Electronic supplementary information

A simple electrochemical sensor based on rGO/MoS$_2$/CS modified GCE for highly sensitive detection of Pb(II) in tobacco leaves

Chuanen Guo1, Chengxiang Wang2, Hongyan Sun2, Daide Mei2, Hongtao Gao2*

1Judicial Expertise Center, Shandong University of Political Science and Law, Jinan, 250014, P. R. China.

2Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science & Technology, Qingdao, 266042, P. R. China.

*Corresponding author, Dr. Hongtao Gao, professor, Email: gahtao@qust.edu.cn, Tel: 86-0532-84022990; Fax: 86-0532-84022990.
Fig. S1. FT-IR Spectra of (a) GO, (b) rGO/MoS$_2$ and (c) rGO/MoS$_2$/CS
Fig. S2. The voltammetric response of the nanocomposite-modified GCE with various CS content (a) and the ratio of MoS$_2$ to rGO (b) for 0.50 μM of Pb(II) in 0.10 M HAc–NaAc.
Fig. S3. Optimization of electrode operating conditions for detecting 0.50 μM of Pb(II) in 0.10 M HAc–NaAc; (a) pH; (b) deposition potential and (c) deposition time
Table S1. Comparison of the analytical performance for the analysis of Pb(II) at different electrodes

Electrode	Technique	Linear range (μM)	LOD (μM)	Reference
[Ru(bpy)_3]^2+/GO	DPV	0.1–1.2	0.0016	[1]
C_{60}-CS	DPASV	0.005–6.0	0.001	[2]
N-doped graphene	DPASV	0.07–9.0	0.05	[3]
ZIF-8/CS	DPASV	1.0–100	0.062	[4]
MnFe_2O_4/GO	SWASV	0.2–1.1	0.0883	[5]
Fe_3O_4/CS	SWASV	0.4–1.4	0.0422	[6]
rGO/Fe_3O_4	SWASV	0.4–1.5	0.169	[7]
MoS_2/rGO	SWASV	0.05–0.7	0.005	[8]
rGO/MoS_2/CS	SWASV	0.005–2.0	0.0016	This work
Reference

[1] M. B. Gumpu, M. Veerapandian, U. M. Krishnan, and J. B. B. Rayappan, Talanta, 2017, **162**, 574-5822.
[2] X. Han, Z. Meng, H. Zhang, and J. Zheng, *Microchim. Acta*, 2018, **185(5)**, 274.
[3] H. Xing, J. Xu, X. Zhu, X. Duan, L. Lu, W. Wang, and T. Yang, *J. Electroanal. Chem.*, 2016, **760**, 52-58.
[4] Y. Chu, F. Gao, F. Gao, and Q. Wang, *J. Electroanal. Chem.*, 2019, **835**, 293-300.
[5] S. F. Zhou, X. J. Han, H. L. Fan, J. Huang, and Y. Q. Liu, *J. Alloys Compd.*, 2018, **747**, 447-454.
[6] S. F. Zhou, X. J. Han, and Y. Q. Liu, *J. Alloys Compd.*, 2016, **684**, 1-7.
[7] Y. Sun, W. Zhang, H. Yu, C. Hou, D. S. Li, Y. Zhang, and Y. Liu, *J. Alloys Compd.*, 2015, **638**, 182-187.
[8] Y. F. Sun, J. H. Sun, J. Wang, Z. X. Pi, L. C. Wang, M. Yang, and X. J. Huang, *Anal. Chim. Acta*, 2019, **1063**, 64-74.