Long Term Object Detection and Tracking in Collaborative Learning Environments

by

Sravani Teeparthi

B.Tech., Electronics and Communication Engineering, 2015

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science Computer Engineering

The University of New Mexico

Albuquerque, New Mexico

July, 2021
Dedication

To my husband and parents for their support and encouragement.
I would first like to thank my advisor Prof. Marios Pattichis for all his patience in advising me. His guidance and ideas were crucial for my development as a graduate student.

I would also like to acknowledge Miguel A Hombrados-Herrera, and Krishna Ashok-Poddar for their valuable insights and feedback.

This material is based upon work supported by the National Science Foundation under Grant No. 1613637 and No. 1842220. Any opinions or findings of this thesis reflect the views of the author. They do not necessarily reflect the views of NSF.
Long Term Object Detection and Tracking in Collaborative Learning Environments

by

Sravani Teeparthi

B.Tech., Electronics and Communication Engineering, 2015
M.S., Computer Engineering, University of New Mexico, 2021

Abstract

Human activity recognition in videos is a challenging problem that has drawn a lot of interest, particularly when the goal requires the analysis of a large video database. The Advancing Out-of-School Learning in Mathematics and Engineering (AOLME) project provides a collaborative learning environment for middle school students to explore mathematics, computer science, and engineering by processing digital images and videos. As part of this project, around 2200 hours of video data were collected for analysis. This data was collected to understand how children learn in situations involving mathematical and programming challenges so as to recognize best teaching practices that support broadening participation of underrepresented students in STEM fields. Because of the size of the dataset, it is hard to analyze all the videos of the dataset manually. Thus, there is a huge need for reliable computer-based methods that can detect activities of interest.

My thesis is focused on the development of accurate methods for detecting and tracking objects in collaborative learning environments in long videos (> 1 hour).
Long-term object detection and tracking face fundamental challenges due to occlusion, illumination variations, and pose variations.

For collaborative learning groups, the thesis contributes robust methods for computer keyboard detection, tracking, and student hand detection. For hand detection, the thesis integrates object detection with clustering and time-projections for accurate, long-term assessment of student participation. The hand detection method was integrated into a writing detection system and can also be used for later research on recognizing student gestures.

All the models are validated on videos from 7 different sessions, ranging from 45 minutes to 90 minutes. The keyboard detector achieved a very high average precision (AP) of 92% at 0.5 intersection over union (IoU). Furthermore, a combined system of the detector with a fast tracker KCF (159fps) was developed so that the algorithm runs significantly faster without sacrificing accuracy. For a video of 23 minutes having resolution 858 \times 480 @ 30 fps, the detection alone runs at 4.7 \times \text{the real-time}, and the combined algorithm runs at 21 \times \text{the real-time} for an average IoU of 0.84 and 0.82, respectively. The hand detector achieved average precision (AP) of 72% at 0.5 intersection over union (IoU). The detection results were improved to 81% using optimal data augmentation parameters. The hand detector runs at 4.7 \times \text{the real-time} with AP of 81% at 0.5 intersection over union. The hand detection method was integrated with projections and clustering for accurate proposal generation. This approach reduced the number of false-positive hand detections by 80%. The overall hand detection system runs at 4 \times \text{the real-time}, capturing all the activity regions of the current collaborative group.
Contents

List of Figures

List of Tables

Glossary

1 Introduction

1.1 Motivation .. 2

1.2 Thesis Statement .. 2

1.3 Contributions .. 3

1.4 Overview .. 3

2 Background

2.1 Prior Work .. 5

2.2 Object detection ... 7

2.2.1 Object detection libraries 10
Contents

2.3 Object tracking .. 12
2.4 Uniqueness of AOLME Dataset 14

3 Dataset

3.1 Organization of Dataset 18
3.2 Ground Truth ... 19
 3.2.1 Generation of Ground Truth 19
 3.2.2 Testing Dataset .. 20
3.3 Datasets for keyboard and hand detection 24
 3.3.1 Dataset for keyboard detection 24
 3.3.2 Dataset for hand detection 24
 3.3.3 Testing Dataset .. 25

4 Methodology

4.1 Keyboard detection and tracking 26
4.2 Top-level diagram for hand regions 28
4.3 Optimal data augmentation study 30
 4.3.1 Experimental Setup 33

5 Results

5.1 Keyboard Detection and Tracking Results 36
 5.1.1 Keyboard detection results 36
List of Figures

1.1 Frames from different videos showing challenges involved. 4

2.1 Architecture of Faster R-CNN [37]. 10
2.2 Architecture of SSD [31]. 10
2.3 YOLO [36]. 11

3.1 AOLME Dataset Organization. 18
3.2 Ground truth labeling process. 19
3.3 Visualizing ground truth using video labeler tool. 20
3.4 Some of the images representing test set. 23
3.5 Sample from hand detection dataset. 25

4.1 System for keyboard detection and tracking. 27
4.2 An example of keyboard detection. 27
4.3 An example of keyboard tracking. 28
4.4 Hand region detection. 28
List of Figures

4.5 Video frame showing hands detected. 29
4.6 Video frame showing projected detections for 12-seconds interval . 30
4.7 picture showing different clustering techniques. 31
4.8 Video frame showing isodata clustering. 32
4.9 Video frame showing removal of smaller regions. 32
4.10 Video frame with bounding boxes around hand activity regions. . 33
4.11 Pseudo code for finding optimal ranges for each of the affine transform. 34
4.12 Pseudo code for finding optimal probability. 35
5.1 Successful keyboard detections. 38
5.2 Some of the test results showing failure of keyboard detection . . 39
5.3 Detection vs fast-trackers. 40
5.4 Combination of detection and tracking. Video under consideration is 23.45 minutes long having resolution of 858 \times 480 @ 30 fps. 41
5.5 Shear angle optimization. 43
5.6 Rotate angle optimization. 44
5.7 Translation pixels optimization. 45
5.8 Validation Accuracy with Probability = 0.5. 46
5.9 Probability Study. ... 47
5.10 Examples of hand detection. 48
5.11 Calculation of performance evaluation. 49
List of Figures

Figure	Description	Page
5.12	Results showing the reduction of proposal regions and capturing writing instances. The ones on the left are original and the ones on right are after projections and segmentation.	50
5.13	Performance evaluation for all the test sessions.	52
6.1	Participation map for a session.	54
6.2	Session activity map.	55
List of Tables

2.1 Computer assisted video analysis research related to video object detection and activity detection in the image and video processing and communications lab (ivpcl). .. 6

2.2 Summary of commonly used object detection datasets. These datasets contain a large number of classes with images extracted from multiple sources. MS-COCO [30] dataset contains a keyboard class, making it of particular interest for this research. .. 8

2.3 Summary of the most common object detection methods. These methods are supported officially by deep learning libraries, such as PyTorch, making them easily accessible. .. 9

2.4 Summary of object tracking datasets used to train and test single-target and multi-target tracking. .. 13

2.5 Summary of object tracking methods available in OpenCV. These are typically fast methods that do not use deep learning. 15

2.6 Summary of State-of-the-Art Object tracking algorithms. 16

3.3 AOLME Testing dataset. ... 20
List of Tables

Table	Description	Page
3.1	Typing and no typing ground truth on AOLME group videos. These videos are of 848x480 resolution. Playback time typically ranges from 11 to 16 minutes at 30 or 60 FPS. We use boldface to identify video sessions where ground truth was provided over the entire session.	21
3.2	Writing and no writing ground truth on AOLME group videos. These videos are of 848x480 resolution. Playback time typically ranges from 11 to 16 minutes at 30 or 60 FPS. We use boldface to identify video sessions where ground truth was provided over the entire session.	22
3.4	Dataset for keyboard detection.	24
3.5	Dataset for hand detection.	24
3.6	Dataset for Testing.	25
5.1	Average precision (AP) and Average recall (AR) at different IoU ratios for keyboard detection. We are able to achieve a very high AP (0.92) for keyboard detection.	37
5.2	Trackers performance using hardware system described in 5.1.2 and OpenCV 4.0. Video under consideration is 23.45 minutes long 858 × 480 @ 30 fps.	39
5.3	Augmentations used for probability study	44
5.4	Validation and Testing Accuracies for multiple probabilities.	46
5.5	Reduction in number of region proposals for each test session.	51
Glossary

Term	Definition
IoU Ratio	Intersection over Union is an evaluation metric used to measure the accuracy of an object detector on a particular dataset. The IoU is the ratio of the overlapping area of ground truth and predicted area to the total area.
AOLME	The Advancing Out-of-School Learning in Mathematics and Engineering research study.
SOTA	State of the Art.
Binary Image	An image consisting only of black and white values.
Centroid	The center point in a countour.
Ground Truth	A set of labelled data that serves as a point of comparison
CNN	Convolutional Neural Network.
Precision	Fraction of relevant instances among all retrieved instances
Recall	Fraction of retrieved instances among all relevant instances
AP	Performance evaluation terms computed for each category. AP is the mean of the precision scores after each relevant document is retrieved.
Glossary

Abbreviation	Description
AR	Average Recall.
TP, FP	True Positive, False Positive
TN, FN	True Negative, False Negative
Object detection and tracking have advanced significantly over the last decade. It is possible to detect multiple objects in an image accurately thanks to advancements in deep learning \[1\]. Even though it works for images, accurate detection and tracking proved quite challenging for videos. In addition to image object detection problems, such as occlusion, scaling, variation in lighting, camera angle, we also face other video-related problems. These problems include but are not limited to (i) a large number of frames (100K images per hour), (ii) disappearance and reappearance of an object, and (iii) dynamic object pose variation.

We illustrate some of the problems with the dataset in Fig. 1.1. We have (i) different camera angles in Fig. 1.1c, 1.1b and 1.1n (ii) inconsistent illumination in Fig. 1.1a and 1.1d (iii) monitor occluding activity regions in Fig. 1.1l and 1.1o (iv) person blocking other people in Fig. 1.1n (v) activity not associated with primary table of focus in Fig. 1.1l and 1.1c (vi) other groups working in background in Fig. 1.1l and 1.1c (vii) people walking around in Fig. 1.1n and 1.1f. All the problems described above will have an impact on detection results. So there is strong interest in developing methods to analyze videos that can address the challenges of these
collaborative learning environments.

1.1 Motivation

A significant focus of the AOLME project is to understand how students learn. Therefore, how students interact with each other, the facilitator and their lessons are of importance. To illustrate the problem, students learn and interact using their hands by typing, writing and pointing to things. For example, Figs. 1.1d, 1.1g, 1.1m and 1.1o show students using keyboard; Figs. 1.1a - 1.1b show writing, Figs. 1.1d, 1.1g, 1.1k, 1.1m show typing, Figs. 1.1o shows students using mouse, Figs. 1.1d, 1.1d, 1.1h, 1.1i and 1.1j show interaction using hands, Figs. 1.1f and 1.1i show gestures using hands.

The primary motivation of this thesis is to develop a robust method to detect and track objects in long videos and propose segmented hand regions in videos eliminating the background regions. This thesis will focus on detecting and tracking keyboards and hands in long videos captured in the collaborative learning environment. The thesis also proposes to use characteristics of video to provide a fast and robust system. In the future, the proposed method can easily integrate into an activity detection system providing spatio-temporal instances of typing and writing.

1.2 Thesis Statement

My thesis is that I can develop fast and effective object detection and tracking of hands and keyboards in long videos in collaborative learning environments through the integration of clustering, projections, tracking, and current object detection methods.
Chapter 1. Introduction

1.3 Contributions

The contributions of this thesis include:

1. Robust detection and fast-tracking of the keyboard in long videos (45 minutes to 90 minutes).
2. Data augmentation study to determine optimal parameters to improve hand detection.
3. A novel method that uses projections and cluster based segmentation to detect hand regions in a video.

1.4 Overview

The remainder of the thesis is organized into 5 chapters:

- **Chapter 2: Background.** This chapter describes prior work.
- **Chapter 3: Dataset.** This chapter describes Dataset Organization and Ground Truth.
- **Chapter 3: Methods.** This chapter describes methods for keyboard detection, tracking, hand detection, and proposal regions.
- **Chapter 4: Results.** This chapter provides a summary of results for keyboard detection, tracking, hand detection, and proposal regions.
- **Chapter 5: Conclusion and future work.** This chapter provides a summary of the thesis and recommendations for future work.
Chapter 1. Introduction

Figure 1.1: Frames from different videos showing challenges involved.
Chapter 2

Background

This section provides a summary of prior research at ivPCL lab, object detection and tracking methods along with the common datasets used respectively.

2.1 Prior Work

This thesis derives inspiration and expands on the prior research at the ivPCL lab. In this section, we provide a summary and contrast against the prior work. Table 2.1 provides the summary.

The thesis extends prior research by developing fast and reliable methods for hand and keyboard detection that work on long videos. For keyboard detection, the thesis integrates fast tracking into the approach. Furthermore, the thesis integrates the use of projections every 12 seconds, cluster-based segmentation, and small area removal to detect hand regions and reject background images. The developed methods are tested on 7 long video sessions.
Table 2.1: Computer assisted video analysis research related to video object detection and activity detection in the image and video processing and communications lab (ivpcl).

Author	Title	Summary
Ulloa, A., et al. 2021 [6]	Deep-learning-assisted analysis of echocardiographic videos improves predictions of all-cause mortality	Analyzes echocardiographic videos to assist cardiologists in predicting one-year all-cause mortality. This framework method successfully increased the sensitivity of cardiologists by 13%.
Tapia, L., et al. 2020 [11]	The Importance of the Instantaneous Phase for Face Detection using Simple Convolutional Neural Networks	Investigates the use of low-complexity image processing system to study advantages of using AM-FM representations versus raw images. This framework showed significant advantages by reducing training time per epoch with low-complexity architecture at a comparable accuracy using FM images for training.
Esakki, G., et al. 2020 [13]	Adaptive Encoding for Constrained Video Delivery in HEVC, VP9, AV1 and VVC Compression Standards and Adaptation to Video Content	Provides optimal QP for compressing videos for high and acceptable video streaming. For further information please refer to [16, 14, 15].
Kent, R., B., et al. 2020 [28]	Design, Implementation, and Analysis of High-Speed Single-Stage N-Sorters and N-Filters	Provides an implementation in FPGA that can greatly speedup 2×2 and 3×3 max pooling.
Carranza, C., et al. 2020 [5]	Fast and Scalable 2D Convolutions and Cross-correlations for Processing Image Databases and Videos on CPUs	Proposed a method which maximizes throughput through the use of vector-based memory I/O and optimized 2D FFT libraries that run on all available physical cores. Also shows decomposition of arbitrarily large image into small using overlap-and-add. This approach outperforms Tensorflow for 5×5 kernels and significantly outperforms Tensorflow for 11×11 kernels.
Darsey, C.J., 2018 [8]	Hand Movement Detection in Collaborative Learning Environment Videos	Explores hand movement detection using color and optical flow. This approach used patch color classification, space-time patches of video, and histogram of optical flow. This approach achieved accuracy of 84% and ROC AUC of 89% on video patches from 15 video clips.
Jacoby, A., R., et al. 2017 [22, 23]	Context-sensitive human activity classification in collaborative learning environments	Explores activity detection of writing, typing and talking. The method was tested on simulated data having 620 video frames for writing, 1050 for typing, and 1755 frames for talking.
Chapter 2. Background

Author(s)	Title	Details
Eilar, C. W., et. al. 2016 [11]	Distributed video analysis for the Advancing Out-of-School Learning in Mathematics and Engineering project	Proposes an open-source, maintainable system for detecting human activity in video datasets.
Shi, W., et. al. 2016 [38]	Robust head detection in collaborative learning environments using AM-FM representations	Focuses on head detection, attention based detection by classifying where faces look, and group interactions based on attention direction detected. This work uses texture by using AM-FM models. This work is still being continued by using multiple image representations to detect people in specific regions of long-term collaborative learning videos.
Jatla, V., et. al. 2016 [24, 25]	Image processing methods for coronal hole segmentation, matching, and map classification	Explored image processing models that can be used to detect coronal holes automatically. Here an automated segmentation method has been developed that improves significantly over state of the art models.

2.2 Object detection

The goal of object detection methods is to determine where objects are located in an image and determine the category of the object. In this section, I will provide a summary of common object detection datasets and methods. The most commonly used object detection datasets are listed in the table. The most popular object detection algorithms are as described in the table.

Faster R-CNN

Faster R-CNN [37] is the modified version of Fast R-CNN. The major difference is that Fast R-CNN uses the selective search for generating Regions of Interest, while Faster R-CNN uses "Region Proposal Network," RPN. RPN takes image feature maps as an input that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. RPN is a fully convolutional network that continuously generates object bounds and objectness scores at each...
Table 2.2: Summary of commonly used object detection datasets. These datasets contain a large number of classes with images extracted from multiple sources. MS-COCO [30] dataset contains a keyboard class, making it of particular interest for this research.

Dataset	Summary
MS-COCO [30]	• 330k images (> 200K labels)
	• 80 object categories
	• 5 captions per image
	• 2,50,000 people with key points, Object segmentation.
	• 1.5 million object instances
ImageNet [10]	• 1,500,000 images with multiple bounding boxes and respective class labels.
	• Over 500 images per category
PASCAL VOC 2007 [17]	• 20 classes, including person, animal, vehicle, and indoor.
	• Train/validation/test, 9,963 images containing 24,640 annotated objects.
PASCAL VOC 2012 [18]	• 20 classes.
	• The train/val data has 11,530 images containing 27,450 ROI annotated objects and 6,929 segmentations.

position. This is trained end-to-end for high-quality region proposals which are further used by Fast R-CNN for detection. An RoI pooling layer is applied on these proposals to bring down these proposals to the same size. These proposals are passed through the FCN layer, which has softmax and linear regressor at its top to classify and output bounding boxes. The architecture is shown in Fig. 2.1

Single Shot Detector

Single Shot Detector (SSD) [31] is a method for detecting objects in images using a single deep neural network. The SSD approach discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios. After discretizing, the method scales per feature map location. The Single Shot Detector
Table 2.3: Summary of the most common object detection methods. These methods are supported officially by deep learning libraries, such as PyTorch, making them easily accessible.

Author	Method	Summary	Datasets	Results
Redmon, et al. 2018	YOLOv3	Single neural network to full image.	PASCAL VOC	YOLOv3 runs significantly faster than other detection methods with
		Fast and accurate	MS COCO	comparable performance and with high accuracy.
				The mAP (mean Average Precision) is 57.9% on COCO test-dev.
Shaoqing Ren, et al. 2017	Faster R-CNN	End-to-end trained RPN to generate high quality region proposals, which are used by Fast R-CNN for detection	PASCAL VOC 2007	mAP of 73.2% on PASCAL VOC 2007
			PASCAL VOC 2012	mAP of 70.4% on PASCAL VOC 2012
			MSCOCO	
Wei Liu, et al. 2017	SSD	End-to-end CNN passing input image through series of convolutional layers, generating bounding boxes.	PASCAL VOC	mAP 74.3% on VOC2007 test
			MS COCO	On VOC2007 test, operated at 59 FPS with mAP 74.3%, vs. Faster R-CNN 7 FPS with mAP 73.2% or YOLO 45 FPS with mAP 63.4%
			ILSVRC	

network combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes. The architecture is shown in Fig. 2.2.

YOLO

YOLO [36] shown in figure 2.3 uses a single neural network trained end-to-end that takes a photograph as input and predicts bounding boxes and class labels for each bounding box directly. This model works by first splitting the input image into a grid of cells, where each cell is responsible for predicting a bounding box if the center of a bounding box falls within the cell. Each grid cell predicts a bounding box involving the x, y coordinate, the width and height, and the confidence. A class prediction is also based on each cell.
Chapter 2. Background

2.2.1 Object detection libraries

This section briefly describes the frameworks used in the thesis to implement object detection. There are multiple github repositories that provide object detection. In this thesis, we used the frameworks supported by well established companies in AI research, such as Facebook [44] and OpenMMLab [7].

Detectron2

Figure 2.1: Architecture of Faster R-CNN [37].

Figure 2.2: Architecture of SSD [31].
Chapter 2. Background

Detectron2 [44] is Facebook AI Research’s software system that implements state-of-the-art object detection algorithms. Detectron2 is powered by Pytorch deep learning frameworks. It includes features such as Deeplab, Cascade R-CNN, rotated bounding boxes, etc. The training is faster, and models can be exported to Torchscript or Caffe format for deployment.

MMDetection

MMDetection [7] is an open-source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project. The toolbox stems from the codebase developed by the MMDet team, who won the COCO Detection Challenge. The detection framework is divided into different components so that one can easily use a customized object detection framework by combining different modules. It supports multiple state-of-the-art frameworks like Faster R-CNN, YOLO, SSD, Mask R-CNN.
etc. Once the data is arranged in a particular COCO format, multiple frameworks can be trained by just changing configuration files. All the operations are run on GPUs, so the training speed is comparable to other popular networks like Detectron2 and Tensorflow.

2.3 Object tracking

Object tracking methods aim to determine the spatial coordinates of an object (initialized previously) in future frames. This section summarizes common object tracking datasets and trackers supported in OpenCV and state-of-the-art algorithms for tracking. The most commonly used datasets for object tracking are listed in table 2.4. OpenCV object tracking API was introduced in OpenCV 3.0. A total of 8 tracking algorithms are available in OpenCV. They are BOOSTING, MIL, KCF, TLD, MEDIANFLOW, GOTURN, MOSSE, and CSRT. Generally, tracking algorithms are faster than detection; the reason is that the algorithm already knows the object’s appearance. All the tracking algorithms are summarized in table 2.5. In addition, the state-of-the-art tracking algorithms are summarized in table 2.6.

Boosting Tracker [19]:
This tracker is based on AdaBoost’s online edition. There is no special reason to use these trackers since there are more advanced trackers such as KCF, MIL. The tracking performance is mediocre and does not reliably track failure. It is not real time. It fails with random and fast movements.

MIL Tracker [2]:
The performance is better compared to BOOSTING, since it does not drift much. It does good job under partial occlusion. It fails with random and fast movements. It is not real time.

KCF Tracker [21]:
Chapter 2. Background

Table 2.4: Summary of object tracking datasets used to train and test single-target and multi-target tracking.

Dataset	Summary
MOT17 [33]	- Multi-target tracking.
	- 42 sequences with crowded scenarios, camera motions, and weather conditions.
MOT20 [9]	- 8 new sequence depicting very crowded challenging scenes.
TrackingNet [35]	- A Large-Scale Dataset and Benchmark for Object Tracking in the Wild.
	- > 30K Video Sequences.
	- > 14M Bounding Boxes.
	- Diversity ensured by YouTube
VOT2018 [29]	- 235 sequences, carefully selected to obtain a dataset with long sequences containing many target disappearances from LTB35.
	- Twenty sequences were obtained from the UAVL20 [34], six sequences were taken from Youtube, six sequences were generated from the omnidirectional view generator AMP [96] to ensure many target disappearances.
	- Sequence resolutions range between 1280×720 and 290×217. The dataset contains 14687 frames, with 433 target disappearances.
	- Each sequence contains on average 12 long-term target disappearances, each lasting on average 40 frames.

Accuracy and speed are both better than previous two trackers. It reports tracking failure. It does not recover from full occlusion and fast movements. It is real time. This is the best performing algorithm that was used in this Thesis.

TLD Tracker [27]:

This tracker decomposes the task into (short term) tracking, learning, and detection. The tracker follows the object from frame to frame. The detector localizes all appearances that have been observed so far and corrects the tracker if necessary. It works under occlusion. It is not real time. It fails with fast and random movements.

MEDIANFLOW Tracker [26]:
Chapter 2. Background

This tracker tracks the object both in forward and backward direction. It reliably reports tracking failure. It works well when there is no occlusion. It fails under large motions. It is real time.

GOTURN Tracker [20]:
Out of all the trackers, this is the only one based on Convolutional Neural Networks. It does track pretty well when the object is in training set. The tracker has a hard time tracking part of an object. It is not real time.

MOSSE Tracker [4]:
It is the fastest of all the available trackers. It is easy to implement. It fails with random movements. But due to its speed, on a performance scale it lags behind.

CSRT Tracker [32]:
It uses the spatial reliability map for adjusting the filter support to the part of the selected region from the frame for tracking. It is not real time.

2.4 Uniqueness of AOLME Dataset

AOLME is different from other typical datasets in the way that it primarily includes long videos which are over an hour. Each video has multiple activities but not limited to typing, talking, eating, and writing. Many challenges impact the results like occlusion, multiple camera angles, illumination issues, multiple people performing the same activity, fast and random movements, people moving across the videos, and activities in the background.
Chapter 2. Background

Table 2.5: Summary of object tracking methods available in OpenCV. These are typically fast methods that do not use deep learning.

Method	Summary
Boosting [19]	• Old and Performance is mediocre
	• Does not know when tracking is failed.
Multiple Instance Learning [2]	• Performance is pretty good, performs well under partial occlusion.
	• Tracking failure is not reported reliably.
	• Does not recover from full occlusion.
Kernelized Correlation Filters [21]	• Accuracy and Speed are both better than MIL.
	• Reports tracking Failure better than MIL and BOOSTING.
	• Does not recover from full occlusion
Tracking, Learning and Detection [27]	• Best under occlusion over multiple frames and over scale changes.
	• Lots of false position.
Median Flow [26]	• Excellent tracking failure reporting. Works very well when the motion is predictable and there is no occlusion.
	• Fails under large motion.
GO TURN [20]	• Fails on tracking objects that are not in the training set.
	• Hard time tracking part of the object.
MOSSE [4]	• Operates at higher fps (450 and even more).
	• Easy to implement and accurate
DCF-CSR [32]	• Operates at 25fps
	• Gives High Accuracy
Table 2.6: Summary of State-of-the-Art Object tracking algorithms.

Author	Method	Summary	Datasets
Qiang Wang, et al. 2019	Fast Online Object Tracking and Segmentation, A Unifying Approach SiamMask	• 3rd best model for Visual Object Tracking on YouTube-VOS	
• Single Object Tracking			
• Produces segmentation masks and bounding boxes at 55fps			
• Real time and fastest	VOT-2016, VOT-2018, DAVIS-2016, DAVIS-2017		
Yifu Zhang, et al. 2020	A Simple Baseline for Multi-Object Tracking	• SOTA for Multi-Object Tracking on MOT16	
 • First among all online trackers
 • Operates at 30fps
 • Anchor-free object detection to reduce ambiguity, parallel branch for Re-ID features | 2DMOT15, MOT16, MOT17, MOT20 |
Chapter 3

Dataset

The Advancing Out-of-school Learning in Mathematics and Engineering (AOLME) project is an after-school program collaboratively implemented by the Department of Electrical and Computer Engineering and the Department of Language, Literacy, and Sociocultural Studies. AOLME generated a large amount of multimedia data that includes around 2200 hours of group interactions, monitor data, and screen recordings.

A group in the AOLME setting has three to five students, one facilitator, and a co-facilitator. The interactions between the group were recorded using a video camera. The videos have 1920 × 1080 resolution and 30 or 60 frames per second.

In this chapter, we give a detailed description of AOLME data terminology and organization. Following this, we describe the ground truth generation to train object detectors for detecting hands and keyboards in group interactions.
3.1 Organization of Dataset

Fig. 3.1 shows the organization of the AOLME Dataset. Group video data is collected across three years which are named Cohorts. Each Cohort is again organized into levels based on Spring, Summer, and Fall. Each Level again has two schools: Rural and Urban.

For the dataset, we have:

- Each school has 3 to 7 groups.
- Each group has 3 to 5 members.
- Typically, per level a group does 10 to 12 sessions.
- A session lasts anywhere between 45 minutes to 90 minutes.

The videos are organized using the following naming convention:

- **C1L1P-A**: Cohort 1, Level 1, Rural, Group A (Includes all sessions from Group)
- **C1L1P-A, Mar02**: Cohort 1, Level 1, Rural, Group A (Single Session)
Chapter 3. Dataset

3.2 Ground Truth

3.2.1 Generation of Ground Truth

To generate ground truth, MATLAB Video Labeler 2018Rb was used. Each video was reviewed in three second segments. Within each segment, a spatiotemporal bounding box was used to mark each activity. The list of activities included: typing/no-typing and writing/no-writing. For each activity, we also stored the anonymized student, the start time, and activity duration.

![Ground truth labeling process](image)

Figure 3.2: Ground truth labeling process.

The ground truth datasets are summarized in Tables 3.1 and 3.2. A total of 83 hours and 49 hours of video data was analyzed for labeling typing and writing activities, respectively.
Chapter 3. Dataset

3.2.2 Testing Dataset

All the sessions handpicked by the College of Education are used for testing. These include 13 different sessions from Urban and Rural schools, which include 37 students and 10 facilitators. The total length of these videos is over 21 hours. The dataset is summarized in Table 3.3.

Table 3.3: AOLME Testing dataset.

Cohort	Level	Date	Group	School
1	1	Mar-02	B	Rural
1	1	Mar-30	C	Rural
1	1	Apr-06	C	Rural
1	1	Apr-13	C	Rural
1	1	Mar-02	E	Rural
2	1	Feb-23	B	Rural
2	1	Apr-12	C	Rural
2	1	Mar-08	D	Rural
2	1	Apr-12	E	Rural
2	1	Feb-27	B	Urban
3	1	Apr-11	C	Rural
3	1	Feb-21	D	Rural
3	1	Mar-19	D	Urban
Chapter 3. Dataset

Table 3.1: Typing and no typing ground truth on AOLME group videos. These videos are of 848x480 resolution. Playback time typically ranges from 11 to 16 minutes at 30 or 60 FPS. We use boldface to identify video sessions where ground truth was provided over the entire session.

Cohort 1, Level 1	Rural				Typing	No Typing	
Group	Dates	# videos	Total Videos	Hours proc.	Total hours		
A	Feb 16, Feb 25, Mar 02, Mar 09	7	59	1.65	17.79	0.26	0.63
	Apr 06, Apr 13, Apr 20						
B	Mar 02, Mar 09, Mar 30, Apr 06	17	61	3.69	14.13	0.45	1.03
	Apr 27, May 04, May 06, May 11						
C	Feb 16, Feb 25, Mar 02, Mar 09	35	68	8.13	14.05	1.24	1.32
	Mar 30, Apr 13, Apr 20, May 04						
D	Mar 09, Apr 06, Apr 13, Apr 20	9	14	3.77	6.42	0.5	0.04
E	Feb 25, Mar 02	9	23	1.61	4.01	0.4	0.67

Cohort 2, Level 1	Rural				Typing	No Typing	
Group	Dates	# videos	Total Videos	Hours proc.	Total hours		
B	Feb 23	6	6	1.81	1.80	0.21	1.37
C	Apr 12	6	6	1.94	1.94	0.01	1.18
D	Mar 08	5	5	1.78	1.78	0.31	1.08

Urban							
A	Feb 10	2	5	0.79	1.54	0.02	0.0
B	Feb 27	4	4	1.39	1.39	0.41	0.83

| Total | 23 | 26 | 7.7 | 8.44 | 0.959 | 3.45 |

Cohort 3, Level 1	Rural				Typing	No Typing	
Group	Dates	# videos	Total Videos	Hours proc.	Total hours		
C	Apr 11	5	5	1.78	1.78	0.31	1.08
D	Feb 21	5	5	1.77	1.77	0.15	1.08

| Urban | | | | | | |
| A | Mar 19 | 4 | 4 | 1.35 | 1.35 | 0.18 | 1.11 |

| Total | 14 | 14 | 4.9 | 4.9 | 0.64 | 3.34 |
Table 3.2: Writing and no writing ground truth on AOLME group videos. These videos are of 848x480 resolution. Playback time typically ranges from 11 to 16 minutes at 30 or 60 FPS. We use boldface to identify video sessions where ground truth was provided over the entire session.

Cohort 1, Level 1	Rural														
Group	Dates	# videos proc.	Total Videos	Hours proc.	Total hours	Writing	No Writing								
B	Mar 02	9	9	1.5	1.5	0.5	2.85								
C	Feb 16, Feb 25, Mar 09, Mar 30, Apr 06, Apr 13	38	60	8.86	15.07	2.22	7.69								
D	Mar 02, Mar 09, Mar 30, Apr 06, Apr 13	18	29	7.03	9.45	1.08	0								
E	Mar 02	8	8	1.42	1.42	0.87	3.61								
Total		86	149	21.12	32.93	5.23	14.15								

Cohort 2, Level 1	Urban														
Group	Dates	# videos proc.	Total Videos	Hours proc.	Total hours	Writing	No Writing								
A	Feb 14, Feb 21, Feb 28, Apr 04	13	30	2.33	5.49	0.56	0								
Total		88	149	21.12	32.93	5.23	14.15								

Cohort 3, Level 1	Rural														
Group	Dates	# videos proc.	Total Videos	Hours proc.	Total hours	Writing	No Writing								
C	Apr 11	5	5	1.78	1.78	0.84	2.74								
D	Feb 14, Feb 21	6	9	1.78	2.94	0.14	1.15								
Total		11	18	4.91	6.07	1.14	4.08								

22
Figure 3.4: Some of the images representing test set.
Chapter 3. Dataset

3.3 Datasets for keyboard and hand detection

3.3.1 Dataset for keyboard detection

Two Frames and corresponding bounding boxes are extracted for every minute from typing-no typing ground truth and exported as CSV files. Each image is of size 858×480 pixels. Train and Test splits are done following the standard of different sessions. The dataset used for keyboard detection is as shown in the table Dataset for keyboard detection.

No. of Groups	No. of Sessions	No. of Images	
Train	9	33	700
Validation	4	4	100
Test	6	7	648

Table 3.4: Dataset for keyboard detection.

3.3.2 Dataset for hand detection

Here as writing ground truth does not include all hands in the image, makesense.ai (Free open-source and Online labeling tool) [40] is used to generate ground truth. A total of 718 images were used here, with all the hands marked as shown in figure 3.5. The dataset used for hand detection is shown in table 3.5.

No. of Groups	No. of Sessions	No. of Images	No. of Hand Instances	
Train	9	33	305	1803
Validation	4	4	100	714
Test	6	7	313	2031

Table 3.5: Dataset for hand detection.
3.3.3 Testing Dataset

Training, Validation, and Testing are mutually exclusive with respect to sessions. Throughout all the experiments, the dataset used for testing is from sessions listed in the table 3.6.

Table 3.6: Dataset for Testing.

Group Video	Date
C1L1P-C	Mar 30
C1L1P-C	Apr 13
C1L1P-E	Mar 02
C2L1P-B	Feb 23
C2L1P-D	Mar 08
C3L1P-C	Apr 11
C3L1P-D	Mar 19
Chapter 4

Methodology

This chapter provides summary of methods for keyboard detection and tracking, hand detection and optimal data augmentation parameters.

4.1 Keyboard detection and tracking

A top-level diagram for the keyboard detection and tracking system is shown in Figure 4.1. Generally, tracking algorithms are faster than detecting an object on every video frame. During tracking, the search region is restricted for reasonable motions. The thesis considers an adaptive system where object detection is performed once every n frames, followed by object tracking in the remaining frames.

I implemented a combined network of detection and fast-tracking such that the accuracy is the same or better than detection alone while being significantly faster. The fast-tracking is achieved by combining the fast tracker, KCF, selected as the fastest and best performing tracking methods implemented in OpenCV.

A session video is given as input, and the object of interest is detected for the first...
Chapter 4. Methodology

frame, and it is tracked for the next 5-second interval. Then, it is again re-initialized with the detection after every 5-second interval. This process is repeated until the end of the video. Fig. 4.2 shows an example from keyboard detection and Fig. 4.3 shows an example from tracking.

Figure 4.1: System for keyboard detection and tracking.

Figure 4.2: An example of keyboard detection.
4.2 Top-level diagram for hand regions

The top-level diagram for generating hand regions is as shown in Fig. 4.4. It has five different steps. It takes a session video as input and produces the output video with bounding boxes around potential instances of activities involving hand movement.

Component of Top-level diagram for hand regions:

1. Object Detection
Chapter 4. Methodology

Input Video is passed through an Object Detector (Faster-RCNN) to detect hands throughout the video for every second, as shown in figure 4.5.

![Figure 4.5: Video frame showing hands detected.](image)

2. **Projection for every 12 seconds**

 All the detections for every 12 seconds are added up and projected on to an image as shown in Fig. 4.6.

3. **Cluster based segmentation**

 ISODATA \[3\] thresholding is used to automatically find a threshold value for a given grayscale image. ISODATA is an unsupervised, iterative process for computing the minimum Euclidean distance when assigning each candidate cell to a cluster.

 A variety of clustering techniques i.e., Isodata, Li, Mean, Minimum, Otsu, Triangle, Yen \[42\] as shown in figure 4.7 were tried. Over an exploratory dataset, ISODATA gave the best over-segmentation results by capturing the
Chapter 4. Methodology

Figure 4.6: Video frame showing projected detections for 12-seconds interval

writing regions using the minimum number of clusters. It is as shown in figure 4.8.

4. **Small area removal**
All the regions whose areas are smaller than the smallest ground truth regions are removed as shown in Fig. 4.9.

5. **Segmented video**
Bounding boxes are drawn around remaining regions with the median width and height from ground truth regions as shown in Fig. 4.10.

4.3 **Optimal data augmentation study**

A data augmentation study was performed here to improve hand detection results. First, an optimal range of angles for shearing, rotation, and pixels to be translated
are determined separably. Once all the optimal values are found, an optimal study of probabilities to apply these augmentations is performed. Once all the optimal values are found, finally, the model is trained with optimal data augmentation parameters.
Chapter 4. Methodology

Figure 4.8: Video frame showing isodata clustering.

Figure 4.9: Video frame showing removal of smaller regions.
Chapter 4. Methodology

4.3.1 Experimental Setup

To perform all these experiments, the library used is MMDetection [7]. The detection algorithm used is Faster R-CNN. The study was done on RTX 5000 GPU with a learning rate of 0.001. The number of epochs used here is 12, as recommended. The mini-batch size is two images with two workers.

Randomized affine transformations

Affine transformation. Transformation of an image such that parallel lines in an image remain parallel after the transformation. Scaling, translation, rotation shearing are all examples of affine transformations.

Rotate angle:
The image and the corresponding bounding box are rotated with the angle θ. A Positive angle rotates it counter clockwise while the negative angle rotates the image
Chapter 4. Methodology

clockwise.

Translation pixels:
The image and the corresponding bounding box are translated horizontally towards left and right based on the values.

Shear angle:
Shearing slides one edge of an image along the X or Y axis, creating a parallelogram. Horizontal shear slides an edge along the X direction and the corresponding bounding box too. Similarly, vertical shear slides an edge along the Y direction. Shear angle specifies the number of degrees to shear the images. In the experiments, horizontal shearing is used.

The optimal values for shear angle, rotate angle and translation pixels are obtained using the pseudo code shown in Fig. 4.11. For Shear Angle optimization, the values of Θ are 2°, 4°, 8°, 16°, 32°. For Rotate Angle Optimization, values of Θ are 2°, 4°, 8°, 16°, 32°. For translation pixels, values of Θ are 2, 4, 8, 16, 32, 64, 128, 256, 512, 800.

```plaintext
for each θ in list(Θ) do
    Augment all the training images with the θ.
    Train the model with the augmented dataset.
    Test on validation set.
    Record validation accuracy.
end for

Repeat the above procedure until validation accuracy starts decreasing.
Repeat the same procedure for all the transformations, shear, rotate and translation.
List all the optimal ranges for each of the transformation.
```

Figure 4.11: Pseudo code for finding optimal ranges for each of the affine transform.

Once the optimal ranges are determined separably, an optimal probability was determined using the pseudo code shown in 4.12.
Chapter 4. Methodology

for each p in list(P) do
 for image in images with p do
 Apply random horizontal flips with p.
 Apply Scaling of [0.8, 1.2] with p.
 Apply random shear angle transforms between optimal range with p.
 Apply random rotate angle transforms between optimal range with p.
 Apply random horizontal translate pixel transforms between optimal range with p.
 end for
 Train the model with this dataset.
 Test on validation set and record validation accuracies.
end for

Note the p which gave best validation accuracy.

Figure 4.12: Pseudo code for finding optimal probability.

After obtaining optimal ranges for affine transforms and optimal probability, the model is trained with these parameters. So the optimization is performed for probability, p, and range of θ.
Chapter 5

Results

This chapter summarizes detection, tracking and projection results. We first present keyboard detection and tracking, followed by hand detection and projections.

5.1 Keyboard Detection and Tracking Results

This section describes the results of keyboard detection, tracking and the combined system of detection and tracking.

5.1.1 Keyboard detection results

For keyboard detection, library named Detectron2 [44] is used. Detectron2 is Facebook AI Research’s next-generation library that provides state-of-the-art detection and segmentation algorithms. The method used for keyboard detection is Faster R-CNN, which is pre-trained on COCO [30] detection dataset. The re-training time for 300 iterations is about 20 minutes. We were able to achieve a very high AP of 0.92 for keyboard detection. However, the drawback with detection alone is that
Chapter 5. Results

the inference time for video is more. Results for keyboard detection are shown in table 5.1. An AP of 0.92 was achieved at an IOU of 0.5. AP @IoU=0.5 represents the model has used threshold of 0.5 to remove unnecessary boxes. Similarly, range 0.50:0.95 represents AP and AR are averaged over multiple IoU values. Specifically, we use 10 IoU thresholds of .50:.05:.95. Area = small represents small objects for area < 32². AR @ [maxDets=1] and [maxDets=10] mean the maximum recall given 1 detection per image and 10 detections per image correspondingly. Some of the success and failure cases are shown in Fig. 5.1 and 5.2 respectively. The failure cases mainly show the misclassification of the book as a keyboard.

Table 5.1: Average precision (AP) and Average recall (AR) at different IoU ratios for keyboard detection. We are able to achieve a very high AP (0.92) for keyboard detection.

Metric	Value
AP @[IoU=0.50:0.95 —area = all — maxDets = 100]	0.614
AP @[IoU=0.50 —area = all — maxDets = 100]	0.922
AP @[IoU=0.75 —area = all — maxDets = 100]	0.708
AP @[IoU=0.50:0.95 —area = small — maxDets = 100]	-1.000
AP @[IoU=0.50:0.95 —area = medium — maxDets = 100]	0.611
AP @[IoU=0.50:0.95 —area = large — maxDets = 100]	0.620
AR @[IoU=0.50:0.95 —area = all — maxDets = 1]	0.659
AR @[IoU=0.50 —area = all — maxDets = 10]	0.676
AR @[IoU=0.75 —area = all — maxDets = 100]	0.676
AR @[IoU=0.50:0.95 —area = small — maxDets = 100]	-1.000
AR @[IoU=0.50:0.95 —area = medium — maxDets = 100]	0.670
AR @[IoU=0.50:0.95 — area = large — maxDets = 100]	0.679

5.1.2 Tracking results

To determine how well the trackers perform with AOLME video, I experimented with calculating accuracy and speeds, respectively. To conduct the experiments, the system used is Intel Xeon CPU ES-2640, 16 cores per node at 2.6 GHz with RAM
Chapter 5. Results

(a) Successful detection with partial occlusion.

(b) Successful detection with partial occlusion.

(c) Successful detection with hands.

(d) Successful detection without hands.

Figure 5.1: Successful keyboard detections.

of 64 GB and GPU, Nvidia Tesla K40M. The video I used is of 23.45 minutes @ 30fps with a resolution of 858×480. All the trackers are initialized with the same object and tracked throughout the end of the video. All the trackers failed with fast movements of the object. However, MOSSE, KCF, and Median flow proved to be real-time with 500, 159, 223 fps, respectively. Table 5.2 shows the speed of all the trackers on AOLME video.

Figure 5.3 shows the performance (IoU ratios) of detector and all the fast trackers across a video. The IoU ratios are plotted for every second throughout the video. No-Data represents there is no ground truth. This figure shows that all the trackers failed with fast movements of the object. The video under consideration for the figure is 16 minutes long, having resolution of 858 × 480 @ 30 fps.
Chapter 5. Results

(a) Failure to detect keyboard due to lack of visible keys.

Figure 5.2: Some of the test results showing failure of keyboard detection

Table 5.2: Trackers performance using hardware system described in 5.1.2 and OpenCV 4.0. Video under consideration is 23.45 minutes long 858 × 480 @ 30 fps.

Method	FPS	Comments	Accuracy
Boosting	17	Not Real Time	Not Accurate
MIL	11	Not Real Time	Not Accurate
Mosse	500	**Real time, Fastest**	**Accurate**
Median Flow	223	**Real Time**	Not Accurate
TLD	21	Not Real Time	Not Accurate
KCF	159	**Real Time**	**Accurate**
GOTURN	<7	Not Real Time	Not Accurate
CSRT	25	Not Real Time	Not Accurate

5.1.3 Combination of detection and tracking results

We present the results of keyboard detection (every 5 seconds) followed by tracking. Figure 5.4 shows the results of (i) detection alone and (ii) a combination of detection
Chapter 5. Results

Figure 5.3: Detection vs fast-trackers.

and tracking. This method was able to achieve almost the same accuracy with a significantly faster running time. The fast tracker used to achieve this is KCF. For running detection every second on a 23-minute video, the detection alone performed at 4.7 times the real-time rate, while the combined algorithm performed at 21 times the real-time rate, maintaining the same avg-IoU ratio. Fig. 5.4 shows that detection alone is able to achieve an average IoU of 0.84 for a video and the combined system achieved an average IoU of 0.82.
Chapter 5. Results

Figure 5.4: Combination of detection and tracking. Video under consideration is 23.45 minutes long having resolution of 858×480 @ 30 fps.
Chapter 5. Results

5.2 Hand detection, optimal data augmentation and projection results

This section summarizes the results of hand detection, data augmentation optimization, and projections.

5.2.1 Hand detection results

For hand detection, the library called MMDetection \[7\] is used. To run these experiments, the training time for 12 epochs is 16 minutes. The dataset used for training is shown in table 3.5. The hand detector was able to achieve Average precision (AP) of 0.72 at 0.5 intersection over union (IoU). AP @ IoU=0.50 represents the model has used 0.5 threshold value to remove unnecessary bounding boxes.

5.2.2 Optimal data augmentation parameters study

Shear Angle Optimization

All the training images are augmented with each of the below angles, and maximum validation accuracies are recorded accordingly. The angles used for experiments are 2°, 4°, 8°, 16°, and 32°. The validation accuracy started to decrease after 8°. The best validation accuracy is achieved when angle is 4°. So the range considered is $(-3,3)$. The plot is shown in Fig. 5.5

Rotate Angle Optimization

All the training images are augmented with each of the below angles and Maximum Validation accuracies are recorded accordingly. The angles used for experiments are 2°, 4°, 8°, 16°, and 32°. The validation accuracy started to decrease after 8°. The best validation accuracy is achieved when angle is 8°. So the range considered is
Chapter 5. Results

Figure 5.5: Shear angle optimization.

(-7,7). The plot is shown in figure 5.6.

Translation Pixels Optimization

All the training images are horizontally translated with each of the below numbers of pixels and Maximum Validation accuracies are recorded accordingly. Pixels used for Translation are 2, 4, 6, 8, 16, 32, 64, 128, 256, 512, 800. The best validation accuracy started to decrease after 128 pixles. The best validation accuracy is when the image is translated until 128 pixels. The plot is shown in figure 5.7. So the optimal range considered is (-20,20).

Probability Optimization

Custom Augmentation MMDetection does not support random uniform sampling. So to support random uniform sampling, custom classes for shear, rotate and translate were implemented. For each augmentation, a random uniform value is se-
Chapter 5. Results

Figure 5.6: Rotate angle optimization.

lected from the optimal ranges for shear, rotate, and translation. The value is made negative with half the probability.

To find the optimal probability, five different augmentations are used. The order of these augmentations are listed in table 5.3.

Table 5.3: Augmentations used for probability study

Data augmentation method	Parameter range
H-flip	[0, 1.2]
Rescale	[0.8, 1.2]
Shear	[-3, 3]
Rotate	[-7, 7]
Translate	[-20, 20]

The probabilities considered for the experiments are \(P = \{0, 0.25, 0.5, 0.75, 1.0\} \). The figure for all the probabilities considered is shown in Fig. 5.8. The best validation
Chapter 5. Results

Figure 5.7: Translation pixels optimization.

Now that all the optimal parameters are obtained, model is trained with the optimized dataset, the improvement of validation accuracies of no-augmentation vs all the five augmentation applied with 0.5 probability is shown in Fig. 5.9

5.2.3 Improvement of Hand Detection Results using Optimal Data Augmentation

An AP of 0.81 was achieved by training the model with optimized data augmentation parameters. The training time remains the same as the size of dataset is not changed. Table 5.4 summarizes the final results of no augmentation vs optimal augmentation. An improvement of AP of 11% and 9% on the validation and testing set, respectively,
Chapter 5. Results

Figure 5.8: Validation Accuracy with Probability = 0.5.

was achieved. Here the word best means the epoch, which gave maximum validation accuracy.

Table 5.4: Validation and Testing Accuracies for multiple probabilities.

Data Split	Model	No-aug	P=0.25	P =0.5	P=0.75	P=1.0
Val	Best	0.77	0.86	0.86	0.85	0.84
	Last	0.76	0.85	0.86	0.84	0.82
Test	Best	0.75	0.80	0.80	0.79	0.78
	Last	0.71	0.80	0.81	0.78	0.76

Fig. 5.10 shows some of the testing results for hand detection.

As seen in Fig. 5.10 it is evident that there are many hands detected in the picture. The main goal here is to propose activity regions for writing within the primary table of focus; we need to eliminate the background hands. The other goal
is to reduce the number of regions proposed to classify.

5.2.4 Performance Evaluation Protocol of Using Projections

Fig. 5.11 shows how the performance evaluation is performed. The boxes marked in blue are results of hand detection and the green box represents ground truth for writing instances.

Steps involved in performance evaluation are:

- Classify each second as writing instance if more than half of the frames are labeled as writing in ground Truth.

- Take all the hand proposals.
Chapter 5. Results

Figure 5.10: Examples of hand detection.

- Calculate IoU ratio for each proposal region w.r.t writing ground truth.
- Take the value which corresponds to maximum IoU ratio.

Once all the regions and corresponding IoU ratios are obtained, they are plotted using box plot as shown in figure 5.13.

Naive Region Proposals:
Chapter 5. Results

Naive region proposal approach is considered to take all the hand detections into consideration.

Figure 5.11 shows the results on video frames. The figures on the left use the Naive approach, and the ones on the right use Projections. These test frames clearly show the reduction in the number of regions and capturing all writing instances.

Figure 5.12 shows the performance of two approaches i) Naive and ii) Projections for all the test sessions. IoU ratios are calculated for every writing instance with the proposals generated by the Naive method and Projections. The approach was very effective in removing false positive detections that correspond to hands from a different group. Yet, the approach was able to detect all the hands from the collaborative group that was closer to the camera (as required).

Table 5.5 shows the percentage of reduction in the number of proposal regions for the two approaches for all the test sessions. The projection approach was able
Chapter 5. Results

Figure 5.12: Results showing the reduction of proposal regions and capturing writing instances. The ones on the left are original and the ones on right are after projections and segmentation.

to achieve an average of 80% reduction in the proposed activity regions and also capture all the instances of collaborative group shown in Fig. 5.13.
Chapter 5. Results

Table 5.5: Reduction in number of region proposals for each test session.

Group	Date	Naive	Using Projections	% Reduction
C1L1P-C	Mar30	55914	9804	82.5
C1L1P-C	Apr13	34665	8028	76.8
C1L1P-E	Mar02	50312	9968	80.0
C2L1P-B	Feb23	48073	9924	79.3
C2L1P-D	Mar08	31875	7724	75.7
C3L1P-C	Apr11	36757	9536	74.0
C3L1P-D	Mar19	57319	9536	83.3
Figure 5.13: Performance evaluation for all the test sessions.
Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, a new method was proposed which uses projections and cluster-based segmentation to identify potential activity regions, which include hand movements. The primary contributions of this thesis include: (i) Robust detection and fast-tracking of keyboard, (ii) a detailed optimal data augmentation parameter study showing an improvement over detection results, and (iii) a novel method that uses projections and cluster-based segmentation to identify hand regions of the current collaborative group. In each case, the combined algorithm of detection and fast-tracking achieved almost the same accuracy with a lot more speed up of time. The model trained with optimal data augmentation parameters achieved an improvement of 8% over detection results. Furthermore, the novel method was able to capture all the writing activity regions by reducing the number of region proposals by 80%.
Chapter 6. Conclusion and Future Work

(a) Frame extracted from student interactions.

(b) Student participation map.

Figure 6.1: Participation map for a session.

6.2 Future Work

Using the proposed methods, we found improvements of:

- **Matching hand regions to students.** The hand activity clusters can be matched to students in a session to generate student participation maps as shown in 6.1

- **Region Proposals for Activity Recognition.** This research can be used to generate region proposals for activities such as typing and writing. It can be easily integrated with activity recognition systems to produce student activity maps as shown in Fig. 6.2
Chapter 6. Conclusion and Future Work

(a) student interaction.

(b) typing activity map for one session.

Figure 6.2: Session activity map.
References

[1] Lubna Aziz, Sah bin Haji Salam, and Sara Ayub, *Exploring deep learning-based architecture, strategies, applications and current trends in generic object detection: A comprehensive review*, IEEE Access (2020).

[2] Boris Babenko, Ming-Hsuan Yang, and Serge Belongie, *Visual tracking with online multiple instance learning*, 2009 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2009, pp. 983–990.

[3] Geoffrey H Ball and David J Hall, *Isodata, a novel method of data analysis and pattern classification*, Tech. report, Stanford research inst Menlo Park CA, 1965.

[4] David S Bolme, J Ross Beveridge, Bruce A Draper, and Yui Man Lui, *Visual object tracking using adaptive correlation filters*, 2010 IEEE computer society conference on computer vision and pattern recognition, IEEE, 2010, pp. 2544–2550.

[5] Cesar Carranza, Daniel Llamocca, and Marios Pattichis, *Fast and scalable 2d convolutions and cross-correlations for processing image databases and videos on cpus*, 2020 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), IEEE, 2020, pp. 70–73.

[6] Alvaro E Ulloa Cerna, Linyuan Jing, Christopher W Good, Sushravya Raghunath, Jonathan D Suever, Christopher D Nevius, Gregory J Wehner, Dustin N Hartzel, Joseph B Leader, Amro Alsaid, et al., *Deep-learning-assisted analysis of echocardiographic videos improves predictions of all-cause mortality*, Nature Biomedical Engineering (2021), 1–9.

[7] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jiarui Xu, et al., *Mmdetection: Open mmlab detection toolbox and benchmark*, arXiv preprint arXiv:1906.07155 (2019).
References

[8] Callie J Darsey, *Hand movement detection in collaborative learning environment videos*, (2018).

[9] Patrick Dendorfer, Hamid Rezatofighi, Anton Milan, Javen Shi, Daniel Cremers, Ian Reid, Stefan Roth, Konrad Schindler, and Laura Leal-Taixé, *Mot20: A benchmark for multi object tracking in crowded scenes*, arXiv preprint arXiv:2003.09003 (2020).

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei, *Imagenet: A large-scale hierarchical image database*, 2009 IEEE conference on computer vision and pattern recognition, Ieee, 2009, pp. 248–255.

[11] Cody W Eilar, Venkatesh Jatla, Marios S Pattichis, Carlos LópezLeiva, and Sylvia Celedón-Pattichis, *Distributed video analysis for the advancing out of school learning in mathematics and engineering project*, 2016 50th Asilomar Conference on Signals, Systems and Computers, IEEE, 2016, pp. 571–575.

[12] Cody Wilson Eilar, *Distributed and scalable video analysis architecture for human activity recognition using cloud services*, (2016).

[13] Gangadharan Esakki, *Adaptive encoding for constrained video delivery in hevc, vp9, av1 and vvc compression standards and adaptation to video content*, Ph.D. thesis, The University of New Mexico, 2020.

[14] Gangadharan Esakki, Venkatesh Jatla, and Marios S Pattichis, *Optimal hevc encoding based on gop configurations*, 2016 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), IEEE, 2016, pp. 25–28.

[15] , *Adaptive high efficiency video coding based on camera activity classification.*, DCC, 2017, p. 438.

[16] Gangadharan Esakki, Andreas Panayides, Sravani Teeparthi, and Marios Pattichis, *A comparative performance evaluation of vp9, x265, svt-av1, vvc codecs leveraging the vmaf perceptual quality metric*, Applications of Digital Image Processing XLIII, vol. 11510, International Society for Optics and Photonics, 2020, p. 1151010.

[17] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman, *The pascal visual object classes challenge 2007 (voc2007) results*, (2007).

[18] Mark Everingham and John Winn, *The pascal visual object classes challenge 2012 (voc2012) development kit*, Pattern Analysis, Statistical Modelling and Computational Learning, Tech. Rep 8 (2011).
References

[19] Helmut Grabner, Michael Grabner, and Horst Bischof, *Real-time tracking via on-line boosting.*, Bmvc, vol. 1, Citeseer, 2006, p. 6.

[20] David Held, Sebastian Thrun, and Silvio Savarese, *Learning to track at 100 fps with deep regression networks*, European conference on computer vision, Springer, 2016, pp. 749–765.

[21] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista, *High-speed tracking with kernelized correlation filters*, IEEE transactions on pattern analysis and machine intelligence 37 (2014), no. 3, 583–596.

[22] Abigail R Jacoby, *Context-sensitive human activity classification in video utilizing object recognition and motion estimation*, (2017).

[23] Abigail Ruth Jacoby, Marios S Pattichis, Sylvia Celedón-Pattichis, and Carlos LópezLeiva, *Context-sensitive human activity classification in collaborative learning environments*, 2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), IEEE, 2018, pp. 1–4.

[24] Venkatesh Jatla, *Automatic segmentation of coronal holes in solar images and solar prediction map classification*, (2016).

[25] Venkatesh Jatla, Marios S Pattichis, and Charles Nick Arge, *Image processing methods for coronal hole segmentation, matching, and map classification*, IEEE Transactions on Image Processing 29 (2019), 1641–1653.

[26] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas, *Forward-backward error: Automatic detection of tracking failures*, 2010 20th international conference on pattern recognition, IEEE, 2010, pp. 2756–2759.

[27] ______, *Tracking-learning-detection*, IEEE transactions on pattern analysis and machine intelligence 34 (2011), no. 7, 1409–1422.

[28] Robert B Kent and Marios S Pattichis, *Design, implementation, and analysis of high-speed single-stage n-sorters and n-filters*, IEEE Access (2020).

[29] Matej Kristan, Ales Leonardis, Jiri Matas, Michael Felsberg, Roman Pflugfelder, Luka Čehovin Zajc, Tomas Vojir, Goutam Bhat, Alan Lukezic, Abdelrahman Eldesokey, et al., *The sixth visual object tracking vot2018 challenge results*, Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 2018, pp. 0–0.

[30] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick, *Microsoft coco: Common
objects in context, European conference on computer vision, Springer, 2014, pp. 740–755.

[31] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg, Ssd: Single shot multibox detector, European conference on computer vision, Springer, 2016, pp. 21–37.

[32] Alan Lukezic, Tomas Vojir, Luka Čehovin Zajc, Jiri Matas, and Matej Kristan, Discriminative correlation filter with channel and spatial reliability, Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 6309–6318.

[33] Anton Milan, Laura Leal-Taixé, Ian Reid, Stefan Roth, and Konrad Schindler, Mot16: A benchmark for multi-object tracking, arXiv preprint arXiv:1603.00831 (2016).

[34] Matthias Mueller, Neil Smith, and Bernard Ghanem, A benchmark and simulator for uav tracking, European conference on computer vision, Springer, 2016, pp. 445–461.

[35] Matthias Muller, Adel Bibi, Silvio Giancola, Salman Alsubaihi, and Bernard Ghanem, Trackingnet: A large-scale dataset and benchmark for object tracking in the wild, Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 300–317.

[36] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi, You only look once: Unified, real-time object detection, Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 779–788.

[37] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun, Faster r-cnn: towards real-time object detection with region proposal networks, IEEE transactions on pattern analysis and machine intelligence 39 (2016), no. 6, 1137–1149.

[38] WENJING SHI, Human attention detection using am-fm representations, (2016).

[39] Wenjing Shi, Marios S Pattichis, Sylvia Celedón-Pattichis, and Carlos LópezLeiva, Robust head detection in collaborative learning environments using am-fm representations, 2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), IEEE, 2018, pp. 1–4.

[40] Piotr Skalski, Make Sense, https://github.com/SkalskiP/make-sense/, 2019.
References

[41] Luis Sanchez Tapia, Marios S Pattichis, Sylvia Celedón-Pattichis, and Carlos López Leiva, *The importance of the instantaneous phase for face detection using simple convolutional neural networks*, 2020 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), IEEE, 2020, pp. 1–4.

[42] Stefan Van der Walt, Johannes L Schönberger, Juan Nunez-Iglesias, François Boulogne, Joshua D Warner, Neil Yager, Emmanuelle Gouillart, and Tony Yu, *scikit-image: image processing in python*, PeerJ 2 (2014), e453.

[43] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and Philip HS Torr, *Fast online object tracking and segmentation: A unifying approach*, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 1328–1338.

[44] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick, *Detectron2 (2019)*, URL https://github.com/facebookresearch/detectron2.

[45] Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng, and Wenyu Liu, *Fairmot: On the fairness of detection and re-identification in multiple object tracking*, arXiv preprint arXiv:2004.01888 (2020).