Decreased risk of ovarian cancer associated with rs9898876 sex hormone-binding globulin gene variant

Sabrina Zidi1 · Mouna Stayoussef1 · Feryel K Sontini2 · Amel Mezlini2 · Besma Yacoubi-Loueslati1 · Wassim Y. Almawi1,3

Received: 21 November 2021 / Accepted: 23 February 2022 / Published online: 11 March 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
Background Ovarian cancer (OC) is one of the most common gynecologic cancers, with significant morbidity and mortality. The risk of OC is influenced by hormone status, of which sex hormone-binding globulin (SHBG), which influences the serum availability of steroid sex hormones, is implicated in the pathogenesis and evolution of OC. The aim of this study is to evaluate the involvement of common SHBG gene variants in OC susceptibility and evolution.

Materials A case control study including 71 OC patients and 74 cancer-free controls, who were genotyped for rs9898876, rs13894, rs1799941 and rs6257 SHBG SNP. Genotyping was done by the allelic discrimination method, using VIC- and FAM-labeled primers.

Results The minor allele frequencies of rs9898876, rs13894, rs1799941 and rs6257 SHBG SNP was comparable between OC cases and control women, implying no significant associations of the tested variants and overall OC risk. Taking homozygous wild-type genotype as reference (OR = 1.00), heterozygous rs9898876 (G/T), and minor allele-carrying genotypes [G/T + T/T] were associated with reduced risk of OC. While rs9898876 heterozygosity (G/T) was predictive of OC occurrence, no significant association of the remaining three tested SNPs was noted with altered risk of OC. Irrespective of FIGO staging, the four tested SHBG SNPs were not associated with the clinical progression of OC.

Conclusions In conclusion, SHBG rs9898876 is associated with a decreased risk of OC, and thus constitutes a potential diagnostic biomarker of OC.

Keywords Haplotypes · Ovarian cancer · Polymorphism · Sex hormone-binding globulin

Introduction
Ovarian cancer (OC) is a significant gynecological malignancy, and accounts about 2.5% of all malignancies among women, and 5% of deaths of female cancers [1]. It was reported that 184,799 deaths were attributed due to OC in 2018, which is predicted to rise significantly by 2040 [2]. While asymptomatic in its early stages, high mortality rates were reported for later stages of OC (Stage III, Stage IV), resulting in 46.2% 5-year survival of [3, 4]. OC is multifactorial and complex in nature, with a poorly defined etiology [3, 5], and several modifiable and non-modifiable factors linked with its development and progression were reported.

Despite considerable efforts to delineate its origin, the exact etiology of OC remains poorly understood [4, 5]. Two major theories were proposed for the pathogenesis of OC, namely the incessant ovulation, and the gonadotropin connection [5, 6]. Both epidemiologic and experimental
evidence support the contribution of altered steroid sex hormone balance to the pathogenesis of OC, acting through stimulation of cell proliferation and telomerase expression. These in turn precipitate angiogenesis and greatly enhance carcinogenesis and metastasis, principally through the PI3K/AKT pathway [7, 8]. In support of the role of sex hormones in enhanced risk of OC was the findings that altered serum levels of circulating steroid sex hormones increase the overall incidence of OC [6, 7, 9], and that women on hormone replacement therapy are at increased risk for OC development [10].

The principal steroid sex hormones, testosterone and estrogen, are found in three pools: albumin-bound, freehormone, and a fraction tightly bound to sex hormone-binding globulin (SHBG), a 373-amino acid homodimeric glycoprotein with three carbohydrate side chains produced by the liver [11, 12]. SHBG is a key regulator of steroid-signaling system, and acts by binding circulating steroid sex hormones (testosterone and estradiol) [10, 11], thus limiting their tissue bioavailability [10, 12]. SHBG is encoded by SHBG gene which is organized into eight exons separated by seven introns, and spans 4-kb on the short arm of chromosome 17 (17p13-1p12) [13].

Insofar as the action of sex steroids depend on their bioavailability to target organs and tissues, including ovaries [12, 14], a role for SHBG was proposed for OC. Several SHBG gene polymorphisms that control SHBG production and protein stability, and steroid-binding activity were identified throughout human SHBG gene, especially in the promoter region [15–17]. Earlier gene association studies that investigated the association of specific SHBG SNP with altered risk of OC often yielded inconclusive results, in part, to the relatively low number of study participants in most of these studies, and the failure to address the impact of key covariates on the association of SHBG variants with OC risk [11, 18–19]. In addition, few studies investigated the effect of different SHBG variants on circulating SHBG levels in both healthy control women and OC patients, but with inconclusive results [11, 15].

This study aims to examine the association of rs9898876, rs13894, rs1799941 and rs6257 common SHBG variants with the risk of OC and its evolution in 71 Tunisian women with OC and 74 cancer-free women who served as controls. This is the first study that addresses this association in a North African (Tunisian) population.

Subjects and Methods

Study Subjects This retrospective case–control study was approved on 25 June 2017 by Research & Ethics Committee of Salah Azeiz Oncology Institute (IRB number: ISA/2018/19, granted). Study subjects comprised 71 women with histologically-confirmed OC, who were recruited from the outpatient oncology clinics of Salah Azeiz Oncology Institute (Tunis, Tunisia). Diagnosis and staging of OC were performed as per International Federation of Gynaecology and Obstetrics (FIGO) classification guidelines (www.figo.org), and with histological types (serous-papillary, endometrioid, mucinous, and mixed/others). The 74 age- and ethically-matched control women were recruited from Dispenser of Ettadhamen City, and consisted of employees, or healthy women undergoing routine check-up. Control women were negative for allergies, diabetes, hypertension, or cardiovascular disease, with (self-reported) negative personal or family history of OC. OC cases and control women originated from the four major governorates of Tunisia, and were required to provide written consent for participating in the study, which was performed as per Helsinki II guidelines.

SHBG Genotyping Genomic DNA was extracted from peripheral venous blood specimens were recovered from participants in EDTA-containing tube for genomic DNA extraction before start of radiation or chemotherapy. Genomic DNA was extracted using QIAamp DNA blood mini kit, according to manufacturer’s instruction (Qiagen GmbH, Hilden, Germany). Selection of SHBG polymorphisms (rs9898876, rs13894, rs1799941 and rs6257) was based on their clinical relevance (NCBI Entrez Gene SNP Geneview), and minor allele frequency (MAF) equal to or exceeding 5% in Caucasians (CEU-HapMap data), and were ordered as Taq-Man assay on demand VIC- and FAM-labelled primer pairs (ABI, ThermoFisher, Foster City, CA). PCR was performed in 6-µl volume on StepOne Plus real-time PCR system (ThermoFisher). We included blinded replicate quality control samples for assessment of the genotyping reproducibility; concordance was 100%.

Statistical Analysis Statistical analysis was performed on SPSS 21.0 (SPSS Inc., Chicago, IL), Epi info-7 (www.cdc.gov/epiinfo), SNPStats (www.bioinfo.iconcologia.net/snpstats) and Haploview 4.2 (www.broad.mit.edu/mpg/haploview). Categorical data were presented as percentages of total, while continuous variables were presented as mean (± SD). Student’s t-test analyzed differences in means, while Pearson χ^2 and Fisher’s exact tests were used for assessment of inter-group significance. SHBG genotypes were
analyzed for conformity with Hardy–Weinberg equilibrium (HWE) using Haploview 4.2. Analyses performed under the assumption of additive genetic effect was carried out using SNPStats. Linkage disequilibrium (LD) between all pairs of SNP was measured by Haploview 4.2, with 4-locus \(SHBG \) haplotype reconstruction done by the principle of expectation-maximization on Haploview 4.2. Taking the control women as reference, logistic regression analysis was used in odds ratios (OR) and 95% confidence intervals (CI) determination linked with the risk of OC; statistical significance was set at \(P < 0.05. \)

Results

Study Subjects The demographic and clinical characteristics of the 71 OC cases and 74 control women are shown in Table 1. Mean age was comparable between ovarian cancer cases and control women \((P = 0.58) \). The frequency of smokers, oral contraceptive users, breastfeeding women, and post-menopausal women was comparable between

Demographic and clinical characteristics	Study subjects (n = 145)	\(P^a \)		
Cases (n = 71)	Controls (n = 74)			
Demographic characteristics				
Age (mean ± SD)	51.1 ± 14.0	51.7 ± 14.2	0.58	
≥ 50 years	36 (50.7%)	39 (52.7%)	0.47	
Menopausal status	Pre-menopausal	28 (39.4%)	27 (36.5%)	0.42
	Post-menopausal	43 (60.6%)	47 (63.5%)	
Oral contraception	Users	6 (8.5%)	6 (8.1%)	
	Non-users	65 (91.5%)	68 (91.9%)	
Breast feeding	20 (28.2%)	16 (21.6%)		
Pregnancy	32 (45.1%)	-		
Clinical characteristics				
Lymph nodes	60 (84.5%)	NA		
Chemotherapy	60 (84.5%)	NA		
FIGO staging of cancer				
Stage I	10 (14.1%)	NA	--	
Stage II	25 (35.2%)	NA	--	
Stage III	30 (42.3%)	NA	--	
Stage IV	6 (08.5%)	NA	--	
Histological type				
Serious papillary	49 (69.0%)	NA	--	
Endometrioid	14 (19.7%)	NA	--	
Mixed/others	7 (9.9%)	NA	--	
Mucinous	1 (1.4%)	NA	--	

FIGO International Federation of Gynecology and Obstetrics, NA not applicable

a Student’s t-test (continuous variables), Pearson \(\chi^2 \) test (categorical variables)

b Number of subjects (percent total within group)

Table 2 \(SHBG \) SNPs allelic distribution in patient and control groups

SNPs	Location 1	Alleles	Cases 2	Controls 2	HWE 3	\(\chi^2 \)	\(p \)	OR (95% CI)
rs9898876	17:7,526,962	G:T	0.37	0.26	0.05	4.13	0.04	1.68 (0.99–2.86)
rs13894	17:7529902	C:T	0.39	0.37	0.63	0.11	0.74	1.08 (0.66–1.79)
rs1799941	17:7533423	A:G	0.84	0.80	0.11	0.70	0.40	1.29 (0.68–2.46)
rs6257	17:7533717	C:T	0.15	0.13	0.21	0.29	0.59	1.20 (0.59–2.48)

1. Location on chromosome (GRCh37)

2. Minor allele frequency (MAF) of OC cases (n = 71) and control women (n = 74)

3. HWE, Hardy-Weinberg equilibrium \(P \) value
ovarian cancer cases and cancer-free control women. The histological types identified among ovarian cancer cases were serious-papillary carcinoma (49; 69.0%), followed by endometrioid (14; 19.7%), mixed/others (7; 9.9%), and one single case of mucinous (1.4%). OC staging, as per FIGO staging, showed that 10 patients (14.1%) presented with stage I, 25 (35.2%) with stage II, and 30 (42.3%) with stage III, and the remaining 6 cases (8.5%) with stage IV.

Allelic and Genotypic Association Studies Table 2 summarizes the association between rs1799941 and rs6257 SHBG variants and OC among case-control subjects. Apart from

SNP	Genotypes	Study subjects	Controls	p_value	OR (95% CI)
		Cases¹	Controls		
rs9898876	Codominant	G/G 42 (59.10%)	20 (27.00%)	<0.001	1.00
		G/T 21 (29.60%)	53 (71.60%)	0.19	(0.09–0.39)
		T/T 8 (11.30%)	1 (1.40%)	3.81	(0.45–32.57)
	Dominant	G/G 42 (59.10%)	20 (27.00%)	0.40	1.00
		G/T 29 (40.90%)	54 (73.00%)	0.26	(0.13–0.51)
	Recessive	G/G 63 (88.70%)	73 (98.70%)	1.00	
		T/T 8 (11.30%)	1 (1.40%)	9.27	(1.13–76.15)
	Overdominant	G/G 50 (70.40%)	21 (28.40%)	<0.001	1.00
rs13894	Codominant	C/C 30 (42.20%)	27 (36.50%)	0.64	1.00
		C/T 29 (40.90%)	36 (48.60%)	0.73	(0.36–1.48)
		T/T 12 (16.90%)	11 (14.90%)	0.98	(0.37–2.59)
	Dominant	C/C 27 (36.50%)	30 (42.20%)	0.48	1.00
		C/T 47 (63.50%)	41 (57.80%)	0.79	(0.40–1.53)
	Recessive	C/C 63 (85.10%)	59 (83.10%)	0.74	1.00
		T/T 11 (14.90%)	12 (16.90%)	1.16	(0.48–2.84)
	Overdominant	C/C 38 (51.40%)	42 (59.10%)	0.34	1.00
rs1799941	Codominant	G/G 49 (69.00%)	52 (70.30%)	0.28	1.00
		G/A 16 (22.50%)	20 (27.00%)	0.85	(0.40–1.82)
		A/A 6 (8.40%)	2 (2.70%)	3.18	(0.61–16.53)
	Dominant	G/G 49 (69.00%)	52 (70.30%)	0.87	1.00
		G/A 22 (31.00%)	22 (29.70%)	1.06	(0.52–2.15)
	Recessive	G/G 65 (91.50%)	72 (97.30%)	0.12	1.00
		A/A 6 (8.40%)	2 (2.70%)	3.32	(0.65–17.05)
rs6257	Codominant	T/T 57 (80.30%)	53 (71.60%)	0.07	1.00
		T/C 10 (14.10%)	20 (27.00%)	0.46	(0.20–1.08)
		C/C 4 (5.60%)	1 (1.14%)	3.72	(0.40–34.35)
	Dominant	T/T 57 (80.30%)	53 (71.60%)	0.22	1.00
		T/C 14 (19.70%)	21 (28.40%)	0.62	(0.29–1.34)
	Recessive	T/T 67 (94.40%)	73 (98.70%)	0.15	1.00
		C/C 4 (5.60%)	1 (1.40%)	4.36	(0.48–39.98)
rs9898876	Codominant	G/G 45 (61.00%)	52 (70.30%)	0.04	1.00
		G/A 20 (26.80%)	20 (27.00%)	0.84	(0.40–1.82)
		A/A 8 (10.20%)	2 (2.70%)	3.68	(0.61–20.52)

Study subjects comprised 74 control women, and 71 OC patients

1: Number of subjects (percent total within group)

Significant difference inrs9898876 (P < 0.001) genotype distribution was seen between OC cases and controls (Table 2); the genotype distribution of the remaining SHBG SNPs was comparable between patients and controlsubject.
The negative association of rs9898876 with OC susceptibility persisted irrespective of the genetic models of analysis tested, namely codominant \((P<0.001)\), dominant \((P=1.0 \cdot 10^{-4})\), recessive \((P=8.8 \cdot 10^{-3})\) and overdominant \((P<0.001)\). No significant association with altered risk of OC were noted with the remaining three tested SNPs (Table 3).

FIGO stratification and OC Evolution In order to evaluate the possible implication of \(SHBG\) gene polymorphisms on OC evolution, we performed analysis of genotype and allele frequencies of the tested \(SHBG\) polymorphisms between mild-moderate (stages I + II) versus severe stage (stages III + IV). Data from Table 4 demonstrated lack of association between \(SHBG\) SNPs and clinical progression of OC according FIGO classification.

Haploview Analysis We assessed the interaction between tested gene variants by calculating LD, and analyzed 4-locus (rs9898876, rs13894, rs1799941 and rs6257) \(SHBG\) haplotype distribution in OC cases and control women using Haploview. As shown in Fig. 1, haploview analysis demonstrated strong linkage disequilibrium (LD) between rs9898876, rs13894, rs1799941 and rs6257. Of the 16 possible haplotypes, 11 were found to be common as their frequencies exceeded 1%. Data from Table 5 identified reduced prevalence of GCGC haplotype in OC cases than in control women \((P=0.047)\), suggesting an OC-protective nature to this haplotype. The prevalence of the remaining haplotypes was not statistically different between OC cases and control women.

Discussion

Previous studies demonstrated a key, but complex role of \(SHBG\) in regulating androgen and estrogen availability [15, 19]. Since genetic factors control \(SHBG\) bioavailability, which ranges from 12 to 76% for individual gene variant [20, 21], an interest in the association of specific \(SHBG\) variants in regulating \(SHBG\) production or activity was reported for several pathobiologies [15, 22, 23], and role for these variants as diagnostic or prognostic markers was proposed. The present study examined the association of \(SHBG\) variants with the susceptibility to, and evolution of OC. While allelic distribution of rs13894, rs1799941 and rs6257 was similar between OC cases and control women, differential association of rs9898876 minor allele and genotypes was noted between cases and controls. Results obtained
confirmed the negative association of this variants with OC presence, though not its evolution. Some results were reported for rs1799941 and rs6257 variants among Polish women [11]. Although the rs1799941 and rs6259 SHBG variants were associated with elevation in circulating SHBG levels [23, 24] resulting in reduced bioavailability of estrogen or other sex-steroids, and likely reduction in risk of hormone-related cancers, the genotype frequencies of these variants was lower in cases than controls, although these differences were not statistically significant [11]. A more recent study pointed to a possible link between polycystic ovary syndrome (PCOS) and OC risk. However, the genetic impact of SHBG variability was poorly investigated in OC contrary to PCOS [25, 26]. The SHBG SNPs investigated in our study, were also studied in an earlier study on the negative association of SHBG genetic variability to altered SHBG levels and PCOS risk among Arab-speaking subjects [15]. Furthermore, rs1799941 [27, 28] and rs6257 [27] were studied in Mediterranean [27] and USA (Virginia) [28] women with PCOS, and neither were shown to influence the physiopathology of PCOS or SHBG serum concentrations.

The study of Ruixia et al. involving 248 OC subjects demonstrated variable expression of SHBG in OC patients, with augmented production of SHBG expression in ovarian carcinoma associated with poor clinicopathological outcome [29]. Higher SHBG expression was significantly associated with aggressive histological subtypes (P=0.022), higher FIGO staging (P=0.018), and higher histological grade (P=0.020). Future well controlled studies involving a larger sample size are needed for better evaluation of the implication of those variants on OC susceptibility.

We did not observe any notable difference in the distribution of SHBG variants between premenopausal and postmenopausal cases, suggesting lack of association. Additional studies involving larger cohorts are needed to confirm a likely role of specific SHBG variants in modulating the disease risk according to menopausal status. Given the relatively low number of early-stage (35) and advanced-stage (36) OC patients, these results should be interpreted with caution, and future studies involving larger sample size are required to confirm, or alternatively rule out the association of the tested (and likely additional) SHBG variants with the clinical progression of OC. Furthermore, haplotype analysis showed strong LD between rs9898876, rs13894, rs1799941 and rs6257, and identified GCGC as a disease-modifying haplotype risk.

Estrogens and androgens are produced in gonads, adrenal glands and placenta [30–31], and human SHBG plays an important role in transporting testosterone to target tissues and cells [16, 30–31]. Altered serum SHBG levels controls the extent of hyperandrogenemia, and the risk of associated endocrine pathologies [14, 15]. It was previously demonstrated that altered steroid and non-steroid sex hormone levels is key to the pathogenesis of OC [7, 9, 31]. In this regard, it was shown that androgen levels correlate positively with heightened risk of OC development, with high androgen levels in pre- and post-menopausal stage correlating positively with OC initiation [32, 33]. This was in contrast to estradiol, high levels of which were related to endometrioid tumors [34, 35].

We recently reported the association of polymorphisms in several pro-inflammatory mediators with altered risk of OC [36, 37]. Effective treatment of OC is often hampered by the advanced stage of OC at diagnosis, coupled with the establishment of drug resistance to chemotherapeutic therapy [38], and development of adverse effects [38, 39]. Antagonism of estrogen pathway was proposed as a treatment alternative, based on the relative low toxicity, and high compliance to and tolerability of anti-estrogen and aromatase inhibitor therapies, especially in post-menopausal breast cancer patients [40–42]. It is tempting to propose that changes in circulating SHBG levels, stemming from carriage of functional SHBG genetic variants may serve diagnostic and prognostic role, thereby representing novel therapeutic strategies for OC management.

This study has some strengths. OC cases and control women had similar ethnic background, which reduced the chances of racial/ethnic admixture, and only new OC cases were recruited before the start of chemotherapy and/or radio-therapy. Histological typing, and OC staging of cases was based FIGO classification, which allowed comparison of our results with those that utilized similar staging. However, our study had also some limitations. This was

Table 5 Distribution of 4-Locus SHBG haplotypes in OC cases and controls

Haplotype1	Cases	Controls	X^2	p
GCAC	0.283	0.301	0.114	0.735
GTAC	0.163	0.178	0.111	0.739
TCAC	0.161	0.128	0.658	0.417
GCGC	**0.078**	**0.152**	**3.933**	**0.047**
TTAC	0.082	0.068	0.214	0.643
GTAT	0.053	0.053	0.000	0.982
TTAT	0.054	0.037	0.468	0.494
GCAT	0.031	0.032	0.000	0.988
TCGC	0.044	0.010	3.199	0.073
GTGC	0.020	0.024	0.037	0.847
TTGC	0.019	0.013	0.165	0.684

Boldface indicates statistically significant differences

Underlined indicates minor allele

1. SHBG haplotype rs9898876, rs13894, rs1799941 and rs6257 frequency
2. Pearson chi-square test
mostly due to the relatively limited sample size, due to the fact that most referred patients already received treatment. Despite the incidence of OC in Tunisia, the uniqueness of this pathology lies in its quiet character responsible for a delay in diagnosis and therapeutic difficulty especially in its extended forms. Therefore, the low sample size cannot lower the power of our study.

Conclusions

In conclusion, despite these shortcomings, our study is the first report that demonstrates an association of SHBG rs9898876 with a decreased risk of OC. This variant can be added to the panel of future potential diagnostic biomarker of OC.

Acknowledgements The authors acknowledge the technical assistance of Ms. Zainab Malalla.

Funding Statement This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declarations

Conflict of interest All authors declare that they have no conflict of interest.

Compliance with ethical standards All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent Informed consent was obtained from all individual participants included in the study.

References

1. Torre LA, Traber B, Desantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jamal A, Siegel RL (2018) Ovarian cancer statistics. CA: Cancer J Clinicians 68:284–296. https://doi.org/10.3322/caac.21456
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jamal A (2018) Global cancer statistics 2017: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492
3. Devouassoux-Shisheboran M, Genestie C (2015) Pathobiology of ovarian carcinomas. Chin J Cancer 34:50–55. https://doi.org/10.5732/cjc.014.10273
4. Suh DH, Kim M, Lee KH, Eom KY, Kjeldsen MK, Mirza MR, Kim JW (2018) Major clinical research advances in gynecologic cancer in 2017. J Gynecol Oncol 29:e31. https://doi.org/10.3802/jgo.2018.29.e31
5. Krzywiatynak J, Ceppi L, Dizon DS, Birrer MJ (2016) Epithelial ovarian cancer: the molecular genetics of epithelial ovarian cancer. Ann Oncol 27 Suppl 114–110. https://doi.org/10.1093/annonc/mdv083
6. Smith ER, Xu XX (2008) Ovarian ageing, follicle depletion, and cancer: a hypothesis for the aetiology of epithelial ovarian cancer involving follicle depletion. Lancet Oncol 9:1108–1111. https://doi.org/10.1016/S1470-2045(08)70281-X
7. Gharwan H, Bunch KP, Annunziata CM (2015) The role of reproductive hormones in epithelial ovarian carcinogenesis. Endocr Relat Cancer 22:R339–R363. https://doi.org/10.1530/ERC-14-0550
8. Elattar A, Warburton KG, Mukhopadhayay A, Freer RM, Shaheen F, Cross P, Plummer ER, Robson CN, Edmondson RJ (2012) Androgen receptor expression is a biological marker for androgen sensitivity in high grade serous epithelial ovarian cancer. Gynecol Oncol 124:142–147. https://doi.org/10.1016/j.jygyno.2011.09.004
9. Kanabejova P, Al-Awadi AM, Baurzyhanova Z, Tahhtouh T, Sarrar S, Almawi WY (2022) Genetic variation in progesterone receptor gene and ovarian cancer risk: A case control study. Gene 820:146288. https://doi.org/10.1016/j.gene.2022.146288
10. Collaborative Group On Epidemiological Studies Of Ovarian Cancer, Beral V, Gaiskell K, Hermon C, Moser K, Reeves G, Petre R (2015) Menopausal hormone use and ovarian cancer risk: individual participant meta-analysis of 52 epidemiological studies. Lancet 385:1835–1842. https://doi.org/10.1016/S0140-6736(14)61857-1
11. Garcia-Closas M, Brinton LA, Lissowska J, Richesson D, Sherman ME, Szeszenia-Dabrowska N, Peplonska B, Welch R, Yeager M, Zatonski W, Chanock SJ (2007) Ovarian cancer risk and common variation in the sex hormone-binding globulin gene: a population-based case-control study. BMC Cancer 7:60. https://doi.org/10.1186/1471-2407-7-60
12. Schook H, Surcel HM, Zeleniuch-Jacquotte A, Grantkist V, Lakso H, Fortner RT, Kaaks R, Puukka E, Lethtinen M, Toniolo P, Lundin E (2014) Early pregnancy sex steroids and maternal risk of epithelial ovarian cancer. Endocr Relat Cancer 21:831–844. https://doi.org/10.1530/ERC-14-0282
13. Hammond GL, Bocchinfuso WP (1996) Sex hormone-binding globulin: gene organization and structure/function analyses. Horm Res 45:197–201. https://doi.org/10.1159/000184787
14. Hammond GL (2011) Diverse roles for sex hormone-binding globulin in reproduction. Biol Reprod 85:431–441. https://doi.org/10.1095/biolreprod.111.092593
15. Abu-Hijleh TM, Gammoh E, Al-Busaidi AS, Malalla ZH, Madan S, Mahmood N, Almawi WY (2016) Common variants in the sex hormone-binding globulin (SHBG) gene influence SHBG levels in women with polycystic ovary syndrome. Ann Nutr Metab 68:66–74. https://doi.org/10.1159/000441570
16. Hammond GL (2016) Plasma steroid-binding proteins: primary gatekeepers of steroid hormone action. J Endocrinol 230:R13–25. https://doi.org/10.1530/JOE-16-0070
17. Eriksson AL, Lorentzon M, Mellstrom D, Vandenput L, Swanson C, Andersson N, Hammond GL, Wikstrom CD, Gaudet MM, Jemal A, Chiao ME, Szeszenia-Dabrowska N, Peplonska B, Welch R, Yeager M, Zatonski W, Chanock SJ (2007) Ovarian cancer risk and common variation in the sex hormone-binding globulin (SHBG) gene promoter polymorphisms in men are associated with serum sex hormone-binding globulin, androgen and androgen metabolite levels, and hip bone mineral density. J Clin Endocrinol Metab 91:5029–5037. https://doi.org/10.1210/erc-14-0550
18. Thompson DJ, Healey CS, Baynes C, Kalmyrzaev B, Ahmed S, Dowsett M, Folkers E, Luben RN, Cox D et al (2008) Identification of common variants in the SHBG gene affecting sex hormone-binding globulin levels and breast cancer risk in postmenopausal women. Cancer Epidemiol Biomarkers Prev 17:3490–3498. https://doi.org/10.1158/1055-9965.EPI-08-0734
20. Lee K, Sung J, Song YM (2015) Genetic and environmental influence on the association between testosterone, sex hormone-binding globulin and body composition in Korean men. Clin Endocrinol (Oxf) 83:236–245. https://doi.org/10.1111/cen.12722

21. Turk A, Kopp P, Colangelo LA, Urbanek M, Wood K, Liu K, Skinner HG, Gapstur SM (2008) Associations of serum sex hormone binding globulin (SHBG) levels with SHBG gene polymorphisms in the CARDIA Male Hormone Study. Am J Epidemiol 167:412–418. https://doi.org/10.1093/aje/kwm332

22. Quan L, Wang L, Wang J, Yuwen B, Zhu J (2019) Association between sex hormone binding globulin polymorphism and type 2 diabetes mellitus. Int J Clin Exp Pathol 12:3514–3520

23. Cousin P, Calemard-Michel L, Lejeune H, Raverot G, Yassaad N, Emptoz-Bonneton A, Morel Y, Pugeat M (2004) Influence of SHBG gene pentanucleotide TAAAA repeat and D327N polymorphism on serum sex hormone-binding globulin concentration in hirsute women. J Clin Endocrinol Metab 89:917–924. https://doi.org/10.1210/jc.2002-021553

24. Haiman CA, Riley SE, Freedman ML, Setiawan VW, Conti DV, Le Marchand L (2005) Common genetic variation in the sex steroid hormone-binding globulin (SHBG) gene and circulating shbg levels among postmenopausal women: the Multiethnic Cohort. J Clin Endocrinol Metab 90:2198–2204. https://doi.org/10.1210/jc.2004-1417

25. Harris HR, Cushing-Haugen KL, Webb PM, Nagle CM, Jordan SJ et al (2019) Association between genetically predicted polycystic ovarian syndrome and ovarian cancer: a Mendelian randomization study. Int J Epidemiol 48:822–830. https://doi.org/10.1093/ije/dyz113

26. Sarray S, Madan S, Saleh LR, Mahmoud N, Almawi WY (2015) Influence of the common variants in the SHBG gene polymorphism on the plasma SHBG levels among postmenopausal women. J Clin Endocrinol Metab 104:460–466.

27. Ángeles Martínez-García M, Gambineri A, Alpañés M, Raúl joe.0.1750121

28. Wickham EP, Ewens KG, Legro RS, Dunaif A, Nestler JE, Lambalk CB, van Dulmen-den Broeder E (2017) Chemotherapy-related late adverse effects on ovarian function in female survivors of childhood and young adult cancer: A systematic review. Cancer Treat Rev 53:10–24. https://doi.org/10.1016/j.ctrv.2016.11.006

29. Skiml M, Plegue M, Scaià AP, McLean K (2015) Clinical response to antiestrogen therapy in platinum-resistant ovarian cancer patients and the role of tumor estrogen receptor expression status. Int J Gynecol Cancer 25:222–228. https://doi.org/10.1097/IGC.0000000000000334

30. Overbeek A, van der Berg MH, van Leeuwen FE, Kaspers GJ, Arcaro L, Lambalk CB, van Dulmen-den Broeder E (2017) Chemotherapy-related adverse effects on ovarian function in female survivors of childhood and young adult cancer: A systematic review. Cancer Treat Rev 53:10–24. https://doi.org/10.1016/j.ctrv.2016.11.006

31. Ose J, Gertner RT, Rinaldi S, Schrock H, Overvad K, Tjonneland A, Hansen L, Dossus L, Fournier A et al (2015) Endogenous androgens and risk of epithelial invasive ovarian cancer by tumor characteristics in the European Prospective Investigation into Cancer and Nutrition. Int J Cancer 136:399–410. https://doi.org/10.1002/ijc.29000

32. Davis SR, Wahlin-Jacobsen S (2015) Testosterone in women—the clinical significance. Lancet Diabetes Endocrinol 3:980–992. https://doi.org/10.1016/S2221-8587(15)00284-3

33. Ose J, Poole EM, Schroth H, Lehtinen M, Arslan AA, Zeleniuch-Jacquotte A, Visvanathan K, Helzlsouer K, Buring JE et al (2017) Androgens are differentially associated with ovarian cancer subtypes in the Ovarian Cancer Cohort Consortium. Cancer Res 77:3951–3960. https://doi.org/10.1158/0008-5472

34. Paleari L, De Censi A (2018) Endocrine therapy in ovarian cancer: where do we stand? Curr Opin Obstet Gynecol 30:17–22. https://doi.org/10.1097/GCO.0000000000000423

35. Shen Z, Luo H, Li S, Sheng B, Zhao M, Zhu H, Zhu X (2017) Correlation between estrogen receptor expression and prognosis in epithelial ovarian cancer: a meta-analysis. Oncotarget 8:62400–62413. https://doi.org/10.18632/oncotarget.18253

36. Ahmed AB, Zidi S, Sghaier I, Ghazouani E, Mezlini A, Almawi W, Loueslati BY (2017) Common variants in IL-1RN, IL-1β and TNF-α and the risk of ovarian cancer: a case control study. Cent Eur J Immunol 42:150–155. https://doi.org/10.5114/cej.2017.69356

37. Ahmed AB, Zidi S, Almawi W, Ghazouani E, Mezlini A, Loueslati BY, Stayoussief M (2020) Single nucleotide polymorphism of transforming growth factor-beta1 and interleukin-6 as risk factors for ovarian cancer. Cent Eur J Immunol 45:267–275. https://doi.org/10.5114/cej.2020.101242

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.