Users’ Behavioral Intention and Adoption of Mobile Shopping Applications on the Smartphone Platform

Gheorghe H. Popescu¹*, Mihaela Mușat², and Horea Corpodean²

¹"Dimitrie Cantemir" Christian University, Department of Economics, Splaiul Unirii 176, 040042, Bucharest, Romania
²The Bucharest University of Economic Studies, Department of Economics, Piața Romană 6, 010374, Bucharest, Romania

Abstract.

Research background: We draw on a substantial body of theoretical and empirical research on users’ behavioral intention and adoption of mobile shopping applications on the smartphone platform globally.

Purpose of the article: We inspected, used, and replicated survey data from eMarketer, Adobe, Bizrate Insights, Econsultancy, eMarketer, and Retail Dive, performing analyses and making estimates regarding smartphone retail m-commerce sales in the U.S. ($), top reasons EU consumers use smartphones in stores, and activities EU smartphone/tablet owners have done using apps on their smartphone/tablet in the past month.

Methods: Structural equation modeling was used to analyze the data and test the proposed conceptual model.

Findings & Value added: Mobile payment is a user-oriented manner of finalizing transactions as a result of the growing fashionableness of smartphones and the advancement of associated technologies. Superior ubiquity of mobile devices and swift mobile internet access result in higher quality offers and higher degrees of adoption of smartphones in commercial operations. Mobile retailers can raise the pool of prospective mobile purchasers by selecting individuals who are more knowledgeable in online buying and smartphone adoption. Consumers at a preliminary mobile shopping readiness stage allocate more relevance to omnipresence when compared with the habit in determining purchase intentions. As mobile consumers download and employ more applications, they confront the diminishing expenditures of acquiring further software.

Keywords: mobile; shopping; application; smartphone; behavior

JEL Classification: E24; J21; J54; J64

* Corresponding author: popescu_ucdc@yahoo.com
1 Introduction

Mobile payment is a user-oriented manner of finalizing transactions as a result of the growing fashionableness of smartphones and the advancement of associated technologies. Consumers’ practical knowledge of employing computers in financial operations [1] considerably influences their purposes to adopt mobile payment, leading to the partial mediating consequences of perceived practicality, perceived effortlessness in utilization, congruity, risk, and privacy issue, in the link between Internet practice and the use of mobile payment [2]. Smartphone self-reliance, mobile-specific creativity, mobile consumers’ data privacy issues, and personal affinity for mobile devices are the psychological factors having the most relevant impact on mobile consumer behavior [3].

2 Conceptual Framework and Literature Review

Consumers at a preliminary mobile shopping readiness stage allocate more relevance to omnipresence when compared with habit in determining purchase intentions, and the reverse is valid for the consumers being at a sophisticated stage. Habit regulates the impact of omnipresence and thus its significance in influencing purpose declines [4] as such behavior takes a more recurrent character. To stimulate users to regularly employ their smartphones to inspect mobile retailers’ websites, the latter should organize various contests and promotions, supply coupons, and direct advertising strategies via mobile channels. Mobile retailers should raise their operations in online shorefronts as mobile channels supply user-friendly access [5], thus boosting mobile shopping occurrences, and should give more attention to making the mobile shopping practice as effortless as possible, also bringing to light its advantages [6].

As mobile consumers download and employ more applications, they confront the diminishing expenditures of acquiring further software: the greater the amount of non-shopping applications consumers download and install, the more significant number of such software they will have. If consumers browse non-shopping applications repeatedly and excessively, they will not have as much time for shopping applications [7] and therefore they may own a smaller amount of such software. Practical knowledge in online buying can cut down learning expenses associated with mobile purchasing [8], which can boost the amount of shopping applications being employed for mobile acquisitions. Previous experience alleviates concerns over associated activities, as proficient consumers have grasped how to deal with such issues. Mobile practical knowledge may relieve mobile consumers of comparable concerns with reference to mobile buying across shopping applications. Online customers who have superior purchase purposes are presumably to spend more time on virtual shopping sites. Consumers who browse mobile shopping applications more intensely tend to get involved in mobile buying and make mobile purchases employing a superior amount of such software [9].

3. Methodology and Empirical Analysis

We draw on a substantial body of theoretical and empirical research on users’ behavioral intention and adoption of mobile shopping applications on the smartphone platform globally. We inspected, used, and replicated survey data from eMarketer, Adobe, Bizrate Insights, Econsultancy, eMarketer, and Retail Dive, performing analyses and making estimates regarding smartphone retail m-commerce sales in the U.S. ($), top reasons EU consumers use smartphones in stores, and activities EU smartphone/tablet owners have done using apps on their smartphone/tablet in the past month. Structural equation modeling was used to analyze the data and test the proposed conceptual model. Survey method: The
interviews were conducted online and data were weighted by five variables (age, race/ethnicity, gender, education, and geographic region) so that each country’s sample composition reliably and accurately reflects the demographic profile of the adult population according to the country’s most recent census data. Sampling errors and test of statistical significance take into account the effect of weighting. Stratified sampling methods were used and weights were trimmed not to exceed 3. Average margins of error, at the 95% confidence level, are +/-2%. For tabulation purposes, percentage points are rounded to the nearest whole number. The precision of the online polls was measured using a Bayesian credibility interval. An Internet-based survey software program was utilized for the delivery and collection of responses.

4. Results and Discussion

Core self-evaluations, online consumer compliance, and social identity favorably impacts the smartphone users’ reactions, positive emotions beneficially shapes user trust [10], and confidence thoroughly influences the users’ purpose to shop for paid apps [11]. Flow operates as a complete facilitator between perceived usefulness and attitude [12], being relevantly associated with attitude and purchase intention. Grasping how flow conveys individuals’ mobile shopping purpose may assist online firms in devising adequate marketing strategies [13].

Table 1 Activities EU smartphone/tablet owners have done using apps on their smartphone/tablet in the past month (%)

	Gender	Age			
	Male	Female	18–34	35–54	55+
Used a mobile retail app to look for more information about a product or a service	60	62	65	63	54
Used a mobile retail app to buy a product or service	54	58	62	56	50
Used a mobile wallet app to pay in-store	30	34	44	35	17
Used a grocery app	28	32	39	34	17
Used a shared economy service app	24	28	36	26	16
Used a meal kit subscription service app	10	14	18	14	4
None of the above	24	20	17	20	29

Sources: eMarketer; Bizrate Insights; our survey among 4,400 individuals conducted May 2020.

Presence is an indispensable constituent in grasping consumers’ behavior [14] in online settings. Telepresence favorably impacts individuals’ self-determination and stickiness [15], whereas social presence beneficially shapes their relatedness and stickiness. The latter facilitates both the link between self-determination and buying purpose, and the one between relatedness and buying purpose [16].

Table 2 Smartphone retail m-commerce sales in the U.S. ($)

	billions	% change
2018	148.08	43.7
2019	204.06	37.4
2020	270.36	31.6
2021	347.11	28.1
2022	435.04	25.2

Sources: eMarketer; our 2020 estimates.
The essential driving forces of employing mobile payment services comprise perceived practicality, promotional offers, social acceptance [17], and convenience. Main obstacles to user adoption of mobile payment services are absence of confidence, insufficient prospects for utilization, intricacy, and habits related to cash payment [18]. (Table 3)

Table 3 Which of the following have you employed as part of your attempts to optimize for mobile (company respondents, %)?

Feature	Percentage
Responsive design	72
Mobile-optimized website	70
Mobile application(s)	62
Mobile-optimized email	50
Adaptive design	32
None of the above	19

Sources: Econsultancy; Adobe; our survey among 4,400 individuals conducted May 2020.

Superior ubiquity of mobile devices and swift mobile internet access [19] result in higher quality offers and higher degrees of adoption of smartphones in commercial operations. Personalization and user engagement [20] are powerful antecedents of the purpose to adopt m-commerce [21]. (Table 4)

Table 4 Top reasons EU consumers use smartphones in stores (%)

Reason	Mobile-first users	Desktop-first users
Compare prices	52	59
Compare products	48	54
Search for in-store coupons and discounts	40	49
Read product reviews	42	44
Review their shopping list	43	37
Take photos	40	40

Sources: Retail Dive; our survey among 4,400 individuals conducted May 2020.

5. Conclusions and Implications

Mobile retailers can raise the pool of prospective mobile purchasers by selecting individuals who are more knowledgeable in online buying and smartphone adoption [22], and have a superior amount of non-shopping applications but spend not as much time on them. Digital practice and the predisposition to employ non-shopping applications are instrumental in the ownership of shopping applications, and mobile buying is chiefly determined by digital proficiency and mobile browsing behavior [23] for purchase applications. Knowledgeable consumers of smartphones may be exposed to a superior amount of applications and their advantages, perceiving decreased risks and outstanding benefits from downloading applications and owning a higher quantity of shopping applications. Individuals accomplished in online buying have diminished learning expenses while mobile shopping as they experience comparable decision phases [24] and can employ data they have preserved online. At the buying stage, users have the intention to purchase through a mobile application when commodity features [25] and site attributes correspond with their requirements [9].
Author contributions
All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

Conflict of interest statement
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Ljungholm, D. P. (2019). Are the Workers in the On-Demand Economy Employees, Independent Contractors, or a Hybrid Category?. Linguistic and Philosophical Investigations, (18), 119-125.
2. Su, P., Wang, L., Yan, J. (2018). How users’ Internet experience affects the adoption of mobile payment: a mediation model. Technology Analysis & Strategic Management, 30(2), 186-197.
3. Wozniak, T., Schaffner, D., Stanojevka-Slabeva, K., Lenz-Kesekamp, V. (2018). Psychological antecedents of mobile consumer behaviour and implications for customer journeys in tourism. Information Technology & Tourism, 18(1-4), 85-112.
4. Lewis, J., Martin, A. (2020). Behavioral dynamics of depression and social anxiety in relation to smartphone addiction. Review of Contemporary Philosophy, 19, 78-84.
5. Milward, R., Popescu, G. H., Fraitova Michalikova, K., Musova, Z., Machova, V. (2019). Sensing, smart, and sustainable technologies in Industry 4.0: Cyber-physical networks, machine data capturing systems, and digitized mass production. Economics, Management, and Financial Markets, 14(3), 37-43.
6. Ashraf, A. R., Thongpapanl, N., Menguc, B., Northey, G. (2017). The role of m-commerce readiness in emerging and developed markets. Journal of International Marketing, 25(2), 25-51.
7. Groener, M. (2019). Geolocation-based phone dating apps, digital intimacies, and social matching systems in the online sexual marketplace. Journal of Research in Gender Studies, 9(2), 85-91.
8. Sion, G. (2019). Social media-based self-expression: Narcissistic performance, public adoration, and the commodification of reified persona. Contemporary Readings in Law and Social Justice, 11(2), 70-75.
9. Kim, M., J. Kim, J. Choi, M. Trivedi (2017). Mobile shopping through applications: Understanding application possession and mobile purchase. Journal of Interactive Marketing, 39, 55-68.
10. Goethals, I. (2019). Real-time and remote health monitoring Internet of Things-based systems: Digital therapeutics, wearable and implantable medical devices, and body sensor networks. American Journal of Medical Research, 6(2), 43-48.
11. Wu, J.-J., Shu-Hua, C., Kang-Ping, L. (2017). Why should I pay? Exploring the determinants influencing smartphone users’ intentions to download paid app. Telematics and Informatics, 34(5), 645-654.
12. Keane, E. (2019). Networked information-driven technologies for cyber-physical system-based smart manufacturing. Journal of Self-Governance and Management Economics, 7(4), 21-27.
13. Chen, Y.-M., Hsu, T.-H., Lu, Y.-J. (2018). Impact of flow on mobile shopping intention. Journal of Retailing and Consumer Services, 41, 281-287.
14. Byerly, K., Vagner, L., Grecu, I., Grecu, G., Lăzăroiu, G. (2019). Real-time big data processing and wearable Internet of Medical Things sensor devices for health monitoring. *American Journal of Medical Research, 6*(2), 67-72.

15. Harrower, K. (2019). Gendered power relations and inequalities in youth sexting culture: Objectification of feminine sexuality, self-discovery and intimacy, and social shaming. *Journal of Research in Gender Studies, 9*(2), 64-70.

16. Gao, W., Liu, Y., Liu, Z., Li, J. (2018) How does presence influence purchase intention in online shopping markets? An explanation based on self-determination theory. *Behaviour & Information Technology, 37*(8), 786-799.

17. Gutberlet, T. (2019). Is sharing nude content a problematic behavior? Self-made sexually explicit pictures, gendered risks of harm, and online victimization. *Journal of Research in Gender Studies, 9*(2), 57-63.

18. Dinh, V. S., Nguyen, H. V., Nguyen, T. N. (2018). Cash or cashless?: Promoting consumers’ adoption of mobile payments in an emerging economy. *Strategic Direction, 34*(1), 1-4.

19. Olsen, M. (2019). Using data analytics in the management of employees: Digital means of tracking, monitoring, and surveilling worker activities. *Psychosociological Issues in Human Resource Management, 7*(2), 43-48.

20. Eysenck, G., Kovalova, E., Machova, V., Konecný, V. (2019). Big data analytics processes in industrial Internet of Things Systems: Sensing and computing technologies, machine learning techniques, and autonomous decision-making algorithms. *Journal of Self-Governance and Management Economics, 7*(4), 28-34.

21. Liébana-Cabanillas, F., Marinković, V., Kalinić, Z. (2017). A SEM-neural network approach for predicting antecedents of m-commerce acceptance. *International Journal of Information Management, 37*(2), 14-24.

22. Ionescu, L. (2019). Big data, blockchain, and artificial intelligence in cloud-based accounting information systems. *Analysis and Metaphysics, (18), 44-49.

23. Hecht, B., Valaskova, K., Kral, P., Rowland, Z. (2019). The digital governance of smart city networks: Information technology-driven economy, citizen-centered big data, and sustainable urban development. *Geopolitics, History, and International Relations, 11*(1), 128-133.

24. Gutschow, E. (2019). Big data-driven smart cities: Computationally networked urbanism, Real-time decision-making, and the cognitive Internet of Things. *Geopolitics, History, and International Relations, 11*(2), 48-54.

25. Lăzăroiu, G. (2018). Postmodernism as an epistemological phenomenon. *Educational Philosophy and Theory, 50*(14), 1389-1390.