Antiproton–nucleus quasi-bound states within the 2009 version of the Paris $\bar{N}N$ potential

Jaroslava Hrtánková1,* and Jiří Mareš1

1Nuclear Physics Institute, 250 68 Řež, Czech Republic

Abstract. We studied the \bar{p} interactions with the nuclear medium within the 2009 version of the Paris $\bar{N}N$ potential model. We constructed the \bar{p}–nucleus optical potential using the Paris S- and P-wave $\bar{p}N$ scattering amplitudes and treated their strong energy and density dependence self-consistently. We considered a phenomenological P-wave term as well. We calculated \bar{p} binding energies and widths of the \bar{p} bound in various nuclei. The P-wave potential has very small effect on the calculated \bar{p} binding energies, however, it reduces the corresponding widths noticeably. Moreover, the S-wave potential based on the Paris amplitudes supplemented by a phenomenological P-wave term yields the \bar{p} binding energies and widths in very good agreement with those obtained within the RMF model consistent with \bar{p}-atom data.

1 Introduction

The antiproton–nucleus interaction below threshold have been so far studied within phenomenological RMF approaches [1, 2]. The G-parity motivated \bar{p} coupling constants were used to construct the \bar{p}–nucleus potential. The absorption of \bar{p} was accounted for in terms of a purely phenomenological optical potential. The \bar{p} optical potential was confronted with \bar{p} atom data. It was found that the \bar{p} coupling constant have to be properly scaled in order to be consistent with the data. Consequently, the \bar{p} potential was applied in the calculations of \bar{p} quasi-bound states in various nuclei [2].

However, it is desirable to study the \bar{p} interactions with the nuclear medium within other theoretical approaches, such as microscopic models of $\bar{N}N$ interaction based on meson-exchange models [3–5] or chiral $\bar{N}N$ interaction models [6, 7]. Comparison between these $\bar{N}N$ interaction models could bring valuable information about in-medium \bar{p} interactions in the direct confrontation with the data from \bar{p} atoms and \bar{p} scattering off nuclei, as well as predictions for \bar{p}-nuclear quasi-bound states.

Recently, the 2009 version of the Paris $\bar{N}N$ potential [3] was confronted by Friedman et al. with the \bar{p}-atom data and antinucleon interactions with nuclei up to 400 MeV/c, including elastic scattering and annihilation cross sections [8]. The analysis revealed the necessity to include the P-wave interaction in order to describe the \bar{p} atom data. The Paris S-wave potential supplemented by a phenomenological P-wave term was found to fit the data on low-density, near-threshold \bar{p}-nucleus interaction. This fact stimulated us to apply it in the present calculations of \bar{p}-nuclear quasi-bound states and explore the effect of the P-wave interaction on \bar{p} binding energies and widths of \bar{p}-nuclear states.

*e-mail: hrtankova@ujf.cas.cz
In Section 2, we briefly introduce the model applied in our calculations. Section 3 presents few representative results together with the discussion of the main findings of our study.

2 Methodology

The binding energies B_p and widths Γ_p of $\bar p$ quasi-bound states in a nucleus are obtained by solving self-consistently the Dirac equation with the optical potential

$$[-i\alpha \cdot \nabla + \beta p + V_{\text{opt}}(r)]\psi_p = \epsilon_p \psi_p,$$

where m_p is the mass of the antiproton and $\epsilon_p = -B_p - i\Gamma_p/2$ ($B_p > 0$). The S-wave $\bar p$–nucleus optical potential V_{opt} enters the Dirac equation as the time component of a 4-vector and is constructed in a ‘t$p\bar p$’ form as follows:

$$2E_p V_{\text{opt}}(r) = -4\pi \left(F_0 \frac{1}{2} \rho_p(r) + F_1 \left(\frac{1}{2} \rho_p(r) + \rho_n(r) \right) \right).$$

Here, $E_p = m_p - B_p$, F_0 and F_1 are isospin 0 and 1 in-medium amplitudes, and $\rho_p(r)$ [$\rho_n(r)$] is the proton (neutron) density distribution calculated within the RMF NL-SH model [9]. The in-medium amplitudes F_0 and F_1 entering Eq. (2) account for Pauli correlations in the nuclear medium. They are constructed from the free-space $\bar pN$ amplitudes using the multiple scattering approach of Was et al. [10] (WRW)

$$F_1 = \frac{\sqrt{x}}{m_N} f^S_{\bar p n}(\sqrt{s}) \cdot, \quad F_0 = \frac{\sqrt{x}}{m_N} \left[2f^S_{\bar p n}(\sqrt{s}) - f^S_{\bar p p}(\sqrt{s}) \right] \cdot,$$

Here, $f^S_{\bar p n}$ ($f^S_{\bar p p}$) denotes the free-space c.m. $\bar p n$ ($\bar p p$) S-wave scattering amplitude derived from the Paris $\bar NN$ potential as a function of Mandelstam variable \sqrt{s}, m_N represents the mass of the nucleon and $\rho(r) = \rho_p(r) + \rho_n(r)$. The factor \sqrt{s}/m_N transforms the amplitudes from the two-body frame to the $\bar p$–nucleus frame. The Pauli correlation factor ξ_k is defined as follows

$$\xi_k = \frac{9\pi}{k_F^2} \left[4 \int_0^\infty \frac{dr}{r} \exp(ikr)f_j(kr) \right],$$

where $j_1(kr)$ is the spherical Bessel function, k_F is the Fermi momentum and $k = \sqrt{(\epsilon_p + m_p)^2 - m_p^2}$ is the antiproton momentum. The integral in Eq.(4) can be solved analytically. The resulting expression is of the form

$$\xi_k = \frac{9\pi}{k_F^2} \left[1 - \frac{q^2}{6} + \frac{q^2}{4} \left(2 + \frac{q^2}{6} \right) \ln \left(1 + \frac{4}{3} q \left(\frac{\pi}{2} - \arctan \left(\frac{q}{2} \right) \right) \right) \right].$$

where $q = -ik/k_F$.

The analysis of $\bar p$ atom data [8] revealed that it is necessary to supplement the Paris S-wave potential by the P-wave interaction to make the real $\bar p$ potential attractive in the relevant low-density region of a nucleus. To incorporate the P-wave interaction in our model we supplement the r.h.s. of the S-wave optical potential in Eq. (2) [$2E_p V^S_{\text{opt}} = q(r)$] by a gradient term [8]:

$$2E_p V_{\text{opt}}(r) = q(r) + 3\nabla \cdot \alpha(r) \nabla.$$
The in-medium amplitudes supplement the r.h.s. of the wave potential by the ρ and is constructed in a 'two-body frame' to the \bar{B}_2 Methodology. The analysis of Ref. [8] also revealed that it is necessary to supplement the Paris optical potential constructed from the Paris $\bar{p}n$ quasi-bound states in a nucleus are obtained by using the multiple amplitudes using the multiple α.

The factor $2l + 1 = 3$ in the P-wave part is introduced to match the normalization of the Paris $\bar{N}N$ scattering amplitudes and

$$\alpha(r) = 4\pi \frac{m_N}{\sqrt{3}} \left(f_{\bar{p}p}^P(\sqrt{s})\rho_p(r) + f_{\bar{p}n}^P(\sqrt{s})\rho_n(r) \right).$$

(7)

Here, $f_{\bar{p}p}^P(\sqrt{s})$ and $f_{\bar{p}n}^P(\sqrt{s})$ represent the Paris P-wave $\bar{p}p$ and $\bar{p}n$ free-space c.m. scattering amplitudes, respectively. We do not consider any medium modifications of the P-wave amplitudes since we assume that the P-wave potential should contribute mainly near the surface of the nucleus due to its gradient form.

The analysis of Ref. [8] also revealed that the optical potential constructed from the Paris S- and P-wave amplitudes fails to reproduce the \bar{p} atom data and that it is mainly due to the P-wave amplitude — its real and imaginary parts had to be scaled by different factors to get reasonable fit. On the contrary, the optical potential based on the Paris S-wave potential supplemented by a purely phenomenological P-wave term with $f_{\bar{p}N}^P = 2.9 + i1.8$ fm3 fits the data well. In our calculations, we adopt both P-wave amplitudes, Paris as well as phenomenological, in order to study their effect on the binding energies and widths of \bar{p}-nuclear states.

The Paris amplitudes used in our calculations are shown in Fig. 1. There are $\bar{p}p$ (top) and $\bar{p}n$ (bottom) medium modified S-wave amplitudes (3) at saturation density $\rho_0 = 0.17$ fm$^{-3}$.

Figure 1. Energy dependence of real (left) and imaginary (right) parts of the Paris 09 $\bar{p}p$ (top) and $\bar{p}n$ (bottom) two-body c.m. scattering amplitudes used in the present calculations: in-medium (Pauli blocked) S-wave amplitudes at $\rho_0 = 0.17$ fm$^{-3}$ and free-space P-wave amplitudes.
and free-space P-wave scattering amplitudes plotted as a function of the energy shift $\delta \sqrt{s} = E - E_{\text{th}}$ with $E_{\text{th}} = m_\bar{p} + m_N$. The S-wave amplitudes vary considerably with energy below threshold. The real in-medium $\bar{p}p$ amplitude is attractive in the entire energy region below threshold. The real part of the in-medium $\bar{p}n$ amplitude is attractive for $\delta \sqrt{s} \leq -70$ MeV with a small repulsive dip near threshold. The imaginary parts of the S-wave amplitudes are comparable or even larger than the corresponding real parts. The energy dependence of the free-space P-wave amplitudes is less pronounced than in the S-wave case. Moreover, the P-wave amplitudes are considerably smaller than the in-medium S-wave amplitudes in the region relevant to \bar{p}-nuclear states calculations.

Strong energy dependence of the $\bar{p}N$ amplitudes presented in Fig. 1 requires a proper self-consistent scheme for evaluating the \bar{p} optical potential. The energy argument \sqrt{s} of the amplitudes is expressed in the \bar{p}–nucleus frame where the contributions from antiproton and nucleon kinetic energies are not negligible [11]

$$\sqrt{s} = E_{\text{th}} \left(1 - \frac{2(B_\bar{p} + B_{N\text{av}})}{E_{\text{th}}} + \frac{(B_\bar{p} + B_{N\text{av}})^2}{E_{\text{th}}^2} - \frac{T_\bar{p}}{E_{\text{th}}} - \frac{T_{N\text{av}}}{E_{\text{th}}}\right)^{1/2}. \quad (8)$$

Here, $B_{N\text{av}} = 8.5$ MeV and $T_{N\text{av}}$ are the average binding and kinetic energy per nucleon, respectively, and $T_\bar{p}$ represents the \bar{p} kinetic energy. The kinetic energies are evaluated as corresponding expectation values of the kinetic energy operator $\hat{T} = -\frac{\hbar^2}{2m} \Delta$. Since the $B_\bar{p}$ appears as an argument in the \sqrt{s}, which in turn serves as an argument for V_{opt}, \sqrt{s} has to be determined self-consistently. Namely, its value obtained by solving Eq. (8) should agree with the value of \sqrt{s} which serves as input in Eq. (3) and thus Eq. (1), as well.

3 Results

We performed self-consistent calculations of \bar{p}-nuclear quasi-bound states in selected nuclei within the model presented in the previous section. We explored the energy and density dependence of the S-wave \bar{p}–nucleus potential as well as the role of the $\bar{p}N$ P-wave interaction, and compared the predictions for \bar{p} binding energies and widths with the phenomenological RMF approach [2].

The $\bar{p}N$ amplitudes are strongly energy and density dependent, as was shown in Fig. 1. Consequently, the depth and shape of the \bar{p}–nucleus potential depend greatly on the energies and densities pertinent to the processes under consideration. It is demonstrated in Fig. 2 where we present the \bar{p} potential in ^{40}Ca calculated for different energies and densities: i) using the Paris free-space S-wave amplitudes at threshold (denoted by ‘th free’), ii) using in-medium Paris S-wave amplitudes at threshold (denoted by ‘th medium’), iii) using in-medium Paris S-wave amplitudes at energies relevant to \bar{p} atoms (constructed following Ref. [8]), and iv) using in-medium Paris S-wave amplitudes at energies relevant to \bar{p} nuclei. The \bar{p} potential constructed using the free-space amplitudes has a repulsive real part and fairly absorptive imaginary part. When the medium modifications of the amplitudes are taken into account, the \bar{p} potential becomes attractive and more absorptive. At the energies relevant to \bar{p} atoms, the \bar{p} potential is more attractive and weakly absorptive. Finally, at the energies relevant to \bar{p} nuclei, the \bar{p} potential is strongly attractive, however, also strongly absorptive. The figure clearly shows that proper self-consistent evaluation of the energy \sqrt{s} is essential.

Next, we performed static and dynamical calculations of \bar{p} binding energies and widths using the Paris $\bar{N}N$ potential. In the static calculations, the core nucleus is not affected by the presence of extra \bar{B}. In the dynamical calculations, the polarization of the nuclear core due to \bar{B}, i.e., changes in the nucleon binding energies and densities, is taken into account. The response of the nuclear core to the extra antiproton is not instant — it could possibly
The response of the nuclear core to the extra antiproton is not instant — it could possibly

due to \(\bar{p} \). We present the \(\bar{p} \) and densities pertinent to the processes under consideration. It is demonstrated in Fig. 2 where self-consistent scheme for evaluating the \(\bar{p} \) threshold. The real part of the in-medium \(\bar{p} \) free-space \(P \) with a small repulsive dip near threshold. The imaginary parts of the \(pp \) wave amplitudes are considerably smaller than the in-medium \(\bar{p} \) potential constructed using the free-space amplitudes has a repulsive real part and fairly strong energy dependence of the \(\bar{p} \) potential is strongly attractive, however, also strongly absorptive. Finally, at the energies corresponding expectation values of the kinetic energy operator \(\hat{\text{E}}_{\text{kin}} \). Here, \(\hat{\text{E}}_{\text{kin}} = \frac{\hbar^2 A^{2/3}}{2m} \). Since the \(\hat{\text{E}}_{\text{kin}} \) represents the \(\bar{p} \) potential in \(40\text{Ca} \) calculated for different energies and densities: i) using the \(\bar{p} \) atom and \(\bar{p} \) nucleus, calculated for \(^{40}\text{Ca}+\bar{p} \) with in-medium Paris \(S \)-wave amplitudes and static RMF densities. The \(\bar{p} \) potential calculated using free-space amplitudes at threshold is shown for comparison (‘th free’).

Figure 2. The potential felt by \(\bar{p} \) at threshold (‘th medium’), in the \(\bar{p} \) atom and \(\bar{p} \) nucleus, calculated for \(^{40}\text{Ca}+\bar{p} \) with in-medium Paris \(S \)-wave amplitudes and static RMF densities. The \(\bar{p} \) potential calculated using free-space amplitudes at threshold is shown for comparison (‘th free’).

\[
\begin{align*}
\text{Figure 3.} & \quad 1s \; \bar{p} \; \text{binding energies (left panel) and widths (right panel) in various nuclei, calculated} \\
& \quad \text{statically (triangles) and dynamically (circles) using } S \text{-wave Paris potential (red) and including phenomenological } P \text{-wave potential (black). The } \bar{p} \text{ binding energies and widths calculated dynamically using the Paris } S + P \text{-wave potential (blue circles) are shown for comparison.}
\end{align*}
\]

last longer than the lifetime of \(\bar{p} \) inside a nucleus [12, 13]. As a result, the antiproton could annihilate before the nuclear core is fully polarized. Our static and dynamical calculations of \(\bar{p} \) binding energies and widths may be thus considered as two limiting scenarios.

In Fig. 3, we present 1s \(\bar{p} \) binding energies (left) and widths (right) as a function of mass number \(A \), calculated statically (triangles) and dynamically (circles) with the Paris \(S \)-wave and Paris \(S \)-wave + phen. \(P \)-wave potentials. We present the \(\bar{p} \) binding energies and widths calculated dynamically using the Paris \(S + P \)-wave potential for comparison as well.
In dynamical and static calculations alike, the P-wave interaction does not affect much the \bar{p} binding energies — they are comparable with the binding energies evaluated using only the S-wave potential. On the other hand, the \bar{p} widths are reduced significantly when the phenomenological P-wave term is included in the \bar{p} optical potential. The effect is even more pronounced for the Paris P-wave interaction.

The \bar{p} widths calculated dynamically are noticeably larger than the widths calculated statically. It is caused by the increase of the central nuclear density, which exceeds the decrease of the $\bar{p}N$ amplitudes due to the larger energy shift with respect to threshold ($\delta \sqrt{s} \sim -255$ MeV in the dynamical case vs. $\delta \sqrt{s} \sim -200$ MeV in the static case). On the other hand, the \bar{p} binding energies increase only moderately and get closer to each other when the dynamical effects are taken into account. The \bar{p} widths exhibit much large dispersion then the \bar{p} binding energies for the different potentials.

We explored the \bar{p} excited states in selected nuclei as well and compared the results with those obtained within the RMF approach [2]. Fig. 4 shows \bar{p} spectra in 40Ca calculated using the Paris S-wave + phen. P-wave potential and phenomenological RMF approach. The Paris S-wave + phen. P-wave potential yields the $1p$ and $1d$ binding energies slightly larger and thus the s-p and s-d level spacing smaller than the RMF approach. It is an effect of a broader \bar{p} potential well generated by the Paris S-wave + phen. P-wave potential. Nevertheless, both approaches yield comparable \bar{p} widths as well as energies and the overall agreement is surprisingly good.

It is to be noted that there is no spin-orbit splitting of the p and d levels presented in Fig. 4 since the V_{opt} is a central potential constructed from angular momentum-averaged scattering amplitudes. In the RMF approach, the \bar{p} binding energies in $1p$ and $1d$ spin doublets are nearly degenerate, the difference in \bar{p} energies (as well as \bar{p} widths) is up to ~ 1 MeV. This is in agreement with spin symmetry in antinucleon spectra within the RMF approach [14, 15]. In the left panel of Fig. 4 we show the spin-averaged $1p$ and $1d$ \bar{p} binding energies and widths for better comparison with the results obtained with the central Paris potential.

In conclusion, we performed self-consistent calculations of \bar{p}-nuclear quasi-bound states using a microscopic potential, namely the Paris \bar{NN} potential, for the first time. We explored

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{1s, 1p and 1d binding energies (lines) and widths (boxes) of \bar{p} in 40Ca calculated dynamically within the phenomenological RMF \bar{p} optical potential and Paris S-wave + phen. P-wave potential.}
\end{figure}
the effect of the P-wave interaction on \bar{p} binding energies and widths. We found that the P-wave interaction almost does not affect the binding energies of \bar{p}-nuclear states. This is in sharp contrast to the case of \bar{p} atoms where it was found necessary to include the P-wave interaction in order to increase attraction of the \bar{p} optical potential [8]. Moreover, we found good agreement between the results obtained using the phenomenological RMF potential and the Paris S-wave + phenomenological P-wave potential which are the two potentials consistent with antiprotonic atom data and \bar{p} scattering off nuclei at low energies.

Acknowledgements

We thank E. Friedman and A. Gal for valuable discussions, and B. Loiseau for providing us with the \bar{NN} amplitudes. This work was supported by the GACR Grant No. P203/15/04301S.

References

[1] T. J. Bürvenich, W. Greiner, I. N. Mishustin, L. M. Satarov, H. Stöcker, Phys. Rev. C 71 (2005) 035201.

[2] J. Hrtánková, J. Mareš, Nucl. Phys. A 945 (2016) 197.

[3] B. El-Bennich, M. Lacombe, B. Loiseau, S. Wycech, Phys. Rev. C 79 (2009) 054001.

[4] T. Hippchen, K. Holinde, W. Plessas, Phys. Rev. C 39 (1989) 761.

[5] D. Zhou, R. G. E. Timmermans, Phys. Rev. C 86 (2012) 044003.

[6] K. W. Kang, J. Haidenbauer, U.-G. Meißner, JHEP 1402 (2014) 113.

[7] L.-Y. Dai, J. Haidenbauer, U.-G. Meißner, JHEP 1707 (2017) 78.

[8] E. Friedman, A. Gal, B. Loiseau, S. Wycech, Nucl. Phys. A 934 (2015) 101.

[9] M. M. Sharma, M. A. Nagarajan, P. Ring, Phys. Lett. B 312 (1993) 377.

[10] T. Wass, M. Rho, W. Weise, Nucl. Phys. A 617 (1997) 449.

[11] A. Cieplý, E. Friedman, A. Gal, D. Gazda, J. Mareš, Phys. Lett. B 702 (2011) 402.

[12] A. B. Larionov, I. N. Mishustin, L. M. Satarov, W. Greiner, Phys. Rev. C 78 (2008) 014604.

[13] A. B. Larionov, I. N. Mishustin, L. M. Satarov, W. Greiner, Phys. Rev. C 82 (2010) 024602.

[14] J. N. Ginocchio, Phys. Rep. 414 (2005) 165.

[15] X. T. He, S. G. Zhou, J. Meng, E. G. Zhao, W. Scheid, Eur. Phys. J. A 28 (2006) 265.