REVIEW ARTICLE

ESBL-producing Enterobacteriaceae in Africa – a non-systematic literature review of research published 2008–2012

Viktor Storberg, RN, MSc*

Department of Women’s and Children’s Health, International Maternal and Child Health, Uppsala University, Uppsala, Sweden

Introduction: Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBL) has been found all over the world, and risk factors for acquiring these bacteria involve hospital care and antibiotic treatment. Surveillance studies are present in Europe, North America, and Asia, but there is no summarizing research published on the situation in Africa.

Aim: This review aims to describe the prevalence of ESBL-producing Enterobacteriaceae in hospital and community settings in Africa and the ESBL genes involved.

Method: A non-systematic literature search was performed in PubMed. All articles published between 2008 and 2012 were screened and read in full text. Relevant articles were assessed for quality of evidence and included in the review. Articles were divided into regional areas in Africa and tabulated.

Results: ESBL-producing Enterobacteriaceae in hospitalized patients and in communities varies largely between countries and specimens but is common in Africa. ESBLs (class A and D) and plasmid-encoded AmpC (pAmpC) were regularly found, but carbapenemases were also present.

Conclusion: ESBL-producing Enterobacteriaceae in hospital and community settings in Africa is common. Surveillance of antimicrobial resistance needs to be implemented in Africa to tailor interventions targeted at stopping the dissemination of ESBL-producing Enterobacteriaceae.

Keywords: antibiotic resistance; Enterobacteriaceae; extended-spectrum beta-lactamases; Africa; hospital; community

*Correspondence to: Viktor Storberg, Department of medicine, Angered Hospital, Angered, Sweden, Email: viktor.storberg@vgregion.se

Received: 27 December 2012; Revised: 21 January 2014; Accepted: 12 February 2014; Published: 13 March 2014

Research has shown that there are several risk factors for acquiring an extended-spectrum beta-lactamase (ESBL)-producing bacterial infection. High use of antibiotics is one factor that has been shown to increase the risk of developing and acquiring ESBL for patients at hospitals and in the community (1–4). Nosocomial risk factors, such as the presence of intravascular catheters, undergoing surgery, staying at an intensive care unit, and international travel, have been shown to increase the risk of being colonized with ESBL-producing bacteria (1, 3, 5).

Introduction

ESBL has been found all over the world, and reviewing research has been done in Europe (6, 7), North America (8), and Asia (9) in recent years to understand the extent of ESBLs and other multiresistant bacteria; also, there are surveillance studies running in the same regions to guide the clinical treatment of infectious diseases. In Europe (during 1999–2008), there has been an increase in invasive infections caused by Klebsiella pneumoniae and Escherichia coli resistant to third-generation cephalosporins, and this is believed to be due to the dissemination of ESBLs in both hospitals and communities. An increase in carbapenemase production among isolates has also been seen and raises issues regarding future antimicrobial treatment (10). Urinary tract isolates collected in the SMART study between 2009 and 2010 concluded that in Europe, ESBL prevalence among E. coli and K. pneumoniae was 17.6 and 38.9%, respectively. In North America, the prevalence was 8.5 and 8.8%, respectively (11). In Asia, the prevalence of ESBL among E. coli and K. pneumoniae varied between 5 and 0%, respectively, in New Zealand and between 67 and 61%, respectively, in China (12). The class A ESBL gene CTX-M-15 was the most common gene in the European and American...
settings (found in >90% of E. coli isolates and in 35–65.5% of K. pneumoniae), but SHV- and TEM-type genes were also prevalent, between 1.7 and 42.9%, especially in K. pneumoniae (11). From the SENTRY Asia Pacific surveillance program, CTX-M genes were found in 38.2–55.5% of K. pneumoniae and E. coli isolates, and the prevalence of SHV- and TEM-type genes was higher (between 34.3 and 85.3%) (13).

In Africa, the prevalence of ESBL in Enterobacteriaceae has been researched at local levels in various countries, but there is no summarizing research on how prevalent ESBL is on the continent, what type of genes are involved, and where research is missing. This review aims to describe the prevalence of ESBL-producing Enterobacteriaceae in hospital and community settings in Africa and the ESBL genes involved.

Method
A literature search was conducted in PubMed in June 2013 with the keywords ‘Africa’, ‘Enterobacteriaceae’, and ‘ESBL’ or ‘extended-spectrum beta-lactamases’. The search was limited to articles published in English, studying humans, and published from 2008/01/01 to 2012/12/31. From the 91 references found, seven articles could not be accessed in online databases or acquired in paper copy, and they were excluded; the remaining 84 articles were read in full text. 19 articles were excluded because they were not relevant for the aim of this study. The excluded articles did not research ESBL, studied countries outside of Africa, or looked at other colonized hosts than humans. 65 articles were finally included in the review.

The references were assessed in quality according to a value scale, modified from Hedin et al. (14), where the strength of evidence for different ESBL genes and prevalence in the selected references were graded low, middle, and high based on the method of analyses used in the studies. As many of the studies reported had used the same method, study size and what proportion of the sample was analyzed in detail were also taken into account to assess the strength of the scientific evidence (Table 1).

Results
This section is divided into regional areas of Africa, according to the UN regional composition (15). For detailed descriptions of sample sizes, organisms, settings and prevalence, sources of samples, and ESBL genes involved, see Tables 2–6.

Northern Africa
In Algerian hospitals, ESBLs existed in 16.4–31.4% of the samples. Class A ESBLs were most common, but plasmid-encoded AmpC (pAmpC) was also present (16–22).

In Egypt, ESBLs were found in 11–42.9% of samples in both hospitals and communities; the genes involved were class A ESBLs (23–25).

In Guinea-Bissau and Libya, class A and D ESBLs and a carbapenemase were found in 32.6 and 16%, respectively, in rectal or stool samples (26, 27).

In Morocco, class A and D ESBLs, pAmpC, and carbapenemases were found in hospital settings (28–30). In the community setting, class A and D ESBLs were found in between 1.3 and 7.5% of acquired urine samples (31–33).

In Tunisia, class A and D ESBLs, pAmpC, and carbapenemases were present, and the prevalence ranged from 11.7 to 77.8% in hospitals and was 0.7 and 7.3% in two communities (34–51).

Eastern Africa
In Ethiopia and Kenya, 62.8 and 37.4%, respectively, of hospital and community samples were ESBLs (52, 53). Class A ESBLs and pAmpC were present in the Kenyan sample (53). In samples taken from Kenya and Malawi, class A and D ESBLs were found (54).

In Rwanda, ESBLs were found in 38.3% of hospital urine samples and in 5.9% of community urine samples (55).

In Tanzania, class A ESBLs were found in various samples from hospital settings (56, 57).

Grade	Method	Criteria
High	Method	Polymerase chain reaction (PCR)
		Plasmid transfer assays (PTA)
		Pulsed field gel electrophoresis (PFGE)
	Sample size	>15
		Data set completely analyzed
Middle	Method	Combination of criteria from high and low grade (e.g., sample <15 but using PCR analyses)
Low	Sample size	<15
		Data set partly analyzed

Viktor Storberg

Citation: Infection Ecology and Epidemiology 2014, 4: 20342 - http://dx.doi.org/10.3402/iee.v4.20342
Country (study period)	Sample size	Organism	Setting and prevalence of ESBL (%)	Source of ESBL isolate (%)	Genes (%)	Evidence	Reference
Algeria (1982-2005)	12	*S. Enterica* serotype Senftenberg	Hospital (n/r)	Not specified	Exemplary 1 isolate: TEM-1 (100) CTX-M-3 (100)	Low	(20)
Algeria (2003-2007)	141	*E. cloacae*	Hospital (17.7)	Urine (52) Blood (24) Pus (24)	CTX-M-15 (44) CTX-M-3 (36) SHV-12 (16) VEB (4)	High	(17)
Algeria (2003-2007)	505	*Enterobacteriaceae*	Hospital (16.4)	Urine (63.6) Blood (18.2) Pus (18.2)	CTX-M group I (84.3) TEM (15.7) SHIV (15.7) CMY-2 (8.6) DHA-1 (3.6)	Middle	(16)
Algeria (2005)	3	*K. pneumoniae*	Hospital (n/r)	Pus (33.3) Cerebrospinal fluid (33.3) Urine (33.3)	CTX-M-15 (66.6) CTX-M-3 (33.4) TEM-1 (100) SHV-98 (33.3) SHV-99 (33.3) SHV-100 (33.4)	Middle	(22)
Algeria (2008-2009)	200	*S. Enterica* serotype Infantis	Hospital (99)	Stool (88.2) Blood (5.9) Gastric fluid (5.9)	Exemplary 16 isolates: CTX-M-15 (100) TEM-1 (100)	High	(19)
Algeria (2009)	207	*Klebsiella*	Hospital (31.4)	Urine (53.7) Pus (19.5) Distal sampling (14.6) Valve (2.4) Pleural fluid (2.4) Ear (2.4) Nasal fossae (2.4) Tumoral fluid (2.4)	Exemplary 41 isolates: CTX-M group I (88) TEM (41.4) SHIV (31.1) DHA-1 (9.7)	High	(12)
Algeria (not specified)	196	*K. pneumoniae*	Hospital (19.9)	Urine (38.9) Blood (22.2) Bronchial (13.6) Pus (13.6) Ascites fluid (5.9)	Exemplary 18 isolates: TEM (100) CTX-M-3 (66.7) CTX-M-15 (33.3)	High	(18)
Country (study period)	Sample size	Organism	Setting and prevalence of ESBL (%)	Source of ESBL isolate (%)	Genes (%)	Evidence	Reference
------------------------	-------------	----------	-----------------------------------	-----------------------------	-----------	----------	-----------
Egypt (2007)	70	*E. coli*	Hospital and community (42.9)	Stool (not specified)	Exemplary 8 isolates: CTX-M-1 (75) CTX-M-9 (87.5)	Middle (24)	
Egypt (2007–2008)	520	*Enterobacteriaceae*	Hospital (19)	Urine (78.7)	Exemplary 74 isolates: CTX-M-15 (100) SHV-12 (1.4)	Middle (23)	
Egypt (not specified)	5	*K. pneumoniae* *E. coli* *E. cloacae*	Hospital (n/r)	Wound (80)	CTX-M-14 (40) CTX-M-15 (20) TEM (20) SHV (20)	Middle (25)	
Guinea-Bissau (2010)	408	*K. pneumoniae* *E. coli* *E. cloacae*	Hospital (32.6)	Stool (100)	CTX-M group I (94.8) CTX-M group 9 (4) CTX-M group 8/25 (0.8) CTX-M group 2 (0.8) SHV (2.3)	High (26)	
Libya (2011)	25	*Enterobacteriaceae*	Hospital (16)	Rectal (100)	Exemplary 1 isolate OXA-48 (100)	Middle (27)	
Morocco (2004–2007)	535	*E. coli*	Community (1.3)	Urine (100)	CTX-M-15 (100) TEM-1 (28.6) SHV-5 (14.3)	High (33)	
Morocco (2004–2009)	803	*K. pneumoniae* *E. coli*	Community (1.5)	Urine (100)	CTX-M-15 (91.7) TEM-1b (33.3) SHV-1 (16.7) SHV-5 (8.3) OXA-1 (91.7)	High (31)	
Morocco (2006–2007)	39	*Enterobacteriaceae*	Hospital (n/r)	Urine (66.7)	Exemplary 14 isolates: TEM-1 (85.7) CTX-M-28 (35.7) CTX-M-15 (25) SHV-12 (35.7) SHV-1 (25) DHA-1 (58.3)	Middle (28)	
Country (study period)	Sample size	Organism	Setting and prevalence of ESBL (%)	Source of ESBL isolate (%)	Genes (%)	Evidence	Reference
------------------------	-------------	----------	-----------------------------------	---------------------------	-----------	----------	-----------
Morocco (2010)	453	*K. pneumoniae*	Community (7.5)	Urine (100)	CTX-M-15 (94.1) CTX-M-1 (2.9) TEM-1 (52.9) TEM-1b (29.4) SHV-1 (35.3) SHV-11 (11.8) SHV-12 (8.8) SHV-26 (5.9) SHV-28 (8.8) SHV-32 (2.9) SHV-36 (2.9) SHV-76 (5.9) SHV-110 (2.9) OXA-1 (100) OXA-9 (100) OXA-1 (100)	High	(32)
Morocco (not specified)	3	*K. pneumoniae*	Hospital (n/r)	Urine (33.3) Blood (33.3) Abscess (33.4)	NDM-1 (100) CTX-M-15 (100) OXA-1 (100) TEM-1 (100) SHV-1 (100) SHV-5 (100) OXA-1 (100)	Middle	(29)
Morocco (not specified)	3	*K. pneumoniae*	Hospital (n/r)	Not specified	NDM-1 (100) CTX-M-15 (100) OXA-1 (100) TEM-1 (100) SHV-1 (100) SHV-5 (100) OXA-1 (100)	Low	(30)
Tunisia (1999-2005)	1280	*K. pneumoniae*	Hospital (11.7) Community (0.7)	Urine (41.2) Lung (11.8) Catheter (7.8) Cerebrospinal fluid (3.9) Blood (25.5) Pus (3.9) Nasal (3.9) Rectal (2)	51 exemplary isolates (hospital): CTX-M-15 (37.3) CTX-M-27 (3.9) SHV-12 (62.8) SHV-2a (5.9) TEM-1 (19.6)	High	(42)
Country (study period)	Sample size	Organism	Setting and prevalence of ESBL (%)	Source of ESBL isolate (%)	Genes (%)	Evidence	Reference
------------------------	-------------	----------	-----------------------------------	---------------------------	-----------	----------	-----------
Tunisia (2003–2007)	11	K. pneumoniae E. coli	Hospital (n/r)	Urine (27.3) Sputum (18.2) Blood (36.4) Pus (9.1) Catheter (9.1)	CTX-M-15 (100) SHV-1 (54.6) SHV-11 (9.1) SHV-27 (9.1) SHV-103 (9.1) TEM-1a (54.6) TEM-1b (36.4) OXA-1 (72.7)	High	(34)
Tunisia (2004)	1	K. pneumoniae	Not specified	CTX-M-28 (100)	Low	(36)	
Tunisia (2004)	1	P. mirabilis	Not specified	VEB-1 (100)	Low	(48)	
Tunisia (2004)	1	K. pneumoniae	Not specified	TEM-164 (100)	Low	(35)	
Tunisia (2005–2006)	856	Enterobacteriaceae (n/r)	Hospital (19.9)	Urine (58) Blood (42)	100 exemplary isolates: CTX-M-15 (93) TEM-1 (82) SHV-12 (9) SHV-2a (7) OXA-1 (92)	High	(40)
Tunisia (2005–2007)	281	Enterobacteriaceae	Hospital (n/r)	Urine (63.9) Blood (36.1)	36 exemplary isolates: CTX-M-15 (69.4) SHV-28 (13.9) SHV-12 (5.6) SHV-2a (2.8) TEM-1 (7.8) LAP-2 (5.6)	Middle	(41)
Tunisia (2005–2009)	20	P. stuartii	Hospital (n/r)	Blood (53.5) Trachea (33.3) Pus (6.7) Chest drainage (6.7)	VEB-1a (100)	Middle	(47)
Tunisia (2006)	47	E. coli	Hospital (68.1)	Urine (34.4) Stool (31.3)	CTX-M-15 (96.9) TEM-1b (81.3)	High	(51)
Country (study period)	Sample size	Organism	Setting and prevalence of ESBL (%)	Source of ESBL isolate (%)	Genes (%)	Evidence	Reference
------------------------	-------------	----------	-----------------------------------	---------------------------	-----------	----------	-----------
Tunisia (2007)	14	E. coli	Hospital (n/r)	Intra-abdominal peritonitis (9.4)	TEM-34 (9.4)	Middle	(38)
				Trachea (6.3)	SHV-12 (6.3)		
				Blood (6.3)			
				Pus (6.3)			
				Wound (3.1)			
				Lung (3.1)			
Tunisia (2008)	1	M. morganii	Hospital (n/r)	Urine (64.3)	CTX-M-15 (100)	Low	(49)
				Blood (7.1)	TEM-24 (100)		
				Wound (28.6)	DHA-1 (100)		
Tunisia (2009)	44	E. cloacae	Hospital (n/r)	Urine (59.9)	CTX-M-15 (88.6)	High	(34)
				Pus (20.5)	TEM-1 (77.3)		
				Blood (9.1)	SHV-12 (13.6)		
				Broncho-pulmonary (4.6)	SHV-27 (2.3)		
				Gastric (4.6)			
				Catheter (2.3)			
Tunisia (2009)	1	P. stuartii	Hospital (n/r)	Rectal (100)	TEM-116 (100)	Low	(45)
Tunisia (2009–2010)	9	E. cloacae	Hospital (n/r)	Urine (57.1)	SHV-12 (100)	Low	(44)
				Pus (28.6)			
				Blood (14.3)			
Tunisia (2009–2010)	150	E. coli	Community (7.3)	Stool (100)	CTX-M-1 (90.9)	High	(37)
					TEM-1b (9.1)		
					TEM-52c (9.1)		
Tunisia (2010)	2	K. pneumoniae	Hospital (77.8)	Urine (100)	CTX-M-15 (100)	Low	(46)
					TEM-1 (100)		
					SHV-1 (100)		
					OXA-48 (100)		
Tunisia (2010)	10	E. coli	Hospital (n/r)	Urine (100)	CTX-M-15 (100)	High	(39)
Central Africa

In Cameroon, class A and D ESBLs were found in 55.3 and 82.8% of hospital stool samples and in 17.2% of community stool samples (58, 59).

In the Central African Republic, ESBLs were found in 11.3% of community urine samples (60).

Western Africa

In Ghana and Mali, class A ESBLs were found in 49.4 and 63.4–96%, respectively, in hospital and community samples (61–64).

In Niger, 40% of hospital samples carried class A ESBLs or pAmpC (65).

In Nigeria, class A and D ESBLs and pAmpC were found in hospital settings, and the prevalence ranged from 10.3 to 27.5% (66–71). In a mixed sample from a hospital and a community, the prevalence was 11.7% (72).

In Senegal, class A and D ESBLs were found in 10% of community stool samples (73).

Southern Africa

In South Africa, class A and D ESBLs and pAmpC were present, and the prevalence ranged from 8.8 to 13.1% in hospitals and was 0.3 and 4.7% in two communities (74–80).

Discussion

This review indicates that ESBL-producing Enterobacteriaceae are a large problem in African healthcare institutions and communities.

In patients treated in African hospitals, the prevalence of ESBL-producing Enterobacteriaceae has been shown to vary between countries and the type of specimen studied. There is a trend of higher prevalence of ESBL in stool samples than in other specimens. There is also a trend of increasing prevalence over time. This is noticeable in the Tunisian setting, where a large amount of studies are available. In two hospitals studied (study periods: 1999–2005 and 2010), ESBLs have increased from 11.7 to 77.8% among K. pneumoniae (42, 49). In other settings, the trend is not noticeable among the few studies available. In the studied countries in Africa, the prevalence is widely different: in Algeria, it was between 16.4 and 31.4% in mainly urine samples (16–18, 21) and even 99% among Salmonella enterica in stool samples (19); 19 and 42.9%, respectively, in urine and stool samples in Egypt (23, 24); 32.6% among stool samples in Guinea-Bissau (26); 11.7–77.8% in mainly urine, blood, and stool samples from Tunisia (40, 42, 46, 51); 62.8% in stool and blood samples from Ethiopia (52); 38.3% in urine samples from Rwanda (55); 55.3 and 82.8% in stool samples from Cameroon (58, 59); 10.3–27.5% in mainly urine and stool samples from Nigeria (66, 69–72); and

Table 2 (Continued)

Country (study period)	Organism	Sample site	Source of ESBL isolate (%)	Setting and prevalence of ESBL (%)	Genes (%)	Evidence
Tunisia (2011)	P. stuarti	Hospital (45.5)	TEM-52 (100)	OXA-48 (100)	Middle (50)	
		Rectal (27.3)	CMY-4 (100)	CMY-4 (100)	CMY-4 (100)	
		Axilla (27.2)	PER-1 (100)	PER-1 (100)	PER-1 (100)	

n/r: not relevant.
Country (study period)	Sample size	Organism	Setting and prevalence of ESBL (%)	Source of ESBL isolate (%)	Genes (%)	Evidence	Reference
Ethiopia (2004–2006)	113	*Salmonella*	Hospital (62.8)	Stool (68) Blood (32)	Not analyzed	Middle	(52)
Kenya (1992–2010)	912	*E. coli*	Hospital and community (37.4)	ESBL: Urine (53) Stool (26) Blood (21)	CTX-M-9 (2) CTX-M-14 (29) CTX-M-15 (24) CTX-M-1 (6) CTX-M-3 (11)	High	(53)
Kenya and Malawi (not specified)	18	*S. typhimurium*	Hospital (n/r)	Blood (100)	OXA-1 (100) TEM-1 (100)	High	(54)
Rwanda (2009)	196	*Enterobacteriaceae*	Hospital (38.3) Community (5.9)	Urine (100)	Not analyzed	Middle	(55)
Tanzania (2009–2010)	17	*Enterobacteriaceae*	Hospital (n/r)	Blood (100)	CTX-M-15 (100)	Medium	(56)
Tanzania (not specified)	32	*E. coli*	Hospital (n/r)	Wound (34.3) Urine (25) Pus (21.9) Blood (18.8)	CTX-M-15 (100) TEM-1 (25)	High	(57)

n/r: not relevant.
8.8–13.1% in urine, nasopharyngeal, and wound samples from South Africa (74, 75, 77).

The most common type of genes involved in the African hospital strains of ESBL is class A ESBLs. CTX-M-15 is the most prevalent gene in a high proportion of the samples, disregarding country. It is usually combined with other types of CTX-M, TEM, and SHV genes (17–19, 22, 25, 28, 29, 34, 38, 40–43, 46, 51, 53, 56–59, 65–67, 69, 70, 78). There is a high proportion of class D ESBLs existing, mainly OXA-1, and it has been found in between 3.3 and 93.3% of the studied isolates (34, 38, 40, 53, 54, 58, 59, 67, 69, 78, 80). pAmpC genes exist in some isolates, mainly DHA-1 and CMY-2 (16, 18, 21, 28, 29, 32, 49, 50, 53, 65, 69, 79), but because of the different classifications of ESBLs, these are not always included in the analyses performed in the studies. Disturbing results are the existence of carbapenemase genes. The NDM-1 gene was found in three samples taken from urine, blood, and an abscess from two patients in Morocco (29, 30), and the OXA-48 gene was found in a rectal swab sample from a patient originating from Libya (27). The presence of carbapenemase genes is a risk for future use of antimicrobial treatment in the region.

In the community setting, ESBL-producing *Enterobacteriaceae* have a lower prevalence than in the hospital: 6.7% of healthy students in Cameroon (58), 1.3% in a Moroccan community (33), 5.9% in Rwandan outpatients (55), 2.7% in a healthy community in Nigeria (72), 11.3% of outpatients in Central African Republic (60), 10% of healthy children in a remote village in Senegal (73), and 4.7% in a referral site in South Africa (77). The genes involved in the community were the same as in the hospital setting.

To solve the problem of ESBL-producing *Enterobacteriaceae* and other types of resistant bacteria, prevention is crucial and surveillance of antimicrobial resistance is needed to guide prevention interventions. Because of globalization, including international travel, it is important to have a global approach to antibiotic resistance. The majority of the studies in this review are performed in northern or southern Africa, leaving a large gap in the areas in between. Future research should focus on areas where research is scarce, describing the current situation in healthcare services and increasing the consistent surveillance to follow the changes in prevalence and incidence, making relevant interventions possible on both local and global levels.

Conclusion

ESBLs (class A and D) are common in Africa, with the gene CTX-M-15 being most prevalent, but other types, such as pAmpC and carbapenemases, also exist. Surveillance of antimicrobial resistance needs to be implemented in Africa to tailor interventions targeted at stopping the dissemination of ESBL-producing *Enterobacteriaceae*.

Country (study period)	Sample size	Organism	Setting and prevalence of ESBL (%)	Source of ESBL isolate (%)	Genes (%)	Evidence	Reference
Cameroon (2009)	121	*Enterobacteriaceae*	Hospital stool (100)	High (59)	CTX-M-15 (96)	(69)	
Cameroon (2009)	358	*Enterobacteriaceae*	Hospital stool (100)	High (58)	CTX-M-15 (98)	(68)	
Central African Republic (2004–2006)	443	*Enterobacteriaceae*	Community urine (100)	Not analyzed	OXA-1 (58)	(60)	

n/r: not relevant.
Country (study period)	Sample size	Organism	Setting and prevalence of ESBL (%)	Source of ESBL isolate (%)	Genes (%)	Evidence	Reference
Ghana (2008–2009)	156	E. coli	Hospital and community (49.4)	Urine (not specified)	CTX-M (not specified)	Middle	(61)
				Blood (not specified)	TEM (not specified)		
				Sputum (not specified)	SHV (not specified)		
				Wound (not specified)	Aspirates (not specified)		
Mali (2001–2008)	41	Salmonella	Community (63.4)	Stool (100)	CTX-M-15 (19.2)	High	(62)
					TEM-1 (96.2)		
					SHV-12 (80.8)		
Mali (2002–2005)	25	Enterobacteriaceae	Community (96)	Stool (100)	Exemplary 52 isolates:	High	(63)
					CTX-M-15 (80.8)		
					SHV-12 (7.7)		
					SHV-2 (1.9)		
					TEM-1 (78.8)		
Mali (2003)	68	Enterobacteriaceae	Community (83.3)	Stool (100)	Not analyzed	Middle	(64)
Niger (2007–2008)	55	Enterobacteriaceae	Hospital (40)	Stool (100)	CTX-M-15 (90.1)	High	(65)
					SHV-2a (9.1)		
					SHV-12 (9.1)		
					SHV-44 (4.6)		
					CMY-2 (4.6)		
					CMY-30 (4.6)		
Nigeria (1999)	1	E. aerogenes	Hospital (n/r)	Blood (100)	AmpC (100)	Low	(68)
					TEM-1 (100)		
					SHV-12 (100)		
Nigeria (2005–2007)	134	Enterobacteriaceae	Hospital (20.9)	Sputum (not specified)	TEM (81.3)	High	(69)
				Ear (not specified)	SHV (24.6)		
				Wound (not specified)	OXA (11.2)		
				Throat (not specified)	CTX-M-15 (17.9)		
				Vaginal (not specified)	CTX-M-3 (0.8)		
				Eye (not specified)	Exemplary 6 isolates:		
				Aspirates (not specified)	DHA-1 (66.7)		
				Urine (not specified)	ACT-1 (16.7)		
				Blood (not specified)	CMY-2 (16.6)		
				Catheter (not specified)			
Country (study period)	Sample size	Organism	Setting and prevalence of ESBL (%)	Source of ESBL isolate (%)	Genes (%)	Evidence	Reference
-----------------------------	-------------	----------	------------------------------------	----------------------------	--	----------	-----------
Nigeria (2006–2007)	116	E. coli	Hospital (10.3)	Exemplary 9 isolates:	CTX-M-15 (100)	High	(70)
				Urine (66.7)			
				Stool (25)			
				Blood (8.3)			
					High (70)		
Nigeria (2006–2007)	44	E. coli	Hospital (n/r)	CTX-M group I (100)	Middle (67)		
				Urine (77.2)			
				Vaginal (13.6)			
				Wound (9.0)			
Nigeria (2006–2007)	145	Enterobacteriaceae	Community and hospital (11.7)	Not analyzed	Middle (72)		
				Urine (82.4)			
				Vaginal (11.8)			
				Wound (5.9)			
Nigeria (2007–2008)	153	Salmonella	Hospital (27.5)	Not analyzed	Middle (71)		
		Shigella		Stool (100)			
Nigeria (2008–2009)	109	E. coli	Hospital (12.8)	CTX-M-15 (100)	High (66)		
				Urine (35.7)			
				Stool (21.4)			
				Wound (21.4)			
				Semen (7.1)			
				Blood (7.1)			
				Catheter (7.1)			
Senegal (not specified)	20	E. coli	Community (10)	CTX-M-15 (100)	High (73)		
				Stool (100)			
				TEM-1 (100)			
				OXA-1 (100)			

n/r: not relevant.
Table 6. Southern Africa

Country (study period)	Sample size	Organism	Setting and prevalence of ESBL (%)	Source of ESBL isolate (%)	Genes (%)	Evidence	Reference
South Africa (2001)	59	*Salmonella*	Hospital (n/r)	Stool (100)	TEM-1 (50.9) TEM-63 (20.3) TEM-116 (13.3) TEM-131 (3.3) SHV-12 (50) CTX-M-15 (6.7) CTX-M-34 (3.3) CTX-M-3 (3.3) CTX-M-37 (16.7) OXA-1 (3.3) CMY-2 (10)	High	(80)
South Africa (2002–2003)	181	*Enterobacteriaceae*	Hospital (8.8)	Nasopharyngeal (100)	Not analyzed	Middle	(75)
South Africa (2003–2009)	6,833	*Shigella*	Community (0.3)	Stool (80) Blood (20)	CTX-M-15 (90) CTX-M-14 (5) TEM-1 (80) SHV-2 (5) CMY-2 (30)	High	(79)
South Africa (2004–2009)	1,019	*Enterobacteriaceae*	Hospital (10.8)	Wound (100)	Not analyzed	Middle	(74)
South Africa (2005–2006)	1,125	*Enterobacteriaceae*	Hospital (13.1) Community (4.7)	Urine (100)	Not analyzed	Middle	(77)
South Africa (2007)	46	*Enterobacteriaceae*	Hospital (n/r)	Not specified	TEM (95.7) SHV (58.7) CTX-M (54.4) Exemplary 10 isolates of CTX-M: CTX-M-15 (100). CTX-M-15 (59.1) CTX-M-14 (31.8) CTX-M-3 (4.6) SHV-2 (4.6) TEM-1 (54.6) TEM-2 (4.6) OXA-1 (40.9)	Middle	(76)
South Africa (2008–2009)	22	*E. coli*	Hospital (n/r)	Urine (77.3) Pus (22.7)	High	(78)	

n/r: not relevant.
Competing interest and funding

The author declares that he has no conflict interests.

References

1. Colodner R, Raz R. Extended-spectrum beta-lactamases: the end of cephalosporins? Isr Med Assoc J 2005; 7: 336–8.
2. Jaggi N, Sissodia P, Sharma L. Control of multidrug resistant bacteria in a tertiary care hospital in India. Antimicrob Resist Infect Control 2012; 1: 23.
3. Kanafani ZA, Mehio-Sibai A, Araji GF, Kanaan M, Kanj SS. Epidemiology and risk factors for extended-spectrum beta-lactamase-producing organisms: a case control study at a tertiary care center in Lebanon. Am J Infect Control 2005; 33: 326–32.
4. Marcel JP, Alfa M, Baquero F, Etienne J, Goossens H, Harbarth S, et al. Healthcare-associated infections: think globally, act locally. Clin Microbiol Infect 2008; 14: 95–96.
5. Tanden T, Cars O, Melhus A, Lowdin E. Foreign travel is a major risk factor for colonization with Escherichia coli producing CTX-M-type extended-spectrum beta-lactamases: a prospective study with Swedish volunteers. Antimicrob Agents Chemother 2010; 54: 3564–8.
6. Canton R, Novais A, Valverde A, Machado E, Peixe L, Baquero F, et al. Prevalence and spread of extended-spectrum beta-lactamase-producing Enterobacteriaceae in Europe. Clin Microbiol Infect 2008; 14(Suppl 1): 144–53.
7. Coque TM, Baquero F, Canton R. Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro Surveill 2008; 13(47): 1–11.
8. Bush K. Extended-spectrum beta-lactamases in North America, 1987–2006. Clin Microbiol Infect 2008; 14(Suppl 1): 134–43.
9. Jean SS, Hsieh PR. High burden of antimicrobial resistance in Asia. Int J Antimicrob Agents 2011; 37: 291–5.
10. ECDC (2008). EARRS annual report 2008. Bilthoven, the Netherlands: European Center for Disease Prevention and Control.
11. Hoban DJ, Lascols C, Nicolle LE, Badal R, Bouchillon S, Hackel M, et al. Antimicrobial susceptibility of Enterobacteriaceae, including molecular characterization of extended-spectrum beta-lactamase-producing species, in urinary tract isolates from hospitalized patients in North America and Europe: results from the SMART study 2009–2010. Diagn Microbiol Infect Dis 2012; 74: 62–7.
12. Lu PL, Liu YC, Toh H, Lee YL, Liu YM, Ho CM, et al. Epidemiology and antimicrobial susceptibility profiles of Gram-negative bacteria causing urinary tract infections in the Asia-Pacific region: 2009–2010 results from the Study for Monitoring Antimicrobial Resistance Trends (SMART). Int J Antimicrob Agents 2012; 40(Suppl): S37–43.
13. Bell JM, Chitsaz M, Turnidge JD, Barton M, Walters LJ, Jones RN. Prevalence and significance of a negative extended-spectrum beta-lactamase (ESBL) confirmation test result after a positive confirmatory screening test result for isolates of Escherichia coli and Klebsiella pneumoniae: results from the SENTRY Asia-Pacific Surveillance Program. J Clin Microbiol 2007; 45: 1478–82.
14. Hedin A, Kallestål C. Knowledge-based public health work Part 2. Stockholm: National Institute of Public Health; 2004.
15. United Nations (2011). Composition of macro geographical (continental) regions, geographical sub-regions, and selected economic and other groupings. Available from: http://unstats.un.org/unsd/methods/m49/m49regin.htm [cited 1 October 2012].
16. Ibadene H, Messai Y, Ammari H, Alouache S, Verdet C, Bakour R, et al. Prevalence of plasmid-mediated AmpC beta-lactamases among Enterobacteriaceae in Algiers hospitals. Int J Antimicrob Agents 2009; 34: 340–2.
17. Ibadene H, Messai Y, Ammari H, Ramdani-Bouguessa N, Lounes S, Bakour R, et al. Dissemination of ESBL and Qnr determinants in Enterobacter cloacae in Algeria. J Antimicrob Chemother 2008; 62: 133–6.
18. Messai Y, Ibadene H, Benhassine T, Alouache S, Tazir M, Gautier V, et al. Prevalence and characterization of extended-spectrum beta-lactamases in Klebsiella pneumoniae in Algiers hospitals (Algeria). Pathol Biol (Paris) 2008; 56: 319–25.
19. Naas T, Bentchouala C, Cuzon G, Yao S, Lezzar A, Smati F, et al. Outbreak of Salmonella enterica serotype Infantis producing ArmA 16S RNA methylase and CTX-M-15 extended-spectrum beta-lactamase in a neonatology ward in Constantine, Algeria. Int J Antimicrob Agents 2011; 38: 135–9.
20. Naas T, Bentchouala C, Lima S, Lezzar A, Smati F, Scheffel JM, et al. Plasmid-mediated 16S rRNA methylases among extended-spectrum-beta-lactamase-producing Salmonella enterica Senftenberg isolates from Algeria. J Antimicrob Chemother 2009; 64: 866–8.
21. Nedjai S, Barguigua A, Djahmi N, Jamali L, Zerouali K, Dekhil M, et al. Prevalence and characterization of extended spectrum beta-lactamases in Klebsiella Enterobacter-Serratia group bacteria, in Algeria. Med Mal Infect 2012; 42: 20–9.
22. Ramdani-Bouguessa N, Manageiro V, Jones-Dias D, Ferreira E, Tazir M, Canica M. Role of SHV beta-lactamase variants in resistance of clinical Klebsiella pneumoniae strains to beta-lactams in an Algerian hospital. J Med Microbiol 2011; 60: 983–7.
23. Fam N, Leflon-Guibout V, Fouda S, Aboul-Fadl L, Marcon E, Desouky D, et al.CTX-M-15-producing Escherichia coli clinical isolates in Cairo (Egypt), including isolates of clonal complex ST10 and clones ST131, ST73, and ST405 in both community and hospital settings. Microb Drug Resist 2011; 17: 67–73.
24. Hassan WM, Hashim A, Domany R. Plasmid mediated quinolone resistance determinants qnr, aac(6’)-Ib-cr, and qep in ESBL-producing Escherichia coli clinical isolates from Egypt. Indian J Med Microbiol 2012; 30: 442–7.
25. Khalaf NG, Eletreby MM, Hanson ND. Characterization of CTX-M ESBLs in Enterobacter cloacae, Escherichia coli and Klebsiella pneumoniae clinical isolates from Cairo, Egypt. BMC Infect Dis 2009; 9: 84.
26. Isendahl J, Turlej-Rogacka A, Manjuba C, Rodrigues A, Giske CM, Naucler P. Fecal carriage of ESBL-producing E. coli and K. pneumoniae in children in Guinea-Bissau: a hospital-based cross-sectional study. PLoS One 2012; 7: e51981.
27. Piras M, Andlovic A, Cesar T, Zohar-Cetnik T, Kobola L, Kolman J, et al. A case of OXA-48 carbapenemase-producing Klebsiella pneumoniae in a patient transferred to Slovenia from Libya, November. Euro Surveill 2011; 16: 20042.
28. Bouchakour M, Zerouali K, Gros Claude JD, Aamarouh H, El-Mdaghi N, Courvalin P, et al. Plasmid-mediated quinolone resistance in expanded spectrum beta lactamase producing Enterobacteriaceae in Morocco. Clin Microbiol Infect 2011; 17: 739–40.
29. Poirel L, Benouda A, Hays C, Nordmann P. Emergence of NDM-1-producing Klebsiella pneumoniae in Morocco. J Anti-microb Chemother 2011; 66: 2781–3.
30. Villa L, Poirel L, Nordmann P, Carta C, Carattoli A. Complete sequencing of an IncI plasmid carrying the blaNDM-1,
blaCTX-M-15 and qnrB1 genes. J Antimicrob Chemother 2012; 67: 1645–50.
31. Barguigia A, El Otmani F, Talmi M, Bourjilat F, Haouzane F, Zerouali K, et al. Characterization of extended-spectrum beta-lactamase-producing *Escherichia coli* and *Klebsiella pneumoniae* isolates from the community in Morocco. J Med Microbiol 2011; 60: 1344–52.
32. Barguigia A, El Otmani F, Talmi M, Reguig A, Jamali L, Zerouali K, et al. Prevalence and genotypic analysis of plasmid-mediated beta-lactamases among urinary *Klebsiella pneumoniae* isolates in Moroccan community. J Antibioto (Tokyo) 2013; 66: 11–16.
33. Bourjilat F, Bouchrif B, Dersi N, Claude JD, Amarouch H, Timinouni M. Emergence of extended-spectrum beta-lactamases-producing *Escherichia coli* in community-acquired urinary infections in Casablanca, Morocco. J Infect Dev Ctries 2011; 5: 850–5.
34. Abbassi MS, Torres C, Achour W, Vinue L, Saenz Y, Costa D, et al. Genetic characterisation of CTX-M-15-producing *Klebsiella pneumoniae* and *Escherichia coli* strains isolated from stem cell transplant patients in Tunisia. Int J Antimicrob Agents 2008; 32: 308–14.
35. Ben Achour N, Mercuri PS, Ben Moussa M, Galleni M, Belhadj O. Characterization of a novel extended-spectrum TEM-type beta-lactamase, TEM-164, in a clinical strain of *Klebsiella pneumoniae*. Microb Drug Resist 2009; 15: 195–9.
36. Ben Achour N, Mercuri PS, Power P, Belhadj C, Ben Moussa M, Galleni M, et al. First detection of CTX-M-28 in a Tunisian hospital from a cefotaxime-resistant *Klebsiella pneumoniae* strain. Pathol Biol (Paris) 2009; 57: 343–5.
37. Ben Sallem R, Ben Slama K, Estepa V, Jouini A, Gharfa H, Klibi N, et al. Prevalence and characterization of extended-spectrum beta-lactamase (ESBL)-producing *Escherichia coli* isolates in healthy volunteers in Tunisia. Eur J Clin Microbiol Infect Dis 2012; 31: 1511–16.
38. Ben Slama K, Ben Sallem R, Jouini A, Rachid S, Moussa L, Saenz Y, et al. Diversity of genetic lineages among CTX-M-15 and CTX-M-14 producing *Escherichia coli* strains in a Tunisian hospital. Curr Microbiol 2011; 62: 1794–801.
39. Chouchani C, El Salabi A, Marrakechi R, Ferchichi L, Walsh TR. Characterization of IncA/C conjugative plasmid harboring bla TEM-52 and bla CTX-M-15 extended-spectrum beta-lactamases in clinical isolates of *Escherichia coli* in Tunisia. Eur J Clin Microbiol Infect Dis 2012; 31: 1081–7.
40. Dahmen S, Bettaieb D, Mansour W, Bouajaaf N, Bouallegue O, Arlet G. Characterization and molecular epidemiology of extended-spectrum beta-lactamases in clinical isolates of Enterobacteriaceae in a Tunisian University Hospital. Microb Drug Resist 2010; 16: 163–70.
41. Dahmen S, Poirel L, Mansour W, Bouallegue O, Nordmann P. Prevalence of plasmid-mediated quinolone resistance determinants in Enterobacteriaceae from Tunisia. Clin Microbiol Infect 2010; 16: 1019–23.
42. Elhani D, Bakir L, Aouni M, Passet V, Arlet G, Bрисse S, et al. Molecular epidemiology of extended-spectrum beta-lactamase-producing *Klebsiella pneumoniae* strains in a university hospital in Tunis, Tunisia, 1999–2005. Clin Microbiol Infect 2010; 16: 157–64.
43. Hammani S, Boutiba-Ben Boubaker I, Saidani M, Lakhal E, Ben Hassen A, Kamoun A, et al. Characterization and molecular epidemiology of extended spectrum beta-lactamase producing *Enterobacter cloaca* isolated from a Tunisian hospital. Microb Drug Resist 2012; 18: 59–65.
44. Lahlaoui H, Anis BH, Mohamed K, Mohamed BM. Emergence of SHV-12 extended spectrum beta-lactamase among clinical isolates of *Enterobacter cloace* in Tunisia. Microb Pathog 2012; 53: 64–5.
45. Lahlaoui H, Dahmen S, Moussa MB, Omранe B. First detection of TEM-116 extended-spectrum beta-lactamase in a *Providencia stuartii* isolate from a Tunisian hospital. Indian J Med Microbiol 2011; 29: 258–61.
46. Lahlaoui H, Poirel L, Barguellil F, Moussa MB, Nordmann P. Carbapenem-hydrolyzing class D beta-lactamase OXA-48 in *Klebsiella pneumoniae* isolates from Tunisia. Eur J Clin Microbiol Infect Dis 2012; 31: 937–9.
47. Lahlaoui H, Poirel L, Moussa MB, Ferjani M, Omранe B, Nordmann P. Nosocomial dissemination of extended-spectrum beta-lactamase VEB-1a-producing *Providencia stuartii* isolates in a Tunisian intensive care unit. Indian J Med Microbiol 2012; 30: 1267–70.
48. Mahrouki S, Ben-Achour N, Chouchani C, Ben-Moussa M, Belhadj O. Identification of plasmid-encoded extended spectrum beta-lactamases produced by a clinical strain of *Proteus mirabilis*. Pathol Biol (Paris) 2009; 57: e55–9.
49. Mahrouki S, Bourouis A, Chahi H, Ouertani R, Ferjani M, Moussa MB, et al. First characterisation of plasmid-mediated quinolone resistance-qnrS1 co-expressed bla CTX-M-15 and bla DHA-1 genes in clinical strain of *Morganella morganii* recovered from a Tunisian intensive care unit. Indian J Med Microbiol 2012; 30: 437–41.
50. Mniif B, Ktari S, Chaara A, Medioub F, Rhimi F, Bouaziz M, et al. Nosocomial dissemination of *Providencia stuartii* isolates carrying bla OXA-48, bla PER-1, bla CMY-4 and qnrA6 in a Tunisian hospital. J Antimicrob Chemother 2013; 68: 329–32.
51. Rejiba S, Mercuri PS, Power P, Kechrid A. Emergence and dominance of CTX-M-15 extended spectrum beta-lactamase among *Escherichia coli* isolates from children. Microb Drug Resist 2011; 17: 135–40.
52. Beyene G, Nair S, Asrat D, Mengistu Y, Engers H, Wain J. Multidrug resistant *Salmonella concord* is a major cause of salmonellosis in children in Ethiopia. J Infect Dev Ctries 2011; 5: 23–33.
53. Kiuru J, Kariuki S, Goddeers BM, Butaye P. Analysis of beta-lactamase phenotypes and carriage of selected beta-lactamase genes among *Escherichia coli* strains obtained from Kenyan patients during an 18-year period. BMC Microbiol 2012; 12: 155.
54. Boyle F, Healy G, Hale J, Kariuki S, Cormican M, Morris D. Characterization of a novel extended-spectrum beta-lactamase phenotype from OXA-1 expression in *Salmonella typhimurium* strains from Africa and Ireland. Diagn Microbiol Infect Dis 2011; 70: 549–53.
55. Muvunyi CM, Masaisa F, Bayingana C, Mutesa L, Msemakweri A, Mwiirwa G, et al. Decreased susceptibility to commonly used antimicrobial agents in bacterial pathogens isolated from urinary tract infections in Rwanda: need for new antimicrobial guidelines. Am J Trop Med Hyg 2011; 84: 923–8.
56. Mshana SE, Gerwing L, Minde M, Hain T, Domann E, Lyamuya E, et al. Outbreak of a novel *Enterobacter* sp. carrying blaCTX-M-15 in a neonatal unit of a tertiary care hospital in Tanzania. Int J Antimicrob Agents 2011; 38: 265–9.
57. Mshana SE, Imirzalioglu C, Hain T, Domann E, Lyamuya EF, Chakraborty T. Multiple ST clonal complexes, with a predominance of ST131, of *Escherichia coli* ST131 recovered from Enterobacteriaceae from patients during an 18-year period. BMC Microbiol 2012; 82.
Lonchel CM, Melin P, Ganguo-Pieboji J, Assoumou MC, Boreux R, De Mol P. Extended-spectrum beta-lactamase-producing Enterobacteriaceae in Cameroonian hospitals. Eur J Clin Microbiol Infect Dis 2013; 32: 79–87.

Bercion R, Mossoro-Kpinde D, Manirakiza A, Le Faou A. Increasing prevalence of antimicrobial resistance among Enterobacteriaceae uropathogens in Bangui, Central African Republic. J Infect Dev Ctries 2009; 3: 187–90.

Feglo P, Adu-Sarkodie Y, Ayisi L, Jain R, Spurbeck RR, Tande D, Jallot N, Bougoudogo F, Montagnon T, Gouriou S, Boisrame-Gastrin S, Tande D, Munck MR, Gouriou S, Woerther PL, Angebault C, Jacquier H, Hugede HC, Janssens Aibinu I, Odugbemi T, Koenig W, Ghebremedhin B. Sequence Iroha IR, Esimone CO, Neumann S, Marlinghaus L, Korte M. Characterization of extended-spectrum beta-lactamase-encoding genes isolated from patients with complicated intra-abdominal infections in South African hospitals (SMART Study 2004–2009): impact of the new carbapenem breakpoints. Surg Infect (Larchmt) 2012; 13: 43–9.

Cotton MF, Wasserman E, Smit J, Whitelaw A, Zar HJ. High incidence of antimicrobial resistant organisms including extended spectrum beta-lactamase producing Enterobacteriaceae and methicillin-resistant Staphylococcus aureus in nasopharyngeal and blood isolates of HIV-infected children from Cape Town, South Africa. BMC Infect Dis 2008; 8: 40.

Ehlers MM, Veldsman C, Makgotlho EP, Dove MG, Hoosen AA, Kock MM. Detection of blaSHV, blaTEM and blaCTX-M antibiotic resistance genes in randomly selected bacterial isolates from community hospitals in South Africa. FEMS Immunol Med Microbiol 2009; 56: 191–2.

Habte TM, Dube S, Ismail N, Hoosen AA. Hospital and community isolates of uropathogens at a tertiary hospital in Durban, South Africa. Diagn Microbiol Infect Dis 2008; 62: 86–91.