Proteomic Responses of the Cyanobacterium *Nostoc Muscorum* under Salt and Osmotic Stresses

D. Gupta1, K. Bhardwaj2, R. Gothalwal1, S. Bhargava2*

1Department of Biotechnology and Bioinformatics Centre, Barkatullah University, Bhopal 462026 M.P.
2Division of Microbiology, Department of Botany, Government Motilal Science College, Bhopal 462008 M.P.

Email: santoshbhargava@hotmail.com

Abstract. In this paper, we examined the effect of salt stress (NaCl) and osmotic stress (sucrose) on proteomic level in the diazotrophic cyanobacterium *Nostoc muscorum*. The aim of this study is to compare proteins appeared in control vs. salt treated, control vs. sucrose treated and salt treated vs. sucrose treated cultures. In the salt treated cultures about 37 proteins were expressed differentially out of these only 5 proteins have shown fold regulation of 1.5 or more. About 141 proteins were found to express independently in control and about 554 proteins were express independently in salt treated culture. When we compared proteins in control and sucrose treated cells, it was reported that about 37 protein spots were express differentially, out of these only 7 proteins have fold regulation 1.5 or more. The independently expressed proteins appeared on gel are 141 and 186 respectively. Similarly, when we compared proteins appeared in salt and sucrose treated cells, it was reported that about 54 proteins were express differentially, out of these 10 proteins have fold regulation 1.5 or more. About 537 protein spots were independently present in salt treated cells and about 186 proteins were independently present in sucrose treated cells. In addition, the differentially expressed proteins and their identification with their functional group have also been discussed.

Key words: *Nostoc muscorum*, osmotic stress, proteomic, salt stress

1 Introduction

Cyanobacteria are Gram negative eubacteria, their evolutionary history dated back to 2.7 billion years ago [1]. The origin of cyanobacteria and the evolution of oxygenic photosynthesis have been considered as the most important event in the evolution of aerobic atmosphere. Cyanobacteria are known to be found in almost all the ecological niches with diverse environmental conditions. The native cyanobacterial species present in such habitats confronted with cation toxicity and water loss. The microorganisms, including cyanobacteria that grow and multiply in such stressful habitats have ability to change their morphological and physiological parameters to cope up with such stressful conditions [2]. The ionic component of the stress factor is usually overcome by the efflux mechanism driven by Na+/H+ antiporter activity or by the Mrp system [3,4,2]. On the other hand the osmotic component of the stress factor is overcome by the synthesis/accumulation of low molecular weight organic compounds collectively known as compatible solutes [5,6].

The nature and the biosynthesis of compatible solutes depend upon the habitat in which cyanobacteria grow. The fresh water cyanobacterial strains are known to synthesized sucrose, trehalose and proline as an osmotic balancer [7,2,8]. Glucosyl-glycerol is a major compatible solute synthesized by moderately halotolerant strains [9,10]. On the other hand hyper saline strains produce glycine-betaine or glutamate-betaine as compatible solutes [11,12].

The modern molecular biology techniques such as genomics and proteomics have provided valuable databases for the better understanding of many physiological and biochemical processes including cyanobacterial adaptation to salt and osmotic stresses. It is known that during such stresses cellular proteins either denatured or inactivated followed by altering other metabolic activities. During such stresses molecular chaperones play a vital role in maintaining cellular homeostasis [13,14,15,16]. The initial signal of environmental changes perceived by cell surface and ultimately transferred this signal to the cells. In the cyanobacterium *Anabaena* sp PCC 7120 it has been reported that about 18 cell surface associated proteins were over-expressed under stress conditions. These over-expressed proteins have
involved in nucleic acid binding, protein synthesis, proteolytic activity, electron transfer and other proteins [17].

Salinity and osmotic stresses triggered distinct protein synthesis in the Anabaena species [18]. In this strain synthesis of several proteins was repressed by salinity stress. Similarly, some proteins were induced only under salinity stress. However, there are certain proteins which were induced by both salinity and osmotic stresses. In addition, salinity and osmotic stress have been known to induce some independently expressed proteins. In cyanobacteria, gene expression under salt and osmotic stresses, has been studied by Kanesaki, et al. [19]. Their findings indicate that about 28 genes were expressed only under salt stress condition, while those of 11 genes were expressed only in response to osmotic stress. In addition, 34 genes are expressed both under salinity and osmotic stresses. The products of some of these genes are hypothetical proteins whose functions have not been characterized so far.

In this study protein profile of the cyanobacterium Nostoc muscorum under salinity (NaCl) and osmotic (sucrose) stress was compared in terms of commonly and differentially expressed proteins (control vs. treated and salt vs. sucrose).

2 Materials and Methods

2.1 Organism and Growth Conditions

The cyanobacterium is Nostoc muscorum, used in the present study is fresh water, filamentous and diazotrophic cyanobacteria that is capable of oxygenic photosynthesis. This species was grown in modified Chu No. 10 medium [20] for routine as well as for experimental purposes. The cultures were routinely grown in 250 ml Erlenmeyer’s flask containing 100 ml of liquid medium and incubated in a culture room set at a temperature of 24± 1°C and illuminated for 16 hrs per day with cool daylight fluorescent tubes (intensity approximately 10 - 50W/m²). The culture medium was maintained at pH 7.5 with the help of 10mM HEPES-NaOH.

The survival studies revealed that NaCl, at the concentration of 100mM was found lethal to the cyanobacterium N. muscorum. The osmotic stress was generated by the sucrose. Sucrose at the concentration of 250mM was found lethal to the N. muscorum. The diazotrophically grown cultures were exposed to the lethal doses of NaCl and sucrose for 12 hrs and then inoculated into fresh diazotrophic growth medium for further use.

2.2 Total Protein Extraction

Exponentially grown cultures of the cyanobacterium were harvested by centrifugation (Remi C-24BL, India) and the cell suspension was washed thrice with culture medium. The cell pellets thus obtained were weighted and then mixed in five times their volume of extraction buffer (B1). Then the mixture was grind with mortar pestle in liquid nitrogen three times followed by Sonication (Sonic Vibra-cell, USA) 10 times (70% intensity) for 20s each with an ice bath, with 40s cooling breaks. The homogenate was centrifuged for 45 min at 16000 g at 4°C [21]. The supernatant thus obtained designated as total soluble protein fractions. The precipitation of protein was done with the help of trichloroacetic acid (TCA). Protein quantification of the extracted protein was carried out with the help of standard curve (BSA).

2.3 TCA Precipitation

The TCA precipitated protein was free of various non-protein contaminants which can interfere with isoelectric focusing and electrophoresis, such as lipids and salts. Extracted impure protein was precipitated by a mixture of TCA and chilled acetone in the ratio of 1:1:8 (impure protein: TCA: Acetone) for more than 2 hours. Precipitated proteins were washed thrice, first wash with 70% chilled acetone containing 0.07% DTT and the rest of the two wash with 70% chilled acetone only [22].
2.4 2-Dimensional Gel Electrophoresis (2DE)

Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) (O’Farrell, 1975) is the method in which protein molecules are separated according to the charge (pI) by isoelectric focusing (IEF) in the first dimension and according to the size (Mw) by SDS-PAGE in the second dimension. 2-DE has a unique capacity for the resolution of complex mixtures of proteins, permitting the simultaneous analysis of hundreds or even thousands of gene products.

The protein sample was solubilized in appropriate amount of rehydration buffer and rehydration of immobilized pH gradient dry strip gel, IEF, equilibrium of IPG strip for proper protein transfer and SDS-PAGE were performed as described previously by Gupta et al [23].

2.5 Image Scanning and Image Acquisition

Gel imaging was performed on an Image Scanner III (GE Healthcare Bio-Sciences Ltd, India) and the image was saved in .tif (dot tif) and .mel (dot mel) format. Image acquisition was done using Image Master 2D Platinum 7 (IMP7, GE Healthcare, Freiburg, Germany) software. Protein spots of the gel were further analyzed using images of 2DE followed by calculation by Image Master 2D Platinum version 7.0 (GE Healthcare) software. The theoretical pI and molecular weight of overall functional annotation of the data were received by Expasy (http://web.expasy.org/compute_pi/Mw).

On the basis of their function these proteins are grouped into nine classes viz. (i) hypothetical, (ii) cellular processes, (iii) amino acid biosynthesis, (iv) photosynthesis and respiration, (v) energy metabolism, (vi) biosynthesis of cofactors, prosthetic groups, and carriers, (vii) cell envelope, (viii) central intermediary metabolism, (ix) fatty acid, phospholipid and sterol metabolism (http://www.kazusa.or.jp/cyano/Anabaena/index.html).

3 Results and Discussion

In this study proteomics of the cyanobacterium N. muscorum under salt and osmotic stresses have been analyzed. This analysis has paved the way to compare protein spots in terms of differentially expressed and independently expresses proteins. The protein spots and multiple protein spots that showed fold regulation 1.5 or more [24] were further categorized into various functional groups and their role in salt and osmotic stresses. The 2-DE images showed that most of the protein spots were detected in a pH range of 4-7 and their molecular mass lies in the range of 10-90kDa.

3.1 2D Analysis of Proteins under Salt Stress

The protein spots appearing in control as well as in its salt treated cells were compared, as shown in table-1 about 37 proteins were expressed differentially. Out of these only 5 protein spots have showed fold regulation of 1.5 or more. The differentially expressed proteins and their identifications on the basis of their functional group are summarized in table-2. The spots which are marked by sign + in the Fig. 1 (G & H) are independently present in control (141 spots) and salt treated cells (554 spots). Out of these protein spots, some proteins were found to occur in two or more spots. These multiple spots have similar molecular masses, but different pI values. The variation in pI value reflects post translation modification in the concerned protein molecule. On the contrary, some multiple spots of the same protein showed difference in their molecular masses. The various functional categories of differentially expressed proteins are discussed below:
3.1.1 Biosynthesis of Cofactors, Prosthetic Groups, and Carriers

Protein spot differentially expressed under this category was identified as 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate synthase. This protein synthesized from 2-oxoglutarate and isochorismate in menaquinone biosynthesis (menD). In prokaryotes, menaquinone is an important component of the electron transport system [25]. As reported previously various genes involved in menaquinone biosynthesis help in maintaining balance between the two photosystems to work in a coordinate manner [26,27].

3.1.2 Cellular Processes

In cyanobacteria the function of the two component regulatory systems which consists of sensors and transducers of various abiotic stresses depends upon the degree of super-coiling of the genomic DNA [28]. This mechanism regulates transcription of stress induced genes for successful acclimatization of cells under stress conditions. In this study, differentially expressed protein Hsp70 identified as chaperones protein DnaK3. The role of molecular chaperones in maintaining protein conformational homeostasis is the key factor to the stress adaptability of cyanobacteria [29]. DnaK3 is a thylakoid membrane located protein and may be involved in protein folding in thylakoid [30]. Similar protein has also been induced under salt and osmotic stress in the unicellular cyanobacterium Synechocystis sp PCC 6803 [31], and also in the filamentous cyanobacteria Anabaena sp PCC 7120 [32].

3.1.3 Energy Metabolism

In Synechocystis sp PCC 6803, the operation of photorespiration has been reported by Bauwe, et al, [33]. They reported the existence of glycolate metabolism and glycerate pathway in the examined cyanobacterium. Like unicellular cyanobacteria glycolate metabolism has also been reported in filamentous cyanobacteria i.e. Anabaena sp. under salt stress [34,35]. In the present analysis similar to the S-layer RTX-protein found to express differentially, this involved in glycolate pathway. The study of Srivastava et al. [35] has pointed out the role of a glycolate oxidase gene (all0170) in salt acclimation. Therefore, it is suggested that genes involved in the glycolate pathway up regulated during salt shock. In addition, some cell surface-associated proteins (S-layer) also assembled into macromolecule structures that play an important role in cell physiology [17].

3.1.4 Unknown and Hypothetical

Phycobilisomes are the major light harvesting complexes of cyanobacteria. They are associated with photosystem II and constitute up to 50% of the total cellular proteins. Phycobilisomes are multiprotein assemblies and under diazotrophic growth, various genes involved in phycobilisome proteins are over expressed [36]. In consistence with the above findings, it was found that orf viz. abr0021 which is annotated as allophycocyanin alpha subunit was over expressed under salt stress.
Another hypothetical protein identified as endodeoxyribonuclease RuvC over expressed under salt stress. This protein involved in DNA replication, DNA repair and endonuclease binding protein. Similar proteins were also reported to over express under heat shock stress in the cyanobacterium *Synechocystis* sp PCC 6803 [37]. In the filamentous cyanobacterium *Anabaena* sp. strain PCC7120, cell surface-associated proteins were also reported to involve in nucleic acid binding under stress conditions [17].

In addition to the above mentioned differentially expressed protein, there are a large number of proteins that were identified in the control as well as in salt treated cells, which were expressed independently. This observation suggested that salt stress caused over expression of certain genes and simultaneous repression of certain genes. This metabolic plasticity in terms of up regulation and down regulation of genes helps in surviving cells under the given stresses.

3.2 2D Analysis of Proteins under Sucrose Stress

The protein spots in control and its sucrose treated cells were compared, and it was reported that about 37 proteins were expressed differentially as shown in table-3. Out of these only 7 protein spots have fold regulation 1.5 or more. The differentially expressed proteins and their identifications with their functional group are summarized in table-4. The spots which are marked by sign + are independently present in control (141 spots) and sucrose treated cells (186 spots) Fig.2 (I and J). The various categories of differentially expressed proteins are given below:

![Image](image.jpg)

Figure 2. I and J. Protein composition of total soluble protein fractionation from *N. muscorum*. Cells were grown under control (I) and sucrose condition (J. 250mM sucrose); proteins were separated using 2D-PAGE and stained with Coomassie brilliant blue (CBB). Spot No: 0-36 (37 spots) are present in both control (I) and also in sucrose (J), but are differentially expressed. Other spots: marking by (+) are independently present in both.

3.2.1 Cell Envelope

In this group penicillin binding protein, which is involved in the synthesis of the peptidoglycan layer of the cell wall has been differentially expressed. Since the sucrose stress was given to diazotropically grown culture, therefore it is suggested that over expression of penicillin binding protein is essential for the formation of the peptidoglycan layer. Similar role of penicillin binding protein has also been elucidated by Lazaro *et al.* [38] in the cyanobacterium *Anabaena* sp PCC 7120 under normal condition. The role of penicillin binding protein in heterocyst development and in the remodeling of peptidoglycan layer has also been reported in the cyanobacterium *Anabaena* sp PCC 7120 [39].

3.2.2 Energy Metabolism

Phototrophic organisms like cyanobacteria use carbohydrates as carbon source to buildup cellular material and provide reductants. The carbohydrate molecules synthesized during the photosynthesis are broken down through various respiratory pathways. In our analysis the enzyme 2, 3-bisphosphoglycerate has been found to express differentially. This enzyme catalyses the inter conversion of 2-phosphoglycerate and 3-phosphoglycerate. It is a major regulator of glycolysis and regulates the flux of
carbon through the Kelvin Benson Cycle and its export in to glycolysis [40]. Another protein in this group identified as phosphoenolpyruvate synthase (alr3147) catalyzes the phosphorylation of pyruvate and phosphoenolpyruvate in the presence of ATP molecules. The role of phosphoenolpyruvate synthase as an alternative phosphoenolpyruvate degradation has been reported in *Synechococcus* sp PCC 7002 under light stress condition [41]. The expression of genes involved in energy metabolism under stress condition is the key factors involved in cyanobacterial adaptation to stress factors [42].

3.2.3 Central Intermediary Metabolism

The expression level of *alr0692* was higher in the nitrogen depletion condition. This ORF identified as a NifU like protein, it harbors NifU like domain partially over lapping a thioredoxin like domain. Thioredoxin catalyzing the reduction of intermolecular disulphide bonds by this means it plays a major role in the formation of Fe-S clusters [43]. The differentially expression of this protein may be related to the assembly of a functional uptake hydrogenase. The gene involved in assembly of hydrogenase should be regulated differentially depending on strains, environment and type of hydrogenase [44]. The differential expressions of this protein in the present investigation are inconsistent with the above hypothesis.

Another enzyme of this group i.e. inorganic pyrophosphatase catalyses the conversions of diphosphate to phosphate, induced differentially. Its role in metabolism is thought to be the removal of inorganic pyrophosphate, which is a byproduct of many anabolic reactions. It is also believed that pyrophosphate also plays an important role in the bioenergetics under various biotic and abiotic stresses [45,46,47].

3.2.4 Unknown & Hypothetical

Phototrophs like cyanobacteria might use gas vesicle to expose them into appropriate light intensity. These gas vesicles are basically protein bodies and in prokaryotes they evolutionary most conserved bodies. In the cyanobacterium *Anabaena sp.* five additional proteins were identified (Gbp-F, Gbp-G, Gbp-j, Gbp-l and Gbp-M). These proteins are involved in the initia tions of vesicle formation. In cyanobacteria buoyancy is regulated either by the formation of gas vesicle or synthesis/breakdown of carbohydrate molecules [48]. Our findings regarding the over expression of various proteins are inconsistent with the above finding.

The ATP binding protein i.e. *alr2300* has identified as conserved hypothetical proteins in the present study. The over expression of this protein (HetY) suppresses the heterocyst formation [49]. In the sucrose treated cells heterocyst differentiations delayed as compared to the control. This delay in heterocyst differentiation correlated with the expression of *alr2300* gene.

In addition, to the above mentioned differentially expressed protein, there are a number of proteins that were identified in the control as well as sucrose treated cells, which were expressed independently. This observation suggested that sucrose stress caused over expression of certain genes and simultaneous repression of certain genes. This up regulation and down regulation of certain genes helps in surviving cells under the given stresses.

4 2D Analysis of Protein under Salt and Sucrose Stress

In the next series of analysis we compared salt treated and osmotic treated samples in terms of commonly expressed proteins (Table 5). The protein spots with fold regulation 1.5 or more and their identification with functional group are given in table 6. The spots which are marked by sign + are independently present in salt (537 spots) and sucrose treated cells (186 spots), Fig. 3 (K and L).
4.1 Amino Acid Biosynthesis

In this category the only protein belongs to glutamate family i.e. arginine biosynthesis bifunctional protein ArgJ2 was found to express differentially. This protein involved in the cyclic version of arginine biosynthesis; the synthesis of N-acetylglutamate from glutamate and acetyl Co-A as the acetyl donor, and of ornithine by transacetylation between N(2)-acetyl ornithine and glutamate [50,51].

4.2 Biosynthesis of Cofactors, Prosthetic Groups, and Carriers

Biosynthesis of the PSI cofactor i.e. phylloquinone occurs in almost all photosynthetic organisms, including cyanobacteria. This cofactor is analogous to that of menaquinone a mobile electron carrier in many bacterial bioenergetic systems [25]. Any up shift or down shift in the environmental factor poses an additional energy burden in terms of cellular metabolism. Since the experimental organism exposed to salinity and osmotic stresses, therefore the over expression of MenD is justified. Similar role of menD operon in bacteria and in algae has also been reported [25,52].

4.3 Cellular Processes

The phenomenon of programmed cell death or apoptosis is very rare in prokaryotes. In cyanobacteria programmed cell death is associated with membrane integrity, leakage of proteases and DNA degradation. Studies on haemolysin produced by glucose tolerant strain of *Synechocystis* sp PCC 6803 suggested that haemolysin produced by this strain has no toxic activity [53]. In contrast, haemolysin obtained from wild type cells of *Synechocystis* sp PCC 6803 showed haemolytic activity against erythrocytes [54]. The haemolysin like protein was found to express differently in our study, however; we are unable to interpret the exact role of haemolysin production in this study.

The cyanobacterial heat shock response has already been studied both at the transcription level and expression level of specific genes and proteins [55]. The Hsp60/Hsp10 family also referred to as the GroE chaperone machinery in this study the experimental organism exhibit differential expression of two heat shock proteins encoded by Gro-EL1 and Gro-EL2 [56]. In addition, a 60kDa chaperonin 2 (Gro-EL2) was also found to express differentially in this study. It was also observed an increased in the expression level of protease (all2263). In photosynthetic organisms it has been reported that abiotic stresses not only over expressed proteins/enzyme involved in the main metabolic pathways, but also in the synthesis of Gro-EL1 and Gro-EL2 chaperonin and N-ATP dependent proteases [57,58]. The constitutive expression of these Hsps in the examined cyanobacterium suggests their role in stress tolerance.
4.4 Photosynthesis and Respiration

Cyanobacterial nitrogen fixation is an energy requiring process; it requires ATP and a reductant for efficient nitrogen fixation. The over expressions of NADH dehydrogenase under stress conditions produce more ATP and a reductant to support nitrogen fixation and other metabolic activities. The protein involved in energy metabolism (photosynthesis and respiration) e.g. NADPH quinone oxidoreductase and NADH-plastoquinone oxidoreductase was highly abundant in the present analysis. This suggested that more ATP and a reductant is available to the organism for nitrogen fixation. Similar finding has also been reported by many workers [35,36].

4.5 Unknown & Hypothetical

Arginyl-tRNA synthetase (ArgRS) is known to responsible for aminoacylating its cognate tRNA(s) with a unique amino acid in a two-step catalytic reaction. In the first step amino acid t-RNA ligases binds to the amino acid, ATP to activate the amino acid through the formation of N-aminoacyl-Adenylate. The second step involved the transfer of aminoacyl of the t-RNA.

Phycobilisomes are the major light harvesting complexes of cyanobacteria under nitrogen fixing condition and under salt stress conditions; major component of the phycobilisomes is strongly expressed [36,59]. The above findings are in agreement with our interpretations.

Phosphoglycerate kinase (PGK) is an enzyme that catalyzes the reversible transfer of a phosphate group from 1,3-bisphosphoglycerate (1,3-BPG) to ADP producing 3-phosphoglycerate (3-PG) and ATP during carbohydrate metabolism. The differentially expression of this protein suggested that the interaction of metabolic protein associated with the survival of the organism under stress condition. Similar role of carbohydrate metabolism in stress has also been reported in Anabaena sp. [60].

The enzyme 1,4-dihydroxy-2-naphthoyl-CoA hydrolase is known to be involved in the formation of a nephthaquonone ring of phylloquinone. In higher plants the cleavage of this enzyme leads to formation of phylloquinone; the cognate thioestrase of the same enzyme has been recently characterized in the cyanobacterium Synechocystis sp [61]. In photoautotrophic organisms, including certain species of cyanobacteria phylloquinone is a vital redox cofactor required for electron transfer in PSI and the formation of protein disulphide bond [62,63,64]. In consistence with the above findings, in cyanobacterium Synechocystis sp. PCC 6803, salt stress enhances the expression of genes of ribosomal proteins (rpl2, rpl3, rpl4 and rpl23), on the other hand hyperosmotic stress, enhances the expression of genes for the synthesis of lipids and lipoproteins (fabG and rlpA) and for other functions. The over expression of these genes clearly indicates that Synechocystis sp. PCC 6803 recognizes salt stress and hyperosmotic stress as different signals. To the best of our knowledge this is the first report from the Nostoc muscorum investing proteomic responses under salt and osmotic stress.

5 Conclusion

The over expression of commonly induced proteins under salt and osmotic stress suggested that some factors might perceive and transducer such signals of the specific pathways that control the expression of a number of genes. Therefore, the role of various differently expressed proteins is to overcome given stress for the normal functioning of the cell. This metabolic adaptability of the cyanobacteria could be useful in the production of biofertilizer for stressful ecosystems and isolation of commercially important bioactive compounds.

Acknowledgements. Authors are thankful to Indian Institute of Science Education and Research (IISER), Bhopal, for providing 2DGE facility. DG and RG are also thankful to Bioinformatics Centre, Barkatullah University, Bhopal for providing necessary facilities under BTIS NET (DBT Govt. of India, New Delhi).
References

1. R. Buick, “The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient,” Archaean lakes science, vol. 255 no. 5040 pp. 74-77, 1992.
2. M. Hagemann, “Molecular biology of cyanobacterial salt acclimation,” FEMS microbiology review, vol. 35 no. 1 pp. 87-123, 2011.
3. K. Inaba, T. Kuroda, T. Shimamoto, T. Kayahara, M. Tsuda and T. Tsuchiya, “Lithium toxicity and Na+(Li+)/H+ antiporter in Escherichia coli,” Biological and pharmaceutical bulletin, vol. 17 no. 3 pp. 395-398, 1994.
4. R. Waditee, T. Hibino, T. Nakamura, A. Incharoensakdi and T. Takabe, “Overexpression of a Na+/H+ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water,” Proceedings of the national academy of sciences of the USA, vol. 99 no. 6 pp. 4109-4114, 2002.
5. E. A. Alia and I. A. Gahiza, “Accumulation of amino acids in Anabaena oryzae in response to sodium chloride salinity,” Journal of applied science research, vol. 3 no. 3 pp. 263-266, 2007.
6. L. N. Csonka, “Physiological and genetic responses of bacteria to osmotic stress,” Microbiology review, vol. 53 no.1 pp. 121-147, 1989.
7. M. Hagemann, A. Schoor and N. Erdmann, “NaCl acts as a direct modulator in the salt adaptive response: salt-dependent activation of glucosylglycerol synthesis in vivo and in vitro,” Journal of plant physiology, vol. 149 no. 6 pp. 746-752, 1996.
8. A. K. Singh, D. Chakarvarthy, T. P. K. Singh and H. N. Singh, “Evidence for a role of L-proline as a salinity protectant in the cyanobacterium Nostoc muscorum,” Plant cell and environment, vol. 19 no. 4 pp. 490-494, 1996.
9. D. K. Hincha and M. Hagemann, “Stabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and microorganisms,” Biochemical journal, vol. 383 no. 2 pp. 277-283, 2004.
10. K. Marin, M. Stirmberg, M. Eisenhut, R. Kramer and M. Hagemann, “Osmotic stress in Synechocystis sp. PCC 6803: low tolerance towards nonionic osmotic stress results from lacking activation of glucosyl-glycerol accumulation,” Microbiology, vol. 152 no. 7 pp. 2023-2030, 2006.
11. S. Klahn, C. Steglich, W. R. Hess and M. Hagemann, “Glucosylglycerate: a secondary compatible solute common to marine cyanobacteria from nitrogen-poor environments,” Environmental microbiology, vol. 12 no. 1 pp. 83-94, 2010.
12. S. R. C. Warr, R. H. Reed and W. D. P. Stewart, “The compatibility of osmotica in cyanobacteria,” Plant cell and environment, vol. 11 no. 2 pp. 137-142, 1988.
13. A. L. Horwich, W. A. Fenton, E. Chapman and G. W. Farr, “Two families of chaperonin: physiology and mechanism,” Annual review of cell and developmental biology, vol. 23 no. pp. 115-145, 2007.
14. K. A. Krishna, G. V. Rao and K. R. Rao, “Chaperonin GroEL: structure and reaction cycle,” Current protein and peptide science, vol. 8 no. 5 pp. 418-425, 2007.
15. S. Sharma, K. Chakraborty, B. K. Muller, N. Astola, Y. C. Tang, D. C. Lamb, M. Hayer-Hartl and F. U. Hartl, “Monitoring protein conformation along the pathway of chaperonin-assisted folding,” Cell, vol. 133 no. 1 pp. 142-153, 2008.
16. Y. C. Tang, H. C. Chang, K. Chakraborty, F. U. Hartl and M. Hayer-Hartl, “Essential role of the chaperonin folding compartment in vivo,” EMBO journal, vol. 27 no. 10 pp. 1458-1468, 2008.
17. H. Yoshimura, M. Ikeuchi and M. Ohomori, “Cell surface-associated proteins in the filamentous cyanobacterium Anabaena sp. strain PCC 7120,” Microbes and environments, vol. 27 no. 4 pp. 538-543, 2012.
18. T. A. Fernandes, V. Iyer and S. K. Apte, “Differential responses of nitrogen-fixing cyanobacteria to salinity and osmotic stresses.” Applied and environmental microbiology, vol. 59 no. 3 pp. 899-904, 1993.
19. Y. Kanesaki, I. Suzuki, S. I. Allakhverdiev, K. Mikami and N. Murata, “Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp. PCC 6803,” Biochemical and biophysical research communication, vol. 290 no. 1 pp. 339-348, 2002.
20. C. Gerloff, G. P. Fitzgerald and F. Skoog, “The isolation, purification, and culture of blue-green algae,” American journal of botany, vol. 37 no. 3 pp. 216-218, 1950.
21. Ran, F. Huang, M. Ekman, J. Klint and B. Bergman, “Proteomic analysis of the photoauto- and diazotrophically grown cyanobacteria Nostoc sp. PCC 73102,” Microbiology, vol. 153 no. pp. 608-618, 2007.
22. Méchin, C. Damerval and M. Zivy, “Total Protein Extraction with TCA-Acetone”. In: Methods in Molecular Biology, Plant Proteomics: Methods and Protocols. vol. 335 no. pp. 335, 2007.
23. Gupta, R. Gothalwal and S. Bhargava, “Proteomic analysis of the cyanobacterium Synechococcus cedrorum IU 1191 under short term NaCl exposure,” Current proteomics, vol. 12 no. 2 pp. 87-95, 2015.
24. F. Smith and M. S. Waterman, “Identification of common molecular subsequences,” Journal of molecular biology, vol. 147, no. 1, pp. 195-197, 1981.
25. T. W. Johnson, S. Naithani, C. J. Stewart, B. Zybailov, J. A. Daniel, J. H. Golbeck and P. R. Chitinis, “The menD and menE homologs code for 2-succinyl-6-hydroxyl-2,4 cyclohexadiene-1-carboxylate synthase and O-succinylbenzoic acid-CoA synthase in the phyloquinone biosynthetic pathway of Synechocystis sp. PCC 6803.”, Biochimica et biophysica acta, vol. 1557 no. pp. 67-76, 2003.
26. J. Gross, W. K. Cho, L. Lezhneva, J. Falk, K. Krupinska, K. Shinozaki, M. Seki, R. G. Herrmann and J. Meurer, “A plant locus essential for phyloquinone (vitamin K1) biosynthesis originated from a fusion of four eubacterial genes,” Journal of biological chemistry, vol. 281 no.25 pp. 17189-17196, 2006.
27. J. S. Prakash, M. Sinetova, A. Zorina, E. Kupriyanova, I. Suzuki, N. Murata and D. A. Los, “DNA supercoiling regulates the stress-inducible expression of genes in the cyanobacterium Synechocystis,” Molecular biosystems, vol. 5 no. 12 pp. 1904-1912, 2009.
28. H. Rupprecht, S. Gathmann, E. Fuhrmann and D. Schneider, “Three different DnaK proteins are functionally expressed in the cyanobacterium Synechocystis sp. PCC 6803,” Microbiology, vol. 153 no. pp. 1291-1298, 2005.
29. A. K. Srivastava, R. Alexova, Y. J. Jeon, G. S. Kohli and B. A. Neilan, “Assessment of salinity-induced photosynthetic metabolism in Anabaena sp. PCC 7120,” Microbiology, vol. 157 no. 3 pp. 911-917, 2011.
30. J. J. Hall, “Proteomic analysis of the heat shock and acclimation responses of Cyanobacteria” A thesis submitted to the University of Durham for the degree of Doctor of Philosophy, 2005.
31. S. Lázaro, F. Fernández-Piñas, E. Fernández-Valiente, A. Blanco-Rivero and F. Leganés, “phpB, a gene coding for a putative penicillin-binding protein, is required for aerobic nitrogen fixation in the cyanobacterium Anabaena sp. strain PCC 7120,” Journal of bacteriology, vol. 183 no. 2 pp. 628-636, 2001.
42. A. M. Ruffing, “RNA-Seq analysis and targeted mutagenesis for improved free fatty acid production in an engineered cyanobacterium,” Biotechnology and biofuels, vol. 6 no. 1 pp. 113, 2013.

43. D. Johnson, D. R. Dean, A. D. Smith and M. K. Johnson, “Structure, Function and Formation of Biological Iron-Sulfur Clusters,” Annual review of biochemistry, vol. 74 no. pp. 247-281, 2005.

44. A. Agervald, K. Stensjö, M. Holmqvist and P. Lindblad, “Transcription of the extended hyp-operon in Nostoc sp. strain PCC 7120,” BMC Microbiology, vol. 8 no. pp. 69, 2008.

45. M. R. Gómez-García, M. Losada and A. Serrano, “Comparative biochemical and functional studies of family I soluble inorganic pyrophosphatases from photosynthetic bacteria,” FEBS journal, vol. 274 no. 15 pp. 3948-3959, 2007.

46. J. R. Pérez-Castiñeira, R. Gómez-García, R. L. López-Marqués, M. Losada and A. Serrano, “Enzymatic systems of inorganic pyrophosphate bioenergetics in photosynthetic and heterotrophic protists: remnants or metabolic cornerstones? International microbiology, vol. 4 no. 3 pp. 135-142, 2001.

47. F. Serrano, J. M. Gonzáles-Donoso, P. Palmqvist, A. Guerra-Merchán, D. Linares and J. A. Pérez-Claros, “Estimating Pliocene sea-surface temperatures in the Mediterranean: An approach based on the modern analogs technique,” Palaeogeography palaeoclimatology palaeoecology, vol. 243 no. 1-2 pp. 174-188, 2007.

48. K. F. Jarrell and M. J. McBride, “The surprisingly diverse ways that prokaryotes move,” Nature reviews microbiology, vol. 6 no. 6 pp.466-476, 2008.

49. J. H. Yoon, K. H. Kang and Y. H. Park, “Psychrobacter jeotgalisp. nov., isolated from jeotgal, a traditional Korean fermented seafood,” International journal of systematic and evolutionary microbiology, vol. 53 no. pp. 449-454, 2003.

50. F. Marc, P. Weigel, C. Legrain, Y. Almeras, M. Santrot and V. Sakanyanet, “Characterization and kinetic mechanism of mono- and bifunctional ornithine acetyltransferases from thermophilic microorganisms,” European journal of biochemistry, vol. 267 no. 16 pp. 5217-5226, 2000.

51. F. Marc, P. Weigel, C. Legrain, N. Glansdorff and V. Sakanyan, “An invariant threonine is involved in self-catalyzed cleavage of the precursor protein for ornithine acetyltransferase,” Journal of biological chemistry, vol. 276 no. 27 pp. 25404-25410, 2001.

52. J. Gross, J. Meurer and D. Bhattacharya, “Evidence of a chimeric genome in the cyanobacterial ancestor of plastids,” BMC Evolutionary biology, vol. 8 no. pp. 117, 2008.

53. T. Sakiyama, H. Ueno, H. Homma, O. Numata and T. Kuwabara, “Purification and characterization of a hemolysin-like protein, Sll1951, a nontoxic member of the RTX protein family from the Cyanobacterium Synechocystis sp. strain PCC 6803.” Journal of bacteriology, vol. 188 no. 10 pp. 3535-3542, 2006.

54. W. W. Shuai, Z. Yuanyuan, R. U. Shaoguo and L. Yunzhang, “Studies on hemolysis of hemolysin produced by Synechocystis sp. PCC 6803,” Journal of ocean university of China, vol. 10 no. 4 pp. 362-368, 2011.

55. D. A. Los, I. Suzuki, V. V. Zinchenko and N. Murata, “Stress responses in Synechocystis: regulated genes and regulatory systems” In: The Cyanobacteria: Molecular Biology, Genomics and Evolution (Herrero, A. and Flores, E., Eds.), Caister Academic Press, Norfolk. pp. 117-157, 2008.

56. S. I. Allakhverdiev and N. Murata, “Salt stress inhibits photosystems II and I in cyanobacteria,” Photosynthesis research, vol. 98 no. 1-3 pp. 529-539, 2008.

57. S. Pandey, R. Rai and L. C. Rai, “Proteomics combines morphological, physiological and biochemical attributes to unravel the survival strategy of Anabaena sp. PCC7120 under arsenic stress,” Journal of proteomics, vol. 75 no. 3 pp. 921-937, 2012.
Appendix

Table 1. Spot details on commonly induced proteins under salt treated cells verses control cells of *N. muscorum*. NC=protein spots apparent on the gel of control cells of *N. muscorum*; NN=protein spots apparent on the gel of salt treated cells of *N. muscorum*

File Name	Spot ID	Match ID	Apparent pI	Apparent MW (kDa)	%Vol	Fold Regulation (T/C)	Protein Acc. No	Protein Identification	Theoretical Mw (Da)	Theoretical pI
NN 8431	36	6.029	16	0.84788		1.19 Q8YQ24	Chorismate mutase	15760.62	6.91	
NN 8432	35	5.836	16	1.54506	0.72	Q8YP58	Mannose-6-phosphate isomerase	15804.86	6.65	
NN 8424	34	4.763	16	0.81515	0.56	P58703	Cyanate hydratase (Cyanase) (EC 4.2.1.104) (Cyanate hydrolyase) (Cyanate lyase)	16398.99	4.97	
NN 8408	33	4.856	16	0.66589	0.58	Q8YUT1	Gas vesicle protein GvpJ	16597.58	4.73	
NN 8281	32	4.617	22	1.92456	1.28	P80562	Inorganic pyrophosphatase (EC 3.6.1.1) (Pyrophosphate phospho-hydrolase) (PPase)	18960.61	4.69	
NN 8289	31	4.867	21	1.83581	0.90	O52749	UFP0079 ATP-binding protein alr2300	17938.69	4.33	
NN 8362	30	4.945	17	0.71796	0.66	O52751	Crossover junction endodeoxyribonuclease RuvC (EC 3.1.22.4) (Holliday junction nuclease RuvC) (Holliday junction resolvase RuvC)	17740.55	4.7	
NN 8342	29	5.127	18	2.34606	**2.45**	P80555	Allophycocyanin subunit alpha 1	17214.47	4.92	
NN 8359	28	5.529	17	5.84223	1.04	P80557	Allophycocyanin subunit beta	17173.56	5.46	
NN 8358	27	4.628	17	7.99235	0.59	O52751	Crossover junction	17740.55	4.7	
Accession	Start	End	Score	E-value	Description					
-----------	-------	-----	-------	---------	-------------					
NC 3254	27	4.720	17	13.5579	endodeoxyribonuclease RuvC (EC 3.1.22.4) (Holliday junction nuclease RuvC) (Holliday junction resolvase RuvC)					
NN 8384	26	4.763	17	1.33462	P80556 Allophycocyanin subunit alpha-B					
NC 3263	26	5.022	17	2.56327						
NN 7850	25	4.436	84	0.06533						
NC 3116	25	4.460	70	0.041						
NN 7865	24	4.562	79	0.1323						
NC 3120	24	4.617	68	0.16902						
NN 7903	23	4.282	69	0.02226	2.43 Q8YZ2 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate synthase (SEPCHC synthase) (EC 2.2.1.9) (MenAquinone biosynthesis protein MenD)					
NC 3125	23	4.382	65	0.00916						
NN 7918	22	4.463	67	0.02731						
NC 3128	22	4.564	62	0.44259						
NN 7922	21	4.721	66	0.17323	1.15 Q8YP23 Peptide chain release factor 3 (RF-3)					
NC 3129	21	4.856	62	0.15004						
NN 7947	20	4.414	63	0.0671						
NC 3133	20	4.497	60	0.1261						
NN 7954	19	4.304	62	0.07786	4.21 Q8YR01 Alk3659 protein					
NC 3131	19	4.324	62	0.01849						
NN 7969	18	4.700	60	0.2005						
NC 3134	18	4.780	60	0.17290						
NN 8035	17	4.914	51	0.04325						
NC 3163	17	4.983	46	0.23071						
NN 8042	16	4.139	50	0.05923						
NC 3146	16	4.058	52	0.09061	0.65 Q8Z064 Probable cytosol aminopeptidase (EC 3.4.11.1) (Leucine aminopeptidase) (LAP) (EC 3.4.11.10) (Leucyl aminopeptidase)					
NN 8046	15	4.815	49	0.30447						
NC 3162	15	4.837	46	0.47115	0.65 Q8YR80 Endoase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (2-phosphoglycerate dehydratase)					
NN 8066	14	4.976	48	0.07466	0.12 Q8YP49 1-deoxy-D-xylulose 5-					
NC	3168	14	5.052	43	0.63857	phosphate reductoisomerase (DXP reductoisomerase) (EC 1.1.1.267) (1-deoxyxylose-5-phosphate reductoisomerase) (2-C-methyl-D-erythritol 4-phosphate synthase)				
NN	8205	13	4.921	31	0.03652	Q8YNC5 Peroxiredoxin				
NC	3217	13	4.944	23	0.37055					
NN	8267	12	5.701	25	0.03946	Q8YLJ6 3OS ribosomal protein L10				
NC	3227	12	5.711	20	0.04217					
NN	8309	11	5.982	19	0.01492	Q8YNU3 Alr4468 protein				
NC	3243	11	6.158	18	0.48412					
NN	8312	10	4.100	18	0.63671	O52749 UPF0079 ATP-binding protein alr2300				
NC	3241	10	4.100	18	0.58712					
NN	8315	9	5.341	19	0.04354	Q8YYZ9 Alr0692 protein				
NC	3248	9	5.215	18	0.64891					
NN	8325	8	6.191	18	0.28307	Q8YWH5 Molybdopterin synthase catalytic subunit (EC 2.8.1.12) (MPT synthase subunit 2) (Molybdenum cofactor biosynthesis protein E) (Molybdopterin-converting factor large subunit) (Molybdopterin-converting factor subunit 2)				
NC	3247	8	6.442	18	0.24498					
NN	8328	7	5.143	18	0.39368	Q8YSE1 Phosphoenolpyruvate synthase				
NC	3246	7	4.908	18	0.46624					
NN	8356	6	5.263	17	0.98577	P80555 Allophycocyanin subunit alpha 1				
NC	3252	6	5.085	17	1.23443					
NN	8360	5	5.800	17	1.38518	O52751 Crossover junction endodeoxyribonuclease RuvC (EC 3.1.22.4) (Holliday junction nuclease RuvC) (Holliday junction resolvase RuvC)				
NC	3260	5	5.800	17	2.21081					
NN	8365	4	6.029	17	1.11362	Q93SX1 Cytochrome b6-f complex subunit 4 (17 kDa polypeptide)				
NC	3257	4	6.117	17	2.14779					
NN	8395	3	5.101	17	0.08298	O52753 Crossover junction endodeoxyribonuclease RuvC (EC 3.1.22.4) (Holliday junction nuclease RuvC) (Holliday junction resolvase RuvC)				
NC	3262	3	4.614	17	0.06696					
NN	8441	2	5.597	16	0.01524	Q8Z0K8 Alr0083 protein				

JAMB Copyright © 2017 Isaac Scientific Publishing
Table 2. Showing identical protein with differential expression (>1.5 Fold Regulation) in the control and salt treated cells. The putative gene products are also given in the table.

S.N.	Functional Group	Protein Identification	Sub function	Gene Name	Match ID
1	Biosynthesis of cofactors, prosthetic groups, and carriers	2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate synthase (SEPHCHC synthase) (EC 2.2.1.9) (Menaquinone biosynthesis protein MenD)	Menaquinone and ubiquinone	alr0312	23
2	Cellular processes	Chaperone protein dnaK3 (HSP70-3) (Heat shock 70 kDa protein 3) (Heat shock protein 70-3)	Chaperones	alr2446	25
3	Energy metabolism	similar to S-layer-RTX protein	Glycolate pathway	alr3659	19
4	Unknown & Hypothetical	Allophycocyanin subunit alpha 1	Crossover junction endodeoxyribonuclease RuvC (EC 3.1.22.4) (Holliday junction nuclease RuvC) (Holliday junction resolvase RuvC)	alr0021	29

Table 3. Spot details on commonly induced proteins under sucrose treated cells verses control cells of *N. muscorum*. NC=protein spots apparent on the gel of control cells of *N. muscorum*; NS=protein spots apparent on the gel of sucrose treated cells of *N. muscorum*.

File Name	Spot ID	Match ID	Apparent pI	Apparent MW (kDa)	%Vol	Fold Regulation Value (t/c)	Protein Acc. No	Protein Identification	Theoretical Mw (Da)	Theoretical pI
NS	3770	36	4.141	17	0.0245	0.27	Q8YZZ2	2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate synthase (SEPHCHC synthase) (EC 2.2.1.9) (Menaquinone biosynthesis protein MenD)	65729.2	5.83
NC	3254	36	4.720	17	0.4829	1.09	Q8YM86	NAD(P)H-quinone oxidoreductase chain 4-3 (EC 1.6.5.-) (NAD(P)H dehydrogenase I, subunit D-3) (NDH-1, chain 4-3)	61013	5.72
NS	3596	35	3.964	66	0.8317	4.81	Q8Z0E5	Penicillin-binding protein	60683.9	5.04
NC	3128	34	4.564	62	0.1729	0.69	Q8YP23	Peptide chain release	61270.8	5.43
NS	3612	33	4.700	60	0.1040					
NC	3134	33	4.700	60	0.8317					
NS	3614	32	4.941	61	0.06125					
Accession	Description	F织	Factor (RT-3)	M织	Description	Value				
-----------	--	-----	--------------	-----	--	--------				
NC 3129	32 4.856 62 0.1500 factor 3 (RF-3)				Urease subunit alpha (EC 3.5.1.5) (Urea amidohydrolase subunit alpha)	61155.6	5.23			
NS 3620	31 5.200 59 0.1628				2.3-bisphosphoglycerate-independent phosphoglycerate mutase (BPG-independent PGAM) (Phosphoglyceromutase) (iPGM) (EC 5.4.2.1)	57677.3	4.99			
NC 3132	31 4.524 61 0.1116				Light-independent protochlorophyllide reductase subunit N (DPOR subunit N) (LI-POR subunit N) (EC 1.18.-.-)	52534.9	5.69			
NS 3636	29 5.867 53 0.0964				Inorganic pyrophosphatase (EC 3.6.1.1) (Pyrophosphate phospho-hydrolase) (PPase)	18960.6	4.69			
NC 3141	29 5.604 52 0.5954				Inorganic pyrophosphatase (EC 3.6.1.1) (Pyrophosphate phospho-hydrolase) (PPase)	18960.6	4.69			
NS 3643	28 6.124 59 0.0326				Light-independent phosphoribosyltransferase (EC 2.4.2.9) (UMP pyrophosphorylase) (UPRTase)	23364.1	5.08			
NC 3149	28 6.036 52 0.0737				Light-independent phosphoribosyltransferase (EC 2.4.2.9) (UMP pyrophosphorylase) (UPRTase)	23364.1	5.08			
NS 3655	27 4.800 45 0.1636				Phosphoenolpyruvate synthase	18033.9	4.85			
NC 3163	27 4.983 46 0.2307				Phosphoenolpyruvate synthase	18033.9	4.85			
NS 3728	26 3.355 23 0.1012				Inorganic pyrophosphatase (EC 3.6.1.1) (Pyrophosphate phospho-hydrolase) (PPase)	18960.6	4.69			
NC 3220	26 3.085 23 0.1604				Inorganic pyrophosphatase (EC 3.6.1.1) (Pyrophosphate phospho-hydrolase) (PPase)	18960.6	4.69			
NS 3735	25 4.444 21 1.5199				Phosphoenolpyruvate synthase	18033.9	4.85			
NC 3228	25 4.710 19 1.5025				Phosphoenolpyruvate synthase	18033.9	4.85			
NS 3736	24 4.548 21 2.4107				Phosphoenolpyruvate synthase	18033.9	4.85			
NC 3231	24 4.944 18 0.6115				Phosphoenolpyruvate synthase	18033.9	4.85			
NS 3738	23 4.872 20 1.1271				Phosphoenolpyruvate synthase	18033.9	4.85			
NC 3230	23 4.500 18 2.0396				Phosphoenolpyruvate synthase	18033.9	4.85			
NS 3749	22 6.048 19 0.1077				Phosphoenolpyruvate synthase	18033.9	4.85			
NC 3243	22 6.158 18 0.4841				Phosphoenolpyruvate synthase	18033.9	4.85			
NS 3752	21 5.097 18 0.2333				Phosphoenolpyruvate synthase	18033.9	4.85			
NC 3246	21 4.808 18 0.4662				Phosphoenolpyruvate synthase	18033.9	4.85			
NS 3753	20 4.422 18 10.2086				Phosphoenolpyruvate synthase	18033.9	4.85			
NC 3244	20 4.653 18 5.2084				Phosphoenolpyr...					
	Accession Number	Description	E-value	Cofactor Biosynthesis Protein E	Protein Name/Description					
----	------------------	--	---------	--------------------------------	--					
NS	3759	4.233	0.0182	1.63	O52749 UPF0079 ATP-binding protein alr2300					
NC	3242	4.236	0.1118							
NS	3765	5.252	7.0583	0.58	P80555 Allophycocyanin subunit alpha 1					
NC	3252	5.085	12.2443							
NS	3767	5.605	4.2938	0.76	P80557 Allophycocyanin subunit beta					
NC	3256	5.451	5.6380							
NS	3771	4.164	0.3574	0.55	O52749 UPF0079 ATP-binding protein alr2300					
NC	3259	4.225	0.6500							
NC	3260	5.800	2.6184	1.18	O52751 Crossover junction endodeoxyribonuclease RuvC (EC 3.1.22.4)					
NC	3263	5.117	2.1478							
NC	3257	6.059	1.4799	2.06	O52749 UPF0079 ATP-binding protein alr2300					
NC	3258	4.017	0.7195							
NS	3775	5.858	0.3655	0.60	Q8YU89 1,4-dihydroxy-2-naphthoyl-CoA hydrolase (DHNA-CoA hydrolase) (EC 3.1.2.28)					
NC	3255	5.849	0.6103							
NS	3777	4.576	0.6276	0.29	Q93SX1 Cytochrome b6-f complex subunit 4 (17 kDa polypeptide)					
NC	3257	6.117	2.1478							
NS	3774	4.059	1.4799	2.06	O52749 UPF0079 ATP-binding protein alr2300					
NC	3258	4.017	0.7195							
NC	3261	5.800	2.6184	1.18	O52751 Crossover junction endodeoxyribonuclease RuvC (EC 3.1.22.4)					
NC	3263	5.117	2.1478							
NS	3263	5.022	2.5633							
NS	3779	5.105	0.2424	0.80	O52752 Crossover junction endodeoxyribonuclease RuvC (EC 3.1.22.4)					
NC	3261	4.671	0.3047							
NS	3777	4.576	2.6173	1.02	P80556 Allophycocyanin subunit alpha-B					
NC	3263	5.022	2.5633							
NS	3779	5.105	0.2424	0.80	O52752 Crossover junction endodeoxyribonuclease RuvC (EC 3.1.22.4)					
NC	3261	4.671	0.3047							
NS	3781	4.422	0.6460	0.49	Q8YUT2 Protein GvpK					
NC	3266	4.658	1.3085							
NS	3783	5.476	0.1593	1.78	Q8YVZ9 Ahr0692 protein					
NC	3268	5.296	0.0893							
NS	3784	5.597	0.1166	0.62	Q8Z017 Small heat shock protein					
NC	3271	5.434	0.1874							
NS	3793	5.588	0.3697	0.44	Q8YRG9 Ahr3479 protein					
NC	3272	5.518	0.8422							
NS	3794	4.365	1.1991	0.58	Q8YUT1 Gas vesicle protein GvpD					
NC	3274	4.690	2.0607							
NS	3795	4.821	0.1921	0.17	Q8YUT1 Gas vesicle protein GvpD					
NC	3273	4.549	1.1504							
NS	3805	4.407	0.3505	3.33	Q8YUT1 Gas vesicle protein GvpD					
Table 4. Showing identical protein with differential expression (≥1.5 Fold Regulation) in the control and sucrose treated cells. The putative gene products are also given in the table.

S.N.	Functional Group	Protein Identification	Sub function	Gene Name	Match ID
1	Cell envelope	Penicillin-binding protein	Murein sacculus and peptidoglycan	alr0153	33
2	Energy metabolism	2,3-bisphosphoglycerate-independent phosphoglycerate mutase (BPG-independent PGAM) (Phosphoglyceromutase) (iPGM) (EC 5.4.2.1)	Glycolysis	all182	30
		Phosphoenolpyruvate synthase	Pyruvate and acetyl-CoA metabolism	alr3147	24
3	Central intermediary metabolism	similar to NifU protein	Nitrogen fixation	alr0692	5
		Inorganic pyrophosphatase (EC 3.6.1.1) (Pyrophosphate phospho-hydrolase) (PPase)	Phosphorus compounds	all3570	20
4	Unknown & Hypothetical	Gas vesicle protein GvpJ		all2250	0

Table 5. Spot details on commonly induced proteins under salt and sucrose treated cells of *N. muscorum*. NS=protein spots apparent on the gel of sucrose treated cells of *N. muscorum*; NN=protein spots apparent on the gel of salt treated cells of *N. muscorum*.

File Name	Spot ID	Match ID	Apparent pI	Apparent MW (kDa)	%Vol	Fold Regulation (T/C)	Protein Acc. No	Protein Identification	Theoretical Mw (Da)	Theoretical pI
NN 7877	53	6.08	77	0.045	1.83		Q8YZZ2	2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate synthase (SEPHCHC synthase) (EC 2.2.1.9) (Menaquinone biosynthesis protein MenD)	65729.2	5.83
NN 7881	52	5.32	76	0.133	2.24		Q8YQU9	Arginine–tRNA ligase (EC 6.1.1.19) (Arginyl-tRNA synthetase) (ArgRS)	65814.9	3.3
NN 7916	51	5.14	67	0.058	0.81		Q8YXJ6	L-aspartate oxidase (LASPO) (EC 1.4.3.16) (Quinolinate synthase B)	63173	6.17
NN 7969	50	4.70	60	0.200	0.24		Q8YSYS8	All2941 protein	62501	9.2
NN 7972	49	4.70	60	0.832						
NN 7973	48	6.48	61	0.025			Q8YXT4	NADH dehydrogenase	49725.4	6.13
NN 3643	48	6.12	50	0.033						
NN 3621	47	4.07	60	0.036						
Accession	E Value	Identity	Query Length	Target Length	Description	E Value				
-----------	---------	----------	--------------	---------------	-------------	---------				
NS 3610	47	1.14	62	0.089						
NS 3618	46	1.46	59	0.118						
NS 3611	45	1.49	61	0.508						
NS 3627	44	5.42	55	0.034						
NS 3620	43	5.20	59	0.163						
NS 3623	42	1.91	56	0.742						
NS 3634	41	5.05	53	0.270						
NS 3639	40	1.81	53	0.468						
NS 3633	41	4.79	51	0.468						
NS 3640	39	1.45	51	0.056						
NS 3649	39	1.44	52	0.342						
NS 3637	38	1.91	51	0.043						
NS 3638	38	1.92	50	1.662						
NS 3642	37	1.14	50	0.059						
NS 3637	37	1.20	52	0.150						
NS 3645	36	1.77	48	1.180						
NS 3647	36	1.71	49	0.110						
NS 3677	35	6.22	47	0.015						
NS 3658	35	6.01	43	0.019						
NS 3684	34	1.17	45	0.073						
NS 3659	34	1.22	42	0.084						
NS 3694	33	5.18	44	0.135						
NS 3663	33	5.29	41	0.059						
NS 3666	32	4.91	40	0.454						
NS 3672	31	5.07	41	0.023						
NS 3672	31	5.05	38	0.060						
NS 3679	30	5.70	36	0.098						

Note: The table lists protein accession numbers, E-values, identity percentages, query and target lengths, and descriptions. The descriptions include various functions and annotations such as chaperonin, flavoprotein, dehydrogenase, oxidoreductase, decarboxylase, synthetase, ligase, and others, indicating diverse molecular functions and roles. The E-values and identity percentages are crucial for assessing the similarity and reliability of the protein alignments.
Entry	Accession	Description	Score	Protein Name	Function	Score	
NN 8139 29	3.31 39	0.048	0.18	Q8YUS5	Ketol-acid reductoisomerase (EC 1.1.1.86) (Acetohydroxyacid isomeroreductase) (Alpha-keto-beta-hydroxylacyl reductoisomerase)	36010.9	3.4
NS 3699 28	6.17 30	0.052					
NN 8189 27	6.11 33	0.020	0.44	Q8YS90	Mg-protoporphyrin IX methyl transferase	25344.8	6.23
NS 3712 27	6.02 25	0.045					
NN 8208 26	5.67 28	0.071	0.70	Q8YT99	Glucose-1-P cytidylyltransferase	29391.6	6.69
NS 3704 26	5.69 28	0.101					
NN 8232 25	4.33 28	0.061	0.40	Q8YNL8	Riboflavin synthase alpha chain	23518.8	4.75
NS 3719 25	4.32 23	0.153					
NN 8310 24	1.75 19	0.244	0.10	Q8YUQ7	Alr2278 protein	21191.7	4.63
NS 3736 24	1.55 21	2.411					
NN 8333 23	1.10 18	0.637	0.92	P07120	C-phycocyanin subunit beta	18255.6	5
NS 3755 23	1.10 18	0.689					
NN 8314 22	5.02 19	0.040	0.04	Q8YNAA6	Glutathione S-transferase	20774.1	4.89
NS 3738 22	1.87 20	1.127					
NN 8329 21	5.86 18	0.060	0.40	Q8YNAA3	Alr4468 protein	18081	6.9
NS 3763 21	5.87 17	0.149					
NN 8330 20	1.37 18	0.052	0.24	Q06881	Biotin carboxyl carrier protein of acetyl-CoA carboxylase (BCCP)	19048.7	4.63
NS 3750 20	1.29 18	0.212					
NN 8332 19	6.49 18	0.036	0.34	Q8YMIE1	Methylated-DNA--protein-cysteine methyltransferase (EC 2.1.1.63) (6-O-methylguanine-DNA methyltransferase) (O-6-methylguanine-DNA-alkyltransferase)	19730.8	7.72
NS 3749 19	6.05 19	0.108					
NN 8341 18	1.56 18	1.556	0.15	P80562	Inorganic pyrophosphatase (EC 3.6.1.1) (Pyrophosphate phospho-hydrolase) (PPase)	18960.6	4.69
NS 3753 18	4.42 18	10.209					
NN 8342 17	5.13 18	2.346	10.06	P07120	C-phycocyanin subunit beta	18255.6	5
NS 3752 17	5.10 18	0.233					
NN 8345 16	6.74 18	0.028	0.08	Q8YNAA3	Alr4468 protein	18081	6.9
NS 3757 16	6.11 18	0.347					
NN 8350 15	5.32 17	0.325	2.89	Q8YPF9	Arginine biosynthesis bifunctional protein ArgJ	18553.3	5.39
NS 3756 15	5.37 18	0.113					
NN 8352 14	1.33 17	0.063	0.35	O52749	ATP-binding protein alr2300	17938.7	4.33
NS 3759 14	1.22 18	0.182					
NN 8356 13	5.26 17	5.988	0.85	Q8YYZ9	Alr0692 protein	17425.2	5.37
NS 3765 13	5.25 17	7.058					
Table 6.

Showing identical protein with differential expression (>1.5 Fold Regulation) in the salt treated and sucrose treated cells. The putative gene products are also given in the table.

S.N.	Functional Group	Protein Identification	Sub function	ORF’s ID	Match ID
1	Amino acid biosynthesis	Arginine biosynthesis bifunctional protein ArgJ 2 [Cleaved into: Arginine biosynthesis bifunctional protein ArgJ alpha chain; Arginine biosynthesis bifunctional protein ArgJ beta chain] [Includes: Glutamate N-acetyltransferase (EC 2.3.1.35) (Ornithine acetyltransferase) (OATase) (Ornithine transacylase); Amino-acid acetyltransferase (EC 2.3.1.1) (N-acetylglutamate synthase) (AGSase)]	Glutamate family / Nitrogen assimilation	alr4235	15
2	Biosynthesis of cofactors, prosthetic groups, and carriers	2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate synthase (SEPHIC synthase) (EC 2.2.1.9) (Menaquinone biosynthesis protein MenD)	Menaquinone and ubiquinone	alr0312	53
	Cellular processes	Cell killing	alr5216	36	
---	--	--------------	---------	----	
3	probable hemolysin				
	Protease HtpX homolog (EC 3.4.24.-) heat shock protein X		alr2263	28	
	60 kDa chaperonin 2 (GroEL protein 2) (Protein Cpn60 2)				
	Chaperones				

	Photosynthesis and respiration	NADH dehydrogenase	alr1896	46
4	NAD(P)H-quinone oxidoreductase subunit 2 (EC 1.6.5.-)			
	(NAD(P)H dehydrogenase subunit 2) (NADH-plastoquinone oxidoreductase subunit 2) (NDH-1, subunit 2)			
	(NADH dehydrogenase)			

	Unknown & Hypothetical		alr3717	52
5	Arginine-tRNA ligase (EC 6.1.1.19) (Arginyl-tRNA synthetase) (ArgRS)			
	C-phycocyanin subunit beta			
	Phosphoglycerate kinase (EC 2.7.2.3)			
	1,4-dihydroxy-2-naphthoyl-CoA hydrolase (DHNA-CoA hydrolase) (EC 3.1.2.28) (DHNA-CoA thioesterase)			