Pretrial hippocampal \(\theta \)-state differentiates single-unit response profiles during rabbit trace eyeblink conditioning

Joseph J. Cicchese,\(^1\) Ryan D. Darling,\(^2\) and Stephen D. Berry\(^1\)

\(^{1}\)Department of Psychology and Center for Neuroscience, Miami University, Oxford, Ohio 45056, USA; \(^{2}\)Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA

Rabbit eyeblink conditioning (EBC) is a well-characterized associative learning task that has provided crucial insights into the neurobiology of mammalian learning and memory (Christian and Thompson 2003). The hippocampus is necessary for trace EBC and displays both excitatory and inhibitory learning-related neural responses during behaviorally significant trial periods (Berger et al. 1983; Weiss et al. 1996; McEchron and Disterhoft 1997, 1999). Hippocampal local field potentials (LFPs) are dominated in the rabbit by \(\theta \), a 3–7 Hz oscillatory potential that is highly correlated with patterns of single-unit firing (Fox and Ranck 1981; Klausberger and Somogyi 2008). The mechanisms of \(\theta \) generation and its relationship to learning have been studied extensively (Buzsáki 2002; Colgin 2013). This includes its phasic coordination with extra-hippocampal network activity (Hyman et al. 2003; Siapas et al. 2005; Hoffmann and Berry 2009) and, when pretrial \(\theta \)-state is assessed, with the speed of behavioral learning (Berry and Thompson 1978; Nokia et al. 2008).

The relationship between \(\theta \) and EBC has been confirmed in studies that disrupt hippocampal \(\theta \) via lesions or pharmacological inactivation to inhibit learning (Solomon et al. 1983; Salvaterra and Berry 1989; Kaneko and Thompson 1997) and in studies that elicit or enhance \(\theta \) to boost learning (Berry and Swain 1989). However, all of these studies produced unnatural (nonphysiological) alterations to the LFP, disrupting the natural ebb and flow that some believe to be essential to the role of \(\theta \) in cognitive processes (Buzsáki 2006; Berry and Hoffmann 2011). Importantly, Scarlett et al. (2004) cautioned that \(\theta \) induced by medial septum stimulation can profoundly distort the normal physiological response patterns in \(\theta \)-related hippocampal cells as well as their relation to the induced \(\theta \) LFP.

Seager et al. (2002) developed a brain–computer interface to control the naturally occurring oscillations by restricting EBC trials to either the presence (T\(^+\)) or absence (T\(^-\)) of real-time hippocampal \(\theta \), with animals in the T\(^+\) condition learning significantly faster than animals in the T\(^-\) condition. This finding has been replicated (Griffin et al. 2004; Asaka et al. 2005) and extended to show that T\(^+\) training leads to an increase in hippocampal multiple-unit responses (Griffin et al. 2004; Darling et al. 2011), reduction of age-related memory impairment (Asaka et al. 2005), enhancement in neural activity of the prefrontal cortex (Darling et al. 2011), and precise synchronization of hippocampal and cerebellar LFPs at \(\theta \) frequency (Hoffmann and Berry 2009).

We have reported striking increases in stimulus-evoked activity during hippocampal \(\theta \) in both hippocampus and prefrontal cortex; however, it remains unclear whether the greater average multiple-unit responses in the T\(^+\) condition are caused by a large firing rate increase in a few critical cells or by an increase in the overall number of cells showing excitation. Early rabbit EBC work demonstrated pyramidal cells to be the major contributor to learning-dependent changes in multiple-unit activity (Berger and Thompson 1978; Berger et al. 1983). In order to more fully explain group differences in our multiple-unit studies, it is essential to characterize individual pyramidal cell responses in terms of their qualitative nature (rate increasing/decreasing) as well as response magnitude. The current study classified putative pyramidal cell firing in the hippocampus during trace EBC using \(\theta \)-contingent training to compare unit responses in \(\theta \) and non-\(\theta \) states, corresponding to rapid and slow behavioral learning, respectively.

Microdrives consisting of six independently moveable tetrodotes were surgically implanted into the dorsal hippocampus (CA1; 4.5 mm caudal and 5.5 mm lateral to bregma) of nine New Zealand rabbits (Oryctolagus cuniculus) under isoflurane anesthesia. Rabbits were randomly assigned to two groups: paired tone/airpuff trials in the presence (T\(^+\), \(n = 5 \)) or absence (T\(^-\), \(n = 4 \)) of hippocampal \(\theta \). The triggering channel was filtered (1–25 Hz) with a Neuralynx Inc. (Lynx-8) amplifier and output to a National Instruments PCI-6221 data acquisition board to analyze the LFP with the previously described LabVIEW program (Seager et al. 2002). The LabVIEW program calculated a ratio of power at \(\theta \) (3.5–8.5 Hz) to non-\(\theta \) (0.5–3.5 and 8.5–22 Hz) for 640-msec running time intervals, offset by 160 msec. In the T\(^+\) condition, trials were triggered if the ratio exceeded 1.0 for three consecutive intervals (Fig. 1A) and in the T\(^-\) condition if the ratio fell below 0.3 for three consecutive intervals (Fig. 1B).

Corresponding author: berrysd@miamioh.edu

Article is online at http://www.learnmem.org/cgi/doi/10.1101/lm.038216.115.
The trial interval was under control of the hippocampal LFPs, stimulus-free trace period, and 100-msec corneal airpuff. The in

A2(θ condition) × 3 (learning phase) ANOVA was conducted on the 100-msec tone period average standard score. There was a main effect of θ condition with cells in the T+ condition showing a greater response than those in the T− condition, $F_{(1,363)} = 10.403$, $P < 0.001$, and a θ by phase interaction, $F_{(2,363)} = 3.783$, $P = 0.024$. To address the significant interaction, Bonferroni corrected tests of simple main effects were conducted to identify effects of θ at the different learning phases. There was an effect of θ at the early learning phase with cells in the T+ condition having a greater average response than those in the T− condition, $F_{(1,363)} = 12.600$, $P < 0.016$; however, there were no θ-contingent differences at the late or asymptotic phases, $P < 0.05$ (Fig. 2C).

During the 500-msec trace period, the 2 × 3 ANOVA revealed a main effect of θ condition with a greater unit response in T+ animals than in T− animals, $F_{(1,363)} = 5.495$, $P = 0.020$, and a θ by phase interaction, $F_{(2,363)} = 5.215$, $P = 0.006$. Bonferroni corrected tests of simple main effects revealed that cells in the T+ condition showed a greater average response than those in the T− condition in the early phase, $F_{(1,363)} = 13.169$, $P < 0.016$, but not in the late or asymptotic phases, $P > 0.05$ (Fig. 2D). No significant group differences were observed during the airpuff period.

To assess whether the observed standard score differences reflect large changes in firing rate of few neurons versus differences in the number of cells showing excitation/inhibition, we used Mann–Whitney U tests to classify cells according to significant relative differences between the relevant trial epoch (tone or trace) and the pre-CS baseline (Hattori et al. 2015). Units were then identified as rate decreasing (RD) or increasing (RI) for further analyses (Fig. 3A, B). A 2(θ condition) × 2 (response direction) $χ^2$ test was significant for the early learning phase tone period $χ^2_{(1,N = 40)} = 21.641$, $P < 0.001$. Bonferroni corrected comparisons showed that RI cells were more common in the T+ condition (15/40; 37.500%) than in the T− condition (7/53; 13.208%). $χ^2_{(1,N = 22)} = 12.716$, $P < 0.001$, and RD cells were more common in the
those in the T condition (14/53; 26.415%) than in the T+ condition (4/40; 10.000%). \(\chi^2_{(1,N=130)} = 7.097, P = 0.008 \) (Fig. 3C). Bonferroni corrected t-tests were conducted to identify \(\theta \)-contingent differences in standard score magnitude for RI and RD cells. These tests revealed no significant differences in average standard scores, \(P_s > 0.05 \) (Fig. 3D).

Similarly, the \(2 \times 2 \chi^2 \) test was significant for the trace period \(\chi^2_{(3,N=25)} = 16.994, P < 0.001 \). Cells in the T+ condition were more likely to be RI (10/40; 25.000%) than those in the T− condition (3/53; 5.660%), \(\chi^2_{(1,N=13)} = 13.640, P < 0.001 \), while no \(\theta \)-related difference existed in RD cells during the trace period, \(P > 0.05 \) (Fig. 3E). There were no \(\theta \)-contingent differences in standard score magnitude for RI or RD cells, \(P_s > 0.05 \) (Fig. 3F).

In the present study, the beneficial effect of \(\theta \) on behavioral learning was accompanied by a greater response of putative pyramidal cells in the T+ condition during both the tone and trace periods early in learning. The increase in T+ putative pyramidal cell responsiveness replicates and helps explain previous work in our laboratory showing multiple-unit response increases in the T+ condition during the trace period (Griffin et al. 2004; Darling et al. 2011). By sorting individual cells into groups based on qualitative response type (RI/RD), we found that RI cells were more likely to respond during the tone and trace periods in the T+ condition compared with the T−. In contrast, the T− condition favored the development of inhibitory (RD) responses. This double dissociation under- scores a significant impact of \(\theta \) condition on whether the dominant unit response was excitatory or inhibitory. Importantly, there were no differences in the magnitude of RI or RD responses between \(\theta \) conditions. Thus, a major finding here is that \(\theta \)-state corresponded to response type rather than response magnitude of putative pyramidal cells.

Our data suggest that previously reported increases in multiple-unit responses during \(\theta \)-triggered EBC might be attributed more to a recruitment of additional excitatory (RI) units rather than a large increase in rate for any particular unit. This finding helps interpret hippocampal multiple-unit recordings, which have been shown to reflect pyramidal cell firing (Berger and Thompson 1978; Berger et al. 1983). In other words, a large increase in multiple-unit standard scores suggests more cells showing excitatory responses and fewer cells inhibited. This is consistent with a recent study showing that cells are more likely to increase firing in conditioned than pseudoconditioned animals, with no effect of training on magnitude of RI responses (Hattori et al. 2015), and extends this finding to conditioned animals learning at different rates under \(\theta \) and non-\(\theta \) conditions. While previous work in rabbit EBC has shown large increases in multiple- and single-unit responding (Berger et al. 1976, 1983; Weiss et al. 1996; McEchron and Disterhoft 1997, 1999), the impact of \(\theta \)-state on the single-unit code in CA1 may act more subtly, yet importantly, by changing the relative proportion of pyramidal cells displaying significant excitation to the conditioning stimuli, ultimately guiding adaptive behavior. This conclusion follows similar logic to work showing that activation-dependent inhibition of pyramidal cells is caused by additional basket cells inhibiting a given neuron, rather than a large increase in firing rate of any one basket cell (Sik et al. 1995). McEchron and Disterhoft (1997,1999) identified a number of pyramidal cell response profiles in CA1, showing that inhibitory responses are more likely to occur during EBC. Our work suggests that training in the explicit presence of \(\theta \) allows for a greater proportion of excitatory response profiles in putative pyramidal cells, possibly contributing to fewer trials needed for the early learning criterion. In the absence of \(\theta \), this proportion is less than optimal, resulting in impaired learning.

Our findings provide important empirical support for a prominent model of \(\theta \)'s role in learning. Hasselmo et al. (2002) have proposed a model of associative learning in which the \(\theta \) rhythm provides separate encoding and retrieval phases. These separate phases are characterized by different responding of identified cell types. For example, it is expected that pyramidal cells will fire during the retrieval phase, but not the encoding.

![Figure 2. Perievent histograms with 10-msec bins during the early (top), late (middle), and asymptotic (bottom) phases averaged across all units for T+ (A) and T− (B) animals. The gray shaded columns indicate presentation of the conditioning stimuli (tone and airpuff). (C) Mean standard scores during the tone presentation for each learning phase. Cells in T+ condition had a greater response than those in the T− condition during the early learning phase. (D) Mean standard scores during the trace period for each learning phase. Cells in the T+ condition had a greater response than those in the T− condition during the early learning phase. (*) \(P < 0.016 \), Bonferroni corrected α.](image-url)
Interneurons, depending on their relation to \(\theta \) and pyramidal cell firing, will display heterogeneous response profiles. In interpreting such data, it is important to know whether a given cell type is increasing its firing, as well as the magnitude of its response. Our finding that \(\theta \) can modulate putative pyramidal cell response type provides a candidate mechanism by which the optimal proportion of cells firing during the learning and retrieval phases is achieved, resulting in more rapid acquisition of the behavioral response. The lack of quantitative (magnitude) differences in RI/RD cells firing, will display heterogeneous response profiles. In interpret-
McEchron MD, Disterhoft JF. 1999. Hippocampal encoding of non-spatial trace conditioning. *Hippocampus* 9: 385–396.

Nokia MS, Penttonen M, Korhonen T, Wikgren J. 2008. Hippocampal θ (3–8 Hz) activity during classical eyeblink conditioning in rabbits. *Neurobiol Learn Mem* 90: 62–70.

Prokasy WF. 1987. A perspective on the acquisition of skeletal responses employing the Pavlovian paradigm. In *Classical conditioning*, 3rd ed. (ed. Gormezano I, Prokasy WF, Thompson RF), pp. 287–318. Erlbaum, New Jersey.

Ranck JB Jr. 1973. Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. Part I. Behavioral correlates and firing repertoires. *Exp Neurol* 41: 461–531.

Salvatierra AT, Berry SD. 1989. Scopolamine disruption of septo-hippocampal activity and classical conditioning. *Behav Neurosci* 103: 715–721.

Scarlett D, Dypvik AT, Bland BH. 2004. Comparison of spontaneous and septally driven hippocampal θ field and θ-related cellular activity. *Hippocampus* 14: 99–106.

Seager MA, Johnson LD, Chabot ES, Asaka Y, Berry SD. 2002. Oscillatory brain states and learning: impact of hippocampal θ-contingent training. *Proc Natl Acad Sci* 99: 1616–1620.

Siapas AG, Lubenov EV, Wilson MA. 2005. Prefrontal phase locking to hippocampal θ oscillations. *Neuron* 46: 141–151.

Sik A, Penttonen M, Ylinen A, Buzsaki G. 1995. Hippocampal CA1 interneurons: an in vivo intracellular labeling study. *J Neurosci* 15: 6651–6665.

Solomon PR, Solomon SD, Vander Schaaf E, Perry HE. 1983. Altered activity in the hippocampus is more detrimental to classical conditioning than removing the structure. *Science* 220: 329–331.

Thompson RF, Berry SD, Rinaldi PC, Berger TW. 1979. Habituation and the orienting reflex: the dual process revisited. In *The orienting response in human* (ed. Kimmel HD, Van Oist EH, Orlebeke JF), pp. 21–60. Erlbaum, New Jersey.

Weiss C, Kronforst-Collins MA, Disterhoft JF. 1996. Activity of hippocampal pyramidal neurons during trace eyeblink conditioning. *Hippocampus* 6: 192–209.

Received January 18, 2015; accepted in revised form April 23, 2015.