Synthesis, structure and properties of K$_{2(1-x)}$Rb$_x$Al$_2$B$_2$O$_7$ and Cs$_{1.39}$Tl$_{0.61}$Al$_2$B$_2$O$_7$ borates as the basis for preparing new oxide materials

V. G. Grossman†, B. G. Bazarov, S. Y. Stefanovich, M. S. Molokeev, J. G. Bazarova

t†grossmanv@mail.ru

1Baikal Institute of Nature Management, Siberian Branch, RAS, 6 Sakhyanova St., Ulan-Ude, 670047, Russia
2Lomonosov Moscow State University, GSP-1, 1/3 Leninские Горы, Moscow, 119991, Russia
3Kirensky Institute of Physics, Federal Research Center KSC, Siberian Branch, RAS, 50/38 Akademgorodok, Krasnoyarsk, 660036, Russia
4Siberian Federal University, 82 Svobodniy Av., Krasnoyarsk, 660041, Russia

With the development of technology, the need for highly efficient functional materials is steadily increasing. Currently, borates attract the attention of researchers, as they are promising nonlinear materials. Potassium rubidium aluminum borate based on potassium aluminum borate (trigonal syngony, space group P3_21, Z = 3) was obtained by solid-phase synthesis. The individuality and purity of the borates were confirmed by X-ray diffraction. Analysis of differential scanning calorimetry and thermogravimetric method for K$_{2(1-x)}$Rb$_x$Al$_2$B$_2$O$_7$ (x = 0.1–0.8) was performed in the temperature range of 25–1075°C. Potassium rubidium borates decompose in the temperature range of 900 –1000°C. Differential scanning calorimetry, dielectric loss tangent, and second-harmonic generation data revealed phase transitions for K$_{0.6}$Rb$_{1.4}$Al$_2$B$_2$O$_7$. A significant SHG effect was found at room temperature for K$_{0.6}$Rb$_{1.4}$Al$_2$B$_2$O$_7$ (Q = 70). Then the SHG effect increases to Q = 85 at a temperature of 645°C and remains constant with a further increase in temperature. The new triple borate Cs$_{1.39}$Tl$_{0.61}$Al$_2$B$_2$O$_7$ was synthesized by the solid-phase synthesis, and its crystallographic parameters were obtained by the Rietveld method. This borate crystallizes in the monoclinic space group P$2_1/c$ with the unit cell parameters: Z = 2, a = 6.6669(3) Å, b = 7.2991(3) Å, c = 9.3589(4) Å, β = 116.6795(18)$^\circ$, V = 406.94(3) Å3. The structure can be considered to be built up from the nearly planar [Al$_2$B$_2$O$_{10}$] rings, which are composed of two AlO$_4$ tetrahedra and two BO$_3$ triangles, connected, alternately to each other by corner-sharing.

Keywords: borate, solid-phase synthesis, optical properties.

УДК: 661.653

Синтез, структура и свойства боратов K$_{2(1-x)}$Rb$_x$Al$_2$B$_2$O$_7$ и Cs$_{1.39}$Tl$_{0.61}$Al$_2$B$_2$O$_7$ как основа получения новых оксидных материалов

Гроссман В. Г.†, Базаров Б. Г., Стефанович С. Ю., Молокеев М. С., Базарова Ж. Г.

t†grossmanv@mail.ru

1Байкальский институт природопользования СО РАН, ул. Сахьяновой, 6, Улан-Удэ, 670047, Россия
2Московский государственный университет им. М. В. Ломоносова, ГСП-1, Ленинские горы, 1/3, Москва, 119991, Россия
3Институт физики им. Л. В. Киренского ФИЦ КНЦ СО РАН, 50/38Акademгородок, Красноярск, 660036, Россия
4Сибирский Федеральный Университет, Свободный пр., 79, Красноярск, 660041, Россия

С развитием технологии потребность в высокоэффективных функциональных материалах растет. В настоящее время бораты привлекают внимание исследователей, поскольку они являются перспективными нелинейными материалами. Твердофазным синтезом получены бораты K$_{2(1-x)}$Rb$_x$Al$_2$B$_2$O$_7$ (x = 0.1–0.8) на основе калий-алюминиевого бората (тригональная сингония, пространственная группа P3_21, Z = 3). Индивидуальность и чистота боратов подтверждена рентгеновской дифракцией. Анализ дифференциально-сканирующей калориметрии и термогравиме-
Borates have attracted considerable attention because they have important practical applications as materials for nonlinear optical (NLO) effects, in particular optical second harmonic generation (SHG) and linear electro-optics effects (EOE) [1, 2]. For example, β-BaB₂O₄, LiB₂O₄, CsB₂O₄, and YCa₃(BO₃)₄O are all well-known NLO materials [3]. In 1998, K₂Al₂BO₇ (KABO) as a new nonlinear optical crystal was reported by Hu et al. [4, 5]. The material crystallizes in space group P21 (Z = 3) with the unit cell parameters a = b = 8.55800(2) Å, c = 8.45576(3) Å [6]. In the structure of KABO, the nearly planar (Al₂BO₇) networks perpendicular to the c-axis are connected to one another by bridging oxygen atoms, and the alkaline cations (K⁺) are located between the layers. In the (Al₂BO₇) unit, each Al³⁺ cation is linked with three terminal O atoms of the triangle (BO₃)[−] groups and a bridging oxygen ion to form a tetrahedral (AlO₄)^{3−} group.

Compared to β-BaB₂O₄ and CsLiB₂O₄, the KABO crystal is free of moisture and possesses smaller walk-off and larger acceptance angles than BBO crystals, stable chemical and physical properties, and good mechanical properties. All of these merits indicate that KABO may be a competitive candidate for the fourth harmonic generation of Nd³⁺ doped lasers, such as Nd:YAG, Nd:YLF and Nd:YVO₄, etc. However, the KABO crystal has a problem concerning abnormal absorptions in the 200–300 nm regions that greatly reduces the conversion efficiency of the fourth harmonic generation of Nd-based laser [7].

In order to improve the properties of KABO crystals, the structure and properties of doped KABO crystals were studied. The structure of Na-doped KABO was studied by Meng et al. [8–11], the growth and properties of Fe-doped KABO crystals were studied by Wang et al. [12,13]. K_x(Al_{1−x}Ga_x)₂BO₇ (KAGBO) has a slightly smaller SHG coefficient and larger refractive indices [14].

Recently, a solid solution K_{2+x}Rb_xAl₂BO₇ with an high upper limit at room temperature as x~0.8 has been discovered [15]. The vibrational properties and the electronic structure of borate KRBAl₂BO₇ (KRABO) are investigated in [16]. In [17], the ultraviolet nonlinear optical crystal (NLO) K_xRb_{1−x}Al₂BO₇ (KRABO) was first obtained by the seed growth method. In this article, we continue to study the properties of KRBAl₂BO₇. Also in the present work, a new borate Cs₈Tl₃Al₂BO₇, isostructural to Cs₈Al₂BO₇[18] has been obtained.

2. Experimental

Polycrystalline samples of K_{2+x}Rb_xAl₂BO₇ (x=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8) and CsTlAl₂BO₇ were prepared by solid-state synthesis using a mixture of Al(NO₃)₃, 9H₂O (pure), H₂BO₃ (chemically pure grade), K₂CO₃ (chemically pure grade), Rb₂CO₃ (chemically pure grade), CsNO₃ (pur for analysis), TiNO₃ (pur for analysis) in stoichiometric ratio as starting materials. Initially, to minimize the content of water captured from the environment, the carbonates and nitrates were annealed at 300°C in dry air flow. The mixture of K_{2+x}Rb_xAl₂BO₇ (x=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8) was ground in an agate mortar and first heated at 300°C, then slowly heated to 800°C for several days [15]. CsTlAl₂BO₇ was synthesized according to the following annealing scheme. The charges were first fired at 120°C for 1 hour, at 150°C for 1 hour, at 220°C for 3 hours, at 300°C for 5 hours, at 350°C for 15 hours, then chaffed and heated the next time at 400°C for 7 hours, at 450°C for 40 hours, at 520°C for 40 hours, at 600°C for 48 hours, at 700°C for 20 hours, at 800°C for 45 hours, and at 850°C for 25 hours. Repeated grindings are performed between sintering processes to improve the homogeneity of mixing. All products are obtained after natural cooling to room temperature. X-ray powder diffraction was used to identify the product.

The powder X-ray diffraction was recorded on a Bruker D8 ADVANCE X-ray diffractometer (Bruker, Berlin, Germany) with Cu-K_α radiation (λ=1.5418 Å) at room temperature. The scanning range is between 8 and 100° with a scanning width of 0.02 and a rate of 0.1° s^{−1}. The thermal property was investigated by the differential scanning calorimetric (DSC) analysis and the thermogravimetric analysis (TGA) using a NETZSCH STA 449C TG/DSC/DTA thermal analyzer (NETZSCH, Berlin, Germany). A 15 mg sample of powder was placed in a Pt crucible and heated from room temperature at a rate of 10°C min^{−1} in an Ar atmosphere.

The measurement of second harmonic generation (SHG) was carried out on polycrystalline samples. The minilite-I Nd: YAG laser operating in Q-switched mode at a repetition rate of 10 Hz produced the frequency doubling from λ₁=532 nm to the second harmonics, λ₂=532 nm in the sample. The green light of the second harmonics was collected with the lens and then directed to the photomultiplier tube. To detect the light only at 532 nm, a narrow band-pass interference filter was attached to the photomultiplier. The measured
signal intensity ($I_{2\omega}$) from the sample was calibrated in relation to the α-quartz powder standard with a grain size of 3 µm. $Q = I_{2\omega}/I_{2\omega}(\text{SiO}_2)$ quantitatively presents the SHG activity of the sample.

The dielectric loss tangent ($\tan \alpha$) was measured on a Novocontrol Beta-N impedance-analyzer in a ProboStat measuring cell using the double-contact method [19] in the frequency range of 0.3 Hz−1 MHz on heating at 20−850°C with 2°C·min⁻¹; ceramic pellets were 10 mm in diameter and 2 mm in height.

3. Results and discussion

Thermogravimetric (TG) and differential thermal analyses (DTA) were performed on $K_{x(1-x)}Rb_xAl_2B_2O_7$ ($x = 0.1–0.8$) samples. The results are presented for $KrbAl_2B_2O_7$ in Fig. 1. The temperature of the phase transition for $KrbAl_2B_2O_7$ corresponds to 714°C, $\Delta H = -1.321$ J / g.

For all samples, a mass loss and one endothermic effect, which corresponds to the temperature of the phase transition, was observed in the temperature range of 900–1000°C (Fig. 1, 2). The mass loss of the sample is due to the decomposition of $K_{x(1-x)}Rb_xAl_2B_2O_7$ ($x = 0.1–0.8$).

The dependence of the temperature of phase transitions of solid solutions $K_{x(1-x)}Rb_xAl_2B_2O_7$ on the parameter x is shown in Fig. 2.

An increase in the content of rubidium leads to a decrease in the temperature of the phase transition. It is known that there was a KABO-type structure detected for a powder sample with a nominal composition $x = 0.9$ and the solubility limit in $K_{x(1-x)}Rb_xAl_2B_2O_7$ crystals can be estimated as $x ~ 0.83–0.9$ at ambient conditions. In this connection, the temperature of the phase transition only for the composition $x = 0.8$ was determined.

A decrease in the temperature of the phase transition agrees with the fact that an increase in the rubidium content results in a quasilinear increase of the unit cell parameters and the cell volume [15].

A significant effect of SHG was found at room temperature for $K_{0.6}Rb_{1.4}Al_2B_2O_7$ $Q = 70$ (Fig. 3). The signals confirm the absence of an inversion center. Then the effect of SHG increases to 85 at a temperature of 645°C and remains constant with a further increase in temperature. When cooled, the effect of SHG slightly decreases, but it does not drop below $I_{2\omega}/I_{\omega}(\text{SiO}_2) = 65$.

Fig. 4 shows the temperature dependences of the dielectric loss tangent for $K_{0.6}Rb_{1.4}Al_2B_2O_7$. The maxima of dielectric losses characteristic of the relaxational type, which with increasing frequency shift to higher temperatures, are revealed. Anomalies in dielectric loss tangent were revealed in the vicinity of 645°C, independent of the measurement frequency.

The diffraction data for the Rietveld analysis were collected at room temperature (27°C) with a Bruker D8 ADVANCE powder diffractometer in the Bragg-Brentano geometry and a Vantec linear detector. The operating parameters were:
Cu-K\textsubscript{a} radiation, step size 0.02°. Data were collected in the range of 2\(\theta\) from 8 to 100°. Peak positions were determined in the EVA program, available in the PC DIFFRACT-PLUS software package supplied by Bruker. X-ray patterns of the title compound were indexed using the ITO program [20]. Replacement of cesium atoms by thallium ones in the compound Cs\textsubscript{2}Al\textsubscript{2}O\textsubscript{5} facilitates the formation of the phase Cs\textsubscript{1.39}Tl\textsubscript{0.61}Al\textsubscript{2}B\textsubscript{2}O\textsubscript{7}. For the finer structure analysis of Cs\textsubscript{1.39}Tl\textsubscript{0.61}Al\textsubscript{2}B\textsubscript{2}O\textsubscript{7} the single crystal data on the phase Cs\textsubscript{2}Al\textsubscript{2}O\textsubscript{5}, which crystallizes in the space group \(P2_1/c\), were used [18]. The refinement of atomic positions and occupancy of atoms leads to the formula: Cs\textsubscript{1.39}Tl\textsubscript{0.61}Al\textsubscript{2}B\textsubscript{2}O\textsubscript{7}.

The experimental and theoretical X-ray diffraction patterns obtained for Cs\textsubscript{1.39}Tl\textsubscript{0.61}Al\textsubscript{2}B\textsubscript{2}O\textsubscript{7} are shown in Fig. 5. A good relation between experimental and theoretical curves is evident.

The parameters of the refinement and atomic coordinates of Cs\textsubscript{1.39}Tl\textsubscript{0.61}Al\textsubscript{2}B\textsubscript{2}O\textsubscript{7} are given in Tables 1 and 2, respectively. The main lengths of interatomic bonds are given in Table S1 (Supplementary Material). The structure of Cs\textsubscript{1.39}Tl\textsubscript{0.61}Al\textsubscript{2}B\textsubscript{2}O\textsubscript{7} is shown in Fig. 6. This is a three-dimensional framework built from corner-sharing AlO\textsubscript{4} tetrahedra and BO\textsubscript{3} triangles with channels occupied by the Cs+ and Tl2+ cations. The structure can be considered to be built up from the nearly planar \([\text{AlB}_2\text{O}_7]\)2- rings, which are composed of two AlO\textsubscript{4} tetrahedra and two BO\textsubscript{3} triangles, connected alternately to each other by corner-sharing.

Rb\textsubscript{2}Al\textsubscript{2}B\textsubscript{2}O\textsubscript{7}, Cs\textsubscript{2}Al\textsubscript{2}O\textsubscript{5}, and Cs\textsubscript{1.39}Tl\textsubscript{0.61}Al\textsubscript{2}B\textsubscript{2}O\textsubscript{7} crystallize in the space group \(P2_1/c\). The structure of these borates consists of AlO\textsubscript{4} tetrahedra and BO\textsubscript{3} triangles. The unit cell of Rb\textsubscript{2}Al\textsubscript{2}B\textsubscript{2}O\textsubscript{7} (\(a = 8.901(2)\) Å, \(b = 7.539(1)\) Å, \(c = 11.905(2)\) Å, \(\beta = 103.97(1)°\)), \(V = 775.3(2)\) Å3\) is almost the same as that of Cs\textsubscript{2}Al\textsubscript{2}O\textsubscript{5} (\(a = 6.719(1)\) Å, \(b = 7.121(1)\) Å, \(c = 9.626(3)\) Å, \(\beta = 115.3(1)°\)), \(V = 416.5(2)\) Å3\) and Cs\textsubscript{1.39}Tl\textsubscript{0.61}Al\textsubscript{2}B\textsubscript{2}O\textsubscript{7} (\(a = 6.6669(3)\) Å, \(b = 7.2991(3)\) Å, \(c = 9.3589(4)\) Å, \(\beta = 116.6795(18)°\)), \(V = 406.94(3)\) Å3\). Rb\textsubscript{2}Al\textsubscript{2}B\textsubscript{2}O\textsubscript{7} differs from Cs\textsubscript{2}Al\textsubscript{2}O\textsubscript{5} and Cs\textsubscript{1.39}Tl\textsubscript{0.61}Al\textsubscript{2}B\textsubscript{2}O\textsubscript{7} in that the bond angle of the bridging Al-O-Al, equal to 146.9(2)°, is less than the bond angle in borates Cs\textsubscript{2}Al\textsubscript{2}B\textsubscript{2}O\textsubscript{7} and Cs\textsubscript{1.39}Tl\textsubscript{0.61}Al\textsubscript{2}B\textsubscript{2}O\textsubscript{7} (the bond angle is 180°).

The bond distances and bond angles in Cs\textsubscript{1.39}Tl\textsubscript{0.61}Al\textsubscript{2}B\textsubscript{2}O\textsubscript{7} are well compared with the related structures \(M_2\text{Al}_2\text{B}_2\text{O}_7\) (\(M = \text{Na}, \text{K}, \text{Rb}\)) [6, 21, 22]. AlO\textsubscript{4} is a slightly distorted tetrahedron with the Al-O bond distances ranging from 1.637(18) Å to 1.772(2) Å. In the BO\textsubscript{3} triangles, the lengths of the B-O bonds range from 1.27(3) to 1.41(3) Å. The distances of Cs-O in Cs\textsubscript{1.39}Tl\textsubscript{0.61}Al\textsubscript{2}B\textsubscript{2}O\textsubscript{7} range from 2.967(13) to 3.4160(16) Å which resemble those in Cs\textsubscript{2}Al\textsubscript{2}O\textsubscript{5} [18] (3.070(3) to 3.600(3) Å).

The DSC (Differential Scanning Calorimetry) curve exhibits one endothermic peak on the heating curve at 900°C, accompanied by the apparent weight loss observed on the TG (Thermogravimetric Analysis) curve (Fig. 7). The XRD pattern indicates that the molten residues were mainly raw materials instead of the original compound, which clearly demonstrates that 900°C is the decomposition temperature. Hence, Cs\textsubscript{1.39}Tl\textsubscript{0.61}Al\textsubscript{2}B\textsubscript{2}O\textsubscript{7} melts incongruently.

![Fig. 5. X-ray diffraction patterns recorded and calculated for Cs\textsubscript{1.39}Tl\textsubscript{0.61}Al\textsubscript{2}B\textsubscript{2}O\textsubscript{7} at room temperature.](image)

![Fig. 6. (Color online) The crystal structure of Cs\textsubscript{1.39}Tl\textsubscript{0.61}Al\textsubscript{2}B\textsubscript{2}O\textsubscript{7} at room temperature.](image)
4. Conclusions

The K$_{2(1-x)}$Rb$_x$Al$_2$B$_2$O$_7$ crystals possess nonlinear optical properties and can be used for frequency conversion. Isovalent substitution of Rb$^+$ ions for K$^+$ ions in the KABO lattice results in a decrease in the phase transition temperature from 869°C for K$_2$Al$_2$B$_2$O$_7$ to 621°C for K$_{0.4}$Rb$_{1.6}$Al$_2$B$_2$O$_7$.

A comprehensive study of DSC, SHG, and dielectric loss tangent made it possible to reveal anomalies associated with structural phase transitions.

A new borate Cs$_{1.39}$Tl$_{0.61}$Al$_2$B$_2$O$_7$ was synthesized and its structure in space group $P2_1$/c was determined through Rietveld X-ray powder diffraction analysis.

Acknowledgement. The research was carried out within the state assignment of FASO of Russia (Theme No 0339-2016-0007).

Supplementary Material. The online version of this paper contains supplementary material (table) available free of charge at the journal’s Web site (lettersonmaterials.com).

References

1. C. Chen, Z. Lin, Z. Wang. Applied Physics. 80, 1 (2005). DOI: 10.1007/s00334-004-1645-9
2. Z.-G. Hu, M. Yoshimura, Y. Mori, T. Sasaki. J. Crystal Growth. 275 (1), 232 (2005). DOI: 10.1016/j.jcrysgro.2004.10.160
3. P. Becker. Advanced Materials. 10 (13), 979 (1998). DOI: 10.1002/(SICI)1521-4095(199809)10:13<979::AID-ADMA979>3.0.CO;2-N
4. Z.G. Hu, Y. Mori, T. Higashiyama, Y.K. Yap, Y. Kagebayash, T. Sasaki. Proceedings of SPIE. 3556, 156 (1998). DOI: 10.1117/12.318262
5. N. Ye, W. Zeng, J. Jiang, B. Wu, C. Chen, B. Feng, X. Zhang. Journal of the Optical Society of America B. 17 (5), 764 (2000). DOI: 10.1364/JOSAB.17.000764
6. Z.G. Hu, T. Higashiyama, M. Yoshimura, Y. Mori, T.Z. Sasaki. Zeitschrift für Kristallographie — New Crystal Structures. 214 (4), 433 (1999).
7. L.J. Liu, C.L. Liu, X.Y. Wang, Z.G. Hu, R.K. Li, C.T. Chen. Solid State Sciences. 11 (4), 841 (2009). DOI: 10.1016/j.solidstatesciences.2009.01.003
8. X.Y. Meng, J.H. Gao, Z.Z. Wang, R.K. Li, C.T. Chen. Journal of Physics and Chemistry of Solids. 66 (10), 1655 (2005). DOI: 10.1016/j.jpcs.2005.06.002
9. W. Zhenxiong, Y. Yinchao, W. Lirong, W. Guiling, H. Zhanggui. Optical Materials. 34 (9), 1575 (2012). DOI: 10.1016/j.optmat.2012.03.023
10. M. He, X.L. Chen, H. Okudera, A. Simon. Chemistry of Materials. 17 (8), 2193 (2005). DOI: 10.1021/cm050142y
11. Y.C. Yue, Z.X. Wu, Z.S. Lin, Z.G. Hu. Solid State Sciences. 13 (5), 1172 (2011). DOI: 10.1016/j.jsolidstatesciences.2010.11.028
12. Y.G. Wang, R.K. Li. Optical Materials. 32 (10), 1313 (2010). DOI: 10.1016/j.optmat.2010.04.036
13. Y.G. Wang, R.K. Li. Journal of Solid State Chemistry. 183 (6), 1221 (2010). DOI: 10.1016/j.jssc.2010.03.037
14. X Wang, R.K. Li. Optical Materials. 45, 197 (2015). DOI: 10.1016/j.optmat.2015.03.037
15. V.V. Atuchin, B.G. Bazarov, T.A. Gavrilova, V.G. Grossman, M.S. Molokeev, Z.G. Bazarova. Journal of Alloys and Compounds. 515, 119 (2012).
16. V.V. Atuchin, S.V. Adichtchev, B.G. Bazarov, Zh.G. Bazarova, T.A. Gavrilova, V.G. Grossman, V.G. Kesler, G.S. Meng, Z.S. Lin, N.V. Surovtsev. Materials Research Bulletin. 48, 929 (2013). DOI: 10.1016/j.materresbull.2012.10.055
17. Q. Huang, L. Liu, M. Xia, Y. Yang, S. Guo, X. Wang, Z. Lin, C. Chen. Crystals. 7, 2 (2017). DOI: 10.3390/cryst7040104
18. F. Kai, Yin Wenlong, Y. Jiyong, W.J. Yicheng. Journal of Solid State Chemistry. 184 (12), 3353 (2011). DOI: 10.1016/j.jssc.2011.10.023
19. R.W. Vest, N.M. Tallan. Journal of Applied Physics. 36, 543 (1965).
20. J.W. Visser. Journal of Applied Crystallography. 2, 89 (1969).
21. M. He, X.L. Chen, T. Zhou, B.Q. Hu, Y.P. Xu, T.Xu. Journal of Alloys and Compounds. 327 (1), 210 (2001). DOI: 10.1016/S0925-8388(01)01561-4
22. J.L. Kissick, D.A. Keszler. Acta Crystallographica Section E. 58 (10), 185 (2002). DOI: 10.1107/S1600536802015659