Heuristics with Performance Guarantees for the Minimum Number of Matches Problem in Heat Recovery Network Design

Dimitrios Letsiosa, Georgia Kouyialisa, Ruth Misenera,*

aDepartment of Computing; Imperial College London; South Kensington SW7 2AZ; UK

Abstract

Heat exchanger network synthesis exploits excess heat by integrating process hot and cold streams and improves energy efficiency by reducing utility usage. Determining the minimum number of matches is the bottleneck of designing a heat recovery network using the sequential method. This subproblem is an \textit{NP}-hard mixed-integer linear program exhibiting combinatorial explosion in the possible hot and cold stream configurations. We explore this challenging optimization problem from a graph theoretic perspective and correlate it with other special optimization problems such as cost flow network and packing problems. In the case of a single temperature interval, we develop a new optimization formulation without problematic big-M parameters. We develop heuristic methods with performance guarantees using three approaches: (i) relaxation rounding, (ii) water filling, and (iii) greedy packing. Numerical results from a collection of 48 instances substantiate the strength of the methods.

\textit{Keywords:} Minimum number of matches, Heat exchanger network design, Heuristics, Approximation algorithms, Mixed-integer linear optimization

This manuscript is dedicated, with deepest respect, to the memory of Professor C. A. Floudas. Professor Floudas showed that, given many provably-strong solutions to the minimum number of matches problem, he could design effective heat recovery networks. So the diverse solutions generated by this manuscript directly improve Professor Floudas’ method for automatically generating heat exchanger network configurations.

1. Introduction

Heat exchanger network synthesis (HENS) minimizes cost and improves energy recovery in chemical processes (Biegler et al. 1997, Smith 2000, Elia et al. 2010, Baliban et al. 2012). HENS exploits excess heat by integrating process hot and cold streams and improves energy efficiency by reducing utility usage (Floudas and Grossmann 1987, Gundersen and Naess 1988, Furman and Sahinidis 2002, Escobar and Trierweiler 2013). Floudas et al. (2012) review the critical role of heat integration for energy systems producing liquid transportation fuels (Niziolek et al. 2015). Other important applications of HENS include: refrigeration...
systems (Shelton and Grossmann 1986), batch semi-continuous processes (Zhao et al. 1998, Castro et al. 2015) and water utilization systems (Bagajewicz et al. 2002).

Heat exchanger network design is a mixed-integer nonlinear optimization (MINLP) problem (Yee and Grossmann 1990, Ciric and Floudas 1991, Papalexandri and Pistikopoulos 1994, Hasan et al. 2010). Mistry and Misener (2016) recently showed that expressions incorporating logarithmic mean temperature difference, i.e. the nonlinear nature of heat exchange, may be reformulated to decrease the number of nonconvex nonlinear terms in the optimization problem. But HENS remains a difficult MINLP with many nonconvex nonlinearities. One way to generate good HENS solutions is to use the so-called sequential method (Furman and Sahinidis 2002). The sequential method decomposes the original HENS MINLP into three tasks: (i) minimizing utility cost, (ii) minimizing the number of matches, and (iii) minimizing the investment cost. The method optimizes the three mathematical models sequentially with: (i) a linear program (LP) (Cerda et al. 1983, Papoulias and Grossmann 1983), (ii) a mixed-integer linear program (MILP) (Cerda and Westerburg 1983, Papoulias and Grossmann 1983), and (iii) a nonlinear program (NLP) (Floudas et al. 1986). The sequential method may not return the global solution of the original MINLP, but solutions generated with the sequential method are practically useful.

This paper investigates the minimum number of matches problem (Floudas 1995), the computational bottleneck of the sequential method. The minimum number of matches problem is a strongly NP-hard MILP (Furman and Sahinidis 2001). Mathematical symmetry in the problem structure combinatorially increases the possible stream configurations and deteriorates the performance of exact, tree-based algorithms (Kouyialis and Misener 2017).

Because state-of-the-art approaches cannot solve the minimum number of matches problem to global optimality for moderately-sized instances (Chen et al. 2015b), engineers develop experience-motivated heuristics (Limhoff and Hindmarsh 1983, Cerda et al. 1983, Furman and Sahinidis 2004) propose a collection of approximation algorithms, i.e. heuristics with performance guarantees, for the minimum number of matches problem by exploiting the LP relaxation of an MILP formulation. Furman and Sahinidis (2004) present a unified worst-case analysis of their algorithms’ performance guarantees and show a non-constant approximation ratio scaling with the number of temperature intervals. They also prove a constant performance guarantee for the single temperature interval problem.

The standard MILP formulations for the minimum number of matches contain big-M constraints, i.e. the on/off switches associated with weak continuous relaxations of MILP. Both optimization-based heuristics and exact state-of-the-art methods for solving minimum number of matches problem are highly affected by the big-M parameter. Trivial methods for computing the big-M parameters are typically adopted, but Gundersen et al. (1997) propose a tighter way of computing the big-M parameters.

This manuscript develops new heuristics and provably efficient approximation algorithms
for the minimum number of matches problem. These methods have guaranteed solution quality and efficient run-time bounds. In the sequential method, many possible stream configurations are required to evaluate the minimum overall cost (Floudas 1995), so a complementary contribution of this work is a heuristic methodology for producing multiple solutions efficiently. We classify the heuristics based on their algorithmic nature into three categories: (i) relaxation rounding, (ii) water filling, and (iii) greedy packing.

The manuscript proceeds as follows: Section 2 formally defines the minimum number of matches problem and discusses mathematical models. Section 3 discusses computational complexity and introduces a new \(\mathcal{NP} \)-hardness reduction of the minimum number of matches problem from bin packing. Section 4 focuses on the single temperature interval problem. Section 5 explores computing the maximum heat exchanged between the streams with match restrictions. Sections 6 - 8 present our heuristics for the minimum number of matches problem based on: (i) relaxation rounding, (ii) water filling, and (iii) greedy packing, respectively, as well as new theoretical performance guarantees. Section 9 evaluates experimentally the heuristics and discusses numerical results. Sections 10 and 11 discuss the manuscript contributions and conclude the paper.

2. Minimum Number of Matches for Heat Exchanger Network Synthesis

This section defines the minimum number of matches problem and presents the standard transportation and transshipment MILP models. Table 1 contains the notation.

Name	Description
Cardinalities	
\(n \)	Number of hot streams
\(m \)	Number of cold streams
\(k \)	Number of temperature intervals
\(v \)	Number of matches (objective value)
Indices	
\(i \in H \)	Hot stream
\(j \in C \)	Cold stream
\(s, t, u \in T \)	Temperature interval
\(b \in B \)	Bin (single temperature interval problem)
Sets	
\(H, C \)	Hot, cold streams
\(T \)	Temperature intervals
\(M \)	Set of matches (subset of \(H \times C \))
\(C_i(M), H_j(M) \)	Cold, hot streams matched with \(i \in H, j \in C \) in \(M \)
\(B \)	Bins (single temperature interval problem)

Table 1: Nomenclature
Parameters

- h_i: Total heat supplied by hot stream i ($h_i = \sum_{s \in T} \sigma_{i,s}$)
- h_{max}: Maximum heat among all hot streams ($h_{\text{max}} = \max_{i \in H} \{h_i\}$)
- c_j: Total heat demanded by cold stream j ($c_j = \sum_{t \in T} \delta_{j,t}$)
- $\sigma_{i,s}$: Heat supply of hot stream i in interval s
- $\delta_{j,t}$: Heat demand of cold stream j in interval t
- $\bar{\sigma}, \bar{\delta}$: Vectors of all heat supplies, demands
- $\bar{\sigma}_t, \bar{\delta}_t$: Vectors of all heat supplies, demands in temperature interval t
- R_t: Residual heat exiting temperature interval t
- $U_{i,j}$: Upper bound (big-M parameter) on the heat exchanged via match (i,j)
- $\lambda_{i,j}$: Fractional cost approximation of match (i,j) (Lagrangian relaxation)
- $\vec{\lambda}$: Vector of all fractional cost approximations

Variables

- $y_{i,j}$: Binary variable indicating whether i and j are matched
- $q_{i,j,t}$: Heat of hot stream i received by cold stream j in interval t
- $q_{i,s,j,t}$: Heat exported by hot stream i in s and received by cold stream j in t
- \vec{y}, \vec{q}: Vectors of binary, continuous variables
- $r_{i,s}$: Heat residual of heat of hot stream i exiting s
- x_b: Binary variable indicating whether bin b is used
- $w_{i,b}$: Binary variable indicating whether hot stream i is placed in bin b
- $z_{j,b}$: Binary variable indicating whether cold stream j is placed in bin b

Other

- N: Minimum cost flow network
- G: Solution graph (single temperature interval problem)
- $\phi(M)$: Filling ratio of a set M of matches
- \vec{y}^f, \vec{q}^f: Optimal fractional solution
- α_i, β_j: Number of matches of hot stream i, cold stream j
- $L_{i,j}$: Heat exchanged from hot stream i to cold stream j
- I: Instance of the problem
- r: Remaining heat of an algorithm

2.1. Problem Definition

The minimum number of matches problem posits a set of **hot process streams** to be cooled and a set of **cold process streams** to be heated. Each stream is associated with an initial and a target temperature. This set of temperatures defines a collection of **temperature intervals**. Each hot stream exports (or supplies) heat in each temperature interval between its initial and target temperatures. Similarly, each cold stream receives (or demands) heat in each
temperature interval between its initial and target temperatures. Appendix F formally defines the temperature range partitioning. Heat may flow from a hot to a cold stream in the same or a lower temperature interval, but not in a higher one. In each temperature interval, the residual heat descends to lower temperature intervals. A zero heat residual is a pinch point. A pinch point restricts the maximum energy integration and divides the network into subnetworks.

A problem instance consists of a set \(H = \{1, 2, \ldots, n\} \) of hot streams, a set \(C = \{1, 2, \ldots, m\} \) of cold streams, and a set \(T = \{1, 2, \ldots, k\} \) of temperature intervals. Hot stream \(i \in H \) has heat supply \(\sigma_{i,s} \) in temperature interval \(s \in T \) and cold stream \(j \in C \) has heat demand \(\delta_{j,t} \) in temperature interval \(t \in T \). Heat conservation is satisfied, i.e.

\[
\sum_{i \in H} \sum_{s \in T} \sigma_{i,s} = \sum_{j \in C} \sum_{t \in T} \delta_{j,t}.
\]

We denote by \(h_i = \sum_{s \in T} \sigma_{i,s} \) the total heat supply of hot stream \(i \in H \) and by \(c_j = \sum_{t \in T} \delta_{j,t} \) the total heat demand of cold stream \(j \in C \).

A feasible solution specifies a way to transfer the hot streams’ heat supply to the cold streams, i.e. an amount \(q_{i,s,j,t} \) of heat exchanged between hot stream \(i \in H \) in temperature interval \(s \in T \) and cold stream \(j \in C \) in temperature interval \(t \in T \). Heat may only flow to the same or a lower temperature interval, i.e. \(q_{i,s,j,t} = 0 \), for each \(i \in H, j \in C \) and \(s,t \in T \) such that \(s > t \). A hot stream \(i \in H \) and a cold stream \(j \in C \) are matched, if there is a positive amount of heat exchanged between them, i.e. \(\sum_{s,t \in T} q_{i,s,j,t} > 0 \). The objective is to find a feasible solution minimizing the number of matches \((i,j)\).

2.2. Mathematical Models

The transportation and transshipment models formulate the minimum number of matches as a mixed-integer linear program (MILP).

Transportation Model (Cerda and Westerburg 1983). As illustrated in Figure 1a, the transportation model represents heat as a commodity transported from supply nodes to destination nodes. For each hot stream \(i \in H \), there is a set of supply nodes, one for each temperature interval \(s \in T \) with \(\sigma_{i,s} > 0 \). For each cold stream \(j \in C \), there is a set of demand nodes, one for each temperature interval \(t \in T \) with \(\delta_{j,t} > 0 \). There is an arc between the supply node \((i,s)\) and the destination node \((j,t)\) if \(s \leq t \), for each \(i \in H, j \in C \) and \(s, t \in T \).

In the MILP formulation, variable \(q_{i,s,j,t} \) specifies the heat transferred from hot stream \(i \in H \) in temperature interval \(s \in T \) to cold stream \(j \in C \) in temperature interval \(t \in T \). Binary variable \(y_{i,j} \) if whether streams \(i \in H \) and \(j \in C \) are matched or not. Parameter \(U_{i,j} \) is a big-M parameter bounding the amount of heat exchanged between every pair of hot stream \(i \in H \) and cold stream \(j \in C \), e.g. \(U_{i,j} = \min\{h_i, c_j\} \). The problem is formulated:

\[
\min \sum_{i \in H} \sum_{j \in C} y_{i,j}
\]
Figure 1: In the transportation model \cite{Cerda1983}, each hot stream \(i\) supplies \(\sigma_{i,t}\) units of heat in temperature interval \(t\) which can be received, in the same or a lower temperature interval, by a cold stream \(j\) which demands \(\delta_{j,t}\) units of heat in \(t\). In the transshipment model \cite{Papoulias1983}, there are also intermediate nodes transferring residual heat to a lower temperature interval. This figure is adapted from \cite{Furman2004}.

\[
\begin{align*}
\sum_{j \in C} \sum_{t \in T} q_{i,s,j,t} & = \sigma_{i,s} & i \in H, s \in T & \quad (2) \\
\sum_{i \in H} \sum_{s \in T} q_{i,s,j,t} & = \delta_{j,t} & j \in C, t \in T & \quad (3) \\
\sum_{s,t \in T} q_{i,s,j,t} & \leq U_{i,j} \cdot y_{i,j} & i \in H, j \in C & \quad (4) \\
q_{i,s,j,t} & = 0 & i \in H, j \in C, s, t \in T : s \leq t & \quad (5) \\
y_{i,j} & \in \{0, 1\}, q_{i,s,j,t} \geq 0 & i \in H, j \in C, s, t \in T & \quad (6)
\end{align*}
\]

Expression (1), the objective function, minimizes the number of matches. Equations (2) and (3) ensure heat conservation. Equations (4) enforce a match between a hot and a cold stream if they exchange a positive amount of heat. Equations (4) are big-M constraints. Equations (5) ensure that no heat flows to a hotter temperature.

Transshipment Model \cite{Papoulias1983}. As illustrated in Figure 1b, the transshipment formulation transfers heat from hot streams to cold streams via intermediate transshipment nodes. In each temperature interval, the heat entering a transshipment node either transfers to a cold stream in the same temperature interval or it descends to the transshipment node of the subsequent temperature interval as residual heat.

Binary variable \(y_{i,j}\) is 1 if hot stream \(i \in H\) is matched with cold stream \(j \in C\) and 0
otherwise. Variable $q_{i,j,t}$ represents the heat received by cold stream $j \in C$ in temperature interval $t \in T$ originally exported by hot stream $i \in H$. Variable $r_{i,s}$ represents the residual heat of hot stream $i \in H$ that descends from temperature interval s to temperature interval $s+1$. Parameter $U_{i,j}$ is a big-M parameter bounding the heat exchanged between hot stream $i \in H$ and cold stream $j \in C$, e.g. $U_{i,j} = \min\{h_i, c_j\}$. The problem is formulated:

\[
\min \sum_{i \in H} \sum_{j \in C} y_{i,j} \tag{7}
\]

\[
\sum_{j \in C} q_{i,j,s} + r_{i,s} = \sigma_{i,s} + r_{i,s-1} \quad i \in H, s \in T \tag{8}
\]

\[
r_{i,k} = 0 \quad i \in H \tag{9}
\]

\[
\sum_{i \in H} q_{i,j,t} = \delta_{j,t} \quad j \in C, t \in T \tag{10}
\]

\[
\sum_{i \in H} q_{i,j,t} \leq U_{i,j} \cdot y_{i,j} \quad i \in H, j \in C \tag{11}
\]

\[
y_{i,j} \in \{0, 1\}, \quad q_{i,j,t}, r_{i,s} \geq 0 \quad i \in H, j \in C, s, t \in T \tag{12}
\]

Expression (7) minimizes the number of matches. Equations (8)-(10) enforce heat conservation. Equation (11) allows positive heat exchange between hot stream $i \in H$ and cold stream $j \in C$ only if (i,j) are matched.

3. Heuristics with Performance Guarantees

3.1. Computational Complexity

We briefly introduce \mathcal{NP}-completeness and basic computational complexity classes (Arora and Barak 2009, Papadimitriou 1994). A polynomial algorithm produces a solution for a computational problem with a running time polynomial to the size of the problem instance. There exist problems which admit a polynomial-time algorithm and others which do not. There is also the class of \mathcal{NP}-complete problems for which we do not know whether they admit a polynomial algorithm or not. The question of whether \mathcal{NP}-complete problems admit a polynomial algorithm is known as the $\mathcal{P} = \mathcal{NP}$ question. In general, it is conjectured that $\mathcal{P} \neq \mathcal{NP}$, i.e. \mathcal{NP}-complete problems are not solvable in polynomial time. An optimization problem is \mathcal{NP}-hard if its decision version is \mathcal{NP}-complete. A computational problem is strongly \mathcal{NP}-hard if it remains \mathcal{NP}-hard when all parameters are bounded by a polynomial to the size of the instance.

The minimum number of matches problem is known to be strongly \mathcal{NP}-hard, even in the special case of a single temperature interval. Furman and Sahinidis (2004) propose an \mathcal{NP}-hardness reduction from the well-known 3-Partition problem, i.e. they show that the minimum number of matches problem has difficulty equivalent to the 3-Partition problem.
Appendix A presents an alternative \(NP \)-hardness reduction from the bin packing problem. This alternative setting of the minimum number of matches problem gives new insight into the packing nature of the problem. A major contribution of this paper is to design efficient, greedy heuristics motivated by packing.

Theorem 1. There exists an \(NP \)-hardness reduction from bin packing to the minimum number of matches problem with a single temperature interval.

Proof: See Appendix A.

3.2. Approximation Algorithms

A heuristic with a performance guarantee is usually called an approximation algorithm (Vazirani 2001, Williamson and Shmoys 2011). Unless \(P = NP \), there is no polynomial algorithm solving an \(NP \)-hard problem. An approximation algorithm is a polynomial algorithm producing a near-optimal solution to an optimization problem. Formally, consider an optimization problem, without loss of generality minimization, and a polynomial Algorithm \(A \) for solving it (not necessarily to global optimality). For each problem instance \(I \), let \(C_A(I) \) and \(C_{OPT}(I) \) be the algorithm’s objective value and the optimal objective value, respectively. Algorithm \(A \) is \(\rho \)-approximate if, for every problem instance \(I \), it holds that:

\[
C_A(I) \leq \rho \cdot C_{OPT}(I).
\]

That is, a \(\rho \)-approximation algorithm computes, in polynomial time, a solution with an objective value at most \(\rho \) times the optimal objective value. The value \(\rho \) is the approximation ratio of Algorithm \(A \). To prove a \(\rho \)-approximation ratio, we proceed as depicted in Figure 2. For each problem instance, we compute analytically a lower bound \(C_{LB}(I) \) of the optimal objective value, i.e. \(C_{LB}(I) \leq C_{OPT}(I) \), and we show that the algorithm’s objective value is at most \(\rho \) times the lower bound, i.e. \(C_A(I) \leq \rho \cdot C_{LB}(I) \). The ratio of a \(\rho \)-approximation algorithm is tight if the algorithm is not \(\rho - \epsilon \) approximate for any \(\epsilon > 0 \). An algorithm is \(O(f(n)) \)-approximate and \(\Omega(f(n)) \)-approximate, where \(f(n) \) is a function of an input parameter \(n \), if the algorithm does not have an approximation ratio asymptotically higher and lower, respectively, than \(f(n) \).

Approximation algorithms have been developed for two problem classes relevant to process systems engineering: heat exchanger networks (Furman and Sahinidis 2004) and pooling (Dey and Gupta 2015). Table 2 lists performance guarantees for the minimum number of matches problem; most are new to this manuscript.
4. Single Temperature Interval Problem

This section proposes efficient algorithms for the single temperature interval problem. Using graph theoretic properties, we obtain: (i) a novel, efficiently solvable MILP formulation without big-M constraints and (ii) an improved 3/2-approximation algorithm.

In the single temperature interval problem, a feasible solution can be represented as a bipartite graph $G = (H \cup C, M)$ in which there is a node for each hot stream $i \in H$, a node for each cold stream $j \in C$ and the set $M \subseteq H \times C$ specifies the matches. Appendix B shows the existence of an optimal solution whose graph G does not contain any cycle. A connected graph without cycles is a tree, so G is a forest consisting of trees. Appendix B also shows that the number v of edges in G, i.e. the number of matches, is related to the number ℓ of trees with the equality $v = n + m - \ell$. Since n and m are input parameters, minimizing the number of matches in a single temperature interval is equivalent to finding a solution whose graph consists of a maximal number ℓ of trees.

4.1. Novel MILP Formulation

We propose a novel MILP formulation for the single temperature interval problem. In an optimal solution without cycles, there can be at most $\min\{n, m\}$ trees. From a packing perspective, we assume that there are $\min\{n, m\}$ available bins and each stream is placed into exactly one bin. If a bin is non-empty, then its content corresponds to a tree of the graph. The objective is to find a feasible solution with a maximum number of bins.

To formulate the problem as an MILP, we define the set $B = \{1, 2, \ldots, \min\{n, m\}\}$ of available bins. Binary variable x_b is 0 if bin $b \in B$ is empty and 1, otherwise. A binary variable $w_{i,b}$ indicates whether hot stream $i \in H$ is placed into bin $b \in B$. Similarly, a
binary variable \(z_{j,b}\) specifies whether cold stream \(j \in C\) is placed into bin \(b \in B\). Then, the minimum number of matches problem can be formulated:

\[
\begin{align*}
\text{max} & \quad \sum_{b \in B} x_b \\
x_b & \leq \sum_{i \in H} w_{i,b} \quad b \in B \\
x_b & \leq \sum_{j \in C} z_{j,b} \quad b \in B \\
\sum_{b \in B} w_{i,b} & = 1 \quad i \in H \\
\sum_{b \in B} z_{j,b} & = 1 \quad j \in C \\
\sum_{i \in H} w_{i,b} \cdot h_i & = \sum_{j \in C} z_{j,b} \cdot c_j \quad b \in B \\
x_b, w_{i,b}, z_{j,b} & \in \{0, 1\} \quad b \in B, i \in H, j \in C
\end{align*}
\]

Expression (13), the objective function, maximizes the number of bins. Equations (14) and (15) ensure that a bin is used if there is at least one stream in it. Equations (16) and (17) enforce that each stream is assigned to exactly one bin. Finally, Eqs. (18) ensure the heat conservation of each bin. Note that, unlike the transportation and transshipment models, Eqs. (13)-(18) do not use a big-M parameter.

4.2. Improved Approximation Algorithm

Furman and Sahinidis (2004) propose a greedy 2-approximation algorithm for the minimum number of matches problem in a single temperature interval. We show that their analysis is tight. We also propose an improved, tight 1.5-approximation algorithm by prioritizing matches with equal heat loads and exploiting graph theoretic properties.

The simple greedy (SG) algorithm considers the hot and the cold streams in non-increasing heat load order (Furman and Sahinidis 2004). Initially, the first hot stream is matched to the first cold stream and an amount \(\min\{h_1, c_1\}\) of heat is transferred between them. Without loss of generality \(h_1 > c_1\), which implies that an amount \(h_1 - c_1\) of heat load remains to be transferred from \(h_1\) to the remaining cold streams. Subsequently, the algorithm matches \(h_1\) to \(c_2\), by transferring \(\min\{h_1 - c_1, c_2\}\) heat. The same procedure repeats with the other streams until all remaining heat load is transferred.

Furman and Sahinidis (2004) show that Algorithm SG is 2-approximate for one temperature interval. Our new result in Theorem 2 shows that this ratio is tight.

Theorem 2. Algorithm SG achieves an approximation ratio of 2 for the single temperature interval problem and it is tight.
Algorithm 1 Simple Greedy (SG), developed by Furman and Sahinidis (2004), is applicable to one temperature interval only.

1: Sort the streams so that $h_1 \geq h_2 \geq \ldots \geq h_n$ and $c_1 \geq c_2 \geq \ldots \geq c_m$.
2: Set $i = 1$ and $j = 1$.
3: while there is remaining heat load to be transferred do
 4: Transfer $q_{i,j} = \min\{h_i, c_j\}$
 5: Set $h_i = h_i - q_{i,j}$ and $c_j = c_j - q_{i,j}$
 6: if $h_i = 0$, then set $i = i + 1$
 7: if $c_j = 0$, then set $j = j + 1$
end while

Algorithm 2 Improved Greedy (IG) is applicable to one temperature interval only.

1: for each pair of hot stream i and cold stream j s.t. $h_i = c_j$ do
2: Transfer h_i amount of heat load (also equal to c_j) between them and remove them.
3: end for
4: Run Algorithm SG with respect to the remaining streams.

Proof: See Appendix B.

Algorithm IG improves Algorithm SG by: (i) matching the pairs of hot and cold streams with equal heat loads and (ii) using the acyclic property in the graph representation of an optimal solution.

Theorem 3. Algorithm IG achieves an approximation ratio of 1.5 for the single temperature interval problem and it is tight.

Proof: See Appendix B.

5. Maximum Heat Computations with Match Restrictions

This section discusses computing the maximum heat that can be feasibly exchanged in a minimum number of matches instance. Section 5.1 discusses the specific instance of two streams and thereby reduces the value of big-M parameter $U_{i,j}$. Sections 5.2 & 5.3 generalize Section 5.1 from 2 streams to any number of the candidate matches. Section 5.2 is limited to a restricted subset of matches in a single temperature interval. Section 5.3 calculates the maximum heat that can be feasibly exchanged for the most general case of multiple temperature intervals.

These maximum heat computations are an essential ingredient of our heuristic methods and aim in using a match in the most profitable way. They also answer the feasibility of the minimum number of matches problem.
5.1. Two Streams and Big-M Parameter Computation

A common way of computing the big-M parameters is setting \(U_{i,j} = \min\{h_i, c_j\} \) for each \(i \in H \) and \(j \in C \). [Gundersen et al. 1997] propose a better method for calculating the big-M parameter. Our novel Greedy Algorithm MHG (Maximum Heat Greedy) obtains tighter \(U_{i,j} \) bounds than either the trivial bounds or the [Gundersen et al. 1997] bounds by exploiting the transshipment model structure.

Given hot stream \(i \) and cold stream \(j \), Algorithm MHG computes the maximum amount of heat that can be feasibly exchanged between \(i \) and \(j \) in any feasible solution. Algorithm MHG is tight in the sense that there is always a feasible solution where streams \(i \) and \(j \) exchange exactly \(U_{i,j} \) units of heat. Note that, in addition to \(U_{i,j} \), the algorithm computes a value \(q_{i,s,j,t} \) of the heat exchanged between each hot stream \(i \in H \) in temperature interval \(s \in T \) and each cold stream \(j \in C \) in temperature interval \(t \in T \), so that \(\sum_{s,t \in T} q_{i,s,j,t} = U_{i,j} \). These \(q_{i,s,j,t} \) values are required by greedy packing heuristics in Section 8.

Algorithm 3 is a pseudocode of Algorithm MHG. The correctness, i.e. the maximality of the heat exchanged between \(i \) and \(j \), is a corollary of the well known maximum flow - minimum cut theorem. Initially, the procedure transfers the maximum amount of heat across the same temperature interval; \(q_{i,u,s,u} = \min\{\sigma_{i,u}, \delta_{j,u}\} \) for each \(u \in T \). The remaining heat is transferred greedily in a top down manner, with respect to the temperature intervals, by accounting heat residual capacities. For each temperature interval \(u \in T \), the heat residual capacity \(R_u = \sum_{i=1}^{n} \sum_{s=1}^{u} \sigma_{i,s} - \sum_{j=1}^{m} \sum_{t=1}^{u} \delta_{j,t} \) imposes an upper bound on the amount of heat that may descend from temperature intervals \(1, 2, \ldots, u \) to temperature intervals \(u + 1, u + 2, \ldots, k \).

5.2. Single Temperature Interval

Given an instance of the single temperature interval problem and a subset \(M \) of matches, the maximum amount of heat that can be feasibly exchanged between the streams using only the matches in \(M \) can be computed by solving [MaxHeatLP]. For simplicity, [MaxHeatLP] drops temperature interval indices for variables \(q_{i,j} \).

\[
\text{max} \quad \sum_{(i,j) \in M} q_{i,j} \\
\sum_{j \in C} q_{i,j} \leq h_i \quad i \in H \\
\sum_{i \in H} q_{i,j} \leq c_j \quad j \in C \\
q_{i,j} \geq 0 \quad i \in H, j \in C
\]

(MaxHeatLP)

5.3. Multiple Temperature Intervals

Maximizing the heat exchanged through a subset of matches across multiple temperature intervals can solved with an LP that generalizes [MaxHeatLP]. The generalized LP must
Algorithm 3 Maximum Heat Greedy (MHG)

Input: Hot stream $i \in H$ and cold stream $j \in C$

1: $\vec{q} \leftarrow \vec{0}$
2: for $u = 1, 2, \ldots, k$ do
3: $q_{i,u,j,u} \leftarrow \min\{\sigma_{i,u}, \delta_{j,u}\}$
4: $\sigma_{i,u} \leftarrow \sigma_{i,u} - q_{i,u,j,u}$
5: $\delta_{j,u} \leftarrow \delta_{j,u} - q_{i,u,j,u}$
6: end for
7: for $s = 1, 2, \ldots, k - 1$ do
8: for $t = s + 1, s + 2, \ldots, k$ do
9: $q_{i,s,j,t} \leftarrow \min\{\sigma_{i,s}, \delta_{j,t}, \min_{s \leq u \leq t-1}\{R_u\}\}$
10: $\sigma_{i,s} \leftarrow \sigma_{i,s} - q_{i,s,j,t}$
11: $\delta_{j,t} \leftarrow \delta_{j,t} - q_{i,s,j,t}$
12: end for
13: $R_u \leftarrow R_u - q_{i,s,j,t}$
14: end for
15: end for
16: Return \vec{q}

satisfy the additional requirement that, after removing a maximum heat exchange, the remaining instance is feasible. Feasibility is achieved using residual capacity constraints which are essential for the efficiency of greedy packing heuristics (see Section 8.1).

Given a set M of matches, let $A(M)$ be the set of quadruples (i, s, j, t) such that a positive amount of heat can be feasibly transferred via the transportation arc with endpoints the nodes (i, s) and (j, t). The set $A(M)$ does not contain any quadruple (i, s, j, t) with: (i) $s > t$, (ii) $\sigma_{i,s} = 0$, (iii) $\delta_{j,t} = 0$, or (iv) $(i, j) \notin M$. Let $V^H(M)$ and $V^C(M)$ be the set of transportation vertices (i, s) and (j, t), respectively, that appear in $A(M)$. Similarly, given two fixed vertices $(i, s) \in V^H(M)$ and $(j, t) \in V^C(M)$, we define the sets $V^C_{i,s}(M)$ and $V^H_{j,t}(M)$ of their respective neighbors in $A(M)$.

Consider a temperature interval $u \in T$. We define by $A_u(M) \subseteq A(M)$ the subset of quadruples with $s \leq u < t$, for $u \in T$. The total heat transferred via the arcs in $A_u(M)$ must be upper bounded by $R_u = \sum_{i=1}^{n} \sum_{s=1}^{u} \sigma_{i,s} - \sum_{j=1}^{m} \sum_{t=1}^{u} \delta_{j,t}$. Furthermore, $A(M)$ eliminates any quadruple (i, s, j, t) with $R_u = 0$, for some $s \leq u < t$. Finally, we denote by $T(M)$ the subset of temperature intervals affected by the matches in M, i.e. if $u \in T(M)$, then there exists a quadruple $(i, s, j, t) \in A(M)$, with $s \leq u < t$. The procedure $MHL(P(M)$ is based on solving the following LP:

\[
\max \sum_{(i,s,j,t) \in A(M)} q_{i,s,j,t} \tag{20}
\]

\[
\sum_{(j,t) \in V^C_{i,s}(M)} q_{i,s,j,t} \leq \sigma_{i,s} \quad (i, s) \in V^H(M) \tag{21}
\]
Expression (20) maximizes the total exchanged heat by using only the matches in M. Constraints (21) and (22) ensure that each stream uses only part of its available heat. Constraints (23) enforce the heat residual capacities.

6. Relaxation Rounding Heuristics

This section investigates relaxation rounding heuristics for the minimum number of matches problem. Figure 3 shows the main steps in relaxation rounding. These heuristics begin by optimizing an efficiently-solvable relaxation of the original MILP. The efficiently-solvable relaxation allows violation of certain constraints, so that the optimal solution(s) is (are) typically infeasible in the original MILP. The resulting infeasible solutions are subsequently rounded to feasible solutions for the original MILP. We consider 3 types of relaxations. Section 6.1 relaxes the integrality constraints and proposes fractional LP rounding. Section 6.2 relaxes the big-M constraints, i.e. Eqs. (4), and uses Lagrangian relaxation rounding. Section 6.3 relaxes the heat conservation equations, i.e. Eqs. (2)-(3), and takes an approach based on covering relaxations.

6.1. Fractional LP Rounding

The LP rounding heuristic, originally proposed by [Furman and Sahinidis 2004], transforms an optimal fractional solution for the transportation MILP to a feasible integral solution. We show that the fractional LP can be solved efficiently via network flow techniques.
We observe that, in the worst case, the heuristic produces a weak solution if it starts with an arbitrary optimal solution of the fractional LP. We derive a novel performance guarantee showing that the heuristic is efficient when the heat of each chosen match \((i, j)\) is close to big-M parameter \(U_{i,j}\), in the optimal fractional solution.

Consider the fractional LP obtained by replacing the integrality constraints \(y_{i,j} \in \{0, 1\}\) of the transportation MILP, i.e. Eqs. (1)-(6), with the constraints \(0 \leq y_{i,j} \leq 1\), for each \(i \in H\) and \(j \in C\):

\[
\min \sum_{i \in H} \sum_{j \in C} y_{i,j}
\]

\[
\sum_{j \in C} \sum_{t \in T} q_{i,s,j,t} = \sigma_{i,s} \quad i \in H, s \in T
\]

\[
\sum_{i \in H} \sum_{s \in T} q_{i,s,j,t} = \delta_{j,t} \quad j \in C, t \in T
\]

\[
\sum_{s,t \in T} q_{i,s,j,t} \leq U_{i,j} \cdot y_{i,j} \quad i \in H, j \in C
\]

\[
q_{i,s,j,t} = 0 \quad i \in H, j \in C, s,t \in T : s \leq t
\]

\[
0 \leq y_{i,j} \leq 1, \quad q_{i,s,j,t} \geq 0 \quad i \in H, j \in C, s,t \in T
\]

The fractional linear program (FracLP) can be solved via minimum cost flow methods. Figure 4 illustrates a network \(N\), i.e. a minimum cost flow problem instance, such that finding a minimum cost flow in \(N\) is equivalent to optimizing the fractional LP. Network \(N\) is a layered graph with six layers of nodes: (i) a source node \(S\), (ii) a node for each hot stream \(i \in H\), (iii) a node for each pair \((i, s)\) of hot stream \(i \in H\) and temperature interval \(s \in T\), (iv) a node for each pair \((j, t)\) for each cold stream \(j \in C\) and temperature interval \(t \in T\), (v) a node for each cold stream \(j \in C\), and (vi) a destination node \(D\). We add: (i) the arc \((S, i)\) with capacity \(h_i\) for each \(i \in H\), (ii) the arc \(((i, i, s))\) with capacity \(\sigma_{i,s}\) for each \(i \in H\) and \(s \in T\), (iii) the arc \(((i, s), (j, t))\) with infinite capacity for each \(i \in H\), \(j \in C\) and \(s,t \in T\), (iv) the arc \(((j, t), j)\) with capacity \(\delta_{j,t}\) for each \(j \in H\) and \(t \in T\), and (v) the arc \(((j, D))\) with capacity \(c_j\) for each \(j \in C\). Each arc \(((i, s), (j, t))\) has cost \(1/U_{i,j}\) for \(i \in H, j \in C\) and \(s,t \in T\). Every other arc has zero cost. Any flow of cost \(\sum_i h_i\) on network \(N\) is equivalent to a feasible solution for FracLP with the same cost and vice versa.

Furman and Sahinidis (2004) observe that any feasible solution of FracLP can be rounded to a feasible solution of the original problem via Algorithm 4, a simple greedy procedure that we call FLPR. Given a problem instance \(I\), the procedure FractionalLP\((I)\) computes an optimal solution of FracLP. We denote by \((\vec{y}', \vec{q}')\) the optimal fractional solution.

An inherent drawback of the Furman and Sahinidis (2004) approach is the existence of optimal fractional solutions with unnecessary matches. Theorem 4 shows that Algorithm FLPR performance is bad in the worst case, even for instances with a single temperature
Figure 4: Minimum cost network flow formulation of FracLP. The heat is modeled as flow transferred from a source node S to a destination node D. All finite capacities are labelled above the corresponding arcs. The cost is incurred in each arc between node $(i,s) \in H \times T$ and node $(j,t) \in C \times T$ under the condition that heat flows to the same or a lower temperature interval.

Algorithm 4 Fractional LP Rounding (FLPR) (Furman and Sahinidis 2004)

1: $(\vec{y}^f, \vec{q}^f) \leftarrow \text{FractionalLP}(I)$
2: $\vec{q} \leftarrow \vec{q}^f$
3: for each $i \in H$ and $j \in C$ do
4: if $\sum_{s,t \in T} q_{i,s,j,t} > 0$ then
5: $y_{i,j} \leftarrow 1$
6: else
7: $y_{i,j} \leftarrow 0$
8: end if
9: end for
10: Return (\vec{y}, \vec{q})

interval. The proof, given in Appendix C, can be extended so that unnecessary matches occur across multiple temperature intervals.

Theorem 4. Algorithm FLPR is $\Omega(n)$-approximate.

Proof: See Appendix C

Consider an optimal fractional solution to FracLP and suppose that $M \subseteq H \times C$ is the set of pairs of streams exchanging a positive amount of heat. For each $(i,j) \in M$, denote by $L_{i,j}$ the heat exchanged between hot stream i and cold stream j. We define:

$$\phi(M) = \min_{(i,j) \in M} \left\{ \frac{L_{i,j}}{U_{i,j}} \right\}$$

as the filling ratio, which corresponds to the minimum portion of an upper bound $U_{i,j}$ filled
with the heat $L_{i,j}$, for some match (i,j). Given an optimal fractional solution with filling ratio $\phi(M)$, Theorem 5 obtains a $1/\phi(M)$-approximation ratio for FLPR.

Theorem 5. Given an optimal fractional solution with a set M of matches and filling ratio $\phi(M)$, FLPR produces a $(1/\phi(M))$-approximate integral solution.

Proof: See Appendix C. ■

In the case where all heat supplies and demands are integers, the integrality of the minimum cost flow polytope and Theorem 5 imply that FLPR is U_{max}-approximate, where $U_{\text{max}} = \max_{(i,j) \in H \times C} \{U_{i,j}\}$ is the biggest big-M parameter. Because performance guarantee of FLPR scales with the big-M parameters $U_{i,j}$, we improve the heuristic performance by computing a small big-M parameter $U_{i,j}$ using Algorithm MHG in Section 5.1.

6.2. Lagrangian Relaxation Rounding

Furman and Sahinidis (2004) design efficient heuristics for the minimum number of matches problem by applying the method of Lagrangian relaxation and relaxing the big-M constraints. This approach generalizes Algorithm FLPR by approximating the fractional cost of every possible match $(i,j) \in H \times C$ and solving an appropriate LP using these costs. We present the LP and revisit different ways of approximating the fractional match costs.

In a feasible solution, the fractional cost $\lambda_{i,j}$ of a match (i,j) is the cost incurred per unit of heat transferred via (i,j). In particular,

$$\lambda_{i,j} = \begin{cases} 1/L_{i,j}, & \text{if } L_{i,j} > 0, \\ 0, & \text{if } L_{i,j} = 0 \end{cases}$$

where $L_{i,j}$ is the heat exchanged via (i,j). Then, the number of matches can be expressed as $\sum_{i,s,j,t} \lambda_{i,j} q_{i,s,j,t}$. Furman and Sahinidis (2004) propose a collection of heuristics computing a single cost value for each match (i,j) and constructing a minimum cost solution. This solution is rounded to a feasible integral solution equivalently to FLPR.

Given a cost vector $\bar{\lambda}$ of the matches, a minimum cost solution is obtained by solving:

$$\min \sum_{i \in H} \sum_{j \in C} \sum_{s,t \in T} \lambda_{i,j} \cdot q_{i,s,j,t}$$

$$\sum_{j \in C} \sum_{t \in T} q_{i,s,j,t} = \sigma_{i,s} \quad i \in H, s \in T$$

$$\sum_{i \in H} \sum_{s \in T} q_{i,s,j,t} = \delta_{j,t} \quad j \in C, t \in T$$

$$q_{i,s,j,t} \geq 0 \quad i \in H, j \in C, s, t \in T$$

(A CostLP)

A challenge in Lagrangian relaxation rounding is computing a cost $\lambda_{i,j}$ for each hot stream $i \in H$ and cold stream $j \in C$. We revisit and generalize policies for selecting costs.
Cost Policy 1 (Maximum Heat). Matches that exchange large amounts of heat incur low fractional cost. This observation motivates selecting $\lambda_{i,j} = 1/U_{i,j}$, for each $(i,j) \in H \times C$, where $U_{i,j}$ is an upper bound on the heat that can be feasibly exchanged between i and j. In this case, Lagrangian relaxation rounding is equivalent to FLPR (Algorithm 4).

Cost Policy 2 (Bounds on the Number of Matches). This cost selection policy uses lower bounds α_i and β_j on the number of matches of hot stream $i \in H$ and cold stream $j \in C$, respectively, in an optimal solution. Given such lower bounds, at least α_i cost is incurred for the h_i heat units of i and at least β_j cost is incurred for the c_j units of j. On average, each heat unit of i is exchanged with cost at least α_i/h_i and each heat unit of j is exchanged with cost at least β_j/c_j. So, the fractional cost of each match $(i,j) \in H \times C$ can be approximated by setting $\lambda_{i,j} = \alpha_i/h_i$ or $\lambda_{i,j} = \beta_j/c_j$.

Furman and Sahinidis (2004) use lower bounds $\alpha_i = 1$ and $\beta_j = 1$, for each $i \in H$ and $j \in C$. We show that, for any choice of lower bounds α_i and β_j, this cost policy for selecting $\lambda_{i,j}$ is not effective. Even when α_i and β_j are tighter than 1, all feasible solutions of CostLP attain the same cost. Consider any feasible solution (\vec{y}, \vec{q}) and the fractional cost $\lambda_{i,j} = \alpha_i/h_i$ for each $(i,j) \in H \times C$. Then the cost of (\vec{y}, \vec{q}) in CostLP is:

$$\sum_{i \in H} \sum_{j \in C} \sum_{s,t} \lambda_{i,j} \cdot q_{i,s,j,t} = \sum_{i \in H} \sum_{j \in C} \sum_{s,t} \frac{\alpha_i}{h_i} \cdot q_{i,s,j,t} = \sum_{i \in H} \alpha_i.$$

Since every feasible solution in CostLP has cost $\sum_{i \in H} \alpha_i$, Lagrangian relaxation rounding returns an arbitrary solution. Similarly, if $\lambda_{i,j} = \beta_j/c_j$ for $(i,j) \in H \times C$, every feasible solution has cost $\sum_{j \in C} \beta_j$. If $\lambda_{i,j} = \frac{1}{2}(\frac{\alpha_i}{h_i} + \frac{\beta_j}{c_j})$, all feasible solutions have the same cost $1/2 \cdot (\sum_{i \in H} \alpha_i + \sum_{j \in C} \beta_j)$.

Cost Policy 3 (Existing Solution). This method of computing costs uses an existing solution. The main idea is to use the actual fractional costs for the solution’s matches and a non-zero cost for every unmatched streams pair. A minimum cost solution with respect to these costs may improve the initial solution. Suppose that M is the set of matches in the initial solution and let $L_{i,j}$ be the heat exchanged via $(i,j) \in M$. Furthermore, let $U_{i,j}$ be an upper bound on the heat exchanged between i and j in any feasible solution. Then, a possible selection of costs is $\lambda_{i,j} = 1/L_{i,j}$ if $(i,j) \in M$, and $\lambda_{i,j} = 1/U_{i,j}$ otherwise.

6.3. Covering Relaxation Rounding

This section proposes a novel covering relaxation rounding heuristic for the minimum number of matches problem. The efficiency of Algorithm FLPR depends on lower bounding the unitary cost of the heat transferred via each match. The goal of the covering relaxation is to use these costs and lower bound the number of matches in a stream-to-stream to basis.
by relaxing heat conservation. The heuristic constructs a feasible integral solution by solving successively instances of the covering relaxation.

Consider a feasible MILP solution and suppose that \(M \) is the set of matches. For each hot stream \(i \in H \) and cold stream \(j \in C \), denote by \(C_i(M) \) and \(H_j(M) \) the subsets of cold and hot streams matched with \(i \) and \(j \), respectively, in \(M \). Moreover, let \(U_{i,j} \) be an upper bound on the heat that can be feasibly exchanged between \(i \in H \) and \(j \in C \). Since the solution is feasible, it must be true that

\[
\sum_{j \in C} C_{i}^{j}(M) U_{i,j} \geq h_i \quad i \in H
\]

and

\[
\sum_{i \in H} H_{j}^{i}(M) U_{i,j} \geq c_j \quad j \in C
\]

These inequalities are necessary, though not sufficient, feasibility conditions. By minimizing the number of matches while ensuring these conditions, we obtain a covering relaxation:

\[
\min \sum_{i \in H} \sum_{j \in C} y_{i,j} \quad y_{i,j} \in \{0, 1\}
\]

\[
\sum_{j \in C} y_{i,j} \cdot U_{i,j} \geq h_i \quad i \in H \tag{CoverMILP}
\]

\[
\sum_{i \in H} y_{i,j} \cdot U_{i,j} \geq c_j \quad j \in C
\]

In certain cases, the matches of an optimal solution to CoverMILP overlap well with the matches in a near-optimal solution for the original problem. Our new Covering Relaxation Rounding (CRR) heuristic for the minimum number of matches problem successively solves instances of the covering relaxation CoverMILP. The heuristic chooses new matches iteratively until it terminates with a feasible set \(M \) of matches. In the first iteration, Algorithm CRR constructs a feasible solution for the covering relaxation and adds the chosen matches in \(M \). Then, Algorithm CRR computes the maximum heat that can be feasibly exchanged using the matches in \(M \) and stores the computed heat exchanges in \(\vec{q} \). In the second iteration, the heuristic performs same steps with respect to the smaller updated instance \((\vec{\sigma}', \vec{\delta}')\), where \(\sigma_{i,s}' = \sigma_{i,s} - \sum_{j,t} q_{i,s,j,t} \) and \(\delta_{j,t}' = \delta_{j,t} - \sum_{i,s} q_{i,s,j,t} \). The heuristic terminates when all heat is exchanged.

Algorithm 5 is a pseudocode of heuristic CRR. Procedure CoveringRelaxation(\(\vec{\sigma}, \vec{\delta} \)) produces an optimal subset of matches for the instance of the covering relaxation in which the heat supplies and demands are specified by the vectors \(\vec{\sigma} \) and \(\vec{\delta} \), respectively. Procedure MHLP(\(\vec{\sigma}, \vec{\delta}, M \)) (LP-based Maximum Heat) computes the maximum amount of heat that can be feasibly exchanged by using only the matches in \(M \) and is based on solving the LP in Section 5.3.

7. Water Filling Heuristics

This section introduces water filling heuristics for the minimum number of matches problem. These heuristics produce a solution iteratively by exchanging the heat in each
Algorithm 5 Covering Relaxation Rounding (CRR)

1: $M \leftarrow \emptyset$
2: $\vec{q} \leftarrow \vec{0}$
3: $r \leftarrow \sum_{i \in H} h_i$
4: while $r > 0$ do
5: For each $i \in H$ and $s \in T$, set $\sigma'_{i,s} \leftarrow \sigma_{i,s} - \sum_{j \in C} \sum_{t \in T} q_{i,s,j,t}$
6: For each $j \in C$ and $t \in T$, set $\delta'_{j,t} \leftarrow \delta_{j,t} - \sum_{i \in H} \sum_{s \in T} q_{i,s,j,t}$
7: $M' \leftarrow \text{CoveringRelaxation}(\vec{\sigma}', \vec{\delta}')$
8: $M \leftarrow M \cup M'$
9: $\vec{q} \leftarrow \text{MHLP}(\vec{\sigma}', \vec{\delta}', M')$
10: $r \leftarrow \sum_{i \in H} h_i - \sum_{i \in H} \sum_{j \in C} \sum_{s,t \in T} q_{i,s,j,t}$
11: end while

Figure 5: A water filling heuristic computes a solution by exploiting the top down temperature interval structure and moving from the higher to the lower temperature interval. In each temperature interval t, the heuristic isolates the streams with positive heat at t, it matches them and descends the excess heat to the next interval which is sequentially solved.

temperature interval, in a top down manner. The water filling heuristics use, in each iteration, an efficient algorithm for the single temperature interval problem (see Section 4).

Figure 5 shows the main idea of a water filling heuristic for the minimum number of matches problem with multiple temperature intervals. The problem is solved iteratively in a top-down manner, from the highest to the lowest temperature interval. Each iteration produces a solution for one temperature interval. The main components of a water filling heuristic are: (i) a maximum heat procedure which reuses matches from previous iterations and (ii) an efficient single temperature interval algorithm.

Given a set M of matches and an instance $(\vec{\sigma}_t, \vec{\delta}_t)$ of the problem in the single temperature interval t, the procedure $\text{MHS}(\vec{\sigma}_t, \vec{\delta}_t, M)$ (Maximum Heat for Single temperature interval) computes the maximum heat that can be exchanged between the streams in t using only the matches in M. At a given temperature interval t, the MHS procedure solves the LP in Section 5.2. The procedure $\text{SingleTemperatureInterval}(\vec{\sigma}_t, \vec{\delta}_t)$ produces an efficient solution for the single temperature interval problem with a minimum number of matches.
Algorithm 6 Water Filling (WF)

1: \(M \leftarrow \emptyset \)
2: \(\tilde{q} \leftarrow 0 \)
3: for \(t = 1, 2, \ldots, k \) do
4: if \(t \neq 1 \) then
5: \(\tilde{q}' \leftarrow \text{MHS}(\tilde{\sigma}_t, \tilde{\delta}_t, M) \)
6: \(\tilde{q} \leftarrow \tilde{q} + \tilde{q}' \)
7: end if
8: for each \(i \in H \), set \(\sigma_{i,t} \leftarrow \sigma_{i,t} - \sum_{j \in C} \sum_{t' \in T} q'_{i,j,t} \)
9: end for
10: end for
11: \((M', \tilde{q}') \leftarrow \text{SingleTemperatureInterval}(\tilde{\sigma}_t, \tilde{\delta}_t) \)
12: \(M \leftarrow M \cup M' \)
13: \(\tilde{q} \leftarrow \tilde{q} + \tilde{q}' \)
14: if \(t \neq k \) then
15: for \(i \in H \) do
16: \(\tilde{\sigma}_{i,t+1} \leftarrow \tilde{\sigma}_{i,t+1} + (\tilde{\sigma}_{i,t} - \sum_j q_{i,j,t}) \) (excess heat descending)
17: end for
18: end if

Theorem 6. Algorithms WFG and WFM are \(\Omega(k) \)-approximate.

Proof: See Appendix D.

8. Greedy Packing Heuristics

This section proposes greedy heuristics motivated by the packing nature of the minimum number of matches problem. Each greedy packing heuristic starts from an infeasible solution with zero heat transferred between the streams and iterates towards feasibility by greedily selecting matches. The two main ingredients of such a heuristic are: (i) a match selection policy and (ii) a heat exchange policy for transferring heat via the matches. Section 8.1 observes that a greedy heuristic has a poor worst-case performance if heat residual capacities
Figure 6: A bad example of a non monotonic heuristic. If a heuristic begins by matching \(h_1 \) with \(c_2 \) and \(h_2 \) with \(c_3 \), then many unnecessary matches might be required to end up with a feasible solution.

are not considered. Sections 8.2 – 8.4 define formally the greedy heuristics: (i) Largest Heat Match First, (ii) Largest Fraction Match First, and (iii) Smallest Stream First.

8.1. A Pathological Example and Heat Residual Capacities

A greedy match selection heuristic is efficient if it performs a small number of iterations and chooses matches exchanging large heat load in each iteration. Our greedy heuristics perform large moves towards feasibility by choosing good matches in terms of: (i) heat and (ii) stream fraction. An efficient greedy heuristic should also be monotonic in the sense that every chosen match achieves a strictly positive increase on the covered instance size.

The Figure 6 example shows a pathological behavior of greedy non-monotonic heuristics. The instance consists of 3 hot streams, 3 cold streams and 3 temperature intervals. Hot stream \(i \in H \) has heat supply \(\sigma_{i,s} = 1 \) for \(s = i \) and no supply in any other temperature interval. Cold stream \(j \in C \) has heat demand \(\delta_{j,t} = 1 \) for \(t = j \) and no demand in any other temperature interval. Consider the heuristic which selects a match that may exchange the maximum amount of heat in each iteration. The matches \((h_1, c_2)\) and \((h_2, c_3)\) consist the initial selections. In the subsequent iteration, no match increases the heat that can be feasibly exchanged between the streams and the heuristic chooses unnecessary matches.

A sufficient condition enforcing strictly monotonic behavior and avoiding the above pathology, is for each algorithm iteration to satisfy the heat residual capacities. As depicted in Figure 7, a greedy heuristic maintains a set \(M \) of selected matches together with a decomposition of the original instance \(I \) into two instances \(I^A \) and \(I^B \). If \(I = (H, C, T, \tilde{\sigma}, \tilde{\delta}) \), then it holds that \(I^A = (H, C, T, \tilde{\sigma}^A, \tilde{\delta}^A) \) and \(I^B = (H, C, T, \tilde{\sigma}^B, \tilde{\delta}^B) \), where \(\sigma = \tilde{\sigma}^A + \tilde{\sigma}^B \) and \(\tilde{\delta} = \tilde{\delta}^A + \tilde{\delta}^B \). The set \(M \) corresponds to a feasible solution for \(I^A \) and the instance \(I^B \) remains to be solved. In particular, \(I^A \) is obtained by computing a maximal amount of heat exchanged by using the matches in \(M \) and \(I^B \) is the remaining part of \(I \). Initially, \(I^A \) is empty and \(I^B \) is exactly the original instance \(I \). A selection of a match increases the total heat exchanged in \(I^A \) and reduces it in \(I^B \). Appendix E observes that a greedy heuristic is monotonic if \(I^B \) is feasible in each iteration. Furthermore, \(I^B \) is feasible if and only if \(I^A \) satisfies the heat residual capacities \(R_u = \sum_{i \in H} \sum_{s=1}^{u} \sigma_{i,s} - \sum_{j \in C} \sum_{t=1}^{u} \delta_{j,t} \), for \(u \in T \).
Algorithm 7 Largest Heat Match First LP-based (LHM-LP)

1: $M \leftarrow \emptyset$
2: $r \leftarrow \sum_{i \in H} h_i$
3: while $r > 0$ do
4: $(i', j') \leftarrow \arg \max_{(i, j) \in H \times C \setminus M} \{MHLP(M \cup \{(i, j)\})\}$
5: $M \leftarrow M \cup \{(i', j')\}$
6: $r \leftarrow \sum_{i \in H} h_i - MHLP(M)$
7: end while
8: Return M

8.2. Largest Heat Match First

Our Largest Heat Match First heuristics arise from the idea that the matches should individually carry large amounts of heat in a near optimal solution. Suppose that Q_v is the maximum heat that may be transferred between the streams using only a number v of matches. Then, minimizing the number of matches is expressed as $\min \{v : Q_v \geq \sum_{i=1}^n h_i\}$. This observation motivates the greedy packing heuristic which selects matches iteratively until it ends up with a feasible set M of matches exchanging $\sum_{i=1}^n h_i$ units of heat. In each iteration, the heuristic chooses a match maximizing the additional heat exchanged. Our two variants of largest heat matches heuristics are: (i) LP-based Largest Heat Match (LHM-LP) and (ii) Greedy Largest Heat Match (LHM).

Heuristic LHM-LP uses the $MHLP(M)$ (LP-based Maximum Heat) procedure to compute the maximum heat that can be transferred between the streams using only the matches in the set M. This procedure is repeated $O(nm)$ times in each iteration, once for every candidate match, and solves an LP incorporating the proposed heat residual capacities. Algorithm 7 is an LHM-LP heuristic using the LP in Section 5.3. The algorithm maintains a set M of chosen matches and selects a new match (i', j') to maximize $MHLP(M \cup (i', j'))$.

Theorem 7. Algorithm LHM-LP is $O(\log n + \log \frac{h_{\max}}{\epsilon})$-approximate, where ϵ is the required precision.

Proof: See Appendix E.

23
Algorithm 8 Largest Heat Match First Greedy (LHM)

1: \(M \leftarrow \emptyset \)
2: \(\vec{q} \leftarrow \vec{0} \)
3: \(r \leftarrow \sum_{i \in H} h_i \)
4: while \(r > 0 \) do
5: \((i', j', \vec{q}') \leftarrow \arg \max_{(i, j) \in H \times C \setminus M} \{MHG(\vec{\sigma}, \vec{\delta}, i, j)\} \)
6: \(M \leftarrow M \cup \{(i', j')\} \)
7: \(\vec{q} \leftarrow \vec{q} + \vec{q}' \)
8: for each \(s \in T \), set \(\sigma_{i', s} \leftarrow \sigma_{i', s} - \sum_{t \in T} q_{i', s, j', t} \)
9: for each \(t \in T \), set \(\delta_{j', t} \leftarrow \delta_{j', t} - \sum_{s \in T} q_{i', s, j', t} \)
10: \(r \leftarrow r - \sum_{s, t \in T} q_{i', s, j', t} \)
end while
11: Return \(M \)

LHM-LP heuristic is polynomial-time in the worst case. The \(i \)-th iteration solves \(nm - i + 1 \) LP instances which sums to solving a total of \(\sum_{i=1}^{nm} (nm - i + 1) = O(n^2m^2) \) LP instances in the worst case. However, for large instances, the algorithm is time consuming because of this iterative LP solving. So, we also propose an alternative, time-efficient greedy approach. The new heuristic version builds a solution by selecting matches and deciding the heat exchanges, without modifying them in subsequent iterations.

The new approach for implementing the heuristic, that we call LHM, requires the \(MHG(\vec{\sigma}, \vec{\delta}, i, j) \) procedure. Given an instance \((\vec{\sigma}, \vec{\delta})\) of the problem, it computes the maximum heat that can be feasibly exchanged between hot stream \(i \in H \) and cold stream \(j \in C \), as defined in Section 5.1. The procedure also computes a corresponding value \(q_{i, s, j, t} \) of heat exchanged between \(i \in H \) in temperature interval \(s \in T \) and \(j \in C \) in temperature interval \(t \in T \). LHM maintains a set \(M \) of currently chosen matches together with their respective vector \(\vec{q} \) of heat exchanges. In each iteration, it selects the match \((i', j')\) and heat exchanges \(q' \) between \(i' \) and \(j' \) so that the value \(MHG(\vec{\sigma}, \vec{\delta}, i', j') \) is maximum. Algorithm 8 is a pseudocode of this heuristic.

8.3. Largest Fraction Match First

The heuristic Largest Fraction Match First (LFM) exploits the bipartite nature of the problem by employing matches which exchange large fractions of the stream heats. Consider a feasible solution with a set \(M \) of matches. Every match \((i, j) \in M \) covers a fraction \(\sum_{s, t \in T} \frac{q_{i, s, j, t}}{h_i} \) of hot stream \(i \in H \) and a fraction \(\sum_{s, t \in T} \frac{q_{i, s, j, t}}{c_j} \) of cold stream \(j \in C \). The total covered fraction of all streams is equal to \(\sum_{(i, j) \in M} \sum_{s, t \in T} \left(\frac{q_{i, s, j, t}}{h_i} + \frac{q_{i, s, j, t}}{c_j} \right) = n + m \).

Suppose that \(F_v \) is the maximum amount of total stream fraction that can be covered using no more than \(v \) matches. Then, minimizing the number of matches is expressed as \(\min \{ v : F_v \geq n + m \} \). Based on this observation, the main idea of LFM heuristic is to construct iteratively a feasible set of matches, by selecting the match covering the largest
fraction of streams, in each iteration. That is, LFM prioritizes proportional matches in a way that high heat hot streams are matched with high heat cold streams and low heat hot streams with low heat cold streams. In this sense, it generalizes the idea of Algorithm IG for the single temperature interval problem (see Section 3), according to which it is beneficial to match streams of (roughly) equal heat.

An alternative that would be similar to LHM-LP is an LFM heuristic with an $MFLP(M)$ (LP-based Maximum Fraction) procedure computing the maximum fraction of streams that can be covered using only a given set M of matches. Like the LHM-LP heuristic, this procedure would be based on solving an LP (see Appendix E), except that the objective function maximizes the total stream fraction. The LFM heuristic can be also modified to attain more efficient running times using Algorithm MHG, as defined in Section 5.1. In each iteration, the heuristic selects the match (i, j) with the highest value $U_{i,j}^h + U_{i,j}^c$, where $U_{i,j}^h$ is the maximum heat that can be feasibly exchanged between i and j in the remaining instance.

8.4. Smallest Stream Heuristic

Subsequently, we propose Smallest Stream First (SS) heuristic based on greedy match selection, which also incorporates stream priorities so that a stream is involved in a small number of matches. Let α_i and β_j be the number of matches of hot stream $i \in H$ and cold stream $j \in C$, respectively. Minimizing the number of matches problem is expressed as $\min\{\sum_{i \in H} \alpha_i\}$, or equivalently $\min\{\sum_{j \in C} \beta_j\}$. Based on this observation, we investigate heuristics that specify a certain order of the hot streams and match them one by one, using individually a small number of matches. Such a heuristic requires: (i) a stream ordering strategy and (ii) a match selection strategy. To reduce the number of matches of small hot streams, heuristic SS uses the order $h_1 \leq h_2 \leq \ldots \leq h_n$.

In each iteration, the next stream is matched with a low number of cold streams using a greedy match selection strategy; we use greedy LHM heuristic. Observe that SS heuristic is more efficient in terms of running time compared to the other greedy packing heuristics, because it solves a subproblem with only one hot stream in each iteration. Algorithm 6 is a pseudocode of SS heuristic. Note that other variants of ordered stream heuristics may be obtained in a similar way. The heuristic uses the MHG algorithm in Section 5.1.

9. Numerical Results

This section evaluates the proposed heuristics on three test sets. Section 9.1 provides information on system specifications and benchmark instances. Section 9.2 presents computational results of exact methods and shows that commercial, state-of-the-art approaches have difficult solving moderately-sized instances to global optimality. Section 9.3 evaluates
Algorithm 9 Smallest Steam First (SS)

1: Sort the hot streams in non-decreasing order of their heat loads, i.e. \(h_1 \leq h_2 \leq \ldots \leq h_n \).
2: \(M \leftarrow \emptyset \)
3: \(\vec{q} \leftarrow \vec{0} \)
4: for \(i \in H \) do
5: \hspace{1em} \(r \leftarrow h_i \)
6: \hspace{3em} while \(r > 0 \) do
7: \hspace{5em} \((i', j', \vec{q}') \leftarrow \arg \max_{j \in C} \{ MHG(\vec{\sigma}, \vec{\delta}, i, j) \} \)
8: \hspace{5em} \(M \leftarrow M \cup \{(i', j')\} \)
9: \hspace{5em} \(\vec{q} \leftarrow \vec{q} + \vec{q}' \)
10: \hspace{3em} for each \(s \in T \), set \(\sigma_{i,s} \leftarrow \sigma_{i,s} - \sum_{t \in T} q'_{i,s,j',t} \)
11: \hspace{3em} for each \(t \in T \), set \(\delta_{j',t} \leftarrow \delta_{j',t} - \sum_{s \in T} q'_{i,s,j',t} \)
12: \hspace{3em} \(r \leftarrow r - \sum_{s,t \in T} q'_{i',s,j',t} \)
13: \hspace{3em} end while
14: \hspace{1em} end for
15: \hspace{1em} Return \(M \)

experimentally the heuristic methods and compares the obtained results with those reported by Furman and Sahinidis (2004). All result tables are provided in Appendix G.

9.1. System Specification and Benchmark Instances

All computations are run on an Intel Core i7-4790 CPU 3.60GHz with 15.6 GB RAM running 64-bit Ubuntu 14.04. CPLEX 12.6.3 and Gurobi 6.5.2 solve the minimum number of matches problem exactly. The mathematical optimization models and heuristics are implemented in Python 2.7.6 and Pyomo 4.4.1 (Hart et al. 2011, 2012).

We use problem instances from two existing test sets (Furman and Sahinidis 2004, Chen et al. 2015b). We also generate a collection of larger test cases using work of Grossmann (2017). An instance of general heat exchanger network design consists of streams and utilities with inlet, outlet temperatures, flow rate heat capacities and other parameters. Appendix F shows how a minimum number of matches instances arises from the original instance of general heat exchanger network design.

The Furman (2000) test set consists of test cases from the engineering literature. Table G.4 reports bibliographic information on the origin of these test cases. We manually digitize this data set and make it publicly available for the first time (Letsios et al. 2017). Table G.4 lists the 26 problem instance names and information on their sizes. The total number of streams and temperature intervals varies from 6 to 38 and from 5 to 32, respectively. Table G.4 also lists the number of binary and continuous variables as well as the number of constraints in the transshipment MILP formulation.

The Chen et al. (2015a,b) test set consists of 10 problem instances. These instances are classified into two categories depending on whether they consist of balanced or unbalanced streams. Test cases with balanced streams have flowrate heat capacities in the same order of
magnitude, while test cases with unbalanced streams have dissimilar flowrate heat capacities spanning several orders of magnitude. The sizes of these instances range from 10 to 42 streams and from 12 to 35 temperature intervals. Table G.4 reports more information on the size of each test case.

The Grossmann (2017) test set is generated randomly. The inlet, outlet temperatures of these instances are fixed while the values of flowrate heat capacities are generated randomly with fixed seeds. This test set contains 12 moderately challenging problems (see Table G.4) with a classification into balanced and unbalanced instances, similarly to the Chen et al. (2015a,b) test set. The smallest problem involves 27 streams and 23 temperature intervals while the largest one consists of 43 streams and 37 temperature intervals.

9.2. Exact Methods

We evaluate exact methods using state-of-the-art commercial approaches. For each problem instance, CPLEX and Gurobi solve the Section 2 transportation and transshipment models. Based on the difficulty of each test set, we set a time limit for each solver run as follows: (i) 1800 seconds for the Furman (2000) test set, (ii) 7200 seconds for the Chen et al. (2015a,b) test set, and (iii) 14400 seconds for the Grossmann (2017) test set. In each solver run, we set absolute gap 0.99, relative gap 4%, and maximum number of threads 1.

Table G.5 reports the best found objective value, CPU time and relative gap, for each solver run. Observe that state-of-the-art approaches cannot, in general, solve moderately-sized problems with 30-40 streams to global optimality. For example, none of the test cases in the Grossmann (2017) test set is solved to global optimality within the specified time limit. Table G.8 contains the results reported by Furman and Sahinidis (2004) using CPLEX 7.0 with 7 hour time limit. CPLEX 7.0 fails to solve 4 instances to global optimality. Interestingly, CPLEX 12.6.3 still cannot solve 3 of these 4 instances with a 1.5 hour timeout.

Theoretically, the transshipment MILP is better than the transportation MILP because the former has asymptotically fewer variables. This observation is validated experimentally with the exception of very few instances, e.g. balanced10, in which the transportation model computes a better solution within the time limit. CPLEX and Gurobi are comparable and neither dominates the other. Instances with balanced streams are harder to solve, which highlights the difficulty introduced by symmetry, see Kouyialis and Misener (2017).

9.3. Heuristic Methods

The difficulty of solving the minimum number of matches problem to global optimality motivates the design of heuristic methods and approximation algorithms with proven performance guarantees. Tables G.6 and G.7 contain the computed objective value and CPU times, respectively, of the heuristics for all test cases. For the challenging Chen et al. (2015a,b) and Grossmann (2017) test sets, heuristic LHM-LP always produces the best solution. The LHM-LP running time is significantly higher compared to all heuristics due to
the iterative LP solving, despite the fact that it is guaranteed to be polynomial in the worst case. Alternatively, heuristic SS produces the second best heuristic result with very efficient running times in the Chen et al. (2015a,b) and Grossmann (2017) test sets. Figure 8 depicts the performance ratio of the proposed heuristics using a box and whisker plot, where the computed objective value is normalized with the one found by CPLEX for the transshipment MILP. Figure 9 shows a box and whisker plot of the CPU times of all heuristics in \(\log_{10} \) scale normalized by the minimum CPU time for each test case. Figure 10 shows a line chart verifying that our greedy packing approach produces better solutions than the relaxation rounding and water filling ones.

![Box and whisker diagram of all heuristic performance ratios, i.e. computed solution / best known solution](image)

Table G.8 contains the heuristic results reported by Furman and Sahinidis (2004) and the ones obtained with our improved version of the FLPR, LRR, and WFG heuristics of Furman and Sahinidis (2004). Our versions of FLPR, LRR, and WFG perform better for the Furman and Sahinidis (2004) test set because of our new Algorithm MHG for tightening the big-M parameters. For example, out of the 26 instances, our version of FLPR performs strictly better than the Furman and Sahinidis (2004) version 20 times and worse only once (10sp1). To further explore the effect of the big-M parameter, Table G.9 shows how different computations for the big-M parameter change the FLPR and LRR performance. Table G.9 also demonstrates the importance of the big-M parameter on the transportation MILP fractional relaxation quality.

In particular, Table G.9 compares the three big-M computation methods discussed in
Figure 9: Box and whisker diagram of all CPU times (log₁₀ scale) normalized by the minimum CPU time for each test case.

Figure 10: Line chart comparing the performance ratio, i.e. computed solution / best known solution, of the best computed result by heuristic methods: relaxation rounding, water filling, and greedy packing.

Section 5.1 (i) the trivial bounds, (ii) the Gundersen et al. (1997) method, and (iii) our greedy Algorithm MHG. Our greedy maximum heat algorithm dominates the other ap-
proaches for computing the big-M parameters. Algorithm MHG also outperforms the other two big-M computation methods by finding smaller feasible solutions via both Fractional LP Rounding and Lagrangian Relaxation Rounding. In the 48 test cases, Algorithm MHG produces the best FLPR and LRR feasible solutions in 46 and 43 test cases, respectively. Algorithm MHG is strictly best for 33 FLPR and 32 LRR test cases. Finally, Algorithm MHG achieves the tightest fractional MILP relaxation for all test instances.

Figure 8 and Table G.6 show that our new CRR heuristic is competitive with the other relaxation rounding heuristics, performing as well or better than FLPR or LRR in 19 of the 48 test cases and strictly outperforming both FLPR and LRR in 8 test cases. Although CRR solves a sequence of MILPs, Figure 9 and Table G.7 show that its running time is efficient compared to the other relaxation rounding heuristics.

Our water filling heuristics are equivalent to or better than Furman and Sahinidis (2004) for 25 of their 26 test set instances (all except 7sp2). In particular, our Algorithm WFG is strictly better than their WFG in 18 of 26 instances and is worse in just one. This improvement stems from the new 1.5-approximation algorithm for the single temperature interval problem (see Section 4.2). The novel Algorithm WFM is competitive with Algorithm WFG and produces equivalent or better feasible solutions for 37 of the 48 test cases. In particular, WFM has a better performance ratio than WFG (see Figure 8) and WFM is strictly better than WFG in all but 1 of the Grossmann (2017) instances. The strength of WFM highlights the importance of our new MILP formulation in Eqs. (13)-(19). At each iteration, WFM solves an MILP without big-M constraints and therefore has a running time in the same order of magnitude as its greedy counterpart WFG (see Figure 9).

In summary, our heuristics obtained via the relaxation rounding and water filling methods improve the corresponding ones proposed by Furman and Sahinidis (2004). Furthermore, greedy packing heuristics achieve even better results in more than 90% of the test cases.

10. Discussion of Manuscript Contributions

This section reflects on this paper’s contributions and situates the work with respect to existing literature. We begin in Section 4 by designing efficient heuristics for the minimum number of matches problem with the special case of a single temperature interval. Initially, we show that the 2 performance guarantee by Furman and Sahinidis (2004) is tight. Using graph theoretic properties, we propose a new MILP formulation for the single temperature interval problem which does not contain any big-M constraints. We also develop an improved, tight, greedy 1.5-approximation algorithm which prioritizes stream matches with equal heat loads. Apart from its independent interest, solving the single temperature interval problem is a major ingredient of water filling heuristics.

The multiple temperature interval problem requires big-M parameters. We reduce these parameters in Section 5 by computing the maximum amount of heat transfer with match
restrictions. Initially, we present a greedy algorithm for exchanging the maximum amount of heat between two streams. This algorithm computes tighter big-M parameters than Gundersen et al. (1997). We also propose LP-based ways for computing the maximum exchanged heat using only a subset of the available matches. Maximum heat computations are fundamental ingredients of our heuristic methods and detect the overall problem feasibility. This paper emphasizes how tighter big-M parameters improve heuristics with performance guarantees, but notice that improving the big-M parameters will also tend to improve exact methods.

Section 6 further investigates the relaxation rounding heuristics of Furman and Sahinidis (2004). Furman and Sahinidis (2004) propose a heuristic for the minimum number of matches problem based on rounding the LP relaxation of the transportation MILP formulation (Fractional LP Rounding (FLPR)). Initially, we formulate the LP relaxation as a minimum cost flow problem showing that it can be solved with network flow techniques which are more efficient than generic linear programming. We derive a negative performance guarantee showing that FLPR has poor performance in the worst case. We also prove a new positive performance guarantee for FLPR indicating that its worst-case performance may be improved with tighter big-M parameters. Experimental evaluation shows that the performance of FLPR improves with our tighter algorithm for computing big-M parameters. Motivated by the method of Lagrangian Relaxation, Furman and Sahinidis (2004) proposed an approach generalizing FLPR by approximating the cost of the heat transferred via each match. We revisit possible policies for approximating the cost of each match. Interestingly, we show that this approach can be used as a generic method for potentially improving a solution of the minimum number of matches problem. Heuristic Lagrangian Relaxation Rounding (LRR) aims to improve the solution of FLPR in this way. Finally, we propose a new heuristic, namely Covering Relaxation Rounding (CRR), that successively solves instances of a new covering relaxation which also requires big-M parameters.

Section 7 defines water filling heuristics as a class of heuristics solving the minimum number of matches problem in a top-down manner, i.e. from highest to lowest temperature interval. Cerda et al. (1983) and Furman and Sahinidis (2004) have solution methods based on water filling. We improve these heuristics by developing novel, efficient ways for solving the single temperature interval problem. For example, heuristics MILP-based Water Filling (WFM) and Greedy Water Filling (WFG) incorporate the new MILP formulation (Eqs. 13-19) and greedy Algorithm IG, respectively. With appropriate LP, we further improve water filling heuristics by reusing in each iteration matches selected in previous iterations. Furman and Sahinidis (2004) showed a performance guarantee scaling with the number of temperature intervals. We show that this performance guarantee is asymptotically tight for water filling heuristics.

Section 8 develops a new greedy packing approach for designing efficient heuristics for the
minimum the number of matches problem motivated by the packing nature of the problem. Greedy packing requires feasibility conditions which may be interpreted as a decomposition method analogous to pinch point decomposition, see Linnhoff and Hindmarsh (1983). Similarly to Cerda et al. (1983), stream ordering affects the efficiency of greedy packing heuristics. Based on the feasibility conditions, the LP in Eqs. (20)-(24) selects matches carrying a large amount of heat and incurring low unitary cost for exchanging heat. Heuristic LP-based Largest Heat Match (LHM-LM) selects matches greedily by solving instances of this LP. Using a standard packing argument, we obtain a new logarithmic performance guarantee. LHM-LP has a polynomial worst-case running time but is experimentally time-consuming due to the repeated LP solving. We propose three other greedy packing heuristic variants which improve the running time at the price of solution quality. These other variants are based on different time-efficient strategies for selecting good matches. Heuristic Largest Heat Match (LHM) selects matches exchanging high heat in a pairwise manner. Heuristic Largest Fraction Match (LFM) is inspired by the idea of our greedy approximation algorithm for the single temperature interval problem which prioritizes roughly equal matches. Heuristic Smallest Stream First (SS) is inspired by the idea of the tick-off heuristic (Linnhoff and Hindmarsh 1983) and produces matches in a stream to stream basis, where a hot stream is ticked-off by being matched with a small number of cold streams.

Finally, Section 9 shows numerically that our new way of computing the big-M parameters, our improved algorithms for the single temperature interval, and the other enhancements improve the performance of relaxation rounding and water-filling heuristics. The numerical results also show that our novel greedy packing heuristics dominate relaxation rounding and water-filling ones in the majority of test cases.

11. Conclusion

In his PhD thesis, Professor Floudas showed that, given a solution to the minimum number of matches problem, he could solve a nonlinear optimization problem designing effective heat recovery networks. But the sequential HENS method cannot guarantee that promising minimum number of matches solutions will be optimal (or even feasible!) to Professor Floudas’ nonlinear optimization problem. Since the nonlinear optimization problem is relatively easy to solve, we propose generating many good candidate solutions to the minimum number of matches problem. This manuscript develops nine heuristics with performance guarantees to the minimum number of matches problem. Each of the nine heuristics is either novel or provably the best in its class. Beyond approximation algorithms, our work has interesting implications for solving the minimum number of matches problem exactly, e.g. the analysis into reducing big-M parameters.

Acknowledgments
We gratefully acknowledge support from EPSRC EP/P008739/1, an EPSRC DTP to G.K., and a Royal Academy of Engineering Research Fellowship to R.M.

References

Ahmad, S., B. Linnhoff. 1989. Supertargeting: Different process structures for different economics. *J. Energy Res Tech* **111** 131–136.

Ahmad, S., R. Smith. 1989. Targets and design for minimum number of shells in heat exchanger networks. *AIChE J* **67** 481 – 494.

Arora, S., B. Barak. 2009. *Computational Complexity: A Modern Approach*. Cambridge University Press.

Bagajewicz, M., H. Rodera, M. Savelski. 2002. Energy efficient water utilization systems in process plants. *Comput Chem Eng* **26** 59 – 79.

Baliban, R. C., J. A. Elia, R. Misener, C. A. Floudas. 2012. Global optimization of a MINLP process synthesis model for thermochemical based conversion of hybrid coal, biomass, and natural gas to liquid fuels. *Comput Chem Eng* **42** 64 – 86.

Biegler, L. T., I. E. Grossmann, A. W. Westerberg. 1997. *Systematic methods of chemical process design*. Prentice-Hall international series in the physical and chemical engineering sciences, Prentice Hall PTR.

Castro, P. M., B. Custodio, H. A. Matos. 2015. Optimal scheduling of single stage batch plants with direct heat integration. *Comput Chem Eng* **82** 172 – 185.

Cerda, J., A.W. Westerburg. 1983. Synthesizing heat exchanger networks having restricted stream/stream matches using transportation problem formulations. *Chem Eng Sci* **38** 1723–1740.

Cerda, J., A.W. Westerburg, D. Mason, B. Linnhoff. 1983. Minimum utility usage in heat exchanger network synthesis: A transportation problem. *Chem Eng Sci* **38** 373–387.

Chen, Y., I. Grossmann, D. Miller. 2015a. Large-scale MILP transshipment models for heat exchanger network synthesis. Available from CyberInfrastructure for MINLP [www.minlp.org, a collaboration of Carnegie Mellon University and IBM Research] at: www.minlp.org/library/problem/index.php?i=191.

Chen, Y., I. E. Grossmann, D. C. Miller. 2015b. Computational strategies for large-scale MILP transshipment models for heat exchanger network synthesis. *Comput Chem Eng* **82** 68–83.

Ciric, A. R., C. A. Floudas. 1991. Heat exchanger network synthesis without decomposition. *Comput Chem Eng* **15** 385 – 396.

Ciric, A.R., C.A. Floudas. 1989. A retrofit approach for heat exchanger networks. *Comput Chem Eng* **13** 703 – 715.

Colberg, R. D., M. Morari. 1990. Area and capital cost targets for heat exchanger network synthesis with constrained matches and unequal heat transfer coefficients. *Comput Chem Eng* **14** 1 – 22.
Dey, S. S., A. Gupte. 2015. Analysis of MILP techniques for the pooling problem. *Oper Res* **63** 412–427.

Dolan, W. B., P. T. Cummings, M. D. Le Van. 1990. Algorithmic efficiency of simulated annealing for heat exchanger network design. *Comput Chem Eng* **14** 1039–1050.

Elia, J. A., R. C. Baliban, C. A. Floudas. 2010. Toward novel hybrid biomass, coal, and natural gas processes for satisfying current transportation fuel demands, 2: Simultaneous heat and power integration. *Ind Eng Chem Res* **49** 7371–7388.

Escobar, M., J. O. Trierweiler. 2013. Optimal heat exchanger network synthesis: A case study comparison. *Appl Therm Eng* **51** 801–826.

Farhanieh, B., B. Sunden. 1990. Analysis of an existing heat exchanger network and effects of heat pump installations. *Heat Rec Syst and CHP* **10** 285–296.

Floudas, C. A. 1995. *Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications* Topics in Chemical Engineering. Topics in Chemical Engineering, Oxford University Press, New York.

Floudas, C. A., A. R. Ciric, I. E. Grossmann. 1986. Automatic synthesis of optimum heat exchanger network configurations. *AIChE J* **32** 276–290.

Floudas, C. A., J. A. Elia, R. C. Baliban. 2012. Hybrid and single feedstock energy processes for liquid transportation fuels: A critical review. *Comput Chem Eng* **41** 24 – 51.

Floudas, C. A., I. E. Grossmann. 1987. Synthesis of flexible heat exchanger networks with uncertain flowrates and temperatures. *Comput Chem Eng* **11** 319 – 336.

Furman, K. C. 2000. Analytical investigations in heat exchanger network synthesis. Ph.D. thesis, University of Illinois.

Furman, K. C., N. V. Sahinidis. 2001. Computational complexity of heat exchanger network synthesis. *Ind Eng Chem Res* **25** 1371 – 1390.

Furman, K. C., N. V. Sahinidis. 2002. A critical review and annotated bibliography for heat exchanger network synthesis in the 20th century. *Ind Eng Chem Res* **41** 2335–2370.

Furman, K. C., N. V. Sahinidis. 2004. Approximation algorithms for the minimum number of matches problem in heat exchanger network synthesis. *Ind Eng Chem Res* **43** 3554–3565.

Grossmann, I. 2017. Personal communication.

Grossmann, I. E., R. W. H. Sargent. 1978. Optimum design of heat exchanger networks. *Comput Chem Eng* **2** 1 – 7.

Gundersen, T., I. E. Grossmann. 1990. Improved optimization strategies for automated heat exchanger network synthesis through physical insights. *Comput Chem Eng* **14** 925 – 944.

Gundersen, T., L. Naess. 1988. The synthesis of cost optimal heat exchanger networks. *Comput Chem Eng* **12** 503 – 530.

Gundersen, T., P. Traedal, A. Hashemi-Ahmady. 1997. Improved sequential strategy for the synthesis of near-optimal heat exchanger networks. *Comput Chem Eng* **21** S59 – S64.

Hall, S. G., S. Ahmad, R. Smith. 1990. Capital cost targets for heat exchanger networks comprising
mixed materials of construction, pressure ratings and exchanger types. *Comput Chem Eng* **14** 319–335.

Hart, W. E., C. Laird, J.P. Watson, D. L. Woodruff. 2011. Pyomo: modeling and solving mathematical programs in python. *Math Program Comp* **3** 219–260.

Hart, W. E., C. Laird, J.P. Watson, D. L. Woodruff. 2012. *Pyomo—optimization modeling in python*, vol. 67. Springer Science & Business Media.

Hasan, M. M. F., G. Jayaraman, I. A. Karimi, H. E. Alfadala. 2010. Synthesis of heat exchanger networks with nonisothermal phase changes. *AIChE J* **56** 930–945.

Kouyialis, G., R. Misener. 2017. Detecting symmetry in designing heat exchanger networks. *Proceedings of the International Conference of Foundations of Computer-Aided Process Operations - FOCAPO/CPC 2017*. Arizona.

Lee, K. F., A. H. Masso, D. F. Rudd. 1970. Branch and bound synthesis of integrated process designs. *Ind Eng Chem Fund* **9** 48 – 58.

Letsios, D., G. Kouyialis, R. Misener. 2017. Source code. https://github.com/dimletsios/min_matches_heuristics.

Linnhoff, B., S. Ahmad. 1989. Supertargeting: Optimum synthesis of energy management systems. *J. Energy Res Tech* **111** 121 – 130.

Linnhoff, B., J.R. Flower. 1978. Synthesis of heat exchanger networks: I. systematic generation of energy optimal networks. *AIChE J* **24** 633–642.

Mistry, M., R. Misener. 2016. Optimising heat exchanger network synthesis using convexity properties of the logarithmic mean temperature difference. *Comput Chem Eng* **94** 1–17.

Miguel, J. B., R. Pham, V. Manousiouthakis. 1998. On the state space approach to mass/heat exchanger network design. *Chem Eng Sci* **53** 2595 – 2621.

Mistry, M., R. Misener. 2016. Optimising heat exchanger network synthesis using convexity properties of the logarithmic mean temperature difference. *Comput Chem Eng* **94** 1–17.

Mocsny, D., R. Govind. 1984. Decomposition strategy for the synthesis of minimum-unit heat exchanger networks. *AIChE J* **30** 853 – 856.

Niziolek, A. M., O. Onel, M. M. F. Hasan, C. A. Floudas. 2015. Municipal solid waste to liquid transportation fuels part ii: Process synthesis and global optimization strategies. *Comput Chem Eng* **74** 184 – 203.

Papadimitriou, C. H. 1994. *Computational Complexity*. Addison-Wesley.

Papalexandri, K. P., E. N. Pistikopoulos. 1994. A multiperiod MINLP model for the synthesis of flexible heat and mass exchange networks. *Comput Chem Eng* **18** 1125 – 1139.

Papoulias, S. A., I. E. Grossmann. 1983. A structural optimization approach in process synthesis II. *Comput Chem Eng* **7** 707–721.

Pho, T. K., L. Lapidus. 1973. Topics in computer-aided design: Part ii. synthesis of optimal heat exchanger networks by tree searching algorithms. *AIChE J* **19** 1182 – 1189.
Polley, G. T., P. J. Heggs. 1999. Don’t let the pinch pinch you. Chem Eng Program 95 27 – 36.

Shelton, M. R., I. E. Grossmann. 1986. Optimal synthesis of integrated refrigeration systems-i: Mixed-integer programming model. Comput Chem Eng 10 445–459.

Shenoy, U. V. 1995. Heat exchanger network synthesis: process optimization by energy and resource analysis. Gulf Professional Publishing.

Smith, R. 2000. State of the art in process integration, vol. 20. 15th ed. Elsevier Science Ltd, 1337–1345.

Tantimuratha, L., A. C. Kokossis, F. U. Müller. 2000. The heat exchanger network design as a paradigm of technology integration. Appl Therm Eng 20 1589 – 1605.

Trivedi, K.K., B. K. O’Neill, J. R. Roach, R. M. Wood. 1990. Systematic energy relaxation in mer heat exchanger networks. Comput Chem Eng 14 601 – 611.

Vazirani, V. V. 2001. Approximation Algorithms. Springer.

Williamson, D. P., D. B. Shmoys. 2011. The Design of Approximation Algorithms. Cambridge University Press.

Yee, T. F., I. E. Grossmann. 1990. Simultaneous optimization models for heat integration - II. heat exchanger network synthesis. Comput Chem Eng 14 1165–1184.

Yu, H., H. Fang, P. Yao, Y. Yuan. 2000. A combined genetic algorithm/simulated annealing algorithm for large scale system energy integration. Comput Chem Eng 24 2023 – 2035.

Zhao, X. G., B. K. O’Neill, J. R. Roach, R. M. Wood. 1998. Heat integration for batch processes. Chem Eng Res Des 76 700 – 710.
Appendix A. \(NP\)-hardness Reduction

Theorem 1. There exists an \(NP\)-hardness reduction from bin packing to the minimum number of matches problem with a single temperature interval.

Proof:

Initially, define the decision version of bin packing. A bin packing instance consists of a set \(B = \{1, 2, \ldots, m\}\) of bins, each bin of capacity \(K\), and a set \(O = \{1, 2, \ldots, n\}\) of objects, where object \(i \in O\) has size \(s_i \in (0, K]\). The goal is to determine whether there exist a feasible packing \(O_1, O_2, \ldots, O_m\) of the objects into the bins, where \(O_j \subseteq O\) is the subset of objects packed in bin \(j \in B\). Each object is placed in exactly one bin, i.e. \(\bigcup_{j=1}^{m} O_j = O\) and \(O_j \cap O_{j'} = \emptyset\) for each \(1 \leq j < j' \leq m\), and the total size of the objects in a bin do not exceed its capacity, i.e. \(\sum_{i \in O_j} s_i \leq K\), for \(j \in B\).

Consider an instance \((O, n, B, m)\) of bin packing. Construct an instance of the minimum number of matches problem with a single temperature interval by setting \(H = O\), \(h_i = s_i\) for \(i = 1, \ldots, n\), \(C = B\) and \(c_j = K\) for \(j = 1, \ldots, m\). We claim that bin packing has a feasible solution if and only if the constructed minimum number of matches instance is feasible using exactly \(n\) matches.

To the first direction, consider a feasible packing \(O_1, \ldots, O_m\). For each \(i \in H\) and \(j \in C\), we obtain a solution for the minimum number of matches instance by setting \(q_{i,j} = h_i\) if \(i \in O_j\), and \(q_{i,j} = 0\), otherwise. By the constraints \(\bigcup_{j=1}^{m} O_j = O\) and \(O_j \cap O_{j'} = \emptyset\) for each \(1 \leq j < j' \leq m\), there is exactly one \(j \in B\) such that \(i \in O_j\). Hence, the number of matches is \(|\{(i, j) \in H \times C : q_{i,j} > 0\}| = n\) and \(\sum_{j \in C} q_{i,j} = h_i\) for every \(i \in H\). Since the capacity of bin \(j \in B\) is not exceeded, we have that \(\sum_{i \in O_j} s_i \leq K\), or equivalently \(\sum_{i \in H} q_{i,j} \leq c_j\) for all \(j \in C\). Thus, the obtained solution is feasible.

To the other direction, consider a feasible solution for the minimum number of matches instance. Obtain a feasible packing by placing object \(i \in O\) in the bin \(j\) if and only if \(q_{i,j} > 0\). Since the solution contains at most \(n\) matches and \(h_i > 0\), for each \(i \in H\), each hot stream \(i \in H\) matches with exactly one cold stream \(j \in C\) and it holds that \(q_{i,j} = h_i\). That is, each object is placed in exactly one bin. Given that \(\sum_{i \in H} q_{i,j} \leq c_j = K\), the bin capacity constraints are also satisfied.

Appendix B. Single Temperature Interval Problem

Lemma 8 concerns the structure of an optimal solution for the single temperature interval problem. It shows that the corresponding graph is acyclic and that the number of matches is related to the number of graph’s connected components (trees), if arc directions are ignored.

Lemma 8. Consider an instance \(H, C\) of the single temperature interval problem. For each optimal solution \((\vec{y}^*, \vec{q}^*)\), there exists an integer \(\ell^* \in [1, \min\{n, m\}]\) s.t.
• if arc directions are ignored, the corresponding graph \(G(\vec{y}^*, \vec{q}^*) \) is a forest consisting of \(\ell^* \) trees, i.e. there are no cycles, and

\((\vec{y}^*, \vec{q}^*) \) contains \(v^* = m + n - \ell^* \) matches.

Proof:

Assume that \(G(\vec{y}^*, \vec{q}^*) \) contains a cycle, after removing arc directions. Moreover, let \(M = \{(i_1,j_1), (i_2,j_1), (i_2,j_2), \ldots, (i_g,j_g), (i_1,j_g)\} \) be a subset of matches forming a cycle. Denote by \(q^*_{\min} = \min\{q^*_{ij} : (i,j) \in M\} \) the minimum amount of heat transferred via a match in \(M \). Without loss of generality, assume that \(q^*_{i_1,j_1} = q^*_{\min} \).

Starting from \((\vec{y}^*, \vec{q}^*) \), produce a feasible solution \((\vec{y}, \vec{q}) \) as follows. Set \(q^*_{i_1,j_1} = 0, q^*_{i_e,j_e} = q^*_{i_e,j_e} - q^*_{\min} \) and \(q^*_{i_e,j_{e-1}} = q^*_{i_e,j_{e-1}} + q^*_{\min} \), for \(e = 2, \ldots, g \), as well as \(q^*_{i_1,j_g} = q^*_{i_1,j_g} + q^*_{\min} \). The new solution \((\vec{y}, \vec{q}) \) is feasible and has a strictly smaller number of matches compared to \((\vec{y}^*, \vec{q}^*) \), which is a contradiction.

Since \(G(\vec{y}^*, \vec{q}^*) \) does not contain a cycle, it must be a forest consisting of \(\ell^* \) trees (which we call "bins" from a packing perspective). Let \(B = \{1, \ldots, \ell^*\} \) be the set of these trees and \(M_b \) the subset of matches in tree \(b \in B \). By definition, tree \(b \in B \) contains \(|M_b| \) matches (edges) and, therefore, \(|M_b| + 1 \) streams (nodes). Furthermore, each stream appears in exactly one tree implying that \(\sum_{b=1}^{\ell^*} |M_b| = n + m - \ell^* \). Thus, it holds that the number of matches in \((\vec{y}^*, \vec{q}^*) \) is equal to:

\[
\sum_{b=1}^{\ell^*} |M_b| = n + m - \ell^*.
\]

Theorem 2 that Algorithm SG, developed by Furman and Sahinidis (2004), is tight.

Theorem 2. Algorithm SG achieves an approximation ratio of 2 for the single temperature interval problem and it is tight.

Proof:

In the algorithm’s solution, the number \(v \) of matches is equal to the number of steps that the algorithm performs. For each pair of streams \(i \in H \) and \(j \in C \) matched by the algorithm, at least one has zero remaining heat load exactly after they have been matched. Therefore, the number of steps is at most \(v \leq n + m - 1 \). The optimal solution contains at least \(v^* \geq \max\{n, m\} \). Hence, the algorithm is 2-approximate.

Consider a set of \(n \) hot streams with heat loads \(h_i = 2n + 1 - i \) for \(1 \leq i \leq n \) and \(m \) cold streams with \(c_j = 2n - j \), for \(1 \leq j \leq m \). As shown in Figure B.11 for the special case \(n = 5 \), the algorithm uses \(2n \) matches while the optimal solution has \(n + 1 \) matches. Hence, the 2 approximation ratio of Algorithm SG is asymptotically tight.
Figure B.11: An instance showing the tightness of the 2 performance guarantee for Algorithm SG.

Lemma 9 formalizes the benefit of matching stream pairs with equal heat loads and indicates the way of manipulating these matches in the analysis of Algorithm IG and the proof of Theorem 3.

Lemma 9. Consider an instance \((H, C)\) of the single temperature interval problem and suppose that there exists a pair of streams \(i \in H\) and \(j \in C\) such that \(h_i = c_j\). Then,

- there exists an optimal solution \((\vec{y}^*, \vec{q}^*)\) s.t. \(q^*_{i,j} = h_i\), i.e. \(i\) and \(j\) are matched together,
- any \(\rho\)-approximate solution for \((H \setminus \{i\}, C \setminus \{j\})\) is also \(\rho\)-approximate for \((H, C)\) with the addition of match \((i, j)\).

Proof:

Consider an optimal solution \((\vec{y}^*, \vec{q}^*)\) in which \(i\) and \(j\) are not matched solely to each other. Suppose that \(i\) is matched with \(j_1, j_2, \ldots, j_{m'}\) while \(j\) is matched with \(i_1, i_2, \ldots, i_{n'}\). Without loss of generality, \(q^*_{i,j} = 0\); the case \(0 < q^*_{i,j} < h_i\) is treated similarly. Starting from \((\vec{y}^*, \vec{q}^*)\), we obtain the slightly modified solution \((\vec{y}, \vec{q})\) in which \(i\) is matched only with \(j\). The \(c_j\) units of heat of \(i_1, i_2, \ldots, i_{n'}\) originally transferred to \(j\) are now exchanged with \(j_1, j_2, \ldots, j_{m'}\), which are no longer matched with \(i\). The remaining solution is not modified. Analogously to the proof of Theorem 2, we show that there can be at most \(n' + m' - 1\) new matches between the \(n'\) hot streams (i.e. \(i_1, i_2, \ldots, i_{n'}\)) and the \(m'\) cold streams (i.e. \(j_1, j_2, \ldots, j_{m'}\)) in \((\vec{y}, \vec{q})\). By also taking into account the new match \((i, j)\), we conclude that there exists always a solution in which \(i\) is only matched with \(j\) and has no more matches than \((\vec{y}^*, \vec{q}^*)\).

Consider an optimal solution \((\vec{y}^*, \vec{q}^*)\) for \((H, C)\), in which there are \(v^*\) matches and \(i\) is matched only with \(j\). An optimal solution for \((H \setminus \{i\}, C \setminus \{j\})\) contains \(v^* - 1\) matches. Suppose that \((\vec{y}, \vec{q})\) is the union of a \(\rho\)-approximate solution for \((H \setminus \{i\}, C \setminus \{j\})\) and the match \((i, j)\). Let \(v\) be the number of matches in \((\vec{y}, \vec{q})\). Clearly, \(v - 1 \leq \rho \cdot (v^* - 1)\) which implies that \(v \leq \rho \cdot v^*\), as \(\rho \geq 1\).

The following theorem shows a tight analysis for Algorithm IG.
Theorem 3. Algorithm IG achieves an approximation ratio of 1.5 for the single temperature interval problem and it is tight.

Proof:
By Theorem 2, Algorithm IG produces a solution \((\vec{y}, \vec{q})\) with \(v \leq n + m\) matches. Consider an optimal solution \((\vec{y}^*, \vec{q}^*)\). By Lemma 8, \((\vec{y}^*, \vec{q}^*)\) consists of \(\ell^*\) trees and has \(v^* = n + m - \ell^*\) matches. Due Lemma 9, we may assume that instance does not contain a pair of equal hot and cold streams. Hence, each tree in the optimal solution contains at least 3 streams, i.e. \(\ell^* \leq (n + m)/3\). Thus, \(v^* \geq (2/3)(n + m)\) and we conclude that \(v \leq (3/2)v^*\).

For the tightness of our analysis, consider an instance of the problem with \(n\) hot streams, where \(h_i = 4n - 2i\) for \(i = 1, \ldots, n\), and \(m = 2n\) cold streams such that \(c_j = 4n - 2j - 1\) for \(j = 1, \ldots, n\) and \(c_j = 1\) for \(j = n + 1, \ldots, 2n\). Algorithm IG uses \(3n\) matches, while the optimal solution uses \(2n\) matches. Hence the \(3/2\) approximation ratio of the algorithm is tight. Figures B.12a and B.12b show the special case with \(n = 4\).

Appendix C. Relaxation Rounding Heuristics

Theorem 4. Algorithm FLPR is \(\Omega(n)\)-approximate.

Proof:
We construct a minimum number of matches instance for which Algorithm FLPR produces a solution \(\Omega(n)\) times far from the optimal solution. This instance consists of a single temperature interval and an equal number of hot and cold streams, i.e. \(n = m\), with the same heat load \(h_i = n\) and \(c_j = n\), for each \(i \in H\) and \(j \in C\). Because of the single temperature interval, we ignore the temperature interval indices of the variables \(\vec{q}\). In the optimal solution, each hot stream is matched with exactly one cold stream and there are \(v^* = n\) matches.
in total. Given that there exist feasible solutions such that $q_{i,j} = n$, for every possible $i \in H$ and $j \in C$, the algorithm computes the upper bound $U_{i,j} = n$. In an optimal fractional solution, it holds that $q^f_{i,j} = 1$, for each $i \in H$ and $j \in C$. In this case, Algorithm FLPR sets $y_{i,j} = 1$ for each pair of streams $i \in H$, $j \in C$ and uses a total number of matches equal to $v = \sum_{i \in H} \sum_{j \in C} y_{i,j} = \Omega(n^2)$. Therefore, it is $\Omega(n)$-approximate.

Theorem 5. Given an optimal fractional solution with a set M of matches and filling ratio $\phi(M)$, FLPR produces a $\frac{1}{\phi(M)}$-approximate integral solution.

Proof:
We denote Algorithm FLPR’s solution and the optimal fractional solution by (\vec{y}, \vec{q}) and (\vec{y}^f, \vec{q}^f), respectively. Moreover, suppose that (\vec{y}^*, \vec{q}^*) is an optimal integral solution. Let $M \subseteq H \times C$ be the set of matched pairs of streams by the algorithm, i.e. $y_{i,j} = 1$, if $(i,j) \in M$, and $y_{i,j} = 0$, otherwise. Then, it holds that:

$$\sum_{(i,j) \in M} y_{i,j} = \sum_{(i,j) \in M} \frac{U_{i,j}}{L_{i,j}} \sum_{s,t \in T} \frac{q_{i,s,j,t}}{U_{i,j}} \leq \frac{1}{\phi(M)} \sum_{(i,j) \in M} \sum_{s,t \in T} \frac{q^f_{i,s,j,t}}{U_{i,j}} \leq \frac{1}{\phi(M)} \sum_{(i,j) \in M} \sum_{s,t \in T} \frac{q^f_{i,s,j,t}}{U_{i,j}} \leq \frac{1}{\phi(M)} \sum_{(i,j) \in M} \sum_{s,t \in T} \frac{q^f_{i,s,j,t}}{U_{i,j}} \leq \frac{1}{\phi(M)} \sum_{i \in H} \sum_{j \in C} y^*_i,j.$$

The first equality is obtained by using the fact that, for each $(i,j) \in M$, it holds that $y_{i,j} = \frac{U_{i,j}}{L_{i,j}}$ and $L_{i,j} = \sum_{s,t \in T} q_{i,s,j,t}$. The first inequality is true by the definition of the filling ratio $\phi(M)$ and the fact that $\vec{q} = \vec{q}^f$. The second inequality holds by the big-M constraint of the fractional relaxation. The final inequality is valid due to the fact that the optimal fractional solution is a lower bound on the optimal integral solution.

Appendix D. Water Filling Heuristics

The reformulated MILP in Eqs. (D.1)-(D.6) solves the single temperature interval problem without heat conservation. It is similar to the MILP in Eqs. (13)-(19) with heat conservation, except that it does not contain constraints (14) while Equalities (16) and (18) become the inequalities (D.3) and (D.5). In the single temperature interval problem with (without) heat conservation, the total heat of hot streams is equal to (greater than or equal
to) the demand of the cold streams. Each water filling algorithm step solves the single temperature interval problem without heat conservation. All heat demands of cold streams are satisfied and the excess heat supply of hot streams descends to the subsequent temperature interval.

\[
\max \sum_{b \in B} x_b \quad (D.1)
\]

\[
x_b \geq \sum_{j \in C} z_{j,b} \quad b \in B \quad (D.2)
\]

\[
\sum_{b \in B} w_{i,b} \leq 1 \quad i \in H \quad (D.3)
\]

\[
\sum_{b \in B} z_{j,b} = 1 \quad j \in C \quad (D.4)
\]

\[
\sum_{i \in H} w_{i,b} \cdot h_i \geq \sum_{j \in C} z_{j,b} \cdot c_j \quad b \in B \quad (D.5)
\]

\[
x_b, w_{i,b}, z_{j,b} \in \{0, 1\} \quad b \in B, i \in H, j \in C \quad (D.6)
\]

Theorem 6 shows an asymptotically tight performance guarantee for water filling heuristics proportional to the number of temperature intervals. The positive performance guarantee implies the proof of Furman and Sahinidis (2004).

Theorem 6 Algorithms WFG and WFM are \(\Theta(k)\)-approximate (i.e. both \(O(k)\)-approximate and \(\Omega(k)\)-approximate).

Proof:

A water filling algorithm solves an instance of the single temperature interval problem in each temperature interval \(t = 1, \ldots, k\). This instance consists of at most \(n\) hot streams and at most \(m\) cold streams. By Theorem 2 algorithms WFG and WFM introduce at most \(n + m\) new matches in each temperature interval and produce a solution with \(v \leq k(n + m)\) matches. In the optimal solution, each hot and cold stream appears in at least one match which means that \(v^* \geq \max\{n, m\}\) matches are chosen in total. So, \(v \leq 2k \cdot v^*\).

On the negative side, we show a lower bound on the performance guarantee of algorithms WFG and WFM using the extension of the problem instance in Figure D.13 with an equal number of hot streams, cold streams and temperature intervals, i.e. \(m = n = k\). Each hot stream \(i \in H\) has heat supply \(\sigma_{i,s} \in \{0, 1\}\) and each cold stream \(j \in C\) has heat demand \(\delta_{j,t} \in \{0, 1\}\), for each \(s, t \in T\). Hot stream \(i\) has unit heat in temperature intervals \(\{1, \ldots, k - i + 1\}\) and no supply elsewhere. Cold stream \(j\) demands unit heat in temperature intervals \(\{j, \ldots, k\}\) and no demand elsewhere. In the optimal solution, hot stream \(i\) is matched with cold stream \(j = i\) and there are \(v^* = k\) matches in total. Algorithms WFG and WFM produce the same solution in which hot stream \(i\) is matched with cold streams

42
Figure D.13: An instance showing (asymptotically) the tightness of the $O(k)$ performance guarantee for greedy packing heuristics. In this instance, it holds that $n = m = k$ and every heat supply and heat demand belongs to $\{0, 1\}$ in each temperature interval. In the optimal solution, hot stream i is matched with cold stream $j = i$ and there are n matches. In the algorithm’s solution, hot stream i is matched with cold streams $1, \ldots, m - i + 1$ and there are $\Omega(n^2)$ matches in total.

\{1, 2, \ldots, k - i + 1\}, where $j = i$, and there are $v = O(k^2)$ matches in total.

Appendix E. Greedy Packing Heuristics

Lemma 10 shows a condition ensuring the strict monotonicity of a greedy heuristic which decomposes any instance I into the instances I^A (already solved) and I^B (remaining to be solved) in each iteration (see Section 8.1).

Lemma 10. A greedy heuristic is strictly monotonic if I^B is feasible in each iteration.

Proof:
Given that I^A is of maximal heat (see Section 8.1), any match of M is redundant in any feasible solution of I^B. Since I^B is feasible, there exists a match in $H \times C \setminus M$ whose selection increases the amount of heat exchanged in I^A.

Lemma 11 states necessary and sufficient conditions for the feasibility of a minimum number of matches instance I. The first set of conditions ensures that heat always flows from the hot side to the same or lower temperature intervals on the cold side. The last condition enforces heat conservation.

Lemma 11. An instance I of the minimum number of matches is feasible if and only if the following conditions hold.
• For each \(u \in T \setminus \{k\} \), it is the case that \(R_u \geq 0 \), or equivalently

\[
\sum_{i \in H} \sum_{s=1}^{u} \sigma_{i,s} \geq \sum_{j \in C} \sum_{t=1}^{u} \delta_{j,t}
\]

• It holds that \(R_k = 0 \), or equivalently

\[
\sum_{i \in H} \sum_{s=1}^{k} \sigma_{i,s} = \sum_{j \in C} \sum_{t=1}^{k} \delta_{j,t}.
\]

Proof:

To the first direction, a violation of a condition makes the task of constructing a feasible solution impossible. To the opposite direction, Algorithm MHG in Section 3 constructs a feasible solution for every instance satisfying the conditions; it suffices to consider all the hot and cold streams as one large hot and large cold stream, respectively. The single hot stream has heat load \(\sum_{i \in H} \sigma_{i,s} \) in temperature interval \(s \in T \) and the single cold stream has heat load \(\sum_{j \in C} \delta_{j,t} \) in temperature interval \(t \in T \).

Given a decomposition of an instance \(I \) into instances \(I^A \) and \(I^B \), Lemma 12 shows that a careful construction of \(I^A \) respecting the proposed heat residual capacities in Section 8.1 implies that \(I^B \) is also feasible.

Lemma 12. Consider a decomposition of a feasible instance \(I \) into the instances \(I^A \) and \(I^B \). Let \(R, R^A \) and \(R^B \) be the corresponding heat residual capacities. If \(I^A \) is feasible and it holds that \(R^A_u \leq R_u \) for each \(u \in T \), then \(I^B \) is also feasible.

Proof:

To show that the Lemma is true, it suffices to show that \(I^B \) satisfies the feasibility conditions of Lemma 11. Consider a temperature interval \(u \in T \setminus \{k\} \). Then,

\[
R^A_u \leq R_u \iff \sum_{i \in H} \sum_{s=1}^{u} \sigma_{i,s}^A - \sum_{j \in C} \sum_{t=1}^{u} \delta_{j,t}^A \leq \sum_{i \in H} \sum_{s=1}^{u} \sigma_{i,s} - \sum_{j \in C} \sum_{t=1}^{u} \delta_{j,t}
\]

\[
\iff \sum_{i \in H} \sum_{s=1}^{u} (\sigma_{i,s} - \sigma_{i,s}^A) \geq \sum_{j \in C} \sum_{t=1}^{u} (\delta_{j,t} - \delta_{j,t}^A)
\]

\[
\iff \sum_{i \in H} \sum_{s=1}^{u} \sigma_{i,s}^B \geq \sum_{j \in C} \sum_{t=1}^{u} \delta_{j,t}^B
\]

In the same fashion, the fact that \(R_k = R^A_k = 0 \) implies that \(R^B_k = 0 \). Hence, \(I^B \) is feasible.

Given a set \(M \) matches, the LP in Eqs. (E.1)-(E.5) maximizes the total stream fraction that can be covered using only matches in \(M \). It is similar to the LP in Eqs. (20)-(24)
in Section 8.2, except that the maximum fraction objective function (E.1) replaces the maximum heat objective function (20).

\[
\max \sum_{(i,s,j,t) \in A(M)} \left(\frac{q_{i,s,j,t}}{h_i} + \frac{q_{i,s,j,t}}{c_j} \right) \quad (E.1)
\]

\[
\sum_{(j,t) \in V^C_i(M)} q_{i,s,j,t} \leq \sigma_{i,s} \quad (i,s) \in V^H(M) \quad (E.2)
\]

\[
\sum_{(i,s) \in V^H_j(t)} q_{i,s,j,t} \leq \delta_{j,t} \quad (j,t) \in V^C(M) \quad (E.3)
\]

\[
\sum_{(i,s,j,t) \in A_u(M)} q_{i,s,j,t} \leq R_u \quad u \in T \quad (E.4)
\]

\[
q_{i,s,j,t} \geq 0 \quad (i,s,j,t) \in A(M) \quad (E.5)
\]

The following theorem shows a performance guarantee for Algorithm LHM-LP using a standard packing argument.

Theorem 7 Algorithm LHM-LP is $O(\log n + \log \frac{h_{\text{max}}}{\epsilon})$-approximate, where ϵ is the required precision.

Proof:
Initially, we show an approximation ratio of $O(\log n + \log h_{\text{max}})$ for the special case of the problem with integer parameters. Then, we generalize the result to decimal parameters.

We denote by v the number of the algorithm’s matches and by v^* the number of matches in an optimal solution. To upper bound v, we assign unitary costs to the transferred heat in the algorithm’s solution as follows. Algorithm LHM-LP constructs a feasible set M of matches greedily. At each iteration, LHM-LP selects a match whose addition in M maximizes the heat that can be feasibly exchanged using the matches in M. For $\ell = 1, \ldots, v$, let M_ℓ be the set of selected matches at the end of the ℓ-th iteration and Q_ℓ be the maximum amount of heat the can be feasibly exchanged between all streams using exactly the matches in M_ℓ. Before the algorithm begins, $M_0 = \emptyset$ and $Q_0 = 0$. The extra amount of transferable heat with the addition of the ℓ-th chosen match is $E_\ell = Q_\ell - Q_{\ell-1}$, for $\ell = 1, \ldots, v$. We set the unitary cost to this part of the algorithm’s total heat as $\kappa_\ell = \frac{1}{E_\ell}$. Then, the algorithm’s number of matches can be expressed:

\[
v = \sum_{\ell=1}^v \kappa_\ell \cdot E_\ell. \quad (E.6)
\]

Let S_ℓ be the total remaining heat to be transferred when the ℓ-th iteration completes. Then, $S_0 = Q$ and $S_\ell = Q - Q_\ell$, for $\ell = 1, \ldots, v$, where $Q = \sum_{i=1}^n h_i$ is the total amount
of heat. Note that $S_v = 0$ because the algorithm produces a feasible solution. Since the algorithm chooses the match that results in the highest increase of transferred heat in each iteration, it must be the case that $E_1 \geq \ldots \geq E_v$ or equivalently $\kappa_1 \leq \ldots \leq \kappa_v$. At the end of the ℓ-th iteration, the remaining heat can be transferred using at most v^* additional matches by selecting the remaining matches of an optimal solution. Using a simple average argument we get that $\kappa_\ell \leq \frac{v^*}{S_\ell-1}$, for each $\ell = 1, \ldots, v$. Thus, Eq. (E.6) implies:

$$v \leq \sum_{\ell=1}^{v} \left(\frac{v^*}{S_{\ell-1}} \right) \cdot E_\ell = \sum_{\ell=1}^{v} \left(\frac{E_\ell}{Q - Q_{\ell-1}} \right) \cdot v^*. \tag{E.7}$$

By the integrality of the minimum cost network flow polytope, each value E_ℓ is an integer, for $\ell = 1, \ldots, v$. Hence,

$$\frac{E_\ell}{Q - Q_{\ell-1}} = \sum_{e=1}^{E_\ell} \frac{1}{Q - Q_{\ell-1}} \leq \sum_{e=1}^{E_\ell} \frac{1}{Q - Q_{\ell-1} - e + 1}.$$

Given that $Q_\ell = Q_{\ell-1} + E_\ell$,

$$\frac{E_\ell}{Q - Q_{\ell-1}} \leq \sum_{e=Q_{\ell-1}}^{E_\ell} \frac{1}{Q - e}. \tag{E.8}$$

Inequalities (E.7) and (E.8) imply:

$$v \leq \left(\sum_{e=1}^{Q} \frac{1}{e} \right) \cdot v^*.$$

Using the asymptotic bound $\sum_{e=1}^{Q} \frac{1}{e} = O(\log Q)$ of harmonic series and the fact that $Q \leq n \cdot h_{\text{max}}$, we conclude that the algorithm is $O(\log n + \log h_{\text{max}})$-approximate, where $h_{\text{max}} = \max_{i \in H} \{ h_i \}$ is the maximum heat of a hot stream.

Generalizing to decimal parameters, the algorithm is $O(\log n + \log \frac{h_{\text{max}}}{\epsilon})$, where ϵ is the precision required for solving the problem instance. The reasoning is the same except that, instead of considering integer units, we consider ϵ units to extend inequality (E.8).

Appendix F. Minimum Utility Cost Problem

This section shows how to obtain a minimum number of matches problem instance from a general heat exchanger network design problem instance via minimizing utility cost. We include this appendix for completeness, but this material is available elsewhere [Floudas 1995]. Table F.3 lists the notation.
General heat exchanger network design. An instance of the general heat exchanger network design consists of a set $HS = \{1, 2, \ldots, ns\}$ of hot streams, a set $CS = \{1, 2, \ldots, ms\}$ of cold streams, a set $HU = \{1, 2, \ldots, nu\}$ of hot utilities and a set $CU = \{1, 2, \ldots, mu\}$ of cold utilities. Each hot stream $i \in HS$ (cold stream $j \in CS$) has initial inlet, outlet temperatures $T_{HS}^{in, i}$, $T_{HS}^{out, i}$ (resp. $T_{CS}^{in, j}$, $T_{CS}^{out, j}$) and flowrate heat capacity FCp_i (resp. FCp_j). Each hot utility $i \in HU$ (cold utility $j \in CU$) is associated with inlet, outlet temperatures $T_{HU}^{in, i}$, $T_{HU}^{out, i}$ (resp. $T_{CU}^{in, j}$, $T_{CU}^{out, j}$) and a cost κ_{HU}^i (resp. κ_{CU}^j).

Table F.3: Minimum Utility Cost Notation

Name	Description
Cardinalities, Indices, Sets	
ns, ms	Number of hot, cold streams
nu, mu	Number of hot, cold utilities
k	Number of temperature intervals
$i \in HS \cup HU$	Hot stream, utility
$j \in CS \cup CU$	Cold stream, utility
$t \in TI$	Temperature interval
HS, CS	Set of hot, cold streams
HU, CU	Set of hot, cold utilities
TI	Set of temperature intervals
Parameters	
FCp_i, FCp_j	Flowrate heat capacity of hot stream i, cold stream j
$T_{HS}^{in, i}, T_{HS}^{out, i}$	Inlet, outlet temperature of hot stream i
$T_{CS}^{in, j}, T_{CS}^{out, j}$	Inlet, outlet temperature of cold stream j
$T_{HU}^{in, i}, T_{HU}^{out, i}$	Inlet, outlet temperature of hot utility i
$T_{CU}^{in, j}, T_{CU}^{out, j}$	Inlet, outlet temperature of cold utility j
ΔT_{min}	Minimum heat recovery approach temperature
$\kappa_{HU}^i, \kappa_{CU}^j$	Unitary cost of hot utility i, cold utility j
$\sigma_{HS}^{i, t}$	Heat supply of hot stream i in interval t
$\sigma_{CS}^{j, t}$	Heat demand of cold stream j in interval t
Variables	
$\sigma_{HU}^{i, t}$	Heat supply of hot utility i in interval t
$\sigma_{CU}^{j, t}$	Heat demand of cold utility j in interval t
R_t	Residual heat exiting temperature interval t

Temperature intervals. The sequential method begins by computing a set $TI = \{1, 2, \ldots, k\}$ of k temperature intervals (Linnhoff and Flower 1978, Ciric and Floudas 1989). A minimum heat recovery approach temperature ΔT_{min} specifies the minimum temperature difference between two streams exchanging heat. In order to incorporate ΔT_{min} in the problem’s setting, we enforce that each temperature interval corresponds to a temperature range on
the hot stream side shifted up by ΔT_{min} with respect to to its corresponding temperature range on the cold stream side. Let T^H_i and T^C_i be the temperature intervals on the hot and cold side, respectively. Consider, on the hot side, all $k + 1$ discrete temperature values $T_1 > T_2 > \ldots > T_{k+1}$ belonging to the set $\{T^H_{i,j} : i \in HS\} \cup \{T^H_{i,j} : i \in HU\} \cup \{T^C_{i,j} + \Delta T_{\text{min}} : j \in CS\} \cup \{T^C_{i,j} + \Delta T_{\text{min}} : j \in CU\}$. Then, we define $T^H_i = \cup_{t=1}^{k} [T_t, T_{t+1}]$ and $T^C_i = \cup_{t=1}^{k} [T_t - \Delta T_{\text{min}}, T_{t+1} - \Delta T_{\text{min}}]$). We set $TI = T^H_i$ and we observe that TI^C_i contains exactly the same temperature intervals with TI shifted by ΔT_{min}. Moreover, we set $\Delta T_t = T_t - T_{t+1}$, for $t \in TI$.

For each temperature interval $t \in TI$, we are now able to compute the quantity $\sigma_{i,t}^{HS}$ of heat load exported by hot stream $i \in HS$ as well as the amount $\delta_{j,t}^{CS}$ of heat load received by cold stream $j \in CS$ in $t \in TI$. Specifically, for each $i \in HS$ and $t \in TI$, we set

$$
\sigma_{i,t}^{HS} = \begin{cases}
FC \cdot \Delta T_t, & \text{if } T_{i,t}^\text{in} \geq T_t \\
FC \cdot (T_{i,t}^\text{out} - T_{i,t}^\text{in}), & \text{if } T_{i,t}^\text{min} \geq T_t \\
0, & \text{if } T_{i,t}^\text{in} < T_t
\end{cases}
\quad (F.1)
$$

Similarly, for each $j \in CS$ and $t \in TI$,

$$
\delta_{j,t}^{CS} = \begin{cases}
FC \cdot \Delta T_t, & \text{if } T_{j,t}^\text{min} \leq T_{t+1} - \Delta T_{\text{min}} \text{ and } T_{j,t}^\text{out} \geq T_t - \Delta T_{\text{min}} \\
FC \cdot (T_{j,t}^\text{out} - (T_{t+1} - \Delta T_{\text{min}})), & \text{if } T_{j,t}^\text{min} \leq T_{t+1} - \Delta T_{\text{min}} \text{ and } T_{j,t}^\text{out} < T_t - \Delta T_{\text{min}} \\
0, & \text{if } T_{j,t}^\text{in} > T_{t+1} - \Delta T_{\text{min}}
\end{cases}
\quad (F.2)
$$

Minimum utility cost. This problem is solved in order to compute the minimum amount of utility heat so that there is heat balance in the network. For each hot utility $i \in HU$ and cold utility $j \in CU$ the continuous variables $\sigma_{i,t}^{HU}$ and $\delta_{j,t}^{CU}$ correspond to the amount of heat of i and j, respectively, in temperature interval t. The LP uses a heat residual variable R_t, for each $t \in TI$. Let TI_i be the set of temperature intervals to which hot utility $i \in HU$ can transfer heat, feasibly. Similarly, let TI_j be the set of temperature intervals from which cold utility $j \in CU$ can receive heat. The minimum utility cost problem can be solved by using the following LP model (see [Cerda et al. (1983), Papoulis and Grossmann (1983)]).

$$
\begin{align*}
\min & \sum_{i \in HU} \sum_{t \in TI} \sigma_{i,t}^{HU} + \sum_{j \in CU} \sum_{t \in TI} \delta_{j,t}^{CU} \\
\text{s.t.} & \quad \sum_{i \in HS} \sigma_{i,t}^{HS} + \sum_{i \in HU} \sigma_{i,t}^{HU} + R_t = \sum_{j \in CS} \delta_{j,t}^{CS} + \sum_{j \in CU} \delta_{j,t}^{CU} + R_{t+1} \quad t \in TI \quad (F.3) \\
& \quad R_{t+1} = 0 \\
& \quad \sigma_{i,t}^{HU} = 0 \quad i \in HU, t \in TI \setminus TI_i \quad (F.4) \\
& \quad \delta_{j,t}^{CU} = 0 \quad j \in CU, t \in TI \setminus TI_j \quad (F.5) \\
& \quad \sigma_{i,t}^{HU}, \delta_{j,t}^{CU}, R_t \geq 0 \quad i \in HU, j \in CU, t \in TI \quad (F.6)
\end{align*}
$$
Expression \(F.1 \) minimizes the utility cost. Constraints \(F.2 \) and \(F.3 \) ensure energy balance. Constraints \(F.4 \) and \(F.5 \) ensure that heat flows from a temperature interval to the same or a lower temperature interval.

Minimum number of matches. Given an optimal solution of the minimum utility cost problem, we obtain an instance of the minimum number of matches problem as follows. All utilities are considered as streams, i.e. \(H = HS \cup HU, \ C = CS \cup CU, \ n = ns + nu \) and \(m = ms + mu \). Furthermore, \(T = TI \). Finally, for each \(i \in H \) and \(t \in T \) the parameter \(\sigma_{i,t} \) is equal to \(\sigma_{i,t}^{HS} \) or \(\sigma_{i,t}^{HU} \) depending on whether \(i \) was originally a hot stream or utility. The parameters \(\delta_{j,t} \) are obtained similarly, for each \(j \in C \) and \(t \in T \).
Appendix G. Experimental Results

Test Case	Hot Streams	Cold Streams	Temp. Intervals	Binary Vars	Continuous Vars	Constraints	Ref
Furman and Sahinidis (2004) Test Set							
10sp-la1	5	6	9	30	315	134	Linnhoff. and Ahmad (1989)
10sp-o1l	5	7	8	35	320	136	Shenoy (1995)
10sp1	5	6	9	30	315	134	Pho and Eppinger (1973)
12sp1	10	3	13	30	520	269	Grossmann and Sargent (1978)
14sp1	7	8	14	56	882	273	Grossmann and Sargent (1978)
15sp-tkm	10	7	15	70	1200	335	Lamimurathna et al. (2000)
20sp1	10	11	20	110	2400	540	Grossmann and Sargent (1978)
22sp-ph	12	12	18	144	2808	588	Polier and Heggs (1999)
22sp1	12	12	17	144	2652	564	Brguel et al. (1998)
23sp1	11	13	19	143	2926	610	Mocsny and Covin (1984)
28sp-as1	17	13	15	221	3570	688	Ahmad and Smith (1989)
37sp-yfyv	21	17	32	357	12096	1594	Yu et al. (2000)
4sp1	3	3	5	9	60	42	Lee et al. (1970)
6sp-cf1	3	4	5	12	75	50	Citic and Floudas (1989)
6sp-gg1	3	3	5	9	60	42	Gundersen and Grossmann (1990)
6sp1	3	4	6	12	90	57	Lee et al. (1970)
7sp-cnl	4	5	8	20	192	96	Colberg and Morari (1990)
7sp-s1	7	2	8	14	168	93	Shenoy (1995)
7sp-torw1	5	4	7	20	175	88	Trivedi et al. (1999)
7sp1	3	5	6	15	108	66	Masso and Rueda (1990)
7sp2	4	4	7	16	140	76	Masso and Rueda (1990)
7sp4	7	2	8	14	168	93	Delar et al. (1999)
8sp-fs1	6	4	8	24	240	110	Farhanieh and Sundin (1999)
8sp1	5	5	8	25	240	110	Grossmann and Sargent (1978)
9sp-all1	5	6	9	30	315	134	Ahmad and Linnhoff (1989)
9sp-ha1	6	5	9	30	324	135	Hall et al. (1999)
Chen et al. (2015a,b) Test Set							
balanced10	12	11	20	132	2880	604	
balanced12	14	13	23	182	4508	817	
balanced15	17	16	28	272	8092	1213	
balanced5	7	6	12	42	588	205	
unbalanced10	12	11	20	132	2880	604	
unbalanced15	17	16	28	272	8092	1213	
unbalanced17	19	18	32	342	11552	1545	
unbalanced20	22	21	36	462	17424	2032	
unbalanced5	7	6	12	42	588	205	
Grossmann (2017) Test Set							
balanced12_random0	14	13	23	182	4508	817	
balanced12_random1	14	13	23	182	4508	817	
balanced12_random2	14	13	23	182	4508	817	
balanced15_random0	17	16	28	272	8092	1213	
balanced15_random1	17	16	28	272	8092	1213	
balanced15_random2	17	16	28	272	8092	1213	
unbalanced17_random0	19	18	32	342	11552	1545	
unbalanced17_random1	19	18	32	342	11552	1545	
unbalanced17_random2	19	18	32	342	11552	1545	
unbalanced20_random0	22	21	36	462	17424	2032	
unbalanced20_random1	22	21	36	462	17424	2032	
unbalanced20_random2	22	21	36	462	17424	2032	

Table G.4: Problem sizes of the test cases. The number of variables and constraints are computed with respect to the transshipment model. All test cases are available online [Letsios et al. 2017].
Table G.5: Computational results using exact solvers CPLEX 12.6.3 and Gurobi 6.5.2 with relative gap 4%.

Relative gap is defined (best incumbent - best lower bound) / best incumbent and * indicates timeout. The transshipment formulation performs better than the transportation model: the transshipment model solves one additional problem (balanced10) and performs as well or better than the transportation model on 46 of the 48 test cases (with respect to time or gap closed). CPLEX solves the small models slightly faster than Gurobi while Gurobi closes more of the optimality gap for large problems. All exact method results are available online (Letsios et al. 2017).

Test Case	CPLEX Transportation	CPLEX Transshipment	Gurobi Transportation	Gurobi Transshipment				
Value	Time(s)	Gap	Value	Time(s)	Gap	Value	Time(s)	Gap
Furman and Sahinidis (2004) Test Set (30min time limit)								
10sp-la1	12 0.04	12 0.03	12 0.10	12 0.09				
10sp-ol1	14 0.06	14 0.03	14 0.13	14 0.11				
10sp1	10 0.51	10 0.05	10 0.24	10 0.13				
12sp1	12 0.08	12 0.05	12 0.16	12 0.11				
14sp1	14 145.50	14 41.23	14 170.45	14 126.71				
15sp-tkm	19 0.17	19 0.07	19 0.28	19 0.14				
20sp1	19 * 19%	19 * 19%	19 * 21%	19 * 15%				
22sp-ph	26 0.25	26 0.04	26 0.44	26 0.13				
22sp1	25 * 12%	25 * 11%	25 * 12%	25 * 12%				
23sp1	23 * 28%	23 * 28%	23 * 30%	23 * 26%				
28sp-ax1	30 0.19	30 0.05	30 0.44	30 0.12				
37sp-yfr	36 54.80	36 7.36	36 20.40	36 6.02				
4sp1	5 0.03	5 0.02	5 0.10	5 0.08				
6sp-cf1	6 0.05	6 0.03	6 0.09	6 0.09				
6sp-gg1	3 * 0.02	3 0.02	3 0.09	3 0.08				
6sp1	6 0.03	6 0.02	6 0.30	6 0.09				
7sp-cn1	10 0.02	10 0.02	10 0.09	10 0.08				
7sp-sf1	10 0.02	10 0.02	10 0.09	10 0.08				
7sp-tor1	10 0.03	10 0.02	10 0.10	10 0.09				
7sp1	7 0.03	7 0.04	7 0.09	7 0.08				
7sp2	7 0.05	7 0.03	7 0.09	7 0.09				
7sp4	8 0.03	8 0.02	8 0.10	8 0.08				
8sp-fs1	11 0.03	11 0.02	11 0.10	11 0.08				
8sp1	9 0.04	9 0.03	9 0.14	9 0.10				
9sp-ali	12 0.04	12 0.03	12 0.11	12 0.09				
9sp-ba1	13 0.04	13 0.04	13 0.12	13 0.09				
Chen et al. (2015a,b) Test Set (2h time limit)								
balanced10	25 * 6%	24 1607.14	25 * 4%	24 358.18				
balanced12	30 * 16%	28 7.36	29 * 13%	29 * 10%				
balanced15	36 * 19%	37 * 17%	35 * 17%	36 * 16%				
balanced16	14 0.27	14 0.20	14 0.43	14 0.23				
balanced8	20 180.84	20 69.16	20 997.01	20 248.08				
unbalanced10	25 36.24	25 7.45	25 46.81	25 15.97				
unbalanced15	36 * 8%	36 * 4%	36 * 4%	36 * 4%				
unbalanced17	43 * 15%	43 * 11%	43 * 13%	43 * 9%				
unbalanced20	55 * 22%	51 * 13%	51 * 17%	50 * 10%				
Grossmann (2017) Test Set (4h time limit)								
balanced12_random1	29 * 13%	28 * 7%	29 * 13%	28 * 7%				
balanced12_random2	30 * 16%	29 * 10%	29 * 10%	29 * 10%				
balanced15_random0	36 * 18%	36 * 15%	35 * 14%	36 * 13%				
balanced15_random1	36 * 18%	36 * 15%	35 * 14%	35 * 11%				
balanced15_random2	36 * 17%	35 * 12%	36 * 16%	35 * 11%				
unbalanced17_random0	44 * 16%	43 * 9%	43 * 13%	43 * 9%				
unbalanced17_random1	44 * 16%	44 * 10%	44 * 13%	43 * 6%				
unbalanced17_random2	43 * 13%	43 * 9%	43 * 13%	43 * 9%				
unbalanced20_random0	51 * 16%	51 * 12%	52 * 19%	52 * 13%				
unbalanced20_random1	52 * 18%	52 * 15%	52 * 19%	51 * 11%				
unbalanced20_random2	51 * 16%	52 * 14%	52 * 19%	50 * 10%				

Table G.5: Computational results using exact solvers CPLEX 12.6.3 and Gurobi 6.5.2 with relative gap 4%. Relative gap is defined (best incumbent - best lower bound) / best incumbent and * indicates timeout. The transshipment formulation performs better than the transportation model: the transshipment model solves one additional problem (balanced10) and performs as well or better than the transportation model on 46 of the 48 test cases (with respect to time or gap closed). CPLEX solves the small models slightly faster than Gurobi while Gurobi closes more of the optimality gap for large problems. All exact method results are available online (Letsios et al. 2017).
Test Case	FLPR	LRR	CRR	Water Filling	Greedy Packing	CPLEX						
Relaxation Rounding												
Greedy Packing												
Random2	16	17	16	16	15	15	13	14	13	12	13	
Random0	18	18	17	18	18	19	17	15	17	15	16	14
Random1	18	15	13	15	12	17	15	15	11	12	10	10
12sp1	16	17	13	14	15	18	17	13	13	12		
14sp1	14	20	18	21	19	16	16	15	16	14		
16sp-tkm	20	22	20	23	25	21	22	22	19	21	19	
20sp1	22	30	23	24	21	30	21	30	21	30	21	19*
22sp-ph	27	28	27	28	27	37	27	27	27	26		
23sp1	35	37	36	42	35	34	31	27	29	25*		
28sp-as1	32	32	40	50	33	32	32	32	36	36	23*	
37sp-yfrf	44	40	45	37	43	55	46	40	37	36		
4sp1	5	5	5	7	5	5	5	5	5	5		
6sp-cf1	6	6	6	6	7	6	6	6	6	6	6	
6sp-gg1	3	3	3	3	3	3	3	3	3	3		
6sp1	8	7	9	9	6	6	6	6	6	6	6	
7sp-c11	10	10	10	10	10	10	10	10	10	10	10	
7sp-s11	10	10	10	10	10	10	10	10	10	10	10	
7sp-coll	11	12	10	12	12	12	11	11	10	10	10	
7sp1	8	10	11	10	8	9	8	8	8	7		
7sp2	7	7	7	7	9	7	7	7	7	7		
9sp4	8	8	8	8	10	8	8	8	8	8		
8sp-fs1	13	13	12	12	12	15	12	14	12	11		
8sp4	11	11	10	14	9	10	10	10	10	10	9	
9sp-all	16	17	16	16	15	16	15	14	13	12		
9sp-high	15	14	15	15	15	15	14	13	15	13		
Chen et al. (2015a,b) Test Set												
balanced10	39	42	37	42	38	40	42	30	35	24		
balanced12	42	48	53	48	45	48	41	37	41	28*		
balanced15	60	69	71	63	61	82	62	43	51	37*		
balanced16	18	17	18	18	19	20	18	15	19	14		
balanced18	28	33	35	29	32	29	30	24	30	20		
unbalanced10	38	46	43	46	43	42	35	29	33	25		
unbalanced15	57	64	63	64	60	85	55	44	49	36*		
unbalanced17	70	78	73	79	75	86	67	50	57	43*		
unbalanced20	89	89	104	84	90	106	80	61	68	51*		
unbalanced5	19	20	18	21	22	19	18	18	18	16		
Grossmann (2017) Test Set												
balanced17_random0	42	48	52	44	43	44	45	32	42	28*		
balanced12_random1	45	49	53	50	45	47	43	35	40	29*		
balanced12_random2	42	49	57	49	40	46	43	34	42	29*		
balanced15_random0	60	61	66	67	61	64	63	43	53	36*		
balanced15_random1	56	65	71	66	56	65	55	40	52	36*		
balanced15_random2	54	69	63	63	61	67	55	41	54	35*		
unbalanced17_random0	74	80	86	81	65	102	72	52	67	43*		
unbalanced17_random1	74	74	104	84	77	100	70	55	56	44*		
unbalanced17_random2	70	79	95	77	77	111	76	52	59	43*		
unbalanced20_random0	93	93	109	100	85	115	86	60	64	51*		
unbalanced20_random1	83	89	117	92	88	114	100	63	75	52*		
unbalanced20_random2	87	86	111	102	92	131	96	69	74	52*		

Table G.6: Upper bounds, i.e., feasible solutions, computed by our heuristics and CPLEX 12.6.3 with time limit (i) 30 min for the Furman and Sahinidis (2004) Test Set, (ii) 2 h for the Chen et al. (2015a,b) test set, and (iii) 4 h for the Grossmann (2017) test set. Symbol * indicates timeout. The proposed heuristics produce feasible as good as the exact solver for 13 of the 48 test cases. All heuristic results are available online Letiens et al. (2017).
Test Case	FLPR	LRR	CRR	WFG	WFM	LHM	LFM	LHSI-LP	SS	CPLEX
10sp-la1	0.01	0.01	0.01	0.14	0.28	0.02	0.01	7.67	0.00	0.03
10sp-ol1	0.01	0.01	0.01	0.10	0.21	0.02	0.01	9.83	0.00	0.03
14sp	0.01	0.01	0.01	0.13	0.22	0.09	0.04	24.49	0.02	41.23
15sp-tkm	0.01	0.01	0.01	0.12	0.23	0.17	0.09	29.46	0.02	0.07
20sp	0.01	0.01	0.01	0.29	0.37	0.52	0.24	64.63	0.05	*
22sp-ol1	0.01	0.01	0.01	0.32	0.39	0.76	0.34	144.77	0.06	*
15sp1	0.01	0.01	0.01	0.25	0.52	0.91	0.40	239.94	0.07	*
20sp1	0.01	0.01	0.01	0.40	0.52	0.80	0.36	640.22	0.09	*
22sp1	0.01	0.01	0.01	0.48	0.60	1.00	0.45	1120.08	0.11	*
22sp2	0.01	0.01	0.01	0.47	0.57	1.10	0.49	1200.00	0.12	*
23sp1	0.01	0.01	0.01	0.50	0.60	1.20	0.53	1600.00	0.14	*
28sp-ol1	0.01	0.01	0.01	0.85	1.00	1.50	0.65	2800.00	0.19	*
28sp-ol2	0.01	0.01	0.01	0.84	1.00	1.50	0.65	2800.00	0.19	*
37sp-ol1	0.01	0.01	0.01	0.93	1.00	1.50	0.65	2800.00	0.19	*
41sp	0.01	0.01	0.01	1.00	1.00	1.00	0.00	0.00	0.00	0.00
unbalanced10	0.01	0.01	0.01	0.11	0.25	0.12	0.05	1.64	0.00	0.00
unbalanced12	0.01	0.01	0.01	0.14	0.27	0.15	0.05	3.64	0.00	0.00
unbalanced15	0.01	0.01	0.01	0.17	0.34	0.20	0.05	6.64	0.00	0.00
unbalanced5	0.01	0.01	0.01	0.21	0.45	0.25	0.05	9.64	0.00	0.00
unbalanced8	0.01	0.01	0.01	0.24	0.47	0.30	0.05	12.64	0.00	0.00
unbalanced10	0.01	0.01	0.01	0.27	0.50	0.35	0.05	15.64	0.00	0.00
unbalanced12	0.01	0.01	0.01	0.30	0.53	0.40	0.05	18.64	0.00	0.00
unbalanced15	0.01	0.01	0.01	0.33	0.56	0.45	0.05	21.64	0.00	0.00
unbalanced5	0.01	0.01	0.01	0.36	0.60	0.50	0.05	24.64	0.00	0.00
unbalanced8	0.01	0.01	0.01	0.39	0.63	0.55	0.05	27.64	0.00	0.00
unbalanced10	0.01	0.01	0.01	0.42	0.66	0.60	0.05	30.64	0.00	0.00
unbalanced12	0.01	0.01	0.01	0.45	0.70	0.65	0.05	33.64	0.00	0.00
unbalanced15	0.01	0.01	0.01	0.48	0.74	0.70	0.05	36.64	0.00	0.00
unbalanced5	0.01	0.01	0.01	0.51	0.78	0.75	0.05	39.64	0.00	0.00
unbalanced8	0.01	0.01	0.01	0.54	0.82	0.80	0.05	42.64	0.00	0.00
unbalanced10	0.01	0.01	0.01	0.57	0.86	0.85	0.05	45.64	0.00	0.00
unbalanced12	0.01	0.01	0.01	0.60	0.90	0.90	0.05	48.64	0.00	0.00
unbalanced15	0.01	0.01	0.01	0.63	0.94	0.95	0.05	51.64	0.00	0.00

Table G.7: CPU times of the heuristics and CPLEX 12.6.3 with time limit (i) 30min for the Furman and Sahinidis (2004) test set, (ii) 2h for the Chen et al. (2015a,b) test set, and (iii) 4h for the Grossmann (2017) test set. An * indicates timeout. All heuristic results are available online (Letsios et al. 2017).
Table G.8: Comparison of our results (labelled LKM17) with the ones reported by Furman and Sahinidis (2004) (labelled FS04). The LKM17 heuristics FLPR, LRR, and WFG perform better than their FS04 counterparts because of our improved calculation of the big-M parameter \(U_{ij} \). The CPLEX comparison basically confirms that CPLEX has improved in the past 13 years: LKM17 use CPLEX 12.6.3 while FS04 use CPLEX 7.0. An * indicates 30min timeout while ** corresponds to a 7h timeout. All results are available online (Letsios et al. 2017).
Test Case	Furman and Sahinidis (2004) Test Set	Chen et al. (2015a,b) Test Set	Grossmann (2017) Test Set						
	Simple GTA97 LKM17	Simple GTA97 LKM17	Simple GTA97 LKM17						
	Fractional LP Rounding	Lagrangian Relaxation Rounding	Fractional Relaxation						
10sp-fa1	17	16	17						
10sp-c11	20	19	18						
10sp1	18	18	18						
12sp1	17	17	17						
14sp1	27	20	14						
15sp-tkm	27	27	20						
20sp1	22	22	22						
22sp-phil	31	30	27						
22sp-yf1	56	53	42						
4sp1	5	5	5						
6sp-gg1	3	3	3						
6sp1	8	7	8						
7sp-cm1	11	10	10						
7sp-sl1	10	10	10						
7sp-tev1	15	15	14						
7sp1	10	10	9						
7sp2	9	7	7						
8sp4	11	11	8						
8sp-gs1	15	13	13						
8sp1	11	11	12						
9sp-all1	17	15	16						
9sp-bs1	16	15	15						
balanced10	61	46	46						
balanced12	71	52	57						
balanced15	91	63	91						
balanced8	26	19	20						
unbalanced10	52	49	38						
unbalanced15	73	60	57						
unbalanced17	96	78	101						
unbalanced20	132	95	89						
unbalanced5	43	39	46						
balanced12_random1	62	56	45	60	54	49	15.67	16.06	17.37
balanced12_random2	66	51	42	53	57	49	15.67	16.14	17.40
balanced15_random0	93	68	60	75	73	61	18.59	19.19	21.47
balanced15_random1	96	68	56	79	73	65	18.86	19.38	21.59
balanced15_random2	102	64	54	86	76	69	18.73	19.41	21.95
unbalanced17_random0	106	77	74	108	95	80	22.48	23.97	27.64
unbalanced17_random1	116	82	74	99	91	74	22.43	23.89	27.60
unbalanced17_random2	101	84	70	94	92	79	21.99	23.61	27.74
unbalanced20_random0	131	95	93	136	103	93	26.02	27.91	32.49
unbalanced20_random1	138	91	83	139	104	89	26.01	27.74	32.64
unbalanced20_random2	138	102	87	131	100	86	25.68	27.67	32.60

Table G.9: This table compares the effect of three different methods for computing the big-M parameter U_{ij}: (i) simple greedy, (ii) the Gundersen et al. (1997) (GTA97) method and (iii) our greedy Algorithm MHG (LKM17). LKM17 outperforms the other two big-M computation methods by finding smaller feasible solutions via both Fractional LP Rounding and Lagrangian Relaxation Rounding. It also achieves the tightest fractional relaxation for all test instances.