Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The stochastic evolution of a rumor spreading model with two distinct spread inhibiting and attitude adjusting mechanisms in a homogeneous social network

Ming Li a, Hong Zhang a, Paul Georgescu b,∗, Tan Li c

a School of Economics and Management, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, PR China
b Department of Mathematics, Technical University of Iaşi, Bd. Copou 11A, 700506 Iaşi, Romania
c School of Innovation and Entrepreneurship, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, PR China

A B S T R A C T

In this paper, we propose and analyze from a stability viewpoint a deterministic, ODE-based class of rumor spreading models with two distinct inhibiting and adjusting mechanisms, together with its corresponding stochastic counterpart. For the deterministic model, a threshold parameter \(R_0 \) defined ad hoc, called the basic influence number, is used to ascertain whether the rumors are prevailing or not. If \(R_0 < 1 \), the rumor-free equilibrium is found to be locally asymptotically stable, while if \(R_0 > 1 \) it is shown that there is at least one additional rumor-prevailing equilibrium, which is necessarily locally asymptotically stable. For the stochastic model, we first show that there exists a unique global solution. Subsequently, we investigate the asymptotic behavior of the stochastic system around the equilibria of the deterministic system by constructing suitable Lyapunov functionals. Furthermore, numerical simulations are given to illustrate, support and enhance our theoretical analysis.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Rumors, the oldest form of mass media, are defined in [1] as being improvised news resulting from a process of collective discussion. Typically, rumors spread at first between close friends or by means of other similar informal encounters, before making their way, often reshaped or distorted, into public discourse.

Certain rumors spread faster since they are targeting deep insecurities, making people uncertain of outcomes, afraid of consequences and distrustful of real, truthful information. For instance, there are rumors in circulation which allege that high-speed 5G cellular technology is to blame for the rapid spread of COVID-19, that the spread of the Zika virus is caused by genetically modified mosquitoes and that microcephaly is caused by vaccines, which, via ever-shifting alleged mechanisms, also cause autism. Other rumors, especially popular in West Africa, allege that Ebola can be contracted from a motorcycle helmet. The “Obama is a Muslim” rumor, built upon questions caused in part by his middle name, was a recurrent theme of the 2008 US presidential elections and reverberated for a long time, as a 2014 poll showed that 54% of the (Republican) subjects believed that “deep down” Obama was a Muslim.

To understand the impact of rumor spreading, it is useful to investigate the dynamical behavior of appropriate mathematical models which are often not unlike disease propagation models. The research on rumor spreading models...
started in the 1960s. In their seminal papers [2,3], Daley and Kendall compared the difference between the basic tenets of a model of virus transmission and those of a model of rumor spreading, proposing their classical compartmental model of rumor spreading. This model keeps track of three compartments: ignorants, spreaders and stiflers and assumes that an ignorant should absolutely become a spreader upon hearing a rumor, which is not always factual.

Since then, the DK model has been actively modified and expanded, leading to a more accurate account of rumor spreading. Maki and Thompson [4] developed a model which allowed for a more nuanced interaction between ignorants, spreaders and stiflers. Zanette [5,6] proposed a rumor propagation model on a small-world network and performed simulations for the MT model. In 2004, Moreno et al. [7] studied the stochastic properties of the MT model on scale-free networks by means of Monte Carlo simulations. In 2008, Kawachi [8] established global behavior patterns for rumor propagation models that also extended the classical DK model. In 2014, Afassinou [9] considered the influence of education networks by means of Monte Carlo simulations. In 2008, Kawachi [8] established global behavior patterns for rumor spreading.MakiandThompson[4]developedamodelwhichallowedforamorenuancedinteractionbetweenignorants, ignorantshouldabsolutelybecomeaspreaderuponhearingarumor,whichisnotalwaysfactual.

In our model of rumor spreading, we attempt to introduce two spread inhibiting and attitude adjusting mechanisms, which depend only upon governmental input, acting towards reducing rumor spreading from spreaders to newcomers and changing the attitude of spreaders, respectively. We then discuss the effects of the qualitative properties of the inhibiting and adjusting functions, respectively, upon rumor spreading, with a view towards contributing to a better understanding of the mechanisms of rumor spreading and providing the governmental bodies and the public with significant insights for rumor control.

This paper is organized as follows. In Section 2, we introduce a deterministic model for rumor spreading which accounts for two inhibiting and adjusting mechanisms. In Section 3, the stability properties of the deterministic model are characterized in terms of a basic influence number, viewed as a threshold parameter. In Section 4, we propose the corresponding stochastic model and discuss its asymptotic behavior around the equilibria of the deterministic system. In Section 5, we illustrate, support and enhance our results via numerical simulations. Several concluding remarks are given in Section 6.

2. The deterministic model

It is well known that an undirected graph \(G = (V, E) \), where \(V \) represents a set of nodes and \(E \) represents a set of sides, can be obtained from a social network consisting of \(N \) individuals if the individuals and the contacts between them are considered as nodes and sides, respectively. The size of the total population which is subject to mechanisms for rumor spreading...
control is understood to be variable and is denoted at time t by $N(t)$. This population is subdivided into three categories: newcomer (S), spreader (I) and stifler (R). Upon hearing a rumor, the newcomer, who has no previous information about that rumor, may subsequently display two different attitudes. Specifically, certain individuals will choose not to spread the rumor or not to believe it (stifflers), while other individuals will actively spread it (spreaders). After a newcomer hears the rumor through the contact with a spreader at a rate $\bar{\alpha}$, it then has two possible choices: to become a spreader with probability θ_1, or to become a stifler with probability $1 - \theta_1$. Once a rumor spreads in a social network, the government then has the authority to use inhibiting and adjusting mechanisms, whose strength and resources are quantified through the use of the inhibitor variable U, to contain the various damages caused by the rumors.

The movement of individuals from one class to another, given in Fig. 1, is supposed to be unidirectional, which means the flowchart is irreversible. We assume that the flow into the newcomer class is constant and denoted by Λ and denote the constant leaving rate of each non-inhibitor compartment by μ. The constant Γ represents the allotted budgeting rate by the government for adjusting and inhibiting mechanisms and e is the decay rate of those mechanisms. At any time, certain spreaders adjust their attitude towards spreading rumors as a result of the constant governmental work to improve the mechanisms for clarifying and inhibiting rumors, thereby becoming stifflers at a rate $g(U)$.

For the sake of simplicity, we consider only rumors spreading through human contacts, rather than rumors spreading through the media, which motivate our use of an augmented SIR-like model. We now introduce our mathematical model, which involves different attitudes towards rumors and two distinct mechanisms for rumor control, in the following form

\begin{align}
\frac{dS}{dt} &= \Lambda - \bar{\alpha}kSf(U) - \mu S, \\
\frac{dI}{dt} &= \theta_1\bar{\alpha}kSf(U) - g(U)I - \mu I, \\
\frac{dU}{dt} &= \Gamma - eU - \frac{\delta I}{K + U}, \\
\frac{dR}{dt} &= (1 - \theta_1)\bar{\alpha}kSf(U) + g(U)I - \mu R. \tag{1}
\end{align}

Here, the functions f and g stand for the effects of rumor control mechanisms upon attenuating rumor spreading to newcomers and changing the attitudes of spreaders, respectively. Also, $k(\geq 2)$ denotes the average degree of the network. The constants δ and K quantify the usage of the inhibitor, δ being the maximal uptake rate of I and K being a half-saturation parameter. The resulting uptake rate of the inhibitor $\frac{\delta I}{K + U}$ is increasing (the more the inhibitor is available, the higher the uptake rate is) and saturates for large U. Assume that the C^1 function $f : [0, \infty) \rightarrow \mathbb{R}$ satisfies

(f.i) $f(U) \geq 0, f(0) = 1$;

(f.ii) f is non-increasing on $[0, \infty)$.

Assumption (f.i) represents the fact that the interaction between newcomers and spreaders leads to a decrease in the number of newcomers, some of them becoming either spreaders of stifflers, and that the function f is normalized ($f(0) = 1$ means that the mechanisms for the inhibition of rumor spreading are not active), the strength of the interaction between newcomers and spreaders being also quantified through the use of the parameter $\bar{\alpha}$. In fact, $f(0) = 1$ is a modeling assumption (a description of the contact mechanism), which is not actually needed for any of our proofs. Assumption (f.ii) describes that the attempts to control rumor spreading do not backfire (more of the inhibitor U leads to less rumor spreading). Also, the C^1 function $g : [0, \infty) \rightarrow \mathbb{R}$ satisfies

(g.i) $g(U) \geq 0$;

(g.ii) g is non-decreasing on $[0, \infty)$;
\[\lim_{U \to \infty} g(U) \leq \bar{g}. \]

Assumption (g.i) represents the fact that the use of rumor control mechanisms does indeed change the attitude of spreaders, while assumption (g.ii) signifies that the attempts to adjust attitudes do not backfire either (more of the inhibitor \(U \) leads to more spreaders changing their attitudes). Assumption (g.iii) describes the fact that the attitude adjustment mechanisms eventually saturate. Let us also assume that

\[\text{(fg.i)} \quad fg + \mu f \text{ is non-decreasing on } [0, \infty). \]

While assumptions (f.i-ii) and (g.i-iii) stem from social considerations, the motivation for assumption (fg.i) is purely mathematical, as it is employed only to ensure the local stability of the rumor-prevailing equilibrium. If \(f \equiv 1 \), then (fg.i) is trivially satisfied, since it reduces just to \(g \) being non-decreasing on \([0, \infty)\) (that is, to (g.ii)).

Remark 2.1. An example of a function \(f \) modeling the inhibiting mechanisms, which satisfies assumptions (f.i) and (f.ii) is \(f(U) = \frac{Ae^{-BU}}{A+B}, A \geq 0, B > 0 \), while an example of a function \(g \) modeling the adjusting mechanisms which satisfy assumptions (g.i-iii) is \(g(U) = \frac{AU}{Be^U}, A, B > 0 \). However, there are many other possible examples, as the assumptions have been kept to a minimum. Further efforts should go into determining more specific forms or sets of assumptions for each function, which will allow us to further refine and analyze our stability results.

Remark 2.2. We view \(U \) as a variable “proxying” (sort of) the rumor control. That is, \(U \) can model the resources of an organization mandated by the government to deal with rumor control (but we do not want to limit ourselves just to this interpretation). There is a (constant) growth of resources due to government budgeting, an uptake of resource in which each subject (spreader) is allotted (in average) an amount of resources which increases as more resources become available and a decay of resource (interpretable, for instance, as administrative costs).

3. A qualitative analysis of the deterministic model

3.1. The positive invariance

Having in view the social significance of the variables, we are interested only in solutions that are nonnegative and bounded. It can be easily proved that the solutions of the system (1) which start with nonnegative initial data, that is, with

\[S(0) \geq 0, \ I(0) \geq 0, \ U(0) \geq 0, \ R(0) \geq 0 \]

stay nonnegative for all \(t \geq 0 \). From (1), we see that

\[\frac{dN(t)}{dt} = \frac{dS(t)}{dt} + \frac{dI(t)}{dt} + \frac{dR(t)}{dt} = \Lambda - \mu N(t), \]

which implies that

\[N(t) = \left(N(0) - \frac{A}{\mu} \right) e^{-\mu t} + \frac{A}{\mu} \]

for all \(t \geq 0 \), which ensures the boundedness of \(S, I \) and \(R \). Also,

\[\frac{dU(t)}{dt} \bigg|_{U(t)=U} \leq 0. \]

Hence, \(U \) is bounded as well and a positively invariant set of (1) is

\[\Omega = \left\{ (S, I, U, R) \in \mathbb{R}^4 : 0 \leq S + I + R \leq \frac{A}{\mu} \text{ and } 0 \leq U \leq \frac{\Gamma}{e} \right\}. \]

3.2. The basic influence number

It is easy to see that the system (1) has a rumor-free equilibrium \(E_0 \), given by

\[E_0 = \left(\frac{\Lambda}{\mu}, 0, \frac{\Gamma}{e}, 0 \right). \]

To discuss the dynamics of the model via an approach which has been proven highly successful in Mathematical Epidemiology and to rearrange the system (1) to fit the framework of the next generation method laid out in [28], let us first notice that \(I \) and \(R \) are “infected-like” compartments, while \(S \) and \(U \) are “noninfected-like” compartments.
Let us denote \(X = (I, R)^T, Y = (S, U)^T \) and \(\alpha = \tilde{a}k \). Then the system (1) can be rearranged as
\[
\begin{align*}
\frac{dX}{dt} &= F(X, Y) - V(X, Y), \\
\frac{dY}{dt} &= h(X, Y)
\end{align*}
\]
in which
\[
F(X, Y) = \begin{pmatrix} \theta_1 \alpha S f(U) & 0 \\ 0 & 0 \end{pmatrix}, \quad V(X, Y) = \begin{pmatrix} (g(U) + \mu)I \\ -(1 - \theta_1)\alpha S f(U) - g(U)I + \mu \end{pmatrix}.
\]

We thereby obtain that
\[
F = DF|_{E_0} = \begin{pmatrix} \theta_1 \alpha \frac{\Delta f(\frac{I}{\tau})}{\mu} & 0 \\ 0 & 0 \end{pmatrix}
\]
and
\[
V = DV|_{E_0} = \begin{pmatrix} g(\frac{E}{\tau}) + \mu & 0 \\ -(1 - \theta_1)\alpha \frac{\Delta f(\frac{E}{\tau})}{\mu} - g(\frac{E}{\tau}) & \mu \end{pmatrix}.
\]

Hence, a threshold parameter for the stability of the system (1), called \textit{ad hoc} the basic influence number of the system (1), is the spectral radius of matrix \(FV^{-1} \), given by
\[
R_0 = \frac{\theta_1\alpha \Lambda f(\frac{E}{\tau})}{\mu (g(\frac{E}{\tau}) + \mu)}.
\]

Remark 3.1. Note that, in the above fraction, the numerator is a non-increasing function of \(\Gamma \) due to (f.ii), while the denominator is an increasing function of \(\Gamma \), due to (g.ii). As a result, \(R_0 \) is a non-increasing function of \(\Gamma \), which leads to the conclusion that the higher the allotted budgeting rate for the rumor control mechanisms \(\Gamma \) is, the lower the average influence of a spreader in a totally susceptible population \(R_0 \) becomes.

3.3. The existence of a positive equilibrium

To investigate the possible existence of a positive (or rumor-prevailing) equilibrium \(E^* \),
\[
E^* = (S^*, I^*, U^*, R^*),
\]
let us first observe that the equilibrium relations take the form
\[
\begin{align*}
\Lambda - \mu S^* - \alpha S^* I^* f(U^*) &= 0, \\
\theta_1 \alpha S^* I^* f(U^*) - g(U^*) I^* - \mu I^* &= 0, \\
\Gamma^* - eU^* - \frac{\delta I^* U^*}{K + U^*} &= 0, \\
(1 - \theta_1)\alpha S^* I^* f(U^*) + g(U^*) I^* - \mu R^* &= 0.
\end{align*}
\]

By straightforward algebraic manipulations, one sees that
\[
\begin{align*}
S^* &= \frac{\Lambda}{\mu} - \frac{(g(U^*) + \mu)I^*}{\theta_1 \mu}, \\
I^* &= \frac{(\Gamma^* - eU^*)(K + U^*)}{\delta U^*}, \\
R^* &= \frac{(1 - \theta_1)\alpha S^* I^* + g(U^*) I^*}{\mu}.
\end{align*}
\]

Substituting the explicit formulas in terms of \(U^* \) given by (4) into the second equation of (3), one sees that
\[
\left(\frac{R_0 g(\frac{E}{\tau}) + \mu}{f(\frac{E}{\tau}) g(U^*) + \mu} - \frac{\alpha (\Gamma^* - eU^*)(K + U^*)}{\mu \delta U^*} \right) f(U^*) = 1.
\]

Let us define a continuous function \(\tau \) by
\[
\tau : (0, \infty) \rightarrow \mathbb{R}, \quad \tau(U) = \left(\frac{R_0 g(\frac{E}{\tau}) + \mu}{f(\frac{E}{\tau}) g(U) + \mu} - \frac{\alpha (\Gamma^* - eU)(K + U)}{\mu \delta U} \right) f(U).
\]
Since \(\lim_{t \to -\infty} \tau(U) = -\infty \) and \(\tau(U) = R_0 \), there is a solution \(U^* \) of (5), not necessarily unique, provided that \(R_0 > 1 \). This, in turn, leads to the existence of (at least) one rumor-prevailing equilibrium \(E^* \).

The uniqueness of \(U^* \) (or, equivalently, of the positive equilibrium \(E^* \)) depends on the concrete forms of \(f \) and \(g \) and may or may not hold for arbitrary functions. However, it is easy to note that \(\nu'(U) > 0 \) for \(U \in (0, \frac{1}{e}) \) ensures both the uniqueness of \(E^* \) when \(R_0 > 1 \) and its nonexistence when \(R_0 \leq 1 \).

3.4. The stability of the equilibria

Theorem 3.2. The rumor-free equilibrium \(E_0 = \left(\frac{a}{\mu}, 0, \frac{c}{e}, 0 \right) \) is locally asymptotically stable provided that \(R_0 < 1 \).

Proof. The Jacobian matrix of the system (1) at \(E_0 \) is

\[
J(E_0) = \begin{bmatrix}
-\mu & -\alpha \frac{e}{\mu} f(U^*) & 0 & 0 \\
0 & \theta_1 \alpha \frac{e}{\mu} f(U^*) & \mu & 0 \\
0 & -\frac{\delta}{e} & -e & 0 \\
0 & \left(1 - \theta_1\right) \alpha \frac{e}{\mu} f(U^*) + g(U^*) & 0 & -\mu \\
\end{bmatrix}
\]

We observe that \(J(E_0) \) has three negative eigenvalues \(\lambda_{1,2} = -\mu, \lambda_3 = -e \), the remaining eigenvalue \(\lambda_4 \) being given by

\[
\lambda_4 = \theta_1 \alpha \frac{e}{\mu} f(U^*) - g(U^*) - \mu = \left(g(U^*) + \mu \right) \left(R_0 - 1 \right).
\]

Since \(R_0 < 1 \), one sees that \(\lambda_4 < 0 \) and consequently \(E_0 \) is locally asymptotically stable. Note also that \(E_0 \) is unstable if \(R_0 > 1 \). This completes the proof. \(\square \)

Via similar computations, it is seen that the Jacobian matrix of the system (1) at \(E^* \) has a negative eigenvalue \(\lambda_1 = -\mu \), the other three eigenvalues being the roots of the equation

\[
\lambda + a_{11} \lambda^2 + a_{12} \lambda + a_{13} = 0,
\]

where

\[
a_{11} = a \mu f(U^*) + \mu, \quad a_{12} = \frac{g(U^*) + \mu}{\theta_1}, \quad a_{13} = \alpha S^* f'(U^*),
\]

\[
a_{21} = -\theta_1 a \mu f(U^*), \quad a_{23} = -\theta_1 a \mu S^* f'(U^*) - \mu g'(U^*),
\]

\[
a_{32} = \frac{\delta U^*}{K + U^*}, \quad a_{33} = e + \frac{\delta K^*}{(K + U^*)^2}.
\]

Note that

\[
a_{23} = -\theta_1 a \frac{g(U^*) + \mu}{\theta_1 a f(U^*)} f'(U^*) - \mu g'(U^*)
\]

\[
= - \frac{\mu}{f(U^*)} \left[g(U^*) f'(U^*) + g'(U^*) f(U^*) + \mu f'(U^*) \right]
\]

\[
= - \frac{\mu}{f(U^*)} (fg + \mu f') \bigg|_{U(U^*)}
\]

and consequently \(a_{23} \leq 0 \), by assumption (f,g,i). This implies that

\[
\lambda_1^3 + c_1 \lambda_1^2 + c_2 \lambda + c_3 = 0,
\]

where

\[
c_1 = a_{11} + a_{33} > 0,
\]

\[
c_2 = a_{11} a_{33} - a_{12} a_{21} - a_{23} a_{32} > 0,
\]

\[
c_3 = a_{13} a_{22} a_{32} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33} > 0.
\]

Applying the Routh–Hurwitz criterion, the remaining eigenvalues are negative or have negative real part if and only if

\[
c_1 c_2 > c_3.
\]

However, it is obvious that

\[
c_1 c_2 - c_3 = a_{11}^2 a_{33} + a_{12}^2 a_{33} - a_{11} a_{12} a_{21} - a_{23} a_{32} a_{33} - a_{13} a_{21} a_{32} > 0.
\]

Hence, one obtains the following result.
Theorem 3.3. If $R_0 > 1$, then the rumor-free equilibrium E_0 is unstable and there is at least one rumor-prevailing equilibrium $E^* = (S^*, I^*, U^*, R^*)$, which is necessarily locally asymptotically stable.

Remark 3.4. Note that, in some sense, assumption (f1) is not necessarily optimal, since it ensures that each of the three terms (the sign in front of them being included) involved in the expressions of c_2 and c_3 are positive, condition which is strictly stronger than their sum being positive. Consequently, E^* may be locally asymptotically stable even if (f1) is not satisfied.

Remark 3.5. From Theorems 3.2 and 3.3, it is seen that R_0 is indeed a threshold parameter as far as the stability of the model (1) is concerned, separating the extinction of the rumor from its prevailment. Let us denote $\lim_{x \to \infty} f(x) = f$. If $
abla \alpha \Lambda f > \mu (\bar{g} + \mu)$,

which happens, for instance, if the newcomers recruitment rate Λ or the percentage of newcomers who become spreaders θ_1 are too high, or if the maximal attitude adjustment rate \bar{g} is too low, or the maximal transmission attenuation rate f is still too high), then

$$R_0 \geq \frac{\theta_1 \alpha \Lambda f}{\mu (\bar{g} + \mu)} > 1,$$

which leads to the (perhaps unpleasant) conclusion that the rumor will persist regardless of the budget devoted to rumor control. However, it can also be seen that, in such a situation, efforts to improve any of the mechanisms (lowering f or increasing \bar{g}) can bring back R_0 below 1 and ensure the success of rumor control.

Also, at the opposite end of the spectrum, if

$$\theta_1 \alpha \Lambda < \mu^2$$

(which happens, for instance, when the newcomers are generally not inclined to become spreaders or the recruitment rate of newcomers is low), then

$$R_0 \leq \frac{\theta_1 \alpha \Lambda}{\mu^2} < 1,$$

and the rumor will disappear on its own, no budget for rumor control measures being necessary.

Remark 3.6. Let us think for the moment of R_0 as a function of Γ, $R_0 = R_0(\Gamma)$, and suppose that

$$\frac{\theta_1 \alpha \Lambda}{\mu (\bar{g}(0) + \mu)} > 1,$$

$$\frac{\theta_1 \alpha \Lambda f}{\mu (\bar{g} + \mu)} < 1,$$

that is,

$$\lim_{\Gamma \to 0} R_0(\Gamma) > 1,$$

$$\lim_{\Gamma \to \infty} R_0(\Gamma) < 1.$$
\(\{ F_0 \} \) contains all \(P \)-null sets. In the above, \(\sigma_i^2 \geq 0 \) represent the intensities of \(W_i, i = 1, 2, 3 \). If \(a, b \in \mathbb{R} \), we shall denote \(\max(a, b) \) by \(a \vee b \) and \(\min(a, b) \) by \(a \wedge b \), while a.s. will be used as a shorthand for almost surely. We shall denote the indicator function of a set \(S \) by \(I_S \). Also, for easier reference, we shall call \"(1)\" the model which is obtained from the initial deterministic model (1) by discarding the growth equation for stiflers.

Definition 4.1. Consider the \(n \)-dimensional stochastic differential equations

\[
du(t) = A(t, u)dt + B(t, u)dW(t), \quad \text{for } t \geq t_0.
\]

Let \(V(t, u) \in C^{1,2} \) be a nonnegative continuously differentiable function, once with respect to \(t \) and twice with respect to \(u \). Then the differential operator \(L \) for the function \(V(t, u) \) corresponding to the stochastic differential Eqs. (11) with drift and diffusion coefficients \(A(t, u) \) and \(B(t, u) \), respectively, is given by

\[
LV(t, u) = \frac{\partial V(t, u)}{\partial t} + A^T \frac{\partial V(t, u)}{\partial u} + \frac{1}{2} \text{trace} \left[B^T \frac{\partial^2 V(t, u)}{\partial u^2} B \right].
\]

4.1. Existence of a unique global solution

Denote

\[
\mathbb{R}^4_+ = \{(x_1, x_2, x_3)|x_i > 0, \ i = 1, 2, 3\}.
\]

We observe that the stochastically perturbed system (10) is mathematically (and socially) well-posed, as it has a unique global solution which is positivity-preserving.

Theorem 4.2. For any initial value \((S(0), I(0), U(0)) \in \mathbb{R}^4_+ \), there exists a unique global solution \((S(t), I(t), U(t)) \) of the system (10) for \(t \geq 0 \) that will remain in \(\mathbb{R}^4_+ \) with probability 1.

The proof of this Theorem can be found in Appendix. We can now further discuss the behavior of these solutions by investigating the dynamics of the stochastic model (10) around the equilibria of the corresponding deterministic, reduced model (1).3.

4.2. Asymptotic behavior around the rumor-free equilibrium of the deterministic model

As mentioned in the previous section, the deterministic system (1) has a rumor-free equilibrium \(E_0 = (S_0, 0, 0, 0) \), which is locally asymptotically stable provided that \(R_0 < 1 \). However, for the stochastic system (10), \(E_0 \) is no longer the rumor-free equilibrium, due to the stochastic perturbations, which implies that the solutions cannot converge to \(E_0 \). In this section, we shall investigate the asymptotic behavior of the stochastic system (10) around \(E_0' = (\frac{\Lambda}{\mu}, 0, 0, 0) \), the corresponding equilibrium of (1).3.

Theorem 4.3. If

\[
R_0 < \frac{2\mu^2}{(g + 2\mu)(g + \frac{L}{e}) + \mu} f' \left(\frac{\Gamma}{e} \right)
\]

and the following conditions hold

\[
\sigma_1^2 < \mu, \ \sigma_2^2 < 2\mu, \ \sigma_3^2 < e,
\]

then for any given initial value \((S(0), I(0), U(0)) \in \mathbb{R}^4_+ \), the unique global solution \((S(t), I(t), U(t)) \) of the system (10) satisfies

\[
\limsup_{t \to +\infty} \frac{1}{t} E \int_0^t \left[(S(s) - \frac{\Lambda}{\mu})^2 + I^2(s) + (U(s) - \frac{\Gamma}{e})^2 \right] ds \leq \frac{\theta_1^2 \sigma_1^2 (\frac{\Lambda}{\mu})^2 + c_2 \sigma_3^2 (\frac{\Gamma}{e})^2}{\kappa},
\]

in which

\[
\kappa = \min \{ \theta_1^2 (\mu - \sigma_1^2), \mu - \frac{1}{2} \sigma_2^2, c_2 (e - \sigma_3^2) \}
\]

and

\[
c_2 = -\frac{(g + 2\mu)(g + \frac{L}{e}) + \mu}{\alpha \delta f' \left(\frac{\Gamma}{e} \right) e} \left(R_0 - \frac{2\mu^2}{(g + 2\mu)(g + \frac{L}{e}) + \mu} f' \left(\frac{\Gamma}{e} \right) \right).
\]

The proof of this Theorem can be found in Appendix. As seen from Theorem 4.3, if the value of the basic reproduction number \(R_0 \) is not too high and the intensities of the stochastic perturbations \(\sigma_1^2, \sigma_2^2, \sigma_3^2 \) are low, then the solutions of the stochastic model (10) will oscillate around the rumor-free equilibrium of the deterministic model (1). That is, if the spreaders are not very convincing and the strength of the stochastic perturbations is limited, then the solutions of the stochastic model (10) will still be close enough to the rumor-free equilibrium, most of the time. Note that, strictly speaking, Theorem 4.3 does not require that \(R_0 < 1 \).
4.3. Asymptotic behavior around the rumor-prevailing equilibrium of the deterministic model

In this subsection, we assume that $R_0 > 1$, which implies that the deterministic system (1) has a (not necessarily unique) rumor-prevailing equilibrium $E^* = (S^*, I^*, U^*, R^*)$, which is locally asymptotically stable. However, E^* is not a rumor-prevailing equilibrium for the stochastic system (10) anymore, due to the stochastic perturbations. We shall then investigate the asymptotic behavior of the system (10) around E^*.

Theorem 4.4. If $R_0 > 1$ and the following conditions hold

- **(C1)** $\sigma_1^2 < \mu - \frac{1}{\sigma_1} \left[g(U^*) + c_3 \left(\Lambda + \alpha \left(1 - f(U^*) \right) \right) \right]$;
- **(C2)** $\sigma_2^2 < \mu - \left(1 + \theta_3 g(U^*) \right) - \left(\theta_1 S^* + I^* \right) \left(\bar{g} - g(U^*) \right) - c_3 g(U^*) - c_3 \theta_1 \alpha \left(1 - f(U^*) \right) - \delta U^*$;
- **(C3)** $\sigma_3^2 < e(1 + U^*) - \Gamma$,

then for any given initial value $(S(0), I(0), U(0)) \in \mathbb{R}_+^3$, the unique global solution $(S(t), I(t), U(t))$ of the system (10) satisfies

$$\lim_{t \to +\infty} \frac{1}{t} \int_0^t \left[(S(s) - S^*)^2 + (I(s) - I^*)^2 + (U(s) - U^*)^2 \right] ds \leq \frac{\Theta}{\rho},$$

in which

$$\Theta \triangleq \theta_3 g(U^*) (S^* + I^*) + 2g(U^*) I^* + \left(\theta_1 S^* + I^* \right) \left(\bar{g} - g(U^*) \right) \left(\frac{1}{2} + \bar{I}^* \right) + \left(\theta_1 \sigma_1^2 S^* + \theta_1 \sigma_2^2 I^* \right) + c_3 g(U^*) \left(\frac{1}{2} + \bar{I}^* \right) + c_3 \theta_1 \alpha \left(1 - f(U^*) \right) S^* + \frac{c_3 \theta_1 \alpha}{K + U^*} \left(1 + S^* + \frac{1}{2} \right),$$

$$\rho = \min \left\{ -\theta_1 \sigma_1^2 \mu + \theta_1 g(U^*) + \theta_1 \sigma_2^2 + c_3 \theta_1 \alpha \left(1 - f(U^*) \right) + c_3 \theta_1 \Lambda, -\mu + \left(1 + \theta_3 g(U^*) \right) + \left(\theta_1 S^* + I^* \right) \left(\bar{g} - g(U^*) \right) + c_3 g(U^*) + \frac{c_3 \theta_1 \alpha}{K + U^*} \left(1 - f(U^*) \right) + \delta U^* \right\}$$

and

$$c_3 = \frac{g(U^*) + 2\mu}{\alpha f(U^*)}.$$

The proof of this Theorem can be found in Appendix. In a similar vein to what was already observed above, Theorem 4.4 establishes that if the deterministic model (1)' has a rumor-prevailing equilibrium and the intensities of the stochastic perturbations $\sigma_1^2, \sigma_2^2, \sigma_3^2$ are low, then the solutions of the stochastic model (10) will oscillate around the rumor-prevailing equilibrium of the deterministic model (1)'. That is, if the strength of the stochastic perturbations is limited, then the solutions of the stochastic model (10) will still be close enough to the rumor-prevailing equilibrium, most of the time.

Remark 4.5. Conditions (C1)–(C3) have a theoretical value only, as they cannot be verified a priori (i.e., they explicitly depend upon the coordinates of the rumor-prevailing equilibrium, for which explicit expressions are not available). However, they take a somewhat simpler form if $f \equiv 1$ (the mechanisms for the inhibition of rumor spreading are not active).

5. Numerical simulations

In this section, we shall perform several numerical simulations in order to illustrate and enhance our modeling considerations as well as the abstract findings presented in the previous sections.

5.1. The simulation of deterministic rumor spreading process

For our numerical simulations, we employ a number of parameter values taken from the available literature and estimate several others, as shown in Table 1. 780624 780624

We first choose $f(U) = 0.5 (1 + e^{-\nu})$, $g(U) = \frac{U}{1 + U}$ and $\mu = 0.25$, so that $fg + \mu f$ is an increasing function, as shown in Fig. 2. Fig. 3 illustrates the bilinear dependence of the basic influence number R_0 upon the rate of flow into the newcomer class Λ and upon the average contact rate $\alpha = k\bar{a}$, the other parameters being fixed ($\Gamma = 1$ and $e = 0.5$).
Table 1
Parameters and their values.

Parameter	Value	Source
Λ	$2-6$	[19,29]
α	$10^{-5}-0.6$	[19,29,30]
μ	0.25	[19]
σ_1	0.2	[19]
$f(U)$	$0.5(1+e^{-U})$	estimated
$g(U)$	$0.2 \frac{U}{1+U}$	estimated
Γ	0.5-1.5	estimated
e	$10^{-5}-1$	estimated
δ	0.5	estimated
K	1	estimated

Fig. 2. The graph of $f(U)g(U) + \mu f(U)$.

Fig. 3. The basic influence number. $\Lambda \in [2, 6]$, $\alpha \in [0.05, 0.3]$, the values of the other parameters being given in Table 1.

As seen from the expression of R_0 given by (2), the parameters Λ, α, Γ and e play a vital role for rumor spreading analysis, and so do the explicit forms of f and g. In what follows, we establish the contributions of the variances of Λ, α, Γ
The first-order and total-effect Sobol sensitivities of the basic influence number R_0 with respect to input parameters (Λ, α, Γ, and ϵ). We use 4000 sample points, $\Lambda \in [2, 6]$, $\alpha \in [10^{-3}, 0.6]$, $\Gamma \in (0.5, 1.5]$ and $\epsilon \in [10^{-5}, 1]$, the values of the other parameters being given in Table 1.

For each input parameter, 100 sample points are randomly picked. Black circles represent random values of R_0, while red circles represent mean values of R_0. To this purpose, we use the Sobol method (Sobol [31], Dimitriu et al. [32]), which is a model-independent approach to performing global sensitivity analysis based on variance decomposition. By analyzing the first-order and the total-effect sensitivity indices, it is seen that the variance of α provides the main contribution to the variance of R_0.

Fig. 5 depicts mean values of the basic influence number R_0 for random values of parameters. Here, $f(u) = K_1(1 + e^{-u})$ and $g(u) = \frac{0.2u}{K_2^{1.6}}$. For each input parameter, 100 sample points are randomly picked. Black circles represent random values of R_0, while red circles represent mean values of R_0. For other randomly selected input and ϵ to the variance of R_0, as shown in Fig. 4. To this purpose, we use the Sobol method (Sobol [31], Dimitriu et al. [32]), which is a model-independent approach to performing global sensitivity analysis based on variance decomposition. By analyzing the first-order and the total-effect sensitivity indices, it is seen that the variance of α provides the main contribution to the variance of R_0.

Fig. 4. First-order and total-effect Sobol sensitivities of the basic influence number R_0 with respect to input parameters (Λ, α, Γ, and ϵ). We use 4000 sample points, $\Lambda \in [2, 6]$, $\alpha \in [10^{-3}, 0.6]$, $\Gamma \in (0.5, 1.5]$ and $\epsilon \in [10^{-5}, 1]$, the values of the other parameters being given in Table 1.

Fig. 5. Mean values of the basic influence number R_0 for random values of (a) $\Gamma \in (0.5, 1.5)$, (b) $\epsilon \in (0, 1)$, (c) $K_1 \in (0, 1)$ and (d) $K_2 \in (0.5, 1.5)$. Here, $f(u) = K_1(1 + e^{-u})$ and $g(u) = \frac{0.2u}{K_2^{1.6}}$. For each input parameter, 100 sample points are randomly picked. Black circles represent random values of R_0, while red circles represent mean values of R_0.

For other randomly selected input and ϵ to the variance of R_0, as shown in Fig. 4. To this purpose, we use the Sobol method (Sobol [31], Dimitriu et al. [32]), which is a model-independent approach to performing global sensitivity analysis based on variance decomposition. By analyzing the first-order and the total-effect sensitivity indices, it is seen that the variance of α provides the main contribution to the variance of R_0.

Fig. 5. Mean values of the basic influence number R_0 for random values of (a) $\Gamma \in (0.5, 1.5)$, (b) $\epsilon \in (0, 1)$, (c) $K_1 \in (0, 1)$ and (d) $K_2 \in (0.5, 1.5)$. Here, $f(u) = K_1(1 + e^{-u})$ and $g(u) = \frac{0.2u}{K_2^{1.6}}$. For each input parameter, 100 sample points are randomly picked. Black circles represent random values of R_0, while red circles represent mean values of R_0. For other randomly selected input and ϵ to the variance of R_0, as shown in Fig. 4. To this purpose, we use the Sobol method (Sobol [31], Dimitriu et al. [32]), which is a model-independent approach to performing global sensitivity analysis based on variance decomposition. By analyzing the first-order and the total-effect sensitivity indices, it is seen that the variance of α provides the main contribution to the variance of R_0.

For other randomly selected input and ϵ to the variance of R_0, as shown in Fig. 4. To this purpose, we use the Sobol method (Sobol [31], Dimitriu et al. [32]), which is a model-independent approach to performing global sensitivity analysis based on variance decomposition. By analyzing the first-order and the total-effect sensitivity indices, it is seen that the variance of α provides the main contribution to the variance of R_0.

For other randomly selected input and ϵ to the variance of R_0, as shown in Fig. 4. To this purpose, we use the Sobol method (Sobol [31], Dimitriu et al. [32]), which is a model-independent approach to performing global sensitivity analysis based on variance decomposition. By analyzing the first-order and the total-effect sensitivity indices, it is seen that the variance of α provides the main contribution to the variance of R_0.

For other randomly selected input and ϵ to the variance of R_0, as shown in Fig. 4. To this purpose, we use the Sobol method (Sobol [31], Dimitriu et al. [32]), which is a model-independent approach to performing global sensitivity analysis based on variance decomposition. By analyzing the first-order and the total-effect sensitivity indices, it is seen that the variance of α provides the main contribution to the variance of R_0.

For other randomly selected input and ϵ to the variance of R_0, as shown in Fig. 4. To this purpose, we use the Sobol method (Sobol [31], Dimitriu et al. [32]), which is a model-independent approach to performing global sensitivity analysis based on variance decomposition. By analyzing the first-order and the total-effect sensitivity indices, it is seen that the variance of α provides the main contribution to the variance of R_0.

For other randomly selected input and ϵ to the variance of R_0, as shown in Fig. 4. To this purpose, we use the Sobol method (Sobol [31], Dimitriu et al. [32]), which is a model-independent approach to performing global sensitivity analysis based on variance decomposition. By analyzing the first-order and the total-effect sensitivity indices, it is seen that the variance of α provides the main contribution to the variance of R_0.

For other randomly selected input and ϵ to the variance of R_0, as shown in Fig. 4. To this purpose, we use the Sobol method (Sobol [31], Dimitriu et al. [32]), which is a model-independent approach to performing global sensitivity analysis based on variance decomposition. By analyzing the first-order and the total-effect sensitivity indices, it is seen that the variance of α provides the main contribution to the variance of R_0.

For other randomly selected input and ϵ to the variance of R_0, as shown in Fig. 4. To this purpose, we use the Sobol method (Sobol [31], Dimitriu et al. [32]), which is a model-independent approach to performing global sensitivity analysis based on variance decomposition. By analyzing the first-order and the total-effect sensitivity indices, it is seen that the variance of α provides the main contribution to the variance of R_0.

For other randomly selected input and ϵ to the variance of R_0, as shown in Fig. 4. To this purpose, we use the Sobol method (Sobol [31], Dimitriu et al. [32]), which is a model-independent approach to performing global sensitivity analysis based on variance decomposition. By analyzing the first-order and the total-effect sensitivity indices, it is seen that the variance of α provides the main contribution to the variance of R_0.

For other randomly selected input and ϵ to the variance of R_0, as shown in Fig. 4. To this purpose, we use the Sobol method (Sobol [31], Dimitriu et al. [32]), which is a model-independent approach to performing global sensitivity analysis based on variance decomposition. By analyzing the first-order and the total-effect sensitivity indices, it is seen that the variance of α provides the main contribution to the variance of R_0.

For other randomly selected input and ϵ to the variance of R_0, as shown in Fig. 4. To this purpose, we use the Sobol method (Sobol [31], Dimitriu et al. [32]), which is a model-independent approach to performing global sensitivity analysis based on variance decomposition. By analyzing the first-order and the total-effect sensitivity indices, it is seen that the variance of α provides the main contribution to the variance of R_0.

For other randomly selected input and ϵ to the variance of R_0, as shown in Fig. 4. To this purpose, we use the Sobol method (Sobol [31], Dimitriu et al. [32]), which is a model-independent approach to performing global sensitivity analysis based on variance decomposition. By analyzing the first-order and the total-effect sensitivity indices, it is seen that the variance of α provides the main contribution to the variance of R_0.

For other randomly selected input and ϵ to the variance of R_0, as shown in Fig. 4. To this purpose, we use the Sobol method (Sobol [31], Dimitriu et al. [32]), which is a model-independent approach to performing global sensitivity analysis based on variance decomposition. By analyzing the first-order and the total-effect sensitivity indices, it is seen that the variance of α provides the main contribution to the variance of R_0.

For other randomly selected input and ϵ to the variance of R_0, as shown in Fig. 4. To this purpose, we use the Sobol method (Sobol [31], Dimitriu et al. [32]), which is a model-independent approach to performing global sensitivity analysis based on variance decomposition. By analyzing the first-order and the total-effect sensitivity indices, it is seen that the variance of α provides the main contribution to the variance of R_0.

For other randomly selected input and ϵ to the variance of R_0, as shown in Fig. 4. To this purpose, we use the Sobol method (Sobol [31], Dimitriu et al. [32]), which is a model-independent approach to performing global sensitivity analysis based on variance decomposition. By analyzing the first-order and the total-effect sensitivity indices, it is seen that the variance of α provides the main contribution to the variance of R_0.

For other randomly selected input and ϵ to the variance of R_0, as shown in Fig. 4. To this purpose, we use the Sobol method (Sobol [31], Dimitriu et al. [32]), which is a model-independent approach to performing global sensitivity analysis based on variance decomposition. By analyzing the first-order and the total-effect sensitivity indices, it is seen that the variance of α provides the main contribution to the variance of R_0.
parameters, the mean value of R_0 oscillates up and down around 1, as shown in Fig. 5(a), (b) and (d), illustrating the influences of Γ, e and K_2, respectively.

Fig. 6 illustrates the evolution of the total densities of newcomers, spreaders and of the inhibitor for the following parameter values: $(\Lambda, \alpha) = (3, 0.1)$, or $(3.5, 0.15)$, or $(4, 0.2)$, the other parameter values being given in Table 1. To illustrate the asymptotic behavior of the solutions of the stochastic system around the rumor-prevailing equilibrium, we choose $\sigma_1 = 0.1$, $\sigma_2 = 0.5$, $\sigma_3 = 0.6$, and note that $\sigma_1^2 = 0.04 < \mu = 0.25$, $\sigma_2^2 = 0.25 < 2\mu = 0.5$, $\sigma_3^2 = 0.36 < e = 0.5$, the hypotheses of Theorem 4.3 being satisfied.

Fig. 7 illustrates the evolution of the total densities of each group (newcomers, spreaders and inhibitors) in the stochastic rumor spreading model for different initial conditions. To illustrate the asymptotic behavior of the solutions of the stochastic system around the rumor-prevailing equilibrium of the deterministic model, we set $f(U) = 1$, $\Lambda = 2$, $\alpha = 10$, $\mu = 0.5$, $e = 1.2$, $\theta_1 = 0.5$, $\delta = 0.5$, $\Gamma' = 1$, $K = 1$ and $g(U) = \frac{0.1}{U + 1}$. For these values, it is seen that $R_0 = 36.67$. We also choose $\sigma_1 = 0.1$, $\sigma_2 = 0.2$ and $\sigma_3 = 0.4$, for which conditions (C1) – (C3) are satisfied. Fig. 13 illustrates the asymptotic dynamics of the total densities of three groups (newcomer, spreader and inhibitor) in the stochastic rumor spreading model for different initial conditions.
Fig. 7. The evolution of the newcomer population, of the spreader population and of the inhibitor for a high initial density of spreaders. Here, $S(0) = 20$, $I(0) = 10$, $U(0) = 1$, $\Lambda = 4$, $\alpha = 0.2$, the values of the other parameters being given in Table 1, which leads to $R_0 = 0.91$.

Fig. 8. The evolution of the newcomer population, of the spreader population and of the inhibitor for $\Lambda = 3$, $\alpha = 0.1$, which leads to $R_0 = 0.37$, and for several distinct initial conditions. The solutions converge to the rumor-free equilibrium, with coordinates $(12, 0, 2)$.

6. Conclusions

By extending the traditional DK rumor model to account for the effects of the attitude adjusting and spread inhibiting mechanisms depending upon governmental input, we propose deterministic and stochastic models, respectively, to discuss the control of rumor spreading on social networks. Although our starting deterministic model can be characterized as being an augmented SIR model, the use of a fourth variable, the inhibitor, which can be thought as being budget-related rather than having an epidemiological significance, transcends, in some sense, the epidemiological framework. Also, the
Fig. 9. The evolution of the newcomer population, of the spreader population and of the inhibitor for $\Lambda = 5.8$, $\alpha = 0.28$, which leads to $R_0 = 1.93$, and for several distinct initial conditions. The solutions converge to the (unique) rumor-prevailing equilibrium, with coordinates $(9.123, 2.012, 0.996)$.

Fig. 10. A numerical example illustrating the fact that a different value of $f(0)$ not satisfying the normalizing condition $f(0) = 1$ in the assumption (f.i) does not influence the local asymptotic stability of E_0 and E^*. Here, $f(U) = 0.3(1 + e^{-U})$, $S(0) = 1.5$, $I(0) = 0.3$, $U(0) = 0.2$ and $(\Lambda, \alpha) = (4, 0.2)$ (green, $R_0 = 0.5687$), $(\Lambda, \alpha) = (5.8, 0.28)$ (red, $R_0 = 1.1544$), the values of the other parameters being given in Table 1.

use of the possibly nonlinear attitude changing function g makes the coupling between the equations of the model slightly more involved. For those reasons, we have been unable to obtain global stability results.

First of all, we find an explicit expression for our threshold parameter, the basic influence number R_0, and then investigate the stability of rumor-free and rumor-prevailing equilibria, respectively, of the deterministic model, in terms of R_0, being also observed that R_0 is a non-increasing function of the budgeting rate Γ, that is, the higher the budgeting rate is, the lower the average influence of a spreader in a totally susceptible population becomes. Depending upon the interplay of the parameters of the model, it is observed that, in certain situations, the rumor will persist regardless of the budget allotted to rumor control, while in others the rumor will disappear by itself even without exterior intervention, no budget for rumor control measures being necessary. For all the other situations in-between, a sharp lower bound for the amount of funding Γ, necessary to make the rumor go away, is determined.

Second, to account for the effect of random external fluctuations, we augment our model by considering stochastic perturbation of white noise type. Here, the stability properties obtained in the deterministic case are replaced by
estimations in terms of expected values. It is proved that if the spreaders are not very convincing (R_0 is low enough) and the strength of the stochastic perturbations is limited, then the solutions of the stochastic model will still be close enough to the rumor-free equilibrium, most of the time.

It is also proved that if the deterministic model has at least one rumor-prevailing equilibrium ($R_0 > 1$) and, similarly to the above, the strength of the stochastic perturbations is limited, then the solutions of the stochastic model will still be close enough to this rumor-prevailing equilibrium, most of the time. However, a shortcoming of the necessary conditions in this case is that they are expressed in terms of the coordinates of the rumor-prevailing equilibrium, for which explicit expressions are not available (i.e., they cannot be verified a priori). Still, this is also not unexpected, since there can be multiple rumor-prevailing equilibria in this case, as condition $R_0 > 1$ does not ensure uniqueness, and it is then natural for a generic condition to depend somewhat on the equilibrium it refers to.
Increasing α to 10 and slightly decreasing noise intensities $\sigma_i (i = 1, 2, 3)$ while keeping all of other parameter values the same as for Fig. 11 leads to the persistence of both the newcomer population S and spreader population I for several distinct initial conditions.

In order to complement our analysis, numerical simulations are performed to illustrate and enhance our mathematical findings. To establish the contributions of the variances of the parameters to the variance of R_0, a Sobol sensitivity analysis has been performed. By analyzing the first-order and the total-effect sensitivity indices, it is seen that the variance of α, the “normalized” contact rate between newcomers and spreaders, provides the main contribution to the variance of R_0. Further, the evolution of the newcomer population, of the spreader population and of the inhibitor are depicted for both how and high initial densities of spreaders. This study does not consider the influence of the network structure on rumor spreading, which is left as a possible avenue of further research.

CRediT authorship contribution statement

Ming Li: Conceptualization, Writing - original draft, Data curation, Editing. **Hong Zhang:** Methodology, Writing - original draft, Visualization, Editing, Supervision, Funding acquisition. **Paul Georgescu:** Methodology, Writing - original draft, Editing, Supervision, Writing - revision. **Tan Li:** Conceptualization, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors are grateful to the referees for their careful reading and well-thought suggestions which helped us improve this paper significantly, in content as well as in its presentation. H. Zhang acknowledges the financial support of the Chinese Ministry of Education, of Humanities and Social Science Project 20YJA630088 and of the Qilin Project of Jiangsu Province. T. Li was supported by the Social Science Fund Project of Jiangsu Province (No. 17XZB007).

Appendix

Proof of Theorem 4.2. Since all functional coefficients of the model (10) satisfy local Lipschitz conditions, this system has a unique local solution on $[0, \tau_e)$, where τ_e is the explosion time. To show that this unique solution is global, we prove
that $\tau_e = +\infty$ a.s. In fact, choose $m_0 >$ large enough such that $S(0)$, $I(0)$, $U(0)$ all belong to $(\frac{1}{m_0}, m_0)$. For each integer $m \geq m_0$, we define the stopping time as follows

$$\tau_m = \inf\{t \in [0, \tau_e) : \min(S(t), I(t), U(t)) \leq \frac{1}{m_0} \text{ or } \max(S(t), I(t), U(t)) \geq m_0\}.$$

Clearly, τ_m is increasing as $m \to \infty$. Let $\tau_0 = \lim m_0= \tau_m$, where $\tau_0 \leq \tau_e$ a.s. To complete the proof, it suffices to show that $\tau_0 = +\infty$ a.s., which would imply that $\tau_e = +\infty$ a.s.

If this statement is false, then there exists a pair of constants $T > 0$ and $\nu \in (0, 1)$ such that $P(\{\tau_0 \leq T\} > \nu$. Consequently, there is a positive constant $m_1 \geq m_0$ such that $P(\{\tau_0 \leq T\} \geq \nu$ for any integer $m \geq m_1$. Denote $\phi : \mathbb{R}_+ \to \mathbb{R}_+$, $\phi(x) = x + 1 - \ln x$. Define also $V : \mathbb{R}_+ \to \mathbb{R}_+$ by

$$V(S, I, U) = \phi(S) + \phi(I) + \phi(U).$$

In what follows, we shall shorten $V(S(t), I(t), U(t))$ as $V(t)$. Applying Ito’s formula, we have

$$dV(t) = LVdt + (S(t) \sigma_1 dt + I(t) \sigma_2 dt + U(t) \sigma_3 dt,$$

where

$$LV = \left(1 - \frac{1}{S}\right)(\Lambda - \alpha Sf(U) - \mu S) + \left(1 - \frac{1}{I}\right)(\theta_1 \alpha (f(U) - g(U))(I - \mu I)$$

$$+ \left(1 - \frac{1}{U}\right)\left(I' - eU - \frac{\delta I}{K + U}\right) + \frac{1}{2}(\sigma_1^2 + \sigma_2^2 + \sigma_3^2).$$

Using (g.iii), this implies that

$$LV \leq \Lambda + \frac{I'}{s} + \frac{\sigma_1}{2} + \frac{\sigma_2}{2} + \frac{\sigma_3}{2} + \left(\alpha + \frac{\delta}{K}\right)I$$

$$\leq \Lambda + \frac{I'}{S} + \frac{2}{2} + \frac{1}{2}(\sigma_1^2 + \sigma_2^2 + \sigma_3^2)$$

$$+ 2\left(\alpha + \frac{\delta}{K}\right)(I + 1 - \ln I)$$

$$\leq k_1 + k_2V,$$

in which $k_1 = \Lambda + \frac{I'}{S} + \frac{1}{2} + \frac{1}{2}(\sigma_1^2 + \sigma_2^2 + \sigma_3^2)$ and $k_2 = 2(\alpha + \frac{\delta}{K})$. Hence,

$$dV \leq (k_1 + k_2 V)dt + (S-1)\sigma_1 dt + (I-1)\sigma_2 dt + (U-1)\sigma_3 dt.$$

Integrating this inequality from 0 to $\tau_m \wedge T$ and then taking expectation, we obtain

$$EV(\tau_m \wedge T) \leq V(0) + k_1(\tau_m \wedge T) + k_2 \int_0^{\tau_m \wedge T} EV(t)dt,$$

which implies by Gronwall’s inequality that

$$EV(\tau_m \wedge T) \leq (V(0) + k_1(\tau_m \wedge T))e^{k_2(\tau_m \wedge T)}.$$

Let $\Omega_m = \{\tau_m \leq T\}$ for all $m \geq m_1$, and then $P(\Omega_m) > \nu$. Note that for every $\omega \in \Omega_m$, one of $S(\tau_m, \omega)$, $I(\tau_m, \omega)$ or $U(\tau_m, \omega)$ equals either m or $\frac{1}{m}$. Then

$$V(S(\tau_m, \omega), I(\tau_m, \omega), U(\tau_m, \omega)) \geq \min(m + 1 - \ln m, \frac{1}{m} + 1 + \ln m).$$

Finally,

$$+\infty \geq (V(0) + k_1 m) e^{k_2 m} \geq E(V(\Omega_m) V\left(S(\tau_m, \omega), I(\tau_m, \omega), U(\tau_m, \omega)\right))$$

$$=P(\Omega_m) V\left(S(\tau_m, \omega), I(\tau_m, \omega), U(\tau_m, \omega)\right)$$

$$+\nu(\min(m + 1 - \ln m, \frac{1}{m} + 1 + \ln m)) \rightarrow +\infty (m \to \infty),$$

which leads to a contradiction. Then $\tau_0 = +\infty$ a.s., which implies that $\tau_e = +\infty$ a.s. This completes the proof. □

Proof of Theorem 4.3. Let define a functional V_1 by

$$V_1(S, I, U) = \frac{(\theta_1(S - \frac{\alpha}{m}) + I)^2}{2} + c_1 I + \frac{c_2(U - \frac{\gamma}{m})^2}{2}.$$

17
where c_1 and c_2 are positive constants that will be determined later. Applying Ito's formula, we obtain

$$dV_1(t) = LV_1 dt + \left(\theta_1(S - \frac{A}{\mu}) + I \right) (\theta_1 \sigma_1 S dW_1 + \sigma_2 I dW_2) + c_2 \sigma_2 U \left(U - \frac{\Gamma}{e} \right) dW_3,$$

in which

$$\begin{align*}
LV_1 &= \left(\theta_1(S - \frac{A}{\mu}) + I \right) [\theta_1(\Lambda - \alpha \text{Iff}(U) - \mu S) + \theta_1 \alpha \text{Iff}(U) - g(U)I - \mu I] \\
&+ c_1 [\theta_1 \alpha \text{Iff}(U) - g(U)I - \mu I] + c_2 \left(U - \frac{\Gamma}{e} \right) \left(e \left(\frac{\Gamma}{e} - U \right) - \frac{\delta U}{K + U} \right) \\
&+ \frac{1}{2} \left(\theta_1^2 \sigma_1^2 S^2 + \sigma_2^2 I^2 + c_2 \sigma_2^2 U^2 \right).
\end{align*}$$

Having in view that

$$\frac{1}{2} a^2 \leq (a - b)^2 + b^2, \quad \forall a, b \in \mathbb{R},$$

one obtains that

$$\begin{align*}
LV_1 &\leq \left(\theta_1(S - \frac{A}{\mu}) + I \right) \left[\theta_1 \mu \left(S - \left(g(U) + \mu \right) I \right) - \theta_1 (\Lambda - \alpha \text{Iff}(U) - \mu S) - \theta_1 \alpha \text{Iff}(U) + g(U)I + \mu I \right] \\
&+ c_1 \left[\theta_1 \alpha \text{Iff}(U) - g(U)I - \mu I \right] + c_2 \left(U - \frac{\Gamma}{e} \right) \left(e \left(\frac{\Gamma}{e} - U \right) - \frac{\delta U}{K + U} \right) \\
&+ \frac{1}{2} \sigma_1^2 \left(S - \frac{A}{\mu} \right)^2 + \frac{1}{2} \sigma_2^2 I^2 + c_2 \sigma_2^2 \left(U - \frac{\Gamma}{e} \right)^2.
\end{align*}$$

By rearranging the right-hand side, this leads to

$$\begin{align*}
LV_1 &\leq - \mu \theta_1^2 \left(S - \frac{A}{\mu} \right)^2 - \theta_1 (g(U) + \mu) S I + \theta_1 (g(U) + \mu) \frac{\Lambda}{\mu} I + \theta_1 \Lambda I - \theta_1 \mu S I \\
&- (g(U) + \mu)^2 + c_1 \left[\theta_1 \alpha \text{Iff}(U) - g(U)I - \mu I \right] - e c_2 (U - \frac{\Gamma}{e})^2 \\
&- c_2 (U - \frac{\Gamma}{e}) \frac{\delta U}{K + U} + \frac{1}{2} \sigma_1^2 \left(S - \frac{A}{\mu} \right)^2 + \frac{1}{2} \sigma_2^2 I^2 \\
&+ c_2 \sigma_2^2 \left(U - \frac{\Gamma}{e} \right)^2 \\
&= \left[- \mu \theta_1^2 \left(S - \frac{A}{\mu} \right)^2 - (g(U) + \mu)^2 + \frac{1}{2} \sigma_2^2 I^2 - c_2 (e - \sigma_2)(U - \frac{\Gamma}{e})^2 \\
&+ \theta_1^2 \sigma_1^2 \left(S - \frac{A}{\mu} \right)^2 + c_2 \sigma_2^2 \left(U - \frac{\Gamma}{e} \right)^2 + \left[- \theta_1 (g(U) + \mu) I - \theta_1 \Lambda I - c_1 (g(U) + \mu) I - \frac{\delta U}{K + U} \right] \frac{\delta U}{K + U} \right] \geq 0.
\end{align*}$$

Using (f.i), (f.ii), (g.i) and (g.iii), one sees that

$$\begin{align*}
LV_1 &\leq - \theta_1^2 \left(\mu - \sigma_1^2 \right) \left(S - \frac{A}{\mu} \right)^2 - (g(U) + \mu)^2 - \frac{1}{2} \sigma_2^2 I^2 - c_2 (e - \sigma_2)(U - \frac{\Gamma}{e})^2 \\
&+ \theta_1^2 \sigma_1^2 \left(S - \frac{A}{\mu} \right)^2 + c_2 \sigma_2^2 \left(\frac{\Gamma}{e} \right)^2 + \left[- \theta_1 (g(U) + \mu) I - \theta_1 \Lambda I - c_1 (g(U) + \mu) I - \frac{\delta U}{K + U} \right] \frac{\delta U}{K + U} \right] \geq 0.
\end{align*}$$
Now, let us choose $c_1 = \frac{2\mu}{\sigma} > 0$, so that

$$-2\theta_1\mu + c_1\theta_1\alpha = 0.$$

We observe that $R_0 < \frac{2\mu^2}{(g+2\mu)(|\theta|+\mu)} f\left(\frac{\Gamma}{e}\right)$ implies that

$$\theta_1(\hat{g} + \mu) \frac{A}{\mu} + \theta_1 A - c_1 \mu = \frac{(\hat{g} + 2\mu)(g\left(\frac{\Gamma}{e}\right) + \mu)}{\sigma f\left(\frac{\Gamma}{e}\right)} \left(R_0 - \frac{2\mu^2}{(g+2\mu)(g\left(\frac{\Gamma}{e}\right) + \mu)} f\left(\frac{\Gamma}{e}\right) \right) < 0.$$

We then choose c_2 so that

$$\theta_1(\hat{g} + \mu) \frac{A}{\mu} + \theta_1 A - c_1 \mu + c_2 \frac{\Gamma}{e} = 0,$$

which leads to

$$c_2 = -\frac{(\hat{g} + 2\mu)(g\left(\frac{\Gamma}{e}\right) + \mu)}{\sigma \delta f\left(\frac{\Gamma}{e}\right)(K + \frac{\Gamma}{e})} \left(R_0 - \frac{2\mu^2}{(g+2\mu)(g\left(\frac{\Gamma}{e}\right) + \mu)} f\left(\frac{\Gamma}{e}\right) \right) > 0.$$

Hence,

$$dV_1 \leq -\theta_1^2(\mu - \sigma_1^2)(S - \frac{A}{\mu})^2 - (g(U) + \mu - \frac{1}{2} \sigma_2^2)I^2 - c_2(e - \sigma_3^2)(U - \frac{\Gamma}{e})^2$$

$$+ \theta_1^2\sigma_2^2(\frac{A}{\mu})^2 + c_2\sigma_3^2\left(\frac{\Gamma}{e}\right)^2 + \left(\theta_1(S - \frac{A}{\mu}) + I \right) \left(\theta_1\sigma_1 S dW_1 + \sigma_2 S dW_2 \right)$$

$$+ c_1\sigma_2 dW_2 + c_2\sigma_3 U(U - \frac{\Gamma}{e}) dW_3.$$

Integrating both sides of (13) from 0 to t and then taking expectation we obtain

$$EV_1(t) \leq EV_1(0) + \left(\theta_1^2\sigma_2^2(\frac{A}{\mu})^2 + c_2\sigma_3^2(\frac{\Gamma}{e})^2 \right) t$$

$$+ E \int_0^t \left[-\theta_1^2(\mu - \sigma_1^2)(S(s) - \frac{A}{\mu})^2 - (g(U) + \mu - \frac{1}{2} \sigma_2^2)I^2(s) \right.$$

$$- c_2(e - \sigma_3^2)(U(s) - \frac{\Gamma}{e})^2 \left. \right] ds.$$

Therefore,

$$\limsup_{t \to +\infty} \frac{1}{t} E \int_0^t \left[\theta_1^2(\mu - \sigma_1^2)(S(s) - \frac{A}{\mu})^2 + (g(U) + \mu - \frac{1}{2} \sigma_2^2)I^2(s) \right.$$

$$+ c_2(e - \sigma_3^2)(U(s) - \frac{\Gamma}{e})^2 \left. \right] ds \leq \theta_1^2\sigma_2^2(\frac{A}{\mu})^2 + c_2\sigma_3^2\left(\frac{\Gamma}{e}\right)^2.$$

If

$$\kappa = \min\{ \theta_1^2(\mu - \sigma_1^2), \mu - \frac{1}{2} \sigma_2^2, c_2(e - \sigma_3^2) \},$$

then

$$\limsup_{t \to +\infty} \frac{1}{t} E \int_0^t \left[(S(s) - \frac{A}{\mu})^2 + I^2(s) + (U(s) - \frac{\Gamma}{e})^2 \right] ds \leq \frac{\theta_1^2\sigma_2^2(\frac{A}{\mu})^2 + c_2\sigma_3^2\left(\frac{\Gamma}{e}\right)^2}{\kappa}.$$

This completes the proof. □

Proof of Theorem 4.4. Let us define a functional V_2 by

$$V_2(S, I) = \frac{(\theta_1(S - S^*) + I - I^*)^2}{2}.$$

It follows from Ito’s formula that

$$dV_2(S(t), I(t)) = LV_2 dt + (\theta_1(S - S^*) + I - I^*)(\theta_1\sigma_1 S dW_1 + \sigma_2 S dW_2).$$

(15)
in which
\[
\mathbf{L}V_2 = (\theta_1(S - S^*) + l - l^*)(\theta_1(\Lambda - \alpha Sf(U) - \mu S) + \theta_1\alpha Sf(U) - g(U)) l - \mu l)
+ \frac{1}{2}(\theta^2_1 \sigma^2_1 S^2 + \sigma^2_2 l^2)
= (\theta_1(S - S^*) + l - l^*)(\theta_1(\Lambda - \mu S) - (g(U) + \mu) l)
+ \frac{1}{2}(\theta^2_1 \sigma^2_1 S^2 + \sigma^2_2 l^2)
\]

Since, by the first two equilibrium relations in (3),
\[
\theta_1 \Lambda = \theta_1 \mu S^* + g(U^*) l^* + \mu l^*,
\]
it is seen using also (12) that
\[
\mathbf{L}V_2 = (\theta_1(S - S^*) + l - l^*) \left(-\theta_1 \mu (S - S^*) - (g(U^*) + \mu)(l - l^*) + (g(U^*) - g(U)) l \right)
+ \frac{1}{2}(\theta^2_1 \sigma^2_1 S^2 + \sigma^2_2 l^2)
= -(\theta^2_1 \mu(S - S^*)^2 - (g(U^*) + \mu)(l - l^*)^2 - [\theta_1(g(U^*) + \mu) + \theta_1 \mu](S - S^*)(l - l^*)
+ (\theta_1(S - S^*) + l - l^*)(g(U^*) - g(U)) l + \frac{1}{2}(\theta^2_1 \sigma^2_1 S^2 + \sigma^2_2 l^2))
\]
\[
\leq -(\theta^2_1 \mu(S - S^*)^2 - (g(U^*) + \mu)(l - l^*)^2 - [\theta_1(g(U^*) + \mu) + \theta_1 \mu](S - S^*)(l - l^*)
+ \theta_1 S^* + l^*)(g(U^*) - g(U)) l + \frac{1}{2}(\theta^2_1 \sigma^2_1 S^2 + \sigma^2_2 l^2)).
\]

Since
\[
ab \leq (a - a_1)^2 + (b - b_1)^2 + a^2_1 + b^2_1, \quad \forall a, b, a_1, b_1 \in \mathbb{R},
\]
\[
a \leq \frac{1}{2} + (a - a_1)^2 + a^2_1, \quad \forall a, a_1 \in \mathbb{R},
\]
it is seen using also (12) that
\[
\mathbf{L}V_2 \leq -(\theta^2_1 \mu - \theta_1 g(U^*)) (S - S^*)^2
- \left(\mu_1 - \theta_1 g(U^*) - g(U^*) - (\theta_1 S^* + l^*) (\bar{g} - g(U^*)) \right)(l - l^*)^2
- \left[\theta_1(g(U^*) + \mu) + \theta_1 \mu(S - S^*)(l - l^*) + \theta_1 g(U^*)(S^2 + l^2) + 2g(U^*) l^2 \right] + \frac{1}{2}(\theta^2_1 \sigma^2_1 S^2 + \sigma^2_2 l^2)
\]
\[
\leq -(\theta^2_1 \mu - \theta_1 g(U^*)) (S - S^*)^2
- \left(\mu - \theta_1 g(U^*) - g(U^*) - (\theta_1 S^* + l^*) (\bar{g} - g(U^*)) - \sigma^2_2 \right)(l - l^*)^2
- \left[\theta_1(g(U^*) + \mu) + \theta_1 \mu(S - S^*)(l - l^*) + \theta_1 g(U^*)(S^2 + l^2) + 2g(U^*) l^2 \right] + \frac{1}{2}(\theta^2_1 \sigma^2_1 S^2 + \sigma^2_2 l^2)
\]
\[
\leq -(\theta^2_1 \mu - \theta_1 g(U^*)) (S - S^*)^2
- \left(\mu - \theta_1 g(U^*) - g(U^*) - (\theta_1 S^* + l^*) (\bar{g} - g(U^*)) - \sigma^2_2 \right)(l - l^*)^2
- \left[\theta_1(g(U^*) + \mu) + \theta_1 \mu(S - S^*)(l - l^*) + \theta_1 g(U^*)(S^2 + l^2) + 2g(U^*) l^2 \right] + \frac{1}{2}(\theta^2_1 \sigma^2_1 S^2 + \sigma^2_2 l^2).
\]

Denote also
\[
V_3(l) = c_3 \left(l - l^* - l^* \ln \frac{l^*}{l} \right),
\]
where c_3 is a positive constant whose value will be made precise later. It follows from the Ito’s formula that

$$dV_3(l(t)) = LV_3dt + c_3 \left(1 - \frac{l}{l^*}\right) \sigma_2ldW_2,$$

in which

$$LV_3 = c_3(l - l^*)\left(\theta_1\alpha Sf(U) - (g(U) + \mu)\right) + \frac{1}{2}c_3l^*\sigma_2^2.$$

Since, by the second equilibrium relation in (3), one has

$$\theta_1\alpha S^*f(U^*) - g(U^*) = \mu,$$

it follows that

$$LV_3 = c_3(l - l^*)\left(\theta_1\alpha S^*f(U^*) - (g(U) - g(U^*))\right) + \frac{1}{2}c_3l^*\sigma_2^2$$

$$= c_3(l - l^*)\left(\theta_1\alpha(S - S^*)f(U^*) - \theta_1\alpha S^*f(U^*) + \theta_1\alpha Sf(U) - (g(U) - g(U^*))\right)$$

$$+ \frac{1}{2}c_3l^*\sigma_2^2$$

$$= c_3\theta_1\alpha f(U^*)(S - S^*)(l - l^*) + \frac{1}{2}c_3l^*\sigma_2^2$$

$$+ c_3(l - l^*)\left(-\theta_1\alpha Sf(U^*) + \theta_1\alpha Sf(U) - (g(U) - g(U^*))\right).$$

Using again (g.ii) and (g.iii) along with (17) and (f.i), (f.ii), one has

$$LV_3 \leq c_3\theta_1\alpha f(U^*)(S - S^*)(l - l^*) + \frac{1}{2}c_3l^*\sigma_2^2$$

$$+ c_3g(U^*)\left(\frac{1}{2} + (l - l^*)^2 + l^2\right) + c_3(g - g(U^*))l$$

$$+ c_3\theta_1\alpha(1 - f(U^*))\left[(S - S^*)^2 + S^2 + (l - l^*)^2 + l^2\right] + c_3\theta_1S\frac{A - \mu S}{S^*}$$

$$\leq c_3\theta_1\alpha f(U^*)(S - S^*)(l - l^*) + \frac{1}{2}c_3l^*\sigma_2^2$$

$$+ c_3g(U^*)\left(\frac{1}{2} + (l - l^*)^2 + l^2\right) + c_3(g - g(U^*))l$$

$$+ c_3\theta_1\alpha(1 - f(U^*))\left[(S - S^*)^2 + S^2 + (l - l^*)^2 + l^2\right]$$

$$+ c_3\theta_1A\left[(S - S^*)^2 + S^2 + \frac{1}{25}S^2\right]$$

$$= c_3\theta_1\alpha f(U^*)(S - S^*)(l - l^*) + c_3g(U^*)\left(\frac{1}{2} + (l - l^*)^2 + l^2\right) + c_3(g - g(U^*))l$$

$$+ \left(c_3\theta_1\alpha(1 - f(U^*)) + c_3\theta_1A\right)(S - S^*)^2 + c_3\theta_1\alpha(1 - f(U^*)(l - l^*)^2$$

$$+ \frac{1}{2}c_3l^*\sigma_2^2 + c_3\theta_1\alpha(1 - f(U^*))S^2 + l^2$$

$$+ c_3\theta_1A\left[S^2 + \frac{1}{25}S^2\right].$$
Finally, let us denote
\[V_4(U) = \frac{(U - U^*)^2}{2}. \]

It follows from Ito's formula that
\[dV_4(U(t)) = LV_4 dt + (U - U^*)\sigma_3 UdW_3, \tag{22} \]
in which
\[LV_4 = (U - U^*) \left(I - eU - \frac{\delta I U}{K + U} \right) + \frac{1}{2} \sigma_3^2 U^2 \]
Having in view the third equilibrium relation in (3) and then using (12), it is seen that
\[LV_4 = (U - U^*) \left(-e(U - U^*) + \frac{\delta I^* U^*}{K + U^*} - \frac{\delta I U}{K + U} \right) + \frac{1}{2} \sigma_3^2 U^2 \]
\[\leq -e(U - U^*)^2 + (U - U^*) \left(\frac{\delta I^* U^*}{K + U^*} - \frac{\delta I U}{K + U} \right) + \frac{1}{2} \sigma_3^2 U^2 \]
\[\leq -e(U - U^*)^2 + \sigma_3^2 ((U - U^*)^2 + U^2) + \frac{\delta I^* U^*}{K + U^*} U + \delta U* I \]
Using now (17), this leads to
\[LV_4 \leq -e(U - U^*)^2 + \sigma_3^2 ((U - U^*)^2 + U^2) \]
\[+ \frac{\delta I^* U^*}{K + U^*} \left((U - U^*)^2 + U^2 + \frac{1}{2} \right) + \delta U^* \left((I^* - I^2) + \frac{1}{2} \right) \]
\[= \left[-e + \sigma_3^2 + \frac{\delta I^* U^*}{K + U^*} \right] (U - U^*)^2 + \delta U^* (I^* - I^2) \]
\[+ \sigma_3^2 U^2 + \frac{\delta I^* U^*}{K + U^*} \left(U^2 + \frac{1}{2} \right) + \delta U^* \left(I^2 + \frac{1}{2} \right). \tag{23} \]
Denote
\[V_5 = V_2 + V_3 + V_4, \]
that is
\[V_5 = \frac{\left(\theta_1 (S - S^*) + (S - I^*) \right)^2}{2} + c_3 \left(I - I^* - I^2 \ln \frac{I^*}{I} \right) + \frac{(U - U^*)^2}{2}. \tag{24} \]

By (18), (21) and (23), it is seen that
\[LV_5 \leq \left[-\theta_1^2 \mu + \theta_1 g(U^*) + \theta_2^2 \sigma_2 + c_3 \theta_1 \alpha \left(1 - f(U^*) \right) + c_3 \theta_1 A \right] (S - S^*)^2 \]
\[+ \left\{ -\mu + (1 + \theta_1) g(U^*) + (\theta_1 S^* + I^*) (\bar{g} - g(U^*)) + c_3 g(U^*) + \sigma_2^2 \right\} \left(I - I^* \right)^2 \]
\[+ c_3 \theta_1 \alpha \left[1 - f(U^*) \right] + \delta U^* \left\{ -e + \sigma_3^2 + \frac{\delta I^* U^*}{K + U^*} \right\} (U - U^*)^2 \]
\[\left\{ c_3 \theta_1 \alpha f(U^*) - \left[\theta_1 (g(U^*) + \mu) + \theta_1 \mu \right] \right\} (S - S^*) (I - I^*) \]
\[+ \theta_1 g(U^*) (S^2 + I^2) + 2g(U^*) I^2 + \left[(\theta_1 S^* + I^*) (\bar{g} - g(U^*)) \right] \left(\frac{1}{2} + I^2 \right) \]
\[+ \left(\theta_1^2 \sigma_1 S^2 + \sigma_2^2 I^2 \right) + c_5 g(U^*) \left(\frac{1}{2} + I^2 \right) + c_3 (\bar{g} - g(U^*)) I^* \]
\[+ \frac{1}{2} c_5 I^* \sigma_2^2 + c_3 \theta_1 \alpha \left(1 - f(U^*) \right) (S^2 + I^2) + c_3 \theta_1 A \left(S^2 + \frac{1}{25} \right) \]
\[+ \sigma_3^2 U^2 + \frac{\delta I^* U^*}{K + U^*} \left(U^2 + \frac{1}{2} \right) + \delta U^* \left(I^2 + \frac{1}{2} \right). \]
Let \(c_3 = g(U^*) + 2\mu \). Then

\[
LV_5 \leq \left[-\theta_1^2 \mu + \theta_1 g(U^*) + \theta_1^2 \sigma^2 + c_3 \theta_1 \alpha \left(1 - f(U^*) \right) + c_3 \theta_1 \lambda \left(S - S^* \right)^2 \right. \\
+ \left. \left\{ -\mu + (1 + \theta_1) g(U^*) + (\theta_1 S^* + (1 + I^*) \bar{g} - g(U^*)) + c_3 g(U^*) + \sigma^2 \right\} \left(I^* \right)^2 \right. \\
+ \left. \left(-e + \sigma^2 + \frac{\delta I^* U^*}{K + U^*} \right) (U - U^*)^2 \right. \\
+ \Theta.
\]

By (15), (19) and (22), it follows that

\[
dV_5 = LV_5 dt + \left\{ \theta_1 (S - S^*) + I - I^* \right\} (\theta_1 \sigma_1 S dW_1 + \sigma_2 I dW_2) \\
+ c_3 \left(1 - \frac{I^*}{I} \right) \sigma_2 I dW_2 + (U - U^*) \sigma_3 I dW_3.
\]

Now, by integrating (25) from 0 to \(t \) and taking expectations, one sees that

\[
\limsup_{t \to +\infty} \frac{1}{t} E \int_0^t \left[(S(s) - S^*)^2 + (I(s) - I^*)^2 + (U(s) - U^*)^2 \right] ds \leq \frac{\Theta}{\rho}.
\]

This completes the proof. \(\Box \)

References

[1] T. Shibutani, Improvised News: A Sociological Study of Rumor, The Bobbs-Merrill Company, Indianapolis, 1966.

[2] D. Daley, D. Kendall, Epidemics and rumours, Nature 204 (1964) 1118.

[3] D. Daley, D. Kendall, Stochastic rumours, IMA J. Appl. Math. 1 (1965) 42–55.

[4] D. Maki, M. Thompson, Mathematical Models and Applications, Prentice-Hall, New Jersey, Englewood Cliffs, 1973.

[5] D. Zanette, Dynamics of rumour propagation on small-world networks, Phys. Rev. E 65 (2002) 044908.

[6] Y. Moreno, M. Nekovee, A. Pacheco, Dynamics of rumor spreading in complex networks, Phys. Rev. E 64 (2001) 066310.

[7] S. Al-Tuwairqi, S. Al-Sheikh, R. Al-Amoudi, Qualitative analysis of a rumor transmission model with incubation mechanism, Open Access Libr. J. (2015) 1–12.

[8] L.L. Xia, G.P. Jiang, B.Song, Y.R. Song, Rumor spreading model considering hesitating mechanism in complex social networks, Physica A 437 (2015) 295–303.

[9] D. Li, J. Ma, How the government’s punishment and individual’s sensitivity affect the rumor spreading in online social networks, Physica A 469 (2017) 284–292.

[10] Y. Zhang, J. Xu, A rumor transmission model considering the cumulative effects of memory, Discrete Dyn. Nat. Soc. 2015 (2015) 204395.

[11] L. Zhu, Y. Wang, Rumor spreading model considering incubation effect, New J. Phys. 22 (2020) 013019.

[12] L. Zhu, Y. Wang, Rumor spreading model with noise interference in complex social networks, Physica A 469 (2017) 750–760.

[13] L. Zhu, J. Wang, Rumor spreading model with the different attitudes towards rumors, Physica A 502 (2018) 331–344.

[14] L. Zhu, Y. Wang, Rumor diffusion model with spatio-temporal diffusion and uncertainty of behavior decision in complex social networks, Physica A 502 (2018) 29–39.

[15] L. Zhu, D. Wang, Y. Song, Y.R. Song, Rumor spreading model considering hesitating mechanism in complex social networks, Physica A 469 (2017) 284–292.

[16] Y. Zan, DSR Double-rumors spreading model in complex networks, Chaos Solitons Fractals 110 (2018) 191–202.

[17] H. Horst, Dynamic systems of social interactions, J. Econ. Behav. Organ. 73 (2010) 158–170.

[18] D.M.J. Lazer, M.A. Baum, Y. Benkler, et al., The science of fake news, Science 359 (2018) 1094–1096.

[19] X. Wang, S. Tang, Z. Zheng, et al., Public discourse and social network echo chambers driven by socio-cognitive biases, 2020, arXiv:2002.03915.

[20] M. Bovet, H.A. Makse, Influence of fake news in Twitter during the 2016 US presidential election, Nat. Commun. 10 (2019) (2016) 1–14.

[21] L. Liu, X. Wang, Y. Zheng, et al., Homogeneity trend on social networks changes evolutionary advantage in competitive information diffusion, New J. Phys. 22 (2020) 013019.

[22] M. Del Vicario, A. Besi, F. Zollo, et al., The spreading of misinformation online, Proc. Natl. Acad. Sci. USA 113 (2016) 554–559.

[23] I.M. Sobol, Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1 (1993) 407–414.

[24] G. Dimitriu, V.I. Boiculese, M. Moscalu, et al., Global Sensitivity Approach for the Human Immunodeficiency Virus Pathogenesis with Cytotoxic T-Lymphocytes and Infected Cells in Eclipse Phase, in: E-Health and Bioengineering Conference, 2019, pp. 1–5.