Biochemical and Cellular Biomarkers in Brown Trout (Salmo trutta f. fario) in Response to the Antidepressants Citalopram and Venlafaxine

Michael Ziegler (✉ michael.ziegler@student.uni-tuebingen.de)
University of Tübingen: Eberhard Karls Universitat Tubingen
https://orcid.org/0000-0002-0841-350X

Helene Eckstein
University of Tübingen: Eberhard Karls Universitat Tubingen

Shannon Ottmann
University of Tübingen: Eberhard Karls Universitat Tubingen

Lukas Reinelt
University of Tübingen: Eberhard Karls Universitat Tubingen

Sabine Stepinski
University of Tübingen: Eberhard Karls Universitat Tubingen

Heinz-R. Köhler
University of Tübingen: Eberhard Karls Universitat Tubingen

Rita Triebskorn
University of Tübingen: Eberhard Karls Universitat Tubingen

Research

Keywords: Antidepressants, Citalopram, Venlafaxine, Brown trout, Histopathology, Biochemical biomarker

DOI: https://doi.org/10.21203/rs.3.rs-92741/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: During the last decades, a worldwide increase in the number of cases of depression accompanied by rising prescription rates of antidepressants was recorded. In Germany, the two most prescribed antidepressants are the selective serotonin reuptake inhibitor (SSRI) citalopram and the serotonin and noradrenalin reuptake inhibitor (SNRI) venlafaxine, taking about 30% of the market share. Both antidepressants are found frequently in surface waters and have the potential of adversely affecting aquatic organisms. Most studies dealing with antidepressants address apical endpoints and behaviour, however, only few studies investigate biochemical biomarkers and histopathological alterations.

We conducted citalopram and venlafaxine exposure experiments with brown trout eggs in the eyed ova stage for five months, as well as with juvenile brown trout for four weeks. Exposure concentrations ranged from environmentally relevant 1 µg/L up to 1 mg/L. In this study, we investigated the effects of the antidepressants on β-esterase activity (neurotoxicity), stress protein level (proteotoxicity) and superoxide dismutase activity (oxidative stress). Additionally, we assessed the health status of the liver by means of histopathological analyses.

Results: We were able to show that both antidepressants did neither induce proteotoxic nor neurotoxic effects in brown trout. But for the antidepressant venlafaxine, the biochemical biomarker for oxidative stress (superoxide dismutase activity) was significantly increased in larvae exposed to at least 10 µg/L venlafaxine at 7°C. With regard to liver histopathology, fish exposed to higher citalopram concentrations were in a worse health condition than control fish irrespective of their life stage. Also the energy storage of fish exposed to 1 mg/L citalopram was reduced.

Conclusion: Thus, we here report citalopram-dependent histopathological alterations in brown trout liver, and the induction of oxidative stress by venlafaxine.

Background

Depression is one of the most common mental illnesses worldwide and has undergone a continuous increase during the last decades (34, 70). Worldwide, the number of cases of depression showed an increase of about 50% since 1990 (34). Associated with an increasing number of cases of depression, the number of prescribed antidepressants is constantly rising. In Germany, prescription rates of antidepressants increased about 40% between 2009 and 2018 (59). Selective serotonin reuptake inhibitors (SSRI) and serotonin and noradrenalin reuptake inhibitors (SNRI) constitute the majority of antidepressants. Two of the most prescribed antidepressants worldwide are citalopram (SSRI) and venlafaxine (SNRI). They amount to about 30% of the market share in Germany (59). This leads to a total consumption of 4.5 t (262.3 million defined daily doses (DDD)) of citalopram and 20.5 t (205.4 million DDD) of venlafaxine in 2018 in Germany only (59). Both antidepressants affect a similar biochemical pathway by inhibiting the reuptake of neurotransmitters like serotonin and noradrenalin from the synaptic cleft. They are known to be metabolised in liver and kidney of the human body. However, 12% of citalopram and 4.7% of venlafaxine are excreted unmetabolised via the urine and, therefore, enter wastewater treatment plants (22, 37). There, 18–27% of the citalopram is degraded, while the degradation of venlafaxine is even less efficient, amounting to 1–19% (19, 32). Therefore, both
antidepressants are found frequently in surface waters around the world (16, 17, 20, 21, 31, 47, 57). Citalopram surface water concentrations commonly range from 4 ng/L to 219 ng/L (47, 57) but, occasionally, also concentrations of up to 8 µg/L have been found in Indian lakes (17). Concentrations of citalopram in wastewater treatment plant effluents are in the range of 44 ng/L to 431 ng/L (21, 47, 62), but up to 76 µg/L citalopram was found downstream of an Indian wastewater treatment plant, and up to 840 µg/L in the effluent of an Indian drug manufacturer (17, 33). Venlafaxine concentrations in surface waters are higher than those for citalopram and range between 8 and 690 ng/L in wastewater-dominated streams (16, 20, 21).

Moreover, up to 2.5 µg/L venlafaxine was found in wastewater effluents (32). Being detected in such high concentrations, the effects of antidepressants, particularly of venlafaxine and citalopram, on aquatic life are important to being investigated. For both antidepressants, most studies were conducted regarding behavioural and apical endpoints in several fish species (7, 61). Behavioural changes in fish following exposure to venlafaxine or citalopram include changes in circadian rhythm (43), decreased escape behaviour (50), reduced attacks on food (26), changes in swimming behaviour (28, 40) and increased curiosity (27).

With regard to biochemical or structural biomarkers, however, knowledge about possible effects of citalopram and venlafaxine in aquatic wildlife is scarce. While venlafaxine did not affect the activity of the enzymes citrate synthase, catalase and pyruvate kinase in zebrafish, effects on superoxide dismutase (SOD) and acetylcholine esterase activities and the heat shock response were detected in fish exposed to different antidepressants (41, 71, 73). In respect to possible histopathological consequences in fish different results have been reported. Fathead minnow exposed to either venlafaxine, fluoxetine or sertraline did not reveal any histological effects in liver (58), while zebrafish and *Chichlosoma dimerus* exposed to fluoxetine, sertraline, paroxetine or mianserine showed histopathological alterations in liver, spleen and head kidney (48, 54). Thus, no consistent picture of possible effects of these pharmaceuticals on suborganismic effects in aquatic species can be drawn. In addition, data on the interplay of antidepressants and the confounding factor temperature are lacking up to now, and potential variation in the sensitivity of different life stages of fish has not been investigated so far. Consequently, we conducted experiments with brown trout (*Salmo trutta f. fario*), a feral fish species at different life stages at two temperatures. Eggs in the eyed-ova stage and juvenile fish were exposed to environmentally relevant and explicitly higher concentrations of the antidepressants citalopram and venlafaxine with focus on neurotoxicity (b-esterase activity), oxidative stress (SOD activity), proteotoxicity (stress protein level) and liver histopathology (overall health condition).

B-esterases, including acetylcholinesterase and carboxylesterases among others, are enzymes that are inhibited by paraxon (2, 30). Acetylcholinesterase (AChE) is an enzyme present in the synaptic cleft of cholinergic synapses, hydrolysing the neurotransmitter acetylcholine into its subcomponents acetic acid and choline (52). AChE is inhibited by various substances, such as carbamates or organophosphates and, thus, their inhibition can be seen as an adequate biomarker for neurotoxicity (71). Carboxylesterases (CbE) are known to detoxify insecticides like organophosphates, carbamates or pyrethroids and protectively counteract organophosphate-induced acetylcholinesterase inhibition (8, 56). It has already been shown, that antidepressants like citalopram, fluoxetine or sertraline affect acetylcholinesterase activity in aquatic organisms (45, 71, 72).

Superoxide dismutase (SOD) is an enzyme of the first line of the antioxidant defence system that catalyses the dismutation of O$_2$− radicals to hydrogen peroxide (H$_2$O$_2$). This compound can subsequently be
decomposed to water and oxygen, catalysed by the enzyme catalase (53, 71). Reactive oxygen species (ROS) are formed in several biological reactions, however, can also be induced by xenobiotics (51). These ROS, including superoxide radicals (O$_2^-$) are known to react with proteins, DNA and lipids resulting in oxidative stress for the organism (69). Therefore, an increased SOD activity is accompanied by an increased amount of ROS and thus represents an appropriate biomarker for oxidative stress (66). An increased SOD activity has been shown in amitriptyline-exposed zebrafish (73), sertraline-exposed goldfish (71), venlafaxine-exposed meagre (41) and citalopram-exposed daphnids (72).

Stress proteins or heat shock proteins with 70 kDa molecular weight (Hsp70) are chaperones, that bind to unfold, malfold or newly synthesised proteins to assist correct folding to the native protein (15, 18). These Hsp70s are induced by an increased portion of malfolded proteins in the cytoplasm and their induction is therefore regarded as a suitable biomarker for proteotoxicity (29). Maulvault, et al. (41) have shown an elevated heat shock protein response and ubiquitin level in meagre exposed to venlafaxine.

The liver is the main metabolic organ of vertebrates and is responsible for many vital functions like the metabolism of proteins, lipids and carbohydrates, as well as the detoxification of xenobiotics (55). Therefore, histopathological investigation of the liver is a powerful tool to assess sublethal effects of xenobiotics in fish (4, 25, 64). In zebrafish exposed to the antidepressants sertraline, paroxetine or mianserine a reduced proliferation of liver hepatocytes has been detected (48). Changes in liver-associated macrophage centres were shown in fluoxetine-exposed *Chichlosoma dimerus* (54).

The present study has been designed to complement existing data on citalopram and venlafaxine toxicity exerted on freshwater organisms, particularly in respect to biochemical and cytological effects of these two compounds. Behavioural and apical endpoints that, furthermore, have been investigated in our experiments have been previously published (74, 75).

Material And Methods

Test organisms

Juvenile brown trout and brown trout eggs were purchased from a commercial trout farm in Southern Germany (Forellenzucht Lohmühle, Alpirsbach-Ehlenbogen, Germany). This commercial fish breeder is listed as disease free (category I) according to the EC Council Directive (14). The eggs were obtained in the eyed ova stage and directly transferred into the experiments. Experiments with brown trout larvae took place in two climate chambers set on 7 °C or 11 °C, respectively, with a 10:14 hour light-dark-cycle. Prior to the experiments, juvenile brown trout were kept in an acclimation tank for at least one week. Experiments with juvenile brown trout were carried out in a climate chamber at 7 °C and the same photoperiod. All animal experiments were approved by the animal welfare committee of the Regional Council of Tübingen, Germany (ZO 2/16).

Test substances
Citalopram hydrobromide (C_{20}H_{21}F_{2}N_{2}O · HBr, CAS: 59729-32-7) and venlafaxine hydrochloride (C_{17}H_{27}NO_{2} · HCl, CAS: 99300-78-4) were obtained by Sigma Aldrich (Steinheim, Germany). Citalopram and venlafaxine stock solutions with concentrations of 1 and 100 mg/L were prepared with double distilled water and diluted to the respective test concentrations with filtered tap water (iron filter, active charcoal filter, particle filter). The concentrations refer to the respective free base substance (citalopram: C_{20}H_{21}F_{2}N_{2}O; venlafaxine: C_{17}H_{27}NO_{2}).

Exposure conditions

In both experiments, real chemical concentrations only differed slightly from nominal concentrations by 16% for venlafaxine and 19% for citalopram on the average, and limnochemical analyses revealed optimal test conditions with respect to temperature, oxygen content, pH and conductivity. Detailed data can be taken from (74, 75).

Experiments with brown trout larvae

As described previously (74, 75), the eyed-ova staged eggs of brown trout were exposed in a semi-static randomised three-block design at 7 °C and 11 °C. The respective nominal exposure concentrations of either citalopram or venlafaxine were 0, 1, 10, 100, 1000 µg/L. Fish were exposed in 25 L aquaria containing 10 L of the respective test solution, half of which was renewed twice a week. From the total yolk sac consumption until the end of the experiment fish were fed daily 3% of body weight with commercial trout feed (first 0.5 mm, then 0.8 mm, Inico Plus, Biomar, Brande, Denmark). Fish were exposed until eight respectively seven weeks after yolk sac consumption in the citalopram respectively venlafaxine experiment. At the end of the experiments, fish were euthanised with an overdose of the anaesthetic MS222 (1 g/L tricaine methanesulphonate buffered with NaHCO_{3}), followed by a cervical spine cut. Subsequently, fish were dissected. Livers were used for histopathology, heads for analyses of the b-esterase activity and the dorsal body part containing muscle and kidney for testing superoxide dismutase activity (only for the venlafaxine experiment). Livers were directly fixed in 2% glutaraldehyde (GA) dissolved from 25% GA with cacodylic buffer (0.1 M, pH 7.6) and stored at 4 °C until further processing. Samples for superoxide dismutase activity analysis were rinsed in PBS buffer (pH 7.4), and, along with the samples taken for b-esterase activity, frozen in liquid nitrogen and stored at -80 °C.

Experiments with juvenile brown trout

As described in previous publications (74, 75), juvenile brown trout were exposed to 0, 1, 10, 100 and 1000 µg/L of either citalopram or venlafaxine at 7° C in a semi-static randomised block design with three replicates. The fish were exposed in 25 L tanks containing 15 L of the respective concentrations. Twice a week, half of the respective test solution was replaced by freshly prepared test medium. Trout were fed 3% of body weight daily (0.8 mm, Inico Plus, Biomar, Brande, Denmark). After approximately four weeks of exposure (citalopram experiment: 28 days, venlafaxine experiment: 25 days), fish were euthanised with an overdose of MS222 (1 g/L buffered with NaHCO_{3}) followed by a cervical spine cut. Samples were taken from the liver for
histopathological analyses, the head was used for analyses of b-esterase activity, the dorsal part of the body containing mainly muscle and kidney was taken for superoxide dismutase testing (only venlafaxine experiment), and the gills were used for stress protein analysis. Liver samples were directly fixed in 2% glutardialdehyde (GA) dissolved from 25% GA with cacodylic buffer (0.1 M, pH 7.6) and stored at 4 °C. Samples for superoxide dismutase activity were rinsed in PBS buffer (pH 7.4) and, along with samples for the other biochemical biomarkers, frozen in liquid nitrogen and stored at -80 °C.

Histopathology

After at least one week of fixation, samples were washed three times with cacodylic buffer (0.1 M, pH 7.6), dehydrated in an ascending ethanol series, followed by 2-propanolol as an intermedium and infiltrated with paraffin wax in a tissue processor (TP 1020, Leica, Wetzlar, Germany). Afterwards, 3 µm sections were cut with a sledge microtome (SM 2000 R, Leica, Wetzlar, Germany). One of the microscope slides were stained with haematoxylin-eosin as an overview staining, and every other slide with alcian blue in combination with periodic acid-Schiff reagent (alcian blue-PAS) as a stain for glycogen and mucopolysaccharides. Slides were visually analysed using a light microscope (Axioskop 2, Zeiss, Oberkochen, Germany). A first evaluation of all samples was conducted to get an overview and to qualitatively assess occurring pathologies. In a second round, samples were re-labelled in a randomised order to obtain an observer-blinded assessment. The second evaluation was semi-quantitative, in which samples were classified into five different categories (1 - control, 2 - slight reaction, 3 - moderate reaction, 4 - strong reaction, 5 - destruction) according to the criteria described by Triebskorn, et al. (65). Additionally, the glycogen content of the samples was classified into three categories (1 - low, 2 - medium, 3 - high glycogen content). After the observer-blind evaluation, the respective class was assigned to the corresponding treatment.

Biochemical biomarkers

Superoxide dismutase activity

Superoxide dismutase (SOD) activity was measured in venlafaxine-exposed fish only, by using the superoxide dismutase assay kit by Cayman Chemical (Item No. 706002, Cayman Chemical Company, Ann Arbor, Michigan, USA). Tissues were homogenised in HEPES buffer (20 mM HEPES, 1 mM EGTA, 210 mM mannitol, 70 mM sucrose, pH 7.2, tissue(buffer ratio 1:5 w/v) with a pestle, and subsequently centrifuged (1500 × g, 5 min, 4 °C). After centrifugation, the supernatant was taken, mixed with Tris-HCl buffer (50 mM, pH 8) (supernatant/buffer ratio 1:30 w/v) and stored at -80 °C. Before performing the assay, the radical detector solution was freshly prepared from 19.95 mL assay buffer (50 mM Tris-HCl, 0.1 mM DTPA, 0.1 mM Hypoxanthine) and 50 µL tetrazolium salt solution (Item No. 706004, Cayman Chemical Company, Ann Arbor, Michigan, USA). Additionally, the SOD-standard curve (0, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05 SOD activity (U/mL)) was freshly prepared containing bovine erythrocyte SOD (Item No. 706005, Cayman Chemical Company, Ann Arbor, Michigan, USA). The assay was performed in 96-well plates with each well being filled with 200 µL radical detector. In the first wells, 10 µL of the standard and in the remaining wells, 10 µL sample was pipetted in duplicates. Subsequently, 50 µL xanthine oxidase (Item No. 706006, Cayman Chemical
Company, Ann Arbor, Michigan, USA) was mixed with 1.95 mL assay buffer. 20 µL of this solution was given in each well, the plate was sealed with adhesive foil and incubated for 30 min at room temperature. Subsequently, the plate was measured photometrically at 450 nm and the SOD-activity was calculated according to the following equation:

\[
\left(\frac{\text{sample linearised rate} - \text{y-intercept}}{\text{slope}} \right) \times \left(\frac{0.23 \text{ ml}}{0.01 \text{ ml}} \right) \times \text{sample dilution}
\]

Results are expressed as unit (U)/mL. One unit is defined as the amount of enzyme needed to exhibit 50% of the superoxide radical.

B-esterase activity

For measuring the b-esterase activity, fish head samples were homogenised manually in Tris-buffer (10 mM Tris, 10 mM NaCl, pH 7.3) mixed with protease inhibitors (aprotinin, leupeptin, pepstatin, antipain, trypsin). After homogenisation, samples were centrifuged (5000 × g, 10 min, 4 °C), the supernatant was taken and 10% glycerol was added before storage at -20 °C. The protein content of the samples was determined photometrically at 650 nm according to the method of Lowry, et al. (36), modified by Markwell, et al. (39). Bovine serum albumin was used as a standard. The determination of the acetylcholinesterase (AChE) activity was conducted according to Ellman, et al. (13), modified by Rault, et al. (52) and measured for five minutes at 405 nm. The activity of the carboxylesterases (CbE) was analysed using the substrates 4-nitrophenylacetate (NPA) and 4-nitrophenylvalerate (NPV). Determination was conducted according to Carr and Chambers (8) and Chanda, et al. (9), modified by Sanchez-Hernandez, et al. (56). The activity was also measured for five minutes at 405 nm. All samples were analysed in triplicates. The activity of AChE and CbE is referred to the protein content and expressed as milliunits (mU)/mg protein. One unit is defined as one micromole of substrate hydrolysed per minute.

Stress protein level

The quantification of 70 kDa stress proteins (Hsp70) was conducted in gill samples of the juvenile fish. Samples for larvae were not analysed in this assay due to the low weight of the samples and the high base loads of stress proteins in developing brown trout (24). Gills were homogenised with 98% of extraction buffer and 2% protease inhibitor (tissue/buffer ratio 1:4 w/v) according to the protocol of Dieterich, et al. (10). The total protein content was quantified according to Bradford (6). For the quantification of Hsp70, a total amount of 40 µg total protein was analysed. The proteins were separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and subsequently blotted on a nitrocellulose membrane in a semi-dry chamber according to Dieterich, et al. (10). Subsequently, the protein bands on the membrane were immunostained with a monoclonal α-Hsp70 IgG (mouse anti-human Hsp70, Dianova, Hamburg, Germany) and secondary peroxidase-coupled α-IgG (goat anti-mouse IgG conjugated to peroxidase, Jackson ImmunoResearch, West Grove, Pennsylvania, USA). Subsequently, membranes were stained with 4-chloro-1-naphthol until the protein bands became visible. Finally, the optical volume (= band area × average grey scale
value) of the bands was quantified by planimetry and densitometry and referred to an internal standard (brown trout total body homogenate). Results are expressed relative to the standard.

Statistics

Statistical analyses were performed with SAS JMP 14 software. Data for histological evaluation, either pathological classes or glycogen classes, were analysed with the likelihood-ratio-\(\chi^2\)-test. Whenever significant differences occurred, single comparisons between control and each treatment were also performed with the likelihood-ratio-\(\chi^2\)-test. To correct for multiple comparisons, the \(\alpha\)-level was adjusted according to the method developed by Benjamini and Hochberg (3). Data for biochemical biomarkers were analysed using a nested ANOVA with a subsequent post-hoc Dunnett’s test. If necessary, data were transformed to fulfil model assumptions. If no normal distribution could be achieved by transformation, data were analysed using a Kruskal-Wallis-Test with subsequent post-hoc Steel with control. If no homogeneity of variance was given, data were analysed using a Welch ANOVA with subsequent post-hoc Dunnett’s test. The \(\alpha\)-level was always set to 0.05.

CRED

Criteria for reporting and evaluating ecotoxicity data (CRED) aim to improve the evaluation, transparency, reproducibility and consistency of reliability of ecotoxicological studies. For the experiment with citalopram CRED were previously published and provided by Ziegler, et al. (74) and, for the experiments with venlafaxine, CRED are provided in Ziegler, et al. (75).

Results

Histopathology

Generally, the health status of the liver was negatively affected by an exposure in the experimental setup.

In the citalopram experiments, livers of the control and the 1 and 10 µg/L-exposed animals were characterized by large hepatocytes with a bright cytoplasm (Figure 1 A). In contrast, brown trout exposed to 100 and 1000 µg/L citalopram had darker cells and regularly showed hyperplasia of hepatocytes (Figure 1 C). In livers of fish exposed to 1000 µg/L citalopram, inflammations occurred more frequently (Figure 1 B). Additionally, livers of fish exposed to the highest treatment showed reduced glycogen contents compared to the control fish (Figure 1 D, E). In juvenile fish treated with 100 or 1000 µg/L citalopram, vacuolisation was more pronounced than in the controls. In all treatments, dilated capillaries, necrosis and macrophages occurred (Figure 1 C, F). When comparing the overall health status of the larvae, those animals exposed at 11 °C generally were in a worse condition than fish exposed at 7 °C. Livers of larvae exposed to 1000 µg/L citalopram at 11 °C and those exposed to 100 µg/L citalopram at 7 °C, as well as juvenile brown trout exposed to 1000 µg/L citalopram were in a significantly worse condition than livers of control fish (Figure 2 A-C) (brown trout larvae 11 °C: likelihood-ratio-\(\chi^2\)-test: \(df=16, \chi^2=30.986, p=0.0135\), pairwise comparison [control|1000 µg/L] \(p=0.0036\); brown trout larvae 7 °C: likelihood-ratio-\(\chi^2\)-test: \(df=16, \chi^2=40.467, p=0.0007\),...
pairwise comparison [control|1000 µg/L] \(p=0.0047 \); juvenile brown trout: likelihood-ratio-\(\chi^2 \)-test: \(df=16 \), \(\chi^2=30.706 \), \(p=0.0147 \), pairwise comparison [control|1000 µg/L] \(p=0.0095 \)). Furthermore, brown trout larvae treated with 1000 µg/L citalopram had a significantly decreased glycogen content when exposed at 11 °C (Figure 2 D) (brown trout larvae 11 °C: likelihood-ratio-\(\chi^2 \)-test: \(df=8 \), \(\chi^2=48.951 \), \(p<0.0001 \), pairwise comparison [control|1000 µg/L] \(p=0.0008 \)). Both, brown trout larvae exposed to 1000 µg/L at 7 °C and juvenile brown trout exposed to 1000 µg/L had, tendentially a lower glycogen content than the control (Figure 2 E, F). However, this effect was not significant (brown trout larvae 7 °C: likelihood-ratio-\(\chi^2 \)-test: \(df=8 \), \(\chi^2=19.807 \), \(p=0.0111 \), pairwise comparison revealed no difference to control; juvenile brown trout: likelihood-ratio-\(\chi^2 \)-test: \(df=8 \), \(\chi^2=8.804 \), \(p=0.3591 \)). Generally, the glycogen content appeared to be lower in juvenile brown trout than in brown trout larvae. With regard to the liver condition however, no distinct differences between larvae and juveniles were observed.

After exposure to venlafaxine as well as in control fish larvae, livers were characterized by large hepatocytes with a bright cytoplasm (Figure 1 A). Throughout all treatment groups at 11 °C, inflammations and macrophage infiltration occurred more frequently (Figure 1 B) compared to larvae exposed at 7 °C (and the respective controls). In fish exposed at 11 °C, necrosis and fibrosis was more abundant than in fish exposed at 7 °C, however, no difference between the control and venlafaxine- treated groups were detected. The liver conditions of venlafaxine-exposed juvenile brown trout ranged between category 1 and 5. In most cases, the cytoplasm of the hepatocytes did not appear bright (Figure 1 C) and the cells were medium-sized. In livers of juvenile fish exposed to 10 and 1000 µg/L, inflammations were observed more frequently than in the other treatments (Figure 1 B). Dilated capillaries, intercellular spaces, vacuolisation, irregular shaped nuclei and necrosis occurred equally throughout all treatments (Figure 1 C, F). The semi-quantitative assessment revealed no difference in the health status between controls and venlafaxine-exposed fish (brown trout larvae 11 °C: likelihood-ratio-\(\chi^2 \)-test: \(df=16 \), \(\chi^2=10.701 \), \(p=0.8275 \); brown trout larvae 7 °C: likelihood-ratio-\(\chi^2 \)-test: \(df=16 \), \(\chi^2=15.494 \), \(p=0.4888 \); juvenile brown trout: likelihood-ratio-\(\chi^2 \)-test: \(df=16 \), \(\chi^2=19.575 \), \(p=0.24 \)). Likewise, the glycogen content of fish did not differ significantly from the respective controls at both temperatures (brown trout larvae 11 °C: likelihood-ratio-\(\chi^2 \)-test: \(df=8 \), \(\chi^2=9.941 \), \(p=0.2692 \); brown trout larvae 7 °C: likelihood-ratio-\(\chi^2 \)-test: \(df=8 \), \(\chi^2=6.98 \), \(p=0.5388 \); juvenile brown trout: likelihood-ratio-\(\chi^2 \)-test: \(df=8 \), \(\chi^2=9.911 \), \(p=0.2713 \)). However, livers of venlafaxine-exposed brown trout larvae showed a lower glycogen content than the livers from fish in all other experiments.

Biochemical biomarkers
Table 1

Biochemical biomarkers in brown trout larvae exposed to citalopram.

Results are given as arithmetic means and standard deviations. AChE= acetylcholinesterase, CbE= carboxylesterase, NPA= 4-nitrophenylacetate, NPV= 4-nitrophenylvalerate.

concentration citalopram (µg/L)	11 °C	7 °C
AChE activity (mU/mg Protein)		
0	45.4	43.8
±	± 8.4	± 9.1
1	43.8	47.0
±	± 9.1	± 10.4
10	47.8	42.8
±	± 10.4	± 10.4
100	42.8	47.8
±	± 8.6	± 8.6
1000	43.3	45.3
±	± 10.8	± 10.8
0	41.7	44.7
±	± 9.1	± 7.9
1	44.7	43.3
±	± 8.4	± 6.7

CbE activity (NPA substrate) (mU/mg Protein)		
0	112.3	112.3
±	± 26.7	± 19.1
1	121.5	121.5
±	± 28.1	± 28.1
10	120.9	120.9
±	± 21.8	± 21.8
100	123.0	123.0
±	± 26.7	± 26.7
1000	125.0	125.0
±	± 12.9	± 12.9
0	94.6	94.6
±	± 15.3	± 15.3
1	98.8	98.8
±	± 20.0	± 20.0
10	91.7	91.7
±	± 15.3	± 15.3
100	96.5	96.5
±	± 21.4	± 21.4
1000	96.2	96.2
±	± 16.0	± 16.0

CbE activity (NPV substrate) (mU/mg Protein)		
0	82.1	82.1
±	± 25.0	± 21.5
1	95.8	95.8
±	± 28.4	± 25.0
10	97.6	97.6
±	± 28.0	± 28.0
100	96.4	96.4
±	± 28.3	± 28.3
1000	94.6	94.6
±	± 26.5	± 26.5
0	71.2	71.2
±	± 16.4	± 16.4
1	66.0	66.0
±	± 23.5	± 23.5
10	73.4	73.4
±	± 19.7	± 19.7

Table 2

Biochemical biomarkers in brown trout larvae exposed to venlafaxine.

Results are given as arithmetic means and standard deviations. AChE= acetylcholinesterase, CbE= carboxylesterase, NPA= 4-nitrophenylacetate, NPV= 4-nitrophenylvalerate, SOD= superoxide dismutase; asterisks represent significant differences to the respective control (*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001).

concentration venlafaxine (µg/L)	11 °C	7 °C
AChE activity (mU/mg Protein)		
0	63.0	63.0
±	± 8.0	± 11.1
1	64.4	59.9
±	± 16.5	± 16.5
10	59.9	61.6
±	± 16.4	± 16.4
100	57.1	57.1
±	± 14.5	± 14.5
1000	70.8	70.8
±	± 14.8	± 14.8
0	71.0	71.0
±	± 11.0	± 11.0
1	71.5	71.5
±	± 15.1	± 15.1
10	69.3	69.3
±	± 15.9	± 15.9
100	64.1	64.1
±	± 12.0	± 12.0

CbE activity (NPA substrate) (mU/mg Protein)		
0	141.8	141.8
±	± 23.3	± 26.6
1	146.5	146.5
±	± 27.9	± 27.9
10	143.2	143.2
±	± 29.6	± 29.6
100	130.2	130.2
±	± 22.9	± 22.9
1000	129.9	129.9
±	± 22.4	± 22.4
0	142.3	142.3
±	± 22.9	± 22.9
1	145.5	145.5
±	± 19.5	± 19.5
10	139.5	139.5
±	± 16.0	± 16.0
100	135.5	135.5
±	± 23.9	± 23.9

CbE activity (NPV substrate) (mU/mg Protein)		
0	104.2	104.2
±	± 28.9	± 28.0
1	108.2	108.2
±	± 32.8	± 32.8
10	105.1	105.1
±	± 36.9	± 36.9
100	94.5	94.5
±	± 22.9	± 22.9
1000	93.0	93.0
±	± 23.7	± 23.7
0	92.2	92.2
±	± 20.1	± 20.1
1	92.8	92.8
±	± 19.4	± 19.4
10	90.1	90.1
±	± 13.7	± 13.7

SOD activity (U/mL)		
0	166.0	166.0
±	± 29.3	± 31.7
1	149.3	149.3
±	± 40.4	± 40.4
10	148.2	148.2
±	± 51.6	± 51.6
100	158.8	158.8
±	± 29.3	± 29.3
1000	161.1	161.1
±	± 37.5	± 37.5
0	133.9	133.9
±	± 37.1	± 37.1
1	140.2	140.2
±	± 36.0	± 36.0
10	158.2	158.2
±	± 36.1	± 36.1
100	165.6	165.6
±	± 34.9	± 34.9
1000	155.7	155.7
Table 3
Biochemical biomarkers in juvenile brown trout exposed to citalopram and venlafaxine.

Results are given as arithmetic means and standard deviations. AChE= acetylcholinesterase, CbE= carboxylesterase, NPA= 4-nitrophenylacetate, NPV= 4-nitrophenylvalerate, Hsp70= 70 kDa stress protein family, SOD= superoxide dismutase, n.a.= not assessed.

concentration (µg/L)	citalopram	venlafaxine								
	0	1	10	100	1000	0	1	10	100	1000
AChE activity (mU/mg Protein)	48.6 ± 13.8	54.6 ± 14.6	48.0 ± 9.6	48.6 ± 9.0	58.3 ± 16.0	70.6 ± 13.4	73.6 ± 12.5	73.1 ± 10.9	71.2 ± 11.6	69.6 ± 9.0
CbE activity (NPA substrate) (mU/mg Protein)	66.6 ± 16.6	64.9 ± 17.7	63.4 ± 16.8	65.7 ± 17.7	61.6 ± 17.4	104.7 ± 20.2	111.4 ± 26.2	114.0 ± 19.0	113.1 ± 18.1	107.5 ± 19.6
CbE activity (NPV substrate) (mU/mg Protein)	55.6 ± 23.3	50.1 ± 25.6	50.1 ± 24.7	51.2 ± 26.4	42.7 ± 24.7	94.7 ± 29.2	102.8 ± 32.4	106.1 ± 26.0	106.8 ± 24.6	97.3 ± 22.9
SOD activity (U/mL)	n.a.	n.a.	n.a.	n.a.	88.4 ± 31.4	100.4 ± 38.9	91.6 ± 32.5	100.4 ± 31.1	107.9 ± 35.2	
Hsp70 level (relative greyvalue)	2.10 ± 0.35	2.21 ± 0.58	1.95 ± 0.43	2.02 ± 0.44	2.02 ± 0.41	2.06 ± 0.24	2.02 ± 0.24	2.06 ± 0.23	2.13 ± 0.31	1.90 ± 0.22

Superoxide dismutase activity

Regarding the activity of the superoxide dismutase (SOD) in brown trout larvae exposed at 11 °C to venlafaxine, no differences between controls and chemical-treated fish were observed (brown trout larvae 11 °C: nested ANOVA: df=4,10, F=1.5387, p=1946). However, at 7 °C, the SOD activity of venlafaxine-exposed larvae was increased up to 24 % in relation to the control. Brown trout larvae exposed to 10 and 100 µg/L venlafaxine at 7 °C showed a significantly increased SOD activity compared to the respective controls, and for larvae exposed to 1000 µg/L the same trend became obvious (brown trout larvae 7 °C: nested ANOVA: df=4,10, F=3.7377, p=0.0064, post-hoc Dunnett’s Test [control 10 µg/L] p=0.0442, [control 100 µg/L] p=0.0048, [control 1000 µg/L] p=0.082). Comparing the SOD-activity between the two temperatures, the activity in control larvae exposed at 11 °C (165.96 ± 29.32 U/ml) was remarkably higher (24 %) than in larvae exposed at 7 °C (133.86 ± 37.49). Regarding the SOD activity of juvenile brown trout, the activity of fish treated with venlafaxine was on average higher than the SOD activity of control fish. The activity of the SOD in juvenile fish exposed to the highest treatment was increased by 22 % compared to the respective controls, however, the difference was not statistically significant (juvenile brown trout: nested ANOVA: df=4,10, F=1.5804, p=0.1834).
B-esterase activity

The b-esterase activity did not differ between antidepressant-treated fish and the respective controls in all experiments. Thus, the b-esterase activity was neither influenced by citalopram nor venlafaxine and, furthermore, did not depend on the life stage or temperature (statistical details in the supplement).

Stress protein level

Hsp70 levels of juvenile brown trout were neither influenced by citalopram nor venlafaxine (juvenile brown trout + citalopram: nested ANOVA: df=4,10, F= 1.7073, p=0.1522; juvenile brown trout + venlafaxine: nested ANOVA: df=4,10, F=3.2671, p=0.0138, post-hoc Dunnett's test revealed no difference to control).

Discussion

Histopathological analyses made evident that the health status of the liver was negatively affected by citalopram in fish exposed to 100 µg/L or 1000 µg/L of the pharmaceutical. The most prominent symptoms were hyperplasia of the hepatocytes and inflammations, which occurred in larvae exposed at both temperatures, as well as in juvenile brown trout. The impaired health status of the fish liver is plausibly related to the accumulation of citalopram in the tissue of exposed fish (74) which might be responsible for an increased biotransformation activity and metabolism rate. High metabolism rates in the liver are likely reflected by a reduction of glycogen in the fish liver and hyperplasia of hepatocytes (63). Additionally, oxidative stress could also have contributed to the depicted damages (1, 76). According to previous studies, antidepressants in general were shown to have the potential for inducing negative effects in liver tissue. Although Schultz, et al. (58) did not observe any liver alterations in response to either fluoxetine, sertraline or venlafaxine in fathead minnow, Nowakowska, et al. (48), however, reported a decrease in hepatocyte proliferation in zebrafish exposed to 10 µg/L of the SSRIs sertraline, paroxetine and the antidepressant mianserin. Rats exposed to the SSRI fluoxetine revealed histopathological liver injury, with symptoms like e.g. increased numbers of Kupffer and inflammatory cells as well as focal necrosis (49, 76). Likewise, rats exposed to 20 mg/kg citalopram showed increased inflammation in their livers, higher numbers of Kupffer cells and liver lymphocytes as well as an increased activity of liver enzymes (1, 44). Additionally, isolated rat hepatocytes exposed to 500 µM citalopram showed cell death, oxidative stress and mitochondrial toxicity (1). Also in humans, exposure to citalopram resulted in acute liver damage and increased levels of liver enzymes, indicating hepatitis (23, 46). The observed reduction of glycogen in brown trout exposed to 1000 µg/L very likely went along with the observed reduced food intake. A reduced food uptake may directly cause a decrease in glycogen storage in the liver (11, 67) and might be responsible for the lower growth rate in brown trout exposed to 1000 µg/L citalopram, compared to the controls (74).

Venlafaxine exposure did not cause severe liver damage in brown trout. Only in juveniles exposed to 10 and 1000 µg/L venlafaxine, slightly more inflammations became evident than in control fish. The lacking cellular reactions in the fish livers might be due to the fact, that tissue concentrations of venlafaxine were up to 500-fold lower than those for citalopram in citalopram-exposed fish (74, 75), resulting in lower metabolic and biotransformation activity. Similarly, Schultz, et al. (58) did not find any evidence of venlafaxine-dependent
histopathological alterations in fathead minnow livers. Furthermore, venlafaxine had no effect on the glycogen storage in the liver of exposed brown trout. Moreover, it has to be mentioned that also in control fish, slight histopathologies became obvious which might be due to the artificial exposure conditions in the aquaria which, however, were kept as appropriate as possible during the experiments. As previously stated by (60), this might be a general physiological response of the fish to the laboratory exposure. Furthermore, the liver status was generally impacted by temperature. Livers of larvae exposed at 11 °C were in a worse condition with increased inflammations and necrosis than livers of larvae exposed at 7 °C. The diminished health condition might be related to the higher metabolism of fish exposed at 11 °C. In a study with Japanese flounder also a reduced liver health status could be shown in relation to higher temperature (35). Additionally, data for SOD-activity suggested a higher oxidative stress when exposed to the higher temperature with SOD values being 24% higher at 11 °C than at 7 °C. This difference in SOD activity might be influenced by the higher temperature of 11 °C, but differences due to different exposure time cannot be excluded. Additionally, larvae exposed at 11 °C showed a higher mortality rate compared to larvae exposed at 7 °C substantiating the poorer health condition at 11 °C (75). The higher temperature might have increased the overall SOD-activity which could possibly resulted in the worse health status and the elevated mortality. In several studies it has become evident, that oxidative stress responses are in general temperature sensitive (5, 38, 68). Possibly, the relatively high basic level of SOD in controls at 11 °C prevented a further induction by venlafaxine, which became obvious in fish exposed at 7 °C, with more pronounced responses in larvae than in juveniles. In larvae, this effect appeared in individuals exposed to at least 10 µg/L, with a maximum increase of 24% while, in juveniles, the maximum SOD-activity was 22% higher than in the control, however not significant. Along this line, effects of different antidepressants on oxidative stress were previously published. Elevated oxidative stress indicated by changes in catalase, peroxidase, glutathione-S-transferase (GST) and SOD-activity have been shown in meagre exposed to venlafaxine (41), zebrafish exposed to amitriptyline (73), goldfish exposed to sertraline (71) and daphnids exposed to citalopram (72). In a multi stressor experiment temperature effects on the anti-oxidant defence have been shown and potential deleterious effects of venlafaxine on the anti-oxidant defence mechanism of zebrafish were indicated (42). However, in one study, fluoxetine-exposed Pomatoschistus microps did not show a change in SOD activity (12). In general, both the vast majority of literature results and our own data indicate that venlafaxine and other antidepressants can induce oxidative stress in fish.

In both life stages of brown trout, neither citalopram nor venlafaxine did alter the AChE or CbE activity, thus, no neurotoxic effect of venlafaxine or citalopram on brown trout was detected. Nevertheless, effects of antidepressants on AChE have been reported before: decreased AChE activity could be detected in a marine clam species exposed to low µg/L fluoxetine (45), Pomatoschistus microps exposed to 1 mg/L fluoxetine (12) and Daphnia magna exposed to 1 mg/L citalopram (72). In contrast, goldfish exposed to low µg/L sertraline showed an increased AChE activity, which could not be detected at higher concentrations (71). Concerning the impact of antidepressants on carboxylesterases, to our knowledge, no data are published for fish so far.

Likewise, neither citalopram nor venlafaxine exposure induced a response of the Hsp70 system, thus, no proteotoxic effects became evident in juvenile brown trout. However, Maulvault et al. (2019) observed an increased heat shock response in meagre exposed to 20 µg/L venlafaxine. As Hsp70 is a rather unspecific
biomarker, which is induced by various types of stressors, differences might be attributed to different exposure conditions or to species-specificity.

Generally, temperature plays an important role in our scenarios, because it can have an impact on many physiological responses in fish (35, 38, 42, 68). We could see that fish exposed at 11 °C revealed an overall higher SOD-activity, however, differences between larvae exposed at 11 °C and 7 °C cannot solely be attributed to temperature effects, because of different exposure times. Furthermore, it could be shown that effects in larvae were more pronounced than in juveniles, however, these differences can also not solely be accredited to different sensitivities of the life stages but can also result from longer exposure times of larvae. A comparison of the presented biomarker data with previously published results obtained for endpoints like behaviour and growth impairment from the same experiments (74, 75) make evident, that the effect concentrations for behavioural and growth effects are in the same range as those for the biomarker responses shown here. The lowest observed effect concentration (LOEC) in citalopram-exposed brown trout was 100 µg/L reflected by histopathological as well as behavioural alterations. Similarly, in venlafaxine-exposed brown trout, behavioural and growth endpoints show similar LOECs of 10 µg/L as the biochemical biomarker SOD-activity. This demonstrates that citalopram and venlafaxine can induce effects on cellular and biochemical markers in equivalent concentrations as it affects growth and behavioural endpoints. As a result, the no observed effect concentrations (NOEC) in these experiments are just an order of magnitude above environmentally relevant concentrations and thus reasonably call for increased vigilance towards these pharmaceuticals in the environment.

Conclusion

Combining the results for histopathology, neurotoxicity, proteotoxicity and oxidative stress with previously published data, it became evident that effects and side-effects of citalopram and venlafaxine in brown trout are similar to those known for humans. LOECs were at 10 µg/L for venlafaxine and at 100 µg/L for citalopram, matching LOECs previously recorded for behavioural and growth endpoints. Although the NOECs for citalopram and venlafaxine are at least a decimal power higher than environmentally relevant concentrations, in consideration of safety factors and additive effects both antidepressants have necessarily to be considered in environmental risk assessment.

Declarations

Ethics approval

All animals were approved by the animal welfare committee of the Regional Council of Tübingen, Germany (ZO 2/16).

Consent for publication

Not applicable
Availability of data and materials

The datasets generated and/or analysed during the current study are available in the effectnet-seek repository, https://effectnet-seek.bioquant.uni-heidelberg.de/investigations/9

Competing interests

The authors declare that they have no competing interests.

Funding

This study is part of the Effect-Net project (Effect Network in Water Research), which is part of the Water Research Network Baden-Württemberg (Wassernetzwerk Baden-Württemberg) and is funded by the Ministry of Science, Research and Arts of Baden-Württemberg. The authors received support from the Open Access Publishing Fund of University of Tübingen. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Authors’ contributions

Michael Ziegler conceived, designed and performed the experiments, analysed the data and prepared the figures and tables and wrote the first draft of the paper and edited according to the coauthors. Helene Eckstein, Shannon Ottmann, Lukas Reinelt and Sabine Stepinski analysed part of the Data and approved the final draft. Heinz-R. Köhler and Rita Triebskorn conceived and designed the experiments and contributed reagents/materials/analysis tools as well as reviewed the first draft of the paper and approved the final draft.

Acknowledgements

The authors thank the Ministry of Science, Research and Arts Baden-Württemberg for funding the Water Research Network Baden-Württemberg (Wassernetzwerk Baden-Württemberg), in which the Effect-Net (Effect Network in Water Research) project is embedded. Particular thanks go to our project coordinator, Thomas Braunbeck. Furthermore, we want to thank Stefanie Jacob, Stefanie Krais, Elisabeth May, Katharina Peschke, Hannah Schmieg and Sabrina Wilhelm for laboratory support and technical assistance. Thanks also go to Stefanie Dietz and Mona Schweizer for constructive comments on the manuscript.

References

1. Ahmadian, E., Eftekhari, A., Fard, J. K., Babaei, H., Nayebi, A. M., Mohammadnejad, D. and Eghbal, M. A. 2017. In vitro and in vivo evaluation of the mechanisms of citalopram-induced hepatotoxicity, *Archives of Pharmacal Research* 40(11): 1296-1313; DOI: 10.1007/s12272-016-0766-0.
2. Aldridge, W. N. 1952. Serum Esterases. 1. Two types of esterase (A and B) hydrolysing p-nitrophenyl acetate, propionate and butyrate, and a method for their determination, *Biochemical Journal* 1: 110-117; DOI: 10.1042/bj0530110.

3. Benjamini, Y. and Hochberg, Y. 1995. Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing, *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 57(1): 12; DOI: 10.2307/2346101.

4. Bernet, D., Schmidt, H., Meier, W., Burkhardt-Holm, P. and Wahl, T. 1999. Histopathology in fish: proposal for a protocol to assess aquatic pollution, *Journal of Fish Diseases* 22: 25-34; DOI: 10.1046/j.1365-2761.1999.00134.x.

5. Birnie-Gauvin, K., Costantini, D., Cooke, S. J. and Willmore, W. G. 2017. A comparative and evolutionary approach to oxidative stress in fish: A review, *Fish and Fisheries* 18(5): 928-942; DOI: 10.1111/faf.12215.

6. Bradford, M. M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, *Analytical Biochemistry* 72: 248-254; DOI: 10.1016/0003-2697(76)90527-3.

7. Brodin, T., Piovano, S., Fick, J., Klaminder, J., Heynen, M. and Jonsson, M. 2014. Ecological effects of pharmaceuticals in aquatic systems–impacts through behavioural alterations, *Philosophical Transactions of the Royal Society of London B Biological Sciences* 369(1656); DOI: 10.1098/rstb.2013.0580.

8. Carr, R. L. and Chambers, J. E. 1991. Acute Effects of the Organophosphate Paraoxon on Schedule-Controlled Behavior and Esterase Activity in Rats: Dose-Response Relationships, *Pharmacology Biochemistry & Behavior* 40: 929-936; DOI: 10.1016/0091-3057(91)90108-E.

9. Chanda, M. S., Mortensen, S. R., Moser, V. C. and Padilla, S. 1997. Tissue-Specific Effects of Chlorpyrifos on Carboxylesterase and Cholinesterase Activity in Adult Rats: An in Vitro and in Vivo Comparison, *Fundamental and Applied Nematology* 38(2): 148-157; DOI: 10.1093/toxsci/38.2.148.

10. Dieterich, A., Troschinski, S., Schwarz, S., Di Lellis, M. A., Henneberg, A., Fischbach, U., Ludwig, M., Gartner, U., Triebskorn, R. and Kohler, H. R. 2015. Hsp70 and lipid peroxide levels following heat stress in Xeropicta derbentina (Krynicki 1836) (Gastropoda, Pulmonata) with regard to different colour morphs, *Cell Stress and Chaperones* 20(1): 159-68; DOI: 10.1007/s12192-014-0534-3.

11. Driedzic, W. R. and Short, C. E. 2007. Relationship between food availability, glycerol and glycogen levels in low-temperature challenged rainbow smelt Osmerus mordax, *Journal of Experimental Biology* 210(Pt 16): 2866-72; DOI: 10.1242/jeb.003749.

12. Duarte, I. A., Pais, M. P., Reis-Santos, P., Cabral, H. N. and Fonseca, V. F. 2019. Biomarker and behavioural responses of an estuarine fish following acute exposure to fluoxetine, *Marine Environmental Research* 147: 24-31; DOI: 10.1016/j.marenvres.2019.04.002.

13. Ellman, G. L., Courtney, K. D., Andres, V. and Featherstone, R. M. 1961. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity, *Biochemical Pharmacology* 7: 88-95; DOI: 10.1016/0006-2952(61)90145-9.

14. EU. 2006. Richtlinie 2006/88/EG des Rates mit Gesundheits- und Hygienevorschriften für Tiere in Aquakultur und Aquakulturerzeugnissen und zur Verhütung und Bekämpfung bestimmter Wassertierkrankheiten, *Amtsblatt der Europäischen Union L* 328/14, Luxemburg.
15. **Feder, M. E. and Hofmann, G. E. 1999.** Heat-Shock Proteins, Molecular Chaperones, and the Stress Response: Evolutionary and Ecological Physiology, *Annual Review of Physiology* 61: 243-282; DOI: 10.1146/annurev.physiol.61.1.243.

16. **Ferrer, I. and Thurman, E. M. 2012.** Analysis of 100 pharmaceuticals and their degradates in water samples by liquid chromatography/quadrupole time-of-flight mass spectrometry, *Journal of Chromatography* A 1259: 148-57; DOI: 10.1016/j.chroma.2012.03.059.

17. **Fick, J., Söderström, H., Lindberg, R. H., Phan, C., Tysklind, M. and Larsson, D. G. J. 2009.** Contamination of Surface, Ground, and Drinking Water from Pharmaceutical Production, *Environmental Toxicology and Chemistry* 28(12): 2522-2527; DOI: 10.1897/09-073.S1.

18. **Fink, A. L. 1999.** Chaperone-Mediated Protein Folding, *Physiological Reviews* 79(2): 425-449.

19. **Golovko, O., Kumar, V., Fedorova, G., Randak, T. and Grabic, R. 2014.** Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant, *Chemosphere* 111: 418-26; DOI: 10.1016/j.chemosphere.2014.03.132.

20. **Grabicova, K., Grabic, R., Fedorova, G., Fick, J., Cerveny, D., Kolarova, J., Turek, J., Zlabek, V. and Randak, T. 2017.** Bioaccumulation of psychoactive pharmaceuticals in fish in an effluent dominated stream, *Water Research* 124: 654-662; DOI: 10.1016/j.watres.2017.08.018.

21. **Himmelsbach, M., Buchberger, W. and Klampf, C. W. 2006.** Determination of antidepressants in surface and waste water samples by capillary electrophoresis with electrospray ionization mass spectrometric detection after preconcentration using off-line solid-phase extraction, *Electrophoresis* 27(5-6): 1220-6; DOI: 10.1002/elps.200500693.

22. **Holliday, S. M. and Benfield, P. 1995.** Venlafaxine. A Review of its Pharmacology and Therapeutic Potential in Depression, *Drugs* 49(2): 280-294; DOI: 10.2165/00003495-199549020-00010.

23. **Hunfeld, N. G. M., ten Berge, R. L., LeBrun, P. P. H., Smith, S. J. and Melief, P. H. G. J. 2010.** Hepatotoxicity related to citalopram intake: A case report, *International Journal of Risk and Safety in Medicine* 22(1): 1-5; DOI: 10.3233/jrs-2010-0486.

24. **Jacob, S., Dotsch, A., Knoll, S., Kohler, H. R., Rogall, E., Stoll, D., Tisler, S., Huhn, C., Schwartz, T., Zwiener, C. and Triebskorn, R. 2018.** Does the antidiabetic drug metformin affect embryo development and the health of brown trout (Salmo trutta f. fario) ?, *Environmental Sciences Europe* 30(1): 48; DOI: 10.1186/s12302-018-0179-4.

25. **Jacob, S., Knoll, S., Huhn, C., Kohler, H. R., Tisler, S., Zwiener, C. and Triebskorn, R. 2019.** Effects of guanylurea, the transformation product of the antidiabetic drug metformin, on the health of brown trout (Salmo trutta f. fario), *PeerJ* 7: e7289; DOI: 10.7717/peerj.7289.

26. **Kellner, M., Porseryd, T., Porsch-Hallstrom, I., Hansen, S. H. and Olsen, K. H. 2015.** Environmentally relevant concentrations of citalopram partially inhibit feeding in the three-spine stickleback (Gasterosteus aculeatus), *Aquatic Toxicology* 158: 165-70; DOI: 10.1016/j.aquatox.2014.11.003.

27. **Kellner, M., Porseryd, T., Hallgren, S., Porsch-Hallstrom, I., Hansen, S. H. and Olsen, K. H. 2016.** Waterborne citalopram has anxiolytic effects and increases locomotor activity in the three-spine stickleback (Gasterosteus aculeatus), *Aquatic Toxicology* 173: 19-28; DOI: 10.1016/j.aquatox.2015.12.026.
28. Kellner, M., Porseryd, T., Porsch-Hallstrom, I., Borg, B., Roufidou, C. and Olsen, K. H. 2018. Developmental exposure to the SSRI citalopram causes long-lasting behavioural effects in the three-spined stickleback (Gasterosteus aculeatus), *Ecotoxicology* 27(1): 12-22; DOI: 10.1007/s10646-017-1866-4.

29. Köhler, H.-R., Bartussek, C., Eckwert, H., Farian, K., Gränzer, S., Knigge, T. and Kunz, N. 2001. The hepatic stress protein (hsp70) response to interacting abiotic parameters in fish exposed to various levels of pollution, *Journal of Aquatic Ecosystem Stress and Recovery* 8: 261-279; DOI: 10.1023/A:1012935931161.

30. Laguerre, C., Sanchez-Hernandez, J. C., Kohler, H. R., Triebskorn, R., Capowiez, Y., Rault, M. and Mazzia, C. 2009. B-type esterases in the snail Xeropicta derbentina: an enzymological analysis to evaluate their use as biomarkers of pesticide exposure, *Environmental Pollution* 157(1): 199-207; DOI: 10.1016/j.envpol.2008.07.003.

31. Lajeunesse, A., Gagnon, C. and Sauvé, S. 2008. Determination of Basic Antidepressants and Their N-Desmethyl Metabolites in Raw Sewage and Wastewater Using Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry, *Analytical Chemistry (Washington)* 80(14): 5325-5333; DOI: 10.1021/ac800162q.

32. Lajeunesse, A., Smyth, S. A., Barclay, K., Sauve, S. and Gagnon, C. 2012. Distribution of antidepressant residues in wastewater and biosolids following different treatment processes by municipal wastewater treatment plants in Canada, *Water Research* 46(17): 5600-5612; DOI: 10.1016/j.watres.2012.07.042.

33. Larsson, D. G., de Pedro, C. and Paxeus, N. 2007. Effluent from drug manufactures contains extremely high levels of pharmaceuticals, *Journal of Hazardous Materials* 148(3): 751-5; DOI: 10.1016/j.jhazmat.2007.07.008.

34. Liu, Q., He, H., Yang, J., Feng, X., Zhao, F. and Lyu, J. 2020. Changes in the global burden of depression from 1990 to 2017: Findings from the Global Burden of Disease study, *Journal of Psychiatric Research* 126: 134-140; DOI: 10.1016/j.jpsychires.2019.08.002.

35. Liu, Y., Ma, D., Xiao, Z., Xu, S., Wang, Y., Wang, Y., Xiao, Y., Song, Z., Teng, Z., Liu, Q. and Li, J. 2014. Histological change and heat shock protein 70 expression in different tissues of Japanese flounder Paralichthys olivaceus in response to elevated temperature, *Chinese Journal of Oceanology and Limnology* 33(1): 11-19; DOI: 10.1007/s00343-015-4028-7.

36. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein Measurement with the Folin Phenol Reagent, *Journal of Biological Chemistry* 265-275; ISSN: 0021-9258.

37. Mackulak, T., Mosny, M., Skubak, J., Grabcic, R. and Birosova, L. 2015. Fate of psychoactive compounds in wastewater treatment plant and the possibility of their degradation using aquatic plants, *Environmental Toxicology and Pharmacology* 39(2): 969-73; DOI: 10.1016/j.etap.2015.02.018.

38. Madeira, D., Narciso, L., Cabral, H. N., Vinagre, C. and Diniz, M. S. 2013. Influence of temperature in thermal and oxidative stress responses in estuarine fish, *Comparative Biochemistry and Physiology* 166(2): 237-43; DOI: 10.1016/j.cbpa.2013.06.008.

39. Markwell, M. A. K., Haas, S. M., Bieber, L. L. and Tolbert, N. E. 1978. A Modification of the Lowry Procedure to Simplify Protein Determination in Membrane and Lipoprotein Samples, *Analytical Biochemistry* 87: 206-210; DOI: 10.1016/0003-2697(78)90586-9.
40. Maulvault, A. L., Santos, L., Paula, J. R., Camacho, C., Pissarra, V., Fogaca, F., Barbosa, V., Alves, R., Ferreira, P. P., Barcelo, D., Rodriguez-Mozaz, S., Marques, A., Diniz, M. and Rosa, R. 2018. Differential behavioural responses to venlafaxine exposure route, warming and acidification in juvenile fish (Argyrosomus regius), *Science of the Total Environment* 634: 1136-1147; DOI: 10.1016/j.scitotenv.2018.04.015.

41. Maulvault, A. L., Camacho, C., Barbosa, V., Alves, R., Anacleto, P., Pousao-Ferreira, P., Rosa, R., Marques, A. and Diniz, M. S. 2019. Living in a multi-stressors environment: An integrated biomarker approach to assess the ecotoxicological response of meagre (Argyrosomus regius) to venlafaxine, warming and acidification, *Environmental Research* 169: 7-25; DOI: 10.1016/j.envres.2018.10.021.

42. Mehdi, H., Bragg, L. M., Servos, M. R. and Craig, P. M. 2019. Multiple Stressors in the Environment: The Effects of Exposure to an Antidepressant (Venlafaxine) and Increased Temperature on Zebrafish Metabolism, *Frontiers in Physiology* 10: 1431; DOI: 10.3389/fphys.2019.01431.

43. Melvin, S. D. 2017. Effect of antidepressants on circadian rhythms in fish: Insights and implications regarding the design of behavioural toxicity tests, *Aquatic Toxicology* 182: 20-30; DOI: 10.1016/j.aquatox.2016.11.007.

44. Mohammadi, Z., Azamia, M., Mirabolghasemi, G., Shiravi, A. and Mohammadi, Z. 2013. Histological changes in the liver of fetuses of pregnant rats following citalopram administration, *Indian Journal of Pharmacology* 45(5): 517-21; DOI: 10.4103/0253-7613.117726.

45. Munari, M., Marin, M. G. and Matozzo, V. 2014. Effects of the antidepressant fluoxetine on the immune parameters and acetylcholinesterase activity of the clam Venerupis philippinarum, *Marine Environmental Research* 94: 32-7; DOI: 10.1016/j.marenvres.2013.11.007.

46. Neumann, H., Csepregi, A., Evert, M. and Malfertheiner, P. 2008. Drug-Induced Liver Disease Related to Citalopram, *Journal of Clinical Psychopharmacology* 28(2): 254-255; DOI: 10.1097/JCP.0b013e318167b8e1.

47. Nodler, K., Licha, T., Bester, K. and Sauter, M. 2010. Development of a multi-residue analytical method, based on liquid chromatography-tandem mass spectrometry, for the simultaneous determination of 46 micro-contaminants in aqueous samples, *Journal of Chromatography A* 1217(42): 6511-21; DOI: 10.1016/j.chroma.2010.08.048.

48. Nowakowska, K., Giebultowicz, J., Kamaszewski, M., Adamski, A., Szudrowicz, H., Ostaszewska, T., Solarska-Dzieciolowska, U., Nałęcz-Jawecki, G., Wroczynski, P. and Drobniewska, A. 2020. Acute exposure of zebrafish (Danio rerio) larvae to environmental concentrations of selected antidepressants: Bioaccumulation, physiological and histological changes, *Comparative Biochemistry and Physiology* 229: 108670; DOI: 10.1016/j.cbpc.2019.108670.

49. Özden, H., Bildirici, K., Üstüner, D., Cengis, B. P., Tülay, A. and Yilmaz, V. 2005. Histopathological examination of rat liver after experimental application of fluoxetine, *Türkiye Ekopatoloji Dergisi* 11(1): 9-15; ISSN: 1300-7939.

50. Painter, M. M., Buerkley, M. A., Julius, M. L., Vajda, A. M., Norris, D. O., Barber, L. B., Furlong, E. T., Schultz, M. M. and Schoenfuss, H. L. 2009. Antidepressants at Environmentaly Relevant Concentrations affect Predator Avoidance Behavior of Larval Fathead Minnows (*Pimephales promelas*), *Environmental Toxicology and Chemistry* 28(12): 2677-2684; DOI: 10.1897/08-556.1.
51. Pedrajas, J. R., Peinado, J. and López-Barea, J. 1995. Oxidative stress in fish exposed to model xenobiotics. Oxidatively modified forms of Cu,Zn-superoxide dismutase as potential biomarkers, *Chemico-Biological Interactions* 98: 16; DOI: 10.1016/0009-2797(95)03651-2

52. Rault, M., Collange, B., Mazzia, C. and Capowiez, Y. 2008. Dynamics of acetylcholinesterase activity recovery in two earthworm species following exposure to ethyl-parathion, *Soil Biology & Biochemistry* 40(12): 3086-3091; DOI: 10.1016/j.soilbio.2008.09.010.

53. Regoli, F. and Giuliani, M. E. 2014. Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms, *Marine Environmental Research* 93: 106-17; DOI: 10.1016/j.marenvres.2013.07.006.

54. Rey Vazquez, G., Da Cuna, R. H., Dorelle, L. S. and Lo Nostro, F. L. 2020. Immunohistological Biomarkers of Toxicity by a Pharmaceutical Antidepressant in the Freshwater Cichlid Fish Cichlasoma dimerus (Teleostei, Cichliformes), *Bulletin of Environment Contamination and Toxicology* 104(2): 180-184; DOI: 10.1007/s00128-019-02770-3.

55. Rodriguez, E. d. L. and Fanta, E. 1998. Liver Histopathology of the Fish *Brachydanio rerio* Hamilton-Buchman after Acute Exposure to Sublethal Levels of the Organophosphate Dimethoate 500, *Revista Brasileira de Zoologia* 15(2): 441-450; DOI: 10.1590/S0101-81751998000200014

56. Sanchez-Hernandez, J. C., Mazzia, C., Capowiez, Y. and Rault, M. 2009. Carboxylesterase activity in earthworm gut contents: Potential (eco)toxicological implications, *Comparative Biochemistry and Physiology* 150(4): 503-11; DOI: 10.1016/j.cbpc.2009.07.009.

57. Schultz, M. M., Furlong, E. T., Kolpin, D. W., Werner, S. L., Schoenfuss, H. L., Barber, L. B., Blazer, V. S., Norris, D. O. and Vajda, A. M. 2010. Antidepressant Pharmaceuticals in Two U.S. Effluent-Impacted Streams: Occurrence and Fate in Water and Sediment, and Selective Uptake in Fish Neural Tissue, *Environmental Science and Technology* 44: 1918-1925; DOI: 10.1021/es9022706.

58. Schultz, M. M., Painter, M. M., Bartell, S. E., Logue, A., Furlong, E. T., Werner, S. L. and Schoenfuss, H. L. 2011. Selective uptake and biological consequences of environmentally relevant antidepressant pharmaceutical exposures on male fathead minnows, *Aquatic Toxicology* 104(1-2): 38-47; DOI: 10.1016/j.aquatox.2011.03.011.

59. Schwabe, U., Paffrath, D., Ludwig, W.-D. and Klauber, J. 2019. Arzneiverordnungsreport 2019, *Springer-Verlag GmbH*, Berlin.

60. Schwarz, S., Schmieg, H., Scheurer, M., Kohler, H. R. and Triebkorn, R. 2017. Impact of the NSAID diclofenac on survival, development, behaviour and health of embryonic and juvenile stages of brown trout, Salmo trutta f. fario, *Science of the Total Environment* 607-608: 1026-1036; DOI: 10.1016/j.scitotenv.2017.07.042.

61. Sehonova, P., Svobodova, Z., Dolezelova, P., Vosmerova, P. and Faggio, C. 2018. Effects of waterborne antidepressants on non-target animals living in the aquatic environment: A review, *Science of the Total Environment* 631-632: 789-794; DOI: 10.1016/j.scitotenv.2018.03.076.

62. Silva, L. J., Pereira, A. M., Meisel, L. M., Lino, C. M. and Pena, A. 2014. A one-year follow-up analysis of antidepressants in Portuguese wastewaters: occurrence and fate, seasonal influence, and risk assessment, *Science of the Total Environment* 490: 279-87; DOI: 10.1016/j.scitotenv.2014.04.131.
63. Spina, E., Santoro, V. and D’Amigo, C. 2008. Clinically Relevant Pharmacokinetic Drug Interactions with Second-Generation Antidepressants: An Update, Clinical Therapeutics 30(7): 1206-1227; DOI: 10.1016/j.clinthera.2008.07.009.

64. Triebskorn, R., Casper, H., Scheil, V. and Schwaiger, J. 2007. Ultrastructural effects of pharmaceuticals (carbamazepine, clofibric acid, metoprolol, diclofenac) in rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio), Analytical and Bioanalytical Chemistry 387(4): 1405-16; DOI: 10.1007/s00216-006-1033-x.

65. Triebskorn, R., Telcean, I., Casper, H., Farkas, A., Sandu, C., Stan, G., Coarescuc, O., Dori, T. and Kohler, H. R. 2008. Monitoring pollution in River Mures, Romania, part II: metal accumulation and histopathology in fish, Environmental Monitoring and Assessment 141(1-3): 177-88; DOI: 10.1007/s10661-007-9886-9.

66. Valavanidis, A., Vlahogianni, T., Dassenakis, M. and Scoullos, M. 2006. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants, Ecotoxicology and Environmental Safety 64(2): 178-89; DOI: 10.1016/j.ecoenv.2005.03.013.

67. Vijayan, M. M. and Moon, T. W. 1992. Acute Handling Stress Alters Hepatic Glycogen Metabolism in Food-Deprived Rainbow-Trout (Oncorhynchus mykiss), Canadian Journal of Fisheries and Aquatic Sciences 49(11): 7; DOI: 10.1139/f92-247.

68. Vinagre, C., Madeira, D., Narciso, L., Cabral, H. N. and Diniz, M. 2012. Effect of temperature on oxidative stress in fish: Lipid peroxidation and catalase activity in the muscle of juvenile seabass, Dicentrarchus labrax, Ecological Indicators 23: 274-279; DOI: 10.1016/j.ecolind.2012.04.009.

69. Vutukuru, S. S., Chintada, S., Radha Madhavi, K., Venkateswara Rao, J. and Anjaneyulu, Y. 2006. Acute effects of copper on superoxide dismutase, catalase and lipid peroxidation in the freshwater teleost fish, Esomus danicus, Fish Physiology and Biochemistry 32(3): 221-229; DOI: 10.1007/s10695-006-9004-x.

70. Wittchen, H. U., Jacobi, F., Rehm, J., Gustavsson, A., Svensson, M., Jonsson, B., Olesen, J., Allgulander, C., Alonso, J., Faravelli, C., Fratiglioni, L., Jennum, P., Lieb, R., Maercker, A., van Os, J., Preisig, M., Salvador-Carulla, L., Simon, R. and Steinhausen, H. C. 2011. The size and burden of mental disorders and other disorders of the brain in Europe 2010, European Neuropsychopharmacology 21(9): 655-79; DOI: 10.1016/j.euroneuro.2011.07.018.

71. Xie, Z., Lu, G., Li, S., Nie, Y., Ma, B. and Liu, J. 2015. Behavioral and biochemical responses in freshwater fish Carassius auratus exposed to sertraline, Chemosphere 135: 146-55; DOI: 10.1016/j.chemosphere.2015.04.031.

72. Yang, H., Lu, G., Yan, Z., Liu, J., Ma, B. and Dong, H. 2017. Biological effects of citalopram in a suspended sediment-water system on Daphnia magna, Environmental Science and Pollution Research International 24(26): 21180-21190; DOI: 10.1007/s11356-017-9763-1.

73. Yang, M., Qiu, W., Chen, J., Zhan, J., Pan, C., Lei, X. and Wu, M. 2014. Growth inhibition and coordinated physiological regulation of zebrafish (Danio rerio) embryos upon sublethal exposure to antidepressant amitriptyline, Aquatic Toxicology 151: 68-76; DOI: 10.1016/j.aquatox.2013.12.029.

74. Ziegler, M., Knoll, S., Köhler, H.-R., Tisler, S., Huhn, C., Zwiener, C. and Triebskorn, R. 2020. Impact of the antidepressant citalopram on the behaviour of two different life stages of brown trout, PeerJ 8; DOI: 10.7717/peerj.8765.
75. Ziegler, M., Banet, M., Bauer, R., Köhler, H.-R., Stepinski, S., Tisler, S., Huhn, C., Zwiener, C. and Triebskorn, R. 2020. Behavioural and developmental changes in brown trout after exposure to venlafaxine, *Manuscript, in preparation*, contact: michael.ziegler@student.uni-tuebingen.de.

76. Zlatkovic, J., Todorovic, N., Tomanovic, N., Boskovic, M., Djordjevic, S., Lazarevic-Pasti, T., Bemardi, R. E., Djurdjevic, A. and Filipovic, D. 2014. Chronic administration of fluoxetine or clozapine induces oxidative stress in rat liver: a histopathological study, *European Journal of Pharmaceutical Sciences* 59: 20-30; DOI: 10.1016/j.ejps.2014.04.010.