MiR-96-5p alleviates inflammatory responses by targeting NAMPT and regulating the NF-κB pathway in neonatal sepsis

Xueli Chen¹, Ying Chen¹, Li Dai¹, Na Wang²,*

¹Department of Pediatrics, Maternal and Child Health Hospital of Hubei Province (Women and Children’s Hospital of Hubei Province), Wuhan, Hubei, China.

²Department of Pediatrics, Wuhan No. 1 Hospital, Wuhan, Hubei, China.

*Corresponding author: Na Wang, Department of Pediatrics, Wuhan No. 1 Hospital, No. 215, Zhongshan Avenue, Qiaokou District, Wuhan, 430022, Hubei, China.

E-mail: geyichicuwbg@163.com Tel.: 86-27-85860666

Running title: MiR-96-5p regulates inflammatory responses in neonatal sepsis

Abstract

Neonatal septicemia is a serious infectious disease in the neonatal period. MicroRNAs (miRNAs) have been reported to participate in the inflammatory responses in neonatal sepsis. The aim of this study was to explore the effects and molecular mechanism of miR-96-5p on regulating the inflammatory responses in neonatal sepsis. MiR-96-5p was low expressed while NAMPT was high expressed in the serum of neonatal septicemia patients. The expression of miR-96-5p was decreased in LPS-induced
inflammatory responses. Besides, miR-95p relieved LPS-induced inflammatory responses in RAW264.7 cells. NAMPT was demonstrated as a potential target of miR-96-5p, and knockdown of NAMPT reduced inflammatory in RAW264.7 cells stimulated with LPS. Moreover, overexpression of NAMPT reversed the effects of miR-96-5p on LPS-induced inflammatory responses. In addition, miR-96-5p inhibited NF-κB signaling pathway in RAW264.7 cells stimulated with LPS. MiR-96-5p alleviated inflammatory responses via targeting NAMPT and inhibiting NF-κB pathway in neonatal sepsis.

Keywords: inflammatory, miR-96-5p, NAMPT, NF-κB pathway, neonatal sepsis

Introduction

Neonatal sepsis is a common disease in newborn infants and has high morbidity and mortality [1]. It is the third leading cause of neonatal death and accounts for approximately 25% of neonatal mortality [2]. Sepsis is caused by disorder reactions in response to infection, leads to severe inflammatory responses and Immune disorder [3]. In spite of tremendous efforts and advances in neonatology, early diagnosis and initiation of treatment of neonatal sepsis are still challenges because of nonspecific signs and symptoms, no perfect early diagnostic marker [4]. Therefore, it is urgent to search for new targets for early diagnosis and therapeutic of neonatal sepsis.

Increasing evidences indicate that MicroRNAs (miRNAs) participate in the regulation of immune response. MiRNAs are a kind of short noncoding RNAs
containing 19-22 nucleotides. It suppresses mRNA expression by combining with the 3’-untranslated region (UTR) of target genes and resulting degradation or transcriptional inhibition of target mRNA [5, 6]. Certain miRNAs have been reported to play roles in inflammatory responses. For example, microRNA-300 promotes inflammatory responses by targeting NAMPT and activation of AMPK/mTOR pathway in neonatal sepsis [7]; miRNA-138 accelerates inflammatory responses via binding its target SIRT1 and activating the NF-κB and AKT pathways [8]; in contrast, miR-15a/16 restrains inflammatory responses induced by LPS [9]. Previous studies have shown that miR-96-5p has a low expression in leukocytes of neonatal septicemia patients [10]. Additionally, miR-96-5p regulates spinal cord injury through the NF-κB pathway [11]. However, it is unclear whether miR-96-5p plays a role in neonatal septicemia.

Nicotinamide Phosphoribosyltransferase (NAMPT) also named as Pre-B-cell colony-enhancing factor (PBEF) or visfatin, which is a limiting enzyme in the nicotinamide adenine dinucleotide (NAD⁺) salvage biosynthetic pathway. It has been proved that NAMPT served as an inflammatory adipocytokine to involve in cell metabolism, inflammation and immune modulation [12, 13]. A previous study indicated that NAMPT expression was elevated in neonatal sepsis, and was associated with inflammatory responses, suggesting that NAMPT was a vital regulator in inflammatory reactions [7].

In the present study, we first demonstrated that miR-96-5p participated in inflammatory responses through suppressing its target gene NAMPT and NF-κB
pathway in neonatal sepsis, which may provide a theoretical basis for research on
diagnosis and treatment of neonatal sepsis.

Materials and methods

Samples collection

After approved by Ethics Committee of Maternal and Child Health Hospital of Hubei Province (Women and Children’s Hospital of Hubei Province), The blood samples from 30 neonatal sepsis patients and 24 respiratory infection/pneumonia patients (control group) were obtained before the patients enrolled from Maternal and Child Health Hospital of Hubei Province (Women and Children’s Hospital of Hubei Province) that had not undergone any other therapy. Informed consent for all samples was written by patients’ families.

Cell culture and treatment

The RAW264.7 murine macrophage cell line and HEK293T cells were purchased from the Cell Bank of the Chinese Academy of Sciences (Shanghai, China). All cell lines were cultured in Roswell Park Memorial Institute (RPMI) 1640 medium (Gibco, Carlsbad, CA, USA) with additional 10% fetal bovine serum (FBS, Gibco) at the condition of 37°C and 5% CO₂ in a humidified atmosphere. LPS was used to stimulate macrophages cell treated with 0-2 μg/mL of LPS for 12 h or with 1 μg/mL of LPS for 0-48 h.
Cell transfection

MiR-96-5p mimics (miR-96-5p), anti-miR-96-5p, small interfering RNA against NAMPT (si-NAMPT) and corresponding negative controls (NC) were designed and synthesized from Ribobio (Guangzhou, China). Full length of NAMPT cDNA was cloned and inserted in pcDNA3.1 vector (Invitrogen, Carlsbad, CA, USA) for the overexpression of NAMPT. RAW264.7 cells were inoculated on 6-well plates; transfection was performed after the confluence of the cells was ~70% by Lipofectamine 2000 reagent (Invitrogen) following the manufacturer’s instructions.

RNA extraction and reverse transcription-quantitative PCR (qRT-PCR)

Total RNA was extracted from serum and cells by Trizol Reagent following the manufacturer’s protocol. Subsequently, cDNA was obtained by using TIANScript RT Kit (Tiangen Biotech, Beijing, China). Then, the expression levels were detected by qRT-PCR using an SYBR Green QuantiTect RTPCR Kit (Roche, South San Francisco, CA, USA) following the manufacturer’s instructions. U6 and GAPDH were employed to normalize miRNA and mRNA, respectively. Data were calculated by the $2^{-\Delta\Delta C_T}$ method. The primers for the tested genes were presented as follows:

GAPDH-Forward: GTGTTCTACCCCCAATGTG, GAPDH-Reverse: CATCGAAGGTGGAAGAGTGG;
TNF-α-Forward: CGTCAGCCGATTTGCTATCT, TNF-α-Reverse: CTTGGGCAGATTGACCTCAG;
IL-6-Forward: TGGGGGAGATTGACCTCAG, IL-6-Reverse: TCCACGATTTCCCAGAACA;
NAMPT-Forward: TACAGTGGCCACAAATTCCA, NAMPT-Reverse:
Western blot analysis

The proteins from blood samples and cells were extracted using RIPA lysis buffer following standard protocols, and protein concentrations were detected using protein assay kit (Bio-Rad Laboratories, Tokyo, Japan). 30 μg proteins of each sample were separated by SDS-PAGE and then transferred to a PVDF membrane. After blocking for 1 h with 5% skim milk (dissolved in TBST buffer containing 0.1% Tween 20), the membrane was incubated with primary antibodies at 4°C overnight. After that, the membrane was washed with PBS three times and incubated with secondary antibodies at 37°C for 1 h. Blots were detected by enhanced chemiluminescence. The primary antibodies were rabbit antibodies, including anti-NAMPT, anti-p65, anti-p-p65, anti-IKKβ, anti-p-IKKα/β and anti-GAPDH as control (Abcam, Cambridge, UK), and horseradish peroxidase (HRP)-conjugated secondary antibodies were obtained from Abcam.

Enzyme-linked immunosorbent assay (ELISA)

Anti-mouse TNF-α and IL6 antibodies and biotinylated secondary antibodies were
obtained from Abcam. The ELISA assay was carried out by using Enzyme-linked immunosorbent assay (ELISA) kits (Abcam) according to the manufacturer’s protocol.

Dual-luciferase reporter assay

Targetscan software has predicted the binding sequences between NAMPT and miR-96-5p. In order to confirm the relationship between NAMPT and miR-96-5p, dual luciferase reporter assay was performed as previously described [14]. The fragment of NAMPT 3’-UTR (NAMPT-WT) containing the predicated bind sites of miR-96-5p and its mutant (NAMPT-MUT) sequences were cloned into the downstream of the luciferase gene in pGL-control reporter plasmid vector (Promega, Madison, WI, USA), separately. The reporter vectors containing NAMPT-WT or NAMPT-MUT with miR-95-5p or miR-NC were co-transfected into HEK293T and RAW264.7 cells using Lipofectamine 2000. The luciferase activities of renin and firefly were measured using a dual-luciferase reporter assay system (Promega) after 36 h.

Statistical Analysis

At least 3 independent experiments were employed for all assays and Values were shown as the mean values ± standard deviation (SD). Differences were assessed through Student’s t-test or one-way analysis of variance by using SPSS 22.0 software. $P<0.05$ was deemed to be statistically significant.
Results

MiR-96-5p was downregulated while NAMPT was upregulated in neonatal sepsis

The expression levels of miR-96-5p and NAMPT were first detected in neonatal sepsis and control serum by qRT-PCR, and the result shown that miR-96-5p level was significantly decreased in the serum of neonatal sepsis compared with the control (Fig. 1A). In contrast, the expression of NAMPT was upregulated serum of neonatal sepsis patients (Fig. 1B). Then, we analyzed the relationship between miR-96-5p and NAMPT, and the data indicated that the expression of miR-96-5p was negatively correlated with NAMPT in neonatal sepsis (Fig. 1C). In addition, the NAMPT protein level was detected using western blot, and the result showed that NAMPT expression was increased in neonatal sepsis (Fig. 1D, E), which was consistent with the qRT-PCR result.

MiR-96-5p negatively regulated LPS-induced inflammatory responses in RAW264.7 cells

Previous studies have demonstrated that LPS can stimulate macrophages and lead to inflammatory responses [15, 16]. To confirm whether miR-96-5p was downregulated in inflammatory responses, we measured the expression level of miR-96-5p in RAW264.7 cells stimulated with LPS of different dose or processing time. The data revealed that the expression of miR-96-5p was downregulated by LPS in dose-dependent or time-dependent manners (Fig. 2A, B). Additionally, the levels of
inflammatory cytokines TNF-α and IL-6 were also detected to assess inflammatory responses induced by LPS, the qRT-PCR and ELISA results showed that levels of TNF-α and IL-6 were significantly increased in RAW264.7 cells stimulated with LPS (Fig. 2C-F). These results suggested that miR-96-5p played a potential role in the regulation of LPS-induced inflammatory responses.

To investigate the role of miR-95-5p in inflammatory responses, miR-96-5p mimic or control miR-NC was transfected into RAW264.7 cells. As shown in Fig 3A, miR-96-5p expression was downregulated by LPS, which was reversed when transfected with miR-96-5p. In addition, overexpression of miR-96-5p significantly decreased TNF-α and IL-6 levels in LPS-induced inflammatory responses in RAW264.7 cells (Fig. 3B-E). Furthermore, to make these results more convincing, we also collected monocytes from the blood of neonatal sepsis patients. The qRT-PCR results indicated that overexpression of miR-96-5p downregulated LPS-induced TNF-α and IL-6 expressions in monocytes (Fig. S1), which indicted that miR-96-5p relieved LPS-induced inflammatory response.

NAMPT was directly regulated by miR-96-5p

To investigate the molecule mechanism by which miR-95-5p regulating inflammatory response, Targetscan software was used to predict the downstream target of miR-96-5p and identified NAMPT as a potential target, moreover, the binding site between miR-96-5p and NAMPT was also predicted (Fig. 4A). Subsequently, dual luciferase reporter assay showed that the luciferase activity was strongly decreased by
miR-96-5p mimics in both HEK239T and RAW264.7 cells co-transfected with NAMPT-WT luciferase reporter plasmid, but the luciferase activity had no change when NAMPT was mutational (Fig. 4B, C) which confirmed that NAMPT was a direct target of miR-96-5p. Besides, we detected the expression level of NAMPT in RAW264.7 cells transfected with miR-96-5p or anti-miR-96-5p, qRT-PCR and western blot results revealed NAMPT expression was decreased in cells transfected with miR-96-5p, while knockdown of miR-96-5p enhanced NAMPT level (Fig. 4D-F).

Knockdown of NAMPT relieved LPS-induced inflammatory response

To study the role of NAMPT in inflammatory response, si-NAMPT was transfected in RAW264.7 cells. The expression of NAMPT was upregulated by LPS and reversed after transfected with si-NAMPT (Fig. 5A, B). In addition, TNF-α and IL-6 were observably induced by LPS. However, knockdown of NAMPT decreased the expression of TNF-α and IL-6 (Fig. 5C-F). These data suggested that knockdown of NAMPT suppressed inflammatory response.

NAMPT overexpression reversed effects of miR-96-5p on LPS-induced inflammatory response

To further investigate the interaction between miR-96-5p and NAMPT, the mRNA and protein levels of NAMPT were measured in RAW264.7 cells transfected miR-96-5p or co-transfected miR-96-5p and NAMPT. Overexpression of miR-96-5p
decreased the level of NAMPT and overexpression of NAMPT could reverse the decreased expression (Fig. 6A, B). Furthermore, we evaluated the inflammatory response through the expression of TNF-α and IL-6, the results revealed that miR-96-5p inhibits inflammatory and NAMPT overexpression reversed effects of miR-96-5p on LPS-induced inflammatory response (Fig. 6C-F), which indicating that miR-96-5p regulated LPS-induced inflammatory response in RAW264.7 cells through suppressing NAMPT.

MiR-96-5p inhibited NF-κB pathway in RAW264.7 cells stimulated with LPS

To investigate whether miR-96-5p involved in NF-κB pathway in LPS-induced inflammatory response, protein levels of p-IKKα/β, IKKβ, p-p65 and p65 were determined by using western blot analysis. The ratio of p-IKKα/β/IKKβ and p-p65/p65 was calculated and acted as indicators of the activity of NF-κB pathway. The data indicated NF-κB pathway was activated by LPS, inversely, overexpression of miR-96-5p inhibited NF-κB pathway (Fig. 7).

Discussion

Sepsis is a complex syndrome caused by infection and is featured on a systemic inflammatory response. Because the adaptive immune system of newborns has not fully developed, the incidence of sepsis is extremely high in newborns [17]. Although the definition of sepsis was clear, the diagnosis of neonatal sepsis relies on the subjective interpretation of each case due to nonspecific signs and symptoms and no
perfect early diagnostic marker [18]. So improving diagnostic and prognostic accuracy in neonatal sepsis would contribute to the therapy and reduce mortality of neonatal sepsis.

Inflammatory cytokines are critical factors in the inflammatory response. When pathogens infect the body, macrophages and dendritic cells can produce cytokines to resist the invasion of pathogens. To some extent, the levels of immune factors can be used to assess the immune response. TNF-α and IL-6 are pro-inflammatory cytokines, which involved in various inflammatory responses [19, 20]. In this study, the expression levels of TNF-α and IL-6 were enhanced by LPS, suggesting that the inflammatory response was stimulated by LPS, which was in agreement with a previous study [21].

The inflammatory response has potentially destructiveness, which makes it significant to regulate the inflammatory response finely. Studies of miRNAs suggest that they function as potential key regulators of the inflammatory response in many diseases, including neonatal sepsis [22-24]. MiR-15a/16 are increased in neonatal sepsis patients and can serve as predictors of neonatal sepsis [9]. A recent study has reported that the aberrant expression of miR-132 and miR-223 was connected with the inflammatory response in neonatal sepsis [22]. MiR-96-5p has been shown to be low expressed in neonatal sepsis patients [10]. However, the functional mechanism of miR-96-5p in neonatal sepsis is little known. In this study, we also observed a decreased expression of miR-96-5p in the serum of neonatal sepsis patients. Moreover, the mRNA level of miR-96-5p was downregulated by LPS in dose-dependent and
treatment time-dependent manners. Subsequently, a gain of function method was used to investigate the role of miR-96-5p, and the result indicated that miR-96-5p overexpression inhibited the inflammatory response in RAW264.7 cells stimulated with LPS.

Generally, miRNA suppressed mRNA expression by the direct sponging target gene. Bioinformatics analysis was performed and showed that NAMPT contained binding sites for miR-96-5p. Then, dual-luciferase reporter assay proved that NAMPT was a target of miR-96-5p. NAMPT has been indicated as a vital regulator in inflammatory responses [25-27]. Inhibiting endogenous NAMPT alleviates diabetic nephropathy inflammatory-fibrosis by regulating NF-κB p65 and Sirt1 pathways [28].

A previous study demonstrated the pro-inflammatory effects of NAMPT involved the regulation of the insulin signaling pathway [29]. In this study, we found NAMPT expression was increased in the serum of neonatal sepsis patients and induced by LPS in RAW264.7 cells. In addition, knockdown of NAMPT inhibited LPS-induced inflammatory response, which was consistent with previous studies [7, 30].

The nuclear factor (NF)-κB signaling has been reported to be an important factor involved in innate immunity through regulating the transcription of pro-inflammatory genes [31, 32]. The activation of the NF-κB signaling pathway mainly relies on some inflammatory signals, such as LPS, TNF-α, IL-1β, reactive oxygen species and so on [33-35]. Usually, NF-κB was inactivated by binding IκB proteins in the cytoplasm [36]. Free NF-κB will be released after phosphorylation and degradation of IκB, and then, NF-κB move to the nucleus, thereby bind to the target gene and promote its
transcription [37]. Our study showed that overexpression of miR-96-5p inhibited
NF-κB signaling pathway in RAW264.7 cells stimulated with LPS. Furthermore,
previous study verified that TAK1 as an upstream kinase affected the NF-κB signaling
pathway [38]. We also found that miR-96-5p could inhibit the phosphorylation of
TAK1 in RAW264.7 cells stimulated with LPS (Fig. S2). These data indicated that
miR-96-5p suppressed NF-κB pathway by weakening the activation of TAK1. In
addition, a previous study indicated NAMPT also played a role in NF-κB signaling
pathway [28], whether miR-96-5p inhibited NF-κB via targeting NAMPT and the
underlying mechanisms remain to be further investigated.

In summary, our study shown that the decreased miR-96-5p expression was
associated with elevated level of NAMPT and inflammatory response. The results
demonstrated that miR-96-5p alleviated LPS-induced inflammatory response via
targeting NAMPT and regulation of NF-κB signaling pathway. Understanding the
effects and the functional mechanisms of miR-96-5p in inflammatory response might
provide a theoretical basis for the diagnosis and therapy in neonatal sepsis.

Funding

This work was supported by Natural Science Foundation of Hubei Province
[2019CFB401].

Competing Interests

The authors declare that there are no competing interests associated with the
Author Contribution

Xueli Chen conceived and designed the present study. Ying Chen was responsible for the data analysis and performed data interpretation. Li Dai wrote the paper. Xueli Chen and Na Wang revised the manuscript.

Abbreviations

miRNAs, MicroRNAs; NAMPT, nicotinamide phosphoribosyltransferase; qRT-PCR, reverse transcription-quantitative PCR; ELISA, enzyme linked immunosorbent assay; UTR, untranslated region; PBEF, Pre-B-cell colony-enhancing factor; NAD+, nicotinamide adenine dinucleotide.
References

1. Blencowe, H., Vos, T., Lee, A.C., Philips, R., Lozano, R., Alvarado, M.R. et al. (2013) Estimates of neonatal morbidities and disabilities at regional and global levels for 2010: introduction, methods overview, and relevant findings from the Global Burden of Disease study. *Pediatr Res*. **74**, Suppl 1, 4-16, https://doi.org/10.1038/pr.2013.203

2. Boskabadi, H., Omidian, M., Tavallai, S., Mohammadi, S., Parizadeh, M., Ghayour Mobarhan, M. et al. (2015) Serum Hsp70 Antigen: Early Diagnosis Marker in Perinatal Asphyxia. *Iran J Pediatr*. **25**, e381, https://doi.org/10.5812/ijp.381

3. Shane, A.L. and Stoll, B.J. (2014) Neonatal sepsis: progress towards improved outcomes. *J Infect*. **68**, Suppl 1, S24-32, https://doi.org/10.1016/j.jinf.2013.09.011

4. Lever, A. and Mackenzie, I. (2007) Sepsis: definition, epidemiology, and diagnosis. *BMJ*. **335**, 879-883, https://doi.org/10.1136/bmj.39346.495880.AE

5. Ambros, V. (2004) The functions of animal microRNAs. *Nature*. **431**, 350-355, https://doi.org/10.1038/nature02871

6. Singh, S.K., Pal Bhadra, M., Girschick, H.J. and Bhadra, U. (2008) MicroRNAs--micro in size but macro in function. *FEBS J*. **275**, 4929-4944, https://doi.org/10.1111/j.1742-4658.2008.06624.x

7. Li, Y., Ke, J., Peng, C., Wu, F. and Song, Y. (2018) microRNA-300/NAMPT regulates inflammatory responses through activation of AMPK/mTOR signaling pathway in neonatal sepsis. *Biomed Pharmacother*. **108**, 271-279,
8. Bai, X.Z., Zhang, J.L., Liu, Y., Zhang, W., Li, X.Q., Wang, K.J. et al. (2018) MicroRNA-138 Aggravates Inflammatory Responses of Macrophages by Targeting SIRT1 and Regulating the NF-kappaB and AKT Pathways. Cell Physiol Biochem. 49, 489-500, https://doi.org/10.1159/000492988

9. Wang, X., Wang, X., Liu, X., Wang, X., Xu, J., Hou, S. et al. (2015) miR-15a/16 are upregulated in the serum of neonatal sepsis patients and inhibit the LPS-induced inflammatory pathway. Int J Clin Exp Med. 8, 5683-5690,

10. Chen, J., Jiang, S., Cao, Y. and Yang, Y. (2014) Altered miRNAs expression profiles and modulation of immune response genes and proteins during neonatal sepsis. J Clin Immunol. 34, 340-348, https://doi.org/10.1007/s10875-014-0004-9

11. Huang, Y., Zhu, N., Chen, T., Chen, W., Kong, J., Zheng, W. et al. (2019) Triptolide Suppressed the Microglia Activation to Improve Spinal Cord Injury Through miR-96/IKKbeta/NF-kappaB Pathway. Spine (Phila Pa 1976). 44, E707-E714, https://doi.org/10.1097/BRS.0000000000002989

12. Montecucco, F., Cea, M., Cagnetta, A., Damonte, P., Nahimana, A., Ballestero, A. et al. (2013) Nicotinamide phosphoribosyltransferase as a target in inflammation-related disorders. Curr Top Med Chem. 13, 2930-2938, https://doi.org/10.2174/1568026613136660208

13. Garten, A., Petzold, S., Schuster, S., Korner, A., Kratzsch, J. and Kiess, W. (2011) Nampt and its potential role in inflammation and type 2 diabetes. Handb Exp Pharmacol. 147-164, https://doi.org/10.1007/978-3-642-17214-4_7
14. Mao, Z., Guan, Y., Li, T., Zhang, L., Liu, M., Xing, B. et al. (2019) Up regulation of miR-96-5p is responsible for TiO2 NPs induced invasion dysfunction of human trophoblastic cells via disturbing Ezrin mediated cytoskeletons arrangement. *Biomed Pharmacother.* **117**, 109125, https://doi.org/10.1016/j.biopha.2019.109125

15. Janeway, C.A., Jr. and Medzhitov, R. (2002) Innate immune recognition. *Annu Rev Immunol.* **20**, 197-216, https://doi.org/10.1146/annurev.immunol.20.083001.084359

16. Wright, S.D., Ramos, R.A., Tobias, P.S., Ulevitch, R.J. and Mathison, J.C. (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. *Science.* **249**, 1431-1433, https://doi.org/10.1126/science.1698311

17. Levy, O. (2007) Innate immunity of the newborn: basic mechanisms and clinical correlates. *Nat Rev Immunol.* **7**, 379-390, https://doi.org/10.1038/nri2075

18. Gerdes, J.S. (2004) Diagnosis and management of bacterial infections in the neonate. *Pediatr Clin North Am.* **51**, 939-959, viii-ix, https://doi.org/10.1016/j.pcl.2004.03.009

19. Santana Reyes, C., Garcia-Munoz, F., Reyes, D., Gonzalez, G., Dominguez, C. and Domenech, E. (2003) Role of cytokines (interleukin-1beta, 6, 8, tumour necrosis factor-alpha, and soluble receptor of interleukin-2) and C-reactive protein in the diagnosis of neonatal sepsis. *Acta Paediatr.* **92**, 221-227, https://doi.org/10.1111/j.1651-2227.2003.tb00530.x

20. Mokart, D., Merlin, M., Sannini, A., Brun, J.P., Delpero, J.R., Houvenaeghel, G.
et al. (2005) Procalcitonin, interleukin 6 and systemic inflammatory response syndrome (SIRS): early markers of postoperative sepsis after major surgery. Br J Anaesth. 94, 767-773, https://doi.org/10.1093/bja/aei143

21. Zhuang, Y.T., Xu, D.Y., Wang, G.Y., Sun, J.L., Huang, Y. and Wang, S.Z. (2017) IL-6 induced lncRNA MALAT1 enhances TNF-alpha expression in LPS-induced septic cardiomyocytes via activation of SAA3. Eur Rev Med Pharmacol Sci. 21, 302-309, PMID: 28165557

22. Dhas, B.B., Dirisala, V.R. and Bhat, B.V. (2018) Expression Levels of Candidate Circulating microRNAs in Early-Onset Neonatal Sepsis Compared With Healthy Newborns. Genomics Insights. 11, 1178631018797079, https://doi.org/10.1177/1178631018797079

23. Huang, L., Qiao, L., Zhu, H., Jiang, L. and Yin, L. (2018) Genomics of neonatal sepsis: has-miR-150 targeting BCL11B functions in disease progression. Ital J Pediatr. 44, 145, https://doi.org/10.1186/s13052-018-0575-9

24. Cheng, Q., Tang, L. and Wang, Y. (2018) Regulatory role of miRNA-26a in neonatal sepsis. Exp Ther Med. 16, 4836-4842, https://doi.org/10.3892/etm.2018.6779

25. Imai, S. (2009) Nicotinamide phosphoribosyltransferase (Nampt): a link between NAD biology, metabolism, and diseases. Curr Pharm Des. 15, 20-28, https://doi.org/10.2174/138161209787185814

26. Friebe, D., Neef, M., Kratzsch, J., Erbs, S., Dittrich, K., Garten, A. et al. (2011) Leucocytes are a major source of circulating nicotinamide
phosphoribosyltransferase (NAMPT)/pre-B cell colony (PBEF)/visfatin linking
obesity and inflammation in humans. *Diabetologia*. **54**, 1200-1211,
https://doi.org/10.1007/s00125-010-2042-z

27. Tao, M., Jiang, J., Wang, L., Li, Y., Mao, Q., Dong, J. et al. (2018)
alpha-Mangostin Alleviated Lipopolysaccharide Induced Acute Lung Injury in
Rats by Suppressing NAMPT/NAD Controlled Inflammatory Reactions. *Evid
Based Complement Alternat Med*. **2018**, 5470187,
https://doi.org/10.1155/2018/5470187

28. Chen, Y., Liang, Y., Hu, T., Wei, R., Cai, C., Wang, P. et al. (2017) Endogenous
Nampt upregulation is associated with diabetic nephropathy
inflammatory-fibrosis through the NF-kappaB p65 and Sirt1 pathway; NMN
alleviates diabetic nephropathy inflammatory-fibrosis by inhibiting endogenous
Nampt. *Exp Ther Med*. **14**, 4181-4193, https://doi:10.3892/etm.2017.5098

29. Jacques, C., Holzenberger, M., Mladenovic, Z., Salvat, C., Pecchi, E.,
Berenbaum, F. et al. (2012) Proinflammatory actions of visfatin/nicotinamide
phosphoribosyltransferase (Nampt) involve regulation of insulin signaling
pathway and Nampt enzymatic activity. *J Biol Chem*. **287**, 15100-15108,
https://doi.org/10.1074/jbc.M112.350215

30. Gesing, J., Schuermann, K., Wagner, I.V., Loffler, D., Friebe, D., Kiess, W. et al.
(2017) NAMPT serum levels are selectively elevated in acute infectious disease
and in acute relapse of chronic inflammatory diseases in children. *PLoS One*. **12**,
e0183027, https://doi.org/10.1371/journal.pone.0183027
31. Xu, R.X., Liu, R.Y., Wu, C.M., Zhao, Y.S., Li, Y., Yao, Y.Q. et al. (2015) DNA damage-induced NF-kappaB activation in human glioblastoma cells promotes miR-181b expression and cell proliferation. *Cell Physiol Biochem.* 35, 913-925, https://doi.org/10.1159/000369748

32. Busch, F., Mobasher, A., Shayan, P., Stahlmann, R. and Shakibaei, M. (2012) Sirt-1 is required for the inhibition of apoptosis and inflammatory responses in human tenocytes. *J Biol Chem.* 287, 25770-25781, https://doi.org/10.1074/jbc.M112.355420

33. Qin, H., Wilson, C.A., Lee, S.J., Zhao, X. and Benveniste, E.N. (2005) LPS induces CD40 gene expression through the activation of NF-kappaB and STAT-1-alpha in macrophages and microglia. *Blood.* 106, 3114-3122, https://doi.org/10.1182/blood-2005-02-0759

34. Fitzgerald, D.C., Meade, K.G., McEvoy, A.N., Lillis, L., Murphy, E.P., Machugh, D.E. et al. (2007) Tumour necrosis factor-alpha (TNF-alpha) increases nuclear factor kappaB (NFkappaB) activity in and interleukin-8 (IL-8) release from bovine mammary epithelial cells. *Vet Immunol Immunopathol.* 116, 59-68, https://doi.org/10.1016/j.vetimm.2006.12.008

35. Renard, P., Zachary, M.D., Bougelet, C., Mirault, M.E., Haegeman, G., Remacle, J. et al. (1997) Effects of antioxidant enzyme modulations on interleukin-1-induced nuclear factor kappa B activation. *Biochem Pharmacol.* 53, 149-160, https://doi.org/10.1016/s0006-2952(96)00645-4

36. Baeuerle, P.A. and Baltimore, D. (1988) I kappa B: a specific inhibitor of the
NF-kappa B transcription factor. *Science.* **242**, 540-546, https://doi.org/10.1126/science.3140380

37. Chen, F.E., Huang, D.B., Chen, Y.Q. and Ghosh, G. (1998) Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA. *Nature.* **391**, 410-413, https://doi.org/10.1038/34956

38. Gallardo F, Bertran J, López-Aribillaga E, et al. (2018) Novel phosphorylated TAK1 species with functional impact on NF-κB and β-catenin signaling in human Cutaneous T-cell lymphoma. *Leukemia.* **32**, 2211-2223, https://doi:10.1038/s41375-018-0066-4
Figure legends

Fig. 1 The expression levels of miR-96-5p and NAMPT in serum of neonatal sepsis patients. A, miR-96-5p level in serum of neonatal sepsis patients was detected by qRT-PCR. B, the mRNA level of NAMPT in serum of neonatal sepsis patients was detected by qRT-PCR. C, the negative correlation miR-96-5p and NAMPT mRNA in serum of neonatal sepsis patients was showed. D and E, western blot analysis was performed to measure the protein level of NAMPT in serum of neonatal sepsis patients. *P<0.05.

Fig. 2 The expression level of miR-96-5p was suppressed and inflammatory response was induced by LPS. A and B, the level of miR-96-5p was measured in RAW264.7 cells treated with LPS at different dose and treatment hours. C and D, the mRNA levels of TNF-α and IL-6 in RAW264.7 cells treated with LPS were detected by qRT-PCR. E and F, the levels of TNF-α and IL-6 in RAW264.7 cells treated with LPS were detected by ELISA. *P<0.05.

Fig. 3 MiR-96-5p inhibited inflammatory response in RAW264.7 cells stimulated with LPS. A, the expression level of miR-96-5p in RAW264.7 cells treated with LPS or LPS + miR-96-5p mimic were detected by qRT-PCR. B and C, the mRNA levels of TNF-α and IL-6 in RAW264.7 cells treated with LPS or LPS + miR-96-5p mimic were detected by qRT-PCR. D and E, the levels of TNF-α and IL-6 in RAW264.7 cells treated with LPS or LPS + miR-96-5p mimic were detected by ELISA. *P<0.05.

Fig. 4 MiR-96-5p regulated NAMPT by directly binding NAMPT. A, the binding sites of miR-96-5p on NAMPT 3’-UTR was predicted by Targetscan software. B and
C, the luciferase activity was detected in HEK293T and RAW264.7 cells co-transfected with miR-96-5p and NAMPT-WT or NAMPT-MUT. D and E, the mRNA levels of NAMPT in RAW264.7 cells transfected with miR-96-5p mimic or anti-miR-96-5p were detected by qRT-PCR. F, the protein levels of NAMPT in RAW264.7 cells transfected with miR-96-5p mimic or anti-miR-96-5p were detected by western blot analysis. *P<0.05.

Fig. 5 Knockdown of NAMPT relieved LPS-induced inflammatory response. A and B, the level of NAMPT in RAW264.7 cells treated with LPS or LPS + si-NAMPT was detected by qRT-PCR and western blot. C and D, the mRNA levels of TNF-α and IL-6 in RAW264.7 cells treated with LPS or LPS + si-NAMPT were detected by qRT-PCR. E and F, the levels of TNF-α and IL-6 in RAW264.7 cells treated with LPS or LPS + si-NAMPT were detected by ELISA. *P<0.05.

Fig. 6 NAMPT overexpression reversed effects of miR-96-5p on LPS-induced inflammatory response. A and B, the level of NAMPT in RAW264.7 cells transfected with miR-96-5p mimic or miR-96-5p mimic + NAMPT was detected by qRT-PCR and western blot. C and D, the mRNA levels of TNF-α and IL-6 in RAW264.7 cells transfected with miR-96-5p or miR-96-5p + NAMPT were detected by qRT-PCR. E and F, the levels of TNF-α and IL-6 in RAW264.7 cells transfected with miR-96-5p or miR-96-5p + NAMPT were detected by ELISA. *P<0.05.

Fig. 7 miR-96-5p inhibited NF-κB pathway in RAW264.7 cells stimulated with LPS. The levels of p65, p-p65, IKKβ and p-IKKα/β in RAW264.7 cells treated with LPS or LPS + miR-96-5p were detected by western blot. The ratios of
p-IKKα/β/IKKβ and p-p65/p65 were analyzed. *P<0.05.

Fig. S1 miR-96-5p inhibited inflammatory response in monocytes from neonatal sepsis patients’ blood samples. A-C, monocytes were treated with control, LPS, LPS + miR-NC or LPS + miR-96-5p mimic. A, The relative expression levels of miR-96-5p in cells were measured by qRT-PCR. B and C, the expression levels of TNF-α and IL-6 in cells were detected by qRT-PCR. *P<0.05.

Fig. S2 MiR-96-5p inhibited TAK1 expression in RAW264.7 cells stimulated with LPS. The expression level of TAK1 in cells treated with LPS or LPS + miR-96-5p was detected by western blot. *P<0.05.
Position 715-721 of NAMPT

NAMPT-WT 5'...UGUAUGUACCAGUGAUGCACAAAAU...3'

miR-96-5p 3' UCGUUUUUACACGAUC---ACGGUUU 5'

NAMPT-MUT 5'...UGUGGACACCAGUGAAUAGGCUC...3'

B

HEK293T

NAMPT-WT NAMPT-MUT

Relative luciferase activity

C

RAW264.7

miR-NC miR-96-5p

Relative luciferase activity

D

miR-NC miR-96-5p

Relative NAMPT mRNA expression

E

anti-miR-NC anti-miR-96-5p

Relative NAMPT mRNA expression

F

miR-NC miR-96-5p anti-miR-NC anti-miR-96-5p

NAMPT/GAPDH Ratio

miR-NC miR-96-5p anti-miR-NC anti-miR-96-5p

NAMPT/GAPDH Ratio
A) Relative NAMPT mRNA expression

B) NAMPT/GAPDH Ratio

C) Relative TNF-α mRNA expression

D) Relative IL-6 mRNA expression

E) TNF-α (pg/mL)

F) IL-6 (pg/mL)
Control
LPS
LPS+miR-NC
LPS+miR-96-5p

GAPDH
TAK1
p-TAK1

Relative protein expression

p-TAK1/TAK1

LPS+miR-NC
LPS+miR-96-5p
LPS

*