Plant Diversity, Tree Regeneration, Biomass Production and Carbon Storage in Different Oak Forests on Ridge Tops of Garhwal Himalaya

Chandra Mohan Sharma*, Om Prakash Tiwari, Yashwant Singh Rana, Ram Krishan and Ashish Kumar Mishra
Department of Botany, HNB Garhwal University, Srinagar Garhwal, Uttarakhand 246174, India

Abstract
The present study was conducted on ridge tops of moist temperate Oak forests in Garhwal Himalaya to assess the plant diversity, regeneration, biomass production and carbon assimilation in different Oak forests. For this purpose, three Oak forest types viz., (a) Quercus leucotrichophora or Banj Oak (FT1; between 1,428-2,578 m asl), (b) Quercus floribunda or Moru Oak (FT2; between 2,430-2,697 m asl) and (c) Quercus semecarpifolia or Kharsu Oak (FT3; between 2,418-3,540 m asl) were selected on different ridge tops in Bhagirathi catchment area of Garhwal Himalaya. A total of 91 plant species including 23 trees (8 gymnosperms and 15 angiosperms), 21 shrubs and 47 herbs species belonging to 46 families were recorded from all the ridge top Oak forests. The highest mean tree density (607±33.60 trees ha\(^{-1}\)) was observed in Q. floribunda forest with lower mean total basal cover (TBC) value (48.02±3.67 m\(^2\)ha\(^{-1}\)), whereas highest TBC value (80.16±3.30 m\(^2\)ha\(^{-1}\)) was recorded for Q. semecarpifolia forest, with lowest mean stem density (594±23.43 stems ha\(^{-1}\)). The total biomass density (TBD) across three Oak forests ranged between 497.32±83.70 (FT1) and 663.16±93.85 t ha\(^{-1}\) (FT3), while the total carbon density (TCD) values ranged between 228.75±22.27 (FT1) and 304.31±18.12 t ha\(^{-1}\) (FT3). Most of the tree species were found with good regeneration (GR) status (average 45%) in all the forest types whereas, few species were found not regenerating (NR) (average 17%) however, few new recruitments were also recorded.

ANOVA (Post-Hoc Tukey’s test at 5% significance level) indicated significant forest-wise differences in TBC, TBD and TCD (in tree layer); family and evenness (in shrub layer only) values, while insignificant differences were noticed in density values of tree, seedling and herb layer.

Key Words: Garhwal Himalaya, moist temperate, ridge top forests, diversity and regeneration, biomass and carbon

Introduction
The Oaks are the keystone species of Himalayan forest ecosystems, without which the complex web of rural livelihood cannot be imagined. Oaks are multipurpose tree species, which are closely linked with hill agriculture as an important source of fodder, firewood and making compost by litter. The regeneration of Oak forests in Himalayan region is reported to be steadily deteriorating (Singh 1992). The causes of failure of regeneration include lack of production of viable seeds, insect and animal predation, unfavourable micro-sites, overgrazing by domestic animals, habitat change and biological invasions. Thus for proper management of Himalayan Oak forests, the knowledge on diversity, population structure, distribution, regeneration, stocking, biomass production and carbon storage is necessary to support the conservation and restoration of Oak species.

Received: November 23, 2015. Revised: September 16, 2016. Accepted: October 3, 2016.

Corresponding author: Chandra Mohan Sharma
Department of Botany, HNB Garhwal University, Srinagar Garhwal, Uttarakhand 246174, India
Tel: 91-9412079937, Fax: 91-1376-252128, E-mail: sharmacmin@gmail.com
In Garhwal Himalaya mainly three Oak species are dominant on different altitudes i.e., (i) *Quercus semecarpifolia* Sm. (Kharsu Oak/Brown Oak), which is found in upper altitudinal zones (between 2,418-3,540 m asl), (ii) *Quercus floribunda* Lindl. (Moru Oak/Green Oak) in the middle zones (between 2,430-2,697 m asl) and (iii) *Quercus leucotrichophora* A. Camus. (Banj Oak/White Oak) in the lower altitudinal zones (between 1,428-2,578 m asl).

Understanding the forest structure is a pre-requisite to describe various ecological processes and also to model the functioning and dynamics of forests (Elourad et al. 1997). The nature of forest communities largely depends on the ecological characteristics of sites, species diversity and regeneration status of species. Micro-environmental factors affect the growth stages i.e., seedling, sapling and young trees of the forest communities that maintain the population structure of any forest. Regeneration of species is critical in a forest, because it decides the desired species composition and stocking in future. Regeneration of any species is confined to a peculiar range of habitat conditions and the extent of those conditions is a major determinant of its geographical distribution.

Climate controls the distribution of vegetation (Vetaas 2000) and future changes in climate are projected to cause changes in the vegetation distribution ranges. Several studies have attributed widespread changes in plant growth or mortality to climate change, but these efforts were focused on general trends within a biome rather than identifying spatially coherent distribution pattern (Pauli et al. 2007; Engler et al. 2009).

The Himalayan ridge top (RT) ecosystems are considered to be more sensitive to global warming as they are characterized by uniform sunlight exposure and low human interferences and hence are perfect places for monitoring and comparing the effects of climate change and predicting the future changes in species composition. Furthermore, it is supposed that in the event of a rise in temperature at lower elevations the movement/migration of vegetation would be towards upper elevational ridge tops. It is understandable, because the recent global warming has resulted in disturbances of ecological relationships, alteration in plant life history and general upward shift in the species distributional ranges (Mc Kone et al. 1998; Klanderud 2005; Jaurasinski and Kreyling 2007; Pauli et al. 2012).

The carbon storage in forest ecosystems is strongly affected by climate, forest type, stand age, disturbance regimes and edaphic conditions (Pregitzer and Euskirchen 2004). Climate change can modify the tree species composition and migration patterns (Bu et al. 2008), which can further influence the forest composition. Thus the forest carbon is a useful measure for the assessment of changes in forest structure and composition. Biomass production and carbon stock will reveal the carbon sequestration potential by Oaks at high mountains. In this study the specific questions, we tried to answer were (i) the structure, composition, diversity and regeneration status of different Oak forests on ridge tops, and (ii) biomass and carbon storage potential of Oak species on ridge tops at various altitudes.

![Fig. 1. Map representing the study sites.](image-url)
Materials and Methods

Study area

This study was conducted in the moist temperate forests of Bhagirathi Catchment area in Garhwal Himalaya. A reconnaissance survey of the study area was done from June to February in the years 2014 and 2015. The study area lies in two different districts (Uttarkashi and Tehri) of Uttarakhand state. We have selected 30 ridge tops of Oak dominated forests, in which *Quercus leucotrichophora* forest (FT1) was situated at 30°07'50.8"N latitude and 78°17'10.5"E longitude; *Quercus floribunda* forest (FT2) at 30°24'0.6"N latitude and 78°28'39.1"E longitude; and *Quercus semecarpifolia* forest (FT3) at 30°39'12.9"N latitude and 78°39'45.2"E longitude. The climate of the entire study area was moist temperate type with mean minimum monthly temperature ranging from 7.12°C (Jan) to 23.20°C (Jul) and mean maximum monthly temperature from 17.56°C (Jan) to 33.35°C (Jul) (Suyal et al. 2010), however, mean annual rainfall was amounted as 2000 mm. There were three main distinct seasons in a year i.e., cool and relatively dry winter (December to March); the warm and dry summer (mid-April to June); and a warm and wet period (July to mid-September) called as the monsoon or rainy season. These regions contain varying topographical features ranging from snow free valleys to the high peaks with perpetual snow and glaciers (Fig. 1).

Vegetation analysis

For quantitative analysis of forest vegetation and regeneration pattern on ridge tops of different Oak forest types, ten sample plots of 0.1 ha, each were randomly laid out on surveyed ridge tops in each forest type to analyse the tree species (10 sample plots×03 forest types=30 sample plots). Within each 0.1 ha sample plot, 5 m×5 m sized quadrats were laid out randomly to analyse the tree saplings and shrubs. However, 1 m×1 m sized quadrats were used for the analysis of tree seedlings and herbs (Curtis and McIntosh 1950; Phillips 1959). Circumference at breast height (cbh at 1.37 m from the ground) was taken for the determination of tree basal cover. The quantitative parameters of the community, i.e., frequency, density, total basal cover and IVI were calculated following Cottam and Curtis (1956). On the basis of data so obtained the Shannon-Wiener diversity Index (Shannon and Weaver 1963), Simpson dominance Index (Simpson 1949), evenness (Pielou 1966) and β-diversity (Whittaker 1972) were also computed. However, the Index of similarity (IS) between forest types was calculated following Muller-Dombois and Ellenberg (1974) as: Similarity index=$\frac{2C}{A+B}$×100, Where C is the number of common species shared between compared forest types and A and B are the number of species in each forest respectively.

Population structure and regeneration pattern

To determine the population structure and regeneration pattern in each forest type the dbh classes were established on the basis of range of available data. The tree (0.1 ha), sapling (5 m×5 m) and seedling (1 m×1 m) densities were calculated and extrapolated on per hectare basis. Different regeneration categories (Good, Fair, Poor, Not and New regeneration) were created to express the regeneration status in the forest. Regeneration of woody plant species was determined based on population size of seedlings, saplings and adults and categorized as per Khumbongmayum et al. (2006).

Biomass and carbon

The biomass for tree components was estimated using the linear regression equation framed out by Rawat and Singh (1988) and Adhikari et al. (1998) as: ln $Y=a+b$ ln X; Where ln=natural log, Y=dry weight of component (kg), X=CBH (cm), a=the y-intercept and b=slope of regression. The carbon % for different forest types was calculated as per Sharma et al. (2010). We used the interspecies regression equation (Rawat and Singh 1988) for those species which are not independently mentioned.

The identification of plants was done with the help of existing taxonomic literature, described in Flora of Gangotri National Park (Pusalkar and Singh 2012), Flora of the district Garhwal North West Himalaya (Gaur 1999) and Herbarium of H.N.B. Garhwal University Srinagar (GUH).

Statistical analysis

ANOVA (Post-Hoc tukey’s test) for different ecological attributes was performed by using SPSS (version-22).
Table 1. Ecological indices of trees, shrubs, herbs and statistical results (ANOVA) in different ridge Oak forests of high mountain

Stages	FTs	SR	Genus	Family	C_d	\bar{H}	e	Den	TBC	TBD	TCD	Similarity%	β-diversity
Trees	FT1	08	07	05	0.39	0.58	0.28	603	69.94	497.32	228.75	44.64	1.64
	FT2	12	10	07	0.45	0.55	0.22	607	48.02	576.71	265.15	44.64	1.64
	FT3	14	12	08	0.43	0.62	0.23	594	80.16	663.16	304.31	44.64	1.64
	F value	0.318	0.358	0.620	0.064	0.096	1.100	0.046	12.765	5.990	5.990	27.33	26.3
	p value	0.730	0.702	0.545	0.938	0.990	0.347	0.955	0.000	0.007	0.007	0.007	
	FT1	07	06	05	0.29	0.67	0.34	1,874	1.11	-	-	-	27.33 26.3
	FT2	11	10	07	0.22	0.82	0.34	2,787	0.37	-	-	-	27.33 26.3
	FT3	10	09	06	0.20	0.83	0.36	2,133	0.69	-	-	-	27.33 26.3
	F value	0.507	0.600	1.315	0.866	0.561	1.216	4.535	3.045	-	-	-	49.58 1.17
	p value	0.608	0.555	0.284	0.432	0.577	0.312	0.020	0.064	-	-	-	
Saplings	FT1	07	06	05	0.29	0.69	0.35	30,571	-	-	-	-	53.05 1.05
	FT2	09	07	06	0.25	0.75	0.34	38,667	-	-	-	-	53.05 1.05
	FT3	08	07	06	0.24	0.75	0.36	46,167	-	-	-	-	53.05 1.05
	F value	0.309	0.292	0.580	0.987	0.591	0.869	3.033	-	-	-	32.64 2.24	
	p value	0.736	0.744	0.566	0.385	0.561	0.430	0.064	-	-	-		
Seedlings	FT1	14	14	11	0.11	1.06	0.40	3,103	-	-	-	32.64 2.24	
	FT2	12	12	10	0.09	1.07	0.43	3,000	-	-	-	32.64 2.24	
	FT3	10	10	08	0.12	0.96	0.42	3,867	-	-	-	32.64 2.24	
	F value	1.662	1.662	4.253	0.728	0.845	9.165	3.949	-	-	-		
	p value	0.208	0.208	0.024	0.492	0.440	0.001	0.044	-	-	-		
Shrubs	FT1	23	23	15	0.05	1.32	0.42	142,571	-	-	-	32.64 2.24	
	FT2	23	23	16	0.06	1.34	0.42	145,813	-	-	-	32.64 2.24	
	FT3	19	19	13	0.17	1.25	0.42	146,813	-	-	-	32.64 2.24	
	F value	0.210	0.210	0.413	0.243	0.037	1.360	0.067	-	-	-		
	p value	0.811	0.811	0.666	0.786	0.964	0.273	0.935	-	-	-		

FTs, forest types; FT1, forest type1; FT2, forest type2; FT3, forest type3; SR, species richness; C_d, Simpson index; \bar{H}, Shannon Index; e, Pielou evenness index; Density (ind ha$^{-1}$); TBC (m2 ha$^{-1}$); TBD (Mg ha$^{-1}$); TCD (t C ha$^{-1}$).
Results and Discussion
Forest structure and species composition

After systematic survey of Oak forests on the ridge tops of Bhagirathi catchment area, total 91 plant species belonging to 81 genera and 46 families were recorded. In *Q. leucotrichophora* forest, 45 species (08 trees, 14 shrubs and 23 herbs); in *Q. floribunda* forest, 47 species (12 trees, 12 shrubs and 23 herbs); and in *Q. semecarpifolia* forest, 43 species (14 trees, 10 shrubs and 19 herbs) were recorded. No significant variation was found in species richness, genus and families (except understorey shrub layer) in selected oak forest types (Table 1).

Tree species like *Abies pindrow*, *A. spectabilis*, *Lyonia ovalifolia*, *Rhododendron arboreum* *Ilex dipyrena* etc. were dominant/co-dominant species which formed the established association with oak forests on high mountain ridge tops of Western Himalaya. Consequently, in this study *Rhododendron arboreum* and *Lyonia ovalifolia* were found widely distributed in all Quercus forest types as co-dominant species. Whereas, *Abies pindrow*, *Ilex dipyrena* and *Symphlocos paniculata* were co-dominants in *Q. floribunda* and *Q. semecarpifolia* forests only. In FT1, the *Q. leucotrichophora* (430 trees ha⁻¹), *R. arboreum* (66 tree ha⁻¹) and *Q. floribunda* (47 tree ha⁻¹) together constituted 90% of the total forest density, which was greater than the previous recorded density by Singh and Rawat (2012) for Banj Oak forest. Similarly in FT2, the *Q. floribunda* (453 trees ha⁻¹), *R. arboreum* (99 trees ha⁻¹) and *L. ovalifolia* (13 tree ha⁻¹) together constituted 93% of the total forest density. In FT3, the *Q. semecarpifolia* (430 trees ha⁻¹) and *R. arboreum* (57 trees ha⁻¹) together constituted 81% of the total forest density. These values were similar to the values reported by Singh and Rawat (2012). The mean tree density in these forests ranged from 594±23.43 (FT3) to 607±33.60 individuals ha⁻¹ (FT2), whereas mean Total Basal Cover values oscillated from 48.02±3.67 (FT2) to 80.16±3.30 m² ha⁻¹ (FT3). The earlier reported values of density and TBC in *Q. leucotrichophora* forest were 790-1,260 individual ha⁻¹ and 13.60-71.25 m² ha⁻¹ (Kusumlata and Bisht 1991), 554 trees ha⁻¹ and 39.20 m² ha⁻¹ (Thadani and Ashton 1995), 100-860 trees ha⁻¹ and 8.42-59.71 m² ha⁻¹ (Sharma et al. 2001), 730 ind ha⁻¹ and 43.96 m² ha⁻¹ (Srivastava et al. 2005), 990 trees ha⁻¹ and 88.06 m² ha⁻¹ (Singh and Rawat 2012), 400-933 trees ha⁻¹ and 14.22-40.16 m² ha⁻¹ (Rawal et al. 2012). In *Q. floribunda* forest the reported values of density and TBC were 220-640 individuals ha⁻¹ and 23.53 to 43.24 m² ha⁻¹ (Sharma et al. 2001), 493 individuals ha⁻¹ and 72.51 m² ha⁻¹ (Gairola et al. 2012), 433 trees ha⁻¹ and 110.47 m² ha⁻¹ (Singh and Rawat 2012), 423-793 trees ha⁻¹ and 11.20-34.01 m² ha⁻¹ (Rawal et al. 2012), 620 trees ha⁻¹ and 103.98 m² ha⁻¹ (Bisht et al. 2013). Similarly in *Q. semecarpifolia* forest the density and TBC values were found ranging between 340-810 trees ha⁻¹ and 30.1-62.2 m² ha⁻¹ (Rai et al. 2012), 600 trees ha⁻¹ and 58.25 m² ha⁻¹ (Gairola et al. 2012), 337 trees ha⁻¹ and 90.16 m² ha⁻¹ (Singh and Rawat 2012), 407-723 trees ha⁻¹ and 54.84-69.75 m² ha⁻¹ (Rawal et al. 2012), 340 trees ha⁻¹ and 48.51 m² ha⁻¹ (Bisht et al. 2013). Joshi and Yadava (2015) have also reported high range of tree density (765-1000 tree ha⁻¹) and TBC (56.96-88.88 m² ha⁻¹) for various Oak forests of Kumaun Himalayan region.

The TBC values were greater in *Q. semecarpifolia* forest at higher altitudes (2,413-3,540 m asl) because these were the mature/less disturbed forests and consequently shown higher productivity. However, lower altitudinal *Q. leucotrichophora* forests (1,428-2,578 m asl) have reflected moderate density and TBC values, because they were situated close to human settlement. There was no significant variation (F=0.046, p=0.955) between overall tree density values in different Oak forests, whereas highly significant difference (F=12.764, p=0.0001) between overstorey and understorey vegetation for various ecological variables/parameters are given in Table 1. The tree seedling density in this study was recorded in the range of 30571 (FT1) to 46167 seedlings ha⁻¹ (FT3). Rawal et al. (2012) have reported 5,800-13,200 seedlings ha⁻¹ (*Q. leucotrichophora* forest), 10,133-21,867 seedlings ha⁻¹ (*Q. floribunda* forest), and 267-933 seedlings ha⁻¹ (*Q. semecarpifolia* forest) in various Oak forests. Greater tree density (607 trees ha⁻¹) and sapling density (2,787 saplings ha⁻¹) in FT2 (between 2,430-2,697 m asl) have indicated good regeneration and growth of species in moderate environmental conditions. Mild disturbance has also been reported to provide greater opportunities for species turnover, established colonization and persistence of
Table 2. Density (plant/100 m²) and importance value index (IVI) of important species in different oak forests

S.N.	Species	Family	FT1 Density	FT1 IVI	FT2 Density	FT2 IVI	FT3 Density	FT3 IVI
1.	Abies pindrow	Pinaceae	-	-	0.08	7.10	0.28	22.56
2.	Abies spectabilis	Pinaceae	-	-	-	-	0.27	13.91
3.	Acer cassinum	Aceraceae	-	-	-	-	0.02	1.29
4.	Alnus nepalensis	Betulaceae	0.07	4.28	-	-	-	-
5.	Betula alboides	Betulaceae	0.09	5.94	0.01	1.06	-	-
6.	Betula utilis	Betulaceae	-	-	-	-	0.09	5.47
7.	Cedrus deodara	Pinaceae	-	-	0.05	5.28	-	-
8.	Cupressus torulosa	Cupressaceae	-	-	0.01	1.00	-	-
9.	Hex dipyrena	Aquifoliaceae	-	-	0.075	6.47	0.11	7.92
10.	Lyonia ovalifolia	Ericaceae	0.3	22.82	0.13	10.98	0.02	2.08
11.	Neolitsea cuipala	Lauraceae	-	-	0.03	3.29	-	-
12.	Neolitsea pallens	Lauraceae	-	-	0.05	3.67	-	-
13.	Ficus smithiana	Pinaceae	-	-	-	-	0.08	6.18
14.	Pinus roxburghii	Pinaceae	0.09	8.94	-	-	-	-
15.	Pinus wallichiana	Pinaceae	-	-	-	-	0.07	5.94
16.	Pyrus pashia	Rosaceae	0.06	5.02	-	-	-	-
17.	Quercus floribunda	Fagaceae	0.47	34.25	4.53	191.58	0.03	2.87
18.	Quercus leucocarpa	Fagaceae	4.3	177.56	0.05	5.96	-	-
19.	Quercus semecarpifolia	Fagaceae	-	-	-	-	4.3	191.58
20.	Rhododendron arboreum	Ericaceae	0.66	41.18	0.99	58.55	0.57	31.02
21.	Sorbus cuscipata	Rosaceae	-	-	-	-	0.04	3.20
22.	Symphocostus paniculata	Symplacaceae	-	-	0.07	5.07	0.03	2.51
23.	Taxus wallichiana	Taxaceae	-	-	-	-	0.04	3.46
Shrubs								
1.	Berberis aristata	Berberidaceae	2.29	23.07	4	34.75	7.87	51.72
2.	Colebrookia oppositifolia	Lamieae	0.57	9.31	-	-	1.27	16.27
3.	Cotoneaster microphyllus	Rosaceae	1.03	14.22	2.73	26.43	3.53	28.47
4.	Daphne papyracea	Thymelaeaceae	-	-	2.6	25.62	3	26.71
5.	Desmodium elegans	Fabaceae	1.49	17.02	-	-	-	-
6.	Elsholtzia flavia	Lamieae	0.91	12.99	1.8	20.09	-	-
7.	Eupatorium adnephorum	Asteraceae	10.63	66.11	-	-	-	-
8.	Himalandra tetrapetra	Rubiaceae	0.57	9.43	-	-	-	-
9.	Indigofera heteranthe	Fabaceae	-	-	2.53	25.44	-	-
10.	Pinus asiatica	Berberidaceae	0.34	6.86	-	-	-	-
11.	Rhus parviflora	Anacardiaceae	2.63	26.23	-	-	-	-
12.	Rosa brunonii	Rosaceae	-	-	3.4	30.83	4.47	33.06
13.	Rubus ellipticus	Rosaceae	2.29	22.08	0.53	11.52	5.20	36.76
14.	Sarcosea saligna	Buxaceae	1.03	13.16	2.87	27.45	1.93	20.97
15.	Skimmia pinnatifida	Rutaceae	-	-	-	-	3.87	30.00
16.	Smilax aspera	Smilacaceae	-	-	2.4	24.62	-	-
17.	Tetrapatrum serratum	Vitaceae	2.06	20.51	2.07	22.10	-	-
18.	Thunbergia falconeri	Buxaceae	-	-	-	-	0.47	9.98
19.	Urtica dioica	Urticaceae	5.37	39.32	1.67	20.05	-	-
20.	Viburnum cylindricum	Caprifoliaceae	1.83	19.70	-	-	-	-
21.	Viburnum narvorum	Caprifoliaceae	-	-	3.4	31.11	7.07	46.06
Table 2. Continued

S.N.	Species	Family	FT1	IVI	FT2	IVI	FT3	IVI
			Density		Density		Density	
1.	Achyranthes aspera	Amarantaceae	82.86	16.11	-	-	-	-
2.	Agrimonia pilosa	Rosaceae	-	-	-	-	56.67	13.58
3.	Anaphalis triplinervis	Asteraceae	-	-	105	19.04	-	-
4.	Artisia concinum	Araceae	-	-	-	-	68.33	15.34
5.	Artemisia roxburghiana	Asteraceae	17.14	8.23	-	-	-	-
6.	Aster penducularis	Asteraceae	-	-	-	-	23.33	7.83
7.	Bergenia ciliata	Saxifragacea	40	10.03	-	-	-	-
8.	Bidens pilosa	Asteraceae	82.86	16.15	-	-	-	-
9.	Biota amplexicaulis	Polygonaceae	-	-	10	4.59	-	-
10.	Boerhavia diffusa	Nyctaginaceae	22.86	6.95	-	-	-	-
11.	Calanthe planiginea	Orchidaceae	34.29	9.12	-	-	-	-
12.	Carpocephum nepalense	Asteraceae	5.71	3.32	-	-	-	-
13.	Cirsium oculi-loculis	Asteraceae	62.86	13.72	-	-	-	-
14.	Dipsacus indica	Rosaceae	57.14	13.46	-	-	-	-
15.	Erigeron multiradiatus	Asteraceae	-	-	91.67	16.74	95	19.062
16.	Euphorbia pilosula	Euphorbiaceae	-	-	83.33	15.96	-	-
17.	Fragaria nubicola	Rosaceae	100	18.54	208.33	31.09	241.67	37.23
18.	Galium aparineum	Rubiaceae	22.86	6.95	-	-	-	-
19.	Gentiana pedicillata	Gentianaceae	-	-	98.33	17.66	-	-
20.	Geranium nepalensis	Geraniaceae	8.57	4.55	-	-	23.33	9.13
21.	Goodenia fusca	Orchidaceae	-	-	48.33	11.00	-	-
22.	Hedychiium spicatum	Zingiberaceae	-	-	6.67	4.82	33.33	9.66
23.	Hemiphragma heterophyllum	Scrophulariaceae	-	-	81.67	15.36	145.00	25.71
24.	Impatiens silicata	Balsaminaceae	-	-	183.33	31.19	18.33	9.30
25.	Micromeria biflora	Lamiaceae	28.57	8.03	-	-	-	-
26.	Ophiopogon intermidius	Asparagaceae	-	-	10	6.98	-	-
27.	Oregum vulgare	Lamiaceae	42.86	10.33	30	8.41	-	-
28.	Plantago depressa	Plantaginaceae	-	-	-	-	46.67	11.95
29.	Plantago himalaica	Plantaginaceae	-	-	75	14.62	-	-
30.	Plectranthus japonicus	Lamiaceae	-	-	28.33	8.06	-	-
31.	Potentilla fulgens	Rosaceae	-	-	25	7.12	115	21.71
32.	Primula denticulata	Primulaceae	-	-	-	-	30	9.08
33.	Prunella vulgaris	Lamiaceae	-	-	60	12.60	-	-
34.	Pteranthera alataus	Asparagaceae	-	-	-	-	165	29.88
35.	Ranunculus arvensis	Rhamnaceae	154.29	24.70	-	-	-	-
36.	Reindeerella indica	Liliaceae	162.86	25.75	-	-	-	-
37.	Rubia manjith	Rubiaceae	97.14	18.13	-	-	-	-
38.	Rumex nepalensis	Polygonaceae	88.57	17.14	61.67	12.83	-	-
39.	Senecio nudicaulis	Asteraceae	82.86	17.48	-	-	40	10.86
40.	Sonchus brachyotus	Asteraceae	-	-	50	11.27	55	13.33
41.	Stellaria semiretita	Caryophyllaceae	-	-	8.33	5.90	-	-
42.	Serratula paniculata	Gentianaceae	25.71	7.49	-	-	-	-
43.	Taraxacum officiale	Asteraceae	-	-	70	13.88	43.33	11.45
44.	Thalictrum foliolaum	Ranunculaceae	97.14	19.00	10	6.98	71.67	15.78
45.	Trifolium repens	Fabaceae	-	-	28.33	8.06	15	6.43
46.	Valeriana jatamansii	Valerianaceae	77.14	15.24	-	-	-	-
47.	Viola pilosa	Violaceae	31.43	9.59	85	15.82	121.67	22.68

FT1, forest type 1; FT2, forest type 2; FT3, forest type 3.
high species richness (Rawal et al. 2012).

A total of 21 shrub species were observed in all the three Oak forest types, amongst which *Eupatorium adenophorum* (1,063 ind ha⁻¹) was dominant in *Q. leucotrichophora* forest, while *Berberis aristata* was dominant in *Q. floribunda* (400 ind ha⁻¹) and *Q. semecarpifolia* (787 ind ha⁻¹) forest types. The overall shrub density in Oak forest types ranged between 3,000 to 3,867 shrubs ha⁻¹. Gairola et al. (2012) reported 3,100 shrubs ha⁻¹ in *Q. semecarpifolia* forest from Garhwal Himalaya. The lowest total herb density (140,833 herbs ha⁻¹) was recorded in FT3. *Reinwardtia indica* (16,286 ind ha⁻¹) was the dominant herb, followed by *Ranunculus arvensis* (15,428 ind ha⁻¹) and *Fragaria nubicola* (10,000 ind ha⁻¹) in *Q. leucotrichophora* forest, *Fragaria nubicola* was dominant in *Q. floribunda* forest (20,833 ind ha⁻¹), followed by *Impatiens sulcata* (18,333 ind ha⁻¹), whereas *Fragaria nubicola* (24,167 ind ha⁻¹) and *Pteracanthes alatus* (16,500 ind ha⁻¹) were the dominant herbs in *Q. semecarpifolia* forest (Table 2).

Plant diversity

The understanding of forest structure and composition is a prerequisite to describe various ecological processes and also to model the functioning and dynamics of forests (Elourard et al. 1997). The nature of forest communities largely depends on the ecological characteristics of sites, species diversity and regeneration status of tree species. The species richness and diversity of trees are fundamental to total forest biodiversity, because trees provide resources and habitat for almost all the species. Species richness is a simple and easily interpretable indicator of biological diversity. Diversity is usually considered as a function of the relative distribution of individuals among species, which is regulated by long-term factors such as important forest covers in Himalayan region as they provide sustainable goods and services to village communities and sustain rich biodiversity.

In this study the higher Shannon diversity index value (0.62) was recorded for *Q. semecarpifolia* (FT3) forest, whereas lower (0.55) for *Q. floribunda* (FT2) forest. The recorded diversity index values were lesser to the earlier reported values i.e., 2.66 for *Q. leucotrichophora*; 2.53 for *Q. floribunda* and 1.41 for *Q. semecarpifolia* forests (Singh and Rawat 2012), 1.2 to 2.7 for *Q. floribunda* forest (Kumar and Ram 2005), 0.76 to 1.50 for *Q. floribunda* forest (Lodhiyal et al. 2013). However, Gairola et al. (2011) have reported the diversity index values as; 0.46 for *Q. semecarpifolia* forest and 0.49 for *Q. floribunda* forest, which were closer to our values. The herb diversity was more than trees and shrubs in all the Oak forests (Table 1). The evenness in tree layer was found highest (0.28) for *Q. leucotrichophora* forest (Table 1). In shrub layer highest value (1.07) of species diversity was recorded in FT2 and lowest (0.96) in FT3 whereas, the highest value of Simpson’s Index (0.12) was achieved for FT3 and lowest 0.09 for FT2. Malik and Bhatt (2015) also reported higher shrub diversity (3.53-3.34) at mid altitudes (between 2,250-2,600 m asl) for mixed Oak forests. High species richness with generally overlapping niches may be due to higher diversity which always oozes higher stability (Kharkwal 2009). Higher diversity in shrub layer in FT2 and FT1 may be a consequence of moderate disturbance which gave birth to a variety of micro-site. In herb layer highest species diversity (1.32) was recorded in FT1 and lowest (1.23) in FT3 which clearly indicated that the high mountain ridge top forests of *Q. semecarpifolia* (occurring between 2,418-3,540 m asl) were unable to support the

![Fig. 2. (a) DBH class based distribution of density (trees ha⁻¹) and TBC (m² ha⁻¹) in *Q. leucotrichophora* forest. (b) DBH class based distribution of density (trees ha⁻¹) and TBC (m² ha⁻¹) in *Q. floribunda* forest. (c) DBH class based distribution of density (trees ha⁻¹) and TBC (m² ha⁻¹) in *Q. semecarpifolia* forest.](image-url)
herbs as well as shrubs growth. Restricted shrub growth (lower diversity) in FT3 at higher altitudes may also be due to harsh climatic conditions. The Similarity Index value was highest (53.05%) with least value of β-diversity (1.05) for the shrub layer, however, minimum value of Similarity Index (27.73%) was recorded for sapling layer, where the highest β-diversity (2.63) persisted, which has revealed that the species were more similar in shrub strata than in other studied vegetation layers (Table 1).

Population structure and regeneration status

In all the oak forest types, maximum number of in-

Table 3. Component-wise biomass (t ha$^{-1}$) of tree layer in oak dominated ridge forests of high mountain of Garhwal Himalaya

Species	Bole	Bole bark	Branch	Twig	Foliage	Stump roots	lateral roots	Fine roots	Total
Banj oak forest (FT1)									
Alnus nepalensis	1.46	0.91	0.37	0.21	0.47	0.05	0.004	3.47	
Betula alnoides	1.75	1.08	0.43	0.25	0.55	0.06	0.004	4.12	
Lyonia ovalifolia	1.74	1.21	0.65	0.19	0.78	0.07	0.04	4.80	
Pinus roxburghii	0.91	0.35	0.31	0.07	0.33	0.14	0.02	2.16	
Pyrus pashia	0.68	0.44	0.20	0.12	0.27	0.03	0.003	1.73	
Quercus floribunda	38.52	10.66	1.80	1.80	5.27	2.66	0.82	63.65	
Quercus leucotrichophora	162.20	96.99	30.14	14.09	78.70	13.74	1.18	397.04	
Rhododendron arboreum	8.90	3.30	2.95	0.68	2.85	1.25	0.15	20.34	
Total	216.15	114.93	36.84	17.42	89.22	18.00	2.23	497.32	
Moru oak forest (FT2)									
Abies pindrow	4.22	0.57	0.89	0.39	0.20	0.82	0.44	1.18	7.73
Betula alnoides	0.24	0.15	0.06	0.03	0.07	0.01	0.00	0.56	
Cedrus deodara	2.54	1.47	0.49	0.29	0.60	0.07	0.00	5.45	
Cupressus torulosa	0.09	0.06	0.03	0.02	0.04	0.00	0.0004	0.22	
Ilex dipyrena	0.60	0.26	0.04	0.02	0.002	0.08	0.04	1.07	
Lyonia ovalifolia	0.79	0.55	0.30	0.08	0.35	0.03	0.02	2.19	
Neolitsea cuipala	0.18	0.06	0.01	0.01	0.07	0.05	0.01	1.41	
Neolitsea pallens	0.25	0.08	0.02	0.01	0.09	0.07	1.41	1.94	
Quercus floribunda	312.55	89.04	16.14	15.96	46.96	24.09	7.48	529.76	
Quercus leucotrichophora	1.73	1.05	0.34	0.16	0.89	0.16	0.01	4.34	
Rhododendron arboreum	8.94	3.53	3.08	0.74	3.41	1.42	0.19	21.58	
Sympleocos paniculata	0.22	0.08	0.03	0.01	0.08	0.01	0.01	0.45	
Total	332.35	18.50	97.21	20.93	17.54	53.39	26.43	576.71	
Kharus oak forest (FT3)									
Abies pindrow	18.61	2.44	3.92	1.69	3.69	1.94	0.74	33.87	
Abies spectabilis	13.65	1.84	2.88	1.29	2.66	1.43	0.62	25.03	
Acer caminanum	0.37	0.02	0.11	0.04	0.11	0.03	0.01	0.69	
Betula utilis	3.59	0.60	0.57	0.04	0.95	0.10	0.01	8.01	
Ilex dipyrena	0.87	0.37	0.05	0.03	0.09	0.12	0.05	1.55	
Lyonia ovalifolia	0.08	0.06	0.03	0.01	0.04	0.003	0.002	0.23	
Picea smithiana	3.59	2.11	0.72	0.42	0.88	0.10	0.01	7.82	
Pinus wallichiana	0.97	0.36	0.32	0.08	0.31	0.14	0.02	2.23	
Quercus floribunda	1.71	0.10	0.51	0.11	0.30	0.16	0.05	3.03	
Quercus semecarpifolia	304.52	79.16	12.09	9.77	78.63	34.40	13.04	558.36	
Rhododendron arboreum	5.37	2.11	1.85	0.44	2.02	0.85	0.11	12.91	
Sorbus caspidea	1.88	1.10	0.38	0.22	0.46	0.05	0.003	4.10	
Sympleocos paniculata	0.12	0.04	0.02	0.01	0.04	0.004	0.004	0.24	
Taxus wallichiana	2.38	1.38	0.45	0.27	0.55	0.06	0.003	5.10	
Total	357.71	96.26	19.78	13.31	90.65	39.39	14.66	663.16	
individuals were recorded in 21-40 cm dbh class i.e., in FT1 (67.8%); FT2 (71.7%) and FT3 (48.7%), followed by 13.3% and 34.2% in dbh class 41-60 cm in FT1 and FT3 respectively, whereas in FT2, 16.8% individuals were observed in < 20 cm dbh class, which may be considered as immature regenerating forest (Fig. 2). Dimri et al. (2014) also reported higher altitudinal Q. semecarpifolia forests as old growth forests (Individuals found above 100cm dbh class), and Q. leucotrichophora and Q. floribunda forests as young regenerating forests (higher number of individuals in lower dbh classes).

In Quercus leucotrichophora forest (FT1) most of the tree species (40%) exhibited good regeneration, followed by poor regeneration and new recruitment (20%) and fair and not regenerating (10%) (Fig. 3). Q. leucotrichophora, L. ovalifolia, R. arboreum and P. pashia indicated good regeneration on the ridge tops situated between 1,428-2,578 m asl. In FT1 Ilex dipyrena and Neolitsea cuipala were represented by seedlings only and therefore observed to be new on lower altitudinal ridge tops. Betula alnoides (9 ind ha^{-1}) on the other hand was represented in tree stage only in FT1 as well as in FT2 and its seedlings and saplings were absent completely, which means it was not reproducing. Benton and Werner (1976) suggested that such type of population could become extinct if the tendency continues. Alnus nepalensis and Pinus roxburghii showed poor regeneration due to weak adaptation on ridge tops of FT1.

In Quercus floribunda forest (FT2), 54% of the tree species indicated good regeneration, 15% as poor and 8% were not regenerating. Lindera pulcherrima (7 ind ha^{-1}) was the only new recruitment in this forest type between the altitudes 2,430-2,697 m asl. Therefore compositional changes are expected in this forest type in near future.

In Quercus semecarpifolia (FT3), 40% tree species showed good regeneration, whereas Acer acumatum, Lyonia ovalifolia, Quercus floribunda, Sorbus cuspidata and Taxus wallichiana together constituted the not regenerating category, including 33% tree species (which is highest amongst all the three forest types). This is a cause of concern because climatic conditions were not suitable for these species on high mountain ridges and therefore they were not reproducing (their population may become extinct in near future). Prunus cornuta was the new recruitment in high altitudinal Oak forests, because it was observed in seedling and sapling stages only (it may establish itself in Q. semecarpifolia forest in due course of time to become canopy or sub-canopy species). It was clear from the regeneration pattern of studied ridge Oak forests that only mid altitudinal transects exhibited good regeneration potential and subsequently it decreased with increasing altitudes.

Biomass and carbon storage

The quantification of biomass in forest ecosystems is a primary inventory data required for efficient forest manage-
ment (Hall et al. 2006) to understand carbon pool changes and productivity of forests. Biomass assessment is also necessary because forest is affected by various factors such as deforestation, fire, harvesting, pests, silviculture and climate change (Schroeder et al. 1997), which cause changes in the forest ecosystem. Stem wood proved to be the most massive component among trees than stem bark, coarse root, branches and foliage. Biomass is a function of diameter at breast height (DBH), height (ht) and wood density in a given location. However, the contribution of these variables to the above ground biomass (AGB) differs from site to site, succession stage of the forest, distribution level, species composition etc. (Whitmore 1984). Live tree biomass estimates are essential for carbon accounting, bio-energy feasibility studies and other analyses.

The biomass production in all the Quercus forests oscillated from 497.32±83.70 t ha⁻¹ (Q. leucotrichophora forest) to 663.16±93.85 t ha⁻¹ (Q. semecarpifolia forest). The above-ground biomass contributed 78% to 84% of the total tree biomass in these forests. Our values are best fitted with the previously reported values for biomass production i.e., 387.3 Mg ha⁻¹ for Q. leucotrichophora forest at 1,950 m asl by Rawat and Singh (1988); 782 Mg ha⁻¹ for Q. floribunda forest at 2,200 m asl by Rana et al. (1989); and 590.2 Mg ha⁻¹ for Q. semecarpifolia forest at 2,650 m asl by Adhikari et al. (1995). On the other hand somewhat lesser values i.e., 215.5 Mg ha⁻¹ for mixed Q. leucotrichophora forest at 1,500-1,650 m asl; 429.7 Mg ha⁻¹ for mainly Q. floribunda forest at 2,550–2,650 m asl; and 389.5 Mg ha⁻¹ for mainly Q. semecarpifolia forest at 2,650-2,850 m asl were also reported by Gairola et al. (2011) for Oak mixed forests. However, the biomass production of 272.5 Mg ha⁻¹ for Q. leucotrichophora forest; 511.2 Mg ha⁻¹ for Q. floribunda forest, and 507.8 Mg ha⁻¹ for Q. semecarpifolia forest was observed by Dimri et al. (2016). Singh et al. (1994) have reported a high range of biomass (500-600 Mg ha⁻¹) in Oak forests from Kumaun Himalaya. The bole biomass contributed maximum in Q. leucotrichophora forest (43.46%) and Q. semecarpifolia forest (57.63%). The maximum branch biomass (23.11%) was recorded in FT1 whereas, minimum (14.51%) in FT3. Fine roots contributed the minimum (0.45 to 2.21%) of total biomass in all the forest types (Table 3). In FT1, the Q. leucotrichophora contributed maximum (79.84%) to the total forest biomass, followed by Q. floribunda (12.80%) and R. arboreum (4.09%).

Percent contribution of bole, branches, twigs and foliage of Q. leucotrichophora to the total forest AGBD was 41.82%, 25.01%, 7.77% and 3.65% respectively and the total AGBD of Q. leucotrichophora was 61.01% of the total forest biomass density. In FT2 bole, bole bark, branches, twigs and foliage of Q. floribunda contributed 64.24%, 3.61%, 18.30%, 3.32% and 9.65% to the total AGBD respectively, however 78.24% was contributed by AGBD of Q. floribunda to the total forest biomass density. In FT3, bole, bole bark, branches, twigs and foliage of Q. semecarpifolia accounted 58.74%, 5.16%, 15.27%, 2.33% and 1.88% respectively to the total AGBD of the forest. The AGBD of Q. semecarpifolia contributed 65.19% to total forest biomass density (Table 3).

The bole biomass of Q. leucotrichophora contributed 41.82% to the total above ground biomass of all the species in FT1. The recorded values were best fitted with the reported values of bole biomass (36.6 to 60.7% by Negi et al. 1983). In FT2 the Q. floribunda contributed significantly (91.86%) to the total forest biomass, followed by R. arboreum (3.74%). The percent contribution of bole and branch biomass of Q. floribunda to the total above ground biomass density was 64.24% and 18.30% respectively (Table 3). Negi et al. (1983) reported 34.2% to 60.2% contribution of bole and 21.3% to 35.6% of branch biomass for the temperate forest of Kumaun Himalaya. In FT1 the contribution of Q. semecarpifolia to the total biomass density was 84.20%. The percent contribution of bole biomass of Q. semecarpifolia to the total forest biomass was 58.74% (Table 3). Thus the biomass production of different components in each forest type followed the following order:

FT1: Bole > branch > stump roots > twig > lateral roots > foliage > bole bark > fine roots.

FT2: Bole > branch > stump roots > lateral roots > twig > bole bark > foliage > fine roots and

FT3: Bole > branch > stump roots > lateral roots > bole bark > twig > fine roots > foliage.

In this study we have observed that the composition of conifers species increased with increasing altitude. Therefore, in the higher altitudinal Q. semecarpifolia forests more coniferous species (05) were encountered, which had lesser twig/ crown expanse. The Q. floribunda forests had three coniferous species whereas in Q. leucotrichophora forest
only one coniferous species (i.e., *Pinus roxburghii*) was present. Henceforth, the broadleaved species had comparatively more/longer twigs and *Q. leucotrichophora* (a broad crown oak species) contributed 81.81 percent to the total twig biomass in this forest. That is why twig biomass in FT1 was comparatively more than other oak forests.

The contribution of foliage to total above ground biomass was 2.6% to 4.5%. The total root biomass (below ground biomass density) in these forests ranged from 90.2 to 144.7 t ha⁻¹. Root biomass has contributed 15.6% to...
22.01% to the total forest biomass. These values are higher to the values (47.6 to 95.9 t ha\(^{-1}\)) reported for Oak forest by Rawat and Singh (1988), which may be because we have selected only the mature, old growth forests in the present study to calculate the maximum production potential of these forests for conservation of biomass and carbon. The total carbon density (TCD) in these Oak forests ranged from 228.75±22.27 t C ha\(^{-1}\) (\(Q.\) leucotrichophora) to 304.31±18.12 t C ha\(^{-1}\) (\(Q.\) semecarpifolia) (Table 4). Rana et al. (1989) reported the higher range of carbon stocks values (440.1 t ha\(^{-1}\)) for \(Quercus\) floribunda dominated mixed oak forests from Garhwal Himalaya. Sharma et al. (2011) had reported the TCD values for \(Q.\) leucotrichophora (77.3-102.8 t ha\(^{-1}\)), \(Q.\) floribunda (87.8-193.7 t ha\(^{-1}\)) and \(Q.\) semecarpifolia (107.2-160.1 t ha\(^{-1}\)) forests, Similarly Dimri et al. (2016) have recorded the TCD values 122.6 t C ha\(^{-1}\) for \(Q.\) leucotrichophora, 230 t C ha\(^{-1}\) for \(Q.\) floribunda, 228.5 t C ha\(^{-1}\) for \(Q.\) semecarpifolia forests, which are lesser to the values reported for these forests in this study. The statistical results showed significant difference (F=5.990, p=0.007) between overall TBD and TCD values in different oak forests studied. We observed that carbon density increased among the oak dominated forests with increasing altitude, which suggested that the high altitude mountain ridge top oak forests are more suitable for sequestering the carbon. Several authors have supported this view that biomass production and carbon assimilation increased with increasing altitude (Gairola et al. 2011; Dimri et al. 2016; Sharma et al. 2016). Our study also justified that biomass and carbon densities increased with stand age and altitude and varied greatly across biomes, especially in temperate forests (Pregitzer and Euskirchen 2004).

The forest ecosystems fix more carbon and possess more carbon density than croplands or grasslands (Zhou et al. 2011). Approximately 80% of the aboveground carbon is found in the form of standing timber, branches and foliage and 40% of the world’s belowground carbon stock is sustained in roots in forest ecosystem (IPCC 2001; Dixon et al. 1994). The total carbon pool in forest ecosystems was estimated to be about 1,150 Gt, of which 49% is in the boreal forests, 14% in temperate forests and 37% in tropical forests (Dixon et al. 1994). Pan et al. (2011) have reported that geographically, 471 T 93 PgC (55%) is stored in tropical forests, 272 T 23 PgC (32%) in boreal forests and 119 T 6 PgC (14%) in temperate forests. Higher TBC at higher altitudes in Oak forests seems to yield high productivity; hence Oiks are important forest types to sequester carbon globally.

Conclusion

The co-dominant tree species varied widely in all the oak forest types. Most of the species showed uniform distribution pattern. Species like \(Ilex\) dipryena, \(Neolitsea\) cui-pala (FT1), \(Prunus\) cornuta (FT3) and \(Lindera\) palcherri-ma (FT2) were represented in seedling stage only which means they are the new introduction (recent invaders) in their respective forest types. Due to infrequent reproduction and declining populations of some of the native species like \(Betula\) aloudes (FT1), \(Acer\) acuminatum, \(Taxis\) zeyllchiana, \(Sorbus\) caspida, and \(Symplcs\) paniculata (FT3) compositional changes are expected in near future. Due to climate change the ridge top vegetation is expected to face drastic composition changes at all altitudes. Although conifer forests were observed to be more efficient in sequestrating carbon and several authors have suggested for conservation of \(A.\) spectabilis, \(A.\) pindrow, \(C.\) deodara as prized species but contribution of broadleaf forests (generally Oak forests) to store carbon and thrive at harsh climatic conditions cannot be ignored. Amongst the oak forests maximum biomass production (663.16±93.85 t ha\(^{-1}\)) and carbon storage potential (304.31±18.12 t C ha\(^{-1}\)) were recorded for \(Quercus\) semecarpifolia forest (FT3), whereas minimum (497.32 t ha\(^{-1}\) and 228.75±22.7 t C ha\(^{-1}\) respectively) for \(Quercus\) leucotrichophora forest (FT1). This may be because of the location of Banj Oak forests closer to habitation zone. The carbon assimilation in various oak forests was observed to increase with an increase in altitude.

Acknowledgements

The authors are thankful to Department of Science and Technology, Govt. of India for providing the financial assistance to this study vide its project no. SERB/SR/SO/PS/14/2010.
References

Adhikari BS, Dhaula S, Rawat YS. 1998. Structure of Himalayan moist temperate cypress forest at and around Nainital, Kumaun Himalayas. Oecol Mont 7: 21-31.

Adhikari BS, Rawat YS, Singh SP. 1995. Structure and function of high altitude forests of central Himalaya I: dry matter dynamics. Ann Bot 75: 237-248.

Benton AH, Werner Jr WE. 1976. Field biology and ecology. McGraw-Hill, New York Inc., pp 564.

Bisht VK, Kuniyal CP, Nautiyal BP, Prasad P. 2013. Spatial distribution and regeneration of Quercus semecarpifolia and Quercus floribunda in a subalpine forest of western Himalaya, India. Physiology and Molecular Biology of Plants 19: 443-448.

Bu R, He HS, Hu Y, Chang Y, Larsen DR. 2008. Using the LANDIS model to evaluate forest harvesting and planting strategies under possible warming climates in Northeastern China. For Ecol Manage 254: 407-460.

Cottam G, Curtis JT. 1956. The use of distance measures in phytosociological sampling. Ecol 37: 451-460.

Curtis JT, McIntosh RP. 1950. The interrelations of certain analytic and synthetic phytosociological characters. Ecol 31: 434-435.

Dimri S, Baluni P, Sharma CM. 2014. Growing stock of various broad-leaved and conifer forests of Garhwal Himalaya. Int J Conserv Sci 5: 527-534.

Dimri S, Baluni P, Sharma CM. 2016. Biomass production and carbon storage potential of selected old-growth temperate forests in Garhwal Himalaya, India. Proc Natl Acad Sci India, Sect B Biol Sci doi: 10.1007/s40011-016-0708-0.

Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J. 1994. Carbon pools and flux of global forest ecosystems. Science 263: 185-190.

Elouard C, Houllier F, Pascal JP, Pelissier R, Ramesh BR. 1997. Dynamics of the dense moist evergreen forests. Long term monitoring of an experimental station in Kodagu district (Karnataka, India). Institute Français de Pondichéry, pp 23.

Engler R, Randin CF, Vittoz P, Czáka T, Beniston M, Zimmermann NE, Guisan A. 2009. Predicting future distributions of mountain plants under climate change: does dispersal capacity matter? Ecography 32: 34-45.

Gaikwad S, Sharma CM, Ghildiyal SK, Suyal S. 2012. Regeneration dynamics of dominant tree species along an altitudinal gradient in moist temperate valley slopes of the Garhwal Himalaya. J For Res 23: 53-63.

Gaikwad S, Sharma CM, Suyal S, Ghildiyal, SK. 2011. Composition and diversity of five major forest types in moist temperate climates of the western Himalayas. For Stud China 13: 139-153.

Gaur KD. 1999. Flora of the district Garhwal: North West Himalaya (with ethnobotanical notes). Srinagar, Transmedia, Garhwal.

Hall RJ, Skakan RS, Aresnault EJ, Case BS. 2006. Modeling forest stand structure attributes using Landsat ETM+ data: application to mapping of aboveground biomass and stand volume. For Ecol Manage 225: 378-390.

IPCC (Intergovernmental Panel on Climate Change). 2001. Climate change 2001: the scientific basis. Contribution of working group to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge university press, U.K.

Jurasinski G, Kreyling J. 2007. Upward shift of alpine plants increases floristic similarity of mountain summits. J Veg Sci 18: 711-718.

Khan G. 2009. Qualitative analysis of tree species in evergreen forests of Kumaun Himalaya, Uttarakhand, India. African J Plant Sci 3: 49-52.

Kolkman MJ, Kelly D, Lee WG. 1998. Effect of climate change on mast-seeding species: frequency of mass flowering and escape from specialist insect seed predators. Glob Change Biol 4: 591-596.

Kumar A, Ram J. 2005. Anthropogenic disturbances and plant biodiversity in forests of Uttarakhand, central Himalaya. Biodiv Conserv 14: 309-331.

Kusumalata, Bisht NS. 1991. Quantitative analysis and regeneration potential of moist temperate forest in Garhwal Himalaya. J For 14: 98-106.

Lodhiyal LS, Lodhiyal N, Kapkoti B. 2013. Structure and diversity of tree species in natural forests of Kumaun Himalaya in Uttarakhand. J Plant Dev Sci 5: 97-105.

Malik ZA, Bhatt AB. 2015. Phytosociological analysis of woody species in Kedarath wildlife sanctuary and its adjoining areas in Western Himalaya, India. J For Environ Sci 31: 149-163.

Mckone MJ, Kelly D, Lee WG. 1998. Effect of climate change on pest-seeding species: frequency of mass flowering and escape from specialist insect seed predators. Glob Change Biol 4: 591-596.

Mueller-Dombois D, Ellenburg H. 1974. Aims and methods of vegetation ecology. John Wiley & Sons, Inc.

Negi KS, Rawat YS, Singh JS. 1983. Estimation of biomass and nutrient storage in a Himalayan moist temperate forest. Can J For Res 13: 1185-1196.

Pan Y, Bridsey RA, Fang J, Houghton R, Kaugip PF, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D. A large and persistent carbon sink in the world’s forests. Sci 313: 988-993.

Pauli H, Gottfried M, Dullinger S, Ahbaldalde O, Akkalkasi M, Benito Alonso JL, Coldea G, Dick J, Erschbamer B, Fernández Calzado R, Ghosn D, Holten JF, Kanka R, Kazakis G, Kollár J, Larsson P, Moiseev P, Moiseev D, Molau U, Molero Mesa J,
Nagy L, Pelino G, Pușcaș M, Rossi G, Stanisci A, Syverhuset AO, Theurillat JP, Tomaselli M, Unterläuggauer P, Villar L, Vittoz P, Grabbherr G. 2012. Recent plant diversity changes on Europe's mountain summits. Sci 336: 353-355.

Pauli H, Gottfried M, Reiter K, Klettner C, Grabbherr G. 2007. Signals of range expansions and contractions of vascular plants in the high mountains, biome patterns related to forest age. Glob Change Biol 13: 147-156.

Phillips EA. 1959. Methods of vegetation study. Henry Holt & Co. Inc., New York, pp 107.

Pelou EC. 1966. The measurement of diversity in different types of biological collections. J Theoret Biol 13: 131-144.

Pfützer KS, Euskirchen ES. 2004. Carbon cycling and storage in world forests, biome patterns related to forest age. Glob Change Biol 10: 2052-2077.

Pusalkar PK, Singh DK. 2012. Flora of gangotri national park, Western Himalaya, India. Botanical Survey of India, Kolkata.

Rai ID, Adhikari BS, Rawat GS, Kiran B. 2012. Community structure along timberline ecotone in relation to micro-topography and disturbances in Western Himalaya. Not Sci Biol 4: 41-52.

Rana BS, Singh SP, Singh RP. 1989. Biomass and net primary productivity in central Himalayan forests along an altitudinal gradient. For Ecol Manage 27: 199-218.

Rawal RS, Gairola S, Dhar U. 2012. Effects of disturbance intensities on vegetation patterns in oak forests of Kumaun, west Himalaya. J Mt Sci 9: 157-165.

Rawat YS, Singh JS. 1988. Structure and function of oak forests in central Himalaya. I. Dry matter dynamics. Ann Bot 62: 397-411.

Schroeder P, Brown S, Mo J, Birdsey R, Ciesewski CJ. 1997. Biomass estimation for temperate broadleaf forests of the United States using inventory data. For Sci 43: 424-434.

Shannon CE, Weaver W. 1963. The Mathematical Theory of Communication. Urbana, USA (University of Illinois Press), 117.

Sharma CM, Baduni N, Gairola S, Ghildiyal SK, Suyal S. 2010. Tree diversity and carbon stocks of some major forest types of Garhwal Himalaya, India. For Ecol Manage 260: 2170-2179.

Sharma CM, Gairola S, Baduni NP, Ghildiyal SK, Suyal S. 2011. Variation in carbon stocks on different slope aspects in seven major forest types of temperate region of Garhwal Himalaya, India. J Biosci 36: 701-708.

Sharma CM, Khanduri VP, Goshwami S. 2001. Community composition and population structure in temperate mixed broad-leaved and coniferous forest along an altitudinal gradient in a part of Garhwal Himalaya. J Hill Res 14: 32-43.

Sharma CM, Mishra AK, Krishan R, Tiwari OP, Rana YS. 2016. Variation in vegetation composition, biomass production, and carbon storage in ridge top forests of high mountains of Garhwal Himalaya. J Sus For 35: 119-132.

Simpson EH. 1949. Measurement of diversity. Nature 163: 633-688.

Singh G, Rawat GS. 2012. Quantitative analysis of tree species diversity in different oak (Quercus spp.) dominated forests in Garhwal Himalaya, India. Not Sci Biol 4: 132-140.

Singh JS, Singh SP. 1992. Forest of Himalaya. Gyanodaya Prakashan, Nainital, India. pp 257.

Singh SP, Adhikari BS, Zobel DB. 1994. Biomass productivity, leaf longevity and forest structure in the central Himalaya. Ecol Monogr 64: 401-421.

Srivastava RK, Khanduri VP, Sharma CM, Kumar P. 2005. Structure, diversity and regeneration potential of oak dominant conifer mixed forest along an altitudinal gradient in Garhwal Himalaya. Ind For 131: 1537-1553.

Suyal S, Sharma CM, Gairola S, Ghildiyal SK, Rana CS, Butola DS. 2010. Phytodiversity (angiosperms and gymnosperms) in Chaurangikhal forest of Garhwal Himalaya, Uttarakhand, India. Ind J Sci Tech 3: 267-275.

Thadani R, Ashton PMS. 1995. Regeneration of banj oak (Quercus leucotrichophora A. Camus) in the central Himalaya. For Ecol Manage 78: 217-224.

Vetass OR. 2000. The effect of environmental factors on the regeneration of Quercus semecarpifolia Sm. in central Himalaya, Nepal. Plant Ecol 146: 137-144.

Whitmore TC. 1984. Tropical rainforests of the far east. Oxford University Press, London. pp 112-113.

Whittaker RH. 1972. Evolution and measurement of species diversity. Taxon 21: 213-251.

Zhou Li, Dai L, Wang S, Huang X, Wang X, Qi L, Wang Q, Li G, Wei Y, Shao G. 2011. Changes in carbon density for the three old-growth forests on Changbai mountain, north east China: 1981-2010. Ann For Sci 68: 953-958.