Abstract

The idea of graph compositions generalizes both ordinary compositions of positive integers and partitions of finite sets. In this paper we develop formulas, generating functions, and recurrence relations for composition counting functions for several families of graphs.

1 Introduction

Let G be a labelled graph, with edge set $E(G)$ and vertex set $V(G)$. A composition of G is a partition of $V(G)$ into vertex sets of connected induced subgraphs of G. Thus a partition provides a set of connected subgraphs of G, $\{G_1, G_2, \ldots, G_m\}$, with the properties that $\bigcup_{i=1}^{m} V(G_i) = V(G)$ and for $i \neq j, V(G_i) \cap V(G_j) = \emptyset$. (Note, however, that since different edge subsets of a graph can span the same vertex set, it is possible for a different set of connected subgraphs of G to yield the same composition.) We will call the vertex sets $V(G_i)$, or the subgraphs G_i themselves if there is no

*The second author thanks the Centre for Applicable Analysis and Number Theory at The University of the Witwatersrand for sponsoring his visit during May and June 1998.
danger of confusion, *components* of a given composition. This paper is most concerned with straightforward enumerative questions: counting how many compositions a given graph has. Topics such as restricted compositions or asymptotic results will be considered later. We will denote by $C(G)$ the number of distinct compositions that exist for a given graph G.

For example, the complete bipartite graph $K_{2,3}$ has exactly 34 compositions, which are illustrated below. The significance of the edges shown is to indicate the connected components: it is possible that other choices of edges could yield the same connected components, and hence the same composition. In fact, since there are 64 subsets of the set of six edges of $K_{2,3}$, this overlap must occur.
Theorem 1 below is a well known result that motivates this choice of terminology, and Theorem 2 relates the idea to another familiar combinatorial setting.

Let $G = P_n$, the path with n vertices. Then any subgraph of G is also a path, and the components of a composition consist of paths of cardinality $|G_i| = a_i$ so that $\sum_{i=1}^{m} a_i = n$. Thus the path lengths provide a composition of the positive integer n (a representation of n as an ordered sum of positive
integers), and any composition of \(n \) determines “cut points” to provide a composition of the graph \(P_n \). The well known counting function for integer compositions applies to give the first result.

Theorem 1 \[C(P_n) = 2^{n-1}. \]

We will define \(C(P_0) \) to be 1 in order to make a formula in Theorem 8 below more palatable.

Now we consider another case, a family of graphs with many edges. Let \(G = K_n \), the complete graph on \(n \) vertices. Then any subset of \(V(G) \) can serve as the vertex set of a subgraph of \(G \), and the number of compositions of \(G \) is the number of partitions of a set with \(n \) elements into nonempty subsets. The number of partitions of a set of \(n \) elements is given by the Bell number \(B(n) \). The sequence of Bell numbers begins 1, 2, 5, 15, 52, \(\cdots \), and has generating function \(e^{e^x-1} \). This well known sequence has an extensive bibliography compiled by Gould [3].

Theorem 2 \[C(K_n) = B(n). \]

These two results are extreme cases: no connected graph \(G \) with \(n \) vertices can have fewer than \(C(P_n) \) compositions, nor more than \(C(K_n) \). Thus for \(\{F_n\}_{n \geq 1} \) a family of connected graphs such that \(|V(F_n)| = n \), the values \(C(F_n) \) satisfy \(2^{n-1} \leq C(F_n) \leq B(n) \). We allow graphs to be disconnected, and the extreme case would be the graph with no edges, and \(n \) isolated vertices. By our definition this graph has exactly one composition.

2 General observations

In general, one might expect that for graphs with a given number of vertices, the more edges, the more compositions. This is not always true, and certainly more information is needed than \(|V(G)| \) and \(|E(G)| \) to determine \(C(G) \). The example below shows two graphs \(G_1 \) and \(G_2 \) with 4 vertices and 4 edges, but \(C(G_1) = 10 \neq 12 = C(G_2) \).

\[
G_1 \quad G_2
\]

4
Theorem 3 If $G = G_1 \cup G_2$ and there are no edges from vertices in G_1 to
vertices in G_2 (i.e. G is disconnected), then $C(G) = C(G_1) \cdot C(G_2)$. The
same result holds if G_1 and G_2 have exactly one vertex in common.

Proof. This is a consequence of the Fundamental Principle of Counting. We
obtain compositions of G by pairing compositions of G_1 with compositions
of G_2 in all possible ways. \(\Box\)

We can also give a general result for graphs that are “almost disconnected”.

Theorem 4 If $G = G_1 \cup G_2$ and there is an edge from one of the vertices of
G_1 to one of the vertices of G_2 whose removal disconnects G, then
$C(G) = 2 \cdot C(G_1) \cdot C(G_2)$.

Proof. Call the distinguished edge e, between vertices v_i and v_j. For any
composition of G_1 and any composition of G_2 we can build a composition of
G in exactly two ways: either e can be included to combine the component
of v_i in G_1 and the component of v_j in G_2, or not. Thus the count provided
by Theorem 3 is doubled. \(\Box\)

The analysis when G consists of two subgraphs connected by a bridge of
$n > 1$ vertices is more complicated. More information is required about the
nature of the components containing the connecting vertices in compositions
of the subgraphs. Several special cases are considered in later sections.

Theorem 5 Let T_n be any tree with n vertices. Then $C(T_n) = 2^{n-1}$.

Proof. The proof is by induction. When $n = 1$ the tree is a single vertex,
with $1 = 2^0$ compositions. If the result is true for $n \leq k$, we consider T_{k+1} and
remove an edge. This disconnects T_{k+1}, into two subtrees with l and $k+1-l$
vertices for some $l \geq 1$. The induction hypothesis applies to each subtree,
giving 2^{l-1} and 2^{k-l} compositions. Theorem 3 then gives $2 \cdot 2^{l-1} \cdot 2^{k-l} = 2^k$
compositions for T_{k+1}. \(\Box\)

The star graph S_n consists of a distinguished center vertex connected to
each of $n - 1$ edge vertices. S_n is an example of a tree, and so $C(S_n) = 2^{n-1}$.

Deleting one edge from a complete graph has a predictable effect.

Theorem 6 Let K_n denote the complete graph on n vertices with one edge
removed. Then $C(K_n) = B(n) - B(n - 2)$. 5
Proof. The only time that the deleted edge e between v_i and v_j affects a composition counted by $C(K_n)$ is when the component containing v_i and v_j consists of exactly those two vertices. Otherwise there is a path between v_i and v_j in K_n bypassing the deleted edge. Hence from the $B(n)$ compositions counted by $C(K_n)$ must be deleted exactly those compositions for which one component is $\{v_i, v_j\}$. This restriction rules out exactly $C(K_{n-2}) = B(n-2)$ compositions of K_n. \(\square\)

On the other hand, deleting more than one edge affects the number of compositions depending on whether the edges deleted are adjacent or not. For example the graph resulting when two adjacent edges are deleted from K_5 has 40 compositions, whereas if two nonadjacent edges are deleted the resulting graph has 43 compositions.

Another basic family of graphs to consider are the cycle graphs C_n. C_n is the graph with n vertices and n edges, with vertex i connected to vertices $i \pm 1 \pmod{n}$.

Theorem 7 $C(C_n) = 2^n - n$

Proof. Pick any edge of the cycle and delete it. The resulting graph is P_n, with $C(P_n) = 2^{n-1}$ by Theorem 4. Any composition of P_n may be regarded as a composition of C_n as well. The deleted edge may be reinserted, providing a new composition of C_n not previously counted, unless the composition of P_n had been obtained by deleting no edge, or exactly one edge, from P_n. In these cases, reinserting the original deleted edge results in the same composition of C_n: the composition consisting of the single component consisting of all n vertices. Hence the total count of distinct compositions of C_n is $2 \cdot 2^{n-1} - n = 2^n - n$. \(\square\)

It is sometimes useful to group the compositions of C_n so that different compositions obtained by rotation may be analysed together. This idea has its origins in the general area of combinatorics on words, where periodicity and cyclic permutations are studied via what are called Lyndon words [3], [4]. Analogously, we define a Lyndon composition of the positive integer n to be an aperiodic composition that is lexicographically least among its cyclic permutations. For example, $1+2+1+2$ is not a Lyndon composition of 6 because it is periodic, and $1+1+2+2$ is a Lyndon composition of 6 because it is aperiodic, and in addition by the lexicographic ordering we order the cyclic permutations of the summands as $\text{“}1+1+2+2\text{“} < \text{“}1+2+2+1\text{“} < \cdots$.

“2+1+1+2” < “2+2+1+1”. The number of Lyndon compositions $L(n)$ of the integer n is given by the formula

$$L(n) = \frac{1}{n} \sum_{d|n} \mu\left(\frac{n}{d}\right) 2^d.$$

(1)

By (1) we should define $L(1) = 2$. Then

$$C(C_n) = \sum_{d|n} dL(d) - n,$$

which, together with the inverted version of (1), recovers the formula in Theorem 7. We will have use for the sequence of values of $L(n)$:

$$2, 1, 2, 3, 6, 9, 18, 30, 56, \ldots$$

The wheel graph W_n consists of the star graph S_n with extra edges appended so that there is a cycle through the $n - 1$ outer vertices. Alternately, W_n is C_{n-1} with one extra “central” vertex appended which is adjacent to each “outer” vertex in the cycle. We will take W_1 to be an isolated single vertex, W_2 to be P_2, and W_3 to be C_3. Then the sequence \{\text{C}(W_n)\} begins

$$1, 2, 5, 15, 43, 118, 316, 836, 2199, 5769, 15117, 39592, \ldots$$

We account for these values in the theorem below.

Theorem 8

$$C(W_n) = 2^{n-1} - n + 2 + \sum_{d|n-1} d \sum_{a_1 + \ldots + a_k = d} \prod_{i=1}^k C(P_{a_i-1})^{(n-1)/d},$$

where Σ' indicates a sum over Lyndon compositions of d.

Proof. There are two cases to consider. Suppose first that in a composition of W_n the central vertex is connected to no outer vertex. Then the outer vertices may be grouped into $C(C_{n-1}) = 2^{n-1} - (n - 1)$ distinct compositions. Now suppose that the central vertex is connected to one or more outer vertices. Then the remaining outer vertices are disconnected into a set of paths. The possible patterns of paths correspond to Lyndon compositions of $n - 1$ if they are not periodic, or to adjoined Lyndon compositions
of $d|n - 1$ if they are periodic. The correspondence is determined by using the number of gaps between adjacent spokes of the wheel to be summands of the composition. The number of compositions in this case is the product of the number of compositions of the constituent paths. This is the product term in the summation formula. The exponent of $(n - 1)/d$ allows for all possible combinations of paths in the case where there are adjoined Lyndon compositions of proper divisors $d|n - 1$. \square

We thank superseeker@research.att.com for the observation that the sequence of values of $C(W(n))$ corresponds to the third difference of the bisection of the Lucas sequence. It also satisfies the recurrence relation $C(W_1) = C(W_2) = 2, C(W_n) = 3C(W_{n-1}) - C(W_{n-2}) + n - 2$. There must be a combinatorial interpretation of this recurrence.

3 Ladders L_n

We build the ladder L_n as a product of a path of length 2 and a path of length n. Thus L_n has $2n$ vertices and $3n - 2$ edges. The four “corner” vertices have degree 2, and the other vertices have degree 3. We will take $L_1 = P_2$, so $C(L_1) = 2$. $L_2 = C_4$, so $C(L_2) = 12$ by Theorem 7. The most direct way to account for other values of $C(L_n)$ is with a recurrence.

Theorem 9 $C(L_1) = 2, C(L_2) = 12$, and for $n > 2, C(L_n) = 6 \cdot C(L_{n-1}) + C(L_{n-2})$.

Proof. Label the vertices of L_n as $a_{1,1}, a_{1,2}, a_{2,1}, a_{2,2}, \ldots, a_{n,1}, a_{n,2}$. Denote by A_k the number of compositions of L_k in which the vertices $a_{n,1}$ and $a_{n,2}$ are in different components, and by B_k the number of compositions of L_k in which the vertices $a_{n,1}$ and $a_{n,2}$ are in the same component.

In order to generate a composition of L_n from L_{n-1} there are eight configurations to consider:
If we start with a composition counted by A_{n-1}, cases 1), 3), 4), and 7) yield distinct compositions counted by A_n. If we start with one counted by B_{n-1}, only 1), 3), and 4) yield distinct compositions counted by A_n. Hence $A_n = 4 \cdot A_{n-1} + 3 \cdot B_{n-1}$. Similarly, cases 2), 5), and 6) go from a composition counted by A_{n-1} to one counted by B_n. Starting with B_{n-1}, only two distinct compositions arise: the one given by case 2), or the single new composition represented by cases 5), 6), 7) or 8). Hence $B_n = 3 \cdot A_{n-1} + 2 \cdot B_{n-1}$. Since $C(L_n) = A_n + B_n$, we have

$$C(L_n) = 7 \cdot A_{n-1} + 5 \cdot B_{n-1}.$$

On the other hand,

$$A_{n-1} - B_{n-1} = A_{n-2} + B_{n-2} = C(L_{n-2}).$$

Hence

$$C(L_n) = 6(A_{n-1} + B_{n-1}) + (A_{n-1} - B_{n-1}) = 6 \cdot C(L_{n-1}) + C(L_{n-2}).\Box$$

As a bit of moonshine, we note that this recurrence guarantees the sequence of values of $L_n/2$ matches the denominators in the continued fraction expansion of $\sqrt{10}$. A proof, but not an explanation, is provided by observing recurrences and starting values are the same for the two sequences.

4 Bipartite graphs $K_{m,n}$

An example showing that $C(K_{2,3}) = 34$ by exhibiting all 34 compositions is in the first section. The graphs $K_{m,n}$, with $m + n$ vertices and mn edges, are the most complicated we will analyse in this paper.
Theorem 10 Define an array $A = (a_{i,j})$ via the recurrences $a_{m,0} = 0$ for any nonnegative integer m, $a_{0,1} = 1$, $a_{0,n} = 0$ for any $n > 1$, and otherwise

$$a_{m,n} = \sum_{i=0}^{m-1} \binom{m-1}{i} a_{m-1-i,n-1} - \sum_{i=1}^{m-1} \binom{m-1}{i} a_{m-1-i,n}.$$ \hspace{2cm} (2)

Then

$$C(K_{m,n}) = \sum_{i=1}^{m+1} a_{m,i} i^n.$$ \hspace{2cm} (3)

Proof. We observe $C(K_{m,0}) = C(K_{0,n}) = 1$, vacuously. $C(K_{m,1}) = 2^m$ because $K_{m,1} = S_{m+1}$, and similarly for $K_{1,n}$. This observation is the first step in an induction on the arithmetic nature of $C(K_{m,n})$. Now consider $C(K_{m,n})$ for $m \geq 1$. Write the two parts of the bipartition as $A = \{a_1, a_2, \ldots, a_m\}$ and $B = \{b_1, b_2, \ldots, b_n\}$. a_1 must be in some component. Consider cases.

1) a_1 is a singleton. Then all the other components determine a composition of $K_{m-1,n}$. This can be done in $C(K_{m-1,n})$ ways.

2) a_1 is in a component with no other elements of A, but with elements of B. Say a j-set of B. The remaining elements of A and the remaining elements of B can be paired in $C(K_{m-1,n-j})$ ways. There are $\binom{n}{j}$ j-sets of B, so the total number of compositions here is

$$\sum_{j=1}^{n} \binom{n}{j} C(K_{m-1,n-j}).$$

Cases 1) and 2) can be combined in a single sum:

$$\sum_{j=0}^{n} \binom{n}{j} C(K_{m-1,n-j}).$$

3) a_1 occurs with an i-set A_0 of $A - \{a_1\}$, for some $i \geq 1$. Then there must also be a nonempty subset B_0 of B included, say a j-set of B with $j \geq 1$. After A_0 and B_0 are chosen, the remaining elements can be associated in $C(K_{m-1-i,n-j})$ ways. The total in this case is

$$\sum_{i=1}^{m-1} \binom{m-1}{i} \sum_{j=1}^{n} \binom{n}{j} C(K_{m-1-i,n-j}).$$
Putting the cases together, we have

\[C(K_{m,n}) = \sum_{j=0}^{n} \binom{n}{j} C(K_{m-1,n-j}) + \sum_{i=1}^{m-1} \sum_{j=1}^{n} \binom{m-1}{i} \binom{n}{j} C(K_{m-1-i,n-j}). \]

(4)

Rewrite this as

\[C(K_{m,n}) = \sum_{i=0}^{m-1} \sum_{j=0}^{n} \binom{m-1}{i} \binom{n}{j} C(K_{m-1-i,n-j}) - \sum_{i=0}^{m-1} \binom{m-1}{i} C(K_{m-1-i,n}). \]

(5)

Now we can establish that sums of powers of successive integers arise by induction. First note

\[\sum_{j=0}^{n} \binom{n}{j} C(K_{m-1-i,n-j}) = \sum_{j=0}^{n} \binom{n}{j} \sum_{k=1}^{m-i} a_{m-1-i,k} k^{n-j} = \sum_{k=1}^{m-i} a_{m-1-i,k} (k+1)^n, \]

which repeatedly uses the identity

\[\sum_{j=0}^{n} \binom{n}{j} x^j = (x + 1)^n. \]

The proof is completed by equating coefficients of \(k^n\) in (5). Padding the table of coefficients with an initial column of 0s makes the recurrence work unaltered for \(a_{m,1} \). □

Here is a brief table of the coefficients \(a_{i,j}\) that the binomial coefficient summations produce.

n \(i\)	1	2	3	4	5	6	7	8	9
0	1								
1	0	1							
2	-1	1	1						
3	-1	-2	3	1					
4	2	-9	1	6	1				
5	9	-9	-25	15	10	1			
6	9	50	-104	-20	50	15	1		
7	-50	267	-98	-364	105	119	21	1	
8	-267	413	1163	-1610	-539	574	238	28	1

Several properties of this array follow from the series expansion:

1. The main diagonal entry is always 1.
2. The second diagonal consists of triangular numbers.

3. Further diagonals are values of polynomials in \(n \) as well. The next three diagonals are represented by polynomials of degrees 4, 6, and 8.

4. The row sum of each row is 1.

5. The alternating row sum of each row, taking the main diagonal entry as positive, is 1.

6. The first two columns have values that match, up to a shift and change of sign. The first column consists of coefficients of the series expansion of \(e^{1-e^x} \).

This last property is perhaps more than moonshine, given the generating function of \(B(n) \) and the inclusion of all edges (subject to one constraint) in \(K_{m,n} \).

A few values of \(C(K_{m,n}) \) calculated from (2) and (3) are given below.

\(m \) \(\backslash \) \(n \)	1	2	3	4	5	6	7	8
1	2	4	8	16	32	64	128	256
2	4	12	34	96	274	792	2314	6816
3	8	34	128	466	1688	6154	22688	84706
4	16	96	466	2100	9226	40356	177466	788100
5	32	274	1688	9226	48032	245554	1251128	6402586
6	64	792	6154	40356	245554	1444212	8380114	48510036
7	128	2314	22688	177466	1251128	8380114	54763088	354298186

5 Prospectus

There are several directions that we expect further work on graph compositions to take. First, there are many other families of graphs that have been studied in the literature, and at least some of them seem to be appropriate to analyse in the manner of this paper.

The algorithms we have developed to count (and represent in diagrams) graph compositions are sufficiently efficient to handle graphs with up to 20 edges, so that, for instance, we can calculate that the Petersen graph has exactly 8581 compositions. This is important for this paper, if for no other reason because every paper in graph theory should mention the Petersen graph at least once. Extended numerical data awaits the development of more efficient algorithms.

Another project is to develop a calculus of graph compositions, so that, for example, we can predict how the number of compositions is affected when two disjoint graphs are joined by \(k \) edges, or when one or more (adjacent or nonadjacent)
edges are deleted from a given graph. Theorems 3, 4, and 6 are small steps in this
direction. We would like to say something about how operations such as union,
product, or join of graphs combine the number of compositions. 4 develops some
more tools and uses them to analyze another class of graphs.

References

[1] L. J. Cummings, Connectivity of Lyndon words in the N-cube, Journal of
Combinatorial Mathematics and Combinatorial Computing, Vol. 3 (1988)
93–96.

[2] L. J. Cummings and M. E. Mays, Shuffled Lyndon words, Ars Combinatoria Vol. 33 (1992) 47–56.

[3] H. W. Gould, Research bibliography of two special sequences, Sixth edition
(1985).

[4] A. Knopfmacher, M. E. Mays, J. N. Ridley Compositions of unions of
graphs, preprint.

[5] A. Knopfmacher and M. E. Mays, Compositions with m distinct parts,
Ars Combinatoria Vol 53 (1999) 111-128.

[6] A. Knopfmacher and M. E. Mays, The sum of distinct parts in composi-
tions and partitions, Bulletin of the ICA Vol. 25 (1999) 66–78.

Department of Computational and Applied Mathematics
Wits 2050, Johannesburg, South Africa
arnoldk@gauss.cam.wits.ac.za
http://sunsite.wits.ac.za/wits/science/number_theory/apublic.htm

Department of Mathematics
West Virginia University, Morgantown WV 26506-6310
mays@math.wvu.edu
http://www.math.wvu.edu/homepages/mays