REVISITING THE GRÜSS INEQUALITY

H. R. MORADI, S. FURUICHI, Z. HEYDARBEGI AND M. SABABHEH

Abstract. In this article, we explore the celebrated Grüss inequality, where we present a new approach using the Grüss inequality to obtain new refinements of operator means inequalities. We also present several operator Grüss-type inequalities with applications to the numerical radius and entropies.

Mathematics subject classification (2020): Primary 47A63, 26D15; Secondary 47A12, 47A30, 47A64.

Keywords and phrases: Grüss inequality, arithmetic mean, geometric mean, matrix mean.

REFERENCES

[1] S. BALLASUBRAMANIAN, On the Grüss inequality for unital 2-positive linear maps, Oper. Matrices. 10 (3) (2016), 643–649.
[2] P. L. ČEBYSJEV, Sur les expressions approximatives des intégrales définies par les autres prises entre les mêmes limites, Proc. Math. Soc. Kharkov, 2 (1882), 93–98 (Russian), translated in Oeuvres, 2 (1907), 716–719.
[3] S. S. DRAGOMIR, Some Grüss type inequalities in inner product spaces, J. Inequal. Pure Appl. Math. 4(2) (2003), Article 42.
[4] S. S. DRAGOMIR, Grüss’ type inequalities for functions of selfadjoint operators in Hilbert spaces, Ital. J. Pure Appl. Math. 28 (2011), 205–222.
[5] S. S. DRAGOMIR, Čebyšev’s type inequalities for functions of selfadjoint operators in Hilbert spaces, Linear Multilinear Algebra. 58(7) (2010), 805–814.
[6] J. I. FUJII AND E. KAMEI, Relative operator entropy in noncommutative information theory, Math. Japon. 34 (1989), 341–348.
[7] S. FURUICHI, H. R. MORADI, On further refinements for Young inequalities, Open Math. 16 (2018), 1478–1482.
[8] S. FURUICHI AND H. R. MORADI, Some refinements of classical inequalities, Rocky Mountain J. Math. 48 (7) (2018), 2289–2309.
[9] S. FURUICHI, H. R. MORADI AND M. SABABHEH, New sharp inequalities for operator means, Linear Multilinear Algebra. 67 (8) (2019), 1567–1578.
[10] S. FURUICHI, K. YANAGI AND K. KURIYAMA, A note on operator inequalities of Tsallis relative operator entropy, Linear Algebra Appl. 407 (2005), 19–31.
[11] G. GRÜSS, Uber das maximum des absoluten betrages von \[
\frac{1}{b-a} \int_a^b f(x) g(x) \, dx - \frac{1}{(b-a)^2} \int_a^b f(x) \, dx \int_a^b g(x) \, dx,
\]
Math. Z. 39 (1935), 215–226.
[12] P. R. HALMOS, A Hilbert Space Problem Book, 2nd ed., Springer, New York, 1982.
[13] I. H. GÜMÜŞ, H. R. MORADI AND M. SABABHEH, More accurate operator means inequalities, J. Math. Anal. Appl. 465 (2018), 267–280.
[14] F. KITTANNEH, Numerical radius inequalities for Hilbert space operators, Studia Math. 168 (1) (2005), 73–80.
[15] XIN LI, R. N. MOHAPATRA AND R. S. RODRIGUEZ, Grüss-type inequalities, J. Math. Anal. Appl. 267 (2002), 434–443.
[16] D. S. MITRINOVIĆ, J. E. PEČARIĆ AND A. M. FINK, Grüss Inequality. In: Classical and New Inequalities in Analysis, Mathematics and its Applications (East European Series), 61 (1993), Springer, Dordrecht.
[17] H. R. Moradi, S. Furuichi, F. C. Mitroi and R. Naseri, An extension of Jensen’s operator inequality and its application to Young inequality, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 113 (2) (2019), 605–614.

[18] L. Zou and Y. Jiang, Improved arithmetic-geometric mean inequality and its application, J. Math. Inequal. 9 (1) (2015), 107–111.