Increasing operational life of brush-contact device in the turbine generator due to using lubricating molybdenum disulphide brushes

A I Izotov, A A Fominykh, S V Nikulin, D K Prokoshev, A B Legoti, N V Timina

Vyatka State University, 11, Moskovskaya street, Kirov, 610000, Russia
e-mail: aa_fominyh@vyatsu.ru

Abstract. A way of reducing irregular current distribution in multi-brush systems of sliding current transfer with its wear reduction due to installing lubricating molybdenum disulphide brushes on slip rings to ensure a greasing nano-sized cover on the slip ring surface is proposed. The authors give the results of industrial tests estimated on the performance effectiveness of lubricating brushes on slip rings of the TBB-320-2UZ-type turbine generator. The results showed that the lubricating brushes reduce a) the wear of 6110 OM-M and EG2AF-M brushes by 1.2 and 2.1 times respectively, b) current distribution irregularity in parallel operating brushes due to stabilizing the contact arc, and c) the temperature of the electrical brush-contact device due to the friction reduction in brushes.

1. Introduction
Multi-brush devices of sliding current transfer are widely used in turbine generators. According to the industrial experience, these devices operate with irregular current distribution in parallel operating brushes followed by overloads of some brushes, then their heating and further destructing. More than the fourth part of all turbine generator faults happen in electrical brush-contact devices [1–12].

The aim of the article is the assessment of capability for a) increasing the operational life of the brush-contact device in the turbine generator by reducing the brush wear, and b) reducing irregular current distribution in parallel operating brushes and temperature in the brush-contact device. The task is solved by installing lubricating molybdenum disulphide non-conducting brushes in extra brush holders of the brush-contact device in the turbine generator. The described way has been developed by the staff at the Department of Electrical machines and Devices of Vyatka State University in partnership with LLC EF-KONTEL (Moscow) [16, 17].

2. Test procedure
The test was carried out on TBB-320-2UZ-type turbine generator with EG2AF-M-type brushes (negative polarity ring) and 6110 OM-M-type brushes (positive polarity ring) being used on slip rings of the brush-contact device. The brush device of the TBB-320-2UZ-type turbine generator has two four-track slip rings and each track has 14 DBU-type brush holders as shown in figure 1.
The use of +M brushes [14] makes it possible for the contact device to operate with one-half working set (28 items per a ring) due to the unique brass bracing the current distributor and the carbon brush body. Note that the track has seven 20×32×64 mm brushes instead of 14 ones as in the standard device. To carry out the test 4 brush holders were used for lubricating brushes to be installed.

To assess the capability for using lubricating brushes in the brush-contact device in the turbine generator tested the calculation of microtemperatures in the 'brush-slip ring' contact zone was done with the programme 'Contact' modeling flexible electrical contact [18]. To apply the programme complex in-situ testing was carried out to measure the average temperature in the brush-contact device. Then, based on the obtained results the record of microtemperatures in the very 'brush-slip ring' contact zone was done. The simulation results showed that with the temperature in the microcontact zone not exceeding 300° C, lubricating molybdenum disulphide brushes can be used (at the temperature exceeding 400° C the lubricant loses its properties and reacts to form an oxide - abrasive substance).

Furthermore, two variants of the brush holder device for lubricating brushes to be installed were designed providing desirable lubricant film thickness in the contact zone. Figure 2 depicts variant 1. An extra brush holder 2 made from non-conducting material and with stops on its side surface to protect against whipping is installed into the standard brush holder 1. Into the case of the extra brush holder a composite lubricating brush is installed. Its load-bearing part 4 and contact one 5 are string-applied with two coil springs 5 to control the load in a wide range (50-300 gr). The cover 6 ensures pressing the string 5 which is string-loaded with the standard string of the DBU brush holder. The main advantage of the device is a) a wide range of controlling the pressing on the lubricating brush, and b) insulation of the extra brush against the current-conducting brush holder. The disadvantage of the device is complexity and labour input aspects.

Figure 1. The pattern scheme of brushes on tracks.
Figure 2. The extra brush holder device for lubricating brushes to be installed in the 320 MW turbine generator: 1 – standard brush holder, 2 – extra brush holder, 3 – contact part of the lubricating brush, 4 – load-bearing part of the lubricating brush, 5 – coil springs, 6 – cover.

Figure 3 depicts variant 2. In this device a channel for the contact part of the lubricating brush to be installed is milled in the standard brush. Then strings for the standard brush holder are selected to provide proper lubricant feed in the contact zone. The device is easy to make, so it is used to carry out the tests.

Figure 3. The device for installing lubricating brushes: 1 – lubricating brush; 2 – standard brush body.

The generator fitted with the brush set (28 ones both on the positive and negative rings) was operating for 4 hours at full capacity (exciting current $I_e=2,200 \, \text{A}$). Then lubricating brushes (Figure 4) were installed on two tracks of the negative ring (one brush was on 2 current tracks). And the tests to assess the effect of lubricating brushes on the stabilization of current transfer in parallel operating brushes at full capacity were being carried out for 5 hours.
Figure 4. The pattern scheme of lubricating brushes.

As the brushes on slip rings were staggered, the grease slightly covered adjacent tracks.

3. Test Results
The analysis of rotor current distribution in the brushes without lubricating ones showed that current load is significantly irregular (see Table 1).

Tables 2 and 3 give the test results of the brush-contact device in the generator after installing lubricating brushes in 2 and 5 hours. They also show the current distribution results of the rotor, instantaneous current \(I_{hi} \) under the brushes on tracks 1 and 2 on the negative ring, net current of the exciting coil \(\sum I_B \), average current in brushes \(I_{AV} \), being calculated according to the operations manual of the brush-contact device [15]. Besides, they demonstrate absolute deviations of current in all brushes from the average value \(\delta \), calculated as follows (1):

\[
\delta = \frac{1}{n} \sum_{i=1}^{n} |I_{hi} - I_{AV}| ,
\]

where \(n \) – the number of brushes;

\[
I_{AV} = \frac{\sum I_B}{n}.
\]

During the tests on the brush-contact device before installing lubricating brushes maximum current load under some brushes was 120 – 140 A (brushes № 2, 6, 9), whereas most brushes were operating at 83 A current load. The three brushes were loaded with no more than 50 A (№ 18, 21, 25, table 1). The average absolute deviation without lubricating brushes was 29,5A.
Table 1. Current distribution in the rotor on brushes of the negative ring (100 % full capacity, no lubricating brushes).

№ tracks	\(\sum I_B \), A	№ brushes	\(I_{\mu} \), A	\(I_{AV} \), A	\(\delta \), A
1;2	2.044				
1	78				
2	140				
5	106				
6	120				
9	140				
10	90				
13	87				
17	60		73	29.5	
18	41				
21	40				
22	80				
25	50				
26	80				
28	25				

The installation of the lubricating brushes reduced irregular current transfer. In two-hour operating time of the brush-contact device (table 2) maximum current load was 130A (brush № 9), whereas most brushes were operating at 75–80 A current load. The average absolute deviation was 22A.

Table 2. Current distribution in the rotor on brushes of the negative ring (100 % full capacity, operating time of lubricating brushes – 2 hours).

№ tracks	\(\sum I_B \), A	№ brushes	\(I_{\mu} \), A	\(I_{AV} \), A	\(\delta \), A
1;2	2.044				
1	77				
2	111				
5	90				
6	111				
9	130				
10	48				
13	96				
17	50		73	22.0	
18	40				
21	81				
22	80				
25	73				
26	100				
28	50				

With increasing the operating time of lubricating brushes further stabilization of current distribution was observed (table 3). At the end of the test in 5-hour operating time maximum current load was 110 – 120 A (№ 6, 9, 22, 26), whereas main current load was 70 – 75 A. The average absolute deviation was 18A.

Table 3. Current distribution in the rotor on brushes of the negative ring (100 % full capacity, operating time of lubricating brushes – 5 hours).

№ tracks	\(\sum I_B \), A	№ brushes	\(I_{\mu} \), A	\(I_{AV} \), A	\(\delta \), A
1;2	2.200				
1	86				
2	106				
5	82		78.6	17.8	
Having analyzed the data given above, the installation of lubricating molybdenum disulphide brushes is proved to provide a more regular current distribution between parallel operating brushes. This happens due to the fact that the grease ensures a more stable contact arc providing constant resistance in the transfer layer 'brush-contact ring 5' (figure 5). It considerably exceeds (3–4 times) [13] total resistance comprising a) contact resistance between the terminal and the brush crank 1, b) contact resistance between the brush terminal and the brush holder rocker 2, c) resistance between the crank and the brush body 3, and d) resistance of carbon material (of the brush body) 4. The contact arc is known to considerably change while operating and at certain moments it reduces up to 1/1,000 from the theoretical contact arc [19, 20].

![Figure 5. Contact resistance 'brush – slip ring.'](image)

Table 4 gives the results of thermal imaging of the brush surface with no lubricating at the 2,044A net current in the rotor. A warmer brush is 140°C, whereas the average temperature (T_AV) of all brushes on track №1, 2 is 92°C. The installation of lubricating brushes (table 4) and the temperature measurement in 2-hour exploratory work reduces the average temperature of brushes up to 89.1°C and the maximum temperature - up to 110 °C at the 2,150 A current in the rotor. At the longer operating time of brushes (4 hours) and at the higher net current (2.200 A) in the rotor a favourable temperature reduction occurs: the average temperature of all brushes is 88.8°C and the maximum temperature of the warmest brush is 110°C. Thus, the installation of lubricating molybdenum disulphide brushes has reduced the average temperature of the brush-contact device due to the friction reduction in brushes.
Table 4. The temperature on brushes of the negative ring (100 % full capacity, no lubricating brushes).

№ tracks	№ brushes	I_{hi}, A	$\sum I_B$, A	T_{AV}, °C
1:2			2.044	92
1	78			
2	88			
5	104			
6	91			
9	140			
10	92			
13	63			
17	82			
18	71			
21	115			
22	110			
25	89			
26	88			
28	77			

Similar data on the temperature reduction in the current transfer unit have been obtained in the 2,4 kW-capacity ac collector motor with the PKMS copper layer (copper-silver alloy) on the collector [10]. The installation of lubricating brushes has reduced the temperature in the open circuit collector by 28°C and in the loaded collector by 15°C.

4. Conclusions
The carried out tests on installing lubricating molybdenum disulphide brushes in the brush-contact device of the TBB-320-2UZ-type turbine generator have demonstrated that their use:
– reduces irregular current distribution in parallel operating brushes due to stabilizing the contact arc of current-conducting brushes;
– reduces the temperature in the brush-contact device due to the 'brush-slip ring' friction reduction.

References

[1] Takanezawa M, Hiramatsu D, Kobayashi M, Kakiuchi M, Nagakura K, Morita N, Otaka T, Study of Brush Characteristic of Turbine Generator 2012 15th International Conference on Electrical Machines and Systems (ICEMS)
[2] M. Takanezawa, D. Hiramatsu, M. Kobayashi, M. Kakiuchi, K. Nagakura, N. Morita, "Study of carbon brush characteristic of turbine generator (2nd report)," 2012 15th International Conference on Electrical Machines and Systems (ICEMS)
[3] Hall R D and Roberge R P 2010 Carbon brush performance on slip rings Conference Record of 2010 Annual Pulp & Paper Industry Technical Conference
[4] Skjølberg J K, Ohma H F and Runde M 2009 Wear Rates and Current Distribution of Carbon Brushes on Steel Slip Rings IEEE Transactions on Energy Conversion Vol 24 pp 835–840
[5] Kim Y J, Han B, Woo C G and Kim H J 2017 Performance of Ultrafine Particle Collection of a Two-Stage ESP Using a Novel Mixing Type Carbon Brush Charger and Parallel Collection Plates IEEE Transactions on Industry Applications Vol 53 no 1 pp 466–473
[6] Sawa K, Liu L and Ueno T Influence of Arc Discharge on Carbon Commutator and Brush Wear in DC Motor Driving Fuel Pump 2012 IEEE 58th Holm Conference on Electrical Contacts
[7] Morita N, Ueno T, Takanezawa M, Otaka T and Hiramatsu D 2010 A Study for Heavily Saturated V-I Characteristics at Carbon Brush / Steel Collector Ring Sliding Contact, on the View Point of Parallel Connected Brush Current Sharing Unbalance Proceedings of the 56th IEEE Holm Conference on Electrical Contacts
[8] Tanaka H, Morita N, Sawa K and Ueno T 2010 Carbon Brush and Flat Commutator Wear of DC Motor Driving Automotive Fuel Pump in Various Fuels 2010 Proceedings of the 56th IEEE Holm Conference on Electrical Contacts Charleston, SC

[9] Noboru Morita; Takahiro Ueno; Toru Otaka; Masanori Arataō 2007 Comparison of Brush Dynamic Operation Characteristics for Turbine Generator Steel Collector Ring Electrical Contacts - Proceedings of the 53rd IEEE Holm Conference on Electrical Contacts pp 205–210

[10] Dillich S and D. Kuhlmann-Wilsdorf 1980 Effects of Surface Films on the Performance of Silver-Graphite (75 wt% Ag, 25 wt% C) IEEE Transactions on Components, Hybrids, and Manufacturing Technology Vol 3 Issue 1 pp 37–41

[11] Xiang Wang, Jun Xu, Li Li, Xuhong Guo, Catrin Junge 2008 Nano-Sized Spherical Polyelectrolyte Brushes: Potential Protein Carriers and Diagnostic Tools 2nd International Conference on Bioinformatics and Biomedical Engineering pp 1592–1595

[12] Samorodov Y N 2014 Causes and Effects of Turbine Generator Accidents Unified network energy 2 (13) pp 70–80

[13] Livshits P S 1974 Sliding contact of electric machines (Moscow: Energy) p 321

[14] Company KONTEL Brush roll cleaner Russian Federation Patent 2007132129/22 Aug. 24 2007

[15] Manual OPS.460.468 re Machine contact brush turbogenerators 2008

[16] Izotov A I The influence of mechanical factors in alternating-current collector machines on level of radio noise 2013 Russian Electrical Engineering 84 (8) pp 463–465

[17] Sliding current transfer unit (variants): pat. 112513 Russian Federation MPK H 01 R 39/00 A.I. Izotov № 2011120198/07; applic. 19.05.2011; published. 10.01.2012, Bull. 1 p 2

[18] Plokhov I V 2002 Technical state diagnostics and prediction of sliding current transfer units in turbine generators: Extended Abstract. Diss. Doctor. Sci. (St Petersburg: St Petersburg State Technical University) p 36

[19] Deeva V S and Slobodyan S M 2011 Action of isomorphic sliding current-collect destruction Energetic Vol 9 pp 36–38

[20] Romanishina S A, Katyuk D Y, Deeva V S and Slobodyan S M 2015 Dynamics layer of the sliding contact collector elements IEEE 35th International Conference on Electronics and Nanotechnology (ELNANO) pp 116–118

[21] Timoshenko V N, Izotov A I 2013 Wear reduction of elements in sliding current transfer units due to applying lubricating brushes International scientific and technical conference Increase of Operational Effectiveness of Collector Electromechanical Energy Converter (Omsk: OmSTU) pp 128–13