The Natural History Museum Fossil Porifera Collection

Consuelo Sendino

Abstract
This article provides updated information about the Porifera Collection at The Natural History Museum (NHM), London. With very little information available regarding fossil sponge digitization or any similar initiative, this paper covers the type and figured specimens and drawer label content data of the Porifera Collection and also describes the collection and its research potential. With approximately 71,000 specimens, of which more than 60% are Mesozoic, the NHM holdings offer the best Mesozoic sponge collection in the world and one of the most important due to its breadth and depth. The Porifera Collection covers all stratigraphic periods and all taxonomic groups and includes almost 3000 cited and figured specimens including types. Although most of the specimens come from the British Isles, worldwide samples are also present, with abundant specimens from other Commonwealth countries and from Antarctica.

Keywords
The Natural History Museum, digitization, Porifera collection, worldwide, British Isles, Mesozoic

Introduction
Historically sponges were studied by their external form and growth habit, until this method was proved to be unreliable. Hinde, a leading authority on fossil sponges in the 19th century, published in 1883 the catalog of fossil sponges of the Geological Department of the British Museum (Natural History), now the Natural History Museum (NHM), classifying sponges according to their microscopic structure, this collection being one of the first to be studied in this way. This allowed Hinde to

1The Natural History Museum, London, UK

Corresponding Author:
Consuelo Sendino, Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
Email: c.sendino-lara@nhm.ac.uk
confirm the indisputable resemblance between fossil calcareous sponges and living ones. Hinde’s catalog condensed descriptions of mainly fossil British species and also new species from France, Switzerland, and Germany, all accompanied with figures. 185 specimens (with types) of all groups were described and figured in this monograph, including his own Hinde Collection and other collections such as those of William Smith, “The Father of English Geology,” Toulmin Smith, Mantell, Phillips, Miss Benett, Bowerbank, and Cunnington.

The Hinde Collection includes the vast slide collection that Hinde prepared to describe sponge species. This collection was transferred to the NHM in several batches (1878, 1892, 1903, 1918) by Hinde and after his death by his widow. Other specimens come from other researchers such as the zoologist Tomes who in 1894 presented the calci sponges that Hinde (1893) described from the English Inferior Oolite.

Other important fossil sponges were presented to the NHM by Benett, from the Upper Greensand of Warminster, and by William Smith whose collection of British fossil sponges illustrated in his *Strata Identified by Organized Fossils* was purchased by the NHM in 1816. Benett (1831) listed 47 species and “varieties” of sponges, all without descriptions but with good illustrations and also using taxonomic names which were respected by Hinde (1883). Phillips (1829, 1835), in *Illustrations of the Geology of Yorkshire*, listed sixteen species of sponges from the White Chalk (Senonian) of Danes Dyke in Yorkshire that Hinde (1883) grouped into ten species. Although Phillips did not describe these species and gave poor quality illustrations, Hinde (1883) had the opportunity to study the types, described them and credited Phillips as the species author as he did with Benett. Other sponges in the NHM Collection are those of the geologist Lee from the Yorkshire Chalk which were presented to the Museum in 1885, sponges with which Lee described eight new species in 1839.

Additional sponges were figured by Parkinson in his *Organic Remains of a Former World* (1808); some of them came to the Museum from other collections and form part of the Porifera Collection, such as the iconic specimen that Parkinson (1808) figured on the frontispiece of the second volume, *Chenendopora michelini*; he identified the specimen as *Alcyonium*. Mantell was one of the fossil collectors who attended the Parkinson sale of 1827 and presumably bought some of the Parkinson sponges (Cleevely, 1983). The Mantell Collection arrived in two batches (1839, 1853) with the sponges published and mostly figured in 1815, 1822, 1848 and 1854 (see Table 1 and references). In his publications, he already recognized that external form was not reliable for sponge identification. The Toulmin Smith Porifera Collection was also housed at the NHM from 1869; these are the British Cretaceous specimens that Toulmin Smith described in 1847 (a-b) and 1848 (a-e). Toulmin Smith advanced the knowledge of sponges and wrote noting differences in the tissues and network meshes under the microscope, but he did not use these differences for taxonomic identification. Later,
Sendino

Table 1. Most important collection contributors (by alphabetical surname order) to the NHM Fossil Porifera Collection and publications.

Collection contributor	Publications
Armstrong, Henry Edward (1848–1937)	Blue Circle Cement Organization (1948)
Bedford, Robert (1874–1951)	Bedford and Bedford (1934, 1936, 1937, 1939)
Benett, Etheldred (1776–1845)	Benett (1831); Hinde (1883)
Bowerbank, James Scott (1797–1877)	Bowerbank (1841, 1842, 1849, 1869, 1876, 1870)
Cunnington, William (1813–1906)	Cunnington (1849)
Harford, Frederick (1820–1895)	
Hinde, George Jennings (1839–1918)	
Lee, John Edward (1808–1887)	Lee (1839)
Mantell, Gideon Algernon (1790–1852)	Mantell (1815, 1822, 1848, 1854)
Morris, John (1810–1886)	Morris (1851, 1854); Hinde (1883)
Muir-Wood, Helen M. (1895–1968)	
Parkinson, James (1755–1824)	Parkinson (1808)
Pennant, Thomas (1726–1798)	Pennant (1757)
Phillips, John (1800–1874)	Hinde (1883); Phillips (1829, 1835)
Filip Počta (1859–1924)	Počta (1907)
Pulfrey, William (f. 1936–1960)	Pulfrey (1933)
Rowe, Arthur Walter (1858–1926)	
Schrammen, Anton (1869–1953)	Schrammen (1899, 1901, 1902, 1910, 1912, 1924a, 1924b, 1936a, 1936b)
Simmons, Jeremiah	
Smith, William (1769–1839)	Smith (1816)
Smith, Joshua Toulmin (1816–1869)	Smith (1847, 1848a, 1848b)
Sollas, William Johnson (1849–1936)	Sollas (1877, 1883)
Tesson (-d.?1864)	
Tomes, Robert Fisher (1823–1904)	Hinde (1883, 1911)
Treacher, Llewellyn (1859–1943)	Treacher and Young (1907)
Vicary, William (1811–1903)	Nicholson (1889); Sollas (1877)

the British geologist Sollas described the fossil sponges collected on the Challenger Expedition (Sollas, 1888) through their microstructure with the use of thin sections and also described the British Jurassic and Cretaceous sponges (Sollas, 1877, 1883).
The former specimens, from the Challenger Expedition, are kept in the Department of Life Sciences at the NHM.

Treacher presented part of his collection from the Faringdon Sponge Gravels and other British Cretaceous localities between 1907 and 1921 and Pulfrey presented his collection of sponge spicules from the Lower Palaeozoic of North Wales in 1933.

Minor collections, in terms of number of sponge specimens, are those of Bowerbank, which was acquired at a sale in 1865, after his retirement, and the Morris Collection which was acquired in two batches (1863, 1867). There are also sponges collected by the Welsh naturalist Thomas Pennant.

Regarding their shapes and dimensions, this NHM Fossil Collection presents a great diversity, with forms such as cups, funnels, vases, cylindrical, club-shaped, fan-shaped, and branching examples. One of the smallest specimens belongs to the calcareous *Peronella* which measures 5.5 mm in length by 4 mm in width, while the largest is a demosponge, belonging to *Chenendopora*, with 400 mm long and 200 mm wide.

The NHM Porifera Collection contains almost 3000 referenced individuals as hand specimens and thin sections. From these, more than 2000 are figured and the rest are cited in more than 140 bibliographic references (see Figure 1 and Appendix).

Very few specimens of this Collection have been fully digitized (less than 2%) on our NHM collection management system, but a Microsoft Excel database of 752 entries has been populated, with drawer label content that has been used to help write this article. The data recorded includes taxa, geographic site and stratigraphic
locations of the specimens, with some labels also showing the donor collection. Most of the specimens have been assigned stub records in the NHM collection management system, Emu (Sendino, 2009), that are linked to images from the catalog books where the specimen registration number is recorded with taxon, geographic and stratigraphic information and acquisition details. The results shown here are based on the drawer label data concerning hand specimen and slide cabinets. In order to estimate the most accurate proportions, the specimen size has been considered. The number of specimens has been determined by counting how many specimens a drawer contains and this figure was multiplied by the entire number of drawers for each Porifera class (for hand specimen and slide cabinets). Drawers containing larger than standard-sized specimens were counted separately. Total data and percentages were estimated using Microsoft Excel. This is the first time that the drawer label content has been used to show the collection rough data and also that a complete museum fossil sponge database has been shown. This is a useful starting point for collections still not completely digitized and a good method to allow online accessibility of what museums keep in their collection. It helps with gathering taxonomic, geographic and stratigraphic data of the collection that can be used in research and curation fields such as biogeography and also highlights gaps in the collections for each group. This is a good basis for a more comprehensive database as an important source for understanding Porifera biodiversity.

Fossil Porifera Collections Elsewhere

Although Hinde (1887, 1888) studied the British and German Palaeozoic sponges, many of those specimens kept at the NHM, there are other historically important German Palaeozoic collections which could compete with the NHM Collection. Among these are those studied by Hermann Rauff at the Göttingen Geoscience Museum and at the Naturkunde, Rudolf Kolb at the Palaeontological Museum of Munich, and Schrammen mainly at the Roemer Museum in Hildesheim and also at the American Museum of Natural History in New York. It is also important to cite the Bohemian Palaeozoic sponges studied by the zoologists and palaeontologists Antonín Jan Frič (who also published as Anton Fritsch) and Filip Počta (also published as Phillip Počta) in Bohemia.

With regards to Mesozoic sponges there is no collection that can compete with that of the NHM. Frič, Počta, Kolb and Schrammen created and described Mesozoic collections (O’Connell, 1919), and some of these were purchased by the NHM, such as the Cretaceous Porifera Collection from both Počta (1907) in 1909 and Schrammen in 1920 (Cleevely, 1983). Therefore, these collections are surpassed by the NHM Fossil Porifera Collection which is also cited by these authors. The NHM keeps numerous types and figured specimens that are key to taxonomic identification, including not only hand specimens, but also thin sections and cavity slides (see some of the most
striking NHM fossil sponges of this Collection in Figure 2). The thin sections make the NHM Fossil Porifera Collection unique as they come from historical specimens, for which justification for destructive sampling for preparation of specimens would now be difficult, and in the specific case of the siliceous samples would be expensive to prepare as well as problematic.

Specimen Preservation Method

This NHM Collection constitutes mainly fossil specimens that are kept as hand specimens (88%) and thin sections (12%). The Recent specimens (0.2%) are preserved as dried specimens. The sponges are stored within the collection cabinets. Each cabinet holds drawers that store individual specimens from the same family, geographic location (region or country) and stratum.

There are almost 8000 thin sections, of which more than half are of stromatoporoids, and the rest are represented in the same proportions as the hand specimens. Therefore, the taxonomic representation of these thin sections in descending order is as follows: demosponges, hexactinellids, calcareous sponges and archaeocyaths. Most of these are historical specimens, prepared by Nicholson and Hinde. These thin sections are fundamental for viewing morphology and the internal microstructures required to meet criteria for taxonomic identification.

Taxonomic Coverage

The NHM Fossil Porifera Collection covers most of the Porifera groups such as demosponges, hexactinellids, calcareous sponges, archaeocyaths and stromatoporoids. The class Demospongea is the most represented in the NHM Collection, including the polyphyletic lithistid group of massive skeletons which are easily preserved in the geological record. These reached their greatest dominance during the Cretaceous. The NHM has the most important collection of Cretaceous sponges in the world, with hundreds of non-lithistid demosponges and more than 10,000 lithistids, mostly from Europe and North America. These are useful in unveiling the diverging silicification levels over time. This class is represented from the Palaeozoic to Cenozoic eras (Figure 3) and includes almost half of the total number of the sponges in the Collection.

Hexactinellids are siliceous sponges that also range in time, as do the demosponges, from the Cambrian to Recent. They have been found living in both cold deep and warm shallow waters and have been defined as the oldest lineage of animals alive on earth today. The NHM Porifera Collection has almost a quarter of fossils of this group (Figure 3), mainly from the Mesozoic of Europe.

Calcareous sponges have skeletons with spicules of calcium carbonate and have persisted, as the previous groups, from Cambrian to Recent times, having their
Figure 2. (continued)
The greatest diversification during the Cretaceous. Their Mesozoic representation stands out in the NHM Porifera Collection and represents the third biggest group of sponges. Most of them are from Europe, but there are representatives from Asia, South America and the Middle East as well. The calcareous sponges represent 10% of specimens of the entire Collection (Figure 3).

The other classes are hypercalcified sponges, the stromatoporoids and the archaocyaths. The Stromatoporoidea, an extinct class of non-spiculate poriferans, are very well represented (Figure 3). They appeared for first time in the Middle Ordovician and became abundant and widespread through the Silurian and Devonian, until finally disappearing in the Cretaceous. The NHM Porifera Collection has more than 15,000...
Figure 3. Number of specimens per stratigraphic era and Porifera classes present in the Earth Sciences Department at the NHM.
specimens, including thin sections, and contains the most outstanding Silurian specimens such as the historical Nicholson Collection (1886–1892) of British stromatoporoids. Archaeocyaths characterize the first substantial diversification of the phylum Porifera, to which they are now generally assigned as a distinct class. They flourished in carbonate shelf and reef environments of the early Cambrian and a depauperate stock persisted into the late Cambrian. The Archaeocytha Collection at the NHM contains more than 700 specimens, mainly from Antarctica, Australia, Canada, Morocco, Sardinia, Siberia, Spain and USA. This is one of the most important Archaeocyatha Collections in the world, including a mixture of over 100 cavity slides and thin sections. About a hundred type and figured specimens are present among these specimens (such as in Hill (1965) and Debrenne (1969)). They represent 1% of the Collection (Figure 3).

More than 4% of the NHM Collection, 3000 individuals, have been cited and figured, including types that are key to taxonomic identification studies and should be the main goal of digitization regarding marine palaeofauna.

Stratigraphic Coverage

Stratigraphically, the NHM Fossil Porifera Collection is represented by specimens from the Cambrian to Pleistocene, but is particularly rich in Mesozoic and Palaeozoic sponges (Figure 3) sponges. The reason for this is explained by the localities from where they were collected, a large proportion originating from the British Isles.

The fossil demosponges are mainly Mesozoic specimens (79%), followed by Palaeozoic (20%) and Cenozoic (1%). Fossil calcareous specimens are represented by Mesozoic (86%), Cenozoic (9%), Recent (3%) and Palaeozoic (2%). Fossil hexactinellids are mostly Mesozoic (98%) and a small proportion Palaeozoic.

As noted above, archaeocyaths are Cambrian (100%), therefore Palaeozoic. Stromatoporoids are mainly Palaeozoic (77%) and in less proportion Mesozoic (23%).

Geographic Coverage

Although the distribution of this Collection is worldwide, it is mainly European (80%). There is the same trend in most of the groups, with the exception of archaeocyaths. The majority of the collection is from the British Isles (61%) followed by European continental (18%). There are also abundant specimens from the Commonwealth countries (9%) and Antarctica (less than 1%).

If we study geographic origin by class, most of the demosponges are from the British Isles (62%), the European continent (25%) and in much less proportion from North America, the Arctic, Oceania, Middle East, Russia, Africa, Caribbean, Asia and South America (Figure 4).
Figure 4. Geographic distribution of the NHM fossil sponges and abundance of specimens.
The hexactinellids are also mainly from the British Isles (66%), followed by European continental (24%) and North America, Oceania, Middle East, Russia, Africa Caribbean, and Asia.

The NHM fossil calcareous sponges follow similar proportions: British Isles (70%), European continental (12%), Asia (4%) and the other regions have similar number of specimens (North America, South America, Oceania, Middle East, Russia, Africa and Caribbean).

In the case of the stromatoporoids are also mainly from the British Isles (63%) followed, this time, by Middle East specimens (12%), Europe non-British (10%), North America (6%) and the rest from Oceania, Russia, and Africa. The archaeocyaths are mainly from Oceania (63%), Antarctica (25%) and in much less proportion from Europe, North America, Russia and Africa.

Potential Research Projects

Sponges are the oldest known metazoan group with an outstanding importance as both a living fossil and the closest related to the hypothetical ancestor of all metazoans, the Urmetazoa (Thakur and Müller, 2004). Currently their importance is also economic, being used for treating skin conditions and diseases, with, for instance, some compounds derived from *Spongilla* species. The three living fossil sponge classes, Hexactinellida, Demospongiae and Calcarea, are currently being used in molecular biological studies and this data could be extrapolated to fossil taxa by molecular clock technique. This Collection keeps approximately 8000 thin sections and cavity slides that will save time in preparing the specimens for taxonomic studies, as well as for climate change research and functional morphology studies. Some of the samples come from sites that are currently difficult to access, such as in the Middle East. They will also be useful in revealing the biodiversity of fossil sponges and their role as reef builders in Palaeozoic and Mesozoic times.

The study of this comprehensive collection will help to fill the gaps in our knowledge of the evolution of fossil faunas and for study of their phylogenetics. In the case of lithistids, a better understanding is needed of the diagnostic biological characters that are potentially best preserved to separate apomorphies and synapomorphies in order to distinguish subgroups and integrate them in phylogenetic studies.

Additionally, the study of the rocks associated with the specimens will disclose the paleoenvironmental conditions that favored silicification and calcification processes. These conditions are considered to be very different from those of extant taxa (Pisera, 2004), with fossil lithistids and hexactinellids with fused siliceous skeletons inhabiting shallower waters. Current fossil sponge silica research opens a door to better understanding the evolution of the group and their relevance to climate change.
Finally, new resources and tools such as 3-D reconstructions (Luo and Reitner, 2014), CT Scanning and Big Data are revolutionizing sponge biology as sponge microstructure did in Victorian times with taxonomic studies of Porifera.

Conclusion

This large NHM Porifera Collection has approximately 71,000 individuals and 4% of the collection cited and figured in bibliographical references. It is key to Porifera taxonomic identification and having historical thin sections associated with the hand specimens makes this Collection unique. This article is a first step in the digitization of this Collection and is an example of how the data populated from the drawer label content can be used to show the collection’s content. The data recorded includes taxa, geographic site and strata where the specimens come from and some of the labels also named the donor collection. This is also the first time that a museum fossil sponge database has been shown.

Declaration of Conflicting Interests

The author declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author received no financial support for the research, authorship, and/or publication of this article.

ORCID iD

Consuelo Sendino https://orcid.org/0000-0003-4823-2145

References

Blue Circle Cement Organization. 1948. “Flints. The Blue Circle.” *House Journal of the Blue Circle Cement Organization* 2: 10–3.

Bedford, Robert, and J. Bedford. 1937. “Further Notes on *Archaeos (Pleospongia)* From the Lower Cambrian of South Australia.” *Memoirs of the Kyancutta Museum* 4: 27–38.

Bedford, Robert, and J. Bedford. 1939. “Development and Classification of *Archaeos (Pleospongia)*.” *Memoirs of the Kyancutta Museum* 6: 67–82.

Bedford, Robert, and William Rudolf Bedford. 1934. “New Species of Archaeocyathinae and Other Organisms From the Lower Cambrian of Beltana, South Australia.” *Memoirs of the Kyancutta Museum* 1: 1–7.

Bedford, Robert and William Rudolf Bedford. 1936. “Further Notes on *Archaeocyathi (Cyathospongia)* and Other Organisms From the Lower Cambrian of Beltana, South Australia.” *Memoirs of the Kyancutta Museum* 2: 9–20.
Benett, Etheldred. 1831. “A Catalogue of Organic Remains of the County of Wiltshire.” Warminster i–iv, 1–9. J. L. Vardy.

Bowerbank, James Scott. 1841. “On the Siliceous Bodies of the Chalk, Greensands and Oolites.” Transactions of the Geological Society 7: 181–94.

Bowerbank, James Scott. 1842. “On the Spongious Origin of Moss Agaetes and Other Siliceous Bodies.” Annals and Magazine of Natural History 10 (62): 9–18, 84–91.

Bowerbank, James Scott. 1849. “On a Siliceous Zoophyte, Alcyonites parasiticum.” Quarterly Journal of the Geological Society of London 5: 319–28.

Bowerbank, James Scott. 1869. “A Monograph of the Siliceo-Fibrous Sponges.” Proceedings of the Zoological Society of London 1869: 66–100, 323–51.

Bowerbank, James Scott. 1870. “Organic Remains From Queensland.” In Australian Mesozoic Geology and Palaeontology, edited by C. Moore, 235–42. Quarterly Journal of the Geological Society of London 26: 226–61.

Bowerbank, James Scott. 1876. “Contributions to a General History of the Spongiidae. Part 8.” Proceedings of the Zoological Society of London 1876: 768–75.

Cleevely, R.J. 1983. World Palaeontological Collections, 1–365. London: British Museum (Natural History), Mansell Publishing Limited.

Cunnington, William. 1849. “On a Peculiarity in the Structure of One of the Fossils Sponges of the Chalk, Choanites Koenigi, Mantell.” Report of the British Association for the Advancement of Science 18: 67.

Debrenne, Françoise. 1969. “Lower Cambrian Archaeocyatha from the Ajax Mine, Beltana, South Australia.” Bulletin of the British Museum (Natural History), Geology 17: 295–376.

Hill, Dorothy. 1965. “Archaeocyatha From Antarctica and a Review of the Phylum.” Scientific Reports Trans-Antarctic Expedition 10: 1–151.

Hinde, George Jennings. 1880. Fossil Sponge Spicules From the Upper Chalk. Found in the Interior of a Single Flint-Stone from Horstead in Norfolk, 1–83. Munich: Ch. Wolf & son.

Hinde, George Jennings. 1882. “Notes on Fossil Calcispongiae, With Descriptions of New Species.” Annals and Magazine of Natural History, Series 5, 10: 185–205.

Hinde, George Jennings. 1883. Catalogue of the Fossil Sponges in the Geological Department of the British Museum (Natural History), With Descriptions of New and Little-Known Species (Illustrated by 38 Lithographic Plates), 1–248. London: Trustees of the British Museum (Natural History).

Hinde, George Jennings. 1884a. “On Some Fossil Calcisponges From the Well-Boring at Richmond, Surrey.” Quarterly Journal of the Geological Society of London 40: 778–83.

Hinde, George Jennings. 1884b. “On the Structure and Affinities of the Family of the Receptaculitidae, Including Therein the Genera Ischadites, Murchison (= Tetragonis, Eichwald); Sphaerospongia, Pengelly; Acanthochonia, gen.nov.; and Receptaculites, Defrance.” Quarterly Journal of the Geological Society of London 40: 795–849.

Hinde, George Jennings. 1886. “On Beds of Sponge-Remains in the Lower and Upper Greensand of the South of England.” Philosophical Transactions of the Royal Society of London 176 (for 1885): 403–453.

Hinde, George Jennings. 1887. “On the Genus Hindia, Duncan, and the Name of Its Typical Species.” Annals and Magazine of Natural History, Series 5, 19: 67–79.
Hinde, George Jennings. 1887–1912. *A Monograph of the British Fossil Sponges. Vol 1. Sponges of the Palaeozoic and Jurassic Strata.* 1–92 (1887); 93–188 (1888); 189–254 (1893); 255–64 (1912). London: Palaeontographical Society Monograph.

Hinde, George Jennings. 1888. “On the Chert and Siliceous Schists of the Permo-Carboniferous Strata of Spitzbergen, and on the Characters of the Sponges Therefrom, Which Have Been Described by Dr. E. Dunikowski.” *Geological Magazine,* Series 3, 5: 241–51.

Hinde, George Jennings. 1889a. “On Archaeocyathus Billings, and Other Genera, Allied to or Associated With It, From the Cambrian Strata of North America, Spain, Sardinia, and Scotland.” *Quarterly Journal of the Geological Society of London* 45: 125–48.

Hinde, George Jennings. 1889b. “On a True Leuconid Calcisponge From the Middle Lias of Nottinghamshire.” *Annals and Magazine of Natural History,* Series 6, 4: 352–7.

Hinde, George Jennings. 1889c. “Detached Calcisponge Spicules in the Upper Chalk of Surrey.” *Annals and Magazine of Natural History,* Series 6, 4: 357.

Hinde, George Jennings. 1890a. “On a New Genus of Siliceous Sponges From the Lower Calcareous Grit of Yorkshire.” *Quarterly Journal of the Geological Society of London* 46: 54–61.

Hinde, George Jennings. 1890b. “Appendice. On the Nature of Some Fragments of Siliceous Rock From the Bouldercap of the “Roode Kliff” (Red Cliff) on the Southern Border of the Province of Friesland.” *Bulletin de la Société Belge de Géologie, de Paléontologie et de Hydrologie, Bruxelles* 3: 254–8.

Hinde, George Jennings. 1891a. “Notes on a New Fossil Sponge From the Utica Shale Formation (Ordovician) at Ottawa, Canada.” *Geological Magazine,* Series 3, 8: 22–4.

Hinde, George Jennings. 1891b. “Note on specimens of Cherty Siliceous Rock From South Australia.” *Geological Magazine,* Series 3, 8: 115–16.

Hinde, George Jennings. 1892. “Class Spongida.” In *The Geology & Palaeontology of Queensland and New Guinea (&c),* edited by R.L. Jack and R. Etheridge, Vol 2, i–xxx1, 1–768, 436–39. Brisbane and London: James Charles Beal, Government Printer; and Dulau and Co.

Hinde, George Jennings. 1900. “On Some Remarkable Calcisponges From the Eocene Strata of Victoria (Australia).” *Quarterly Journal of the Geological Society of London* 56: 50–66.

Hinde, George Jennings. 1904. “On the Structure and Affinities of the Genus Porosphaera, Steinmann.” *Journal of the Royal Microscopical Society of London* 1904: 1–25.

Hinde, George Jennings. 1905. “Description of Some Fossils From a Croydon Garden.” *Proceedings and Transactions of the Croydon Natural History and Scientific Society* 5: 87–94.

Hinde, George Jennings. 1908. “On a New Sponge From the Chalk at Goring-on-Thames.” *Proceedings of the Geologists’ Association* 20: 420–21.

Hinde, George Jennings. 1910. “On the Fossil Sponge Spicules in a Rock From the Deep Lead (?) at Princess Royal Township, Norseman District, Western Australia.” *Bulletin of Geological Survey. Western Australia* 36: 7–24.

Hinde, George Jennings, and W. Murton Holmes. 1892. “On the Sponge-Remains in the Lower Tertiary Strata Near Oamaru, Otago, New Zealand.” *Journal of the Linnean Society of London,* Series Zoology, 24 (151): 177–262.

Lee, John Edward. 1839. “Notice of Undescribed Zoophytes From the Yorkshire Chalk.” *Magazine of Natural History,* new series, 3: 10–7.
Luo, Cui, and Reitner, Joachim. 2014. “First Report of Fossil “Keratose” Demosponges in Phanerozoic Carbonates: Preservation and 3-D Reconstruction.” Naturwissenschaften 101: 467–77.

Mantell, Gideon Algernon. 1815. “Description of a Fossil Alcyonium, From the Chalk Strata Near Lewes (&c).” Transactions of the Linnaean Society of London 11: 401–7.

Mantell, Gideon Algernon. 1822. The Fossils of the South Downs; or Illustrations of the Geology of Sussex, 1–327. London: Lupton Relfe.

Mantell, Gideon Algernon. 1848. The Wonders of Geology; or, a Familiar Exposition of Geological Phenomena. 6th ed., Vol 2, 1–938. London: Henry G. Bohn.

Mantell, Gideon Algernon. 1854. The Medals of Creation, or, First Lessons in Geology, and the Study of Organic Remains. 2nd ed., Vol 2, 1–930. London: Henry G. Bohn.

Morris, John. 1851. “Palaeontological Notes [New or Little-Known Organisms of the Chalk].” Annals and Magazine of Natural History, Series 2, 8: 85–90.

Morris, John. 1854. A Catalogue of British Fossils: Comprising the Genera and Species Hitherto Described (&c). 2nd ed., 1–372. London: John Morris.

Nicholson, H.A. 1886–92. “A Monograph of the British Stromatoporoids. Description of Species.” Palaeontographical Society Monograph 39, 42, 44, 46: 1–234. Nicholson, H. Alleyne.

O’Connell, M. 1819. “The Schrammen Collection of Cretaceous Silicispongiae in the American Museum of Natural History With Notes on the Structure, Classification, Geological and Geographical Distribution, and Synonymy of the Silicispongiae.” Bulletin of The American Museum of Natural History 49: 1–261.

Parkinson, James. 1808. “Organic Remains of a Former World and Examination of the Mineralized Remains of the Vegetables and Animals of the Antediluvian World; Generally Termed Extraneous Fossils.” Vol 2nd. In The Fossil Zoophytes, 1–286. London: Nornaville and Fell.

Pennant, T. (ca. 1757). [Manuscript Catalogue of T. Pennant’s Geological and Mineralogical collection.]. Vol. 3 is entitled “Reliquiae Diluvianæ, or a Catalogue of Such Bodies Which Were Deposited in the Earth by the Deluge,” 1–475.

Phillips, John. 1829. Illustrations of the Geology of Yorkshire or, a Description of the Strata and Organic Remains of the Yorkshire Coast: Accompanied by a Geological Map, Sections, and Plates of the Fossil Plants and Animals. Part. 1. The Yorkshire Coast, 1–192. York: Thomas Wilson and Sons.

Phillips, John. 1835. Illustrations of the Geology of Yorkshire or, a Description of the Strata and Organic Remains of the Yorkshire Coast: Accompanied by a Geological Map, Sections, and Plates of the Fossil Plants and Animals. Part. 1. The Yorkshire Coast, 1–184. London: John Murray.

Pisera, Andrzej. 2004. “What Can We Learn About Siliceous Sponges From Palaeontology?” Bollettino dei Musei e degli Istituti Biologici dell’Università di Genova 68: 55–60.

Poëta, Phillip. 1907. “Sur quelques éponges du Sénonien de Nice.” Bulletin de la Société Géologique de la France, Series 4, 7: 163–73.

Pulfrey, William. 1933. “Note on the Occurrence of Sponge-Spicules Associated With the Iron-Ores of North Wales.” Annals and Magazine of Natural History, Series 10, 11: 67–76.

Schrammen, Anton. 1899. “Beitrag zur Kenntniss der obersenonen Tetractinelliden.” Mitteilungen aus dem Roemer-Museum 10: 1–9.
Schrammen, Anton. 1901. “Neue Kieselschwämme aus der oberen Kreide der Umgebung von Hannover und von Hildesheim.” Mitteilungen aus dem Roemer-Museum 14: 1–26.

Schrammen, Anton. 1902. “Neue Hexactinelliden aus der oberen Kreide.” Mitteilungen aus dem Roemer-Museum 15: 1–26.

Schrammen, Anton. 1910. “Die Kieselspongien der oberen Kreide von Nordwestdeutschland. I. Teil. Tetraxonia, Monaxonia und Silicea incert. sedis.” Palaeontographica (Suppl 5): 1–175.

Schrammen, Anton. 1912. “Die Kieselspongien der oberen Kreide von Nordwestdeutschland. II. Teil. Triaxonia (Hexactinellida).” Palaeontographica (Suppl 5): 176–385.

Schrammen, Anton. 1924a. “Die Kieselspongien der oberen Kreide von Nordwestdeutschland. III. und letzter Teil.” Monographien zur Geologie und Palaeontologie, Serie 1, 2: 1–159.

Schrammen, Anton. 1924b. “Zur Revision der Jura-Spongian von Süddeutschland.” Jahresarbeiten und Mitteilungen des Oberrheinischen Geologischen Vereins, New series, 13: 125–54.

Schrammen, Anton. 1936a. “Die Kieselspongian der oberen Jura von Süddeutschland. A. Vorwort und Allgemeiner Teil.” Palaeontographica, Serie A, 84: 149–94.

Schrammen, Anton. 1936b. “Die Kieselspongian der oberen Jura von Süddeutschland. B. Besonderer Teil.” Palaeontographica, Serie A, 85: 1–114.

Sendino, María Consuelo. 2009. “KE EMu and the Future for Natural History Collections.” Collections: A Journal for Museum and Archives Professionals 5: 149–58.

Smith, Joshua Toulmin. 1847. “On the Ventriculitidae of the Chalk; Including the Description of Peculiar Characters of Structure Observed in Their Tissues.” Annals and Magazine of Natural History, Series 1, 20: 73–97, 176–91.

Smith, Joshua Toulmin. 1848a. “On the Ventriculitidae of the Chalk; Their Classification.” Annals and Magazine of Natural History, Series 2, 1: 36–48, 203–20, 279–95, 352–72.

Smith, Joshua Toulmin. 1848b. The Ventriculitidae of the Chalk: Their Microscopic Structure, Affinities, and Classification; Including Figures and Descriptions of Every Species, 1–108. London: Taylor.

Smith, William. 1816. Strata Identified by Organized Fossils, Containing Prints on Colored Paper of the Most Characteristic Specimens in Each Stratum. 1&2, 1–16. London: Printed by W. Arding.

Sollas, William Johnson. 1877. “On the Structure and Affinities of the Genus Siphonia.” Quarterly Journal of the Geological Society 33: 790–835.

Sollas, William Johnson. 1883. “Descriptions of Fossil Sponges From the Inferior Oolite, With a Notice of Some From the Great Oolite.” Quarterly Journal of the Geological Society 39: 541–54.

Sollas, William Johnson. 1888. “Report on the Tetractinellida Collected by H.M.S. Challenger, During the Years 1873–1876.” Report on the scientific results of the voyage of H.M.S. Challenger during the years 1873-76. Zoology, 25, 1–166, 1–458.

Thakur, Narsinh L., and Werner EG Müller. 2004. “Biotechnological Potential of Marine Sponges.” Current Science 86: 1506–12.

Treacher, Llewellyn., and George W. Young. 1907. “Excursion to Faringdon.” Proceedings of the Geologists’ Association 20: 115–21.
Author Biography

Consuelo Sendino is a palaeontologist working as a curator of palaeoinvertebrates in the Department of Earth Sciences of the Natural History Museum, London, since 2008. She is responsible for the fossil bryozoans, sponges and worms, as well as the Fossil Historical Collections. Consuelo has more than 20 years’ experience, previously working as a curator at the National Museum of Natural Sciences in Madrid and as a project coordinator for GBIF. She has a PhD in Geology and experience in teaching Masters students and co-advising PhDs. Her research interests focus on Natural History, mainly Palaeontology, and History of Science through museum collections.