Learning Representations for Images with Hierarchical Labels

Ankit Dhall
October 2, 2019

Supervised by: Prof. Andreas Krause
Anastasia Makarova, Octavian-Eugen Ganea, Dario Pavllo
ETH Entomological Collection (ETHEC) Dataset

- 47,978 butterfly images with a 4-level label-hierarchy
- 6 family -> 21 sub-family -> 135 genus -> 561 species

![Butterfly Images](image)

- **family**
- **sub-family**
- **genus**
- **species**

- Papilionidae
 - Papilioninae
 - Papilio
 - Papilio machaon

- Nymphalidae
 - Limenitidinae
 - Neptis
 - Neptis rivularis

- Nymphalidae
 - Nymphalinae
 - Nymphalis
 - Nymphalis polychloros
ETH Entomological Collection (ETHEC) Dataset
ETH Entomological Collection (ETHEC) Dataset

Image distribution for each label across the 4 levels.

y-axis: class label, x-axis: image frequency
Motivation

- Leveraging both label-label and label-image information for classification
Motivation

- Leveraging both label-label and label-image information for classification
- Sharing information between images from unbalanced data

y-axis: class label, x-axis: image frequency
Motivation

- Leveraging both label-label and label-image information for classification
- Sharing information between images from unbalanced data
- Jointly infer visual cues (from images) and semantics (from label-hierarchy)
Related Work

- Embedding-based models for language (Euclidean + non-Euclidean)

* Order-Embeddings; I Vendrov, R Kiros, S Fidler, R Urtasun
** Hyperbolic Entailment Cones; OE Ganea, G Bécigneul, T Hofmann
+ Hyperbolic Disk Embeddings for Directed Acyclic Graphs; R Suzuki, R Takahama, S Onoda
Related Work

- Embedding-based models for **language** (Euclidean + non-Euclidean)
- Embedding-based models for **images**
 - Image-captioning and retrieval*
 - Zero-shot learning**
 - Hyperbolic image embeddings +

* VSE++: Improving Visual-Semantic Embeddings with Hard Negatives; F Faghri, et al.
** DeViSE: A Deep Visual-Semantic Embedding Model; A Frome, et al.
+ Hyperbolic Image Embeddings, V Khrulkov, et al. (image source)
Related Work

- Embedding-based models for language (Euclidean + non-Euclidean)
- Embedding-based models for images
- Convolutional Neural Networks based models (modified CNN architectures)
 - Attention-based models*
 - Predict labels for each level with a separate neural-network +

* See Better Before Looking Closer; T Hu, et al.
+ Fine-Grained Representation Learning and Recognition by Exploiting Hierarchical Semantic Embedding, T Chen, et al.
Methods: Injecting Label-hierarchy into CNN Classifiers
Injecting Label-hierarchy into CNN Classifiers

- Hierarchy-agnostic classifier
- Per-level classifier
- Masked Per-level classifier
- Marginalization
- Hierarchical softmax

These methods provide hierarchical information at different levels of abstraction
Experimental Setup

- Input: 224 x 224 RGB image
- Output: predicted logits for each level \(F(\mathcal{I}) = x = \{x_1, x_2, x_3, x_4\} \quad x_i \in \mathbb{R}^{N_i} \)
- Ground-truth: 4 x labels (family, subfamily, genus, species) \(y = \{y_1, y_2, y_3, y_4\} \)
 \(y_1 \in [0, N_{\text{family}} - 1], y_2 \in [0, N_{\text{subfamily}} - 1], y_3 \in [0, N_{\text{genus}} - 1], y_4 \in [0, N_{\text{species}} - 1] \)

Loss computation:

\[
\mathcal{L}(x, y) = \sum_{i=1}^{L=4} \mathcal{L}_i(x_i, y_i)
\]

Cross-entropy for classifying each level

Metrics:
- Precision, recall and F1-score for each label
- Micro and Macro averaged global scores

example:

M-Precision = \(\frac{1}{N} \sum_{j=1}^{N} \text{Precision}(\text{label}_j) \)

m-Precision = \(\frac{\sum_{j=1}^{N} \text{TP}(\text{label}_j)}{\sum_{j=1}^{N} \text{TP}(\text{label}_j) + \sum_{j=1}^{N} \text{FP}(\text{label}_j)} \)
Hierarchy-agnostic Classifier

- Indifferent to the presence of label-hierarchy
- Multi-label classifier: can predict as many label as it likes

\[\mathcal{F}(\mathcal{I}) \]

\[L_1 + L_2 + \ldots + L_N \]

\[L_N = 8 \]

\[\mathcal{L}(x, y) = -\frac{1}{N_{\text{total}}} \sum_{j=1}^{N_{\text{total}}} y_j \log \left(\frac{1}{1 + \exp(-x_j)} \right) \]

\[+ (1 - y_j) \log \left(\frac{\exp(-x_j)}{1 + \exp(-x_j)} \right) \]

where, \(x \in \mathbb{R}^{N_{\text{total}}} \), \(y \in \{0, 1\}^{N_{\text{total}}} \) and \(y^T y = L \).
Per-level Classifier

- Exploits: number of levels in the label-hierarchy

\[
\mathcal{L}(x, y) = \sum_{i=1}^{L} \mathcal{L}_i(x_i, y_i) \\
\mathcal{L}_i(x_i, y_i) = -\log \left(\frac{\exp(x_i[y_i])}{\sum_{j=1}^{L_i} \exp(x_i[j])} \right)
\]

where, \(y_i \) is the true label for the \(i-th \) level. \(x_i \in \mathbb{R}^{L_i}, y \in \mathbb{I}_+^L \)

\(L_1 = 2 \)
\(L_2 = 4 \)
\(L_N = 8 \)
Masked Per-level Classifier

- Exploits: sub-tree relation + number of levels in label-hierarchy
- Use CNN prediction to mask implausible nodes down the hierarchy

\[
\mathcal{L}(x, y) = \sum_{i=1}^{L} \mathcal{L}_i(x_i, y_i) \\
\mathcal{L}_i(x_i, y_i) = -\log \left(\frac{\exp(x_i[y_i])}{\sum_{j \in C} \exp(x_i[j])} \right)
\]

\[C = \text{childrenOf}(v_{i-1}^{y_{i-1}})\]
Marginalization

- Exploits: parent-child relationship
- Upper levels by summing over children.

\[
\mathcal{L}(x, y) = \sum_{i=1}^{L} \mathcal{L}_i(x_i, y_i) = -\sum_{i=1}^{L} \log(p_i[y_i])
\]

\[
p_L[j] = P(v^i_L|\mathcal{I}) = \left(\frac{\exp(x_j)}{\sum_{k=1}^{N_L} \exp(x_k)}\right)
\]

\[
p_i[j] = P(v^i|\mathcal{I}) = \sum_{c \in \text{childrenOf}(v^i)} P(c|\mathcal{I}), \forall i \in 1, 2, ..., (L - 1)
\]

where, \(v^i\) is the \(j\)-th vertex (node) in the \(i\)-th level.
Hierarchical Softmax

- Exploits: sub-tree relation + number of levels in label-hierarchy
- CNN predicts $p(\text{child}|\text{parent})$

$$\mathcal{L}(x,y) = -\log \left(p(v_1^{y_1}, v_2^{y_2}, ..., v_{(L-1)}^{y_{(L-1)}}, v_L^{y_L}) \right)$$

$$p(v_1^{i_1}, v_2^{i_2}, ..., v_{(L-1)}^{i_{(L-1)}}, v_L^{i_L}) = p(v_1^{i_1})p(v_2^{i_2}|v_1^{i_1})...p(v_L^{i_L}|v_{(L-1)}^{i_{(L-1)}})$$

$$p(f, s_1, g_2) = p(g_2 | s_1) \cdot p(s_1 | f) \cdot p(f)$$
Experiments: Injecting Label-hierarchy into CNN Classifiers
Experiments

Model	micro-F1
Hierarchy-agnostic classifier	0.8147
Per-level classifier	0.9084
Masked Per-level classifier	0.9173
Marginalization	0.9223
Hierarchical softmax	0.9180

Model performance on test set for image classification on the ETHEC dataset.

m-F1	m-F1 L_1	m-F1 L_2	m-F1 L_3	m-F1 L_4
Per-level micro-F1				
0.9223	0.9887	0.9758	0.9273	0.7972

Level-wise micro-F1 for the best performing baseline (Marginalization model).
Methods: Order-preserving Embeddings

- Label-hierarchy only
- Label-hierarchy with Images
Learning Joint-Embeddings For Image Classification

Order-preserving Embeddings

- Order-Embeddings
- Euclidean Cones
- Hyperbolic Cones
Order Embeddings* and Entailment Cones**

(1) For embedding label-hierarchy only:
● Treat the label-hierarchy as a directed acyclic graph (DAG)
● A directed edge \((u, v)\) symbolizes that \(v\) is a sub-concept of \(u\)

(2) For embedding images and labels jointly:
● Connect the image to the label associated with it from the last level in the label-hierarchy

Use the joint-embeddings for image classification

Images form the leaves as upper nodes are more abstract

* Order-Embeddings; I Vendrov, R Kiros, S Fidler, R Urtasun
** Hyperbolic Entailment Cones; OE Ganea, G Bécigneul, T Hofmann
Experimental Setup

- Input: +ve and -ve edges from the DAG
- Output: if given pair of concepts \((u, v)\) have a directed edge in the DAG; classify \((u, v)\) as +ve or -ve

Metrics:
- True positive rate (TPR) and True negative rate (TNR)
- full-F1 score: F1 score on all +ve and -ve edges in the DAG => check reconstruction capability

Loss:

\[
\mathcal{L}(P, N) = \sum_{(u,v) \in P} E(u, v) + \sum_{(w',v') \in N} \max(0, \gamma - E(u', v'))
\]

\(E\) is an energy function. \(P\) and \(N\) are +ve and -ve edges. -ve concepts should be separated by a margin.
Order Embeddings and Entailment Cones

For a given pair of concepts, \((u, v)\), if \(u\) entails \(v\) then \(u\) falls within the quadrant that originates at \(u\).

\[E(u, v) := |\max(0, v - u)|^2 \]

For a given pair of concepts, \((u, v)\), if \(u\) entails \(v\) then \(u\) falls within the cone that originates at \(u\).

\[E(u, v) := \max(0, \Xi(u, v) - \psi(u)) \]
Performance: Order-preserving Embeddings

Label-hierarchy only

Label-hierarchy with Images
Embedding Labels | Order Embeddings

2-dimensional Order Embeddings for the ETHEC dataset in R² embedding space (for labels only).
Evolution of 2-dimensional Order Embeddings for ETHEC dataset (for labels only) over time. The metrics above are computed by classifying (distinguishing between) all positive and negative relations in the hierarchy.
Embedding Labels | Euclidean Cones

2-dimensional Euclidean cones for the ETHEC dataset in R^2 embedding space (for labels only).
Embedding Labels | Euclidean Cones

Evolution of 2-dimensional Euclidean Cones for the ETHEC dataset (for labels only) over time. The metrics above are computed by classifying (distinguishing between) all positive and negative relations in the hierarchy.
Hyperbolic Cones

- Move away from model parameters that assumes Euclidean geometry
- Embeddings live in hyperbolic space and exploit hyperbolic geometry
- Embed tree structure in Hyperbolic space with low-distortion*

Volume of d-dimensional ball

- Euclidean: \(V_d^E(r) \propto r^d \)
- Hyperbolic: \(V_d^H(r) \propto e^r \)

Nodes in a tree with height \(h \) and branching factor \(b \)
\[\text{num_nodes}_b(h) \propto b^h \]
Optimization in Hyperbolic Space

Gradient descent with Euclidean gradient in Euclidean space,

\[u \leftarrow u - \eta \nabla_u \mathcal{L} \]

Riemannian Gradient for parameters living in non-Euclidean space,

\[\nabla_u^R \mathcal{L} = \left(1/\lambda_u\right)^2 \nabla_u \mathcal{L} \quad \lambda_u = 2/(1 - \|u\|^2) \]

Riemannian Gradient Descent using exponential map,

\[u \leftarrow \exp_u \left(\eta \nabla_u^R \mathcal{L} \right) \]

\[\exp_x(v) : T_x \mathbb{D}^n \rightarrow \mathbb{D}^n \]
Performance | Embedding labels only

- True positive rate and true negative rate on all +ve and -ve edges from DAG
- DAG represents label-hierarchy in the ETHEC dataset
- Also report F1 score on classifying all edges
- 723 +ve edges; 521,289 -ve edges

	d=2	d=100	d=1000
	TPR/ TNR/ (full-F1)	TPR/ TNR/ (full-F1)	TPR/ TNR/ (full-F1)
OE	0.2309 / 0.9708 / (0.1372)	0.4686 / 0.9880 / (0.3894)	0.3788 / 0.9878 / (0.3489)
EC	0.3617 / 0.9975 / (0.3573)	0.4802 / 0.9985 / (0.4151)	0.5790 / 0.9973 / (0.4091)
HC	0.4443 / 0.9907 / (0.2296)	0.9336 / 0.9986 / (0.8060)	**0.9721 / 0.9986 / (0.8257)**

- OE: Order-embeddings, EC: Euclidean cones, HC: Hyperbolic cones

\(d = \text{number of dimensions of embedding space} \)
Experiments: Order-preserving Embeddings

Label-hierarchy only

Label-hierarchy with Images
Jointly Embedding Images and Label-hierarchy

Image-embedding

\[f_i(i) = W \ast \text{CNN}(i) \in \mathbb{R}^d \]

Label-embedding

\[g_l(l) \in \mathbb{R}^d \]

To classify a given image \(i \),

\[
\text{arg min}_l E(g_l(l), f_i(i)), \forall l \in \text{labels}
\]

Return label with least-violating energy \(E \)

Loss:

\[
\mathcal{L}(P, N) = \sum_{(u, v) \in P} E(u, v) + \sum_{(u', v') \in N} \max(0, \gamma - E(u', v'))
\]

Perform same optimization as before,

\[
(u, v) := (g_l(l), f_i(i))
\]

Optimize using Adam to learn \(W \) and label embeddings, \(f_i(l) \)

Extremely challenging to optimize!
- Highly non-convex non-Euclidean landscape
- 2 different types of objects: images & labels
- Riemannian optimizer is accurate but weak!
- Hard to manage Adam & RSGD together
- Adam with approximation works best
Jointly Embedding Images and Label-hierarchy

Visualization of labels and images in joint 2D embedding space using Euclidean Cones.
The nodes on the periphery are images.
Jointly Embedding Images and Label-hierarchy

Model	classify test set images	graph reconstruction				
	m-F1	hit@3	hit@5	TPR	TNR	full-F1
Euclidean Cones						
d=10	0.7795	0.8893	0.9204	0.8045	0.9982	0.7040
d=100	0.8350	0.9018	0.9425	0.9630	0.9986	0.8210
d=1000	0.8013	0.8971	0.9278	0.8146	0.9981	0.7073
Hyperbolic Cones						
d=100	**0.8404**	**0.9200**	**0.9386**	0.6418	0.9978	0.5756
d=1000	0.8045	0.9023	0.9281	0.5233	0.9973	0.4832

Classification performance directly comparable with the CNN-based image classifiers!
Performance Summary

Models that use label-hierarchy information outperform the hierarchy-agnostic model.

Model	m-F1	m-F1 L_1	m-F1 L_2	m-F1 L_3	m-F1 L_4
CNN-based methods					
Hierarchy-agnostic (baseline)	0.8147	0.9417	0.9446	0.8311	0.4578
Per-level classifier	0.9084	0.9766	0.9661	0.9204	0.7704
Marginalization classifier	**0.9223**	**0.9887**	**0.9758**	**0.9273**	**0.7972**
Masked Per-level classifier	0.9173	0.9828	0.9701	0.9233	0.7930
Hierarchical-softmax	0.9180	0.9879	0.9731	0.9253	0.7855
Order-preserving (joint) embedding models					
Euclidean cones d=100	0.8350	0.9728	0.9370	0.8336	0.5967
Hyperbolic cones d=100*	0.7627	0.9695	0.9205	0.7523	0.4246
Hyperbolic cones d=100	**0.8404**	**0.9800**	**0.9439**	**0.8477**	**0.5977**

* Randomly initialized

Labels initialized w/ pre-trained *label-only* embeddings
Contributions

- Compared methods that exploit label-hierarchy knowledge
- Provide a reasonable model that can be used by Entomological collections
- Order-preserving embeddings show promise for computer vision
Future Directions

- Validate performance with other datasets with hierarchical labels
- Submit work to a conference

- Applications: Visual-Question Answering, Scene-graph generation = joint modeling of semantics and visual cues
- Label accuracy vs. label specificity: predict more generic if unsure about a more specific label (eg: mammal instead of dog)
- Model complexity to map images to embedding space
Thank you for your attention!

100-dimensional Hyperbolic cones projected in 2D.

1000-dimensional Hyperbolic cones projected in 2D.

- **family**
- **subfamily**
- **genus**
- **species**
Additional material
ETH Entomological Collection (ETHEC)

- 2,000,000+ specimens; one of the largest insect collections in Europe
- New specimens need to be digitized and organized taxonomically
- Classification requires specialists and is expensive
ETH Entomological Collection (ETHEC) Dataset

- Dataset with images and their corresponding hierarchical labels
- 47,978 butterfly images with a 4-level label-hierarchy
- 6 family -> 21 sub-family -> 135 genus -> 561 species
- Unbalanced tree & non-uniform image distribution among labels
- Each image has an associated label from each level in the hierarchy

Dataset has been made publicly available here:
https://www.research-collection.ethz.ch/handle/20.500.11850/365379
Hierarchy-agnostic model

- Per-class decision boundary vs. One-fits-all decision boundary
- Loss-reweighting and data resampling
Hierarchy-agnostic model | family, subfamily

Each point represents a label from the particular level in the hierarchy. In addition, the distribution of the F1-score and training data size across labels. (x-axis: Training data size; y-axis: F1-score)
Hierarchy-agnostic model | family, subfamily

Each point represents a label from the particular level in the hierarchy. In addition, the distribution of the F1-score and training data size across labels. (x-axis: Training data size; y-axis: F1-score)
Hierarchy-agnostic model

cw	rs	m-P	m-R	m-F1	M-P	M-R	M-F1	(min, max), \(\mu \pm \sigma \)
\(\times\)	\(\times\)	0.0355	0.7232	0.0677	0.3066	0.4053	0.2195	(3, 351), 81.42 ± 69.51
\(\times\)	\(\checkmark\)	0.7159	0.7543	0.7346	\(\textbf{0.4402}\)	0.4362	\(\textbf{0.3718}\)	(0, 13), 4.21 ± 2.07
\(\checkmark\)	\(\times\)	0.0077	\(\textbf{0.8702}\)	0.0153	0.0120	\(\textbf{0.8397}\)	0.0183	(84, 718), 451.14 ± 136.69
\(\checkmark\)	\(\checkmark\)	0.0081	0.7519	0.0161	0.0105	0.5909	0.0165	(33, 714), 369.96 ± 120.55

cw	rs	m-P	m-R	m-F1	M-P	M-R	M-F1	(min, max), \(\mu \pm \sigma \)
\(\times\)	\(\times\)	0.9324	0.7235	\(\textbf{0.8147}\)	0.1913	0.1462	0.1568	(0, 7), 3.10 ± 1.16
\(\times\)	\(\checkmark\)	0.9500	0.6564	0.7763	0.1078	0.0947	0.0959	(0, 5), 2.76 ± 0.60
\(\checkmark\)	\(\times\)	0.2488	0.2960	0.2704	0.0021	0.0067	0.0030	(4, 9), 4.76 ± 0.76
\(\checkmark\)	\(\checkmark\)	0.1966	0.3800	0.2591	0.0027	0.0110	0.0037	(4, 10), 7.73 ± 0.61

Level	\(N_i\)	m-P	m-R	m-F1	M-P	M-R	M-F1
ResNet-50 (OFADB) with resampler (cw: \(\times\), rs: \(\times\))							
family	6	0.9861	0.9012	0.9417	0.9718	0.8801	0.9173
subfamily	21	0.9860	0.9065	0.9446	0.7941	0.6548	0.6968
genus	135	0.9290	0.7518	0.8311	0.3918	0.2961	0.3212
genus + specific epithet	561	0.7249	0.3345	0.4578	0.1121	0.0832	0.0888
Per-level classifier | *family, subfamily*

Each point represents a label from the particular level in the hierarchy. In addition, the distribution of the F1-score and training data size across labels. (x-axis: Training data size; y-axis: F1-score)
Per-level classifier | genus, species

Each point represents a label from the particular level in the hierarchy. In addition, the distribution of the F1-score and training data size across labels. (x-axis: Training data size; y-axis: F1-score)
Per-level classifier

cw	rs	m-P	m-R	m-F1	M-P	M-R	M-F1
✓	✓	0.8483	0.8483	0.8483	0.6648	0.6789	0.6411
✓	✓	0.8930	0.8930	0.8930	0.6854	0.7094	0.6677
✓	✓	0.9084	0.9084	0.9084	0.7134	0.7223	0.6888
✓	✓	0.8760	0.8760	0.8760	0.6782	0.6874	0.6537
✓	✓	0.9067	0.9067	0.9067	0.6941	0.7073	0.6700

Level	\(N_i\)	m-P	m-R	m-F1	M-P	M-R	M-F1
ResNet-50 with resampler (cw: ✓, rs: ✓)							
family	6	0.9766	0.9766	0.9766	0.9005	0.9328	0.9152
subfamily	21	0.9661	0.9661	0.9661	0.9433	0.9542	0.9424
genus	135	0.9204	0.9204	0.9204	0.8845	0.8482	0.8497
genus + specific epithet	561	0.7704	0.7704	0.7704	0.6616	0.6811	0.6382
Marginalization

model	m-P	m-R	m-F1	M-P	M-R	M-F1
ResNet-50	0.8586	0.8586	0.8586	0.6071	0.6070	0.5765

Models trained using grayscale images

model	m-P	m-R	m-F1	M-P	M-R	M-F1
ResNet-50	0.9223	0.9223	0.9223	0.7095	0.7231	0.6927
ResNet-101	0.9110	0.9110	0.9110	0.7327	0.7262	0.7023
ResNet-152	0.9162	0.9162	0.9162	0.7181	0.7271	0.6954

Models trained using normal color images

L_1	L_2	L_3	L_4	m-F1	m-F1 L_1	m-F1 L_2	m-F1 L_3	m-F1 L_4
term L_i in loss								
✓	✓	✓	✓	0.9137	0.9814	0.9638	0.9134	0.7962
✓	✓	✓	✓	0.9070	0.9774	0.9626	0.9077	0.7804
✓	✓	✓	✓	0.9207	0.9891	0.9733	0.9255	0.7948
✓	✓	✓	✓	0.9223	0.9887	0.9758	0.9273	0.7972

Per-level micro-F1
Masked Per-level classifier

model	m-P	m-R	m-F1	M-P	M-R	M-F1
Models trained using grayscale images						
ResNet-50	0.8443	0.8443	0.8443	0.6002	0.5931	0.5619
ResNet-101	0.9173	0.9173	0.9173	0.7107	0.7227	0.6915
ResNet-152	0.9169	0.9169	0.9169	0.7119	0.7260	0.6921
	0.9152	0.9152	0.9152	0.7167	0.7281	0.6958
Models trained using normal color images						
ResNet-50						
ResNet-101						
ResNet-152						

Level	N_i	m-P	m-R	m-F1	M-P	M-R	M-F1
ResNet-50 Performance Breakdown							
family	6	0.9828	0.9828	0.9828	0.9735	0.9361	0.9495
subfamily	21	0.9701	0.9701	0.9701	0.9684	0.9252	0.9356
genus	135	0.9233	0.9233	0.9233	0.8916	0.8432	0.8525
genus + specific epithet	561	0.7930	0.7930	0.7930	0.6548	0.6838	0.6409

$| L_1 | L_2 | L_3 | L_4 | m-F1 | m-F1 L_1 | m-F1 L_2 | m-F1 L_3 | m-F1 L_4 |
|---|---|---|---|---|---|---|---|---|
| term L_i in loss | √ | √ | √ | √ | 0.0633 | 0.2325 | 0.0162 | 0.0022 | 0.0022 |
| | | | | | 0.1043 | 0.3058 | 0.0410 | 0.0386 | 0.0319 |
| | √ | √ | √ | √ | 0.0848 | 0.0970 | 0.0919 | 0.0879 | 0.0622 |
| | √ | √ | √ | √ | 0.9098 | 0.9808 | 0.9616 | 0.9116 | 0.7853 |
Hierarchical Softmax

model	m-P	m-R	m-F1	M-P	M-R	M-F1
ResNet-50	0.9055	0.9055	0.9055	0.6899	0.7049	0.6723
ResNet-101	0.9122	0.9122	0.9122	0.7049	0.7072	0.6780
ResNet-152	0.9180	0.9180	0.9180	0.7119	0.7174	0.6869

Level	N_i	m-P	m-R	m-F1	M-P	M-R	M-F1
ResNet-152 with Hierarchical Softmax — Performance Breakdown							
family	6	0.9879	0.9879	0.9879	0.9605	0.9452	0.9522
subfamily	21	0.9731	0.9731	0.9731	0.9605	0.9452	0.9522
genus	135	0.9253	0.9253	0.9253	0.8972	0.8504	0.8574
genus + specific epithet	561	0.7855	0.7855	0.7855	0.6572	0.6756	0.6347
Hierarchical Softmax | *family, subfamily*

Each point represents a label from the particular level in the hierarchy. In addition, the distribution of the F1-score and training data size across labels. (x-axis: Training data size; y-axis: F1-score)
Hierarchical Softmax | *genus, species*

Each point represents a label from the particular level in the hierarchy. In addition, the distribution of the F1-score and training data size across labels. (x-axis: Training data size; y-axis: F1-score)
Embedding toy-graphs

(a) Order-embeddings $L=4, b=3$

(b) Order-embeddings $L=3, b=7$
Embedding toy-graphs

(c) Euclidean cones $L=4$, $b=3$

(d) Euclidean cones $L=3$, $b=7$
Synthetic Trees (L=4,b=3)

2D Order-Embeddings

2D Euclidean Cones
Synthetic Trees (L=3, b=7)

2D Order-Embeddings

2D Euclidean Cones
Cosine Embeddings

- Use multi-level classifier CNN from the baseline
- Add a set of linear layers whose weights live in 2 dimensions
- One such layer for every level in the hierarchy
- These weights represent the latent space learned while being trained for image classification
Embedding Labels | Cosine Embeddings

Evolution of 2-dimensional Cosine Embeddings over time.
Inverted Cosine embeddings resemble the Euclidean cones.

\[x_{\text{inverted}} = \frac{r \times x \times ||x_{\text{max}}||}{||x||} \]
Performance | Embedding labels only

Model	$d=2$	$d=3$	$d=5$	$d=10$	$d=100$
Order-embeddings	0.8271	0.9302	0.9457	0.9920	0.9920
Euclidean Cones	0.8550	0.9979	0.9593	0.9919	0.9752

- Micro-F1 score on test set consisting of +ve and -ve edges from DAG
- DAG represents label-hierarchy in the ETHEC dataset
Training details | Joint embeddings

- alpha: EC=1.0, HC=0.1
- EC: 200 epochs, lr_img=10^-3, lr_labels=10^-2 with Adam
- HC: 100 epochs, lr_img=10^-3, lr_labels=10^-4 with Adam
- 10 negative (=5*(u, v’) + 5*(u’, v)) per positive with pick-per-level strategy
- Initialize the labels with the labels-only training
- For HC use Adam over RSGD -> converging faster, better performance