Supplementary Information

Nitrogen doping to atomically match reaction sites in microbial fuel cells

Xiaoshuai Wu¹, Yan Qiao²,³, Chunxian Guo¹, Zhuanzhuan Shi¹, Chang Ming Li¹,²,³,⁴*

¹ Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215011, China

² Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China

³ Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing 400715, P.R. China

⁴ Institute for Advanced Cross-field Science and College of Life Science, Qingdao University, Qingdao 266071, P.R. China

*Corresponding author. Tel/Fax: +86-023-68254842; E-mail: ecmli@swu.edu.cn
Supplementary Figure 1. FESEM micrographs of PANI nanowires without any treatment (a), N-CNWs/CC-700 (b), N-CNWs/CC-800 (c) and N-CNWs/CC-1000 (d). (e) Raman spectra of different N-CNWs/CC.

Supplementary Figure 2. XPS survey spectra of PANI and different N-CNWs.
Supplementary Figure 3. XPS N1s spectrum of PANI nanowire and N-CNWs (a: PANI nanowire, b: N-CNWs/CC-600, c: N-CNWs/CC-700, d: N-CNWs/CC-800, e: N-CNWs/CC-900, f: N-CNWs/CC-1000).
Supplementary Figure 4. (a) CVs of N-CNWs electrodes in 50 mM potassium ferricyanide solution. (b) CVs of N-CNWs/CC-900 in 2 μM FMN solution change with time. CVs (c) and DPV (d: the insert is peak current density histogram of different N-CNWs) of FMN spontaneously adsorbing onto N-CNWs electrodes from a 2 μM FMN solution in 0.1M phosphate buffer (PBS) at PH=7.4 over 50h. Error bars represent one standard deviation.
Supplementary Figure 5. The peak current and the ratio of Quaternary N over oxidized N of differently N-CNWs/CC electrodes. Error bars represent one standard deviation.

Supplementary Figure 6. Total XPS spectra (the insert is P2p spectra) of N-CNWs/CC-900 before and after absorbed FMN.
Supplementary Figure 7. Peak current density against time of carbon cloth, N-CNWs/CC-600 and N-CNWs/CC-700 in 2 μM FMN solution with 0.1M phosphate buffer (PBS) at PH=7.4. Error bars represent one standard deviation.

Supplementary Figure 8. FESEM micrographs of *S. putrefaciens* cells adhered on the surface of FMN-immobilized electrode.
Supplementary Figure 9. CV curves at different scan rate of FMN-immobilized electrode measured in an anaerobic of *S. putrefaciens* CN32 suspension with 18 mmol L\(^{-1}\) lactate medium.

Supplementary Figure 10. Peak current density and CV curves at different scan rate of the plain carbon electrode measured in an anaerobic of *S. putrefaciens* CN32 suspension with 18 mmol L\(^{-1}\) lactate medium.
Supplementary Figure 11. Optimized structures of FMN adsorbed on carbon surface, N-CNWs/CC-900, N-CNWs/CC-800 and N-CNWs/CC-700.

Supplementary Figure 12. (a): The molecular structure and the two-electron redox reaction equations of RF. CVs (b), peak current histogram image (c) and Nyquist plots (d) of RF spontaneously adsorbing onto N-CNWs/CC electrodes from a 2 μM RF solution in 0.1M phosphate buffer (PBS) at pH=7.4 over 50h. Error bars represent one standard deviation.
N-CNWs/CC-700	N-CNWs/CC-800	N-CNWs/CC-900	N-CNWs/CC-1000	
BET surface area (m²/g)	143.9	148.1	167.3	170.6
Pore Size (nm)	3.071	3.661	2.863	2.762
Water contact angle (°)	101.8	102.5	103.6	106.9
Electron conductivity (Ω)	13.83	8.376	6.995	13.07
Electroactive surface area (cm²/g)	371.9	426.1	601.3	557.58

Supplementary Table 1 Summary of BET surface area, pore size, water contact angle, and electron conductivity of the nanowires after carbonized at different temperatures.

Sample	Conten t of nitrogen atoms	Pyridine N 398.5±0.3e V	Pyridine or Pyrrole N 400.5±0.3e V	Quaternary N 401.2±0.3e V	Oxidized N 402.9±0.3e V	Ratio of Quaternary N and Oxidized N	O1s peak connect with nitrogen 533.3±0.3e V
N-CNWs-600	10.94%	4.25%	5.02%	0.37%	1.3%	0.28	1.8%
N-CNWs-700	10.345%	4.03%	4.85%	0.445%	1.02%	0.437	1.5%
N-CNWs-800	8.19%	2.94%	3.36%	1.01%	0.88%	1.15	2.09%
N-CNWs-900	7.8%	2.55%	2.52%	1.9%	0.53%	3.55	2.1%
N-CNWs-1000	0.624%	0.18%	0.17%	0.2%	0.074%	2.74	1.5%

Supplementary Table 2 Distribution of N species obtained from the deconvolution of the N1s peak of N-CNWs.
Supplementary Table 3 Summary of reported bioelectrode materials for MFCs applications with *S. putrefaciens* or *S. oneidensis* as biocatalyst.

Electrode	Inoculum	Substrate	Device type	Performance	Ref.
FMN-immobilized atomic matched nitrogen doped anode	*S. putrefaciens CN32*	Lactate medium	Dual-chamber MFC	2102.88 mW m$^{-2}$	This work
graphene-containing foam	*S. putrefaciens*	Lactate medium	Dual-chamber MFC	786 mW m$^{-2}$	1
Carbon nanotubes and polyaniline (PANI) on microporous graphite felt	*S. putrefaciens*	Acetate medium	Dual-chamber MFC	308 mW m$^{-2}$	2
PANI networks onto graphene nanoribbons coated carbon paper	*S. oneidensis*	Lactate medium	Dual-chamber MFC	856 mW m$^{-2}$	3
PANI networks onto graphene nanoribbons coated carbon paper	*S. oneidensis*	Lactate medium	Dual-chamber MFC	856 mW m$^{-2}$	3
Graphene aerogel	*S. putrefaciens CN32*	Lysogeny broth (LB)	Dual-chamber MFC	679.7 mW m$^{-2}$	4
Graphene aerogel	*S. putrefaciens CN32*	Lysogeny broth (LB)	Dual-chamber MFC	679.7 mW m$^{-2}$	4
TiO$_2$ nanocrystal/rGO	*S. putrefaciens CN32*	LB medium	Dual-chamber MFC	540 mW m$^{-2}$	6
Graphene/amineous TiO$_2$	*S. oneidensis*	Lactate medium	Dual-chamber MFC	1060 mW m$^{-2}$	7
N-doping graphene aerogel (N-GA)	*S. oneidensis MR-1*	Trypticase soy broth	Dual-chamber MFC	1990.8±106.1 mW m$^{-2}$	8
Macroporous graphitic carbon foam polydopamine (PDA)	*S. putrefaciens*	Lactate medium	Dual-chamber MFC	1735 mW m$^{-2}$	9
Mo2C-functionalized carbon felt	*S. putrefaciens CN32*	Lactate medium	Dual-chamber MFC	1025 mW m$^{-2}$	10
Polyaniline hybridized large mesoporous carbon (PANI-LMC)	*S. putrefaciens CN32*	Lactate medium	Dual-chamber MFC	1280 mW m$^{-2}$	11

Supplementary Table 4 Adsorption energy of FMN adsorbed on different electrode interface.

Structure	Carbon surface	N-CNWs-900	N-CNWs-800	N-CNWs-700
E_{haxel} (eV)	-553.713	-537.158	-541.884	-531.586
E_{FMN} (eV)	-332.711	-332.711	-332.711	-332.711
E_{total} (eV)	-886.431	-870.129	-874.683	-864.356
E_{ads} (eV)	-0.007	-0.260	-0.088	-0.059
Supplementary References

1. Yang L, et al. Facile Fabrication of Graphene-Containing Foam as a High-Performance Anode for Microbial Fuel Cells. *Chem Eur J* 21, 10634-10638 (2015).

2. Cui H-F, Du L, Guo P-B, Zhu B, Luong JHT. Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode. *J Power Sources* 283, 46-53 (2015).

3. Zhao C, et al. Polyaniline networks grown on graphene nanoribbons-coated carbon paper with a synergistic effect for high-performance microbial fuel cells. *J Mater Chem A* 1, 12587-12594 (2013).

4. Qiao Y, Wen G-Y, Wu X-S, Zou L. L-Cysteine tailored porous graphene aerogel for enhanced power generation in microbial fuel cells. *RSC Adv* 5, 58921-58927 (2015).

5. Yong Y-C, Dong X-C, Chan-Park MB, Song H, Chen P. Macroporous and Monolithic Anode Based on Polyaniline Hybridized Three-Dimensional Graphene for High-Performance Microbial Fuel Cells. *ACS Nano* 6, 2394-2400 (2012).

6. Zou L, Qiao Y, Wu X-S, Ma C-X, Li X, Li CM. Synergistic effect of titanium dioxide nanocrystal/reduced graphene oxide hybrid on enhancement of microbial electrocatalysis. *J Power Sources* 276, 208-214 (2015).

7. Zhao C-e, Wang W-J, Sun D, Wang X, Zhang J-R, Zhu J-J. Nanostructured Graphene/TiO2 Hybrids as High-Performance Anodes for Microbial Fuel Cells. *Chem Eur J* 20, 7091-7097 (2014).

8. Yang Y, et al. Boosting Power Density of Microbial Fuel Cells with 3D Nitrogen-Doped Graphene Aerogel Electrode. *Adv Sci* 3, 1600097 (2016).
9. Jiang H, Yang L, Deng W, Tan Y, Xie Q. Macroporous graphitic carbon foam decorated with polydopamine as a high-performance anode for microbial fuel cell. *J Power Sources* **363**, 27-33 (2017).

10. Zou L, Lu Z, Huang Y, Long Z-e, Qiao Y. Nanoporous Mo2C functionalized 3D carbon architecture anode for boosting flavins mediated interfacial bioelectrocatalysis in microbial fuel cells. *J Power Sources* **359**, 549-555 (2017).

11. Zou L, Qiao Y, Zhong C, Li CM. Enabling fast electron transfer through both bacterial outer-membrane redox centers and endogenous electron mediators by polyaniline hybridized large-mesoporous carbon anode for high-performance microbial fuel cells. *Electrochim Acta* **229**, 31-38 (2017).