Some Estimates of the Maximum Modulus for Polynomials with Gaps

Eze R. Nwaeze *
Department of Mathematics, Tuskegee University, Tuskegee, AL 36088, USA

Received 25 May 2018; Accepted (in revised version) 23 November 2018

Abstract. Let \(p(z) \) be a polynomial of degree \(n \) having some zeros at a point \(z_0 \in \mathbb{C} \) with \(|z_0| < 1 \) and the rest of the zeros lying on or outside the boundary of a prescribed disk. In this brief note, we consider this class of polynomials and obtain some bounds for \(\left(\max_{|z|=R} |p(z)| \right)^s \) in terms of \(\left(\max_{|z|=1} |p(z)| \right)^s \) for any \(R \geq 1 \) and \(s \in \mathbb{N} \).

Key Words: Polynomials, maximum modulus, zeros, prescribed disk.
AMS Subject Classifications: 30C10, 30C80, 30D15, 26C10, 26D10

1 Introduction

Let \(p(z) \) be a polynomial of degree \(n \). For effective management of space, we shall adopt the following notations:

\[
\begin{align*}
D(0,k) &:= \{z : |z| < k\}, & S(0,k) &:= \{z : |z| = k\}, & M(p,R) &:= \max_{|z|=R} |p(z)|, \\
m(p,k) &:= \min_{|z|=k} |p(z)|, & ||p|| &:= \max_{|z|=1} |p(z)|,
\end{align*}
\]

where \(k \) and \(R \) are positive real numbers.

By using the maximum modulus principle, one obtains that for \(R \geq 1 \),

\[
M(p,R) \geq ||p||.
\]

The general problem of interest, however, is the following:

\[\text{(P)}: \quad \text{Find a factor } (\ast) \text{ such that } M(p,R) \leq (\ast) ||p|| \text{ for any } R \geq 1.\]

In view of (P), S. Bernstein [6, pp. 442] observed that for \(R \geq 1 \),

\[
M(p,R) \leq R^n||p||. \tag{1.1}
\]

*Corresponding author. Email address: enwaeze@tuskegee.edu (E. R. Nwaeze)
The above result is best possible with equality holding for $p(z) = λz^n$, $λ$ being a complex number. Since the extremal polynomial $p(z) = λz^n$ in (1.1) has all its zeros at the origin. It should be possible to improve upon the bound in (1.1) for polynomial not vanishing at the origin. For this, Ankeny and Rivlin [1] proved that if $p(z)$ has no zero in $D(0, 1)$, then for $R \geq 1$,

$$M(p, R) \leq \frac{R^n + 1}{2}||p||.$$ \hspace{1cm} (1.2)

As a sharpening of the above result, Aziz and Dawood [3] proved that for $R \geq 1$,

$$M(p, R) \leq \frac{R^n + 1}{2}||p|| - \frac{R^n - 1}{2}m(p, 1).$$ \hspace{1cm} (1.3)

Now, for the class of polynomials not vanishing in the disk $D(0, k), k \geq 1$, Shah [10] proved that if $p(z)$ is a polynomial of degree n having no zero in $D(0, k), k \geq 1$, then for every real number $R > k$,

$$M(p, R) \leq \frac{R^n + 1}{1 + k}||p|| - \frac{R^n - 1}{1 + k}m(p, k).$$ \hspace{1cm} (1.4)

Several research articles have been written on this subject of inequalities (see for example Govil and Mohapatra [4], Rahman and Schmeisser [9], and recent article of Govil and Nwaeze [5].)

Inspired by the work in [8], we consider polynomials having some zeros at a point $z_0 \in \mathbb{C}$ with $|z_0| < 1$ and the rest of the zeros lying on or outside the boundary of a prescribed disk. For this, we estimate $(M(p, R)/||p||)^s$ for any $R \geq 1$ and any natural number s. The paper is organized as follows: we present two lemmas in Section 2 which will be used in the proof of our results. In Section 3, the results are formulated and proved and then followed by a short conclusion in Section 4.

2 Lemmas

For the proof of our theorems, we will need the following lemmas due to Nakprasit and Somsuwan [7].

Lemma 2.1. Let

$$p(z) = (z - z_0)^m \left(a_0 + \sum_{j=\mu}^{n-m} a_j z^j\right), \hspace{0.5cm} 1 \leq \mu \leq n - m, \hspace{0.5cm} 0 \leq m \leq n - 1,$$

be a polynomial of degree n having zero of order m at z_0 with $|z_0| < 1$ and the remaining $n - m$ zeros are outside $D(0, k), k \geq 1$. Then

$$\max_{|z|=1} |p'(z)| \leq \left[\frac{m}{(1 - |z_0|)} + \frac{A}{(1 - |z_0|)^m} \right] ||p|| - \frac{A}{(k + |z_0|)^m}m(p, k),$$
where

\[A = \frac{(1 + |z_0|)^{m+1}(n - m)}{(1 + k^\mu)(1 - |z_0|)}. \]

Lemma 2.2. Let

\[p(z) = (z - z_0)^m\left(a_0 + \sum_{j=\mu}^{n-m} a_jz^j\right), \quad 1 \leq \mu \leq n - m, \quad 0 \leq m \leq n - 1, \]

be a polynomial of degree \(n \) having zero of order \(m \) at \(z_0 \) with \(|z_0| < 1 \) and the remaining \(n - m \) zeros are on \(S(0,k) \), \(k \geq 1 \). Then

\[\max_{|z|=1} |p'(z)| \leq \left[\frac{m}{(1 - |z_0|)} + \frac{(1 + |z_0|)^{m+1}(n - m)}{(k^{n-m-2\mu} + k^{n-m-\mu+1})(1 - |z_0|)^{m+1}} \right] ||p||. \]

3 Main results

Theorem 3.1. Let

\[p(z) = z^m\left(a_0 + \sum_{j=\mu}^{n-m} a_jz^j\right), \quad 1 \leq \mu \leq n - m, \quad 0 \leq m \leq n - 1, \]

be a polynomial of degree \(n \) having zero of order \(m \) at the origin and the remaining \(n - m \) zeros are outside \(D(0,k) \), \(k \geq 1 \). Then for \(R \geq 1 \) and every natural number \(s \),

\[[M(p, R)]^s \leq \left[\frac{n + nk^\mu + (n + mk^\mu)(R^{ns} - 1)}{n(1 + k^\mu)} \right] ||p||^s - \left[\frac{(n - m)(R^{ns} - 1)m(p,k)}{nk^m(1 + k^\mu)} \right] ||p||^{s-1}. \]

If we take \(m = 0 \) and \(s = 1 \), we obtain

Corollary 3.1. Let

\[p(z) = a_0 + \sum_{j=\mu}^{n} a_jz^j, \quad 1 \leq \mu \leq n, \]

be a polynomial of degree \(n \) having all its zeros outside \(D(0,k) \), \(k \geq 1 \). Then for \(R \geq 1 \),

\[M(p, R) \leq \frac{k^\mu + R^n}{1 + k^\mu} ||p|| - \frac{R^n - 1}{1 + k^\mu} m(p,k). \]

The above corollary is a generalization of a result due to Aziz [2, Theorem 4]. Setting \(k = 1 \) in Corollary 3.1, we obtain the result of Aziz and Dawood given in inequality (1.3). Instead of proving Theorem 3.1, we will prove the following more general result.
Theorem 3.2. Let

\[p(z) = (z - z_0)^m \left(a_0 + \sum_{j=\mu}^{n-m} a_j z^j \right), \quad 1 \leq \mu \leq n - m, \quad 0 \leq m \leq n - 1, \]

be a polynomial of degree \(n \) having zero of order \(m \) at \(z_0 \) with \(|z_0| < 1 \) and the remaining \(n - m \) zeros are outside \(D(0, k), k \geq 1 \). Then for \(R \geq 1 \) and every natural number \(s \),

\[|M(p, R)|^s \leq \left[1 + \frac{m(R^{ns} - 1)}{n(1 - |z_0|)} + \frac{A(R^{ns} - 1)}{n(1 - |z_0|)^m} \right] |p|^s \]

\[- \left[\frac{A(R^{ns} - 1)m(p, k)}{n(k + |z_0|)^m} \right] |p|^{s-1}, \]

where

\[A = \frac{(1 + |z_0|)^m + (n - m)}{(1 + k^m)(1 - |z_0|)}. \]

Proof. Applying inequality (1.1) and Lemma 2.1 to the polynomial \(p'(z) \) which is of degree \(n - 1 \), it follows that for \(R \geq 1 \) and \(\theta \in [0, 2\pi] \), we have

\[|p'(Re^{i\theta})| \leq \max_{|z| = R} |p'(z)| \leq R^{n-1} \max_{|z| = 1} |p'(z)| \]

\[\leq R^{n-1} \left[\frac{m}{(1 - |z_0|)} + \frac{A}{(1 - |z_0|)^m} \right] |p| - \frac{AR^{n-1}}{(k + |z_0|)^m} m(p, k). \quad (3.1) \]

From the fundamental principle of calculus, we obtain that

\[|p(Re^{i\theta})|^s - |p(e^{i\theta})|^s = \int_1^R \frac{d[p(Re^{i\theta})]^s}{dt} \, dt = \int_1^R s[p(Re^{i\theta})]^{s-1} p'(Re^{i\theta}) e^{i\theta} \, dt. \quad (3.2) \]

This implies that

\[|p(Re^{i\theta})|^s \leq |p(e^{i\theta})|^s + s \int_1^R |p(Re^{i\theta})|^{s-1} |p'(Re^{i\theta})| \, dt. \quad (3.3) \]

Hence, using (2.1) and (3.1) together with the above inequality, we get

\[|M(p, R)|^s \leq |p|^s + s \int_1^R t^{ns-n} |p|^{s-1} |p'(te^{i\theta})| \, dt \]

\[\leq |p|^s + s |p|^s \left[\frac{m}{(1 - |z_0|)} + \frac{A}{(1 - |z_0|)^m} \right] \int_1^R t^{ns-1} \, dt \]

\[- s \frac{A |p|^{s-1}}{(k + |z_0|)^m} m(p, k) \int_1^R t^{ns-1} \, dt \]

\[= \left[1 + \frac{m(R^{ns} - 1)}{n(1 - |z_0|)} + \frac{A(R^{ns} - 1)}{n(1 - |z_0|)^m} \right] |p|^s - \left[\frac{A(R^{ns} - 1)m(p, k)}{n(k + |z_0|)^m} \right] |p|^{s-1}. \]
That proves our result. □

Theorem 3.3. Let

\[p(z) = (z - z_0)^m \left(a_0 + \sum_{j=\mu}^{n-m} a_j z^j \right), \quad 1 \leq \mu \leq n - m, \quad 0 \leq m \leq n - 1, \]

be a polynomial of degree \(n \) having zero of order \(m \) at \(z_0 \) with \(|z_0| < 1 \) and the remaining \(n - m \) zeros are on \(S(0, k) \), \(k \geq 1 \). Then for \(R \geq 1 \) and every natural number \(s \),

\[
[M(p, R)]^s \leq \left[1 + \frac{m(R^n - 1)}{n(1 - |z_0|)} + \frac{(n - m)(1 + |z_0|)^{m+1}(R^n - 1)}{n(1 - |z_0|)^{m+1}(k^{n-m-2\mu+1} + k^{n-m-\mu+1})} \right] ||p||^s.
\]

By choosing \(s = 1 \) in Theorem 3.3 above, we obtain:

Corollary 3.2. Let

\[p(z) = (z - z_0)^m \left(a_0 + \sum_{j=\mu}^{n-m} a_j z^j \right), \quad 1 \leq \mu \leq n - m, \quad 0 \leq m \leq n - 1, \]

be a polynomial of degree \(n \) having zero of order \(m \) at \(z_0 \) with \(|z_0| < 1 \) and the remaining \(n - m \) zeros are on \(S(0, k) \), \(k \geq 1 \). Then for \(R \geq 1 \),

\[
M(p, R) \leq \left[1 + \frac{m(R^n - 1)}{n(1 - |z_0|)} + \frac{(n - m)(1 + |z_0|)^{m+1}(R^n - 1)}{n(1 - |z_0|)^{m+1}(k^{n-m-2\mu+1} + k^{n-m-\mu+1})} \right] ||p||.
\]

The next corollary follows by setting \(z_0 = m = 0 \) in the above corollary.

Corollary 3.3. Let

\[p(z) = a_0 + \sum_{j=\mu}^{n} a_j z^j, \quad 1 \leq \mu \leq n, \]

be a polynomial of degree \(n \) having all its zeros on \(S(0, k) \), \(k \geq 1 \). Then for \(R \geq 1 \),

\[
M(p, R) \leq \left[1 + \frac{R^n - 1}{k^{n-2\mu+1} + k^{n-\mu+1}} \right] ||p||.
\]

Proof. We now present the proof of Theorem 3.3 by following a similar fashion as in the proof of Theorem 3.2. Using Lemma 2.2, we have that for \(R \geq 1 \), and \(\theta \in [0, 2\pi) \)

\[
[M(p, R)]^s \leq ||p||^s + s \int_1^R t^{ns-n}||p||^{s-1}|p'(te^{i\theta})| \, dt \\
\leq ||p||^s + s \left[\frac{m}{(1 - |z_0|)} + \frac{(1 + |z_0|)^{m+1}(n - m)}{(k^{n-m-2\mu+1} + k^{n-m-\mu+1})(1 - |z_0|)^{m+1}} \right] \times ||p|| \int_1^R t^{ns-1} \, dt,
\]

hence, Theorem 3.3 follows. □
4 Conclusions

Much have not been done for polynomials having some of their zeros at a point and the rest on or outside a prescribed disk. This work investigates such class of polynomials to see how $[M(p, R)]^s$ compares with $||p||^s$ for any given $R \geq 1$ and $s \in \mathbb{N}$.

Acknowledgements

The author would like to thank the anonymous referee for his/her comments regarding this work.

References

[1] N. C. Ankeny and T. J. Rivlin, On a theorem of S. Bernstein, Pacific J. Math., 5 (1955), 849–852.
[2] A. Aziz, Growth of polynomials whose zeros are within or outside a circle, Bull. Aust. Math. Soc., 35 (1987), 247–256.
[3] A. Aziz and Q. M. Dawood, Inequalities for a polynomial and its derivative, J. Approx. Theory, 54 (1988), 306–313.
[4] N. K. Govil and R. N. Mohapatra, Markov and Bernstein Type inequalities for Polynomials, J. Inequal. Appl., 3 (1999), 349–387.
[5] N. K. Govil and E. R. Nwaeze, Bernstein type inequalities concerning growth of polynomials, in Mathematical Analysis, Approximation Theory and Their Applications, Springer International Publishing, (2016), 293–316.
[6] G. V. Milovanović, D. S. Mitrinović and Th. M. Rassias (Eds), Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, (1994).
[7] K. M. Nakprasit and J. Somsuwan, An upper bound of a derivative for some class of polynomials, J. Math. Inequal., 11(1) (2017), 143–150.
[8] E. R. Nwaeze, A Note on a result due to Ankeny and Rivlin, Appl. Math. E-Notes, 16 (2016), 170–175.
[9] Q. I. Rahman and G. Schmeisser (Eds), Analytic Theory of Polynomials, Oxford University Press, New York, (2002).
[10] W. M. Shah, Extremal Properties and Bounds for the Zeros of Polynomials, Ph. D. Thesis, University of Kashmir, (1998).