AN ARCHITECTURE FOR A UNIVERSAL LEXICON
A Case Study on Shared Syntactic Information in Japanese, Hindi, Bengali, Greek, and English

Naoyuki Nomura, Douglas A. Jones, Robert C. Berwick
Massachusetts Institute of Technology
Artificial Intelligence Laboratory
nomura@ai.mit.edu

Introduction.
Given the prominence of the lexicon in most current linguistic theories (LFG, HPSG, GB), the inventory of language particular information left in the lexicon deserves special attention. Constructing large computerized lexicons remains a difficult problem, building a large array of apparently arbitrary information. This paper shows that this arbitrariness can be constrained more than might have been previously thought. In particular, arbitrariness of argument structure, word sense, and paraphrasability will be shown not only to be constrained, but also to be integrally related. Our radical view is that variation of lexical behavior across languages is exactly like lexical variation within languages, specifically, the difference lies in the presence or absence of certain morphemes. For example, the fact that Japanese has richer possibilities in certain verbal patterns is derived solely from its morphological inventory. Put another way, language parameters imply the presence or absence of lexical material in the morphological component. Observed language variation patterns reflect morphological systematicity. The generative machinery for producing argument structure positions is fixed across languages.

Linguistic Motivation.
A striking example underscoring universality of argument structure is the familiar Spray/Load alternation, shown in example (1). Despite the many surface differences in these data across languages, they have several essential properties:

1) a. John loaded the hay on the wagon.
b. John loaded the wagon with hay.

2) a. Taro wrapped the tape around the stick.
 Taro-NOM tape-ACC stick-WITI wrap-PRF
 Taro-NOM stick-ACC tape-WITH wrap-PRF
 Taro wrapped the stick with the tape.

 b. Taro wrapped the paper around the stick.
 Taro-NOM stick-ACC paper-WITH wrap-PRF
 Taro-NOM paper-ACC stick-WITH wrap-PRF
 Taro wrapped the stick with the tape.

See Miyagawa, Fukui, and Tenny (1983) for a discussion of this effect. Also see Martin (1975, pp 441-455), for 56 such morphemes. See below for additional discussion of these alternations and for an alternative analysis.

All of these languages have exactly the same alternation type. Why? Let us focus on the role of figure and ground in these examples. By “alternation”, we mean that in each language the figure, as expressed in an equivalent PP in the (b) cases. Despite the differences in word order and case marking, all share the property that the direct object is subject to a so-called Holistic Effect. Crucially, the (a) sentences differ from the (b) sentences in exactly the same way in each of these languages. In (1b), where John loads the wagon with hay, the wagon is understood to have a whole load of hay, likewise if John smears the wall with paint, the

1 By “ground”, we mean the surface background involved in the action represented by the verb. By “figure”, we mean the object that is brought into contact with the ground. For example, in (1), the hay is the figure which is brought into contact with the wagon, in this case, the ground. See Talmy (1978) and Emonds (1991) for discussion of figure and ground in this connection.

3 Note that this property is not overtly grammatically marked, as, say, the case of the direct object is. See Levin (1993) and the references there for additional discussion of the Holistic Effect.
wall is understood to have more paint than if John merely
smears paint on the wall. Thus we may assume throughout
that the word sense of the verbs as used in the (a) and
(b) cases are essentially identical.3 The goal of the
remainder of this paper is to analyze and implement this
insight in a particular representation given by both
linguistic and computational theory, and apply it to MT.

Basic Building Blocks: The Syntax of Word Formation

We propose to replace idiosyncratic language particular
information with a new generative component that links
universal abstract lexical structures with the surface
forms of words for each language. This generative
machinery is based on work by Hale and Keyser (1993) ///
and Pustejovsky (1991a). The basic architecture is shown
in Figure 1.

Fig. 1. Generative Syntax of Word Formation

Crucially, only a restricted number of argument
structures can be generated. The basic idea is that lexical
X-bar structures are composed from the lexical categories
N, A, V, and P (see fig. 2), into trees whose Specifier
and Complement positions after movement yield the
range of possible argument structures. The lexical entries
are subject to a series of filters, as follows.

Basic Building Blocks

Lexical Categories = X-bar Projection
N (Noun) = entity
A (Adjective) = state
V (Verb) = event
P (Preposition) = relation

Rules of Composition

N (Noun) = Move-Alpha
A (Adjective) = including Head
V (Verb) = Movement
P (Preposition) = relation

Filters (in Hale and Keyser (1993))

HMC: Head Movement Constraint (Baker, 1988)
ECP: Empty Category Principle (Chomsky, 1981)
FI: Full Interpretation (Chomsky, 1986)
UP: Unambiguous Projection (Kaye, 1984)
PL: Predication Locality (Williams, 1980)

To give a concrete example of the system, we derive
the thematic properties of the denominal verb *shelf
from compositional machinery operative in the lexicon
by composing the noun form *shelf with an empty
preposition and an empty verb to yield the form *shelf.
The structures are as shown in Fig. 2. In short, argument
structure is produced by syntax operative in the lexicon

5 If an interlingua-based system does not constrain the number of
word senses, it faces some serious computational problems as is
shown in section 3.

that derives words from a small set of primitives.5 These
structures are assumed to be identical across languages.

Fig. 2. Derivation of denominal verb pattern.

Fig. 3 shows the detailed schema for producing
lexical entries for verbs. We only note briefly here a
few important properties of the system in Fig. 3. First
of all, the main verb V is formed by Head Movement
of X, and Y if it exists, to V. The categorial value of X
and Y are selected from the set {N,A,V,P}. For example,
the denominal verb *shelf is built as shown above in

6 One can view the work by Dorr (1993) and, previously, other
attempts at lexical decomposition ranging back through Schank as
essentially the same in spirit, but without the detailed constraints
provided by Figure 2. We regard similar proposals regarding
"promotion" and "denotation" of arguments as essentially a reflection
of Move-alpha. The novelty of our proposal is that it is not ad hoc
that is, the same constraints independently justified in syntax also
appear in lexical construction. The need for a non-arbitrary, i.e., an
explanatory, account of lexical argument structure should be
apparent. If lexical entries varied arbitrarily, we would logically
expect at least the following space of lexical possibilities, requiring
upwards of a quarter-million diacritics. Let m be the number of
semantic/thematic roles, such as Agent, Patient, Theme, Range
Duration, and so on, and let n be the number of grammatical functions
Then, when n=4 and m=50 (a typical number for traditional NLP
systems) we have 251,176 different types of lexical entries ($\Sigma m=0 to
n \, \, m, n$). While some theories might propose this many
distinctions, it seems clear that this imposes a very considerable
learning and engineering burden. Many researchers, includin,
Makino (1991) and others, have noticed the drawbacks of encodin
thematic roles, but in the absence of a clear alternative, still requir
them for representing lexical information. Furthermore, it is common
knowledge that verbs pattern into certain equivalence classes within
languages (e.g., Levin, 1993), but arbitrary verb classes would
imply arbitrary variation across languages.

244
Figure 2, by selecting P as X and N as Y. The deadjectival verb *redden* is built by selecting A as X and selecting nothing as Y. The ditransitive verb *give* selects V for both X and Y, following Larson (1988). NP1, if it exists, is the agent of the action, and NP2, if it exists, is the affected object of the verb, following Hale and Keyser (1993).

![Diagram](image)

Fig. 3. Schema for producing verb lexical entries.

From the point of view of lexical representation and MT, the key constraint is that the entry for *shelve* has elements that correspond directly to the verb *put* and the preposition *on* in its representation. These elements then become available for interpretation and for translation. We show below that this is also part of the difference between English, Japanese, Hindi, and Greek verbs.

Analysis and Applications for the Universal Lexicon Computational Motivation.

There have been some controversies about the merits and demerits of transfer-based MT and interlingua-based MT. Typical transfer-based MTs prepare completely different sets of word senses for component languages so that mapping among the word senses is completely arbitrary, i.e., the complexity may be calculated as bipartite graph matching. We will assume an interlingua-based MT, which supposedly makes all the component languages share common word senses or so-called concepts and thus is constrained regarding word senses. However, interlingua-based MT still has substantial problems in making up word senses. The number of word senses, their well-definedness, and the problem about linking surface words depend on excellent lexicographers. To give just one example here, the bilingual dictionary Sanseedoo (1990) lists all the following English translations for a Japanese verb *kazaru* (*decorate*)

![Diagram](image)

Clustering these into well-defined word senses is not an easy task; thus, it is hard to answer the word sense question. Suppose we have a symbol to represent the core meaning of *kazaru*, which is shared by the English counterpart *decorate*. Since *kazaru* has the syntactic nature of a Spray/Load type alternation, the lexicon of a typical interlingua-based MT essentially provides the information described below.

word sense:
KAZARU-DECORATE

syntactic information:
Verb Alternation Type 1:
\[
\{ \text{AGENT} NOM(が), \text{THEME} ACC(を), \text{MATERIAL} WITH(で)} \}
\]

Verb Alternation Type 2:
\[
\{ \text{AGENT} NOM(が), \text{THEME} ACC(を), \text{GOAL} DAT/ON/OVER (に)} \}
\]

AGENT, THEME, GOAL and MATERIAL are thematic roles that are the key elements in the interlingua. NOM, ACC, WITH, and DAT/ON/OVER are case-marking functions mapped to the surface case markers が, を, で, and に. Assuming a self-contained thematic role system and case-marking system, these markings are to be evaluated on the corresponding example sentences and be decided independent of each other. However, the two argument structures in the above diagram are actually incompatible with each other because the same thematic role *THEME* is assigned to different referents: *ground*, the patient to be decorated, and *figure*, the decoration to be attached to the patient. In effect, the MT system makes serious errors due to its confusion of thematic roles derived from the lexicon.

Example Input: 太郎が花を飾った。
Taro-ga hana-o kazatta.

(6)
Taro-NOM flower-ACC decorate-PRF
Taro decorated the flower.

In most contexts, the default reading of the input sentence above should be interpreted as "Taro decorated something with flowers." This error was caused by the semantic clash in the lexicon. In order to avoid such errors, lexicographers could overwrite some thematic roles disregarding semantic criteria, but thus would spoil the interlingual foundation. The remaining possible solution for this problem is to artificial divided the word sense (WS) into two symbols: WSwith and WSon, two completely artificial word senses.

Those two artificial word senses are essentially very similar to each other, if not identical, and will pose difficulties for lexicographers because they will have to put arbitrary links among word senses for similar words in two languages or within the same language. The two word senses put the two different argument structures in complete isolation once the analysis is completed and the interlingua is fixed; the only thing the generation module of MT can do is accept the given word sense (WSwith or WSon) and generate only one argument structure. This rigidity has a potential to generate sentences that
are unacceptably unnatural.

The result for MT and lexicon construction is that the computational machinery will stay fixed across languages and thus uniformly constrain the complexity of argument structures eliminating most of the related arbitrariness. It is well known that word-for-word translations are not the paradigmatic case. The architecture we propose entails a significant improvement in isomorphic mappings between languages. However, the isomorphism is not at the level of words, but rather, at the level of morphological elements that enter into the lexical syntactic formation of words. Thus it is no accident that 'put the book on the shelf' is a near paraphrase of 'shelve the book', and it is no accident that 'put the book on the shell' is a closer isomorphic map for the Japanese translations of 'John shelved the book' shown in (1). The entailment is that 'shelve the book' has the same morphological material as 'put the book on the shelf', but the former has an empty preposition and an empty verb that incorporates a noun.

In particular, we show how to replace thematic roles with the lexical syntax proposed in Hale and Keyser (1993) and augmented by work in Pustejovsky (1991) This technique yields several potential benefits: (i) robustness of the lexicon, (ii) greater flexibility in selecting more natural renditions of target language structures in translation, as in (7) below. Let us consider each of these in turn with specific examples.

(7) a. John-top book-acc shelf-gen upper place-at put-prf
 John put the book on the shelf.
 b. John-top book-acc shelf-dat put-away-prf
 John put away / stored the book on the shell.

If paraphrasability and translation must conform to the lexical syntactic structures in Figures 2 through 4, we have a natural method for producing a constrained space of possible translations, namely, the only structures that are allowed are those produced by the mechanism outlined in Fig. 4. To highlight the relationship between paraphrasability and translatability, consider the alternation behavior of several verbs within English, shown in (2). Notice in particular that different verbs participate in one or both halves of the alternations, or in neither half. As we will see, the same facts hold across distinct languages.

Nonalternation:

Not all verbs that participate in one half of the Spray/Load alternation participate in the other half, as (8) and (9) and (10) from English, Japanese, and Hindi illustrate. Interestingly, in these cases verbs across languages also pattern alike in terms of nonalternation*. This gives additional support for our representation proposal.

English

(8) a. John covered the baby with the blanket.
 b. *John covered the blanket {over,onto,...} the baby.

Japanese

(9) a. 太郎は赤ちゃんを毛布で覆った。
 taroo-wa akanboo-o moofu-de oot-ta
 Taro covered the baby with the blanket.
 b. * 太郎は毛布を赤ちゃんに覆った。
 taroo-wa moofu-o akanboo-ni oot-ta
 Taro-TOP blanket-ACC baby-DAT cover-PRF
 *Taro covered the blanket over the baby.

Hindi

(10) a. John-erf cloth-with child-acc cover
 John-FRG cloth-WITH child-ACC cover
 John covered the baby with a cloth.
 b. *John-erf cloth-acc baby-on-top.of cover
 John-FRG cloth-ACC baby-ON-TOP-OF cover

Thus there are four logical possibilities for alternation and nonalternation, as illustrated in Fig. 4.

Fig. 4. The Spray-Load alternation.

The nonalternations are critical clues to discovering...
The correct lexical representation for the verbs and hence the structures that translate a more direct mapping among languages. We propose that the key to the solution is that in the non-alternating cases, prepositions are incorporated into the verb in lexical syntax just as shelf in Fig. 3. For example, the lexical entries for pour, and cover contain prepositions as shown in (10). We assume that the lexical representation for the prepositions encodes specifications for figure and ground, represented as F and G in (10). In essence, what X on Y means is that X is a figure on the ground Y. In fact, this is the essence of what prepositions "mean", at an abstract level. Thus he prepositions are the primitives in our system, and concepts such as figure and ground are derivative. This entailment is illustrated by the linking lines in Fig. 5.

\begin{align*}
\text{load}(X,Y) &\quad \text{pour}(X,Y) + \text{on}(F,G) \\
\text{cover}(X,Y) + \text{with}(G,F)
\end{align*}

\textbf{Fig. 5} An Explanation For The Spray-Load Alternation

The lexical entry for load does not contain a preposition and hence is free to alternate. Thus the reason why a verb does not participate in part of an alternation is that it incorporates lexical material which clashes with potential complements. The reason that 'cover the blanket on the baby' is bad is that cover already encodes the figure and ground relationship by incorporating with into its representation—that is, the preposition with is frozen into the verb's representation. Adding an overt PP with after creates a clash in figure and ground relations. Adding compatible PP to a verbal structure with an incorporated preposition introduces redundancy, but is the structure is still well-formed.

Alternation Mismatches Across Languages.

So far, then, we have seen only that verbs across different languages pattern alike. Surely there must be differences or else MT efforts would have succeeded long ago. Fig. 6 displays all the logically possible relationship between verbs across two languages.

Type:
\(L_1 \Rightarrow i\) Obj=Ground PP=Figure
\(L_2 \Rightarrow i\) Obj=Ground, PP=Figure
\(L_2 \Rightarrow ii\) *Obj=Ground, PP=Figure
\(L_2 \Rightarrow iii\) Obj=Ground, *PP=figure

\textbf{Fig. 6} Cross-Linguistic alternation model: 16 logical types for the Spray-Load alternation. Classification of patterns in Fig. 4 for a given verb in languages \(L_1\) and \(L_2\) into the following types A-P: (Shaded cells are exact cross-linguistic correspondences.)

Clearly, type P verbs should constitute most of the verbal vocabulary, since most verbs do not participate in the Spray-Load Alternation, or in any given alternation, for that matter. Types (D,H,I,M,N,O) do not correspond at all — actually, we expect that these verbs do not exist, given the considerations regarding likely candidates across languages.
English
(a) John decorated the wall with posters.
(b) * John decorated the posters {over,onto,...} the wall.

Bengali
(a) raam ghar-e phul sajieche
Ram room-ON flowers decorate
‘Ram decorated the room with flowers’

(b) raam phul-die ghar sajieche
Ram flowers-WITH room decorate
‘Ram decorated the room with flowers’

Hindi
(b) raam phul-se ghar sajaya
Ram flowers-WITH room decorate
‘Ram decorated the room with flowers’

Japanese
(ジョンは壁をポスターで飾った。
John-va kabe-o posutaa-de kazat-ta.
John-TOP wall-ACC poster-WITH decorate-PRF
‘John decorated the wall with posters.’

Taroo-wa akanboo-o moofu-de oot-ta
‘Taro covered the blanket over the baby.’

As in the case of cover discussed above, the explanation is quite simple within our framework. For the English verb decorate, there is an incorporated preposition, namely with, in its lexical representation. There is a type clash because the direct object cannot be both figure and ground, in the case of "*John decorated posters on the wall"; see Fig. 7.

Fig. 7. Type clash with "decorate posters on the wall".

To address one of our main points, cases like the one in Fig. 7 pose special problems for machine translation because the translation of the word sense of English decorate into its Japanese counterpart kazeru does not have a similar type clash. Thus the problem is that the English verb has a preposition frozen into its lexical representation, though it is not visible at the surface level. Let us consider another case for MT: Japanese to English:

As for this room, let’s decorate the wall with flowers,' but with UL techniques might be more fluently translated as, “Let’s decorate this room by putting flowers on the wall.” Even more broadly, we would like to suggest: promising direction for the development of our system. Consider the well-known difficulty of translating Japanese -wa phrases into English. Given the ubiquity of -wa phrases as compared with the relative rarity of English as-for phrases, we can conclude that rendering -wa as-as-for is not the best translation.

Let us now consider cases in Japanese and Hindi in which the preposition type element is visible, and which overtly affects the alternation type.

Alternation Type Change:
There are additional crosslinguistic differences, which may be observed in the surface form of the verbal structure. In Japanese, one can add the verbal morpheme kake to ootu. This change, from alternation type F to type H, is shown below.

(a) 太郎は赤ん坊を毛布で覆った。
*taroo-wa akanboo-o moofu-de oot-ta
‘Taro covered the baby with the blanket.’

(b)* 太郎は毛布を赤ん坊に覆った。
*taroo-wa akanboo-ni oot-ta
‘Taro covered the blanket over the baby.’

In Japanese, kake adds an aspect of ‘trajectory’ to the verb sense. More precisely, as the gloss ‘over suggests, kake rescues ootu from its type clash just as the preposition with does in English. However, ‘cover cannot be so rescued in English simply because there is no morphological life raft. Note further that the example in (a) just above also behaves as expected with respect to the Holistic effect. In (a) akanboo-o ‘baby’ is th
direct object, and the baby is understood to be wholly covered. Sentence b' has no such effect regarding the baby.°

In Hindi, one can replace dhaknaa ('cover') with dakh-denaa ('give cover'). This morphological change turns a type F alternation contrast into a type B, as described in Fig. 6.

(a) jOn-ne kapre-se bacce-ko dhaka
 John-ERG cloth-WITH child-ACC cover
 ‘John covered the baby with a cloth’

(b) *jOn-ne kapre-ko bacce-ke-upar dhaka
 John-ERG cloth-ACC baby-ON.TOP.OF cover
 ‘John covered the baby with a cloth’

(a)’jOn-ne kapre-se bacce-ko dhak-di-ya
 John-ERG cloth-WITH child-ACC cover-give-PRF
 ‘John covered the baby with a cloth’

(b)’jOn-ne kapre-ko bacce-ke-upar dhak-di-ya
 John-ERG cloth-ACC baby-ON.TOP.OF cover-give-PRF

Put briefly, our view is that variation of lexical behavior across languages is exactly like lexical variation within languages, specifically, the difference lies in the presence or absence of certain morphemes. Ontologically speaking, then, what language parameters are is the presence or absence of lexical material in the morphological component. The observed patterns in language variation is then reflected in morphological systematicity. For example, the fact that Japanese has richer possibilities in certain verbal patterns is derived from its morphological inventory. In specific, the reason that it is impossible for English verbs to behave like certain corresponding Japanese verbs is that English lacks an equivalent of the Japanese aspectual morphemes tsukusu ‘exhaust’, kakeru ‘trajectory verb’, etc. But recall, we find that load, for example does behave precisely like its corresponding verbs in Japanese, Hindi, Bengali, and Greek. In cases where verbs do not appear to behave alike, apparent differences are resolved by a process of language particular morphological behavior: for example, the verbal suffixes (and prefixes) of Japanese such as –tsukusu ‘exhaust’ alter verb argument structure enough to bring them into correspondence with their former English non-counterparts.

Conclusion

We believe that our approach is applicable universally. Future work to be done is to complete our survey of the approximately 150 types of verbal alternations of Levin (1993), and augment our analysis with further ideas from Hale and Keyser (1993), Pustejovsky (1990, 1991b), and others, and to extend the coverage to Japanese and other languages. Our highly constrained system should also provide highly desirable circumscription of computational lexicons. Given the universal aspects of our lexical representations, we also expect manageable applications to machine translation, along the lines that we have suggested.

References

Enyons, J.E. (1991). Subcategorization and Syntax-Based Theta-Role Assignment. *Natural Language and Linguistic Theory*, 9.

Hale, K. and S.I. Keyser (1993). On Argument Structure and the Lexical Expression of Syntactic Relations. In The View from Building 20: Essays in Linguistics in Honor of Sylvain Bromberger, Kenneth Hale and Samuel Jay Keyser (eds), MIT Press.

Jackendoff, R. (1993). On the Role of Conceptual Structure in Argument Selection: A Reply to Enyons. *Natural Language and Linguistic Theory*, 11.

Levin, B. (1993). *English Verb Classes and Alternations ~ A Preliminary Investigation* The University of Chicago Press.

Martin, S.E. (1975). A Reference Grammar of Japanese, Yale University Press.

Makino, T. (1991). Natural Language Processing (in Japanese), pp.84, Oonu-sha Ltd., ISBN4-274-07658-X

Fukui, N., S. Miyagawa, and C, Tenny. (1985). Verb Classes in English and Japanese: A Case Study in the Interaction of Syntax, Morphology and Semantics. Lexicon Project Working Papers #3, MIT.

Pustejovsky, J. (1991a). The Generative Lexicon. *Computational Linguistics*, 17.A.

Pustejovsky, J. (1991b). The Syntax of Event Structure. *Cognition*, 41.3.

Sansedeo. (1990) *New Crown Japanese-English Dictionary Rev.5*, Sansedeo Ltd. Japan

Talmy, L. (1978). Figure and Ground in Complex Sentences, in Joseph Greenberg (ed.) *Universals of Human Language: Syntax*, Vol 4. Stanford.

°It might be understood pragmatically to entail that perhaps the parents were worried about covering the baby too much, and wanted to allow the baby to breathe easily by allowing its head, for example, to remain uncovered. In brief, here it is the compositional behavior of morphemes that yields different alternation paradigms.