Atom Fock state preparation by trap reduction

A. del Campo and J. G. Muga
Departamento de Química-Física, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain
(Dated: May 26, 2008)

We study the production of low atom number Fock states by reducing suddenly the potential trap in a 1D strongly interacting (Tonks-Girardeau) gas. The fidelity of the Fock state preparation is characterized by the average and variance of the number of trapped atoms. Two different methods are considered: making the trap shallower (atom culling [A. M. Dudarev et al., Phys. Rev. Lett. 98, 063001 (2007)], also termed “trap weakening” here) and making the trap narrower (trap squeezing). When used independently, the efficiency of both procedures is limited as a result of the truncation of the final state in momentum or position space with respect to the ideal atom number state. However, their combination provides a robust and efficient strategy to create ideal Fock states.

PACS numbers: 32.80.Pj, 05.30.Jp, 03.75.Kk

The generation of Fock states with a definite, controlled atomic number is a highly desirable objective both from fundamental and applied points of view. They may be useful for studying few particle interacting systems [1,2], entanglement [3], or number and spin-squeezed atomic systems [4,5]. Production of fotonic Fock states [6] and interferometric schemes for sub-shot-noise sensitivity [7] do also require input Fock states.

A necessary step towards this goal is the development of atom counting devices paving the way into quantum atomic systems [4,5]. Production of fotonic Fock states [6] and interferometric schemes for sub-shot-noise sensitivity [7] do also require input Fock states.

I. ATOM STATISTICS

Ultracold bosonic atoms in waveguides tight enough so that the transverse degrees of freedom are frozen out, are well described by the Lieb-Liniger (LL) model [11]. In the strongly interacting limit [12,13] (for low densities and/or large one-dimensional scattering length) a LL gas tends to the TG gas, which plays a distinguished role in atom statistics since its spatial antibunching has been predicted [14], and observed [15]. The system exhibits “fermionization” [16], i.e., the TG gas and its “dual” system of spin-polarized ideal fermions behave similarly, and share the same one particle spatial density as well as any other local-correlation function, while differ on the non-local correlations.

The fermionic many-body ground state wavefunction of the dual system is built at time \(t = 0 \) as a Slater determinant for \(N_i \) particles, \(\psi_F(x_1, \ldots, x_N_i) = \sqrt{\det N_i} \phi_{n,k=1}^{'n}(x_k) \), where \(\phi_{n,k}^{'n}(x) \) is the \(n \)-th eigenstate of the initial trap, whose time evolution will be denoted by \(\phi_n(x,t) \) whenever the external trap is modified. The bosonic wave function, symmetric under permutation of particles, is obtained from \(\psi_F \) by the Fermi-Bose (FB) mapping [16,17] \(\psi(x_1, \ldots, x_N_i) = A(x_1, \ldots, x_N_i) \psi_F(x_1, \ldots, x_N_i) \), where \(A = \prod_{1 \leq j < k \leq N} \text{sgn}(x_k - x_j) \) is the “antisymmetric unit function”. Since \(A \) does not include time.
The continuum threshold so that the excess of atoms escapes bound energy levels are pushed up and the higher ones cross given families is achieved reducing the trap capacity. The Poissonian statistics or a Fock state are achieved in the new bound state (for the initial trap \(2\), trap depths, respectively. Each solid line in the contour plot represents an isospectral family of traps at the threshold of a new bound state (for the initial trap \(2mV_iL^2_i/h^2 = 25\pi^2\), \(C_f\) being the final trap capacity). A transition between two given families is achieved reducing the trap capacity. The bound energy levels are pushed up and the higher ones cross the continuum threshold so that the excess of atoms escapes from the trap.

explicitly, it is also valid when the trap Hamiltonian is altered, and the time-dependent density profile resulting from this change can be calculated as \(\rho(x,t) = N_i\int |\psi(x,x_2,\ldots,x_{N_i},;t)|^2dx_2\ldots dx_{N_i} = \sum_{n=1}^{N_i} |\varphi_n(x,t)|^2\). By reducing the trap capacity some of the \(N_i\) atoms initially confined may escape and \(N\) will remain trapped. To determine whether or not sub-Poissonian statistics or a Fock state are achieved in the reduced trap we need to calculate the atom-number fluctuations. We proceed by characterizing the TG trapped state by means of its variance \(\sigma_N^2 = \langle N^2(t) \rangle - \langle N(t) \rangle^2\). First note the general relation

\[
\langle \hat{n}(x)\hat{n}(x') \rangle_t = \langle \hat{n}(x)\hat{n}(x') \rangle_t + \delta(x-x')\langle \hat{n}(x) \rangle_t,
\]

where the number field operator is \(\hat{n}(x) = \Psi^\dagger(x)\Psi(x)\), \(\Psi(x)\), \(\Psi^\dagger(x)\) are the annihilation and creation operators at point \(x\), and \(\langle \cdots \rangle_t\) denotes normal ordering. In particular, within the Tonks-Girardeau regime,

\[
\langle \hat{n}(x)\hat{n}(x') \rangle_t = D(x,x';t) + \delta(x-x')\rho(x,t),
\]

with \(D(x,x';t) = N_i(N_i - 1)\int_{1}^{N_i} dx_i|\psi(x,x',x_3,\ldots,x_{N_i};t)|^2 = \rho(x,t)\rho(x',t) - |\Delta_{N_i}(x,x',t)|^2,
\]

and

\[
\Delta_{N_i}(x,x';t) = \sum_{n=1}^{N_i} \varphi_n(x,t)^*\varphi_n(x',t).
\]

The mean value of the number of particles within the trap and of its square can be obtained by integrating over \(x, x'\),

\[
\langle N(t) \rangle = \int_0^{L^+} dx \rho(x,t),
\]

\[
\langle N^2(t) \rangle = \int_0^{L^+} \int_0^{L^+} dx dx' \langle \hat{n}(x)\hat{n}(x') \rangle_t,
\]

where \(L^+ = L + \xi\) is large enough to include the bound-state tails in coordinate space. (For the trap configuration of Fig. 1 each bound state has a penetration length \(\{\xi_j\}\) beyond the well width \(L\), so \(\xi = \max_j\xi_j\).) The atom number variance reads finally

\[
\sigma_N^2(t) = \langle N(t) \rangle - \int_0^{L^+} \int_0^{L^+} dx dx' \Delta_{N_i}(x,x',t).
\]

From it one can infer Poissonian statistics if \(\sigma_N^2/\langle N \rangle \geq 1\) and sub-Poissonian as long as \(\sigma_N^2/\langle N \rangle < 1\). For a Fock state \(\sigma_N = 0\).

II. THE SUDDEN APPROXIMATION

The requirement of adiabaticity, i.e., of a slow trap change, is a handicap which one would like to overcome. Achieving good fidelity with respect to the desired Fock state may require exceedingly long times, a fact that is even more critical whenever the interactions are finite, this is, for the Lieb-Liniger gas in which the splitting between adjacent levels (Bethe roots) diminishes. It is thus
useful to examine the opposite limit corresponding to a sudden trap change. For the TG gas, we shall find general and exact results which are a useful guide since small deviations from the sudden limit increasing the switching time may only improve the fidelity.

In what follows we shall thus discuss the preparation of Fock states by an abrupt change of the trap potential to reduce its capacity. Even though the arguments and results of this section are rather general, consider for concreteness the simple square trap configuration of Fig. 1, with an infinite wall on one side and a flat potential (zero potential energy) on the other side,

\[
V_\alpha(x) = \begin{cases}
\infty & , \quad x \leq 0 \\
-V_\alpha & , \quad 0 < x \leq L_\alpha \\
0 & , \quad x > L_\alpha
\end{cases}
\]

where the subindex \(\alpha = i, f \) refers to the initial and final configuration respectively. The corresponding eigenvalue problem is solved in the appendix, where both bound and scattering states are described. At \(t = 0 \) the trap with shape \(V_i(x) \), which holds an unknown number of particles \(N_i \) (lower or equal than the initial capacity \(C_i \)) is suddenly modified to the final trap \(V_f(x) \), which supports \(C_f \) bound states \(\varphi_f^j(x) \), \(j = 1, \ldots, C_f \), of energy \(E_f^j < 0 \). The process may consist on “weakening” the trap \((V_f < V_i, L_f = L_i) \), “squeezing” it \((L_f < L_i, V_f = V_i) \), or a combination of the two \((V_f < V_i \text{ and } L_f < L_i) \).

The continuum part of the spectrum of the one-particle Hamiltonian with potential \(V_f(x) \) is spanned by the scattering states \(\chi_f^j(x) \), labeled by the incident wavenumber \(k \). It follows from standard scattering theory \cite{20}, using the Riemann-Lebesgue lemma \cite{27}, that the contribution of the continuum states in the trap region \(x < L_+ \) vanishes asymptotically as \(t \to \infty \),

\[
\varphi_n(x,t) = \sum_{j=1}^{C_f} \langle x | \varphi_f^j \rangle | \varphi_f^j \rangle | \varphi_n \rangle e^{-iE_f^j t / \hbar} \\
+ \int_0^\infty dk \langle x | \chi_f^k \rangle | \chi_f^k \rangle | \varphi_n \rangle e^{-i k x / \hbar} \\
\sim \sum_{j=1}^{C_f} \langle x | \varphi_f^j \rangle | \varphi_f^j \rangle | \varphi_n \rangle e^{-iE_f^j t / \hbar},
\]

so that the dynamics in the trap is finally governed by the discrete part of the spectrum \(\{ \varphi_f^j | j = 1, \ldots, C_f \} \). Therefore, asymptotically, the mean number and variance of trapped atoms are

\[
\langle N(\infty) \rangle = \sum_{n=1}^{N_i} \langle \varphi_n | \hat{N} | \varphi_n \rangle = \sum_{j=1}^{C_f} \langle \varphi_f^j | \hat{N} | \varphi_f^j \rangle, \quad \sigma_N^2(\infty) = \langle N(\infty) \rangle - \sum_{n,m=1}^{N_i} |\langle \varphi_m^f | \hat{N} | \varphi_n^f \rangle|^2
\]

where

\[
\hat{\Lambda}_f = \sum_{j=1}^{C_f} |\varphi_f^j \rangle \langle \varphi_f^j |\n
\hat{\Lambda}_i = \sum_{n=1}^{N_i} |\varphi_n^i \rangle \langle \varphi_n^i |
\]

is the projector onto the final bound states and

\[
\hat{\Lambda}_f \subset \hat{\Lambda}_i.
\]

A time scale for the validity of the asymptotic regime, after the trap switch, is provided by the lifetime of the lowest resonance of the final trap. A simple semiclassical estimate is \(\tau = L_f (m/2V_f)^{1/2} \), assuming the escape of a classical particle from the well and approximating the resonance kinetic energy by the potential depth. To prepare a \(^{23}\text{Na} \) Fock state in final trap of with \(L_f \sim 50 \mu m \), supporting \(N_f = 10 \) bound states, the asymptotic regime is approached for \(t > \tau \sim 30 \text{ ms} \). We insist though, that any slower potential change will play in favour of the fidelity of the resulting Fock state until the time scale in which losses and decoherence begin to play a role.

III. TRAP WEAKENING

A good guidance for Fock state preparation is provided by Eq. (10), which leads to the requirement for \(\hat{\Lambda}_i \) to be an extension of \(\hat{\Lambda}_f \). This result is model-independent, and in particular it holds irrespective of the smoothness of the trapping potential. For illustration purposes we shall consider the square trap in Eq. (7) shown in Fig. 1.

In a trap-weakening scheme the potential is made shallower by reducing the depth from an initial value \(V_i \) to \(V_f \) (while \(L_i = L_f \), see Fig. 1), a procedure which has been successfully implemented to prepare states with sub-Poissonian statistics \cite{15}. Though, in practice, the value of \(N_i \) (and \(C_f \)) cannot be arbitrarily large because the Tonks-Girardeau regime requires a linear den-
FIG. 2: (color online) Limited efficiency on pure squeezing and weakening techniques. For a completely loaded initial trap \((N_i = C_i)\) of depth \(U_i = C_i^2 \pi^2\), the resolution of a given bound state of the final trap, \(\varphi^f_n(n = 5, U_f = 25\pi^2)\), is quantified by the measure \(F_n = \langle \varphi^f_n | \hat{A}_i | \varphi^f_n \rangle\) and shown to be limited in a) pure squeezing, and b) pure weakening. For increasing capacity of the initial trap, \(C_i\), \(F_n\) tends to the probability to find the particle in the well region \([0, L_i]\) (weakening case, solid line, see Eq. (14)), or to the probability to find the particle in a momentum space region (squeezing case, solid line, see Eq. (15)).

IV. TRAP SQUEEZING

There is a simple alternative to trap weakening to achieve high-fidelity Fock states: atom-trap squeezing. Starting with a state of an unknown number of particles \(N_i\), the trap width is reduced from an initial value \(L_i\) to \(L_f\) keeping the depth constant \((V_i = V_f)\), as shown in Fig. 1 (middle panel). The final trap supports \(C_f\) bound states so that the excess of atoms is squeezed out of the trap. From a comparison of initial and final energy levels, it is clear that a minimum number of initial particles is required for trap squeezing to work. Using for an estimate the levels of the infinite well we get \(N_i > C_f L_i / L_f\). Trap squeezing works optimally for initial traps filled with atoms to the brim but it is not robust against partial filling. It is also less sensitive to threshold effects than trap weakening, in particular for low atom numbers.

V. COMBINED WEAKENING AND SQUEEZING

From the previous discussion it follows that the optimal potential trap change to fulfill \(\Lambda_f \subset \hat{\Lambda}_i\) is a combination of weakening and squeezing. Let us choose two different families of isospectral traps characterized by \(U_i\) and \(U_f\), supporting \(C_i\) and \(C_f\) bound states respectively (in general \(C_i > N_i\) because of partial filling of the initial trap, the filling factor being the ratio \(N_i / C_i\)). The energy level of the highest occupied state measured from the bottom of the trap, analogous to the Fermi level in the dual system, is denoted by \(\varepsilon_f\), which depends on the filling factor of the \(U_f\)-trap, while for the ideal final Fock state \(\varepsilon_f \simeq V_f\).

For a wide, filled initial trap,

\[\hat{\Lambda}_i \approx \int_0^\kappa dk |k^+ \rangle \langle k^+|\]

as \(L \to \infty\), where \(\langle x | k^+ \rangle = \sqrt{2/\pi} \sin kx, x \geq 0\), satisfying \(\langle k^+ | k'^+ \rangle = \delta(k-k')\) and the cut-off is at \(\kappa \simeq U_i^{1/2} / L_i\), in terms of the dimensionless parameter \(U_i = 2mL_i^2V_i / \hbar^2\) \((U_f\) is defined similarly in terms of the final values). This is illustrated in Fig. 2b. Therefore, trap squeezing may limit the fidelity of the final Fock state preparation due to the truncation of the tails “in momentum space”, in the sense of Eq. (15), for \(k > U_i^{1/2} / L_i\).
the efficiency of the weakening-squeezing combination leading to a potential of the \(U_f \) family varies with the filling factor and with the ratio of widths in the final and initial trap \(L_f/L_i \). Figure 3 shows both the mean atom number and variance of the final states for different ratios and preparation states. Below a critical final width \(L_f = (U_f/U_i)^{1/2} L_i \), the physical final depth \(V_f \) is larger than the initial one \(V_i \) and we disregard this possibility since the efficiency is very poor as expected from the failure of the condition \(|\epsilon_f| > |\epsilon_i| \). The ratio \(L_f/L_i = 1 \) is the limit of pure trap weakening, and \(L_f/L_i \) that of pure trap squeezing; the limited efficiency of both extreme cases can be noticed in Fig. 3. However, the combined process achieves pure Fock states and is robust with respect to different fillings in the initial trap and for a wide range of final configurations. Moreover, the range of final configurations for which high-fidelity states are obtained increases with the initial potential \(U_i \) keeping the filling constant as shown in Fig. 4. Hence, a recipe to create a Fock state \(|\psi_f\rangle \) in a trap of width \(L_f \) and depth \(V_f \) will be as follows: choose the width of the initial trap broad enough in the sense \(L_i \approx L_f + r \xi \) (\(r \gtrsim 1 \)), where \(\xi \) is the penetration length of the state \(\psi_{C_f} \) in the final trap. Then, make sure that \(\epsilon_i > \epsilon_f \), in such a way that the final state is contained in the initial subspace both in momentum and coordinate space. A deep and broad initial trap, with respect to the final one, provides in summary a safe starting point to create a Fock state by sudden (or otherwise) trap reduction.

VI. DISCUSSION AND CONCLUSION

In this work we have studied and compared strategies for atom Fock state creation in Tonks-Girardeau regime.

We have shown that Fock states can be prepared even under a sudden trap-potential change. Thanks to the analysis of the atom number variance, we have determined that the key condition for Fock state creation is that the initial occupied bound states span the space of the final ones. This holds regardless of the trap shape details, and in particular does not depend on the potential-trap model. A combination of trap weakening and squeezing allows to resolve the ideal Fock state both in momentum and coordinate space. We close by noting that the Tonks-Girardeau regime is optimal with respect to the strength of interactions. In this regime, the three-body correlation function \(g_3(\gamma) \) tends to vanish and therefore the losses of atoms from the trap by inelastic collisions are negligible. For gases with finite interactions in tight-waveguides, when the Lieb-Liniger model holds, the quasimomenta obtained as solution of the Bethe equations are closer to each other for weaker interatomic interactions, whence it follows that the required time scale for the dynamics to be adiabatic is even larger than in the Tonks-Girardeau regime. Large spacings in the Bethe roots also imply that less precision is required in the control of \(V_f \). Given that the interatomic interactions can be tuned through the Feschbach resonance technique, one can optimize the atom Fock state preparation by putting the system within a strong interaction regime in a first stage, followed by the controlled reduction of the potential trap (weakening and squeezing), and finally turning off slowly the interaction.

Acknowledgments

The authors acknowledge comments and discussions by M. G. Raizen, H. Kelkar, and I. L. Egusquiza. This work has been supported by Ministerio de Educación y Ciencia (BFM2003-01003), and UPV-EHU (00039.310-15968/2004). A. C. acknowledges financial support by the Basque Government (BFI04.479).

APPENDIX A

In this appendix we describe the spectrum of the Hamiltonian for the potential in Eq. (4) considered in the numerical examples. Both the initial and final traps have the same functional dependence. Here we consider the general case for a trap of width \(L \) and depth \(V \) (dropping the index \(\alpha = i,f \) for compactness), whose spectrum can be easily determined using matching conditions in the wavefunction and its derivatives. The trap supports a finite set of \(C \) bound states (its capacity)

\[
\varphi_j(x) = N_j \begin{cases}
\sin(q_j x) & , \ 0 \leq x < L \\
\sin(q_j L)e^{-\kappa_j(x-L)} & , \ x \geq L
\end{cases}
\] (A1)
with $j = 1, \ldots, C$ and normalization constant
\[
N_j = \left(\frac{L}{2} - \frac{\sin(2q_jL)}{4q_j} + \frac{\sin^2(q_jL)}{2\kappa_j} \right)^{-1/2}. \tag{A2}
\]
The eigenvalues are $E_j = (\hbar q_j)^2/2m - V < 0$ where $\{q_j\}$ satisfy the transcendental equation $\kappa_j = -q_j \cot q_j L$, with $\kappa_j = (2mV/\hbar^2 - q_j^2)^{1/2} > 0$. The scattering states have the form
\[
\chi_k(x) = \frac{1}{\sqrt{2\pi}} \begin{cases}
A \sin qx, & 0 < x < L \\
e^{-ikx} - S(k)e^{ikx}, & x > L
\end{cases} \tag{A3}
\]
where $q = \sqrt{k^2 + 2mV/\hbar^2}$ and the coefficient A and the scattering matrix $S(k)$ are determined by imposing the usual matching conditions,
\[
A = -\frac{2ike^{-ikL}}{q \cos qL - ik \sin qL}, \quad S(k) = e^{-2ikqL} \left(\frac{q \cos qL + ik \sin qL}{q \cos qL - ik \sin qL} \right).
\tag{A4}
\]

[1] J. Sebby-Strabley, B. L. Brown, M. Anderlini, P. J. Lee, W. D. Phillips, and J.V. Porto, Phys. Rev. Lett. 98, 200405 (2007).
[2] A. del Campo, F. Delgado, G. García-Calderón, J. G. Muga, and M. G. Raizen, Phys. Rev. A 74, 013605 (2006).
[3] D. Jaksch, H.-J. Briegel, J. I. Cirac, C.W. Gardiner, and P. Zoller, Phys. Rev. Lett. 82, 1975 (1999); T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, Phys. Rev. A 61, 022304 (2000); E. Andersson and S. M. Barnett, Phys. Rev. A 62, 052311 (2000); A. M. Dudarev, R. B. Diener, B. Wu, M. G. Raizen, and Q. Niu, Phys. Rev. Lett. 91, 010402 (2003).
[4] C. Orzel, A. K. Tuchman, M. L. Fenselau, M. Yasuda, and M. A. Kasevich, Science 291, 2386 (2001).
[5] D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen, Phys. Rev. A 46, R6797 (1992); J. Hald, J. L. Sorensen, C. Schori, and E. S. Polzik, Phys. Rev. Lett. 83, 1319 (2000); A. Kuzmich, L. Mandel, and N. P. Bigelow, Phys. Rev. Lett. 85, 1594 (2000).
[6] K. R. Brown, K.M. Dani, D.M. Stamper-Kurn, and K.B. Whaley, Phys. Rev. A 67, 043818 (2003).
[7] M. Holland and K. Burnett, Phys. Rev. Lett. 71, 1355 (1993); J. J. Bollinger, W. M. Itano, D. Wineland, and D. J. Heinzen, Phys. Rev. A 54, R4649 (1996); P. Bouyer and M. A. Kasevich, Phys. Rev. A 56, R1083 (1997).
[8] S. Leslie, N. Shevi, K.R. Brown, D.M. Stamper-Kurn, and K.B. Whaley, Phys. Rev. A 69, 043805 (2004).
[9] C.-S. Chuu, F. Schreck, T. P. Meyrath, J. L. Hanssen, G. N. Price, and M. G. Raizen, Phys. Rev. Lett. 95, 290403 (2005).
[10] A. M. Dudarev, M. G. Raizen, and Q. Niu, Phys. Rev. Lett. 98, 060301 (2007).
[11] E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).
[12] M. Olshanii, Phys. Rev. Lett. 81, 938, (1998); V. Dunjko, V. Lorent, and M. Olshanii, ibid 86, 5413 (2001).
[13] D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven, Phys. Rev. Lett. 85, 3745, (2000).
[14] K. V. Kheruntsyan, D. M. Gangardt, P. D. Drummond, and G. V. Shlyapnikov, Phys. Rev. Lett. 91, 040403 (2003).
[15] B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch, Nature (London) 429, 227 (2004); T. Kinoshita, T. Wenger, and D. Weiss, Science 305, 1125 (2004).
[16] M. Girardeau, J. Math. Phys. 1, 516, (1960).
[17] T. P. Meyrath, F. Schreck, J. L. Hanssen, C.-S. Chuu, and M. G. Raizen, Phys. Rev. A 71, 041604 (2005).
[18] T. Cheon and T. Shigehara, Phys. Rev. Lett. 82, 2536 (1999).
[19] M. D. Girardeau and E. M. Wright, Phys. Rev. Lett. 84, 5691 (2000).
[20] M. D. Girardeau, E. M. Wright, and J. M. Triscari, Phys. Rev. A 63, 033601 (2001).
[21] W. Hänsel, P. Hommelhoff, T.W. Hänsch, and J. Reichel, Nature 413, 498 (2001).
[22] J. Reichel and J. H. Thywissen, J. Phys. IV 116, 265 (2004).
[23] S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 85, 1795 (2000).
[24] The effect of the shape of the potential will be discussed elsewhere.
[25] The probability amplitude under the barrier decays exponentially in a length scale $\xi_j = (2mV/\hbar^2 - q_j^2)^{-1/2}$ where $q_j > 0$, see the appendix.
[26] J. R. Taylor, Scattering Theory (Wiley, New York, 1972).
[27] N. Bleistein and R. A. Handelsman, Asymptotic expansions of integrals (Dover, New York, 1986).
[28] D. M. Gangardt and G.V. Shlyapnikov, Phys. Rev. Lett. 90, 010401 (2003).
[29] M. Gaudin, Phys. Rev. A 4, 386 (1971).
[30] M. A. Cazalilla, Europhys. Lett. 59, 793 (2002); M. A. Cazalilla, J. Phys. B 37, S1 (2004).
[31] M. T. Batchelor, X. W. Guan, O. Elkens and C. Lee, J. Phys. A 38, 7787 (2005).
[32] Y. Hao, Y. Zhang, J.-Q. Liang, and S. Chen, Phys. Rev. A 73, 063617 (2006).