Identificação por PCR de infecção natural de flebotomíneos por *Leishmania (Leishmania)* *infantum* em uma micro-área do município de Dracena, São Paulo.

Dissertação de mestrado apresentado ao Programa de Pós-Graduação do Instituto de Medicina Tropical de São Paulo da Universidade de São Paulo, para obtenção do Título de Mestre em Ciências.

Área de Concentração: Doenças Tropicais e Saúde Internacional
Orientadora:
Profa. Dra. Vera Lucia Pereira
Chioccola
Co-Orientadora: Gabriela Motoie

SÃO PAULO
2017
Brighente, Kate Bastos dos Santos

Identificação por PCR de infecção natural de flebotomíneos por Leishmaníaa (Leishmania) infantum em uma micro-área do município de Dracena, São Paulo / Kate Bastos dos Santos Brighente. – São Paulo, 2017.

Dissertação (Mestrado) – Instituto de Medicina Tropical de São Paulo da Universidade de São Paulo, para obtenção do título de Mestre em Ciências.
Área de concentração: Doenças Tropicais e Saúde Internacional
Orientadora: Vera Lúcia Pereira Chioccola

Descritores: 1. LEISHMANIOSE VISCERAL. 2. REAÇÃO EM CADEIA POR POLIMERASE. 3. EPIDEMIOLOGIA. 4. ARMADILHAS.

USP/IMTSP/BIB-04/2017.
Dedico essa dissertação aos meus pais, Maria José e Fernando, por todo amor e carinho e por ter feito tudo o que podiam para me dar uma educação de qualidade mesmo com as dificuldades financeiras que a vida lhes apresentou, para que um dia eu pudesse traçar o meu próprio caminho.

Amo vocês!

Ao meu querido marido Leandro, principalmente pela paciência em meus momentos de desespero e ausência, obrigada pelo amor, apoio incondicional e constante incentivo.

Você é meu porto seguro!

Aos meus Irmãos, Gilliard e Kaio, pela amizade e incentivo ao meu sucesso. Obrigada meninos!

À minha querida Tia Belinha que ao ver meu interesse pela leitura quando criança me incentivou a amar esse hobby e partilhou toda sua pequena biblioteca comigo. Obrigada por abrir as portas do mundo para mim!
AGRADECIMENTOS

Em primeiro lugar a minha querida Profª. Dra. Vera Lucia Pereira-Chioccola, por ter acreditado na garota sem experiência que um dia foi ao seu laboratório em busca de uma oportunidade. Agradeço por todo carinho e paciência durante o desenvolvimento deste trabalho, carregarei por toda minha vida seus valiosos conselhos e guardarei com carinho em minhas memórias nossos momentos de conversa e descontração. Vera foi mais que uma orientadora você se tornou minha amiga e mãe profissional, e tudo que eu escrever aqui jamais irá expressar toda a gratidão que tenho por você.

À minha co-orientadora e amiga Dra Gabriela Motoie, pela sua atenção, orientação, ensino, disponibilidade e pela grande paciência com minhas inúmeras perguntas, as quais estava sempre disposta a responder e sanar qualquer dúvida. Agradeço pela amizade e por toda a seriedade que teve no desenvolvimento deste trabalho. Tenho grande admiração pela mulher e profissional que você é.

Ao Prof°. Dr André Antonio Cutolo, pela captura e armazenamento dos flebotomíneos, sem os quais esse trabalho não seria realizado, agradeço também pelo bom humor e momentos de descontração.

À Profª. Marilena Martins que me co-orientou quando ainda era aluna de iniciação científica, agradeço por sempre ter me recebido tão bem no laboratório de Micologia e pela orientação, contribuição profissional, entusiasmo e confiança depositada em mim.

À Profª. Dra. Thaís Alves que ficou encarregada de me mostrar e ensinar como tudo funcionava no laboratório de Biologia Molecular assim que comecei meu estágio como aluna de iniciação científica, agradeço pela paciência e extremo bom humor com os quais fez com que me sentisse segura desde a primeira vez que realizei um protocolo onde minhas mãos tremiam ao segurar um pipetador.

À Profª. Dra. Cristina da Silva Meira, pela amizade e por ter me ensinado e acompanhado nos primeiros testes com ELISA e PBMC ainda quando era aluna de iniciação científica e também por se mostrar sempre disposta a solucionar minhas questões mesmo quando não faziam parte da sua linha de pesquisa. A todos do laboratório de Biologia Molecular, Ricardo Dalla Zanna, Luiz Fernando, Jefferson Rodrigues, Ricardo Gava, Maria Aparecida (Cidoca), Margarete Pereira, Marta Marques, Lilian Muniz, Valéria Oliveira, Inara Bastos, Dayse Hipólito, Maria Aparecida Moraes, Nani Mattos, pelos almoços, encontros e momentos de descontração e por sempre estarem ao meu lado.

Aos amigos que fiz dentro do Instituto Adolfo Lutz, Érika Pinto, Lígia Ferreira, Juliana Reimão, Juliana Tonini, Sônia Ueda, Tatiana Rodrigues, Dona Maria, Cristina Carvalho, Bruna Rodrigues, Renan Jepes, Dayane Santos, Lidiane de Oliveira, pelos momentos de descontração e amizade.

A toda a minha família pelo apoio incondicional e incentivo nesse trabalho.

A todas as pessoas que direta ou indiretamente contribuíram para a realização deste trabalho.
“Não sei o que possa parecer aos olhos do mundo, mas aos meus pareço apenas ter sido como um menino brincando à beira-mar, divertindo-me com o fato de encontrar de vez em quando um seixo mais liso ou uma concha mais bonita que o normal, enquanto o grande oceano da verdade permanece completamente por descobrir à minha frente”

Isaac Newton
RESUMO

Brighente KBS. Avaliação da PCR para identificação de infecção natural de flebotomíneos por Leishmania (Leishmania) infantum em uma micro-área do município de Dracena, São Paulo. [dissertação]. São Paulo: Instituto de Medicina Tropical de São Paulo da Universidade de São Paulo; 2016.

A taxa de infecção mínima (TIM) em flebotomíneos é uma informação útil para estudos epidemiológicos em leishmaniose. Quando estes estudos de campo contem grande número de insetos, a PCR é a indicada para caracterização por Leishmania nos vetores. Este estudo avaliou a PCR na identificação da (TIM) natural por Leishmania spp. em Lutzomyia longipalpis e, ao mesmo tempo, determinou as (TIM) por Leishmania spp em uma micro-região endêmica do Estado de São Paulo. Na primeira parte deste estudo, as avaliações do desempenho das PCR convencional (cPCR) e em tempo real (qPCR) foram realizadas em 66 amostras de conteúdo intestinal de flebotomíneos utilizados no xenodiagnóstico (30 positivas e 36 negativas). O material contido nas lâminas foi transferido para tubos com solução salina estéril e congeladas a -20º C por cerca de 12 meses. Os marcadores moleculares utilizados foram RV1/RV2 para L. (L.) infantum na cPCR; e Linj31 para sub gênero (L.) (Leishmania) na qPCR. Das 30 amostras positivas, 20 (67%) e 21 (70%) foram positivas utilizando os marcadores RV1/RV2 e Linj31, respectivamente. Das 36 amostras negativas no xenodiagnóstico, 2 (5%) foram positivas em todos os marcadores moleculares. Na segunda parte foram analisados insetos capturados durante 2 a 3 noites/mês durante 11 meses (janeiro a novembro de 2012) usando 10 armadilhas automáticas de luz do tipo CDC ao redor de um canil em uma transição entre bairro periurbano e urbano de Dracena. As áreas de captura foram agrupadas
em 3 zonas para determinar a TIM. Um total de 1.690 *Lu. longipalpis* foram capturadas durante o período estudado. Destes, 292 (17,25%) eram fêmeas de flebotomíneos e foram agrupadas em 165 pools (1 a 5 insetos) para extração de DNA e análise por PCR. Resultados positivos para *L. (L.) infantum* na cPCR e qPCR foram vistos em 7,28% (12/165) e 4,85% (8/165) das amostras, respectivamente. Estes dados confirmam que espécimes capturados na área de estudo estavam infectados por *L. (L.) infantum*. A TIM durante os 11 meses de capturas foi de 4,10% (292 fêmeas coletadas). Os ecótopos com TIM mais altos foram canil, galinheiro e casa 2. Flebotomíneos infectados estavam presentes nos locais de captura com abundância de hospedeiros. O maior número de pools positivos (6/93) foi obtido no galinheiro, todavia a maior TIM foi obtido em um domicílio (1/6) 16,67%.

Descritores: Leishmaniose Visceral, Reação em Cadeia por Polimerase, Epidemiologia, Armadilhas.
ABSTRACT

Brighente KBS. PCR evaluation for identification of natural infection in sandflies by *Leishmania (Leishmania) infantum* in a micro area of Dracena city, São Paulo. [dissertation]. São Paulo: Instituto de Medicina Tropical de São Paulo da Universidade de São Paulo; 2016.

The minimum infection rate (MIR) in sandflies is a useful information for epidemiological studies on leishmaniasis. When these field studies consider large numbers of insects, PCR is indicated for identification and characterization of *Leishmania* in the vectors. This study evaluated a PCR in the identification of natural (MIR) by *Leishmania* spp. in *Lutzomyia longipalpis* and, at the same time, determined MIR by *Leishmania* spp in a micro region endemic in São Paulo State. In the first part of this study, the performance evaluation of conventional PCR (cPCR) and real-time PCR (qPCR) were carried out on 66 intestinal contents samples of non-xenodiagnostic sandflies (30 positive and 36 negative). The material contained in the slides was transferred to tubes with sterile saline solution and frozen at -20 °C for about 12 months. The molecular markers used were RV1 / RV2 for *L. (L.) infantum* in cPCR; E Linj31 for sub genus (L.) Leishmania on qPCR. From the 30 positive samples, 20 (67%) and 21 (70%) were positive using the RV1 / RV2 and Linj31 markers, respectively. From the 36 negative xenodiagnostic samples, 2 (5%) were positive in all molecular markers. In the second part, we analyzed insects captured during 2 to 3 nights / month for 11 months (January to November 2012) using 10 CDC automatic light traps around a kennel in a transition between urban and suburb of Dracena. Capture areas were grouped into 3 zones to determine MIR. A total of 1,690 *Lu. longipalpis* were captured during the study period. From these, 292 (17.25%) were
female sand flies and were grouped into 165 pools (1 to 5 insects) for DNA extraction and PCR analysis. Positive results for *L. (L.) infantum* in cPCR and qPCR were seen in 7.28% (12/165) and 4.85% (8/165) of the samples, respectively. These data confirm that the specimens captured in the study area were infected by *L. (L.) infantum*. The MIR during the 11 months of captures was 4.10% (292 females collected). The highest MIR ecotopes were kennel, chicken coop and house 2. Infected sandflies were presented at capture sites with host abundance. The highest number of positive pools (6/93) was obtained in henhouse, however the highest MIR was obtained in a domicile (1/6) 16.67%.

Descriptors: Visceral Leishmaniasis, Polymerase Chain Reaction, Epidemiology, Traps.
LISTA DE FIGURAS

Figura 1. Formas evolutivas de *Leishmania*...........................13

Figura 2. Ciclo biológico da *Leishmania* spp..........................15

Figura 3. *Lutzomyia longipalpis*..17

Figura 4. Expansão e distribuição de *Lu. longipalpis*, em municípios do Estado de São Paulo de acordo com o primeiro registro, na década de 1970 até junho de 2014...18

Figura 5. Pacientes com Leishmaniose visceral.................................19

Figura 6. Reservatórios silvestres de *L. (L.) infantum*........................24

Figura 7. Distribuição geográfica da Leishmaniose visceral no Velho e Novo Mundo.26

Figura 8. Rota da expansão de casos humanos de leishmaniose visceral no estado de São Paulo de acorde com o primeiro caso humano em 1999 até 2013....................28

Figura 9. Mapa da América do Sul e Brasil indicando a Localização do Estado de São Paulo e o município de estudo (Dracena) ..29

Figura 10. Amostras de “Pools” de flebotomíneos sendo preparados para cPCR......35

Figura 11. Localização de área de estudo e distribuição de 10 armadilhas automácticas do tipo CDC ..40

Figura 12. Ecotopos de flebotomíneos...41

Figura 13. Curva padrão de marcador molecular Linj31 em qPCR usando amostras de DNA de *L. (L.) infantum* e uma sonda marcada com FAM ..46

Figura 14. cPCR em gel de agarose a 2% corado com brometo de etídio...........48

Figura 15. Resultados da PCR nas 30 amostras de conteúdo intestinal de flebotomíneos positivos no xenodiagnóstico...49

Figura 16. Resultado de amplificações de Linj31-qPCR e sonda de hidrólise FAM....54
LISTA DE TABELAS

Tabela 1. Seleção de marcadores moleculares utilizados nas amostras de conteúdo intestinal de flebotomíneos..37

Tabela 2. Descrição dos ecótopos, localização e a numeração da armadilha, mostrados na Figura 11..39

Tabela 3. Seleção de marcadores utilizados para a avaliação da infecção natural em fêmeas de flebotomíneos...45

Tabela 4. Infecção natural em “pool” de fêmeas de Lu. longipalpis por L. (L.) infantum utilizando os marcadores moleculares para RV1/RV2 (cPCR) e Linj31 (qPCR) ..51

Tabela 5. Pools de Lu. longipalpis naturalmente infectados por L. (L.) infantum e taxa mínima de infecção (TIM) obtidos por PCR segundo os pontos de coleta e ecótopos como descritos na Figura 11 ..53
Abreviação	Significado
°C	Grau Celsius
CDC	“Centers for Disease Control and Prevention” (Centro para controle e prevenção de doenças)
cPCR	Reação em cadeia da Polimerase convencional
DNA	ácido desoxirribonucleico
EDTA	ácido etilenodiamino tetra-acético
IBGE	Instituto Brasileiro de Geografia e Estatística
IDRM	Intradermorreação de Montenegro
kDNA	DNA do cinetoplasto
LV	Leishmaniose visceral
LIT	“Liver Infusion Triptose” (Meio de infusão de fígado e triptose)
LTA	Leishmaniose Tegumentar Americana
mg	miligramas(s)
MIR	“Minimal infection rate” (taxa mínima de infecção)
mL	mililitro
µm	micrometro
mRNA	RNA mensageiro
nm	Nanômetro
NNN	Neal, Novy, Nicolle
PCR	reação em cadeia da polimerase
pb	pares de base
PBS	“Phosphate buffered saline” (Solução salina tamponada com fosfato)
pH	Potencial Hidrogeniônico
qPCR	Reação em cadeia da Polimerase em tempo real
RPM - rotações por minuto

SP – Estado de São Paulo

SMF – sistema mononuclear fagocitário

Taq - *Thermophilus aquaticus*

TBE - Tris/ Borato/ EDTA

UV – Ultravioleta

WHO – “World Health Organization” (Organização Mundial da Saúde)
SUMÁRIO

1 INTRODUÇÃO..12
 1.1 Aspectos Gerais das Leishmaniose...12
 1.2 Agente Etiológico..13
 1.3 Ciclo Biológico..13
 1.4 Vetores...14
 1.5 Quadro Clínico da LV..17
 1.6 Diagnóstico Parasitológico...19
 1.6.1 Métodos Imunológicos..20
 1.6.2 Métodos Moleculares...21
 1.7 Tratamento..22
 1.8 Reservatórios..24
 1.9 Epidemiologia da LV..25
 1.10 LV em municípios paulistas..27
 1.10.1 Dracena: área de estudo..28
 1.11 JUSTIFICATIVA..30

2 OBJETIVOS..31
 2.1 Objetivo Geral..31
 2.2 Objetivos Específicos...31

3 MATERIAIS E MÉTODOS..32
 3.1 Considerações éticas...32
 3.2 Amostragem de tubo digestivo de Lu. longipalpis..32
 3.3 Extração de DNA do conteúdo intestinal de flebotomíneos............................33
 3.4 cPCR ...34
3.5 qPCR...36
3.6 Ecótopos de insetos...38
3.7 Coleta, identificação e Armazenamento de flebotomíneos.........................42
3.8 Extração e purificação de DNA de flebotomíneos.....................................43
3.9 cPCR e qPCR em DNA extraído de flebotomíneos....................................44
3.10 Análise dos dados...46
4 RESULTADOS...48
4.1 Resultados da padronização dos marcadores moleculares para cPCR e qPCR em amostras de conteúdo intestinal de flebotomíneos...48
4.2 Resultados de PCR em flebotomíneos fêmeas coletadas.............................49
4.3 Taxas de infecção natural das fêmeas capturadas durante 11 meses de coleta ...51
5 DISCUSSÃO...55
6 CONCLUSÃO...58
7 REFERÊNCIAS BIBLIOGRÁFICAS...60
ANEXO A – APROVAÇÃO NA COMISSÃO DE PESQUISA E ÉTICA E COMISSÃO DE ÉTICA NO USO DE ANIMAIS EM PESQUISA DO INSTITUTO DE MEDICINA TROPICAL DA UNIVERSIDADE DE SÃO PAULO...70
ANEXO B – ARTIGO SUBMETIDO ..71
1 INTRODUÇÃO

1.1 Aspectos gerais das leishmanioses

As leishmanioses constituem um complexo de doenças crônicas e infecciosas de distribuição mundial causadas por parasitos unicelulares, flagelados e digenéticos pertencentes ao sub-reino Protozoa, ordem Kinetoplastida, família Trypanosomatidae e gênero *Leishmania*.¹ O gênero *Leishmania* possui espécies morfologicamente similares, porém biologicamente distintas com características genéticas próprias.

Organismos da ordem Kinetoplastida apresentam o cinetoplasto, que é uma estrutura celular constituída de moléculas de DNA circulares conhecidos por kDNA de duas classes: maxicírculos e minicírculos.²

De acordo com a forma que este parasita se divide no intestino do vetor ele pode ser classificado em dois subgêneros: *Leishmania* e *Viannia*.³ Assim, ao entrar em contato com o hospedeiro vertebrado os parasitas afetam o sistema mononuclear fagocitário (SMF) e se apresentam sob duas formas de manifestações clínicas. Uma delas é a leishmaniose tegumentar caracterizada por manifestações cutâneas, mucocutânea ou cutânea difusa, a outra é a leishmaniose visceral (LV) que consiste em alterações sistêmicas que eventualmente também podem levar a alterações cutâneas.⁴,⁵
1.2 Agente etiológico

Protozoários do gênero *Leishmania* são organismos digênicos e unicelulares. Durante o ciclo de vida, este gênero apresenta duas formas principais: amastigota (Figura 1a) forma aflagelar, imóvel que tem um núcleo relativamente grande e redondo ocupando de metade a dois terços do corpo celular e está presente nos vertebrados, e promastigota (Figura 1b) forma flagelada, longa e achatada com cinetoplasto na posição anterior do parasita, próximo ao flagelo, presentes nos invertebrados.6,7,8

![Figura 1-](A) Formas evolutivas de *Leishmania*. (A), forma intracelular amastigota presente no hospedeiro vertebrado e (B), forma promastigota presente no vetor. Fonte: www.who.int/tdr8

1.3 Ciclo Biológico

As leishmanioses possuem um ciclo biológico caracterizado como heteroxênico, no qual se necessita de dois hospedeiros, um vertebrado representado por canídeos silvestres e domésticos, roedores e humanos e um invertebrado, representado pelo inseto vetor.10
O ciclo biológico acontece quando o vetor (hospedeiro invertebrado) que são insetos hematofagos conhecidos como flebotomíneos fazem o repasto sanguíneo no hospedeiro vertebrado inserindo em sua corrente sanguínea os promastigotas, que por sua vez terão tropismo pelo SMF. Estas formas, já dentro dessas células mudarão para amastigotas. Assim amastigotas estão relacionadas aos hospedeiros vertebrados, as quais se dividem por fissão binária até o momento em que a célula se rompe e, novos parasitas são liberados na corrente sanguínea com o objetivo de infectar novas células. No momento em que um vetor não infectado, ao fazer um repasto sanguíneo sugará também células infectadas com amastigotas. Ao chegar ao trato intestinal do inseto mudará de conformação para formas promastigotas. Estas se multiplicarão por fissão binária e irão migrar para o intestino médio torácico do inseto que ao fazer um novo repasto vai dar início ao ciclo novamente.11, 12 A Figura 2 mostra esquematicamente o ciclo biológico de \textit{Leishmania}.

1.4 Vetores

Os vetores do agente da LV nas Américas são insetos Diptera da família Psychodidae e subfamília Phlebotominae, \textit{Lutzomyia longipalpis} e \textit{Lutzomyia cruzi} são as principais espécies vetoras no Brasil. \textit{Lutzomyia forattinii} e \textit{Lutzomyia almerioi} foram também apontadas como espécies transmissoras.13,14,15
Figura 2 - Ciclo biológico de *Leishmania* spp. Fonte: http://www.cdc.gov/parasites/leishmaniasis/biology.html

Estes insetos possuem de 1-4 mm de comprimento, são pilosos, de cor de palha ou castanho claro (Figura 3). Caracterizam-se por ter voo curto, baixo e saltitante. São encontrados em áreas de climas temperados e intertropicais. Não se afastam muito de seus criadouros não indo além de 250 metros.

Para que o ciclo imaturo possa se desenvolver (ovo-larva-pupa), os flebotomíneos necessitam de matéria orgânica, solo úmido e abrigo da luz solar.
Devido ao hábito hematofágico de alimentação das fêmeas e de sua capacidade de dispersão até a fonte de alimento, são capazes de se adaptar a diferentes ambientes naturais ou modificados pela intervenção humana. Os flebotomíneos apresentam hábitos noturnos, com atividade entre as 18:00-06:00 horas. A introdução de animais domésticos no ambiente peridomiciliar (aves, porcos e cães) ofereceram fontes sanguíneas que favorecem o desenvolvimento do vetor, e possibilita a perpetuação do ciclo da transmissão da LV.

Apesar da alta prevalência de infecção observada em cães em diferentes municípios brasileiros, sabe-se que as taxas de infecção natural de flebotomíneos para *Leishmania* é baixa, atingindo valores na faixa de 0,06 a 0,47% em áreas endêmicas da leishmaniose tegumentar americana e valores variando de 0,2 a 7,14% em áreas endêmicas para LV.

Lu. longipalpis possui hábitos alimentares ecléticos, com marcada zoofilia e antropofilia o que favorece seu papel vetor nos ciclos zoonóticos de *L. (L.) infantum*, facilitando seu estabelecimento e colonização do ambiente antrópico, incluindo áreas urbanas. Alguns estudos mostram alta densidade do vetor nos ambientes urbanos durante todo o ano.

Lu longipalpis apresenta ampla distribuição no Brasil. Como mostra a Figura 4, no Estado de São Paulo, o primeiro registro em uma área urbana aconteceu no município de Araçatuba em 1997, próximo à fronteira com o Mato Grosso do Sul. Antes de 1997, *Lu. longipalpis* era encontrado somente em áreas rurais de seis municípios das regiões leste e nordeste do Estado. De 1998 a Junho de 2014, a presença da *Lu. longipalpis* tem sido relatada em mais de 164 municípios, sendo que a maior expansão na distribuição de *Lu. longipalpis* aconteceu na parte ocidental de São Paulo, onde 146 municípios registraram sua presença em áreas urbanas durante o período de 17,5 anos.
1.5 Quadro Clínico da LV

A suspeita por LV acontece quando o paciente apresenta febre e esplenomegalia associado ou não à hepatomegalia (Figura 5). Devido a sua evolução clínica foi proposto dividir-a em períodos como: período inicial, período de estado e período final. No período inicial também chamada de “aguda” caracteriza o início dos sintomas que pode variar em cada paciente, mas na maioria dos casos inclui febre com duração inferior a quatro semanas, palidez cutâneo-mucosa e hepatoesplenomegalia. Geralmente nesta fase o paciente está preservado, na maioria dos casos o baço não ultrapassa a 5 cm do rebordo costal esquerdo. É comum pacientes procurarem o serviço médico após o uso de antimicrobianos sem resposta e com história de tosse e diarreia. No período de estado a febre se torna irregular, quase sempre associada a emagrecimento progressivo, palidez cutâneo-mucosa e aumento da hepatoesplenomegalia. O quadro clínico nesse período se apresenta com mais de dois meses de evolução, e o estado geral está comprometimento. Já no período final caso o paciente não procure o tratamento a doença evolui progressivamente com febre contínua e comprometimento mais
intenso do estado geral, apresentando desnutrição (cabelos quebradiços, cílios alongados e pele seca), edema dos membros inferiores que pode evoluir para anasarca, hemorragias (epistaxe, gengivorragia e petéquias), icterícia e ascite. Nestes casos o óbito geralmente é determinado por infecções bacterianas e/ou sangramento.²⁹

Figura 4 - Expansão e distribuição de Lu. longipalpis, em municípios do Estado de São Paulo, de acordo com o primeiro registro, na década de 1970 até junho de 2014. Nos municípios negativos, as pesquisas entomológicas não registraram a presença de Lu. longipalpis. Fonte: Casanova et al 2015.²⁶

1.6 Diagnóstico parasitológico
O diagnóstico parasitológico da LV apresenta baixa sensibilidade e alta especificidade podendo causar desconforto ao paciente, além de exigir complexos procedimentos médicos e veterinários, pois o mesmo é feito a partir de punções aspirativas de baço, linfonodos, medula óssea, crista ilíaca ou líquido cefalorraquiano.

Figura 5 - Pacientes com LV.
Fonte:http://bvsms.saude.gov.br/bvs/publicacoes/manual_vigilancia_controle_leish_visceiral_2006.pdf

O diagnóstico consiste na verificação de amastigotas intracelulares pela pesquisa microscópica após coloração por Giemsa ou Leishman. A sensibilidade varia entre 65% e 85%.

As amostras biológicas recém coletadas podem também ser inoculadas em meios de cultura para *Leishmania* spp, com o NNN (Neal, Novy, Nicolle) com uma fase líquida de LIT (Liver Infusion Triptose) ou solução de salina estéril.

O isolamento de espécies de *Leishmania* também pode ser realizado *in vivo*, com inoculação na pele ou peritônio de animais susceptíveis. Hamster
dourado (*Mesocriteus auratus*) é altamente susceptível a *(L.) infantum. O curso da infecção é bem similar à doença em humanos e a infecção progrida para o óbito do animal. Portanto é considerado um bom modelo animal para o estudo da LV. \(^{29, 32, 33}\)

1.6.1 Métodos imunológicos

Devido à baixa sensibilidade dos métodos parasitológicos e os longos períodos dispensados aos meios de cultura, vários métodos sorológicos foram desenvolvidos, sendo eles: ELISA, Imunofluorescência Indireta, Teste rápido imunocromatográfico, Aglutinação Direta e Imunobloting. Os testes imunológicos apresentam sensibilidade e especificidade variáveis e ainda nenhum destes diagnósticos se tornou padrão ouro. \(^{34}\)

A intradermorreakção de Montenegro (IDRM) ao contrário do que ocorre na leishmaniose tegumentar irá ter resultado negativo no período de estado da doença não sendo um método utilizado para o diagnóstico da LV, porém após a cura da doença esse teste pode dar positivo por 6 meses até 3 anos após o fim do tratamento. \(^{29, 33}\)
1.6.2 Métodos moleculares

Os métodos moleculares têm sido utilizados amplamente no diagnóstico. O principal deles é a reação em cadeia da polimerase (PCR), técnica que amplifica um fragmento específico do DNA do parasita resultando em milhões de cópias. Este método permite sobretudo, a amplificação de oligonucleotídeos que formam uma sequência conhecida do parasito. Podendo este ser realizado em diferentes amostras, tais como aspirados de medula, aspirados de linfonodos, sangue e urina.35 A vantagem desse método é a substituição dos testes de cultura do parasita, além de requerer quantidades bem menores de amostras para a análise.36,37

A sensibilidade desses métodos depende da escolha da sequência alvo e do objetivo do estudo, porém comparado a outros testes parasitológicos a sensibilidade é muito superior devido à detecção do DNA de formas amastigotas e promastigotas de \textit{Leishmania}, mesmo com amostras biológicas que apresentam baixa parasitemia. A PCR possui capacidade de detecção de 1 fentograma de DNA por parasito.38,39

As espécies de \textit{Leishmania} têm de 20 a 25 cromossomos com elevado grau de polimorfismo. O DNA genômico é composto por 25\% de sequências repetitivas, 13\% por sequências moderadamente repetitivas e 60\% por sequências únicas, o que permite uma variedade muito grande de sequencias alvos para a PCR.40

A PCR em tempo real (qPCR) tem vantagens sobre a PCR convencional (cPCR), como a diminuição dos riscos de contaminação, pois a leitura acontece
sem que o tubo seja aberto, preservando inclusive o laboratório de contaminações. Outra vantagem está na quantificação dos parasitas por miligrama de tecido, o que permite a monitoramento da progressão ou regressão da doença. 41

1.7 Tratamento

Em relação ao tratamento poucos avanços foram obtidos apesar da alta prevalência da doença. Todos os medicamentos utilizados são tóxicos e apresentam eventos adversos. As drogas de escolha no tratamento da LV são os antimoniais pentavalentes como o Glucantime® e o Pentostan®, que são utilizados por períodos prolongados, contam com uma alta cardiotoxicidade e nem sempre são efetivos. Em adição, causam vários efeitos colaterais como mialgia, artralgia, inapetência, náusea, vômito, epigastralgia, pirose, dor no local da aplicação, febre, arritmia cardíaca grave, hepato/nefrotoxicidade e pancreatite. Durante o tratamento deve-se fazer o monitoramento de enzimas hepáticas, funções renais, amilase, e lipase sérica e eletrocardiograma de controle. Estas medicações são contraindicadas em gestantes, pacientes com insuficiência ou transplante renal. 29

É de grande importância a confirmação parasitológica da doença antes que se inicie o tratamento. Porém, quando na falta do diagnóstico sorológico ou parasitológico, ou na demora da sua liberação, o tratamento deve ser iniciado. Quando a doença se encontra em um estado mais grave o tratamento é realizado em âmbito hospitalar, já para os demais casos, a hospitalização do paciente é opcional. O tratamento é específico e engloba medidas adicionais, como hidratação, antitérmicos, antibióticos, hemoterapia e suporte nutricional. Outros
exames laboratoriais e eletrocardiográficos de serão realizados durante o
tratamento para acompanhar a evolução e identificar possível toxicidade
medicamentosa.

O antimonial pentavalente poder ser administrado no nível ambulatorial,
uma vantagem que diminui os riscos relacionados à hospitalização.

No caso de gestantes e pacientes que tenham contraindicações ou que
manifestem toxicidade ou refratariedade relacionada ao uso dos antimoniais
pentavalentes a anfotericina B é a única opção de tratamento.

Recomenda-se o antoniomato de N-metil glucamina como fármaco de
primeira escolha para o tratamento da LV, exceto em algumas situações, nas quais
se recomenda o uso da anfotericina B, prioritariamente em sua formulação
lipossomal.

A lista de indicações para utilização da anfotericina B lipossomal inclui
pacientes com idade menor que 1 ano, maiores de 50 anos, insuficiência renal,
insuficiência hepática, insuficiência cardíaca, hipersensibilidade ao antimonial
pentavalente ou a outros medicamentos utilizados para o tratamento da LV,
infecção pelo HIV, comorbidades que comprometem a imunidade, uso de
medicação imunossupressora, falha terapêutica ao antimonial pentavalente ou a
outros medicamentos utilizados
para o tratamento da LV e gestantes.

O clínico também pode sugerir esse tratamento em situações em que o
paciente apresente hipersensibilidade ou falha terapêutica ao antimonial
pentavalente e não se enquadre em nenhum dos critérios de indicação para
utilização da anfotericina B lipossomal, esse tratamento poderá ser adotado como
alternativa terapêutica ao desoxicolato da anfotericina B. 42
1.8 Reservatórios

Uma grande variedade de mamíferos domésticos e silvestres são reservatórios e hospedeiros de *Leishmania* spp. Entre as principais espécies estão os animais pertencentes às ordens: Marsupialia, Carnivora e Rodentia. Raposas dos gêneros *Cerdocyon thous*, também é considerado reservatório. 43, 44, 45 Abaixo dois exemplos de reservatórios silvestres (Figura 6).

![Figura 6 - Raposa (A) Marsupial (B): Reservatórios silvestres de *L. (L.*) infantum*. Fonte: Brasil Ministério da Saúde. Manual de Vigilância e controle da Leishmaniose Visceral; 2006.29](image)
Dentre os animais domésticos, o cão (*Canis familiaris*) é considerado o principal reservatório. Sua participação no ciclo biológico da LV foi aventada por Nicolle e Comte em 1908, na Tunísia a partir da detecção do agente etiológico nesses animais. No Brasil essas observações foram realizadas por Evandro Chagas que demostrou a presença da doença no homem e no cão além da infecção em *Lu. longipalpis*. Foi, portanto neste período que o parasita foi classificado como *Leishmania chagasi*. Em 1956, Deane incrimina o cão e a raposa como reservatórios naturais nas áreas de grande expressão endêmica, definindo a partir desse momento a doença como uma zoonose. Já em 1958, outros animais infectados foram encontrados em florestas do norte e nordeste do Brasil, com isso foi neste momento se deu início as primeiras campanhas governamentais para o controle da LV no país.

Atualmente, os felinos domésticos (*Felis catus*) ainda não tem um papel epidemiológico bem definido como reservatório do agente da LV, porém, estudos apontam o seu envolvimento no ciclo de transmissão da *Leishmania*.

1.9 Epidemiologia da LV

As leishmanioses apresentam-se com um caráter emergente e fazem parte de um grupo de doenças zoonóticas e negligenciadas que se tornaram um grande desafio para a saúde pública no mundo.

Segundo a OMS (Figura 7) cerca de 98 países são afetados, com uma estimativa de 1,3 milhões de novos casos ao ano em seres humanos, sendo destes 300.000 afetados pela LV, considerada a forma mais grave da doença.
As duas espécies conhecidas que causam a LV são L. (L.) donovani e L. (L.) infantum, sendo que a primeira é responsável por infecções em humanos e com incidência em países do velho mundo, enquanto que a segunda acomete tanto humanos quanto cães nas Américas. Ambas são em sua maioria (90%) registrados em Bangladesh, Brasil, Etiópia, Índia, Nepal, Sudão do Sul e Sudão. Na maioria dos casos a doença apresenta um desenvolvimento relativamente rápido o que pode evoluir para óbito caso não seja diagnosticada e tratada corretamente. 55, 56.

Em 2013 foram registrados 3.389 casos de LV em oito países do continente americano sendo a maior concentração de casos (96%) em território Brasileiro onde as notificações chegaram a 3.253 casos. Assim, o Brasil concentra a maior taxa de casos, sendo 16,71 casos por 100.000 habitantes.57

Figura 7- Distribuição geográfica da Leishmaniose visceral no Velho Mundo e no Novo Mundo. fonte:http://www.who.int/leishmaniasis/burden/en/ 55
1.10 LV em municípios paulistas

Estudos pioneiros da fauna flebotomírica no estado de São Paulo, quando do início da ocupação humana do oeste paulista, com grandes derrubadas de mata e elevado número de casos humanos de LTA descrevem a existência de diferentes espécies, mas nunca citaram *Lu. longipalpis*\(^58\), \(^59\) A sua presença no território paulista foi descrita nos idos de 1970 na área rural de Salto de Pirapora.\(^60\) Contudo, inquéritos entomológicos no Estado de São Paulo mostraram a sua presença no ambiente urbano intradomiciliar no município de Araçatuba desde 1997.\(^61\) Segundo a publicação dos 40 anos da Sucen, a presença deste vetor em municípios paulistas aumentaram de 68 em 2007 para 163 municípios em 2015.\(^62\)

A expansão da LV no território paulista ocorreu no sentido oeste para centro oeste (Figura 8). Atinge especialmente os municípios contíguos à rodovia estadual SP 300, a “Marechal Rondon”. Em 2001 foram registrados casos em Penápolis; em 2003 em Bauru, em 2006 em Agudos e em 2007, em Lençóis Paulista.\(^63\) Mais recentemente foram registrados casos caninos autóctones em municípios mais distantes da área referida, como Espírito Santo do Pinhal, Salto, São Pedro e Campinas.\(^64\) O Centro de Vigilância Epidemiológica da Secretaria Estadual de Saúde do Estado de São Paulo, de 1999 a 2013 identificou 2.204 casos humanos de LV, sendo 192 fatais, em 76 municípios no oeste paulista.\(^65\) O sistema de vigilância estabeleceu a classificação dos casos humanos nos municípios em dois grupos a cada período de três anos como: 1. com transmissão e 2. sem transmissão. De acordo com a média de casos em seres humanos nos últimos três anos, os municípios de transmissão de LV foram estratificados em três
categorias: 1) transmissão esporádica com menos 2,4 casos; 2) transmissão moderada entre 2,4 a 4,4 casos e 3) transmissão intensa mais de 4,4 casos.⁶⁵

Figura 8- Rota da expansão de casos humanos de leishmaniose visceral no Estado de São Paulo, de acordo com o primeiro caso humano em 1999 até 2013. ¹²⁷

1.10.1 Dracena: área de estudo

Dracena está localizado na região noroeste do Estado de São Paulo, na latitude 21º 28'57"S, longitude 51º 1'58"W, altitude de 421 m; com área terrestre de 487,688 km². No presente momento, apenas 7,12% da região tem vegetação nativa da Mata Atlântica (Figura 9). A população estimada é de 46,088 habitantes.⁶⁶ Em 2003 foi identificado a presença do vetor e em 2015 o primeiro caso de LV humana e canina foi relatada ⁶⁷, de 2011 a 2013 o município foi classificado com
transmissão intensa de casos humanos autóctones segundo o boletim epidemiológico paulista.65

Figure 9 - Mapa da América do Sul e Brasil indicando a localização do Estado de São Paulo (A). Mapa do Estado de São Paulo indicando a localização do município de estudo (Dracena) (B), Latitude: 21º 28' 59" S Longitude: 51º 32' 57" "13" W Altitude: 413m.
1.11 Justificativa

A LV é uma zoonose com grande impacto na saúde pública. No Estado de São Paulo sua incidência acomete principalmente municípios do oeste e centro oeste paulista onde ocorre a maior parte das notificações de casos. Dentre eles se encontra o município de Dracena, que identificou o vetor em 2003. A partir de 2005 o município começou a apresentar casos autóctones de LV humana e canina tendo um registro de 153 casos humanos de 2005 a 2016.

As altas densidades de flebotomíneos associadas a presença de animais domésticos em ambientes peridomiciliares proporciona excelentes condições para o estabelecimento e a manutenção do ciclo de transmissão da doença, com isso a escolha de uma área do município para o estudo constituiu-se uma excelente opção de estudo.

Neste sentido, a determinação da infecção de *Leishmania* pela PCR em flebotomíneos se torna uma metodologia importante já que pode avaliar uma grande quantidade de flebotomíneos em um período de tempo menor que os métodos tradicionais, e assim colaborar junto a outros métodos parasitológicos para melhores resultados.

A identificação da taxa de infecção natural irá contribuir como um importante dado epidemiológico da micro área estudada apontando as porcentagens de infecção encontrada em pools de flebotomíneos.
2 OBJETIVOS

2.1 Objetivo Geral

Padronizar e avaliar dois métodos moleculares de identificação da infecção por *L. (L.) infantum* em *Lu. longipalpis*, e determinar as taxas de infecção natural em uma micro-área do município de Dracena, Estado de São Paulo.

2.2 Objetivos Específicos

a) Avaliar dois métodos de diagnóstico molecular (cPCR e qPCR) para a identificação da infecção por *Leishmania* spp. em *Lutzomyia longipalpis*.

b) Comparar os resultados encontrados pela cPCR e a qPCR.

c) Identificar espécies de *Leishmania* spp. em fêmeas naturalmente infectadas.

d) Determinar as taxas de infecção mínima em fêmeas capturadas em uma micro-área de Dracena no Estado de São Paulo.

e) Comparar as taxas de infecção natural nos flebotomíneos coletados em diferentes locais.
3 MATERIAIS E MÉTODOS

3.1. Considerações éticas

Este trabalho foi aprovado na Comissão de Pesquisa e Ética e Comissão de Ética no uso de Animais em Pesquisa do Instituto de Medicina Tropical da Universidade de São Paulo, onde o trabalho foi aprovado sob o numero CPE-IMT/270 “Padronização e validação de um método molecular para identificação de infecção natural de flebotomíneos por Leishmania spp.” (Anexo A).

PARTE 1. Padronização da PCR em flebotomíneos

3.2 Amostragem de tubo digestivo de Lu. longipalpis

Entre o período de agosto a dezembro do ano de 2013 em uma clínica veterinária, trinta e seis cães sabidamente infectados com LV confirmados por diagnóstico sorológico foram isolados e anestesiados e tiveram a orelha exposta para cinquenta fêmeas nulíparas de Lu. Longipalpis. As mesmas puderam fazer o repasto sanguíneo por cerca de 30 minutos e após 5 dias, esses insetos foram dissecados em microscópio de luz a fim de detectar promastigotas no conteúdo intestinal. Após a análise, as lâminas foram lavadas com solução salina estéril e seu material transferido individualmente para tubos de 2,5 mL e mantidos a -20°C.
Todo este material congelado foi transferido para São Paulo (Instituto Adolfo Lutz), onde ocorreram as extrações de DNA.

(*) Essa parte do trabalho foi coordenada pelo Dr. André Antonio Cutolo

As padronizações da cPCR e da qPCR foram realizadas a partir de 30 amostras de conteúdo intestinal de flebotomíneos positivos e 36 amostras negativas no xenodiagnóstico.

3.3 Extração de DNA do conteúdo intestinal de flebotomíneos

As extrações de DNA foram realizadas com Kits Qiagen conforme procedimentos descritos, porém com duas modificações onde foi utilizado 10 μL de proteinase e 90 de ATL. As amostras foram transferidas para tubos de 1,5 mL, centrifugadas por 1 minuto a 2.800 g e descartados os sobrenadantes. A seguir, as amostras foram dissolvidas em tampão de lise (Tris-HCl, 10 mM, pH 8.0; EDTA 10mM; SDS, 0,5%; N-laurilsarcozil, 0,01%; proteinase K, 100µg/mL), incubadas em banho-Maria a 56°C por 20 minutos, agitadas por 15 segundos em vortex e, novamente incubadas em banho-maria 56°C por cerca de 10 minutos. Apóś esse processamento inicial as amostras foram processadas por colunas de afinidade (QIAamp DNA Mini Kit - QIAGEN®), conforme instruções do fabricante. As concentrações e qualidade das amostras de DNA foram avaliadas por espectrofotometria em Nanodrop (Thermofisher) em comprimento de onda 260 e 280 nm. A seguir as amostras de DNA foram estocadas a -20°C.
3.4 cPCR

As reações de amplificação foram padronizadas e realizadas com auxílio de um kit comercial (GoTaq®Green Master Mix-Promega) contendo 2 corantes (azul e amarelo) que permitem monitorar o progresso das amostras durante a eletroforese. Cada 12,5 μL do "mix" continha 1 unidade de Taq DNA polimerase em 10 mM Tris-HCl, pH 8.5; 50mM KCl; 1.5 mM MgCl2 e 200 mM de cada um dos desoxinucleosídeos trifosfatados (dATP, dGTP, dCTP, dTTP). Cada reação foi realizada adicionando-se 3 μL do DNA alvo e 25 pmol de cada iniciador num volume final de 25 μL. As amplificações foram realizadas utilizando um termociclador Veriti® Thermal Cycler (Applied Biosystems®). A cada reação foram incluídos os seguintes controles: dois controles negativos, sendo um, somente água ultrapura, que substituiu o DNA, e no outro, DNA extraído de uma amostra sabidamente negativa para *Leishmania* spp. O controle positivo foi constituído de DNA extraído de promastigotas de cepa padrão de *L. (L.) infantum* (MHOM/TN/1980/LEM235) mantidos em culturas axênicas (Figura 10).

A identificação de *L. (L.) infantum* foi realizada pelo marcador molecular RV1/RV2, que amplifica um fragmento de uma região variável do minicírculo do kDNA, específica para o complexo *L. (L.) donovani*. Para avaliar a qualidade da extração de DNA e monitorar a presença de inibidores da Taq DNA polimerase foi utilizado o marcador molecular Lu1/Lu2, que amplifica um fragmento de um gene específico do 28s rRNA de *Lu. longipalpis*. Em algumas amostras foi utilizado o marcador 150/152 de *Leishmania* spp. apenas para a confirmação de amostras que já haviam dado positivo porém com padrões de bandas mais enfraquecidos. As especificações de cada marcador molecular encontram-se descritas em detalhes na Tabela 1.
A fim de determinar o melhor resultado das análises de eletroforese de DNA foram amplificadas amostras contendo 1, 2, 3 e 5 µL de DNA template. A quantidade ideal foi de 3 µL para análise das amostras na cPCR e qPCR.

Os produtos de DNA foram analisados por eletroforese horizontal em géis de agarose a 2% corados por brometo de etídio, visualizados e analisados em transiluminador de ultravioleta. A documentação foi realizada por digitalização.

Figura 10. Amostras de “Pools” de DNA de flebotomíneos sendo preparados para a cPCR.
3.5 qPCR

As qPCRs foram realizadas com o marcador molecular Linj31 (Tabela 1), que amplifica a região de uma proteína hipotética codificada pelo mRNA de *L. (L.) infantum*. As reações foram realizadas no aparelho ABI 7300 Real Time PCR System (Applied Biosystems). O sistema utilizado foi com uma sonda de hidrólise do tipo TaqMan, duplamente marcada (Tabela 1). Na extremidade 5`end foi ligado covalentemente um fluoróforo FAM (6-carboxy-fluorescein). Na extremidade 3`end, foi ligado um “quencher” NFQ (non-fluorescent quencher). As reações foram realizadas, em um volume final de 20 µL por reação. O volume de 3 µL de DNA foi adicionado a um reagente contendo 10 µL de 2X TaqMan Universal PCR Master Mix (NoAmpliErase UNG) e 1 µL de uma mistura que inclui os marcadores “forward” e o “reverse” na concentração de 18 µM, e a sonda TaqMan, marcada com FAM e usando NFQ como quencher na concentração de 5 µM. Foram adicionados às reações dois controles negativos e um controle positivo, assim como realizados na PCR convencional. As amplificações ocorreram em um ciclo inicial de 50°C por 2 minutos para melhor atividade da AmpliErase UNG, uma enzima que remove qualquer produto amplificado anteriormente, evitando contaminação cruzada. A segunda etapa foi um ciclo a 95°C por 10 minutos. Na próxima etapa foram realizados 40 ciclos a 95°C por 15 segundos e a 60°C por 1 minuto.
Tabela 1 – Seleção de marcadores moleculares utilizados nas amostras de conteúdo intestinal de flebotomíneos.

PCR	Marcadores moleculares	Sequencia 5'→ 3'	Produto esperado (pb)/Temperatura de pareamento	Referência
Convencional	150/152	GGGKAGGGGCCTSCGAA SSWCTATWTTACACCAACCCC	120/ 55º	Passos et al., 1999
	RV1/RV2	CTTTTCTGTCCGCAGGCTAGG CCACCTGCTATTTACACCA	145/60º	Ravel et al., 1995
Em tempo real	Linj31	CCGCGTGCCTGTCG CCCACAAAGCGGAACT	Sonda:CCTCCTGGACTTTG	Colombo et al., 2011
				Colombo et al., 2015
PARTE 2. PCR em flebotomíneos capturados em campo

A segunda parte deste estudo foi dedicado a realizar o processamento de flebotomíneos provenientes de capturas, que foram realizadas por armadilhas luminosas automáticas (tipo CDC). As coletas foram coordenadas pelo pesquisador André A. Cutolo.

3.6 Ecótopos de insetos

A área de estudo selecionada foi o município de Dracena, uma região endêmica para LV (vide descrição pag 29 de Introdução e Figura 9B).

Durante o período de janeiro a novembro 2012 foram capturados insetos num período de 2 a 3 noites/mês, utilizando 10 armadilhas luminosas automáticas em torno de um canil que estava localizado na transição entre um bairro periurbano e outro urbano da cidade de Dracena. Este local era rodeado por pequenas áreas agrícolas, pastagens e casas. A Figura 11 mostra a localização geográfica (latitude 21º 28'59"S, longitude 51º 32'57"13" e altitude 413 m). Os ecótopos com armadilhas foram marcados numericamente como ilustra as Figuras 11 e Tabela 2. As capturas dos insetos foram divididas em três ecotopos. O ponto de coleta A foi constituido de quatro armadilhas distribuídas em uma pequena chácara contendo uma casa (1) rodeada por um pomar contendo mangueiras e um galinheiro. O ponto de coleta B foi constituído de cinco armadilhas distribuídas dentro de um canil e uma área de pastagem. O ponto de coleta C continha apenas uma armadilha em um quintal da casa (2) situado em uma área urbanizada. A distância
aproximada entre armadilha 1 e 10 foi de aproximadamente 350 metros. A distribuição das 10 armadilhas de luz automáticas é mostrado na Figura 12.

Tabela 2- Descrição dos ecótopos, localização e a numeração da armadilha, mostrados na Figura 11.

Ecótopos	Localização
A. Chácara 1	Pomar com uma mangueira atrás da casa 1 (1)
Galinheiro (2)	
Casa 1/varanda da residência (3)	
Pomar com mangueiras em frente da casa 1 (4)	
B. Chácara 2	Bambu atrás do canil (5)
Canil/ área de serviço (6)	
Canil/baia para cães (7)	
Varanda do canil (8)	
Pasto com árvores dispersas (9)	
C. Casa 2	Casa 2 em área urbana (10)
Figura 11- Localização de área de estudo e distribuição de 10 armadilhas automáticas (Tipo CDC). As coletas foram realizadas num bairro periurbano de Dracena (latitude 21°28'59"S, longitude 51°32'57"13" e altitude 413 m), em torno de um canil. Ponto de coleta A (chácara 1): 1. pomar com uma mangueira atrás da casa 1; 2. galinheiro; 3. casa 1/varanda da residência; e 4. pomar com mangueiras em frente da casa 1. Ponto de coleta B. (chácara 2); 5. Bambu atrás do canil; 6. canil/área de serviço; 7. Canil/baia para cães; 8. varanda do canil; e 9. pasto com árvores dispersas. Ponto de coleta C; 10. Casa 2 em área urbana. Imagem adquirida em 2012. Digitalglobe (2012 MapLink/teleAtlas a altitude de 935 m do ponto de vista (Fonte: Google Earth, Google Inc., 2011). O uso da imagem está de acordo com o descrito no site: https://www.google.com/intl/pt-BR/permissions/geoguidelines.html
Figura 12 – (A). Ponto 1, mangueira atrás da casa com armadilha CDC. (B). Ponto 2, galinheiro; (C) Ponto 5, bambu atrás do canil; (D e E) Ponto 7, canil/baia para cães (D) e com vista para o bambuzal (E). (F) Ponto 9, pasto com árvores dispersas.
3.7 Coleta, Identificação e Armazenamento de flebotomíneos

Após as capturas, os insetos foram mortos pelo frio, acondicionados em copos de coleta e cerca de uma hora depois os copos foram retirados do freezer e colocados em temperatura ambiente para secarem. A seguir, com auxílio de pinças, estiletes entomológicos, os flebotomíneos foram separados dos demais insetos, a sexagem determinada e foram identificados e mantidos a -20ºC em etanol a 70%. As fêmeas de flebotomíneos coletadas em 10 armadilhas durante os meses de janeiro a novembro de 2012 foram colocadas em tubos de 2,5 mL devidamente identificados com a data e local de captura. Os machos de *Lutzomyia longipalpis* foram identificados por meio de lupa pela presença de espinhos nos parâmeros do aparelho reprodutor. As fêmeas foram identificadas pelo tamanho e coloração do catepisterno. No caso de fêmeas com características morfológicas duvidosas, removeu-se a porção terminal do abdômen para separação da porção contendo as espermatecas (o restante do corpo manteve-se em freezer para o processamento da PCR) e levou-se os mesmos para o processo de clarificação, coloração e montagem de lâmina para a confirmação da espécie de flebotomíneos. Os indivíduos machos e as porções terminais abdominais das fêmeas foram clarificados, corados e montados em lâmina para identificação específica conforme a classificação de Galati. 76

Os insetos permaneceram em solução de potassa 10% por 12 horas, logo após foram lavados em uma solução de ácido acético 10% e a seguir permaneceram nesta solução, acrescida de três gotas de corante fuccina por 10 minutos. Em seguida foram desidratados por passagem em série alcóolica, ficando dez minutos em solução de etanol a 80%, posteriormente dez minutos em etanol
90%, dez minutos em etanol 95% e finalmente dez minutos em etanol 100%. Após a série alcóolica os insetos foram transferidos para solução de óleo de cravo (eugenol) por duas horas, podendo posteriormente ser identificados diretamente em microscópio óptico com aumento de 100 vezes e/ou montados em lâminas microscópicas definitivas com meio enecê para análise microscópica mais detalhada com aumento de 400 vezes.

- Como a variação de espécies foi baixíssima (mais de 99% dos insetos foram identificados como *Lu. longipalpis*) foi seguro utilizar a metodologia da triagem via lupa, mais rápida e prática.

3.8 Extração e purificação de DNA de flebotomíneos

As fêmeas foram separadas individualmente ou em grupos de 1 a 5 espécimes (em tubos de 1,5 mL). A seguir, os tubos foram centrifugados por 1 minuto a 2.800 g para a retirada do etanol a 70%. A seguir, os flebotomíneos foram dissolvidos em tampão de lise (Tris-HCl, 10 mM, pH 8.0; EDTA 10mM; SDS, 0,5%; N-laurilsarcozil, 0,01%; proteínase K, 100µg/mL) e macerados com pistilo e, posteriormente incubados em banho-Maria a 56°C por 20 minutos. Em seguida, as amostras foram agitadas por 15 segundos em vortex e incubadas novamente em banho-maria 56°C por um período de 10 minutos ou até a lise total dos tecidos. Após esse tratamento inicial, as amostras foram processadas para extração e purificação de DNA conforme descrito no item 3.3 de Materiais e Métodos.
3.9 cPCR e qPCR em DNA extraído de flebotomíneos

Os procedimentos nesta parte do estudo foram realizados exatamente como descritos nos itens 3.4 e 3.5 de Materiais e Métodos.

A fim de sanar quaisquer dúvidas quanto as amostras que se apresentaram negativas nos marcadores RV1 RV2 e Linj 31, foram utilizados os marcadores moleculares 150/152, específico para Leishmania spp, LITSR/L5.8S, que amplifica uma região ribossomal (SSU rRNA) codificada por ITS1 (presente em todas as espécies de Leishmania). Adicionalmente, foi investigado se estas amostras poderiam estar infectadas com outra espécie de Leishmania. Assim, foram realizadas novas reações utilizando o marcador molecular LB-3C/LU5A. O alvo da sequência do iniciador LU-5A é a região conservada SL, presente em todas as espécies de Leishmania, já o iniciador LB-3C provém da região não transcrita, variável e específica para o complexo L. (Viannia) braziliensis. Os marcadores moleculares utilizados estão descritos na Tabela 3.
Tabela 3 - Seleção de marcadores utilizados para a avaliação da infecção natural em fêmeas de flebotomíneos

PCR	Marcadores moleculares	Sequência 5’→3’	Produto esperado (pb)/ Temperatura de pareamento	Referência
Convencional	150/152	GGGKAGGGGGCGTTCTSCGAA SSSWCTATWTTACACCAACCC	120/ 55º	Passos et al., 1999
	RV1/RV2	CTTTTCTGTGCCCGCGGGTAGG CCACCTGGCCTATTTTACACCA	145/60º	Ravel et al., 1995
	Lu1/Lu2	TGAGCTTGACTCTAGTTTTGCGAC AGATGTACCGCCCGAGCCAGTCAA	370/55º	Freitas-Lidani et al., 2014
	LB-3C/LU5A	CGTCGCCGAACCCCGTGC TTTATTTGATGCGAAACTTC	146-149/ 57.8º	Harris et al. 1998
	LITSR/L5.8S	CTGGATCATTT -TCCGATG TGATACCACTTTATCGCACTT	300-350/53º	El Tai et al. 2001
	Linj31	CCGCGTGCCTGTCG CCCACACAAGCGGGAACT	Sonda:CCTCCTTGACTTTG	Colombo et al., 2011

Em tempo real
3.10 Análise dos dados

Os níveis de infecção parasitária foram determinados pela taxa de infecção mínima como descrito anteriormente. A TIM foi estimada utilizando a fórmula: TIM = número de grupos positivos (“pools”) X 100/número de insetos totais. As concentrações de *L. (L.) infantum* foram baseadas na curva padrão em qPCR (Figura 13) construída como descrito por Colombo et al., 2015.69

![Graph](image)

Figura 13 - Curva padrão de marcador molecular LinJ31 em qPCR usando amostras de DNA de *L. (L.) infantum* e uma sonda marcada com FAM. Os resultados representam a média de “cycle threshold” (C\text{T}) obtidos de triplicata de cada concentração de DNA. A análise da curva padrão foi realizada em diluições seriadas (10x) de DNA extraído de promastigotas na concentração inicial de 3,5 ng/µL (1 x 10^7 promastigotas). R2= 0.9971 Fonte; Colombo et al., 2015 69
Flebotomíneos machos, que sabidamente são negativos para *Leishmania* spp foram processados simultaneamente para monitorar a eventual contaminação cruzada durante as extrações das amostras de DNA. Em cada reação foi incluído um controle “branco” que consistiu de água livre de DNAse e RNAse no lugar da amostra de DNA. Laboratórios separados foram utilizados para i: extração de DNA; ii: mix e preparação dos marcadores moleculares; iii: a adição de DNA (das amostras dos flebotomíneos e controle positivo); e IV: pós-PCR, eletroforese em gel de agarose a análise (no caso da cPCR).
4 RESULTADOS

4.1 Resultados da padronização dos marcadores moleculares para cPCR e qPCR em amostras de conteúdo intestinal de flebotomíneos.

Os ensaios iniciais foram realizados em amostras de conteúdo intestinal para realizar as padronizações da cPCR e qPCR. Como ilustração, os produtos amplificados de cada marcador molecular podem ser vistos na Figura 14. Das 30 amostras de conteúdo intestinal de flebotomíneos positivas no xenodiagnóstico, 22 (73%) foram positivas na cPCR com o marcador 150/152 e 20 (67%) com o RV1/RV2. Na qPCR (Linj31), 21 (70%) foram positivas (Figura 15). Dentre as 36 amostras negativas no xenodiagnóstico, 2 (5%) foram positivas em todos os marcadores moleculares.

Figura 14- cPCR em gel de agarose a 2% corado com brometo de etídio. MM, marcador molecular de 100 pb; 1, 150/152; 2, RV1/RV2 e 3, Lu1/Lu2.
4.2 Resultados de PCR em fêmeas de flebotomíneos naturalmente infectadas.

Durante o período de 11 meses, 1.693 flebotomíneos foram capturados nos 10 pontos de captura. Destes, 1.401 espécimes (82,75%) eram machos; e 292 eram fêmeas (17,25%). *Lu. longipalpis* representou 1.690 (99,82%) do total de flebotomíneos capturados, e três (0,18%) espécimes machos foram identificados como *Evandromyia cortellezzii*.

Lu. longipalpis foram mantidos como amostras individuais ou agrupados em pools de até cinco espécimes, de acordo com a data, número de insetos, sexo e local de captura.

A partir destas padronizações, iniciamos as análises nas fêmeas capturadas nos ecótopos. A infecção natural por *Leishmania* foi avaliada pelo cPCR usando o
marcador molecular RV1/RV2 e qPCR, por Linj 31. A concentração de DNA obtida em extrações, por associação, variou 0,6-64,9 ng/µL. Dos 292 flebotomíneos capturados foram formados 165 “pools” para processamento e posterior PCR.

A boa qualidade destas amostras de DNA foi confirmada pela amplificação do gene constitutivo 28SrRNA de *Lu. longipalpis* em todas as amostras analisadas. Na cPCR, 7,28% (12/165) das amostras foram positivas para *L. (L.) infantum* e 4,85% (8/165) na qPCR.

A fim de determinar a eventual presença de DNA de outras espécies de *Leishmania*, as amostras dos flebotomíneos com resultados negativos para *L. (L.) infantum* foram adicionalmente testadas em cPCR para *Leishmania* spp com os marcadores 150/152, e LITSR/L5.8S. Para o complexo *L. (Viannia) braziliensis* foi utilizado o marcador molecular LB-3C/LU5A. Os resultados apresentados em todos os marcadores foram negativos.
Tabela 4 – Infecção natural em “pool” de fêmeas de *Lu. longipalpis* por *L. (L.) infantum* utilizando os marcadores moleculares RV1/RV2 (cPCR) e Linj 31 (qPCR).

Marcadores moleculares	PCR RV1/RV2 (%)	Linj 31 (%)
Positivo	12 (7,27)	8 (4,24)
Negativo	153 (92,72)	157 (95,75)
Total:	165 (100)	165 (100)

4.3 Taxas de infecção natural das fêmeas capturadas durante 11 meses de coleta.

Os pontos de captura de flebotomíneos foram agrupados com o objetivo de determinar a TIM. A Tabela 4 mostra em detalhes, a distribuição de fêmeas de *Lu. longipalpis* e a respectiva TIM durante os onze meses de captura. Considerando as 292 fêmeas coletadas em todas as armadilhas durante os 11 meses a TIM foi de 4,10%.

Cada ponto foi composto de um a cinco locais de armadilhas. O ponto A teve quatro armadilhas luminosas automáicas distribuídas no peridomicílio de uma pequena chacara, que incluiu um galinheiro, a varanda da residência (casa 1) e 2 mangueiras situados no seu pomar. Fêmeas de flebotomíneos positivos foram
encontradas no galinheiro (TIM 6,45) e na varanda da residência (TIM 1,80). Nenhum flebotomíneo capturado nas mangueiras do pomar estava infectado por *L. (L.) infantum*. No ponto de coleta B, cinco armadilhas luminosas automáticas foram distribuídas em um peridomicílio constituído de um canil contendo aproximadamente 200 cães. As armadilhas automáticas luminosas foram distribuídas na frente da casa principal (canil), em uma baia do canil, parte de trás da casa principal canil e duas áreas de pastagem. Flebotomíneos positivos foram coletados na baia dos cães (TIM 5,26) e na armadilha em frente do canil (TIM 11,11). Na área de pastagem, apenas flebotomíneos machos foram capturados. No ponto de coleta C, houve coleta de flebotomíneos positivos (TIM 16,67) em uma residência (2).

A Figura 16 mostra os 8 resultados positivos na qPCR utilizando o marcador molecular Linj31 e as concentrações amplificadas de DNA de *L. (L.) infantum* nos flebotomíneos. Os pontos onde os flebotomíneos foram capturados foram definidos como A, B e C e apresentaram diferentes concentrações de DNA de *L. (L.) infantum*. Os resultados do C_T de 24 a 26 correspondem a cerca de 1 a 5 x 10^3 promastigotas/"pool" de flebotomíneos.
Tabela 5 - Pools de *Lu. longipalpis* naturalmente infectados por *L. (L.) infantum* e taxa mínima de infecção (TIM) obtidos por PCR segundo os pontos de coleta e ecótopos como descritos na Figura 11.

Ecotopos/número de *Lu. longipalpis* capturados	Área de captura dos insetos	Número de “pools” de *Lu. longipalpis* positivas/total	TIM (%)
A/228		8/228	3.51
1. Pomar com uma mangueira atrás da casa 1		0/10	0
2. Galinheiro		6/93	6.45
3. Casa 1/varanda da residência		2/111	1.80
4. Pomar com mangueiras em frente da casa 1		0/14	0
B/58		3/58	5.17
5. Bambu atrás do canil		0/15	0
6. Canil/ área de serviço		0/6	0
7. Canil/baia para cães		1/19	5.26
8. Varanda do canil		2/18	11.11
9. Pasto com árvores dispersas		0/0	0
C/6		1/6	16.67
10. Casa 2 em área urbana		1/6	16.67
Total		**12/292**	**4.10**
Figura 16 - Resultados de amplificação de Linj31-qPCR e sonda de hidrólise FAM nas amostras de DNA de flebotomíneos. Os resultados são apresentados como C\text{\textsubscript{T}}. 1 \times 10^{5} promastigotas corresponde a C\text{\textsubscript{T}} cerca de 22; 1 \times 10^{3}, C\text{\textsubscript{T}} em torno de 28 (Colombo et al., 2015). Amostras de DNA de flebotomíneos capturados em: Ponto de coleta A, casa 1/varanda da casa 1 (colunas 1 e 2); e no galinheiro (colunas 3, 4 e 5). Ponto de coleta B, varanda do canil (coluna 6); baia do canil (coluna 7). Ponto de coleta C, casa 2 em área urbana (coluna 8).
5 DISCUSSÃO

O fator de risco mais importante para o aumento de LV em todo o mundo é a migração de pessoas e cães não infectados para áreas endêmicas, onde o inseto vetor é abundante. Assim, a identificação de espécies de *Leishmania* em vetores ou hospedeiros nestas áreas é essencial para medidas de prevenção e controle da infecção.

A PCR é um procedimento muito mais rápido e eficiente e que permite o processamento de grande número de amostras biológicas em cada reação, quando comparados à dissecção de flebotomíneos e posterior leitura em microscópio.

Os resultados obtidos no momento da padronização da PCR com amostras positivas e negativas no xenodiagnóstico mostraram ser eficientes visto que mesmo em amostras que parasitas que não foram observados no exame microscópico a PCR foi capaz de detectar o DNA do parasita. Assim, ressalta-se que, resquícios de conteúdo intestinal de flebotomíneos congelados por muito tempo (cerca de 12 meses) podem ser utilizados para detecção de DNA do parasita pela PCR. Estes dados confirmam outros estudos, no quais os métodos moleculares podem ser utilizados com sucesso em conjunto com os parasitológicos, além da vantagem de permitir a quantificação dos parasitas nas amostras estudadas.

Das amostras que foram positivas no xenodiagnóstico, 30% foram negativas na PCR, sendo algumas das hipóteses a perda de material no momento da transferência lâmina-tubo ou ainda possíveis degradações do DNA no período que foram armazenadas.
Assim, na segunda parte deste trabalho optou-se pelo uso da PCR para identificar infecções naturais por *Leishmania* em flebotomíneos sem a prévia dissecção. A ideia partiu de estudos anteriores que mostraram que a sensibilidade e especificidade da PCR foi melhor do que os baseados na dissecção intestinal dos flebotomíneos com posterior visualização por microscopia. 81,82,83

Um ponto importante foi determinar como analisar o conteúdo intestinal de flebotomíneos capturados pela PCR. A análise de flebotomíneos individuais é mais trabalhosa, mas pode gerar resultados mais precisos sobre as taxas de infecções absolutas por espécies de flebotomíneos em uma área. No entanto, uma vez que o número de flebotomíneos capturados é geralmente elevado, uma alternativa é a utilização de grupos de amostras para a avaliação da taxa de infecção mínima.72

Com base neste estudo formaram-se grupos de até 5 espécimes nas coletas cujas armadilhas luminosas capturaram vários insetos. Assim, dos 292 exemplares capturados durante os 11 meses de estudo foram formados 165 “pools” de amostras de DNA. Dentre eles, 12/165 (7,28%) foram positivos para *L. (L.) infantum* na cPCR e 8/165 (4,85%) na qPCR. O marcador molecular RV1/RV2 (cPCR) foi mais sensível do que o Linj31 (qPCR). Estes dados confirmam um estudo prévio cujos autores testaram diferentes tipos de amostras biológicas.69

Embora o Município de Dracena seja conhecido por ser uma área altamente endêmica para LV,83,84 a presença de espécimes negativas na PCR levou a estudar ocorrência de outras espécies de *Leishmania*. Assim, os flebotomíneos capturados negativos para *L. (L.) infantum* também foram testados pelos marcadores moleculares (150/152) e (LITSR/L5.8S) que amplificam uma região conservada de *Leishmania spp.* e para o complexo *L. (Viannia) braziliensis* o marcador molecular utilizado foi LB-3C/LU5A. Todos os resultados foram negativos, o que confirmaram que *Lu. longipalpis* capturados nas armadilhas estavam infectados somente por *L. (L.) infantum*. Em adição, também confirmam
que esta espécie é um dos principais agentes etiológico da LV zoonótica nesta região.

Os resultados da qPCR (Figura 16) mostraram que os flebotomíneos apresentaram alta concentração de DNA do parasita, especialmente nos ecótopos A, “casa 1 e galinheiro”; B, na área do canil ; C, na casa 2 em área urbana. Nestas áreas a qPCR detectou uma concentração de 1 a 5 x 10³/pool de promastigotas nos flebotomíneos (Cₜ 23 a 26). Particularmente na América do Sul, milhares de cães são infectados. Em algumas regiões endêmicas, a prevalência de LV canina pode ser tão alta como cerca de 63%-80%. 85,86,87,88 Em adição, a ocorrência de *Lu. longipalpis* com diferentes taxas de infecção por *Leishmania* foram relatados em diferentes áreas endêmicas brasileiras (de 0,2% a 7,14%). 89,90,22 Os resultados deste estudo estão de acordo com os obtidos por outros autores em áreas endêmicas do Brasil. Esta região apresentou uma TIM de 4,10% na área periurbana de Dracena. No entanto, quando estes dados foram observados por micro-área, a TIM foi alta no canil, galinheiro e na casa 2. Estes dados confirmam que flebotomíneos infectados estão presentes nos locais de captura, com abundância de hospedeiros que agem como fonte de alimento sanguíneo como o homem, animais domésticos e abrigos como os galinheiros confirmam este comportamento previamente descrito. 91,92

A abundância de *Lu. longipalpis* pode estar associada a animais domésticos.93,94 Alguns autores relatam que as galinhas são a fonte alimentar de sangue mais frequente detectada em fêmeas de *Lu. longipalpis* depois de cães.95,96,97,98 De acordo com Salomón et al. (2015),99 galinhas agem como um amplificador populacional de flebotomíneos criando um abrigo com um micro-clima dentro dos galinheiros. 82,100 Assim, as galinhas podem participar da epidemiologia da LV uma vez que são hospedeiros adequados para as populações de *Lu. longipalpis*, como fonte de sangue e reprodução, pois o seu material fecal também
permite o desenvolvimento de flebotomíneos em estágios larvais aumentando sua presença no ambiente peridoméstico. \(^{101}\)

Os resultados obtidos neste estudo reforçam a ideia da urbanização dispersão de *Lu. longipalpis* no ambiente urbano, que envolve fatores climáticos, ambientais e socioculturais e o seu papel fundamental como principal vetor da *L. (L.) infantum* na área. \(^{102,22,99}\)

Este estudo também confirma a importância de métodos moleculares como ferramenta investigativa na epidemiologia da LV, bem como, determinar as taxas de infecção de *Leishmania* em flebotomíneos permitindo assim estimativas sobre o risco da transmissão do parasita em áreas endêmicas, dando apoio a ações de prevenção e controle de tal doença zoonótica.

6 CONCLUSÃO

a) Os resultados da PCR em conteúdo intestinal de flebotomíneos congelados por cerca de 12 meses foi eficiente visto algumas amostras foram negativas no exame microscópico a fresco. Assim, ressalta-se que, resquícios de conteúdo intestinal de flebotomíneos armazenadas por muito tempo podem ser utilizados para detecção de parasitas pela PCR;

b) A utilização da PCR para identificação de infecção natural de flebotomíneos por *Leishmania* spp. foi eficiente, e ideal para ser utilizada em conjunto com os métodos parasitológicos. A cPCR foi mais sensível, mas a qPCR foi capaz de determinar as concentrações de DNA de *L. (L.) infantum* nos flebotomíneos naturalmente infectados;

c) A espécie predominante encontrada na área de estudo foi *Lu. longipalpis* naturalmente infectadas por *L. (L.) infantum*.

d) O MIR da micro área periurbana de Dracena estudada foi de 4,10%;
e) Os ecótopos com TIM mais altos foram no canil, galinheiro e na casa 2. Flebotomíneos infectados estavam presentes nos locais de captura com abundância de hospedeiros que agem como fonte de alimento sanguíneo. A armadilha em que mais flebotomíneos infectados foram capturados foi a do galinheiro.
7 REFERÊNCIAS BIBLIOGRÁFICAS

1. Ross R. note on the bodies recently described by leishman and donovan. Br Med J. 1903 Nov 14;2(2237):1261-2.

2. Shlomai J. The assembly of kinetoplast DNA. Parasitol Today. 1994 Sep;10(9):341-6.

3. Lainson R, Shaw JJ. The role of animals in the epidemiology of South American leishmaniasis. In: Lumsden WAR, Evans, editors. Biology of the Kinetoplastida. London: Academic Press; 1979. p. 1-116.

4. Garnham PCC. Introduction. In: Peters W, Killick-Kendrick R. The Leishmaniases in Biology and Medicine 1987. p. 13-25.

5. Michalsky EM, Fortes-Dias CL, Pimenta PF, Secundino NF, Dias ES. Assessment of PCR in the detection of Leishmania spp in experimentally infected individual phlebotomine sandflies (Diptera: Psychodidae: Phlebotominae). Rev Inst Med Trop Sao Paulo. 2002 Sep-Oct;44(5):255-9.

6. Michalick MSM. Genaro O. Leishmaniose visceral americana. In D Neves, AL Melo, PM Linardi, RWA Vitor, Parasitologia humana, 11th ed. São Paulo: Atheneu; 2005. p. 56-72

7. Grimaldi G Jr, Tesh RB. Leishmaniases of the New World: current concepts and implications for future research. Clin Microbiol Rev. 1993 Jul;6(3):230-50.

8. Rey L. Parasitologia. 3ª ed. Rio de Janeiro: Guanabara Koogan; 2001. Leishmania e leishmaniose: os parasitos; p.214-26.

9. World Health Organization. The disease and its epidemiology. WHO; 2016 [cited 2016 Mar 25]. Available from: http://www.who.int/leishmaniasis/disease_epidemiology/en/index.html

10. Schlein Y. Leishmania and Sandflies: interactions in the life cycle and transmission. Parasitol Today. 1993 Jul;9(7):255-8.

11. Gontijo CM, Melo MN. Leishmaniose visceral no Brasil: quadro atual, desafios e perspectivas. Rev Bras Epidemiol. 2004;7:338-49.

12. Rey L. Parasitologia. 3ª ed. Rio de Janeiro: Guanabara Koogan; 2001. O complexo “Leishmania donovani” e a leishmaniase visceral; p.253-66.

13. Galati EA, Nunes VL, Rego Júnior Fde A, Oshiro ET, Chang MR. [Phlebotomines (Diptera: Psychodidae) focusing visceral leishmaniasis in the State of Mato Grosso do Sul, Brazil]. Rev Saude Publica. 1997 Aug;31(4):378-90.
14. França-Silva JC, Barata RA, Costa RT, Monteiro EM, Machado-Coelho GL, Vieira EP, Prata A, Mayrink W, Nascimento E, Fortes-Dias CL, da Silva JC, Dias ES. Importance of Lutzomyia longipalpis in the dynamics of transmission of canine visceral leishmaniasis in the endemic area of Porteirinha Municipality, Minas Gerais, Brazil. Vet Parasitol. 2005 Aug 10;131(3-4):213-20.

15. Lainson R, Shaw JJ. New World leishmaniasis. In: Cox FE, JP Kreier, Wakelin D, editors. Topley & Wilson's Microbiology and microbial infections. London: Hodder Arnold; 2005. v.6, p.313–49.

16. Center for disease control and prevention. CDC; 2016 [cited 2016 Sep 13]. Available from: http://www.cdc.gov/parasites/leishmaniasis/biology.html

17. Young DG, Duncan MA. Guide to identification and geographic distribution of Lutzomyia sand flies in Mexico, the West Indies, Central and South America (Diptera: Psychodidae). Mem Am Entomol Inst. 1994;54.

18. Casanova C, Costa AI, Natal D. Dispersal pattern of the sand fly Lutzomyia neivai (Diptera: Psychodidae) in a cutaneous leishmaniasis endemic rural area in Southeastern Brazil. Mem Inst Oswaldo Cruz. 2005 Nov;100(7):719-24.

19. Forattini OP, Rabello EX, das Cotrim MD. [Catalog of the entomological collections of the School of Public Health of the Universidade de São Paulo (2nd Series I) Culicidae]. Rev Saude Publica. 1973 Dec;7(4):453-79.

20. Rangel EF, Vilela ML. Lutzomyia longipalpis (Diptera, Psychodidae, Phlebotominae) and urbanization of visceral leishmaniasis in Brazil. Cad Saude Publica. 2008 Dec;24(12):2948-52.

21. Andrade AR, Nunes VL, Galati EA, de Arruda CC, Santos MF, Rocca ME, Aquino RB. Epidemiological study on leishmaniasis in an area of environmental tourism and ecotourism, State of Mato Grosso do Sul, 2006-2007. Rev Soc Bras Med Trop. 2009 Sep-Oct;42(5):488-93.

22. Savani ES, Nunes VL, Galati EA, Castilho TM, Zampieri RA, Floeter-Winter LM. The finding of Lutzomyia almericoi and Lutzomyia longipalpis naturally infected by Leishmania in a cutaneous and canine visceral leishmaniases focus in Serra da Bodoquena, Brazil. Vet Parasitol. 2009 Mar 9;160(1-2):18-24

23. Lainson R, Rangel EF. Lutzomyia longipalpis and the eco-epidemiology of American visceral leishmaniasis, with particular reference to Brazil: a review. Mem Inst Oswaldo Cruz. 2005 Dec;100(8):811-27

24. Rangel EF, Vilela ML. Lutzomyia longipalpis (Diptera, Psychodidae, Phlebotominae) and urbanization of visceral leishmaniasis in Brazil. Cad Saude Publica. 2008 Dec;24(12):2948-52
25. Costa CH, de Miranda-Santos IK. Aircraft and risk of importing a new vector of visceral leishmaniasis. Emerg Infect Dis. 2011 Jul;17(7):1333-4.

26. Casanova C, Colla-Jacques FE, Hamilton JG, Brazil RP, Shaw JJ. Distribution of *Lutzomyia longipalpis* chemotype populations in São Paulo state, Brazil. PLoS Negl Trop Dis. 2015 Mar 17;9(3):e0003620.

Costa PL, Dantas-Torres F, da Silva FJ, Guimarães VC, Gaudêncio K, Brandão-Filho SP. Ecology of *Lutzomyia longipalpis* in an area of visceral leishmaniasis transmission in north-eastern Brazil. Acta Trop. 2013 May;126(2):99-102.

27. Centre veterinar de cornellà. 2016 [cited 2016 Sep 22]. Available from: http://www.veterinariocornella.com/leishmaniainfo.html

28. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância Epidemiológica. Manual de vigilância e controle da leishmaniose visceral. Brasília: Ministério da Saúde; 2006

29. Brasil Ministério da Saúde. Manual de Vigilância e controle da Leishmaniose Visceral; 2006. [citado 2016 Out 10]. Disponível em: http://bvsms.saude.gov.br/bvs/publicacoes/manual_vigilancia_controle_leish_viscera_2006.pdf

30. Grimaldi G Jr, Tesh RB. Leishmaniases of the New World: current concepts and implications for future research. Clin Microbiol Rev. 1993 Jul;6(3):230-50.

31. Moshfe A, Mohebali M, Edrissian G, Zarei Z, Akhoundi B, Kazemi B, Jamshidi S, Mahmoodi M. Canine visceral leishmaniasis: asymptomatic infected dogs as a source of *L. infantum* infection. Acta Trop. 2009 Nov;112(2):101-5.

32. Ferreira AW, Ávila SL. M. Leishmanioses. In: Diagnóstico laboratorial das principais doenças infecciosas e auto-imunes. 2ª ed. Rio de Janeiro: Guanabara Koogan. 2001. p.255-60.

33. Schallig HD, Oskam L. Molecular biological applications in the diagnosis and control of leishmaniasis and parasite identification. Trop Med Int Health. 2002 Aug;7(8):641-51.

34. Alvar J, Cañavate C, Molina R, Moreno J, Nieto J. Canine leishmaniasis. Adv Parasitol. 2004;57:1-88.
35. Degrange W, Fernandes O, Campbell D, Bozza M, Lopes U. Use of molecular probes and PCR for detection and typing of Leishmania—a mini-review. Mem Inst Oswaldo Cruz. 1994 Jul-Sep;89(3):463-9.

36. Mary C, Faraut F, Lascombe L, Dumon H. Quantification of Leishmania infantum DNA by a real-time PCR assay with high sensitivity. J Clin Microbiol. 2004 Nov;42(11):5249-55.

37. Reithinger R, Dujardin JC. Molecular diagnosis of leishmaniasis: current status and future applications. J Clin Microbiol. 2007 Jan;45(1):21-5.

38. Bruijn MH, Barker DC. Diagnosis of New World leishmaniasis: specific detection of species of the Leishmania braziliensis complex by amplification of kinetoplast DNA. Acta Trop. 1992 Sep;52(1):45-58.

39. Lainson R, Shaw JJ. New World Leishmaniasis. The neotropical Leishmania species. In: Cox FEG, JP Kreier, Wakelin D, editors, Topley & Wilson’s, Microbiology and Microbial Infections London: Academic Press; 1998. p. 241-266.

40. Reithinger R, Dujardin JC. Molecular diagnosis of leishmaniasis: current status and future applications. J Clin Microbiol. 2007 Jan;45(1):21-5.

41. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância Epidemiológica. Guia de vigilância em saúde. Brasília: Ministério da Saúde; 2016.

42. Ashford RW. The leishmaniases as emerging and reemerging zoonoses. Int J Parasitol. 2000 Nov;30(12-13):1269-81.

43. Galati EAB. Phylogenetic systematics of Phlebotominae (Diptera, Psychodidae) with emphasis on American groups. Bol Dir Malariol Saneam Amb 1995; 35: 133-142.

44. Shaw JJ. New World leishmaniasis: the ecology of leishmaniasis and the diversity of leishmanial species in Central and South America. In: Farrell JP, editor. World class parasites: Leishmania, Boston: Kluwer Academic Publishers; 2003. v.4, p.11-31.

45. Quinnell RJ, Courtenay O. Transmission, reservoir hosts and control of zoonotic visceral leishmaniasis. Parasitol 2009; 136 (14): 1915–34.
46. Nicole CH, Comte CH. Recherche sur le kala-azar enterprises al Institute Pasteur de Tunis. IV: origine canine kala-azar. Arch Inst Pasteur Tunis 1908; 3:59–62.

47. Chagas E. VISCERAL LEISHMANIASIS IN BRAZIL. Science. 1936 Oct 30;84(2183):397-8.

48. Chagas E, Cunha AM, Ferreira LC, Deane L, Deane G, Guimarães FN, et al. Leishmaniose visceral americana. Relatório dos trabalhos realizados pela Comissão encarregada do estudo da leishmaniose visceral americana em 1937. Mem Inst Oswaldo Cruz 1938; 33:89-229.

49. Deane LM 1956. Leishmaniose visceral no Brasil: estudos sobre reservatórios e transmissores realizados no estado do Ceará, Serviço Nacional de Educação Sanitária, Rio de Janeiro, 162 pp.

50. Deane LM, DEANE MP. Visceral leishmaniasis in Brazil: geographical distribution and transmission. Rev Inst Med Trop Sao Paulo. 1962 May-Jun;4: 198-212.

51. Vides JP, Schwardt TF, Sobrinho LS, Marinho M, Laurenti MD, Biondo AW, et al. Leishmania chagasi infection in cats with dermatologic lesions from an endemic area of visceral leishmaniosis in Brazil. Vet Parasitol. 2011 May 31;178(1-2):22-8.

52. Cardia DF, Camossi LG, Neto LS, Langoni H, Bresciani KDS. Prevalence of Toxoplasma gondii and Leishmania spp. infection in cats from Brazil. Vet Parasitol. 2013;197(3-4):634-7.

53. Costa PL, Dantas-Torres F, da Silva FJ, Guimarães VC, Gaudêncio K, Brandão-Filho SP. Ecology of Lutzomyia longipalpis in an area of visceral leishmaniasis transmission in north-eastern Brazil. Acta Trop. 2013 May;126(2):99-102.

54. World Health Organization. Leishmaniasis. Geneva: WHO, 2010. [cited 2016 Out 21]. Available from: http://www.who.int/leishmaniasis/burden/en/

55. Michalick MSM, Genaro O. Leishmaniose visceral americana. In: Neves DP, Melo AL, Linardi PM, Vitor RWA. Parasitologia humana. 11 ed. Rio de Janeiro: Atheneu; 2005. p. 67-84.
56. Organização Pan-americana da Saúde. Leishmanioses-Informe Epidemiológico das Américas. OPAS; 2015 [cited 2016 Mar 28]. Available from: http://www.paho.org/hq/index.php?option=com_docman&task=doc_download&Itemid=&gid=31144&lang=es

57. Barreto MP. Observações sobre a biologia, em condições naturais, dos flebótomos do Estado de São Paulo (Diptera, Psychodidae). São Paulo: Tipografia Rossolito; 1943.

58. Forattini OP. Algumas observações sobre biologia de flebótomos (Diptera Psychodidae) em região da bacia do Rio Paraná (Brasil). Arq Fac Hig Saude Publ S Paulo. 1954;8:15-136.

59. Forattini OP, Rabello EX, Pattoli DBG. Sobre o encontro de Lutzomyia longipalpis (Lutz & Neiva, 1912) no Estado de São Paulo, (Comunicação). Rev Saude Publica. 1970;4(1):99-100.

60. Costa AI, Casanova C, Rodas LA, Galati EA. [Update on the geographical distribution and first record of Lutzomyia longipalpis in an urban area in São Paulo State, Brazil]. Rev Saude Publica. 1997 Dec;31(6):632-3.

61. Superintendência de Controle de Endemias. Trajetória dos últimos 40 anos; 2015. [citado 2017 Apr 24]. Disponível em: http://www.saude.sp.gov.br/resources/sucen/homepage/destaques/sucen-40-anos-cafe-com-saude/apresentacao_sucen_dalva.pdf

62. Centro de Vigilância Epidemiológica. Secretaria Estadual de Saúde de São Paulo, Leishmaniose Visceral. LV – Casos Autóctones e Óbitos por LPI; 2016 [citado 2016 Jun 16]. Disponível em: http://www.cve.saude.sp.gov.br/htm/zoo/dados/lv1214_sh_gve.pdf

63. Centro de Vigilância Epidemiológica. Comitê de leishmaniose visceral americana da secretaria de estado da saúde; 2010 [citado 2016 Out 24]. Disponível em: ftp://ftp.cve.saude.sp.gov.br/doc_tec/zoo/lva06_manual.pdf

64. Boletim Epidemiológico Paulista. Leishmaniose visceral no estado de São Paulo: Tendência geral da letalidade entre 1999 a 2013 e o risco de óbitos por estratificação epidemiológica dos municípios e regionais de Vigilância Epidemiológica entre 2011 a 2013; 2015 [citado 2017 Apr 29] Disponível em: http://www.saude.sp.gov.br/resources/ccd/homepage/bepa/edicao2015/edicao_143_-_novembro_3.pdf
65. Instituto Brasileiro de Geografia e estatística; 2016 [citado 2016 Out 29] Disponível em: http://cidades.ibge.gov.br/xtras/perfil.php?codmun=351440

66. D'andrea L, Camargo-Neves VLF, Sampaio SMP, Kronka SN, Sartor IF. American visceral leishmaniasis: disease control strategies in Dracenca microregion in Alta Paulista, SP, Brazil. J Venom Anim Toxins incl Trop Dis. 2009;15(2):306.

67. Colombo FA, Odorizzi RM, Laurenti MD, Galati EA, Canavez F, Pereira-Chioccola VL. Detection of Leishmania (Leishmania) infantum RNA in fleas and ticks collected from naturally infected dogs. Parasitol Res. 2011 Aug;109(2):267-74.

68. Colombo FA, Pereira-Chioccola VL, Meira Cda S, Motoie G, Gava R, Hiramoto RM, de Almeida ME, da Silva AJ, Cutolo AA, Menz I. Performance of a real time PCR for leishmaniasis diagnosis using a L. (L.) infantum hypothetical protein as target in canine samples. Exp Parasitol. 2015 Oct; 157:156-62.

69. Passos VM, Fernandes O, Lacerda PA, Volpini AC, Gontijo CM, Degrave W, Romanha AJ. Leishmania (Viannia) braziliensis is the predominant species infecting patients with American cutaneous leishmaniasis in the State of Minas Gerais, Southeast Brazil. Acta Trop. 1999 Apr 30; 72 (3):251-8.

70. Ravel S, Cuny G, Reynes J, Veas F. A highly sensitive and rapid procedure for direct PCR detection of Leishmania infantum within human peripheral blood mononuclear cells. Acta Trop. 1995 Jun;59(3):187-96.

71. Freitas-Lidani KC, Messias-Reason IJ, Ishikawa EA. A comparison of molecular markers to detect Lutzomyia longipalpis naturally infected with Leishmania (Leishmania) infantum. Mem Inst Oswaldo Cruz. 2014 Jul;109(4):442-7.

72. Harris E, Kropp G, Belli A, Rodriguez B, Agabian N. Single-step multiplex PCR assay for characterization of New World Leishmania complexes. J Clin Microbiol.1998 Jul;36(7):1989-95.

73. El Tai NO, El Fari M, Mauricio I, Miles MA, Oskam L, El Safi SH, Presber WH, Schönian G. Leishmania donovani: intraspecific polymorphisms of Sudanese isolates revealed by PCR-based analyses and DNA sequencing. Exp Parasitol. 2001 Jan;97(1):35-44.

74. Schönian G, Nasereddin A, Dinse N, Schweynoch C, Schallig HD, Presber W, Jaffe CL. PCR diagnosis and characterization of Leishmania in local and imported clinical samples. Diagn Microbiol Infect Dis. 2003 Sep;47(1):349-58.
75. Galati EAB. Morfologia e taxonomia: classificação de Phlebotominae. In: Rangel, E.F. & Lainson, R. (Orgs.). Flebotomíneos do Brasil. Editora Fiocruz, Rio de Janeiro. 2003 Jan 23-51.

76. Paiva BR, Secundino NF, Nascimento JC, Pimenta PF, Galati EA, Junior HF, Malafronte RS. Detection and identification of *Leishmania* species in field-captured phlebotomine sandflies based on mini-exon gene PCR. Acta Trop. 2006 Oct;99(2-3):252-9.

77. Paiva BR, Oliveira AG, Dorval ME, Galati EA, Malafronte RS. Species-specific identification of *Leishmania* in naturally infected sand flies captured in Mato Grosso do Sul State, Brazil. Acta Trop. 2010 Jul-Aug;115(1-2):126-30.

78. Gomes AH, Ferreira IM, Lima ML, Cunha EA, Garcia AS, Araújo MF, Pereira-Chioccola VL. PCR identification of *Leishmania* in diagnosis and control of canine Leishmaniasis. Vet Parasitol. 2007 Mar 31;144(3-4):234-41. Erratum in: Vet Parasitol. 2007 Nov 10;149(3-4):298.

79. Miranda JC, Reis E, Schriefer A, Goncalves M, Reis MG, Carvalho L, Fernandes O, Barral-Netto M, Barral A. Frequency of infection of *Lutzomyia* phlebotomines with *Leishmania braziliensis* in a Brazilian endemic area as assessed by pinpoint capture and polymerase chain reaction. Mem Inst Oswaldo Cruz. 2002 Mar;97(2):185-8.

80. Saraiva L, Andrade Filho JD, Silva Sde O, Andrade AS, Melo MN. The molecular detection of different *Leishmania* species within sand flies from a cutaneous and visceral leishmaniasis sympatric area in Southeastern Brazil. Mem Inst Oswaldo Cruz. 2010 Dec;105(8):1033-9.

81. Oliveira, Oliveira DM, Saraiva EM, Ishikawa EA, Sousa AA, Silva EO, Silva IM. Distribution of phlebotomine fauna (Diptera: Psychodidae) across an urban-rural gradient in an area of endemic visceral leishmaniasis in northern Brazil. Mem Inst Oswaldo Cruz. 2011 Dec;106(8):1039-44.

82. Rangel O, Sampaio SM, Ciaravolo RM, Holcman MM. The distribution pattern of *Lutzomyia longipalpis* (Diptera: Psychodidae) in the peridomiciles of a sector with canine and human visceral leishmaniasis transmission in the municipality of Dracena, São Paulo, Brazil. Mem Inst Oswaldo Cruz. 2012 Mar;107(2):163-9.

83. Rangel O, Hiramoto RM, Henriques LF, Taniguchi HH, Ciaravolo RM, Tolezano JE, et al. Classificação epidemiológica dos municípios segundo o Programa de
84. Dantas-Torres F. [Current epidemiological status of visceral leishmaniasis in Northeastern Brazil]. Rev Saude Publica. 2006 Jun;40(3):537-41.

85. Dantas-Torres F. The role of dogs as reservoirs of Leishmania parasites, with emphasis on *Leishmania (Leishmania)* infantum and *Leishmania (Viannia)* braziliensis. Vet Parasitol. 2007 Nov 10;149(3-4):139-46.

86. Baneth G, Koutinas AF, Solano-Gallego L, Bourdeau P, Ferrer L. Canine leishmaniosis - new concepts and insights on an expanding zoonosis: part one. Trends Parasitol. 2008 Jul;24(7):324-30.

87. Brasil. Ministério da Saúde. Manual de vigilância e controle da leishmaniose visceral; 2016. [citado 2016 Jul 16] Disponível em: http://bvsms.saude.gov.br/bvs/publicacoes/manual_vigilancia_controle_leish_visceral_2006.pdf

88. Missawa NA, Dias ES. Phlebotomine sand flies (Diptera: Psychodidae) in the municipality of Várzea Grande: an area of transmission of visceral leishmaniasis in the state of Mato Grosso, Brazil. Mem Inst Oswaldo Cruz. 2007 Dec;102(8):913-8.

89. Michalsky EM, Fortes-Dias CL, França-Silva JC, Rocha MF, Barata RA, Dias ES. Association of *Lutzomyia longipalpis* (Diptera: Psychodidae) population density with climate variables in Montes Claros, an area of American visceral leishmaniasis transmission in the state of Minas Gerais, Brazil. Mem Inst Oswaldo Cruz. 2009 Dec;104(8):1191-3.

90. Sant'anna MR, Nascimento A, Alexander B, Dilger E, Cavalcante RR, Diaz-Albiter HM, Bates PA, Dillon RJ. Chicken blood provides a suitable meal for the sand fly *Lutzomyia longipalpis* and does not inhibit Leishmania development in the gut. Parasit Vectors. 2010 Jan 11;3(1):3.

91. Chaskopoulou A, Giantsis IA, Demir S, Bon MC. Species composition, activity patterns and blood meal analysis of sand fly populations (Diptera: Psychodidae) in the metropolitan region of Thessaloniki, an endemic focus of canine leishmaniasis. Acta Trop. 2016 Jun;158:170-6.

92. Queiroz, Queiroz MF, Varjão JR, Moraes SC, Salcedo GE. Analysis of sandflies (Diptera: Psychodidae) in Barra do Garças, State of Mato Grosso, Brazil, and the influence of environmental variables on the vector density of *Lutzomyia longipalpis* (Lutz & Neiva, 1912). Rev Soc Bras Med Trop. 2012 Jun;45(3):3137.
93. Costa PL, Dantas-Torres F, da Silva FJ, Guimarães VC, Gaudêncio K, Brandão Filho SP. Ecology of Lutzomyia longipalpis in an area of visceral leishmaniasis transmission in north-eastern Brazil. Acta Trop. 2013 May;126(2):99-102.

94. Oliveira CD, Morais MH, Machado-Coelho GL. Visceral leishmaniasis in large Brazilian cities: challenges for control. Cad Saude Publica. 2008 Dec;24(12):2953-8.

95. Sant'Anna MR, Jones NG, Hindley JA, Mendes-Sousa AF, Dillon RJ, Cavalcante RR, Alexander B, Bates PA. Blood meal identification and parasite detection in laboratory-fed and field-captured Lutzomyia longipalpis by PCR using FTA databasing paper. Acta Trop. 2008 Sep;107(3):230-7.

96. Afonso MM, Duarte R, Miranda JC, Caranha L, Rangel EF. Studies on the Feeding Habits of Lutzomyia (Lutzomyia) longipalpis (Lutz & Neiva, 1912) (Diptera:Psychodidae: Phlebotominae) Populations from Endemic Areas of American Visceral Leishmaniasis in Northeastern Brazil. J Trop Med. 2012;2012:858657.

97. Soares BR, Souza AP, Prates DB, de Oliveira CI, Barral-Netto M, Miranda JC, Barral A. Seroconversion of sentinel chickens as a biomarker for monitoring exposure to visceral leishmaniasis. Sci Rep. 2013; 3:2352.

98. Salomón OD, Feliciangeli MD, Quintana MG, Afonso MM, Rangel EF, Lutzomyia longipalpis urbanisation and control. Mem Inst Oswaldo Cruz. 2015 Nov;110(7):831-46.

99. Casanova C, Andrighetti MT, Sampaio SM, Marcoris ML, Colla-Jacques FE, Prado AP. Larval breeding sites of Lutzomyia longipalpis (Diptera: Psychodidae) in visceral leishmaniasis endemic urban areas in Southeastern Brazil. PLoS Negl Trop Dis. 2013 Sep 19;7(9): e2443.

100. Sant'anna, Sant'anna MR, Nascimento A, Alexander B, Dilger E, Cavalcante RR, Diaz-Albiter HM, Bates PA, Dillon RJ. Chicken blood provides a suitable meal for the sand fly Lutzomyia longipalpis and does not inhibit Leishmania development in the gut. Parasit Vectors. 2010 Jan 11;3(1):3.

101. Soares RP, Turco SJ. Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae): a review. An Acad Bras Cienc. 2003 Sep;75(3):301-30. Review. Erratum in: An Acad Bras Cienc. 2003 Dec;75(4):441.
ANEXO A – APROVAÇÃO NA COMISSÃO DE PESQUISA E ÉTICA E COMISSÃO DE ÉTICA NO USO DE ANIMAIS EM PESQUISA DO INSTITUTO DE MEDICINA TROPICAL DA UNIVERSIDADE DE SÃO PAULO.

São Paulo, 07 de Março de 2014

Ilmo(a)

Dr(a). Vera Lucía Pereira Chioccola
(aos cuidados de Vera Lucía Pereira Chioccola)

Em reunião na presente data, a Comissão de Pesquisa e Ética e Comissão de Ética no Uso de Animais em Pesquisa, do Instituto de Medicina Tropical da Universidade de São Paulo, analisou e APROVOU, no que diz respeito aos aspectos de natureza da ética em experimentação animal, o projeto de pesquisa classificado sob número CPE-IMT/270 “Padronização e validação de um método molecular para identificação de infecção natural de flebotomíneos por Leishmania spp.”, sob a sua responsabilidade.

Cabe ao pesquisador elaborar e apresentar à CEUA-IMT, o relatório final sobre a pesquisa, (Lei Procedimentos para o Uso Científico de Animais – Lei n 11.794, 8 de outubro de 2008).

Atenciosamente,

[Assinatura]

Dr. Expedido José de Albuquerque Luna
Presidente da Comissão de Pesquisa e Ética do IMT-USP

[Assinatura]

Dra. Luciana Mereles Jaguaribe Ekman
Coordenadora da Comissão de Ética no Uso de Animais em Pesquisa do IMT-USP
Molecular detection of *Leishmania (Leishmania) infantum* in phlebotomine sandflies from a visceral leishmaniasis endemic area in northwestern of São Paulo State, Brazil

Kate Bastos dos Santos Brighente¹, Andre Antonio Cutolo¹, Gabriela Motoie², Cristina da Silva Meira-Strejevitch¹, Vera Lucia Pereira-Chioccola¹*

1. Laboratório de Biologia Molecular de Parasitas e Fungos and 2. Núcleo de Parasitoses Sistêmicas. Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil

*Corresponding author: Laboratório de Biologia Molecular de Parasitas e Fungos, Instituto Adolfo Lutz, Av. Dr Arnaldo, 351, 8 andar, CEP 01246-902, São Paulo, SP, Brazil. Phone (55 11) 3068 2991. Fax (55 11) 3068 2890. e-mail: pchioccola@gmail.com

Keywords: *Leishmania (Leishmania) infantum*; *Lutzomyia longipalpis*; infection rate; visceral leishmaniasis; natural infection; PCR; Sao Paulo State.
Abstract

This study identified the natural infection rate of *Leishmania (Leishmania) infantum* in *Lutzomyia longipalpis* sandflies collected in Dracena, northwestern of São Paulo state, a highly endemic area for visceral leishmaniasis in Brazil. Insects were captured during 2 to 3 nights monthly for 11 months (January to November 2012) using 10 automatic light traps around a kennel in a transition between periurban and urban neighborhood. Capture areas were grouped into 3 trapping zones in order to determine the minimal infection rate (MIR). A total of 1,690 *Lu. longipalpis* were captured during the studied period. Out of them, 292 (17.25%) were females and were grouped in 165 pools containing 1 to five insects for DNA extraction and PCR analysis. Positive results for *L. (L) infantum* in conventional PCR and real time PCR were shown in 7.28% (12/165) and 4.85% (8/165) of the analysis respectively. These data confirm that *Lu. longipalpis* captured in the study area were infected by *L. (L.) infantum*, and when the three trapping zones were considered together a MIR of sandflies during the 11 months of captures was 4.10% for female the total of 292 sandflies collected. A high DNA concentration of *L. (L.) infantum* was detected on sandflies especially in kennel, chicken coop and neighboring houses, locals with abundance of hosts for blood source.
1. **Introduction**

Visceral leishmaniasis (VL) is caused by protozoan species classified in the *Leishmania donovani* complex which is transmitted by infected phlebotomine sandflies (Diptera: Psychodidae). Around 56 phlebotomine sandfly species can be, or have been proved, to be involved in the transmission of *Leishmania* spp. in the Americas (Maroli et al., 2013). VL is by far the most severe form of leishmaniasis and is often lethal if untreated (Desjeux, 2004; Dujardin, 2005). Its worldwide prevalence is estimated at 400,000 to 600,000 new cases per year, and over 20,000 deaths annually. VL can be found in the Americas, Africa, Southern Europe, and Asia, although most cases occur in India, Bangladesh, Sudan, Brazil, and Nepal (Stuart et al., 2008 and WHO, 2016). Unfortunately, control strategies against the disease toward vectors as well as reservoirs of leishmaniasis have been ineffective (Alvar et al., 2012).

In Brazil, VL is caused by *L. (Leishmania) infantum*. Presently, approximately 2,500-5,000 cases are reported per year in Brazil, and 10% of the population living in these endemic areas is at risk for acquiring the infection (Lainson and Shaw, 1998; Desjeux, 2004; Alvar et al., 2012, MSB, 2016).

VL reached São Paulo State (Brazil) in 1999, when several cases were simultaneously reported in the northwestern region of the State. Since the first autochthonous human cases were reported in this State, the infection has been steadily growing and spreading quickly (Costa et al., 2001; Camargo-Neves et al., 2004). Currently, the parasite has been detected in more than 105 municipalities, with around 10% mortality and the incidence in this State is approximately 200 cases per year (Rangel et al., 2013). As other Brazilian regions, the main vector in Sao Paulo State is *Lutzomyia longipalpis* (Lainson and Rangel, 2005).

One useful tool for epidemiological studies of leishmaniasis is the determination of infection rate in sandflies. The standard method to determine *Leishmania* infection in sandflies is the searching for promastigotes after the dissection of the digestive tract of the insect and, following, the parasite isolation in culture medium. This methodology requires good experience (Kato et al., 2007; Perez et al., 2007). However, molecular methods such as PCR have been successfully used for identification and characterization of *Leishmania* in vectors, especially in epidemiological field studies when a large number of samples need to be handled (Miranda et al., 2002). In addition, accurate molecular methods
for identifying *Leishmania* species in the insect vector are critical for epidemiological studies or control programs.

Thus, this study was aimed to identify the natural infection rate of *L. (L.) infantum* in *Lu. longipalpis* collected in a highly endemic area for VL with no previous data on the infection rate of phlebotomine sandflies. Insects were captured in Dracena, a municipality located in northwestern region of Sao Paulo state with high VL transmission rate in humans and dogs (D’Andrea et al., 2009; Rangel, et al., 2012; Rangel et al., 2013).

2. Materials and Methods

2.1. Ethics statement

This study was performed according to guidelines of the Sociedade Brasileira de Ciência em Animais de Laboratório/Colégio Brasileiro de Experimentação Animal (SBCAL/COBEA) and the institutional review board of the Ethics Committee of the Instituto Adolfo Lutz approved this study (CEUA-IAL 06/2014).

2.2. Study area

Dracena is located at northwestern of Sao Paulo State, Brazil, at latitude 21° 28’ 57” S, longitude 51° 1’ 58” W, altitude of 421 m; with land area of 487,688 km². At the present time, only 7.12% of the region has native vegetation from Atlantic forest (Figure 1). The estimated population is 45,847 inhabitants (IBGE, 2016). Since 2005 to 2014, human and canine VL has been reported (D’Andrea et al., 2009), being 146 human cases diagnosed with three death cases officially notified by the municipality to the State Health Secretariat (CVE, 2016).

2.3. Trapping sites for sandflies

Insects were captured simultaneously during 2 to 3 nights monthly between January to November 2012 using 10 automatic light traps around a kennel, in a transition between periurban and urban neighborhood of Dracena city surrounded by small farms, pasture and houses (latitude 21° 28’
59° S, longitude 51° 32’ 57” 13” and altitude 413 m). Insect captures were performed in peridomiciliary areas divided in 3 zones. The trapping zone A included four traps distributed in a small farm containing a house (1) surrounded by an orchard containing mango trees and a chicken coop. Trapping zone B included five traps distributed within a dog kennel and a pasture area. Trapping zone C included one single trap set on a backyard of a house (2) situated in an urbanized area. Approximate distance between trap 1 and trap 10 was approximately 350 meters. The distribution of the 10 automatic light traps is shown in Figure 2.

2.4. Sample collection and identification of phlebotomite sandflies

On the following morning after each capture day, sandflies were killed frozen at -20°C. Then they were separated from other insects, fixed and stored in properly identified 1.5mL-tubes containing ethanol 70%. Sandflies were screened using a magnifying glass to distinguish males and females who were sorted and stored differently. Species identification was made according to Galati (2003). When the captures were finished, the insects were sent to Instituto Adolfo Lutz for molecular analysis by PCR looking for Leishmania.

2.5. Sandfly DNA extractions

DNA extracted from sandflies were tested using pools containing one to 5 specimens. Before performing the DNA extraction, sandflies were placed in 1.5 mL-tubes, crushed and digested, in a lysis buffer (Tris–HCl, 10 mM, pH 8.0; EDTA 10 mM; SDS, 0.5%; N-lauiarsarcozil, 0.01%; proteinase K, 100 μg/mL). The mixtures were incubated in water bath at 56 °C until tissues were completely lysed (20 min). Then, DNA molecules were extracted by QIAamp DNA Mini Kit (Qiagen), according to the manufacturer’s instructions. DNA concentrations and purity were determined by the ratio of O.D. at 260 and 280 nm in a NanoDrop ND1000 (Thermo Scientific).

2.6. PCR targets for Leishmania and internal control

L. (L.) infantum identification in conventional PCR (cPCR) was performed by using the molecular marker RV1/RV2, which amplifies a fragment from kDNA minicircles (Ravel et al., 1995; Gomes et al., 2007). The DNA samples (or controls) and 25 pmol of each primer were added to a kit
purchased from Promega (Go Taq Green Master Mix). The PCR mix (12.5 μL) was composed of 1 unit of Taq DNA polymerase, 10 mM Tris-HCl, pH 8.5; 50 mM KCl; 1.5 mM MgCl₂; and 200 mM of each of each dNTP. Each amplification run contained two negative controls (ultrapure water and a DNA sample extracted from a pool of 5 male sandflies) and one positive control (DNA extracted from *L. infantum* promastigotes, reference strain, MHOM/BR/74/PP75). To verify the quality of the extracted DNA and presence of PCR inhibitors, all samples were assayed using the molecular marker Lu1/Lu2 that amplifies a fragment of the 28SrRNA gene from *Lu. longipalpis* (Freitas-Lidani et al., 2014). Samples with negative cPCR for RV1/RV2 were tested for *Leishmania* genus using the molecular marker 150/152, from a conserved region of *Leishmania* spp (Passos et al., 1999). PCR products were electrophoresed in 2% agarose gel, stained with ethidium bromide and visualized under UV illumination.

L. (L.) infantum was further identified by real-time PCR (qPCR) using the molecular marker, Linj31 containing a hydrolysis probe labeled with FAM and NFQ at the 5’ and 3’ ends, respectively, which amplified a hypothetical *L. (L.) infantum* protein (Colombo et al., 2011; Colombo et al., 2015). The reactions were performed in a final volume of 20 μL. DNA samples (3 μL), were added to a reaction mixture containing 10 μL of 2× TaqMan Universal PCR Master Mix. Next 1 μL of the “Assay Mix” that included 18 μM of the forward and reverse primers and 5 μM of the hydrolysis probe was added. Amplifications were performed in an Applied Biosystems 7500 Real-time PCR System using the following thermal profile: 2 min, 50 °C, and 95 °C for 10 min. Next, 40 cycles were performed at 95°C for 15 sec and 60°C for 1 min.

2.7. Data analysis and infection rate

All divergent results in cPCR and qPCR were made at least twice. In order to quantify *Leishmania* infection per pool, the infection rate was determined as described before (Paiva et al., 2006; Paiva et al., 2010). The minimal infection rate (MIR) was estimated using following formula:

\[
\text{MIR} = \frac{\text{number of positive groups (pools)}}{\text{number of total insects}} \times 100
\]

The parasite concentrations in qPCR were determined as described before (Colombo et al., 2015).
2.8. Quality assurance

Male sandflies that were known to be negative for *Leishmania* spp. infection were processed simultaneously to monitor for eventual cross-contamination during extraction of the DNA samples. In each PCR run, a blank control consisted in water DNA free plus PCR mix. Separate rooms were used for i: DNA extraction; ii: PCR mix and primer preparation; iii: adding DNA from sandfly samples and positive control; and iv: post-PCR agarose gel electrophoresis analysis in case of the cPCR.

3. Results

During the 11-month period, 1,693 sandflies were captured on the 10 different trapping sites. Out of them, 1,401 specimens (82.75%) were males; and 292 were females (17.25%). *Lu. longipalpis* represented 1,690 (99.82%) of the total captured sandflies and three (0.18%) male individuals were identified as *Evandromyia cortellezii*.

Lu. longipalpis sandflies were kept as individual samples or grouped in pools up to five individuals, according to the date, number of female insects and trapping site for PCR processing.

Leishmania natural infection in female *Lu. longipalpis* was evaluated by cPCR using the molecular marker RV1/RV2 and qPCR, by Linj 31. The amount of DNA obtained in extractions, per pool, ranged from 0.6 to 64.9 ng/µL. From the 292 captured sandflies, 165 pools DNA samples were processed for PCR with 7.28% (12/165) positive reactions for *L. (L.) infantum* in cPCR and 4.85% (8/165) in qPCR. The good quality of these DNA samples was confirmed by the amplification in all samples of 28SrRNA (Lu1/Lu2) fragments from *Lu. longipalpis* in cPCR. In order to determine eventual presence of DNA of other *Leishmania* species, sandfly samples with negative results for *L. (L.) infantum* were further tested in cPCR for *Leishmania* genus. All of them were negative in 150/152 molecular marker.

The sandfly trapping zones were grouped together aiming to determine overall minimum infection rate (MIR). Table 1 shows, in details, the distribution of captured *Lu. longipalpis* (females)
and the respective MIR during the eleven months of sandfly captures. MIR was found to be 4.10% for all female (292) collected considering all trapping sites during the 11 months.

Each zone was composed of one to five trapping sites. Trapping zone A had four automatic light traps distributed in the peridomiciliary area of a small farm that included a chicken coop, the porch of the residence (house 1) and 2 mango trees located on its orchard. Positive sandflies were found on the chicken coop (MIR 6.45) and on the porch of the residence (MIR 1.80). None of the sandflies captured on the orchard mango trees were infected by *L. (L.) infantum*. Trapping zone B had five automatic light traps distributed in peridomicile of a dog kennel containing approximately 200 dogs. Automatic light traps were distributed in front of the kennel main house, on a kennel pen, back of kennel main house and two pasture areas. The results were similar from those of trapping zone A. Positive sandflies were shown in the dog pen (MIR 5.26) and in the trap in front of the kennel main house (MIR 11.11). On pasture area, only male sandflies were captured. Trapping zone C included a residence (2) with positive sandflies (MIR 16.67).

Figure 3 shows the 8 positive results in qPCR using the molecular marker Linj31 and the concentrations of amplified DNA of *L. (L.) infantum* in sandflies. The areas were sandflies were captured defined as Trapping zones A, B and C showed different levels of *L. (L.) infantum* DNA amount. Results of C\(_T\) 24 to 26 corresponded around 1 to 5 x 10\(^3\) promastigotes/pool

4. Discussion

One of the most important risk factors in the increase of VL worldwide has been the migration of people and/or its infected pet dogs to endemic areas where the insect vector is abundant. Thus, the identification of *Leishmania* species in vector or hosts in these areas is essential for measures to prevent and control this infection.

As PCR is an efficient and fast procedure that allows processing of a high number of biological samples at each run when compared to the dissection of sandflies under microscope. Thus, in this study PCR was used to identify *Leishmania* natural infections in phlebotomine sandflies that had not being previously dissected. Such investigation was based on other studies showing that PCR
sensitivity and specificity can be better than those based on the intestinal dissection and microscopy of sandflies (Miranda et al., 2002; Saraiva et al., 2010; Oliveira et al., 2011).

An important point was determining how to analyze the captured sandflies by PCR. The dissection of individual sandflies is more laborious, but may give more precise results regarding the absolute infection rates per sandfly species in an area. However, since number of captured sandflies is generally high, an alternative is to use pools of specimens and evaluate the minimum infection rate (Freitas-Lidani et al., 2014). Based in this study, when light traps produced few specimens those insects were processed on an individual basis, when more than 20 female sandflies were captured sandflies were processed in pool (until 5 specimens). Considering the 292 specimens captured during the 11 months of study, 165 pools with DNA samples of sandflies were formed. Out of them, 12/165 (7.28%) were positive for *L. (L.) infantum* in cPCR and 8/165 (4.85%) in qPCR. The molecular marker RV1/RV2 for cPCR was more sensitive than Linj 31 using DNA extracted from sandflies. These data are similar to previous study whose authors tested different types of biological samples (Colombo et al., 2015).

As Dracena municipally is known to be a highly endemic area for VL (Rangel et al., 2012; Rangel et al., 2013), the molecular markers used in cPCR and qPCR were those that amplified specific regions of *L. (L.) infantum*. However, in order to determine whether other *Leishmania* species could be infecting the captured sandflies, samples that resulted negative were also tested for a molecular marker (150/152) that amplified a conserved region of *Leishmania* spp. These results confirmed that *L. longipalpis* sandflies captured on different traps were found to be infected by *L. (L.) infantum*, the main etiologic agent of zoonotic VL in this region. In addition, as showed in Figure 3, qPCR results were able to inform the high concentration of parasite DNA in sandflies, especially in house and chicken coop (Trapping zone A); in kennel area (Trapping zone B) and in house 2 in urban area (Trapping zone C). In these areas qPCR determined the concentration of 1 to 5 x 10^3 promastigotes/pool of sandflies (C_T 23 to 26).

Recently, different studies have been shown that canine infection is considered a major potentially source of fatal zoonotic infection to humans and/or dogs in regions of Europe, Africa, Asia and South America. Particularly in South America, millions of dogs are infected. In some endemic regions, the prevalence of canine VL can be as high as around 63%–80% (Dantas-Torres, 2006;
Dantas-Torres, 2007; Baneth et al., 2008; MSB, 2016). However, the occurrence of *Lu. longipalpis* with different rates of *Leishmania* infection have been reported in different Brazilian endemic areas, going from 0.2 to 7.14% (Missawa and Dias 2007; Michalsky et al. 2009; Savani et al. 2009).

These results are in accordance with those obtained by other authors in endemic areas of Brazil and showed us a MIR of 4.10% on the studied periurban area of Dracena. However, when these data were considered per micro-area, a high MIR was shown in locals as dog kennel, chicken coop and outside human house. These data confirm that infected phlebotomine sandflies are present on the trapping sites, locals with abundance of hosts acting as blood source. In addition, the preferential attraction of sandflies by man and domestic animals and theirs shelters as chicken coops were completely confirmed. This behavior has been reported by others (Sant’Anna et al., 2010; Chaskopoulou et al., 2016).

Lu. longipalpis abundance is associated to domestic animals (Queiroz et al., 2012, Costa et al., 2013). Some authors found that chickens are the most frequent blood meal source detected in fed females of *Lu. longipalpis* secondary to dogs (Oliveira et al., 2008, Sant’Anna et al., 2008, Afonso et al., 2012, Soares et al., 2013). According Salomón et al. (2015), chickens act as a sandfly population amplifier as they create a micro-climate shelter inside chicken coops (Oliveira et al., 2011, Casanova et al., 2013). Thus, chickens may participate in VL epidemiology, since they are suitable hosts to support *Lu. longipalpis* populations, as blood source, but also increasing suitability for breading sites on the peridomestic environment since its fecal material may allow development of sandflies larval stages (Sant’Anna et al., 2010).

Results obtained on this study reinforce the idea of *Lu. longipalpis* urbanization-dispersion on the urban environment, which involves climatic, environmental and sociocultural factors (Soares and Turco 2003, Lainson and Rangel 2005; Salomón et al., 2015) and its fundamental role as main vector of *L. infantum* in the area.

This study also confirms the importance of molecular methods as a tool for investigating VL epidemiology, as well as, determining infection rates of *Leishmania* on sandflies and allowing estimations on the risk of its parasite transmission in endemic areas, giving support to actions of prevention and control of such zoonotic disease.
Support

KBSB and VLPC were supported by fellowships from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil) (301369/2015-1) respectively.

Conflict of interest and Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

Afonso, M.M., Duarte, R., Miranda, J.C., Caranha, L., Rangel, E.F. 2012. Studies on the Feeding Habits of Lutzomyia (Lutzomyia) longipalpis (Lutz & Neiva, 1912) (Diptera: Psychodidae: Phlebotominae) Populations from Endemic Areas of American Visceral Leishmaniasis in Northeastern Brazil. J. Trop. Med. 2012:858657.

Alvar, J., Vélez, I.D., Bern, C., Herrero, M., Desjeux, P., Cano, J., Jannin, J., den Boer, M., the WHO Leishmaniasis Control Team., 2012. Leishmaniasis Worldwide and Global Estimates of Its Incidence. PLoS One. 7, e35671.

Alves, G.B., Oshiro, E.T., Leite, M.C., Melão, A.V., Ribeiro, L.M., Mateus, N.L., Brazil, R.P., Andrade, J.D., Oliveira Filho, A.G., 2012. Phlebotomine sandflies fauna (Diptera: Psychodidae) at rural settlements in the municipality of Cáceres, state of Mato Grosso, Brazil. Rev. Soc. Bras. Med. Trop.45, 437–443.

Baneth, G., Koutinas, A.F., Solano-Gallego, L., Bourdeau, P., Ferrer, F., 2008. Canine leishmaniasis – new concepts and insights on an expanding zoonosis: part one. Trends Parasitol. 24, 324-330.

Camargo-Neves, V.L.F., 2004. A leishmaniose visceral Americana no Estado de São Paulo. Bol. Epidem. Paul. (serial on the internet). http://www.cve.saude.sp.gov.br/agencia/bepa6_lva.htm (accessed 16.06.23).
Casanova, C., Andrighetti, M.T., Sampaio, S.M., Marcoris, M.L., Colla-Jacques, F.E., Prado, A.P., 2013. Larval breeding sites of Lutzomyia longipalpis (Diptera: Psychodidae) in visceral leishmaniasis endemic urban areas in southeastern Brazil. PLoS Negl. Trop. Dis. 7.

Chaskopoulou, A., Giantsis, I.A., Demir, S., Bon, M.C., 2016. Species composition, activity patterns and blood meal analysis of sand fly populations (Diptera: Psychodidae) in the metropolitan region of Thessaloniki, an endemic focus of canine leishmaniasis. Acta Trop. 158:170-176.

Colombo, F.A., Odorizzi, R.M., Laurenti, M.D., Galati, E.A., Canavez, F., Pereira-Chioccola, V.L., 2011. Detection of Leishmania (Leishmania) infantum RNA in fleas and ticks collected from naturally infected dogs. Parasitol. Res. 109, 267-274.

Colombo, F.A., Pereira-Chioccola, V.L., Meira, C.S., Motosie, G., Gava, R., Hiramoto, R.M., de Almeida, M.E., da Silva, A.J., Cutolo, A.A., Menz, I., 2015. Performance of a real time PCR for leishmaniasis diagnosis using a L. (L.) infantum hypothetical protein as target in canine samples. Exp. Parasitol. 157, 156-162.

Costa, C.H.N., Gomes, A.C.G., Costa, J.M.L., Vieira, J.B.F., Lima, J.W.O., Dietz, R., 2001. Changes in the control program of visceral leishmaniasis in Brazil. Rev. Soc. Bras. Med. Trop. 34, 223–228.

Costa, P.L., Dantas-Torres, F., Silva, F.J., Guimarães, V.C., Gaudêncio, K., Brandão, S.P., 2013. Ecology of Lutzomyia longipalpis in an area of visceral leishmaniasis transmission in northeastern Brazil. Acta Trop. 126, 99–102.

CVE (Centro de Vigilancia Epidemiológica - Secretaria Estadual de Saúde de São Paulo), 2016. Leishmaniose Visceral. LV – Casos Autóctones e Óbitos por LPI. http://www.cve.saude.sp.gov.br/htm/zoo/dados/lv1214_sh_gve.pdf (accessed 16.06.07).

D’Andrea, L.A.Z., Camargo-Neves, V.L.F., Sampaio, S.M.P., Kronka, S.N., Sartor, I.F., 2009. American visceral leishmaniasis: disease control strategies in Dracena microregion in Alta Paulista, SP, Brazil. J. Venom. Anim. Toxins. Trop. Dis. 15, 305–324.

Dantas-Torres F., 2006. Current epidemiological status of visceral leishmaniasis in Northeastern Brazil. Rev. Saude. Pub. 40, 537-541.
Dantas-Torres F., 2007. The role of dogs as reservoirs of *Leishmania* parasites, with emphasis on *Leishmania (Leishmania) infantum* and *Leishmania (Viannia) braziliensis*. Vet. Parasitol. 10, 139-146.

Desjeux, P., 2004. Leishmaniasis: current situation and new perspectives. Com. Immunol. Microbiol. Infect. Dis. 27, 305–318.

Dujardin, J.C., 2005. Risk factors in the spread of leishmaniases: towards integrated monitoring? Trends. Parasitol. 22, 4–6.

Freitas-Lidani, K.C., Messias-Reason, I.J., Ishikawa, E.A., 2014. A comparison of molecular markers to detect *Lutzomyia longipalpis* naturally infected with *Leishmania (Leishmania) infantum*. Mem. Inst. Oswaldo Cruz. 109, 442-447.

Galati, E.A.B., 2003. Classificação de Phlebotominae. In: Rangel, E.F., Lainson, R. (Eds.), Flebotomíneos do Brasil. FIOCRUZ, Rio de Janeiro, pp. p.23–51.

Gomes, A.H., Ferreira, I.M., Lima, M.L., Cunha, E.A., Garcia, A.S., Araújo, M.F., Pereira-Chioccola, V.L., 2007. PCR identification of *Leishmania* in diagnosis and control of canine Leishmaniasis. Vet. Parasitol. 31, 234-241. Erratum in: Vet. Parasitol. 2007, 10,: 298.

IBGE (Instituto Brasileiro de Geografia e Estatística), 2016. http://cod.ibge.gov.br/427. (accessed 16.06.08).

Kato, H., Uezato, H., Gomez, E.A., Terayama, Y., Calvopiña, M., Iwata, H., Hashiguchi, Y., 2007. Establishment of a mass screening method of sandfly vectors for *Leishmania* infection by molecular biological methods. Am. J. Trop. Med. Hyg. 77, 324–329.

Lainson, R., Rangel, E.F., 2005. *Lutzomyia longipalpis* and the eco-epidemiology of American visceral leishmaniases, with particular reference to Brazil - A Review. Mem. Inst. Oswaldo Cruz.100, 811–827.

Lainson, R., Shaw, J.J., 1998. New world leishmaniases. The neotropical *Leishmania* species, in: Collier, L., Balows, A., Sussman, M. (Eds), Topley and Wilson’s Microbiology and Microbial Infectious Diseases, 9th ed. Vol 5. London, Arnold, pp. 241–266.

Maroli, M., Feliciangeli, M.D., Bichaud, L., Charrel, R.N., Gradoni, L., 2013. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med. Vet. Entomol. 27, 127–147.
Michalsky, E.M., Fortes-Dias, C.L., França-Silva, J.C., Rocha, M.F., Barata, R.A., Dias, E.S., 2009. Association of Lutzomyia longipalpis (Diptera: Psychodidae) population density with climate variables in Montes Claros, an area of American visceral leishmaniasis transmission in the state of Minas Gerais, Brazil. Mem. Inst. Oswaldo Cruz. 104, 1191-1193.

Miranda, J.C., Reis, E., Schriefer, A., Goncalves, M., Reis, M.G., Carvalho, L., Fernandes, O., Barral-Netto, M., Barral, A., 2002. Frequency of infection of Lutzomyia phlebotomines with Leishmania braziliensis in a Brazilian endemic area as assessed by pinpoint capture and polymerase chain reaction. Mem. Inst. Oswaldo Cruz. 97, 185-188.

Missawa, N.A., Dias, E.S., 2007. Phlebotomine sand flies (Diptera: Psychodidae) in the municipality of Várzea Grande: an area of transmission of visceral leishmaniasis in the state of Mato Grosso, Brazil. Mem. Inst. Oswaldo Cruz. 102, 913-918.

MSB (Ministério da Saúde do Brasil), 2016. Manual de vigilância e controle da leishmaniose visceral. http://bvsms.saude.gov.br/bvs/publicacoes/manual_vigilancia_controle_leish_visceral_2006.pdf (accessed 16.07.11)

Oliveira, C.D., Morais, M.H., Machado-Coelho, G.L., 2008. Visceral leishmaniasis in large Brazilian cities: challenges for control. Cad. Saude Publica. 24, 2953–2958.

Oliveira, D.M.S., Saraiva, E.M., Ishikawa, E.A.Y., Sousa, A.A.A., Silva, E.O., Silva, I.M., 2011. Distribution of phlebotomine fauna (Diptera: Psychodidae) across an urban-rural gradient in an area of endemic visceral leishmaniasis in northern Brazil. Mem Inst. Oswaldo Cruz. 106, 1039–1044.

Paiva, B.R., Oliveira, A.G., Dorval, M.E., Galati, E.A., Malafronte, R.S., 2010. Species-specific identification of Leishmania in naturally infected sandflies captured in Mato Grosso do Sul State, Brazil. Acta Trop. 115, 126-130.

Paiva, B.R., Secundino, N.F., Nascimento, J.C., Pimenta, P.F., Galati, E.A., Junior, H.F., Malafronte, R.S., 2006. Detection and identification of Leishmania species in field-captured phlebotomine sandflies based on mini-exon gene PCR. Acta Trop. 99,252-259.

Passos, V.M., Fernandes, O., Lacerda, P.A., Volpini, A.C., Gontijo, C.M., Degrave, W., Romanha, A.J., 1999. Leishmania (Viannia) braziliensis is the predominant species infecting patients
with American cutaneous leishmaniasis in the State of Minas Gerais, Southeast Brazil. Acta Trop. 30, 72, 251-258.

Perez, J.E., Veland, N., Espinosa, D., Torres, K., Ogusuku, E., Llanos-Cuentas, A., Gamboa D., Arévalo, J., 2007. Isolation and molecular identification of *Leishmania (Viannia) peruviana* from naturally infected *Lutzomyia peruensis* (Diptera: Psychodidae) in the Peruvian Andes. Mem. Inst. Oswaldo Cruz. 102, 655–658.

Queiroz, M.F., Varjão, J.R., Moraes, S.C., Salcedo, G.E., 2012. Analysis of sandflies (Diptera: Psychodidae) in Barra do Garças, state of Mato Grosso, Brazil and the influence of environmental variables on the vector density of *Lutzomyia longipalpis* (Lutz & Neiva, 1912). Rev. Soc. Bras. Med. Trop. 45, 313–317.

Rangel, O., Hiramoto, R.M., Henriques, L.F., Taniguchi, H.H., Ciaravolo, R.M.C., Tolezano, J.E., França, A.C.C., Yamashiro, J., Oliveira, S.S., 2013. Epidemiological classification of cities according to the Program of Surveillance and Control of American Visceral Leishmaniasis in the State of São Paulo, updated in. BEPA. (Online). http://periodicos.ses.sp.bvs.br/scielo.php?script=sci_arttext&pid=S1806-42722013000300002&lng=pt

Rangel, O., Sampaio, S.M.P., Ciaravolo, R.M.C., Holcman, M.M., 2012. The distribution pattern of *Lutzomyia longipalpis* (Diptera: Psychodidae) in the peridomiciles of a sector with canine and human visceral leishmaniasis transmission in the municipality of Dracena, São Paulo, Brazil. Mem. Inst. Oswaldo Cruz.107,163-169.

Ravel, S., Cuny, G., Reyes, J., Veas, F. 1995. A highly sensitive and rapid procedure for direct PCR detection of *Leishmania infantum* within human peripheral blood mononuclear cells. Acta Trop.59, 187-196.

Salomón, O.D., Feliciangeli, M.D., Quintana, M.G., Afonso, M.M., Rangel, E.F., 2015. *Lutzomyia longipalpis* urbanisation and control. Mem. Inst. Oswaldo Cruz. 110: 831-846.

Sant'Anna, M.R., Jones, N.G., Hindley, J.A., Mendes-Sousa, A.F., Dillon, R.J., Cavalcante, R.R., Alexander, B., Bates, P.A., 2008. Blood meal identification and parasite detection in laboratory-fed and field-captured *Lutzomyia longipalpis* by PCR using FTA databasing paper. Acta Trop. 107, 230–237.
Sant'anna, M.R., Nascimento, A., Alexander, B., Dilger, E., Cavalcante, R.R., Diaz-Albiter, H.M., Bates, P.A., Dillon, R.J., 2010. Chicken blood provides a suitable meal for the sand fly Lutzomyia longipalpis and does not inhibit Leishmania development in the gut. Parasit. Vectors. 11, 3.

Saraiva, L., Andrade, J.D., Filho Silva, S.O., Andrade, A.S.R., Melo, M.N. 2010. The molecular detection of different Leishmania species within sandflies from a cutaneous and visceral leishmaniasis sympatric area in southeastern Brazil. Mem. Inst. Oswaldo Cruz.105,1033–1039.

Savani, E.S., Nunes, V.L., Galati, E.A., Castilho, T.M., Zampieri, R.A., Floeter-Winter, L.M., 2009. The finding of Lutzomyia almerioi and Lutzomyia longipalpis naturally infected by Leishmania spp. in a cutaneous and canine visceral leishmaniasis focus in Serra da Bodoquena, Brazil. Vet. Parasitol. 160, 18-24.

Soares, B.R., Souza, A.P., Prates, D.B., Oliveira, C.I., Barral-Netto, M., Miranda, J.C., Barral, A., 2013. Seroconversion of sentinel chickens as a biomarker for monitoring exposure to visceral leishmaniasis. Sci. Rep. 3, 2352.

Soares, R.P., Turco, S.J., 2003. Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae): a review. An. Acad. Bras. Cienc.75, 301–330.

Stuart, K., Brun, R., Croft, S., Fairlamb, A., Gurtler, R.E., McKerrow, J., Reed, S., Tarleton, R., 2008. Kinetoplastids: related protozoan pathogens, different diseases. J. Clin. Invest. 118, 1301–1310.

WHO (World Health Organization), 2016. http://www.who.int/leishmaniasis/en/ (accessed 16.07.09).
Table and Figure legends

Table 1. *L. (L.) infantum* natural infection and minimal infection rate (MIR) in *Lu. longipalpis* females by PCR. The insects were captured in Dracena during 11 months at 10 capture areas grouped in trapping zones A, B, and C as described in Figure 2 and Material and Methods section. *L. (L.) infantum* MIR was calculated according number of positive PCR.

Figure 1. Map of South America and Brazil indicating location of Sao Paulo State (A). Map of São Paulo State (B) indicating the studied municipality (Dracena).

Figure 2. Localization of the study area. A periurban neighborhood of Dracena municipally (latitude 21º28’59”S, longitude 51º32’57”13” and altitude 413 m), around a kennel. Distribution of the 10 automatic light traps: Trapping zone 1 (small farm); 1. An orchard with a mango tree behind the house 1; 2. Chicken coop; 3. House 1/porch of the residence; and 4. Orchard with mango trees in front of the house 1. Trapping zone 2 (small farm); 5. Bamboo tree in behind the kennel; 6. Kennel/home service area; 7. Kennel/ dog pen; 8. In front of the kennel main house; and 9. Pasture with scattered trees. Trapping zone C; 10. House 2 in urban area. Acquired image in 2012. Digitalglobe (2012 MapLink/teleAtlas at altitude of 935 m from the viewpoint (Source: Google Earth, Google Inc., 2011). The image use is according described in site: https://www.google.com/intl/pt-BR/permissions/geoguidelines.html

Figure 3. Amplification results of Linj31-qPCR and hydrolysis probe FAM dye-labeled using DNA samples from sandflies. Results are shown as cycle threshold (Cₜ). 1 × 10⁵ promastigotes corresponded to Cₜ around 22; 1 x 10³, Cₜ around 28 (Colombo et al., 2015). DNA samples from sandflies captured in: Trapping zone A, house 1/porch of the residence (columns 1 and 2); and in chicken coop (columns 3, 4 and 5). Trapping zone B, kennel/home service area (column 6); kennel/dog pen (column 7). Trapping zone C, house 2 in urban area (column 8).
Table 1

Trapping zone (Tz)/number of captured sandflies	Area of insect capture	Number of positive sandfly pools/total	MIR (%)
Tz A/228		**8/228**	**3.51**
11. Orchard/mango trees behind the house 1	0/10	0	
12. Chicken coop	6/93	6.45	
13. House 1/porch of the residence	2/111	1.80	
14. Orchard/mango trees in front of the house 1	0/14	0	
Tz B/58		**3/58**	**5.17**
15. Bamboo tree behind the kennel	0/15	0	
16. Kennel/home service area	0/6	0	
17. Kennel/dog pen	1/19	5.26	
18. In front of the kennel main house	2/18	11.11	
19. Pasture with scattered trees	0/0	0	
Tz C/6		**1/6**	**16.67**
20. House 2 in urban area	1/6	16.67	
Total		**12/292**	**4.10**

Trapping zone localizations are described in Figure 2A. DNA extraction from female sandflies and in pools (1 to 5 specimens).
PCR	Marcadores moleculares	Sequência 5'→ 3'	Produto esperado (pb)/ Temperatura de pareamento
Convencional	150/152	GGGKAGGGGCGTTCTSCGAA SSSWCTATWTTACACCAACCC	120/ 55º
		SSSWCTATWTTACACCAACCC	
	RV1/RV2	CTTTTCTGTCGCAGGTAGG CCACTGGGCTATTATTACACCA	145/60º
		CCACTGGGCTATTATTACACCA	
	Lu1/Lu2	TGAGCTTGACTCTAGTTTTGGCAC AGATGTACCAGCCGCAAGTAAA	370/55º
		TGAGCTTGACTCTAGTTTTGGCAC AGATGTACCAGCCGCAAGTAAA	
	LB-3C/LU5A	CGTCGCGAAGCCCGTGTC TTTATGGTGATTCGAAACTTC	146-149/ 57.8º
		CGTCGCGAAGCCCGTGTC TTTATGGTGATTCGAAACTTC	
	LITSR/L5.8S	CTGGATCATTT-TCCGATG TGATACCACATTACGTGCAA	300-350/53º
		CTGGATCATTT-TCCGATG TGATACCACATTACGTGCAA	
Em tempo real	Linj31	CCGCGTGCTGTGCG CCGCGTGCTGTGCG	Sonda:CCTCCTGGACTTTG
		CCGCGTGCTGTGCG CCGCGTGCTGTGCG	
		Sonda:CCTCCTGGACTTTG	
102. **Gomes** AH, Ferreira IM, Lima ML, Cunha EA, Garcia AS, Araújo MF, Pereira-Chioccola VL. PCR identification of Leishmania in diagnosis and control of canine Leishmaniasis. Vet Parasitol. 2007 Mar 31;144(3-4):234-41. Erratum in: Vet Parasitol. 2007 Nov 10;149(3-4):298.

103. Gomes AH, Armelin IM, Menon SZ, Pereira-Chioccola VL. *Leishmania (V.) braziliensis*: detection by PCR in biopsies from patients with cutaneous leishmaniasis. Exp Parasitol. 2008 Jul; 119(3):319-24.