Spatiotemporal Correlations between Cytosolic and Mitochondrial Ca2+ Signals Using a Novel Red-Shifted Mitochondrial Targeted Cameleon

Markus Waldeck-Weiermair1, Muhammad Rizwan Alam1, Muhammad Jadoon Khan1, Andras T. Deak1, Neelanjan Vishnu1, Felix Karsten1, Hiromi Imamura2, Wolfgang F. Graier1, Roland Malli1*

1Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University of Graz, Graz, Austria, 2Precursory Research for Embryonic Science, Japan Science and Technology Agency, Tokyo, Japan

\section*{Abstract}

The transfer of Ca2+ from the cytosol into the lumen of mitochondria is a crucial process that impacts cell signaling in multiple ways. Cytosolic Ca2+ ([Ca2+]\textsubscript{cyto}) can be excellently quantified with the ratiometric Ca2+ probe fura-2, while genetically encoded Förster resonance energy transfer (FRET)-based fluorescent Ca2+ sensors, the cameleons, are efficiently used to specifically measure Ca2+ within organelles. However, because of a significant overlap of the fura-2 emission with the spectra of the cyan and yellow fluorescent protein of most of the existing cameleons, the measurement of fura-2 and cameleons within one given cell is a complex task. In this study, we introduce a novel approach to simultaneously assess [Ca2+]\textsubscript{cyto} and mitochondrial Ca2+ ([Ca2+]\textsubscript{mito}) signals at the single cell level. In order to eliminate the spectral overlap we developed a novel red-shifted cameleon, D1GO-Cam, in which the green and orange fluorescent proteins were used as the FRET pair. This ratiometric Ca2+ probe could be successfully targeted to mitochondria and was suitable to be used simultaneously with fura-2 to correlate [Ca2+]\textsubscript{cyto} and [Ca2+]\textsubscript{mito} within the same individual cells. Our data indicate that depending on the kinetics of [Ca2+]\textsubscript{cyto}, rises there is a significant lag between onset of [Ca2+]\textsubscript{cyto} and [Ca2+]\textsubscript{mito} signals, pointing to a certain threshold of [Ca2+]\textsubscript{cyto} necessary to activate mitochondrial Ca2+ uptake. The temporal correlation between [Ca2+]\textsubscript{mito} and [Ca2+]\textsubscript{cyto} as well as the efficiency of the transfer of Ca2+ from the cytosol into mitochondria varies between different cell types. Moreover, slow mitochondrial Ca2+ extrusion and a desensitization of mitochondrial Ca2+ uptake cause a clear difference in patterns of mitochondrial and cytosolic Ca2+ oscillations of pancreatic beta-cells in response to D-glucose.

\section*{Introduction}

Mitochondrial uptake of Ca2+ has been identified as a crucial process in cell physiology [1,2]. Basically, mitochondria respond to Ca2+ and compete for Ca2+ with other organelles within a cell. A rise of the Ca2+ concentration in the lumen of mitochondria stimulates ATP generation [3,4], which is important to compensate for increased ATP demands during cell stimulation [5]. Because of the high capacity of respiring mitochondria to sequester Ca2+, these organelles have also been recognized to locally clear cytosolic Ca2+ elevations [6]. This mitochondrial Ca2+ buffer function impacts the spatiotemporal pattern of cellular Ca2+ signals and, thus, significantly influences Ca2+ sensitive processes within a cell [7–10]. Besides the vital aspects of mitochondrial Ca2+ signaling, excessive mitochondrial Ca2+ loads trigger cell death [5]. Accordingly, the mitochondrial Ca2+ homeostasis can determine life and death of a cell [11], which points to its central role in cell physiology [12].

The investigation of mitochondrial Ca2+ signals in intact cells requires sophisticated methods to specifically quantify changes of the free mitochondrial Ca2+ concentration ([Ca2+]\textsubscript{mito}) [13]. One important property of a mitochondrial Ca2+ indicator is its correct targeting to the mitochondrial matrix. Out of many different chemical fluorescent Ca2+ indicators, only the positively charged dye Rhod-2 accumulates within respiring mitochondria [14]. However, Rhod-2 is not a ratiometric Ca2+ sensor making it difficult to quantify Ca2+ signals and under most conditions significant amounts of Rhod-2 is also found in the cytosol and other cellular compartments. In contrast, genetically encoded Ca2+ indicators that additionally contain mitochondria-targeting peptides are selectively targeted to the mitochondrial matrix [13]. Initially, the Ca2+ sensing bioluminescent protein aequorin was successfully targeted to mitochondria, which was primarily used to demonstrate that mitochondria definitely sequester Ca2+ under physiological conditions of cell stimulation [15]. Because of the weak signals from the bioluminescent reaction, the aequorin-based probes can hardly be used to monitor [Ca2+]\textsubscript{mito} on the single
(sub)cellular level. This limitation does not persist for the genetically encoded fluorescent mitochondrial Ca2+ sensors. Principally, these Ca2+ indicators, which consist of one or two fluorescent proteins (FPs), sense Ca2+ via a calmodulin (CaM) domain and the Ca2+-CaM interacting peptide from the myosin light chain kinase, M13 [16]. Binding of Ca2+ results in conformational changes of these domains, which alter the spectral properties of the adjacent FPs and accordingly [Ca2+]i can be assessed directly [17]. One of the genetically encoded fluorescent Ca2+ sensors that is frequently used to measure [Ca2+]i is the mitochondrial targeted ratiometric pericam (mtRP). The mtRP consists of a circularly permuted yellow FP that is flanked by CaM and M13 [18]. The mtRP is, however, highly sensitive to changes of the pH if the probe is excited at 480 nm, which considerably affects the fluorescence signal that increases upon binding of Ca2+ [19,20]. Another group of genetically encoded fluorescent Ca2+ sensors are the so-called cameleons. In the cameleons the CaM and the M13 peptide are fused in tandem between a cyan fluorescent protein (CFP) and a yellow fluorescent protein (YFP). Binding of Ca2+ to cameleons narrows the distance between FPs yielding an increase of the Förster resonance energy transfer (FRET) from CFP (FRET-donor) to YFP (FRET-acceptor) [17]. The suitability of these FRET-based ratiometric Ca2+ indicators were further improved by engineering CaM and M13, which minimized the interaction with endogenous CaM and increased the range of the measurable Ca2+ concentrations [21].

For the spatiotemporal correlation between [Ca2+]cyto and [Ca2+]i,mito, the measurement of both signals within same individual cells is desirable. However, co-imaging of most of the cytosolic fluorescent chemical Ca2+ indicators with genetically encoded fluorescent Ca2+ probes is problematic due to spectral overlaps of the excitation and/or emission wavelengths [22]. In some studies it has been reported that the cross-talk between the most widely used ratiometric cytosolic Ca2+ dye, fura-2/AM and CFP/YFP-based cameleons can be minimized by narrowing the bandwidth of emission filters [22]. However, as a result the intensities of the respective fluorescence signals of both Ca2+ indicators are reduced, yielding poor signal-to-noise ratios.

In this study we developed a novel red-shifted cameleon, which we named D1GO-Cam. In comparison to CFP/YFP-based cameleons the spectral crosstalk between fura-2 and D1GO-Cam was significantly diminished. D1GO-Cam could be targeted successfully to mitochondria and was used together with fura-2 to co-image [Ca2+]i,mito and [Ca2+]cyto, within same individual cells. Applying simultaneous cytosolic and mitochondrial Ca2+ measurements using fura-2 and the novel mitochondria-targeted D1GO-Cam, respectively, a significant lag between increase of [Ca2+]i,mito and [Ca2+]cyto could be demonstrated, which depended on the mode of Ca2+ mobilization and the cell type used. Furthermore, a slow mitochondrial Ca2+ extrusion and a desensitization of mitochondrial Ca2+ uptake counteracted the synchronous transfer of cytosolic Ca2+ oscillations into mitochondria of pancreatic β-cells, thus, partially uncoupling mitochondrial Ca2+ signal from cytosolic Ca2+ spiking.

Results

Development of Red-Shifted Cameleons

In analogy to a recently developed red-shifted FRET-based ATP probe [23] the CFP and YFP of cameleons were replaced by the OFP variant, mK06, and a circularly permuted green fluorescent protein, (cp173-mEGFP), respectively. We named this red-shifted cameleon “green-orange cameleon” (GO-Cam). The whole Ca2+ sensitive designed calmodulin/M13 sequence (D1) [21] from the D1ER probe [24,25] was fused in tandem between the mK06 and cp173-mEGFP yielding a genetically encoded Ca2+ probe, which we termed D1GO-Cam (Figures 1A).

Characterization of D1GO-Cam

First, we tested D1GO-Cam in intact HeLa cells. In all measured cells the donor fluorescence of D1GO-Cam was approximately 2 fold higher than the respective FRET signal under resting conditions (cp173-mEGFP fluorescence intensity was 275.9 ± 41.8, versus a FRET signal intensity of 133.8 ± 15.3, n = 23, Figure 1B). The cp173-mEGFP (FRET donor) of D1GO-Cam was illuminated with 477 nm and both the donor emission and the FRET signal (FRET to the acceptor mK06 emission) were quantified simultaneously using a beam splitter device. The fluorescence intensities in the cp173-mEGFP and FRET channels continuously declined with slow kinetics during imaging, which is due to moderate photobleaching and/or photochromism of the fluorescence proteins. Because of a significantly faster decline of the FRET signal compared to that of the respective cp173-mEGFP fluorescence, the ratio FRET/GFP of D1GO-Cam (Figure 1C) also moderately decreased over time. This phenomenon might be partially due to cp173-mEGFP (donor) bleed through into the acceptor channel. However, using cells expressing cp173-mEGFP (donor) alone showed only 11.2 ± 4.1% (n = 18) of the donor fluorescence in the respective FRET channel (Figure S1A and S1B). Photobleaching and/or photochromism also occurs if CFP/YFP containing cameleons are used [26,27] and can be corrected by determining respective bleaching functions (Figures 1B and 1C). A comparison of the photobleaching between D1GO-cam and the CFP/YFP based D3cpv [21] showed, however, clear differences of the kinetics (Figure S1C). While the ratio of FRET/GFP of D1GO-Cam decreased continuously over time with the same slow kinetic, the ratio of FRET/CPF of D3cpv showed initially a fast pronounced decline, probably pointing to direct excitation of the acceptor of D3cpv in the setup used (Figure S1C). Nevertheless, cell stimulation with the Ca2+ mobilizing agonist histamine induced fast changes of the respective fluorescence signal (i.e. decrease of the cp173-mEGFP donor fluorescence signal and respective increase of FRET signal), indicating proper functioning of D1GO-Cam as a ratiometric red-shifted genetically encoded Ca2+ sensor in intact cells (Figures 1B and 1C). The sensor exhibited a good signal-to-noise ratio, which allowed the recordings of small Ca2+ oscillations within HeLa cells in response to the physiological agonist histamine (Figures 1B and 1C).

Next we compared D1GO-Cam with the chemical Ca2+ indicator fura-2 in ionomycine treated HeLa cells at low Ca2+ concentrations ranging from 30 nM to 2 μM (Figures 1D and 1E). These experiments revealed that D1GO-Cam is suitable to measure Ca2+ signals from the nM to the μM range. Using permeabilized HeLa cells the dissociation constant (Kd) of D1GO-Cam was found to be 1.53 μM (1.32 μM ± 1.78 μM) at 25°C and pH 7.25 (Figure 1F).

Co-Imaging of D1GO-Cam with Fura-2

The actual purpose of the development of a red-shifted cameleon was to minimize fluorescence crosstalk with the ultraviolet excitable chemical Ca2+ indicator, fura-2, which should improve the usability of both Ca2+ sensors to simultaneously record [Ca2+]cyto and [Ca2+]i,mito within one given cell. For testing Ca2+ sensitive spectral overlaps between fura-2 and cameleons spectral excitation-scans from 313 nm to 525 nm were performed using cells that were loaded with fura-2/AM or transfected with either the CFP/YFP-based D3cpv or the red-shifted D1GO-Cam.

Co-Imaging of D1GO-Cam with Fura-2

The actual purpose of the development of a red-shifted cameleon was to minimize fluorescence crosstalk with the ultraviolet excitable chemical Ca2+ indicator, fura-2, which should improve the usability of both Ca2+ sensors to simultaneously record [Ca2+]cyto and [Ca2+]i,mito within one given cell. For testing Ca2+ sensitive spectral overlaps between fura-2 and cameleons spectral excitation-scans from 313 nm to 525 nm were performed using cells that were loaded with fura-2/AM or transfected with either the CFP/YFP-based D3cpv or the red-shifted D1GO-Cam.
Real-Time Recordings of $[\text{Ca}^{2+}]_{\text{Cyto}}$ and $[\text{Ca}^{2+}]_{\text{Mito}}$

Saturation by Ca$^{2+}$ was achieved by adding ionomycin in the presence of 2 mM extracellular Ca$^{2+}$. These experiments revealed that the fluorescence of fura-2 still significantly declined in response to Ca$^{2+}$ if the chemical Ca$^{2+}$ sensor was excited at 435 nm, which was the optimal excitation wavelength for imaging Ca$^{2+}$ with the cameleon D3cpv (Figure 2A). Notably, the fura-2 fluorescence was clearly detectable in both the CFP and the respective FRET channel of the cameleon D3cpv. In contrast, the cross-talk between the fluorescence of fura-2 and the red-shifted ratiometric cameleon, D1GO-Cam, was negligible. D1GO-Cam showed maximal Ca$^{2+}$-induced changes if the probe was excited at 477 nm, which was out of the range to generate significant fura-2 fluorescence (Figure 2A).

Next we imaged cytosolic Ca$^{2+}$ oscillation in the pancreatic beta-cell line INS-1 832/13 with both fura-2 and D1GO-Cam simultaneously. As shown in figure 2B the complex patterns of oscillatory changes of $[\text{Ca}^{2+}]_{\text{cyto}}$ in individual fura-2/AM loaded beta-cells could be perfectly resolved with D1GO-Cam also. Only small variations of the amplitudes between signals of fura-2 and D1GO-Cam were observed, indicating the suitability of the red-shifted cameleon to resolve such cytosolic Ca$^{2+}$ signals (Figure 2B).

Co-Imaging of the Mitochondrial Targeted 4mtD1GO-Cam with Fura-2

In analogy to the CFP/YFP-based cameleons [21,28], the mitochondrial signal sequence from subunit VIII of human cytochrome C oxidase (COX VIII) were fused four times in tandem (4mt) at the 5'-end of the D1GO-Cam, in order to ensure successful targeting of the red-shifted cameleon into the mitochondrial matrix. Accordingly, the red-shifted mitochondrial targeted cameleon was named 4mtD1GO-Cam. In all cell types tested the 4mtD1GO-Cam was nicely targeted to mitochondria (Figure 3A). Interestingly, in HeLa cells the 4mtD1GO-Cam showed less mis-targeting compared to the CFP/YFP-based cameleon 4mtD3cpv (Figure 3B).

The suitability of simultaneous recordings of cytosolic and mitochondrial Ca$^{2+}$ concentrations in one given cell were initially tested in the endothelial cell line (EA.hy926) that was stimulated by histamine (Figure 4A). Though a fast increase in free Ca$^{2+}$ in response to the application of the IP$_3$-generating agonist was found in both compartments, mitochondrial Ca$^{2+}$ signal was clearly delayed and increased with slower kinetics compared to cytosolic Ca$^{2+}$ elevation (Figure 4A). Notably, mitochondrial Ca$^{2+}$ elevation upon histamine started when the cytosolic Ca$^{2+}$ signal already reached 80% of its maximum (Figure 4D). Moreover, within approximately 2 minutes $[\text{Ca}^{2+}]_{\text{cyto}}$ decreased to basal levels upon

Original traces (black) were corrected for photobleaching using the red curves (representing the bleaching functions regarding a one phase exponential decay) yielding the corrected traces for the GFP (FRET donor, green trace, upper panel) and the FRET channel (orange trace, lower panel), respectively. (C) Ratios of FRET/GFP of raw and corrected values from panel B. (D) Representative tracings of cytosolic Ca$^{2+}$ signals measured with either D1GO-Cam (orange curve) or fura-2 (green curve) in ionomycine (3 μM) treated HeLa cells at various Ca$^{2+}$ concentrations. (E) Comparative statistics of delta maximal ratios in percentage of D1GO-Cam (white column, n = 8) and fura-2 (black column, n = 8) at different Ca$^{2+}$ concentrations (Ca$^{2+}$) in ionomycin (3 μM) treated HeLa cells. The average of delta maximal ratios at 2.0 μM Ca$^{2+}$ were defined as 100%. (F) The in situ Ca$^{2+}$ concentration response curve of D1GO-Cam was calculated from experiments using ionomycin (10 μM) treated HeLa cells. The actual Ca$^{2+}$ concentrations plotted were determined using respective fura-2 or Magfura-2 signals, which were recorded simultaneously. The curve shown here represents an average of 7 independent experiments.

doi:10.1371/journal.pone.0045917.g001

Figure 1. Characterization of D1GO-Cam. (A) Schematic representation of D1GO-Cam. D1GO-Cam consists of the orange fluorescence protein, (mKO) as the FRET acceptor and a circular permuted green fluorescent protein (cp173-mEGFP) as the FRET donor. In contrast to existing cameleons the FRET acceptor (mKO) is on the N-terminus in front of the Ca$^{2+}$-sensitive domain, while the FRET donor (cp173-mEGFP) is on the C-terminus. FRET between cp173-mEGFP and mKO is increasing upon binding of Ca$^{2+}$ to approved CaM/M13 sequences of the design 1 (D1) of D1GO-Cam. The flash symbols indicate optimal excitation and emission wavelength for imaging GO-Cams. (B) Representative recordings of cytosolic Ca$^{2+}$ fluctuations upon cell stimulation with 100 μM histamine in intact HeLa cells expressing D1GO-Cam. The black curves represent original traces of the FRET donor GFP (upper panel) and the respective FRET signal (lower panel).
extrusion machinery in this particular cell type. Likewise, in the endothelial cells, histamine-induced rise of [Ca\(^{2+}\)]\(_{\text{cyto}}\) lagged clearly behind the cytosolic Ca\(^{2+}\) signal in HeLa cells (Figures 4B and 4D).

Similar experiments were performed using the pancreatic beta-cell line INS-1 832/13 (Figure 4C). In INS-1 832/13 cells, Ca\(^{2+}\) was mobilized using a mixture of the two IP\(_3\)-generating agonists carbachol and ATP in the absence of extracellular Ca\(^{2+}\).

Remarkably, the INS-1 832/13 cells exhibited very different mitochondrial Ca\(^{2+}\) kinetics upon cell stimulation compared with our findings in endothelial cells (Figure 4A) and HeLa cells (Figure 4B). In particular, while the stimulation of INS-1 832/13 cells led to an almost synchronous transient increase of [Ca\(^{2+}\)]\(_{\text{mito}}\) and [Ca\(^{2+}\)]\(_{\text{cyto}}\), mitochondrial Ca\(^{2+}\) clearance was considerably slower than in the other cell types (Figure 4C and 4E). Although the rise of [Ca\(^{2+}\)]\(_{\text{mito}}\) was only moderately slower than the respective cytosolic Ca\(^{2+}\) signal, the decrease of [Ca\(^{2+}\)]\(_{\text{mito}}\) occurred with a lesser speed compared to that of [Ca\(^{2+}\)]\(_{\text{cyto}}\) in this particular cell type (Figures 4B and 4D).

In order to exclude that the differences in the kinetics between [Ca\(^{2+}\)]\(_{\text{mito}}\) and [Ca\(^{2+}\)]\(_{\text{cyto}}\) are due to differences in the Ca\(^{2+}\) affinities and/or the on and off kinetics of the two Ca\(^{2+}\) sensors used (i.e. fura-2 and 4mtD1GO-Cam), similar experiments were performed using the non-targeted (i.e. cytosolic) D1GO-Cam simultaneously with fura-2. As shown in figure 4F, the curve obtained with D1GO-Cam was virtually identical with the respective fura-2 signal.

Temporal Correlations of [Ca\(^{2+}\)]\(_{\text{mito}}\) and [Ca\(^{2+}\)]\(_{\text{cyto}}\) in Response to Ca\(^{2+}\) Entry via L-type Ca\(^{2+}\) Channels in INS-1 832/13 Cells

Subsequently, the temporal correlation between cytosolic and mitochondrial Ca\(^{2+}\) elevation upon stimulation of L-type Ca\(^{2+}\) channels was tested. Therefore, the excitable INS-1 832/13 cells were depolarized by elevated extracellular K\(^+\) concentration ([K\(^+\)]) resulting in Ca\(^{2+}\) entry via voltage-gated Ca\(^{2+}\) channels [29,30]. When [K\(^+\)]\(_{\text{ex}}\) was briefly increased from 5 mM to 130 mM the fura-2 signal transiently rose, while the respective changes in [Ca\(^{2+}\)]\(_{\text{mito}}\) were significantly delayed and remained elevated despite the decrease in [Ca\(^{2+}\)]\(_{\text{cyto}}\) (Figure 5A). The slopes of rise in [Ca\(^{2+}\)]\(_{\text{mito}}\) and [Ca\(^{2+}\)]\(_{\text{cyto}}\) were almost identical whereas [Ca\(^{2+}\)]\(_{\text{cyto}}\) dropped much faster than the respective mitochondrial Ca\(^{2+}\) signal, pointing again to a slower mode of Ca\(^{2+}\) extrusion from mitochondria in INS-1 832/13 cells. If cells were moderately depolarized with 30 mM K\(^+\), [Ca\(^{2+}\)]\(_{\text{cyto}}\) increased slowly and the rise of the respective mitochondrial Ca\(^{2+}\) was more pronounced (Figures 5B). Strong depolarization with 130 mM K\(^+\) increased the speed of [Ca\(^{2+}\)]\(_{\text{mito}}\) and [Ca\(^{2+}\)]\(_{\text{cyto}}\) elevation by about 3-fold (Figure 5C), while the delay between mitochondrial and cytosolic Ca\(^{2+}\) signals was reduced by almost 80% (Figure 5D). Notably, the delay between mitochondrial and cytosolic Ca\(^{2+}\) signals under these conditions was independent of the sampling rate of image acquisition. These experiments indicated a clear correlation between the kinetics of [Ca\(^{2+}\)]\(_{\text{cyto}}\) rise and the temporal delay of the respective mitochondrial Ca\(^{2+}\) signals.

In order to test whether or not the differences in the kinetics and temporal patterns between cytosolic and mitochondrial Ca\(^{2+}\) signals were due to Ca\(^{2+}\) buffering by the chemical Ca\(^{2+}\) indicator fura-2, respective experiments were also performed in cells expressing the red-shifted cameleon, 4mtD1GO-Cam, which were not loaded with fura-2/AM. These experiments, however, revealed that neither the amplitude (Figure 5E), nor the slope (Figure 5F), nor the time between cell stimulation until the increase of [Ca\(^{2+}\)]\(_{\text{mito}}\) (Figure 5G) was affected by fura-2.
Furthermore, the impact of mitochondrial membrane potential on cytosolic and mitochondrial Ca\(^{2+}\) signals was tested in INS-1 \(832/13\) cells in response to cell stimulated with 30 mM K\(^{+}\). Therefore mitochondrial membrane potential was collapsed with oligomycin and antimycin A. Under such conditions, the cytosolic Ca\(^{2+}\) rise in response to K\(^{+}\) was only minimally affected, whereas the respective mitochondrial Ca\(^{2+}\) signal was strongly attenuated (Figure 5H).

The correlation between [Ca\(^{2+}\)]\(_{mito}\) and [Ca\(^{2+}\)]\(_{cyto}\) was further studied using repetitive stimulations of INS-1 \(832/13\) cells with short pulses of 130 mM K\(^{+}\) (Figures 6A and 6B). Under these conditions each pulse of K\(^{+}\) transiently increased [Ca\(^{2+}\)]\(_{cyto}\), whereas the amplitudes of the successive cytosolic Ca\(^{2+}\) rises decreased with each K\(^{+}\) addition. The cytosolic Ca\(^{2+}\) clearance after each K\(^{+}\) pulse was, however, very efficient and decreased [Ca\(^{2+}\)]\(_{cyto}\) back to basal levels between the individual K\(^{+}\) additions (Figure 5H). In contrast, [Ca\(^{2+}\)]\(_{mito}\) instantly followed the cytosolic Ca\(^{2+}\) rise but only slowly decreased after the removal of high K\(^{+}\). Notably, successive K\(^{+}\) additions triggered only small peaks of [Ca\(^{2+}\)]\(_{mito}\) at elevated levels of [Ca\(^{2+}\)]\(_{mito}\) (Figure 6A). The [Ca\(^{2+}\)]\(_{mito}\) response to cell depolarization with high K\(^{+}\) also displayed a time-dependent recovery. Already after a recovery

Figure 3. Mitochondrial targeting of 4mtD1GO-Cam. (A) Mitochondrial targeting of 4mtD1GO-Cam was visualized on an array confocal laser scanning microscope in Ea.hy926, HeLa, and INS-1 cells. (B) The efficiency of mitochondrial targeting of the cameleons 4mtD3cpv and 4mtD1GO-Cam was tested in HeLa cells. The proportion of mitochondrial fluorescence was calculated from both sensors in percentage to that of respective mis-targeted cytosolic fluorescence in individual HeLa cells expressing either 4mtD3cpv (n = 23) or 4mtD1GO-Cam (n = 41). *P<0.05 vs. 4mtD3cpv.
Figure 4. Comparison of cell type specific coupling between [Ca$^{2+}$]$_{cyto}$ and [Ca$^{2+}$]$_{mito}$. (A–E) Fura-2/AM loaded cells expression 4mtDlGO-Cam were used to simultaneously record [Ca$^{2+}$]$_{cyto}$ (green traces) and [Ca$^{2+}$]$_{mito}$ (orange traces) in response to cell stimulation with IP$_3$-generating agonists. Representative traces of cytosolic and mitochondrial Ca$^{2+}$ signals in EA.hy926 in response to 100 μM histamine in the presence of 2 mM Ca$^{2+}$ are plotted against each other. (F) INS-1 cells were treated with a mixture of 100 μM CCh and 100 μM ATP in the absence of Ca$^{2+}$. [Ca$^{2+}$]$_{cyto}$ and [Ca$^{2+}$]$_{mito}$ in percentage of the respective maximal increases in response to the treatments shown in panels A–C are plotted against each other. Curves are representative for at least 4 independent experiments. [Ca$^{2+}$]$_{cyto}$ and [Ca$^{2+}$]$_{mito}$ are plotted against each other for the Ca$^{2+}$ extrusion phases during and after the removal of the IP$_3$-generating agonists as indicated in panels A–C.

Discussion

The new red-shifted cameleon, 4mtDlGO-Cam, we have introduced in this study emerged as a suitable tool for measuring mitochondrial Ca$^{2+}$ signals simultaneously with fura-2 in individual cells. Using this technique we were able to precisely correlate [Ca$^{2+}$]$_{mito}$ with [Ca$^{2+}$]$_{cyto}$, in response to different modes of Ca$^{2+}$ mobilization on the single cell level in different cell types.
Real-Time Recordings of [Ca2+]_{\text{Cyto}} and [Ca2+]_{\text{Mito}}
Conceptual Design and Characteristics of a Novel Red-shifted Cameleon

Exchanging the most used FRET pair CFP/YFP in cameleons by GFP (cp173-mEGFP) and OFP (mKOx), respectively, made the novel red-shifted genetically encoded Ca2+ sensor fully compatible with fura-2 (Figure 2A). The chemical Ca2+ indicator fura-2 is the most popular sensor for monitoring changes of the intracellular Ca2+ concentration in a confident manner. The reliability and usability of fura-2 is based on, low toxicity, good cell loading properties and, importantly, pronounced ratiometric changes of the fluorescence signals in response to Ca2+ [22].

The combination of fura-2 with CFP/YFP based FRET probes is problematic because of spectral overlaps [31]. With the imaging system used in this study we recognized that particularly the prominent fura-2 fluorescence contaminates CFP and YFP-based indicators. Accord-

ingly, red-shifted FRET probes should be better compatible with the ultra violet (UV) -excitable fura-2. Miyawaki and colleagues constructed several red-shifted cameleons using a red fluorescent protein from a Discosoma species (DsRed) as a FRET acceptor [32]. However, because of the broad excitation spectrum of DsRed and the formation of DsRed aggregates, these constructs showed spectral and structural complexities and are, thus, rarely used as Ca2+ sensors. The property of DsRed as a FRET acceptor was improved by using a tandem dinner mutant of this fluorescent protein (TDimer2), which was used together with an enhanced GFP (EGFP) to construct a red shifted cameleon [23]. Probably because of the bulkiness of this cameleon containing EGFP and TDimer2 its targeting to mitochondria is difficult and so far this probe has been exclusively used to measure [Ca2+]mt. A variety of FRET pairs have been tested for the development of genetically encoded FRET probes, including far red-shifted ones based on orange and red fluorescent proteins [33]. Red-shifted FRET based sensors were recently developed to measure the translocation of annexin A4 [34], caspase-3 activity [35], and changes of the plasma membrane voltage [36], while to our knowledge such FRET pairs have not been used for the construction of red-shifted cameleons so far. Notably, in a recent study a genetically encoded red-shifted ATP sensor that is based on FRET between cp173-mEGFP and the orange fluorescent variant mKOx was successfully used in combination with fura-2 to correlate [Ca2+]cyo with changes of cytosolic or mitochondrial ATP levels [27]. On account of this we designed the cloning of an analog red-shifted cameleon, which we could target effectively to mitochondria (Figures 3A and 3B) by adding the 4mt sequence [21].

The CFP/YFP-based cameleons were improved by engineering CaM and M13, which minimized the interaction with endogenous CaM and increased the range of the measurable Ca2+ concentrations. As a result, cameleons with different designs (D) and Ca2+ affinities have been developed: D1 with two dissociation constants (Kd) of 0.6 μM and 56.5 μM appropriate to measure Ca2+ ranging from <1 μM up to >300 μM, D2 with Kd ranging from 0.1 to 7.7 μM, D3 with a Kd of 0.8 μM, and D4 with a Kd of 49.7 μM [24,37,38]. In addition both the dynamic range and the pH stability of cameleons were improved by replacing YFP by citrus or circularly permuted Venus (cpv) [21]. We decided to generate a red-shifted cameleon containing D1, which should allow monitoring Ca2+ over a wide range of Ca2+ concentrations. Surprisingly, the Ca2+ affinity of the D1GO-Cam was enhanced compared to the reported Kd of the respective CFP/YFP based cameleon, D1cpv. Particularly, the D1 containing red-shifted cameleon exhibited just one Kd of 1.35 μM and was already saturated at Ca2+ concentrations >100 μM, when we calibrated the sensor in situ (Figure 1F). The reported Kd of the D1cpv were obtained in vitro [21], which, however, cannot explain the clear discrepancy between the Ca2+ affinities. Hence, we speculate that the shift towards a higher Ca2+ sensitivity in D1GO-Cam is based on the exchange of the fluorescent proteins. It has been recognized that the interaction between fluorescent proteins impacts on the Kd of FRET-based sensors [23]. Nevertheless, the exchange of CFP/YFP to cp173-mEGFP/mKOx in a genetically encoded ATP sensor did not increase, but reduced the affinity to ATP [21]. Accordingly, we rather expected a diminished Ca2+ affinity of the red-shifted cameleon compared to the CFP/YFP based Ca2+ probe. Moreover, another explanation for the shift of the Kd of the red-shifted cameleon might be the orientation of the fluorophores, as the sequential arrangement of the donor and acceptor fluorescent proteins in D1GO-Cam (Figure 1A) is vice versa compared with the classical cameleons [16,24,39]. A more consistent explanation for the differences in the Kd between D1GO-Cam and D1ER might be based on the different dimerization properties of the different fluorescent proteins. CFP and YFP of D1ER might exhibit weak dimerization, while cp173-

mEGFP and mKOx do not. Accordingly, a conformational change of the CaM/M13 domain in D1ER might facilitate dimerization of the fluorescent proteins, which explains the higher Kd of approximately 60 μM.

Spatiotemporal Correlations between [Ca2+]mito and [Ca2+]cyo

The red-shifted cameleon could be nicely targeted to mitochondria in different cell types (Figure 3A). Although the same targeting sequence (4mt) for mitochondrial targeting was used, 4mtD1GO-Cam showed less mis-targeting compared to the respective 4mtD3cpv (Figure 3B). We could not elaborate the reason for this difference. However, this finding should be considered with caution, as the autofluorescence of cells might be higher within the 4mtD3cpv excitation/emission range.
Real-Time Recordings of \([\text{Ca}^{2+}]_{\text{cyto}}\) and \([\text{Ca}^{2+}]_{\text{mito}}\)
Our measurements show that the accumulation of Ca\(^{2+}\) within mitochondria clearly lags behind cytosolic Ca\(^{2+}\) signals, particularly if [Ca\(^{2+}\)\(_{\text{cyto}}\)] rises rather slowly (Figures 4A, 4B and 5A, 5B, 5D). This finding is in line with early studies indicating that the mitochondrial Ca\(^{2+}\) uniporter, the main route for mitochondrial Ca\(^{2+}\) uptake, has a pretty low affinity for Ca\(^{2+}\) [40]. Similar findings were obtained using confocal imaging of Rhod-2-loaded HeLa cells, in which [Ca\(^{2+}\)\(_{\text{mito}}\)] and [Ca\(^{2+}\)\(_{\text{cyto}}\)] was also assessed simultaneously [41]. In this study it was calculated that [Ca\(^{2+}\)\(_{\text{cyto}}\)] increases to approximately 400-600 nM before mitochondria start to accumulate Ca\(^{2+}\) efficiently. Accordingly, mitochondrial Ca\(^{2+}\) uptake requires a certain threshold of [Ca\(^{2+}\)\(_{\text{cyto}}\)] that is necessary to stimulate the low affinity of the mitochondrial Ca\(^{2+}\) uptake machinery. Otherwise it has been proposed that high Ca\(^{2+}\) to stimulate the low affinity of the mitochondrial Ca\(^{2+}\), otherwise it has been proposed that high Ca\(^{2+}\) might be a time consuming process. Ca\(^{2+}\) uptake is a rather slow process [42].

Interestingly, the speed of the transfer of cytosolic Ca\(^{2+}\) into mitochondria was not just depending on the mode and strength of Ca\(^{2+}\) mobilization but also on the cell type used (Figure 4A-E). Mitochondria in HeLa cells were highly effective in extruding Ca\(^{2+}\) ions (Figure 4B and 4E), while in cells from both the endothelial (Figure 4A) and pancreatic beta-cell line (Figure 4C), the kinetics of the clearance of Ca\(^{2+}\) from mitochondria was evidently slower than the respective cytosolic Ca\(^{2+}\) declines. These findings also indicate that the mitochondrial Ca\(^{2+}\) homeostasis is differently controlled in different cell types, which impacts on the characterization and identification of the mitochondrial Ca\(^{2+}\) proteome. We obtained results indicating that the red-shifted cameleon actually measures the correct kinetics of mitochondrial Ca\(^{2+}\) signals, because the kinetics of the cytosolic Ca\(^{2+}\) signals within individual single cells were almost identical independently whether [Ca\(^{2+}\)\(_{\text{cyto}}\)] was recorded with fura-2 or D1GO-Cam (Figures 6A and 6B).
mitochondrial Ca2+ uptake in pancreatic beta-cells was also found in response to methyl succinate [62]. Moreover, the phenomenon of a complex regulation of the mitochondrial Ca2+ uptake pathway(s) by Ca2+ was also established in other cell types [29,40,63].

The suitability of the novel approach to simultaneously record [Ca2+]\textsubscript{cyto} and [Ca2+]\textsubscript{mito} was finally tested in INS-1 832/13 cells that exhibited complex and heterogeneous Ca2+ oscillations in response to D-glucose [64]. In pancreatic beta-cells the transfer of Ca2+ into mitochondria is of utmost importance as mitochondrial Ca2+ sequestration facilitates glucose-induced insulin secretion [3,65]. Hence, the characterization and identification of the mitochondrial Ca2+ homeostasis is highly relevant for better understanding the physiology and pathology of pancreatic beta-cells. Our measurements revealed that in contrast to cell stimulation with high K+ the glucose-induced robust cytosolic Ca2+ signals are instantaneously transferred into mitochondria in INS-1 832/13 cells (Figures 6C and 6D). This tight Ca2+ coupling might point to additional processes, which facilitate the sequestration of Ca2+ by mitochondria, if the metabolism of glucose is triggering Ca2+ entry via voltage-gated Ca2+ channels in pancreatic beta-cells. However, the slow rate of mitochondrial Ca2+ extrusion and the desensitization of mitochondrial Ca2+ uptake in response to high K+ were also obvious in the oscillatory signals triggered by glucose (Figures 6C and 6D). These findings are in line with a recent report in which Ca2+ signals were measured with mitochondrial targeted pericam and fura red in INS-1 cells [66].

Conclusion

The novel red-shifted genetically encoded Ca2+ probe developed in this study is a suitable ratiometric Ca2+ indicator, which can be used in combination with fura-2 to correlate [Ca2+]\textsubscript{cyto} with localized Ca2+ signals on the single cell level. The use of this novel probe can be easily performed on conventional wide field imaging systems and produces reliable Ca2+ measurements in a ratiometric manner appropriate to simultaneously quantify global cytosolic and organelle Ca2+ signals.

Materials and Methods

Materials

For cell culture, HAT supplement was purchased at Invitrogen (Vienna, Austria). Other media supplements, RPMI-1640, fetal calf serum (FCS) and all plastic ware were from PAA laboratories (Pasching, Austria). Dulbecco’s modified eagle’s medium (DMEM), histamine dihydrochloride (Histamine), carbamylcholin chloride (Carbachol, CCiH), adenosine 5’-triphosphate disodium salt (ATP), oligomycin and antymycin A were obtained from Sigma-Aldrich (Vienna, Austria). Ionomin (free acid) was from abcamBiochemicals (Cambridge, UK) and fura-2/AM from Teflabs (Texas Fluorescence Labs Inc., Austin, TX, USA). TransFastTM transfection reagent, restriction enzymes and Taq polymerase used for subcloning were purchased from Promega (Manheim, Germany). All other chemicals were obtained from Roth (Karlsruhe, Germany).

Cell Culture, Fura-2/AM Loading and Transfection

In this study all 3 different cell lines used were cultured and transfected in a humidified atmosphere at 37°C and 5% CO\textsubscript{2}. INS-1 832/13 cells (INS-1) were kindly provided by C. B. Newgard (Duke University School of Medicine) and cultured with RPMI-1640 culture medium containing 2 mM L-glutamate and 11.1 mM D-glucose supplemented with 10% FCS, 1 mM sodium pyruvate, 5 mM mercaptoethanol, 100 U/ml penicillin and 100 µg/ml streptomycin. The human umbilical vein endothelial cell line EA.hy926 [24] was cultured in DMEM containing 10% FCS, 100 U/ml penicillin, 100 µg/ml streptomycin and 1% HAT (5 mM hypoxanthin, 20 µM aminopterin and 0.6 mM thymidine). HeLa cells were cultured in the same medium without HAT supplement. For experiments and transfection, cells were grown on 30 mm glass cover slips and transfected at 50–80% confluence with 1.5 µg of plasmid DNA (per 30 mm well) using 4 µg/well TransFastTM transfection reagent in 0.5 ml of serum and antibiotic-free transfection medium. Cells were maintained in the incubator (37°C, 5% CO\textsubscript{2}, 95% air) for 16–20 hours before changing the medium back to normal culture medium. Experiments were performed 24–48 hours after transfection. Cells were loaded at RT with 2 µM fura-2/AM for 20 minutes in a HEPES buffered solution containing in mM: 15 NaCl, KCl, 2 CaCl\textsubscript{2}, 1 MgCl\textsubscript{2}, 1 HEPES, 2.6 NaHCO\textsubscript{3}, 0.44 KH\textsubscript{2}PO\textsubscript{4}, 0.34 NaHPO\textsubscript{4}, 10 D-glucose, 0.1% vitamins, 0.2% essential amino acids and 1% penicillin/streptomycin pH 7.4. Prior to experiments cells were washed and stored in the same HEPES buffered solution without fura-2/AM.

Design and Construction of D1GO-Cam and 4mtD1GO-Cam

The Ca2+ sensitive calmodulin/M13 sequence (D1) from the D1ER probe [23] was amplified via PCR and the internal ClaI restriction site was deleted by silent mutation using the primers as follows: 5’-GGATCGATATGATGACATCCTCTCTCTCT-3’, 5’-GGCCCCAGCCCTAAATCTCTCTCT-3’, 5’-GAAGCAGA-TATTGACGGTG-3’ and 5’-AAGATTCGACGTCACAGCAGCGCC-3’. D1 was then subcloned via its overhanging ClaI and EcoRI recognition sites into the newly developed red-shifted mitochondrial or cytosolic ATP sensor (4mtGO-ATteam or 4mtD1GO-ATteam) [67] after removing the ATP sensing e subunit of the bacterial F\textsubscript{1}F\textsubscript{0}-ATP synthase sequence. Accordingly, exchanging the ATP sensing e subunit to the calmodulin/M13 sequences of D1 resulted in 2 new plasmids coding for Ca2+ sensitive probes: the cytosolic D1GO-Cam and the mitochondrial targeted variant, 4mtD1GO-Cam, respectively.

Experimental Buffers for Ca2+ Measurements

Ca2+ measurements in Ea.hy926 and HeLa cells were performed by stimulating the cells in a Ca2+ containing environment by perfusing the cells in a calcium containing buffer (CB), which was composed of (in mM): 138 NaCl, 5 KCl, 2 CaCl\textsubscript{2}, 1 MgCl\textsubscript{2}, 10 D-glucose and 10 HEPES, pH adjusted to 7.4 with NaOH. Stimulation of INS-1 with IP3-generating agonists was performed by stimulating the cells in a Ca2+ free solution containing EB (4mtGO-ATeam or GO-ATteam) [67] after removing the ATP sensing e subunit of the bacterial F\textsubscript{1}F\textsubscript{0}-ATP synthase sequence. Accordingly, exchanging the ATP sensing e subunit to the calmodulin/M13 sequences of D1 resulted in 2 new plasmids coding for Ca2+ sensitive probes: the cytosolic D1GO-Cam and the mitochondrial targeted variant, 4mtD1GO-Cam, respectively.
GO-cam plasmids were loaded with fura-2/AM as described. Single cells containing both, the fura-2 and the GO-cam biosensor were alternately excited at 340, 380 or 477 nm and emissions were recorded at 510 nm for fura-2 and GFP or at 560 nm for FRET channel.

Single Cell Ca$^{2+}$ Imaging and Data Acquisition

Co-imaging of fura-2 and the red-shifted cameleons was performed on a digital wide field imaging system, the Till IMIC (Till Photonics Graefelfing, Germany) using a 40× objective (alpha Plan Fluor 40×, Zeiss, Göttingen, Germany). For illumination of fura-2 and the cameleons an ultra fast switching monochromator, the Polychrome V (Till Photonics) was used. Fura-2 was excited alternatively at 340 nm and 380 nm and the red-shifted cameleons were excited at 477 nm, respectively. To avoid contamination of the emission channels with excitation light an excitation filter (5000spuv, Chroma Technology Corp, Rockingham Vermont, USA) and a dichroic filter (495dexru) were installed. Emission light was simultaneously collected at 510 nm (fura-2 and GFP of GO-Cams) and at 560 nm (FRET-channel of GO-Cams) using a single beam splitter design (Dichrotome, Till Photonics) that was equipped with a dual band emission filter (59004m ET Tritic/Tritic Dual Emitter, Chroma Technology Corp) and a second dichroic filter (560dxcr, Chroma Technology Corp). The light path and spectra for the filters used for the co-imaging experiments are illustrated in figure S2. Images were recorded with a charged-coupled device (CCD) camera (AVT Stringray F145B, Allied Vision Technologies, Stadtroda, Germany). For the data acquisition and the control of the digital fluorescence microscope the live acquisition software version 2.0.0.12 (Till Photonics) was used.

Supporting Information

Figure S1 Characterization of spectral properties and photobleaching of the fluorescence proteins cp173-mEGFP and mKO$_2$ of D1GO-Cam, respectively. (A) Representative images of HeLa cells expressing either D1GO-Cam (upper panel) or cp173-mEGFP alone (middle panel) or mKO$_2$ alone (lower panel) showing the FRET (acceptor) channel (emission at 560 nm) on the left images and the GFP (donor) channel (emission at 510 nm) on the right images, respectively. The white scale bar in the upper left image represents 20 μm. (B) Statistical analysis of the contribution of the fluorescence signals of the D1GO-Cam (left pairs of columns, n = 10) under resting conditions (i.e. low Ca$^{2+}$ levels) in the FRET (acceptor) channel (left orange column) and the GFP (donor) channel (left green column) and the contribution of the fluorescence signals of cp173-mEGFP alone (right pairs of columns, n = 10) in the FRET (acceptor) channel (right orange column) and the GFP (donor) channel (right green column). (C) Quantitative comparison of the photobleaching of D3cpv (containing the CFP/YFP FRET pair) relative to the D1GO-Cam (containing the GFP/OFP FRET pair). HeLa cells expressing the D3cpv (n = 15) were illuminated with excitation light at 430 nm with an exposure time of 400 ms and a camera binning of 4. Emission light was collected simultaneously at 480 nM (CFP donor fluorescence) and at 535 nm (FRET acceptor fluorescence) using the beam splitter device. With the same settings cells expressing D1GO-Cam (n = 12) were illuminated at 477 nm and emission light was collected at 510 nm (GFP, donor fluorescence) and 560 nm (FRET acceptor fluorescence), respectively. For both sensors the ratio FRET/Fdonor was plotted over time.

Figure S2 Imaging setup for the simultaneous recording of fura-2 and the novel red-shifted cameleons. Schematic representation of the imaging system with light paths of the excitation - (violet = 340 nm, dark blue = 380 nm, and light blue 477 nm) and emission light (green = 510 nM and orange = 560 nM) and the optical filters used to simultaneously image fura-2 and the novel red-shifted cameleons.

Acknowledgments

We thank Sandra Blass and Dr. Rene Rost for their excellent technical assistance and Dr. C.J.S. Edgell (University of North Carolina, Chapel Hill, NC, USA) for the EA.hy926 cells. Moreover we thank Professor Roger Tsien (University of California San Diego, CA, USA) for sending us cameleons. We highly appreciate the support of Dr. Maria Marosvolgyi from Till Photonics (Graefelfing, Germany).

Author Contributions

Conceived and designed the experiments: MW-W ATD HI WFG RM. Performed the experiments: MW-W MRA MJK FK NV RM. Analyzed the data: MW-W MRA MJK FK NV HI WFG RM. Contributed reagents/materials/analysis tools: HI. Wrote the paper: MW-W WFG RM.

References

1. Graier WF, Frieden M, Mali R (2007) Mitochondria and Ca$^{2+}$ signaling: old guests, new functions. Pluigers Arch 455: 575–596.
2. Duchen MR (2000) Mitochondria and Ca$^{2+}$ in cell physiology and pathophysiology. Cell Calcium 28: 339–348.
3. Tarasov AI, Griffiths EJ, Rutter GA (2012) Regulation of ATP production by mitochondria. Cell Calcium. 287: C817–C833.
4. Knot HJ, Laher I, Sobie EA, Guatimosim S, Gomez-Viquez L, et al. (2005) Modulation of calcium signalling by mitochondria. Biochim Biophys Acta 1787: 1374–1382.
5. Jean-Quartier C, Bondarenko AI, Alam MR, Trenker M, Waldeck-Weiermair RM. (2012) Studying mitochondrial Ca$^{2+}$ uptake and not mitochondrial motility is required for store-operated Ca$^{2+}$ entry, and Ca$^{2+}$ store refilling. J Biol Chem 278: 44769–44779.
6. Zecchini E, Siviero R, Giorgi C, Rizzuto R, Pinton P (2007) Mitochondrial Priming: message of life and death. Isol J Biochem 35: 235–242.
7. Duchen MR, Verkhratsky A, Mualem S (2008) Mitochondria and calcium in health and disease. Cell Calcium 44: 1–5.
8. Walsh C, Barros S, Voronina S, Chrzanov M, Petersen OH, Tepikin A (2009) Modulation of calcium signalling by mitochondria. Biochim Biophys Acta 1787: 1374–1382.
9. Naghdi S, Waldeck-Weiermair M, Fertschai I, Poteser M, Graier WF, Malli R. (2003) Sustained elevation during agonist stimulation. J Biol Chem 278: 10807–10813.
10. Brosers PS, Yoon Y, Rohobum JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287: C217–C233.
11. Knot HJ, Laher I, Sohie EA, Guatimosim S, Gomez-Viquez L, et al. (2005) Twenty years of calcium imaging: cell physiology to dye for. Mol Interv 5: 112–127.
12. Naghdi S, Waldeck-Weiermair M, Fertschai I, Poteser M, Graier WF, Mali R (2010) Mitochondrial Ca$^{2+}$ uptake and not mitochondrial motility is required for STIM1-Orai1-dependent store-operated Ca$^{2+}$ entry. J Cell Sci 123: 2553–2564.
13. Mali R, Frieden M, Osibow K, Graier WF (2003) Mitochondria efficiently buffer subplasemembrall Ca$^{2+}$ elevation during agonist stimulation. J Biol Chem 278: 10807–10813.
14. Davidson SM, Duchen MR (2012) Imaging mitochondrial calcium signalling with fluorescent probes and single or two photon confocal microscopy. Methods Mol Biol 810: 219–250.
15. Zecchini E, Siviero R, Giorgi C, Rizzuto R, Pinton P (2007) Mitochondrial Priming: message of life and death. Isol J Biochem 35: 235–242.
16. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, et al. (1997) Sustained calcium diffusion from mitochondria (TIF).
17. Palmer AE, Tien RY (2006) Measuring calcium signaling using genetically targetable fluorescent indicators. Nat Protoc 1: 1057–1065.
41. Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca$$^{2+}$.

39. Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and

35. Ai HW, Hazelwood KL, Davidson MW, Campbell RE (2008) Fluorescent

34. Piljic A, Schultz C (2008) Simultaneous recording of multiple cellular events by

32. Yang X, Xu P, Xu T (2005) A new pair for inter- and intra-molecular FRET

18. Nagai T, Sawano A, Park ES, Miyawaki A (2001) Circularly permuted green

24. Palmer AE, Jin C, Reed JC, Tsien RY (2004) Bcl-2-mediated alterations in

21. Palmer AE, Giacomello M, Kortemme T, Hires SA, Lev-Ram V, et al. (2006)

26. Hendel T, Mank M, Schnell B, Griesbeck O, Borst A, et al. (2008) Fluorescence

23. Nakano M, Imamura H, Nagai T, Noji H (2011) Ca$$^{2+}$$ induced by hFis1.

22. Carlson HJ, Campbell RE (2009) Genetically encoded FRET-based biosensors

28. Jacobo SMP, Guerra ML, Hockerman GH (2009) Cav1.2 and Cav1.3 are

20. Palmer AE, Jín C, Reed JY, Tsien RY (2004) Bcl-2-mediated alterations in

19. Ayata C, Hodge J, Hockerman GH, Thoreson RW, Pan Y, et al. (2004) FRET

18. Nagai T, Sawano A, Park ES, Miyawaki A (2001) Circularly permuted green

17. Zal et Y, Mahley R, Huang SM, Al, et al. (2003) Characterization of a novel

16. Hendel T, Mank M, Schl B, Griesbeck O, Borst A, et al. (2008) Fluorescence

15. Wollheim CB (1998) Desensitization of the cardiac Na$$^{+}$$ current

14. Adamikova L, Straube A, Schulz I, Steinbrecher U, et al. (2004) Calcium

13. Valjent E, Shi H, Weidekum J, Parzych A, et al. (2004) Transient

12. Tattersall H, Karasawa S, Okamura Y, Miyawaki A (2008) Improving

11. Wollheim CB (1998) Desensitization of the cardiac Na$$^{+}$$ current

10. Nagai T, Sawano A, Park ES, Miyawaki A (2001) Circularly permuted green

9. Zal et Y, Mahley R, Huang SM, Al, et al. (2003) Characterization of a novel

8. Gryniewicz G, Poenie M, Tsien RY (1985) A new generation of Ca$$^{2+}$$ indicators

7. Minuno H, Sawano A, Ei P, Hamza H, Miyawaki A (2004) Red fluorescent

6. Mizuno H, Sawano A, Ei P, Hamza H, Miyawaki A (2004) Red fluorescent

5. Minuno H, Sawano A, Ei P, Hamza H, Miyawaki A (2004) Red fluorescent

4. Li J, Li R, Li K, Li F, et al. (2003) Red fluorescent protein with improved

3. Li J, Li R, Li K, Li F, et al. (2003) Red fluorescent protein with improved

2. Li J, Li R, Li K, Li F, et al. (2003) Red fluorescent protein with improved

1. Li J, Li R, Li K, Li F, et al. (2003) Red fluorescent protein with improved

Real-Time Recordings of [Ca$$^{2+}$$]Cyto and [Ca$$^{2+}$$]Mito