Mitochondria are involved in crucial homeostatic processes in the cell: the production of adenosine triphosphate and reactive oxygen species, and the release of pro-apoptotic molecules. Thus, cell survival depends on the maintenance of proper mitochondrial function by mitochondrial quality control. The most important mitochondrial quality control mechanisms are mitochondrial unfolded protein response, mitophagy, biogenesis, and fusion-fission dynamics. This review deals with mitochondrial quality control in heart diseases, especially myocardial infarction and heart failure. Some previous studies have demonstrated that the activation of mitochondrial quality control mechanisms may be beneficial for the heart, while others have shown that it may lead to heart damage. Our aim was to describe the mechanisms by which mitochondrial quality control contributes to heart protection or damage and to provide evidence that may resolve the seemingly contradictory results from the previous studies.
Mitochondria are involved in adenosine triphosphate (ATP) generation, biosynthetic processes and redox homeostasis. However, dysfunctional mitochondria can become a source of endogenous noxious stimuli that can severely damage the cells, such as the overproduction of reactive oxygen species (ROS), cellular calcium overload, opening of mitochondrial permeability transition pore (mPTP), and release of pro-apoptotic signals (1,2). Thus, it is of vital importance to maintain mitochondrial function by (intra)mitochondrial quality control (MQC) mechanisms. MQC either repairs the damaged mitochondria by restoring or destroying impaired proteins through the activation of mitochondrial unfolded protein response (UPRmt), or removes mitochondria damaged beyond repair by mitophagy (3). Mitophagy is closely balanced with mitochondrial biogenesis to maintain total mitochondrial mass. Rapid changes in fusion and fission of mitochondria are associated with ROS generation and apoptosis, but are also interconnected with other MQC mechanisms (4).

Cardiovascular diseases, especially acute myocardial infarction (MI) and chronic heart failure (HF), account for numerous deaths and severely undermine the quality of life (5,6). A crucial etiological factor in these diseases is mitochondrial dysfunction (7). The aim of this article is to review the present data on underlying mechanisms of heart disease, especially HF and MI, mediated by improper MQC functioning. While the broad scientific community recognizes MQC as a beneficial homeostatic mechanism, numerous studies demonstrate its opposite effects on cardiac diseases. Some studies report a cardioprotective role of MQC, while others show its negative effects in major heart disease. Here, we will try to provide a plausible explanation of such discrepancies. The article addresses major components of MQC in heart disease, including UPRmt, mitophagy, mitochondrial biogenesis, and mitochondrial fusion-fission, as well as MQC in the aged heart.

BASIC MECHANISMS OF INJURY IN MYOCARDIAL INFARCTION AND HEART FAILURE

The common noxious stimuli in MI and HF are excessive ROS generation and mitochondrial calcium overload (1,2,8,9). In both diseases, ROS and mitochondrial calcium overload induce opening of the mPTP, which ultimately leads to apoptotic or necrotic cell death (1,2,10). Mitochondrial permeability transition pore opening initiates the events that lead to the release of intramitochondrial proapoptotic factors, including cytochrome c, diablo IAP-binding mitochondrial protein, HTRA serine peptidase 2 [OMI/HTRA2], apoptosis-inducing factor, and endonuclease G (11). It is believed that a less extensive mPTP opening results in apoptosis, mostly in the periphery of MI (12). More extensive mPTP opening in the center of MI leads to necrotic cell death, possibly due to severe ATP depletion and the inability to complete the energy-dependent process of apoptosis (12). A major role in the pathogenesis of heart injury is played by the substrates used for energy metabolism. For example, the use of fatty acids can enhance ROS generation and thereby damage cardiomyocytes (13).

MITOCHONDRIAL UNFOLDED PROTEIN RESPONSE

UPRmt is evolutionarily a highly conserved MQC mechanism that helps maintain normal mitochondrial function under pathological conditions (Figure 1). It can be triggered by damage to mitochondrial proteins, imbalance between mitochondrial and nuclear proteome (mitonuclear imbalance), or other stressors, such as mitochondrial depolarization. UPRmt and endoplasmic reticulum UPR share some elements, especially transcription factors such as C/EBP homologous protein (CHOP), CCAAT/enhancer-binding protein β (C/EBPβ), or eukaryotic initiation factor 2α (eIF2α) (14,15). UPRmt involves a complex machinery of signaling molecules, transcription factors, proteases (OMI/HTRA2, lon peptidase 1 [LONP1], caseinolytic mitochondrial matrix peptidase proteolytic subunit [ClpP], paraplegin, YME1 like 1 ATPase [YME1L], mitochondrial-processing peptidase [MPP], and OMA1 zinc metallopeptidase [OMA1]), antioxidants (thioredoxin 2), endonuclease G, and chaperons (mitochondrial 70kDa heat shock protein, heat shock protein family D [Hsp60] member 1, heat shock protein family E [Hsp10] member 1, and DnaJ [Hsp40] homologue, subfamily A, member 3) (16-19). The peptides obtained by mitochondrial proteases are extruded from mitochondria by HAIf transporter (ATP Binding Cassette Subfamily B Member 10 in mammals), further activating transcription factors CHOP, C/EBPβ, and activating transcription factor 4 (ATF-4) via c-Jun/AP-1 (14,15).

One of the important mechanisms that may regulate UPRmt is constitutively active YME1L. UPRmt consists of mutually-dependent activity of two antagonistic mitochondrial proteases, YME1L and OMA1. Human ATP-dependent YME1L is an orthologue of the YME1 subunit of the yeast i-AAA complex, and OMA1 is a zinc metallopeptidase. Depending on the conditions within the cell, the two proteases can cleave and inactivate each other (20). YME1L up-regulation will result in OMA1 inactivation, and vice versa. Both YME1L and OMA1 can be up-regulated by stress. Constitutively active YME1L.
Mitochondrial quality control (MQC) in heart disease. Everyday moderate stress/damage to mitochondria is repaired by MQC mechanisms (blue arrow), which prevent the occurrence of dysfunctional mitochondria that may exacerbate stress/damage. Less extensive damage is repaired by mitochondrial unfolded protein response (UPRmt), which properly folds misfolded proteins (chaperons) or cleaves them (proteases). Mitochondria that are beyond repair undergo mitophagy, which is tightly associated with mitochondrial biogenesis, serving to maintain a pool of healthy mitochondria. Mitochondrial fusion is beneficial as it reduces reactive oxygen species (ROS) generation. Mitochondrial fission promotes healthy phenotype when allowing mitophagy. Extreme stress beyond compensation by MQC systems induces mitochondrial permeability transition pore (mPTP) opening and cardiomyocytes death (solid red arrows). Less pronounced mPTP opening allows cell death by apoptosis, which is dominant in heart failure. The most extensive cell stress induces widespread mPTP opening in cardiomyocytes, which leads to necrotic cell death, a predominant mechanism in acute ischemia-reperfusion, ie, myocardial infarction. Extremely high cell stresses are linked to mitochondrial fission, which exacerbates ROS generation. Inadequate MQC system activation induces cell death even during exposure to less extensive cell stress (red dotted arrows). This includes excessive activation of either UPRmt, mitophagy, or mitochondrial fission, which cause further dysfunction of mitochondria, or insufficient activation of MQC mechanisms that do not repair/eliminate dysfunctional mitochondria.
is further activated by mitochondrial depolarization with preserved ATP levels, while OMA1, which is quiescent in non-stressed cells, is activated by mitochondrial depolarization with ATP loss (20). In addition, YME1L may also be inactivated by high oxidative stress, which promotes cell death (21). Although the majority of studies indicate a negative effect of Oma1 on mitochondrial function and cellular viability, Bohovych (22) showed that OMA1 deletion impeded the stability of respiratory chain supercomplexes and mitochondrial bioenergetics in mouse embryonic fibroblasts. In the active state, YME1L triggers UPRmt by cleaving mitochondrial proteins and creating mitonuclear protein imbalance (23). The loss of activity of YME1L impairs normal mitochondrial fusion-fission dynamic, which is associated with an increase in ROS generation and increase in sensitivity to oxidative stress. This is caused by the up-regulation of OMA1 and OMA1-induced cleavage/inactivation of pro-fusion OPA1 (24). The loss of YME1L decreases cell proliferation, diminishes resistance to apoptosis, and increases protein carbonylation (16).

The beneficial effects of UPRmt are reflected in the preservation of ATP production, attenuation of excess mitochondrial ROS emission, and prevention of release/activation of mitochondrial pro-apoptotic factors (25). UPRmt-inducing transcription factor ATF5-1 promotes the assembly of oxidative phosphorylation components during mitochondrial stress, which can preserve ATP production (26). At the same time, UPRmt proteases, such as YME1L (16) or ClpP (17), can cleave dysfunctional respiratory chain components. Thus, UPRmt promotes respiratory chain recovery and helps maintaining oxidative phosphorylation in stressed mitochondria via ATF5-1 actions. However, ClpP hyperactivation by ONC201 (imipiridone) treatment diminishes oxidative phosphorylation and induces cell death in cancer cells (17).

Mitochondrial unfolded protein response in heart disease

UPRmt is protective in chronic (27) and acute cardiac injury (18). However and seemingly contradictory, studies have also found that blocking several UPRmt elements can reduce the signs of HF of a different etiology.

One of key breakthroughs delineating the role of mitochondria in HF was a recent publication by Wai et al, who showed that cardiac-specific YME1L deletion caused HF and premature death of mice (28). An additional OMA1 deletion restored normal mitochondrial morphology and rescued the mice from HF and premature death. However, OMA1 deletion was also shown to cause developmental heart defects (22), indicating the importance of fine tuning of UPRmt effector proteases for cardiac viability. The activity of another component of UPRmt, LONP1, reduced by oxidative stress leads to the accumulation of dysfunctional respiratory chain subunits and left ventricle contractile dysfunction (29). On the other hand, LONP1 up-regulation protects cardiomyocytes from ischemia-reperfusion (I/R) injury (18). Moreover, the down-regulation of endonuclease G contributes to ROS overproduction, reduces mitochondrial DNA replication, and induces cardiac hypertrophy in rodents (19).

Conversely, there is evidence that UPRmt can be associated with harmful events in the heart. Physical exercise reduces CCAAT enhancer-binding protein β expression in mice, and its reduction is associated with neonatal cardiomyocyte proliferation and improved resistance to pressure-induced hypertrophy (14). Furthermore, excessive eIF2α activation via double-stranded RNA-dependent protein kinase (PKR) promotes cardiomyocyte apoptosis and HF (30). Parvostatin blocks UPRmt activator c-Jun, which improves left ventricular function and slows the progression of HF in mice (31). Moreover, elevated LONP1 activity is a mediator of hypoxia-induced cardiomyocyte apoptosis and its down-regulation attenuates ROS generation and protects the cells (32), while ClpP deletion increases the expression of respiratory chain subunits and reduces cardiomyopathy (33). In the aged rat heart, the elevated activity of OMI/HTRA2 protease promotes mitochondrial depolarization and apoptosis (34), and its overexpression causes apoptosis and cardiac dysfunction in transgenic mice (35). Gain-of-function mutation of paraplegin (SPG7) increases mitochondrial ROS generation and coronary artery disease risk (36). Lin et al (37) linked high HSP60 expression to proinflammatory state and cardiomyocyte damage in human HF. Elevated expression/activity of several UPRmt elements was demonstrated in humans and animals with HF, including LON and ClpP (38), CHOP (15), eIF2α (15), ATF-4 (39), and c-Jun N-terminal kinases (40).

A potential explanation for such seemingly contradictory findings is that UPRmt is cardioprotective when moderately active, while its excessive activity may be cardiotoxic. A moderate activation of UPRmt may be beneficial for removing/reparing damaged mitochondrial proteins and thereby maintaining normal mitochondrial and cardiac function. An excessive UPRmt activation could result in a massive cleavage of mitochondrial proteins, exac-
Mitophagy is crucial for heart function and development. The interruption of PINK1/MFN2/Parkin pathway in mice causes lethal cardiomyopathy by 7-8 weeks, while the surviving mice exhibit abnormal energy metabolism in the heart (43).

Similarly to UPRmt, there is a fine line between protective and deleterious effects of mitophagy in cardiomyocytes. BNIP3 is transcriptionally up-regulated in the heart by hypoxia, whereas myocardial NIX up-regulation appears to be a specific transcriptional response to pathological hypertrophy (44). Forced NIX expression in cardiomyocytes leads to progressive apoptotic cardiomyopathy and premature death (45). The ablation of BNIP3 reduces apoptosis in ischemic cardiomyocytes (46). A very similar effect in heart remodeling is observed in Nix knockout mice, which were protected from ventricular dilation, wall thinning, and systolic dysfunction following heart pressure overload (45). Conversely, Nix and Bnip3 double knockouts develop cardiomyopathy with reduced ejection fraction of the left ventricle. This indicates that both NIX and BNIP3 may play a detrimental and beneficial role in the heart, depending on the (patho)physiological context and perhaps the extent of their activity.

Hypoxia activates FUNDC1, which interacts with LC3, thereby, activating mitophagy in platelets, diminishing their activity, which ameliorates cardiac reperfusion injury (47). The reduced levels of FUNDC1 (5) and PINK1 (41) are found in human samples of HF. Conversely, other studies show an elevated expression of mitophagy markers, including Parkin and LC3-mediated formation of autophagosome (42) and BNIP3 (48), in human and animal samples of HF of different etiologies. Cardiac-specific Fundc1 knockout mice exhibit impaired cardiac function, the accumulation of elongated and dysfunctional mitochondria and a greater degree of MI-induced HF (5). Similarly, PINK1-deficient mice are more susceptible to pressure overload-induced HF (41) and I/R heart injury (49). Moreover, the stimulation of PINK1/Parkin-mediated mitophagy by AMP-activated protein kinase α2 (AMPKa2) overexpression protects from
pressure-induced HF (50). Parkin overexpression protects the heart from aging-induced dysfunction and cell senescence (51).

Mitochondrial function is unaffected in Parkin deficiency, although such mitochondria seem smaller, with a disorganized network (52). However, Parkin-deficient mice are more sensitive to I/R injury, which can be reduced by Parkin overexpression in isolated cardiac myocytes (52). Moreover, ATG5 depletion induces HF (53), while ATG7 induction may ameliorate desmin-related cardiomyopathy (54). Impaired mitochondrial fusion-fission balance (55) and AMPKα2 (50,56) may lead to cardiomyopathy and/or cardiomyocyte necrosis in part by disrupting mitophagy. Pharmacological and non-pharmacological mitophagy inducers, such as rapamycin, mainly reduce cardiac I/R injury or pathological cardiac remodeling and HF (57).

Overall, similarly to UPRmt, studies have showed positive and negative effects of mitophagy in heart disease, which could be related to the extent of mitophagy activation.

MITOCHONDRIAL BIOGENESIS

Mitochondrial biogenesis is described in detail in the review by Ploumi et al (58). In brief, mitochondrial biogenesis is driven to a lesser extent by mitochondrial DNA (mtDNA) and to a greater extent by nuclear DNA that harbors essential regulatory processes. The key factors of mtDNA replication include mitochondrial DNA polymerase γ (POLG) and twinkle (resembles helicase) (59,60), POLG, mitochondrial transcription factor A (TFAM), and adenine nucleotide translocase (ANT) are important for mtDNA maintenance and repair (61-63). Mitochondrial DNA transcription elongation factor defines whether replication or transcription takes place. The transcription initiation complex consists of TFAM, mitochondrial DNA-directed RNA polymerase, and mitochondrial dimethyladenosine transferase 2 enzyme (58). These transcription factors and coactivators regulate other processes, such as respiratory chain assembly or fatty acid oxidation, and their impairment can affect cardiac function in multiple ways.

Nuclear respiratory factors 1 and 2 (NRF1 and NRF2) are transcription factors that regulate the expression of numerous genes involved in mitochondrial assembly (64,65). NRF2 is negatively regulated by cytoplasmic protein KEAP1, which marks it for degradation by ubiquitination (58). The expression of genes involved in mitochondrial metabolism is controlled by estrogen related receptors (ERR)α and ERRγ, whereby ERRα activates peroxisome proliferator activated receptor (PPAR)α and up-regulates NRF1 (66-68). The central role in the regulation of mitochondrial biogenesis belongs to PGC-1α. It is a transcription coactivator of PPARα, PPARβ, PPARγ, ERRα, ERRβ, ERRγ, NRF1 and NRF2 (69). A similar role is played by PGC-1β (69).

Mitochondrial biogenesis in heart disease

An impaired mitochondrial biogenesis leads to HF and increases the sensitivity to MI. A factor that interferes with mitochondrial biogenesis is ANT deficiency, which destabilizes mtDNA, increases ROS production, and causes HF (63). Cardiac-specific Tfam knockout mice display reduced ATP generation, increased apoptosis, atrioventricular conduction block, and dilated cardiomyopathy (70-72). Conversely, TFAM overexpression protects the heart from MI-induced HF (62). Similarly, the overexpression of TFAM or twinkle improves cardiac function in a pressure or volume overload and reduces ROS overproduction (59,60). Poor mtDNA replication and accumulation of mutations, induced by inactive POLG, leads to dilated cardiomyopathy and interstitial fibrosis (61). NRF1- or NRF2-deficient mice exhibit low levels of mtDNA, left ventricular dysfunction, and die before birth (64,65). Conversely, NRF2 induction by preconditioning or pharmacological treatment protects against MI (73). ERRα-deficient mice exhibit cardiac dysfunction only after pressure overload (66), while ERRγ deficient mice exhibit lethal HF (67). The concomitant deletion of ERRα and ERRγ leads to prenatal death (74). While mice with prenatal knockout of either Pgc-1α or Pgc-1β experience mild cardiac dysfunction only after the exposure to noxious stimuli (75,76), prenatal knockouts of both proteins cause HF and prenatal death (69), indicating an overlap in their function. On the other hand, their deletion in adulthood is not associated with significant heart dysfunction (77). The same study also demonstrated that PGC-1α and PGC-1β deficiency decreases the expression of pro-fusion factors MFN2 and OPA1, and pro-fission factor fission 1 (FIS1), leading to abnormal mitochondrial morphology. This further shows multiple interplays among different MQC mechanisms. PGC-1α-induced biogenesis may act beneficially by reducing mitochondrial calcium uptake (78), which is a powerful stressor and inducer of mPTP opening (1,79). Mitochondrial permeability transition pore opening is induced by ROS and mitochondrial calcium overload and precedes cardiomyocyte death (80,81). However, in dilated (and not ischemic) cardiomyopathy, mitochondrial bio-
Extensive fission (fragmentation) of mitochondria has been identified as a key regulator of OPA1 activity, where OMA1 and YME1L promote apoptosis (4,86,88). OMA1 and YME1L promote apoptosis (4,86,88). OMA1 and YME1L promote apoptosis. Mitochondrial fusion-fission is reviewed in detail by Ježek et al (4). Fusion-fission dynamics work tightly with other compensatory response to mitochondrial dysfunction.

MITOCHONDRIAL FUSION-FISSION BALANCE

Mitochondria constantly undergo fusion and fission. Mitochondrial dynamics is associated with the metabolic state of the cell, presence of various stressors, and other important processes, such as cell proliferation and differentiation. Mitochondrial fusion-fission is reviewed in detail by Ježek et al (4). Fusion-fission dynamics work tightly with other compensatory response to mitochondrial dysfunction.

The key protein responsible for mitochondrial fission is GTPase-dynamin-related protein 1 (Drp1) (83). Other pro-fission factors that interact with Drp1 and promote mitochondrial fission include FIS1 and mitochondrial dynamics proteins mitochondrial dynamics protein of 49 KDa (MID49) and MID51 (4,84). Once activated, Drp1 translocates from the cytoplasm onto mitochondria causing fission, which also requires the action of dynamin-2 (85). The mitochondrial fusion depends on three GTPases, MFN1, MFN2, and OPA1 (86,87). While MFN1 and MFN2 mediate mitochondrial dynamics, MFN1 mediates inner mitochondrial membrane fusion. In addition to regulating the morphology of mitochondrial cristae, OPA1 also prevents apoptosis in physiological conditions, while pro-fission factors, such as Drp1, promote apoptosis (4,86,88). OMA1 and YME1L proteases are key regulators of OPA1 activity, whereby OMA1 cleaves and inactivates it (88).

Mitochondrial fusion-fission balance in heart disease

Extensive fission (fragmentation) of mitochondria has been associated with cardiac I/R injury (84,89), which is caused by enhanced FIS1 and Drp1 expression in mitochondria and/or reduced MFN1 and OPA1 expression (90). OPA1 deficiency reduces mtDNA copy number, decreases mitochondrial and heart function, and leads to cardiomyopathy (91). Conversely, the induction of mitochondrial fusion by OPA1 overexpression protects cardiac (92) and other cell types (93) from various types of stressors. Zaja et al (82) showed that I/R injury induced mitochondrial fission, cardiomyocyte death and Drp1 activation (phosphorylation of Ser616 and dephosphorylation of Ser637), while it did not significantly change the expression of MFN1, MFN2 and OPA1. Drp1 activation results in cardiomyocyte death, with ROS and calcineurin acting as upstream modulators of Drp1 activity (83). Pharmacological Drp1 inhibition with mdxi-1 or calcineurin inhibition with FK506 reduces mitochondrial fission and cell death (83). Ong et al (84) have demonstrated that both the transfection of HL-1 cells with the Mfn1, Mfn2, or a dominant-negative mutant form of Drp1 (Drp1K38A), or pharmacological Drp1 inhibition, promote mitochondrial elongation and reduce mPTP opening and cell death after simulated I/R injury. They also showed that human FIS1 overexpression reduced mitochondrial elongation, increased cell death, but without an effect on mPTP opening. Disatnik et al (89) used selective Drp1 inhibitor (P110) in ex vivo and in vivo rat heart model of MI to assess the role of Drp1/FIS1 interaction in reperfusion injury. They found that increased mitochondrial fragmentation during reperfusion facilitated long-term cardiac dysfunction in rats, whereas acute inhibition of mitochondrial fusion early at the onset of reperfusion resulted in long-term benefits. Conversely, FUNDC1 ablation promoted mitochondrial elongation via FIS1 down-regulation, which caused mitochondrial dysfunction and HF in mice (5). Moreover, FUNDC1 and FIS1 are down-regulated and mitochondria are elongated in HF samples (5). This suggests that the absence of mitochondrial fission and predominance of mitochondrial elongation (fusion) could be detrimental to the heart. However, this is inconsistent with the majority of other studies, which show an increase in mitochondrial fission in different types of HF and cardiomyocyte injury (48,82,86). The expression of pro-fusion and pro-fission proteins varies among studies and types of HF. Ahuja et al (82) and Chen et al (86) found OPA1 decrease in ischemic heart and MFN2 increase in dilated cardiomyopathy. Conversely, these two studies found an opposite change in MFN2 in ischemic cardiomyopathy. In the first study it was decreased and in the second it was increased. In dilated cardiomyopathy, Ahuja et al found increased OPA1 and Chen et al found no change in OPA1. The latter study also found an increase in MFN1 and Drp1 and no change in FIS1 in both types of cardiomyopathy (86). Increased Drp1 expression was also found in the samples of HF with reduced ejection fraction (48). HF of different etiology in animal models is associated with increased mi-
The majority of studies demonstrate beneficial effects of mitochondrial fusion and detrimental effects of fission in acute cardiac I/R injury, suggesting that mitochondrial fusion increases the resistance to cell death possibly by attenuating ROS generation and preserving ATP production. In chronic HF experiments, some of the results reported are not congruent with those by other investigators. Inconsistencies in results among studies testing human HF samples may arise from different reasons, such as methodological issues, biological variability of individuals/populations, and different etiologies of HF. Thus, a fusion-fission imbalance can lead to or accelerate HF, reflecting the importance of both states for long term mitochondrial and cardiac function.

MITOCHONDRIAL QUALITY CONTROL IN THE AGED HEART

Aging is associated with a decline in cardiac function and increased incidence of MI and HF. Aging impairs mitochondrial function in part by dysregulation of MQC (98). Limited perturbations of mitochondrial function can induce UPRmt, a process that is associated with lifespan extension (99). Conversely, there are studies that demonstrate that triggering of UPRmt may reduce lifespan (99). UPRmt protease LON is down-regulated in aged cells (100). However, there is a lack of studies investigating UPRmt in the aged heart. The overexpression of ATG5 protein may exert beneficial or maybe even detrimental effects in the aged heart. However, there are data showing that some MQC components may be up-regulated in the aged heart. It is possible that, as in heart disease, MQC could exert beneficial or maybe even detrimental effects in the aged heart. More studies are required to resolve such seemingly conflicting data.

CONCLUSIONS

MQC consists of several interconnected mechanisms that serve to maintain proper mitochondrial function. Numerous studies demonstrate that failure in some of MQC mechanisms may induce HF or exacerbate MI, and that stimulation of MQC attenuates cardiac injury/dysfunction. On the contrary, a large number of studies also show that MQC elements are elevated in HF and that MQC down-regulation has protective effects on the heart. It is possible that the effects of MQC on mitochondrial and cardiac functions are nonlinear or biphasic (107). In other words, a moderate activity of MQC may improve overall mitochondrial function and be beneficial for the heart as a compensatory response. However, hyperactive MQC could lead to excessive perturbation of mitochondrial homeostasis (eg, excessive mitochondrial removal or protein cleavage), leading to cardiac injury or exacerbating the existing pathological processes.
REVIEW

Santulli G, Xie W, Reiken SR, Marks AR. Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci U S A. 2015;112:11389-94. Medline:26217001 doi:10.1073/pnas.1513047112

Konstantinidis K, Whelan RS, Kitnis RN. Mechanisms of cell death in heart disease. Arterioscler Thromb Vasc Biol. 2012;32:1552-62. Medline:22596221 doi:10.1161/ATVBAHA.111.224915

Crow MT, Mani K, Nam YJ, Kitnis RN. The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res. 2004;95:957-70. Medline:15539639 doi:10.1161/01.RES.0000148632.35500.49

Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovasc Res. 2004;61:372-85. Medline:14962470 doi:10.1008-6363(03)00533-9

Cortassa S, Sollott SJ, Aon MA. Mitochondrial respiration and ROS emission during beta-oxidation in the heart: An experimental-computational study. PLOS Comput Biol. 2017;13:e1005588. Medline:28598967 doi:10.1371/journal.pcbi.1005588

10.1073/mbc.e11-08-0674

Ishizawa J, Zarabi SF, Davis RE, Halgas O, Nii T, Jitkova Y, et al. Mitochondrial ClpP-mediated proteolysis induces selective cancer cell lethality. Cancer Cell. 2019;35:721-37.e9. Medline:31056398 doi:10.1016/j.ccell.2019.03.014

Venkatesh S, Li M, Saito T, Tong M, Rashed E, Mareedu S, et al. Mitochondrial LonP1 protects cardiomyocytes from ischemia/reperfusion injury in vivo. J Mol Cell Cardiol. 2019;128:38-50. Medline:30625302 doi:10.1016/j.yjmcc.2018.12.017

Blasco N, Camara Y, Nunez E, Bea A, Bares G, Forne C, et al. Cardiomyocyte hypertrophy induced by Endonuclease G deficiency requires reactive oxygen radicals accumulation and is inheritable by the micropeptide humanin. Redox Biol. 2018;16:146-56. Medline:29502044 doi:10.1016/j.redox.2018.02.021

Rainbolt TK, Kebeau J, Puchades C, Wiseman RL. Reciprocal degradation of YME1L and OMA1 adapts mitochondrial proteolytic activity during stress. Cell Reports. 2016;14:2041-9. Medline:26923599 doi:10.1016/j.celrep.2016.02.011

Rainbolt TK, Saunders JM, Wiseman RL. YME1L degradation reduces mitochondrial proteolytic capacity during oxidative stress. EMBO Rep. 2015;16:97-106. Medline:25433032 doi:10.15252/embr.201438976

Bohovych I, Fernandez MR, Rahn JI, Stackley KD, Bestman JE, Anandhan A, et al. Metalloprotease OMA1 fine-tunes...
mitochondrial bioenergetic function and respiratory supercomplex stability. Sci Rep. 2015;5:13989. Medline:26365306 doi:10.1038/srep13989

23 Jensen MB, Jasper H. Mitochondrial proteostasis in the control of aging and longevity. Cell Metab. 2014;20:214-25. Medline:24930971 doi:10.1016/j.cmet.2014.05.006

24 Wai T, Saia S, Nolte H, Muller S, Konig T, Richter-Dennerlein R, et al. The membrane scaffold SLP2 anchors a proteolytic hub in mitochondria containing PARL and the iAAA protease YME1L. EMBO Rep. 2016;17:1844-56. Medline:27737933 doi:10.15222/embr.201642698

25 Houtkooper RH, Mouchiroud L, Ryu D, Moullan N, Katsyuba E, Knott G, et al. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature. 2013;497:451-7. Medline:23698443 doi:10.1038/nature12188

26 Nargund AM, Fiorese CJ, Pellegrino MW, Deng P, Haynes CM. Mitochondrial and nuclear accumulation of the transcription factor ATF-1 promotes OXPHOS recovery during the UPR(mt). Mol Cell. 2015;58:123-33. Medline:25773600 doi:10.1016/j.molcel.2015.02.008

27 Smyrnias I, Gray SP, Okonko DO, Sawyer g, Zoccarato A, Catibog E, et al. Mitochondrial quality control in aging and heart failure: abnormal distribution and role in cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol. 2007;293:H238-47. Medline:17675567 doi:10.1152/ajpheart.00740.2007

28 Guillon B, Bulteau AL, Wattenhofer-Donze M, Schmucker S, Friguet B, Puccio H, et al. Frataxin deficiency causes upregulation of mitochondrial Lon and ClpP proteases and severe loss of mitochondrial Fe-S proteins. FEBS J. 2009;276:1036-47. Medline:19154341 doi:10.1111/j.1742-4658.2008.06847.x

29 Freundt JK, Frommeyer g, Wotzel F, Huge A, Hoffmeier A, Martens S, et al. The transcription factor ATF4 promotes expression of cell stress genes and cardiomyocyte death in a cellular model of atrial fibrillation. BioMed Res Int. 2018;2018:3694362. Medline:30003094 doi:10.1155/2018/3694362

30 Wang H, Xu X, Fassett J, Kwak D, Liu X, Hu X, et al. Double-stranded RNA-dependent protein kinase deficiency protects the heart from systolic overload-induced congestive heart failure. Circulation. 2014;129:1397-406. Medline:24463368 doi:10.1161/CIRCULATIONAHA.113.012092

31 Cao S, Zeng Z, Wang X, Bin J, Xu D, Liao Y. Pravastatin slows the progression of heart failure by inhibiting the c-Jun N-terminal kinase-mediated intrinsic apoptotic signaling pathway. Mol Med Rep. 2013;8:1163-8. Medline:23934445 doi:10.3892/mmr.2013.1622

32 Kuo CY, Chiu YC, Lee NY, Hwang TL. Mitochondrial Lon protease controls ROS-dependent apoptosis in cardiomyocytes under hypoxia. Mitochondrion. 2015;23:7-16. Medline:25922169 doi:10.1016/j.mito.2015.04.004

33 Seiferling D, Szczepanowska K, Becker C, Sentf K, Hermans S, Maiti P, et al. Loss of CLP protease alleviates mitochondrial cardiomyopathy without affecting the mammalian UPRmt. EMBO Rep. 2016;17:953-64. Medline:27154400 doi:10.15222/embre.20164077

34 Liu X, Lei J, Wang K, Ma L, Liu D, Du Y, et al. Mitochondrial Omi/HtrA2 promotes caspase activation through cleavage of HAX-1 in aging heart. Rejuvenation Res. 2017;20:183-92. Medline:27998213 doi:10.1089/reg.2016.1861

35 Wang K, Yuan Y, Liu X, Lau WB, Zuo L, Wang X, et al. Cardiac specific overexpression of mitochondrial Omi/HtrA2 induces myocardial apoptosis and cardiac dysfunction. Sci Rep. 2016;6:37927. Medline:27924873 doi:10.1038/srep37927

36 Almontashiri NA, Chen HH, Mailoux RJ, Tatsuta T, Teng AC, Mahmoud AB, et al. SPG7 variant escapes phosphorylation-regulated processing by AFG3L2, elevates mitochondrial ROS, and is associated with multiple clinical phenotypes. Cell Reports. 2014;7:834-47. Medline:24767997 doi:10.1016/j.celrep.2014.03.051

37 Lin L, Kim SC, Wang Y, Gupta S, Davis B, Simon SI, et al. HSP60 in heart failure: abnormal distribution and role in cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol. 2007;293:H238-47. Medline:17675567 doi:10.1152/ajpheart.00740.2007

38 Guillon B, Bulteau AL, Wattenhofer-Donze M, Schmucker S, Friguet B, Puccio H, et al. Frataxin deficiency causes upregulation of mitochondrial Lon and ClpP proteases and severe loss of mitochondrial Fe-S proteins. FEBS J. 2009;276:1036-47. Medline:19154341 doi:10.1111/j.1742-4658.2008.06847.x

39 Freundt JK, Frommeyer g, Wotzel F, Huge A, Hoffmeier A, Martens S, et al. The transcription factor ATF4 promotes expression of cell stress genes and cardiomyocyte death in a cellular model of atrial fibrillation. BioMed Res Int. 2018;2018:3694362. Medline:30003094 doi:10.1155/2018/3694362

40 Cook SA, Sugden PH, Clerk A. Activation of c-Jun N-terminal kinases and p38-mitogen-activated protein kinases in human heart failure secondary to ischaemic heart disease. J Mol Cell Cardiol. 1999;31:1429-34. Medline:10423341 doi:10.1006/jmcc.1999.0979

41 Billia F, Hauck L, Konecny F, Rao V, Shen J, Mak TW. PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function. Proc Natl Acad Sci U S A. 2011;108:9572-7. Medline:21606348 doi:10.1073/pnas.1106291108

42 Thai PN, Seidimayer LK, Miller C, Ferrero M, Schaefer S, et al. Mitochondrial quality control in aging and heart failure: influence of ketone bodies and mitofusin-stabilizing peptides. Front Physiol. 2019;10:382. Medline:31024341 doi:10.3389/fphys.2019.00382

43 Chen Y, Dorn GW II. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science. 2013;340:471-5. Medline:23620051 doi:10.1126/science.1231031

44 Yussman MG, Toyokawa T, Odley A, Lynch RA, Wu G, Colbert MC, et al. Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nat Med. 2002;8:725-30. Medline:12053174 doi:10.1038/nm719
52 Kubli DA, Zhang X, Lee Y, Hanna RA, Quinsay MN, Nguyen CK, et al. Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J Biol Chem. 2013;288:915-26. Medline:23152496 doi:10.1074/jbc.M112.411363

53 Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikosu S, Tanike M, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 2007;13:619-24. Medline:1790962 doi:10.1172/JCI32490

56 Kim M, Shen M, Ngoy S, Karamanlidis G, Liao R, Tian R. AMPK isoform expression in the normal and failing hearts. J Mol Cell Cardiol. 2012;52:1066-73. Medline:22314372 doi:10.1016/j.yjmcc.2012.01.016

57 Wu X, He L, Chen F, He X, Cai Y, Zhang G, et al. Impaired autophagy contributes to adverse cardiac remodeling in acute myocardial infarction. PLoS One. 2014;9:e112891. Medline:25409294 doi:10.1371/journal.pone.0112891

58 Ploumi C, Daskalaki I, Tavernarakis N. Mitochondrial biogenesis and clearance: a balancing act. FEBS J. 2017;284:183-95. Medline:27462821 doi:10.1111/febs.13820

59 Tanaka A, Ide T, Fujino T, Onitsuka K, Ikeda M, Takehara T, et al. The overexpression of Twist helicase ameliorates the progression of cardiac fibrosis and heart failure in pressure overload model in mice. PLoS One. 2013;8:e67642. Medline:23840758 doi:10.1371/journal.pone.0067642

60 Ikeda M, Ide T, Fujino T, Arai S, Saku K, Kakino T, et al. Overexpression of TFAM or twist increases mtDNA copy number and facilitates cardioprotection associated with limited mitochondrial oxidative stress. PLoS One. 2015;10:e0119687. Medline:25822152 doi:10.1371/journal.pone.0119687

61 Zhang D, Mott JL, Farrar P, Ryerse JS, Chang SW, Stevens M, et al. Mitochondrial DNA mutations activate the mitochondrial apoptotic pathway and cause dilated cardiomyopathy. Cardiovasc Res. 2003;57:147-57. Medline:12504824 doi:10.1016/S0008-6363(02)00695-8

62 Ikeuchi M, Matsushaka H, Kang D, Matsushima S, Ide T, Kubota T, et al. Overexpression of mitochondrial transcription factor a ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction. Circulation. 2005;112:683-90. Medline:16043643 doi:10.1161/CIRCULATIONAHA.104.524835

63 Liu Y, Chen XJ. Adenine nucleotide translocase, mitochondrial stress, and degenerative cell death. Oxid Med Cell Longev. 2013;2013:146860. Medline:23970947 doi:10.1155/2013/146860

64 Huo L, Scarpulla RC. Mitochondrial DNA instability and perimplantation lethality associated with targeted disruption of nuclear respiratory factor 1 in mice. Mol Cell Biol. 2001;21:644-54. Medline:11134350 doi:10.1128/MCB.21.2.644-654.2001

65 Ristevski S, O’Leary DA, Thornell AP, Owen MJ, Kola I, Hertzog PJ. The ETS transcription factor GABPalpha is essential for early embryogenesis. Mol Cell Biol. 2004;24:5844-9. Medline:15199140 doi:10.1128/MCB.24.13.5844-5849.2004

66 Huss JM, Imahashi K, Dufour CR, Weinheimer CJ, Courtois M, Kovacs A, et al. The nuclear receptor ERRalpha is required for the bioenergetic and functional adaptation to cardiac pressure overload. Cell Metab. 2007;6:25-37. Medline:17618854 doi:10.1016/j.cmet.2007.06.005

67 Alaynick WA, Kondo RP, Xie W, He W, Dufour CR, Downes M, et al. ERRgamma directs and maintains the transition to oxidative function for cardiac-expressed death factors. J Cardiovasc Transl Res. 2010;3:374-83. Medline:20559783 doi:10.1007/s12265-010-9174-x

68 Mootha VK, Handschin C, Arlow D, Xie X, St Pierre J, Siigah S, et al. Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative
phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci U S A. 2004;101:6570-5. Medline:15100410 doi:10.1073/pnas.0401401101

69 Lai L, Leone TC, Zechner C, Schaeffer PJ, Kelly SM, Flanagan DP, et al. Transcriptional coactivators PGC-1alpha and PGC-1beta control overlapping programs required for perinatal maturation of the heart. Genes Dev. 2008;22:1948-61. Medline:18628400 doi:10.1101/gad.1661708

70 Wang J, Silva JP, Gustafsson CM, Rustin P, Larsson NG. Increased in vivo apoptosis in cells lacking mitochondrial DNA gene expression. Proc Natl Acad Sci U S A. 2001;98:4038-43. Medline:11259653 doi:10.1073/pnas.3038710100

71 Hansson A, Hance N, Dufour E, Rantanen A, Hultenby K, Clayton DA, et al. A switch in metabolism precedes increased mitochondrial biogenesis in respiratory chain-deficient mouse hearts. Proc Natl Acad Sci U S A. 2004;101:3136-41. Medline:14978272 doi:10.1073/pnas.0308710100

72 Wang J, Wilhelmsen H, Graff C, Li H, Oldfors A, Rustin P, et al. Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet. 1999;21:133-7. Medline:9916807 doi:10.1038/5089

73 Cheng L, Jin Z, Zhao R, Ren K, Deng C, Yu S. Resveratrol attenuates inflammation and oxidative stress induced by myocardial ischemia-reperfusion injury: role of Nrf2/ARE pathway. Int J Clin Exp Med. 2015;8:10420-8. Medline:26379832

74 Wang T, McDonald C, Petenko NB, Leblanc M, Wang T, Giguet-Vanacore V, et al. Estrogen-related receptor alpha (ERRalpha) and ERRgamma are essential coordinators of cardiac metabolism and function. Mol Cell Biol. 2015;35:1281-98. Medline:25624346 doi:10.1128/MCB.01156-14

75 Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, et al. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 2005;3:e101. Medline:15760270 doi:10.1371/journal.pbio.0030101

76 Lelliott CJ, Medina-Gomez G, Petrovic N, Kis A, Feldmann HM, Bjursell M, et al. Ablation of PGC-1beta results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance. PLoS Biol. 2006;4:e369. Medline:17090214 doi:10.1371/journal.pbio.00400369

77 Martin OJ, Lai L, Soundararapandian MM, Leone TC, Zorzano A, Keller MP, et al. A role for peroxisome proliferator-activated receptor gamma coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth. Circ Res. 2014;114:626-36. Medline:24366168 doi:10.1161/CIRCRESAHA.114.320562

78 Bianchi K, Vandecasteele G, Carli C, Romagnoli A, Szabadkai G, Rizzuto R. Regulation of Ca2+ signalling and Ca2+-mediated cell death by the transcriptional coactivator PGC-1alpha. Cell Death Differ. 2006;13:586-96. Medline:16239931 doi:10.1038/sj.cdd.4401784

79 Tampo A, Hogan CS, Sedlíc F, Bosnjak ZJ, Kwok WM. Accelerated inactivation of cardiac L-type calcium channels triggered by anaesthetic-induced preconditioning. Br J Pharmacol. 2009;156:432-43. Medline:19154423 doi:10.1111/j.1476-5381.2008.00026.x

80 Sedlíc F, Muravyeva MY, Sepac A, Sedlíc M, Williams AM, Yang M, et al. Targeted modification of mitochondrial ROS production converts high glucose-induced cytotoxicity to cytoprotection: effects on anaesthetic preconditioning. J Cell Physiol. 2017;232:216-24. Medline:27138089 doi:10.1002/jcp.25413

81 Muravyeva M, Baotic I, Bienengraeber M, Lazar J, Bosnjak ZJ, Sedlíc F, et al. Cardioprotection during diabetes: the role of mitochondrial DNA. Anesthesiology. 2014;120:870-9. Medline:24346177 doi:10.1097/ALN.0000000000001017

82 Ahuja P, Wanagat J, Wang Z, Wang Y, Liem DA, Ping P, et al. Divergent mitochondrial biogenesis responses in human cardiomyopathy. Circulation. 2013;127:1957-67. Medline:23589024 doi:10.1161/CIRCULATIONAHA.112.012119

83 Zaja I, Bai X, Liu Y, Kikuchi C, Dosenovic S, Yan Y, et al. Cdk1, PKCdelta and calcineurin-mediated Drp1 pathway contributes to mitochondrial fission-induced cardiomyocyte death. Biochem Biophys Res Commun. 2014;453:710-21. Medline:25445585 doi:10.1016/j.bbrc.2014.09.144

84 Ong SB, Subramany S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation. 2010;121:2012-22. Medline:20421521 doi:10.1161/CIRCULATIONAHA.109.906610

85 Lee JE, Westrate LM, Wu H, Page C, Voeltz GK. Multiple dynamin family members collaborate to drive mitochondrial division. Nature. 2016;540:139-43. Medline:27798601 doi:10.1038/nature20555

86 Chen L, Gong Q, Stice JP, Knowlton AA. Mitochondrial OPA1, apoptosis, and heart failure. Cardiovasc Res. 2009;84:91-9. Medline:19493956 doi:10.1093/cvr/cvp181

87 Zhang D, Ma J. Mitochondrial dynamics in rat heart induced by 5-fluorouracil. Med Sci Monit. 2018;24:6666-72. Medline:30240386 doi:10.12659/msm.910537

88 Anand R, Wai T, Baker MJ, Kladt N, Schauss AC, Rugari E, et al. The i-AAA protease YME1L and OMA1 cleave OpA1 to balance apoptosis, and heart failure. Cardiovasc Res. 2009;84:91-9. Medline:19493956 doi:10.1093/cvr/cvp181

89 Disatnik MH, Ferreira JC, Campos JC, Gomes KS, Dourado PM, Qi X, et al. Acute inhibition of excessive mitochondrial fission after myocardial infarction prevents long-term cardiac dysfunction. J Am Heart Assoc. 2013;2:e000461. Medline:24103571 doi:10.1161/JAHA.113.000461

90 Stotland A, Gottlieb RA. Mitochondrial quality control: Easy come, easy go. Biochim Biophys Acta. 2015;1853 10 pt B:2802-11. Medline:25596427 doi:10.1016/j.bbamcr.2014.12.041
91 Chen L, Liu T, Tran A, Lu X, Tomilov AA, Davies V, et al. OPA1 mutation and late-onset cardiomyopathy: mitochondrial dysfunction and mtDNA instability. J Am Heart Assoc. 2012;1:e003012. doi:10.1161/JAHA.112.003012
92 Makino A, Suarez J, Gawlowski T, Han W, Wang H, Scott BT, et al. Regulation of mitochondrial morphology and function by O-GlcNAcylation in neonatal cardiac myocytes. Am J Physiol Regul Integr Comp Physiol. 2011;300:R1296-302. doi:10.1152/ajpregu.00437.2010
93 Alaimo A, Gorojod RM, Beauquis J, Munoz MJ, Saravia F, Kotler ML. Deregulation of mitochondria-shaping proteins Opa-1 and Drp-1 in manganese-induced apoptosis. PLoS One. 2014;9:e91848. doi:10.1371/journal.pone.0091848
94 Naruse g, Kanamori H, Yoshida A, Minatoguchi S, Kawaguchi T, Iwasa M, et al. The intestine responds to heart failure by enhanced mitochondrial fusion through glucagon-like peptide-1 signaling. Cardiovasc Res. 2019. doi:10.1093/cvr/cvz002
95 Zhang Y, Zhang L, Zhang Y, Fan X, Yang W, Yu B, et al. YiQiFuMai powder injection attenuates coronary artery ligation-induced heart failure through improving mitochondrial function via regulating ROS generation and CaMKII signaling pathways. Front Pharmacol. 2019;10:381. doi:10.3389/fphar.2019.00381
96 Givvimani S, Munjal C, Tyagi N, Sen U, Metreveli N, Tyagi SC. Mitochondrial division/mitophagy inhibitor (Mdivi) ameliorates pressure overload induced heart failure. PLoS One. 2012;7:e32388. doi:10.1371/journal.pone.0032388
97 Cahill TJ, Leo V, Kelly M, Stockenhuber A, Kennedy NW, Bao L, et al. Resistance of dynamin-related protein 1 oligomers to disassembly impairs mitophagy, resulting in myocardial inflammation and heart failure. J Biol Chem. 2015;290:25907-19. doi:10.1074/jbc.M115.665695
98 Tocchi A, Quarels EK, Basisty N, Gitari L, Rabinovitch PS. Mitochondrial dysfunction in cardiac aging. Biochim Biophys Acta. 2015;1847:1424-33. doi:10.1016/j.bbapap.2015.07.009
99 Bennett CF, Kaeberlein M. The mitochondrial unfolded protein response and increased longevity: cause, consequence, or correlation? Exp Gerontol. 2014;56:142-6. doi:10.1016/j.exger.2014.02.002
100 Ngo JK, Pommato LC, Davies KJ. Upregulation of the mitochondrial Lon Protease allows adaptation to acute oxidative stress but dysregulation is associated with chronic stress, disease, and aging. Redox Biol. 2013;1:258-64. doi:10.1016/j.redox.2013.01.015
101 Pyo JO, Yoo SM, Ahn HH, Nah J, Hong SH, Kam TI, et al. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat Commun. 2013;4:2300. doi:10.1038/ncomms3300
102 Taneike M, Yamaguchi O, Nakai A, Hikoso S, Takeda T, Mizote I, et al. Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy. 2010;6:600-6. doi:10.4161/auto.6.5.11947
103 Song M, Franco A, Fleischer JA, Zhang L, Dorn gW II. Abrogating mitochondrial dynamics in mouse hearts accelerates mitochondrial senescence. Cell Metab. 2017;26:872-83.e5. doi:10.1016/j.cmet.2017.09.023
104 Zhao L, Zou X, Feng Z, Luo C, Liu J, Li H, et al. Evidence for association of mitochondrial metabolism alteration with lipid accumulation in aging rats. Exp Gerontol. 2014;56:3-12. doi:10.1016/j.exger.2014.02.001
105 Whitehead N, Gill JF, Brink M, Handschin C. Moderate modulation of cardiac pgC-1alpha expression partially affects age-associated transcriptional remodeling of the heart. Front Physiol. 2018;9:242. doi:10.3389/fphys.2018.00242
106 Ljubicic V, Menzies KJ, Hood DA. Mitochondrial dysfunction is associated with a pro-apoptotic cellular environment in senescent cardiac muscle. Mech Ageing Dev. 2010;131:79-88. doi:10.1016/j.mad.2009.12.004
107 Sedlíc F, Kovac Z. Non-linear actions of physiological agents: Finite disarrangements elicit fitness benefits. Redox Biol. 2017;13:235-43. doi:10.1016/j.redox.2017.05.008