This accepted version of the article may differ from the final published version.
This is an Accepted Manuscript for *Disaster Medicine and Public Health Preparedness* as part of the Cambridge Coronavirus Collection
DOI: 10.1017/dmp.2021.184

The Influence of Social Media use on Practice of Covid-19 Preventive Measures Among Ethiopian Residents: An Online Cross-Sectional Study

Abinet Arega Sadore¹, Demelash Woldeyohannes Handiso¹, Tekle Ejajo Wontamo¹, Dejene Ermias Mekango¹*, Sisay Moges²

¹Department of Public Health, College of Medicine and Health Science, Wachemo University Hosanna, Ethiopia, Abinet Arega Sadore, Email: abinetarega24@gmail.com, Demelash Woldeyohannes, Email: woldemel@gmail.com, Tekle Ejajo Wontamo, Email: ejajotekle@gmail.com

²Hossana college of Health science, Department of Health Informatics, Hossana, Ethiopia, Email: sisaymoges55@gmail.com

*Corresponding Author: Email: dj.ermi2005@gmail.com
ABSTRACT

Background: Infection with coronavirus disease (COVID-19) has become a severe public health issue worldwide. A broad amount of information related to the novel coronavirus (COVID-19) pandemic was disseminated by social media in Ethiopia. To date, there is limited evidence on the influence of social media use for covid-19 related information on covid-19 preventive practice. Therefore, this study aimed to assess the influence of social media use on the practice of COVID-19 preventive measures in Ethiopia.

Methods: This study employed an anonymous internet-based online cross-sectional survey using Google forms to collect the data from the respondents from 15 May to 17 June 2020 in Ethiopia. Multivariable logistic regression was used to assess the relationship between social media usage as a predictor and COVID-19 preventive practice, after adjusting for socio-demographic and risk perception of COVID-19 variables. The data were analysed using SPSS version 21.

Results: A total of 372 respondents have participated in the study. From 372, 208 (55.9%) respondents in this study were male. Study participants who had good utilization of social media to get COVID-19 related information were 9.5 times engaged in COVID-19 preventive practices compared to study participants who had poor utilization of social media to get covid-19 related information (AOR= 9.59, 95% CI = 5.70- 16.13). Also, study participants who had a high-risk perception of COVID-19 were 2.6 times engaged in COVID-19 practices compared to study participants who had a low-risk perception of covid-19 (AOR = 2.63, 95% CI = 1.58 - 4.38). Study participants who were students at the time of this study were four times more likely to show adequate COVID-19 preventive practice score compared to those who had another occupational status (AOR= 4.07, 95% CI= 1.66 - 9.98)

Conclusions: Our results show that the usage of social media networks can have a positive effect on the practice of preventive measures and public safety against COVID-19; high-risk perception contributed to preventive activities against COVID-19. Social networking platforms can be used by public health agencies as an important method to raise public health understanding by disseminating concise messages to targeted audiences.

Keywords: Social Media, COVID-19, preventive, Ethiopia
BACKGROUND

Infection with coronavirus disease (COVID-19) has become a severe public health issue worldwide. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus that recently emerged from China. In March 2020, the World Health Organization (WHO) declared that COVID-19 can be characterized as a pandemic. Therefore, it is of utmost importance to prevent the further spread of the pandemic in public and health care settings. Social distancing, checking any suspicious case, staying at home, avoiding social events, treating patients, and touch tracing are common techniques and recommendations. While countries are taking increasingly stringent steps to combat the pandemic, such as lockdowns and mass assessments, the pandemic has risen worldwide.

In Ethiopia hundreds of thousands of people were affected by the pandemic, more than two thousand have died and most of the public health measures still hold promise to slow and ultimately contain the spread of COVID-19. In response to COVID-19, the Government of Ethiopia has been taking a series of policy actions beyond public health initiatives alone; these include closing schools, restricting the use of public transportation, banning large meetings, and suspending sporting and religious gatherings.

Public awareness and prevention of COVID-19 infection play important roles in disease control; a lack of reasonable information on infectious diseases leads to low detection rates. Therefore, to stop the spread of COVID-19 infection in Ethiopia, the Ethiopian Ministry of Health launched specific national disease control measures, using several media campaigns, posters, and advertisements on television and print media along with other methods to improve awareness of this pandemic among the general population. The assessment of government websites and social media platforms for public awareness is important; because it helps determine the impact of governmental prevention efforts and measures and gauges the need for intervention.

Scholars have reported that evidence of the impact of social media platforms (e.g. Facebook, YouTube, Telegram, Instagram, and Twitter) on health knowledge, behaviours, and outcomes shows that these tools can be effective in meeting individual, population health needs increasing public consciousness.
The public perceptions of risks are shaped depending on how information is communicated across social media platforms; As a result, the WHO has called for proactive and effective use of social media platforms to disseminate information on health issues, explicitly on emerging infectious diseases, to unspecialized persons and the general public15. Therefore this study aimed to assess the influence of using social media on covid-19 related awareness and preventive practice of covid-19 during the pandemic in Ethiopia

METHODS

This study employed an anonymous internet-based online cross-sectional survey by using Google Forms to collects the data from the respondents from 15 May to 17 June 2020 in Ethiopia. Since the first cases of the COVID-19 were confirmed in Ethiopia on March 13, 2020, the government declared the state lockdown on April 5, 2020. These made it difficult to conduct the community or institutional-based survey. Depending on this, the link of the questionnaire was posted by the authors on Social Media such as; Facebook, Instagram, Twitter, telegram, and YouTube. To select the respondents from the population, a snowball sampling technique was employed through the author’s network with residents on popular social media. The questionnaire focused on the respondents’ socio-demographic characteristics, risk perception of COVID-19, using social media to get information about covid-19 and COVID-19 preventive practice. The inclusion criteria of the participants used in this study were: able to read and understand the English language, have Ethiopian nationality, and be aged \geq 18 years. Before proceeding to fulfil the questionnaire, the objective of the study, the informed consent of participation, the declaration of anonymity, and confidentiality of their response were briefed.

The questionnaire was developed in English and then translated into Amharic. Local experts performed face validation on the content of the questionnaire. The online questionnaire was subsequently pilot tested for readability and clarity of items on 30 participants from the general public. A minor revision was made based on the results of the pilot study. The revised questionnaire was further pretested before distribution. Participants in the survey received no incentives. A survey link was distributed to respondents, and 395 individuals responded. After excluding participants who provided incomplete data, for instance, people who started the survey but did not finish it, we used a total sample of 372 for the analysis. The average age of the participants was 38.07 (SD = 10.33), and there were 164 female participants and 208 male participants.
Instruments and measurements

Social media use to get information about COVID-19

We included the following question to assess the participants’ exposure to covid-19-related risk information via social media during the COVID-19 pandemic, using a 7-point Likert scale (1 = not at all, to 7 = to a great extent): “How much have you seen information about covid-19 on social media such as Instagram, Facebook, Twitter, YouTube, and Telegram?” Higher scores indicated greater exposure to COVID-19-related risk information via social media (M = 3.94, SD = 1.47). Level of social media utilization was categorized based on the median score since the cumulative score is not normally distributed. Those who scored less than the median points were classified as poor utilization, and those who scored a median point and above were classified as good utilization.

Personal-level risk perception of COVID-19

We measured personal-level risk perception of COVID-19 by using the following four items on a 5-point Likert scale ranging from 1 = strongly disagree to 5= strongly agree: “(1) The problem of COVID-19 is serious to me; (2) I am worried that I would be affected by covid-19; (3) I would likely be affected by covid-19; (4) I have felt that COVID-19 is dangerous.” The responses were averaged to construct an index of personal-level risk perception of COVID-19, and higher scores indicated greater personal-level risk perception of covid-19 (M = 4.58, SD = 1.40, Cranach’s α = .92). The level of perception was categorized based on the median score since the score is not normally distributed. Those who scored less than the median points were measured as they have a low level risk perception, and those who scored a median point and above were considered as high level risk perception.

COVID-19 Preventive practice

We assessed COVID-19 preventive practices on a 5-point Likert scale ranging from 1 (strongly disagree) to 7 (strongly agree) in which respondents were asked how frequently they engaged in the following COVID-19 preventive practices since the first COVID-19 patient was confirmed: “(1) I have worn a mask to reduce the risk of COVID-19 infection; (2)
I have not been going to crowded place; (3) I avoid touching the eye, nose, mouth before washing hands and (4) I have tried to wash my hands or used hand sanitizer more often to prevent the risk of COVID-19 infections.” We averaged the four items to create an index of COVID-19 preventive practices (M = 4.47, SD = 1.47, Cronbach’s α = .82). The preventive practice was categorized based on the median score since the score is not normally distributed. Those who scored less than the median points were measured as they have a poor practice of COVID-19 prevention measure, and those who scored a median point and above were considered as a good practice.

Statistical Analysis

The collected data were checked manually for its completeness. The data was coded and edited in Epi-Info version 3.5.1 and exported to SPSS version 21 for further statistical data analysis. Descriptive statistics were employed to summarize the data of this study. Multivariable logistic regression was used to assess the relationship between social media usage as a predictor and COVID-19 preventive practice, after adjusting for socio-demographic and risk perception of COVID-19 variables. Adjusted odds ratios were used to interpret variables in the final model of COVID-19 preventive practices. Variables with p<0.25 in bivariate analysis were entered into a multivariate logistic regression model to adjust the effects of cofounders on the outcome variable. Multivariable logistic regression analyses were performed on all variables found to have a statistically significant association (two-tailed, P<.05) in the bivariate analyses. Odds ratios (ORs), 95% CIs, and P values were calculated for each independent variable. The level of significance was set at P<.05. and the final model was checked using the Hosmer–Lemeshow goodness of fit test; interaction, and multi-colinearity were checked to minimize bias.

Ethical Considerations

Ethical approval was obtained from Wachemo University College of Medicine and Health Science Institutional Review Board, and the research was conducted following the prevailing ethical principles. The participants responding to a 'yes' or 'no' question obtained voluntary on-line consent to express their willingness to attend the study via Google forms.
RESULTS

Socio-demographic characteristics of the respondents

A total sample of 372 respondents has participated. From 372, 208 (55.9%) respondents in this study were male. The respondents’ mean age was 30.6±5.07 years. 102 (27.4%), 116 (31.2%) and 154 (41.4%) have high, medium, and low educational status respectively. A higher proportion of respondents were single (53%), employed (51.3%), and urban residents (69.1%) (Table 1).

Description of the level of risk perception of COVID-19

Among 4 items of risk perception, 73.1% of respondents believe that the problem of COVID-19 is serious, 54.6% of respondents strongly agreed that they would be affected by COVID-19. The mean risk perception of COVID-19 score of all participants is 17.94 and the standard deviation is 2.14. These results show that 47.8% respondents have a high-risk perception of COVID-19. This classification was based on cumulative median score. Participants who scored less than the median points were classified as they have a low level risk perception, and those who scored a median point and above were considered as high level risk perception (Table 2).

Social media utilization for COVID-19 related information

The mean of the utility of social media for COVID-19 information is 24.4 and the standard deviation is 6.78. Facebook was used to get COVID-19 related information for the majority of respondents during the pandemic. The overall level of utilization was classified as poor utilization and good utilization based on the median cumulative score. Those who scored less than the median points were classified as poor utilization, and those who scored a median point and above were classified as good utilization. Therefore, in this study 48.7% of participants have good social media utilization (Table 3).

COVID-19 preventive practices

The mean of COVID-19 preventive practice is 17.4 and the standard deviation is 2.6. Over the last few days, respondents were predominantly engaged in the frequent use of face masks to reduce the risk of covid-19 infection (64.8%). Overall level of preventive practice was categorized in to poor and good level of practice. Those who scored less than the median points were measured as they have a poor practice of COVID-19 prevention measure, and
those who scored a median point and above were considered as they have a good practice. In this study, 52.7% of participants had good covid-19 preventive practice (Table 4).

Predictors of COVID-19 preventive practices

Study participants who had good utilization of social media to get covid-19 related information were 9.5 times engaged in COVID-19 preventive practices compared to study participants who had poor utilization of social media to get COVID-19 related information (AOR= 9.59, 95% CI = 5.70- 16.13). Also, study participants who had a high-risk perception of COVID-19 were 2.6 times engaged in COVID-19 practices compared to study participants who had a low-risk perception of COVID-19 (AOR = 2.63, 95% CI = 1.58 - 4.38). Study participants who were students at the time of this study were four times more likely to show adequate COVID-19 preventive practice scores compared to those who had another occupational status (AOR= 4.07, 95% CI= 1.66 - 9.98) (Table 5).

DISCUSSION

In this study, we aimed to assess the impact of using social media for COVID-19 related information on the preventive practice of COVID-19 during the pandemic in Ethiopia. The potential benefits of using social media platforms in public health protection against pandemic diseases include dissemination of public health interventions, enhanced public awareness, promotion of healthy behaviour, improved health outcomes, and provision of health information to the community. The analysis provides empirical evidence regarding the impact of using social media platforms for covid-19 related information against covid-19. Numerous research studies have explored the relationship between the use of social media platforms and public health.

In recent years, social media have become an increasingly important information source for risk and crisis communication, particularly during infectious disease outbreaks. In this study, the mean of the utility of social media for covid-19 information is 24.4. This high mean total exposure score implies that study participants have high exposure to social media during the COVID-19 pandemic. This study showed that 48.7% of participants have good social media utilization. This finding replicates evidence from previous research, indicating high use of online media (particularly social media) by the younger generation and specifically university students.
It is worth noting that, in this analysis, getting information about COVID-19 on social media significantly influences its preventive practices. The present study found a significant association between COVID-19 preventive practices and the perceived high-risk of covid-19 among respondents after adjusting for other cofounders. Study participants who were students at the time of this study were four times more likely to show adequate COVID-19 preventive practices scores compared to those who had another occupational status. Consistent findings were reported from other previous similar studies \(^{12,19,26}\).

Our result showed a higher mean of covid-19 preventive practice (17.4). This study depicted that 52.7% of participants had good covid-19 preventive practice, which was lower than the study conducted in Iran, 71%, \(^{11}\), but much higher than the study conducted in Thailand, 17%, \(^{12}\). The socio-demographic characteristics of the study participants, study differences in methodology, study time, and area of the study could explain the differences.

In this study, 47.8% of participants have higher risk perception. There are some studies on the risk perception of COVID-19 in other countries. Nearly half of the participants in a study of India felt panic by reports of COVID-19 \(^{13}\). A study in Iran showed that study participants had a medium risk perception of covid-19 \(^{27}\). In a study in Italy, most participants felt uncertainty, fear, and sadness \(^{14}\). The participants of our survey are social media users throughout the country, which to a large extent reflects the risk perception of covid-19. Although the results show that most study participants have a higher risk perception of covid-19, 6.7% disagreed with the statement that “I would likely be affected by covid-19.” Underestimation of this risk characteristic may lead to risky behaviours and neglect of early symptoms of COVID-19. Most study participants strongly agreed with the statement “problem of covid-19 is serious to me,” which to some extent reflects the public’s attention to COVID-19.

LIMITATION OF THE STUDY

The major limitation of this study was the data collected by an online distribution of the survey through Social Media and the only individual with access to Social Media and the internet can participate in the study and this study cannot represent the overall population of the country. Beside, since the study was cross sectional, the finding may not indicate cause and effect relationship. Since the dynamics of the pandemic has led to many changes in the society behaviour and practices, the finding may be updated by future studies.
CONCLUSION

Overall, this study validated the use of social media for covid-19 related information during a covid-19 pandemic. Therefore, we conclude that higher exposure to covid-19 related information on social media increased preventive practices of a covid-19 pandemic. Risk perception of covid-19 enhanced dominant covid-19 preventive practices. Therefore, risk communication, social media communication, and community engagement efforts to combat covid-19 should emphasize addressing key preventive methods. Social media campaigns should be used to inform the public about pandemics so that behaviour changes can result. In terms of practical implications, our findings suggest that public health communicators and policymakers should pay more attention to the roles of social media during pandemic diseases.

Abbreviations
COVID-19- Coronavirus Disease 2019; SARS- Severe Acute Respiratory Syndrome; WHO- World Health Organization; SD: standard deviation

Data Availability:
All relevant data are within the paper.

Conflicts of Interest:
The authors declare that they have no conflicts of interest.

Funding:
Not funded by any organization.

Author Contributions
All authors made substantial contributions to the conception and design, acquisition of data, analysis, and interpretation of data, took part in revising the article, gave final approval of the version to be published, and agreed to be accountable for all parts of the work.

Acknowledgments
We express our heartfelt thanks to Wachemo University and respondents.
REFERENCES

1. Giustini, D., Ali, S. M., Fraser, M. & Kamel Boulos, M. N. Effective uses of social media in public health and medicine: a systematic review of systematic reviews. *Online journal of public health informatics* 10, e215, doi:10.5210/ojphi.v10i2.8270 (2018).

2. Velasco, E., Agheneza, T., Denecke, K., Kirchner, G. & Eckmanns, T. Social media and internet-based data in global systems for public health surveillance: a systematic review. *The Milbank quarterly* 92, 7-33, doi:10.1111/1468-0009.12038 (2014).

3. World health Organization(WHO). *Overview of the COVID-19 pandemic*, <https://www.who.int/docs/default-source/coronaviruse/risk-comms-updates/epi-win-update40-overview-of-the-pandemic.pdf?sfvrsn=8d355bcd_4> (2021).

4. Chan, J. et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. *The Lancet* 395, doi:10.1016/S0140-6736(20)30154-9 (2020).

5. Federal minister of Health (FMOH) & Ethiopian Public Health Institute (EPHI). Notification Notes on COVID-19 Situational Update. Website. Addis Ababa: MoH & EPHI., <https://www.ephi.gov.et/index.php/public-health-emergency/novel-corona-virus-update> (2020).

6. Mohammed, H. et al. Containment of COVID-19 in Ethiopia and implications for tuberculosis care and research. *Infectious Diseases of Poverty* 9, 131, doi:10.1186/s40249-020-00753-9 (2020).

7. (IMF), I. m. F. *Policy response to COVID - 19*, <https://www.imf.org/en/Topics/imf-and-covid19/Policy-Responses-to-COVID-19> (2020).

8. Wilder-Smith, A. & Freedman, D. O. Isolation, quarantine, social distancing and community containment: pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak. *Journal of travel medicine* 27, doi:10.1093/jtm/taaa020 (2020).

9. Allgaier, J. & Svalastog, A. L. The communication aspects of the Ebola virus disease outbreak in Western Africa--do we need to counter one, two, or many epidemics? *Croat Med J* 56, 496-499, doi:10.3325/cmj.2015.56.496 (2015).

10. Korda, H. & Itani, Z. Harnessing social media for health promotion and behavior change. *Health promotion practice* 14, 15-23, doi:10.1177/1524839911405850 (2013).
11 Erfani, A., Shahriarirad, R., Ranjbar, K., Mirahmadi-Zadeh, A. & Moghadami, M. Knowledge, Attitude and Practice toward the Novel Coronavirus (COVID-19) Outbreak: A Population-Based Survey in Iran. (2020).

12 Srichan, P. et al. Knowledge, attitudes and preparedness to respond to COVID-19 among the border population of northern Thailand in the early period of the pandemic: a cross-sectional study. WHO South-East Asia Journal of Public Health 9, 118-125, doi:10.4103/2224-3151.294305 (2020).

13 Roy, D. et al. Study of knowledge, attitude, anxiety & perceived mental healthcare need in Indian population during COVID-19 pandemic. Asian J Psychiatr 51, 102083-102083, doi:10.1016/j.ajp.2020.102083 (2020).

14 Motta Zanin, G., Gentile, E., Parisi, A. & Spasiano, D. A Preliminary Evaluation of the Public Risk Perception Related to the COVID-19 Health Emergency in Italy. International journal of environmental research and public health 17, 3024, doi:10.3390/ijerph17093024 (2020).

15 Benetoli, A., Chen, T. F. & Aslani, P. How patients' use of social media impacts their interactions with healthcare professionals. Patient education and counseling 101, 439-444, doi:10.1016/j.pec.2017.08.015 (2018).

16 Al-Surimi, K., Khalifa, M., Bahkali, S., El-Metwally, A. & Househ, M. The Potential of Social Media and Internet-Based Data in Preventing and Fighting Infectious Diseases: From Internet to Twitter. Advances in experimental medicine and biology 972, 131-139, doi:10.1007/5584_2016_132 (2017).

17 Zadeh, A. H., Zolbanin, H. M., Sharda, R. & Delen, D. Social Media for Nowcasting Flu Activity: Spatio-Temporal Big Data Analysis. Information Systems Frontiers 21, 743–760, doi:10.1007/s10796-018-9893-0 (2019).

18 Pagoto, S., Waring, M. E. & Xu, R. A Call for a Public Health Agenda for Social Media Research. J Med Internet Res 21, e16661, doi:10.2196/16661 (2019).

19 Ahmad, A. R. & Murad, H. R. The Impact of Social Media on Panic During the COVID-19 Pandemic in Iraqi Kurdistan: Online Questionnaire Study. J Med Internet Res 22, e19556-e19556, doi:10.2196/19556 (2020).

20 Kouri, P., Rissanen, M. L., Weber, P. & Park, H. A. Competences in Social Media Use in the Area of Health and Healthcare. Studies in health technology and informatics 232, 183-193 (2017).

21 Villar, M. E. & Marsh, E. Social Media and Infectious Disease Perceptions in a Multicultural Society. 659-676, doi:10.4018/978-1-5225-9869-5.ch038 (2020).
22 Smailhodzic, E., Hooijmsa, W., Boonstra, A. & Langley, D. J. Social media use in healthcare: A systematic review of effects on patients and on their relationship with healthcare professionals. *BMC health services research* 16, 442, doi:10.1186/s12913-016-1691-0 (2016).

23 Ahmad, A. R. & Murad, H. R. The Impact of Social Media on Panic During the COVID-19 Pandemic in Iraqi Kurdistan: Online Questionnaire Study. 22, e19556, doi:10.2196/19556 (2020).

24 Kitazawa, M. *et al.* Survey of the effects of internet usage on the happiness of Japanese university students. 17, 151, doi:10.1186/s12955-019-1227-5 (2019).

25 Apuke, O. D. & Iyendo, T. O. University students' usage of the internet resources for research and learning: forms of access and perceptions of utility. *Heliyon* 4, e01052, doi:10.1016/j.heliyon.2018.e01052 (2018).

26 Al-Dmour, H., Masa'deh, R. e., Salman, A., Abuhashesh, M. & Al-Dmour, R. Influence of Social Media Platforms on Public Health Protection Against the COVID-19 Pandemic via the Mediating Effects of Public Health Awareness and Behavioral Changes: Integrated Model. *J Med Internet Res* 22, e19996-e19996, doi:10.2196/19996 (2020).

27 Taghrir, M. H., Borazjani, R. & R., S. COVID-19 and Iranian Medical Students; A Survey on Their Related-Knowledge, Preventive Behaviors and Risk Perception. *Archives of Iranian medicine* 23, 249-254, doi:10.34172/aim.2020.06 (2020).
Table 1. Socio-demographic characteristics of the study participants, Ethiopia, June 2020 (n=372)

Variable	Frequency (n)	Percent(%)
Age (years)		
18-29	126	33.9
30-49	160	43.0
>50 years	86	23.1
Sex		
Male	164	44.1
Female	208	55.9
Educational status		
High	102	27.4
Intermediate	116	31.2
Low	154	41.4
Marital status		
Divorced/widowed	12	3.2
Married	163	43.8
Single	197	53.0
Occupational status		
Employed	191	51.3
Merchants	19	5.1
Students	93	25.0
Unemployed	34	9.1
Others	35	9.4
Religion		
Catholic	37	9.9
Muslim	77	20.7
Orthodox	139	37.4
Protestant	91	24.5
Others	28	7.5
Residency		
Rural	115	30.9
Urban	257	69.1
Table 2. Risk perception of COVID-19 scores during the pandemic in Ethiopia, June 2020 (n=372).

Level of risk perception	Mean(SD)	Strongly disagree (%)	Disagree (%)	Neutral (%)	Agree (%)	Strongly agree (%)
The problem of COVID-19 is serious to me	4.7(0.5)	0.3	0	1.3	25.3	73.1
I am worried that I would be affected by COVID-19	4.4 (0.75)	0.3	2.2	8.1	34.9	54.6
It is likely that I would be affected by covid-19	4.2(0.98)	1.3	6.7	12.6	29.8	49.5
I have felt that COVID-19 is dangerous.	4.6 (0.66)	0.8	1.3	1.3	27.7	68.8
Table 3. Social media utilization for COVID-19 related information during the pandemic in Ethiopia, June 2020 (n=372)

Social media	Mean (SD)	Not at all applicable	very small extent	Small extent	Moderate extent	Fairly great extent	Great extent	Very great extent
Instagram	5.2 (1.5)	2.4	2.7	5.9	21	19.4	22.8	25.8
Facebook	5.6 (1.4)	1.1	3	3.2	15.6	15.9	25.3	36
Twitter	3.7 (2.3)	28	13.4	10.8	6.5	9.4	13.4	18.5
You tube	4.4 (1.9)	6.7	11.8	18	15.6	10.5	13.4	23.9
Telegram	5.4 (1.6)	3.8	4.8	5.1	12.1	14	25	35.2
Table 4. COVID-19 preventive practices during the pandemic in Ethiopia, June 2020 (n=372)

Covid-19 Preventive practice	Mean (SD)	Strongly disagree (%)	Disagree (%)	Neutral (%)	Agree (%)	Strongly agree (%)
I have worn a mask to reduce the risk of covid-19 infection;	4.6 (0.6)	0.3	1.6	1.6	31.7	64.8
I have tried not to go to public spaces, such as restaurants or department stores;	4.26 (0.8)	0.5	6.5	7.0	39.0	47.0
I avoid touching eye, nose, mouth before washing hands;	3.7(1.3)	5.9	19.6	9.1	23.9	41.4
I have tried to wash my hands or used hand sanitizer more often to prevent the risk of covid-19 infection.”	4.7(0.6)	1.3	0.5	0	16.1	82.0
Table 5. Predictors of COVID-19 preventive practices during the pandemic in Ethiopia, June 2020 (n = 372)

Variables	Categories	COR (95% CI)	AOR (95% CI)
Age	18-29 years	1	1
	30-40 years	1.31 (0.82, 2.09)	1.00 (0.52, 1.91)
	50 and above years	1.45 (0.83, 2.52)	0.97 (0.48, 1.96)
Sex	Female	1	1
	Male	1.278 (0.84, 1.92)	1.36 (0.82, 2.28)
Residency	Rural	1	1
	Urban	1.19 (0.77, 1.86)	1.34 (0.77, 2.34)
Educational status	High	1	1
	Intermediate	1.10 (0.65, 1.88)	0.76 (0.37, 1.55)
	Low	1.20 (0.72, 1.98)	0.74 (0.38, 1.44)
Marital status	Divorce/widowed	1	1
	Married	0.13 (0.75, 8.95)	2.59 (0.61, 10.90)
	Single	0.25 (0.60, 7.07)	1.48 (0.34, 6.33)
Occupation	Employed	1	1
	Merchants	2.13 (0.80, 5.66)	2.84 (0.86, 9.34)
	Others	2.11 (1.00, 4.43)*	4.07 (1.66, 9.98)**
	Students	1.72 (1.04, 2.85)*	1.47 (0.79, 2.72)
	Unemployed	2.60 (1.20, 5.64)**	3.56 (1.28, 9.89)*
Risk perception of COVID-19 Pandemic	Low-risk perception	1	1
	High risk perception	3.06 (2.00, 4.68)**	2.63 (1.58, 4.38)*
Utilization of social media for covid-19 related information	Poor utilization	1	1
	Good utilization	9.27 (5.75, 14.84)**	9.59 (5.70, 16.13)**

Note: **P<0.01, *P=0.01-0.05