Balancing Donor-Acceptor and Dispersion Effects in Heavy Main Group Element π Interactions: Effect of Substituents on the Pnictogen-π Arene Interaction

Małgorzata Krasowska, Ana-Maria Fritzsche, Michael Mehring, and Alexander A. Auer*©2019
The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Table of Contents

Figure S1. Potential energy curves (in kJ mol\(^{-1}\)) for idealized BiCl\(_3\) adducts with benzene derivatives (see Scheme 1 for details) a) with one substituent, b) with three substituents calculated at the PBE-D3/def2-QZVP level of theory. ... 4

Figure S2. Potential energy curves (in kJ mol\(^{-1}\)) for the interaction potentials of Bi(CH\(_3\))\(_3\) adduct with selected benzene derivatives calculated at the PBE-D3/def2-QZVP level of theory. ... 4

Table S3. Calculated polarizabilities (a.u.) of selected substituted benzenes at the PBE-D3/def2-QZVP level of theory. .. 5

Table S4. NBO partial charges (a.u.) for idealized BiCl\(_3\) adducts with substituted benzenes computed at the PBE-D3/def2-QZVP level of theory. ... 5

Table S5. NBO partial charges (a.u.) for idealized MCl\(_3\) adducts with selected substituted benzenes computed at the PBE-D3/def2-QZVP level of theory. ... 6

Figure S6. Dispersion energy plots for equilibrium structures of Bi···\(\pi\) arene adducts computed at the DLPNO-CCSD(T)/cc-pVQZ (cc-pwCVQZ-PP for bismuth) level of theory with tightPNO settings. ... 7

Table S7. NBO partial charges (a.u.) for relaxed Bi···\(\pi\) arene adducts computed at the PBE-D3/def2-QZVP level of theory. .. 8

Table S8. Energies of the frontier molecular orbitals (eV) computed at the PBE-D3/def2-QZVP level of theory. .. 8

Figure S9. Correlation between energies of the LUMO and the DLPNO-CCSD(T) interaction energies of the minima on the potential energy curves. ... 9

Table S10. Sum of experimentally determined van der Waals radii (in Å) of bismuth and donor atoms (O, N, F, and Cl) of substituents. ... 9

Table S11. NBO partial charges (a.u.) for relaxed Bi···R adducts computed at the PBE-D3/def2-QZVP level of theory. .. 9

Figure S12. Dispersion energy plots for equilibrium structures of Cl···\(\pi\) arene adducts computed at the DLPNO-CCSD(T)/cc-pVQZ (cc-pwCVQZ-PP for bismuth) level of theory with tightPNO settings. ... 10

Scheme S13. Numbering of the atoms in NMR calculations. ... 10

Table S14. \(\Delta\delta\) (ppm) values (gas phase) for selected benzene derivatives with one substituent computed using various density functionals with the pcsSeg-3 basis set. ... 11

Table S15. \(^{13}\)C NMR chemical shifts of the free monosubstituted arenes (C\(_6\)H\(_5\)R) and mixtures with BiCl\(_3\) in a 1:1 and 1:7 molar ratio, measured in CD\(_3\)NO\(_2\) solution at ambient temperature. ... 12

Table S16. The difference between the chemical shift of the arene in the mixture with BiCl\(_3\) and the chemical shift of the free monosubstituted arene. ... 13
Table S17. 13C NMR chemical shifts of the free trisubstituted arenes (C$_6$H$_3$R$_3$-1,3,5) and mixtures with BiCl$_3$ and in a 1:1 and 1:7 molar ratio, measured in CD$_3$NO$_2$ solution at ambient temperature. The difference between the chemical shift of the BiCl$_3$ adduct and the chemical shift of the free trisubstituted arene. ... 14

Table S18. Δδ values for nitrobenzene computed at the M06L/pcSseg-3 level of theory in the gas phase, with CPCM solvation model and with explicit solvent molecules. 15

Figure S19. Nitrobenzene molecule surrounded by explicit nitromethane molecules optimized at the PBE-D3/def2-SVP level of theory. .. 15

Figure S20. Possible motifs of interaction between solvent and BiCl$_3$ molecule as calculated at the PBE-D3/def2-QZVP level of theory. ... 15

Experimental details of NMR measurements.. 16

Cartesian coordinates ... 17
Figure S1. Potential energy curves (in kJ mol\(^{-1}\)) for idealized BiCl\(_3\) adducts with benzene derivatives (see Scheme 1 for details) a) with one substituent, b) with three substituents calculated at the PBE-D3/def2-QZVP level of theory.

Figure S2. Potential energy curves (in kJ mol\(^{-1}\)) for the interaction potentials of Bi(CH\(_3\))\(_3\) adduct with selected benzene derivatives calculated at the PBE-D3/def2-QZVP level of theory.
Molecule	Polarizability (a.u.)
CF$_3$	84.3
OCHO	90.3
NO$_2$	88.7
OH	75.4
CHO	88.1
F	69.6
NH$_2$	82.0
benzene	69.0

Table S4. NBO partial charges (a.u.) for idealized BiCl$_3$ adducts with substituted benzenes computed at the PBE-D3/def2-QZVP level of theory.

BiCl$_3$ adduct with	Σq(BiCl$_3$)(adduct)	q(Bi)(adduct)	Δq(Bi)	Δq(Cl$_3$)
NO$_2$	-0.039	1.273	-0.001	-0.039
CF$_3$	-0.045	1.286	0.012	-0.057
OCHO	-0.059	1.287	0.013	-0.072
benzene	-0.059	1.289	0.015	-0.074
OH	-0.072	1.290	0.016	-0.088
NH$_2$	-0.089	1.292	0.018	-0.107
3NO$_2$	-0.009	1.231	-0.043	0.034
3CF$_3$	-0.019	1.263	-0.011	-0.009
3OCHO	-0.041	1.279	0.005	-0.046
3OH	-0.080	1.283	0.009	-0.089
3NH$_2$	-0.132	1.284	0.011	-0.143

Δq=q(adduct)-q(free). q – partial charge on a specific atom(s), Δq – difference between partial charge of an atom in BiCl$_3$ adduct and in an unbound BiCl$_3$ molecule.
Table S5. NBO partial charges (a.u.) for idealized MCl$_3$ adducts with selected substituted benzenes computed at the PBE-D3/def2-QZVP level of theory.

Adduct	Σq(MCl$_3$(adduct))	q(M)(adduct)	Δq(M)	Δq(Cl$_3$)
AsCl$_3$···NO$_2$C$_6$H$_5$	-0.020	0.862	0.007	-0.027
SbCl$_3$···NO$_2$C$_6$H$_5$	-0.023	1.177	-0.002	-0.021
BiCl$_3$···NO$_2$C$_6$H$_5$	-0.039	1.273	-0.001	-0.038
AsCl$_3$···C$_6$H$_6$	-0.032	0.877	0.022	-0.054
SbCl$_3$···C$_6$H$_6$	-0.038	1.195	0.016	-0.055
BiCl$_3$···C$_6$H$_6$	-0.059	1.289	0.015	-0.074
AsCl$_3$···NH$_2$C$_6$H$_5$	-0.055	0.888	0.033	-0.088
SbCl$_3$···NH$_2$C$_6$H$_5$	-0.063	1.196	0.018	-0.081
BiCl$_3$···NH$_2$C$_6$H$_5$	-0.089	1.292	0.018	-0.107

$\Delta q = q$(adduct)−q(free)
Figure S6. Dispersion energy plots for equilibrium structures of Bi···π arene adducts computed at the DLPNO-CCSD(T)/cc-pVQZ (cc-pwCVQZ-PP for bismuth) level of theory with tightPNO settings.
Table S7. NBO partial charges (a.u.) for relaxed Bi···π arene adducts computed at the PBE-D3/def2-QZVP level of theory.

BiCl₃ adduct with	Σq(BiCl₃)(adduct)	q(Bi) (adduct)	Δq(Bi)	Δq(Cl)
NO₂	-0.032	1.283	0.009	-0.041
CN	-0.032	1.287	0.013	-0.045
CF₃	-0.037	1.296	0.022	-0.059
CHO	-0.039	1.292	0.019	-0.057
F	-0.058	1.287	0.013	-0.071
Cl	-0.050	1.292	0.018	-0.068
OCHO	-0.056	1.290	0.016	-0.072
C₂H₃	-0.061	1.301	0.028	-0.089
OH	-0.076	1.297	0.023	-0.099
NH₂	-0.088	1.303	0.029	-0.117

Δq=q(adduct)-q(free)

Table S8. Energies of the frontier molecular orbitals (eV) computed at the PBE-D3/def2-QZVP level of theory.

Molecule	HOMO/π orbital / eV	LUMO / eV	Δε (π→σ*)
3NO₂	-7.73 / -8.78	-4.64	-5.55
3CF₃	-7.82	-2.98	-4.58
NO₂	-6.81 / -7.12	-3.53	-3.89
CN	-6.83	-2.56	-3.59
CF₃	-6.87	-2.00	-3.63
CHO	-5.93 / -6.81	-2.92	-3.57
3OCHO	-6.54	-2.25	-3.30
F	-6.21	-1.52	-2.97
Cl	-6.15	-1.57	-2.92
OCHO	-6.30	-1.80	-3.06
C₆H₆	-6.33	-1.22	-3.53
C₂H₃	-5.69	-2.06	-2.45
OH	-5.54	-1.26	-2.30
3OH	-5.37	-0.70	-2.13
NH₂	-4.97	-1.05	-1.73
3NH₂	-4.47	-0.28	-1.23
BiCl₃	-7.66	-3.24	
Figure S9. Correlation between energies of the LUMO and the DLPNO-CCSD(T) interaction energies of the Bi···π arene adducts.

Table S10. Sum of experimentally determined van der Waals radiia (in Å) of bismuth ($r_{\text{vdW}} = 2.54$ Å) and donor atoms (O, N, F, and Cl) of substituents.

Donor atom	r_{vdW}	Σr_{vdW}b
O	1.50	4.04
N	1.66	4.20
Cl	1.82	4.36
F	1.46	4.00

a S. Alvarez, *Dalton Trans.* 2013, 42, 8617.

b Σr_{vdW} – sum of van der Waals radii of bismuth and appropriate donor atom (O, N, F, or Cl).

Table S11. NBO partial charges (a.u.) for relaxed Bi···R adducts computed at the PBE-D3/def2-QZVP level of theory.

BiCl\textsubscript{3} adduct with	$\Sigma q_{\text{BiCl}3}$ (adduct)	q_{Bi} (adduct)	Δq_{Bi}	$\Delta q_{\text{Cl}3}$
NO\textsubscript{2}	-0.070	1.303	0.029	-0.099
CN	-0.045	1.332	0.058	-0.103
CHO	-0.075	1.316	0.043	-0.118
F	-0.019	1.300	0.027	-0.046
Cl	-0.050	1.273	0.000	-0.051
OH	-0.042	1.303	0.029	-0.071
NH\textsubscript{2}	-0.110	1.286	0.012	-0.122
Figure S12. Dispersion energy plots for equilibrium structures of Cl···π arene adducts computed at the DLPNO-CCSD(T)/cc-pVQZ (cc-pwCVQZ-PP for bismuth) level of theory with tightPNO settings.

Scheme S13. Numbering of the atoms in NMR calculations.
Table S14. $\Delta \delta$ (ppm) values (gas phase) for selected benzene derivatives with one substituent computed using various density functionals with the pcsSeg-3 basis set.

$\text{Bi} \cdots \pi$	$\Delta \delta$ ipso	$\Delta \delta$ ortho	$\Delta \delta$ meta	$\Delta \delta$ para	$\Delta \delta X1$										
	TPSS	B3LYP	KT2												
CHO	-1.25	-1.41	-1.40	-2.58	-2.67	-2.57	-3.82	-3.83	-3.82	-2.52	-3.10	-2.55	0.47	0.45	0.55
Cl	-7.01	-6.81	-6.51	-5.01	-5.08	-4.61	-2.89	-2.89	-3.09	0.15	-0.18	-0.36	-4.54	-5.16	-4.34
NO$_2$	-3.40	-3.41	-2.70	-4.28	-4.22	-3.77	-1.59	-1.19	-1.42	-1.30	-1.70	-0.82	-4.74	-7.54	-4.00
OH	-2.88	-2.67	-2.85	-4.75	-4.43	-4.80	-5.03	-4.80	-4.81	-5.78	-5.52	-4.91	-4.74	-7.54	-4.00
	TPSS	B3LYP	KT2												
CHO	2.43	3.43	2.37	-2.89	-3.19	-2.98	-0.90	-0.91	-0.88	-4.54	-5.16	-4.34	-4.74	-7.54	-4.00
Cl	5.29	5.77	4.88	-1.73	-2.00	-1.75	-0.53	-0.37	-0.64	-2.39	-2.76	-2.31	-4.74	-7.54	-4.00
NO$_2$	6.81	3.87	6.97	0.15	-0.51	0.39	-1.16	-0.89	-0.87	-1.57	-3.14	-0.74	-4.74	-7.54	-4.00
OH	5.64	6.25	5.45	-2.87	-2.54	-2.73	-0.92	-0.61	-0.78	-5.08	-4.92	-4.34	-4.74	-7.54	-4.00
	TPSS	B3LYP	KT2												
CHO	-0.25	-0.02	-0.71	-1.25	-1.33	-1.24	0.26	0.12	0.26	-0.67	-1.16	-0.71	-1.58	-1.81	-1.81
Cl	-0.04	-0.18	-0.09	-0.96	-1.03	-1.12	-1.35	-1.45	-1.49	0.40	0.31	0.47	-1.58	-1.81	-1.81
NO$_2$	0.59	0.52	0.82	-1.50	-1.40	-1.52	-1.05	-1.04	-0.89	-2.05	-2.26	-1.53	-1.58	-1.81	-1.81
OH	-0.05	-0.06	0.25	-1.84	-1.66	-2.01	-0.12	0.06	0.09	-0.19	-0.10	0.18	-1.58	-1.81	-1.81

$\Delta \delta = \delta(\text{adduct}) - \delta(\text{free})$
Table S15. 13C NMR chemical shifts of the free monosubstituted arenes (C$_6$H$_5$R) and mixtures with BiCl$_3$ in a 1:1 and 1:7 molar ratio, measured in CD$_3$NO$_2$ solution at ambient temperature.

R	13C-NMR (CD$_3$NO$_2$)	δ-C$_{iso}$	δ-C$_{ortho}$	δ-C$_{meta}$	δ-C$_{para}$	δ-R
C$_6$H$_5$F		164.25	116.37	131.61	125.70	-
C$_6$H$_5$F / BiCl$_3$ (1:1)		164.18	116.32	131.56	125.65	-
C$_6$H$_5$F / BiCl$_3$ (1:7)		163.79	116.07	131.31	125.40	-
C$_6$H$_5$Cl		135.13	129.77	131.41	128.17	-
C$_6$H$_5$Cl / BiCl$_3$ (1:1)		135.07	129.72	131.37	128.13	-
C$_6$H$_5$Cl / BiCl$_3$ (1:7)		134.71	129.44	131.12	128.87	-
C$_6$H$_5$CF$_3$		131.26	126.41	130.40	133.66	125.98
C$_6$H$_5$CF$_3$ / BiCl$_3$ (1:1)		131.19	126.35	130.35	133.61	125.91
C$_6$H$_5$CF$_3$ / BiCl$_3$ (1:7)		130.82	126.08	130.11	133.38	125.59
C$_6$H$_5$OH		157.74	116.48	130.98	121.53	-
C$_6$H$_5$OH / BiCl$_3$ (1:1)		157.61	116.47	130.96	121.56	-
C$_6$H$_5$OH / BiCl$_3$ (1:7)		156.93	116.46	130.82	121.62	-
C$_6$H$_5$CN		113.41	133.51	130.60	134.44	120.38
C$_6$H$_5$CN / BiCl$_3$ (1:1)		113.23	133.50	130.57	134.47	120.42
C$_6$H$_5$CN / BiCl$_3$ (1:7)		112.27	133.39	130.38	134.63	120.79
C$_6$H$_5$NO$_2$		149.61	124.61	130.86	136.33	-
C$_6$H$_5$NO$_2$ / BiCl$_3$ (1:1)		149.51	124.57	130.82	136.32	-
C$_6$H$_5$NO$_2$ / BiCl$_3$ (1:7)		148.99	124.38	130.63	136.30	-
C$_6$H$_5$CH=CH$_2$		139.05	127.47	129.97	129.26	114.64 (CH$_2$) 138.24 (CH)
C$_6$H$_5$CH=CH$_2$ / BiCl$_3$ (1:1)		138.99	127.44	129.94	129.22	114.63 (CH$_2$) 138.19 (CH)
C$_6$H$_5$CH=CH$_2$ / BiCl$_3$ (1:7)		138.63	127.20	129.73	129.00	114.61 (CH$_2$) 137.82 (CH)
C$_6$H$_5$CH=O		138.05	130.81	130.43	135.87	194.53
C$_6$H$_5$CH=O / BiCl$_3$ (1:1)		137.81	131.00	130.44	136.13	195.32
C$_6$H$_5$CH=O / BiCl$_3$ (1:7)		136.85	131.57	130.36	136.96	197.91
Table S16. The difference between the chemical shift of the arene in the mixture with BiCl₃ and the chemical shift of the free monosubstituted arene.

\[
\Delta \delta = \delta(\text{adduct with BiCl}_3) - \delta(\text{free})
\]

13C-NMR (CD₃NO₂)	Δδ-C_{ipso}	Δδ-C_{ortho}	Δδ-C_{meta}	Δδ-C_{para}	Δδ-R
C₆H₅F / BiCl₃ (1:1)	-0.07	-0.05	-0.05	-0.05	-
C₆H₅F / BiCl₃ (1:7)	-0.46	-0.33	-0.30	-0.30	-
C₆H₅Cl / BiCl₃ (1:1)	-0.06	-0.05	-0.04	-0.04	-
C₆H₅Cl / BiCl₃ (1:7)	-0.42	-0.33	-0.29	0.70	-
C₆H₂CF₃ / BiCl₃ (1:1)	-0.07	-0.06	-0.05	-0.05	-0.07
C₆H₂CF₃ / BiCl₃ (1:7)	-0.44	-0.33	-0.29	-0.28	-0.39
C₆H₅OH / BiCl₃ (1:1)	-0.13	-0.01	-0.02	0.03	-
C₆H₅OH / BiCl₃ (1:7)	-0.81	-0.02	-0.16	0.09	-
C₆H₅CN / BiCl₃ (1:1)	-0.18	-0.01	-0.03	0.03	0.04
C₆H₅CN / BiCl₃ (1:7)	-0.62	-0.23	-0.23	-0.03	-
C₆H₅CH=CH₂ / BiCl₃ (1:1)	-0.06	-0.03	-0.03	-0.04	-0.01 (CH₂) -0.05 (CH)
C₆H₅CH=CH₂ / BiCl₃ (1:7)	-0.42	-0.27	-0.24	-0.26	-0.03 (CH₂) -0.42 (CH)
C₆H₅CH=O / BiCl₃ (1:1)	-0.24	0.19	0.01	0.26	0.79
C₆H₅CH=O / BiCl₃ (1:7)	-1.20	0.76	-0.07	1.09	3.38

13C NMR studies in solution were carried out in order to investigated the interaction between dispersion energy donors i.e. BiCl₃ and a series of monosubstituted arene ligands in a 1:1 and 7:1 molar ratio, in CD₃NO₂ solution. The experimental results of the solution 13C NMR spectroscopy show changes for all analyzed systems and in almost all cases a high-field shift is observed for the chemical shifts of the arene in the mixture with BiCl₃ compared to the respective free monosubstituted arene. Larger chemical shifts are observed as the content of BiCl₃ is increased. In contrast to the ipso, ortho and meta carbons the para carbon shows only minor changes of the chemical shift and for about half of the analyzed systems a low-field shift is observed. In the case of the assumed benzaldehyde-BiCl₃ adduct larger shifts were observed for the C atoms, but this most likely is due to the fact that the benzaldehyde preferentially coordinates over the O atom and not to the π system, implying that oxygen is a better donor than the π system. This is in accordance with the theoretical calculations as discussed and given in Table 6. The chemical shifts observed from the experiment are significantly smaller than those obtained from the theoretical calculations and a trend with regard to the substituents as found in the theoretical part, does not become obvious. Most likely, this is because we have to consider certain equilibria and interference with the polar solvent nitromethane (see Figure S4).
Table S17. 13C NMR chemical shifts of the free trisubstituted arenes ($C_6H_3R_3-1,3,5$) and mixtures with BiCl$_3$ and in a 1:1 and 1:7 molar ratio, measured in CD$_3$NO$_2$ solution at ambient temperature. The difference between the chemical shift of the BiCl$_3$ adduct and the chemical shift of the free trisubstituted arene.

$$
\Delta \delta = \delta(\text{adduct with BiCl}_3) - \delta(\text{free})
$$

13C-NMR (CD$_3$NO$_2$)	δ-C$_6$H$_3$R$_3$-1,3,5	$\Delta \delta$	$\Delta \delta$-R			
	δ _C$_1$, C$_3$, C$_5$	δ _C$_2$, C$_4$, C$_6$	$\Delta \delta$ _C$_1$, C$_3$, C$_5$	$\Delta \delta$ _C$_2$, C$_4$, C$_6$	$\Delta \delta$-R	
1,3,5-C$_6$H$_3$F$_3$	164.71	101.46	-	-	-	
1,3,5-C$_6$H$_3$F$_3$/BiCl$_3$ (1:1)	164.64	101.41	-0.07	-0.05	-	
1,3,5-C$_6$H$_3$F$_3$/BiCl$_3$ (1:7)	164.27	101.17	-0.44	-0.29	-	
1,3,5-C$_6$H$_3$Cl$_3$	136.70	128.51	-	-	-	
1,3,5-C$_6$H$_3$Cl$_3$/BiCl$_3$ (1:1)	136.64	128.45	-0.06	-0.06	-	
1,3,5-C$_6$H$_3$Cl$_3$/BiCl$_3$ (1:7)	136.29	128.16	-0.41	-0.35	-	
1,3,5-C$_6$H$_3$(CF$_3$)$_3$	133.56	127.72	124.34	-	-	
1,3,5-C$_6$H$_3$(CF$_3$)$_3$/BiCl$_3$ (1:1)	133.50	127.66	124.28	-0.06	-0.06	-0.06
1,3,5-C$_6$H$_3$(CF$_3$)$_3$/BiCl$_3$ (1:7)	133.15	127.34	123.93	-0.41	-0.38	-0.41
1,3,5-C$_6$H$_3$(CN)$_3$	116.26	140.92	116.96	-	-	
1,3,5-C$_6$H$_3$(CN)$_3$/BiCl$_3$ (1:1)	116.19	140.91	116.93	-0.07	-0.01	-0.03
1,3,5-C$_6$H$_3$(CN)$_3$/BiCl$_3$ (1:7)	115.89	140.88	116.84	-0.37	-0.04	-0.12

Low-field \rightarrow High-field
Table S18. Δδ values for nitrobenzene computed at the M06L/pcSseg-3 level of theory in the gas phase, with CPCM solvation model and with explicit solvent molecules.

Position	Gas phase	CPCM \(^a\)	Explicit solvent \(^b\)
ipso	-3.86	-3.69	0.21
ortho	-3.98	-3.73	-3.55
meta	-0.61	-1.32	-2.98
para	-0.77	0.76	6.22

\(^a\) Δδ\(^{\text{CPCM}}\) = δ(adduct\(^{\text{CPCM}}\)) - δ(free\(^{\text{CPCM}}\))

\(^b\) Δδ\(^{\text{explicit}}\) = δ(nitrobenzene\(^{\text{explicit solvent}}\)) - δ(nitrobenzene\(^{\text{gas phase}}\))

Figure S19. Nitrobenzene molecule surrounded by explicit nitromethane molecules optimized at the PBE-D3/def2-SVP level of theory.

Figure S20. Possible motifs of interaction between solvent and BiCl\(_3\) molecule as calculated at the PBE-D3/def2-QZVP level of theory. The interaction energy for structure A amounts to -41 kJ mol\(^{-1}\) while the interaction energy for structure B is -46 kJ mol\(^{-1}\).
In order to assess the influence of the solvation on the computed NMR spectra we have chosen nitrobenzene and nitrobenzene adduct with the BiCl₃ molecule and used the CPCM solvation model with acetonitrile as a solvent due to the fact that its dielectric constant (ε=36.6) is similar to the one of nitromethane. Additionally, we examined the influence of explicit solvation on the 13C $\Delta\delta$ values for free nitrobenzene. Therefore, we optimized nitrobenzene surrounded by eleven nitromethane molecules as a first solvation shell at the PBE-D3/def2-SVP level of theory. The obtained 13C δ values were compared to the 13C NMR chemical shifts computed for nitrobenzene in gas phase. The structure of the system is shown in Figure S5 and the results both for CPCM as well as for explicit solvation are shown in Table S12. The results were compared to the 13C $\Delta\delta$ values from the gas phase calculations. The CPCM model gives similar trend as the gas phase calculations for predicting the carbon chemical shifts. An estimate of the solvent effects using explicit molecules yields similar trends but also shows that for a quantitative agreement long MD simulations with snapshot NMR calculations would be necessary, which goes beyond the scope of the current investigation.

Experimental details of NMR measurements

1H and 13C{1H} NMR spectra were recorded at ambient temperature in CD$_3$NO$_2$ with an Avance III 500 spectrometer (Bruker) at 500.30 and 125.81 MHz, respectively, and are referenced internally to the deuterated solvent relative to Si(CH$_3$)$_4$ ($\delta = 0.00$ ppm). The NMR spectra were processed using the software MestReNova (version 11.0.0-17609 / version 11.0.4-18998).

References:

1. *MestReNova*, (version 11.0.0-17609), Mestrelab Research S. L., Santiago de Compostela, 2016.
2. *MestReNova*, (version 11.0.4-18998), Mestrelab Research S. L., Santiago de Compostela, 2017.
Cartesian coordinates

Substrates	BiCl₃	Bi(CH₃)₃
Cl	2.151045000	-0.953513000
Cl	-1.076060000	-0.953512000
Cl	-1.076060000	1.907159000
Cl	-0.469763000	-0.469763000
Cl	-2.021208000	-0.818903000
Cl	1.976193000	1.976193000
Cl	1.085976000	1.085976000
F	-0.528586000	0.083725000
C	-0.834879000	-0.834879000
C	0.655063000	0.655063000
C	-1.423843000	-1.423843000
C	1.238460000	1.238460000
C	-0.083100000	-0.083100000
C	-0.083545000	-0.083545000
C	0.055160000	0.055160000
C	0.563050000	0.563050000
C	-1.302370000	-1.302370000
C	-0.585352000	-0.585352000
C	-0.083493000	-0.083493000
C	1.030111182	1.030111182
C	1.081409000	1.081409000

AsCl₃	SbCl₃	
As	-0.003313867	-0.00000000565
Cl	-0.968839221	0.430445273
Cl	0.973993261	-0.103111209
Cl	1.030111182	1.030111182

Ethylenbenzene (C₃H₃-C₆H₆)	Trifluoromethylbenzene (CF₃-C₆H₅)
C	C
C	C
C	C
C	C
C	C
C	C
C	C
C	C
C	C
C	C
C	C
C	C
C	C
C	C

Benzaldehyde (CHO-C₆H₅)	Chlorobenzene (Cl-C₆H₅)
C	C
C	C
C	C
C	C
C	C
C	C
C	C
C	C
C	C

Benzonitrile (CN-C₆H₅)	Fluorobenzene (F-C₆H₅)
C	C
C	C
C	C
C	C
C	C
C	C

Substrates

Substrates	Cartesian coordinates		
Benzaldehyde (CHO)	C: 0.001074000 Cl: 2.151045000		
Chlorobenzene (Cl)	C: 0.000000000 Cl: -0.953513000		
Fluorobenzene (F)	C: 0.000000000 Cl: -0.953513000		
H	-2.144254000	-0.632198000	-2.957015000
---------	--------------	--------------	--------------
H	1.977269000	0.632198000	-2.957015000
C	-0.083493000	0.000000000	-2.807745000
H	-0.083493000	0.000000000	-6.689367000
C	-0.083492000	0.000000000	-1.379140000
N	-0.083492000	0.000000000	-0.214079000
Aniline (NH₂-C₆H₅)	Nitrobenzene (NO₂-C₆H₅)		
C	-0.089667000	-0.008614000	-5.619061000
C	-1.072803000	0.682023000	-4.906382000
C	0.908634000	-0.682840000	-4.911759000
H	-1.859691000	1.216059000	-5.439841000
C	1.686064000	-1.226319000	-5.449357000
C	0.106274000	0.700693000	-3.513616000
C	0.927732000	-0.670446000	-3.518985000
H	-1.839166000	1.240368000	-2.968062000
C	1.711025000	-1.204800000	-2.978090000
C	-0.095856000	0.023390000	-2.797754000
H	-0.100425000	-0.019908000	-6.707952000
N	-0.081129000	0.001219000	-1.402978000
C	0.757586000	0.752930000	-0.957921000
H	0.811467000	-0.199220000	-0.959406000
Oxophenoxyethyl (OCHO-C₆H₅)	Phenol (OH-C₆H₅)		
C	-0.036150000	-0.084670000	-5.595787000
C	1.004419000	-0.682840000	-4.955415000
C	0.160756000	0.771606000	-4.842568000
H	-1.668467000	-1.465651000	-5.350938000
H	-1.561379000	1.382683000	-5.320035000
C	-1.138473000	-0.709120000	-3.566692000
C	0.686014000	0.814300000	-3.453071000
H	-1.888716000	-1.394354000	-0.624400000
C	1.328684000	1.448141000	-2.845111000
C	-0.284930000	0.030998000	-2.833037000
O	0.067039000	-0.082090000	-6.608385000
O	-0.411365000	0.173999000	-1.404370000
O	0.416375000	-0.937958000	-0.647866000
O	-0.302589000	-0.208167000	-1.002460000
H	-0.538511000	-0.596285000	0.396868000
1,3,5-triethenylbenzene	1,3,5-tri(trifluoromethyl)benzene		
C	-0.045620000	0.017693000	-0.630720000
C	-0.821937000	-0.954131000	-4.944428000
C	-0.708342000	0.958217000	-4.894058000
C	-0.824854000	-0.967055000	-3.545229000
C	0.688244000	0.912652000	-3.487527000
H	-1.425144000	-1.718590000	-0.329440000
C	1.268577000	1.629845000	-2.911016000
C	-0.075683000	-0.038620000	-2.797852000
H	-0.025345000	0.049227000	-6.693412000
C	-0.056396000	0.030169000	-1.330472000
C	0.572839000	0.748713000	-0.889672000
C	-0.713286000	-0.856303000	-0.503400000
H	-1.359999000	-1.656803000	-0.862632000
H	-0.621680000	-0.792549000	0.576435000
C	-1.624403000	-1.952095000	-5.613712000
C	-2.169404000	-2.645484000	-5.013883000
H	-1.751037000	-2.092959000	-6.988673000
C	-1.242143000	-1.442183000	-7.699899000
C	-2.378681000	-2.876606000	-7.409372000
C	1.490474000	1.948695000	-5.643119000
H	1.453943000	1.828147000	-6.729912000
C	2.216336000	2.958410000	-5.141924000
H	2.296022000	3.150075000	-4.071630000
H	2.758306000	3.636278000	-5.799067000

1,3,5-trichlorobenzene | 1,3,5-Benzenetricarboxaldehyde
	x	y	z
C	-0.083492000	0.000000000	-5.630421000
C	-1.226950000	-0.350856000	-4.912467000
C	1.059966000	0.350856000	-4.912467000
C	-1.249677000	-0.357919000	-3.517680000
C	1.082692000	0.357919000	-3.517680000
H	-2.149290000	-0.634034000	-2.974130000
H	1.982306000	0.634034000	-2.974130000
C	-0.083492000	0.000000000	-1.804932000
Cl	-0.083493000	0.000000000	-6.717152000
Cl	-2.665029000	-0.791780000	-5.781313400
Cl	2.498044000	0.791780000	-5.781313400
1,3,5-Benzene-tricarbonitrile	1,3,5-trifluorobenzene		
C	-0.083493000	0.000000000	-5.623585000
C	-1.241922000	-0.355452000	-4.917963000
C	1.074937000	0.355452000	-4.917963000
C	-1.246960000	-0.357015000	-3.515754000
C	1.079975000	0.357014000	-3.515754000
H	-2.147619000	-0.633312000	-2.971733000
H	1.980634000	0.633311000	-2.971733000
C	-0.083493000	0.000000000	-2.819234000
H	-0.083493000	0.000000000	-6.714760000
C	-0.083493000	0.000000000	-1.389740000
N	-0.083492000	0.000000000	-0.225831000
N	-2.425499000	-0.785212000	-5.632621000
N	-3.389325000	-1.014970000	-6.214227000
N	2.258514000	0.718252000	-5.632621000
N	3.222340000	0.101497000	-6.214228000
1,3,5-Benzene-triamine	1,3,5-trinitrobenzene		
C	-0.063100000	0.030696000	-5.617842000
C	-1.062081000	0.717595000	-4.913832000
C	0.937839000	-0.659370000	-4.915610000
C	-1.057017000	0.719327000	-3.511880000
C	0.943217000	-0.657838000	-3.517660000
H	-1.843242000	1.242105000	-2.969340000
H	1.714305000	-1.206911000	-2.974415000
C	-0.056058000	0.290307000	-2.813920000
H	-0.075372000	0.017318000	-6.709313000
N	-0.088217000	-0.022940000	-1.416649000
H	-0.576176000	0.748108000	-0.973562000
H	0.807717000	-0.202772000	-0.976348000
C	-2.096689000	1.352151000	-5.609086000
H	-1.865378000	1.627358000	-6.557640000
N	1.869613000	-1.397949000	-5.621216000
H	2.762705000	-1.156913000	-5.177660000
H	2.067012000	-0.108010000	-6.569483000
1,3,5-trifluoro-1,3,5-Benzenetriol	1,3,5-Benzenetriol		
C	0.101385000	-0.093843000	-5.557016000
C	-0.734025000	-1.015703000	-4.930868000
C	0.955674000	0.659425000	-4.755760000
C	-0.748338000	-1.198105000	-3.549700000
C	0.977829000	0.513257000	-3.371723000
H	-1.408623000	-1.920828000	-3.083341000
C	1.648244000	1.110720000	-2.758318000
C	0.118574000	-0.414996000	-2.791737000
H	0.078150000	0.015658000	-6.637628000
H	1.632117000	-1.268201000	-2.944833000
O 0.230902000 -0.573962000 -1.405663000 C -0.094102000 0.008058000 -2.817948000
C -0.897818000 -0.577234000 -0.629694000 H -0.080845000 -0.002182000 -6.706189000
O -2.029846000 -0.425978000 -1.002797000 O -0.051746000 -0.023253000 -1.447447000
H -0.574870000 -0.737815000 0.414972000 H -0.781454000 0.515239000 -1.102392000
O -1.619583000 -1.697076000 -5.772870000 C -1.775833000 -3.052204000 -5.649212000
O -1.207805000 -3.777278000 -4.877791000 H -2.523136000 -3.363299000 -6.401597000
O 1.783592000 1.660407000 0.527516500 C 2.531273000 1.424717000 -6.398100000
O 2.586144000 0.404348000 -7.030114000 H 3.088410000 2.353769000 -6.617607000

Equilibrium structures

Bi···π arene adducts

\[\text{C}_2\text{H}_5\text{BiCl}_3 \]
\[\text{CF}_3\text{C}_6\text{H}_5\text{BiCl}_3 \]

CHO-C\text{H}_5\text{···BiCl}_3

\[\text{C}_6\text{H}_5\text{···BiCl}_3 \]

CN-C\text{H}_5\text{···BiCl}_3

\[\text{F}_3\text{C}_6\text{H}_5\text{···BiCl}_3 \]

20
BiCl₃ interaction with NO₂CH₃

Motif A	Motif B	
C 1.090330000	3.796431000	2.789565000
H 0.096859000	3.548761000	3.167948000
H 1.176507000	4.826287000	2.437689000
H 1.389786000	3.095434000	1.999878000
N 2.077206000	3.591900000	3.889076000
O 1.816235000	2.751775000	4.748815000
O 3.131833000	4.230285000	3.832017000
Bi 4.929213000	1.918311000	4.681219000
Cl 7.016782000	2.887627000	3.804429000
Cl 5.817482000	-0.259637000	5.441999000
Cl 3.977346000	1.144837000	2.524095000

NO₂CH₃

C 1.028604000	4.012105000	2.834891000
H 0.321674000	4.389442000	3.579558000
H 1.438666000	4.809885000	2.214124000
H 0.545078000	3.234714000	2.235402000
N 2.156588000	3.356478000	3.582528000
O 1.847713000	2.455406000	4.358490000
O 3.295859000	3.761339000	3.365218000

NO₂-C₆H₅ with explicit NO₂CH₃ molecules

C -0.721354000	0.729646000	-6.646500000
C -1.222314000	-0.536120000	-6.294250000
C -0.057184000	1.519705000	-5.694051000
H -1.756384000	-1.152975000	-7.026270000
H 0.368989000	2.497641000	-5.960421000
C -1.051870000	-1.035370000	-4.997454000
C 0.093698000	1.050715000	-4.384942000
H -1.453018000	-2.011914000	-4.697672000
H 0.600843000	1.652069000	-3.622537000
C -0.393653000	-0.223294000	-4.066263000
H -0.872111000	1.105463000	-7.667177000
N -0.172431000	-0.713149000	-2.701582000
O -0.011207000	-1.924949000	-2.532576000
O -0.129139000	0.131636000	-1.809639000
C 2.078235000	-2.985655000	-4.703086000
H 2.972676000	-2.451853000	-4.342023000
H 1.220652000	-2.757832000	-4.034311000
H 2.220133000	-4.077575000	-4.770170000
N 1.699980000	-2.493853000	-6.056267000
O 2.122146000	-1.394283000	-6.418118000
O 0.949753000	-3.205133000	-6.727426000
C 2.802385000	-0.888412000	-0.440829000
C 3.406564000	-1.590229000	0.155596000
C 3.025165000	0.172276000	-0.206226000
H 1.718934000	-1.084017000	-0.305103000
Element	x	y	z
N	3.126274	-1.118613	-1.876816
O	3.794803	-2.106346	-2.175270
O	2.681996	-0.311687	-2.702771
C	-2.909238	3.004400	-4.236907
H	-3.285060	2.273192	-4.974062
N	-3.700286	3.737414	-3.987479
H	-2.004125	3.529509	-4.583245
N	-2.571591	2.301387	-2.955388
O	-3.181631	1.261994	-2.701645
O	-1.742871	2.829583	-2.211359
C	-2.153708	0.444375	1.349360
H	-2.125521	-0.781089	-0.329971
H	-2.626771	-0.001380	0.051812
N	-0.073728	0.823380	1.188976
O	-0.352251	-0.322715	-0.329971
O	-0.041363	1.188976	-0.329971
C	0.962718	0.609480	1.188976
H	1.425261	-0.405907	-9.967481
H	1.234153	-1.425604	-8.478843
N	-0.520057	-1.185159	-9.602753
O	-1.190632	-2.187903	-9.370198
O	-1.004208	-0.072362	-9.837291
C	3.688271	1.570319	-5.296945
H	4.779292	1.409361	-5.301337
H	3.167680	0.469320	-5.152548
H	3.314171	0.627800	-6.218640
N	3.358380	2.443466	-4.125714
O	4.088540	2.375840	-3.142893
O	2.342320	3.140081	-4.205740
C	-4.756920	-1.350189	-3.692178
H	-4.846152	-1.437140	-3.540780
N	-0.740066	-1.581632	-2.378711
O	-4.726312	-1.361922	-1.358077
O	-2.900680	-1.932452	-2.409148
C	1.599927	2.624730	-0.977164
H	0.920725	2.289918	-0.177333
H	1.170755	3.486151	-1.539339
H	1.850786	1.790391	-1.630133
N	3.685080	3.099110	-0.322404
O	3.607176	2.225201	0.136543
O	3.074620	4.303049	-0.248795
C	0.616099	2.857387	-9.663929
H	0.092188	1.912874	-9.900584
H	-0.046886	3.601000	-9.193022
H	1.086775	3.265998	-10.577713
N	1.727386	2.536546	-8.708269
O	2.425893	1.558957	-8.970840
O	1.879995	3.278490	-7.740610
C	-1.935419	-4.629010	-7.402580
H	-1.111543	-4.037490	-7.842562
H	-1.690918	-4.892926	-6.360375
H	-2.166607	5.505238	-8.030425
N	-3.132279	-3.730926	-7.396326
O	-3.884124	-3.767460	-8.362254
O	-3.254476	-2.967205	-6.432737
C	-4.200557	-0.291163	-8.416145
H	-5.055176	0.021281	-9.045514
H	-3.281159	-0.329836	-9.028858
H	-4.402680	-1.251499	-7.912633
N	-4.016737	0.772741	-7.377690
-----	-------	-------	-------
O	-4.427138000	0.537365000	-6.240683000
O	-3.479550000	1.821097000	-7.727541000