Cigarette Smoke Particle-Induced Lung Injury and Iron Homeostasis

Andrew J Ghio¹
Elizabeth N Pavlisko²
Victor L Roggli²
Nevins W Todd³
Rahul G Sangani⁴

¹Human Studies Facility, US Environmental Protection Agency, Chapel Hill, NC, 27514, USA; ²Department of Pathology, Duke University, Durham, NC, USA; ³Department of Medicine, University of Maryland, Baltimore, MD, 21201, USA; ⁴Department of Medicine, West Virginia University, Morgantown, WV, USA

Abstract: It is proposed that the mechanistic basis for non-neoplastic lung injury with cigarette smoking is a disruption of iron homeostasis in cells after exposure to cigarette smoke particle (CSP). Following the complexation and sequestration of intracellular iron by CSP, the host response (eg, inflammation, mucus production, and fibrosis) attempts to reverse a functional metal deficiency. Clinical manifestations of this response can present as respiratory bronchiolitis, desquamative interstitial pneumonitis, pulmonary Langerhans’ cell histiocytosis, asthma, pulmonary hypertension, chronic bronchitis, and pulmonary fibrosis. If the response is unsuccessful, the functional deficiency of iron progresses to irreversible cell death evident in emphysema and bronchiectasis. The subsequent clinical and pathological presentation is a continuum of lung injuries, which overlap and coexist with one another. Designating these non-neoplastic lung injuries after smoking as distinct disease processes fails to recognize shared relationships to each other and ultimately to CSP, as well as the common mechanistic pathway (ie, disruption of iron homeostasis).

Keywords: iron, ferritins, pulmonary disease, chronic obstructive, pulmonary emphysema, chronic bronchitis, hypertension, pulmonary, pulmonary fibrosis

Introduction

Cigarette smoking is associated with non-neoplastic lung injuries including bronchiolitis/pneumonitis, asthma, pulmonary hypertension, chronic bronchitis, pulmonary fibrosis, emphysema, bronchiectasis, and chronic obstructive pulmonary disease (COPD). The mechanistic pathway by which cigarette smoking initiates these injuries remains to be defined. It is proposed that the basis for non-neoplastic lung injuries associated with smoking is disruption of iron homeostasis in cells after exposure to cigarette smoke particle (CSP) (Figure 1). Following the complexation of intracellular iron by the CSP, inflammation, mucus production, and fibrosis attempt to reverse a functional metal deficiency. If the deficiency in cell iron is not corrected, the response progresses to include injuries associated with irreversible cell death including emphysema and bronchiectasis.

Clinical presentations and pathological observations of non-neoplastic injuries among smokers frequently do not fit into what has been previously described as a single disease entity or diagnosis but demonstrate shared features. This reflects 1) temporal disparities with the patient serially exposing lung tissue to CSP over decades, 2) differences in the deposition and retention of particle which is heterogeneous, and 3) progression of injury. Accordingly, smoking-related injury consists of sequelae to particle exposure that overlap and coexist with one another (eg,
Smoking and Iron Homeostasis

During smoking, a lack of oxygen and an incomplete incineration of tobacco result in the generation of a complex aerosol, which includes condensed liquid droplets (the particulate fraction or tar) suspended in a mixture of volatile/semi-volatile compounds and combustion gases (the gas fraction). Smoking one cigarette exposes the human respiratory tract to a remarkable mass of particulate matter (PM), between 15,000 and 40,000

Figure 1 Schematic depicting the mechanistic basis for non-malignant lung injuries with smoking. CSP disrupts cell iron homeostasis by complexation and sequestration of intracellular metal. Host responses of inflammation, mucus production, and fibrosis attempt to reverse inadequate cell iron concentrations. Without correction, the deficiency in cell iron leads to irreversible cell death evident in emphysema and bronchiectasis. RB, respiratory bronchiolitis; DIP, desquamative interstitial pneumonitis; PLCH, pulmonary Langerhans’ cell histiocytosis; RBILD, respiratory bronchiolitis with interstitial lung disease; OP, organizing pneumonitis; NSIP, non-specific interstitial pneumonitis; UIP, usual interstitial pneumonitis.

Figure 2 Venn diagram of potential non-malignant lung injuries after cigarette smoking. Presentations with overlap between two or more lung injuries are numerous.
The deposition fraction of CSP (with a mean diameter of about 0.2–0.5 µm) in the lung is projected to be 70–90% with the greatest of this occurring in the 16th to 19th generations of airways (which includes the respiratory bronchioles). There is a gravitational gradient in the ventilation distribution with dependent regions receiving more of each breath than the non-dependent regions and particle deposition is subsequently highest in the lower lung lobes. Soluble components of CSP can be transported to the blood. Clearance of the insoluble components of the particle is to the gastrointestinal tract and lymph nodes and slowest from the alveolar region where it is dependent on macrophage function. Accordingly, the lungs of cigarette smokers reveal enormous numbers of both intracellular and extracellular particles, with the former most frequently being in macrophages (Figure 3). Particle is observed to fill macrophages in small airways and alveolar regions in the inflammatory response. In the alveolar regions, pigment-laden cells may no longer be evident, but the accumulated particle remains intact with clusters of anthracotic material being discernable and the size of the individual aggregates of particle and the spatial relationships between them approximate those in the cellular collections.

Cells exposed to tobacco smoke become laden with a material that is variably described to be orange, red, brown, or black in color and fluorescent. This appearance is consistent with humic-like substances (HULIS) which are complex, organic, macromolecular compounds that comprise approximately 7–10% (mass/mass) of CSP. As a result of having a variety of oxygen-containing functional groups (mostly phenols and carboxylates), HULIS reacts with metal cations to form coordination complexes and, among these, iron is kinetically the most favored. Subsequently, cell exposure to CSP, with its included HULIS, results in an internalization and successive complexation and sequestration of host iron at the particle surface. Compounds which complex iron can provide a template for additional condensation of iron-hydroxides and a formation of oxide-centered nanoparticles follows. Iron homeostasis in the cell is disrupted. Macrophages laden with iron (ie, sideromacrophages) are observed with smoking and provide direct support for the capacity of CSP to disrupt iron homeostasis and accumulate metal in exposed cells (Figure 4). Quantities of this specific metal in macrophages increase proportionally to the frequency and duration of cigarette smoking.

A unique coordination chemistry led to the evolutionary selection of iron for a wide range of fundamental cell

Figure 3 CSP in the human lung. Smokers show particle in close proximity to both airways (A) and vascular structures (B) and intracellularly within macrophages in distant sub-pleural regions (C). CSP is evident in lung resected from patients with inflammatory lung injury (D), fibrosis (E), and emphysema (F). Stain is hematoxylin and eosin. Magnification approximates 100x.
functions and its availability is essential for almost every form of life. A lack of available iron can restrict life in environments ranging in size from the ecosystem of the Pacific Ocean to a bacterium. Iron concentrations inadequate to meet the requirements for life necessitate a development of pathways to acquire the critical metal. Concurrently, a metal-catalyzed generation of radicals presents a potential for oxidative stress. Therefore, iron homeostasis, including its import, storage, and export, are vigilantly regulated and life exists at the interface between iron-deficiency and -sufficiency. After the cell reaches some lower threshold of iron concentration, there is an obstruction of the cell cycle and an initiation of regulated cell death.

Intracellular iron levels immediately available for complexation in lung cells exposed to CSP are very low approaching the concentration of the labile iron pool (less than 1–5 µM). Accordingly, CSP competes for iron utilized by the cell for functions frequently critical for survival. With metal accumulation by the particle surface following its complexation, the cells exposed to CSP must appreciate a functional iron deficiency. While the total iron is either the same or increased, the concentration of metal in the cells exposed to CSP will be

Figure 4 Siderophages in macrophages collected by bronchoalveolar lavage. Macrophages collected from nonsmoker (A) do not stain for iron (blue) while those from a smoker (B) do. Stain is Perls' Prussian blue. Magnification approximates 400×.

Figure 5 Schematic for changes in iron homeostasis following CSP exposure. Functional groups at the surface of the CSP, including HULIS, complex and sequester iron from the cell. A functional metal deficiency results. In response to a reduction in intracellular iron, the cell upregulates iron import in an attempt to reacquire requisite metal. If the cell response to increase metal is inadequate, function and survival are compromised.
insufficient to meet the requirements for function as a result of its sequestration by the particle. The cell subsequently increases import of iron and, if successful, cell concentrations rise and metal levels will be sufficient to meet requirements for continued function despite the complex-

Exhaled breath condensate (EBC) is an alternative approach to sampling the epithelial lining fluid and has demonstrated decreased iron concentrations among patients diagnosed with smoking-related lung disease (eg, COPD). After complexation of iron by the CSP affecting a functional iron-deficiency, the cell will attempt to reverse the loss of requisite iron and this will include expression of proteins involved in metal import (eg, transferrin receptor and DMT1). Compared to nonsmokers’ lungs, both transferrin and transferrin receptor expression in cells and fluids can be higher relative to those with smoking-related disease.

Iron is imported into a cell only after ferrireduction (eg, superoxide generation) and this must similarly increase with exposure to CSP. In an animal model exposed to cigarette smoke, increases in lavage concentrations of iron and ferritin, and nonheme iron concentrations in the lung are reversed after filtering to remove particles. Exposure of respiratory epithelial cells to CSP (and its components) affects an increased import and accumulation of iron. These findings support complexation of cell iron by CSP and a cellular response to a functional metal deficiency in the lungs of smokers and/or those with disease after smoking.

Iron homeostasis is also altered systemically with smoking. Reflecting a diminished availability of metal after smoking, iron deficiency is common in smoking populations. Anemia is more frequently observed in both smokers and populations with smoking-related disease with a prevalence in COPD that varies between 4.9% and 44%. The two primary types of anemia seen in smoking-related disease are anemia of chronic disease and iron-deficiency anemia; both are related to alterations in iron homeostasis.

Bronchiolitis/Pneumonitis

Respiratory bronchiolitis (RB) is a universal inflammatory reaction that occurs in smokers (ie, smoker’s bronchiolitis). It is characterized histologically by a patchy accumulation of pigmented smoker’s macrophages, consistent with an accrual of HULIS, in the respiratory bronchioles (ie, that region with the greatest CSP deposition). RB is most frequently noted as an incidental histologic abnormality and few patients are symptomatic. With continued exposure, greater particle deposition will occur in the alveolar region where it will initiate an inflammatory response consistent with desquamative interstitial pneumonitis (DIP) which is characterized by numerous pigmented macrophages, and sometimes giant cells, within the distal airspace of the lung (Figure 3D). The prevalence and incidence of DIP are unknown, but an association with cigarette smoke has been demonstrated and the majority of patients are smokers.

While the feature that differentiates RB from DIP is most frequently cited as the distribution and extent of macrophage accumulation (that is bronchiocentric in RB and more diffuse in DIP), there are no reliable histologic features to distinguish the two inflammatory responses with certainty and they can be considered different phases of a single response. Smoking cessation is currently considered the primary treatment for both RB and DIP and survival rates are favorable. This inflammatory response can persist in patients after smoking cessation supporting particle participation as CSP remains in the lung for years.

Pulmonary Langerhans’ cell histiocytosis (PLCH) is characterized by the proliferation of specialized dendritic cells, known as Langerhans’ cells, that form multiple, bilateral, stellate-shaped nodules, which frequently cavitate. These peribronchiolar lesions are often associated with smokers’ pigmented macrophages as well as an influx of eosinophils and lymphocytes in the distal bronchioles. The incidence of PLCH is unknown and is difficult to determine since it is frequently asymptomatic and can resolve spontaneously. PLCH most frequently occurs in young adults with a peak incidence at 20–40 years of age, and almost all patients are either current or previous cigarette smokers. With smoking, a mixture of respiratory bronchiolitis, DIP, and PLCH is commonly observed histologically and their differentiation from one another can be difficult. Since the CSP deposition is greatest at the respiratory bronchiole, RB is the earliest...
inflammatory injury observed after smoking and temporally this can be followed by DIP and PLCH as the exposure increases with continued smoking.

The focus of the inflammatory response after smoking is suggested to be a reacquisition by the host of its iron sequestered by CSP. This is equivalent to inflammation following exposures to microbes, which reduces infection to a “battle for iron”. By impacting a functional iron deficiency in the host, CSP exposure initiates inflammation similar to other particles. This response includes increased oxidative stress, cell signaling, transcription factor activation, and release of mediators. Cell exposures to compounds and substances with a capacity to complex iron, including CSP and other particles, correlate with increased oxidant generation. Such oxidants, specifically superoxide and its related products, can follow a loss of requisite iron from the cell to a particle. At the level of a living system, the provision of an iron-deficient diet results in an anemia and an increase in oxidant generation. Superoxide, produced by the cell in response to metal deficiency, enables the import of requisite iron through the chemical reduction of Fe$^{3+}$ to Fe$^{2+}$. This ferrireduction is an essential, and frequently limiting, reaction in iron import. Cellular iron deficiency and its associated oxidative stress influence numerous pathways which coordinate an inflammatory response including an activation of specific kinases (eg, p38, JNK, ERK1, and ERK2). Phosphorylation of kinases following exposure to inflammatory agents, including particles, can be decreased by augmenting the cell concentration of available iron supporting a role in metal homeostasis. Comparably to kinase activation, diminished cell iron concentration corresponds to an activation of specific proinflammatory transcription factors also favoring a participation in metal homeostasis (eg, NF-κB, AP-1, HIF-α, CREB, and NRF). Finally, inflammatory mediator release increases with a decreased availability of iron. Cigarette smoking demonstrates a dose-dependent association with increased concentrations of inflammatory cytokines and cells in the lower respiratory tract. This association of the release of pro-inflammatory cytokines with a disruption in iron homeostasis has been demonstrated after exposure to CSP. This coordinated inflammatory response to CSP is comparable to activation of pathways observed with metal deficiency following cell exposures to other compounds and substances with a similar capacity to complex iron. Even with cessation of smoking, the HULIS in the retained particle will continue to complex available host iron as long as it persists in the lower respiratory tract therefore impacting a functional metal deficiency and initiating the inflammatory response (eg, RB and DIP).

Asthma

There are numerous associations between asthma, an inflammatory airways injury, and smoking. Both current and former smokers are at increased risk of developing asthma. Smoking also increases exacerbations, severity, hospitalizations, and mortality of asthma. Asthma associated with smoking demonstrates poorer control, impaired response to corticosteroid therapy, accelerated decline in lung function, and increased rate of healthcare utilization. There is a comparable causal relationship between exposure to environmental tobacco smoke (ETS) and asthma in non-smoking adults and children. Evidence also supports an association between ETS exposure and asthma exacerbation. Bronchial hyperresponsiveness (BHR) is regarded as a hallmark feature of asthma and bronchoprovocation testing is performed to support its diagnosis. Both cigarette smoking and ETS increase BHR. Finally, there is an interaction between maternal smoking and asthma with increasing risk for physician-diagnosed asthma in the newborn and during both childhood and adolescence.

The mechanism by which exposure to cigarette smoke causes these effects is not established but asthma can be associated with a deficiency of iron (both functional and absolute) initiated by particle exposure. While the largest quantity of CSP can be observed in the distal alveolar regions with smoking, the highest particle mass per epithelial surface area can be in the proximal conducting airways, due to smaller surface areas. Accordingly, an associated functional iron deficiency by the CSP and initiation of oxidative stress, activation of cell signaling and transcription factors, and release of proinflammatory mediators can result in an airways inflammation recognized clinically as asthma. In support of this, the inhalation of an iron chelator (ie, citric acid) increases BHR and causes bronchoconstriction. In addition, particle-related exposures other than cigarette smoking, which similarly complex metal and disrupt iron homeostasis, elevate BHR in a dose-dependent manner. Regarding maternal smoking and asthma in the newborn, iron is accumulated by the developing fetus against...
a concentration gradient and many stresses will impact the availability of this metal. There are statistically significant negative correlations between maternal smoking and an infants’ total body iron. The number of cigarettes smoked per day by the mother correlates negatively with iron availability in newborn infants. In addition, maternal smoking during pregnancy decreases the concentration of available iron in both umbilical cord blood and placenta.

Pulmonary Hypertension

Pulmonary hypertension (PH), an abnormal elevation in the pressures of the pulmonary arterial system, is initially an inflammatory disease. Exposure to cigarette smoke directly impacts pulmonary vascular cells to release an abnormal production of mediators, many pro-inflammatory, that control vascular cell proliferation, and vasoconstriction/vasodilatation. Pulmonary arterial intimal thickening and vessel narrowing are early changes in smokers’ lungs and these correlate with endpoints of other smoking-related lung injury (eg, severity of bronchiolitis and emphysema). Among smokers, there is also an increase in pulmonary vascular resistance due to vasoconstriction and thickening of the walls caused by proliferation of smooth muscle and other cells (ie, remodeling of the pulmonary vasculature).

PH is associated with a disruption in iron homeostasis and decreased metal availability. In patients with smoking-related lung disease, iron deficiency was associated with an increased systolic pulmonary artery pressure. Iron in lung tissue, which is complexed by CSP, shows an association with right ventricular systolic pressure among patients with idiopathic pulmonary fibrosis (IPF), a smoking-related lung disease. A high prevalence of iron deficiency is present in patients with idiopathic pulmonary arterial hypertension (IPAH) and metal availability corresponded to hemodynamics, functional class/disease severity, and clinical outcome. Similarly, iron deficiency is found in PH patients (38.25%) (with the highest prevalence being in connective tissue disease associated PAH) and is associated with worsened clinical outcome. The effect of hypoxia on pulmonary arterial pressure can depend on the iron status possibly acting through the transcription factor hypoxia-inducible factor. Extrapolating from chronic left heart failure where iron deficiency is recognized to be common and parenteral iron can change exercise capacity and functional class, treatment of metal deficiency can improve PH. After administration of intravenous iron, the rise in pulmonary artery pressures with hypoxia can similarly be attenuated.

Regarding a causative relationship of disrupted metal homeostasis with PH, iron is a major participant in pulmonary vascular homeostasis. Intracellular iron deficiency alters pulmonary vascular function and iron-deficient rats can exhibit raised pulmonary artery pressure and right ventricular hypertrophy with profound pulmonary vascular remodeling (eg, prominent muscularization, medial hypertrophy, and perivascular inflammatory cell infiltration). In another animal model, decreased iron availability leads to muscle remodeling, which can be reversed by replacement of the metal.

Chronic Bronchitis

Chronic bronchitis (CB) is diagnosed in patients with a cough productive of mucus for at least 3 months per year for 2 consecutive years. The primary mechanisms responsible for excessive mucus are overproduction/hypersecretion, by goblet cells and glands, and decreased elimination. Smoking is the primary risk factor for CB. The diagnosis of CB affects outcomes including lung function, exacerbations, hospitalizations, and mortality.

Mucus production in the smoker’s airways is proposed as a host response to reverse the functional iron deficiency resulting from metal complexation and sequestration by CSP. Epithelial interfaces exposed to external environments are dominated by linear polysaccharides with large molecular weights. Among these, glycosaminoglycans (GAGs, also called mucopolysaccharides) are a major component of mucus, produced by either epithelium or glands, and composed of amino sugars and uronic acids (all except for keratin sulfate have glucuronic acid or iduronic acid). These sugar acids contain carboxylate and hydroxyl functional groups, negatively charged molecules, which can participate in cation exchange and metal complexation. Reflecting this reactivity, hydroxy-carboxylates such as GAGs and other sugar acids complex iron and stain with colloidal iron. In this complexation, these polysaccharides employ both carboxylate and hydroxyl groups in the binding of metal. Among the metals, complexation of iron is preferred with the stability constant approximating 10^{4} M$^{-1}$.
deficiency. The ability of these polyanionic polysaccharides to complex metals can include bridges between the polymer chains which lead to the formation of ionic cross-linked, supermolecular structures and these can modify the gel polymer networks.211–216 Subsequently, with binding of available metal, there is crosslinking, water is expelled, the viscosity of the polysaccharide matrix is altered, chain stiffening follows, and mechanical properties can be changed.217,218 Metal cations, including iron, can also depolymerize polysaccharides comparable to other biopolymers.219–223 The activity of a lyase can be increased and decreased after exposure to specific metals.224,225 With iron deficiency, lyases are activated to produce oligomers (eg, oligogalacturonides) which demonstrate important bioactivities including metal uptake (Figure 6).226,227 In contrast to iron deficiency, increased metal availability diminishes this lyase activity.228 Accordingly, low iron availability in microbials triggers a coordinated expression of genes encoding lyases with iron transport functions.229,230 This synthesis and depolymerization of polysaccharides provides polymeric units with a high number of binding sites utilized for metal import.231 This is comparable to several protein polymers which are utilized to increase metal uptake after proteolytic degradation and complexation of the metal by fragments with decreased molecular weight, increased charge with disclosure of reactive functional groups.232

In support of a role for these polyanionic polysaccharides in human iron homeostasis, other living systems utilize them to acquire metal.233–235 Similar to mucus, capsular polysaccharides in microbes have abundant uronic acid subunits that participate in metal uptake.210,236,237 Among the metals, uptake by a capsule is greatest for iron and large concentrations can be detected.210,238 Iron availability influences both formation of a capsule and the production of these polysaccharides.239–243 Microbials can also generate biofilms, which include polyuronates of varying chain length and composition.196,244 With biofilm formation, microbes effectively concentrate and utilize metals with iron being preferred over others.245 Microbes respond to iron deficiency by using the metal complexed by the components of the biofilm as a “sink”. Removal of iron from a medium increases biofilm and polyuronate production as the microbe attempts to reverse the deficiency.246–248 In contrast, elevated iron concentrations inhibit biofilm formation in a dose-dependent manner.249–254 Accordingly, biofilm production is induced in iron-restricted conditions and is repressed by increased availability of the metal.249 Polyuronates, and mucus production, also participate in iron uptake in plants and animals.229,230 A large proportion of metal-binding, required for iron transport in the gastrointestinal tract, is found in goblet cells and the mucin layer located extracellularly in the lumen.231 Mucus can be demonstrated to have metal-binding activity using

![Figure 6 Schematic of iron import by polyanionic polysaccharide. Iron is bound by the polysaccharide using moieties such as carboxylates and hydroxyl groups. Lyase activity, increased by the metal deficiency, provides oligomers with bound iron to the cell for receptor-mediated uptake.](https://doi.org/10.2147/COPD.S337354)
histologic methodology. Colloidal iron stains are employed as an assay for in situ iron binding capacity in mucus and confirm metal-binding by carboxylated and sulfated mucopolysaccharides and glycoproteins. Following phagocytosis of mucus, macrophages demonstrate an accumulation of iron. All this evidence supports an increased mucus production in the smoker’s airways as a beneficial host response, which participates in reversing a functional metal deficiency following complexation of iron by CSP. The inclusion of polyanionic polysaccharides (eg, polyuronates) in mucus effectively positions a negative charge on human respiratory cell membranes in the airways which complexes iron. After binding the metal, the polysaccharide is acted on by lyases providing a continual supply of a low molecular iron chelate facilitating import and increasing availability.

Pulmonary Fibrosis

Evidence supports a relationship between smoking and pulmonary fibrosis. This pathobiologic process can be characterized by excessive extracellular matrix (ECM) production, alveolar epithelial cell loss, and alveolar collapse in response to injury. Radiologically, pulmonary fibrosis is recognized by a combination of reticulin opacities, volume loss, traction bronchiectasis (dilated, irregularly shaped airways), and honeycombing (clusters of small cysts located in the extreme periphery of the lung), of which the latter two develop as a result of loss in aerated lung volume and permanent alveolar collapse. Pathologically, pulmonary fibrosis manifests as several different histologic patterns: 1) organizing pneumonia (OP), characterized by round or oval pale-staining deposits consisting of fibroblasts, myofibroblasts, collagen, and fibrin within respiratory bronchioles, alveolar ducts and alveoli; 2) nonspecific interstitial pneumonia (NSIP), characterized by inflammation and/or fibrosis in the lung interstitium occurring in a spatially homogeneous pattern and with preservation of overall lung architecture; and 3) usual interstitial pneumonia (UIP), the most severe form of lung fibrosis, characterized by heterogeneous areas of dense fibrosis interspersed with areas of relatively normal lung architecture, fibroblastic foci, and honeycombing.

With the deposition and retention of CSP being greatest in the region of the respiratory bronchioles, an initial fibrosis evolves from the inflammatory response, correlates with the amount smoked, and is observed pathologically as a peribronchiolar fibrosis. With continued smoking (ie, CSP exposure), deposition will extend distally beyond the respiratory bronchiole. OP and NSIP represent earlier phases of the tissue response to CSP while UIP represents a lung response to higher doses and subsequently a later stage. One histologic presentation of injury may progress into the next with overlapping patterns being observed which make strict histopathologic diagnosis difficult or impossible. OP components are common lesions in both NSIP and UIP cases, and as fibrosis evolves, pathological areas of NSIP are observed with UIP.

Below the resolution of any radiologic imaging, fibrosis can be observed in a majority of smokers. In the last two decades, fibrotic lung injury has presented radiologically without clinical symptoms; studies on large cohorts have reported such interstitial lung abnormalities (ILAs) in 8–20% of the smokers undergoing high-resolution computed tomography (CT) scanning. On pathological examination, ILAs can include both inflammation and fibrosis. ILAs are a precursor to clinically evident smoking-related fibrotic lung disease.

In support of a role for a metal deficiency participating in lung fibrosis, animal models of fibrotic injury utilize compounds and substances which complex and sequester iron (eg, bleomycin, asbestos, silica, and paraquat). Reflecting a metal deficiency, 1) iron is lower in breath condensate and 2) gallium uptake, indicating transferrin-mediated metal uptake and demand for metal, is increased in the lungs of patients with fibrosis. In patients with particle-related fibrotic lung disease and animal models of lung fibrosis, macrophages demonstrate increased transferrin receptor (CD71) indicating iron insufficiency. A humic substance (fulvic acid), which is chemically analogous to HULIS in CSP, stimulates collagen secretion by articular chondrocytes. Finally, increased metal availability after treatment with ferric citrate decreases fibrosis in a non-pulmonary tissue of an animal model.

Although pulmonary fibrosis is detrimental to the patient from a lung mechanics and gas exchange standpoint, the fibrotic process may benefit the host response to functional iron deficiency associated with the loss of metal following complexation by CSP. Fibrotic lung injury associated with smoking is characterized by an excessive accumulation of ECM. Comparable to mucus, polyuronates are a major component of both GAGs and ECM. Hyaluronic acid (HA) is the most abundant GAG in ECM and is increased with smoking. Comparable to other polyuronates, it forms a coordination complex with transition metals including iron. Metals participate in the
depolymerization and, following the reaction with iron, HA will be degraded.307,310,311 Such depolymerization of GAG polysaccharides to oligosaccharides improves cell import of metal. Increased availability of iron inhibits hyaluronidase and degradation products of HA function as mediators of inflammation.312–314 The cell receptor for HA is regulated by metal availability and is a major participant in iron uptake.315 Collagen is another major component of ECM, being the most abundant protein in mammals, and is also increased in smokers’ lungs.268,316–323 As a result of abundant functional groups including carboxylates, hydroxyls, and amines, collagen complexes iron which may increase cell availability and possibly reverse a deficiency (Figure 7).324–327 Collagen peptides demonstrate iron binding activity.328 This interaction of collagen with metals is a recognized method for its stabilization (ie, tanning which most commonly is achieved with chromium but iron cations can be employed).329,330 The metal complexed to collagen is considered available to the host and higher doses of iron decrease collagen synthesis further supporting a role in metal homeostasis.331–333 Relationships between other components of ECM and iron homeostasis are also evident.268,334–336 A Gamma-Gandy body, with dense fibrous tissue and collagenous fibers encrusted with iron and calcium, demonstrates the capacity of ECM to complex metal cations and impact their homeostases.337

Emphysema and Bronchiectasis

Emphysema is characterized by abnormal, permanent enlargement of the airspaces distal to the terminal bronchiole accompanied by destruction of their walls. The early lesion, focal emphysema, involves the branches of the terminal bronchiole, and this is followed by microscopic emphysema with passages of airways affected being the two distal orders of respiratory bronchioles or the first order of alveolar ducts (ie, the site of greatest CSP deposition). Centrilobular emphysema following smoking originates in areas of “parenchymal soot deposits”, immediately adjacent to retained particle, and severity is dependent on the total quantity of CSP (Figure 8).23,338–344 In these emphysematous foci, there is a brownish-colored pigment noted in both macrophages and interstitial reflecting HULIS in CSP. This relationship between CSP and emphysema suggests particle participation in the destructive process responsible for tissue injury.

Positive stains with Perls’ Prussian blue and accumulation of ferritin and hemosiderin demonstrate a disruption of iron homeostasis in emphysema.23,345 In mice, provision of an iron-depleted diet was associated with more severe emphysema following cigarette smoke exposure reinforcing the role of the functional metal deficiency in pathogenesis.346 When successful in resolving the functional iron deficiency following complexation of host metal to the reactive functional groups at the particle surface, inflammation and fibrosis can reverse.347–352 However, with failure to resolve an insufficiency of requisite iron, the cell cycle is obstructed and a form of regulated cell death is initiated.353 An increase in apoptotic...
cells is observed in the lungs of emphysematous patients.354–370 Since this is not counterbalanced by an increase in proliferation, there is a loss of cells resulting in cell/tissue destruction. While mechanisms involved in cell death with emphysema can include a wide range of mediators (eg, oxidative stress, ceramides, vascular endothelial growth factor, and inflammatory cytokines), the critical factor is iron availability. As a result of its central role in complexing the metal and determining availability, cell death will be initiated immediately adjacent to the particle (ie, focal and centrilobular emphysema in the distal bronchiole) as this corresponds to those cells that are functionally iron deficient. Exposure to a substance with this same capacity for metal complexation results in a comparable sequestration of iron, cell death, and contiguous tissue destruction.371,372

Bronchiectasis is defined as a permanent enlargement of airways in the lung. It is commonly observed in smoking populations and in IPF patients, with prevalence that can approach 50% and 95%, respectively.373 The deposition of CSP per unit surface area of a proximal bronchus can be considerably elevated relative to that calculated for the whole lung and airway epithelial cell exposure can be equivalent to or greater than that of alveolar epithelial cells.374 Bronchiectasis can result from the disruption of iron homeostasis by CSP in airways with a functional iron deficiency associated with smoking blocking the cell cycle and impacting cell death in airway epithelial cells comparable to that in alveolar epithelial cells observed in emphysema. However, apoptosis in large, tubular structures (eg, bronchi and arteries) produces a pattern of injury, which can include widening and distortion of the cylindrical tissue organization.375–378 Accordingly, after some threshold of cell death is realized in the airways, widening (that is bronchiectasis) is anticipated. In support of this relationship, indices of emphysema (the other lung injury involving significant cell death after CSP) correlates with bronchiectasis.379 In addition, the remodeling of lung tissue in UIP after smoking includes a continuum of injury, which includes “traction” bronchiectasis and honeycombing. Rather than distinct entities, bronchiectasis and honeycombing reflect a spectrum of injury with the latter representing the final product after exposure of the airway to CSP. In support of this, radiographic findings typical of honeycombing and respiratory-lined cysts correspond closely with bronchiectasis histologically and they represent dilated bronchioles and alveolar ducts with apoptotic cells.59,380,381

COPD

COPD is considered to be one of the most common respiratory diseases and a leading cause of death in the world. It is defined physiologically by airflow limitation that is not fully reversible. Most commonly, COPD is considered to include some combination of CB and emphysema.180,382–384 Cigarette smoking is the major risk factor for developing COPD with up to 90% of the diagnosed patients being ever-smokers. Smoking cigarettes decreases all indices of lung function but particularly affects flows.385,386 The greater the number of cigarettes smoked, the faster the rate of decline in lung function and losses can be extreme in COPD patients.386

Associations of pulmonary function tests, blood and bronchoalveolar lavage endpoints, and health statistics with indices of iron homeostasis support an involvement of the metal in COPD pathogenesis. Spirometric measures can correlate positively with serum ferritin and iron concentrations as well as transferrin saturation.387–389 However, there is a negative correlation between FEV\textsubscript{1}/FVC ratio and serum ferritin among both smokers and nonsmokers supporting a relationship between airflow obstruction and a disruption of iron homeostasis.390,391 Among COPD patients, lower percent transferrin saturation can be associated with worsening dyspnea and serum iron concentrations, transferrin saturation, hematocrit, and hemoglobin predict survival.392–395 Iron deficiency predicts acute exacerbations for COPD, while anemia increases the mortality risk four-fold in such patients.53,396 In those with COPD, anemia is an indicator for health care utilization with lower hematocrit being a risk for long-term oxygen use, hospitalization, increased duration of hospitalizations, and hospital readmission after acute exacerbation.392,397–399 Correction of iron deficiency improves dyspnea scores in one cohort of COPD patients and use of blood transfusion enables weaning from mechanical ventilation.51,400 Serum iron levels also predict susceptibility of individuals to cigarette smoke with low serum iron being associated with a decline in FEV\textsubscript{1}.388 Bronchoalveolar lavage iron and ferritin concentrations are higher in COPD patients and in smokers without COPD when compared to nonsmokers, probably reflecting a CSP component(s) in the lavage and metal complexation, and these increase further with exacerbations.401 Finally, in addition to these pulmonary function tests, blood endpoints, and health statistics, an association between genetic
factors and susceptibility supports a participation of iron homeostasis in COPD pathogenesis (eg, IREB2). 402–404

Infections
Smokers exhibit an increased susceptibility to numerous infections. Microbials require iron to proliferate. A pathogen’s survival and virulence are directly related to its success in competing for available iron and metal acquisition from the host determines the virulence of microbes. 405,406 While the pathogen requires iron concentrations that approximate 10^-6 M for processes critical to survival, this metal is normally available in the host only at 10^-12-fold lower concentrations. In the lungs of a smoker, there is an increase in total concentrations of iron but a functional deficiency following complexation by CSP. However, microbes can utilize specialized systems (eg, siderophores and receptors that bind host metal transport and storage proteins) to access the sequestered iron. Subsequently, smoking elevates levels of iron available to microbes in the respiratory tract. Accordingly, smoking is the strongest risk factor for pneumonia and its severity. 407–415 Similar to pneumonia, viral upper respiratory infections are increased among smokers. 416 With cessation of smoking, the risk for these respiratory infections declines but remains elevated in the ex-smoker, relative to the lifetime nonsmoker, because of the persistence of the CSP and complexed iron. 410

Conclusions
Exposure to cigarette smoke produces a functional iron deficiency following complexation of host metal to reactive groups at the CSP surface. A component of the tissue response is focused on reversing the metal deficiency and initially is inflammatory but rapidly proceeds to include fibrosis. Structural remodeling after cigarette smoking (eg, that observed in chronic bronchitis and pulmonary fibrosis) contributes to correcting the functional iron deficiency and can be reversible. However, with significant disruption of iron homeostasis and unresolved metal deficiency, there will be injury associated with cell death, which is not reversible (eg, emphysema and bronchiectasis). The successful inhibition of a host response can potentially augment cell death and dependent injury; truly effective treatments of chronic bronchitis and pulmonary fibrosis may consequently worsen emphysema and bronchiectasis.

Disclosure
The authors report no conflicts of interest in this work.

References
1. National Research Council. Environmental Tobacco Smoke: Measuring Exposures and Assessing Health Effects. Washington DC: National Academy Press; 1986.
2. Lippmann M, Yeates DB, Albert RE. Deposition, retention, and clearance of inhaled particles. Br J Ind Med. 1980;37(4):337–362. doi:10.1136/oem.37.4.337
3. Hiller FC. Deposition of sidestream cigarette smoke in the human respiratory tract. Prev Med. 1984;13(6):602–607. doi:10.1016/S0091-7455(84)80010-9
4. Choi JI, Kim CS. Mathematical analysis of particle deposition in human lungs: an improved single path transport model. Inhal Toxicol. 2007;19(11):925–939. doi:10.1080/08958370701513014
5. Kim SY, Sim S, Choi HG. Active and passive smoking impacts on asthma with quantitative and temporal relations: a Korean Community Health Survey. Sci Rep. 2018;8(1):20134. doi:10.1038/s41598-018-26895-3
6. Lambert AR, O’Shaughnessy P, Tawhai MH, Hoffman EA, Lin CL. Regional deposition of particles in an image-based airway model: large-eddy simulation and left-right lung ventilation asymmetry. Aerosol Sci Technol. 2011;45(1):1–25. doi:10.1080/02786862.2010.517578
7. Brown JS, Zeman KL, Bennett WD. Regional deposition of coarse particles and ventilation distribution in healthy subjects and patients with cystic fibrosis. J Aerosol Med. 2001;14(4):443–454. doi:10.1089/0894268015274659
8. Heyder J. Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc Am Thorac Soc. 2004;(4):315–320. doi:10.1513/pats.200404-046TA
9. Graber ER, Rudich Y. Atmospheric HULIS: how humic-like are they? A comprehensive and critical review. Atmos Chem Phys. 2006;6:729–753. doi:10.5194/acp-6-729-2006
10. Zheng GJ, He KB, Duan FK, Cheng Y, Ma YL. Measurement of humic-like substances in aerosols: a review. Environ Pollut. 2013;181:301–314. doi:10.1016/j.envpol.2013.05.055
11. Stedman RL, Chamberlain WJ, Miller RL. High molecular weight pigment in cigarette smoke. Chem Ind. 1966;37:1560–1562.
12. Ghio AJ, Stonehuerner J, Quigley DR. Humic-like substances in cigarette condensate and lung tissue of smokers. Am J Physiol. 1994;266:L382–L388. doi:10.1152/ajplung.1994.266.4.L382
13. Hoffmann D, Hoffmann I. The changing cigarette, 1950–1995. J Toxicol Environ Health. 1997;50(4):307–364. doi:10.1080/009841097160393
14. Gonzalez DH, Soukup JM, Madden MC, et al. A fulvic acid-like substance participates in the pro-inflammatory effects of cigarette smoke and wood smoke particles. Chem Res Toxicol. 2020;33(4):999–1009. doi:10.1021/acs.chemrestox.oc00036
15. Vassar PS, Culling C, Saunders AM. Fluorescent histiocyes in sputum related to smoking. Arch Pathol. 1960;70:649–652.
16. Pratt SA, Finley TN, Smith MH, Ladman AJ. A comparison of alveolar macrophages and pulmonary surfactant obtained from the lungs of human smokers and nonsmokers by endobronchial lavage. Anat Rec. 1969;163(4):497–507. doi:10.1002/ars.23701630402
17. Kerenyi T, Voss B, Goecikenjan G, Muller KM. Cellular autofluorescent pigment and interstitial fibrosis in smoker’s lung. Pathol Res Pract. 1992;188(7):925–930. doi:10.1016/S0344-0338(11)80253-0
18. Yue S, Ren H, Fan S, Sun Y, Wang Z, Fu P. SPRingtime precipitation effects on the abundance of fluorescent biological aerosol particles and HULIS in Beijing. Sci Rep. 2016;6:29618. doi:10.1038/srep29618
19. Erdogan S, Baysal A, Akba A, Hamanci C. Interaction of metals with humic acid isolated from oxidized coal. Polish J Environ Stud. 2007;16:671–675.
20. Yang R, Van den Berg CM. Metal complexation by humic substances in seawater. Environ Sci Technol. 2009;43 (19):7192–7197. doi:10.1021/es90173w
21. Yamamoto M, Nishida A, Otsuka K, Komai T, Fukushima M. Evaluation of the binding of iron(II) to humic substances derived from a compost sample by a colorimetric method using ferrozine. Bioresour Technol. 2010;101(12):4456–4460. doi:10.1016/j.biortech.2010.01.050
22. Town RM, Duval JF, Buffle J, van Leeuwen HP. Chemodynamics of metal complexation by natural soft colloids: Cu(II) binding by humic acid. J Phys Chem A. 2012;116(25):6489–6496. doi:10.1021/jp212226j
23. Ghio AJ, Hilborn ED, Stonehuenner JG, et al. Particulate matter in cigarette smoke alters iron homeostasis to produce a biological effect. Am J Respir Crit Care Med. 2008;178(11):1130–1138. doi:10.1164/rccm.200802-3340OC
24. Zunic SS, Djordjevic-Denic GV, et al. Correlation of lung iron in smokers. Int Arch Occup Environ Health. 1991;63(6):587–595.
25. Takemoto K, Kawai H, Kuwahara T, Nishina M, Adachi S. Metal concentrations in human lung tissue, with special reference to age, sex, cause of death, emphysema and contamination of lung tissue. Int Arch Occup Environ Health. 1991;62(5):579–586. doi:10.1007/BF00381111
26. Thompson AB, Bohling T, Heires A, Linder J, Rennard SI. Lower respiratory tract iron burden is increased in association with cigarette smoking. J Lab Clin Med. 1991;117(6):493–499.
27. Wesselius LJ, Nelson ME, Skikne BS. Iron binding, internalization, and fate in human alveolar macrophages. J Lab Clin Med. 1986;108(6):587–595.
28. Comandini A, Cavalli F, et al. Iron laden macrophages in idiopathic pulmonary fibrosis: histopathologic study on lung explant specimens and correlations with pulmonary hemodynamics. Hum Pathol. 2007;38(1):60–65. doi:10.1016/j.humpath.2006.06.007
29. Kim KH, Maldonado F, Ryu JH, et al. Iron deposition and increased alveolar septal capillary density in nonbrotic lung tissue are associated with pulmonary hypertension in idiopathic pulmonary fibrosis. Respir Res. 2010;11:37. doi:10.1186/1465-9921-11-37
30. Sanchez M, Sabio L, Galvez N, Capdevila M, Dominguez-Vera JM. Iron chemistry at the service of life. IUBMB Life. 2017;69 (6):382–388. doi:10.1002/iub.1602
31. Boyd PW, Jickells T, Law CS, et al. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science. 2007;315(5812):612–617.
32. Carver PL. The battle for iron between humans and microbes. Curr Med Chem. 2018;25(1):85–96. doi:10.2174/092986732466170720110049
33. Fukuuchi K, Tomoyasu S, Watanabe K, et al. Enhanced c-fos expression after intracellular iron deprivation. Biochem Mol Biol Int. 1993;30(3):403–409.
34. Ido Y, Muto N, Inada A, et al. Induction of apoptosis by honokiol, a potent iron chelator, in teratocarcinoma F9 cells is mediated through the activation of caspase-3. Cell Proteol. 1999;52 (1):63–73. doi:10.1046/j.1365-2184.1999.3210063.x
35. Sanchez M, Sabio L, Galvez N, Capdevila M, Dominguez-Vera JM. Iron chemistry at the service of life. IUBMB Life. 2017;69 (6):382–388. doi:10.1002/iub.1602
36. Boyd PW, Jickells T, Law CS, et al. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science. 2007;315(5812):612–617.
37. Carver PL. The battle for iron between humans and microbes. Curr Med Chem. 2018;25(1):85–96. doi:10.2174/092986732466170720110049
38. Fukuuchi K, Tomoyasu S, Watanabe K, et al. Enhanced c-fos expression after intracellular iron deprivation. Biochem Mol Biol Int. 1993;30(3):403–409.
39. Ido Y, Muto N, Inada A, et al. Induction of apoptosis by honokiol, a potent iron chelator, in teratocarcinoma F9 cells is mediated through the activation of caspase-3. Cell Proteol. 1999;52 (1):63–73. doi:10.1046/j.1365-2184.1999.3210063.x
40. Georgiou NA, van der Bruggen T, Oudshoorn M, Hider RC, Marx JJ, van Asbeck BS. Human immunodeficiency virus type 1 replication inhibition by the bidentate iron chelators CP502 and CP511 is caused by proliferation inhibition and the onset of apoptosis. Eur J Clin Invest. 2002;32(Suppl 1):91–96. doi:10.1002/eji.2002320109.x
41. Kakhlon O, Cabantchik ZI. The labile iron pool: characterization, measurement, and participation in cellular processes. Free Radic Biol Med. 2002;33(8):1037–1046. doi:10.1016/S0891-5849(02)01006-7
42. Cabantchik ZI. Labile iron in cells and body fluids: physiology, pathology, and pharmacology. Front Pharmacol. 2014;5:45. doi:10.3389/fphar.2014.00045
43. Quan SG, Golde DW. Identification and localization of toxic elements in normal human lung macrophages. Proc Soc Exp Biol Med. 1981;167(2):175–181. doi:10.3181/00379727-167-41145
44. Mutti A, Corradi M, Goldoni M, Vettori MV, Bernard A, Apostoli P. Exhaled metallic elements and serum pneumoproteins in asymptomatic smokers and patients with COPD or asthma. Chest. 2006;129(5):1288–1297. doi:10.1378/chest.129.5.1288
45. Mumbry S, Saito J, Adcock IM, Chung KF, Quinlan GJ. Decreased breath excretion of redox active iron in COPD: a protective failure? Eur Respir J. 2016;47(4):1267–1270. doi:10.1183/13993003.01710-2015
46. Ghio AJ, Soukup JM, McGee J, Madden MC, Esther CR. Iron concentration in exhaled breath condensate decreases in ever-smokers and COPD patients. J Breath Res. 2018;12 (4):046009. doi:10.1088/1752-7163/aad825
47. Wesselius LJ, Nelson ME, Skikne BS. Iron binding, internalization, and fate in human alveolar macrophages. Am J Respir Crit Care Med. 1994;150(3):690–695. doi:10.1164/ajrccm.150.3.8087339
48. Mateos F, Brock JH, Perez-Arellano JL. Iron metabolism in the lower respiratory tract. Thorax. 1998;53:594–600. doi:10.1136/ thx.53.7.594
49. Mayo JJ, Kohlhepp P, Zhang D, Winzerling JJ. Effects of sham air and cigarette smoke on A549 lung cells: implications for iron-mediated oxidative damage. Am J Physiol Lung Cell Mol Physiol. 2004;286(4):L866–L876. doi:10.1152/ajplung.00268.2003
50. Schaberg T, Haller H, Rau M, Kaiser D, Fassbender M, Lode H. Superoxide anion release induced by platelet-activating factor is increased in human alveolar macrophages from smokers. Eur Respir J. 1992;5(4):387–393.
51. Philippot Q, Deslee G, Adair-Kirk TL, et al. Increased iron sequestration in alveolar macrophages in chronic obstructive pulmonary disease. PLoS One. 2014;9(5):e96285. doi:10.1371/journal.pone.0096285
52. Silverberg DS, Mor R, Weu MT, Schwartz D, Schwartz IF, Chernin G. Anemia and iron deficiency in COPD patients: prevalence and the effects of correction of the anemia with erythropoiesis stimulating agents and intravenous iron. BMC Pulm Med. 2014;14:24. doi:10.1186/1471-2466-14-24
53. Nickol AH, Frise MC, Cheng HY, et al. A cross-sectional study of the prevalence and associations of iron deficiency in a cohort of patients with chronic obstructive pulmonary disease. BMJ Open. 2015;5(7):e007911. doi:10.1136/bmjopen-2015-007911
Ghio et al

54. Ratli V, Ish P, Singh G, Tiwari M, Goel N, Gaur SN. Iron deficiency in non-anemic chronic obstructive pulmonary disease in a predominantly male population: an ignored entity. Monaldi Arch Chest Dis. 2020;90(1). doi:10.4081/monaldi.2020.1126

55. Leifert JA. Anemia and cigarette smoking. Int J Lab Hematol. 2008;30(3):177–184. doi:10.1111/j.1574-553X.2008.01067.x

56. Boutou AK, Stanopoulos I, Pitsiou GG, et al. Anemia of chronic disease in chronic obstructive pulmonary disease: a case-control study of cardiopulmonary exercise responses. Respirion. 2011;81(2):237–245. doi:10.1189/0003286889

57. Comech-Casanova L, Echave-Sustaeta JM, Garcia Lujan R, Albarran Lozano I, Gonzalez Alonso P, Llorente Alonso MJ. Prevalence of anemia associated with chronic obstructive pulmonary disease. Study of associated variables. Arch Bronconeumol. 2013;49(9):383–387. doi:10.1016/j.arbres.2013.04.007

58. Vasquez A, Logomarsino JV. Anemia in chronic obstructive pulmonary disease and the potential role of iron deficiency. COPD. 2016;13(1):100–109. doi:10.1016/j.15425555.2015.1043519

59. Margaritopoulos GA, Vasarmidi E, Jacob J, Wells AU, Antoniou KM. Smoking and interstitial lung diseases. Eur Respir Rev. 2015;24(137):428–435. doi:10.1183/16000617.0050-2015

60. Bak SH, Lee HY. Overlaps and uncertainties of smoking-related idiopathic interstitial pneumonias. Int J Chron Obstruct Pulmon Dis. 2017;12:3221–3229. doi:10.2147/IPD.S146899

61. Caminati A, Harari S. Smoking-related interstitial pneumonias and pulmonary Langerhans cell histiocytosis. Proc Am Thorac Soc. 2006;3(4):299–306. doi:10.1513/pats.200512-135TK

62. Rao RN, Goodman LR, Tomashefski JF Jr. Smoking-related interstitial lung disease. Ann Diag Pathol. 2008;12(6):445–457. doi:10.1016/j.anidiagpath.2008.10.001

63. Farr GH, Harley RA, Hennigar GR. Desquamative interstitial pneumonia. An electron microscopic study. Am J Pathol. 1970;60(3):347–370.

64. Godbert B, Wissler MP, Vignaud JM. Desquamative interstitial pneumonia: an analytic review with an emphasis on aetiology. Eur Respir Rev. 2013;22(128):117–123. doi:10.1183/09059180.0005812

65. Yousem SA, Colby TV, Gaensler EA. Respiratory bronchiolitis-associated interstitial lung disease and its relationship to desquamative interstitial pneumonia. Mayo Clin Proc. 1989;64(11):1373–1380. doi:10.1016/S0025-6196(12)65379-8

66. Desai SR, Ryan SM, Colby TV. Smoking-related interstitial lung diseases: histopathological and imaging perspectives. Clin Radiol. 2003;58(4):269–281. doi:10.1016/j.crad.2002.0525-1

67. Fraig M, Shreshtha U, Saviči D, Katzenstein AL. Respiratory bronchiolitis: a clinicopathologic study in current smokers, ex-smokers, and never-smokers. Am J Surg Pathol. 2002;26(5):647–653. doi:10.1016/S0146-4250(02)00111-0

68. Marques LJ, Teschler H, Guzman J, Costabel U. Smoker's lung and pulmonary Langerhans cell histiocytosis. Exp Biol Med. 2003;228(4):413–423. doi:10.1177/1537322032800412

69. Yang HL, Hseu YC, Hseu YT, Lu FJ, Lin E, Lai JS. Humic acid induces apoptosis in human premalignant leukemia HL-60 cells. Life Sci. 2004;75(15):1817–1831. doi:10.1016/j.lfs.2004.02.033

70. Hseu YC, Lin E, Chen JY, et al. Humic acid induces G1 phase arrest and apoptosis in cultured vascular smooth muscle cells. Environ Toxicol. 2009;24(3):243–258. doi:10.1002/tox.20426

71. van Eijl S, Mortaz E, Ferreira AF, et al. Humic acid enhances cigarette smoke-induced lung emphysema in mice and IL-8 release of human monocytes. Palm Pharmacol Ther. 2011;24(6):682–689. doi:10.1016/j.pupt.2011.07.001

72. Ghio AJ, Tong H, Soukup JM, et al. Sequestration of mitochondrial iron by silica particle initiates a biological effect. Am J Physiol Lung Cell Mol Physiol. 2013;305(10):L712–L724. doi:10.1152/ajplung.00502.2013

73. Hseu YC, Senthil Kumar JK, Chen CS, et al. Humic acid in drinking well water induces inflammation through reactive oxygen species generation and activation of nuclear factor-κB/activator protein-1 signaling pathways: a possible role in atherosclerosis. Toxicol Appl Pharmacol. 2014;274(2):249–262. doi:10.1016/j.taap.2013.11.002

74. Ghio AJ, Soukup JM, Dailey LA, et al. Wood smoke particle sequesters cell iron to impact a biological effect. Chem Res Toxicol. 2015;28(11):2104–2111. doi:10.1021/acs.chemrestox.5b00270

75. Ghio AJ, Soukup JM, Dailey LA. Air pollution particles and iron homeostasis. Biochim Biophys Acta. 2016;1860(12):2816–2825. doi:10.1016/j.bbagen.2016.05.026

76. Laughton MJ, Moroney MA, Houltr JR, Halliwell B. Effects of desferrioxamine on eicosanoid production in two intact cell systems. Biochim Pharmacol. 1989;38(1):189–193. doi:10.1016/0006-2952(89)90167-6

77. Ilieti D, Panayiotidis P, Hoffbrand AV. Iron chelators induce apoptosis in proliferating cells. Br J Haematol. 1995;90:181–187. doi:10.1111/j.1365-2458.1995.tb08927.x

78. Tanji K, Imaizumi T, Matsumiya T, et al. Desferrioxamine, an iron chelator, mediates iron chelator-induced apoptosis and iron-suppressed differentiation of immortalized and malignant human oral keratinocytes. Free Radic Res. 2001;33(2):183–191. doi:10.1080/10721590190089-0

79. Kim BS, Yoon KH, Oh HM, et al. Involvement of p38 MAP kinase during iron chelator-mediated apoptotic cell death. Cell Immunol. 2002;220(2):96–106. doi:10.1006/sico.2001.9887

80. Lee SK, Jang HH, Lee HJ, et al. p38 and ERK MAP kinase mediates iron chelator-induced apoptosis and suppress differentiate of immortalized and malignant human oral keratinocytes. Life Sci. 2006;79(15):1419–1427. doi:10.1016/j.lfs.2006.04.011

81. Huang X, Dai J, Huang C, Zhang Q, Bhanot O, Pelle E. Deferoxamine synergistically enhances iron-mediated AP-1 activation: a showcase of the interplay between extracellular-signal regulated kinase and tyrosine phosphatase. Free Radic Res. 2007;41(10):1135–1142. doi:10.1080/1071576070169061
89. Markel TA, Crisostomo PR, Wang M, et al. Iron chelation acutely stimulates fetal human intestinal cell production of IL-6 and VEGF while decreasing HGF: the roles of p38, ERK, and JNK MAPK signaling. *Am J Physiol Gastrointest Liver Physiol*. 2007;292(4):G958–G963. doi:10.1152/ajpgi.00502.2006
90. Liu Y, Cui Y, Shi M, Zhang Q, Wang Q, Chen X. Deferoxamine promotes MDA-MB-231 cell migration and invasion through increased ROS-dependent HIF-1alpha accumulation. *Cell Physiol Biochem*. 2014;33(4):1036–1046.
91. Zhang W, Wu Y, Yan Q, et al. Deferoxamine enhances cell migration and invasion through promotion of HIF-1alpha expression and epithelial-mesenchymal transition in colorectal cancer. *Oncol Rep*. 2014;31(1):111–116. doi:10.3892/or.2013.2828
92. Niihara Y, Ge J, Shalev O, Wu H, Tu A, Tanaka KR. Desferrioxamine decreases NAD redox potential of intact red blood cells: evidence for desferrioxamine as an inducer of oxidative stress in red blood cells. *BMC Clin Pharmacol*. 2002;2:8. doi:10.1186/1471-6904-2-8
93. Chaston BT, Watts RN, Yuan J, Richardson DR. Potent antitumor activity of novel iron chelators derived from di-2-pyridylketone iso nicotinoyl hydrazone involves Fenton-derived free radical generation. *Clin Cancer Res*. 2004;10(21):7365–7374. doi:10.1158/1078-0432.CCR-04-0865
94. Dendorfer A, Heidbreder M, Hellwig-Burgel T, Johren O, Qadri F, Dominák P. Deferoxamine induces prolonged cardiac preconditioning via accumulation of oxygen radicals. *Free Radic Biol Med*. 2005;38(1):117–124. doi:10.1016/j.freeradbiomed.2004.10.015
95. Callens C, Coulon S, Naudin J, et al. Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia. *J Exp Med*. 2010;207(4):731–750. doi:10.1084/jem.20091488
96. Nagababu E, Gulyani S, Earley CJ, Cutler RG, Mattson MP, Rifkind JM. Iron-deficiency anemia enhances red blood cell oxidative stress. *Free Radic Res*. 2008;42(9):824–829. doi:10.1080/10715760802459879
97. Cakmak I, van de Wetering DA, Marschner H, Bi enfait HF. Involvement of superoxide radical in extracellular ferric reduction by iron-deficient bean roots. *Plant Physiol*. 1987;85(1):310–314. doi:10.1104/pp.85.1.310
98. Turi JL, Jaspers I, Dailey LA, et al. Oxidative stress activates anion exchange protein 2 and AP-1 in airway epithelial cells. *Am J Physiol Lung Cell Mol Physiol*. 2002;283(4):L791–L798. doi:10.1152/ajplung.00032.2001
99. Rose AL, Salmon TP, Lu kondeh T, Neilan BA, Waite TD. Use of hypoxia-inducible factor-1 alpha that augments transcriptional activity of CCAAT/enhancer-binding protein-alpha. *Leukemia*. 2005;19(7):1239–1247. doi:10.1038/sj.lue.4603734
100. Guo M, Song LP, Jiang Y, Liu W, Yu Y, Chen GQ. Hypoxia-im mune agents desferrioxamine and cobalt chloride induce leuke mic cell apoptosis through different hypoxia-inducible factor- 1a. independent mechanisms. *Apoptosis*. 2006;11(1):67–77. doi:10.1007/s10495-005-0385-3
101. Li LC, Li JY, Li WJ, Han Y, Li WM, et al. Hypoxia-induced IL-8 synthesis via MAP kinase and NF-κB signaling pathway. *Biochem Biophys Res Commun*. 2006;343(1):8–14. doi:10.1016/j.bbrc.2006.02.116
102. Baumann MU, Zamudio S, Illsley NP. Hypoxic upregulation of glucose transporters in BeWo choriocarcinoma cells is mediated by hypoxia-inducible factor-1. *Am J Physiol Cell Physiol*. 2007;293(1):C477–C485. doi:10.1152/ajpcell.00075.2007
103. Lee HJ, Lee J, Lee SK, Lee SK, Kim EC. Differential regulation of iron chelator-induced IL-8 synthesis via MAP kinase and NF-κB in immortalized and malignant oral keratinocytes. *BMC Cancer*. 2007;7:176. doi:10.1186/1471-2407-7-176
104. Lee SK, Lee J, Min SK, et al. Iron chelator differentially activates macrophage inflammatory protein-1 alpha/CCL20 in immortalized and malignant human oral keratinocytes. *Arch Oral Biol*. 2008;53(9):801–809. doi:10.1016/j.archoralbio.2008.01.015
105. Lu H, Li Y, Shu M, et al. Hypoxia-inducible factor-1 alpha blocks differentiation of malignant glioma. *FEBS J*. 2009;276(24):7291–7304. doi:10.1111/j.1742-4658.2009.07441.x
106. Varesio L, Battaglia F, Raggi F, Ledda B, Bosco MC. Macrophage inflammatory protein-3alpha/CCL20 is transcriptionally induced by the iron chelator desferrioxamine in human mononuclear phagocytes through nuclear factor (NF)-κB. *Chem Immunol Toxicol*. 2005;33:685–693. doi:10.1016/j.chimi.2005.10.031
107. Yuan G, Khan SA, Luo W, Nanduri J, Semenza GL, Prabhakar NR. Hypoxia-inducible factor 1 mediates increased expression of NADPH oxidase-2 in response to intermittent hypoxia. *J Cell Physiol*. 2011;226(11):2925–2933. doi:10.1002/jcp.22640
108. Fujimoto Y, Kondo Y, Nakajima M, Takai S, Sakusa S, Fujita T. Stimulation of prostaglandin synthesis in rabbit gastric antral mucosal slices by desferrioxamine in vitro. *Biochem Biophys Res Commun*. 2005;325(1):33–42.
109. Lee HJ, Choi SC, Choi EY, et al. Iron chelator inducesMIP-3α/CCL20 in human intestinal epithelial cells: implication for triggering mucosal adaptive immunity. *Exp Mol Med*. 2005;37(4):297–310. doi:10.3863/emm.2005.40
110. Kuschner WG, D’Alessandro A, Wong H, Blanc PD. Dose-dependent cigarette smoking-related inflammatory responses in healthy adults. *Eur Respir J*. 1996;9(10):1989–1994. doi:10.1183/09031936.96.09101989
120. O’Brien-Ladner AR, Blumer BM, Wesselius LJ. Differential regulation of human alveolar macrophage-derived interleukin-1β and tumor necrosis factor-α by iron. J Lab Clin Med. 1998;132(6):497–506. doi:10.1016/s0022-2143(98)00128-7

121. O’Brien-Ladner AR, Nelson SR, Murphy WJ, Blumer BM, Wesselius LJ. Iron is a regulatory component of human IL-1 β production. Am J Respir Cell Mol Biol. 2000;23(1):112–119. doi:10.1165/rccmb.23.1.3736

122. Ghio AJ, Soukup JM, Stonehuerner J, et al. Quartz disrupts iron homeostasis in alveolar macrophages to impact a pro-inflammatory effect. Chem Res Toxicol. 2019;32(9):1737–1747. doi:10.1021/acs.chemrestox.8b00301

123. Polosa R, Thomson NC. Smoking and asthma: dangerous liaisons. Eur Respir J. 2013;41(3):716–726. doi:10.1183/09031936.00073132

124. Bakakos P, Kostikas K, Lourides S. Smoking asthma phenotype: a diagnostic and management challenges. Curr Opin Pulm Med. 2016;22(1):53–58. doi:10.1097/MCP.0000000000000221

125. McLeish AC, Zvolensky MJ. Asthma and cigarette smoking: a review of the empirical literature. J Asthma. 2010;47(4):345–361. doi:10.3109/02770900903556413

126. Chang JE, Ding D, Martin-Lazaro J, White A, Stevenson DD. Smoking, environmental tobacco smoke, and aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol. 2012;108(1):14–19. doi:10.1016/j.anai.2011.09.022

127. Pinheiro GP, Souza-Machado C, Fernandes AGO, et al. Self-reported smoking status and urinary cotinine levels in patients with asthma. J Bras Pneumol. 2018;44(6):477–485. doi:10.1590/s1806-37562017000000018

128. Thomson NC, Chaudhuri R. Asthma in smokers: challenges and opportunities. Curr Opin Pulm Med. 2009;15(1):39–45. doi:10.1097/MCP.0b0133e32831da894

129. Bittner JC, Hasagawa K, Probst HD, Moiß-Millan NK, Silverman RA, Camargo CA Jr. Smoking status and smoking cessation intervention among U.S. adults hospitalized for asthma exacerbation. Allergy Asthma Proc. 2016;37(4):318–323. doi:10.2500/aap.2016.37.3952

130. Silverman RA, Hasagawa K, Egan DJ, Stiffler KA, Sullivan AF, Camargo CA. Multicenter study of cigarette smoking among adults with asthma exacerbations in the emergency department, 2011–2012. Respir Med. 2017;125:89–91. doi:10.1016/j.rmed.2017.02.004

131. Jordao E, Kaschnir FC, Figueiredo VC, et al. ERICA: smoking is associated with more severe asthma in Brazilian adolescents. J Pediatr. 2019;95(5):538–544. doi:10.1016/j.jpeds.2018.05.010

132. Eisner MD. Environmental tobacco smoke and adult asthma. Clin Chest Med. 2002;23(4):749–761. doi:10.1016/s0227-5231(02)00033-3

133. Jaakkola MS, Piepiri R, Jaakkola N, Jaakkola JI. Environmental tobacco smoke and adult-onset asthma: a population-based incidence case-control study. Am J Public Health. 2003;93(12):2055–2060. doi:10.2105/ajph.93.12.2055

134. Thomson NC. The role of environmental tobacco smoke in the origins and progression of asthma. Curr Allergy Asthma Rep. 2007;7(4):303–309. doi:10.1007/s11882-007-0045-8

135. Eisner MD. Passive smoking and adult asthma. Immunol Allergy Clin North Am. 2008;28(3):521–537, viii. doi:10.1016/j.iac.2008.03.006

136. Pietinalho A, Pelkonen A, Rythia P. Linkage between smoking and asthma. Allergy. 2009;64(12):1722–1727. doi:10.1111/j.1398-9995.2009.02208.x

137. Jerzynska J, Stelmach I, Grzellewski T, Stelmach W, Krakowiak J. High exposure to passive tobacco smoking and the development of asthma in an adult patient who had never smoked. Am J Respir Crit Care Med. 2010;182(3):433–434. doi:10.1164/ajrccm.18.2.433
155. Wiles FJ, Johnston JR, Le Roux AF, Churchill AR. Acute exposure to gold mine dust—a bronchial challenge test? *Ann Occup Hyg.* 1982;26(4–5):665–675.

156. Cloutier Y, Lagier F, Cartier A, Malo JL. Validation of an exposure system to particles for the diagnosis of occupational asthma. *Chest.* 1992;102(2):402–407. doi:10.1378/chest.102.2.402

157. Wade JE 3rd, Newman LS. Diesel asthma: reactive airways disease following overexposure to locomotive exhaust. *J Occup Med.* 1993;35(2):149–154. doi:10.1097/00047699-199302000-00015

158. Pateva JB, Kerling EH, Reddy M, Chen D, Carlson SE, Tancabelaie D. Effect of maternal cigarette smoking on newborn iron stores. *Clin Res Trials.* 2015;1(1):4–7.

159. Chelcowska M, Laskowska-Klitka T. Effect of maternal smoking on some markers of iron status in umbilical cord blood. *Roczniki Akademii Medycznej w Białymstoku.* 2002;47:235–240.

160. Lee JH, Lee DS, Kim EK, et al. Simvastatin inhibits cigarette smoking-induced emphysema and pulmonary hypertension in rat lungs. *Am J Respir Crit Care Med.* 2005;172(8):987–993. doi:10.1164/rccm.200501-041OC

161. Wright JL, Levy RD, Churg A. Pulmonary hypertension in chronic obstructive pulmonary disease: current theories of pathogenesis and their implications for treatment. *Thorax.* 2005;60(7):605–609. doi:10.1136/thx.2005.042994

162. Said SI, Hamidi SA, Gonzalez Bosc L. Asthma and pulmonary arterial hypertension: do they share a key mechanism of pathogenesis? *Eur Respir J.* 2010;35(4):730–734. doi:10.1183/09031936.0097109

163. Weissmann N, Grimminger F, Seeger W. Smoking: is it a risk factor for pulmonary vascular diseases? *Am J Respir Cell Mol Biol.* 2007;36(6):1386–1391. doi:10.1165/rcmb.2007-0010TR

164. Santos S, Peinado VI, Ramirez J, et al. Characterization of pulmonary vascular remodelling in smokers and patients with mild COPD. *Eur Respir J.* 2002;19(4):632–638. doi:10.1183/09031936.02.0045902

165. Higenbottam T. Pulmonary hypertension and chronic obstructive pulmonary disease: a case for treatment. *Proc Am Thorac Soc.* 2005;2(1):12–19. doi:10.1513/pats.200411-053SF

166. Plesner LL, Schoos MM, Dalsgaard M, et al. Iron deficiency in idiopathic pulmonary arterial hypertension: clinical prevalence, outcomes, and mechanistic insights. *J Am Coll Cardiol.* 2011;58(3):300–309. doi:10.1016/j.jacc.2011.02.057

167. Ruiter G, Lankhorst S, Boonstra A, et al. Iron deficiency is common in idiopathic pulmonary arterial hypertension. *Eur Respir J.* 2011;37(6):1386–1391. doi:10.1183/09031936.00100510

168. van Empel VP, Lee J, Williams TJ, Kaye DM. Iron deficiency in patients with idiopathic pulmonary arterial hypertension. *Heart Lung Circ.* 2014;23(3):287–292. doi:10.1016/j.hlc.2013.08.007

169. Robinson JC, Graham BB, Rouault TC, Tuder RM. The crossroads of iron with hypoxia and cellular metabolism. Implications in the pathobiology of pulmonary hypertension. *Am J Respir Cell Mol Biol.* 2014;51(6):721–729. doi:10.1165/rcmb.2014-0021TR

170. Yu X, Luo Q, Liu Z, et al. Prevalence of iron deficiency in different subtypes of pulmonary hypertension. *Heart Lung.* 2018;47(4):308–313. doi:10.1016/j.hrtlng.2018.05.002

171. Smith TG, Balanos GM, Croft QP, et al. The increase in pulmonary arterial pressure caused by hypoxia depends on iron status. *J Physiol.* 2008;586(24):5999–6005. doi:10.1113/jphysiol.2008.18.169960

172. Smith TG, Talbot NP, Privat C, et al. Effects of iron supplementation and depletion on hypoxic pulmonary hypertension: two randomized controlled trials. *JAMA.* 2009;302(13):1444–1450. doi:10.1001/jama.2009.1404

173. Rhodes CJ, Wharton J, Howard L, Gibbs JS, Vonk-Noordegraaf A, Wilkins MR. Iron deficiency in pulmonary arterial hypertension: a potential therapeutic target. *Eur Respir J.* 2011;38(6):1453–1460. doi:10.1183/09031936.00037711

174. Bart NK, Curtis MK, Cheng HY, et al. Elevation of iron storage in humans attenuates the pulmonary vascular response to hypoxia. *J Appl Physiol.* 2016;121(2):537–544. doi:10.1152/japplphysiol.00302.2016

175. Lakhal-Littleton S, Crosby A, Frise MC, et al. Intracellular iron deficiency in pulmonary arterial smooth muscle cells induces pulmonary arterial hypertension in mice. *Proc Natl Acad Sci U S A.* 2009;116(26):13122–13130. doi:10.1073/pnas.1822010116

176. Cotroneo E, Ashek A, Wang L, et al. Iron homeostasis and pulmonary hypertension: iron deficiency leads to pulmonary vascular remodeling in the rat. *Circ Res.* 2015;116(10):1680–1690. doi:10.1161/CIRCRESAHA.116.305265

177. Eguichi A, Naito Y, Iwasaki T, et al. Association of dietary iron restriction with left ventricular remodeling after myocardial infarction in mice. *Heart Vessels.* 2016;31(2):222–229. doi:10.1007/s00380-014-0621-5

178. Kim V, Criner GJ. Chronic bronchitis and chronic obstructive pulmonary disease. *Am J Respir Crit Care Med.* 2013;187(3):228–237. doi:10.1164/rccm.201210-1843CI

179. Kaisheva NS, Kaishev AS. Cation-exchange properties of S-metal polyuronates. *Pharm Chem J.* 2014;48(4):284–287. doi:10.1007/s11094-014-1095-6

180. Curran RC, Clark AE, Lovell D. Acid mucopolysaccharides in electron microscopy. The use of the colloidal iron method. *J Anat.* 1965;99(3 Pt 3):427–434.

181. Yardley JH, Brown GD. Fibroblasts in tissue culture. Use of colloidal iron for ultrastructural localization of acid mucopolysaccharides. *Lab Invest.* 1965;14:501–513.

182. Bohecak L, Gupta R. A simple colloidal iron stain for demonstration of acid mucopolysaccharides in mammalian tissues. *Am J Med Technol.* 1968;34(5):287–288.

183. Sorvari TE. Histochemical observations on the role of ferric chloride in the high iron-diamine technique for localizing sulfated mucosubstances. *Histochem.* 1972;4(3):193–204. doi:10.1007/BF01890991

184. Takagi M, Parimley RT, Spicer SS, Denys FR, Setser ME. Ultrastructural localization of acidic glycoconjugates with the low iron diamine method. *J Histochem Cytochem.* 1982;30(5):471–476. doi:10.1177/30.5.6176615

185. Seno S, Tsujii T, Ono T, Ukita S. Cationic cacodylate iron colloid for the detection of anionic sites on cell surface and the histochemical stain of acid mucopolysaccharides. *Histochemistry.* 1983;78(1):27–31. doi:10.1007/BF00491108

186. Campo GM, Avenoso A, D’Ascola A, et al. Purified human plasma glycosaminoglycans limit oxidative injury induced by iron plus ascorbate in skin fibroblast cultures. *Toxicol In Vitro.* 2005;19(5):561–572. doi:10.1016/j.tiv.2005.03.003

187. Bai M, Han W, Zhao X, Wang Q, Gao Y, Deng S. Glycosaminoglycans from a sea snake (Lepismis curus): extraction, structural characterization and antioxidant activity. *Mar Drugs.* 2018;16(5):170. doi:10.3390/md16050170

188. Haug A, Smidsrod O. The effect of divalent metals on the properties of alginate solutions. II. Comparison of different metal ions. *Acta Chemica Scandinavica.* 1965;19:341–351. doi:10.3891/acta.chem.scand.19-0341

189. Murakami T, Ohtsuka A, Taguchi T. Neurons with intensely negatively charged extracellular matrix in the human visual cortex. *Arch Histol Cytol.* 1994;57(5):509–522. doi:10.1679/ahr.57.509
Deiana S, Palma A, Premoli A, Senette C. Possible role of the polyaromatic components in accumulation and mobilization of iron and phosphate at the soil-root interface. *Plant Physiol Bioch*. 2007;45(5):341–349. doi:10.1016/j.plaphy.2007.03.025

Vyshatkuliub AB, Zobov VV, Minzanova ST, et al. Antimicrobial activity of water-soluble Na,Ca,F-Polygalacturonate. *Bull Exp Biol Med*. 2010;150(4):45–47. doi:10.1007/s10517-010-1046-3

Auerbach H, Giammanco GE, Schunemann V, Ostrouski AD, Carrano CJ. Mossbauer spectroscopic characterization of iron(II)-poly saccharide coordination complexes: photochemistry, biological, and photore sponsive materials implications. *Inorg Chem*. 2017;56(19):11524–11531. doi:10.1021/acs.inorgchem.7b00686

Maire Du Poset A, Lerbret A, Zitolo A, Cousin F, Assifaoui A. Design of poly galacturonate hydrogels using iron(II) as cross-linkers: a promising route to protect bioavailable iron against oxidation. *Carbohydr Polym*. 2018;188:276–283. doi:10.1016/j.carbpol.2018.02.007

Gunter EA, Popeyko OV, Mellekin AK, Belozorov VS, Martinson EA, Litvinets SG. Preparation and properties of the pectic gel microparticles based on the Zn(2+), Fe(3+) and Al(3+) cross-linking cations. *Int J Biol Macromol*. 2019;138:629–635. doi:10.1016/j.ijbiomac.2019.07.122

Maire Du Poset A, Lerbret A, Boue F, Zitolo A, Assifaoui A, Cousin F. Tuning the structure of galacturonate hydrogels: external gelation by Ca, Zn, or Fe cationic cross-linkers. *Biomacromolecules*. 2019;20(7):2864–2872. doi:10.1021/acs.biomac.9b00726

Cerr мин V, Conti S, Kong P, Fodor C, Meier WP. Metal cation responsive anionic microgels: behaviour towards biologically relevant divalent and trivalent ions. *Soft Matter*. 2021;17(3):715–723. doi:10.1039/D0SM01458C

Kohn R. Ion binding on polyuronates - alginate and pectin. *Pure Appl Chem*. 1975;42(3):371–397. doi:10.1351/pac19754203371

Sreeram KJ, Yamini Shrivastava H, Nair BU. Studies on the nature of interaction of iron(III) with alginates. *Carbohydr Polym*. 2007;68:3150–3160. doi:10.1016/j.carbpol.2007.03.025

Yang Y, Zhang GY, Hong Y, Gu ZB, Fang F. Calcium cation triggers and accelerates the gelation of high methoxy pectin. *Food Hydrocolloid*. 2013;22(2):228–234. doi:10.1016/j.foodhyd.2013.01.003

De Philippis R, Margheri MC, Materassi R, Vincenzini M. Potential of unicellular cyanobacteria from saline environments as exopolysaccharide producers. *Appl Environ Microbiol*. 1998;64(3):1130–1132. doi:10.1128/AEM.64.3.1130-1132.1998

De Philippis R, Sili C, Papere R, Vincenzini M. Exopolysaccharide-producing cyanobacteria and their possible exploitation: a review. *J Appl Phycol*. 2001;13(4):293–299. doi:10.1023/A:1017590425924

Pradhan S, Singh S, Rai LC. Characterization of various functional groups present in the capsule of Microcystis and study of their role in biosorption of Fe, Ni and Cr. *Bioresources Technol*. 2007;98(3):595–601. doi:10.1016/j.biortech.2006.02.041

Vartibarian SE, Anassiij EJ, Cowart RE, Sprigg HA, Tingler MJ, Jacobson ES. Regulation of cryptococcal capsular polysaccharide by iron. *J Infect Dis*. 1993;167(1):186–190. doi:10.1093/infdis/167.1.186

Vartibarian SE, Cowart RE, Anassiij EJ, Tashiro T, Sprigg HA. Iron acquisition by Cryptococcus neoformans. *J Med Vet Mycol*. 1995;33(3):151–156. doi:10.1080/02681219580000331

Moreira LO, Andrade AF, Vale MD, et al. Effects of iron limitation on adherence and cell surface carbohydrates of Corynebacterium diphtheriae strains. *Appl Environ Microbiol*. 2003;69(10):5907–5913. doi:10.1128/AEM.69.10.5907-5913.2003

Lian T, Simmer MI, D’Souza CA, et al. Iron-regulated transcription and capsule formation in the fungal pathogen Cryptococcus neoformans. *Mol Microbiol*. 2005;55(5):1452–1472. doi:10.1111/j.1365-2958.2004.04474.x

Rolerson E, Swick A, Newlon L, et al. The SloR/Dlg metallor egulator modulates Streptococcus mutans virulence gene expression. *J Bacteriol*. 2006;188(14):5033–5044. doi:10.1128/JB.00155-06

Bush DS, Mecoll JG. Mass-action expressions of iron-exchange applied to Ca2+, H+, K+, and Mg2+ sorption on isolated cells walls of leaves from Brassica-oleracea. *Plant Physiol*. 1987;85(1):247–260. doi:10.1104/pp.85.1.247

Moelling C, Oberschlacke R, Ward P, et al. Metal-dependent repression of siderophore and biofilm formation in Actinomyces naeslundii. *FEBS Microbiol Lett*. 2007;275(2):214–220. doi:10.1111/j.1571-074X.2007.00888.x

Grant MR, Tymon LS, Helms GL, Thosamoh LS, Kent Keller C, Harsh JB. Biofilm adaption to iron availability in the presence of biotite and consequences for chemical weathering. *Geobiology*. 2016;14(6):588–599. doi:10.1111/gbi.12187

Wiens JR, Vasil AI, Schurr MJ, Vasil ML. Iron-regulated expression of alginate production, mucoid phenotype, and biofilm formation by Pseudomonas aeruginosa. *mBio*. 2014;5(1):e01010–e01013. doi:10.1128/mBio.01010-13

Johnson M, Cockayne A, Williams PH, Morrissey JA. Iron-responsive regulation of biofilm formation in staphylococcus aureus involves fur-dependent and fur-independent mechanisms. *J Bacteriol*. 2005;187(23):8211–8215. doi:10.1128/JB.187.23.8211-8215.2005

Musk DJ, Banko DA, Hergenrother PJ. Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. *Chem Biol*. 2005;12(7):789–796. doi:10.1016/j.chembior.2005.05.007
225. Yang L, Barken KB, Skindersoe ME, Christensen AB, Givskov M, Tolker-Nielsen T. Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. *Microbiology*. 2007;153(Pt5):1318–1328. doi:10.1099/mic.0.2006/04911-0

226. Hindre T, Bruggemann H, Buchrieser C, Hechard Y. Transcriptional profiling of Legionella pneumophila biofilm formation and the influence of iron on biofilm formation. *Microbiology*. 2008;154(Pt1):30–41. doi:10.1099/mic.0.2007/00894-0

227. Oglesby-Sherrouse AG, Djapgne L, Nguyen AT, Vasil AI, Hindre T, Bruggemann H, Buchrieser C, Hechard Y. Mobilferrin and DMT-1 in the duodenum: the surprising role of iron transport proteins. *Am J Hematol*. 2015;90(10):1187–1200. doi:10.1002/ajh.10383

228. Wang P, Zhang W, Yang R, et al. Biomimetic poly(γ-glutamic acid) hydrogels with excellent strength, high stiffness, superior toughness and notch-insensitivity. *Soft Matter*. 2017;13(48):9237–9245. doi:10.1039/C7SM02050H

229. Yuan X, Yao X, Xu K, et al. Trivalent iron induced gelation in Artemisia sphaerocephala Krasch. polysaccharide. *Int J Biol Macromol*. 2020;144:690–697. doi:10.1016/j.ijbiomac.2019.12.123

230. Niu R, Qin Z, Ji F, et al. Effect of neutrase, alcalase, and papain hydrolysis of whey protein concentrates on iron uptake by Caco-2 cells. *J Agric Food Chem*. 2015;60(22):6948–6950. doi:10.1021/jf50055y

231. Perez L, Pereira CS, Perez S, Hunenberger PH. Conformation, dynamics and ion-binding properties of single-chain polyurofollin and DMT-1 in the duodenum: the surprising role of mucin. *Mol Plant Microbe Interact*. 2003;16(10):1191–1198. doi:10.1094/MPMI.2003.16.10.1181

232. Shu R, Long J, Yuan Z, et al. Efficient and product-controlled depolymerization of lignin oriented by metal chloride cooperated with Pd/C. *Bioresour Technol*. 2015;179:84–90. doi:10.1016/j.biortech.2014.12.021

233. Dou W, Wei D, Li H, et al. Purification and characterisation of a bifunctional alginate lyase from novel Isopetericola halotolerans CGMCC 3539. *Carbohydr Polym*. 2013;98(2):1476–1482. doi:10.1016/j.carbpol.2013.07.050

234. Berenbaum MC. The staining of bacterial capsules and slime with iron-reactive mucosubstance in rabbit heterophils, basophils, and eosinophils. *J Cell Biol*. 1971;50(1):92–100. doi:10.1083/jcb.50.1.92

235. Ferrera V, da Silva R, Silva D, Gomes E. Production of pectate lyase by Penicillium viridicatum RFC3 in solid-state and submerged fermentation. *Int J Microbiol*. 2010;2010:1–8. doi:10.1155/2010/276590

236. Cao J. The pectin lyases in Arabidopsis thaliana: evolution, selection and expression profiles. *PLoS One*. 2012;7(10):e49644. doi:10.1371/journal.pone.0049644

237. Wang P, Zhang W, Yang R, et al. Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. *Pathog Dis*. 2014;70(3):307–320. doi:10.1111/1071-0249.12312

238. Oliveira F, Franca A, Cerca N. Staphylococcus epidermidis is largely dependent on iron availability to form biofilms. *Int J Med Microbiol*. 2017;370(8):552–563. doi:10.1016/j.ijmm.2017.08.009

239. Quarterman J. Metal absorption and the intestinal mucus layer. *Digestion*. 1987;37(1):1–9. doi:10.1159/0001199480

240. Simovich M, Hainsworth LN, Fields PA, Umbreit JN, Fields PA, Umbreit JN. Digestion of pectins and linking with other natural compounds: a review. *Appl Microbiol Biotechnol*. 2017;102(5):1471–1482. doi:10.1007/s10499-017-6232-1

241. Wang W, Wei D, Wei D, et al. Purification and characterisation of alginate lyase as a new member of the polysaccharide lyase family 17 from a marine strain BP-2. *Biotechnol Lett*. 2003;25(2):355–360. doi:10.1021/jf100055y

242. Aspetti M, Stuemler T, Poli M, et al. Heparanase overexpression reduces hepcidin expression, affects iron homeostasis and alters the response to inflammation. *PLoS One*. 2016;11(10):e0164183. doi:10.1371/journal.pone.0164183

243. Bou K, Liu Y, Zhang L, et al. Effect of neutrase, alcalase, and papain hydrolysis of whey protein concentrates on iron uptake by Caco-2 cells. *J Agric Food Chem*. 2015;63(8):3694–3698. doi:10.1021/jf50055y

244. Berenbaum MC. The staining of bacterial capsules and slime with iron-reactive mucosubstance in rabbit heterophils, basophils, and eosinophils. *J Cell Biol*. 1971;74(5):32–45. doi:10.1186/4325.119

245. Shu R, Long J, Yuan Z, et al. Efficient and product-controlled depolymerization of lignin oriented by metal chloride cooperated with Pd/C. *Bioresour Technol*. 2015;179:84–90. doi:10.1016/j.biortech.2014.12.021

246. Dou W, Wei D, Li H, et al. Purification and characterisation of a bifunctional alginate lyase from novel Isopetericola halotolerans CGMCC 3536. *Carbohydr Polym*. 2013;98(2):1476–1482. doi:10.1016/j.carbpol.2013.07.050

247. Zhu X, Li X, Shi H, et al. Characterization of a novel alginate lyase from marine bacterium Vibrio furnissii H1. *Mar Drugs*. 2018;16(1):30

248. Hong W, Wei D, Wei D, et al. Purification and characterisation of alginate lyase as a new member of the polysaccharide lyase family 17 from a marine strain BP-2. *Biotechnol Lett*. 2003;25(2):355–360. doi:10.1021/jf100055y

249. Aspetti M, Stuemler T, Poli M, et al. Heparanase overexpression reduces hepcidin expression, affects iron homeostasis and alters the response to inflammation. *PLoS One*. 2016;11(10):e0164183. doi:10.1371/journal.pone.0164183

250. Ou K, Liu Y, Zhang L, et al. Effect of neutrase, alcalase, and papain hydrolysis of whey protein concentrates on iron uptake by Caco-2 cells. *J Agric Food Chem*. 2015;63(8):3694–3698. doi:10.1021/jf50055y

251. Cao J. The pectin lyases in Arabidopsis thaliana: evolution, selection and expression profiles. *PLoS One*. 2012;7(10):e49644. doi:10.1371/journal.pone.0049644

252. Huang G, Wen S, Liao S, et al. Characterization of a bifunctional alginate lyase as a new member of the polysaccharide lyase family 17 from a marine strain BP-2. *Biotechnol Lett*. 2019;41(10):1187–1200. doi:10.1007/s10529-019-02722-1

253. Reddy KJ, Soper BW, Tang J, Bradley RL. Phenotypic variation and ascorbate. *Environ Microbiol*. 2008;10(7):1371–1380. doi:10.1111/j.1462-2920.2007.01371.x

254. Saito N, Rujiravanit R. Depolymerization of chitosan-metal complexes via a solution plasma technique. *Bioresour Technol*. 2014;157:729–736. doi:10.1016/j.biortech.2014.12.021
260. Ohtsuka A, Murakami T. Anionic sites on the free surface of the peritnel mesothelium: light and electron microscopic detection using cationic colloidal iron. Arch Histol Cytol. 1994;57(4):307–315. doi:10.1679/aoch.57.307

261. Craig PJ, Wells AU, Doffman S, et al. Desquamative interstitial pneumonia, respiratory bronchiolitis and their relationship to smoking. Histopathology. 2004;45(3):275–282. doi:10.1111/j.1365-2559.2004.01921.x

262. McCarthy C, Reid L, Gibbons RA. Intra-alveolar mucus–removal abnormalities. Hum Pathol. 2009;40(1):99–104. doi:10.1016/j.humpath.2008.09.003

263. Tazelaar HD, Wright JL, Churg A. Desquamative interstitial pneumonia. Histopathology. 2011;58(4):509–516. doi:10.1111/j.1365-2559.2010.03649.x

264. Attili AK, Kazerouni EA, Gross BH, Flaherty KR, Myers JL, Martinez FJ. Smoking-related interstitial lung disease: radiologic-clinical-pathologic correlation. Radiographics. 2008;28(5):1383–1396; discussion 96–98. doi:10.1148/rg.285075223

265. Marten K, Milne D, Antoniou KM, et al. Non-specific interstitial pneumonia in cigarette smokers: a CT study. Eur Radiol. 2009;19(7):1679–1685. doi:10.1007/s00330-009-1308-7

266. Katzenstein AL, Mukhopadhyay S, Zanardi C, Dexter E. Clinically occult interstitial fibrosis in smokers: classification and significance of a surprisingly common finding in lobectomy specimens. Hum Pathol. 2010;41(3):316–325. doi:10.1016/j.humpath.2009.09.003

267. Washko GR, Hunninghake GM, Fernández IE, et al. Usual interstitial pneumonia: a relapsing disease. 19 years of clinical-pathologic features. Arch Pathol Lab Med. 2009.09.003

268. Ohtsuka A, Murakami T. Anionic sites on the free surface of the peritnel mesothelium: light and electron microscopic detection using cationic colloidal iron. Arch Histol Cytol. 1994;57(4):307–315. doi:10.1679/aoch.57.307

269. Barroso E, Hernandez L, Gil J, Garcia R, Aranda I, Romero S. Cigarette smoking: a risk factor for idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 1997;155(1):242–248. doi:10.1164/ajrccm.155.1.9001319

270. Smith M, Dalurzo M, Panse P, Parish J, Leslie K. Usual interstitial pneumonia-pattern fibrosis in surgical lung biopsies. Clinical, radiological and histopathological clues to aetiology. J Clin Pathol. 2013;66(10):896–903. doi:10.1136/jclinpath-2013-201442

271. Beardsley B, Rassl D. Fibrosing organising pneumonia. J Clin Pathol. 2013;66(10):875–881. doi:10.1136/jclinpath-2012-201342

272. Cotin V, Donsbeek AV, Revel D, Loire R, Cordier JF. Nonspecific interstitial pneumonia. Individualization of a clinicopathologic entity in a series of 12 patients. Am J Respir Crit Care Med. 1998;158(4):1286–1293. doi:10.1164/ajrccm.158.4.9802119

273. Yilmaz S, Akinci Ozyurek B, Erdogan Y, et al. Retrospective experience in a hospital setting. Idiopathic organizing pneumonia: a relapsing disease. 19 years of clinical-pathologic features. Arch Pathol Lab Med. 2009.09.003

274. Moon J, Du Bois RM, Colby TV, Hansell DM, Nicholson AG. Clinical significance of respiratory bronchiolitis on open lung biopsy and its relationship to smoking related interstitial lung disease. Thorax. 1999;54(11):1009–1014. doi:10.1136/thx.54.11.1009

275. Wells AU, Nicholson AG, Hansell DM. Challenges in pulmonary fibrosis. 4: smoking-induced diffuse interstitial lung diseases. Thorax. 2007;62(10):904–910. doi:10.1136/thx.2007.091021

276. Ghi et al
293. Hatahu H, Hunninghake GM, Richeldi L, et al. Interstitial lung abnormalities detected incidentally on CT: a Position Paper from the Fleischer Society. *Lancet Respir Med*. 2020;8(7):726–737. doi:10.1016/S2213-2600(20)30168-5

294. Jin GY, Lynch D, Chawla A, et al. Interstitial lung abnormalities in a CT lung cancer screening population: prevalence and progression rate. *Radiology*. 2013;268(2):563–571. doi:10.1148/ radiol.13120816

295. Araki T, Putman RK, Hatahu H, et al. Development and progress of interstitial lung abnormalities in the Framingham Heart Study. *Am J Respir Crit Care Med*. 2016;194(12):1514–1522. doi:10.1164/rccm.201512-2523OC

296. Poidlanczuk AJ, Oelsner EC, Barr RG, et al. High attenuation areas on chest computed tomography in community-dwelling adults: the Mesa study. *Eur Respir J*. 2016;48(5):1442–1452. doi:10.1183/13993003.00129-2016

297. Iwasawa T, Takemura T, Ogura T. Smoking-related lung abnormalities on computed tomography images: comparison with pathological findings. *Jpn J Radiol*. 2018;36(3):165–180. doi:10.1007/s11604-017-0713-0

298. B Moore B, Lawson WE, Oury TD, et al. Animal models of fibrotic lung disease. *Am J Respir Cell Mol Biol*. 2013;49(2):167–179. doi:10.1165/rcellb.2013-0094TR

299. Corradi M, Acampa O, Goldoni M, et al. Metallic elements in exhaled breath condensate of patients with interstitial lung diseases. *J Breath Res*. 2009;3(4):046003. doi:10.1088/1752-7155/3/4/046003

300. Wright PH, Buxton-Thomas M, Krell L, Steel SJ. Cryptogenic fibrosing alveolitis: pattern of disease in the lung. *Thorax*. 1984;39(11):857–861. doi:10.1136/thrx.39.11.857

301. Vieyra-Reyes P, Oros-Pantoja R, Torres-García E, Gutierrez-Ruiz A, Perez-Honora J, Rott Kat. As a biosensor of iron needs in different organs: study performed on male and female rats subjected to iron deficiency and exercise. *J Trace Elem Med Biol*. 2017;44:93–98. doi:10.1016/j.jtemb.2017.06.007

302. Haslam PL, Parker DI, Townsend PJ. Increases in HLA-DQ, DP, DR, and transferrin receptors on alveolar macrophages in sarcoidosis and allergic alveolitis compared with fibrosing alveolitis. *Chest*. 1990;97(3):651–661. doi:10.1378/chest.97.3.651

303. Bharat A, Bhorade SM, Morales-Nebreda L, et al. Flow cytometry reveals similarities between lung macrophages in humans and mice. *Am J Respir Cell Mol Biol*. 2016;54(1):147–149. doi:10.1165/rcellb.2015-0147LE

304. Ioannidis N, Kurz B, Hansen U, Schunke M. Influence of fulvic acid on the collagen secretion of bovine chondrocytes in vitro. *Cell Tissue Res*. 1999;297(1):141–147. doi:10.1007/s004400051341

305. Goto M, Suematsu Y, Nunes ACF, et al. Ferric citrate attenuates the degradation of hyaluronic acid by autoxidants. *Arch Biochem Biophys*. 1965;110(3):526–533. doi:10.1016/0003-9861(65)90446-7

306. Churg A, Tai H, Coulthard T, Wang R, Wright JL. Cigarette smoke drives small airway remodeling by induction of growth factor-beta1 in chemokine receptor 5-deficient mice. *Am Rev Respir Dis*. 1991;143(1):144–149. doi:10.1164/ajrccm.143.1.144

307. Lang MR, Fiaux GW, Gillooly M, Stewart JA, Hulmes DJ, Lamb D. Collagen content of alveolar wall tissue in emphysema and non-emphysematous lungs. *Thorax*. 1994;49(4):319–326. doi:10.1136/thx.49.4.319

308. Wang RD, Wright JL, Churg A. Transforming growth factor-beta1 drives airway remodeling in cigarette smoke-exposed tracheal explants. *Am J Respir Cell Mol Biol*. 2005;33(4):387–393. doi:10.1165/rcellb.2005-0203OC

309. Bracke KR, D’Hulst AI, Maes T, et al. Cigarette smoke-induced pulmonary inflammation and emphysema are attenuated in CCR6-deficient mice. *J Immunol*. 2006;177(7):4350–4359. doi:10.4049/jimmunol.177.7.4350

310. Churg A, Tai H, Coulthard T, Wang R, Wright JL. Cigarette smoke drives small airway remodeling by induction of growth factors in the airway wall. *Am J Respir Crit Care Med*. 2006;174(12):1327–1334. doi:10.1164/rccm.200605-558OC

311. Bracke KR, D’Hulst AI, Maes T, et al. Cigarette smoke-induced pulmonary inflammation, but not airway remodeling, is attenuated in chemokine receptor 5-deficient mice. *Clin Exp Allergy*. 2007;37(10):1467–1479. doi:10.1111/j.1365-2222.2007.02808.x

312. Churg A, Wang R, Wang X, Onnervik PO, Thim K, Wright JL. Effect of an MMP-9/MMP-12 inhibitor on smoke-induced emphysema and airway remodelling in Guinea pigs. *Thorax*. 2007;62(8):706–713. doi:10.1136/thx.2006.068353

313. Wright JL, Postma DS, Kerstjens HA, Timens W, Whittaker P, Craighead JE. Bronchiolar inflammation and fibrosis associated with smoking. A morphologic cross-sectional population analysis. *Am Rev Respir Dis*. 1991;143(1):144–149. doi:10.1164/ajrccm/143.1.144

314. Lang MR, Fiaux GW, Gillooly M, Stewart JA, Hulmes DJ, Lamb D. Collagen content of alveolar wall tissue in emphysema and non-emphysematous lungs. *Thorax*. 1994;49(4):319–326. doi:10.1136/thx.49.4.319
365. Shigeta A, Tada Y, Wang JY, et al. CD40 amplifies Fas-mediated apoptosis: a mechanism contributing to emphysema. Am J Physiol Lung Cell Mol Physiol. 2012;303(2):L141–51. doi:10.1152/ajplung.00337.2011

366. Minae T, Hagiyma M, Inoue T, et al. Increased ectodomain shedding of lung epithelial cell adhesion molecule 1 as a cause of increased alveolar cell apoptosis in emphysema. Thorax. 2014;69(3):223–231. doi:10.1136/thoraxjnl-2013-203867

367. Hou HH, Cheng SL, Chung KP, et al. PIGF mediates neutrophil elastase-induced airway epithelial cell apoptosis and emphysema. Respir Res. 2014;15:106. doi:10.1186/s12931-014-0106-1

368. Bodas M, Min T, Vij N. Lactosylceramide-accumulation in lipid rafts mediate aberrant-autophagy, inflammation and apoptosis in cigarette smoke induced emphysema. Apoptosis. 2015;20 (5):725–739. doi:10.1007/s10495-015-1098-0

369. Gu C, Li Y, Xu WL, et al. Siruvin 1 activator SRT1720 protects against lung injury via reduction of type II alveolar epithelial cells apoptosis in emphysema. COPD. 2015;12(4):444–452. doi:10.3109/15412555.2014.974740

370. Hagiyma M, Yoneshige A, Inoue T, et al. The intracellular domain of cell adhesion molecule 1 is present in emphysematous lungs and induces lung epithelial cell apoptosis. J Biomed Sci. 2015;22:67. doi:10.1186/s12929-015-0173-8

371. Cecchi R, Spota A, Frati P, Muciaccia B. Migrating granuloma to chronic reaction from hyaluronic acid skin filler (Restylane): a clinical plus computed tomographic features and physiological significance. Eur Radiol. 2003;13(8):1801–1808.

372. Subramaniam RP, Asgharian B, Freijer JI, Miller FJ, Anjilvel S. Analysis of lobar differences in particle deposition in the human lung. Inhal Toxicol. 2005;17(1):1–21. doi:10.1080/0895370304451

373. Thompson RW, Liao S, Curei JA. Vascular smooth muscle cell apoptosis in abdominal aortic aneurysms. Coron Artery Dis. 1997;8(10):623–631. doi:10.1097/00015051-199710000-00005

374. Pentimalli L, Modesti A, Vignati A, et al. Role of apoptosis in emphysema. Respirology. 2014;22(1):14–17. doi:10.1111/res.12466

375. Caldas Pozuelo C, Dominguez De Dios J, Mota Rojas X. Multiple oral granulomatous nodules to hyaluronic acid filler. J Cosmet Dermatol. 2020;19(12):3453–3455. doi:10.1111/jocd.13734

376. Desai SR, Wells AU, Rubens MB, Du Bois RM, Hansell DM. Traction bronchiectasis in cryptogenic fibrosing alveolitis: associated computed tomographic features and physiological significance. Eur Respir J. 2003;18(5):996-1001.

377. Jacob T, Hingorani A, Ascher E. Role of apoptosis and proteolysis in the pathogenesis of iliac artery aneurysms. J Vasc Surg. 2016;63(6):1518–1522. doi:10.1016/j.jvs.2016.04.039

378. Bodas M, Min T, Vij N. Lactosylceramide-accumulation in lipid rafts mediate aberrant-autophagy, inflammation and apoptosis in cigarette smoke induced emphysema. Apoptosis. 2015;20 (5):725–739. doi:10.1007/s10495-015-1098-0

379. Gu C, Li Y, Xu WL, et al. Siruvin 1 activator SRT1720 protects against lung injury via reduction of type II alveolar epithelial cells apoptosis in emphysema. COPD. 2015;12(4):444–452. doi:10.3109/15412555.2014.974740

380. Hagiyma M, Yoneshige A, Inoue T, et al. The intracellular domain of cell adhesion molecule 1 is present in emphysematous lungs and induces lung epithelial cell apoptosis. J Biomed Sci. 2015;22:67. doi:10.1186/s12929-015-0173-8

381. Cecchi R, Spota A, Frati P, Muciaccia B. Migrating granuloma to chronic reaction from hyaluronic acid skin filler (Restylane): a clinical plus computed tomographic features and physiological significance. Eur Radiol. 2003;13(8):1801–1808.

382. Subramaniam RP, Asgharian B, Freijer JI, Miller FJ, Anjilvel S. Analysis of lobar differences in particle deposition in the human lung. Inhal Toxicol. 2005;17(1):1–21. doi:10.1080/0895370304451

383. Thompson RW, Liao S, Curei JA. Vascular smooth muscle cell apoptosis in abdominal aortic aneurysms. Coron Artery Dis. 1997;8(10):623–631. doi:10.1097/00015051-199710000-00005

384. Pentimalli L, Modesti A, Vignati A, et al. Role of apoptosis in emphysema. Respirology. 2014;22(1):14–17. doi:10.1111/res.12466

385. Caldas Pozuelo C, Dominguez De Dios J, Mota Rojas X. Multiple oral granulomatous nodules to hyaluronic acid filler. J Cosmet Dermatol. 2020;19(12):3453–3455. doi:10.1111/jocd.13734

386. Desai SR, Wells AU, Rubens MB, Du Bois RM, Hansell DM. Traction bronchiectasis in cryptogenic fibrosing alveolitis: associated computed tomographic features and physiological significance. Eur Respir J. 2003;18(5):996-1001.

387. Jacob T, Hingorani A, Ascher E. Role of apoptosis and proteolysis in the pathogenesis of iliac artery aneurysms. Vascular. 2005;13(1):34–42. doi:10.1258/rmsvasc.13.1.134

388. Topcu SO, Celik S, Erturhan S, Erbaghi A, Yagié F, Ucak R. Verapamil prevents the apoptotic and hemodynamic changes in response to unilateral ureteral obstruction. Int J Urol. 2008;15 (4):350–355. doi:10.1111/j.1442-2042.2008.01992.x

389. Dou S, Zheng C, Cui L, et al. High prevalence of bronchiectasis in emphysema-predominant COPD patients. Int J Chron Obstruct Pulmon Dis. 2018;13:2041–2047. doi:10.2147/COPD.S163243

390. Staats P, Kligerman S, Todd N, Tavora F, Xu L, Burke A. A comparative study of honeycombing on high resolution computed tomography with histologic lung remodeling in explants with usual interstitial pneumonia. Pathol Res Pract. 2015;211 (1):55–61. doi:10.1016/j.prp.2014.08.013

391. Picicucci S, Tomassetti S, Ravaglia C, et al. From “traction bronchiectasis” to honeycombing in idiopathic pulmonary fibrosis: a spectrum of bronchiolar remodeling also in radiology? BMC Pulm Med. 2016;16(1):87. doi:10.1186/s12890-016-0245-x

392. Hayes D Jr. Idiopathic pulmonary arterial hypertension misdiagnosed as asthma. J Asthma. 2007;44(1):19–22. doi:10.1080/02770900601125243
400. Schonhofer B, Bohrer H, Kohler D. Blood transfusion facilitating difficult weaning from the ventilator. *Anaesthesia*. 1998;53(2):181–184. doi:10.1046/j.1365-2044.1998.00275.x

401. Zhang WZ, Oromendia C, Kikkers SA, et al. Increased airway iron parameters and risk for exacerbation in COPD: an analysis from SPIROMICS. *Sci Rep*. 2020;10(1):10562. doi:10.1038/s41598-020-67047-w

402. DeMeo DL, Mariani T, Bhattacharya S, et al. Integration of genomic and genetic approaches implicates IREB2 as a COPD susceptibility gene. *Am J Hum Genet*. 2009;85(4):493–502. doi:10.1016/j.ajhg.2009.09.004

403. Chappell SL, Daly L, Lotya J, et al. The role of IREB2 and transforming growth factor beta-1 genetic variants in COPD: a replication case-control study. *BMC Med Genet*. 2011;12:24. doi:10.1186/1471-2350-12-24

404. Ding Y, Yang D, Xun X, et al. Association of genetic polymorphisms with chronic obstructive pulmonary disease in the Hainan population: a case-control study. *Int J Chron Obstruct Pulmon Dis*. 2015;10:7–13. doi:10.2147/COPD.S73042

405. Weinberg ED. Iron availability and infection. *Biochim Biophys Acta*. 2009;1790(7):600–605. doi:10.1016/j.bbagen.2008.07.002

406. Ramakrishnan G, Sen B, Johnson R. Paralogous outer membrane proteins mediate uptake of different forms of iron and synergistically govern virulence in Francisella tularensis tularensis. *J Biol Chem*. 2012;287(30):25191–25202. doi:10.1074/jbc.M112.371856

407. Grayson ML, Newton-John H. Smoking and varicella pneumonia. *J Infect*. 1988;16(3):312. doi:10.1016/S0163-4453(88)79892-9

408. Strauss WL, Plouffe JF, File TM Jr, et al. Risk factors for domestic acquisition of legionnaires disease. *Arch Intern Med*. 1996;156(15):1685–1692. doi:10.1001/archinte.1996.01440140115011

409. Olson PE, Earhart KC, Rossetti RJ, Newton JA, Wallace MR. Smoking and risk of cryptococcosis in patients with AIDS. *JAMA*. 1997;277(8):629–630. doi:10.1001/jama.1997.03540320031029

410. Almirall J, Gonzalez CA, Balanzo X, Bolibar I. Proportion of community-acquired pneumonia cases attributable to tobacco smoking. *Chest*. 1999;116(2):375–379. doi:10.1378/chest.116.2.375

411. Farr BM, Bartlett CL, Wadsworth J, Miller DL; British Thoracic Society Pneumonia Study Group. Risk factors for community-acquired pneumonia diagnosed upon hospital admission. *Respir Med*. 2000;94(10):954–963. doi:10.1053/rmed.2000.0865

412. Nuorti JP, Butler JC, Farley MM, et al.; Active Bacterial Core Surveillance Team. Cigarette smoking and invasive pneumococcal disease. *N Engl J Med*. 2000;342(10):681–689. doi:10.1056/NEJM200003093421002

413. Doebbeling BN, Wenzel RP. The epidemiology of Legionella pneumophila infections. *Semin Respir Infect*. 1987;2(4):206–221.

414. Pastor P, Medley F, Murphy TV. Invasive pneumococcal disease in Dallas County, Texas: results from population-based surveillance in 1995. *Clin Infect Dis*. 1998;26(3):590–595. doi:10.1086/514589

415. Klement E, Talkington DF, Wasserzug O, et al. Identification of risk factors for infection in an outbreak of Mycoplasma pneumoniae respiratory tract disease. *Clin Infect Dis*. 2006;43(10):1239–1245. doi:10.1086/508458

416. Bensenor IM, Cook NR, Lee IM, et al. Active and passive smoking and risk of colds in women. *Ann Epidemiol*. 2001;11(4):225–231. doi:10.1016/S1047-2797(00)00214-3