Physical properties in the cluster-based magnetic-diluted triangular lattice antiferromagnets
Li$_2$Sc$_{1-x}$Sn$_x$Mo$_3$O$_8$

Yuya Haraguchi1, Chishiro Michioka1, Hiroaki Ueda1, Akira Matsuo2, Koichi Kindo2, Kazuyoshi Yoshimura1,3,4

1 Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
2 The Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
3 Research Center for Low Temperature and Materials Sciences, Kyoto University, Kyoto 606-8501, Japan
4 Institute for Liberal Arts and Sciences, Kyoto University, Kyoto 606-8501, Japan
E-mail: chiyuya@kuchem.kyoto-u.ac.jp, kyhv@kuchem.kyoto-u.ac.jp

Abstract. We have investigated the physical properties of the magnetic diluted triangular lattice antiferromagnetic system Li$_2$Sc$_{1-x}$Sn$_x$Mo$_3$O$_8$. For all compounds, no magnetic ordering has been observed. On the other hand, the partial spin disappearing behavior is found in all Sn-substituted compounds except $x = 0$, which has been also observed in the similar magnetic system LiZn$_2$Mo$_3$O$_8$. Considering the relationship between the crystal structure and the magnetism, the partial spin disappearance is properly explained by a formation of the valence bond glass derived from the randomness effect.

1. Introduction
Geometrical frustrated magnetism have attracted much attention because of their possibility to host novel phenomena. In particular, quantum spin frustrated magnets are expected to exhibit exotic ground states like a quantum spin liquid (QSL) state [1, 2, 3]. A strong spin frustration is realized in a characteristic lattice such as triangular, kagome (in 2D), face-centered cubic and pyrochlore lattice (in 3D). In realistic compounds, the highly frustrated spin liquid state is hard to be realized owing to the higher order magnetic interactions or coupling to other degrees of freedom such as lattice, valence, and orbital instabilities. Newly produced ground states may contain novel physics depending on characteristics of each compound.

Recently, we discovered $S = 1/2$ triangular lattice cluster antiferromagnet Li$_2$ScMo$_3$O$_8$ [4]. In this compound, Mo$_3$ trimers form a triangular lattice, and the Mo$_3$ layers and nonmagnetic cations are stacked alternately as shown in the Fig.1 (a) and (b). The magnetic state of [Mo$_3$]$^{11+}$ in Li$_2$ScMo$_3$O$_8$ is $S = 1/2$ as shown in Fig. 1(c). Then, Li$_2$ScMo$_3$O$_8$ is categorized as the $S = 1/2$ triangular lattice antiferromagnets. In our previous investigations, it has been found that Li$_2$ScMo$_3$O$_8$ is a powerful candidate of the QSL. In the similar magnetic systems, the isostructural Li$_2$InMo$_3$O$_8$ exhibits a conventional magnetic ordering with 120° spin configuration [4], and the other magnetic system LiZn$_2$Mo$_3$O$_8$ shows a formation of the valence bond solid on the honeycomb sublattice without magnetic ordering [5]. Thus, the Mo$_3$ trimer-based triangular lattice antiferromagnets exhibit various phenomena based on a frustrate magnetism. Therefore,
it is necessary to reveal the different ground state among Mo₃ cluster compounds, which will help understanding the QSL behavior in Li₂ScMo₃O₈.

In this work, we report on the physical properties of the magnetic diluted Li₂Sc₁₋ₓSnₓMo₃O₈ system. The Sn-substitution reduces the valence of Mo, which reflects the magnetic dilution to the S = 1/2 triangular lattice system by the nonmagnetic [Mo₃]¹⁰⁺ trimers (S = 0) instead of the [Mo₃]¹¹⁺ trimers (S = 1/2). That is, the chemical formula can be written as Li₂Sc₁₋ₓSnₓ[Mo₃]¹¹⁺₁₋ₓ[Mo₃]¹⁰⁺ₓO₈. For all Sn-substituted compounds without x = 0, the partial spin disappearing behavior is found similar to LiZn₂Mo₃O₈. The relationship between the magnetic properties and the crystallographic structure for both systems indicates that the randomness is the possible origin to emerge the partial spin disappearance caused by the valence bond glass formation.

2. Experimental Methods

Polycrystalline samples of Li₂Sc₁₋ₓSnₓMo₃O₈ were prepared using conventional solid-state reactions. These samples were characterized by powder x-ray diffraction (XRD) on a diffractometer with CuKα radiation. As shown in Fig. 2, the lattice parameters a and c in Li₂Sc₁₋ₓSnₓMo₃O₈ monotonically vary with increasing x, suggesting the successful solid solution. The temperature dependence of the magnetization was measured under several magnetic fields up to 7 T by using a magnetic property measurement system (MPMS; Quantum

Figure 1. (Color online) (a) The crystal structure of Li₂Sc₁₋ₓSnₓMo₃O₈. (b) Mo₃ trimers forming a triangular lattice. (c) Schematic 4d orbital energy level of the [Mo₃]¹¹⁺/[Mo₃]¹⁰⁺ trimer with the electron configurations in Li₂Sc₁₋ₓSnₓMo₃O₈.

Figure 2. (Color online) The trigonal lattice parameters a and c in Li₂Sc₁₋ₓSnₓMo₃O₈ as a function of x. The dashed lines are a guide to the eye.
Figure 3. (Color online) (a) The temperature dependence of the magnetic susceptibility χ in Li$_2$Sc$_{1-x}$Sn$_x$Mo$_3$O$_8$. The inset shows the composition dependence of the effective paramagnetic Bohr magneton p_{eff} and the Curie-Weiss temperatures at the high-temperature region. (b) The $1/\chi$ vs. T plot. The inset shows the temperature dependence of the normalized effective paramagnetic Bohr magneton $p_{\text{eff}}(T)$.

3. Results and Discussion

Figure 3(a) shows the temperature dependence of the magnetic susceptibility χ in Li$_2$Sc$_{1-x}$Sn$_x$Mo$_3$O$_8$. For all compositions, they obey in the Curie-Weiss law in the high temperature region and show no anomaly accompanied by a magnetic ordering or a spin glass freezing. The Weiss temperature θ_W and the effective paramagnetic Bohr magneton p_{eff} monotonically vary with increasing Sn substitution x, which is plotted in the inset of the Fig. 3(a). The reduction of p_{eff} by increasing x suggests the increase of the nonmagnetic [Mo$_3^{10+}$] trimers instead of the $S = 1/2$ [Mo$_3^{11+}$] trimers. The reduction of θ_W is originated in the
reduction of the number of the magnetic couplings from the magnetic dilution.

For all composition except \(x = 0 \), \(\chi \) shows an enhancement and a deviation from the Curie-Weiss law in the low temperature region. In addition, as shown in Fig. 3(b), a change in the slope of \(1/\chi \) as a function of temperature is observed at low temperatures, suggesting the partial disappearance of the paramagnetic spins. The inset of Fig. 3(b) shows the temperature dependence of \(p_{\text{eff}} \), estimated using the relation,

\[
p_{\text{eff}} \approx \sqrt{\frac{8}{d\chi^{-1}/dT}}.
\]

For all Sn-substituted compounds, \(p_{\text{eff}} \) gradually reduces with decreasing temperature. This behavior is very similar to the similar magnetic compound LiZn\(_2\)Mo\(_3\)O\(_8\), in which the partial disappearance of the paramagnetic spins has been explained by the construction of a valence bond solid on the honeycomb sublattice. The the partial spin-disappearance in the Li\(_2\)Sc\(_{1-x}\)Sn\(_x\)Mo\(_3\)O\(_8\) system is also explained by a formation of partial spin singlet. The finite \(p_{\text{eff}} \) value in low temperatures means the presence of the free spins which have been orphaned by the partial spin singlet formation.

Figure 4 shows the isothermal magnetization measured in the field up to \(H = 7 \) T at \(T = 2 \) K. For all Sn-substituted compounds, \(M-H \) curves show the nonlinear behavior. The deviation from the linear relationship \(M \propto H \) becomes larger with increasing \(x \), indicating that the contribution of free spins becomes large with increasing \(x \). In order to estimate the amount of free spins, we analyze the magnetization within the framework of the model that \(M \) is contributed by two components from the singlet-formed spins and the nearly free spins,

\[
M(H,T) = \chi(T)H + N_{A}A_{f}S_f g_j B_{s}(g_{f}S_j H \mu_{B}/k_{B}(T - \theta_f)),
\]
The upper inset shows the dependence of the estimated \(f \) value. The parameter \(f \) represents the percentage of free spins against the magnetic \([\text{Mo}^{11+}]\) trimers. The fitting results are listed in Table 1. The estimated values of \(f \) are very small, indicating almost no correlation among the free spins. The upper inset shows the \(x \) dependence of the estimated \(f \) value. For all Sn-substituted compounds, the contribution of the free spin to the magnetization process is relatively larger than that of the non-substituted compound. Considering that the \(f \) value is relatively small in \(x = 0 \) and remarkably increases with increasing \(x \), the main part of the free spin in the low temperature phase would be derived from the randomness effect. Note that the amount of free spins should be due to extrinsic factors, for example, defects and impurity spins because of the finite value of \(f \) in \(x = 0 \). The magnetization process up to 60 T only for \(x = 0 \) and 0.6 are shown in the downer inset of Fig. 4. Neither saturated behavior nor field-induced transition is observed and each \(M \) shows linear behavior against \(H \) in the high magnetic field region, indicating that the spin singlet is not broken up to 60 T.

For \(\text{Li}_2\text{Sc}_{1-x}\text{Sn}_x\text{Mo}_3\text{O}_8 \) and \(\text{LiZn}_2\text{Mo}_3\text{O}_8 \), the similar \(p_{\text{eff}} \) reduction has been observed. However, such the reduction is observed only in the system with the crystallographic disorder. In the case of \(\text{LiZn}_2\text{Mo}_3\text{O}_8 \), previous studies have clarified the presence of the mixture of Li and Zn ions [6]. And in the case of \(\text{Li}_2\text{Sc}_{1-x}\text{Sn}_x\text{Mo}_3\text{O}_8 \), the intensional randomness is present. Thus, it is reasonable to think that the partial spin singlet formation to make the reduction of \(p_{\text{eff}} \) is caused by the randomness. Such a behavior is also observed in the triangular lattice \(\text{Sc}_2\text{Ga}_2\text{Cu}_7 \) [8] and \(\text{Ba}_3\text{IrTi}_2\text{O}_9 \) [9], and the kagome lattice \(\text{Herbertsmithite} \) \(\text{ZnCu}_3(\text{OH})_6\text{Cl} \) [10] and \(\text{ZnCu}_3(\text{OH})_6\text{SO}_4 \) [11]. They also have crystallographic disorders of magnetic/nonmagnetic ions on the frustrated lattice. In the theoretical prediction, the randomness-induced valence bond glass model can explain the partial disappearance of paramagnetic spins [7]. In this model, the appearance of a small fraction of free spins to produce the Curie susceptibility is also predicted; leave some unpaired free spins would be orphaned by the random dimer spin pairing. Therefore, the origin of the the valence bond glass behavior observed in the \(\text{Mo}_3 \) cluster systems would be the randomness effect derived from the magnetic dilution. And such randomness effect to emerge the valence bond glass behavior would be characteristic in the highly frustrated magnets.

\(x \)	\(f\) (\%)	\(\theta_f \) (K)	\(g_f \)	\(S_f \)	\(\chi \) (emu/mol-[Mo]^{11+})
0.0	0.43(1)	0.020(2)	2	0.5	0.00191(3)
0.2	1.49(2)	0.65(2)	2	0.5	0.00258(3)
0.4	4.00(5)	0.26(2)	2	0.5	0.00301(7)
0.6	5.93(6)	0.38(3)	2	0.5	0.00381(9)

where \(\chi \) represents the susceptibility derived from the singlet-formed spins, and \(S_f \), \(g_f \), and \(\theta_f \) denote, the Lande \(g \)-factor, spin quantum number, and Weiss temperature for early free spins. The symbols \(H \), \(N_A \), \(k_B \), \(\mu_B \), and \(B_s \) represent the magnetic field, the Avogadro number, the Boltzman constant, the Bohr magneton, and the Brillouin function, respectively. The parameter \(f \) represents the percentage of free spins against the magnetic \([\text{Mo}^{11+}]\) trimers. The fitting results are listed in Table 1. The estimated values of \(\theta_f \) are very small, indicating almost no correlation among the free spins. The upper inset shows the \(x \) dependence of the estimated \(f \) value. For all Sn-substituted compounds, the contribution of the free spin to the magnetization process is relatively larger than that of the non-substituted compound. Considering that the \(f \) value is relatively small in \(x = 0 \) and remarkably increases with increasing \(x \), the main part of the free spin in the low temperature phase would be derived from the randomness effect. Note that the amount of free spins should be due to extrinsic factors, for example, defects and impurity spins because of the finite value of \(f \) in \(x = 0 \). The magnetization process up to 60 T only for \(x = 0 \) and 0.6 are shown in the downer inset of Fig. 4. Neither saturated behavior nor field-induced transition is observed and each \(M \) shows linear behavior against \(H \) in the high magnetic field region, indicating that the spin singlet is not broken up to 60 T.

For \(\text{Li}_2\text{Sc}_{1-x}\text{Sn}_x\text{Mo}_3\text{O}_8 \) and \(\text{LiZn}_2\text{Mo}_3\text{O}_8 \), the similar \(p_{\text{eff}} \) reduction has been observed. However, such the reduction is observed only in the system with the crystallographic disorder. In the case of \(\text{LiZn}_2\text{Mo}_3\text{O}_8 \), previous studies have clarified the presence of the mixture of Li and Zn ions [6]. And in the case of \(\text{Li}_2\text{Sc}_{1-x}\text{Sn}_x\text{Mo}_3\text{O}_8 \), the intensional randomness is present. Thus, it is reasonable to think that the partial spin singlet formation to make the reduction of \(p_{\text{eff}} \) is caused by the randomness. Such a behavior is also observed in the triangular lattice \(\text{Sc}_2\text{Ga}_2\text{Cu}_7 \) [8] and \(\text{Ba}_3\text{IrTi}_2\text{O}_9 \) [9], and the kagome lattice \(\text{Herbertsmithite} \) \(\text{ZnCu}_3(\text{OH})_6\text{Cl} \) [10] and \(\text{ZnCu}_3(\text{OH})_6\text{SO}_4 \) [11]. They also have crystallographic disorders of magnetic/nonmagnetic ions on the frustrated lattice. In the theoretical prediction, the randomness-induced valence bond glass model can explain the partial disappearance of paramagnetic spins [7]. In this model, the appearance of a small fraction of free spins to produce the Curie susceptibility is also predicted; leave some unpaired free spins would be orphaned by the random dimer spin pairing. Therefore, the origin of the the valence bond glass behavior observed in the \(\text{Mo}_3 \) cluster systems would be the randomness effect derived from the magnetic dilution. And such randomness effect to emerge the valence bond glass behavior would be characteristic in the highly frustrated magnets.

4. Summary

We studied the physical properties of the magnetic diluted triangular lattice antiferromagnetic systems \(\text{Li}_2\text{Sc}_{1-x}\text{Sn}_x\text{Mo}_3\text{O}_8 \). With increasing of Sn substitution \(x \), the nonmagnetic \([\text{Mo}^{10+}]\) clusters increase instead of the \(S = 1/2 \) \([\text{Mo}^{11+}]\) clusters, which results in the introduction of a magnetic dilution to the magnetic systems on the triangular lattice. For Sn substituted compounds, the partial disappearance of paramagnetic spins without magnetic orderings has been observed. This behavior is also observed in the similar magnetic system \(\text{LiZn}_2\text{Mo}_3\text{O}_8 \). Considering the relationship between the magnetic properties and the crystallographic structure for both systems, the randomness effect is the possible driving-force to emerge the partial
disappearance of paramagnetic spins caused by the valence bond glass formation. Furthermore, it is concluded that the quantum spin liquid behavior observed in Li$_2$ScMo$_3$O$_8$ is an essential character on the triangular lattice antiferromagnets without a randomness effect.

Acknowledgments
This work is supported by Grant-in-Aids for Scientific Research from MEXT of Japan [Grants No. 16H04131 and No. 26410089]. Y. H. is supported by Research Fellow of Japan Society for the Promotion of Science [Grants No. 16J04048].

References
[1] Anderson P W 1973 Mat. Res. Bull. 8, 153
[2] Moessner R and Sondhi S L 2002 Prog. Theor. Phys. Suppl. 145, 37
[3] Lee P A 2008 Science 321, 1306
[4] Haraguchi Y, Michioka C, Imai M, Ueda H and Yoshimura K 2015 Phys. Rev. B 92, 014409
[5] Sheckelton J P, Neilson J R, Soltan D G and McQueen T M 2012 Nat. Mater. 11, 493
[6] Torardi C C and McCarley R E 1985 Inorg. Chem. 24, 476
[7] Watanabe K, Kawamura H, Nakano H, Sakai T 2014 J. Phys. Soc. Jpn. 83, 034714
[8] Kumar R, Khuntia P, Sheptyakov D, Freeman P G, Ronnow H M, Koteswararao B, Baenitz M, Jeong M and Mahajan A V 2015 Phys. Rev. B 92, 180411(R)
[9] Dey T, Mahajan A V, Khuntia P, Baenitz M, Koteswararao B and Chou F C 2012 Phys. Rev. B 86, 140405
[10] Helton J S, Matan K, Shores M P, Nytok E A, Bartlett B M, Yoshida Y, Takano Y, Suslov A, Qiu Y, Chung J -H, Nocera D G and Lee Y S 2007 Phys. Rev. Lett. 98, 107204
[11] Li Y, Pan B, Li S, Tong W, Ling L, Yang Z, Wang J, Chen Z, Wu Z and Zhang Q 2014 New J. Phys. 16, 093011