Measurement of the Groomed Jet Radius and Momentum Splitting Fraction in \(pp \) and \(Pb-Pb \) Collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV

S. Acharya et al.,* A Large Ion Collider Experiment Collaboration

(Received 25 August 2021; revised 29 November 2021; accepted 10 February 2022; published 7 March 2022)

This article presents groomed jet substructure measurements in \(pp \) and \(Pb-Pb \) collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV with the ALICE detector. The soft drop grooming algorithm provides access to the hard parton splittings inside a jet by removing soft wide-angle radiation. We report the groomed jet momentum splitting fraction, \(z_g \), and the (scaled) groomed jet radius, \(\theta_g \). Charged-particle jets are reconstructed at midrapidity using the anti-\(k_T \) algorithm with resolution parameters \(R = 0.2 \) and \(R = 0.4 \). In heavy-ion collisions, the large underlying event poses a challenge for the reconstruction of groomed jet observables, since fluctuations in the background can cause groomed parton splittings to be misidentified. By using strong grooming conditions to reduce this background, we report these observables fully corrected for detector effects and background fluctuations for the first time. A narrowing of the \(\theta_g \) distribution in Pb-Pb collisions compared to \(pp \) collisions is seen, which provides direct evidence of the modification of the angular structure of jets in the quark-gluon plasma. No significant modification of the \(z_g \) distribution in Pb-Pb collisions compared to \(pp \) collisions is observed. These results are compared with a variety of theoretical models of jet quenching, and provide constraints on jet energy-loss mechanisms and coherence effects in the quark-gluon plasma.

DOI: 10.1103/PhysRevLett.128.102001

Introduction.—Ultrarelativistic heavy-ion collisions at the Large Hadron Collider (LHC) are used to study the high temperature deconfined phase of strongly interacting matter known as the quark-gluon plasma (QGP) [1–5]. Highly energetic jets created early in the collisions interact with the QGP medium and through those interactions they can lose energy and their internal structure can be modified. This process, known as jet quenching, can be used to reveal the physical properties of the QGP itself such as its transport coefficients and the quasiparticle nature of its degrees of freedom as a function of scale [6–9]. Experimentally, jet quenching is evaluated by comparing jet measurements in heavy-ion collisions to analogous measurements in \(pp \) collisions [10–18]. Notably, measurements of the jet angularity [16] and jet transverse profile [18], which are sensitive to a combination of the angular and momentum structure of jets, suggest a narrowing of the jet core in heavy-ion collisions. Nonetheless, up to now, no direct modification of the intrajet angular distribution alone has been measured.

Jet grooming algorithms provide access to the hard (high-momentum transfer) parton splittings inside a jet by removing soft wide-angle radiation [19–21]. Access to the hard splittings isolates substructures that are well-controlled in perturbative QCD (PQCD), which in heavy-ion collisions may help constrain various jet quenching effects such as energy loss, transverse-momentum broadening, and color coherence. Measurements of groomed jet observables in heavy-ion collisions have been performed by the ALICE and CMS Collaborations [22–24], and opened a new avenue in the study of jet substructure in heavy-ion collisions.

The soft drop (SD) [19–21] grooming algorithm identifies a single splitting by first reconstructing a jet with the anti-\(k_T \) algorithm and then reclustering the constituents of the jet using the Cambridge-Aachen (CA) algorithm [25] in order to follow the angular ordering of the QCD parton shower. The splitting is selected from within the history of the reclustering with a grooming condition, \(z > z_{\text{cut}} \beta \), where \(\beta \) and \(z_{\text{cut}} \) are tunable parameters, \(z \) is the fraction of transverse momentum (\(p_T \)) carried by the subleading (lowest \(p_T \)) prong.

\[
z = \frac{p_{T,\text{subleading}}}{p_{T,\text{leading}} + p_{T,\text{subleading}}},
\]

and \(\theta \) is the relative angular distance between the leading and subleading prong.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
that wider splittings are formed earlier in vacuum than heavy-ion collisions. Previous measurements of the z_g charges\cite{31,32}. Uncertainty principle arguments suggest medium to resolve a color dipole as two independent color transverse-momentum broadening, and the ability of the mechanisms: the relative suppression of gluon vs quark jets, sensitive to several important jet-quenching physics mechanisms were performed at RHIC and the LHC\cite{23,26}.

At high-transverse momentum p_T, the data are described within uncertainties by PQCD predictions\cite{30}.

In $p p$ collisions, measurements of the θ_g and z_g distributions were performed at RHIC and the LHC\cite{23,26–29}. At high-transverse momentum p_T, the data are described within uncertainties by PQCD predictions\cite{30}.

In heavy-ion collisions, it was proposed that θ_g may be sensitive to several important jet-quenching physics mechanisms: the relative suppression of gluon vs quark jets, transverse-momentum broadening, and the ability of the medium to resolve a color dipole as two independent color charges\cite{31,32}. Uncertainty principle arguments suggest that wider splittings are formed earlier in vacuum than narrower splittings ($t_f \sim 1/\theta_g^2$ where t_f is the splitting formation time). In heavy-ion collisions, this would result in wider splittings traversing a longer path in the medium on average. Complementary to θ_g, it has been argued that z_g may be sensitive to the modification of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi splitting function in the QGP, the breaking of color coherence, and the response of the medium to the jet\cite{33–36}. By measuring both θ_g and z_g simultaneously, and thereby both the angular and momentum scales of the hard substructure of jets, these jet quenching mechanisms can be further constrained.

Up to now, no measurement of θ_g has been performed in heavy-ion collisions. Previous measurements of the z_g distribution by the CMS\cite{22} and ALICE Collaborations\cite{23} indicated significant modification with respect to $p p$ collisions. However, these results were not corrected for background and detector effects, and are difficult to compare directly to theoretical calculations\cite{37}. In this Letter, we report the first fully corrected measurement of groomed substructure observables in heavy-ion collisions, allowing for a rigorous comparison with theoretical calculations.

Experimental setup and datasets.—A description of the ALICE detector and its performance can be found in Refs.\cite{38,39}. The $p p$ data set used in this analysis was collected in 2017 during LHC Run 2 at $\sqrt{s} = 5.02$ TeV using a minimum-bias (MB) trigger defined by the coincidence of the signals from two scintillator arrays in the forward region (V0 detectors)\cite{40}. The Pb-Pb dataset was collected in 2018 at $\sqrt{s_{NN}} = 5.02$ TeV. Central and semi-central triggers that select events in the 0%–10% and 30%–50% centrality intervals based on the multiplicity of produced particles in the forward V0 detectors, were used\cite{41,42}. The event selection includes a primary-vertex selection and the removal of beam-induced background events and pileup\cite{10}. After these selections, the $p p$ data sample contains 870 million events and corresponds to an integrated luminosity of 18.0 ± 0.4 nb$^{-1}$\cite{43}. The Pb-Pb data sample contains 92 million events in central collisions and 90 million events in semicentral collisions, corresponding to an integrated luminosity of 0.12 nb$^{-1}$ and 0.06 nb$^{-1}$, respectively.

This analysis uses charged-particle tracks reconstructed using information from both the Time Projection Chamber (TPC)\cite{44} and the Inner Tracking System (ITS)\cite{45}. While track-based observables are collinear unsafe\cite{46–48}, they can be measured with greater precision than calorimeter-based observables and recent measurements have demonstrated that for the groomed jet observables considered here, track-based distributions are compatible with the corresponding collinear-safe distributions\cite{49}. Tracks with $0.15 < p_T < 100$ GeV/c were accepted over pseudorapidity range $|\eta| < 0.9$. Further details about the track selection are described in Ref.\cite{50}. The accepted tracks exhibit approximately uniform azimuthal acceptance and momentum resolution $\sigma(p_T)/p_T$ ranging from about 1% at track $p_T = 1$ GeV/c to 4% at track $p_T = 50$ GeV/c.

Analysis method.—Jets were reconstructed from charged-particle tracks with FastJet3.2.1\cite{51} using the anti-k_T algorithm with E-scheme recombination for resolution parameters $R = 0.2$ and 0.4\cite{52,53}. The pion mass is assumed for all jet constituents. Jets in heavy-ion collisions have a large uncorrelated background contribution due to fluctuations in the underlying event (UE)\cite{54}. The event-by-event constituent subtraction method was used, which corrects the overall jet p_T and its substructure simultaneously by subtracting UE energy constituent by constituent\cite{55,56}. A maximum recombination distance...
\(R_{\text{max}} = 0.25 \) was used. After background subtraction, the measured range is \(40 < p_T, \text{ch jet} < 120 \text{ GeV/c} \). The jet axis is required to be within the fiducial volume of the TPC, \(|\eta_{\text{jet}}| < 0.9 - R \), where \(\eta_{\text{jet}} \) is the jet pseudorapidity.

Local background fluctuations in a heavy-ion collision environment can result in an incorrect splitting (unrelated to the hard scattering) being identified by the grooming algorithm. In order to address this issue, the measurement was performed by applying a strong grooming condition, \(z_{\text{cut}} = 0.2 \) (with \(\beta = 0 \)), which better mitigates these effects as compared to softer grooming conditions (e.g., \(z_{\text{cut}} = 0.1 \)) [37]. To further reduce the mistagging effects, we report measurements with either a small resolution parameter \(\Delta R = 0.2 \) in central collisions or with more peripheral collisions (30%–50% for \(R = 0.4 \)).

The rate of prong mistagging from residual background effects was evaluated by embedding jets simulated with the \textsc{pythia8} event generator [57] into measured Pb-Pb data and following the procedure in Ref. [37]. The residual background contribution ranges from approximately 5% up to 15% at lower \(p_T \), in more central events, and at larger \(R \). This level of background contamination is small enough to allow the results to be unfolded for detector effects and background fluctuations. The impact of the residual background contribution remains one of the main sources of systematic uncertainty [50].

The reconstructed \(p_T, \text{ch jet}, \theta_g \), and \(z_g \) distributions were corrected for effects related to the tracking inefficiency, particle-material interactions, and track \(p_T \) resolution. Moreover, in Pb-Pb collisions, background fluctuations significantly smear the reconstructed distributions of \(\theta_g \) and \(z_g \). To account for these effects, events were simulated with the \textsc{pythia8} generator using the Monash 2013 tune [57] and the \textsc{geant3} model [58] for the particle transport in the ALICE detectors’ material. For the Pb-Pb data, we embedded the simulated events into measured Pb-Pb data to mimic the background effects. A four-dimensional response matrix describing the detector and background response in \(p_T, \text{ch jet} \) and \(\theta_g \) or \(z_g \) was constructed and used in the two-dimensional unfolding in \(p_T, \text{ch jet}, \theta_g \), or \(z_g \) using the iterative Bayesian unfolding algorithm [59,60].

Systematic uncertainties.—The largest systematic uncertainties in this measurement originate from the tracking inefficiency, the unfolding procedure, residual mistagged prongs, and the background subtraction procedure. The total systematic uncertainty is calculated as the quadratic sum of all of the individual systematic uncertainties described below.

The systematic uncertainty due to the uncertainty of the tracking efficiency is evaluated using random rejection of additional tracks in jet finding according to the estimated tracking efficiency uncertainty of 4%, based on variations in the track selection criteria and on the ITS-TPC track-matching efficiency uncertainty. The systematic uncertainty arising from the unfolding regularization procedure is evaluated by varying the number of unfolding iterations by \(\pm 2 \) units, scaling the prior distribution, varying the binning, and varying the lower bound in the detector-level charged-particle jet transverse momentum \(p_T, \text{ch} \) range by 5 GeV/c. The systematic uncertainty due to the model-dependence of the generator used to construct the response matrix is estimated by comparing results obtained with \textsc{pythia} [57], \textsc{herwig} [61], and \textsc{jewel} [62]. The systematic uncertainty due to the bias introduced by the constituent subtraction procedure is estimated by varying \(R_{\text{max}} \) from “undersubtraction” (\(R_{\text{max}} = 0.05 \)) to “oversubtraction” (\(R_{\text{max}} = 0.7 \)), around the nominal value of \(R_{\text{max}} = 0.25 \). The systematic uncertainty due to a possible residual contamination of mistagged splittings after unfolding is estimated with a closure test. The total relative systematic uncertainty ranges from 3%–24% for \(\theta_g \) and 4%–10% for \(z_g \). See Ref. [50] for more details about the systematic uncertainties used in this measurement.

Results.—We report the \(\theta_g \) and \(z_g \) distributions in the \(p_T, \text{ch} \) interval between 60 and 80 GeV/c for \(z_{\text{cut}} = 0.2 \) in central (0%–10%, \(R = 0.2 \)) and semicentral (30%–50%, \(R = 0.4 \)) Pb-Pb collisions. The distributions are reported as normalized differential cross sections,

\[
\frac{1}{\sigma_{\text{jet,inc}}} \frac{d\sigma}{dz_g} = \frac{1}{N_{\text{jet,inc}}} \frac{dN}{dz_g},
\]

where \(N \) is the number of jets passing the SD condition with a given \(p_T, \text{ch} \); \(N_{\text{jet,inc}} \) is the number of inclusive jets, and \(\sigma, \sigma_{\text{jet,inc}} \) are the corresponding cross sections. The analog of Eq. (3) also applies for \(\theta_g \).

The \(\theta_g \) and \(\theta_g \) distributions are shown in Figs. 2 and 3, respectively. The distributions from Pb-Pb collisions are compared with the corresponding distributions from \(pp \) collisions, with their ratios displayed in the bottom panels. The relative uncertainties are assumed to be uncorrelated between \(pp \) and Pb-Pb collisions, and are added in quadrature in the ratio. In Pb-Pb collisions the precision of the measurements decreases as the jet resolution parameter is increased or the centrality is decreased, as the prong mistagging probability decreases with centrality and with decreasing \(R \).

The fraction of jets that do not contain a splitting which passes the SD condition (\(f_{\text{tagged}} \)) differs by at most 1% between Pb-Pb and \(pp \) collisions. Therefore, any modifications in Pb-Pb compared to \(pp \) collisions can change the shape of the distribution, but keep the integral approximately the same.

The \(z_g \) distributions in Pb-Pb and \(pp \) collisions are consistent within experimental uncertainties for all jet momenta, jet resolution parameters, and centralities measured.

The situation is remarkably different when comparing the groomed jet radius, \(\theta_g \), in both systems. For \(R = 0.2 \) in
central collisions, the data suggests a narrowing of the Pb-Pb distribution relative to the pp distribution is observed. This narrowing persists even in semicentral Pb-Pb collisions for $R = 0.4$ where quenching effects are expected to be less than in central collisions.

We compare the ratio of the measurements in pp and Pb-Pb collisions with several theoretical implementations of jet quenching:

(i) JETSCAPE [63] consists of a medium-modified parton shower with the MATTER model [68] controlling...
the high-virtuality phase and the Linear Boltzmann Transport (LBT) model describing the low-virtuality phase [69]. The version of JETSCAPE used for this calculation employs a jet transport coefficient, $\hat{\eta}$, that includes dependence on parton virtuality, in addition to dependence on the local temperature and running of the parton-medium coupling.

(ii) JEWEL [62,64] consists of a Monte Carlo implementation of Baier-Dokshitzer-Mueller-Peigne-Schiff-Zakharov-based medium-induced gluon radiation in a medium modeled with a Bjorken expansion. We consider the impact of medium recoil by including calculations both with and without recoils enabled [70].

(iii) Caucalet al. [34,65] implements a PQCD parton shower with incoherent interactions including both factorized vacuum and medium-induced emissions in a static brick medium.

(iv) Chien et al. [33] (for z_g only) applies Soft Collinear Effective Theory with Glauber gluon interactions.

(v) Qin et al. [35] (for z_g only) applies the higher twist formalism with coherent energy loss.

(vi) Pablos et al. [36,66,67] consists of partons produced by a vacuum shower that interact with the medium according to a strongly coupled AdS/CFT-based model. The parameter L_{res} describes the degree to which the medium can resolve the jet angular structure, where $L_{\text{res}} = 0$ corresponds to full resolution of all jet constituents (fully incoherent), $L_{\text{res}} = \infty$ corresponds to fully coherent energy loss, and $L_{\text{res}} = 2/\pi T$ is an intermediate case, where T is the local medium temperature.

(vii) Yuan et al. [31] (for θ_g only) “med q/g” and “quark” consist of medium-modified quark-gluon fractions without any additional effects, where the quark-gluon fractions in the med q/g case are extracted in Ref. [71] with a relative suppression factor of approximately four between gluon jets and quark jets. The calculation labeled “$\hat{\eta}L$” includes an implementation of transverse-momentum broadening.

The Pb-Pb-to--pp ratios of the z_g distributions are consistent with all theoretical predictions considered. The predicted modifications, which have been constrained by previous measurements [22,23], are small, and the differences between them are yet smaller than the current uncertainty of the data. Nevertheless, these new measurements are the first direct comparisons of predictions to fully corrected data, and limit the possible in-medium modifications of the momentum structure of hard splittings to be less than 10–20% depending on the centrality, jet R, and the grooming settings considered.

Despite employing different microscopic implementations of the jet-medium interactions, the majority of the models capture the qualitative feature of the narrowing seen in the θ_g distributions. The theoretical models can be grouped according to three distinct mechanisms by which θ_g is modified: incoherent energy loss, coherent energy loss, and transverse broadening. The measurements are consistent with models implementing (transverse) incoherent interaction of the jet shower constituents with the medium. This is illustrated by calculations of Pablos et al. where the data favor the incoherent energy loss ($L_{\text{res}} = 0$) and is also supported by Caucalet al., JEWEL, and JETSCAPE. On the other hand, the Yuan et al. calculation with medium-modified “quark-gluon” fractions indicates that the data could be explained by the stronger suppression of gluon showers, which are on average broader, with fully coherent energy loss. These two physics mechanisms—the degree of incoherent energy loss, and the relative quark-gluon suppression—both lead to a suppression of wide-angle splittings. The prediction by Yuan et al. $\hat{\eta}L$ exhibits the opposite trend compared to the data, demonstrating that there is no strong transverse broadening in the hard substructure.

The presented measurements indicate that the medium has a significant resolving power for splittings with a particular dependence on the angular (or coherence) scale, promoting narrow structures or filtering out wider jets altogether.

Conclusions.—We reported the groomed jet momentum fraction, z_g, and the (scaled) groomed jet radius, θ_g, of charged-particle jets measured in pp and Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV with the ALICE detector. By using stronger grooming conditions in the SD grooming algorithm, we suppressed contamination of mistagged splittings from the underlying event, and unfolded the final distributions for detector and background fluctuation effects. This allows for the first time the direct comparison of groomed jet measurements in heavy-ion collisions with theoretical predictions of jet quenching in the QGP. The z_g distributions are consistent with no modification in Pb-Pb collisions compared to pp collisions. The θ_g distributions are narrower in Pb-Pb collisions compared to pp collisions, which is the first direct experimental evidence for the modification of the angular scale of groomed jets in heavy-ion collisions.

These new results demonstrate sensitivity to the microscopic structure of the QGP, including its angular resolving power. This marks an important step towards quantitative understanding of the properties of the QGP, and provides a new path for novel differential jet substructure measurements to further elucidate the microscopic nature of the QGP.

We gratefully acknowledge Paul Caucalet, Yang-Ting Chien, Daniel Pablos, Chanwook Park, Guang-You Qin, Gregory Soyez, Feng Yuan, and the JETSCAPE Collaboration for providing theoretical predictions. We thank Korinna Zapp for discussions regarding recoil subtraction in the JEWEL model. The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the
outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) Collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Ministry of Education of China (MOEC), Ministry of Science & Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the VILLUM Foundation, Croatia; The Danish Council for Independent Research | Natural Sciences, the VILLUM FONDEN and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Académico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Education and Science, National Science Centre and WUT ID-UB, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Ministry of Research and Innovation and Institute of Atomic Physics, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, National Research Centre Kurchatov Institute, Russian Science Foundation and Russian Foundation for Basic Research, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Suranaree University of Technology (SUT), National Science and Technology Development Agency (NSDTA) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Energy, Nuclear and Mineral Research Agency (TENMAK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), USA.

[1] J. Adams et al. (STAR Collaboration), Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions, Nucl. Phys. A757, 102 (2005).

[2] K. Adcox et al. (PHENIX Collaboration), Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration, Nucl. Phys. A757, 184 (2005).

[3] B. Müller, J. Schukraft, and B. Wyslouch, First Results from Pb + Pb Collisions at the LHC, Annu. Rev. Nucl. Part. Sci. 62, 361 (2012).

[4] P. Braun-Munzinger, V. Koch, T. Schäfer, and J. Stachel, Properties of hot and dense matter from relativistic heavy ion collisions, Phys. Rep. 621, 76 (2016).

[5] W. Busza, K. Rajagopal, and W. van der Schee, Heavy Ion Collisions: The Big Picture, and the Big Questions, Annu. Rev. Nucl. Part. Sci. 68, 339 (2018).

[6] J. D. Bjorken, Highly relativistic nucleus-nucleus collisions: The central rapidity region, Phys. Rev. D 27, 140 (1983).
A Large Ion Collider Experiment Collaboration

1A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
2AGH University of Science and Technology, Cracow, Poland
3Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine
4Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India
5Budker Institute for Nuclear Physics, Novosibirsk, Russia
6California Polytechnic State University, San Luis Obispo, California, United States
7Central China Normal University, Wuhan, China
8Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
9Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
10Chicago State University, Chicago, Illinois, United States
11China Institute of Atomic Energy, Beijing, China
12Chungbuk National University, Cheongju, Republic of Korea
13Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovakia
14COMSATS University Islamabad, Islamabad, Pakistan
15Creighton University, Omaha, Nebraska, United States
16Department of Physics, Aligarh Muslim University, Aligarh, India
17Department of Physics, Pusan National University, Pusan, Republic of Korea
18Department of Physics, Sejong University, Seoul, Republic of Korea
19Department of Physics, University of California, Berkeley, California, United States
20Department of Physics, University of Oslo, Oslo, Norway
21Department of Physics and Technology, University of Bergen, Bergen, Norway
22Dipartimento di Fisica dell’Università “La Sapienza” and Sezione INFN, Rome, Italy
23Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
24Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
25Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy
26Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padova, Italy
27Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy
28Dipartimento di Fisica e Nucleare e Teorica, Università di Pavia, Pavia, Italy
29Dipartimento di Fisica “E.R. Caianiello” dell’Università and Gruppo Collegato INFN, Salerno, Italy
30Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy

102001-11
National Research Centre Kurchatov Institute, Moscow, Russia
Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Nikhef, National institute for subatomic physics, Amsterdam, Netherlands
NRC Kurchatov Institute IHEP, Protvino, Russia
NRC Kurchatov Institute ITEP, Moscow, Russia
NRNU Moscow Engineering Physics Institute, Moscow, Russia
Nuclear Physics Institute of the Czech Academy of Sciences, Rež u Prahy, Czech Republic
Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
Ohio State University, Columbus, Ohio, United States
Petersburg Nuclear Physics Institute, Gatchina, Russia
Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
Physics Department, Panjab University, Chandigarh, India
Physics Department, University of Jammu, Jammu, India
Physics Department, University of Rajasthan, Jaipur, India
Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
Physik Department, Technische Universität München, Munich, Germany
Politecnico di Bari and Sezione INFN, Bari, Italy
Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
St. Petersburg State University, St. Petersburg, Russia
Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, Nantes, France
Suranaree University of Technology, Nakhon Ratchasima, Thailand
Technical University of Košice, Košice, Slovakia
The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
The University of Texas at Austin, Austin, Texas, United States
Universidad Autónoma de Sinaloa, Culiacán, Mexico
Universidade Federal do ABC, Santo Andre, Brazil
Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
Universidade Federal do ABC, Santo Andre, Brazil
University of Cape Town, Cape Town, South Africa
University of Houston, Houston, Texas, United States
University of Jyväskylä, Jyväskylä, Finland
University of Kansas, Lawrence, Kansas, United States
University of Liverpool, Liverpool, United Kingdom
University of Science and Technology of China, Hefei, China
University of South-Eastern Norway, Tonsberg, Norway
University of Tennessee, Knoxville, Tennessee, United States
University of the Witwatersrand, Johannesburg, South Africa
University of Tokyo, Tokyo, Japan
University of Tsukuba, Tsukuba, Japan
Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
Université de Lyon, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, Lyon, France
Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
Université Paris-Saclay Centre d’Etudes de Saclay (CEA), IRFU, Département de Physique Nucléaire (DPhN), Saclay, France
Università degli Studi di Foggia, Foggia, Italy
Università di Brescia, Brescia, Italy
Variable Energy Cyclotron Centre, Homi Bhabha National Institute, Kolkata, India
Warsaw University of Technology, Warsaw, Poland
Wayne State University, Detroit, Michigan, United States
Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Münster, Germany
Wigner Research Centre for Physics, Budapest, Hungary
Yale University, New Haven, Connecticut, United States
Yonsei University, Seoul, Republic of Korea
aDeceased.
bAlso at Dipartimento DET del Politecnico di Torino, Turin, Italy.
cAlso at M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia.
dAlso at Department of Applied Physics, Aligarh Muslim University, Aligarh, India.
eAlso at Institute of Theoretical Physics, University of Wroclaw, Poland.
fAlso at University of Kansas, Lawrence, Kansas, United States.
gAlso at Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Bologna, Italy.