Model Independent Methods for Determining $\mathcal{B}(\Upsilon(5S) \to B_S^{(*)} \overline{B}_S^{(*)})$

Radia Sia and Sheldon Stone

Department of Physics, Syracuse University, Syracuse, New York 13244-1130
(Dated: August 12, 2009)

We describe a method that provides a model independent measurement of the B_S fraction in $\Upsilon(5S)$ resonance decays, f_S, using the relative rates of like-sign versus opposite sign dileptons; the like-sign leptons result from B^0 and B_S mixing. In addition, we show that determining the rates of single, double and triple $D_S^{(*)}$ mesons provides an alternative way of finding f_S.

The $\Upsilon(5S)$ resonance has long been thought to be a source of B_S mesons, since it is massive enough to produce $B_S\overline{B}_S$ pairs. Recently, the CLEO collaboration established the presence of B_S mesons and made a model dependent measurement that the B_S fraction, f_S, of $\Upsilon(5S)$ decays is $(16.0 \pm 2.6 \pm 5.8)\%$, using a theoretical estimate of $(92 \pm 11)\%$ for the inclusive branching ratio $\mathcal{B}(B_S \to D_S X)$ [2]. Explicit B_S final states have also been reconstructed [3]. These results have been confirmed by Belle [4]. Precision measurements of B_S branching fractions are one of the most important goals of such studies. For example, it has been suggested that measurements of $\mathcal{B}(B_S \to D_S^{(*)+} D_S^{(*)-})$ lead to a determination of the lifetime difference between CP^+ and CP^- eigenstates [5]. To measure these, however, it is imperative that the number of B_S mesons produced in $\Upsilon(5S)$ decays be well known. The purpose of this paper is to describe techniques that can be used to produce accurate, model independent measurements of f_S. (Note that we are not considering $\Upsilon(5S)$ decays to modes that do not contain B mesons.)

Both B and B_S mesons can result from $\Upsilon(5S)$ decays. The possible final states are $B^{(*)-}B^{(*)+}$, $B^{(*)0}\overline{B}^{(*)0}$, $B^{(*)}\pi$, $B\overline{B}\pi\pi$, and $B_S^{(*)0}\overline{B}_S^{(*)0}$, since there is not sufficient energy to produce an extra pion.

Our first method for determining f_S requires the measurement of like-sign versus opposite-sign dileptons. High momentum leptons from B (or B_S) decays reflect the flavor of the parent; positive leptons result from B decays, while negative leptons arise from \overline{B} decays. We will assume here that the minimum lepton momentum requirement is large enough so that contamination from the decay sequence $B \to DX$, $D \to Y \ell \nu$ is negligible, or suitable corrections can be applied [6].

This technique relies on the fact that B_S mixing oscillations are very rapid compared to B_d. The mass difference for B^0 mesons is $\Delta m_d = 0.509 \pm 0.0005$ ps$^{-1}$, while for B_S mesons, Δm_S is limited at 90% confidence level to be > 16.6 ps$^{-1}$ [7, 8], and recently measured by CDF to be $17.31^{+0.32}_{-0.33} \pm 0.07$ ps$^{-1}$ [9]. B_S mixing, when the meson decays semileptonically, produces a relatively large number of like-sign dilepton events that allows a measurement of B_S production [10]. We must also account for B_d mixing and thus need to know the composition of the $B\overline{B}$ states, since the level of mixing will depend on the Charge Conjugation (C) state of the $B\overline{B}$ system.

Hadrons containing b-flavor are produced in pairs in current experiments. If the B and \overline{B} are not in an eigenstate of C, then the probability for a B^0 to decay as a \overline{B}^0, integrated over time, is given by

$$P(B^0 \to \overline{B}^0) = x = \frac{x^2}{2(1 + x^2)},$$

where the mixing parameter $x = \Delta m_B/\Gamma$.

The ratio R of mixed events to unmixed events is given by

$$R = \frac{N_{B^0}\overline{B}^0 + N_{\overline{B}^0}B^0}{N_{B^0}\overline{B}^0 + N_{\overline{B}^0}B^0}.$$ \hspace{1cm} (2)

For incoherent states then $N_{B^0}\overline{B}^0 + N_{\overline{B}^0}B^0$ is equal to $2\chi(1 - \chi)$ and $N_{B^0}\overline{B}^0 + N_{\overline{B}^0}B^0$ is equal to $\chi^2 + (1 - \chi)^2$. For B_S mesons the mixing oscillations are so fast that R does depend on the initial $B^0\overline{B}^0$ state. If the initial pair of B mesons is in a C odd configuration then [11]

$$R_- = \frac{x^2}{2 + x^2},$$ \hspace{1cm} (3)

where the mixing parameter $x_B = \Delta m_B/\Gamma$ and is well measured as 0.775 ± 0.008 [12]. For C even configurations we have

$$R_+ = \frac{3x^2 + x^4}{2 + x^2 + x^4}. \hspace{1cm} (4)$$

The states containing charged B pairs do not contribute to mixing. We expect that there are an equal number of such states as neutral non-strange B‘s, since the mass difference is small and Coulomb corrections are small even at the $\Upsilon(4S)$ [13]. The $B^0\overline{B}^0$ and $B^{*0}\overline{B}^{*0}$ are both produced in an L states one state: thus the $B^0\overline{B}^0$ pair is in a negative C parity state. The $B^0\overline{B}^{*}\gamma$ state,
The fractions in each of these three states are denoted by incoherent, are listed in Table I, and plotted in Fig. 2.

\[R_{\text{inco}} = \frac{x^2(2 + x^2)}{2 + 2x^2 + x^4}. \]

The variation of the \(R \) functions with \(x \) is shown in Fig. 1. Note that \(B^0B^0 \pi^+ \) and \(B^+B^- \pi^- \) final states contain only one \(B^0 \) and mix according to Eq. (3) leading to a mixing rate given by Eq. (4) and thus would be treated as an odd \(C \) state for our purpose. The other states can also be classified in terms of \(C \) eigenstates or incoherent states.

CLEO has made the first measurement of \(B \) meson production at the \(\Upsilon(5S) \) \([13]\). They find that \(B^+B^-\pi^0 \) production is largest with \(B^+B^-\pi^0 \) being about 1/3 its rate. Although limits on other decay channels are not small, we will assume that more data will allow the exact composition of the \(B \) decays at the \(\Upsilon(5S) \) to be established.

We now consider like-sign dilepton production coming from neutral \(B \)'s. The yield from \(B^0\overline{B}^0 \) pairs is given by

\[N_{++} + N_{--} = \sum_i f_i D_i - \pm \pm \pm (x), \]

where \(N_{\pm \pm} \) is the number of \(\Upsilon(5S) \) events containing a \(B\overline{B} \) pair above continuum background, and \(B_{d-sl} \) is the \(B^0 \) semileptonic branching ratio. The \(D_i - \pm \pm \pm (x) \) functions for the neutral \(B \) pairs in \(C = \pm \) eigenstates, or being incoherent, are listed in Table I and plotted in Fig. 2. The fractions in each of these three states are denoted by \(f_i \); they include the \(B\overline{B}\pi(\pi) \) final states \([16]\). We also list and plot the \(D_i - \pm \pm (x) \) functions for opposite sign dileptons. The fraction of neutral non-strange \(B \) mesons, \(f_u \), is assumed to be equal to that for charged \(B \) mesons \([17]\). Since the sum of neutral, charged, and strange \(B \) mesons is unity, we have

\[f_u + f_d + f_s = 1 \]
\[2f_d + f_s = 1, \quad \text{and therefore} \]
\[f_d = f_u = (1 - f_s)/2. \]

C state

\(D_i - \pm \pm \pm (x) \)	\(D_i - \pm \pm \pm (x) \)	
Odd	\[\frac{x^2}{2(1 + x^2)} \]	\[\frac{(2 + x^2)}{2(1 + x^2)} \]
Even	\[\frac{x^2(3 + x^2)}{2(1 + x^2)^2} \]	\[\frac{(2 + x^2 + x^4)}{2(1 + x^2)^2} \]
Incoherent	\[\frac{x^4 + 2x^2}{2(1 + x^2)^2} \]	\[\frac{2 + 2x^2}{2(1 + x^2)^2} \]

TABLE I: Functions for like-sign and opposite-sign dileptons.

A similar set of expressions exist for like-sign leptons from \(B_S \) decays

\[N_{++} + N_{--} = N_{5S}f_{5S}B_{S-sl}^2 \sum_i f_i D_i - \pm \pm \pm (x), \]

where \(B_{S-sl} \) is the semileptonic branching ratio and \(D_{\pm \pm \pm (x)} \) is the function that characterizes the dilepton rate and, in principle, depends on whether or not \(B_S \overline{B}_S \) is in an even or odd eigenstate. The function form is identical to the \(D_i - \pm \pm \pm \pm (x) \) functions listed in Table I but incoherent states are not allowed since there isn’t enough energy at the \(\Upsilon(5S) \) to produce an additional pion. Similarly, the opposite-sign functions for \(B_S \), \(D_{\pm \pm \pm (x)} \), are
identical in form with the $D_{±±}(x)$ functions. Note that all these functions are normalized so that they go to a value of 0.5 as x (or x_S) gets large, reflecting the fact that the mixing probability goes to its maximum value of 50%.

The rate of opposite-sign dileptons is given by

\[N_{+-} + N_{-+} = N_{S} \left[f_{S} B_{S-}\overline{u} \right] D_{±±}(x) \]

\[+ \frac{1 - f_{S}}{2} B_{u-}\overline{u} \sum f_{i} D_{i-±±}(x) + \frac{1 - f_{S}}{2} B_{u-}\overline{u} \] \hspace{1cm} \text{(9)}

The last term is due to charged B_u decays which do not mix. We form the ratio of like-sign to opposite-sign dileptons and divide through by the charged B semileptonic branching ratio B_u^2. We replace the resulting ratios of semileptonic branching fractions by the lifetime ratios, $B_{d-}/B_{u-}\overline{u} = \tau(B^+)/\tau(B^+)$, and note that this rate is not affected by mixing. Here τ is either +1 or -1, and whose rate is also not affected by mixing. When both B mesons are produced in almost all B_S decays, while they are produced only at the 10% level in B decays. We define $D_{±±}(x_S) = D_{±±}(x_S) = 0.5$.

Denoting

\[\rho = \frac{N_{++} + N_{--}}{N_{+-} + N_{-+}} \]

the resulting equation is

\[\rho = \frac{f_{S} \tau_{S}^2 + (1 - f_{S}) \tau_{0}^2 \sum f_{i} D_{i-±±}(x)}{f_{S} \tau_{S}^2 + (1 - f_{S}) \tau_{0}^2 \sum f_{i} D_{i-±±}(x) + (1 - f_{S})} \] \hspace{1cm} \text{(10)}

Solving for f_{S} gives

\[f_{S} = \frac{S_{D} - \rho}{(\rho - 1) \tau_{S}^2 + S_{D} - \rho} \] \hspace{1cm} \text{(11)}

where

\[S_{D} = \tau_{0}^2 \sum f_{i} D_{i-±±}(x) - \rho \sum f_{i} D_{i-±±}(x) \] \hspace{1cm} \text{(12)}

For practical application, we can use Eq. [7] to determine f_d and f_u and then use well measured B^0 and B^+ branching ratios to normalize the B_S rates.

We can estimate the error in f_{S} by taking the C odd contribution as 75%, the C even component as 25%, no incoherent $B^0\overline{B}$ contribution and f_{S} equal to 16% from the CLEO model dependent determination that used $B(D_S \rightarrow \phi \pi^+)$ = (4.4 \pm 0.5)% which is an average between the PDG value [7] and a recent BaBar measurement [18]. In this case ρ=0.25. Taking into account the semileptonic branching (10.5%), the fraction of high momentum leptons above the minimum lepton momentum cut (1/3), and the lepton efficiency (0.8), we estimate that an error of \pm4% on f_{S} can be achieved with 30 fb$^{-1}$ of data. (We find that the fractional error in f_{S} is about twice the fractional error in ρ.) Interestingly, a new preliminary value of $B(D_S \rightarrow \phi \pi^+)$ (3.5 \pm 0.4)% based on CLEO-c data [19] raises f_{S} to 21%, changes ρ to 0.29, and consequently improves the sensitivity to about \pm3%. Thus, this method can lead to a model independent determination of f_{S} once the C states of the B^0 decays are experimentally determined more precisely.

We next discuss another method for finding the B_S fraction that uses B mixing as input, but is not the main ingredient. Rather, we make use of the fact that $D_S^{±}$ mesons are produced in almost all B_S decays, while they are produced only at the 10% level in B decays. We define $S_{1} = B(B \rightarrow D_{S}X)$, $S_{2} = B(B \rightarrow D_{S}^{±}D_{S}^{±}X)$, and $S_{3} = B(B \rightarrow D_{S}^{±}D_{S}^{±}X)$. Here S_{1} is the rate for the B_S to decay into one and only one $D_{S}^{±}$ meson, S_{2} is the rate for the B_S to decay into a $D_{S}^{±}$ meson pair. The inclusive rate $B(B_S \rightarrow D_{S}X) = S_{1} + 2S_{2}$. (Note that the probability that a B_S does not decay into a D_{S} meson is given by $1 - S_{1} - S_{2}$.)

In this analysis there are two sources of D_{S} production, the B_S again with fraction f_{S}, and B decays, where we take the mixture of B^0 and B^+ events to have the same D_{S} yields as on the $\Upsilon(4S)$. Since we do not expect the charge of the B to effect the D_{S} rates, this method is insensitive to their relative contribution. Thus, the B_S fraction is taken as (1-f_{S}).

Consider now the production of multiple D_{S} candidates in single $\Upsilon(5S)$ events, taking into account mixing. $\Upsilon(5S)$ decays can produce events with 4 D_{S} mesons, when both B_S mesons decay into $D_{S}^{±}D_{S}^{±}X$. We denote as $N^{±±±±}$ the observed number of such 4 D_{S} events and note that this rate is not affected by mixing. $N^{±±±±}$ refers to events with 3 observed D_{S}, whose charge sum is either +1 or -1, and whose rate is also not affected by mixing. $N^{±±}$ denotes finding an event with oppositely charge $D_{S}^{±}D_{S}^{±}$ mesons, whose rate is changed by both B_S and B mixing, so we introduce the parameters f_{mix}^{S} and f_{mix}^{D}, where f_{mix}^{S} = 1/2 and f_{mix}^{D} equals average mixing rate over the C even, odd, incoherent mixtures and charged B decays defined above. $N^{±±±±}$ denotes a $D_{S}^{±}D_{S}^{±}$ or $D_{S}^{±}D_{S}^{±}$ pair, while $N^{±±}$ indicates the detection of a single $D_{S}^{±}$ meson. Here, the single rate is inclusive of all double, triple and quadruple rates, etc.. The resulting equations relating the observed numbers to the branching ratios and f_{S} are

\[N^{±±±±}/e^{2}N_{5S} = S_{D}^{2}f_{S} \]

\[N^{±±±±}/e^{3}N_{5S} = (2S_{1}S_{2} + 4S_{2}^{2})f_{S} \]

\[N^{±±}/e^{2}N_{5S} = \left[(1 - f_{mix}^{S})S_{D}^{2} + 2(1 - f_{mix}^{S})S_{1}S_{2} \right]f_{S} \]

\[+ 2S_{2}(1 - S_{1} - S_{2} + 4S_{2}^{2})f_{S} + \left(1 - f_{S} \right)(1 - f_{mix}^{D})B_{D} \]

\[N^{±±}/e^{2}N_{5S} = \left[f_{mix}^{S}(S_{D}^{2} + 2S_{1}S_{2} + 2S_{2}^{2})\right]f_{S} \] \hspace{1cm} \text{(17)}
\[N^\pm /\epsilon N_{5S} = 2(S_1 + 2S_2) f_S + 2(1 - f_S) B, \]

where \(\epsilon \) indicates the detection efficiency of a single \(D_S \); it is the sum of the branching ratio times efficiency for each decay mode that is used. We ignore two small corrections; first of all we take the rate for a single \(B \) meson to produce a \(D_S^* D_S^- \) pair to be negligibly small, and secondly we don’t account properly for the charge correlations resulting from the small production of “wrong-sign” \(D_S \) production from \(B_S \) decays that can occur via a \(b \to u \) transitions. The latter effects only equations containing \(f_{mix} \) [21].

We expect that \(\epsilon \) could be made as large as 10% by including many modes. We use \(S_1 = 0.8 \) and \(S_2 = 0.1 \), which allows estimates of the various rates. We do not expect to be able to observe a significant quadruple \(D_S \) rate. On the other hand, we estimate that in a 50 fb\(^{-1} \) data sample, there would be \(\approx 500 \) observable triple \(D_S \) events allowing the use of Eq. 17. Thus, we would have four equations, in this case Eqs. 15-18 relating our three unknowns: \(f_S, S_1 \) and \(S_2 \). The best values for the unknowns can be obtained by using a constrained fit to find the solution. Note that Eq. 16 can be simplified as

\[
N^\pm /\epsilon^2 N_{5S} = \left[(1 - f_{mix}^S)S_1^2 - 2f_{mix}^S S_1 S_2 + 2S_2 + 2S_2^2 \right] f_S + (1 - f_S)^2 (1 - f_{mix}) B^2.
\]

Should not enough triple \(D_S \) events be found in the data sample, Eqs. 16-18 could be solved for the three unknowns. Another possibility, if precise measurements on the \(B^0 \) C parity contributions are not available, is to add Eqs. 16 [17] and 17 since the resulting equation is not a function of either \(B^0 \) or \(B_S \) mixing. In this case, however, measurement of the triple \(D_S \) rate is necessary.

In conclusion, knowledge of the number of \(B_S \) mesons is essential for all branching fraction determinations at the \(\Upsilon(5S) \). We present a model independent method of determining the fraction of \(B_S \) mesons at the \(\Upsilon(5S) \), and hence \(B \left[\Upsilon(5S) \to B_S^{(*)} \overline{B}_S^{(*)} \right] \), using the complete mixing of the \(B_S \) via dileptons. The amount of luminosity required to make an accurate measurement of the \(B_S \) fraction will depend on the actual compositions of the \(B^0 \) final states, but it is likely to require several tens of fb\(^{-1} \). We also suggest another technique using the counting of single, double and triple \(D_S \) mesons in \(\Upsilon(5S) \) events [21].

This work was supported by the National Science Foundation under grant #0553004. We thank Remi Louvot for useful comments.

[1] S. Ono et al., Phys. Rev. Lett., 55, 2938 (1985); A. D. Martin and C.-K. Ng, Z. Phys. C 40, 139 (1988); N. Beyers and E. Eichten, Nucl. Phys. B (Proc. Suppl.) 16, 281 (1990); N. Beyers [hep-ph/9412292] (1994).

[2] M. Artuso et al. (CLEO) Phys. Rev. Lett. 95, 261801 (2005) [hep-ex/0508047].

[3] G. Bonvicini et al. (CLEO), Phys. Rev. Lett. 96 022002 (2006) [hep-ex/0510034].

[4] A. Drutskoy, “Results of the \(\Upsilon(5S) \) Engineering Run,” presented at Rencontres De Moriond, March 2006, La Thaille, Italy [http://moriond.in2p3.fr/EW/2006/Transparencies/A.Drutskoy.pdf].

[5] A. Drutskoy, “Determining \(\Delta\Gamma_{S1}/\Gamma \) from \(B(B_S \to D_S^{(*)}\overline{D}_S^{(*)}) \) Measurements at \(\Upsilon(5S) \) Resonance,” [hep-ph/0604061].

[6] Dilepton measurements done on the \(\Upsilon(4S) \) used minimum momentum criteria near 1.5 GeV/c. See for example, J. Bartelt et al. (CLEO), Phys. Rev. Lett. 71, 1680 (1993).

[7] S. Eidelman et al. (PDG), Phys. Lett. B 592, 1 (2004).

[8] V. Abazov et al. (D0), “First Direct Two-Sided Bound on the \(B_S^0/\overline{B}_S^0 \) Oscillation Frequency,” (2006) [hep-ex/0603029].

[9] A. Abulencia et al. (CDF), “Measurement of the \(B^0 \) \(\to \overline{B}^0 \) Oscillation Frequency,” (2006) [hep-ex/0600027].

[10] Similar techniques have been used at LEPI and Tevatron experiments to help improve the accuracy of the determination of \(b \)-hadron fractions. See O. Schneider, “\(B^0/\overline{B}^0 \) Mixing,” in ref. [8], and references contained therein.

[11] I. I. Bigi and A. I. Sanda, CP Violation, Cambridge Univ. Press (Cambridge), p157 (2000).

[12] E. Barberio et al., “Averages of b-hadron Properties at the End of 2005,” [hep-ex/0603003] (2006).

[13] D. Atwood and W. Marciano, Phys. Rev. D41, 1736 (1990).

[14] H. Schröder, “\(B^0/\overline{B}^0 \) Mixing,” in B Decays Revised 2nd edition, ed. by S. Stone, World Scientific, Singapore (1994) p449; P. Krawczyk, D. London and H. Steger, Nucl. Phys. B321, 1 (1989).

[15] O. Aquences et al. CLEO, “First Measurements of the Exclusive Decays of the \(\Upsilon(5S) \) to \(B \) Meson Final States and Improved \(B^0_S \) Mass Measurement.” [hep-ex/0601044].

[16] For better accuracy, final states with a charged and neutral \(B \) such as \(B^* \overline{B}^0 \) - \(\pi^{-} \) should be put in a separate sum where the coefficient is \(B_{s\to sl} B_{s\to sl} \) instead of \(B_{s\to sl}^2 \). These states are expected to constitute a small fraction of the decays, so we have not done this here.

[17] In principle, the ratio of \(B^- \) to \(B^0 \) production can be independently determined by measuring exclusive decays and using branching ratios measured at the \(\Upsilon(4S) \). A change in this ratio from unity will affect the determination of \(f_S \) using mixing but not using inclusive \(D_S \) decays.

[18] B. Aubert et al. Phys. Rev. D 71, 091104(R) (2005).

[19] S. Stone, “Hadronic Charm Decays and D Mixing,” invited talk at Flavor Physics and CP Violation Conference, April 6-12, 2006, Vancouver Canada [http://fpcp2006.triumf.ca/agenda.php?hep-ph/0605134].

[20] In addition, to take precisely into account any “wrong-sign” \(B \) decays, e. g. \(B^- \to D_S^+ X \), we advocate measuring \(f_{mix} \) on the \(\Upsilon(4S) \) using the ratio of like-sign to opposite-sign \(D_S \) events.

[21] It may also be possible to determine \(\overline{B}^0 \) and \(B^- \) production cross-sections by reconstructing exclusive decays. All possible modes \(B^+ \overline{B}^- \), \(B^+ \overline{B}^- \pi^- \) and \(B^+ \overline{B}^- \pi^+ \) must be included. The sum of these cross-sections with the \(B_S \) yield found using the techniques described above should
equal the total $\Upsilon(5S)$ cross-section. Any short fall would be indicative of decays of the $\Upsilon(5S)$ to final states not containing b and \bar{b} quarks.