PROPERTIES OF BOTT MANIFOLDS AND COHOMOLOGICAL RIGIDITY

SUYOUNG CHOI AND DONG YOUP SUH

Abstract. The cohomological rigidity problem for toric manifolds asks whether the cohomology ring of a toric manifold determines the topological type of the manifold. In this paper, we consider the problem with the class of one-twist Bott manifolds to get an affirmative answer to the problem. We also generalize the result to quasitoric manifolds. In doing so, we show that the twist number of a Bott manifold is well-defined and is equal to the cohomological complexity of the cohomology ring of the manifold. We also show that any cohomology Bott manifold is homeomorphic to a Bott manifold. All these results are also generalized to the case with $\mathbb{Z}(2)$-coefficients, where $\mathbb{Z}(2)$ is the localized ring at 2.

Contents

1. Introduction 1
2. A sum of two line bundles over Bott manifolds 4
3. Twist number and Cohomological complexity 10
4. BQ-algebras and Bott manifolds 13
5. Cohomological rigidity of one-twist Bott manifolds 17
6. BQ-algebra over $\mathbb{Z}(2)$ 20
7. References 22

1. INTRODUCTION

A class \mathcal{M} of closed manifolds is said to be cohomologically rigid if any two elements $M, N \in \mathcal{M}$ are homeomorphic whenever their cohomology rings are isomorphic. One of the interesting problems in toric
topology is to determine whether the class of toric (or quasitoric) manifolds is cohomologically rigid. A quasitoric manifold is a topological analogue of a toric manifold, which was first introduced by Davis and Januszkiewicz in [6], see also [2].

Since the class of toric or quasitoric manifolds is too large to handle it is reasonable to restrict our attention to a smaller but an interesting subclass of manifolds. Namely, we would like to restrict our focus on Bott manifolds or cohomology Bott manifolds.

A (complex) Bott tower \(\{ B_j \mid j = 0, \ldots, n \} \) of height \(n \) (or \(n \)-stage Bott tower) is a sequence

\[
B_n \xrightarrow{\pi_n} B_{n-1} \xrightarrow{\pi_{n-1}} \cdots \xrightarrow{\pi_2} B_1 \xrightarrow{\pi_1} B_0 = \{ \text{a point} \},
\]

of manifolds \(B_j = P(\mathbb{C} \oplus \xi_{j-1}) \) where \(\xi_{j-1} \) is a complex line bundle over \(B_{j-1} \) for each \(j = 1, \ldots, n \). In this case we call \(B_j \) the \(j \)-th stage Bott manifold of the Bott tower. A smooth manifold \(M \) diffeomorphic to the top stage \(B_n \) of a Bott tower is also called a Bott manifold, and in this case \(\{ B_j \mid j = 0, \ldots, n \} \) is called a Bott tower structure of \(M \).

A Bott tower was first introduced by Bott and Samelson in [1], and later named as Bott tower in [7]. Bott manifolds are known to have algebraic torus actions, hence they constitute an important family of toric manifolds. A cohomology Bott manifold is a quasitoric manifold whose cohomology ring is isomorphic to that of a Bott manifold.

The question we are interested in here is whether the class of (cohomology) Bott manifolds is cohomologically rigid. So far, there is no counter example to the question, but some positive results. Masuda and Panov considered the problem and showed that any \(n \)-stage Bott manifold is diffeomorphic to the trivial Bott manifold \((\mathbb{C}P^1)^n\) if its cohomology ring is isomorphic to that of \((\mathbb{C}P^1)^n\).

The notion of Bott tower is generalized to a generalized Bott tower in [8] which is an iterated complex projective space bundles obtained from projectivization of sum of line bundles over a complex projective space, and the result in [12] is extended to generalized Bott manifolds in [4]. Furthermore any three-stage Bott manifolds and 2-stage generalized Bott manifolds are shown to be cohomologically rigid there.

Davis and Januszkiewicz also introduced a real analogue of a quasitoric manifold called a small cover in [6]. But for small covers the corresponding cohomologies are with \(\mathbb{Z}_2 \)-coefficients. Moreover we can define a real Bott tower to be an iterated \(\mathbb{R}P^1 \) bundles over \(\mathbb{R}P^1 \), and a generalized real Bott tower is defined similarly. So one might ask a similar cohomological rigidity question asking whether two real Bott manifolds are homeomorphic if their mod 2 cohomology rings are isomorphic. This is shown to be true recently by Kamishima and Masuda [9], [10]. However the same question for generalized real Bott manifolds is not true, see [11].
However not much is known for the cohomological rigidity of Bott manifolds whose cohomology rings are not isomorphic to that of product of $\mathbb{C}P^1$. In this article we consider one-twist Bott manifolds, i.e., only one stage has nontrivial fibration in its Bott tower structure. We prove in Theorem 5.1 that one-twist Bott towers are cohomologically rigid. Moreover this result is extended to quasitoric manifolds whose \mathbb{Z}-cohomology rings are isomorphic to those of one-twist Bott towers in Theorem 5.3. Theorem 5.3 is an immediate consequence of Theorem 5.1 together with two properties related with Bott towers. They are Theorem 3.1 and Theorem 4.2.

A Bott manifold M may have two Bott tower structures $\{B_j \mid j = 0, \ldots, n\}$ and $\{B'_j \mid j = 0, \ldots, n\}$. The question we are interested in here is whether the twist number (i.e., the number of nontrivial fibrations) of the two Bott tower structures are equal? If so, the twist number of a Bott manifold is well-defined.

On the other hand the cohomology ring of an n-stage Bott manifold M is a truncated polynomial ring

\begin{equation}
H^*(M) \cong \mathbb{Z}[x_1, \ldots, x_n]/I,
\end{equation}

where $I = \langle x_j(x_j - f_j) \mid j = 1, \ldots, n \rangle$ and $f_j = \sum_{i=1}^{j-1} c_{ij}x_i$ with $\deg x_i = 2$. If the fibration of the j-th stage of a Bott tower structure on M is trivial, then we may assume that $f_j = 0$. The number of nonzero f_j's may depend on the choices of both generators of the cohomology ring $H^*(M)$ and Bott tower structures of M. The cohomological complexity of M is the minimal number of nonzero f_j's among all possible such choices. It is obvious that cohomological complexity of $H^*(M)$ is less than or equal to the twist number of any Bott tower structure of M. In Theorem 3.1 we show that the twist number of any Bott tower structure of M is equal to the cohomological complexity of $H^*(M)$. In particular the twist number of a Bott manifold is well-defined, namely, it does not depend on the choice of Bott manifold structures of a Bott manifold.

A BQ-algebra of rank n is defined in [2]. In particular, the cohomology ring of any n-stage Bott manifold is a BQ-algebra of rank n over \mathbb{Z}. The converse of this is proved in Theorem 4.2.

It is proved in [4] that the class of three-stage Bott manifolds are cohomologically rigid. An immediate consequence of this result together with Theorem 4.2 is Theorem 4.3 which says that the class of 6-dimensional quasitoric manifolds whose cohomologies are BQ-algebras over \mathbb{Z} is cohomologically rigid.

So far, all the cohomological results are over \mathbb{Z} coefficients. But by careful observation of the proofs we can see that the same conclusion can be derived with the 2-localized $\mathbb{Z}_{(2)}$-coefficients. This is treated in Section 5.
2. A sum of two line bundles over Bott manifolds

Let \(\{ B_j = P(\mathbb{C} \oplus \xi_j^{-1}) \mid 0 \leq j \leq n \} \) be a complex Bott tower of height \(n \). By the standard results on the cohomology of projectivised bundles, we can see that the cohomology of \(B_j \) is a free module over \(H^\ast(B_{j-1}) \) on generators 1 and \(x_j \) of dimension 0 and 2 respectively. The ring structure of \(H^\ast(B_j) \) is determined by a single relation

\[
x_j^2 = c_1(\xi_{j-1})x_j
\]

where \(x_j \) is the first Chern class of the line bundle \(\gamma_j \) which is the pull-back bundle of the tautological line bundle of \(P(\mathbb{C} \oplus \xi_{j-1}) = B_j \) via the projection \(B_n \to B_j \). Since \(c_1(\xi_{j-1}) \in H^2(B_{j-1}) \), we can write

\[
f_j := c_1(\xi_{j-1}) = \sum_{i=1}^{j-1} c_{ij}x_i.
\]

Since complex line bundles are distinguished by their first Chern classes, Bott manifold \(B_n \) is determined by the above list of integers \((c_{ij} : 1 \leq i < j \leq n) \).

It is convenient to organize the integers \(c_{ij} \) into an \(n \times n \) upper triangular matrix,

\[
\Lambda = \begin{pmatrix}
0 & c_{12} & \cdots & c_{1n} \\
0 & \ddots & \ddots & \vdots \\
& \ddots & 0 & c_{n-1n} \\
& 0 & 0 & 0
\end{pmatrix}.
\]

We call it the associated matrix of the Bott tower.

One of the basic questions in vector bundle theory is to determine when two bundles with equal characteristic classes are isomorphic. In particular, we would like to know whether the following question is true. Let \(\xi \) and \(\eta \) be sums of \(k \) complex line bundles over a generalized Bott manifold \(B \). Are two bundles \(\xi \) and \(\eta \) isomorphic if their total Chern classes are equal? The answer is true when \(B \) is a generalized Bott tower and \(\eta \) is the trivial bundle, see [4]. In this section we provide two more affirmative answers to the question. They are Proposition 2.4 and Proposition 2.5. We first need the following lemma. We sometimes confuse Bott tower with its last stage Bott manifold when they are clear from the context.

Lemma 2.1. Let \(B_n \) and \(B'_n \) be two \(n \) stage Bott towers. If the associated matrices to them are

\[
\begin{pmatrix}
0 & * & * & b_1 & a_1 \\
& \ddots & * & \vdots & \vdots \\
& 0 & b_{n-2} & a_{n-2} & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

and

\[
\begin{pmatrix}
0 & * & a_1 & b_1 \\
& \ddots & * & \vdots & \vdots \\
& 0 & a_{n-2} & b_{n-2} & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]
respectively, then B_n and B'_n are diffeomorphic.

Note that this lemma can be seen by the fact that B_n and B'_n are diffeomorphic if two associated matrices are conjugate by a permutation matrix, see [3] or [12]. However, here we give a direct proof of the lemma.

Proof. Let B be the $(n-2)$-stage Bott manifold with the associated $(n-2) \times (n-2)$ matrix

$$
\begin{pmatrix}
0 & * & * \\
& \ddots & * \\
& & & 0
\end{pmatrix}.
$$

Then $B = B_{n-2} \to B_{n-3} \to \cdots \to B_1 \to B_0$, where $B_j = P(C \oplus \xi_{j-1}) \to B_{j-1}$.

Let γ_j be the pull-back of the tautological line bundle of $P(C \oplus \xi_{j-1}) = B_j$ via the projection $B = B_{n-2} \to B_j$, and let $c_j(\gamma_j) = x_j$ for $j \leq n-2$. Let $\alpha = \sum_{i=1}^{n-2} a_i x_i$ and $\beta = \sum_{i=1}^{n-2} b_i x_i \in H^2(B)$. Define two complex line bundles over B

$$
\gamma^\alpha = \bigotimes_{i=1}^{n-2} \gamma_i^{a_i} \to B, \quad \text{and} \quad \gamma^\beta = \bigotimes_{i=1}^{n-2} \gamma_i^{b_i} \to B.
$$

Let $\pi^\alpha: P(C \oplus \gamma^\alpha) \to B$ be the projection of the CP^1-bundle over B and denote this fiber bundle by η_α. Similarly $\pi^\beta: P(C \oplus \gamma^\beta) \to B$ and η_β is defined. Then

$$
\begin{array}{ccc}
B'_n \cong \pi^*_\alpha(\eta_\beta) & \quad \pi^*_\beta(\eta_\alpha) \cong B_n \quad , \\
B'_{n-1} = P(C \oplus \gamma^\alpha) & \quad B = B_{n-2} \\
\quad \pi^\alpha & \quad \pi^\beta
\end{array}
$$

$$
\begin{array}{ccc}
& B'_n = P(C \oplus \gamma^\alpha) & \\
& \pi^\alpha & \\
& B = B_{n-2} & \pi^\beta
\end{array}
$$

where $\pi^\alpha_\beta(\eta_\alpha) = \{(x, y) \in P(C \oplus \gamma^\beta) \times P(C \oplus \gamma^\alpha) | \pi_\beta(x) = \pi_\alpha(y)\}$ and $\pi^\alpha_\beta(\eta_\beta) = \{(a, b) \in P(C \oplus \gamma^\alpha) \times P(C \oplus \gamma^\beta) | \pi_\alpha(a) = \pi_\beta(b)\}$. Therefore $\pi^\alpha_\beta(\eta_\alpha) \cong \pi^*_\alpha(\eta_\beta)$.

\[\square \]

Corollary 2.2. If a Bott manifold has a one-twist Bott tower structure, then it has another Bott tower structure whose last stage is nontrivial and all other stages are trivial.

Proof. By successive applications of Lemma 2.1, we can push the trivial fibration down to lower levels. \[\square \]
Corollary 2.3. If B_n is a Bott tower with the associated matrix

$$
\Lambda = \begin{pmatrix}
0 & c_{12} & \cdots & c_{1n} \\
0 & 0 & \ddots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & c_{n-1n} & 0
\end{pmatrix}
$$

such that $c_{kk+1} = c_{kk+2} = \cdots = c_{kn} = 0$. Then B_n is diffeomorphic to a Bott tower with the associated matrix

$$
\Lambda' = \begin{pmatrix}
0 & c_{12} & \cdots & c_{1k-1} & c_{1k+1} & c_{1k+2} & \cdots & c_{1n} & c_{1k} \\
0 & 0 & \cdots & c_{2k-1} & c_{2k+1} & c_{2k+2} & \cdots & c_{2n} & c_{2k} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & \cdots & c_{k-1k+1} & c_{k-1k+2} & \cdots & c_{k-1n} & c_{k-1k} & c_{k+1k+2} & \cdots & c_{k+1n} & 0 \\
0 & \cdots \\
0 & \cdots & c_{n-1n} & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}.
$$

Note that Λ' is obtained from Λ by interchanging the k-th and the n-th rows and the k-th and the n-th columns. So Λ' is conjugate to Λ, and again, by [3] and [12], we can see that their corresponding Bott manifolds are diffeomorphic. However, we give an elementary and direct indication of proof here for reader’s convenience.

Sketch of Proof. This is an easy consequence of Lemma 2.1. The only thing to consider is that when exchanging the columns we need to take care of the effect of the indices of x_j’s. Here we only give an idea of the proof with an example. The proof of the general case is quite similar. Here we consider B_4 with the following associated matrix

$$
A = \begin{pmatrix}
0 & a & b & c \\
0 & 0 & 0 & d \\
0 & 0 & d & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}.
$$

Then $H^*(B_4) \cong \mathbb{Z}[x_1, x_2, x_3, x_4]/I$ where I is the ideal generated by x_1^2, $x_2(x_2 - ax_1)$, $x_3(x_3 - bx_1)$, $x_4(x_4 - dx_3 - cx_1)$.

We apply Lemma 2.1 to B_3 whose associated matrix is

$$
B = \begin{pmatrix}
0 & a & b \\
0 & 0 & b \\
0 & 0 & 0
\end{pmatrix},
$$

which results exchanging the second and third columns of B. The effect of the above procedure also exchanges the second and third stages of the Bott tower of B_4, and as a result the variable x_2 and x_3 will
be exchanged. Namely, the variables \(x_1, x_2, x_3, x_4\) will be changed to \(x_1', x_2', x_3', x_4'\). Therefore, with the changed variables \(x_1', x_2', x_3', x_4', B_4\) is diffeomorphic to \(B'_4\) with the associated matrix

\[
A' = \begin{pmatrix}
0 & b & a & c \\
0 & 0 & d & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}.
\]

We now apply Lemma 2.1 to \(A'\). This means that we are exchanging the third and fourth stages of the Bott tower of \(B'_4\) to get \(B''_4\) with the associated matrix

\[
A'' = \begin{pmatrix}
0 & b & c & a \\
0 & d & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}.
\]

with the variables \(x_1', x_2', x_3', x_4'\) changed to \(x_1'', x_2'', x_3'', x_4''\). This is the desired result.

\[\square\]

Proposition 2.4. A sum of two line bundles over a Bott manifold is trivial if and only if the total Chern class is trivial.

Proof. Let \(B_n\) be a Bott manifold with the associated matrix

\[
\Lambda = \begin{pmatrix}
0 & c_{12} & \cdots & c_{1n} \\
0 & & & \\
& & \ddots & \\
& & & 0
\end{pmatrix}.
\]

As before, let \(x_j\) be the first Chern class of the line bundle \(\gamma_j\) which is the pull-back bundle of the tautological line bundle of \(P(\mathbb{C} \oplus \xi_{j-1}) = B_j\) via the projection \(B_n \rightarrow B_j\). Let \(f_j = \sum_{i=1}^{j} c_{ij} x_i\). For an element \(\alpha \in H^2(B_n)\), let \(\gamma^\alpha\) be the complex line bundle over \(B_n\) with \(c_1(\gamma^\alpha) = \alpha\). Let \(\xi = \gamma^\alpha \oplus \gamma^\beta\) be the sum of two line bundles such that \(c(\xi) = 1\), and \(\alpha = \sum_{j=1}^{n} a_j x_j\) and \(\beta = \sum_{j=1}^{n} b_j x_j\). Then

\[
1 = c(\xi) = c(\gamma^\alpha) c(\gamma^\beta) = (1 + \alpha)(1 + \beta) = 1 + (\alpha + \beta) + \alpha \beta.
\]

Therefore \(\alpha + \beta = 0\) and \(\alpha \beta = 0\), which implies \(\alpha^2 = 0\) in \(H^*(B_n)\). On the other hand,

\[
\alpha^2 = 0 \iff \sum_{j=1}^{n} (a_j x_j)^2 + \sum_{1 \leq i < j \leq n} 2a_j a_i x_j x_i = \sum_{j=1}^{n} a_j^2 (x_j^2 - f_j x_j)
\]

\[(2.2) \iff a_j^2 c_{ij} = -2a_j a_i \text{ for all } i < j\]

Thus \(\xi = \gamma^\alpha \oplus \gamma^{-\alpha}\) with \(\alpha = \sum_{j=1}^{n} a_j x_j \in H^2(B_n)\) and \(a_j^2 c_{ij} = -2a_j a_i\) for all \(1 \leq i < j \leq n\).
Now, we prove the proposition by induction on n. If $n = 2$, then the dimension of ξ is equal to the dimension of B_n, so we are in the stable range. Hence the total Chern class classifies the complex vector bundle, so the proposition is true for $n = 2$. Assume the lemma is true for B_{n-1}. We now prove the lemma for B_n. These are three cases to consider

Case 1 $a_n = 0$.

In this case, $\xi = \pi_n^*(\eta)$, where $\eta = \gamma^\alpha \oplus \gamma^{-\alpha}$ over B_{n-1}. By the assumption, $c(\eta) = 1$, and by the induction hypothesis, η is trivial. So is ξ.

Case 2 $a_n \neq 0$ and $a_k = 0$ for some $k < n$.

We may assume that $a_i \neq 0$ for all $i > k$. By (2.2), $a_i^2 \gamma = -2a_i a_i$ for all $i < j$. Hence, $a_i^2 \gamma^{i-\ell} a_i^{k+\ell} = -2a_i a_i a_i$ for all $0 < \ell \leq n - k$. Since $a_i^{k+\ell} \neq 0$ and $a_k = 0$, $c_{i-k+\ell} = 0$ for all ℓ. Thus, $c_{i-k+1} = c_{i-k+2} = \cdots = c_{i-kn} = 0$. Hence B_n is diffeomorphic to a Bott manifold B_n' with Λ' as the associated matrix. Let $\{x_1, \ldots, x_n\}$ and $\{y_1, \ldots, y_n\}$ be ordered generator sets of $H^*(B_n)$ and $H^*(B_n')$ respectively as in (1.1). Let $\rho : B_n' \to B_n$ be the diffeomorphism as indicated in the proof of Corollary 2.3. Then we can see that

$$
\begin{align*}
\rho^*(x_1) &= y_1 \\
&\vdots \\
\rho^*(x_{k-1}) &= y_{k-1} \\
\rho^*(x_k) &= y_n \\
\rho^*(x_{k+1}) &= y_k \\
&\vdots \\
\rho^*(x_n) &= y_{n-1}.
\end{align*}
$$

Therefore, $\rho^*(\alpha) = a_1 y_1 + \cdots + a_{k-1} y_{k-1} + a_{k-1} y_k + \cdots + a_{n-1} y_{n-1} + a_k y_n$. Since $c(\gamma^\alpha \oplus \gamma^{-\alpha}) = 0$ in $H^*(B_n)$, $c(\rho^*(\gamma^\alpha \oplus \gamma^{-\alpha})) = 0$ in $H^*(B_n')$. Since $a_k = 0$ from the assumption, we are in **Case 1** for B_n'. Therefore $\rho^*(\gamma^\alpha \oplus \gamma^{-\alpha})$ is trivial on B_n', and so is $\gamma^\alpha \oplus \gamma^{-\alpha}$ on B_n.

Case 3 $a_j \neq 0$ for all j.

By (2.2), $a_i^2 \gamma^{i-\ell} a_i^{k+\ell} = -2a_i a_i$ for all $i < j$, hence, $c_{ij} \neq 0$ for all i, j. Note that B_2 is a Hirzebruch surface. Since the diffeomorphism type of a Hirzebruch surface B_2 is determined by the parity of c_{12}, if c_{12} is even then B_2 is diffeomorphic to $\mathbb{C}P^1 \times \mathbb{C}P^1$. Hence B_n is diffeomorphic to B_n' with $c_{12} = 0$. Thus we may assume that $c_{12} = 0$ for simplicity. But then, by (2.2) either $a_1 = 0$ or $a_2 = 0$, which contradicts to the assumption of Case 3. Therefore we may assume that c_{12} is odd; in fact we may assume that $c_{12} = 1$ because the diffeomorphism type of B_2 is determined by the parity of c_{12}. Since $c_{ij} \neq 0$ and $a_j \neq 0$ for all j
We claim that B_3 with
\[
\begin{pmatrix}
0 & 1 & c \\
0 & -2c & 0 \\
0 & 0 & 0
\end{pmatrix}
\]
is diffeomorphic to B'_2 with
\[
\begin{pmatrix}
0 & 1 & c \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}.
\]
Thus we may assume that B_n has $c_{23} = 0$. Then by \((2.2)\), a_2 or a_3 must be zero. Therefore we are in Case 2 and the proposition is proved.

It remains to prove the claim.

\[
B_3 = P(C \oplus (\gamma_1^c \otimes \gamma_2^c)) \\
\cong P((C \oplus (\gamma_1^c \otimes \gamma_2^{-c})) \otimes \gamma_2^c) \\
\cong P(\gamma_2^c \oplus (\gamma_1^c \otimes \gamma_2^{-c})).
\]

The total Chern class of $\gamma_2^c \oplus (\gamma_1^c \otimes \gamma_2^{-c})$ is
\[
c(\gamma_2^c \oplus (\gamma_1^c \otimes \gamma_2^{-c})) = (1 + cx_2)(1 + cx_1 - cx_2) = 1 + cx_1
\]
since $x_2^2 = x_1x_2$ in $H^2(B_2)$.

On the other hand, $c(C \oplus \gamma_1^c) = 1 + cx_1$. Therefore, $\gamma_2^c \oplus (\gamma_1^c \otimes \gamma_2^{-c}) \cong C \oplus \gamma_1^c$ as bundles over B_2. Thus, $B_3 \cong P(C \oplus \gamma_1^c) = B'_2$ which has the associated matrix
\[
\begin{pmatrix}
0 & 1 & c \\
0 & 0 & 0
\end{pmatrix}.
\]

Now let $B_{n-1} \cong (CP^1)^{n-1}$, and for $\alpha \in H^2(B_{n-1})$ let γ^{α} be the complex line bundle over B_{n-1} with $c_1(\gamma^{\alpha}) = \alpha$ as before.

Proposition 2.5. Let $\xi_1 = \gamma^{\alpha_1} \oplus \gamma^{\alpha_2}$ and $\xi_2 = \gamma^{\beta_1} \oplus \gamma^{\beta_2}$ be sums of two line bundles over $B_{n-1} \cong (CP^1)^{n-1}$ such that $c_1(\xi_1) = c_1(\xi_2)$ and $c_2(\xi_1) = c_2(\xi_2) = 0$. Then ξ_1 and ξ_2 are isomorphic.

Proof. Let $H^*(B_{n-1}) \cong \mathbb{Z}[x_1, \ldots, x_{n-1}] / \langle x_i^2 | j = 1, \ldots, n-1 \rangle$, and let α_k, β_k be elements of $H^2(B_{n-1})$ for $k = 1, 2$. From the assumption we have $\alpha_1 + \alpha_2 = \beta_1 + \beta_2$ and $\alpha_1 \alpha_2 = \beta_1 \beta_2 = 0$.

In general, for two elements $u = \sum_{i=1}^{n-1} u_i x_i$ and $v = \sum_{i=1}^{n-1} v_i x_i$ of $H^2(B_{n-1})$, the identity $uv = 0$ holds if and only if $u_j v_i + u_i v_j = 0$ for any $j \neq i$. From this, we can see easily that if $uv = 0$, one of the following three possibilities follows.
(1) If at least three coefficients in u are non-zero, then $v = 0$.
(2) If exactly two coefficients in u, say u_i and u_j, are non-zero, then so is v with $v_j v_i \neq 0$ and $u_j v_i + u_i v_j = 0$.
(3) If only one coefficient in u, say u_j, is non-zero, then so is v with $v_j \neq 0$.

Suppose α_1 has at least three non-zero coefficients. Then (1) implies that $\alpha_2 = 0$ and $\alpha_1 = \beta_1 + \beta_2$. If $\beta_1 \neq 0$ and has at most two non-zero coefficients then so is β_2 with non-zero coefficients at the same places as β_1 by (2) and (3), which is a contradiction to the assumption that α_1 has at least three nonzero coefficients because $\alpha_1 + \alpha_2 = \beta_1 + \beta_2$. So β_1 is either 0 or has at most three non-zero coefficients. Therefore by (1) either $\beta_1 = 0$ or $\beta_2 = 0$, and two bundles ξ_1 and ξ_2 are isomorphic.

Suppose that α_1 has exactly two non-zero coefficients. Then (1) and (2) imply that so is α_2, and β_1 and β_2 are either zero or have exactly two non-zero coefficients at the same places as α_1. This means that the bundles ξ_1 and ξ_2 are pullbacks of bundles over $(\mathbb{C}P^1)^2$. Hence those bundles are in stable range and hence they are classified by their Chern classes. Thus ξ_1 and ξ_2 are isomorphic.

The case when α_1 has only one non-zero coefficient can be proved similarly.

□

3. Twist number and Cohomological complexity

The twist number of a Bott tower $\{B_j \mid j = 0, \ldots, n\}$ is the number of nontrivial fibrations $B_j \to B_{j-1}$ in the sequence. However there may be several Bott tower structures for a Bott manifold, so the twist number may not be well-defined for Bott manifolds. In this section we show that the twist number of a Bott manifold is well-defined, namely we show that the twist numbers of any Bott tower structure of a Bott manifold is constant.

For an n-stage Bott manifold M its cohomology ring is isomorphic to

$$H^*(M) \cong \mathbb{Z}[x_1, \ldots, x_n]/I,$$

where $I = \langle x_j(x_j - f_j) : j = 1, \ldots, n \rangle$ and $f_j = \sum_{i=1}^{j-1} c_{ij} x_i$ with $\deg x_j = 2$. Here the numbers c_{ij} can be determined by a Bott tower structure of M. Indeed, c_{ij}'s are the entries of the matrix (2.1). Hence if the fibration of the i-th stage of a Bott tower structure on M is trivial, then we may assume that $f_j = 0$. Therefore the number of nonzero f_j's may depend not only on the choices of generators of the cohomology ring $H^*(M)$ but also the Bott tower structures of M. The cohomological complexity of M is the minimal number of nonzero f_j's among all possible such choices.

In the following theorem we show that the twist number of any Bott tower structure of a Bott manifold M is equal to the cohomological
PROPERTIES OF BOTT MANIFOLDS AND COHOMOLOGICAL RIGIDITY

complexity of M. This, in particular, shows that the twist number of a Bott manifold is well-defined.

Theorem 3.1. Let M be a Bott manifold. Then the twist number of any Bott tower structure of M is equal to the cohomological complexity of M.

Proof. Let

$$B_n \to B_{n-1} \to \cdots \to B_1 \to B_0 = \{ \text{a point} \}$$

be a Bott tower structure of M whose twist number is equal to t. By Corollary 2.2, we may assume that

$$B_{n-t} \to B_{n-t-1} \to \cdots \to B_1$$

is a trivial Bott tower. Therefore $B_\ell = (\mathbb{C}P^1)^\ell$ for $\ell = 1, \ldots, n-t$.

Let s be the cohomological complexity of M. Then it is clear that $t \geq s$ in general. Suppose $t > s$. Since the twist number of M is t, we have

$$H^*(B_n) = \mathbb{Z}[x_1, \ldots, x_n]/ < x_j(x_j - f_j) \mid j = 1, \ldots, n >,$$

where

$$f_j = \begin{cases} 0 & \text{for } 1 \leq j \leq n-t \\ \sum_{i=1}^{j-1} c_{ij}x_i & \text{for } n-t < j \leq n. \end{cases}$$

Since the cohomological complexity of B_n is s, there is an isomorphism

$$\psi : H^*(B_n) \to \mathbb{Z}[y_1, \ldots, y_n]/ < y_j(y_j - g_j) \mid j = 1, \ldots, n >,$$

where

$$g_j = \begin{cases} 0 & \text{for } 1 \leq j \leq n-s \\ \sum_{i=1}^{j-1} d_{ij}y_i & \text{for } n-s < j \leq n. \end{cases}$$

We claim that there exists $m \ (n-t < m \leq n)$ such that $f_m \equiv 0 \mod 2$ and $f_m^2 = 0 \in H^2(B_{n-1})$.

If the claim is true, then we can write as $f_m + 2w = 0$ for some $w \in H^2(B_{n-1})$. Therefore,

$$c(\gamma^w \oplus \gamma^{f_m+w}) = (1 + w)(1 + f_m + w) = 1 + (f_m + 2w) - \frac{f_m^2}{4} = 1$$

Thus, by Proposition 2.4, $\gamma^w \oplus \gamma^{f_m+w}$ is a trivial bundle over B_{n-1}. Hence $P(\mathbb{C} \oplus \gamma^m) = P(\gamma^w \oplus \gamma^{f_m+w}) = B_{n-1} \times \mathbb{C}P^1$. So we can reduce the twist number of B_n to $t-1$, which is a contradiction.

We now prove the claim. Since ψ is an isomorphism, we can write

$$y_i = \sum_{j=1}^{n} b_{ij}\psi(x_j).$$

Let $B = (b_{ij})$ be the coefficient matrix. Note that det$(B) = \pm 1$.

Since \(\psi^{-1}(y_k^2) = 0 \) in \(H^*(B_n) \) for \(1 \leq k \leq n-s \), we have

\[
\psi^{-1}(y_k^2) = \left(\psi^{-1}(y_k) \right)^2 = \left(\sum_{j=1}^{n} b_{kj} x_j \right)^2
\]

(3.1)

\[
= \sum_{j=1}^{n} \left(b_{kj} \right)^2 x_j^2 + \sum_{1 \leq i < j \leq n} 2b_{kj} b_{ki} x_i x_j
\]

(3.2)

\[
= \sum_{j=1}^{n} \left(b_{kj} \right)^2 (x_j^2 - f_j x_j), \text{ which represents zero in } H^*(B_n)
\]

\[
= \sum_{j=1}^{n} \left(b_{kj} \right)^2 (x_j^2 - \sum_{i=1}^{j-1} c_{ij} x_i x_j)
\]

By comparing the coefficients of (3.1) and (3.2), we have

(3.3)

\[
\sum_{i=1}^{j-1} 2b_{kj} b_{ki} x_i = -(b_{kj})^2 f_j
\]

for \(1 \leq k \leq n-s \) and \(1 \leq j \leq n \). This implies

(3.4)

\[
2b_{kj} b_{ki} = -(b_{kj})^2 c_{ij}
\]

where \(1 \leq k \leq n-s \) and \(1 \leq i < j \).

Suppose that all \(b_{kj} \) are even for \(n - t + 1 \leq j \leq n \) and \(1 \leq k \leq n-s \). Since \(t + n - s > n \), \(\det B \) must be even because, in general, if \(A = \begin{pmatrix} C & D \\ E & F \end{pmatrix} \) is an \(n \times n \) matrix and if \(D \) is a \(k \times \ell \) matrix all of whose entries are even with \(k + \ell > n \), then \(\det B \) is even. This is a contradiction. Thus there is an odd number \(b_{tm} \) for some \(1 \leq \ell \leq n-s \) and \(n-t+1 \leq m \leq n \).

Suppose \(f_m \) is not congruent to 0 modulo 2, i.e., there exists an odd number \(c_{hm} \) for some \(1 \leq h \leq m-1 \). Then from (3.4), \(2b_{km} b_{kh} = -(b_{km})^2 c_{hm} \) for \(1 \leq k \leq n-s \). It implies that \(b_{km} \equiv 0 \) (mod 2) for all \(1 \leq k \leq n-s \), which contradicts to that \(b_{tm} \) is odd. Thus, \(f_m \equiv 0 \) (mod 2).
On the other hand, from (3.3), \(\sum_{i=1}^{m-1} 2b_{km}b_{ki}x_i = -(b_{km})^2 f_m \) with \(k = \ell \), \(\frac{f_m}{c_m} = -\sum_{j=1}^{m-1} \frac{b_{k_j}}{c_{m_j}} x_j \). Thus we have
\[
\left(\frac{f_m}{2} \right)^2 = \left(-\sum_{j=1}^{m-1} \frac{b_{k_j}}{c_{m_j}} x_j \right)^2 \\
= \sum_{j=1}^{m-1} \left(\frac{b_{k_j}}{b_{m_j}} \right)^2 x_j^2 + 2 \sum_{h=1}^{j-1} \frac{b_{k_j}b_{k_h}}{(b_{m_j})^2} x_j x_h \\
= \sum_{j=1}^{m-1} (b_{k_j})^2 (x_j^2 - f_j x_j) \quad \frac{(b_{m_j})^2}{(b_{m_j})^2} \\
= 0 \in H^*(B_{n-1})
\]
This proves the claim. \(\square \)

From the proof of Theorem 3.1 the following corollary follows immediately.

Corollary 3.2. The twist number of a Bott manifold \(M \) is well-defined, i.e., any two Bott tower structures of \(M \) have the same twist number.

4. **BQ-algebras and Bott manifolds**

Recall that a \(2n \)-dimensional manifold \(M \) is a quasitoric manifold over a simple (combinatorial) polytope \(P \) if there is a locally standard \(n \)-torus \(T^n \) action on \(M \) and a surjective map \(\pi : M \to P \) whose fibers are the \(T^n \)-orbits. For a \(2n \)-dimensional quasitoric manifold \(M \) over a simple polytope \(P \) there corresponds a characteristic map \(\chi : F \to \mathbb{Z}^n \) well-defined up to sign where \(F \) is the set of all facets of \(P \). A characteristic map should satisfy the following two conditions:

- \(\chi(F) \) is a primitive vector for any \(F \in F \), and
- if \(n \) facets \(F_1, \ldots, F_n \) are intersecting at vertex \(v \) of \(P \), then \(\{\chi(F_1), \ldots, \chi(F_n)\} \) forms a linearly independent subset in \(\mathbb{Z}^n \).

Conversely, for simple polytope \(P \) and a map \(\chi : F \to \mathbb{Z}^n \) satisfying the above two conditions, there exists a unique quasitoric manifold up equivalence whose characteristic map is \(\chi \).

Two quasitoric manifolds \(\pi_M : M \to P \) and \(\pi_N : N \to P \) over \(P \) are *equivalent* if there is a weak \(T^n \)-equivariant homeomorphism \(\phi : M \to N \) (i.e., there exists an automorphism \(\rho \) on \(T^n \) such that \(\phi(tx) = \rho(t)\phi(x) \)) such that \(\pi_N \circ \phi = \pi_M \).

Let \(P \) be an \(n \)-dimensional simple polytope with \(m \) facets, and let \(M \) be a quasitoric manifold over \(P \). Then we can find a characteristic map \(\chi \) for \(M \) such that \(\chi(F_1) = (1, 0, \ldots, 0), \ldots, \chi(F_m) = (0, \ldots, 0, 1) \) where \(F_1, \ldots, F_m \) are the facets meeting at one particular vertex \(p \in P \). Then we can define an \((m-n) \times n\) matrix \(A \) whose row vectors are \(\chi(F_{n+1}), \ldots, \chi(F_m) \). This matrix \(A \) is called a *characteristic matrix* of \(M \). For the details about quasitoric manifolds we refer the reader to
We note that a Bott manifold B_n associated with the matrix Λ in (2.1) admits the canonical nice T^n-action with which B_n becomes a quasitoric manifold. The characteristic matrix of B_n is then equal to $-\Lambda - I_n$, where I_n is the identity matrix of size n, see [12] for details.

In this section we will consider quasitoric manifolds whose cohomology rings resemble those of Bott manifolds. For this we need the following definition.

Definition 4.1. A graded algebra S over \mathbb{Z} generated by x_1, \ldots, x_n of degree 2 is called a Bott quadratic algebra (BQ-algebra) over \mathbb{Z} of rank n if

1. $x_k^2 = \sum_{i<k} c_{ik} x_i x_k$ where $c_{ik} \in \mathbb{Z}$ for $1 \leq k \leq n$, (in particular $x_1^2 = 0$,) and
2. $\prod_{i=1}^n x_i \neq 0$.

BQ-algebra over \mathbb{Z}_2 is defined similarly.

Originally, BQ-algebra over \mathbb{Z}_2 is defined in [12], and we extend their definition here for our purpose. The cohomology ring of a Bott manifold is a BQ-algebra over \mathbb{Z}. So one might ask whether the converse is true, i.e., if the cohomology ring of a quasitoric manifold is a BQ-algebra over \mathbb{Z}, then is the quasitoric manifold homeomorphic to a Bott tower? The affirmative and stronger answer to the question is given in the following theorem.

Theorem 4.2. Let M be a $2n$-dimensional quasitoric manifold over a simple polytope P, and let A be a characteristic matrix of M. Then the following are equivalent.

1. M is equivalent to an n-stage Bott manifold.
2. $H^*(M)$ is a BQ-algebra of rank n over \mathbb{Z}.
3. P is combinatorially equivalent to the cube I^n and A is conjugate to an upper triangular matrix by a permutation matrix.

Proof. (1) \Rightarrow (2) Clear.

(3) \Leftrightarrow (1) follows from Proposition 3.2 in [12].

(2) \Rightarrow (3) If $H^*(M)$ is a BQ-algebra of rank n over \mathbb{Z}, then $H^*(M : \mathbb{Z}_2)$ is a BQ-algebra of rank n over \mathbb{Z}_2. By [12] Theorem 5.5] (or [5] Theorem 1.6] P is combinatorially equivalent to the cube I^n. Therefore A is an $n \times n$ matrix. We may assume that

$$-A = \begin{pmatrix} 1 & a_{12} & \cdots & a_{1n} \\ a_{21} & 1 & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & 1 \end{pmatrix}.$$

We note that the conditions of a characteristic map implies that all principal minors are ± 1, and by general facts on the cohomology of quasitoric manifolds we have an isomorphism

$$H^*(M) \cong \mathbb{Z}[y_1, \ldots, y_n]/ <g_j \mid j = 1, \ldots, n>$$
where $g_j = y_j \sum_{i=1}^{n} a_{ij} y_i$ and $a_{jj} = 1$ for all $i = 1, \ldots, n$. Since $H^*(M)$ is a BQ-algebra over \mathbb{Z} there is a \mathbb{Z}-algebra isomorphism

$$\phi: H^*(M) \to \mathbb{Z}[x_1, \ldots, x_n]/ <x_j(x_j - f_j) | j = 1, \ldots, n>,$$

where $f_j = \sum_{i=1}^{j-1} c_{ij} x_i$. Therefore

$$x_j = \sum_{j=1}^{n} b_{ij} \phi(y_j)$$

with $\det B = \pm 1$ where B is the $n \times n$ matrix (b_{ij}). Since all principal 2×2 minors of A are ± 1 by the conditions of characteristic map, we have $1 - a_{ij} a_{ji} = \pm 1$ for all $i \neq j$.

We first claim that $a_{ij} a_{ji} = 0$ for all $i \neq j$. Assume otherwise. Then $a_{ts} a_{st} = 2$ for some s and t. Since $\phi^{-1}(x_1^2) = (\sum_{j=1}^{n} b_{ij} y_j)^2 = 0$ in $H^*(M)$, we have

$$(4.1) \quad \left(\sum_{j=1}^{n} b_{ij} y_j \right)^2 = \sum_{j=1}^{n} b_{ij}^2 \left(y_j \sum_{i=1}^{n} a_{ij} y_i \right).$$

Compare the coefficients of $y_s y_t$-terms on both sides of the equation (4.1) to get

$$(4.2) \quad 2b_{1s} b_{1t} = b_{1s}^2 a_{ts} + b_{1t}^2 a_{st}$$

Since $a_{st} a_{ts} = 2$ we have $(a_{st}, a_{ts}) = \pm (1, 2)$ or $\pm (2, 1)$. Therefore, the equation (4.2) is equivalent to either $(b_{1s} \pm b_{1t})^2 + b_{1s}^2 = 0$ or $(b_{1s} \pm b_{1t})^2 + b_{1s}^2 = 0$. The only real solutions for equation (4.2) is $b_{1s} = b_{1t} = 0$. Hence $\phi^{-1}(x_1) = \sum_{j \neq s,t} b_{1j} y_j$.

We now consider the second relation $x_2(x_2 - f_2)$ of the BQ-algebra. Here $f_2 = c_{12} x_1$. Then $\phi^{-1}(f_2) = \phi^{-1}(c_{12} x_1) = c_{12} \phi^{-1}(x_1)$ has no y_s and y_t-terms. Note that

$$\phi^{-1}(x_2(x_2 - f_2)) = \phi^{-1}(x_2)^2 - \phi^{-1}(x_2) \phi^{-1}(f_2)$$

$$= (\sum_{j=1}^{n} b_{2j} y_j)^2 - (\sum_{j=1}^{n} b_{2j} y_j) c_{12} (\sum_{j \neq s,t} b_{1j} y_j)$$

$$= 0 \in H^*(M).$$

Therefore we have the following equation.

$$(4.3) \quad \left(\sum_{j=1}^{n} b_{2j} y_j \right)^2 - \left(\sum_{j=1}^{n} b_{2j} y_j \right) c_{12} \left(\sum_{j \neq s,t} b_{1j} y_j \right) = \sum_{j=1}^{n} \alpha_j g_j$$

for some $\alpha_j \in \mathbb{Z}$ with $j = 1, \ldots, n$. Since the second term of the left hand side of the equation (4.3) has no $y_s y_t$-term, no y_s^2-term and no y_t^2-term, by comparing the coefficients of y_s^2 and y_t^2 we can see that $\alpha_s = b_{2s}^2$ and $\alpha_t = b_{2t}^2$. Hence by comparing the coefficients of $y_s y_t$ of equation (4.3) we get

$$2b_{2s} b_{2t} = a_{ts} \alpha_s + a_{st} \alpha_t = a_{ts} b_{2s}^2 + a_{st} b_{2t}^2.$$
which is of the same form as in equation (1.2). Hence, $b_{2s} = b_{2t} = 0$. Note that $\phi^{-1}(f_3)$ also has no y_s and y_t-terms. Thus by the same argument as above, we can see that $b_{3s} = b_{3t} = 0$. Continue the similar argument for $x_i(x_i - f_i)$ to get

$$b_{is} = b_{it} = 0$$

for all $i = 1, \ldots, n$.

This implies that the s-th and t-th rows of the matrix B are zero, which implies $\det B = 0$. This is a contradiction. Therefore the claim that $a_{ij}a_{ji} = 0$ for all $i \neq j$ is proved.

We now claim that all principal minors of A are 1 by induction on the rank of the minors. By the previous claim, any principal minor of rank 2 is 1. Assume the claim is true for all principal minors of rank $< k$ with $k \geq 3$. Suppose there exists a negative principal minor Ξ of rank k. Since all proper minors of Ξ is 1 and $\Xi = -1$, by Lemma 3.3 of [12] we have

$$-1 = \Xi = \det \begin{pmatrix}
1 & h_{ji} & 0 & \cdots & 0 \\
0 & 1 & h_{j2} & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 1 & h_{jk-1} \\
h_{jk} & 0 & \cdots & \cdots & 1
\end{pmatrix}$$

where $h_{ij} \neq 0$ for all $i = 1, \ldots, k$. Consider the equation (4.1) again, but now compare the coefficients of y_j, y_{j+1} where $y_{j+1} = y_j$ for convenience. Then we have the relation

$$(4.4) \quad 2b_{1j_i}b_{1j_i+1} = h_{ij_i}b_{1j_i}^2.$$

Suppose one of b_{1j_i} for $i = 1, \ldots, k$ is zero. Then from (4.4) all others must be zero, too. By a similar argument applied to the second relation $\phi^{-1}(f_2) = c_12\phi^{-1}(x_1)$, we can see that $b_{1j_i} = 0$ for all $\ell = 1, \ldots, n$ and $i = 1, \ldots, k$. Thus $\det B = 0$, which is a contradiction. Therefore all b_{1j_i} are nonzero for $i = 1, \ldots, k$, and hence, so are h_{ij_i}’s. Then $-1 = \Xi = 1 + (-1)^k \prod_{i=1}^{k} h_{ji}$. Thus $(-1)^k \prod_{i=1}^{k} h_{ji} = -2$. By multiplying each side of equation (4.4) for all $i = 1, \ldots, k$, we have

$$2^k (\prod_{i=1}^{k} b_{1j_i})^2 = (-1)^{k+1} 2 (\prod_{i=1}^{k} b_{1j_i})^2,$$

which is a contradiction. This proves the claim.

Therefore the theorem follows from Lemma 3.3 of [12].
Theorem 4.3. Let M and N be 6-dimensional quasitoric manifolds whose cohomology rings are BQ-algebras over \mathbb{Z}. If $H^*(M) \cong H^*(N)$ as graded rings, then M and N are diffeomorphic.

Proof. Since $H^*(M)$ and $H^*(N)$ are BQ-algebra over \mathbb{Z}, M and N are equivalent to 6-dimensional Bott manifolds. In particular they are homomorphic to 6-dimensional Bott manifolds. Since all quasitoric manifolds are simply connected, by the result of Wall [13] and Jupp [8], we can see that M and N are actually diffeomorphic to 6-dimensional Bott manifolds. Hence the corollary follows from the above mentioned result of [4]. □

5. Cohomological rigidity of one-twist Bott manifolds

In this section we prove the cohomological rigidity of one-twist Bott manifolds. Let $\{B_j \mid 0 \leq j \leq n\}$ be a one-twist Bott tower. By Corollary [22] we may assume that $B_{n-1} = (\mathbb{C}P^1)^{n-1}$. Hence $H^2(B_{n-1}) \cong \mathbb{Z}[x_1, \ldots, x_{n-1}] < x_j^2 \mid x = 1, \ldots, n - 1 >$. Let $M(\alpha) = B_\alpha = P(\mathbb{C} \oplus \gamma^\alpha)$ where γ^α is the line bundle over B_{n-1} with the first Chern class

$$c_1(\gamma^\alpha) = \alpha = \sum_{i=1}^{n-1} a_i x_i \in H^2(B_{n-1}).$$

Theorem 5.1. Let α and β be two elements of $H^2(B_{n-1})$ where $B_{n-1} = (\mathbb{C}P^1)^{n-1}$, and let $M(\alpha)$ and $M(\beta)$ be one-twist Bott manifolds as defined above. Then the following are equivalent.

1. $M(\alpha)$ and $M(\beta)$ are diffeomorphic.
2. $H^*(M(\alpha)) \cong H^*(M(\beta))$ as graded rings.
3. There is an automorphism ϕ of $H^*(B_{n-1})$ such that $\phi(\alpha) \equiv \beta \mod 2$ and $\phi(\alpha^2) = \beta^2$.
4. Let $\alpha = \sum_{i=1}^{n-1} a_i x_i$ and $\beta = \sum_{i=1}^{n-1} b_i x_i$. Then there is a permutation σ on $\{1, \ldots, n - 1\}$ such that $a_{\sigma(i)} \equiv b_i \mod 2$ for any i and $|a_{\sigma(i)} a_{\sigma(j)} - b_i b_j|$ for any $i \neq j$.

Moreover, any isomorphism between $H^*(M(\alpha))$ and $H^*(M(\beta))$ preserves the total Pontrjagin classes of $M(\alpha)$ and $M(\beta)$.

Before we prove the theorem let us note that

\[H^*(M(\alpha)) = \mathbb{Z}[z_1, \ldots, z_{n-1}, y_\alpha] < x_1^2, \ldots, x_{n-1}^2, y_\alpha^2 - \alpha y_\alpha > \]

where y_α is the first Chern class of the tautological bundle of $P(\mathbb{C} \oplus \gamma^\alpha)$. Moreover its total Pontrjagin class is

\[P(M(\alpha)) = (1 + y_\alpha)^2(1 + (y_\alpha - \alpha)^2) \]

\[= 1 + \alpha^2. \]

We first need the following lemma.

Lemma 5.2. The following are equivalent.

\[\]
(1) $H^*(\mathcal{M}(\alpha): \mathbb{Q}) \cong H^* (\mathbb{C} P^1)^n: \mathbb{Q})$.
(2) There is an element $u \in H^* (B_{n-1}: \mathbb{Q})$ such that $(y_\alpha + u)^2 = 0$ in $H^*(\mathcal{M}(\alpha): \mathbb{Q})$.
(3) $\alpha = a, x_i$ for some $i = 1, \ldots, n - 1$.

Moreover there are two diffeomorphism types in this case, and $H^* (\mathcal{M}(\alpha)) \cong H^* (\mathbb{C} P^1)^n)$ if and only if a_i is even in (3) above.

Proof. (1)\Rightarrow(2) Since there are n linearly independent elements in the vector space $H^2((\mathbb{C} P^1)^n: \mathbb{Q})$ whose squares are zero, so are $H^2 (\mathcal{M}(\alpha): \mathbb{Q})$. From (5.1) there are $n - 1$ linearly independent elements x_1, \ldots, x_{n-1} in $H^2 (\mathcal{M}(\alpha): \mathbb{Q})$ whose squares are zero. Thus there is one more linearly independent element $w = \sum_{i=1}^{n-1} c_i x_i + c_n y_\alpha \in H^2 (\mathcal{M}(\alpha): \mathbb{Q})$ such that $w^2 = 0$. Since w is linearly independent from x_1, \ldots, x_{n-1}, the coefficient c_n of y_α is non-zero. Let $u = c_n^{-1} (\sum_{i=1}^{n-1} c_i x_i) \in H^2 (B_{n-1}: \mathbb{Q})$. Then $(y_\alpha + u)^2 = (c_n^{-1})^2 w^2 = 0$.

(2)\Rightarrow(3) Let $u = \sum_{i=1}^{n-1} d_i x_i$ such that $(y_\alpha + u)^2 = 0$. Then

$$0 = (y_\alpha + \sum_{i=1}^{n-1} d_i x_i)^2 = y_\alpha^2 + 2 \sum_{i=1}^{n-1} d_i d_j x_i x_j + 2 \sum_{i=1}^{n-1} d_i x_i y_\alpha$$

$$= 2 \sum_{i < j} d_i d_j x_i x_j + (2 \sum_{i=1}^{n-1} d_i x_i + \alpha) y_\alpha.$$

This implies that $d_i d_j = 0$ for all $i \neq j$, and $2 \sum_{i=1}^{n-1} d_i x_i + \alpha = 0$. From the first condition at most one, say d_i is non-zero. From the second condition we have $0 = 2 d_i x_i + \alpha$. If we set $a_i = -2 d_i$, then (3) follows.

(3)\Rightarrow(1) If $\alpha = a, x_i$, then $\mathcal{M}(\alpha)$ is diffeomorphic to $B_2 \times (\mathbb{C} P^1)^{n-2}$ where $B_2 = P(\mathbb{C} \oplus \gamma^n) \to \mathbb{C} P^1$. Here γ is the tautological line bundle over $\mathbb{C} P^1$. But it is well-known that there are exactly two diffeomorphism types of B_2 depending on the parity of a_i. Namely, if a_i is even, then $B_2 \cong (\mathbb{C} P^1)^2$ and if a_i is odd, then B_2 diffeomorphic to a Hirzebruch surface \mathcal{H}. In the former case, $H^* (\mathcal{M}(\alpha): \mathbb{Q})$ is trivially isomorphic to $H^* (\mathbb{C} P^1)^n: \mathbb{Q})$, and in the latter case

$$H^* (\mathcal{H}: \mathbb{Q}) \cong \mathbb{Q}[x_1, x_2]/ \langle x_1^2, x_2^2 - x_1 x_2 \rangle \cong \mathbb{Q}[x_1, x_2]/ \langle x_1^2, (x_2 - \frac{1}{2} x_1)^2 \rangle \cong H^* (\mathbb{C} P^1)^2: \mathbb{Q}),$$

which proves the lemma.

We now prove Theorem 5.1.
Proof of Theorem 5.1. (2)⇒(3) Let φ: H∗(M(α)) → H∗(M(β)) be an isomorphism. In the case when H∗(M(α): Q) ≅ H∗((CP^1)^n: Q), Lemma 5.2 shows that there are only two diffeomorphism types for M(α), which are (CP^1)^n and H × (CP^1)^{n-2} where H is the Hirzebruch surface. For these two types we can see easily that (2)⇒(3).

Therefore we may assume that H∗(M(α): Q) ≅ H∗(M(β): Q) is not isomorphic to H∗((CP^1)^n: Q). For each x_i ∈ H^2(B_{n-1}) ⊂ H^2(M(α)) we have φ(x_i)^2 = 0 in H∗(M(β)). On the other hand since x_1, ..., x_{n-1}, y_3 are generators of H∗(M(β)) we can write φ(x_i) = b_1x_1 + ⋯ + b_{n-1}x_{n-1} + b_ny_3. Then by Lemma 5.2 the coefficient b_n of y_3 must vanish for i = 1, ..., n - 1. This means that any isomorphism φ: H∗(M(α)) → H∗(M(β)) must preserve the subring H∗(B_{n-1}). Therefore φ(y_α) = ±y_β + w for some w ∈ H^2(B_{n-1}). If necessary, by composing φ with an automorphism of H∗(M(β)) fixing H∗(B_{n-1}) and sending y_3 to −y_3, we may assume that φ(y_α) = y_β + w. It follows that

(5.3) φ(y_α^2) = (y_β + w)^2 = y_β^2 + 2wy_β + w^2 = (β + 2w)y_β + w^2.

On the other hand we have

(5.4) φ(y_α^2) = φ(αy_α) = φ(α)(y_β + w).

Comparing (5.3) and (5.4), we obtain

(5.5) φ(α) = β + 2w and w^2 = φ(α)w.

The first equation of (5.5) implies φ(α) ≡ β mod 2. By plugging the first equation into the second of (5.5) we can see that βw = −w^2. Hence φ(α^2) = (β + 2w)^2 = β^2 + 4βw + 4w^2 = β^2. Hence (2)⇒(3) is proved.

(3)⇒(2) Suppose there is an automorphism φ on H∗(B_{n-1}) such that φ(α) ≡ β mod 2 and φ(α^2) = β^2. Let φ(α) = β + 2w for some w ∈ H^2(B_{n-1}). If we define φ(y_α) = y_β + w, then we can see easily that φ defines an isomorphism from H∗(M(α)) to H∗(M(β)). This proves (3)⇒(2).

(1)⇒(2) This implication is obvious.

(2)⇒(1) Suppose H∗(M(α)) is isomorphic to H∗(M(β)). From the implication (2)⇒(3), there is an automorphism φ on H∗(B_{n-1}) ≅ Z[x_1, ..., x_{n-1}/ < x_j^2 | j = 1, ..., n - 1 >. But it is easy to see that any automorphism on Z[x_1, ..., x_{n-1}/ < x_j^2 | j = 1, ..., n - 1 > is generated by a permutation on the generators x_1, ..., x_{n-1} and possibly changing their signs. Such automorphism on the ring H∗(B_{n-1}) is clearly induced by a self-diffeomorphism φ on B_{n-1} = (CP^1)^{n-1}, i.e., f^* = φ. The diffeomorphism f induces a fiber bundle isomorphism between γ^α and f^*(γ^α), hence it induces a diffeomorphism between M(α) and M(φ(α)). Therefore for simplicity we may assume the automorphism φ on H∗(B_{n-1}) is the identity, such that α ≡ β mod 2 and α^2 = β^2.
Since $\alpha \equiv \beta \mod 2$, there is an element $w \in H^2(B_{n-1})$ such that $2w = \alpha - \beta$. Now let $\xi_1 = \gamma^w \oplus \mathbb{C}$ and $\xi_2 = \gamma^w(\gamma^\beta \oplus \mathbb{C})$. Then their first Chern classes are equal because $c_1(\xi_1) = \alpha = \beta + 2w = c_1(\xi_2)$. Their second Chern classes are $c_2(\xi_1) = 0$ and $c_2(\xi_2) = w(\beta + w) = 0$ which follows from (5.5). Therefore $\xi_1 \cong \xi_2$ by Proposition 2.5 and hence $M(\alpha) = P(\xi_1) \cong P(\xi_2) = P(\gamma^w(\gamma^\beta \oplus \mathbb{C})) \cong P(\gamma^\beta \oplus \mathbb{C}) = M(\beta)$. This proves (2)$\Rightarrow$(1).

That (3)\iff(4) is obvious. If $\phi: H^*(M(\alpha)) \to H^*(M(\beta))$ is any isomorphism, the proof (2)\Rightarrow(3) shows that $\phi(\alpha^2) = \beta^2$. Hence by the identity (5.2) the isomorphism ϕ preserves the Pontrjagin classes of $M(\alpha)$ and $M(\beta)$.

By putting all the results together we can conclude the following cohomological rigidity result for quasitoric manifolds.

Theorem 5.3. Let M and N be $2n$-dimensional quasitoric manifolds whose cohomologies are BQ-algebra of rank n over \mathbb{Z} with cohomological complexities equal to 1. If $H^*(M) \cong H^*(N)$, then M and N are homeomorphic.

Proof. By Theorem 3.1 and Corollary 3.2 both M and N are equivalent to one-twist n-stage Bott manifolds. By Theorem 5.1 those one-twist Bott manifolds are diffeomorphic. Hence M and N are homeomorphic. \qed

6. BQ-algebra over $\mathbb{Z}_{(2)}$

All the results in previous sections are concerned with BQ-algebras over \mathbb{Z}. In this section we remark that these results are stil true for BQ-algebras over the localized ring $\mathbb{Z}_{(2)}$ at 2.

A BQ-algebra over \mathbb{Z} is defined in Definition 4.1. However this definition can be extended to any commutative ring R. Namely, a BQ-algebra S of rank n over R is a graded R-algebra with generators x_1, \ldots, x_n of degree 2 such that

1. $x_k^2 = \sum_{i<k} c_{ik} x_i x_k$ where $c_{ik} \in R$ for $1 \leq k \leq n$, (in particular $x_1^2 = 0,$) and
2. $\prod_{i=1}^n x_i \neq 0$.

The R-complexity of S is the number of k’s such that $x_k^2 \neq 0$ in the above condition (1) for all possible choices of generator sets $\{x_1, \ldots, x_n\}$.

Note that the cohomology ring $H^*(M, R)$ of a quasitoric manifold M is a BQ-algebra over R. If $R = \mathbb{Z}$ and M is a Bott manifold, the cohomological complexity of M defined in Section 3 is the \mathbb{Z}-complexity of $H^*(M; \mathbb{Z})$.

In Theorem 5.1 we show that the twist number of a Bott manifold M is equal to the cohomological complexity of M. If we examine the proof carefully, the proof is based on arguments whether the coefficients are even or odd. Therefore we can see easily that the same argument works
if the integer coefficients are replaced by the localized ring \mathbb{Z}_2 at 2.
Therefore Theorem 3.1 and Corollary 3.2 can be extended as follows.

Theorem 6.1. Let M be a Bott manifold. Then the twist number of M is well-defined and is equal to the \mathbb{Z}_2-complexity of the BQ-algebra $H^*(M; \mathbb{Z}_2)$. In particular, the \mathbb{Z}-complexity of $H^*(M; \mathbb{Z})$ is equal to the \mathbb{Z}_2-complexity of $H^*(M; \mathbb{Z}_2)$.

In Theorem 4.2, it is shown that if M is a quasitoric manifold whose integral cohomology ring is a BQ-algebra over \mathbb{Z}, then M is equivalent to a Bott manifold. In its proof, the only place where the property of integral coefficients different from that of rational coefficients is used is where $a_{st}a_{ts} = 2$ implies $a_{st} = \pm 1$ and $a_{ts} = \pm 2$ right after equation (4.2). But this is still true if the coefficient ring is \mathbb{Z}_2, the integer ring localized at 2. Therefore Theorem 4.2 is still true if the coefficient ring is \mathbb{Z}_2. Therefore Theorem 4.2 can be extended as follows.

Theorem 6.2. Let M be a $2n$-dimensional quasitoric manifold over P, and let A be the characteristic matrix of M. Then the following are equivalent.

1. M is equivalent to an n-stage Bott manifold.
2. $H^*(M; \mathbb{Z})$ is a BQ-algebra of rank n over \mathbb{Z}.
3. $H^*(M; \mathbb{Z}_2)$ is a BQ-algebra of rank n over \mathbb{Z}_2.
4. P is combinatorially equivalent to the cube I^n and A is an $n \times n$ matrix conjugate to an upper triangular matrix by a permutation matrix.

If we examine the proof of Theorem 5.1 carefully, we can also see that a similar proof works for the following claim: if $M(\alpha)$ and $M(\beta)$ are one-twist Bott manifolds with $H^*(M(\alpha); \mathbb{Z}_2) \cong H^*(M(\beta); \mathbb{Z}_2)$, then they are diffeomorphic. So combining this claim together with Theorems 6.1 and 6.2 we can have the following theorem.

Theorem 6.3. Let M and N be $2n$-dimensional quasitoric manifolds whose cohomologies are BQ-algebra of rank n over \mathbb{Z}_2 with \mathbb{Z}_2-complexities less than or equal to 1. If $H^*(M; \mathbb{Z}_2) \cong H^*(N; \mathbb{Z}_2)$, then M and N are homeomorphic.

In the proof of the cohomological rigidity of three-stage Bott manifolds in [4], Wall and Juppe’s results on classification of simply connected 6-dimensional manifolds is used essentially. However, recently, a different but direct proof of the cohomological rigidity of three-stage Bott manifolds is found, and a similar proof also works for the claim that two three-stage Bott manifolds with isomorphic \mathbb{Z}_2-cohomology rings are diffeomorphic. Therefore the same argument as above we have the following theorem.

Theorem 6.4. Let M and N be 6-dimensional quasitoric manifolds whose \mathbb{Z}_2-cohomology rings are BQ-algebras over \mathbb{Z}_2. If $H^*(M; \mathbb{Z}_2) \cong H^*(N; \mathbb{Z}_2)$ as graded rings, then M and N are diffeomorphic.
More precise argument for Theorem 6.4 will be shown elsewhere.

REFERENCES

1. Raoul Bott and Hans Samelson, Applications of the theory of Morse to symmetric spaces, Amer. J. Math. 80 (1958), 964–1029. MR MR0105694 (21 #4430)
2. Victor M. Buchstaber and Taras E. Panov, Torus actions and their applications in topology and combinatorics, University Lecture Series, vol. 24, American Mathematical Society, Providence, RI, 2002.
3. Suyoung Choi, Mikiya Masuda, and Dong Youp Suh, Quasitoric manifolds over a product of simplices, Osaka J. Math. 47 (2010), 1–21.
4. , Topological classification of generalized Bott towers, Trans. Amer. Math. Soc. 362 (2010), no. 2, 1097–1112.
5. Suyoung Choi, Taras E Panov, and Dong Youp Suh, Toric cohomological rigidity of simple convex polytopes, preprint, arXiv:0807.4800[math.AT](2008).
6. Michael W. Davis and Tadeusz Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62 (1991), no. 2, 417–451.
7. Michael Grossberg and Yael Karshon, Bott towers, complete integrability, and the extended character of representations, Duke Math. J. 76 (1994), no. 1, 23–58. MR MR1301185 (96i:22030)
8. P. E. Jupp, Classification of certain 6-manifolds, Math. Proc. Camb. Phil. Soc. 73 (1973) 293–300.
9. Yoshinobu Kamishima and Mikiya Masuda, Cohomological rigidity of real Bott manifolds, arXiv:0807.4263 (2008).
10. Mikiya Masuda, Classification of real Bott manifolds, arXiv:0809.2178 (2008).
11. , Cohomological non-rigidity of generalized real Bott manifolds of height 2, arXiv:0809.2215 (2008).
12. Mikiya Masuda and Taras E. Panov, Semifree circle actions, Bott towers, and quasitoric manifolds, Sbornik Math. 199 (2008), no. 8, 1201–1223.
13. C. T. C. Wall, Classification problem in differential topology. V : On certain 6-manifolds, Invent. Math. 1 (1966), 355–374.