Editorial - Colloque sur l’application industrielle de la thermodynamique moléculaire.
Georgios M. Kontogeorgis, Jean-Noël Jaubert, Jean-Charles de Hemptinne

To cite this version:
Georgios M. Kontogeorgis, Jean-Noël Jaubert, Jean-Charles de Hemptinne. Editorial - Colloque sur l’application industrielle de la thermodynamique moléculaire.. Oil & Gas Science and Technology - Revue d’IFP Energies nouvelles, Institut Français du Pétrole, 2013, 68 (2), pp.187-215. 10.2516/ogst/2013120. hal-00847384

HAL Id: hal-00847384
https://hal-ifp.archives-ouvertes.fr/hal-00847384
Submitted on 23 Jul 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
INTRODUCTION

La meilleure compréhension des phénomènes à l'échelle moléculaire ouvre la voie à un vaste champ de nouvelles applications possibles pour l'industrie chimique et au-delà. Les efforts récents dans ce domaine ont permis de créer des modèles, des méthodes de simulation et des outils non seulement à même de résoudre des problèmes académiques mais aussi de contribuer substantiellement aux projets industriels de recherche et de développement. Ils ouvrent la voie à une meilleure compréhension et à l'amélioration de procédés qui, jusqu'ici, ne pouvaient être appréhendés que de manière empirique.

Le besoin de procédés plus efficaces et plus respectueux de l'environnement est un moteur important de l'innovation industrielle. L'utilisation croissante de la compréhension des phénomènes moléculaires dans les applications thermodynamiques a transformé ce domaine en un champ de recherche primordial pour la découverte de nouveaux concepts et applications :
- les principes thermodynamiques, associés à des concepts de mécanique statistique et à la puissance de calcul déjà facilement disponible, permettent une compréhension détaillée des phénomènes à l'échelle atomique et moléculaire, en utilisant des modèles moléculaires de plus en plus réalistes. L'utilisation simultanée de méthodes aux échelles méso et macro permet la simulation multi-échelle de procédés complexes, fournissant ainsi un outil clé pour faciliter la conception des procédés ;
- ces méthodes de simulation ont aussi mené au développement de nouvelles équations d'état, fondées sur la physique moléculaire, qui rendent possible l'introduction d'une puissance prédictive croissante dans les simulateurs de procédés et qui ouvrent la voie à de vraies méthodologies de conception des produits ;
- l'étendue des développements expérimentaux est aussi accrue via l'utilisation de données complémentaires (densité, calorimétrie, spectroscopie, etc.) afin d'assurer une représentation complète et cohérente de la structure microscopique des fluides et du comportement macroscopique de phase.

Plusieurs rapports de revue des perspectives industrielles de ces développements ont été publiés. Un rapport récent [1] a été rédigé à l'initiative du groupe de travail « Thermodynamique et Propriétés de Transport » de la Fédération Européenne du Génie Chimique (EFCE). L'une des conclusions fut la nécessité de créer des opportunités d'échange entre les différents professionnels travaillant dans ce domaine. La mise en place du colloque « Utilisation Industrielle de la Thermodynamique Moléculaire » (InMoTher), est l'un des résultats de cette réflexion. Ce numéro spécial d'OGST offre l'opportunité de publier un grand nombre d'articles ayant été présentés. Dans cet éditorial nous souhaitons aussi rapporter les conclusions principales des discussions ayant eu lieu, de la même manière que ce qui avait été fait pour
un atelier similaire sur la thermodynamique expérimentale (Colloque de départ et d’anniversaire des 60 ans de D. Richon) [2]. Toutes les présentations du colloque InMoTher sont accessibles sur le site web de la SFGP, à l’adresse suivante : http://www.sfgp.asso.fr/?cat=menu&mcat=group&id=130.

LE COLLOQUE INMOTHER

InMoTher (Application industrielle de la thermodynamique moléculaire) a été mis en place par le groupe de travail de l’EFCE sur la Thermodynamique et les Propriétés de Transport. Il s’est tenu à l’École Normale Supérieure (ENS) de Lyon le 19 et le 20 mars 2012 et a été organisé de manière conjointe par la SFGP (Société Française de Génie des Procédés), l’EFCE (Fédération Européenne du Génie Chimique), le groupe de travail allemand ProcessNet sur la Thermodynamique (représenté par Dechema dans l’organisation) et l’ENS. Son but était de fournir aux experts industriels une vision claire des nouvelles opportunités liées au développement rapide des travaux interdisciplinaires, alliant les efforts des sciences naturelles et de l’ingénierie. Au total 159 participants venant de 22 pays différents ont pu participer à ce colloque. 58 de ces participants étaient issus du monde de l’industrie.

Le soutien de l’industrie fut clairement démontré à travers à un important parrainage : deux sponsors Or : TOTAL et la région Rhône-Alpes à travers un important pôle de compétitivité Axelera, et 5 sponsors Argent : le CNRS, Air Liquide, Linde Engineering, Rhodia du groupe Solvay et IFP Energies nouvelles, centre de recherche dans lequel le président de la conférence, Jean-Charles de Hemptinne, occupe la chaire de la fondation Tuck « Thermodynamique pour les carburants issus de la biomasse ».

Sessions plénières et parallèles

Trois sessions plénières étaient organisées autour des trois domaines de compétence majeurs en matière de thermodynamique industrielle : simulation moléculaire, équations d’état moléculaire et outils moléculaires de gestion des données. Six intervenants industriels invités ont présenté leur vision dans des sessions parallèles.

Simulation moléculaire et outils Ab Initio

La première conférence plénière, présentée par le professeur A. Panagiotopoulos (Université de Princeton), était intitulée : « Simulation moléculaire d’équilibres de phase et d’assemblage de phase : progrès et défis ». Cet exposé proposait un bilan des méthodes de simulation moléculaire pour la modélisation d’équilibres et d’auto-assemblage de phase. On peut le résumer comme suit : l’ensemble de Gibbs est une approche directe proposée il y a plus de vingt ans et qui est adaptée aux calculs de moyenne précision. La méthode dite « Grand Equilibrium » est basée sur des simulations isothermes-isobares dans la phase liquide et par l’ensemble pseudo grand canonique dans la vapeur. Combinées avec l’intégration de Gibbs-Duhem introduite par Kofke, ces méthodes permettent le calcul en quasi-routine des diagrammes de phase pour des potentiels intermoléculaires donnés. Des méthodes alternatives, en particulier la méthode de Monte-Carlo par repondération d’histogrammes, fournissent une bonne précision près des points critiques et une solution pour surmonter les hystérésis et longues échelles de temps inhérentes à l’auto-assemblage d’agents tensio-actifs et de polymères. Durant ces dernières années, avec l’arrivée de logiciels puissants, extensibles et open-source de calcul de dynamique moléculaire, les échelles de temps sur lesquelles l’auto-assemblage et la séparation de microphases peuvent être étudiées, ont été étendues jusqu’à la μs, même dans le cas de modèles de potentiel réalistes dans un solvant explicite. Cependant, il existe toujours un besoin important de développement de modèles à mailles grossières, ou « coarse-grained », capables de capturer et de structurer la thermodynamique afin d’étendre les échelles de temps et d’espace des systèmes pouvant être simulés.
La première conférence invitée a été présentée de manière conjointe par S. Lustig de Du Pont et A. Klamt de CosmoLogic. Elle fut dédiée à « L’application de COSMO-RS dans la conception de systèmes ioniques ». On peut la résumer ainsi : il est aujourd’hui reconnu que COSMO-RS est une théorie largement applicable, utilisée pour prédire de manière précise une vaste gamme de propriétés des fluides complexes. En utilisant les premiers principes de la chimie quantique, un Hamiltonien de contact empirique et la thermodynamique statistique, COSMO-RS prédit les propriétés à l’équilibre de substances pures : pression de vapeur, température d’ébullition, enthalpie de vaporisation, mais aussi de mélanges : pression partielle de vapeur, activité, solubilité de gaz, solubilité de liquides, diagrammes de phase de fluides, pKa, etc. Bien que les méthodes de dynamique moléculaire basées sur un champ de force classique et les méthodes Monte-Carlo puissent être utilisées pour prédire ces propriétés, les implémentations de COSMO-RS sont bien plus rapides et précises. Les intervenants ont expliqué que l’approche théorique fondamentale avait été développée au départ pour les systèmes moléculaires neutres, et que des travaux plus récents ont montré le succès de l’utilisation de cette méthode pour des liquides ioniques complexes. La présentation visait à résumer les fondamentaux de la théorie COSMO-RS et à explorer ses applications pour la prédiction de propriétés et la conception de systèmes liquides ioniques. Une question centrale est de savoir si les prédicitions de propriétés de COSMO-RS sont plus précises lorsque les ions moléculaires sont traités de manière quantique, en ions séparés, en ions appariés ou bien dans les deux cas. Des évaluations des coefficients d’activité à dilution infinie et des coefficients de Loi de Henry à concentration finie ont été faites. Deux cas d’application ont été considérés : la conception d’un liquide ionique optimal pour les procédés de refroidissement par absorption et la conception de solvants pour les batteries lithium-ion. Dans les deux cas, l’application COSMOTHERM était implémentée comme une sous-routine d’un algorithme général optimisant le critère thermodynamique de conception. Comme application pratique, l’intervenant a présenté comment sélectionner des paires cation-anion dans une étude de refroidissement par absorption afin d’optimiser le coefficient thermodynamique de performance tout en minimisant les chimies de dégradation thermique et d’hydrolyse. Pour l’étude de la batterie lithium-ion, la prédiction de la solubilité du LiPF₆ et les profils de spéciation ionique dans deux classes de solvants organiques très différentes ont été considérés. Ici, le critère thermodynamique est la minimisation de l’énergie libre de Gibbs du système, soumise aux contraintes d’équilibre d’action de masse, d’équilibre des charges et d’équilibre solide liquide. Il a été alors montré que les deux applications demandent des prédicitions précises des propriétés thermodynamiques pour une gamme de températures et de concentrations. Il a été conclu que, dans les deux cas, les simples résultats qualificatifs fournissaient une compréhension physique des phénomènes qui pouvait permettre à un ingénieur chimiste de comprendre ces systèmes complexes et de concevoir des systèmes utiles.

La seconde présentation industrielle invitée était consacrée à « La thermochimie des matériaux industriels pour l’industrie ». Elle fut présentée par P. Raybaud d’IFP Energies nouvelles. Il a expliqué que le contexte environnemental pousse la communauté de la chimie à proposer des approches innovantes pour améliorer la prédiction des propriétés des matériaux utilisés dans des applications pour développer des énergies nouvelles, par exemple pour produire des carburants plus propres et renouvelables. Pour cela, des concepts rationnels et quantifiés concernant les propriétés de surface ou de volume étaient nécessaires pour améliorer les matériaux existant ou en découvrir de nouveaux. Cette présentation illustrait comment la modélisation moléculaire ab initio utilisant la théorie de la fonctionnelle de densité (DFT), a permis d’approfondir la compréhension et la prédiction des propriétés de trois importantes classes de matériaux dans le domaine des énergies nouvelles :
– hydrides solides pour le stockage de l’hydrogène,
– matériaux photocatalytiques à base de TiO₂,
– surfaces métalliques catalytiques.
La manière dont les diagrammes thermodynamiques de phase étaient déterminés par des calculs *ab initio* en fonction des conditions d’utilisation (*T, P*) exprimées par le potentiel chimique du réactif/adsorbat a été soulignée. Concernant les propriétés de volume du matériau, les hydrures solides ont été présentés comme un premier exemple concret. L’évaluation DFT des stabilités thermodynamiques et des enthalpies d’hydrogénation a révélé les limites et le potentiel respectif des alanates et des hydrures KSi. Puis en se penchant sur les matériaux de TiO2 dopés à l’azote, il a été annoncé qu’une récente étude DFT expliquait l’augmentation de l’absorption de la lumière visible en fonction du potentiel chimique d’hydrogène. Pour terminer, la thermochimie de surface d’un catalyseur métallique en présence de pression d’hydrogène a été illustrée. Il a été montré que ces résultats théoriques fournissent des guides rationnels pour les nouvelles expériences. Au-delà de la thermodynamique moléculaire, une brève introduction des défis de la cinétique moléculaire a aussi été donnée.

Équations moléculaires d’état

La seconde conférence plénière, intitulée : « Équations SAFT d’état pour les fluides complexes : développement et applications du modèle » a été donnée par le professeur J. Gross (Stuttgart Université, Stuttgart). Celui-ci a expliqué que les spécialistes de la thermodynamique sont confrontés au défi de fournir des méthodes et des modèles pour des mélanges de plus en plus complexes. Les équations d’état analytiques, basées sur la Théorie Statistique des Fluides Associatifs (*Statistical Associating Fluid Theory, SAFT*) permettent de modéliser des systèmes complexes. Le terme “complexe” se réfère aux mélanges très asymétriques, tels que les mélanges polymère-solvant, aux fluides présentant des interactions anisotropes, comme les substances polaires ou associatives, ou aux fluides structurellement anisotropes, tels que les matériaux cristallins liquides. Les mélanges comprenant des espèces chargées demandent des modèles dotés d’une représentation moléculaire suffisamment détaillée. Le professeur Gross a aussi montré que les modèles SAFT peuvent servir dans différents nouveaux domaines d’application. Par exemple, ils sont utilisés pour la conception intégrée de solvant et de procédé, ou, lorsqu’ils sont appliqués avec la théorie classique de la fonctionnelle de densité, ces modèles fournissent un puissant outil de prédiction des propriétés interfaciales. Les modèles SAFT sont aussi utilisés pour accélérer les simulations moléculaires, en estimant par exemple les potentiels de biais vapeur-liquide dans l’ensemble grand canonique, mais aussi en estimant de manière efficace les paramètres du champ de force. Un examen des applications récentes, tel que le lien entre les modèles SAFT et les prédictions de viscosité, a aussi été donné.

La première présentation provenant de l’industrie dans ce domaine a été donnée par G. Folas de Statoil, dans une conférence intitulée : « Modèles avancés dans la pratique industrielle : de la conception à l’optimisation de procédés ». Il a commencé en expliquant que Statoil, comme beaucoup d’autres entreprises, utilise principalement les simulateurs du commerce pour la conception, l’optimisation et la résolution des problèmes des sites de production. Les phases initiales du projet peuvent être effectuées de manière interne, et, à partir du moment où le concept est arrêté, il est étudié de manière plus détaillée par des sociétés d’ingénierie. Le principe général est d’utiliser autant que possible des outils standards issus du commerce et facilement accessibles. Afin d’améliorer les capacités de la compagnie et de passer outre les limitations des simulateurs du commerce, des composants CAPE-OPEN ou des outils indépendants (développés de manière interne ou en collaboration avec des universités) sont utilisés pour des applications spécifiques. Sa présentation exposait des exemples d’application des modèles avancés pour concevoir et optimiser des procédés. Toute une gamme d’applications a été discutée, comme par exemple le niveau de confiance des calculs de la teneur en eau du gaz naturel dans la conception des sites de production, l’évaluation des risques de corrosion dans les pipelines de production, l’inhibition des hydrates de gaz ou l’évaluation du risque de gel dans les procédés gazeux à basse température, ainsi que l’utilisation des modèles tels que CPA et SAFT.
La présentation suivante a été donnée par M. Heiling de BASF, qui présentait « Les applications industrielles de la thermodynamique moléculaire : sélection et extrapolation ». Sa présentation expliquait que les données des propriétés physiques et la thermodynamique sont à la base du développement des procédés et des applications d’ingénierie chimique. Le point de départ de tout procédé est et restera, dans un futur proche, la disponibilité de données expérimentales. Une base de données complète des propriétés physiques est donc essentielle. Ces données sont utilisées comme base pour ajuster les équations, permettant un accès rapide aux données pertinentes du procédé mais aussi une manière de construire idées et concepts. Deux aspects ont été soulignés : la sélection et l’extrapolation des données de propriétés physiques. Les méthodes thermodynamiques peuvent être appliquées à la sélection de procédés et de solvants fonctionnels. Afin de convertir un concept de procédé ou une application fonctionnelle en des critères de propriétés physiques, les données disponibles dans les bases de données doivent être complétées par une modélisation prédictive de multiples composants. Il a été montré que, en plus des méthodes de contribution de groupe, le modèle COSMO-RS de résolution du continuum chimique quantique peut être très utile. L’extrapolation signifie la prédiction de données dans de larges gammes de température, de pression et de concentration ainsi que la prédiction de systèmes complexes, basée sur les données des composants purs et binaires. M. Heilig a montré que les équations d’état de type CPA et PCSAFT permettent une extrapolation physiquement plus correcte. Cependant une paramétrisation complexe des composants purs est nécessaire. Une simulation moléculaire, basée sur les potentiels intermoléculaires obtenus à partir de moins de données thermodynamiques, requiert du temps et des efforts et n’est pour l’instant considérée que pour des systèmes importants où aucune autre solution n’existe. En plus d’un ensemble quasiment complet de données de propriétés physiques, la simulation moléculaire permet d’accéder aux informations concernant la structure des fluides ou des mélanges de fluides.

Outils moléculaires pour la gestion des données

La troisième conférence plénière, dont le titre était : « Moteur ThermoData du NIST : Augmentant la valeur, diminuant la « pollution », élargissant le cadre et fournissant un moyen de communication pour les informations de propriétés thermodynamiques » était donnée par M. Frenkel du NIST. Celui-ci a affirmé que le moteur ThermoData du NIST (ThermoData Engine, TDE) représentait la première implémentation à grande échelle du concept d’évaluation dynamique de données pour les données de propriétés thermophysiques et thermo- chimiques. Il a expliqué que ce concept demandait le développement de vastes bases de données électroniques, capables de stocker toutes les données pertinentes connues à ce jour avec les descriptions détaillées des métadonnées et des incertitudes. La combinaison de ces bases de données électroniques avec un logiciel intelligent (système-expert), conçu pour sélectionner automatiquement des données expérimentales et prédites disponibles, permet d’offrir la capacité de produire des données évaluées de manière critique et automatique ou « sur commande ». Le domaine d’application de TDE inclut les composés purs, les mélanges binaires, les mélanges ternaires et les réactions chimiques. TDE est un composant critique du Système Mondial d’Information en Sciences et Ingénierie (Global Information System in Science and Engineering, GISSE). Le rôle et la faisabilité de l’utilisation d’une grande variété d’outils moléculaires (tels que l’identificateur de système chimique InChI) et de méthodes de prédiction des propriétés (contribution de groupe, QSRR avec technologie SVM, Monte-Carlo et ab initio) dans l’évaluation de données critiques, ainsi que dans le processus global de validation des données, incluant des journaux scientifiques majeurs dans le domaine et supportés par TDE, ont été discutés. Diverses options pour inclure TDE dans des logiciels d’ingénierie, y compris dans les moteurs de conception de procédés chimiques, ont été illustrées. Dans sa conclusion, M. Frenkel a expliqué que la technologie TDE a été
incorporée à un logiciel en ligne afin d’aider le processus de planification des expériences de mesure des propriétés. Le logiciel en accès gratuit et libre sur internet est conçu pour être utilisé par des expérimentateurs, partout dans le monde.

La présentation suivante était intitulée : « Existe-t-il des moyens d’améliorer la précision des méthodes predictives dans le domaine des propriétés thermodynamiques ? ». Celle-ci a été donnée par R.J. Meier et G. Krooshof, tous deux de DSM, qui ont commencé en expliquant que les données thermodynamiques étaient fondamentales à la compréhension et à la conception de procédés chimiques et qu’il existe différentes manières d’obtenir de telles données. Ils ont souligné qu’après la mesure expérientiale, les méthodes de calcul sont extrêmement précieuses pour la conception de nouveaux chemins réactionnels impliquant de nouvelles espèces chimiques, et représentent parfois même des outils indispensables pour accéder, par exemple, aux chaleurs de formation et énergies libres de Gibbs, mais aussi de nombreuses autres valeurs. Il a cependant été reconnu que la précision des outils de prédiction n’est souvent pas suffisante. R.J. Meier a par exemple remarqué que les points d’ébullition peuvent être très incorrects. La précision chimique nécessaire pour les énergies (libres) est d’environ 1-4 kJ/mol. Pour les chaleurs de formation et les énergies libres de Gibbs, les outils principaux permettant d’obtenir ces quantités de manière numérique sont les méthodes de mécanique quantique ou de contribution de groupes. Les méthodes de contribution de groupe sont courantes dans un contexte industriel. Cependant, les méthodes numériques chimiques quantiques peuvent traiter à peu près toutes les espèces, qu’elles soient découpées en groupes utiles ou non. Cependant, bien que beaucoup de progrès aient été faits en matière de méthodes numériques quantiques durant la dernière décennie, la précision pour la plupart des espèces chimiques n’est pas suffisante pour les besoins (1 kcal/mol).

La dernière présentation provenant d’une entreprise industrielle était donnée par M. Kleiber de ThyssenKrupp Uhde GmbH. Elle était dédiée au « Point de vue de l’ingénierie sur les propriétés thermophysiques ». En effet, dans une entreprise industrielle, de nombreuses personnes sont concernées par les propriétés physiques. Ces personnes ont généralement eu différents parcours, ce qui rend difficile la communication. Il existe un écart considérable entre les spécialistes des propriétés physiques, qui recherchent généralement à obtenir les valeurs correctes pour le problème à résoudre, et les ingénieurs d’études, qui n’ont globalement pas idée de l’importance d’une propriété particulière mais doivent s’assurer que tous les éléments d’information soient transférés correctement. Les spécialistes des propriétés physiques ne doivent pas se restreindre à la détermination des propriétés physiques, mais devraient être impliqués autant que possible dans les procédés. Ce sont en effet souvent les seules personnes à même de détecter et de résoudre les divers problèmes auxquels font face les ingénieurs, qui sont moins habitués aux problèmes de thermodynamique. Se concentrant sur une entreprise d’ingénierie typique comme Uhde, la présentation a pointé quelques-uns des problèmes quotidiens d’un ingénieur de simulation des procédés, comme le problème des propriétés dérivées telle la capacité calorifique isobare à l’état liquide, le changement de modèle dans une simulation de procédé ou le comportement de substances dans des conditions extrêmes. L’intervenant a aussi indiqué ses préférences lorsqu’un modèle doit être choisi et les critères lorsqu’un nouveau modèle doit être établi dans l’entreprise. Il a aussi signalé les vrais fossés dans les descriptions des propriétés physiques. Le rôle des estimations et des exigences en matière de précision dans les simulations de procédé a été discuté. Il a été souligné que l’application des méthodes d’estimation n’est pas une question de précision mais de responsabilité. Finalement, le rôle futur de la thermodynamique moléculaire dans une compagnie d’ingénierie a été mis en perspective. Selon M. Kleiber, la thermodynamique moléculaire peut contribuer au développement de nouvelles approches corrélatives mais ne sera jamais incorporée dans les simulateurs de procédé. L’application de la thermodynamique moléculaire restera limitée aux spécialistes.
DISCUSSIONS EN TABLE RONDE

La table ronde a été l’occasion de regrouper des professionnels de différentes origines. Celle-ci a été modérée par P. Ricoux (TOTAL) et M. Bréhelin (Rhodia). Le panel était aussi composé de :

– deux « utilisateurs » de l’industrie : O. Koch qui représentait la compagnie d’ingénierie Linde Engineering et P. Pullumbi qui représentait Air Liquide,
– deux vendeurs de logiciels : P. Ungerer de Materials Design qui exposa le point de vue de la simulation moléculaire et J.-C. Mani de Process Systems Enterprise (PSE), qui est à mi-chemin entre le monde académique et l’industrie de l’ingénierie de procédé,
– et finalement deux représentants universitaires : P. Sautet de l’ENS Lyon, qui est un spécialiste en chimie numérique pour les applications de catalyse, et A. Padua de l’Université de Clermont-Ferrand, qui dirige un laboratoire ayant à la fois des activités de simulation et expérimentales.

La discussion était construite autour de quatre questions principales :

1. Votre expérience : Comment considérez-vous le besoin et/ou l’utilisation des nouveaux outils de thermodynamique moléculaire (simulations moléculaires et/ou équations d’état) dans votre environnement ? Sont-ils utilisés de manière satisfaisante ? Pensez-vous qu’une utilisation plus intense serait bénéfique ? Comment pensez-vous que le groupe de travail sur la thermodynamique et les propriétés de transport pourrait faciliter cela ?

Évidemment, le retour d’expérience dépend beaucoup du type d’activité concerné. La différence la plus claire est la vision du temps et de l’argent : pour l’industrie, le temps est une forte limitation, et non l’argent, alors que l’inverse s’applique dans le monde académique. L’industrie cherche à résoudre des problèmes aussi rapidement et efficacement que possible. Pour cela, divers outils peuvent être utilisés (depuis les équations disponibles dans les simulateurs de procédé du commerce jusqu’aux logiciels spécifiques, y compris la simulation moléculaire et l’acquisition des données en laboratoire). Ces outils ne doivent pas s’opposer les uns aux autres mais doivent plutôt être considérés comme complémentaires. Un effort constant est nécessaire pour améliorer leur intégration.

Des outils corrects pour une utilisation correcte

Toutes les parties étaient d’accord pour dire que l’utilisation d’outils thermodynamiques requière une expertise spécifique. Alors que certaines entreprises ont engagé un spécialiste dont la responsabilité principale est de développer des applications en interne, d’autres considèrent que le niveau d’expertise requis est trop élevé compte tenu des bénéfices possibles, tout du moins pour le moment. Différents objectifs peuvent être envisagés :

– le développement d’équations d’état prédictives peut profiter de la possibilité offerte par la simulation numérique d’isoler des phénomènes spécifiques, affinant ainsi l’équation pour un besoin spécifique. Cette approche permet d’améliorer systématiquement et rationnellement la représentation du système et de transférer les caractéristiques moléculaires à un modèle plus grossier (coarse-grained) comme l’équation d’état ;
– l’utilisation de l’équation d’état pose souvent une difficulté spécifique : le paramétrage adéquat. Ici des modèles plus fondamentaux peuvent être utiles, soit pour générer des données pseudo-expérimentales afin de compléter les bases de données, soit pour aider à la détermination des paramètres à partir de leur signification atomistique (utilisation de méthodes ab initio) ;
– les approches numériques telles que COSMO-RS sont principalement utilisées dans un but de sélection. Puisque ces méthode sont fondées sur des calculs ab initio et ne requièrent pas de paramètres empiriques, leur utilisation permet d’explorer rapidement de nombreuses situations pour lesquelles peu ou pas de données existent ;
– les méthodes à grande échelle, qui sont des approches gros grain (coarse-grained) de simulations moléculaires, représentent un autre groupe de méthodes qui commence à devenir très utile, pour explorer des échelles de temps et de distance adaptées aux applications technologiques. Ces échelles peuvent ne pas encore être explorées via des méthodes de simulation atomistique.

Cycle de vie du procédé

Les grandes entreprises, qui développent de nouveaux procédés, insistent sur l’importance d’utiliser différentes approches qui dépendent de l’étape du cycle de vie du développement du procédé.

– dans les phases initiales, un outil de sélection est important. Ici, la précision n’est pas critique et des logiciels autonomes peuvent être utilisés. C’est ici que les logiciels de type simulation moléculaire sont adaptés ;

– dans un second temps, lorsque la conception du procédé commence, la génération de données est importante. Dans ce cas, la simulation moléculaire est utilisée en mode « production » et peut être utilisée pour compléter les expériences afin de réduire le temps nécessaire pour produire les données. Par ailleurs, un outil pouvant être interfacé avec un simulateur de procédé est alors essentiel. La précision n’est pas critique et il est plus important d’observer des tendances correctes. Les modèles de contribution de groupes trouvent ici leur place naturelle. CAPE-OPEN n’a pas été mentionné durant les discussions, mais pourrait être très utile à ce niveau ;

– dans une étape finale, la précision est critique et un modèle spécifique doit être utilisé. La plupart du temps, à cause de longues habitudes et de la confiance portées aux anciens modèles à corrélations, il est très difficile de convaincre les ingénieurs procédés d’utiliser de nouveaux modèles : il faut pour cela qu’ils apprennent à leur faire confiance. Le critère pour cela peut beaucoup dépendre du type d’industrie considérée (pétrochimique, chimique, pharmaceutique, etc.).

Triangle vertueux

Afin d’améliorer l’utilisation de simulations moléculaires dans l’industrie, des outils faciles d’utilisation sont nécessaires. Les vendeurs de logiciel doivent être le lien entre les partenaires industriels et académiques. Il doit exister un triangle vertueux entre les utilisateurs finaux industriels, les chercheurs académiques et les vendeurs de logiciel. La réalisation d’outils répondant aux besoins des utilisateurs industriels se fera de manière itérative, les vendeurs garantissant la qualité logicielle et les partenaires académiques la cohérence théorique.

Ces relations privilégiées ne doivent pas cacher le besoin de contact direct entre les partenaires industriels et académiques, afin que toutes les parties puissent en bénéficier. Ayant une vision directe des besoins futurs, la contribution industrielle sera d’aider à identifier les voies de recherche. Ils pourront ainsi tirer profit des connaissances d’experts qui peuvent leur fournir des outils logiciels conçus sur mesure. Les groupes de recherche, de leur côté, obtiendront ainsi des financements et un but à atteindre pour leurs projets.

Collecte des données et compréhension des phénomènes

Les participants académiques insistent sur le fait que leur effort est plus centré sur la compréhension des phénomènes sous-jacents que sur la production de données. Ils reconnaissent que la collecte des données est un travail important, mais affirment qu’il est difficile de publier ces résultats. Il est surprenant qu’aujourd’hui, les données soient parfois présentées sans référence aux auteurs originaux mais plutôt (dans le meilleur des cas !) la base de données dont elles sont issues. Ce mépris des normes scientifiques ne peut pas être toléré par
la communauté scientifique. Ceci est particulièrement fâcheux pour les groupes qui publient des données expérimentales qui demeurent essentielles pour régler les paramètres des modèles. C’est pourquoi de saines complémentarités doivent être développées entre les différents domaines.

2. Modèles : Quels sont selon vous les goulets d’étranglement limitant l’utilisation des modèles (nouveaux systèmes à explorer, nouvelles propriétés à étudier, etc.) ? Comment pensez-vous que ces nouveaux outils moléculaires puissent être utilisés pour régler les problèmes d’augmentation de l’échelle ?

Comment choisir un modèle ?

Alors que certains utilisateurs industriels rêvent d’un modèle unique fonctionnant comme une boîte noire, la plupart des spécialistes considèrent que ce n’est pas réaliste : il sera toujours possible de cacher une programmation complexe derrière une interface facile d’utilisation, mais cela ne changera pas les limitations intrinsèques au modèle. Le besoin de nouveaux modèles améliorés est clair, les problèmes à résoudre devenant de plus en plus complexes. L’histoire des développements numériques moléculaires durant les deux dernières décennies indique que ce domaine est très actif et que la combinaison des améliorations extraordinaires de la vitesse et de la mémoire des outils de calculs aidera surement à résoudre, dans le futur, des problèmes insolubles aujourd’hui.

Par conséquent, il est important de rester à la pointe des connaissances, afin que l’outil le plus pertinent puisse être recommandé selon les besoins. C’est un rôle essentiel que doivent jouer les vendeurs de logiciel. Il n’est souvent pas facile d’apporter une réponse, car elle demande une vision globale et des connaissances partant des fondamentaux et allant jusqu’aux applications. Ce problème est lié à la discussion présentée précédemment concernant le cycle de vie des procédés : des approches différentes seront recommandées en fonction de l’étape de développement du procédé.

Paramétrage

Cette discussion concernant les modèles peut aussi être analysée du point de vue du paramétrage : doit-on développer des paramètres pour des applications spécifiques (plus précis) ou pour un domaine d’applications large ? La réponse n’est pas unique mais nous pousse à réfléchir sur la précision acceptable, qui peut être très variable. Ceci implique :
– qu’il soit possible d’évaluer la précision du modèle, ce qui nous ramène à la disponibilité des données et à leur précision (qui est rarement disponible !);
– que les effets des incertitudes du modèle thermodynamique sur la simulation finale de procédé soient connus : c’est rarement le cas.

Il existe de nombreux exemples industriels pour lesquels les résultats de simulations de procédés sont sensibles au paramétrage spécifique utilisé dans les modèles. Les questions qui se posent en vue de choisir les données qui serviront au paramétrage sont : quelles sont les données de bonne qualité, quelles sont celles moins fiables ? Comment doit être effectué l’ajustement des paramètres ? Ainsi, la question de l’évaluation des données des propriétés thermophysiques doit jouer un rôle de plus en plus important dans la thermodynamique industrielle.

De nouveaux modèles pour de nouvelles propriétés

Il est aussi souligné que des efforts supplémentaires doivent être faits concernant la précision des calculs des propriétés dérivées (chaleurs de mélange, capacités calorifiques, vitesse du son) et les propriétés de transport, particulièrement pour les mélanges (par exemple, viscosité d’un mélange d’au moins deux composés).
Changement d’échelle

La conclusion de cette discussion souligne clairement que les différentes approches (équation d’état, simulation moléculaire ou même collecte expérimentale de données) ne doivent pas être opposées. Ces outils sont totalement complémentaires.

Les simulations moléculaires ont deux intérêts : aider à la compréhension des phénomènes et générer des données pseudo-expérimentales. Concernant le premier point, des résultats qualitatifs sont attendus et la simulation doit permettre d’identifier des tendances et d’améliorer les connaissances concernant de nouveaux composés ou de nouveaux domaines de recherche (biomasse, composés oxygénés, fluorés, etc.). Elle est alors un outil idéal pour développer des outils à l’échelle supérieure : il est essentiel d’étudier de nouvelles voies à même de connecter les différentes échelles de temps et d’espace. Dans la pratique, des outils _ab initio_ de paramétrage des modèles de grande échelle (gros grain) peuvent être utilisés ; dans le sens opposé, il peut être également possible d’utiliser un modèle à grand grain pour initialiser un modèle à grain plus petit.

Concernant la production de données pseudo-expérimentales, des données expérimentales doivent être utilisées pour valider les résultats des simulations numériques. Une fois validée, les simulations moléculaires pourront compléter les données de laboratoire lorsque les expériences ne sont pas faciles à obtenir (pression et température spécifique, systèmes réactifs, conditions de sûreté, etc.) ou accélérer la production de données.

3. Algorithmes : En gardant à l’esprit la complexité croissante de ces outils, comment pensez-vous qu’ils devraient être mis à disposition des utilisateurs ? Avez-vous des commentaires concernant les problèmes de durée d’exécution ou d’équilibre de phase complexe dans les simulateurs de procédé ou autres interfaces ? Existe-t-il un problème concernant l’amélioration de la parallélisation ou de l’optimisation numérique ? Quelles sont les meilleurs outils de calcul intensif pour ces méthodes et applications ?

Utilisation améliorée des ressources informatiques

Il est important d’utiliser la puissance informatique de manière optimale (parallélisation et optimisation numérique) pour faciliter l’utilisation de modèles de plus en plus complexes. Ceci est maintenant aussi applicable aux équations d’état qui demandent clairement plus de ressources. Les simulateurs de procédés ne sont pas encore à même d’exécuter des calculs multicœurs, mais les choses devront changer.

Ce problème est cependant particulièrement important pour les simulations Monte-Carlo ou de Dynamique Moléculaire. En pratique, il apparait que les scientifiques d’aujourd’hui doivent devenir familiers avec les sciences informatiques.

Un équilibre doit être trouvé entre l’utilisation optimale des nouvelles architectures informatiques, ce que peut nécessiter une réécriture de code, et le besoin de capitaliser sur les anciens programmes qui répondent bien au besoin. La réponse peut être assez différente suivant la complexité des algorithmes (la résolution des équations d’état peut demander des algorithmes plus complexes que les calculs _ab initio_ ou de simulation moléculaire).

Si la réécriture d’une portion du code est nécessaire, il est important de se poser la question du langage de programmation : la plupart des codes disponibles aujourd’hui sont écrits en Fortran, alors que les nouveaux langages orientés-objet peuvent être plus faciles à entretenir et à interfaçer. Le choix systématique de la plateforme Windows dans l’industrie peut être un facteur limitant. Le choix final doit être un compromis entre efficacité du temps de calcul, temps de développement, maintenance et résultats attendus.

Il est bon par contre de garder à l’esprit que les avancées les plus cruciales sont liées au facteur humain : c’est-à-dire la façon dont l’utilisateur interprète les résultats. Le bon sens
peut parfois bien plus aider à la compréhension que de nombreux calculs, bien qu’il faille rester vigilant face aux fausses « bonnes intuitions » et idées préconçues, qui peuvent être erronées parce qu’établies à une échelle différente.

Au final, les améliorations des performances ne doivent pas se faire au dépend de la robustesse : les utilisateurs industriels auront besoin d’applications stables, pouvant réagir intelligemment lorsqu’elles sont mal utilisées.

4. Éducation: Pensez-vous que l’éducation des ingénieurs d’aujourd’hui est adéquate pour bien comprendre les possibilités offertes par ces nouveaux outils ou pour les utiliser de manière pertinente ? Quels sont les besoins internes de l’industrie ? Considérez-vous ces outils comme accessibles pour tout ingénieur, ou bien des ateliers pédagogiques spécifiques sont-ils nécessaires ?

Il a été montré que l’acceptation de nouveaux outils demande la confiance de l’utilisateur. C’est possible à travers une formation spécifique.

L’éducation doit être prise en compte à plusieurs niveaux :

– au niveau du diplôme d’ingénieur.
Il est essentiel que l’apprentissage à ce niveau soit suffisamment vaste. Les connaissances fondamentales en chimie, physique et ingénierie chimique ne sont pas suffisantes et ne permettent pas d’apporter à la plupart des étudiants une large vue d’ensemble des applications, capacités, potentiels et risques des méthodes théoriques.
Même s’il pourrait être utile que chaque étudiant ait un cours de physico-chimie théorique, nécessairement d’étendue limitée, il est sans doute plus important que nos ingénieurs soient conscients des limites de leurs connaissances et soient capables de demander de l’assistance à un spécialiste si nécessaire.
Ceci s’applique aux outils théoriques, mais aussi à l’analyse des résultats expérimentaux : nos ingénieurs manquent souvent de bases en métrologie.

– au niveau de la formation professionnelle.
Les cours de formation et ateliers paraissent évidemment utiles pour apporter des connaissances spécifiques sur des logiciels, en supplément d’une éducation en ingénierie chimique.
Concernant la simulation moléculaire, les partenaires industriels ont besoin d’avoir une vue d’ensemble à jour des risques et opportunités des outils de simulation disponibles. S’il apparaît qu’un expert est nécessaire, un membre de l’équipe sera désigné (ou embauché) pour cette mission spécifique.
Des programmes de formation sont offerts par les vendeurs de logiciel, en utilisant leurs plateformes propriétaires. C’est souvent une manière très pratique de découvrir les possibilités offertes.

– au niveau de l’instruction des experts.
L’industrie engage des « experts entièrement formés », même si cela n’est souvent que ponctuel. Ces candidats ont généralement une thèse en thermodynamique moléculaire, en chimie théorique ou en modélisation moléculaire.
Certaines formations académiques existent, comme ATOSIM 2.0 proposée par l’ENS Lyon, l’Université d’Amsterdam et l’Université de Rome. Une formation continue est bien sûr nécessaire, à travers des conférences par exemple, qui rassemblent régulièrement chercheurs et industriels, des ateliers pédagogiques ou des cours de formation.

CONTRIBUTIONS SCIENTIFIQUES DANS CE NUMÉRO SPÉCIAL D’OGST
Huit contributions issues de la conférence sont présentées dans ce volume. Elles couvrent une très large gamme d’approches de modélisation (modèles conventionnels, théories...
avancées, simulation moléculaire, chimie quantique) et d’applications (mélanges gaz et pétrole, électrolytes, adsorption, etc.). Celles-ci sont présentées ci-dessous, regroupées dans les catégories appropriées.

Modèles conventionnels

Les modèles conventionnels ou standards utilisent les approches classiques de la thermodynamique appliquée comme celles liées aux équations d’état cubiques, aux modèles de coefficient d’activité ou aux approches de contribution de groupes. Ces méthodes sont souvent considérées comme matures, mais sont constamment améliorées et/ou appliquées de nouvelles manières.

R. Torres, J.-C. de Hemptinne et I. Machin ont modifié la méthode classique de Grayson-Streed en incorporant un terme entropique (de type Flory-Huggins) dans la partie coefficient d’activité normale du modèle. Sans un tel terme, les résultats pour certains systèmes de taille asymétrique sont qualitativement faux. L’approche améliorée de Grayson-Streed a ainsi permis d’obtenir de bons résultats dans les prédictions des solubilités de l’hydrogène dans les alcanes et le pétrole lourd sur une grande gamme de température et de pression.

A. Zaitseva et V. Alopaeus ont proposé une nouvelle approche pour améliorer la précision des estimations des méthodes de contribution des groupes (pour les propriétés de composés purs). Leur approche, qui exploite la similarité chimique des composés dont les propriétés sont estimées, est basée sur ce que l’on appelle une optimisation pondérée par la distance, par opposition à l’optimisation non-pondérée souvent utilisée. La méthodologie proposée est générique et peut être appliquée aux différentes méthodes de contribution de groupes. Les auteurs ont appliqué leur approche avec succès aux méthodes bien connues de Joback-Reid et de Marrero-Gani pour la détermination du point normal d’ébullition, ainsi que pour estimer plusieurs autres propriétés dans le cas de la méthode de Joback-Reid. Dans tous les cas, les estimations sont améliorées par rapport aux méthodes originales. Cette nouvelle approche pourrait s’avérer encore plus utile pour les méthodes de contribution de groupes utilisant des groupes de second et troisième ordres.

La dernière contribution dans cette section est celle de **H. Dardour, P. Cézac, J.-M. Reneaume, M. Bourouis et A. Bellagi**, qui ont étudié un système de réfrigération par absorption-diffusion utilisant trois fluides de travail : du nonane comme absorbant, du propane comme réfrigérant et de l’hydrogène comme gaz auxiliaire inerte. Les auteurs ont effectué des simulations de conception de ce système en utilisant le simulateur commercial ASPEN Plus et l’équation d’état de Peng-Robinson comme modèle de prédiction des propriétés (qui est jugée préférable à la méthode de Chao-Seader par les auteurs). Les caractéristiques de chaleur et de masse ainsi que les performances pour une large gamme de conditions de travail et de paramètres de conception ont été analysées. Bien que plus de travail soit nécessaire pour clarifier ces conclusions, les résultats indiquent que le système nonane/propane/hydrogène étudié présente de bonnes performances de refroidissement avec une faible température de régulateur, et pourrait ainsi être une alternative viable aux fluides de travail ammoniaque/eau/hydrogène, largement utilisés dans les unités commerciales de refroidissement.

Électrolytes avec une équation d’état

La modélisation des solutions d’électrolytes par des équations d’état est un champ de recherche actif, et il existe encore de nombreuses questions sans réponse. **A. Zuber, R.F. Checoni, R. Mathew, J.P.L. Santos, F.W. Tavares, M. Castier**, ont étendu l’équation d’état MTC (Mattedi-Tavares-Castier) aux électrolytes en incluant à la fois un terme de Born et une théorie MSA explicite (ion constant). Les auteurs ont considéré à la fois une version du modèle utilisant des paramètres spécifiques aux sels et une autre avec des paramètres spécifiques aux ions, cette dernière présentant de manière générale de meilleurs résultats. Le modèle
représente de manière satisfaisante, avec peu de paramètres ajustables, les pressions de vapeur, les coefficients osmotiques et coefficients d’activité ionique moyens de 13 solutions salines aqueuses 1:1 sur une gamme de température allant jusqu’à 363,15 K. De bonnes prédictions pour les pressions de vapeur de mélanges de deux sels ont aussi été présentées.

Simulation moléculaire et COSMO-RS

Les simulations moléculaires et les approches numériques de chimie quantique sont devenues très populaires durant les 20 dernières années et ont été appliquées à divers systèmes.

J. Janneck a étudié, dans des travaux théoriques, l’influence des conditions aux limites périodiques sur la structure du fluide et sur les propriétés thermodynamiques, calculées par simulation moléculaire. Ces travaux sont essentiellement centrés sur l’étude de l’effet des divers paramètres moléculaires à différentes échelles. Il conclut que lorsque les propriétés thermodynamiques sont calculées en utilisant des systèmes suffisamment grands, l’effet de l’anisotropie locale peut être négligé.

O. Toure, C.-G. Dussap et _A. Lebert_ ont comparé de manière systématique les capacités prédictives de COSMO-RS à deux autres méthodes (ChemAxon, ACD/Labs) pour les valeurs de pKa d’environ 50 aminocides, dipeptides et tripeptides. De telles informations sont utiles dans l’industrie et la science alimentaire, et les auteurs concluent que COSMO-RS, bien qu’il soit d’une certaine manière inférieure aux deux autres méthodes, représente globalement une puissante approche réellement prédictive pour les calculs de pKa.

Adsorption et simulations moléculaires

Les phénomènes d’adsorption sont complexes et il n’existe pas de méthode prédictive globale et fiable, particulièrement pour l’adsorption de multiples composés. Les simulations moléculaires peuvent apporter une contribution très utile et permettre une meilleure compréhension des mécanismes sous-jacents. Deux articles de ce numéro spécial traitent de l’utilisation de simulations moléculaires dans le cadre de problèmes d’adsorption.

X. Rozanska, P. Ungerer, B. Leblanc et _M. Yiannourakou_ ont combiné une méthode de DFT périodique (théorie de la fonctionnelle de densité) avec une méthode Monte-Carlo pour décrire les phénomènes d’adsorption dans les systèmes complexes. La DFT fournit des paramètres d’entrée (potentiels électrostatiques des matériaux d’adsorption) qui peuvent être directement utilisés pour la simulation moléculaire des isothermes d’adsorption des fluides, lorsque des paramètres fiables de champ de force sont nécessaires. De cette manière, les solides complexes peuvent être étudiés par simulation sans connaissance _a priori_ des paramètres électrostatiques. Les auteurs ont utilisé leur approche pour plusieurs solides et ont évalué leur affinité pour l’adsorption et la séparation de mélanges de CO₂/N₂ en présence d’eau. Les isothermes et les chaleurs d’adsorption ont été calculées dans tous les cas (adsorption de gaz pur ou de mélanges de gaz).

Dans la seconde étude, _J. Puibasset_ illustre comment les modèles de simulation moléculaire utilisés pour l’adsorption de matériaux poreux peuvent être significativement améliorés en considérant l’interdépendance entre les domaines de manière explicite. De cette manière, il est possible d’obtenir une meilleure caractérisation des matériaux poreux par rapport aux approches plus simples, souvent utilisées et supposant que les domaines poreux sont indépendants. J. Puibasset propose une approche multi-échelle qui comprend les interactions fluide/fluide et fluide/substrat ainsi que l’interface entre les différents domaines des matériaux poreux. Les conditions aux limites périodiques usuelles appliquées à chaque domaine sont remplacées par des limites explicites appropriées. L’amélioration des résultats avec la nouvelle méthode est particulièrement prononcée dans la région de haute pression et en présence d’hystérésis.
CONCLUSIONS

Ce colloque a été une excellente occasion d’échanges entre les experts de la thermodynamique moléculaire issus de différentes origines. En tant qu’activité sponsorisée par le groupe de travail « Thermodynamique et propriétés de transport » de l’EFCE, il peut être considéré comme une étape positive vers la création d’une communauté dans ce domaine, avec une participation active de l’industrie.

Différents points pouvant nécessiter du travail dans l’avenir ont été soulevés :
– de nombreuses méthodes existent, et leur pertinence dépend énormément de leur utilisation finale. Les différents outils ne sont clairement pas en compétition, mais doivent plutôt être vus comme complémentaires. Il pourrait être utile de proposer une vue d’ensemble des derniers développements et des meilleurs manières d’employer les complémentarités entre les outils ;
– très peu d’efforts sont investis aujourd’hui dans l’étude des liens complexes qui existent entre la qualité des données expérimentales utilisées pour le paramétrage et les incertitudes qui en résultent dans les résultats finaux. Ceci amène à une certaine dévaluation de travaux expérimentaux de haute qualité, dont la valeur doit être reconnue. La question de l’utilisation des outils de simulation moléculaire pour produire des pseudodonnées, et par conséquent l’introduction de ces données dans les bases de données commerciales usuelles se pose aussi ;
– il est nécessaire de développer plus avant les méthodologies d’augmentation de l’échelle des approches numériques : comment naviguer entre les différentes échelles et modèles thermodynamiques, de quantique à moléculaire, mésoscopique ou de volume.

Bien que le nombre de réunions scientifiques doive rester faible, il est essentiel d’établir un forum dans lequel les partenaires industriels puissent exprimer leurs besoins, même les plus simples. Le groupe de travail devrait aussi essayer de trouver des opportunités de se rassembler régulièrement : ces réunions permettent de soulever des questions et d’établir les besoins.

REMERCIEMENTS

De nombreux participants ont contribué de manière directe à ce résumé, soit en prenant des notes durant la réunion ou en fournissant des commentaires. Les auteurs souhaitent remercier particulièrement les contributions de C. Coquelet (Mines ParisTech), J.-M. Simon (Université de Bourgogne), O. Baudouin (ProSim), G. Galliero (Université de Pau et des Pays de l’Adour), P. Arpentinier (Air Liquide), R. Dohrn (Bayer Technology Services GmbH).

Les deux modérateurs de la table ronde (Philippe Ricoux, TOTAL SA) et Mathias Bréhelin (Rhodia) ainsi que tous les participants (O. Koch, Linde AG ; P. Pullumbi, Air Liquide ; P. Ungerer, Materials Design ; J.-C. Mani, PSE ; P. Sautet, Université de Lyon et A. Padua, Institut de Chimie de Clermont-Ferrand) ont lu et complété ce manuscrit.

Finalement il doit être noté que la réunion n’aurait pas pu avoir lieu sans le soutien de R. Sass (Dechema) et P. Meheux (SFGP). Nous souhaitons aussi remercier les efforts importants de P. Bridou-Buffet, D. Roig et A.-G. Vilatte, qui ont permis le succès du colloque.

REFERENCES

1 Hendriks E., Kontogeorgis G.M., Dohrn R., De Hemptinne J.C., Economou I.G., Fele Zilnik L.F., Vesovic V. (2010) Industrial Requirements for Thermodynamics and Transport Properties, Ind. Eng. Chem. Res. 49, 22, 11131-11141.
Coquelet C., Galicia-Luna L.A., Mohammadi A.H., Richon D. (2010) The essential importance of experimental research and the use of experimental thermodynamics to the benefit of industry, *Fluid Phase Equilib.* **296**, 1, 2-3.

Georgios M. Kontogeorgisa, Jean-Noel Jaubertb et Jean-Charles de Hemptinnec

a CERE, Département d’Ingénierie Chimique et Biochimique, Université Technique du Danemark 2800, Lyngby - Danemark

b Université de Lorraine, ENSIC-LRG, 1 rue Grandville, 54000 Nancy - France

c IFP Energies nouvelles, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison - France
WORKSHOP ON INDUSTRIAL USE OF MOLECULAR THERMODYNAMICS (InMoTher)

INTRODUCTION

The improved understanding of molecular-scale phenomena opens up an immense field of new possible applications for the chemical industry and beyond. The recent efforts in this field have resulted in models, simulation methods, and tools that allow not only solving academic problems but also contribute substantially to industrial research and development. They open the route to gaining insight and improving processes that up to now could only be dealt with empirically.

A large drive for industrial innovation is created by the need for more efficient and eco-friendly processes. The increased use of molecular understanding in thermodynamic applications makes that this science becomes a primary field for new concepts and applications:

- the thermodynamic principles coupled with statistical mechanical concepts and a readily available computer power allows a detailed understanding of atomic and molecular scale phenomena, using increasingly realistic molecular models. The simultaneous use of mesoscale and macro-scale methods opens multiscale simulation of complex processes yielding a key tool to assist process design;

- these simulation methods have also led to the development of new molecular based equations of state that make it possible to introduce increased predictive power into the process simulators, and open the way for true product design methodologies;

- the scope of the experimental developments is also enhanced through the increased use of complementary data (density, calorimetry, spectroscopy, etc.) so as to ensure a coherent and complete picture of the microscopic fluid structure and macroscopic phase behavior.

Several reviews of the industrial perspectives with respect to these developments have been published. A recent review [1] was initiated by the working party “Thermodynamics and Transport Properties” of the European Federation of Chemical Engineers (EFCE). One of the conclusions was the need to create exchange opportunities between the various professionals that work in this field. The workshop entitled “Industrial Use of Molecular Thermodynamics” (InMoTher), is an outcome of this reflection. This special issue of OGST is an opportunity to publish a number of papers that have been presented, and in this editorial, we want also to report the main conclusions of the discussions that have taken place, in the same way as was done for a similar workshop on experimental thermodynamics (D. Richon 60th birthday and departure workshop) [2]. All the presentations at the InMoTher workshop are also accessible on the SFGP web site, at the internet address: http://www.sfgp.asso.fr/?cat=menu&mcat=group&id=130.

THE INMOTHER WORKSHOP

The InMoTher workshop (Industrial Use of Molecular Thermodynamics) was initiated by the EFCE working party on Thermodynamics and Transport Properties. It was held at the
"École Normale Supérieure" (ENS) in Lyon on 19 and 20 March, 2012, jointly organized by the SFGP (Société Française de Génie des Procédés), the EFCE (European Federation of Chemical Engineers), the German ProcessNet working party on Thermodynamics (represented by Dechema in the organization) and the ENS. It aimed at providing to the industrial experts a clear vision into the opportunities that lie within this rapidly developing interdisciplinary field, in which efforts from natural sciences and engineering are combined. A total of 159 participants have registered from 22 different countries. 58 of these participants originated from industry.

The support of industry was clearly expressed through a strong sponsorship: two gold sponsors, TOTAL and the Rhône-Alpes region through the Axelera competitiveness cluster, and five silver sponsors, which are CNRS, Air Liquide, Linde Engineering, Rhodia from the Solvay group and IFP Energies Nouvelles from where the conference chairman, Jean-Charles de Hemptinne, holds the Tuck foundation chair for Biofuels Thermodynamics.

The Plenary and Parallel Sessions

Three plenary review sessions were organized around the three major competences in industrial thermodynamics: molecular simulation, molecular equations of state and molecular tools for data management. Six industrial invited speakers have provided their vision in the parallel sessions.

Molecular Simulation and Ab Initio Tools

The first plenary lecture, given by Prof. A. Panagiotopoulos (Princeton University), was entitled: “Molecular simulation of phase equilibria and phase assembly: progress and challenges”. This lecture provided a review of molecular simulation methods for modeling phase equilibria and self-assembly and may be summarized as follows: the Gibbs ensemble is a direct approach proposed over twenty years ago that is suitable for calculations of moderate accuracy. The grand equilibrium method is based on isothermal-isobaric and pseudo grand canonical simulations in the liquid and vapor phases, respectively. Combined with Kofke’s Gibbs-Duhem integration, these methods allow the relatively routine calculation of phase diagrams for given intermolecular potentials. Alternative methods, in particular histogram reweighting Monte-Carlo provide good accuracy near critical points and provide paths for overcoming hysteresis and long time scales inherent in self-assembly of surfactants and polymers. In recent years, with the advent of fast, scalable, open-source packages for molecular dynamics calculations the time scales over which self-assembly and microphase separation can be studied have been extended to μs, even for realistic potential models with explicit solvent. However, there is still a significant need for development of coarse-grained models that correctly capture and structure thermodynamics in order to extend the time and length scales of systems that can be simulated.

The first invited lecture was jointly presented by S. Lustig from Du Pont and A. Klamt from CosmoLogic. It was devoted to the “Application of COSMO-RS in the Design of Ionic Systems”. The lecture can be summarized as follows: it is today acknowledged that COSMO-RS is a broadly applicable theory used for predicting accurately a wide range of properties in complex liquid mixtures. Applying first principles quantum chemistry, an empirical contact Hamiltonian and statistical thermodynamics, COSMO-RS predicts equilibrium pure substance properties: vapour pressure, boiling temperature, enthalpy of vaporization; and mixture properties: partial vapour pressures, activities, gas solubilities, liquid solubilities, fluid phase diagrams, pKa, and more. While classical forcefield based molecular dynamics and Monte-Carlo methods can be used to predict these properties, implementations of COSMO-RS is much faster and more accurate. The speakers explained that the basic theoretical approach was originally developed for neutral molecular systems and that
more recent works illustrated successful application with complex ionic liquids. The lecture aimed at summarizing the fundamental underpinnings of COSMO-RS theory and at exploring its application to both property prediction benchmarks as well as design of practical ionic liquid systems. A central question for benchmark studies is whether COSMO-RS property predictions are more accurate when molecular ions are treated quantum mechanically as either separate ions or paired ions or both. Benchmarks involving infinite dilution activity coefficients and finite-concentration Henry’s Law coefficients were compared. Two application studies were considered: the design of an optimal ionic liquid for absorption cooling processes and design of solvents for lithium ion batteries. In both cases the COSMOTHERM application was implemented as a subroutine within an overall algorithm that optimizes a thermodynamic design criterion. As a practical application, it was considered how to select cation-anion pairs in an absorption cooling study to optimize the thermodynamic coefficient of performance while minimizing thermal and hydrolysis degradation chemistries. For the lithium ion battery study the prediction of temperature-dependent solubility of LiPF$_6$ and ionic speciation profiles in two very different classes of organic solvents was considered. Here the thermodynamic criterion is the minimization of the system Gibbs free energy subject to mass action balance, charge balance and solid liquid equilibrium constraints. It was shown that both applications required accurate prediction of thermodynamic properties over a range of temperature and finite concentrations. It was concluded that – in both cases – even the qualitative results provided physical understanding that enabled a chemical engineer to understand these complex systems and design useful systems.

The second industrial invited lecture in this topic was devoted to “ab initio thermochemistry of industrial materials for energy” and presented by P. Raybaud from IFP Energies nouvelles. He explained that the environmental context prompts the chemical community to propose innovative approaches for improving the prediction of properties of materials used in new energy applications such as cleaner and renewable fuels. For that purpose, rational and quantified concepts on bulk and surface properties of materials are needed for the improvement of existing materials or the discovery of new ones. This lecture illustrated how ab initio molecular modeling within Density Functional Theory (DFT), has brought insights into the understanding and property prediction of three important classes of materials in the field of new energies:

– hydride solids for hydrogen storage,
– photocatalytic TiO$_2$ materials,
– metallic catalyst surfaces.

It was highlighted how the thermodynamic phase diagrams are determined by ab initio calculations as a function of the (T, P) working conditions expressed by the chemical potential of the reactant/adsorbate. Considering the properties of bulk materials, hydride solids represent a first relevant example. The DFT evaluation of their thermodynamic stabilities and enthalpies of hydrogenation has revealed the limits and potentialities of alanates and KSi-hydride, respectively. Then, regarding nitrogen-doped TiO$_2$ materials, it was stated that a recent DFT study explained the origin of their enhanced visible light absorption as a function of the chemical potential of nitrogen. Finally, the surface thermochemistry of a metallic catalyst in the presence of hydrogen pressure was illustrated. Moreover, it was shown that these theoretical results provided rational guides for new experiments. Beyond molecular thermodynamics, a brief opening on molecular kinetic challenges was also given.

Molecular Equations of State

The second plenary lecture, entitled: “SAFT equations of state for complex fluids: model development and applications” was given by J. Gross (Stuttgart University) who explained
that thermodynamicists are faced with the mandate to provide methods and models for increasingly complex mixtures. Analytic equations of state based on the Statistical Associating Fluid Theory (SAFT) allow to model complex systems. The term “complex” here refers to strongly asymmetric mixtures, such as in polymer-solvent mixtures, or to fluids with anisotropic interactions, such as associating and polar substances, or to structurally anisotropic fluids like liquid crystalline materials. Also mixtures with charged species require models with a sufficiently detailed molecular picture. J. Gross also showed that SAFT models can serve in various new application domains. As examples, they are used for integrated solvent and process design, or when applied with the classical density functional theory, these models provide a powerful framework to predict interfacial properties. SAFT-models are also used to speed up molecular simulations, for example by estimating vapour-liquid bias potentials in the grand canonical ensemble or they are used to very efficiently adjust force field parameters. A review and discussion of some recent applications, such as the link between SAFT-models and viscosity prediction, was also given.

The first industrial lecture in this topic was given by G. Folas from Statoil who talked about: “Advanced models in industrial praxis: from process design to process optimization”. He started by explaining that Statoil, as many other companies, is mostly using commercial simulators for design, optimization and troubleshooting of production facilities. Initial phases of a project may be executed internally, and by the time that the design concept is frozen, the design is further detailed by engineering companies. The general philosophy is to use standard commercial, widely used tools, to the maximum extent. In order to enhance the capabilities of the company and overcome shortcomings of commercial simulators, either CAPE-OPEN packages or stand alone tools (developed either internally or in collaboration with universities) are being utilized for specific applications. His lecture presented examples of the application of advanced models in process design and process optimization. A range of applications such as the confidence in the calculation of water content of natural gas on the design of processing facilities, evaluation of corrosion risk in production pipelines, gas hydrate inhibition, evaluation of freezing risk in low temperature gas processes and the use of models such as CPA and SAFT were discussed.

The next lecture addressed by M. Heilig from BASF dealt with “industrial applications of molecular thermodynamics with focus on screening and extrapolation”. His lecture explained that physical property data and thermodynamics are the fundamental basis for process development and chemical engineering applications. The starting point of all design is and will remain in foreseeable future experimental data. A comprehensive physical property database is therefore essential. These data are used as basis for fitting equations which allow a quick access to process relevant data and also to process ideas and concepts. Two aspects were highlighted: thermodynamic screening applications and extrapolation of physical property data. Thermodynamic screening methods can be applied for the selection of process and functional solvents. Converting the process idea or the functional application to physical property criteria, the available data from databases have to be supplemented by predictive modelling for a multitude of components. It was shown that, in addition to group contribution methods, the quantum chemical continuum solvation model Cosmo-RS could be very useful. Extrapolation means the prediction of data in wide ranges of temperature, pressure and concentration as well as the prediction of higher systems, based on pure component and binary data. M. Heilig showed that CPA and PCSAFT- type equations of state enabled a physically more sound extrapolation. However a complex pure component parameterization is required. Molecular simulation, based on intermolecular potentials obtained from fewer thermodynamic data, requires time and effort and is so far only considered for important systems where no other solution exist. Besides a nearly complete set of physical property data molecular simulation enables access to structural information of fluids and fluid mixtures.
Molecular Tools for Data Management

The third plenary lecture, the title of which was: “NIST ThermoData Engine: Increasing Value, Preventing “Pollution”, Broadering Scope, and Providing Communications for Thermodynamic Property Information” was given by M. Frenkel from NIST who stated that the NIST ThermoData Engine (TDE) represented the first full-scale software implementation of the dynamic data evaluation concept for thermophysical and thermochemical property data. He explained that this concept requires the development of large electronic databases capable of storing essentially all relevant experimental data known to date with detailed descriptions of relevant metadata and uncertainties. The combination of these electronic databases with artificial intelligence (expert-system) software, designed to automatically generate recommended data based on available experimental and predicted data, leads to the ability to produce critically evaluated data dynamically or ‘to order’. The scope of the TDE includes pure compounds, binary mixtures, ternary mixtures and chemical reactions. TDE is a critical component of the Global Information System in Science and Engineering (GISSE) in application to the field of thermodynamics (ThermoGlobe). Role and feasibility of use of a variety of molecular tools (such as chemical system identifiers InChI) and property prediction methods (group contributions, QSPR with SVM technology, Monte-Carlo and ab initio) in critical data evaluation, as well as in global data validation process, involving major journals in the field and supported by TDE, were discussed. Various options for bundling TDE with engineering software applications, including chemical process design engines, were illustrated. In his conclusion, M. Frenkel explained that TDE technology was incorporated into online software to aid the process of experimental planning for property measurements. The software is to be used by experimentalists through open domain free Web access worldwide.

The next lecture was focused on: “Are there ways to improve the accuracy of predictive methods in the field of thermodynamic properties?”. It was given both by R.J. Meier and G. Krooshof, both from DSM who started by explaining that thermodynamic data are key in the understanding and design of chemical processes and that there are various ways to obtain such data. They stated that next to the experimental determination, computational methods are extremely valuable in the design of new chemical routes involving new chemical species, and sometimes indispensable tools in obtaining, e.g., heats of formation and Gibbs free energies but also many other quantities. It is meanwhile becoming recognised that the accuracy of the predictive tools is often not sufficient. R.J. Meier noticed for instance that boiling points can be very much off. Chemical accuracy for (free) energies required is about 1-4 kJ/mol. Regarding heats of formation and Gibbs free energies the major toolboxes to obtain such quantities by computation are quantum mechanical methods and group contribution methods. The group contribution methods are common in industrial context. On the other hand, quantum chemical calculations can essentially treat any species, whether it can be broken down into useful groups or not. However, although a lot of progress was made in quantum calculations over the last decade, for the majority of chemical species we are still quite a bit away from what is often referred to as chemical accuracy, i.e. 1 kcal/mol.

The last industrial invited lecture was given by M. Kleiber from ThyssenKrupp Uhde GmbH. It was devoted to the “engineering point of view on thermophysical properties”. Indeed, in an industrial company, many people are concerned with physical properties. They usually have different backgrounds which make it difficult for them to even communicate with each other. There is a large gap between the specialist for physical properties, who is more or less focused on getting the correct values for a given problem on demand, and the layout engineer, who hardly knows the meaning of the particular properties but has to ensure that every piece of information is transferred correctly. Physical property specialists must not restrict themselves to the determination of physical properties but should get involved in the processes as much as possible, as they might be the only people which are
able to detect and solve the various problems encountered by the engineers who are less familiar with the thermodynamic issues. Focusing on a typical engineering company like Uhde, the presentation referred to some of the everyday problems of a process simulation engineer, e.g. the problem with derived properties like liquid state isobaric heat capacity, the model change in a process simulation or the behavior of substances at extreme conditions. It was referred what the preferences are when a model has to be chosen and what the demands are when a new model is established in a company. It was pointed out what the real gaps in the physical property description are. The roles of estimations and the accuracy requirements in process simulation were discussed. It is stressed that the application of estimation methods is not a matter of accuracy but of responsibility. Finally, a perspective was given regarding the role of molecular thermodynamics in an engineering company in the future. According to M. Kleiber, molecular thermodynamics can contribute to the development of new correlation approaches but will never be incorporated in process simulators. The application of molecular thermodynamics will remain restricted to specialists.

Round Table discussion

The round table discussion was the occasion to bring together professionals from various origins. It was moderated by P. Ricoux (TOTAL) and M. Brehelin (Rhodia). The panel was otherwise composed of:

- two industrial ‘users’: O. Koch who represented the engineering company Linde Engineering and P. Pullumbi who represented Air Liquide;
- two software vendors: P. Ungerer from Materials Design that provides as well as develops molecular simulation tools and services, and J.-C. Mani from Process Systems Enterprise (PSE), who is at the cross-road between academia and process engineering industry;
- and finally two university representatives: P. Sautet from ENS Lyon, who is a specialist in computational chemistry for catalytic applications and A. Padua from Clermont-Ferrand University, who heads a laboratory that has both experimental and simulation activities.

The discussion was constructed around four main questions.

1. Your experience: How do you consider the need and/or the use of new molecular thermodynamics tools (molecular simulations and/or equations of state) in your environment? Are they used in a satisfactory manner? Do you believe a more intensive use would be beneficial? How do you think the working party on Thermodynamic and Transport properties could help?

Obviously, the return of experience depends very much on the type of activities concerned. The most obvious distinction concerns the different visions regarding time and money: for industry, time is a strong limitation, not money; the opposite is true from the academic point of view. Industry aims at solving problems as quickly and efficiently as possible. Various tools can be used to that end (from equations available in commercial process simulators through specific software, including molecular simulation to laboratory data acquisition). They should not be opposed to one another but rather be considered as complementary. A continuing research is needed in order to improve their integration.

Correct Tools for Correct Use

All agree that the use of molecular thermodynamics tools requires some kind of specific expertise. While some companies have hired a specialist whose main responsibility is to develop in-house applications, others consider that the expertise threshold is too large in view of the possible benefits, at least at the present time. Different objectives can be envisaged:

- the development of predictive equations of state may take advantage of the possibility offered by molecular simulation that is to isolate specific phenomena, thus fine-tuning
the equation to a specific need. This approach allows systematically and rationally improving the representation of the system and transferring molecular-based features to a more coarse-grained model like the equation of state;

– the use of equations of state often comes with a specific difficulty which is the adequate parameterization. Here more fundamental models may be useful either to generate pseudo-experimental data in order to complement the databases, or in order to help determining the parameters from their atomistic significance (use of ab initio approaches);

– the computational based approaches like COSMO-RS are mainly used for screening purposes. As these methods are based on ab-initio calculations and do not require empirical parameters their use allows to rapidly explore many situations for which few or no data exist;

– meso-scale methods which are coarse-grained molecular simulations approaches are another group of methods that are becoming very useful due to the possibility to explore time and length-scales that are of technological reach. These scales cannot yet be explored with atomistic simulation methods.

Process Life-Cycle

Large companies who develop new processes insist on the different approaches depending on the stage in the life-cycle of the process development:

– in the early stages, a screening tool is important. Here, accuracy is not that important, and a stand-alone software can be used. Hence, there is a clear position for use of molecular simulation or similar software;

– in a second stage, when process-design is involved, the generation of data is important. In this case, the molecular simulation is used in a “production” mode to complement experiments so as to reduce the time needed for generating data. A package that can be interfaced with a process simulator is also essential. High precision is not so much stressed but rather good trends. Group contribution models can very well be used. CAPE-OPEN was not mentioned in the discussion but could be of great help here;

– in a final stage, accuracy is essential and a specific model can be used. Most often, because of long term habits and confidence into the ancient correlative models, it will be very difficult to convince process engineers to use new models: they should therefore be confident in the results. The criteria for this very much depends on the type of industry considered (petrochemical, chemical, pharmaceutical, etc.).

Virtuous Triangle

In order to increase the use of molecular simulation in the industry, there is a need of easy to use tools. Software vendors have to be the link between industrial and academic partners. There should be a virtuous triangle between industrials end-users, academic researchers and software vendors. It will be an iterative process to obtain tools matching the needs of industrial users, the vendors being responsible for the software quality, while the academic partners guarantee the theoretical foundations.

These privileged relationships should not hide the need of direct contact between industry and academic partners, for the benefit of all. Having a direct vision of future needs, the industrial contribution will help identify research paths, while taking advantage of the knowledge of experts as well as tailor-made software packages. The research groups will thus get funding and sense of purpose for their developments.

Data Gathering Versus Understanding Phenomena

The academic participants stress their effort that is more related to the understanding of the underlying phenomena rather than the production of data. Data gathering is recognized as an important work but difficult to publish as such. It is remarkable that today, data are
sometimes shown without referring to the original authors but rather (at best!) to the database they were found in. This disregarding of scientific conduct may not be tolerated by the scientific community; it is a very unfortunate development for experimental groups. True experimental data remain essential for tuning the model parameters. This is why healthy complementarities must be developed between the various fields.

2. Models: **What bottlenecks do you see regarding the use of the models (new systems to be investigated, new properties to look at, etc.?). How do you see these tools can be useful for scale-up issues?**

How to Choose a Model?

Although some industrial users dream of a single model that works as a black box, most specialists consider this to be unrealistic: it is always possible to hide a complex code behind a user-friendly interface but this will not change the intrinsic limitations. The need for new, improved models is clear due to the increasing complexity of the problems to be solved. The history of molecular-based tool developments during the last two decades indicates that this field is very active and its combination with the extraordinary improvement of the hardware speed and memory will surely be able to treat problems in the future that are not tractable at present.

As a consequence, it is important to remain knowledgeable so that the most pertinent tool can be recommended in view of the need. This is an essential role of the software vendors. It is often not easy to answer as it requires a unified vision, going from the fundamentals to the applications. This issue refers back to the discussion presented earlier regarding the process life-cycle: different approaches must be recommended depending on the development stage of the process.

Parameterization

The discussion regarding models can also be envisioned from the point of view of parameterization: should one develop parameters for specific applications (more accurate) or rather for large applicability? The answer is not universal but leads to the reflection concerning the acceptable accuracy, which can be very variable. This implies:

- that it is possible to evaluate the model accuracy, referring back to the availability of data and their own accuracy (which is rarely available!);
- that the effect of the thermodynamic model uncertainties on the final process simulation is known; this is also rarely done.

There are many industrial examples where the results of process simulations are sensitive to the specific parameterization used in the models. The choice of the data used for parameterization leads to following questions: which are the good data, which are less reliable data? How shall the parameter fitting be performed? Therefore, the evaluation of thermophysical property data should play an increasingly important role in industrial thermodynamics.

New Models for New Properties

It is also stated that more efforts should be put on the accuracy of calculations for derivative properties (heats of mixing, heat capacities, speed of sound, as well as on models for transport properties, particularly for mixtures, *e.g.* the viscosity of a mixture of two or more compounds).

Upscaling

The conclusion of this discussion clearly states that the different approaches (equation of state; molecular simulation or even experimental data-gathering) should not be opposed. The tools are fully complementary.
Molecular simulation has two interests: help understanding phenomena and generate pseudo-experimental data. Regarding the first point, qualitative results are expected. Simulation is used as an exploratory model making it possible to identify trends and to increase their understanding for new compounds or new areas (biomass, oxygenated compounds, fluorine, etc.). It is then an ideal tool for scale-up approaches: it is essential to investigate new ways to bridge the different time and length-scales. A practical way is to use \textit{ab initio} tools for parameterization of larger scale models; in the opposite direction, it might be possible to initialize a small-grain model with a larger grain approach.

Concerning the generation of pseudo-experimental data, experiments have to be used to validate results of molecular simulations. Once it is validated, molecular simulation can complement lab experiments when experiments are not easy to obtain (specific pressure and temperature conditions, reactive systems, safety conditions, etc.) or to accelerate the production of data.

3. \textbf{Algorithms}: Considering the increasing complexity of these tools, how do you consider they should be made available? Comment regarding run-time or complex phase equilibrium issues through process simulators or other interfaces. Is there an issue in further investigating parallelization or numeric optimization? How to use best intensive calculation tools for these methods and applications?

Improved Use of Computer Resources

It is important to make an optimal use of computer power (parallelization and numeric optimization) to facilitate dealing with increasingly complex models. This is now also true for the complex equations of state which clearly are more demanding from that respect. Process simulators are not yet ready to investigate multiple core calculations but things will have to change.

This issue is however particularly sensitive for Monte-Carlo or molecular dynamics simulations. In practice, it appears that today’s programmers must also become familiar with computer science.

A balance must be found between the optimal use of the new computer architectures, which may require recoding, and the need to capitalize on good-functioning old codes. The answer may be quite different depending on the complexity of the algorithms (solving equations of state requires more complex algorithms than \textit{ab initio} or molecular simulation calculations).

If recoding is needed, it is important to bring up the question of computing language: most codes available today are still based on Fortran, while new object-oriented languages may be easier to maintain and to interface. The systematic choice of the Windows platform in industry may also be limiting. The final choice will be a compromise between computing time efficiency, development time, maintenance and expected results.

It must however be kept in mind that the most important advances are related to the human factor: \textit{i.e.} how does the user interpret the results. Common sense may sometimes bring more understanding than many calculations, while paying attention to the false “good intuitions” and the preconceived idea, which can be erroneous because not established at the right scale.

At the end, performances must not mean loss of robustness: industrial users will need “stable applications”, which can react intelligently when they are misused.

4. \textbf{Education}: Do you think today’s engineering education is adequate for understanding the possibilities offered or to manipulate these new tools pertinent? What are the internal needs of industry? Can one consider these tools as available to any engineer, or are specific educational workshops required?
It was shown that the acceptance of the new developments requires that the industrial users gain confidence in these tools. This can be done through training.

Education should be considered at different levels:

– **on the level of the engineering diploma**

It is essential that the education at this level be broad enough. The basic education in chemistry, physics or chemical engineering is not adequate to provide the majority of the student with a broad overview about the theory, applications, capabilities, potentials and risks of theoretical methods.

Even though it might be useful that every student has such a lecture of theoretical physico-chemistry, necessarily limited in scope, most important is that our engineers be aware of the limits of their knowledge and are able to go to a specialist when they need. This is true for theoretical tools, but also for analyzing experimental results: our engineers often lack the basics of metrology.

– **on the level of industrial training programs**

Workshops/training courses make a lot of sense to add specific property know-how on-top of the ChemE education.

Regarding molecular simulation, the need from some industrial partners is to have a recent overview about the opportunity and risks of available simulation tools. If it turns out that an expert is needed a team member will be designated (or hired) for this specific mission.

Training programs are offered by software vendors, using their proprietary platforms. This is often a very convenient way to find out about the possibilities offered.

– **on the level of the education of experts**

Industry does hire ‘fully equipped experts’, even though this is on an occasional level. These candidates generally have a PhD in molecular thermodynamics or theoretical chemistry and molecular modelling.

Some academic formations exist, such as ATOSIM 2.0 proposed by ENS Lyon, University of Amsterdam and University of Roma. Lifelong training is of course required, through for example conferences, where researchers and industrials meet regularly, or educational workshops and training courses.

SCIENTIFIC CONTRIBUTIONS IN THIS OGST SPECIAL ISSUE

Eight contributions from the conference are presented in this volume. They cover a very wide range of modelling approaches (conventional models, advanced theories, molecular simulation, quantum-chemistry) and applications (oil & gas mixtures, electrolytes, adsorption, etc.). They are discussed below suitably grouped.

Conventional Models

In the terms conventional or standard models are included the classical approaches of applied thermodynamics such as the ones related to cubic equations of state, activity coefficient models and group contribution approaches. These methods are often considered to be mature but are often further developed and/or applied in new ways.

R. Torres, J.-C. de Hemptinne and I. Machin modified the classical method of Grayson-Streed by incorporating an entropic (Flory-Huggins type) term in the regular solution activity coefficient part of the model. Without such a term results for certain size-asymmetric systems are qualitatively wrong. The improved Grayson-Streed approach is shown to perform very well in predicting the hydrogen solubilities in alkanes and heavy oil cuts over a very extended temperature and pressure range.
A. Zaitseva and V. Alopaeus proposed a new approach for improving the estimation accuracy of group contribution methods (for pure compound properties). Their approach, which exploits the chemical similarity of compounds whose properties are estimated, is based on what is called distance weighted optimization, as opposed to the non-weighted optimization often used. The proposed methodology is generic and can be applied to different group contribution methods. The authors have successfully applied their approach to the well-known Joback-Reid and Marrero-Gani methods for the normal boiling point, as well as for several more properties exclusively for the Joback-Reid method. In all cases, the estimations are improved compared to the original methods. The new approach may be even for more useful for group contribution methods employing second and third order groups.

The last contribution in this section is that by H. Dardour, P. Cézac, J.M. Reneaume, M. Bourouis and A. Bellagi who investigated an absorption-diffusion refrigeration system using three working fluids, nonane as absorbent, propane as refrigerant and hydrogen as the inert auxiliary gas. The authors performed design simulations of this system using the commercial simulator ASPEN Plus with the Peng-Robinson equation of state as the property prediction model (which is preferred over the Chao-Seader method from the authors). Heat and mass characteristics have been analyzed as well as performances for a wide range of operating conditions and design parameters. While further work may be needed to verify these conclusions, the results point out that the studied nonane/propane/hydrogen system obtains good cooling performances with low generator temperature and it may thus be a suitable alternative to the ammonia/water/hydrogen working fluid which is widely used in commercial cooling units.

Electrolytes with an Equation of State

Modeling electrolyte solutions with equations of state is an active field of research and there are many still unanswered questions. A. Zuber, R.F. Checoni, R. Mathew, J.P.L. Santos, F. W. Tavares, M. Castier, extended the MTC (Mattedi-Tavares-Castier) equation of state to electrolytes by including both a Born term and an explicit (constant ion) MSA theory. The authors considered both a version of the model using salt-specific and one with ion-specific parameters, with the former being overall better. The model represents satisfactorily, with few adjustable parameters, vapour pressures, osmotic and mean ionic activity coefficients for 13 1:1 aqueous salt solutions over a temperature range up to 363.15 K. Some good predictions for vapour pressures of two-salt mixtures were also shown.

Molecular Simulation and COSMO-RS

Molecular simulation and computational quantum chemistry approaches have become very popular over the last 20 or so year and for diverse applications.

J. Janecek studied, in a theoretical work, the influence of periodic boundary conditions on the fluid structure and on the thermodynamic properties as computed from molecular simulations. This work is essential in view of investigating the effect that the various molecular parameters may have on different scales. He concludes that when thermodynamic properties are calculated using sufficiently large systems, the effect of local anisotropy, can be neglected.

O. Toure, C.-G. Dussap and A. Lebert compared systematically the predictive capability of COSMO-RS to two other methods (ChemAxon, ACD/Labs) for pKa values of about 50 amino-acids, dipeptides and tripeptides. Such information is useful in food science/industry and the authors find that COSMO-RS, while being somewhat inferior to the other two methods, is overall a powerful truly predictive approach for pKa calculations.
Adsorption and Molecular Simulation

Adsorption phenomena are complex and general reliable predictive methods are not available, especially for multicomponent adsorption. Molecular simulation can provide very useful input and can also contribute to better understanding of the underlying mechanisms. Two articles in this volume deal with molecular simulation applications to adsorption.

X. Rozanska, P. Ungerer, B. Leblanc and M. Yiannourakou combined periodic DFT (Density Functional Theory) with Monte-Carlo methods for the description of adsorption phenomena in complex systems. DFT provides input parameters (electrostatic potentials of adsorption materials) which can be directly used for the molecular simulations of fluid adsorption isotherms, where reliable force field parameters are needed. In this way, complex solids can be studied via simulation without a priori knowledge of the electrostatic parameters. The authors have used their approach to various solids and they have evaluated their affinity for the adsorption and separation of CO₂/N₂ mixtures in presence of water. Both excess adsorption isotherms and heats of adsorption have been calculated in all cases (single and mixed gas adsorptions).

In the second work, J. Puibasset illustrates how the molecular simulation models used for adsorption in porous materials can be significantly improved by explicitly considering the interdependence between domains. In this way, it is possible to obtain better characterization of porous materials compared to the simpler approaches often used where the porous domains are considered to be independent. J. Puibasset proposes a multiscale approach which allows for molecular fluid/fluid and fluid/substrate interactions as well as for the connectivity between the various domains of the porous material. The usual periodic boundary conditions applied to each domain are replaced by appropriate explicit boundaries. The improvement with the new method is especially pronounced in the high pressure/hysteresis region.

CONCLUSIONS

The workshop has been an excellent occasion for exchanges between experts in molecular thermodynamics from different origins. As an activity sponsored by the EFCE working party on “Thermodynamics and transport properties”, it can be considered as a successful step towards creating a community in this field with active participation from industry.

Several points have been brought up that may require future work:

– a large number of methods exists, whose pertinence very much depend on their final use. There is clearly no competition between the various tools but they should rather be seen as complementary. It may be of use to propose a review of the latest developments along with the best ways to employ the complementarities between tools;

– very little reflection is put today in the investigation of the complex links that exist between the quality of the experimental data used for parameterization and the uncertainties resulting from the final results. This leads to a certain devaluation of the high quality experimental work that must be recognized for its true value. What about the use of molecular simulation tools for producing pseudo-experimental data, and as a consequence the introduction of these data in the usual commercial databases?

– Further work is needed in order to develop methodologies for upscaling the computational approaches: how to navigate among the different scales from quantum to molecular, mesoscopic or bulk thermodynamic models?

Although the number of scientific meetings should remain low, the need for a forum where industrial partners can express their needs, even on a rather basic level, is essential. The working party should consider creating opportunities for such meetings in a regular fashion: they make it possible to bring up questions and needs.
ACKNOWLEDGMENTS

Many participants have directly contributed to this summary, either by taking notes during the meeting or by providing direct comments. The authors wish to acknowledge in particular the contribution of C. Coquelet (Mines ParisTech), J.-M. Simon (Université de Bourgogne), O. Baudouin (ProSim), G. Galliero (Université de Pau et des Pays de l’Adour), P. Arpentinier (Air Liquide), R. Dohrn (Bayer Technology Services GmbH).

Both the round table moderators P. Ricoux (TOTAL SA) and M. Brehelin (Rhodia) and all participants (O. Koch, Linde AG; P. Pullumbi, Air Liquide; P. Ungerer, Materials Design; J.-C. Mani, PSE; P. Sautet, Université de Lyon and A. Padua, Institut de Chimie de Clermont-Ferrand) have read and completed this manuscript.

Finally, it should be mentioned that the meeting would not have been held without the support of R. Sass (Dechema) and P. Meheux (SFGP). We also wish to acknowledge the major efforts by P. Bridou-Buffet, D. Roig and A.-G. Vilatte in the success of the meeting.

REFERENCES

1 Hendriks E., Kontogeorgis G.M., Dohrn R., De Hemptinne J.C., Economou I.G., Fele Zilnik L.F., Vesovic V. (2010) Industrial Requirements for Thermodynamics and Transport Properties, Ind. Eng. Chem. Res. 49, 22, 11131-11141.

2 Coquelet C., Galicia-Luna L.A., Mohammadi A.H., Richon D. (2010) The essential importance of experimental research and the use of experimental thermodynamics to the benefit of industry, Fluid Phase Equilibr. 296, 1, 2-3.

Georgios M. Kontogeorgisa, Jean-Noel Jaubertb and Jean-Charles de Hemptinnec

a CERE, Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Lyngby - Denmark

b Université de Lorraine, ENSIC-LRGP, 1 rue Grandville, 54000 Nancy - France

c IFP Energies nouvelles, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison - France