CLIPPIERS With Exclusive Extra Pontine Involvement

Helder Picarelli, MD, Vitor Nagai Yamaki, MD, Yuri Reis Casal, MD, Marcelo Houat de Brito, MD, Luiz Guilherme Cernaglia Aureliano de Lima, MD, Aline Sgnolf Ayres, MD, and Marcos Castello Barbosa de Oliveira, MD

Neurol Neuroimmunol Neuroinflamm 2021;8:e989. doi:10.1212/NXI.0000000000000989

Case Report

A 39-year-old female patient, without medical history, presented symptoms of holocranial headache and vomiting for 2 months before a single tonic-clonic seizure. In the postictal period, she presented with left hemiparesis that completely resolved over a couple of weeks without medical therapy other than phenytoin. The neurologic examination was unremarkable after that.

Brain MRI revealed subcortical and periventricular white matter lesions in the right frontoparietal and insular lobes, with a perivascular punctate and curvilinear enhancement, with no restricted diffusion, associated with edema without significant mass effect (figure 1). MRI angiography, including vessel wall sequences, did not show vascular stenosis or signs of vasculitis. CSF analysis showed slightly elevated protein levels (49 mg/dL) and cytology with 5 white blood cells; there were no oligoclonal bands, and protein electrophoresis was normal. Infectious screening of CSF was negative for herpes simplex virus I/II, Cytomegalovirus, Adenovirus, Mycobacterium tuberculosis, Varicella zoster virus, human herpesvirus 6/7, and Enterovirus. In addition, neoplastic cells were not detected in CSF. The investigation was also negative for Treponema pallidum, HIV, and hepatitis B and C. The screening for systemic autoimmunity and neoplastic diseases, including FDG PET-CT, was unremarkable.

The patient underwent neuronavigation-guided open biopsy of a contrast-enhancing region in the inferior frontal gyrus. Samples were sent for neuropathologic analysis and flow cytometry. Immunophenotyping was negative for abnormal hematologic cells. The neuropathologic study revealed leptomeningeal and perivascular inflammation with parenchymal infiltration consisting of CD4 reactive T lymphocytes and occasional CD8-, C20-, and CD86-positive lymphocytes (figures e-1 and e-2, links.lww.com/NXI/A463 and links.lww.com/NXI/A464, respectively). There were no lesions on vessel walls and no granulomas, malignant cells, or myelin loss. The patient was treated with oral prednisone (60 mg/d) for 6 weeks, followed by a taper. She remained asymptomatic during treatment. Posttreatment MRI revealed resolution of the gadolinium-enhancing lesions (figure e-3, links.lww.com/NXI/A465).

Discussion

The original description of CLIPPIERS emphasizes the involvement of the pons,¹ and the most recent set of criteria² require pontocerebellar involvement. However, more than half of patients with CLIPPIERS have supratentorial involvement with imaging patterns similar to those seen in the
brainstem, as shown by the largest cohort to date. In addition, in another study where autopsy and high-field 7T MRI were performed in patients with CLIPPERS, the authors suggest that there may be a more widespread perivascular inflammation, with a demonstration of supratentorial involvement that was not detected on 3T MRI. Although 3 similar cases have previously been reported presenting as an exclusively supratentorial inflammatory disorder with curvilinear enhancement on MRI responsiveness to steroids, and perivascular T lymphocyte infiltrate on biopsy; they were published in abstract form with no images available on the brain MRI or neuropathology. The disorder described was remarkably similar to CLIPPERS, with the exception that there was no pontocerebellar involvement. The authors suggested that these cases were a CLIPPERS variant and proposed to name it “supratentorial lymphocytic inflammation with parenchymal perivascular enhancement responsive to steroids (SLIPPERS).”

Our patient, similarly to the SLIPPERS cases reported, had a chronic perivascular lymphocytic inflammatory disorder that was remarkably responsive to steroids but lacked the pontocerebellar involvement to fulfill the CLIPPERS criteria. Histopathology ruled out lymphoproliferative disorders and vasculitis, which are commonly described as CLIPPERS mimics. Although not tested for antiglial fibrillary acidic protein (GFAP) antibodies, the clinical presentation, CSF profile, histopathology in our case was not typical of the recently described autoimmune GFAP astrocytopathy.

CLIPPERS is currently regarded as a syndrome, and evidence is not robust enough to consider it a distinctive disease. Hypotheses that have been contemplated include that (1) it is prestage or unusual presentation of well-determined diseases such as autoimmune gliopathies or vasculitis; (2) it is a prelymphoma state that could progress to lymphoma (i.e., primary CNS lymphoma); or (3) it is a manifestation of a disease still not fully understood. In keeping with this rationale, it is conceivable that SLIPPERS may have physiopathologic mechanisms akin to that of CLIPPERS and may represent another end of a spectrum of disorders with perivascular enhancement and responsiveness to steroids.

The pathogenesis of CLIPPERS and its predisposition for the pontine region remain unknown. Our description of the hemispheric pattern of involvement of a CLIPPERS-like disease suggests an autoimmune etiology. Long-term follow-up is necessary to exclude malignant transformation and to reach consistent conclusions. Despite that, we strongly believe that this description, and those previously named as SLIPPERS, supports the idea that all of them are a CLIPPERS-variant presentation with isolated supratentorial involvement. Therefore, we suggest the acronym extra pontine CLIPPERS, to stress the similarities between them, until more comprehensive understanding of this disorder is reached.

Study Funding
No targeted funding reported.

Disclosure
The authors report no competing interests. Go to Neurology.org/NN for full disclosures.

Publication History
Received by *Neurology: Neuroimmunology & Neuroinflammation* December 22, 2020. Accepted in final form January 20, 2021.
References

1. Pittock SJ, Debruyne J, Krecke KN, et al. Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). Brain 2010;133:2626–2634.

2. Tobin WO, Guo Y, Krecke KN, et al. Diagnostic criteria for chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). Brain 2017;140:2415–2425.

3. Taieb G, Mulero P, Pumaras D, et al. CLIPPERS and its mimics: evaluation of new criteria for the diagnosis of CLIPPERS. J Neurol Neurosurg Psychiatry 2019;90:1027–1038.

4. Blaabjerg M, Ruprecht K, Sinnecker T, et al. Widespread inflammation in CLIPPERS syndrome indicated by autopsy and ultra-high-field 7T MRI. Neurol Neuroimmunol Neuroinflammation 2016;3:1–9.

5. Armand C, Graber J, Lado F, LaSala P, Weidenheim K. SLIPPERS: supratentorial lymphocytic inflammation with parenchymal perivascular enhancement responsive to steroids, a case report. J Neurol Neurosurg Psychiatry 2019;90:1027–1038.

6. Blaabjerg M, Ruprecht K, Sinnecker T, et al. Widespread inflammation in CLIPPERS syndrome indicated by autopsy and ultra-high-field 7T MRI. Neurol Neuroimmunol Neuroinflammation 2016;3:1–9.

7. Kirsch A, Zekiriou A, McKeon A. Autoimmune glial fibrillary acidic protein astrocytopathy. Curr Opin Neurol 2019;32:452–458.

Appendix Authors

Name	Location	Contribution
Heider Picarelli, MD	Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo SP, Brazil	Drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data; study concept or design; and analysis or interpretation of data
Vitor Nagai Yamaki, MD	Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas	Drafting/revision of the manuscript for content, including medical writing for content, and study concept or design
Yuri Reis Casal, MD	Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas	Drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data; and analysis or interpretation of data
Marcelo Houat de Brito, MD	Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo SP, Brazil	Drafting/revision of the manuscript for content, including medical writing for content; study concept or design; and analysis or interpretation of data
Luiz Guilherme Cernaglia Aureliano de Lima, MD	Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo SP, Brazil	Drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data; and analysis or interpretation of data

Appendix (continued)

Name	Location	Contribution
Aline Sgnolf Ayres, MD	Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo SP, Brazil	Drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data; and analysis or interpretation of data
Marcos Castello Barbosa de Oliveira, MD	Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo SP, Brazil	Drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data; study concept or design; and analysis or interpretation of data

References

1. Pittock SJ, Debruyne J, Krecke KN, et al. Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). Brain 2010;133:2626–2634.

2. Tobin WO, Guo Y, Krecke KN, et al. Diagnostic criteria for chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). Brain 2017;140:2415–2425.

3. Taieb G, Mulero P, Pumaras D, et al. CLIPPERS and its mimics: evaluation of new criteria for the diagnosis of CLIPPERS. J Neurol Neurosurg Psychiatry 2019;90:1027–1038.

4. Blaabjerg M, Ruprecht K, Sinnecker T, et al. Widespread inflammation in CLIPPERS syndrome indicated by autopsy and ultra-high-field 7T MRI. Neurol Neuroimmunol Neuroinflammation 2016;3:1–9.

5. Armand C, Graber J, Lado F, LaSala P, Weidenheim K. SLIPPERS: supratentorial lymphocytic inflammation with parenchymal perivascular enhancement responsive to steroids, a case report. J Neurol Neurosurg Psychiatry 2019;90:1027–1038.

6. Blaabjerg M, Ruprecht K, Sinnecker T, et al. Widespread inflammation in CLIPPERS syndrome indicated by autopsy and ultra-high-field 7T MRI. Neurol Neuroimmunol Neuroinflammation 2016;3:1–9.

7. Kirsch A, Zekiriou A, McKeon A. Autoimmune glial fibrillary acidic protein astrocytopathy. Curr Opin Neurol 2019;32:452–458.