RELATO DE CASO

Uso da fluorescência óptica de campo amplo para visualização de biofilme oral em paciente com mucosite peri-implantar: uma nova abordagem

Use of wide-field optical fluorescence for visualization of oral biofilm in a patient with peri-implant mucositis: a new approach

Sérgio Araújo Andrade¹, Sebastião Pratavieira², Vanderlei Salvador Bagnato², Fernando de Pilla Varotti¹

¹ Universidade Federal da São João del-Rei, Divinópolis, MG, Brasil.
² Universidade de São Paulo, São Carlos, SP, Brasil.

DOI: 10.31744/einstein_journal/2021RC5638

RESUMO

Doenças peri-implantares, causadas por bactérias de biofilme relacionadas a implantes dentários, são uma das principais causas de perda tardia de implantes. Nesse sentido, as doenças peri-implantares são divididas em mucosite peri-implantar, quando afeta apenas tecidos moles, e peri-implantite, quando há comprometimento ósseo, o que pode levar ao fracasso da terapia com implantes dentários. Assim, a remoção do biofilme é essencial para a saúde peri-implantar, permitindo sucesso a longo prazo na terapia com implantes. A fim de melhorar a visualização do biofilme oral, que geralmente é transparente ou incolor, agentes reveladores têm sido rotineiramente utilizados. No entanto, esses agentes têm potencial alergênico e podem causar manchas extrinsecamente em materiais restauradores e protéticos, levando a prejuízo estético. Assim, o uso da fluorescência tem sido estudado como alternativa para visualização do biofilme oral. Este relato descreve o uso da fluorescência óptica de campo amplo para visualização do biofilme oral associado a implantes e dentes em uma consulta de acompanhamento de rotina de uma paciente parcialmente edêntula com mucosite peri-implantar. Além disso, esse relato evidenciou que a fluorescência óptica de campo amplo pode ser utilizada dentro da rotina clínica de atendimento de pacientes com implantes dentários. Nesse sentido, a fluorescência óptica de campo amplo permitiu a visualização fácil e imediata do biofilme oral maduro para sua remoção adequada, a avaliação da qualidade da restauração do selamento do orifício do parafuso do implante e a identificação de lesões cariogênicas, sem risco de reações alérgicas ou manchamento de próteses e restaurações.

Descritores: Biofilmes; Implantação dentária; Diagnóstico bucal; Bactérias anaeróbias Gram-negativas; Mucosite

ABSTRACT

Peri-implant diseases, caused by bacteria from biofilm related to dental implants, are one of the main causes of late loss of implants. In this sense, peri-implant diseases are divided into peri-implant mucositis, when it affects only the soft tissues, and peri-implantitis, when there is a bone involvement, which can lead to the failure of dental implant therapy. Thus, biofilm removal is essential for peri-implant health, allowing long-term success in implant therapy. To improve the visualization of oral biofilm, which is usually transparent or colorless, disclosing agents have been routinely used. However, disclosing agents have allergic potential and can cause staining
extrinsically in restorative and prosthetic materials, leading to aesthetic impairment. Thus, the use of fluorescence has been studied as an alternative for visualization of oral biofilm. Therefore, this report describes the use of wide-field optical fluorescence for visualization of oral biofilm associated with implants and teeth, in a routine appointment and follow-up of a partially edentulous patient with peri-implant mucositis. In addition, this report showed wide-field optical fluorescence can be used in a clinical routine of care of patients with dental implants. In this sense, wide-field optical fluorescence allowed easy and immediate visualization of the mature oral biofilm for its adequate removal, evaluation of the quality of restoration to sealing of screw access-hole of implant and identification of cariogenic lesions, without risk of allergic reactions or staining of prostheses and restorations.

Keywords: Biofilms; Dental implantation; Diagnosis, oral; Gram-negative anaerobic bacteria; Mucositis

INTRODUÇÃO
Hoje em dia, há um crescimento exponencial no número de pacientes, quer parcial ou totalmente edêntulos, reabilitados com sucesso por meio de implantes dentários.\(^{1,2-3}\) Entretanto, a despeito do constante progresso científico em todas as áreas ligadas a implantes dentários, ainda há uma perda tardia de implantes relacionados a doenças peri-implantares, causadas por bactérias do biofilme relacionado a implantes dentários.\(^{2,3,4,5}\) Nesse sentido, as doenças peri-implantares estão divididas em mucosites peri-implantares, quando afetam apenas os tecidos moles, e peri-implantite, quando há envolvimento ósseo, o que pode levar à falha de terapia com implantes dentários.\(^{2,4,6}\) Assim, a remoção de biofilme é essencial para a saúde periodontal e peri-implantar, permitindo sucesso de longo prazo na terapia por implantes.\(^{4,7,10}\)

Sendo que a formação de biofilme ao redor de implantes e dentes já foi estabelecida como similar, isso também sugere que há similaridade nas características clínicas e nas bactérias envolvidas nas doenças periodontais e peri-implantares.\(^{9,10}\) Por conseguinte, o processo de formação do biofilme oral se inicia com a adesão da bactéria à película adquirida nos dentes, implantes, ou componentes protéticos. Com o tempo, o biofilme oral se acumula e se torna mais complexo, com a presença dominante de bactérias anaeróbicas Gram-negativas, como Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, Prevotella intermedia, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans e Eikenella corrodens.\(^{10,11}\) Nesse sentido, esses Gram-negativos são os principais patógenos relacionados tanto à doença periodontal quanto à doença peri-implantar.\(^{7,12,13}\) Subsequentemente, se não houver remoção desse biofilme maduro, ele pode se calcificar em situação sub- ou supragengival, resultando em cálculo.\(^{11}\) Com isso, é evidente a necessidade de avaliar os implantes e seus componentes protéticos quanto à presença de biofilme maduro e cálculos, que têm de ser removidos para prevenir doenças peri-implantares.\(^{9}\)

O biofilme oral geralmente é transparente ou sem cor, o que torna sua visualização e subsequente remoção difíceis.\(^{11,14,15}\) Assim, para permitir a visualização do biofilme oral, foi desenvolvido um agente evidenciador, que é um método tradicional para a coloração do biofilme.\(^{8,11,14}\) Contudo, agentes evidenciadores podem causar manchas extrínsecas em materiais restauradores e protéticas, como resina acrílica, resinas compostas e iónômeros de resina modificada, causando prejuízo estético e insatisfação do paciente.\(^{16,17}\) Assim, desde que esses materiais são frequentemente usados na prótese sobre implante ou em restaurações de orifício de acesso ao parafuso, o uso de agentes evidenciadores é um problema. Ademais, os agentes evidenciadores foram descritos como potencialmente alergênicos.\(^{14}\)

O uso de fluorescência tem sido muito estudado para visualização do biofilme oral relacionado a doenças periodontais e cáries.\(^{11-13,16}\) Nesse sentido, a técnica de fluorescência quantitativa induzida pela luz (QLF - quantitative light-induced fluorescence), que utiliza luz com 405nm de comprimento de onda para iluminação da cavidade oral, permite a observação de biofilme oral maduro, com coloração alaranjada ou avermelhada, em função da presença de porfirinas produzidas por certas bactérias Gram-negativas.\(^{8,15,19-21}\) Porém, mesmo com a correlação entre biofilme patogênico maduro e visualização avermelhada por fluorescência, o uso de QLF na rotina clínica ainda não apresenta boa relação custo-efetividade. Por outro lado, a técnica da fluorescência óptica de campo amplo (WOF - wide-field optical fluorescence) tem melhor relação custo-efetividade para uso no rotina clínica e aplica os mesmos princípios que QLF, devido ao uso de luz com a mesma faixa de comprimento de onda. Entretanto, até então, quase todos os estudos sobre WOF foram relacionados à detecção de lesões orais potencialmente malignas ou câncer de boca.\(^{22-24}\) Recentemente, demonstramos o uso de WOF na rotina clínica em diferentes áreas da odontologia e da medicina.\(^{25-27}\) Porém, até então, não havia relatos na literatura sobre o uso de WOF na rotina clínica, para a visualização do biofilme oral associado aos implantes.

O presente relato descreve o uso de WOF para a visualização de biofilme oral associado a implantes e dentes em uma consulta de rotina de paciente parcialmente edêntula, com implantes, que apresentava muco-site peri-implantar.
O protocolo de cuidados incluía exame clínico convencional, exame WOF, seguidos por limpeza e polimento mecânicos e instruções de higiene oral para a paciente. Uma câmera intraoral modelo DP6 Scope® (RF System Lab., Almere, Holanda), acoplada a um computador, foi usada para capturar imagens clínicas. O aparelho Evince® (MM Optics, São Carlos, Brasil), com a fonte de luz emitindo a 400±10nm, foi usado para a realização do WOF, enquanto microscópio digital modelo Deluxe Handheld Digital Microscope® (Celestron LLC, Torrance, CA) foi usado acoplado ao Evince® e a um computador, para obter a imagem por fluorescência óptica.

Os procedimentos manuais de limpeza e polimento para a remoção de biofilme oral e cálcio na região dos implantes foram feitos usando taças e cones de silicone (Microdont, São Paulo, SP, Brasil) com pasta de polimento (Clinpro™ Prophy Paste, 3M Oral Care, Saint Paul, MN, Estados Unidos) e um kit para raspagem de implantes (Implacare™, Hu-Friedy Mfg. Co., Chicago, IL, Estados Unidos). Na região dental, foi usado o ultrassom (PROFI II Ceramic, Dabi Atlante, Ribeirão Preto, SP, Brasil) com pontas de metal (Dabi Atlante, Ribeirão Preto, SP, Brasil) e raspadores metálicos (Hu-Friedy Mfg. Co., Chicago, IL, Estados Unidos). Além disso, os mesmos tipos de pasta de polimento, taças e cones de silicone usados nos implantes foram utilizados nos dentes.

Foram dadas instruções de higiene oral à paciente, apresentando as imagens de fluorescência avermelhada de biofilme oral, de modo que ela pudesse identificar regiões com o maior acúmulo e removê-lo. O protocolo de cuidados foi realizado no dia da consulta inicial e repetido após 15 dias. Trinta dias depois da primeira consulta, foram feitos somente novo exame clínico e fluorescência de campo amplo.

Este estudo foi aprovado pelo Comitê de Ética da Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu (número de aprovação: 1.756.617; CAAE: 59621516.8.0000.5545). Em adição, declara-se que o paciente assinou o Termo de Consentimento Livre e Esclarecido.

RELATO DE CASO

Paciente de 55 anos, do sexo feminino, parcialmente desdentada e reabilitada com próteses sobre implantes, compareceu ao Centro de Diagnóstico Oral do Departamento de Saúde de Divinópolis, em Minas Gerais, para consulta de rotina, com queixa de inchaço e sangramento na mucosa peri-implantar de implantes na região dos dentes 12 e 11, percebidos 3 meses antes. A paciente informou ter diabetes e história de diversas cirurgias por doença periodontal nos dentes posteriores, tendo feito reabilitação por meio de implantes 8 anos antes com outro profissional. Atualmente, estava sem queixa de dor.

Observações clínicas

A presença de cárie foi verificada no dente 13, na mesial das superfícies vestibular e palatina (Figuras 1A e 1B), área edematosa e eritematosa na mucosa peri-implantar dos dentes 12 a 23, associada a cálcio dental no...
dente 12 e a sangramento nos dentes 12 e 11 (Figuras 1C e 1D). Por sua vez, as restaurações de resina na região do orifício de acesso do parafuso de implantes em 12,11 e 21 estavam seladas de forma adequada (Figura 1E). Foram notadas regiões eritematosas na mucosa na região vestibular do dente 25 e na região interproximal da superfície palatina da prótese, sobre implantes entre 23 e 24 (Figuras 1F e 1G). Além disso, foi identificada ausência da coroa protética associada com o implante no dente 26 (Figuras 1G e 1H). A paciente ainda apresentava áreas edêntulas sem reabilitação, de 15 a 18, 27, 28, de 38 a 35, 47 e 48.

Na sondagem, os dentes apresentaram valores ≤2mm, exceto o dente 14, que apresentava sondagem distal de 3mm, sem evidência de sangramento ou supuração, mas com discreta mobilidade. Por sua vez, os implantes apresentaram valores de sondagem de ≤3mm, com presença de sangramento apenas em 12 e 11.

Visualização com fluorescência óptica de campo amplo
Uma fluorescência avermelhada pode ser vista na região da cárie no dente 13, nas superfícies vestibular e palatina (Figuras 2A e 2B) e ao longo da área cervical da superfície vestibular das próteses, sobre os implantes 12 a 21, a qual foi mais intensa em 12 e 11 (Figuras 2C e 2D). Notou-se fluorescência verde intensa na região das restaurações dos orifícios de acesso dos parafusos dos implantes 12 a 21 (Figura 2E). Por sua vez, a fluorescência avermelhada foi observada na área cervical da superfície bucal de 23 a 26, no orifício de acesso do parafuso do implante em 26 e na região palatina interproximal entre 23 e 24 (Figuras 2F, 2G e 2H). O arco inferior mostrou fluorescência avermelhada na área cervical das próteses sobre implantes de 44 a 46, área cervical dos dentes de 43 a 31, interproximal entre os dentes 32 a 34 e cervical da face lingual de 34 (Figuras 2I, 2J, 2K e 2L).

Exame radiográfico
Radiografia periapical mostrou perda óssea na porção distal do dente 14 e uma cárie na região mesial do dente 13, o qual era tratado endodonticamente (Figura 3A). Implantes dentários estavam presentes na região de 12, 11, 21, 23, 24, 26, 44, 45 e 46 com imagens dentro do padrão ósseo normal (Figuras 3A a 3E). Existiam próteses sobre implantes de 12 a 25, 46, 45 e 44, sendo que, em 26, não havia coroa protética relacionada ao implante (Figuras 3A a 3E). Por sua vez, as figuras 3F a 3H mostram perda óssea que variava de leve a moderada, relacionada aos dentes de 33 a 43, e presença de dentes restaurados, de 34 a 43. O dente 34 era tratado endodonticamente.
Correlações entre consultas: inicial e de acompanhamento com 15 e 30 dias

O processo de recuperação da saúde da mucosa peri-implantar em 12 e 11 pôde ser notado pela redução de edema e pela ausência de sangramento 15 dias após a consulta inicial (Figura 4A). Após 30 dias, a mucosa peri-implantar estava em condição normal (Figura 4B). Na consulta inicial, a região cervical de 11 e 12 mostrou a presença de fluorescência avermelhada intensa (Figura 4C), que, após 30 dias, estava ausente (Figura 4D). A região do implante correspondente ao dente 26, no qual não havia coroa protética, mostrou características de mucosa normal aos 15 (Figura 4E) e 30 dias (Figura 4F). De fato, na consulta inicial, havia fluorescência avermelhada ao redor do componente protético e no orifício de acesso do parafuso do dente 26 (Figura 4G), que, após 30 dias, estava ausente (Figura 4H). Fora isso, a presença inicial de restaurações inacabadas e não polidas na região de 32 a 42 (Figura 4I) que, após 30 dias, estavam devidamente terminadas, polidas e com a remoção do biofilme, permitiu a identificação da cárie cervical no dente 41 (Figura 4J). Entretanto, neste caso, a fluorescência avermelhada inicial na região cervical de 31, 41, 42 e 43 (Figura 4K) estava mantida após 30 dias apenas na região da cárie cervical do dente 41 (Figura 4L).

Foi observada correlação direta entre presença de fluorescência avermelhada e envolvimento da mucosa peri-implantar. Ademais, a área com o pior quadro clínico, com sangramento entre 12 e 11, correspondeu à área com a maior intensidade de fluorescência avermelhada. Foi evidente que, após a remoção adequada do cálculo e do biofilme oral, guiada pela identificação prévia de fluorescência avermelhada e acompanhada de orientação de higiene oral para a paciente, houve completo restabelecimento da saúde peri-implantar em 30 dias. O exame WOF também permitiu avaliar a integridade do selamento proporcionado pelas restaurações do orifício de acesso ao parafuso dos implantes, em função do contraste entre o material componente da prótese e o material de restauração.

O diagnóstico foi estabelecido como mucosite peri-implantar, devido ao envolvimento de apenas o tecido da mucosa peri-implantar, indolor, sem perda óssea ou supuração, e sem mobilidade em qualquer implante. Assim, a paciente foi informada da correlação entre acúmulo de biofilme oral e mucosite peri-implantar e, assim, da necessidade de manter higiene oral rigorosa, especialmente em áreas que demonstravam a fluorescência avermelhada. Também foi explicada à paciente a importância da manutenção do controle do diabetes, não apenas para prevenir a piora de sua saúde dental, mas igualmente para manter boa saúde geral. Em seguida, a paciente foi encaminhada a outro dentista, para realizar procedimentos periodontais, restauradores e protéticos e para acompanhamento de higiene periodontal e oral.
DISCUSSÃO
Inicialmente, é importante informar que o dispositivo usado neste caso funciona com emissão de luz em 400±10nm. Assim, ele se beneficia das correlações obtidas de estudos feitos com 400 ou 405nm, já que compartilham das mesmas características biofotônicas. Portanto, a presença inicial de fluorescência avermelhada no dente 13 e após 30 dias da consulta inicial na lesão na região cervical do dente 41 é corroborada pelos achados de König et al., indicando que o comprimento de onda mais adequado para a estimulação e a visualização da fluorescência avermelhada na cárie é 400nm.(28) Caso contrário, a lesão cervical do dente 31 provavelmente tem origem diferente da cárie, como perda de material de restauração, e, devido à ausência de contaminação bacteriana, a fluorescência avermelhada estava ausente.

Porém, este caso pode ser considerado bem representativo das possibilidades do uso de WOF no acompanhamento de pacientes reabilitados por implantes, já que a paciente estava parcialmente edêntula e reabilitada com implantes, o que ilustra particularidades que se aplicam aos dentes e aos implantes. Neste sentido, Lee et al.,(10) Quirynen et al.,(3) Kurtzman et al.,(9) e Tołescan et al.,(6) enfatizaram que deve ser tomado cuidado especial com pacientes parcialmente edêntulos, em que os dentes remanescentes funcionam como reservatórios de bactérias para colonização do implante.(3,6,9,10)

Estudos conduzidos com QLF por Coulthwaite et al.,(19) Volgenant et al.,(20) Han et al.,(21) Kim et al.,(15) Pretty et al.,(11) e Lee et al.,(8) mostraram que apenas o biofilme oral maduro revelou fluorescência em tons avermelhados ou alaranjados, o que foi possivelmente devido a bactérias anaeróbicas Gram-negativas.(8,11,15,19-21) Além disso, Han et al.,(21) enfatizaram a correlação entre fluorescência avermelhada e a presença de *Porphyromonas gingivalis*, *Prevotella intermedia* e *Fusobacterium nucleatum*, bactérias anaeróbicas patogênicas presentes no biofilme maduro relacionadas à doença periodontal. (21) Bjurshammar et al.,(29) demonstraram que *Aggregatibacter actinomycetemcomitans* é capaz de emitir fluorescência avermelhada, e há correlação entre o tempo de crescimento da colônia e o aumento da intensidade da fluorescência avermelhada.(29) Assim, esses estudos anteriores validam o uso do WOF apresentado neste caso, a fim de visualizar biofilme maduro com maior potencial patogênico, permitindo sua remoção completa. Ademais, o relato da paciente sobre o tempo de evolução de 3 meses para a percepção dos sinais de mucosite peri-implantar é mais do que suficiente para estabelecer a presença de biofilme maduro e patogênico. De igual forma, a remo-
A verificação do selamento fornecido pelas restaurações de acessos aos parafusos dos implantes é de fundamental importância para evitar que, no caso de uma falha, seja permitida a retenção ou penetração do biofilme nessas áreas. Nesse sentido, Heinrich-Weltzien et al.,(18) destacaram que a presença de fluorescência avermelhada pode indicar penetração do biofilme oral na restauração, microinfiltração, lacuna ou perda parcial da restauração.(19) Assim, neste relato de caso, o contraste entre o material de restauração com fluorescência de cor verde clara brilhante e o material da prótese, com fluorescência mais baixa, foi prontamente verificado por WOF. Portanto, as restaurações para selamento do acesso dos parafusos foram consideradas adequadas devido à não visualização da fluorescência avermelhada.

Heinrich-Weltzien et al.,(18) relataram que a fluorescência assegura a prática de remoção do biofilme oral por meio do direcionamento de sítios específicos e, também, permite ao profissional garantir que todo o biofilme tenha sido removido após a limpeza profissional.(18) Da mesma forma, neste relato de caso, o uso de fluorescência de campo amplo permitiu a visualização do biofilme oral maduro em tons avermelhados, que serve para direcionar tanto o profissional quanto o paciente relativo a quais áreas devem receber mais atenção na remoção do biofilme oral.

CONCLUSÃO

A fluorescência óptica de campo amplo pode ser usada na rotina clínica de pacientes com implantes dentários. Ela permitiu visualização fácil e imediata do biofilme oral maduro, para sua remoção adequada, avaliação da qualidade da restauração para selamento do orifício de acesso do parafuso e identificação de cáries em pacientes parcialmente edêntulos, sem o risco de reações alérgicas ou manchamento de próteses e restaurações.

AGRADECIMENTOS

Os autores agradecem o apoio e as bolsas concedidos pelos órgãos de financiamento do Brasil: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), código de financiamento 001; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; 314710/2018-3); Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) e Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), por meio dos auxílios 2009/54035-4; Programa Equipamentos Multisuários (EMU; 2013/07276-1) Centro de Pesquisa em Óptica e Fotônica (CePOF: 2014/50857-8) e Óptica Básica e Aplicada às Ciências da Vida (INCT).
17. Hino DM, Mendes FM, de Figueiredo JL, Gomide KL, Imparato JC. Effects of plaque disclosing agents on esthetic restorative materials used in pediatric dentistry. J Clin Pediatr Dent. 2005;29(2):143-6.
18. Heinrich-Weltzien R, Kühnisch J, van der Veen M, de Josselin de Jong E, Stösser L. Quantitative light-induced fluorescence (QLF)-a potential method for the dental practitioner. Quintessence Int. 2003;34(3):181-8.
19. Coulsweite L, Pretty IA, Smith PW, Higham SM, Verran J. The microbiological origin of fluorescence observed in plaque on dentures during QLF analysis. Caries Res. 2006;40(2):112-6.
20. Volgenant CM, Hoogenkamp MA, Krom BP, Janus MM, Ten Cate JM, de Soet JJ, et al. Red and green fluorescence from oral biofilms. PLoS One. 2016;11(12):e0168428.
21. Han SY, Kim BR, Ko HY, Kwon HK, Kim BI. Assessing the use of Quantitative Light-induced Fluorescence-Digital as a clinical plaque assessment. Photodiagn Photodyn Ther. 2016;13:34-9.
22. Lane PM, Gilhuly T, Whitehead P, Zeng H, Poh CF, Ng S, et al. Simple device for the direct visualization of oral-cavity tissue fluorescence. J Biomed Opt. 2006;11(2):024006.
23. Shin D, Vigneswaran N, Gillenwater A, Richards-Kortum R. Advances in fluorescence imaging techniques to detect oral cancer and its precursors. Future Oncol. 2010;6(7):1143-54. Review.
24. Andrade SA, Pratavieira S, Ribeiro MM, Bagnato VS, de Pilla Varotti F. Oral cancer from the perspective of wide-field optical fluorescence: Diagnosis, tumor evolution and post-treatment follow up. Photodiagn Photodyn Ther. 2017;19:239-42.
25. Andrade SA, de Pilla Varotti F, Bagnato VS, Pratavieira S, et al. Firearm projectile in the maxillary tuberosity located by adjunctive examination of wide-field optical fluorescence. Photomed Laser Surg. 2018;36(2):112-5.
26. Andrade SA, Baeta IG, Ribeiro MM, Pratavieira S, Bagnato VS, Varotti FP. Mucosal vitiligo in angles of the mouth: clinical and fluorescence aspects. Rev Assoc Med Bras (1992). 2019;65(3):330-2.
27. Andrade SA, Pratavieira S, Paes JF, Ribeiro MM, Bagnato VS, Varotti FP. Oral squamous papilloma: a view under clinical, fluorescence and histopathological aspects. einstein (São Paulo). 2019;17(2):eRC4624.
28. König K, Hibst R, Meyer H, Flemming G, Schneckenburger H. Laser-induced autofluorescence of carious regions of human teeth and caries-involved bacteria. In: Altshuler GB, Hibst R, editors. Dental applications of lasers. 1993. pp. 170-80.
29. Bjurshammar N, Johannsen A, Buhlin K, Tranæus S, Östman C. On the red fluorescence emission of Aggregatibacter actinomycetemcomitans. Open J Stomatol. 2012;2(4):299-306.