A multi-centre student survey on weighing disciplines in medical curricula – a pilot study

Abstract

Aim: Initiated by students, this pilot study examines how obtaining medical students’ perspectives via a structured online survey may prove useful for curriculum deliberation.

Methods: In 2012, 747 students of 32 medical faculties in Germany assessed disciplines specified in the Medical Licensure Act (ÄAAbbÖ) thereby concerning the allocation of teaching time, perceived usefulness regarding preparation for state examination and medical practice, their interest and motivation for studying as well as consideration for future work.

Results: Internal medicine, surgery, paediatrics, gynaecology/obstetrics and general medicine rank amongst the upper third regarding allocation of teaching time and perceived usefulness for future medical practice. Concerning both preparation for state examination and medical practice internal medicine ranks second, while surgery only 22nd and 28th of 32, respectively. Some clinical-theoretical disciplines (e.g. pharmacology) are in the top ten regarding perceived preparation for state examination, too. Students who consider choosing internal medicine for future work rate associated disciplines significantly higher regarding usefulness for clinical practice (e.g. pharmacology) or motivation for studying (e.g. microbiology) than other students do.

Conclusion: A simple survey reveals interesting data on students’ perceptions and ideas of medical studies. Though the data are plausible, interpretations should be done with caution. Nonetheless, data like these should give rise to further questions and discussions, e.g. as part of curriculum deliberation.

Keywords: curriculum, medical education, student participation, online survey

Introduction

The German Medical Licensure Act (Ärztliche Approbationsordnung, ÄAAbbÖ) defines the disciplines in the clinical part of medical studies as well as their formats (§ 2) or the teaching time in total (§§ 2, 27, appendix 1 in § 2). However, content or teaching time of the certain disciplines are not defined [http://www.gesetze-im-internet.de/appro_2002/index.html]. In 2015, the convention of medical faculties (Medizinischer Fakultätentag, MFT) adopted a nationwide catalogue of learning objectives (Nationaler Kompetenzbasierter Lernzielkatalog Medizin, NKLM) which describes the profile of medical graduates [1], [2]. Though the NKLM is intended as a guideline, eventually the particular faculties are responsible for the actual design of medical studies. Besides various recommendations on the conception of medical studies (e.g. [3]) mutual consent of disciplines’ representatives and curriculum directors is crucial here. Students get involved either within their faculties (e.g. committees, panels, task forces) or through transregional representation (e.g. the German Medical Students’ Association; Bundesvertretung der Medizinstudierenden in Deutschland e.V., bvmd). Since students experience medical education on a daily basis, it seems natural to engage them into curriculum development [4]. Referring to Schwab’s concept of “curriculum deliberation”, Bordage and Harris recommended to involve those “who ‘live in’ or are strongly affected by the education programmes” [5], [6]. It is desirable that these groups of persons get more involved, e.g. by surveys or the Delphi method. There are already examples for such approaches on a faculty level (e.g. [7]).

To examine the possibility of involving medical students in curricular development, we performed a nationwide survey on their evaluation of disciplines of the clinical part of medical studies as defined in the German Medical Licensure Act. Medical students were invited to prioritize to what extent disciplines should be allocated teaching time for theory or practice, and to evaluate each discipline’s usefulness for daily medical practice. Furthermore, they were asked to estimate their motivation for studying a particular discipline and to rate their perceived preparation for either state examination or daily medical routine,
respectively. From the obtained data a kind of “desired curriculum” can be derived that may help to identify disciplines in putative need of adjustments. The comparison with actual curricula shows that assessments or “desires” of students to some extent already correspond with how faculties indeed conduct their curricula. However, we also observe some differences that should give rise to further discussion. Our study is a feasibility study regarding the questions how and to what extent a structured survey may contribute to the process of curriculum development.

Methods

Survey

This student-initiated study was designed according to the recommendations of the AAPOR report on online panels [8] and piloted amongst 20 members of the German Medical Students’ Association (bvmd e.V.). The survey consisted of five screens provided via the free of charge online platform SoSciSurvey [https://www.soscisurvey.de/index.php?page=home&l=eng]. Nationwide, medical students were invited by student representatives of all German medical faculties, the bvmd and via social media (Facebook, Twitter). A standardised invitation text gave information on study aims, the estimated time needed (about 10 minutes) and the anonymity of participation. The survey was available online for 41 days (11/20-12/31/2012). Participation was voluntary and without incentives. Via Likert scales, participants should evaluate the disciplines of the clinical part of medical studies defined by the German Medical Licensure Act. They were asked to assign the time for teaching theory or practice to each discipline (from 1=very little to 4=very much). Students were explicitly asked to prioritize in terms of ranking the different disciplines according to their individual views and desires and not to reflect the status quo. Two further items aimed at the perceived usefulness of a discipline and students’ motivation for studying it (from 1=not useful at all to 5=very useful, and from 1=not interesting to 5=very interesting, respectively). The participants were also asked which discipline they could imagine for their future work as a physician or researcher (multiple choices possible). Finally, they should state whether they felt well prepared for state examination and daily medical routine, respectively (from 1=disagree to 4=fully agree).

Participants

747 students (242 females) from 32 medical faculties in Germany participated. 19% were in the 1st to 2nd, 64% in the 3rd to 5th years of their study, 17% in their (final) practical year. 65% of the participants came from six of the in total 36 medical faculties in Germany (Berlin n=103, Würzburg n=103, Cologne n=98, Hannover n=83, Aachen n=54 and Ulm n=47). Less than 40 students came from either of the other 30 faculties. Data obtained from study sites with ≥40 participants correlated well with the results of the other study sites (r>0.9: “allocation of teaching time”, “usefulness” and “motivation”; r>0.8: “disciplines imagined for future work”; r>0.7: “preparation for state examination” and “preparation for daily medical routine”). Therefore, we judged the risk for a bias by sites with low participation or the domination of data by sites with high participation to be rather low.

Comparison with actual curricula

We compared the data from our survey with actually existing curricula from eleven German study sites (Berlin, Bonn, Cologne, Essen, Halle, Hannover, Kiel, Leipzig, Rostock, Ulm and Würzburg), running either reformed or conventional study programs or both. The information on the curricula were given by student representatives on site. 585 (77%) of the participants came from these 11 study sites.

Statistics

We conducted descriptive and explorative data analyses by using the “Statistical Package for the Social Sciences” (IBM SPSS Version 22). We used Pearson’s coefficient and Spearman’s rank correlation for analyses. For analyses of variance ANOVA or Kruskal-Wallis test were chosen as appropriate. P-values <0.05 were considered to indicate statistical significance.

Results

Allocation of teaching time – survey data versus actual curricula

Both in our survey (see Figure 1) and regarding actual curricula (see Figure 2), the highest amount of teaching time fell upon clinical-practical disciplines. Least teaching time was allocated to socio-economic subjects. The five disciplines with obligatory practical trainings according to the German Medical Licensure Act ÄAppRÖ (i.e. internal medicine, surgery, paediatrics, gynaecology/obstetrics, general medicine) ranked among the top third regarding allocated teaching time for theory or practice (see Figure 1), thereby largely resembling actual curricula. Compared to its representation in actual curricula neurology was rated higher by our study participants (rank 3 and 4 regarding teaching time for theory or practice, respectively). Interestingly, faculties ranking among the top quarter regarding actual state examination results scheduled more teaching time for neurology than the other faculties did. Emergency medicine and anaesthesiology both came off very well regarding the allocation of teaching time for theory or practice (ranks 1 and 8 or 6 and 8, respectively). In the analysed actual curricula, emergency medicine was on the 75%-quartile regarding the amount of practical teaching time. Orthopaedics, dermatology, otorhinolaryngology, urology and ophthalmology were rather mid-level
Figure 1: Relative allocation of teaching time for theory (A) and practice (B) regarding clinical-practical (red), clinical-theoretical (black) and socio-economic (grey) disciplines of the clinical part of medical studies. Rating was done via Likert scales (from 1=very little to 4=very much). Mean values are shown. *: disciplines with obligatory practical trainings according to the German Medical Licensure Act (ÄApprO).
regarding teaching time for theory. However, these disciplines were allocated relatively more time for practical education. In general, clinical-practical disciplines were acknowledged more teaching time for practice than for theory. Allocation of teaching time for theory turned out to be quite heterogeneous amongst clinical-theoretical disciplines. Clinical pharmacology/pharmacotherapy and pharmacology/toxicology were acknowledged more generously (ranks 2 and 5), forensics and medical genetics rather parsimoniously (ranks 23 and 24, respectively). However, compared to the pharmacological disciplines, forensics was assigned more time for practical education. Pathology and clinical pathology ranked below the 25% quartile regarding the allocation of teaching time. In actual curricula, these disciplines were allocated 22% of teaching time for theory and 27% for practice regarding all clinical-theoretical disciplines. Students’ allocation of rather less teaching time to socio-economic disciplines was in good agreement with actual curricula. Among the socio-economic disciplines, about one quarter of the teaching time for theory and 30% of teaching time for practical education was actually spent on epidemiology/biometrics/informatics.

Motivation for studying and perceived usefulness

Regarding the individual motivation for studying a discipline and its perceived usefulness for daily medical practice, clinical-practical disciplines ranked significantly higher than clinical-theoretical disciplines (see Figure 3). This was particularly true for internal medicine (ranks 2 and 1, respectively). All of the five disciplines with obligatory practical trainings according to ÄApprÖ ranked amongst the top third regarding usefulness for daily medical practice. Regarding motivation for studying, only general medicine tightly missed the top third (rank 12 of 32). Concerning both motivation and usefulness, emergency medicine, neurology and anaesthesiology performed very well (ranks 1, 4 and 5, and 2, 4 and 7, respectively). Amongst clinical-theoretical disciplines, clinical pharmacology/pharmacotherapy and pharmacology/toxicology were assessed very positively (ranks 3 and 5). Regarding the motivation to study these disciplines, they ranked amongst the top 10, as the disciplines with obligatory practical trainings did. The assessment of usefulness of hygiene/microbiology/virology is similar to that of general medicine (ranks 10 and 9, respectively). The assessment of motivation for studying forensics was alike that of surgery (ranks 7 and 6, respectively).

Perceived preparation for state examination and daily medical routine

The participants felt best prepared for state examination and daily medical routine regarding emergency medicine (see Figure 4). Rating of disciplines with obligatory practical trainings was quite heterogeneous. Internal medicine ranked 2nd regarding both, preparation for state examination and daily medical routine, while surgery only ranked 22nd and 28th, respectively. In general medicine, the participants felt better prepared for daily routine than for state examination (ranks 4 and 14, respectively), while regarding paediatrics this was rather opposite (ranks 11 and 8, respectively). Pharmacology/toxicology, hygiene/microbiology/virology, forensics and clinical pharmacology/pharmacotherapy ranked amongst the top 10 regarding perceived examination preparation (ranks 3 and 5-7,
Figure 3: Assessment of motivation for studying (A) and usefulness (B) of clinical-practical (red), clinical-theoretical (black) and socio-economic (grey) disciplines in the clinical part of medical studies. Rating was done via Likert scales (from 1=not interesting to 4=very interesting or 1=not useful at all until 5=very useful, respectively). Mean values are shown. *: disciplines with obligatory practical trainings according to the German Medical Licensure Act (ÄApprO).
Figure 4: Students’ answers to the questions whether they felt well prepared for state examination (A) or daily medical routine (B) in clinical-practical (red), clinical-theoretical (black) and socio-economic (grey) disciplines of the clinical part of medical studies. Rating was done via Likert scales (from 1=disagree to 4=fully agree). Mean values are shown. *: disciplines with obligatory practical trainings according to the German Medical Licensure Act (ÄApprO).
regarding their assessment by medical students as those
economy or environmental medicine (see Figure 6). To geriatrics, psychosomatics/psychotherapy, health to others these students allocated more teaching time general medicine as a future field of practice. Compared
more teaching time to these disciplines than others. More to geriatrics, psychosomatics/psychotherapy, health than a third (35%) of the participants could imagine
time to thesedisciplinesthanothers. More could imagine surgery for future work rated the usefulness
disciplines, we observed no substantial differences regarding the assessment of preparation for state examination or daily medical routine, respectively. However, one has to note that overall, the absolute differences were quite small here.
Relations between items
There was a consistent positive correlation between all survey items (r>0.5). A rather weak correlation was found for allocation of teaching time for practice and preparation for daily medical routine or state examination (r=0.53 and r=0.57, respectively). A rather strong correlation was seen regarding the preparation for daily medical routine and for state examination (r=0.93). In general, students assigned more teaching time to disciplines that they deemed more useful or interesting. On the other hand, the perceived preparation for state examination was rather associated with the motivation for studying a discipline than with its perceived usefulness.

Influence of students’ own future perspectives
Neurology, emergency medicine, anaesthesiology, orthopaedics and psychiatry ranked amongst the top 10 disciplines that students could imagine for their future work as a physician (see Figure 5). Fairly the same disciplines were also fancied regarding a future scientific work. Here some clinical-theoretical disciplines were chosen quite high as well (e.g. infectiology/immunology, medical genetics, hygiene/microbiology/virology or pharmacology/toxicology). Students considering internal medicine for future work rated associated, pathophysiological oriented disciplines significantly higher than other participants regarding usefulness for medical practice (pharmacology/toxicology, hygiene/microbiology/virology) or motivation for studying (clinical chemistry/laboratory medicine, hygiene/microbiology/virology, infectiology/immunology). Students who could imagine surgery for future work rated the usefulness of pathology and clinical pathology higher and assigned more teaching time to these disciplines than others. More than a third (35%) of the participants could imagine general medicine as a future field of practice. Compared to others these students allocated more teaching time to geriatrics, psychosomatics/psychotherapy, health economy or environmental medicine (see Figure 6).

Discussion
Our survey allows for a comparison of clinical disciplines regarding their assessment by medical students as those who are directly concerned during their studies. In the following, we will first comment on the plausibility of our data, and then we will exemplarily discuss some aspects of potential use for curriculum development.

Plausibility of results
The plausibility of our results is exemplarily indicated by the good agreement of teaching time allocation with the assessment of usefulness and motivation for studying (emergency medicine and anaesthesiology) or with the assessment of usefulness for daily medical routine (clinical pharmacology/pharmacotherapy and pharmacology/toxicology), respectively. Of note, the motivation for studying forensics or surgery was similar (ranks 7 and 6, respectively), while regarding the allocation of teaching time forensics fell clearly behind (ranks 23 and 7 for teaching theory, ranks 17 and 2 for practical teaching). Given the rather restrained assessment of usefulness of forensics (rank 24), we suppose some kind of “CSI effect” here (i.e. study motivation is triggered by fascination, not by the anticipated occupational profile) [9]. The future perspectives of the participants seem to be quite realistic: the ten disciplines chosen most often regarding possible future work as a physician are in perfect agreement with the disciplines most physicians in Germany are actually working in [http://www.bundesaerztekammer.de/ueber-uns/aerztestatistik/aerztestatistik-2014/]. Thus, one might assume that the participants also have a quite specific idea of what they should learn to be prepared for their future profession. This is further supported by our finding that students who consider internal medicine for future work have particularly valued associated disciplines, e.g. pharmacology, microbiology, laboratory medicine. Similarly, students fancying general medicine mainly acknowledged the related disciplines geriatrics, psychosomatics/psychotherapy, and health economy. Given the apparent plausibility of our findings, a cautious interpretation of these data appears to be reasonable.

Dissatisfaction with the training?
The rather weak correlation between allocation of time for teaching practice and the assessment of preparation for state examination or daily medical routine suggests that participants were dissatisfied with their practical training in some areas. As an example, regarding surgery the assessment of preparation for daily routine was quite low while students assigned the second most time for teaching practice to this discipline. This seems to reflect the desire to intensify practical training, an interpretation that is supported by a high rating of surgery’s usefulness for medical practice. In contrast, the generous allocation of practical teaching time to emergency medicine rather seems to mean “carry on!”, since here usefulness as well as preparation for state examination and daily medical routine ranked high. Interestingly, pharmacological disciplines performed very well regarding usefulness (clinical
Figure 5: Answers to the questions whether students could imagine a particular discipline for future medical practice (blue) or research (green). Multiple choices were possible.

Figure 6: Examples of differences in the allocation of teaching time (from 1=very little to 4=very much) depending on whether students could imagine general medicine for future work as a physician or not. Differences were statistically significant (*) and argue for the plausibility of our data. Mean values and standard errors of the mean are shown.
pharmacology/pharmacotherapy: rank 3; pharmacology/toxicology: rank 5), while the assessment of preparation for daily medical routine fell behind (ranks 12 and 9, respectively). This dissatisfaction with preparation for daily routine did not translate into a desire for more practical training (ranks 18 and 23, respectively). In contrast, studies from the United Kingdom found that participants desired more practical trainings and applied courses [10], [11]. However, in these studies postgraduate with (more) experience in medical routine were surveyed. In our survey, students assigned much teaching time for theory to the pharmacological disciplines (clinical pharmacology/pharmacotherapy: rank 2; pharmacology/toxicology: rank 4), although they were obviously quite satisfied with their preparation for state examination in these disciplines. Perhaps they assumed that (more) theory may also lead to a better preparation for medical routine. On the other hand, it is quite likely that there was a lack of (experience with) ideas of how to realise applied and practical teaching in pharmacology. However, even German students immediately before starting their final practical year suggested considering practical trainings or ward rounds as teaching formats for (clinical) pharmacology [12].

Of note, the high correlation between the assessment of preparation for state examination and preparation for daily medical routine argues against the interpretation that the overall weak correlation between allocated practical teaching time and the assessment of preparation for state examination is due to a perceived irrelevance of the state examination for actual daily practice. However, one may argue that the predominant (and in many disciplines nearly exclusive) assessment of cognitive knowledge in the state examination often does not give rise to the desire for more practical training (anymore).

State examination as a trigger for teaching and learning?

In the curricula of those faculties ranking amongst the top quarter regarding students’ performance in the final state examination, we found significantly more teaching time actually spent on neurology compared to other faculties. Indeed, there has been a quite high proportion of questions on neurological issues in state examinations (about 10% between 2006 and 2010), which may explain the perceived importance of neurology in our study. Regarding surgery, the assessment of preparation for state examination was rather modest (rank 22). This may explain why participants desired rather much teaching time on theory in this discipline (rank 7). The discipline imaging/radiotherapy/radioprotection was allocated a lot of teaching time on theory as well (rank 9). Since the ranking of usefulness for medical practice was only modest (rank 14), here the perception of a rather poor preparation for state examination (rank 29) might have been the trigger for assigning much teaching time as well.

Limitations

The proportion of female students in our study (32%) was not representative for medical students in Germany. Though most of the participants were in the clinical part of their medical studies, there might be a “bias” by preclinical students. The response rates from the medical faculties was quite different and the motivation of the participants is unknown. Other confounders cannot be excluded, e.g. state examination results of the particular study sites, the type of study programmes (e.g. reformed or conventional) or whether, for how long and to what extent students had paid tuition fees. Though in Cologne tuition fees seem to have not affected study progress, paying fees obviously made students more critical regarding their studies [13]. A validation of our results would be desirable, e.g. via focus groups or think-aloud technique. This would be most promising on a faculty level, to examine whether and which of the results can be confirmed or applied locally.

Conclusions

Our study shows that a rather simple survey can reveal interesting data on students’ perceptions and ideas of medical studies. The data seem to be largely plausible and consistent. Their interpretation is likely prone to speculation. A validation would be desirable, but laborious. Nonetheless, we think that on a faculty level (and beyond) results like these should give rise to a more specific inquiry and to constructive discussions, e.g. in the context of curriculum development and (re-) organisation (“curriculum deliberation”).

Competing interests

The authors declare that they have no competing interests.

References

1. Hahn EG, Fischer MR. National Competence-Based Learning Objectives for Undergraduate Medical Education (NKLM) in Germany: Cooperation of the Association for Medical Education (GMA) and the Association of Medical Faculties in Germany (MFT). GMS Z Med Ausbild. 2009;26(3):Doc35. DOI: 10.3205/zma000627
2. Fischer MR, Bauer D, Mohn K; NKLM Projektgruppe. Finally finished! National Competence Based Catalogues of Learning Objectives for Undergraduate Medical Education (NKLM) and Dental Education (NKLZ) ready for trial. GMS Z Med Ausbild. 2015;32(3):Doc35. DOI: 10.3205/zma000977
3. Wissenschaftsrat. Empfehlungen zur Weiterentwicklung des Medizinstudiums in Deutschland auf Grundlage einer Bestandsaufnahme der humanmedizinischen Modellstudiengänge (Drs. 4017-14). Dresden: Wissenschaftsrat; 2014.
Multizentrische Studierendenbefragung zur Fächergewichtung im Medizinstudium – eine Pilotstudie

Zusammenfassung

Zielsetzung: Die studentisch initiierte Pilotstudie untersucht, inwiefern die Perspektive von Medizinstudierenden mittels einer strukturierten Befragung für die Curriculumsentwicklung nutzbar gemacht werden kann.

Methodik: 2012 machten 747 Medizinstudierende von 32 Fakultäten in ganz Deutschland online Angaben zu den von der Approbationsordnung seinerzeit für das klinische Studium vorgeschriebenen Fächern und Querschnittsbereichen u.a. in Bezug auf die Beimessung von Unterrichtszeit, Nützlichkeit für Staatsexamen und ärztliche Tätigkeit, Interesse und Lernmotivation sowie Erwägung für die spätere Tätigkeit.

Ergebnisse: Innere Medizin, Chirurgie, Kinderheilkunde, Frauenheilkunde-Geburtshilfe und Allgemeinmedizin liegen bei der Beimessung der Unterrichtszeit sowie der Bewertung der Nützlichkeit für den ärztlichen Alltag im oberen Drittel. Bezüglich der Vorbereitung auf Staatsexamen und ärztlichen Alltag liegt Innere Medizin jeweils auf Rang 2, Chirurgie nur auf 22 bzw. 28. Unter den Top 10 hinsichtlich der Vorbereitung auf das Staatsexamen finden sich auch klinisch-theoretische Fächer (z.B. Pharmakologie). Mit Bezug auf die eigene Perspektive fällt auf, dass z.B. Studierende, die sich Innere Medizin als Betätigungsfeld vorstellen können, assoziierte Fächer signifikant höher hinsichtlich der Nützlichkeit für die ärztliche Praxis (z.B. Pharmakologie) oder der eigenen Lernmotivation (z.B. Mikrobiologie) bewerteten als die übrigen Befragten.

Schlussfolgerung: Eine einfach gehaltene Befragung liefert interessante Ergebnisse zu studentischer Wahrnehmung und Vorstellung vom Medizinstudium. Die Daten sind plausibel, ihre Interpretation muss aber zurückhaltend erfolgen. Derlei Ergebnisse sollten Anlass zu gezielter Nachfrage und konstruktiver Diskussion z.B. im Rahmen von Curriculumsplanung und -ausgestaltung geben („curriculum deliberation“).

Schlüsselwörter: Curriculum, Medizinische Ausbildung, studentische Beteiligung, online Befragung

Einleitung

Die Approbationsordnung (ÄApprO) legt die Fächer und Querschnittsbereiche des klinischen Studienabschnitts fest und definiert Unterrichtsformate (§ 2) und den Unterrichtsumfang insgesamt (§§ 2, 27, Anlage 1 zu § 2). Inhalte oder Unterrichtsumfang einzelner Disziplinen werden hingegen nicht geregelt [http://www.gesetze-im-internet.de/_appro_2002/index.html]. 2015 wurde vom Medizinischen Fakultätenrat der Nationale Kompetenz-basierte Lernzielkatalog Medizin (NKLk) verabschiedet, der das Profil der Absolventinnen und Absolventen des Studiums der Humanmedizin beschreibt [1], [2]. Er soll Richtschnur für die konkrete Ausgestaltung des Medizinstudiums sein, die aber weiterhin den Fakultäten selbst obliegt. Neben weiteren Empfehlungen zur Konzeption des Medizinstudiums (z.B. [3]) ist hierbei vor allem die Einigung zwischen den jeweiligen Fachvertretern und Curriculumsverantwortlichen wesentlich. Studierende wiederum sind innerfakultär (Kommissionen, Ausschüsse, Arbeitsgruppen) oder durch überregionale Vertretungen (z.B. Bundesvertretung der Medizinstudierenden in Deutschland e.V., bvmd) involviert. Da Studierende „täglich [die] Medizinische Ausbildung aus erster Hand erleben“, liegt es nahe, sie an der Curriculums(weiter)entwicklung zu beteiligen [4]. Auf das von Schwab begründete Konzept der „curriculum deliberation“ Bezug nehmend empfahlen auch Bordage und Harris die Einbeziehung verschiedener Gruppen, die „mit der Lehre leben“ und wesentlich durch sie beeinflusst werden [5], [6]. Es ist wünschenswert, diese Gruppen in größerem Umfang zu beteiligen, z.B. in Form von Umfragen oder Delphi-Verfahren. Beispiele für entsprechende Ansätze auf Fakultätsebene gibt es bereits (z.B. [7]).

Um die Möglichkeit einer Beteiligung Medizinstudierender an der Curriculumsentwicklung zu überprüfen, haben wir...
Diese bundesweit zu ihrer Einschätzung der in der ÄAppRÖ definierten Disziplinen des klinischen Studienabschnitts befragt. Dabei sollten sie im Sinne einer Priorisierung jeweils den ihrer Meinung nach angemessenen Umfang theoretischen sowie praktischen Unterrichts zuordnen und die jeweilige Nützlichkeit für den ärztlichen Alltag bewerten. Es wurde nach der persönlichen Lernmotivation gefragt, und danach, wie sie sich in der jeweiligen Disziplin auf Staatsexamen und ärztliche Tätigkeit vorbereitet sehen. Es lässt sich eine Art „Wunschcurriculum“ ableiten, das ggf. dazu genutzt werden kann, Disziplinen zu identifizieren, bei denen offenbar Änderungsbedarf gesehen wird bzw. Defizite wahrgenommen werden. Der Vergleich mit tatsächlichen Curricula zeigt, dass sich die Einschätzungen und „Wünsche“ der Studierenden z.T. mit der realen Umsetzung. Es gibt aber auch Abweichungen, die Anlass bieten, diese zu hinterfragen und zu diskutieren. Unsere Untersuchung ist als Machbarkeitsstudie zu verstehen bzgl. der Frage, ob und inwieweit per strukturiertem Befragung von Studierenden Daten erhoben werden können, die in den Prozess der Curriculumsentwicklung einbezogen werden könnten.

Methoden

Die Befragung

Die studentisch initiierte Befragung wurde gemäß des „AAPOR report on online panels“ [8] entwickelt und unter 20 Mitgliedern der bvmd e.V. pilotiert. Sie erfolgte über die kostenfreie Onlineplattform SoSciSurvey [https://www.soscisurvey.de/] und erstreckte sich über fünf Bildschirmseiten. Über Studierendenvertreter aller Medizinischen Fakultäten, die bvmd e.V. und soziale Medien (Facebook, Twitter) wurden bundesweit Studierende zur Teilnahme eingeladen. Ein standardisierter Einladungstext informierte über das Ziel der Befragung, den geschätzten Zeitaufwand (ca. 10 Minuten) und die Anonymität der Erhebung. Die Befragung war für 41 Tage (20.11.-31.12.2012) online verfügbar, die Teilnahme freiwillig und ohne materielle Anreize. Die Teilnehmenden sollten die in der ÄAppRÖ genannten klinischen Disziplinen anhand von Likert-Skalen beurteilen. Es sollte jeweils ein relativer Stundenumfang an theoretischen bzw. praktischen Unterrichtseinheiten im Curriculum zugeordnet werden (von 1 = ganz wenig bis 4 = sehr viel). Die Studierenden sollten die Disziplinen im Vergleich priorisieren und Wünsche, nicht tatsächliche Zustände wiedergeben. Zwei Items betrafen die Nützlichkeit eines Fachs bzw. die Motivation der Studierenden für ein Fach (von 1 = gar nicht nützlich bis 5 = sehr nützlich bzw. von 1 = nicht interesant bis 5 = sehr interessant). Dann wurde gefragt, in welcher Disziplin sich die Befragten später eine ärztliche bzw. forschende Tätigkeit vorstellen könnten (Mehrfachenmungen möglich). Schließlich war zu bewerten, ob man sich gut auf Staatsexamen bzw. ärztlichen Alltag vorbereitet fühlt (von 1 = nicht zutreffend bis 4 = sehr zutreffend).

Die Teilnehmenden

747 Studierende (242 weiblich) von 32 Medizinischen Fakultäten in Deutschland nahmen teil. 19% befanden sich im 1.-2., 64% im 3.-5. Studienjahr, 17% im Praktischen Jahr. 65% der Teilnehmenden kamen von sechs der insgesamt 36 Fakultäten (Berlin n=103, Würzburg n=103, Köln n=98, Hannover n=83, Aachen n=54 und Ulm n=47), von den übrigen 30 Fakultäten kamen jeweils <40 Studierende. Die Ergebnisse der Studienorte mit ≥40 Teilnehmenden korrelierten gut mit den Antworten aus den übrigen Studienorten (r>0,9: „Verteilung von Unterrichtseinheiten“, „Nützlichkeit“ und „Motivation“; r>0,8 bei „Disziplin denkbar für eigene Tätigkeit“; r>0,7: „Vorbereitung für Staatsexamen“ und „Vorbereitung für ärztlichen Alltag“). Wir schätzen damit das Risiko einer Verzerrung durch Standorte mit geringerer Teilnahme oder der Dominanz stärker beteiligter Standorte als eher gering ein.

Vergleich mit tatsächlichen Curricula

Wir konnten die Wunschvorstellungen der Studierenden mit den tatsächlich existierenden Curricula von elf Studienorten vergleichen (Berlin, Bonn, Essen, Halle, Hannover, Kiel, Köln, Leipzig, Rostock, Ulm und Würzburg). Die Informationen zu den Curricula kamen von den jeweiligen Studierendenvertretern vor Ort. Vertreten waren sowohl Modell- als auch Regelstudienstudiengänge, die 585 (77%) der Befragten repräsentierten.

Statistik

Die Daten wurden deskriptiv und explorativ ausgewertet. Berechnungen erfolgten mit „Statistical Package for the Social Sciences“ (IBM SPSS Version 22). Korrelationsanalysen erfolgten nach Pearson und Spearman, den zugrunde liegenden Daten entsprechend. Varianzanalysen erfolgten mittels ANOVA bzw. Kruskal-Wallis-Test. p-Werte <0,05 wurden als statistisch signifikant erachtet.

Ergebnisse

Beimessung von Unterrichtszeit – Soll und Ist

Sowohl nach Ansicht der Studierenden (siehe Abbildung 1) als auch in den tatsächlichen Curricula (siehe Abbildung 2) verfand die meiste Unterrichtszeit auf klinisch-praktische, die wenigste auf sozioökonomisch orientierte Disziplinen. Die fünf Blockpraktikumsfächer Innere Medizin, Chirurgie, Kinderheilkunde, Frauenheilkunde-Geburts hilfe und Allgemeinmedizin lagen bei der Beimessung theoretischer und praktischer Unterrichtszeit im oberen Drittel (siehe Abbildung 1), weitgehend den tatsächlichen Curricula entsprechend. Neurologie wurde von den Befragten höher eingestuft, als es in den tatsächlichen Curricula berücksichtigt wurde (Ränge 3 bzw. 4 für Theorie bzw. Praxis). Interessanterweise verwendete das
Abbildung 1: Darstellung der relativen Zuordnung von Unterrichtszeit für Theorie (A) und Praxis (B) der klinisch-praktischen (rot), klinisch-theoretischen (schwarz) und sozioökonomisch orientierten (grau) Disziplinen des klinischen Studienabschnitts. Die Bewertung erfolgte anhand einer Likert-Skala (von 1=ganz wenig bis 4=sehr viel). Dargestellt sind die jeweiligen Mittlerwerte.

*: Blockpraktikumsfächer gemäß ÄApprO.
bezogen auf die Ergebnisse im abschließenden IMPP-Staatsexamen beste Viertel der untersuchten Fakultäten mehr Zeit auf den Neurologieunterricht als andere Standorte. Notfallmedizin und Anästhesie lagen bei der Zuordnung von praktischer und theoretischer Unterrichtszeit relativ weit vorne (Ränge 1 und 8 bzw. 6 und 8). In den analysierten Curricula lag Notfallmedizin etwa auf der 75%-Quartile bezüglich des Umfangs an praktischem Unterricht. Orthopädie, Dermatologie, Hals-Nasen-Ohrenheilkunde, Urologie und Augenheilkunde lagen bei der Zuordnung von Zeit für theoretischen Unterricht im Mittelfeld der Verteilung, ihnen wurde aber vergleichsweise mehr praktische Unterrichtszeit beigemessen. Klinisch-praktischen Disziplinen wurde fast durchweg mehr praktische Unterrichtszeit zugestanden als klinisch-theoretischen. Die Beimessung von Zeit für theoretischen Unterricht in klinisch-theoretischen Disziplinen fällt heterogen aus. Klinischer Pharmakologie-Pharmakotherapie und Pharmakologie-Toxikologie wurde eher viel als praktisch-mehrfach Zeit zugedacht (Ränge 2 und 5), Rechtsmedizin und Humangenetik eher wenig (Ränge 7 bzw. 12). Im Gegensatz zu den pharmakologischen Fächern wurde der Rechtsmedizin und Humangenetik eher wenig (Ränge 7 bzw. 12). Im Gegensatz zu den pharmakologischen Fächern wurde der Rechtsmedizin und Humangenetik eher wenig (Ränge 7 bzw. 12). Hierbei zeigte sich ein deutlicher Unterschied zwischen den klinisch-praktischen und klinisch-theoretischen Disziplinen. In den sozioökonomisch orientierten Disziplinen entsprach die Zuordnung von eher wenig bis sehr wenig Unterrichtszeit in etwa den analysierten Curricula. Tatsächlich entfiel aber knapp ein Viertel der theoretischen und sogar 30% der praktischen Unterrichtszeit innerhalb dieser Fächer allein auf Epidemiologie-Biometrie-Informatik.

Lernmotivation und Nützlichkeit

Klinisch-praktische Disziplinen wurden hinsichtlich Lernmotivation und Nützlichkeit im ärztlichen Alltag signifikant höher eingestuft als klinisch-theoretische (siehe Abbildung 3), vor allem Innere Medizin (Ränge 2 bzw. 1). Alle Blockpraktikumsfächer lagen bei Nützlichkeit für den ärztlichen Alltag im oberen Drittel, bei der Lernmotivation verfehlte die Allgemeinmedizin dies knapp (Ränge 12). Bezüglich Lernmotivation und Nützlichkeit schnitten Notfallmedizin, Neurologie und Anästhesie sehr gut ab (Ränge 1, 4 und 5 bzw. 2, 4 und 7). Hinsichtlich der Nützlichkeit sehr positiv bewertet wurden die klinisch-theoretischen Disziplinen Klinische Pharmakologie-Pharmakotherapie und Pharmakologie-Toxikologie (Ränge 3 und 5), die auch bei der Lernmotivation neben den Blockpraktikumsfächen unter den zehn Höchstplatzierten lagen. Die Bewertung der Nützlichkeit von Hygiene-Mikrobiologie-Virologie ist der der Allgemeinmedizin ähnlich (Ränge 10 bzw. 9), die Einschätzung der Lernmotivation für Rechtsmedizin entspricht etwa der für Chirurgie (Ränge 7 bzw. 6).

Vorbereitung auf Staatsexamen und ärztliche Praxis

In Notfallmedizin fühlten sich die Befragten sowohl auf das Staatsexamen wie auf den ärztlichen Alltag am besten vorbereitet (siehe Abbildung 4). Die Blockpraktikumsfä-
Abbildung 3: Darstellung der Einschätzung der eigenen Motivation, für eine Disziplin zu lernen (A) und der Bewertung der Nützlichkeit einer Disziplin (B). Klinisch-praktische (rot), klinisch-theoretische (schwarz) und sozioökonomisch orientierte (grau) Disziplinen des klinischen Studienabschnitts gemäß AAPrO. Die Bewertung erfolgte anhand einer Likert-Skala (von 1=nicht interessant bis 5=sehr interessant bzw. 1=gar nicht nützlich bis 5=sehr nützlich). Dargestellt sind die jeweiligen Mittlerwerte.
*: Blockpraktikumsfacher gemäß AAPrO.
Abbildung 4: Darstellung der Einschätzung, wie gut sich die Befragten auf das Staatsexamen (A) und den ärztlichen Alltag (B) vorbereitet fühlen. Klinisch-praktische (rot), klinisch-theoretische (schwarz) und sozioökonomisch orientierte (grau) Disziplinen des klinischen Studienabschnitts gemäß ÄApro. Die Bewertung erfolgte anhand einer Likert-Skala (1=nicht zutreffend bis 4=sehr zutreffend). Dargestellt sind die jeweiligen Mittlerwerte. *: Blockpraktikumsfächer gemäß ÄApro.
cher schnitten bei der Bewertung der Vorbereitung auf Staatsexamen und ärztlichen Alltag unterschiedlich ab. Innere Medizin landete jeweils auf Rang 2, Chirurgie nur auf den Rängen 22 bzw. 28. Im jeweiligen Vergleich mit anderen Fächern fühlten sich die Befragten in Allgemeinmedizin besser auf den ärztlichen Alltag als auf das Staatsexamen vorbereitet (Rang 4 bzw. 14), in Kinderheilkunde war es eher umgekehrt (Rang 11 bzw. 8). Unter den zehn hinsichtlich der Vorbereitung auf das Staatsexamen am höchsten bewerteten Disziplinen finden sich auch Pharmakologie-Toxikologie, Hygiene-Mikrobiologie-Virologie, Rechtsmedizin und Klinische Pharmakologie-Pharmakotherapie (Ränge 3 und 5-7). Mit Ausnahme des letzteren trifft dies auch für die Vorbereitung auf den ärztlichen Alltag zu. Hier landete auch Klinische Chemie-Laboratoriumsmedizin unter den „Top 10“. Beim Vergleich von klinisch-theoretischen und klinisch-praktischen Disziplinen zeigen sich keine wesentlichen Unterschiede bezüglich der Einschätzung, wie gut sich die Befragten auf Staatsexamen oder ärztlichen Alltag vorbereitet fühlten. Es ist anzumerken, dass bei der „gefühlten“ Vorbereitung die absoluten Unterschiede zwischen den Fächern insgesamt relativ gering ausfielen.

Beziehungen zwischen den Items
Es gab durchweg eine positive Korrelation zwischen den betrachteten Items (r>0,5). Eher gering war der Zusammenhang zwischen Zuordnung von praktischer Unterrichtszeit und gefühlter Vorbereitung auf die ärztliche Praxis bzw. das Staatsexamen (r=0,53 bzw. r=0,57). Eine vergleichsweise starke Korrelation zeigte sich für die Vorbereitung auf die ärztliche Praxis mit der Vorbereitung auf das Staatsexamen (r=0,93). Die Studierenden maßen Disziplinen mehr Unterrichtszeit zu, die sie eher als nützlich für den ärztlichen Alltag bewerteten oder an denen sie mehr Interesse hatten. Für die Bewertung der Vorbereitung auf das Staatsexamen war aber weniger die empfundene Nützlichkeit für den ärztlichen Alltag als die eigene Lernmotivation ausschlaggebend.

Einfluss der eigenen Perspektive
Unter den „Top 10“ der Disziplinen, die sich die Befragten für ihre spätere ärztliche Tätigkeit vorstellen konnten, waren neben den Blockpraktikumsfächern auch Neurologie, Notfallmedizin, Anästhesie, Orthopädie und Psychiatrie (siehe Abbildung 5). Überwiegend waren es auch diese Fächer, in denen sich die meisten Studierenden eine wissenschaftliche Tätigkeit vorstellen konnten, aber auch klinisch-theoretische Disziplinen lagen hier relativ weit oben (z.B. Infektionologie-Immunologie, Humangenetik, Hygiene-Mikrobiologie-Virologie oder Pharmakologie-Toxikologie). Studierende, die sich Innere Medizin als Betätigungsfeld vorstellen konnten, bewerteten assoziierte, pathophysiologisch orientierte Fächer signifikant höher hinsichtlich der Nützlichkeit für die ärztliche Praxis (Pharmakologie-Toxikologie, Hygiene-Mikrobiologie-Virologie) oder bezüglich der eigenen Lernmotivation (Klinische Chemie-Laboratoriumsmedizin, Hygiene-Mikrobiologie-Virologie, Infektionologie-Immunologie) als die übrigen Befragten. Befragte, für die Chirurgie eine berufliche Option darstellte, bewerteten die Nützlichkeit von Pathologie und Klinischer Pathologie höher und ordneten diesen Fächern mehr Unterrichtszeit zu. Ein gutes Drittel (35%) konnte sich Allgemeinmedizin für die spätere ärztliche Tätigkeit vorstellen. Diese Studierenden wünschten sich mehr Unterricht in Geriatrie, Psychosomatik-Psychotherapie, Gesundheitsökonomie oder Umweltmedizin als andere Teilnehmende (siehe Abbildung 6).

Diskussion
Unsere Befragung lässt den Vergleich der in der ÄAppR0 für den klinischen Studienabschnitt vorgesehenen Disziplinen hinsichtlich der Einschätzung vonsehen der Studierenden als unmittelbar Betroffener zu. Nach einem Blick auf die Plausibilität der erhobenen Daten diskutieren wir exemplarisch einige Aspekte, wie es im Rahmen der Curriculums/weiterentwicklung erfolgen könnte.

Plausibilität der Ergebnisse
Für die Plausibilität unserer Ergebnisse sprechen z.B. die gute Übereinstimmung von Zuordnung der Unterrichtszeit mit der Bewertung von Nützlichkeit bzw. Lernmotivation im Falle von Notfallmedizin und Anästhesie sowie mit der Einschätzung der Nützlichkeit für den ärztlichen Alltag im Falle von Klinischer Pharmakologie-Pharmakotherapie und Pharmakologie-Toxikologie. Andererseits entsprach die Motivation, für Rechtsmedizin zu lernen, in etwa der im Fach Chirurgie (Rang 7 bzw. 6), bei der Zuordnung von Unterrichtszeit fiel die Rechtsmedizin im Vergleich aber deutlich ab (Rang 23 bzw. 7 für Theorie und Rang 17 bzw. 2 für Praxis). Da auch die Einschätzung der Nützlichkeit der Rechtsmedizin für den ärztlichen Alltag eher zurückhaltend ausfiel (Rang 24), kann von einem „CSI-Effekt“ ausgegangen werden (Faszination, nicht aber antizipiertes Berufsbild prägen die Lernmotivation) [vgl. [9]].

Die Vorstellung hinsichtlich der Zukunft der Befragten scheint recht realistisch zu sein. So entsprachen die zehn Fächer, in denen sie sich am ehesten eine spätere ärztliche Tätigkeit vorstellen konnten, weitgehend denen, in denen Ärztinnen und Ärzte tatsächlich meistens tätig sind [http://www.bundesaerztekammer.de/ueber-uns/aerzestatistik/2016/aerzestatistik-2014/]. Somit könnten die Befragten auch einer relativ konkreten Vorstellung davon gehabt haben, was sie zum Erreichen ihres Berufszieles/Fachwunsches im Studium lernen müssen. Dazu passen die sehr plausiblen Befunde, dass z.B. Studierende mit dem Fachwunsch Innere Medizin damit eng assoziierte Fächer besonders schätzten (Pharmakologie, Mikrobiologie, Laboratoriumsmedizin) oder Studierende mit dem Berufswunsch Allgemeinmedizin eng mit der Tätigkeit in diesem Feld verbundene Disziplinen (Geriatrie, Psychosomatik-Psychotherapie, Gesundheitsökonomie).
Abbildung 5: Stapeldiagramm zur Darstellung der Antworthäufigkeiten bezüglich der Frage, welche Disziplinen sich die Befragten für ihre spätere ärztliche Tätigkeit (blau) bzw. eine forschende Tätigkeit (grün) vorstellen könnten. Mehrfachnennungen waren möglich.

Angesichts der augenscheinlichen Plausibilität der Befunde scheint eine (vorsichtige) Interpretation der Befunde möglich zu sein.

Unzufriedenheit mit der Ausbildung?

Die insgesamt vergleichsweise schwachen Korrelationen von Zuordnung praktischer Unterrichtszeit mit der Beurteilung der Vorbereitung auf ärztliche Praxis bzw. Staatsexamen legen nahe, dass die Befragten mit der praktischen Ausbildung in einigen Bereichen eher unzufrieden waren. So rangierte Chirurgie bzgl. der Einschätzung der Vorbereitung für den ärztlichen Alltag eher am unteren Ende, lag bei der Zuordnung praktischer Unterrichtszeit aber auf Platz 2. Dies kann als Wunsch verstanden werden, die praktische Ausbildung zu intensivieren, wofür auch die hohe Bewertung der Nützlichkeit im ärztlichen Alltag spricht. In Notfallmedizin kann die großzügige Zuordnung von praktischer Unterrichtszeit als „weiter so!“ verstanden werden, da hier Nützlichkeit sowie Vorbereitung auf Staatsexamen und ärztlichen Alltag hoch eingeschätzt wurden. Interessant ist, dass die pharmakologischen Fächer hinsichtlich der Nützlichkeit im ärztlichen Alltag sehr gut abschnitten (Ränge 3 bzw. 5 für Klinische Pharmakologie-Pharmakotherapie bzw. Pharmakologie-Toxikologie), während die Einschätzung der Vorbereitung auf den ärztlichen Alltag deutlich geringer ausfiel (Ränge 12 bzw. 9). Aus dieser scheinbaren Unzufriedenheit mit der Vorbereitung auf die ärztliche Tätigkeit resultierte aber offenbar nicht der Wunsch nach mehr praktischer Ausbildung (Ränge 18 und 23). Dies steht in gewissem Widerspruch zu Studien aus Großbritannien, wo die Befragten mehr praktischen, anwendungsorientierten Unter-richt wünschten [10], [11]. Allerdings wurden hier Postgraduierte mit (mehr) Erfahrung im klinischen Alltag befragt. Obwohl in unserer Studie die Zufriedenheit mit der Examsvorbereitung in den pharmakologischen Fächern hoch war, wurde vor allem ihnen viel theoretische Unterrichtszeit zugeordnet (Ränge 2 und 4). Vielleicht gingen die Studierenden davon aus, mit (mehr) Theorie auch auf die ärztliche Tätigkeit besser vorbereitet werden zu können. Gegebenenfalls mangelte es aber auch an Erfahrung mit Ideen für die anwendungsorientierte, praktische Umsetzung von Pharmakologieunterricht, obwohl auch deutsche Studierende unmittelbar vor Eintritt in das Praktische Jahr Blockpraktika oder Visiten als Unterrichtsformat für (Klinische) Pharmakologie vorschlugen [12].

Es ist anzumerken, dass die hohe Korrelation der Einschätzung der Vorbereitung auf das Staatsexamen mit der Einschätzung der Vorbereitung auf den ärztlichen Alltag dagegen spricht, dass die insgesamt eher schwache Korrelation von praktischer Unterrichtszeit und Einschätzung der Examensvorbereitung daher rührt, dass das Staatsexamen als nicht für die ärztliche Tätigkeit repräsentativ oder relevant erachtet wurde. Allerdings könnte man mutmaßen, dass das zum Großeil (in vielen Fächern ausschließlich) theoretische Staatsexamen, den Wunsch nach (mehr) praktischer Ausbildung oft gar nicht erst aufkommen ließ.

Staatsexamen als Trigger für die Lehre?

In den Curricula der staatsexamensbesten 25% der Fakultäten wurde signifikant mehr Unterrichtszeit auf Neurologie verwendet als anderswo. Damit wurde ggf. dem relativ hohen Anteil an Staatsexamensfragen zu diesem...
Fach (2006-2010 ca. 10%) besser Rechnung getragen, was dann auch die von den Studierenden wahrgenommenen Bedeutung der Neurologie erklären mag. Die gefühlte Examensvorbereitung im Fach Chirurgie war eher mäßig (Rang 22). Dazu passt, dass sich die Studierenden relativ viel theoretischen Unterricht in diesem Fach wünschten (Rang 7). Bildgebende Verfahren-Strahlenbehandlung-Strahlenschutz wurde ebenfalls vergleichsweise viel theoretische Unterrichtszeit zugeordnet (Rang 9). Da die Nützlichkeit im ärztlichen Alltag nur als moderat bewertet wurde (Rang 14), könnte auch hier die als relativ schlecht empfundene Vorbereitung auf das Staatsexamen (Rang 29) ausschlaggebend gewesen sein.

Limitationen

Der Anteil weiblicher Studierender in unserer Befragung war mit 32% nicht repräsentativ für Medizinstudierende in Deutschland. Zahlenmäßig dominierten Studierende des klinischen Studienabschnitts, es könnte aber zu „Verzerrungen“ durch Teilnehmende aus dem vorklinischen Studienabschnitt gekommen sein. Der Rücklauf von den jeweiligen Studienorten war sehr unterschiedlich und die der Beteiligung zugrunde liegende Motivation ist unklar. Weitere Confounder sind nicht auszuschließen, z.B. die Staatsexamenergebnisse am jeweiligen Studienort, die Frage, ob ein Modell- oder ein Regelstudiengang zugrunde lag oder ob, wie lang und in welcher Höhe die Befragten während ihres Studiums Studiengebühren zu zahlen hatten. So hatten Studiengebühren in Köln zwar keinen erkennbaren Einfluss auf den Studienerfolg, befürwogen aber das Studierverhalten und haben Studierende ggf. bezüglich Studienangebot und -qualität kritisch gemacht [13]. Eine Validierung unserer Ergebnisse wäre wünschenswert, z.B. durch Fokusgruppen oder Think-Aloud-Technik. Dies wäre am ehesten auf Fakultäts-ebene sinnvoll, u.a. um zu überprüfen, ob und was von den Ergebnissen lokal jeweils bestätigt bzw. übertragen werden kann.

Schlussfolgerung

Unsere Untersuchung zeigt, dass eine eher einfach gehaltene Befragung interessante Ergebnisse bezüglich der studentischen Wahrnehmung und Vorstellung vom Medi-
zinstudium liefert. Ein Großteil der Daten wirkt plausibel und konsistent. Die Interpretation ist sicher anfällig für Spekulationen. Eine Validierung ist wünschenswert, dürfte allerdings aufwändig sein. Wir glauben aber, dass derlei Ergebnisse auf Fakultätsebene (und darüber hinaus) Anlass zu gezielter Nachfrage und konstruktiver Diskussion z.B. im Rahmen von Curriculumsplanung und -ausgestaltung geben sollten („curriculum deliberation“).

Interessenkonflikt

Die Autoren erklären, dass sie keine Interessenkonflikte im Zusammenhang mit diesem Artikel haben.

Literatur

1. Hahn EG, Fischer MR. National Competence-Based Learning Objectives for Undergraduate Medical Education (NKLM) in Germany: Cooperation of the Association for Medical Education (GMA) and the Association of Medical Faculties in Germany (MFT). GMS Z Med Ausbild. 2009;26(3):Doc35. DOI: 10.3205/zma000627
2. Fischer MR, Bauer D, Mohn K; NKLM Projektgruppe. Finally finished! National Competence Based Catalogues of Learning Objectives for Undergraduate Medical Education (NKLM) and Dental Education (NKLD) ready for trial. GMS Z Med Ausbild. 2015;32(3):Doc35. DOI: 10.3205/zma000977
3. Wissenschaftsrat. Empfehlungen zur Weiterentwicklung des Medizinstudiums in Deutschland auf Grundlage einer Bestandsaufnahme der humanmedizinischen Modellstudienlänge (Drs. 4017-14). Dresden: Wissenschaftsrat; 2014.
4. Zeuner S, Henke T, Achilles E, Kampmeyer D, Schwanitz P. 36 different ways to study medicine. GMS Z Med Ausbild. 2010;27(2):Doc20. DOI: 10.3205/zma000677
5. Bordage G, Harris I. Making a difference in curriculum reform and decision-making processes. Med Educ. 2011;45(1):87-94. DOI: 10.1111/j.1365-2923.2010.03727.x
6. Harris IB. Communicating the character of ‘deliberation’. J Curriculum Stud. 1986;18:115-132. DOI: 10.1080/0022027860180202
7. Herrmann FE, Lenski M, Steffen J, Kailuwitj M, Nikolaus M, Koteeswaran R, Sailer A, Hanszke A, Wintergerst M, Dittmer S, Mayr D, Genzel-Boroviczény O, Eley DS, Fischer MR. A survey study on student preferences regarding pathology teaching in Germany: a call for curricular modernization. BMCS Med Educ. 2015;15:94. DOI: 10.1186/s12909-015-0381-7
8. Baker R, Blumberg SJ, Brick JM, Couper MP, Courtright M, Dennis JM, Dillman D, Frankel MR, Garland P, Groves RM, Kennedy C, Krosnick J, Lavrakas PJ, Lee S, Link M, Pickers L, Rao K, Thomas RK, Zahs D. Research Synthesis: AAPOR Report on Online Panels. Publ Opin Quart. 2010;74:711-781. DOI: 10.1093/poq/npq048
9. Weaver R, Salamonson Y, Koch J, Porter G. The CSI Effect at University: Forensic Science Students’ Television Viewing and Perceptions of Ethical Issues. Austr J Forensic Sci. 2012;44:381-391. DOI: 10.1080/00450618.2012.691547
10. Tobaqy M, Mciay J, Ross S. Foundation year 1 doctors and clinical pharmacology and therapeutics teaching. A retrospective view in light of experience. Br J Clin Pharmacol. 2007;64(3):363-372. DOI: 10.1111/j.1365-2125.2007.02925.x
11. Baldwin MJ, Aboyannis M, Butt TF. Essential therapeutics skills required of junior doctors. Persept Med Educ. 2012;1(5-6):225-236. DOI: 10.1007/s40037-012-0032-1
12. Johannsen W. Einfluss realitätsnaher Szenarien mit Simulationspatienten auf studentische Selbstbeurteilungen pharmakologischer Expertise und Verbesserungsvorschläge für die pharmakologische Ausbildung – eine Interview- und Fragebogenstudie. Dissertationsschrift. Köln: Universität zu Köln; 2012. Zugänglich unter/available from: https://repository.publisso.de/resource/frl%3A5078763
13. Karay Y, Matthes J. A study on effects of and stance over tuition fees. GMS J Med Educ. 2016;33(1):Doc6. DOI: 10.3205/zma001005

Korrespondenzadresse:
Dr. med. Jan Matthes, DipMedEd, Dundee Universität zu Köln, Zentrum für Pharmakologie, Gieulder Str. 24, 50931 Köln, Deutschland, Tel.: +49 (0)211/478-5674, Fax: +49 (0)211/478-5022 jan.matthes@uni-koeln.de

Bitte zitieren als
Dafsari HS, Herzig S, Matthes J. A multi-centre student survey on weighing disciplines in medical curricula – a pilot study. GMS J Med Educ. 2017;34(2):Doc24. DOI: 10.3205/zma001101, URN: urn:nbn:de:0183-zma0011016

Artikel online frei zugänglich unter
http://www.egms.de/en/journals/zma/2017-34/zma001101.shtml

Eingereicht: 10.10.2016
Überarbeitet: 22.02.2017
angenommen: 14.03.2017
Veröffentlicht: 15.05.2017

Copyright
©2017 Dafsari et al. Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.