Diversity of the Tellurite Resistance Gene Operon in *Escherichia coli*

Thi Thu Huong Nguyen1,2, Taisei Kikuchi3, Tadaaki Tokunaga1, Sunao Iyoda4 and Atsushi Iguchi1*

1 Department of Environment and Resource Sciences, University of Miyazaki, Miyazaki, Japan, 2 Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Vietnam, 3 Department of Infectious Disease, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan, 4 Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan

Tellurite is highly toxic to most bacteria owing to its strong oxidative ability. However, some bacteria demonstrate tellurite resistance. In particular, some *Escherichia coli* strains, including Shiga toxin-producing *E. coli* O157:H7, are known to be resistant to tellurite. This resistance is involved in *ter* operon, which is usually located on a prophage-like element of the chromosome. The characteristics of the *ter* operon have been investigated mainly by genome analysis of pathogenic *E. coli*; however, the distribution and structural characteristics of the *ter* operon in other *E. coli* are almost unknown. To clarify these points, we examined 106 *E. coli* strains carrying the *ter* operon from various animals. The draft genomes of 34 representative strains revealed that *ter* operons were clearly classified into four subtypes, *ter*-type 1–4, at the nucleotide sequence level. Complete genomic sequences revealed that operons belonging to three *ter*-types (1, 3, and 4) were located on the prophage-like elements on the chromosome, whereas the *ter*-type 2 operon was located on the IncHI2 plasmid. The positions of the tRNA\textsubscript{Ser}, tRNA\textsubscript{Met}, and tRNA\textsubscript{Phe} indicated the insertion sites of elements carrying the *ter* operons.

Using the PCR method developed in this study, 106 strains were classified as type 1 (*n* = 66), 2 (*n* = 13), 3 (*n* = 8), and 4 (*n* = 17), and two strains carried both types 1 and 2. Furthermore, significant differences in the minimum inhibitory concentration (MIC) of tellurite were observed between strains carrying *ter*-type 4 and the others (*p* < 0.05). The *ter*-type was also closely related to the isolation source, with types 2 and 4 associated with chickens and deer, respectively. This study provided new insights related not only to genetic characteristics of the *ter* operons, but also to phenotypic and ecological characteristics that may be related to the diversity of the operon.

Keywords: *ter* operon, tellurite resistance, Shiga toxin-producing *Escherichia coli*, integrating genetic element, horizontal genetic transfer

INTRODUCTION

Tellurium (Te) is a rare element on Earth (Ibers, 2009) and is found in metal ores such as gold and copper (Terziev, 1966; Adams, 2016). Tellurite (TeO\textsubscript{3}2–), the oxyanion of tellurium, is highly toxic to most bacteria owing to its strong oxidative ability. Tellurite toxicity is related to the generation of reactive oxygen species (ROS) (Turner et al., 2001; Pérez et al., 2007; Tremaroli et al., 2007; Calderón et al., 2009; Diaz-Vásquez et al., 2014; Sandoval et al., 2015), which then induce damage...
to key cell components (Cabisco et al., 2000; Imlay, 2003; Ling and Söll, 2010; Molina-Quiroz et al., 2013), and consequently affect bacterial growth. However, some bacteria demonstrate tellurite resistance. In particular, most Shiga toxin-producing Escherichia coli (STEC) belonging to O157:H7 and other serotypes such as O26:H11, O103:H2, O111:H8, O121:H19, O145:H28, and O45:H2, which are responsible for numerous foodborne disease outbreaks, are known to possess tellurite resistance. Therefore, when STEC is efficiently isolated from patient and food samples, selective agar plates containing potassium tellurite (K₂TeO₃), such as cefixime-tellurite sorbitol MacConkey (CT-SMAC) agar and CHROMagar STEC are routinely used in laboratories.

Several genes involved in arsenic efflux (arsABC) (Turner et al., 1992), cysteine metabolism (cysK, cysM, csdB, lscS) (Vásquez et al., 2001; Lithgow et al., 2004; Rojas and Vásquez, 2005), nitrate reduction (narGHI) (Ayazéri et al., 1997; Sabaty et al., 2001), superoxide dismutation (sodA, sodB, soxS) (Tantaleán et al., 2003; Pérez et al., 2007), hydrogen peroxide detoxification (KatG) (Calderón et al., 2006), tellurite resistance proteins (tehAB, kilA, telAIB) (Walter et al., 1991; Turner et al., 1995), and glucose-phosphate dehydrogenase (zwf) (Sandoval et al., 2011; Sandoval et al., 2015) have been found to be related with tellurite resistance. Additionally, the tellurite resistance gene (ter) operon (Whelan et al., 1995) is involved in tellurite resistance at relatively high concentrations; the ter operon was first identified from a conjugative plasmid of an Alcaligenes strain (Jobling and Ritchie, 1987, 1988). Although the detailed functions of the ter operon underlying tellurite resistance are not fully understood, experiments such as cloning have revealed that six genes (terZABCDE) are directly involved in tellurite resistance (Whelan et al., 1995; Kornutakova et al., 2000; Valković et al., 2007). Genome sequences deposited in databases have revealed that the ter operon is widely distributed in gram-negative bacteria including Escherichia, Salmonella, Yersinia, Pseudomonas, and Proteus species (Supplementary Tables 1, 2).

STECs belonging to the seven major serotypes described above are known to carry the ter operon. For example, the STEC O157:H7 Sakai strain carried the ter operon on a prophage-like 86-kb element, named SpLE1 on the chromosome (Hayashi et al., 2001; Ohnishi et al., 2002). SpLE1 also contains genes encoding integrase, urease (ure), and iron-regulated gene A (IrgA)-homolog adhesin (iha) (Hayashi et al., 2001). Comparative genome analyses indicated that the ter operons and their carrier elements are highly conserved among STEC strains belonging to the major serotypes (Ogura et al., 2009; Lorenz et al., 2017). Some STEC isolates, such as STEC O111:H8, O117:H8, and non-STEC E. coli isolates also carry ter operons and/or show significant tellurite resistance (Orth et al., 2007; Gouali et al., 2013; Miko et al., 2014; Ferdous et al., 2015; Verhaegen et al., 2015; Kalule et al., 2018; Nguyen et al., 2021). A uropathogenic E. coli isolate was found to carry the ter operon on a large conjugative plasmid (Soltys et al., 2018). These reports suggest that the ter operon is widely distributed in E. coli including intestinal and extraintestinal pathogenic E. coli, as well as non-pathogenic E. coli. However, except for some STECs, the genetic characteristics of ter operons and their carrier elements have not been investigated in detail. In this study, in addition to STECs belonging to seven major serotypes, detailed analysis of ter operons and their carrier elements were performed in E. coli isolates belonging to more than 70 serotypes isolated from humans, cattle, pigs, chickens, and deer.

Materials and Methods

E. coli Strains

In total, 106 terA-positive E. coli strains isolated in Japan were used in this study (Supplementary Table 3). Human-derived STECs were isolated from patients and asymptomatic carriers through routine laboratory inspection. Twenty-four cattle-derived STEC strains, isolated in our previous study, were also used (Nguyen et al., 2021). Other E. coli strains from cattle, pigs, and deer were isolated from the rectal feces of slaughtered healthy animals. Feces were pre-cultured in modified E. coli broth (mEC) (Nissui Pharmaceutical Co., Ltd., Tokyo, Japan) at 37°C for 18–20 h and then inoculated on deoxycholate hydrogen sulfide lactose (DHL) (Nissui Pharmaceutical Co., Ltd., Tokyo, Japan) or CHROMagar STEC (CHROMagar™ Paris, France) agar plates. E. coli strains from chickens were isolated from colibacillosis infected sites (such as under the skin and organs) of chickens on farms and slaughterhouses. The swabs were directly inoculated onto DHL agar plates. After incubation at 37°C for 18–20 h, E. coli-like single colonies were picked from each plate. DNA for PCR was purified using the Wizard® Genomic DNA Purification Kit (Promega, Madison, WI, United States). E. coli species were confirmed by PCR using E. coli-specific gyrB sequences (Iguchi et al., 2015). The presence of the ter operon was screened by PCR using a universal primer pair (Supplementary Table 4), designed based on the terA sequences collected from the DNA database (GenBank/ENA/DDBJ) (Supplementary Table 1). The thermal conditions for PCR included 25 cycles of 94°C for 20 s, 58°C for 20 s, and 72°C for 30 s. PCR products were electrophoresed on 2% agarose gels in 0.5 × Tris-borate-EDTA (TBE) (25 mM Tris-borate and 0.5 mM EDTA) followed by staining with ethidium bromide (1 mg/mL), and imaging under UV light.

DNA-Based O and H Serotyping

DNA-based E. coli O and H serotyping (Og- and Hg-typing) were conducted as described previously (Iguchi et al., 2015; Banjo et al., 2018; Iguchi et al., 2020). Briefly, 25 multiplex PCR kits (MP-1 to MP-25) containing 195 primer pairs targeting O-antigen encoding genes and 10 multiplex PCR kits (MP-A to MP-J) containing 52 primer pairs targeting flagellin (H-antigen) encoding genes were used for broad Og- and Hg-typing, respectively. If no PCR product was obtained using any of the multiplex PCR kits, the sample was determined as OgUT (Og untypeable) or HgUT (Hg untypeable).
Prevalence of Virulence Related Genes
The virulence profiles of stx1, stx2, and eae were screened using PCR. The primers and PCR conditions for stx1, stx2, and eae were previously described by Cebula et al. (1995) and Nguyen et al. (2021), respectively.

Genome Sequencing and Assembly
DNA for genome sequencing was extracted and purified using the Qiagen Genomic DNA Preparation Kit (Qiagen) or Maxwell DNA Purification Kit (Promega). Illumina short-read libraries were prepared using 100 ng of extracted DNA using the Nextera DNA Library Prep Kit, and paired-end reads were generated using the MiSeq Reagent Kit (v3-600) on MiSeq (Illumina). MinION long-read libraries were prepared from 300 ng of genomic DNA using the Rapid Barcoding kit (SQK-RBK004) and were sequenced using R9 flow cells (FLO-MIN106) on MinION (Oxford Nanopore Technologies) to produce > 100 Mb of data per strain. The Illumina data were preprocessed using Trimmomatic (v0.36) to remove the adapter and low-quality sequences (Bolger et al., 2014). The quality of the Nanopore sequencing data was assessed using NanoPack (De Coster et al., 2018) a hybrid assembly with the Illumina and Nanopore reads was performed using Unicycler (v0.4.6) with the default parameters (Wick et al., 2017). The sequence data have been deposited in NCBI under the accession number, BioProject PRJDB10561.

Genome Analysis
Genome sequences were annotated using the online tool DFAST (Tanizawa et al., 2017) and were then visualized using an in silico Molecular Cloning software (in silico biology, Inc.). Plasmids were identified using PlasmidFinder 2.1 (Carattoli et al., 2014). The family of transposase genes was identified using the online tool ISfinder (Siguier et al., 2006). DNA sequences were aligned using the ClustalW program provided by DNA Data Bank of Japan. A phylogenetic tree was constructed using the neighbor-joining method with 1000 bootstrap replicates in MEGAX (Stecher et al., 2020). Genetic comparison and dot plot analysis of the elements was conducted using GenomeMatcher 3.14 (Ohitsubo et al., 2008).

Subtyping PCR for the ter Operon
The PCR primer sequences used for ter operon subtyping are shown in Supplementary Table 4. The thermal conditions for PCR were the same as those of PCR using the universal primers targeting terA.

Multilocus Sequence Typing
Multilocus sequence typing (MLST) was performed using the internal sequences of seven housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, and recA) (Wirth et al., 2006). The primers used were described in a previous study (Nguyen et al., 2021). Sequence types (STs) were determined according to the Enterobase MLST website2. Concatenated sequences (3,423 bp) of the seven genes were used to construct a phylogenetic tree.

Minimum Inhibitory Concentration (MIC) of Tellurite
Tellurite resistance was evaluated on Mueller-Hinton agar plates containing twofold serial dilutions of potassium tellurite

1https://clustalw.ddbj.nig.ac.jp
2http://enterobase.warwick.ac.uk/species/ecoli/allele_st_search
FIGURE 2 | Genomic comparison of the integrating elements carrying ter-type 1. (A) Comparison between SplE1 and SplE1-like elements; (B) comparison among SplE1 with SplE1-like elements and unknown elements. The approximate sizes of the elements are indicated in parentheses. Genes are colored based on their functional characteristics as described in the legend. The nucleotide sequence identities between the elements (cutoff ≥ 70% identity) are indicated by color shading according to the scale shown at the bottom of the figure.
(K$_2$TeO$_3$) ranging from 0.125 to 512 µg/mL, according to the general steps of the agar dilution method (Clinical and Laboratory Standards Institutes [CLSI], 2012). Three independent experiments and two replicates were performed for each experiment. For resistant strains, the median log$_2$ transformed MIC values of six replicates were used for statistical analysis. The difference in log$_2$ transformed MIC was analyzed by Tukey’s t-test and statistical significance was set at $p \leq 0.05$.

RESULTS

terA-Positive E. coli Strains

In total, 106 terA-positive *E. coli* strains from humans (26 strains), cattle (34 strains), pigs (6 strains), chickens (8 strains), and deer (32 strains) were collected (see Supplementary Table 3). There was no duplication of the Og:Hg-type in the strains isolated from the same sample. The strains were classified into 78 Og:Hg types, including an OgUT:Hg2 strain. terA-positive *E. coli* strains contained eae-positive STEC (positive for either or both stx1 and stx2) (42 strains), eae-negative STEC (28 strains), enteropathogenic *E. coli* (EPEC) (negative for both stx1 and stx2 and positive for eae) (4 strains), and others (all negative for stx1, stx2, and eae) (32 strains).

Subtypes of ter Operon

First, we determined the draft genomes of 34 representative strains using the MiSeq system, which were randomly selected after sorting out so that the Og:Hg types did not overlap (Supplementary Table 3) and extracted all ter operons (4,546 – 4,551 bp) containing six genes terZ, terA, terB, terC, terD, and terE (Figure 1A). When a phylogenetic tree was created using the ter operon sequences, it became clear that four groups were formed, named ter-type 1–4 (Figure 1B). In particular, the nucleotide sequences of types 1, 3, and 4 were highly conserved within their respective groups. The phylogenetic trees using the sequences of each gene of 34 strains, terZ (582 bp), terA (1,158 bp), terB (456 bp), terC (1,041 bp), terD (579 bp), and terE (576 bp) showed that type-3 and type-4 formed independent groups for all genes, whereas type-1 and
type-2 roughly formed their respective groups for terZ, terA, terD, and terE (Supplementary Figure 1). When a phylogenetic tree was created by adding 13 types of ter operons possessed by bacteria other than E. coli (Supplementary Table 2), three operons from Yersinia pseudotuberculosis, Salmonella enterica, and Klebsiella pneumoniae belonged to type-2, operons from seven Enterobacteriaceae genera formed an additional clade inside the group of E. coli-derived operons but no E. coli strain belonged to this clade, and the remaining three from Proteus mirabilis, Yersinia pestis, and Pseudomonas aeruginosa were distant from the E. coli-derived group (Supplementary Figure 2).

Comparison of Elements Carrying ter Operons

To analyze the structure of the ter operon as well as the surrounding region in detail, complete or almost complete genome sequences were obtained from the short- and long-read sequences of the 26 strains (Supplementary Table 3). When the attributes of ter operons were confirmed from the surrounding sequence information, the operons classified as ter-type 1, 3, and 4 were located on the chromosomes, whereas all operons classified as ter-type 2 were located on plasmids (Figure 1 and Supplementary Figure 2).

The elements carrying ter-type 1 from Og157:Hg7, Og121:Hg19, Og26:Hg11, Og84:Hg2, and Og177:Hg25 (76,233–96,657 bp) were highly conserved with Sple1 in the O157:H7 Sakai strain (Figure 2A and Supplementary Figure 3). In addition to the ter operon, these elements also carried the conserved integrase gene, the ure operon, iha, and some transposase genes including the IS66, IS3, and IS110 families; however, the integrase gene was not found in Og177:Hg25. The elements carrying ter-type 1 in Og103:Hg25, Og45:Hg2, Og5:Hg9, Og109:Hg10, and OgN3:Hg2 were different from those in the Sple1 group. Although these elements were conserved in the ter operon and in some regions, there were many indels, inversions, and recombination (Figure 2B and Supplementary Figure 3).

The elements carrying ter-type 3 from Og22:Hg8, Og8:Hg7, Og128ac:Hg2, Og130:Hg11, Og168:Hg19, and Og9:Hg19 (52,460–68,691 bp) were almost identical, except for the upstream region in Og168:Hg19 and Og9:Hg19 (Figure 3 and Supplementary Figure 3). It included an adhesin gene and some transposase genes, including the IS66 and IS4 families.
The *ter*-type 4 operons from Og54:Hg45, Og22:Hg16, Og146:Hg21, Og117:Hg4, and Og103:Hg14 were located on elements of different sizes ranging from 116,493 to 256,442 bp (Figure 4). However, the downstream regions of about 100 kb including the *ter* operon, were conserved, except for that of Og103:Hg14 (Figure 4 and Supplementary Figure 3). Conserved regions contained a plasmid-conjugative system (*tra* genes), a fatty acid biosynthesis gene cluster, site-specific tyrosine recombinase genes, and some transposase genes, including the IS256 family.

The operon of *ter*-type 2 from Og136:Hg16, Og183:Hg18, Og161:Hg4, Og183:Hg42, and Og84:Hg2 was located on IncHI2 plasmids, including the conjugative system (*tra* genes) and some antibiotic resistant genes (*aadA*, *aph (3)'*, *bla*, *ble*, *cmi*, *epiA*, and *tetA*), with sizes ranging from 165,509 to 249,877 bp (Figure 5 and Supplementary Figure 3). Except for the central regions downstream of the *ter* operons, where multiple recombination and inversions were confirmed, these plasmids roughly retained homologous gene structures. Based on the coverage of genomic sequences, the copy number of plasmids carrying the *ter*-operons was approximately the same as that of the chromosomes (1 vs. 0.85–1.74).

All *ter* operons used in this study, which were extracted from the genomes of strains other than *E. coli*, were located on plasmids, except for a *Salmonella*-derived *ter*-type 2 operon, and *Proteus*- and *Yersinia*-derived operons, which are on the chromosome (Supplementary Figure 2).

The Insertion Sites of Integrating Elements Carrying the ter Operon on the Chromosome

The insertion sites of elements carrying the *ter* operon are summarized in Figure 6. tRNA_{SerX} and tRNA_{PheV} were the only insertion sites of elements carrying *ter*-type 1 and 4 operons, respectively. Two positions of tRNA_{Met} (*ypjC–ygaQ* and *mug–yqhH*) were the insertion sites for the elements of the *ter*-type 1 and 3 operons. Although the types of elements carrying the *ter*-type 1 and 3 operons were different, a homology (98% amino acid sequence) was confirmed in the integrase genes located on the elements inserted in tRNA_{Phe} (Supplementary Figure 4).

Similarly, the nucleotide sequences of the integrase in the element carrying the *ter*-type 4 (Og54:Hg45 and Og22:Hg16 strain) were highly homologous (upper 97% amino acid sequence) with the integrases in the other integrating elements or the locus of enterocyte effacement that was inserted in the tRNA_{Phe} positions in seven major STEC genomes (Supplementary Table 1) (data not presented). In addition, the element carrying the *ter*-type 1 operon of Og177:Hg25 was inserted into tRNA_{SerW}, the element carrying the *ter*-type 3 operon of Og9:Hg19 was inserted into...
tRNAPheU, and the element carrying the \textit{ter}-type 4 operon of \textit{Og54:Hg45} was in tRNAPheU. Although tRNA was absent in the insertion site of the \textit{ter} operon-carrying elements in the \textit{Og5:Hg9} and \textit{Og109:Hg10} strains, a corresponding region surrounding the indicated tRNA was present in each strain (Supplementary Figure 5). There was an element other than the \textit{ter} operon carrier inserted in the tRNAPheU position of the \textit{Og9:Hg19} strain (Supplementary Figure 5).

PCR for ter Operon Subtyping

Based on the sequences of the \textit{ter} operons belonging to four subtypes, we designed type-specific PCR primers, and confirmed that these primers could specifically determine each type (Supplementary Table 4 and Supplementary Figure 6). Using PCR, all 106 \textit{ter}-positive strains tested were successfully classified into 4 \textit{ter}-types: type 1 \((n = 66)\), type 2 \((n = 13)\), type 3 \((n = 8)\), and type 4 \((n = 17)\), except for two strains belonging to \textit{Og84:Hg2}, which were positive for both \textit{ter}-type 1 and 2 (Supplementary Table 3). All \textit{eae}-positive strains, including seven major STEC serotype strains, were positive for \textit{ter}-type 1 \((n = 46)\), whereas \textit{eae}-negative \textit{E. coli} strains, including STEC and non-STEC, were positive for \textit{ter}-type 2 \((n = 13)\), type 3 \((n = 8)\), and type 4 \((n = 17)\), in addition to \textit{ter}-type 1 \((n = 21)\) (Supplementary Table 3).

Distribution of ter-Types in \textit{Escherichia coli} Linages

The phylogenetic tree of 80 \textit{terA}-positive \textit{E. coli} strains (one representative strain of the same O:H genotype and the same \textit{ter}-type was selected from 106 strains) is shown in Figure 7. Overall, four \textit{ter}-types were distributed in various lineages of \textit{E. coli} including A, B1, B2, E, D, A × B1, and ABD.
Tellurite Resistance
The 106 ter-positive *E. coli* strains showed MICs ranging from 16 to 256 µg/mL of potassium tellurite (Supplementary Table 5), except for a ter-type 1 strain (KAP39, Og98:Hg4), which was tellurite-sensitive. The genome sequence of this strain had an IS5 inserted on the *terZ* due to which the gene was disrupted (Supplementary Figure 7). Based on the ter subtype, seventy-five percent of the strains were classified as ter-type 1, 2, and 3 were resistant to potassium tellurite concentrations of 64–128 µg/mL or higher, whereas only one strain (6%) in ter-type 4 was resistant to 64–128 µg/mL (Supplementary Table 5). There was no significant difference in the resistance among ter-type 1, 2, and 3 groups, whereas the resistance activity of the ter-type 4 group was significantly lower than that of the other three types (*p < 0.05*) (Figure 8).

DISCUSSION
The gene composition and sequence homology of the ter operon carrier elements on the chromosomes were roughly conserved for each of the ter-types, 1, 3, and 4 (Supplementary Figure 3), and strains belonging to different phylogenetic lineages carried the same types of elements (Figure 7), suggesting that at least three different types of chromosomal elements carrying the ter operons have spread horizontally within *E. coli* species. Six tRNA genes on the chromosome were confirmed as insertion sites
for these elements, and were classified into three tRNA types: tRNA$_{\text{Ser}}$, tRNA$_{\text{Met}}$, and tRNA$_{\text{Phe}}$. The integrase genes on the elements carrying the ter-type 1 operon were divided into two types according to the sequence homology: elements with one type of integrase gene were inserted into tRNA$_{\text{Ser}}$ (as seen in strains belonging to O157:H7, and so on) and elements with the other type of integrase gene were inserted into tRNA$_{\text{Met}}$ (as seen in strains belonging to O103:H25, and so on) (Figures 2, 6). The latter integrase gene showed high homology with that of ter-type 3 operon-carrying elements (Supplementary Figure 4), and all elements with the ter-type 3 operon were also inserted into tRNA$_{\text{Met}}$, except for one strain (A150083 of Og9:Hg19) (Figure 6). Although the integrase gene was found only in two of the five ter-type 4 operon carrier elements used in this study, these two were conserved and highly homologous with the integrase in other elements of other strains that were all inserted into tRNA$_{\text{Phe}}$. These results suggest that the insertion site of these elements on the chromosome depends strongly on the integrase genes and not on the basic structure of the elements. Transposases such as IS66 and IS256 were located upstream and/or downstream of the ter operons, and especially in some ter-type 1 operons, they coincided with the recombination and inversion junction points, suggesting that IS transposase was involved in the transfer of small fragments, including ter operons, to other elements.

The ter-type 2 operons were located on the IncHI2 plasmids of E. coli strains, and were also found on the IncHI2 plasmids carried by Y. pseudotuberculosis and K. pneumoniae (Supplementary Figure 2), suggesting that this type of operon was horizontally transferred in E. coli as well as within the Enterobacteriaceae through plasmids. The conjugative IncHI2 plasmid is widely found in Enterobacteriaceae and is known to mediate various drug resistance genes (Herrera-León et al., 2011; Roberts et al., 2020). In fact, the plasmids found to harbor the ter-type 2 operons in this study carried three or more drug resistance genes (Figure 5). In this study, most of the ter-type 2 operons were found in isolates from chickens (47%, 7/15). In recent years, large amounts of antibacterial drugs have been used in broiler production, and the resulting emergence and spread of drug-resistant bacteria has become a global public health concern (Nhung et al., 2017; Mehdi et al., 2018; Yang et al., 2019). The IncHI2 plasmid carrying drug resistance genes may have thus been selected in the gastrointestinal tract of chickens after many years of antibacterial drug use, and the ter operon coexisting on the plasmid was co-selected simultaneously.

All E. coli strains used in this study were isolated in Japan. However, the sequences of the ter operons obtained from the DNA database used in Figure 1 originated from E. coli isolated outside Japan (14 strains belonging to type 1, 4 strains to type 2, 3 strains to type 3, and 2 strains to type 4), except for 4 strains belonging to type 1 (O157:H7, O103:H2, O111:H-; and O26:H11) (see Supplementary Table 1). These results suggested that the characteristics of the ter operon revealed in this study were not only those found in E. coli isolated in Japan, but also common to E. coli isolated outside Japan.

Strains carrying the ter-type 4 operon showed significantly lower MICs of potassium tellurite compared to the other three types. The function of Ter proteins has been suggested to involve their mutual association, as they interact at the interface of the inner plasma membrane and the cytosol (Valkovicova et al., 2013; Turkovicova et al., 2016). The nucleotide and amino acid sequences of genes on the ter-type 4 operon were significantly different from those of the other three types (Supplementary Figure 1), suggesting that these differences directly affected the functionality of Ter proteins. Most of the ter-type 4 operons were found in isolates from wild deer (94%, 16/17). Of the isolation sources used in this study, deer were the only animals from the wild environment, and their feces were collected from a wide area ranging from Hokkaido in the north, to Kyushu in the south of Japan. In addition to tellurite resistance, the ter operon is also involved in resistance to infection by various bacteriophages and to membrane-pore forming colicins (Whelan et al., 1995, 1997; Alonso et al., 2000), tolerance to oxidative stresses (Valkova et al., 2007), resistance to phagocytosis by macrophages (Ponnusamy and Clinkenbeard, 2015), the ability of cells to adhere to epithelial cells in vitro (Yin et al., 2009), and filamentous bacterial cellular morphology (Whelan et al., 1997). In addition, a ter homolog from Clostridium acetobutylicum showed resistance to methyl methane sulfonate and mitomycin C when expressed in an E. coli recA mutant (Azeddou and Reyssset, 1994). Bacterial acquisition of the ter operon may thus be beneficial for colonization of the host intestinal tract in the presence of various stresses and attacks. Although the reason for the strong relationship between the ter type-4 operon and deer is currently unknown, food and water in the wild environment, and the wild deer gut microbiome formed by their effects, may select strains carrying this type of ter-operon.

The tellurite-resistant phenotypes were variable within each type. For example, five strains of Og177: Hg25 with the ter-type 1 operon showed MICs of potassium tellurite ranging from 16 to 128 µg/mL. Furthermore, the amino acid sequences of the ter-type 1 operon genes of major STEC O26:H11 (11,368 strain) was identical to those of Og121:Hg19 (TS23_1 strain) (data not show). However, the resistance level of the latter strain
(16–32 µg/mL of potassium tellurite) was roughly lower than that of the former (64–128 µg/mL). A previous study has also shown that even O157:H7 serotype strains differ in their MICs of potassium tellurite (64–1,024 µg/mL) (Taylor et al., 2002). The above results indicate that the ter operon as well as other genetic factors influence tellurite resistance.

CONCLUSION

This study compared the details of ter operons responsible for tellurite resistance among various serotypes and sources of *E. coli*. Comparative analysis clearly distinguished the ter operon sequences into four subtypes, namely, ter-type 1–4 operons. The amino acid sequences of the ter-type 4 operon genes were distant from those of the other types, further, strains with the ter-type 4 operons showed significantly lower MICs compared to the other types. Furthermore, genomic analysis using long reads indicated the structural details of the integrating elements carrying the ter operons and insertion sites on the chromosome. Genomic comparison and phylogenetic analysis showed that at least three highly conserved elements were spread horizontally within *E. coli* species. Type 2 was found to be located on plasmids distributed in *E. coli* as well as in some *Enterobacteriaceae* species. The ter-type was also closely related to the source of isolation, the cause of which was unknown; however, types 2 and 4 were associated with chickens and deer, respectively. This study provided new insights related not only to genetic characteristics of the ter operons in *E. coli*, but also to phenotypic and ecological differences that may be related to them. In the future, by clarifying the unknown function of the Ter proteins, it is expected that the relationship between the diversity of the ter operon and the phenotypic and ecological characteristics revealed in this study will be clarified.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.

AUTHOR CONTRIBUTIONS

TN, AI, and SI conceived and designed the experiments. TN performed the experiments. TN, TK, and TT analyzed the data. TN and AI contributed to reagents, materials, analysis tools, critical revision of the manuscript for important intellectual content, and wrote the manuscript. All authors contributed to the article and approved the submitted version.

ACKNOWLEDGMENTS

We thank Yuiko Kato for technical assistance.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2021.681175/full#supplementary-material

REFERENCES

Adams, M. D. (2016). *Gold Ore Processing: Project Development and Operations*. Amsterdam: Elsevier.

Alonso, G., Gomes, C., González, C., and Rodríguez Lemoine, V. (2000). On the mechanism of resistance to channel-forming colicins (PacB) and tellurite, encoded by plasmid Mip233 (IncHI3). *FEBS Microbiol. Lett.* 192, 257–261. doi: 10.1111/j.1574-6968.2000.tb09391.x

Avázéri, C., Turner, R. J., Pommier, J., Weiner, J. H., Giordano, G., and Verméglio, A. (1997). Tellurite reductase activity of nitrate reductase is responsible for tellurite. *Microbiology (Reading)* 143, 1181–1189. doi: 10.1099/00221287-143-1181

Azeddouh, H., and Reyset, G. (1994). Cloning and sequencing of a chromosomal fragment from *Clostridium acetobutylicum* strain ABKn8 conferring chemical-damaging agents and UV resistance to *E. coli* recA strains. *Curr. Microbiol.* 29, 229–235. doi: 10.1007/bf01570159

Banjo, M., Iguchi, A., Seto, K., Kikuchi, T., Harada, T., Scheutz, F., et al. (2018). *Escherichia coli* H-genotyping PCR: a complete and practical platform for molecular H typing. *J. Clin. Microbiol.* 56, e190–e218. doi: 10.1128/jcm.00190-18

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for illumina sequence data. *Bioinformatics* 30, 2114–2120. doi: 10.1093/bioinformatics/btu170

Cabisco, E., Tamarit, J., and Ros, J. (2000). Oxidative stress in bacteria and protein damage by reactive oxygen species. *Int. Microbiol.* 3, 3–8.

Calderón, I. L., Arenas, F. A., Pérez, J. M., Fuentes, D. E., Araya, M. A., Saavedra, C. P., et al. (2006). Cadasares are NAD(P)H-dependent tellurite reductases. *PLoS One* 1:e70. doi: 10.1371/journal.pone.0000070

Calderón, I. L., Elias, A. O., Fuentes, E. L., Pradenas, G. A., Castro, M. E., Arenas, F. A., et al. (2009). Tellurite-mediated disabling of [4Fe–4S] clusters of *Escherichia coli* dehydratases. *Microbiology (Reading)* 155, 1840–1846. doi: 10.1099/mic.0.026260-0

Carattoli, A., Zankari, E., García-Fernández, A., Voldby Larsen, M., Lund, O., Villa, L., et al. (2014). In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. *Antimicrob. Agents. Chemother.* 58, 3895–3903. doi: 10.1128/acc.02412-14

Cebula, T. A., Payne, W. L., and Feng, P. (1995). Simultaneous identification of strains of *Escherichia coli* serotype O157:H7 and their Shiga-like toxin type by mismatch amplification mutation assay-multiplex PCR. *J. Clin. Microbiol.* 33, 248–250. doi: 10.1128/jcm.33.1.248-250.1995

Clinical and Laboratory Standards Institutes (CLSI) (2012). *Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standard*, CLSI document M07-A9, 9th Edn. Wayne, PA: CLSI

De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M., and Van Broeckhoven, C. (2018). NanoPack: visualizing and processing long-read sequencing data. *Bioinformatics* 34, 2666–2669. doi: 10.1093/bioinformatics/bty149

Díaz-Vásquez, W. A., Abarca-Lagunas, M. J., Arenas, F. A., Pinto, C. A., Cornejo, F. A., Wansapura, P. T., et al. (2014). Tellurite reduction by *Escherichia coli* NDH-II dehydrogenase results in superoxide production in membranes of toxicant-exposed cells. *Biometals* 27, 237–246. doi: 10.1007/s10534-013-9701-8
Iguchi, A., Iyoda, S., Seto, K., Morita-Ishihara, T., Scheutz, F., and Ohnishi, M. (2015). *Escherichia coli* O157:H7 and genomic comparison with a laboratory strain K-12. *DNA Res.*, 20, 11–22. doi: 10.1093/dnares/dsu018

Herrera-León, S., González-Sanz, R., Herrera-León, L., and Echeita, M. A. (2011). Characterization of multidrug-resistant *Enterobacteriaceae* carrying plasmid-mediated quinolone resistance mechanisms in Spain. *J. Antimicrob. Chemother.* 66, 287–290. doi: 10.1093/jac/dkq423

Ibers, J. (2009). Tellurium in a twist. *Nat. Chem.* 1, 508–508. doi: 10.1038/nchem.350

Iguchi, A., Iyoda, S., Seto, K., Morita-Ishihara, T., Scheutz, F., and Ohnishi, M. (2015). *Escherichia coli* O157:H7: A comprehensive and practical platform for molecular O serogrouping. *J. Clin. Microbiol.* 53, 2427–2432. doi: 10.1128/jcm.00321-15

Kalule, J. B., Keddy, K. H., and Nicol, M. P. (2018). Characterisation of STEC and *O104:H4* strains isolated from healthy cattle. *J. Clin. Microbiol.* 56, 69–74. doi: 10.1128/jcm.03121-15

Jobling, M. G., and Ritchie, D. A. (1988). The nucleotide sequence of a plasmid determinant for resistance to tellurium anions. *Appl. Environ. Microbiol.* 54, 1493–1520. doi: 10.1128/AEM.54.9.1493-1520.1988

Imlay, J. A. (2003). Pathways of oxidative damage. *Annu. Rev. Microbiol.* 57, 395–418. doi: 10.1146/annurev.micro.57.030502.090938

Jobling, M. G., and Ritchie, D. A. (1987). Genetic and physical analysis of plasmid genes expressing inducible resistance of tellurite in *Escherichia coli*. *Mol. Gen. Genet.* 208, 288–293. doi: 10.1007/bf00330455

Imlay, J. A. (2003). Genomic diversity of enterohemorrhagic *Escherichia coli* O157:H7 and non-O157 enterohemorrhagic *Escherichia coli*. *Proc. Nat. Acad. Sci. U.S.A.* 106, 17939–17944. doi: 10.1073/pnas.0903585106

Ohtsubo, Y., Ikeda-Ohtsubo, W., Nagata, Y., and Tsuda, M. (2008). GenomeMatcher: a graphical user interface for DNA sequence comparison. *BMCS Bioinform.* 9:376. doi: 10.1186/1471-2105-9-376

Orth, D., Grif, K., Dierich, M. P., and Wurzner, R. (2007). Variability in tellurite resistance and the ter gene cluster among Shiga toxin-producing *Escherichia coli* isolated from humans, animals and food. *Res. Microbiol.* 158, 105–111. doi: 10.1016/j.resmic.2006.10.007

Pérez, J. M., Calderón, I. L., Arenas, F. A., Fuentes, D. E., Pradasen, G. A., Fuentes, E. L., et al. (2007). Bacterial toxicity of potassium tellurite: unveiling an ancient enigma. *PLoS One* 2:e211. doi: 10.1371/journal.pone.000211

Ponnusamy, D., and Climenhkend, K. D. (2015). Role of tellurite resistance operon in filamentous growth of *Vernaditas pestis* in macrophages. *PLoS One* 10:e0141984. doi: 10.1371/journal.pone.0141984

Roberts, L. W., Catchpoole, E., Jennison, A. V., Bergh, H., Hume, A., Heney, C., et al. (2020). Genomic analysis of carbapenemase-producing *Enterobacteriaceae* in Queensland reveals widespread transmission of *blaOXA-4* on an IncHII plasmid. *Microb. Genom.* 6:e000321. doi: 10.1099/mgen.0.000321

Rojas, D. M., and Vásquez, C. C. (2005). Sensitivity to potassium tellurite of *Escherichia coli* cells deficient in CsdA, CsdB and IscS cysteine desulphurases. *Res. Microbiol.* 156, 465–471. doi: 10.1016/j.resmic.2004.12.010

Sabaty, M., Avazeri, C., Pignon, D., and Vermeglio, A. (2001). Characterization of the reduction of selenate and tellurite by nitrate reductases. *Appl. Environ. Microbiol.* 67, 5122–5126. doi: 10.1128/AEM.67.11.5122-5126.2001

Sandoval, J. M., Arenas, F. A., García, J. A., Díaz-Vásquez, W. A., Valdivia-González, M., Sabotier, M., et al. (2015). *Escherichia coli* 6-phosphogluconolactone dehydrogenase aids in tellurite resistance by reducing the toxicant in a NADPH-dependent manner. *Microb. Res.* 177, 22–27. doi: 10.1016/j.micres.2015.05.002

Sandoval, J. M., Arenas, F. A., and Vásquez, C. C. (2011). Glucose-6-phosphate dehydrogenase protects *Escherichia coli* from tellurite-mediated oxidative stress. *PLoS One* 6:e25573. doi: 10.1371/journal.pone.0025573

Siguer, P., Perichon, J., Lestrade, L., Mahillon, J., and Chandler, M. (2006). *IISfinder*: the reference centre for bacterial insertion sequences. *Nucleic Acids Res.* 34, D32–D36. doi: 10.1093/nar/gkj014

Soltys, K., Vavrova, S., Budis, J., Palkova, L., Minarik, G., and Grones, J. (2018). Draft genome sequence of *Escherichia coli* KL53. *Genome Announc.* 6, e0220–e0318. doi: 10.1093/gene/axy022

Stecher, G., Tamura, K., and Kumar, S. (2020). Molecular evolutionary genetics analysis (MEGA) for macOS. *Mol. Biol. Evol.* 37, 1237–1239. doi: 10.1093/molbev/msz312

Tazawa, Y., Tadokoro, T., and Nakamura, Y. (2017). DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. *Bioinformatics* 34, 1037–1039. doi: 10.1093/bioinformatics/btx713

Tantalein, J. C., Araya, M. A., Saavedra, C. P., Fuentes, D. E., Pérez, J. M., Calderón, I. L., et al. (2003). The Geobacillus stearothermophilus *V isc* gene, encoding cysteine desulphurase, confers resistance to potassium tellurite in *Escherichia coli* K-12. *J. Bacteriol.* 185, 5831–5837. doi: 10.1128/JB.185.19.5831-5837.2003

Taylor, D. E., Rooker, M., Keelan, M., Ng, L.-K., Martin, I., Perna, N. T., et al. (2002). Genomic variability of *O* islands encoding tellurite resistance in *Enterohemorrhagic Escherichia coli* O157:H7 isolates. *J. Bacteriol.* 184, 4690–4698. doi: 10.1128/JB.184.17.4690-4698.2002

Terziev, G. (1966). Kostovite, a gold-copper telluride from Bulgaria1. *Am. Mineral.* 51, 29–36.
Turkovcová, L., Smidák, R., Jung, G., Turna, J., Lubeč, G., and Aradska, J. (2016). Proteomic analysis of the TerC interactome: novel links to tellurite resistance and pathogenicity. J. Proteom. 136, 167–173. doi: 10.1016/j.jprot.2016.01.003

Turner, R. J., Aharonowitz, Y., Weiner, J. H., and Taylor, D. E. (2001). Glutathione is a target in tellurite toxicity and is protected by tellurite resistance determinants in Escherichia coli. Can. J. Microbiol. 47, 33–40.

Turner, R. J., Hou, Y., Weiner, J. H., and Taylor, D. E. (1992). The arsenical ATPase efflux pump mediates tellurite resistance. J. Bacteriol. 174, 3092–3094. doi: 10.1128/jb.174.9.3092-3094.1992

Whelan, K. F., Sherrburne, R. K., and Taylor, D. E. (1997). Characterization of a region of the IncH2 plasmid R478 which protects Escherichia coli from toxic effects specified by components of the tellurite, phage, and colicin resistance cluster. J. Bacteriol. 179:63. doi: 10.1128/jb.179.1.63-71.1997

Wick, R. R., Judd, L. M., Gorrie, C. L., and Holt, K. E. (2017). Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13:e1005595. doi: 10.1371/journal.pcbi.1005595

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Nguyen, Kikuchi, Tokunaga, Iyoda and Iguchi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.