EQUIPARTITION OF ENERGY FOR NONAUTONOMOUS WAVE EQUATIONS

GISELE RUIZ GOLDSTEIN
Department of Mathematical Sciences
The University of Memphis
Dunn Hall, 337
Memphis, TN 38152, USA

JEROME A. GOLDSTEIN
Department of Mathematical Sciences
The University of Memphis
Dunn Hall, 343
Memphis, TN 38152, USA

FABIANA TRAVESSINI DE CEZARO
Department of Mathematics
Statistics and Physics, Federal University of Rio Grande
Av. Italia, Km 08, Campus Carreiros
Rio Grande, RS 96203-900, Brazil

Abstract. Consider wave equations of the form

\[u''(t) + A^2 u(t) = 0 \]

with \(A \) an injective selfadjoint operator on a complex Hilbert space \(H \). The kinetic, potential, and total energies of a solution \(u \) are

\[K(t) = \|u'(t)\|^2, \quad P(t) = \|Au(t)\|^2, \quad E(t) = K(t) + P(t). \]

Finite energy solutions are those mild solutions for which \(E(t) \) is finite. For such solutions \(E(t) = E(0) \), that is, energy is conserved, and asymptotic equipartition of energy

\[\lim_{t \to \pm \infty} K(t) = \lim_{t \to \pm \infty} P(t) = \frac{E(0)}{2} \]

holds for all finite energy mild solutions iff \(e^{itA} \to 0 \) in the weak operator topology. In this paper we present the first extension of this result to the case where \(A \) is time dependent.

1. Introduction. Let \(A = A^* \geq 0 \) be an injective selfadjoint operator on a complex Hilbert space \(H \). The corresponding initial value problem for the wave equation is

\[u''(t) + A^2 u(t) = 0, \quad u(0) = f, \quad u'(0) = g; \]
and let \(u \in C^2(\mathbb{R}, \mathcal{H}) \) be a strong solution. Let

\[
U = \begin{pmatrix} Au \\ u' \end{pmatrix}.
\]

Then

\[
U'(t) = \begin{pmatrix} 0 & A \\ -A & 0 \end{pmatrix} U(t) = M U(t)
\]

where

\[
M = \begin{pmatrix} 0 & A \\ -A & 0 \end{pmatrix} = A \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix} = -M^*.
\]

on \(\mathcal{H}^2 = \mathcal{H} \oplus \mathcal{H} \). The functional calculus for selfadjoint operators says (cf. [4])

\[
e^{tM} = \begin{pmatrix} \cos(tA) & \sin(tA) \\ -\sin(tA) & \cos(tA) \end{pmatrix}.
\]

This can be verified by differentiating both sides with respect to \(t \). It is easily seen that \(\{e^{tM} : t \in \mathbb{R}\} \) is a \((C_0)\) unitary group on \(\mathcal{H}^2 \), and thus the total energy

\[
E(t) = K(t) + P(t)
\]

\[
:= \|u'(t)\|^2 + \|Au(t)\|^2
\]

(2)

is conserved for all strong solutions \(u \in C^2(\mathbb{R}, \mathcal{H}) \) which correspond to \(f \in \mathcal{D}(A^2) \) and \(g \in \mathcal{D}(A) \) in [1]. The same is true for all mild solutions which correspond to \(\{e^{tM} \begin{pmatrix} Af \\ g \end{pmatrix} : t \in \mathbb{R}\} \) for \(f \in \mathcal{D}(A) \) and \(g \in \mathcal{H} \). Here \(K \) [resp. \(P \)] represents the kinetic [resp. potential] energy, and \(E(t) = E(0) \) is the total energy which is conserved.

Equi-partition of energy, i.e.

\[
\lim_{t \to \pm \infty} K(t) = \lim_{t \to \pm \infty} P(t) = \frac{E}{2}
\]

(with \(E = E(0) \)) for all finite energy mild solutions holds iff

\[
\langle e^{itA} h, k \rangle \to 0
\]

as \(t \to \pm \infty \) for all \(h, k \in \mathcal{H} \). A sufficient condition for this condition to hold is that \(A \) is spectrally absolutely continuous (SAC). To define this, write

\[
A = \int_{(0, \infty)} \lambda dE(\lambda)
\]

by the spectral theorem using a resolution of the identity. Then \(A \) is SAC means the bounded monotone function

\[
\lambda \to \|E(\lambda)f\|^2
\]

is absolutely continuous on \([0, \infty]\) (with limits 0 at 0 and \(\|f\|^2 \) at \(\infty \)) for all \(f \in \mathcal{H} \). This was proved in [2], 1969, [3], 1970.

Our goal in this paper is to extend this result to the context of replacing \(A \) by \(A(t) \), a family of time dependent commuting nonnegative injective selfadjoint operators on \(\mathcal{H} \), such that the new result reduces to the old result when \(A \) does not depend on \(t \) and is SAC. This will be the first asymptotic equipartition of energy result for a nonautonomous system generalizing [1].

The outline of the paper is as follows. In Section 2 we review the proof of asymptotic equipartition of energy for [1]. In Sections 3 and 4 we formulate the problem
and prove the wellposedness theorem. In Section 5 we establish the equipartition of energy results. Section 6 contains an example.

2. The autonomous wave equation. The unique mild solution to \([1]\) can be written as

\[u(t) = e^{itA}F + e^{-itA}G \]

where

\[
\begin{align*}
F, G &\in \mathcal{D}(A), f \in \mathcal{D}(A), g \in \mathcal{H} \\
AF &= \frac{1}{2}(Af - ig) \\
AG &= \frac{1}{2}(Af + ig) \\
f &= F + G \\
g &= i(AF - AG).
\end{align*}
\]

Then

\[
\begin{align*}
K(t) &= \|u'(t)\|^2 = \|e^{itA}AF - e^{-itA}AG\|^2, \\
P(t) &= \|Au(t)\|^2 = \|e^{itA}AF + e^{-itA}AG\|^2.
\end{align*}
\]

The law of cosines together with unitarity of \(e^{itA}\) implies

\[E(t) = K(t) + P(t) = 2(\|AF\|^2 + \|AG\|^2) = E(0), \]

and

\[K(t) - P(t) = -4Re \langle e^{itA}AF, AG \rangle. \]

Thus, energy is conserved, and energy is asymptotically equipartitioned iff

\[K(t) - P(t) \rightarrow 0 \text{ as } t \rightarrow \pm\infty \]

for all \(F, G \in \mathcal{D}(A)\) iff

\[0 \leftarrow \langle e^{itA}h, h \rangle = \int_0^\infty e^{it\lambda}d(\|E(\lambda)h\|^2) \]

for all \(h \in \mathcal{H}\) as \(t \rightarrow \pm\infty\). In the SAC case, the Riemman-Lebesgue Lemma gives the conclusion.

The factorization

\[0 = \left(\frac{d^2}{dt^2} - A^2 \right) u = \left(\frac{d}{dt} - A \right) \left(\frac{d}{dt} + A \right) u \]

led to the d’Alembert formula

\[u(t) = e^{itA}F + e^{-itA}G \]

since

\[\mathcal{N}\left[\left(\frac{d}{dt} - A \right) \left(\frac{d}{dt} + A \right) \right] = \mathcal{N}\left(\frac{d}{dt} - A \right) + \mathcal{N}\left(\frac{d}{dt} + A \right). \]

This uses the fact the space-time operators in parenthesis are injective and commute. Here \(\mathcal{N}\) denotes the null space. Thus, \(\{e^{\pm itA}h : t \in \mathbb{R}\}\) gives a general mild solution of

\[u' = \pm iAu \]

with \(u(0) = h\), as \(h\) varies. Care must be used in finding a nonautonomous version of the preceding.
3. The nonautonomous framework. Let $B = B^*$ on \mathcal{H}. Then $u(t) = e^{itB}h$ is the unique mild solution of

$$u' - iBu = 0$$

$$u(0) = h$$

as $h \in \mathcal{H}$ varies. Moreover, by the Spectral Theorem,

$$B = U_o M_b U_o^{-1}$$

where $U_o : \mathcal{H} \rightarrow L^2(\Omega, \Sigma, \mu)$ is unitary from \mathcal{H} to some concrete complex L^2 space, $b : \Omega \rightarrow \mathbb{R}$ is Σ-measurable and

$$(M_b g)(w) = b(w)g(w)$$

for $g \in M_b = \{b \in L^2 = L^2(\Omega, \Sigma, \mu) : gb \in L^2\}$. If $\{B(t) : t \in \mathbb{R}\}$ is a family of commuting selfadjoint operators on \mathcal{H}, then

$$B(t) = U_o M_{b(t)} U_o^{-1}$$

for U_o, L^2 as above and for $b(t) : \Omega \rightarrow \mathbb{R}, \Sigma$-measurable for all $t \in \mathbb{R}$. For simplicity, we will restrict to nonnegative time, $t \geq 0$.

Next we state our first assumption.

HYP 1: Let $\{A(t) : t \in \mathbb{R}^+ = [0, \infty)\}$ be nonnegative selfadjoint operators on \mathcal{H} satisfying the condition

$$D_o = \mathcal{D}(A(t)), \quad D_1 = \mathcal{D}(A^2(t))$$

are both independent of t. Moreover, the commutator $[A(t), A(s)] = A(t)A(s) - A(s)A(t) = 0$ in the sense that the bounded operators $e^{itA(t)}$ and $e^{isA(s)}$ commute for all $t, s, \tau, \sigma \in \mathbb{R}^+$. Further, assume

$$A(\cdot)f \in C^1(\mathbb{R}^+, \mathcal{H})$$

for all $f \in D_o$, and there exists a bounded function $k_1 \in C([0, \infty), \mathbb{R})$ with $k_1 \geq \epsilon > 0$ such that

$$\|A(t)f\| \leq k_1(t)\|A(0)f\|$$

(5)

for all $f \in D_o$ and all $t \in \mathbb{R}^+$.

Note that (5) implies that $0 \notin \rho(A(t))$ holds either for all $t \in \mathbb{R}^+$ or for no $t \in \mathbb{R}^+$. In the former case

$$\|f\|_t := \|A(t)f\|$$

is equivalent to the graph norm of $A(t)$. Let

$$B(t) := \int_0^t A(s)ds.$$

(6)

If $A(t) = U_o M_{a(t)} U_o^{-1}$, then

$$B(t) = U_o M_{\int_0^t a(s)ds} U_o^{-1}.$$

(7)

We may view $a(t) : \Omega \rightarrow (0, \infty)$ as $a(t, \omega)$ with $a(\cdot, \cdot) : \mathbb{R}^+ \times \Omega \rightarrow (0, \infty)$. By (HYP1) and old theorem of J. L. Doob [1], without loss of generality we may assume $a(\cdot, \cdot)$ is jointly measurable on $\mathbb{R}^+ \times \Omega$ in the (Borel sets $\times \Sigma$) sense. Note that here each $a(t, \cdot)$ is defined on $\Omega \setminus N_t$ where $\mu(\Omega / N_t) = 0$ for each $t \in \mathbb{R}^+$. There are uncountably many null sets N_t, but Doob’s theorem says this is not a problem; they
can be chosen so that $a(t, \omega)$ is jointly measurable and certain integrals over $\mathbb{R}^+ \times \Omega$ will exist.

Another form of the Spectral Theorem says that, due to the commuting hypothesis in (HYP1), there is a function

$$ F : \mathbb{R}^+ \times (0, \infty) \rightarrow (0, \infty) $$

such that for each $t \in \mathbb{R}^+$,

$$ F(t, A(0)) = A(t); $$

moreover $F(t, x)$ is an C^1 function of $t \in \mathbb{R}^+$ for each fixed x. Later we shall assume more regularity on $F(t, x)$ as a function on $\mathbb{R}^+ \times (0, \infty)$.

Now using (6)-(7) we have

$$ B(t) = \int_0^t A(s)ds = U_0M_P(t)U_0^{-1} $$

where

$$ P(t) = \int_0^t a(s)ds. $$

Also, by (8) and (9), for $t \in \mathbb{R}^+$,

$$ B(t) = G(t, A(0)) $$

where

$$ G(t, x) = \int_0^t F(s, x)ds. $$

Now let $F_1, F_2 \in \mathcal{D}_1$ and $t \geq 0$. Define

$$ w(t) = e^{iB(t)}F_1 + e^{-iB(t)}F_2. $$

Suppressing the argument t, we get

$$ w' = e^{iB}iAF_1 - e^{-iB}iAF_2 $$

and

$$ w'' = e^{iB}(-A^2F_1 + iA'F_1) + e^{-iB}(-A^2F_2 - iA'F_2). $$

Let

$$ \tilde{w}(t) = e^{iB(t)}F_1 - e^{-iB(t)}F_2. $$

A similar calculation gives

$$ \tilde{w}'' = e^{iB}(-A^2F_1 + iA'F_1) - e^{-iB}(-A^2F_2 - iA'F_2). $$

Combining (13) and (14) yields

$$ \begin{pmatrix} w \\ \tilde{w} \end{pmatrix}'' = -A^2 \begin{pmatrix} w \\ \tilde{w} \end{pmatrix} + iA' \begin{pmatrix} w \\ \tilde{w} \end{pmatrix} = \begin{pmatrix} -A^2 & iA' \\ iA' & -A^2 \end{pmatrix} \begin{pmatrix} w \\ \tilde{w} \end{pmatrix}. $$

We can rewrite this as

$$ W'' = QW $$

where $W = \begin{pmatrix} w \\ \tilde{w} \end{pmatrix}$ and

$$ Q(t) = -M^2 + iA'(t) \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}. $$
where \(-M^2\) is identified with \(-M(t)^2\left(\begin{array}{cc}0 & I \\ I & 0\end{array}\right)\) for convenience.

Several conclusions follow. In the autonomous case, \(Q = -M^2\left(\begin{array}{cc}0 & I \\ I & 0\end{array}\right)\), and each component \(Au, u'\) of \(U = \left(\begin{array}{c}Au \\ u'\end{array}\right)\) satisfies the same wave equation \(v''+M^2v = v''+A^2v = 0\). But in the nonautonomous case, the two components \(w, \tilde{w}\) of \(W\) satisfy different equations, namely
\[
\begin{align*}
 w'' + A^2w &= iA'\tilde{w} \\
 \tilde{w}'' + A^2\tilde{w} &= iA'w.
\end{align*}
\]
Still, this reduces to a single \(2 \times 2\) system as given by (15) for \(W = \left(\begin{array}{c}w \\ \tilde{w}\end{array}\right)\). In other words,
\[
z_{\pm}(t) = e^{\pm iB(t)}f_{\pm}
\]
for \(f_{\pm} \in \mathcal{D}_1\) satisfies
\[
z_{\pm}'' + A^2z_{\pm} = \pm iA'z_{\pm}
\]
and these are different second order single equations. Furthermore, \(Q(t)\) (see (15)) is normal but not selfadjoint because the imaginary part, \(iA'\left(\begin{array}{cc}0 & I \\ I & 0\end{array}\right)\), is nonzero.

So the relevant second order equation here that is wellposed is a second order system in \(\mathcal{H}\) or, equivalently, a second order equation in \(\mathcal{H}^2\). For this system, we now establish wellposedness. Asymptotic equipartition of energy can be considered here, even though the equation does not conserve energy.

4. **The nonautonomous system.** We consider the system
\[
W''(t) = Q(t)W(t)
\]
in \(\mathcal{H}^2\) where
\[
Q(t) = -M^2 + iM'(t)
\]
\[
= -M^2 + iA'(t)\left(\begin{array}{cc}0 & I \\ I & 0\end{array}\right)
\]
\[
= \left(\begin{array}{cc}-M^2 & iA' \\ iA' & -M^2\end{array}\right)(t)
\]
where as before \(-M^2\) is identified with \(-M(t)^2\left(\begin{array}{cc}I & 0 \\ 0 & I\end{array}\right)\) for convenience. As mentioned before, in the autonomous case, \(A' = 0\), and both \(w\) and \(\tilde{w}\) satisfy
\[
w'' + A^2w = 0.
\]
But when \(A\) depends in a nontrivial way on \(t\), neither \(w\) nor \(\tilde{w}\) satisfy a single second order equation. Still, the pair
\[
W = \left(\begin{array}{c}w \\ \tilde{w}\end{array}\right)
\]
does satisfy a second order equation governed by the evolution operator family
\{Z(t, s) : t \geq s \geq 0\} which can be described as follows. Now \(W'' = QW\) implies

\[
\hat{W}'' = \left(\begin{array}{c} W \\ W' \end{array} \right) = \left(\begin{array}{cc} 0 & I \\ Q & 0 \end{array} \right) \left(\begin{array}{c} W \\ W' \end{array} \right) =: \hat{Q} \left(\begin{array}{c} W \\ W' \end{array} \right) = \hat{Q}\hat{W}
\]

Let

\[Z(t, s) = \int_s^t \hat{Q}(r)dr.\]

Then

\[\hat{W}(t) = Z(t, s)\hat{W}(s)\]

for \(t \geq s \geq 0\) and \(Z(t, s)\) is not unitary because \(\hat{Q}(t)\) is normal but not skewadjoint

for each \(t \in \mathbb{R}^+\).

Theorem 4.1 (Wellposedness Theorem). Let (HYP1) hold. Then the problem

\[
\frac{d^2W}{dt^2}(t) = Q(t)W(t) \\
W(0) = H_1, \quad W'(0) = H_2
\]

with \(H_1, H_2 \in \mathcal{D}_1^2\) has a unique strong solution in \(C^2(\mathbb{R}^+, \mathcal{H}^2)\) of the form

\[W(t) = \left(\begin{array}{c} w(t) \\ \tilde{w}(t) \end{array} \right)\]

where

\[
w(t) = e^{iB(t)}F_1 + e^{-iB(t)}F_2, \quad (18)
\]

\[
\tilde{w}(t) = e^{iB(t)}F_1 - e^{-iB(t)}F_2, \quad (19)
\]

\[H_1 = \left(\begin{array}{c} F_1 + F_2 \\ F_1 - F_2 \end{array} \right), \quad H_2 = iA(0) \left(\begin{array}{c} F_1 - F_2 \\ F_1 + F_2 \end{array} \right)\]

and each component of \(\frac{1}{2}(A(0)-1)H_2 + H_1\) is \(F_1\), and each component of \(\frac{1}{2}(A(0)^{-1}H_2 - H_1)\) is \(F_2\).

Proof. The proof is a straightforward consequence of (HYP1), the previous calculations, and some elementary algebra showing the relationship between \((H_1, H_2)\) and \((F_1, F_2)\).

The point is that solutions are built from linear combinations of

\[e^{\pm iB(t)}F_\pm,\]

which is the spirit of a nonautonomous d’Alembert’s formula. This is a new feature of our first result.

\[\square\]

5. **Asymptotic equipartition of energy.** Let

\[W = \left(\begin{array}{c} w \\ \tilde{w} \end{array} \right) \in C^1(\mathbb{R}^+, \mathcal{H}^2)\]

be as in the preceding theorem. We want to obtain asymptotic equipartition of energy. Define the total kinetic energy of the system as

\[K(t) = \|W'(t)\|^2 \quad (20)\]

and the total potential energy as

\[P(t) = \|A(t)W(t)\|^2. \quad (21)\]
It is convenient to consider refinements of these, namely
\[
E_1(t) = \|w(t)\|^2, \quad E_2(t) = \|\dot{w}(t)\|^2, \\
E_3(t) = \|w'(t)\|^2, \quad E_4(t) = \|\dot{w}'(t)\|^2, \\
E_5(t) = \|A(t)w(t)\|^2, \quad E_6(t) = \|A(t)\dot{w}(t)\|^2.
\] (22)

Using (18), (19) and the Law of Cosines, we get
\[
E_1(t) = \|F_1\|^2 + \|F_2\|^2 + 2\text{Re} \left< e^{2iB(t)}F_1, F_2 \right>, \\
E_2(t) = \|F_1\|^2 + \|F_2\|^2 - 2\text{Re} \left< e^{2iB(t)}F_1, F_2 \right>, \\
E_3(t) = \|A(t)F_1\|^2 + \|A(t)F_2\|^2 - 2\text{Re} \left< e^{2iB(t)}A(t)F_1, A(t)F_2 \right>, \\
E_4(t) = \|A(t)F_1\|^2 + \|A(t)F_2\|^2 + 2\text{Re} \left< e^{2iB(t)}A(t)F_1, A(t)F_2 \right>, \\
E_5(t) = E_4(t), \quad E_6(t) = E_3(t).
\]

Moreover, we see that
\[
E_1(t) + E_2(t) = 2 \left(\|F_1\|^2 + \|F_2\|^2 \right), \\
E_3(t) + E_4(t) = E_5(t) + E_6(t) = 2 \left(\|A(t)F_1\|^2 + \|A(t)F_2\|^2 \right)
\]

Thus, \(E_3(t) + E_4(t)\) is conserved, while \(E_3(t) + E_4(t) = E_5(t) + E_6(t)\) are not, but will be “conserved at infinity” if \(A(t) \rightarrow A(\infty)\) as \(t \rightarrow \infty\) in a suitable sense.

We now make this notion more precise.

HYP 2 Note that \(k_1\) of (HYP1) satisfies

\[
0 < \varepsilon_1 \leq k_1(t) \leq \frac{1}{\varepsilon_1}
\]

for some \(\varepsilon_1 > 0\) and all \(t \in \mathbb{R}^+\). Assume that for every \(f \in D_o\)

\[
A'()f \in L^1(\mathbb{R}^+, \mathcal{H}).
\]

It follows that

\[
A(t)f = \int_0^t A'(s)f \, ds + A(0)f \rightarrow \int_0^\infty A'(s)f \, ds + A(0)f =: A(\infty)f
\]

for all \(f \in D_o\), and we further assume

\[
\int_0^\infty \|A(t)f - A(\infty)f\|dt < \infty
\]

for all \(f \in D_o\), and that \(A(\infty)\) (which is symmetric) is selfadjoint and (HYP1) holds for \(\{A(t) : t \in [0, \infty]\}\) and \(k_1 \in C([0, \infty], (0, \infty))\).

Recall that if \(a(\tau) = b(\tau) = 1\) and \(t > \tau\), then

\[
a(t) - b(t) = \int_\tau^t \frac{d}{ds}(a(s)b(t + \tau - s)) \, ds = \int_\tau^t (a'(s)b(t + \tau - s) - a(s)b'(t + \tau - s)) \, ds
\]
whence for $f \in D_o, t > \tau$,
\[\|e^{\pm i(B(t) - B(\tau))} f - e^{\pm i(t - \tau) A(\infty)} f\| = \left\| \int_{\tau}^{t} e^{\pm i(B(s) - B(\tau))}(A(t + \tau - s) - A(\infty))e^{\pm isA(\infty)} f \, ds \right\| \]
\[\leq \int_{\tau}^{t} \|A(s)f - A(\infty)f\| \, ds \]
by the contractivity and commutative hypotheses. Thus, using (HYP2), we have
\[\|e^{\pm i(B(t) - B(\tau))} f - e^{\pm i(t - \tau) A(\infty)} f\| \rightarrow 0 \]
as $\tau \rightarrow \infty$ with $t > \tau$ arbitrary.

Returning to (20), (21), we see that
\[K(t) = E_3(t) + E_4(t) = 2(\|A(t)F_1\|^2 + \|A(t)F_2\|^2) \]
\[\rightarrow 2(\|A(\infty)F_1\|^2 + \|A(\infty)F_2\|^2) \]
as $t \rightarrow \infty$. Similarly,
\[P(t) = E_5(t) + E_6(t) = K(t), \]
so $P(t)$ converges to the expression in (24).

The more interesting “partial energies” are $E_j(t), j = 1, 2, 3, 4$ (and 5, 6 but $E_5 = E_4$ and $E_6 = E_3$). By [2] the expressions
\[\text{Re} \left< e^{2itB(t)} L_1, L_2 \right> \]
all tend to 0 as $t \rightarrow \infty$ for all L_1, L_2 iff (since $B(t) = t \left(\frac{1}{t} \right) B(t)$ and $\left(\frac{1}{t} \right) B(t)f \rightarrow A(\infty)f$, for every $f \in D_o$ by (HYP2))
\[\text{Re} \left< e^{itA(\infty)} L_1, L_2 \right> \rightarrow 0 \]
as $t \rightarrow \infty$ for all $L_1, L_2 \in \mathcal{H}$ iff
\[\text{Re} \left< e^{itA(\infty)} L, L \right> \rightarrow 0 \]
as $t \rightarrow \infty$ for all $L \in \mathcal{H}$. The Riemann Lebesgue condition holds provided $A(\infty)$ is spectrally absolutely continuous (SAC). More specifically, by yet another form of the Spectral Theorem,
\[A(\infty) = \int_{(0, \infty)} \lambda dE(\lambda) \]
and
\[\left< e^{itA(\infty)} L, L \right> = \int_{0}^{\infty} e^{it\lambda} d(\|E(\lambda)L\|^2) \]
\[= \int_{0}^{\infty} e^{it\lambda} g_L(\lambda) d\lambda \rightarrow 0 \]
as $t \rightarrow \infty$ when $d(\|E(\lambda)L\|^2) = g_L(\lambda) d\lambda$ with $g_L \in L^1(0, \infty)$.

We require one more hypothesis before we state our main theorem.

HYP3 Recall from (HYP1) and (HYP2) that
\[A(t) = F(t, A(0)) \]
for $0 \leq t \leq \infty$ for a function $F = F(t, x)$,

$$F : [0, \infty] \times (0, \infty) \rightarrow (0, \infty).$$

We assume $F \in C^1([0, \infty] \times (0, \infty))$.

We now state our main result.

Theorem 5.1 (Asymptotic Equipartition of Energy). Assume (HYP1), (HYP2) and (HYP3). Then $A(t)$ is spectrally absolutely continuous for $0 \leq t \leq \infty$ provided $A(\infty)$ is spectrally absolutely continuous, which we assume. Then for all finite energy solutions, as $t \rightarrow \infty$,

$$E_i(t) \rightarrow \|F_i\|^2 + \|F_2\|^2 \text{ for } i = 1, 2$$

and

$$E_j(t) \rightarrow \|A(\infty)F_1\|^2 + \|A(\infty)F_2\|^2 \text{ for } j = 3, 4, 5, 6.$$

In fact, $A(\infty)$ will automatically be SAC, provided that $F(\infty, x)$, as a function of x, is piecewise strictly monotone. This follows from Lemma 4.1 in [5].

6. **An example.** Let

$$A(t) = \sum_{j=1}^{n} a_j(t) \frac{\partial^2}{\partial x_j^2} + \sum_{j=1}^{n} ib_j(t) \frac{\partial}{\partial x_j}$$

on $\mathcal{H} = L^2(\mathbb{R}^n)$, where $0 < a_j \in C^2(\mathbb{R}^\tau)$ with $a_j, a_j', a_j'' \in C([0, \infty])$, and $b_j \in C^2(\mathbb{R}^\tau)$ with $b_j, b_j', b_j'' \in C([0, \infty])$ for $j = 1, \ldots, n$. Notice that (HYP1), (HYP2) and (HYP3) all hold if in addition,

$$a_j', a_j'', b_j', b_j'' \in L^1(\mathbb{R}^\tau).$$

We observe that

$$A'(t) = \sum_{j=1}^{n} \left(a_j'(t) \frac{\partial^2}{\partial x_j^2} + ib_j'(t) \frac{\partial}{\partial x_j} \right)$$

Acknowledgments. Gisele and Jerry Goldstein thank Mustapha Mokhtar-Kharroubi for his wonderful hospitality at the University of Besancon, where this paper was completed. Fabiana would like to thank CAPES - grant BEX 12220-13-2 - for supporting her visit to The University of Memphis and thanks to the two first authors for their hospitality.

REFERENCES

[1] J. L. Doob, *Stochastic Processes*, Reprint of the 1953 original. Wiley Classics Library. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1990.

[2] J. A. Goldstein, *An asymptotic property of solutions of wave equations*, Proc. Amer. Math. Soc., 23 (1969), 359–363.

[3] J. A. Goldstein, *An asymptotic property of solutions of wave equations, II*, J. Math. Anal. Appl., 32 (1970), 392–399.

[4] J. A. Goldstein, *Semigroups of Linear Operators and Applications* 1st edition, Oxford University Press, New York and Oxford, 1985.
[5] J. A. Goldstein and G. Reyes, Equipartition of operator weighted energies in damped wave equations, *Asymptotic Anal.*, 81 (2013), 171–187.

Received March 2015; revised September 2015.

E-mail address: jgoldste@memphis.edu
E-mail address: ggoldste@memphis.edu
E-mail address: fabianacezaro@furg.br