Optical Shock-Enhanced Self-Photon Acceleration

P. Franke, D. Ramsey, T. T. Simpson, D. Turnbull, D. H. Froula, and J. P. Palastro
University of Rochester
Laboratory for Laser Energetics

63rd Annual Meeting of the American Physical Society Division of Plasma Physics
Pittsburgh, PA 8–12 November 2021
A photon accelerator driven by a pulse with spatiotemporal and transverse intensity profile shaping generates extreme ultraviolet attosecond pulses

- A “structured flying focus” pulse overcomes the limitations of a conventional photon accelerator

- Velocity control enables a positive feedback loop between intensity self-steepening, sharpening accelerating gradients, and increasing rates of spectral broadening, forming an optical shock

- Multi-octave spectra extending from 400 nm – 60 nm wavelengths, which support near-transform limited 350 as pulses, are generated over 90 μm of interaction length
Photon accelerators increase the frequency of a laser pulse in a moving electron density gradient, but they are limited by dephasing, refraction and diffraction.

1. Photons outrun the accelerating gradient ("dephasing")

\[\omega_{max} \propto \sqrt{\frac{\partial n_e}{\partial z}} \]
Photon accelerators increase the frequency of a laser pulse in a moving electron density gradient, but they are limited by dephasing, refraction and diffraction.

1. Photons outrun the accelerating gradient ("dephasing")

\[\omega_{\text{max}} \propto \sqrt{\frac{\partial n_e}{\partial z}} \]

[Diagram showing electron density over time and space with \(\omega_{\text{max}} \) proportional to the square root of the gradient of electron density.]
Photon accelerators increase the frequency of a laser pulse in a moving electron density gradient, but they are limited by dephasing, refraction and diffraction.

1. Photons outrun the accelerating gradient ("dephasing")

\[\omega_{\text{max}} \propto \sqrt{\frac{\partial n_e}{\partial z}} \]

\[v_g \]
Photon accelerators increase the frequency of a laser pulse in a moving electron density gradient, but they are limited by dephasing, refraction and diffraction.

1. Photons outrun the accelerating gradient ("dephasing")

2. Diffraction and refraction limit the gradient and its propagation length

Rayleigh length

\[Z_R = 4\lambda_0 F \frac{I_0}{\pi} \]
Photon accelerators increase the frequency of a laser pulse in a moving electron density gradient, but they are limited by dephasing, refraction and diffraction.

1. Photons outrun the accelerating gradient ("dephasing")

2. Diffraction and refraction limit the gradient and its propagation length

\[Z_R = 4\lambda_0 F_z^2 / \pi \]
Photon accelerators increase the frequency of a laser pulse in a moving electron density gradient, but they are limited by dephasing, refraction and diffraction.

1. Photons outrun the accelerating gradient ("dephasing")

2. Diffraction and refraction limit the gradient and its propagation length

\[Z_R = 4\lambda_0 F_0^2 / \pi \]
A “structured flying focus” pulse can overcome the limitations of a conventional photon accelerator

1. Spatiotemporal control mitigates the effects of dephasing and diffraction
A “structured flying focus” pulse can overcome the limitations of a conventional photon accelerator

1. Spatiotemporal control mitigates the effects of dephasing and diffraction

2. Transverse intensity control mitigates the effects of diffraction and refraction

T. T. Simpson et al. In Review (2021).

P. Franke et al. Phys. Rev. A 104, 043520 (2021).
2D finite-difference time-domain simulations were used to investigate shaped laser pulses interacting with gas-density plasma.

Laser parameters:

- $\lambda_0 = 400\text{nm}$
- $F/# = 6$
- $\tau_{\text{tot}} = 12\text{fs}$
- $E = 53\mu\text{J}$
- $v_f/v_{g0} = 1.015$
- $I = 4.8 \times 10^{16}\text{W/cm}^2$

Material parameters:

Nitrogen: $n_{e0} = 4.5\times 10^{20}\text{cm}^{-3}$

P. Franke *et al.* Phys. Rev. A *104*, 043520 (2021).
The inside pulse is guided over 5 Rayleigh lengths, leading to a concentration of energy in time and space.
Extreme spectral broadening of the pump pulse occurs over only 90 μm of interaction length.
Extreme spectral broadening of the pump pulse occurs over only 90 μm of interaction length.
Extreme spectral broadening of the pump pulse occurs over only 90 \(\mu \text{m} \) of interaction length.

A 1.3\(\times \) transform limited, focusable, 350 as pulse can be isolated using a 200 nm thick Mg-film (short-pass filter cut on 124 nm)*

*G. D. Tsakiris et al. New J. Phys. 8, 19 (2006).

P. Franke et al. Phys. Rev. A 104, 043520 (2021).
Photon acceleration, dispersion and velocity control cooperate to self-steepen the pulse, increasing the rate of spectral broadening.
Photon acceleration, dispersion and velocity control cooperate to self-steepen the pulse, increasing the rate of spectral broadening.

\[n_{e0} = 4.5 \times 10^{20} \text{ cm}^{-3} \]
Photon acceleration, dispersion and velocity control cooperate to self-steepen the pulse, increasing the rate of spectral broadening

\[n_{e0} = 4.5 \times 10^{20} \text{ cm}^{-3} \]

P. Franke et al. Phys. Rev. A 104, 043520 (2021).
Photon acceleration, dispersion and velocity control cooperate to self-steepen the pulse, increasing the rate of spectral broadening

$n_{e0} = 4.5 \times 10^{20} \text{ cm}^{-3}$

P. Franke et al. Phys. Rev. A 104, 043520 (2021).
Photon acceleration, dispersion and velocity control cooperate to self-steepen the pulse, increasing the rate of spectral broadening.
Summary/Conclusions

A photon accelerator driven by a pulse with spatiotemporal and transverse intensity profile shaping generates extreme ultraviolet attosecond pulses

• A “structured flying focus” pulse overcomes the limitations of a conventional photon accelerator

• Velocity control enables a positive feedback loop between intensity self-steepening, sharpening accelerating gradients, and increasing rates of spectral broadening, forming an optical shock

• Multi-octave spectra extending from 400 nm – 60 nm wavelengths, which support near-transform limited 350 as pulses, are generated over 90 μm of interaction length

*pfranke@ur.rochester.edu