Robust Encryption System Based Watermarking Theory by Using Chaotic Algorithms: A Reviewer Paper

Heba Abdul-Jaleel Al-Asady1,2*, Osama Qasim Jumah Al-Thahab1, and Saad S Hreshee1

1University of Babylon, College of Engineering, Dept. of Electrical Engineering, Babylon-Iraq
2 The Islamic University, Computer Technical Engineering Department, College of Technical Engineering, Najaf, Iraq.

*Email: en.he22@gmail.com

Abstract: In the previous decade, the mixing between chaotic supposition and cryptography frames considers a significant field of data security. Chaos-based image encryption is given a lot of attention in the exploration of data security moreover a great deal of picture encrypting calculations have been proposed concerning chaotic maps. Because of some invariable highlights of media like information limit and high information excess, the encryption of images not quite the same as that of texts; accordingly it is hard to deal with them by conventional encryption strategies. This paper presents a short review of robust digital watermarking systems that used chaotic algorithms such as Logistic, Tent, Baker, Hyper, Fibonacci, and Arnold maps for encryption of the data presented in several years.

Keywords: Logistic, Tent, Baker, Hyper, Fibonacci, Arnold.

1. Introduction

Versus the advancement of electronic devices and Web propels, a computerized substance can be adequately gotten to by methods for different transmission channels, for instance, Internet, remote frameworks. As a result of focuses of interest of computerized substance, flawlessly recreated and effectively changed, numerous issues have gotten more pressing than in simple occasions, for example, copyright assurance and substance confirmation. A watermark can be classified into two types depending on its capacity: the specific vigorous watermark for copyright protection, and delicate watermark for honesty check[1].

Some procedures should be possible either consecutively or arbitrarily. Arbitrarily picked pixels for covering up in the spread picture give preferable security over a successive
way. In our proposed conspire spread picture, pixels are select arbitrarily by utilizing the chaotic arrangement created by the chaotic map. chaotic implies a state of disorder. In science, a map is an advancement work that gives a type of chaotic behavior. A discrete-time dynamical framework is called a map too[2].

Chaos signals are viewed as useful for practical use since they have significant qualities, for example, they are exceptionally delicate to introductory stipulations and framework parameters, they have a fake-irregular property and non-periodicity as the turbulent waves ordinarily commotion, and so on. Subsequently, the aggregation of chaotic theory and cryptography constitutes a significant field of data security. The qualities of chaotic signs make chaos framework a fantastic and strong crypto-framework against any statistical aggression [3].

Chaos-based picture encryption is given a lot of consideration in the examination of data security and a great deal of picture encryption calculations will depend on the chaotic form. There have been numerous watermarking encryption calculations dependent on chaotic maps like the Standard map, the Logistic map, the tent map, the Baker map, and some other types which present in this paper. The watermarking encryption systems are summarized as follows: host media are entered to encryption algorithms which are here chaotic algorithms to embed the information and give a high performance of security, efficiency, and robustness to it. On the other side, the extraction of the information follows the inverse same algorithm that mad in the embedding site and deduce the information with high quality. "Figure.1" shows the general block diagram for the watermarking system.

First of all, section1 of this paper gives an introduction about the watermarking and chaotic algorithms, section2 highlight survey to the maps that the researcher trending in watermarking encryption algorithms and the conclusion and references in the last section.

2. Chaotic Maps
This section, highlight the chaotic maps used in the embedding algorithms.

2.1 Logistic map
Chaotic maps are utilized for image encryption which includes highlights like non-deterministic, irregular, periodicity, and so on. the common one is a 1D logistic map, which was discovered in 1976 by Robert May[4]. Mathematically, the logistic map was written as seen in "Equation (1)"

\[x_{n+1} = \beta(x_n - x_n^2) \] (1)

Where \(x_0 \) is a number somewhere in the range of zero and one which is the initial value. The estimations for the parameter \(\beta \) are dependent on the user which generates chaotic

![Figure 1](image-url)
sequence and take place amidst 3 and 4. The random arrangement generated from equation (1) exhibits chaotic properties and used for encrypting the image. The basis of β value is:

1- $0 < \beta < 1$, the characteristics will be in a steady-state.
2- $1 < \beta < 3$, the characteristics will be rapidly increasing
3- $3 < \beta < 3.44949$, the populace will be moved toward perpetual motions between two qualities.
4- $3.44949 < \beta < 3.54409$ (around), from practically all underlying conditions the populace, will move toward perpetual motions among four qualities
5- With β expanding past 3.54409, from practically, all underlying conditions will be moved toward motions among 8 qualities.
6-When $\beta \approx 3.56995$ (succession A098587 in the OEIS) the case is considered as the beginning of bedlam. The bifurcation chart of a calculated guide is pictured in ”Fig.2″. The guide is in confused state when $3.57 < \beta \leq 4$ [4,5,6]. The disorderly state is shown by a concealed region. Right now express, the subsequent qualities seem arbitrary even though the framework deterministic [4].

![Figure 2 Bifurcation chart of a logistic map (Wikipedia)](image_url)

Researchers [4-26] have used the logistic map in them watermarking algorithms to encrypt their information which was (image, audio, and text) as shown in "table 1". They were demonstrated How to be careful at the determination of the capacity seed in the generation of chaotic-watermarks. Dependence the on strength range alone isn't sufficient to decide the phantom properties of the watermarks created from the logistic map. The studies were introduced to show that although this method gives an effective strong watermarking procedure however it comes up short if the customer is unwise to choose capacity essential for the logistic map.
Table 1: Review of the Logistic map

References	Technique Used in the algorithm	Applicatios	Parameters evaluated
Kunal Kumar [4]	2D Logistic map	image	Number of Pixel Change Rate (NPCR)
Saswati Trivedy [5]	logistic map	image	The PSNR values
Rinaldi Munir [6]	Logistic Map	image	PSNR
Aidan Mooney [7]	Logistic map	image	power spectral density (PSD)
Botta [8]	Logistic+ Arnold map	image	---
Qiaolun Gu [9]	Logistic map	image	PSNR and Accuracy Rate AR
Sajjad Shaukat [10]	Logistic map	image	Entropy and GLCM
Sriti Thakur [11]	Logistic map and DWT, DCT, SVD.	image	NC and SSIM
Song Wei [12]	logistic map	image	Peak signal noise ratio (PSNR) and bit error ratio (RPSN)
Xianyong Wu [13]	logistic and Chebyshev map	image	PSNR (dB) and BER (%)
S. Thakur [14]	logistic map + NSCT, RDWT and SVD	image	PSNR, NCNC, NPCR and UACI
Yassine Himeur [15]	logistic map + DWT-SVD	Video	Video comparison Ratio CR
Mariya Fatema [16]	Arnold and logistic	image	PSNR, SSIM, and MSE
Hegui Zhu [17]	hyper-chaotic and 2D Logistic map	image	NPCR and UACI
Ola N. Kadhim [18]	1D Logistic Map	image	PSNR and MSE
Gurjit Singh Walia [19]	Logistic and LUDO scan scheme.	image	PSNR and MSE
Milad Yousefi [20]	modified logistic map	image	PSNR and MSE
Zhao Dawei [21]	Wavelet and Logistic map	image	PSNR
Mahavir Shantilal [22]	Laplace Detector And Logistic Map	image	laplacian of Gaussian (LoG)
Shabir A. Parah [23]	Logistic and DCT	image	PSNR
Mamta Rani [24]	complex logistic map	image	Generation of fractals
Hailiang Shi [25]	DWT-SVD and logistic map	Image	PSNR and CC
Chittaranjan Pradhan [26]	2D Logistic and (ECC) in the DWT domain	image	PSNR

2.2 Tentmap

The tentmap is one of the least difficult chaotic maps. It has a single dimension and a multi-definition function straight guide. The disorderly practices of the tent map were concentrated diagnostically as far as the invariant thickness and the force range, all through its chaotic region. It was understood: as the climax greatest is brought down, progressive band-parting changes in the disorganized locale and gather to the progress point into the non-clamorous area. Tentmap is topologically conjugate and along these lines its practices are right now under the cycle. It is given as in "Equation(2)":
\[a_{n+1} = f_\mu(a_n) = \begin{cases} \mu a_n & \text{for } a_n < \frac{1}{2} \\ \mu(1 - a_n) & \text{for } \frac{1}{2} \leq a_n \end{cases} \quad (2) \]

Where \(\mu \) is a positive genuine steady =2 for instance, the effect of the function \(f_\mu \) is the resulting interval choosing as (0,1/2) or (0,1). While, \(a_0 \) assumes to be a new ensuing position, \(a_n \) is generating sequence in (0,1). Higher thickness demonstrates an expanded likelihood of the (a) variable procuring that esteem for the given estimation of the \(\mu \) parameter as shown in "Fig. 3".

Researchers[27-33] have used the tent map to encrypt their information through a system which has two principle phases: watermark embedding and extraction as indicate in "Table 2".

References	Technique Used in the algorithm	Applications	Parameters evaluated
Joshua C. Dagadu[27]	Tent map and IWT	Medical image	Correlation coefficient, entropy, SSIM, PSNR, BER, NPCR
Hassan Elkamchouchi[28]	Tent map	image	PSNR, MSE
Sukalyan Som[29]	Tent and Logistic maps	image	MSE, PSNR, NPCR, UACI, entropy
Toshiki Habutsu[30]	Tent Map	Plaintext	Information rate R
Yicong Zhou[31]	Tent - Sine Map	image	Correlation, entropy
R. Parvaz[32]	Tent - Sine Map	image	Correlation, entropy, NPCR and UACI
Jianhua Song[33]	Tent Mapping and SVD	image	PSNR, NC

2.3 Baker map:
It is named after a plying activity that pastry specialists applied to a mixture: the batter is sliced down the middle, and the two parts are stacked on each other and packed. The disorganized Bakermap is notable to the image-processing network as a material of encryptions. It is a change based apparatus, which plays out the randomization of a square
matrix dimensions by changing the pixel positions in the light of a mystery key. It allows a pixel to another pixel position in a goal way.

The Geometrical portrayal of a baker map change is as per the following: The Phasespace (set of every conceivable condition of a dynamical framework) arrange.

"Equation (4)" shows the general formula of the Baker’s map:

$$B_{\text{folded}}(q, d) = \begin{cases} (2q, d/2) & \text{for } 0 \leq q \leq 0.5 \\ (2 - 2q, 1 - d/2) & \text{for } 0.5 \leq q \leq 1 \end{cases}$$

(3)

Researchers [34-40] performed 1D, 2D and 3D baker map algorithms to encrypted the information. Chaotic Baker map is utilized as a pre-preparing layer to expand the security level, "Table 3" show their studies.

Table 3: Review of Baker’s map

References	Technique Used in the algorithm	Applications	Parameters evaluated
Waleed Al-Nuaimy [34]	Baker map and SVD	Audio	SNR
Mazleena Salleh [35]	Baker map	Image	----
Ahmed Elshamy [36]	Baker map	Image	MSE, PSNR
Muhammad Asif [37]	Baker Map	Plaintext	Bit Independent Criterion, Differential Approximation Probability
Ruisong Ye [38]	Baker Map - DWT	Image	PSNR, NC
Fengling Han, [39]	Improve Baker Map	Image	Histograms
Ruisong Ye [40]	improved Baker map	Image	PSNR

2.4 Hyper-chaotic map

Cai GL et al. proposed a three-dimensional chaotic framework in 2007 as shown in "Equation (4)"

$$\begin{align*}
\dot{x} &= a_1(y - x) \\
\dot{y} &= a_2x + a_3y - xz \\
\dot{z} &= x^2 - a_4z
\end{align*}$$

(4)

Where a_1, a_2, a_3 and a_4 are framework parameters. At the point when "$a_1 = 20", "a_2 = 14", "a_3 = 10.6":, and "$a_4 = 2.8", the framework is confused. Its greatest Lyapunov type is "2.355". This value is greater than that of Lorenz system (1.497) and Chen system (1.0742). As we as a whole know, large Lyapunov type implies quick directions division rate. Researchers [41-45] used the Hyper-chaotic map with other algorithms to produce a novel way for encryption as indicated in "Table 4".

Table 4: Review of Hyper-chaotic map

References	Technique Used in the algorithm	Applications	Parameters evaluated
Xiaopeng Wei [41]	hyper-chaotic maps	Image	NPCR , UACI
Xuanping Zhang [42]	hyper-chaotic map	Image	Histogram analysis
Yueping Li [43]	hyper-chaotic map and permutation	Image	Histogram analysis
Lihua Gong [44]	hyper-chaotic map and DfRRT	Image	Correlation coefficients, Histogram analysis
Abolfazl Niyat, [45]	hyper-chaotic map and cellular automata	Image	Histograms, Entropy, Correlation coefficients,
2.5 Fibonacci-chaotic map

The Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, have been denominated by French-mathematician EdouardLuc in nineteenth-century after Leonard Fibonacci of Pisa, probably the best mathematician of the Middle Ages, who alluded to them in his book LiberAbaci (1202) regarding his hare issue. Fibonacci succession has interested the two novices and expert mathematicians for a considerable length of time because of their inexhaustible applications, and their pervasive propensity for happening in thoroughly astounding and irrelevant spots. Fibonacci numbers applied by the researcher [46-54] as in "Table 5" for data security from the year 2004 onwards. The Fibonacci numbers were generated by "Equation(5)" as follows:

\[
 f_a = \begin{cases}
 0 & \text{if } a < 1 \\
 1 & \text{if } a = 1 \\
 f_{a-1} + f_{a-2} & \text{if } a > 1
 \end{cases}
\]

(5)

References	Technique	Applications	Parameters evaluated
Min-Jen Tsai[46]	Fibonacci+ DWT	Image	Correlation
S. Ponni Sathya[47]	Fibonacci+ DWT+ SVD	Video	PSNR and NCC
Jiancheng Zou[48]	Fibonacci map	Image	-----
Ali Akbar Attari[49]	Fibonacci+ DWT	audio	BER
Mehdi Fallahpour[50]	Fibonacci map	audio	SNR and ODG
Baisa L. Gunjal[51]	Fibonacci+ DWT+SVD	Image	PSNR, NC
Yicong Zhou[52]	Fibonacci P-code	Image	Histogram
Nan Jiang[53]	Fibonacci and Arnold maps	Image	-----
Ehsan Nezhadarya[54]	Fibonacci+ DWT+SVD	Video	PSNR and NCC

Table 5: Review of Fibonacci map

2.6 Arnold map

Arnold's catmap denominated after the effect show of Vladimir Arnold in the 1960s, who utilizing an image of a cat. it is a chaotic map from the torus into itself. The 2-dimensional Arnold's cat map is given by the "equation(6)".

\[
 \begin{bmatrix}
 d^- \\
 q^-
 \end{bmatrix} = \begin{bmatrix}
 1 & 1 \\
 2 & 1
 \end{bmatrix} \begin{bmatrix}
 d \\
 q
 \end{bmatrix} \mod N, \text{ Where } d,q \in \{0,1,2,\ldots,N-1\}
\]

(6)

Arnold transform is utilized as a pre-treatment organization for watermarking, which makes the importance of full image as an inane one. It is a basic worry to have the spatial relationship diminished between the host image and the watermarked image. Wherein, d,q is the pixels organizes of the original image: so that d,q are the pixels organizes after iterative calculations mingling; N is the size of the image. The inverse converting of the "equation (6)" can be attained in "equation (7)"

\[
 \begin{bmatrix}
 d \\
 q
 \end{bmatrix} = \begin{bmatrix}
 2 & -1 \\
 -1 & 1
 \end{bmatrix} \begin{bmatrix}
 d^- \\
 q^-
 \end{bmatrix} \mod N, \text{ d,q}^- \in \{0,1,2,\ldots,N-1\}
\]

(7)

The chaoticArnold map is employed to make the watermarking robust for different types of multimedia attacks as in the researchers [55-71] as indicated in "Table 6".
Table 6: Review of Arnold map

References	Technique Used in the algorithm	Applications	Parameters evaluated
Zhu Xi’an[55]	Arnold map and DWT.	image	SNR, NC
Min Li[56]	Arnold map	image	----
D. Vaishnavi [57]	Arnold map	image	PSNR, NC
Abdallah Soualmi	Arnold map	image	PSNR, NC, SSIM
Chen Wei-bin[59]	Arnold + Henon map	image	----
Wangsheng	Arnold + logistic map	image	histogram
Fang[60]	Arnold map, DWT, SVD, and LU Decomposition	image	SR, PSNR
Onur Jane [61]	DCT-Arnold.	image	PSNR, NC and WAR
Mehdi Khalili[62]	Arnold map+ DCT	image	NC ratio (RPSN)
Mohammad	Arnold map	image	----
Keyvanpour[64]	Arnold and DCT	image	PSNR, NC
Pradhan[65]	A. Arnold and DWT, DCT	image	PSNR, NCC
Esam Hagras[66]	Arnold and DCT	image	PSNR, NC
Jianhua Song[67]	Arnold and SVD	image	PSNR
Xiaohu Ma[68]	Arnold map	image	Compression quality
Ruisong Ye[69]	Arnold and Logistic map	image	PSNR
Changjiang Zhang[70]	Arnold and DCT	image	MSE
Qian-chuan Zhong[71]	Arnold and DCT		

3. Conclusion
In this reviewer paper, first, the basics of some types of chaotic sequence which is used in the data encryptions systems are constructed. You can see that different researchers generate the chaos sequence and used it with other algorithms to produce a robust, efficient, and secured encrypted system. Some researchers encrypt text, other encrypt images, audio, and video, with attention to the conditions of its use, chaotic map gave great results in information security.

4. Acknowledgments
We would like to express our gratitude for the support of the Babylon University and Islamic University they provided to us. Their support was the key element for this work to see the light.

5. References
[1] Liu, Shao-Hui, et al. "An image fragile watermark scheme based on chaotic image pattern and pixel-pairs." Applied Mathematics and Computation 185.2 (2007): 869-882.
[2] Rajendran, Sujarani, and Manivannan Doraipandian. "Chaotic Map Based Random Image Steganography Using LSB Technique." IJ Network Security 19.4 (2017): 593-598.
[3] Ahmad, Musheer, and M. Shamsher Alam. "A new algorithm of encryption and decryption of images using chaotic mapping." International Journal on computer science and engineering 2.1 (2009): 46-50.

[4] Kabi, Kunal Kumar, et al. "Comparative study of image encryption using 2D chaotic map." 2014 International Conference on Information Systems and Computer Networks (ISCON). IEEE, 2014.

[5] Trivedy, Saswati, and Arup Kumar Pal. "A logistic map-based fragile watermarking scheme of digital images with tamper detection." Iranian Journal of Science and Technology, Transactions of Electrical Engineering 41.2 (2017): 103-113.

[6] Munir, Rinaldi. "A chaos-based fragile watermarking method in spatial domain for image authentication." 2015 International Seminar on Intelligent Technology and Its Applications (ISITIA). IEEE, 2015.

[7] Mooney, Aidan, John G. Keating, and Daniel M. Heffernan. "A detailed study of the generation of optically detectable watermarks using the logistic map." Chaos, Solitons & Fractals 30.5 (2006): 1088-1097.

[8] Botta, Marco, Davide Cavagnino, and Victor Pomponiu. "A successful attack and revision of a chaotic system based fragile watermarking scheme for image tamper detection." AEU-International Journal of Electronics and Communications 69.1 (2015): 242-245.

[9] Gu, Qiao lun, and Tiegang Gao. "A novel reversible robust watermarking algorithm based on chaotic system." Digital Signal Processing 23.1 (2013): 213-217.

[10] Jamal, Sajjad Shaukat, Tariq Shah, and Iqtadar Hussain. "An efficient scheme for digital watermarking using chaotic map." Nonlinear Dynamics 73.3 (2013): 1469-1474.

[11] Thakur, Sriti, et al. Multi-layer security of medical data through watermarking and chaotic encryption for tele-health applications. Multimedia tools and Applications, 2019, 78.3: 3457-3470.

[12] Song, Wei, et al. "Chaotic system and QR factorization based robust digital image watermarking algorithm." Journal of Central South University of Technology 18.1 (2011): 116-124.

[13] Wu, Xianyong, and Zhi-Hong Guan. "A novel digital watermark algorithm based on chaotic maps." Physics Letters A 365.5-6 (2007): 403-406.

[14] Thakur, S., et al. "Chaotic based secure watermarking approach for medical images." Multimedia Tools and Applications (2018): 1-14.

[15] Himeur, Yassine, and Abdelkrim Boukabou. "A robust and secure key-frames based video watermarking system using chaotic encryption." Multimedia Tools and Applications 77.7 (2018): 8603-8627.

[16] Fatema, Mariya, et al. "Tamper detection using fragile image watermarking based on chaotic system." International Conference on Wireless Intelligent and Distributed Environment for Communication. Springer, Cham, 2018.

[17] Zhu, Hegui, et al. "An image encryption algorithm based on compound homogeneous hyper-chaotic system." Nonlinear Dynamics 89.1 (2017): 61-79.

[18] Kadhim, Ola N., and Zahir M. Hussain. "Information Hiding using Chaotic-Address Steganography." J. Comput. Sci. 14.9 (2018): 1247-1266.

[19] Walia, Gurjit Singh, et al. "Robust stego-key directed LSB substitution scheme based upon cuckoo search and chaotic map." Optik 170 (2018): 106-124.
[20] Valandar, Milad Yousefi, Peyman Ayubi, and Milad Jafari Barani. "A new transform domain steganography based on modified logistic chaotic map for color images." Journal of Information Security and Applications 34 (2017): 142-151.

[21] Dawei, Zhao, Chen Guanrong, and Liu Wenbo. "A chaos-based robust wavelet-domain watermarking algorithm." Chaos, Solitons & Fractals 22.1 (2004): 47-54.

[22] Dhoka, Mahavir Shantilal, and Arunkumar Patki. "Robust and dynamic image zero watermarking using Hessian Laplace detector and logistic map." 2015 IEEE International Advance Computing Conference (IACC). IEEE, 2015.

[23] Parah, Shabir A., et al. "A new secure and robust watermarking technique based on logistic map and modification of DC coefficient." Nonlinear Dynamics 93.4 (2018): 1933-1951.

[24] 24-Rani, Mamta, and Rashi Agarwal. "Generation of fractals from complex logistic map." Chaos, Solitons & Fractals 42.1 (2009): 447-452.

[25] Shi, Hailiang, et al. "An RST invariant image watermarking scheme using DWT-SVD." 2012 International Symposium on Instrumentation & Measurement, Sensor Network and Automation (IMSNA), Vol. 1. IEEE, 2012.

[26] Pradhan, Chittaranjan, et al. "Robust watermarking technique using 2d logistic map and elliptic curve cryptosystem in wavelets." International Journal on Recent Trends in Engineering & Technology 10.2 (2014): 70.

[27] Dagadu, Joshua C., and Jianping Li. "Context-based watermarking cum chaotic encryption for medical images in telemedicine applications." Multimedia Tools and Applications 77.18 (2018): 24289-24312.

[28] Elkamchouchi, Hassan, Wessam M. Salama, and Yasmine Abouelseoud. "Data hiding in a digital cover image using chaotic maps and LSB technique." 2017 12th International Conference on Computer Engineering and Systems (ICCES). IEEE, 2017.

[29] Som, Sukalyan, et al. "A selective bitplane image encryption scheme using chaotic maps." Multimedia Tools and Applications 78.8 (2019): 10373-10400.

[30] Habutsu, Toshiki, et al. "A secret key cryptosystem by iterating a chaotic map." Workshop on the Theory and Application of of Cryptographic Techniques. Springer, Berlin, Heidelberg, 1991.

[31] Zhou, Yicong, Long Bao, and CL Philip Chen. "A new 1D chaotic system for image encryption." Signal processing 97 (2014): 172-182.

[32] Parvaz, R., and M. Zareinia. "A combination chaotic system and application in color image encryption." Optics & Laser Technology 101 (2018): 30-41.

[33] Song, Jianhua, Jianwei Song, and Yuhua Bao. "A blind digital watermark method based on SVD and chaos." Procedia Engineering 29 (2012): 285-289.

[34] Al-Nuaimy, Waleed, et al. "An SVD audio watermarking approach using chaotic encrypted images." Digital Signal Processing 21.6 (2011): 764-779.

[35] Salleh, Mazleen, Subariah Ibrahim, and Ismail Fauzi Isnin. "Image encryption algorithm based on chaotic mapping." Jurnal Teknologi 39.1 (2003): 1-12.

[36] Elshamy, Ahmed M., et al. "Optical image encryption based on chaotic baker map and double random phase encoding." Journal of Lightwave Technology 31.15 (2013): 2533-2539.

[37] Gondal, Muhammad Asif, Abdul Raheem, and Iqtadar Hussain. "A scheme for obtaining secure S-boxes based on Chaotic Baker’s Map." 3D Research 5.3 (2014): 17.
[38] Ye, Ruisong, and Leyi Zhuang. "Baker map's itinerary based image scrambling method and its watermarking application in DWT domain." International Journal of Image, Graphics and Signal Processing 4.1 (2012): 12.

[39] Han, Fengling, Xinghuo Yu, and Songchen Han. "Improved baker map for image encryption." 2006 1st International Symposium on Systems and Control in Aerospace and Astronautics. IEEE, 2006.

[40] Ye, Ruisong, and Leyi Zhuang. "The application of an improved Baker map in image scrambling and watermarking." 2010 Third International Symposium on Information Processing. IEEE, 2010.

[41] Wei, Xiaopeng, et al. "A novel color image encryption algorithm based on DNA sequence operation and hyper-chaotic system." Journal of Systems and Software 85.2 (2012): 290-299.

[42] Zhang, Xuanping, et al. "Cryptanalysis and improvement of an image encryption algorithm based on hyper-chaotic system and dynamic S-box." Multimedia Tools and Applications 76.14 (2017): 15641-15659.

[43] Li, Yueping, Chunhua Wang, and Hua Chen. "A hyper-chaos-based image encryption algorithm using pixel-level permutation and bit-level permutation." Optics and Lasers in Engineering 90 (2017): 238-246.

[44] Gong, Lihua, et al. "Image compression-encryption algorithms by combining hyper-chaotic system with discrete fractional random transform." Optics & Laser Technology 103 (2018): 48-58.

[45] Niyat, Abolfazl Yaghouti, Mohammad Hossein Moattar, and Masood Niazi Torshiz. "Color image encryption based on hybrid hyper-chaotic system and cellular automata." Optics and Lasers in Engineering 90 (2017): 225-237.

[46] Tsai, Min-Jen. "Wavelet tree based digital image watermarking by adopting the chaotic system for security enhancement." Multimedia Tools and Applications 52.2-3 (2011): 347-367.

[47] alias Sathya, S. Ponni, and Srinivasan Ramakrishnan. "Fibonacci based key frame selection and scrambling for video watermarking in DWT–SVD domain." Wireless Personal Communications 102.2 (2018): 2011-2031.

[48] Zou, Jiancheng, Rabab K. Ward, and Dongxu Qi. "The generalized Fibonacci transformations and application to image scrambling." 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing. Vol. 3. IEEE, 2004.

[49] Attari, Ali Akbar, and Ali Asghar Beheshti Shirazi. "Robust audio watermarking algorithm based on DWT using Fibonacci numbers." Multimedia Tools and Applications 77.19 (2018): 25607-25627.

[50] Fallahpour, Mehdi, and David Megías. "Robust audio watermarking based on fibonacci numbers." 2014 10th International Conference on Mobile Ad-hoc and Sensor Networks. IEEE, 2014.

[51] Gunjal, Baisa L., and Suresh N. Mali. "MEO based secured, robust, high capacity and perceptual quality image watermarking in DWT-SVD domain." SpringerPlus 4.1 (2015): 126.

[52] Zhou, Yicong, et al. "Two Fibonacci p-code based image scrambling algorithms." Image Processing: Algorithms and Systems VI. Vol. 6812. International Society for Optics and Photonics, 2008.
[53] Jiang, Nan, Wen-Ya Wu, and Luo Wang. "The quantum realization of Arnold and Fibonacci image scrambling." Quantum Information Processing 13.5 (2014): 1223-1236.
[54] Nezhadarya, Ehsan, Z. Jane Wang, and Rabab Kreidieh Ward. "Robust image watermarking based on multiscale gradient direction quantization." IEEE Transactions on Information Forensics and Security 6.4 (2011): 1200-1213.
[55] Xi’an, Zhu. "A semi-fragile digital watermarking algorithm in wavelet transform domain based on Arnold transform." 2008 9th International Conference on Signal Processing. IEEE, 2008.
[56] Min, Li, Liang Ting, and He Yu-jie. "Arnold transform based image scrambling method." 3rd International Conference on Multimedia Technology (ICMT-13). Atlantis Press, 2013.
[57] Vaishnavi, D., and T. S. Subashini. "Image tamper detection based on edge image and chaotic arnold map." Indian Journal of Science and Technology 8.6 (2015): 548-555.
[58] Soualmi, Abdallah, Adel Alti, and Lamri Laouamer. "A new blind medical image watermarking based on weber descriptors and Arnold chaotic map." Arabian Journal for Science and Engineering 43.12 (2018): 7893-7905.
[59] Wei-Bin, Chen, and Zhang Xin. "Image encryption algorithm based on Henon chaotic system." 2009 International Conference on Image Analysis and Signal Processing. IEEE, 2009.
[60] Fang, Wang Sheng, Lu Lu Wu, and Rong Zhang. "A watermark preprocessing algorithm based on Arnold transformation and logistic chaotic map." Advanced Materials Research. Vol. 341. Trans Tech Publications Ltd, 2012.
[61] Jane, Onur, Hakki Gökhan İlk, and Ersin Elbaşi. "A secure and robust watermarking algorithm based on the combination of DWT, SVD, and LU decomposition with Arnold's Cat Map approach." 2013 8th International Conference on Electrical and Electronics Engineering (ELECO). IEEE, 2013.
[62] Khalili, Mehdi. "DCT-Arnold chaotic based watermarking using JPEG-YCbCr." Optik 126.23 (2015): 4367-4371.
[63] Ma, Fang, JianPing Zhang, and Wen Zhang. "A blind watermarking technology based on DCT domain." 2012 International Conference on Computer Science and Service System. IEEE, 2012.
[64] Keyvanpour, MohammadReza, and Merrikh-Bayat Farnoosh. "A new encryption method for secure embedding in image watermarking." 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE). Vol. 2. IEEE, 2010.
[65] Pradhan, Chittaranjan, et al. "Blind watermarking techniques using DCT and arnold 2D cat map for color images." 2014 International Conference on Communication and Signal Processing. IEEE, 2014.
[66] Hagara, Esam A., et al. "Robust secure and blind watermarking based on dwt dct partial multi map chaotic encryption." The International Journal of Multimedia & Its Applications 3.4 (2011): 37.
[67] Song, Jian Hua, and Yong Zhu. "A digital watermarking method by double encryption based on arnold and chaos in DCT domain." Applied Mechanics and Materials. Vol. 65. Trans Tech Publications Ltd, 2011.
[68] Ma, Xiaohu, and Xiaofeng Shen. "A novel blind grayscale watermark algorithm based on SVD." 2008 International Conference on Audio, Language and Image Processing. IEEE, 2008.

[69] Ye, Ruisong. "A novel image scrambling and watermarking scheme based on orbits of arnold transform." 2009 Pacific-Asia Conference on Circuits, Communications and Systems. IEEE, 2009.

[70] Zhang, Changjiang, Jinshan Wang, and Xiaodong Wang. "Digital image watermarking algorithm with double encryption by Arnold transform and logistic." 2008 Fourth International Conference on Networked Computing and Advanced Information Management. Vol. 1. IEEE, 2008.

[71] Zhong, Qian-chuan, and Qing-xin Zhu. "A DCT domain color watermarking scheme based on chaos and multilayer Arnold transformation." 2009 International Conference on Networking and Digital Society. Vol. 2. IEEE, 2009.