Introducing ReQuEST: an Open Platform for Reproducible and Quality-Efficient Systems-ML Tournaments

Thierry Moreau1, Anton Lokhmotov2, Grigori Fursin3

1 University of Washington, USA ; 2 dividiti, UK ; 3 cTuning foundation, France

December, 2017

Abstract

Co-designing efficient machine learning based systems across the whole hardware/software stack to trade off speed, accuracy, energy and costs is becoming extremely complex and time consuming. Researchers often struggle to evaluate and compare different published works across rapidly evolving software frameworks, heterogeneous hardware platforms, compilers, libraries, algorithms, data sets, models, and environments.

We present our community effort to develop an open co-design tournament platform with an online public scoreboard. It will gradually incorporate best research practices while providing a common way for multidisciplinary researchers to optimize and compare the quality vs. efficiency Pareto optimality of various workloads on diverse and complete hardware/software systems. We want to leverage the open-source Collective Knowledge framework and the ACM artifact evaluation methodology to validate and share the complete machine learning system implementations in a standardized, portable, and reproducible fashion. We plan to hold regular multi-objective optimization and co-design tournaments for emerging workloads such as deep learning, starting with ASPLOS’18 (ACM conference on Architectural Support for Programming Languages and Operating Systems - the premier forum for multidisciplinary systems research spanning computer architecture and hardware, programming languages and compilers, operating systems and networking) to build a public repository of the most efficient algorithms and systems which can be easily reused and built upon. We will also use the feedback from participants to continue improving our platform and common co-design methodology.

1 Introduction

Machine learning has undergone a rapid pace of progress over the recent years. Rarely in the scientific community have we witnessed such a concerted effort from various communities (machine learning, systems, hardware, security, programming languages etc.) in improving the performance, accuracy, robustness and cost of machine learning based systems.

However, implementing such systems for a given problem (for example, deep learning algorithm for ImageNet classification), one has to navigate a multitude of design decisions: what network architecture to deploy and how to customize it (ResNet vs. MobileNet), what framework to use (MXNet vs. TensorFlow), what libraries and which optimizations to employ (MKL vs. OpenBLAS), which is generally a consequence of the target hardware platform (Intel Xeon + NVIDIA GPU vs. ARM-based mobile SoC). On top of these implementation decisions, platform-specific decisions may affect the performance and overall experience in deploying the system in question: details such as operating system, kernel version, framework and library versions or dependencies, and custom optimizations. As a result a given system implementation (for example, ResNet on TensorFlow on a Intel + NVIDIA hardware system) can have many incarnations, some of which may have drastically different performance results. Furthermore, as more papers are being published, it also becomes challenging to reproduce, reuse, build on top of, and perform fair comparisons of numerous machine learning techniques across rapidly evolving systems.

As multiple communities tackle the same challenges of making machine learning systems faster, cheaper, smaller, more accurate, and more energy efficient across diverse platforms from IoT to data centers, we need a platform to automate and perform apples-to-apples comparisons of different approaches that aim to achieve the same goal. For example, how does an approximate analog accelerator for deep learning compare to algorithmic simplifications on off-the-shelf hardware in terms of accuracy vs. efficiency Pareto optimality?
We therefore propose the Reproducible Quality-Efficient Systems Tournament (ReQuEST) as a community-driven platform for reproducible, comparable, and multi-objective optimization of emerging workloads \[2\]. We plan to host ReQuEST as a bi-annual workshop alternating between systems and machine learning communities. Its first incarnation will take place at ASPLOS in March 2018 and will focus solely on optimizing inference on real systems to test our platform and use the feedback from participants and an industrial board to improve it.

We detail in the next sections how its objectives and execution differentiate ReQuEST from other existing workshop-based competitions.

2 Main goals

Summary: ReQuEST is aimed at providing a scalable tournament framework, a common experimental methodology and an open repository for continuous evaluation and optimization of the quality vs. efficiency Pareto optimality of a wide range of real-world applications, libraries, and models across the whole hardware/software stack on complete platforms as conceptually shown in Figure 1.

Tournament framework goals: we want to promote reproducibility of experimental results and reusability/customization of systems research artifacts by standardizing evaluation methodologies and facilitating the deployment of efficient solutions on heterogeneous platforms. For that reason, packaging artifacts and experimental results requires a bit more involvement than sharing some CSV files or checking out a given GitHub repository.

That is why we build our competition on top of an open-source and portable workflow framework (Collective Knowledge or CK \[8\]) and a standard ACM artifact evaluation methodology \[1\] from premier ACM systems conferences (CGO, PPoPP, PACT, SuperComputing) to provide unified evaluation and a live scoreboard of submissions as demonstrated in Figure 2.

CK is a Python wrapper framework to share artifacts and workflows as customizable and reusable plugins with a common JSON API and meta description, and...
Winning/surviving species (configurations) on various frontiers

Image classification time (sec)
Device cost (euros)

Figure 2: An example of a live Collective Knowledge scoreboard to crowd-benchmark inference in terms of speed and platform cost across diverse deep learning frameworks, models, data sets, and Android devices provided by volunteers. Red dots are associated with the winning workflows (model/software/hardware).

Adaptable to a user platform with Linux, Windows, MacOS and Android. For example, it has already been used and extended in a number of academic and industrial projects to automate and crowdsource benchmarking and multi-objective optimization of deep learning across diverse platforms, environments, and data sets. Figure 2 shows a proof-of-concept example of a live scoreboard powered by CK to collaboratively benchmark inference (speed vs. platform cost) across diverse deep learning frameworks (TensorFlow, Caffe, MXNet, etc.), models (AlexNet, GoogleNet, SqueezeNet, ResNet, etc.), real user data sets, and mobile devices provided by volunteers (see the latest results at cKnowledge.org/repo).

Metrics and Pareto-optimality goals: we want to stress quality-awareness to the architecture/compilers/systems community, and resource-awareness to the applications/algorithmic community and end-users. The submissions and their evaluation metrics will be maintained in a public repository that includes a live scoreboard.

Specific attention will be brought to submissions close to a Pareto frontier in a multi-dimensional space of accuracy, execution time, power/energy consumption, hardware/code/model footprint, monetary costs etc.

Application goals: in the long term, we will cover a comprehensive suite of workloads, datasets and models covering applications domains that are most relevant to machine learning and systems researchers. This suite will continue evolving according to feedback and contributions from the academia and industry. All artifacts from this suite can be automatically plugged in to the ReQuEST competition workflows to simplify and automate experimentation.

Complete platforms goals: we aim to cover a comprehensive set of hardware systems from data-centers down to sensory nodes, incorporating various forms of processors including GPUs, DSPs, FPGAs, neuromorphic and even analogue accelerators in the long term.

3 Future work

Our goal is to bring multi-disciplinary researchers to

1. release research artifacts of their on-going or accomplished research, standardize evaluation workflows, and facilitate deployment and tech transfer of state-of-the-art research,
2. foster exploration of quality-efficiency trade-offs, and
3. create a discussion ground to steer the community towards new applications, frameworks, and hardware platforms.

We want to set a coherent research roadmap for researchers by hosting bi-annual tournaments complemented with panel discussions from both academia and industry. We hope that as participation increases, the coverage of problems (vision, speech and even beyond machine learning) and platforms (novel hardware accelerators, SoCs, and even exotic hardware such as analog, neuromorphic, stochastic, quantum) will increase.

ReQuEST is organized as a bi-annual workshop, alternating between systems-oriented and machine learning-oriented conferences. The first ReQuEST workshop will be co-located with ASPLOS in March 2018 (ACM conference on Architectural Support for Programming Languages and Operating Systems - the premier forum for multidisciplinary systems research spanning computer architecture and hardware, programming languages and compilers, operating systems and networking). The workshop will aim to present artifacts submitted by participants, along with a multi-objective scoreboard, where quality-efficient implementations will be rewarded. The submissions will be validated by an artifact evaluation committee, and participants will have the chance to get an artifact paper published as ACM proceedings.

In addition we wish to nurture a discussion ground for artifact evaluation in multidisciplinary research,
gathering perspectives from machine learning, systems, compilers and architecture experts. We will use this discussion to continuously improve and extend functionality of our tournament platform. For example, we plan to gradually standardize the API and meta description of all artifacts and machine learning workflows with the help of the community, provide architectural simulators and simulator-based evaluations, cover low-level optimizations, expose more metrics, and so on.

Finally, an industrial panel composed of research-representatives from prominent software and hardware companies will discuss how tech-transfer can be facilitated between academia and industry, and will help craft the roadmap for the ReQuEST workshops by suggesting new datasets, workloads, metrics, and hardware platforms.

References

[1] Artifact Evaluation for computer systems conferences. http://cTuning.org/ae 2014–present.

[2] ReQuEST: open tournaments on collaborative, reproducible and pareto-efficient software/hardware co-design of emerging workloads using the collective knowledge technology. http://cKnowledge.org/request 2017–present.

[3] G. Fursin, A. Lokhmotov, and E. Plowman. Collective Knowledge: towards R&D sustainability. In Proceedings of the Conference on Design, Automation and Test in Europe (DATE’16), March 2016.