PERMUTATION-EQUIVARIANT QUANTUM K-THEORY VIII.
EXPLICIT RECONSTRUCTION

ALEXANDER GIVENTAL

Abstract. In Part VII, we proved that the range \(\mathcal{L}_X \) of the big \(J \)-function in permutation-equivariant genus-0 quantum K-theory is an overruled cone, and gave its adelic characterization. Here we show that the ruling spaces are \(D_q \)-modules in Novikov’s variables, and moreover, that the whole cone \(\mathcal{L}_X \) is invariant under a large group of symmetries defined in terms of \(q \)-difference operators. We employ this for the explicit reconstruction of \(\mathcal{L}_X \) from one point on it, and apply the result to toric \(X \), when such a point is given by the \(q \)-hypergeometric function.

Adelic characterization

We begin where we left in Part VII: at a description of the range \(\mathcal{L} \subset \mathcal{K} \) in the space \(\mathcal{K} \) of \(K^0(X) \otimes \Lambda \)-value rational functions of \(q \) of the \(J \)-function of permutation-equivariant quantum K-theory of a given Kähler target space \(X \):

\[
\mathcal{J} := 1 - q + t(q) + \sum_{\alpha} \phi_{\alpha} \sum_{n,d} Q^d \left(\frac{\phi_{\alpha}^L}{1 - qL}; t(L), \ldots, t(L) \right) S_n^{s_{0,1+n,d}}.
\]

We proved that \(\mathcal{L} \) is an overruled cone, i.e. it is swept by a family of certain \(\Lambda[q,q^{-1}] \)-modules, called ruling spaces:

\[
\mathcal{L} = \bigcup_{t \in \Lambda^+} (1 - q) S(q)^{-1} \mathcal{K} + t,
\]

where \(S_t \) is a certain family of “matrix” functions rational in \(q \), whose construction we are not going to remind here. Let us recall the adelic characterization of \(\mathcal{L} \), which will be our main technical tool.

It is given in terms of the overruled cone \(\mathcal{L}^{fake} \subset \hat{\mathcal{K}} \) in the space of vector-valued Laurent series in \(q - 1 \), describing the range of the

Date: August 8, 2015.

This material is based upon work supported by the National Science Foundation under Grant DMS-1007164, and by the IBS Center for Geometry and Physics, POSTECH, Korea.
J-function in fake quantum K-theory of X:

$$\mathcal{L}^{\text{fake}} = \bigcup_{t \in \Lambda} (1 - q)T_t, \quad T_t = S^{\text{fake}}_t(q)^{-1}\hat{\mathcal{K}}_+.$$

Here S^{fake}_t is some “matrix” Laurent series, T_t is a tangent space to $\mathcal{L}^{\text{fake}}$, containing $(1 - q)T_t$, and tangent to $\mathcal{L}^{\text{fake}}$ at all points of the ruling space $(1 - q)T_t$.

According to the last section of Part VII, a rational function $f \in \mathcal{K}$ lies in \mathcal{L} if and only if its Laurent series expansions f_ζ near $q = 1/\zeta$ satisfy the following three conditions:

(i) $f_\zeta(1) \in \mathcal{L}^{\text{fake}}$;

(ii) when $\zeta \neq 0, 1, \infty$ is a primitive mth root of unity,

$$f_\zeta(q^{1/m}/\zeta) \in \mathcal{L}_t^{(c)}$$

a certain subspace in $\hat{\mathcal{K}}$, determined by the tangent space T_t to $\mathcal{L}^{\text{fake}}$ at the point $f_\zeta(1)$;

(iii) when $\zeta \neq 0, \infty$ is not a root of unity, f_ζ is a power series in $q - 1/\zeta$, i.e. f has no pole at $q = 1/\zeta$.

The subspace $\mathcal{L}_t^{(c)}$ is described as $\nabla_\zeta\Psi^m(T_t) \otimes \Psi^m(\Lambda) \Lambda$, where the Adams operation Ψ^m acts by $\Psi^m(q) = q^m$ and naturally on the λ-algebra $K^0(X) \otimes \Lambda$, and ∇_ζ is the operator of multiplication by

$$e^{\sum_{k>0} \left(\frac{\Psi^k(T^*_X)}{k(1-\zeta^{-k}q^{k/m})} - \frac{\Psi^m(T^*_X)}{k(1-q^{km})} \right)}.$$

In its turn, the cone $\mathcal{L}^{\text{fake}} \subset \hat{\mathcal{K}}$ (and hence its tangent spaces T_t) can be expressed in terms of the cone $\mathcal{L}^H \subset \mathcal{H}$, describing the range of cohomological J-function in the space \mathcal{H} of Laurent series in one indeterminate z with coefficients in $H^{\text{even}}(X) \otimes \Lambda$. Namely, according to the Hirzebruch–Riemann–Roch theorem [2] in fake quantum K-theory,

$$\text{qch}(\mathcal{L}^{\text{fake}}) = \triangle \mathcal{L}^H,$$

where the quantum Chern character $\text{qch} : \hat{\mathcal{K}} \to \mathcal{H}$ acts by $\text{qch} q = e^z$, and by the natural Chern character $\text{ch} : K^0(X) \otimes \Lambda \to H^{\text{even}}(X) \otimes \Lambda$ on the vector coefficients, while \triangle acts as the multiplication in the classical cohomology of X by the Euler–Maclaurin asymptotics (see [3, 2, 6]) of the infinite product:

$$\triangle \sim \prod_{r=1}^{\infty} \text{td}(T_X \otimes q^{-r}).$$

Using all these descriptions, we are going on explore how the string and divisor equations of quantum cohomology theory manifest in the genus-0 permutation-equivariant quantum K-theory.
Divisor equations and \(D_\text{q} \)-modules

Let \(p_1, \ldots, p_K \) be a basis in \(H^2(X, \mathbb{R}) \) consisting if integer numerically effective classes, and let \(Q^d = Q_1^{d_1} \cdots Q_K^{d_K} \), where \(d_i = p_i(d) \), represent degree-\(d \) holomorphic curves in the Novikov ring. We remind that the Novikov variables are included into the ground \(\lambda \)-algebra \(\Lambda \).

The loop space \(\mathcal{H} \) of Laurent series in \(z \) with vector coefficients in \(H^{\text{even}}(X) \otimes \Lambda \) is equipped with the structure of a module over the algebra \(\mathcal{D} \) of differential operators in the Novikov variables, so that \(Q_i \) acts as multiplication by \(Q_i \), and \(Q_i \partial_{Q_i} \) acts as \(zQ_i \partial_{Q_i} - p_i \). The divisor equations in quantum cohomology theory imply (see e.g. [4]), that

linear vector fields \(f \mapsto (Q_i \partial_{Q_i} - p_i/z)f \) in \(\mathcal{H} \) are tangent to \(\mathcal{L}^H \subset \mathcal{H} \).

In follows that the ruling spaces (as well as tangent spaces) of \(\mathcal{L}^H \) are \(\mathcal{D} \)-modules, i.e. are invariant with respect to each differential operator \(D(Q_i zQ_i \partial_{Q_i} - p, z) \), and moreover the flow \(\epsilon \mapsto e^{\epsilon D/z} \) of the vector field \(f \mapsto Df/z \) preserves \(\mathcal{L}^H \).

Indeed, for \(f \in \mathcal{L}^H \), the vector \((Q_i \partial_{Q_i} - p_i)f \) lies in \(T_f \mathcal{L}^H \), and hence \((zQ_i \partial_{Q_i} - p_i)f \) lies in the same ruling space \(zT_f \mathcal{L}^H \) as \(f \) does. Therefore so does \(Df \), and hence \(Df/z \in T_f \mathcal{L}^H \), i.e. the vector field \(f \mapsto Df/z \) is tangent to \(\mathcal{L}^H \).

Note that the operator \(\triangle \) relating \(\mathcal{L}^H \) and \(\mathcal{L}^\text{fake} \) involves multiplication in the commutative classical cohomology algebra \(H^{\text{even}}(X) \), but does not involve Novikov’s variables. Consequently, the tangent and ruling spaces of \(q\text{ch}(\mathcal{L}^\text{fake}) \) are \(\mathcal{D} \)-modules too, and moreover, the flows \(\epsilon \mapsto e^{\epsilon D/z} \) preserve \(q\text{ch}(\mathcal{L}^\text{fake}) \).

We equip the space \(\mathcal{K} \) of vector-valued rational functions of \(q \) with the structure of a module over the algebra \(\mathcal{D}_q \) of finite difference operators. It is generated (over the algebra of Laurent polynomials in \(q \)) by multiplication operators, acting as multiplications by \(Q_i \), and translation operators, acting as \(P_i q_i Q_i \partial_i \), where \(P_i \) is the multiplication in \(K^0(X) \) by the line bundle with the Chern character \(\text{ch} P_i = e^{-p_i} \).

Proposition (cf. [6, 4]). The ruling spaces of the overruled cone \(\mathcal{L} \subset \mathcal{K} \) of permutation-equivariant quantum \(K \)-theory is are \(\mathcal{D}_q \)-modules.

Proof. If \(f \in \mathcal{L} \), it passes the tests (i),(ii),(iii) of adelic characterization. We need to show that \(g := P_i q_i Q_i \partial_i f \), which obviously lies in \(\mathcal{K} \), also passes the tests (and with the same \(t \in K^0(X) \otimes \Lambda_+ \)). This is obvious for test (iii), and is true about test (i) because of the above \(\mathcal{D} \)-module (and hence \(\mathcal{D}_q \)-module) property of the ruling spaces \((1 - q)T_i \) of \(\mathcal{L}^\text{fake} \). To verify test (ii), we write:

\[
g(q^{1/m}/\zeta) = P_i (q^{1/m}) Q_i \partial_i \zeta^{-Q_i \partial_i} f(q^{1/m}/\zeta).
\]
First, note that the operator ∇_ζ relating L^ζ with $\Psi^m(T_t)$ does not involve Novikov’s variables and commutes with D_q. Next, let us elucidate the notation $\Psi^m(T_t) \otimes \Psi^m(\Lambda) \Lambda$. In fact the space so indicated consists of linear combinations $\sum a_\lambda \Psi^m(Q, q, \lambda)$, where $f_a \in T_t$, and $\lambda \in \Lambda[[q^{-1}]]$. We have the following commutation relations:

$$
P_i \Psi^m = \Psi^m p_i^{m \lambda},$$

$$(q^{1/m})Q_i \partial_{Q_i} \Psi^m = q^{m \lambda} Q_i \partial_{Q_i} \Psi^m = \Psi^m (q^{1/m})Q_i \partial_{Q_i},$$

$$\zeta Q_i \partial_{Q_i} \Psi^m = \zeta^{m \lambda} Q_i \partial_{Q_i} \Psi^m = \Psi^m.$$

Therefore

$$
P_i (q^{1/m})Q_i \partial_{Q_i} \zeta Q_i \partial_{Q_i} \left(\sum a_\lambda \Psi^m(f_a) \right) =$$

$$
\sum a_\lambda (q^{1/m} / \zeta^{Q_i \partial_{Q_i}}} \Psi^m(p_i^{m \lambda} Q_i \partial_{Q_i}, f_a),
$$

which lies in $\Psi^m(T_t) \otimes \Psi^m(\Lambda) \Lambda$ since T_t is invariant under the operator $p_i^{m \lambda} / (q^{1/m})Q_i \partial_{Q_i} = e^{(zQ_i \partial_{Q_i} - p_i)/m}$.

Let $D(Pq^{Q\partial Q}, q)$ be a constant coefficient finite difference operator, by which we mean a Laurent polynomial expression in translation operators $P_i Q_i \partial_{Q_i}$, and maybe q, with coefficients from Λ independent of Q. We assume below that $\epsilon \in \Lambda$ to assure ϵ-adic convergence of infinite sums.

Theorem 1. The operator

$$
e \sum_{k>0} \Psi^k(\epsilon D(Pq^{kQ\partial Q}, q))/k(1-q^k)
$$

preserves $L \subset K$.

Proof. We show that if $(1-q)f$ passes tests (i), (ii), (iii) of the adelic characterization of L, then $(1-q)g$, where

$$g := e \sum_{k>0} \Psi^k(\epsilon D(Pq^{kQ\partial Q}, q))/k(1-q^k) f,$$

also does.

(i) Suppose $(1-q)f(1)$ lies in the ruling space $(1-q)T_t \subset L^{fake}$. Note that the exponent $\sum_{k>0} \Psi^k(\epsilon D(Pq^{kQ\partial Q}, q))/k(1-q^k)$ has first order pole at $q = 1$. According to the discussion above the flow defined by such an operator on \hat{K} preserves L^{fake}, and therefore maps its tangent spaces to tangent spaces, and ruling spaces to ruling spaces, and moreover, the operators regular at $q = 1$ preserve each ruling and tangent space. It follows that $(1-q)g(1) \in (1-q)T_t' \subset L^{fake}$, where

$$T_t' := e \sum_{k>0} \Psi^k(\epsilon D(Pq^{kQ\partial Q}, 1))/k^2(1-q)T_t.$$

(ii) We have
\[\Psi^m(T'_t) = e \sum_{k>0} \Psi^{mk}(\epsilon D(P q^{kQ\partial_Q}, 1))/k^2(1 - q^m) \Psi^m(T_t). \]

On the other hand, for a primitive \(m \)th root of unity \(\zeta \),
\[g(\zeta)(q^{1/m}/\zeta) = e \sum_{k>0} \Psi^k(\epsilon D(Q, P q^{kQ\partial_Q}, 1))/k(1 - q^k) \Psi^{1/m}(\zeta), \]
where \(A \) is some operator regular at \(q = 1 \). It comes out of refactoring \(e^A + B/(1 - q) \), where \(A \) and \(B \) are regular at \(q = 1 \), as \(e^A e^B/(1 - q) \). We use here the fact that the operators \(A \) and \(B \) have constant coefficients, and hence commute.

Note that the exponents \(\sum_{k>0} \Psi^{mk}(\epsilon D(Q, P q^{kQ\partial_Q}, 1))/k^2(1 - q^m) \) and \(\sum_{l>0} \Psi^{ml}(\epsilon D(Q, P q^{lQ\partial_Q}, 1))/ml(1 - q^l) \) agree modulo terms regular at \(q = 1 \) (which, again, commute with the singular terms). Since we are given that \(f(\zeta)(q^{1/m}/\zeta) \in \nabla_{\zeta} \Psi^m(T_t) \otimes \Psi^m(\Lambda) \), and since \(\nabla_{\zeta} \) commutes with \(D_q \), we conclude (using the refactoring again), that
\[g(\zeta)(q^{1/m}/\zeta) \in \nabla_{\zeta} \Psi^m(T'_t) \otimes \Psi^m(\Lambda). \]

Note that the exponent in \(e^A \) involves translations \(P_i q_i Q_i \partial_Q \) as well as \(\zeta^{-Q_i\partial_Q} \), and so it is important, that (as we’ve checked in the proof of above Proposition), such operators preserve the space \(\Psi^m(T'_t) \otimes \Psi^m(\Lambda) \).

(iii) If \(f \) is regular at \(q = 1/\zeta \), where \(\zeta \neq 0, \infty \) is not a root of unity, \(g \) is obviously regular there too. \(\square \)

Corollary (the \(q \)-string equation). The range \(L \subset K \) of permutation-equivariant \(J \)-function is invariant under the multiplication operators:
\[f \mapsto e \sum_{k>0} \Psi^k(\epsilon)/k(1 - q^k) f, \quad \epsilon \in \Lambda_+. \]

Proof: Use Theorem 1 with \(D = 1 \).

Examples

Example 1: \(d = 0 \). In degree 0, i.e., modulo Novikov’s variables, the cone \(L \subset K \) coincides with the cone \(L_{pt} \) over the \(\lambda \)-algebra \(K^0(X) \otimes \Lambda \). Theorem 1 and Proposition allow one to recover the part of \(L_{pt} \) over the \(\lambda \)-algebra \(\Lambda' = K^0(X)_{pt} \otimes \Lambda \), where by \(K^0(X)_{pt} \) (the primitive part) we denote the part of the ring \(K^0(X) \) generated by line bundles.
Let monomials \(P^n := P_1^{a_1} \cdots P_K^{a_K} \) run a basis of \(K^0(X)_{pr} \). Applying the above theorem to the finite difference operator

\[
D = \sum a \epsilon_a P^a q^a \partial Q := \sum a \epsilon_a \prod_{i=1}^{K} P_i^{a_i} q_i^{a_i} \partial Q_i, \quad \epsilon_a \in \Lambda_+,
\]

and acting on the point \(J \equiv 1 - q \) modulo Novikov’s variables, we recover over \(\Lambda' \) the small J-function of the point:

\[
(1 - q) e \sum a \sum_{k > 0} \Psi^k(\epsilon_a) P^k a / k(1 - q^k) \equiv 1 - q + \sum a \epsilon_a P^a \mod \mathcal{K}_-.
\]

Furthermore, applying linear combinations

\[
\sum a c_a(q) P^a q^a \partial Q
\]

with coefficients \(c_a \in \Lambda[q, q^{-1}] \) which are arbitrary Laurent polynomials in \(q \), we get, according to Proposition, points in the same ruling space of the cone \(L \). Modulo Novikov’s variables this effectively results in multiplying by arbitrary elements \(\sum a c_a(q) P^a \) from \(\Lambda'[q, q^{-1}] \), and therefore yields the entire cone \(L_{pt} \) over \(\Lambda' \).

Example 2: \(X = \mathbb{C}P^1 \). We know\(^1\) one point on \(L = L_{\mathbb{C}P^1} \), the small J-function:

\[
J(0) = (1 - q) \sum_{d \geq 0} \frac{Q^d}{(1 - Pq)^2(1 - Pq^2)^2 \cdots (1 - Pq^d)^2}.
\]

Here \(P = \mathcal{O}(-1) \) is the generator of \(K^0(\mathbb{C}P^1) \). It satisfies the relation \((1 - P)^2 = 0 \). The K-theoretic Poincaré pairing is determined by

\[
\chi(\mathbb{C}P^1, \phi(P)) = \text{Res}_{P=1} \frac{\phi(P)}{(1 - P)^2} \frac{dP}{P}.
\]

We use Theorem 1 with the operator \(D = \lambda + \epsilon Pq Q \partial Q \), \(\lambda, \epsilon \in \Lambda_+ \), and obtain a 2-parametric family of points on \(L_{\mathbb{C}P^1} \):

\[
(1 - q) e \sum_{k > 0} \Psi^k(\lambda) + \Psi^k(\epsilon) P^k q^k \partial Q / k(1 - q^k) J(0) =
\]

\[
(1 - q) e \sum_{k > 0} \Psi^k(\lambda) / k(1 - q^k) \sum_{d \geq 0} \frac{Q^d e \sum_{k > 0} \Psi^k(\epsilon) P^k q^kd / k(1 - q^k)}{(1 - Pq)^2(1 - Pq^2)^2 \cdots (1 - Pq^d)^2}.
\]

Examine now two specializations.

\(^1\)From various sources: Part IV (by localization), or [6] (by adelic characterization), or [5] (by toric compactifications).
Thus, the correlator sum indeed coincides with the degree-1 part of \(F_0 \). Modulo \(Q^2 \), we are left with

\[
\mathcal{J} \equiv e^{\sum_{k>0} \Psi^k(\lambda)/k(1-q^k)} \left(1 - q + \frac{(1-q)Q}{(1-Pq)^2} e^{\sum_{k>0} \Psi^k(\epsilon) P^k q^k/k(1-q^k)} \right).
\]

Modulo \(K_- \) (and \(Q^2 \)), we have: \([\mathcal{J}]_+ \equiv 1 - q + \lambda + \epsilon P\). According to Part VII, Corollary 3,

\[
\mathcal{F}_0(t) = -\frac{1}{2} \Omega([\mathcal{J}]_+, \mathcal{J}(t)) - \frac{1}{2} (\Psi^2(t(1)), 1).
\]

For degree \(d = 1 \) part \(\mathcal{J}_1 \) of \(\mathcal{J} \), we have

\[
-\Omega([\mathcal{J}]_+, \mathcal{J}_1) = \text{Res}_{q=0, \infty} \left(1 - \frac{1}{q} + \lambda + \epsilon P, \frac{(1-q)(1-Pq)^2 e^{A(q)}}{(1-Pq)^2} \right) \frac{dq}{q},
\]

where \(A(q) = \sum_{k>0} (\Psi^k(\lambda) + \Psi^k(\epsilon) P^k q^k)/k(1-q^k) \). The 1-form has no pole at \(q = \infty \). Since \((1-q)/(1-Pq)^2\) \(t = 2P - 1 \), and \(A'(0) = \lambda + \epsilon P \), the residue at \(q = 0 \) is calculated as

\[
\left(1 + \lambda + \epsilon P, e^{A(0)} \right) - \left(1, (2P - 1) e^{A(0)} + (\lambda + \epsilon P) e^{A(0)} \right) = \text{Res}_{P=1} \frac{2(1-P) e^{A(0)} dP}{(1-P)^2} = 2 e^{A(0)} = 2 e^{\sum_{k>0} \Psi^k(\lambda)/k}.
\]

Let us check this rather trivial result “by hands”. The degree \(d = 1 \) part of \(\mathcal{F}_0(t) \) at \(t = \lambda + \epsilon P \) is defined as \(\sum_{n \geq 0} (\lambda + \epsilon P, \ldots, \lambda + \epsilon P)_{n,0,1} S_n \). Since there is only one rational curve of degree 1 in \(\mathbb{CP}^1 \), the moduli space \(X_{0,1} = \overline{\mathcal{M}}_{0,0,n}(\mathbb{CP}^1, 1) \) is obtained from \((\mathbb{CP}^1)^n \) by some blow-ups along the diagonals. The evaluation maps \(\text{ev}_i : X_{0,0,1} \to \mathbb{CP}^1 \) factor through \((\mathbb{CP}^1)^n \) as the projections \((\mathbb{CP}^1)^n \to \mathbb{CP}^1 \). Therefore the correlator sum can be evaluated as

\[
\sum_{n \geq 0} \left(H^\ast \left(\mathbb{CP}^1; \lambda + \epsilon P \right)^\otimes_n \right) S_n = \sum_{n \geq 0} (\lambda^\otimes_n) S_n
\]

because for \(P = \mathcal{O}(-1) \) we have \(H^\ast(\mathbb{CP}^1; P) = 0 \). Let us remind from Part I that for elements of a \(\lambda \)-algebra,

\[
(\lambda^\otimes_n) S_n := \frac{1}{n!} \sum_{h \in S_n} \prod_{k>0} \Psi^k(h)(\lambda),
\]

where \(l_k(h) \) is the number of cycles of length \(k \) in the permutation \(h \). Thus, the correlator sum indeed coincides with \(e^{\sum_{k>0} \Psi^k(\lambda)/k} \).
Secondly, let us return to our 2-parametric family of points on $\mathcal{L}_{\mathbb{C}P^1}$, and specialize it to the symmetrized theory, where only the S_n-invariant part of sheaf cohomology is taken into account. For this, we specialize the λ-algebra to $\Lambda = \mathbb{Q}[\lambda, \epsilon, Q]$ with $\Psi^k(\lambda) = \lambda^k, \Psi^k(\epsilon) = \epsilon^k$ (and $\Psi^k(Q) = Q^k$ as before). Some simplifications ensue. Since

$$q^{kd} = 1 - (1 - q^k)(1 + q^k + \cdots + q^{k(d-1)}),$$

we have

$$e^{\sum_{k>0} \epsilon^k P^k q^{kd}/k(1 - q^k)} = e^{\sum_{k>0} \epsilon^k P^k/k(1 - q^k) \prod_{r=0}^{d-1} \left(1 - \epsilon P q^r\right)}. $$

Thus, we obtain the following 2-parametric family of points on $\mathcal{L}_{\mathbb{C}P^1}^{sym}$:

$$\mathcal{J}_{\mathbb{C}P^1}^{sym} = (1 - q) e^{\sum_{k>0} (\lambda^k + \epsilon^k P^k)/k(1 - q^k) \sum_{d \geq 0} Q^d \prod_{r=0}^{d-1} (1 - \epsilon P q^r) / \prod_{r=1}^d (1 - P q^r)^2}.$$

Note that the projection of this series to K_+ along K_- picks contributions only from the terms with $d = 0$ and $k = 1$:

$$[\mathcal{J}_{\mathbb{C}P^1}^{sym}]_+ = 1 - q + \lambda + \epsilon P.$$

Therefore the series represents the small J-function of the symmetrized quantum K-theory of $\mathbb{C}P^1$. The exponential factor is actually equal to

$$\exp_q(\lambda/(1 - q)) \exp_q(\epsilon P/(1 - q)).$$

Thus, we obtain:

$$\mathcal{J}_{\mathbb{C}P^1}^{sym}(\lambda + \epsilon P) = \text{mod } (1 - P)^2

(1 - q) \sum_{m=0}^{\infty} \sum_{l=0}^{\infty} \sum_{d=0}^{\infty} \frac{\lambda^m \epsilon^l P^l Q^d \prod_{r=0}^{d-1} (1 - \epsilon P q^r) \prod_{s=1}^d (1 - q^s) \prod_{r=0}^d (1 - P q^r)}{\prod_{i=1}^m (1 - q^i) \prod_{j=1}^l (1 - q^j)}.$$

Reconstruction theorems

As in Example 1, assume that p_1, \ldots, p_K is a numerically effective integer basis in $H^2(X, \mathbb{Q})$, that Novikov’s monomials $Q^d = Q_1^d \cdots Q_K^d$ represent degree d holomorphic curves in X in coordinates $d_i = p_i(d)$ on $H^2(X)$, that P_i are line bundles with $\text{ch} P_i = e^{-P_i}$, and that monomials $P^a = P_1^{a_1} \cdots P_K^{a_K}$ run a basis in $K^0(X)_{pr}$, the primitive part of the K-ring. We also write $a.d$ for the value $\sum a_i d_i$ of $-c_1(P^a)$ on d.

Theorem 2 (explicit reconstruction). Let $I = \sum_d I_d Q^d$ be a point in the range $L \subset K$ of the J-function of permutation-equivariant quantum K-theory on X, written as a vector-valued series in Novikov’s variables. Then the following family also lies in L:

$$\sum_d I_d Q^d e^{\sum_{k>0} \sum_a \Psi^k(\epsilon_a) P^{ka} q^{k(d)}/k(1-q^k), \quad \epsilon_a \in \Lambda_+}.$$

Moreover, for arbitrary Laurent polynomials $c_a \in \Lambda[q, q^{-1}]$, the following series also lies in L:

$$\sum_d I_d Q^d e^{\sum_{k>0} \sum_a \Psi^k(\epsilon_a) P^{ka} q^{k(d)}/k(1-q^k) \sum_a c_a(q) P^a q^{a(d)}}.$$

Furthermore, when $K^0(X) = K^0(X)_{pr}$, the whole cone $L \subset K$ is parameterized this way.

Proof. We first work over Λ' freely generated as λ-algebra by the “time” variables ϵ_a, and use Theorem 1 with the Q-independent finite difference operator $D = \sum_a \epsilon_a P^a q^{aQ\partial_Q}$. We conclude that the family

$$e^{\sum_{k>0} \sum_a \Psi^k(\epsilon_a) P^{ka} q^{kaQ\partial_Q}/k(1-q^k) I} = \sum_d I_d Q^d e^{\sum_{k>0} \sum_a \Psi^k(\epsilon_a) P^{ka} q^{k(d)}/k(1-q^k)}$$

lies in the cone L, defined over Λ'. To obtain the second statement, we apply Proposition, using finite difference operators $\sum_a c_a(q) P^a q^{aQ\partial_Q}$. Afterwards we specialize the “times” ϵ_a to any values $\epsilon_a \in \Lambda$ (which at this point may become dependent on Q). Finally, when $K^0(X) = K^0(X)_{pr}$, we use the formal Implicit Function Theorem to conclude that the whole cone L is parameterized, because this is true modulo Novikov’s variables, as Example 1 shows.

Example: $X = \mathbb{CP}^N$. According to Theorem 2, the entire cone L is parameterized as follows:

$$J = (1-q) \sum_{d \geq 0} Q^d \frac{e^{\sum_{k>0} \sum_{a=0}^N \Psi^k(\epsilon_a) P^{ka} q^{kad}/k(1-q^k) \sum_{a=0}^N c_a(q) P^a q^{a(d)}}}{(1-Pq)^{N+1}(1-Pq^2)^N \cdots (1-Pq^d)^N+1}.$$

Of course, this is obtained by applying Theorem 2 to the small J-function $J(0)$ from [5] (also [6], or Parts II–IV in the non-equivariant limit). Here $\epsilon_a \in \Lambda$, $c_a(q)$ are arbitrary Laurent polynomials in q with coefficients in Λ, and P^a, $a = 0, \ldots, N$, $P = O(-1)$, are used for a basis in $K^0(X)$. Perhaps, the basis $(1-P)^a$, $a = 0, \ldots, N$, is more useful (cf. [4]), and we get yet another parameterization of L:

$$(1-q) \sum_{d \geq 0} Q^d \frac{e^{\sum_{k>0} \sum_{a=0}^N \Psi^k(\epsilon_a) (1-P^k q^{d})^a/k(1-q^k) \sum_{a=0}^N c_a(q) (1-Pq^d)^a}}{(1-Pq)^{N+1}(1-Pq^2)^N \cdots (1-Pq^d)^N+1}.$$
We return now to the context of Part VII, where we studied the mixed J-function $J(x, t)$, involving two types of inputs: permutable t and non-permutable x, both taken from K_+. The cone $L \subset K$ represents the range of $t \mapsto J(0, t)$. Recall that according to the general theory, it is the union of ruling spaces $(1 - q)T_t$, where $t = T(t)$ is given by a certain non-linear map

$$T : K^0(X) \otimes \Lambda_+ \oplus (1 - q)K_+ \to K^0(X) \otimes \Lambda_+.$$

At the same time, for a fixed value of t, the range of the ordinary J-function $x \mapsto J(x, t)$ is an overruled Lagrangian cone $L_t \subset K$, which shares with L one ruling space, T_t, corresponding to $t = T(t)$. Each tangent space of each cone L_t is tangent to L_t along one of the ruling spaces (e.g. T_t is tangent along $(1 - q)T_t$), and is related with this ruling space by the multiplication by $1 - q$. As a consequence, not only each ruling (and tangent) space of each L_t is a D_q-module (which is proved on the basis of adelic characterization as in Proposition above), but also each cone L_t is invariant under the flow

$$f \mapsto e^{\epsilon D(Q, P_q Q^0 Q, q)/(1-q)} f,$$

where $D \in D_q$. We use this to reconstruct the family L_t.

Theorem 3. Let $I = \sum I_d Q^d$ (as in Theorem 2). Then

$$I(\epsilon) = \sum_d I_d(\epsilon) Q^d := \sum_d I_d(\epsilon) Q^d e^{\sum_{k>0} \sum_a \Psi(k(\epsilon_a) P_{k a} q^{k(a,d)}/(1-q^k)}, \quad \epsilon_a \in \Lambda_+$$

represent a family of points on the cones $L_{t(\epsilon)}$ (one point on each cone), and the following family of points, parameterized by $\tau_a \in \Lambda$ and by $c_a \in \Lambda[q, q^{-1}]$, lies on $L_{t(\epsilon)}$:

$$\sum_d I_d(\epsilon) Q^d e^{\sum_{a} \tau_a P_{a} q^{a,d} / (1-q)} \sum_a c_a(q) P_{a} q^{a,d}.$$

Moreover, if $K^0(X) = K^0(X)_{pr}$, for each $t \in K^0(X) \otimes \Lambda_+$ the whole cone L_t is thus parameterized.

Proof. It is clear from computation modulo Novikov’s variables that the family $I(\epsilon)$ has no tangency with the ruling spaces, hence represents at most one point from each L_t (and does represent one, when $K^0(X) = K^0(X)_{pr}$). Given one point, $I(\epsilon)$, on $L_{t(\epsilon)}$, we generate more points by machinery discussed above: applying the commuting flows

$$e^{\sum_{a} \tau_a P_{a} q^{\partial Q, q} / (1-q)} I(\epsilon) = \sum_d Q^d I_d(\epsilon) e^{\sum_{a} \tau_a P_{a} q^{a,d} / (1-q)}.$$
followed by the application of the operators \(\sum_a c_a(q) P^a q^{aQ \partial Q} \), where \(\tau_a \) and the coefficients of \(c_a \) are independent variables. Afterwards they can be specialized to some values in \(\Lambda \) (in particular, depending on \(Q \)). In the case when \(K^0(X) = K^0(X)_{pr} \), it follows from the Implicit Function Theorem and Example 1 about the limit to \(d = 0 \), that the entire cone \(\mathcal{L}_t \) for each \(t \) is thus obtained.

Example: \(X = \mathbb{C}P^N \). It follows that for fixed values of \(\epsilon_a \), the corresponding cone \(\mathcal{L}_{t(\epsilon)} \) is parameterized as

\[
(1 - q) \sum_{d \geq 0} Q^d \frac{\sum_{a=0}^N \left(\tau_a P^{aq \partial a} + \sum_{k>0} \Psi^k(\epsilon_a) \frac{P^{ka \partial a}}{k(1-q^k)} \right) \sum_{a=0}^N c_a(q) P^a q^{ad}}{(1 - Pq)^{N+1}(1 - Pq^2)^{N+1} \cdots (1 - Pq^d)^{N+1}},
\]

and all \(\mathcal{L}_t \) are so obtained.

Remarks. Reconstruction theorems in quantum cohomology and K-theory go back to Kontsevich–Manin [9] and Lee–Pandharipande [10] respectively. Theorem 3 is a slight generalization (from the case \(t = 0 \)) of the “explicit reconstruction” result [4] in the ordinary (non-permutation-equivariant) quantum K-theory, which in its turn mimics the results of quantum cohomology theory already found in [1, 7], and shares the methods based on finite difference operators with the K-theoretic results of [8].

Theorems of this section show that when \(K^0(X) \) is generated by line bundles, the entire range \(\mathcal{L} \) of the J-function in the permutation-equivariant genus-0 quantum K-theory of \(X \), as well as the entire family \(\mathcal{L}_t \) of the overruled Lagrangian cones representing the “ordinary” J-functions, depending on the permutable parameter, \(t \), can be explicitly represented in a parametric form, \textit{given one point on any of these cones}. In essence, all genus-0 K-theoretic GW-invariants of \(X \), permutation-equivariant, ordinary, or mixed, are thereby reconstructed from any one point: a \(K^0(X) \)-valued series \(\sum_d I_d Q^d \) in Novikov’s variables.

In the case of a toric \(X \), the results of Part V exhibit such a point in the form of the \textit{q-hypergeometric series} mirror-symmetric to \(X \). Needless to say, the same applies to toric bundles spaces, or super-bundles (a.k.a. toric complete intersections), as well as to the torus-equivariant versions of K-theoretic GW-invariants. Thus “all” (torus-equivariant or not; permutation-equivariant, ordinary, or mixed) K-theoretic genus-0 GW-invariants of toric manifolds, toric bundles, or toric complete intersections are computed in a geometrically explicit form, illustrated by the above example.
REFERENCES

[1] I. Ciocan-Fontanine, B. Kim. *Big J-functions*. Preprint, 23pp., arXiv: 1401.7417

[2] T. Coates. *Riemann–Roch theorems in Gromov–Witten theory*. PhD thesis, 2003, available at http://math.harvard.edu/~tomc/thesis.pdf

[3] T. Coates, A. Givental. *Quantum Riemann–Roch, Lefschetz and Serre*. Ann. of Math. (2), 165 (2007), 15-53.

[4] A. Givental. *Explicit reconstruction in quantum cohomology and K-theory*. arXiv: 1506.06431, 13 pp.

[5] A. Givental, Y.-P. Lee. *Quantum K-theory on flag manifolds, finite difference Toda lattices and quantum groups*. Invent. Math. 151, 193-219, 2003.

[6] A. Givental, V. Tonita. *The Hirzebruch-Riemann–Roch theorem in true genus-0 quantum K-theory*. Preprint, arXiv:1106.3136

[7] H. Iritani. *Quantum D-modules and generalized mirror transformations*. Topology 47 (2008), no. 4, 225 - 276.

[8] H. Iritani, T. Milanov, V. Tonita. *Reconstruction and convergence in quantum K-theory via difference equations*. IMRN, Vol. 2015, No. 11, pp. 2887–2937.

[9] M. Kontsevich, Yu. Manin. *Gromov–Witten classes, quantum cohomology, and enumerative geometry*. In “Mirror Symmetry II,” AMS/IP Stud. Adv. Math., v. 1, AMS, Providence, RI, 1997, pp. 607–653.

[10] Y.-P. Lee, R. Pandharipande. *A reconstruction theorem in quantum cohomology and quantum K-theory*. Amer. J. Math. 126, no. 6 (2004): 1367-1379.

[11] V. Tonita. *A virtual Kawasaki Riemann–Roch formula*. Pacif J. Math. 268 (2014), no. 1, 249-255. arXiv:1110.3916.

[12] V. Tonita. *Twisted orbifold Gromov–Witten invariants*. Nagoya Math. J. 213 (2014), 141-187, arXiv:1202.4778

[13] V. Tonita. *Twisted K-theoretic Gromov–Witten invariants*. Preprint, 23 pp., arXiv: 1508.05976