On σ-semipermutable subgroups of finite groups*

Wenbin Guo
Department of Mathematics, University of Science and Technology of China,
Hefei 230026, P. R. China
E-mail: wbguo@ustc.edu.cn

Alexander N. Skiba
Department of Mathematics, Francisk Skorina Gomel State University,
Gomel 246019, Belarus
E-mail: alexander.skiba49@gmail.com

Abstract

Let $\sigma = \{\sigma_i | i \in I\}$ be some partition of the set of all primes \mathbb{P}, G a finite group and $\sigma(G) = \{\sigma_i | \sigma_i \cap \pi(G) \neq \emptyset\}$. A set \mathcal{H} of subgroups of G is said to be a complete Hall σ-set of G if every member $\neq 1$ of \mathcal{H} is a Hall σ_i-subgroup of G for some $\sigma_i \in \sigma$ and \mathcal{H} contains exactly one Hall σ_i-subgroup of G for every $\sigma_i \in \sigma(G)$. A subgroup H of G is said to be: σ-semipermutable in G with respect to \mathcal{H} if $HH_i^x = H_i^xH$ for all $x \in G$ and all $H_i \in \mathcal{H}$ such that $(|H|, |H_i|) = 1$; σ-semipermutable in G if H is σ-semipermutable in G with respect to some complete Hall σ-set of G.

We study the structure of G being based on the assumption that some subgroups of G are σ-semipermutable in G.

1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. Moreover, \mathbb{P} is the set of all primes, $p \in \pi \subseteq \mathbb{P}$ and $\pi' = \mathbb{P} \setminus \pi$. If n is an integer, the symbol $\pi(n)$ denotes the set of all primes dividing n; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of G.

In what follows, $\sigma = \{\sigma_i | i \in I \subseteq \mathbb{N}\}$ is some partition of \mathbb{P}, that is, $\mathbb{P} = \cup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$. Let $\sigma(G) = \{\sigma_i | \sigma_i \cap \pi(G) \neq \emptyset\}$.

In the mathematical practice, we often deal with the following two special partitions of \mathbb{P}: $\sigma = \{\{2\}, \{3\}, \ldots\}$ and $\sigma = \{\pi, \pi'\}$ (in particular, $\sigma = \{\{p\}, \{p\}'\}$, where p is a prime).

*Research is supported by a NNSF grant of China (Grant # 11371335) and Wu Wen-Tsun Key Laboratory of Mathematics of Chinese Academy of Sciences.

Keywords: finite group, Hall subgroup, p-soluble group, p-supersoluble group, σ-semipermutable subgroup.

Mathematics Subject Classification (2010): 20D10, 20D15, 20D30
A set \mathcal{H} of subgroups of G is a complete Hall σ-set of G \cite{1} \cite{2} if every member $\neq 1$ of \mathcal{H} is a Hall σ_i-subgroup of G for some $\sigma_i \in \sigma$ and \mathcal{H} contains exact one Hall σ_i-subgroup of G for every $\sigma_i \in \sigma(G)$.

Subgroups A and B of G are called permutable if $AB = BA$. In this case they also say that A permutes with B.

Definition 1.1. Suppose that G possesses a complete Hall σ-set $\mathcal{H} = \{H_1, \ldots, H_t\}$. A subgroup H of G is said to be: σ-semipermutable in G with respect to \mathcal{H} if $HH_i^x = H_i^xH$ for all $x \in G$ and all i such that $(|H|, |H_i|) = 1; \sigma$-semipermutable in G if H is σ-semipermutable in G with respect to some complete Hall σ-set of G.

Many known results deal with two special cases of the σ-semipermutability condition: when $\sigma = \{2\}, \{3\}, \ldots$ and $\sigma = \{\pi, \pi'\}$.

Consider some typical examples.

Example 1.2. A subgroup H of G is said to be S-permutable in G if H permutes with all Sylow subgroups P of G satisfying $(|H|, |P|) = 1$. Thus H is S-permutable in G if and only if it is σ-permutable in G where $\sigma = \{2\}, \{3\}, \ldots$.

The S-permutable condition can be found in many known results (see for example Section 3 in \cite{8}, VI, Chapter 3 in \cite{4} and also the recent papers \cite{5, 6, 7}).

Before continuing, let’s make the following remark.

Remarks 1.3. Let $G = AB$ by a product of subgroups A and B and $K \leq B$. Suppose that A permutes with K^b for all $b \in B$. Then:

(i) For any $x = ab$, where $a \in A$ and $b \in B$, we have $AK^x = Aa(K^b)a^{-1} = a(K^b)a^{-1}A = K^xA$ and hence A permutes with all conjugates of K.

(ii) $A^xK = KA^x$ for all $x \in G$. Indeed, $(A^xK)^{x^{-1}} = AK^{x^{-1}} = K^{x^{-1}}A$ by Part (i), so $(AK^{x^{-1}})^x = A^xK = KA^x$.

Example 1.4. A subgroup H of G is said to be SS-quasinormal if G has a subgroup T such that $HT = G$ and H permutes with all Sylow subgroups of T. If P is a Sylow subgroup of T satisfying $(|H|, |P|) = 1$, then P is a Sylow subgroup of G and so H is σ-permutable in G, where $\sigma = \{2\}, \{3\}, \ldots$, by Example 1.2 and Remark 1.3(i). Various applications of SS-quasinormal subgroups can be found in \cite{8, 9, 10} and in many other papers.

Example 1.5. In \cite{11}, Huppert proved that if a Sylow p-subgroup P of G of order $|P| > p$ has a complement T in G and T permutes with all maximal subgroups of P, then G is p-soluble. In view of Remark 1.3 the condition "T permutes with all maximal subgroups of P" is equivalent to the condition "all maximal subgroups of P are σ-permutable in G with respect to $\{P, T\}$", where $\sigma = \{\{p\}, \{p\}'\}$. The result of Huppert was developed in the papers \cite{12, 13}, where instead of maximal subgroups we considered the subgroups of P of fixed order p^k.

Further, the results in \cite{11} \cite{12} \cite{13} were generalized in \cite{14} \cite{15}, where instead of a Sylow p-subgroup of G was considered a Hall subgroup of G (see Section 4 below).
Finally, note that all the above-mentioned results deal with two special cases: a "binary" case, when $\sigma = \{\pi, n'\}$, and an "n-ary" case, when $\sigma = \{\{2\}, \{3\}, \ldots\}$.

In this paper, we consider the σ-semipermutability condition for arbitrary partition σ of \mathbb{P}.

In fact, our main results are the following two observations.

Theorem A. Let P be a Sylow p-subgroup of G. Suppose that G has a complete Hall σ-set $\mathcal{H} = \{H_1, \ldots, H_t\}$ such that H_1 is p-supersoluble of order divisible by p. Suppose also that there is a natural number k such that $p^k < |P|$ and every subgroup of P of order p^k and every cyclic subgroup of P of order 4 (if $p^k = 2$ and P is non-abelian) are σ-semipermutable in G with respect to \mathcal{H}. Then G is p-supersoluble.

Theorem B. Let $X \leq E$ be normal subgroups of G. Suppose that G has a complete Hall σ-set \mathcal{H} such that every member of \mathcal{H} is supersoluble. Suppose also that for every non-cyclic Sylow subgroup P of X there is a natural number $k = k(P)$ such that $p^k < |P|$ and every subgroup of P of order p^k and every cyclic subgroup of P of order 4 (if $p^k = 2$ and P is non-abelian) are σ-semipermutable in G with respect to \mathcal{H}. If $X = E$ or $X = F^*(E)$, then every chief factor of G below E is cyclic.

In this theorem $F^*(E)$ denotes the generalized Fitting subgroup of E, that is, the product of all normal quasinilpotent subgroups of E.

We prove Theorems A and B in Section 3. In Section 4 we discuss some applications of these two results.

All unexplained notation and terminology are standard. The reader is referred to [16], [17], [18] or [4] if necessary.

2 Base lemmas

Suppose that G has a complete Hall σ-set $\mathcal{H} = \{H_1, \ldots, H_t\}$. For any subgroup H of G we write $H \cap \mathcal{H}$ to denote the set $\{H \cap H_1, \ldots, H \cap H_t\}$. If $H \cap \mathcal{H}$ is a complete Hall σ-set of H, then we say that \mathcal{H} reduces into H.

Lemma 2.1. Suppose that G has a complete Hall σ-set $\mathcal{H} = \{H_1, \ldots, H_t\}$ such that a subgroup H of G is σ-semipermutable with respect to \mathcal{H}. Let R be a normal subgroup of G and $H \leq L \leq G$. Then:

1. $\mathcal{H}_0 = \{H_1 R/R, \ldots, H_t R/R\}$ is a complete Hall σ-set of G/R. Moreover, if for every prime p dividing $|H|$ and for a Sylow p-subgroup H_p of H we have $H_p \not\leq R$, then $H R/R$ is σ-semipermutable in G/N with respect to \mathcal{H}_0.

2. If \mathcal{H} reduces into L, then H is σ-semipermutable in L with respect to $L \cap \mathcal{H}$. In particular, if L is normal in G, then H is σ-semipermutable in L with respect to $L \cap \mathcal{H}$.

3. If $L \leq H_i$, for some i, then \mathcal{H} reduces into LR.

4. If $H \leq H_i$, for some i, then H is σ-semipermutable in HR.

5. If H is a p-group, where $p \in \pi(H_i) \subseteq \sigma_i$ and R is a σ_i-group, then $|G : N_G(H \cap R)|$ is a
\[\sigma_i \text{-number.} \]

Proof. Without loss of the generality we can assume that \(H_i \) is a \(\sigma_i \)-group for all \(i = 1, \ldots, t \).

(1) It is clear that \(\mathcal{H}_0 = \{H_1R/R, \ldots, H_tR/R\} \) is a complete Hall \(\sigma \)-set of \(G/R \). Let \(i \in \{1, \ldots, t\} \) such that \((|HR/R|, |H_iR/R|) = 1 \). Let \(p \in \pi(H) \) and \(H_p \) a Sylow \(p \)-subgroup of \(H \). Assume that \(p \) divides \(|H_i| \). Then \(H_i \) contains a Sylow \(p \)-subgroup of \(G \) since it is a Hall subgroup of \(G \) and so \(H_p \leq R \), contrary to the hypothesis. Hence \((|H|, |H_i|) = 1 \). By hypothesis, \(HH_i^x = H_i^xH \) for all \(x \in G \). Then

\[
(HR/R)(H_iR/R)^xR = HH_i^xR/R
= H_i^xHR/R = (H_iR/R)^x(RR/R),
\]

so \(HR/R \) is \(\sigma \)-semipermutable in \(G/R \) with respect to \(\mathcal{H}_0 \).

(2) Let \(L_i = H_i \cap L \) for all \(i = 1, \ldots, t \) and \(\mathcal{L} = \{L_1, \ldots, L_t\} \). By hypothesis, \(\mathcal{L} \) is a complete \(\sigma \)-Hall set of \(L \). Let \(i \in \{1, \ldots, t\} \) such that \((|H|, |L_i|) = 1 \) and let \(a \in L \). Then \((|H|, |H_i|) = 1 \). Hence, by hypothesis, \(HH_i^a = H_i^aH \) for all \(a \in L \), so \(L \cap H \cap L_i^a = H \cap (L \cap H \cap L_i^a) = H \cap L_i^a = H_i^aH \). This shows that \(H \) is \(\sigma \)-semipermutable in \(L \) with respect to \(L \cap \mathcal{H} \).

(3) Since \(H_i \cap R \) is a Hall \(\sigma_i \)-subgroup of \(R \) and \(H_i \cap LR = L(H_i \cap R) \), we have \(LR : H_i \cap LR \mid R : H_i \cap R \). Hence \(H_i \cap LR \) is a Hall \(\sigma_i \)-subgroup of \(LR \). It is clear also that \(H_j \cap LR = H_j \cap R \) is a Hall \(\sigma_j \)-subgroup of \(LR \) for all \(j \neq i \). Hence \(\mathcal{H} \) reduces into \(LR \).

(4) This follows from Parts (2) and (3).

(5) For any \(j \neq i \), \(H_jH = HH_j \) is a subgroup of \(G \) and \(HH_j \cap R = (H \cap R)(H_j \cap R) = H \cap R \), so \(H_j \leq N_G(H \cap R) \). Hence \(|G : N_G(H \cap R)| \) is a \(\sigma_i \)-number.

Lemma 2.2 (See Kegel [19]). Let \(A \) and \(B \) be subgroups of \(G \) such that \(G \neq AB \) and \(AB^x = B^x A \), for all \(x \in G \). Then \(G \) has a proper normal subgroup \(N \) such that either \(A \leq N \) or \(B \leq N \).

Lemma 2.3. Let \(P \) be a Sylow \(p \)-subgroup of \(G \) and \(\mathcal{H} = \{H_1, \ldots, H_t\} \) a complete Hall \(\sigma \)-set of \(G \) such that \(p \in \pi(H_1) \). Suppose that for any \(x \in G \), \(P^xH_i \) is a \(p \)-soluble subgroup of \(G \) for all \(i = 2, \ldots, t \). Then \(G \) is \(p \)-soluble.

Proof. Assume that this is false and let \(G \) be a counterexample of minimal order. First note that the hypothesis holds for every normal subgroup \(R \) of \(G \). Therefore every proper normal subgroup of \(G \) is \(p \)-soluble by the choice of \(G \). Moreover, the choice of \(G \) and the hypothesis imply that \(PH_i \neq G \) for all \(i = 2, \ldots, t \). By Lemma 2.2, we have either \(P^G \neq G \) or \((H_2)^G \neq G \). Hence \(G \) has a proper non-identity normal subgroup \(R \). But then \(R \) is \(p \)-soluble. On the other hand, the hypothesis holds for \(G/R \), so \(G/R \) is also \(p \)-soluble by the choice of \(G \). This implies that \(G \) is \(p \)-soluble.

A group \(G \) is said to be **strictly \(p \)-closed** [20, p.5] whenever \(G_p \), a Sylow \(p \)-subgroup of \(G \), is normal in \(G \) with \(G/G_p \), abelian of exponent dividing \(p - 1 \). A normal subgroup \(H \) of \(G \) is called **hypercyclically embedded** in \(G \) if every chief factor of \(G \) below \(H \) is cyclic.

Lemma 2.4 A normal \(p \)-subgroup \(P \) of \(G \) is hypercyclically embedded in \(G \) if and only if \(G/C_G(P) \) is strictly \(p \)-closed.

Proof. If \(P \) is hypercyclically embedded in \(G \), then for any chief factor \(H/K \) of \(G \) below \(P \),
\(G/C_G(H/K) \) is abelian of exponent dividing \(p - 1 \). Hence \(G/C \), where \(C \) the intersection the centralizers of all such factors, is also an abelian group of exponent dividing \(p - 1 \). On the other hand, \(C/C_G(P) \) is a \(p \)-group by [21] Ch.5, Corollary 3.3]. Hence \(G/C_G(P) \) is strictly \(p \)-closed.

Now assume that \(G/C_G(P) \) is strictly \(p \)-closed and let \(H/K \) be any chief factor below \(P \). Since \(C_G(P) \leq C_G(H/K) \), \(G/C_G(H/K) \) is strictly \(p \)-closed. But since \(O_\nu(G/C_G(H/K)) = 1 \) [16] Ch.A, Lemma 13.6], \(G/C_G(H/K) \) is abelian of exponent dividing \(p - 1 \). It follows from [20] Ch.1, Theorem 1.4] that \(|H/K| = p \). Thus \(P \) is hypercyclically embedded in \(G \).

Let \(P \) be a \(p \)-group. If \(P \) is not a non-abelian 2-group, then we use \(\Omega(P) \) to denote the subgroup \(\Omega_1(P) \). Otherwise, \(\Omega(P) = \Omega_2(P) \).

Lemma 2.5 (See [22] Lemma 12]). Let \(P \) be a normal \(p \)-subgroup of \(G \) and \(D = \Omega(C) \), where \(C \) is a Thompson critical subgroup of \(P \). If either \(P/\Phi(P) \) is hypercyclically embedded in \(G/\Phi(P) \) or \(D \) is hypercyclically embedded in \(G \), then \(P \) is also hypercyclically embedded in \(G \).

Lemma 2.6. Let \(C \) be a Thompson critical subgroup of a \(p \)-group \(P \). Then the group \(D = \Omega(C) \) is of exponent \(p \) if \(p \) is odd prime or exponent 4 if \(P \) is non-abelian 2-group. Moreover, every non-trivial \(p' \)-automorphism of \(P \) induces a non-trivial automorphism of \(D \).

Proof. The first assertion follows from [21] Ch. 5, Theorem 3.11] and [22] Lemma 2.11]. The second one directly follows from [21] Ch. 5, Theorem 3.11].

Lemma 2.7. Let \(E \) be a normal subgroup of \(G \) and \(P \) a Sylow \(p \)-subgroup of \(E \) such that \((p - 1, |G|) = 1 \). If either \(P \) is cyclic or \(G \) is \(p \)-supersoluble, then \(E \) is \(p \)-nilpotent and \(E/O_{p'}(E) \leq Z_{\infty}(G/O_{p'}(E)) \).

Proof. First note that in view of [18] Ch.IV, Theorem 5.4] and the condition \((p - 1, |G|) = 1 \), \(E \) is \(p \)-nilpotent. Let \(H/K \) be any chief factor of \(G \) such that \(O_{p'}(E) \leq K < H \leq E \).

Thus \(E/O_{p'}(E) \leq Z_{\infty}(G/O_{p'}(E)) \).

The following lemma is well-known (see, for example, [18] Lemma 2.1.6]).

Lemma 2.8. If \(G \) is \(p \)-supersoluble and \(O_{p'}(G) = 1 \), then \(p \) is the largest prime dividing \(|G| \), \(G \) is supersoluble and \(F(G) = O_p(G) \) is a Sylow \(p \)-subgroup of \(G \).

Lemma 2.9 (See [23]). Let \(H, K \) and \(N \) be pairwise permutable subgroups of \(G \) and \(H \) is a Hall subgroup of \(G \), then \(N \cap HK = (N \cap H)(N \cap K) \).

The following fact is also well-known (see for example [1] Ch.1, Lemma 5.35(6)]).

Lemma 2.10 If \(H \) is a subnormal \(\pi \)-subgroup of \(G \), then \(H \leq O_\pi(G) \).

Lemma 2.11 (See [24] Theorem C]). Let \(E \) be a normal subgroup of \(G \). If \(F^*(E) \) is hypercyclically embedded in \(G \), then \(E \) is hypercyclically embedded in \(G \).

3 Proofs of Theorems A and B

Theorem A is a corollary of the following two general results.
Theorem 3.1. Let E be a p-soluble normal subgroup of G and P a Sylow p-subgroup of E. Suppose that G has a complete Hall σ-set $\mathcal{H} = \{H_1, \ldots, H_t\}$ such that H_1 is p-supersoluble of order divisible by p. Suppose also that there is a natural number k such that $p^k < |P|$ and every subgroup of P of order p^k and every cyclic subgroup of P of order 4 (if $p^k = 2$ and P is non-abelian) are σ-semipermutable in G with respect to \mathcal{H}. Then $E/O_{p'}(E)$ is hypercyclically embedded in $G/O_{p'}(E)$.

Theorem 3.2. Let P be a Sylow p-subgroup of G. Suppose that G has a complete Hall σ-set $\mathcal{H} = \{H_1, \ldots, H_t\}$ such that H_1 is p-supersoluble of order divisible by p. Suppose also that there is a natural number k such that $p^k < |P|$ and every subgroup of P of order p^k and every cyclic subgroup of P of order 4 (if $p^k = 2$ and P is non-abelian) are σ-semipermutable in G with respect to \mathcal{H}. Then G is p-soluble.

Proof of Theorem 3.1. Assume that this theorem is false and let G be a counterexample with $|G| + |E|$ minimal. Let $|P| = p^n$. Then:

(1) $O_{p'}(N) = 1$ for every subgroup N of E. Hence $O_p(G) \neq 1$.

Suppose that for some subgroup N of G contained in E we have $O_{p'}(N) \neq 1$. Then $O_{p'}(N)$ is normal in G and so $O_{p'}(N) \leq O_p(G)$ by Lemma 2.10. On the other hand, by Lemma 2.1(1), the hypothesis holds for $(G/(E \cap O_{p'}(G)), E/(E \cap O_{p'}(G))) = (G/O_{p'}(E), E/O_{p'}(E))$. Hence $E/O_{p'}(E)$ is hypercyclically embedded in $G/O_{p'}(E)$ by the choice of G, a contradiction. Thus we have (1).

(2) Let $U = O_p(E)$. Then U is not hypercyclically embedded in G.

Assume that U is hypercyclically embedded in G. Since E is p-soluble by hypothesis and $O_{p'}(E) = 1$ by Claim (1), $U \neq 1$ and $C_E(U) \leq U$ by the Hall-Higman lemma [3 Ch.VI, Lemma 6.5]. But since U is hypercyclically embedded in G, $G/C_G(U)$ is strictly p-closed by Lemma 2.4 and so $G/C_G(U)$ is supersoluble by [20 Ch.1, Theorem 1.9]. Now in view of the G-isomorphism $E_C(U)/C_G(U) \simeq E/E \cap C_G(U)$, we conclude that E is hypercyclically embedded in G, a contradiction.

(3) $k > 1$.

Assume that $k = 1$. We show that in this case U is hypercyclically embedded in G. Assume that this is false. Let U/R be a chief factor of G. Then by the choice of G we have R is hypercyclically embedded in G, so for any normal subgroup V of G such that $V < U$ we have $V \leq R$ and U/R is not cyclic. Let B be a Thompson critical subgroup of U and $\Omega = \Omega(B)$. We claim that $\Omega = U$. Indeed, if $\Omega < U$, then $\Omega \leq R$ and so Ω is hypercyclically embedded in G. Hence U is hypercyclically embedded in by Lemma 2.5, a contradiction. Thus $\Omega = U$. Since $U \leq H_1$ and H_1 is p-supersoluble by hypothesis, there is a subgroup $L/R \leq U/R$ of order p such that L/R is normal in H_1/R. Let $x \in L \setminus R$ and $H = \langle x \rangle$. Since $\Omega = U$ and $L \leq U$, $|H|$ is either prime or 4. Then, by hypothesis, H is σ-semipermutable in G with respect to \mathcal{H}. Hence HR/R is σ-semipermutable in G/R with respect to $\{H_1R/R, \ldots, H_tR/R\}$ by Lemma 2.1(1). Then, by Lemma 2.1(5), $|G/R : N_{G/R}(HR/R)| = |G/R : N_{G/R}(L/R)|$ is a $\pi(H_1)$-number. It follows that L/R is normal in G/R, and so $U/R = L/R$ is cyclic, a contradiction. This shows that U is hypercyclically embedded in G, contrary to Claim (2). Hence we have (3).
(4) \(|N| \leq p^k\) for any minimal normal subgroup \(N\) of \(G\) contained in \(P\).

Indeed, suppose that \(|N| > p^k\). Then there exists a non-identity proper subgroup \(H\) of \(N\) such that \(H\) is normal in \(H_1\) and \(H\) is \(\sigma\)-semipermutable in \(G\) with respect to \(\mathcal{H}\). But then \(H\) is normal in \(G\) by Lemma 2.1(5), which contradicts the minimality of \(N\).

(5) If \(P\) is a non-abelian 2-group, then \(k > 2\).

Assume that \(k = 2\). We shall show that in this case every subgroup \(H\) of \(P\) of order 2 is \(\sigma\)-semipermutable in \(G\) with respect to \(\mathcal{H}\). This means that \(k = 1\) is possible, which will contradicts Claim (3).

First show that for any subgroup \(V = A \times B \leq P\) where \(|A| = 2 = |B|\), if both \(V\) and \(A\) are \(\sigma\)-semipermutable in \(G\) with respect to \(\mathcal{H}\), then \(B\) is \(\sigma\)-semipermutable in \(G\) with respect to \(\mathcal{H}\). Indeed, let \(i > 1\) and \(x \in G\). Then \(AH_i^x\) and \(VH_i^x\) are subgroups of \(G\) and \(|VH_i^x : AH_i^x| = 2\). Hence \(VH_i^x\) is 2-nilpotent, so \(H_i^xB = H_i^2B\) since \(H_i^2\) is normal in \(H_i^2V\). Similarly, if \(V = \langle a \rangle\) is a cyclic subgroup of order 4, then \(\langle a^2 \rangle\) is \(\sigma\)-semipermutable in \(G\) with respect to \(\mathcal{H}\).

Since \(P\) is a non-abelian 2-group, \(P\) has a cyclic subgroup \(H = \langle a \rangle\) of order 4. Then \(H\) is \(\sigma\)-semipermutable in \(G\) with respect to \(\mathcal{H}\) by hypothesis, so \(A = \langle a^2 \rangle\) is also \(\sigma\)-semipermutable in \(G\) with respect to \(\mathcal{H}\). Then every subgroup \(B\) of \(Z(P)\) of order 2 is \(\sigma\)-semipermutable in \(G\) with respect to \(\mathcal{H}\), and so every subgroup \(P\) of order 2 is \(\sigma\)-semipermutable in \(G\) with respect to \(\mathcal{H}\).

(6) If \(N\) is a minimal normal subgroup of \(G\) contained in \(P\), then \((E/N)/O'_p(E/N)\) is hypercyclically embedded in \((G/N)/O'_p(E/N)\).

It is enough to show that the hypothesis holds for \(G/N\). Since \(E/N\) is \(p\)-soluble, we can assume that \(|P/N| > p\).

If either \(p > 2\) and \(|N| < p^k\) or \(p = 2\) and \(|N| < 2^{k-1}\), then it is clear by Lemma 2.1(1). Now let either \(p > 2\) and \(|N| = p^k\) or \(p = 2\) and \(|N| \in \{2^{k-1}, 2^{k-1}\}\).

In view of Claim (3), \(k > 1\). Suppose that \(|N| = p^k\). Then \(N\) is non-cyclic and so every subgroup of \(G\) containing \(N\) is not cyclic. Let \(N \leq K \leq P\), where \(|K : N| = p\). Since \(K\) is non-cyclic, it has a maximal subgroup \(L \neq N\). Consider \(LN/N\). Since \(L\) is \(\sigma\)-semipermutable in \(G\) with respect to \(\mathcal{H}\), \(LN/N\) is also \(\sigma\)-semipermutable in \(G/N\) with respect to \(\{H_1R/R, \ldots, H_2R/R\}\) by Lemma 2.1(1). Therefore, if \(P/N\) is abelian, the hypothesis is true for \((G/N, P/N)\). Next suppose that \(P/N\) is a non-abelian 2-group.

Then \(P\) is non-abelian and so \(k > 2\) by Claim (5). Since \(|P/N| > 2, n-k \geq 2\). We may, therefore, let \(N \leq K \leq V \leq P\) such that \(|V : N| = 4, V/N\) is cyclic and \(|V : K| = 2\). Since \(V/N\) is not elementary, \(N \notin \Phi(V)\). Hence for some maximal subgroup \(K_1\) of \(V\) we have \(V = K_1N\). Suppose that \(K_1\) is cyclic. Then \(|K_1 \cap N| = 2\) and \(2 = |V : K_1| = |K_1N : K_1| = |N : K_1 \cap N|\). This implies that \(|N| = 4\). But then \(k = 2\), a contradiction. Hence \(K_1\) is not cyclic. Let \(S\) and \(R\) be two different maximal subgroups of \(K_1\). Then \(K_1 = SR\). If \(SN \leq K\) and \(RN \leq K\), then \(K_1 = SR \leq K\), which contradicts the choice of \(K_1\). Now since \(N/N < K/N < V/N\) where \(K/N\) is a maximal subgroup of \(V/N\), we have that \(V/N = K_1N/N = SRN/N = (SN/N)(RN/N)\). But since \(V/N\) is cyclic, eight \(V/N = SN/N\) or \(V/N = RN/N\). Without loss of generality, we may assume that \(NS = V\). Since
S is a maximal subgroup of K_1 and K_1 is a maximal subgroup of V, $|S| = |N| = p^k$. Then S is σ-semipermutable in G with respect to \mathfrak{H}. Hence by Lemma 2.1(1), V/N is σ-semipermutable in G/N with respect to $\{H_1R/R, \ldots, H_tR/R\}$. This shows that the hypothesis is true for $(G/N, P/N)$.

Now suppose that $2^{k-1} = |N|$. If $|N| > 2$, then N is not cyclic and as above one can show that every subgroup \bar{H} of P/N with order 2 and every cyclic subgroup of P/N of order 4 (if P/N is a non-abelian 2-group) is σ-semipermutable in G/N with respect to $\{H_1R/R, \ldots, H_tR/R\}$. Finally, if $|N| = 2$ and P/N is non-abelian, then P is non-abelian and $k = 2$, which contradicts Claim (5). Thus (6) holds.

(7) $\Phi(U) = 1$.

Assume that for some minimal normal subgroup N of G we have $N \leq \Phi(U)$. Then, by Claim (6), every chief factor of G/N between $O_{p'}(E/N)$ and E/N is cyclic. Note that if $V/N = O_{p'}(E/N) \neq 1$ and W is a p-complement in V, then by the Frattini argument, $G = VN_G(W) = NWN_G(W) = N_G(W)$ since $N \leq \Phi(O_{p'}(E)) \leq \Phi(G)$. Hence $W = 1$ by Claim (1). Therefore every chief factor of G between E and N is cyclic. Now applying Lemma 2.5, we deduce that E is hypercyclically embedded in G, a contradiction. Hence we have (7).

Final contradiction. In view of Claims (2) and (7), U is an elementary group and for some minimal normal subgroup N of G contained in U we have $|N| > p$. Let S be a complement of N in U. Since $N \leq H_1$ and $|N| \leq p^k$ by (4), there are a maximal subgroup V of N and a subgroup W of S such that V is normal in H_1 and $|VW| = p^k$. Then VW is σ-semipermutable in G with respect to \mathfrak{H} by hypothesis, so $V = VW \cap N$ is normal in G by Lemma 2.1(5). Thus $V = 1$, and so $|N| = p$. This final contradiction completes the proof of the result.

Proof of Theorem 3.2. Assume that this theorem is false and let G be a counterexample of minimal order. Without loss of generality we can assume that $P \leq H_1$ and H_i is a σ_i-group for all $i = 1, \ldots, t$. Let $|P| = p^n$ and V be a normal subgroup of G such that G/V is a simple group.

1. $O_{p'}(N) = 1$ for any subnormal subgroup N of G (See Claim (1) in the proof of Theorem 3.1).

2. $P \not\leq N$ for any proper normal subgroup N of G (In view of Lemma 2.1(4), this follows from the choice of G).

3. If the hypothesis holds for V, then G/V is non-abelian, $O_{p}(V)$ is a Sylow p-subgroup of V and $O_{p}(V)$ is hypercyclically embedded in G.

The choice of G implies that V is p-soluble. Hence V is p-supersoluble by Theorem A. Since $O_{p'}(V) = 1$ by Claim (1), V is supersoluble and $O_{p}(V)$ is a Sylow p-subgroup of V by Lemma 2.8.

It is clear that $O_{p}(V)$ is normal in G, so $O_{p}(V)$ is hypercyclically embedded in G by Theorem 3.1.

4. $k > 1$.

Assume that $k = 1$. Then:

(a) For a Sylow p-subgroup V_p of V we have $V_p \not\leq Z_{\infty}(G)$.

Indeed, assume that $V_p \leq Z_{\infty}(G)$. By [3], Ch. IV, Theorem 5.4, G has a p-closed Schmidt subgroup A and $A = A_p \times A_q$, where the Sylow subgroup A_p of A is of exponent p or exponent
4 (if \(p = 2 \) and \(A_2 \) is non-abelian), and if \(\Phi = \Phi(A_p) \), then \(A_p/\Phi \) is a non-central chief factor of \(A \). Without loss of generality, we may assume that \(A_p \leq P \). Then \(V_p \cap A \leq Z_\infty(A) \cap A_p \leq \Phi \) and so there exists a subgroup \(H \) of \(A_p \) such that \(H \not\leq V \) and \(H \) is a cyclic group of order \(p \) or of order 4 (if \(p = 2 \) and \(A_2 \) is non-abelian). By hypothesis, \(H \) is \(\sigma \)-semipermutable in \(G \), so \(HV/V \) is \(\sigma \)-semipermutable subgroup of \(G/V \) by Lemma 2.1(1). Note that \(G \neq HH_2 \) (In fact, if \(|H| = p \), it is clear since \(|P| > p \). If \(HH_2 = G \) and \(H \) is a cyclic group of order 4, then \(G \) is \(p \)-soluble, contrary to the choice of \(G \)). Hence \(G/V \) is not simple by Lemma 2.2, a contradiction. Hence we have (a).

(b) If \(|V_p| = p \), then \(V \) is not \(p \)-soluble, and so \(H_1V = G \).

Indeed, if \(V \) is \(p \)-soluble, then \(V_p \) is normal in \(G \) by Claim (1). Hence \(V_p \) and \(C_G(V_p) \) are normal in \(G \). Claim (a) implies that \(P \leq C_G(V_p) < G \), which contradicts Claim (2). Therefore \(V \) is not \(p \)-soluble. But since the hypothesis holds for \(H_1V \) by Lemma 2.1(2)(3), the choice of \(G \) implies that \(H_1V = G \).

(c) \(|V_p| \neq p \). Hence the hypothesis holds for \(V \) by Lemma 2.1(2) and \(|P| > p^2 \).

Assume that \(|V_p| = p \). If \(V_p = V \cap P \leq \Phi(P) \), then \(V \) is \(p \)-nilpotent by the Tate theorem [3] Ch. IV, Theorem 4.7], contrary to (1). Hence \(V_p \) has a complement \(W \) in \(P \). Let \(L \) be a subgroup of order \(p \) in \(W \). Assume that \(L < W \). Then the hypothesis holds for \(VW \) by Lemma 2.1(2)(3), so \(VW \) is \(p \)-soluble, contrary to Claim (b). Therefore \(|W| = p \), so \(|P| = p^2 \) and \(P = V_pW \) is not cyclic.

Let \(E = (H_2 \cdots H_i)^G \). Then in view of Claim (b), we can assume, without loss of generality, that \(E \leq V \). We show that there is a subgroup \(W_0 \) of \(P \) order \(p \) such that \(W_0 \ntriangleleft V \) and \(W_0 \ntriangleleft C_G(E) \). Indeed, suppose that \(W \leq C_G(E) \). Note that \(C_G(E) \neq G \) by Claim (1). Hence \(V_p \ntriangleleft C_G(E) \) by Claim (2). It follows Claim (1) that \(C_G(E) \cap V = 1 \). Consequently \(G = C_G(E) \times V \). Let \(W = \langle a \rangle \), \(V_p = \langle b \rangle \) and \(W_0 = \langle ab \rangle \). Then \(W_0 \cap C_G(E) = 1 = W \cap V \).

Now let \(i > 1 \). Then \(W_0 H_i^x = H_i^x W_0 \) for all \(x \in G \) by hypothesis. Let \(L = H_i^{W_0} \cap W_0 H_i \). Then \(L \) is a subnormal subgroup of \(G \) by [25, Theorem 7.2.5]. Suppose that \(L \neq 1 \) and let \(L_0 \) be a minimal subnormal subgroup of \(G \) contained in \(L \). Then \(S = L_0 \cap W_0 \) is a Sylow \(p \)-subgroup of \(L_0 \) since \(L \leq W_0 H_i \). Moreover, in view of Claim (1) and Lemma 2.10, \(S \neq 1 \), and so \(W_0 = S \). If \(L_0 \) is abelian, then \(S = W_0 \leq O_p(G) \), where \(O_p(G) < P \) by Claim (2). Hence \(W_0 = O_p(G) \not\leq V \). Consequently \(W_0 \leq C_G(V) \leq C_G(E) \). This contradiction shows that \(L_0 \) is non-abelian. But then \(L_0 = L_0^G \) is a minimal normal subgroup of \(G \) by Claim (2) since \(|P| = p^2 \), which again implies that \(W_0 \leq C_G(E) \). This contradiction shows that \(L = 1 \). Therefore for every \(x \in G \) and every \(i > 1 \) we have \((H_i^x)^{W_0} \cap W_0^{H_i} = 1 \), and so

\[
[W_0, H_i^x] \leq [(H_i^x)^{W_0}, W_0^{H_i}] = 1.
\]

Therefore \(W_0 \leq C_G(E) \), a contradiction. Hence we have (c).

Final contradiction for (4). Let \(C = C_G(V_p) \). By Claims (3) and (c), \(V_p \) is normal in \(G \) and it is hypercyclically embedded in \(G \). Hence \(G/C \) is strictly \(p \)-closed by Lemma 2.4. If \(V_p \ntriangleleft Z(G) \), then there is a normal maximal subgroup \(M \) of \(G \) such that \(C \leq M \). But since \(|P| > p^2 \), the hypothesis holds for \(M \), so \(M \) is \(p \)-soluble and so \(G \) does. This contradiction shows that \(V_p \leq Z(G) \), which contradicts Claim (a). Hence we have (4).
(5) $|N| \leq p^k$ for any minimal normal subgroup N of G contained in P (See Claim (4) in the proof of Theorem 3.1).

(6) $k = n - 1$.

Assume that $k < n - 1$. Then $VP \neq G$. Indeed, if $VP = G$, then $|G : V| = p$ and the hypothesis holds for V. Hence V is p-soluble by the choice of G and so G is p-soluble, a contradiction. By Lemma 2.1(4) the hypothesis holds for VP, so VP is p-soluble by the choice of G since $VP \neq G$. Therefore V is p-soluble, so $O_p(V) \neq 1$ by Claim (1). Let N be a minimal normal subgroup of G contained in $O_p(V)$. It is clear that $N \neq P$. Since $k < n - 1$, $|P : N| > p$ by Claim (5). Now repeating some arguments in Claim (6) of the proof of Theorem A one can show that the hypothesis holds for G/N, so G/N is p-soluble by the choice of G. But then G is p-soluble, a contradiction. Hence we have (6).

(7) If $O_p(G) \neq 1$, then P is not cyclic.

Suppose that P is cyclic. Let L be a minimal normal subgroup of G contained in $O_p(G) \leq P$. Assume that $C_G(L) = G$. Then $L \leq Z(G)$. Let $N = N_G(P)$. If $P \leq Z(N)$, then G is p-nilpotent by Burnside’s theorem [3, Ch. IV, Theorem 2.6], a contradiction. Hence $N \neq C_G(P)$. Let $x \in N \setminus C_G(P)$ with $(|x|, |P|) = 1$ and $K = P \times \langle x \rangle$. By [3, Ch. III, Theorem 13.4], $P = [K, P] \times (P \cap Z(K))$. Since $L \leq P \cap Z(K)$ and P is cyclic, it follows that $P = P \cap Z(K)$ and so $x \in C_K(P)$. This contradiction shows that $C_G(L) \neq G$.

Since P is cyclic, $|L| = p$. Hence $G/C_G(L)$ is a cyclic group of order dividing $p - 1$. But then $P \leq C_G(L)$, so $C_G(L)$ is p-soluble by the choice of G. Hence G is p-soluble. This contradiction shows that we have (7).

(8) $G \neq PH_i$ for any $i > 1$.

Without lose of generality, assume that $G = PH_2$. Let V_1, \ldots, V_r be the set of all maximal subgroups of P and $D_i = V_i^G$. Then $D_i = V_i^{PH_2} = V_i^{H_2} \leq V_i H_2 = H_2 V_i$ by Claim (6).

Suppose that for some i, say $i = 1$, we have $D_1 P < G$. Then $D_1 P$ is p-soluble by the choice of G. Hence $O_p(G) \neq 1$. By Claim (7), P is not cyclic. Moreover, for any $i > 1$, we have that $G = P^G = D_1 D_i$. Hence for all such $i > 1$, we have that $D_i P = G$ and so $D_i = V_i H_2$. It is also clear that $V_2 \cap \cdots \cap V_r = \Phi(P)$. Let $E = V_2 H_2 \cap \cdots \cap V_r H_2$. Then

$$P \cap E = (P \cap V_2 H_2) \cap \cdots \cap (P \cap V_r H_2) = V_2 (P \cap H_2) \cap \cdots \cap V_r (P \cap H_2) = V_2 \cap \cdots \cap V_r = \Phi(P).$$

Hence E is p-nilpotent by the Tate theorem [3, Ch. IV, Theorem 4.7]. It follows that $1 < H_2 \leq O_{p'}(G)$, contrary to Claim (1). Hence we have (8).

(9) $P^G = G$, so $P \nleq H_i^G < G$ for all $i > 1$.

First note that $P^G = G$ by Claim (2) and $PH_i \neq G$ by Claim (8). If P is not cyclic, then $PH^x = PH_x$ for all $x \in G$. Hence $H_i^G < G$ by Lemma 2.2. Now assume that P is cyclic and V be a maximal subgroup of P. Lemma 2.2 implies that either $V^G < G$ or $H_i^G < G$. But if $V^G < G$, then $P \nleq V^G$ and so $V^G \cap P \leq \Phi(P)$. Thus V^G is p-nilpotent by the Tate theorem [3, IV, 4.7], which implies that $V^G = V$, contrary to Claim (7). Hence $H_i^G < G$.

10
Final contradiction. Claim (8) implies that \(PH_i \neq G \) for all \(i = 2, \ldots, t \). Hence in view of Claim (9), \(H^G_2 < G \). Assume that \(P = KL \), where \(K \) and \(L \) are different maximal subgroups of \(P \). Then the hypothesis and claim (6) imply that \(PH_i = KLH_i = H_iKL = H_iP \) for all \(i \). On the other hand, the hypothesis holds for \(PH_i \), so \(PH_i \) is \(p \)-soluble by the choice of \(G \). Now Lemma 2.3 implies that \(G \) is \(p \)-soluble. This contradiction shows that \(P \) is cyclic. But \(P \not\leq H^G_2 \) by Claim (9), so \(H^G_2 \cap P \leq \Phi(P) \). Therefore \(H^G_2 \) is \(p \)-nilpotent by the Tate theorem [3, Ch.IV, 4.7]. It follows from Claim (1) that \(H^G_2 \) is a \(p \)-subgroup. This final contradiction completes the proof.

Proof of Theorem B. Assume that this theorem is false and let \(G \) be a counterexample with \(|G| + |E| \) minimal.

First suppose \(X = E \). Let \(p \) be the smallest prime dividing \(|E| \) and \(P \) a Sylow \(p \)-subgroup of \(E \). Then \(E \) is \(p \)-nilpotent. Indeed, if \(|P| = p \), it follows directly from Lemma 2.7. If \(|P| > p \), then \(E \) is \(p \)-supersoluble by Theorems 3.1 and 3.2, so \(E \) is \(p \)-nilpotent again by Lemma 2.7. Let \(V = O^p_p(E) \). Since \(V \) is characteristic in \(E \), it is normal in \(G \) and the hypothesis holds for \((G,V) \) and \((G/V,E/V) \) by Lemma 2.1(1)(4).

The choice of \(G \) and Theorem 3.1 implies that \(P \neq E \). Hence \(V \neq 1 \), so \(E/V \) is hypercyclically embedded in \(G/V \) by the choice of \((G,E) \). It is also clear that \(V \) is hypercyclically embedded in \(G \). Hence \(E \) is hypercyclically embedded in \(G \) by the Jordan-Hölder theorem for the chief series, a contradiction. Therefore in the case, when \(X = E \), the theorem is true. Finally, if \(X = F^*(E) \), then the assertion follows from Lemma 2.11. The result is proved.

4 Applications

Theorems A, B, Theorems 3.1 and 3.2 cover many known results. Hear we list some of them.

Corollary 4.1 (Gaschütz and N. Ito [3, Ch. IV, Theorem 5.7]). If every minimal subgroup of \(G \) is normal in \(G \), then \(G \) is soluble and \(G' \) has a normal Sylow 2-subgroup with nilpotent factor group.

Proof. This follows from the fact that \(G \) is \(p \)-supersoluble for all odd prime \(p \) dividing \(|G| \) by Theorem A.

Corollary 4.2 (Buckley [26]). If every minimal subgroup of a group \(G \) of odd order is normal in \(G \), then \(G \) supersoluble.

In view of Example 1.5 we get from Theorem 3.2 the following results.

Corollary 4.3 (Huppert [11]). Suppose that for a Sylow \(p \)-subgroup \(P \) of \(G \) we have \(|P| > p \). Assume that \(G \) has a \(p \)-complement \(E \) such that \(E \) permutes with all maximal subgroups of \(P \). Then \(G \) is \(p \)-soluble.

Corollary 4.4 (Sergienko [12], Borovik [13]) Suppose that for a Sylow \(p \)-subgroup \(P \) of \(G \) we have \(|P| > p \). Assume that \(G \) has a \(p \)-complement \(E \) and there is a natural number \(k \) such that \(p^k < |P| \) and every subgroup of \(P \) of order \(p^k \) permutes with \(E \). Suppose also that in the case when \(p = 2 \) the Sylow 2-subgroups of \(G \) are abelian. Then \(G \) is \(p \)-supersoluble.

Corollary 4.5 (Guo, Shum and Skiba [14]). Suppose that \(G = AT \), where \(A \) is a Hall \(\pi \)-subgroup
of G and T a nilpotent supplement of A in G. Suppose that A permutes with all subgroups of T. Then G is p-supersoluble for each prime $p \not\in \pi$ such that $|T_p| > p$ for the Sylow p-subgroup T_p of T.

Proof. Let E be the Hall π'-subgroup of T. Then every subgroup H of E permutes with A^x for all $x \in G$ by Remark 1.3. Hence H is σ-semipermutable in G with respect to $\{A, E\}$, so G is p-supersoluble by Theorem A.

Corollary 4.6 (Guo, Shum and Skiba [15]). Suppose that $G = AT$, where A is a Hall π-subgroup of G and T a minimal nilpotent supplement of A in G. Suppose that A permutes with all maximal subgroups of any Hall subgroup of T. Then G is p-supersoluble for each prime $p \not\in \pi$ such that $|T_p| > p$ for the Sylow p-subgroup T_p of T.

In view of Example 1.4 we get from Theorem A the following

Corollary 4.7 (Wei, Guo [10]). Let p be the smallest prime dividing $|G|$ and P be a Sylow p-subgroup of G. If there a subgroup D of P with $1 < |D| < |P|$ such that every subgroup H of P with order $|D|$ or order $2|D|$ (if $|D| = 2$) is SS-quasinormal in G, then G is p-nilpotent.

From Example 1.4 and Theorem B we get the following three results.

Corollary 4.8 (Li, Shen and Liu [8]). Let \mathcal{F} be a saturated formation containing all supersoluble groups and E a normal subgroup of G such that $G/E \in \mathcal{F}$. Suppose that for every maximal subgroup of every non-cyclic Sylow subgroup of E is SS-quasinormal in G. Then $G \in \mathcal{F}$.

Corollary 4.9 (Li, Shen and Kong [9]). Let E a normal subgroup of G such that G/E is supersoluble. Suppose that for every maximal subgroup of every Sylow subgroup of $F^*(E)$ is SS-quasinormal in G. Then G is supersoluble.

Corollary 4.10 (Li, Shen and Kong [9]). Let \mathcal{F} be a saturated formation containing all supersoluble groups and E a normal subgroup of G such that $G/E \in \mathcal{F}$. Suppose that for every maximal subgroup of every Sylow subgroup of $F^*(E)$ is SS-quasinormal in G. Then $G \in \mathcal{F}$.

References

[1] A. N. Skiba, A generalization of a Hall theorem, *J. Algebra and its Application*, 15(4) (2015), 21–36.

[2] W. Guo, A. N. Skiba, Groups with maximal subgroups of Sylow subgroups σ-permutably embedded, DOI: 10.1515/jgth-2016-0031.

[3] B. Huppert, *Endliche Gruppen I*, Springer-Verlag, Berlin, Heidelberg, New York, 1967.

[4] W. Guo, *Structure Theory for Canonical Classes of Finite Groups*, Springer, 2015.

[5] Y. Li, X. Li and Y. Wang, On s-semipermutable subgroups of finite groups, *Acta Mathematica Sinica, English Ser.*, 26 (11) (2010), 2215–2222.

[6] I. M. Isaacs, Semipermutable π-subgroups, *Arch. Math. (Basel)*, 102 (2014), 1–6.
[7] Ya. Bercovich, I. M. Isaacs, p-supersolvability and actions on p-groups stabilizing certain subgroups, J. Algebra, 414 (2014), 82-94.

[8] S. Li, Z. Shen, J. Liu, X. Liu, The influence of SS-quasinormality of some subgroups on the structure of finite group, J. Algebra, 319 (2008), 4275–4287.

[9] S. Li, Z. Shen, X. Kong, On SS-quasinormal subgroups of finite groups, Comm. Algebra, 36 (2008), 4436–4447.

[10] X. Wei, X. Guo, On SS-quasinormal subgroups and the structure of finite groups, Science China. Mathematics, 54 (3) (2011), 449–456.

[11] B. Huppert, Zur Sylow struktur Auflöbarer Gruppen, Arch. Math., 12 (1961), 161–169.

[12] V. I. Sergienko, A criterion for solubility of finite groups, Mat. Zam. 9 (1971), 375-383 (Russian, English translation in Math. Notes, 9 (1971), 216–220.

[13] M. T. Borovikov, Groups with permutable subgroups of mutually simple orders, Problems Alg., 5 (1990), 80–82.

[14] W. Guo, K. P. Shum, A. N. Skiba, Schur-Zassenhaus theorem for X-permutable subgroups, Algebra Colloquium, 15 (2008), 185–192.

[15] W. Guo, K. P. Shum, A. N. Skiba, Finite groups with some given systems of X_m-semipermutable subgroups, Math. Nachr. 283 (2010), 1603–1612.

[16] K. Doerk, T. Hawkes, Finite Soluble Groups, Berlin–New York: Walter de Gruyter, 1992.

[17] A. Ballester-Bolinches, L. M. Ezquerro, Classes of Finite Groups, Springer, Dordrecht, 2006.

[18] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Walter de Gruyter, Berlin, New York, 2010.

[19] O. H. Kegel, Produkte nilpotenter Gruppen, Arch. Math., 12 (1961), 90–93.

[20] M. Weinstein ed., Between Nilpotent and Solvable, Polygonal Publishing House, 1982.

[21] D. Gorenstein, Finite Groups, Harper & Row Publishers, New York, Evanston, London, 1968.

[22] X. Chen, W. Guo, and A.N. Skiba, Some conditions under which a finite group belongs a Baer local formation, Comm. Algebra, 42 (2014), 4188–4205.

[23] B. N. Knyagina, V. S. Monakhov. On π'-properties of finite groups having a Hall π-subgroup, Siberian Math. J., 522 (2011), 398–309.

[24] A. N. Skiba, A characterization of hypercyclically embedded subgroups of finite groups, J. Pure and Applied Algebra, 215 (2011), 257-261.
[25] J. C. Lennox, S. E. Stonehewer, *Subnormal Subgroups of Groups*, Clarendon Press, Oxford, 1987.

[26] J. Buckley, Finite groups whose minimal subgroups are normal, Math. Z., **116** (1970), 15–17.