Machine learning of neuroimaging to diagnose cognitive impairment and dementia: a systematic review and comparative analysis.

Enrico Pellegrini PhD¹, Lucia Ballerini PhD¹, Maria del C. Valdes Hernandez PhD¹, Francesca M. Chappell PhD¹, Victor González-Castro PhD², Devasuda Anblagan PhD¹, Samuel Danso PhD¹, Susana Muñoz Maniega PhD¹, Dominic Job PhD¹, Cyril Pernet PhD¹, Grant Mair MB ChB, FRCR, MD,¹, Tom MacGillivray PhD¹,³, Emanuele Trucco PhD¹, Joanna Wardlaw MB ChB, FRCR, MD¹,⁵

¹Division of Neuroimaging, Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, UK
²Department of Electrical, Systems and Automatics Engineering, Universidad de León, León (Spain)
³VAMPIRE project, University of Edinburgh, UK
⁴VAMPIRE project, Computing, School of Science and Engineering, University of Dundee, UK
⁵UK Dementia Institute at the University of Edinburgh, UK

Correspondence: Joanna Wardlaw, joanna.wardlaw@ed.ac.uk
ABSTRACT

INTRODUCTION: Advanced machine learning methods might help to identify dementia risk from neuroimaging, but their accuracy to date is unclear.

METHODS: We systematically reviewed the literature, 2006 to late 2016, for machine learning studies differentiating healthy ageing through to dementia of various types, assessing study quality, and comparing accuracy at different disease boundaries.

RESULTS: Of 111 relevant studies, most assessed Alzheimer’s disease (AD) vs healthy controls, used ADNI data, support vector machines and only T1-weighted sequences. Accuracy was highest for differentiating AD from healthy controls, and poor for differentiating healthy controls vs MCI vs AD, or MCI converters vs non-converters. Accuracy increased using combined data types, but not by data source, sample size or machine learning method.

DISCUSSION: Machine learning does not differentiate clinically-relevant disease categories yet. More diverse datasets, combinations of different types of data, and close clinical integration of machine learning would help to advance the field.

Keywords: dementia, cerebrovascular disease, pathological aging, small vessel disease, MRI, machine learning, classification, segmentation.
INTRODUCTION

Ageing is associated with increasing health care costs of which two related neurological disorders, dementia and stroke, account for much of the increase. Dementia is a progressive development of multiple cognitive deficits with several underlying aetiologies, the two commonest types being Alzheimer’s disease (AD) and vascular dementia (VaD). The total estimated worldwide cost of dementia was US$818 billion in 2015, representing 1.09% of global GDP.¹ In 2015, 46.8 million people worldwide were living with dementia, a figure which is expected to almost double every 20 years, reaching 74.7 million in 2030 and 131.5 million by 2050. Meanwhile, stroke remains the second commonest cause of death and commonest cause of dependency in adults worldwide.²

Age-related cognitive decline ranges from minor reductions in memory and executive function that do not interfere with daily life, to more severe degrees that fall short of dementia but may interfere with some activities of daily living, termed ‘mild cognitive impairment’. Mild cognitive impairment (MCI) may progress to dementia or remain static, and cognitive decline is also a risk factor for stroke.

All three of MCI, dementia and stroke are associated with changes seen on brain imaging particularly brain volume loss (atrophy) and development of focal lesions in the white and grey matter such as white matter hyperintensities (WMH), lacunes, microbleeds, focal cortical or subcortical infarcts or small haemorrhages. These features are also associated with ageing (though are less frequent in healthy ageing), may be symptomatic or asymptomatic, and predict increased risk of stroke, dementia and death.³

In the last decade, improvements in medical imaging, higher image quality, the exponential increase in computational power of affordable computing platforms, and the greater availability of brain imaging datasets such as from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), have increased opportunities to develop machine learning approaches aimed at the automated detection, classification and quantification of diseases.⁴ Some of these techniques have been applied to classify brain magnetic resonance imaging (MRI) or computed tomography (CT) scans, comparing patients with dementia and healthy controls and to distinguish different types or stages of dementia, cerebrovascular disease and accelerated features of aging. However, the recent rapid increase in publications using different machine learning techniques in different populations, types of images and disease criteria, make it difficult to obtain an objective view of the current accuracy of machine learning.
We undertook this systematic review to critically appraise the accuracy of machine learning to differentiate healthy ageing from mild cognitive impairment from dementia and predict the future risk of dementia or cerebrovascular disease. We evaluated the performance metrics of individual machine learning techniques by task, disease of interest, imaging sequence and features investigated.

METHODS

Search Strategy

We searched the literature from 1st Jan 2006 (when first publications on machine learning in the disorders of interest started appearing in earnest) to 30th September 2016, on six databases: Pubmed/Medline, Elsevier, IEEE Xplore Digital Library, Science Direct, ACM Digital Library and Web of Science.

We devised three groups of keywords, each relevant to different aspects of the scope of the review:

Brain lesions and relevant pathologies: Dement*, Alzheimer, AD, VCI, VaD, small vessel disease, SVD, microvascular change, cognitive impairment, cognitive decline, MCI, Lewy bod*, LBD, frontotemporal, FTD, lacun*, white matter hyperintens*, white matter lesion*, WMH, leukoaraisis, periventricular, microbleed*, microhaemorr*, microhemorr*, stroke, cerebrovascular, CVA, perivascular space*, PVS, Virchow–Robin space*, pathological aging, pathological ageing, brain, cerebr*, medial temporal, mesial temporal, volume loss, atrophy.

Machine learning: machine learning, supervised learning, unsupervised learning, deep learning, classification, identification, detection, automat* diagnosis, pattern analysis, CAD, computer aided diagnosis, computer assisted diagnosis, computational analysis.

Structural imaging: MR, magnetic resonance, structural imag*, CT, CAT, computed tomograph*.

We searched titles, abstracts and keyword fields of indexed studies, published as journal papers or conference proceedings, with all possible strings obtained by joining one term from each of the above groups with an "AND" operator. One reviewer (EP) conducted the searches and eliminated all duplicate references.
Inclusion/Exclusion Criteria

Two reviewers (EP, VGC) separately assessed all non-duplicate papers in a two-stage selection process. First, we evaluated titles and abstracts to exclude studies clearly not relevant to the scope of the review. Second, we assessed full texts of the remaining papers to eliminate studies using the following exclusion criteria:

1. Studies of animals or ex-vivo samples
2. Reviews, surveys, collections and comparison papers not presenting a new ML method or application.
3. Studies with a validation set comprising a small number of subjects (<100 for disease classification or lesion identification tasks, and <25 for pixel or voxel level lesion segmentation tasks) or with a manual ground truth provided by only one trained observer.
4. Studies presenting a method in which the main task (e.g., lesion segmentation) was not performed in a fully automated fashion. Studies involving semi-automated pre-processing steps (e.g., brain parcellation refinement) obtained by making use of previously validated software and trained observers were accepted.
5. Studies not about structural MRI or CT imaging.
6. Studies focused on image pre-processing techniques that did not include any machine learning for disease classification or lesion segmentation/identification (e.g., contrast enhancement, noise reduction techniques, etc.).
7. Studies of parcellation of healthy brain regions not used for disease classification or detection.
8. Studies that either did not provide, or presented their results in such a way that we were not able to calculate performance metrics (e.g. sensitivity and specificity).
9. Multiple publications from the same research group, focusing on the same task and dataset. In such cases, only the most recent publication or with the largest sample size was included in the data analysis.
10. Studies that did not describe their methods in sufficient detail to enable replication.

Discrepancies were resolved by discussion between the two reviewers with a third (MvH, LB, GM) arbitrating as necessary.

Data Extraction

From the included papers, we extracted data on the:

(1) disease or lesion investigated,
(2) dataset used and whether it was publicly available or not,
(3) number of subjects or images on which the proposed technique had been validated,

(4) type of structural imaging modality and sequences used,

(5) imaging features that were investigated,

(6) use of any additional imaging data (e.g., functional imaging) or non-imaging features (e.g., cognitive test scores) in the analysis,

(7) classifier(s) and the feature selection and representation techniques used, and

(8) performance (sensitivity, specificity, accuracy) of the proposed method.

We extracted data to calculate sensitivity and specificity where not already calculated.

If multiple tasks were investigated in a single study, the respective data for each experiment were recorded.

We also extracted (when reported) details of: use of single vs multiple scanners, image resolution, population demographics, exclusion criteria for each dataset, image pre-processing steps, time cost, and use of third party software (details available on request).

We evaluated study quality according to the relevant Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) criteria (https://www.ncbi.nlm.nih.gov/pubmed/22007046). We used the seven criteria that were most relevant to the material of the review, four addressing risk of bias and three addressing applicability. since some criteria were not strictly applicable to the field.

All acronyms used in the results table are reported in Supplemental Table 1.

Data Analysis

We extracted the different performance metrics directly from the papers, or calculated them from the data provided. In particular, we aimed to examine:

1. Sensitivity, specificity and accuracy for binary classification tasks.

2. Mean class accuracy for multi-class classification tasks.

3. Dice coefficient (DC) for accuracy of lesion segmentation tasks.

4. Precision and recall for lesion identification tasks (calculated using the formula in Supplementary methods).

Where the results of multiple experiments for the same classification task were reported in a single study, we only used the set of metrics associated with the higher value of accuracy in our analysis.

We constructed forest plots to summarise sensitivity, specificity, accuracy and 95% confidence intervals
(CI) of various clinically relevant diagnoses including AD versus healthy ageing, MCI versus AD or healthy ageing, MCI conversion to AD versus not conversion. In order to summarise the mass of information effectively, we plotted forest plots of accuracy rather than sensitivity and specificity, defined as:

$$Accuracy = \frac{TP + TN}{TP + FN + TN + FP}$$

We performed sensitivity analyses to determine if source dataset, machine learning method, type of data used, or study size accounted for the variance between studies. We calculated 95% CI of accuracy using the Wilson score method. We plotted all graphs in R. We considered but rejected performing a formal meta-analysis, since the huge overlap in datasets in publications precluded determining the results of patients who contributed to more than one study (even with exclusion of obvious duplicate publications), preventing the modelling of between-study variance. Finally, to minimise confounding by inclusion of studies that only contributed to one comparison, we compared accuracy across multiple diagnostic boundaries using studies that provided data on more than one diagnostic comparison from the same dataset.

Role of the Funding Source

The funders had no role in the conduct of this systematic review. The corresponding author confirms that she had full access to all the data in the study and had final responsibility for the decision to submit for publication.

RESULTS

Our search yielded 5775 non-duplicate studies, of which 4978 (86%) were excluded at title/abstract screening as clearly not relevant to the review. After full text screening, we found 111 papers relevant for data extraction (Figure 1). The two criteria accounting for the most exclusions were small sample (item 3) and no performance metrics provided or calculable (item 8; respectively 41% and 19% of exclusions at this stage; proportions meeting exclusion criteria see Supplementary Table 2). Note that studies that failed one exclusion criterion were excluded and not evaluated further; although some might have failed on multiple criteria, we only recorded the first reason for exclusion.
Most of the 111 studies that met inclusion criteria achieved low risk of bias scores and low concerns on applicability (Supplement Figure 1). Of the 111, we used 89 studies in further analyses of accuracy where data could be extracted as 2x2 tables and there were sufficient studies to compare.

Most studies tested the diagnosis of AD (68/89, 76%), most versus healthy controls (67/89, 75%), then MCI non-converters to AD versus converters to AD (37/89, 42%), MCI versus healthy controls (29/89, 33%), and MCI versus AD (8/89, 9%; Table 1 shows individual comparisons; full details in Supplementary Table S3).

There were 21 studies that compared multiple diagnostic classes, of which many involved the same author groups.

The remaining studies focused on other factors: other types of dementia (five studies, Supplementary Table S4), and studies investigating different types of brain lesions related to dementia, stroke and pathological aging, either: lesion segmentation (seven studies, Supplementary Table S5) or lesion identification (11 studies, Supplementary Table S6). As there were few eligible studies in the latter three categories, it was not possible to undertake any formal comparisons, e.g. of DICE coefficients (for WMH, ischaemic stroke lesions), Precision or Recall values (for microbleeds, lacunes). However the DICE coefficients for WMH.

Figure 1 Flowchart of search and exclusion stages of the review.
segmentation (four studies, mean n=81, range 38-125) ranged from 0.520-0.691 and for infarcts (three studies, mean n=42, range 30-60) ranged from 0.670-0.740 (Supplementary Table S5). The Precision/Recall values for microbleeds (three studies, mean n=66, range 50-81) for Precision were 0.101-0.443 and for Recall were 0.870-0.986; there was one study on lacunes (n=132) with Precision of 0.154 and Recall of 0.968 (Supplementary Table S6).

Data sources	HC v AD	HC v MCI	MCInc v MCic	MCI v AD	Total
ADNI	54	24	34	7	119
ADNI + Bdx-3C	0	0	1	0	1
AddNeuroMed	1	0	2	0	3
AddNeuroMed + ADNI	2	1	1	0	4
Local	4	3	0	0	7
OASIS	7	2	0	1	10
Total	68*	30	38	8	144

Machine learning method

AdaBoost	1	0	1	0	2
Deep Learning	2	2	0	0	4
Gaussian Process	0	0	1	0	1
LDA	5	0	5	1	11
Logistic Regression	4	0	2	0	6
OPLS	2	1	1	0	4
QDA	0	0	1	0	1
RBF-NN	0	0	1	0	1
Random Forest	3	1	3	0	7
SRC	2	1	2	0	5
SVM	39	22	17	7	85
SVM + MKL	3	1	1	0	5
SVM + OPLS	1	0	1	0	2
SVM + Random Forest	2	1	2	0	5
SVM + SRC	1	1	0	0	2
kNN	3	0	0	0	3
The 76 analyses focused on AD (Supplementary Table S3) amounted to 68 unique references, with huge overlap in authors and data sources between the studies. As well as using more than one data source, many studies performed more than one comparison of disease classifications with these multiple data sources, hence amounting to 144 different comparisons (Table 1). Of the 144 comparisons, there were 120 uses of ADNI data (ADNI alone 119/144, 83%; ADNI plus other 120/144, 83%), followed by Oasis (10/144, 7%), local sources (7/144, 5%), and AddNeuroMed (alone 3/144, 2%; plus ADNI 4/144, 3%).

The 76 analyses of AD tested nine different machine learning methods. The most frequent, by a large margin, was Support Vector Machine (SVM) with 46/76 (61%) alone and 53/76(70%) combined with another machine learning method, then linear discriminant analysis (LDA, 6/76, 8%), logistic regression (4/76, 5%) and a few testing k-nearest neighbours (KNN), Orthogonal Projections to Latent Structures (OPLS), Random forest, or Sparse Representation Classification (SRC), Table 1. Most analyses, by a large margin, used only T1 images (91/144, 63%), with modest numbers using T1 plus other sequences, other types of data, or both. Analysis sample sizes ranged from 100 to 902, with similar numbers of analyses including more than 300 subjects (51/144, 35%) or fewer than 150 subjects (45/144, 31%), Table 1.

Table 1 Number of comparisons in each systematic review analysis group using specified data source, machine learning method, types of imaging and non-imaging data and by study size. Individual studies contribute to more than one analysis and use more than one data source, machine learning method, combinations of imaging data and more than one dataset (hence more than one sample size in some studies). HC=healthy control; AD=Alzheimer’s disease; MCI=mild cognitive impairment; nc=non converter to AD; c=converter to AD.
Amongst the 76 studies focused on AD, the accuracy was higher for differentiating AD from healthy controls (most study accuracies were in the 0.8-1.0 range), than for differentiating MCI from healthy controls (accuracies =0.6-0.9), or non-converting from converting MCI to AD (accuracies = 0.5-0.85), or MCI from AD (accuracies =0.6-0.9). Figure 2a-d indicates the lower accuracy for differentiating healthy controls from MCI, or MCI from AD, or MCI non-converters from converters, than healthy controls from AD; Supplementary Figures 2-4 illustrate these same comparisons ordered by data source, machine learning method and study size respectively. There was little evidence of any difference in accuracy by machine learning method, data source used, or study size, with possible higher accuracy for combined T1 plus other sequences and other types of data than for T1 imaging alone.
Figure 2. Differentiation of a) healthy controls from AD, b) of HC from MCI, c) of MCI converters from non-converters and d) of MCI from AD, ordered according to type of data used: T1W only, T1W+other sequences, T1W+non-imaging data, and T1W+other sequences+non-imaging data.

Finally, restricting comparisons of accuracy to studies that examined more than one diagnostic classification (Figure 3a-d), clearly demonstrates the lower accuracy for differentiating between healthy controls and MCI, or MCI from AD, or either healthy controls or AD and MCI converting/non converting, from healthy controls or AD (Figure 3 a-d).
DISCUSSION

We found acceptable accuracy for all machine learning methods in differentiating healthy controls from AD, but fewer data and lower accuracies for differentiating healthy controls from MCI, or MCI from AD, or (of more concern) for risk prediction of MCI non-converters from converters to AD. From a clinical perspective, the comparison of healthy controls to AD is the least important distinction: such Type I diagnostic studies do not aim to produce clinically relevant estimates of sensitivity and specificity, but to test the initial feasibility of a method. While the results for machine learning methods in differentiating healthy controls from AD are encouraging, the performance across the other cognitive diagnosis categories indicates that the field has some way to go before these methods should enter routine clinical use. The over-reliance on one data source, one type of imaging, and one machine learning method, further limits the clinical relevance and generalisability of the results. This may reflect that, as yet, machine learning is still insufficiently intertwined with the clinical world, in part due to misalignment of targets and methods: while the machine learning community aims primarily for algorithm novelty, inspired largely by computer vision and machine learning, clinicians want reliable, validated, methods for early diagnosis, risk prediction, or monitoring interventions, that are better than conventional methods, and change clinical practice.

We aimed to include as many relevant papers as possible, so kept the search broad. We retained conference papers to reflect the tendency to publish conference papers that equate to full publications in the fast-moving medical image analysis, computer vision and machine learning fields. High-quality conference papers are at least as selective as many journals; e.g., MICCAI, a leading medical image analysis conference, applies a 3-stage selection protocol including rebuttal. About a quarter (29/111, 26%) of the included papers were conference papers. The number of un-refereed pre-prints becoming available online (e.g., arXiv, biorXiv) is also increasing rapidly, but we did not include these pre-print publications since they are not peer-reviewed. However, the use of these sites for dissemination is growing and may need considering in future reviews. The proportion of papers using deep learning has increased since late 2016 (including several published by the authors, many conference papers in MIUA 2018, and MICCAI 2017), and therefore this review may under-represent the most recent developments in machine learning.
However, many of these recent papers focused on methods to detect single brain lesion types, such as WMH or atrophy, that are associated with cognitive decline but not on degrees of cognitive decline itself, or on differentiating AD from healthy controls rather than more subtle diagnoses. Therefore it is unlikely that the conclusions of the present analysis, which is based on a substantial body of work, would change by the inclusion of these most recent papers.

Some non-systematic reviews and surveys on machine learning have been published.5-11 We used established systematic review methods including QUADAS-2 criteria to grade study quality, since there are no agreed guidelines for reviews in data science and machine learning, but found the QUADAS criteria difficult to apply. We aimed to make reasonable exclusion criteria (publications from 2006 onward, data set larger than 100 for patient/image level classification, data set larger than 25 for pixel/voxel level segmentation), based on experience and consultation with a team of experts. We do not believe that the main conclusions would change significantly by including more small studies, and believe that the main messages embedded in the current literature are captured well by the review.

We excluded more than 200 papers (Supplementary Table S2) because the sample size or ground truth annotations were too small. This suggests the need for more public data repositories with annotated, reliable data. Various international initiatives provide public annotated data sets for competitions, e.g. the challenges organized by MICCAI or ISBI. Such challenges emphasize the competition aspect (achieving the best values for specific performance parameters), more than maximizing the amount of data made available, the generalisability of the results, or relevance to clinical practice. The latter two should receive more attention if the field is to advance.

We excluded many papers that did not provide accuracy data. This suggests a need to standardise reporting of performance criteria, an issue in the validation of algorithms and software for data and image analysis.12-14 Some aspects of the perceived importance of standard criteria and data sets is highlighted by the clear majority of papers using the ADNI data set (www.adni-info.org). Although use of one dataset may promote cross-comparisons of results, it is likely to inflate estimates of accuracy and considerably reduces the generalisability of the results to clinical practice. Deep learning techniques are rapidly becoming the methods of choice in medical image analysis, and feature in increasing proportions in conferences and journals, e.g. many conference papers at MIUA 2017. However, the overall message remains the same, i.e.
differentiation of AD from healthy controls, but fewer studies and poorer accuracy at differentiating MCI vs. healthy control or AD, or MCI converters/non-converters to AD, with the same problems of sample size and repeated use of the same data and lack of clinical integration. This further increases the need for large datasets as convolutional neural networks have millions of parameters to train. The performance of systems classifying brain images as associated with AD or not seems to improve when taking into consideration multiple data types.15, 16 Including non-imaging features, like CSF biomarkers and cognitive test scores, unsurprisingly also improve performance. Further work is needed to clarify the interplay between data from images and from other sources.17

Most studies started with pre-processed features (‘ground truth’) as input to the machine learning method. Many pre-processing techniques use population templates that derive from young populations; these are of limited relevance to the older brain and may bias the resulting machine learning outputs.17 Very few papers on lesion segmentation techniques were included as most failed the inclusion criteria on annotations (ground truth). This reflects that generating sufficient ground truth for a reliable validation of such algorithms is very time consuming, and highlights a limitation of machine learning methods in relying on ground truth. Use of crowd-sourcing to annotate images may be one solution but would have to achieve high reliability to meet the definition of ‘ground truth’;18-20 their use remains \textit{sub judice} and depends on the application. We also notice recent work on the automatic generation of annotations (auto-annotations) for non-medical classifiers with large numbers of classes,21 and the growing interest of medical image analysts in techniques to minimise the number of annotations required without affecting performance.22

It proved particularly difficult to locate papers attempting stratification of different types of dementia, and few studies combined imaging with other data types. Possible reasons include that diagnosing dementia is not a clear-cut process, so that several covariates should be considered in addition to a binary label (dementia/no dementia), e.g. time of diagnosis, source data for diagnosis (MCI test, brain images, clinical records, prescriptions). Different dementia components might be present at the same time. Finally, to our best knowledge, no public data sets exist which offer reliably stratified, sufficiently large cohorts with brain imaging.

Practically all the included papers were written for a computer science or engineering audience. They focused on technical information (e.g. algorithm choice and description, parameter setting techniques,
training protocol) omitting essential clinically-relevant information (e.g. patient and cohort demographics, clinical covariates, data acquisition protocols). Clearly, specialized journals and conferences require specialist language, but international efforts are needed to make technical papers more understandable to a clinical audience, and vice versa, to improve interdisciplinarity.

CONCLUSIONS
The results of our review indicate that machine learning methods to predict risk of dementia are not yet ready for routine use. There is a need to push inter-disciplinary collaborations, including the development of internationally agreed (by clinicians and computer science/engineers) validation protocols and clinical trials. The further development of any machine learning methods in neuroimaging requires much greater interdisciplinary working, use of varied and clinically-relevant public data sets with annotations, or ground truth, including a variety of imaging types not just T1, to maximise the use of relevant predictive variables and ensure that the resulting machine learning methods are robust and reliable prior to further testing in clinical trials in patients.

DECLARATION OF INTEREST STATEMENT
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

AUTHOR CONTRIBUTIONS
Study conception and design: EP, GM, ET, JW.
Acquisition of data: EP, VGC, MVH, LB, DA, SD, SMM, DJ, CP.
Analysis and interpretation of data: all coauthors.
Drafting of manuscript: EP, LB, TM, ET, JW.
Critical revision: EP, GM, FC, TM, ET, JW.

FUNDING
This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) grant "Multi-modal retinal biomarkers for vascular dementia" (EP/M005976/1), the Row Fogo Charitable Trust through the Row Fogo Centre for Research into Ageing and the Brain (Ref No: AD.ROW4.35. BRO-D.FID3668413), Age UK and UK Medical Research Council (G0701120, G1001245 and MR/M013111/1),
the Fondation Leducq Transatlantic Network of Excellence for the Study of Perivascular Spaces in Small Vessel Disease, (ref no. 16 CVD 05), the UK Dementia Research Institute at The University of Edinburgh and the European Union Horizon 2020, PHC-03-15, project No 666881, ‘SVDs@Target’. Support from NHS Lothian R&D, Edinburgh Imaging and the Edinburgh Clinical Research Facility at the University of Edinburgh is gratefully acknowledged.
References

1. GBD 2015 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (dalys) for 315 diseases and injuries and healthy life expectancy (hale), 1990-2015: A systematic analysis for the global burden of disease study 2015. *Lancet*. 2016;388:1603-1658.

2. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, et al. Global and regional burden of stroke during 1990-2010: Findings from the global burden of disease study 2010. *Lancet*. 2014;383:245-254.

3. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. *The Lancet Neurology*. 2013;12:822-838.

4. Lancet T. Artificial intelligence in health care: Within touching distance. *Lancet*. 2017;390:2739

5. Zheng C, Xia Y, Pan Y, Chen J. Automated identification of dementia using medical imaging: A survey from a pattern classification perspective. *Brain Inform*. 2016;3:17-27.

6. Cure S, Abrams K, Belger M, Dell’agnello G, Happich M. Systematic literature review and meta-analysis of diagnostic test accuracy in alzheimer’s disease and other dementia using autopsy as standard of truth. *J Alzheimers Dis*. 2014;42:169-182.

7. Christian S, Petronilla B, Isabella C. Frontiers for the early diagnosis of ad by means of mri brain imaging and support vector machines. *Current Alzheimer Research*. 2016;13:509-533.

8. Cheng B, Wee C-Y, Liu M, Zhang D, Shen D. Brain disease classification and progression using machine learning techniques. In: Suzuki K, ed. *Computational intelligence in biomedical imaging*. New York, NY: Springer New York; 2014:3-32.

9. Shen D, Wee C-Y, Zhang D, Zhou L, Yap P-T. Machine learning techniques for ad/mci diagnosis and prognosis. In: Dua S, Acharya UR, Dua P, eds. *Machine learning in healthcare informatics*. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014:147-179.

10. Kloppel S, Abdulkadir A, Hadjidemetriou S, Issleib S, Frings L, Thanh TN, et al. A comparison of different automated methods for the detection of white matter lesions in mri data. *Neuroimage*. 2011;57:416-422.

11. Arbabshirani MR, Plis S, Sui J, Calhoun VD. Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. *NeuroImage*. 2017;145:137-165.
12. Trucco E, Ruggeri A, Karnowski T, Giancardo L, Chaum E, Hubschman JP, et al. Validating retinal fundus image analysis algorithms: Issues and a proposal. *Investigative ophthalmology & visual science*. 2013;54:3546-3559.

13. Maier-Hein L, Groch A, Bartoli A, Bodenstedt S, Boissonnat G, Chang PL, et al. Comparative validation of single-shot optical techniques for laparoscopic 3-d surface reconstruction. *IEEE Trans Med Imaging*. 2014;33:1913-1930.

14. Jannin P, Grova C, Maurer CR. Model for defining and reporting reference-based validation protocols in medical image processing. *International Journal of Computer Assisted Radiology and Surgery*. 2006;1:63-73.

15. Li Y, Yan J, Wang P, Lv Y, Qiu M, he X. Classification of alzheimer's disease based on multiple anatomical structures' asymmetric magnetic resonance imaging feature selection. *Neural Information Processing*. 2015;280-289.

16. Liu M, Zhang D, Adeli E, Shen D. Inherent structure-based multiview learning with multitemplate feature representation for alzheimer's disease diagnosis. *IEEE Transactions on Biomedical Engineering*. 2016;63:1473-1482.

17. BRAINS (Brain Imaging in Normal Subjects) Expert Working Group, Shenkin SD, Pernet C, Nichols TE, Poline JB, Matthews PM, et al. Improving data availability for brain image biobanking in healthy subjects: Practice-based suggestions from an international multidisciplinary working group. *Neuroimage*. 2017;153:399-409.

18. Mitry D, Zutis K, Dhillon B, Peto T, Hayat S, Khaw KT, et al. The accuracy and reliability of crowdsourced annotations of digital retinal images. *Translational vision science & technology*. 2016;5:6.

19. Albarqouni S, Baur C, Achilles F, Belagiannis V, Demirici S, Navab N. Aggnet: Deep learning from crowds for mitosis detection in breast cancer histology images. *IEEE Transactions on Medical Imaging*. 2016;35:1313-1321

20. Adriana K, Olga R, Li F-F, Kristen G. *Crowdsourcing in computer vision*. Now Foundations and Trends; 2016.

21. Guillaumin M, Küttel D, Ferrari V. Imagenet auto-annotation with segmentation propagation. *International Journal of Computer Vision*. 2014;110:328-348.

22. Valindria VV, Lavdas I, Bai W, Kamnitsas K, Aboagye EO, Rockall AG, et al. Reverse classification accuracy: Predicting segmentation performance in the absence of ground truth. *IEEE Transactions on Medical Imaging*. 2017;36:1597-1606.
Methods
Calculation of the precision and recall for lesion identification tasks
Precision and Recall are defined as:

\[
\text{Precision} = \frac{tp}{tp + fp}
\]

\[
\text{Recall} = \frac{tp}{tp + fn}
\]

where:
- \(tp\) = true positive (indicates accurate lesion identification)
- \(tn\) = true negative (indicates correct rejection of non-lesion tissue)
- \(fp\) = false positive (indicates identification of a lesion that is not there)
- \(fn\) = false negative (indicates failure to identify a lesion that is present)
Table S1. Acronyms used in Tables listing study results.

Acronym	Definition
AD	Alzheimer’s Disease
AdaBoost	Adaptive Boosting
ADAS-Cog	Alzheimer’s Disease Assessment Scale - cognitive subtest
ADNI	Alzheimer’s Disease Neuroimaging Initiative
APOE3	Apolipoprotein E
BoW	Bag of Words
CCA	Canonical Correlation Analysis
CDR-SB	Clinical Dementia Rating - Sum of Boxes
CMB	Cerebral Microbleeds
CSF	Cerebrospinal Fluid
DLB	Dementia with Lewy Bodies
DTI	Diffusion Tensor Imaging
DWT	Discrete Wavelet Transform
FA	Fractional Anisotropy
FAQ	Functional Activities Questionnaire
FDG	Fluorodeoxyglucose
FDR	Fisher Discriminant Ratio
FF-NN	Feed Forward Neural Network
FLAIR	Fluid Attenuated Inversion Recovery
fMRI	functional Magnetic Resonance Imaging
FS	Feature Selection
FTD	Frontotemporal Dementia
GM	Gray Matter
GRE	Gradient Recalled Echo
HC	Healthy Control
HMM	Hidden Markov Model
ICV	Intracranial Volume
kNN	k-Nearest Neighbours
LASSO	Least Absolute Shrinkage and Selection Operator
LBP	Local Binary Patterns
LDA	Linear Discriminant Analysis
MABMIS	Multi-Atlas based Multi-Image Segmentation
MCI	Mild Cognitive Impairment
MCInc	Mild Cognitive Impairment (non-converting)
MCIc	Mild Cognitive Impairment (converting)
MCIe	Mild Cognitive Impairment (early amnestic)
Abbreviation	Full Form
--------------	-----------
MD	Mean Diffusivity
MIL	Multiple Instance Learning
MKL	Multiple Kernel Learning
MMSE	Mini-Mental State Examination
mRMR	minimum Redundancy Maximum Relevance
MTI	Magnetization Transfer Imaging
NN	Neural Network
OASIS	Open Access Series of Imaging Studies
OPLS	Orthogonal Projections to Latent Structures
PCA	Principal Component Analysis
PD	Proton Density
PDF	Probability Distribution Function
PESFAM	Probabilistic Ensemble Simplified Fuzzy ARTMAP
PET	Positron Emission Tomography
P-NN	Probabilistic Neural Network
QDA	Quadratic Discriminant Analysis
QDC	Quadratic Discriminant Classifier
RAVENS	Regional Analysis of Volumes Examined in Normalized Space
RAVLT	Rey's Auditory Verbal Learning Test
RBF	Radial Basis Function
RFE	Recursive Feature Elimination
ROI	Region Of Interest
SAE	Stacked Auto Encoders
SES	Socioeconomic Status
SRC	Sparse Representation Classification
SVD	Small Vessel Disease
SVM	Support Vector Machine
SWI	Susceptibility-Weighted Imaging
TIA	Transient Ischemic Attack
VBM	Voxel-Based Morphometry
WM	White Matter
WML	White Matter Lesions
Table S2. Details of reason for rejection and proportions

Rejection criteria	Number of rejected studies (%)					
1. Animals or ex-vivo.	1 (0.2)					
2. Review, survey, collection.	27 (5.3)					
3. Size of the dataset, number of observers.	209 (40.7)					
4. Semi-automatic technique.	61 (11.9)					
5. No structural imaging.	25 (4.9)					
6. Pre-processing technique.	12 (2.3)					
7. Healthy region parcellation.	13 (2.5)					
8. Non-comparable results	96 (18.7)					
9. "Multiple" publications.	63 (12.3)					
10. Non-reproducible	7 (1.4)					
Reference	Dataset	Task	Description	Additional Imaging	Classifiers	Results
-----------	---------	------	-------------	-------------------	-------------	---------
(Aggarwal, Rana et al. 2015)	OASIS	HC vs AD (99 / 99)	3D-DWT (symmetrized) of 7 ROIs: hippocampus, amygdala, ventricles, anterior and posterior cingulate (FS by FDR and mRM), cerebral white matter (FS by RFE)	n.a.	LNN	Sen = 0.789 / Spe = 0.810
(Aguilera, Westman et al. 2013)	AddNeuroMed	HC vs AD (110 / 116)	68 cortical thickness values and 50 regional volumes with fixed effect analysis	n.a.	SVM (non-linear)	Sen = 0.862 / Spe = 0.900
(Ahmed, Mizotin et al. 2015)	ADNI	HC vs AD (162 / 137)	Circular harmonic features extracted from hippocampus and posterior cingulate cortex (FS by PCA, BO representation)	n.a.	SVM (RBF)	Sen = 0.791 / Spe = 0.882
(Anagnostopoulos, Giannoukos et al. 2013)	AddNeuroMed	HC vs AD (113 / 122 / 123)	Cortical volume and thickness for specific ROI's, manual volume measurement of the hippocampus.	T2w, demographics.	Ensemble of SF-NN, SVM, PESFAM, PNN, LNN	Acc = 0.771
(Archana and Ramakrishnan 2014)	OASIS	HC vs AD (92 / 45)	Voxel-wise texture features from structure tensor analysis (FS by FDR).	n.a.	SVM	Sen = 0.877 / Spe = 0.849
(Baby, Suresh et al. 2013)	ADNI	HC vs MCIc (232 / 167)	Voxel-wise GM probability values from VBM analysis (FS by t-test).	n.a.	SVM	Sen = 0.700 / Spe = 0.840
(Beheshti, Demirel et al. 2015)	ADNI	HC vs AD (130 / 130)	Voxel-wise GM probability values from VBM analysis (FS based on PDF of ROIs).	n.a.	SVM (RBF)	Sen = 0.908 / Spe = 0.908
(Casasola, Hsu et al. 2013)	ADNI	HC vs AD (188 / 171)	Voxel-wise intensities from GM, WM and CSF maps.	n.a.	Regularized logistic regression	Sen = 0.843 / Spe = 0.890
(Chadadi, Decoors et al. 2016)	OASIS	HC vs AD (62 / 62)	3D co-occurrence matrix.	n.a.	Random forest	Sen = 0.759 / Spe = 0.701
(Chen and Pham 2013)	OASIS	HC vs AD (75 / 75)	2D regularization information from semi-variance analysis of GM maps.	n.a.	SVM	Sen = 0.800 / Spe = 0.800
(Chen, Wei et al. 2015)	ADNI	HC vs MCIc (167 / 236)	GM volumes in 93 ROI's (sparse representation).	n.a.	Regularized logistic regression	Sen = 0.856 / Spe = 0.861
(Chincarini, Bosco et al. 2011)	OASIS	HC vs MCIc (189 / 144)	Voxel intensities of filtered masks in 9 ROI's: hippocampi, amygdale, middle and inferior gyri, insula.	n.a.	Random forest	Sen = 0.900 / Spe = 0.940
(Cho, Seong et al. 2012)	OASIS	HC vs MCIc (166 / 136)	Voxel intensity maps of hippocampus.	n.a.	SVM	Sen = 0.970 / Spe = 0.970
(Costafreda, Díez et al. 2011)	ADNI	HC vs MCIc (81 / 22)	Thickness values of hippocampi.	n.a.	SVM (RBF)	Sen = 0.770 / Spe = 0.800
(Coupé, Fonov et al. 2015)	ADNI	HC vs MCIc (309 / 37)	SNIPF (Scoring by Nonlocal Image Patch Extraction) hippocampal features.	n.a.	SVM	Sen = 0.649 / Spe = 0.735
(Cui, Wei et al. 2012)	Local	HC vs MCIc (204 / 79)	10 regional volumes from T1w, 58 WM integrity features from DTI.	n.a.	SVM (RBF)	Sen = 0.520 / Spe = 0.764
(Cuijpers, Gerardin et al. 2011)	ADNI	HC vs AD (10 / 66)	Voxel-wise GM probability values in ROI's defined by different processing pipelines.	n.a.	SVM (linear)	Sen = 0.810 / Spe = 0.950
(Cuijpers, Glausses et al. 2013)	ADNI	HC vs AD (61 / 116)	GM, WM and CSF probability maps, cortical thickness values (FS by anatomical and spatial priors in SVM).	n.a.	Random forest	Sen = 0.750 / Spe = 0.780
(Davatzikos, Bhattacharya et al. 2011)	ADNI	HC vs MCIc (85 / 55)	Pattern of atrophy in GM and WM maps.	n.a.	SVM (non-linear)	Sen = 0.890 / Spe = 0.930
(Ding, Zhang et al. 2015)	ADNI	HC vs MCIc (58 / 54)	CSF biomarkers.	n.a.	SVM	Sen = 0.842 / Spe = 0.512
(Dubey, Zhou et al. 2014)	ADNI	HC vs AD (191 / 138)	8 GM volumes in ROI's, 220 texture features, 64 features from 2D multi-scale Gabor filtering (FS by RFE).	n.a.	SVM	Sen = 0.826 / Spe = 0.996
(Duygu, Evers et al. 2012)	Local	HC vs MCIc (191 / 319)	Voxel intensities (Laplacian eigenmaps representation after FS by Elastic Net and manifold learning).	n.a.	Random forest	Sen = 0.793 / Spe = 0.493
(Eskildsen, Coupé et al. 2013)	ADNI	HC vs AD (143 / 137)	Dual GM probability maps (FS by entropy-based information gain).	n.a.	SVM (RBF)	Sen = 0.874 / Spe = 0.912
(Eskildsen, Coupé et al. 2015)	ADNI	HC vs AD (226 / 194)	Voxel intensity maps of hippocampus.	n.a.	SVM	Sen = 0.794 / Spe = 0.889
(Filipowicz, Davatzikos et al. 2011)	ADNI	HC vs AD (63 / 54)	GM VAPEN map (FS by RFE).	n.a.	SVM	Sen = 0.694 / Spe = 0.857
(Gnanasekaran, Vadivelu et al. 2015)	ADNI	HC vs MCIc (174 / 68)	CSF biomarkers.	n.a.	SVM (linear, semi-supervised)	Sen = 0.706 / Spe = 0.850
(Gray, Aljabar et al. 2013)	ADNI	HC vs MCIc (35 / 75)	GM ROIs which have been used for multiple sclerosis Gabor filtering (FS by RFE).	n.a.	SVM	Sen = 0.831 / Spe = 0.803
(Guevara, Wolz et al. 2014)	ADNI	HC vs AD (175 / 106)	68 cortical thickness values and 50 regional volumes with fixed effect analysis	n.a.	SVM (linear)	Sen = 0.860 / Spe = 0.760
(Herrera, Rojas et al. 2013)	ADNI	HC vs AD (443 / 459)	2D-DWT (D4 and Haar) multi-scale features (FS by PCA and mutual information method).	n.a.	SVM (RBF)	Sen = 0.983 / Spe = 0.961
(Hirunrung, Singh et al. 2009)	ADNI	HC vs AD (94 / 89)	GM probability maps (FS by t-test to select relevant voxels).	n.a.	Linear programming	Sen = 0.850 / Spe = 0.800
(Hirunrung, Singh et al. 2011)	ADNI	HC vs AD (66 / 48)	GM probability maps (FS by t-test to select relevant voxels).	n.a.	Linear programming	Sen = 0.850 / Spe = 0.800
(Hosseini, Moradi 2016)	ADNI	HC vs MCIc (178 / 90)	Volume measurements of six ROI's (ventricles, hippocampus, whole-brain, entorhinal, fusiform and mid-temporal) and SPM T2w, DSC and A4AT uptake values from PET (FS by information gain).	n.a.	SVM	Sen = 0.846 / Spe = 0.855
(Hu, Wang et al. 2016)	ADNI	HC vs MCIc (18 / 144)	3D-DWT (Gabor and Haar) multi-scale features from GM of map of hippocampus.	n.a.	SVM	Sen = 0.718 / Spe = 0.823
(Illan, Garriz et al. 2014)	ADNI	HC vs AD (76 / 63)	Binary values of GM, WM maps in 6 ROI's: parahippocampal gyrus, lingual gyrus, hippocampus, frontal pole, pre-central gyrus, temporal lobe (Bayesian network representation).	n.a.	SVM (ensemble)	Sen = 0.926 / Spe = 0.845

27
Reference	Dataset	Classification (tasks (n))	Image features (FS and representation)	Additional imaging sequences and features	Classifiers	Results	
(Jie, Zhang et al. 2014)	ADNI	HC vs AD (52 / 51)	83 ROI volumes from GM maps (FS by sparse kernel entropy component analysis)	n.a.	kNN	Sen = 0.920 / Spe = 0.904	
(Jie, Zhang et al. 2014)	ADNI	HC vs AD (52 / 51)	GM volumes and PET intensity values in 93 ROIs/flux maps by manifold regularized multi-task learning method.	PET, CSF biomarkers.	MKL	Sen = 0.947 / Spe = 0.958	
(Kheifiz, Ramirez et al. 2015)	ADNI	HC vs AD (229 / 188)	Voxel intensities in GM and WM maps (FS by partial least square).	n.a.	SVM (linear)	Sen = 0.913 / Spe = 0.851	
(Kolmagan, Tu et al. 2014)	ADNI	HC vs MCIc (236 / 166)	SNPE (Scoring by Nonlocal Image Patch Estimator) hippocampal features (FS by sparse logistic regression). Cortical thickness, volumes, curvature and surface area of 180 ROIs (FS by joint mutual information criterion).	n.a.	SVM (linear)	Sen = 0.870 / Spe = 0.638	
(Korolev, Symonds et al. 2016)	ADNI	MCIc vs MClc (139 / 120)	Risk factors, cognitive scores, proteomic data.	n.a.	MKL	Sen = 0.834 / Spe = 0.764	
(Krashenina, Ramirez et al. 2016)	ADNI	HC vs AD (229 / 188)	Mean ROI intensity values of GM and WM maps from T1w and mean intensity from PET (FS by t-test).	PET, fuzzy inference system.	Random forest.	Sen = 0.939 / Spe = 0.922	
(Lebedev, Westman et al. 2014)	ADNI	HC vs AD (75 / 35)	Volumes from 41 ROI’s and cortical thickness values (FS by PCA and RFE).	APOE3, demographics.	Random forest.	Sen = 0.920 / Spe = 0.886	
(Li, Liu et al. 2014)	ADNI	MCIc vs MClc (161 / 132)	Cortical thickness values, volumes of cortical ROI’s, volumes of WM in ROI’s, total surface area of the cortex (FS by hierarchical Lasso method).	Demographics, genetic data, cognitive scores, lab tests.	n.a.	SVM	Sen = 0.667 / Spe = 0.814
(Li, Oishi et al. 2014)	ADNI	HC vs AD (142 / 140)	Voxel-wise combination of 2D-LBP from axial, coronal and sagittal orientations (FS by t-test and a priori knowledge).	n.a.	SVM (RBF)	Sen = 0.884 / Spe = 0.827	
(Li, Yan et al. 2015)	ADNI	HC vs AD (60 / 60)	Volume and 15 texture features from 4 structures (GM, WM, CSF, hippocampus) in L / R hemispheres (FS by chain-like agent genetic algorithm).	n.a.	SVM (RBF)	Sen = 0.927 / Spe = 0.973	
(Liu, Suk et al. 2013)	ADNI	HC vs AD (198 / 198)	Volumes and cortical thickness from 68 ROI’s (sparse representation and high-order graph matching for FS).	n.a.	SVM (multi-kernel)	Sen = 0.894 / Spe = 0.950	
(Liu, Tsou et al. 2013)	ADNI	HC vs MCIc (138 / 93)	Values of volume from 94 ROI’s and cortical thickness from 68 ROI’s (representation by local linear embedding FS by Elastic Net).	Logistic regression.	Random forest.	Sen = 0.650 / Spe = 0.630	
(Lin, Zheng et al. 2013)	ADNI	HC vs AD (229 / 199)	Voxel-wise GM probability values (regularized tree-structured approach for sparse learning).	n.a.	SVM (linear)	Sen = 0.801 / Spe = 0.922	
(Lin, Zhou et al. 2014)	ADNI	HC vs AD (70 / 50)	Voxel-wise GM probability values (regularized tree-structured approach for sparse learning).	n.a.	SVM (linear)	Sen = 0.801 / Spe = 0.922	
(Liu, Cui et al. 2016)	ADNI	HC vs AD (77 / 169 / 85)	126 hippocampal shape features and GM volumes from 100 ROI’s (FS by LASSO).	n.a.	SVM (multi-kernel)	Sen = 0.806 / Spe = 0.893	
(Liu, Cui et al. 2016)	ADNI	HC vs AD (204 / 180)	Values of volume from T1w and of metabolic rate of glucose consumption from PET in 83 ROI’s (FS by Elastic Net).	n.a.	SVM (ensemble)	Sen = 0.928 / Spe = 0.957	
(Luchtenberg, Simões et al. 2014)	ADNI	HC vs AD (66 / 70)	Dissimilarity matrix of voxel intensity histograms.	n.a.	kNN	Sen = 0.860 / Spe = 0.784	
(Martinez-Torteya, Treviño et al. 2015)	ADNI	MCI vs AD (86 / 24)	GM volume in 90 ROI’s, cortical thickness in 139 ROI’s from T1w; metabolic rate of glucose consumption from PET (FS by genetic models and Pearson correlation coefficients).	PET, CSF biomarkers, APOE3, plasma biomarkers.	LDA	Sen = 0.476 / Spe = 0.941	
(Martinez-Murcia, Gorriz et al. 2016)	ADNI	HC vs AD (180 / 180)	GM volume, local gyriation index, convexity and solidity ratios from T1w, mean index, fuzzy index, 3 difference Gaussian features from PET in 83 ROI’s.	n.a.	SVM (multi-kernel)	ACC = 0.6535	
(McEvoy, Fennema-Nietoainte et al. 2009)	ADNI	HC vs AD (139 / 84)	Voxel-wise GM density volumes (FS by regularized logistic regression).	n.a.	SVM (ensemble)	Sen = 0.899 / Spe = 0.919	
(Moraal, Pepe et al. 2015)	ADNI	HC vs MCIc (100 / 164)	Morphometric measures from 58 ROI’s.	n.a.	Random forest + SVM (RBF)	Sen = 0.830 / Spe = 0.930	
(Morgado and Silva-Valverde 2015)	ADNI	HC vs AD (75 / 59)	Voxel-wise GM density values (FS by Minimal Neighborhood Redundancy Maximal Relevance).	n.a.	Random forest + SVM (RBF)	Sen = 0.869 / Spe = 0.872	
(Nho, Shen et al. 2010)	ADNI	HC vs AD (266 / 182)	GM density values from 86 ROI’s, cortical thickness values from 56 ROI’s (FS by SVR).	APOE3, family history.	Random forest.	Sen = 0.850 / Spe = 0.948	
(Pinhasaki and Jörgensen 2016)	ADNI	HC vs AD (96 / 109)	Depth, length, curvature and surface area of 24 sulci (FS by forward selection).	n.a.	SVM (linear)	Sen = 0.900 / Spe = 0.867	
(Rao, Lee et al. 2011)	ADNI	HC vs AD (60 / 69)	Voxel-wise GM density volumes (FS by spatially regularized formulation).	n.a.	Logistic regression	Sen = 0.904 / Spe = 0.803	
(Rieda, Gonzalez et al. 2014)	ADNI	OASIS HC vs AD + AD (98 / 100)	Voxel intensities (graph-based saliency map representation).	n.a.	MKL	Sen = 0.670 / Spe = 0.735	
Reference	Dataset	Classification tasks (n)	Image features (FS and representation)	Additional imaging sequences and features	Classifiers	Results	
-----------	---------	--------------------------	--	--	-------------	---------	
(Savio and GrañA 2013)	OASIS	HC vs AD (318 / 100)	Voxel intensities (represented as the trace of the Jacobian matrix from tensor-based morphometry analysis. FS by t-test)	n.a.	SVM (RBF)	Sen = 0.856 / Spe = 0.863	
(Schmitter, Roche et al. 2015)	ADNI	HC vs AD (276 / 221)	Volumes, obtained from FreeSurfer or MorphoBox: of total GM, left and right temporal GM, left and right hippocampus, total CSF, and lateral, and 3D intensity values. (FS by t-test).	n.a.	SVM	Sen = 0.860 / Spe = 0.910	
(Schooten, Koni et al. 2016)	Local	HC vs AD (173 / 77)	GM density values in 110 ROIs, WM density values in 20 ROIs from T1w, FA and MD values in 20 ROIs, 2415 values of correlation from functional connectivity analysis from fMRI (FS by Elastic Net).	DTL, DMRI, Regularized logistic regression	Sen = 0.826 / Spe = 0.927		
(Shi, Suk et al. 2014)	ADNI	HC vs AD (52 / 51)	GM volumes and PET intensity values in 93 ROI (FS by Lasso).	PET	SVM (linear)	Sen = 0.942 / Spe = 0.969	
(Singh, Fletcher et al. 2014)	ADNI	HC vs MCt (21 / 73 / 54)	Anatomical shape variations with respect to atlas (FS by partial least squares model).	PET, APOE3, CSF biomarkers.	Sen = 0.942 / Spe = 0.969		
(Spulber, Simmons et al. 2013)	AddNeuroMed	HC vs AD (52 / 51)	Volumes of 23 ROIs and cortical thickness values of 54 ROIs.	PET	OPLS	Sen = 0.861 / Spe = 0.904	
(Tong, Wolz et al. 2014)	ADNI	HC vs AD (231 / 198)	Voxel intensity from a variable number K of patches (MML approach, FS by Elastic Net).	PET, SVM (linear)	Sen = 0.959 / Spe = 0.969		
(Vanol, Gaonkar et al. 2012)	ADNI	HC vs AD (146 / 116)	Voxel-wise density values from GM, WM and ventricles maps (FS by t-test).	PET, SVM	Sen = 0.942 / Spe = 0.969		
(Vemuri, Gunter et al. 2008)	ADNI	HC vs AD (50 / 50)	Voxel-wise density values from GM, WM and CSF maps (FS by regression).	Demographics, APOE3,	SVM (ensemble)	Sen = 0.862 / Spe = 0.897	
(Wachinger and Reuter 2016)	ADNI	HC vs MCI vs AD (129 / 122 / 103)	Cortical thickness values in 70 ROI’s, volumes of 59 ROI’s and 58 shape features, (FS by Elastix Net).	n.a.	Multimodal regression	Acc = 0.590	
(Wang, Jia et al. 2012)	ADNI	HC vs AD (229 / 199)	GM, WM, CSF values in 54 ROIs obtained from MABMIS pipeline (FS by t-test).	n.a.	SVM (linear)	Sen = 0.861 / Spe = 0.918	
(Wang, Du et al. 2015)	ADNI	HC vs MCI (52 / 99)	GM volumes and PET intensity values in 93 ROI (FS by PCA).	PET, CSF biomarkers.	SVM (linear)	Sen = 0.904 / Spe = 0.943	
(Wen, Yap et al. 2012)	ADNI	HC vs AD (200 / 198)	Cortical thickness, GM and WM volumes in 68 ROIs. Correlative features between pairs of ROI’s (FS by t-test, mKMR and SVM-RFE).	PET, CSF biomarkers.	SVM (linear)	Sen = 0.827 / Spe = 0.847	
(Wei, Li et al. 2016)	ADNI	HC vs MCI (83 / 78)	Cortical thickness, volume, and cortical surface area in 68 ROI’s, 136 nodal features from the thickness network (FS by regularized sparse linear regression).	PET, CSF biomarkers.	SVM (linear)	Sen = 0.848 / Spe = 0.759	
(Westman, Simmons et al. 2011)	AddNeuroMed	HC vs AD (335 / 295)	Cortical thickness in 57 selected ROI’s and volumes of 23 ROI’s.	n.a.	OPLS	Sen = 0.834 / Spe = 0.878	
(Wolz, Jucknen et al. 2011)	AddNeuroMed	HC vs AD (231 / 198)	Hippocampal volume, cortical thickness from different ROIs, 84 tensor-based morphometry and 20 manifold learning features (FS by t-test).	PET, SVM (linear)	Sen = 0.930 / Spe = 0.950		
(Xie, Cui et al. 2015)	Local	HC vs MCI (64 / 64)	Voxel-wise value of GM from T1w and FA and MD from DTI (FS by t-test).	PET, SVM (linear)	Sen = 0.786 / Spe = 0.888		
(Xu, Wu et al. 2015)	ADNI	HC vs MCI (117 / 113)	GM volumes from T1w and T2w maps from PET.	PET (FDG and PET/mri).	Sen = 0.956 / Spe = 0.940		
(Yang, Li et al. 2014)	ADNI	HC vs MCI (150 / 79)	Voxel-wise value from GM (RCA decomposition and FS by ISOMAP).	MMSE, GDTOTAL, HMSCORE.	SVM	Sen = 0.922 / Spe = 0.982	
(Ye, Poh et al. 2011)	ADNI	HC vs MCI (169 / 68)	GM RAVENS map (graph representation and FS by ISOMAP).	PET, APOE3,	SVM (linear)	Sen = 0.941 / Spe = 0.408	
(Ye, Zue et al. 2015)	ADNI	HC vs AD (52 / 51)	GM volumes and PET intensity values in 93 ROI’s (FS by discriminative multi-task approach).	PET, SVM (linear)	Sen = 0.947 / Spe = 0.971		
(Young, Modat et al. 2013)	ADNI	HC vs MCI (96 / 47)	GM volumes and PET intensity values in 92 ROI’s.	PET, APOE3.	Gaussian process	Sen = 0.787 / Spe = 0.656	
(Zhang, Wang et al. 2011)	ADNI	HC vs MCI (52 / 51)	GM volumes and PET intensity values in 93 ROI’s.	PET, CSF biomarkers.	SVM (linear, multi-kernel)	Sen = 0.930 / Spe = 0.933	
(Zhang, Wang et al. 2015)	OASIS	HC vs MCI (97 / 57 / 24)	3D-DFT decomposition features, IVC, atlas scaling factor, normalized brain volume (FS by PCA).	Demographics, Education, SVM (RBF).	SVM (linear, multi-kernel)	Sen = 0.818 / Spe = 0.660	
(Zheng, Wang et al. 2015)	OASIS	HC vs AD (98 / 28)	Voxel-wise displacement field values (direction and magnitude) of key T1w slices, (FS by PCA).	PET, APOE3.	SVM (linear)	Sen = 0.006 / Spe = 0.934	
(Zhang, Stomnington et al. 2016)	ADNI	HC vs AD (228 / 194)	Hippocampal surface tensor-based morphometry features and radial distance (FS by sparse coding).	APOE3.	SVM (RBF)	Sen = 0.809 / Spe = 0.943	
(Zheng, Yao et al. 2015)	ADNI	HC vs MCI (189 / 109)	Cortical thickness in 78 ROI’s (correlation matrix representation, FS by mKMR and SVM-RFE).	n.a.	SVM	Sen = 0.878 / Spe = 0.858	
(Zheng, Shi et al. 2016)	ADNI	HC vs AD (52 / 51)	GM volumes and PET intensity values in 93 ROI’s (high-level representation from multi-modality stacked deep polynomial network).	n.a.	SVM (linear)	Sen = 0.973 / Spe = 0.983	
(Zhao, Goryniala et al. 2014)	ADNI	HC vs AD (127 / 59)	41 regional and 10 morphometric volumes (FS by t-test).	n.a.	MMSE.	SVM (RBF)	Sen = 0.840 / Spe = 0.961
(Zhu, Suk et al. 2014)	ADNI	HC vs MCI (127 / 56)	GM volumes and PET intensity values in 93 ROI’s (FS by regularized linear square regression).	n.a.	SVM	Sen = 0.852 / Spe = 0.823	
(Zhu and Shi 2014)	ADNI	HC vs AD (52 / 51)	GM volumes in 93 ROI’s (co-training semi-supervised learning approach).	n.a.	SVM (linear)	Sen = 0.869 / Spe = 0.904	
(Zhu, Shi et al. 2014)	ADNI	HC vs AD (52 / 51)	GM volumes and PET intensity values in 93 ROI’s (FS by Hessian regularization semi-supervised approach).	n.a.	SVM (linear)	Sen = 0.952 / Spe = 0.907	

29
Table S4. Machine learning methods for classification of other types of dementia.

Reference	Dataset (population)	Validation set size	Tasks	Imaging sequences	Imaging features (FS and representation)	Classifiers	Acc
(Chen, Tong et al. 2015)	Local (Stroke)	350 / 240	HC vs SVD	CT	Voxel intensities in ROI's from WML-based atlas.	MIL	0.75
(Koikkalainen, Rhodius et al. 2015)	Local (Dementia)	118 / 223 / 92 / 47 / 24	HC vs AD vs FTD vs DLB vs SVD	T1w, FLAIR	Volumes of 142 ROI's, values of TBM and VBM in 140 ROI's, 20 manifold learning features, 8 ROI-based gradings and 1 vascular burden measure.	Multimodal statistical approach.	0.706
(Oppedal, Eftestøl et al. 2015)	Local (Dementia)	36 / 57 / 16	HC vs AD vs LBD	T1w, FLAIR	Voxel-wise 2D-LBP and contrast features from WM and WML regions in T1w and FLAIR (FS by best first approach).	Random forest.	0.87
(Vemuri, Simon et al. 2011)	Local (Dementia)	48 / 20 / 47	AD vs FTD vs LBD	T1w	GM volumes in 91 ROI's (FS by LDA).	k-means	0.867
(Wang, Redmond et al. 2016)	Local (Dementia)	54 / 55 / 57 / 54 / 55	AD vs FTD	HC vs AD vs FTD	17 neurophysiological features and GM volumes of 8 ROI's (amygdala, hippocampus, medial temporal lobe, temporal pole, dorsolateral prefrontal cortex, ventromedial prefrontal cortex, striatum and insula (FS by best first approach).	Naive Bayes	0.647

Table S5: Machine learning studies on lesion segmentation; top, white matter hyperintensities; bottom, ischaemic stroke lesions. DC = DICE coefficient where a value close to 1 indicates perfect match of the test segmentation with the reference standard and 0 indicates no overlap.

Reference	Dataset (population)	Validation set size	Target Imaging sequences	Imaging features (FS and representation)	Classifiers	DC
(Fiot, Cohen et al. 2013)	Local (Ageing)	125	WMH T1w, T2w, FLAIR, PD	Neighbourhood voxel intensities and pyramidal features (Gaussian kernels) from each modality in ROI's.	SVM (RBF)	0.69
(Ithapu, Singh et al. 2014)	Local (AD and ageing)	38	WMH T1w, FLAIR	Voxel intensities and textons in ROI's.	Random forest	0.67
(Erus, Zacharaki et al. 2014)	Local (Diabetic and ageing)	80	WMH FLAIR	Voxel-wise intensity values of abnormality map in ROI's (FS by wavelet-based approach).	Iterative wavelet-based PCA model.	0.59
(Griffanti, Zamboni et al. 2016)	Local (TIA or minor stroke, no lacunar infarcts)	82	WMH FLAIR	Spatially weighted voxel-wise intensity values, patch average intensity.	kNN	0.52
(Vos, Biesbroek et al. 2013)	Local (Stroke)	30	Stroke CT.	Location and volume of lesion, voxel intensities and likelihood of belonging to a lesion in lesion and mirrored region (FS by best first search approach)	Random forest	0.74
(Guo, Fridriksson et al. 2015)	Local (Stroke)	60	Stroke T1w	Voxel-wise 0., 1., 2-order statistical features from T1w, GM, WM, CSF and lesion probability map.	SVM (linear, ensemble)	0.73
(Maier, Schröder et al. 2015)	Local (spatial neglect)	35	Stroke FLAIR	Voxel intensity and location, weighted mean and histogram in voxel neighbourhood.	Random forest	0.67

Table S6. Machine learning for detection of specific (small) lesions; top, microbleeds (CMB); bottom, lacunes.

Reference	Dataset (population)	Validation set size	Target Imaging sequences	Imaging features (FS and representation)	Classifiers	Pre	Rec
(Ghafaryasl, van der Lijn et al. 2012)	Local (Ageing)	81	CMB T2*, GRE	Intensity, size and shape features from candidate ROI's in T2*. Intensity in GRE (FS by feed-forward approach).	Parzen, QDC	0.352	0.99
(Dou, Chen et al. 2016)	Local (Stroke and ageing)	50	CMB SWI	3D patches of SWI used as input.	3D conv-NN	0.443	0.93
(Fazollahi, Meriaudeau et al. 2015)	Local (Diabetic and ageing)	66	CMB SWI	3D Radon- and Hessian-based shape features from candidate ROI's.	Random forest (cascade)	0.101	0.87
(Uchiyama, Abe et al. 2014)	Local (lacunar infarcts)	132	Stroke T1w, T2w	Location, intensity differences in T1w and T2w, multi-scale nodular and linear component (FS by PCA).	SVM	0.154	0.97
Figure S1 QUADAS-2 charts of the studies included in the review
Figure S2 – Forest plot of accuracy of studies for differentiating different cognitive states ordered by data source, 1st page.

Figure S2 continued – Forest plot of accuracy of studies for differentiating different cognitive states ordered by data source, 2nd page.
Figure S3 – Forest plot of accuracy of studies for differentiating different cognitive states ordered by machine learning method, 1st page.

Figure S3 cont – Forest plot of accuracy of studies for differentiating different cognitive states ordered by machine learning method, 2nd page.
Figure S4 – Forest plot of accuracy of studies for differentiating different cognitive states ordered by study size, 1st page.
Figure S4 continued – Forest plot of accuracy of studies for differentiating different cognitive states ordered by study size, 2nd page.
References

Aggarwal, N., et al. (2015). "3d discrete wavelet transform for computer aided diagnosis of Alzheimer's disease using t1-weighted brain MRI." International Journal of Imaging Systems and Technology 25: 179-190.

Aguilar, C., et al. (2013). "Different multivariate techniques for automated classification of MRI data in Alzheimer’s disease and mild cognitive impairment." Psychiatry Research: Neuroimaging 212: 89-98.

Ahmed, O. B., et al. (2015). "Alzheimer's disease diagnosis on structural MR images using circular harmonic functions descriptors on hippocampus and posterior cingulate cortex." Computerized Medical Imaging and Graphics 44: 13-25.

Anagnostopoulos, C.-N., et al. (2013). Classification models for Alzheimer's disease detection. International Conference on Engineering Applications of Neural Networks: 193-202.

Archana, M. and S. Ramakrishnan (2014). Detection of Alzheimer disease in MR images using structure tensor. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society: 1043-1046.

Babu, G. S., et al. (2013). Meta-cognitive q-Gaussian RBF network for binary classification: Application to mild cognitive impairment (MCI). Neural Networks (UCNN), The 2013 International Joint Conference on: 1-8.

Beheshti, I., et al. (2015). "Probability distribution function-based classification of structural MRI for the detection of Alzheimer’s disease." Computers in biology and medicine 64: 208-216.

Casanova, R., et al. (2013). "Alzheimer's disease risk assessment using large-scale machine learning methods." PLoS ONE 8: e77949.

Chaddad, A., et al. (2016). Local discriminative characterization of MRI for Alzheimer's disease. 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Institute of Electrical and Electronics Engineers (IEEE).

Chen, L., et al. (2015). Identification of Cerebral Small Vessel Disease Using Multiple Instance Learning. International Conference on Medical Image Computing and Computer-Assisted Intervention: 523-530.

Chen, X., et al. (2015). Group Sparse Representation for Prediction of MCI Conversion to AD. International Conference on Intelligent Computing: 510-519.

Chen, Y. and T. D. Pham (2013). "Development of a brain MRI-based hidden Markov model for dementia recognition." Biomedical engineering online 12: 1.

Chincarini, A., et al. (2011). "Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer's disease." Neuroimage 58: 469-480.

Cho, Y., et al. (2012). "Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data." Neuroimage 59: 2217-2230.

Costafreda, S. G., et al. (2011). "Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment." Neuroimage 56: 212-219.

Coupé, P., et al. (2015). "Detection of Alzheimer's disease signature in MR images seven years before conversion to dementia: Toward an early individual prognosis." Human Brain Mapping 36: 4758-4770.

Cui, Y., et al. (2012). "Automated detection of amnestic mild cognitive impairment in community-dwelling elderly adults: a combined spatial atrophy and white matter alteration approach." Neuroimage 59: 1209-1217.

Cuingnet, R., et al. (2011). "Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database." Neuroimage 56: 766-781.

Cuingnet, R., et al. (2013). "Spatial and Anatomical Regularization of SVM: A General Framework for Neuroimaging Data." IEEE Transactions on Pattern Analysis and Machine Intelligence 35: 682-696.

Davatzikos, C., et al. (2011). "Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification." Neurobiology of aging 32: 2322--e2319.

Ding, Y., et al. (2015). Classification of Alzheimer's disease based on the combination of morphometric feature and texture feature. Bioinformatics and Biomedicine (BIBM), 2015 IEEE International Conference on: 409-412.
Dou, Q., et al. (2016). "Automatic Detection of Cerebral Microbleeds From MR Images via 3D Convolutional Neural Networks." IEEE Trans Med Imaging 35: 1182-1195.

Dubey, R., et al. (2014). "Analysis of sampling techniques for imbalanced data: An n= 648 ADNI study." NeuroImage 87: 220-241.

Dyrba, M., et al. (2012). Combining DTI and MRI for the automated detection of Alzheimer’s disease using a large European multicenter dataset. International Workshop on Multimodal Brain Image Analysis: 18-28.

Erus, G., et al. (2014). "Individualized statistical learning from medical image databases: Application to identification of brain lesions." Medical image analysis 18: 542-554.

Eskildsen, S. F., et al. (2015). "Structural imaging biomarkers of Alzheimer’s disease: predicting disease progression." Neurobiology of aging 36: S23–S31.

Eskildsen, S. F., et al. (2013). "Prediction of Alzheimer’s disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning." NeuroImage 65: 220-241.

Fazlollahi, A., et al. (2015). "Computer-aided detection of cerebral microbleeds in susceptibility-weighted imaging." Computerized Medical Imaging and Graphics 46: 269-276.

Filipovych, R., et al. (2011). "Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI)." NeuroImage 55: 1109-1119.

Fiot, J.-B., et al. (2013). "Efficient brain lesion segmentation using multi-modality tissue-based feature selection and support vector machines." International Journal for Numerical Methods in Biomedical Engineering 29: 905-915.

Ghafaryasl, B., et al. (2012). A computer aided detection system for cerebral microbleeds in brain MRI. 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI): 138-141.

Granziera, C., et al. (2015). "A multi-contrast MRI study of microstructural brain damage in patients with mild cognitive impairment." NeuroImage: Clinical 8: 631-639.

Gray, K. R., et al. (2013). "Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease." NeuroImage 65: 167-175.

Griffanti, L., et al. (2016). "BIANCA (Brain Intensity AbNormality Classification Algorithm): A new tool for automated segmentation of white matter hyperintensities." NeuroImage 141: 191-205.

Guerrero, R., et al. (2014). "Manifold population modeling as a neuro-imaging biomarker: Application to ADNI and ADNI-GO." NeuroImage 94: 275-286.

Guo, D., et al. (2015). "Automated lesion detection on MRI scans using combined unsupervised and supervised methods." BMC medical imaging 15: 1.

Herrera, L. J., et al. (2013). Classification of MRI Images for Alzheimer's Disease Detection. 2013 International Conference on Social Computing, Institute of Electrical and Electronics Engineers (IEEE).

Hinrichs, C., et al. (2009). "Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset." NeuroImage 48: 138-149.

Hinrichs, C., et al. (2011). "Predictive markers for AD in a multi-modality framework: An analysis of MCI progression in the ADNI population." NeuroImage 55: 574-589.

Hor, S. and M. Moradi (2016). "Learning in data-limited multimodal scenarios: Scandent decision forests and tree-based features." Medical Image Analysis 34: 30-41.

Hu, K., et al. (2016). "Multi-scale features extraction from baseline structure MRI for MCI patient classification and AD early diagnosis." Neurocomputing 175: 132-145.

Illan, I. A., et al. (2014). "Spatial component analysis of MRI data for Alzheimer’s disease diagnosis: a Bayesian network approach." Front. Comput. Neurosci. 8.
Ithapu, V., et al. (2014). "Extracting and summarizing white matter hyperintensities using supervised segmentation methods in Alzheimer's disease risk and aging studies." Human Brain Mapping: n/a–n/a.

Jiang, Q. and J. Shi (2014). Sparse kernel entropy component analysis for dimensionality reduction of neuroimaging data. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Institute of Electrical and Electronics Engineers (IEEE).

Jie, B., et al. (2014). "Manifold regularized multitask feature learning for multimodality disease classification." Human Brain Mapping 36: 489-507.

Khedher, L., et al. (2015). "Early diagnosis of Alzheimer's disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images." Neurocomputing 151: 139-150.

Koikkalainen, J., et al. (2016). "Differential diagnosis of neurodegenerative diseases using structural MRI data." NeuroImage: Clinical 11: 435-449.

Komlagan, M., et al. (2014). Anatomically Constrained Weak Classifier Fusion for Early Detection of Alzheimer's Disease. International Workshop on Machine Learning in Medical Imaging: 141-148.

Korolev, I. O., et al. (2016). "Predicting Progression from Mild Cognitive Impairment to Alzheimer's Dementia Using Clinical, MRI, and Plasma Biomarkers via Probabilistic Pattern Classification." PLoS ONE 11: e0138866.

Krashenyi, I., et al. (2016). "Fuzzy Computer-Aided Alzheimer's Disease Diagnosis Based on MRI Data." Current Alzheimer Research 13: 545-556.

Lebedev, A. V., et al. (2014). "Random Forest ensembles for detection and prediction of Alzheimer's disease with a good between-cohort robustness." NeuroImage: Clinical 6: 115-125.

Li, H., et al. (2014). "Hierarchical Interactions Model for Predicting Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD) Conversion." PLoS ONE 9: e82450.

Li, L., et al. (2010). Detection of Mild Cognitive Impairment Using Image Differences and Clinical Features. 2010 IEEE International Conference on BioInformatics and BioEngineering, Institute of Electrical and Electronics Engineers (IEEE).

Li, M., et al. (2014). "An Efficient Approach for Differentiating Alzheimer's Disease from Normal Elderly Based on Multicenter MRI Using Gray-Level Invariant Features." PLoS ONE 9: e105563.

Li, Y., et al. (2015). Classification of Alzheimer's Disease Based on Multiple Anatomical Structures' Asymmetric Magnetic Resonance Imaging Feature Selection. Neural Information Processing, Springer Science Business Media: 280-289.

Liu, F., et al. (2013). High-order graph matching based feature selection for Alzheimer's disease identification. International Conference on Medical Image Computing and Computer-Assisted Intervention: 311-318.

Liu, F., et al. (2014). "Multiple Kernel Learning in the Primal for Multimodal Alzheimer's Disease Classification." IEEE Journal of Biomedical and Health Informatics 18: 984-990.

Liu, M., et al. (2016). "Inherent Structure-Based Multiview Learning With Multitemplate Feature Representation for Alzheimer's Disease Diagnosis." IEEE Transactions on Biomedical Engineering 63: 1473-1482.

Liu, M., et al. (2013). "Identifying Informative Imaging Biomarkers via Tree Structured Sparse Learning for AD Diagnosis." Neuroinform 12: 381-394.

Liu, S., et al. (2016). "Cross-View Neuroimage Pattern Analysis in Alzheimer's Disease Staging." Frontiers in Aging Neuroscience 8.

Liu, S., et al. (2015). "Multimodal Neuroimaging Feature Learning for Multiclass Diagnosis of Alzheimer's Disease." IEEE Transactions on Biomedical Engineering 62: 1132-1140.

Liu, X., et al. (2013). "Locally linear embedding (LLE) for MRI based Alzheimer's disease classification." NeuroImage 83: 148-157.

Luchtenberg, A., et al. (2014). Early detection of Alzheimer's disease using histograms in a dissimilarity-based classification framework. SPIE Medical Imaging: 903502.

Maier, O., et al. (2015). "Classifiers for Ischemic Stroke Lesion Segmentation: A Comparison Study." PLoS ONE 10: e0145118.
Martinez-Murcia, F., et al. (2016). "A Spherical Brain Mapping of MR Images for the Detection of Alzheimer's Disease." *CAR* **13**: 575-588.

Martinez-Torteya, A., et al. (2015). "Improved Diagnostic Multimodal Biomarkers for Alzheimer's Disease and Mild Cognitive Impairment." *BioMed Research International* **2015**: 1-11.

McEvoy, L. K., et al. (2009). "Alzheimer Disease: Quantitative Structural Neuroimaging for Detection and Prediction of Clinical and Structural Changes in Mild Cognitive Impairment." *Radiology* **251**: 195-205.

Moradi, E., et al. (2015). "Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects." *NeuroImage* **104**: 398-412.

Morgado, P. M. and M. Silveira (2015). "Minimal neighborhood redundancy maximal relevance: Application to the diagnosis of Alzheimer's disease." *Neurocomputing* **155**: 295-308.

Nho, K., et al. (2010). Automatic prediction of conversion from mild cognitive impairment to probable Alzheimer’s disease using structural magnetic resonance imaging. *AMIA Annual Symposium Proceedings*. **2010**: 542.

Oppedal, K., et al. (2015). "Classifying Dementia Using Local Binary Patterns from Different Regions in Magnetic Resonance Images." *International Journal of Biomedical Imaging* **2015**: 1-14.

Plocharski, M. and L. R. Østergaard (2016). "Extraction of sulcal medial surface and classification of Alzheimer's disease using sulcal features." *Computer Methods and Programs in Biomedicine* **133**: 35-44.

Rao, A., et al. (2011). Classification of Alzheimer's Disease from structural MRI using sparse logistic regression with optional spatial regularization. *2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society*, Institute of Electrical and Electronics Engineers (IEEE).

Rueda, A., et al. (2014). "Extracting Salient Brain Patterns for Imaging-Based Classification of Neurodegenerative Diseases." *IEEE Trans Med Imaging* **33**: 1262-1274.

Savio, A. and M. GrañA (2013). "Deformation based feature selection for computer aided diagnosis of Alzheimer's disease." *Expert Systems with Applications* **40**: 1619-1628.

Schmitter, D., et al. (2015). "An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease." *NeuroImage: Clinical* **7**: 7-17.

Schouten, T. M., et al. (2016). "Combining anatomical, diffusion, and resting state functional magnetic resonance imaging for individual classification of mild and moderate Alzheimer's disease." *NeuroImage: Clinical* **11**: 46-51.

Shi, Y., et al. (2014). Joint Coupled-Feature Representation and Coupled Boosting for AD Diagnosis. *2014 IEEE Conference on Computer Vision and Pattern Recognition*, Institute of Electrical and Electronics Engineers (IEEE).

Singh, N., et al. (2014). "Quantifying anatomical shape variations in neurological disorders." *Medical Image Analysis* **18**: 616-633.

Spulber, G., et al. (2013). "An MRI-based index to measure the severity of Alzheimer's disease-like structural pattern in subjects with mild cognitive impairment." *J Intern Med* **273**: 396-409.

Suk, H.-I., et al. (2015). "Deep sparse multi-task learning for feature selection in Alzheimer's disease diagnosis." *Brain Structure and Function* **221**: 2569-2587.

Tong, T., et al. (2014). "Multiple instance learning for classification of dementia in brain MRI." *Medical Image Analysis* **18**: 808-818.

Uchiyama, Y., et al. (2014). "Eigenspace Template Matching for Detection of Lacunar Infarcts on MR Images." *Journal of Digital Imaging* **28**: 116-122.

Varol, E., et al. (2012). Feature ranking based nested support vector machine ensemble for medical image classification. *2012 9th IEEE International Symposium on Biomedical Imaging (ISBI)*, Institute of Electrical and Electronics Engineers (IEEE).

Vemuri, P., et al. (2008). "Alzheimer's disease diagnosis in individual subjects using structural MR images: Validation studies." *NeuroImage* **39**: 1186-1197.
Vemuri, P., et al. (2011). "Antemortem differential diagnosis of dementia pathology using structural MRI: Differential-STAND." *NeuroImage* 55: 522-531.

Vos, P. C., et al. (2013). Automatic detection and segmentation of ischemic lesions in computed tomography images of stroke patients. *Medical Imaging 2013: Computer-Aided Diagnosis*. C. L. Novak and S. Aylward, SPIE-Intl Soc Optical Eng.

Wachinger, C. and M. Reuter (2016). "Domain adaptation for Alzheimer’s disease diagnostics." *NeuroImage* 139: 470-479.

Wang, B., et al. (2015). A hierarchical model for identifying mild cognitive impairment. *2015 11th International Conference on Natural Computation (ICNC)*, Institute of Electrical and Electronics Engineers (IEEE).

Wang, J., et al. (2016). "A Comparison of Magnetic Resonance Imaging and Neuropsychological Examination in the Diagnostic Distinction of Alzheimer’s Disease and Behavioral Variant Frontotemporal Dementia." *Frontiers in Aging Neuroscience* 8.

Wang, Y., et al. (2012). Groupwise segmentation improves neuroimaging classification accuracy. *International Workshop on Multimodal Brain Image Analysis*: 185-193.

Wee, C.-Y., et al. (2012). "Prediction of Alzheimer's disease and mild cognitive impairment using cortical morphological patterns." *Human Brain Mapping* 34: 3411-3425.

Wei, R., et al. (2016). "Prediction of Conversion from Mild Cognitive Impairment to Alzheimer's Disease Using MRI and Structural Network Features." *Frontiers in Aging Neuroscience* 8.

Westman, E., et al. (2011). "AddNeuroMed and ADNI: Similar patterns of Alzheimer's atrophy and automated MRI classification accuracy in Europe and North America." *NeuroImage* 58: 818-828.

Wolz, R., et al. (2011). "Multi-Method Analysis of MRI Images in Early Diagnostics of Alzheimer's Disease." *PLoS ONE* 6: e25446.

Xie, Y., et al. (2015). "Identification of Amnestic Mild Cognitive Impairment Using Multi-Modal Brain Features: A Combined Structural MRI and Diffusion Tensor Imaging Study." *Journal of Alzheimer’s Disease* 47: 509-522.

Xu, L., et al. (2015). "Multi-modality sparse representation-based classification for Alzheimer's disease and mild cognitive impairment." *Computer Methods and Programs in Biomedicine* 122: 182-190.

Yang, W., et al. (2014). ICA image feature extraction for improving diagnosis of Alzheimer's disease and mild cognitive impairment. *2014 10th International Conference on Natural Computation (ICNC)*, Institute of Electrical and Electronics Engineers (IEEE).

Ye, D. H., et al. (2011). Semi-supervised Pattern Classification: Application to Structural MRI of Alzheimer's Disease. *2011 International Workshop on Pattern Recognition in NeuroImaging*, Institute of Electrical and Electronics Engineers (IEEE).

Ye, T., et al. (2015). Discriminative Multi-task Feature Selection for Multi-modality Based AD/MCI Classification. *2015 International Workshop on Pattern Recognition in NeuroImaging*, Institute of Electrical and Electronics Engineers (IEEE).

Young, J., et al. (2013). "Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment." *NeuroImage: Clinical* 2: 735-745.

Zhang, D., et al. (2011). "Multimodal classification of Alzheimer's disease and mild cognitive impairment." *NeuroImage* 55: 856-867.

Zhang, J., et al. (2016). Applying sparse coding to surface multivariate tensor-based morphometry to predict future cognitive decline. *2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI)*, Institute of Electrical and Electronics Engineers (IEEE).

Zhang, Y. and S. Wang (2015). "Detection of Alzheimer’s disease by displacement field and machine learning." *PeerJ* 3: e1251.

Zhang, Y., et al. (2015). "Detection of Alzheimer’s disease and mild cognitive impairment based on structural volumetric MR images using 3D-DWT and WTA-KSVM trained by PSOTVAC." *Biomedical Signal Processing and Control* 21: 58-73.

Zheng, W., et al. (2015). "Novel Cortical Thickness Pattern for Accurate Detection of Alzheimer's Disease." *Journal of Alzheimer's Disease* 48: 995-1008.

Zheng, X., et al. (2016). Multi-modality stacked deep polynomial network based feature learning for Alzheimer's disease diagnosis. *2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI)*, Institute of Electrical and Electronics Engineers (IEEE).
Zhou, Q., et al. (2014). "An Optimal Decisional Space for the Classification of Alzheimer’s Disease and Mild Cognitive Impairment.” IEEE Transactions on Biomedical Engineering 61: 2245-2253.

Zhu, J. and J. Shi (2014). Hessian regularization based semi-supervised dimensionality reduction for neuroimaging data of Alzheimer’s disease. 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), Institute of Electrical and Electronics Engineers (IEEE).

Zhu, J., et al. (2014). Co-training based semi-supervised classification of Alzheimer’s disease. 2014 19th International Conference on Digital Signal Processing, Institute of Electrical and Electronics Engineers (IEEE).

Zhu, X., et al. (2015). “Canonical feature selection for joint regression and multi-class identification in Alzheimer’s disease diagnosis.” Brain Imaging and Behavior 10: 818-828.

Zhu, X., et al. (2014). A Novel Multi-relation Regularization Method for Regression and Classification in AD Diagnosis. Medical Image Computing and Computer-Assisted Intervention MICCAI 2014, Springer Science Business Media: 401-408.