2068. Evaluation of Cefazidime-Avibactam Disks from Different Commercial Manufacturers for Susceptibility Testing against Meropenem Nonsusceptible Enterobacteriaceae

Lynn-Yao Lin, MS and Ian A. Critchley, PhD1; Allergan plc, Irvine, California

Session: 232. Diagnostics: Resistance Testing
Saturday, October 6, 2018: 12:30 PM

Background. Cefazidime and avibactam (CAZ-AVI) diffusion disks have been widely used in clinical laboratories in the United States for susceptibility testing of infections caused by Enterobacteriaceae and Pseudomonas aeruginosa. A few cases of high error rates and overcall of resistance in some carbapenem-resistant Enterobacteriaceae (CRE) isolates have been reported. The purpose of this study was to evaluate performance of CAZ-AVI diffusion disks made by three manufacturers in comparison with that of the standard broth microdilution (MDD) method for susceptibility testing against a large collection of CRE.

Methods. A panel of 110 meropenem nonsusceptible Enterobacteriaceae clinical isolates, including 98 Escherichia coli, eight Enterobacter cloacae, and four Klebsiella pneumoniae, were tested using CAZ-AVI (30/20 µg) diffusion disks manufactured by Hardy Diagnostics (Hardy) and BD Biosciences (BD). These isolates harbored various carbapenemase genes including KPC-2, KPC-3, VIM, NDM, OXA, ESBL, and altered OmpK35 and OmpK36. The same isolates were tested for susceptibility to CAZ-AVI by BMD using a custom-made Trek panel. Correlation between minimal inhibitory concentration (MIC) and disk diffusion inhibition zones was assessed based on Clinical and Laboratory Standards Institute (CLSI) breakpoints and error rate analysis.

Results. Overall disk diffusion inhibition zones correlated well with MIC for disks manufactured by both Hardy and BD according to CLSI CAZ-AVI breakpoints (susceptible/resistant): MIC ≤/≥8/4/µg/mL, disk diffusion ≥21/≤20 mm. Error rates were low for the Hardy disks grown on Hardy and BD Mueller–Hinton agar (MHA) with 0.9% very major errors (VME)/1.8% major errors (ME) and 1.8% VME/5.3% ME, respectively. The error rates for BD disks grown on Hardy and BD MHA plates were 1.8% VME/0% ME and 1.8% VME/6.4 ME, respectively. ME rates appeared to be lower when Hardy MHA plates were used for both Hardy and BD disks.

Conclusion. CAZ-AVI (30/20 µg) disks manufactured by Hardy and BD performed in agreement with susceptibility testing against a set of CRE isolates. These data showed good categorical agreement between disk diffusion and BMD methods. Error rates were lowest when Hardy MHA plates were used for both Hardy and BD disks.

Disclosures. L. Y. Lin, Allergan: Employee, Salary. I. A. Critchley, Allergan (at time of study): Employee, Salary.

2069. Automation Process Improving Microbiological Laboratory Efficiency

Jacob Nichols, MD1; Alanna Emrick, MLS (ASCP); Carolyn Gonzalez-Ortiz, M (ASCP); Kristen Fuhrmann, Pharm.D1; Ying Tabak, PhD2; Latha Vankeerupam, MS1; Stephen Kurtz, MS3; David Sellers, RN4 and Fatma Levien, MD3; Internal Medicine, Texas Tech Health Sciences Center, Lubbock, Texas; *Clinical Laboratory, University Medical Center, Lubbock, Texas, 1Pharmacy, University Medical Center, Lubbock, Texas; *Becton, Dickinson and Company, Franklin Lakes, New Jersey, 5Clinical Development, Becton, Dickinson and Company, Franklin Lakes, New Jersey, 6Pediatrics, Texas Tech Health Sciences Center, Lubbock, Texas

Session: 232. Diagnostics: Resistance Testing
Saturday, October 6, 2018: 12:30 PM

Background. Automation minimizes hands-on steps and facilitates process improvement in the microbiology laboratory. The impact on the efficiency improvement of the culturing process in an academic regional hospital after implementation of total laboratory automation (TLA) was evaluated.

Methods. An annual appraisal from the Quality Improvement Review Board, a retrospective analysis of microbiological data in Becton Dickinson (BD) Clinical Insights Research Database was performed. Then, laboratory process change and reported microbiological results turnaround time (TAT) before and after implementation of the TLA was compared (2013 vs. 2016).

Results. Samples were classified into blood, respiratory, urine, wound and others. Statistical analysis was performed with SAS software version 9.2. The comparison was done using chi-square test for categorical and log-transformed t-test for continuous variables. A P-value of < 0.05 was considered statistically significant.

Conclusion. A total of 9,351 pre-defined common and clinically important positive mono-microbial culture results were included in the organism identification (ID) TAT analysis. The time of the day at which results were reported in 2016 was more evenly distributed throughout a 24-hour period, rather than delaying to the following morning (P < 0.0001). The definitive positive bacterial pathogen identification TAT was significantly shorter across all sources in 2016 compared with 2013 with overall TAT means (with standard deviation) of 56.8 (24.3) hours in 2013 vs. 43.3 (20.8) hours in 2016 (P < 0.0001). The negative results (n = 58,640) TAT was also shortened in 2016 for all (P < 0.05), except for respiratory and other sources.

Disclosures. M. Fuchs, Accelerate Diagnostics, Inc.: Employee, Salary. S. Kim, Accelerate Diagnostics, Inc.: Employee, Salary. S. Metzger, NIH: Grant Investigator, Grant recipient. Accelerate Diagnostics, Inc.: Employee, Salary.
2071. Evaluation of BD Phoenix™ CPO Detect Assay for Detection of Carbapenemase Producing Organisms in Clinical Samples in Singapore

Partha P. De, MBBS, FRCPA1; Emese Ng, BS2; Tser Pin3; Raymond Lin, FRCPA, MBBS, FAMS4 and Tim Hart, MD-PhD1; 1Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore, Singapore, 2Tan Tock Seng Hospital, Singapore, Singapore, 3Division of Microbiology, National University Hospital, Singapore, Singapore, 4Microbiology, Tan Tock Seng Hospital, Singapore, Singapore, Singapore

Session: 232. Diagnostics: Resistance Testing
Saturday, October 6, 2018: 12:30 PM

Background. Rapid and accurate detection of CPO is crucial to a targeted infection control strategy, as in Tan Tock Seng Hospital (TTSH), a large tertiary hospital in Singapore, where cohorting of CPO colonized patients is driven by PCR-based genotypic identification. A newly released panel for the BD Phoenix system, the CPO Detect panel, includes CPO detection with Amber Class identification, alongside standard Phoenix antibiotic susceptibility testing. We evaluated this system in the context of the TTSH CPO control strategy.

Methods. A total of 201 isolates from CHROMID™ positive rectal swabs taken as part of inpatient screening, and from clinical samples with confirmed carbapenem resistance, were assayed prospectively between January and April 2018. Ninety-five samples were sampled retrospectively from 2017. CPO genotype was determined using PCR targeting NDM, KPC, oxa-48 like, IMI and IMP carbapenemases. Isolates were analysed on the CPO Detect assay in parallel.

Results. A broad range of CPO phenotypes was achieved and results were comparable in both prospective and retrospective samples. Overall, a concordance of 76% was found between CPO Detect determination of CPO status (both positive and negative) and PCR (238/313 isolates). PCR genotype was in agreement with the Amber class found by CPO Detect in 151/200 positives (75.5%), 27 samples were not assigned an Amber class and Amber class was mismatched in 8 samples. Partial agreement was noted in 17 samples in which CPO Detect indicated a single Amber class but PCR identified two carbapenemase genes. CPO Detect outright failed to detect 14/200 PCR positive samples (7%) of which 10 were IMI. CPO Detect did however identify a CPO in a further 54 samples which were PCR negative.

Conclusion. Compared with PCR, CPO Detect had a sensitivity of 93% in CPO detection and agreement of 75.5% with respect to Amber class specificity. False negatives were overwhelmingly the IMI genotype. We are continuing to characterise these by further molecular means, as well as the 54 samples found by CPO Detect but PCR negative.

Disclosures. All authors: No reported disclosures.

2072. Multicenter Evaluation of the Etest vs. Agar Dilution for Susceptibility Testing of Helicobacter pylori

Salika M. Shaker, PhD, D(ABMM)1; Joshdh Otsuo, MPH, MLS (ASCP)2; George Keller, SM (ASCP)1; Hillary Van Heule, MT (ASCP)1; Peggy Kohner, MT (ASCP)1; Niconlynn Cole, MT(ASCP)1; Audrey N. Schwartz, MD3; Sandra S. Richter, MD2 and Marc Roger Couturier, PhD, D(ABMM)1; 1ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah, 2Department of Pathology, University of Utah, Salt Lake City, Utah, 3Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio, 4Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota

Session: 232. Diagnostics: Resistance Testing
Saturday, October 6, 2018: 12:30 PM

Background. Helicobacter pylori is associated with peptic ulcer disease and gastric malignancy. Antimicrobial susceptibility testing (AST) is often requested for patients who fail eradication therapy. The CLSI reference method, agar dilution (AD), is not performed in most laboratories and maintaining organism viability during transit to a reference laboratory is difficult. We assessed the performance of the Etest (bioMerieux) as a method for H. pylori AST in comparison to AD.

Methods. Frozen stocks of 82 H. pylori isolates with AD results previously reported by Mayo Clinic were prepared from the same plate for distribution to participating laboratories. Etest was performed at ARUP Laboratories and Cleveland Clinic (CC). For Etest, isolates were incubated for 72 hours in a microaerobic atmosphere. Aged Mueller–Hinton agar with 5% sheep blood plates were inoculated with a three McFarland suspension prepared in brain heart infusion broth. Etest strips were applied and MICs read after 72 hours of microaerobic incubation. Results were interpreted by applying CLSI and EUCAST breakpoints. Categorical agreement (CA), very major, major and minor errors (VME, ME, and mE) were determined for Etest using AD as the reference method. Isolates with errors were repeat tested in duplicate by Etest to determine the final results summarized below.

Results. For clarithromycin, 65% of isolates were resistant (R) by AD; Etest results at each laboratory showed 97.5% CA (1 me and 1 ME). For tetracycline, only 2.5% of isolates were R by AD; a single VME occurred at both ARUP and CC (98.8% CA) with the same isolate. The AD dilutions tested for amoxicillin prevented interpretation with EUCAST breakpoints. With one exception, amoxicillin Etest results were susceptible (S, 0.125 mg/L) at both laboratories (98.8% of MICs ± one dilution). Applying levofloxacin EUCAST breakpoints (S, ≤0.5 mg/L) to interpret ciprofloxacin results, 57.8% of isolates were R by AD. ARUP CA was 97.5% (1 ME, 1 VME) and CC CA was 96.3% (1 ME, 2 VMEs).

Conclusion. Clarithromycin, tetracycline, and ciprofloxacin Etest results for H. pylori showed acceptable CA (>95%) at both testing sites compared with the AD reference method. The comparative ease of performance and reproducibility of the Etest may help standardize it as an AST method for H. pylori.

Disclosures. S. S. Richter, bioMerieux: Grant Investigator, Research grant; BD Diagnostics: Grant Investigator, Research grant; Roche: Grant Investigator, Research grant; Hologic: Grant Investigator, Research grant; Diasorin: Grant Investigator, Research grant; Accelerate: Grant Investigator, Research grant; Biofire: Grant Investigator, Research grant.

2073. Positive Clinical Impact of MALDI-TOF for the Management of Inpatient Pneumonia Without Additional Antimicrobial Stewardship (AS) Support

Ann Marie Porreca, PharmD, BCPS1; Jason Gallagher, PharmD, FCCP, FIDSA, BCPS1; and Kaede Ota Sullivan, MD2; Temple University School of Pharmacy, Philadelphia, Pennsylvania, 2Lewish Katz School of Medicine at Temple University, Philadelphia, Pennsylvania

Session: 232. Diagnostics: Resistance Testing
Saturday, October 6, 2018: 12:30 PM

Background. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry decreases time to identification (ID) and has been shown to improve antibiotic utilization when combined with real-time AS intervention. We assessed the impact of MALDI-TOF without additional AS support in patients with inpatient pneumonia.

Methods. This was a single-center quasi-experimental study of adult patients with a pneumonia who had a positive respiratory culture with bacteria that were identified by MALDI-TOF from August 2016–February 2017 (Pre-MALDI-TOF) and August–February 2018 (Post-MALDI-TOF). The primary endpoint was the time to initiation of optimal therapy before and after MALDI-TOF. The secondary endpoints included: clinical cure at 7 days; inpatient antibiotic duration; infection-related length of stay (LOS); overall LOS; excess antibiotic days; and costs. T-tests, Mann–Whitney U, and chi-squared tests were used for comparisons where appropriate.

Results.

Table 1: Time to Optimal Therapy and Intervention Opportunities
Pre-MALDI-TOF (180)
Total opportunities for intervention, n (%)
De-escalation performed, n/N (%)
Escalation performed, n/N (%)
Time to identification, h, median, IQR
Time-to-optimal therapy, h, median, IQR
Excess doses, n = 0–1
Excess cost, n = 2,326.57

Table 2: Outcomes
Pre-MALDI-TOF
In-hospital mortality
Inpatient duration of antibiotics, days, median, IQR
Infection related LOS, days, median, IQR
Overall hospital LOS, days, median, IQR
Clinical cure

Conclusion. The implementation of MALDI-TOF without AS support for pneumonia patients reduced the time to ID and optimal therapy but there were no significant differences in clinical outcomes. It did not positively impact excess antibiotic doses or costs.

Disclosures. J. Gallagher, Achaogen: Consultant, Consulting fee; Merck: Consultant, Grant Investigator and Speaker's Bureau, Consulting fee and Research.

Poster Abstracts • OFID 2018:5 (Suppl 1) • S560