THE L_p MINKOWSKI PROBLEM FOR q-TORSIONAL RIGIDITY

BIN CHEN, XIA ZHAO, WEIDONG WANG, AND PEIBIAO ZHAO

Abstract. In this paper, we introduce the so-called L_p q-torsional measure for $p \in \mathbb{R}$ and $q > 1$ by establishing the L_p variational formula for the q-torsional rigidity of convex bodies without smoothness conditions. Moreover, we achieve the existence of solutions to the L_p Minkowski problem w.r.t. the q-torsional rigidity for discrete measure and general measure when $0 < p < 1$ and $q > 1$.

1. Introduction

The study of Brunn-Minkowski theory of convex bodies (i.e., a compact, convex set) in Euclidean spaces \mathbb{R}^n has been an active field in the past century, which is developed from a few basic concepts: support functions, Minkowski combinations, and mixed volumes. As we all know, the Minkowski problem is one of the main cornerstones in Brunn-Minkowski theory of convex bodies.

The classical Minkowski problem is to find a convex body K with the prescribed surface area measure $S(K, \cdot)$, which is induced by the volume variational, that is, for each convex body L, there holds

$$\frac{d}{dt} V(K + tL) \bigg|_{t=0} = \int_{S^{n-1}} h(L, \cdot) dS(K, \cdot),$$

where $K + tL$ is the Minkowski sum, and $h(L, \cdot)$ is the support function of L.

The solution of the classical Minkowski problem has been solved by famous mathematicians such as Minkowski [31, 32], Alexandrov [1, 2], Fenchel and Jessen [13], Lewy [25] and Nirenberg [33].

As an extension of the classical Minkowski problem, the L_p Minkowski problem w.r.t. the L_p surface area measure $S_p(K, \cdot)$ of a convex body K containing the origin in its interior was proposed and studied in [26]. Here $S_p(K, \cdot)$ is defined by the volume variational under the Firey’s p-sum ([12])

$$\frac{d}{dt} V(K + p t \cdot L) \bigg|_{t=0} = \frac{1}{p} \int_{S^{n-1}} h(L, \cdot)^p h(K, \cdot)^{1-p} dS(K, \cdot)$$

for a compact convex set L containing the origin and $p \geq 1$. Obviously, the case of $p = 1$ is the formula (1.1). Since then, the L_p Minkowski problem has become an interest central
object in convex geometric analysis and has been widely considered, see e.g., [5, 6, 8, 21, 27, 28, 29, 34, 37]. Moreover, there are various versions of Minkowski problems related to other functionals in Brunn-Minkowski theory, for instance, the dual Minkowski problem [19], the logarithmic Minkowski problem [3] and the Orlicz-Minkowski problem [15, 17, 30].

From the statements above, one knows that the difference in different geometric functionals usually derives some new and different geometric measures. In recent years, some geometric functionals with physical backgrounds have been introduced into the Brunn-Minkowski theory, and related Minkowski-type problems have also been gradually studied, see e.g., [9, 10, 22, 38]. One of them is the q-torsional rigidity, which is exactly the geometrical functional concerned in the present paper.

For convenience, let K^n_0 be the set of convex bodies containing the origin o in their interiors, and C^2_+ be the class of the convex body of C^2 if its boundary has the positive Gauss curvature.

Now, we recall the concept of the q-torsional rigidity. Let K be the interior of convex body K in \mathbb{R}^n and $\Omega = K$. For $q > 1$, the q-torsional rigidity $T_q(K)$ is defined by (see [11])

$$
\frac{1}{T_q(K)} = \inf \left\{ \frac{\int_\Omega |\nabla \phi|^q dx}{\int_\Omega |\phi|^q dx} : \phi \in W^{1,q}_0(\Omega), \int_\Omega \phi dx > 0 \right\}.
$$

(1.3)

The functional defined in (1.3) admits a minimizer $\varphi \in W^{1,q}_0(\Omega)$, and c_φ (for some constant c) is the unique positive solution of the following boundary value problem (see [1] or [18])

$$
\begin{align*}
\triangle_q \varphi &= -1 \quad \text{in } \Omega, \\
\varphi &= 0 \quad \text{on } \partial \Omega,
\end{align*}
$$

(1.4)

where \triangle_q is the q-Laplace operator.

Following this, Huang et al. ([20]) defined the q-torsional measure as

$$
\mu^\text{tor}_q(\Omega, \eta) = \int_{g^{-1}(\eta)} |\nabla \varphi|^q dH^{n-1},
$$

for Borel set $\eta \subseteq \mathbb{S}^{n-1}$. Here $g : \partial \Omega \to \mathbb{S}^{n-1}$ is the Gauss map, and H^{n-1} is the $(n-1)$-dimensional Hausdorff measure.

Meanwhile, they replaced the volume functional with the q-torsional rigidity in (1.1), and established the following variational formula in smooth case: Let K, L be two convex bodies of class C^2_+, and $q > 1$, then

$$
\frac{d}{dt}T_q(K + tL)\bigg|_{t=0} = (q - 1)T_q(K)^{\frac{q-2}{q}} \int_{\mathbb{S}^{n-1}} h(L, \xi) d\mu^\text{tor}_q(K, \xi),
$$

(1.5)

and the q-torsional rigidity formula

$$
T_q(K)^{\frac{1}{q-1}} = \frac{q - 1}{q + n(q - 1)} \int_{\mathbb{S}^{n-1}} h(K, \xi) d\mu^\text{tor}_q(K, \xi).
$$

(1.6)

Thus $\mu^\text{tor}_q(K, \cdot)$ can be regarded as induced by the formula (1.5).

Inspired by the important role of the L_p volume variational formula in the Brunn-Minkowski theory, we now establish the L_p variational formula w.r.t. the q-torsional rigidity (For a detailed proof, see Theorem 4.1 below.)
Theorem 1.1. Let $K \in \mathcal{K}_o^n$, $1 \leq p < \infty$ and $q > 1$. If L is a compact convex set containing the origin, then
\[
\frac{d}{dt} T_q(K + pt \cdot L) \bigg|_{t=0} = \frac{q-1}{p} T_q(K) \frac{d}{d\xi} \int_{S^{n-1}} h(L, \xi) \eta h(K, \xi)^{1-p} d\mu_{\text{tor}}^{q}(K, \xi).
\]

Similar to the definition of L_p surface area measure, we can define the so-called L_p q-torsional measure as follows.

Definition 1.2. For $K \in \mathcal{K}_o^n$, $p \in \mathbb{R}$ and $q > 1$, the L_p q-torsional measure $\mu_{p,q}^{\text{tor}}(K, \cdot)$ of K is defined by
\[
\mu_{p,q}^{\text{tor}}(K, \eta) = \int_{\eta} h(K, \xi)^{1-p} d\mu_{\text{tor}}^{q}(K, \xi)
\]
for each Borel set $\eta \subseteq S^{n-1}$. Obviously, the case $p = 1$ is just the q-torsional measure.

Notice that the q-torsional measure induced in (1.5) has so far not been extended to the case of any convex body without smoothness conditions. To implement the variational formula in Theorem 1.1, we first need to deal with the weak convergence of the q-torsional measure, and generalize the formula (1.5) to any convex body without smoothness (see Section 3 and Section 4 for details).

Naturally, the L_p Minkowski problem of the q-torsional rigidity can be proposed as below

Problem 1.3. (The L_p Minkowski problem of q-torsional rigidity) Suppose μ is a finite Borel measure on S^{n-1}, $p \in \mathbb{R}$ and $q > 1$. What are the necessary and sufficient conditions on μ such that μ is the L_p q-torsional measure $\mu_{p,q}^{\text{tor}}(K, \cdot)$ of a convex body $K \in \mathcal{K}_o^n$?

For Problem 1.3, Sun-Xu-Zhang [36] only proved the uniqueness of solutions with $p \geq 1$ and $q > 1$ in smooth case, but the existence of solutions was not solved. When $p > 1$ and $q = 2$, Chen-Dai [7] obtained the existence and uniqueness of solutions. For the classical case $p = 1$, Colesanti-Fimiani [9] proved the existence and uniqueness of solutions when $q = 2$.

The main aim of the present paper is to consider the existence of solutions to Problem 1.3. We first present a solution to Problem 1.3 for discrete measures when $0 < p < 1$ and $q > 1$ (see Theorem 5.8) as follows

Theorem 1.4. Let μ be a finite positive Borel measure on S^{n-1} which is not concentrated on any closed hemisphere. If μ is discrete, $0 < p < 1$ and $q > 1$. Then there exists a convex polytope P containing the origin in its interior such that $\mu_{p,q}^{\text{tor}}(P, \cdot) = \mu$.

Theorem 1.4 will yield a solution to Problem 1.3 for general measures when $0 < p < 1$ and $q > 1$ (see Theorem 6.2) as below.

Theorem 1.5. Let μ be a finite positive Borel measure on S^{n-1} which is not concentrated on any closed hemisphere. Suppose $0 < p < 1$ and $q > 1$. Then there exists a convex body $K \in \mathcal{K}_o^n$ such that $\mu_{p,q}^{\text{tor}}(K, \cdot) = \mu$.

The organization of this paper is as follows. The background materials and some results are introduced in Section 2. In Section 3, we show that the formula (1.5) is valid for general convex bodies without smoothness condition. In Section 4, based on the conclusions in Sect. 3, the L^p Hadamard variational formula for q-torsional rigidity is established. In Sections 5 and 6, we prove the existence of solutions to the L^p Minkowski problem of q-torsional rigidity for discrete measure and general measure when $0 < p < 1$ and $q > 1$.

2. Preliminaries

In this section, we introduce some necessary facts about convex bodies that readers can refer to good books of Gardner [14] and Schneider [35].

2.1. Basic facts on convex bodies.

For $K \in \mathcal{K}_n^0$ in \mathbb{R}^n. The support function $h(K, \cdot) : S^{n-1} \to \mathbb{R}$ of K is defined by
\[h(K, \zeta) = \max \{ \zeta \cdot Y : Y \in K \}, \quad \zeta \in S^{n-1}, \]
where “\cdot” for the standard inner product in \mathbb{R}^n. We clearly know that the support function is a homogeneous convex function with degree 1. Let K and L be convex bodies, the Minkowski combination of K and L is defined by
\[K + tL = \{ x + ty : x \in K, y \in L \} \]
for $t > 0$. The $K + tL$ is a convex body whose support function is given by
\[h(K + tL, \cdot) = h(K, \cdot) + th(L, \cdot). \]

For $K, L \in \mathcal{K}_n^0$ and $p \geq 1$, the Firey’s p-sum, $K +_p t \cdot L$, of K and L is defined through its support function
\[h(K +_p t \cdot L, \cdot)^p = h(K, \cdot)^p + th(L, \cdot)^p. \]
In particular, when $p = 1$, the Firey’s p-sum is just the classical Minkowski sum.

The radial function $\rho_K : S^{n-1} \to (0, \infty)$ of K is defined by
\[\rho(K, v) = \max \{ c > 0 : cv \in K \}, \quad v \in S^{n-1}. \]
The radial map $r_K : S^{n-1} \to \partial K$ is
\[r_K(v) = \rho_K(v)v, \]
for $v \in S^{n-1}$, i.e. $r_K(v)$ is the unique on ∂K located on the ray parallel to v and emanating from the origin.

Two convex bodies $K, L \in \mathcal{K}_n^0$ are said to be homothetic if $K = \lambda L + x$ for some constant $\lambda > 0$ and $x \in \mathbb{R}^n$, particularly, K and L are said to be dilates of each other if $K = \lambda L$. The Hausdorff metric on \mathcal{K}_n^0, $d_H(\cdot, \cdot)$, is used to measure the distance between two convex bodies $K, L \in \mathcal{K}_n^0$, and it is defined by
\[d_H(K, L) = \max_{\zeta \in S^{n-1}} |h(K, \zeta) - h(L, \zeta)| = \| h(K, \cdot) - h(L, \cdot) \|_\infty. \]
Denote by $C(S^{n-1})$ the set of continuous functions defined on S^{n-1}, which is equipped with the metric induced by the maximal norm. Write $C_+(S^{n-1})$ for the set of strictly positive functions in $C(S^{n-1})$.

For a convex body K and $\zeta \in S^{n-1}$, the support hyperplane $H(K, \zeta)$ is defined by
\[H(K, \zeta) = \{ Y \in \mathbb{R}^n : \zeta \cdot Y = h(K, \zeta) \}. \]

The half-space $H^-(K, \zeta)$ in the direction ζ is defined by
\[H^-(K, \zeta) = \{ Y \in \mathbb{R}^n : \zeta \cdot Y \leq h(K, \zeta) \}. \]

The support set $\mathcal{F}(K, \zeta)$ in the direction ζ is defined by
\[\mathcal{F}(K, \zeta) = K \cap H(K, \zeta). \]

For a compact set $K \subset \mathbb{R}^n$, the diameter of K is defined by
\[d(K) = \max\{|X - Y| : X, Y \in K\}. \]

2.2. Aleksandrov bodies.

Given a function $f \in C_+(S^{n-1})$, let $K \subset \mathbb{R}^n$ be such
\[\overline{K} := \bigcap_{\xi \in S^{n-1}} \{ X \in \mathbb{R}^n : X \cdot \xi \leq f(\xi) \}. \]

Since f is both positive and continuous, K must be convex body in \mathbb{R}^n that contain the origin. The K is often called the Aleksandrov body associated with f. For Aleksandrov body K associated with $h(K, \cdot)$, we see that
\[h(K, \cdot) \leq f. \]

Let
\[\omega_h = \{ \xi \in S^{n-1} : h(K, \xi) < f(\xi) \}. \]

A basic fact established by Aleksandrov is that
\[S(K, \omega_h) = 0, \]

where $S(K, \cdot)$ is the surface area measure on ∂K defined by the $(n-1)$-Hausdorff measure. Consequently,
\[h(K, \cdot) = f, \text{ a.e. with respect to } S(K, \cdot). \]

Obviously, if f is the support function of $K \in K^n_o$, then K itself is the Aleksandrov body associated with f.

Aleksandrov’s Convergence Lemma: if the functions $h_i \in C_+(S^{n-1})$ have associated Aleksandrov bodies $K_i \in K^n_o$, then
\[h_i \to h \in C_+(S^{n-1}) \text{ uniformly } \Rightarrow \ K_i \to K \text{ in the Hausdorff metric}, \]

where K is the Aleksandrov body associated with h.

THE L_p MINKOWSKI PROBLEM FOR q-TORSIONAL RIGIDITY
3. **Variational formula for \(q\)-torsional rigidity of general convex bodies**

In this part, we prove that the formula (1.5) holds for general convex bodies without smoothness condition. Before this, we first need to obtain the weak convergence of \(q\)-torsional measure.

3.1. Basic facts on \(q\)-torsional rigidity.

The following basic facts and geometric inequalities about \(q\)-torsional rigidity can be referred to [20] or [36].

Lemma 3.1. Let \(K, L\) be two convex bodies of class \(C^2_+\) and \(q > 1\). The \(q\)-torsional rigidity has the following properties:

1. It is positively homogeneous of degree \((q + n(q - 1))\), i.e., \(T_q(sK) = s^{q+n(q-1)}T_q(K)\) for \(s > 0\).
2. It is monotonically increasing, that is, \(T_q(K) \leq T_q(L)\) with \(K \subseteq L\).
3. It is translation invariant, that is, \(T_q(K + x) = T_q(K), x \in \mathbb{R}^n\).

If we multiply \(\frac{1}{q+n(q-1)}\) on the integral in the right hand side of (1.5), the mixed \(q\)-torsional rigidity defined as

\[
T_q(K, L) = \frac{q-1}{q+n(q-1)}T_q(K)^{q-2} \int_{\mathbb{S}^{n-1}} h(L, \xi) \mu_{q}^\text{tor}(K, \xi).
\]

When \(L = K\), it reduces to the \(q\)-torsion rigidity formula (1.6), i.e. \(T_q(K, K) = T_q(K)\).

The Brunn-Minkowski inequality for \(q\)-torsional rigidity reads: If \(K, L\) are convex bodies of class \(C^2_+\) and \(q > 1\), then

\[
T_q(K + L)^{\frac{q+n(q-1)}{q+n(q-1)}} \geq T_q(K)^{\frac{1}{q+n(q-1)}} + T_q(L)^{\frac{1}{q+n(q-1)}},
\]

with equality if and only if \(K\) and \(L\) are homothetic. Moreover, the Brunn-Minkowski inequality yields the Minkowski inequality of \(q\)-torsional rigidity,

\[
T_q(K, L)^{q+n(q-1)} \geq T_q(K)^{q+n(q-1)-1}T_q(L),
\]

with equality if and only if \(K\) and \(L\) are homothetic.

3.2. Weak convergence of \(q\)-torsional measure.

For \(\Omega\) be an open convex bounded set, \(\Omega_i (i \in \mathbb{N})\) be a sequence of open convex bounded sets in \(\mathbb{R}^n\) and \(\varphi, \varphi_i \in W_0^{1,q}(\Omega)\). Let \(K = \overline{\Omega}\) and \(K_i = \overline{\Omega}_i\), and let, for \(\mathcal{H}^{n-1}\)-a.e \(\xi \in \mathbb{S}^{n-1}\)

\[
h(\xi) = |\nabla \varphi(r_K(\xi))(\mathcal{J}(\xi))|^{\frac{1}{q-1}}, \quad h_i(\xi) = |\nabla \varphi_i(r_K(\xi))(\mathcal{J}_i(\xi))|^{\frac{1}{q-1}},
\]

where \(\mathcal{J}, \mathcal{J}_i\) are the Jacobian functions introduced in following lemma.

Lemma 3.2. [22] Let \(\Omega\) be an open convex bounded set that contains the origin \(o\), \(K = \overline{\Omega}\) and \(f : \partial K \rightarrow \mathbb{R}\) be \(\mathcal{H}^{n-1}\)-integrable. Then

\[
\int_{\partial K} f(x) d\mathcal{H}^{n-1}(x) = \int_{\mathbb{S}^{n-1}} f(r_K(\xi)) \mathcal{J}(\xi) d\xi.
\]
where J is defined \mathcal{H}^{n-1}-a.e. on \mathbb{S}^{n-1} by

$$ J(\xi) = \frac{(\rho_K(\xi))^{n}}{h_K(g_K(r_K(\xi)))}. $$

Moreover, there exist constants $c_1, c_2 > 0$ such that $c_1 < J(\xi) < c_2$ for \mathcal{H}^{n-1}-a.e. $\xi \in \mathbb{S}^{n-1}$. Furthermore, assume that \(\{K_i\}_{i \in \mathbb{N}} \) is a sequence of bounded convex bodies converging to K w.r.t. to the Hausdorff metric. Define $J_i : \mathbb{S}^{n-1} \to (0, \infty)$

$$ J_i(\xi) = \frac{(\rho_{K_i}(\xi))^{n}}{h_{K_i}(g_{K_i}(r_{K_i}(\xi)))}, \quad i \in \mathbb{N}. $$

Then there exists $i_0 \geq 1$ such that if $i \geq i_0$, then $J_i(\xi)$ is bounded from below and above, uniformly w.r.t. ξ and i, and \{\(J_i \)\} converge to J, \mathcal{H}^{n-1}-a.e. on \mathbb{S}^{n-1}.

For functions $\varphi_i, \varphi \in W_0^{1,q}(\Omega)$, we consider replacing q-equilibrium potential of Ω in lemma 4.6 in [10] with φ, and give the following lemma.

Lemma 3.3. Suppose $q > 1$, then

$$ \lim_{i \to \infty} \int_{\mathbb{S}^{n-1}} |h_q^q(\xi) - h_q^q(\xi)| d\xi = 0. $$

The proof of this lemma is very similar to Lemma 4.6 in [10] and thus will be omitted.

Using the above results, we now establish the weak convergence of q-torsional measure.

Theorem 3.4. Let Ω be an open convex bounded set, $\Omega_i (i \in \mathbb{N})$ be a sequence of open convex bounded sets in \mathbb{R}^n. If $q > 1$, and Ω_i converges to Ω in the Hausdorff metric as $i \to 0$. Then the sequence of measures $\mu_q^{tor}(\Omega_i, \cdot)$ weakly converges to $\mu_q^{tor}(\Omega, \cdot)$.

Proof. Let ρ_i, ρ and g_i, g be the radial functions and Gauss maps of Ω_i, Ω, respectively. In order to prove that $\mu_q^{tor}(\Omega_i, \cdot)$ weakly converges to $\mu_q^{tor}(\Omega, \cdot)$, it is sufficient to show that for any continuous function f on \mathbb{S}^{n-1} satisfies

$$ \lim_{i \to \infty} \int_{\mathbb{S}^{n-1}} f(\xi) d\mu_q^{tor}(\Omega_i, \xi) = \int_{\mathbb{S}^{n-1}} f(\xi) d\mu_q^{tor}(\Omega, \xi). $$

From the definitions of $\mu_q^{tor}(\Omega, \cdot)$ and $h(\xi)$, and Lemma 3.2 then (3.4) is equivalent to

$$ \lim_{i \to \infty} \int_{\mathbb{S}^{n-1}} f(g_i(\rho_i(\xi)\xi)) h^q_i(\xi) d\xi = \int_{\mathbb{S}^{n-1}} f(g(\rho(\xi)\xi)) h^q(\xi) d\xi. $$

Note that

$$ \left| \int_{\mathbb{S}^{n-1}} f(g_i(\rho_i(\xi)\xi)) h^q_i(\xi) d\xi - \int_{\mathbb{S}^{n-1}} f(g(\rho(\xi)\xi)) h^q(\xi) d\xi \right| $$

$$ \leq \left| \int_{\mathbb{S}^{n-1}} f(g_i(\rho_i(\xi)\xi)) [h^q_i(\xi) - h^q(\xi)] d\xi \right| $$

$$ + \left| \int_{\mathbb{S}^{n-1}} [f(g_i(\rho_i(\xi)\xi)) - f(g(\rho(\xi)\xi))] h^q(\xi) d\xi \right|. $$

Since f is continuous on \mathbb{S}^{n-1}, then, by Lemma 3.3

$$ \lim_{i \to \infty} \left| \int_{\mathbb{S}^{n-1}} f(g_i(\rho_i(\xi)\xi)) [h^q_i(\xi) - h^q(\xi)] d\xi \right| = 0. $$
Using that \(g_i \) converges to \(g \) almost everywhere on \(S^{n-1} \) (see Remark 3.5 in [9]), and \(\rho_i \) converges to \(\rho \) uniformly, one has \(g_i(\rho_i(\xi)\xi) \) converges to \(g(\rho(\xi)\xi) \) almost everywhere on \(S^{n-1} \) as \(i \to \infty \). Thus we have
\[
\lim_{i \to \infty} \left| \int_{S^{n-1}} [f(g_i(\rho_i(\xi)\xi)) - f(g(\rho(\xi)\xi))] h^q(\xi) d\xi \right| = 0.
\]
Hence, we obtain (3.5). This completes the proof. \(\square \)

3.3. Variational formula for \(q \)-torsional rigidity of general convex bodies.

For \(h \in C_+(S^{n-1}) \), denote by \(T_q(h) \) the \(q \)-torsional rigidity of a Aleksandrov body associated with \(h \). Since the Aleksandrov body associated with the support function \(h_K \) of a \(K \in K_0^n \) is the \(K \) itself, we have
\[
(3.6) \quad T_q(h_K) = T_q(K).
\]
Let \(I \subset \mathbb{R} \) be an interval containing 0 and suppose that
\[
h_t(\xi) = h(t, \xi) : I \times S^{n-1} \to (0, \infty)
\]
is continuous.

For fixed \(t \in I \), let \(K_t \subset \mathbb{R}^n \) be such that
\[
\overline{K}_t = \bigcap_{\xi \in S^{n-1}} \{ x \in \mathbb{R}^n : x \cdot \xi \leq h(t, \xi) \}.
\]
This is the Aleksandrov body associated with \(h_t \). The family of convex domains \(\{ K_t \}_{t \in I} \) will be called the family of Aleksandrov bodies with \(h_t \). Obviously, from (2.2) we have, for each \(t \in I \),
\[
(3.7) \quad h(K_t, \cdot) \leq h_t \quad \text{and} \quad h(K_t, \cdot) = h_t, \quad \text{a.e. with respect to} \ S_{K_t}.
\]

From (3.1) and Theorem 3.4 if \(q > 1 \), we have for the \(q \)-torsional rigidity formula of \(K \in K_0^n \),
\[
(3.8) \quad T_q(K) = \frac{1}{q + n(q - 1)} \int_{S^{n-1}} h(K, \xi) d\mu_{q}^{tor}(K, \xi).
\]
Using (3.3) and Theorem 3.4 we obtain
\[
(3.9) \quad T_q(K, L)^{q + n(q - 1)} \geq T_q(K)^{q + n(q - 1) - 1} T_q(L),
\]
for all convex bodies \(K, L \in K_0^n \).

The proof of following lemma regarding the variation of \(q \)-torsional rigidity is similar to that of its analogue for volume or \(q \)-capacity (see [35], Lemma 6.5.3 or [10], Lemma 5.1). For reader’s convenience, we list the proof process.

Lemma 3.5. Let \(I \subset \mathbb{R} \) be an interval containing both 0 and some positive number and let
\[
h(t, \xi) : I \times S^{n-1} \to (0, \infty)
\]
be continuous and such that the convergence in

\[(3.10)\]
\[h'_+(0, \xi) = \lim_{t \to 0^+} \frac{h(t, \xi) - h(0, \xi)}{t}\]

is uniform on \(S^{n-1}\). If \(\{K_t\}_{t \in I}\) is the family of Aleksandrov bodies associated with \(h_t\), and \(q > 1\), then

\[
\lim_{t \to 0^+} \frac{T_q(K_t) - T_q(K_0)}{t} = (q - 1)T_q(K_0)^{\frac{q-2}{q-1}} \int_{S^{n-1}} h'_+(0, \xi) d\mu_q^{\text{tor}}(K_0, \xi).
\]

Proof. The uniform convergence of \((3.10)\) implies that \(h_t \to h_0\), uniformly on \(S^{n-1}\). Thus, by the Aleksandrov convergence lemma,

\[(3.11)\]
\[K_t \to K_0\]

in the Hausdorff metric. From Theorem 3.3 the \(q\)-torsional measure \(\mu_q^{\text{tor}}(K_t, \cdot)\) converges weakly to \(\mu_q^{\text{tor}}(K_0, \cdot)\), we obtain

\[(3.12)\]
\[
\lim_{t \to 0^+} \int_{S^{n-1}} \frac{h(t, \xi) - h(0, \xi)}{t} d\mu_q^{\text{tor}}(K_t, \xi) = \int_{S^{n-1}} h'_+(0, \xi) d\mu_q^{\text{tor}}(K_0, \xi).
\]

So, \((3.7), (3.8)\) and the fact that \(\mu_q^{\text{tor}}(K_\cdot, \cdot)\) is absolutely continuous with respect to \(S_K\), imply that

\[(3.13)\]
\[
T_q(K_t) = \frac{q - 1}{q + n(q - 1)} T_q(K_0)^{\frac{q-2}{q-1}} \int_{S^{n-1}} h(K_t, \xi) d\mu_q^{\text{tor}}(K_t, \xi)
\]

\[
\geq \frac{q - 1}{q + n(q - 1)} T_q(K_0)^{\frac{q-2}{q-1}} \int_{S^{n-1}} h_t(\xi) d\mu_q^{\text{tor}}(K_t, \xi)
\]

From \((3.13)\), the definition of mixed \(q\)-torsional rigidity, \((3.7)\) at \(t = 0\), we have

\[
\lim_{t \to 0^+} \frac{T_q(K_t) - T_q(K_0)}{t} = \frac{q - 1}{q + n(q - 1)} \lim_{t \to 0^+} T_q(K_t)^{\frac{q-2}{q-1}} \int_{S^{n-1}} \frac{h_t(\xi) - h(K_0, \xi)}{t} d\mu_q^{\text{tor}}(K_t, \xi)
\]

\[
\geq \frac{q - 1}{q + n(q - 1)} \lim_{t \to 0^+} T_q(K_0)^{\frac{q-2}{q-1}} \int_{S^{n-1}} \frac{h_t(\xi) - h_0(\xi)}{t} d\mu_q^{\text{tor}}(K_0, \xi).
\]

By \((3.11)\), we have \(\lim_{t \to 0^+} T_q(K_t) = T_q(K_0)\). When combined with \((3.12)\), gives

\[(3.14)\]
\[
\lim_{t \to 0^+} \frac{T_q(K_t) - T_q(K_0)}{t} \geq \frac{q - 1}{q + n(q - 1)} T_q(K_0)^{\frac{q-2}{q-1}} \int_{S^{n-1}} h'_+(0, \xi) d\mu_q^{\text{tor}}(K_0, \xi).
\]

We set

\[
l = \frac{q - 1}{q + n(q - 1)} T_q(K_0)^{\frac{q-2}{q-1}} \int_{S^{n-1}} h'_+(0, \xi) d\mu_q^{\text{tor}}(K_0, \xi),
\]
So (3.14) and (3.9) show that

\[l \leq \lim_{t \to 0^+} \frac{T_q(K_t) - T_q(K_t, K_0)}{t} \leq \lim_{t \to 0^+} \frac{T_q(K_t) - T_q(K_t)^{1-\frac{1}{q+n(q-1)}} T_q(K_0)^{\frac{1}{q+n(q-1)}}}{t}. \]

However, (3.11) gives \(\lim_{t \to 0^+} T_q(K_t) = T_q(K_0) \), and hence

\[(3.15) \quad l \leq T_q(K_0)^{1-\frac{1}{q+n(q-1)}} \lim_{t \to 0^+} \frac{T_q(K_t)^{\frac{1}{q+n(q-1)}} - T_q(K_0)^{\frac{1}{q+n(q-1)}}}{t}. \]

On the other hand, by the inequality in (3.7) and the uniform convergence in (3.10), we have

\[
\lim_{t \to 0^+} \frac{T_q(K_0, K_t) - T_q(K_0)}{t} = \frac{q-1}{q+n(q-1)} \lim_{t \to 0^+} T_q(K_0)^{\frac{q-2}{q-1}} \int_{S^{n-1}} \frac{h_t(K_t, K_0)}{\mu_q(K_0)} d\mu_q, \\
\leq \frac{q-1}{q+n(q-1)} T_q(K_0)^{\frac{q-2}{q-1}} \lim_{t \to 0^+} \int_{S^{n-1}} \frac{h_t(K_0)}{\mu_q(K_0)} d\mu_q, \\
= \frac{q-1}{q+n(q-1)} T_q(K_0)^{\frac{q-2}{q-1}} \int_{S^{n-1}} h_t(0) d\mu_q, \\
= l.
\]

This, together with (3.9), yields

\[l \geq \lim_{t \to 0^+} \frac{T_q(K_0, K_t) - T_q(K_0)}{t} \geq \lim_{t \to 0^+} T_q(K_0)^{1-\frac{1}{q+n(q-1)}} T_q(K_t)^{\frac{1}{q+n(q-1)}} - T_q(K_0)^{\frac{1}{q+n(q-1)}}, \]

and hence

\[(3.16) \quad l \geq T_q(K_0)^{1-\frac{1}{q+n(q-1)}} \lim_{t \to 0^+} \frac{T_q(K_t)^{\frac{1}{q+n(q-1)}} - T_q(K_0)^{\frac{1}{q+n(q-1)}}}{t}. \]

Combining (3.15) and (3.16), we see that

\[(3.17) \quad l = T_q(K_0)^{1-\frac{1}{q+n(q-1)}} \lim_{t \to 0^+} \frac{T_q(K_t)^{\frac{1}{q+n(q-1)}} - T_q(K_0)^{\frac{1}{q+n(q-1)}}}{t}. \]

From the Aleksandrov’s convergence lemma and the continuity of \(q \)-torsional rigidity on \(\mathcal{K}_0 \), we know that \(T_q : C_+(\mathbb{S}^{n-1}) \to \mathbb{R} \) is continuous. Define a function \(f : I \to \mathbb{R} \) by \(f(t) = T_q(K_t)^{\frac{1}{q+n(q-1)}} \). Identity (3.17) shows that the right derivative of \(f^n \) exists at 0 and that

\[
\lim_{t \to 0^+} \frac{f(t)^{q+n(q-1)} - f(0)^{q+n(q-1)}}{t} = (q + n(q - 1)) f(0)^{q+n(q-1)-1} \lim_{t \to 0^+} \frac{f(t) - f(0)}{t}.
\]
Thus the definition of \(f \) and (3.17) prove that
\[
\lim_{t \to 0^+} \frac{T_q(K_t) - T_q(K_0)}{t} = (q + n(q - 1)) l.
\]
The proof is completed.

\[\square\]

Lemma 3.6. Let \(I \subset \mathbb{R} \) be an interval containing 0 in its interior and let
\[
h(t, \xi) : I \times \mathbb{S}^{n-1} \to (0, \infty)
\]
be continuous and such that the convergence in
\[
h'(0, \xi) = \lim_{t \to 0} \frac{h(t, \xi) - h(0, \xi)}{t}
\]
is uniform on \(\mathbb{S}^{n-1} \). If \(\{K_t\}_{t \in I} \) is the family of Aleksandrov bodies associated with \(h_t \), and \(q > 1 \), then
\[
(3.18) \quad \left. \frac{d}{dt} T_q(K_t) \right|_{t=0} = (q - 1) T_q(K_0)^{\frac{q-2}{q-1}} \int_{\mathbb{S}^{n-1}} h'(0, \xi) d\mu_{q}^{tor}(K_0, \xi).
\]

Proof. From Lemma 3.5 we only need to
\[
(3.19) \quad \lim_{t \to 0^-} \frac{T_q(K_t) - T_q(K_0)}{t} = (q - 1) T_q(K_0)^{\frac{q-2}{q-1}} \int_{\mathbb{S}^{n-1}} h'(0, \xi) d\mu_{q}^{tor}(K_0, \xi).
\]
To that end, defined \(\tilde{h}(t, \xi) : -I \times \mathbb{S}^{n-1} \to (0, \infty) \) by \(\tilde{h}(t, \xi) = h(-t, \xi) \). For the corresponding family \(\{\tilde{K}_t\}_{t \in I} \) of Aleksandrov bodies associated with \(\tilde{h} \) we have \(\tilde{K}_{-t} = K_t \) and \(\tilde{K}_0 = K_0 \). Thus, by Lemma 3.5
\[
\lim_{t \to 0^-} \frac{T_q(K_t) - T_q(K_0)}{t} = \lim_{t \to 0^+} \frac{T_q(\tilde{K}_t) - T_q(\tilde{K}_0)}{t} = (q - 1) T_q(K_0)^{\frac{q-2}{q-1}} \int_{\mathbb{S}^{n-1}} \tilde{h}'(0, \xi) d\mu_{q}^{tor}(K_0, \xi).
\]
Obviously, \(\tilde{h}'(0, \xi) = -h'(0, \xi) \), which immediately implies (3.19).

\[\square\]

4. The \(L_p \) \(q \)-torsional measure

In this part, we define the \(L_p \) \(q \)-torsional measure by establishing \(L_p \) variational formula for \(q \)-torsional rigidity of general convex bodies without smoothness condition.

Theorem 4.1. Let \(K \in \mathcal{K}^n_o \), \(1 \leq p < \infty \) and \(q > 1 \). If \(L \) is a compact convex set containing the origin, then
\[
\left. \frac{d}{dt} T_q(K + p \ t \cdot L) \right|_{t=0} = \frac{q-1}{p} T_q(K)^{\frac{q-2}{q-1}} \int_{\mathbb{S}^{n-1}} h(L, \xi)^p h(K, \xi)^{1-p} d\mu_{q}^{tor}(K, \xi).
\]
Proof. For $K, L \in \mathcal{K}_o^n$ and $1 \leq p < \infty$. By the definition of Firey’s p-sum, then we have

$$
\lim_{t \to 0} \frac{h(K + pt \cdot L, \cdot) - h(K, \cdot)}{t} = \lim_{t \to 0} \frac{(h(K, \cdot)^p + th(L, \cdot)^p)^{\frac{1}{p}} - h(K, \cdot)}{t}
$$

$$
= \frac{1}{p} (h(K, \cdot)^p + th(L, \cdot)^p)^{\frac{1}{p}-1} \bigg|_{t=0} h(L, \cdot)^p
$$

$$
= h(L, \cdot)^p h(K, \cdot)^{1-p}. \frac{p}{q}.
$$

Combining Lemma 3.10, we have

$$
\frac{d}{dt} T_q(h_K + pt \cdot L) \bigg|_{t=0} = \frac{q-1}{p} T_q(K) \frac{q-2}{q-1} \int_{S^{n-1}} h(L, \xi)^p h(K, \xi)^{1-p} d\mu^\text{tor}_q(K, \xi).
$$

This completes the proof of Theorem 4.1. \qed

We now give the following definition for the new geometric measure produced by the variational formula in Theorem 4.1.

Definition 4.2. Suppose $p \in \mathbb{R}$ and $q > 1$. For $K \in \mathcal{K}_o^n$, the finite Borel measure $\mu^\text{tor}_{p,q}(K, \cdot)$ defined, for each Borel set $\eta \subseteq S^{n-1}$, by

$$
\mu^\text{tor}_{p,q}(K, \eta) = \int_{\eta} h(K, \cdot)^{1-p} d\mu^\text{tor}_{q}(K, \cdot),
$$

is called the L_p q-torsional measure.

Definition 4.3. Suppose $p \in \mathbb{R}$ and $q > 1$. For $K, L \in \mathcal{K}_o^n$, if $p \neq 0$, define

$$
T_{p,q}(K, L) = \frac{q-1}{q+n(q-1)} T_q(K) \frac{q-2}{q-1} \int_{S^{n-1}} h(L, \xi)^p d\mu^\text{tor}_{p,q}(K, \xi),
$$

and call it the L_p mixed q-torsional rigidity of (K, L). Obviously, $T_{1,q}(K, L) = T_q(K, L)$ and $T_{p,q}(K, K) = T_q(K).

From the Definition 4.2, together with the positive homogeneity and weak convergence of $\mu^\text{tor}_q(K, \cdot)$, we obtain the following result.

Lemma 4.4. For $K, K_i \in \mathcal{K}_o^n$ and $i \in \mathbb{N}$.

1. Let $p \in \mathbb{R}$ and $q > 1$, then $\mu^\text{tor}_{p,q}(sK, \cdot) = s^{n(q-1)+q-p} \mu^\text{tor}_{p,q}(K, \cdot)$ for $s > 0$.
2. Let $p \in \mathbb{R}$ and $q > 1$. If $K_i \to K$ in the Hausdorff metric, then $\mu^\text{tor}_{p,q}(K_i, \cdot) \to \mu^\text{tor}_{p,q}(K, \cdot)$ weakly, as $i \to \infty$.

Next, we establish the natural L_p extension of the Brunn-Minkowski and Minkowski type inequalities for q-torsional rigidity.

Theorem 4.5. For $K, L \in \mathcal{K}_o^n$. If $1 < p < \infty$ and $q > 1$, then

$$
T_q(K + pL)^{\frac{p}{n(q-1)+q}} \geq T_q(K)^{\frac{p}{n(q-1)+q}} + T_q(L)^{\frac{p}{n(q-1)+q}},
$$

with equality if and only if K and L are dilates.
Theorem 4.6. For $K, L \in K^n_o$. If $1 < p < \infty$ and $q > 1$, then

$$T_{p,q}(K,L)^{n(q-1)+q} \geq T_q(K)^{n(q-1)+q-p}T_q(L)^p,$$

with equality if and only if K and L are dilates.

For $p > 1$, $q > 1$, and $K, L \in K^n_o$ of class C^2, the Theorems 4.5 and 4.6 were proved in [36]. When K, L are arbitrary convex body in K^n_o, the proof of the Theorems 4.5 and 4.6 are very similar and thus omitted.

5. **The L_p Minkowski problem of q-torsional rigidity for discrete measure**

In this part, we prove the existence of solution to L_p Minkowski problem of q-torsional rigidity for discrete measure when $0 < p < 1$ and $q > 1$. First, we study an extremal problem under translation transforms. Next, we establish the relations between extremal problem and L_p Minkowski problem. Finally, we give the solution for discrete measure.

Let P be the set of polytopes in \mathbb{R}^n. Suppose the unit vectors ξ_1, \ldots, ξ_N ($N \geq n+1$) are not concentrated on any closed hemisphere of S^{n-1}. Let $P(\xi_1, \ldots, \xi_N)$ be the set with $P \in P(\xi_1, \ldots, \xi_N)$ such that for fixed $a_1, \ldots, a_N \geq 0$,

$$P = \bigcap_{k=1}^N \{ x \in \mathbb{R}^n : x \cdot \xi_k \leq a_k \}.$$

Obviously, for $P \in P(\xi_1, \ldots, \xi_N)$, P has at most N facets, and the outer unit normals of P are a subset of $\{ \xi_1, \ldots, \xi_N \}$. Let $P_N(\xi_1, \ldots, \xi_N)$ be the subset of $P(\xi_1, \ldots, \xi_N)$ such that a polytope $P \in P_N(\xi_1, \ldots, \xi_N)$, if $P \in P(\xi_1, \ldots, \xi_N)$ and P has exactly N facets.

Suppose c_1, \ldots, c_N are positive real numbers and the unit vectors ξ_1, \ldots, ξ_N are not concentrated on any closed hemisphere of S^{n-1}. Let

$$\mu = \sum_{k=1}^N c_k \delta_{\xi_k}(\cdot)$$

be the discrete measure on S^{n-1}, where δ is the Kronecker delta. More knowledge about polytopes and discrete measures can be refer to [16].

5.1. **An extremal problem.**

For $\Omega \in P(\xi_1, \ldots, \xi_N)$ and $0 < p < 1$, we define the functional $\Phi(\Omega, \cdot) : \Omega \to \mathbb{R}$ as

$$\Phi(\Omega, x) = \sum_{k=1}^N c_k (h(\Omega, \xi_k) - x \cdot \xi_k)^p.$$

We will show that there is a unique point $x_\Omega \in \text{Int}(\Omega)$ such that $\Phi(\Omega, x)$ attains the maximum.
Lemma 5.1. Suppose $0 < p < 1$, the unit vectors ξ_1, \ldots, ξ_N are not concentrated on any closed hemisphere of S^{n-1} and $\Omega \in \mathcal{P}(\xi_1, \ldots, \xi_N)$. Then there exists a unique point $x_\Omega \in \text{Int}(\Omega)$ such that

$$\Phi(\Omega, x_\Omega) = \max_{x \in \Omega} \Phi(\Omega, x).$$

Proof. Firstly, we prove the uniqueness of the maximal point. Assume $x_1, x_2 \in \text{Int}(\Omega)$ and

$$\Phi(\Omega, x_1) = \Phi(\Omega, x_2) = \max_{x \in \Omega} \Phi(\Omega, x).$$

From (5.1), and using the Jensen inequality, we get

$$\Phi(\Omega, \frac{1}{2}(x_1 + x_2)) = \sum_{k=1}^{N} c_k (h(\Omega, \xi_k) - \frac{1}{2}(x_1 + x_2) \cdot \xi_k)^p$$

$$= \sum_{k=1}^{N} c_k \left(\frac{1}{2} h(\Omega, \xi_k) - x_1 \cdot \xi_k + \frac{1}{2} h(\Omega, \xi_k) - x_2 \cdot \xi_k \right)^p$$

$$\geq \frac{1}{2} \sum_{k=1}^{N} c_k (h(\Omega, \xi_k) - x_1 \cdot \xi_k)^p + \frac{1}{2} \sum_{k=1}^{N} c_k (h(\Omega, \xi_k) - x_2 \cdot \xi_k)^p$$

$$= \frac{1}{2} \Phi(\Omega, x_1) + \frac{1}{2} \Phi(\Omega, x_2)$$

$$= \max_{x \in \Omega} \Phi(\Omega, x).$$

Since Ω is convex, $\frac{1}{2}(x_1 + x_2) \in \Omega$, then the above equality holds. The equality condition of Jensen inequality means that

$$h(\Omega, \xi_k) - x_1 \cdot \xi_k = h(\Omega, \xi_k) - x_2 \cdot \xi_k, \quad k = 1, \ldots, N,$$

that is

$$x_1 \cdot \xi_k = x_2 \cdot \xi_k, \quad k = 1, \ldots, N.$$

Since the unit vector ξ_1, \ldots, ξ_N are not concentrated on any closed hemisphere, it follows that $x_1 = x_2$. Thus the uniqueness is proved.

Next, we prove the existence of the maximal point. Since $\Phi(\Omega, x)$ is continuous in $x \in \Omega$ and Ω is compact, then $\Phi(\Omega, x)$ attains its maximum at a point of Ω, denoted by x_Ω. Thus we only need to prove $x_\Omega \in \text{Int}(\Omega)$. We use proof by contradiction. Suppose $x_\Omega \in \partial \Omega$ with

$$h(\Omega, \xi_k) - x_\Omega \cdot \xi_k = 0$$

for $k = \{i_1, \ldots, i_m\}$, and

$$h(\Omega, \xi_k) - x_\Omega \cdot \xi_k > 0$$

for $k = \{1, \ldots, N\} \setminus \{i_1, \ldots, i_m\}$, where $1 \leq i_1 < \cdots < i_m \leq N$ and $1 \leq m \leq N - 1$. Fix $y_0 \in \text{Int}(\Omega)$, let $\xi_0 = \frac{y_0 - x_\Omega}{\|y_0 - x_\Omega\|}$. Then for sufficiently small $\varepsilon > 0$, it follows that $x_\Omega + \varepsilon \xi_0 \in \text{Int}(\Omega)$. In the following, we aim to show that $\Phi(\Omega, x_\Omega + \varepsilon \xi_0) - \Phi(\Omega, x_\Omega) > 0$, which will contradict the maximality of Φ at x_Ω. Consequently, $x_\Omega \in \text{Int}(\Omega)$.
Let
\begin{equation}
(5.2) \quad [h(\Omega, \xi_k) - (x_\Omega + \varepsilon \xi_0) \cdot \xi_k] - [h(\Omega, \xi_k) - x_\Omega \cdot \xi_k] = -\varepsilon \cdot \xi_k = \alpha_k \varepsilon,
\end{equation}
where \(\alpha_k = -(\xi_0 \cdot \xi_k) \). Since \(h(\Omega, \xi_k) - x_\Omega \cdot \xi_k = 0 \) for \(k \in \{i_1, \ldots, i_m\} \) and \(y_0 \) is an interior point of \(\Omega \), \(\alpha_k > 0 \) for \(k \in \{i_1, \ldots, i_m\} \). Let
\begin{equation}
(5.3) \quad \alpha_0 = \min\{h(\Omega, \xi_k) - x_\Omega \cdot \xi_k : k = \{1, \ldots, N\} \setminus \{i_1, \ldots, i_m\}\} > 0,
\end{equation}
and choose \(\varepsilon > 0 \) small enough such that \(x_\Omega + \varepsilon \xi_0 \in \text{Int}(\Omega) \) and
\begin{equation}
(5.4) \quad \min\{h(\Omega, \xi_k) - (x_\Omega + \varepsilon \xi_0) \cdot \xi_k : k = \{1, \ldots, N\} \setminus \{i_1, \ldots, i_m\}\} > \frac{\alpha_0}{2}.
\end{equation}
Obviously, for \(0 < p < 1 \) and \(y_0, y_0 + \Delta y \in (\frac{\alpha_0}{2}, +\infty) \),
\[|(y_0 + \Delta y)^p - y_0^p| < p \left(\frac{\alpha_0}{2} \right)^{p-1} |\Delta y|. \]
From this, the fact that \(h(\Omega, \xi_k) = x_\Omega \cdot \xi_k, \alpha_k > 0 \) for \(k \in \{i_1, \ldots, i_m\} \), (5.2), (5.3) and (5.4), it follows that
\[\Phi(\Omega, x_\Omega + \varepsilon \xi_0) - \Phi(\Omega, x_\Omega) \]
\[= \sum_{k=1}^{N} c_k[(h(\Omega, \xi_k) - (x_\Omega + \varepsilon \xi_0) \cdot \xi_k)^p - (h(\Omega, \xi_k) - x_\Omega \cdot \xi_k)^p] \]
\[\geq \sum_{k \in \{i_1, \ldots, i_m\}} c_k(\alpha_k \varepsilon)^p - \sum_{k \in \{1, \ldots, N\} \setminus \{i_1, \ldots, i_m\}} c_k \left| (h(\Omega, \xi_k) - x_\Omega \cdot \xi_k + \alpha_k \varepsilon)^p - (h(\Omega, \xi_k) - x_\Omega \cdot \xi_k)^p \right| \]
\[\geq \left(\sum_{k \in \{i_1, \ldots, i_m\}} c_k \alpha_k^p \right) \varepsilon^p - \sum_{k \in \{1, \ldots, N\} \setminus \{i_1, \ldots, i_m\}} c_k p \left(\frac{\alpha_0}{2} \right)^{p-1} |\alpha_k \varepsilon| \]
\[= \left(\sum_{k \in \{i_1, \ldots, i_m\}} c_k \alpha_k^p \right) \varepsilon^p - \sum_{k \in \{1, \ldots, N\} \setminus \{i_1, \ldots, i_m\}} c_k p \left(\frac{\alpha_0}{2} \right)^{p-1} |\alpha_k \varepsilon^{1-p}| \varepsilon^p. \]
Thus, there exists a small enough \(\varepsilon_0 > 0 \) such that \(x_\Omega + \varepsilon_0 \xi_0 \in \text{Int}(\Omega) \) and
\[\Phi(\Omega, x_\Omega + \varepsilon_0 \xi_0) - \Phi(\Omega, x_\Omega) > 0. \]
This contradicts the definition of \(x_\Omega \). Therefore \(x_\Omega \in \text{Int}(\Omega) \).
\[\square \]

Lemma 5.2. Let \(x_{\Omega_1}, x_{\Omega_i} \) be the maximal point of the functional \(\Phi \) on \(\Omega, \Omega_i \in \mathcal{P}(\xi_1, \ldots, \xi_N) \). Suppose \(\Omega_i \to \Omega \) as \(i \to \infty \), then \(x_{\Omega_i} \to x_\Omega \) and \(\Phi(\Omega_i, x_{\Omega_i}) \to \Phi(\Omega, x_\Omega) \) as \(i \to \infty \).

Proof. Since \(\Omega_i \to \Omega \) as \(i \to \infty \), we have
\[x_{\Omega_i} \in \Omega_i \subseteq \Omega + B. \]
This implies \(\{x_{\Omega_i}\}_i \) is a bounded sequence. Let \(\{x_{\Omega_{ij}}\}_j \) be a convergent subsequence of \(\{x_{\Omega_i}\}_i \).
Assume \(\{x_{\Omega_j}\}_j \to x' \) and \(x' \neq x_{\Omega} \). By the Theorem 1.8.8 in [35], it follows that \(x' \in \Omega \).

Hence

\[
\Phi(\Omega, x') < \Phi(\Omega, x_{\Omega}).
\]

From the continuity of \(\Phi(\Omega, x) \) in \(\Omega \) and \(x \), we have

\[
\lim_{j \to \infty} \Phi(\Omega_j, x_{\Omega_j}) = \Phi(\Omega, x').
\]

Meanwhile, by the Theorem 1.8.8 in [35], for \(x_{\Omega} \in \Omega \), there exists a \(y_{i_j} \in \Omega_{i_j} \) such that \(y_{i_j} \to x_{\Omega} \). Then we have

\[
\lim_{j \to \infty} \Phi(\Omega_{i_j}, y_{i_j}) = \Phi(\Omega, x_{\Omega}).
\]

Hence

\[
(5.5) \quad \lim_{j \to \infty} \Phi(\Omega_{i_j}, x_{\Omega_{i_j}}) < \lim_{j \to \infty} \Phi(\Omega_{i_j}, y_{i_j}).
\]

However, for any \(\Omega_{i_j} \),

\[
\Phi(\Omega_{i_j}, x_{\Omega_{i_j}}) \geq \Phi(\Omega_{i_j}, y_{i_j}),
\]

then we have

\[
\lim_{j \to \infty} \Phi(\Omega_{i_j}, x_{\Omega_{i_j}}) \geq \lim_{j \to \infty} \Phi(\Omega_{i_j}, y_{i_j}),
\]

which contradicts (5.5). Thus, \(x_{\Omega_{i_j}} \to x_{\Omega} \), and \(x_{\Omega_i} \to x_{\Omega} \). From the continuity of \(\Phi \), then

\[
\Phi(\Omega_i, x_{\Omega_i}) \to \Phi(\Omega, x_{\Omega}).
\]

This completes the proof. \(\square \)

Lemma 5.3. Suppose \(\Omega \in \mathcal{P}(\xi_1, \ldots, \xi_N) \), then

1. \(\Phi(\Omega + y, x_{\Omega+y}) = \Phi(\Omega, x_{\Omega}) \), for \(y \in \mathbb{R}^n \).
2. \(\Phi(\lambda \Omega, x_{\lambda\Omega}) = \lambda^p \Phi(\Omega, x_{\Omega}) \), for \(\lambda > 0 \).

Proof. From (5.1), we have

\[
\Phi(\Omega + y, x_{\Omega+y}) = \max_{z \in \Omega+y} \Phi(\Omega + y, z)
\]

\[
= \max_{z-y \in \Omega} \left(\sum_{k=1}^{N} c_k(h(\Omega + y, \xi_k) - z \cdot \xi_k)^p \right)
\]

\[
= \max_{z-y \in \Omega} \left(\sum_{k=1}^{N} c_k(h(\Omega, \xi_k) - (z - y) \cdot \xi_k)^p \right)
\]

\[
= \max_{x \in \Omega} \left(\sum_{k=1}^{N} c_k(h(\Omega, \xi_k) - x \cdot \xi_k)^p \right)
\]

\[
= \Phi(\Omega, x_{\Omega}).
\]

In the same way, we can get a proof of (2). \(\square \)
5.2. An extremal problem and the L_p Minkowski problem.

Suppose $0 < p < 1$ and $q > 1$, in the following, we study the extremal problem

\begin{equation}
\inf \{ \max_{x \in \Omega} \Phi(\Omega, x) : \Omega \in \mathcal{P}(\xi_1, \ldots, \xi_N), \ T_q(\Omega) = 1 \},
\end{equation}

and show that its solution is exactly the solution of the L_p Minkowski problem for q-torsional rigidity we are concerned with.

Lemma 5.4. Suppose $P \in \mathcal{P}(\xi_1, \ldots, \xi_N)$ with normal vector ξ_1, \ldots, ξ_N. If P is the solution to problem (5.6), and $x_P = o$, then

\[\lambda h(P, \cdot)^{1-p} d \mu_{\text{tor}}^T(P, \cdot) = d \mu, \]

where $\lambda = \frac{q-1}{q+n(q-1)} \sum_{k=1}^N c_k h(P, \xi_k)^p$.

Proof. For $\delta_1, \ldots, \delta_N > 0$ and sufficiently small $|t| > 0$. Let

\[P_t = \{ x : x \cdot \xi_k \leq h(P, \xi_k) + t \delta_k, \ k = 1, \ldots, N \} \]

and

\[\gamma(t) P_t = T_q(P_t)^{-\frac{1}{q+n(q-1)}} P_t. \]

Then $T_q(\gamma(t) P_t) = 1$, $\gamma(t) P_t \in \mathcal{P}_N(\xi_1, \ldots, \xi_N)$ and $\gamma(t) P_t \rightarrow P$ as $t \rightarrow 0$.

We denote by $x(t) = x_{\gamma(t) P_t}$. Let

\begin{equation}
\Phi(\gamma(t) P_t, x(t)) = \max_{x \in \gamma(t) P_t} \sum_{k=1}^N c_k (\gamma(t) h(P_t, \xi_k) - x \cdot \xi_k)^p
\end{equation}

\[= \sum_{k=1}^N c_k (\gamma(t) h(P_t, \xi_k) - x(t) \cdot \xi_k)^p. \]

(5.7)

Since $x(t)$ is an interior point of $\gamma(t) P_t$, by (5.7), we have

\[\sum_{k=1}^N c_k \frac{\xi_{k,i}}{[\gamma(t) h(P_t, \xi_k) - x(t) \cdot \xi_k]^{1-p}} = 0, \ i = 1, \ldots, n, \]

where $\xi_k = (\xi_{k,1}, \ldots, \xi_{k,n})^T$. Let $t = 0$, then $P_0 = P$, $\gamma(0) = 1$, $x(0) = o$ and

\begin{equation}
\sum_{k=1}^N c_k \frac{\xi_{k,i}}{h(P, \xi_k)^{1-p}} = 0, \ i = 1, \ldots, n.
\end{equation}

(5.8)

Therefore

\begin{equation}
\sum_{k=1}^N c_k \frac{\xi_{k,i}}{h(P, \xi_k)^{1-p}} = 0.
\end{equation}

(5.9)

Now we need to show $x'(t) \bigg|_{t=0}$ exists. Let

\[y_i(t, x_1, \ldots, x_n) = \sum_{k=1}^N c_k \frac{\xi_{k,i}}{[\gamma(t) h(P_t, \xi_k) - (x_1 \xi_{k,1} + \cdots + x_n \xi_{k,n})]^{1-p}} \]
for $i = 1, ..., n$. Then
\[
\frac{\partial y_i}{\partial x_j} |_{x = 0} = \sum_{k=1}^{N} (1 - p) c_k \frac{h(P, \xi_k)^{2-p}}{h(P, \xi_k)^{2-p} \xi_k xi_k}.
\]
Thus
\[
\left(\frac{\partial y}{\partial x} \right) |_{x = 0} = \sum_{k=1}^{N} (1 - p) c_k \frac{h(P, \xi_k)^{2-p}}{h(P, \xi_k)^{2-p} \xi_k xi_k}.
\]
For $x \in \mathbb{R}^n$ with $x \neq 0$. Since $\xi_1, ..., \xi_N$ are not concentrated on any closed hemisphere, then there exists a $\xi_{i_0} \in \{\xi_1, ..., \xi_N\}$ such that $\xi_{i_0} \cdot x \neq 0$. Thus
\[
x^T \left(\sum_{k=1}^{N} \frac{(1 - p) c_k}{h(P, \xi_k)^{2-p}} \xi_k \xi_k^T \right) x
\]
\[
= \sum_{k=1}^{N} \frac{(1 - p) c_k}{h(P, \xi_k)^{2-p}} (x \cdot \xi_k)^2
\]
\[
\geq \frac{(1 - p) c_{i_0}}{h(P, \xi_{i_0})^{2-p}} (x \cdot \xi_{i_0})^2
\]
for $j = 1, \ldots, N$. Since P is containing the origin o in its interior, then $h(P, \xi_j) > 0$, and thus

$$
\frac{q - 1}{q + n(q - 1)} \left(\sum_{k=1}^{N} c_k h(P, \xi_k)^p \right) h(P, \xi_j)^{1-p} \mu_q^{tor}(P, \{\xi_k\}) = c_j
$$

for $j = 1, \ldots, N$. Therefore, Therefore

$$
\lambda h(P, \cdot)^{1-p} \mu_q^{tor}(P, \cdot) = d\mu,
$$

where $\lambda = \frac{q-1}{q+n(q-1)} \sum_{k=1}^{N} c_k h(P, \xi_k)^p$.

The following lemma shows that the solution to (5.6) is just a scaling of the solution to the L_p Minkowski problem for q-torsional rigidity.

Lemma 5.5. Suppose $P \in \mathcal{P}(\xi_1, \ldots, \xi_N)$ with normal vector ξ_1, \ldots, ξ_N. If P is the solution to problem (5.6), and $x_P = o$. Then for

$$
\lambda_0 = \left(\frac{q - 1}{q + n(q - 1)} \sum_{k=1}^{N} c_k h(P, \xi_k)^p \right)^{\frac{1}{q+n(q-1)-p}},
$$

we have

$$
d\mu^{tor}_{p,q}(\lambda_0 P, \cdot) = d\mu.
$$

Proof. Let $s > 0$ and $P \in \mathcal{P}(\xi_1, \ldots, \xi_N)$. Then

$$
d\mu^{tor}_{p,q}(sP, \cdot) = s^{q+n(q-1)-p} h(P, \cdot)^{1-p} \mu_q(P, \cdot) = s^{q+n(q-1)-p} d\mu^{tor}_{p,q}(P, \cdot)
$$

Since $0 < p < 1$ and $q > 1$, then $n(q - 1) \neq p - q$. If P is the solution to (5.6), By Lemma 5.4, we have

$$
\lambda d\mu^{tor}_{p,q}(P, \cdot) = \lambda h(P, \cdot)^{1-p} \mu_q(P, \cdot) = d\mu,
$$

where $\lambda = \frac{q-1}{q+n(q-1)} \sum_{k=1}^{N} c_k h(P, \xi_k)^p$. This together with (5.10), we have

$$
d\mu^{tor}_{p,q}(\lambda_0 P, \cdot) = d\mu,
$$

where $\lambda_0 = \lambda^{\frac{1}{q+n(q-1)-p}}$. This completes the proof. \hfill \Box

5.3. Existence of solutions to the L_p Minkowski problem for q-torsional rigidity.

We also need the following two lemmas to complete the existence of solution to L_p Minkowski problem of q-torsional rigidity for discrete measure when $0 < p < 1$ and $q > 1$.

Lemma 5.6. Suppose $P \in \mathcal{P}(\xi_1, \ldots, \xi_N)$ with normal vector ξ_1, \ldots, ξ_N, and $0 < p < 1$. If P is the solution to problem (5.6), and $x_P = o$. Then P has exactly N facets whose normal vectors are ξ_1, \ldots, ξ_N.

Proof. We argue be contradiction. Assume that $\xi_{i_0} \in \{\xi_1, \ldots, \xi_N\}$, but the support set $\mathcal{F}(P, \xi_{i_0}) = P \cap \mathcal{H}(P, \xi_{i_0})$ is not a facet of P.

Fix $\delta > 0$, let

$$
P_\delta = P \cap \{x : x \cdot \xi_{i_0} \leq h(P, \xi_{i_0}) - \delta\} \in \mathcal{P}(\xi_1, \ldots, \xi_N)
$$
Hence
\[\tau P_\delta = \tau(\delta)P_\delta = T_q(P_\delta) \frac{1}{q+n(q-1)} P_\delta. \]
Then \(T_q(\tau P_\delta) = 1 \) and \(\tau P_\delta \rightarrow P \) as \(\delta \rightarrow 0^+ \). By the Lemma 5.2, we see that \(x_{P_\delta} \rightarrow x_P = o \in \text{int}(P) \) as \(\delta \rightarrow 0^+ \). Thus, for sufficiently small \(\delta > 0 \), we can assume that \(x_{P_\delta} \in \text{Int}(P) \) and
\[h(P, \xi_k) - x_{P_\delta} \cdot \xi_k > \delta > 0, \quad k = 1, ..., N. \]

In the following, we show \(\Phi(\tau P_\delta, x_{P_\delta}) < \Phi(P, o) \), which contradicts the fact that \(\Phi(P, o) \) is the minimum. Since
\[
\Phi(\tau P_\delta, x_{P_\delta}) = \tau^p \sum_{k=1}^{N} c_k (h(P, \xi_k) - x_{P_\delta} \cdot \xi_k)^p
\]
\[
= \tau^p \left(\sum_{k=1}^{N} c_k (h(P, \xi_k) - x_{P_\delta} \cdot \xi_k)^p \right) + \tau^p c_{i_0} (h(P, \xi_{i_0}) - x_{P_\delta} \cdot \xi_{i_0} - \delta)^p
\]
\[
- \tau^p c_{i_0} (h(P, \xi_{i_0}) - x_{P_\delta} \cdot \xi_{i_0})^p
\]
\[= \Phi(P, x_{P_\delta}) + G(\delta), \]
where
\[G(\delta) = (\tau^p - 1) \left(\sum_{k=1}^{N} c_k (h(P, \xi_k) - x_{P_\delta} \cdot \xi_k)^p \right) \]
\[+ c_{i_0} \tau^p [(h(P, \xi_{i_0}) - x_{P_\delta} \cdot \xi_{i_0} - \delta)^p - (h(P, \xi_{i_0}) - x_{P_\delta} \cdot \xi_{i_0})^p]. \]
If we can prove \(G(\delta) < 0 \), then \(\Phi(\tau P_\delta, x_{P_\delta}) < \Phi(P, x_{P_\delta}) \leq \Phi(P, o) \), as desired.

Since \(0 < h(P, \xi_{i_0}) - x_{P_\delta} \cdot \xi_{i_0} - \delta < h(P, \xi_{i_0}) - x_{P_\delta} \cdot \xi_{i_0} < d_0 \), where \(d_0 \) is the diameter of \(P \), by the concavity of \(t^p \) on \([0, \infty)\) for \(0 < p < 1 \), it follows that
\[(h(P, \xi_{i_0}) - x_{P_\delta} \cdot \xi_{i_0} - \delta)^p - (h(P, \xi_{i_0}) - x_{P_\delta} \cdot \xi_{i_0})^p < (d_0 - \delta)^p - d_0^p. \]

Hence
\[G(\delta) < (\tau^p - 1) \left(\sum_{k=1}^{N} c_k (h(P, \xi_k) - x_{P_\delta} \cdot \xi_k)^p \right) + c_{i_0} \tau^p ((d_0 - \delta)^p - d_0^p)
\]
\[= \tau^p ((d_0 - \delta)^p - d_0^p) \left(c_{i_0} + \frac{1}{\tau^p} (d_0 - \delta)^p - d_0^p \right) \sum_{k=1}^{N} c_k (h(P, \xi_k) - x_{P_\delta} \cdot \xi_k)^p. \]

From the formula (3.18) and \(T_q(P) = 1 \), we have
\[
\lim_{\delta \to 0^+} \frac{\tau^p - 1}{(d_0 - \delta)^p - d_0^p} = \lim_{\delta \to 0^+} \frac{T_q(P_\delta)}{q+n(q-1)} - 1
\]
\[= \frac{-p(q-1) \sum_{k=1}^{N} \mu^t_{q}(P, \{\xi_k\}) h'(\xi_k, 0)}{-pd_0^{q-1}}
\]
\[= \frac{(q-1) \sum_{k=1}^{N} \mu^t_{q}(P, \{\xi_k\}) h'(\xi_k, 0)}{d_0^{q-1}}, \]
Then \(M = \{ \Omega : \text{which implies that} \} \), where \(\Omega = \{ \).

Assume \(\mu_{\text{tor}}^0(P, \{\xi_k\}) \neq 0 \) for some \(k \). Since \(\mu_{\text{tor}}^0(P, \cdot) \) is absolutely continuous w.r.t. surface area measure \(S(P, \cdot) \), then \(P \) has a facet with normal vector \(\xi_k \). By the definition of \(P \), we have \(h(P_\delta, \xi_k) = h(P, \xi_k) \) for sufficiently small \(\delta > 0 \). Thus \(h'(\xi_k, 0) = 0 \) and

\[
\sum_{k=1}^{N} \mu_{\text{tor}}^0(P, \{\xi_k\})h'(\xi_k, 0) = 0.
\]

Therefore,

\[
\lim_{\delta \to 0^+} \frac{\tau^p - 1}{(d_0 - \delta)^p - d_0^p} = 0.
\]

This together with \((d_0 - \delta)^p - d_0^p < 0, c_{i_0} > 0 \) and

\[
\frac{1}{\tau^p} \sum_{k=1}^{N} c_k (h(P, \xi_k) - x_{P_\delta} \cdot \xi_k) \to \sum_{k=1}^{N} c_k h(P, \xi_k)^p > 0
\]

as \(\delta \to 0^+ \), then for sufficiently small \(\delta > 0 \), \(G(\delta) < 0 \).

Consequently, \(P \) has exactly \(N \) facets. This completes the proof. \(\square \)

Lemma 5.7. Suppose \(\mu \) be a finite positive Borel measure on \(\mathbb{S}^{n-1} \) which is not concentrated on any closed hemisphere. Then, for \(\mu = \sum_{k=1}^{N} c_k \delta_{\xi_k} \), there exists a polytope \(P \) solving the problem \(\{ \delta, \theta \} \).

Proof. Let

\[
\beta = \inf \{ \max_{x \in \Omega} \Phi(\Omega, x) : \Omega \in \mathcal{P}(\xi_1, ..., \xi_N), \ T_q(\Omega) = 1 \}.
\]

Take a minimizing sequence \(\{ P_i \} \) such that \(P_i \in \mathcal{P}(\xi_1, ..., \xi_N), \ x_{P_i} = o, \ T_q(P_i) = 1 \) and \(\lim_{i \to \infty} \Phi(P_i, o) = \beta \).

Next, we prove that \(\{ P_i \} \) is bounded. Since \(x_{P} = o \), by the definition of \(\Phi \), it follows that

\[
\sum_{k=1}^{N} c_k h(P_i, \xi_k)^p = \max_{x \in P_i} \sum_{k=1}^{N} c_k (h(P_i, \xi_k) - x \cdot \xi_k)^p
\]

\[
\leq \max_{x \in \Omega} \sum_{k=1}^{N} c_k (h(\tau \Omega, \xi_k) - x \cdot \xi_k)^p + 1,
\]

where \(\Omega = \{ x : x \cdot \xi_k \leq 1, \ k = 1, ..., N \} \) and \(\tau \) satisfies \(T_q(\tau \Omega) = 1 \). Let

\[
\mathcal{M} = \max_{x \in \tau \Omega} \sum_{k=1}^{N} c_k (h(\tau \Omega, \xi_k) - x \cdot \xi_k)^p + 1.
\]

Then \(\mathcal{M} > 0 \) is independent of \(i \). Hence, for any \(i \)

\[
h(P_i, \xi_k) \leq \left(\frac{\mathcal{M}}{\min_{1 \leq k \leq N} c_k} \right)^{\frac{1}{p}} < \infty, \ k = 1, ..., N,
\]

which implies that \(\{ P_i \} \) is bounded.

By Lemma [5.2] and the Blaschke Selection theorem, there exists a convergent subsequence \(\{ P_{i_j} \} \) of \(\{ P_i \} \) such that \(P_{i_j} \to P \). \(\square \)
Finally, we give the existence of solution to the L_p Minkowski problem q-torsional rigidity for discrete measure when $0 < p < 1$ and $q > 1$.

Theorem 5.8. Let μ be a finite positive Borel measure on \mathbb{S}^{n-1} which is not concentrated on any closed hemisphere. If $0 < p < 1$ and $q > 1$, then for $\mu = \sum_{k=1}^{N} c_k \delta_{\xi_k}$, there exists a polytope P containing the origin in their interior such that $\mu_{P,q}^{tor}(P, \cdot) = \mu$.

Proof. For the discrete measure μ, by the Lemma 5.7 there exists a polytope Ω_0 which solves problem (5.6), that is $T_q(\Omega_0) = 1$ and $\Phi(\Omega_0, x_{\Omega_0}) = \inf \{ \max_{x \in \Omega} \Phi(\Omega, x) : \Omega \in \mathcal{P}(\xi_1, \ldots, \xi_N), T_q(\Omega) = 1 \}$.

By the Lemma 5.3, then $P_0 = \Omega_0 - x_{\Omega_0}$ is still the solution to the problem (5.6) and $x_{P_0} = o$. This together with the Lemma 5.6, Lemma 5.4 and Lemma 5.5, we have

$\mu_{p,q}(\lambda_0 P_0, \cdot) = \mu$, where $\lambda_0 = \left(\frac{q-1}{q+n(q-1)} \sum_{k=1}^{N} c_k h(P, \xi_k)^p \right)^{\frac{1}{q+n(q-1)-p}}$. Namely $P = \lambda_0 P_0$ is the desired solution. □

6. **The L_p Minkowski Problem of q-Torsional Rigidity for General Measure**

Let Ω be an open bounded convex set of \mathbb{R}^n and φ be the solution of (1.4) in Ω. Let $M_\Omega = \max_{\Omega} \varphi$, for every $t \in [0, M_\Omega]$, we define

$\Omega_t = \{ x \in \Omega : \varphi(x) > t \}$.

By the general concavity theorems in [23, 24], Ω_t is convex for every t. Moreover, $\nabla \varphi = 0$ if and only if $\varphi(x) = M_\Omega$ such that

$\partial \Omega_t = \{ x \in \Omega : \varphi(x) = t \}, \quad t \in (0, M_\Omega)$.

The following lemma shows an L^∞ estimate for the gradient of φ.

Lemma 6.1. Let Ω be an open bounded convex subset of \mathbb{R}^n and let φ be the solution of problem (1.4) in Ω, then for every $x \in \Omega$

$$|\nabla \varphi(x)| \leq \text{diam}(\Omega).$$

Proof. Let $x' \in \Omega$ and $t = \varphi(x') > 0$. If $\varphi(x') = M_\Omega$, then $\nabla \varphi(x') = 0$ and the claim is true.

Assume $\varphi(x') < M_\Omega$, this implies that $x' \in \partial \Omega_t$. The convex set Ω_t admits a support hyperplane H at x'. We may choose an orthogonal coordinate system with origin o and coordinates x_1, \ldots, x_n, in \mathbb{R}^n, such that $x' = o$, $H = \{ x \in \mathbb{R}^n : x_n = 0 \}$ and $\Omega_t \subset \{ x \in \mathbb{R}^n : x_n \geq 0 \}$. By a standard argument based on the implicit function theorem, ∂M_t is of class C^∞ such that H is in fact the tangent hyperplane to ∂M_t at x'. Consequently we have

$$|\nabla \varphi(x')| = \frac{\partial \varphi}{\partial x_n}(x').$$
We also have the inclusion $\Omega_t \subset \{ x \in \mathbb{R}^n : x_n \leq d \}$, where $d = \text{diam}(\Omega)$. Let us introduce the function

$$\psi(x) = \psi(x_1, ..., x_n) = t + x_n(d - x_n), \ x \in \mathbb{R}^n.$$

Note that $\Delta \psi(x) = -1$ for every $x \in \mathbb{R}^n$ and $\psi(x) \geq t$ for $x \in \{ x = (x_1, ..., x_n) \in \mathbb{R}^n : 0 \leq x_n \leq d \}$. In particular $\psi \geq \varphi$ on $\partial \Omega_t$, and by the Comparison Principle,

$$\psi(x) \geq \varphi(x), \ x \in \Omega_t.$$

Finally, as $\varphi(x') = \psi(x')$,

$$\frac{\partial \varphi}{\partial x_n}(x') \leq \frac{\partial \psi}{\partial x_n}(x') = d.$$

\[\square \]

Theorem 6.2. Let μ be a finite positive Borel measure on \mathbb{S}^{n-1} which is not concentrated on any closed hemisphere. If $0 < p < 1$ and $q > 1$. Then there exists a convex body $K \in \mathcal{K}_o^n$ such that

$$\mu_{p,q}^\text{tor}(K, \cdot) = \mu.$$

Proof. For the given measure μ satisfies the assumptions in the theorem, there exists a sequence of discrete measure μ_i defined on \mathbb{S}^{n-1} whose support is not contained in a closed hemisphere so that $\mu_i \to \mu$ weakly as $i \to \infty$ (see the proof of Theorem 7.1.2 in [35]).

From the Theorem 5.8 for each μ_i, there are polytopes P_i containing the origin in their interior, such that, for $i \geq 1$,

$$\mu_i = h(P_i, \cdot)^{1-p} \mu_q^\text{tor}(P_i, \cdot) = \mu_{p,q}^\text{tor}(P_i, \cdot).$$

Now we show that the sequence of $\{P_i\}$ is bounded. Let $R_i := \max \{ h(P_i, v) : v \in \mathbb{S}^{n-1} \}$ and choose $v_0 \in \mathbb{S}^{n-1}$ such that $R_i = h(P_i, v_0)$. Then $[0, R_i v_0] \subset P_i$, and thus $R_i \langle u, v_0 \rangle_+ \leq h(P_i, u)$ for $u \in \mathbb{S}^{n-1}$. Hence, by the argument of Lemma 2.3 in [21], we have

$$R_i \leq c_0$$

for some constant $c_0 > 0$. This shows that the sequence of $\{P_i\}$ is bounded. By the Blaschke's selection theorem, there exists a subsequence of $\{P_i\}$ which converges to a compact convex set K. Obviously, $o \in K$ since $o \in P_i$. From the Lemma 6.1 and the definition of $T_q(K)$, we have

$$V(P_i)^{q-1} \geq \frac{1}{(\text{diam}(P_i))^{q(q-1)}} T_q(P_i) \geq \frac{1}{d^{q(q-1)}} T_q(B_2^n) > 0$$

for some $d > 0$. This implies that $V(K) > 0$ due to $\lim_{i \to \infty} P_i = K$. Thus K is a convex body containing the origin in its interior.

Next, we show that the K is the desired solution. For any continuous function $f \in C(\mathbb{S}^{n-1})$, by (6.1), one has

$$\int_{\mathbb{S}^{n-1}} \frac{f(u)}{h(P_i, u)^{1-p}} d\mu_i = \int_{\mathbb{S}^{n-1}} f(u) d\mu_q^\text{tor}(P_i, u).$$
Since \(h(P_i, \cdot) \to h(K, \cdot) \) uniformly on \(S^{n-1} \), \(\mu_i \to \mu \) weakly as \(i \to \infty \), and \(\mu_{q}^{\text{tor}}(P_i, \cdot) \to \mu_{q}^{\text{tor}}(K, \cdot) \) weakly as \(i \to \infty \), then, there is
\[
\int_{S^{n-1}} \frac{f(u)}{h(K,u)^{1-p}} \, d\mu = \int_{S^{n-1}} f(u) \, d\mu_{q}^{\text{tor}}(K,u)
\]
Since \(f \in C(S^{n-1}) \) is arbitrary, thus
\[
\mu = \mu_{p,q}^{\text{tor}}(K, \cdot).
\]
The theorem is proved. \(\Box \)

Acknowledgments

The authors would like to express their heartfelt thanks to the editor and referees for helpful comments and suggestions.

References

[1] A. Aleksandrov, On the theory of mixed volumes. III. Extensions of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies, Mat. Sb. (N.S.), 3 (1938), 27-46.
[2] A. Aleksandrov, On the surface area measure of convex bodies, Mat. Sb. (N.S.), 6 (1939), 167-174.
[3] K. Böröczky, E. Lutwak, D. Yang and G. Zhang, The logarithmic Minkowski problem, J. Amer. Math. Soc., 26 (2013), 831-852.
[4] M. Belloni and B. Kawohl, A direct uniqueness proof for equations involving the \(p \)-Laplace operator, Manuscr Math, 109 (2002), 229-231.
[5] W. Chen, \(L_p \) Minkowski problem with not necessarily positive data, Adv. Math., 201 (2006), 77-89.
[6] C. Chen, Y. Huang and Y. Zhao, Smooth solutions to the \(L_p \) dual Minkowski problem, Math. Anma., 373 (2019), 953-976.
[7] Z. Chen, Q. Dai, The \(L_p \) Minkowski problem for torsion, J. Math. Anal. Appl., 488 (2020), 124060.
[8] K. Chou and X. Wang, The \(L_p \)-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math., 205 (2006), 33-83.
[9] A. Colesanti and M. Fimiani, The Minkowski problem for the torsional rigidity, Indiana Univ. Math. J., 59 (2010), 1019-1039.
[10] A. Colesanti, K. Nyström, P. Salani, J. Xiao, D. Yang and G. Zhang, The Hadamard variational formula and the Minkowski problem for \(p \)-capacity, Adv. Math., 285 (2015), 1511-1588.
[11] A. Colesanti, P. Cuoghi and P. Salani, Brunn-Minkowski inequalities for two functionals involving the \(p \)-Laplacian operator, Appl. Anal., 85 (2006), 45-66.
[12] W. Firey, \(p \)-means of convex bodies, Math. Scand, 10 (1962), 17-25.
[13] W. Fenchel and B. Jessen, Mengenfunktionen und konvexe Köoper, Danske Vid. Selskab. Mat.-Fys. Medd., 16 (1938), 1-31.
[14] R. Gardner, Geometric Tomography, Second ed., Cambridge Univ. Press, Cambridge, 2006.
[15] R. Gardner, D. Hug, W. Weil and D. Ye, \textit{The dual Orlicz-Brunn-Minkowski theory}, J. Math. Anal. Appl., \textbf{430} (2015), 810-829.
[16] P. Gruber, \textit{Convex and Discrete Geometry}, Springer, Berlin, 2007.
[17] C. Haberl, E. Lutwak, D. Yang and G. Zhang, \textit{Then even Orlicz Minkowski problem}, Adv. Math., \textbf{224} (2010), 2485-2510.
[18] H. Hu, S. Zhou, \textit{Brunn-Minkowski inequality for variational functional involving the p-Laplacian operator}, Acta Math. Sci. Ser. B Engl. Ed., \textbf{29} (2009), 1143-1154.
[19] Y. Huang, E. Lutwak, D. Yang and G. Zhang, \textit{Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems}, Acta Math., \textbf{216} (2016), 325-388.
[20] Y. Huang, C. Song and L. Xu, \textit{Hadamard variational formulas for p-torsion and p-eigenvalue with applications}, Geom. Dedicata, \textbf{197} (2018), 61-76.
[21] D. Hug, E. Lutwak, D. Yang and G. Zhang, \textit{On the L_p Minkowski problem for polytope}, Discrete Comput Geom., \textbf{33} (2005), 699-715.
[22] D. Jerison, \textit{A Minkowski problem for electrostatic capacity}, Acta Math., \textbf{176} (1996), 1-47.
[23] A. Kennington, \textit{Power concavity and boundary value problems}, Indiana Univ. Math. J., \textbf{34} (1985), 687-704.
[24] N. Korevaar, \textit{Capillary surface convexity about convex domains}, Indiana Univ. Math. J., \textbf{32} (1983), 73-81.
[25] H. Lewy, \textit{On differential geometry in the large, I. Minkowski’s problem}, Trans. Amer. Math. Soc., \textbf{42} (1938), 258-270.
[26] E. Lutwak, \textit{The Brunn-Minkowski-Firey theory I: Mixed volumes and the Minkowski problem}, J. Differential Geom., \textbf{38} (1993), 131-150.
[27] E. Lutwak and V. Oliker, \textit{On the regularity of solutions to a generalization of the Minkowski problem}, J. Differential Geom., \textbf{62} (1995), 17-38.
[28] E. Lutwak, D. Yang and G. Zhang, \textit{On the L_p-Minkowski problem}, Trans. Amer. Math. Soc., \textbf{356} (2004), 4359-4370.
[29] J. Lu and X. Wang, \textit{Rotationally symmetric solution to the L_p-Minkowski problem}, J. Differential Equations, \textbf{254} (2013), 983-1005.
[30] Y. Liu and J. Lu, \textit{A flow method for the dual Orlicz-Minkowski problem}, Trans. Amer. Math. Soc., \textbf{373} (2020), 5833-5853.
[31] H. Minkowski, \textit{Allgemeine Lehraäte über die convexen polyeder}, Nachr. Ges. Wiss. Göttingen, (1897), 198-219.
[32] H. Minkowski, \textit{Volumen und Oberfläche}, Math. Anna., \textbf{57} (1903), 447-495.
[33] L. Nirenberg, \textit{The Weyl and Minkowski problems in differential geometry in the large}, Commun. Pure Appl. Math., \textbf{6} (1953), 337-394.
[34] A. Stancu, \textit{The discrete planar L_0-Minkowski problem}, Adv. Math., \textbf{167} (2002), 160-174.
[35] R. Schneider, \textit{Convex Bodies: The Brunn-Minkowski theory}, 2nd edn, Cambridge University Press, Cambridge, 2014.
[36] G. Sun, L. Xu and P. Zhang, \textit{The uniqueness of the L_p Minkowski problem for q-torsional rigidity}, Acta Math. Sci., \textbf{41B} (2021), 1405-1416.
[37] G. Zhu, \textit{The L_p Minkowski problem for polytopes for 0 < p < 1}, J. Funct. Anal., \textbf{269} (2015), 1070-1094.
[38] D. Zou, G. Xiong, The L_p Minkowski problem for the electrostatic p-capacity, J. Differential Geom., 116 (2020), 555-596.

Email address: chenb121223@163.com

Email address: zhaoxia20161227@163.com

Email address: wangwd722@163.com

Email address: pbzhao@njust.edu.cn