Allogeneic IgG combined with dendritic cell stimuli induce antitumour T-cell immunity

Yaron Carmi1, Matthew H. Spitzer1,2, Ian L. Linde3, Bryan M. Burt3, Tyler R. Prestwood3, Nicola Perlman1, Matthew G. Davidson1, Justin A. Kenkel1, Ehud Segal1, Ganesh V. Pusapati4, Nupur Bhattacharya1 & Edgar G. Engleman1

Whereas cancers grow within host tissues and evade host immunity through immune-editing and immunosuppression1–3, tumours are rarely transmissible between individuals. Much like transplanted allogeneic organs, allogeneic tumours are reliably rejected by host T cells, even when the tumour and host share the same major histocompatibility complex alleles, the most potent determinants of transplant rejection4–6. How such tumour-eradicating immunity is initiated remains unknown, although elucidating this process could provide the basis for inducing similar responses against naturally arising tumours. Here we find that allogeneic tumour rejection is initiated in mice by naturally occurring tumour-binding IgG antibodies, which enable dendritic cells (DCs) to internalize tumour antigens and subsequently activate tumour-reactive T cells. We exploited this mechanism to treat autologous and autochthonous tumours successfully. Either systemic administration of DCs loaded with allogeneic-IgG-coated tumour cells or intratumoral injection of allogeneic IgG in combination with DC stimuli induced potent T-cell-mediated antitumour immune responses, resulting in tumour eradication in mouse models of melanoma, pancreas, lung and breast cancer. Moreover, this strategy led to eradication of distant tumours and metastases, as well as the injected primary tumours. To assess the clinical relevance of these findings, we studied antibodies and cells from patients with lung cancer. T cells from these patients responded vigorously to autologous-IgG-loaded DCs, recapitulating our findings in mice. These results reveal that tumour-binding allogeneic IgG can induce powerful antitumour immunity that can be exploited for cancer immunotherapy.

To study the basis of allogeneic tumour rejection, we examined the immune response to tumours in major histocompatibility complex (MHC)-matched allogeneic mice (illustrated in Fig. 1a). B16 melanoma cells expanded continuously in syngeneic C57BL/6 hosts yet spontaneously regressed in allogeneic 129S1 hosts (Fig. 1b). Conversely, liver-metastatic pancreatic tumour cells (LMP), isolated from KrasG12D/Pdx1-Cre;LSL-Trp53R172H/ mice, grew steadily in 129S1 mice but spontaneously regressed (Extended Data Fig. 1b). Additionally, liver-metastatic pancreatic tumour cells (LMP), isolated from KrasG12D/Pdx1-Cre;LSL-Trp53R172H/ mice, grew steadily in 129S1 mice but spontaneously regressed (Extended Data Fig. 1b). Depletion of natural killer (NK) cells (Fig. 1b). Additionally, liver-metastatic pancreatic tumour cells (LMP), isolated from KrasG12D/Pdx1-Cre;LSL-Trp53R172H/ mice, grew steadily in 129S1 mice but spontaneously regressed (Extended Data Fig. 1b). Depletion of natural killer (NK) cells did not prevent tumour rejection (Extended Data Fig. 1a). In contrast, depletion of CD4+ or CD8+ T cells before allogeneic tumour inoculation prevented tumour regression (Fig. 1b). T-cell proliferation and tumour infiltration began by week 1 (Fig. 1c and Extended Data Fig. 1b). Additionally, allogeneic tumours contained more mature myeloid DCs (mDCs, Ly6CdimCD11b+CD11c+ MHCII+CD64+dim) and fewer SSC−CD11b+Ly6C+MHCII−mDCs than syngeneic mDCs (Fig. 1e). However, co-culture of DCs with allogeneic tumour cells induced negligible activation or tumour antigen uptake (Fig. 1f and Extended Data Fig. 1e), demonstrating that additional factors contribute to DC activation in vivo.

Notably, IgM and IgG antibodies were bound to allogeneic, but not syngeneic, tumour cells within 24 h after tumour inoculation (Fig. 1g–i), before T cells appeared (Fig. 1c). Moreover, allogeneic antibodies bound tumour cells more effectively than syngeneic antibodies (Extended Data Fig. 2a), including syngeneic antibodies from tumour-bearing mice (Extended Data Fig. 2b). To assess the potential role of antibodies in tumour rejection, B cells were depleted before mice were challenged with allogeneic tumours (Extended Data Fig. 2c). Antibody depletion accelerated tumour development and delayed or prevented tumour rejection (Fig. 1j). Moreover, adoptive transfer of allogeneic IgG, but not IgM, enabled rejection of syngeneic tumours (Fig. 1k and Extended Data Fig. 2d). This effect was abrogated in Fcγ receptor (FcγR)-deficient mice (Fig. 1k).

To investigate the effect of antibodies on tumour uptake by DCs, we incubated tumour cells or lysates with syngeneic or allogeneic antibodies to form immune complexes and added these to bone-marrow-derived DCs (BMDCs) (Fig. 2a). Only immune complexes from allogeneic IgG (alloIgG-IC) or IgM (alloIgM-IC) induced BMDC activation and uptake of tumour-derived proteins (Fig. 2b–d), which were found in proximity to MHCII molecules (Fig. 2e). BMDCs activated by alloIgG-IC induced significant T-cell proliferation (Fig. 2f), demonstrating that tumour antigens were processed and presented.

To determine whether immune-complex-bound DCs could elicit antitumour immune responses in syngeneic hosts, B16 or LMP cells were inoculated subcutaneously, and tumours were removed upon reaching 25–55 mm3, leaving tumour-free margins. IgG-IC or IgM-IC were prepared from excised tumours and incubated with syngeneic BMDCs, which were injected into the corresponding tumour-redirected mouse (Fig. 2g). While nearly all mice treated with syngeneic BMDCs loaded with alloIgG-IC remained tumour-free for over a year, all other animals experienced rapid tumour relapse (Fig. 2h). This response was completely abrogated in DCs lacking FcγR (Extended Data Fig. 3a–c). Furthermore, adoptive transfer of T cells from alloIgG-IC-treated animals protected naive mice from tumour challenge (Extended Data Fig. 3d, e).

Despite these findings, only minor effects were observed when allogeneic IgG was injected into tumours in autologous hosts (Fig. 3a). To address this discrepancy, we obtained tumour-associated DCs (TADCs) (Extended Data Fig. 4a) and cultured them with tumour lysates or alloIgG-IC. In contrast to BMDCs, TADCs displayed no activation (Fig. 3b–d and Extended Data Fig. 4b) and their transfer to tumour-redirected mice had no effect on recurrence (Fig. 3e). Accordingly, p38, ERK1/2 and JNK were phosphorylated in BMDCs but not TADCs activated with alloIgG-IC (Fig. 3f). We then tested the effect of additional MAPK stimuli on the response of TADCs to
Figure 1 | Tumour-binding antibodies initiate rejection of allogeneic tumours. a, Experimental design: injection of LMP and B16 cells subcutaneously into syngeneic and allogeneic hosts. b, Growth of LMP and B16 tumours in C57BL/6, 129S1, CD4− cell-depleted or CD8− cell-depleted allogeneic mice (n = 6, 3 independent experiments). c, Percentages of LMP-infiltrating CD8+ and CD19+ cells among CD45+ cells (n = 5, 3 independent experiments). d, Percentages of LMP-infiltrating CD11bLy6c+ cells and mature DCs among total cells (n = 4, 3 independent experiments). e, Myeloid cells in the draining lymph nodes of mice inoculated with CFSE-labelled LMP cells 3 days earlier (n = 5, 3 independent experiments). R1, macrophages; R2, myeloid dendritic cells; R3, classical dendritic cells. f, Tumour uptake, MHCII and CD86 expression by BMDCs and blood monocyte-derived (Mo) DCs incubated overnight with CFSE-labelled live, frozen/thawed (necrotic), or mitomycin-C-treated (apoptotic) LMP cells or fluorescein-labelled Escherichia coli BioParticles (n = 4, 4 independent experiments). MFI, mean fluorescence intensity. g, IgG and IgM bound in vivo to CFSE-labelled LMP cells 48 h after tumour inoculation (n = 5, 4 independent experiments). h, Representative staining of tumour sections by IgM and IgG 24 h after inoculation of CFSE-labelled LMP cells. Original magnification, 200×; 3 independent experiments. j, Tumour size in 129S1, C57BL/6 and B-cell-depleted allogeneic hosts (n = 5, 3 independent experiments). k, B16 size in naive mice or mice injected with syngeneic or allogeneic antibodies (n = 5). B16 size in naive C57BL/6 and FcγR knockout (KO) mice injected with allogeneic antibodies (n = 3, 3 independent experiments). Experiments were independently repeated at least 3 times and analysed by Mann–Whitney U test. *P < 0.05; **P < 0.01; NS, not significant. Error bars represent s.e.m. unless specified otherwise.

To test whether allogeneic IgG bears unique modifications that mediate an immune response, we covalently crosslinked syngeneic IgG onto B16 membrane proteins. These immune complexes still conferred a therapeutic benefit after incubation with BMDCs (Extended Data Fig. 6a), demonstrating that binding of IgG to the tumour cell surface, rather than the origin of the IgG, was critical. To investigate whether the tumour-binding antibody targets are related to the antitumour T-cell specificities, we resected B16 tumour cells and formed immune complexes using an antibody against MHC-I, against which there could not be reactive T cells. DCs loaded with these immune complexes protected mice from B16 recurrence without inducing autoimmunity, suggesting that tumour-reactive T-cell specificity is not determined by the antibody targets (Extended Data Fig. 6b). Furthermore, B16-bearing mice treated with allogeneic IgG + anti-CD40 + TNFα were protected from re-challenge with B16 melanoma, but not syngeneic RMA lymphoma, suggesting that the tumour-reactive T cells recognize
Figure 2 | AlloIgG-IC are internalized and presented by BMDCs and drive protective immunity in vivo. a. Experimental design: tumour cells or lysates were incubated with syngeneic or allogeneic antibodies and then cultured with BMDCs overnight. b. Expression of CD86 and MHCI on BMDCs cultured with antibody-coated tumour lysates or intact tumour cells (n = 5, 10 independent experiments). IC, immune complexes. c. TNFα and IL-12 in supernatants of BMDCs cultured overnight with immunoglobulin immune complexes formed from CFSE-labelled LMP cells coated with allogeneic antibodies (original magnification, 400×; 3 independent experiments). d. Internalization of CFSE in BMDCs incubated overnight with immunoglobulin immune complexes formed from CFSE-labelled tumour lysates or CFSE-labelled intact cells (n = 4, 10 independent experiments). e. Representative localization of MHCI and immunoglobulin immune complexes on BMDCs cultured overnight with CFSE-labelled LMP cells coated with allogeneic antibodies (original magnification, 400×; 3 independent experiments). f. Proliferation of CD4+ T cells cultured with DCs loaded with immune complexes formed from LMP and B16 lysates or intact cells (n = 5, 5 independent experiments). c.p.m., counts per minute. g. Experimental design: tumours were removed from mice, coated with antibodies, incubated for 24 h with BMDCs, and injected subcutaneously into corresponding tumour-rectosed mice. h. Tumour recurrence in mice treated with BMDCs loaded with tumour lysate incubated with allogeneic or syngeneic antibodies (n = 5, 3 independent experiments). Experiments were independently repeated at least 3 times and analysed by Mann–Whitney U test. *P < 0.05; **P < 0.01. Error bars represent s.e.m. unless specified otherwise.

We therefore identified B16 membrane proteins specifically bound by allogeneic IgG using mass spectrometry. While syngeneic IgG bound six cell membrane proteins, all at approximately equal or lower levels than allogeneic IgG, allogeneic IgG preferentially bound sixteen cell membrane proteins, many containing strain-specific polymorphisms (Extended Data Table 1). To validate these hits functionally, we focused on transmembrane-glycoprotein NMB (GPNNM). Antibodies against GPNNMB bound B16 cells at much higher levels than normal cells and enabled DC activation, and allogeneic IgG bound GPNNMB at higher levels than syngeneic IgG (Extended Data Fig. 7a–c). Treatment using anti-GPNNMB + anti-CD40 + TNFα induced significant FcγR-dependent tumour regression (Extended Data Fig. 7d, e). Treated tumours exhibited marked leukocyte infiltration, including activated effector/memory T cells, compared to untreated tumours (Extended Data Fig. 8a, b). Whereas all treatments elicited gp100-reactive CD8+ T cells, only allogeneic IgG + antiCD40 + TNFα elicited Trp2-reactive CD8+ T cells (Extended Data Fig. 8c). Adoptive transfer of CD4 or CD8 T cells from these mice protected naive mice from B16 challenge, and depletion of either CD4 or CD8 T cells before treatment prevented
Moreover, BMDCs from two patients with malignant pleural mesothelioma incubated with allogtG-IC, but not autologous IgG-IC, exhibited activation and drove autologous CD4+ T-cell proliferation (Fig. 4i).

The effect of naturally arising tumour-reactive antibodies on tumour progression has been a source of controversy. Some studies suggest that such antibodies promote tumour progression13–19, while others report that they can stimulate antitumour immunity20–28. Like the antibodies that develop in cancer patients, commercial immunoglobulin preparations, which probably contain tumour-binding alloantibodies, have shown limited benefit when used to treat cancer29,30. Our data may provide a mechanistic explanation for these findings, as they show that while TADCs are not naturally responsive to IgG-IC, addition of specific stimuli enables them to drive tumour-eradicating immunity. Hence, the role that tumour-binding antibodies have in tumour immunity depends upon the environmental context and the cell types involved.

Here we demonstrate that tumour-antigen presentation after antibody-mediated uptake by DCs is sufficient to initiate protective T-cell-mediated immunity against tumours. Our work suggests that this fundamental mechanism of immunological recognition and targeting, which prevents tumour transmission even between MHC-matched individuals, can be exploited as a powerful therapeutic strategy for cancer.
Online Content Methods, along with any additional Extended Data display items and Source Data, are available in the online version of the paper; references unique to these sections appear only in the online paper.

Received 7 May 2014; accepted 24 March 2015.
Published online 29 April 2015.

1. Coussens, L. M., Zitvogel, L. & Palucka, A. K. Neutralizing tumor-promoting chronic inflammation: a magic bullet? *Science* **339**, 286–291 (2013).
2. Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. *Cell* **140**, 883–899 (2010).
3. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. *Cancer Cell* **21**, 309–322 (2012).
4. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoeediting: integrating immunity’s roles in cancer suppression and promotion. *Science* **331**, 1565–1570 (2011).
5. Vesely, M. D., Kershaw, M. H., Schreiber, R. D. & Smyth, M. J. Natural innate and adaptive immunity to cancer. *Annu. Rev. Immunol.* **29**, 235–271 (2011).
6. Manning, T. C. et al. Antigen recognition and allogeneic tumor rejection in CD8⁺ TCR transgenic/RAG^{−/−} mice. *J. Immunol.* **159**, 4665–4675 (1997).
7. Ferrara, J., Guillen, F. J., Sleckman, B., Burakoff, S. J. & Murphy, G. F. Cutaneous acute graft-versus-host disease to minor histocompatibility antigens in a murine model: histologic analysis and correlation to clinical disease. *J. Invest. Dermatol.* **86**, 371–375 (1986).
8. Appelbaum, F. R. Haematopoietic cell transplantation as immunotherapy. *Nature* **411**, 385–389 (2001).
9. Bishop, M. R. et al. Allogeneic lymphocytes induce tumor regression of advanced metastatic breast cancer. *J. Clin. Oncol.* **22**, 3886–3892 (2004).
10. Goulmy, E. Minor histocompatibility antigens: allo target molecules for tumorspecific immunotherapy. *Cancer J.* **10**, 1–7 (2004).
11. Tseng, W. W. et al. Development of an orthotopic model of invasive pancreatic cancer in an immunocompetent murine host. *Clin. Cancer Res.* **16**, 3684–3695 (2010).
12. Dankort, D. et al. Braf^{V600E} cooperates with Pten loss to induce metastatic melanoma. *Nature Genet.* **41**, 544–552 (2009).
13. Qin, Z. et al. B cells inhibit induction of T cell-dependent tumor immunity. *Nature Med.* **4**, 627–630 (1998).
14. de Visser, K. E., Korets, L. V. & Coussens, L. M. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7, 411–423 (2005).
15. Andrieu, P. et al. FcR activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell 7, 121–134 (2010).
16. Gerber, J. S. & Mosser, D. M. Reversing lipopolysaccharide toxicity by ligating the macrophage Fc receptors. J. Immunol. 166, 6861–6868 (2001).
17. Willimsky, G. et al. Immunogenicity of premalignant lesions is the primary cause of general cytotoxic T lymphocyte unresponsiveness. J. Exp. Med. 205, 1687–1700 (2008).
18. Soussi, T. p53 Antibodies in the sera of patients with various types of cancer: a review. Cancer Res. 60, 1777–1788 (2000).
19. Gumus, E. et al. Association of positive serum anti-p53 antibodies with poor prognosis in bladder cancer patients. Int. J. Urol. 11, 1070–1077 (2004).
20. Li, Q. et al. Adoptive transfer of tumor reactive B cells confers host T-cell immunity and tumor regression. Clin. Cancer Res. 17, 4987–4995 (2011).
21. DiLillo, D. J., Yanaba, K. & Tedder, T. F. B cells are required for optimal CD4+ and CD8+ T cell tumor immunity: therapeutic B cell depletion enhances B16 melanoma growth in mice. J. Immunol. 184, 4006–4016 (2010).
22. Clynes, R., Takechi, Y., Moroi, Y., Houghton, A. & Ravetch, J. V. Fc receptors are required in passive and active immunity to melanoma. Proc. Natl Acad. Sci. USA 95, 652–656 (1998).
23. Nimmerjahn, F. & Ravetch, J. V. Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310, 1510–1512 (2005).
24. Hamanaka, Y. et al. Circulating anti-MUC1 IgG antibodies as a favorable prognostic factor for pancreatic cancer. Int. J. Cancer 103, 97–100 (2003).
25. Kurtenkov, O. et al. Humoral immune response to MUC1 and to the Thomsen-Friedenreich (TF) glycopote in patients with gastric cancer: relation to survival. Acta Oncol. 46, 316–323 (2007).
26. Schuurhuis, D. H. et al. Immune complex-loaded dendritic cells are superior to soluble immune complexes as antitumor vaccine. J. Immunol. 176, 4573–4580 (2006).
27. Regnault, A. et al. Fcγ receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J. Exp. Med. 189, 371–380 (1999).
28. Rafiq, K., Bergtold, A. & Clynes, R. Immune complex-mediated antigen presentation induces tumor immunity. J. Clin. Invest. 110, 71–79 (2002).
29. Schachter, J. et al. Efficacy and safety of intravenous immunoglobulin in patients with metastatic melanoma. Ann. NY Acad. Sci. 1110, 305–314 (2007).
30. Fishman, P., Bar-Yehuda, S. & Shoenfeld, Y. IVIg to prevent tumor metastases. Int. J. Oncol. 21, 875–880 (2002).

Acknowledgements We thank F. C. Grumet and N. E. Reticker-Flynn for helpful discussion. We also thank J. Sonnenburg for providing gnotobiotic mice. This work was supported by NIH grants U01 CA141468 and ST32AI07290-27. M.H.S. is supported by NIH NRSA F31CA189331. I.L.L. is supported by a Smith Stanford Graduate Fellowship.

Author Contributions Y.C. conceived the study, performed experiments and wrote the manuscript. M.H.S., I.L.L., T.R.P. and N.B. performed experiments, helped with experimental design and contributed to manuscript preparation. B.M.B. helped with experimental design, human tissue acquisition and manuscript preparation. N.P., M.G.D., J.A.K., E.S. and G.V.P. performed experiments. E.G.E. supervised the project, analysed data and wrote the manuscript.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to E.G.E. (edengleman@stanford.edu) or Y.C. (ycarmi76@stanford.edu).

©2015 Macmillan Publishers Limited. All rights reserved
METHODS
Mice. 129S1/SvImJ mice, C57Bl/6 wild-type (WT) mice, Balb/c mice, and mice that develop inducible melanoma (B6.Cg-Braf^tm12Gra/J[9]Pten^tm1Hwh/Ctg (Tyr-cre/ERT2)13Bos/BosJ)) were purchased from the Jackson Laboratory (Bar Harbour, Maine) and bred on-site. CD-1 outbred mice and C57R172H/2 (B6.129P2-Fcer1g^Nilor) mice were purchased from Taconic (Germantown, NY). 12–16-week-old male and female mice were sorted randomly into groups before assigning treatment conditions. No blinded experiments were conducted. All mice were maintained in an American Association for the Accreditation of Laboratory Animal Care–accredited animal facility. All protocols were approved by the Stanford University Institutional Animal Care and Use Committee under protocol APLAC-G-7446.

Cell lines. The mouse lines B16F10 (melanoma), 4T-1 (breast cancer), LL/2 (Lewis lung carcinoma) and RMA (lymphoma) were all purchased from the ATCC. LMP pancreas tumour cells were isolated from Kras^G12D/+; LSL-Trp53^R172H/+; Pdx-1Cre mice in our laboratory as described[11]. Cells were cultured in DMEM (Gibco, Carlsbad, California) supplemented with 10% heat-inactivated FCS, 2 mM L-glutamine, 100 U ml^−1 penicillin and 100 µg ml^−1 streptomycin (Gibco) under standard conditions. Cell lines were tested for mycoplasma contamination and endotoxin.

Preparation and in vitro studies of mouse DC subsets. Bone marrow mononuclear cells were negatively selected using a murine monocyte enrichment kit (Stem Cell Technologies, Vancouver, Canada), and FSC<median^Ly6C^CD11c^ cells were sorted with a FACS Aria II (BD Biosciences). Monocytes were cultured for 4–5 days in the presence of 50 ng ml^−1 GM-CSF (PeproTech) to generate DCs. For TADCs, tumours were digested in Hank’s balanced salt solution (HBSS, Gibco) containing 4 mg ml^−1 collagenase IV and 0.01 mg ml^−1 DNase I (Sigma). Cells were applied on a Ficol gradient and magnetically enriched using CD11b^+ selection kits (Stem Cells) and Ly6C^CD11c^ MHCII^+ cells were sorted by FACS. In some experiments TADCs were activated with 1 µg ml^−1 bacterial lipopolysaccharide (LPS), 1 µg ml^−1 high molecular mass polyethylene-polypropylene acid (poly(LC)) (both from InvivoGen, San Diego, California), or with 50 ng ml^−1 TNFα or 50 ng ml^−1 IFNγ (PeproTech) in combination with 500 ng ml^−1 CD40L, OX-40 (PeproTech) or 500 ng ml^−1 CD28 (R&D) recombinant mouse proteins. All in vitro activations of mouse DCs were independently repeated at least 10 times in duplicate.

Preparation and in vitro studies of tumour cells, TADCs, autologous T cells and IgG from patients with cancer. Tumour cells, TADCs, peripheral blood T cells and IgG were obtained from two patients undergoing resection surgery for stage I lung carcinoma. Tumours were enzymatically digested with 0.1 mg ml^−1 of DNase I and 5 mg ml^−1 collagenase IV (Sigma) in HBSS for 30 min. Tumour cells were enriched by sorting CD45-negative cells, fixed in 2% paraformaldehyde for 20 min, washed extensively in PBS and coated in 10% FCS RPMI containing 1% streptomycin (Gibco) under standard conditions. Cell lines were tested for mycoplasma contamination and endotoxin.

Preparation of antibody–tumour lysate immune complexes and antibody–MHC class I tetramers. Dendritic cell activations with the IgM/MHC class I tetramers iTAg APC-labelled H-2Kb-Trp-2(SVYDFFVWL) and iTAg PE-labelled H-2D^β100(EGRSNQDWL) tetramers were purchased from MBL international (Woburn, Massachusetts) and were used according to the manufacturer’s instructions. Tetramer-staining experiments were repeated twice with five mice in each group. For presented phosphorilation-specific flow cytometry, cells were activated for 5, 15 or 30 min with or without 4C and fixed for 15 min with 1.8% paraformaldehyde. Cells were washed twice with PBS containing 2% FCS and incubated with 95% methanol at 4°C for 20 min. Conjugated antibodies against phospho-p38 (Thr180/Tyr182) and phospho-JNK (Thr183/Tyr185) were purchased from Cell Signaling and phospho-ERK1/2 (p44/p42) (p42/p202/p204) from BD Biosciences. DC protein phosphorylation experiments were repeated five times, each with biological duplicates. For tumour-binding IgM and IgG, PE-conjugated anti-mouse IgM (R&M-1), anti-mouse IgG (Polio652) and anti-human IgG (HP6017) were purchased from BioLegend. Flow cytometry was performed on a LSRII (BD Biosciences) and data sets were analysed using FlowJo software (Tree Star, Inc.). In vivo binding levels were determined in four independent experiments, 3–5 mice in each group.

Intracellular IFNγ staining. B16 tumours from treated mice were digested to obtain a single cell suspension. A total of 2 × 10^6 cells per well were cultured for 4 h in 10% FCS RPMI containing 1× Brefeldin A (eBioscience) in a 96-well plate containing 4 × 10^5 BMDCs loaded with 10 µg of B16 membrane proteins. Cells were washed and stained for extracellular T-cell markers. Cells were then fixed and permeabilized using cytofix/cytoperm solutions (BD Biosciences) and stained with PE-Cy7 conjugated anti-IFNγ antibody (XMG12, BioLegend). Experiments were repeated twice independently with 5 mice per group.

Cytokine measurements. Cells were seeded at 1 × 10^5 cells ml^−1 and cultured for 12 h with or without tumour immune complexes, or LPS (Sigma). TNFα, IFNγ and IL-12 (p40/p70) in the supernatants were measured by ELISA, according to manufacturer’s instructions (R&D Systems, Minneapolis, Minnesota). Cytokine secretion was measured in biological triplicates in four independent experiments. IgG and IgM purification and measurement. Mouse antibodies were obtained from pooled 5-ml 20–24-week-old mouse serum by liquid chromatography on AKTA Explorer/100 Air (GE Healthcare). Total mouse IgG and IgM were purified using protein-G and 2-mercaptopyridine columns, respectively (GE Healthcare). The levels of purified IgG and IgM were measured with specific ELISA kits (Bethyl, Montgomery, Texas) according to manufacturer’s instructions. The capacity of purified antibodies to bind tumour cells was tested by flow cytometry before their use in vivo. 1 µg IgG per 1 × 10^6 allogeneic tumour cells bound at least 8 times higher compared to isotype control antibodies. Serum levels of antibodies were measured in biological triplicates in four independent experiments.

Necrotic and apoptotic tumour cell internalization experiments. For necrotic tumour cells, cultured LMP or B16 cells were trypanosed, washed and resuspended at a concentration of 5 × 10^6 cells ml^−1 in cold PBS (Gibco). Cells were then subjected to three cycles of freeze–thaw between liquid nitrogen and a 37°C water bath. The level of apoptosis and necrosis was determined by flow cytometry using annexin V/propidium iodide staining. Apoptotic tumour cells were prepared by their pre-incubation with 25 µg ml^−1 of mitomycin C (Sigma) for 1 h in antibiotic and serum-free DMEM. Fluorescein-labelled E. coli BioParticles were purchased from Life Technologies and used according to the manufacturer’s instructions. Dendritic cell activations with above cells were repeated four independent times in biological duplicates.

Preparation of antibody–tumour lysate immune complexes and antibody–tumour bound cells. When obtained from surgical resections, tumour cells were initially isolated after enzymatic digestion and sorted as FSC<median^CD45^-cells before further processing. Tumour antibody–coated cells were fixed in 2% paraformaldehyde for 20 min, washed extensively in PBS and coated for 30 min with autologous Ig or pooled allogeneic IgG. Autologous CD4^+ T cells were fixed in 2% paraformaldehyde for 20 min, washed extensively in PBS and cultured with 2 × 10^5 autologous CD4^-enriched T cells. After 6 days, cells were pulsed with [3H]thymidine (1 mCi per well) and cultured for an additional 18 h before being harvested in a Harvester 400 (Tompac). Radioactivity was measured by a 1450 MicroBeta counter (LKB Wallac). T-cell proliferation assay was assayed in six technical replicates per sample. The human subject’s protocols were approved by Stanford’s Institutional Review Board, and informed consent was obtained from all subjects.

Flow cytometry. For cell surface staining, monoclonal antibodies conjugated to FITC, PE, PE-Cy7, PE-Cy5.5, APC-Cy7, eFluor 650, or Pacific Blue and specific for the following antigens were used: CD11b (M1/70), F4/80 (BM8), B220 (RA3-62B) from BioLegend (San Diego, California) and CD115 (AF6-120.1), CD40 (1C10), Ly6C (HK1.4), CD86 (GL1) from eBioscience (San Diego, California). All in vivo experiments to characterise tumour-infiltrating leucocytes were independently repeated at least three times with 3–5 mice per group. iTAg APC labelled-H-2K^d^-Trp-2(SVYDFFVWL) and iTAg PE labelled-H-2D<beta>100(EGRSNQDWL) tetramers were purchased from MBL international (Woburn, Massachusetts) and were used according to the manufacturer’s instructions. Tetramer-staining experiments were repeated twice with five mice in each group. For presented phosphorilation-specific flow cytometry, cells were activated for 5, 15 or 30 min with or without 4C and fixed for 15 min with 1.8% paraformaldehyde. Cells were washed twice with PBS containing 2% FCS and incubated with 95% methanol at 4°C for 20 min. Conjugated antibodies against phospho-p38 (Thr180/Tyr182) and phospho-JNK (Thr183/Tyr185) were purchased from Cell Signaling and phospho-ERK1/2 (p44/p42) (p42/p202/p204) from BD Biosciences. DC protein phosphorylation experiments were repeated five times, each with biological duplicates. For tumour-binding IgM and IgG, PE-conjugated anti-mouse IgM (R&M-1), anti-mouse IgG (Polio652) and anti-human IgG (HP6017) were purchased from BioLegend. Flow cytometry was performed on a LSRII (BD Biosciences) and data sets were analysed using FlowJo software (Tree Star, Inc.). In vivo binding levels were determined in four independent experiments, 3–5 mice in each group.
incubated with 0.5 μg per 1 × 10^5 cells FcγR block (BD) and 5% (W/V) BSA (Sigma) in PBS for 15 min on ice. Cells were then washed and incubated with allogeneic IgG (2 μg per 1 × 10^5 cells) for 30 min on ice. Cells were centrifuged at 5,000 r.p.m. for 10 min, and the supernatants were concentrated by 50 kDa centrifugal filters (Amicon) before being incubated with 1 × 10^5 tumour cells.

Membrane protein extraction. For native membrane protein extraction, B16F10 cells were scraped in cold PBS and pelleted at 400g for 5 min at 4 °C. The cell pellet was washed twice in cold PBS, resuspended in 10 mM HEPES pH 7.4 and incubated on ice for 10 min. Cells were pelleted and the buffer was removed. The cell pellet was resuspended in 10 mL of SEAT buffer (10 mM triethanolamine/acetic acid, 1 mM EDTA pH 8.0, 250 mM sucrose, protease inhibitor cocktail) and homogenized with 20 strokes of a dounce homogenizer. The sample was spun at 9000g for 6 min to collect the post-nuclear supernatant (PNS). The PNS was spun at 100,000g for 60 min at 4 °C to harvest a membrane pellet, which was then resuspended in 4 mL membrane extraction buffer (MEB) containing 50 mM Tris-HCl pH 7.0, 62.5 and 125 ng per well was run for 2 h in Novex NativePAGE Bis-Tris gel system (Life Technologies) on ice. Bands were transferred to a nitrocellulose membrane and incubated overnight with 10 μg/mL rabbit polyclonal IgG anti-mouse H2-K^k^ (2μg/1×10^6 cells) or its isotype control (C1.18.4, both from BioXcell). Antibody-coated tumour cells were then washed and added to DC cultures. After overnight incubation, DCs were washed and 2.5 × 10^5 were injected s.c. to tumour-rescited mice one day after the tumours were removed, adjacent to the site of tumour resection. This experiment was repeated independently at least 3 times with 4 mice per group. For in vivo tumour treatments, a combination of 1 μg TNFα (Peprotech) and 100 μg agonistic anti-CD40 (FGK4.5, BioXcell), 5 μg recombinant CD40L (Peprotech), 5 μg CD28 (R&D Systems, Minneapolis, Minnesota), 5 μg LPS or 200 μg poly(L:C) (Invivogen), and 400 μg mouse allogeneic or syngeneic IgG or anti-GP-NMB (Santa Cruz), was injected twice (2 days apart) directly into tumours. Experiments were repeated independently at least 5 times with 4–5 mice per group. For treatment of the Braf^V600E^ melanoma model, mice were injected twice (2 days apart) in 2 cycles, one week apart, with 1 mg IgG derived from CD-1 mice with TNFα and anti-CD40 once the largest tumour nodule reached 16 mm². For metastasis experiments, 1 × 10^4 4T1 cells were injected into the mammary fat pad of syngeneic Balb/c mice. After 14–16 days, once tumours metastasized into the draining lymph node, the primary tumour nodules were injected twice (2 days apart) in 2 cycles, one week apart, with 1 mg IgG derived from CD-1 mice along with TNFα and anti-CD40. Experiments were repeated independently at least 3 times with 3–5 mice per group.

In vivo binding of PE-labelled allogeneic IgG. Allogeneic antibodies were fluorescently labelled with PE using Lightning-Link kits according to the manufacturer’s instructions (Innova Biosciences Ltd, Cambridge, UK). Subsequently, 5 μg of labelled allogeneic IgG was injected intratumorally alone or with TNFα and anti-CD40. After 2 h, tumours were enzymatically digested to obtain a single cell suspension and the PE levels were analysed by flow cytometry along with lineage markers.

Covariant binding of syngeneic antibodies to tumour cells. Syngeneic IgG was cross-linked to primary amines of B16 cell surface proteins using sulfo-LC-SPPD (sulfosuccinimidyl 6′-(2-pyridyldithio)-propionimidate) hexaonatoe, Pierce) according to the manufacturer’s instructions. Briefly, both the antibodies and cells were initially treated with sulfo-LC-SPPD to label primary amines. Next, disulfide bonds in syngeneic IgG were reduced by treatment with DTT. Finally, the reduced syngeneic IgG was incubated with SPPD-labelled B16 cells and the level of binding was later assessed by flow cytometry. Experiments were repeated independently 3 times with 3–5 mice per group.

In vivo cell depletion. Depletion of CD4^+^ and CD8^+^ T cells was achieved by intraperitoneal (i.p.) injection of 500 μg per mouse GK1.5 (anti-CD4) and YST-169.4 (anti-CD8) monoclonal antibodies (both from BioXcell, West Lebanon), respectively, 3 days before tumour inoculation and every 3 days thereafter. T-cell depletion experiments were repeated independently 3 times for each depletion antibody with 3–4 mice per group. In some experiments, B16-bearing mice were injected with 500 μg per mouse anti-CD8 or anti-CD4 2 days before their treatment with antibodies+TNFα+anti-CD40 and once a week thereafter. These T-cell depletion experiments were repeated independently 2 times for each depletion antibody with 4 mice per group. For B-cell depletion, 300 μg per mouse anti-CD19 (ID3) and 300 μg per mouse anti-B220 (RA3.3A1/6.1) (both from BioXcell) were injected i.p. three weeks before tumour inoculation and every 5 days thereafter. B-cell depletion experiments were repeated independently 3 times with 3–5 mice per group. For NK cell depletion, mice were injected i.p. with 50 μl anti-asialo (GM1) polyclonal antibody (Wako Chemicals, Richmond, Virginia), or with 200 μg anti-NK.1.1 (PK136) (BioXcell) on days 2, 0, 4 and 8 relative to tumour challenge. Individual mice were bled on days 0, 7, 14 and 21 to confirm depletion. NK cell depletion experiments were repeated independently 3 times with 3–5 mice per group.

Adoptive transfer. Mice were injected i.v. with 1 mg per mouse of syngeneic or allogeneic IgG or IgM one day before tumour challenge and once again with tumour injection. For T-cell transfer, splenic CD4^+^ and CD8^+^ T cells were negatively selected using a murine enrichment kit (Stem Cell Technologies) and at least 5 × 10^6 cells were injected i.v. to recipient mice one day before tumour challenge. T-cell adoptive transfer experiments were repeated independently 3 times for each T-cell subset with 3–5 mice per group. Prior to their transfer, tumour-associated cell subsets were enriched as follows: TADGCs were isolated by enrichment of MHCII^+^ cells on magnetic beads (Miltenyi) and subsequent sorting of Ly6C^CD11b^-CD64^+^ FACS. Tumour macrophages were enriched with CD11b^+^ magnetic beads (Miltenyi) followed by sorting of Ly6C^CD64^-cells. B cells were enriched with CD19^+^ magnetic beads (Miltenyi). NK cells were enriched with NK1.1^+^ magnetic beads (Miltenyi), and mast cells were enriched with c-kit^+^ magnetic beads (Miltenyi). For each cell subset, 2 × 10^6 cells were
injected s.c. into naive mice 3 days before being challenged with 5×10^4 B16 tumour cells. Transfer experiments for each cell type were repeated 3 times independently with 3–5 mice per group.

T-cell proliferation. 3×10^3 DCs were co-cultured with 3×10^5 MACS-enriched CD4$^+$ T cells (Miltenyi, Germany) from spleens of LMP- or B16-immunized mice. After 6 days, cells were pulsed with $[^3H]$thymidine (1 μCi per well) and cultured for an additional 18 h before being harvested in a Harvester 400 (Tomtec). Radioactivity was measured by a 1450 MicroBeta counter (LKB Wallac). T-cell proliferation was repeated 5 times with 3 biological replicates and 6 technical replicates for each.

In vivo BrdU incorporation. Tumour-challenged mice were injected i.p. every day with 1 mg of 5-bromo-2-deoxyuridine (BrdU) in 200 μl PBS. At several time points, mice were killed and single cell suspensions were prepared from BM, lymph nodes and tumour tissues. Cells were then stained for lineage markers followed by intracellular staining with FITC-conjugated anti-BrdU antibody according to manufacturer’s instructions (BD Pharmingen) and analysed by flow cytometry. Experiments were repeated independently 3 times with 3–5 mice per group.

Immunofluorescence. DCs or monocytes were incubated on glass-bottom culture plates (In vitro Scientific) with CFSE-labelled tumour cells with or without antibodies overnight. Cells were gently washed with PBS (Gibco), fixed for 20 min with 2% paraformaldehyde and permeabilized with 0.5% saponin (Sigma). Samples were blocked with 10% non-immune goat serum and stained with Alexa-conjugated anti-mouse IgG and IgM (Invitrogen 1:100) and anti-mouse I-Ab (BD Biosciences, 1:100). DC immunostainings were independently repeated at least 3 times in biological duplicates and 3 fields were documented in each slide.

Immunohistochemistry. Specimens were fixed in 4% paraformaldehyde, equilibrated in a 20% sucrose solution and embedded in frozen tissue matrix (TissueTek OCT, Torrance, California). Slides were cut to 5 μm, blocked with 10% non-immune goat serum and stained with goat anti-mouse IgG (Invitrogen 1:100) and anti-mouse IgM (II/41 eBioscience, 1:100). Sections were examined under a Zeiss Laser Scanning Confocal Microscope. Images were collected using a Zeiss 700 confocal laser scanning microscope, and analysed using ZEN software (Carl Zeiss Microscopy). Tumour immunostainings were repeated independently at least 3 times in biological duplicates and 3 fields were captured for each slide.

Statistics. No statistical methods were used to predetermine sample size, but sample size was chosen such that statistical significance could be achieved using appropriate statistical tests (for example, ANOVA) with errors approximated from previously reported studies. A non-parametric Mann–Whitney U test was performed in Prism (GraphPad Software, Inc.) to analyse experimental data, unless otherwise stated. Phospho-specific flow cytometry data were transformed by taking the inverse hyperbolic sine (arcsinh), and ratios were taken over the corresponding baseline (unstimulated) value. No blinded experiments were performed. No samples were excluded from analyses. P values indicate significance of the difference between experimental and control (CT) values. * $P < 0.05$; ** $P < 0.01$. Error bars represent ± s.e.m.

31. Irish, J. et al. B-cell signaling networks reveal a negative prognostic human lymphoma cell subset that emerges during tumor progression. Proc. Natl. Acad. Sci. USA 29, 12747–12754 (2010).
Extended Data Figure 1 | DCs acquire an activated phenotype in response to allogeneic tumours injected in vivo, but not when co-cultured in vitro.

a, LMP (left) and B16 (right) growth in 129S1, C57BL/6, or allogeneic hosts pretreated with anti-asialo-GM1 or anti-NK1.1 antibodies (n = 6, 3 independent experiments). Shown are representative plots of NK cells in the blood before tumour challenge. b, BrdU incorporation by CD4^+ T cells (top) and CD8^+ T cells (bottom) in lymphoid organs of 129S1 and C57BL/6 LMP-bearing mice (n = 8, 3 independent experiments). c, Representative flow cytometric analysis of CD11b^{hi}Ly6Chi myeloid cells and mature DCs (mDCs) on day 10 after C57BL/6 mice were inoculated with B16 tumour cells. d, Flow cytometric analysis of Ly6C^-CD11c^-MHCI^- cells from LMP-bearing mice (left) and B16-bearing mice (right). Histograms show representative expression levels of co-stimulatory molecules on DCs from C57BL/6 and 129S1 mice (n = 8, 3 independent experiments). e, IL-12 (right) and TNFα (left) in the supernatants of syngeneic BMDCs, syngeneic blood monocyte-derived (Mo) DCs, allogeneic BMDCs or Mo-DCs incubated with live, frozen-thawed (necrotic), or mitomycin-C-treated (apoptotic) LMP cells or E. coli BioParticles overnight (n = 8, 4 independent experiments). Shown are the mean values ± s.e.m. *P < 0.05; **P < 0.01.
Extended Data Figure 2 | Allogeneic hosts have a much higher titre of tumour-binding antibodies compared to syngeneic hosts. a, Flow cytometric analysis of the binding of various concentrations of IgG from 129S1, IgM from 129S1, IgG from C57BL/6 and IgM from C57BL/6 mice to LMP and B16 cells. The lower panel shows a representative histogram of IgG (left) or IgM (right) binding after incubation of 1 µg of C57BL/6 or 129S1 antibodies with 1×10^5 LMP (upper) or B16 (lower) cells ($n = 8$, 4 independent experiments). b, The left panel shows a representative histogram of the MFI of IgG after incubation of 2 µg of either control antibody (secondary Ab) or IgG from the serum of naive C57BL/6 mice, B16-bearing C57BL/6 mice on day 7, B16-bearing C57BL/6 mice on day 14 or naive 129S1 mice with 1×10^5 B16 cells ($n = 6$, 4 independent experiments). Right graph shows MFI of the binding of 2 µg of each IgG to 1×10^5 B16 cells. c, Serum levels of IgG (left) and IgM (right) in C57BL/6 and 129S1 mice following i.p injection with anti-B220 and anti-CD19 antibodies ($n = 8$, 3 independent experiments). d, LMP tumour size in naive 129S1 mice injected with allogeneic IgG, allogeneic IgM, syngeneic IgG or syngeneic IgM on days −1 and 0 relative to tumour injection ($n = 6$, 3 independent experiments). Shown are the mean values ± s.e.m. *P < 0.05; **P < 0.01.
Extended Data Figure 3 | Activation of BMDCs with immune complexes induces transferable T-cell immunity. a, Mean levels of CD40 and CD86 expression (left) and IL-12 secretion (right) in BMDCs from C57BL/6 (WT) and FcγR KO mice activated with IgG-IC overnight (n = 6, 10 independent experiments). b, Proliferation of CD4+ T cells cultured with BMDCs from C57BL/6 and FcγR KO mice loaded with IgG-IC (n = 4, 5 independent experiments). c, Tumour recurrence in untreated mice, mice treated with WT BMDCs loaded with IgG-IC, or mice treated with FcγR KO BMDCs loaded with IgG-IC (n = 8, 3 independent experiments). d, e, Percentages of tumour-free mice after adoptive transfer of 5 × 10^6 splenic CD4+ T cells (left graph) or CD8+ T cells (right graph) from naive mice, or from LMP (d) or B16 (e)-resected mice treated with DCs + IgG129 IC, DCs + IgM129 IC, or DCs + IgM129 IC, and subsequently challenged with LMP (d) or B16 (e) (n = 6, 3 independent experiments). Shown are the mean values ± s.e.m. **P < 0.01.
Extended Data Figure 4 | Tumour-associated DCs do not respond to immune complexes. a, Sorting and culture schema of DCs from BM and tumour. b, Mean levels of IL-12 (left) and TNFα (right) in the supernatants of DCs cultured overnight in medium alone, with B16 lysates, or with alloIgG-IC (n = 6, 4 independent experiments). c, Percentage of MHCII⁺ CD86⁺ cells (left) or CFSE levels (right) in tumour-associated DCs after overnight activation with PBS or CFSE-labelled alloIgG-IC with or without stimulatory molecules (n = 12, 10 independent experiments). d, Representative flow cytometric analysis and confocal images from one out of three independent experiments of B16-derived DCs cultured overnight with CFSE-labelled fixed B16 cells (n = 8, 10 independent experiments). Shown are the mean values ± s.e.m. *P < 0.05; **P < 0.01.
Extended Data Figure 5 | Tumour DCs from mice treated with alloIgG + adjuvant can internalize immune complexes and transfer immunity. a, B16 tumour size in C57BL/6 mice left untreated or injected intratumorally with 129S1 allogeneic IgG, LPS, TNFα + CD28, LPS + allogeneic IgG or TNFα + CD28 + allogeneic IgG (n = 15, 3 independent experiments). b, B16 tumour size in C57BL/6 mice left untreated or injected intratumorally with 129S1 allogeneic IgG, TNFα, CD28, or CD40L (n = 12, 3 independent experiments). c, Lewis lung carcinoma (LL/2) tumour size in C57BL/6 mice left untreated, or injected intratumorally with 129S1 allogeneic IgG, TNFα + CD40L, TNFα + CD28, TNFα + CD40L + 129S1 allogeneic IgG or TNFα + CD28 + 129S1 IgG (n = 8, 2 independent experiments). d, Representative flow cytometric analysis from one out of three independent experiments of IgG binding total myeloid cells in B16 tumour-bearing mice 3 h after intratumoral injection of PBS or 5 μg PE-labelled allogeneic IgG. e, Total numbers of CD11c+ cells in the draining lymph nodes of B16 tumour-bearing mice 4 days after treatment (n = 6, 3 independent experiments). f, Gating and sorting strategy of immune cell populations infiltrating B16 tumours. g, B16 growth in mice vaccinated with 2 × 10^6 B cells, mast cells, macrophages or NK cells from B16 tumours untreated, or injected with allogeneic IgG or allogeneic IgG + TNFα + anti-CD40 (n = 6, 3 independent experiments). Shown are the mean values ± s.e.m. *P < 0.05; **P < 0.01.
Extended Data Figure 6 | Allogeneic IgG recognises non-mutated cell membrane proteins on tumour cells. a, B16 frequency in mice untreated, or treated with BMDCs loaded with intact B16 cells coated with allogeneic IgG, or with intact B16 cells cross-linked to syngeneic IgG (n = 8, 3 independent experiments). b, B16 tumour frequency in mice untreated or treated with BMDCs loaded with intact B16 cells coated with allogeneic IgG or with intact B16 coated with monoclonal IgG against MHC-I (n = 5, 3 independent experiments). c, RMA tumour growth following inoculation with 2.5 × 10⁵ tumour cells in naive C57BL/6 mice, or in C57BL/6 mice in which B16 tumours had completely regressed after treatment with allogeneic IgG + TNFα + anti-CD40. Also shown is the lack of B16 tumour growth in C57BL/6 mice that were re-challenged with 2 × 10⁵ B16 tumour cells following the regression of this tumour after treatment with allogeneic IgG + TNFα + anti-CD40 (n = 8, 2 independent experiments). d, Left: tumour frequency in mice untreated or treated with DCs loaded with immune complexes formed with allogeneic IgG and cytosolic tumour proteins, membrane proteins without O- and N-glycans, or heat-denatured membrane proteins (n = 5, 3 independent experiments). Right: tumour frequency in mice untreated, treated with DCs loaded with immune complexes formed from allogeneic IgG and membrane proteins, membrane proteins without O- and N-glycans, or heat-denatured membrane proteins (n = 5, 3 independent experiments). e, B16 tumour growth in C57BL/6 mice untreated, or injected with TNFα + anti-CD40, TNFα + anti-CD40 + allogeneic IgG, or TNFα + anti-CD40 and allogeneic IgG absorbed on normal cells of the IgG-donor background (blue diamonds) or on normal cells of the tumour background (green squares) (n = 6, 3 independent experiments). f, Tumour recurrence rates after resection in mice left untreated, treated with 2 × 10⁵ DCs loaded with IgG-IC from conventionally raised C57BL/6, or with 2 × 10⁵ DCs loaded with IgG-IC from gnotobiotic C57BL/6 mice (n = 6, 2 independent experiments). Shown are the mean values ± s.e.m. *P < 0.05; **P < 0.01.
Extended Data Figure 7 | Allogeneic hosts have a higher titre of anti-GP-NMB IgG, which can be used to induce tumour immunity. a, Representative flow cytometric analysis and quantification of binding of anti-IgG secondary antibody alone, 1 μg anti-GP-NMB or 2 μg GP-NMB per 1 × 10^5 B16 cells, normal skin cells, or normal spleen cells (n = 6, 3 independent experiments). b, Percentage of MHCII^+CD86^+ BMDCs following overnight activation with untreated LMP or B16 tumour cells, or with tumour cells coated with anti-GPNMB (2 μg per 1 × 10^5 tumour cells) (n = 8, 3 independent experiments). c, Western blot of recombinant GPNMB (62.5 ng and 125 ng) performed with 10 μg ml^{-1} of IgG from naive 129S1 mice, naive C57BL/6 mice, or 1 μg ml^{-1} anti-GPNMB (2 independent experiments). d, B16 tumour size in mice untreated or treated with TNFα + anti-CD40, allogeneic IgG, anti-GPNMB IgG, TNFα + anti-CD40 + allogeneic IgG, or with TNFα + anti-CD40 + anti-GPNMB (n = 8, 3 independent experiments). e, B16 tumour size in C57BL/6 WT mice untreated or treated with TNFα + anti-CD40, TNFα + anti-CD40 + allogeneic IgG, or with TNFα + anti-CD40 + anti-GPNMB, or in FcγR KO mice treated with TNFα + anti-CD40 + allogeneic IgG, or with TNFα + anti-CD40 + anti-GPNMB (n = 8, 3 independent experiments). Shown are the mean values ± s.e.m. *P < 0.05; **P < 0.01.
Extended Data Figure 8 | AlloIgG and anti-GPNMB IgG induce tumour-reactive T-cell infiltration and activation.

a, Representative flow cytometry plots of CD4$^+$ and CD8$^+$ cells in B16 tumours 6 days after treatment. Left: percentage of CD45$^+$ cells infiltrating B16 tumours 15–17 days after s.c. inoculation or 6 days after treatment. Right: percentage of CD4$^+$ and CD8$^+$ cells among tumour-infiltrating CD45$^+$ cells (n = 10, 3 independent experiments).
b, Percentages of CD44 and IFNγ co-expressing CD4$^+$ and CD8$^+$ cells among tumour-infiltrating CD45$^+$ cells 6 days after treatment or 15 days following s.c. inoculation (n = 10, 3 independent experiments).
c, Frequency of IFNγ-expressing T cells that recognize gp100 and Trp2 among day 6 post-treatment tumour-infiltrating CD8$^+$ cells. Gate shown: CD8$^+$ T cells (n = 10, 3 independent experiments).
d, Percentage of tumour-free mice following adoptive transfer of T cells from day 6 post-treatment B16 tumour-bearing mice untreated, treated with TNFα + anti-CD40, with TNFα + anti-CD40 + allogeneic IgG, or with TNFα + anti-CD40 + anti-GPNMB (n = 9, 3 independent experiments).
e, Upper left: B16 tumour growth in untreated C57BL/6 mice injected with rat IgG, with rat anti-CD4, or with rat-CD8. Upper right: B16 tumour growth in C57BL/6 mice treated with TNFα + anti-CD40 and injected with rat IgG, with rat anti-CD4, or with rat-CD8. Lower left: B16 growth in C57BL/6 mice treated with TNFα + anti-CD40 + allogeneic IgG and injected with rat IgG, with rat anti-CD4, or with rat-CD8. Lower right: B16 growth in C57BL/6 mice treated with TNFα + anti-CD40 + anti-GPNMB and injected with rat IgG, with rat anti-CD4, or with rat-CD8 (n = 9, 3 independent experiments).
Extended Data Figure 9 | AlloIgG can activate human tumour DCs to process autologous tumour cells.

a, Representative haematoxylin and eosin sections of lung metastases on day 30 from one out of three independent experiments performed (original magnification, 10×).

b, MFI of tumour cells from MSTO-resected patients coated with autologous IgG or IgG from healthy donors (n = 2 in technical triplicates).

c, d, Wide-field microscopy (c) and flow cytometry plots (d) of TADCs from a lung carcinoma patient incubated overnight with autologous CFSE-labelled tumour cells (green) coated with self IgG or allogeneic IgG derived from a pool of 10 donors (1 μg per 2 × 10⁵ cells) and in the presence of 50 ng ml⁻¹ TNFα and 1 μg ml⁻¹ CD40L (n = 2 in technical triplicates). Shown are the mean values ± s.e.m. from two independent experiments. *P < 0.05; **P < 0.01.
Extended Data Table 1 | Allogeneic IgG binds numerous membrane tumour proteins

a. Proteins enriched by allogIg

Identified Proteins	Accession Number	C57 SpC	129 SpC	C57 SAF	129 SAF	C57 NSAF	129 NSAF	C57/129 ratio
Endoplasmic reticulum membrane								
1 Transmembrane protein 53	spQ9C2W1T1M5S_MOUSE	0	2	0	0.166667	0	0.000376	2
2 Delineator-1	spQ9GTP2T1M5S_MOUSE	0	2	0	0.454545	1	0.000205	2
3 Retinoic acid receptor-1	spQ9F872T1M5S_MOUSE	0	2	0	0.015748	0	0.000605	2
4 Uncharacterized protein C12orf41 homolog	spQ9B9R4T1M5S_MOUSE	0	2	0	0.037037	0	0.000163	2
5 F-box 17	spQ9F872T1M5S_MOUSE	0	2	0	0.058333	0	0.000265	2
6 Transitional endoplasmic reticulum ATPase	spQ9F872T1M5S_MOUSE	0	2	0	0.000000	0	0.000000	2
7 Dolichyl-diphosphoglycosyltransferase protein glycosyltransferase subunit DAD1	spP18140T1M5S_MOUSE	0	2	0	0.166667	0	0.000376	2
8 Calponin-4	spQ9F872T1M5S_MOUSE	0	2	0	0.020833	0	0.000929	2
9 Calmannin	spQ9F872T1M5S_MOUSE	0	2	0	0.058333	0	0.000265	2
10 Vasa-associated membrane protein-associated protein A	spQ9F872T1M5S_MOUSE	0	2	0	0.020833	0	0.000929	2
11 Mannosyl-oligosaccharide glucosidase	spQ9F872T1M5S_MOUSE	0	2	0	0.020833	0	0.000929	2
12 Neutral alpha-glucosidase	spQ9F872T1M5S_MOUSE	0	2	0	0.020833	0	0.000929	2
13 ERD1-like protein alpha	spQ9F872T1M5S_MOUSE	0	2	0	0.020833	0	0.000929	2
14 LCP glucose glucosyltransferase glycosyltransferase 1	spQ9F872T1M5S_MOUSE	0	2	0	0.020833	0	0.000929	2
15 Poly-1-hydropolyester subunit-1	spQ9F872T1M5S_MOUSE	0	2	0	0.020833	0	0.000929	2
16 Collagenase	spQ9F872T1M5S_MOUSE	0	2	0	0.020833	0	0.000929	2

b. Proteins equally enriched by syngIg and allogIg

Identified Proteins	Accession Number	C57 SpC	129 SpC	C57 SAF	129 SAF	C57 NSAF	129 NSAF	C57/129 ratio
Endoplasmic reticulum membrane								
1 Eukaryotic cell homolog subfamily B member 11								
2 Monocarboxylate transporter 4	spP17715T1M5S_MOUSE	0	2	0	0.166667	0	0.000376	2
3 Neocalcin	spP17715T1M5S_MOUSE	0	2	0	0.166667	0	0.000376	2
4 Laminin	spP17715T1M5S_MOUSE	0	2	0	0.166667	0	0.000376	2
5 Vasa-associated membrane protein-associated protein A	spP17715T1M5S_MOUSE	0	2	0	0.166667	0	0.000376	2
6 Retrac substrate-related Env polypeptide from Fv-4	spP17715T1M5S_MOUSE	0	2	0	0.166667	0	0.000376	2
7 Dopamine receptor membrane protein	spP17715T1M5S_MOUSE	0	2	0	0.166667	0	0.000376	2
8 FGF cell-surface antigen heavy chain	spP17715T1M5S_MOUSE	0	2	0	0.166667	0	0.000376	2
9 Alpha-encephalin	spP17715T1M5S_MOUSE	0	2	0	0.166667	0	0.000376	2
10 Nectin-2-like protein kinase	spP17715T1M5S_MOUSE	0	2	0	0.166667	0	0.000376	2
11 Transmembrane protein MNK1	spP17715T1M5S_MOUSE	0	2	0	0.166667	0	0.000376	2
12 Monocarboxylic acid transporter	spP17715T1M5S_MOUSE	0	2	0	0.166667	0	0.000376	2
13 Catenin C1	spP17715T1M5S_MOUSE	0	2	0	0.166667	0	0.000376	2

c. Proteins enriched by syngIg

Identified Proteins	Accession Number	C57 SpC	129 SpC	C57 SAF	129 SAF	C57 NSAF	129 NSAF	C57/129 ratio
Endoplasmic reticulum membrane								
1 General cell derived factor 2-like protein	spQ9F872T1M5S_MOUSE	0	2	0	0.0125	0	0.000061	2
2 Nicotinamide	spQ9F872T1M5S_MOUSE	0	2	0	0.015748	0	0.000605	2
3 Translocation protein SEC62	spQ9F872T1M5S_MOUSE	0	2	0	0.037037	0	0.000163	2
4 Discoidin-containing protein homolog B	spQ9F872T1M5S_MOUSE	0	2	0	0.058333	0	0.000265	2
5 Membrane protein	spQ9F872T1M5S_MOUSE	0	2	0	0.058333	0	0.000265	2
6 Vacuolar protein sorting-associated protein 35	spQ9F872T1M5S_MOUSE	0	2	0	0.058333	0	0.000265	2
7 Argininosuccinate lyase	spQ9F872T1M5S_MOUSE	0	2	0	0.058333	0	0.000265	2
8 Fibronectin V3-like protein 2	spQ9F872T1M5S_MOUSE	0	2	0	0.058333	0	0.000265	2

a-c, 20 µg of native cell membrane proteins were incubated with 50 µg of syngeneic (C57BL/6) or allogeneic (129S1) IgG coupled to protein G magnetic beads, and precipitated proteins were analysed by mass spectrometry. Shown is conversion to spectral abundance factor (SAF) and subsequent normalized spectral abundance factor (NSAF). This was based on the equation NSAF = (SpC/MW)/S; where SpC is spectral counts, MW is protein molecular mass in kDa and n is the total number of proteins.