Equality Saturation For Tensor Graph Superoptimization

Authors: Yang, Y., Phothilimthana, P. M., Wang, Y. R., Willsey, M., Roy, S., and Pienaar, J.
Year of Publication: 2021

Presenter: Hetong Shen
CRSid: HS899
TENSAT, a tensor graph superoptimization framework that employs equality saturation on E-Graphs.
TENSAT, a tensor graph superoptimization framework that employs equality saturation on E-Graphs.
TENSAT, a tensor graph superoptimization framework that employs equality saturation on E-Graphs.

- Enumerate through potential substitutions of graphs and find the optimal one
TENSAT, a tensor graph superoptimization framework that employs equality saturation on **E-Graphs**.

- Term Rewriting \((a \cdot 2)/2 \rightarrow a\)

 Useful

 \[
 (x \cdot y)/z = x \cdot (y/z)

 x/x = 1
 \]

 \[
 (a \cdot 2)/2 \rightarrow a \cdot (2/2) \rightarrow a
 \]

 Not useful

 \[
 x \cdot 2 = x << 1

 x \cdot y = y \cdot x
 \]

 \[
 (a \cdot 2)/2 \rightarrow (a << 1)/2
 \]
TENSAT, a tensor graph superoptimization framework that employs equality saturation on E-Graphs.

- E-graphs: \((a \cdot 2)/2 \)
- Term rewriting: \((a \cdot 2)/2 \rightarrow (a\ll1)/2 \)

This e-class represents \((a \cdot 2) / 2\) and \((a \ll 1) / 2\)

This e-class represents \((a \cdot 2)\) and \((a \ll 1)\)
TENSAT, a tensor graph superoptimization framework that employs equality saturation on E-Graphs.

- Grow a E-graph

(a) Initial e-graph contains \((a \times 2)/2\).
(b) After applying rewrite \(x \times 2 \rightarrow x \ll 1\).
(c) After applying rewrite \((x \times y)/z \rightarrow x \times (y/z)\).
(d) After applying rewrites \(x/x \rightarrow 1\) and \(1 \times x \rightarrow x\).
TENSAT, a tensor graph superoptimization framework that employs **equality saturation** on E-Graphs.

- Equality Saturation

\[
x \cdot 2 \rightarrow x << 1
\]
\[
(x \cdot y) / z \rightarrow x \cdot (y / z)
\]
\[
x / x \rightarrow 1
\]
\[
x \cdot 1 \rightarrow x
\]
TENSAT, a tensor graph superoptimization framework that employs **equality saturation** on E-Graphs.

- Equality Saturation

```
Initial Term → E-graph → Optimized term
```

- Find a pattern
- Apply a match
- Restore invariants
Challenges

- When doing graph rewriting to determine the order of applying the rewrite rules:
 - manually curated set of rewrite rules.
 - heuristic.

- However, sequential substitution often leads to sub-optimal:
 - The non-comprehensive set of rewrite rules.
 - The sub-optimal graph substitution heuristic.
 - Rule choice problem

Sequential Substitution
Existing Works

- Graph Rewrite Optimizations
 - TASO
 - NeuRewriter
- Superoptimization
 - Short sequences of low-level instructions
 - Denali
- Equality Saturation Applications
 - Optimize in other fields: ML, CAD simplification, Numerical Accuracy.

TENSAT:
Re-implementation of the TASO compiler using equality saturation
TENSAT’s Representations

Representing Tensor Computation Graphs

Operator	Description	Inputs	Type signature
ewadd	Element-wise addition	input₁, input₂	(T, T) → T
ewmul	Element-wise multiplication	input₁, input₂	(T, T) → T
matmul	Matrix multiplication	activation, input₁, input₂	(N, T) → T
conv	Grouped convolution	strideₜ, strideₜ, pad., act., input, weight	(N, N, N, N, T, T) → T
relu	Relu activation	input	T → T
tanh	Tanh activation	input	T → T
sigmoid	Sigmoid activation	input	T → T
poolmax	Max pooling	input, kernel{h, w}, stride{h, w}, pad., act.	(T, N, N, N, N, N, N) → T
poolavg	Average pooling	input, kernel{h, w}, stride{h, w}, pad., act.	(T, N, N, N, N, N, N) → T
transpose	Transpose	input, permutation	(T, S) → T
enlarge	Pad a convolution kernel with zeros	input, ref-input	(T, T) → T
concat	Concatenate	axis, input₁, . . . , inputₙ	(N, T, . . . , T) → T
split	Split a tensor into two	axis, input	(N, T, . . .) → T
split₀	Get the first output from split	input	TT → T
split₁	Get the second output from split	input	TT → T
merge	Update weight to merge grouped conv	weight, count	(T, N) → T
reshape	Reshape tensor	input, shape	(T, S) → T
input	Input tensor	identifier	S → T
weight	Weight tensor	identifier	S → T
noop	Combine the outputs of the graph	input₁, input₂	(T, T) → T
TENSAT’s Representations

• Representing Rewrite Rules
 • Single pattern rewrite rules
 • Multiple pattern rewrite rules

Source: (matmul ?input₁ ?input₂), (matmul ?input₁ ?input₃)
Target: (split₀ (split 1 (matmul ?input₁ (concat₂ 1 ?input₂ ?input₃)))),
(split₁ (split 1 (matmul ?input₁ (concat₂ 1 ?input₂ ?input₃)))))
TENSAT

• Rule choice problem
 • Solution: first generates all rewritten terms, leaving the choice of which term to select to the extraction procedure

• Exploration Phase
• Extraction Phase
Exploration Phase

- Search for matches of all rewrite rules in the current e-graph, and add the target patterns and equivalence relations to the e-graph
 - Single pattern rewrite rules and Multiple pattern rewrite rules

Algorithm 1 Applying multi-pattern rewrite rules

Input: starting e-graph G, set of multi-pattern rewrite rules \mathcal{R}_m.
Output: updated e-graph G.

1. canonicalized S-expr $e_c = \text{Set}()$
2. for rule $r \in \mathcal{R}_m$ do
3. for $i = 0, \dotsc, |r| - 1$ do $\triangleright |r|$: #S-exprs in source pattern
4. $(e, \text{rename_map}) = \text{CANONICAL}(r.\text{source}[i])$
5. $e_c.\text{insert}(e)$
6. $r.\text{map}[i] = \text{rename_map}$
7. end for
8. end for
9. for iter = 0, \dotsc, MAX ITER do
10. $M = \text{SEARCH}(G, e_c)$ \triangleright all matches for all patterns
11. for rule $r \in \mathcal{R}_m$ do
12. for $i = 0, \dotsc, |r| - 1$ do
13. canonical matches $mc_i = M[r.\text{source}[i]]$
14. matches $m_i = \text{DECANONICAL}(mc_i, r.\text{map}[i])$
15. end for
16. for $(\sigma_0, \dotsc, \sigma_{|r| - 1}) \in m_0 \times \cdots \times m_{|r| - 1}$ do
17. if COMPATIBLE($\sigma_0, \dotsc, \sigma_{|r| - 1}$) then
18. APPLY($G, r, \sigma_0, \dotsc, \sigma_{|r| - 1}$)
19. end if
20. end for
21. end for
22. return G
Extraction Phase – 1st Approach Greedy

• Cost Model

• Greedy Extraction:
 • For each e-class, computes the total cost of the subtrees rooted on each of the e-nodes, and picks the e-node with the smallest subtree cost
 • Not guaranteed to extract the graph with the minimum cost
Extraction Phase – 2nd Approach ILP

• ILP Extraction:
 • Objective function and constraints

Minimize: \(f(x) = \sum_i c_i x_i \)

Subject to:

\(x_i \in \{0, 1\}, \quad (1) \)
\(\sum_{i \in e_0} x_i = 1, \) \((2) \)
\(\forall i, \forall m \in h_i, x_i \leq \sum_{j \in e_m} x_j, \) \((3) \)
\(\forall i, \forall m \in h_i, t_{g(i)} - t_m - \epsilon + A(1 - x_i) \geq 0, \quad (4) \)
\(\forall m, 0 \leq t_m \leq 1, \) \((5) \)
Extraction Phase – 2nd Approach ILP

- ILP Extraction:
 - Objective function and constraints
 - Cycles
Extraction Phase – 2nd Approach ILP

- **ILP Extraction:**
 - **Objective function and constraints**
 - **Have cycles vs. no cycles**

Minimize: \(f(x) = \sum_{i} c_i x_i \)

Subject to:

\[
\begin{align*}
x_i & \in \{0, 1\}, \\
\sum_{i \in e_0} x_i & = 1, \\
\forall i, \forall m \in h_i, x_i & \leq \sum_{j \in e_m} x_j,
\end{align*}
\]

Table 5. Effect of whether or not to include cycle constraints in ILP on extraction time (in seconds), on BERT, NasRNN, and NasNet-A. For the cycle constraints, we compare both using real variables and using integer variables for the topological order variables \(t_m \).
Extraction Phase – Comparison

• Greedy vs. ILP Extraction:
 • Greedy extraction is slow: it makes the choices on which node to pick separately and greedily, without considering the interdependencies between the choices.
 • ILP Guaranteed to give a valid graph (no cycles) with the lowest cost

Graph Runtime (ms)	Original	Greedy	ILP
BERT	1.88	1.88	1.73
NasRNN	1.85	1.15	1.10
NasNet-A	17.8	22.5	16.6
Bottle Neck and Cycle Filtering

- Vanilla cycle filtering:
- Efficient cycle filtering in exploration phase:
 - Pre-filtering
 - Post processing

Algorithm 2 Exploration phase with efficient cycle filtering

Input: starting e-graph G, set of rewrite rules R.
Output: updated e-graph G, filter list l.

1: $l = \emptyset$
2: for iter = 0, ..., MAX_ITER do
3: descendants map $d = \text{GETDESCENDANTS}(G, l)$
4: matches = $\text{SEARCH}(G, R, l)$
5: for match \in matches do
6: if not WILLCREATECYCLE(match, d) then
7: $\text{APPLY}(G, \text{match})$
8: end if
9: end for
10: while true do
11: cycles = $\text{DFSGETCYCLES}(G, l)$
12: if len(cycles) == 0 then
13: break
14: end if
15: for cycle \in cycles do
16: $\text{RESOLVECYLE}(G, l, \text{cycle})$
17: end for
18: end while
19: end for
20: return G, l
Bottle Neck and Cycle Filtering

- Vanilla cycle filtering vs. Efficient cycle filtering

Exploration time (s)	k_{multi}	Vanilla	Efficient
BERT			
1	0.18	0.17	
2	32.9	0.89	
NasRNN			
1	1.30	0.08	
2	2932	1.47	
NasNet-A			
1	3.76	1.27	
2	>3600	8.62	

Table 6. Comparison between vanilla cycle filtering and efficient cycle filtering, on the exploration phase time (in seconds) for BERT, NasRNN, and NasNet-A.
Evaluation – Set Up

• TENSAT Implementation:
 • Developed in Rust
 • Equality saturation library egg

• ILP solver:
 • Utilized SCIP
Evaluation – Set Up

The models evaluated:

• BERT (Devlin et al., 2019)
• ResNeXt-50 (Xie et al., 2017)
• NasNet-A (Zoph et al., 2018)
• NasRNN (Zoph & Le, 2017)
• Inception v3 (Szegedy et al., 2016)
• VGG-19 (Liu & Deng, 2015)
• SqueezeNet (Iandola et al., 2017)

• Limit the number of nodes in the e-graph $N_{max} = 50000$
• Limit number of iterations for exploration $k_{max} = 15$
Evaluation – Speed Up

- TASO vs TENSAT
- Equality saturation covers a much larger space of equivalent graphs than sequential backtracking search.
- K: K multi
- Inception: Optimizer can achieve a better speedup given longer optimization time.

Figure 4. Speedup percentage of the optimized graph with respect to the original graph: TASO vs TENSAT. Each setting (optimizer × benchmark) is run for five times, and we plot the mean and standard error for the measurements.
Evaluation – Optimization Time

• TASO vs TENSAT
• TENSAT can not only cover a much larger search space, but also in less time

Figure 5. Optimization time (log scale): TASO v.s. TENSAT. “TASO total” is the total time of TASO search. “TASO best” indicates when TASO found its best result; achieving this time would require an oracle telling it when to stop.
Evaluation – Varying Iterations of Multi-Pattern Rewrites

- Effect of varying the number of iterations of multi-pattern rewrites k_{multi}
- Squeeze-Net: discrepancy between the cost model and the real graph runtime.
Novelty
• Uses e-graph for tensor graph superoptimization
• Introduces multi pattern write rules
• Efficient cycle filtering in exploration phase

Downside
• Limitation in Scalability:
 • Multi-pattern rules for tensor graph: grow the e-graph extremely rapidly
 • Can only explore up to a certain number of iterations of multi-pattern rewrites.
 • E-graph becomes too large for the extraction phase
• Parallelism:
 • Uses cost model as TASO, which is suitable for GPU (one operator when executing graph)
Impact and Future directions

• Tackle Limitation in Scalability:
 • Selectively apply rules during exploration
 • Utilize ML techniques
• Achieve Parallelism:
 • Some hardware may execute multiple kernels in parallel
 • Needs a different cost model, such as a learned method to perform extractions
• Applications:
 • TENSAT’s optimization time is small enough that can be integrated into a default compilation flow