Function and regulation of F-box/WD repeat-containing protein 7 (Review)

ZHENG ZHANG1-4*, QIANGSHENG HU1-4*, WENYAN XU1-4, WENSHENG LIU1-4, MENGQI LIU1-4, QIQING SUN1-4, ZENG YE1-4, GUIXIONG FAN1-4, YI QIN1-4, XIAOWU XU1-4, XIANJUN YU1-4 and SHUNRONG JI1-4

1Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center; 2Department of Oncology, Shanghai Medical College; 3Shanghai Pancreatic Cancer Institute; 4Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P.R. China

Received November 7, 2019; Accepted April 16, 2020

DOI: 10.3892/ol.2020.11728

Abstract. The ubiquitin-proteasome system is an important post-translational modification system involved in numerous biological processes, such as cell cycle regulation, gene transcription, signal transduction, apoptosis, differentiation and development. F-box/WD repeat-containing protein 7 (FBXW7) is one of the most studied F-box (FBX) proteins, serving as substrate recognition component of S phase kinase-associated protein 1-Cullin 1-FBX protein complexes. As a tumor suppressor, FBXW7 recognizes numerous proto-oncoproteins and promotes their ubiquitination and subsequent proteasomal degradation. FBXW7 is regulated at different levels, leading to tunable and specific control of the activity and abundance of its substrates. Therefore, genetic mutations or decreases in its expression serve an important biological role in tumor development. In-depth studies and identification of additional substrates targeted by FBXW7 have suggested a signaling network regulated by FBXW7, including its tumor-inhibitory role. The present review focused on the role of FBXW7 in tumor suppression and its application in cancer therapy.

Contents

1. Introduction
2. Transcriptional and translational regulation of FBXW7 expression
3. Post-translational modifications of FBXW7
4. Genetic alterations of FBXW7 in cancers
5. Substrates and mechanisms of FBXW7 involved in tumor suppression
6. Therapeutic exploitation of FBXW7 signaling
7. Conclusions

1. Introduction

Numerous cell signaling pathways are regulated by the ubiquitin-proteasome system. Ubiquitination of the target protein generally requires the joint action of three enzymes. First, E1 activates the ubiquitin molecule; E2 then binds the ubiquitin molecule; and finally, an E3 ubiquitin ligase binds to a specific substrate and E2 covalently transfers the ubiquitin protein to one or more lysine residues of the target protein (1-3). Thousands of ubiquitination processes are ongoing in a cell at any moment (4). The high specificity of this degradation mechanism targeting specific proteins is determined mainly by the E3 ubiquitin ligase (5). Therefore, the E3 ligase plays a key role in degradation of the target protein (6). E3 ubiquitin ligases with a RING domain comprise a large group of E3 ubiquitin ligases that is responsible for ~20% of ubiquitin-mediated protein degradation (6); additionally, degradation events regulated by Cullin RING ligases (CRLs), which are composed of Cullin (Cul) proteins, account for a large proportion (7). Previous studies have shown that CRLs not only are the primary factors in protein degradation but also are involved in the initiation and progression of some cancers including colorectal cancer, cholangiocarcinoma, etc (8,9).

The Cul protein family was first reported in 1996 to form an active complex that can regulate the cell cycle (10). The human genome contains 7 Cul proteins, including, Cul1, Cul2, Cul3, Cul4A, Cul4B, Cul5, Cul7 and Cul9 (11). All six have conserved, homologous Cul domains, which function to bind the subunit RING domain proteins RING-box protein 1 (Rbx1) or Rbx 2 in the whole complex. In addition to Cul7 and Cul9, five other members have three serial N-terminal Cul repeats, which are used to recognize subunits in the E3 ubiquitin ligase complex. Since it was discovered and defined
nearly 20 years ago, subsequent studies have revealed that
the multipart E3 ligase complex consisting of this family of
proteins has an intricate structure and serves important func-
tions in the cell cycle, signal transduction, cell development
and other physiological processes (12,13).

Among the CRLs, CRL1 [also known as S phase kinase-
associated protein 1-Cul 1-F-box (SCF)] has been extensively
studied. The SCF complex is composed of Cul1, Rbx1, the
linker protein Skp1 and variable F-box (FBX) proteins. Within
the SCF structure, differences in the FBX proteins, determines
the specificity of substrate binding to accomplish the degra-
dation of different substrates. To date, 69 FBX proteins have
been found and identified in the human genome, and most can
form the CRL1 complex (14). FBX proteins can be roughly
divided into three types according to the other domains present:
i) FBXW, which contain a tryptophan-aspartic acid 40 (WD40)
repeat domain; ii) FBXL, which contain a leucine-rich repeat
domain; and iii) FBXO, which contain other domain motifs.

Accumulating evidence has indicated that dysregulation of
FBX proteins is involved in the development, angiogenesis,
proliferation and metastasis of a number of malignancies
(9). F-box/WD repeat-containing protein 7 (FBXW7) is also called
AGO, hCDC4 and SEL-10; SEL-10 was first identified from
yeast, AGO was first found in Drosophila, and CDC4 is a
yeast gene (15). The SCF E3 ubiquitin ligase complex contains
FBXW7 which targets several important oncoproteins including
c-Jun, c-Myc and Notch1 etc. for ubiquitylation (Fig. 1A).

2. Transcriptional and translational regulation of FBXW7
expression

Transcriptional regulation. On the one hand, FBXW7 affects
the ubiquitination state and protein content of various substrates;
on the other hand, this process is tightly regulated from DNA
to protein expression (Fig. 1B) (21). FBXW7 expression can be
regulated at a number of levels, including at the transcriptional
level through the regulation of multiple transcription factors.

FBXW7α is negatively regulated by CCAAT/enhancer-binding
protein δ (CEBPδ), a transcription factor involved in adipocyte
differentiation as well as inflammation reactions (34). In
mammary tumors, CEBPδ expression is induced under a
hypoxic microenvironment, which can lead to tumor metas-
tasis by directly binding to the promoter of FBXW7 to inhibit
its expression (35,36). Additionally, presenilin, a regulator of
Notch processing and β-catenin signaling, can also indirectly
downregulate FBXW7α mRNA expression (37). FBXW7β
and FBXW7γ are upregulated in a p53-dependent manner, and
their upregulation is required for the apoptotic response and
tumor suppression induced by p53 (38).

Translational regulation. A number of previous studies have
indicated that the direct binding of multiple non-coding
microRNAs (miRNAs) to the 3′ untranslated region of the
mRNA can prevent protein translation of FBXW7 (39,40).

Overexpression of miRNA (miR)-223 in T cell acute lympho-
blastic leukemia (T-ALL), colorectal cancer and gastric cancer
has been reported to downregulate FBXW7 (39,40). In T-ALL,
high levels of miR-223 promote the proliferation of tumor
cells, and its inhibition increases the sensitivity to γ-secretase
inhibitor drugs (39). FBXW7 is also repressed by miR-27a
overexpression in an adenomatous polyposis coli protein (APC)
mutation-mediated murine model of colorectal adenocarcino-
ma and in human high-grade colorectal adenocarcinomas
associated with preinvasive adenomas (41,42). Inhibition of
miR-27a increases FBXW7 expression and downregulates
FBXW7 substrates, which delays tumor formation in model
systems and inhibits the proliferation of colorectal cancer
cells (43). miR-92a is reported to decrease the expression
levels of FBXW7 mRNA and protein, and to increase c-Myc
expression, which facilitates Myc-mediated apoptosis and
proliferation in a model of B-cell lymphoma (44). Knockdown
of miR-92a suppresses cancer cell invasion and proliferation
through the upregulation of FBXW7 (45).

Additional miRNAs, including miR-548, miR-544a,
miR-367, miR-182, miR-503, miR-155-3p and miR-32, have
also been demonstrated to modulate FBXW7 activity via
various mechanisms (46-51). Although individual miRNAs are weakly related to FBXW7 expression in patients with cancer, suggesting that more than one miRNA is involved in the regulation of FBXW7, miRNA-mediated suppression of FBXW7 synchronously targets the three FBXW7 isoforms, which may influence additional FBXW7 substrates (52).

Epigenetic regulation. The transcription and translation of FBXW7 are regulated by epigenetics; specifically, histone modifications have been reported to regulate FBXW7. For example, the histone methyltransferase enhancer of zeste homolog 2 (EZH2), is associated with epigenetic inactivation of genes, including FBXW7. EZH2 promotes trimethylation of histone H3 Lys27 residue of FBXW7, which results in inactivation of FBXW7 gene function (53). Notably, FBXW7 has been reported to target EZH2 for ubiquitination and degradation in pancreatic cancer cells and to be negatively associated with the expression of EZH2 in human pancreatic cancer samples (54). In addition to histone modifications, DNA modifications are reported to regulate FBXW7 expression. In contrast to FBXW7α, which exhibits ubiquitous expression in cell lines and a broad tissue distribution, FBXW7β is expressed in specific cell lines and tissues (55). Histone and DNA modifications have been reported to epigenetically regulate the FBXW7β promoter, which is methylated in 51% of primary breast cancer tumors and 43% of 60 human cancer cell lines originating from brain, breast, kidney, prostate, cervix, blood, skin, lung, thyroid and bone (56). The expression of the FBXW7β gene is negatively associated with its methylation level (56). Patients with lymph node-positive breast cancer with higher FBXW7 methylation levels have longer overall survival times, although methylation of FBXW7 correlates with high-grade tumors (56). In addition, patients with ovarian cancer with p53 mutations have been reported to exhibit lower FBXW7 expression compared with those with wild-type p53, and hypermethylation of the FBXW7 promoter associated with mutations in p53 leads to decreased FBXW7 expression (57).

3. Post-translational modifications of FBXW7

Autoubiquitination. Post-translational modifications of FBXW7 are involved in its autoubiquitination, deubiquitination, dimerization and localization. In addition to targeting substrates for ubiquitination and degradation, FBXW7 can also be regulated by autoubiquitination. Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) has been reported to destabilize and downregulate FBXW7 by mediating a decrease in dimerization and promoting FBXW7 self-ubiquitination and degradation (58). In addition, phosphorylation at Thr205 by extracellular signal-regulated kinase and at Ser176 by polo-like kinase 2 leads to destabilization and degradation (59,60). By contrast, phosphorylation mediated by serum- and glucocorticoid-inducible kinase 1 (SGK1) and phosphoinositide 3-kinase at Ser227 stabilizes FBXW7 but increases ubiquitination of cyclin E, Notch and Myc (53,54). FBXW7 stability can also be controlled by SCF-dependent mechanisms. For instance, COP9 signalosome complex subunit 6, a member of the COP9 signalosome complex, increases FBXW7 autoubiquitination and proteasome-mediated degradation by regulating Cul1 neddylation (61).

Deubiquitination. Autoubiquitination and degradation of FBXW7 can be reversed by the deubiquitinating enzyme USP28. Overexpression of USP28 not only allows the degradation of several FBXW7 substrates, inhibits progenitor cell proliferation and delays tumor formation (62), but also represses autocatalytic ubiquitination of FBXW7 (63). Genetic ablation of USP28 negatively regulates FBXW7 and its substrates in the pancreas, liver and lungs. In addition, abrogation of USP28 facilitates the transformation of mouse fibroblasts due to FXBW7 destabilization (63).

Dimerization. FBXW7 is characterized by its ability to form dimers through a conserved D domain. Previous studies of endogenous FBXW7 with mutations preventing dimer formation have revealed that dimerization facilitates ubiquitination of FBXW7 substrates with low-affinity degrons, but it is unimportant to substrates with high-affinity degrons, including cyclin E and Myc (64,65). Dimer-deficient mutants of CDC4 in yeast variant show increased autocatalytic ubiquitination and instability in vivo (66). In addition, isomerization mediated by Pin1 and phosphorylation of human FBXW7 at Ser205 repress its dimerization and enhance its autoubiquitination (58).
Location. Abnormal cellular distribution of FBXW7 impairs its interaction with substrates. For example, nucleophosmin is necessary for the nucleolar localization of FBX7γ and is often mutated in acute myelogenous leukemia, leading to FBX7γ instability and an increase in c-Myc expression (67). Additionally, phosphorylation of FBXW7α at Ser10 inhibits one of its nuclear localization signals (68).

4. Genetic alterations of FBXW7 in cancers

The important role of FBXW7 in tumor suppression has been confirmed by different genetic alterations of FBXW7 in various human cancers. Functional silencing of FBXW7 by deletion, mutation and hypermethylation ultimately leads to tumorigenesis and cancer progression (69). Although rare, FBXW7 mutations occur often in breast, pancreatic, gastric and cervical cancers but rarer promoter hypermethylation and genetic deletion of FBXW7 occurs in bladder, cervical and breast cancers (65). However, missense point mutations are the most common type of genetic alterations in FBXW7 and are observed on three arginine residues (R465, R479 and R505) at the β propeller (65). FBXW7 is usually expressed as a functional wild-type protein because the second wild-type allele is retained. Consistent with this observation, mouse models with monoallelic deletion of FBXW7 show a milder tumor phenotype compared with biallelic gene deletions (70). Therefore, biallelic FBXW7 mutations are assumed to silence the function of the wild-type protein as dominant negative alleles (65).

In the intestine and the hematopoietic system, knock-in mice with a heterozygous FBXW7 mutation show accelerated tumorigenesis compared to mice with heterozygous wild-type FBXW7 (FBXW7+/−) (70,71). The hematopoietic stem cells in FBXW7mut/− mice show a significant increase in Myc but do not exhibit the characteristic hyperproliferative phenotype of those in FBXW7+/− animals (70). Mice with T-cell leukemias induced by an activated Notch allele show accumulation of sterol regulatory element-binding protein 1 and Myc (70). Moreover, additional deletion of p53 does not promote the onset of disease, indicating the functional difference between complete loss and mutation of FBXW7 (70). By contrast, the observation that only Krüppel-like factor 5 (KLF5) and homeobox protein TGIF1 (TGIF1), instead of most tested FBXW7 substrates, are substantially affected by mutated FBXW7, reveals that the influence of FBXW7 mutations on substrate regulation is strongly context dependent (71). Although FBXW7 mutations enhance intestinal tumorigenesis driven by the multiple intestinal neoplasia, a mutant allele of APC, the levels of Notch, Jun and Myc remain normal in these mice with developing adenomas (71). Therefore, heterozygous mutations in FBXW7 may promote tumorigenesis by the regulation of non-canonical substrates such as TGIF1 and KLF5.

5. Substrates and mechanisms of FBXW7 involved in tumor suppression

Ubiquitin ligases play a biological role by affecting the expression levels of specific target proteins. The most common mechanism by which ubiquitin ligases participate in cancer processes is through regulating the content of cell cycle-related factors. FBXW7 can effectively recognize a variety of substrates, such as cyclin E, KLF5, mTOR, Aurora A, c-Myc, c-Jun and induced myeloid leukemia cell differentiation protein McI-1 (MCL-1). Most of these protein substrates are involved in the regulation of cell cycle processes or homeostasis. Additionally, they are the expressed products of oncogenes or potential oncogenes (Fig. 2; Table I).

Cyclin E. Cyclin E binds and activates the cell cycle-dependent protein kinase cyclin-dependent kinase 2 (CDK2) to promote transition of the cell cycle from G1 to S phase (72). Increased expression of CDK2 can cause chromosomal instability and accelerate the occurrence of cancer (73). Cyclin E is expressed mainly in tissues exhibiting vigorous cell division, in direct contrast with FBXW7, which is expressed mainly in non-proliferative tissues (74). Cyclin E has a typical CPD, in which phosphorylation of Thr380 and Ser384 is necessary for degradation (32). FBXW7 can catalyze the degradation of cyclin E2 in addition to E1, the most common cyclin E subtype. Cyclin E2 contains two typical CPDs, that are specifically recognized by FBXW7, and the double-site phosphorylation of Thr392 and Ser396 initiates ubiquitination and proteasomal degradation (74), explaining why the decrease in FBXW7 expression and the increase in cyclin E in primary invasive breast cancer lead to the appearance of a large number of cells with chromosomal polyploidy (75).

Aurora A. Aurora A (also known as serine/threonine protein kinase 15) serves a role in mitosis and meiosis by regulating the phosphorylation of specific substrates, and its activity is the highest during G2/S phase transition (76). Aurora A is overexpressed in a variety of tumors, resulting in abnormal centrosome expansion, increased chromosomal instability and eventual carcinogenic transformation (76,77). FBXW7-deficient HCT116 and HeLa cells exposed to vincristine, paclitaxel and spindle toxin exhibit extensive mitotic delay and nuclear duplication, which are important causes of polyploidy. Loss of FBXW7 can increase the content of cyclin E and Aurora A, but the increase of single cyclin E or Aurora A could not cause drug-induced polyploidy. This observation shows that the increase in cyclin E and Aurora A is a cause of polyploidy (78).

Notch. Notch is a highly conserved signaling system in multicellular organisms, playing an important role in cell proliferation, differentiation and apoptosis (79). In mammals there are four isoforms of Notch receptors, all of which are single-pass transmembrane receptors in which the N-terminus is located outside the cell and accounts for most of the structure and only a small part (C-terminus) is inside the cell (80). When a ligand binds to the extracellular domain of the Notch receptor, it can induce a proteolysis reaction and release the intracellular domain (81). The intracellular domain of the Notch receptor acts as a transcription factor to regulate the expression of specific genes (81). Overactivation of the Notch signaling pathway can cause abnormal cell proliferation and cancer (82). Ubiquitination of the intracellular domain of Notch 1 and Notch 4 by FBXW7 significantly weakens Notch signal transduction, whereas inhibition of FBXW7 enhances Notch-mediated activation of downstream signaling (83).
FBXW7 gene knockout results in the abolishment of Notch 4 signal transmission, which can lead to abnormal development of blood vessels in mouse embryos and may result in death at ~11 days (84). Similarly, mice with brain-specific FBXW7 knockout succumb after birth owing to the accumulation of Notch 1 and Notch 3 proteins in the brain, which results in increased expression of target genes and abnormal differentiation of neural stem cells, causing abnormal brain development and morphology in these mice (85).

MCL-1. MCL1 is an antiapoptotic protein of the BCL2 family that can promote cancer development by reducing apoptosis (86). A number of hematological tumors, such as B-cell lymphoma and chronic myeloid leukemia, exhibit an abnormal increase in MCL1 expression, which is considered an important cause of chemotherapeutic resistance. In normal cells, the half-life of the MCL1 protein is short, and it is easily degraded by ubiquitination modification. However, in tumor cells, the MCL1 protein content is increased, although a detailed understanding of this mechanism is lacking. MCL1 can be phosphorylated by GSK3, which initiates ubiquitination and degradation of MCL1 (86). Loss of FBXW7 in a human T-ALL cell line is accompanied by an increase in MCL1 content. This cell line is sensitive to a variety of kinase inhibitors, such as sorafenib but is resistant to ABT-737, an inhibitor of BCL2 (22). When FBXW7 function is restored or MCL1 is lost, sensitivity to ABT-737 can be restored. Therefore, these findings confirm that the increase in the MCL1 protein content caused by FBXW7 deficiency is a mechanism underlying tumor chemoresistance (22). In addition, paclitaxel treatment induces phosphorylation modification of MCL1, which can be recognized by FBXW7, leading to MCL1 ubiquitination and degradation, consequently increasing apoptosis (31). By contrast, when FBXW7 is inactivated or expression of FBXW7 is decreased, the protein stability of MCL1 is increased. Correspondingly, resistance to microtubule-targeted drugs, such as paclitaxel, is increased in tumor patients, and the its chemotherapeutic effect is significantly reduced (31).

c-Myc. c-Myc is an important oncogenic protein that can regulate cell growth and division, serving a number of roles in human cancer. In lymphoid tumor cell lines, mutation of the Thr58 site in c-Myc is the most frequent mutation and results in the failure of FBXW7 to regulate c-Myc protein content, accumulation of c-Myc protein and eventual tumor development (87). In addition to GSK3, NEMO-like kinase (NLK) also regulates the c-Myc protein content. NLK can directly bind to c-Myc and catalyze the phosphorylation of multiple C-terminal sites. This modification promotes ubiquitination and proteasomal degradation of FBXW7. Mutation of these sites can abrogate the c-Myc-FBXW7 interaction and protein ubiquitination (88). Abnormal localization of c-Myc proteins can cause its accumulation and may lead to tumorigenesis (63). USP28 can bind to FBXW7 and inhibit ubiquitination modification of c-Myc by the latter, thus increasing the protein stability of c-Myc (89). DNA damage caused by ultraviolet radiation can reduce c-Myc protein content due to dissociation of USP28 and FBXW7, thus increasing FBXW7-mediated ubiquitination and degradation of c-Myc protein. Because both cyclin E
and c-Myc are positive regulators of the cell cycle, decreases in their levels can cause cell cycle exit. However, FBXW7 deficiency increases the protein levels of these two factors and promotes cell cycle re-entry and G1/S phase transition, which is conducive to cell division (90). This mechanism is an important reason for cancer driven by FBXW7 mutations.

mTOR. mTOR is a protein kinase that promotes cell growth and division by regulating protein synthesis and cell autophagism. The increase in mTOR content and activity is a common feature of tumorigenesis, and mTOR is widely used as a drug target in tumor therapy (27). In human breast cancer cell lines and patients with primary breast cancer, FBXW7 can contain a gene deletion or a functional inactivation mutation, which leads to an increase in the mTOR protein content and activation of its downstream signaling pathway (27). The sensitivity of breast cancer cells harboring wild-type FBXW7 to rapamycin is significantly increased, which suggests that loss of FBXW7 function is a mechanism underlying the resistance of tumor patients to mTOR pathway inhibitors (27).

KLF5. KLF5 is a development-related transcription factor that can promote the expression of multiple development-related genes and may serve a role in cell proliferation, cell cycle, apoptosis and cell migration and differentiation (73). KLF5 is overexpressed in various cancers and can promote proliferation and deterioration of breast cells (91). KLF5 is a short-lived protein that can be rapidly degraded by ubiquitination. KLF5 contains three CPDs recognized by FBXW7; simultaneous mutation of these sites can inhibit the interaction and ubiquitination of FBXW7 and KLF5, whereas the point mutations in FBXW7 can significantly delay degradation of the KLF5 protein, leading to accumulation of KLF5 in cells (92). The binding and ubiquitination of KLF5 and FBXW7 are dependent on phosphorylation of KLF5 at Ser303 by GSK3β (93). In tumor cells, mutation or abnormal activation of FBXW7 results in a decrease in the ubiquitination and the protein degradation of KLF5. In turn, excessive accumulation of KLF5 promotes the occurrence of cancer by increasing the expression of target genes.

6. Therapeutic exploitation of FBXW7 signaling

Given the substantial tumor control exhibited by FBXW7 in mouse models, therapeutic exploitation of FBXW7 and its related pathways for several types of cancer has attracted intense interest. Various oncogenic transcription factors and oncoproteins are degraded through FBXW7-mediated ubiquitination. Most substrates with increased levels due to FBXW7 silencing mutations are oncoproteins. Such substrates are likely to alter regulation of the cell cycle, perturb stress response and rewire metabolic pathways (28). Previous studies have reported that the accumulation of c-Myc and MCL1 induce synthetic lethal interactions between non-functional FBXW7 and tumor necrosis factor-like death ligands or mitotic inhibitors in tumor cells (31,94). Similarly, FBXW7 mutant cells with increased c-Myc are more sensitive to suppression of additional enzymes, such as CDK1, and energy-sensing enzymes, such as AMP-activated protein kinase (95,96). Alternatively, post-translational modifications are important for FBXW7 E3 ligase activity, suggesting that aberrant alteration of upstream signaling
might impair the antitumor effect of FBXW7. One possibility is to target deubiquitinases, considering that USP36 and USP28 can antagonize FBXW7 activity. Growth of established tumors can be inhibited by acute decrease of USP28, showing that the development of tumors depends on USP28 (56), and that certain types of tumor could be effectively treated using inhibition of USP28 with small molecules. USP7 inhibitors successfully stabilize p53 and promote apoptosis in myeloma cells that are not sensitive to available therapies (97). Additionally, several studies have demonstrated that loss of p53, or mutation or deletion of FBXW7 promotes tumorigenesis (10,98). Since frequent mutant FBXW7 alleles result in impaired substrate recognition, recovering substrate binding by FBXW7 may effectively inhibit tumor development. This may be potentially achieved in a manner analogous to p53, in which mutant forms of the protein can be reactivated by small molecules (99). Moreover, since mutant FBXW7 has the wild-type allele in most human tumors, several enzymes, such as Pin1 and SGK1, which modulate the activity of FBXW7, may provide a reasonable approach for tumor suppression by increasing FBXW7 activity (53,100). Therefore, restoring the antitumor function of FBXW7 by blocking oncogenic upstream mediators may be an effective therapeutic strategy.

7. Conclusions
Ubiquitination of specific proteins plays an important role in tumor initiation, development, metastasis and chemoresistance. Currently, the drugs designed to target ubiquitin-modified molecules exhibit good potential in cancer treatment. FBXW7 has been suggested to have tumor-suppressive effects in various tumors. On the one hand, mutation of FBXW7 or a reduction in its activity promotes the occurrence and progression of tumors; on the other hand, it also increases the chemoresistance of tumors. These developments are important to improving our understanding of tumor occurrence mechanisms, the development of diagnostic reagents, and the optimization and design of therapeutic drugs. In the study of FBXW7, a series of important problems remain to be solved. For example, are there still unidentified FBXW7 substrates? Is there a network mechanism underlying the regulation of multiple substrates by FBXW7? What are the precise mechanisms of FBXW7 regulation? In conclusion, the present review examined the crucial role and molecular mechanism of FBXW7 in tumor inhibition, and may offer a putative therapeutic approach for multiple cancers.

Acknowledgements

Not applicable.

Funding

This work was jointly supported by The National Science Foundation of China (grant nos. 81871950, 81702871 and 81602085), The Shanghai Municipal Commission of Health and Family Planning (grant nos. 20154Y0090 and 2018YQ06) and The Shanghai Sailing Program (grant no. 16YF1401800).

Availability of data and materials

Not applicable.

Authors' contributions

XY, ZZ, XX, SJ and WX were involved in the conception of the review. ZZ, QH, WL and ML were involved in the writing of the article. QS, GF, ZY, and YQ were involved in critically revising and proofreading the manuscript. All authors have read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Hershko A and Ciechanover A: The ubiquitin system. Annu Rev Biochem 67: 425-479, 1998.
2. Schulman BA and Harper JW: Ubiquitin-like protein activation by E1 enzymes: The apex for downstream signalling pathways. Nat Rev Mol Cell Biol 10: 319-331, 2009.
3. Wenzel DM, Stoll KE and Klevecz RE: E2s: Structurally economical and functionally replete. Biochim Biophys Acta 1866: 12-22, 2016.
4. Deng L, Meng T, Chen L, Wei W and Wang P: The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther 5: 11, 2020.
5. Zheng N and Shabek N: Ubiquitin ligases: Structure, function, and regulation. Annu Rev Biochem 86: 129-157, 2017.
6. Deshaies RJ and Joazeiro CA: RING domain E3 ubiquitin ligases. Annu Rev Biochem 78: 399-434, 2009.
7. Zimmerman ES, Schulman BA and Zheng N: Structural assembly of cullin-RING ubiquitin ligase complexes. Curr Opin Struct Biol 20: 714-721, 2010.
8. Diaz VM and de Herreros AG: F-box proteins: Keeping the epithelial-to-mesenchymal transition (EMT) in check. Semin Cancer Biol 36: 71-79, 2016.
9. Zheng N, Zhou Q, Wang Z and Wei W: Recent advances in SCF ubiquitin ligase complex: Clinical implications. Biochim Biophys Acta 1866: 12-22, 2016.
10. Bai C, Sen P, Hofmann K, Ma L, Goebel M, Harper JW and Elledge SJ: SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86: 263-274, 1996.
11. Pei XH, Bai F, Li Z, Smith MD, Whitwood G, Jin R and Xiong Y: Cytoplasmic CUL9/PARC ubiquitin ligase is a tumor suppressor and promotes p53-dependent apoptosis. Cancer Res 71: 2969-2977, 2011.
12. Nguyen HC, Wang W and Xiong Y: Cullin-RING E3 ubiquitin ligases: Bridges to destruction. Subcell Biochem 83: 323-347, 2017.
13. Harper JW and Tan MK: Understanding cullin-RING E3 biology through proteomics-based substrate identification. Mol Cell Proteomics 11: 1541-1550, 2012.
14. Nakagawa T, Nakayama K and Nakayama KI: Knockout mouse models provide insight into the biological functions of CRL1 components. Adv Exp Med Biol 1217: 147-171, 2020.
15. Gupta-Rossi N, Le Bail O, Gonen H, Brou C, Logeat F, Six E, Ciechanover A and Israel A: Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor. J Biol Chem 276: 34371-34378, 2001.
16. Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M and Harper JW: Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev 18: 2573-2580, 2004.
17. Matsumoto A, Oomyama I and Nakayama KI: Expression of mouse Fbxw7 isoforms is regulated in a cell cycle- or p53-dependent manner. Biochem Biophys Res Commun 350: 114-119, 2006.
18. Welcker M, Orian A, Grimm JE, Eisenman RN and Clurman BE: A nuclear isoform of the Fbw7 ubiquitin ligase regulates c-Myc and cell cycle. Cell 114: 1852-1857, 2003.

19. Grimm JE, Tlsty TD, MP, Hirschhorn ZA, Swanger J, Welcker M, Hwang HC, Ericsson J, Russell DW and Clurman BE: Isoform- and cell cycle-dependent substrate degradation by the Fbw7 ubiquitin ligase. J Cell Biol 181: 913-920, 2008.

20. Welcker M, Larimore EA, Frappier L and Clurman BE: Nuclear targeting of the Fbw7 ubiquitin ligase by a pseudosubstrate and glycogen synthase kinase 3. Mol Cell 18: 1214-1235, 2013.

21. Yamamoto K and Nakayama KI: Recent insight into the role of FBXW7 as a tumor suppressor. Semin Cancer Biol Feb 27, 2020 (Epub ahead of print).

22. Inuzuka H, Shikata S, Okumura I, Gao D, Tseng A, Maser RS, Zhai B, Wan L, Gutierrez A, Liu AK, et al: SCF(Fbw7) regulates cellular apoptosis by targeting MCL1 for ubiquitination and destruction. Nature 471: 104-109, 2011.

23. Wei W, Jin J, Schlisio S, Harper JW and Kaelin WG Jr: The v-Jun oncoprotein is a target of FBXW7-dependent proteasomal degradation. Dev Cell 10: 327-335, 2006.

24. Welcker M, Singer J, Loeb KR, Grimm J, Blecher A, Gurien-West M, Clurman BE and Roberts JM: Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. Mol Cell 39: 589-600, 2010.

25. Moberg KH, Bell DW, Wahrer DC, Haber DA and Hariharan IK: The Fbw7 F-box protein. EMBO J 21: 2116-2125, 2002.

26. Grim JE, Gustafson MP, Hirata RK, Hagar AC, Swanger J, Summers GH, Roger T, Morrison DK, Keller JR and Sterneck E: MCL1 and FBW7. Nature 471: 110-114, 2011.

27. Summers GH, Roger T, Morrison DK, Keller JR and Sterneck E: Sensitivity to antitubulin chemotherapeutics is regulated by MCL1. Oncogene 29: 2950-2961, 2010.

28. Welcker M, Singer J, Loeb KR, Grimm J, Blecher A, Gurien-West M, Clurman BE and Roberts JM: Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. Mol Cell 39: 589-600, 2010.

29. Moberg KH, Bell DW, Wahrer DC, Haber DA and Hariharan IK: The Fbw7 F-box protein. EMBO J 21: 2116-2125, 2002.

30. Moberg KH, Bell DW, Wahrer DC, Haber DA and Hariharan IK: Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature 413: 311-316, 2001.

31. Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Moberg KH, Bell DW, Wahrer DC, Haber DA and Hariharan IK: The Fbw7 F-box protein Fbw7. EMBO J 23: 2116-2125, 2004.

32. Maser RS, Choudhury B, Campbell PJ, Feng B, Wong KK, Protopopov A, O'Neill J, Gutierrez A, Ivanova É, Perna I, et al: Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 447: 966-971, 2007.

33. Wertz IE, Kusam S, Onoyama I, Gao D, Tseng A, Maser RS, Zhai B, Wan L, Gutierrez A, Liu AK, et al: SCF(Fbw7) regulates cellular apoptosis by targeting MCL1 for ubiquitination and destruction. Nature 471: 104-109, 2011.

34. Summers GH, Roger T, Morrison DK, Keller JR and Sterneck E: Sensitivity to antitubulin chemotherapeutics is regulated by MCL1. Oncogene 29: 2950-2961, 2010.

35. Kourtis N, Moubarak RS, Aranda-Orgilles B, Lui K, Aydin IT, Ohno S, Mori M, Mimori K and Nakayama KI: F-box protein FBXW7 is mutated in human cancer cell lines. Nature 413: 311-316, 2001.

36. Zhai B, Wan L, Gutierrez A, Liu AK, et al: SCF(Fbw7) regulates cellular apoptosis by targeting MCL1 for ubiquitination and destruction. Nature 471: 104-109, 2011.

37. Balmain A: FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression. Science 321: 1499-1502, 2008.

38. Balmain A and Saura CA: Presenilin modulates EGFR signaling and cell size. Curr Biol 14: 1852-1857, 2004.

39. Mansour MR, Sandra T, Lawton LN, Li X, Kreslavsky T, Novina CD, Brand M, Gutierrez A, Kellili MA, Jamieson CH, et al: The TAL1 complex targets the FBW7 E3 ubiquitin ligase by antagonizing miR-223 in human T cell acute lymphoblastic leukemia. J Exp Med 210: 1545-1557, 2013.

40. Kumar V, Palermo R, Talora C, Campese AF, Checqulo S, Bellavia D, Tottone L, Testa G, Miele E, Indraccolo S, et al: Notch and NF-kB signaling pathways regulate miR-223/FBW7 axis in T-cell acute lymphoblastic leukemia. Leukemia 28: 3124-3134, 2014.

41. Lerner M, Lundgren J, Akhoondi S, Jahn A, Ng HF, Akbari Moqadam F, Oude Vrielink JA, Agami R, Den Boer ML, Grandner D and Sangfelt O: MiRNA-27a controls FBW7/hcCD4-dependent cyclin E degradation and cell cycle progression. Cell Cycle 14: 1772-1783, 2011.

42. Wang Q, Li DC, Li ZF, Liu CX, Xiao YM, Zhang B, Li XD, Zhao J, Chen LP, Xing XM, et al: Upregulation of miR-27a contributes to the malignant transformation of human bronchial epithelial cells induced by SV40 small T antigen. Oncogene 30: 3875-3886, 2011.

43. Spruck C: MiR-27a regulates SCF(Fbw7) in cell division control and cancer. Cell Cycle 10: 3232-3233, 2011.

44. Olive V, Sabio E, Bennett MJ, De Jong CS, Biton A, McGann JC, Greaney SK, Sodir NM, Zhou Y, Balakrishnan A, et al: A component of the mir-17-92 polycistronic oncomir promotes miR-125b-dependent apoptosis. Cell 146: 1237-1248, 2011.

45. Zhou C, Shen L, Mao L, Wang B, Li Y and Yu H: MiR-92a is upregulated in cervical cancer and promotes cell proliferation and invasion by targeting FBW7. Biochem Biophys Res Commun 458: 63-69, 2015.

46. Zhang P, Cao J, Mao L, Wang B, Li Y and Yu H: MiRNA-145 contributes to the malignant transformation of colon adenoma epithelial cells induced by SV40 small T antigen. Oncogene 30: 3875-3886, 2011.

47. Liu X, Ma J, Xu F and Li L: TINCR suppresses proliferation and invasion through regulating miR-375/FBXW7 axis in lung cancer. Biomed Pharmacother 99: 9-17, 2018.

48. Wang Y, Liu Z, Yao B, Li Q, Wang L, Wang C, Dou C, Xu M, Liu Q and Tu K: Long non-coding RNA CAS2 suppresses epithelial-mesenchymal transition of hepatocellular carcinoma cells through CAS2/miR-367/FBW7 axis. Mol Cancer 16: 123, 2017.

49. Li L, Sarver AL, Khatri R, Kamenev I, French AJ, Thibodeau SN, Steer CJ and Subramanian S: Sequential expression of miR-182 and miR-503 cooperatively targets FBW7, contributing to the malignant transformation of colon adenoma to adenocarcinoma. J Pathol 234: 488-501, 2014.

50. Tang B, Lei B, Qi G, Liu Y, Feng M, Yang S, Wang Z, Yu S and He S: MicroRNA-155-3p promotes hepatocellular carcinoma formation by suppressing FBXW7 expression. J Exp Clin Cancer Res 35: 93, 2016.

51. Xia W, Zhou J, Luo H, Liu Y, Peng C, Zheng W and Ma W: MiR-143-3p regulates cell proliferation, migration and suppresses apoptosis in breast cancer cells by targeting FBW7. Cancer Cell Int 17: 14, 2017.

52. Xu W, Taranets L and Popov N: Regulating Fbw7 on the road to cancer. Semin Cancer Biol 36: 62-70, 2016.

53. Mo JS, Ann EJ, Yoon JH, Jung J, Choi YH, Ahn JS, Kim SH, Lau AW, Lee TH, Inuzuka H, Wei S, Huang P, Shaik S, et al: The TAL1 complex targets the FBXW7 ubiquitin ligase. J Cell Biol 181: 913-920, 2008.

54. Schulein C, Eilers M and Popov N: PI3K-dependent phosphorylation of FBXW7 as a tumor suppressor. Semin Cancer Biol: Feb 27, 2020.
76. Liu X, Zhang Y, Wu S, Xu M, Shen Y, Yu M, Fan J, Wei S, Xu C, Byrd KN, Huey B, Roydasgupta R, Fridlyand J, Snijders AM, Klotz K, Cepeda D, Tan Y, Sun D, Sangfelt O and Spruck C: The ubiquitin-specific protease USP28 is required for MYC stability. Nat Rev Cancer 17: 145‑159, 2017.

81. Bray SJ: Notch signalling in context. Nat Rev Mol Cell Biol 17: 722‑735, 2016.

82. Panczewicz J, Taylor JM, Datta A, Baydoun HH, Waldmann TA, Hermine O and Nicot C: Notch signaling contributes to proliferation and tumor formation of human T-cell leukemia virus type 1-associated adult T-cell leukemia. Proc Natl Acad Sci USA 107: 16619‑16624, 2010.

83. Tsunematsu R, Nakayama K, Ishida N, Hatakeyama S, Beppu Y, Kageyama R, Suda T and Nakayama KI: Mouse Fbw7/Sel‑10/Cdc4 is required for notch degradation during vascular development. J Biol Chem 279: 9417‑9423, 2004.

84. Matsumoto A, Onoyama I, Sunabori T, Kageyama R, Okano H and Nakayama KI: Notch independent degradation of Notch is required for control of 'stemness' and neuronal‑glial differentiation in neural stem cells. J Biol Chem 286: 13754‑13764, 2011.

85. Yang‑Yen HF: Mcl‑1: A highly regulated cell death and survival controller. J Biomed Sci 13: 201‑204, 2006.

86. Welcker M, Orian A, Jin J, Grimm JE, Harper JW, Eisenman RN, Eisenman, Pancewicz J, Taylor JM, Datta A, Baydoun HH, Waldmann TA, Janicka L A, Diefenbacher ME, Behrens A, Eilers M and Goga A, Yang D, Tward AD, Morgan DO and Bishop JM: The Fbw7 tumor suppressor regulates glycosyn thase kinase 3‑dependent c‑Myc protein degradation. Proc Natl Acad Sci USA 101: 9085‑9090, 2004.

87. Welcker M, Orian A, Jin J, Grimm JE, Harper JW, Eisenman RN, Clurman BE: The Fbw7 tumor suppressor regulates glycosyn thase kinase 3‑dependent c‑Myc protein degradation. Proc Natl Acad Sci USA 101: 9085‑9090, 2004.

88. Kanei‑Ishii C, Nomura T, Takagi T, Watanabe N, Nakayama KI and Ishii S: Fbw7 acts as an E3 ubiquitin ligase that targets c‑Myb for nemo‑like kinase (NLK)‑induced degradation. J Biol Chem 283: 30540‑30548, 2008.

89. Popov N, Wanzel M, Madiredjo M, Zhang D, Beijersbergen R, Bernards R, Moll R, Elledge SJ and Eilers M: The ubiquitin‑specific protease USP28 is required for MYC stability. Nat Cell Biol 11: 513‑524, 2009.

90. Li M, Ouyang L, Zheng L, Xiang D, Ti A, Li L, Dan Y, Yu C and Li W: Ubiquitin ligase FBX7 regulates cholangiocarcinoma cell proliferation by downregulating c‑Myc and cyclin E. Oncol Rep 37: 1627‑1636, 2017.

91. Qin J, Zhou Z, Chen W, Wang C, Zhang H, Ge G, Shao M, You D, Fan Z, Xia H, et al: BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5. Nat Commun 6: 8471, 2015.

92. Liu N, Li H, Li S, Shen M, Xiao N, Chen Y, Yang W, Wang Y, Wang R, Wang Q, et al: The Fbw7/human CDC4 tumor suppressor targets proproliferative factor KLF5 for ubiquitination and degradation through multiple phosphodegron motifs. J Biol Chem 285: 18858‑18867, 2010.

93. Zhao D, Zheng HQ, Zhou Z and Chen C: The Fbw7 tumor suppressor targets KLF5 for ubiquitin‑mediated degradation and suppresses breast cell proliferation. Cancer Res 70: 4726‑4738, 2010.

94. Rottmann S, Wang Y, Nasoff M, Deveraux QR and Quon KC: A TRAIL receptor‑dependent synthetic lethal relationship between MYC activation and GSK3beta/FBZ7 loss of function. Proc Natl Acad Sci USA 102: 15195‑15200, 2005.

95. Goga A, Yang D, Tward AD, Morgan DO and Bishop JM: Inhibition of CDK1 as a potential therapy for tumors over‑expressing MYC. Nat Med 13: 820‑827, 2007.

96. Liu L, Ulbrich J, Muller J, Wustefeld T, Aebberhard L, Kress TR, Muthalagu N, Rycak L, Rudalska R, Moll R, et al: Deregulated MYC expression induces dependence upon AMPK‑related kinase 5. Nature 483: 608‑612, 2012.

97. Chauhan D, Tian Z, Nicholson B, Kumar KG, Zhou B, Carrasco R, McDermott JL, Leach CA, Fulcinniti M, Kodrasov MP, et al: A small molecule inhibitor of ubiquitin‑specific protease‑7 induces apoptosis in multiple myeloma cells and overcomes bortezomib‑resistance. Cancer Res 70: 4726‑4738, 2010.

98. Csizmok V, Monteclaro M, Lin H, Tyers M, Sumnerhagen M and Forman‑Kay JD: Multivalency interactions with FBZ7 and Pin facilitate recognition of c‑Jun by the SCF[ubiquitin] Ubiquitin Ligase. Structure 26: 28‑39, e2, 2018.

This work is licensed under a Creative Commons Attribution‑NonCommercial‑NoDerivatives 4.0 International (CC BY‑NC‑ND 4.0) License.