DNA methyltransferase 1-mediated CpG methylation of the miR-150-5p promoter contributes to fibroblast growth factor receptor 1-driven leukemogenesis

Tianxiang Hu1*, Yating Chong1, Baohuan Cai1,2, Yun Liu1,3, Sumin Lu1 and John K Cowell1.

Running title: miR150 epigenetic silencing by DNMT1 promotes leukemogenesis

1Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.

2Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.

3Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.

*To whom correspondence should be addressed: Tianxiang Hu, CN 2125, Georgia Cancer Center, 1410 Laney Walker Blvd., Augusta, GA 30912. Email: Tihu@augusta.edu

Keywords: leukemia, microRNA, MYC oncogene, fibroblast growth factor receptor 1 (FGFR1), epigenetics, DNA methyltransferase 1 (DNMT1), MYB oncogene, gene regulation, epigenetics

ABSTRACT

microRNA-150-5p (miR-150-5p) plays a complex role in normal early hematopoietic development and is also implicated in the development of various different leukemias. We previously reported that in myeloid and lymphoid malignancies associated with dysregulated fibroblast growth factor receptor 1 (FGFR1) activities, miR-150-5p is down-regulated compared with healthy cells. Here, using murine cells, we found that this down-regulation is accompanied by CpG methylation of the miR-150-5p promoter region. Of note, analysis of human ALL cohorts also revealed an inverse relationship between miR-150-5p expression and disease progression. We also found that the DNA methyltransferase 1 (DNMT1) enzyme is highly up-regulated in FGFR1-driven leukemias and lymphomas and that FGFR1 inhibition reduces DNMT1 expression. DNMT1 knockdown in stem cell leukemia/lymphoma (SCLL) cells increased miR-150-5p levels and reduced levels of MYB proto-oncogene transcription factor (MYB), a key regulator of leukemogenesis. FGFR1 directly activates MYC proto-oncogene BHLH transcription factor (MYC), which we show here binds and activates the DNMT1 promoter. MYC knockdown decreased DNMT1 expression which, in turn, increased miR-150-5p expression. One of the known targets of miR-150-5p is MYB, and treatment of leukemic cells with the MYB inhibitor mebendazole dose-dependently increased apoptosis and reduced cell viability. Moreover, mebendazole treatment of murine xenografts models of FGFR1-driven leukemias enhanced survival. These findings provide evidence that MYC activates MYB by up-regulating DNMT1, which silences miR-150-5p and promotes SCLL progression. We propose that the inclusion of mebendazole in a combination therapy with FGFR1 inhibitors may be a valuable option to manage SCLL.

Malignant neoplasms associated with rearrangements of FGFR1, also referred to as stem cell leukemia/lymphoma syndrome (SCLL), present as a myeloproliferative disorder which progresses to AML and these patients may also develop B- or T-cell lymphomas [1]. In this disease, FGFR1 is constitutively activated as a result of chromosome translocations that juxtapose a dimerization motif N-terminal to the FGFR1 kinase domain [2], leading to constitutive and ligand independent activation. Inactivation of the kinase domain abrogates the oncogenic potential of these
chimeric oncogenes [3] and pharmacological suppression of FGFR1 activity also suppresses progression of the disease [4-5]. FGFR1 activation leads to profound changes in the gene expression profiles, with activation of genes that promote survival, proliferation and the stem cell phenotype and suppression of genes that lead to differentiated phenotypes [6-7]. In addition to gene expression changes, the microRNA profile of these cells is also altered as a result of FGFR1 activation [8], which has downstream effects on gene expression and protein production. We recently described upregulation of several miRs which promote SCLL progression, with members of the miR17/92 cluster promoting cell survival and proliferation [8]. In addition, miR339 was shown to regulate the BCL2L11 and BAX apoptosis related genes, influencing cell survival [9]. FGFR1 was shown to promote expression of these miRs but, in this screen for FGFR1 regulated miRs, we also identified a series that were downregulated in SCLL cells, including miR-150-5p [8].

miR-150-5p appears to be differentially expressed during normal hematopoiesis and is frequently deregulated in various types of hematological malignancies [10]. Downregulation of miR-150-5p has also been reported in chronic myeloid leukemia (CML), acute myeloid leukemia (AML) and lymphoma [10], and upregulation has been reported in myelodysplastic syndrome and chronic lymphocytic leukemia [10]. miR-150-5p is thought to control the development of the myeloid lineage by fine-tuning the transcription factor Myb and its downstream products [11], promoting differentiation of hematopoietic stem cells (HSC). Here we demonstrate that miR-150-5p is regulated by promoter methylation directly by Dnmt1, which is highly upregulated in SCLL cells as a result of FGFR1-driven upregulation of Myc. Constitutive FGFR1 expression in SCLL, therefore, appears to drive upregulation of Myb through a cascade of intermediate steps and pharmacological inhibition of Myb in these cells suppresses cell growth in vitro and leukemia progression in vivo.

Results

miR-150-5p is downregulated by FGFR1.

As part of our analysis of miRNAs regulated by FGFR1 in cells derived from BCR-FGFR1 transformed mouse hematopoietic stem cells (BBC2), we identified an association between the presence of activated FGFR1 kinase and downregulation of miR-150-5p [8]. To expand this analysis, we compared other SCLL cell lines with their normal cell counterparts isolated from the spleens of normal mice. BBC2 cells are arrested in a Pre/Pro-B cell stage [14] and were compared with B220+/IgM- cells isolated from normal spleen. ZNF112 cells, derived from stem cells transformed with ZMYM2-FGFR1 [15], exhibit a CD4+/CD8+ immunophenotype and were compared with double positive T-cells from the normal spleen. BCRF8C cells, derived from stem cells transformed with ZMYM2-FGFR1 [15], exhibit a CD4+/CD8+ immunophenotype and were compared with double positive T-cells from the normal spleen. BCRF8C was derived from NSG hematopoietic stem cells and shows a Sca1+ immunophenotype [7]. Normal Sca1+ cells were isolated from normal mouse bone marrow. KG1 cells [16], were derived from a human AML patient and express the FGFR1OP2-FGFR1 chimeric kinase. As controls for this human cell line we used human derived mononuclear cells. As shown in Figure 1A, expression levels of miR-150-5p in these 4 cells lines is significantly reduced (>95%) compared with their normal cell counterparts. When the same cell lines were treated with the BGJ389 FGFR1 inhibitor [17], miR-150-5p expression levels were highly upregulated in all cases (Figure 1B). The miRNA levels in primary SCLL cells developed in syngeneic hosts using the transduction and transplantation approach described previously [15], also showed that miR-150-5p levels were significantly reduced in spleen-derived cells from diseased mice (n = 3) from both BCR-FGFR1 and ZMYM2-FGFR1 (Figure 1C) transformed stem cells compared with normal spleen cells (n = 3). It appears, therefore, that the high-level expression of FGFR1 in SCLL cells correlates with low-level expression of miR-150-5p both in vitro and in vivo and that pharmacological suppression of FGFR1 function directly leads to increased miR-150-5p expression levels. In contrast, a housekeeping miRNA, Let-7a shows no difference in levels in these comparisons (Supplemental Figure 1) supporting the specificity of the observations for miR-150-5p.

miR-150-5p overexpression induces apoptosis.

To investigate the effect of miR-150-5p on cell viability, we overexpressed miR-150-5p in mouse
BBC2 and human KG1 cells (Figure 1D). When miR-150-5p expression levels were analyzed in BBC2 cells, there was a >600-fold increase compared with parental cells transduced with the empty vector, which led to reduced (~35%) viability (Figure 1D-E), a reduced percentage of cells in G2/M and an increase in Annexin V positive cells in the overexpressing cells (Supplemental Figure 2). The same effects were seen in KG1 cells overexpressing miR-150-5p (Figure 1E, Supplemental Figure 2). Thus, it appears that increased apoptosis is one of the consequences of high-level miR-150-5p expression.

miR-150-5p expression is associated with downregulation of Myb.

The Myb gene is one of the known targets of miR-150-5p in both human and mice [11, 18]. As shown in figure 2A and Supplemental Figure 3, there are highly conserved target sites in the murine Myb 3’UTR with homology to miR-150-5p. Overexpression of miR-150-5p in BBC2 cells shows a significant downregulation of Myb (Figure 2B), supporting the idea that miR-150-5p may affect SCLL progression through regulation of Myb expression. Analysis of spleen cells from syngeneic mice transplanted with BCR-FGFR1 transduced hematopoietic stem cells (Figure 2C), confirms upregulation of Myb in in vivo models. Similarly, there are conserved target sites in the human MYB gene (Figure 2D) and overexpression of miR-150-5p in human KG1 SCLL cells (Figure 2E) shows significantly reduced MYB levels. In human cell SCLL models in NSG mice transplanted with BCR-FGFR1 transduced human CD34+ cells, MYB is also upregulated (Figure 2F). Thus, it appears that expression of the FGFR1 chimeric kinases leads to Myb activation in SCLL cells by downregulating miR-150-5p in vivo as well as in vitro.

miR-150-5p is suppressed in SCLL cells through promoter methylation.

To investigate the mechanism underlying the downregulation of miR-150-5p in SCLL cells, we analyzed the promoter region in BBC2 and KG1 cells (Figure 3A). There are fewer CpG dinucleotides in the murine promoter region compared with the human promoter. We designed primers to investigate the methylation status of promoter regions with highest density of CpGs as shown in Figure 3A and compared mouse normal CD19+IgM- flow sorted cells from spleen with BBC2 cells. Human peripheral mono-nuclear cells were used as the normal counterpart for human KG1 AML cells. Following bi-sulfite conversion of DNA from both cell lines and controls, the miR-150-5p promoter regions were PCR amplified and cloned into the pGEM-T Easy vector. Sanger sequencing of randomly selected individual clones identified methylated CpG sites. As seen in Figure 3B, there is limited methylation in either promoter region from the normal cells. In contrast, extensive methylation was seen throughout the promoter region in both cell lines, suggesting a mechanism for miR-150-5p silencing. When the BBC2 and KG1 cells were treated with the 5’-aza-cytidine methylation inhibitor, compared with DMSO treated cells, there is a dose-dependent increase in miR-150-5p expression levels in both cell lines, demonstrating the functional relationship between methylation in the miR-150-5p promoter and its expression levels (Figure 3C). To investigate the relationship between methylation in the miR-150-5p promoter and clinical parameters in leukemic samples, we retrospectively analyzed the GSE38235 data set from GEO [19], which compared the methylome and transcriptome between matched pre-B-ALL tumor samples containing high levels of leukemic blasts and blast-free remission samples from 46 patients. The methylation data for the miR-150-5p promoter showed a highly significant reduction in methylation levels in the remission samples compared to their tumor counterparts (Figure 3D), supporting the correlation between inactivation of miR-150-5p and increased aggressiveness of this leukemia.

miR-150-5p promoter methylation is facilitated by Dnmt1.

Since methylation status is determined by the action of proteins such as those in the DNMT and TET families, we analyzed RNA-Seq data generated from SCLL cell lines BBC2, ZNF112, BCRF8C and KG1. In each case there was a consistently high-level expression for Dnmt1. When the data for these 4 cell lines were combined (Figure 4A), the selective upregulation of Dnmt1 was confirmed. In a comparison of BBC2, KG1 and CEP2A,
expressing the CNTRL-FGFR1 chimeric kinase [6], as well as ZNF112 cells expressing a double positive CD4+CD8+ phenotype [15], increased Dnmt1 levels were seen in all cases of SCLL (Figure 4B). Similarly, analysis of splenic cells derived from mouse stem cells transformed with BCR-FGFR1, showed increased levels of Dnmt1 compared with normal spleen cells (Figure 4C). Consistently, analysis of leukemic cells derived from BCR-FGFR1 transformed human CD34+ cord blood cells, transplanted into immunocompromized mice (NSG), also showed increased Dnmt1 protein levels. Analysis of expression and protein levels in four different SCLL cell lines after treatment with the BGJ398, FGFR1 inhibitor showed a significant reduction in Dnmt1 expression levels (Figure 4D). Downregulation of Dnmt1 using shRNA (Figure 4E), showed a proportional increase in miR-150-5p expression levels and increased Myb levels. These data suggest that methylation of the miR-150-5p promoter, and hence the silencing of its expression, is mediated by Dnmt1, which is a consequence of FGFR1 activation.

Myc regulates Dnmt1 expression

It has been shown that MYC is one of the transcription factors that regulates DNMT1 expression [20], and we have shown previously that FGFR1 upregulates Myc in SCLL cells [13]. In a ChiP-qPCR analysis of the Dnmt1 promoter regions in mouse BBC2 and ZNF112 cells, as well as human KG1 cell, a significantly increased level of occupancy was seen in reported Myc binding regions [20] (Figure 5A and Supplemental Figure S4). Knockdown of Myc in BBC2 cells (Figure 5B) using shRNAs, shows a concomitant reduction in Dnmt1 expression levels. Analysis of miR-150-5p expression in these cells shows a consequential proportional increase in expression levels, supporting the suggestion that Myc, which is upregulated by FGFR1, in turn leads to activation of Dnmt1 and epigenetic silencing of miR-150-5p. Downregulation of Myc also leads to reduced Myb expression levels, demonstrating that Myc cooperates with Myb to promote SCLL syndrome via Dnmt1 mediated epigenetic silencing of miR-150-5p.

Targeting c-Myb suppresses SCLL development

Myc has been shown to activate Myb by inducing epigenetic silencing of miR-150-5p, which normally suppresses Myb expression. It appears, therefore, that Myb upregulation is important in SCLL development and its expression is a direct consequence of FGFR1 activation. To investigate the role of Myb in SCLL cell survival, we treated SCLL cells with Mebendazole, which has been shown to lead to Myb degradation [21]. When BBC2, ZNF112 and KG1 cells were treated with Mebendazole (Supplemental Figure S5), there is a dose-dependent reduction in cell viability in all three cell lines, supporting an active role for Myb in SCLL development. Consistently, when Myb is inactivated in BBC2 cells using shRNAs (Figure 6A) there is a significant reduction in cell viability and proliferation compared with treatment with a scrambled shRNA (Figure 6B). Mebendazole inactivation of Myb inactivation in BBC2 and KG1 cells (Figure 6C), leads to an upregulation of p21, demonstrating a withdrawal from the cell cycle and a reduction in levels of survivin, which normally reduces apoptosis. Consistent with protein expression changes, flow cytometric analysis demonstrated that Mebendazole treatment of SCLL cells reduced progression through the cell cycle and led to significantly increased ratios of annexin V+ cells in both BBC2 and KG1 (Supplemental Figure 5) cells compared with vehicle alone treated cells, demonstrating increased apoptosis. Consistent with protein expression changes, flow cytometric analysis demonstrated that Mebendazole treatment of SCLL cells reduced progression through the cell cycle and led to significantly increased ratios of annexin V+ cells in both BBC2 and KG1 (Supplemental Figure 5) cells compared with vehicle alone treated cells, demonstrating increased apoptosis. To evaluate the role of Myb on SCLL progression in vivo, we treated mice, which has been transplanted with BCR-FGFR1 transformed HSC, with an oral suspension of Mebendazole using 1 mg/mouse/day for 2 weeks [22]. These cells co-express GFP from the transduction vector [14] and flow cytometry can monitor the disease load in these animals during disease development and at autopsy. As shown by the Kaplan-Meier analysis (Figure 6D), mice treated with Mebendazole showed a significant improvement in survival compared with vehicle treated mice (n=5). While not affecting body weight, both the spleen weight and WBC count in peripheral blood were reduced in the drug treated animals (Figure 6E). This suppression of leukemogenesis was evident from the reduced spleen sizes in the treated animals (Figure 6F) as well as the presence of reduced GFP-positive cells in spleen samples (Figure 6G).
Discussion.

The development of the hematopoietic system is regulated by a dynamic interplay between various transcription factors in response to environmental cues. One way that rapid responses in levels of transcription factors can be regulated is through microRNA mediated suppression of expression. Micro RNAs have been extensively implicated in normal and abnormal development of hematopoiesis and miR-150-5p was shown to be selectively expressed in mature and resting B- and T-cells but not in their progenitors. The same is true in the stem cell leukemias seen in the SCLL syndrome as we describe here, where miR-150-5p is downregulated in immature T-, B- and myeloid leukemic cells compared with high levels in normal cell counterparts. The expression levels of miR-150-5p are also markedly decreased in ALL, AML and CML, compared with that of healthy controls [10]. Recently, an essential role for miR-150-5p was identified in the pathogenesis of MLL-rearranged AML. The repression of miR-150-5p maturation by MLL-fusion genes accelerated leukemogenesis in an MLL/AF9 murine model and miR-150-5p expression in this model inhibited leukemia cell growth through targeting MYB and FLT3 [22].

miR-150-5p is thought to control the development of myeloid lineage by fine-tuning the Myb transcription factor and its downstream products, promoting differentiation of HSC toward megakaryocytes rather than erythrocytes. Myb is highly expressed in lymphocyte progenitors, downregulated upon maturation, and again upregulated after activation of the mature cells. Myb has also been shown to play a critical role in the normal development of hematopoietic cells through control of cell cycle progression and differentiation in stem and progenitor cells [10]. Loss of Myb expression in mice results in significant abnormal development of the hematopoietic system and has also been frequently associated with hematopoietic malignancies [24]. In FGFR1 driven leukemogenesis, we show that Myb is highly expressed in cells from this stem cell leukemia syndrome and degradation of Myb by either forced expression of miR-150-5p or treatment by mebendazole leads to reduced cell proliferation and increased cell apoptosis, suggesting a tumor promotion role of Myb in this context.

The Myc oncogene is frequently overexpressed in leukemias, as we have shown in the various SCLL cell models [13]. Inactivation of Myc using the 10058-F4 inhibitor in these cells results in suppression of leukemogenesis in vivo and, in the present studies, we demonstrate that Myc activation leads to epigenetic silencing of miR-150-5p as a result of direct regulation of the Dnmt1 promoter. Dnmt1 is responsible for maintenance of methylation in the genome through cell division, whereas other members of the family establish methylation marks de novo [25]. Similarly, the TET family of enzymes is involved in removing epigenetic marks and, although they are frequently mutated in hematopoietic malignancies [26], do not appear to be affected by overexpression of FGFR1. Tumor development is usually the consequence of dysregulation of multiple oncogenes. Here we demonstrate a paradigm that the Myc oncogene activates Myb through epigenetic silencing of miR-150-5p by direct promoter binding and activation of Dnmt1, to promoter leukemogenesis in SCLL.

There are a number of parallels between chimeric FGFR1 driven leukemias and BCR-ABL in CML which develops as a chronic myeloproliferative disease, which extends to the studies presented here. Transformation of CD34+ cells by various fusion kinases leads to upregualtion of Myc and downregulation of miR-150-5p and, in a largely correlative study, suggesting that Myc and miR-150-5p are associated with Myb expression in CML [27]. In this study MYC reportedly occupied the -11.7 kb and -0.35 kb regulatory regions of the miR-150 promoter, which is in contrast to our observations in SCLL where we demonstrate that miR-150-5p silencing is mediated by methylation of its promoter by Dnmt1 as a result of Myc activation. This conclusion in our mouse SCLL models is supported following our analysis of a human pre-B ALL patient cohort, comparing samples with disease and in remission, revealing that differential methylation of the miR-150-5p promoter is associated with remission samples.

Previous studies showed that targeting SCLL cells with FGFR1 inhibitors, most notably BGJ398, can suppress leukemogenesis in mouse models in vivo.
and affects cell proliferation in SCLL cell lines in vitro [17]. Through a better understanding of the molecular etiology of FGFR1 driven neoplasm of lymphoid and myeloid origin, we have demonstrated that targeting these downstream effects also suppress leukemogenesis to a greater or lesser degree. The identification of miR-150-5p as a silenced tumor suppressor in SCLL provides an additional treatment option to target this pathway. As a proof of concept, there have been attempts to restore miR-150-5p expression not only in solid tumors, but also in hematological malignancies [23, 28]. Notably, treatment of FLT3-overexpressing AML with FLT3L-guided miR-150-5p-based nanoparticles shows high selectivity and efficiency and significant inhibition of AML progression [23]. Considering the complexity in preparing the miRNA nanoparticles and limitations in delivery methods, pharmaceutical targeting of this pathway may prove to be the preferred approach. The demonstration that mebendazole, which interferes with proteasome degradation of Myb [21], also suppresses SCLL development in vivo and reduces cell viability in vitro, suggesting that mebendazole may be an important way of treating SCLL, especially in combination with FGFR1 inhibitors.

Experimental procedures

Cell culture and drug treatment

Cells were cultured in RPMI 1640 medium containing 10% FBS. Cell viability was measured using the CellTiter-Glo Luminescent Cell Viability Assay (Promega, Madison, WI). To evaluate the effect of methylation on miR-150-5p expression, BBC2 and KG1 cells were treated with 0.3 and 1 μM of 2'-deoxy-5-azacytidine (DAC) for 72 h. For FGFR and Myb inhibition assays, cells were treated at indicated concentrations of BGJ398 and Mebendazole (Selleckchem, Houston, TX) for 24 h and then cells were harvested for further cellular and molecular analysis.

Cell cycle and apoptosis analysis

10⁶ cells were labeled with Hoechst 33342 (Thermo Fisher Scientific, Waltham, MA) for 1 hour at 37°C and cell cycle profiles were determined using the BD LSR II flow cytometer (BD Bioscience, San Jose, CA). To measure apoptosis, 10⁶ cells were stained with APC Annexin V and DNA binding dye 7-amino-actinomycin (7-AAD) (Biolegend, San Diego, CA,) according to the manufacturer’s protocol and analyzed by BD FACSCanto II flow cytometry (BD Bioscience, San Jose, CA).

Transduction of target cells.

For overexpression of miR-150-5p, the ~500bp fragment including miR-150-5p and flanking sequences was cloned into the pMSCV-PIG vector and retrovirus was prepared using the amphotropic packaging system as previously described [9]. For shRNA knock down, BBC2 cells were transduced with lentiviral particles prepared from clone IDs TRCN225698 and TRCN225699 for shDnmt1, TRCN42513 and TRCN42517 for shMyc, and TRCN42499 and TRCN426969 for shMyb (Sigma, St Louis, MO), and then selected with 1μg/ml puromycin to generate stable cell lines.

Molecular analyses.

Western blot, DNA preparation/cloning, RNA extraction and reverse transcription of mRNA are standard procedures which have been described in detail previously. For miRNA expression quantification, total RNA was reverse transcribed with the miRNA cDNA Synthesis Kit (Applied Biological Materials Inc. Richmond, BC), and then standard real-time PCR reactions were performed. The primers used are described in Supplemental Table T1.

Bisulfite-Sanger sequencing.

For BS-Seq, bisulfite conversion was performed as described [21], using the EZ DNA methylation-Gold kit (Zymo Research Corp, Irvine, CA) according to the vendor’s protocol. Briefly, 0.5 μg of DNA isolated from target cells was heat-denatured, treated with bisulfite (98°C for 10 min, then 55°C for 4 h) to convert unmethylated cytosine to uracil, followed by nested PCR with appropriate PCR primers (see Supplemental Table T1). The PCR products were cloned into the TA vector and single colonies selected for Sanger sequencing (MCLAB, San Francisco, CA).

RNA-Seq data analysis.
The RNA-seq data for BGJ398 and DMSO treated SCLL lines was described previously [7] and deposited into the GEO database (accession number GSE110457). The normalized FPKM data was used to evaluate the expression level of DNA methylation related genes.

Chromatin immunoprecipitation q-PCR (ChIP-qPCR).

ChIP assays were performed using a ChIP assay kit (Millipore) as described previously [13]. In brief, chromatin was cross-linked with 1% formaldehyde for 10 min at room temperature, sheared to an average size of ~500 bp and then immunoprecipitated with an anti-Myc antibody (Abcam). The ChIP-qPCR primers (Supplemental Table T1) were designed to amplify a proximal promoter region containing putative Myc binding sites (5'-ACCACATGGT-3' for the mouse locus and 5'-ACCACGTGGC-3' for the human locus) in the DNMT1 promoter. An intronic region was selected as a negative control. Each immunoprecipitated DNA sample was quantified using qPCR and all ChIP-qPCR signals were normalized to an IgG control to calculate relative fold of enrichment.

In vivo engraftment

Animal protocols followed guidelines and procedures approved by the IACUC of Augusta University. Approximately 1 × 10^6 cells were injected into the tail veins of 6-8 week old, female, sub-lethally (600 Rad) irradiated Balb/C mice and after one week of expansion growth, randomly grouped mice were treated with either inhibitor or vehicle control as described previously [4].

Acknowledgements: We are grateful to Dr. Jan van Riggelen for helpful discussions and providing the DNMT1 antibody. This work was supported by a grant from the National Cancer Institute, CA076167.

Conflict of interest: The authors declare no conflicts of interest.

References.

1. Jackson, C.C., Medeiros, L.J., Miranda, R.N. (2010) 8p11 myeloproliferative syndrome: a review. *Hum. Pathol.* **41**, 461-476.
2. Baumann, H., Kunapuli, P., Tracy, E., Cowell, J.K. (2003) The oncogenic fusion protein tyrosine kinase ZNF198/fibroblast growth factor receptor-1 has signaling function comparable with interleukin-6 cytokine receptors. *J. Biol. Chem.* **278**, 16198-16208.
3. Roumiantsev, S., Krause, D.S., Neumann, C.A., Dimitri, C.A., Asiedu, F., Cross, N.C., van Etten R.A. (2004). Distinct stem cell myeloproliferative/T lymphoma syndromes induced by ZNF198-FGFR1 and BCR-FGFR1 fusion genes from 8p11 translocations. *Cancer Cell.* **5**, 287-298.
4. Ren, M., Qin, H., Ren, R., Cowell, J.K. (2013) Ponatinib suppresses the development of myeloid and lymphoid malignancies associated with FGFR1 abnormalities. *Leukemia.* **27**, 32-40.
5. Khodadoust, M.S., Luo, B., Medeiros, B.C., Johnson, R.C., Ewalt, M.D., Schalkwyk, A.S., Bangs, C.D., Cherry, A.M., Arai, S., Arber, D.A., Zehnder, J.L., Gotlib, J. (2016) Clinical activity of ponatinib in a patient with FGFR1-rearranged mixed-phenotype acute leukemia. *Leukemia.* **30**, 947-950.
6. Ren, M., Qin, H., Kitamura, E., Cowell, J.K. (2013) Disregulation of multiple signaling pathways in the development of myeloid and lymphoid malignancies associated with the CNTRL-FGFR1 fusion kinase in human and mouse models. *Blood.* **122**, 1007-1016.
7. Silva, J., Chang, C-S., Hu, T., Qin, H., Kitamura, E., Cowell, J.K. (2018) Distinct Signaling Programs associated with Progression of FGFR1 driven leukemia in a Mouse Model of Stem Cell Leukemia Lymphoma Syndrome. *Genomics.* doi: 10.1016/j.ygeno.2018.10.015.
8. Hu, T., Chong, Y., Qin, H., Kitamura, E., Chang, C-S., Silva, J., Ren, M., Cowell, J.K. (2018) The miR-17/92 cluster is involved in the molecular etiology of the SCLL syndrome driven by the BCR-
9. Hu, T., Chong, Y., Lu, S., Wang, R., Qin, H., Silva, J., Kitamura E., Chang, C-S., Hawthorn L.A., Cowell, J.K. (2018) MicroRNA 339 promotes development of stem cell leukemia/lymphoma syndrome through downregulation of the BCL2L11 and BAX pro-apoptotic genes. *Cancer Res.* 78, 3522-3531.
10. He, Y., Jiang, X., Chen, J. (2014) The role of miR150 in normal and malignant hematopoiesis. *Oncogene.* 3, 3887-3893.
11. Xiao, C., Calado, D.P., Galler, G., Thai, T.H., Patterson, H.C., Wang, J., et al. (2007) MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. *Cell.* 131,146-159.
12. Hu, T., Zhu, X., Pi, W., Yu, M., Shi, H., Tuan, D. (2017) Hypermethylated LTR retrotransposon exhibits enhancer activity. *Epigenetics.* 12, 226-237.
13. Hu, T., Wu, Q., Chong, Y., Qin, H., Poole, C.J., van Riggelen, J., Cowell, J.K. (2018) FGFR1 fusion kinase regulation of MYC expression drives development of stem cell leukemia/lymphoma syndrome. *Leukemia.* 32, 2363-2373.
14. Ren, M., Tidwell, J.A., Sharma, S., Cowell, J.K. (2012) Acute progression of BCR-FGFR1 induced murine B-lympho/myeloproliferative disorder suggests involvement of lineages at the pro-B Cell Stage. *PLoS One.* 7, e38265.
15. Ren, M., Li, X., Cowell, J.K. (2009) Genetic fingerprinting of the development and progression of T-cell lymphoma in a murine model of atypical myeloproliferative disorder initiated by the ZNF198-FGFR1 chimeric tyrosine kinase. *Blood.* 11, 1576-1584.
16. Furley, A.J., Reeves, B.R., Mizutani, S., Altass, L.J., Watt, S.M., Jacob, van den Elsen, M.C., Terhorst C., Greaves M.F. (1986) Divergent molecular phenotypes of KG1 and KG1a myeloid cell lines. *Blood.* 68, 1101-1107.
17. Wu, Q., Bhole, A., Qin, H., Karp, J., Malek, S., Cowell, J.K., Ren M. (2016) Targeting FGFR1 to suppress leukemogenesis in syndromic and de novo AML in murine models. *Oncotarget.* 7, 49733-49742.
18. Lin, Y.C., Kuo, M.W., Yu, J., Kuo, H.H., Lin, R.J., Lo, W.L., Yu, A.L. (2008) c-Myb is an evolutionary conserved miR-150 target and miR-150/c-Myb interaction is important for embryonic development. *Mol. Biol. Evol.* 25, 2189-2198.
19. Busche, S., Ge, B., Vidal, R., Spinella, J.F., Saillour, V., Richer, C., Healy, J., Chen, S-H., Droit, A., Sinnett, D., Pastinen T. (2013) Integration of high-resolution methylome and transcriptome analyses to dissect epigenomic changes in childhood acute lymphoblastic leukemia. *Cancer Res.* 73, 4323-4336.
20. Poole, C.J., Zheng, W., Lodh, A., Yevtodiyenko, A., Liefwalker, D., Li, H., Felcher D.W., van Riggelen J. (2017) DNMT3B overexpression contributes to aberrant DNA methylation and MYC-driven tumor maintenance in T-ALL and Burkitt's lymphoma. *Oncotarget.* 8, 76898-76920.
21. Walf-Vorderwülbecke, V., Pearce, K., Brooks, T., Hubank, M., van den Heuvel-Eibrink, M.M., Zwaan, C.M., Adams, S., Edwards, D., Bartram, J., Samarasinghe, S., Ancliff, P., Khwaja, A., Goulden, N., Williams, G., de Boer, J., Williams O. (2018) Targeting acute myeloid leukemia by drug-induced c-MYB degradation. *Leukemia.* 32, 882-889.
22. Mukhopadhyay, T., Sasaki, J., Ramesh, R., Roth, J.A. (2002) Mebendazole elicits a potent antitumor effect on human cancer cell lines both in vitro and in vivo. *Clin. Cancer Res.* 8, 2963-2969.
23. Jiang, X., Bugno, J., Hu, C., Yang, Y., Herold, T., Qi, J., Chen, P., Gurbuxani, S., Arnovitz, S., Strong, J., Ferchen, K., Ulrich, B., Weng, H., Wang, Y., Huang, H., Li, S., Neilly, M.B., Larson, R.A., Le Beau M.M., Bohlander, S.K., Jin, J., Li, Z., Bradner, J.E., Hong, S., Chen, J. (2016) Eradication of acute myeloid leukemia with FLT3 ligand-targeted miR-150-5p nanoparticles. *Cancer Res.* 76, 4470-4480.
24. Pattabiraman, D.R., Gonda, T.J. (2013) Role and potential for therapeutic targeting of MYB in leukemia. *Leukemia.* 27, 269-277.

25. Gujar, H., Weisenberger, D.J., Liang, G. (2019) The roles of human DNA methyltransferases and their isoforms in shaping the epigenome. *Genes.* 10, 172.

26. Solary, E., Bernard, O.A., Tefferi, A., Fuks, F., Vainchenker, W. (2014) The Ten-Eleven Translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases. *Leukemia.* 28, 485-496.

27. Srutova, K., Curik, N., Burda, P., Savvulidi, P., Silvestri, G., Trotta, S., Klamova, H., Pecherkova, P., Sovova, Z., Koblihova, J., Stopka, T., Perrotti, D., Polakova K.M. (2018) BCR-ABL1 mediated miR-150-5p downregulation through MYC contributed to myeloid differentiation block and drug resistance in chronic myeloid leukemia. *Haematologica.* 103, 2016-2025.

28. Hoareau-Aveilla, C., Valentim, T., Daugrois, C., Quelen, C., Mitou, G., Quentin, S., Jia, J., Spicuglia, S., Ferrier, P., Ceccon, M., Giuriato, S., Gambacorti-Passerini, C., Brousset, B., Lamant, L., Meggetto, F. (2015) Reversal of microRNA-150 silencing disadvantages crizotinib-resistant NPM-ALK(+) cell growth. *J. Clin. Invest.* 125, 3505–3518.
Figure 1: miR-150-5p is downregulated in SCLL. Relative expression levels (on a log scale) in BBC2 cells relative to normal pre/pro-B cells, ZNF112 relative to normal CD4+CD8+, BCRF8C relative to normal Sca1+ cells and KG1 cells relative to peripheral blood mononuclear cells all show highly significant downregulation of miR-150-5p in SCLL cell lines (A). When the same cell lines are treated with the BGJ398 FGFR1 inhibitor, miR-150-5p levels are increased compared with DMSO treated controls in all cases (B). Analysis of miR-150-5p levels in spleen cells from mice transplanted with either BCR-FGFR1 or ZMYM2-FGFR1 (C) transformed hematopoietic cells show significant downregulation of miR-150-5p (on a log scale). When miR-150-5p is overexpressed in BBC2 cells (D) there is a significant reduction in cell viability. Overexpression of miR-150-5p in human KG1 cells (E) shows a similar reduction in cell viability (D). *** p < 0.001, **** p < 0.0001.
Figure 2. Myb is downregulated in SCLL cells. Location of the two miR-150-5p target sites in the 3’ UTR of murine Myb is shown in (A). When miR-150-5p is overexpressed (OE) in BBC2 cells (B, above) there is a significant reduction in Myb protein levels compared with empty vector transformed cells (B, below, showing quantified levels in arbitrary units (AU)). Analysis of spleen cells from Balb/c mice transplanted with mouse hematopoietic stem cells (n = 3) transduced with BCR-FGFR1 shows increased levels of Myb expression compared with normal Balb/C spleen cells (C). Human KG1 SCLL cells (E) also show reduced levels of MYB when miR-150-5p is overexpressed. Human CD34+ cord blood cells transformed with BCR-FGFR1 and transplanted into immunocompromised NSG mice show the same increased MYB expression levels in isolated spleen cells compared with spleen cells from normal NSG mice (F). * = p < 0.01, ** = p < 0.001, *** = p < 0.0001.
Figure 3. The miR-150-5p promoter is highly methylated in SCLL cells. Distribution of CpG dinucleotides (lollipops) within the murine (A, left) and human (A, right) miR150 promoters shows higher CpG numbers in the human cells. The miR-150-5p gene in each case is shown by the black bar and the position of the primer pairs used to amplify the promoters is shown by the apposing arrows. DNA sequence analysis of the miR promoter in individual clones from bisulfite-treated DNA from BBC2 cells (B, left) or KG1 cells (B, right) shows extensive methylation at CpG dinucleotides (closed circles) throughout the region compared with normal CD19+IgM- B-cells or PBMN cells. Treatment of SCLL cells with the methylation inhibitor, 5′-aza-cytidine, shows a dose-dependent increase in miR-150-5p expression levels (C). Analysis of matched bone marrow samples from pre-B-ALL patients with either disease or in remission (D), shows a highly significant reduction in methylation levels in the remission phase.
Figure 4. Dnmt1 expression correlates with miR-150-5p levels in SCLL cells. RNA-Seq derived mRNA levels, expressed as fragments per kilobase of transcripts per one million mapped reads (FPKM) for members of the Dnmt and Tet families of genes in 4 SCLL cell lines (BBC2, ZNF112, BCRF8C and KG1), shows highly elevated levels specifically for Dnmt1 (A). Analysis of protein levels in BBC2 and KG1 cells (B, above) compared with either normal CD19+IgM- or PMBCs respectively, shows the same increase in Dnmt1 levels in mouse and human cell lines. Analysis of Dnmt1 levels in mouse SCLL T-lymphoma cell lines (CEP2A, ZNF112) shows the same increase compared with normal CD4+CD8+ cells (B, below). Analysis of spleen cells from normal mice (Balb/C) and primary transformed hematopoietic stem cells in vivo following transduction with BCR-FGFR1 (C, above) also shows increased Dnmt1 levels in the transformed cells. Similarly, analysis of spleen cells from primary human CD34+ cord blood stem cells transformed with BCR-FGFR1, shows increased levels of Dnmt1 (C, below). When four different SCLL cell lines are treated with the BGJ398 FGFR1 inhibitor, there is a significant reduction in Dnmt1 mRNA levels (D, above). Analysis of Dnmt1 protein levels in BBC2 and KG1 cells following BGJ398 treatment (D, below) also shows reduced levels compared with DMSO treated cells. Knockdown of Dnmt1 using two different shRNAs (E, above) leads to proportional increased expression levels of miR-150-5p-5p (E, below). Western blot analysis (E, right) shows that knockdown of Dnmt1 leads to upregulation of Myb protein levels.
Figure 5. Dnmt1 expression is regulated by Myc in SCLL cells. The organization of the Dnmt1 locus in mice is shown in (A). The position of the primer pairs within the promoter (P2), and intron 1 (P1), regions used for ChIP are indicated by the apposing arrows. Compared with the IgG control, there is a significant enrichment of Myc binding in the Dnmt1 promoter region (P2) in both the BBC2 and ZNF112 cells (A). Knockdown of Myc, using two different shRNAs (B), shows a concomitant reduction in Dnmt1 expression levels. As a result of Myc knockdown, levels of miR-150-5p show a proportional increase compared with cells expressing a scrambled control (B, below). Western blot analysis (B, right) shows the relative knockdown levels of Myc using the two shRNAs and the proportional reduction in Dnmt1 and Myb levels.
Figure 6. Suppression of Myb leads to increased survival in SCLL models in vivo. Knockdown of Myb in BBC2 cells using two different shRNAs (#1 and #2) leads to reduced mRNA and protein levels (A) and a proportional reduction in cell viability over a 3-day observation period (B). Western blot analysis (C) of mouse BBC2 and human KG1 cell lines treated with mebendazole shows increased levels of p21 and decreased levels of survivin proportional to the reduction in Myb levels. In vivo, BBC2 xenografts (N = 8) show an increased survival in mebendazole treated animals (D). While no change in overall body weight, there is a significantly reduced spleen weight and white cell count in the peripheral blood in the treated animals. The decreased spleen size is clearly shown in mebendazole treated animals (F) and flow cytometry analysis of the relative number of GFP+ leukemia cells (co-expressed from the pMIG vector with BCR-FGFR1) shows decreased levels in the spleen from the treated animals compared with vehicle treated animals (F). Scale bar represents 1cm.
DNA methyltransferase 1-mediated CpG methylation of the miR-150-5p promoter contributes to fibroblast growth factor receptor 1-driven leukemogenesis
Tianxiang Hu, Yating Chong, Baohuan Cai, Yun Liu, Sumin Lu and John K. Cowell

J. Biol. Chem. published online October 18, 2019

Access the most updated version of this article at doi: 10.1074/jbc.RA119.010144

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts