Abstract

We give a condition ensuring that the operators in a nilpotent Lie algebra of linear operators on a finite dimensional vector space have a common eigenvector.

INTRODUCTION

Throughout this paper V is a vector space of positive dimension over a field f and g is a nilpotent Lie algebra over f of linear operators on V. An element $u \in V$ is an eigenvector for $S \subset g$ if u is an eigenvector for every operator in S. If V has a basis (e_1, \ldots, e_n) representing each element of g by an upper triangular matrix, then e_1 is an eigenvector for g. Such a basis exists when f is algebraically closed and g is solvable (Lie’s Theorem), and also when every element of g is a nilpotent operator (Engel’s Theorem). Our results are further conditions guaranteeing existence eigenvectors.

The minimal and characteristic polynomials of a linear operator A on V are denoted respectively by $\pi_A, \mu_A \in f[t] =$ the ring of polynomials over f, written $\#S$.

Let k be a Galois extension field of f of degree $d := [k : f]$, and define $M \subset N$ to be the additive monoid generated by zero and the prime divisors d.

Consider the conditions:

(C1) μ_A splits in k for every $A \in g$

(C2) $\dim V \not\in M$

Our main result is:

Theorem 1 If (C1) and (C2) hold then g has an eigenvector.
The proof is preceded by some applications.

When (C1) holds, Theorem I shows that there is an eigenvector in every invariant subspace whose dimension is not in \(M \). This is exploited to yield the following two results:

Corollary 2 If a nilpotent Lie algebra of linear operators on \(\mathbb{R}^n \) does not have an eigenvector, every nontrivial invariant subspace has odd dimension.

Proof When \(\mathfrak{f} \) is the real field \(\mathbb{R} \) and \(\mathfrak{k} \) is the complex field \(\mathbb{C} \), \(M \) consists of the positive even integers. ■

Corollary 3 Let (C1) hold. Assume \(\mathfrak{g} \) preserves a direct sum decomposition \(V = \oplus_i W_i \), and let \(D \subset \mathbb{N} \) denote the set of dimensions of the subspaces \(W_i \).

(i) If \(\mathfrak{g} \) does not have an eigenvector then \(D \subset M \).

(ii) If \(V' \subset V \) is a maximal subspace spanned by eigenvectors of \(\mathfrak{g} \) then \(\dim(V') \geq \# \{ D \ \setminus \ M \} \).

Proof Assertion (i) follows from Theorem I. To prove (ii) order the \(W_i \) so that \(W_1, \ldots, W_m \) are the only summands whose dimensions are not in \(M \). For each \(j \in \{1, \ldots, m\} \) we choose an eigenvector \(e_j \in W_j \) by Theorem I. The \(e_j \) are linearly independent and belong to \(V' \) by maximality of \(V' \), whence (ii). ■

Example 4
Assume \(n \not\in M \) and let \(\alpha \in \mathfrak{f}[t] \) be a monic polynomial that splits in \(\mathfrak{k}[t] \). Denote by \(\mathcal{A}(\alpha) \) the set of \(n \times n \) matrices \(\mathcal{T} \) over \(\mathfrak{f} \) such that \(\alpha(\mathcal{T}) = 0 \). Then every pairwise commuting family \(\mathcal{T} \subset \mathcal{A}(\alpha) \) has an eigenvector in \(\mathfrak{f}^n \). This follows from Theorem I applied to the Lie algebra \(\mathfrak{g} \) of linear operators on \(\mathfrak{f}^n \) generated by \(\mathcal{T} \). Being abelian, \(\mathfrak{g} \) can be triangularized over \(\mathfrak{k} \), hence (C1) holds.

Example 5
The assumption that \(n \in M \) is essential to Theorem I. For instance, take \(\mathfrak{f} = \mathbb{R} \), \(\mathfrak{k} = \mathbb{C} \), \(V = \mathbb{R}^2 \). The abelian Lie algebra of \(2 \times 2 \) of real skew symmetric matrices does not have an eigenvector in \(\mathbb{R}^2 \).

Example 6
The hypothesis of Theorem I cannot be weakened to \(\mathfrak{g} \) being merely solvable. For a counterexample with \(\mathfrak{f} = \mathbb{R}, \mathfrak{k} = \mathbb{C} \), take \(\mathfrak{g} \) to be the solvable 3-dimensional real Lie algebra with basis \((X, U, V)\) such that \([X, U] = -V, [X, V] = U, [U, V] = 0\).

A Lie algebra \(\mathfrak{b} \) over \(\mathfrak{f} \) is **supersolvable** if the spectrum of the linear map \(\text{ad} A : \mathfrak{b} \to \mathfrak{b} \) lies in \(\mathfrak{f} \) for all \(A \in \mathfrak{b} \). If \(\mathfrak{b} \) is not supersolvable it need not have an eigenvector, as is shown by Example 6. We don’t know if Theorem I extends to supersolvable Lie algebras, except for the following special case:
Theorem 7 A supersolvable Lie algebra \mathfrak{b} of linear transformations of \mathbb{R}^3 has an eigenvector.

Proof Lacking an algebraic proof, we use a dynamical argument. Let $G \subset GL(3, \mathbb{R})$ be the connected Lie subgroup having Lie algebra \mathfrak{b}. The natural action of G on the projective plane \mathbb{P}^2 of lines in \mathbb{R}^3 through the origin fixes some $L \in \mathbb{P}^2$. This follows from supersolvability because $\dim(\mathbb{P}^2) = 2$, the action on \mathbb{P}^2 is effective and analytic, and the Euler characteristic of \mathbb{P}^2 is nonzero (Hirsch & Weinstein [1]). The nonzero points of L are eigenvectors for \mathfrak{b}.

Proof of Theorem 1 We rely on Jacobson’s Primary Decomposition Theorem [2, II.4, Theorem 5]. This states that V has a \mathfrak{g}-invariant direct sum decomposition $\bigoplus V_i$ where each primary component V_i has the following property: For each $A \in \mathfrak{g}$ the minimal polynomial of $A|V_i$ is a prime power in $f[t]$.

Condition (C2) implies the dimension of some primary component is $\notin M$. To prove Theorem 1 it therefore suffices to apply the following result to such a primary component:

Theorem 8 Assume (C1) and (C2). If π_A is a prime power in $f[t]$ for each $A \in \mathfrak{g}$ then the following hold:

(a) $\pi_A(t) = (t - r_A)^n$, $r_A \in f$

(b) there is a basis putting \mathfrak{g} in triangular form

Assertion (a) is equivalent to π_A having a root $r_A \in f$. Therefore (a) follows from:

Lemma 9 Let $\alpha \in f[t]$ be a polynomial of degree n that splits in $k[t]$. If $n \notin M$ then α has a root in f, and the sum of the multiplicities of such roots is $\notin M$.

Proof Let $R \subset k$ denote the set of roots of π, and $R_j \subset R$ the set of roots of multiplicity j. The Galois group Γ has order $[k : f]$ and acts on R by permutations. The cardinality of each orbit divides $[k : f]$, and $R \cap f$ is the set of fixed points of this action. Each R_j is a union of orbits, as is $R_j \setminus f$. It follows that $\#(R_j \setminus f) \in M$.

Let $k \leq n$ denote the sum of the multiplicities of the roots that are not in f. Then

$$k = \sum_{j=2}^{n} j \cdot \#(R_j \setminus f)$$

Therefore $k \in M$ because M is closed under addition. By hypothesis $n \notin M$, hence $n - k \notin M$ and $n - k > 0$. As $n - k$ is the sum of the multiplicities of the roots in f, the conclusion follows.

Now that (a) of Theorem 8 is proved, assertion (b) is a consequence of the following result:
Lemma 10 Let \mathfrak{h} be a nilpotent Lie algebra of linear operators on V. Assume that for all $A \in \mathfrak{h}$ there exists $r_A \in \mathfrak{f}$ such that $\pi_A(t) = (t - r_A)^n$. Then V has a basis putting \mathfrak{h} in triangular form.

Proof Every $A \in \mathfrak{h}$ can be written uniquely as $r_A I + N_A$ with N_A nilpotent and I the identity map of V. It is easy to see that the set comprising the N_A is closed under commutator brackets. Therefore V has a basis triangularizing all the N_A (Jacobson [2 II.2, Theorem 1']), and such a basis triangularizes \mathfrak{h}. This completes the proof of Theorem 1.

References

[1] M. Hirsch & A. Weinstein, Fixed points of analytic actions of supersoluble Lie groups on compact surfaces, Ergod. Th. Dyn. Sys. 21 (2001), no. 6, 1783–1787. See also http://front.math.ucdavis.edu/math.DS/0002013

[2] N. Jacobson, “Lie Algebras”, Interscience Tracts in Pure Mathematics No. 10. John Wiley, New York (1962)