Different experimental approaches in modelling cataractogenesis: An overview of selenite-induced nuclear cataract in rats

Zuzana KYSELOVA
Institute of Experimental Pharmacology & Toxicology, Slovak Academy of Sciences, SK-84104 Bratislava, Slovakia

ABSTRACT
Cataract, the opacification of eye lens, is the leading cause of blindness worldwide. At present, the only remedy is surgical removal of the cataractous lens and substitution with a lens made of synthetic polymers. However, besides significant costs of operation and possible complications, an artificial lens just does not have the overall optical qualities of a normal one. Hence it remains a significant public health problem, and biochemical solutions or pharmacological interventions that will maintain the transparency of the lens are highly required. Naturally, there is a persistent demand for suitable biological models. The ocular lens would appear to be an ideal organ for maintaining culture conditions because of lacking blood vessels and nerves. The lens in vivo obtains its nutrients and eliminates waste products via diffusion with the surrounding fluids. Lens opacification observed in vivo can be mimicked in vitro by addition of the cataractogenic agent sodium selenite (Na₂SeO₃) to the culture medium. Moreover, since an overdose of sodium selenite induces also cataract in young rats, it became an extremely rapid and convenient model of nuclear cataract in vivo. The main focus of this review will be on selenium (Se) and its salt sodium selenite, their toxicological characteristics and safety data in relevance of modelling cataractogenesis, either under in vivo or in vitro conditions. The studies revealing the mechanisms of lens opacification induced by selenite are highlighted, the representatives from screening for potential anti-cataract agents are listed.

KEY WORDS: sodium selenite; nuclear cataract; rats; eye lens; crystallins

Introduction
Cataract, the opacification of the lens of the eye, is the leading cause of blindness worldwide – it accounts for approximately 42% of all blindness. Thus more than 17 million people are blind because of cataract and worldwide, 28 000 new cases are reported daily. Approximately 25% of the population over 65 and about 50% over 80 have serious loss of vision because of cataract (Minassian et al., 2000). There are an estimated 50 million blind people in the world, and cataracts (opacities of the lens in the eye) are responsible for half of these cases (Johnson and Foster, 2004). In the USA, over 1.2 million cataract operations are performed per year; the costs are over 3.4 billion $ (West, 2000).

For ‘age-related cataracts’, it is thought (based on twin studies) that the heritability for nuclear and cortical cataracts is around 50% (Hammond et al., 2001). ‘Congenital cataracts’ are present at birth indicating pathological changes during embryonic development of the lens. Lens development is the result of a series of inductive processes (Graw, 2003), and one of the most important events is the interaction of the lens placode with the surface ectoderm. ‘Sugar cataracts’ were noticed a long time before thorough case observations and medical treatment became available (Robman and Taylor, 2005). These types of cataract are regarded to be associated either with diabetes (diabetic cataract), based on biochemical animal investigations (Fan et al., 2009; Kumar et al., 2009) as well as clinical and epidemiological studies (Chikamoto et al., 2009; Theodoropoulou et al., 2010) or galactosemia (Bosh, 2006). Pre-senile development of galactosemic cataract is a consequence of a hereditary disease that results in a defect in, or absence of, galactose-metabolizing enzymes. At present, the only remedy from cataract is surgical removal of the opaque lens and substitution with a clear one made of synthetic polymers. However, in the UK half of the patients put on waiting lists for operation will die before getting surgery (Minassian et al., 2000). In the United States, over 1.3 million cataract operations are performed annually at a cost of 3.5 billion dollars. In developing countries there is simply no sufficient number
of surgeons to perform cataract operations. Besides significant costs of operation and possible complications, an artificial lens just does not have the overall optical qualities of a normal lens (Spector, 2000). This is the reason for highly required biochemical solutions or pharmacological intervention that will maintain the transparency of the lens; it is estimated that a delay in cataract formation of about 10 years would reduce the prevalence of visually disabling cataract by about 45% (Kupfer, 1984). Such a delay would enhance the quality of life for much of the world’s older and diabetic population and substantially diminish both the economic burden due to disability and surgery related to cataract.

Hence it remains a significant public health problem, and there is a need for suitable biological models that would test potential anti-cataract agents. The ocular lens would appear to be an ideal organ for maintaining culture conditions because of lacking blood vessels and nerves. The lens in vivo obtains its nutrients and eliminates waste products via diffusion with the surrounding fluids. The lens opacification observed in vivo can be mimicked in vitro by the addition of different cataractogenic agents to the culture medium (Dickerson et al., 1995; Saxena et al., 1996; Padival and Nagaraj, 2006; Olofsson et al., 2007).

Since an overdose of sodium selenite induces cataract in young rats (Shearer et al., 1997), it became an extremely rapid and convenient model of nuclear cataract. Sodium-selenite-induced opacification of lens is widely used for studying the effects of various stresses on the lens, modelling various mechanisms of cataract formation and for screening potential anti-cataract agents (Kinoshita, 1974; Chandra et al., 1992; Spector et al., 1998; Zigler et al., 2003; Gosh and Zigler, 2005; Son et al., 2007).

This review will firstly deal with principal anatomical and physiological singularities about eye lens with special emphasis on specific lens proteins – crystallins. Second, the article will mention different experimental approaches applied in cataractogenic research. Third, the main focus of this review will be on selenium (Se) and its salt sodium selenite (Na$_2$SeO$_3$), their toxicological characteristics and safety data in relevance of modelling cataractogenesis, either under in vivo or in vitro conditions. The studies revealing the mechanisms of lens opacification induced by selenite will be highlighted, the representatives from screening for potential anti-cataract agents will be listed.

Lens development, anatomy and physiology

The ocular lens is biconvex, relatively pliable and normally transparent tissue held in suspension by ciliary zonules between the aqueous and the vitreous humors. Its anatomical structure and location coupled with its physical and biochemical characteristics are geared towards maintaining an effective transmission and convergence of the visible frequencies of the electromagnetic spectrum from the environmental objects to the retina, meant for image formation and visual perception. Lens function to converge is also dependent on its pliability and consequent adjustments in its curvature. The lens also acts as an optical filter so that the access of ultraviolet (UV) light to the retina is greatly minimized (Varma, 1991).

Figure 1. Lens – a single layer of epithelial cells covers the anterior cross section. The elongated fiber cells are in direct contact with the epithelial layer in the anterior region, and they make contact with the capsule in the posterior region. In the lens bow region the cells differentiate, elongate, lose their organelles and begin to form newly differentiated fiber cells (Sharma and Santhoshkumar, 2009).
The eye lens is an avascular tissue encapsulated in a collagenous basement membrane-like material composed of a single layer of epithelial cells on the anterior subcapsular surface (Kuszak, 1990). The lens derives all of its nutrients and oxygen from the aqueous humor and vitreous body. At the equatorial zone the epithelial cells begin to differentiate, elongating to become fiber cells, during which time they lose the organelles and begin synthesizing large quantities of structural proteins called crystallins. This process continues throughout life, though at a slowing down pace, with the younger/newer fiber cells pushing the older fibers to the center (nuclear) region of the lens (Figure 1).

Although the lens has a limited number of cells and cell types, its development is complex (Jaffe and Horwitz, 1990; Lovicu and Robinson, 2004). Lens development begins with the invagination of lens placode toward the optic cup to become the lens pit. The invagination process continues, the pit closes and a lens vesicle is formed in humans by embryonic day 33. Following this, the differentiating epithelial cells start filling the vesicle until the whole cavity is obliterated with fiber cells by the end of the seventh week. The ‘first-formed’ fiber cells that occupy the center of the lens become the embryonic nucleus (Kuszak, 1990; Lovicu and Robinson, 2004). Lens development is not complete without the removal of all potential light-scattering organelles from the fiber cells, which is accomplished in a programmed process that involves proteases (Bassnett, 2002; Bassnett, 2009). The embryonic spherical lens, measuring about 0.35 mm in diameter initially, quickly begins to grow to an elliptical organ of about 35 mg by birth. Studies of human lenses ranging in age from 6 months to 99 years show that the lens actually grows in two phases, an ‘asymptotic phase’ during the prenatal and early childhood periods and a linear phase during the rest of the life span (Jaffe and Horwitz, 1990; Augusteyn, 2007). Although it was once thought that lenses of males are heavier than lenses of females, new data do not support this notion (Augusteyn, 2007). The best estimate of human lens weight can be obtained by the expression:

\[W = 1.38A_b + 149 \exp^{-[\exp^{(1.6 - 3A_c)}]}, \]

where \(W \) is lens weight in mg, \(A_b \) is postnatal age in years and \(A_c \) is the time since conception in years (Augusteyn, 2007). Because the lens is composed of a range of fibers representing different ages, it is an attractive tissue for studying the effects of aging on protein structure and function (Bloemendal, 1981).

There is little protein turnover in the lens, the majority of proteins consisting of long-lived \(\alpha-, \beta-, \gamma- \)crystallins. These proteins appear to be specific to the lens, although they contain regions of sequence and structural homology comparable to other proteins. Lipids, approximately 1% of wet weight of the lens, are found mainly in cell membranes. The major (50–60% of all lipids of the lens) is cholesterol (Jacob et al., 1999; Girao et al., 1999; VanMarle and Vrensen, 2000).

Factors implicated in cataract

There is a coincident dehydration of the proteins and the lens itself. Together with modification of the protein and other constituents, these changes result in less flexibility upon aging. As the lens ages, the proteins are photooxidatively damaged, aggregate, and accumulate in lens opacities. Dysfunction of the lens due to opacification is called cataract. The term “age-related cataract” is used to distinguish lens opacification associated with old age from opacification associated with other causes, such as congenital and metabolic disorders, e.g. diabetes or galactosemia (Jacques and Taylor, 1991; Taylor and Nowell, 1997).

Half-lives of many of the lens proteins are measured in decades. The sunlight and oxygen that the lens is exposed to are associated with extensive damage to the long-lived lens proteins and other constituents. With progressive damage, the altered proteins accumulate, aggregate, and precipitate in opacities, or cataracts. The young lens has substantial reserves of antioxidants (e.g. vitamins C and E, carotenoids and glutathione (GSH) and antioxidant enzymes (e.g. superoxide dismutase (SOD), catalase (CAT), and glutathione reductase/peroxidase (GSR/GPx)) that may prevent damage. Proteolytic enzymes, called proteases, may selectively remove obsolete proteins and provide a second level of defense. Compromises of function of the lens upon aging are associated with and may be causally related to depleted or diminished primary antioxidant reserves, antioxidant enzyme capabilities, and diminished secondary defenses such as proteases. Environmental stress such as smoking and excessive UV-light exposure, appear to provide an additional oxidative challenge associated with the depletion of antioxidants as well as with enhanced risk for cataract (Taylor and Nowell, 1997). Other risk factors for cataract formation include diabetes, galactosemia, electromagnetic radiation, life-threatening diarrhea, renal failure and many drugs (Cerami and Crabbe, 1986). The most common drugs and related compounds implicated in cataract formation, in humans and in experimental animals, are given in Table 1.

Table 1. Drugs and related compounds implicated in cataract formation (Cerami and Crabbe, 1986).
Cataract in experimental animals
cyanate, methylisocyanate, N-methyl-N-nitrosourea, bisulphan, dinitrophenol, 3-aminotriazole, naphthalene, triparanol and other inhibitors of cholesterol synthesis, ecothiopate iodide (phospholine iodide) and other cholinesterase inhibitors, diquat, chloroquine, chlorpromazine and phenothiazines, adrenaline and morphine, steroids, bleomycin
Cataract in humans
barbiturates, alcohol, dinitrophenol, triparanol and other inhibitors of cholesterol synthesis, cholinesterase inhibitors, phenothiazines and major tranquilizers, diuretics, steroids

Copyright © 2010 Slovak Toxicology Society SETOX
Crystallins and their role in maintaining transparency

Crystallins are the major structural proteins in the lens accounting for up to 90% of total soluble protein. There are three distinct families of crystallins: α-, β- and γ-crystallins. Among these, the α- and β-crystallins exist as oligomers, whereas the γ-crystallin is a monomer. Their structure, stability and short-range interactions are thought to contribute to lens transparency. The human lens is also susceptible to age-related degenerative changes such as accumulation of insoluble proteins and oxidative damage and hence senile cataracts are the most common form of cataract (Harding, 1991; Ponce et al., 2006; Takemoto and Sorensen, 2008).

α-Crystallin, a member of the small heat shock protein family, constitutes a major portion of the eye lens cytoplasm. It constitutes up to 50% of the total protein (Bloemendal et al., 2004). α-Crystallin monomer has a molecular weight of 20,000. In humans, the lenticular α-crystallin exists as a heterooligomer of the approximate molecular weight of 800,000 with two subunits, αA and αB occurring in a stoichiometry of 3:1 (de Jong et al., 1998). αA-Crystallin appears to be largely lens-specific, whereas αB-crystallin is also expressed in other tissues such as heart, skeletal muscle, kidney, and brain. Increased levels of αB-crystallin have been observed in many neurodegenerative disorders, tumors and diabetic conditions (Klemenz et al., 1991; Kumar et al., 2005a). Both of these proteins are known for their chaperone activity as evident from suppression of protein aggregation. They presumably protect other lens proteins from the adverse effects of heat, chemicals, and UV irradiation. In addition to providing refractive properties to the eye lens, α-crystallins are instrumental in maintaining transparency of the lens with their chaperone-like activity (Harding, 1991; Bera et al., 2002; Horwitz, 2003; Surolia et al., 2008). Recently it has been reported that some low molecular weight peptides found in aged and cataractous lens bind and probably protect other lens proteins from the adverse effects of heat, chemicals, and UV irradiation.

The proteins of the eye lens are extremely long-lived and there is virtually no protein turnover. This provides great opportunities for post-translational modifications (PTMs) to occur, most of which lead to aggregation and this process is further accelerated due to various physiological, environmental and genetic factors that predispose lens to cataract formation (Harding, 1991). PTMs were found to induce changes of higher order structure of lens proteins related to opacification (Zhang et al., 2001; MacCoss et al., 2002; Fujii et al., 2004; Ponce et al., 2006; Wilmarth et al., 2006; Zhang et al., 2007; Takemoto and Sorensen, 2008; Kanamoto et al., 2009; Hains and Truscott, 2010).

Multiple biochemical mechanisms are involved in the opacification of the lens and they have been thoroughly described: i) non-enzymatic glycation (Thorpe and Baynes, 1996; Lapolla et al., 2006; Padival and Nagaraj, 2006), ii) oxidative stress (Spector, 2000; Paron et al., 2004; Niwa, 2007), iii) polyol pathway (Jedzieniak et al., 1981; Kador et al., 2007; Lorenzi, 2007) and iv) activation of calpain proteases (Chandrasekher and Cenedella, 1993; Ma et al., 1999; Nakamura et al., 2000).

Different experimental approaches in cataractogenic research

Especially in rodents the observation of eye lens proteome related changes have been studied preferentially on the aging model of cataract (Cenedella, 1998; Lampi et al., 2002; Ueda et al., 2002; Descamps et al., 2005) or on the hereditary cataract model (Fujii et al., 2004). However, only few of the research articles were found to be related to diabetic cataractous state in particular (Satake et al., 2003; Kumar et al., 2005a; Kumar et al., 2005b).

Although dogs (Kador et al., 2007; Gift et al., 2009) and rabbits (Cheng, 2002; Babizhayev et al., 2009) might be commonly used, rodents still remain the most common experimental animals used to study the mechanisms of cataract formation. Several experimental treatments aimed at inducing cataracts in rats include streptozotocin-induced diabetes (Kyselova et al., 2005a; Kyselova et al., 2005b), galactose feeding (Huang et al., 1990; Huang et al., 2000), ionizing radiation (Worgul et al., 1996), inhibition of cholesterol synthesis and steroid treatment (Dickerson et al., 1997), overdose of selenium (Shearer et al., 1997), and finally culture with oxidants or calcium ionophore (Chandrasekher and Cenedella, 1993; Fukiage et al., 1997; Nakamura et al., 1999; Mitton et al., 1999).

In most of these models, covalent modification of crystallins, followed by phase separation of lens cytosol and formation of water-insoluble aggregates, may play important roles in opacification. Some of the modifications detected in rat crystallins that could contribute to insolubilization are mixed disulfide formation (Lou et al., 1995; Kyselova et al., 2005c), glycation (Swamy-Mruthinti et al., 1996), cross-linking by UV-light (Dillon et al., 1989), transglutaminase (Groenen et al., 1994) or disulfides (Ozaki et al., 1987), phosphorylation (Ito et al., 1999) and proteolysis (David et al., 1993).

The ocular lens would appear to be an ideal organ for maintaining culture conditions because of lacking blood vessels and nerves. The lens in vivo obtains its nutrients and eliminates waste products via diffusion with the surrounding fluids.

Lens opacification observed in vivo can be mimicked in vitro by the addition of a cataractogenic agent to the culture medium — e.g. galactose (Saxena et al., 1996) or high glucose (Padival and Nagaraj, 2006; Dickerson et al., 1995; Olofsson et al., 2007; Son et al., 2007). Parenthetically, the lenses from various species have been incubated successfully since the middle of the last century (Kuck, 1970). Different research groups utilized rat lenses in organ culture as a model system for studying the effects of various stresses on the lens, mechanisms of cataract formation, and for screening potential anti-cataract agents (Kinoshita, 1974; Spector et al., 1998; Zigler et al., 2003; Ghosh and Zigler, 2005). In certain instances
lens opacification induced in vivo by administration of a particular cataractogenic agent can be mimicked in vitro by addition of the same agent to the culture medium – e.g. naphthalene (Xu et al., 1992; Lee and Chung, 1998), selenite (Biju et al., 2007a), transforming growth factor-β (Hales et al., 1995), methylglyoxal (Shamsi et al., 2000) or high glucose (Padival and Nagaraj, 2006; Dickerson et al., 1995; Olofsson et al., 2007; Son et al., 2007; Devamanoharan and Varma, 1995). Further, agents which prevent such cataracts in vivo may also be effective in culture (Son et al., 2007; Zigler et al., 2003; Chandra et al., 2002). Thus, there is good evidence to support the idea that lenses in culture can be an effective model for the lens in vivo.

Two-faced biological function of selenium

Selenium (Se) is an essential trace element for humans, animals, and some bacteria. It is important for many cellular processes: it is dietarily essential, being specifically incorporated into the active sites of several known proteins or enzymes as the amino acid selenocysteine (Letavayova et al., 2006). It is pharmacologically active and at supranutritional dietary levels can prevent the development of many cancers, thus demonstrating chemoprevention and/or carcinostatic activities (Rayman, 2005). Moreover, Se functions in the body as an antioxidant, it is involved in thyroid hormone metabolism, redox reactions, reproduction, and immune function (Rayman, 2000; Combs et al., 2009). Selenium has however been shown to induce wide-spread oxidative stress in biological systems (Manikandan et al., 2009). Ironically, it forms an important part of biological defense, being the key component of selenoproteins, such as GPx, selenoprotein P and thioredoxin reductases (Stadtman, 1991). Indeed, Se has been shown to protect against cadmium-mediated apoptosis by regulating reactive oxygen species (ROS) generation and mitochondria linked signaling pathways (Zhou et al., 2009).

Selenium has been linked to regulatory functions in cell growth, survival and cytotoxicity, as well as transformations possibly involving redox regulation, chemical toxicity (Zhou et al., 2009). Some reports showed that Se can ameliorate the kidney damage induced by HgCl₂ injection (El-Shenawy and Hassan, 2008), and Se also had hepatoprotective effects against cadmium toxicity in rats (Newairy et al., 2007). These reports showed that protection of Se treatment might be associated with recovering inhibition of GPx and thioredoxin reductase activities, decreasing free-radical-mediated lipid peroxidation and GSH regeneration (Gan et al., 2002).

Selenium intake is mainly in the form of organic compounds ingested in grains, meat, yeast, and vegetables (Cao et al., 2004). The Food and Nutrition Board, USA Institute of Medicine (2000) considered the estimated safe and adequate daily intake for Se to be 50–200 μg, with 55 μg/day being the Recommended Dietary Allowance (RDA) for Se for both men and women. The upper Se levels (the highest daily level of Se intake that is likely to pose no risk of adverse health effects in almost all individuals) were fixed at 400 μg Se/day. The No Observed Adverse Effect Level (NOAEL) of dietary Se was estimated to be 1,540–1,600 μg/day (Whanger, 2004).

At higher dietary levels, many Se compounds can become toxic (Spallholz, 1994). All these attributes of Se mainly depend upon the concentration, the chemical form and metabolic activity of the compound (El-Bayoumy, 2001; Whanger, 2004). A common specific characteristic of Se compounds expressing the carcinostatic activity and toxicity in vitro and in vivo is their interaction with thiol and the generation of free radical species (Kramer and Ames, 1988; Spallholz, 1997). In accordance with the prooxidant activities of Se, the higher doses of some Se compounds have the potential to induce DNA damage (Lu et al., 1994, 1995; Zhou et al., 2003; Reid et al., 2004; Wycherly et al., 2004; Waters et al., 2005).

Chronic exposure in humans or animals results in selenosis (Goldhaber, 2003). Selenosis is characterized by hair loss, fingernail changes and brittleness, gastrointestinal disturbances, skin rash, garlic breath, and abnormal functioning of the nervous system. Other related toxic effects are disruption of endocrine function, of synthesis of thyroid hormones and growth hormones, and an insulin-like growth factor metabolism (Navarro-Alarcon and Cabrera-Vique, 2008). The mechanism of Se toxicity has not been clarified but mostly attributed to its ability to induce oxidative stress both in vitro and in vivo (Kitahara et al., 1993; Yan and Spallholz, 1993; Manikandan et al., 2009; Valdiglesias et al., 2009).

Selenite model of cataractogenesis

The selenite cataract model is the most commonly used as it partially mimics senile nuclear cataract in humans. This chapter will briefly outline the methodological particulars and will try to explain possible mechanisms of cataract formation induced by sodium selenite. Since the model has been used by several investigators to screen a variety of agents having anti-cataract potential, their representatives will be outlined.

Experimental approaches in vivo

Selenite-overdose cataract is an extremely rapid and convenient model of nuclear cataracts in rats in vivo. Sodium selenite is a cataractogenic agent commonly used in experimental studies since 1978 (Ostadalova et al., 1978). Selenite cataract is usually produced by a single subcutaneous injection of 19–30 μM/kg body weight of sodium selenite (Na₂SeO₃) into sucking rats of 10–14 days of age, definitely before the completion of the critical maturation period of the lens at approximately 16 days of age (Shearer et al., 1997). Repeated injections of smaller doses of selenite (Huang et al., 1992) or oral administration (Shearer et al., 1983) are also cataractogenic.

Severe, bilateral nuclear cataracts are produced within 4–6 days. Precursor stages include: posterior subcapsular
cataракт (день 1), раздутые волокна (день 2–3), и перинукlearная рефрактная полоса (день 3). Хотя модель была использована как модель для нукlearной катаракты, у животных сельнит развивается быстро в течение 3–5 дней после инъекции и является постоянным, в то время как нукlearная катаракта развивается 15–30 дней после инъекции и исчезает в течение нескольких месяцев. Селенит нукlearной катаракты приводит к возникновению ранней эпителиальной травмы, которая прерывает нормальное фиброгенез и ткань с нарушенным контролем ионов, вызывая инфилтрацию воды, клеточную деструкцию и горькость. Заметно, селенит нукlearной катаракты спонтанно исчезает после нескольких месяцев, восстанавливая нормальную норму клеток к эпителиуму и передний и средний кортекс. Главные механизмы для очистки селенита включают: (1) удаление поврежденных белков из линзы за счет протеолиза, и (2) замена волокон на основе нормального фиброгенеза. Их данные подчеркивают значительную репаративную потенциал линзы для восстановления нерепарированной ясности после значительного повреждения.

Experimental approaches in vitro

Обычно вистаровские крысы, имеющие в весе от 100 до 200 г, могут быть использованы для исследования. Эти крысы убивают глаза без отсрочки. Селениты добиваются из органов в M-199 среде с HEPES буфером, дополненным с 10% метаболическим стерильным карбонатом (FCS), 100 U/ml поленицина, 0,1 мг/ml стрептомицина, и 0,25 μg/ml анфотерцина в 37 °C в CO2 инкубатор. Селенит среда готовится добавлением селенидата кислорода в концентрации 0,1 мМ. Селения ведутся для создания селенидата кислорода в течение 24-часового срока нарастания в течение 5 дней. Селения вызывает опакивацию в течение 24-часового интервала между дискретной группой и оптической травмой. Через 20-48 часов инкубации, в присутствии селенидата кислорода линзы резко уменьшаются в плотности, что указывает на значительное повреждение.

Sodium selenite safety concerns

Селенидат кислорода – это соль, бесцветный, солидный, и самый обычный водорастворимый сульфид натрия. У него есть формулы Na2SeO3 и Na2SeO3/H2O5. Эти вещества – это ангиридрированный, и пентагидрат. Селенит кислорода – это более обычная форма.

Mechanism of cataract formation induced by sodium selenite

Как указано выше, в обоих экспериментальных подходах, либо in vivo, либо in vitro, селенидат кислорода проявляет свое действие на линзу, вызывая преимущественно оксидативный стресс в линзе. Однако, его сильное действие на линзу не позволяет ему стать науке. Фрис et al. (2006) предположили, что формирование нукlearной катаракты селенидата кислорода – это результат ослабления GSH в линзе. Далее, образование GSH на катарактирующую область из GSH, и Селенидат кислорода на оксидативное стресс усиливает. Комбинация этих процессов является постоянным, и меняется в концентрациях специфических аминокислот, что является результатом усиления аммонийных нагрузок. Фатерально, энергия метаболизма в линзе не изменяется. Селенидат кислорода на GSH усиливает требования для энергетических компонентов, например, нолотитамид аденинин динуклеотид фосфат (Mitton et al., 1997) и усиленная активация пентозофосфатного пути. Селенидат кислорода на воду, клубочку, и оксидативный стресс ведет к изменениям в концентрации специфических аминокислот в условиях метаболизма.

При селенидате нукlearной катаракты формирование вызывает различные механизмы, которые могут быть представлены в виде двух моделей: (1) уменьшение скорости репликации клеток линзы, включая кальцинин-индуцированный гидролиз, и (2) замена волокон на основе нормального фиброгенеза. Их данные подчеркивают значительную репаративную потенциал линзы для восстановления нерепарированной ясности после значительного повреждения.
could lead to loss of lens homeostasis, allowing calcium influx into the underlying fiber cells. Recently apoptosis in lens epithelium was proposed as contributing to calcimycin-induced cataract (Li et al., 1995a) and to the UVB-induced cataracts (Michael et al., 1998). During normal development of the eye, apoptosis is required for the separation of the lens from the future corneal epithelium (Garcia-Porrero et al., 1979; Schook, 1980) and for removal of the tunica vasculosa lentis and the anterior pupillary membrane (Lang et al., 1994; Latker and Kuwabara, 1981). Removal of cells is beneficial to the organism, but apoptosis may be triggered prematurely, as in neurons subjected to ischemic conditions resulting from heart attack or stroke (Vaux and Strasser, 1996; Hetts, 1998) or during retinal ganglion cell death in glaucoma (Quigley et al., 1995). Calpain and other proteases, such as caspases, are involved in cell death in other tissues (Wang et al., 1996), and these enzymes might likewise be activated after the oxidative damage to the lens caused by selenite. The experimental data of Tamada et al. (2000) indicated that apoptosis was increased in selenite cataract and that m-calpain and caspase activity were activated, thus apoptosis may be a fairly early event in selenite cataract. Moreover, apoptosis in lens epithelial cells has been reported in other cataract models. Li et al. (1995b) demonstrated that lens epithelial cells from human cataract patients exhibited much higher rates of apoptosis than age-matched controls. The lens is reliant on the epithelial layer of cells for maintaining metabolic homeostasis (Spector, 1991). In cultured rat lenses subjected to peroxide, lens epithelial apoptosis preceded cataract formation. Similar inducers of cataract formation, such as UV irradiation (Michael et al., 1998), are also known to induce apoptosis. It is possible that diverse types of cataracts may be initiated through a common mechanism involving apoptosis in the lens epithelium.

Of the all above-mentioned biochemical processes contributing to cataractogenesis, ionic homeostasis seems to be an integrating factor for maintenance of lens transparency (Biju et al., 2007b). Loss of Ca\(^{2+}\) homeostasis has been implicated in most types of cataract (Duncan et al., 1993; Duncan et al., 1994). Levels of Ca\(^{2+}\) are maintained in the sub-\(\mu\)M range in the cytoplasm by membrane Ca\(^{2+}\) pumps (Galvan and Louis, 1988), plasma membrane Na\(^{+}\)/Ca\(^{2+}\) exchangers (Churchill and Louis, 1999), and endoplasmic reticulum Ca\(^{2+}\) pumps (Shearer et al., 1997). Increased Ca\(^{2+}\) uptake performed in connection with selenite cataractogenesis, was found to be highest in the nucleus (Hamakubo et al., 1986). An important consequence of calcium elevation in lens is the activation of calpains (Shearer et al., 1997). Studies on experimental cataract have demonstrated calpain-induced proteolysis of β-crystallin as a major mechanism in lens maturation as well as cataractogenesis (David et al., 1994). Lp82 is the dominant isoform of calpain in rodent lens, suggesting that it may be responsible for the proteolysis attributed to calpains in experimental cataract. Alterations to membrane proteins, lipid integrity, and the consequent
Potential anti-cataract agents tested in the selenite model
Selenium-induced oxidative stress mediated cataractogenesis has been shown to be prevented by antioxidative agents such as caffeic acid phenethyl ester (Doganay et al., 2002), 2-ketoglutarate (Varma and Hedge, 2004) and extract of Ocimum sanctum (Gupta et al., 2005). In these studies, the putative anti-cataractogenic effect is thought to be due to the maintenance of normal antioxidant levels and preventing alterations of lens protein. Gupta et al. (2002) evaluated the antiacataract potential of polyphenolic compounds present in green tea (Camellia sinensis). Their results suggest that green tea possesses significant antiacataract potential and acts primarily by preserving the antioxidant defense system. Another nutritional antioxidant, lycopen, was tested by Gupta et al. (2003) and again was shown to protect against experimental cataract development by virtue of its antioxidant properties. Resveratrol, a phytoalexin produced naturally by several plants, was able to suppress selenite-induced oxidative stress and cataract formation in rats (Doganay et al., 2006). Its protective effect was supported by the finding of higher GSH and lower malondialdehyde (MDA) levels in lens and erythrocytes. Study of Yaşcı et al. (2006) with the rat selenite cataract model strongly supported the activity of melatonin as an endogenous antioxidant and anticitaract agent: in the melatonin-treated group, the lens and serum levels of the lipid peroxidation marker MDA and oxidative stress indicators as xanthine oxidase and protein carbonyls were significantly decreased. On the contrary, the levels of antioxidant enzymes SOD and CAT were significantly increased when compared with the selenite non-treated group.

The study of Biju et al. (2007b) was aimed to test Drevogenin D, a triterpenoid aglycone isolated from a woody climbing plant Drevea volubilis, as a potential therapeutic agent against oxidative stress-induced cataract. The results obtained indicated that Drevogenin D treatment was effective in protecting the lens proteins by controlling stress-induced protein oxidation, maintenance of Ca2+ ATPase activity, calcium accumulation, lipid peroxidation, and prevention of calpain activation. Among potential anti-cataract agents, positive outcomes for good antioxidant activities were found for acetyl-L-carnitine (Elanchezhian et al., 2007) and ellagic acid – a naturally-occurring polyphenol (Sakthivel et al., 2008).

In 2009, the rising number of studies using selenite models and screening for anti-cataract agents indicates the increasing interest of investigators for the given topic. A herbal remedy was recommended for treatment by Javazdehet al. (2009a): in their study intraperitoneal injection of aqueous garlic extract into rats appeared to effectively prevent selenite-induced cataract in vivo. Surprisingly for onion, a further work of Javazdehet al. (2009b) testing instillation of onion juice into the rat eyes (one drop of 50% diluted fresh juice of crude onion, applied every 8 hours into the right eye for 14 days) also showed effective prevention of selenite-induced cataract formation. This was associated with increased total antioxidant level and the activities of SOD and GPx within the lens. The prevention of selenite-induced cataractogenesis was also declared by rutin (Isai et al., 2009a), by an extract of the oyster mushroom Pleurotus Ostreatus (Isai et al., 2009b), by curcumin and aminoguanidin (Manikandan et al., 2009), by N-acetyl cysteine (Aydin et al., 2009) and finally by a topical use of coenzyme Q10-loaded liposomes coated with trimethyl chitosan (Zhang and Wang, 2009).

Tamada et al. (2001) tested the calpain inhibitor SJA6017 which ameliorated in vivo selenite cataract formation in rats, thus stressing the significance of calcium homeostasis for maintaining healthy lens conditions. Recently Rooban et al. (2009) tested phytochemical antioxidants isolated from Vitex negundo. Using the selenite-induced cataract model, they assessed the efficacy of flavonoids tested in preventing changes associated with oxidative stress, loss of calcium homeostasis, calpain activation and protein insolubilization in the lens. The activities of SOD, CAT, Ca2+ ATPase, concentration of reduced GSH and protein sulfhydryl content were significantly increased in treated groups compared to the non-treated one. Moreover, decreased activities of calpains, lower concentration of calcium and thiobarbituric acid reactive substances (TBARS) were observed in treated groups as compared to the non-treated one.

The differential expression of apoptotic genes has been demonstrated in selenite-induced cataract (Nakajima et al., 2002). Recently, Elanchezhian et al. (2010) carried out an experiment to investigate the possibility of acetylcarnitine (ALCAR) to prevent selenite-induced cataractogenesis by regulating the expression of antioxidant (CAT) and apoptotic (caspase-3, EGR-1 and COX-1) genes. The expression of lenticular caspase-3 and EGR-1 genes appeared to be up-regulated, as inferred by detecting increased mRNA transcript levels, while that of COX-1 and CAT genes appeared to be down-regulated (lowered mRNA transcript levels) in the lenses of cataract-untreated rats. However, in rats treated with ALCAR, the lenticular mRNA transcript levels were maintained at near normal (control) levels. Their results suggest an original approach how to prevent selenite-induced cataractogenesis by affecting the abnormal expression of lenticular genes governing apoptosis.

Concluding remarks towards selenite model relevancy
Oxidative stress as a contributing mechanism is a key factor in modelling cataractogenesis. Most of the effects of anti-cataract compounds tested (see chapter above) were...
Aydin B, Yagci R, Yilmaz FM, Erdurmus M, Karadağ R, Keskin U, Durmus M and Augusteyn RC. (2007). Growth of the human eye lens. Verdicts.

Canneda R.J. (1987). Direct chemical measurement of DNA synthesis and net rates of differentiation of rat lens epithelial cells in vivo applied to the selenium cataract. Exp Eye Res 44: 677–690.

Canneda R.J. (1998). Prevention of proteins by the intact lens. Invest Ophthalmol Vis Sci 39: 1276–1280.

Cerami A and Crabbe J. (1986). Recent advances in ocular cataract research. TIPS Reviews 7: 277–279.

Chandra D, Ramana KV, Wang L, Christensen BN, Rhatnagar A and Srivastava SK. (2002). Inhibition of cell fiber globulization and hyperglycemia-induced lens opacification by aminopeptidase inhibitor bestatin. Invest Ophthalmol Vis Sci 43: 2285–2292.

Chandrasekher G and Cenedella RJ. (1993). Calcium activated proteolysis and protein modification in the U18666A cataract. Exp Eye Res 57: 751–756.

Cheng HM. (2002). Water diffusion in the rabbit lens in vivo. Dev Ophthalmol 35: 169–175.

Chikamoto N, Chikama T, Yamada N, Nishida T, Ishimitsu T and Kamaya A. (2009). Efficacy of substance P and insulin-like growth factor-1 peptides for preventing post-surgical superficial punctate keratopathy in diabetic patients. Jpn J Ophthalmol 53: 464–469.

Churchill GC and Louis CF. (1999). Imaging of intracellular calcium stores in single permeabilized lens cells. Am J Physiol 276: C426–C434.

Combs G Jr, Midthune DN, Patterson KY, CanWeld WK, Hill AL, Levander OA, Tay lor PR, Moler JE and Patterson BH. (2009). Effects of selenomethionine supplementation on selenium status and thyroid hormone concentrations in healthy adults. Am J Clin Nutr 89: 1808–1814.

David LL, Amsma M and Shearer TR. (1994). Cataract and the acceleration of calpain-induced β-crystallin insolubilization occurring during normal maturation of rat lens. Invest Ophthalmol Vis Sci 35: 785–793.

David LL, Shearer TR and Shit M. (1993). Sequence analysis of lens β-crystallins suggests involvement of calpain in cataract formation. J Biol Chem 268: 1937–1940.

de Jong WW, Caspers Gi and Leunissen JA. (1998). Genealogy of the α-crystallin-small heat-shock protein superfamily. Int J Biol Macromol 22: 151–162.

Descamps Fj, Martens E, Prout P, Starks S, van den Steen PE, van Damme J and Opdenakker G. (2005). Gelatinase B/matrix metalloproteinase-9 provokes cataract by cleaving lens β1-crystallin. FEBS Lett 519: 29–35.

Devamohoharan PS and Varma SD. (1995). Inhibition of polyol formation in rat lens by verapamil. J Ocul Pharmacol Ther 11: 527–531.

Dickerson JE, Lou MF and Gracy RW. (1995). The culture of rat lenses in high sugar media effect on mixed disulfide levels. Exp Eye Res 14: 109–118.

Dickerson JE, Dotzel E and Clark AF. (1997). Steroid-induced cataract: new perspectives from in vitro and lens culture studies. Exp Eye Res 65: 507–516.

Dillon J, Roy D, Spector A, Walker ML, Hibbard LB and Borkman RF. (1989). UV laser photodamage to whole lenses. Exp Eye Res 49: 859–866.

Dogmanay S, Borazan M, Izac M and Cigremis Y. (2006). The effect of resveratrol on lens β-crystallin expression in an experimental animal model. J Inherit Metab Dis 29: 516–525.

Duncan G, Webb SF, Dawson AP, Boardman MD and Elliott AJ. (1993). Calcium regulation in tissue-cultured human and bovine lens epithelial cells. Invest Ophthalmol Vis Sci 34: 2835–2842.

Duncan G, Williams MR and Raich RA. (1994). Calcium, cell signaling and cataract. Prog Ret Eye Res 13: 623–652.

Elanchezhian R, Ramesh E, Sakthivel M, Isai M, Geraldine P, Rajamohan M, Jesudasan CN and Thomas PA. (2007). Acetyl-L-carnitine prevents selenite-induced cataractogenesis in an experimental animal model. Curr Eye Res 32: 961–971.

Elanchezhian R, Sakthivel M, Geraldine P and Thomas PA. (2010). Regulatory effect of acetyl-L-carnitine on expression of lenticular antioxidant and apoptotic genes in selenite-induced cataract. Chem Biol Interact 20.

El-Bayoumy K. (2001). The protective role of selenium on genetic damage and on cancer. Mutat Res 475: 123–139.

El-Shenawy SM and Hassan NS. (2008). Comparative evaluation of the protective effect of selenium and garlic against liver and kidney damage induced by mercuric chloride in the rats. Pharmacol Rep 60: 199–208.

Bosch AM. (2006). Classical galactosaemia revisited. J Inherit Metab Dis 29: 516–525.

Cao S, Durman FA and Rustum YM. (2004). Selective modulation of the therapeutic efficacy of anti-cancer drugs, by selenium containing compounds against human tumor xenografts. Clin Cancer Res 10: 2560–2569.

Canneda R.J. (1987). Direct chemical measurement of DNA synthesis and net rates of differentiation of rat lens epithelial cells in vivo applied to the selenium cataract. Exp Eye Res 44: 677–690.

Canneda R.J. (1998). Prevention of proteins by the intact lens. Invest Ophthalmol Vis Sci 39: 1276–1280.

Cerami A and Crabbe J. (1986). Recent advances in ocular cataract research. TIPS Reviews 7: 277–279.

Chandra D, Ramana KV, Wang L, Christensen BN, Rhatnagar A and Srivastava SK. (2002). Inhibition of cell fiber globulization and hyperglycemia-induced lens opacification by aminopeptidase inhibitor bestatin. Invest Ophthalmol Vis Sci 43: 2285–2292.

Chandrasekher G and Cenedella RJ. (1993). Calcium activated proteolysis and protein modification in the U18666A cataract. Exp Eye Res 57: 751–756.
Fan X, Zhang J, Theves M, Strauch C, Nemet L, Liu X, Qian J, Gabin FJ and Monnier VM. (2009). Mechanism of iodine oxidation in human lens crystallins during aging and in diabetes. J. Biol Chem 284: 34618–34627.

Food and Nutrition Board – USA Institute of Medicine. (2000). Dietary References Intakes for Vitamin C, Vitamin E, Selenium and Carotenoids. Washington: National Academy Press.

Fris M, Tessem MB, Sather O and Midelfart A. (2006). Biochemical changes in selected cataract model measured by high-resolution MAS (1H NMR spectroscopy). Acta Ophthalmol Scand 84: 684–692.

Fujii N, Takeuchi N, Fuji N, Tiazaka T, Kuge K, Takata T, Kamei A and Saito T. (2004). Comparison of post-translational modifications of αA-crystallin from normal and hereditary cataract rats. Amino Acids 26: 147–152.

Fukuike C, Azuma M, Nakamura Y, Tamada Y, Nakamura M and Shearer TR. (1997). SjA607), a newly synthesized peptide aldehyde inhibitor of calpain: amelioration of cataract in cultured rat lenses. Biochim Biophys Acta 1361: 304–312.

Galvan A and Louis CF. (1988). Calcium regulation by lens plasma membrane vesicles. Arch Biochem Biophys 264: 472–481.

Gan L, Liu Q, Xu HB, Zhuo Y and Yang XL. (2002). Effects of selenium overexpression on glutathione peroxidase and thioredoxin reductase gene expression and activities. Biol Trace Element Res 89: 165–175.

Garcia-Porroja JA, Collado JA and Ojeda TL. (1979). Cell death during detachment of the lens from the ectoderm in the chick embryo. Anat Rec 193: 791–804.

Ghosh MP and Zilger JS. (2000). Lack of fiber cell induction stops normal growth of rat lenses in organ culture. Mol Vis 11: 901–906.

Giff BW, English RV, Nadelstein B, Westg AK and Gilger BC. (2009). Comparison of capsular opacification and refractive status after placement of three different intraocular lens implants following phacoemulsification and aspiration of cataracts in dogs. Vet Ophthalmol 12: 13–21.

Girao H, Mota C and Pereira P. (1999). Cholesterol may act as an antioxidant in lens membranes. Curr Eye Res 18: 448–454.

Goldhaber SB. (2003). Trace element risk assessment: essentiality vs. toxicity. Regul Toxicol Pharmacol 38: 232–242.

Graw J. (2003). The genetic and molecular basis of congenital eye defects. Nat Rev Genet 4: 877–882.

Groenen Pi, Grootjans JI, Lubsen NH, Bloemendaal H and de Jong WW. (1994). Lysocyte attenuates oxidative stress-induced experimental cataract development: an in vitro and in vivo study. Nutrition 19: 794–799.

Gupta SK, Srivastava S, Trivedi D, Joshi S and Halder N. (2005). Distribution of calpains I and II in rat brain. Anat Rec 193: 791–804.

Harding JJ. (1991). Post-translational modification of lens proteins in cataract. In: Clinical Ophthalmology (Kalayjian R, ed) 1: 1709–1713.

Hamakubo T, Kannagi R, Murachi T and Matus A. (1986). Mechanisms initiating cataract formation. Proctor Lecture. J. Biol Chem 261: 831–833.

Hammond CJ, Duncan DD, Scriver HD, Lengke M, West SK, Spector TD and Gilbert CE. (2001). The heritability of age-related cortical cataract: the twin eye study. Invest Ophthalmol Vis Sci 42: 601–605.

Haring JJ. (1991). Post-translational modification of lens proteins in cataract. Lents Eye Toxic Rep 8: 245–250.

Hetts SW. (1998). To die or not to die: An overview of apoptosis and its role in disease. JAMA 279: 300–307.

Horvitz J. (2003). Alpha-crystallin. Exp Eye Res 76: 145–153.

Huang LL, Hess BS and Bunce GE. (1990). DNA damage, repair and replication in selenite-induced cataract in rat lenses. Curr Eye Res 9: 1041–1050.

Huang LL, Zhang CY, Hess BS and Bunce GE. (1992). Biochemical changes and cataract formation in lenses from rats receiving multiple, low doses of sodium selenite. Exp Eye Res 55: 671–678.

Huang FY, Ho Y, Shaw TS and Chuang SA. (2000). Functional and structural studies of α-crystallin from galactosemic rat lenses. Biochim Biophys Res Commun 273: 197–202.

Huang WQ, Zhang JP and Fu JSC. (1990). Differential effects of galactose-induced cataractogenesis on the soluble crystallins of rat lens. Exp Eye Res 51: 79–88.

Ito H, Iida K, Kamei K, Iwamoto I, Inaguma Y and Kato K. (1999). αB-crystallin in the rat lens is phosphorylated at an early post-natal age. FEBS Lett 446: 269–272.

Jacob RF, Cenedella RJ and Mason RP. (1999). Direct evidence for immiscible cholesterol domains in human ocular lens fiber cell plasma membranes. J. Biol Chem 274: 31613–31618.

Jacques PF and Chylack LT Jr. (1991). Epidemiologic evidence of a role for the antioxidant vitamins and carotenoids in cataract prevention. Am J Clin Nutr 53: 3525–3535.

Jacques PF and Taylor A. (1991). Micronutrients and age-related cataracts, in: Micronutrients in health and in disease prevention (Bendich A and Butterworth CE eds) pp. 359–379, Dekker, New York.

Johnson GI and Horwitz J. (1991). Lens and Cataract, in Textbook of Ophthalmology 3 (Podos SM and Yanoff M eds) Gower Med. Publishing, New York.

Javadzadeh A, Ghorbaniaahgo A, Arami S, Rashitkhazadeh N, Mesgar M, Razey M and Omidi Y (2009a) Prevention of selenite-induced cataractogenesis in Wistar albino rats by aqueous extract of garlic. J. Ocul Pharmacol Ther 25: 395–400.

Javadzadeh A, Ghorbaniaahgo A, Bonyadi S, Rashitkhizadeh N and Argani H (2009b) Preventive effect of onion juice on selenite-induced experimental cataract formation. J Biol Chem 284: 1585–1589.

Jedziniak JA, Chylack LT Jr, Cheng HM, Gillis MK, Kalusant AA and Tung WH. (1981). The sorbitol pathway in the human lens: aldose reductase and polyol dehydrogenase. Invest Ophthalmol Vis Sci 20: 314–316.

Johnson GI and Foster A. (2004). Prevalence, incidence and distribution of visual impairment, in: The epidemiology of eye disease (Johnson GI, Minassian DC, Weale RA and West SK eds), pp. 3–26, Arnold, London, UK.

Kadri PF, Takahashi Y, Akagi Y, Blessing K, Randazzo J and Wyman M. (2007). Age-dependent retinal capillary pericyte degeneration in galactose-fed rats. J Ocul Pharmacol Ther 23: 63–69.

Kamamoto T, Souchelnytskyi N and Kuchi Y. (2009). Functional proteomics of failed filtering blebs. Mol Vis 15: 2762–2770.

Kinohta JH and Wachtel C (1958). A study of the C14-glucose metabolism of the human ocular lens fiber cell plasma membranes. Arch Biochem Biophys Res Commun 17: 31613–31618.

Kinohta JH. (1974). Mechanisms initiating cataract formation. Proctor Lecture. Invest Ophthalmol 13: 713–724.

Kihara T, Seko Y and Imura N. (1993). Possible involvement of active oxygen species in selenite toxicity in isolated rat hepatocytes. Arch Toxicol 67: 497–501.

Klemen R, Frohli E, Aoyama A, Hoffmann S, Simpson RJ, Moritz RL and Schäfer M. (1991). αB-crystallin accumulation is a specific response to Ha-ras v-mos oncogene expression in mouse NIH 3T3 fibroblasts. Mol Cell Biol 11: 803–812.

Kramer GF and Ames BN. (1988). The sorbitol pathway in the human lens: aldose reductase and polyol dehydrogenase. Invest Ophthalmol Vis Sci 20: 314–316.

Kumar PA, Haseeb A, Suryanarayana P, Ehtesham NZ and Reddy GB (2005a) Elevated expression of αA- and αB-crystallins in streptozotocin-induced diabetic rat. Biochim Biophys Acta 1709: 933–939.

Kumar PA, Reddy PY, Srinivas PN and Reddy GB. (2009b). Delay of diabetic cataract formation in lenses from rats receiving multiple, low doses of sodium selenite. J. Biol Chem 284: 2169–2176.

Kupfer CE. (1984). The conquest of cataract: A global challenge. JAMA 251: 245–250.

Kushtagi L, Ito H, Kamei K, Iwamoto I, Inaguma Y and Kato K. (1999). αB-crystallin in the rat lens is phosphorylated at an early post-natal age. FEBS Lett 446: 269–272.

Kuszak JR. (1990). Embryology and anatomy of the lens, in: Clinical Ophthalmology (Taiman W, Jaeger EA eds) pp. 1–9, J.B. Lippincott, Philadelphia.

Kyselova Z, Gadjoiski A, Gadjoiskova I, Ulcina O, Mihalova D, Karasu C and Stiefek M (2005b) Effect of the pyridonidol antioxidant stoibadine on development of experimental diabetic cataract and on lens protein oxidation in rats: comparison with vitamin E and BHT. Mol Vis 11: 56–58.
Kyselova Z, Garcia SJ, Gadjosova A, Gadjos A and Stefeak M (2005a). Temporal relationship between lens protein oxidation and cataract development in streptozotocin-induced diabetic rats. Physiol Res 54: 49–56.

Kyselova Z, Krizanova L, Soles L and Stefeak M (2005c). Electrophoretic analysis of oxidatively modified eye lens proteins in vitro: implications for diabetic cataract. J Chromatogr A 1084: 95–100.

Lampi KJ, Shih M, Ueda Y, Shearer TR and David LL. (2002). Lens proteomics: analysis of crystallin sequences and two-dimensional electrophoresis map. In: Vopalenthin Vv Olomouc 43: 216–224.

Lang R, Lustig M, Francois F, Selsing M and Pleken H. (1994). Apoptosis during macrophage-dependent ocular tissue remodeling. Development 120: 3395–3403.

Lapolla A, Fedele D, Seraglia R and Tadolid P. (2006). The role of mass spectrometry in the study of non-enzymatic protein glycation in diabetes: an update. Mass Spectrom Rev 25: 775–797.

Latter CH and Kuwabara T. (1981). Regression of the tunica vasculosa lentis in the postnatal rat. Invest Ophthalmol Vis Sci 21: 689–699.

Lee AV and Chung SS. (1998). Involvement of aldose reductase in naphthalene cataractogenesis in rabbits. J Cell Biol 130: 169–181.

Li WC, Kuszak JR, Dunn K, Wang GM, Spector A, Leib M, Cotlier D, Niwa T. (2007). Protein glutathionylation and oxidative stress. J Biol Chem 282: 169–184.

Lou MF, Xu GT and Cui XL. (1995). Further studies on the dynamic changes of protein modification from protein complexes and lens tissue. J Biol Chem 270: 929–937.

Lovicu FJ and Robinson ML. (2004). Development of the Ocular Lens (Lovicu FJ & Robinson ML eds) Cambridge University Press, Cambridge, UK.

Lu J, Kaczek M, Jiang, C, Wilson AC and Thompson HJ. (1994). Selenite induction of lens capillary endothelial cell apoptosis contributes to cataract formation. Exp Eye Res 61: 91–98.

Lorentzi M. (2007). The polyl pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. Exp Diabet Res Article ID 61038, 10 pages.

Lou MF, Xu GT and Cui XL. (1995). Further studies on the dynamic changes of glutathione and protein-thiol mixed disulfides in H2O2-induced cataract in rat lenses: distributions and effect of aging. Curr Eye Res 14: 951–958.

Lovicu FJ and Robinson ML. (2004). Development of the Ocular Lens (Lovicu FJ & Robinson ML eds) Cambridge University Press, Cambridge, UK.

MacCoss MJ, McDonald WH, Saraf A, Sadygov R, Clark JM, Tasto JJ, Gould KL, Wolters D, Washburn M, Weiss A, Clark JI and Yates JRI. (2002). Shotgun identification of protein modifications from protein complexes and lens tissue. Proc Nat Acad Sci USA 99: 7900–7905.

Mankanidand R, Thagajaran R, Beula S, Chinhdud S, Mariammale K, Sudhan dirac G and Arumugam M. (2005). Anti-cataractogenic effect of curcumin and aminoguanidine against selenium-induced oxidative stress in the eye lens. Invest Ophthalmol Vis Sci 46: 2022–2029.

Michael R, Vrensen GF, van Marle J, Lian G, and Soderberg PG. (1998). Apoptosis in the rat lens after in vivo threshold dose ultra violet irradiation. Invest Ophthal mol Vis Sci 39: 2681–2687.

Minassian DC, Reidy A, Desai P, Farrow S, Vafidis G and Minassian A. (2000). The role of ANF in a model of cataractogenesis in mice. Invest Ophthalmol Vis Sci 41: 1460–1466.

Navarro-Alarcon M and Cabrera-Quiroz C. (2008). Selenium in food and the human body: a review. Sci Total Environ 400: 115–141.

Newary AA, El-Sharzky AS, Badreldeen MM, Eweda SM and Sheweita SA. (2007). The hepatoprotective effects of selenium against cadmium toxicity in rats. Toxicology 242: 23–30.

Niw A. (2007). Protein glycation and oxidative stress. J Chromatogr B Analyt Technol Biol Med 855: 59–65.

Olofsson EM, Marklund SL and Behndig A. (2007). Glucose-induced cataract in CuZn-SOD null lenses: an effect of nitric oxide. Free Radiol Biol Med 42: 1098–1105.

Otsadilova I, Babicky A and Obenerberger J. (1978). Cataract induced by administration of a single dose of sodium selenite to sucking rats. Exp Eye Res 34: 222–223.

Ozaki Y, Mizuno A, Itoh K and Iryama K. (1987). Inter- and intra-molecular disul- fide bond formation and related structural changes in the lens proteins. A Ra man spectroscopic study in vivo of lens aging. J Biol Chem 262: 1545–1551.

Pavlidis S and Nagarak R. (2006). Protein oxidation inhibits Maillard reactions in diab etic rat lenses. Ophthalmic Res 38: 294–302.

Paron J, Iethia A, D’Ambrosio C, Scalconi A, D’Aurizio F, Presciant A, Damante G and Tei G. (2004). A proteomic approach to identify early molecular targets of oxidative stress in human epithelial lens cells. Biochem J 378: 929–937.

Ponce A, Sorenson C and Takemoto L. (2006). Role of short-range protein interactions in lens opacifications. Mol Vis 12: 879–884.

Quigley HA, Nickells RW, Kerrigan LL, Pease ME, Thibault DJ and Zack DJ. (1995). Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci 36: 774–786.

Rao G, Santhoshkumar P and Sharma KK. (2008). Anti-chaperone βA3/A1(102-117) peptide interacting sites in human ab-crystallin. Mol Vis 14: 666–674.

Rayman MP. (2000). The importance of selenium to human health. Lancet 356: 233–241.

Rayman MP. (2005). Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc Nutr Soc 64: 527–542.

Reid ME, Stratton MS, Liloji AC, Fakh M, Natarajan R, Clark LC and Marshall JR. (2004). A report of high-dose selenium supplementation: response and toxicities. J Trace Elem Med Biol 18: 69–74.

Robman L and Taylor H. (2005). External factors in the development of cataract. Eye (Lond) 19: 1074–1082.

Rooban BN, Lija Y, Biju G, Sasaki V, Sahasranamam V and Abraham A. (2009). Vilotex negarituates calpain activation and cataractogenesis in selenite models. Exp Eye Res 88: 575–582.

Sakhivel M, Elanchezhian R, Ramesh E, Irai SM, Jesudasan CN, Thomas PA and Geraldine P. (2008). Prevention of selenite-induced cataractogenesis in Wistar rats by the polyphenol, ellagic acid. Exp Eye Res 88: 251–259.

Satake M, Morochowska B, Nishikawa V, Madaj J, Xue H, Guo Z, Reddy D, Rinaldi PL and Monnier VM. (2003). Vitamin C metabolomic mapping in the lens with 6-deoty-6-fluoro-ascorbic acid and high-resolution 19F-NMR spectroscopy. Invest Ophthalmol Vis Sci 44: 2047–2058.

Saxena P, Saxena AK and Monnier VM. (1996). High galactose levels in vitro and in vivo impair ascorbate regeneration and increase ascorbate-mediated glycation in cultured rat lens. Exp Eye Res 63: 535–545.

Schook P. (1980). Morphogenetic movements during the early development of the chick eye: An ultrastructural and spatial study. Acta Morphol Neerl Scand 138: 195–201.

Shamsi FA, Sharkey E, Creighton D and Nagarak RH. (2000). Maillard reactions in lens proteins: methylglyoxal-mediated modifications in the rat lens. Exp Eye Res 70: 369–380.

Shearer TR, Anderson RS and Britton JL. (1985). Influence of selenite and four teen trace elements on cataractogenesis in the rat. Invest Ophthalmol Vis Sci 24: 417–423.

Shearer TR, David LL, Anderson RS and Azuma M. (1992). Review of selenite cata ract. Curr Eye Res 11: 357–369.

Shearer TR and Hadjmarkos DM. (1973). Comparative distribution of 75 Se in the hard and soft tissues of mother rats and their pups. J Nutr 103: 553–559.

Shearer TR, MA H, Fukiage C and Azuma M. (1997). Selenite nuclear cataract: re view of the model. Mol Vis 3: 8–15.

Shih M, Ma H, Nakajima E, David LL, Azuma M and Shearer TR. (2006). Biochemi cal properties of lens-specific calpain LpB5. Exp Eye Res 82: 146–152.
Son HY, Kim H and H Kwon Y. (2007). Tauine prevents oxidative damage of high-glucose-induced cataractogenesis in isolated rat lenses. J. Nutr Sci Vitaminol 53: 324–330.

Spallholz JE. (1994). On the nature of selenium toxicity and carcinostatic activity. Free Radic Biol Med 17: 45–64.

Spallholz JE. (1997). Free radical generation by selenium compounds and their prooxidant toxicity. Biomed Environ Sci 10: 260–270.

Spector A. (2000). Review: oxidative stress and diseases. Arch Biochem Biophys 331: 208–214.

Waters DJ, Shen S, Glickman LT, Cooley DM, Bostwick DG, Qian J, Combs GF Jr and Morris JS. (2003). Prostate cancer risk and DNA damage: translational significance of selenium supplementation in a canine model. Carcigenesis 26: 1256–1262.

West SK. (2003). Looking forward to 20/20: a focus on the epidemiology of eye diseases. Epidemiol Rev 25: 64–70.

Whanger PD. (2004). Selenium and its relationship to cancer: an update. Br J Nutr 91: 11–28.

Wilmarth PA, Tanner S, Dasari S, Nagalla SR, Riviere MA, Bafna V, Pevzner PA and David LL. (2006). Age-related changes in human crystallins determined from comparative analysis of post-translational modifications in young and aged lens: does deamidation contribute to crystallin insolubility? J Proteome Res 5: 2554–2566.

Yagi A, Aydin B, Erdurmus M, Karadağ R, Gürel A, Durmuş M and Yiğitoğlu R. (2006). Use of melatonin to prevent selenite-induced cataract formation in rat eyes. Curr Eye Res 31: 845–850.

Yan L and Spallholz JE. (1993). Generation of reactive oxygen species from the reaction of selenium compounds with thiols and mammary tumor cells. Biochem Biophys Res Commun 205: 537–544.

Zhang J and Wang S. (2009). Topical use of Coenzyme Q10-loaded liposomes coated with trimethyl chitosan: tolerance, precorneal retention and anti-cataract effect. Int J Pharm 372: 66–75.

Zhang C, Liu P, Wang N, Li Y and Wang L. (2007). Comparison of two tandem mass spectrometry-based methods for analyzing the proteome of healthy human lens fibers. Mol Vis 13: 1873–1877.

Zhang Z, Smith DJ and Smith JB. (2001). Multiple separations facilitate identifica-
tion of protein variants by mass spectrometry. Proteomics 1: 1001–1009.

Zhou YJ, Zhang SP, Liu CW and Cai YQ. (2009). The protection of selenium on oxidative DNA damage in rat liver. Nutr Cancer 62: 78–83.

Zhou YJ, Zhang SP, Liu CW and Cai YQ. (2009). The protection of selenium on oxidative DNA damage in rat liver. Nutr Cancer 62: 78–83.

Zhou YJ, Zhang SP, Liu CW and Cai YQ. (2009). The protection of selenium on oxidative DNA damage in rat liver. Nutr Cancer 62: 78–83.

Zhou YJ, Zhang SP, Liu CW and Cai YQ. (2009). The protection of selenium on oxidative DNA damage in rat liver. Nutr Cancer 62: 78–83.