On the average behavior of coefficients related to triple product L-functions

K VENKATASUBBAREDDY
School of Mathematics and Statistics
University of Hyderabad
Hyderabad
500046 Telangana, India
E-mail: 20mmpp02@uohyd.ac.in

AYYADURAI SANKARANARAYANAN
School of Mathematics and Statistics
University of Hyderabad
Hyderabad
500046 Telangana, India
E-mail: sank@uohyd.ac.in

Abstract

In this paper, we study the average behaviour of the coefficients of triple product L-functions and some related L-functions corresponding to normalized primitive holomorphic cusp form \(f(z) \) of weight \(k \) for the full modular group \(SL(2, \mathbb{Z}) \). Here we call \(f(z) \) a primitive cusp form if it is an eighenfunction of all Hecke operators simultaneously.

1 Introduction

For an even integer \(k \geq 2 \), denote \(H_k^* \) the set of all normalized Hecke primitive cusp forms of weight \(k \) for the full modular group \(SL(2, \mathbb{Z}) \). Throughout this paper we call the function \(f(z) \) as a primitive cusp form

2010 AMS Mathematics subject classification. Primary 11F30, 11F66.

Keywords and phrases. Fourier coefficients of automorphic forms, Dirichlet series, triple product \(L \)-functions, Perron’s formula, Maximum modulus principle.
if it is an eighenfunction of all Hecke operators simultaneously. It is known that \(f(z) \) has a Fourier expansion at cusp \(\infty \), write it as

\[
f(z) = \sum_{n=1}^{\infty} c(n)e^{2\pi inz}
\]

for \(\Im(z) > 0 \).

Rewrite the Fourier expansion as

\[
f(z) = \sum_{n=1}^{\infty} \lambda_f(n)n^{(k-1)/2}e^{2\pi inz}
\]

for \(\Im(z) > 0 \), where \(\lambda_f(n) = \frac{c(n)}{n^{(k-1)/2}} \).

Then by Deligne [B], we have, for any prime number \(p \), there exists two complex numbers \(\alpha_f(p) \) and \(\beta_f(p) \), such that

\[
\alpha_f(p)\beta_f(p) = |\alpha_f(p)| = |\beta_f(p)| = 1
\]

and

\[
\lambda_f(p) = \alpha_f(p) + \beta_f(p).
\]

For a normalized primitive cusp form \(f(z) \) of weight \(k \), the triple product \(L \)-function \(L(f \otimes f \otimes f) \) is defined as

\[
L(f \otimes f \otimes f) = \prod_p \left(1 - \frac{\alpha_p^3}{p^s}\right)^{-1} \left(1 - \frac{\alpha_p}{p^s}\right)^{-3} \left(1 - \frac{\beta_p^3}{p^s}\right)^{-1} \left(1 - \frac{\beta_p}{p^s}\right)^{-3}
\]

for \(\Re(s) > 1 \). The \(j^{th} \) symmetric power \(L \)-function attached to \(f \) is defined by

\[
(1) \quad L(\text{sym}^j f, s) = \prod_p \prod_{m=0}^{j} (1 - \alpha_p^{-m}\beta_p^m p^{-s})^{-1}
\]

for \(\Re(s) > 1 \). We may express it as a Derichlet series: for \(\Re(s) > 1 \),

\[
L(\text{sym}^j f, s) = \sum_{n=1}^{\infty} \frac{\lambda_{\text{sym}^j f}(n)}{n^s}
\]

\[
= \prod_p \left(1 + \frac{\lambda_{\text{sym}^j f}(p)}{p^s} + \ldots + \frac{\lambda_{\text{sym}^j f}(p^k)}{p^{ks}} + \ldots \right).
\]
On the average behavior of coefficients related to triple product L-functions

It is well known that \(\lambda_{\text{sym}\, j\, f}(n) \) is a real multiplicative function. The Rankin-Selberg \(L \)-function \(L(\text{sym}\, i\, f \otimes \text{sym}\, j\, f, \ s) \) attached to \(\text{sym}\, i\, f \) and \(\text{sym}\, j\, f \) is defined as

\[
L(\text{sym}\, i\, f \otimes \text{sym}\, j\, f, \ s) = \prod_p \prod_{m=0}^{i} \prod_{m'=0}^{j} \left(1 - \frac{\alpha_p^{i-m} \beta_p^m \alpha_p^{j-m'} \beta_p^{m'}}{p^s} \right)^{-1}
\]

\[
= \sum_{n=1}^{\infty} \frac{\lambda_{\text{sym}\, i\, f \otimes \text{sym}\, j\, f}(n)}{n^s}.
\]

For \(\Re(s) > 1 \), define

\[
L_f(s) = \sum_{n=1}^{\infty} \frac{\lambda_{\text{sym}\, 2\, f \otimes \text{sym}\, f}(n)^2}{n^s}
\]

and for \(\Re(s) > 1 \), define

\[
D_f(s) = \sum_{n=1}^{\infty} \frac{\lambda_{\text{sym}\, 2\, f \otimes \text{sym}\, f}(n)^2}{n^s}.
\]

2 Theorems etc.

Here, after \(\epsilon \) and \(\delta \) denote any small positive constants and implied constants will depend at most only on the form \(f \) and \(\epsilon \).

In the paper [C], the following theorems are established.

Theorem A. For any \(\epsilon > 0 \), we have

\[
\sum_{n \leq x} \lambda_{f \otimes f \otimes f}(n)^2 = xP(\log x) + O_{f, \, \epsilon}(x^{(175/181) + \epsilon})
\]

where \(P(t) \) is a polynomial of degree 4.

Theorem B. For any \(\epsilon > 0 \), we have

\[
\sum_{n \leq x} \lambda_{\text{sym}\, 2\, f \otimes f}(n)^2 = xQ(\log x) + O_{f, \, \epsilon}(x^{(17/18) + \epsilon})
\]

where \(Q(t) \) is a polynomial of degree 1.

The aim of this article is to improve Theorems A and B.

More precisely we prove:

Theorem 2.1. For any \(\epsilon > 0 \) and \(f \in H_k^* \), we have

\[
\sum_{n \leq x} \lambda_{f \otimes f \otimes f}(n)^2 = xP(\log x) + O_{f, \, \epsilon}(x^{(605/719) + \epsilon})
\]

where \(P(t) \) is a polynomial of degree 4.
Theorem 2.2. For any $\epsilon > 0$ and $f \in H_k^*$, we have
\[
\sum_{n \leq x} \lambda_{\text{sym}^2 f \otimes f}(n)^2 = xQ(\log x) + O_{f, \epsilon}(x^{(2729/2897)+\epsilon})
\]
where $Q(t)$ is a polynomial of degree 1.

Remark 1. It should be noted that the theorem of K. Ramachandra and A Sankaranarayanan [Lemma 3.5] plays a vital role in the proofs of Theorems 2.1 and 2.2. It is easy to check that $\frac{695}{119} < \frac{175}{181}$ and $\frac{2729}{2897} < \frac{17}{18}$. Thus Theorem 2.1 and Theorem 2.2 are unconditional improvements to the Theorem A and Theorem B respectively. Under the assumption of Lindelöf Hypothesis the error terms of Theorem 2.1 and Theorem 2.2 can slightly be improved for which we refer to section 4.

3 Lemmas

Lemma 3.1. Suppose that $\mathcal{L}(s)$ is a general L-function of degree m. Then, for any $\epsilon > 0$, we have
\[
\int_T^{2T} |\mathcal{L}(\sigma + it)|^2 \, dt \ll T^{\max\{m(1-\sigma),1\}+\epsilon}
\]
uniformly for $\frac{1}{2} \leq \sigma \leq 1$ and $T > 1$; and
\[
\mathcal{L}(\sigma + it) \ll (|t| + 1)^{\frac{m}{2}(1-\sigma)+\epsilon}
\]
uniformly for $\frac{1}{2} \leq \sigma \leq 1 + \epsilon$ and $|t| \geq 1$.

For some L-functions with small degrees, we invoke either individual or average subconvexity bounds.

Lemma 3.2. For any $\epsilon > 0$, we have
\[
\int_0^T |\zeta\left(\frac{5}{7} + it\right)|^{12} \, dt \ll \epsilon T^{1+\epsilon}
\]
uniformly for $T \geq 1$.

Proof. See, Theorem 8.4 and (8.87) of [D].

Lemma 3.3. For $f \in H_k^*$ and $\epsilon > 0$, we have
\[
L(\text{sym}^2 f, \sigma + it) \ll_{f, \epsilon} (|t| + 1)^{\max\{\frac{11}{7}(1-\sigma),0\}+\epsilon}
\]
uniformly for $\frac{1}{2} \leq \sigma \leq 2$ and $|t| \geq 1$.

Proof. For $\mathcal{L}(s)$ is a general L-function of degree m. Then, for any $\epsilon > 0$, we have
\[
\int_T^{2T} |\mathcal{L}(\sigma + it)|^2 \, dt \ll T^{\max\{m(1-\sigma),1\}+\epsilon}
\]
uniformly for $\frac{1}{2} \leq \sigma \leq 1$ and $T > 1$; and
\[
\mathcal{L}(\sigma + it) \ll (|t| + 1)^{\frac{m}{2}(1-\sigma)+\epsilon}
\]
uniformly for $\frac{1}{2} \leq \sigma \leq 1 + \epsilon$ and $|t| \geq 1$.

For some L-functions with small degrees, we invoke either individual or average subconvexity bounds.

Lemma 3.2. For any $\epsilon > 0$, we have
\[
\int_0^T |\zeta\left(\frac{5}{7} + it\right)|^{12} \, dt \ll \epsilon T^{1+\epsilon}
\]
uniformly for $T \geq 1$.

Proof. See, Theorem 8.4 and (8.87) of [D].

Lemma 3.3. For $f \in H_k^*$ and $\epsilon > 0$, we have
\[
L(\text{sym}^2 f, \sigma + it) \ll_{f, \epsilon} (|t| + 1)^{\max\{\frac{11}{7}(1-\sigma),0\}+\epsilon}
\]
uniformly for $\frac{1}{2} \leq \sigma \leq 2$ and $|t| \geq 1$.

Proof. For $\mathcal{L}(s)$ is a general L-function of degree m. Then, for any $\epsilon > 0$, we have
\[
\int_T^{2T} |\mathcal{L}(\sigma + it)|^2 \, dt \ll T^{\max\{m(1-\sigma),1\}+\epsilon}
\]
uniformly for $\frac{1}{2} \leq \sigma \leq 1$ and $T > 1$; and
\[
\mathcal{L}(\sigma + it) \ll (|t| + 1)^{\frac{m}{2}(1-\sigma)+\epsilon}
\]
uniformly for $\frac{1}{2} \leq \sigma \leq 1 + \epsilon$ and $|t| \geq 1$.

For some L-functions with small degrees, we invoke either individual or average subconvexity bounds.
On the average behavior of coefficients related to triple product L-functions

Proof. See, Corollary 1.2 of [F]. \(\square \)

Lemma 3.4. For $|t| \geq 10$, we have

\[
\zeta(\sigma + it) \ll (|t| + 10)^{2\kappa(1-\sigma)+\epsilon}
\]

uniformly for $\frac{1}{2} \leq \sigma \leq 1 + \epsilon$ and for some $\kappa \geq 0$.

Proof. Follows from [A] and Maximum modulus principle with $\kappa = \frac{13}{84}$. \(\square \)

Lemma 3.5 (KR+AS). For $\frac{1}{2} \leq \sigma \leq 2$, T-sufficiently large, there exist a $T^* \in [T, T + T^{\frac{1}{3}}]$ such that the bound

\[
\log \zeta(\sigma + iT) \ll (\log \log T^*)^2 \ll (\log \log T)^2
\]

holds uniformly and we have

\[
|\zeta(\sigma + iT)| \ll \exp((\log \log T)^2) \ll, T^\epsilon
\]

on the horizontal line with $T = T^*$ and $\frac{1}{2} \leq \sigma \leq 2$.

Proof. See, Lemma 1 of [G]. \(\square \)

Lemma 3.6. For $\Re(s) > 1$, define

\[
L_f(s) = \sum_{n=1}^{\infty} \frac{\lambda_{f \otimes f \otimes f}(n)^2}{n^s}.
\]

Then we have

\[
L_f(s) = \zeta(s)^5 L(\text{sym}^2 f, s)^8 L(\text{sym}^4 f, s)^4 L(\text{sym}^4 f \otimes \text{sym}^2 f, s)U(s),
\]

where the function $U(s)$ is a Derichlet series which converges absolutely for $\Re(s) > \frac{1}{2}$ and $U(s) \neq 0$ for $\Re(s) = 1$.

Proof. Since we have $\lambda_{f \otimes f \otimes f}(n)^2$ is a multiplicative function and the trivial upper bound $O(n^\epsilon)$, we have that, for $\Re(s) > 1$,

\[
L_f(s) = \prod_p \left(1 + \frac{\lambda_{f \otimes f \otimes f}(p)^2}{p^s} + \frac{\lambda_{f \otimes f \otimes f}(p^2)^2}{p^{2s}} + \ldots \right).
\]

In the half-plane $\Re(s) > 1$, the corresponding coefficients of the term p^{-s} determine the analytic properties of $L_f(s)$. By Lemma 2.1 of [C] we easily find the identity

\[
\lambda_{f \otimes f \otimes f}(p)^2 = (\lambda_{\text{sym}^2 f}(p) + 2\lambda_f(p))^2
\]

\[
= \lambda_{\text{sym}^2 f}(p)^2 + 4\lambda_{\text{sym}^2 f}(p)\lambda_f(p) + 4\lambda_f(p)^2.
\]
Consider $\lambda_{\text{sym}^2 f \otimes \text{sym}^4 f}(p)$, the coefficient of p^{-s} in the Euler product of $L(\text{sym}^2 f \otimes \text{sym}^4 f, s)$,

$$
\lambda_{\text{sym}^2 f \otimes \text{sym}^4 f}(p) = 3 + 3\alpha_f(p)^2 + 2\alpha_f(p)^4 + \alpha_f(p)^6 + 3\beta_f(p)^2 + 2\beta_f(p)^4 + \beta_f(p)^6.
$$

Now, consider $\lambda_{\text{sym}^3 f}(p)$, the coefficient of p^{-s} in the Euler product of the L–function $L(\text{sym}^3 f, s)$,

$$
\lambda_{\text{sym}^3 f}(p) = \alpha_f(p)^3 + \alpha_f(p) + \beta_f(p)^3 + \beta_f(p).
$$

We have

$$
\lambda_{\text{sym}^3 f}(p)^2 = \left(\alpha_f(p)^3 + \alpha_f(p) + \beta_f(p)^3 + \beta_f(p)\right)^2
= 2(\alpha_f(p)^2 + \beta_f(p)^2 + \alpha_f(p)^4 + \beta_f(p)^4 + 2) \\
+ \alpha_f(p)^2 + \beta_f(p)^2 + \alpha_f(p)^6 + \beta_f(p)^6
$$

(13)

$$
= 1 + \lambda_{\text{sym}^2 f \otimes \text{sym}^4 f}(p).
$$

Now, consider

$$
\lambda_{\text{sym}^3 f}(p)\lambda_f(p) = \left(\alpha_f(p)^3 + \beta_f(p)^3 + \alpha_f(p) + \beta_f(p)\right)\left(\alpha_f(p) + \beta_f(p)\right)
= \alpha_f(p)^4 + \beta_f(p)^4 + 2\alpha_f(p)^2 + 2\beta_f(p)^2 + 2.
$$

By the coefficients of p^{-s} in the Euler products of $L(\text{sym}^2 f, s)$ and $L(\text{sym}^4 f, s)$, we have

$$
\lambda_{\text{sym}^2 f}(p) + \lambda_{\text{sym}^4 f}(p) = \alpha_f(p)^4 + \beta_f(p)^4 + 2\alpha_f(p)^2 + 2\beta_f(p)^2 + 2
$$

(14)

$$
= \lambda_{\text{sym}^3 f}(p)\lambda_f(p).
$$

Consider $\lambda_{\text{sym}^2 f}(p)$, the coefficient of p^{-s} in the Euler product of $L(\text{sym}^2 f, s)$,

$$
\lambda_{\text{sym}^2 f}(p) = \alpha_f(p)^2 + \beta_f(p)^2 + 1.
$$

Now, consider

$$
\lambda_f(p)^2 = \left(\alpha_f(p) + \beta_f(p)\right)^2
= \alpha_f(p)^2 + \beta_f(p)^2 + 2
$$

(15)

$$
= 1 + \lambda_{\text{sym}^2 f}(p).
$$

By using (13), (14) and (15), we have

$$
\lambda_{\otimes f \otimes f}(p)^2 = \left(1 + \lambda_{\text{sym}^2 f \otimes \text{sym}^4 f}(p)\right) + 4\left(\lambda_{\text{sym}^2 f}(p) + \lambda_{\text{sym}^4 f}(p)\right)
+ 4\left(1 + \lambda_{\text{sym}^2 f}(p)\right)
= 5 + 8\lambda_{\text{sym}^2 f}(p) + 4\lambda_{\text{sym}^4 f}(p) + \lambda_{\text{sym}^2 f \otimes \text{sym}^4 f}(p).
$$

Now the lemma follows by standard arguments. \qed
Lemma 3.7. For $\Re(s) > 1$, define

$$D_f(s) = \sum_{n=1}^{\infty} \frac{\lambda_{\text{sym}^2 f \otimes f}(n)^2}{n^s}. $$

Then we have

$$D_f(s) = \zeta(s)^2 L(\text{sym}^2 f, s)^3 L(\text{sym}^4 f, s)^2 L(\text{sym}^4 f \otimes \text{sym}^2 f, s)V(s), $$

where the function $V(s)$ is a Dirichlet series which converges absolutely for $\Re(s) > \frac{1}{2}$ and $V(s) \neq 0$ for $\Re(s) = 1$.

Proof. By (6.2) of [C], we have

$$\lambda_{\text{sym}^2 f \otimes f}(p) = \lambda_{\text{sym}^3 f}(p) + \lambda_f(p) $$

for $\Re(s) > 1$.

Now the lemma follows in a similar manner as the proof of Lemma 3.6.

Proof of Theorem 2.1. Firstly, recall that

$$L_f(s) = \sum_{n=1}^{\infty} \frac{\lambda_{f \otimes f \otimes f}(n)^2}{n^s} $$

for $\Re(s) > 1$ and by (11), we have

$$L_f(s) = \zeta(s)^5 L(\text{sym}^2 f, s)^8 L(\text{sym}^4 f, s)^4 L(\text{sym}^4 f \otimes \text{sym}^2 f, s)U(s), $$

where the function $U(s)$ is a Dirichlet series which converges absolutely for $\Re(s) > \frac{1}{2}$ and $U(s) \neq 0$ for $\Re(s) = 1$.

By applying Perron formula to $L_f(s)$, we have

$$\sum_{n \leq x} \lambda_{f \otimes f \otimes f}(n)^2 = \frac{1}{2\pi i} \int_{b-iT}^{b+iT} L_f(s) \frac{x^s}{s} ds + O\left(\frac{x^{1+\epsilon}}{T}\right) $$

where $b = 1 + \epsilon$ and $1 \leq T \leq x$ is a parameter to be chosen later.

Now, we make the special choice $T = T^*$ of Lemma 3.5 which satisfies (10) and shifting the line of integration to $\Re(s) = \frac{5}{7}$, we have by Cauchy residue theorem

$$\sum_{n \leq x} \lambda_{f \otimes f \otimes f}(n)^2 = \frac{1}{2\pi i} \left\{ \int_{\frac{5}{7}-iT}^{\frac{5}{7}+iT} + \int_{\frac{5}{7}+iT}^{\frac{5}{7}-iT} + \int_{b-iT}^{b+iT} \right\} L_f(s) \frac{x^s}{s} ds $$

$$\quad + xP(\log x) + O\left(\frac{x^{1+\epsilon}}{T}\right) $$

$$= J_1 + J_2 + J_3 + xP(\log x) + O\left(\frac{x^{1+\epsilon}}{T}\right) $$

(17)
where $P(t)$ is a polynomial of degree 4 and the main term $xP(\log x)$ is coming from the residue of $L_f(s)\frac{x^s}{s}$ at the pole $s = 1$ of order 5.

For J_1, we have

$$J_1 \ll x^{5/7+\epsilon} \int_1^T \left| \zeta \left(\frac{5}{7} + it \right) \right|^2 dt + x^{5/7+\epsilon}$$

(18) $$\ll x^{5/7+\epsilon} \sup_{1 \leq T_1 \leq T} I_1(T_1)^{5/12} I_2(T_1)^{1/2} I_3(T_1)^{1/12} T_1^{-1},$$

where

$$I_1(T_1) = \int_{T_1}^{2T_1} \left| \zeta \left(\frac{5}{7} + it \right) \right|^2 dt,$$

$$I_2(T_1) = \int_{T_1}^{2T_1} \left| L(sym^2 f, \frac{5}{7} + it) \right|^2 \left| L(sym^4 f, \frac{5}{7} + it) \right|^4 dt$$

and

$$I_3(T_1) = \int_{T_1}^{2T_1} \left| L(sym^4 f \otimes sym^2 f, \frac{5}{7} + it) \right|^2 dt.$$

Then by Lemmas 3.1, 3.2 and 3.3, we have

$$I_1(T_1) \ll T_1^{1/2}, \quad I_3(T_1) \ll T_1^{180/7+\epsilon}$$

and

$$I_2(T_1) \ll T_1^{16 \times \frac{5}{7} + \frac{5}{7} + \epsilon} \int_{T_1}^{2T_1} \left| L(sym^4 f, \frac{5}{7} + it) \right|^4 dt$$

$$\ll T_1^{12+\epsilon}.$$

Hence, we have

$$J_1 \ll x^{5/7+\epsilon} \sup_{1 \leq T_1 \leq T} I_1(T_1)^{5/12} I_2(T_1)^{1/2} I_3(T_1)^{1/12} T_1^{-1}$$

(19) $$\ll x^{(5/7)+\epsilon} T^{(635/84)+\epsilon}.$$

For the integrals over horizontal segments, by using (5), (7) and (10), we have

$$J_2 + J_3 \ll \max_{\frac{5}{7} \leq \sigma \leq b} x^{\sigma} T^{10\epsilon + \left(8 \times \frac{11}{8} + \frac{20}{7}\right) (1 - \sigma) - 1}$$

$$= T^{10\epsilon} \max_{\frac{5}{7} \leq \sigma \leq b} \left(\frac{x}{T^{2\sigma}} \right)^{\sigma} T^{\frac{55}{16} + \epsilon}$$

$$\ll x^{\frac{5}{7} + \epsilon} T^{\frac{55}{16} + 10\epsilon} + x^{1+15\epsilon} T.$$

(20)
On the average behavior of coefficients related to triple product L-functions

From (17), (19) and (20), we have

\[\sum_{n \leq x} \lambda_{f \otimes f \otimes f}(n)^2 = xP(\log x) + O\left(\frac{x^{1+15\epsilon}}{T} \right) + o\left(x^{(5/7) + \epsilon T(635/84) + \epsilon} \right). \]

By taking \(T = \frac{x^{24}}{719} \) in (21), we have

\[\sum_{n \leq x} \lambda_{f \otimes f \otimes f}(n)^2 = xP(\log x) + O\left(x^{(695/719) + \epsilon} \right). \]

This completes the proof of Theorem 2.1.

Proof of Theorem 2.2. Recall that

\[D_f(s) = \sum_{n=1}^{\infty} \frac{\lambda_{\text{sym}^2 f \otimes f}(n)^2}{n^s} \]

for \(\Re(s) > 1 \) and by Lemma 3.7, we have

\[D_f(s) = \zeta(s)^2 L(\text{sym}^2 f, s)^3 L(\text{sym}^4 f, s)^2 L(\text{sym}^4 f \otimes \text{sym}^2 f, s)V(s), \]

where the function \(V(s) \) is a Dirichlet series which converges absolutely for \(\Re(s) > \frac{1}{2} \) and \(V(s) \neq 0 \) for \(\Re(s) = 1 \).

Now, by applying Perron formula to \(D_f(s) \), we have

\[\sum_{n \leq x} \lambda_{\text{sym}^2 f \otimes f}(n)^2 = \frac{1}{2\pi i} \int_{b-iT}^{b+iT} D_f(s) \frac{x^s}{s} ds + O\left(\frac{x^{1+\epsilon}}{T} \right) \]

where \(b = 1 + \epsilon \) and \(1 \leq T \leq x \) is a parameter to be chosen later.

Now, we make the special case \(T = T^{**} \) of Lemma 3.5 which satisfies (10) and shifting the line of integration to \(\Re(s) = \frac{1}{2} + \epsilon \), we have by Cauchy residue theorem

\[\sum_{n \leq x} \lambda_{\text{sym}^2 f \otimes f}(n)^2 = \frac{1}{2\pi i} \left\{ \int_{\frac{1}{2}+\epsilon-iT}^{\frac{1}{2}+\epsilon+iT} + \int_{b-iT}^{b+iT} + \int_{\frac{1}{2}+\epsilon+iT}^{b+\epsilon+iT} \right\} D_f(s) \frac{x^s}{s} ds \]

\[+ xQ(\log x) + O\left(\frac{x^{1+\epsilon}}{T} \right) \]

\[= J_1 + J_2 + J_3 + xQ(\log x) + O\left(\frac{x^{1+\epsilon}}{T} \right). \]

(22)

Where \(Q(t) \) is a polynomial of degree 1 and the main term \(xQ(\log x) \) is coming from the residue of \(D_f(s) \frac{x^s}{s} \) at the pole \(s = 1 \) of order 2.

For \(J_1 \), we have

\[J_1 \ll x^{\frac{1}{2}+\epsilon} \int_{1}^{T} |\zeta(\frac{1}{2} + \epsilon + it)^2 L(\text{sym}^2 f, \frac{1}{2} + \epsilon + it)^3 L(\text{sym}^4 f, \frac{1}{2} + \epsilon + it)^2 L(\text{sym}^4 f \otimes \text{sym}^2 f, \frac{1}{2} + \epsilon + it)V(\frac{1}{2} + \epsilon + it)|^{-1} dt + x^{\frac{1}{2}+\epsilon}. \]
By Lemma 3.4 and Cauchy-Schwarz inequality, we have
\[J_1 \ll x^{\frac{1}{2}+\epsilon} \sup_{1 \leq T_i \leq T} T_1^{2x+2k+1+33/16} \left(\int_{T_1}^{2T_1} \left| L(\text{sym}^4 f, \frac{1}{2} + it) \right|^2 dt \right)^{\frac{1}{2}}. \]

By (1) of Lemma 3.1, we have
\[J_1 \ll x^{\frac{1}{2}+\epsilon} + x^{\frac{1}{2}+\epsilon} \sup_{1 \leq T_i \leq T} T_1^{2k+11/16 + \frac{10}{24} + \frac{15}{8} + \frac{1}{2} - 1+\epsilon} \]
\[\ll x^{(1/2)+\epsilon} T^{2k+(117/16)+\epsilon}. \]

For the integrals over the horizontal segments, by using (5), (7) and (10), we have
\[J_2 + J_3 \ll \max_{\frac{1}{2}+\epsilon \leq \sigma \leq b} x^\sigma T^{(3\times \frac{11}{8} + 25/7)(1-\sigma)-1+2\epsilon} \]
\[= T^{2\epsilon} \max_{\frac{1}{2}+\epsilon \leq \sigma \leq b} \left(\frac{x}{T^{\frac{1}{133+32k}}} \right)^\sigma T^{\frac{125}{133+32k}} \]
\[\ll x^{(1/2)+\epsilon} T^{(117/16)+2\epsilon} + \frac{x^{1+10\epsilon}}{T}. \]

From (22), (24) and (25), we have
\[(26) \quad \sum_{n \leq x} \lambda_{\text{sym}^2 f \otimes f}(n)^2 \ll xQ(\log x) + x^{(1/2)+\epsilon} T^{2k+(117/16)+\epsilon} + O\left(\frac{x^{1+\epsilon}}{T} \right). \]

By taking \(T = x^{\frac{8}{133+32k}} \) in (26), we have
\[(27) \quad \sum_{n \leq x} \lambda_{\text{sym}^2 f \otimes f}(n)^2 = xQ(\log x) + O\left(x^{(1/2)+\epsilon} \right). \]

Now Theorem 2.2 follows by taking \(\kappa = \frac{13}{84} \) and we obtain
\[\sum_{n \leq x} \lambda_{\text{sym}^2 f \otimes f}(n)^2 = xQ(\log x) + O\left(x^{(2729/2897)+\epsilon} \right). \]

\[\square \]

4 \quad Some conditional results

Lindelöf Hypothesis for \(\zeta(s) \):

This states that for \(|t| \geq 10 \)
\[(28) \quad \zeta(s + it) \ll (|t| + 10)^{\epsilon} \]
for all \(\epsilon > 0 \) uniformly for \(\frac{1}{2} \leq \sigma \leq 2 \). [Refer [H], pp. 328-335].
On the average behavior of coefficients related to triple product L-functions

Theorem 4.1. Assuming Lindelöf Hypothesis for $\zeta(s)$. For any $\epsilon > 0$ and $f \in H_k^*$, we have

$$\sum_{n \leq x} \lambda_{f \otimes f \otimes f}(n)^2 = xP(\log x) + O_f, \epsilon(x^{(55/57) + \epsilon})$$

where $P(t)$ is a polynomial of degree 4.

Theorem 4.2. Assuming Lindelöf Hypothesis for $\zeta(s)$. For any $\epsilon > 0$ and $f \in H_k^*$, we have

$$\sum_{n \leq x} \lambda_{\text{sym}^2 f \otimes f}(n)^2 = xQ(\log x) + O_f, \epsilon(x^{(125/133) + \epsilon})$$

where $Q(t)$ is a polynomial of degree 1.

Proof of Theorem 4.1. From the proof of Theorem 2.1, recall that

$$\sum_{n \leq x} \lambda_{f \otimes f \otimes f}(n)^2 = J_1 + J_2 + J_3 + xP(\log x) + O\left(\frac{x^{1+\epsilon}}{T}\right)$$

Where $P(t)$ is a polynomial of degree 4.

For J_1 by (7), (28) and Cauchy-Schwarz inequality, we have

$$J_1 \ll x^{5/7 + \epsilon} + x^{5/7 + \epsilon} \int_1^T \left| \zeta\left(\frac{5}{7} + \epsilon + it\right)\right|^5 L(\text{sym}^2 f, \frac{5}{7} + \epsilon + it)^8 L(\text{sym}^4 f, \frac{5}{7} + \epsilon + it)^4 L(\text{sym}^4 f \otimes \text{sym}^2 f, \frac{5}{7} + \epsilon + it) |t^{-1} dt$$

$$\ll x^{5/7 + \epsilon} + x^{5/7 + \epsilon} \sup_{1 \leq T_1 \leq T} \left\{ \left\{ \max_{T_1 \leq t \leq 2T_1} \left| \zeta\left(\frac{5}{7} + \epsilon + it\right)\right|^5 L(\text{sym}^2 f, \frac{5}{7} + \epsilon + it)^8 \right| \right\} \right\} \left\{ \int_{T_1}^{2T_1} |L(\text{sym}^4 f, \frac{5}{7} + \epsilon + it)^4 L(\text{sym}^4 f \otimes \text{sym}^2 f, \frac{5}{7} + \epsilon + it)| t^{-1} dt \right\}$$

$$\ll x^{5/7 + \epsilon} + x^{5/7 + \epsilon} \sup_{1 \leq T_1 \leq T} T_1^{-5/7 + 2\epsilon - 1} \left(\int_{T_1}^{2T_1} |L(\text{sym}^4 f, \frac{5}{7} + \epsilon + it)^4|^2 dt \right)^{1/2} \left(\int_{T_1}^{2T_1} |L(\text{sym}^4 f \otimes \text{sym}^2 f, \frac{5}{7} + \epsilon + it)|^2 dt \right)^{1/2}.$$

By (11), we have

$$J_1 \ll x^{5/7 + \epsilon} + x^{5/7 + \epsilon} \sup_{1 \leq T_1 \leq T} T_1^{-5/7 + 2\epsilon - 1} \left(\int_{T_1}^{2T_1} |L(\text{sym}^4 f, \frac{5}{7} + \epsilon + it)^4|^2 dt \right)^{1/2} \left(\int_{T_1}^{2T_1} |L(\text{sym}^4 f \otimes \text{sym}^2 f, \frac{5}{7} + \epsilon + it)|^2 dt \right)^{1/2} \ll x^{(5/7) + \epsilon} T^{(50/7) + 10\epsilon}.$$
For the integrals over horizontal segments, by (20), we have

\[J_2 + J_3 \ll x^{(5/7) + \epsilon} T^{(50/7) + 10\epsilon} + \frac{x^{1+15\epsilon}}{T}. \]

Hence by (29), we have

\[\sum_{n \leq x} \lambda_{f \otimes f \otimes f}(n)^2 = xP(\log x) + O\left(\frac{x^{1+15\epsilon}}{T}\right) + O\left(x^{(5/7) + \epsilon} T^{(50/7) + \epsilon}\right). \]

By taking \(T = x^{\frac{5}{57}} \) in (30), we have

\[\sum_{n \leq x} \lambda_{f \otimes f \otimes f}(n)^2 = xP(\log x) + O\left(x^{(55/57) + \epsilon}\right). \]

Proof of Theorem 4.2. From the asymptotic formula in (27), by assuming Lindelöf Hypothesis for \(\zeta(s) \), we have \(\kappa = \epsilon \), where \(\epsilon \) is any positive constant and we obtain

\[\sum_{n \leq x} \lambda_{\text{sym}^2 f \otimes f}(n)^2 = xQ(\log x) + O\left(x^{(125/133) + \epsilon}\right). \]

Remark 2. It is easy to check that \(\frac{55}{57} < \frac{605}{697} < \frac{175}{181} \) and \(\frac{125}{133} < \frac{2729}{2897} < \frac{17}{18} \) (pertain into Theorem A and Theorem B).

Concluding Remark. If one has the Lindelöf Hypothesis bound for the \(L \)-function \(L_f(s) \), namely

\[L_f(\sigma + it) \ll (|t| + 10)^\epsilon \]

holds for all \(\epsilon > 0 \) uniformly for \(\frac{1}{2} \leq \sigma \leq 2 \) and \(|t| \geq 10 \), then it is not difficult to see that the asymptotic formula

\[\sum_{n \leq x} \lambda_{f \otimes f \otimes f}(n)^2 = xP(\log x) + O\left(x^{\frac{1}{2} + \epsilon}\right) \]

holds, where \(P(t) \) is a polynomial of degree 4. Of course such an expected improvement is far away.

Acknowledgements

The first author wishes to express his thankfulness to the Funding Agency "Ministry of Human Resource Development (MHRD), Govt. of India" for the fellowship PMRF, Appl. No.PMRF-2122-3190 for its financial support.
On the average behavior of coefficients related to triple product L-functions

References

[A] J. Bourgain, Decoupling, exponential sums and the Riemann zeta function, *Amer. Math. Soc.*, **30** (2017), 205-224.

[B] P. Deligne, *La conjecture de Weil*, I, II, Publ. Math. IHES **48** (1974), 273-308; ibid **52** (1981), 313-428.

[C] Guangshi Lu and Ayyadurai Sankaranarayanan, *On the coefficients of triple product L-functions*, Journal of Mathematics, Rocky Mountain, Volume **47**, Number 2, 2017.

[D] A. Ivić, *Exponent pairs and the zeta function of Riemann*, Stud. Sci. Math. Hungar. **15** (1980), 157-181.

[E] H. Iwaniec and A. Kowalski, *Analytic number theory*, Amer. Math. Soc. Colloq. Publ. **53**, American Mathematical Society, Providence, 2004.

[F] X. Li, *Bounds for GL(3) × GL(2) L-functions and GL(3) L-functions*, Ann. Math. **173** (2011), 301-336.

[G] K. Ramachandra and A. Sankaranarayanan, *Notes on the Riemann zeta-function*, Journal of Indian Math. soc, vol **57** (1991) pp.67-77.

[H] E. C. Titchmarsh and D. R. Heath-Brown, *The theory of the Riemann zeta-function*, second edition, Clarendon press, Oxford (1986).