Graphical notation reveals topological stability criteria for collective dynamics in complex networks

Anne-Ly Do, 1 Stefano Boccaletti, 2 and Thilo Gross 1

1 Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany
2 Technical University of Madrid, Center for Biomedical Technologies, Madrid, Spain
3 University of Bristol, Merchant Venturers School of Engineering, Bristol, UK

(Dated: February 16, 2022)

We propose a graphical notation by which certain spectral properties of complex systems can be rewritten concisely and interpreted topologically. Applying this notation to analyze the stability of a class of networks of coupled dynamical units, we reveal stability criteria on all scales. In particular, we show that in systems such as the Kuramoto model the Coates graph of the Jacobian matrix must contain a spanning tree of positive elements for the system to be locally stable.

Discovering how the interactions between constituents of a system determine its macroscopic behavior is a central aim of physics. Ideally, we find properties in the system’s detailed organization that have direct system-level implications. Significant progress has been made in identifying such properties on a local level. For instance, the implications of the degree distribution, the distribution of a network’s links among the nodes, is well understood 1. By contrast, identifying meso-scale properties that have a distinct effect on macroscopic behavior, despite recent advances 2, remains a difficult challenge. A starting point is often to link the macro-behavior to spectral properties of certain matrices, such as the adjacency, the different graph Laplacians, or the Jacobian matrix of a dynamical system. Here again, the dependence on local properties, i.e., certain rows or diagonal elements, can be discovered with relative ease. By contrast, analytical insights on how meso-scale patterns affect the spectrum are difficult to obtain, as they typically require the evaluation of determinants leading to complex expressions.

In this Letter we propose a graphical notation, reminiscent of Feynman diagrams, that facilitates computing spectral implications of meso- and macro-scale structures. We illustrate the usage of the notation by investigating dynamical stability of stationary and phase-locked solutions in a class of symmetrically coupled dynamical systems, containing for instance the Kuramoto model 3,4. Here, the proposed notation greatly reduces the complexity of the mathematical expressions and enables the derivation of topological stability criteria on all scales. In particular, we show that in the systems under consideration the graph defined by the off-diagonal elements of the Jacobian must contain a spanning tree of positive links to admit stable solutions.

Any given matrix \(\mathbf{J} \) can be interpreted as defining the connectivity of an abstract weighted network \(\mathcal{G} \), the so-called Coates graph. In this network two nodes \(i, j \) are connected if \(J_{ij} \neq 0 \). We can interpret a product of different matrix elements as defining a (not necessarily connected) network motif, e.g. \(J_{ij} J_{jk} J_{ki} \) corresponds to a triangle path. The advantage of this graphical reading is that complex structures appearing in systems of equations can be described using network terminology.

It is useful to define a basis of symbols, \(\times, |, \triangle, \Box, \circ, \ldots \), denoting sums over all non-equivalent cycles of length \(n = 1, 2, 3, 4, 5, \ldots \), respectively. We allow concatenation of these symbols by the ‘·’ sign. For a given set \(S \) of node indices, products of symbols denote the sum over all non-equivalent possibilities to realize the depicted motif with the nodes in \(S \). For instance, if \(S = \{ i, j, k, l, m \} \) then \(\times \cdot \Box \) represents the sum over all products of elements that would be read as a cycle containing four nodes and a self-loop, e.g. \(J_{ik} J_{jk} J_{kl} J_{lm} J_{mj} \) (cf. Fig. 1). Finally, we define \(\Phi_S \) as the sum over all products corresponding to all acyclic graphs that can be drawn by placing \(|S| \) (undirected) links such that each link starts at a different node in \(S \).

In the remainder of this Letter we illustrate the usage of the proposed notation by considering the synchronization of dynamical units. This subject was chosen as it is presently of broad interest in physics and appears in many fields including biology, ecology, and engineering 5,6. The paradigmatic model proposed by Kuramoto 7 opened the field for detailed studies of the interplay between the structure of the interaction network and collective phenomena 8,9,10. These revealed the influence of various topological measures, such as the clustering coefficient, the diameter, and the degree or weight distribution, on the propensity to synchronize 12,13. However, recent results 14,15,16 indicate that beside global topological measures also details of the exact local config-

\[
\text{For } q = 4, S = \{ i, j, k, l \} \\
\Box := J_{ij} J_{jl} J_{lk} J_{ki} + J_{ij} J_{jk} J_{kl} J_{li} + J_{ik} J_{jk} J_{kj} J_{ki} + J_{il} J_{jk} J_{kj} J_{li} \\
| \cdot | := J_{lk} J_{jk} J_{il} J_{li} + J_{ij} J_{jk} J_{ij} J_{kl} + J_{ij} J_{ik} J_{ik} J_{ij} + J_{ij} J_{ik} J_{ij} J_{ik} \\
\]

FIG. 1. Examples for the graphical notation. Symbols denote the sum over all non-equivalent possibilities to build the depicted subgraph with the \(q \) nodes \(\in S \). Plotted are two example terms and their algebraic and topological equivalents.
uration can crucially affect synchronization. This highlights synchronization of phase oscillators as a promising example in which it may be possible to understand the interplay between local, global, and mesoscale constraints on stability, that severely limit the operation of complex technical and institutional systems [17, 18].

To provide a specific example we focus on the Kuramoto model [4], describing a network of \(N \) bidirectionally coupled phase oscillators

\[
\dot{x}_i = \omega_i + \sum_{j \neq i} A_{ij} \sin(x_j - x_i), \quad \forall i \in 1 \ldots N, \tag{1}
\]

where \(x_i \) and \(\omega_i \) are the phase and intrinsic frequency of oscillator \(i \) and \(A \) is the weight matrix of an undirected network. The model can exhibit phase-locked states, whereas each equation already constitutes a necessary condition.

The highly aggregated but somewhat awkward Eq. (3) is chosen to be the set of nodes plotted in grey, the terms of the fourth JSC, \(D_{i,k} \), can be written as

\[
|J_{12},J_{13},J_{23},J_{24}| = (-1)^4 (J_{12}+J_{13})(J_{21}+J_{23})(J_{31}+J_{32}+J_{34})(J_{43}+J_{45}) = A+B+C+2D. \tag{3}
\]

In logical reading, it allows replacing all self-loops entering exactly \(\Phi \) nodes defined above. For systems with ZRS, \(D_{i,k} \) can be verified that all other terms of \(D_{i,k} \) are exactly cancelled by the force balance along the links. In the topological reading, it allows replacing all self-loops \(J_{ii} \) by the negative sum over all links connected to respective node \(i \). For the first term, \(x^{[S]} \), of a minor \(D_{i,k} \) this leads to a sum over all graphs that can be drawn by placing \(|S| \) (undirected) links such that every link starts from a distinct node in \(S \). By elementary combinatorics it can be verified that all other terms of \(D_{i,k} \) cancel exactly those subgraphs in \(x^{[S]} \) that contain cycles (cf. Fig. 2), leaving exactly \(\Phi \) defined above. For systems with ZRS, we can thus express the minors as

\[
D_{i,k} = (-1)^{|S|} \Phi_S. \tag{4}
\]

Thus the JSC stability conditions translate to

\[
\Phi_S > 0, \quad \forall S \text{ with } |S| \leq r. \tag{5}
\]

We remark that \(\Phi \) with \(|S| = N - 1 \) is the sum over
all spanning trees of the network, such that Kirchhoff’s
Theorem \[25, 26\] appears as the special case of Eq. 4.

The graphical stability conditions \(\Phi_S > 0 \) conveniently
conceals the complexity of the underlying determinants.
Below we show that results can now be obtained by rea-
soning on the graphical level, i.e., without digging up the
complex underlying expressions.

Consider a network containing a tree-like branch that
is only connected to the rest of the network by a single
link. We choose \(S \) as the set of nodes that are located in
the branch and focus on the condition \(\Phi_S > 0 \). The rules
for constructing the network motifs in \(\Phi_S \) imply that
must contain one link starting from every node in \(S \). By
starting from the nodes of degree 1 (having only one link)
and working downward one can see that there is only one
motif contributing to \(\Phi \), which consists of all links in
the branch and the link connecting it to the rest of the
network. The condition \(\Phi_S > 0 \) therefore implies that
the number of links in \(\Phi_S \) associated with a negative elements
must be even. Further, if this number were greater than
zero, one could always find a part of the branch to which
the same conditions apply, but which contains only one
of the negative links, such that a stability condition on a
smaller scale is violated. Thus, stability requires that all
links appearing in such tree-like branches correspond to
positive entries of \(J \).

Using similar arguments as above the implications of
different meso-scale motifs can be determined. The analy-
ysis reveals restrictions on (a) the number and position
of potential negative links and (b) the absolute value of
their weights. We find that restrictions of type (a) can be
subsumed under one general condition: To admit stable
solutions, a dynamical system with symmetric Jacobian
and ZRS must possess a spanning tree made up entirely
of positive elements.

To prove the statement above consider that in a net-
work without a positive spanning tree it must be possible
to partition the nodes into two nonempty sets \(I_1, I_2 \) such
that

\[
J_{ij} \leq 0 \quad \forall \ i, j \mid i \in I_1, j \in I_2.
\]
(6)

The idea is now to evaluate the stability conditions \(\Phi \) for
different \(S \subseteq I_1 \) thereby exploiting that all links leading
out of \(I_1 \) have negative weights. It is convenient to define
\(E^* \) as the set of links connecting \(I_1 \) and \(I_2 \), and \(X = \{x_1, \ldots, x_m\} \) as the subset of nodes \(\in I_1 \) incident to at
least one link from \(E^* \) (‘boundary nodes’). Further, we
define \(\sigma_i \) as the sum over all elements of \(E^* \) incident
to \(x_i \), and, for any subset \(Y \) of \(X \), \(\sigma_Y := \prod_{m \in Y} \sigma_m \). Finally,
for any subset \(Y \) of \(X \), we define \(\tau_Y \) as the sum over all
forests of \(G \) that (i) span \(I_1 \), and (ii) consists of \(|Y| \) trees
each of which contains exactly one element from \(Y \). We
can now write

\[
\Phi_{I_1 \setminus C} = \sum_{B \subseteq X \setminus C} \sigma_B \tau_{B \cup C},
\]
(7)

where \(B \) and \(C \) are disjoint subsets of \(X \). We show that
this is incompatible with the stability condition \(\Phi \) by the
contradiction

\[
\sum_{C \subseteq X} (-1)^{|C|} \sigma_{I_1 \setminus C} = \sum_{C \subseteq X} (-1)^{|C|} \sigma_C \sum_{B \subseteq X \setminus C} \sigma_B \tau_{B \cup C} = \sum_{C \subseteq X} (-1)^{|C|} \sigma_{B \cup C} \tau_{B \cup C} = \sum_{A \subseteq X} (-1)^{|C|} \sigma_A \tau_A = \sum_{A \subseteq X} \sigma_A \tau_A \sum_{C \subseteq A} (-1)^{|C|} = 0.
\]

Therefore the existence of a spanning tree of positive ele-
ments is a necessary condition for stability.

Note that the (global) spanning tree criterion has dis-
tinct implications for meso-scale properties of \(G \). Any un-
branched path can maximally contain one negative link,
and the number of negative links in the network is limited
by the number of independent cycles (Fig 3).

Let us now turn to stability conditions of type (b),
which restrict the absolute value of potential negative
links and result from smaller scale stability conditions:
Consider for instance an unbranched segment of a cycle
of \(G \) that consists of \(d \) links \(e_i \) with weights \(w_i \), one of
which, say \(w_x \), is negative. Evaluating Eq. \(\Phi \) for a series
of sets \(S \subseteq \{1, \ldots, d\} \), we find that stability requires

\[
|w_x| < \prod_{I^* \ni w_i} |I^*| w_i \sum |I^*| \text{all distinct products of (d-2) factors } w_i, i \in I^*,
\]

where \(I^* = \{1, \ldots, d\} \setminus x \).

Applied to the Kuramoto model, the criterion derived
above implies that in any phase locked state a spanning
tree must exist on which the phase difference between any
two coupled oscillators obeys \(|\phi_j - \phi_i| < \pi/2 \). In networks
where this condition is violated the criterion points to local interventions that enhance synchronizability.

We note that the results derived above are not contingent on the specific form of the Kuramoto model. They apply to all symmetrically coupled systems obeying the ZRS condition, which includes all systems of the form

$$\dot{x}_i = C_i + \sum_{j \neq i} A_{ij} \cdot O_{ij}(x_j - x_i), \quad \forall i \in 1 \ldots N,$$

where the A_{ij} are the weights of a symmetric coupling matrix and O_{ij} are odd functions. Besides systems of coupled oscillators, Eq. (8) can for instance describe a range of variants of the Duffffau model of social opinion formation and ecological meta-population models. We emphasize that the derived results remain valid for heterogeneous networks containing different A_{ij}, O_{ij}, and C_i.

Although the ZRS simplifies the derivations above, similar calculations can be carried out for systems violating the ZRS condition, e.g. [23]. We applied the graphical notation to an adaptive extension of the Kuramoto model, where the ZRS is violated and the connection strength coevolves with the dynamics on the network according to $d(\dot{A}_{ij}) = \cos(x_j - x_i) - b \cdot A_{ij}$. Such systems have recently received much interest in physics because of their role in neuroscience [27–29]. Because of space constraints we postpone the detailed discussion of the model to a subsequent publication, but note that proceeding similarly as above leads to a stronger spanning tree condition for the adaptive system: Stability requires in this case the existence of a spanning tree where linked nodes obey $|x_j - x_i| < \pi/4$.

The proposed notation is also applicable to certain questions not pertaining to dynamics, for instance to the question of isospectrality of hermitian matrices [22, 31]. The key idea is that the characteristic polynomial \(\chi \) of a hermitian matrix \(A \in \mathbb{C}^{n \times n} \) can be expressed as \(\chi(\lambda) = D_n(A - \lambda I) \). The structure of the graph \(G \) associated to \(A - \lambda I \) reveals the symbols contributing to \(\chi \). One can then determine which changes of off-diagonal entries leave all contributing symbols and thus the spectrum invariant.

In the present Letter, we proposed a graphical notation that facilitates the computation of spectral properties of complex systems. Applying this notation to systems of symmetrically-coupled one-dimensional dynamical units, we showed that any system obeying a simple force balance condition (ZRS) has to obey a global stability condition: Local dynamical stability of steady (e.g. phase-locked) states requires that the Coates graph of the Jacobian has a spanning tree of positive links. This criterion is complementary to results obtained by other methods (master stability function, ensemble simulations) and pertains to a large class of systems studied in physics, containing the Kuramoto model. Along with similar rules that can be derived analogously, the spanning-tree criterion has distinct meso-scale consequences, limiting for instance the number, position, and strength of negative elements in network motifs. Beyond the coupled oscillators, the proposed approach is applicable to questions ranging from adaptive networks in neuroscience to isospectrality problems in condensed matter.

We are grateful to Jeremias Epperlein and Stefan Siegmund for valuable discussions.

\[\text{[1] M.E.J. Newman, A.L. Barabási, D.J. Watts, The Structure and Dynamics of Networks (Princeton University Press, Princeton, NJ, 2006).}\]

\[\text{[2] S. Fortunato, Phys. Rep. 486, 75 (2010).}\]

\[\text{[3] Yu. Kuramoto, Lecture notes in physics vol. 39 (Springer, New York, 1975).}\]

\[\text{[4] J.A. Acebron, L.L. Bonilla, C.J. Perez Vicente, F. Ritort, R. Spigler, Rev. Mod. Phys. 77, 137 (2005).}\]

\[\text{[5] A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization (Cambridge University Press, Cambridge, 2001).}\]

\[\text{[6] S. Boccaletti and Tiago de Mendonça, The synchronized dynamics of complex systems (Elsevier, Amsterdam, 2008).}\]

\[\text{[7] A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Phys. Rep. 469, 95 (2008).}\]

\[\text{[8] R.E. Mirollo, S.H. Strogatz, Physica D 205, 249 (2005).}\]

\[\text{[9] C.W. Wu, Synchronization in complex networks of nonlinear dynamical systems (World Scientific, Singapore, 2007).}\]

\[\text{[10] L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 80, 2109 (1998).}\]

\[\text{[11] Y. Kawamura, H. Nakao, K. Arai, H. Kori, Y. Kuramoto, Chaos 20, 043110 (2010).}\]

\[\text{[12] M. Chavez, D.U. Hwang, A. Amann, H.G.E. Hentschel, S. Boccaletti, Phys. Rev. Lett. 94, 218701 (2005).}\]

\[\text{[13] T. Nishikawa, A.E. Motter, Phys. Rev. E 73, 065106 (2006).}\]

\[\text{[14] I. Lodato, S. Boccaletti, V. Latora, EPL 78, 28001 (2007).}\]

\[\text{[15] T. Nishikawa, A.E. Motter, PNAS 107, 10342 (2010).}\]

\[\text{[16] F. Mori, Phys. Rev. Lett. 104, 108701 (2010).}\]

\[\text{[17] A.E. Motter, Phys. Rev. Lett. 93, 098701 (2004).}\]

\[\text{[18] S.V. Buldyrev, R. Parshani, G. Paul, H.E. Stanley, S. Havlin, Nature 464, 1025 (2010).}\]

\[\text{[19] X. Liao, P. Yu, Absolute Stability of Nonlinear Control Systems (Springer, Netherlands, 2008).}\]

\[\text{[20] J.M. Beckers, SIAM J. Numer. Anal. 29(3), 701 (1992).}\]

\[\text{[21] E.D. Soldatova, J. Mol. Liq. 127, 99 (2006).}\]

\[\text{[22] J. Cai, X. Wu, S. Chen, Math. Probl. Eng. 2007, 86582 (2007).}\]

\[\text{[23] A.L. Do, L. Rudolf, T. Gross, New J. Phys. 12, 063023 (2010).}\]

\[\text{[24] M.R. Adhikari, A. Adhikari, Textbook of Linear Algebra: Introduction to Modern Algebra (Allied Publishers, Mumbai, 2005).}\]

\[\text{[25] J. Schnakenberg, Rev. Mod. Phys. 48(4), 571 (1976).}\]

\[\text{[26] M.Y. Li, Z. Shuai, J. Differ. Equations 248, 1 (2010).}\]

\[\text{[27] J. Ito, K. Kaneko, Phys. Rev. Lett. 88, 028701 (2001).}\]

\[\text{[28] C. Zhou, J. Kurths, Phys. Rev. Lett. 96, 164102 (2006).}\]
[29] J.A. Almendral, I. Leyva, D. Li, I. Sendiña-Nadal, S. Havlin, S. Boccaletti, Phys. Rev. E 82, 016115 (2010).
[30] G. Eskin, J. Ralston, E. Trubowitz, Comm. Pure Appl. Math. 37, 715 (1984).
[31] A.M. Shirokov, N.A. Smirnova, Y.F. Smirnov, Phys. Lett. B 434, 237 (1998).