Analysis on the predicting significance of mid-strong earthquake swarms in Gansu and its surrounding areas

Xiying Dou, Enli Wang, Hui Zhang, Bo Zhang, Liqiong Zhang and Jiajia Jiang

Gansu Earthquake Agency, Lanzhou, PRC
Research Institute of Petrochina Exploration & Development (Northwest), Lanzhou, PRC
Email: xiyingdou@163.com

Abstract. In order to obtain the accurate prediction efficiency of earthquake swarms in Gansu province, the statistics of minor-moderate earthquake swarms that have occurred in Gansu since 1980 are performed. The earthquake swarm parameters are calculated and the precursory earthquake swarms are extracted based on the criteria of distinguishing the abnormal earthquake swarm. The precursory swarms obtained were analyzed correspondingly with the earthquakes with M ≥ 5 in and around Gansu, and the prediction efficiency of them was evaluated. The accurate precursor index of the earthquake swarms in Gansu were summarized, which provided a judging basis for the seismic trending and made a certain contribution to earthquake prevention and disaster reduction.

1. Introduction
The characteristics of minor-moderate earthquake swarms are an important part of earthquake prediction research. The earthquake swarm activity in the Songpan-Pingwu area before the Minxian 6.6 earthquake indicates that the earthquake swarms may have certain short-term prediction efficiency to strong earthquakes in Gansu. The Luqu earthquake swarm in Gansu, which was formed from January 18 to March 28, 2019, was identified as a precursory earthquake swarm. 214 days later, the Xiahe 5.7 earthquake occurred within 100 km from the swarm, which further illustrates that swarms in Gansu may have certain indication for the prediction of the time, space and magnitude for future strong earthquakes. In addition, Gansu is located on the northeast edge of the Qinghai-Tibet Plateau with frequently strong earthquakes in China. The geological structure in the area is complex. The Alkin earthquake zone, Qilian earthquake zone, and north-south earthquake zone run through from northwest to southeast. The frequency of earthquakes and the earthquake swarms are relatively high, so the swarms may become one of the predictive indicators of earthquakes with M ≥ 5 in and around Gansu.

However, due to the different levels of earthquake activity in different regions, there is also some difference in the relationship between the earthquake swarms and mid-strong earthquakes around these earthquake swarms [1-2, 4-5, 9]. Therefore, it may be not feasible to apply a unified index for the swarm to predicting med-strong earthquakes. It is necessary to establish the prediction index system of the earthquake swarms to mid-strong earthquakes, which provides services for the tracking and predicting of earthquake situation. In this abstract, the earthquake swarms in Gansu after 1980 have been obtained, whose properties have been analyzed, and the time, space, and structural response relationship between the swarms and moderate-strong earthquakes was systematically studied. Then, the R-value of the swarms was calculated to evaluate prediction efficiency to strong earthquakes. Besides, the prediction
indexes of earthquake swarm is applicable to Gansu are refined to reduce the errors of subsequent mid-strong earthquake predictions and provide a basis for earthquake tracking.

2. Correlation analysis

2.1. Determination and prediction significance of the precursory earthquake swarm

According to Lu [6] and "The Guide to Earthquake Prediction Methods" [7], the criteria of judging earthquake swarms are as follows: ① the maximum daily frequency of The earthquake sequence is at least 3 times and the total number of it is 10 above times; ② the largest magnitude in the earthquake sequence is below ML5.2, the magnitude difference (ΔML) between the largest and the second-largest earthquake is less than 1.1; ③ Within 15 days before the start of the sequence and after the end of it, the earthquakes with ML ≥ 1.0 have not been recorded. In this case, the date of the first earthquake is the start of the swarm sequence, and the date of the last earthquake is the end of it. If small earthquakes are recorded continually for many days from the 16th day, the sequence is accumulated only when the frequency of the ML≥1.0 earthquake is greater than or equal to 3 times or the frequency of the ML≥2.0 earthquake is larger than 2 times on the 16th day. For the judgment of earthquake swarm properties, a quantitative analysis method is often used, which is, that the swarm parameters b, h, p, k, U, and F values are applied to judge precursory earthquake swarms. In 1997 [8], among the precursory swarms indexes summarized by Prediction and Prevention Department of State Seismological Bureau in Earthquake Prediction Methods, the single index is that one of the earthquake swarm parameters U> 0.5, K> 0.7, <0.55, b> 0.65, h <1.0 is true, and the comprehensive indexes is that one of the U-K, U- ρ, K- ρ , or U-K- ρ combinations composed of U> 0.5, K> 0.7, or ρ <0.55 is true. The comprehensive index is generally better than single index. Previous research have suggested that within 1-2 years after the end of the precursory earthquake swarm, M≥5.0 earthquakes may occur within 400-500 km near the swarm [3, 10, 12], which shows that the anomaly of the earthquake swarm can correspond to the strong earthquake at the maximum distance of 500km.

2.2. Technical ideas for the extraction of earthquake swa201rms prediction indexes

According to the judgment criteria of the earthquake swarm mentioned above, all earthquake swarms that have occurred in Gansu since 1980 are extracted. It was found that 90% of the swarms have more than 20 earthquakes. Considering the universality and commonality of earthquake swarms, only these earthquake swarms are analyzed and studied. The swarm parameters b, h, p, k, U, and F are calculated, and then the precursory earthquake swarms based on the precursory swarm indexes are extracted. Based on previous research results, and taking into account the different activity of the earthquake swarms in different regions and the strip-shaped characteristics of Gansu region, the correspondence and tectonic relationship of the precursory swarm extracted and medium-strong earthquakes which occurred within
400 km around the swarms in 1-2 years after the swarms were analyzed. Meanwhile, the R value proposed by Xu [11] was calculated to evaluate the efficiency of the precursory earthquake swarms. Under the premise to achieve efficiency, the specific technical ideas of abstracting the swarm prediction indexes are as follows:

2.3. Correspondence analysis between earthquake swarms and mid-strong earthquakes

Table 1. Correspondence statistics of precursory earthquake swarms and mid-strong earthquakes

No.	Duration	Earthquake swarm	Total earthquakes	Maximum magnitude	Earthquake swarm type	Corresponding earthquake	Corresponding earthquake time	Interval from mid-strong earthquake (km)	Distance from mid-strong earthquake (km)	Tectonic relationship between the earthquake swarm and corresponding mid-strong earthquake
1	19890701~19900817	Woven-Guang	65	4.8	b-u-p	Hanxian-3	19900820	9	15	same structure
2	19901101~19911121	Sunan	13	4.7	b-u-L-p	Sunan-2	19911220	9	12	same structure
3	19910121~19920625	Woven-Guang	71	3.5	b-u-U	Dingxian-7	19920426	305	245	different structure
4	19920921~19930620	Jingta-Yongfeng	32	4	U	Tianzhu-5	19930102	61	27	same structure
5	19930701~19940719	Lanzhou-Yongfeng	30	3.5	b-U	Yalong-3	19940122	3	100	same structure
6	19950922~19950529	Woven-Guang	94	3.6	b-h-U	Tianzhu-4	19950101	3	95	same structure
7	19960121~19960207	Guanzhong	36	3.1	b-U					
8	19960901~19970510	Luoyu	41	3.6	b-u-p	Shaanxi-5	19970122	104	118	different structure
9	19980901~20000905	Jingta-Baian	30	3.5	b-h-U	Jingta-9	20000606	1	14	same structure
10	20010401~20100108	Guanzhong	91	4.6	U-b-h	Shaanxi-7	20010717	9	320	different structure
11	20010927~20011224	Luoyu-Daxia	71	4.9	b-h-p					
12	20011308~20030506	Pingliang	108	3.1	U-k-b-h	Shaanxi-5	20030113	115	267	different structure
13	20030409~20050601	Lianyuan	85	3.1	b-h-p					same structure
14	20040630~20040703	Luoyu	50	4.5	p-k-h					
15	20041334~20050105	Poyang	20	2.6	U-p					
16	20050530~20050908	Poyang	50	3	U-p-b-h					
17	20060619~20061222	Pingliang	45	2.8	U-k-b-h					
18	20070610~20070413	Huating-Pingliang	45	2.8	U-k-b-h					
19	20080534~20080501	Woven-Guang	77	3.8	U-b-h	Ananzhu-3	20080601	349	358	different structure
20	20080501~20080110	Woven-Guang	105	3.6	U-k-b-h			98	391	different structure
21	20090315~20090313	Sunan	43	3	U-b-h					
22	20090919~20090911	Guanzhong	34	3.5	h					
23	20090925~20091129	Sunan	31	3.1	U-b-h					
24	20100125~20100208	Jingta-Baian	43	2.6	U-k-b-h					
25	20100828~20100911	Guanzhong	54	2.5	U-b-h					
26	20100903~20100928	Guanzhong	54	4.5	p-k-b					
27	20100927~20100925	Jinta	43	2.8	p-k-b					
28	20101213~20101203	Sunan-Warui	103	3	U-k-b-b					
29	20110123~20110103	Sunan-Warui	103	3	U-k-b-b					
30	20120123~20120106	Yushu-Pinghu	288	2.6	U-k-b-b					
31	20130125~20130225	Jingta	105	2.4	U-k-b-h	Shaanxi-5	20130122	361	329	same structure
32	20130405~20130611	Anhui	34	3.5	p-b-h					
33	20121224~20130106	Sunan	38	2.4	U-k-b	Huaian-2	20130605	29	360	same structure
34	20140222~20140310	Tuanhe	175	4.0	p-b-b					
35	20160101~20160109	Linan	54	4.5	p-b					
36	20160101~20160121	Tuanhe	24	2.6	U-p-b-b	Ananzhu-3	20160121	209	124	different structure
37	20170102~20170115	Tuanhe	22	3.4	b-h					
38	20180101~20180129	Luoyu	72	3.6	p-b	Shaanxi-7	20180126	214	96	same structure
Using the above technical ideas, the corresponding statistical results between precursory earthquake swarms and mid-strong earthquakes are shown in Table 1. The earthquake swarms marked with pink in the table are the ones who are correspond to the mid-strong earthquakes in east-southern Gansu, and those marked with blue are the ones who are not correspond to mid-strong earthquakes in east-southern Gansu. In table 1, only 18 of the 38 precursory earthquake swarms since 1980 have been correspond to mid-strong earthquakes, and the corresponding rate between the earthquake swarm events and mid-strong earthquakes occurred from 2004 to 2011 is very poor; 12 of the 18 earthquake swarms which correspond to mid-strong earthquakes have the same seismic tectonic zone as the corresponding mid-strong earthquakes, and the remaining 6 earthquake swarms are located adjacent to the corresponding mid-strong earthquakes. The rate of the earthquake swarm in east-southern Gansu correspond to a mid-strong earthquakes is 5/8. For the whole Gansu, the corresponding rate between earthquake swarms and mid-strong earthquakes has averaged about 47% (18/38); the proportion of predicted time for mid-strong earthquakes in 6 months after the end of the earthquake swarm is 13/18, and the proportion of predicted time for mid-strong earthquake in the 6-12 months after the end of the swarm is 5/18. The proportion of predicted locations for mid-strong earthquakes which may be in a range of 300 km from the swarm is 14/18.

From the spatial distribution of the precursory earthquake swarms and corresponding mid-strong earthquakes (Figure 2), the earthquake swarms are mostly concentrated in the Wuwei-Baiyin region. The earthquake swarms in mid-west section of Qilian earthquake zone cannot effectively correspond to mid-strong earthquakes. The earthquake swarms which can correspond to mid-strong earthquakes are mainly located in the east of longitude 99°. The mid-strong earthquakes that occurred within 6 months after the earthquake swarms were mainly distributed in Gansu province. Meanwhile, those that occurred more than 6 months after the earthquake swarms were distributed along the direction of east-north. The corresponding mid-strong earthquakes in east-southern Gansu occurred mainly within 6 months after the precursory earthquake swarm.

![Figure 2. Effect diagram after dividing of the model in Figure 1](image)

According to the formula of R value scoring proposed by Xu [11], the prediction efficiency of the precursory earthquake swarms in Gansu region was evaluated to get the R value of -0.34 which is compared with the R0 value of 0.09 in Northwest China. The result of comparison is obviously R < R0,
which indicates that the earthquake swarms in Gansu may not have the prediction efficiency. However, the prediction efficiency of those swarms in east-southern Gansu was alone evaluated, and the R value score obtained is 0.36, then R > R0, which illustrates that the prediction efficiency of the precursory earthquake swarms in the southeast Gansu is better. In other words, the swarms in the southeast Gansu has more predictive significance for mid-strong earthquakes.

3. Conclusions
Thought the corresponding statistical analysis between the precursory earthquake swarms obtained and the mid-strong earthquakes within 400km around the earthquake swarms since 1980 and R-value calculation of the swarms, it concludes that the precursory earthquake swarms in Gansu region may not have the efficiency of predicting mid-strong earthquakes, but those in the southeast Gansu have good effectiveness to predict mid-strong earthquakes. Moreover, the prediction time of these earthquake swarms in this area for mid-strong earthquakes is generally within one year after the end of them, but the dominant prediction time of them is within 6 months. The dominant predictive locations of them for mid-strong earthquakes are within 300km from them, and they very likely in the same tectonic zone as the precursory earthquake swarms. The prediction probability of them for mid-strong earthquakes is 63% (5/8). These index systems can provide a strong judgment basis for tracking mid-strong earthquakes in Gansu.

This paper only analyzed systematically the time, space, intensity, and structure relationship between the earthquake swarms and the corresponding earthquakes, and extracted the prediction indexes of the earthquake swarms for mid-strong earthquakes to determine the reliability of predicting mid-strong earthquakes by using the earthquake swarms in Gansu. However, the response relationship between the earthquake swarms wide-distributed and the historical strong earthquakes in and around Gansu has not been analyzed from the perspectives of the spatial clustering distribution and time evolution processes, and retrospective analysis of the earthquake swarms before the strong earthquake has not been carried out, which will be the focus of the next work.

Acknowledgements
This research is supported by the Science and Technology fund of Lanzhou Institute of Seismology, China Earthquake Administration, and funded by Science for Earthquake Resilience of China Earthquake Administration, project number: XH18047 and Special project of innovation team of Gansu Earthquake Agency.

References
[1] Cao F, Zhai L and Yin Y N 2015 The study on the statistical characteristics of the earthquake swarms in Liaoning and the prediction significance Earthquake Research in China 31 45-55.
[2] Chen Y, Yao J and Li Y 2013 Analysis of earthquake group activity and foreshock sequences in the Qinghai region since 1980 Earthquake Research in China 29 489-500
[3] Guo A, Li X and Lin H 2001 Correlation analysis between precursory cluster of seismic events and moderate or large earthquake in North China Seismological and Geomagnetic Observation and Research 22 23-28
[4] Huang Y, Sun Y and Yang Y 2011 The characteristics of earthquake swarms in Jiangsu Province and its adjacent area Earthquake Research in China 27 72-82
[5] Li D, Zhou C and Dong X 2011 Relationship between Earthquake Swarms in Shandong Area and Mid-strong Earthquake in Its Surrounding Area North China Earthquake Sciences 29 23-28
[6] Lu Y, Song J and Dai W 1984 an index for judging earthquake swarms—U value of earthquake swarms Acta Seismologica Sinica 6 498-508
[7] Prediction and Prevention Department of State Seismological Bureau 1990 The Guide to Earthquake Prediction Methods (Beijing: Seismological Press)
[8] Prediction and Prevention Department of State Seismological Bureau 1997 Earthquake Prediction Methods (Beijing, Seismological Press) p 105-174
[9] Ren X, Cheng J and Cai X 2016 The precursor analysis of earthquake swarms in Ningxia and its adjacent area Earthquake Research In China 32 738-746

[10] Song J, Lu Y and Shi Y 1989 Research on Practical Programs of Earthquake Swarm for Earthquake Prediction Collection of Practical Research on Earthquake Prediction Methods—Seismology Album (Beijing, Academic Publishing House) 204-228

[11] Xu S 1989 Evaluation of earthquake prediction capabilities//Prediction and Prevention Department of State Seismological Bureau, Collection of Practical Research on Earthquake Prediction Methods—Seismology Album (Beijing, Academic Publishing House.) p 586-590

[12] Zhao X, Hua A and Liu X 1995 Study on comprehensive discriminant indexes of the precursory clusters in Shandong province and its Neighboring area Earthquake 2 182-186