Comparison of carbonyls emitted from conventional cigarettes, electronic cigarettes and heated tobacco products

Niki Matsouki¹, Emmanouil Konstantinidis¹, Chara Tsipa¹ and Efthimios Zervas¹,²

¹Hellenic Open University, Patras, Greece
²zervas@eap.gr

Abstract. Conventional cigarettes, electronic cigarettes (e-cigs) and heated tobacco products (HTPs) emit a wide number of chemical substances which are inhaled by the user. An extended bibliographic analysis of the available data concerning carbonyls identity and quantity in tobacco products gas emissions was performed. Published works in Scopus and Pubmed databases from 2010 until 2020, in English language, were used in order to collect the data, using specific keywords. The number of carbonyls detected in the emissions of conventional cigarettes’ is 43 (97 articles are included), 33 in e-cigs’ (70 articles included) and 62 in HTPs’ (50 articles included). Nineteen compounds are present in emissions of all three tobacco products. Their emitted concentration is generally higher in the case of conventional cigarettes compared to the other two products, except from 5-methylfurfural and methylglyoxal that had the higher concentrations in HTPs, plus benzaldehyde and formaldehyde that had higher concentrations in e-cigs. However, HTPs has the higher number of unique carbonyls emitted.

1. Introduction

Tobacco products, especially conventional cigarettes, electronic cigarettes (e-cigs) and heated tobacco products (HTPs) include in their gas emissions several chemical substances which are inhaled by the user [1,2]. The three emissions regulated in EU are tar, nicotine and CO [3]. Several other families of compounds are emitted, such as hydrocarbons, carbonyls, nitrosamines [4-10], but also particles [11,12], or metals [13,14].

Many of these substances are known to have a negative impact on human’s health. Carbonyls is one of the families of compounds emitted from conventional cigarettes; as this family of compounds is an intermediate product of the combustion of organic compounds [15]. However, even no combustion occurs in the case of electronic cigarettes, carbonyls are also found in their emissions [16-18]. Also, carbonyls are emitted from heated tobacco products [19-20].

In order to compare the emissions of carbonyls of conventional cigarettes, electronic cigarettes and heated tobacco products, we performed an extended bibliographic search to record the type and the concentration of these compounds in emissions of the three tobacco products.

2. Methodology

Data was collected from the papers published in Scopus and Pubmed databases, in English language, and during the years 2010–2020. Three different searches were performed, one for each type of tobacco product, using specific keywords. The searches performed for conventional cigarette,
electronic cigarette and for heated tobacco products are respectively (a second search is performed in Scopus the case of heated tobacco products, because all the keywords cannot fit to the search bar):
- cigarette * AND (emission * OR vapor OR aerosol OR voc OR pollutant* OR particle* OR particulate matter" OR pm),
- (ecig OR e-cig OR "electronic cigarette*" OR e-cigarette* OR "Vape pen*" OR "Vaping device" OR "electronic nicotine delivery system") AND (emission* OR vapor OR aerosol OR voc OR pollutant* OR particle* OR "particulate matter" OR pm),
- (hnb OR "heat not burn" OR "heat-not-burn" OR "heated tobacco product*" OR glo OR plum OR iqos OR iuoc OR lil OR mok OR puzzle OR teeps) AND (emission* OR vapor OR aerosol OR voc OR pollutant* OR particle* OR "particulate matter" OR pm).
- "Tobacco heating system" AND (emission* OR vapor OR aerosol OR voc OR pollutant* OR particle* OR "particle matter" OR pm).

The search performed in pubmed is: (HNB OR "Tobacco heating system" OR "heat not burn" OR "heat-not-burn" OR "heated tobacco product*" OR glo OR plum OR IQOS OR IUOC OR Lil OR Mok OR Puzzle OR TEEPS) AND (emission* OR vapor OR aerosol OR voc OR pollutant* OR particle* OR "particulate matter" OR pm).

Duplicate papers were eliminated; also papers from the references of the initial ones were included.

Data collection focused on carbonyl emission. Three files, one for each product, were constructed. These files include information about the name of the compound, the CAS number, the chemical family (aldehyde or ketone), the concentration (average, minimum and maximum and standard deviation), the units, the emissions generation method, the gas collection method, the analytical method and also the limit of detection and limit of quantification of this analytical method (when given). The average concentration values of all the articles were calculated for the carbonyl compounds and classified according to the different units used. Then, a comparison of all carbonyl compounds emitted from the three tobacco products is performed.

3. Results
The bibliographic search, using the above keywords, resulted to 4,275 unique articles for conventional cigarette, 1,434 for e-cigs and 810 for HTPs. The number of papers dealing with carbonyls in gas emissions is 97, 70 and 50 respectively, while the number of different carbonyls detected in the tobacco products emissions is 43, 33 and 62 respectively for conventional cigarettes, e-cigs and HTPs.

These compounds are presented in alphabetical order in table 1. The first three columns present the compounds found only in the emissions of conventional cigarettes, of e-cigs or of HTPs, while the last column shows the compounds found in the emissions of all three different tobacco products.

Compounds detected in all products gas emissions
Compounds detected in all products gas emissions
Conventional cigarettes
2,3-dimethyl-2-cyclopenten-1-one
2,3-pentanedione
2,4-pentanedione
2-cyclohexen-1-one
2-hexanone

Table 1. Carbonyls detected in tobacco products gas emissions.
Chemical Compound	Synonym
2-methyl-2-butenal	Glyoxal
2-methyl-2-cyclopenten-1-one	m-methylbenzaldehyde
2-methylbutanal	Nonanal
2-methyl-cyclopentanone	2,3-pentanedione
	2,4-dimethyl-3-pentanone
2-methylpropanal	Vanillin
2-pentanone	ß-damascon
	2-cyclopenten-1-one
	2-Cyclopenten-1-one, dimethyl-
	(configurational isomer 1)
3-(methylthio)propanal	2-Cyclopenten-1-one, dimethyl-
	(configurational isomer 2)
3-penten-2-one	2-formyl-1-methylpyrrole
6-methyl-5-hepten-2-one	2-heptanone
Acetophenone	2-heptanone, 6-methyl-
Acetoxyacetone	2-Hexanone
Farnesylacetone	2-methyl-2-butenal
Isoforone	2-methyl-2-cyclopenten-1-one
Methyl vinyl ketone	2-methyl-3-pentanone
Pentan-3-one	2-methylbutyraldehyde
Phenylacetaldehyde	2-methylcyclopentanone
	2-nonenal
	2-pentanone
	3,4-hexanedione
	3-hexanone
	3-methyl-2-butanone
	3-methyl-2-butenal
	4-pentenal
	6-methyl-5-hepten-2-one
	Benzeneacetaldehyde
	Cyclobutanone
	Decanal
Ethyl vinyl ketone
Farnesyl acetone
Glyoxal
Heptanal
Isobutyraldehyde
Methyl vinyl ketone
m-tolualdehyde
Nonanal
Pentan-3-one
trans-2-Pentalenal
trans-3-Penten-2-one

In order to compare the emissions of the three tobacco products, Table 2 shows the 19 compounds, and their concentrations (in the same unit, if possible) in the emissions of the three tobacco products.

Table 2. Concentration of carbonyls detected in the emissions of all three tobacco products.

Compound name	Conventional cigarette	e-cigarette	HTPs						
	Aver.	Std dev	Unit	Aver.	Std dev	Unit	Aver.	Std dev	Unit
3-hydroxybutan-2-one	0.079		μg/puff	0.020		μg/12puffs	6.866		μg/item
3-methylbutanal	133.3	0.38	μg/item	0.187		μg/12puffs	33.2	1.56	μg/item
4-methylpentan-2-one	0.2	0.11	μg/item	1.440		μg/m3	0.2725		μg/item
5-methylfurfural	5.25		μg/item	3240.0		μg/m3	8.765		μg/item
Acetaldehyde	1034.64	123.1	μg/item	23.938	12.694	μg/12puffs	265.07	26.4659	μg/item
Acetone	413.35	30.7	μg/item	12.468	6.667	μg/12puffs	57.281	7.8729	μg/item
Acrolein	123.784	13.1	μg/item	14.848	5.398	μg/12puffs	15.093	2.2655	μg/item
Benzaldehyde	23.65	0.04	μg/item	32.008		μg/12puffs	1.0433	0.75	μg/item
Butanal	48.1	3.7	μg/item	0.092	0.089	μg/12puffs	19.384	1.6606	μg/item
Crotonaldehyde	39.40	4.4	μg/item	0.082	0.072	μg/12puffs	6.6119	1.279	μg/item
Formaldehyde	69.080	15.287	μg/item	94.729	36.222	μg/12puffs	10.659	1.8873	μg/item
Furfural	38.3		μg/item	31.200		μg/12puffs	31.4	0.23	μg/item
Hexanal	71.000		μg/item	16.080		μg/m3	0.9	0.14	μg/item
Hydroxyacetone	12.400		μg/item	18.000		μg/12puffs	86.85		μg/item
Methylacrolein	67.192	5.10	μg/item	2.587		μg/L	11.266	0.305	μg/item
Methyl ethyl ketone	103.102	10.220	μg/item	0.830		μg/12puffs	17.239	2.4347	μg/item
Methylglyoxal	18.200	0.678	μg/item	0.552	1.225	μg/12puffs	28.005	1.465	μg/item
Pentanal	46.000		μg/item	0.096		μg/12puffs	10.209	1.48	μg/item
Propanal	86.95	10.942	μg/item	0.820	0.600	μg/12puffs	21.390	2.90	μg/item

Table 3 presents the concentrations of the rest of carbonyls, those detected in the emissions of one or two tobacco products. The concentration is shown as an average, or as the range minimum-maximum value when the average value was not recorded in the source articles. For the electronic cigarettes, the values per puff were multiplied by 12, considering that 12 puffs equal to one cigarette. For uniformity reasons, other conversions in the units of the original values were made and include μg/10puffs, μg/9puffs or μg/200puffs to μg/puff, by dividing by 10, 9, or 200, μg/ml to μg/L, ng/L to μg/L and mg/cigarette or ng/cigarette to μg/cigarette. In the case of only
minimum and maximum concentrations calculated and not an average, the maximum value is the one presented in the table. The concentration of fourteen compounds in the gaseous emissions of tobacco products are presented using the same unit (μg/cig or μg/item and μg/12puffs), although the method for generating these emission and the analytical method used may differ significantly.

Table 3: Concentration of carbonyls detected in the emissions of one or two tobacco products.

Compound name	Aver. or min-max	Stdev	Unit	Compound name	Aver. or min-max	Stdev	Unit
2,3-butanedione	236.187	25.68	μg/item	1,2-Cyclohexanone	0.083		μg/item
2,3-dimethyl-2-cyclopenten-1-one	1.260-1.830	0.100-0.070	μg/item	1-Acetoxy-2-propanone	14.55		μg/item
2,3-pentanediode	36.374	4.908	μg/item	1-Chloro-2-propanone	0.546		μg/item
2,4-pentanediode	17.933-67.733	2.000-6.733	μg/item	2,2,6-trimethyl-Cyclohexanone	0.1	0.01	μg/item
2,5-dimethylbenzaldehyde	4.54	0.84	μg/m3	2,3-Dimethyl-2-cyclopenten-1-one	1.05		μg/item
2-cyclohexen-1-one	0.490-2.420	0.010-0.070	μg/item	2,3-pentanediode	6.283	0.745	μg/item
2-hexanone	0.2	0.08	μg/item	2,4-dimethyl-3-pentanone	0.5		μg/item
2-methyl-2-butenal	1.000	0.6	μg/item	2,4-Pentanediode	0.1	0.000	μg/item
2-methyl-2-cyclopenten-1-one	3.220-4.250	0.150-0.110	μg/item	2-cyclohexen-1-one	0.436		μg/item
2-methylbutanal	179.000			2-cyclopenten-1-one	4.3		μg/item
2-methyl-cyclopentanone	0.9	0.1	μg/item	2-Cyclopenten-1-one, dimethyl- (configurational isomer 1)	0.273		μg/item
2-methylpropanal	58.64	2.02	μg/item	2-Cyclopenten-1-one, dimethyl- (configurational isomer 2)	0.135		μg/item
2-pentanone	12.32	1.316	μg/item	2-formyl-1-methylpyrrole	0.128		μg/item
3-(methylthio)propanal	1.1	0.16	μg/item	2-heptanone	0.229		μg/item
3-pentan-2-one	0.410-1.180	0.080-0.210	μg/item	2-heptanone, 6-methyl-	0.2383	0.00	μg/item
4-methylbenzaldehyde	0.157		μg/puff	2-Hexanone	0.1	0.01	μg/item
6-methyl-5-hepten-2-one	0.210-0.290	0.02	μg/item	2-methyl-2-butenal	1.49		μg/item
Acetophenone	0.370-0.560	0.030-0.010	μg/item	2-methyl-2-cyclopenten-1-one	2.34		μg/item
Acetoxyacetone	9.23		μg/item	2-methyl-3-pentanone	0.189		μg/item
Chemical Name	Concentration	Unit	Source				
-------------------------------	---------------	--------------	-------------------------------				
Farnesyl acetone	8.815	μg/item	2-methylbutyraldehyde				
Isoforone	0.080-0.110	μg/item	2-methylcyclopentanone				
Methyl vinyl ketone	51.245-77.250	μg/item	2-nonanal				
Pentan-3-one	5.43	μg/item	2-pentanone				
Phenylacetaldehyde	0.900-2.190	μg/item	3,4-hexanedione				
e-cigarettes							
2,3-butanedione	0.5340	μg/puff	3-hexanone				
2,3-pentanedione	0.0005	μg/puff	3-methyl-2-butanone				
2,5-dimethylbenzaldehyde	4.5400	μg/m3	4-pentenal				
4-methylbenzaldehyde	0.0461	μg/L	6-methyl-5-hepten-2-one				
Benzyl-methyl-ketone	0.0100	mg/g e-liquid	Benzeneacetaldehyde				
Decanal	1.800	μg/m3	Cyclobutanone				
Ethyl vanillin	0.8300	mg/g e-liquid	Decanal				
Glycolaldehyde	0.0048-0.0279	mg/g e-liquid	Ethyl vinyl ketone				
Glyoxal	0.0563	μg/puff	Farnesyl acetone				
m-methylbenzaldehyde	0.0026-0.0063	mg/puff	Glyoxal				
Nonanal	9.100	μg/m3	Heptanal				
o-methylbenzaldehyde	0.0007-0.0071	μg/puff	Isobutylaldehyde				
Vanillin	0.9130-1.4730	mg/g e-liquid	m-tolualdehyde				
β-damascon	250.00	μg/m3	Nonanal				

4. Discussion

Totally, 83 different compounds were found in the literature. The number of compounds detected in the emissions of all three products is only 19. HTPs were found to produce the highest number of compounds (62), followed by conventional cigarettes (43) and e-cigs (33). However, conventional cigarettes produce, in general, higher concentration of carbonyls than the other two products. More specifically, only benzaldehyde and formaldehyde were detected in higher concentrations in e-cigs emissions compared to conventional cigarettes. Literature suggests that high amounts of carbonyls are produced by e-cigs under high voltage vaping conditions [21-22]. The comparison of the same 14 compounds emitted from HTPs and conventional cigarettes shows higher concentrations of
hydroxyacetone and methylglyoxal from HTPs. For e-cigs and HTPs there is not a specific trend, though concentration in HTPs emissions was generally higher than in e-cigs.

It should be mentioned that the emission of carbonyls observed in the published articles are found within a wide range. The methods used for smoke generation, collection and analysis of carbonyls are very different and this is another parameter influencing this range.

5. Conclusions
According to the published works, a high number of carbonyls is detected in the mainstream smoke of tobacco products, both conventional cigarettes and novel tobacco products (e-cigs and HTPs). Conventional cigarettes emit the higher concentrations of carbonyls; however, HTPs produce the highest number of these compounds. The range of emissions is quite high; the different methods used in the literature for the generation mainstream smoke, the collection and analysis of carbonyls are very different and this is another parameter influencing this range.

Acknowledgments
This activity has received funding from the FRENCH AGENCY FOR FOOD, ENVIRONMENTAL AND OCCUPATIONAL HEALTH & SAFETY (ANSES) under contract N° 2020-CRD-01-200019.

References
[1] Takahashi Y, Kanemaru Y, Fukushima T, Eguchi K, Yoshida S, Miller-Holt J and Jones I 2018 Chemical Analysis and In Vitro Toxicological Evaluation of Aerosol from a Novel Tobacco Vapor Product: A Comparison with Cigarette Smoke Regulatory Toxicology and Pharmacology 92 94–103 https://doi.org/10.1016/j.yrtph.2017.11.009
[2] Bentley M C, Almstetter M, Arndt D, Knorr A, Martin E, Pospisil P and Maeder S 2020 Comprehensive Chemical Characterization of the Aerosol Generated by a Heated Tobacco Product by Untargeted Screening Analytical and Bioanalytical Chemistry 412 (11) 2675–85 https://doi.org/10.1007/s00216-020-02502-1
[3] European Union. Tobacco Products Directive (2014/40/EU https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ%3AJOL_2014_127_R_0001
[4] Bekki K, Inaba Y, Uchiyama S and Kunugita N 2017 Comparison of Chemicals in Mainstream Smoke in Heat-Not-Burn Tobacco and Combustion Cigarettes J UOEH 39 (3) 201–7 https://doi.org/10.7888/juoeh.39.201
[5] Noël A, Verret C M, Hasan F, Lomnicki S, Morse J, Robichaud A and Penn A L 2018 Generation of Electronic Cigarette Aerosol by a Third-Generation Machine-Vaping Device: Application to Toxicological Studies JoVE 138 58095 https://doi.org/10.3791/58095
[6] Ishizaki A and Kataoka H 2019 A Sensitive Method for the Determination of Tobacco-Specific Nitrosamines in Mainstream and Sidestream Smokes of Combustion Cigarettes and Heated Tobacco Products by Online in-Tube Solid-Phase Microextraction Coupled with Liquid Chromatography-Tandem Mass Spectrometry Analytica Chimica Acta 1075 98–105 https://doi.org/10.1016/j.aca.2019.04.073
[7] Belushkin M, Tafin Djoko D, Esposito M, Korneliou A, Jeannet C, Lazzerini M and Jaccard G 2020 Selected Harmful and Potentially Harmful Constituents Levels in Commercial E-Cigarettes Chemical Research in Toxicology 33 (2) 657–68 https://doi.org/10.1021/acs.chemrestox.9b00470
[8] Zervas E, Mukhanova S, Matsouki N, Shopabayeva A, Nurgozhin T, Poulopoulos S and Katsaounou P 2019 Emissions of Inhaled Benzene, Toluene, Ethylbenzene and Xylene from Slim, Classic and Heated Cigarettes European Respiratory Journal 56 (suppl 64) 1877 DOI: 10.1183/13993003.congress-2020.1877
[9] Zervas E, Matsouki N, Bekou E, Rodopoulou P and Katsaounou P 2020 Impact of e-liquid composition on the emission and inhalation of carbonyl compounds European Respiratory
[10] Savareear B, Lizak R, Brokl M, Wright C, Liu C and Focant J-F 2017 Headspace Solid-Phase Microextraction Coupled to Comprehensive Two-Dimensional Gas Chromatography–Time-of-Flight Mass Spectrometry for the Analysis of Aerosol from Tobacco Heating Product Journal of Chromatography A 1520 135–42 https://doi.org/10.1016/j.chroma.2017.09.014

[11] Zervas E, Litsiou E, Konstantopoulos K, Poulopoulos S and Katsaounou P 2018 Physical characterization of the aerosol of an electronic cigarette: impact of refill liquids Inhalation Toxicology 30 (6) 218-23 doi:10.1080/08993003.2018.1500662

[12] Ruprecht A A, De Marco C, Saffari A, Pozzi P, Mazza R, Veronese C, Angellotti G, Munarini E, Ogliari A C, Westerdahl D, Hasheminassab S, Shafer M M, Schauer J J, Repace J, Sioutas C and Boffi R 2017 Environmental Pollution and Emission Factors of Electronic Cigarettes, Heat-Not-Burn Tobacco Products, and Conventional Cigarettes Aerosol Science and Technology 51 (6) 674–84 https://doi.org/10.1080/02786826.2017.1300231

[13] Zervas E, Matsouki N, Kyriakopoulos G, Poulopoulos S, Ioannides Th and Katsaounou P 2020 Dissolution of metals in the liquids of electronic cigarettes Inhalation Toxicology 32 (6) 240-8 https://doi.org/10.1080/08993003.2020.1776801

[14] Turns S R 2000 An introduction to combustion. Concepts and applications, McGraw Hill.

[15] Lestari K S, Humairo M V and Agustina U 2018 Formaldehyde Vapor Concentration in Electronic Cigarettes and Health Complaints of Electronic Cigarettes Smokers in Indonesia Journal of Environmental and Public Health 2018 1–6 https://doi.org/10.1155/2018/9013430

[16] Bitzer Z T, Goel R, Reilly S M, Bhangu G, Trushin N, Foulds J, Muscat J and Richie J P 2019 Emissions of Free Radicals, Carbonyls, and Nicotine from the NIDA Standardized Research Electronic Cigarette and Comparison to Similar Commercial Devices Chemical Research in Toxicology 32 (1) 130–8 https://doi.org/10.1021/acs.chemrestox.8b00235

[17] Zervas E, Matsouki N, Bekou E, Rodopoulou P and Katsaounou P 2020 Impact of e-liquid composition on the emission and inhalation of carbonyl compounds European Respiratory Journal 56 1874 DOI: 10.1183/13993003.congress-2020.1874

[18] Li X, Luo Y, Jiang X, Zhang H, Zhu F, Hu S, Hou H, Hu Q and Pang Y 2019 Chemical Analysis and Simulated Pyrolysis of Tobacco Heating System 2.2 Compared to Conventional Cigarettes Nicotine and Tobacco Research 21 (1) 111–8 https://doi.org/10.1093/ntr/nty005

[19] Wang L, Liu X, Chen L, Liu D, Yu T, Bai R, Yan L and Zhou J 2020 Harmful Chemicals of Heat Not Burn Product and Its Induced Oxidative Stress of Macrophages at Air-Liquid Interface: Comparison with Ultra-Light Cigarette. Toxicology Letters 331 200–7 https://doi.org/10.1016/j.toxlet.2020.06.017

[20] Kosmider L, Sobczak A, Fik M, Knysak J, Zaciera M, Kurek J and Goniewicz M L 2014 Carbonyl Compounds in Electronic Cigarette Vapors: Effects of Nicotine Solvent and Battery Output Voltage Nicotine and Tobacco Research 16 (10) 1319–26 https://doi.org/10.1093/ntt/nru078

[21] Gillman I G, Kistler K A, Stewart E W and Paolantonio A R 2016 Effect of Variable Power Levels on the Yield of Total Aerosol Mass and Formation of Aldehydes in E-Cigarette Aerosols Regulatory Toxicology and Pharmacology 75 58–65 https://doi.org/10.1016/j.yrtph.2015.12.019