One-year follow-up study of *Helicobacter pylori* eradication rate with 13C-urea breath test after 3-d and 7-d rabeprazole-based triple therapy

Hwang-Huei Wang, Jen-Wei Chou, Kuan-Fu Liao, Zong-Yi Lin, Hsueh-Chou Lai, Chang-Hu Hsu, Chih-Bin Chen

Hwang-Huei Wang, Jen-Wei Chou, Kuan-Fu Liao, Zong-Yi Lin, Hsueh-Chou Lai, Chang-Hu Hsu, Chih-Bin Chen, Division of Gastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan, China. Supported by the grant from China Medical University Hospital, Taichung, Taiwan, China

Correspondence to: Dr. Hwang-Huei Wang, Division of Gastroenterology, Department of Internal Medicine, China Medical University Hospital, 2 Yuh-Der Road, North District, Taichung 404, Taiwan, China. hh.wang@msa.hinet.net

Received: 2004-09-30 Accepted: 2004-10-18

Abstract

AIM: To investigate the long-term role of a 3-d rabeprazole-based triple therapy in patients with *Helicobacter pylori* (H pylori)-infected active peptic ulcers.

METHODS: We prospectively studied 115 consecutive patients with H pylori-infected active peptic ulcers. H pylori infection was confirmed if any two of H pylori DNA, histology, and rapid urease test were positive. Patients were assigned to either an open-label 3-d course of oral amoxicillin 1 000 mg b.i.d., clarithromycin 500 mg b.i.d., and rabeprazole 20 mg b.i.d., or 7-d course of oral amoxicillin 1 000 mg b.i.d., clarithromycin 500 mg b.i.d., and rabeprazole 20 mg b.i.d. Subsequently, all patients received oral rabeprazole 20 mg once daily until the 8th wk. Three months after therapy, all patients were followed-up endoscopically for the peptic ulcer, H pylori DNA, histology, and rapid urease test. One year after therapy, H pylori infection was tested using the 13C-urea breath test.

RESULTS: The ulcer healing rates 3 mo after therapy were 81.0% vs 75.4% for the 3-d and 7-d groups [intention-to-treat (ITT) analysis, $P = 0.47$] respectively, and 90.4% vs 89.6% for the 3-d and 7-d groups [per-protocol (PP) analysis, $P = 0.89$] respectively. The eradication rates 3 mo after therapy were 75.9% vs 73.7% for the 3-d and 7-d groups (ITT, $P = 0.79$) respectively, and 84.6% vs 87.5% for the 3-d and 7-d groups (PP, $P = 0.68$) respectively. One year after therapy, seventy-five patients returned to receive the 13C-urea breath test, and the eradication rates were 78.4% vs 81.6% in 3-d and 7-d groups (PP, $P = 0.73$) respectively.

CONCLUSION: Our study showed the eradication rates against H pylori infection 3 and 12 mo after triple therapy were not different between the 3-d and 7-d rabeprazole-based groups. Therefore, the 3-d rabeprazole-based triple therapy may be an alternative treatment for peptic ulcers with H pylori infection.

© 2005 The WJG Press and Elsevier Inc. All rights reserved.

Key words: Eradication rate; Short-term triple therapy

INTRODUCTION

Helicobacter pylori (H pylori), a gram-negative spiral organism, was isolated from the mucosal biopsies of patients with chronic active gastritis by Marshall and Warren in 1983[1]. H pylori infection plays an important role in the pathogenesis of peptic ulcer disease, type B gastritis, gastric carcinoma, gastroesophageal reflux disease and lymphoma of mucosa-associated lymphoid tissue[2-4].

At present, the eradication of H pylori infection is considered to be a cost-effective method in the treatment of peptic ulcer disease[5,6]. Furthermore, in a recent randomized controlled trial, Wong et al[7] found that in H pylori carriers without precancerous lesions, eradication of H pylori significantly decreased the development of gastric cancer in a high-risk region of China. One-week proton pump inhibitor (PPI)-based triple therapy has been widely accepted as the standard treatment for H pylori eradication[8-12]. The H pylori eradication rate is higher than 90.0% with the combination of two antimicrobials and a PPI.

There has been recent studies in the eradication of H pylori infection using short-term (<7-d duration) PPI-based therapy. This is because if a short-term eradication regimen is proven to be effective, it would provide advantages in cost-saving and better patient compliance. Rabeprazole is a newly developed PPI with potent and rapid acid-suppression[13]. It has been demonstrated in one study to have a higher eradication rate than omeprazole[14]. The long-term role of a 3-d rabeprazole-based triple therapy against H pylori infection is not known at present. We, therefore,
conducted a randomized, prospective study in patients with active peptic ulcer disease and \textit{H} pylori infection to compare the efficacy and one-year eradication rates between 3-d and 7-d rabeprazole-based triple therapy.

MATERIALS AND METHODS

Selection of patients
From February 2002 to February 2003, we prospectively studied 115 consecutive outpatients (73 male and 42 female, Table 1) documented with \textit{H} pylori infection as well as active gastric ulcers or duodenal ulcers or both at the China Medical University Hospital. All peptic ulcers were confirmed by the first upper gastrointestinal endoscopy.

Table 1 Demographic data of patients who underwent triple therapy

	3-d group	7-d group
Patients (M/F)	36/22	37/20
Age (yr)	48.3 ±12.4	48.7±15.4
Peptic ulcers		
Gastric ulcers	9	12
Duodenal ulcers	40	38
Both	9	7

1P = 0.75 (\chi^2 test); 2P = 0.99 (two-sample \texttt{t}-test); 3P = 0.70 (\chi^2 test).

Patients were not allowed to receive aspirin, \textit{H}$_2$-receptor blockers, antibiotics or any non-steroidal anti-inflammatory drugs (NSAIDs) in the 4 wk prior to the study. All females with active gastrointestinal bleeding, pregnancy, lactation, delayed last menstrual period or previous curative therapy for \textit{H} pylori infection were excluded. Patients with a history of hypersensitivity to PPIs, penicillin groups, amoxicillin, or clarithromycin, concurrent serious systemic disease including malignancy, renal, hepatic or cardiac insufficiency, or previous esophageal or gastric surgery were also excluded.

The present study was approved by the Ethics and Science Committee of the hospital. Written informed consent was obtained from all patients before the study.

Diagnosis of \textit{H} pylori infection
During the first endoscopic examination, two biopsy specimens were obtained from the gastric antrum within 2 cm proximal to the pyloric ring. One antral biopsy specimen was assessed for \textit{H} pylori DNA. The \textit{H} pylori DNA was detected using PCR. Another antral biopsy specimen was sent for rapid urease test (RUT) (CLO test, Ballard Medical Products, Draper, UT, USA). In addition, one biopsy specimen was taken from the gastric corpus and sent for histological examination for \textit{H} pylori using hematoxylin-eosin staining or Giemsa staining if necessary. For those patients with gastric ulcers, additional biopsies were made from four sites of the margin of gastric ulcers to rule out possible malignancy. Patients were considered to have \textit{H} pylori infection if they were positive for any two of the three tests.

Clinical treatment
All patients were randomly assigned into two groups. Group I patients received a 3-d course of oral amoxicillin 1 000 mg b.i.d., clarithromycin 500 mg b.i.d., and 7-d course of oral rabeprazole 20 mg b.i.d., Group II patients received a 7-d course of oral amoxicillin 1 000 mg b.i.d., clarithromycin 500 mg b.i.d., and rabeprazole 20 mg b.i.d. All patients further received oral rabeprazole 20 mg once daily until the end of the 8th wk. All the medications were open-labeled. Both groups of the patients were questioned about the occurrence and intensity of adverse effects one week later after triple therapy.

Three months follow-up
Three months after the completion of triple therapy, a repeat endoscopy was performed for examination of the peptic ulcers, \textit{H} pylori DNA, RUT, and histology. \textit{H} pylori infection was considered to be eradicated if all the three tests were negative.

Long-term follow-up
One year after the completion of triple therapy, \textit{H} pylori infection was diagnosed using the 13C-urea breath test (13C-UBT) (Pei Li Pharmaceutical Industrial Ltd, Taichung, Taiwan). Patients were not permitted to receive antacids within 4 wk prior to the 13C-UBT. A negative 13C-UBT indicated no \textit{H} pylori infection.

Statistical analysis
The eradication and healing rates of ulcers were evaluated by intention-to-treat (ITT) analysis and per protocol (PP) analysis. The ITT analysis included all enrolled patients including those cases dropped from the study. The PP analysis included all patients who took at least 80.0% of each study medication and returned for assessment of eradication of \textit{H} pylori infection after three months and one year. Two-sample test or \chi^2 test was used to assess significant differences between values in various groups of patients. The eradication rate and ulcer healing rate were calculated for 95.0% confidence intervals. A P-value of less than 0.05 was regarded as statistically significant. Statistical analysis was performed using commercial software (SAS v.8.0, SAS Institute Inc., Cary, NC, USA).

Results were expressed in the form of mean±SD.

RESULTS
Of the 115 patients, 21 patients had gastric ulcers, 78 had duodenal ulcers and 16 had both ulcers. Fifty-eight patients received the 3-d course and 57 received the 7-d course of triple therapy. Fifteen patients, who did not complete the 3-mo follow-up after treatment, were dropped from the study; six of the dropped patients were from the 3-d group and nine patients from the 7-d group.

The ulcer healing rate 3 mo after triple therapy showed no difference with 81.0% in 3-d group and 75.4% in 7-d group (ITT, \textit{P} = 0.47), and 90.4% in 3-d group and 89.6% in 7-d group (PP, \textit{P} = 0.89, Table 2).

The eradication rate of \textit{H} pylori infection three months after triple therapy showed no difference with 75.9% in 3-d group and 73.7% in 7-d group (ITT, \textit{P} = 0.79), and 84.6% in 3-d group and 87.5% in 7-d group (PP, \textit{P} = 0.68).
One year after triple therapy, seventy-five patients had 13C-UBT for the assessment of *H. pylori* infection; the eradication rate showed no difference between 3-d and 7-d groups (78.4% vs 81.6%; *P* = 0.73, PP). Eight patients in the 3-d group were positive for 13C-UBT. There were 4 cases with treatment failure at 3 mo after treatment, including 1 case of gastric ulcer and 3 cases of duodenal ulcer. Seven patients in the 7-d group were positive for 13C-UBT. There were 4 cases with treatment failure at 3 mo after treatment, including 2 cases of gastric ulcer and 2 cases of duodenal ulcer.

The eradication rate (PP) decreased from 84.6% to 78.4% in the 3-d group and from 87.5% to 81.6% in the 7-d group from 3 mo to 12 mo after rabeprazole-based triple therapy.

During the period of therapy, severity of symptoms such as epigastric pain, acid regurgitation, anorexia, nausea, vomiting, belching and flatulence showed rapid decline on the first 2 d after triple therapy in both groups. Drug compliance during this study was excellent - 100% in the 3-d RAC group and 99.4% in the 7-d RAC group. Both regimens were well tolerated. Adverse events in both groups were mild, which included taste disturbance, diarrhea, oral discomfort and chill sensation. Taste disturbance (bitter taste) was the most common event, comprising about 50% of cases in 3-d and 7-d triple therapy groups. The adverse events were mild and self-limiting and disappeared after one week.

DISCUSSION

Even though many different therapeutic regimens studied for *H. pylori* eradication in acid-related disorders[7,8], 1-wk PPI-based triple therapy has been widely accepted as the standard treatment of peptic ulcer with *H. pylori* infection[22-24]. However, the optimal duration of triple therapy remains to be established. More recently, many newer PPIs have been developed, and they possess potent and rapid inhibition of gastric acid secretion[16,17]. Therefore, short-term regimens (<7-d) have been suggested for the eradication of *H. pylori* infection[18,19]. Lara et al[20] performed a randomized and prospective study for the eradication of *H. pylori* infection in patients with dyspepsia. They found 1-d quadruple therapy (bismuth, metronidazole, amoxicillin and lansoprazole) was statistically similar to 7-d triple therapy (clarithromycin, amoxicillin and lansoprazole) (95% vs 90%, ITT). However, Wremolle et al[21] reported that the eradication rate of 1-d high-dose quadruple therapy (lansoprazole 30 mg t.d.s., amoxicillin 2 000 mg q.d.s., clarithromycin 500 mg q.d.s., and bismuth 240 mg q.d.s.) was significantly less (20% vs 80%) than 7-d triple therapy (lansoprazole 30 mg b.d., amoxicillin 1 000 mg b.d., and clarithromycin 500 mg b.d.).

More recently, a new PPI, rabeprazole, has been demonstrated to be effective in the treatment of acid-related disorders including peptic ulcer disease[22-24]. Rabeprazole has rapid and potent inhibition of gastric acid secretion[18]. In addition, this PPI can induce earlier stabilization of antibodies and has higher eradication rate compared to other PPIs[16,22,23].

Several studies have compared the eradication rate of short-term course with standard course rabeprazole-based triple therapy for *H. pylori* infection. In a study by Gambaro et al[24], non-ulcer dyspepsia patients were randomized to receive rabeprazole, clarithromycin and metronidazole for 4 or 7 d, and similar *H. pylori* eradication rates were achieved with both regimens (81% vs 78%, ITT; 88% vs 85%, PP). Yang et al[25] compared the efficacy of a 4 and a 7-d rabeprazole-based regimen (rabeprazole, clarithromycin and amoxicillin) with a 7-d omeprazole-based regimen (omeprazole, clarithromycin and amoxicillin) in the eradication of *H. pylori* in peptic ulcer patients. This study showed equal efficacy among the three groups (87% vs 83% vs 88%, ITT; 91% vs 95% vs 100%, PP). Isomoto et al[26] randomly compared a rabeprazole-clarithromycin-amoxicillin regimen for 5 and 7 d in *H. pylori*-infected patients. Their results showed 5-d regimen had lower eradication rate than the 7-d regimen (66% vs 84%, ITT; 70% vs 91%, PP [P<0.05]). Recently, a multicenter, double blind, randomized, parallel-group clinical study was performed by Vakil et al[27], in the USA. The trial results showed that 7-d therapy with rabeprazole-clarithromycin-amoxicillin is similar in efficacy to 10-d therapies and had similar efficacy in patients with and without ulcer disease. Wong et al[28] performed a randomized study to compare rabeprazole-amoxicillin-clarithromycin administration for 3 and 7 d. They found 3-d regimen had a lower *H. pylori* eradication rate than 7-d regimen (72% vs 88%, ITT; 72% vs 91%, PP). Hence, they concluded 7-d rabeprazole-based triple therapy is superior to 3-d regimen (*P* = 0.04).

Interestingly, our study showed that a 3-d rabeprazole-based triple therapy regimen had similar eradication rates (84.6% vs 87.5%, PP, *P* = 0.68) against *H. pylori* infection and similar ulcer healing rates (90.4% vs 89.6%, PP, *P* = 0.89) compared to a 7-d rabeprazole-based triple therapy regimen in 3 mo follow-up. The major differences between our study and Wong’s previous study were the following. First, we gave the drugs of amoxicillin 1 000 mg, clarithromycin 500 mg twice daily for 3 d and rabeprazole 20 mg twice daily for 7-d, then tapered to once daily for 7 wk. In Wong et al’s study, however, they only gave additional 4-wk course of famotidine 20 mg b.i.d., for all gastric ulcer patients after *H. pylori* eradication. Second, all the patients in our study suffered from active peptic ulcer with *H. pylori* infection.

Table 2 Eradication rate of patients who underwent triple therapy

	3-d group	7-d group	*P*	OR (interval)
Ulcer healing rate				
Patients number	58	57		
ITT	47 (81.0%)	43 (75.4%)	0.47	0.72 (0.30-1.75)
PP	47 (90.4%)	43 (89.6%)	0.89	0.92 (0.25-3.38)
Eradication rate				
3 mo after therapy				
Patients number	58	57		
ITT	44 (75.9%)	42 (73.7%)	0.79	0.89 (0.3-2.07)
PP	44 (84.6%)	42 (87.5%)	0.68	1.27 (0.41-3.98)
One year after therapy				
Patients number	58	57		
ITT	37 (23/14)	38 (24/14)	0.93	1.22 (0.39-3.80)
PP	29 (78.4%)	31 (81.6%)	0.73	0.82 (0.26-2.54)

ITT, Intention-to-treat analysis; PP, Per-protocol analysis, *P* = 0.93 (χ2 test).
but not all the patients were with peptic ulcer disease in Wong et al’s study. Actually, we considered that the large dose of PPI combined with antibiotics in the first week of treatment may be an important factor for \(H\) pylori eradication.

There is no doubt that an ideal \(H\) pylori treatment must be safe, cheap, easy and tolerable with more than 80% eradication rate and must have a low rate of antibiotic resistance\[^{[30,31]}\]. Although treatment failures of \(H\) pylori eradication are influenced by several factors\[^{[12,33]}\], many of the currently used \(H\) pylori eradication regimens fail to cure the infection due to either antimicrobial resistance or poor patient compliance\[^{[14-36]}\]. In the past, there have been concerns about antimicrobial resistance of \(H\) pylori eradication in many studies\[^{[37,38]}\]. A high prevalence of metronidazole resistance has been reported in different regions in Asia\[^{[39]}\]. However, clarithromycin resistance is still low in the United States and most communities\[^{[40,41]}\]. In standard 1-wk PPI-based triple therapy, the large number of pills needed to be taken daily, the duration of the therapy and the presence of adverse events can limit patient compliance. A recent article has concluded that patient noncompliance is a major cause of failure of \(H\) pylori eradication therapy\[^{[42]}\]. A short-term PPI-based triple regimen will have a smaller overall amount of pills and possibly fewer adverse effects, and thereby improve patient compliance compared with standard 7-d regimens. In addition, there will be health economic and cost saving advantages for patients.

Our study also showed drug compliance in the 3-d regimen was also excellent compared to the 7-d regimen (100% vs 99.4%). Adverse events were mild, few and self-limiting in both study groups. Taste disturbance (oral bitter taste) was the most common adverse event in both groups, but this disappeared a few d later.

To our knowledge, however, the long-term follow-up results of \(H\) pylori eradication after short-term triple therapy have not been reported in published scientific English literature until now. The \(^{13}\)C-UBT is a simple, noninvasive and rapid method for the initial diagnosis of \(H\) pylori infection and for confirmation of \(H\) pylori eradication after treatment. Its sensitivity and specificity rates are more than 90%\[^{[46,48]}\]. We therefore performed the \(^{13}\)C-UBT to detect \(H\) pylori infection one year after triple therapy in our study. The eradication rates of \(H\) pylori infection were similar (74.8% vs 81.6%, PP \([P = NS]\)) in the 3-d and 7-d rabeprazole-based triple therapy regimens after 1-year follow-up.

The study demonstrates that 3-d rabeprazole-based triple therapy has the similar efficacy and safety as standard 7-d triple therapy in \(H\) pylori eradication and long-term follow-up. Hence, 3-d rabeprazole-based triple therapy may be an alternative treatment for peptic ulcer disease with \(H\) pylori infection.

REFERENCES

1 Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1984; 1: 1311-1315
2 NIH Consensus Conference. Helicobacter pylori in peptic ulcer disease. NIH Consensus Development Panel on Helicobacter pylori in Peptic Ulcer Disease. JAMA 1994; 272: 65-69
3 Blaser MJ. Helicobacter pylori and the pathogenesis of gas-

7-triiododuodenal inflammation. J Infect Dis 1990; 161: 626-633
4 Gisbert PJ, Pajares JM, Losa C. Helicobacter pylori and gas-

troesophageal reflux disease: friends or foes? Hepatogastroenterology 1999; 46: 1023-1029
5 Bouza Spone H, Haefliger T, Delacretaz F, Saraga E. The role of Helicobacter pylori in primary gastric MALT lymphoma. Histopathology 1999; 34: 118-123
6 An international association between Helicobacter pylori infec-

tion and gastric cancer. The EUROGAST Study Group. Lancet 1993; 341: 1359-1362
7 Hopkins RJ, Girardi LS, Turney EA. Relationship between Helicobacter pylori eradication and reduced duodenal and gas-

tric ulcer recurrence: a review. Gastroenterology 1996; 110: 1244-

1252
8 Lam SK, Talley NJ. Report of the 1997 Asia Pacific Consen-

sus Conference on the management of Helicobacter pylori infection. J Gastroenterol Hepatol 1998; 13: 1-12
9 Wong BC, Lam SK, Wong WM, Chen JS, Zheng TT, Feng RE, Lai KC, Hu WH, Yuen ST, Leung SY, Fong DY, Ho J, Ching CK, Chen JS. Helicobacter pylori eradication to prevent gastric cancer in a high-risk region of China: a randomized controlled trial. JAMA 2004; 291: 187-194
10 Current European concepts in the management of Helicobacter pylori infection. The Maastricht Consensus Report. European Helicobacter pylori Study Group. Gut 1997; 41: 8-13
11 Lind T, Veldhuyzen van Zanten S, Unge P, Spiller R, Bayardotter E, O’Morain C, Bardhan DK, Bradette M, Chiba N, Wrangstadh M, Cederberg C, Idstrom JP. Eradication of Helicobacter pylori using one-week triple therapies combining omeprazole with two antimicrobials: the MACH I Study. Helicobacter 1996; 1: 138-144
12 Miwa H, Ohkura R, Murai T, Nagahara A, Yamada T, Ogihara T, Watanabe S, Sato N. Effectiveness of omeprazole-amoxicillin-clarithromycin (OAC) therapy for Helicobacter pylori infection in a Japanese population. J Gastroenterol Hepatol 1998; 3: 132-138
13 Hsieh YH, Lin HJ, Tseng GY, Peng CL, Chang FY, Lee SD. A 3-day anti-Helicobacter pylori therapy is a good alternative for bleeding peptic ulcer patients with Helicobacter pylori infection. Hepatogastroenterology 2001; 48: 1078-1081
14 Grimley CE, Penny A, O’Sullivan M, Shebani M, Lismore JR, Cross R, Illing RC, Loft DE, Nwokolo CU. Comparison of two 3-day Helicobacter pylori eradication regimens with a standard 1-week regimen. Aliment Pharmacol Ther 1999; 13: 869-873
15 Miwa H, Ohkura R, Murai T, Sato K, Nagahara A, Hirai S, Watanabe S, Sato N. Impact of rabeprazole, a new proton pump inhibitor, in triple therapy for Helicobacter pylori infection—comparison with omeprazole and lansoprazole. Aliment Pharmacol Ther 1999; 13: 741-746
16 Kotsiachaiwat C, Ovatthannporn B, Kachiront U, Atisook K. Low and high doses of rabeprazole vs omeprazole for cure of Helicobacter pylori infection. Aliment Pharmacol Ther 2003; 18: 1017-1021
17 Vakil N, Lanza F, Schwartz H, Barth J. Seven-day therapy for Helicobacter pylori in the United States. Aliment Pharmacol Ther 2004; 20: 99-107
18 Pantoflickova D, Dorta G, Rovic M, Jornod P, Blum AL. Acid inhibition on the first day of dosing; comparison of four proton pump inhibitors. Aliment Pharmacol Ther 2003; 17: 1507-1514
19 Welage LS. Pharmacologic properties of proton pump inhibitors. Pharmacotherapy 2003; 23: 745-805
20 Lara LF, Cisneros G, Gurney M, Van Ness M, Jarjoura D, Mouaro B, Polen A, Rutecki G, Whittier F. One-day quad-

druple therapy compared with 7-day triple therapy for Helicobacter pylori infection. Arch Intern Med 2003; 163: 2079-

2084
21 Wermelle J, Cunningham M, Abrahamian B, Zelger G, Buri P, Merki H, Hadengue A. Failure of a 1-day high-dose qua-

druple therapy for cure of Helicobacter pylori infection. Aliment Pharmacol Ther 1999; 13: 173-177
22 Prakash A, Faulds D. Rabeprazole. Drugs 1998; 55: 261-267;
Guidelines for clinical trials in Helicobacter pylori infection. European multicentre study. Aliment Pharmacol Ther 1999; 13: 179-186

Tsutsui N, Taneike I, Obara T, Goshi S, Kojo S, Iwakura N, Matsumaru H, Wakisaka-Saito N, Zhang HM, Yamamoto T. A novel action of the proton pump inhibitor rabeprazole and its thioether derivative against the motility of Helicobacter pylori. Antimicrob Agents Chemother 2000; 44: 3069-3073

Gambaro C, Bilardi C, Dulbecco P, Iritiano E, Zentilin P, Mansia C, Usai P, Vigneri S, Savarino V. Comparable Helicobacter pylori eradication rates obtained with 4- and 7-day rabeprazole-based triple therapy: a preliminary study. Dig Liver Dis 2003; 35: 763-767

Yang KC, Wang GM, Chen JH, Chen TJ, Lee SC. Comparison of rabeprazole-based four- and seven-day triple therapy and omeprazole-based seven-day triple therapy for treatment of Helicobacter pylori infection in patients with peptic ulcer. J Formos Med Assoc 2003; 102: 857-862

Isomoto H, Furusu H, Morikawa T, Mizuta Y, Nishiyama T, Omgari K, Murase K, Inoue K, Murata I, Kohno S. 5-day vs. 7-day triple therapy with rabeprazole, clarithromycin and amoxicillin for Helicobacter pylori eradication. Aliment Pharmacol Ther 2000; 14: 1619-1623

Wong BC, Wong WM, Yee YK, Hung WK, Yip AW, Szeto ML, Li KF, Lau P, Fung FM, Tong TS, Lai KC, Hu WH, Yuen MF, Hui SK. Rabeprazole-based 3-day and 7-day triple therapy vs. omeprazole-based 7-day triple therapy for the treatment of Helicobacter pylori infection. Aliment Pharmacol Ther 2001; 15: 1959-1965

Rauws EA, van der Hulst RW. Current guidelines for the eradication of Helicobacter pylori in peptic ulcer disease. Drugs 1995; 50: 984-990

Guidelines for clinical trials in Helicobacter pylori infection. Working Party of the European Helicobacter pylori Study Group. Gut 1997; 41 Suppl 2: S1-9

Moayyedi P, Chalmers DM, Axon AT. Patient factors that predict failure of omeprazole, clarithromycin, and tinidazole to eradicate Helicobacter pylori. J Gastroenterol 1997; 32: 24-27

Queiroz DM, Dani R, Silva LD, Santos A, Moreira LS, Rocha GA, Correa PR, Reis LF, Nogueira AM, Alvareas Cabral MM, Esteves AM, Tanure J. Factors associated with treatment failure of Helicobacter pylori infection in a developing country. J Clin Gastroenterol 2002; 35: 315-320

Alarcon T, Domingo D, Lopez-Brea M. Antibiotic resistance problems with Helicobacter pylori. Int J Antimicrob Agents 1999; 12: 19-26

Mendonca S, Eciliassato C, Sartori MS, Godoy AP, Guerzoni RA, Degger M, Pedrazzoli J. Prevalence of Helicobacter pylori resistance to metronidazole, clarithromycin, amoxicillin, tetracycline, and furazolidone in Brazil. Helicobacter 2000; 5: 79-83

Malferttheiner P, Peitz U, Treiber G. What constitutes failure for Helicobacter pylori eradication therapy? Can J Gastroenterol 2003; 17 Suppl B: 53B-57B

Mollison LC, Stingemore N, Wake RA, Cullen DJ, McGachie DB. Antibiotic resistance in Helicobacter pylori. Med J Aust 2000; 173: 521-523

Megraud F. Resistance of Helicobacter pylori to antibiotics: the main limitation of current proton-pump inhibitor triple therapy. Eur J Gastroenterol Hepatol 1999; 11(Suppl 2): S35-S37; discussion S43-S45

Teo EK, Fock KM, Ng TM, Khor CJ, Tan AL. Metronidazole-resistant Helicobacter pylori in an urban Asian population. J Gastroenterol Hepatol 2000; 15: 494-497

Ellenrieder V, Boeck W, Richter C, Marre R, Adler G, Glassbrenner B. Prevalence of resistance to clarithromycin and its clinical impact on the efficacy of Helicobacter pylori eradication. Scand J Gastroenterol 1999; 34: 750-756

Osato MS, Reddy R, Graham D’Y. Metronidazole and clarithromycin resistance amongst Helicobacter pylori isolates from a large metropolitan hospital in the United States. Int J Antimicrob Agents 1999; 12: 341-347

Bode G, Hofmeister A, Koenig W, Brenner H, Rothenbacher D. Characteristics of differences in Helicobacter pylori serology and 13C-urea breath-testing in an asymptomatic sample of blood donors. Scand J Clin Lab Invest 2001; 61: 603-608

Chey WD, Murthy U, Toskes P, Carpenter S, Laine L. The 13C-urea breath test accurately detects active Helicobacter pylori infection: a United States, multicenter trial. Am J Gastroenterol 1999; 94: 1522-1524