INTRODUCTION

The word poison originates from the Latin word potionem which means deadly drink / deadly draught. The Herald of modern Toxicology, Paracelsus, once said that everything is poison and only the dose plays a pivotal role.¹ Poisoning is the fourth commonest cause of death in India and five to six persons per lakh of the population die due to acute poisoning every year.² In India, poisoning related hospitalizations have been almost up to 17%, and contribute to health-related complications and death.³ Annually 0.3 million people die due to various poisoning agents as per World Health Organization (WHO) estimates. Acute pesticide poisoning with agents like aluminium phosphide and organophosphate poisonings is very common in North India as the majority of people are farmers.⁴ The nature of poisoning varies from country to country and also between various regions within a country depending upon sociodemographic factors, diversity of culture and different social beliefs. Majority of Indian population is agriculture-based residing in rural areas so have easy excess to pesticides contributing significantly to accidental as well as intentional poisoning and as a result, deliberate self-harm has become a public health problem.⁵ The study was conducted to generate a sociodemographic profile of acute poisoning cases in our region which in turn will help in planning rational use of available resources for the prevention and management of poisoning cases.
MATERIALS AND METHODS

The study was undertaken on 145 patients admitted in Medicine wards with acute poisoning in the department of Medicine at SLBSGMC, Mandi at ner chowk, Himachal Pradesh. 66 (45.52%) were male and 79 (54.48%) females. Percentage of age-wise distribution is shown in figure1. The present study was planned under suitably designed data regarding demographic details shown in table 1.

Table 1: The present study was planned under the following heading

Age-wise distribution	Place of consumption
Sex wise distribution	Mode of poisoning
Educational status	Time of poisoning
Psychiatric disorder	Who brought the patient to Hospital
History of substance abuse	Marital status
Causative agent	Occupation

RESULTS

The maximum number of acute poisoning cases were reported in the age group of 18-30 years 66 (46%), 59 (41%) in the age group of 31-45 years, 13 (9%) in 46-60 years and 7 (4%) patients were above the age of 60 years (Table 2).

Educational status was also analyzed. 64 (44%) cases of poisoning were seen in those having high school level of education, 62 (43%) in intermediate to graduates, 10 (7%) illiterates, 6 (4%) in primary school pass out, and 03 (2%) in professionals B.E (2), MBBS (1).

Place of consumption was home in 129 (90%) and outside in 16 (10%) (Figure 2).

In 54 (37%) patients the poisoning was caused by a varied class of agents ranging from a variety of antifungal herbicides, datura poisoning, Iron poisoning, Mushroom poisoning, Parquet, antipsychotic, sedative agents and various drug overdoses.

Table 3: A structural performa designed regarding the demographic details-

Categories	Male (n)	Female (n)	No of cases (n %)
Causative Agent			
Organophosphorus	09	12	21 (15%)
Aluminium Phosphide	07	12	19 (12%)
Organochlorine	04	06	10 (7%)
Zinc phosphide	15	05	20 (14%)
Parquet	02	06	08 (5%)
Combined Organophosphorus	08	04	12
Plus organochlorine	00	01	01
Combined organophosphorus plus others.	25	26	54 (37%)
Table 3: (Continued)

Categories	Male (n)	Female (n)	No of cases (n %)
Educational Status			
Illiterate	06	04	10 (7%)
Primary	02	04	06 (4%)
High School	28	36	64 (44%)
n to Graduate	31	31	62 (43%)
Professional	02	01	03 (2%)
Age in years			
18-30 years	25 (38%)	41 (52%)	66 (46%)
31-45 years	27 (41%)	32 (41%)	59 (41%)
46-60 years	09 (13%)	04 (5%)	13 (9%)
>60 years	05 (8%)	02 (2%)	7 (4%)
Total	66 (45.52%)	79 (54.48%)	145 (100%)
Mode of Poisoning			
Accidental	21	13	34 (23%)
Suicidal	46	64	110 (76%)
Homicidal	01	00	01 (1%)
History of Substance Abuse			
Alcohol			
Misc.			
None	08	01	09 (6%)
None	04	76	80 (55%)
Occupation			
Employed	43	07	50 (34%)
Unemployed	29	66	95 (66%)

In 21 (15%) patients poisoning was caused by organophosphorus, 20 (14%) by Zinc phosphide, 19 (12%) by aluminium phosphate. Combined organophosphorus and organochlorine poisoning was found in 12 (8%) while 8 (5%) had parquat poisoning. (Table 3). 129 (90%) took poison at home. 110 (76%) patients took poison with suicidal intent, in 34 (23%) it was accidental intake and only in one (0.75%) it was homicidal. (Table 3). 91(63%) patients were brought in the hospital by relatives, 19(13%) by parents, 13(9%) by their spouse, 12(8%) by in-laws and 7(5%) by friends (Table 3). Incidence of poisoning was more in married persons 109 (75%), 34(23%) were unmarried and 2(1.45%) were widows.

Alcohol was the most frequent substance of abuse 56 (39%). This was especially true for males as 54 out of 56 were males, other substances abused were chitta (4) bhang (opium) (3) and one case of morphine. 80 (55%) patients had no history of substance abuse mostly females 76 out of 80.

Psychiatric illness was seen in significant numbers of patients, 38(26%) patients had alcohol dependence, behaviour disorders were 33(23%), depressive disorder 22(15%), adjustment disorder in 16(11%), anxiety and bipolar disorder were 2(1.5%). Out of 79 females in this study 57(72%) had some form of psychiatric disorder. Most of the patients in our study were unemployed 95 (66%) and mostly these were housewives 66 (63%) (Figure 3).

DISCUSSION

In the developed world rate of mortality from poisoning is testified to be 1% to 2% which is comparatively less as compared to developing countries like India where more than 50,000 deaths occur due to toxic exposure (Table 4). According to the national survey on drug use and health, 18-25 years of age had higher percentages of suicidal thoughts and attempts as compared to middle-aged adults (45 to 64).

The present study also agrees with the national survey and indicate that 18-30 years old patients had higher suicidal thoughts, attempts and increased incidence of poisoning. Reddy et al reported the majority of poisoning cases in the age group for up to 30 years. Prajapati et al and Maheswari et al have found the majority of cases were in young people (age group of 21-30 years). This is similar to the findings of Singh and Unni Krishnan in Mangalore, south India, Sarkar et al in Bangladesh and Hovda et al in Norway that acute poisonings were more common in young ages (20-40 years). (Table 4).

Acute poisoning was higher in females (54.48%) than males (45.52%) in our study which is similar to Reddy et al.
Heyerdahl et al.13 and contrary to most studies in India Ramesh et al.14 and Srinivasa et al.15 Our state is predominantly a rural state where girls get married at a younger age, most of the cases their husbands are working outside in other states due to paucity of jobs in our state and hence increases family pressure, pressure from in-laws, many time forced marriages, infidelity on part of spouse leading to emotional instability, depression, physical abuse. These all culminate into the increased incidence of poisoning in our females.

90% of patients in our study consumed poison at home and in 76% it was suicidal intent. A similar observation was reported by Maharani as et al.17 and this could be because of the pressure of studies, settlement issues, lack of emotionally supportive network, divorce and insufficiency to adapt to some quick circumstances.18

Table 4: Percentage of suicidal thoughts age 18 – 30 years.

Author	Year	Percentage
National Survey	2014	Higher
Reddy et al	2018	Higher%
Prajapati et al	2013	Higher%
Maheswari et al	2016	Higher%
Singh B Unnikrishnan B.	2006	Higher%
Sarkar et al	2013	Higher%
Hovda et al	2008	Higher%

CONCLUSION

The study agrees with the national survey in that the commonest age group involved is 18-30 years, one of the most productive years of life and is more common in females. The social and peer pressure, marital and family discords, drug abuse, unemployment and psychiatric disorders are the causes behind this increased risk. More stress on moral education, counselling of youngsters, married couples, emphasis on treatment and counselling for psychiatric disorder will go a long way in reducing the sufferings of society. Over the counter sale of toxic agents and pharmacological drugs should be strongly regulated.

ACKNOWLEDGEMENT

The author acknowledges and thanks to all the doctors and non-medical staff of ward, Department of Medicine, SLBS Govt. Medical College & Hospital for their cooperation. Special thanks to Dr Pankaj Soni and Bharti Sharma for statistical analysis and manuscript typing.

Funding – No funding source.

Conflicts of Interests – None

REFERENCES

1. Rajanandh MG, Santhosh S, Ramasamy C. Prospective analysis of poisoning cases in a super speciality hospital in India. J Pharmacol Tox 2013; 8 (2): 60-66.
2. Ketis ZK, Susic TP, Grizinic KM, Kersnik J. Glasgow Coma Scale in Acute Poisonings before and after use of antidote in patients with a history of use of psychotropic agents, GCS analysis. Sp Arh Celok Lek 2010; 138 (3-4): 210-213.
3. Singh D, Jit I, Tyagi S. Changing trends in acute poisoning in Chandigarh zone: A 25 years experience from a tertiary care hospital in Northern India. Amer J Forensic Med Pathol 1999; 20: 203-10.
4. Ahuja H, Mathai AS, Pannu A, Arora R. Acute Poisonings Admitted to a Tertiary Level Intensive Care Unit in Northern India: Patient Profile and Outcomes. J Clin Diag Res 2015; 9 (10):1-4.
5. Chowdhary AN, Banerjee S, Brahma A, Biswas MK. Pesticide poisoning in nonfatal, deliberate self-harm: A public health issue: Study from Sundarban Delta, India. Indian J Psychiatry 2007; 49(4):117-120.
6. Reddy S, Revathi D, Prasanna VL, Ramesh AC. Sociodemographic profile of patients with acute poisoning in the emergency wards of a tertiary care hospital. Int J Pharm Sci. 2018; 10(6): 50-56.
7. State estimates of substance use & mental disorder 2015-2016. National Survey on Drug Use and Health (NSDUH). Published 2018-11 Available from: https://www.samhsa.gov/data/nsduh/state-reports-NSDUH-2016.
8. Prajapati T, Prajapati K, Tandon R, Merchant S. Acute chemical and pharmaceutical poisoning cases treated in civil hospital, Ahmedabad: one year study. Asia Pac J Med Toxicol 2013; 2:63-67.
9. Maheswari E, Abraham L, Chacko CS, Saraswathy GR, Ramesh AC. Assessment of pattern, severity and outcome of poisoning in the emergency care unit. J Appl Pharm Sci 2016; 6:178-83.
10. Singh B, Unnikrishnan B. A profile of acute poisoning at Mangalore (South India). J Clin Forensic Med 2006; 13(3):112-16.
11. Sarkar D, Shaheduzzaman M, Hossain MI, Ahmed M, Mohammad N, Bashir A. Spectrum of Acute Pharmaceutical and Chemical Poisoning in Northern Bangladesh. Asia Pac J Med Toxicol. 2013; 2(1): 2-5.
12. Hovda KE, Bjornnaas MA, Skog K, Opdahl A, Drottning P, Ekeberg O, et al. Acute poisonings treated in hospitals in Oslo: a one-year prospective study (1): pattern of poisoning. Clin Toxicol (Phila) 2008; 46(1): 35-41.
13. Heyerdahl F, Hovda KE, Bjornnaas MA, Nore AK, Figuereido JC, Ekeberg O et al. Pre-hospital treatment of acute poisonings in Oslo. BMC Emerg Med. 2008; 8:15.
14. Ramesh V, Chavan VR, Arshad M, Raghunandan M, Faizuddin. A study on the pattern of acute poisoning in an emergency department of a tertiary care hospital. Asian J Pharm Clin Res. 2016; 9:361-63.
15. Srinivasa V, Kavya ST, Madhumathi R, Duddhewala A. Profile of poisoning in a tertiary care hospital. Int J Basic Med Sci. 2012; 3:135-39.
16. Ramdurg S, Goyal S, Goyal P, Sagar R, Sharan P. Sociodemographic profile, clinical factors, and mode of attempt in suicide attempters in consultation-liaison psychiatry in a tertiary care centre. Ind Psychiatry J 2011; 20:11-16.
17. Maharani B, Vijayakumari N. Profile of poisoning cases in a Tertiary Care hospital, Tamil Nadu, India. J App Pharmaceu Sci 2013; (1): 091-094.
18. Sarkar D, Shaheduzzaman M, Hossain MI, Ahmed M, Mohammad N, Bashir A. Spectrum of acute pharmaceutical and chemical poisoning in northern Bangladesh. Asia Pac J Med Toxicol. 2013; 2: 2-5.