Research Article

Ruijuan Li*, Xiaoting An, and Xinhong Zhang

The (1, 2)-step competition graph of a hypertournament

https://doi.org/10.1515/math-2021-0047
received October 12, 2020; accepted May 7, 2021

Abstract: In 2011, Factor and Merz [Discrete Appl. Math. 159 (2011), 100–103] defined the (1, 2)-step competition graph of a digraph. Given a digraph $D = (V, A)$, the (1, 2)-step competition graph of D, denoted $C_{1,2}(D)$, is a graph on $V(D)$, where $xy \in E(C_{1,2}(D))$ if and only if there exists a vertex $z \neq x, y$ such that either $d_{D}(x, z) = 1$ and $d_{D}(y, z) \leq 2$ or $d_{D}(y, z) = 1$ and $d_{D}(x, z) \leq 2$. They also characterized the (1, 2)-step competition graphs of tournaments and extended some results to the (i, j)-step competition graphs of tournaments. In this paper, the definition of the (1, 2)-step competition graph of a digraph is generalized to a hypertournament and the (1, 2)-step competition graph of a k-hypertournament is characterized. Also, the results are extended to (i, j)-step competition graphs of k-hypertournaments.

Keywords: k-hypertournament, (1, 2)-step competition graph, (i, j)-step competition graph

MSC 2020: 05C65, 05C12, 05C20

1 Terminology and introduction

Let $G = (V, E)$ be an undirected graph, or a graph for short. $V(G)$ and $E(G)$ are the vertex set and the edge set of G, respectively. The complement G' of a graph G is the graph with vertex set $V(G)$ in which two vertices are adjacent if and only if they are not adjacent in G. Let G_1 and G_2 be two graphs. The union of G_1 and G_2, denoted by $G_1 \cup G_2$, is the graph with vertex set $V(G_1) \cup V(G_2)$ and edge set $E(G_1) \cup E(G_2)$.

Let $D = (V, A)$ be a directed graph, or a digraph for short. $V(D)$ and $A(D)$ are the vertex set and the arc set of D, respectively. Let $i \geq 1$, $j \geq 1$. The (i, j)-step competition graph of D, denoted $C_{i,j}(D)$, is a graph on $V(D)$, where $xy \in E(C_{i,j}(D))$ if and only if there exists a vertex $z \neq x, y$ such that either $d_{D}(x, z) \leq i$ and $d_{D}(y, z) \leq j$ or $d_{D}(y, z) \leq i$ and $d_{D}(x, z) \leq j$. When $(i, j) = (1, 1)$, it is also called the competition graph of D.

The notion of competition graph was introduced by Cohen [1] as a means of determining the smallest dimension of ecological phase space. In recent years, many researchers investigated m-step competition graphs of some special digraphs and the competition numbers of some graphs etc. (see [2–4]). Particularly, in 1998, Fisher, Lundgren, Merz and Reid [5] studied the domination graphs and competition graphs of a tournament. Recall that a tournament is an orientation of a complete graph. In 2011, Factor and Merz [6] gave the definition of the (i, j)-step competition graph of a digraph. They also characterized the $(1, 2)$-step competition graph of a tournament and extended some results to the (i, j)-step competition graph of a tournament. They proved the following theorems related to this paper.

* Corresponding author: Ruijuan Li, School of Mathematical Science, Shanxi University, 030006, Taiyuan, P. R. China, e-mail: ruijuanli@sxu.edu.cn
Xiaoting An: School of Mathematical Science, Shanxi University, 030006, Taiyuan, P. R. China
Xinhong Zhang: Department of Applied Mathematics, Taiyuan University of Science and Technology, 030024, Taiyuan, P. R. China

Open Access. © 2021 Ruijuan Li et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.
Theorem 1.1. [6] A graph G on $n \geq 5$ vertices is the $(1, 2)$-step competition graph of some strong tournament if and only if G is K_n, $K_{n-1} - E(P_2)$, or $K_n - E(P_3)$.

Theorem 1.2. [6] Given a graph on n vertices, is the $(1, 2)$-step competition graph of some tournament if and only if G is one of the following graphs:

1. K_n, where $n \neq 2, 3, 4$;
2. $K_{n-1} \cup K_1$, where $n > 1$;
3. $K_n - E(P_3)$, where $n > 2$;
4. $K_n - E(P_2)$, where $n \neq 1, 4$, or
5. $K_n - E(K_3)$, where $n \geq 3$.

Theorem 1.3. [6] If T is a tournament with n vertices, $i \geq 1$ and $j \geq 2$, then $C_{i,j}(T) = C_{j,i}(T)$.

Given two integers n and k, $n \geq k > 1$, a k-hypertournament T on n vertices is a pair (V, A), where V is a set of vertices, $|V| = n$ and A is a set of k-tuples of vertices, called arcs, so that for any k-subset S of V, A contains exactly one of the k! k-tuples whose entries belong to S. As usual, we use $V(T)$ and $A(T)$ to denote the vertex set and the arc set of T, respectively. Clearly, a 2-hypertournament is merely a tournament. When $k = n$, the hypertournament has only one arc and it does not have much significance to study. Thus, in what follows, we consider $3 \leq k \leq n - 1$.

Let $T = (V, A)$ be a k-hypertournament on n vertices. For an arc a of T, $T - a$ denotes a hyperdigraph obtained from T by removing the arc a and \bar{a} denotes the set of vertices contained in a. If $v_i, v_j \in \bar{a}$ and v_i precedes v_j in a, we say that v_i dominates v_j in a. We also say the vertex v_j is an out-neighbour of v_i and use the following notation:

$$N^2_{A}(v_i) = \{v_j \in V \setminus \{v_i\} : v_i \text{ precedes } v_j \text{ in some arc } a \in A(T)\}.$$

We will omit the subscript A if the k-hypertournament T is known from the context.

A path P in a k-hypertournament T is a sequence $v_1a_1v_2a_2v_3 \ldots v_{t-1}a_{t-1}v_t$ of distinct vertices v_1, v_2, \ldots, v_t, $t \geq 1$ and distinct arcs $a_1, a_2, \ldots, a_{t-1}$ such that v_i precedes v_{i+1} in a_i, $1 \leq i \leq t - 1$. Meanwhile, let the vertex set $V(P) = \{v_1, v_2, \ldots, v_t\}$ and the arc set $A(P) = \{a_1, a_2, \ldots, a_{t-1}\}$. The length of a path P is the number of its arcs, denoted $\ell(P)$. A path from x to y is an (x, y)-path. The k-hypertournament T is called strong if T has an (x, y)-path for every pair x, y of distinct vertices in T.

A k-hypertournament T is said to be transitive if its vertices are labeled v_1, v_2, \ldots, v_n in such an order so that $i < j$ if and only if v_i precedes v_j in each arc containing v_i and v_j.

Now we generalize the $(1, 2)$-step competition graph of a digraph to a k-hypertournament.

Definition 1.4. The (i, j)-step competition graph of a k-hypertournament T with $i \geq 1$ and $j \geq 1$, denoted $C_{i,j}(T)$, is a graph on $V(T)$, where $xy \in E(C_{i,j}(T))$ if and only if there exist a vertex $z \neq x, y$ and an (x, y)-path P and a (y, z)-path Q satisfying the following:

(a) $y \notin V(P)$, $x \notin V(Q)$;
(b) $\ell(P) \leq i$ and $\ell(Q) \leq j$, or $\ell(Q) \leq i$ and $\ell(P) \leq j$;
(c) P and Q are arc-disjoint.

If $xy \in E(C_{i,j}(T))$, we say that x and y compete if $\ell(P) = 1$ and $\ell(Q) = 1$. $C_{i,j}(T)$ is also called the competition graph of the k-hypertournament T. Clearly, when $k = 2$, T is a tournament and $C_{1,2}(T)$ is the $(1, 2)$-step competition graph of T.

The k-hypertournaments form one of the most interesting classes of digraphs. For the class of k-hypertournaments, the popular topics are the Hamiltonicity and vertex-pancyclicity (see [7–10]). Besides, some researchers investigated the degree sequences and score sequences of k-hypertournaments (see [11,12]). Recently, the H-force set of a hypertournament was also studied (see [13]). In this paper, we study the $(1, 2)$-step competition graph of a k-hypertournament and extend Theorems 1.1–1.3 to k-hypertournaments.

In Sections 2 and 3, useful lemmas are provided to make the proof of the main results easier. In Sections 4 and 5, the $(1, 2)$-step competition graph of a (strong) k-hypertournament is characterized. In Section 6, the main results are extended to the (i, j)-step competition graph of a k-hypertournament.
2 The missing edges of \(C_{1,2}(T) \)

Let \(T = (V, A) \) be a \(k \)-hypertournament. For a pair of distinct vertices \(x \) and \(y \) in \(T \), \(A_T(x, y) \) denotes the set of all arcs of \(T \) in which \(x \) precedes \(y \), \(A_T[x, y] \) denotes the set of all arcs containing \(x, y \) in \(T \) and \(A_T^{xy} \) denotes the set of all arcs containing \(x, y \) in \(T \) and in which neither \(x \) nor \(y \) is the last entry.

Lemma 2.1. Let \(T \) be a \(k \)-hypertournament with \(n \) vertices, where \(3 \leq k \leq n - 1 \). Then \(xy \notin E(C_{1,2}(T)) \) if and only if one of the following holds:

(a) \(N^*(x) = \emptyset \);

(b) \(N^*(y) = \emptyset \);

(c) \(N^*(x) = \{y\} \);

(d) \(N^*(y) = \{x\} \);

(e) \(A_T^{xy} \) contains exactly an arc \(a \), and \(N_{T,a}^{-}(x) \subseteq \{y\} \), \(N_{T,a}^{+}(y) \subseteq \{x\} \).

Proof. First, we show the “if” part. Clearly, if one of (a)–(d) holds, we have \(xy \notin E(C_{1,2}(T)) \). Now we assume that the argument (e) holds. Since \(A_T^{xy} \) contains exactly an arc \(a \), and \(N_{T,a}^{-}(x) \subseteq \{y\} \), \(N_{T,a}^{+}(y) \subseteq \{x\} \), we have to use the unique arc \(a \) to obtain the out-neighbour except \(y \) of \(x \) and the out-neighbour except \(x \) of \(y \). So \(x \) and \(y \) are impossible to (1, 2)-step compete and hence \(xy \notin E(C_{1,2}(T)) \).

Now we show the “only if” part. Assume that \(xy \notin E(C_{1,2}(T)) \). Also, assume that \(x \) and \(y \) do not satisfy (a)–(d). That means \(N^*(x) \cap \{y\} \neq \emptyset , N^*(y) \cap \{x\} \neq \emptyset \). Now we show that \(x \) and \(y \) satisfy (e). Suppose \(A_T^{xy} \) consists of at least two arcs, say \(a_1, a_2 \in A_T^{xy} \). Let \(w_i \) be the last entry of \(a_i \) for \(i = 1, 2 \). If \(w_1 = w_2 \), then \(x \) and \(y \) compete, a contradiction. So assume \(w_1 \neq w_2 \). Note that \(a_1, a_2 \) are distinct from \(x \) and \(y \). Then \(A_T^{xy} \) contains exactly an arc \(a \), and \(N_{T,a}^{-}(x) \subseteq \{y\} \), \(N_{T,a}^{+}(y) \subseteq \{x\} \). Thus \(A_T^{xy} \) contains exactly an arc \(a \), and \(N_{T,a}^{-}(x) \subseteq \{y\} \), \(N_{T,a}^{+}(y) \subseteq \{x\} \).

By the proof of Lemma 2.1, we obtain the following result.

Corollary 2.2. Let \(T \) be a strong \(k \)-hypertournament with \(n \) vertices, where \(3 \leq k \leq n - 1 \). Then \(xy \notin E(C_{1,2}(T)) \) if and only if one of the following holds:

(a) \(N^*(x) = \{y\} \);

(b) \(N^*(y) = \{x\} \);

(c) \(A_T^{xy} \) contains exactly an arc \(a \), and \(N_{T,a}^{-}(x) \subseteq \{y\} \), \(N_{T,a}^{+}(y) \subseteq \{x\} \).

3 The forbidden subgraphs of \((C_{1,2}(T))^c \)

Lemma 3.1. Let \(G \) on \(n \) vertices be the \((1, 2) \)-step competition graph of some \(k \)-hypertournament \(T \), where \(3 \leq k \leq n - 1 \). Then the complement \(G^c \) of \(G \) does not contain a pair of disjoint edges.

Proof. Suppose the complement \(G^c \) of \(G \) contains a pair of disjoint edges, say \(xy \) and \(zw \). So \(xy, zw \notin E(G) \) and \(x, y, z, w \) are distinct. By Lemma 2.1, we have \(xy \) satisfies one of the cases (a)–(e) and \(zw \) satisfies one of the cases (a)–(e).
Suppose that at least one of xy and zw satisfies one of the cases (a)–(d). W.l.o.g., we assume that $N'(x) \subseteq \{y\}$. Then it must be true that the vertex z dominates x in each arc containing x, z but not containing w. Meanwhile, it must be true that the vertex w dominates x in each arc containing x, w but not containing z. So z and w compete and hence $zw \in E(G_{1,2}(T)) = E(G)$, a contradiction. Thus, both xy and zw satisfy (e).

However, since $A_T[x, y]$ contains exactly an arc a, and $N_{T-a}(x) \subseteq \{y\}, N_{T-a}(y) \subseteq \{x\}$, we have the vertex x must be the last entry in each arc containing x, z, w but not containing y and the vertex y must be the last entry in each arc containing y, z, w but not containing x. Thus, $A_T[z, w]$ contains at least two arcs, which contradicts the fact that zw satisfies (e).

The lemma holds.

Lemma 3.2. Let G on n vertices be the $(1, 2)$-step competition graph of some k-hypertournament T, where $3 \leq k \leq n - 1$. Then the complement G' of G does not contain 3-cycle.

Proof. Suppose to the contrary that the complement G' of G contains 3-cycle, say xyz. So $xy, xz, yz \notin E(G)$ and x, y, z are distinct. By Lemma 2.1, we have xy, xz and yz satisfy one of the cases (a)–(e), respectively.

Claim 1. None of xy, xz and yz satisfies the case (a) or (b).

Proof. Suppose at least one of xy, xz and yz satisfies the case (a) or (b). W.l.o.g., we assume that xy satisfies (a), i.e. $N'(x) = \emptyset$. Then it must be true that the vertex y dominates x in each arc containing x, y but not containing z. Also, the vertex z dominates x in each arc containing x, z but not containing y. So y and z compete and $yz \notin E(G_{1,2}(T)) = E(G)$, a contradiction. Thus, none of xy, xz and yz satisfies the case (a) or (b).

Claim 2. At most one of xy, xz and yz satisfies the case (c) or (d).

Proof. Suppose at least two edges among xy, xz and yz satisfy the case (c) or (d). W.l.o.g., we assume that both xy and yz satisfy (c) or (d). We consider the following four cases.

Case 1: Both xy and yz satisfy (c). It means that $N'(x) = \{y\}, N'(y) = \{z\}$. If xz satisfies (c), i.e. $N'(x) = \{z\}$, it contradicts $N'(x) = \{y\}$. If xz satisfies (d), i.e. $N'(x) = \{x\}$, the arcs containing simultaneously x, y, z do not satisfy $N'(x) = \{y\}, N'(y) = \{z\}$ and $N'(z) = \{x\}$, a contradiction. If xz satisfies (e), i.e. $A_T[x, z]$ contains exactly an arc a, then there exists a vertex w such that $w \in N'(x)$. Since $N'(x) = \{y\}$, we have $w = y$. So x is the second last entry, y is the last entry and z is any other entry in a. Then the vertex z dominates y in a. Also, the vertex x dominates y in each arc containing x, y but not containing z. So $xz \in E(G_{1,2}(T)) = E(G)$, a contradiction.

Case 2: Both xy and yz satisfy (d). It means that $N'(y) = \{x\}, N'(z) = \{y\}$. Similarly to Case 1, we can also get a contradiction.

Case 3: xy satisfies (c) and yz satisfies (d). It means that $N'(x) = \{y\}, N'(z) = \{y\}$. Now the arcs containing simultaneously x, y, z do not satisfy $N'(x) = \{y\}, N'(y) = \{z\}$, a contradiction.

Case 4: xy satisfies (d) and yz satisfies (c). It means that $N'(y) = \{x\}$ and $N'(y) = \{z\}$. Then $x = z$, a contradiction.

Thus, at most one of xy, xz and yz satisfies the case (c) or (d).

Claim 3. At most one of xy, xz and yz satisfies the case (e).

Proof. Suppose at least two edges among xy, xz and yz satisfy the case (e). W.l.o.g., we assume that both xz and yz satisfy (e). From the assumption that xz satisfies (e), we get the vertex y dominates x in each arc containing x, y but not containing z. From the assumption that yz satisfies (e), we get the vertex x dominates y in each arc containing x, y but not containing z. This is a contradiction. Thus, at most one of xy, xz and yz satisfies the case (e).
By Claims 1–3, it is impossible that \(xy, xz, yz \not\in E(G) \) hold simultaneously. Thus, the complement \(G^c \) of \(G \) does not contain 3-cycle. The lemma holds.

Lemma 3.3. Let \(G \) on \(n \) vertices be the (1, 2)-step competition graph of some \(k \)-hypertournament \(T \), where \(3 \leq k \leq n - 1 \). Then the complement \(G^c \) of \(G \) does not contain \(K_{1,3} \), unless \(G = K_{n-1} \cup K_{1} \).

Proof. Let \(T \) be a \(k \)-hypertournament on \(n \) vertices, where \(3 \leq k \leq n - 1 \), and \(G \) the (1, 2)-step competition graph of \(T \). Assume \(G \not= K_{n-1} \cup K_{1} \). Now we show that the complement \(G^c \) of \(G \) does not contain \(K_{1,3} \). Suppose not. Let \(\{x, y, z, w\} \) and \(\{xy, xz, xw\} \) be the vertex set and edge set of the subgraph \(K_{1,3} \), respectively. So \(xy, xz, xw \not\in E(G) \). By Lemma 2.1, we have \(xy, xz \) and \(xw \) satisfy one of the cases (a)–(e).

Claim 1. None of \(xy, xz \) and \(xw \) satisfies the case (a) or (b).

Proof. Suppose at least one of \(xy, xz \) and \(xw \) satisfies the case (a) or (b). W.l.o.g., we assume that \(xy \) satisfies (a), i.e. \(N^*(x) = \emptyset \). Let \(V(T) = \{v_1, v_2, \ldots, v_n\} \) and \(x = v_n \). By Lemma 2.1, for all \(1 \leq i \leq n - 1 \), we have \(v_iv_n \not\in E(C_{i,2}(T)) \). Indeed,

- For \(1 \leq i < j \leq n - (k - 1) \), the vertex \(v_i \) dominates \(v_n \) by the arc consisting of \(v_i, v_{1,2,3}, v_{n-1}, v_n \), and the vertex \(v_j \) dominates \(v_n \) by the arc consisting of \(v_j, v_{1,2,3,4}, v_{n-1}, v_n \). Then \(v_i \) and \(v_j \) compete and \(v_iv_j \in E(C_{i,2}(T)) \).
- For \(n - (k - 2) \leq i < j \leq n - 1 \), the vertex \(v_i \) dominates \(v_n \) by the arc consisting of \(v_{n-1}, v_{n-3}, v_{n-1}, v_n \) for \(n - (k - 2) \leq i \leq n - 3 \) and by the arc consisting of \(v_{i,2,3}, v_{i,2,3}, v_{n-3}, v_{n-1}, v_n \) for \(i = n - 2 \) and the vertex \(v_j \) dominates \(v_n \) by the arc consisting of \(v_{n-1}, v_{n-3}, v_{n-1}, v_n \). Then \(v_i \) and \(v_j \) compete and \(v_iv_j \in E(C_{i,2}(T)) \).
- For \(1 \leq i < n - k < n - (k - 2) \leq j \leq n - 1 \), the vertex \(v_i \) dominates \(v_n \) by the arc consisting of \(v_{k-3}, v_{k-3}, v_{n-1}, v_n \), and the vertex \(v_j \) dominates \(v_n \) by the arc consisting of \(v_{n-1}, v_{n-3}, v_{n-1}, v_n \). Then \(v_i \) and \(v_j \) compete and \(v_iv_j \in E(C_{i,2}(T)) \).
- For \(i = n - (k - 1) \) and \(n - (k - 2) \leq j \leq n - 1 \), the vertex \(v_{n-1} \) dominates \(v_n \) by the arc consisting of \(v_{3}, v_{2,3}, v_{n-2}, v_{n-1}, v_n \) for \(k = 3 \) and by the arc consisting of \(v_{n-k}, v_{n-1}, v_{n-3}, v_{n-1}, v_n \) for \(4 \leq k \leq n - 1 \) and the vertex \(v_{j} \) dominates \(v_n \) by the arc consisting of \(v_{n-1}, v_{n-3}, v_{n-1}, v_n \). Then \(v_j \) and \(v_{n-1} \) compete and \(v_jv_{n-1} \in E(C_{i,2}(T)) \).

Then \(C_{i,2}(T) = K_{n-1} \cup K_1 \), a contradiction. Thus, none of \(xy, xz \) and \(xw \) satisfies the case (a) or (b).

Claim 2. At most one of \(xy, xz \) and \(xw \) satisfies the case (c) or (d).

Proof. Suppose at least two edges among \(xy, xz \) and \(xw \) satisfy the case (c) or (d). W.l.o.g., we assume that both \(xy \) and \(xz \) satisfy the case (c) or (d). We consider the following four cases.

Case 1: Both \(xy \) and \(xz \) satisfy (c). It means that \(N^*(x) = \{y\} \) and \(N^*(z) = \{x\} \). Then \(y = z \), a contradiction.

Case 2: Both \(xy \) and \(xz \) satisfy (d). It means that \(N^*(y) = \{x\} \) and \(N^*(z) = \{x\} \). Now the arcs containing simultaneously \(x, y, z \) do not satisfy \(N^*(y) = \{x\} \), \(N^*(z) = \{x\} \), a contradiction.

Case 3: \(xy \) satisfies (c) and \(xz \) satisfies (d). It means that \(N^*(x) = \{y\} \) and \(N^*(z) = \{x\} \). If \(xw \) satisfies (c), then \(N^*(x) = \{w\} \), contradicting \(N^*(x) = \{y\} \). If \(xw \) satisfies (d), then \(N^*(w) = \{x\} \). Now the arcs containing simultaneously \(x, z, w \) do not satisfy \(N^*(z) = \{x\} \), \(N^*(w) = \{x\} \), a contradiction. If \(xw \) satisfies (e). Let \(b \) be an arc containing \(x, z, w \). \(N^*(x) = \{y\} \) yields \(z \) dominates \(x \) in \(b \). \(N^*(z) = \{x\} \) yields \(z \) is the second last entry, \(x \) is the last entry and \(w \) is any other entry of \(b \). Clearly, \(b \not\in A^*_{T}[x,w] \), i.e. \(z \in N^*_{T}[w] \), which contradicts the fact that \(N^*_{T}[x,w] \subseteq \{x\} \).

Case 4: \(xy \) satisfies (d) and \(xz \) satisfies (c). Similarly to Case 3, we can also get a contradiction. Thus, at most one of \(xy, xz \) and \(xw \) satisfies the case (c) or (d).

Claim 3. At most one of \(xy, xz \) and \(xw \) satisfies the case (e).

Proof. Suppose at least two edges among \(xy, xz \) and \(xw \) satisfy the case (e). Assume that \(xy \) and \(xz \) satisfy (e). From the assumption that \(xy \) satisfies (e), we get the vertex \(z \) dominates \(y \) in each arc containing \(y, z \) but
not containing x. From the assumption that xz satisfies (e), we get the vertex y dominates z in each arc containing y, z but not containing x. This is a contradiction. Thus, at most one of xy, xz and xw satisfies the case (e).

By Claims 1–3, it is impossible that $xy, xz, xw \notin E(G)$ hold simultaneously. Thus, the complement G^c of G does not contain $K_{3, 3}$ unless $G = K_{n-1} \cup K_1$. The lemma holds.

By Corollary 2.2 and the proof of Lemma 3.3, we obtain the following result.

Corollary 3.4. Let G on n vertices be the $(1, 2)$-step competition graph of some strong k-hypertournament T, where $3 \leq k \leq n - 1$. Then the complement G^c of G does not contain $K_{3, 3}$.

4 Strong k-hypertournaments

Theorem 4.1. A graph G on n vertices is the $(1, 2)$-step competition graph of some strong k-hypertournament T with $3 \leq k \leq n - 1$ if and only if G is $K_n, K_n - E(P_2)$, or $K_n - E(P_3)$.

Proof. We first show the “if” part. Let T be a transitive k-hypertournament with the vertices v_1, v_2, \ldots, v_n. Let T_i be a k-hypertournament obtained from T by replacing the arc $(v_1, v_2, v_{n-(k-3)}, \ldots, v_n)$ with (v_1, v_{n-3}, v_2, v_n). It is easy to check that T_i is strong. Now we show that $C_i(T_i) = K_n - E(P_2)$. For convenience, let $a = (v_1, v_2, v_{n-(k-3)}, v_2, v_1)$. We claim that $v_n - v_1 \notin E(C_i(T_i))$. Indeed, for $k = 3$, the vertex v_{n-1} has a unique out-neighbour v_n and Corollary 2.2(a) implies $v_{n-1}v_n \notin E(C_i(T_i))$. For $4 \leq k \leq n - 1$, $A^+_i[v_{n-1}, v_n]$ contains exactly an arc a, and $N_{T_i-o}(v_{n-1}) = [v_1]$, $N_{T_i-o}(v_2) = \emptyset$. Corollary 2.2(c) implies $v_{n-1}v_1 \notin E(C_i(T_i))$. We also claim $v_i v_j \in E(C_i(T_i))$ for all $i, j \neq [n-1, n]$. W.l.o.g., we assume $i < j$.

- For $1 \leq i < j < n - (k - 1)$, v_i dominates v_j by the arc $(v_i, v_{n-(k-2)}, v_1, v_n)$ and v_j dominates v_i by the arc $(v_j, v_{n-(k-2)}, v_1, v_n)$. Then v_i and v_j compete and $v_i v_j \in E(C_i(T_i))$.
- For $n - (k - 2) \leq j < n - 1$, v_i dominates v_n by the arc $(v_i, v_{n-(k-2)}, v_1, v_n)$ and v_j dominates v_j by the arc $(v_j, v_{n-(k-2)}, v_1, v_n)$. Then v_i and v_j compete and $v_i v_j \in E(C_i(T_i))$.
- For $i = 1$ and $n - (k - 2) \leq j \leq n - 1$, v_1 dominates v_2 by the arc $(v_1, v_2, v_{n-(k-2)}, v_1, v_n)$ and v_j dominates v_i by the arc $(v_j, v_1, v_2, v_{n-(k-2)}, v_1, v_n)$. Then v_i and v_j compete and $v_i v_j \in E(C_i(T_i))$.
- For $2 \leq i \leq n - (k - 1)$ and $n - (k - 2) \leq j \leq n - 1$, v_i dominates v_n by the arc $(v_i, v_{n-(k-2)}, v_1, v_n)$ and v_j dominates v_i by the arc $(v_j, v_1, v_2, v_{n-(k-2)}, v_1, v_n)$. Then v_i and v_j compete and $v_i v_j \in E(C_i(T_i))$.
- For $i = 1$ and $j = n$, v_1 dominates v_j by the arc $(v_1, v_2, v_{n-(k-2)}, v_1, v_n)$ and v_j dominates v_1 by the arc $(v_1, v_{n-(k-2)}, v_1, v_n)$, which is a contradiction. Then v_1 and $v_n (1, 2)$-step compete and $v_1 v_n \in E(C_i(T_i))$.

Thus, $C_i(T_i) = K_n - E(P_2)$.

Let T_i be a k-hypertournament obtained from T_i above by replacing the arc $(v_1, v_2, v_{n-(k-2)}, v_n)$ with $(v_{n-1}, v_{n-(k-2)}, v_2, v_1)$. It is easy to check that T_i is strong. Now we show that $C_i(T_i) = K_n$.

- For $(i, j) \neq [n-1, n]$, similarly to the proof of T_i, we have $v_i v_j \in E(C_i(T_i))$.
- For $i = n - 1$ and $j = n$, v_{n-1} dominates v_1 by the arc $(v_{n-1}, \ldots, v_1, v_2, v_1)$ and v_n dominates v_1 by the arc $(v_1, v_{n-(k-3)}, v_2, v_1)$. Then v_{n-1} and v_1 compete and $v_{n-1} v_1 \in E(C_i(T_i))$.

Thus, $C_i(T_i) = K_n$.

Let T_j be a k-hypertournament with the vertices v_1, v_2, \ldots, v_n satisfying the following:

1. Each arc excluding v_1, v_2 satisfies $i < j$ if and only if v_i precedes v_j;
(2) Each arc including v_i, v_j satisfies that v_i is the second last entry, v_j is the last entry and the remaining $k - 2$ entries satisfy $i < j$ if and only if v_i precedes v_j.
(3) Each arc including v_i but excluding v_j satisfies that v_i is the last entry and the remaining $k - 1$ entries satisfy $i < j$ if and only if v_i precedes v_j.
(4) Each arc including v_j but excluding v_i, v_j satisfies that v_2 is the last entry and the remaining $k - 1$ entries satisfy $i < j$ if and only if v_i precedes v_j.
(5) Each arc including v_2, v_3 but excluding v_i satisfies that v_2 is the second last entry, v_3 is the last entry and the remaining $k - 2$ entries satisfy $i < j$ if and only if v_i precedes v_j.

It is easy to check that T_1 is strong. Now we show that $G_{1,2}(T_1) = K_n - E(P_3)$. Note that $N'(v_1) = \{v_2, v_3\}$ and $N'(v_2) = \{v_3\}$. By Corollary 2.2(a), we have $v_1v_2, v_2v_3 \notin E(G_{1,2}(T_1))$. Now we consider the arc v_1v_j for $[i, j] \neq \{1, 2\}$ and $[i, j] \neq \{2, 3\}$. W.l.o.g., we assume $i < j$.

- For $3 \leq i < j \leq n - (k - 3)$, v_i dominates v_j by the arc $(v_i, \ldots, v_{i+(k-3)}, v_i, v_j)$ and v_j dominates v_i by the arc $(v_i, \ldots, v_{i+(k-3)}, v_i, v_j)$. Then v_i and v_j compete and $v_1v_j \in E(G_{1,2}(T_1))$.
- For $n - (k - 4) \leq i < j \leq n$, v_i dominates v_j by the arc $(v_i, \ldots, v_{i+(k-3)}, v_i, v_j)$ and v_j dominates v_i by the arc $(v_i, \ldots, v_{i+(k-3)}, v_i, v_j)$. Then v_i and v_j compete and $v_1v_j \in E(G_{1,2}(T_1))$.
- For $3 \leq i \leq n - (k - 3)$ and $n - (k - 4) \leq j \leq n$, v_i dominates v_j by the arc $(v_i, \ldots, v_{i+(k-3)}, v_i, v_j)$ for $3 \leq i \leq n - (k - 2)$ and by the arc $(v_i, \ldots, v_{i+(k-3)}, v_{i-1}, v_i, v_j)$ for $i = n - (k - 3)$ and v_j dominates v_i by the arc $(v_i, \ldots, v_{i+(k-3)}, v_{i-1}, v_i, v_j)$. Then v_j and v_1v_i compete and $v_1v_j \in E(G_{1,2}(T_1))$.

Thus, $G_{1,2}(T_1) = K_n - E(P_3)$.

Now we show the “only if” part. Let T be a strong k-hypertournament and G the $(1, 2)$-step competition graph of T. We show that G^c contains at most two edges. Suppose to the contrary that G^c contains at least three edges, say $e_1, e_2, e_3 \in E(G^c)$. Let $e_l = x_l y_l$ for $l = 1, 2, 3$. By Lemma 3.1, e_1 and e_2 have a common end-point. W.l.o.g., we assume that $y_1 = x_2$. By Lemma 3.1, e_3 and e_1 have a common end-point, and e_3 and e_2 have also a common end-point. So either $e_3 = x_3 y_2$ or e_2 is an end-point of e_2. However, this implies G^c contains 3-cycle or $K_{3,3}$, which contradicts Lemma 3.2 and Corollary 3.4. So G^c contains at most two edges. Thus, if G^c contains two edges, Lemma 3.1 implies $G = K_n - E(P_3)$; if G^c contains one edge, then $G = K_n - E(P_3)$; if G^c contains no edge, then $G = K_n$.

Therefore, the theorem holds.

5 Remaining k-hypertournaments

Theorem 5.1. A graph G on n vertices is the $(1, 2)$-step competition graph of some k-hypertournament T with $3 \leq k \leq n - 1$ if and only if G is T, $K_n - E(P_3)$, or $K_{n-1} \cup K_i$.

Proof. The “if” part follows from the proof of Lemma 3.3 and Theorem 4.1. Now we show the “only if” part. Let T be a k-hypertournament and G the $(1, 2)$-step competition graph of T. We show that G is $K_n, K_n - E(P_3)$,
Similarly to the proof of “only if” of Theorem 4.1, we get G^c contains at most two edges unless $G = K_{n-1} \cup K_1$. Thus, if G^c contains two edges, Lemma 3.1 implies $G = K_n - E(P_2)$; if G^c contains one edge, then $G = K_n - E(P_2)$; if G^c contains no edge, then $G = K_n$.

Therefore, the theorem holds. \square

6 The (i, j)-step competition graph of a k-hypertournament

We generalize the $(1, 2)$-step competition graph to the (i, j)-step competition graph as follows. By the definition of the (i, j)-step competition graph for a k-hypertournament T, we obtain that if $i \geq 1$, $j \geq 2$, then $E(C_{i,j}(T)) \subseteq E(C_{i,k}(T))$. It is easy to see that the proof of Lemma 2.1 implies the following corollary.

Corollary 6.1. Let T be a k-hypertournament with n vertices satisfying $3 \leq k \leq n-1$ and $i \geq 1$, $j \geq 2$ integers. Then $xy \notin E(C_{i,j}(T))$ if and only if one of the following holds:

(a) $N^+(x) = \emptyset$;

(b) $N^+(y) = \emptyset$;

(c) $N^+(x) = \{y\}$;

(d) $N^+(y) = \{x\}$;

(e) $A^+_T(x, y)$ contains exactly an arc a, and $N^-_{i-j}(x) \subseteq \{y\}$, $N^-_{i-j}(y) \subseteq \{x\}$.

Theorem 6.2. Let T be a k-hypertournament with n vertices satisfying $3 \leq k \leq n-1$ and $i \geq 1$, $j \geq 2$ integers. Then $C_{i,j}(T) = C_{i,2}(T)$.

Proof. Clearly, $V(C_{i,j}(T)) = V(C_{i,2}(T)) = V(T)$. Since $E(C_{i,j}(T)) \subseteq E(C_{i,k}(T))$, it suffices to show that $E(C_{i,j}(T)) \subseteq E(C_{i,2}(T))$. Let $xy \in E(C_{i,j}(T))$. Suppose $xy \notin E(C_{i,2}(T))$. By Lemma 2.1, x and y must satisfy one of the cases (a)–(e). This contradicts Corollary 6.1. Thus, $xy \in E(C_{i,2}(T))$ and $E(C_{i,j}(T)) \subseteq E(C_{i,2}(T))$. \square

Funding information: This research was partially supported by the Youth Foundation of Shanxi Province (201901D211197).

Conflict of interest: Authors state no conflict of interest.

References

[1] J. E. Cohen, *Interval graphs and food web: A finding and a problem*, in: RAND Corporation Document 17696-PR, Santa Monica, California, 1968.

[2] G. T. Helleloid, *Connected triangle-free m-step competition graphs*, Discrete Appl. Math. 145 (2005), no. 3, 376–383, DOI: https://doi.org/10.1016/j.dam.2004.06.010.

[3] S.-R. Kim and Y. Sano, *The competition numbers of complete tripartite graphs*, Discrete Appl. Math. 156 (2008), no. 18, 3522–3524, DOI: https://doi.org/10.1016/j.dam.2008.04.009.

[4] S.-R. Kim, B. Park, and Y. Sano, *The competition number of the complement of a cycle*, Discrete Appl. Math. 161 (2013), no. 12, 1755–1760, DOI: https://doi.org/10.1016/j.dam.2011.10.034.

[5] D. C. Fisher, J. R. Lundgren, S. K. Merz, and K. BrooksReid, *The domination and competition graphs of a tournament*, J. Graph Theory 29 (1998), no. 2, 103–110.

[6] K. A. S. Factor and S. K. Merz, *The (1, 2)-step competition graph of a tournament*, Discrete Appl. Math. 159 (2011), no. 2–3, 100–103, DOI: https://doi.org/10.1016/j.dam.2010.10.008.

[7] G. Gutin and A. Yeo, *Hamiltonian paths and cycles in hypertournaments*, J. Graph Theory 25 (1997), no. 4, 277–286.

[8] V. Petrovic and C. Thomassen, *Edge-disjoint Hamiltonian cycles in hypertournaments*, J. Graph Theory 51 (2006), no. 1, 49–52, DOI: https://doi.org/10.1002/jgt.20120.
[9] J. Yang, Vertex-pancyclicity of hypertournaments, J. Graph Theory 63 (2010), no. 4, 338–348, DOI: https://doi.org/10.1002/jgt.20432.

[10] H. Li, S. Li, Y. Guo, and M. Surmacs, On the vertex-pancyclicity of hypertournaments, Discrete Appl. Math. 161 (2013), no. 16–17, 2749–2752, DOI: https://doi.org/10.1016/j.dam.2013.05.036.

[11] G. Zhou, T. Yao, and K. Zhang, On score sequences of k-hypertournaments, European J. Combin. 21 (2000), no. 8, 993–1000, DOI: https://doi.org/10.1006/eujc.2000.0393.

[12] C. Wang and G. Zhou, Note on the degree sequences of k-hypertournaments, Discrete Math. 308 (2008), no. 11, 2292–2296, DOI: https://doi.org/10.1016/j.disc.2007.05.002.

[13] R. Li, X. Zhang, S. Li, Q. Guo, and Y. Guo, The H-force set of a hypertournament, Discrete Appl. Math. 169 (2014), 168–175, DOI: https://doi.org/10.1016/j.dam.2013.12.020.