Role of students worksheet in STEM approach to achieve competence of physics learning

Y S Sari, M Selisne and R Ramli*

Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Jl. Prof Hamka, Padang 25131, Indonesia

*ramli@fmipa.unp.ac.id

Abstract. In the 21st century, education plays a very important and strategic role in building a knowledgeable society that is literate technology and media, communicating effectively, critical thinking, solving problems and collaborating. The need to emphasize science, engineering, technology, and mathematics (STEM) subjects in school settings to improve 21st-century skills (such as critical thinking, creativity, curiosity, and collaboration) of individuals, began to use appropriate approaches has attracted the attention of a large number of researchers worldwide. In this paper, we report the literature study by searching and evaluating relevant materials to synthesize information from various sources related to the STEM approach in physics learning. The results of this review will be used as the theoretical reference for the development of the student worksheet using the STEM approach for the student in physics learning.

1. Introduction

Nowaday, the people and the nation of Indonesia have entered the gates of the 21st century. We are faced with the demand for the importance of quality human resources and able to compete. Qualified human resources can be a major force to overcome the problems at hand. Education plays a very important and strategic role in building a knowledge society that has 21st century skills. The 21st century challenge requires humans to have the ability of science, technology and media literacy, effective communication, think critically, solve problems and collaborate. Through science-based education and technology, it is expected to emerge humans character, have the will to move forward and develop, and have scientific reasoning [1].

One way to cope with the challenges of the 21st century is to improve the quality of education. Efforts that can be done by the government are changes in curriculum. Now, the curriculum is implemented in Indonesia is the 2013 curriculum. The 2013 curriculum is designed with the aim of preparing Indonesian people to have the ability to live as individuals and citizens who are faithful, productive, creative, innovative, and affective and able to contribute to the life of the world, nation, state and civilization of the world.

One of the lessons in the 2013 curriculum is Physics learning. Physics subject is closely related to natural phenomena and its application in daily life. That effort does by teachers to get graduates who have the ability to link knowledge acquired and apply it in everyday life one of them using integrative approach [2]. An integrative approach is a learning approach done by using multiple disciplines. STEM is a new approach to the development of education that integrates more than one discipline.
STEM is an important issue in education today [3,4]. STEM learning is an integration of science, technology, engineering, and math learning that are suggested to help the success of 21st century skills [5]. In general, the implementation of STEM in education can encourage students to design, develop and utilize technology, be able to hone cognitive, manipulative and affective, and apply knowledge [6,7]. STEM-based education can form a viable and logical, logical, and systematic so they will be able to face global challenges and be able to improve the country's economy [8]. STEM can develop when linked to the environment, so that a learning that presents the real world that students experience in everyday life [9]. This means that through STEM approach, students not only memorize the concept, but rather how students understand and understand the concepts of science and its application in life.

Besides the approach, the teacher must also use the model in physics learning. One of the models in the 2013 curriculum that can be paired with the STEM approach is problem-based learning models. PBL models can give students the opportunity to apply knowledge on issues as a form of problem solving [10,11]. Indirectly, the use of PBL models also encourages students to master the knowledge necessary to solve the problem [12]. This knowledge can be in the form of information or data which is then used as material to solve these problems through logical, critical, and systematic thinking [12]. Therefore, the STEM approach is very likely to be paired with problem-based learning [13].

In addition to using approaches and models in learning, teachers are required to be creative in developing teaching materials. Teaching materials used by teachers greatly affect the learning outcomes of learners. Bappenas (2013) revealed that with the development of teaching materials can improve the quality of education in Indonesia [14]. One example of teaching materials that can be developed is the Student Worksheet (LKPD). LKPD is a worksheet containing tasks done by learners, contains instructions, steps to complete a task of theory or practice [43]. LKPD needs to be developed as it can help teachers deliver materials and help students in achieving the goals of physics learning.

In 2011, Trends in the International Mathematics and Science Study (TIMSS) found that at the secondary school level, the achievement of Indonesian students' learning outcomes in mathematics and science including physics, chemistry and biology had not shown satisfactory results [15]. The average mathematical score was ranked 38th out of 42 countries and the average science scores ranked 40th out of 42 countries with total scores of 386 and 406 respectively. These results are still below the average standard score of 500 [16]. Furthermore, according to PISA data for Indonesian children produce some of the findings among others; low learner literacy achievement, with an average of 32% for all aspects, consisting of content is 29%, process is 34%, and context is 32%; there is a relatively low diversity between provinces of the level of scientific ability of Indonesian students; the ability to solve problems in Indonesian students is very low compared to Malaysia, Thailand or the Philippines [17]. Due to the low learning outcomes and science literacy of Indonesian students, it is necessary to integrate the STEM approach to the learning process, especially Physics learning. The integration of these STEM aspects can support the improvement of students' learning outcomes and science literacy in Indonesia.

Based on the exposure, learning by using STEM approach is very important, because it provides training to learners to be able to integrate each aspect at once. These aspects include science, technology, engineering and mathematics. By applying the STEM approach in the learning process physics is expected to equip students with the various skills required by students in the face of competition in the 21st century.

2. Method

The research method used is descriptive method, that is by analyzing and presenting the facts systematically so it is easier to understand and concluded [18]. Nazir [19] states that the descriptive method is a method of examining the status of a group of people, an object, a set of conditions, a system of thought or a class of events in the present. The purpose of this descriptive research is to make a systematic, factual and accurate description, description, or painting of the facts, traits and relationships between the phenomena investigated. In recent developments, descriptive research
methods have also been conducted by researchers for two reasons. First, from the empirical observations, it is found that most of the research reports are conducted in descriptive form. Second, descriptive method is very useful to get variety of problems related to education and human behavior. There are several methods of descriptive research: survey method, continuous descriptive method, case study, occupational and activity analysis, action research, library research, and comparative research. In this paper the descriptive method used is the library research method. Library research method what is done is to find reference theory relevant to the case or problems found.

3. Results and Discussion

STEM was first launched by the US National Science Foundation in the 1990s as the theme of the educational reform movement in four disciplinary fields, developing a society that is literate STEM, and increase the global competitiveness of the United States (US) in science and technology innovation [20,21,22].

One of the characteristics of STEM education is to integrate science, technology, engineering, and mathematics in solving real problems. However, there are various ways in practice to integrate STEM disciplines, and their pattern and degree of integration depends on many factors [23]. In the context of general basic and secondary education in many countries, including Indonesia, only subjects of science and mathematics are part of the conventional curriculum, while technology and engineering subjects are only minor or even absent in the curriculum. Therefore, STEM education is more focused on science and mathematics [24,46].

STEM has been applied in some developed countries such as USA, Japan, Finland, Australia and Singapore. STEM is an initiative of the National Science Foundation of USA. The goal of STEM application in the United States is to make these four areas (science, technology, engineering, and mathematics) become the main career choice for learners [25,26]. This situation occurs because the country is experiencing a scientific crisis in the field of STEM. To overcome this problem the United States government established a STEM education and provided educational tuition assistance to prospective students who choose one of the STEM fields [27]. But in recent years, STEM has been applied to various fields of study or majors at various levels of education.

The STEM approach can improve students' competence in secondary schools. Competence is something that is owned by students, and is a major component that must be formulated in the learning, which has an important role in determining the direction of learning are: 1) knowledge competence is a competence in the knowledge aspect that students possess including students’ intellectual ability, 2) attitude competence is the teacher’s assessment of student behavior in the learning process, 3) skill competence is an assessment of students skill abilities, such as the ability to give opinions, discussions, reports, and presentation skills [38,39].

STEM has been widely applied in learning [48,49,50]. This situation is shown by the results of research revealing that the application of STEM can improve academic and non-academic achievement of learners. Many previous researchers used the STEM approach in physics learning. In the research there are several aspects that can be improved if we use LKPD with STEM approach. The results of the journal analyzed with the use of student worksheets with STEM approach are shown in Table 1.

No	Aspects Achieved	Aspect Achievement Achieved	Information	Reference
1	a. Student's motivation to study	✓	After using LKPD STEM motivation in learning increases	[28]
	b. Student Learning	✓	After using LKPD	
Activities	STEM learning activities of students increases	After using LKPD STEM ketaif thinking skill increased thinking		
---	---	---		
Students’ creative thinking skills	√	[29]		
Mastery of Student Concept	√	[30]		
Increase Science Process and Creative Thinking Skills	√	The use of the STEM approach can improve the ability of science and students’ creative thinking skills		
Student Learning Competencies	√	Teaching materials using the STEM approach can improve the competence of students’ learning		
The ability of causal reasoning of junior high school students	√	STEM-based learning can be a reference in tracing students’ causal reasoning abilities		
Ability Control of Variable of Junior High School Students	√	The application of STEM-based learning can improve students’ control of varying ability		

Previous research results show that the application of teaching materials using STEM approach in high school students can give a positive effects [35,36,37], as follows: (a) support the development of thinking abilities and awareness of student learning (b) assist in the development of the ability to think critically (c) increase the interest of students towards learning science and mathematics, and interest in matters relating to STEM; (d) develop curiosity, and problem-solving skills; and (e) provide students with extensive experience about the world around them [40,41,42]

4. Conclusion
Based on literature study that has been done, it is found that the use of STEM approach is effectively used to improve students’ learning competence, namely attitude, knowledge, and skill competence. These results indicate that STEM approach is very important to be used in high school physics learning.

References
[1] Wijaya A D, Karmila N, Amalia M R 2015 Implementasi pembelajaran berbasis STEAM (Science, Technology, Engineering, Art, Mathematics) pada kurikulum Indonesia. Prosiding Seminar Nasional Fisika Universitas Padjadjaran.
[2] Aldila C, Abdurrahman, Sesunan F. 2017. Pengembangan LKPD berbasis STEM untuk menumbuhkan keterampilan berpikir kreatif siswa pada materi elastisitas dan hukum Hooke [skripsi]. Lampung (ID): Universitas Lampung.
[3] Becker K and Park K 2011 Effect of integrative approach among Science, Technology, Engineering, and Mathematics (STEM) subject on student’s learning: a primary meta-analysis Journal of STEM Education 12(5/6) 23-37

[4] Asmuniv. 2015. Pendekatan Terpadu Pendidikan STEM Upaya Mempersiapkan Sumber Daya Manusia Indonesia Yang Memiliki Pengetahuan Interdisipliner Dalam Menyosong Kebutuhan Bidang Karir Pekerjaan Masyarakat Ekonomi ASEAN (MEA). Diakses dari http://www.vedcmalang.com/pppttkboemlg/index.php/menuutama/listrikelect rol 1507-asv9.

[5] Beers, S. 2011. 21st Century Skills : Preparing Students For Their Future. Diakses dari http://www.yinghuaacademy.org/wp-content/uploads/2014/10/21st_century_skills.pdf

[6] Capraro, R. M., Capraro, M. M., & Morgan, J. R. (2013). STEM project-based learning. Rotterdam: Sense Publishers.

[7] White D W 2014 What is STEM education and why is it important?. Florida Association of Teacher Educators Journal. 1(14): 1-9.

[8] Nessa W, Hartono Y, Hiltirimartin C 2017 Pengembangan buku siswa materi jarak pada ruang dimensi tiga berbasis Science, Technology, Engineering, and Mathematics (STEM) Problem-Based Learning di kelas X JurnalElemen 3(1) 1-14

[9] Winarni J, Zubaida S, Koes H S 2016 STEM : Apa, mengapa, dan bagaimana Pros. Semnas Pend. IPA Pascasarjana UM 1 978-984

[10] deChambeau A L and Ramlo S E 2017 STEM high school teachers’ views of implementing PBL: an investigation using anecdote circles Interdisciplinary Journal of Problem-Based Learning 11(1)

[11] Merritt J , Lee M , Rillero P and Kinach B M 2017 Problem-Based Learning in K–8 mathematics and science education: a literature review Interdisciplinary Journal of Problem-Based Learning 11(2)

[12] Permanasari A 2016 STEM education: inovasi dalam pembelajaran sains Prosiding Seminar Nasional Pendidikan Sains (SNPS) 23

[13] Farwati R , Permanasari A , Firman H and Suhery T 2017 Integrasi Problem Based Learning dalam STEM education berorientasi pada aktualisasi literasi lingkungan dan kreativitas. Prosiding Seminar Nasional Pendidikan IPA.

[14] Bappenas. 2009. Rencana Kerja Pemerintah 2009. Jakarta: Kementerian Perencanaan Pembangunan Nasional.

[15] Balitbang. 2011. Survei Internasional TIMSS. Diunduh dari http://litbang.kemdikbud.go.id/index.php/survei-intenasional-timss pada tanggal 5 juni 2018

[16] International Association for the Evaluation of Educational Achievement (IEA). 2011. Trends in International Mathematics and Science Study-TIMSS 2015. Tersedia di http://timss2015.org/download-center [diakses 12-4-2018].

[17] Data Base PISA (2012). Results for the 2012 mathematics, reading and science assessments. USA: OECD-PISA

[18] Zakiyah S , Akhsan H , Wiyono K. Analisis Buku Teks Pendahuluan Fisika Kuantum Materi Momentum Sudut Berdasarkan Kategori Literasi Sains. Pendidikan Fisika FKIP Universitas Sriwijaya.

[19] Mohammad Nazir. 1988. Metode Penelitian. Jakarta: Ghalia Indonesia.

[20] Rustaman N Y 2016 Pembelajaran Sains Masa Depan Berbasis STEM Education. Prosiding Seminar Nasional Biologi Edukasi 2016. Universitas Pendidikan Indonesia

[21] Williams J 2011 STEM education: proceed with caution Design and Technology Education: An International Journal 16(1) 26-35

[22] Hanover Research. 2011. K-12 STEM education overview.

[23] Roberts A 2012 A justification for STEM education Technology and Engineering Teacher 74(8) 1-5
[24] Rustaman N Y 2016 Pembelajaran Sains berbasis riset: Implementasi pembelajaran STEM dalam pembelajaran di Kelas. Seminar Nasional Pendidikan Ilmu Pengetahuan Alam. Universitas Mulawarman.

[25] Kapila V and Iskander M 2014 Lessons learned from conducting a K-12 project to revitalize achievement by using instrumentation in science education Journal of STEM Education 15(1) 46-51

[26] Han S , Capraro R and Capraro M M 2014 How Science, Technology, Engineering, and Mathematics (STEM) Project-Based Learning (PBL) affects high, middle, and low achievers differently: The impact of student factors on achievement International Journal of Science and Mathematics Education _ 1-25

[27] Jones L C , Tyrer J R and Zanker N P 2013 Applying laser cutting techniques through horology for teaching effective STEM in design and technology Design and Technology Education 18(3) 21-34

[28] Syarifah R M , Adlim and Mursal 2015 Pengembangan LKS STEM (Science, Technology, Engineering, And Mathematics) dalam meningkatkan motivasi dan aktivitas belajar siswa SMA Negeri 1 Beutong pada materi induksi elektromagnetik Jurnal Pendidikan Sains Indonesia 3(1) 239-250

[29] Pertiwi R S , Abdurrahman , Rosidin U. 2017. Efektivitas LKS STEM untuk melatih keterampilan berpikir kreatif siswa. Lampung (ID): Universitas Lampung.

[30] Pangesti K I , Yulianti D , Sugianto 2017 Bahan ajar berbasis STEM (Science, Technology, Engineering, and Mathematics) untuk meningkatkan penguasaan konsep siswa SMA Unnes Physics Education Journal 6(3) 54-58

[31] Lestari T P , Sarwi and Sumarti S S 2018 STEM-based Project Based Learning model to increase science process and creative thinking skills of 5th grade Journal of Primary Education JPE 7(1) 18-24

[32] Runco M 2010 Torrance tests of creative thinking as predictors of personal and public achievement: a fifty-year follow-up Creativity Research Journal 22(4) 1-10

[33] Ratna F 2017 Integrasi Problem Based Learning dalam STEM education berorientasi pada aktualisasi literasi lingkungan dan kreativitas.

[34] Kuenzi J J 2008 Science, Technology, Engineering, and Mathematics (STEM) education

[35] Sadler P M 2012 Stability and volatility of STEM career interest in high school: a gender study Journal of Science Education 96 411-427

[36] Aimée, L. deChambeau 2017 STEM High School Teachers’ Views of Implementing PBL: An Investigation Using Anecdote Circles. 11

[37] Nadelson L S 2013 Teacher STEM perception and preparation: inquiry based STEM professional development for elementary teachers The Journal of Educational Research 106 (2) 157-168

[38] Bachman , Jennifer and Dierking L 2011 Co-Creating playful environments that support children’s science and mathematics learning as cultural activity: insights from home-educating families Children Youth and Environments 21(2) 294–311

[39] Daniel, R. Herbe (2015) Project-Based Curriculum for Teaching Analytical Design to Freshman Engineering Students via Reconfigurable Trebuchets Published: 25 February 2016.

[40] MerrileaJ. May 2009 Video Games: A Route to Large-Scale STEM Education 323

[41] Rodger W. Bybee 2010 hat Is STEM Education? 329

[42] Micah Stohlmann Tamara J. Moore Gillian H. (2012) Considerations for Teaching Integrated STEM Education Roehrig 2

[43] Depdiknas. 2008. Panduan Pengembangan Bahan Ajar. Jakarta: Departemen Pendidikan Nasional.
[44] Fitriani D, Kaniawati I, Suwarma I R 2017 Pengaruh pembelajaran berbasis STEM (Science, Technology, Engineering, And Mathematics) pada konsep tekanan hidrostatis terhadap causal reasoning siswa SMP. Prosiding Seminar Nasional Fisika 2017 VI

[45] Agustina D, Kaniawati I, Suwarma I R 2017 Penerapan pembelajaran berbasis STEM (Science, Technology, Engineering and Mathematics) untuk meningkatkan kemampuan control of variable siswa SMP pada hukum Pascal. Prosiding Seminar Nasional Fisika (E-Journal) SNF2017 VI

[46] Breiner J M, Johnson C C, Harkness S S and Koehler C M 2012 What is STEM? a discussion about conceptions of STEM in education and partnerships School Science and Mathematics 113-11

[47] Siswono, T. Y. E. 2005. Upaya meningkatkan kemampuan berpikir kreatif siswa melalui pengajuan masalah Jurnal Pendidikan Matematika dan Sains (JMPS) 10(1) 1-9

[48] Wang, H., Moore, T.J., Roehrig, G.H., Park, M. 2011. STEM Integration: Teacher Perceptions and Practice Journal of Pre-Collage Engineering Education Research 1(2) 1-13

[49] California Departement of Education. 2015. Science, Technology, Engineering, and Mathematics. Online. http://www.cde.ca.gov/pd/ca/sc/stemintrod.asp, diakses pada 5 Mei 2018.

[50] Bybee, W Rodger, “The Case for STEM Education Challenges and Oppartunities” in NSTA press. Amerika: 2013.