Multiple sclerosis (MS) is a heterogenous autoimmune disease in which autoreactive lymphocytes attack the myelin sheath of the central nervous system. B lymphocytes in the cerebrospinal fluid (CSF) of patients with MS contribute to inflammation and secrete oligoclonal immunoglobulins. Epstein–Barr virus (EBV) infection has been epidemiologically linked to MS, but its pathological role remains unclear. Here we demonstrate high-affinity molecular mimicry between the EBV transcription factor EBV nuclear antigen 1 (EBNA1) and the central nervous system protein glial cell adhesion molecule (GlialCAM) and provide structural and in vivo functional evidence for its relevance. A cross-reactive CSF-derived antibody was initially identified by single-cell sequencing of the paired-chain B cell repertoire of MS blood and CSF, followed by protein microarray-based testing of recombinantly expressed CSF-derived antibodies against MS-associated viruses. Sequence analysis, affinity measurements and the crystal structure of the EBNA1–peptide epitope in complex with the autoreactive Fab fragment enabled tracking of the development of the naive EBNA1-restricted antibody to a mature EBNA1–GlialCAM cross-reactive antibody. Molecular mimicry is facilitated by a post-translational modification of GlialCAM. EBNA1 immunization exacerbates disease in a mouse model of MS, and anti-EBNA1 and anti-GlialCAM antibodies are prevalent in patients with MS. Our results provide a mechanistic link for the association between MS and EBV and could guide the development of new MS therapies.
A total of 148 B cell receptor (BCR) sequences from MS CSF, each representative of a clonal expansion, were expressed as monoclonal antibodies (mAbs) (Extended Data Fig. 3). MS CSF mAbs showed low polyreactivity (polyreactive mAbs from patients with MS were 5.4% compared with 15.4% for controls) (Extended Data Figs. 4, 5b). To test for antiviral reactivities, mAbs were probed on protein microarrays containing 2 EBV viral lysates, 23 latent and lytic EBV proteins, 240 peptides spanning four prominent EBV proteins, and lysates of 7 other MS-associated viruses, including measles, rubella and VZV (Fig. 2a, b, Extended Data Figs. 5a, 6, 7a, Supplementary Tables 2, 3). One-third of the expressed mAbs bound to EBV proteins and peptides and about 20% to other viruses, in particular to VZV and cytomegalovirus (Fig. 2a). Notably, half of the VZV-reactive antibodies cross-reacted to cytomegalovirus and EBV, which indicates that there are conserved epitopes among herpesviruses.

We also found that mAbs from six out of nine patients with MS bound to the EBV transcription factor EBNA1 (Fig. 2a, Extended Data Fig. 5a), and mAbs that bound EBNA1 peptides were identified in eight out of nine patient samples (Fig. 2b, Extended Data Fig. 6). Anti-EBNA1 reactivity has been implicated in MS epidemiology, the amino acid region AA365–425 is the target of stronger antibody responses in patients with MS than in non-affected individuals. Protein and peptide microarrays revealed that the mAb MS39p2w174 bound EBNA1 within this MS-associated region at AA386–405 (Fig. 2b, Extended Data Fig. 6). This epitope was confirmed by western blot analysis using full-length and truncated EBNA1 proteins (Fig. 2c) and by ELISA-based EBNA1 peptide scans (Fig. 2d). Alanine scanning identified the Pro/Arg-rich region AA394–399 as the central epitope for MS39p2w174 (Fig. 2e, Extended Data Fig. 7b).

Structure of the EBNA1–CSF Fab complex

Although the presence of antibodies against the broader EBNA1 region AA365–425 has been described in MS, their relevance remains elusive. We solved the crystal structure of EBNA1 AA365–425 in complex with the Fab region of MS39p2w174 at a resolution of 2.5 Å (Protein Data Bank (PDB) identifier 7K7R) (Fig. 2f–j, Extended Data Fig. 7c–e). Close

Fig. 1 | B cell repertoires in MS blood and CSF. a–c, Single-cell BCR repertoire sequencing data. a, Individual repertoires from blood PBs (top row) and CSF B cells (second row) of n = 9 patients with MS, and CSF B cells of n = 3 control patients with other neuroinflammatory diseases (bottom row). Numbers indicate the number of sequences. For the inner circle, coloured wedges represent clonal expansions and the grey area represents singleton antibody sequences. The outer circle represents immunoglobulin classes, and sequence locations in the outer circle correspond to the inner circle. b, Clonality analysis. The percentage of clonal sequences in CSF B cells are shown, comparing BCR repertoires of control individuals (n = 3) to patients with MS (n = 9). Mean ± s.d. values of each group are shown. **P = 0.0091, two-tailed Mann–Whitney test. c, IGHV gene distribution in blood versus CSF. IGKV gene distribution in blood versus CSF. **P = 0.0002, two-tailed Mann–Whitney test.
structures of MS39p2w174-Fab in complex with EBNA1 AA386–405.

(e) (stained on separate blots with commercial anti-C-terminal EBNA1 antibody or
represents mAb MS39p2w174 and antigen EBNA1/MS-associated region.
technical replicates. E, early; IE, immediate-early; L, late lytic stage. Red
the peptide (Fig. 2h, i). The C-terminal end of the antibody-binding
groove is wider, and Pro398 is carried by a large aromatic tryptophan residue (Trp14 in HC-CDR1) (Fig. 2g, h). The central arginine residues Arg395 and Arg396 form hydrogen bonds with residues on HC-CDR2, HC-CDR3 and HC framework region 2.

The IGHV encoding gene of MS39p2w174 is IGHV3-7, one of the IGHV chains over-represented in CSF (Fig. 1c). Of note, all but two of the residues

Fig. 2 | MS CSF B cell mAb reactivity to EBV proteins and interaction of MS39p2w174 with EBNA1AA386–405. a. Protein microarray showing MS CSF mAb reactivities (z-scores) to virions and EBV proteins. b. MS CSF mAb reactivities against EBNA1 peptides. mAbs with highest reactivities are shown (n = 36 (a) and n = 37 (b) out of n = 143). Data from one experiment, eight technical replicates. E, early; IE, immediate-early; L, late lytic stage. Red
representative experiment of three independent experiments. **P = 0.0043, unpaired two-tailed Student’s t-test. I, Association and dissociation curves corresponding to k.

interactions of the EBNA1 residues P394–P398 were observed with all CDRs except for LC-CDR2. Residues Tyr31 and Tyr38 on LC-CDR1 together with Trp38 on HC-CDR1 and with Pro108, Pro109 and Tyr114 on HC-CDR3 create a hydrophobic cage for the two N-terminal proline residues Pro394 and Pro395 and the proximal side chain of Arg396 of the peptide (Fig. 2h, i). The C-terminal end of the antibody-binding
representation showing EBNA1AA386–405 in the binding groove. Peptide in red, HC in green/blue, and LC in purple, yellow and orange; the CDR loop colours correspond to annotations in g, h. View of the binding groove from the top. Surface representation of the Fab with EBNA1AA386–405 in stick representation. h, Cartoon and stick representation outlining close interactions. Major
hydrogen-bond-forming residues are represented as sticks. Hydrogen bonds < 3.2 Å are represented as black dashed lines. i, Magnification of the peptide in the hydrophobic cage. j, Magnification of the region around Arg396 to emphasize polar contacts of HC residues with Arg396 and Arg397. k, l, Bio-layer interferometry measurement of the affinity of MS39p2w174 and germline to full-length EBNA1 protein. k, Mean Kd ± s.d. values of one representative experiment of three independent experiments. **P = 0.0043, unpaired two-tailed Student’s t-test. l, Association and dissociation curves corresponding to k.
that directly interact with EBNA1 are unmutated germline residues (Extended Data Fig. 7f, g). We hypothesized that the unmutated ancestor of MS39p2w174 (germline) might have an innate propensity to bind EBNA1AA386-405. Indeed, germline was significantly more polyreactive than MS39p2w174 (Extended Data Fig. 4), and bio-layer interifierometry revealed that germline binds EBNA1 with almost the same affinity as MS39p2w174 (dissociation constant (K_d) values of 1.99 ± 0.63 nM (mean ± s.d.) for MS39p2w174 compared with 4.19 ± 0.76 nM for germline) (Fig. 2k, l), which indicates that SHM is not required for effective EBNA1 binding and that naive B cells have EBNA1 specificity.

Molecular mimicry of EBNA1 and GlialCAM

We probed the mAb MS39p2w174 on HuProt microarrays, which contained over 16,000 proteins spanning more than 80% of the human proteome23, and discovered that MS39p2w174 binds GlialCAM (Fig. 3a).
GlialCAM is an immunoglobulin superfamily cell adhesion molecule expressed in the central nervous system (CNS) by astrocytes and oligodendrocytes. Earlier proteomics studies of MS brain lesions by our laboratory revealed that GlialCAM is expressed in chronic-active plaques. MS39p2w174 did not demonstrate high enrichment for any single peptide, which suggests that it has low affinity for multiple native peptides (Extended Data Table 2). Peptide motif analysis identified a common Pro/Arg-rich motif that closely resembles the central epitope in EBNA1 (AA395–399; Fig. 2e and Extended Data Fig. 8a). Comparing the PhIP-seq results with the HuProt results yielded two overlapping targets: the ubiquitously expressed actin filament associated protein 1 (AFAP1, which does not have the Pro/Arg-rich motif) and the CNS protein GlialCAM (encoded by HEPACAM). Binding of MS39p2w174 to the intracellular domain (ICD; AA262–416) of GlialCAM was confirmed by ELISA (Fig. 3b) and western blotting (Fig. 3c). MS39p2w174 showed distinct glial staining of mouse brain, including radial Bergmann glia in the cerebellum, the glia limitans, and perivascular glial cells in the hippocampus and the brainstem (Fig. 3d, and Extended Data Fig. 8b). MS39p2w174 stained rat oligodendrocytes and transgenic GlialCAM-expressing K562 cells, in which GlialCAM generated tight junctions (Extended Data Fig. 8c–e).

Although we demonstrated that MS39p2w174 and its unmature germline ancestor bound EBNA1 with similar affinity (Fig. 2k, l), their binding affinities to GlialCAM differed significantly. The affinity of MS39p2w174 to GlialCAM was increased by >10-fold (K_d of 1.99 ± 0.63 nM for EBNA1 compared with 190 ± 17 pM for GlialCAM). By contrast, germline bound GlialCAM with lower affinity (K_d of 4.19 ± 0.76 nM for EBNA1 compared with 10.46 ± 4.12 nM for GlialCAM) (Fig. 3e, f). Evidently, although germline harbours a propensity to bind to EBNA1, SHM of MS39p2w174 increased its affinity to the CNS mimic GlialCAM by an order of magnitude.

GlialCAM phosphorylation enables mimicry

The EBNA1 epitope AA386–405 is located between the long N-terminal Gly/Ala-rich low-complexity region (AA90–380) of the protein and its highly structured DNA-binding domain (AA461–607; PDB identifier 1B3T (ref. 31)). The GlialCAM region AA337–385, identified by phage display (Extended Data Table 2), is located at the C-terminal end of the ICD and contains a Pro-rich region that resembles the central epitope of EBNA1 (Fig. 3g). Intracellular B cell autoantigens have been described in several autoimmune diseases. MS39p2w174 reacted with both proteins on western blots under denaturing conditions (Figs. 2c, 3c), which suggests that both antibody-binding regions are linear epitopes. This result is consistent with predictions that both epitopes are located in intrinsically disordered regions of their respective proteins (Fig. 3h, i).

Nevertheless, although MS39p2w174 bound with similar affinity to both the EBNA1 protein and the EBNA1AA386–405Peptide (K_d of 1.99 ± 0.63 nM for the protein and 2.67 ± 0.078 nM for the peptide), its binding affinity for the native peptide GlialCAMAA386–405 was three orders of magnitude lower than for GlialCAM protein (K_d of 190 ± 17 pM for the protein and 302 ± 31 nM for the peptide). Part of this discrepancy could be due to multimerization of GlialCAM. Moreover, the ICD of GlialCAM is heavily phosphorylated (Extended Data Fig. 8f and Phosphosite+; https://www.phosphosite.org), and post-translational modifications (PTMs) often determine antibody–antigen interactions. We determined whether phosphorylation at one of the four serine residues surrounding the central epitope region (Ser376, Ser377, Ser383 and Ser384) could increase the binding affinity of MS39p2w174 to GlialCAMAA386–405. Indeed, phosphorylation at Ser376 (pSer376) increased MS39p2w174 binding by about 50-fold (K_d of 302 ± 0.078 nM for the native peptide and 6.1 ± 0.27 nM for the pSer376 peptide), and additional phosphorylation of Ser377 further enhanced the binding affinity (K_d of 3.73 ± 0.15 nM for the pSer376/pSer377 peptide) (Fig. 3j–l). By contrast, citrullination of arginine residues Arg373, Arg380 and Arg387 did not alter binding to GlialCAMAA386–405 (Extended Data Fig. 8g). This probably explains the differential binding affinity to EBNA1 and GlialCAM peptides. Phosphorylation at Ser376 probably promotes binding by providing new polar interactions to the proximal LC, possibly with Arg36, a positively charged residue that is mutated from asparagine in germline (Fig. 2h, Extended Data Fig. 7g). Together, our results show that post-translational phosphorylation enables cross-reactivity of anti-EBNA1 MS39p2w174 to GlialCAM.

Anti-GlialCAM IgG reactivity in MS

To determine whether the observed anti-GlialCAM reactivity of MS39p2w174 represents a broader phenomenon in MS, we tested the remaining 147 clonal MS mAbs for reactivity against GlialCAM protein and peptides spanning GlialCAMAA386–405. Ten additional mAbs from seven patients bound the ICD and seven more from four patients bound the extracellular domain (ICD) (Fig. 3m), which demonstrates that MS PBs generate antibodies against multiple GlialCAM epitopes. We then tested plasma samples from patients with MS (n = 36) and from non-affected individuals (n = 20) for reactivity to EBNA1 and GlialCAM. As expected, all samples from patients with MS and the majority samples from healthy individuals exhibited plasma reactivity to EBNA1 protein (Fig. 3n). Reactivity to EBNA1AA386–405 and to GlialCAM was significantly increased in patients with MS (Fig. 3o, p). Increased plasma IgG levels against EBNA1AA386–405 and phosphorylated GlialCAMAA386–405 were confirmed in a second independent patient cohort (MS, n = 71, controls, n = 31) (Extended Data Fig. 9a). Similarly, we detected increased plasma IgG levels against GlialCAMAA386–405, phosphorylated GlialCAMAA386–405 at the C-terminal (MS, n = 67, controls, n = 31) (Extended Data Fig. 9b).

We next addressed whether reactivity against EBNA1AA386–405 could be blocked by GlialCAM. Inhibition of anti-EBNA1AA386–405 reactivity by GlialCAMAA386–405 and phosphorylated GlialCAMAA386–405 in a third cohort (MS, n = 67, controls, n = 31) (Extended Data Fig. 9b).

EBNA1 immunization aggravates EAE

To assess the effect of an anti-EBNA1AA386–405 immune response on neuroinflammation, we used mice with experimental autoimmune encephalomyelitis (EAE), the mouse model of MS. SJL/J mice were immunized with scrambled control peptide or EBNA1AA386–405. Three weeks later, EAE was induced by a second immunization of EBNA1AA386–405. Mice in the EBNA1AA386–405 group generated robust antibody responses against both EBNA1AA386–405 (Fig. 4a) and GlialCAM ICD (Fig. 4b). The antibody response to PLPAA139–151 remained stable in both groups (Extended Data Fig. 9a). In addition, EBNA1AA386–405 immunization induced a strong CD4+ T cell response, whereas the T cell response against PLPAA139–151 remained stable in both groups (Extended Data Fig. 10b). EBNA1AA386–405 stimulated the secretion of B cell stimulatory factor 1 (BSF-1) cytokines, including interferon-y (IFNγ), tumour necrosis factor and interleukin-12 (IL-12), as well as IL-6 and IL-10 (Extended Data Fig. 10c–g), but suppressed the key T helper 1 cytokine IL-17 (Extended Data Fig. 10h). Clinically, the EBNA1-treated group exhibited more neurological damage (Fig. 10b) and demyelination (Extended Data Fig. 10i, j).

To further assess T cell reactivity in humans, peripheral blood mononuclear cells (PBMCs) from patients with MS (n = 7) with increased anti-EBNA1 and anti-GlialCAM titres were stimulated with EBNA1 and...
GlialCAM proteins and peptides and compared with PBMCs from healthy individuals. The CD4+ T cells trended towards more IFNγ expression after stimulation with EBNA1AA386-405 and GlialCAM ECD and ICD proteins, which resembled the CD4+ T cells in mice (Extended Data Fig. 10k, l). In CD8+ T cells, high expression of IFNγ and granzyme B indicated a robust CD8+ T cell response against EBNA1 in both groups, whereas only robust CD8+ T cells from patients with MS responded to GlialCAM ICD and GlialCAM ECD (Fig. 4f). One patient (MS16) (Fig. 3o, p) showed extraordinarily high counts of IFNγ+ granzyme B+ CD8+ T cells after stimulation with EBNA1, GlialCAM ICD and GlialCAMAA370–389 (Extended Data Fig. 10m).}

Together, these results show that anti-GlialCAM antibodies are generated in response to EBNA1AA386–405 immunization. Furthermore, immunization of mice with both EBNA1AA386–405 and PLP1AA193–195 enhanced CNS immune cell infiltration and demyelination, two prominent features of human MS pathology. In addition to anti-GlialCAM antibody titres, our human T cell data suggest an important role for CD8+ T cells in the immune response against GlialCAM.

Discussion

Viral triggers of MS and other autoimmune diseases have long been the subject of intense investigation, but evidence for their functional relevance is scarce. By utilizing paired-chain BCR repertoire sequencing, rational selection of clonal antibody sequences and three independent high-throughput proteomics platforms, we identified a mAb from CSF of a patient with MS that binds the MS-associated epitope EBNA1AA386–405 with high affinity and cross-reacts with GlialCAM. We demonstrated the presence of cross-reactive EBV EBNA1 and GlialCAM antibodies in 20–25% of patients with MS and showed that immunization of EAE mice with this EBNA1 epitope exacerbated autoimmune demyelination. Our findings demonstrate a mechanistic link between EBV infection and the pathobiology of MS.

Our analysis of the single-cell paired-chain BCR repertoire from blood and CSF of patients with MS revealed features of intrathecal oligoclonal expansion with ongoing SHM that were substantially different from CSF BCR repertoires in other neuroinflammatory diseases. PBs in the CSF of patients with MS are highly clonal, with long CDR3 regions and skew towards the use of five IGHV genes [39, 19, 39–41]. The discovery that the IGHV3-7-based mAb MS39p2w174 cross-binds EBNA1 and GlialCAM provides a direct link between IGHV3-7 and MS pathobiology.

Structural and binding data of MS39p2w174 from the CSF of a patient with MS and its unmutated germline ancestor showed that only germline bound EBNA1AA486–405, with high affinity, and that SHM is required for high-affinity cross-reactivity with GlialCAM. Owing to the CNS-restricted expression of GlialCAM, it is likely that immature IGHV3-7-expressing B cells encoding a germline precursor of MS39p2w174 entered the CNS and CSF space, encountered GlialCAM antigen and then underwent affinity maturation that generated clones encoding high-affinity anti-GlialCAM antibodies. This is concordant with our BCR repertoire analysis, which revealed a highly clonal and skewed repertoire in CSF with low polyclonality that is indicative of a select group of B cells undergoing SHM, probably driven by perpetual activation by CNS GlialCAM.

The crystallographic structure revealed that Arg397 in EBNA1AA386–405 engages in two hydrogen bonds with HC-CDR2 and is probably responsible for a notable part of the high binding affinity between MS39p2w174 and EBNA1. We showed that phosphorylation of GlialCAM at Ser376 restores high affinity. Epitopes altered by PTMs have been described as targets for autoimmune responses, including citrullinated proteins in rheumatoid arthritis and phosphorylated Ro/La in systemic lupus erythematosus [39, 41]. Tissue-specific differences of PTMs could contribute to a lack of central tolerance. Several kinases have been described as risk genes for MS, including MERTK, MAPK1, MAPK3 and TYK2, which potentially contribute to alternative phosphorylation patterns in the CNS [43].

In addition, we showed that immunization of EAE mice with EBNA1AA386–405 regenerates a robust B cell response against GlialCAM and aggravates EAE. Our finding of activated PBs in the CSF that express exceptionally high levels of HLA-DR suggest that these B cells present antigens and exchange inflammatory signals with T follicular helper cells. In summary, we presented a detailed picture of the B cell repertoire in MS CSF and blood and demonstrated that activated intrathecal IgG+ PBs undergo affinity maturation. Analysis of a CSF-derived mAb that targets EBNA1AA386–405 revealed molecular mimicry to GlialCAM. These findings provide a mechanistic link between EBV infection and the pathobiology of MS.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-022-04432-7.

1. Cencioni, M. T., Mattosio, M., Maglificio, R., Bar-Or, A. & Muraro, P. A. B cells in multiple sclerosis—from targeted depletion to immune reconstitution therapies. Nat. Rev. Neurol. 17, 399–414 (2021).
2. Hauser, S. L. et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N. Engl. J. Med. 376, 221–234 (2017).
3. Bar-Or, A. et al. Epstein–Barr virus in multiple sclerosis: theory and emerging immunotherapies. Trends Mol. Med. 26, 296–310 (2020).
4. Jarius, S. et al. The MRZ reaction as a highly specific marker of multiple sclerosis: re-evaluation and structured review of the literature. J. Neurol. 264, 453–466 (2017).
5. Wang, Z. et al. Antibodies from multiple sclerosis brain identified Epstein–Barr virus nuclear antigen 1 & 2 epitopes which are recognized by oligoclonal bands. J. Neuroimmune Pharmacol. 16, 567–580 (2021).
6. Bjornvik, K. et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 375, 296–301 (2022).
7. Nielsen, T. R. et al. Effects of infectious mononucleosis and HLA-DRβ1*15 in multiple sclerosis. Mult. Scler. 15, 431–436 (2009).
8. Tengvall, K. et al. Molecular mimicry between anoctamin 2 and Epstein–Barr virus nuclear antigen 1 associates with multiple sclerosis risk. Proc. Natl Acad. Sci. USA 116, 16955–16960 (2019).
9. Ruprecht, K. et al. Multiple sclerosis: the elevated antibody response to Epstein–Barr virus primarily targets, but is not confined to, the glycosylamine repeat of Epstein-Barr virus nuclear antigen-1. J. Neuroimmunol. 272, 56–61 (2020).
10. Safari, N. et al. No evidence for intrathecal IgG synthesis to Epstein–Barr virus nuclear antigen-1 in multiple sclerosis. J. Clin. Virol. 49, 26–31 (2010).
11. Salzer, J. et al. Epstein–Barr virus antibodies and vitamin D in prospective multiple sclerosis biobank samples. Mult. Scler. 19, 1587–1591 (2013).
12. Sundqvist, E. et al. Epstein–Barr virus and multiple sclerosis: interaction with HLA. Genes Immun. 13, 14–20 (2012).
13. Ramesh, A. et al. A pathogenic and clonally expanded B cell transcriptome in active multiple sclerosis. Proc. Natl Acad. Sci. USA 117, 22932–22943 (2020).
14. Kowarik, M. C. et al. Immune cell subtyping in the cerebrospinal fluid of patients with neurological diseases. J. Neurol. 261, 130–143 (2014).
15. Tan, Y.-C. et al. Barcode-enabled sequencing of plasmablast antibody repertoires in multiple sclerosis patients. Mol. Immunol. 169, 1267–1278 (2015).
16. Palanichamy, A. et al. Immunoglobulin class-switched B cells form an active immune response in patients with systemic autoimmune diseases. Clin. Immunol. 164, 2782–2789 (2020).
17. Terzoglou, A. G., Routis, J. S., Avrameas, S., Moutopoulos, H. M. & Tzika, A. G. Preferential recognition of the phosphorylated major linear B-cell epitope of La/SSB 349–368 as by anti-La/SSB autoantibodies from patients with systemic autoimmune diseases. Clin. Exp. Immunol. 144, 432–439 (2006).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022

Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA. 1Department of Neurology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany. 2Department of Neurology and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany. 3The Geriatric Research, Education, and Clinical Center (GRECC), VA Palo Alto Health Care System, Palo Alto, CA, USA. 4Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA. 5Department of Neurology, Mannheim Center for Translational Neuroscience, Mannheim, Germany. 6Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA. 7Department of Medicine, Beckman Center for Molecular Medicine, Stanford, CA, USA. 8Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Beckman Center for Molecular Medicine, Stanford, CA, USA. 9Macromolecular Structure Knowledge Center, Stanford ChEM-H Institute, Stanford, CA, USA. 10Weill Institute for Neurosciences, Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA. 11Department of Biochemistry and Molecular Pharmacology, NYU Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA. 12NYU Langone Health Proteomics Laboratory, Division of Advanced Research Technologies, NYU School of Medicine, New York, NY, USA. 13Preclinical Science and Translational Medicine, Atara Biotherapeutics, South San Francisco, CA, USA. 14Preclinical Science and Translational Medicine, Atara Biotherapeutics, South San Francisco, CA, USA. 15Preclinical Science and Translational Medicine, Atara Biotherapeutics, South San Francisco, CA, USA. 16Preclinical Science and Translational Medicine, Atara Biotherapeutics, South San Francisco, CA, USA. 17Preclinical Science and Translational Medicine, Atara Biotherapeutics, South San Francisco, CA, USA. 18Preclinical Science and Translational Medicine, Atara Biotherapeutics, South San Francisco, CA, USA. 19Preclinical Science and Translational Medicine, Atara Biotherapeutics, South San Francisco, CA, USA. 20Preclinical Science and Translational Medicine, Atara Biotherapeutics, South San Francisco, CA, USA.
Methods

Study design and human participants

Patient samples were collected at Stanford University and the University of Heidelberg. Relapsing-remitting MS was diagnosed according to the current McDonald criteria. None of the patients met the diagnostic criteria for neuromyelitis optica spectrum disorder, in particular spinal lesions spanning ≥3 segments. Patients were tested for antibodies against aquaporin-4 and myelin oligodendrocyte glycoprotein and showed negative results. All included patients had increased CSF white blood cell counts (≥10 cells µl⁻¹), and blood-contaminated CSF samples were excluded by visual and microscopy inspection. Paired peripheral blood and CSF samples were obtained at the time of clinical onset or during an acute relapse. All but one patient had not received any MS-specific treatment before sample collection (Extended Data Table 1). As this study does not explore group differences, no specific randomization strategy has been applied for the selection of study participants. MS is a disease that predominantly affects women, which is reflected in our study cohort which contained paired CSF and blood samples from n = 8 female and n = 1 male MS patients. The study size is in line with prior repertoire studies investigating both, single-cell and bulk B cell repertoires in MS and other diseases. All experimental protocols were approved by the institutional review board (IRB) of Stanford University (IRB number 34529) and the ethics committee of the medical faculty of the University of Heidelberg (IRB number 5-466/2015). Written informed consent was obtained from each patient.

Cell preparation, antibody staining and flow cytometry cell sorting

CSF was centrifuged immediately after lumbar puncture and cells were counted. PBMCs were isolated from heparinized blood by density gradient centrifugation using Ficoll Plus medium (Cytiva). Cells were magnetically separated with anti-CD19 magnetic beads (Dynabeads CD19 Pan B cell isolation kit, Invitrogen), then stained according to standard protocols using antibodies against the following cell surface markers: CD20 (clone L27, dilution 1:10), CD38 (clone HB7, dilution 1:30) and IgD (clone IA6-2, dilution 1:20) from BD Biosciences; CD3 (clone OKT3, dilution 1:60), CD19 (clone HB9B, dilution 1:20), CD27 (clone OX323, dilution 1:20), IgM (clone MMH-88, dilution 1:40), HLA-DR (clone L243, dilution 1:100) and CD4 integrin (clone 9F10, dilution 1:100) from BioLegend; IgA (clone IS11-8E10, dilution 1:20) from Miltenyi Biotec; and Sytox blue (dilution 1:500) from ThermoFisher Scientific. Single-cell repertoire sequencing

Sequence analysis

The MiSeq FASTQ workflow was used for Fastq generation and plate demultiplexing. Rv.3.6.1 was used for custom analyses. Paired reads of sequences that passed quality thresholds were stitched and separated by plate and well IDs. Similar reads sharing the same plate and well IDs were clustered into operational taxonomic units. Consensus sequences were aligned to germline variable-chain immunoglobulin sequences with IMGT HighV-QUEST (v.1.3.1), which reports V, D and J germline genes, HC and LC CDR3 lengths, and non-silent mutation counts and locations. Clonal expansions were defined on the basis of sharing the same HC and LC V and J genes and exhibiting >70% amino acid identity within the HC and LC CDR3s. The per cent clonality represents the per cent of all sequences that fulfill these criteria. For patient samples MS12 and C6, only PBs were captured (while gating on all B cells), and for MS39, only PBs were sorted. For phylogenetic analysis, sequences were binned according to their HC V-gene family and V gene. Concatenated LC and HC were then aligned with Muscle and clustered with PhyML using maximum-likelihood clustering. Each tree-branching was rooted by their HC V-gene. Phylogenetic trees were drawn in Python using the ETE 3 toolkit.

Peptide identification by mass spectrometry

Immunoglobulins were purified from 1.5 ml of CSF samples with Protein A (ThermoFisher Scientific). The purified IgG samples were reduced with 0.02 M dithiothreitol at 57 °C for 1 h, alkylated with 0.05 M iodoacetamide at room temperature (RT) in the dark, and digested with trypsin overnight at RT. Peptides were extracted and desalted as previously described. An aliquot of the mixture was loaded onto an Acclaim PepMap 100 precolumn (75 µm × 2 cm, C18, 3 µm, 100 Å) in-line with an EASY-Spray, PepMap column (75 µm × 50 cm, C18, 2 µm, 100 Å) with a 5-µm emitter using the autosampler of an EASY-nLC 1000 (ThermoFisher Scientific). The peptides were gradient eluted into a Lumos Fusion Triblend (ThermoFisher Scientific) mass spectrometer using a 120-min gradient from 5% to 35% solvent B (90% acetonitrile, 0.5% acetic acid), followed by 10 min from 35% to 45% solvent B and 10 min from 45% to 100%. High-resolution full mass spectrometry spectra were acquired with a resolution of 120,000, an AGC target of 4 × 10⁶, a maximum ion time of 50 ms and a scan range of 400–1,800 m/z. Following each full mass spectrometry scan, many data-dependent HCD tandem mass spectrometry spectra were acquired in the orbitrap as possible in a 3-s cycle time. Monoisotopic precursor selection (MPS) was set to peptide, precursors with a charge state of 2–7 and minimum intensity of 5 × 10⁴ were selected for tandem mass spectrometry. Dynamic exclusion was set to 60 s after a single selection. All tandem mass spectrometry spectra were collected using the following instrument parameters: resolution of 30,000, an AGC target of 10³, a maximum ion time of 120 ms, 2 microscans, 1.6 m/z isolation window and normalized collision energy of 32.

The tandem mass spectrometry spectra were searched against the respective peptide-specific database, including common contaminant proteins, using the search engine Byonic. The search parameters were set to trypsin allowing two missed cleavages, fixed modification of carbamidomethyl on cysteine, variable modification of oxidation on methionine and deamidation on glutamine and asparagine. Peptides mapping to variable regions of IgG were manually verified. To include only sequence-specific peptides, peptides that aligned to
non-immunoglobulin or constant-region sequences were excluded from the analysis, as were peptides that aligned to the repertoire of multiple patient samples. Included were peptides that aligned to one variable sequence in a single patient. Peptides that aligned to more than one variable sequence in a single patient were included if all matching sequences were exact matches or clonally related, in which case the peptide was counted as representative for all matches. Counts of identical or non-identical peptide-spectral matches per sequence were tallied for each sequence. Sequences that had >1 or >10 matching peptides were presented as a percentage of all sequences (Fig. 1d and Extended Data Fig. 2j, k). The mass spectrometry files are accessible at MassIVE (https://massive.ucsd.edu) under accession number MSV000086842.

Selection and recombinant expression of mAbs

Representative antibodies from the largest clonal B cell expansions in the CSF of each patient were selected for recombinant expression. In patients with more than 10 large clonal expansions, sequences were preferentially chosen based on their usage of one of the 11 most abundant IGHV genes in the CSF (Extended Data Fig. 3). HC and LC variable sequences were custom-generated (IDT) and cloned into pFuse vectors (Invigene) that contained human IgG constant region or kappa or lambda constant regions, respectively. Fab HC was expressed in in-house plasmids that contained the HC constant-region C1 up to Cys103. Plasmids were transfected into Expi293T cells using ExpiFectamine (ThermoFisher Scientific). Authenticity of 293T cell lines were certified by the supplier. Cell cultures were tested regularly for mycoplasma contamination. Culture medium was collected after 4 days and 7 days after transfection. mAbs and FabS were purified with protein A and protein G resins, respectively (ThermoFisher Scientific).

Antibody concentrations were measured with a nanodrop spectrophotometer (ThermoFisher Scientific) and hIgG quantitation ELISAs (Jackson ImmunoResearch) and checked for purity on SDS protein gels with Coomassie staining.

Protein expression and purification

The following EBNA1 proteins and peptides were obtained: full-length AAI–641 (Abcam), AA328–641 (Virion Serion) and AA408–641 (ProspectBio). The following GlialCAM proteins and peptides were obtained: full-length AA34–416 (OriGene) and ECD AA34–234 (Novoprotein). GlialCAM CIC AA262–416 was expressed in Escherichia coli with an N-terminal His-Tag. In brief, the codon-optimized sequence was cloned into a pET30(+) vector, expressed in BL21 chemically competent E. coli (Sigma Aldrich) to an optical density of 600 nm, and induced with IPTG (Sigma Aldrich) for 3 h at 37 °C. Cell pellets were disrupted by sonication, and proteins were purified with complete His-Tag purification resins (Roche Life Science), followed by size-exclusion purification (Cytiva). For all other used peptides and proteins see Supplementary Tables 2–4.

Planar protein microarrays

Protein microarrays were generated as previously described25,56 (https://web.stanford.edu/group/antigenarrays/). In brief, peptides, recombinant proteins and lysates were diluted at the indicated concentrations in a 1:1 solution of PBS/water and protein printing buffer (ArrayIt) (Supplementary Tables 2–4), aliquoted into 384-well plates and printed on SuperEpoxy slides using a NanoPrint LM210 system (ArrayIt). Two independent quadruplicates of each analyte were spotted, and some proteins were used in several versions/preparations from different sources (Supplementary Table 2). Ready-made HuProt Arrays v.3.1 were obtained from CDI Labs. Arrays were circumscribed with a hydrophobic marker, blocked overnight at 4 °C in PBS containing 3% FCS and 0.1% Tween-20, and incubated with individual mAbs at a concentration of 1 µg ml−1 for 1 h at 4 °C, then washed twice for 20 min each in blocking buffer on a rotating shaker. Arrays were then incubated with Cy-3-conjugated secondary goat anti-human IgG (0.8 µg ml−1; Jackson ImmunoResearch) for 1 h at 4 °C, then washed twice for 30 min each in blocking buffer, twice for 30 min each in water, and twice for 15 s each in water. Arrays were spun dry and scanned with a GenePix 4000B scanner (Molecular Devices). Median pixel intensities for each fluorescent spot were determined with GenePix Pro-3.0 software (Molecular Devices). Z scores for each row of antigens were calculated for viral antigens, whereas raw intensities were analysed for GlialCAM arrays. Heatmaps were generated with Morpheus software (The Broad Institute; https://software.broadinstitute.org/morpheus).

PhIP-seq

PhIP-seq was performed using a human proteome-wide library, expressing overlapping 49-amino-acid peptides with a 24-amino-acid sliding window approach starting at the N terminus. In brief, 2 µl (1 µg ml−1) of substrate antibody was diluted 1:100 in blocking buffer for two sequential rounds of immunoprecipitation. After the second round of immunoprecipitation and amplification in E. coli, next-generation sequencing libraries were prepared for paired-end 150 base next-generation DNA sequencing on the Illumina Hi-Seq platform as previously described28,57. After alignment of the reads to the reference peptide sequences, quality control was performed, and only reads present at an abundance of fewer than ten reads per hundred thousand were carried forward. The number of reads mapping to each peptide were then counted and individually scored as a percentage of the total.

ELISA

The following cytokine ELISA kits were used according to the manufacturers’ instructions: mouse IL-6, IL-10, IL-12, IFNγ and TNF (BD Biosciences), and IL-17A (ThermoFisher Scientific). For protein and peptide ELISAs, MaxiSorp 384-well plates (ThermoFisher Scientific) were coated with 1 µg ml−1 peptide or protein in carbonate-bicarbonate buffer at 4 °C overnight, then washed 6 times with PBST (PBS + 0.05 % Tween20), blocked with blocking buffer (PBS + 1% BSA) for 1 h, and mAbs were applied at 1 µg ml−1 blocking buffer. Human and mouse plasma samples were diluted 1:100 and T cell supernatants 1:4 in blocking buffer. After overnight incubation at 4 °C, plates were washed again 6 times with PBST and then secondary antibody HRP-conjugated goat anti-human IgG (Jackson ImmunoResearch) was applied for 1 h at RT. After six additional washes with PBST, plates were developed with TMB substrate (ThermoFisher Scientific), stopped with 1 N sulfuric acid and read on a SpectraMax Paradigm Microplate Reader (Molecular Devices). For plasma ELISAs with blocking of plasma IgG, MaxiSorp 384-well plates were coated with 2 µg ml−1 recombinant Protein G (Acro Biosystems) at 4 °C overnight, then washed six times with PBST and incubated with 1:100 diluted plasma at 4 °C overnight. Plates were again washed 6 times with PBST, then incubated with the respective blocking peptides at 10 µg ml−1 for 2 h at room temperature. Biotinylated EBNA1AA34-405 was added at 1 µg ml−1 and incubated for 1 h at room temperature. Plates were washed again six times with PBST, incubated with HRP-conjugated streptavidin (BioLegend) for 1 h at room temperature and developed with TMB substrate as described above.

Western blotting

Western blots were run according to standard protocols. In brief, purified proteins were boiled in Laemmli buffer with 10% β-mercaptoethanol for 5 min, run on 4–12% Criterion XT Bis-Tris protein gels (Bio-Rad) and then transferred onto a nitrocellulose membrane using a Trans-Blot Turbo semi-dry transfer system (Bio-Rad). The blots were stained with MS39p2W174 at 10 µg ml−1 or with mouse anti-EBNA1 antibody (Biorybt) or mouse anti-GlialCAM antibody (R&D Systems) followed by secondary HRP-conjugated goat anti-human IgG and mouse anti-IgG (Jackson ImmunoResearch). The western blots in Figs. 2c and 3c were performed on separate membranes. Coomassie gels were run concomitantly, fixed with 10% methanol and 7% acetic acid, and stained according to standard protocols. Uncropped western blot and Coomassie images are available in Supplementary Fig. 1.
Article

Fluorescent immunohistochemistry on mouse brain slices and immunofluorescence on primary cultured rat oligodendrocytes

An adult mouse (F, generation of FVB x C57BL/6 cross) was transcardially perfused with 4% paraformaldehyde (PFA) and post-fixed in 4% PFA overnight at 4 °C. After sucrose equilibration, the brain was blocked in OCT and sectioned at 12 µm on a standard cryostat. Sections were permeabilized and blocked in PBS containing 10% lamb serum and 0.1% Triton X 100. Sections were immunostained with concomitantly expressed control mAb anti-DG3 (Acc: Hq338093.1 and Hq338094.1; 18 µg ml⁻¹) and MS39p2w174 (18 µg ml⁻¹) or PBS in blocking buffer overnight at 4 °C. Sections were washed five times with PBS over 1 h and counterstained with anti-human IgG for 1 h at room temperature (2 µg ml⁻¹ Alexa Fluor 488, Jackson ImmunoResearch). Nuclei were stained with DAPI at 1:2,000 for 5 min at room temperature. Rat oligodendrocyte precursor cells were prepared from rat embryos followed by panning and in vitro differentiation into primary rat oligodendrocytes. Cells on coverslips were permeabilized with ice-cold 100% methanol for 10 min, blocked with 10% donkey serum for 1 h at room temperature and then stained with isotype control (anti-DG3) or MS39p2w174 at 10 µg ml⁻¹ in 1% donkey serum for 1 h at RT, before incubation with secondary Alexa Fluor 647 donkey anti-human IgG antibody (Jackson ImmunoResearch) for 1 h at RT. Confocal images were taken with a Zeiss LSM 880 confocal microscope using Zen software (Zeiss).

Bio-layer intereferometry

Association and dissociation constants of mAbs to proteins and peptides were measured using bio-layer intereferometry on an Octet QK device (Fortebio/Sartorius) according to standard protocols. For peptide kinetics, biotinylated peptides were bound to high-precision streptavidin (SAX) biosensors (peptide concentration in solution of 100 nM), and the mAbs MS39p2w174 and germline were probed as analytes in concentrations ranging from 10 to 270 nM. For protein kinetics, mAbs were bound to anti-hlgG Fc capture (AHC) biosensors (mAb concentration in solution of 20 nM), and proteins were probed as analytes in concentrations ranging from 1.56 to 125 nM. Data were analysed with bio-layer intereferometry analysis software (Fortebio/Sartorius, v.7.1) and GraphPad prism (v.8.4). Buffer controls were subtracted, and curves were fitted globally for each group consisting of all concentrations of the same ligand. Kᵣ values ± s.d. as well as association–dissociation curves are reported and plotted with GraphPad prism (v.8.4). Kᵣ, Kₐ, and Kᵣ values are shown in Supplementary Table 6. Kᵣ values reported in Figs. 2k and 3e are mean ± s.d. values from at least three serial dilutions from one representative out of three independent experiments.

Prediction of protein disorder

Order and disorder along the amino acid sequences of EBNA1 and Gli-axedCAM were analysed using predictor of natural disordered regions (PONDRI; WSU Research Foundation) with the VSL2 algorithm.

Cryostallization of antibody–antigen complexes

EBNA1AA386–405 (peptide sequence: SQSSSSGSPRRPFPVPGP) or scram-pled control peptide (peptide sequence: SPSRPGRSRSPGGPPQSPSP) (10 mice per group), mixed with 100 µg per mouse of CpG (ODN1826, Invivogen) in 100 µl per mouse incomplete Freund’s adjuvant (BD Difco). Three weeks later, EAE was induced by subcutaneous immunization with 200 µg per mouse of PLP₁₃₉₋₁₅₁, mixed with the same peptides used in the first immunization, in 100 µl of incomplete Freund’s adjuvant, supplemented with 200 µg per mouse of mycobacterium tuberculosis (strain H37 RA, BD Difco). Serum samples were obtained by retro-orbital blood draws 3 days before the first and second immunizations (day –24 and day –3), and at the termination of the experiment (day 50). Mice were weighed every day, and disease severity was assessed in a blinded manner according to a 5-point standard scoring system: 0, no clinical signs; 1, loss of tail tone; 2, hindlimb weakness; 3, complete hindlimb paralysis; 4, hindlimb and forelimb paralysis; 5, moribund or dead. Mice were euthanized on day 50 after induction of EAE by deep anaesthesia with intraperitoneal injections of 0.01 ml g⁻¹ body weight 7.2% xyla-zine (Bayer Healthcare) and 10.8% ketamine (Pfizer). Lymph nodes and spleens were removed, and mice were then perfused with 10 ml PBS and 20 ml 4% PFA (Electron Microscopy Scopies). Brains and spinal cords were removed, stored in 4% PFA overnight followed by 30% sucrose in PBS. Tissues were embedded in paraffin, sectioned and stained for H&E as well as Luxol fast blue according to standard protocols. Infiltration of inflammatory cells into the spinal cord on H&E slides was assessed by a blinded investigator by counting lesions of infiltrating cells per slide, taking lesion size into account. The following scoring system was used: 1, small infiltrate (<10 cells); 2, medium infiltrate (<100 cells); 3, large infiltrate (>100 cells). Demyelination was assessed by a blinded investigator according to a histological score as follows: 0, no demyelinated spot; 1, several spots; 2, confluent sites of demyelination; 3, extensive demyelination, less than half of a spinal cord; 4, demyelination of more than half of the spinal cord; and 5, extensive demyelination affecting >85% of the total white matter of the spinal cord.

In vitro human T cell stimulation with proteins and peptides

Cryopreserved PBMCs were thawed and stabilized overnight at 37 °C. The cells were pre-incubated for 30 min at 37 °C, 5% CO₂ with poly-myxin B (Sigma Aldrich) at a concentration of 10 µg ml⁻¹. The cells were then incubated for 16 h with 100 µM of each recombinant protein or peptide in the presence of 2 µg ml⁻¹ of anti-human CD28 (clone CD28.2, BD Biosciences) and anti-CD49d (clone 9F10, BioLegend) antibodies and IL-2 (50 IU ml⁻¹, Peprotech) and IL-7 (5 ng ml⁻¹, Peprotech). To detect intracellular staining, eBioscience Protein Transport Inhibitor cocktail (500X, ThermoFisher Scientific) was added during the final 5 h of culture. After 16 h, the cells were labelled with Fixable Viability Stain 510 (BD Biosciences) for live cell staining and fluorophore conjugated anti-CD3 (clone SK7, BD Biosciences), CD4 (clone RPA-T4, BD Biosciences), CD8 (clone RPA-T8, BD Biosciences), granzyme B (clone GB11, BD Biosciences), IFNγ (clone B27, BD Biosciences) and IL-17A (clone BL168, BD Biosciences) antibodies and detected using a BD LSR Fortessa.
Data analysis and statistics

The publicly available dataset from Han et al. was searched for abundance of GlialCAM in MS lesions. The old NCBI Protein Database accession number QSN713 was found, which was annotated in 2008 as unknown hypothetical protein and has since been replaced by accession number Q14CZ9. GlialCAM was identified with 2.5 mean spectral counts (MSCs) in control tissue, 1.3 MSCs in chronic plaques, 1.8 MSCs in acute plaques and 2.8 MSCs in chronic-active plaques.

GraphPad Prism v.8.4.1 and R v.3.6.1 were used for statistical analyses. Statistical tests used are indicated in the respective section of the Methods or in the figure legends.

Reporting summary

Further information on research design is available in the Nature Research Reporting Summary linked to this paper.

Data availability

The genomic datasets analysed during the study have been uploaded to the Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra) with accession number PRJNA780931. Mass spectrometry data are available at MassIVE (https://massive.ucsd.edu) with accession number PRJNA780931. Data analysis and statistics

Further information on research design is available in the Nature Research Reporting Summary linked to this paper.

Acknowledgements

We thank W. Dick for support with sample collection, B. Bell for advice on crystallization, G. Harauz for insightful discussions on poly-proline motifs, and the staff at SSRL for assistance with data collection. This work was supported by NIH R01 AR063676 and U19 AI110491 to W.H.R., the Juvenile Diabetes Research Foundation and Lupus Research Alliance Funding to W.H.R. and T.V.L., the German Research Foundation (DFG, LA3657/1) to T.V.L., Atara to L.S. and P.P.H., and the German Research Foundation to M.P. (DFG, project 406052676; PL-315/5-1). The mass spectrometry experiments were in part supported by the NYU Grossman School of Medicine and a shared instrumentation grant (NIH 1S10OD010582-01A1). Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract number DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research, and by NIH GIGMS P30GM133894. C.M.B. is a Hanna H. Gray Fellow at the Howard Hughes Medical Institute. The contents of this publication are solely the responsibility of the authors and do not represent the official views of the NIIGMS or the NIH.

Author contributions

Conceptualization: T.V.L., L.S. and W.H.R. Methodology: T.V.L., R.C.B., P.P.H., K.M.J., D.F., V.C.C. and B.M.U. Writing (original draft): T.V.L. Writing (review and editing): T.V.L., R.C.B., P.P.H., L.S. and W.H.R. Data curation: T.V.L., R.C.B., K.M.J., D.F., V.C.C. and B.M.U. Writing (review and editing): T.V.L., R.C.B., P.P.H., K.M.J., D.F., A.M.G., C.M.B., V.C.C. and B.M.U. Validation: T.V.L., R.C.B., K.M.J., B.T., V.C.C., J.-S.M., M.I. and J.B.Z. Software: T.V.L., R.C.B., D.F., K.M.J. and V.C.C. Formal analysis: T.V.L., R.C.B., K.M.J., B.M.U., R.J.M.B.-R., K.C.G., L.S. and W.H.R. Investigation: T.V.L., R.C.B., P.P.H., D.F., G.-S.N., C.M.B., R.D.S., I.A.H., S.E.V., B.T., V.C.C., J.-S.M. and W.H.R. Writing (review and editing): T.V.L., R.C.B., D.F., K.M.J. and V.C.C. Conceptualization: T.V.L., L.S. and W.H.R. Methodology: T.V.L., R.C.B., P.P.H., K.M.J., D.F., R.A.F., A.M.G., R.D.S., B.T., V.C.C., B.M.U., J.-S.M., M.I. and J.B.Z. Software: T.V.L., R.C.B., D.F., K.M.J. and V.C.C. Formal analysis: T.V.L., R.C.B., K.M.J., B.M.U., R.J.M.B.-R., K.C.G., L.S. and W.H.R. Investigation: T.V.L., R.C.B., P.P.H., D.F., G.-S.N., C.M.B., R.D.S., I.A.H., S.E.V., B.T., V.C.C., J.-S.M. and W.H.R. Writing (review and editing): T.V.L., R.C.B., P.P.H., L.S. and W.H.R. Visualization: T.V.L., R.C.B. and K.M.J. Supervision: T.V.L. and W.H.R. Project administration: T.V.L. and W.H.R. Funding acquisition: T.V.L., P.P.H., B.T.A., M.P., L.S. and W.H.R.

Competing interests

W.H.R. owns equity in, serves as a consultant to and is a member of the Board of Directors of Atreaux, Inc. L.S. owns equity in and serves as a consultant to Atreaux, Inc. Stanford University is in the process of applying for a patent, US Patent and Trademark Office Serial No. 63/131,581, covering anti-EBV antibodies generated by sequencing B cell repertoires, which lists T.V.L. and W.H.R. as inventors. The remaining authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41586-022-04432-7.

Correspondence and requests for materials should be addressed to William H. Robinson.

Peer review information Nature thanks Paul Farrell, George Georgiou, Hartmut Wekerle and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at http://www.nature.com/reprints.
Extended Data Fig. 1 | See next page for caption.
Extended Data Fig. 1 | Analysis of B cell phenotypes in MS blood and CSF.

a–l, Flow cytometry data, a, b, representative flow cytometry plots are shown for a, blood and b, CSF. c, Plasmablasts as percent of all B cells in MS blood and CSF, means ± SD of n = 9 patient samples, **P = 0.004, two-tailed Mann-Whitney test.
d, Non-plasmablast B cell subsets as percent of all B cells in blood (red) and CSF (blue), means ± SD of n = 8 patient samples, ***P = 0.0006, two-tailed Mann-Whitney test, Holm-Sidak corrected for multiple comparisons.
e, Integrin alpha-4 expression in non-plasmablast B cells (red) and plasmablasts (blue), mean MFI ± SD of n = 9 patient samples, ****P < 0.0001, **P = 0.0013, two-way ANOVA, Tukey adjusted for multiple comparisons.
f, Representative histogram showing integrin alpha-4 expression in non-plasmablast B cells (red) and plasmablasts (blue) in blood (top panel) and CSF (lower panel).
g, HLA-DR expression in non-plasmablast B cells (red) and plasmablasts (blue) in blood and CSF, mean MFI ± SD of n = 9 patient samples, ****P < 0.0001, ***P = 0.0002, two-way ANOVA, Tukey adjusted for multiple comparisons. Plasmablasts, PB; unswitched memory B cells, UM; switched memory B cells, SM; double negative B cells, DN.

h, Representative histogram showing HLA-DR expression in non-plasmablast B cells (red) and plasmablasts (blue) in blood (top panel) and CSF (lower panel).
i, HLA-DR expression in patients carrying HLA-DRB1*15:01 (HLA-DR15, n = 5) vs. other HLA genotypes (non-HLA-DR15, n = 4) in i, blood, and j, CSF, mean MFI ± SD, significance levels calculated with two-way ANOVA.
k, l, Immunoglobulin classes in k, non-plasmablast B cells and l, plasmablasts in blood (red) and CSF (blue), mean MFI ± SD of n = 9 patient samples, ****P < 0.0001, two-way ANOVA, Holm-Sidak adjusted for multiple comparisons.
Extended Data Fig. 2 | See next page for caption.
Extended Data Fig. 2 | Extended BCR repertoire data. a–i, Single-cell BCR repertoire sequencing data. a, Individual repertoires from all CSF B cells (top row) and subdivided into CSF plasmablasts (middle row) and non-plasmablast B cells (bottom row) of $n=9$ MS patients. b, Individual repertoires of all CSF B cells (top row) and subdivided into CSF plasmablasts (middle row) and non-plasmablast B cells (bottom row) of $n=3$ control patients. Numbers indicate number of sequences, inner circle: colored wedges represent clonal expansions and grey area represents singleton antibody sequences, outer circle: immunoglobulin classes, red: IgG, blue: IgA, green: IgM, sequence locations in outer circle correspond to inner circle. No non-plasmablast B cells were sorted for MS12 and C5. Only plasmablasts were sorted for MS39. c, Clonality, percent of clonal sequences in CSF B cells are shown, comparing BCR repertoires of control patients ($n=3$) to MS patients ($n=9$). Data corresponds to data shown in (Fig. 1b) and is separated into immunoglobulin classes IgG (left), IgA (center), and IgM (right). Means ± SD of individuals’ repertoires are shown. d, Immunoglobulin class distribution, percent of IgG (left), IgA (center), and IgM (right) of all CSF B cells are shown for $n=3$ control patients and $n=9$ MS patients. Means ± SD of individuals’ repertoires are shown. e, IGHV and IGLV cumulated mutation count in plasmablasts in blood (red) vs. CSF (blue), means ± SD of $n=9$ patients samples. f, Mean HC CDR3 lengths (amino acid sequences) of plasmablasts in blood (red) vs. CSF (blue), means ± SD of $n=9$ patient samples. g–i, Immunoglobulin gene distribution in blood vs. CSF plasmablasts for g, IGLV, IGKV1-33, ****$P<10^{-6}$, IGLV3-21, ****$P=3\times10^{-4}$ according to unpaired two-tailed Student’s t tests, Holm-Sidak adjusted for multiple comparisons, h, IGHJ, and i, IGLJ. Each dot represents the usage of one gene across $n=9$ MS patient repertoires in the respective compartments. Linear regression lines and 95% confidence intervals are shown. j, Mass spectrometry data of purified CSF immunoglobulins, showing variable chain sequences that could be uniquely identified in singleton BCR sequences vs. plasmablast sequences, peptide-spectral matches (PSM) cutoff ≥10, means ± SD of $n=9$ MS patients, **$P=0.0012$. k, Same mass spectrometry data set as in (j), showing variable chain sequences that could be uniquely identified in non-plasmablast BCR sequences vs. plasmablast sequences, means ± SD of $n=7$ MS patients, k, PSM cutoff ≥1, **$P=0.007$, l, PSM cutoff ≥10, *$P=0.037$. m, Single-cell sequencing efficacy in non-plasmablast B cells (red) vs. plasmablasts (blue) in CSF. Fraction of sequences that passed filter thresholds are shown as percentages of the number of sorted cells in the respective group, means ± SD of $n=8$ patient samples (no non-PB value for MS39). c, d, g–i, P according to unpaired two-sided Student’s t-test. Immunoglobulin heavy V gene, IGHV; Immunoglobulin heavy J gene, IGHJ; Immunoglobulin light V gene, IGLV; Immunoglobulin light J gene, IGLJ; peptide-spectral matches, PSM.
Extended Data Fig. 3 | Phylogenetic trees of B cells from MS blood and CSF. Blood plasmablasts (top rows) and CSF B cells (bottom rows) of \(n = 9 \) MS patients and CSF B cells of \(n = 3 \) control patients are shown. Each node represents the full-length heavy chain and light chain sequence of a single B cell. Trees are binned according to their IGHV families and genes, then the concatenated heavy chain and light chain sequences are clustered. IgG (red), IgA (blue), IgM (green). Smaller brighter circles indicate singleton B cells, larger darker circles indicate clonal expansions. Arrows indicate sequences that were expressed as mAbs, numbers indicate V-gene mutation loads in heavy and light chains. Immunoglobulin heavy V gene, IGHV.
Extended Data Fig. 4 | Polyreactivity of recombinantly expressed antibodies. a, ELISA data showing reactivity of recombinant mAbs against LPS (top), human insulin (middle), and dsDNA (bottom). Reactivity is represented in the order of decreasing reactivity to LPS in MS mAbs and control mAbs, respectively. Measurements were carried out in duplicates at 0.1, 1, and 10 μg/ml mAb concentrations and the area under the curve (AUC) for each mAb is shown from one experiment. Commercial anti-LPS antibody (cyan), MS39p2w174 (red), germline (orange), control mAbs (blue).
Extended Data Fig. 5 | MS CSF mAb reactivity to EBV and GlialCAM antigens. a, mAb reactivities to EBV virus lysates and recombinant EBV proteins as well as to other virus lysates. Z-scores for each antigen are shown, measurement of one microarray experiment, measured in 8 technical replicates. b, mAb reactivities to LPS, Insulin, and dsDNA to assess polyreactivity. Z-scores of area under the curve (AUC) of ELISA measurements at antibody concentrations of 0.1, 1, and 10 µg/ml are shown, each measurement was carried out in duplicates. c, mAb reactivities to GlialCAM proteins, peptides, and phosphorylated or citrullinated peptides. Mean reactivities (mean fluorescence intensity counts) are shown from one microarray experiment, measured in 8 technical replicates. Immediate early latency stage protein, IE; early, E; late, L; intracellular domain, ICD; extracellular domain, ECD; phosphorylated Serine, pSer; citrulline residue, Cit; _B - _E: duplicate probes of same / similar lysates and proteins (different preparations or batches).
Extended Data Fig. 6 | MS CSF mAb reactivity to EBV peptides. a, mAb reactivities to EBV peptides. Z-scores for each antigen are shown, measurement of one microarray experiment, measured in 8 technical replicates. Intracellular domain, ICD; extracellular domain, ECD; peptide mix, PM.
Extended Data Fig. 7 | mAb reactivity to EBV peptides and extended structural data for the EBNA1 AA386-405 / MS39p2w174-Fab complex. a, mAb reactivities of selected reactive mAbs against the selected reactive peptide antigens. Z-scores for each antigen are shown, measurement of one microarray experiment, measured in 8 technical replicates. b, ELISA-based alanine-scan on EBNA1 AA386-405, corresponding to (Fig. 2e). Mean OD (450 nm) ± SD from three independent experiments, each carried out in triplicates. c, 20x image of protein crystals in hanging drop. d, Asymmetric unit containing two peptide-Fab complexes in a diagonal orientation, heavy chain (red/pink), light chain (blue/cyan). e, EBNA1 AA386-405 peptide and its 2mFoDFc map (contoured at 1σ) are shown, depicted on heavy chain (cyan) and light chain (pink) in surface representation. f, g, Amino acid sequences of variable regions of f, mAb MS39p2w174 heavy chain and g, light chain. Bold font: CDR, regular font framework regions. Of the germline variable genes (bottom rows), only residues that differ from MS39p2w174 sequence are shown, red: residues that closely interact with EBNA1AA386-405 according to crystal structure. dots: gaps introduced during IMGT GapAlign for alignment and numbering purposes, numbers: residue numbers according to IMGT unique numbering. Intracellular domain, ICD; extracellular domain, ECD; heavy chain, HC; light chain, LC; complementarity determining region, CDR; framework region, FR; germline, GL.
Extended Data Fig. 8 | See next page for caption.
Extended Data Fig. 8 | Extended characteristics of GlialCAM_{AA370-389} and immunofluorescence stainings with MS39p2w174.

a, Phage display PhiP-Seq data, showing alignment of Pro/Arg-rich region and adjacent residues of all phage display peptides enriched above 100 / 10⁵ reads. **b**, Immunofluorescence of mouse brain slices stained with (i) control antibody, and (ii-iv) MS39p2w174 (green) and DAPI (blue). (i,ii) full brain, scale bars: 2000 µm, (iii) magnification of hippocampus with prominent MS39p2w174 staining, scale bar: 400 µm, and (iv) olfactory bulb with prominent MS39p2w174 staining in the olfactory nerve (ohn), glomerular (gl), and external plexiform layers (epl), but not the mitral (ml), internal plexiform (ipl), or granule cell (gcl) layers, scale bar: 100 µm. **c**, Immunofluorescence of primary rat oligodendrocytes with isotype control antibody (top panel) and MS39p2w174 (bottom panel). **d**, K562 cells in culture, wildtype (left) and transduced with full-length GlialCAM (right). **e**, Immunofluorescence with MS39p2w174 on WT K562 cells (top) and GlialCAM-tg K562 cells (center and bottom). White arrow: single K562 cell, orange arrow: high intensity MS39p2w174 staining on the cell border between transgenic K562 cells in bulks. **f**, Overview of phosphorylated residues in GlialCAM, identified by mass spectrometry (phosphoSite.org). The two phosphorylated serine residues of interest are indicated with arrows. **g**, ELISA, measuring binding of MS39p2w174 to native and citrullinated GlialCAM_{AA370-389} peptides, means of <i>n</i> = 2 independent experiments, each carried out in triplicates. Wildtype, WT; extracellular domain, ECD; intracellular domain, ICD; phosphorylated serine, pSer; citrulline residue, Cit.
Extended Data Fig. 9 | Plasma reactivity against EBNA1 and GlialCAM proteins and peptides in healthy control individuals and MS patients.

a, ELISA measurement of antigen-specific IgG reactivity against peptides EBNA1 AA386-405, GlialCAM AA370-389, phosphorylated GlialCAM AA370-389 pSer376, 2x phosphorylated GlialCAM AA370-389 pSer376 pSer377, and scrambled peptide control in plasma samples of healthy control individuals (n = 50) and MS patients (n = 71). Means ± SD in each patient group is shown. Representative OD (450 nm) measurements of two independent experiments, each carried out in duplicates. **P < 0.01, ***P < 0.001 according to two-tailed Mann-Whitney test, Tukey corrected for multiple comparisons.

b, ELISA measurements of antigen-specific IgG reactivity against GlialCAM full-length protein, GlialCAM AA370-389, and phosphorylated GlialCAM AA370-389 pSer376 in plasma samples of a separate cohort of healthy control individuals (n = 31) and MS patients (n = 67). Means ± SD across patient groups are shown. Representative OD (450 nm) measurements of two independent experiments, each carried out in duplicates. *P < 0.05, **P < 0.01 according to two-tailed Mann-Whitney test, Tukey corrected for multiple comparisons.

c, ELISA measurements of mAB MS39p2w174 binding to EBNA1 AA386-405, without interference as well as blocked with scrambled peptide control, EBNA1 AA386-405, and GlialCAM AA370-389 pSer376, as a positive control to (Fig. 3q). Mean OD (450 nm) ± SD of quadruplicate measurements from n = 1 experiment are shown. *P < 0.05, **P < 0.01, ***P < 0.001 according to one-way ANOVA, Tukey corrected for multiple comparisons.
Extended Data Fig. 10 | See next page for caption.
Extended Data Fig. 10 | T cell response against EBNA1AA386-405. a, ELISA data showing mouse plasma IgG responses against PLP139-151 at the indicated timepoints pre and post EAE induction, for scrambled peptide immunized mice (blue, n = 10) and EBNA1AA386-405 immunized mice (red, n = 10). Mean OD (450 nm) fold change ± SD, significance levels according to unpaired two-tailed Mann-Whitney test. Means ± SD, representative of three independent experiments, each carried out as triplicate measurements. b, T cell proliferation measurement by 3H-thymidine incorporation in splenocytes and lymph node cells of mice immunized with scrambled peptide (blue) and EBNA1AA386-405 (red). Cells from n = 10 mice per group were pooled and mean counts per minute (cpm) ± SD of triplicate measurements are shown. P = 8.9 x 10⁻⁵, unpaired two-tailed Student’s t-test, Holm-Sidak corrected for multiple comparisons. c–h, ELISA measurements of cytokines in cell culture supernatant of mouse splenocytes and lymph node cells of mice immunized with scrambled peptide (blue) or EBNA1AA386-405 (red) and re-stimulated with the indicated peptides. Cells from n = 10 mice per group were pooled and mean cpm ± SD of six replicate measurements are shown. c, IFN-γ, d, TNF, e, IL-12, f, IL-10, g, IL-6, h, IL-17. *P < 0.05, significance levels according to unpaired two-tailed Mann-Whitney test, Holm-Sidak corrected for multiple comparisons. i, Representative Luxol Fast Blue stained spinal cords from scrambled peptide group (top panel) and EBNA1AA386-405 group (bottom panel). Scale bars left images: 200 µm, right images: 50 µm. j, Statistical evaluation of Luxol Fast Blue scores, means of at least 4 coronal spinal cord sections per mouse and means ± SD for each group (n = 9) are shown. ****P < 0.0001, unpaired two-tailed Mann-Whitney test. k, l, Flow cytometry data of PBMC from healthy control individuals (n = 6, blue) and MS patients (n = 7, red), showing percent of k, IFN-γ+ and l, IL-17+ CD4+ T cells in all CD4+ T cells. Mean MFI ± SEM are shown for the respective groups. Significance levels were assessed by two-way ANOVA, followed by FDR calculation using the two-stage step-up method of Benjamini, Krieger and Yekutieli, *Significant at FDR < 0.1. m, Flow cytometry data, representative dot plots are shown for two individuals from the data set presented in Fig. 4f. Healthy control individual (left) and MS patient MS16 (right). Expression levels of Granzyme-B (GZMB) and IFN-γ are presented under the indicated stimulations.
Extended Data Table 1 | Patient collective

patient	sex	age range	Origin	Diagnosis	LP indication	MS Treatment	CSF cells/μl	OCB
1 MS9	female	41-45	Stanford	RRMS	diagnostic	none	12 +	
2 MS12	female	16-20	Heidelberg	CIS	diagnostic	none	11 +	
3 MS20	male	21-25	Heidelberg	CIS	diagnostic	none	10 +	
4 MS21	female	36-40	Heidelberg	RRMS	diagnostic	Fingolimod (paused for 4 weeks)	15 +	
5 MS28	female	26-30	Heidelberg	CIS	diagnostic	none	17 +	
6 MS30	female	21-25	Heidelberg	RRMS	diagnostic	none	48 +	
7 MS31	female	21-25	Heidelberg	CIS	diagnostic	none	10 +	
8 MS37	female	16-20	Heidelberg	CIS	diagnostic	none	57 +	
9 MS39	female	26-30	Stanford	RRMS	diagnostic	none	18 +	
10 C3	male	60-65	Heidelberg	neuroborrellosis	diagnostic	none	825 +	
11 C5	female	45-50	Heidelberg	neuro-Behçet’s	diagnostic	none	56 +	
12 C6	male	75-80	Heidelberg	viral encephalitis	diagnostic	none	48 +	

LP: lumbar puncture, RRMS: relapsing-remitting MS, CIS: clinically isolated syndrome, OCB: oligoclonal bands.
Extended Data Table 2 | MS39p2w174 binding peptides identified by 49-mer phage display

Gene	RefSeq ID	Peptide sequence	Percent enrichment
CDCC8C	NP_001073883.2	RGKFRGRLGCRTDOTLGDNLARPGSGSLGRETSTGTTGAK	3.3%
PITF6	NP_005699.5	RPPDQDRGPPOQPLLRTDCCCATPLRPAFAGTFQCTQTLQTEFGLQ	2.0%
WNT4	XP_011539390.1	RGKFRGRLGCCGTLGQGECNTCTCDGPDGPGTVHSQRTGPQ	1.1%
FMN1	NP_0159792.2	RGKFRGRLGCCGTLGQGECNTCTCDGPDGPGTVHSQRTGPQ	0.9%
ATG11L1	XP_011571565.1	RKKKVSSYFVPPQVVDQPPGRKGYVRPFVAFDCVDFDVDAVSGVFGP	0.8%
MAST1	XP_011526017.1	RFAKKFPRFPPQVDDQPDQDGKDGPQDGPGTVHSQRTGPQ	0.7%
AFAP1	NP_06719567.1	RFAKKFPRFPPQVDDQPDQDGKDGPQDGPGTVHSQRTGPQ	0.6%
PTGS2	XP_011513745.9	RFAKKFPRFPPQVDDQPDQDGKDGPQDGPGTVHSQRTGPQ	0.4%
EIF3A	NP_003741.1	DRFDRNKTDNNDDPRFPRPRAREDGDRNHDGDPPPRGPDQGTVHSQRTGPQ	0.5%
CCR2	NP_059995.5	PRFPRFPPQVDDQPDQDGKDGPQDGPGTVHSQRTGPQ	0.5%
GRIN3B	NP_01529597.1	GRFDFPRFPPQVDDQPDQDGKDGPQDGPGTVHSQRTGPQ	0.5%
FAM12A	XP_011677849.2	GRFDFPRFPPQVDDQPDQDGKDGPQDGPGTVHSQRTGPQ	0.4%
LOC102723745	NP_011678574.1	GRFDFPRFPPQVDDQPDQDGKDGPQDGPGTVHSQRTGPQ	0.4%
WDR36	XP_011515151.1	GRFDFPRFPPQVDDQPDQDGKDGPQDGPGTVHSQRTGPQ	0.4%
PLEKH4	XP_011677112.2	GRFDFPRFPPQVDDQPDQDGKDGPQDGPGTVHSQRTGPQ	0.4%
RBM16L1K	NP_062545.2	GRFDFPRFPPQVDDQPDQDGKDGPQDGPGTVHSQRTGPQ	0.3%

Only unique peptides are included (not bound by 287 other antibodies in the same experiment). Threshold cutoff: 0.1% enrichment. **Bold:** Pro/Arg-rich motifs.
Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our [Editorial Policies](#) and the [Editorial Policy Checklist](#).

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a	Confirmed
	[] The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
	[] A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
	[] The statistical test(s) used AND whether they are one- or two-sided
	Only common tests should be described solely by name; describe more complex techniques in the Methods section.
	[] A description of all covariates tested
	[] A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
	[] A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
	[] For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
	Give P values as exact values whenever suitable.
	[] For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
	[] For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
	[] Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on [statistics for biologists](#) contains articles on many of the points above.

Software and code

Policy information about availability of computer code

| Data collection | BD FACSDiva (v.8.0) was used for collection of flow cytometry data. BLI analysis software (Fortebio/Sartorius, version 7.1) was used for collection of biolayer-interferometry data. GenePix Pro (ArrayIt, version 3.0) was used for collection of microarray data. SoftMax Pro (Molecular Devices) was used for collection of ELISA data. BLI analysis software (Fortebio/Sartorius, version 7.1) was used for collection of biolayer-interferometry data. Zeiss ZEN (blue edition) software was used for fluorescent immunostaining data collection. |

| Data analysis | FlowJo Version 10.7.1 (BD) and R version 3.6.1 was used to evaluate flow cytometry data. GraphPad Prism 9.1.0 was used for statistical analyses. BLI analysis software (Fortebio/Sartorius, version 7.1) were used for interpretation of biolayer-interferometry data. For single cell repertoire analysis, Illumina software was used to de-multiplex the raw reads, and R version 3.6.1 and Python scripts were used for downstream analyses, and IMGT HighV-QUEST v1.3.1 for sequence alignment to immunoglobin databases. For phylogenetic analysis, we used Muscle (reference 51), and clustered the sequences with PhyMLS2 using maximum-likelihood clustering. Phylogenetic trees were drawn in Python using the ETE 3 toolkit (reference 53). GenePix Pro 3.0 software was used for microarray analysis (Molecular Devices). The PONDR algorithm was used for prediction of protein disorder. Software for structural analysis: XDS/aimless, Staraniso, Phenix/Phaser/ Phenix/refiine, Coot version 0.8.1, PyMol version 2.4.0. GraphPad Prism version 8.4.1 and R version 3.6.1 were used for statistical analyses. Morpheus software (The Broad Institute, https://software.broadinstitute.org/morpheus) was used for Heatmap generation. The mass spectroscopy data was analyzed using the search engine Byonic (reference 54). Prediction of Protein Disorder were analyzed with PONDR (Predictor of Natural Disordered Regions, WSU Research Foundation) using the VSL2 algorithm (reference 59). |

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio [guidelines for submitting code & software](#) for further information.
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The genomic datasets analyzed during the study have been uploaded to SRA, Accession #: PRJNA780931. Mass spectrometry data is available at www.massive.ucsd.edu, Accession #: MSV000086829. Structural data is available at www.rcsb.org PDB ID: 7K7R. Requests for data and materials should be addressed to tlanz@stanford.edu or wrobins@stanford.edu.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- [x] Life sciences
- [] Behavioural & social sciences
- [] Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

Our single-cell repertoire study includes n=9 individuals, yielding a total of 13,578 paired sequences from blood and 1,689 from CSF B cells, representing one of the largest single-cell repertoire data set from CSF B cells. A limiting factor is the availability of CSF and low abundance of B cells in samples from MS patients. The study size is in line with prior repertoire studies investigating both, single-cell and bulk B cell repertoires in MS and other diseases [Palanichamy A et al., Sci Transl Med. 2014;6(248):248ra106; Bashford-Rogers RM, et al., Nature. 2019;574(7776):122-126.; Ramesh A et al., Proc Natl Acad Sci U S A. 2020;117(37):22932-22943].

Data exclusions

CSF samples with low white blood cell counts (<10 cells / μl) were excluded from the study, as not enough B cells could be isolated for repertoire analysis. Below a threshold of ~20 B cells generating a meaningful antibody repertoire becomes challenging as clonal families can hardly be identified with low cell numbers [Tan et al. Arthritis Rheumatol. 2014, 66(10):2706-15, PMID: 24965753; Lu et al, Clinical Imm., 2014, 1521(2):77-89, PMID: 24589749]. CSF samples with <10 cells / μl do not contain sufficient numbers of B cells to generate phylogenetic trees of the B cell repertoire that identifies representative clonal families and thus would not be of use in characterizing the antibody repertoire in MS.

Replication

All regimens of biological and technical replication are annotated in the methods section. FACS sorting of single-cell sequencing of B cells was performed once for each patient sample, with each entire sample being exhausted by the sort. For ELISA experiments with in-house expressed recombinant monoclonal antibodies, experiments were performed at least 3 independent times. In each experiment included were at least 2 technical replicates per sample. Western Blot analyses were performed at least 3 independent experiments. EAE experiments were performed at least three times with 10 mice per subgroup in each experiment. For ELISA experiments on human MS samples, experiments were performed on MS samples from 3 independent cohorts of patients, with each cohort analyzed in at least 2-3 independent experiments. Custom-made microarray analysis was performed once in 8-fold technical replicates and for several important proteins multiple versions were included, each in 8-fold technical replicates. All attempts at replication were successful.

Randomization

As this study does not explore group differences, no specific randomization strategy has been applied for the selection of study participants. MS is a disease that predominantly affects females, which is reflected in our study cohort which contained paired CSF and blood samples from n = 8 female and n = 1 male MS patients.

Mice were randomly assigned a treatment group. Animals from each treatment group were housed together in the same cages.

Blinding

Participants were de-identified. As this study does not explore differences between patient subgroups, investigators were not blinded to the de-identified sample disease states for sequencing experiments, given comparisons were not being made between patient subgroups. The study does not rely on subjective measures, but analyzes sequencing data.

For the flow cytometry experiments, investigators were not blinded because all patients had MS and the primary purpose of the flow cytometry sort was to isolate B cells for single-cell antibody repertoire sequencing.

Investigators were not blinded during ELISAs, given ELISA provides a non-subjective quantitative readout.

For the mouse EAE experiments, investigators scoring EAE severity were blinded to their immunization groups. For analysis of EAE histopathology, the scoring pathologist was blinded to the immunization groups.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

Involved in the study
□ Antibodies
□ Eukaryotic cell lines
□ Palaeontology and archaeology
□ Palaeontology and archaeology
□ Human research participants
□ Clinical data
□ Dual use research of concern

Methods

Involved in the study
□ ChIP-seq
□ Flow cytometry
□ MRI-based neuroimaging

Antibodies

Antibodies used
1) anti-CD19 (clone HIB19, BioLegend #302234, Brilliant Violet 421)
2) anti-CD20 (clone L27, BD Biosciences #340905, PerCP-Cy5.5)
3) anti-CD19 (clone HIB7, BD Biosciences #353790, PE-Cy7)
4) anti-CD3 (clone OKT3, BioLegend #317346, PE/Dazzle 594)
5) anti-CD27 (clone O23, BioLegend #302830, Brilliant Violet 605)
6) anti-igM (clone M444-2, BD Biosciences #555778, FITC)
7) anti-igD (clone IA6-2, BD Biosciences #555778, FITC)
8) anti-HLA-DR (clone L243, BioLegend #307626, Alexa Fluor 700)
9) anti-44 integrin (clone 9F10, BioLegend #304308, APC)
10) anti-IgA (clone IS11-8E10, Miltenyi Biotec #130-113-476, PE)
11) anti-EBNA1 (clone EBS-I-024, Bioreby #orb557160)
12) anti-GialCAM/Hepacam (clone 419305, R&D Systems #MAB4108)
13) Cy3-conjugated secondary goat anti-human IgG antibody (Jackson Immunoresearch #109-165-088)
14) Alexa Fluor 700 conjugated anti-CD3 (clone SK7, BD Biosciences #566796)
15) In-house recombinant antibodies derived from CSF repertoires were expressed as outlined in the methods section.

Validation

Western blot antibodies were tested on western blot membranes containing recombinant target protein and unrelated proteins. Links to data sheets containing validation data:

1) https://www.biolegend.com/en-us/products/brilliant-violet-421-anti-human-cd19-antibody-71447?GroupID=BLG5913
2) https://www.bdbiosciences.com/en-us/products/reagents/flow-cytometry-reagents/cd8-cytokine-research/single-color-antibodies-rmu-grnp/percp-cy5-5-mouse-anti-human-cd20-340955
3) https://www.bdbiosciences.com/en-us/products/reagents/flow-cytometry-reagents/cd8-cytokine-research/single-color-antibodies-rmu-grnp/pe-cy7-mouse-anti-human-cd38-353790
4) https://www.biolegend.com/en-us/search-results/pe-dazzle-594-anti-human-cd3-antibody-11986
5) https://www.biolegend.com/en-us/products/brilliant-violet-605-anti-human-cd27-antibody-7804
6) https://www.biolegend.com/en-us/products/apc-cyanine7-anti-human-igm-antibody-7403
7) https://www.bdbiosciences.com/en-us/products/reagents/flow-cytometry-reagents/research-reagents/single-color-antibodies-rmu-fc-itc-mouse-anti-human-igm-562023
8) https://www.biolegend.com/fr-ch/products/alexa-fluor-700-anti-human-hla-dr-antibody-34093?GroupID=BLG10409
9) https://www.bdbiosciences.com/en-us/products/reagents/flow-cytometry-reagents/cd8-cytokine-research/single-color-antibodies-rmu-grnp/mouse-anti-human-cd49d-antibody-582
10) https://www.miltenyibiote.com/US-en/products/iga-antibody-anti-human-is11-8e10.html#pe:30-tests-in-60-ul
11) https://www.bioreby.com/ebv-ebna1-antibody-rib557160.html
12) https://www.rndsystems.com/products/human-hepacam-antibody-419305_mab4108
13) https://www.jacksonimmuno.com/catalog/products/109-165-088
14) https://www.bdbiosciences.com/en-us/products/reagents/flow-cytometry-reagents/research-reagents/single-color-antibodies-rmu-apc-r700-mouse-anti-human-cd3-566796
15) In-house recombinant antibodies. Amounts of in-house antibodies were measured by nanodrop and anti-human IgG ELISA (Bethyl Inc.), and then size-separated by western blot and stained with coomassie protein stain to assess the purity.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)
Expi293T (human, Thermo Fisher Scientific, A14527), BL21 chemically competent E. coli (Sigma Aldrich, St. Louis, MO)

Authentication

Expi293T cells were distributed with certificates of authentication, and used for transient transfection to express the in-house recombinant antibodies. Recombinant antibody expression was successful with the expressed antibodies confirmed to be intact as described above - thus the cell served their purpose for recombinant monoclonal antibody production, and no further validation of the cell line was performed.

Mycoplasma contamination

Expi293T were tested regularly and were found negative for mycoplasma contamination.

Commonly misidentified lines

(See CIAC register)

No commonly misidentified cell lines were used.
Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals
Female 8-week-old SII/J mice were purchased from the Jackson Laboratory and used for EAF-experiments. Tissue from an adult mouse FVB x C57BL/6 was used for histology. The FVB x C57BL/6 mice used were also 8-week-old females purchased from Jackson Laboratory. The mice were housed in recyclable individually ventilated (IVC) cages, with a 12-hour light/dark cycle, at a temperature of 70 degrees F, and with 50% humidity.

Wild animals
No wild animals were used in the study.

Field-collected samples
No field collected samples were used in the study.

Ethics oversight
All animal experiments were performed in accordance with state and federal guidelines and regulations, and approved by the Stanford Institutional Animal Care and use Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics
12 patients between 18 and 76 years of age were included in the study. Nine patients with multiple sclerosis and three with non-MS neuro-inflammatory diseases. Three male and nine female patients were included, somewhat reflecting the female-dominated sex distribution of multiple sclerosis. Patient details are listed in Extended Data Table 1.

Recruitment
Patients with a likely diagnosis of multiple sclerosis were recruited by their treating physicians on the neurological wards of the university hospitals in Stanford and Heidelberg during routine work-ups that required lumbar punctures. The diagnoses of multiple sclerosis were ultimately confirmed for all included samples. Beyond the requirement for having the diagnosis of MS, the sole exclusion criteria was a CSF cell count below 10 cells / μL CSF. Below a threshold of <20 B cells in total, generating a meaningful antibody repertoire becomes challenging as clonal families can hardly be identified with low cell numbers (Tan et al. Arthritis Rheumatol. 2014, 66(10):2706-15, PMID: 24965753; Lu et al. Clinical Immun., 2014, 152(1-2):77-89, PMID: 24589749). In our experience, it is extremely challenging to retrieve >20 viable cells and ultimately single-cell antibody sequences from those cells, if the initial CSF sample has less than 10 cells / μL CSF. All included MS patients undergoing lumbar punctures were recruited in a sequential fashion, without any additional selection or non-selection of potential patients - as a result we do not believe there was any self-selection bias or other biases. Written consent was obtained from all patients.

Ethics oversight
All experimental protocols were approved by the institutional review board of Stanford University (IRB# 34529) and the ethics committee of the medical faculty of the University of Heidelberg (IRB# S-466/2015).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
- The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
- The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a ‘group’ is an analysis of identical markers).
- All plots are contour plots with outliers or pseudocolor plots.
- A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation
CSF was centrifuged immediately after lumbar puncture and cells were counted. PBMCs were isolated from heparin blood by density gradient centrifugation using Ficoll PLUS media (Cytiva). Cells were magnetically separated with anti-CD19 magnetic beads (Dynabeads CD19 Pan B cell isolation kit, Invitrogen), then stained according to standard protocols, using the antibodies detailed above.

Instrument
FACSARia ll cell sorter (BD Biosciences)

Software
FACS Diva (data collection), FlowJo (data analysis).

Cell population abundance
Plasmablasts in peripheral blood: median: 4.1%, SD: 12.2 of all B cells; Plasmablasts in CSF: median: 29.8%, SD: 20 of all B cells.

Gating strategy
Details of the gating strategy are annotated in Extended Data Fig. 1a and b. Briefly, we applied forward and side scatter parameters (FSC-A, FSC-W, SSC) and live/dead stain (Sytox Blue) to select for live lymphocytes. Sorted plasmablasts from peripheral blood were gated on CD3+ /CD19+/IgD-/CD27+/CD38+ (plasmablast gate 4.12%) in panel 5 in the representative...
flow cytometry plots shown in Extended Data Fig. 1a), low expression of CD20 on plasmablasts was confirmed. Sorted B cells from CSF were gated on CD3−/CD19+ (B cell gate (73.9%) in panel 4 in the representative flow cytometry plots shown in Extended Data Fig. 1b). A plasmablast population expressing CD19+/IgD−/CD27+/CD38+/CD20low was identified in CSF and was included in the sorted population.

☐ Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.