Reference Gene Selection for Quantitative Real-Time RT-PCR Normalization in the Half-Smooth Tongue Sole (Cynoglossus semilaevis) at Different Developmental Stages, in Various Tissue Types and on Exposure to Chemicals

Conghui Liu¹, Nian Xin¹, Yi Zhai¹, Liming Jiang¹, Jieming Zhai², Quanqi Zhang¹, Jie Qi¹*
¹ Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, Shandong, China, ²Laizhou Mingbo Aquatic CO., Ltd, Laizhou, Shandong, China

Abstract

Quantitative real-time RT-PCR has been described as the most sensitive method for the detection of low abundance mRNA. To date, no reference genes have been screened in the half-smooth tongue sole (Cynoglossus semilaevis). The aim of this study was to select the most stable genes for quantitative real-time RT-PCR. Eight housekeeping genes (18S, TUBA, B2M, ACTB, EF1A, GAPDH, RPL17 and UBCE) were tested at different developmental stages, in different tissues, and following exposure to the drug SB-431542. Using geNorm, BestKeeper and NormFinder software, GAPDH/B2M, GAPDH/18S and UBCE/GAPDH were identified as the most suitable genes for samples taken of different developmental stages while 18S/RPL17 were consistently ranked as the best reference genes for different tissue types. Furthermore, TUBA/B2M, TUBA/UBCE and B2M/TUBA were found to be the most suitable genes in samples treated with the drug, SB-431542 by geNorm, BestKeeper and NormFinder respectively. Across both different developmental stages and tissue types, the combination of 18S and GAPDH was the most stable reference gene analyzed by Ref-Finder. To test and verify the screened reference genes, the expression profiles of LEFTY-normalized to the combination of GAPDH/18S and ACTB were presented. These results will be useful for future gene-expression studies in the half-smooth tongue sole.

Introduction

Quantitative real-time PCR (qRT-PCR) plays an extremely important role in studies on gene expression and determination of complex molecular pathways in various biological systems [1]. It is a robust method with obvious advantages, including sensitivity, large dynamic range, and the potential for high throughput and accurate quantification [2]. The read-out can be either an absolute number of copies, or a relative amount normalized to an internal control gene [2]. The accuracy of this technique, however, might be affected at multiple stages throughout the experimental process and by several factors. It has been proposed that housekeeping genes might be used as reference genes for normalizing the results of qRT-PCR because of their consistent expression, both with respect to different developmental stages and exposure to different environmental factors. In reality, however, no single reference gene can be used for longitudinal studies for different tissues, ontogenetic stages and experimental conditions. The transcript levels of genes deemed as housekeeping traditionally may also vary considerably [3]. Thus, the optimal genes can only be confirmed with an analysis of models based on particular cases. An accepted method used to reduce errors to a minimum is to normalize the target gene to a set of reference genes identified through an analysis of parameter models [1,4]. GeNorm, BestKeeper and NormFinder are Visual Basic Applications that were developed for running in Microsoft Excel and they are widely used in various conditional experiments [4]. Pairwise variation is calculated by geNorm to determine the most stable reference genes, whereas BestKeeper is used to evaluate the coefficient of variation. NormFinder takes the analysis of intra- and inter-group variations for normalization into consideration.

The half-smooth tongue sole (Cynoglossus semilaevis) is an important farmed marine fish, which shows behavioral and morphological left-right asymmetry, with one eye migrating to the opposite side (metamorphosis) during the larval stages [5]. A high larval mortality due to starvation can occur during metamorphosis when body malformations cause the mouth to fail to close. Whereas the mechanism regulating this external asymmetry remains largely unknown, evidence suggests that the Nodal signaling pathway is involved in the eye laterality of a flatfish similar to the sole, the Japanese flounder [6–9]. More studies are needed to analyze the expression profiles of genes
related to the Nodal signaling pathway. Currently, little work has
been conducted on the selection of reference genes in the half-
smooth tongue sole, although some reference genes have been
identified in the Atlantic halibut and Japanese flounder [10–12].
While it is useful to consider the reference genes identified from
the halibut and flounder, inter-species variation can occur and so it
is more accurate to identify the particular genes for the species
under investigation, in this case the half-smooth tongue sole [13].

The aim of this work was to screen optimal sets of reference
genes for 18 different developmental stages, 8 tissue types and
following treatment with SB-431542, an inhibitor of the Nodal
signaling pathway. Three statistical algorithms, geNorm, Best-
Keeper and NormFinder, were used to analyze the qRT-PCR
data. In addition, the ontogenesis expression profiles of LEFTY
were investigated to confirm the efficacy of the selected reference
genes as this is reported to be part of the Nodal-pathway that plays
a role in controlling eye laterality in the flounder [7], as well as
being shown to be expressed on the left side of the dorsal
diencephalon and internal organs to form fixed laterality [6,8].
The results obtained in this study provide an essential tool for
future gene expression studies in the half-smooth tongue sole.

Materials and Methods

Ethics Statement

The half-smooth tongue sole used in this study were collected
from local aquatic farms under a permit from the local
government of Yantai, Shandong, China. All handling of the
half-smooth tongue sole was conducted in accordance with the
guidelines and regulations established by the Ocean University of
China and the local government of YanTai.

Fish Rearing and Sample Collection

Fertilized eggs were obtained by artificial fertilization and then
maintained at 22°C. The developmental stages were determined
by observation via microscopy. A total of 18 developmental stages
were selected: 1-cell (0.5 hours post fertilization; hpf), 4-cell
(1.5 hpf), 8-cell (1.9 hpf), 16-cell (2.3 hpf), 32-cell (2.8 hpf), 1k-
cell (6 hpf) and sphere (11 hpf) stages, as well as 30% epiboly
(13.5 hpf), and the 2-somite (20 hpf), 15-somite (3.5 hpf), 21-
somite (27.5 hpf), 27-somite (30 hpf) and metamorphosis stages D,
E, F, G, H, and I, as described by Minami (1982) [14]. In brief, the
metamorphosis stages can be described as follows: Stage D (the
stage prior to the start of eye migration, 15 DAH; day after
hatching); Stage E (the eye begins to migrate, 17 DAH); Stage F
(the migrating eye is visible from the ocular side, 18 DAH); Stage
G (the upper edge of the migrating eye is beyond the dorsal
margin, 19 DAH); Stage H (the upper edge of the migrating eye is
beyond the dorsal mid-line, 20 DAH); Stage I (the entire
migrating eye is past the dorsal mid-line, 22 DAH) (Minami,
1982). The larvae were raised at 22°C.

These 18 stages were arranged into 3 groups each containing 6
stages, called developmental stage I (from the 1-cell to 1k-cell
stage), II (sphere stage to 27-somite stage) and III (metamorphosis
stages D-I). For developmental stages I and II, 30 embryos were
used per stage, while for developmental stage III, three larvae were
used. In chemical treated experiments, embryos were treated from
the 16-cell stage to the 21-somite stage with SB-431542 at 100 μM
and 200 μM (or with double-distilled water or DMHSO as controls)
with 30 embryos being treated per experimental group. All
experiments were performed in biological triplicate.

Regarding the different tissues, a total of six adult fish (i.e., three
female and three male fish) were involved in this investigation.
Eggs and sperm came from three female and three male fish,
respectively, while the other tissues (muscle, kidney, gill, spleen,
liver, intestines, egg and sperm) were selected from 3 different
adult fish randomly, and again experiments were performed in
triplicate, and then stored in liquid nitrogen immediately until use.
All procedures complied with the Institutional Animal Care and
Use Committee of Ocean University of China and were
specifically approved for this study.

Selection of Reference Genes

A total of eight candidate genes were selected for the gene
expression stability analysis as follows: 18S (Ribosomal RNA),
TUBA (α-Tubulin), ACTB (β-actin), B2M (β-2-Microglobulin),
EF1A (Elongation factor-1-α), GAPDH (Glyceraldehyde-3-phos-
phate), RPL17 (Ribosomal protein L17) and UBCE (Ubiquitin-
conjugating enzyme). Moreover, LEFTY (Fw: 5'-CCCAAGGTGTGGTCGGTCTG-3';
Rev: 5'-ATT-

CAAGGCTGATCCCC ATTC-3') was used to verify the proper
reference genes. All the genes were identified from an unpublished
cDNA library of Cyprinus semilaevis. The primers were designed
with Primer Premier 5.0 software (PREMIER Biosoft Interna-
tional, Palo Alto, CA). The full gene name, function, primers and
PCR parameters are shown in Table I. The length of PCR
products ranged from 70 to 170 bps, and the mean melting
temperature of the forward and reverse primers ranged between
61.0°C and 62.7°C.

RNA Extraction, cDNA Synthesis and RT-PCR

Total RNA was extracted from samples using Trizol reagent
according to the manufacturer’s instructions. The concentration
and purity of the total RNA extracted were determined using a
Nano Photometer. The absorbance ratio of each sample at OD
260/280 was between 1.9 and 2.0, and the OD 260/230 was
approximately 2.0. The integrity of total RNA was assessed via 1%
ethidium bromide agarose gel electrophoresis. A total of 1 μg
RNA from each sample was reverse transcribed according to the
instructions of the PrimeScript™ RT reagent kit with gDNA
Eraser (Takara, Japan), and the final volume was 20 μl. Standard
RT-PCR was carried out using Premix Ex Taq to characterize all
the primer pairs according to the length and specificity of the
products.

Quantitative Real-time PCR (qRT-PCR)

Each 20 μl reaction volume contained 10 μl 2X SYBR Premix
Ex Taq™, 0.4 μl ROX Reference Dye II, 0.4 μl of each primer
(10 μM), 2 μl 10X diluted cDNA template (1000X diluted cDNA
for 18S rRNA) and 6.8 μl nuclease-free water. The PCR
conditions were as follows: 95°C for 30s followed by 40 cycles of
95°C for 5s and then 60°C for 40s. PCR was performed using an
Applied Biosystems 7500 Real-Time PCR system. Three technical
replicates were performed for each sample.

Data Analysis

To comprehensively and systematically assess the expression
variation of the candidate reference genes, all the samples were
divided into three broad categories: developmental stages,
different tissues, and chemical treatment. The developmental
stages were subdivided into three groups: Stage I, the 1-cell stage
(i.e., a newly fertilized egg) to the sphere stage; Stage II, 30%
epiboly to the 27-somite stage; and Stage III, throughout
metamorphosis.

The time sequence fluorescence values (Rn) were collected using
the qRT-PCR machine. All raw data, which based on all cDNAs
samples of tissue, developmental stage, and chemical-treated, were

Reference Gene in Half Smooth Tongue Sole

PLOS ONE | www.plosone.org 2 March 2014 | Volume 9 | Issue 3 | e91715
appropriate weight [15].

Reference genes with the geometric mean of individual gene
tive delt Ct method) to compare and rank the stability of candidate
programs (geNorm, Normfinder, BestKeeper, and the compara-
Finder, which integrates the current major computational
developmental stages and tissue types was calculated using Ref-
comparative

D

BestKeeper based on. the raw Ct value directly using the
linear scale expression quantities using the 2 -delta-Ct method, and
expression values as input data by transformed the Ct values to
determined with geNorm and NormFinder, which use relative
Expression Profiles of Candidate Reference Genes

Results

Expression Profiles of Candidate Reference Genes
Eight candidate reference genes, including 18S, TUBA, B2M, ACTB, EF1A, GAPDH, RPL17 and UBCE, were selected for the evaluation of expression stability with n = 3 experiments containing 30 samples per experiment for developmental stages I and II, and 3 samples per experiment for developmental stage III, as described in the Materials and Methods. The amplification specificity of the primers used in the qRT-PCR was evaluated using agarose gel electrophoresis followed by ethidium bromide (EB) staining. The specificity of the primers producing single amplicons was confirmed by the absence of primer dimers and false priming. Specific PCR products of identical length were confirmed by the absence of primer dimers and false priming. Specific PCR products of identical length were identified via electrophoresis (Figure 1) and sequencing results. The overall final ranking of reference genes across all
developmental stages and tissue types was calculated using Ref-
Finder, which integrates the current major computational programs (geNorm, Normfinder, BestKeeper, and the comparative delt Ct method) to compare and rank the stability of candidate reference genes with the geometric mean of individual gene appropriate weight [15].

geNorm Analysis
The geNorm analysis was used to select the best reference genes. Two parameters were considered to quantify reference gene stability: M value (average expression stability) and Vn/n+1 (pairwise variation). Originally, M≤1.5 and Vn/n+1<0.15 are regarded as acceptable levels of expression variability [4].

Note: E means reaction efficiencies and R^2 means Pearson’s coefficients of determination. Average Tm represents the mean melting temperature of the forward (Fw) and reverse (Rv) primers. Each sample contains 3 biological replicates.

doi:10.1371/journal.pone.0091715.t001

Gene	Molecular function	Primer (5’-3’)	Product size (bp)	E	R^2	Average Tm(°C)
18S	Ribosomal subunit	Fw: GGAACGAGGGATACAGGGTT	70	0.98	61.2	
TUBA	Cytoskeletal protein,	Fw: ATCTCCTCTGCTGGTTCCTGGTTG	107	0.99	62.0	
ACTB	Cytoskeletal structural	Fw: GAAATCGCGCACTCTGGTTG	111	1.00	61.6	
B2M	Subunit of the MHC class	Fw: TGTCGTCGTTCCTGGCGGTG	112	0.97	62.2	
EF1A	Protein synthesis	Fw: AGGGCTGTATCTCCAGAACC	122	0.98	62.7	
GAPDH	Glycolytic enzyme	Fw: GAAAGCGCTTCTGGGATACACT	119	1.03	61.0	
RPL17	Structural constituent of ribosomal subunit	Fw: AGTGGCTCCGCTTCGGCT	114	1.00	61.5	
UBCE	Ligase activity, protein	Fw: GCAATGGTACGATCCTCGCG	170	1.00	62.7	

imported into the PCR Miner software to calculate efficiency (E), cycle threshold (Ct), and Pearson’s coefficients of determination (R^2) of each reference gene. The expression stability level was determined with geNorm and NormFinder, which use relative expression values as input data by transformed the Ct values to linear scale expression quantities using the 2^-delta-Ct method, and BestKeeper based on. the raw Ct value directly using the comparative ACT method.

The overall final ranking of reference genes across all developmental stages and tissue types was calculated using RefFinder, which integrates the current major computational programs (geNorm, Normfinder, BestKeeper, and the comparative delt Ct method) to compare and rank the stability of candidate reference genes with the geometric mean of individual gene appropriate weight [15].
Recently, an M value below the threshold of 0.5 is generally regarded as being typical for a stable reference gene in a relatively homogeneous sample panel. For more heterogeneous panels, the mean M value may increase to 1 [16]. Depending on the developmental stage, tissue type and chemical treatment, the housekeeping gene expression stability showed some variation. Throughout all developmental stages, the most stable genes were GAPDH and B2M. The M value obtained for these two genes was 0.57, which is below the default limit of M=1. 18S was also identified as stable, with an M value of 0.66 (Figure 3A). The two most stable genes in developmental stage I were 18S and UBCE (Figure 3B), GAPDH and B2M in stage II (Figure 3C); GAPDH and ACTB in stage III (metamorphic stages) (Figure 3D), 18S and RPL17 for different tissues (Figure 3E) and B2M and TUBA for the chemical treatment group (Figure 3F). To determine the number of required reference genes for each group, the Vn/n values, including V2/3, were below 0.15 in each pool (Figure 3G), which indicated that only two genes are needed as an internal control.

BestKeeper Analysis

Gene expression variation was calculated for all eight candidate reference genes based on Ct-values and displayed as the standard deviation (SD) and coefficient of variance (CV) by BestKeeper. The lowest values of SD (i.e., usually <1) indicated the highest stability [17]. BestKeeper highlighted GAPDH as the reference gene with the least overall variation from the list of eight candidate genes, with an SD of 0.29, CV value = 0.92 throughout all developmental stages (Figure 4A). The variation in expression of the other candidate reference genes was greater except the 18S and B2M (SD = 0.37, and SD = 0.38 respectively). The order of the candidate reference genes from most stable (lowest SD) to least stable (highest SD) was GAPDH > 18S > B2M > UBCE > EF1A > ACTB > TUBA > RPL17. Following for stage I, the ranking was GAPDH > B2M > ACTB > 18S > UBCE > EF1A > RPL17 > TUBA (Figure 4B); 18S > GAPDH > B2M > TUBA > EF1A > UBCE > RPL17 > ACTB for stage II (Figure 4C); and 18S > GAPDH > UBCE > B2M > ACTB > EF1A > TUBA > RPL17 for metamorphic stage III (Figure 4D). For different tissue types, the decreasing order of stability was 18S > RPL17 > EF1A > GAPDH > ACTB > TUBA > UBCE > B2M (Figure 4E). 18S (SD = 0.45, CV = 1.86) showed constant expression stability (Table S2); The order of variation changed to UBCE > TUBA > RPL17 > B2M > EF1A > 18S > ACTB > GAPDH in the chemically-treated group (Figure 4F). The most stable gene was UBCE (SD = 0.26, CV = 1.02) (Table S2), and the top five genes had similar stability levels, with SD values ranging from 0.26 to 0.4.

NormFinder Analysis

NormFinder was applied to validate the most stable expression gene [18]. As shown in Table 2, a high M value represents a high expression variation. Thus, UBCE, GAPDH and 18S occupied the top 3 positions for the most stable expression genes in the group throughout developmental stages I, II and III. The most suitable combination of genes was UBCE and GAPDH (combined stability value = 0.632). The rest were ranked as follows: TUBA, B2M, EF1A, RPL17 and ACTB. Based on developmental stages, the ranking was 18S > GAPDH > UBCE > EF1A > ACTB > RPL17 > B2M > TUBA for stage I. The most suitable combination of genes was 18S and GAPDH (combined stability value = 0.154); GAPDH > EF1A > 18S > B2M > UBCE > TUBA > RPL17 > ACTB for stage II. The most suitable combination of genes was GAPDH and EF1A (combined stability value = 0.203); and GAPDH > 18S > B2M > ACTB > UBCE > TUBA > RPL17 > EF1A for stage III. The most suitable combination of genes was GAPDH and 18S (combined stability value = 0.038). For different tissue types, the sequence of stability was RPL17 > 18S > EF1A > ACTB > GAPDH > TUBA > UBCE > B2M. The most stable combination of genes was RPL17 and 18S (combined stability value = 0.264). The ranking order of stability changed to B2M > TUBA > EF1A > UBCE > 18S > RPL17 > GAPDH > ACTB in the chemically-treated group. The most stable combination of genes were B2M and TUBA with the combined stability value = 0.039.

According to the comprehensive ranking of the RefFinder performed, the combination of 18S and GAPDH with geomean 1.19 and 1.73 were confirmed as the most stable genes other than EF1A (2.62), RPL17 (4.76), UBCE (5.23), B2M (5.66), TUBA (5.73) and ACTB (7.47) across all developmental stages and tissue types.

Expression Profile of LEFTY Gene of Ontogenesis and Drug Treatment

To test and verify the results of the reference gene screening, which were analyzed by geNorm, Bestkeeper and NormFinder, expression profiling of LEFTY was carried out via qRT-PCR. Four parameters, GAPDH, 18S, a normalization factor based on the geometric average of both Ct values (GAPDH and 18S) and ACTB were used to normalize the LEFTY qRT-PCR data. They showed a similar tendency during the continuous development process: a low and stable level from fertilization to the 32-cell stage, after which the level increased more or less consistently from fertilization to the 32-cell stage, after which the level increased more or less consistently.
high stage, to peak at the 21-somite stage, followed by a reduction in expression from the 27-somite stage to approximately 1 day after hatching, after which low-to-negligible levels were observed during the metamorphosis stages. However, the expression level identified by the combination of GAPDH and 18S was more reliable when gene expression showed different trends between single reference gene group and the combination group. For example, LEFTY gene expression showed no significant decrease from 21 somites to 27 somites labeled by GAPDH, but it significantly dropped by the combination of GAPDH and 18S. The expression result revealed by the combination group was more consistent with the report in Japanese flounder. In addition, the expression level of LEFTY was lower compared with GAPDH/18S, and either GAPDH or 18S when ACTB was as reference gene through the entire developmental stages. For instance, at 21 somites stage, no significant expression difference of LEFTY was shown among GAPDH, 18S and GAPDH/18S.
groups with high transcript abundance, but significantly lower expression was found when ACTB as reference gene (Figure 5).

Discussion

The qRT-PCR method is widely used in gene expression studies of both freshwater [19–21] and marine fish [22,23], when investigating a variety of conditions, such as infection [24,25] and stress [20,26–28], as well as in various cell lines [29–31] and different tissues [21–23,32]. As a crucial step, the qRT-PCR data should be accurately normalized by use of the appropriate reference genes. Otherwise, the use of non-validated reference genes can lead to erroneous conclusions that are biologically meaningless [33]. However, there is no universally applicable reference gene. The same reference genes in different species and different reference genes in the same species can have dramatically different expression levels under diverse experimental conditions. For example, GAPDH has been validated as the most stable reference gene in the mandarin fish [34], but has significant expression variation in the Atlantic halibut [33] and zebrafish [35]. On the other hand, ACTB and Tubb2 showed less expression variation, but 18S rRNA and GAPDH varied significantly, even these reference genes in the same species, Atlantic halibut [36]. Thus, to improve the sensitivity and reliability of qRT-PCR in practice, the validation of reference genes should be performed for each different species, tissue type and experiment condition to be used.

The results obtained in our study were analyzed with geNorm, BestKeeper and NormFinder. The most stable reference genes generated from these three software applications showed a high level of similarity; however there were subtle deviations in the rank order. For example, throughout all developmental stages, the top 3 stable expression genes were: GAPDH, B2M and 18S for geNorm; GAPDH, 18S and B2M for Bestkeeper; and 18S, GAPDH and UBCE for NormFinder. This deviation is natural because of the different algorithms used. Both BestKeeper and geNorm use a pair-wise comparison approach, and are highly dependent on the assumption that none of the genes being analyzed are co-regulated [36]. On the other hand, in NormFinder, a separate analysis of the sample subgroups and estimation of both intra- and inter-group variation in expression levels are included into the calculation of a gene stability value [33].

In our investigation, GAPDH and B2M, were identified as the most suitable genes in samples containing all eighteen developmental stages, with an M-value of 0.57 (i.e., M<1); while 18S was the next most stable gene with an M-value of 0.66 (i.e., M<1). In order to obtain a more accurate view about the stability of reference genes for the different developmental stages, we sub-
divided the original eighteen developmental stages into three
groups: termed I, II and III and we showed that the optimum
reference genes in each group possessed M-values of less than 0.5
(Figure 3B–D). To ensure that the normalization is as accurate as
possible, reference genes with the closest Ct value to that of the
target genes should be selected [20]. Thus, the expression level of
each reference gene was also investigated (Table S1).

According to the comprehensive ranking of the Ref-Finder
performed, the combination of two reference genes, 18s and
GAPDH, were shown to be the most stable genes across all

Table 2. Expression stability analysis of the 8 candidate reference genes by NormFinder.

Rank	Stages I–III	Stage I	Stage II	Stage III	Tissues	Treatment
1	UBCE	18S	GAPDH	GAPDH	RPL17	B2M
M value	0.778	0.193	0.196	0.059	0.240	0.039
2	GAPDH	GAPDH	EF1A	18S	18S	TUBA
M value	1.372	0.278	0.481	0.104	0.288	0.039
3	18S	UBCE	18S	B2M	EF1A	EF1A
M value	1.380	0.467	0.816	0.164	0.754	0.123
4	TUBA	EF1A	B2M	ACTB	ACTB	UBCE
M value	1.564	0.542	0.993	0.178	1.760	0.139
5	B2M	ACTB	UBCE	UBCE	GAPDH	18S
M value	1.827	0.712	1.008	0.203	1.973	0.22
6	EF1A	RPL17	TUBA	TUBA	TUBA	RPL17
M value	1.964	0.792	1.034	0.255	3.193	0.269
7	RPL17	B2M	RPL17	UBCE	GAPDH	
M value	2.077	0.900	1.250	0.283	3.355	1.710
8	ACTB	TUBA	ACTB	EF1A	B2M	ACTB
M value	2.376	1.123	1.958	0.765	4.331	1.823
the best	UBCE/	18S/GAPDH	GAPDH/	GAPDH/	RPL17/	B2M/
combination	GAPDH/	0.154	EF1A	18S	18S	TUBA
M value	0.632	0.203	0.038	0.264	0.039	

Note: The stability of the eight candidate genes, indicated by the M value were calculated by NormFinder at all developmental stages (i.e., I–III combined); as well as at
developmental stage I; stage II; and stage III alone; in different tissues; and following chemical treatment.
doi:10.1371/journal.pone.0091715.t002
developmental stages and tissue types in the half-smooth tongue sole. This is consistent with the results reported in the Atlantic salmon [37] and Japanese flounder [12]. In addition, tissue-dependent variations have been observed in the expression of most housekeeping genes in flatfish. In our study, 18S and RPL17 were shown to be the most stable reference genes. ACTB has been used previously for half-smooth tongue sole organs [38–40], but it was proved to be an unstable reference gene in our investigation because of significant difference between ACTB and the combination of GAPDH and 18S, even either of 18S or GAPDH. ACTB was ranked at the worst reference gene in tissues group. In contrast, ACTB/UBCE were shown to be the best reference genes in different organs of the Japanese flounder [10], and EF1A and RPSD were identified for Atlantic halibut [36] and turbot [41] tissue.

The expression stage of LEFTY was detected by in situ hybridization from shield-stage to the 27-somite stage in the Japanese flounder [42]. We demonstrated that LEFTY appeared earlier (at high blastula, i.e., 1k-cell stage) in the half smooth tongue sole, and up to 1dpf by qRT-PCR, which is a more sensitive assay than in situ hybridization. In zebrafish, there are two LEFTY genes (LEFTY1 and LEFTY2). Most reports describe the expression of LEFTY1 occurring from prior to gastrulation (from sphere stage in the blastula period) [43], to the 25- or 26-somite stage in the segmentation period [44–49] although there is no evidence showing the expression of either LEFTY1 or LEFTY2 after this stage. However, our evidence indicates that in the half smooth tongue sole, the expression of LEFTY appears earlier and disappears later (i.e., it is expressed over a wider range of developmental stages), when compared with either the zebrafish or the Japanese flounder.

We believe that this is the first work to assess valid reference genes for qRT-PCR studies in the half-smooth tongue sole. This work is important for future developmental gene expression studies in this commercially important species as it provides valuable tools for investigating gene expression in both the embryonic and larval stages, as well as in different tissues and following chemical treatment in this flatfish species, which currently suffers from a high mortality risk during larval production.

Supporting Information

Figure S1 The transcriptional levels (Ct value) of 8 candidate reference genes (18S, TUBA, B2M, ACTB, EF1A, GAPDH, RPL17 and UBCE). Presented as mean Ct value (cycle threshold value) for each candidate gene and each sample of different developmental stages, tissues and chemical treatment. For developmental stages I and II, 30 embryos were used per stage, while for developmental stage III, three larvae were used. Tissue samples were collected from three different adult fish. Experiments were performed in triplicate. (A) Embryonic developmental stages (I and II), include the 1-cell, 4-cell, 8-cell, and 32-cell stages, high blastula stage, sphere stage, 30% epiboly, as well as the 2-somite, 15-somite, 21-somite, and 27-somite stage, during hatching, in 1-day old larva, and during metamorphosis stages D–I.

Table S1 Groups divided according to abundance of expression of eight candidate genes.
Acknowledgments

We thank Laizhou Mingbo Aquatic CO., LTD, especially Mr. Wenhui Ma and Xiaomei Wang, for kindly providing the half-smooth tongue sole samples. We appreciate the help of Dr. Sarah E. Webb, The Hong Kong University of Science & Technology (HKUST), for helpful comments on this manuscript.

Author Contributions

Conceived and designed the experiments: JQ CL QZ. Performed the experiments: CL NX VJ ZJ. Analyzed the data: CL LJ. Contributed reagents/materials/analysis tools: JQ QZ. Wrote the paper: CL NX QJ.

References

1. Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR: a perspective. J Mol Endocrinol 34: 597–603.
2. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402–408.
3. Parikh M, Sibley LD, Reimann WA, Uyeda H, Lu J, et al. (2005) Real-time RT-PCR normalization: strategies and considerations. Genes Immun 6: 279–284.
4. Suzuki T, Kobayashi K, Sasaki O (2000) Real-time displacement measurement with a two-wavelength unimodal phase-modulating laser diode interferometer. Appl Opt 39: 2646–2652.
5. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034.
6. Okuda N, Takagi Y, Sekai T, Tanaka M, Tagosa M (2001) Asymmetrical development of bones and soft tissues during eye migration of metamorphosing Japanese flounder, Paralichthys olivaceus. Cell Tissue Res 304: 59–66.
7. Concha ML, Burdine RD, Russell C, Schier AF, Wilson SW (2000) A nodal signaling pathway regulates the lateralization of neuroanatomical asymmetries in the zebrafish forebrain. Neuron 28: 399–409.
8. Hashimoto H, Mizuta A, Okada N, Suzuki T, Tagawa M, et al. (2002) Isolation and characterization of a Japanese flounder clonal line, reversed, which exhibits reversal of neuroanatomical left-right asymmetry. Mech Dev 117: 17–24.
9. Capdevila J, Vogan CJ, Tabin CJ, Izpisua Belmonte JC (2000) Mechanisms of croaker (Oreochromis mossambicus) embryogenesis. Marine Biotechnology 10: 310–318.
10. Evrard E, Devaux A, Bony S, Burget T, Rao, et al. (2010) Responses of the European flounder Platichthys flesus to the chemical stress in estuaries: load of contaminants, gene expression, cellular impact and growth rate. Biomarkers 15: 111–127.
11. Mianna T (1982) The early life history of flounder Paralichthys olivaceus. Bulletin of the Japanese Society of Scientific Fisheries 48: 1501–1508.
12. Chen D, Pan X, Xiao P, Farwell MA, Zhang B (2011) Evaluation and characterization of a Japanese flounder clonal line, reversed, which exhibits reversal of neuroanatomical left-right asymmetry. Mech Dev 117: 17–24.
13. Chechi K, Gelinas Y, Mathieu P, Deshaies Y, Richard D (2012) Validation of suitable reference genes for real-time PCR studies of Atlantic halibut development. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 150: 23–32.
14. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesenompe J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8: R19.
15. Andersen CL, Jensen JI, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64: 2527–2531.
16. Ye X, Zhang L, Tian Y, Lao H, et al. (2010) Validation of reference genes of grass carp Ctenopharyngodon idellus for the normalization of quantitative real-time PCR. Biotechnol Lett 32: 1031–1038.
17. Small BC, Murdock CA, Bilodeau-Bourgeois AL, Peterson BC, Waldbieser GC (2008) Stability of reference genes for real-time PCR analyses in channel catfish (Ictalurus punctatus) tissues under varying physiological conditions. Comp Biochem Physiol B Biochem Physiol 151: 296–304.
18. Linnard H, Herzberg M, Marthen P (2006) Murine leukemia Methods and Protocols, Humana, Totowa, NJ.
19. Olivak PA, Sofield L, Lie KK (2008) Selection of reference genes for qRT-PCR examination of wild populations of Atlantic cod (Gadus morhua). BMC Res Notes 1: 47.
20. Jørgensen SM, Kleveland EJ, Grünholt U, Gjøen T (2006) Validation of reference genes for real-time polymerase chain reaction studies in Atlantic salmon. Mar Biotechnol (NY) 8: 398–408.
44. Zhou W, Dai J, Attanasio M, Hildebrandt F (2010) Nephrocystin-3 is required for ciliary function in zebrafish embryos. Am J Physiol Renal Physiol 299: F55–62.
45. Wloga D, Webster DM, Rogowski K, Bee MH, Levilliers N, et al. (2009) TTLL3 Is a tubulin glycine ligase that regulates the assembly of cilia. Dev Cell 16: 867–876.
46. Schneider I, Schneider PN, Derry SW, Lin S, Barton LJ, et al. (2010) Zebrafish Nkd1 promotes Dvl degradation and is required for left-right patterning. Dev Biol 348: 22–33.
47. Lin X, Xu X (2009) Distinct functions of Wnt/beta-catenin signaling in KV development and cardiac asymmetry. Development 136: 207–217.
48. Francescatto L, Rothschild SC, Myers AL, Tombes RM (2010) The activation of membrane targeted CaMK-II in the zebrafish Kupffer’s vesicle is required for left-right asymmetry. Development 137: 2753–2762.
49. Aamar E, Dawid IB (2010) Sox17 and chordin are required for formation of Kupffer’s vesicle and left-right asymmetry determination in zebrafish. Dev Dyn 239: 2980–2988.