Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Artículo especial

Registro español de ablación con catéter. XXI informe oficial de la Asociación del Ritmo Cardíaco de la Sociedad Española de Cardiología (2021)

Ignasi Angueraa,*, Óscar Cano Pérezb y Víctor Basánc, en representación de los colaboradores del Registro español de ablación con catéterd

aUnidad de Arritmias y Electrofisiología, Servicio de Cardiología, Hospital Universitario de Bellvitge, Instituto d’Investigació Biomèdica de Bellvitge-IDIBELL, L’Hospitalet de Llobregat, Barcelona, España

bUnidad de Arritmias, Servicio de Cardiología, Hospital Universitario y Politécnico La Fe, Instituto de Investigación Sanitaria La Fe, Valencia, España

cUnidad de Arritmias, Servicio de Cardiología, Hospital Universitario Germans Trias i Pujol, Badalona, Barcelona, España

* Autor para correspondencia:
Correo electrónico: languerra@bellvitgehospital.cat (I. Anguera).

d La lista completa de colaboradores se incluye en el anexo 1 y el listado de laboratorios de electrofisiología participantes se detalla en el anexo 2.

Historia del artículo:
Recibido el 25 de julio de 2022
Aceptado el 10 de agosto de 2022
On-line el 22 de septiembre de 2022

Palabras clave:
Registro
Ablación con catéter
Electrofisiología
Arritmia

RESUMEN

\textbf{Introducción y objetivos:} Se describen los resultados del Registro español de ablación con catéter correspondientes al año 2021, marcado por la recuperación de la actividad tras la pandemia de SARS-CoV-2.

\textbf{Métodos:} La recogida de datos fue retrospectiva mediante la cumplimentación y el envío de un formulario específico por los centros participantes.

\textbf{Resultados:} Se analizaron los datos de 93 centros (65 públicos, 28 privados). Se comunicaron 17.941 procedimientos de ablación con una media de 193 ± 133 y mediana de 171. La recuperación de la actividad tras el cierre por la pandemia de SARS-CoV-2 ha supuesto un marcado aumento de procedimientos (+2.772 casos, +18\%a) a pesar de un ligero descenso en el número de centros participantes (4 menos que en 2020). La ablación de la fibrilación auricular sigue siendo el procedimiento más frecuente, a distancia del resto de sustratos (5.848; 32,6\%). Junto con la ablación del istmo cavotricuspidio (3.766; 21\%) y la taquicardia por reentrada intranodal (3.132; 17,5\%), constituyen los 3 sustratos abordados con más frecuencia. Las tasas comunicadas de éxito (94\%), complicaciones (25\%) y mortalidad (0,07\%) son similares a las de años previos. Se realizaron 401 procedimientos en pacientes pediátricos (el 3,8\% del total).

\textbf{Conclusiones:} El Registro español de ablación con catéter recoge de manera sistemática e ininterrumpida la actividad nacional, y este año se ha observado una marcada recuperación de la actividad a pesar del persistente efecto de la pandemia de SARS-CoV-2. La tasa de éxito sigue manteniéndose elevada, con una baja tasa de complicaciones.

© 2022 Sociedad Española de Cardiología. Publicado por Elsevier España, S.L.U. Todos los derechos reservados.

Spanish catheter ablation registry. 21st official report of the Heart Rhythm Association of the Spanish Society of Cardiology (2021)

\textbf{ABSTRACT}

\textbf{Introduction and objectives:} The results of the 2021 Spanish catheter ablation registry are presented.

\textbf{Methods:} Data collection was carried out retrospectively by filling in and sending a specific form by the participating centers.

\textbf{Results:} Data from 93 centers (65 public, 28 private) were analyzed. A total of 17941 ablation procedures were reported with a mean of 193 ± 133 cases per centre. Recovery of activity from SARS-CoV-2 pandemic lockdown has led to a notable increase in the number of procedures (+2772 procedures, +18\%) despite a small decrease in participating centers (4 centers less than in 2020). Atrial fibrillation ablation continues to be the leading procedure, with 5848 procedures (32,6\%). Together with ablation of the cavotricuspid isthmus (3766; 21\%) and atrioventricular nodal reentrant tachycardia (3132; 17,5\%) they constitute the 3 most frequently approached substrates. The total success rate reported (94\%) is similar to previous years with a similar rate of complications (2\%) and mortality (0,07\%). A total of 401 procedures were performed in pediatric patients (3,8\%).

\textbf{Conclusions:} The Spanish catheter ablation registry systematically and continuously collects the national activity, which has recovered significantly from the SARS-CoV-2 pandemic impact in 2020. Success rate for 2021 remains high, with a low complication rate.

© 2022 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

* Autor para correspondencia:
Correo electrónico: languerra@bellvitgehospital.cat (I. Anguera).

d La lista completa de colaboradores se incluye en el anexo 1 y el listado de laboratorios de electrofisiología participantes se detalla en el anexo 2.

https://doi.org/10.1016/j.recesp.2022.08.009

0300-8932/© 2022 Sociedad Española de Cardiología. Publicado por Elsevier España, S.L.U. Todos los derechos reservados.
Abreviaturas
FA: fibrilación auricular
ICT: istmo cavotricuspidio
taf: taquicardia auricular focal
TAM: taquicardia auricular macrorreentrante
TIN: taquicardia intranodular
TVI: taquicardia ventricular idiopática
TV-IAM: taquicardia ventricular relacionada con cicatriz posinfarto
TV-NIAM: taquicardia ventricular asociada con cardiopatía y no relacionada con cicatriz posinfarto

INTRODUCCIÓN
El Registro español de ablación con catéter, informe oficial de la Asociación del Ritmo Cardiaco de la Sociedad Española de Cardiología, describe la evolución del tratamiento intervencionista de las arritmias en España sin interrupción desde hace 2 décadas¹ ². Su objetivo es proporcionar información fiable y comparable sobre la actividad y las dotaciones de las unidades de arritmias españolas.

MÉTODOS
La recogida de datos es retrospectiva, a través de un formulario estandarizado que se remitió a todos los laboratorios de electrofisiología a principios de 2022. Los datos recopilados son voluntarios y anónimos, incluso para los coordinadores del registro, ya que la secretaría de la Sociedad Española de Cardiología les desagrega de la identificación del centro.
El registro proporciona información sobre la dotación técnica y humana de las unidades de arritmias participantes, el tipo de procedimiento y los sustratos abordados, así como de sus resultados y complicaciones. Siguiendo la clasificación establecida en años anteriores, se han analizado las siguientes categorías: taquicardia intranodular (TIN), vías accesoria (VAC), nódulo auriculoventricular (NAV), taquicardia auricular focal (TAF), istmo cavotricuspidio (ICT), taquicardia auricular macrorreentrante (TAM), fibrilación auricular (FA), taquicardia ventricular idiopática (TVI), taquicardia ventricular relacionada con cicatriz posinfarto (TV-IAM) y taquicardia ventricular asociada con cardiopatía y no relacionada con cicatriz posinfarto (TV-NIAM). En esta edición se ha empezado a recoger datos de cardioneuronablación.
Se analizaron variables comunes a todos los sustratos: número de pacientes y procedimientos realizados (específicamente para los pediátricos o menores de 15 años), éxito agudo (al final del procedimiento), tipo de catéter de ablación utilizado y número y tipo de complicaciones, incluida la muerte periprocedimiento. Además se analizaron variables específicas en ciertos sustratos como el tipo y la localización de la cardiopatía subyacente. Se recogió en todos los procedimientos el uso de sistemas de cartografía electroanatómica y los realizados sin necesidad de fluoroscopia. Como en años previos, el éxito se refiere al éxito agudo (al final del procedimiento) y las complicaciones recogidas son las que tuvieron lugar durante el ingreso hospitalario. Al igual que el año pasado, dada la pandemia de SARS-CoV-2, se han solicitado datos adicionales para intentar cuantificar su impacto en la práctica clínica de nuestros laboratorios.

RESULTADOS

Dotación técnica y humana
La tabla 1 y la tabla 2 muestran la dotación técnica y los recursos humanos de los laboratorios participantes, así como las diferentes actividades realizadas en ellos. Un total de 65 centros (69,9%) han proporcionado datos.

| Tabla 1 |
| Dotación de recursos humanos de los laboratorios españoles |
Año	Médicos en plantilla	Médicos a tiempo completo	Becarios/año	DUE	ATR
2021	3,3	2,4	0,5	2,8	0,3
2020	3,5	2,2	0,6	2,9	0,3

ATR: ayudante técnico de radiología; DUE: diplomado universitario en enfermería.

Tabla 2
Dotación técnica y actividades adicionales de los laboratorios participantes (n = 93)

Características generales
Centro universitario
Nivel terciario
Tipo de financiación
Público
Privado
Servicio responsable cardiología
Cirugía cardíaca disponible
Anestesia disponible

Equipo de fluoroscopia
Arco fijo
Arco portátil
Angiografía rotacional

Sistema de navegación no fluoroscópico
Carto
Ensite
Rhythmia

Navegación a distancia
Magnética
Robotizada

Dotación adicional
Ecografía intracardiaca
Crioglobulación

Actividad
Ablación por láser

Implantación de dispositivos
Marcaspos
DAI
Resincronización
Holter subcutáneo
Cardioversión eléctrica
Denervación renal
Cierre de orejuela

DAI: desfibrilador automático implantable.
Los valores expresan n (%)
disponen de al menos 1 sala con dedicación exclusiva a electrofisiología. Siguen como minoritarios los centros dotados con más de 1 sala: 18 centros disponen de 2 (19.3%). La gran mayoría de los centros también tienen actividad de implante de dispositivos (marcapasos, desfibrilador, resincronizadores y Holter subcutáneo). Se dispone de al menos 1 sistema de fluoroscopia de arco fijo en 71 centros (76,3%) y 23 centros disponen de angiografía rotacional. La gran mayoría de los centros disponen de sistema de navegación no fluoroscópica. El más extendido es el sistema Ensite (73,1%), seguido del Carto (61,2%) y el Rhythmia (26,8) y el 75,2% hace criobalización. El personal dedicado a los laboratorios de electrofisiología se mantiene estable con una media de 3,3 médicos (solo 2,4 a tiempo completo) y una media de 0,5 becarios por año.

Resultados generales

En 2021 se ha vuelto a experimentar un aumento en el número total de ablaciones realizadas, tras el descenso observado en 2020 (como resultado del impacto de la pandemia por SARS-CoV-2). Como contrapartida ha habido un nuevo descenso en el número de centros participantes (4 menos que en 2020). En 2021 se han comunicado 17.941 procedimientos de ablación, con una media de 193 ± 133 casos por centro y una mediana de 171. La recuperación de la actividad tras el cierre por la pandemia de SARS-CoV-2 ha supuesto un marcado aumento de procedimientos (+2.772 casos, +18%). En la figura 1 se muestra la evolución del número de procedimientos y de centros participantes en el registro en los últimos 10 años.

Hay una fuerte recuperación en el número de centros que realizan más de 400 ablaciones (3 en 2020 por 9 en 2021) sin alcanzar los 10 centros de 2019. En la figura 2 se muestra el volumen de procedimientos por centro y su distribución según el tipo de financiación.

Se ha comunicado un aumento del número de casos de todos los sustratos y su distribución relativa en unos valores similares a los de 2020. La FA sigue siendo el sustrato más abordado, con casi un tercio de los procedimientos (5.848 procedimientos; 32.6%). El segundo sustrato más frecuente, la ablación del ICT, se mantiene estable (3.766 procedimientos; 21%). La ablación de la TIN figura como tercer sustrato (3.132 procedimientos; 17.5%). En la
Figura 3. Distribución del número de procedimientos por sustrato en la última década. FA: fibrilación auricular; ICT: istmo cavotricuspiddeo; NAV: nódulo auriculoventricular; TA: taquicardia auricular; TIN: taquicardia intranodular; TV: taquicardia ventricular; VAC: vía accesoria.

Tabla 3
Distribución total y relativa del número de procedimientos por sustrato comunicados en 2021 y comparación con 2020

Procedimientos	2020	2021	% relativo en 2021	% de variación sobre 2020
FA	4.513	5.848	32,6	+29,6
ICT	3.188	3.766	21	+18,1
TIN	2.808	3.132	17,5	+11,5
VAC	1.539	1.645	9	+6,9
NAV	750	905	5	+20,7
TV-IAM	422	453	3	+7,3
TVI	649	709	4	+9,2
TAF	471	504	3	+7,0
TAM	582	749	4	+28,7
TV-NIAM	247	199	1	-19,4
Cardioneuroablación	0	31	0	0

FA: fibrilación auricular; ICT: istmo cavotricuspiddeo; NAV: nódulo auriculoventricular; TA: taquicardia auricular focal; TAM: taquicardia auricular macrorreentrante; TIN: taquicardia intranodular; TVI: taquicardia ventricular idiopática; TV-IAM: taquicardia ventricular relacionada con cicatriz posinfarto; TV-NIAM: taquicardia ventricular no relacionada con cicatriz posinfarto; VAC: vía accesoria.

Figura 4. Evolución de la tasa de éxito por sustrato. FA: fibrilación auricular; ICT: istmo cavotricuspiddeo; NAV: nódulo auriculoventricular; TAF: taquicardia auricular focal; TAM: taquicardia auricular macrorreentrante; TIN: taquicardia intranodular; TVI: taquicardia ventricular idiopática; TV-IAM: taquicardia ventricular relacionada con cicatriz posinfarto; TV-NIAM: taquicardia ventricular no relacionada con cicatriz posinfarto; VAC: vía accesoria.
La ablación de VAC permanece estable como el cuarto sustrato en frecuencia, con un 9% del total de las ablaciones realizadas y un aumento del 6,9% en el total de procedimientos respecto al año previo (1.645 frente a los 1.539 de 2020). Registran ablación de VAC 90 de los 93 centros participantes, con una tasa de éxito del 91% y una tasa de complicaciones del 1,6%, que incluyen 9 complicaciones vasculares, 8 derrames pericárdicos, 1 tromboembolia pulmonar bilateral 1 semana tras el procedimiento, 1 bloqueo auriculoventricular tipo Wenckebach autolimitado y 1 atrapamiento de catéter en el aparato subvalvar mitral que requirió cirugía.

Un 46,5% de las VAC mostraron conducción bidireccional, el 17,8% tenían conducción anterógrada exclusivamente y el 38,2% tenían conducción exclusivamente retrógrada. Las VAC izquierdas continúan siendo las más frecuentes (el 44,3% de los casos), con un porcentaje de éxito de la ablación del 93,5%, seguidas por las vías infereoseptales (el 24,5%, con un 99,8% de éxito comunicado), vías derechas de pared libre (el 9,4% del total; éxito del 89,7%) y las vías perihisianas/anterosistémicas, que supusieron un 8,3% del total con una tasa de éxito del 86%. En 25 casos fue necesaria una ablación epicárdica, mientras que para la ablación de las vías izquierdas se utilizó el acceso retroaórtico en un 71% de los casos. La utilización de sistemas de navegación se ha convertido en mayoritaria, con un incremento muy significativo respecto al año previo (el 70,8% en 2021 frente al 48,7% en 2020), incluyendo un 29,2% de procedimientos realizados sin uso de escopia.

Taquicardia auricular focal

La TAF fue el octavo sustrato ablacionado en 2021, con un total de 504 procedimientos en 483 pacientes (el 3% del total de ablaciones en 2021) y 5,5 procedimientos anuales por centro. En 456 casos (90%), la ablación se consideró exitosa. En 352 casos el origen de la TAF fue auricular derecho (70%), con ablación efectiva en 327 de ellos (93%). En los 152 casos restantes, el origen fue auricular izquierdo, con éxito del procedimiento en 123 (81%).

Figura 5. Evolución de la tasa de complicaciones por sustrato. FA: fibrilación auricular; ICT: istmo cavotricuspidio; NAV: nódulo auriculoventricular; TAF: taquicardia auricular focal; TAM: taquicardia auricular macroreentrante; TIN: taquicardia intranodal; TVI: taquicardia ventricular idiopática; TV-IAM: taquicardia ventricular relacionada con cicatriz posinfarto; TV-NIAM: taquicardia ventricular no relacionada con cicatriz posinfarto; VAC: vía accesoria.
uso de catéter no irrigado de 4 mm siguió su tendencia descendente hasta su actual uso minoritario (el 20% de los casos), con 10 crioablations focales y 377 procedimientos con catéter irrigado (el 75% del total), 103 sin sensor de contacto y 274 con él. El uso de sistemas de navegación sigue su tendencia creciente y actualmente se aplican en el 73% del total de ablaciones de este sustrato (368). En 127 casos el procedimiento se realizó sin fluoroscopia, un aumento del 21% previo al 25% actual. En 2021 se registraron un total de 9 complicaciones relacionadas con este procedimiento (1,8%), 4 de naturaleza vascular y 4 bloqueos auriculoventriculares, además de un derrame pericárdico.

Istmo cavitricuspidé

En 2021 se llevaron a cabo 3.766 ablaciones de ICT en 3.646 pacientes, con lo que este sustrato se mantuvo como el segundo más frecuente por detrás de la ablación de venas pulmonares (el 21% del total de procedimientos). Se realizaron una media de 41 procedimientos por centro. El éxito agudo del procedimiento (bloqueo del ICT) fue del 98% de los casos. En 2.734 de los 3.766 procedimientos (73%) se utilizó catéter de punta irrigada, con sensor de contacto en 1.283 casos y sin él en 1.481. En 885 procedimientos se utilizó catéter de 8 mm (23,5%, porcentaje prácticamente idéntico al del año anterior). El uso de navegador, que había experimentado un marcado crecimiento el año anterior, se mantiene estable, con poco menos de la mitad de los procedimientos (el 46% de los casos). Las ablaciones sin fluoroscopia bajaron discretamente del 25% del año anterior al 20% en 2021 (749 de los 3.766 procedimientos). En la línea de años anteriores, se han registrado un total de 22 complicaciones (0,6%), de nuevo con predominio de las relacionadas con el acceso vascular (16), además de 2 casos de derrame pericárdico y 1 infarto de miocardio. Cabe destacar que este año no se ha comunicado ningún caso de bloqueo auriculoventricular relacionado con la ablación de ICT ni mortalidad.

Taquicardia auricular macrorreentrante

En 2021 el número de ablaciones de este sustrato es sensiblemente superior, con un total de 749 procedimientos en 633 pacientes, en comparación con los 582 del año anterior. En 594 casos (79%) la ablación se consideró exitosa, con un porcentaje similar al del año previo y significativamente menor que el obtenido en otros sustratos. Un total de 244 casos (33%) se realizaron tras ablación previa de FA, 111 (15%) en pacientes con cardiopatía congénita y en 62 con atriotomía previa. De las 749 ablaciones de este sustrato, 212 fueron en aurícula derecha (29%) y 510 (68%) en aurícula izquierda.

El uso de catéteres no irrigados fue residual en este sustrato, con absoluto predominio de los catéteres irrigados con sensor de contacto (617 del total de ablaciones de TAM, 82%). En la mayoría de los casos la ablación se realizó con navegador (628 casos, 84%), y sin fluoroscopia en un total de 86 (11%). El procedimiento incluyó administración de etanol en la vena de Marshall en 16 casos. Se registraron un total de 19 complicaciones (3%), entre las que se incluyen 7 complicaciones vasculares, 8 derrames pericárdicos y 1 embolia.

Ablación del nódulo auriculoventricular

Se realizaron 905 ablaciones de NAV en 854 pacientes, con una media de 10 ablaciones de este sustrato por centro. El NAV se mantiene como el quinto sustrato, con un 5% del total de ablaciones en 2021. El procedimiento fue exitoso en un 96% de los casos, porcentaje similar al de años anteriores. El catéter de 4 mm sigue siendo el más utilizado (499 procedimientos, 55%), con uso de catéteres irrigados en 304 casos (sin sensor de contacto en 250 de ellos). En 109 casos (12%) se utilizó catéter de 8 mm, porcentaje no inferior al de años anteriores. Se han registrado un total de 17 complicaciones (0,8%), entre las que se incluyen 3 complicaciones vasculares, 1 derrame pericárdico y 1 evento embólico relacionado con el procedimiento. En 45 casos (5%) se hizo uso de navegador y en 65 (7%) el procedimiento se realizó sin fluoroscopia.

Fibrilación auricular

La ablación de FA sigue su creciente predominio como sustrato más abordado en 2021, y supone actualmente el 32,6% de todos los procedimientos de ablación comunicados (5.848 procedimientos en 5.601 pacientes). Según los datos disponibles, 3.516 de los 5.848 procedimientos se realizaron en pacientes con FA paroxística, 1.888 con FA persistente y 213 con FA persistente de larga duración. Sigue habiendo un número significativo de centros (13) en los que no se hizo ningún procedimiento de ablación de FA, 31 centros con menos de 50 ablaciones, y los 51 (el 54% del total) concentraron la mayoría de las ablaciones de este sustrato (más de 50 por centro). En contraposición, 8 centros realizaron más de 150 ablaciones. La figura 6 muestra el número de centros según el
volumen anual de procedimientos de ablación (en bloques de 50 casos).

Se empleó catéter irrigado en 3.286 casos (56%), con sensor de contacto en el 95%, frente a 2.399 con criobalón (41%). La figura 7 muestra la evolución temporal de técnicas de ablación de FA mediante la técnica punto a punto y criobalación desde 2013 a 2021. Se registraron 83 procedimientos adicionales realizados con láser. El uso de vaina deflectable y de ecocardiograma intracardíaco sigue experimentando un continuo crecimiento año a año, actualmente el 32 y el 11% de los casos respectivamente. En 2021 se añadió un séptimo centro en el que se realizó ablación de FA sin escopia, con un total de 242 procedimientos (muy superior a los 75 del año anterior). El procedimiento tuvo como objetivo único el aislamiento de venas pulmonares en el 92% de los casos. La ablación se consideró exitosa en el 97% de los casos, con aislamiento de venas pulmonares en un 99% de las ablaciones en las que se intentó. Además de realizarse o de confirmarse el aislamiento de venas pulmonares, se practicaron líneas adicionales de ablación en aurícula izquierda en 355 procedimientos (el 6% del total, con éxito en 354 de ellos, prácticamente el 100%), aislamiento de la vena cava superior en 116 casos (con éxito en el 97%), ablación de electrogramas complejos/fragmentados en 50 (con éxito en el 80%) y alcoholización de la vena de Marshall en 28 casos. Se utilizó un sistema de navegación en 3.576 casos (61%). El porcentaje de complicaciones relacionadas con el procedimiento de FA se mantiene estable en el 3,4% (202 de los 5.848 procedimientos). Se registraron 55 derrames pericárdicos (0,9%), 47 complicaciones vasculares (0,8%) y 14 embolias (0,2%), con además 45 parálisis frénicas (0,8%). Se registró una muerte asociada con una fistula auriculoesofágica.

Taquicardia ventricular idiopática

Los procedimientos de ablación de TVI han supuesto un 4% del total de procedimientos, cifra que permanece estable respecto al año previo. En números absolutos, con un total de 709 procedimientos, se ha producido un incremento del 8,5% respecto al año 2020, aunque lejos todavía de los 807 procedimientos de 2019. Ha disminuido considerablemente el número de centros que realizan esta ablación, de 88 en 2020 a 75 en 2021, con una media de 9,5 ± 8,3 (intervalo, 1-55) procedimientos por centro. La tasa de éxito comunicada es del 81,8%.

En cuanto a la localización de las taquicardias, 333 casos eran de trastorno de conducción del ventrículo derecho, 123 de trastorno de conducción del ventrículo izquierdo, 63 de la raíz aórtica, 41 eran taquicardias fasciculares, 30 epicárdicas, 9 con origen en arteria pulmonar y 48 en otras localizaciones: músculos papilares, banda moderadora, pared libre del ventrículo derecho o anillo mitral.

En el 82,5% de los procedimientos se utilizó un sistema de navegación y en un 16,6% no se empleó escopia. El uso de catéteres de ablación con punta irrigada y sensor de contacto es mayoritario en este substrato (78%), mientras que el uso de catéteres irrigados sin sensor de contacto ha disminuido llamativamente hasta un 7,8% respecto al 24,3% comunicado en 2020. Se han comunicado 6 casos de ablación alcohólica, 5 de ellos en un mismo centro. Se han registrado 18 complicaciones (2,5%): 1 bloqueo auriculoventricular, 4 complicaciones vasculares, 12 derrames pericárdicos y 1 embolia. Se produjo 1 muerte tras cirugía cardíaca por taponamiento y disección de aorta.

Taquicardia ventricular asociada con cicatriz posinfarto

La ablación de TV-IAM ha supuesto el 3% del total de las ablaciones realizadas con 453 procedimientos en 403 pacientes. Esto supone un mínimo ascenso respecto al año previo (31 procedimientos más) realizados en 65 centros (media de 7,1 ± 5,4 procedimientos por centro; intervalo, 1-26). El uso de sistemas de navegación disminuye hasta un 85% de los casos en comparación con el 91,7% comunicado en 2020, y solo en 9 casos (2%) no se empleó escopia. La tasa de éxito fue del 82,6% y el uso de catéteres de ablación con punta irrigada y sensor de contacto fue la normal, con un 90,3% de los casos. Se describen 3 casos de radioablación, 4 de criobalación y 1 de ablación alcohólica. Se observa un incremento en la utilización del acceso transapical que alcanza el 55,8% de los casos y supera ya al acceso retroauricular que se utilizó en un 41,3%. En un 9,5% de los casos se utilizó un acceso combinado endocárdico/epicárdico y en un 3,3%, exclusivamente el acceso epicárdico. Para la ablación se utilizó mayoritariamente una estrategia de ablación de sustrato (el 66,9% de los casos), mientras que el mapeo de activación convencional se utilizó en un 24,3%. La tasa de complicaciones alcanzó el 7,5%, cifra similar a las de años previos, incluyendo 11 complicaciones vasculares, 2 bloqueos auriculoventriculares, 5 derrames pericárdicos, 1 embolia, 1 infarto de miocardo y 8 descompensaciones de insuficiencia cardíaca. Se comunicaron un total de 7 fallecimientos asociados a este tipo de procedimiento (mortalidad del 1,5%).

Taquicardia ventricular no asociada con cicatriz posinfarto

La ablación de TV-NIAM ha experimentado una reducción sensible respecto a las cifras de los últimos años. Se han realizado
un total de 199 procedimientos en 184 pacientes (48 procedimientos menos respecto a 2020) y ha descendido también el número de centros que realiza este tipo de ablación hasta 45 respecto a los 51 de 2020. La media de procedimientos por centro fue de 4.6 ± 4.4 (intervalo, 1-22) con una tasa de éxito del 74,9%. Se utilizó un sistema de navegación no fluoroscópica en la mayoría de los casos (96%). Los sustratos abordados incluyeron: miocardiopatía dilatada no isquémica, 112 (% éxito del 77,7%); miocardiopatía arritmogénica, 29 (% éxito del 86,2%); miocardiopatía hipertrófica, 9 (% éxito del 100%); cardiopatías congénitas, 17 (% éxito del 88,2%); taquicardia rama-rama, 9 (% éxito del 88,9%); y una miscelánea de 26 casos entre los que se incluyen la miocardiopatía chagásica, la sarcoidosis, la miocardiitis o la miocardiopatía de origen valvular.

El uso de catéteres de ablación con punta irrigada y sensor de contacto es la norma (91%), mientras que la utilización de otras fuentes de ablación es anecdótica, incluyendo 3 casos de radioablación, 1 crioablación y 1 ablación alcohólica. Se utilizó un abordaje transeptal en un 35% de los casos y el retroaórtico en un 31,7%. En un 21,6% de los casos se utilizó un acceso combinado endocárdico y epicárdico, mientras que en un 9,5% el acceso fue exclusivamente epicárdico.

La tasa de complicaciones comunicada fue del 5%, incluyendo 2 bloqueos auriculoventriculares, 2 complicaciones vasculares, 4 derrames pericárdicos, 1 sangrado de una arteria torácica y 1 desplazamiento de un cable de un desfibrilador automático implantable. Se produjeron 2 muertes, una de ellas tras taponamiento cardíaco y la otra como consecuencia de un sangrado torácico en relación con un acceso epicárdico.

Ablación con navegadores y sin fluoroscopia

El porcentaje de procedimientos de ablación con navegadores no fluoroscópicos ha crecido respecto a años anteriores, del 49% en 2020 al 52% en 2021 (9.394 procedimientos). Porcentualmente, el sustrato que registró mayor uso de navegadores fue de nuevo la taquicardia ventricular (el 85% de los procedimientos), mientras que en las ablaciones no complejas (TIN, VAC, ICT y, especialmente, NAV), el uso de navegador fue siempre minoritario: desde un 5% en ablación del NAV hasta un 46% en ablación de VAC.

El número de procedimientos sin fluoroscopia asciende a un total de 2.929, un 16% del total, cifra discretamente superior al 14% alcanzado en 2020. Los sustratos en los que más se ha prescindido de la fluoroscopia siguen siendo la ablación de TIN (29%), la ablación de ICT (28%) y la ablación de TA focal (25%).

Ablación en pacientes pediátricos

Se han comunicado un total de 401 ablaciones en pacientes pediátricos, lo cual supone un incremento de un 39% respecto a 2020 (158 ablaciones más realizadas durante 2021). El peso relativo de las ablaciones en pacientes pediátricos se incrementa significativamente del 1,6% en 2020 al 3,8% en 2021. Desciende el número de centros que comunican ablaciones en pacientes pediátricos hasta 24 respecto a los 37 en 2020. El sustrato ablationado con más frecuencia en pacientes pediátricos continúa siendo las VAC (el 66,6% de los casos, 267 procedimientos), seguidas de la TIN (19,9%, 80 procedimientos), la TAF (5,5%, 22 procedimientos) y la TVI (5%, 20 procedimientos). El ICT (2%, 8 procedimientos) y la TAM (1%, 2 procedimientos) son sustratos muy poco frecuentes en este grupo de población. La figura 8 muestra la distribución de procedimientos pediátricos por sustrato y su proporción respecto al total de procedimientos.

Datos específicos en 2021 de la pandemia por SARS-CoV-2

La afectación por la pandemia SARS-CoV-2 ha sido mucho menor en 2021. Tan solo 29 laboratorios (31,2%) aportaron información específica sobre la repercusión de la pandemia en su práctica clínica. Durante el año 2021 los laboratorios permanecieron cerrados a causa de la pandemia una media de 9,33 ± 2 días. Un total de 70 electrofisiólogos (23,17%) fueron aislados o infectados por SARS-CoV-2 y se realizaron procedimientos a 182 pacientes positivos para SARS-CoV-2.

Cardioneuroablación

Por primera vez se describen los procedimientos de cardioneuroablación. Un total de 10 centros llevaron a cabo 31 procedimientos en 30 pacientes (1 centro, 10 procedimientos) tanto con indicación de síncope cardioinhibidor como de disfunción sinusal. En todos los procedimientos se empleó catéter irrigado con sensor de contacto. Se abordaron ambas aurículas en 24 casos (77,5%), solo la aurícula izquierda en 6 (19,3%) y solo la derecha en 1 (3,2%).

Figura 8. Distribución de los procedimientos pediátricos por sustrato y proporción con respecto al total de procedimientos. ICT: istmo cavoauricular; TAM: taquicardia auricular macrorreentrant; TIN: taquicardia intranodular; TVI: taquicardia ventricular idiopática; VAC: vía accesoria.
DISCUSIÓN

En 2021 se ha vuelto al crecimiento en el número de procedimientos, recuperando la tendencia alcista que veníamos observando en la última década. La afectación por la pandemia por SARS-CoV-2 ha sido mucho menor y se ha podido recuperar gran parte de la actividad, sin llegar al pico obtenido en 2019.

En este año ha habido un menor impacto de la pandemia en comparación con 2020. Pocos centros han comunicado la repercusión de la pandemia en su actividad, pero los datos aportados muestran pocos días de cierre de las salas, con poca afectación del personal por SARS-CoV-2 en forma de aislamiento o infección.

El incremento del volumen de casos observado en 2021 contrasta con un leve descenso en el número de centros que aportan datos de actividad. Este es el segundo año consecutivo en que hay un descenso en el número de centros participantes, lo cual debe ser una llamada de atención global para fomentar la participación, mantener vivo el registro y que siga siendo un fiel reflejo de la actividad de los centros en España.

Ha habido un incremento en prácticamente todos los sustratos, el mayor impacto (sobre todo por el volumen que supone) ha sido el de la FA, que ya representa un tercio de todos los casos, aunque todavía estamos muy lejos de la actividad de FA en la mayoría de países de nuestro entorno.

Uno de los datos más destacados es el aumento del volumen de casos de FA por centro. Destaca que casi dos tercios de los centros ya realizan más de 50 casos de FA por año, y que sobre un 20%, más de 100 casos (y 3 centros comunican más de 200 casos).

Respecto a la técnica de elección en la ablación de la FA, sigue manteniéndose la preferencia por la técnica punto a punto. La rápida generalización de la criobalización no ha conseguido desbancar a la radiofrecuencia, que sigue siendo la técnica utilizada en el 57,9% de casos, a pesar de que con ambas técnicas se ha demostrado una eficacia similar21,22.

Por primera vez se recogen datos sobre la incipiente técnica de la cardioneuroablación. Un total de 10 centros han comunicado su experiencia inicial, tanto para la indicación de sincope cardioinhibidor como para la disfunción sinusal funcional. A la espera de estudios con una metodología robusta, los datos disponibles en la actualidad son prometedores23.

Por último, los procedimientos de ablación siguen siendo una técnica segura con una baja tasa de complicaciones, que se mantiene estable a lo largo de los años, pero que no se reduce a pesar de la sensibilización hacia ellas. En términos absolutos, las complicaciones vasculares son las más frecuentes. En este sentido, la progresiva incorporación de la punción guiada por eco vascular debería reducirlas al mínimo. Lamentablemente esto todavía no se ve reflejado en los datos comunicados. Es de destacar que procedimientos considerados como sencillos (TIN, ICT, NAV, TAP) se asocian con una tasa de complicaciones entre el 0,5 y el 2%, cifras no despreciables y que deberían suponer una llamada de atención para informar adecuadamente a los pacientes sobre todos los riesgos de los procedimientos.

CONCLUSIONES

El Registro español de ablación con catéter ha recogido de manera sistemática y fiable la actividad y la dotación de las unidades de arritmias del país durante dos décadas. Se ha superado el descenso de volumen de actividad condicionado por la pandemia por SARS-CoV-2 y las unidades de arritmias han comunicado un fuerte crecimiento de actividad. Se mantiene una alta tasa de éxito global con una baja tasa de complicaciones y sigue afianzándose la FA como el sustrato abordado con más frecuencia.

AGRADECIMIENTOS

Los coordinadores del registro reiteramos nuestro agradecimiento a todos los colaboradores del Registro español de ablación con catéter (anexo 2), que con su ayuda desinteresada cada año hacen posible la publicación de este documento. Nuestro agradecimiento a Cristina Plaza por su inestimable contribución.

FINANCIACIÓN

No se ha recibido financiación alguna.

CONTRIBUCIÓN DE LOS AUTORES

El autor principal, I. Anguera, y los coautores, Ó. Cano Pérez y V. Bazán, han tenido una plena contribución de autoría que abarca el diseño del estudio, el análisis de los datos, la redacción y la revisión del manuscrito.

CONFLICTO DE INTERESES

No existen conflictos de intereses de ninguno de los autores en relación con este manuscrito.

ANEXO 1. COLLABORADORES DEL REGISTRO ESPAÑOL DE ABLACIÓN CON CATÉTER DE 2021

Óscar Alcalde Rodríguez, Jesús Almendral-Garrote, Pau Alonso-Fernández, Concepción Alonso-Martin, Luis Álvarez-Acosta, Miguel Álvarez-López, Ignasi Anguera, Álvaro Arce-León, María Fe Arcocha-Torres, Miguel Ángel Arias-Palomares, Antonio Asso-Abadia, Pablo Bastos Amador, Alberto Barrera-Cordero, Javier A. Bellver Navarro, Juan Benezet-Mazuecos, Bruno Bochard-Villaneuva, María del Pilar Cabanas-Granduo, Lucas R. Cano-Calabria, Antonio J. Cartón-Sánchez, Silvia del Castillo-Arroyo, Víctor Castro-Urda, Rocio Cazor-León, Paolo D. Dallaglio, Tomás Datino, Ernesto Díaz-Infante, Juan Manuel Durán-Guerrero, Amine El Amrani Rami, Juliana Elices-Teja, Elena Esteban Paul, María del Carmen Expósito-Pineda, Juan Manuel Fernández-Gómez, Julio Jesús Ferrer-Hita, María Luisa Fidalgo-Andrés, Adolfo Fontenla-Cerezuella, Arcadio García-Alberola, Enrique García-Cuenca, Francisco Javier García-Fernández, Miguel García-Pumarino García, Ignacio Gil-Ortega, Federico Gómez-Pulido, Eduard Guasch-i-Casany, José M. Guerra-Ramos, Julio Hernández-Afonso, Benito Herreros-Guilarte, Víctor Manuel Hidalgo-Olives, Alicia Ibáñez-Criado, José Luis Ibáñez-Criado, Sonia Ibars-Campaña, Álvaro Izquierdo Bajo, Javier Jiménez-Candil, Jesús I. Jiménez-López, José Miguel Lozano-Herrera, Ángel Martínez-Brotos, José Luis Martínez-Sande, Gabriel Martín-Sánchez, Roberto Matías-Francés, Elena Mejía-Martínez, Haridian Mendoza Lemes, Diego Menéndez-Ramírez, José Luis Merino-Llorens, Josep Luís Mont-Girbau, José Moreno-Arribas, Javier Moreno-Planas, Pablo Moriniá-Vázquez, Ángel Moya-i-Mitjans, Josep Navarro-Manchón, Joaquín Osca-Asensi, Agustín Pastor-Fuentes, Ricardo Pavón-Jiménez, Alonso Pedrero, Rafael Peinado-Peinado, Luisa Pérez-Alvarez, Andreu Porta-Sánchez, Javier Portales Fernández, Aurelio Quesada-Dorador, Pablo Ramos Ardanza, Javier Ramos-Maqueda, Nuria Rivas-Gándara, Felipe José Rodríguez-Entem, Enrique Rodríguez-Font, Juan Carlos Rodríguez-Pérez, Rafael Romero-Garrido, José Manuel Rubín-López, José Manuel Rubio-Campal, Ricardo Salgado-Aranda, Pepa Sánchez Borque, María de Gracia Sandín-Fuentes, Georgia Sarquella-Brugada, Axel Sarrias-Mercé, Alba Santos-Ortega, José María Segura-Saint-Geron e Irene Valverde-André.
ANEXO 2. LISTA DE LOS LABORATORIOS DE ELECTROFISIOLOGÍA PARTICIPANTES EN EL REGISTRO ESPAÑOL DE ABLACIÓN CON CATÉTER DE 2021, POR COMUNIDADES AUTÓNOMAS Y PROVINCIAS

Comunidad	Hospital/Complejo	Autoridades/Colaboraciones
Andalucía		
Cádiz	Hospital Clínico Universitario Puerta del Mar (Lucas Cano Calabria)	
Granada	Hospital Clínico Universitario San Cecilio (José Miguel Lozano Herrera); Hospital Clínico Universitario Virgen de las Nieves (Miguel Álvarez López)	
Huelva	Hospital Juan Ramón Jiménez (Pablo Moríñas Vázquez); Hospital Quirón Huelva (Pablo Moríñas Vázquez)	
Córdoba	Hospital Universitario Reina Sofia (José María Segura Saint-Gerons/Francisco Mazzuelos Bellido)	
Málaga	Hospital Clínico Universitario Virgen de la Victoria (Alberto Barrera Cordero); Hospital Quirónsalud Málaga (Alberto Barrera Cordero); Hospital Vithas Málaga (Alberto Barrera Cordero); Hospital Vithas Xanit Internacional Benalmádena (Alberto Barrera Cordero)	
Sevilla	Clínica HLA Santa Isabel (Álvaro Arce León); Hospital Quirónsalud Infanta Luisa (Rafael Romero Garrido); Hospital Vithas Sevilla (Ernesto Díaz Infante/Rocio Cózar León); Hospital Universitario Virgen de Valme (Ricardo Pavón Jiménez); Hospital Virgen del Rocío (Alonso Pedrote); Hospital Virgen Macarena (Pablo Bastos Amador/Álvaro Izquierdo Bajo); Quirónsalud Sagrado Corazón (Juan Manuel Fernández Gómez)	
Aragón	Hospital Lozano Blesa (Javier Ramos Maqueda); Hospital Universitario Miguel Servet (Antonio Asso); Quirónsalud Zaragoza (Antonio Asso)	
Principado de Asturias	Hospital Universitario de Cabueñes (Irene Valverde Andrés); Hospital Universitario Central de Asturias (José Manuel Rubín López)	
Islas Baleares	Hospital Universitario Son Espases (María del Carmen Expósito Pineda)	
Canarias	Hospital Perpetuo Socorro (Pablo M. Ruiz Hernández); Hospital Universitario de Gran Canaria Doctor Negrín (Haridían Mendoza Lemes); Hospital Vithas Santa Catalina (Juan Carlos Rodríguez Pérez)	
Santa Cruz de Tenerife	Complejo Hospitalario Universitario de Canarias (Julio Jesús Ferrer Hita); Hospital San Juan de Dios Tenerife (Julio Hernández Alonso); Hospital Universitario Virgen de la Candelaria (Luis Álvarez Acosta)	
Cantabria	Hospital Universitario Marqués de Valdecilla (Félix José Rodríguez Entem)	
Castilla-La Mancha	Hospital Universitario de Toledo (Miguel Ángel Arias Palomares)	
Albacete	Complejo Hospitalario Universitario de Albacete (Víctor M. Hidalgo Olivares)	
Castilla y León	Hospital Universitario de Burgos (Francisco Javier García Fernández)	
León	Hospital de León (María Luisa Fidalgo Andrés)	
Salamanca	Hospital Universitario de Salamanca (José Jiménez Candil)	
Valladolid	Hospital Clínico Universitario de Valladolid (María de Gracia Sandín Fuentes); Hospital Universitario Río Hortega (Benito Herreros Guilarte)	
Cataluña	Clínica Corachán (José Guerra Ramos); Clínica Sagrada Família (Ángel Moya i Mitjans); Clínica Telnom (Enrique Rodríguez Font); Hospital Clínico (Eduard Guasch/Llusia Mont); Hospital del Mar (Jesús Jiménez López); Hospital Mútua de Terrassa (Sonia Ibars); Hospital San Joan de Déu (Georgia Sarquella-Brugada); Hospital de la Santa Cruz y San Pablo (Concepción Alonso Martín); Hospital Universitario de Bellvitge (Ignasi Anguera/Paolo D. Dallaglio); Hospital Universitario Dexeus (Ángel Moya i Mitjans); Hospital Universitario Germans Trias i Pujol (Axel Sarrias); Hospital Universitario Vall d’Hebron (Nuria Rivas/Alba Santos)	
Tarragona	Unidad Funcional Territorial de Electrofisiología Camp de Tarragona (Gabriel Martín Sánchez/Amin Elamrani Rami)	
Lleida	Hospital Universitario Arnau de Vilanova (Diego Menéndez Ramírez)	
Comunidad Valenciana		
Alicante	Cardiotorrmo Levante: Hospital HLA La Vega, Clínica HLA Vistahermosa, Hospitales IMED Elche y Benidorm (Alicia Ibáñez Criado); Hospital General Universitario de Alicante Doctor Balmis (José Luis Ibáñez Criado); Hospital San Juan de Alicante (José Moreno Arribas)	
Castellón	Hospital Universitario General de Castellón (Javier A. Bellver Navarro)	
Valencia	Hospital Clínico Universitario de Valencia (Ángel Martínez Brotos); Hospital de Manises (Pau Alonso Fernández); Hospital General Universitario de Valencia (Aurelio Quesada Dorador); Hospital Universitario de la Ribera (Bruno Bochard Villanueva); Hospital Universitario La Fe (Joaquín Osca Asensi)	
Extremadura		
Badajoz	Complejo Hospitalario Universitario de Badajoz (Juan Manuel Durán Guerrero)	
Cáceres	Hospital de Cáceres (Javier Portales Fernández)	
Galicia		
A Coruña	Complejo Hospitalario Universitario A Coruña (Luisa Pérez Álvarez); Hospital Clínico Universitario Santiago de Compostela (José Luis Martínez Sande)	
Pontevedra	Hospital Álvaro Cunqueiro (Pilar Cabanas Grandio)	
Lugo	Hospital Universitario Lucus Augusti (Juliana Elices Teja)	
Comunidad de Madrid	Fundación Jiménez Díaz (José Manuel Rubio Campa); HM Hospitals (Jesús Almendral Gorrute); Hospital Clínico San Carlos (Ricardo Salgado Aranda); Hospital Puerta de Hierro-Majadahonda (Víctor Castro Urda); Hospital La Luz (Juan Benezet Mazuecos); Hospital Ramón y Cajal (Javier Moreno Planas); Hospital Santas la Moraleja (Roberto Matía Francés); Hospital Severo Ochoa (Ricardo Salgado Aranda); Hospital Ruber Juan Bravo (José Luis Merino); Hospital Universitario de Getafe (Agustín Pastor Fuentes); Hospital Universitario 12 de Octubre (Adolfo Fontenla Cerezuela); Hospital Universitario Fuencarral (Sílvia del Castilla); Hospital Universitario La Paz, Sección de Arritmias y Electrofisiología (Raúl Peinado Peinado); Hospital Universitario (Genera e Infantil) La Paz, Unidad de Electrofisiología Robotizada (José Luis Merino/Antonio Cartón); Hospital Universitario Fundación Alcorcón (Elena Esteban Paíl); Hospital Universitario General de Valleliso (José Manuel Rubio Campa); Hospital Universitario Rey Juan Carlos (Federico Gómez Pulido/Elena Mejía Martínez); Hospital Universitario QuirónSalud Madrid y Complejo Hospitalario Ruber Juan Bravo (Andreu Porta-Sánchez/Tomás Datino); Vicared Santa Elena (José Luis Merino)	
ANEXO 2. (Continuación)

Región de Murcia	Hospital Universitario Santa Lucía (Ignacio Gil Ortega); Hospital Universitario Virgen de la Arrixaca (Arcadio García Alberola)
Comunidad Foreal de Navarra	Pamplona: Clínica Universidad de Navarra (Pablo Ramos Ardanaz); Hospital Universitario de Navarra (Oscar Alcalde Rodríguez)
La Rioja	Hospital San Pedro La Rioja (Pepa Sánchez Borque)
País Vasco	Vizcaya: Hospital de Basurto (Maria Fe Arcrocha Torres); Hospital de Cruces (Miguel García-Pumarino García)
Álava	Hospital Universitario de Álava (Enrique García Cuenca)

BIBLIOGRAFÍA

1. Álvarez M, Merino B; Spanish Registry on Catheter Ablation. 1st Official Report of the Working Group on Electrophysiology and Arrhythmias of the Spanish Society of Cardiology (Year 2001). Rev Esp Cardiol. 2002;55:1273–1285.
2. Álvarez López M, Rodríguez-Font E; Spanish Registry on Catheter Ablation. Second Official Report of the Working Group on Electrophysiology and Arrhythmias of the Spanish Society of Cardiology (2002). Rev Esp Cardiol. 2003;56:1093–1104.
3. Rodríguez-Font E, Álvarez-López M, García-Alberola A; Spanish Registry of Catheter Ablation. Third Official Report of the Working Group on Electrophysiology and Arrhythmias of the Spanish Society of Cardiology (2003). Rev Esp Cardiol. 2004;57:1066–1075.
4. Álvarez-López M, Rodríguez-Font E, García-Alberola A; Spanish Catheter Ablation Registry. Fourth Official Report of the Spanish Society of Cardiology Working Group on Electrophysiology and Arrhythmias (2004). Rev Esp Cardiol. 2005;58:1450–1458.
5. Álvarez-López M, Rodríguez-Font E, García-Alberola A; Spanish Catheter Ablation Registry. Fifth Official Report of the Spanish Society of Cardiology Working Group on Electrophysiology and Arrhythmias (2005). Rev Esp Cardiol. 2006;59:1165–1174.
6. García-Bolao I, Macías-Gallego A, Díaz-Infante E; Spanish Catheter Ablation Registry. Sixth Official Report of the Spanish Society of Cardiology Working Group on Electrophysiology and Arrhythmias (2006). Rev Esp Cardiol. 2007;60:1188–1196.
7. García-Bolao I, Díaz-Infante E, Macías-Gallego A; Spanish Catheter Ablation Registry. Seventh Official Report of the Spanish Society of Cardiology Working Group on Electrophysiology and Arrhythmias (2007). Rev Esp Cardiol. 2008;61:1287–1297.
8. Macías-Gallego A, Díaz-Infante E, García-Bolao I; Spanish Catheter Ablation Registry. Eighth Official Report of the Spanish Society of Cardiology Working Group on Electrophysiology and Arrhythmias (2008). Rev Esp Cardiol. 2009;62:1276-1285.
9. Díaz-Infante E, Macías-Gallego A, García-Bolao I; Spanish Catheter Ablation Registry. Ninth Report of the Spanish Society of Cardiology Working Group on Electrophysiology and Arrhythmias (2009). Rev Esp Cardiol. 2010;63:1329-1339.
10. Macías-Gallego A, Díaz-Infante E, García-Bolao I; Spanish Catheter Ablation Registry. Tenth Official Report of the Spanish Society of Cardiology Working Group on Electrophysiology and Arrhythmias (2010). Rev Esp Cardiol. 2011;64:1147-1153.
11. Díaz-Infante E, Macías Gallego A, Ferrero A; Spanish Catheter Ablation Registry. 11th Official Report of the Spanish Society of Cardiology Working Group on Electrophysiology and Arrhythmias (2011). Rev Esp Cardiol. 2012;65:928–936.
12. Ferrero de Loma-Osorio A, Díaz-Infante E, Macías Gallego A; on behalf of the Spanish Catheter Ablation Registry Collaborators. Spanish Catheter Ablation Registry. 12th Official Report of the Spanish Society of Cardiology Working Group on Electrophysiology and Arrhythmias (2012). Rev Esp Cardiol. 2013;63:983–992.
13. Ferrero de Loma-Osorio A, Gil-Ortega I, Pedrote-Martínez A; on behalf of the Spanish Catheter Ablation Registry collaborators. Spanish Catheter Ablation Registry. 13th Official Report of the Spanish Society of Cardiology Working Group on Electrophysiology and Arrhythmias (2013). Rev Esp Cardiol. 2014;67:925–935.
14. Gil-Ortega I, Pedrote-Martínez A, Fontenla-Cerezuela A; on behalf of the Spanish Catheter Ablation Registry collaborators. Spanish Catheter Ablation Registry. 14th Official Report of the Spanish Society of Cardiology Working Group on Electrophysiology and Arrhythmias (2014). Rev Esp Cardiol. 2015;68:1127–1137.
15. Pedrote A, Fontenla A, García-Fernández J; on behalf of the Spanish Catheter Ablation Registry collaborators. Spanish Catheter Ablation Registry. 15th Official Report of the Spanish Society of Cardiology Working Group on Electrophysiology and Arrhythmias (2015). Rev Esp Cardiol. 2016;69:1061–1070.
16. Fontenla A, García-Fernández J, Ibáñez JI; on behalf of the Spanish Catheter Ablation Registry collaborators. Spanish Catheter Ablation Registry. 16th Official Report of the Spanish Society of Cardiology Working Group on Electrophysiology and Arrhythmias (2016). Rev Esp Cardiol. 2017;70:971–982.
17. García-Fernández J, Ibáñez Criado JI, Quesada Dorador A; on behalf of the collaborators of the Spanish Catheter Ablation Registry. Spanish Catheter Ablation Registry. 17th Official Report of the Spanish Society of Cardiology Working Group on Electrophysiology and Arrhythmias (2017). Rev Esp Cardiol. 2018;71:941–951.
18. Ibáñez Criado JI, Quesada A, Cózar R; on behalf of the collaborators of the Spanish Catheter Ablation Registry. Spanish Catheter Ablation Registry. 18th Official Report of the Spanish Society of Cardiology Working Group on Electrophysiology and Arrhythmias (2018). Rev Esp Cardiol. 2019;72:1031–1042.
19. Quesada A, Cózar R, Anguera I; on behalf of the collaborators of the Spanish Catheter Ablation Registry. Spanish Catheter Ablation Registry. 19th Official Report of the Heart Rhythm Association of the Spanish Society of Cardiology (2019). Rev Esp Cardiol. 2020;73:1049–1060.
20. Cózar R, Anguera I, Cano D; on behalf of the collaborators of the Spanish Catheter Ablation Registry. Spanish Catheter Ablation Registry. 20th Official Report of the Heart Rhythm Association of the Spanish Society of Cardiology (2020). Rev Esp Cardiol. 2021;74:1072–1083.
21. Schmidt M, Dorwarth U, Andresen D, et al. German ablation registry: Cryoballoon vs radiofrequency ablation in paroxysmal atrial fibrillation—one-year outcome data. Heart Rhythm. 2016;13:836–844.
22. Andrade JC, Champagne J, Dubuc M, et al. CIRCA-DOSE Study Investigators. Cryoballoon or Radiofrequency Ablation for Atrial Fibrillation Assessed by Continuous Monitoring: A Randomized Clinical Trial. Circulation. 2019;140:1779–1788.
23. Vandenbark B, Lei L, Ballantyne B, et al. Cardionereoaiblation for vasovagal syncope: A systematic review and meta-analysis. Heart Rhythm. 2022. http://dx.doi.org/10.1016/j.hrthm.2022.06.017.