Open charm meson production at LHC

Rafał Maciuła
Institute of Nuclear Physics (PAN), Kraków, Poland

12th International Workshop on Meson Production, Properties and Interaction,
KRAKÓW, POLAND, 31 May - 5 June 2012
Outline

1. Charm measurements at LHC
2. Hadroproduction of heavy quarks
 - parton model vs. k_t-factorization approach
 - unintegrated gluon densities for the proton
 - hadronization into open heavy mesons
3. Results vs. experimental data
 - p_t spectra in different rapidity regions @ ALICE and LHCb
 - effects of hadronization and quark mass uncertainty
4. Open charm via Double Parton Scattering

Based on:
Łuszczak, Maciuła, Szczurek, Phys. Rev. D 79 (2009) 034009
Maciuła, Szczurek, Ślipek, Phys. Rev. D 83 (2011) 054014
Łuszczak, Maciuła, Szczurek, Phys. Rev. D 85, 094034 (2012)
Heavy quarks measurements at LHC

- **direct**: open charm/bottom mesons → reconstruction of all decay products ($K^-\pi^+$, $K^+K^-\pi^+$, $K^-\pi^+\pi^+$)
- **indirect**: nonphotonic electrons/muons → leptons from semileptonic decays of heavy flavoured mesons

ALICE, $|y_D| < 0.5$, JHEP, 01 (2012) 128

LHCb, $2.0 < y_D < 4.5$, small x region!
LHCb-CONF-2010-013

ATLAS, widest rapidity interval, $|\eta| < 2.5$
Dominant mechanisms of $Q\bar{Q}$ production

- Leading order processes contributing to $Q\bar{Q}$ production:

 - **gluon-gluon fusion** dominant at high energies
 - $q\bar{q}$ annihilation important only near the threshold
 - some of next-to-leading order diagrams:

 very important NLO contributions → factor 2
collinear approximation → transverse momenta of the incident partons are assumed to be zero

- quadruply differential cross section:

 \[
 \frac{d\sigma}{dy_1 dy_2 d^2 p_t} = \frac{1}{16\pi^2 s^2} \sum_{i,j} x_1 p_i(x_1, \mu^2) x_2 p_j(x_2, \mu^2) |M_{ij}|^2
 \]

- \(p_i(x_1, \mu^2), p_j(x_2, \mu^2)\) - standard parton distributions in hadron (e.g. CTEQ, GRV, GJR, MRST, MSTW)

- NLO on-shell matrix elements well-known

several packages:

- **FONLL** (Cacciari et al.) - one particle distributions and total cross sections

- more exclusive tools - PYTHIA, HERWIG, MC@NLO
Charm measurements at LHC

Hadroproduction of heavy quarks

Results vs. experimental data

Open charm via Double Parton Scattering

parton model vs. k_t-factorization approach

k_t-factorization (semihard) approach

- charm and bottom quarks production at high energies
 \rightarrow gluon-gluon fusion

- QCD collinear approach \rightarrow only inclusive one particle
distributions, total cross sections

LO k_t-factorization approach $\rightarrow \kappa_{1,t}, \kappa_{2,t} \neq 0$

$\Rightarrow Q\bar{Q}$ correlations

- multi-differential cross section

\[
\frac{d\sigma}{dy_1 dy_2 d^2p_{1,t} d^2p_{2,t}} = \sum_{i,j} \int \frac{d^2\kappa_{1,t}}{\pi} \frac{d^2\kappa_{2,t}}{\pi} \frac{1}{16\pi^2(x_1 x_2 s)^2} |\mathcal{M}_{ij\rightarrow Q\bar{Q}}|^2
\]

\[
\times \delta^2 (\bar{\kappa}_{1,t} + \bar{\kappa}_{2,t} - \bar{p}_{1,t} - \bar{p}_{2,t}) \mathcal{F}_i(x_1, \kappa_{1,t}^2) \mathcal{F}_j(x_2, \kappa_{2,t}^2)
\]

- off-shell $|\mathcal{M}_{gg\rightarrow Q\bar{Q}}|^2$ \rightarrow Catani, Ciafaloni, Hautmann (very long formula)

- major part of NLO corrections automatically included

- $\mathcal{F}_i(x_1, \kappa_{1,t}^2), \mathcal{F}_j(x_2, \kappa_{2,t}^2)$ - unintegrated parton distributions

- $x_1 = \frac{m_{1,t}}{\sqrt{s}} \exp(y_1) + \frac{m_{2,t}}{\sqrt{s}} \exp(y_2)$,

- $x_2 = \frac{m_{1,t}}{\sqrt{s}} \exp(-y_1) + \frac{m_{2,t}}{\sqrt{s}} \exp(-y_2)$, where $m_{i,t} = \sqrt{p_{i,t}^2 + m_Q^2}$.
Different models of unintegrated parton distribution functions

- k_t-factorization \rightarrow replacement: $p_k(x, \mu_F^2) \rightarrow F_k(x, \kappa_t^2, \mu_F^2)$
- PDFs \rightarrow UPDFs

\[xp_k(x, \mu_F^2) = \int_{0}^{\infty} d\kappa_t^2 F(x, \kappa_t^2, \mu_F^2) \]

- UPDFs - needed in less inclusive measurements which are sensitive to the transverse momentum of the parton

gg-fusion dominance \Rightarrow great test of existing unintegrated gluon densities! especially at LHC (small-x)

several models:
- Kwiecinski, Jung (CCFM, wide x-range)
- Kimber-Martin-Ryskin (larger x-values)
- Kutak-Stasto, GBW (small-x, saturation effects)
- Ivanov-Nikolaev, KMS, etc.
Differential cross section for charm quarks

\[\frac{d\sigma}{dp_1 t dp_2 t} \]

Model	charm quark p_1 (GeV)	charm antiquark p_1 (GeV)
KMR		
Jung setA+		
Kutak-Stasto		
GBW		
hadronization into open heavy mesons

Fragmentation functions technique

- **phenomenology → fragmentation functions extracted from $e^+ e^-$ data**
- **often used: Peterson et al., Braaten et al., Kartvelishvili et al.**
- **numerically performed by rescaling transverse momentum at a constant rapidity (angle)**

- from heavy quarks to heavy mesons:

\[
\frac{d\sigma(y, p_{tM}^M)}{dy d^2 p_{tM}^M} \approx \int \frac{D_{Q\to M}(z)}{z^2} \cdot \frac{d\sigma(y, p_{tQ}^Q)}{dy d^2 p_{tQ}^Q} dz
\]

where: \(p_{tQ}^Q = \frac{p_{tM}^M}{z} \) and \(z \in (0, 1) \)

- **approximation:** rapidity unchanged in the fragmentation process \(\rightarrow y_Q = y_M \)
Different models of FFs

- **Peterson et al.**
 \[
 D_{Q \rightarrow M}(z) = N \frac{z}{z[1-(1/z)-\varepsilon_Q/(1-z)]}
 \]
 \[
 \varepsilon_c = 0.06, \varepsilon_b = 0.006 \text{ from PDG}
 \]

- **Braaten et al.**
 \[
 D_{Q \rightarrow M}(z) = N \frac{rz(1-z)^2}{(1-(1-r)z)^6} (F_1 + F_2)
 \]
 \[
 F_1 = 6 - 18(1-2r)z + (21 - 74r + 68r^2)z^2
 \]
 \[
 F_2 = 3(1-r)^2(1-2r^2)z^4 - 2(1-r)(6-19r+18r^2)z^3
 \]
 \[
 r_c = 0.2, \ r_b = 0.07
 \]

- **Kartvelishvili et al.**
 \[
 D_{Q \rightarrow M}(z) = N(1-z)z^a
 \]
 \[
 a_c = 5.0, \ a_b = 14.0
 \]
Charm measurements at LHC

Hadroproduction of heavy quarks

Results vs. experimental data

Open charm via Double Parton Scattering

Various UGDFs models → crucial test of their applicability at high energies and small x-values

Only KMR model gives well description of the ALICE and LHCb data

Significant difference between LO parton model and LO k_T-factorization
Charm measurements at LHC

Hadroproduction of heavy quarks

Results vs. experimental data

Open charm via Double Parton Scattering

effects of hadronization and quark mass uncertainty
Consider \(pp \to (c\bar{c})(c\bar{c}) \) process, initiated by two hard (parton) scatterings in one proton-proton interaction.

Łuszczak, Maciuła, Szczurek, Phys. Rev. D 85, 094034 (2012)
in the analogy to frequently considered mechanisms of double gauge boson production or double Drell-Yan annihilation.
Formalism of theoretical DPS modelling

The double-parton scattering formalism assumes two single-parton scatterings so in a simple probabilistic picture the cross section for DPS can be written as:

\[
\sigma^{DPS}(pp \to c\bar{c}c\bar{c}X) = \frac{1}{2\sigma_{\text{eff}}} \sigma^{SPS}(pp \to c\bar{c}X_1) \cdot \sigma^{SPS}(pp \to c\bar{c}X_2)
\]

The simple formula above can be generalized to include differential distributions:

\[
\frac{d\sigma}{dy_1dy_2d^2p_{1t}dy_3dy_4d^2p_{2t}} = \frac{1}{2\sigma_{\text{eff}}} \cdot \frac{d\sigma}{dy_1dy_2d^2p_{1t}} \cdot \frac{d\sigma}{dy_3dy_4d^2p_{2t}}
\]

- two subprocesses are not correlated and do not interfere
- \(\sigma_{\text{eff}} = 14.5 \pm 1.7^{+1.7}_{-2.3} \text{ mb} \Rightarrow \text{Tevatron, CDF, F.Abe et al., PRD 56 3811 (1997)}

- extra limitations for longitudinal momentum fractions of gluons:
 \(x_1 + x_2 < 1\) and \(x_1' + x_2' < 1\)
 cause the "second" emission must take into account that some momentum was used up in the "first" parton collision
double Parton Distribution Functions

A more general formula for the cross section in terms of so-called double-parton distributions (dPDFs):

\[d\sigma^{DPS} = \frac{1}{2\sigma_{\text{eff}}} \cdot F_{gg}(x_1, x_2, \mu_1^2, \mu_2^2) \cdot F_{gg}(x'_1x'_2, \mu_1^2, \mu_2^2) \times \\
\sigma_{gg\to c\bar{c}}(x_1, x'_1, \mu_1^2)\sigma_{gg\to c\bar{c}}(x_2, x'_2, \mu_2^2) \, dx_1 \, dx_2 \, dx'_1 \, dx'_2 \]

factorized form with standard PDFs

- \(F_{gg}(x_1, x_2, b) = g(x_1)g(x_2)F(b) \), where \(F(b) \) is an overlap of the matter distribution in the transverse plane
- \(1/\sigma_{\text{eff}} = \int d^2bF^2(b) \Rightarrow \) universal factor (energy and process independent)

dPDFs from special evolution equations

- equal scales: \(\mu_1 = \mu_2 = \mu \) (Snigireev)
- unequal scales: \(\mu_1 \neq \mu_2 \) (Ceccioperi, Gaunt-Stirling)
LO collinear predictions for DPS charm production

- DPS mechanism gives a large contributions to inclusive charm production
- Dangerous approaching of the Donnachie-Landschoff parametrization of the total cross section \(\Rightarrow \) inclusion of unitarity effect and/or saturation of parton distributions may be necessary
inclusive double-scattering distributions in y and p_\perp are identical as for single-scattering

no difference between both prescriptions in the case of charm production
Invariant mass and rapidity difference spectra

- **DPS dominates** at large rapidity difference and/or large invariant masses

- unique feature of DPS: possible production of \(cc\) pairs \(\Rightarrow\) experimental signature \(D^0 D^0, D^0 D^+, D^+ D^+, D^+ D_s\)
Very recent news from CERN! LHCb-PAPER-2012-003 (V. Belayev)

\[
\begin{align*}
\frac{\sigma_{D^0D^0}}{\sigma_{D^0D^-}} & \sim 11\%, \\
\frac{\sigma_{D^0D^+}}{\sigma_{D^0D^-}} & \sim 13\%, \\
\frac{\sigma_{D^0D_s^+}}{\sigma_{D^0D_s^-}} & \sim 16\%, \\
\frac{\sigma_{D_s^+D^+}}{\sigma_{D_s^+D^-}} & \sim 12\%, \\
\frac{\sigma_{D_s^+D_s^+}}{\sigma_{D_s^+D_s^-}} & \sim 10\%.
\end{align*}
\]

SPS mechanism of $c\bar{c}c\bar{c}$ production can also contribute!

see Schafer, Szczurek, Phys. Rev. D 85, 094029 (2012)
D mesons from DPS mechanism (LO parton model)

TABLE I. The DPS cross section ($\sigma_{pp} + \sigma_{ppp}$)/2 in mb for the production of one meson in $\eta_1 \in (-2.5, 2.0)$ and the second meson in $\eta_2 \in (2.0, 2.5)$ (ATLAS, CMS), second column, and for $\eta_1, \eta_2 \in (-0.9, 0.9)$ (ALICE), third column, for different lower cuts on both mesons transverse momenta.

$p_{T,\text{min}}$ (GeV)	ATLAS or CMS	ALICE	ALICE $p_{T,\text{DpDp}} > 4$ GeV
0.0	2.59×10^{-3}	0.66×10^{-2}	0.58×10^{-3}
1.0	1.47×10^{-4}	2.48×10^{-3}	0.41×10^{-3}
2.0	0.32×10^{-5}	2.93×10^{-4}	1.54×10^{-4}
3.0	2.55×10^{-7}	0.35×10^{-4}	2.46×10^{-5}
4.0	2.33×10^{-8}	0.62×10^{-5}	0.49×10^{-5}
Summary

- good description of the transverse momentum distributions of open charm mesons measured by ALICE and LHCb

- huge contribution to charm production cross section from Double-Parton-Scattering → application of the k_t-factorization approach in our next step

- waiting for ATLAS data from large rapidity interval $|\eta_D| < 2.5$ (5 units, large rapidity difference)

Thank You for attention!