Near to One’s Heart: The Intimate Relationship Between the Placenta and Fetal Heart

Emily J. Camm*, Kimberley J. Botting and Amanda N. Sferruzzi-Perri

Department of Physiology, Development and Neuroscience and Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom

The development of the fetal heart is exquisitely controlled by a multitude of factors, ranging from humoral to mechanical forces. The gatekeeper regulating many of these factors is the placenta, an external fetal organ. As such, resistance within the placental vascular bed has a direct influence on the fetal circulation and therefore, the developing heart. In addition, the placenta serves as the interface between the mother and fetus, controlling substrate exchange and release of hormones into both circulations. The intricate relationship between the placenta and fetal heart is appreciated in instances of clinical placental pathology. Abnormal umbilical cord insertion is associated with congenital heart defects. Likewise, twin-to-twin transfusion syndrome, where monochorionic twins have unequal sharing of their placenta due to inter-twin vascular anastomoses, can result in cardiac remodeling and dysfunction in both fetuses. Moreover, epidemiological studies have suggested a link between placental phenotypic traits and increased risk of cardiovascular disease in adult life. To date, the mechanistic basis of the relationships between the placenta, fetal heart development and later risk of cardiac dysfunction have not been fully elucidated. However, studies using environmental exposures and gene manipulations in experimental animals are providing insights into the pathways involved. Likewise, surgical instrumentation of the maternal and fetal circulations in large animal species has enabled the manipulation of specific humoral and mechanical factors to investigate their roles in fetal cardiac development. This review will focus on such studies and what is known to date about the link between the placenta and heart development.

Keywords: placenta, heart, hypoxia, altered nutrition, genetic mouse models

INTRODUCTION

Since David Barker first documented the relationship between infant birth weight and adult onset disease (Barker and Osmond, 1986; Barker et al., 1989), there has been a revolutionary shift in thinking about how the early environment can impact life-long health and susceptibility to disease. The contribution of the placenta to this association and as an independent risk factor for future cardiovascular risk has more recently been identified. One of the first studies to link the placenta to cardiovascular disease was by Martyn and colleagues who identified that both the highest and lowest quintiles for placental efficiency (placenta weight as a proportion of birth weight) were associated with a greater number of deaths due to coronary heart disease in men...
born in the UK (Martyn et al., 1996). More recent studies of men born in Helsinki identified that a combination of maternal height, body mass index (BMI) and the shape of the placenta predict coronary heart disease in men (Eriksson et al., 2011). Specifically, short women who had a greater difference between the length and breadth of their placental surface were more likely to have a son with an increased risk of coronary heart disease. Likewise, tall women that either had a greater BMI and a placenta with a small surface area, or a lower BMI and reduced placental efficiency, conferred an elevated risk of coronary heart disease to their sons (Eriksson et al., 2011). Furthermore, having a thin placenta, or a large placenta area relative to birth weight, is associated with a greater incidence of sudden cardiac death in men and women, respectively (Barker et al., 2012). Altered placenta size and shape may be a reflection of a poor maternal environment, but may also contribute to a poor fetal environment. The placenta is the main interface between the mother and fetus, and regulates intrauterine development by supplying oxygen and nutrients required for fetal growth. There is now clear evidence that the placenta can adapt morphologically and functionally to supply signals arising from the mother, and demand signals from the fetus (Sferruzzi-Perri and Camm, 2016). The intricate relationship between the placenta and fetal heart is appreciated in instances of clinical placental pathology. Abnormal umbilical cord insertion (when the umbilical cord inserts abnormally into the fetal membranes instead of the center of the placenta), is associated with congenital heart defects (Albalawi et al., 2017). Likewise, twin-to-twin transfusion syndrome, where monochorionic twins have unequal sharing of their placenta due to inter-twin vascular anastomoses, results in one twin being under-perfused with blood and the other being over-perfused, can result in cardiac remodeling and dysfunction in both fetuses (Delabaere et al., 2016; Albalawi et al., 2017). Normally the placental circulation is considered one of low vascular resistance (Trudinger et al., 1985; Thompson and Trudinger, 1990), but in instances of poor placental development associated with fetal growth restriction, deficient remodeling of uterine spiral arteries can lead to malperfusion of the placenta and an increase in placental vascular resistance, which impair the placenta’s endocrine and nutrient transport functions (For review, Chaddha et al., 2004; Burton and Jauniaux, 2018). As ~45% of the combined ventricular output from the fetal heart is directed toward the placenta, an increase in placental vascular resistance may also increase cardiac afterload, thus increasing the mechanical force that the heart beats against. To date, the mechanistic basis of the relationships between the placenta, fetal heart development and later risk of cardiac dysfunction have not been fully elucidated. However, studies using environmental exposures and gene manipulations in experimental animals are providing insights into the pathways involved.

ANIMAL MODELS OF ALTERED PLACENTATION, HYPOXAEAMIA AND NUTRIENT RESTRICTION

Animal studies allow for manipulation of the placenta and the maternal and fetal environments to understand the mechanisms that underlie the placenta’s influence on heart health. Of the animal models that describe both placental and heart phenotypes, there are broadly three groups that best categorize them: 1. Those that reduce oxygen and nutrient delivery to the fetus (carunclectomy, umbilico-placental embolization (UPE), single umbilical artery ligation (SUAL), maternal hyperthermia in sheep, unilateral uterine artery ligation in guinea pigs and bilateral uterine artery and vein ligation in rats; 2. Those that reduce oxygen availability for transfer to the fetus (maternal inhalation hypoxia in sheep, guinea pigs and rats); and 3. Those that alter nutrient availability for the fetus (global calorie restriction, low protein diet and high-fat/high-sugar diet). However, maternal hypoxia may result in reduced maternal food intake or alterations in the placenta’s ability to deliver nutrients to the fetus. Likewise, altering the maternal diet may affect placenta development and thus decrease oxygen transfer capacity. For simplicity sake, the animal models have been divided into those that report fetal hypoxaemia (Table 1) and those that do not (Table 2). A key point highlighted by both tables is that changes to placental weight do not predict cardiac outcome as reduced, increased and unaltered placenta weight may all be associated with an altered cardiac phenotype in the offspring. It is clear that work is still required to characterize the morphometry and resource supply capacity of the placenta in animal models with cardiac phenotypes, and likewise cardiac phenotype in models with altered placentation.

Due to the different benefits and limitations that come with each animal model of human development, it is the use of a range of animal models that allows for a better understanding of the influence the placenta has on both the fetal and postnatal heart. For instance, mice, rats and guinea pigs are small animals with short gestations (weeks to months) and lifespans, which allows for a high throughput of pregnancy, postnatal and intergenerational studies. The rodent and guinea pig placentae are discoid in nature, trophoblast invade and remodel the uterine vasculature to promote blood flow and the trophoblast is directly bathed in maternal blood, which is similar to the human (Adamson et al., 2002; Mess, 2007; Mess et al., 2007; Rennie et al., 2014). The caveat to using small animal models, however, is that instrumentation to repeatedly assess fetal haemodynamics and concentrations of humoral factors across gestation is not possible. As such, determining whether alterations in postnatal cardiac structure and function were present prenatally or arose in adulthood as a result of a secondary factor such as postnatal hypertension, for instance, is difficult to determine. Furthermore,
Animal model and experimental protocol	Placenta outcomes (late gestation)	Fetal blood gas, metabolite and hormone profile	Materno-fetal haemodynamic outcomes	Fetal cardiac outcomes (late gestation)	Postnatal cardiac outcome	References
Sheep Carunclectomy surgical removal of the majority of endometrial caruncles prior to conception; causes IUGR (Gestation ∼150 d)	↓ number of placentomes	↓ placental weight	↑ placental efficiency	↓ umbilical artery blood flow	↓ absolute heart weight = heart weight relative to body weight	Robinson et al., 1979; Harding et al., 1985; Owens et al., 1987, 1989; Jones et al., 1988; Phillips et al., 1996, 2001; Simonetta et al., 1997; Edwards et al., 1999; Morrison et al., 2007; Wang et al., 2011, 2013, 2015a;b; Botting et al., 2014; Poudel et al., 2015; Zhang et al., 2016; Vranas et al., 2017
Sheep Carunclectomy	↓ umbilical artery blood flow	↓ fetal femoral/peripheral blood flow	↓ fetal femoral/peripheral vascular resistance	↓ heart weight	= heart weight relative to body weight	
Umbilicoplacental embolization from ∼110 to 130 d gestation; or ∼120 d gestation to birth; causes IUGR	↓ placental weight	↓ cross-sectional area of interdigitation between fetal and maternal tissue	↑ calcium deposition	↓ umbilical blood flow	↓ heart weight	
Umbilicoplacental embolization	↓ placental weight	↓ cross-sectional area of interdigitation between fetal and maternal tissue	↑ calcium deposition	↓ umbilical blood flow	↓ heart weight	

(Continued)
TABLE 1 | Continued

Animal model and experimental protocol	Placenta outcomes (late gestation)	Fetal blood gas, metabolite and hormone profile	Materno-fetal haemodynamic outcomes	Fetal cardiac outcomes (late gestation)	Postnatal cardiac outcome	References
Single umbilical artery ligation	↓ placenta weight	↓ PaO₂	= fetal MAP	↓ heart weight	= heart weight relative to body weight (1 day)	Oh et al., 1975; Oyama et al., 1992; Supramaniam et al., 2006; Miller et al., 2009a,b; Tare et al., 2014
		↓ %SaO₂	= fetal HR		↑ LVDP, LV +dP/dt and LV -dP/dt (1 day)	
		↓ PaCO₂	↓ umbilical blood flow		↓ RVDP, RV +dP/dt and RV -dP/dt (1 day)	
		↑ Hb and %Hct			↑ I/R infarct area (1 day)	
		↓ fetal glucose uptake			↓ coronary eNOS, COX2, collagen II mRNA (1 day)	
		= glucose per weight of fetus			= coronary COX1, collagen I and II and tropoelastin mRNA (1 day)	
		↑ plasma cortisol (at labor)				
Maternal hyperthermia	↓ total weight of placenta	↓ PaO₂	= absolute heart weight	↓ heart weight	= heart weight relative to body weight (1 day)	Bell et al., 1987; Walker et al., 1990; Thureen et al., 1992; Regnault et al., 2003, 2007, 2013; Limesand et al., 2001, 2006; Galan et al., 2005; Hagen et al., 2005; Barry et al., 2006, 2016; Ziegel et al., 2007; Anzey et al., 2009; Monson et al., 2017
	↓ GLUT8 mRNA and protein	↓ %SaO₂	= basal LV myocardial blood flow per gram of LV tissue			
	↑ IGF-1 protein	= PaCO₂	= basal LV myocardial oxygen delivery, oxygen uptake, and oxygen extraction efficiency			
	↑ p-mTOR, p-ERK, and p-Akt	↑ Hb	= basal LV myocardial glucose delivery and uptake			
	↑ p70S6K and p-XAP	↑ %Hct	↑ insulin-stimulated LV myocardial blood flow per gram of LV tissue			
	↓ cleaved caspase	↓ plasma glucose	↑ insulin-stimulated LV myocardial glucose delivery and uptake			
	↓ telomerase activity	↓ plasma insulin	↑ GLUT4 and IRβ protein			
	↓ eNOS mRNA (fetal)	↓ plasma lactate	↑ glycogen			
	↑ eNOS mRNA (maternal)	↓ plasma cortisol (fet/				
	↑ Tie2 mRNA	males				
	↑ Angiopoietin 2 protein (fetal)	↑ plasma noradrenaline				
	↑ PROF mRNA and protein (maternal)	↑ umbilical uptake of O₂, glucose, lactate and 11 amino acids per kg of fetus				
	↑ VEGF and VEGFR1 mRNA and VEGF protein (fetal)	↑ uterine blood flow per kg of fetus				
		↑ uterine and umbilical blood flow				
Maternal hypoxia	↓ placenta weight	NB values only available for 10 days of maternal hypoxia	= LVDP	Brain et al., 2015; Allison et al., 2016		
		↓ PaO₂	↓ delivery of O₂ through the carotid and femoral artery			
		↓ %SaO₂	↑ carotid and femoral artery blood flow			
		= pH	↑ delivery of O₂ through the carotid and femoral artery			
		↑ %Hct	↑ carotid/femoral O₂ delivery ratio			
		= glucose	= delivery of glucose through the carotid and femoral artery			
		= lactate	= carotid/femoral glucose delivery ratio			
		= plasma acetoic acid				
		↑ plasma urate				
	NB values only available for 10 days of maternal hypoxia	= delivery of glucose through the carotid and femoral artery				
TABLE 1 | Continued

Animal model and experimental protocol	Placenta outcomes (late gestation)	Fetal blood gas, metabolite and hormone profile	Materno-fetal haemodynamic outcomes	Fetal cardiac outcomes (late gestation)	Postnatal cardiac outcome	References
Guinea pig (Gestation ∼ 68 d)	Unilateral uterine artery ligation	Performed at ∼30 d gestation; causes IUGR	↓ CaO₂	↓ heart weight (Detmer et al., 1991)	= heart weight (2 months)	(Briscoe et al., 2004) or ↓ (Lafeber et al., 1984) placenta weight ↓ pH ↓ plasma glucose = plasma lactate ↓ plasma insulin ↓ heart weight relative to body weight (2 months) ↑ LV collagen (2 months) ↑ myofiber width (2 months) ↓ LV lumen area (2 months) = LV wall thickness (2 months) ↑ LV wall thickness/lumen area ratio (2 months)
Chronic maternal hypoxia 10.5–12% O₂ commencing in the second half of pregnancy; causes IUGR	↑ placenta weight ↑ placental efficiency ↑ fetal capillary growth ↑ fetal capillary branching and coiling ↓ fetal capillary diameter ↓ diffusion distance + hypoxyprobe-1 in cytotrophoblasts and labyrinth ↑ VEGF mRNA ↑ PGF mRNA ↑ PPARα, PTGS2, COMT mRNA (Preeclampsia markers)	↑ %Hct ↑ maternal MAP ↑ HIF-1α and HIF-2α mRNA and HIF-1α protein ↑ eNOS mRNA and protein in coronary arteries ↓ eNOS mRNA and protein in cardiac tissue ↑ INOS mRNA and protein in cardiac tissue ↑ nNOS/nitrates and 3-nitrotyrosine ↑ proinflammatory cytokines ↓ apoptosis ↑ collagen ↑ cytochrome C oxidase activity = heart weight and heart weight relative to body weight (4 months; males and females) = LV weight and LV weight relative to heart weight (4 months; males and females) ↓ (female) or = (male) cardiomyocyte number (4 months) ↓ cytochrome C oxidase activity (3 months) ↓ COX1 and COX4 protein (3 months) ↑ PPARα, FABP4, FABPpm, FABP6 and GLUT4 mRNA (4 months; males and females) ↑ (female) or = (male) FACS and AMPKα2 mRNA (4 months) = PPARβ/δ, PGC-1α, CD36, ACC, MCD, OXPHOS, ACO, ACD, ACDIV, IGF1R, IGF2, IGF1R, IGF2R and AMPmRNA (4 months; males and females) ↑ (female) or = (male) p-AMPKα (4 months) = ACC, p-ACC, AS160, p-AS160, GLUT1, GLUT4, AMPKα2, p-AMPKα1, Akt1, Akt2, p-Akt (thr308), p-Akt (ser473), CaMKII, p-CaMKII (thr286) and P-CaMKII (thr305) protein (4 months; males and females)				

Jones et al., 1984; Lafeber et al., 1984; Detmer et al., 1991; Briscoe et al., 2004; Bacon et al., 1984; Scheffen et al., 1990; Dong and Thompson, 2006; Thompson et al., 2009, 2016; Evans et al., 2012a,b; Al-Hasan et al., 2013, 2014; Botting et al., 2018
Animal model and experimental protocol	Placenta outcomes (late gestation)	Fetal blood gas, metabolite and hormone profile	Materno-fetal haemodynamic outcomes	Fetal cardiac outcomes (late gestation)	Postnatal cardiac outcome	References
Rat (gestation ~ 21 d)	Bilateral uterine artery and vein ligation	Performed at 18 d gestation; causes IUGR*	= placental weight	= heart weight	↓ (male) or ↑ (female) JAK2, STAT3 and GLUT1 mRNA	Wigglesworth, 1974; Wlodek et al., 2005; Wadley et al., 2010, 2013, 2016; Black et al., 2012; Cheong et al., 2016
			↑ placental efficiency	↓ heart weight weight relative to body weight	↓ heart weight (1 month; males and females), but = heart weight relative to body weight	
			↑ placental diameter	↓ heart weight (2 months; males), but = heart weight relative to body weight	= heart weight and heart weight relative to body weight (6 months; females)	
			= total placental area	= heart weight, but ↓ heart weight relative to body weight (6 months; males)	= heart weight, but ↓ heart weight relative to body weight (6 months; females)	
			= labyrinth area, % of total	↓ heart weight (1 month; males and females), but = heart weight relative to body weight	= heart weight, but ↓ heart weight relative to body weight (6 months; males)	
			↑ PTHrP, PTH/PTHrP receptor and AT1a mRNA	= heart weight, but ↓ heart weight relative to body weight (6 months; females)	Wadley et al., 2010, 2013, 2016; Black et al., 2012; Cheong et al., 2016	
			↓ PTHrP protein	= total cardiac protein (6 months; males)	= heart weight and heart weight relative to body weight (6 months; females)	
			= ionic and total calcium	= total cardiac mRNA (6 months; males)	= heart weight and heart weight relative to body weight (6 months; males)	
			= PTHrP	= total and p-Akt (ser473; 6 months; males)	= heart weight, but ↓ heart weight relative to body weight (6 months; females)	
			= heart weight	↑ Spp1 and Rhoa mRNA (6 months; male)	↓ total cardiac protein (6 months; males)	
			= heart weight (1 month; males and females), but = heart weight relative to body weight	↓ Ckm mRNA (6 months; male)	= total cardiac mRNA (6 months; males)	
			= heart weight (1 month; males and females), but = heart weight relative to body weight	↓ JAK2 mRNA (1 day, week and month)	= total and p-Akt (ser473; 6 months; males)	
			= heart weight (1 month; males and females), but = heart weight relative to body weight	↓ STAT3 mRNA (1 day, week and month; males)	↑ Spp1 and Rhoa mRNA (6 months; male)	
			= heart weight (1 month; males and females), but = heart weight relative to body weight	↑ STAT3 and STAT5 mRNA (1 day; females)	↓ Ckm mRNA (6 months; male)	
			= heart weight (1 month; males and females), but = heart weight relative to body weight	↓ STAT3 mRNA (1 week; females)	↓ Ckm mRNA (6 months; male)	
			= heart weight (1 month; males and females), but = heart weight relative to body weight	= STAT5 mRNA (1 day, week and month; males)	↓ STAT3 mRNA (1 day, week and month; males)	
			= heart weight (1 month; males and females), but = heart weight relative to body weight	↓ (female) or ↑ (male) PGC-1a mRNA (1 week)	= STAT3 mRNA (1 day, week and month; males)	
			= heart weight (1 month; males and females), but = heart weight relative to body weight	= PGC-1a mRNA (1 week and 1 month; males and females)	= STAT5 mRNA (1 day, week and month; males)	
			= heart weight (1 month; males and females), but = heart weight relative to body weight	= NRF-2, CXX III and GLUT4 mRNA (1 day, 1 week and 1 month; males and females)	= NRF-2, CXX III and GLUT4 mRNA (1 day, 1 week and 1 month; males and females)	
			= heart weight (1 month; males and females), but = heart weight relative to body weight	= mTFA mRNA (1 day males and 1 month females)	= mTFA mRNA (1 day males and 1 month females)	
			= heart weight (1 month; males and females), but = heart weight relative to body weight	↓ MnSOD mRNA (1 month; males and females)	↓ MnSOD mRNA (1 month; males and females)	
Animal model and experimental protocol	Placenta outcomes (late gestation)	Fetal blood gas, metabolite and hormone profile	Materno-fetal haemodynamic outcomes	Fetal cardiac outcomes (late gestation)	Postnatal cardiac outcome	References
--	-----------------------------------	---	----------------------------------	--	--------------------------	------------
Maternal Hypoxia	10.5–12% O₂ from 15 to 21 d gestation or 6 to 21 d gestation (Zhou et al., 2013)	pregnancy or hypoxic ischemia (Zhou et al., 2013)	maternal hypoxia (Rueda-Clausen et al., 2011)	fetal hemodynamic (Zhou et al., 2013)	heart weight, LV and septal wall thickness (1 week)	heart weight, LV and septal wall thickness (1 week)
	= (Phillips et al., 2017) or ↓(Rueda-Clausen et al., 2011) placenta weight	↓ oxidative stress (DCF)	↓ trophoblast invasion (Zhou et al., 2013)	↑ ETα and AT1-R protein (Zhou et al., 2013)	↓ heart weight	↓ heart weight relative to body weight (1 week)
	= ETβ and AT2-R protein (Zhou et al., 2013)	↓ heart weight relative to body weight	↓ collagen content and collagen III protein	↓ heart weight relative to body weight (12 months)	↓ heart weight relative to body weight (12 months)	↓ heart weight relative to body weight (12 months)
	↑ maternal SBP, DBP and MBP (Zhou et al., 2013)	↓ LV and septal wall thickness	↓ collagen α1 protein	↓ collagen α1 protein	↓ LV and septal wall thickness (1 week)	↓ LV and septal wall thickness (1 week)
	↓ LV and septal wall thickness	↓ heart weight relative to body weight	↓ Mmp-1 protein	↓ Mmp-1 protein	↓ heart weight	↓ heart weight relative to body weight (1 week)
	↓ heart weight relative to body weight	↓ heart weight relative to body weight	↓ Mmp-2, Mmp-9, Timp-1 and Timp-2 protein	↓ Mmp-2, Mmp-9, Timp-1 and Timp-2 protein	↓ LV and septal wall thickness	↓ LV and septal wall thickness
	↓ heart weight relative to body weight	↓ heart weight relative to body weight	↓ Mmp-13, Mmp-14, Timp-3 and Timp-4 protein	↓ Mmp-13, Mmp-14, Timp-3 and Timp-4 protein	↓ LV and septal wall thickness	↓ LV and septal wall thickness
	↓ heart weight relative to body weight	↓ heart weight relative to body weight	↓ GR mRNA and protein	↓ GR mRNA and protein	↓ LV and septal wall thickness	↓ LV and septal wall thickness
	↓ heart weight relative to body weight	↓ heart weight relative to body weight	↓ GR protein and mRNA	↓ GR protein and mRNA	↓ LV and septal wall thickness	↓ LV and septal wall thickness
	↓ heart weight relative to body weight	↓ heart weight relative to body weight	↓ GR promoter methylation	↓ GR promoter methylation	↓ LV and septal wall thickness (1 week)	↓ LV and septal wall thickness
	↓ heart weight relative to body weight	↓ heart weight relative to body weight	↓ transcription factor binding to GR exon 1 promoter	↓ transcription factor binding to GR exon 1 promoter	↓ LV and septal wall thickness	↓ LV and septal wall thickness
	↓ heart weight relative to body weight	↓ heart weight relative to body weight	↓ GR methylation at the CREs and Spt1 binding sites	↓ GR methylation at the CREs and Spt1 binding sites	↓ LV and septal wall thickness	↓ LV and septal wall thickness
	↓ heart weight relative to body weight	↓ heart weight relative to body weight	↓ % binucleated cardiomyocytes	↓ % binucleated cardiomyocytes	↓ LV and septal wall thickness	↓ LV and septal wall thickness
	↓ heart weight relative to body weight	↓ heart weight relative to body weight	↓ apoptotic cardiomyocytes	↓ apoptotic cardiomyocytes	↓ LV and septal wall thickness	↓ LV and septal wall thickness
	↓ heart weight relative to body weight	↓ heart weight relative to body weight	↓ caspase 3 and 8 activity	↓ caspase 3 and 8 activity	↓ LV and septal wall thickness	↓ LV and septal wall thickness
	↓ heart weight relative to body weight	↓ heart weight relative to body weight	↓ Bcl-2 protein	↓ Bcl-2 protein	↓ LV and septal wall thickness	↓ LV and septal wall thickness
	↓ heart weight relative to body weight	↓ heart weight relative to body weight	↓ Bax protein	↓ Bax protein	↓ LV and septal wall thickness	↓ LV and septal wall thickness
	↓ heart weight relative to body weight	↓ heart weight relative to body weight	↓ Hep70 protein	↓ Hep70 protein	↓ LV and septal wall thickness	↓ LV and septal wall thickness
	↓ heart weight relative to body weight	↓ heart weight relative to body weight	↓ PAR1 protein	↓ PAR1 protein	↓ LV and septal wall thickness	↓ LV and septal wall thickness
	↓ heart weight relative to body weight	↓ heart weight relative to body weight	↓ PAR2 protein	↓ PAR2 protein	↓ LV and septal wall thickness	↓ LV and septal wall thickness

(Continued)
Animal model and experimental protocol	Placenta outcomes (late gestation)	Fetal blood gas, metabolite and hormone profile	Materno-fetal haemodynamic outcomes	Fetal cardiac outcomes (late gestation)	Postnatal cardiac outcome	References

= LV contractility (ex vivo; 6 months)
† infarct size (ex vivo; 6 months)
= (female) or † (male)
susceptibility to I/R injury (ex vivo) and MI (in vivo) (3 months)
† susceptibility to I/R injury in both males and females (12 months)
= (female) or ↓ (male) PKCε and p-PKCε (3 months)
= (female) or † (male) lipid peroxidation (MDA; 12 months)
= (female) or † (male) ratio of oxidized to reduced glutathione (12 months)
† β/α MHC ratio (4 and 7 months)
↓ Hsp70 protein
↓ eNOS protein
= cleaved caspase 3 and DNA fragmentation
= βAR1
↓ αAR protein
† collagen content and collagen I protein (1 week, 4 and 7 months)
= collagen III protein (1 week)
† collagen III protein (4 and 7 months)
† MMP-1, MMP-13, TIMP-3 and TIMP-4 protein (1 week)
= MMP-2, MMP-9, MMP-14, TIMP-1 and TIMP-2 protein (1 week)
↓ MMP-2 protein (4 and 7 months)
Animal model and experimental protocol	Placenta outcomes (late gestation)	Fetal blood gas, metabolite and hormone profile	Materno-fetal haemodynamic outcomes	Fetal cardiac outcomes (late gestation)	Postnatal cardiac outcome	References
13% O₂ from 6 to 20 d gestation; does not result in IUGR	↑ placental weight	↑ %Hct	heart weight, heart weight relative to body weight, LV and RV area	LV contractility (4 months)	heart weight and heart weight relative to body weight (4 months)	Giussani et al., 2012; Richter et al., 2012; Kane et al., 2013

TABLE 1

Placenta outcomes (late gestation)

- ↑ placental weight
- ↑ %Hct
- ↓ Ki67 (1 week)
- ↑ LV developed pressure and end diastolic pressure (4 months)
- ↑ responsiveness to β₁-adrenoreceptor agonists (4 months)
- ↓ reactivity to muscarinic agonists (4 months)
- ↑ Hsp70 protein

Fetal blood gas, metabolite and hormone profile

- ↑ placental volume
- ↓ heart weight, heart weight relative to body weight, LV and RV area
- ↑ %Hct
- ↓ Ki67 (1 week)
- ↑ LV contractility (4 months)
- ↑ responsiveness to β₁-adrenoreceptor agonists (4 months)
- ↓ reactivity to muscarinic agonists (4 months)
- ↑ Hsp70 protein

Materno-fetal haemodynamic outcomes

- ↑ placental blood flow
- ↓ heart weight, heart weight relative to body weight, LV and RV area
- ↑ %Hct
- ↓ Ki67 (1 week)
- ↑ LV contractility (4 months)
- ↑ responsiveness to β₁-adrenoreceptor agonists (4 months)
- ↓ reactivity to muscarinic agonists (4 months)
- ↑ Hsp70 protein

Fetal cardiac outcomes (late gestation)

- ↑ LV developed pressure
- ↓ heart weight, heart weight relative to body weight
- ↓ %Hct
- ↓ Ki67 (1 week)
- ↑ LV contractility (4 months)
- ↑ responsiveness to β₁-adrenoreceptor agonists (4 months)
- ↓ reactivity to muscarinic agonists (4 months)
- ↑ Hsp70 protein
| Animal model and experimental protocol | Placenta outcomes (late gestation) | Fetal blood gas, metabolite and hormone profile | Materno-fetal haemodynamic outcomes | Fetal cardiac outcomes (late gestation) | Postnatal cardiac outcome | References | |
|---|---|---|---|---|---|---|---|
| Rat 30% UN* from 1 d of gestation to birth; causes IUGR | ↓ placental weight | ↓ fetal plasma apelin concentrations | ↓ plasma IGF-1 | ↓ plasma insulin | ↓ plasma IGFBP-1 and –2 | ↑ systolic blood pressure (between 1 and ∼11–12 months) | Woodall et al., 1996a,b, 1999; Vickers et al., 2000, 2002; Riviere et al., 2005; Cannons et al., 2008; Mayeur et al., 2013, 2016 |
| Rat 50% UN* from 10 d of gestation to birth; causes IUGR | ↓ placental weight | ↓ fetal plasma osmolality and Na+ concentrations | ↓ collagen in aorta (1 day of age) | ↓ MMP-9 mRNA in aorta (1 day of age) | ↓ VEGF protein expression in aorta (1 day of age) | ↑ elastin and GAG in aorta (1 day of age) | Desai et al., 2005; Kharram et al., 2007a,b,c, 2010; Belkasemi et al., 2009, 2011a,b,c; Jelks et al., 2009 |

(Continued)
Animal model and experimental protocol	Placenta outcomes (late gestation)	Fetal blood gas, metabolite and hormone profile	Materno-fetal haemodynamic outcomes	Fetal cardiac outcomes (late gestation)	Postnatal cardiac outcome	References						
Rat 50% UN from 14 d gestation to weaning; causes IUGR	= placental weight	↓ fetal/placental weight	↑ BDNF mRNA and protein	↑ TrkB-FL mRNA = TrkB-FL and TrkB-T1 protein	↓ utero-placental blood flow	↓ maternal cardiac output	↑ plasma B (newborns) then ↓ 2 h later	↑ plasma ACH (newborns)	↑ MAP (6 months)	↑ pulse rate (6 months)	• cross-fostering prevents ↑ MAP (6 months) (males)	Ahokas et al., 1981, 1983; Lesage et al., 2001, 2002; Mayeur et al., 2010; Wattez et al., 2014
Guinea Pig 10–30% UN (30% from −28 to 34 d gestation then 10% from 35 d gestation to term); causes IUGR	↓ placental diameter, weight and volume	↓ placental/baby weight	↓ Lz weight and % Lz	↓ trophoblast volume	↓ maternal and fetal blood space volume	↓ total surface area (Lz)	↑ barrier thickness	↑ EPOR protein in female fetuses	↑ VEGF protein in male fetuses	↓ relative heart weight (~1 month) = absolute heart weight (~3–4 months)	↓ relative heart weight (~3–4 months) (males and females)	Sahlihrom et al., 1998; Roberts et al., 2001a,b, 2002; Elias et al., 2016, 2017; Nevin et al., 2018
TABLE 2 | Continued

Animal model and experimental protocol	Placental outcomes (late gestation)	Fetal blood gas, metabolite and hormone profile	Materno-fetal haemodynamic outcomes	Fetal cardiac outcomes (late gestation)	Postnatal cardiac outcome	References	
Rat 8% protein from 1 d gestation to weaning; causes IUGR	↑ placental volume = or ↓ placental weight	↓ Lz % = or ↑ placental body weight	↓ surface area density and total surface area of materno-fetal interface = fetal capillary surface area, diameter or length	↑ VEGF protein = VEGF receptors and expression-regulating mRNA	↓ absolute heart weight (1 month)	Snoeck et al., 1990; Doherty et al., 2003; Fernandez-Twinn et al., 2003, 2006; Hoppe et al., 2007; de Brito Alves et al., 2014, 2015, 2016; Liu et al., 2014; Nasimento et al., 2014; Barros et al., 2015; Paulino-Silva and Costa-Silva, 2016	
Mouse 9% protein from 1 d gestation to birth; causes IUGR	↓ placental weight	↓ maternal and fetal blood vessel length in Lz	↓ VEGF protein = VEGF receptors and expression-regulating mRNA	↑ systolic blood pressure (~3 to 12 months)	Rutland et al., 2007; Watkins et al., 2008, 2011, 2015		
Rat 9% protein from 1 d gestation to birth; causes IUGR	↑ placental volume = or ↓ placental weight	↓ 11β-HSD-2 and ↑ GSase activity	↓ 11β-HSD-1 mRNA = 11β-HSD-1 mRNA	↓ maximal and overall relaxation to VEGF in uterine arteries	= absolute heart weight (~1 month)	Langley and Jackson, 1994; Langley-Evans et al., 1994, 1996; Langley-Evans and Jackson, 1995; Gardner et al., 1997; Langley-Evans, 1997a,b; Langley-Evans and Nwagwu, 1998; Sherman and Langley-Evans, 2000; Ahire Sayet et al., 2001; Bertram et al., 2001; Itoh et al., 2002; Jackson et al., 2002; Koumentaki et al., 2002; Brawley et al., 2003; Burdge et al., 2003	
Animal model and experimental protocol	Placenta outcomes (late gestation)	Fetal blood gas, metabolite and hormone profile	Materno-fetal haemodynamic outcomes	Fetal cardiac outcomes (late gestation)	Postnatal cardiac outcome	References	
--	-----------------------------------	---	-----------------------------------	--	--------------------------	------------	
Rat 6% protein from 1 d gestation to birth; = or ↓ fetal weight	= placental weight	↓ Jz weight	↓ placental efficiency	↓ number of giant and glycogen cells in Jz, thickness of Lz	• altered placental mitochondrial function	↓ IGF2 (11–17KD) protein in Lz	Torrens et al., 2003, 2006, 2008; Musha et al., 2006; Elmes et al., 2007, 2008, 2009; Harrison and Langley-Evans, 2009; Strakovsky et al., 2010; Slater-Jeffries et al., 2011; Bai et al., 2012

(Continued)
Animal model and experimental protocol	Placenta outcomes (late gestation)	Fetal blood gas, metabolite and hormone profile	Materno-fetal haemodynamic outcomes	Fetal cardiac outcomes (late gestation)	Postnatal cardiac outcome	References
Mouse						
High fat	↓ placental weight				↑ systolic and diastolic blood pressure (6 and 12 months, females)	Liang et al., 2009a,b, 2010
(12x fat) from −28 d to weaning (fetal weight not reported)	↓ number of trophoblast cells	↑ oxidative stress-mediated endothelial cell damage				
Mouse						
High fat/high sugar (−5x fat, ~6x sugar) from −84 d to lactation	↑ lipid accumulation in Db/Jz	↑ HIF1-α protein				
= fetal or birth weight						
Rat						
High fat (4.5x) from −21 d to lactation; = in fetal weight or causes IUGR	↓ placental weight	↓ Jz weight	↑ LPL, SNAT2, GLUT1, and GLUT4 mRNA (males only)	↑ IL-1β, TNFα, and CD68 mRNA (males only)	↑ systolic blood pressure (~3–5 months)	Reynolds et al., 2014, 2015; Gray et al., 2015; Albert et al., 2017

ACE, angiotensin converting enzyme; ACh, acetylcholine; ACTH, adrenocorticotropic hormone; ACTA, actin alpha; Aft, activating transcription factor; AgRP, agouti related peptide; Ant, adenine nucleotide translocator; AKT, protein kinase B; ANP, atrial natriuretic peptide; APJ, apelin receptor; Atras, asparagine synthetase; ATR, activating transcription factor-4; ATP6, mitochondrially encoded ATP Synthase 6; AQP, aquaporin; Bak, Bcl-2 homologous antagonist/killer; Bax, bcl2-like protein 4; Bcl2, B-cell lymphoma 2; Bcl-XL, B-cell lymphoma-extra large; BDNF, brain-derived neurotrophic factor; CART, cocaine and amphetamine regulated transcript; CD68, cluster of differentiation 68; CPT-1, carnitine palmitoyltransferase I; Cx43, connexin 43; d, day; Db, decidua basalis; eNOS, endothelial nitric oxide synthase; EPO, erythropoietin; EPOR, erythropoietin receptor; ERK, extracellular signal-regulated kinase; GAG, glycosaminoglycans; GLUT, glucose transporter; GSase, corticosterone-inducible glutamine synthase; HIF1-α, hypoxia-inducible factor 1 alpha subunit; HR, heart rate; 11β-HSD, 11-hydroxysteroid dehydrogenase; 17β-HSD, 17β-hydroxysteroid dehydrogenase; IGF-1, insulin-like growth factor 1; IGFIR, insulin-like growth factor binding protein; IL-1β, interleukin 1 beta; Jz, junctional zone; LPL, lipoprotein lipase; LVEDP, left ventricular end diastolic pressure; LVDP, left ventricular developed pressure; MAP, mean arterial pressure; mRNA, microRNA; MHC, myosin heavy chain; MMP, matrix metalloproteinase; mt, mitochondrial; mt-co, mitochondrially encoded cytochrome C oxidase; mTOR, mammalian target of rapamycin; NEAA, nonessential amino acids; NPY, neuropeptide Y; NR3C1, nuclear receptor subfamily 3 group C member 1; p-eIF2α, phosphorylated eukaryotic translation initiation factor 2α; PE, phenylephrine; POC-1α, peroxisome proliferator-activated receptor-gamma coactivator 1 alpha; POMC, pro-opiomelanocortin; PPAR, peroxisome proliferator-activated receptor; SNAT, sodium-dependent neutral amino acid transporter; Tgfα, transcription factor A, mitochondrial; TNFα, tumor necrosis factor alpha; TrkB-FL, tyrosine kinase receptor B full-length; TrkB-T1, tyrosine kinase receptor truncated; UCP, uncoupling protein; VEGF, vascular endothelial growth factor; UN, undernutrition. ^ cross-fostered to ad libitum control dam, =, unchanged.
mouse and rat cardiomyocytes are immature at birth and undergo their final maturation and terminal differentiation in the weeks after birth (Li et al., 1996; Soonpaa et al., 1996). This is in contrast to humans, whose pool of cardiomyocytes begin to terminally differentiate in late gestation (Kim et al., 1992), and as such, in utero insults may have a more profound impact on the postnatal heart. Sheep also have benefits and limitations as an experimental animal model. Due to their size, this allows for the chronic instrumentation of the fetal circulation to assess fetal haemodynamics, concentrations of humoral factors and cardiac function. However, the caveat to this is that they have a long gestation (almost 5 months) and also take a year to reach adulthood. Further, there are a limited number of facilities in the world that allow for postnatal longitudinal studies. The sheep placenta is cotyledonary in nature, composed of many individual placentomes, which form at sites in the uterus called caruncles. There is no trophoblast invasion of maternal vessels, and an epithelial layer separates maternal blood from the trophoblast (Wooding and Burton, 2008). The temporal maturation of sheep cardiomyocytes (Burrell et al., 2003; Jonker et al., 2007b), cardiac sympathetic innervation (Lebowitz et al., 1972; Lipp and Rudolph, 1972; Tucker, 1985), and maturation of the parasympathetic nervous system (Llanos et al., 1980; Yiallourou et al., 2013), however, are better matched to humans than rodents.

ANIMAL MODELS WITH REPORTED FETAL HYPOXAEAMIA

The most common consequence of complicated pregnancy is fetal hypoxaemia, which has been reported in human intrauterine growth restriction (IUGR) (Economides et al., 1991; Mori et al., 1993; Baschat et al., 2000). One of the more comprehensive sets of paired placenta and cardiac data in a model of altered placentaion comes from the carunclectomy model in sheep. The removal of the majority of endometrial caruncles from the non-pregnant uterus results in the formation of less placentomes, and reduced total placental weight and uterine blood flow in subsequent pregnancies (Robinson et al., 1979; Jones et al., 1988). This model is one of placental insufficiency from conception, and results in fetal hypoxaemia, hypoglycaemia, hypoinsulinaemia, hypercortisolaemia, hypothyroidism [reduced thyroid hormones triiodothyronine (T3) and thyroxine (T4)], elevated catecholamines (noradrenaline and adrenaline) and reduced plasma insulin-like growth factor-1 (IGF-1; for review see Morrison, 2008). T3, cortisol and IGF-1 are important modulators of cardiomyocyte growth and maturation, which are discussed below. In this model, each placentome is modified to increase its surface area for exchange between the maternal and fetal circulations, however, the fetus is still growth restricted in late gestation (Zhang et al., 2016). The fetus has reduced umbilical blood flow (although an equivalent umbilical blood flow per kg of fetus compared to controls), and is normotensive (Owens et al., 1989; Edwards et al., 1999). One of the most notable changes in fetal heart development in the carunclectomy model is a reduction in the number of cardiomyocytes in late gestation (Botting et al., 2014). Sheep, like humans, begin the transition from proliferative cardiomyocytes to terminally differentiated cardiomyocytes in late gestation (Kim et al., 1992; Burrell et al., 2003; Jonker et al., 2007b). Consequently, changes to the endowment, but also in the function of cardiomyocytes in late gestation, may have consequences throughout life. Interestingly, despite the fetus being hypoxaemic in late gestation, the fetal heart is not hypoxic, nor does it have a greater percentage of apoptotic cardiomyocyte or a diminished percentage of cardiomyocytes in the cell cycle (Botting et al., 2014). This may be due to the adaptive increase in capillary density in the fetal heart, which may increase local oxygen supply to compensate for the placental insufficiency (Botting et al., 2014). There may also be other alterations in response to placental insufficiency that decrease oxygen demand by the fetal heart, such as an increase in anaerobic metabolism, thereby protecting it from further damage. Despite there being fewer and smaller cardiomyocytes in late gestation, each cardiomyocyte is larger relative to heart weight (Morrison et al., 2007). This may suggest an alteration in the regulation of cardiomyocyte hypertrophy in late gestation due to carunclectomy. After birth, lambs born with a low birth weight develop left ventricular hypertrophy by 3 weeks of age, and have a greater signaling through the pathological hypertrophy pathway, specifically the type 2 IGF/mannose-6-phosphate receptor (IGF-2R)/Gaq/calmodulin-dependent protein kinase II (CaMKII) (Wang et al., 2011, 2015b). Furthermore, the number of cardiomyocytes in the adult heart is positively correlated to birth weight (Vranas et al., 2017). Similarly, female guinea pigs exposed to maternal hypoxia have reduced cardiomyocyte number at 4 months of age, which highlights the life-long impact a reduction in cardiomyocyte endowment in utero may have (Botting et al., 2018). The consequence of these placenta-mediated changes on the function of the postnatal heart is yet to be determined. Further work is required to identify the contribution of low oxygen and glucose, as well as alterations in humoral factors, on the development of heart pathology in the offspring.

By comparing the carunclectomy model to UPE, which is typically induced in the last trimester in sheep, a greater understanding of the specific role of humoral and haemodynamic factors that influence the fetal heart can be determined. Infusion of insoluble microspheres into the fetal descending aorta between the renal artery and common umbilical artery results in the blockage of vessels in the fetal portion of placentomes (cotyledons), which subsequently increases placental vascular resistance and reduces gas and nutrient exchange between the fetal and maternal circulations (Trudinger et al., 1987). Similar to the carunclectomy model, UPE results in fetal hypoxaemia and elevated plasma noradrenaline concentrations, but does not lead to a persistent elevation in fetal cortisol concentrations (Louey et al., 2000; Thompson et al., 2011) or hypoglycaemia (Thompson et al., 2011). UPE results in decreased total placenta weight and IUGR. In some studies, UPE results in an increase (Murotsuki et al., 1997) or no change (Louey et al., 2000; Thompson et al., 2011, 2013) in fetal mean arterial pressure (MAP), which may be due to the timing and severity of UPE, as well as, the degree to which placental vascular resistance is increased.
Interestingly, UPE studies that report elevated fetal MAP also show an increase in relative heart weight (Murotsuki et al., 1997). This is in contrast to UPE studies that report normotensive fetuses, whose heart weights may be reduced but proportional to the reduction in fetal mass (Duncan et al., 2000; Thompson et al., 2013). The difference in fetal MAP between these UPE studies highlights that elevations in fetal MAP can promote cardiac hypertrophy (discussed below). Of note, even in the absence of an elevation in fetal MAP, UPE results in an increase in fetal cardiac fibrosis and an upregulation of collagen synthesis, likely through the transforming growth factor (TGF)-β pathway (Thompson et al., 2013). Similar to the carunclectomy model, UPE results in delayed cardiomyocyte maturation, indicated by a reduced percentage of binucleated cardiomyocytes (Bubb et al., 2007; Morrison et al., 2007). However, unlike the carunclectomy model, UPE in late gestation does not alter cardiomyocyte size but decreases cell cycle activity, indicating that UPE may instead impair the proliferation of cardiomyocytes in the fetus 20 days after embolization commences (Louey et al., 2007). The differences in the cardiac phenotype between the carunclectomy and UPE models suggest that the timing of the insult in relation to placental development and cardiomyocyte maturation may help to identify the pathogenesis of cardiac pathology. Currently, the fetal and postnatal consequences of UPE on cardiac function are unknown. However, chronic fetal hypoxaemia in late gestation in sheep due to either maternal hypoxia or SUAL results in systolic and diastolic dysfunction in the isolated fetal heart (Brain et al., 2015), and greater infarct size due to ischaemia/reperfusion in the isolated newborn heart (Tare et al., 2014), respectively. Furthermore, an increase in collagen synthesis and evidence of left ventricular (LV) hypertrophy is seen in juvenile guinea pigs exposed to unilateral umbilical artery ligation from mid-gestation (Briscoe et al., 2004). Interestingly, if the insult to the placenta and fetus is shorter, but more severe, as is the case in the rat model of bilateral ureterine artery and vein ligation, the cardiac phenotype with regards to the emergence of postnatal cardiac hypertrophy is less severe (heart weight relative to body weight is equivalent to controls at 2 and 6 months of age; Wadley et al., 2016). However, caution must be taken when making direct comparisons between sheep, guinea pigs, and humans relative to rats, given rat cardiomyocytes do not mature to become binucleated until after birth (binucleation occurring from 4 to 12 days after birth; Li et al., 1996). As such, rat cardiomyocytes may have a greater capacity to repair damage caused by in utero insults. For example, additional evidence from the same rat model of bilateral ureterine vessel ligation demonstrates that a deficit in cardiomyocyte number may be corrected if a newborn is cross fostered onto a normal (sham) mother (Black et al., 2012).

Of the various sheep models of fetal hypoxaemia, one of the most documented placental phenotypes is that resulting from maternal hyperthermia. Housing pregnant ewes at 35–40°C from ~80 to 120 days of gestation results in reduced placental weight, decreased angiogenic signaling within the fetal portion of the placenta, and increased placental apoptosis compared to controls (Regnault et al., 2003; Monson et al., 2017). The maternal hyperthermia-induced placental restriction is likely due to the reported decrease in maternal uterine blood flow compared to controls. Interestingly, uterine blood flow is similar to controls when expressed per 100 g of placental and fetal weight (Regnault et al., 2007). Fetuses whose mothers were exposed to hyperthermia in pregnancy have reduced umbilical blood flow when expressed as absolute or relative to either placental or fetal weight and have increased umbilical artery pulsatility index (PI) and resistance (Regnault et al., 2007), likely due to increased placental vascular resistance. This results in either no change (Barry et al., 2016) or an increase (Galan et al., 2005; Regnault et al., 2007) in fetal MAP. Consequently, fetuses whose mothers were exposed to hyperthermia in pregnancy are hypoxaemic, hypoglycaemic, hypoinsulinaemic, hypercortisolaemic [males], and have elevated plasma noradrenaline levels compared to controls (Walker et al., 1990; Regnault et al., 1999, 2007); a humoral profile much like the carunclectomy fetus in late gestation. The hyperthermia model also induces IUGR. To date, not much is known about the impact of placental changes induced by maternal hyperthermia on the fetal heart. However, the LV of fetuses whose mothers were exposed to hyperthermia in pregnancy have a greater insulin stimulated blood flow per gram of LV tissue and insulin stimulated glucose delivery and uptake, which relates to an increase in insulin receptor (IR) and glucose transport protein 4 (GLUT4) abundance [right ventricle (RV) not reported] (Barry et al., 2016). These adaptations may increase the chance of survival in a hypoxaemic, hypoglycaemic, and hypoinsulinaemic environment, but the consequence to the postnatal heart is currently not known.

The majority of information known about the effect of hypoxia on postnatal cardiac structure and function has been obtained from rodent studies, for which information on placental phenotype is also available. Reducing the fraction of oxygen in maternal inspired air from 21% to 10.5% from days 6 and 20 of gestation in rats and guinea pigs, respectively, results in decreased trophoblast invasion and spiral artery remodeling, coupled with an increase in maternal MAP (Zhou et al., 2013; Thompson et al., 2016). However, there are beneficial changes in placental morphology that would be expected to optimize oxygen delivery to the fetus in hypoxic dams, such as an increase in vascular density and a reduction in the barrier to oxygen diffusion (Thompson et al., 2016). Despite these adaptations, the fetal heart appears to remain hypoxic as indicated by the upregulation of hypoxia-inducible factors (HIFs), markers of nitrosative damage, and reduced mitochondrial function (Thompson et al., 2009; Evans et al., 2012a; Al-Hasan et al., 2013). This fetal cardiac phenotype could also be related to impaired coronary artery function due to altered nitric oxide (NO) availability [disturbed expression of cardiac NO synthase (NOS)] (Thompson et al., 2004, 2009; Thompson and Dong, 2005; Dong and Thompson, 2006). Maternal hypoxia (10.5%) in rats from 15 to 21 day gestation induces IUGR, decreases fetal heart weight and cardiomyocyte cell cycle activity, increases cardiomyocyte apoptosis, and prematurely promotes cardiomyocyte quiescence (binucleation) (Bae et al., 2003; Paradis et al., 2014, 2015). Furthermore, offspring of mothers exposed to hypoxia in pregnancy are more susceptible to myocardial infarction and ischaemia/reperfusion injury (Li et al., 2003; Xu et al., 2006; Xue and Zhang, 2009; Rueda-Clausen et al., 2011; Shah et al., 2017).
Interestingly, the presence of IUGR is not required for maternal hypoxia in rats to programme altered cardiac phenotypes. Maternal hypoxia (13%) from 6 to 20 days of gestation does not alter fetal weight compared to normoxic controls, but results in differences in LV contractility and responsiveness to \(\alpha_1\)-adrenergic and muscarinic agonists at 4 months of age (Giussani et al., 2012). Additionally, maternal hypoxia results in programmed vascular dysfunction in the offspring irrespective of birth weight (Morton et al., 2010; Giussani et al., 2012; Bourque et al., 2013; Brain et al., 2015).

From the aforementioned studies, oxygen clearly plays an important role in both placental and heart development; however, more information is needed to understand the direct effect oxygen plays in these associations. Moreover, the role of changes in both oxygen and nutrient availability on the placenta and heart may be more informative in the context of complicated human pregnancies, as both substrates are often altered.

ANIMAL MODELS WITH FETAL NUTRIENT ALTERATIONS, BUT NO REPORTED FETAL HYPOXAEMIA

An observation from the Dutch Hunger Winter Study has been the importance of timing in the programming of adult disease (Roseboom et al., 2006). Babies exposed to the famine during late gestation were born small and remained small throughout their lives, with lower rates of obesity as adults than those born before and after the famine. Conversely, babies exposed during early gestation experienced elevated rates of obesity and cardiovascular disease in later life. The Dutch Hunger Winter therefore provided valuable insight into how dietary manipulation during specific periods of development can influence subsequent health. This concept of "critical windows" during development has been tested in several different animal experimental models. Experimental studies that have manipulated maternal calorie intake or quality during pregnancy, and show alterations in both placenta and cardiovascular morphology and function, are outlined in Table 2. Overall, these studies show that the specific effects on the placenta or fetal heart depend on the type of challenge, as well as, the duration, severity and timing relative to the formation of these two organs.

Maternal calorie restriction (10–50%) and low-protein diets (6–9%) in mice, rats and guinea pigs, typically reduce placenta weight, as well as regional weights and/or volumes of the transport labyrinthine zone (Lz) and endocrine junctional zone (Jz) (Table 2). These changes are related to reduced formation of maternal blood spaces and fetal vasculature in the exchange region (Roberts et al., 2001a,b; Rutland et al., 2007), potentially mediated through vascular endothelial growth factor (VEGF) signaling (Liu et al., 2014) and/or an increase in apoptosis in the Lz (Belkacemi et al., 2009, 2011b). In addition to the effects on placental morphology, maternal undernutrition induces mitochondrial abnormalities in the placenta (Belkacemi et al., 2011b; Mayeur et al., 2013; Rebelato et al., 2013). Mitochondria are implicated in numerous critical functions for feto-placental development, including ATP production for placental growth, production of oxidative stress and hormones, and control of apoptosis (Myatt, 2006; Wakefield et al., 2011). Mitochondrial defects may modify placental activity, and could therefore contribute to the restriction of both fetal and placental growth following calorie restriction. The expression of nutrient transporters (Lesage et al., 2002; Belkacemi et al., 2011c; Reynolds et al., 2015), growth factors (Woodall et al., 1996a; Gao et al., 2012a), appetite- and metabolism-regulating peptides (Caminos et al., 2008; Mayeur et al., 2016), angiotensin-converting enzymes (Gao et al., 2012b) are also altered by calorie and protein restriction and may contribute to suboptimal fetal growth and the associated programming of adulthood hypertension in these models. The ability of the placenta to act as a barrier to circulating maternal hormones is also affected by the maternal environment. Both calorie and protein restriction in rodents alters the placental expression of 11β-hydroxysteroid dehydrogenases type 1 and 2 (Langley-Evans et al., 1996; Bertram et al., 2001; Lesage et al., 2001; Belkacemi et al., 2011c), which activate and inactivate circulating glucocorticoids, respectively. Glucocorticoids have direct effects on the heart and vasculature (Walker, 2007). Therefore, increased fetal glucocorticoid exposure due to loss of the placenta glucocorticoid barrier will adversely affect both fetal growth and cardiovascular development before birth. Maternal low protein diets or global calorie restriction, have been shown to increase systolic blood pressure or MAP in adult offspring (Table 2). The degree to which blood pressure is elevated varies with the specific nutritional challenge and potentially the extent of remodeling of the aorta and extracellular matrix (Khorram et al., 2007a,b,c, 2010), impairment in mitochondrial oxidative phosphorylation (Nascimento et al., 2014) and changes in the expression of genes and miRNAs involved in cardiac energy metabolism (Slater-Jefferies et al., 2011). Further, adult offspring who are hypertensive may also be more vulnerable to ischaemia/reperfusion injury, as seen in the 9% protein restriction model (Elmes et al., 2008). Alterations in the reactivity of resistance arteries to vasodilators or constrictors, may also contribute to elevated blood pressure in adult offspring (Brawley et al., 2003; Torrens et al., 2003, 2006, 2008; Sathishkumar et al., 2009, 2015). A maternal low protein diet results in a reduction in heart weight and endowment of cardiomyocytes at birth (Corstius et al., 2005). However, if protein restriction continues throughout lactation, during the period of cardiomyocyte maturation in rats, cardiomyocyte endowment is similar to controls at weaning (Lim et al., 2010).

In addition to undernutrition, excess calories during pregnancy can also affect the placenta and offspring heart. Maternal high-fat or high-fat/high-sugar diets have been associated with both unchanged (Fernandez-Twinn et al., 2006, 2012; Blackmore et al., 2014; Reynolds et al., 2015) and reduced fetal and placental weights (Reynolds et al., 2014, 2015), depending on the length of exposure to the obesogenic diet. A maternal high-fat/high-sugar diet increases placental lipid deposition (Fernandez-Twinn et al., 2017), expression of HIF1α (Fernandez-Twinn et al., 2017) and pro-inflammatory mediators (Reynolds et al., 2014) and
alters nutrient transport in a sex-specific manner (Reynolds et al., 2014). While inflammatory processes are essential for pregnancy progression and maintenance, dysregulation of immune function is a major contributor to pregnancy-related disorders (Denison et al., 2010). However, feeding an obesogenic diet during pregnancy has been shown to result in a reduced placental fetal capillary volume (Sfruzzu-Peri et al., 2013), which would impair fetal oxygen delivery (Kulandavelu et al., 2013), thereby contributing to the hypoxia-mediated response to maternal obesity. The increase in the expression of glucose and fatty acid transporters in only male fetuses by Reynolds et al. (2014), suggests an attempt to compensate for the diet-induced placental insufficiency. A maternal high fat or high-fat/high-sugar diet is associated with increases in systolic and diastolic blood pressure, left ventricular end diastolic pressure (LVEDP), and a decrease in left ventricular developed pressure (LVDP), in young adolescent and adult offspring. A decreased LVDP and increased LVEDP, indicative of decreased ventricular compliance and impaired relaxation, respectively, is most likely related to cardiac hypertrophy (Fernandez-Twinn et al., 2012; Blackmore et al., 2014), which have been determined in the high-fat/high-sugar murine model using molecular and stereological techniques. Further work is required to characterize the fetal origins of the cardiac abnormalities observed in adult offspring of high-fat/high-sugar fed dams.

GENETIC MODELS

Studies performed in genetically-modified mice have started to provide novel insights into the regulation of, and relationship between, fetal heart development and placental formation (Table 3). Indeed, findings of mutant mice suggest that the formation of the fetal heart requires many of the same genes that regulate the development of the placenta (e.g., Hand1, Firulli et al., 1998; Riley et al., 1998). The Mouse Genome Informatics database identifies 329 genes with both placental morphology and cardiovascular defects (search identifies 754 mutants when using broader term, extraembryonic tissue morphology in conjunction with cardiovascular; conducted on 04 February, 2018). A selection of these genes are listed in Table 3 (e.g., Hey1/2, Mekk3, Gab1, Hiat1, Flrt2, Phd2, Cited2, Ovol1, Vcam1, Mmp14/16). Malformations of the heart and placenta are the most commonly cited reasons for mid-gestational lethality. Heart defects also arise at around day 10 of pregnancy, when organogenesis becomes highly dependent on placental function. Previous work has largely focussed on assessing the impact of a genetic manipulation on either the formation of the placenta or the fetal heart, rather than considering an interaction between the two. In spite of several of the genes listed in Table 3 being expressed in both the fetal heart and the placental cell lineages, the temporal expression and order of developmental defects have not always been accurately determined. However, some findings in mice comparing the fetal heart and placental expression of genes with respect to the time scale of development of defects, as well as, selective gene targeting strategies, have highlighted that fetal heart defects may arise secondary to placental abnormalities and/or insufficiency.

Loss of the homeobox gene transcription factor, Hoxa13, results in defective vascularization and formation of the placental labyrinthine (exchange) zone (Shaut et al., 2008), lethality from days 11 of gestation (Shaut et al., 2008; Scotti and Knita, 2012) and thinning of the fetal ventricle walls. Interestingly, Hoxa13 is expressed in cell lineages that will form the placenta, but is absent from the fetal heart (Shaut et al., 2008). A deficiency in the zinc finger transcription factor, Ovol2 also causes abnormalities in both placenta and fetal heart development (Unezaki et al., 2007). Although, the Ovol2 gene is primarily expressed by the chorion and placental trophoblast and only lowly expressed by the fetal heart when cardiac abnormalities arise (Unezaki et al., 2007). Collectively, these data suggest that malformations of the fetal heart may be a consequence of defects in placental development.

The expression of members of the activator protein-1 transcription factor family (Frai1, Junb), nuclear hormone receptors (Pparg), mitogen-activated protein kinase signaling pathway (Erk2, p38a, Braf) and protein modification machinery (Senp2) in the placenta also appear to be required for fetal heart development. Loss of any of these genes leads to reduced vascularization and development of the placental labyrinthine zone (Barak et al., 1999; Schorpp-Kistner et al., 1999; Adams et al., 2000; Schreiber et al., 2000; Hatano et al., 2003; Galabova-Kovacs et al., 2006; Chiu et al., 2008; Maruyama et al., 2016). These genetic deficiencies also result in thin ventricular walls, poor myocardial trabeculation, dilated pericardium and/or increased apoptosis in the fetal heart and lethality in mid-gestation (Barak et al., 1999; Schorpp-Kistner et al., 1999; Adams et al., 2000; Schreiber et al., 2000; Hatano et al., 2003; Galabova-Kovacs et al., 2006; Maruyama et al., 2016). During development, p38a, Pparg, Braf, Junb, and Senp2 are more abundantly expressed by placental rather than fetal cell lineages (Adams et al., 2000; Mudgett et al., 2000), with no difference reported for Erk2 or Frai1. However, tetraploid aggregation experiments and conditional gene manipulations to generate null embryos with wildtype placentas was shown to circumvent the fetal heart abnormalities and improve embryonic viability in response to p38a, Erk2, Frai1, Pparg, Braf, Senp2, and Junb deficiency (Barak et al., 1999; Schorpp-Kistner et al., 1999; Adams et al., 2000; Schreiber et al., 2000; Hatano et al., 2003; Galabova-Kovacs et al., 2006; Maruyama et al., 2016). These observations provide strong evidence that defects in the placenta were most likely to represent the primary cause of fetal cardiac defects and lethality in these mutant mice.

During the establishment of normal circulation, myocardial development and cardiac morphogenesis depend on the patterns of blood flow returning from the yolk sac and choioallantoic placenta (Lindsay et al., 2014). Therefore, placental abnormalities may disrupt cardiac and vascular development by altering the haemodynamic forces of blood returning to the heart and result in fetal demise (Lindsay et al., 2014). In support of this, retaining expression of RNA binding gene, Ott1/Rbm15 or the transcriptional regulator Rb gene in the placenta is sufficient to rescue the lethality of null fetuses (Wu et al., 2003; Raffel et al., 2009). Furthermore, the loss of placental, but not fetal
TABLE 3 | Genetically-modified mice which show placental and cardiac abnormalities*.

Gene	Expression in placenta and fetus/fetal heart	Impact of constitutive loss of expression in developing conceptus (unless stated otherwise)	Notes	References
	Placenta	Fetal heart development	Fetal viability	
Genes in the placenta important for fetal heart development				
Hoxa13	Allantoic mesenchyme and the Lz fetal vessels as well as umbilical arteries	d10.5–12.5: Defective Lz vessel formation and branching	d14.5: Reduced right and left ventricular wall thickness	d11-15.5: Lethal
Ovo2	Highest expression by the chorion and placenta with relatively low expression in fetal heart from d8.5	d9.5: Defective chorionic and Lz vascularization	d9: Small heart, defects in the growth of myocardial and endocardial layers, resulting in the abnormal looping and chamber formation	d9.5–10.5: Lethal
P38ka	Broadly expressed by embryo (including the heart, branchial arches, limb buds and somites) and placenta (Lz and chorionic plate)	d10.5: Defective development of Lz vasculature and exchange interface	d10.5: Reduction of the myocardial cell population, thin ventricle walls, poor myocardial trabeculation	d10.5–12.5: Lethal
Erk2	Placenta and fetal organs including heart.	d10.5: Defective Lz development and vascularization	d11.5: Thin ventricular walls	d12.5: Lethal
Fra /Fosl1	Expressed in Lz of placenta and several fetal tissues including heart	d9.5: Failed Lz vascularization	d9: Premature cardiomyocyte differentiation, ventricular and septum hypoplasia, myocardial thinning and degeneration of the trabecular zone	d10.5: Lethal
Pparg	d8.5 highly expressed by trophoblast but not embryo. From d14.5 expressed by fetal brown fat	d9.5 Defective Lz vascularization defects and disorganized structure, fewer maternal blood spaces and thickened trophoblast	d9: Premature cardiomyocyte differentiation, ventricular and septum hypoplasia, myocardial thinning and degeneration of the trabecular zone	d12.5: Lethal

(Continued)
Gene	Expression in placenta and fetus/fetal heart	Impact of constitutive loss of expression in developing conceptus (unless stated otherwise)	References
Braf	d1 1.5: Expressed at highest levels in the placenta, relative to the fetus	d10.5: Defective Lz development and vascularization. Defective Jz development d9.5: Increased heart apoptosis and defective vascularization d11.5: Lethal	MecoxCre Braf null (WT placenta, null embryo): Rescued lethality and growth defects of nulls Galabova-Kovacs et al., 2006
Junb	Ubiquitously expressed in placenta and fetus, but particularly high in placenta	d7.5: Perturbed trophoblast invasion and hormone expression d10: failure to develop and vascularise Lz d9.5: Enlarged pericardium d8.5–10: Lethal	Tetraploid aggregation experiment (WT placenta, null embryo): Rescued cardiac defects and improved fetal viability of nulls Schorpp-Kistner et al., 1999
Serp2	From d7.5 widely expressed by trophoblast lineages in Lz and Jz. Expression in heart only observed from d10.5	d9–10.5: Impaired syncytium formation and fetal capillary branching in Lz. Reduced Jz and particularly giant cell formation d9–10.5: Smaller heart chambers with pericardial effusion. Myocardial wall thinning and missing of atrioventricular cushions d11.5: Lethal	Sox2Cre nulls (WT placenta, null embryo): Rescued cardiac abnormalities and embryonic lethality of nulls Chiu et al., 2008; Maruyama et al., 2016
E2f7/E2f8	Most abundantly expressed by placenta relative to fetus	Placental specific loss (using cyp19cre) d10: Defective Lz formation, fewer maternal blood spaces and impaired trophoblast invasion Placental specific loss (using cyp19cre) d10: Fetal vascular dilation and hemorrhage Placental specific loss (using cyp19cre) d11.5: Lethal	Ouseph et al., 2012
Ott1/Rbm15	Expressed widely by embryo and placenta	d9.5: Defective Lz vascularization d18.5: Ventricular septal defect d10.5: Lethal	Sox2Cre nulls (WT placenta, null embryo): Rescued fetal growth defects and lethality of nulls Raffel et al., 2009
Rb	d12.5: High expression in Lz	d12.5: Lz defective with impaired vascularization, fewer maternal blood spaces, reduced surface area and thickened trophoblast d13.5: Lethal	Tetraploid aggregation and MecoxCre (WT placenta, null embryo): Rescued fetal growth defects and lethality of nulls Wu et al., 2003; Wenzel et al., 2007

(Continued)
TABLE 3 | Continued

Gene	Expression in placenta and fetus/fetal heart	Impact of constitutive loss of expression in developing conceptus (unless stated otherwise)	References		
	Examples of genes important for both placental and fetal heart development				
Mmp14/16 double KO mice (MT-MMP1/2)	d10.5: Impaired Lz vascularization and branching morphogenesis and failed formation of syncytiotrophoblast layers in Lz	d10.5: Dilated vasculature and enlarged pericardium	d12.5: Lethal	Szabova et al., 2010	
Flt2	Endothelial cells specifically in the placentalisland and epicardial and mesenchyme.	d12.5: Defective Lz development; aberrant alignment of the endothelium	d12.5: Reduced thickness of ventricular myocardium with systemic congestion	d13.5: Lethal	Tai-Nagara et al., 2017
Hey1/2	Both Hey genes are highly expressed in the allantois and early cardiac precursors	d10.5: Impaired Lz vascularization	d9.5: Thin myocardium trabecular defects. Impaired aortic wall formation	d14.5: Lethal	Donovan et al., 2002; Gessler et al., 2002; Fischer et al., 2004
Mekk3/Map3k3	d9.5: Impaired Lz formation and defective Lz angiogenesis	d10: Retarded development of the myocardium and less trabeculation	d11: Lethal	Yang et al., 2000	
Erk5	d9.5: Defective Lz vascularization	d9.5: Abnormal cardiac looping, excessive pericardial fluid, disorganized trabeculae and myocardial lining, reduced vascularization	d10: Lethal	Regan et al., 2002	
Gab1	Placenta and heart	d11.5: Reduced placental size, vascular density and trophoblast proliferation	d10-11.5: Blood in pericardial cavity, d13.5 ventricular hypoplasia and distal and the thin ventricular wall	d12.5-d17: Lethal	Itoh et al., 2000
HAI1	Placental Lz and fetal tissues	d8.5: Thin chorionic plate and few fetal vessels d9.5: Defective Lz trophoblast differentiation and vascularization (linked to reduced Gcn1)	d10: Enlarged pericardium and thin ventricle walls	d11.5: Lethal	Tanaka et al., 2005
Table 3 (Continued)

Gene	Expression in placenta and fetus/fetal heart	Impact of constitutive loss of expression in developing conceptus (unless stated otherwise)	References		
	Placenta	Fetal heart development	Fetal viability	Notes	References
		Fetal viability	Notes		
Rxra	Ubiquitously expressed	d9.5: Reduced Lz vascularization	d12–16.5: Lethal	Kastner et al., 1994; Sapin et al., 1997; Barak et al., 1999; Wendling et al., 1999; Mascrez et al., 2009	
		d13.5–16.5: Thin ventricular walls, trabeculae and septum			
		d9: Failure of the allantoic mesoderm to invaginate into the chorionic trophoblast to form the Lz. Poor Lz angiogenesis due to reduced Vegfa expression	d10.5: Lethal	Stumpo et al., 2004; Bell et al., 2006	
		d9: Less developed trabeculae and sinusoids in the myocardial wall, thin myocardial wall			
		d10.5: Lethal			
Zfp361	d8.0: Expression greatest in the allantois with low and diffuse expression in embryo	d9: Failure of the allantoic mesoderm to invaginate into the chorionic trophoblast to form the Lz. Poor Lz angiogenesis due to reduced Vegfa expression	d10.5: Lethal	Stumpo et al., 2004; Bell et al., 2006	
		d9.5: Less developed trabeculae and sinusoids in the myocardial wall, thin myocardial wall			
		d10.5: Lethal			
Phd2	d10.5: Lz defective development; thickened trophoblast, large maternal blood spaces, few fetal vessels	d11.5: Defective ventricular maturation, thin ventricles, under-developed myocardial structures and trabeculae	d13.5–14.5: Lethal	Takeda et al., 2006	
Cited2	d12.5: Smaller placenta, impaired Lz vascularization	d13.5: Severe heart malformations including ventricle outflow and septal defects	From d14.5: Lethal	Withington et al., 2006; Lopes Floro et al., 2011; Moreau et al., 2014	
Vcam1	d8.5–9.5: Expressed by allantois and myocardium	d8.5: Abnormal chorioallantoic fusion and Lz vascularization	d11.5: Epicardial defects	Gurthner et al., 1995; Kwee et al., 1995	

Braf, Braf transforming gene; Cited2, Cbp/P300 interacting transactivator with Glu/Asp carboxy-terminal domain 2; d, day of gestation; E2f7/E2f8, E2F transcription factor 7; Erk2/5, extracellular signal-regulated kinase 2/5; Phd2, fibronectin leucine rich transmembrane protein; Fis/FosF1, FOS like 1, AP-1 transcription factor subunit; Gab1, growth factor receptor bound protein 2-associated protein 1; Gcm1, glial cells missing homolog 1; Ha1, PSPC protein (Clade A protein phosphatases type 2C); Hey1/2, hairy/enhancer-of-split related with YRPW motif 1/2; Hoxa13, Homeobox A13; Junb, JunB proto-oncogene, AP-1 transcription factor subunit; Jz, junctional zone; Lz, labyrinthine zone; Mekk3/map3k3, mitogen-activated protein kinase kinase kinase 3; Mmp, matrix metalloproteinases; Ott1/Rbm15, RNA binding motif protein 15; Ovo2, ovo like zinc finger 2; P38a, mitogen activated protein kinase p38a; Phd2, egl-9 family hypoxia inducible factor 1; Ppar, peroxisome proliferator activated receptor gamma; Rb, RB transcriptional corepressor 1; Rera, retinoid X receptor alpha; Senp2, SUMO/sentrin specific peptidase 2; WT, wildtype. *Note list is not comprehensive.
expression of the transcription factor genes, E2f7 and E2f8, leads to fetal vascular dilatation, multifocal hemorrhages and lethality (Ouseph et al., 2012). However, the placenta is also thought to be responsive to blood flow forces in the fetal circulation (Linask et al., 2014). Although, very little is known about the importance of the developing fetal heart for the formation of the placenta (e.g., the consequence of cardiac-specific deficiency for placentation).

HOW HAEMODYNAMIC CHANGES INFLUENCE THE HEART

Studies in fetal sheep have investigated the specific effects of altered load on the fetal heart in normoxic and euglycaemic fetuses. Specifically, increasing left ventricular afterload by partially obstructing the ascending aorta results in a thicker LV/RV wall and smaller LV chamber volume compared to control (Fishman et al., 1978). This phenomenon of left ventricular hypertrophy in response to increased afterload is seen in adults, and is a mechanism to normalize wall stress according to the law of Laplace. In adults who have quiescent cardiomyocytes, this increase in cardiac mass is predominantly due to an increase in cardiomyocyte hypertrophy (for review, Samuel and Swynghedauw, 2008). Initially it was proposed that the increase in fetal heart mass in response to an increase in afterload was due to an increase the number of cardiomyocytes (hyperplasia) (Fishman et al., 1978). Further investigations by Jonker and colleagues determined that cardiac growth in response to increased fetal MAP and venous pressure is biphasic, initially due to cardiomyocyte hyperplasia and elongation and subsequently due to hyperplasia, premature binucleation and hypertrophy of binucleated cardiomyocytes (Jonker et al., 2007a). This phenomenon is not isolated to the LV, with an increase in pulmonary artery pressure resulting in an increase in RV weight (Segar et al., 1997). The converse is also true- obstructing blood flowing into the LV (decreasing preload) results in a smaller heart with a reduced LV/RV weight (Jonker et al., 2007a). By decreasing fetal systolic pressure with an angiotensin-converting enzyme inhibitor, O’Tierney and colleagues determined that the fetal heart is reduced in size due to a decrease in hyperplasia and not due to alteration in cardiomyocyte size (O’Tierney et al., 2010).

HOW HUMORAL FACTORS INFLUENCE CARDIOMYOCYTES EITHER IN VIVO OR IN VITRO

Treatment of fetuses in vivo or isolated fetal cardiomyocytes with growth factors and hormones, whose concentrations may be altered by the placenta, allows for greater understanding of how the placenta may influence the fetal heart.

IGF-1

IGF-1 is an important growth-promoting hormone that is produced by many tissues and functions throughout fetal and...
postnatal development in an autocrine/paracrine fashion. IGF-1 primarily promotes growth through the type 1 IGF receptor (IGF-1R) and downstream signaling pathways, including extracellular signal-regulated kinase (ERK) and phosphoinositol-3 kinase (PI3K). The carunclectomy model in sheep (Jones et al., 1988) and undernutrition across gestation in rats (Woodall et al., 1996a), decreases fetal plasma IGF-1 concentration in late gestation. Varying results from in vivo experiments in fetal sheep suggest that IGF-1 can either promote cardiac growth by hypertrophy (Lumbers et al., 2009) or hyperplasia (Sundgren et al., 2003). Likewise, treating fetal sheep cardiomyocytes with a form of IGF-1 in vitro results in either greater (Wang et al., 2012) or equivalent (Sundgren et al., 2003) cardiomyocyte hypertrophy compared to serum-free controls. Treating neonatal rat cardiomyocytes with IGF-1 results in a similar variation of results with either cardiomyocyte hypertrophy (Bass et al., 2012) or hyperplasia (Kajstura et al., 1994) reported. Despite the inconsistency between results, IGF-1 has consistently been reported to promote fetal cardiac growth, therefore, reduced plasma concentration may in part contribute to the smaller hearts observed in fetuses from the carunclectomy and undernutrition animal models.

Cortisol

Cortisol is an important regulatory signal during fetal development, which amongst other important roles, acts to mature the cardiovascular system in preparation for birth (for review, Fowden and Forhead, 2015). Fetuses exposed to placental insufficiency due to carunclectomy (Phillips et al., 1996) or maternal hyperthermia [males only] (Walker et al., 1990), have increased plasma cortisol concentrations compared to controls in late gestation. Cortisol infusion to fetal sheep in late gestation results in a greater heart weight accompanied by either an increase in cell cycle activity (Giraud et al., 2006; Feng et al., 2013), increased cardiomyocyte hypertrophy (Lumbers et al., 2005), or decreased DNA content in the left ventricle (Rudolph et al., 1999). Due to the inconsistency in results, it is currently unclear how an increase in cortisol may affect the fetal heart in models of placental insufficiency. However, research into the effect of other humoral factors that are regulated by cortisol, such as thyroid hormone, appear clearer.

Thyroid Hormone

Thyroid hormones, especially T3, promote the maturation of a range of organs (For review, Forhead and Fowden, 2014). T4 is produced by the fetal thyroid gland and is converted to the more active T3 in late gestation. The conversion of T4 to T3 is catalyzed by deiodinases, which are upregulated by cortisol. As such, the surge in plasma T3 concentration is concurrent with the prepartum surge in plasma cortisol concentrations. T3 infusion to fetal sheep prior to the prepartum surge in T3, results in increased cardiomyocyte binucleation [a sign of increased maturation] and decreased cardiomyocyte cell cycle activity compared to controls (Chattergoon et al., 2012a). Furthermore, surgical ablation of the fetal thyroid gland results in reduced fetal cardiomyocyte binucleation and cell cycle activity (Chattergoon et al., 2012a). In vitro, T3 inhibits the proliferation of cardiomyocytes isolated from hearts either before or during the prepartum surge in T3 concentration (Chattergoon et al., 2007, 2012b). The carunclectomy model in sheep results in reduced fetal T3 and T4 plasma concentrations in late gestation (Harding et al., 1985). These studies provide evidence that the decreased percentage of binucleated cardiomyocytes observed in the fetal heart from the carunclectomy (Morrison et al., 2007) and UPE (Bubb et al., 2007) models may be due to reduced plasma T3 concentrations.

CONCLUSION

Epidemiological and clinical studies suggest a link between placental morphology and increased risk of cardiovascular disease in adult life. The mechanistic basis of this relationship has not been fully elucidated. However, experimental animal models and studies in genetically-modified mice, have provided novel insights into the relationship between placental formation and fetal heart development and the role humoral and mechanical forces play in the development of both of these organs (Figure 1). Further work characterizing placental morphology (e.g., surface area, thickness) and function (e.g., umbilical blood flow, oxygen and nutrient delivery) during complicated pregnancy, alongside echocardiographic measures of fetal cardiac structure, and function, will provide valuable insights into the placenta-heart axis. Such research may aid in the early diagnosis and monitoring of complicated pregnancies thus enabling timely interventions to modify long-term cardiovascular risk.

AUTHOR CONTRIBUTIONS

EC, KB, and AS-P contributed equally to reviewing the literature and writing and editing the manuscript.

FUNDING

AS-P is supported by a Royal Society Dorothy Hodgkin Research Fellowship.

ACKNOWLEDGMENTS

The authors would like to thank Emily Mort for creating the images of the placenta and hearts in Figure 1.

REFERENCES

Adams, R. H., Porras, A., Alonso, G., Jones, M., Vintersten, K., Panelli, S., et al. (2000). Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. *Mol. Cell* 6, 109–116. doi: 10.1016/S1097-2765(05)00014-6

Adamson, S. L., Lu, Y., Whiteley, K. J., Holmyard, D., Hemberger, M., Pfarrer, C., et al. (2002). Interactions between trophoblast cells and the maternal...
pig after chronic placental insufficiency. Am. J. Obstet. Gynecol. 191, 847–855. doi: 10.1016/j.ajog.2004.01.050
Bubb, K. J., Cock, M. L., Black, M. J., Dodic, M., Boon, W. M., Parkinson, H. C., et al. (2007). Intrauterine growth restriction delays cardiomyocyte maturation and alters coronary artery function in the fetal sheep. J. Physiol. 578, 871–881. doi: 10.1113/jphysiol.2006.121160
Burdge, G. C., Delange, E., Dubois, L., Dunn, R. L., Hanson, M. A., Jackson, A. A., et al. (2003). Effect of reduced maternal protein intake in pregnancy on the rat on the fatty acid composition of brain, liver, plasma, heart and lung phospholipids of the offspring after weaning. Br. J. Nutr. 90, 345–352. doi: 10.1079/BJN2003090
Burrell, J. H., Boynt, A. M., Kumarasamy, V., Hsieh, A., Head, S. I., and Lumbers, E. R. (2003). Growth and maturation of cardiac myocytes in fetal sheep in the second half of gestation. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 274, 952–961. doi: 10.1002/ar.10110
Burton, G. J., and Jauniaux, E. (2018). Pathophysiology of placental-derived fetal growth restriction. Am. J. Obstet. Gynecol. 218, S745–5761. doi: 10.1016/j.ajog.2017.11.577
Caminos, J. E., Bravo, S. B., Gonzalez, C. R., Garcés, F. M., Cepeda, L. A., Gonzalez, A. C., et al. (2008). Food-intake-regulating-neuropeptides are expressed and regulated through pregnancy and following food restriction in rat placenta. Reprod. Biol. Endocrinol. 6:14. doi: 10.1186/1477-7827-6-14
Chadhva, V., Viero, S., Huppertz, B., and Kingdom, J. (2004). Developmental biology of the placenta and the origins of placental insufficiency. Semin. Fetal Neonatal Med. 9, 357–369. doi: 10.1016/s1477-7793(04)00006-x
Chattergoon, N. N., Giraud, G. D., and Thornburg, K. L. (2007). Thyroid hormone inhibits proliferation of fetal cardiac myocytes in vitro. J. Endocrinol. 192, R1–8. doi: 10.1677/JOE-06-0114
Chattergoon, N. N., Giraud, G. D., Louey, S., Stork, P., Fowden, A. L., and Thornburg, K. L. (2012a). Thyroid hormone drives fetal cardiomyocyte maturation. FASEB J. 26, 397–408. doi: 10.1096/fj.10-179895
Chattergoon, N. N., Louey, S., Stork, P., Giraud, G. D., and Thornburg, K. L. (2012b). Mid-gestation ovine cardiomyocytes are vulnerable to miotic suppression by thyroid hormone. Reprod. Sci. 19, 642–649. doi: 10.1177/1933719112438260
Cheong, J. N., Cuffe, J. S., Jefferies, A. J., Moritz, K. M., and Wlodek, M. E. (2016). Adrenal, metabolic and cardiac-renal dysfunction develops after pregnancy in rats born small or stressed by physiological measurements during pregnancy. J. Physiol. 594, 6055–6068. doi: 10.1113/jphysiol.2016.1272212
Chiu, S. Y., Asai, N., Costantini, F., and Hsu, W. (2008). SUMO-specific protease 2 is essential for modulating p53-Mdm2 in development of trophoblast stem cell niches and lineages. PLoS Biol. 6:e310. doi: 10.1371/journal.pbio.0060310
Corstius, H. B., Zimaniy, M. A., Maka, N., Herath, T., Thomas, W., van der Laarse, A., et al. (2005). Effect of intrauterine growth restriction on the number of cardiomyocytes in the rat heart. Pediatr. Res. 57, 796–800. doi: 120.1003/01.PDR.0000157726.65492.CD
de Brito Alves, J. L., Nogueira, V. O., da Silva, G. S., Wanderley, A. G., Leandro, C. G., et al. (2014). Short- and long-term effects of maternal protein restriction on brain phospholipids of the offspring after weaning. Br. J. Nutr. 111, 306–315. doi: 10.1017/s0007114514002833
de Brito Alves, J. L., Nogueira, V. O., Cavalcanti Neto, M. P., Leandro, C. G., et al. (2015). Maternal protein restriction increases respiratory and sympathetic activities and sensitizes peripheral chemoreflex in male rat offspring. J. Nutr. 145, 907–914. doi: 10.3945/jn.114.195804
de Brito Alves, J. L., de Oliveira, J. M., Ferreira, D. J., Barros, M. A., Nogueira, V. O., Alves, D. S., et al. (2016). Maternal protein restriction induced-hypertension is associated to oxidative disruption at transcriptional and functional levels in the medulla oblongata. Clin. Exp. Pharmacol. Physiol. 43, 1177–1184. doi: 10.1111/1440-1681.12667
Delabaere, A., Leduc, F., Reboul, Q., Fuchs, F., Wavrant, S., Fouron, J. C., et al. (2016). Prediction of neonatal outcome of TTTS by fetal heart and Doppler ultrasound parameters before and after laser treatment. Prenat. Diagn. 36, 1199–1205. doi: 10.1002/pd.4956
Denison, F. C., Roberts, K. A., Barr, S. M., and Norman, J. E. (2010). Obesity, pregnancy, inflammation, and vascular function. Reproduction 140, 373–385. doi: 10.1530/REP-10-0074
Fernandez-Twinn, D. S., Blackmore, H. L., Siggens, L., Giussani, D. A., Cross, C. M., Foo, R., et al. (2012). The programming of cardiac hypertrophy in the offspring by maternal obesity is associated with hyperinsulinaemia, AKT, ERK, and mTOR activation. *Endocrinology* 153, 5961–5971. doi: 10.1210/en.2012-1508

Fernandez-Twinn, D. S., Gascoin, G., Musial, B., Carr, S., Duque-Guimaraes, D., Blackmore, H. L., et al. (2017). Exercise rescues obese mothers’ insulin sensitivity, placental hypoxia and male offspring insulin sensitivity. *Sci. Rep.* 7:46450. doi: 10.1038/srep46450

Firulli, A. B., McFadden, D. G., Lin, Q., Srivastava, D., and Olson, E. N. (1998). Heart and extra-embryonic mesodermal defects in mouse embryos lacking the BH3 transcription factor Hand1. *Nat. Genet.* 18, 266–270. doi: 10.1038/ng398-266

Fischer, A., Schumacher, N., Maier, M., Sendtner, M., and Gessler, M. (2004). The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. *Genes Dev.* 18, 901–911. doi: 10.1101/gad.291004

Fishman, N. H., Hof, R. B., Rudolph, A. M., and Heymann, M. A. (1978). Models of congenital heart disease in fetal lambs. *Circulation* 58, 354–364. doi: 10.1161/01.CIR.58.2.354

Forhead, A. J., and Fowden, A. L. (2014). Thyroid hormones in fetal growth and prepartum maturation. *J. Endocrinol.* 221, R87–R103. doi: 10.1530/JOE-14-0025

Fowden, A. L., and Forhead, A. J. (2015). Glucocorticoids as regulatory signals during intrauterine development. *Exp. Physiol.* 100, 1477–1487. doi: 10.1113/EP085212

Galan, H. L., Anthony, R. V., Rigano, S., Parker, T. A., de Vrijer, B., Ferrazzi, E., et al. (2002). Mouse gridlock: no aortic coarctation or deficiency, sensitivity, placental hypoxia and male offspring insulin sensitivity. *Sci. Rep.* 7:46450. doi: 10.1038/srep46450

Hagen, A. S., Orbus, R. J., Wilkening, R. B., Regnault, T. R., and Anthony, R. V. (2005). Placental expression of angiopeptin-1, angiopeptin-2 and tie-2 during placental development in an ovine model of placental insufficiency-fetal growth restriction. *Pediatr. Res.* 58, 1228–1232. doi: 10.1038/975120a

Harding, E. J., Jones, C. T., and Robinson, J. S. (1985). Studies on experimental growth retardation in sheep. The effects of a small placenta in restricting transport to and growth of the fetus. *J. Dev. Physiol.* 7, 427–442.

Harrison, M., and Langley-Evans, S. C. (2009). Intergenerational programming of impaired nephrogenesis and hypertension in rats following maternal protein restriction during pregnancy. *Br. J. Nutr.* 101, 1020–1030. doi: 10.1017/S0007114508007576

Hatano, N., Mori, Y., Oh-hora, M., Kosugi, A., Fujikawa, T., Nakai, N., et al. (2003). Essential role for ERK2 mitogen-activated protein kinase in placental development. *Genes Cells* 8, 847–856. doi: 10.1046/j.1365-2443.2003.00680.x

Hoppe, C. C., Evans, R. G., Moritz, K. M., Cullen-McEwen, L. A., Fitzgerald, S. M., Dowling, J., et al. (2007). Combined prenatal and postnatal protein restriction influences adult kidney structure, function, and arterial pressure. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 292, R462–R469. doi: 10.1152/ajpregu.00779.2006

Itoh, M., Yoshida, Y., Nishida, K., Narimatsu, M., Hibi, M., and Hirano, T. (2000). Role of Gab1 in heart, placenta, and skin development and growth factor- and cytokine-induced extracellular signal-regulated kinase mitogen-activated protein kinase activation. *Mol. Cell. Biol.* 20, 3695–3704. doi: 10.1128/MCB.20.10.3695-3704.2000

Itoh, S., Brawley, L., Wheeler, T., Anthony, F. W., Poston, L., and Hanson, M. A. (2002). Vasodilation to vascular endothelial growth factor in the uterine artery of the pregnant rat is blunted by low dietary protein intake. *Pediatr. Res.* 51, 485–491. doi: 10.1203/00006450-200404000-00014

Jackson, A. A., Dunn, R. L., Marchand, M. C., and Langley-Evans, S. C. (2002). Increased systolic blood pressure in rats induced by a maternal low-protein diet is reversed by dietary supplementation with glycine. *Clin. Sci.* 103, 633–639. doi: 10.1042/cs1030633

Jelks, A., Belkacemi, L., Han, G., Chong, W. L., Ross, M. G., and Desai, M. (2009). Paradoxical increase in maternal plasma leptin levels in food-restricted gestation: contribution by placental and adipose tissue. *Reprod. Sci.* 16, 665–675. doi: 10.1177/1933719109334257

Jonker, S. S., Läfer, H. N., and Roebuck, M. M. (1984). Studies on the growth of the fetal guinea pig. Changes in plasma hormone concentration during normal and abnormal growth. *J. Dev. Physiol.* 6, 461–472.

Joncs, C. T., Gu, W., Harding, J. E., Price, D. A., and Parer, J. T. (1988). Studies on the growth of the fetal sheep. Effects of surgical reduction in placental size, or experimental manipulation of uterine blood flow on plasma sulphation activity and on the concentration of insulin-like growth factors I and II. *J. Dev. Physiol.* 10, 179–189.

Jonker, S. S., Faber, J. L., Anderson, D. F., Thornburg, K. L., Louey, S., and Giraud, G. D. (2007a). Sequential growth of fetal sheep cardiac myocytes in response to simultaneous arterial and venous hypertension. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 292, R913–R919. doi: 10.1152/ajpregu.00484.2006

Jonker, S. S., Zhang, L., Louey, S., Giraud, G. D., Thornburg, K. L., and Faber, J. J. (2007b). Myocyte enlargement, differentiation, and proliferation kinetics in the fetal sheep heart. *J. Appl. Physiol.* 102, 1130–1142. doi: 10.1152/japplphysiol.00937.2006

Kajstura, J., Cheng, W., Reiss, K., and Anversa, P. (1994). The IGF-1-IGF-1 receptor system modulates myocyte proliferation but not myocyte cellular hypertrophy. *Endocrinology* 134, 3643–3650. doi: 10.1210/endo-134-4-3643

Kamal, H., Blackmore, H. L., et al. (2017). Exercise rescues obese mothers’ insulin sensitivity, placental hypoxia and male offspring insulin sensitivity. *Sci. Rep.* 7:46450. doi: 10.1038/srep46450

Kastner, P., Grondona, J. M., Marks, M., and Vickers, M. H. (2015). Maternal salt and fat intake causes hypertension and sustained endothelial dysfunction in fetal, weaning and adult male resistance vessels. *Sci. Rep.* 5:8753. doi: 10.1038/srep08753

Kurtz, G. C., Davis, V., Li, H., McCoy, M. J., Sharpe, A., and Cybulsky, M. I. (1995). Targeted disruption of the murine Vcam1 gene: essential role of Vcam-1 in choriolaunctoic fusion and placentation. *Genes Dev.* 9, 1–14. doi: 10.1101/gad.9.1.1

Kumar, A., and Ross, M. G. (2007a). Nutrient restriction in utero induces remodeling of the vascular extracellular matrix in rat offspring. *Reprod. Sci.* 14, 73–80. doi: 10.1111/j.1939-1630.2007.tb00265.x

Khorram, O., Momeni, M., Desai, M., and Ross, M. G. (2007a). Nutrient restriction in utero induces remodeling of the vascular extracellular matrix in rat offspring. *Reprod. Sci.* 14, 73–80. doi: 10.1111/j.1939-1630.2007.tb00265.x

Khorram, O., Momeni, M., Ferrini, M., Desai, M., and Ross, M. G. (2007b). In utero undernutrition in rats induces increased vascular smooth muscle content in the offspring. *Am. J. Obst. Gynec.* 196, 486 e481–e488. doi: 10.1067/oajog.2007.01.020
Khorram, O., Khorram, N., Momeni, M., Han, G., Halem, J., Desai, M., et al. (2007c). Maternal undernutrition inhibits angiogenesis in the offspring: a potential mechanism of programmed hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R745–R753. doi: 10.1152/ajpregu.00311.2007

Khorram, O., Han, G., Bagherpour, R., Magee, T. R., Desai, M., Ross, M. G., et al. (2010). Effect of maternal undernutrition on vascular expression of micro and messenger RNA in newborn and aging offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1366–R1374. doi: 10.1152/ajpregu.00704.2009

Kim, H. D., Kim, D. J., Lee, I. J., Rah, B. J., Sawa, Y., and Schaper, J. (1992). Human fetal heart development after mid-term: morphometry and ultrastructural study. J. Mol. Cell. Cardiol. 24, 949–965. doi: 10.1016/0022-2828(92)91862-Y

Koumentaki, A., Anthony, F., Foston, L., and Wheeler, T. (2002). Low-protein diet to maternal low protein diets.

Kulandavelu, S., Whiteley, K. J., Bainbridge, S. A., Qu, D., and Adamson, J. (2001). Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 121, 489–503.

Kutcher, H. N., Tolentino, T. P., and Jones, C. T. (1984). Studies on the growth of the fetal guinea pig. The effects of ligation of the uterine artery on organ growth and development. J. Dev. Physiol. 6, 441–459.

Langley-Evans, S. C., and Jackson, A. A. (1994). Increased systolic blood pressure in adult rats induced by fetal exposure to maternal low protein diets. Clin. Sci. 86, 217–222. doi: 10.1046/j.1365-2176.1994.210017.x

Langley-Evans, S. C., and Jackson, A. A. (1995). Captopril normalises systolic blood pressure in rats with hypertension induced by fetal exposure to maternal low protein diets. Comp. Biochem. Physiol. A. 108, 223–228. doi: 10.1016/0702-6277(94)90177-U

Langley-Evans, S. C., and Nwagwu, M. (1998). Impaired growth and development of the embryonic and extraembryonic compartments in C57BL/6 mouse perinatal skeletal muscle. Anat. Rec. 253, R745–R753. doi: 10.1002/ar.21084

Li, F., Wang, X., Capasso, J. M., and Gerdes, A. M. (1996). Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J. Mol. Cell. Cardiol. 28, 1737–1746. doi: 10.1006/jmcc.1996.0163

Li, G., Xiao, Y., Estrella, J. L., Duscay, C. A., Gilbert, R. D., and Zhang, L. (2003). Effect of fetal hypoxia on heart susceptibility to ischemia and reperfusion injury in the adult rat. J. Soc. Gynecol. Investig. 10, 265–274. doi: 10.1016/S1071-5576(00)00074-1

Li, G., Bae, S., and Zhang, L. (2004). Effect of prenatal hypoxia on heat stress-mediated cardioprotection in adult rat heart. Am. J. Physiol. Heart Circ. Physiol. 286, H1712–H1719. doi: 10.1152/ajpheart.00898.2003

Li, C., Oest, M. E., Jones, J. C., and Prater, M. R. (2009a). Gestational hypertension is associated with increased gluocorticoid-sensitive enzyme activities in tissues of rat fetuses exposed to maternal low protein diets.

Lim, K., Zimanyi, M. A., and Black, M. J. (2010). Effect of maternal protein restriction during pregnancy and lactation on the number of cardiomyocytes in the postproliferative weaning rat heart. Anat. Rec. 293, 431–437. doi: 10.1002/ar.21084

Limesand, S. W., Regnault, T. R., and Hay, W. W., (2004). Characterization of glucose transporter 8 (GLUT8) in the ovine placenta of normal and growth restricted fetuses. Placenta 25, 70–77. doi: 10.1016/j.placenta.2003.08.012

Limesand, S. W., Roarke, P. J., Zerbe, G. O., Hutton, J. C., and Hay, W. W. Jr. (2006). Attenuated insulin release and storage in fetal sheep pancreatic islets with intrauterine growth restriction. Endocrinology 147, 1488–1497. doi: 10.1210/en.2005-0900

Linaas, K. K., Han, M., and Bravo-Vallenuela, N. J. (2014). Changes in vitelline and yolk sac hemodynamics: implications for cardiovascular development. Front. Physiol. 5:390. doi: 10.3389/fphys.2014.00390

Lipp, J. A., and Rudolph, A. M. (1972). Sympathetic nerve development in the rat and guinea-pig heart. Biol. Neonate 21, 76–82. doi: 10.1159/000240497

Liu, X., Lin, Y., Tian, B., Miao, J., Xi, C., and Liu, C. (2014). Maternal protein restriction alters VEGF signaling and decreases pulmonary alveolar in fetals. Int. J. Clin. Exp. Pathol. 7, 3101–3111

Llanos, A. J., Green, J. R., Creasy, R. K., and Rudolph, A. M. (1980). Increased heart rate response to parasympathetic and beta adrenergic blockade in growth-retarded fetal lambs. Am. J. Obstet. Gynecol. 136, 808–813. doi: 10.1002/9780470123721.wiley2006.122200

Lopes Floro, K., Artap, S. T., Reis, J. I., Fatkin, D., Chapman, G., Furtado, M. B., et al. (2011). Loss of Cited2 causes congenital heart disease by perturbing left-right patterning of the body axis. Hum. Mol. Genet. 20, 1097–1110. doi: 10.1093/hmg/ddq354

Louey, S., Cock, M. L., Stevenson, K. M., and Harding, R. (2000). Placental insufficiency and fetal growth restriction lead to postnatal hypertension and altered postnatal growth in sheep. Pediatr. Res. 48, 808–814. doi: 10.1203/00006450-200012000-00018

Louey, S., Jonker, S. S., Giraud, G. D., and Thornburg, K. L. (2007). Placental insufficiency decreases cell cycle activity and terminal maturation in fetal sheep cardiomyocytes. J. Physiol. 580, 639–648. doi: 10.1113/jphysiol.2006.122200

Lumbers, E. R., Boyce, A. C., Joulianous, G., Kumarasamy, V., Barner, E., Segar, J. L., et al. (2005). Effects of cortisol on cardiac myocytes and on the expression of cardiac genes in fetal sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R567–R574. doi: 10.1152/ajpregu.00556.2004

Lumbers, E. R., Kim, Y. M., Burrell, J. H., Kumarasamy, V., Boyce, A. C., Gibson, K. J., et al. (2009). Effects of intrauterine fetal growth restriction on the activity and expression of the Sirt1 gene in fetal sheep. Endocrinology 150, 1529–1539. doi: 10.1210/en.2008-1352

Lundin, J. (2003). The role of the placenta in programming the offspring for hypertension. Hypertension 41, 785–792. doi: 10.1161/01.HY.0000076552.55897.ca
and heart development. Proc. Natl. Acad. Sci. U.S.A. 106, 4272–4277. doi: 10.1073/pnas.0813143106

Mayeur, S., Silhol, M., Moitrot, E., Barbaux, S., Breton, C., Gabory, A., et al. (2010). Placental BDNF/TrkB signaling system is modulated by fetal growth disturbances in rat and human. Placenta 31, 785–791. doi: 10.1016/j.placenta.2010.06.008

Mayeur, S., Lancel, S., Thesy, N., Lukaszewski, M. A., Duban-Deweer, S., Bastide, B., et al. (2013). Maternal calorie restriction modulates placental mitochondrial biogenesis and bioenergetic efficiency: putative involvement in fetoplacental growth defects in rats. Am. J. Physiol. Endocrinol. Metab. 304, E14–E22. doi: 10.1152/ajpendo.00332.2012

Mayeur, S., Wattiez, J. S., Lukaszewski, M. A., Lecoutre, S., Buttrille, L., Drougard, A., et al. (2016). Apelin controls fetal and neonatal glucose homeostasis and is altered by maternal undernutrition. Diabetes 65, 554–560. doi:10.2337/db15-0228

Mess, A., Zaki, N., Kadyrov, M., Korr, H., and Kaufmann, P. (2007). Caviomorph placentation as a model for trophoblast invasion. Placenta 28, 1234–1238. doi:10.1016/j.placenta.2007.08.003

Mess, A. (2007). The Guinea pig placenta: model of placental growth dynamics. Placenta 28, 812–815. doi:10.1016/j.placenta.2007.02.005

Miller, S. L., Loose, J. M., Jenkins, G., and Wallace, E. M. (2009a). The effects of sildenafil citrate (Viagra) on uterine blood flow and well being in the fetus with chronic hypoxia evaluated by fetal heart-rate monitoring and Doppler measurement of blood flow velocity. Med. Biol. Eng. Comput. 51, S49–S58. doi: 10.1007/BF02446650

Musha, Y., Itoh, S., Hanson, M. A., and Kinoshita, K. (2006). Does estrogen pattern in the placenta: role of mitochronda and oxidative stress. Appl. Physiol. Nutr. Metab. 39, 880–887. doi:10.1139/apmn-2013-0452

Nevin, C. L., Formosa, E., Maki, Y., Matuszewski, B., Regnault, T. R. H., and Richardson, B. S. (2018). Maternal nutrient restriction in guinea pigs as an animal model for studying growth restriction of newborn with post-natal catch-up growth. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314, R647–R654. doi: 10.1152/ajpregu.00311.2017

Oh, W., Omori, K., Hobel, C. J., Erenberg, A., and Emmanouilides, G. C. (1975). Umbilical blood flow and glucose uptake in lamb fetus following single umbilical artery ligation. Biol. Neonate 26, 291–299. doi:10.1159/000042074

O’T sney, P. F., Anderson, D. F., Faber, J. J., Louey, S., Thornburg, K. L., and Giraud, G. D. (2010). Reduced systolic pressure load decreases cell-cycle activity in the fetal sheep heart. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R573–R578. doi:10.1152/ajpregu.2007.54209

Oyama, K., Padbury, J., Chappell, B., Martinez, A., Stein, H., and Humme, J. (1992). Single umbilical artery ligation-induced fetal growth retardation: effect on postnatal adaptation. Am. J. Physiol. 263, E575–E583. doi: 10.1152/ajpplphysiol.2006.02030

Paradis, A., Xiao, D., Zhou, J., and Zhang, L. (2014). Endothelin-1 promotes cardiomyocyte terminal differentiation in the developing heart via heightened DNA methylation. Int. J. Med. Sci. 11, 373–380. doi:10.7150/ijms.7802

Phillips, I. D., Simonetta, G., Owens, J. A., Robinson, J. S., Clarke, I. J., and McMillen, I. C. (1996). Placental restriction alters the functional development of the pituitary-adrenal axis in the sheep fetus during late gestation. Pediatr. Res. 40, 861–866. doi:10.1203/00006450-199612000-00014

Phillips, I. D., Anthony, R. V., Simonetta, G., Owens, J. A., Robinson, J. S., and McMillen, I. C. (2001). Restriction of fetal growth has a differential impact on fetal prolactin and prolactin receptor mRNA expression. J. Neuroendocrinol. 13, 175–181. doi:10.1046/j.1365-2682.2001.00683.x

Phillips, T. J., Scott, H., Menassa, D. A., Biggall, A. L., Sood, A., Morton, J. S., et al. (2017). Treating the placenta to prevent adverse effects of gestational hypoxia on fetal brain development. Sci. Rep. 7:9079. doi:10.1038/s41598-017-06300-1

Richardson, B. S. (2018). Maternal nutrient restriction in guinea pigs as an animal model for studying growth restriction of offspring with post-natal catch-up growth. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314, R647–R654. doi: 10.1152/ajpregu.00311.2017

Regan, C. P., Li, W., Boucher, D. M., Spatz, S., Su, M. S., and Kuida, K. (2013). Erks null mice display multiple extraembryonic vascular and embryonic cardiovascular defects. Proc. Natl. Acad. Sci. U.S.A. 99, 9248–9253. doi:10.1073/pnas.121293999

Regnault, T. R., Orbus, R. J., Battaglia, F. C., Wilkening, R. B., and Anthony, R. V. (1999). Altered arterial concentrations of placental hormones during...
maximal placental growth in a model of placental insufficiency. J. Endocrinol. 162, 433–442. doi: 10.1677/joe.0.1620433

Regnault, T. R., de Vrijer, B., Galan, H. L., Davidsen, M. L., Trembler, K. A., Battaglia, F. C., et al. (2003). The relationship between transplacental O2 diffusion and placental expression of PlGF, VEGF and their receptors in a placental insufficiency model of fetal growth restriction. J. Physiol. 550, 641–656. doi: 10.1113/jphysiol.2003.039511

Regnault, T. R., de Vrijer, B., Galan, H. L., Wilkening, R. B., Battaglia, F. C., and Meschia, G. (2007). Development and mechanisms of fetal hypoxia in severe fetal growth restriction. Placenta 28, 714–723. doi: 10.1016/j.placenta.2006.06.007

Regnault, T. R., de Vrijer, B., Galan, H. L., Wilkening, R. B., Battaglia, F. C., and Meschia, G. (2013). Umbilical uptake and transplacental concentration ratios of amino acids in severe fetal growth restriction. Pediatr. Res. 73, 602–611. doi: 10.1038/pr.2013.30

Rennie, M. Y., Sled, J. G., and Adamsen, S. L. (2014). Effects of genes and environment on the feto-placental arterial microcirculation in mice revealed by micro-computed tomography imaging. Microcirculation 21, 48–57. doi: 10.1111/micc.12073

Reynolds, C. M., Vickers, M. H., Harrison, C. J., Segovia, S. A., and Gray, C. (2014). High fat and/or high salt intake during pregnancy alters maternal meta-inflammation and offspring growth and metabolic profiles. Physiol. Rep. 2, e12110. doi: 10.14814/physrep.121110

Reynolds, C. M., Vickers, M. H., Harrison, C. J., Segovia, S. A., and Gray, C. (2015). Maternal high fat and/or salt consumption induces sex-specific, inflammatory and nutrient transport in the rat placenta. Physiol. Rep. 3:e12399. doi: 10.14814/phy2.12399

Richter, H. G., Camm, E. J., Modi, B. N., Naeem, F., Cross, C. M., Cin卓va, J. S., Kingston, E. J., Jones, C. T., and Thorburn, G. D. (1979). Studies of amino acids in severe fetal growth restriction. Pediatr. Res. 17, 271–275. doi: 10.1038/npg0398-271

Robinson, J. S., Kingston, E. J., Jones, C. T., and Thorburn, G. D. (2001a). Maternal food restriction reduces the exchange surface area and structure and function during adulthood. Cardiovasc. Res. 81, 713–722. doi: 10.1093/cvr/cvn341

Rueda-Clausen, C. F., Morton, J. S., Lopaschuk, G. D., and Davidge, S. T. (2011). Long-term effects of intrauterine growth restriction on cardiac metabolism and susceptibility to ischaemia/reperfusion. Cardiovasc. Res. 90, 285–294. doi: 10.1093/cvr/cvq363

Rueda-Clausen, C. F., Morton, J. S., Oudit, G. Y., Kassiri, Z., Jiang, Y., and Davidge, S. T. (2012). Effects of hypoxia-induced intrauterine growth restriction on cardiac siderosis and oxidative stress. J. Dev. Orig. Health Dis. 3, 350–357. doi: 10.1017/S2041744210000219

Rutland, C. S., Latunde-Dada, A. O., Thorpe, A., Plant, R., Langley-Evans, S., and Leach, L. (2007). Effect of gestational nutrition on vascular integrity in the murine placenta. Placenta 28, 734–742. doi: 10.1016/j.placenta.2006.07.001

Samuel, J. L., and Swynghedauw, B. (2008). Is cardiac hypertrophy a required compensatory mechanism in pressure-overloaded heart? J Hypertension 26, 857–858. doi: 10.1097/HJH.0b013e3282f6619

Sapin, V., Ward, S. J., Bromner, S., Chambon, P., and Dolle, P. (1997). Differential expression of transcripts encoding retinoid binding proteins and retinoic acid receptors during placentation of the mouse. Dev. Dyn. 208, 199–210. doi: 10.1002/sici.1071-7777(19970208):208::aid-ajaj7315.0.co;2-d

Sathishkumar, K., Elkins, R., Yallampalli, U., and Yallampalli, C. (2009). Protein restriction during pregnancy induces hypertension and impairs endothelium-dependent vascular function in adult female offspring. J. Vasc. Res. 46, 229–239. doi: 10.1159/000166390

Sathishkumar, K., Elkins, R., Yallampalli, U., and Yallampalli, C. (2012). Protein restriction during pregnancy induces hypertension in adult female rat offspring—Influence of oestradiol. Br. J. Nutr. 107, 665–673. doi: 10.1017/S0007114511003438

Sathishkumar, K., Balakrishnan, M. P., and Yallampalli, C. (2015). Enhanced mesenteric arterial responsiveness to angiotensin II is androgen receptor-dependent in prenatal protein-restricted adult female rat offspring. Biol. Reprod 92:55. doi: 10.1095/biolreprod.112.116482

Scheffen, I., Kaufmann, P., Philippens, L., Leiser, R., Geisen, C., and Mettagh, K. (1990). Alterations of the fetal capillary bed in the guinea pig placenta following long-term hypoxia. Am. J. Physiol. 259, 779–790. doi: 10.1152/ajprenal.1990.259.3.R181

Scherger, M., Wang, Z. Q., Angel, P., and Wagner, E. F. (1999). JunB is essential for mammalian placenta. EMBO J. 18, 934–948. doi: 10.1093/emboj/18.4.934

Schreiber, M., Wang, Z. Q., Jochum, W., Fetka, I., Elliott, C., and Wagner, E. F. (2000). Placental vasculisation requires the AP-1 component fra1. Development 127, 4937–4948.

Scotti, M., and Kmita, M. (2012). Recruitment of 5′ Hoxa genes in the allantois is essential for proper extra-embryonic function in placental mammals. Development 139, 731–739. doi: 10.1242/dev.075408

Segar, J. L., Sholz, T. D., Bedell, K. A., Smith, O. M., Huss, D. J., and Guillery, Sferruzzi-Perri, A. N., Vaughan, O. R., Haro, M., Cooper, W. N., Musial, B., Shah, A., Matsumura, N., Quon, A., Morton, J. S., Dyck, J. R. B., and Davidge, S. T. (2011). HOXA13 is essential for placental vascular patterning and labyrinth endothelial specification. PLoS Genet. 7:e1001573. doi: 10.1371/journal.pgen.1001573

Sherman, R. C., and Langley-Evans, S. C. (2000). Antihypertensive treatment in early postnatal life modulates prenatal dietary influences upon blood pressure in the rat. Clin. Sci. 98, 269–275. doi: 10.1042/clus980269

Simontetta, G., Rourke, A. K., Owens, J. A., Robinson, J. S., and McMillen, I. C. (1997). Impact of placental restriction on the development of the sympathoadrenal system. Pediatr. Res. 42, 805–811. doi: 10.1203/00006450-19971200-00015

Claynes et al. Placenta and Fetal Heart Interactions
Camm et al.

Placenta and Fetal Heart Interactions

Slater-Jeffries, J. L., Lillycrop, K. A., Townsend, P. A., Torrens, C., Holle, S. P., Hanson, M. A., et al. (2011). Feeding a protein-restricted diet during pregnancy induces altered epigenetic regulation of peroxisomal proliferator-activated receptor-alpha in the heart of the offspring. *J. Dev. Origins Adult Dis.* 2, 230–235. doi: 10.1097/SDO.0b013e3182090042

Snook, A., Remacle, A., Reusens, B., and Hoet, J. J. (1990). Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. *Biol. Neonate* 57, 107–118. doi: 10.1159/000243170

Sohlstrom, A., Katsman, A., Kind, K. L., Roberts, C. T., Owens, P. C., Robinson, J. S., et al. (1998). Food restriction alters pregnancy-associated changes in IGF and IGFBP in the guinea pig. *Am. J. Physiol.* 274, E410–E416. doi: 10.1152/ajpendo.1998.274.3.E410

Sommer, A., Hargreaves, M. A., and Faith, S. J. (1996). Transient overexpression of dominant-negative transforming growth factor-beta receptors in the sheep fetus impairs placental development and fetal growth. *Am. J. Obstet. Gynecol.* 174, 819–826. doi: 10.1016/0002-9378(96)90332-1

Spaepen, F., Vanderschueren-Lodeweyckx, M., De Deyn, S., and Volders, P. G. (2013). Assessment of placental and umbilical vascular resistance in the sheep fetus. *Front. Physiol.* 4:370. doi: 10.3389/fphys.2013.00370

Stumpo, D. J., Byrd, N. A., Phillips, R. S., Ghosh, S., Maronpot, R. R., Castranzo, and. (2014). Folate supplementation during pregnancy improves offspring cardiovascular dysfunction induced by protein restriction. *Hypertension* 47, 982–987. doi: 10.1161/HYP.0000155800.43711.d1

Thompson, L. P., Pence, L., Pinkas, G., Song, H., and Telugu, B. P. (2016). Placental hypoxia during early pregnancy causes maternal hypertension and placental insufficiency in the hypoxic guinea pig model. *Biol. Reprod.* 95:128. doi: 10.1095/biolreprod.114.122723

Tunnicliffe, C., smartphone, C., and Innes, K. I. (2014). Maternal protein restriction in the rat impairs resistance artery function in the adult. *J. Physiol.* 592, 618–625. doi: 10.1113/jphysiol.2013.258295

Turgut, O., Cauwenberghs, M., Bautz, P. A., Gherzi, R., and Hulstijn, H. A. (2010). Fetal cardiac hypertrophy is associated with maternal protein restriction and is prevented by hypercaloric nutrition. *Am. J. Physiol.* 299, E1117–E1125. doi: 10.1152/ajpendo.00372.2008

Ueda, T., Ikeda, T., Nakamura, K., and Takai, Y. (1997). The role of the interaction of TGF-beta1 and its receptor in the development of the guinea pig placenta. *Am. J. Obstet. Gynecol.* 177, 1071–1075. doi: 10.1016/S0002-9378(97)70085-2

Vickers, M. H., Breier, B. H., Cutfield, W. S., Hofman, P. L., and Gluckman, P. D. (2005). Growth restriction before and after birth increases kinase number in the adult ovine heart. *J. Dev. Orig. Health Dis.* 157, 1443–1448. doi: 10.1002/sdoh.2005021477

Vickers, M. H., Breier, B. H., Cutfield, W. S., Hofman, P. L., and Gluckman, P. D. (2005). The role of the interaction of TGF-beta1 and its receptor in the development of the guinea pig placenta. *Am. J. Obstet. Gynecol.* 177, 1071–1075. doi: 10.1016/S0002-9378(97)70085-2

Wadley, G. D., Wlodek, M. E., and Brust, B. (2013). Growth restriction before and after birth increases kinase signaling pathways in the adult rat heart. *J. Dev. Orig. Health Dis.* 1, 376–385. doi: 10.1017/S2040174410000607

Wadley, G. D., McConell, G. K., Goodman, C. A., Siegel, A. L., Westcott, K. T., and Wlodek, M. E. (2013). Growth restriction in the rat alters expression of metabolic genes during postnatal cardiac development in a sex-specific manner. *Physiol. Genomics* 45, 99–105. doi: 10.1152/physiolgenomics.00095.2012

Wadley, G. D., Laker, R. C., McConell, G. K., and Wlodek, M. E. (2016). Endurance training in early life results in long-term programming of heart mass in rats. *Physiol. Rep.* 4:e12720. doi: 10.14814/phy2.12720
Wakefield, S. L., Lane, M., and Mitchell, M. (2011). Impaired mitochondrial function in the preimplantation embryo perturbs fetal and placental development in the mouse. Biol. Reprod. 84, 572–580. doi: 10.1095/bioreprod.110.087262

Walker, D. W., Davies, A. N., and McMillen, I. C. (1990). Effect of hyperthermia on the plasma concentrations of prolactin and cortisol in the fetal lamb and pregnant ewe during late gestation. J. Dev. Physiol. 13, 173–177.

Walker, B. R. (2007). Glucocorticoids and cardiovascular disease. Eur. J. Endocrinol. 157, 545–559. doi: 10.1530/eje-07-0455

Wang, K. C., Zhang, L., McMillen, I. C., Botting, K. J., Duffield, J. A., Zhang, S., et al. (2011). Fetal growth restriction and the programming of heart growth and cardiac insulin-like growth factor 2 expression in the lamb. J. Physiol. 589, 4709–4722. doi: 10.1113/jphysiol.2011.211185

Wang, K. C., Brooks, D. A., Botting, K. J., and Morrison, J. L. (2012). IGF-2R-mediated signaling results in hypertrophy of cultured cardiomyocytes from fetal sheep. Biol. Reprod. 86:183. doi: 10.1093/biolreprod.112.100388

Wang, K. C., Lim, C. H., McMillen, I. C., Duffield, J. A., Brooks, D. A., and Morrison, J. L. (2013). Alteration of cardiac glucose metabolism in association to low birth weight: experimental evidence in lambs with left ventricular hypertrophy. Metab. Clin. Exp. 62, 1662–1672. doi: 10.1016/j.metabol.2013.06.013

Wang, K. C., Brooks, D. A., Summers-Pearce, B., Bobrovskaya, L., Tosh, D. N., Duffield, J. A., et al. (2015a). Low birth weight activates the renin-angiotensin system, but limits cardiac angiogenesis in early postnatal life. Physiol. Rep. 3, 12270. doi: 10.14814/phy2.12270

Yi, L., Wang, K. C., Tosh, D. N., Zhang, S., McMillen, I. C., Duffield, J. A., Brooks, D. A., et al. (2015b). IGF-2R-Galpah signaling and cardiac hypertrophy in the low-birth-weight lamb. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R627–R635. doi: 10.1152/ajpregu.0012004

Watkins, A. J., Thomas, R., Panton, R., Papenbrock, T., Hollis, L., Cunningham, C., et al. (2008). Adaptive responses by mouse early embryos to maternal diet protect fetal growth but predispose to adult onset disease. Biol. Reprod. 78, 299–306. doi: 10.1095/bioreprod.107.064220

Watkins, A. J., Lucas, E. S., Wilkins, A., Cagampang, F. R., and Fleming, T. P. (2011). Maternal periconceptional and gestational low protein diet affects mouse offspring growth, cardiovascular and adipose phenotype at 1 year of age. PloS One 6:e28745. doi: 10.1371/journal.pone.0028745

Watkins, A. J., Lucas, E. S., Marfy-Smith, S., Bates, N., Kimber, S. J., and Fleming, T. P. (2015). Maternal nutrition modifies trophoblast giant cell phenotype and fetal growth in mice. Reproduction 149, 563–575. doi: 10.1530/REP-14-0667

Wattez, J. S., Delahaye, F., Barella, L. F., Dicks-Coopman, A., Montel, V., Breton, C., et al. (2014). Short- and long-term effects of maternal perinatal undernutrition are lowered by cross-fostering during lactation in the male rat. J. Dev. Origins Adult Dis. 5, 199–208. doi: 10.1007/s13672-014-00548

Wendling, O., Chambon, P., and Mark, M. (1999). Retinoid X receptors are essential for early mouse development and placentogenesis. Proc Natl Acad Sci. U.S.A. 96, 547–551.

Wenzel, P. L., Wu, L., de Bruin, A., Chong, J. L., Chen, W. Y., Dureska, G., et al. (2007).Rb is critical in a mammalian tissue stem cell population. Genes Dev. 21, 85–97. doi: 10.1101/gad.1485307

Wigglesworth, J. S. (1974). Fetal growth retardation. Animal model: uterine vessel ligation in the pregnant rat. Am. J. Pathol. 77, 347–350.

Withington, S. L., Scott, A. N., Saunders, D. N., Lopes Floro, K., Preis, J. L., Michelzec, I., et al. (2006). Loss of Cited2 affects trophoblast formation and vascularization of the mouse placenta. Dev. Biol. 294, 67–82. doi: 10.1016/j.ydbio.2006.02.025

Wilodek, M. E., Westcott, K. T., O’Dowd, R., Serruto, A., Wassef, L., Moritz, K. M., et al. (2005). Uteroplacental restriction in the rat impairs fetal growth in association with alterations in placental growth factors including PTHrP. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R1620–R1627. doi: 10.1152/ajpregu.00789.2004

Woodall, S. M., Breier, B. H., Johnston, B. M., and Gluckman, P. D. (1996a). A model of intragrowth retardation caused by chronic maternal undernutrition in the rat: effects on the somatotropic axis and postnatal growth. J. Endocrinol. 150, 231–242.

Woodall, S. M., Johnston, B. M., Breier, B. H., and Gluckman, P. D. (1996b). Chronic maternal undernutrition in the rat leads to delayed postnatal growth and elevated blood pressure of offspring. Pediatr. Res. 40, 438–443.

Woodall, S. M., Breier, B. H., Johnston, B. M., Bassett, N. S., Barnard, R., and Gluckman, P. D. (1999). Administration of growth hormone or IGF-I to pregnant rats on a reduced diet throughout pregnancy does not prevent fetal intrauterine growth retardation and elevated blood pressure in adult offspring. J. Endocrinol. 163, 69–77. doi: 10.1677/joe.0.163080

Wooding, F. B. P., and Burton, G. J. (2008). Comparative Placentaion: Structures, Functions, and Evolution. 1Edn. Berlin: Heidelberg: Springer-Verlag.

Xue, Q., and Zhang, L. (2009). Prenatal hypoxia causes a sex-dependent increase in heart susceptibility to ischemia and reperfusion injury in adult male offspring: role of protein kinase C epsilon. J. Pharmacol. Exp. Ther. 330, 624–632. doi: 10.1124/jpet.109.153239

Yang, J., Boerm, M., McCarty, M., Bucana, C., Fidler, I. J., Zhuang, Y., et al. (2000). Mekk3 is essential for early embryonic cardiovascular development. Nat. Genet. 24, 309–313. doi: 10.1038/73550

Yallourou, S. R., Witcombe, N. B., Sands, S. A., Walker, A. M., and Horne, R. S. (2013). The development of autonomic cardiovascular control is altered by perinatal birth. Early Hum. Dev. 89, 145–152. doi: 10.1016/j.eahumdev.2012.09.009

Zhang, S., Barker, P., Botting, J. K., Roberts, C. T., McMillan, C. M., McMillan, I. C., et al. (2016). Early restriction of placental growth results in placental structural and gene expression changes in late gestation independent of fetal hypoxia. Physiol. Rep. 4:e13049. doi: 10.14814/phy2.13049

Zhou, J., Xiao, D., Hu, Y., Wang, Z., Paradis, A., Mata-Greenwood, E., et al. (2013). Gestational hypoxia induces preeclampsia-like symptoms via heightened endothelin-1 signaling in pregnant rats. Hypertension 62, 599–607. doi: 10.1161/HYPERTENSIONAHA.113.01449

Ziebell, B. T., Galan, H. L., Anthony, R. V., Regnault, T. R., Parker, T. A., and Wassef, L. (2007). Rb is critical in a mammalian tissue stem cell population. Dev. Biol. 308, 1662–1672. doi: 10.1016/j.ydbio.2006.02.025

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Camm, Botting and Sferruzzi-Perri. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.