Original article

Septicemia due to Streptococcus mitis in neutropenic patients with acute leukemia*

M. Arning, A. Gehrt, C. Aul, V. Runde, U. Hadding, and W. Schneider
Department of Internal Medicine and Department of Microbiology and Virology, Heinrich-Heine-University, Moorstrasse 5, W-4000 Düsseldorf, Federal Republic of Germany

Received June 28, 1990/Accepted October 18, 1990

Summary. Eight neutropenic patients with acute lymphocytic or nonlymphocytic leukemia had septicemia due to different strains of Streptococcus mitis (St. mitis), a microorganism not commonly recognized as a special pathogen in leukemic patients. Four of the patients had been treated with high-dose cytosine arabinoside as part of the cytostatic regimen, six had a central venous line and four patients had oral lesions prior to the infection. Selective gut decontamination consisted of co-trimoxazole/colistin in five patients and quinolones in three patients. The first three patients died, either due to interstitial pneumonia with the adult respiratory distress syndrome (ARDS), or due to infection-triggered disseminated intravascular coagulation despite prompt empiric antibiotic therapy including vancomycin. The other patients improved after empiric supplementation of penicillin G (30 Mega/day) to the antibiotic regimen. Beginning ARDS in two of these patients dramatically responded to high-dose steroids. We conclude that St. mitis is a major pathogen in neutropenic leukemic patients. Infection appears to occur independently of acute leukemic cell type, regimen of selective gut decontamination, venous access, visible oral lesions or treatment with high-dose cytosine arabinoside. The clinical course of our patients raises questions about the value of commonly recommended empiric antibiotic regimens, which were clearly ineffective to control infections with St. mitis in this patient group. Our data indicate that immediate antibiotic therapy with penicillin G is indicated and may be life-saving for suspected St. mitis infections in neutropenic leukemic patients.

Key words: Acute Leukemia – Streptococcus mitis – Septicemia – Neutropenia

Introduction
Recently, an increase of gram-positive infections due to α-hemolytic streptococci has been reported from several cancer centers. Aggressive chemotherapeutic protocols containing high-dose cytosine arabinoside (HD-Ara-C), herpes-simplex infections of the oropharynx and the increasing use of quinolones for selective gut decontamination (SGD) are discussed as risk factors for the development of such infections [1, 2, 4–6, 8, 10]. In 1988, we observed three cases of septicemia with adult respiratory distress syndrome (ARDS) in patients with acute leukemia. During drug-induced aplasia, fever developed and the patients received prompt antibiotic therapy commonly recommended for the empiric treatment of fever in immunocompromised patients. After isolation of St. mitis from blood cultures, therapy was supplemented with high-dose penicillin G (pen G), but this could not prevent fatal ARDS. In this report, we summarize our experience with eight episodes of septicemia caused by St. mitis and discuss the importance of our findings for the empiric treatment of fever in leukemic patients.

Patients and methods

From July 1988 to October 1989, eight patients (4 male, 4 female, median age 39 years, range 23–48 years) with microbiologically proven septicemia due to St. mitis were observed in our department. Patients' characteristics are given in Table 1. Hematologic diagnoses were acute non-lymphocytic leukemia (ANLL) in five cases and acute lymphocytic leukemia in three cases. Therapy consisted of high-dose cytosine arabinoside (3 g/m²) and mitoxantrone (10 mg per m²), either as part of a double induction regimen for ANLL (n = 2) or as consolidation therapy for ALL (n = 2). Three patients received the TAD-9 protocol for induction treatment of ANLL, one patient with B-ALL was treated with a combination of adriamycin, cytosine arabinoside, vincristine, VM26, cyclophosphamide and ifosfamide.

All patients received a standard low-contaminated hospital diet and were instructed in a program of personal hygiene. They were kept in reverse isolation in one-patient rooms. Medical personal wore masks during visits in the room. As part of an ongoing study.
Table 1. Patients characteristics

Patient	Age	Diagnosis	CVA	SGD	HD-Ara-C	Antibiotics	Mucositis	Corticosteroids	Pneumonia	Death
A.H.	43	AML	yes	COT/CL	no	VAN AMI	AZT no	no	yes	yes
R.W.	37	ALL	yes	QUINO	yes	VAN AMI PIP	yes no	yes	yes	yes
E.K.	29	AML	yes	COT/CL	no	VAN CAZ PIP	yes yes	yes	yes	yes
S.E.	23	AML	yes	COT/CL	no	VAN CAZ PIP	PIP yes	no	no	no
M.W.	42	ALL	no	COT/CL	yes	PIP AMI PEN	no yes	yes	no	no
W.W.	48	AML	yes	QUINO	no	CAZ AMI PEN	yes no	yes	no	no
Z.M.	48	ALL	no	QUINO	no	CAZ AMI PEN	yes yes	yes	no	yes
E.M.	37	AML	yes	QUINO	yes	VAN CAZ PEN	no yes	yes	no	no

Abbreviations: AML, acute myelogenous leukemia; ALL, acute lymphocytic leukemia; CVA, central venous access; SGD, selective gut decontamination; COT/CL, cotrimoxazole/colistin; QUINO, quinolones; HD-Ara-C, high-dose cytosine arabinoside; VAN, vancomycin; AMI, aminoglycoside; AZT, aztreonam; PIP, piperacillin; CAZ, ceftazidime; PEN, penicillin G.

concerning SGD, five patients received trimethoprim-sulfamethoxazole (2×960 mg daily)/colistin (4×2 mega IU daily), and three patients received quinolones (ciprofloxacin 2×500 mg/day or ofloxacin 2×200 mg/day). In addition, all patients received oral antifungal prophylaxis with amphotericin B suspension (4×600 mg per day). Six patients had a central venous line (Hickman catheter).

Patients with fever (> 38.5 °C for more than 4 h) and suspected infection were given systemic antimicrobial treatment according to the Paul Ehrlich Intervention Protocol for therapy of infections in immunocompromised patients [9]. Antimicrobial treatment was started within 2 h after the first chill or other evidence of infection.

Microbiological investigations. During infection episodes, at least three blood cultures were taken and cultured under aerobic and anaerobic conditions by standard methods. Microorganisms were identified by means of standard criteria. Streptococci were characterized biochemically by the API-20-Strep system (BioMerieux, Nürtingen, FRG) (Table 3). Resistance patterns were determined according to DIN-Norm 58940 [3] (Fig. 1). All strains were retrospectively tested by macrodilution method to determine the minimal inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC) [3] of pen G and vancomycin (Table 2). Characterization of the streptococcal proteins was done by SDS polyacrylamide gels according to the method of Laemmli [8] (Fig. 2).

Surveillance cultures from urine and feces were done at least once weekly. The oropharynx and anus were inspected daily, but regular cultures from the oropharynx were only taken from sides with clinical evidence of infection.

Table 2. MIC/MBC of penicillin G and vancomycin for *Streptococcus mitis* isolates

Patient	Penicillin G (IU/ml)	Vancomycin (g/ml)		
	MIC	MBC	MIC	MBC
A.H.	0.125	0.125	0.5	0.5
R.W.	0.063	2.0	0.5	>128.0
E.K.	0.25	0.5	0.5	0.5
S.E.	N.D.	N.D.	N.D.	N.D.
M.W.	0.016	0.016	0.5	0.5
Z.M.	0.031	0.031	0.5	32.0
E.M.	0.25	0.5	0.5	0.5
W.W.	0.031	1.0	1.0	128.0

MIC, minimal inhibitory concentration; MBC, minimal bactericidal concentration; ND, not done; IU, International unit

Table 3. Biochemical differentiation of *Streptococcus mitis* by the API 20 Strep System

Patient	PAL	LAP	LAC	INU	AMD	API-Code
A.H.	+	+	+			004 0 400
R.W.	+	+	+			006 0 400
E.K.	+	+	+			006 0 400
S.E.	+	+	+			004 0 401
M.W.	+	+	+			004 0 401
Z.M.	+	+	+			004 0 400
E.M.	+	+	+			006 0 421
W.W.	+	+	+			004 0 400

PAL, alkaline phosphatase; LAC, lactose; AMD, starch; LAP, leucine arylamidase; INU, inulin

Results

The initial clinical course of our patients with streptococcal septicemia was rather uniform. After a median interval of treatment-induced severe neutropenia of eight days (range 2–11 days) all patients abruptly developed fever up to 40 °C, accompanied by chills, without any prodromal symptoms. Fever was resistant to antipyretic drugs and immediate antibiotic therapy including vancomycin, piperacillin, ceftazidime or aminoglycosides (Table 1). Two of the patients had evidence of disseminated intravascular coagulation (DIC).

In the first three patients with microbiologically confirmed septicemia, the central venous lines were removed within 24 h after the first evidence of septicemia. Tips were cultivated, but no streptococci or other microorganisms could be isolated. From 24 to 72 h after the onset of septicemia, these patients developed adult respiratory distress syndrome (ARDS), characterized by diffuse interstitial infiltrates on chest X-ray, low central venous pressure and arterial hypoxemia. Two of these patients were transferred to the intensive care unit and required respiratory therapy for 7 and 11 days, respectively. They died from ARDS and septic shock despite continuing antibiotic therapy including supplementation of pen G which was added immediately after *St. mitis* was isolated from
blood cultures. Autopsy was performed in one patient and revealed an interstitial pneumonia, but no streptococci could be isolated from any part of the body. One patient died because of intrapulmonary hemorrhage associated with disseminated intravascular coagulation (DIC).

In view of the distinct clinical picture, we added pen G (30 mega/day) to the empiric antibiotic regimen in the next patients with suspected septicemia. During the following months, five patients developed septicemia due to St. mitis. They improved within 48 h after the beginning of pen G treatment. Temperature returned to normal with improvement of the clinical status. Two of the patients had evidence of beginning ARDS, but without clinical signs of respiratory distress. In view of the clinical course in the first three patients, therapy with methylprednisolone (250 mg daily for three days) was started and resulted in complete clearance of the pulmonary interstitial changes.

Microbiological differentiation yielded St. mitis in all cases, with different validation in the API-code. Several strains were involved as indicated by different resistance patterns (Fig. 1) and SDS-polyacrylamide gel analysis of the streptococcal proteins (Fig. 2).

Discussion

Our data confirm that St. mitis is an important pathogen in leukemic patients. During the last 15 months, this organism was the most frequently isolated pathogen in blood cultures in our clinical department, not even surpassed by microbiologically proven Staphylococcus epidermidis bacteraemia (7 cases). Such an increase of infections in one department raises the question of an outbreak of nosocomial acquired pathogens. However, analysis of the streptococcal proteins and the biochemical differentiation of the isolated strains do not suggest such a possibility (Fig. 2 and Table 3). At least four different strains were involved. Therefore, it is unlikely that the increase of streptococcal infection is due to a nosocomial outbreak. Moreover, streptococcal infections are also being seen with increasing frequency in other cancer centers [2, 4 – 7].

In the literature, several reasons for the emergence of streptococcal infections are discussed [1, 2, 4, 6, 7, 9]. The use of more aggressive chemotherapeutic protocols with increased mucosal toxicity, mucosal ulcerations due to herpes simplex infections and the prophylactic use of the newer quinolones for SGD instead of the previously used combination of cotrimoxazole and colistin may be predisposing factors for such infections in our patient population. Table 1, however, shows that none of these reasons can fully explain the increase of α-hemolytic streptococcal infections in this patient group.

In a retrospective analysis, Kern et al. [7] described the association between high-dose Ara-C treatment and streptococcal infections in 25 adult patients with ANLL. The patients received 40 treatment courses for remission induction and postremission intensive consolidation therapy. Of 13 bacteremic episodes in a total of 45 infectious episodes, 10 were caused by streptococci. Three of the infections were lethal. In our population, however, only four patients received high-dose Ara-C. The others received a chemotherapeutic regimen with cytosine arabinoside at conventional dosages of 60 mg to 100 mg daily. Similarly, the use of quinolones for SGD does not fully
ARDS in pulmonary hemorrhage. The pathogenesis of this kind of interstitial pneumonia with ARDS (n = 2) and DIC with treatment in these 2 patients remains unclear, as both had resulted in complete disappearance of the radiologic changes within 24 h. However, the precise role of steroid therapy which resulted in complete disappearance of the radiologic changes within 24 h. However, the precise role of steroid treatment in these 2 patients remains unclear, as both had already improved with pen G therapy.

The main reason of death in the first 3 patients was interstitial pneumonia with ARDS (n = 2) and DIC with pulmonary hemorrhage. The pathogenesis of this kind of ARDS in St. mitis septicemia is unknown. Vansteenkiste and Boogaerts [13] described 7 episodes of ARDS occurring in leukemic patients with long-standing and severe neutropenia. Three of these episodes were caused by viridans streptococci. The authors suggest a possible role for certain arachidonic acid metabolites in the pathogenesis of ARDS in neutropenic patients. Guiot et al. [6] also pointed to the association of streptococcal infections and interstitial pneumonia. They assume that the infection initiates immunologic reactions damaging the lung with consecutive development of interstitial pneumonia. This hypothesis is supported by the fact that in our patients no streptococci could be cultured from various sites of the body after 2 days. In vitro, several antibiotics primarily used had sufficient activity against the isolated streptococci (data not shown).

Further evidence for the possible involvement of immunological mechanisms is provided by the clinical course in 2 patients with beginning ARDS whose pulmonary changes rapidly disappeared after administration of high-dose steroids. Similar courses were described by Dybedal and Lamvik [5], who observed 5 leukemic patients with septicemia due to α-hemolytic streptococci and acute respiratory failure after treatment with high-dose Ara-C (1.6–3.6 g/m²). The patients treated immediately with methylprednisolone when signs of respiratory failure were apparent also showed dramatic improvement in their clinical condition, drop of temperature and improvement of respiratory function. We hypothesize that St. mitis septicemia induces ARDS in leukemic patients, which is triggered by immunological mechanisms that can be ameliorated or even prevented by the rapid bactericidal of pen G. As shown in Table 2, only pen G had a 100% bactericidal activity against all tested strains. In contrast, no bactericidal serum levels of vancomycin could be reached without serious toxicity in three of tested strains (recommended peak levels of vancomycin are < 30 μg/ml).

What is the solution to the problem of α-hemolytic streptococcal septicemia in leukemic patients? With the increasing frequency of these infections, one possibility is a selective prophylaxis of streptococcal infections combined with the standard protocol for selective gut decontamination. Rozenberg-Arska et al. [12] recently published the results of a pilot study using oxithromycin for prevention of streptococcal infections and found a decreased incidence of these infections when compared with a historical control group. Further studies are needed to investigate this method of antimicrobial prophylaxis.

Another method is the addition of pen G to the empirical antibiotic regimen in patients with the clinical characteristics of streptococcal septicemia. The fulminant course of these infections is very characteristic and different from beginning fungal or virus infections. Until now, we have not seen a strain of St. mitis with only moderate susceptibility or even resistance to pen G, although infections due to pen G resistant viridans streptococci have been described [10]. To our knowledge, no other study group has yet investigated the empirical treatment with pen G in leukemic patients.

Our data raise questions whether the recommended standard empiric antibiotic regimens for infections in immunocompromised patients are still appropriate. In most cancer centers today, gram-positive bacteria are the predominant microorganisms causing severe infections in granulocytopenic patients. The European Organisation for Research and Treatment of Cancer (EORTC) therapy group trials have shown that the proportion of gram-positive infections increased from 29% to 63% in the last years. If more and more streptococcal infections are reported from other cancer centers, a reappraisal of the empirical treatment strategy for fever in the immunocompromised patient seems necessary, and randomized, prospective studies comparing the conventional EORTC therapy with a pen G modified protocol should be performed. In our patient population, the recommended use of vancomycin for empirical use in suspected gram-positive infections was clearly insufficient to overcome the infections.

In summary, our data confirm that St. mitis is an important pathogen in leukemic patients. Infection occurs independently of leukemic cell type, kind of selective gut decontamination, venous access, visible oral lesions and administration of high-dose ara-C. The clinical course of our patients raises questions about the standard empiric antibiotic regimen and points to the need for early use of...
pen G. Our findings and the results of other authors sug-
ject a beneficial effect of high-dose glucocorticosteroids
in ameliorating or preventing streptococcal-induced
ARDS when given within 48 h after the first signs of
respiratory failure.

References

1. Bostrom B, Weisdorf D (1984) Mucositis and streptococcal
sepsis in bone marrow transplant patients. Lancet I: 1120–1121
2. Cohen J, Donnelly JP, Worsley AM, Catovsky D, Goldman JM,
Galton DA (1983) Septicemia caused by viridans streptococci in
neutropenic patients with leukemia. Lancet II: 1452–1453
3. Deutsches Institut für Normung e.V. (DIN) (1987) Methoden zur
Empfindlichkeitsprüfung von bakteriellen Krankheitserregern
(außer Mykobakterien) gegen Chemotherapeutika (DIN-Norm
58940/3/5). In: Deutsches Institut für Normung (ed.): Medizini-
sche Mikrobiologie, DIN-Taschenbuch 222, 1. Auflage, Beuth,
Berlin
4. Donnelly JP, Novakova IRO, van Loon TM, de Witte T, de
Pauw BE (1988) Risk factors involved in the development of
bacteremia due to “viridans” streptococci in neutropenic pa-
tients. In: The Immunocompromised Host Society (Ed). 5th
Intern Symposium on Infections in the immunocompromised
host, Abst. 12
5. Dybedal I, Lamvik J (1989) Respiratory insufficiency in acute leu-
kemia following treatment with cytosine arabinoside and septic-
emia with Streptococcus viridans. Eur J Haematol 42: 405–406
6. Guiot HFL, van den Broek PJ, van der Meer JWM, Peters WG,
Willemze R, van Furth R (1988) The association between strep-
tococcal infection and interstitial pneumonia in chemotherapy
and BMT. Bone Marrow Transpl 3: Suppl 1, 274
7. Kera W, Kurrle E, Vanek E (1987) High risk of streptococcal
septicemia after high dose cytosine arabinoside for acute mye-
logenous leukemia. Klin Wochenschr 65: 773–780
8. Laemmli UK (1970) Cleavage of structural proteins during the
assembly of the head of the bacteriophage T4. Nature 227:
680–685
9. Paul-Ehrlisch-Gesellschaft Study Group (1985) Intervention
therapy for infections in immunocompromised patients. Z
Antimikr Antineoplast Chemother 3: 127–206
10. Quinn JP, DiVincenzo CA, Lucks DA, Luskin RL, Shatzer KL,
Lerner SA (1988) Serious infections due to penicillin-resistant
strains of viridans streptococci with altered penicillin-binding
proteins. J Infect Dis 157: 764–769
11. Ringden O, Heimdal A, Lönqvist B, Malmborg AS, Wilczek
H (1984) Decreased incidence of viridans streptococcal septic-
aemia in allogeneic bone marrow transplant recipients after the
introduction of acyclovir. Lancet I: 744
12. Rozenberg-Arska M, Dekker AW, Verdonck LF, Verhoef J
(1988) Prevention of gram-positive bacteremias by a short
course of roxithromycin in granulocytopenic patients receiving
ciprofloxacin prophylactically. In: The Immunocompromised
Host Society (Ed). 5th International Symposium on infections
in the immunocompromised host, Abst. 52A
13. Vansteenkiste JF, Boogaerts MA (1989) Adult respiratory
distress syndrome in neutropenic leukemia patients. Blut 58:
287–290