Superfluidity and collective oscillations of trapped Bose-Einstein condensates in a periodical potential.

C. Trallero-Giner
Faculty of Physics, Havana University, 10400 Havana, Cuba and
Departamento de Fisica, Universidade Federal de São Carlos, 13.565-905, S ão Carlos, São Paulo, Brazil

V. López-Richard and G. E. Marques
Departamento de Fisica, Universidade Federal de São Carlos, 13.565-905, S ão Carlos, São Paulo, Brazil

Y. Núñez-Fernández and Maurice Oliva
Faculty of Physics, Havana University, 10400 Havana, Cuba

Ming-Chiang Chung
Physics Division, National Center for Theoretical Science, Hsinchu, 30013, Taiwan

(Dated: December 19, 2011)

Based on a unified theoretical treatment of the 1D Bogoliubov-de Genes equations, the superfluidity phenomenon of the Bose-Einstein condensates (BEC) loaded into trapped optical lattice is studied. Within the perturbation regime, an all-analytical framework is presented enabling a straightforward phenomenological mapping of the collective excitation and oscillation character of a trapped BEC where the available experimental configurations also fit.

PACS numbers: 03.75.Fi, 05.30.Jp, 32.80.Pj, 67.90.+z

INTRODUCTION

Harmonically trapped Bose-Einstein condensates (BECs) offer a great chance to understand the macroscopic quantum phenomena such as phase coherence and matter wave diffraction. Condensates loaded in a periodic potential forming an optical lattice (OL) may show a rich dynamic picture of oscillations as Bloch oscillations, Believ and Landau damping, Landau-Zeeman tunneling, and the appearance of the superfluid oscillation of condensates. Although schemes of controlling the dynamics of BECs have been profusely described, the underlying physics of some of these studies appears hidden under numerical analysis. The description in terms of excited states or Goldstone modes not only highlights the main cause of this behavior, but also enables the characterization of the BEC dynamics in universal terms. Thus, we select a platform of the BEC loaded simultaneously into a harmonic trap and an optical lattice to characterize the phenomenon of superfluidity as well as the dynamical properties and tackled the problem analytically. The purpose of this letter is to derive a perturbative treatment which allows explicit closed solutions for the phonon dispersion relation and to reveal the effect of BEC configurations on the superfluidity phenomenon. The method has undergone the test of comparison with experimental evidences with success.

Systems such as the cigar-shaped trap schematically represented in the upper panel of Fig. can be considered quasi-one-dimensional (1D) confinement. Within the framework of mean field theory, the physical characteristics of a BEC loaded in such trapping profile are ruled by the time dependent nonlinear Gross-Pitaevskii equation (GPE):

\[i\hbar \partial_t |\Psi\rangle = \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V_{\text{ext}} + \lambda_{1D} |\Psi|^2 \right] |\Psi\rangle, \quad (1) \]

where \(\lambda_{1D} \) is the self-interaction parameter, \(m \) is the alkali atom mass, \(V_{\text{ext}}(x) = \frac{1}{2}m\omega_0^2x^2 - V_L \cos^2 \left(\frac{2\pi}{d}x \right) \) represents the harmonic trap potential plus the periodic potential caused by the counter-propagating lasers with \(V_L \) the laser intensity, \(d \) its laser wavelength, and \(\omega_0 \) the frequency of the harmonic trap. For Eq. (1), it is possible to prove rigorously, the existence of ground states for any \(\lambda_{1D} \) and \(V_L \). Moreover, the set of ground states is orbitally stable and the ground states have a Gaussian-like exponential asymptotic behavior for any \(\lambda_{1D} \), regardless of \(V_L \) value. An important consequence of this mathematical fact is the stability of those physical magnitudes, such as no explosion and no damping as function of time, which are described by operators defined in the Hilbert space of the 1D GPE. This result is particularly related to the superfluidity properties, among others physical phenomena, of the harmonically confined condensates loaded in optical lattices.

The collective excitations, or so-called Goldstone modes of the BEC, can be obtained by applying a small deviation from the stationary solutions \(|\Psi_0\rangle \) of Eq. (1):

\[|\Psi(t)\rangle = \exp(-i\mu t/\hbar) \left[|\Psi_0\rangle + |u\rangle \exp(-i\omega t) + |v^*\rangle \exp(i\omega t) \right], \quad (2) \]
FIG. 1: (Color online). (a) The oscillating BEC loaded into a 1D optical lattice within a parabolic trap (grid). The elliptical spot symbolizes the condensate with a center of mass, $\mathbf{X}(t)$, oscillating around the trap bottom. (b) Collective excitation energies $\hbar\omega_k$ of the first 10 modes calculated as function of dimensionless parameters $\Lambda = \lambda/\hbar \omega_0$ for $V_0 = 0$, and (c) as function of $V_0 = V_L/\hbar\omega_0$ for $\Lambda = 2$ and $d/l_o = 0.25$. The solid (dashed) lines represent odd (even) modes.

which corresponds to linearizing the time-dependent nonlinear Schrödinger equation in terms of amplitudes $|u\rangle$ and $|v\rangle$, μ being the chemical potential and ω the mode or phonon frequencies [18]. Inserting $|\Psi(t)\rangle$ into Eq. (1), we obtain the Bogoliubov-de Gennes equations

$$\begin{pmatrix}
\mathcal{L} & \lambda_{1D} |\Psi_0\rangle^2 \\
-\lambda_{1D} |\Psi_0\rangle^2 & -\mathcal{L}
\end{pmatrix}
\begin{pmatrix}
|u\rangle \\
|v\rangle
\end{pmatrix}
= \hbar\omega_k
\begin{pmatrix}
|u\rangle \\
|v\rangle
\end{pmatrix},$$

(3)

where $\mathcal{L} = p^2/2m + V_{ext} - \mu + 2\lambda_{1D} \langle \Psi_0 | \Psi_0 \rangle$. Three coupled nonlinear equations for $|\Psi_0\rangle$, $|u\rangle$ and $|v\rangle$ must be solved simultaneously, which incorporate the harmonic trap and the stationary optical potential. In general, this is a very onerous task and it is not always possible to extract transparent solutions giving reliable information on the BEC dynamics. If the harmonic trap potential is switched off from Eqs. (1) and (3) it is possible analytically to linearize the time-dependent nonlinear equations for $|\Psi_0\rangle$, $|u\rangle$ and $|v\rangle$ as determined by relevant parameters of the condensate are obtained [21].

NORMAL MODES

Considering the nonlinear term $\lambda_{1D} \langle \Psi_0 | \Psi_0 \rangle$ and the periodical potential $V_L \cos^2 \left(\frac{2\pi x}{d}\right)$ as small terms compared to the confined harmonic trap potential strength, the solutions of the system (3) can be cast in terms of the complete set of harmonic oscillator wave functions $\{|\psi_n\rangle\}$ [22]:

$$|u\rangle = \sum_{n=0}^{\infty} A_n |\psi_n\rangle \quad \text{and} \quad |v\rangle = \sum_{n=0}^{\infty} B_n |\psi_n\rangle$$

and the coefficients A_n and B_n are expanded in form of series $A_n = A_n^{(1)} + A_n^{(2)} + \ldots; B_n = B_n^{(1)} + B_n^{(2)} + \ldots$, where the quantities $A_n^{(1)}$ and $B_n^{(1)} \sim \Lambda^l$, V_0^n. Using Eqs. (3) we get

$$\sum_{n,i} A_n^{(i)} \left(B_n^{(i)} \right) \left[k + \frac{1}{2} \frac{-\mu}{\hbar\omega_0} + \frac{\omega_k}{\omega_0} \right] \delta_{k,n}$$

$$- \frac{1}{2} V_0 \langle \psi_n | \cos 2\pi x | \psi_n \rangle + 2\Lambda \langle \psi_k | \Psi_0 \rangle \langle \Psi_0 | \psi_n \rangle$$

$$= -\Lambda \sum_{n,i} B_n^{(i)} \left(A_n^{(i)} \right) \langle \psi_k | \Psi_0 \rangle \langle \Psi_0 | \psi_n \rangle,$$

(4)

with $\alpha = 2\pi\omega_0/d$, $l_o = \sqrt{\hbar/m\omega_0}$, $\Lambda = \lambda_{1D}/(l_o\hbar\omega_0)$, $V_0 = V_L/\hbar\omega_0$. Taking advantage of the procedure developed in Ref. [21] and solving simultaneously the system (3), it is possible to show that the independent phonon frequencies ω_k are given by
\[\frac{\omega_k}{\omega_0} = k + \frac{\Lambda}{\sqrt{2\pi}} \left[-1 + \frac{2\Gamma(k + 1/2)}{\sqrt{\pi k!}} \right] - \frac{V_0}{2} \exp(-\alpha^2) \left[L_k(2\alpha^2) - 1 \right] - \frac{AV_0}{\sqrt{2\pi}} \exp(-\alpha^2) \left[Ei\left(\frac{\alpha^2}{2}\right) - C - \ln \frac{\alpha^2}{2} + \delta_k(\alpha) \right] + \frac{V_0^2}{4} \exp(-2\alpha^2) \left[\text{Chi}(2\alpha^2) - C - \ln 2\alpha^2 + \rho_k(\alpha) \right] + \Lambda^2 \left[\frac{\gamma_k}{2\pi^2} + 0.033106 \right], \quad k = 1, 2, \ldots, \quad (5) \]

where \(L_k(z) \), \(\Gamma(z) \), \(Ei(z) \), \(\text{Chi}(z) \), and \(C \) are the Laguerre polynomials, the gamma function, the exponential integral, the cosine hyperbolic integral, and the Euler’s constant, respectively. Finally, \(\gamma_k \) are numbers, \(\delta_k \) and \(\rho_k \) being explicit functions the dimensionless parameter \(\alpha \). In Fig. 1 the analytical solutions for the frequencies \(\omega_k \) are graphically represented for the first 10 modes. Panel (b) displays \(\omega_k \) for attractive \((\Lambda < 0) \) and repulsive \((\Lambda > 0) \) cases at \(V_0 = 0 \). Also in panel (c) the influence of the periodical potential on the phonon modes being checked for fixed values \(d/l_0 = 0.25 \) and \(\Lambda = 2 \). In the first case, the collective oscillations show an almost flat dispersion as a function \(\Lambda \). Note that the mode for \(k = 1 \) has the frequency value \(\omega_0 \) of the harmonic trap. In panel (c) is also seen a blue-shift renormalization of \(\omega_k \) can be noted due to the presence of the OL.

The normalized eigenvectors \(|\Phi_k\rangle = (|u_k\rangle, |v_k\rangle) \) can be cast as

\[|\Phi_k\rangle = \left(|\psi_k\rangle + \sum_{m \neq k} \frac{(4\Lambda f_{k,m} - V_0 g_{k,m})}{2(k-m)} |\psi_m\rangle \right) - \sum_{m=\infty}^{\infty} \frac{\Lambda f_{k,m}}{k+m} |\psi_m\rangle, \quad (6) \]

with \(f_{k,m} = (-1)^{(k-m)/2} \Gamma \left(\frac{k+m+1}{2} \right) / (\pi \sqrt{2m|k|}), g_{k,m} = (-1)^{(k-m)/2} p(2\alpha)^{|k-m|} L_p^{k-m}(2\alpha^2)2^p / (\sqrt{2k+m|m|}k!) \times \exp(-\alpha^2), L_p^{k-m}(z) \) being the Laguerre polynomials, \(p = (k+m-|k-m|)/2 \) and \(m+k = \text{even number} \). Notice that the quasiparticle amplitudes \(|u_k\rangle \) and \(|v_k\rangle \) present parity inversion symmetry property, i.e. if the index \(k \) is an even or an odd number we are in presence of two independent subspaces where the wave functions \(|\Phi_k\rangle \) become symmetric (even mode) or antisymmetric (odd mode) with respect the transformation \(x \rightarrow -x \).

According to Eqs. 2 and 6, for a given time \(t \), the probability density \(|\langle x | \Psi_k(t) \rangle|^2 \) of the excited states along the \(x \)-axis shows oscillations with well defined maxima which are quenched according to the exponential behavior \(\exp(-x^2/v_0^2) \). The position of the maxima and minima of the axial density \(|\langle x | \Psi_k(t) \rangle|^2 \) are linked to the minima or maxima of the combined potential function \(V/\omega_0 \). Finally, another important limit is reached when the optical lattice is turned off. In this case the standard solutions (in a perturbative sense) of Bogoliubov-de Gennes equations for the inhomogeneous case are directly obtained from Eqs. 5 and 6 taking \(V_0 = 0 \).

SUPERFLUIDITY.

To characterize the dynamics of a BEC loaded in an OL we evaluated the expectation value of the center-of-mass position \(\langle X(t) \rangle = \langle \Psi(t) | X | \Psi(t) \rangle \), with \(|\Psi(t)\rangle = \sum_{k=0}^{\infty} C_k |\phi_k(t)\rangle \). Here, the set of eigensolutions is chosen as \(|\phi_0(t)\rangle = \exp(-i\mu t/\hbar) |\Psi_0\rangle \), \(|\phi_1(t)\rangle = \exp(-i\mu t/\hbar) (\exp(-i\omega_0 t) |u_0\rangle + \exp(i\omega_0 t) |v_0\rangle) \) for \(k \neq 0 \), and the coefficients \(\{C_k\} \) are obtained under certain initial condition. In our case, we consider that, at \(t = 0 \), the OL is absent and condensate is located out of equilibrium at certain distance \(X_0 \) from the origin, i.e. the order parameter \(|\Psi_0\rangle \) is centered at \(x = X_0 \) with an ex-
expectation value $\langle X(0) \rangle = X_0$. At, $t > 0$ the system may or may not be loaded into the OL periodical potential.

A straightforward calculation, by keeping terms up to first-order in Λ and V_0, yields that the dynamics of the center-of-mass is ruled by the equation

$$X(t) = X_0(t) + X_{A,V_0}(t),$$

where

$$F_k = \exp(-X_0^2/2l^2_0 - X_0^2/2l^2_0) \tanh \left(\frac{V_0}{2l_0^2}\right) k!$$

is the spectral power and $X_{A,V_0}(t)$ is a linear function of Λ and V_0, with negligible contribution to $\langle X(0) \rangle$ for typical experimental setups. In Eq. 4 the condition $\omega_{k=0} = 0$ is used.

The spectral power contribution to these oscillations, in terms of the mode number, k, exclusively dependent on the relative initial position, X_0/l_0, as displayed in Fig. 2 (a). For a given initial displacement, the mode $k = k_m$ with maximal contribution to the $X_0(t)$ is given by the equation $\ln \left(\frac{X_0^2}{2l_0^2} - H_k - C = 0\right)$, with $H_k = \sum_{k=1}^n 1/k$. Thus, one can see the larger the relative initial displacement, X_0/l_0, the higher the main contributing modes, as shown in the inset of Fig. 2 (a), and wider their diffusion. This has energetic implications since the mode frequencies, ω_k, obtained from Eq. 3 are tunable with the nonlinear interaction strength and the OL parameters. Without OL the vibrational level spacing $\Delta \omega_k = \omega_{k+1} - \omega_k \approx \omega_0$, which make the expectation value $\langle X(0) \rangle = X_0 \cos \omega_0 t$.\[25\]

Figure 2(b) shows the superfluid oscillation for a BEC of 87Rb extracted from Ref. 11 measured in a static magnetic trap with and without a 1D periodic potential, as simulated by our approach. Using Eqs. (3) and (7) we are able to reproduce the reported experimental center-of-mass position as function of time without using any fitting parameter. The oscillations observed in Fig. 2(b) correspond to vibrational level spacing $\Delta \omega_k$ of the two independent subspaces with even and odd modes that make $X(t)$ oscillate with a frequency near the harmonic value ω_0. The small shift of the condensate loaded into OL and observed in Fig. 2 (b), is directly linked to the renormalization of the atomic mass of the system moving in a periodical potential.

In summary, we presented a unified analytical description for the collective excitations (phonon frequencies ω_k, Eq. (4), the excited states wavefunctions $|\Psi_k\rangle$, Eq. (4)), the 1D superfluidity oscillation and the dynamics of-center-of-mass position $X_0(t)$ Eq. (7)) of BEC systems loaded in an optical lattice.

This work was partially supported by Alexander von Humboldt Foundation. C. T.-G., V. L-R. and G. E. M. acknowledge the financial support of Brazilian agencies FAPESP, CAPES, and CNPq. M. C. Chung acknowledges NSC in Taiwan. C. T-G. is grateful to J. M. Rost for many insightful discussions and the hospitality enjoyed during his stay at the Max-Planck-Institut für Physik Komplexer Systeme.

\[23\]

\[24\]
\[\delta_k(\alpha) = \frac{2}{\pi} \sum_{m \neq 0} (-2)^{m-1} \alpha^{2m} \Gamma^2(m + 0.5) \Gamma(k - m + 0.5)}{m(2m)!k!} + 2(-1)^k \sum_{m \neq k} \frac{(p)! (2\alpha)^{|m-k|} \Gamma^{(m+1+k/2)}}{(2)^{|m-k|} m!k!(k - m)} L_p^{k-m}(2\alpha^2), \]

and

\[\rho_k(\alpha) = \sum_{m \neq k} \frac{(p)! (2\alpha)^{|m-k|}}{m!k!(k - m)} \left[L_p^{k-m}(2\alpha^2) \right]^2, \]

where \(\sum \) is restricted to \(m + k \) even number, \(p = (k + m - |k - m|)/2 \), and \(L_p^{\ell}(z) \) are the Generalized Laguerre polynomials.

[25] Pitaevskii L. and Stringari S. , Bose-Einstein Condensation, (Clarendon Press, Oxford) 2003.