One more proof of the Erdős–Turán inequality, and an error estimate in Wigner’s law.

Ohad N. Feldheim¹, Sasha Sodin¹,²

January 12, 2009

Erdős and Turán [3] have proved the following inequality, which is a quantitative form of Weyl’s equidistribution criterion.

Proposition 1 (Erdős – Turán). Let υ be a probability measure on the unit circle $\mathbb{T} = \mathbb{R}/2\pi \mathbb{Z}$. Then, for any $n_0 \geq 1$ and any arc $A \subset \mathbb{T}$,

$$\left| \nu(A) - \frac{\text{mes} A}{2\pi} \right| \leq K_1 \left\{ \frac{1}{n_0} + \sum_{n=1}^{n_0} \left| \hat{\nu}(n) \right| \right\},$$

where

$$\hat{\nu}(n) = \int_{\mathbb{T}} \exp(-in\theta) d\nu(\theta),$$

and $K_1 > 0$ is a universal constant.

A number of proofs have appeared since then, an especially elegant one given by Ganelius [5]. In most of the proofs, the indicator of A is approximated by its convolution with an appropriate (Fejér-type) kernel. We shall present another proof, based on the arguments developed by Chebyshev, Markov, and Stieltjes to prove the Central Limit Theorem (see Akhiezer [1, Ch. 3]). In this approach, the indicator of A is approximated from above and from below by certain interpolation polynomials. The argument does not use the group structure on \mathbb{T}, and thus works in a more general setting.

¹[ohadf; sodinale]@post.tau.ac.il; address: School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
²Supported in part by the Adams Fellowship Program of the Israel Academy of Sciences and Humanities and by the ISF.
In Section 1, we formulate a slightly different proposition and show that it implies Proposition 1. In Section 2 we reproduce the part of the arguments of Chebyshev, Markov, and Stieljes that we need for the sequel. For the convenience of the reader, we try to keep the exposition self-contained. In Section 3 we apply the construction of Section 2 to prove the Erdős–Turán inequality. In Section 4 we formulate another inequality that can be proved using the same construction. As an application to random matrices, we use an inequality from [4] and deduce a form of Wigner’s law with a reasonable error estimate.

1 Introduction

Let the measure σ_1 on \mathbb{R} be defined by

$$d\sigma_1(x) = \frac{1}{\pi}(1 - x^2)^{-1/2} \, dx.$$

Let $T_n(\cos \theta) = \cos n\theta$ be the Chebyshev polynomials of the first kind; these are orthogonal with respect to σ_1. We shall prove the Erdős–Turán inequality in the following form:

Proposition 2. Let μ be a probability measure on \mathbb{R}. Then, for any $n_0 \geq 1$ and any $x_0 \in \mathbb{R}$,

$$\left| \mu[x_0, +\infty) - \sigma_1[x_0, +\infty) \right| \leq K_2 \left\{ \frac{1}{n_0} + \sum_{n=1}^{n_0} \frac{1}{n} \left| \int_{\mathbb{R}} T_n(x) \, d\mu(x) \right| \right\}. \quad (2)$$

Proposition 2 implies Proposition 1. Let ν be a measure on \mathbb{T}, and let $A \subset \mathbb{T}$ be an arc. Rotate \mathbb{T} (together with ν and A) moving the center of A to 0; this does not change the right-hand side of (1).

Denote $\nu_1(B) = \nu(B) + \nu(-B)$; ν_1 is a measure on $[0, \pi]$. The change of variables $x = \cos \theta$ pushes it forward to μ_1 on $[-1, 1]$. Now apply Proposition 2 to μ_1, observing that

$$\int_{-1}^{1} T_n(x) \, d\mu_1(x) = \Re \hat{\nu}(n).$$

\[\square\]

1 We do not assume that $\text{supp } \mu \subset [-1, 1]$
2 The Chebyshev–Markov–Stieltjes construction

Let σ be a probability measure on \mathbb{R} (with finite moments); let S_0, S_1, \ldots be the orthogonal polynomials with respect to σ. For a probability measure μ on \mathbb{R}, denote

$$\varepsilon_n = \varepsilon_n(\mu) = \int_{\mathbb{R}} S_n(x) d\mu(x), \quad n = 1, 2, 3, \ldots$$

We shall estimate the distance between μ and σ in terms of the numbers ε_n.

Let $x_1 < x_2 < \cdots < x_{n0}$ be the zeros of S_{n0}. Construct the polynomials P, Q of degree $\leq 2n_0 - 2$, so that

$$P(x_k) = \begin{cases} 0, & 1 \leq k < k_0 \\ 1, & k_0 \leq k \leq n_0 \end{cases}; \quad P'(x_k) = 0 \quad \text{for} \quad k \neq k_0;$$

$$Q(x_k) = \begin{cases} 0, & 1 \leq k \leq k_0 \\ 1, & k_0 < k \leq n_0 \end{cases}; \quad Q'(x_k) = 0 \quad \text{for} \quad k \neq k_0 .$$

Lemma 3 (Chebyshev–Markov–Stieltjes).

$$P \geq 1_{[x_{k0}, +\infty)} \geq 1_{(x_{k0}, +\infty)} \geq Q .$$

Proof. Let us prove for example the first inequality. The derivative P' of P vanishes at x_k, $k \neq k_0$, and also at intermediate points $x_k < y_k < x_{k+1}$, $k \neq k_0, n_0$. The degree of P' is at most $2n_0 - 3$, hence it has no more zeroes. Now, $P(x_{k0}) > P(x_{k0-1})$; hence P is increasing on (x_{k0-1}, y_{k0+1}). Therefore P' is decreasing on (y_{k0+1}, y_{k0+2}), increasing on (x_{k0+2}, y_{k0+3}), et cet. Thus $P(x) \geq 1$ for $x \geq x_{k0}$. Similarly, $P(x) \geq 0$ for $x < x_{k0}$.

Let $P = \sum_{n=0}^{n0} p_n S_n$, $Q = \sum_{n=0}^{n0} q_n S_n$. Then

$$\mu(x_{k0}, +\infty) \leq \int_{\mathbb{R}} P(x) d\mu(x) = p_0 + \sum_{n=1}^{2n_0-2} \varepsilon_n p_n$$

$$= q_0 + (p_0 - q_0) + \sum_{n=1}^{2n_0-2} \varepsilon_n p_n$$

$$\leq \sigma(x_{k0}, +\infty) + (p_0 - q_0) + \sum_{n=1}^{2n_0-2} |\varepsilon_n| p_n .$$
Similarly,

\[\mu(x_{k_0}, +\infty) \geq \sigma(x_{k_0}, +\infty) - (p_0 - q_0) - \sum_{n=1}^{2n_0-2} |\varepsilon_n||q_n|. \]

Therefore

\[|\mu(x_{k_0}, +\infty) - \sigma(x_{k_0}, +\infty)| \leq (p_0 - q_0) + \sum_{n=1}^{2n_0-2} |\varepsilon_n| \max(|p_n|, |q_n|). \] (3)

Thus we need to estimate \(p_0 - q_0, |p_n|, |q_n|\). This can be done using the following observation (which we have also used in [S].) Let \(R\) be the Lagrange interpolation polynomial of degree \(n_0 - 1\), defined by

\[R(x_k) = \delta_{kk_0}, \ k = 1, 2, \ldots, n_0 . \]

Equivalently,

\[R(x) = \frac{S_{n_0}(x)}{S_{n_0}'(x_{k_0})(x - x_{k_0})}. \] (4)

Lemma 4. \(P - Q = R^2\).

Proof. The polynomial \(P - Q\) has multiple zeroes at \(x_k, k \neq k_0\). Therefore \(R^2 \mid (P - Q)\). Also, \(\deg R^2 = 2n_0 - 2 \geq \deg(P - Q)\), and

\[R^2(x_{k_0}) = 1 = P(x_{k_0}) - Q(x_{k_0}) . \]

Thus

\[p_0 - q_0 = \int_{\mathbb{R}} R^2(x) d\sigma(x) \] (5)

and

\[|p_n| = \left| \int_{\mathbb{R}} P(x)S_n(x) d\sigma(x) \right| \]

\[\leq \left| \int_{x_{k_0}}^{\infty} S_n(x) d\sigma(x) \right| + \left| \int_{\mathbb{R}} (P(x) - 1_{[x_{k_0}, +\infty)}(x))S_n(x) d\sigma(x) \right| \]

\[\leq \left| \int_{x_{k_0}}^{\infty} S_n(x) d\sigma(x) \right| + \int_{\mathbb{R}} R^2(x)|S_n(x)|d\sigma(x) . \] (6)
Similarly,
\[|q_n| \leq | \int_{x_{k_0}}^{\infty} S_n(x) d\sigma(x) | + \int_{\mathbb{R}} R^2(x) |S_n(x)| d\sigma(x) . \]

3 Proof of Proposition 2

We apply the framework of Section 2 to \(\sigma = \sigma_1, S_n = T_n \). Let \(x_{k_0} = \cos \theta_0, 0 \leq \theta_0 \leq \pi/2 \). Then
\[T_n'(\cos \theta_0) \cdot - \sin \theta_0 = n_0 \sin n \theta_0 , \]
and hence
\[|T_n'(x_0)| = \frac{n_0}{|\sin \theta_0|} = \frac{n_0}{\sqrt{1 - x_{k_0}^2}} . \]

Thus, according to (5),
\[p_0 - q_0 = \int_{\mathbb{R}} \frac{T_n'(x_0)^2}{T_n'(x_0)^2(x - x_0)^2} d\sigma_1(x) = \frac{\sin^2 \theta_0}{4 \pi n_0^2} \int_0^\pi \frac{\cos^2 n_0 \theta}{\sin^2 \frac{\theta + \theta_0}{2} \sin^2 \frac{\theta - \theta_0}{2}} d\theta . \]

Now,
\[\int_0^{\theta_0/2} \leq \int_0^{\theta_0/2} C_1 d\theta / \theta_0^4 \leq C_1 / \theta_0^3 \leq C_2 n_0 / \theta_0^2 , \]
\[\int_{\theta_0/2}^{\theta_0 - \pi / (3 n_0)} \leq C_3 \int_{\theta_0/2}^{\theta_0 - \pi / (3 n_0)} \frac{d\theta}{\theta_0^2 (\theta - \theta_0)^2} \leq \frac{C_4 n_0}{\theta_0^5} , \]
and similarly
\[\int_{\theta_0 + \pi / (3 n_0)}^{\pi} \leq C_5 n_0 / \theta_0^2 . \]

Finally,
\[|T_n'(\cos \theta)| = n_0 \left| \frac{\sin n_0 \theta}{\sin \theta} \right| \geq n_0 / (C_6 \theta_0) \geq |T_n'(\cos \theta_0)| / C_7 \]
for \(\theta - \theta_0 \leq \pi / (3 n_0) \), hence
\[\int_{\theta_0 - \pi / (3 n_0)}^{\theta_0 + \pi / (3 n_0)} \frac{T_n'(\cos \theta)^2 d\theta}{T_n'(\cos \theta_0)^2 (\cos \theta - \cos \theta_0)^2} \leq C_8 / n_0 . \]
Therefore
\[p_0 - q_0 \leq C/n_0. \] (7)

Next,
\[
\int_{x_{k_0}}^{\infty} T_n(x) d\sigma_1(x) = \int_0^{\theta_0} \cos n\theta \frac{d\theta}{\pi} = \frac{\sin n\theta_0}{n\pi};
\]
(8)
\[
\int_{\mathbb{R}} R^2(x)|T_n(x)|d\sigma_1(x) = \int_0^{\pi} \frac{\cos^2 n_0\theta}{\sin^2 \theta_0} (\cos \theta - \cos \theta_0)^2 \left| \cos n\theta \right| \frac{d\theta}{\pi} \leq C_1 \theta_0^3 \int_0^{\pi} \frac{\cos^2 n_0\theta}{\sin^2 \theta_0} \frac{d\theta}{\sin^2 \theta_0};
\]

Now,
\[
\int_0^{\theta_0/2} \leq C_2/\theta_0 \leq C_3 n_0/\theta_0^2;
\]
\[
\int_{\theta_0/2}^{\theta_0 - \pi/(3n_0)} \leq C_4 \int_{\theta_0/2}^{\theta_0 - \pi/(3n_0)} \frac{d\theta}{\theta_0^2 (\theta - \theta_0)^2} \leq C_5 n_0/\theta_0^2,
\]
and similarly
\[
\int_{\theta_0 + \pi/(3n_0)}^{\theta_0 - \pi/(3n_0)} \leq C_6 n_0/\theta_0^2;
\]
\[
\int_{\theta_0 - \pi/(3n_0)}^{\theta_0 + \pi/(3n_0)} \leq (C_7/n_0)(n_0^2/\theta_0^2) = C_7 n_0/\theta_0^2.
\]

Therefore
\[
\int_{\mathbb{R}} R^2(x)|T_n(x)|d\sigma_1(x) \leq C_8/n_0.
\] (9)
Combining (6), (8) and (9), we deduce:
\[|p_n| \leq C/n. \] (10)
Similarly, \[|q_n| \leq C/n. \]

Proof of Proposition 2. Substitute (7) and (10) into (3), taking
\[m_0 = \lfloor n_0/2 \rfloor + 1 \]
instead of \(n_0 \). We deduce that (2) holds when \(x_0 = x_{k_0} \) is a non-negative zero of \(T_{m_0} \). By symmetry, a similar inequality holds for negative zeroes. For a general \(x_0 \in \mathbb{R} \), apply the inequality to the two zeroes of \(T_{m_0} \) that are adjacent to \(x_0 \) (one of them may formally be \(\pm \infty \)).
4 Another inequality, and an application to Wigner’s law

Let the measure σ_2 on \mathbb{R} be defined by

$$d\sigma_2(x) = \frac{2}{\pi}(1 - x^2)^{1/2} \, dx.$$

Let $U_n(\cos \theta) = \cos n\theta$ be the Chebyshev polynomials of the second kind; these are orthogonal with respect to σ_2.

Proposition 5. Let μ be a probability measure on \mathbb{R}. Then, for any $n_0 \geq 1$ and any $x_0 \in \mathbb{R}$,

$$|\mu[x_0, +\infty) - \sigma_2[x_0, +\infty)| \leq K_n \left\{ \frac{\rho(x_0; n_0)}{n_0} + \rho(x_0; n_0)^{1/2} \sum_{n=1}^{n_0} n^{-1} \left| \int_{\mathbb{R}} U_n(x) d\mu(x) \right| \right\},$$

where $\rho(x; n_0) = \max(1 - |x|, n_0^{-2})$.

Observe that $\rho \leq 1$. Similar inequalities with 1 instead of ρ have been proved by Grabner [7] and Voit [9]. On the other hand, the dependence on x in (11) is sharp, in the following sense: for any x_0, there exists a probability measure μ on \mathbb{R} such that $\int_{\mathbb{R}} U_n(x) d\mu(x) = 0$ for $1 \leq n \leq n_0$, and

$$|\mu[x_0, +\infty) - \sigma_2[x_0, +\infty)| \geq C^{-1} \rho(x_0; n_0)/n_0,$$

where $C > 0$ is independent of n_0; cf. Akhiezer [1, Ch. 3].

The proof of Proposition 5 is parallel to that of Proposition 2; we apply the inequalities of Section 2 to the measure σ_2 and the polynomials U_n.

Grabner [7] and Voit [9] have applied their inequalities to estimate the cap discrepancy of a measure on the sphere. We present an application to random matrices.

Let A be an $N \times N$ Hermitian random matrix, such that

1. $\{A_{uv} \mid 1 \leq u \leq v \leq N\}$ are independent,
2. $\mathbb{E}|A_{uv}|^{2k} \leq (Ck)^k$, $k = 1, 2, \ldots$;
3. the distribution of every A_{uv} is symmetric, and $\mathbb{E}|A_{uv}|^2 = 1$ for $u \neq v$.

7
Let $\mu_A = N^{-1} \sum_{k=1}^{N} \delta_{\lambda_k(A)/(2\sqrt{N})}$ be the empirical measure of the eigenvalues of A (which is a random measure). By [4, Theorem 1.5.3],

$$0 \leq \mathbb{E} \int_{\mathbb{R}} U_n(x) d\mu_A(x) \leq Cn/N , \quad 1 \leq n \leq N^{1/3}.$$

Applying Proposition 5, we deduce the following form of Wigner’s law:

Proposition 6. Under the assumptions 1.-3.,

$$\left| \mathbb{E} \# \left\{ k \mid \lambda_k > 2\sqrt{N}x_0 \right\} - N\sigma_2(x_0, +\infty) \right| \leq C \max \left(N^{2/3}(1 - |x_0|), 1 \right)$$

for any $x_0 \in \mathbb{R}$.

Better bounds are available for $x \in (-1 + \varepsilon, 1 - \varepsilon)$ (cf. Götzte and Tikhomirov [6], Erdős, Schlein, and Yau [2]). On the other hand, for x very close to ± 1, the right-hand side in our bound is of order $O(1)$, which is in some sense optimal.

Remark 7. A similar method allows to bound the variance of the number of eigenvalues on a half-line:

$$\mathbb{V} \# \left\{ k \mid \lambda_k > 2\sqrt{N}x_0 \right\} \leq C \max \left(N^{2/3}(1 - |x_0|), 1 \right)^{5/2};$$

therefore one can also bound the probability that $\# \left\{ k \mid \lambda_k > 2\sqrt{N}x_0 \right\}$ deviates from $N\sigma_2(x_0, +\infty)$.

References

[1] N. I. Akhiezer, *The classical moment problem and some related questions in analysis*, Hafner Publishing Co., New York 1965 x+253 pp.

[2] L. Erdős, B. Schlein, H.-T. Yau, with an appendix by J. Bourgain, *Local semicircle law and complete delocalization for Wigner random matrices*, preprint: arXiv:0803.0542

[3] P. Erdős, P. Turán, *On a problem in the theory of uniform distribution, I-II*, Nederl. Akad. Wetensch., Proc. 51 (1948), 1146–1154, 1262–1269.
[4] O. N. Feldheim, S. Sodin, *A universality result for the smallest eigenvalues of certain sample covariance matrices*, preprint: arXiv:0812.1961.

[5] T. Ganelius, *Some applications of a lemma on Fourier series*, Acad. Serbe Sci. Publ. Inst. Math. 11 1957 9–18.

[6] F. Götze, A. Tikhomirov, *Rate of convergence to the semi-circular law*, Probab. Theory Related Fields 127 (2003), no. 2, 228–276.

[7] P. Grabner, *Erdős-Turán type discrepancy bounds*, Monatsh. Math. 111 (1991), no. 2, 127–135.

[8] S. Sodin, *Random matrices, nonbacktracking walks, and orthogonal polynomials*, J. Math. Phys. 48 (2007), no. 12.

[9] M. Voit, *Berry-Esseen-type inequalities for ultraspherical expansions*, Publ. Math. Debrecen 54 (1999), no. 1-2, 103–129.