The Integrated Landscape of Biological Candidate Causal Genes in Coronary Artery Disease

Qiwen Zheng, Yujia Ma, Si Chen, Qianzi Che and Dafang Chen*

Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China

Background: Genome-wide association studies (GWASs) have identified more than 150 genetic loci that demonstrate robust association with coronary artery disease (CAD). In contrast to the success of GWAS, the translation from statistical signals to biological mechanism and exploration of causal genes for drug development remain difficult, owing to the complexity of gene regulatory and linkage disequilibrium patterns. We aim to prioritize the plausible causal genes for CAD at a genome-wide level.

Methods: We integrated the latest GWAS summary statistics with other omics data from different layers and utilized eight different computational methods to predict CAD potential causal genes. The prioritized candidate genes were further characterized by pathway enrichment analysis, tissue-specific expression analysis, and pathway crosstalk analysis.

Results: Our analysis identified 55 high-confidence causal genes for CAD, among which 15 genes (LPL, COL4A2, PLG, CDKN2B, COL4A1, FES, FLT1, FN1, IL6R, LPA, PCSK9, PSRC1, SMAD3, SWAP70, and VAMP8) ranked the highest priority because of consistent evidence from different data-driven approaches. GO analysis showed that these plausible causal genes were enriched in lipid metabolic and extracellular regions. Tissue-specific enrichment analysis revealed that these genes were significantly overexpressed in adipose and liver tissues. Further, KEGG and crosstalk analysis also revealed several key pathways involved in the pathogenesis of CAD.

Conclusion: Our study delineated the landscape of CAD potential causal genes and highlighted several biological processes involved in CAD pathogenesis. Further studies and experimental validations of these genes may shed light on mechanistic insights into CAD development and provide potential drug targets for future therapeutics.

Keywords: coronary artery disease, genome-wide association studies, prioritize, causal genes, expression quantitative trait locus, protein–protein interaction, network, integration analysis

HIGHLIGHTS
- Conducted an integrative analysis to prioritize the CAD potential causal genes by using eight computational methods.
- Identified 55 high-confidence causal genes for CAD, among which 15 genes ranked the highest priority.
- Plausible causal genes were enriched in lipid metabolic and extracellular region.
INTRODUCTION

With the number of all-age deaths closing to nine million in 2017, CAD is the leading cause of mortality worldwide (GBD 2017 Causes of Death Collaborators, 2018). Parallel to the high prevalence and vast number of deaths, CAD also places a crushing economic burden. According to the recent American Heart Association report, the medical costs and productivity losses of CVD are expected to grow from $555 billion in 2015 to $1.1 trillion in 2035 (Dunbar et al., 2018; Benjamin et al., 2019). Although CAD has become a major concern in global public health, there still a long way to fully understand the etiology of CAD before getting it under control.

In addition to lifestyle risk factors such as physical inactivity, unbalanced diet, smoking, alcohol, and obesity (Meier et al., 2015), genetic factors also play a pivotal role in CAD susceptibility (Musunuru and Kathiresan, 2019). Family and twin studies have demonstrated a strong genetic component of CAD, with heritability estimated between 40 and 60% (McPherson and Tybjaerg-Hansen, 2016; Khera and Kathiresan, 2017). To unravel the genetic underpinnings of CAD, multiple large-scale genetic studies have been performed. During the past decade, GWASs have identified more than 150 genetic loci at the unbalanced diet, smoking, alcohol, and obesity (Meier et al., 2015). Consider the polygenic nature of CAD, more variants are expected to be identified in the near future owing to the rapid increase in sample size (Zhang et al., 2018). However, the success of GWAS has not been fully translated into an ability to find biological mechanisms and therapeutic targets behind these associations (Shu et al., 2018; Musunuru and Kathiresan, 2019). There exist some difficulties in localizing the causal genes directly from the GWAS results. First, the lead variant identified by GWAS represents a set of variants in LD that usually spans large genomic regions (Farh et al., 2015). The complicated LD between SNPs and causative mutations is a major barrier to pinpoint the plausible causal genes. Second, the genes in the closest physical proximity to the top associated variants may not be the causal genes because of gene regulation (Smemo et al., 2014). The causal variants mediate the effect on disease risk through either a local effect on gene within the locus or action at a distance on a more remote gene. Therefore, the complexity of LD structure and distal regulation impedes our ability to identify causal genes from GWAS results. To address this issue, many GWAS-based computational methods aiming to prioritize the most likely causal genes have been developed (Rossin et al., 2011; He et al., 2013; Greene et al., 2015; Pers et al., 2015; Tasan et al., 2015; Gusev et al., 2016; Zhu et al., 2016; Shim et al., 2017). For example, Sherlock, SMR, and TWAS prioritize causal genes by combining GWAS and eQTL data; DAPPLE integrates GWAS data with PPI network to identify potential causal genes; DEPICT identifies causal genes through integrating GWAS and predicts gene functions; and prix fixe, NetWAS, and GWAB predict causal genes using co-function network, tissue-specific network, and human functional gene network, respectively. In this study, we systematically prioritized the potential causal genes for CAD through eight cutting-edge methods (Sherlock, SMR, DAPPLE, NetWAS, prix fixe, GWAB, DEPICT, and TWAS), which are complementary with each other. Candidate causal genes were further characterized by pathway enrichment analysis, tissue-specific enrichment analysis, and pathway crosstalk analysis (Figure 1). This landscape of potential causal genes could provide information and evidence to elucidate the genetic mechanisms underlying CAD.

MATERIALS AND METHODS

Genome-Wide Association Study Data of Coronary Artery Disease

We used summary statistics from a large-scale CAD GWAS in our study (Nelson et al., 2017). In brief, Nelson et al. (2017) performed a genome-wide association meta-analysis of the United Kingdom Biobank data with two published datasets (CARDIoGRAMplusC4D 1000 Genomes-imputed GWAS (Nikpay et al., 2015) and MIGen/CARDioGRAM Exome chip study (Stitziel et al., 2016; Webb et al., 2017). The study comprised a total of 71,602 CAD cases and 260,875 controls and identified 304 independent variants, clustering 243 loci, associated with CAD at 5% FDR. More detailed information regarding sample recruitment, genotyping, quality control, and statistical analysis is provided in the original study (Nelson et al., 2017). Blood Expression Quantitative Trait Locus Data

We used eQTL summary data from the Consortium for the Architecture of Gene Expression (CAGE, n = 2,765 in peripheral blood) and the GTEx Consortium v7 release (n = 369 from whole blood). Briefly, Lloyd-Jones et al. (2017) performed this analysis of 2,765 samples from peripheral blood, with gene expression data observed from Illumina gene expression arrays (38,624 gene expression probes) and SNP genotype data imputed to the 1,000 Genomes Phase 1 Version 3 reference panel (~8 million SNPs). Information about tissue collection, genotyping, RNA quantification, and statistical analysis can be found in the original study of Lloyd et al. (2017). The GTEx project (GTEx Consortium, 2013) contained samples from 44 healthy tissues of 20- to 70-year-old human postmortem donors. For eQTL data (v7), whole blood tissues of 369 individuals were used, and gene expression levels measured by RNA-seq. SNP genotyping was performed using the Illumina OMNI SNP Arrays.
Prioritization of Coronary Artery Disease Candidate Causal Genes

Sherlock Integrative Analysis

Based on the assumption that the expression change of a specific gene may contribute to CAD risk, we used *Sherlock* integrative analysis method to integrate SNP associations from CARDIoGRAMplusC4D consortium and blood eQTL from GTEx (He et al., 2013). *Sherlock* utilizes a Bayesian statistical framework to infer causal genes. It calculates the logarithm of Bayes factor (LBF) for each gene to represent the probability of association between specific gene and CAD. Bonferroni correction was used to correct the *P* value of genes identified by *Sherlock* integrative analysis. The corrected threshold of *P* value is 8.7×10^{-6} (there were 5,747 genes in the eQTL test).

Summary Data-Based Mendelian Randomization Analysis

Similar to *Sherlock*, *SMR* performs integrative analysis through integrating genetic associations from GWAS and eQTL data from CAGE (Zhu et al., 2016). Additionally, *SMR* uses HEIDI test to distinguish pleiotropy from linkage. Genes were considered as plausible causal gene only if they passed both *SMR* and *HEIDI* tests. The genome-wide significant threshold was defined as $P_{\text{SMR}} < 5.24 \times 10^{-6}$, because we retained 9,538 gene expression probes from the CAGE eQTL analysis.

Disease Association Protein–Protein Link Evaluator

Based on the “guilt by association” principle, many previous studies incorporated PPI network into GWAS analysis in order to prioritize candidate genes (Jia et al., 2012; Jia and Zhao, 2014), and *DAPPLE* is one of the popular approaches (Rossin et al., 2011). It requires a set of association loci as input and prioritizes genes according to connectivity in the PPI network. Genes with a corrected *P* value less than 0.05 will be considered as potential causal genes.

Network-Wide Association Study

Network-Wide Association Study is a machine learning method that combines gene-level association with the tissue-specific interaction network (Greene et al., 2015). The network was built using 14,000 publications and low-throughput tissue-specific expression data, which could describe the gene–gene functional interactions within a specific tissue. In this study, we used VEGAS2 (Mishra and Macgregor, 2015) to convert SNP-based summary statistics into gene-based *P* values. We prioritize the genes in a network built from liver tissue and set 0.05 as *P* value threshold, which implied that genes with *P* value below this cutoff were treated as positive in NetWAS.

Prix Fixe Analysis

The *prix fixe* strategy uses co-function networks to prioritize genes from multiple disease-associated loci (Tasan et al., 2015). It identifies genes by evaluating the significance of combinations of genes, with one gene from each GWAS candidate locus, in a gene network. In this study, the top 100 index SNPs from CAD GWAS were used as input for *prix fixe* (as *prix fixe* only accepts a maximum of 100 SNPs as input). By averaging the importance measurements, *prix fixe* (PF) score was obtained to prioritize candidate genes.

Genome-Wide Association Boosting

Holding the view that the genes associated with a disease tend to be functionally together, *GWAB* prioritizes candidate disease genes by integrating the GWAS data and human
gene network (Shim et al., 2017). Unlike other network-based approaches, GWAB has an advantage that it integrates complementary information from both population-based approach and molecular profiling approach to identify disease-associated genes. Therefore, it can make the best of information identified from functional experiments apart from the statistical association from GWAS. Shim et al. (2017) used GWAS data from Schunkert et al. (2011) as input and referenced genes from three disease gene databases (OMIM, DO, and CADGeneDB) as benchmark to predict for disease-associated genes. We therefore included Jung Eun Shim’s results into our study.

Transcriptome-Wide Association Studies

The TWAS (Gusev et al., 2016) is a powerful strategy that integrates SNP–expression correlation, GWAS summary statistics, and LD reference panels to identify genes whose cis-regulated expression is associated with disease risk. This method can be conceptualized as having imputed expression data for all cases and controls who participated in GWAS. It then correlated the imputed gene expression with traits to perform a TWAS and identified significant expression-trait associations. Mancuso et al. (2017) have integrated gene expression measurements from 45 expression panels with 30 large-scale summary GWAS data to gain insight into the role of expression in the etiology of complex traits by using TWAS. We therefore included Mancuso’s results into our study.

Data-Driven Expression Prioritized Integration for Complex Traits

The DEPICT tool predicts the most likely causal genes by integrating GWAS data and gene functions (Pers et al., 2015). Predefined gene sets and gene-transcriptional component matrix developed from gene expression data are used to obtain gene function. van der Harst and Verweij (2018) have prioritized candidate causal genes for CAD using DEPICT. They defined sentinel SNPs as the most significant variant in a 1-Mb region that was independent from other sentinel SNPs (r² < 0.1), which was consistent with Pers et al. (2015). Therefore, we included Van der Harst’s results (van der Harst and Verweij, 2018) (prioritized causal gene list) into our study.

Ranking the Potential Causal Genes

We used eight different approaches to predict the potential causal genes of CAD. As they are complementary with each other, we assigned equal weights to all methods. Each candidate gene will receive a score of 1 if it is identified by any of the above-mentioned approaches. A cumulative scoring strategy was performed to rank the causal genes. For example, if a gene was only identified by Sherlock analysis, the total score of this gene was 1 point. If a gene was identified by both Sherlock and SMR, the total score of this gene was 2 points. The higher the score of a gene, the more consistent its evidence for identification across the methods and thus the greater the likelihood of involvement in disease susceptibility.

Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Enrichment Analysis

We performed GO analysis to test if the identified potential causal genes were significantly enriched in specific functional categories by using DAVID (Huang da et al., 2009a,b). Three GO terms, including biological process (BP), cellular component (CC), and molecular function (MF) were used. We also conducted KEGG enrichment analysis using ToppGene (Chen et al., 2009). KEGG pathways and GO terms with adjusted P values less than 0.05 [Benjamini and Hochberg (BH) method for correction of multiple testing] were considered as statistical significant.

Tissue-Specific Enrichment Analysis

In order to identify the most relevant tissue for CAD candidate causal genes, we calculated a pSI score for each gene to represent its enrichment in a specific tissue. Details of pSI score calculation can refer to the original publication (Wells et al., 2015). For each tissue, genes with pSI < 0.05 are considered as significantly enriched in the tissue. The overlap between CAD potential causal genes and the genes enriched in each tissue was estimated by Fisher’s exact test. Bonferroni correction was used to adjust for multiple testing. The significant threshold was defined as P < 0.002, because 25 tissues were tested.

Analysis of Protein–Protein Interaction and Co-Expression Network

To explore the physical interaction among the proteins encoded by the potential causal genes, we used human PPI data from STRING (Szklarczyk et al., 2017). Additionally, we further investigated the co-expressed genes of the prioritized causal genes using GeneMANIA (Montojo et al., 2014). Cytoscape was employed to visualize the network (Shannon et al., 2003). We assumed that the gene association density of CAD potential causal gene set was higher than that of random gene sets. To test this hypothesis, we generated 1,000 random gene sets, each with the same number of genes as CAD potential causal gene set, and we assessed the significance using Z-test.

Pathway Crosstalk Analysis

In order to explore the interactions among significantly enriched pathways, we further performed pathway crosstalk analysis. Two pathways were considered to crosstalk if they share a proportion of genes prioritized in our study. We employed two measurements to indicate the overlap of a pair of pathways: the Jaccard coefficient \(JC = \frac{|A \cap B|}{|A \cup B|} \) and the overlap coefficient \(OC = \frac{|A \cap B|}{\min(|A|,|B|)} \), where A and B represent the number of candidate genes in the two pathways. In order to preclude non-specific inclusion of crosstalk, we set up the following rules: (1) only pathways with adjusted P values < 0.05 were included; (2) only pathways contained at least three candidate genes were included; and (3) pathway pairs with less than two overlapped candidate genes were removed. We visualized the results of pathway crosstalk analysis using Cytoscape (Shannon et al., 2003).
RESULTS

Potential Causal Genes Identified by Sherlock
To identify genes whose expression level change may confer risk of CAD, we systematically integrated genetic associations from the largest GWAS of CAD so far with blood eQTL data from GTEx using Sherlock, a Bayesian statistical framework. We identified 17 potential causal genes whose expression level may affect CAD risk at \(P < 8.7 \times 10^{-6} \) (Bonferroni corrected \(P < 0.05 \), Supplemental Table S1). For each gene, at least one SNP showed significant association with the expression of this gene and CAD risk simultaneously, implying that these SNPs may exert their effects through regulating gene expression.

Potential Causal Genes Identified by SMR
We further utilized a different integrative analysis method, SMR, to identify CAD risk genes through integrating CAD GWAS and blood eQTL data from CAGE. SMR identified six genes at \(P < 5.24 \times 10^{-6} \). However, VAMP8 and MA12A did not pass HEIDI test (\(P < 0.05 \)), and only four genes (PSRC1, LIPA, SWAP70, and NT5C2) were retained (Supplementary Table S2). Intriguingly, three of them (PSRC1, LIPA, and NT5C2) were also identified by Sherlock, bringing further evidence to support that they might be the authentic risk genes for CAD.

Potential Causal Genes Identified by DAPPLE
Disease Association Protein–Protein Link Evaluator prioritizes disease-associated genes through using PPI data. A total of 58 genes were identified at corrected \(P < 0.05 \) (Supplementary Table S3). The top prioritized genes included SVEPI, APOB, FES, SLC22A4, PLG, ABCG5, FLT1, HNF1A, LDLR, and UBE2Z. GO analysis showed that these prioritized genes were enriched in lipid metabolism, transportation, and storage-related pathways (Supplementary Table S4).

Potential Causal Genes Identified by NetWAS
We further mapped the gene-wide results to liver-specific network and classified by machine learning models as implemented by NetWAS. The top 50 genes were included in our further analysis (Supplementary Table S5). The most significant GO terms enriched among promising candidates genes were “protein binding” (corrected \(P = 7.6 \times 10^{-8} \)), “cytosol” (corrected \(P = 2.0 \times 10^{-7} \)), and “nucleoplasm” (corrected \(P = 4.3 \times 10^{-7} \)) (Supplementary Table S6).

Potential Causal Genes Identified by Prix Fixe
We further predicted CAD causal genes using prix fixe, which incorporates the functionally coherent subnetworks into network analysis. Ten genes were identified by prix fixe, including PCSK9, DHCR24, SOD2, LPA, PLG, MAP3K4, CDKN2B, CDKN2A, ADORA2A, and DERL3 (Supplementary Table S7). Of note, PCSK9 ranked the highest score among those genes. Genetic evidence indicated that individuals with inactivating mutations in PCSK9 have decreased levels of circulating LDL and CAD risk, which led to the two monoclonal antibodies that inhibit PCSK9 to be approved by the United States Food and Drug Administration (Cohen et al., 2006). The finding of PCSK9 further reinforced other genes identified by prix fixe as promising causal genes for CAD.

The Integrated Landscape of Causal Genes in Coronary Artery Disease
We utilized different approaches (including Sherlock, SMR, DAPPLE, NetWAS, prix fixe, GWAB, DEPICT, and TWAS) to prioritize the potential causal genes for CAD. In order to obtain the global landscape of plausible causal genes, we also integrated candidate causal genes identified by previous studies. Studies included in our further analysis are summarized as follows: (1) Causal genes predicted by Pavlides et al. using SMR (Pavlides et al., 2016). By integrating Westra blood eQTL data (Westra et al., 2013) and CARDioGRAMplusC4D 1000 Genomes-based GWAS data (60,801 cases and 123,504 controls) (Nikpay et al., 2015), Pavlides et al. (2016) used SMR to prioritize genes and identify five candidate genes (VAMP8, SWAP70, IL6R, ATP5G1, and EIF2B2) that passed both SMR and HEIDI test (Supplementary Table S8). (2) Causal genes predicted by GWAB (Shim et al., 2017). Jung Eun Shim et al. used GWAS data from CARDioGRAMplusC4D consortium (22,233 cases and 64,762 controls) as input and references genes from three disease gene databases (OMIM, DO, and CADgeneDB) as benchmark to predict for disease-associated genes. After network boosting, 35 genes from the largest component of the network were significantly associated with CAD (GWAB score > 7.3) (Supplementary Table S9). (3) Causal genes predicted by DEPICT (van der Harst and Verweij, 2018). Gusev et al. (2016) predicted the causal genes for CAD recently. A total of 433 genes were identified as plausible candidate genes for CAD (FDR < 0.01) (Supplementary Table S10). (4) Causal genes predicted by TWAS. Mancuso et al. (2017) integrated CARDioGRAM consortium GWAS data (Schunkert et al., 2011) with various expression panels and identified 12 genes significantly associated with CAD (Supplementary Table S11). Given that the results of the eight analytical methods are correlated but not identical, genes genuinely involved in disease susceptibility would be expected to show consistent results across several methods. We therefore adopted the method of cumulative scoring strategy and ranked the plausible causal genes by their frequency of occurrences in the results of different approaches. We summarized the results in Table 1 and generated the landscape of potential causal genes in CAD (Figure 2). This yielded 55 candidate genes with total score \(\geq 2 \), among which 15 genes were captured by at least three analysis methods. Therefore, these 15 genes (LPL, COL4A2, PLG, CDKN2B, COL4A1, FES, FLT1, FNI, IL6R, LPA, PCSK9, PSRC1, SMAD3, SWAP70, and VAMP8) were considered as the most promising causal genes for CAD. We queried the NHGRI-EBI GWAS Catalog (Buniello...
TABLE 1 | Summary of 55 prioritized causal genes.

No.	Gene	Locus	First identified by GWAS	Potential biological function	Other related traits*	Methods
1	LPL	8p21.3	2017–2018	Triglyceride-rich lipoproteins	HDL, TG	Sherlock, GWAB, TWAS, DEPICT, DAPPLE
2	COL4A2	13q34	2011	Cellular proliferation and vascular remodeling	Colorectal cancer, coronary artery calcification, DBP, TC	GWAB, DEPICT, DAPPLE, prix fixe
3	PLG	6q26	2015	Cellular proliferation and vascular remodeling	Blood protein measurement	GWAB, DEPICT, DAPPLE, prix fixe
4	CDKN2B	9p21.3	2007–2008	Cellular proliferation and vascular remodeling	Cancer, heart failure, diabetes mellitus, stroke, atrial fibrillation, mortality	TWAS, DEPICT, prix fixe
5	COL4A1	13q34	2011	Cellular proliferation and vascular remodeling	Arterial stiffness measurement, stroke	GWAB, DEPICT, DAPPLE
6	FES	15q26.1	2017–2018	Uncertain	SBP, DBP	Sherlock, DEPICT, DAPPLE
7	FLT1	13q12.3	2017–2018	Cellular proliferation and vascular remodeling	–	GWAB, DEPICT, DAPPLE
8	FN1	2q35	2017–2018	Coagulation	–	GWAB, DEPICT, DAPPLE
9	IL6R	1q21.3	2015	Inflammation	C-reactive protein, rheumatoid arthritis	GWAB, DEPICT, DAPPLE, prix fixe
10	LPA	6q26	2011	LDL cholesterol and lipoprotein (a)	Lipoprotein a, LDL, colorectal cancer	GWAB, DEPICT, DAPPLE, prix fixe
11	PCSK9	1p32.3	2015	LDL cholesterol and lipoprotein (a)	LDL, TC	DEPICT, DAPPLE, prix fixe
12	PSRC1	1p13.3	2007–2008	LDL cholesterol and lipoprotein (a)	LDL, TC, HDL	Sherlock, SMR, TWAS
13	SMAD3	15q22.33	2015	Cellular proliferation and vascular remodeling	Asthma, Crohn's disease, inflammatory bowel disease	GWAB, DEPICT, DAPPLE
14	SWAP70	11p15.4	2015	Cellular proliferation and vascular remodeling	SBP, DBP	SMR, SMR (Pavilides), DEPICT
15	VAMP8	2p11.2	2015	Cellular proliferation and vascular remodeling	Prostate cancer	GWAB, DEPICT, DAPPLE
16	ABCG5	2p21	2017–2018	LDL cholesterol and lipoprotein (a)	TC, LDL	GWAB, DAPPLE
17	ABCG8	2p21	2017–2018	LDL cholesterol and lipoprotein (a)	TC, LDL	GWAB, DAPPLE
18	ABO	9q34.2	2011	Uncertain	TC, LDL, von Willebrand factor, hematocrit, hemoglobin, factor VIII, alkaline phosphatase, coagulation factor	Sherlock, TWAS
19	ACAD10	12q24.12	2013–2014	Uncertain	Esophageal cancer	GWAB, TWAS
20	ALDH2	12q24.12	2013–2014	Uncertain	Ischemic stroke, alcohol consumption, uric acid	GWAB, DEPICT
21	APOA1	11q23.3	2011	Triglyceride-rich lipoproteins	HDL	DEPICT, DAPPLE
22	APOB	2p24.1	2017–2018	LDL cholesterol and lipoprotein (a)	TC, LDL	DEPICT, DAPPLE
23	ARNTL	11p15.3	2017–2018	Uncertain	C-reactive protein, TC	DEPICT, DAPPLE
24	ATXN2	12q24.12	2013–2014	Uncertain	PAD	GWAB, DEPICT
25	CABIN1	22q11.23	–	–	–	Sherlock, DEPICT
26	CETP	16q13	2017–2018	LDL cholesterol and lipoprotein (a)	HDL, LDL, TC, TG, alcohol drinking, BMI	DEPICT, DAPPLE
27	CXCL12	10q11.21	2011	Inflammation	White blood cell count, eosinophil count, erythrocyte count, schizophrenia	DEPICT, DAPPLE
28	EDNRA	4q31.22	2015	Vascular tone and nitric oxide signaling	Large artery stroke, pancreatic carcinoma, PAD, SBP, PP	DEPICT, DAPPLE
29	EPOR	19p13.2	–	–	Erythropoietin	TWAS, DEPICT
30	FURIN	15q26.1	2017–2018	Uncertain	SBP, DBP, ischemic stroke, schizophrenia	DEPICT, DAPPLE
31	GG CX	2p11.2	2015	Cellular proliferation and vascular remodeling	Eosinophil count	Sherlock, DAPPLE

(Continued)
No.	Gene	Locus	First identified by GWAS	Potential biological function	Other related traits*	Methods
32	GIGYF2	2q37.1	2017–2018	Uncertain	Schizophrenia	DEPICT, DAPPLE
33	HNRNPUL1	19q13.2			Heel bone mineral density	NetWAS, DEPICT
34	ITGB5	3q21.2	2017–2018	Uncertain	SBP	DEPICT, DAPPLE
35	LDLR	19p13.2	2011	LDL cholesterol and lipoprotein (a)	LDL, TC, abdominal aortic aneurysm	DEPICT, DAPPLE
36	LIPA	10q23.31	2011	LDL cholesterol and lipoprotein (a)	–	Sherlock, SMR
37	MAP3K4	6q26	–		Blood protein	DEPICT, prix fixe
38	MRAS	3q22.3	2009–2010	Inflammation	–	TWAS, DAPPLE
39	NOS3	7q36.1	2015	Vascular tone and nitric oxide signaling	–	DEPICT, DAPPLE
40	NRP1	10p11.22	2017–2018	Uncertain	Migraine	NetWAS, DEPICT
41	NT5C2	10q24.33	2011	Uncertain	SP, DP, BMI, smoking behavior	Sherlock, SMR
42	PEMT	17p11.2	2011	Uncertain	BMI, WHR	DEPICT, DAPPLE
43	PPAP2B	1p32.2	2011	LDL cholesterol and lipoprotein (a)	Reticulocyte count, heel bone mineral density	DEPICT, DAPPLE
44	PTPN11	12q24.13	2012–2014	Uncertain	Eosinophil count, SBP, DBP, platelet count, reticulocyte count, smoking behavior	GWAB, DEPICT
45	REST	4q12	2017–2018	Uncertain	Risk-taking behavior	DEPICT, DAPPLE
46	RHOA	3p21.31	2017–2018	Uncertain	Cognitive function, self-reported educational attainment, intelligence	DEPICT, DAPPLE
47	RRBP1	20q12.1	2017–2018	Uncertain	Migraine, height	NetWAS, DEPICT
48	SH2B3	12q24.12	2015	Inflammation	SBP, DBP, BMI, LDL, HDL, alcohol consumption, autoimmune disease, colorectal cancer, endometrial carcinoma, eosinophil count, eosinophil count, fibrinogen, hemoglobin, Ischemic stroke, leukocyte, lymphocyte, platelet, rheumatoid arthritis, type 1 diabetes mellitus	DEPICT, DAPPLE
49	SMG6	17p13.3	2011	Uncertain	BMI, bone density, schizophrenia, platelet, smoking	DEPICT, DAPPLE
50	SOD2	6q25.3	–	–	Self-reported educational attainment, age at menopause	DEPICT, prix fixe
51	SVEP1	9q31.3	2017–2018	Uncertain	Bipolar disorder, SBP	DEPICT, DAPPLE
52	TGFB1	19q13.2	2017–2018	Uncertain	T2D	DEPICT, DAPPLE
53	TRIB1	8q24.13	2017–2018	Triglyceride-rich lipoproteins	HDL, LDL, TG, glomerular filtration rate	DEPICT, DAPPLE
54	UBE2Z	17q21.32	2011	Uncertain	Educational attainment, T2D	DEPICT, DAPPLE
55	ZEB2	2q22.3	2015	Uncertain	Renal cell carcinoma, schizophrenia, self-reported educational attainment	DEPICT, DAPPLE

*The association with other traits or diseases was identified from the National Human Genome Research Institute-European Bioinformatics Institute GWAS catalog. LDL, low-density lipoprotein; HDL, high-density lipoprotein; TG, triglyceride; DBP, diastolic blood pressure; SBP, systolic blood pressure; TC, total cholesterol; PAD, peripheral arterial disease; PP, pulse pressure; BMI, body mass index; WHR, waist–hip ratio; T2D, type 2 diabetes.
et al., 2019) about the candidate genes to assess their potential pleiotropic effects. Notably, many of these genes provided evidence of pleiotropic effect of lipid traits, which confirmed the significant role of lipid metabolism in CAD.

To identify the biological roles of the 55 potential causal genes, we performed GO enrichment analysis using DAVID. We found that candidate genes were significantly enriched in the GO term such as cholesterol homeostasis (corrected $P < 9.6 \times 10^{-7}$), lipoprotein metabolic process (corrected $P < 5.1 \times 10^{-5}$), receptor complex (corrected $P < 2.5 \times 10^{-4}$), cholesterol transporter activity (corrected $P < 2.6 \times 10^{-5}$), extracellular region (corrected $P < 6.8 \times 10^{-3}$), and apolipoprotein binding (corrected $P < 1.2 \times 10^{-3}$) (Figure 3). These results indicated that lipid metabolic and extracellular region might play a critical role in the pathophysiology of CAD.

We then examined the most relevant tissue of CAD potential causal genes using tissue-specific enrichment analysis. As shown in Figure 4, these genes tended to be significantly overexpressed in liver ($P = 2.2 \times 10^{-6}$) and adipose tissue ($P = 2.8 \times 10^{-7}$). Considering genes are usually act synergistically to exert their biological function, also called as “guilt by association” principle, we further performed network analysis using PPI and expression data. As shown in Figure 5, genes in the PPI network (Figure 5A) and co-expression network (Figure 5B) demonstrated more interaction among themselves than what would be expected for a random set of genes of the same size ($P < 1.0 \times 10^{-16}$). Dysregulation of any gene in this highly interconnected network will affect the function of the network, which eventually lead to pathogenesis of CAD.

Kyoto Encyclopedia of Genes and Genomes Enrichment Analysis and Pathway Crosstalk Analysis

Identifying KEGG pathways enriched in the candidate genes may provide further insight of the molecular mechanisms related to CAD. Table 2 shows the 24 significant enriched pathways. Among these, the top five pathways are fat digestion and absorption ($P_{BH} = 6.63 \times 10^{-5}$), AGE-RAGE signaling pathway...
in diabetic complications ($P_{BH} = 1.92 \times 10^{-4}$), pathways in cancer ($P_{BH} = 1.12 \times 10^{-3}$), PI3K-Akt signaling pathway ($P_{BH} = 1.90 \times 10^{-3}$), and focal adhesion ($P_{BH} = 3.96 \times 10^{-3}$).

In order to gain deep understanding of how these pathways are related, we further performed a pathway crosstalk analysis. There were 22 pathways containing at least three candidate genes and met the inclusion criteria for crosstalk analysis. A total of 73 edges connected between any two of these pathways, and these edges represented the overlapping level, which was measured according to the average score of JC and OC. As shown in Figure 6, the largest crosstalk module comprised 20 pathways. By considering the topological characteristics, we identified five key pathways (pathways in cancer, AGE-RAGE signaling pathway in diabetic complications, proteoglycans in cancer, endocytosis, and PI3K-Akt signaling pathway), which had the highest betweenness centrality and degree value (Supplementary Table S12). Previous studies had provided some clues about their role in pathogenesis of CAD (Chen et al., 2016; Kay et al., 2016; Koene et al., 2016).

DISCUSSION

Although 163 loci have now been associated with CAD at a genome-wide level of significance (Erdmann et al., 2018), the reported loci usually span a large chromosomal region and contain many genes. Thus, it is difficult to pinpoint the causal gene. Besides, owing to the complexity of gene regulatory and LD pattern, this problem becomes even more complicated. Consequently, incorporating other source of prior knowledge is necessary to narrow down the CAD candidate genes. In this study, we conducted a comprehensive integrative analysis and prioritized the potential causal genes for CAD using the latest GWAS and other omics data from different layers. A total of 55 plausible causal genes were identified, among which 15 genes ranked the highest priority because of their consistent evidence from different data-driven approaches. Many of these genes were involved in in lipid metabolic and extracellular related BP. Moreover, they were enriched in liver and adipose tissue. Further, KEGG and crosstalk

FIGURE 4 Tissue-specific expression enrichment of CAD potential causal genes. The 53 tissues in GTEx were grouped into 25 broad tissue types. The size of the hexagon was scaled to the number of genes meeting the pSI threshold, and its color indicates results of Fisher’s exact test.

FIGURE 5 Top causal genes encoded a densely interconnected PPI (A) and co-expression (B) network.
TABLE 2 | KEGG enrichment analysis in CAD prioritized causal genes.

Pathway	ID	P value	P_{BH} value	Candidate genes in the pathway
Fat digestion and absorption	hsa04975	5.72×10^{-7}	6.63×10^{-5}	PLPP3, APOA1, APOB, ABCG5, ABCG8
AGE-RAGE signaling pathway in diabetic complications	hsa04993	2.60×10^{-6}	1.92×10^{-4}	TGFB1, COL4A1, COL4A2, FN1, NOS3, SMAD3
Pathways in cancer	hsa05200	2.35×10^{-5}	1.12×10^{-3}	TGFB1, COL4A1, RHOC, COL4A2, CDKN2B, FN1, CXCL12, EDNRA, SMAD3
PI3K-Akt signaling pathway	hsa04151	5.86×10^{-5}	1.90×10^{-3}	COL4A1, COL4A2, EPOR, FLT1, FN1, ITGB5, NOS3, IL6R
Focal adhesion	hsa04510	1.97×10^{-4}	3.96×10^{-3}	COL4A1, RHOC, COL4A2, FLT1, FN1, ITGB5
Proteoglycans in cancer	hsa05205	1.53×10^{-4}	4.10×10^{-3}	TGFB1, RHOC, PTPN11, MRAS, FN1, ITGB5
ECM-receptor interaction	hsa04512	3.20×10^{-4}	6.30×10^{-3}	COL4A1, COL4A2, FN1, ITGB5
Small cell lung cancer	hsa05222	3.51×10^{-4}	6.32×10^{-3}	COL4A1, COL4A2, CDKN2B, FN1
TGF-beta signaling pathway	hsa04350	3.51×10^{-4}	6.32×10^{-3}	TGFB1, RHOC, CDKN2B, SMAD3
Ameloblastoma	hsa05146	5.83×10^{-4}	9.45×10^{-3}	TGFB1, COL4A1, COL4A2, FN1
Axon guidance	hsa04360	6.58×10^{-4}	1.03×10^{-2}	RHOC, PTPN11, FES, CXCL12, NRP1
Glycerolipid metabolism	hsa05611	1.69×10^{-3}	1.99×10^{-2}	PLPP3, LPL, ALDH2
Colorectal cancer	hsa05210	1.78×10^{-3}	2.06×10^{-2}	TGFB1, RHOC, SMAD3
FoxO signaling pathway	hsa04688	1.91×10^{-3}	2.06×10^{-2}	TGFB1, CDKN2B, SMAD3, SOD2
Phospholipase D signaling pathway	hsa04072	2.75×10^{-3}	2.45×10^{-2}	RHOC, PTPN11, MRAS, PLPP3
Bile secretion	hsa04976	2.88×10^{-3}	2.48×10^{-2}	LDLR, ABCG5, ABCG8
Chronic myeloid leukemia	hsa05220	2.88×10^{-3}	2.48×10^{-2}	TGFB1, PTPN11, SMAD3
HTLV-I infection	hsa05166	3.52×10^{-3}	2.80×10^{-2}	TGFB1, CDKN2B, MRAS, SMAD3, NRP1
Endocytosis	hsa04144	3.76×10^{-3}	2.85×10^{-2}	TGFB1, RHOC, FLT1, LDLR, SMAD3
Phosphatidylcholine (PC) biosynthesis, PE → PC	hsa00991	4.03×10^{-3}	2.92×10^{-2}	PEPTM
Vitamin digestion and absorption	hsa04977	4.12×10^{-3}	2.93×10^{-2}	APOA1, APOB
Cytokine–cytokine receptor interaction	hsa04060	4.42×10^{-3}	3.11×10^{-2}	TGFB1, EPOR, FLT1, IL6R, CXCL12
Rheumatoid arthritis	hsa05323	5.60×10^{-3}	3.69×10^{-2}	TGFB1, FLT1, CXCL12
HIF-1 signaling pathway	hsa04066	7.71×10^{-3}	4.77×10^{-2}	FLT1, NOS3, IL6R

FIGURE 6 | Crosstalk network among CAD prioritized causal genes enriched pathways. In this figure, each node represents a pathway, and each edge represents crosstalk between pathways. The color of each node is proportional to the adjusted P [Benjamini and Hochberg (BH) method] value. Darker color represents lower P_{BH} value. The size of each node is proportional to the number of CAD prioritized causal genes in the corresponding pathway. The width of each edge is proportional to the mean value of the two coefficients (JC and OC). Larger edge width represents higher proportion of overlap between pathways.
analysis also revealed several key pathways participating in the pathogenesis of CAD.

Our comprehensive analysis predicted 55 CAD causal genes. Many of these genes are well-known CAD driver genes and participant in lipid metabolic process (LPL, LPA, PCSK9, APOA1, APOB, CETP, LDLR, and LIPA). Some of them have been translated into the targets of commercialized drugs (APOB and PCSK9). Besides, GO enrichment analysis also highlight the importance of lipid involved in CAD pathogenesis. However, targeting novel pathways instead of established CAD risk factors, such as lipid levels, may facilitate the drug development and catalyze novel CAD therapeutic options. Our GO analysis also pinpointed that the identified potential causal genes were enriched in extracellular region apart from lipid metabolic. Extracellular matrix has a critical role in cell adhesion, integrity, and communication. Changes in the extracellular space have been implicated in the pathogenesis of atherosclerosis and restenosis (Chistiakov et al., 2013). Previous network analysis also revealed the key role of extracellular region involved in CAD development and the relationship between other molecular mechanisms, such as inflammatory response and complement and coagulation (Zhao et al., 2016).

In addition to identifying the well-known CAD driver genes, our comprehensive analysis also detected novel or less well-studied plausible causal genes for CAD. For example, MAP3K4 encodes Mitogen-Activated Protein Kinase 4, which is the central core of each mitogen-activated protein (MAP) kinase pathway. Four well-characterized MAP kinase pathways, including ERK1/2, JNK, p38, and ERK5, have been reported their kinase pathway. Four well-characterized MAP kinase pathways, including ERK1/2, JNK, p38, and ERK5, have been reported their role in different aspects of cardiac regulation, from development to pathological remodeling (Wang, 2007). In line with our study, Ballouz et al. (2014) analyzed CARDioGRAMplusC4D GWAS data by Gentrepid and found that MAP3K4 was one of the possible causal genes of CAD. Another candidate, CABIN1, plays a pivotal role in the T cell receptor-mediated signal transduction pathway and inhibits calcineurin-mediated signal transduction. Calcineurin lies at the intersection of protein phosphorylation and calcium signaling cascades and contributes to pathological hypertrophic remodeling (Letavernier et al., 2012; Parra and Rothermel, 2017). Another identified gene, EPOR, encodes erythropoietin (EPO) receptor. EPO has shown its effect beyond hematopoiesis, such as suppression of atherosclerosis (Ueba et al., 2013) and prevention of cardiac apoptosis (Nakamura et al., 2009). In addition, although EpoR agonists drugs are initially aimed at treating anemia, it is starting to demonstrate the sign of pleiotropic effects for treating a wide range of complex disorders, including CVD, neurodegenerative disorders, spinal cord injury, and diabetic retinopathy (Sanchis-Gomar et al., 2013). HNRNPUL1 encodes a nuclear RNA-binding protein and involved in mRNA splicing pathway. LeBlanc et al. (2016) integrated GWAS data of CAD and several CVD risk factors and used a shared polygenic signal-informed statistical framework to discover novel CAD genes. Totally, they identified 67 novel loci associated with CAD. Among these novel loci, rs12459996 near CYP2F1 also showed eQTL effect on HNRNPUL1 gene expression in blood tissue \((P = 3.86 \times 10^{-16})\), which indicated that this locus may exert its effect on CAD susceptibility through regulation of HNRNPUL1 expression. Superoxide Dismutase 2 (SOD2) is a well-known marker of endothelial dysfunction. Several candidate gene studies have revealed that mutations or polymorphisms of SOD2 gene are associated with CAD risk (Mollsten et al., 2009; Tian et al., 2012). Moreover, studies on Sod2-deficient mice demonstrated accelerated atherosclerosis (Zhou et al., 2012) and atherosclerotic plaque instability (Vendrov et al., 2017). These lines of evidence suggested that SOD2 might act an important role in CAD pathogenesis by regulating atherosclerosis and endothelial function.

Pathway enrichment analysis of the prioritized genes further confirmed some results of previous studies. Some key drivers of CAD identified by previous network analysis were cancer-related genes (Zhao et al., 2016). Although recognized as two separate diseases, CAD and cancer possess various similarities, from common risk factors to shared BP (Koene et al., 2016). The oxidative stress and chronic inflammation underlie both of the diseases. In addition, a growing number of evidence support a role for statins, angiotensin-converting enzyme inhibitor/angiotensin receptor blockers (ACEIs/ARBs), and aspirin in cancer prevention (Masoudkabir et al., 2017). Anti-CD47 antibody treatment may become a novel therapeutic strategy for CAD by promoting efferocytosis (Kojima et al., 2016). This convergent evidence indicated that pathways of cancer might take part in the pathogenesis of CAD. AGE-RAGE signaling pathway actively participates in inflammation and immune response. Miao et al. (2019) identified 413 differential expressed genes from two gene expression datasets of CAD cases and healthy controls, and they highlighted the role of AGE-RAGE signaling pathway in CAD pathogenesis. Extensive evidence is building to implicate AGE-RAGE in the pathogenesis of vascular perturbation, which stimulate processes that lead to the development of arterial stiffness (Senatus and Schmidt, 2017). AGE/RAGE signaling also demonstrated its role in diabetes-mediated vascular calcification (Kay et al., 2016). Calcium deposits in coronary arteries may weaken vasomotor responses and alter atherosclerotic plaque stability (Liu et al., 2015). Another two well-known pathways identified in our study were focal adhesion (hsa04510) and PI3K-Akt signaling pathway (hsa04151). Focal adhesion has an influence on both leucocyte motility within intima and interactions between platelets and endothelium through controlling cytoskeletal or adhesion dynamics (Charchar et al., 2012). Chan et al. (2014) employed integrative pathway and network analysis and revealed that focal adhesion was one of the shared molecular pathways for CAD and diabetes across diverse ethnicities. The PI3K-Akt pathway has been reported involved in cell proliferation, survival, and apoptosis. A two-stage systems genetics analysis of CAD GWAS data also found convincing association between PI3K-Akt pathway and CAD (Ghosh et al., 2015). Crosstalk analysis further demonstrated that these pathways might interconnect through overlapping genes instead of acting alone. Therefore, disruption or dysfunction of any key genes in the network may have cascading effects and result in a series of functional pathological consequences.
Our study is different from traditional fine-mapping approaches, which focus on identifying the causal variants that affect a trait of interest. Although very important, knowing which variants are causal does not equal to identifying the downstream effects of the variant on the trait. Moreover, if the causal genes affected by a locus are known, this can reduce the credible set of potential causal variants (Schaid et al., 2018; Broekema et al., 2020). Therefore, recent efforts in systems biology, integrating GWAS data and a priori knowledge from other omics, have focused on identifying such causal genes.

Unlike previous study (Braenne et al., 2015; Miller et al., 2016), which only focused on genome-wide significant region to predict causal genes, our study predicted plausible causal genes for CAD at genome-wide level by using genetic variants of both strong and subtle effects. Besides, to our knowledge, this is the first systematic analysis for CAD using comprehensive data from different layers to prioritize candidate genes. However, this study has several potential limitations. First, our study only paid attention to those genes that were prioritized by at least two computational methods. This strategy may omit some authentic CAD susceptibility genes. Besides, we assigned these methods with equal weights when combining the results. There might exist some discrepancies among the various methods because of different rationales and datasets. Further studies are needed to search the optimum weights. Second, we used eQTL data from peripheral blood samples when we conducted Sherlock and SMR analyses. Although blood tissue can be a proxy for eQTL effect in various diseases, it might be not ideal because we certainly lose power for eQTLs with tissue-specific effects (Supplementary Table S13). However, we gain power for genes with consistent effects across tissues because of the use of a very large sample size for eQTL analysis in blood. Future studies using large-scale eQTL data in pathophysiologically relevant tissues are needed to validate our results. Third, we did not consider other QTLs from different omic layers, such as DNA methylation (meQTLs), protein (pQTLs), or metabolites (mQTLs), which limited our ability to study from multi-omics perspective. In addition, the statistical methods did not perform causal inference; therefore, the genes identified in our study were only plausible candidate causal genes. However, the results still played a pivotal role in prioritizing genes for experimental follow-up. Further studies are needed to validate our results and elucidate the biological mechanisms.

CONCLUSION

In summary, we integrated multi-dimensional data and depicted the landscape of plausible candidate causal genes for CAD. GO analysis further showed that these genes were enriched in lipid metabolism and extracellular region. Tissue-specific enrichment analysis revealed that these genes were significantly overexpressed in adipose and liver tissues. Further studies and experimental validations of these genes may shed light on mechanistic insights into CAD pathogenesis and provide potential drug targets for future therapeutics.

DATA AVAILABILITY STATEMENT

Our datasets analyzed during the current study were derived from the following public domain resources: Summary statistics of the GWAS is available from CARDioGRAMplusC4D Consortium (http://www.cardiogramplusc4d.org/data-downloads/). Gene expression dataset is available from GTEx (https://gtexportal.org/home/). eQTL datasets are available from Jian Yang's lab (https://cnsgenomics.com/software/smr/#Overview).

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by Peking University Institutional Review Board has evaluated the current protocol and found that no additional institutional review board approval was needed because the data are public available de-identified summary-level data. The patients/participants provided their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

DC conceived the study, undertook project leadership, and are guarantors of this work. QZ wrote the first draft of the manuscript. QZ and YM analyzed the data and interpreted the data. QZ, YM, SC, and QC were involved in the data collection. All authors contributed to the drafting, critical revision of the manuscript, read and approved the final version of the manuscript.

FUNDING

This work was supported by the National Natural Science Foundation of China (No. 81872692) and the Beijing Municipal Natural Science Foundation (No. 7182085).

ACKNOWLEDGMENTS

We thank the investigators of the original GWAS by CARDioGRAMplusC4D consortium. We also thank the researchers who shared their data on the Gene Expression Omnibus, which made this study possible. The GTEx Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. We also acknowledge the investigators for CAGE study, who provided their eQTL data in pathophysiologically relevant tissues.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2020.00320/full#supplementary-material
REFERENCES

Ballouz, S., Liu, J. Y., Oti, M., Gaeta, B., Fatkin, D., Bahlo, M., et al. (2014). Candidate disease gene prediction using gentrepid: application to a genome-wide association study on coronary artery disease. Mol. Genet. Genomic Med. 2, 44–57. doi: 10.1002/mtg3.40

Benjamin, E. J., Muntner, P., Alonso, A., Bittencourt, M. S., Callaway, C. W., Carson, A. P., et al. (2019). Heart disease, and stroke statistics-. (2019, update: a report from the American heart association. Circulation 139, e56–e528.

Brannen, I., Civelek, M., Vilne, B., Di Narzo, A., Johnson, A. D., Zhao, Y., et al. (2015). Prediction of causal candidate genes in coronary artery disease loci. Arterioscler. Thromb. Vasc. Biol. 35, 2207–2217. doi: 10.1161/ATVBAHA.115.306108

Broekema, R. V., Bakker, O. B., and Jonkers, I. H. A. (2020). practical view of fine-mapping, and gene prioritization in the post-genome-wide association era. Open Biol. 10:1900221. doi: 10.1098/rsob.1900221

Buniello, A., MacArthur, J. A. L., Cerezo, M., Cerezo, M., Harris, I. L., Hayhurst, J., et al. (2019). The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012. doi: 10.1093/nar/gky1120

Chan, K. H., Huang, Y. T., Meng, Q., Wu, C., Reiner, A., Sobel, E. M., et al. (2014). Shared molecular pathways, and gene networks for cardiovascular disease, and type 2 diabetes mellitus in women across diverse ethnicities. Circ. Cardiovasc. Genet. 7, 911–919. doi: 10.1161/CIRCGENETICS.114.009676

Charchar, F. J., Bloomer, L. D., Barnes, T. A., Cowley, M. J., Nelson, C. P., and Dunbar, S. B., Khavjou, O. A., Bakas, T., Hunt, G., Kirch, R. A., Leib, A. R., et al. (2014). Understanding multicellular function, and disease with human tissue-specific networks. Nature genetics 46, 569–576. doi: 10.1038/ng.3259

Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B. W., et al. (2016). Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252. doi: 10.1038/ng.3506

He, X., Fuller, C. K., Song, Y., Meng, Q., Zhang, B., Yang, X., et al. (2013). Sherlock: detecting gene-disease associations by matching patterns of expression QTL, and GWAS. Am. J. Hum. Genet. 92, 667–680. doi: 10.1016/j.ajhg.2013.03.022

Houwson, J. M. M., Zhao, W., Barnes, D. R., Ho, W. K., Young, R., Paul, D. S., et al. (2017). Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms. Nat. Genet. 49:1113.

Huang da, W., Sherman, B. T., and Lempicki, R. A. (2009a). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13. doi: 10.1093/nar/gkn923

Huang da, W., Sherman, B. T., and Lempicki, R. A. (2009b). Systematic, and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57. doi: 10.1038/nprot.2008.211

Jia, P., Wang, L., Fanous, A. H., Pato, C. N., Edwards, T. L., and Zhao, Z. (2012). Network-assisted investigation of combined causal signals from genome-wide association studies in schizophrenia. PLoS Comput. Biol. 8:e1002587. doi: 10.1371/journal.pcbi.1002587

Jia, P., and Zhao, Z. (2014). Network, assisted analysis to prioritize GWAS results: principles, methods, and perspectives. Hum. Genet. 133, 125–138. doi: 10.1007/s00439-013-1377-1

Kay, A. M., Simpson, C. L., and Stewart, J. A. Jr. (2016). The role of AGE/RAGE signaling in diabetes-mediated vascular calcification. J. Diabetes Res. 2016, 00570. doi: 10.1155/2016/6809703

Khera, A. V., and Kathiresan, S. (2017). Genetics of coronary artery disease: discovery, biology, and clinical translation. Nat. Rev. Genet. 18, 331–344. doi: 10.1038/nrg.2016.160

Klarin, D., Zhu, Q. M., Emdin, C. A., Chaffin, M., Horner, S., McMillan, B. J., et al. (2017). Genetic analysis in UK biobank links insulin resistance, and transendothelial migration pathways to coronary artery disease. Nat. Genet. 49:1392. doi: 10.1038/ng.3914

Koenen, R. J., Prinzmetal, A. E., Blaes, A. and, Komety, S. H. (2016). shared risk factors in cardiovascular disease, and cancer. Circulation 133, 1104–1114. doi: 10.1161/CIRCULATIONAHA.115.020406

Kojima, Y., Volkmer, J. P., McKenna, K., Civelek, M., Lusis, A. J., Miller, C. L., et al. (2016). CD47-blocking antibodies restore phagocytosis, and prevent atherosclerosis. Nature 536, 86–90. doi: 10.1038/nature18935

LeBlanc, M., Zuber, V., Andreasen, B. K., Witoelar, A., Zeng, L., Bettella, F., et al. (2016). Identifying novel gene variants in coronary artery disease, and shared genes with several cardiovascular risk factors. Circ. Res. 118, 83–94. doi: 10.1161/CIRCRESAHA.115.306629

Letavernier, E., Zafrani, L., Perez, J., Letavernier, B., Haymann, J. P., and Baud, L. (2012). The role of calpins in myocardial remodelling, and heart failure. Cardiovasc. Res. 96, 38–45. doi: 10.1093/cvr/cvs999

Liu, W., Zhang, Y., Yu, C.-M., Ji, Q. W., Cai, M., Zhao, Y. X., et al. (2015). Current gene lists. J. Hum. Genet. 60, 1221–1240. doi: 10.1007/s10038-015-0662-8

Lloyd-Jones, L. R., Holloway, A., McRae, A., Yang, J., Small, K., Zhao, J., et al. (2015). Current understanding of coronary artery calcification. J. Geriatr. Cardiol. 12, 668–675.

Loyd-Jones, L. R., Holloway, A., McRae, A., Yang, J., Small, K., Zhao, J., et al. (2017). The genetic architecture of gene expression in peripheral blood. Am. J. Hum. Genet. 100, 228–237. doi: 10.1016/j.ajhg.2016.12.008

Mancuso, N., Shi, H., Goddard, P., Kichaev, G., Gusev, A., and Pasaniuc, B. (2017). Integrating gene with summary expression association statistics to identify genes associated with 30 complex traits. Am. J. Hum. Genet. 100, 473–487. doi: 10.1016/j.ajhg.2017.01.031

Masoudkabir, F., Sarrafzadegan, N., Gotay, C., Ignaszewski, A., Krahn, A. D., Davis, M. K., et al. (2017). Cardiovascular disease, and cancer: Evidence for shared disease pathways, and pharmacologic prevention. Atherosclerosis 263, 343–351. doi: 10.1016/j.atherosclerosis.2017.06.001

McPherson, R., and Tybjaerg-Hansen, A. (2016). Genetics of coronary artery disease. Circ. Res. 118, 564–578. doi: 10.1161/CIRCRESAHA.115.306566

Meier, T., Grafe, K., Senn, F., Sur, P., Stangl, G. I., Dawczynski, C., et al. (2019). Cardiovascular mortality attributable to dietary risk factors in 51 countries in the WHO European region from (1990) to 2016: a systematic analysis of the global burden of disease study. Eur. J. Epidemiol. 34, 37–55. doi: 10.1007/s10654-018-0473-x

Miao, L, Yin, R.-X., Huang, F., Yang, S., Chen, W.-X., and Wu, J.-Z. (2019). Integrated analysis of gene expression changes associated with coronary artery disease. Lipids Health Dis. 18, 92–92. doi: 10.1186/s12944-019-1032-5
Miller, C. L., Pjanić, M., Wang, T., Nguyen, T., Cohain, A., Lee, J. D., et al. (2016). Integrative functional genomics identifies regulatory mechanisms at coronary artery disease loci. *Nat. Commun.* 7, 12092–12092. doi: 10.1038/ncomms12092

Mishra, A., and Macgregor, S. (2015). VEGAS2: software for more flexible gene-based testing. *Twin Res. Hum. Genet.* 18, 86–91. doi: 10.1017/thg.2014.79

Mollsten, A., Jorsal, A., Lajer, M., Vionnet, N., and Tarnow, L. (2009). The V16A polymorphism in SOD2 is associated with increased risk of diabetic nephropathy, and cardiovascular disease in type 1 diabetes. *Diabetologia* 52, 2590–2593. doi: 10.1007/s00125-009-1550-1

Montojo, J., Zuberi, K., Rodriguez, H., Bader, G. D., and Morris, F. P. (2015). Selecting causal genes from genome-wide association studies via functionally coherent subnetworks. *Nat. Methods* 12, 154–159. doi: 10.1038/nmeth.3215

Tian, C., Liu, T., Fang, S., Du, X., and Jia, C. (2012). Association of C4T polymorphism in SOD2 gene with coronary artery disease: a case-control study, and a meta-analysis. *Mol. Biol. Rep.* 39, 5269–5276. doi: 10.1007/s11033-011-1324-y

Ueba, H., Shiomi, M., Brines, M., Yamin, M., Kobayashi, T., Ako, J., et al. (2013). Suppression of coronary atherosclerosis by helix B surface Peptide, a (nonerythropoietic), tissue-protective compound derived from erythropoietin. *Mol. Med.* 19, 195–202. doi: 10.2119/molmed.2013.00037

van der Harst, P., and Verweij, N. (2018). Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. *Circ. Res.* 122, 433–443. doi: 10.1161/CIRCRESAHA.117.312086

Vendrov, A. E., Stevenson, M. D., Alahari, S., Pan, H., Wickline, S. A., and Madamanchi, N. R. (2017). Attenuated superoxide dismutase 2 activity induces atherosclerotic plaque instability during aging in hyperlipidemic mice. *J. Am. Heart Assoc.* 6, e006775. doi: 10.1161/JAHA.117.006775

Wang, Y. (2007). Mitogen-activated protein kinases in heart development, and diseases. *Circulation* 116, 1413–1423. doi: 10.1161/CIRCULATIONAHA.106.697589

Webb, T. R., Erdmann, J., Stirrups, K. E., Sitzziel, N. O., Masca, N. G., Jansen, H., et al. (2017). Systematic evaluation of pleiotropy identifies 6 further loci associated with coronary artery disease. *J. Am. Coll. Cardiol.* 69, 823–836. doi: 10.1016/j.jacc.2016.11.056

Wells, A., Kopp, N., Xu, X., O’Brien, D. R., Yang, W., Nehorai, A., et al. (2015). The anatomical distribution of genetic associations. *Nucleic Acids Res.* 43, 10804–10820. doi: 10.1093/nar/gkv1262

Westra, H. L., Peters, M. J., Esco, T., Yaghootkar, H., Schurmacher, C., Kettunen, J., et al. (2013). Systematic identification of trans eQTLs as putative drivers of known disease associations. *Nat. Genet.* 45, 1238–1243. doi: 10.1038/ng.2756

Zhang, Y., Qi, G., Park, J.-H., and Chatterjee, N. (2018). Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits. *Nat. Genet.* 50, 1318–1326. doi: 10.1038/s41588-018-0193-x

Zhao, Y., Chen, J., Freudenberg, J. M., Meng, Q., Rajpal, D. K., and Yang, X. (2016). Network-based identification, and prioritization of key regulators of coronary artery disease loci. *Arterioscl. Thromb. Vasc. Biol.* 36, 926–941. doi: 10.1161/ATVBAHA.115.306725

Zhou, R. H., Vendrov, A. E., Tschivilev, I., Niu, X. L., Molnar, K. C., Rojas, M., et al. (2016). Suppression of coronary atherosclerosis by helix B surface Peptide, a (nonerythropoietic), tissue-protective compound derived from erythropoietin. *Mol. Med.* 19, 275–286. doi: 10.2119/molmed.2016.00025

Shchneider, G. (2012). Mitochondrial oxidative stress in aortic stiffening with age: the role of smooth muscle cell function. *Arterioscler. Thromb. Vasc. Biol.* 32, 745–755. doi: 10.1161/ATVBAHA.111.243121

Zhu, Z., Zhang, F., Hu, H., Bakhshi, A., Robinson, M. R., Powell, J. E., et al. (2016). Integration of summary data from GWAS, and eQTL studies predicts complex trait gene targets. *Nat. Genet.* 48, 481–487. doi: 10.1038/ng.3538

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.