A model Hamiltonian for MgB_2 which takes into account its unusual phononic features.

M. Acquarone1,2 and L. Romanò2

1IMEM-CNR, Parco Area delle Scienze, 43100 Parma (Italy); 2Unità INFM e Dipartimento di Fisica, Università di Parma, Parco Area delle Scienze, 43100 Parma (Italy).

(March 22, 2022)
Abstract

Taking as a starting point the results of LDA calculations, which show that in MgB$_2$ the phonons have a strong quartic anharmonicity and that the bond-stretching electron-phonon interaction (EPI) has both a linear and a large quadratic component, we propose a model Hamiltonian which successfully matches a number of experimental evidences. We relate the single critical temperature for both superconducting gaps to a phonon-induced inter-band coupling whose amplitude increases with temperature. We also obtain phonon frequencies and linewidths depending on the band filling, as well as band energies and hybridization amplitudes depending on the phonon number.

PACS:74.20-z, 74.70-b

I. INTRODUCTION.

The electronic structure of the 40 K superconductor MgB$_2$ is characterized by the presence at the Fermi level of two hybrid bands (σ and π) of very different character [1]. This feature reflects itself in the experimental evidence of two different gaps [2–6], which however, in the absence of magnetic fields, have a common critical temperature [7]. The observation of a large Boron isotope effect [8] rules out the applicability of theories of Coulomb-interaction-driven two-band superconductivity [9], suggesting instead that the electron-phonon-interaction (EPI) is the key factor.

According to the standard theory of the EPI-driven two-band superconductivity [10], a single critical temperature for both gaps implies an interaction between the bands contributing to the Fermi surface. The microscopic origin of this interaction for the σ and π bands in MgB$_2$ is not yet clarified. Impurity scattering can be ruled out [11,12] and, to the best of our knowledge, no other precise suggestion has been advanced for the EPI scenario. An estimate of the interband coupling strength has been given in Ref. [13], based on the band structure
calculation of Ref. [14], yielding a small, but decidedly non-negligible value. The strong temperature dependence of the anisotropy of the critical field [13] indicates that the inter-band coupling increases with temperature. The present work suggests that such coupling might be due to the unusual phononic structure of MgB_2. There is a general consensus that the dominant electron-phonon interaction is due to a modulation of the inter-site hopping amplitudes due to the bond-stretching vibration of the Boron ions [14–19]. By working out the corresponding Eliashberg’s λ, Ref. [15] shows that there is a good agreement with the results following the LDA data, and with the experiments. In one-dimensional materials, this type of interaction is usually termed the Su-Schrieffer-Heeger (SSH) interaction, and we’ll use this terminology also in the present context for convenience.

The unusual phononic features (first revealed by ab-initio calculations of the electron and phonon band structures [14,16–18,20]) are the presence of anharmonic contributions (up to fourth order in the displacements) to the phononic Hamiltonian, and of both a linear and a quadratic term in the SSH interaction. Experimental evidence of anharmonicity comes from neutron [16] and Raman scattering [21] data. More specifically, the first-principle calculations in Ref. [20] find that the E_{2g} branch has, along the $\Gamma - A$ line in the Brillouin zone, an energy around 120 meV in the harmonic compound AlB_2 and of only 70 meV in MgB_2, in good quantitative agreement with the neutron scattering data [16]. Additionally, Ref. [21] presents first-principle calculations of the evolution of the phonon spectra when Al substitutes Mg agreeing with Raman data, which confirm the frequency softening on passing from harmonic AlB_2 to anharmonic MgB_2. One important aspect of such measurements is that, as Al substitution changes the occupancy of the bands at the Fermi surface, those data show that the phonon frequency and lifetime both depend on the band filling. So, in relating those data to the change in phononic properties, one should be able to disentangle the effects of anharmonicity from those of band-filling variations. However, one must also mention that Raman and infrared data of Ref. [19] for $Mg_{1-x}Al_xB_2$ when $0 \leq x \leq 0.50$, on the contrary, find the frequency of the E_{2g} mode almost insensitive to the Al content.

Another theoretically predicted effect of the anharmonicity is the reduction of the aver-
aged electron-phonon coupling, as expressed by Eliashberg’s λ. For that, the experimental evidence is not so clear. Indeed, the first-principle calculation of the phonon spectra of Ref. [18] are in excellent agreement with the experimental data, and they yield at the same time that the strength of λ is reduced in the anharmonic case. However, if one takes the phonon linewidth as roughly expressing the combined intensity of the electron-phonon interactions, both Ref. [19] and [21] show that it strongly decreases with x. As Eliashberg’s λ for a bond-stretching interaction [22] depends on structure, band-filling and frequencies, it is difficult to precisely identify the cause(s) of the observed effects.

The ab initio numerical calculations [14,16–18,20] have yielded valuable insights about the electronic and phononic structure of MgB_2, which we take as the input information for the work presented here. Our aim in this paper is to propose a model Hamiltonian which represents the physics implied by the results of the first-principle calculations as far as the phononic features are concerned. We have no ambition of giving detailed quantitative results. However, our model is quantitatively consistent with the numerical results of Refs. [14,16,18]. While suggesting a plausible mechanism for the inter-band coupling, and therefore justifying [10] the presence of a single critical temperature for both superconducting gaps [2–6], at the same time it also qualitatively allows for other experimentally observed features: the increase with temperature of the inter-band coupling [13] and the fact that the phonon frequency and linewidth both depend on band-filling [19,21]. In particular, we find indications that the frequency hardening on Al substitution cannot be accounted for by the anharmonic-to-harmonic change only.

Detailed quantitative estimates based on the proposed model are left for future work.

II. THE ELECTRONIC HAMILTONIAN.

Our model of the electronic structure of MgB_2 by a Hamiltonian has two bands, labelled c and d, which hybridize through an inter-site hopping term. Then, in the real space representation, the bare electronic Hamiltonian reads:
\[H_{el} = \varepsilon^c \sum_{l\sigma} n_{l\sigma}^c + \varepsilon^d \sum_{l\sigma} n_{l\sigma}^d + \sum_{l(j)\sigma} \left[t_{ij}^{cc} c_{l\sigma}^c c_{j\sigma} + t_{ij}^{dd} d_{l\sigma}^d d_{j\sigma} \right] + \sum_{l(j)\sigma} t_{ij}^{cd} \left(c_{l\sigma}^c d_{j\sigma} + d_{j\sigma}^\dagger c_{l\sigma} \right) \]

(1)

where \(\sum_{l(j)} \) means summing on the \(z \) nearest neighbors \(j \) of a given site \(l \), and then on \(l \). In \(MgB_2 \) one expects that \(t_{ij}^{cc}, t_{ij}^{dd} \gg t_{ij}^{cd} \) [1,13,15]. The electron-phonon coupling parameters in the SSH scenario are derivatives of the hopping amplitudes with respect to the inter-site distance. By using \(c_{l\sigma}^\dagger = N^{-1/2} \sum_k c_{k\sigma}^\dagger \exp(ikR_l) \) we pass to the reciprocal space representation, yielding:

\[H_{el} = \sum_{k\sigma} (\varepsilon^c + z t_{k}^{cc}) n_{k\sigma}^c + \sum_{k\sigma} (\varepsilon^d + z t_{k}^{dd}) n_{k\sigma}^d + \sum_{k\sigma} z t_{k}^{cd} \left(c_{k\sigma}^\dagger d_{k\sigma} + d_{k\sigma}^\dagger c_{k\sigma} \right) \]

(2)

where \(t_{k}^{\mu\nu} = z^{-1} \sum_{l(j)} t_{ij}^{\mu\nu} \exp \left[ik \left(R_l - R_j\right)\right] \) with \(\mu, \nu = c, d \). To diagonalize \(H_{el} \) we express the bare operators \(c_{k\sigma}^\dagger, d_{k\sigma}^\dagger \) through the hybridized operators \(\alpha_{k\sigma}^\dagger, \beta_{k\sigma}^\dagger \) according to:

\[c_{k\sigma}^\dagger = \alpha_{k\sigma}^\dagger \cos \varphi_k + \beta_{k\sigma}^\dagger \sin \varphi_k \quad d_{k\sigma}^\dagger = -\alpha_{k\sigma}^\dagger \sin \varphi_k + \beta_{k\sigma}^\dagger \cos \varphi_k \]

(3)

In the following, any operator \(O \) expressed through the hybridized operators will be denoted by a tilde \(\tilde{O} \). By choosing

\[\tan(2\varphi_k) = -\frac{2zt_{k}^{cd}}{\varepsilon_k^c - \varepsilon_k^d + z \left(t_{k}^{cc} - t_{k}^{dd}\right)} \]

(4)

\(H_{el} \) is brought to diagonal form \(H_{el} \Rightarrow \tilde{H}_{el} = \sum_{k\sigma} \left(E_{k}^\alpha n_{k\sigma}^\alpha + E_{k}^\beta n_{k\sigma}^\beta\right) \), with the particle energies in the hybridized bands given by:

\[E_{k}^\alpha = \frac{1}{2} \left[\varepsilon^c + \varepsilon^d + z \left(t_{k}^{cc} + t_{k}^{dd}\right)\right] + \frac{1}{2} \sqrt{\left[\varepsilon^c - \varepsilon^d + z \left(t_{k}^{cc} - t_{k}^{dd}\right)\right]^2 + \left(2zt_{k}^{cd}\right)^2} \]

(5)

\[E_{k}^\beta = \frac{1}{2} \left[\varepsilon^c + \varepsilon^d + z \left(t_{k}^{cc} + t_{k}^{dd}\right)\right] - \frac{1}{2} \sqrt{\left[\varepsilon^c - \varepsilon^d + z \left(t_{k}^{cc} - t_{k}^{dd}\right)\right]^2 + \left(2zt_{k}^{cd}\right)^2} \]

(6)

The \(\alpha \) and \(\beta \) bands, at this stage completely decoupled by the transformation of Eq.3, represent in our model the \(\sigma \) and \(\pi \) bands of \(MgB_2 \).

III. THE PHONONIC HAMILTONIAN WITH ANHARMONIC TERMS.

Following [16,18] we assume that the purely phononic Hamiltonian \(H_{ph} \) for \(MgB_2 \) has to include, apart from the usual harmonic term, also a non-negligible quartic contribution.
The anharmonicity of the MgB_2 phonon modes has been analyzed in [17], showing that two E_{2g} modes, degenerate at the Γ point, have anharmonicities differing in the presence (mode labeled a in [17]), or absence (mode b), of a third-order term. In Ref. [14] a cubic term was included in the development of the deformation energy. Its amplitude was found to be of the same order as the linear term, i.e. about five times smaller than the quartic term amplitude. It gives rise to terms non conserving the phonon numbers, analogously to the linear SSH term. We’ll consider only the mode labeled $E_{2g}(b)$ in Ref. [17], which has no third-order anharmonicity, both for short, and because the effect of the dropped terms is similar, in amplitude and in type, to the one due to the linear SSH term, which we keep. A similar assumption of neglecting the $E_{2g}(a)$ mode has been explicitly [23] or implicitly [16,18] made in other studies.

Under such assumptions, H_{ph} takes the form [24]:

$$H_{\text{ph}} = \sum_q \frac{P_q P_{-q}}{2M} + \frac{M}{2} \sum_q \Omega^2_q u_q u_{-q} + \frac{M^2}{4N} \sum_{qp} x_{qp} \Omega^2_q \Omega^2_p u_q u_{-q} u_p u_{-p}$$

(7)

where M is the Boron mass and Ω_q is the frequency, at the wavevector q along the $\Gamma - A$ line, of the optical mode of E_{2g} symmetry. The parameter x_{qp} expresses the strength of the quartic term involving the wavevectors $\pm q$ and $\pm p$. In MgB_2, from Ref. [16], one can estimate $x_{qp} \approx 7.8 \text{ eV}^{-1}$.

By quantizing the phonon field according to the usual relations:

$$u_q = \sqrt{\frac{\hbar}{2M\Omega_q}} (b^\dagger_q + b_q) \quad P_q = i\sqrt{\frac{\hbar \Omega_q}{2M}} (b^\dagger_q - b_q) \quad L_q = \sqrt{\frac{\hbar}{2M\Omega_q}}$$

(8)

the harmonic part becomes $\sum_q \hbar \Omega_q \left(b^\dagger_q b_q + \frac{1}{2} \right)$. When quantizing the quartic term, we neglect the terms with different numbers of creation and destruction operators and keep the remaining four-operator products only when diagonal. Namely, we approximate $b^\dagger_q b_q b^-_{-q} b_p \approx (\delta_{p,q} + \delta_{p,-q}) \nu_q \nu_{-q}$, where $b^\dagger_q b_q = \nu_q$. The quartic contribution then reduces to:

$$\sum_{qp} x_{qp} \left(\frac{\hbar \Omega_q}{4} \right) \left(\frac{\hbar \Omega_p}{4} \right) \left(b^\dagger_q + b_q \right) \left(b^\dagger_{-q} + b_{-q} \right) \left(b^\dagger_p + b_p \right) \left(b^\dagger_{-p} + b_{-p} \right) \approx$$

$$\approx 4 \sum_q \left(\frac{\hbar \Omega_q}{4} \right) \left(\frac{1}{2} + \nu_q \right) \sum_p x_{qp} \left(\frac{\hbar \Omega_p}{4} \right) \left(1 + \delta_{qp} \right)$$.

\[+4 \sum_{qp} x_{qp} \left(\frac{\hbar \Omega_p}{4} \right) \left(\frac{\hbar \Omega_q}{4} \right) \nu_q \nu_p \left(1 + \delta_{q,-p} \right) + 2 \sum_q \left(\frac{\hbar \Omega_q}{4} \right) \left(b_{-q}^\dagger b_q^\dagger + b_{-q} b_q \right) \sum_p x_{qp} \left(\frac{\hbar \Omega_p}{4} \right) \]

\[-2 \sum_{qp} x_{qp} \left(\frac{\hbar \Omega_q}{4} \right) \left(\frac{\hbar \Omega_p}{4} \right) + \sum_{qp} x_{qp} \left(\frac{\hbar \Omega_q}{4} \right) \left(\frac{\hbar \Omega_p}{4} \right) \]

(9)

The product \(\nu_q \nu_p \) is approximated in the MFA fashion, i.e. \(\nu_q \nu_p \approx \nu_q \langle \nu_p \rangle + \langle \nu_q \rangle \nu_p - \langle \nu_p \rangle \langle \nu_q \rangle \). Putting together the constant terms, we can rewrite Eq.9 as:

\[\sum_q \hbar \Omega_q \left(\frac{1}{2} + \nu_q \right) \left[\frac{1}{N} \sum_p x_{qp} \left(\frac{\hbar \Omega_p}{2} \right) \left(\frac{1}{2} + \langle \nu_p \rangle \right) \left(1 + \delta_{q,-p} \right) \right] \]

\[+ \sum_q \hbar \Omega_q \left(b_{-q}^\dagger b_q^\dagger + b_{-q} b_q \right) \left[\frac{1}{N} \sum_p x_{qp} \left(\frac{\hbar \Omega_p}{8} \right) \right] + \text{const.} \]

(10)

Adding the harmonic contribution and defining

\[X_q \equiv 1 + \frac{1}{N} \sum_p x_{qp} \left(\frac{\hbar \Omega_p}{2} \right) \left(\frac{1}{2} + \langle \nu_p \rangle \right) \left(1 + \delta_{q,-p} \right) \]

(11)

we obtain the purely phononic Hamiltonian as:

\[H_{ph} = \sum_q \hbar \Omega_q X_q \left(\frac{1}{2} + \nu_q \right) + \sum_q \hbar \Omega_q \left(b_{-q}^\dagger b_q^\dagger + b_{-q} b_q \right) \left[\frac{1}{N} \sum_p x_{qp} \left(\frac{\hbar \Omega_p}{8} \right) \right] + \text{const.} \]

(12)

This form can be diagonalized by a "squeezing" transformation [25] \(e^S \equiv \exp \left[- \sum_q \eta_q \left(b_{-q}^\dagger b_q^\dagger - b_{-q} b_q \right) \right] \) under the condition that

\[\tanh \left(2 \eta_q \right) = -\frac{1}{X_q} \left(\frac{1}{N} \right) \sum_p x_{qp} \left(\frac{\hbar \Omega_p}{4} \right) \]

(13)

Notice that Eq.13 yields \(\eta_q < 0 \). The diagonalized Hamiltonian \(e^S H_{ph} e^{-S} \) can now be written as:

\[e^S H_{ph} e^{-S} = \sum_q \hbar \Omega_q \left[X_q \cosh \left(2 \eta_q \right) + 2 \sinh \left(2 \eta_q \right) \left(\frac{1}{N} \right) \sum_p x_{qp} \left(\frac{\hbar \Omega_p}{8} \right) \right] \left(b_q^\dagger b_q + \frac{1}{2} \right) + \text{const.} \]

(14)

By substituting \(\eta_q \) from Eq.13 into Eq.14, the renormalized frequency \(\omega_q \) of the harmonic Hamiltonian for the squeezed phonons is written explicitly as:
\[\omega_q = \Omega_q X_q \left[\sqrt{1 - \tanh^2 \left(2\eta_q \right)} \right] \] (15)

where \(\Omega_q X_q \) is the phonon frequency entering the quadratic part of the unsqueezed phononic Hamiltonian (see Eq.12). It is not the true bare frequency, because, from Eq.11, \(X_q - 1 \) yields the contribution from the diagonal part of the quartic terms treated in MFA, so that \(\Omega_q X_q \) already contains some effects of anharmonicity, analogous to those taken into account, e.g. in Ref. [16]. Thus, Eq.15 shows that \(\omega_q \) is increased (hardened) with respect to the "harmonic frequency" \(\Omega_q \) by \(X_q > 1 \), but the squeezing effect, taking account of the two-phonon terms terms previously [16] neglected, counteracts the hardening. According to Refs. [14,16,18] however, the squeezing effect is not strong enough for an overall softening to result.

IV. THE LINEAR ELECTRON-PHONON INTERACTION.

The linear part of the SSH electron-phonon interaction is written, in the real space representation symmetrized with respect to the site indexes, as

\[
H_{ep}^{(1)} = \frac{1}{2} \sum_{l(j)\sigma} \left[g_{lj}^{cc} \left(c_{l\sigma}^\dagger c_{j\sigma} + c_{j\sigma}^\dagger c_{l\sigma} \right) + g_{lj}^{dd} \left(d_{l\sigma}^\dagger d_{j\sigma} + d_{j\sigma}^\dagger d_{l\sigma} \right) \right] (\mu_l - \mu_j) \\
+ \frac{1}{2} \sum_{l(j)\sigma} g_{lj}^{cd} \left(d_{l\sigma}^\dagger c_{j\sigma} + c_{j\sigma}^\dagger d_{l\sigma} + d_{j\sigma}^\dagger c_{l\sigma} + c_{l\sigma}^\dagger d_{j\sigma} \right) (\mu_l - \mu_j) \tag{16}
\]

where \(g_{lj}^{\mu\nu} = \partial n_{lj}^{\mu\nu} / \partial (\mu_l - \mu_j) \mid_0 = -g_{jl}^{\mu\nu} \) with \(\mu, \nu = c, d \), are the coupling constants, and the 1/2 factor avoids double counting.

The Fourier-transformed form of Eq.16 is written in terms of \(g_{k}^{\mu\nu} = (1/z) \sum_{(j)} g_{lj}^{\mu\nu} \exp(ik \cdot \Delta_{ij}) \) (where \(\Delta_{ij} \) is the vector connecting the sites \(l \) and \(j \)) which we combine in the definition of the coupling strength \(\gamma_{k,k-q}^{\mu\nu} \) according to:

\[
\frac{z}{2} \left(g_{k-q}^{\mu\nu} + g_{k}^{\mu\nu} - g_{-(k-q)}^{\mu\nu} - g_{-k}^{\mu\nu} \right) = i \sum_{(j)} g_{lj}^{\mu\nu} \left\{ \sin [(k - q) \cdot \Delta_{ij}] - \sin [k \cdot \Delta_{lj}] \right\} \equiv \gamma_{k,k-q}^{\mu\nu} / L_q \tag{17}
\]
Eq.17 is the simplest possible form of the bond-stretching electron-phonon interaction which includes the relevant physics. It is adequate for a qualitative discussion, but it is not good enough for a quantitative study.

Quantization of the phonons according to Eq.8 leads to:

\[
H_{ep}^{(1)} = \\
= \frac{1}{\sqrt{N}} \sum_{kq\sigma} \left[\gamma_{k,k-q}^{cc} c_{k-q}^{\dagger} c_k + \gamma_{k,k-q}^{dd} d_{k-q}^{\dagger} d_k + \gamma_{k,k-q}^{cd} \left(c_{k}^{\dagger} d_{k-q} + d_{k}^{\dagger} c_{k-q} \right) \right] (b_{-q}^{\dagger} + b_q) \tag{18}
\]

When transformed to the hybridized fermion representation \(\tilde{H}_{ep}^{(1)} \) reads:

\[
\tilde{H}_{ep}^{(1)} = \\
= \frac{1}{\sqrt{N}} \sum_{kq\sigma} \left[\Gamma_{k,k-q}^{\alpha\alpha} \alpha_{k-q}^{\dagger} \alpha_k + \Gamma_{k,k-q}^{\beta\beta} \beta_{k-q}^{\dagger} \beta_k + \Gamma_{k,k-q}^{\alpha\beta} \alpha_{k-q}^{\dagger} \beta_k - \Gamma_{k,k-q}^{\beta\alpha} \beta_{k-q}^{\dagger} \alpha_k \right] (b_{-q}^{\dagger} + b_q) \tag{19}
\]

where the effective couplings are defined as:

\[
\Gamma_{k,k-q}^{\alpha\alpha} = \gamma_{k,k-q}^{cc} \cos \varphi_k \cos \varphi_{k-q} + \gamma_{k,k-q}^{dd} \sin \varphi_k \sin \varphi_{k-q} - \gamma_{k,k-q}^{cd} \sin (\varphi_k + \varphi_{k-q}) \tag{20}
\]

\[
\Gamma_{k,k-q}^{\beta\beta} = \gamma_{k,k-q}^{cc} \sin \varphi_k \sin \varphi_{k-q} + \gamma_{k,k-q}^{dd} \cos \varphi_k \cos \varphi_{k-q} + \gamma_{k,k-q}^{cd} \cos (\varphi_k + \varphi_{k-q}) \tag{21}
\]

\[
\Gamma_{k,k-q}^{\alpha\beta} = \gamma_{k,k-q}^{cc} \cos \varphi_k \sin \varphi_{k-q} - \gamma_{k,k-q}^{dd} \sin \varphi_k \cos \varphi_{k-q} + \gamma_{k,k-q}^{cd} \cos \varphi_{k-q} \tag{22}
\]

\[
\Gamma_{k,k-q}^{\beta\alpha} = \gamma_{k,k-q}^{cc} \sin \varphi_k \cos \varphi_{k-q} - \gamma_{k,k-q}^{dd} \cos \varphi_k \sin \varphi_{k-q} + \gamma_{k,k-q}^{cd} \sin \varphi_{k-q} \tag{23}
\]

V. THE QUADRATIC ELECTRON-PHONON INTERACTION.

According to Refs. [14,16,18], the electron-phonon Hamiltonian has to include also a quadratic term, which we write in real space in symmetrized form, as:
$$H_{ep}^{(2)} = \frac{1}{2} \sum_{l \langle j \rangle \sigma} \left[f_{lj}^{cc} (c_{l \sigma}^\dagger c_{j \sigma} + c_{j \sigma}^\dagger c_{l \sigma}) + f_{lj}^{dd} \left(d_{l \sigma}^\dagger d_{j \sigma} + d_{j \sigma}^\dagger d_{l \sigma} \right) \right] (u_l - u_j)^2$$

$$\quad + \frac{1}{2} \sum_{l \langle j \rangle \sigma} f_{lj}^{cd} \left(d_{l \sigma} c_{j \sigma} + c_{l \sigma}^\dagger d_{j \sigma} + d_{j \sigma} c_{l \sigma} + c_{l \sigma}^\dagger d_{j \sigma} \right) (u_l - u_j)^2$$

where \(f_{lj}^{\mu \nu} = \partial^2 t_{lj}^{\mu \nu} / \partial (u_l - u_j)^2 \mid_{0} \) with \(\mu, \nu = c, d \). We also develop \((u_l - u_j)^2 = u_l^2 + u_j^2 - u_l u_j - u_j u_l \). By defining \(f_k^{\mu \nu} \equiv z^{-1} \sum_{l \langle j \rangle} f_{lj}^{\mu \nu} e^{i k A_{lj}} \) and introducing the coefficients \(F_{kpq}^{\mu \nu} \equiv (z/2) \left(f_p^{\mu \nu} + f_k^{\mu \nu} - f_{k-q}^{\mu \nu} - f_{p+q}^{\mu \nu} \right) \), the Fourier transform reads:

$$H_{ep}^{(2)} = \frac{1}{N} \sum_{kpq} \left[F_{kpq}^{cc} \left(c_{k \sigma}^\dagger c_{p \sigma} + c_{p \sigma}^\dagger c_{k \sigma} \right) + F_{kpq}^{dd} \left(d_{k \sigma}^\dagger d_{p \sigma} + d_{p \sigma}^\dagger d_{k \sigma} \right) \right] u_q u_{k-p-q} +$$

$$\quad + \frac{1}{N} \sum_{kpq} F_{kpq}^{cd} \left(d_{k \sigma}^\dagger c_{p \sigma} + c_{k \sigma}^\dagger d_{p \sigma} + d_{p \sigma}^\dagger c_{k \sigma} + c_{k \sigma}^\dagger d_{p \sigma} \right) u_q u_{k-p-q}$$

When quantizing the deformations according to Eq.8, we shall take into account only the diagonal terms and those which can be diagonalized by squeezing, by enforcing \(k = p \). Then \(u_q u_{k-p-q} \) reduces to:

$$u_q u_{k-p-q} \Rightarrow u_q u_{-q} \delta_{pk} = \delta_{pk} L_q^2 \left(b_{-q}^\dagger b_{-q}^\dagger + b_q b_{-q} + \nu_q + \nu_{-q} + 1 \right)$$

Let us stress that our aim is to show that there are some contributions to \(H_{ep}^{(2)} \) which provide an effective inter-band coupling. We do not claim to be able to treat all the terms in \(H_{ep}^{(2)} \): we just want to select the subset of ”hot” terms. Under this approximation, by using \(F_{k,q}^{\mu \nu} = F_{-k,-q}^{\mu \nu} \), Eq.25 reduces to:

$$H_{ep}^{(2)} \approx \frac{2}{N} \sum_{kq} L_q^2 \left[F_{k,q}^{cc} \left(c_{k \sigma}^\dagger c_{q \sigma} + c_{q \sigma}^\dagger c_{k \sigma} \right) + F_{k,q}^{dd} \left(d_{k \sigma}^\dagger d_{q \sigma} + d_{q \sigma}^\dagger d_{k \sigma} \right) \right] \otimes$$

$$\quad \otimes \left(b_{-q}^\dagger b_{-q}^\dagger + b_q b_{-q} + \nu_q + \nu_{-q} + 1 \right)$$

Let’s now pass to the hybridized band picture, through the transformation of Eq.3. If we define for short the energies:

$$F_{k,q}^{cc} = 2L_q^2 \left[F_{k,q}^{cc} \cos^2 \varphi_k + F_{k,q}^{dd} \sin^2 \varphi_k - F_{k,q}^{cd} \sin \left(2\varphi_k \right) \right]$$

$$F_{k,q}^{cd} = 2L_q^2 \left[F_{k,q}^{cd} \cos \varphi_k + F_{k,q}^{dd} \sin \varphi_k - F_{k,q}^{cd} \sin \left(2\varphi_k \right) \right]$$

$$F_{k,q}^{dd} = 2L_q^2 \left[F_{k,q}^{dd} \cos \varphi_k + F_{k,q}^{dd} \sin \varphi_k - F_{k,q}^{dd} \sin \left(2\varphi_k \right) \right]$$

$$F_{k,q}^{cd} = 2L_q^2 \left[F_{k,q}^{cd} \cos \varphi_k + F_{k,q}^{dd} \sin \varphi_k - F_{k,q}^{cd} \sin \left(2\varphi_k \right) \right]$$
\[F_{\kappa\kappa}^{\beta\beta} = 2L_q^2 \left[F_{\kappa\kappa}^{cc} \sin^2 \varphi_k + F_{\kappa\kappa}^{dd} \cos^2 \varphi_k + F_{\kappa\kappa}^{cd} \sin (2\varphi_k) \right] \]
\[\text{(29)} \]

\[F_{\kappa\kappa}^{\alpha\beta} = L_q^2 \left[(F_{\kappa\kappa}^{cc} - F_{\kappa\kappa}^{dd}) \sin (2\varphi_k) + 2F_{\kappa\kappa}^{cd} \cos (2\varphi_k) \right] \]
\[\text{(30)} \]

where

\[F_{\kappa\kappa}^{\mu\nu} = \sum_{\langle j \rangle} f_{\mu\nu}^{lj} \left\{ \cos \left(k \Delta_{lj} \right) \left[1 - \cos \left(q \Delta_{lj} \right) \right] \right\} \]
\[\mu, \nu = c, d \]
\[\text{(31)} \]

then Eq.27 can be rewritten compactly as:

\[\tilde{H}_{ep}^{(2)} = \frac{1}{\sqrt{N}} \sum_{kq\sigma} \left\{ n_{\kappa\sigma} F_{\kappa\kappa}^{\alpha\alpha} + n_{\kappa\sigma} F_{\kappa\kappa}^{\beta\beta} + \left(\alpha_{\kappa\sigma}^\dagger \beta_{\kappa\sigma} + \beta_{\kappa\sigma}^\dagger \alpha_{\kappa\sigma} \right) F_{\kappa\kappa}^{\alpha\beta} \right\} \otimes \left(b_{-q}^\dagger b_{q}^\dagger + b_q b_{-q} + \nu_q + \nu_{-q} + 1 \right) \]
\[\text{(32)} \]

VI. THE ELECTRON-PHONON HAMILTONIAN IN THE SQUEEZED PHONON REPRESENTATION.

Let us now introduce the squeezed phonon representation also for \(\tilde{H}_{ep}^{(1)} + \tilde{H}_{ep}^{(2)} \). By using the relation \(e^S \left(b_{-q}^\dagger + b_q \right) e^{-S} = e^{\eta_q} \left(b_{-q}^\dagger + b_q \right) \) the linear coupling term becomes:

\[e^S \tilde{H}_{ep}^{(1)} e^{-S} = \]

\[= \frac{1}{\sqrt{N}} \sum_{kq\sigma} e^{\eta_q} \left[\Gamma_{k,k-q}^{\alpha\alpha} \alpha_{k-q,\sigma}^\dagger \alpha_{k-q,\sigma} + \Gamma_{k,k-q}^{\beta\beta} \beta_{k-q,\sigma}^\dagger \beta_{k-q,\sigma} + \Gamma_{k,k-q}^{\alpha\beta} \alpha_{k-q,\sigma}^\dagger \beta_{k-q,\sigma} + \Gamma_{k,k-q}^{\beta\alpha} \beta_{k-q,\sigma}^\dagger \alpha_{k-q,\sigma} \right] \left(b_{-q}^\dagger + b_q \right) \]
\[\text{(33)} \]

Then the linear coupling has a reduce amplitude, as \(\eta_q < 0 \) (see Eq.13), consistently with the numerical analysis of Ref. [18].

For the quadratic part \(\tilde{H}_{ep}^{(2)} \) we get:

\[e^S \tilde{H}_{ep}^{(2)} e^{-S} = \frac{1}{N} \sum_{kq} \left[F_{kq}^{\alpha\alpha} n_{k\sigma} + F_{kq}^{\beta\beta} n_{k\sigma} + F_{kq}^{\alpha\beta} \left(\alpha_{k\sigma}^\dagger \beta_{k\sigma} + \beta_{k\sigma}^\dagger \alpha_{k\sigma} \right) \right] \otimes \]
\(\otimes e^{2\eta q} \left(b_{-q}^\dagger b_q^\dagger + b_q b_{-q} + \nu_q + \nu_{-q} + 1 \right) \) (34)

In Eq.34 we can decouple the electronic and phononic terms in MFA. Indeed, assuming

\[\langle b_{-q}^\dagger b_q^\dagger + b_q b_{-q} + \nu_q + \nu_{-q} + 1 \rangle \approx 2 \langle \nu_q \rangle + 1 \] (35)

and defining

\[\Phi_q = \frac{1}{N} \sum_{k\sigma} \left[F_{k\sigma}^\alpha n_{k\sigma}^\alpha + 2 F_{k\sigma}^\beta n_{k\sigma}^\beta + e^{2\eta q} \left(2 \langle \nu_q \rangle + 1 \right) \right] n_{k\sigma}^\alpha \] (36)

yields:

\[e^S \widetilde{H}^{(2)} e^{-S} \approx \frac{1}{N} \sum_{kq\sigma} \left[F_{kq}^\alpha n_{k\sigma}^\alpha + 2 F_{kq}^\beta n_{k\sigma}^\beta + F_{kq}^\alpha \left(\langle \alpha_{k\sigma}^\dagger \beta_{k\sigma} \rangle + \langle \beta_{k\sigma}^\dagger \alpha_{k\sigma} \rangle \right) \right] e^{2\eta_q} \left(2 \langle \nu_q \rangle + 1 \right) \]

\[+ \sum_q e^{2\eta_q} \Phi_q \left(b_{-q}^\dagger b_q^\dagger + b_q b_{-q} + \nu_q + \nu_{-q} + 1 \right) + \text{const.} \] (37)

By writing \(\sum_q \hbar \omega_q \left(\nu_q + \frac{1}{2} \right) = \frac{1}{2} \sum_q \hbar \omega_q \left(\nu_q + \nu_{-q} + 1 \right) \) and reordering the Hamiltonian in the hybridized basis we get:

\[e^S \widetilde{H} e^{-S} = \sum_{k\sigma} E_{k\sigma} n_{k\sigma} + \sum_{k\sigma} E_{k\sigma} n_{k\sigma} + \sum_q \hbar \omega_q \left(\nu_q + \frac{1}{2} \right) + e^S \widetilde{H}^{(1)} e^{-S} + e^S \widetilde{H}^{(2)} e^{-S} \] (38)

Inserting \(e^S \widetilde{H}^{(2)} e^{-S} \) from Eq.37 into Eq.38 and reordering yields:

\[e^S \widetilde{H} e^{-S} = \mathcal{H}^{\text{diag}}_{\text{el.}} + \mathcal{H}^{\text{hyb}}_{\text{el.}} + \mathcal{H}_{\text{ph}} + e^S \mathcal{H}^{(1)}_{\text{ep}} e^{-S} + \text{const.} \] (39)

where the diagonal electronic Hamiltonian is:

\[\mathcal{H}^{\text{diag}}_{\text{el.}} = \sum_{k\sigma} \left[E_{k\sigma} + \frac{1}{N} \sum_q F_{kq}^\alpha e^{2\eta_q} \left(2 \langle \nu_q \rangle + 1 \right) \right] n_{k\sigma}^\alpha + \sum_{k\sigma} \left[E_{k\sigma} + \frac{1}{N} \sum_q F_{kq}^\beta e^{2\eta_q} \left(2 \langle \nu_q \rangle + 1 \right) \right] n_{k\sigma}^\beta \] (40)

and describes a phonon-depending renormalization of the band energies. The hybrid electronic Hamiltonian is:

\[\mathcal{H}^{\text{hyb}}_{\text{el}} = \frac{1}{N} \sum_{kq\sigma} e^{2\eta_q} F_{kq}^\alpha \left(2 \langle \nu_q \rangle + 1 \right) \left(\alpha_{k\sigma}^\dagger \beta_{k\sigma} + \beta_{k\sigma}^\dagger \alpha_{k\sigma} \right) \] (41)
It represents a phonon-depending band hybridization term. This is, we believe, the term responsible for the coupling between the bands in MgB_2 which results in a single critical temperature for both gaps. We would like to point out that, in the limit of small inter-bare-band hopping, i.e. $t_{ij}^{cd}/t_{ij}^{cc} \to 0$, and at zero temperature, where $\langle \nu_q \rangle$ can be neglected, one finds:

$$
\lim_{t_{ij}^{cd}/t_{ij}^{cc} \to 0} e^{2\eta_q} F_{kq}^{\alpha\beta} = 2L_q^2 e^{2\eta_q} F_{kq}^{cd} = 2L_q^2 e^{2\eta_q} \sum_{(ij)} f_{ij}^{cd} \left\{ \cos \left(k \Delta_{ij} \right) \left[1 - \cos \left(q \Delta_{ij} \right) \right] \right\} \quad (42)
$$

Apart from geometric factors, this amplitude depends only on the intensity of the squeezing (through $e^{2\eta_q}$) and on the strength of the quadratic inter-band SSH electron-phonon coupling f_{ij}^{cd}. As f_{ij}^{cd} is a second derivative of t_{ij}^{cd}, it can be non-negligible even if t_{ij}^{cd} itself is very small. Different evaluations of f_{ij}^{cd} [1] all agree that in MgB_2 it has an appreciable value. More specifically, an effective two-band model derived from first-principle calculations [14] yields $\lambda_{\sigma\pi}/\lambda_{\sigma\sigma} = 0.21$ and $\lambda_{\pi\sigma}/\lambda_{\sigma\sigma} = 0.15$ [26].

At nonzero temperatures, the hybridization amplitude gets an additional contribution proportional to $2\langle \nu_q \rangle$, hence it increases with temperature, consistently with the findings of Ref. [13]

The purely phononic term

$$
\mathcal{H}_{ph} \equiv \sum_q \left(\frac{1}{2} \hbar \omega_q + e^{2\eta_q} \Phi_q \right) \left(\nu_q + \nu_{-q} + 1 \right) + \sum_q e^{2\eta_q} \Phi_q \left(b_{-q}^{\dagger} b_q^{\dagger} + b_q b_{-q} \right)
$$

is diagonalized by a second squeezing transformation $e^T \equiv \exp \left[-\sum_q \vartheta_q \left(b_{-q}^{\dagger} b_q^{\dagger} - b_{-q} b_q \right) \right]$ with the value of ϑ_q set by:

$$
\tanh \left(2 \vartheta_q \right) = \frac{\hbar \omega_q}{\hbar \omega_q + 2e^{2\eta_q} \Phi_q} - 1 \quad (44)
$$

Notice that the sign of ϑ_q is opposite to the sign of Φ_q. Also, as the relevant phonons are optical ones, $\hbar \omega_q$ never vanishes in the Brillouin zone, then $\tanh \left(2 \vartheta_q \right) \neq -1$, and ϑ_q is always well defined. Due to the presence of Φ_q in Eq.44, the parameter ϑ_q depends on the band-filling factors $\langle n_{k\sigma}^{(\alpha)} \rangle$ and on the band hybridization $\langle \alpha_{k\sigma}^{\dagger} \beta_{k\sigma}^{\dagger} + \beta_{k\sigma}^{\dagger} \alpha_{k\sigma} \rangle$.

The diagonalized free-phonon Hamiltonian reads therefore:
We have obtained a band-filling and hybridization-depending renormalization of the phonon frequencies:

$$\hbar \omega_q = \hbar \omega_q \cosh \left(2 \vartheta_q\right) + 2 e^{2 \eta_q} e^{2 \vartheta_q} \Phi_q$$

(46)

The final Hamiltonian therefore reads:

$$e^T \mathcal{H} e^{-T} = \sum_{q} \left[\hbar \omega_q \cosh \left(2 \vartheta_q\right) + 2 e^{2 \eta_q} e^{2 \vartheta_q} \Phi_q \right] \nu_q + \text{const.} = \sum_{q} \hbar \omega_q \nu_q + \text{const.}$$

(45)

This has the shape of a standard (i.e. harmonic and linear) SSH Hamiltonian for two hybridizing bands. However, also the linear SSH term has acquired a band-filling and hybridization dependence, because it now reads:

$$e^T \mathcal{H} e^{-T} = \sum_{k \sigma} \left(\mathcal{E}_k^\alpha \eta_{k \sigma}^{\alpha} + \mathcal{E}_k^\beta \eta_{k \sigma}^{\beta} \right) + \frac{1}{N} \sum_{q} \left[e^{2 \eta_q} F^{\alpha \beta}_{kq} \left(2 \langle \nu_q \rangle + 1\right) \right] \left(\alpha_{k \sigma}^\dagger \beta_{k \sigma} + \beta_{k \sigma}^\dagger \alpha_{k \sigma} \right)$$

$$+ \sum_{q} \hbar \omega_q \nu_q + e^T e^S \overline{H}_{ep}^{(1)} e^{-S} e^{-T} + \text{const.}$$

(47)

where

$$\mathcal{E}_k^\zeta = E_k^\zeta + \frac{1}{N} \sum_{q} F^{\zeta \zeta}_{kq} e^{2 \eta_q} \left(2 \langle \nu_q \rangle + 1\right) \quad (\zeta = \alpha, \beta)$$

(48)

Therefore also the phonon linewidths, due to the SSH interaction, will depend, through $\exp(\vartheta_q)$, on $\langle \eta_{k \sigma}^{(\alpha)} \rangle$ and $\langle \alpha_{k \sigma}^\dagger \beta_{k \sigma} + \beta_{k \sigma}^\dagger \alpha_{k \sigma} \rangle$.

The weakening of the linear electron-phonon interaction is expressed by the coefficient $\exp(\vartheta_q) \exp(\eta_q)$. The value of $\exp(\eta_q)$ is set by the diagonalization condition of the anharmonic phonon Hamiltonian, Eq.13 according to the identity:

$$e^{2 \eta_q} = \frac{1 + \tanh \left(2 \eta_q\right)}{1 - \tanh \left(2 \eta_q\right)}$$

(50)
Therefore the squeezing effect related to the anharmonicity of the phonons also reduces the electron-phonon interactions.

To conclude, let us check if the link that our model establishes between the renormalization of the harmonic frequency from Ω_q to ω_q and the reduction of the electron-phonon coupling strength is consistent with the estimates of those quantities as given, e.g., in Refs. [14,16,18]. The ratio Ω_q/ω_q is evaluated as 85% [14], 75% [16] and 80% [18]. We assume that the value of $\exp(\vartheta_q)$ (Eq.44) , which we cannot estimate at this stage, is not far from unity. By taking from Ref. [16] $x_{qq} \sim 7.8$ eV$^{-1}$, $\hbar \Omega_q = 60$ meV, and assuming a dispersionless mode in Eq.11 we obtain, at zero temperature, where we can neglect $\langle \nu_q \rangle$, that $X_q \sim 1.12$. Then $\tanh(2\eta_q) \sim -0.105$ yielding, from Eq.15, $\Omega_q/\omega_q \sim 0.85$ and, from Eq.50, $\exp(2\eta_q) = .90$. In Eliashberg’s theory [22] $\lambda \sim \langle |g^2|/\omega^2 \rangle$, where $\langle \ldots \rangle$ are suitable averages. In our model then $\lambda_{\text{anhar}}/\lambda_{\text{har}} \sim e^{2\eta_q}/X_q^2 \left[1 - \tanh^2(2\eta_q)\right] = 0.65$, which agrees with the estimate [18] of a 30% weakening of λ_{anhar}. From the fact that $\tanh(2\eta_q) \sim -0.105$ we also conclude that the large phonon softening found on passing from AlB_2 to MgB_2 [16,20,21] is probably not due only to the harmonic-to-anharmonic phonon change, because the squeezing-induced softening effect in Eq.15 is not strong enough. The filling-dependent effect of $\exp(\vartheta_q)$ should also be taken into account quantitatively before drawing more reliable conclusions on this point.

VII. CONCLUSIONS.

We have obtained a model Hamiltonian which should contain the essential physics of MgB_2.

Our starting point was a two-band Hamiltonian with anharmonic phonons and both linear and quadratic electron-phonon interactions of the bond-stretching type, as dictated by the results of LDA calculations [14,16–18,20]. The final Hamiltonian followed by applying a sequence of unitary transformations to both the electronic and phononic terms. In particular, we have been able to go beyond the Hartree-Fock approximation in treating
the anharmonic effects. We have thus obtained an effective Hamiltonian (Eqs.47 and 49) of a very simple structure. The electronic part has two bands with a phonon-depending hybridization, generated by the quadratic electron-phonon interaction, which increases with temperature as observed [13]. The phononic part has an effective harmonic free-phonon term with a frequency which depends from the band filling factors. Finally, the effective electron-phonon interaction is reduced to a linear one, but with an amplitude also depending from the band filling factors, which would result in a similar dependence of the phonon linewidths [19,21]. One could ask if it might have been possible to obtain the same results starting from a simpler Hamiltonian, as, for instance, the one proposed in Ref. [23]. We do not think so. Indeed, all our results depend basically from taking into account the quartic anharmonicity and the second order EPI, as can be checked by considering the limits for \(\eta_q \to 0 \) and \(\vartheta_q \to 0 \) of Eqs.46,47 and 49. Namely, if both \(\eta_q, \vartheta_q \to 0 \), from Eq.49 one finds no reduction of the effective EPI. If there is no second-order EPI, then \(\Phi_q = 0 \) follows, implying \(\vartheta_q \to 0 \), so that there is no filling dependence of \(\varpi_q \) (Eq.46), no phonon-number effect on the hybridization (Eq.47) and no filling dependence of the phonon linewidths (Eq.49).

We have also shown that the numerical results of Ref. [18] about the phononic features of the material, namely the renormalization of the effective harmonic frequency \(\omega_q \) and the reduction of the Eliashberg’s \(\lambda \), can be consistently interpreted as due to the phonons accomodating themselves in a ”squeezed ”state. On the other side, squeezing effects alone are not strong enough to account for the large \(E_{2g} \) phonon softening on passing from \(AlB_2 \) to \(MgB_2 \) [16,20,21].

Acknowledgement 1 We thank J. Spalek, M. A. Gusmão and J. R. Iglesias for stimulating discussions.
REFERENCES

[1] I.I. Mazin and V.P. Antropov, Physica C 385, 49 (2003).

[2] F. Bouquet, R.A. Fisher, N.E. Phillips, D.G. Hinks, and D. J. Jorgensen, Phys. Rev. Lett. 87, 047001 (2001).

[3] F. Giubileo, D. Roditchev, W. Sacks, R. Lamy, D. X. Thanh, J. Klein, S. Miraglia, D. Fruchart, J. Marcus and P. Monod, Phys. Rev. Lett. 87, 177008 (2001).

[4] H. Schmidt, J.F. Zasadzinski, K. E. Gray and D.G. Hinks, Phys. Rev. Lett. 88, 127002 (2002).

[5] M. Iavarone, G. Karapetrov, A.E. Koshelev, W. K. Kwok, G.W. Crabtree and D.G. Hinks, Phys. Rev. Lett. 89, 187002 (2002).

[6] S. Tsuda, T. Yokoya, Y. Takano, H. Kito, A. Matsushita, F. Yin, H. Harima and S. Shin, con-mat/0303636 (2003).

[7] H.J. Choi, D. Roundy, H. Sun, M.L. Cohen and S. G. Louie, Nature, 418, 758 (2002).

[8] S. L. Bud'ko, G. Lapertot, C. Petrovic, C.E. Cunningham, N. Anderson and P.C. Canfield, Phys. Rev. Lett. 86, 1877 (2001); D.G. Hinks, H. Claus and J.D. Jorgensen, Nature, 411, 457 (2001).

[9] J. Kondo, Prog. Theor. Physics 29, 1 (1963); M. Imada, J. Phys. Soc. Japan, 70, 1218 (2001); J. Kondo, J. Phys. Soc. Japan, 71, 1353 (2002).

[10] H. Suhl, B.T. Matthias and L.R. Walker, Phys. Rev. Lett. 3, 552 (1959).

[11] I.I. Mazin, O.K. Andersen, O. Jepsen, O.V. Dolgov, J. Kortus, A.A. Golubov, A.B. Kuz’menko and D. van der Marel, Phys. Rev. Lett. 89, 107002 (2002).

[12] S. Jemina Balaselvi, A. Bharathi, V, Sankara Sastry, G.L.N. Reddy and Y. Hariharan, con-mat/0303022 (2003).
[13] T. Dahm and N. Schopohl cond-mat/0212188 (2003).

[14] A.Y. Liu, I.I. Mazin and J. Kortus, Phys. Rev. Lett. 87, 087005 (2001).

[15] Y. Kong, O.V. Dolgov, O. Jepsen and O.K. Andersen, Phys. Rev. B64, 020501(R) (2001).

[16] T. Yildirim, O. G¨ ulseren, J.W. Lynn, C.M. Brown, T.J. Udovic, Q. Huang, N. Rogado, K.A. Regan, M.A. Hayward, J.S. Sluski, T. He, M.K. Haas, P. Khalifah, K. Inumaru, and R.J. Cava, Phys. Rev. Lett. 87, 037001 (2001).

[17] K. Kunc, I. Loa, K. Syassen, R.K. Kremer and K. Ahn, J. Phys.:Condens. Matter 13, 9945 (2001).

[18] H.J. Choi, D. Roundy, H. Sun, M.L. Cohen and S. G. Louie, Phys. Rev. B66, 020513(R) (2002).

[19] P. Postorino, A. Congeduti, P. Dore, A. Nucara, A. Bianconi, D. Di Castro, S. De Negri and A. Saccone, Phys. Rev. B65, 020507 (2001).

[20] K.-P. Bohnen, R. Heid and B. Renker, Phys. Rev. Lett. 86, 5771 (2001).

[21] B. Renker, K.B. Bohnen, R. Heid, D. Ernst, H. Schlober, M. Koza, P. Adelmann, P. Schweiss and T. Wolf, Phys. Rev. Lett. 88, 067001 (2002).

[22] S. Barisic, J. Labb´ e and J. Friedel, Phys. Rev. Lett. 25, 919 (1970).

[23] L. Boeri, G.B. Bachelet, E. Cappelluti and L. Pietronero, Phys. Rev. B65, 214501 (2002).

[24] see, for instance, Ch.3 in: W. Jones and N.H. March, ”Theoretical Solid State Physics”, (Dover Publications, Inc., New York 1973).

[25] Wei-Min Zhang, Da Hsuan Feng and R. Gilmore, Rev. Mod. Phys. 62, 867 (1990); D. Feinberg, S. Ciuchi and F. De Pasquale, Int. J. Mod. Phys. B4, 1317 (1990).
[26] A.A. Golubov, J. Kortus, O.V. Dolgov, O. Jepsen, Y. Kong, O.K. Andersen, B.J. Gibson, K. Ahn and R.K. Kremer, J. Phys.: Condens. Matter, 14, 1353 (2002).