Aneuploidy and Drug Resistance in Pathogenic Fungi

Kyung J. Kwon-Chung*, Yun C. Chang

Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America

Genomic imbalance resulting from aneuploidy is detrimental to the proliferation of cells in conditions suitable for normal growth and differentiation [1,2]. However, there is growing evidence that aneuploidy confers a significant growth advantage when cells undergo severe genetic or environmental perturbations [3–6]. For example, aneuploidy restored the ability to proliferate in yeast cells that carried an irreversible disruption in the key cytokinetic machinery [7], enabled them to overcome nutrient limitations [8], facilitated resistance to antifungal drugs in pathogenic fungi, and increased their virulence [4,9,10–12]. This review focuses on the emergence of aneuploidy that enables pathogenic fungi to resist antifungal drugs.

What Is Aneuploidy and How Is It Produced?

Cells possessing a chromosome number that is either more or less than the normal number (wild type) are called aneuploids, which occur either spontaneously or as a consequence of genetic or environmental perturbation [1]. Although the cell division cycle is a highly controlled process with checkpoints to ensure the formation of two genetically identical daughter cells, chromosome missegregation does occur spontaneously at certain rates and produces aneuploids. In Saccharomyces cerevisiae, aneuploidy occurs spontaneously once every 5 × 10⁶ cell divisions [13], but this rate can increase more than a 100-fold when the cells are under certain environmental stress conditions [10]. While the spontaneous rate of aneuploidy in mammalian cells is in the order of 10⁴–10⁵ cell divisions [14], the majority of human solid tumor cells are derived from a chromosome number that is either higher or lower than their wild-type counterpart [14,20]. Whether aneuploidy occurs spontaneously or due to genetic or environmental factors, chromosome missegregation during cell division can occur by defects present in any one of the following:

1) structural integrity of the microtubule spindle apparatus
2) organization of spindle microtubules in bipolar arrays with focused poles
3) integrity of kinetochore on chromosomes
4) binding of spindle microtubules on kinetochores
5) checkpoint signaling pathway
6) process of cytokinesis (reviewed by [16])

Aneuploidy is poorly tolerated unless it provides a fitness advantage under stress [2,4,5] or carries aneuploidy-tolerating mutations. For example, the budding yeast cells with mutations in the deubiquitinating enzyme tolerate aneuploidy by attenuating the changes in intracellular protein composition resulted from aneuploidy [17].

What Is Known about Aneuploidy and Resistance to Antifungal Drugs in Pathogenic Fungi?

Fungal infections are treated primarily with antifungal agents that affect membrane sterols (e.g. polyenes) or disrupt biosynthesis of nucleic acids (e.g. 5-fluorocytosine), ergosterol (e.g. azoles), or cell wall components (e.g. echinocandins) [18,19]. Prolonged use of these agents has been associated with an increase in the number of clinical cases exhibiting resistance to these drugs, which often correlates with in vitro resistance. Reports associating aneuploidy with the emergence of antifungal drug resistance in pathogenic fungi, however, have mostly been limited to azoles, primarily fluconazole (FLC), though polyenes and echinocandins have just as commonly been used as azoles. FLC is a fungistatic drug most widely used for yeast infections such as candidiasis and cryptococcosis. Consequently, reports of aneuploidy in pathogenic fungi linked to the emergence of drug resistance have been limited to FLC therapy, and studies of its mechanism have exclusively been carried out in Candida and Cryptococcus. The prevalence of azole-associated aneuploidy in these fungi appears not only to be due to increasedazole therapy but also the high plasticity of their genomes [5,20].

How Does Aneuploidy Provide Fitness to Candida Species under Azole Stress?

The association between acquired aneuploidy and FLC resistance in Candida was first reported in a strain of C. glabrata isolated from a patient after just nine days of treatment for candidiasis with 400 mg FLC [21]. The resistant strain contained twice the levels of microsomal cytochrome P450 and ergosterol than the pretreatment strain. Repeated subcultures of the resistant strain on drug-free media decreased both the P450 content and ergosterol synthesis while restoring FLC susceptibility. Analysis of chromosome patterns revealed that the whole chromosome harboring ERG11 (CYP51), which encodes the azole target, had been duplicated in the resistant strain. The extra copy of the duplicated chromosome along with FLC resistance gradually disappeared during growth on drug-free media, suggesting an association between duplication of the ERG11-bearing chromosome and drug resistance [22]. Although formation and loss of the new chromosome associated with FLC resistance was observed in more clinical isolates, details on the FLC-induced aneuploidy in C. glabrata have not been pursued [11]. Acquisition of aneuploidy-conferring azole resistance, however, was extensively studied in C. albicans by Berman.
and associates [4,20,23,24]. Analysis of a large number of azole-resistant and azole-sensitive strains from clinical and laboratory sources by comparative genome hybridization (CGH) revealed a clear link between aneuploidy and azole resistance [23]. Aneuploidy was most prevalent for chromosome 5 (Chr5), which was primarily trisomic and exhibited a high frequency of segmental aneuploidy comprising the two left arms of Chr5 [i(5L)]. Sometimes, i(5L) was attached to a homolog of Chr5. The left arm of Chr5 houses ERG11 and the TAC1 gene, which encodes a transcription regulator of drug efflux pumps. Amplification of these two genes was determined to be the major mechanism responsible for increased drug resistance in i(5L) aneuploids. The levels of azole resistance were independently and additively mediated by the copy number of ERG11 and TAC1 genes [24]. The acquisition of i(5L) accompanied by FLC resistance also occurred commonly in clinical settings during FLC treatment [24], and such genomic aneuploidy was reproducible in the laboratory following short exposure to FLC. A correlation between formation of the i(5L) and azole resistance is evident, since it is only observed in theazole-treated population and not in the untreated population of the same strain at any given time point [4]. Like in the C. glabrata case of FLC-induced aneuploidy, i(5L) formed under FLC stress was lost during proliferation in an environment free of FLC. These findings underscore the genomic fluidity of C. albicans and confirm how drug-induced aneuploidy can provide a fitness advantage [4,20].

How Does FLC-Induced Aneuploidy Contribute to the Emergence of Transient Azole Resistance in Cryptococcus?

An adaptive mechanism of drug resistance against azoles in C. neoformans called “heteroresistance,” later found to be due to azole-associated acquisition of aneuploidy, was first reported in clinical isolates from two patients: one undergoing azole maintenance therapy and the other with no exposure to antifungal drugs [25]. Screening of over 100 C. neoformans and more than 40 C. gattii strains isolated before the advent of azoles confirmed both species to be innately heteroresistant to FLC [9,26], and this resistance was lost upon release from drug stress [5,27]. The resistant subpopulations that emerged at drug levels higher than the strain’s MIC for FLC almost always were disomic (chromosome present in two copies) for Chr1, and further elevations of the drug level
Aneuploidy of Chr4, in addition to Chr1, was found in a majority of the *C. neoformans* clones that could resist very high FLC concentrations (>264 μg/ml). Chr4 lacks ergosterol biosynthesis-related genes or homologs of efflux pumps that affect Chr4 disomy formation [27]. Since azoles perturb the cell membrane integrity, Ngamskulrungroj et al. focused on six Chr4 genes that are associated with membrane composition/integrity and analyzed their role in FLC resistance and formation of Chr4 disomy [27]. Of the six, three genes that are involved in the maintenance of ER integrity, *SEY1*, *GLO3* and *GCS2*, were found to be important for aneuploidy formation under FLC stress. In addition, deletion of *SEY1* and *GLO3* resulted in significantly higher susceptibility to FLC (Figure 2A), and deletants showed various degrees of ER perturbation accompanied by 40% to 90% reductions in the frequency of FLC-associated formation of disomy. Importance of ER integrity in FLC-associated drug resistance via disomy formation was further confirmed by an increase in Chr3 disomy when *SEY1* or *GLO3* was translocated to Chr3. Moreover, *SEY1* and *GLO3* double deletions caused severe perturbation of the ER network (Figure 2B) and abolished disomy for both Chr1 and Chr4 under FLC stress. Those double deletants were extremely sensitive to FLC, and the clones resistant to levels of FLC higher than their MIC revealed a monosomic Chr1 with segmental amplification only in the small region surrounding the *ERG11* gene [27]. Similar results were obtained when *SEY1* and the Chr7-inhabiting *TOP1* gene, which encodes a Sey1-interacting ER curvature maintenance protein, were both deleted [30]. Since FLC disrupts the biosynthesis of ergosterol, which is produced in the ER and delivered to plasma membrane [31,32], it is likely that increases in dosage of the genes relevant for ER integrity provide increased fitness under FLC stress. The mechanism of how ER influences aneuploidy formation under azole stress remains unknown.

Concluding Remarks

Aneuploidy, which provides increased fitness in *Candida* and *Cryptococcus* under azole stress, has received considerable attention, but the mechanism of chromosome missegregation that causes
azole-associated aneuploidy has not been characterized in either fungus. However, the mechanism of adaptive azole resistance in the two species appears to overlap: amplification of the chromosome bearing \textit{ERG11}, the target of azoles, and either the efflux pumps or their regulator accounts for the drug resistance. In \textit{C. neoformans}, duplication of the chromosome that houses factors responsible for the maintenance of ER integrity also provides a fitness advantage under azole stress. Since sterol is essential for the proliferation of fungal cells and is synthesized mainly in the ER before being delivered to the plasma membrane, it is understandable how \textit{C. neoformans} benefits through amplification of ER-associated genes under azole stress. Further investigation is warranted to see if the relationship between ER integrity and the azole-associated emergence of aneuploidy is common among fungi.

References

1. Torres EM, Williams BR, Amon A (2008) Aneuploidy: cells losing their balance. Genetics 179: 737–746.
2. Utitius DA, Prabhu VR, Hunter KE, Glazer CM, Whittaker CA, et al. (2008) Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 322: 703–709.
3. Duesberg P, Simid R, Heilmann R (2001) Origin of multidrug resistance in cells with and without multidrug resistance genes: chromosome reassortments catalyzed by aneuploidy. Proc Natl Acad Sci USA 98: 11283–11288.
4. Selmecki AM, Dulmage K, Cowen LE, Anderson JB, Berman J (2009) Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance. PLoS Genet 5: e1000705. doi:10.1371/journal.pgen.1000705
5. Sionov E, Lee H, Chang Y, Kwon-Chung KJ (2009) Heteroresistance to fluconazole overcomes stress of azole drugs by formation of disomy in specific chromosome regions. Antimicrob Agents Chemother 53: 2804–2815.
6. Pavelka N, Rancati G, Li R (2010) Dr. Jekyll and Mr. Hyde: role of aneuploidy in cellular adaptation and cancer. Curr Opin Cell Biol 22: 809–815.
7. Rancati G, Pavelka N, Fleharty B, Noll A, Trimble R, et al. (2008) Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell 135: 879–895.
8. Gresham D, Desai MM, Tucker CM, Jerne HT, Pai DA, et al. (2008) The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet 4: e1000303. doi:10.1371/journal.pgen.1000303
9. Sionov E, Chang YC, Garraffo HM, Kwon-Chung KJ (2009) Heteroresistance to fluconazole in \textit{Cryptococcus neoformans} is intrinsic and associated with virulence. Antimicrob Agents Chemother 53: 2004–2013.
10. Chen G, Bradford WD, Seidel CW, Li R (2012) Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature 482: 246–250.
11. Polakova S, Blume C, Zarate JA, Mentel M, Jorck-Ramberg D, et al. (2009) Characterization of the chromosome 4 genes that affect fluconazole-induced disomy formation. Exp Cell Res 300: 109–120.
12. Hu G, Wang J, Choi J, Jung WH, Liu I, et al. (2011) Variation in chromosome copy number influences the virulence of \textit{Cryptococcus neoformans} and occurs in isolates from AIDS patients. BMC Genomics 12: 526.
13. Hartwell LH, Dutcher SK, Wood JS, Gavvik B (1982) The fidelity of mitotic chromosome reproduction in \textit{S. cerevisiae}. Rec Adv Yeast Mol Biol 1: 28–38.
14. Rosenstrauss MJ, Chasin LA (1976) Separation of linked markers in Chinese hamster cell hybrids: mitotic recombination is not involved. Genetics 90: 735–760.
15. Albertson DG, Collins C, McCormick F, Gray JW (2003) Chromosome aberrations in solid tumors. Nat Genet 34: 369–376.
16. Compton DA (2011) Mechanisms of aneuploidy. Curr Opin Cell Biol 23: 109–113.
17. Torres EM, Dephoure N, Panneerselvam A, Tucker CM, Whittaker CA, et al. (2010) Identification of aneuploidy-tolerating mutations. Cell 143: 71–83.
18. Ghannoun MA, Rice LB (1999) Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev 12: 501–517.
19. Marie C, White TC (2009) Genetic basis of antifungal drug resistance. Curr Fungal Infect Rep 3: 163–169.
20. Selmecki A, Forche A, Berman J (2010) Genomic plasticity of the human fungal pathogen \textit{Candida albicans}. Eukaryot Cell 9: 991–1008.
21. vanden Bossche H, Marichal P, Odds FC, Le Jeune L, Coene MC (1992) Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance. PLoS Genet 5: e1000705. doi:10.1371/journal.pgen.0033022
22. Marichal P, Vanden Bossche H, Odds FC, Nobels G, Warnock DW, et al. (1997) Molecular biological characterization of an azole-resistant \textit{Candida glabrata} isolate. Antimicrob Agents Chemother 41: 2229–2237.
23. Selmecki A, Forche A, Berman J (2006) Aneuploidy and isochromosome formation in drug-resistant \textit{Candida albicans}. Science 313: 367–370.
24. Selmecki A, Gerami-Nejad M, Paulson C, Forche A, Berman J (2008) An isochromosome confers drug resistance in vivo by amplification of two genes, \textit{ERG11} and \textit{TAC1}. Mol Microbiol 68: 624–641.
25. Mondon P, Petter R, Amlaifano G, Luzzati R, Conesa E, et al. (1999) Heteroresistance to fluconazole and voriconazole in \textit{Cryptococcus neoformans}. Antimicrob Agents Chemother 43: 1556–1561.
26. Varma A, Kwon-Chung KJ (2010) Heteroresistance of \textit{Cryptococcus gattii} to fluconazole. Antimicrob Agents Chemother 54: 2303–2311.
27. Ngamkalrungroj P, Chang Y, Hansen B, Bugge C, Fischer E, et al. (2012) Characterization of the chromosome 4 genes that affect fluconazole-induced disomy formation in \textit{Cryptococcus neoformans}. PLoS ONE 7: e30922. doi:10.1371/journal.pone.0030922
28. Fernandez C, Lobo MT, Gomez-Coronado D, Lasuncion MA (2004) Cholesterol is essential for mitosis progression and its deficiency induces polypeptide cell formation. Exp Cell Res 300: 109–120.
29. Semighini CP, Averette AF, Perfect JR, Heitman J (2011) Deletion of \textit{Cryptococcus neoformans} AIF ortholog promotes chromosome aneuploidy and fluconazole-resistance in a metacaspase-independent manner. PLoS Pathog 7: e1002364. doi:10.1371/journal.ppat.1002364
30. Ngamkalrungroj P, Chang Y, Hansen B, Bugge C, Fischer E, et al. (2012) \textit{Cryptococcus neoformans} \textit{Yop1}, an endoplasmic reticulum curvature-stabilizing protein, participates with Sey1 in influencing fluconazole-induced disomy formation. FEMS Yeast Res. doi:10.1111/j.1567-3566.2012.00824.x
31. Schulz TA, Prinz WA (2007) Sterol transport in yeast and the oxysterol binding protein homologue (OSH) family. Biochim Biophys Acta 1771: 769–780.
32. Sullivan DP, Ohvo-Rekola H, Baumann NA, Beh C, Menon AK (2006) Sterol trafficking between the endoplasmic reticulum and plasma membrane in yeast. Biochem Soc Trans 34: 356–358.