828925329616655
68	4798230286937043145435200
72	43753732714530483001478400
76	2801442741548896232545536
80	1268289709232671190425713984
84	4082464373860470854361969280
88	9382224038762512952249552640
92	15439604563918501039140805152
96	18224832149196302617308263340

2.5) Weight enumerators of the QR (199) and EQR (199) codes

Let A and E be, respectively the weight enumerator of the QR(199) and the EQR(199) codes. By using the BEGA algorithm based on A_1 algorithm we find the binary weight enumerators P and Q for the QR(199) and its dual respectively:

$$ P_i = 1 \iff \{32 \leq i \leq 168 \text{ and } (i \mod 4 = 0 \text{ or } i \mod 4 = 3)\} \text{ or } i \in \{0, 200\}; $$
\(Q = 1 \iff \{ 32 \leq i \leq 168 \text{ and } i \mod 4 = 0 \} \text{ or } i \in \{0, 200\} \). By (3), we have found the solution \(A \) of (S) for the QR(199) code. A and \(E \) are related by (4) and we give in Table 6 the weight enumerator \(E \) of the EQR(199) code which we deduced from the solution \(A \), with \(z \) is an integer unknown. \(E \) is symmetric then we give only its first half.

Table 6: The form of the weight enumerator \(E \) of the EQR(199) code

\(i \)	\(E_i \)
32	25z
36	21005534550-450z
40	6467522952660+1225z
44	1252975498471200+48800z
48	152872620852751800-824600z
52	12069364505468120400+7427600z
56	630615147670747950200-46927800z
60	22215915779698502141280+227986400z
64	535999851662996527356550-892437300z
68	8973312175360724436541800+2896038600z
72	105388467829350995361897825-7941316500z
76	876310274663366548170765600+18652452000z
80	5197894915757311013178267720-37900941000z
84	2212928194255035083600132400+6711754200z
88	67949637583204730713462120200-104150049000z
92	151037779970268049961942408800+142175052000z
96	243659108313146247784654076100-171190052250z
100	285720732951827690430040227204+18209200500z

We have \(n=199 \) therefore \(|G| = 3940200 = 2^3.3^2.5^2.11.199 \).

Subcodes of the EQR(199) code that are invariant under \(H_2, G_4^0, G_4^1, S_3, S_5, S_{11} \) and \(S_{199} \) are obtained and the number of codewords of weight 32 in these subcodes are then computed. The results are tabulated in Table 7, where \(k \) denotes the dimension of the corresponding subcode.

Table 7: The results of applying the Mykkeltveit’s method on the EQR(199) code.

\(H_2 \)	\(G_4^0 \)	\(G_4^1 \)	\(S_3 \)	\(S_5 \)	\(S_{11} \)	\(S_{199} \)	
dimension	50	25	26	34	20	10	1
\(E_{32} \)	2675	33	15	165	0	0	0
We used the direct computing method for finding the weight enumerators E' of all fixed subcodes of dimension $k \neq 50$. For $k=50$ we used the method M4, thus we found a set of 2675 codewords of weight 32 in the corresponding subcode and we verified by the A1 algorithm that there isn’t any codeword of weight 32 in this subcode outside this set.

$$E'_{32} \equiv 7 \mod 8, \ E'_{32} \equiv 3 \mod 9, \ E'_{32} \equiv 0 \mod 25, \ E'_{32} \equiv 0 \mod 11, \ E'_{32} \equiv 0 \mod 199$$

By the Chinese remainder theorem we obtain: $E_{32} \equiv 2790975 \mod 3940200$

Then $\exists \eta_3 \in IN : E_{32} = \eta_3 \cdot 3940200 + 2790975$ and $z = \eta_3 \cdot 157608 + 111639$

$$A_{35} = 3780996219 - 81z \geq 0 \ \text{therefore} \ \eta_3 \leq 295 \ \text{and} \ A_{31} = 4z \leq 186423996.$$

In our previous work [21] we had a difficulty in deciding the true value of η_3 among the 296 possible values, here we will approximate the value of η_3 by using the fourth method M4 for finding the value of A_{31}, the number of codewords of weight 31 in the QR(199).

By (3) we have: $A_{31} = \frac{4}{25} E_{32}$ then we prefer to approximate A_{31} than to approximate E_{32}.

Approximation of A_{31}: According to the notations used in the method M4, we give in Table 8 the statistic results obtained by applying this method with the remarks R2 and R3 on the RQ(199) code for $w=31$.

Table 8: Approximation of A_{31} for the QR(199) code

| $|S2|$ | $|S3|$ | $R(S3)$ | $|S3| \cdot R(S3)$ |
|------|------|--------|----------|
| 7500000 | 4120879 | 1.639 | 6755539 |

From Table 8 an approximate value of η_3 is 10. By $\eta_3 = 10$, we give in the Tables 9 and 10, respectively the corresponding likelihood weight enumerator of the QR(199) code and the EQR(199) code.
Table 9: A likelihood weight enumerator \(A \) of the QR(199) code.

i	\(A_i \)
0	1
31	22065120
32	115841880
35	3334177539
36	15189031011
39	1294856079132
40	5179424316528
43	275713832445744
44	977530860489456
47	36688337310783312
48	116179734817480488
51	313804542329256584
52	8931360053860191816
55	17657216865081742536
56	454042719938781623664
59	666477511200596219984
60	15551141926134724513296
63	1715199509568199999396016
64	364479895783242498716534
67	30509261450542686432829329
68	592238606426815601666868
71	3793984840279600192540017
72	67448619382748460786737808
75	322997904411178304513943728
76	543312370355080391575381872
79	2079157966219295524143515088
80	3118736949328943286215272632
83	9294298416026647796045234808
84	12834983526893942194538657592

Table 10: A likelihood weight enumerator \(E \) of the EQR(199) code.

i	\(E_i \)
0	1
32	115841880
36	15189031011
40	5179424316528
44	977530860489456
48	116179734817480488
51	313804542329256584
52	8931360053860191816
55	17657216865081742536
56	454042719938781623664
59	666477511200596219984
60	15551141926134724513296
63	1715199509568199999396016
64	364479895783242498716534
67	30509261450542686432829329
68	592238606426815601666868
71	3793984840279600192540017
72	67448619382748460786737808
75	322997904411178304513943728
76	543312370355080391575381872
79	2079157966219295524143515088
80	3118736949328943286215272632
83	9294298416026647796045234808
84	12834983526893942194538657592

Table 9: A likelihood weight enumerator \(A \) of the QR(199) code.

Table 10: A likelihood weight enumerator \(E \) of the EQR(199) code.

V. CONCLUSION AND PERSPECTIVES

In this paper we used genetic algorithms for finding all weights in a linear code \(C \), in particular the minimum weight which coincide with the minimum distance. The knowledge of the weights contained in \(C \) and its dual are utilised with the MacWilliams identity combined with the automorphism group of \(C \) to give an exact or an approximate value of its weight enumerator \(A(x) \). In summary our method permits to find a semi local weight enumerator \(A'(x,s) \) which is sufficient for finding \(A(x) \) and it is less complex to compute than to compute \(A \) itself. In the perspectives we have to apply our method on other linear codes like BCH and LDPC codes.
REFERENCES

1. Clark, G.C., and Cain, J.B. Error-Correction Coding for Digital Communications, first edition., Springer, New York, 30 June, 1981.
2. Berlekamp, E.R. Algebraic Coding Theory, Second Edition, Aegean Park Press, Laguna Hills, California, 1984.
3. Rains, E. M., and Sloane, N. J. A. Self-Dual Codes, in Handbook of Coding Theory (V. S. Pless and W. C. Huffman, eds.), Elsevier, North Holland, 1998.
4. Gaborit, P., Nedeloaia, C.-S., and Wassermann, A. On the weight enumerators of duadic and quadratic residue codes, IEEE Trans. Inf. Theory, Vol. 51, pp. 402–407, January 2005.
5. Tjhai, C., Tomlinson, M., Ambroze M., and Ahmed, M. On the weight distribution of the extended quadratic residue code of prime 137, 7th International ITG Conference on Source and Channel Coding, Germany, 14–16 January, 2008.
6. Su, W., Lee, C., Lin, T., Truong, T., Chang, Y., On Determination of the Weight Distribution of Binary (168, 84, 24) Extended Quadratic Residue Code, ISIT 2008, Toronto, Canada, 6-11 July, 2008.
7. Mykkeltveit, J., Lam, C., and McEliece, R. J. On the weight enumerators of quadratic residue codes, JPL Technical Report 32-1526, Vol. 12, pp.161–166, 1972.
8. Su, Wen-Ku., Shih , Pei-Yu., Lin , Tsung-Ching., Truong, Trieu-Kien. On the minimum weights of binary extended quadratic residue codes, 11th International Conference on Advanced Communication Technology, pp.1912-1913, Phoenix Park, Korea, 2009.
9. Saouter , Y., Mestre, G. LE. A FPGA implementation of Chen’s algorithm 35th International Symposium on Symbolic and Algebraic Computation, July 2010, Munich, Germany, 2010.
10. Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning, Reading MA Addison Wesley, 1989.
11. McCall, J. Genetic Algorithms for Modelling and Optimization, J of Computational and Applied Math, Vol. 184, No 1, pp. 205 – 222, 2005.
12. Massey, J. L. Shift-register synthesis and BCH decoding, IEEE Transaction on Information Theory IT-15 Vol.1, pp. 122–127, IEEE 1, January 1969.
13. Fujiwara, T., and Kasami, T. The Weight Distribution of (256,k) Extended Binary Primitive BCH Code with k <= 63, k>=207, Technical Report of IEICE, IT97-Vol.46, pp.29-33, September, 1993.
14. Chen, C. Computer results on the minimum distance of some binary cyclic codes. IEEE Trans. Inf. Theory, IT Vol.16, pp.359-360, 1970.

15. Sidel’nikov, V. M. Weight spectrum of binary Bose-Chaudhuri-Hoquinghem codes, Prohl. Peredachi Inform., Vol. 7, No. 1, pp.14-22, January.-March, 1971.

16. Kasami, T., Fujiwara, T., Lin, S. An Approximation to the Weight Distribution of Binary Linear Codes, IEEE Transactions on Information Theory, Vol. 31, No. 6, pp. 769-780, 1985.

17. Bauer, W. F. The Monte Carlo Method, J Soc Ind and Applied Math, Vol. 6, No. 4, pp. 438-451, December 1958.

18. Tjhai, C., Tomlinson, M., Horan, R., Ahmed, M., and Ambroze, M. Some results on the weight distributions of the binary double-circulant codes based on primes, in Proc. 10th IEEE International Conference on Communications Systems, (Singapore), 30 October–1 November 2006.

19. MacWilliams, F.J., and Sloane, N.J.A. The theory of Error-Correcting Codes. North-Holland, 1977.

20. Pless, V. et al., Handbook of Coding Theory. Amsterdam, The Netherlands: North Holland, 1998.

21. Nouh, S., Belkasmi M., and Askali M. On the determination of the weights enumerator of the extended quadratic residue code of length 200, WCCS’11, Rabat, Morocco, 16-17 June, 2011.