Assessment of Priority Options for Preservation of Historic City Centre Buildings Using MCDM (ARAS)

Vladislavas Kututa, Edmundas Kazimieras Zavadskasb, Marius Lazauskasc,*

a,bDept of Construction Technology and Management, Civil Engineering Faculty, Vilnius Gediminas Technical University, Sauletekio al. 11, LT-10223 Vilnius, Lithuania

Abstract

Numerous countries are trying to find the best method for suitable management of real estate objects that encompass both material value and cultural property. Cultural property can be defined as historical heritage in the form of volumetric and planned spaces of buildings. Yet another problem lurks in utilisation and maintenance of such buildings, which are usually regulated by national legislation thus aggravating certain decision-making processes related to their adjustment to the needs of the public or investors. This article addresses the status of some buildings located in the historic city centre of Vilnius and analyses indicators, on the basis of which such buildings could be assessed in order to identify their need for reconstruction, considering archaeological, historical, architectural, economic, social and other arguments. As experience in reconstruction suggests, such decisions demand for well-reasoned and precise concepts as each hasty conclusion usually results in mistakes that demand for additional work and funds. ARAS method, which is well-known in decision-making, have been chosen to design the algorithm for priority setting.

1. Introduction

In a number of European cities, the historic city centre has been preserved as an important part of that urban landscape, resisting demolition policies or modernistic and post-modernistic redevelopment. As research suggests, the greatest part of historical and cultural property in historic city centres consists of building architecture, which in some way reflects the evolution of the urban expansion as well as historical and cultural development of the country.

“Old towns” are perceived as urban structures of the past that are revitalised and given new significance in contemporary cities [1]. Today, historical signification, symbolism and economic benefits have turned restoration and preservation of cultural heritage in old towns into an important task. One of the key objectives in management of old towns in accordance to their function is adjustment of architectural buildings to contemporary requirements, which aims to ensure continuance of active inclusion of such monuments into the life of the developing city and historic city centre. Many cities realize the importance of urban conservation in the globalising world, thus trying to develop on the basis of their urban heritage [2-3]. Cultural heritage symbolically corresponds to the systematic organisation of a country and serves as an emblem of culture and tradition [4]. One of the most difficult problems of the modern urbanism dwells in the combined estimation of the old town building renovation according to technical-economic and socioeconomic indicators [5]. This estimation is closely related to social requirements and prospects of urban development [6].

* Corresponding author.
\textit{E-mail address:} marius.lazauskas@gmail.com
Maintenance and management of heritage assets are part of the political and economic development [7]. Effective conservation policy considers public involvement, public and private initiatives, planning, cultural and economic needs as well as openness to the public during the decision-making process [8], [9], [10]. Extensive and complicated efforts are required in order to turn an old town into an appealing part of the city as well as adjust old buildings and spaces to contemporary requirements, which is not only costly but also time-consuming [11]. In order to avoid damages to the unique and specific development of an old town, complex investigations – archaeological, historical, architectural, economic, social and etc. – have to be undertaken, prior to designing a reconstruction project for any old town building or quarter. The success of urban conservation depends on the ability to grant the historic area a vital role in urban development [2], [12] and etc. – have to be undertaken, prior to designing a reconstruction project for any old town building or quarter. The and specific development of an old town, complex investigations – archaeological, historical, architectural, economic, social

Assessing indicators that are used to define most of cultural heritage buildings as well as considering opinions and needs expressed by representatives of the public, the article aims to identify, which of the investigated buildings should be given a priority and investments in the process of cultural property preservation. In order to assess the influence of needs expressed by concerned groups, for selection of the most efficient alternative, the Additive Ratio Assessment (ARAS) method is applied [13].

2. Aspects of improvement pertaining to cultural heritage buildings

The Vilnius Old Town was included into the World Heritage List in 1994. The area of the historic city centre of the Lithuanian capital amounts to 359.5 ha, which encompasses 112 quarters and 3 zones (the territory of Vilnius castles – 82.5 ha; the nucleus of the Old Town surrounded by the defensive wall – 98 ha; and historic outskirts – 179 ha). Defensive, residential, representational and religious buildings with Gothic, Renaissance, Baroque and Classicism attributes adorn the contemporary Vilnius Old Town. One of distinctive features of this particular historic city centre resulted from a merger of several styles into one harmonious aesthetic structure. Eye-catching domes of churches that preserved stylistic distinctiveness typical to the School of Vilnius Baroque, which was formed in the fourth decade of the 18th century, and restrained splendour of Classicistic architecture compose the unique spirit of the site.

Planned structure of old towns merges from a lengthy and complicated process and depends on an evolutionary period (14th–16th centuries), reflecting the major directions of planned development in Lithuanian settlements and towns. The evolution of planned old town structure is closely related to the development of Lithuanian architecture, urbanism and culture in general. The evolutionary analysis of old town development aims to reveal the archaeological, historical, architectural, artistic and urban value as well as define the significance and scale of old town management.

Restoration of old towns may last for decades and should start with a complex investigation of buildings as well as entire quarters. This approach ensures an enhanced functionality of reconstructed or new buildings, preservation of their architecture as well as protection of the specific old town structure. Heritage preservation encourages civil engineers working in the fields of sustainable construction and environmental engineering to study the durability of historic structures and materials (concretes, rocks, steels, wood, etc.), which contributes to local economy in the present for the future benefit [14]. Thus, assessment of the current old town development situation as well as the process of reconstruction should be based on the progress in research and technology.

The investment process should also consider significant temporary economic effects [15]. Conservation, restoration and adaptation projects in historic residences are lengthy and expensive, especially in places with extensive dilapidation [16].

3. Estimation of evaluation criteria and grading of heritage buildings

The lifespan of buildings is composed of a series of interlocking processes, starting from the initial architectural and structural design, through to actual construction, followed by maintenance and control [5]. The Vilnius Old Town, the surrounding landscape, its structure and panorama are in constant transformation driven by continuous construction works and developmental projects. This change is especially determined by incorporation of new contemporary buildings constructed from modern materials.

To restore or preserve a cultural heritage object, interests and needs of the majority of stakeholder groups should be considered; thus, assessment of such opinions might benefit from multi-criteria techniques [17]. Success in construction and restoration projects is dependent on the effective organization of multiple specialized teams, each contributing with their own abilities, experience, knowledge and skills towards the completion of the joint project, yet bringing their own objectives, goals and management styles, which may not be entirely complimentary [18].

Ensuring archaeological, historical, architectural, economic, social and other aspects as well as aiming to preserve a unique and specific development of an old town and considering the needs of the public, criteria are selected (Table 1), on the basis of which assessment of cultural heritage buildings is undertaken to decide on a priority ranking for preservation and restoration of heritage objects. Systematic organization of information on cultural heritage buildings does not consider
data on the emergency state of buildings as maintenance and management of such buildings is regulated by national legislation. Thus, assessment only focuses on those cultural heritage buildings that are not in critical state.

Table 1. Alternative assessment factors

Number	Factor field	Factor description
1	Social	Parking places in building surroundings, points.
2	Historical / architectural	Value of the building in terms of heritage, points.
3	Archaeological / historical	Remains of periods, points.
4	Tourism development	Distance from the centre of the old town zone, km.
5	Architectural	Pollution of the facade with modern stylistics, points.
6	Economic	Investments required for restoration of cultural property, %
7	Social	Accessibility, points.
8	Social	Adjustment for disabled, points.
9	Architectural	State of the building, points.
10	Social / economic	Comfortable use, points.

4. Problem solving with the help of the Additive Ratio Assessment (ARAS) method

For assessment, seven different buildings were selected depending of their purpose: religious, administrative and residential. Such buildings, particularly as the one listed as alternative No. 1, have an impressive construction history as they originate from as early as 1387; however, historic data sources provide data on a number of fires, which suggests constant restoration of the building. Such history of buildings preserves numerous remains of cultural properties, thus use of multi-criteria methods aims to ensure preservation of the greatest possible number of cultural properties while considering the impact of other indicators, see Table 2.

Table 2. Building alternatives

Alternative	Description
a₁	The first parish church built in Vilnius in 1387–1426, Gothic stonework; with attributes from Gothic, Baroque and Classicism periods (the Church of St John the Baptist and St John the Evangelist).
a₂	Functionalistic residential building of 1914–1940 (Tilto str. 7, Vilnius).
a₃	Eclectic administrative building of 1860–1914 (Jogailos str. 3, Vilnius)
a₄	Late Classicist administrative building with additional household buildings of 1780–1795 (Žaliųjų ežerų str. 47, Vilnius).
a₅	Eclectic residential building 1860–1914 (Klaipėdos str. 7, Vilnius).
a₆	Unidentified style mixed purpose building of 1860–1914 (Stuokos–Gucevičiaus str. 9, Vilnius).
a₇	Unidentified style mixed purpose building of 1730–1780 (B. Radvilaitės str. 6, Vilnius).

Just as any other structure, each reconstructed cultural heritage building has its own peculiar frame, engineering systems, unique exterior and interior as well as public needs; thus, it is important to consider opinions of major stakeholder groups (experts of cultural properties and environmental protection, construction, investors, state institutions as well as members of the public). In most of real-life cases, concise human judgements are vague and cannot be expressed in exact numerical values. Human thinking and actions deal with the ill-structured decision problems in an uncertain environment. Human decision-making should take into account subjectivity [19]. Significance of expert estimations was assessed with the help of the AHP method.

ARAS method was based on the argument that the phenomena of complicated world could be understood by using simple relative comparisons. It describes an alternative under consideration, to the sum of the values of normalized and weighted criteria. These criteria describe the optimal alternative and the degree of optimality, which is achieved by the alternative under comparison. [20], [7], [21].

Taking into account the calculation process, the optimality function (Table 3) has a direct and proportional relationship with the values \(x_{ij} \) and weights \(\omega_j \) of the investigated criteria and their relative influence on the final result. Consequently, it is convenient to evaluate and rank decision alternatives when this method is used [13].
According to the solution, it could be stated that alternatives are as follow:

\[a_1 \succ a_4 \succ a_3 \succ a_7 \succ a_5 \succ a_2 \succ a_6. \]

Application of the AHP and the ARAS combination revealed that the most suitable project is the alternative \(a_1 \). This building is a Gothic church located in the very heart of the Vilnius Old Town. It has valuable attributes of Gothic, Classicalism and Baroque. Side façades have partially preserved Gothic forms and frames.

Calculations delivered on the basis of assessment criteria chosen for preservation of cultural properties resulted in a priority ranking of buildings in need of rehabilitation based on weights of indicators. It is obvious that assessment of such cultural properties should not centre around the amounts of investments required for reconstruction but rather on the cultural and social benefit of such funds.

5. Conclusions

The article aims to find the best method for prioritization of cultural heritage buildings for restoration or maintenance of cultural properties. Project implementation engages different stakeholder groups, interests of which need to be confined in order to ensure the success of the project. Rehabilitation of such buildings faces complex technical documentation and methodologies applicable to management of cultural heritage. Consequently, the most rational solutions can be delivered by applying scientific methods comprising and evaluating the large volume of information.

To determine the most convenient alternative, complex AHP and ARAS methods were used. Significance of expert estimations was assessed with the help of the AHP method. The ARAS method was applied for determination of the most

Table 3. The changed decision making matrix with criteria weights

Criteria	Criteria weight	Alternatives										
\(x_1 \)	\(\hat{\omega}_4 = 0.045 \)	\(a_0 \)	9	8	8	9	9	9	9	9	9	
\(x_2 \)	\(\hat{\omega}_5 = 0.175 \)	\(a_1 \)	8	7	7	7	7	7	7	7	7	
\(x_3 \)	\(\hat{\omega}_2 = 0.074 \)	\(a_2 \)	8	9	8	9	9	9	9	9	9	
\(x_4 \) **	\(\hat{\omega}_6 = 0.038 \)	\(a_3 \)	4.35	4.35	4.35	4.35	4.35	4.35	4.35	4.35	4.35	4.35
\(x_5 \) **	\(\hat{\omega}_7 = 0.029 \)	\(a_4 \)	5	5	5	5	5	5	5	5	5	
\(x_6 \) **	\(\hat{\omega}_8 = 0.344 \)	\(a_5 \)	5	0.8	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
\(x_7 \)	\(\hat{\omega}_9 = 0.060 \)	\(a_6 \)	5	5	5	5	5	5	5	5	5	
\(x_8 \)	\(\hat{\omega}_{10} = 0.140 \)	\(a_7 \)	7	7	7	7	7	7	7	7	7	
\(x_{10} \)	\(\hat{\omega}_{11} = 0.042 \)	\(a_8 \)	4	1	2	3	2	2	2	2	2	

Value of optimality function \(i \)-th alternative

\[
\bar{S}_{\alpha i} = \sum_{j=1}^{10} \left(\frac{x_{ij}}{\sum_{j=1}^{10} x_{ij}} \right) \cdot \hat{\omega}(i, j)
\]

Utility degree

\[
\kappa_i = \frac{S_i}{S_0}
\]

* Starting value of alternative; **The direction of minimization

* Starting value of alternative; **The direction of minimization
convenient alternative. Interadjustment of these methods allowed assessing attitudes of cultural heritage specialists, representatives of the public and investors towards each of the selected buildings. Consequently, the use of such multi-criteria methods allows considering opinions of all stakeholder groups in the process of decision-making related to the choice of a project implementation solution.

The research focused on the analysis of Vilnius Old Town buildings, their current situation and defining criteria with the aim to find a practicable solution to prioritize buildings for preservation of cultural properties. Calculations revealed that assessment of such objects does not focus on the amount of investments. Cultural preservation and interests of the public are just as important while assuring efficiency of cultural heritage restoration projects.

References

[1] Nyseth, T., Sognnaes, J., 2012. Preservation of old towns in Norway: Heritage discourses, community processes and the new cultural economy, Cities, In press.
[2] Sirisrisak, T., 2009. Conservation of Bangkok old town, Habitat International 33, pp. 405-411.
[3] Kaklauskas, A., Zavadskas, E. K., Saparauskas, J., 2009. Conceptual modelling of sustainable Vilnius development, Technological and Economic Development of Economy 15(1), pp. 154-177. http://dx.doi.org/10.3846/1392-8619.2009.15.154-177
[4] Kim, Ch. J., Yoo, W. S., Lee, U. K., Song, K. J., Kang, K. I., Cho, H., 2010. An experience curve-based decision support model for prioritizing restoration needs of cultural heritage, Journal of Cultural Heritage 11, pp. 430-437.
[5] Kahraman, C., Kaya, T., 2012. A fuzzy multiple attribute utility model for intelligent building assessment, Journal of civil engineering and management 18(6), pp. 811-820.
[6] Jakučionis, S., Ustinovičius, L., 2000. Multicriteria analysis of the variants of the old town building renovation in marketing aspect, Statyba 6(6), pp. 469-475.
[7] Tupenaite, I., Zavadskas, E. K., Kaklauskas, A., Turskis, Z., Seniut, M., 2010. Multiple criteria assessment of alternatives for built and human environment renovation, Journal of Civil Engineering and Management 16(2), pp. 257-266. http://dx.doi.org/10.3846/jcem.2010.30
[8] Cohen, N., 1999. Urban conservation. Cambridge, Massachusetts: MIT Press.
[9] Elsorady, D. A., 2012. Heritage conservation in Rosetta (Rashid): A tool for community improvement and development, Cities 29, pp. 379-388.
[10] Srđić, A., Šelih, J., 2011. Integrated quality and sustainability assessment in construction: a conceptual model, Technological and Economic Development of Economy 17(4), pp. 611-626. http://dx.doi.org/10.3846/20294913.2011.603177
[11] Kliukas, R., Kačianauskas, R., Jaras, A., 2008. A monument of historical heritage - Vilnius archcathedral belfry: The dynamic investigation, Journal of Civil Engineering and Management 14(2), pp. 139-146. http://dx.doi.org/10.3846/1392-3730.2008.14.9
[12] Brauers, W. K. M., Kračka, M., Zavadskas, E. K., 2012. Lithuanian case study of masonry buildings from the Soviet period, Journal of Civil Engineering and Management 18(3), pp. 444-456. http://dx.doi.org/10.3846/13923730.2012.700944
[13] Turskis, Z., Zavadskas, E. K., 2010. A new additive ratio assessment (ARAS) method in multicriteria decision-making, Technological and Economic Development of Economy 16(2), pp. 159-172. http://dx.doi.org/10.3846/tede.2010.10
[14] Al-Mukhtar, M., 2012. Editorial: built heritage, European Journal of Environmental and Civil Engineering 16(5), pp. 525-526. http://dx.doi.org/10.1080/19648189.2012.688531
[15] Burinskienė, M., Rudžiūnienė, V., Venčkauskaite, J., 2011. Effects of quality of life on the price of real estate in Vilnius city, International Journal of Strategic Property Management 15(3), pp. 295-311. http://dx.doi.org/10.3846/1648718X.2011.617857
[16] Murzyn-Kupisz, M., 2012. The socio-economic impact of built heritage projects conducted by private investors, Journal of Cultural Heritage, In press.
[17] Šijanec Zavrl, M., Žarnič, R., Šelih, J., 2009. Multicriterial sustainability assessment of residential buildings, Technological and Economic Development of Economy 15(4), pp. 612-630. http://dx.doi.org/10.3846/1392-8619.2009.15.612-630
[18] Chen, W. T., Chen, T. T., Lu, C. S., Liu S. S., 2012. Analyzing relationships among success variables of construction partnering using structural equation modeling: A case study of Taiwan’s construction industry, Journal of Civil Engineering and Management 18(6), pp. 783-794.
[19] Turskis, Z., Lazauskas, M., Zavadskas, E. K., 2012. Fuzzy Multiple Criteria Assessment of Construction Site Alternatives for Non-Hazardous Waste Incineration Plant in Vilnius City, Applying ARAS-F and AHP Methods, Journal of Environmental Engineering and Landscape Management 20(2), pp. 110-120.
[20] Zavadskas, E. K., Turskis, Z., 2010. A new additive ratio assessment (ARAS) method in multi-criteria decision making, Technological and Economic Development of Economy 16(2), pp. 159-172. http://dx.doi.org/10.3846/tede.2010.10
[21] Zavadskas, E. K., Turskis, Z., Vilutienė, T., 2010. Multiple criteria analysis of foundation instalment alternatives by applying Additive Ratio Assessment (ARAS) method, Archives of Civil and Mechanical Engineering 10(3), pp. 123-141.