On the Gaussian functions of two discrete variables

Nicolae Cotfas
University of Bucharest, Physics Department,
P.O. Box MG-11, 077125 Bucharest, Romania
E-mail: ncotfas@yahoo.com

Abstract. A remarkable discrete counterpart of the Gaussian function of one continuous variable can be defined by using a Jacobi theta function, that is, as the sum of a convergent series. We extend this approach to Gaussian functions of two variables, and investigate the Fourier transform and Wigner function of the functions of discrete variable defined in this way.

1. Introduction

The Gaussian functions play a fundamental role in mathematics and its applications. By using the (non-normalized) Gaussian function of continuous variable $g_\kappa : \mathbb{R} \rightarrow \mathbb{R}$,

$$g_\kappa(q) = e^{-\frac{\kappa}{2}q^2}, \quad \text{where } \kappa \in (0, \infty) \text{ is a parameter},$$

one defines [1-5] the periodic Gaussian function (Fig. 1) of discrete variable $g_\kappa : \mathbb{Z} \rightarrow \mathbb{R}$,

$$g_\kappa(n) = \sum_{\alpha = -\infty}^{\infty} g_\kappa((n+\alpha d)\sqrt{\frac{2\pi}{d}}) = \sum_{\alpha = -\infty}^{\infty} e^{-\frac{\kappa}{d}(n+\alpha d)^2}$$

The function g_κ obtained by using a method similar to Weil [6] or Zak [7] transform, is a generalization of Mehta’s function f_0 [1]. In this article, we investigate only the case when $d=2j+1$ is a positive odd integer. The function g_κ can be written as

$$g_\kappa(n) = \frac{1}{\sqrt{\kappa d}} \theta_3 \left(\frac{n}{d}, \frac{i}{\kappa d} \right),$$

where θ_3 is the Jacobi function

$$\theta_3(z, \tau) = \sum_{\alpha = -\infty}^{\infty} e^{i\pi \tau \alpha^2} e^{2\pi i \alpha z}$$

having several remarkable properties among which we mention

$$\theta_3(z, i\tau) = \frac{1}{\sqrt{\tau}} e^{-\frac{z^2}{\tau}} \theta_3 \left(\frac{z}{\tau}, \frac{i}{\tau} \right).$$

In the continuous case, the Fourier transform of g_κ computed with the usual definition

$$\mathcal{F}[\psi](p) \overset{\text{def}}{=} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ipq} \psi(q) \, dq$$
On the Gaussian functions of two discrete variables

Figure 1. The functions g_κ, g_κ^+ and W_{g_κ} in the case $\kappa = \frac{4}{3}$, $d = 31$.

satisfies the relation

$$F[g_\kappa] = \frac{1}{\sqrt{\kappa}} g_\kappa^{-1}. \quad (7)$$

The discrete Fourier transform of g_κ, computed by using the definition

$$F[\psi](k) \overset{\text{def}}{=} \frac{1}{\sqrt{d}} \sum_{n=-j}^{j} e^{-\frac{2\pi i}{d} kn} \psi(n), \quad (8)$$

satisfies a similar relation, namely

$$F[g_\kappa] = \frac{1}{\sqrt{\kappa}} g_\kappa^{-1}. \quad (9)$$

The Wigner function of g_κ, computed with the usual definition

$$W_{\psi}(q,p) \overset{\text{def}}{=} \frac{1}{\pi} \int_{-\infty}^{\infty} e^{-2ipx} \bar{\psi}(q-x) \psi(q+x) \, dx, \quad (10)$$

is a product of Gaussian functions,

$$W_{g_\kappa}(q,p) = \frac{1}{\sqrt{\kappa \pi}} g_{2\kappa}(q) g_{2\kappa^{-1}}(p). \quad (11)$$

The discrete Wigner function of g_κ, computed by using the definition

$$W_{g_\kappa}(n,k) \overset{\text{def}}{=} \frac{1}{d} \sum_{m=-j}^{j} e^{-\frac{2\pi i}{d} km} \bar{\psi}(n-m) \psi(n+m) \quad (12)$$

is a sum of four products of Gaussian like functions (Fig 1)

$$W_{g_\kappa}(n,k) = \frac{1}{\sqrt{2\pi d}} g_{2\kappa}(n) \left[g_{2\kappa^{-1}}(k) + g_{2\kappa^{-1}}^+(k) \right]$$

$$+ \frac{1}{\sqrt{2\pi d}} g_{2\kappa}^+(n) \left[g_{2\kappa^{-1}}(k) - g_{2\kappa^{-1}}^+(k) \right], \quad (13)$$

where the periodic function of discrete variable $g_\nu^+ : \mathbb{Z} \rightarrow \mathbb{R}$,

$$g_\nu^+(n) = \sum_{\alpha=-\infty}^{\infty} g_\nu \left(n + \left(\alpha + \frac{1}{2} \right) d \right) \sqrt{\frac{2\pi}{d}} = \sum_{\alpha=-\infty}^{\infty} e^{-\frac{\nu^2}{2d} \left(n + (\alpha + \frac{1}{2}) d \right)^2} \quad (14)$$
is a kind of translated Gaussian function (Fig. 1). The relation (13) can be written as
\[
W_{g_\kappa}(n,k) = C_\kappa \sum_{\alpha,\beta=-\infty}^{\infty} (-1)^{\alpha\beta} W_{g_\kappa} \left((n+\alpha d) \sqrt{\frac{\beta^2}{d}}, (k+\beta \frac{d}{2}) \sqrt{\frac{\beta^2}{d}} \right),
\]
where \(C_\kappa\) is a constant. Thus, there exists a simple relation between the discrete Wigner function \(W_{g_\kappa}\) of a Gaussian function \(g_\kappa\) of discrete variable and the Wigner function \(W_{g_\kappa}\) of the corresponding Gaussian function \(g_\kappa\) of continuous variable.

Our purpose is to present a version for functions of two variables of these results.

2. Gaussian functions of two discrete variables

Let \(\sigma = \left(\begin{array}{cc} a & b \\ b & c \end{array} \right)\) be a matrix with real entries and such that \(\sigma > 0\).

By using the Gaussian function of two continuous variables \(g_\sigma : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\),
\[
g_\sigma(q_1, q_2) = e^{-\frac{1}{2}(q_1 q_2) \left(\begin{array}{cc} a & b \\ b & c \end{array} \right) \left(\begin{array}{c} q_1 \\ q_2 \end{array} \right)} = e^{-\frac{1}{2}[aq_1^2 + 2bpq_1q_2 + cq_2^2]} \tag{16}
\]
we define the periodic \textit{Gaussian function of two discrete variables} \(g_\sigma : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{R}\),
\[
g_\sigma(n_1, n_2) = \sum_{\alpha_1, \alpha_2=-\infty}^{\infty} e^{-\frac{\pi}{\sigma} (n_1+\alpha d_1)n_2+\alpha d_2)} \left(\begin{array}{cc} a & b \\ b & c \end{array} \right) \left(\begin{array}{c} n_1+\alpha d_1 \\ n_2+\alpha d_2 \end{array} \right) \tag{17}
\]
and other three complementary periodic Gaussian like functions
\[
g_\sigma^+(n_1, n_2) = \sum_{\alpha_1, \alpha_2=-\infty}^{\infty} e^{-\frac{\pi}{\sigma} (n_1+\alpha d_1)n_2+\alpha d_2)} \left(\begin{array}{cc} a & b \\ b & c \end{array} \right) \left(\begin{array}{c} n_1+\alpha d_1 \\ n_2+\alpha d_2 \end{array} \right), \tag{18}
\]
\[
g_\sigma^0(n_1, n_2) = \sum_{\alpha_1, \alpha_2=-\infty}^{\infty} e^{-\frac{\pi}{\sigma} (n_1+\alpha d_1)n_2+\alpha d_2)} \left(\begin{array}{cc} a & b \\ b & c \end{array} \right) \left(\begin{array}{c} n_1+\alpha d_1 \\ n_2+\alpha d_2 \end{array} \right), \tag{19}
\]
\[
g_\sigma^{++}(n_1, n_2) = \sum_{\alpha_1, \alpha_2=-\infty}^{\infty} e^{-\frac{\pi}{\sigma} (n_1+\alpha d_1)n_2+\alpha d_2)} \left(\begin{array}{cc} a & b \\ b & c \end{array} \right) \left(\begin{array}{c} n_1+\alpha d_1 \\ n_2+\alpha d_2 \end{array} \right). \tag{20}
\]

3. Discrete Fourier transform

In the continuous case, by using the definition
\[
\mathcal{F}[\psi](p_1, p_2) \overset{\text{def}}{=} \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-i(p_1 q_1 + p_2 q_2)} \psi(q_1, q_2) dq_1 dq_2, \tag{19}
\]
we get the known relation
\[
\mathcal{F} \left[e^{-\frac{i}{2}(q_1 q_2)\sigma \left(\begin{array}{c} q_1 \\ q_2 \end{array} \right)} \right](p_1, p_2) = \frac{1}{\sqrt{\det \sigma}} e^{-\frac{i}{2}(p_1 p_2)\sigma^{-1} \left(\begin{array}{c} p_1 \\ p_2 \end{array} \right)}, \tag{20}
\]
that is, we have
\[
\mathcal{F}[g_\sigma] = \frac{1}{\sqrt{\det \sigma}} g_{\sigma^{-1}}. \tag{21}
\]
On the Gaussian functions of two discrete variables

In the discrete case, the Fourier transform is usually defined as

\[\mathbf{F}[\psi](k_1, k_2) = \frac{1}{d} \sum_{n_1=-j}^{j} \sum_{n_2=-j}^{j} e^{-\frac{2\pi i}{d}(k_1 n_1 + k_2 n_2)} \psi(n_1, n_2). \] \(\text{(22)}\)

Lemma 1. We have

\[
\begin{align*}
\mathbf{F}[g_{\sigma}](k_1, k_2) &= \frac{1}{\sqrt{\det \sigma}} \sum_{\beta_1, \beta_2 = -\infty}^{\infty} g_{\sigma^{-1}} \left((k_1 + \beta_1 d) \sqrt{\frac{2\pi}{d}}, (k_2 + \beta_2 d) \sqrt{\frac{2\pi}{d}} \right), \\
\mathbf{F}[g_{\sigma^+}](k_1, k_2) &= \frac{(-1)^{k_1}}{\sqrt{\det \sigma}} \sum_{\beta_1, \beta_2 = -\infty}^{\infty} (-1)^{\beta_1} g_{\sigma^{-1}} \left((k_1 + \beta_1 d) \sqrt{\frac{2\pi}{d}}, (k_2 + \beta_2 d) \sqrt{\frac{2\pi}{d}} \right), \\
\mathbf{F}[g_{\sigma^0}](k_1, k_2) &= \frac{-1)^{k_2}}{\sqrt{\det \sigma}} \sum_{\beta_1, \beta_2 = -\infty}^{\infty} (-1)^{\beta_2} g_{\sigma^{-1}} \left((k_1 + \beta_1 d) \sqrt{\frac{2\pi}{d}}, (k_2 + \beta_2 d) \sqrt{\frac{2\pi}{d}} \right), \\
\mathbf{F}[g_{\sigma^+}](k_1, k_2) &= \frac{(-1)^{k_1+k_2}}{\sqrt{\det \sigma}} \sum_{\beta_1, \beta_2 = -\infty}^{\infty} (-1)^{\beta_1+\beta_2} g_{\sigma^{-1}} \left((k_1 + \beta_1 d) \sqrt{\frac{2\pi}{d}}, (k_2 + \beta_2 d) \sqrt{\frac{2\pi}{d}} \right). \end{align*}
\] \(\text{(23)}\)

Proof. The periodic function of two continuous variables

\[G_{\sigma}(q_1, q_2) = \sum_{\alpha_1, \alpha_2 = -\infty}^{\infty} e^{-\frac{\pi}{d} \frac{1}{2} [a(q_1+\alpha_1 d)^2+2b(q_1+\alpha_1 d)(q_2+\alpha_2 d)+c(q_2+\alpha_2 d)^2]} \] \(\text{(24)}\)

can be expanded into a Fourier series

\[G_{\sigma}(q_1, q_2) = \sum_{m_1, m_2 = -\infty}^{\infty} a_{m_1 m_2} e^{\frac{2\pi i}{d}(m_1 q_1 + m_2 q_2)}, \] \(\text{(25)}\)

where

\[a_{m_1 m_2} = \frac{1}{d^2} \int_{0}^{d} \int_{0}^{d} e^{-\frac{2\pi i}{d}(m_1 q_1 + m_2 q_2)} \sum_{\alpha_1, \alpha_2 = -\infty}^{\infty} e^{-\frac{\pi}{d} \frac{1}{2} [a(q_1+\alpha_1 d)^2+2b(q_1+\alpha_1 d)(q_2+\alpha_2 d)+c(q_2+\alpha_2 d)^2]} dq_1 dq_2. \]

By using (20) and the change of variables \(q_1 = y_1 \sqrt{\frac{d}{2\pi}} - \alpha_1 d, \ q_2 = y_2 \sqrt{\frac{d}{2\pi}} - \alpha_2 d, \) we get

\[a_{m_1 m_2} = \frac{1}{2\pi d} \sum_{\alpha_1, \alpha_2 = -\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{2\pi i}{d}(m_1 y_1 \sqrt{\frac{d}{2\pi}} - \alpha_1 d + m_2 y_2 \sqrt{\frac{d}{2\pi}} - \alpha_2 d)} e^{-\frac{\pi}{d} \frac{1}{2} [a y_1^2 + 2by_1 y_2 + cy_2^2]} dy_1 dy_2. \]

Consequently, we have

\[G_{\sigma}(q_1, q_2) = \frac{1}{d \sqrt{\det \sigma}} \sum_{m_1, m_2 = -\infty}^{\infty} e^{\frac{2\pi i}{d}(m_1 q_1 + m_2 q_2)} e^{-\frac{\pi}{d} \frac{1}{2} (m_1 q_1 + m_2 q_2)^2} \] \(\text{(26)}\)

Consequently, we have
and the relation
\[g_\sigma(n_1, n_2) = \frac{1}{d \sqrt{\det \sigma}} \sum_{m_1, m_2 = -\infty}^{\infty} e^{2\pi i (m_1 n_1 + m_2 n_2)} e^{-\frac{\pi}{\sigma} (m_1 - m_2)^2} \]
\[= \frac{1}{d \sqrt{\det \sigma}} \sum_{k_1, k_2 = -j}^{j} \sum_{k_1, k_2 = -\infty}^{\infty} e^{2\pi i (k_1 n_1 + k_2 n_2)} g_{\sigma^{-1}}(k_1, k_2) = \frac{1}{d \sqrt{\det \sigma}} \mathbf{F}^{-1}[g_{\sigma^{-1}}](n_1, n_2) \]
equivalent to \(\mathbf{F}[g_\sigma](k_1, k_2) = \frac{1}{\sqrt{\det \sigma}} \sum_{\beta_1, \beta_2 = -\infty}^{\infty} g_{\sigma^{-1}}((2k_1 + \beta_1 d) \sqrt{\frac{2\pi}{d}}, (2k_2 + \beta_2 d) \sqrt{\frac{2\pi}{d}}) \).

Theorem 1. The discrete Fourier transform of \(g_\sigma \) satisfies the relation
\[\mathbf{F}[g_\sigma] = \frac{1}{\sqrt{\det \sigma}} g_{\sigma^{-1}}. \quad (27) \]

Proof. This is just the first relation from Lemma 1, written in a different way. \(\square \)

Lemma 2. We have
\[\mathbf{F}[g_{2\sigma}](2k_1, 2k_2) = \frac{1}{2 \sqrt{\det \sigma}} \left(g_{2\sigma^{-1}}(k_1, k_2) + g_{2\sigma^{-1}+1}(k_1, k_2) + g_{2\sigma^{-1}0}(k_1, k_2) + g_{2\sigma^{-1}+1}(k_1, k_2) \right), \]
\[\mathbf{F}[g_{2\sigma}^0](2k_1, 2k_2) = \frac{1}{2 \sqrt{\det \sigma}} \left(g_{2\sigma^{-1}}(k_1, k_2) - g_{2\sigma^{-1}+1}(k_1, k_2) + g_{2\sigma^{-1}0}(k_1, k_2) - g_{2\sigma^{-1}+1}(k_1, k_2) \right), \]
\[\mathbf{F}[g_{2\sigma}^+](2k_1, 2k_2) = \frac{1}{2 \sqrt{\det \sigma}} \left(g_{2\sigma^{-1}}(k_1, k_2) + g_{2\sigma^{-1}+1}(k_1, k_2) - g_{2\sigma^{-1}0}(k_1, k_2) - g_{2\sigma^{-1}+1}(k_1, k_2) \right), \]
\[\mathbf{F}[g_{2\sigma}^{++}](2k_1, 2k_2) = \frac{1}{2 \sqrt{\det \sigma}} \left(g_{2\sigma^{-1}}(k_1, k_2) - g_{2\sigma^{-1}+1}(k_1, k_2) - g_{2\sigma^{-1}0}(k_1, k_2) + g_{2\sigma^{-1}+1}(k_1, k_2) \right). \]

Proof. The relations
\[\mathbf{F}[g_{2\sigma}](2k_1, 2k_2) = \frac{1}{2 \sqrt{\det \sigma}} \sum_{\beta_1, \beta_2 = -\infty}^{\infty} g_{(2\sigma)^{-1}}((2k_1 + \beta_1 d) \sqrt{\frac{2\pi}{d}}, (2k_2 + \beta_2 d) \sqrt{\frac{2\pi}{d}}), \]
\[\mathbf{F}[g_{2\sigma}^0](2k_1, 2k_2) = \frac{1}{2 \sqrt{\det \sigma}} \sum_{\beta_1, \beta_2 = -\infty}^{\infty} (-1)^{\beta_1} g_{(2\sigma)^{-1}}((2k_1 + \beta_1 d) \sqrt{\frac{2\pi}{d}}, (2k_2 + \beta_2 d) \sqrt{\frac{2\pi}{d}}), \]
\[\mathbf{F}[g_{2\sigma}^+](2k_1, 2k_2) = \frac{1}{2 \sqrt{\det \sigma}} \sum_{\beta_1, \beta_2 = -\infty}^{\infty} (-1)^{\beta_2} g_{(2\sigma)^{-1}}((2k_1 + \beta_1 d) \sqrt{\frac{2\pi}{d}}, (2k_2 + \beta_2 d) \sqrt{\frac{2\pi}{d}}), \]
\[\mathbf{F}[g_{2\sigma}^{++}](2k_1, 2k_2) = \frac{1}{2 \sqrt{\det \sigma}} \sum_{\beta_1, \beta_2 = -\infty}^{\infty} (-1)^{\beta_1+\beta_2} g_{(2\sigma)^{-1}}((2k_1 + \beta_1 d) \sqrt{\frac{2\pi}{d}}, (2k_2 + \beta_2 d) \sqrt{\frac{2\pi}{d}}). \]
can be written as
\[
F[g_{2\sigma}](2k_1, 2k_2) = \frac{1}{2\sqrt{\det\sigma}} \sum_{\beta_1, \beta_2 = -\infty}^{\infty} g_{2\sigma - 1} \left((k_1 + \beta_1 \frac{d}{2}) \sqrt{\frac{2\pi}{d}}, (k_2 + \beta_2 \frac{d}{2}) \sqrt{\frac{2\pi}{d}} \right),
\]
\[
F[g_{2\sigma}^0](2k_1, 2k_2) = \frac{1}{2\sqrt{\det\sigma}} \sum_{\beta_1, \beta_2 = -\infty}^{\infty} (-1)^{\beta_1} g_{2\sigma - 1} \left((k_1 + \beta_1 \frac{d}{2}) \sqrt{\frac{2\pi}{d}}, (k_2 + \beta_2 \frac{d}{2}) \sqrt{\frac{2\pi}{d}} \right),
\]
\[
F[g_{2\sigma}^0](2k_1, 2k_2) = \frac{1}{2\sqrt{\det\sigma}} \sum_{\beta_1, \beta_2 = -\infty}^{\infty} (-1)^{\beta_2} g_{2\sigma - 1} \left((k_1 + \beta_1 \frac{d}{2}) \sqrt{\frac{2\pi}{d}}, (k_2 + \beta_2 \frac{d}{2}) \sqrt{\frac{2\pi}{d}} \right),
\]
\[
F[g_{2\sigma}^+](2k_1, 2k_2) = \frac{1}{2\sqrt{\det\sigma}} \sum_{\beta_1, \beta_2 = -\infty}^{\infty} (-1)^{\beta_1 + \beta_2} g_{2\sigma - 1} \left((k_1 + \beta_1 \frac{d}{2}) \sqrt{\frac{2\pi}{d}}, (k_2 + \beta_2 \frac{d}{2}) \sqrt{\frac{2\pi}{d}} \right).
\]
By separating the even case from the odd case for \(\beta_1\) and \(\beta_2\), we get (28). \(\square\)

4. Discrete Wigner function

The Wigner function of \(g_\sigma\), computed by using the formula
\[
W_\psi(q_1, q_2, p_1, p_2) = \frac{1}{\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-2ip_1x_1 + p_2x_2} \overline{\psi(q_1 - x_1, q_2 - x_2)} \psi(q_1 + x_1, q_2 + x_2) \, dx_1 \, dx_2, \quad (29)
\]
is a product of Gaussian functions,
\[
W_{g_\sigma}(q_1, q_2, p_1, p_2) = \frac{1}{\pi \sqrt{\det\sigma}} g_{2\sigma}(q_1, q_2) g_{2\sigma - 1}(p_1, p_2). \quad (30)
\]
Lemma 3. If the function \(f : \mathbb{R} \rightarrow [0, \infty)\) is such that the series are convergent, then
\[
\sum_{\alpha, \beta = -\infty}^{\infty} f(\alpha, \beta) = \sum_{\mu, \eta = -\infty}^{\infty} f(\mu + \eta, \mu - \eta) + \sum_{\mu, \eta = -\infty}^{\infty} f(\mu + \eta + 1, \mu - \eta). \quad (31)
\]
Proof. After separating the sum as
\[
\sum_{\alpha, \beta = -\infty}^{\infty} f(\alpha, \beta) = \sum_{\alpha, \beta \text{ both even}} f(\alpha, \beta) + \sum_{\alpha, \beta \text{ both odd}} f(\alpha, \beta), \quad (32)
\]
we use the substitutions \((\alpha, \beta) = (\mu + \eta, \mu - \eta)\) and \((\alpha, \beta) = (\mu + \eta + 1, \mu - \eta)\). \(\square\)

In the discrete case, we use for the Wigner function the definition
\[
W_\psi(n_1, n_2, k_1, k_2) = \frac{1}{d^2} \sum_{m_1 = -j}^{j} \sum_{m_2 = -j}^{j} e^{-\frac{4\pi i}{d}(k_1m_1 + k_2m_2)} \overline{\psi(n_1 - m_1, n_2 - m_2)} \psi(n_1 + m_1, n_2 + m_2). \quad (33)
\]
Theorem 2. The Wigner function W_{g_o} of g_o is an algebraic sum of 16 products of Gaussian like functions, namely

\[
W_{g_o}(n_1, n_2, k_1, k_2) = \frac{1}{2\sqrt{\det \sigma}} \sum_{m_1,m_2=-j}^{j} e^{-\frac{a^n}{2}(k_1 m_1 + k_2 m_2)} \times \sum_{\alpha_1, \beta_1 = -\infty}^{\infty} e^{-\frac{a}{2\alpha}(n_1-m_1+\alpha_1 \eta_1)^2} e^{-\frac{b}{2\alpha}(n_2-m_2+\beta_1 \eta_1)^2} e^{-\frac{c}{2\alpha}(n_2-m_2+\beta_1 \eta_1)^2} \times e^{-\frac{d}{2\alpha}(n_1-m_1+\beta_1 \eta_1)^2} e^{-\frac{e}{2\alpha}(n_2-m_2+\beta_1 \eta_1)^2} e^{-\frac{f}{2\alpha}(n_2-m_2+\beta_1 \eta_1)^2}
\]

Proof. By using Lemma 3, we obtain

\[
W_{g_o}(n_1, n_2, k_1, k_2) = \frac{1}{d^2} \sum_{m_1,m_2=-j}^{j} e^{-\frac{a^n}{2}(k_1 m_1 + k_2 m_2)} \times \sum_{\alpha_1, \beta_1 = -\infty}^{\infty} e^{-\frac{a}{2\alpha}(n_1-m_1+\alpha_1 \eta_1)^2} e^{-\frac{b}{2\alpha}(n_2-m_2+\beta_1 \eta_1)^2} e^{-\frac{c}{2\alpha}(n_2-m_2+\beta_1 \eta_1)^2} \times e^{-\frac{d}{2\alpha}(n_1-m_1+\beta_1 \eta_1)^2} e^{-\frac{e}{2\alpha}(n_2-m_2+\beta_1 \eta_1)^2} e^{-\frac{f}{2\alpha}(n_2-m_2+\beta_1 \eta_1)^2}
\]

\[
W_{g_o}(n_1, n_2, k_1, k_2) = \frac{1}{d^2} \sum_{m_1,m_2=-j}^{j} e^{-\frac{a^n}{2}(k_1 m_1 + k_2 m_2)} \times \sum_{\alpha_1, \beta_1 = -\infty}^{\infty} e^{-\frac{a}{2\alpha}(n_1-m_1+\alpha_1 \eta_1)^2} e^{-\frac{b}{2\alpha}(n_2-m_2+\beta_1 \eta_1)^2} e^{-\frac{c}{2\alpha}(n_2-m_2+\beta_1 \eta_1)^2} \times e^{-\frac{d}{2\alpha}(n_1-m_1+\beta_1 \eta_1)^2} e^{-\frac{e}{2\alpha}(n_2-m_2+\beta_1 \eta_1)^2} e^{-\frac{f}{2\alpha}(n_2-m_2+\beta_1 \eta_1)^2}
\]

\[
W_{g_o}(n_1, n_2, k_1, k_2) = \frac{1}{d^2} \sum_{m_1,m_2=-j}^{j} e^{-\frac{a^n}{2}(k_1 m_1 + k_2 m_2)} \times \sum_{\alpha_1, \beta_1 = -\infty}^{\infty} e^{-\frac{a}{2\alpha}(n_1-m_1+\alpha_1 \eta_1)^2} e^{-\frac{b}{2\alpha}(n_2-m_2+\beta_1 \eta_1)^2} e^{-\frac{c}{2\alpha}(n_2-m_2+\beta_1 \eta_1)^2} \times e^{-\frac{d}{2\alpha}(n_1-m_1+\beta_1 \eta_1)^2} e^{-\frac{e}{2\alpha}(n_2-m_2+\beta_1 \eta_1)^2} e^{-\frac{f}{2\alpha}(n_2-m_2+\beta_1 \eta_1)^2}
\]

\[
W_{g_o}(n_1, n_2, k_1, k_2) = \frac{1}{d^2} \sum_{m_1,m_2=-j}^{j} e^{-\frac{a^n}{2}(k_1 m_1 + k_2 m_2)} \times \sum_{\alpha_1, \beta_1 = -\infty}^{\infty} e^{-\frac{a}{2\alpha}(n_1-m_1+\alpha_1 \eta_1)^2} e^{-\frac{b}{2\alpha}(n_2-m_2+\beta_1 \eta_1)^2} e^{-\frac{c}{2\alpha}(n_2-m_2+\beta_1 \eta_1)^2} \times e^{-\frac{d}{2\alpha}(n_1-m_1+\beta_1 \eta_1)^2} e^{-\frac{e}{2\alpha}(n_2-m_2+\beta_1 \eta_1)^2} e^{-\frac{f}{2\alpha}(n_2-m_2+\beta_1 \eta_1)^2}
\]
On the Gaussian functions of two discrete variables

5. Discrete-continuous correspondence

The function \(g_\sigma \) corresponds to \(g_\sigma \), namely

\[
g_\sigma(n_1, n_2) = \sum_{\alpha_1, \alpha_2 = -\infty}^{\infty} g_\sigma \left((n_1 + \alpha_1 d) \sqrt{\frac{2\pi}{d}}, \ (n_2 + \alpha_2 d) \sqrt{\frac{2\pi}{d}} \right).
\]

The relation (27) can be written as

\[
F[g_\sigma](k_1, k_2) = \sum_{\beta_1, \beta_2 = -\infty}^{\infty} F[g_\sigma] \left((k_1 + \beta_1 d) \sqrt{\frac{2\pi}{d}}, \ (k_2 + \beta_2 d) \sqrt{\frac{2\pi}{d}} \right),
\]

that is, the discrete Fourier transform \(F[g_\sigma] \) of \(g_\sigma \) is the Gaussian function of two discrete variables corresponding to the continuous Fourier transform \(F[g_\sigma] \) of \(g_\sigma \).

By using (17), (18) and (30), the relation (34) can be written as

\[
W_{g_\sigma}(n_1, n_2, k_1, k_2) = C_\sigma \sum_{\alpha_1, \alpha_2 = -\infty}^{\infty} \sum_{\beta_1, \beta_2 = -\infty}^{\infty} (-1)^{\alpha_1 \beta_1 + \alpha_2 \beta_2}
\]

\[
\times W_{g_\sigma} \left((n_1 + \alpha_1 d) \sqrt{\frac{2\pi}{d}}, \ (n_2 + \alpha_2 d) \sqrt{\frac{2\pi}{d}}, \ (k_1 + \beta_1 d) \sqrt{\frac{2\pi}{d}}, \ (k_2 + \beta_2 d) \sqrt{\frac{2\pi}{d}} \right),
\]

where \(C_\sigma \) is a constant. Thus, the discrete Wigner function \(W_{g_\sigma} \) of \(g_\sigma \) can be obtained directly from the corresponding continuous Wigner function \(W_{g_\sigma} \) of \(g_\sigma \).
6. Concluding remarks

Some remarkable discrete versions of the Gaussian functions, the corresponding Fourier transform and Wigner function can be defined as the sum of a convergent series involving the continuous counterpart. We have investigated the Gaussian functions of two variables, but the definitions and the obtained results can easily be extended to three or more variables.

References

[1] Mehta M L 1987 Eigenvalues and eigenvectors of the finite Fourier transform J. Math. Phys. 28 781
[2] Vourdas A 2004 Quantum systems with finite Hilbert space Rep. Prog. Phys. 67 267-320
[3] Ruzzi M 2006 Jacobi θ-functions and discrete Fourier transform J. Math. Phys. 47 063507
[4] Cotfas N, Gazeau J P and Vourdas A 2011 Finite-dimensional Hilbert space and frame quantization J. Phys. A: Math. Theor. 44 175303
[5] Cotfas N and Dragoman D 2012 Properties of finite Gaussians and the discrete-continuous transition J. Phys. A: Math. and Theor. 45 425305
[6] Weil A 1954 Sur certains groupes d’opérateurs unitaires Acta math. 111 143-211
[7] Zak J 1967 Finite translations in solid state physics Phys. Rev. Lett. 19 1385
[8] Cotfas N 2019 Gaussian functions of two discrete variables, https://unibuc.ro/user/nicolae.cotfas/
[9] Cotfas N 2019 An overview on GAUSSIAN FUNCTIONS OF DISCRETE VARIABLE, https://unibuc.ro/user/nicolae.cotfas/