Induced temperature-dependent DNA degradation by C_{60} without photoactivation

WANG Chang^{1,2}, LIN Yan^{2}, WANG Ying^{3}, LIANG Yong^{1,3*}, MENG LingZhi^{4}, ZHANG Jie^{2}, ZHOU QunFang^{1} & JIANG GuiBin^{1}

^{1} State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
^{2} Key Laboratory of Subtropical Agriculture and Environment of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China;
^{3} School of Medicine, Jianghan University, Wuhan 430056, China;
^{4} Department of Chemistry, Wuhan University, Wuhan 430072, China

Received December 22, 2010; accepted May 18, 2011

This study shows that C_{60} can degrade pBR322 plasmid DNA at room temperature without photoactivation. The degradation was enhanced by increasing incubation temperature, reaction time or C_{60} concentration. We also found that superoxide radical anions (O_{2}^{−}) were formed in the C_{60} solution. Superoxide dismutase significantly inhibited DNA cleavage and O_{2}^{−} generation induced by C_{60}. These results suggest that DNA cleavage was caused by the formation of reactive oxygen species induced by C_{60} at room temperature. Furthermore, we demonstrate that the DNA degradation was significantly inhibited by acid amide chemicals such as formamide, and by increased ionic strength of the reaction solution. These results indicate that the DNA conformation stability and the surface properties of C_{60} are important factors regulating DNA degradation. We propose that C_{60} can bind DNA, decrease DNA conformation stability, and induce the formation of reactive oxygen species and DNA cleavage at room temperature. Our results provide a possible explanation for the genotoxicity of C_{60}, which should be considered in future use of this particular nano-material.

C_{60}, DNA degradation, reactive oxygen species, genotoxicity

Since the discovery of fullerene (C_{60}) in 1985, the unique physicochemical and mechanical properties of this novel carbon allotrope have attracted extensive attention, and the practical applications of fullerene as a biological and pharmacological agent have been studied [1,2]. In addition, various biological activities such as antiviral, antioxidant and chemotactic activities of fullerene derivatives have been investigated [3–5].

In recent years, increasing numbers of publications and reports indicated that the production and use of nanoparticles may be deleterious to humans and to the environment [6–8]. The earlier studies showed that in several tests the acute toxicity of C_{60} is low [3]. However, more recent research suggested that C_{60} could induce oxidative stress in the brain of juvenile largemouth bass and the lipid peroxidation in some freshwater and marine species. Some lipid metabolism genes involved in adverse effects were found to be regulated by C_{60} [9–11]. Furthermore, it has been shown that C_{60} can impair the cell membrane by generating reactive oxygen species (ROS), and that the antibacterial activity and the genotoxicity of C_{60} were also related to ROS generation [12–14].

The results of atomistic molecular dynamics simulations and genotoxicity tests showed that C_{60} could strongly bind to nucleotides and further affect the structure, stability and biological functions of DNA molecules [15,16]. It has also...
been found that photoactivated C₆₀ could induce DNA cleavage by generating superoxide radical anions (O₂⁻) [17]. The photoactivation of C₆₀ is required for ROS generation; however, the light conditions in vivo are quite different from the DNA cleavage assay that was processed in a tube with longer and more intensive irradiation [9,12–14]. Therefore, more evidence is required to support the hypothesis that ROS generation is induced by C₆₀ in cells.

In this study, the DNA electrophoresis assay was performed to assess the genotoxicity of C₆₀. We found that C₆₀ could degrade pBR322 plasmid DNA at room temperature without photoactivation. The degradation correlated with the increase in incubation temperature, reaction time or concentration of C₆₀. These results are different from those of DNA cleavage induced by photoactivated C₆₀ in a previous study [17]. Furthermore, we detected the formation of O₂⁻ in the C₆₀ solution using the Griess reaction. O₂⁻ generation and the DNA cleavage induced by C₆₀ were inhibited by superoxide dismutase (SOD). The DNA degradation was significantly inhibited by acid amide chemicals and by increased ionic strength of the reaction solution. Our results indicate that C₆₀ could be used to induce DNA cleavage under appropriate conditions.

1 Materials and methods

1.1 Water-dispersible C₆₀ preparation

C₆₀ (99.5%; Alfa Aesar, Ward Hill, MA, USA) was suspended in water following the method of Yamakoshi [18]. First, 8 mg C₆₀ were dissolved in 10 mL toluene and mixed adequately until it was completely dissolved. Then 20 mL CHCl₃ containing 1 g polyvinylpyrrolidone (PVP, 99%, average molecular weight 40000, Amresco, Solon, OH, USA) were added into the toluene solution and mixed for 4 h. The solvent was evaporated by a vacuum evaporator for 1 h at 40°C. The brown residue was re-dissolved in 20 mL sterilized Milli-Q water. The final concentration of C₆₀ was 400 μg/mL. The C₆₀ solution was stored at 4°C in the dark.

1.2 Transmission electron microscopy measurement

Specimens were prepared by placing a drop of C₆₀ suspension on a Formvar-membrane-coated copper grid, which was then air-dried at room temperature. The C₆₀ size and morphology were determined with a transmission electron microscope (TEM, JEM-100CXII, JEOL Ltd) operated at 100 kV.

1.3 DNA cleavage assay

A supercoiled plasmid DNA (pBR322, 200 μg/mL, Sino-American Biotechnical Company) was diluted in sterilized Milli-Q water to 20 μg/mL. The DNA solution, C₆₀ solution and other chemical solutions were mixed well in Milli-Q water and incubated in a water bath at different temperatures (4, 10, 20, 30 and 37°C). The final volume of incubation solution was 20 μL and the assays were all conducted in the dark. After incubation, an aliquot (7 μL) of the solution was mixed with bromophenol blue-glycerol solution (1 μL) and was analyzed by agarose gel electrophoresis (1% agarose in Tris-acetate-EDTA buffer, 100 V, 30 min). The gel was stained with ethidium bromide (Fluka, Ronkonkoma, NY, USA), and visualized and photographed by the UVP gel imaging system. To evaluate the possible mechanism of the DNA cleavage induced by C₆₀, different kinds of organic chemicals such as formamide (100% ion-free, Amresco), acrylamide, urea, thiourea and inorganic salt (NaCl, Amresco) were added to the assay solution. The reactions were incubated in a polymerase chain reaction (PCR) machine (TC-312, Techne, Cambridge, UK) using the following program: 94°C for 1 min, 55°C for 5 min and 10°C for 5 min. Immediately after the reaction, the DNA solution was analyzed by gel electrophoresis.

1.4 Detection of O₂⁻ (hydroxylamine-Griess reaction)

O₂⁻ generation was detected by a previously reported hydroxylamine-Griess reaction method with some minor modifications [19]. Briefly, O₂⁻ reacted with vitriolic hydroxylamine to generate nitrous acid; the NO₂⁻ reacted with the Griess reagent (p-aminobenzene sulfonic acid and 2-aminonaphthalene) to generate pink azocompounds, which can be detected by a UV-VIS spectrophotometer (SP-2000UV, Shanghai Spectrum Instruments Company, China) at 550 nm. The O₂⁻ detection kit (Nanjing Jiancheng Bioengineering Institute, Nanjing, China) was used in this study. Different concentrations of C₆₀ or PVP (100 μL) solutions were mixed with 20 μL hydroxylamine sulfate (0.6 mmol/L) and 100 μL reaction buffer (62.4 mmol/L sodium borate and 42.8 mmol/L monopotassium phosphate, pH 8.2). The mixtures were incubated at different temperatures, and then mixed with 200 μL visualization reagent (0.43 mg/mL p-aminobenzene sulfonic acid, 0.048 mg/mL 2-aminonaphthalene and 26.7% acetic acid) at room temperature for 10 min. The solutions were centrifuged at 12000 g for 3 min to remove C₆₀ from the solution. The generation of O₂⁻ was assessed by measuring absorption of the final clear solutions at 550 nm. The incubation was conducted in the dark.

2 Results

2.1 Size and shape of the C₆₀ particle

TEM imaging was used to analyze the size and morphology of C₆₀ particle. The typical size and shape of C₆₀ particles observed in the C₆₀ suspension are illustrated in Figure 1. The TEM image indicates that the C₆₀ spherical aggregates range from 15 nm to 45 nm in diameter. The size and shape
are consistent with a previous report [14].

2.2 DNA cleavage assay

First, the pBR322 supercoiled DNA was employed to explore the DNA cleavage activity of C₆₀. Surprisingly, C₆₀ cleaved the DNA without irradiation. The pBR322 supercoiled DNA was incubated with different concentrations of C₆₀ at 37°C for 12 h in the dark. With increased concentrations of C₆₀, the supercoiled DNA was gradually cleaved to linear DNA, nick DNA and finally smear DNA (Figure 2(a)). Because the reaction was conducted in the dark, and photoactivation is believed to be required for C₆₀-induced DNA cleavage, we hypothesized that thermal energy is important for the reaction. To confirm this unusual property of C₆₀, we conducted the DNA cleavage assay at different temperatures or incubation durations without light irradiation. The results clearly showed that C₆₀ could not cleave DNA at low temperatures such as 4 and 10°C (Figure 2(b)).

Even when the incubation time was prolonged to 24 h, no cleavage product could be observed (data not shown). When the reaction was carried out at 20°C for 12 h, the supercoiled form DNA was partially cleaved to the nicked form. When the reaction was carried out at 30 or 37°C, DNA was completely cleaved by 80 µg/mL C₆₀ (Figure 2(b)). These results indicate that DNA cleavage induced by C₆₀ was temperature dependent. On the contrary, no DNA cleavage was observed in all control groups where 1% PVP solution was evaluated (Figure 2(c)). When incubating DNA with 80 µg/mL C₆₀ for different periods of time (2–11 h), DNA was gradually cleaved with increasing incubation time. At 6 h incubation, an obvious DNA cleavage induced by C₆₀ could be detected (Figure 2(d)). These results strongly suggest that C₆₀ can induce DNA cleavage in a temperature-dependent manner without the requirement of photoactivation.

Because O₂⁻ induced by C₆₀ was considered to be the major cause for DNA cleavage [17], in this study, the ROS scavenger SOD was added to the incubation solution to assess the possible mechanism. SOD and C₆₀ together with the plasmid DNA were incubated at 37°C in the dark for 8 h.

![Figure 1](image1.png)

Figure 1 TEM image of C₆₀ suspension.

![Figure 2](image2.png)

Figure 2 Gel electrophoresis results of the DNA cleavage assay. (a) DNA cleavage induced by different concentrations of C₆₀. pBR322 was incubated with C₆₀ for 12 h at 37°C in the dark. (b) C₆₀ induced DNA cleavage at different temperatures. pBR322 was incubated with C₆₀ for 12 h at different temperatures. (c) Effects of PVP on C₆₀-induced DNA cleavage. pBR322 was incubated with 1% PVP for 12 h at different temperatures. (d) C₆₀ was incubated with pBR322 for different times in the dark at 37°C. Reaction conditions are indicated. All experiments were repeated at least five times.
The results show that DNA cleavage induced by C\textsubscript{60} was significantly inhibited by 0.5 U/μL SOD, but not by bovine serum albumin (BSA) as a control protein (Figure 3). Although most of the supercoiled DNA was transformed to nicked DNA in the SOD treated group, the amount of plasmid DNA was not obviously decreased compared with that of the control. The SOD treatment results indicate that ROS induced DNA cleavage in this experiment system.

Figure 3 C\textsubscript{60}-induced DNA cleavage was inhibited by SOD. Plasmid DNA (pBR322, 20 μg/mL) was incubated with C\textsubscript{60}, SOD or BSA at 37°C for 8 h in the dark. Experiments were repeated at least 5 times.

2.3 Detection of O\textsubscript{2}·

The above results revealed that SOD could significantly inhibit DNA cleavage induced by C\textsubscript{60}. A chemical method was used to detect the generation of O\textsubscript{2}· in the incubation solution under different experiment conditions. First, C\textsubscript{60} was incubated in the dark for 40 min at different temperatures, and then the generation of superoxide radical anions in the solution was examined. C\textsubscript{60} was removed by centrifugation to avoid the interference of C\textsubscript{60} itself. The results show that the absorbance of the solution significantly increased with the increase in temperature (Figure 4(a)). The PVP solution failed to induce the generation of O\textsubscript{2}·. The generation of O\textsubscript{2}· induced by C\textsubscript{60} was also temperature-dependent. To further verify the temperature-dependence result, C\textsubscript{60} was incubated in the dark for different periods of time at 4 or 37°C, and the generation of O\textsubscript{2}· was detected. The results revealed that the generation of O\textsubscript{2}· at 37°C significantly increased with the prolongation of incubation time (Figure 4(b)). However, C\textsubscript{60} could not induce O\textsubscript{2}· generation at 4°C, even with a C\textsubscript{60} concentration of 125 μg/mL (Figure 4(c)). To eliminate the generation of O\textsubscript{2}· induced by C\textsubscript{60}, 0.5 U/μL SOD were added to the reaction solution, which clearly...

Figure 4 Detection of O\textsubscript{2}· by the hydroxylamine-Griess reaction. (a) O\textsubscript{2}· generation induced by PVP or C\textsubscript{60} at different temperatures. (b) O\textsubscript{2}· generation induced by C\textsubscript{60} after different periods of time. 62.5 μg/mL C\textsubscript{60} were incubated at 4 or 37°C for 5, 10, 15, 20, 25, 30, 35, 40 min. (c) O\textsubscript{2}· generation induced by different concentrations of C\textsubscript{60} (6.25, 12.5, 25, 31.25, 46.87, 62.5, 93.75, 125 μg/mL) at 4 or 37°C for 40 min. (d) O\textsubscript{2}· generation induced by C\textsubscript{60} was significantly inhibited by SOD. The incubation was carried out at 37°C for 40 min in the dark. All experiments were performed in the dark and data are represented as the average values ± standard deviations of four individual experiments.
quenched O_2^- generation (Figure 4(d)). As a ROS scavenger, SOD inhibited DNA cleavage and quenched O_2^- induced by C_{60}. Based on the DNA cleavage and O_2^- generation results, we propose that the induction of ROS, specifically O_2^-, might be the major cause for DNA cleavage induced by C_{60}.

2.4 Inhibition of C_{60}-induced DNA cleavage

Computer simulation results have previously indicated that C_{60} could bind to DNA and significantly decrease the stability of the DNA conformation [15]. To evaluate the ability of C_{60} to induce DNA cleavage, the DNA denaturation and renaturation process was examined in a thermal cycle machine. By heating at 94°C for 1 min, the plasmid DNA was denatured, then cooled at 50°C for 5 min, the plasmid DNA was partially renatured. This simple and rapid method could provide valuable information about the interaction between C_{60} and DNA conformation stability. The plasmid DNA was incubated with different concentrations of C_{60} before the treatment. The results showed that the quantity of supercoiled DNA was constant after heat treatment, but the nicked DNA was transformed to another form of DNA (Figure 5(a)). This new form of DNA (around 1500 bp) was named heat-treated DNA because it was generated after the denaturation to renaturation procedure. The same form of DNA band was also detected in previous results (Figure 2(b), Lane 2; Figure 2(c)). One possible explanation is that this special form of DNA is the partial renaturation product of nicked DNA. With the increase in C_{60} concentration, three forms of DNA were cleaved gradually (Figure 5(a)). As a control, PVP could not induce DNA cleavage in all concentrations tested (Figure 5(b)). Based on the results of different DNA cleavage assays, it is clear that C_{60} could cleave DNA without photoactivation.

The ability of formamide and monovalent ions to alter DNA stability has been well investigated, and they have been widely used as additives in PCR and other nucleic acid research [20–22]. To understand their roles in C_{60}-induced DNA degradation, four different types of organic chemicals that include an amide group, formamide, acrylamide, urea and thiourea, were used. The results show that DNA degradation induced by C_{60} was significantly inhibited by increasing the concentration of organic chemical in the reaction solution (Figure 6(a) and (b)). Based on the degree of cleavage of the three forms of DNA and the amount of acid amide compounds added to the solution, the order of inhibitory activity of these chemicals was: thiourea $>$ urea $>$ formamide $>$ acrylamide.

The effect of ionic strength on C_{60}-induced DNA cleavage was also studied. The results show that the DNA cleavage induced by C_{60} was significantly inhibited by increasing the ionic strength of the reaction solution (Figure 7). The effects of formamide and NaCl were evaluated by incubation with DNA and C_{60} at 37°C for 12 h in the dark. Both formamide and Na$^+$ inhibited DNA cleavage (data not shown).
C60 induced ROS generation through the energy transfer might be the major cause of DNA cleavage. Photoactivated results reveal that C60 could induce DNA cleavage without physiological conditions requires further investigation. Our activation. The generation of O₂ is also confirmed by the Griess reaction. Moreover, we show that SOD could inhibit DNA cleavage and quench O₂⁻. These results indicate that the ROS induced by heat-activated C60 might be the major cause of DNA cleavage. Photoactivated C60 induced ROS generation through the energy transfer mechanism or the electron transfer reaction [17]. According to electron spin resonance spectra of water-soluble C60, the radical species was hypothesized to be a carbon-centered free radical, which was potentially responsible for oxidative damage [27]. The yielding nC60 radical can form organic radicals by donating electrons, and then pass the electrons to oxygen to form ROS [24]. In addition, Lyon et al. [28] demonstrated that water-soluble C60 as a direct oxidant could cause antibacterial activity and the oxidative damage is not due to the generation of ROS.

Because the light condition of the conventional toxicity test is quite different from the DNA cleavage assay, and because C60 can induce the generation of O₂⁻ in a cell-free aqueous solution regardless of the ambient light exposure [12], the generation of ROS in the cell induced by C60 under physiological conditions requires further investigation. Our results reveal that C60 could induce DNA cleavage without light irradiation and the induction was temperature dependent. With heat treatment for only 1 min at 94°C, 40 μg/mL C60 could cleave DNA completely. Incubated at 37°C for 6 h, the DNA was fully broken down by 80 μg/mL C60. By decreasing the incubation temperature, DNA cleavage was entirely eliminated. These results indicate that C60 may react with biomolecules through electron- and energy-transfer under proper catalysis conditions. Similar to photo energy, thermal energy is a very important catalysis factor in the cleavage reaction, thus a possible mechanism is that C60 is an excellent electron acceptor in the ground state and the excited C60 transfers the electron to O₂ to generate O₂⁻ or other types of ROS by absorbing thermal energy and electrons. A previous report showed that C60 can react with PVP to form highly stable charge transfer complexes, but whether the complex formation was the crucial step during DNA cleavage requires further evaluation [29].

Another interesting result was that when formamide or acid amide compounds was added to the reaction solution, and the DNA degradation induced by C60 was inhibited. Previous computer simulation results have revealed that the binding site of C60 is the minor groove of nucleotides or the hydrophobic ends of the DNA strand. The major interaction energy between two molecules is contributed by hydrophobic interactions [15]. A former report proposed that the stability of DNA conformation could be disturbed because the bases could be amidated. The C–N bond of formamide has a substantial double-bond character, and the bidentate formamide paired with the bases can gain additional binding support from cooperative p-electron charge transfer interactions [30]. The order of inhibition resulting from acid amide chemicals showed that chemicals with higher positive potentials could inhibit C60-induced DNA cleavage more effectively.

Moreover, while increasing the ionic strength of the reaction solution, the degradation was eliminated, indicating that DNA conformation stability and C60 surface characteristics are additional important factors in DNA degradation. The nucleic acid conformation stability is related to the salt concentration and cation valence [31]. It is generally believed that the stability of DNA could be increased by enhancing the ionic strength appropriately. Because certain cation concentrations can neutralize the negative charge of phosphates of double strand DNA and screen the electrostatic repulsions of DNA strands, the DNA structure and conformation can be stabilized by ions. The stability of DNA enforced by ions should contribute to the prevention of C60-induced adverse effects. As mentioned in the electron-transfer theory, the electronic coupling between the donor and acceptor states dominates the absolute rate constant, and the separation distance and nature of the intervening spacer can change the electronic coupling [24]. C60 possesses ample negative potentials in an aqueous solution. The increase of the ionic strength in solution can decrease the negative potentials of C60 via electrostatic interactions between the particles and positive ions [7]. For acid amide compounds, due to the p-π conjugation effect of the C=O bond and the C–N bond in the amide group, acid amide chemicals possesses positive potentials which make electrostatic interactions with the negative charge on the surface of C60. Thus, C60 can act as a strong electron receptor, and the cation or acid amide compounds can assemble a special ion atmosphere surrounding it. Therefore, the reaction carried out on the surface of the C60 molecule could be inhibited or

![Figure 7](image-url) Effects of NaCl on DNA cleavage in the DNA denaturation and renaturation process. pBR322 (20 μg/mL) was incubated with C60 and NaCl for 1 min at 94°C in the dark. All experiments were repeated at least 5 times.
C_{60} can induce DNA cleavage without photostimulation. The DNA cleavage assay and the detection of O_2^− indicate that the generation of O_2^− could be the major cause of DNA cleavage. Increasing ionic strength of the reaction solution or adding acid amide compounds eliminated the DNA cleavage. Our results provide a possible explanation for the genotoxicity of C_{60}, which should be considered in future applications of C_{60} in antimicrobial medicine and even cancer therapy.

4 Conclusions

C_{60} can induce DNA cleavage without photostimulation. The DNA cleavage assay and the detection of O_2^− indicate that the generation of O_2^− could be the major cause of DNA cleavage. Increasing ionic strength of the reaction solution or adding acid amide compounds eliminated the DNA cleavage. Our results provide a possible explanation for the genotoxicity of C_{60}, which should be considered in future applications of C_{60} in antimicrobial medicine and even cancer therapy.

This work was supported by the National Natural Science Foundation of China (2007017, 20890112), the National Basic Research Program of China (2009CB421605) and the National High Technology Research and Development Program of China (2007BAC27B01).

1. Da Ros T, Prato M. Medicinal chemistry with fullerenes and fullerene derivatives. Chem Commun, 1999, 21: 663–669
2. Kroto H W, Heath J R, Obrist S C, et al. C_{60}-Buckminsterfullerene. Nature, 1985, 318: 162–163
3. Jensen A W, Wilson S R, Schuster D I. Biological applications of fullerenes. Bioorg Med Chem, 1996, 4: 767–779
4. Wang I C, Tai L A, Lee D D, et al. C_{60} and water-soluble fullerene derivatives. Acc Chem Res, 2003, 36: 807–815
5. Nakamura E, Isobe H. Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc Chem Res, 2003, 36: 807–815
6. Service R F. Nanotoxicology: Nanotechnology grows up. Science, 2004, 304: 1732
7. Brant J A, Labille J, Bottero J Y, et al. Characterizing the impact of preparation method on fullerene cluster structure and chemistry. Langmuir, 2006, 22: 3878–3885
8. Nel A, Xia T, Madler L, et al. Toxic potential of materials at the nanolevel. Science, 2006, 311: 622–627
9. Oberdorster E. Manufactured nanomaterials (fullerenes, C_{60}) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect, 2004, 112: 1058–1062
10. Oberdorster E, Zhu S Q, Bickley T M, et al. Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene (C-60) on aquatic organisms. Carbon, 2006, 44: 1112–1120
11. Oever S B, Klaper R. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C-60) nanoparticles. Environ Tox Chem, 2006, 25: 1132–1137
12. Sayes C M, Fortner J D, Guo W, et al. The differential cytotoxicity of water-soluble fullerenes. Nano Lett, 2007, 7, 4: 1881–1887
13. Sayes C M, Gobin A M, Ausman K D, et al. Nano-C_{60} cytotoxicity is due to lipid peroxidation. Biomaterials, 2005, 26: 7587–7595
14. Lyon D Y, Adams L K, Falkner J C, et al. Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size. Environ Sci Technol, 2006, 40: 4360–4366
15. Zhao X, Striolo A, Cummings P T. C_{60} binds to and deforms nucleotides. Biophys J, 2005, 89: 3856–3862
16. Dhaman A, Taurozzi J S, Pandey A K, et al. Stable colloidal dispersions of C_{60} fullerenes in water: Evidence for genotoxicity. Environ Sci Technol, 2006, 40: 7394–7401
17. Yamakoshi Y, Umezawa N, Rya A, et al. Active oxygen species generated from photoexcited fullerene (C_{60}) as potential medicines: O_2 versus O_3. J Am Chem Soc, 2003, 125: 12803–12809
18. Yamakoshi Y N, Yagami T, Fukuhara K, et al. Solubilization of fullerenes into water with polyvinylpyrrolidone applicable to biological tests. J Chem Soc-Chem Commun, 1994, 21: 517–518
19. Eltner E F A H. Inhibition of nitrite formation from hydroxyxalammiium chloride: A simple assay for superoxide dismutase. Anal Biochem, 1976, 70: 616–620
20. Chakrabarti R, Schutt C E. The enhancement of PCR amplification by low molecular-weight sulfones. Gene, 2001, 274: 293–298
21. Chakrabarti R, Schutt C E. The enhancement of PCR amplification by low molecular weight amidines. Nucleic Acids Res, 2001, 29: 2377–2381
22. Korolev N, Lysubartsev A P, Laaksonen A, et al. A molecular dynamics simulation study of oriented DNA with polyanine and sodium counterions: Diffusion and averaged binding of water and cations. Nucleic Acids Res, 2003, 31: 5971–5981
23. Krusic P J, Wasserman E, Keizer P N, et al. Radical reactions of C_{60}. Science, 1991, 254: 1183–1185
24. Goldi D M, Prato M. Excited-state properties of C-60 fullerene derivatives. Acc Chem Res, 2000, 33: 695–703
25. Usenko C Y, Harper S L, Tanguay R L. Fullerene C-60 exposure elicits an oxidative stress response in embryonic zebrafish. Tox App Pharm, 2008, 229: 44–55
26. Folkmann J K, Risom L, Jacobsen N R, et al. Oxidatively damaged DNA in rats exposed by oral gavage to C-60 fullerenes and single-walled carbon nanotubes. Environ Health Perspect, 2009, 117: 703–708
27. Sayes C M, Marchione A A, Reed K L, et al. Comparative pulmonary toxicity assessments of C_{60} water suspensions in rats: Few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Lett, 2007, 7: 2399–2406
28. Lyon D Y, Brunet L, Hinkal G W, et al. Antibacterial activity of fullerene water suspensions (oC(60)) is not due to ROS-mediated damage. Nano Lett, 2008, 8: 1539–1543
29. Ungureanu A, Arinei A. Highly stable C-60/poly(vinylpyrrolidone) charge-transfer complexes afford new predictions for biological applications of underivatized fullerenes. J Med Chem, 2000, 43: 3186
30. Blake R D, Delcourt S G. Thermodynamic effects of formamide on DNA stability. Nucleic Acids Res, 1996, 24: 2095–2103
31. Tan Z J, Chen S J. Nucleic acid helix stability: Effects of salt concentration, cation valence and size, and chain length. Biophys J, 2006, 90: 1175–1190
32. Hotze E M, Labille J, Alvarez P, et al. Mechanisms of photochemistry.
try and reactive oxygen production by fullerene suspensions in water. Enviro Sci Technol, 2008, 42: 4175–4180

33 Brant J, Lecocanet H, Wiesner M R. Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanoparticle Res, 2005, 7: 545–553

34 Gharbi N, Pressac M, Hadchouel M, et al. Fullerenes is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett, 2005, 5: 2578–2585

35 Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect, 2005, 113: 823–839

36 Worle-Knirsch J M, Pulskamp K, Krug H F. Oops they did it again!

37 Levi N, Hantgan R R, Lively M O, et al. C60–Fullerenes: Detection of intracellular photoluminescence and lack of cytotoxic effects. J Nanobiotechnol, 2006, 4: 1–11

38 Magrez A, Kasas S, Salicio V, et al. Cellular toxicity of carbon-based nanomaterials. Nano Lett, 2006, 6: 1121–1125

39 Moore M N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int, 2006, 32: 967–976

40 Fiorito S, Serafino A, Andreola F, et al. Effects of fullerenes and single-wall carbon nanotubes on murine and human macrophages. Carbon, 2006, 44: 1100–1105

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.