The importance of minerals in coal as the hosts of chemical elements: A review

Robert B. Finkelmana,b, Shifeng Daia,c,*, David Frenchd

a State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, China
b University of Texas at Dallas, Richardson, TX 75080, USA
c College of Geoscience and Survey Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
d PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia

*, Corresponding author: dsf@cumt.edu.cn; daishifeng@gmail.com

Abstract

Coal is a complex geologic material composed mainly of organic matter and mineral matter, the latter including minerals, poorly crystalline mineraloids, and elements associated with non-mineral inorganics. Among mineral matter, minerals play the most significant role in affecting the utilization of coal, although, in low rank coals, the non-mineral elements may also be significant. Minerals in coal are often regarded as a nuisance being responsible for most of the problems arising during coal utilization, but the minerals are also seen as a potentially valuable source of critical metals and may also, in some cases, have a beneficial effect in coal gasification and liquefaction.

With a few exceptions, minerals are the major hosts of the vast majority of elements present in coal. In this review paper, we list more than 200 minerals that have been identified in coal and its low temperature ash, although the validity of some of these minerals has not been confirmed. Base on chemical compositions, minerals found in coal can be classified into silicate, sulfide and selenide, phosphate, carbonate, sulfate, oxide and hydroxide, and others. On the basis of their abundance, they can be classified into common, uncommon, and rare. Elements associated with silicates are largely benign, but many of those associated with sulfides and selenides are toxic to the environment and human health (e.g., S, As, Hg, Tl, Se, and Pb). Critical elements, e.g., rare earth elements and Y, Ga, and Al, are mostly associated with clays, phosphate, and carbonate minerals. There are many unusual mineral phases, such as native W, Au, Ag, and various Pt phases, which may have economic and geochemical significance in
coal. Although the modes of mineral occurrence of a number of elements have been widely investigated, there are some elements whose associations, and, in particular, association mechanism with minerals are, to a degree, uncertain or even largely unknown and deserve further attention.

Keywords: Minerals in coal, Chemical elements, Modes of occurrence.

1. The significance of minerals in coal

Coal may be the most complex geologic material. In addition to the organic matter, valued for its energy potential, all coals contain water, minerals, most, if not all, of the elements in the Periodic Table, oil, gas, rock fragments, and fossils. None of these ancillary components have an impact as significant as do the minerals. Although the statement by Wert et al. (1987) “perhaps every mineral known to mankind could be found in coal” is an exaggeration, coal may indeed contain the largest variety of minerals in nature, based on the numerous publications of minerals found in coal.

From an academic point of view, minerals in coal are useful indicators of palaeoenvironments and geologic evolutions, mainly because they may contain detailed and long-term records, which were produced during syngenetic stages and in many cases were subsequently altered during diagenesis and epigenesis (Dai and Chou, 2007).

Minerals play a significant role in affecting the utilization of coal, from mining to grinding to combustion and technological problems, from coal cleaning to waste disposal, and from the environmental impacts to human health consequences. The minerals reduce the economic value of the coal they are in by diluting the energy content and add expense when removed by coal cleaning processes, whose primary purpose is to remove the minerals prior to combustion or coke production.

The minerals are the primary source of fly ash particles, bottom ash, and boiler slag, and they contribute to the flue gas desulfurization sludge. The minerals also contribute to fouling, slagging, agglomeration, corrosion, and erosion of the boiler (Raask, 1985), which may be so severe as to require shutdown of the boiler and costly clean-up procedures. Raask (1985) notes that the minerals in coal had a major influence on early boiler design. Pulverized-coal-fired systems were designed to minimize the time that minerals were exposed to high temperatures,
thus reducing fouling and slagging problems. Other boiler innovations, such as slag taps and cyclone-fired boilers, addressed the formation of slag from molten minerals, though minerals are still the primary components in boiler fouling and slagging deposits. Some minerals, primarily quartz and to a lesser extent, pyrite, are responsible for the costly abrasion and erosion of mining and grinding equipment. Proper disposal of the mineral-rich by-products, such as fly ash, coal cleaning wastes, fouling and slagging deposits, bottom ash, and flue gas desulfurization (FGD) residues, adds substantial costs to the use of coal.

During mining, mineral matter may affect roof stability (particularly clay minerals with swelling nature; Mark and Molinda, 2005; Kang et al., 2015; Li et al., 2016b) and cause erosion of mining equipment and frictional ignition of methane. Clays may give rise to handling problems during coal preparation and transport (French, 2018). In fluidised bed combustors, the occurrence of low-melting temperature minerals may lead to bed agglomeration and collapse of the fluidised bed, resulting in boiler shutdown (French, 2018).

Minerals may have adverse effect on coal gasification (Liu et al., 2019). Slag viscosity is a critical parameter in the operation of slagging gasifiers. If the critical viscosity is too high, fluxing agents may need to be added, increasing the cost of the operation. Conversely, if the viscosity is too low, a protective slag coating will not form on the walls of the gasifier and increased erosion of the tap hole may also occur. In Lurgi gasifiers, the occurrence of low melting point minerals may result in ash handling issues, possibly leading to shutdown of the gasifier (French, 2018).

During coal liquefaction, abrasive minerals may lead to increased wear of the coal slurry pumps. However, clays such as smectite, may have a beneficial cracking effect on the liquefaction product, and iron sulphides are known to catalyse the liquefaction process. In coke making, the presence of minerals, such as apatite and pyrite, provide elevated content of phosphorus and sulphur resulting in production of poor-quality iron. The conversion of quartz to cristobalite in the coke may result in fracturing and weakening of the coke. Calcium- and Fe-bearing minerals may also affect coke reactivity.

Minerals contribute to human health issues not only from minerals themselves but also from toxic elements hosted by minerals. Huang et al. (2006) concluded that inhalation of fine-grained pyrite by coal miners was an important causative factor in Coal Workers Pneumoconiosis (Black Lung Disease). Tian (2005), Tian et al. (2008), and Large et al. (2009)
concluded that nano-quartz in coal that was being used domestically in Xuan Wei County, Yunnan, Province, China, was the principle cause of the world’s highest rate of women’s lung cancer. Dai et al. (2008b) showed that exceedingly high levels of quartz (57.6-74.7%, mean 65.7% on a low-temperature ash basis) accounted for the majority of minerals in Xuan Wei coals. Some minerals, sulfides in particular, are the major hosts of toxic elements (such as As and Hg), which have adverse effects on human health (e.g., arsenonsis in Guizhou Province, southwestern China) and the environment.

Although the occurrence of minerals in coal is usually regarded as having deleterious effects in coal utilisation, minerals in coal have some important beneficial aspects. Coal and coal ash are attracting increasing attention as potential sources of critical elements, such as rare earth elements and Y, Li, Ga, Se, Zr, and Nb (Seredin and Finkelman, 2008; Bullock et al., 2018; Dai and Finkelman, 2018; Lin et al., 2018b; Zhao et al., 2018), all of which are in demand in the semi-conductor industry and the production of advanced materials. In a number of countries, rare earth element concentrations are sufficiently high in the coal ashes to make extraction an economically viable option (Serein and Dai, 2012; Hower et al., 2016; Kolker et al., 2017a; Laudal et al., 2018; Lin et al., 2018a; Wagner and Matiane, 2018). High-Al coals have also attracted much attention in recent years in China, because the derived ash has Al$_2$O$_3$ higher than 50 weight percent and thus have been used for Al extraction (Seredin, 2012; Dai et al., 2018d). With a few exceptions (e.g. Ge and U), most of the critical elements are largely hosted in minerals.

A number of papers have discussed the associations between elements and minerals in coal (e.g., Chou 2012; Kolker, 2012; Ward, 2016; Dai et al., 2018d; and, in particular, Swaine, 1990). In this paper, we identify the most likely minerals or mineral groups that act as hosts for a large number of elements and, when appropriate, we will point out the significance of these relationships. Some of this discussion is based on results from a paper on the quantification of the modes of occurrence of 42 elements in coal (Finkelman et al., 2018). In that paper, the authors concluded that, in bituminous coal, the bulk (>50%) of all elements except Br were associated with minerals. In low rank coals, a greater proportion of the elements are organically associated, but the majority of the elements still have primary inorganic associations. The exceptions are Be, Br, Mg, Se, Na, and U, and possibly Co, Ni, and Sr. We fully
recognize that there are many exceptions to these relationships. For instance, coals with ash yields less than 10% many have the bulk of their elements organically associated. Clearly a greater proportion of many elements in low rank coals are associated with the organic matter. Also, coals formed under unusual conditions or influenced by unusual circumstances (oxidation, epigenesis, igneous intrusion, volcanic ash deposits, marine incursion, etc.) may deviate from these generalizations. However, we contend that these coals are the exceptions and that our observations are relevant to the majority of coals mined around the world. Furthermore, almost all elements associate with more than one mineral or even multiple minerals and mineral groups, making unequivocal associations virtually impossible. We try to make the distinction between those elements that are physically associated with a mineral group, i.e., an element in a mineral that is enmeshed in another mineral phase, and elements that are chemically associated with a mineral or mineral group, i.e. part of the mineral structure.

2. Minerals found in coal

There are a number of methods to detect and identify minerals in coal. Bulk chemical analysis provides clues as to what minerals or mineral groups may be present in the coal sample. Optical petrography and X-ray diffraction (XRD) can help identify specific minerals (Ward, 2016) but provide little to no information on the trace elements associated with the minerals. Further analysis on XRD spectrum using Rietveld-based interpretation software, e.g., Siroquant, can quantitatively determine the mineral percentages in coal and/or low temperature ash (Ward et al., 2001a,b; Ruan and Ward, 2002; Dai et al., 2012b). Selective leaching helps identify mineral groups such as carbonates (leached by HCl), sulfides (leached by HNO₃ or HCl), and silicates (leached by HF) and provides information on which elements may be associated with each mineral group rather than specific minerals (Riley et al., 2012; Finkelman et al., 2018; Liu et al., 2015, 2018). Microbeam methods (scanning electron microscopy (SEM), electron microprobe analysis, ion probes, transmission electron microscopes and related instruments) with energy or wavelength dispersive (EDS/WDS) detectors are the most useful method for identifying the host or hosts of the elements in coal (Dai et al., 2012a,b; Etschmann et al., 2017; Hower et al., 2018a,b; Wang et al., 2018; Wei et al., 2018), and in many cases can unequivocally identify a specific mineral unless polymorphs exist. Float-sink density separation combined with XRD, SEM-EDS, and other chemical analyses to determine minerals and trace elements in
different density fractions has also been applied (Wagner and Tlotleng, 2012; Tian et al., 2014). Comparison of results for element affinities determined by density separation and selective leaching techniques applied to the same coal showed good agreement for most elements (Querol et al., 2001).

Statistical analyses, e.g., correlation and cluster analyses, have been used to deduce the modes of occurrence of major and trace elements in coal and in the mineral hosts (e.g., Spears and Zheng, 1999; Zhao et al., 2019) based on correlations between the concentration of individual major and trace elements in a series of related coal samples. Some authors have pointed out the limitations using statistical analyses for associations between minerals (or ash yield) and elements (e.g., Mraw et al., 1983; Glick and David, 1987). Eskanazy et al. (2010) has shown that there are potential problems with this approach if the sample suite contains a wide range of ash yields. Geboy et al. (2013) proposed a mathematical approach to keep consistent interpretations of whole-coal versus ash basis in coal geochemistry. Ward (2016) showed that this approach may be more effective if the nature and quantitative content of the different minerals in coal samples have been independently established (e.g., by XRD analysis on low-temperature ashes of coal), and this would allow the trace element concentrations to be related more directly to particular minerals in coal. The effectiveness of this integrated approach has been verified by a number of studies (e.g., Ward et al., 1999; Dai et al., 2012a, 2015a,b; Zhao et al., 2019).

Some 200 minerals have been observed in coal. Finkelman (1981) contains a list of about 175 minerals that had been reported from coal, and, many more have been recorded in the intervening 40 years. Some of these more recently reported minerals are included by Ward (2016) in a comprehensive list of minerals in coal. Table 1 borrows mainly from these two references, augmented by other recent reports on minerals found in coal. The modes of occurrence and origins of most of these minerals have been comprehensively reviewed by Ward (2002, 2016).

The minerals identified in coal and LTAs (low-temperature ashes) of coal can be classified as silicate, sulfides, carbonate, oxides and hydroxides, selenides, phosphates and oxalates, based on their elemental compositions and crystal structures; and as common, uncommon, and rare, on the basis of their abundance in worldwide samples. We acknowledge that there are
questionable or suspect identifications for some minerals, particularly for those that are rare in coal. Due to limitations of each method, for several minerals, many studies, including this investigation, are constrained to use the generic terms such as ‘clays’, ‘silicates’, and ‘carbonates’.

In reality, some of the minerals on the current list have not been verified and should be considered as speculative until conformation is forthcoming. The table will be posted on the website of The Society for Organic Petrology (TSOP) and updated periodically. The authors welcome all comments and inputs on the table and anyone wishing to add a new mineral along with supporting evidence, or verified evidence for the minerals that have not be verified in the Table 1, could submit their mineral materials through the entry www.tsop.org.

3. Minerals and mineral groups as host of chemical elements

3.1. Silicates as hosts of chemical elements

The silicates are the largest, most complex, and generally the most abundant group of minerals in coal (Table 1). Not surprisingly the silicates are the hosts of many elements found in coal, particularly of major elements including Si and Al, and to a lesser extent, K, Ca, Na, Mg, and Fe. The silicates include the clay minerals, the most diverse and generally most abundant mineral group in coal, and quartz, perhaps the most common mineral in coal. Other important silicates are micas, analcime (Finkelman, 1988; Wang et al., 2018), and various feldspars.

Of course Si and Al (90%/65%: percentages are the proportion of the element associated with the mineral group in a suite of 14 bituminous coals and six low-rank coals, respectively, as determined by Finkelman et al., 2018) are essential components of the clays. In addition, based on data of leaching coals with hydrofluoric acid, Finkelman et al. (2018) showed that Sb (25%/50%), Be (60%/30%), Cs (100%/80%), Cr (75%,75%), Li (90%-70%), Mo (30%/65%), K (95%/75%), Rb (90%/85%), Sc (90%/95%), Na (80%/<35%), Ti (65%/70%), and V (65%/50%) are associated with silicates, most likely the clays. There was no leaching data available for Ga, which is assumed to also be largely associated with the clays (Finkelman, 1981), and in some cases, with boehmite and goyazite (Ward, 2002, 2016; Dai et al., 2006a, 2012a).

Other elements with silicate mineral associations include Ba (40-60%/10%); Ni (30%/20%); Sr (25%/0); Ta (25%/40%); U (25%, 35%); the rare earth elements (REE, 20%/50-60%); Zr
(70%/70%) and Hf (70%/70%) in zircons; and Ge most likely associated with quartz (Finkelman et al., 2018).

It is highly likely that the clays, relative to other silicates, are the primary hosts of major, and, in particular, a substantial number of trace elements in coal. For example, quartz, chalcedony, and cristobalite in coal tends to be low in most elements with exceptions of Si, O and possibly Li. Zircon and tourmaline have been found in some coals and are hosts of a limited number of trace elements, e.g., Zr, Hf, REE, Nb, Ta, Th, and U (Zircon); and Li, Be, and F (tourmaline). A number of studies have shown strong correlations between of many trace elements and clay minerals (e.g., Finkelman, 1981). This is because clays, usually negatively charged in nature, have high surface to volume ratio, which enable trace elements, usually positively charged, to be adsorbed on its surface. Also, some clays have interlayer space, where cation exchange may take place. Kuhn et al. (1980) showed that at least 20 trace elements are associated with clay minerals based on the investigation of 27 coals from eight areas in USA. Some studies have shown that some elements, usually occurring at a low concentration level in coal and as adsorbed forms, could be the major component of clay minerals. For example, Li-bearing minerals, cookeite [(Al₂Li)Al₃(AlSi₃O₁₀)(OH)₈], has been identified in an anthracite in the Jinchen deposit in China, and was derived from the reaction of previously-formed kaolinite with Li ions (Zhao et al., 2018). In the Guanbanwusu Al-Ga-REY coal-hosted deposit in China, chlorite phase has a composition intermediate between chamosite and a Li-bearing cookeite component (Dai et al., 2012a). Another such case is V-bearing mineral, roscoelite, K(V³⁺,Al)₂(AlSi₃O₁₀)(OH)₂, has been identified in a late Permian coal in the Moxinpo Coalfield in southwestern China (Dai et al., 2017).

Carbon, H, O, and S, which usually occur in organic compounds in coal, in many cases are mineral crystal structure components. For example, nitrogen as NH₄⁺ forms has been found in several minerals, such as tobelite [(NH₄,K)Al₂(Si₃Al)O₁₀(OH)₂] (including ammonian illite) (Dai et al. 2012c, 2017; Ward, 2002, 2016), buddingtonite [(NH₄)Al₃Si₃O₈] (Dai et al., 2018c), and to a lesser extent, tschermigite [NH₄Al(SO₄)₂·12H₂O]. In addition to tschermigite, which may be found in the LTA residues produced from some coals, particularly lower-rank materials (e.g. Foscolos et al., 1989; Ward, 1991, 1992, 2002, 2016), these NH₄⁺-bearing minerals, as well as pyrophyllite [Al₂Si₄O₁₀(OH)₂], chlorite, cookeite, roscoelite and paragonite (or brammallite; Na-
illite; NaAl₂(AlSi₃O₁₀)(OH)₂; Susilawati and Ward, 2006; Permana et al., 2013; Dai et al., 2018b), usually occur, but not necessarily exclusively, in higher-rank coals (e.g., Daniels and Altaner, 1990; Susilawati and Ward, 2006; Permana et al., 2013; Dai et al., 2017, 2018b,c; Zhao et al. 2018).

In addition to anatase, rutile, and ilmenite, clay minerals (such as kaolinite and illite) may host a large proportion of Ti in some coals (Minkin et al., 1979; Ward et al., 1999; Dai et al., 2015b). Two modes of Ti occurrence were observed in the kaolinite in coal: substituting for Al in the crystal lattice of the kaolinite and as fine-grained discrete particles in kaolinite. About 1.5% Ti was suggested to substitute for Al in the kaolinite in the coal from the Gunnedah Basin, Australia (Ward et al., 1999).

Huggins et al. (2000) analyzed four coals using XAFS spectroscopy and a selective leaching protocol supplemented by SEM. They found that both methods indicate two principal forms of Cr in the bituminous coals: the major occurrence of chromium is associated with the macerals as the oxyhydroxide CrOOH, whereas a second, lesser occurrence, is associated with the clay mineral, illite, which was subsequently confirmed by ion microprobe analysis.

An interesting aspect is that the primary elements that are associated with the silicates are largely benign, that is, with several exceptions they do not cause technological, environmental, or human health problems and are not on the critical element list. Sodium may appear to be an exception as it does contribute to boiler fouling but it appears that organically-bound and non-mineral-bound Na, is primarily to blame (Finkelman, 1988). Some critical elements, such as Al and Ga, are the other exceptions as they have been industrially extracted from Al-Ga-rich fly ash derived from the coals in the Jungar deposit, Inner Mongolia, China (Seredin, 2012; Dai and Finkelman, 2018; Dai et al., 2018d). Another exception is Mg in coal, which has been recovered from fly ash derived from low-rank coals in southeastern Australia, using a combined hydrometallurgical/thermal reduction process (Dai and Finkelman, 2018).

3.2. Sulfides and selenides as hosts of chemical elements

A wide range of sulfide minerals have been found in coal (Table 1; Fig. 1) with pyrite being, far and away, the most common. Without question pyrite has greatest impact of any mineral in coal. Among the many problems caused by pyrite are:
• Oxidation of pyrite results in costly acid mine drainage problems (Campbell et al., 2001; Weber et al., 2006; Shahhosseini et al., 2017; Stewart et al., 2017).
• Volatilization of pyrite contributes to acid rain and smog (Dai et al., 2002; Miller, 2017).
• The iron and sulfur from pyrite are major contributors to boiler slag (Bool III et al., 1995; Brink et al., 1994; Regina et al., 2004).
• Pyrite is likely a major contributor to Coal Workers Pneumoconiosis (Black Lung Disease) (Huang et al., 2006).
• Removal of pyrite is a primary objective of coal cleaning (Duan et al., 2017; Kolker et al., 2017b; Oliveira et al., 2013).
• Proper disposal of pyrite and products of pyrite decomposition (coal cleaning wastes, boiler slag, fouling deposits, bottom ash, FGD, fly ash, etc.) adds costs to the utilization of coal.

In most coals, sulfide minerals are likely the primary host of S, Sb (55%/30%; data for disulfides leached by nitric acid and mono-sulfides leached by hydrofluoric acid), As (70%/55%), Cd (90%/90%), Co (55%/40%), Cu (75%/60%), Fe (50%/20%), Pb (90%/60%), Hg (90%/75%), Mo (55%/15%), Ni (55%/50%), Se (70%/20%), W (50%/20%), and Zn (75%/70%) (Finkelman et al., 2018).

Leaching coals with nitric acid (Finkelman et al., 2018), microprobe analysis (Kolker et al., 2000) and Laser ablation ICP-MS (Kolker et al., 2017a) showed that sulfides, likely pyrite, are the primary host of As and Hg, with pyrite commonly containing up to several weight percent As. Arsenopyrite has been reported in coal (Belkin et al., 1997; Kolker, 2012), but this mineral is exceedingly rare and is not a major host of As. Other elements that are likely associated with the sulfide minerals are Te, Tl, Ag, and Bi.

In addition to pyrite, important sulfide minerals include: galena, the host for Pb (55%/50%); sphalerite, the host for Cd (60%/80%) and Zn (45%/55%); and chalcopyrite (Fig. 1A), the host for Cu (30%/30%) (Finkelman et al., 2018). Other sulfide minerals include (Table 1): the linnaeite group (Co²⁺Co³⁺₂S₄), which contains Co and Ni; marcasite (FeS₂); pyrrhotite (Fe₇S₈); and possibly argentite (Ag₂S); as well as rare getchellite (AsSbS₃, Fig. 1D; Dai et al., 2006b), alabandite (MnS; Dai et al., 2007), pentlandite ((Fe,Ni)₉S₈; Belkin et al., 2010), greenockite (CdS; Hower et al., 2018b), selenio-galena (PbSeS, Fig. 1F; Dai et al., 2006a); pyrrhotite (Fe₇S₈),...
millerite (NiS), and siegenite ((Ni,Co)₃S₄, Fig. 1B) (Dai et al., 2015f); cattierite (CoS₂, Fig. 1B; Dai et al., 2015f), cinnabar (HgS; Dvornikov, 1990), and greigite (Fe₃S₄; Harvey and Ruch, 1984).

Kolker (2012) comprehensively reviewed the distribution trace elements (such as As, Hg, Se, Sb, Mo, Tl, Cu, Zn, Co, and Ni) in iron disulfides in coal. Analysis of coal samples in the U.S. Geological Survey’s WoCQI database (Bragg et al., 1997) showed that As is the most abundant minor constituent in Fe-disulfides in coal and elements including Se, Ni, and other minor constituents are less-commonly present with lower concentrations than As. Fe-disulfides with different generations (different formation stages) or different origins may have different abundance of trace elements (Kolker, 2012). For example, framboidal pyrite in some instances shows preferential Ni enrichment with respect to other co-occurring pyrite with other modes of occurrence (e.g., cleat- or vein-filling pyrite or marcasite; Kolker, 2012). Using high-resolution time-of-flight secondary ion mass-spectrometry, Dai et al. (2003) investigated the abundance of trace elements in different-form pyrites, such as bacteriogenic, framboidal, massive, cell-filling, fracture-filling, and nodular pyrites. They found that relative to other form pyrite, bacteriogenic pyrites are rich in Cu, Zn, and Ni, and this is consistent with bacterial complexing of metals in anoxic sediments (Kolker, 2012).

When trace elements such as As, Se, and Sb are present in pyrite, they usually substitute for S of pyrite, whereas transition metals, such as Hg and Pb, are thought to substitute for Fe of pyrite (Kolker, 2012). However, a recent study by Etschmann et al. (2017) showed that As has a more complex speciation pattern than expected. Arsenic may have several valence states such as As(III), As(V), and As(−I/+II) in solid solution in sulfides in coal. Arsenic may occur in anionic and cationic forms, i.e., it shows both the common substitution for S and the substitution for Fe.

Some selenides have been identified in coal. Relative to other selenides, clausthalite (PbSe) a very common accessory mineral in coal is a host for Pb and Se (Finkelman, 1985; Hower et al., 2001; Yudovich and Ketris, 2006a; Belkin et al., 2010; Dai et al., 2006a, 2015f; Karayiğit et al., 2018). Hower and Robertson (2003) and Dai et al. (2006a) showed that clausthalite, if present in coal, contributes not only to the elevated concentrations of Pb and Se content, but also to Hg concentration in the coal. Other selenides reported in coal include: ferroselite (FeSe₂; Dai
et al., 2015f), krutaite (CuSe₂; Dai et al., 2015f), eskebornite (CuFeSe₂; Dai et al., 2015f), and tiemannite (HgSe; Dvornikov, 1990; Finkelman, 2003).

3.3. Carbonates as hosts of chemical elements

Carbonates are present in many, but not all, coals (Fig. 2). The most common carbonate minerals are calcite (CaCO₃), siderite (FeCO₃), and ankerite-dolomite series (Ward, 2016). When present, the carbonates could be major hosts for Ca, Mg, Fe, Mn, and Sr, and to a lesser extent, rare earth elements (REE) and F (Swaine, 1990; Finkelman et al., 2018), and in a few cases, Zn (e.g., calcite, Palmer and Wandless, 1985). Leaching coals with hydrochloric acid indicates the following associations: Ba (15%/75%), Ca (70%/60%), Fe (25%/<60%), Mg (25%/30%), Mn (50-85%/75%), Mo (15%/<20), REE (10-<30%), and Sr (<50%/<50%) (Finkelman et al., 2018).

Mn²⁺ substituting for Fe²⁺ (siderite, ankerite) and Ca²⁺ (calcite and ankerite) and Sr²⁺ substituting for Ca²⁺ (calcite) have been observed in many coals (e.g., Swaine, 1990). Other carbonates observed in coals include aragonite (CaCO₃), witherite (BaCO₃), strontianite (SrCO₃; Fig. 2A), dawsonite (NaAlCO₃(OH)₂), and members of the bastnäsite ((Ce,La)CO₃F, (La, Ce)CO₃F, or (Y, Ce)CO₃F) series. Dai et al. (2017) have identified one of REE hosts, bastnäsite, in the late Permian coals from the Moxinpo Coalfield, southwestern China. Dai et al. (2013a) identified REE-bearing carbonates, Sr(Ca)CO₃ and Ca(Mg)CO₃(F) (Fig. 2B) containing U in the late Permian coals in the Heshan Coalfield, southern China. In addition to F in many cases occurring in REE-bearing carbonate (such as bastnäsite), Cl can also occur in carbonate (Yudovich and Ketris, 2006b).

3.4. Oxides and (oxy-)hydroxides as hosts of chemical elements

The most common oxide minerals in coal are rutile and its polymorphs anatase and brookite (e.g., Cressey and Cressey, 1988), which are important hosts of Ti (35%/15%; Finkelman et al., 2018). Detrital ilmenite (Fe²⁺TiO₃) and chromite (Fe²⁺Cr³⁺₂O₄) are in some cases present and could be important hosts of Ti and Cr (e.g., Mullai, 1984; Ruppert et al., 1996). It is likely that Ta (75%/60%) is hosted by oxides, as well as the geochemically similar Nb, but few of these minerals have been reported in coal. Several molybdenum oxides have also been reported (Gluskoter, 1977; Cobb et al., 1979). Other oxide and (oxy-)hydroxides minerals reported from
coal include: Fe hosts such as magnetite (Fe_3O_4; e.g., Pollock et al., 2000), limonite ($\text{FeOOH} \cdot \text{nH}_2\text{O}$; e.g., Swaine, 1990), hematite (Fe_2O_3; e.g., Silva et al., 2011), lepidocrocite (Huggins et al., 1980); and Al hosts such as boehmite (Ward, 2002; Dai et al., 2006a), diaspor (Dai et al., 2012a), and goethite (Huggins et al., 1980). Corundum (Al_2O_3) is usually rare in coal (Finkelman, 1988; Vassilev et al., 1994) but in some cases it is an accessory minerals in fly ashes (Dai et al., 2010; Vassilev et al., 2003, 2005) and high-temperature ashes (Ward, 2002), particularly in those derived from coals with elevated concentration of Al (e.g., Dai et al., 2010, Hu et al., 2018; Ward, 2002, 2016). Corundum is a characteristic mineral in high-alumina fly ash derived from alumina-rich feed coals (e.g., boehmite-bearing coals; Dai et al., 2010). The Nb and Sn hosts, columbite ((Fe,Mn)Nb$_2$O$_6$) and cassiterite (SnO$_2$), respectively, have also been reported (Merritt, 1988).

The fly ash derived from a Chinese Al-Ga-REY coal-hosted ore deposit (Jungar Coalfield, Dai et al., 2006a, 2012c) has been utilized for Al and Ga extraction because it contains >50% Al_2O_3 and ~100 ppm Ga. One of the major hosts for Al and Ga is oxyhydroxide (e.g., boehmite and diaspore; Dai et al. 2006a, 2012c).

3.5 Phosphates as hosts of chemical elements

Phosphate minerals in coal are ubiquitous. The most common is apatite (or fluorapatite; Fig. 2C, 2D) but monazite, xenotime, and the alumino-phosphate mineral group (crandallite, florencite, gorcexite, and goyazite; Fig. 2E) are also present in most coals (Dai et al., 2015a, 2018a; Ward, 2016). They are important hosts of P (95%/85%), Ba (<45%/<15%, Sr (50%/50%), and U (15%/5%) (Finkelman et al., 2018). Apatite in coal is usually fluorapatite, indicating that some OH$^-$ in the former has been replaced by F$^-$. In addition to Ca, Ba, Sr, P, Al, and U, the phosphates are also an important host of REE and Y (e.g., xenotime, Dai et al., 2017; Seredin and Dai, 2012; Y-, La-, Ce-, Nd-, Dy- and Gd-bearing apatite and Y-bearing crandallite, Hower et al., 2016; light rare earth elements, 70%/20%; heavy rare earth elements, 50%/25%, Finkelman et al., 2018), and F in the phosphate minerals (apatite, Dai et al., 2015a). Although not common, rhabdophane (Fig. 2F) and silico-rhabdophane, the major light rare earth element hosts, have been identified in many coals (Dai et al., 2014b). Chlorine and Br may be present in gas–liquid inclusions of detrital and
authigenic apatite (Vassilev et al., 2000); however, as pointed out by Yudovich and Ketris (2006b), Cl with such modes of occurrence seems to be very minor.

3.6 Halides and fluorides as hosts of chemical elements

Several halide minerals have been observed in coal, the most common being halite (NaCl) and sylvite (KCl) and host Na, K and Cl (e.g., Cressey and Cressey, 1988; Vassilev et al., 1994; Mudd and Kodikara, 2000; Yossifova et al., 2011; Fu et al., 2013; Oskay et al., 2016). The occurrence of halite has been confirmed using XRD by some authors (e.g., Kalaitzidis et al., 2010; Karayiğit et al., 2015). The fluoride that has been found in coal is fluorite (CaF$_2$), which has seldom been observed in coal (Yudovich et al., 1985; Finkelman, 1995; Bouška and Pešek, 1999; Dai et al., 2013a, 2018c), but is the major cause of elevated concentration of F in coal (Dai et al., 2013a, 2018c).

3.7 Sulfates as hosts of chemical elements

Sulfates are not uncommon in coal and most are secondary oxidation products. The most common syngenetic sulfates in coal are gypsum (Ward, 2002, 2016; Liu et al., 2018) and barite (Finkelman et al., 2018).

Sulfates are the hosts of some major elements in coals (Table 1), for example, Ca (gypsum, basanite, anhydrite), Fe (coquimbite, melanterite, rozenite, szomolnokite), K (jarosite), Al (alunite, alunogen, aluminate, tschermigite), Na (thenardite, glauberite, bloedite), Mg (epsomite, hexahydrite, copiapite, pickeringite). Additionally, sulfates are hosts for a few trace elements, e.g., Sr (celestite) and Ba (barite, (>25%/<15%; Finkelman et al., 2018). Dai et al. (2015e) have identified a hydrous Be sulfate phase (BeSO$_4$·4H$_2$O) in coal LTA samples with elevated Be concentrations in the Lincang deposit, southwestern China, and the content of the Be sulfate phase is up to 6.2% (LTA basis). It should be noted that gypsum in coal usually contains some Sr, and if the Sr-contained gypsum is of syngenetic origin, the isotopic compositions of Sr could be used as an indicator for geochronology and palaeoenvironment of peat deposition (Spiro et al., 2019).

3.8 Interesting but rare associations
Seredin and Finkelman (2008) reported many unusual mineral phases, including native W, Au and Ag, \((\text{BiPb})_3\text{FeCdMoS}\), \(\text{BiMo(Cu)S}\), various Au and Pt phases, primarily in Russian coals. Hower et al. (2018b) found in the Blue Gem coal in Kentucky grains containing Co-Ge and Ag-Cd-Bi, the latter with a more evident S association than the former, metallic Bi, \(\text{Ni}_2\text{Sn}\), and silver cadmium. These strange and interesting phases may have economic and geochemical significance, but are not likely to represent significant common modes of occurrence of these elements in coal. Other interesting but rare mineral occurrences include:

- Amphibole containing F or/and Cl - \(\text{NaCa}_2(\text{Mg,Fe,Al})_5(\text{Si,Al})_8\text{O}_{22}(\text{OH,F,Cl,O})_2\) (Finkelman, 1981; Brownfield et al., 1995; Kortenski and Sotirov, 2004; Papanicolaou et al., 2004; Yossifova, 2007).
- The Ca-bearing oxalates weddellite \((\text{Ca(C}_2\text{O}_4\cdot(2.5-x)\text{H}_2\text{O}, 0 \leq x \leq 0.25))\) and whewellite \((\text{Ca(C}_2\text{O}_4\cdot\text{H}_2\text{O})\) (Bouska, 1981; Bouska et al., 2000; Zák and Skála, 1993; Goodarzi, 1990; Koukouzas et al., 2010; Dai et al. 2015c).
- Diamond – carbon (Fig. 3)
- Rare native sulfur in coal (e.g., Erkoyun et al., 2017; Ribeiro et al. (2016) but common in spontaneous combustion products (e.g., Fabiańska et al., 2013; Gürdal et al., 2015).

3.9 Uncertain associations and issues that need further attention

Although modes of mineral occurrence of a number of elements have been widely investigated, there are some elements whose associations and particularly association mechanism with minerals are, to a degree, uncertain or even largely unknown and deserve further attention. These include but not limited to Be, Bi, B, Br, Cs, Co, Au, I, In, Mo, Ni, Nb, the platinum group elements, Ag, Ta, Te, Ti, Th, Sb, W, and V.

4. Conclusions

Minerals are the most important components of inorganic matter in coal and, in most cases, play the most significant role in affecting the utilization of coal. Minerals are also the major hosts of the vast majority of toxic, benign, and critical elements present in coal. Although a number of elements and their hosting minerals in coal have been widely investigated, some issues require further investigation to evaluate more fully the modes of occurrence of elements in coal:
The associations of some elements with minerals are uncertain or even largely unknown (for examples but not limited to Be, Bi, Br, Co, I, In, Mo, Nb, Ta, Te, W, and V) and deserve further investigation using integrated approaches as mentioned in the text above.

The association mechanism of many elements with minerals are also unknown, e.g., conditions of toxic elements (As, Hg, Tl) substitute for major ions of sulfides in coal.

Quantitative analysis of elements associated with specific minerals rather than with generic terms such as ‘clays’, ‘silicates’, and ‘carbonates’ needs new technologies for more fully understanding modes of occurrence of elements.

As mentioned in Section 3.8 a number of interesting and rare phases have been found in coal (see Fig. 4) confirming that additional detailed mineralogical investigations of coal are entirely justified.

Acknowledgements

This paper is dedicated to the memory of Prof. Colin R. Ward. This research was supported by the National Natural Science Foundation of China (Nos. 41420104001 and U1810202), the 111 Project (No. B17042), and the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_17R104).

Figure Captions

Figure 1. Sulfides and selenio-galena and getchellite in coal. (A), chalcopyirte in the coal from Muchuan, Sichuan (Reflected light) (Ren et al., 2006). (B), siegenite and chalcopyrite in cavities of the Jurassic coal from the Yili deposit, Xinjiang, northwestern China (Dai et al., 2015f). (C), cell-filling cattierrrite in the Jurassic coal from the Yili deposit, Xinjiang, northwestern China (Dai et al., 2015f). (D), getchellite and fracture-filling kaolinite in the Late Permian coal from Xingren, southwestern Guizhou, China (Dai et al., 2006b). (E), galena and sphalerite in the Late Triassic anthracite in the Jianou Coalfield, Fujian Province in southeastern China (Ren et al., 2006). (F), senio-galena in the Late Paleozoic coals from the Jungar Coalfield, Inner Mongolia, northern China (Dai et al. 2006a). (A), (E) and (F), reflected light. (B), (C), and (D), SEM backscattered electron images.

Figure 2. Carbonate and phosphate minerals in coal. (A), REY-bearing carbonate mineral (Sr(Ca)CO₃), strontianite, and dolomite filling the fusinite cells in the Late Permian coal from
the Heshan Coalfield, southern China (Dai et al., 2013a). (B), REY-bearing carbonate mineral (Ca(Mg)CO$_3$F) in the Late Permian coal from the Heshan Coalfield, southern China (Dai et al., 2013a). (C), Apatite (Apa), kaolinite (Kao), and pyrite (Py) filling the fusinite cells in the middle Jurassic coal from the Muli Coalfield on the Tibetan Plateau, China (Dai et al., 2015a). (D), Apatite and aluminophosphorous minerals of goyaizite-gorceixite-crandallite group (Pho) filling fusinite cells in the Muli Coalfield on the Tibetan Plateau, China (Dai et al., 2015a). (E), Goyazite and boehmite filling the fusinite cells in the Late Paleozoic coals from the Jungar Coalfield, Inner Mongolia, northern China (Dai et al., 2006a). (F), rhabdophane in collodetrinite in the late Permian coal from the Huanyingshan Coalfield, Sichuan, southern China (Dai et al., 2014b).

Figure 3. Detrital diamond extracted from a bituminous coal from Powder River Basin (SEM image).

Table 1. Minerals reported in coal and coal low temperature ash (LTA). The data is taken primarily from Finkelman (1980) and Ward (2016) but with additional information from various sources. The minerals in **bold** have been confirmed by X-ray diffraction, a unique chemistry, or multiple observations. The validity of those in *italics* has not been confirmed.

References

Akers, et al., 1978. Coal Minerals Bibliography, Report FE-2692-5.

Alekseev, L. S., 1960. Mineral impurities in coal. Doklady Earth Science Section 124 (4), 186-188.

Belkin, H.E., Tewalt, S.J., Hower, J.C., Stucker, J.D., O'Keefe, J.M.K., Tatu, C.A., Buia, G., 2010. Petrography and geochemistry of Oligocene bituminous coal from the Jiu Valley, Petrosani basin (southern Carpathian Mountains), Romania. Int. J. Coal Geol. 82, 68-80.

Belkin, H.E., Zheng, B., Zhou, D., Finkelman, R.B., 1997. Preliminary results on the geochemistry and mineralogy of arsenic in mineralized coals from endemic arsenosis areas in Guizhou Province, P.R. China. Proceedings, Fourteenth Annual International Pittsburgh Coal Conference, Taiyuan, Shanxi, People's Republic of China. 20 p., CD-ROM.

Bool III, L.E., Peterson, T.W., Wendt, J.O.L., 1995. The partitioning of iron during the combustion of pulverized coal. Combust. Flame 100, 262-270.

Bouška, V., 1981. Geochemistry of coal. Elsevier, Amsterdam. 284 pp.
Bouška, V., Pešek, J., 1999. Quality parameters of lignite of the North Bohemian Basin in the Czech Republic in comparison with the world average lignite. Int. J Coal Geo. 40, 211-235.

Bouška, V., Pešek, J., Sýkorová, I., 2000. Probable modes of occurrence of chemical elements in coal. Acta Montana Serie B, Fuel, Carbon, Mineral Processing, Praha 10 (117), 53–90.

Boyd, R. J., 2002. The partitioning behaviour of boron from tourmaline during ashing of coal. Int. J. Coal Geol. 53, 43 – 54.

Bragg, L.J., Oman, J.K., Tewalt, S.J., Oman, C.L., Rega, N.H., Washington, P.M., Finkelman R.B., 1997. U.S. Geological Survey coal quality (COALQUAL) database; version 2.0. Open-File Report 97-134.

Brink, H.M.t., Smart, J.P., Vleeskens, J.M., Williamson, J., 1994. Flame transformations and burner slagging in a 2.5 MW furnace firing pulverized coal. 2. Slagging. Fuel 73, 1712-1717.

Brown, H.R., Durie, R.A., Schafer, H.N.S., 1959. The inorganic constituents of Australian coals: I – the direct determination of the total mineral matter content. Fuel 38, 295–308.

Brownfield, M.E., Affolter, R.H., Cathcart, J.D., Johnson, S.Y., Brownfield, I.K. and Rice, C.A., 2005. Geologic setting and characterization of coals and the modes of occurrence of selected elements from the Franklin coal zone, Puget Group, John Henry No. 1 mine, King County, Washington, USA. Int. J. Coal Geol. 63, 247-275.

Boyd, R.J., 2002. The partitioning behaviour of boron from tourmaline during ashing of coal. Int. J. Coal Geol. 53, 43 – 54.

Brownfield, M.E., Affolter, R.H., Stricker, G.D., Hildebrand, R.T., 1995. High chromium contents in Tertiary coal deposits of northwestern Washington — A key to their depositional history. Int. J. Coal Geol. 27, 153-169.

Bullock, L.A., Parnell, J., Perez, M., Armstrong, J.G., Feldmann, J., Boyce, A.J., 2018. High selenium in the Carboniferous Coal Measures of Northumberland, North East England. Int. J. Coal Geol. 195, 61-74.

Burger, K., Zhou, Y., Tang, D., 1990. Synsedimentary volcanic-ash-derived illite tonsteins in Late Permian coal-bearing formations of southwestern China. Int. J. Coal Geol. 15, 341-356.

Campbell, R.N., Lindsay, P., Clemens, A.H., 2001. Acid generating potential of waste rock and coal ash in New Zealand coal mines. Int. J. Coal Geol. 45, 163-179.

Cech, P., Petrik, P., 1973. Classification and description of mineral admixtures in coal seams of the Handova-Novaky area. Chemical Abstracts, v. 79, no. 33611J, p. 99.
Çelik, Y., Karayiğit, A.İ., Querol, X., Oskay, R.G., Mastalerz, M., Kayseri Özer, M.S., 2017. Coal characteristics, palynology, and palaeoenvironmental interpretation of the Yeniköy coal of Late Oligocene age in the Thrace Basin (NW Turkey). Int. J. Coal Geol. 181, 103-123.

Chou, C.-L., 2012. Sulfur in coals: A review of geochemistry and origins. Int. J. Coal Geol. 100, 1-13.

Cobb, J. C. Masters, J. M., Treworgy, C. G., Helferstine, R. J., 1979, Abundance and recovery of sphalerite and fine coal from mine waste in Illinois. Illinois State Geological Survey, Illinois Mineral note 71, 11p.

Cook, A.C., 1976. The spatial and temporal variation of the type and rank of Australian coals. In: Cook, A.C. (Ed.), Australian block coal—its Occurrence, Mining, Preparation, and Use. Symposium proceedings held at University of Wollongong, February 1975, p. 63-84.

Coveney, R.M., Grauch, R.I., Murowchick, J.B., 1994. Metals, phosphate and stone coal in the Proterozoic and Cambrian of China: the geologic setting of precious metal-bearing Ni–Mo ore beds. Social Applications Geological (SGA) Newsletter 18, 1–11.

Cressey, B.A., Cressey, G., 1988. Preliminary mineralogical investigation of Leicestershire low-rank coal. Int. J. Coal Geol. 10, 177-191.

Cutruneo, C., Oliveira, M.L.S., Ward, C.R., Hower, J.C., de Brum, I.A.S., Sampaio, C.H., Kautzmann, R.M., Taffarel, S.R., Teixeira, E.C., Silva, L.F.O., 2014. A mineralogical and geochemical study of three Brazilian coal cleaning rejects: Demonstration of electron beam applications. Int. J. Coal Geol. 130, 33-52.

Dai, S., Chekryzhov, I.Y., Seredin, V.V., Nechaev, V.P., Graham, I.T., Hower, J.C., Ward, C.R., Ren, D., Wang, X., 2016a. Metalliferous coal deposits in East Asia (Primorye of Russia and South China): a review of geodynamic controls and styles of mineralization. Gondwana Res. 29, 60 – 82.

Dai, S., Chou, C.-L., 2007. Occurrence and origin of minerals in a chamosite-bearing coal of Late Permian age, Zhaotong, Yunnan, China. Am. Mineral. 92, 1253-1261.

Dai, S., Finkelman, R.B., 2018. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 186, 155-164.

Dai, S., Guo, W., Nechaev, V.P., French, D., Ward, C.R., Spiro, B.F., Finkelman, R.B., 2018a. Modes of occurrence and origin of mineral matter in the Palaeogene coal (No. 19-2) from the Hunchun Coalfield, Jilin Province, China. Int. J. Coal Geol. 189, 94-110.

Dai, S., Hou, X., Ren, D., Tang, Y., 2003. Surface analysis of pyrite in the No. 9 coal seam, Wuda Coalfield, Inner Mongolia, China, using high-resolution time-of-flight secondary ion mass-spectrometry. Int. J. Coal Geol. 55, 139-150.
Dai, S., Hower, J.C., Ward, C.R., Guo, W., Song, H., O'Keefe, J.M.K., Xie, P., Hood, M.M., Yan, X., 2015a. Elements and phosphorus minerals in the middle Jurassic inertinite-rich coals of the Muli Coalfield on the Tibetan Plateau. Int. J. Coal Geol. 144-145, 23–47.

Dai, S., Ji, D., Ward, C.R., French, D., Hower, J.C., Yan, X., Wei, Q., 2018b. Mississippian anthracites in Guangxi Province, southern China: Petrological, mineralogical, and rare earth element evidence for high-temperature solutions. Int. J. Coal Geol. 197, 84-114.

Dai, S., Jiang, Y., Ward, C.R., Gu, L., Seredin, V.V., Liu, H., Zhou, D., Wang, X., Sun, Y., Zou, J., Ren, D., 2012a. Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. Int. J. Coal Geol. 98, 10–40.

Dai, S., Li, T., Jiang, Y., Ward, C.R., Hower, J.C., Sun, J., Liu, J., Song, H., Wei, J., Li, Q., Xie, P., Huang, Q., 2015b. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Hailiushu Mine, Daqingshan Coalfield, Inner Mongolia, China: Implications of sediment-source region and acid hydrothermal solutions. Int. J. Coal Geol. 137, 92-110.

Dai, S., Li, T., Seredin, V.V., Ward, C.R., Hower, J.C., Zhou, Y., Zhang, M., Song, X., Song, W., Zhao, C., 2014a. Origin of minerals and elements in the Late Permian coals, tonsteins, and host rocks of the Xinde Mine, Xuanwei, eastern Yunnan, China. Int. J. Coal Geol. 121, 53-78.

Dai, S., Liu, J., Ward, C.R., Hower, J.C., French, D., Jia, S., Hood, M.M. and Garrison, T.M., 2016b. Mineralogical and geochemical compositions of Late Permian coals and host rocks from the Guxu Coalfield, Sichuan Province, China, with emphasis on enrichment of rare metals. Int. J. Coal Geol. 166, 71-95.

Dai, S., Liu, J., Ward, C.R., Hower, J.C., Xie, P., Jiang, Y., Hood, M.M., O'Keefe, J.M.K., Song, H., 2015c. Petrologcal, geochemical, and mineralogical compositions of the low-Ge coals from the Shengli Coalfield, China: A comparative study with Ge-rich coals and a formation model for coal-hosted Ge ore deposit. Ore Geol. Rev. 71, 318-349.

Dai, S., Luo, Y., Seredin, V.V., Ward, C.R., Hower, J.C., Zhao, L., Liu, S., Zhao, C., Tian, H., Zou, J., 2014b. Revisiting the late Permian coal from the Huayingshan, Sichuan, southwestern China: Enrichment and occurrence modes of minerals and trace elements. Int. J. Coal Geol. 122, 110-128.

Dai, S., Ren, D., Chou, C.-L., Li, S., Jiang, Y., 2006a. Mineralogy and geochemistry of the No. 6 coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. Int. J. Coal Geol. 66, 253-270.

Dai, S., Ren, D., Tang, Y., Shao, L., Li, S., 2002. Distribution, isotopic variation and origin of sulfur in coals in the Wuda coalfield, Inner Mongolia, China. Int. J. Coal Geol. 51, 237-250.

Dai, S., Ren, D., Zhou, Y., Chou, C.-L., Wang, X., Zhao, L., Zhu, X., 2008a. Mineralogy and
geochemistry of a superhigh-organic-sulfur coal, Yanshan Coalfield, Yunnan, China: evidence for a volcanic ash component and influence by submarine exhalation. Chem. Geol. 255, 182 – 194.

Dai, S., Seredin, V.V., Ward, C.R., Hower, J.C., Xing, Y., Zhang, W., Song, W., Wang, P., 2015d. Enrichment of U-Se-Mo-Re-V in coals preserved within marine carbonate successions: geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Miner. Deposita 50, 159-186.

Dai, S., Tian, L., Chou, C.-L., Zhou, Y., Zhang, M., Zhao, L., Wang, J., Yang, Z., Cao, H., Ren, D., 2008b. Mineralogical and compositional characteristics of Late Permian coals from an area of high lung cancer rate in Xuanwei, Yunnan, China: Occurrence and origin of quartz and chamosite. Int. J. Coal Geol. 76, 318-327.

Dai, S., Wang, P., Ward, C.R., Tang, Y., Song, X., Jiang, J., Hower, J.C., Li, T., Seredin, V.V., Wagner, N.J., Jiang, Y., Wang, X., Liu, J., 2015e. Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang, Yunnan, southwestern China: Key role of N2-CO2-mixed hydrothermal solutions. Int. J. Coal Geol. 152, 19-46.

Dai, S., Wang, X., Seredin, V.V., Hower, J.C., Ward, C.R., O'Keefe, J.M.K., Huang, W., Li, T., Li, X., Liu, H., Xue, W., Zhao, L., 2012b. Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. Int. J. Coal Geol. 90, 72-99.

Dai, S., Xie, P., Jia, S., Ward, C.R., Hower, J.C., Yan, X., French, D., 2017. Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfield, Chongqing, China: Genetic implications from geochemical and mineralogical data. Ore Geol. Rev. 80, 1-17.

Dai, S., Xie, P., French, D., Ward, C.R., Graham, I.T., Yan, X., Guo, W., 2018c. The occurrence of buddingtonite in super-high-organic-sulphur coals from the Yishan Coalfield, Guangxi, southern China. Int. J. Coal Geol. 195, 347-361.

Dai, S., Yan, X., Ward, C.R., Hower, J.C., Zhao, L., Wang, X., Zhao, L., Ren, D., Finkelman, R.B., 2018d. Valuable elements in Chinese coals: a review. Int. Geol. Rev. 60, 590 – 620.

Dai, S., Yang, J., Ward, C.R., Hower, J.C., Liu, H., Garrison, T.M., French, D., O'Keefe, J.M.K., 2015f. Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the Yili Basin, Xinjiang, northwestern China. Ore Geol. Rev. 70, 1-30.

Dai, S., Zeng, R., Sun, Y., 2006b. Enrichment of arsenic, antimony, mercury, and thallium in a Late Permian anthracite from Xingren, Guizhou, Southwest China. Int. J. Coal Geol. 66, 217-226.
Dai, S., Zhang, W., Seredin, V.V., Ward, C.R., Hower, J.C., Song, W., Wang, X., Li, X., Zhao, L., Kang, H., Zheng, L., Wang, P., Zhou, D., 2013a. Factors controlling geochemical and mineralogical compositions of coals preserved within marine carbonate successions: A case study from the Heshan Coalfield, southern China. Int. J. Coal Geol. 109, 77-100.

Dai, S., Zhang, W., Ward, C.R., Seredin, V.V., Hower, J.C., Li, X., Song, W., Wang, X., Kang, H., Zheng, L., Wang, P., Zhou, D., 2013b. Mineralogical and geochemical anomalies of late Permian coals from the Fusui Coalfield, Guangxi Province, southern China: Influences of terrigenous materials and hydrothermal fluids. Int. J. Coal Geol. 105, 60-84.

Dai, S., Zhao, L., Peng, S., Chou, C.L., Wang, X., Zhang, Y., Li, D., Sun, Y., 2010. Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China. Int. J. Coal Geol. 81, 320-332.

Dai, S., Zhou, Y., Ren, D., Wang, X., Li, D., Zhao, L., 2007. Geochemistry and mineralogy of the Late Permian coals from the Songzao Coalfield, Chongqing, southwestern China. Science in China Series D-Earth Sciences 50, 678-688.

Dai, S., Zou, J., Jiang, Y., Ward, C.R., Wang, X., Li, T., Xue, W., Liu, S., Tian, H., Sun, X., Zhou, D., 2012c. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China: Modes of occurrence and origin of diaspore, gorceixite, and ammonian illite. Int. J. Coal Geol. 94, 250-270.

Daniels, E.J., Altaner, S.P., 1990. Clay mineral authigenesis in coal and shale from the Anthracite region, Pennsylvania. Am. Mineral. 75, 825–839.

Daniels, E.J., Altaner, S.P., 1993. Inorganic nitrogen in anthracite from eastern Pennsylvania, U.S.A. Int. J. Coal Geol. 22, 21 – 35.

Dawson, G.K.W., Golding, S.D., Esterle, J.S., Massarotto, P., 2012. Occurrence of minerals within fractures and matrix of selected Bowen and Ruhr Basin coals. Int. J. Coal Geol. 94, 150-166.

Deul, M., 1959. The principal geological, chemical and physical factors controlling the mineral content of coal. American Chemical Society, Division of Gas and Fuel Chemistry, Boston, Mass.

Ding, Z.H., Zheng, B.S., Long, J.P., Belkin, H.E., Finkelman, R.B., Chen, C.G., Zhou, D.X., Zhou, Y.S., 2001. Geological and geochemical characteristics of high arsenic coals from endemic arsenosis areas in southwestern Guizhou Province, China. Appl. Geochem. 16, 1353-1360.

Duan, P., Wang, W., Liu, X., Qian, F., Sang, S., Xu, S., 2017. Distribution of As, Hg and other trace elements in different size and density fractions of the Reshuihe high-sulfur coal, Yunnan Province, China. Int. J. Coal Geol. 173, 129-141.

Dvornikov, A.G., 1990. Some patterns of the distribution of cinnabar in coal measures of the
Donbas. Doklady Akademii Nauk SSSR 312 (5), 1218–1222.

Erik, N.Y., Sancar, S., 2010. Relationships between coal-quality and organic-geochemical parameters: A case study of the Hafik coal deposits (Sivas Basin, Turkey). Int. J. Coal Geol. 83, 396-414.

Eskanazy, G., Finkelman, R. B., Chatterjee, S., 2010. Some considerations concerning the use of correlation coefficients and cluster analysis in interpreting coal geochemistry data. Int. J. Coal Geol. 83, 491-493.

Eskanazy, G., Velichkov, D., 2012. Radium in Bulgarian coals. Int. J. Coal Geol. 94, 296-301.

Erik, N.Y., Sancar, S., 2010. Relationships between coal-quality and organic-geochemical parameters: A case study of the Hafik coal deposits (Sivas Basin, Turkey). Int. J. Coal Geol. 83, 396-414.

Erkoyun, H., Kadir, S., Huggett, J., 2019. Occurrence and genesis of tonsteins in the Miocene lignite, Tunçbilek Basin, Kütahya, western Turkey. Int. J. Coal Geol. 202, 46-68.

Erkoyun, H., Kadir, S., Külah, T., Huggett, J., 2017. Mineralogy, geochemistry and genesis of clays interlayered coal seams succession in the Neogene lacustrine Seyitömer coal deposit, Kütahya, western Turkey. Int. J. Coal Geol. 172, 112-133.

Etschmann, B., Liu, W., Li, K., Dai, S., Reith, F., Falconer, D., Kerr, G., Paterson, D., Howard, D., Kappen, P., Wykes, J., Brugger, J., 2017. Enrichment of germanium and associated arsenic and tungsten in coal and roll-front uranium deposits. Chem. Geol. 463, 29-49.

Fabiańska, M.J., Ciesielczuk, J., Kruszewski, Ł., Misz-Kennan, M., Blake, D.R., Stracher, G., Moszumańska, I., 2013. Gaseous compounds and efflorescences generated in self-heating coal-waste dumps — A case study from the Upper and Lower Silesian Coal Basins (Poland). Int. J. Coal Geol. 116-117, 247-261.

Falcon, R. M. S., 1978. Coal in South Africa, Part II. The application of petrography to the characterization of coal. Minerals Science and Engineering 10, 28-52.

Finkelman, R.B., 1981. Modes of occurrence of trace elements in coal: USGS Open-file report 81-99, 322 p.

Finkelman, R.B., 1985. Mode of occurrence of accessory sulfide and selenide minerals in coal. In Neuviene Congress International de Stratigraphic et de Geologic du Carbonifere. Compte Rendu. A.T. Cross, Ed., Vol. 4, p. 407-412.

Finkelman, R.B., 1988. Analcime in coals of the Wasatch Plateau, Utah: Geological and Technological Significance: In USGS Research on Energy Resources, 1988, programs and
abstracts, V.E. McKelvey Forum on Mineral and Energy Resources, M.H. Carter, editor, U.S. Geological Survey Circular 1025, p. 16-17.

Finkelman, R.B., 1995. Modes of occurrence of environmentally-sensitive trace elements of coal. In: Swaine, D.J., Goodarzi, F. (Eds.), Environmental Aspects of Trace Elements of Coal. Kluwer Academic Publishers, the Netherlands, pp. 24–50.

Finkelman, R. B., 2003, Mercury in coal and mercury emissions from coal combustion. In Gray, J. E. (Ed.), Geologic studies of the mercury by the U.S. Geological Survey: U.S. Geological Survey Circular 1248, p. 9-11.

Finkelman, R.B., Dulong, F.T., Stanton, R.W., Cecil, C.B., 1979. Minerals in Pennsylvania coal. Pennsylvania Geology 10, 2-5.

Finkelman, R.B., Palmer, C.A., Wang, P., 2018. Quantification of modes of occurrence of 42 elements in coal. Int. J. Coal Geol. 185, 138-160.

Finkelman, R.B., Stanton, R.W., 1978. Identification and significance of accessory minerals from a bituminous coal. Fuel 57, 763-768.

Filippidis, A., Georgakopoulos, A., Kassoli-Fournaraki, A., 1996. Mineralogical components of some thermally decomposed lignite and lignite ash from the Ptolemais basin, Greece. Int. J. Coal Geol. 30, 303–314.

Foscolos, A.E., Goodarzi, F., Koukouzas, C.N., Hatziyannis, G., 1989. Reconnaissance study of mineral matter and trace elements in Greek lignites. Chem. Geol. 76, 107–130.

Foster, W.D., Feicht, F.L., 1946. Mineralogy of Concretions from Pittsburgh Coal Seam, with Special Reference to Analcite. Am. Mineral. 31, 357-364.

Francis, W., 1961. Coal—its formation and composition. Edward Arnold Ltd. London, 806 p.

Frazer, F.W., Belcher, C.B., 1973. Quantitative determination of the mineral matter content of coal by a radio-frequency oxidation technique. Fuel 52, 41 – 46.

French, D., 2018. Mineral matter in coal: friend or foe? In: Dai, S., Tang, Y. (Eds.), Proceedings of 35th Annual Meeting of TSOP, August 17-21, 2018, Beijing, China. p. 22-23.

Fu, X., Wang, J., Tan, F., Feng, X., Zeng, S., 2013. Minerals and potentially hazardous trace elements in the Late Triassic coals from the Qiangtang Basin, China. Int. J. Coal Geol. 116-117, 93-105.

Geboy, N.J., Engle, M.A., Hower, J.C., 2013. Whole-coal versus ash basis in coal geochemistry: A mathematical approach to consistent interpretations. Int. J. Coal Geol. 113, 41-49.
Glick, D.C., Davis, A., 1987. Variability in the inorganic element content of U.S. coals including results of cluster analysis. Org. Geochem. 11, 331-342.

Gluskoter, H.J., 1975. Mineral matter and trace elements in coal. In: Babu, S.P. (Ed.), Trace Elements in Fuel. Washington, D. C., American Chemical Society, Advances in Chemistry Series, no. 141, p. 1-22.

Gluskoter, H. J., 1977, An introduction to the occurrence of mineral matter in coal. Ash Deposits and Corrosion due to Impurities in Combustion Gases. In: Bryers, R.W. (Ed.), Hemisphere Publishing Corp. Washington, D. C., p. 3-19.

Golab, A.N., Carr, P.F., 2004. Changes in geochemistry and mineralogy of thermally altered coal, Upper Hunter Valley, Australia. Int. J. Coal Geol. 57, 197-210.

Golab, A., Carr, P.F., Palamara, D.R., 2006. Influence of localised igneous activity on cleat dawsonite formation in Late Permian coal measures, Upper Hunter Valley, Australia. Int. J. Coal Geol. 66, 296 – 304.

Goldschmidt, V. M., 1954. Geochemistry, Oxford Press, London, 730 p.

Goodarzi, F., 1990. Variation of elements in self-burning coal seam from Coalspur, Alberta Canada. Energy Sources 12, 345–361.

Grigore, M., Sakurovs, R., 2016. Inorganic matter in Victorian brown coals. Int. J. Coal Geol. 154-155, 257-264.

Gürdal, G., Hoşgörmez, H., Özcan, D., Li, X., Liu, H., Song, W., 2015. The properties of Çan Basin coals (Çanakkale—Turkey): Spontaneous combustion and combustion by-products. Int. J. Coal Geol. 138, 1-15.

Havey, R.D., Ruch, R.R., 1984. Overview of mineral matter in U.S. coals. Am. Chem. Soc. Div., Fuel Chem. Prepr. 29(4), 2-8.

Hower, J.C., Berti, D., Hochella, M.F., Mardon, S.M., 2018a. Rare earth minerals in a “no tonstein” section of the Dean (Fire Clay) coal, Knox County, Kentucky. Int. J. Coal Geol. 193, 73-86.

Hower, J.C., Berti, D., Hochella, M.F., Rimmer, S.M., Taulbee, D.N., 2018b. Submicron-scale mineralogy of lithotypes and the implications for trace element associations: Blue Gem coal, Knox County, Kentucky. Int. J. Coal Geol. 192, 73-82.

Hower, J.C., Calder, J.H., Eble, C.F., Scott, A.C., Robertson, J.D., Blanchard, L.J., 2000. Metalliferous coals of the Westphalian A Joggins Formation, Cumberland Basin, Nova Scotia, Canada: petrology, geochemistry, and palynology. Int. J. Coal Geol. 42, 185-206.
Hower, J.C., Eble, C.F., Dai, S.F., Belkin, H.E., 2016. Distribution of rare earth elements in eastern Kentucky coals: Indicators of multiple modes of enrichment?. Int. J. Coal Geol. 160, 73-81.

Hower, J.C., Robertson, J.D., 2003. Clausthalite in coal. Int. J. Coal Geol. 53, 219 - 225.

Hower, J.C., Ruppert, L.F., Eble, C.F., 1999. Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky. Int. J. Coal Geol. 39, 141 - 154.

Hower, J.C., Williams, D.A., Eble, C.F., Sakulpitakphon, T., Moecher, D.P., 2001. Brecciated and mineralized coals in Union County, Western Kentucky coal field. Int. J. Coal Geol. 47, 223-234.

Hu, P., Hou, X., Zhang, J., Li, S., Wu, H., Damø, A.J., Li, H., Wu, Q., Xi, X., 2018. Distribution and occurrence of lithium in high-alumina-coal fly ash. Int. J. Coal Geol. 189, 27-34.

Huang, X., Gordon, T., Rom, W. N., Finkelman, R.B., 2006. Interaction of iron and calcium minerals in coals and their roles in coal dust-induced health and environmental problems. Rev. Mineral. Geochem. 64, 153-178.

Huggins, F.E., Huffman, G.P., Kosmack, D.A., Lowenhaupt, D.E., 1980. Mossbauer detection of goethite (α-FeOOH) in coal and its potential as an indicator of coal oxidation. Int. J. Coal Geol. 1, 75-81.

Huggins, F.E., Shah, N., Huffman, G.P., Kolker, A., Crowley, S.S., Palmer, C.A., Finkelman, R.B., 2000. Mode of occurrence of chromium in four U.S. coals: In review, “Toxic Substances from Coal Combustion”. Fuel Process. Technol. 63, 79-92.

Kalaitzidis, S., Siavalas, G., Skarpelis, N., Araujo, C.V., Christianis, K., 2010. Late Cretaceous coal overlying karstic bauxite deposits in the Parnassus-Ghiona Unit, Central Greece: Coal characteristics and depositional environment. Int. J. Coal Geol. 81, 211-226.

Kalkreuth, W., Holz, M., Mexias, A., Balbinot, M., Levandowski, J., Willett, J., Finkelman, R., Burger, H., 2010. Depositional setting, petrology and chemistry of Permian coals from the Paraná Basin: 2. South Santa Catarina Coalfield, Brazil. Int. J. Coal Geol. 84, 213-236.

Kang, H.P., Lin, J., Fan, M.J., 2015. Investigation on support pattern of a coal mine roadway within soft rocks — a case study. Int. J. Coal Geol 140, 31-40.

Karayigit, A.I., Gayer, R.A., Querol, X., Onacak, T., 2000a. Contents of major and trace elements in feed coals from Turkish coal-fired power plants. Int. J. Coal Geol. 44, 169-184.

Karayiğit, A.İ., Mastalerz, M., Oskay, R.G., Gayer, R.A., 2018. Coal petrography, mineralogy, elemental compositions and palaeoenvironmental interpretation of Late Carboniferous coal seams in three wells from the Kozlu coalfield (Zonguldak Basin, NW Turkey). Int. J. Coal Geol. 187, 54-70.
Karayigit, A.I., Spears, D.A., Booth, C.A., 2000b. Antimony and arsenic anomalies in the coal seams from the Gokler coalfield, Gediz, Turkey. Int. J. Coal Geol. 44, 1–17.

Karayiğit, A.I., Oskay, R.G., Christanis, K., Tunoğlu, C., Tuncer, A., Bulut, Y., 2015. Palaeoenvironmental reconstruction of the Çardak coal seam, SW Turkey. Int. J. Coal Geol. 139, 3-16.

King, J.W., Young, H.B., 1956. High-grade uraniferous lignites in Harding County, South Dakota, in Page et al., p. 419-431.

Kolker, A., 2012. Minor element distribution in iron disulfides in coal: A geochemical review. Int. J. Coal Geol. 94, 32-43.

Kolker, A., Huggins, F. E., Palmer, C. A., Shah, N., Crowley, S. S., Huffman, G. P., and Finkelman, R. B., 2000, Mode of occurrence of arsenic in four US coals. Fuel Process. Technol. 63, 167–178.

Kolker, A., Scott, C., Hower, J.C., Vazquez, J.A., Lopano, C.L., Dai, S., 2017a. Distribution of rare earth elements in coal combustion fly ash, determined by SHRIMP-RG ion microprobe. Int. J. Coal Geol. 184, 1-10.

Kolker, A., Senior, C., van Alphen, C., Koenig, A., Geboy, N., 2017b. Mercury and trace element distribution in density separates of a South African Highveld (#4) coal: Implications for mercury reduction and preparation of export coal. Int. J. Coal Geol. 170, 7-13.

Kortenski, J., 1992. Carbonate minerals in Bulgarian coals with different degrees of coalification. Int. J. Coal Geol. 20, 225-242.

Kortenski, J., Sotirov, A., 2000. Mineral content, feeding provinces and genesis of the minerals in the coal from the Oranovo–Simitli basin, Bulgaria. Rep. Bulg. Acad. Sci. 53, 37–40.

Kortenski, J., Sotirov, A., 2002. Trace and major element content and distribution in Neogene lignite from the Sofia Basin, Bulgaria. Int. J. Coal Geol. 52, 63-82.

Kortenski, J., Sotirov, A., 2004. Petrography of the Neogene lignite from the Sofia basin, Bulgaria. Int. J. Coal Geol. 57, 117-126.

Kostova, I., Zdravkov, A., 2007. Organic petrology, mineralogy and depositional environment of the Kipra lignite seam, Maritza-West basin, Bulgaria. Int. J. Coal Geol., 71, 527–541.

Kokouzas, N., Ward, C.R., Li, Z., 2010. Mineralogy of lignites and associated strata in the Mavropigi field of the Ptolemais Basin, northern Greece. Int. J. Coal Geol. 81, 182–190.

Kuhn, J.K., Fiene, F.L., Cahill, R.A., Gluskoter, H.J., Shimp, N.F., 1980. Abundance of trace and minor elements in organic and mineral fractions of coal. Environ. Geol. Notes, Ill. State Geol.
Surv., No. 88, 67 pp.

Large, D., Kelly, S., Spiro, B., Tian, L., Shao, L., Finkelman, R.B., Zhang, M., Somerfield, C., Plint, S., Ali, Y., Zhou, Y., 2009. Silica-volatile interaction and the geological cause of the Xuan Wei lung cancer epidemic. Environ. Sci. Technol. 43, 9016-9021.

Laudal, D.A., Benson, S.A., Addleman, R.S., Palo, D., 2018. Leaching behavior of rare earth elements in Fort Union lignite coals of North America. Int. J. Coal Geol. 191, 112-124.

Lawrence, L.J., Warne, S.St.J., Booker, M., 1960. Millerite in the Bulli coal seam. Australian Journal of Science 23, 87–88.

Li, B.Q., Zhuang, X.G., Li, J., Querol, X., Font, O., Moreno, N., 2016a. Geological controls on mineralogy and geochemistry of the Late Permian coals in the Liulong Mine of the Liuzhi Coalfield, Guizhou Province, Southwest China. Int. J. Coal Geol. 154, 1-15.

Li, D., Tang, Y., Deng, T., Chen, K., Liu, D., Cheng, F., 2008. Mineralogy of the No. 6 Coal from the Qinglong Coalfield, Guizhou Province, China. Energy Exploration & Exploitation 26, 347 – 353.

Li, Q., Shi, W., Yang, R., 2016b. Deformation mechanisms in a coal mine roadway in extremely swelling soft rock. Springerplus 5(1), 1310.

Li, Z., Moore, T.A., Weaver, S.D., Finkelman, R.B., 2001. Crocoite: an unusual mode of occurrence for lead in coal. Int. J. Coal Geol. 45, 289-293.

Lin, R., Soong, Y., Granite, E.J., 2018a. Evaluation of trace elements in U.S. coals using the USGS COALQUAL database version 3.0. Part I: Rare earth elements and yttrium (REY). Int. J. Coal Geol. 192, 1-13.

Lin, R., Soong, Y., Granite, E.J., 2018b. Evaluation of trace elements in U.S. coals using the USGS COALQUAL database version 3.0. Part II: Non-REY critical elements. Int. J. Coal Geol. 192, 39-50.

Liu, J., Ward, C.R., Graham, I.T., French, D., Dai, S., Song, X., 2018. Modes of occurrence of non-mineral inorganic elements in lignites from the Mile Basin, Yunnan Province, China. Fuel 222, 146-155.

Liu, J., Yang, Z., Yan, X., Ji, D., Yang, Y., Hu, L., 2015. Modes of occurrence of highly-elevated trace elements in superhigh-organic-sulfur coals. Fuel 156, 190-197.

Lipiarski, I., Muszyński, M., Wyszomirski, P., 2004 Alunites in the red beds of the “Marcel” coal mine, Upper Silesian Coal Basin, Poland. Miner. Polon. Vol. 35, No 1.

Lissner, A., 1956. Sitz. ber. deut. Akad. Wiss. Berlin, Kl. Chem., Geol., u. Biol., no. 1, 30 p. Cited
in Ode, 1963.

Liu, S., Ma, W., French, D., Tuo, K., Mei, X., 2019. Sequential Mineral Transformation during Underground Coal Gasification with the Presence of Coal Partings. Int. J. Coal Geol., 208, 1-11.

López-Buendia, A.M., Whateley, M.K.G., Bastida, J., Urquiola, M.M., 2007. Origins of mineral matter in peat marsh and peat bog deposits, Spain. Int. J. Coal Geol. 71, 246-262.

Mackowsky, M-Th., 1968. Mineral matter in coal. In: Murchison D.G., Westoll, T.S. (Eds.), Coal and Coal-bearing Strata. Oliver and Boyd, London, pp. 309-321.

Mark, C., Molinda, G.M., 2005. The Coal Mine Roof Rating (CMRR)—a decade of experience. Int. J. Coal Geol 64, 85-103.

Marshall, C. E., 1959, Petrology and preparation of certain (Permian) coal seams of India. Economic Geology 54, 20-56.

Matjie, R.H., Li, Z., Ward, C.R., Kosasi, J., Bunt, J.R., Strydom, C.A., 2015. Mineralogy of furnace deposits produced by South African coals during pulverized-fuel combustion tests. Energy Fuel. 29, 8226–8238.

Merritt, R.D., 1988. General trends in major, minor, and trace elements in coal with a comparative profile of Alaskan coal. J. Coal Qual. 7(3), 95-103.

Miller, B.G., 2017. 3- The Effect of Coal Usage on Human Health and the Environment, in: Miller, B.G. (Ed.), Clean Coal Engineering Technology (Second Edition). Butterworth-Heinemann, pp. 105-144.

Miller, R.N., Yarzab, R.F., Given, P.H., 1979. Determination of the mineral-matter contents of coals by low-temperature ashing. Fuel 58, 4 – 10.

Minkin, J.A., Chao, E.C.T., Thompson, C.L., 1979. Distribution of elements in coal macerals and minerals: determination by electron microprobe. American Chemical Society, Fuel Division Preprints, 242–249.

Mitra, G. B., 1954. Identification of inorganic impurities in coal by the X-ray method. Fuel 33, 316-330.

Montross, S.N., Verba, C.A., Chan, H.L., Lopano, C., 2018. Advanced characterization of rare earth element minerals in coal utilization byproducts using multimodal image analysis. Int. J Coal Geol. 195, 362-372.

Mraw, S.C., De Neufville, J.P., Freund, H., Baset, Z., Gorbaty, M.L., Wright, F.J., 1983. The science of mineral matter in coal. In: M.L. Gorbaty, J.W. Larsen and I. Wender (Editors). Coal Science,
Vol. 2. Academic Press, New York, pp. 1-64.

Mudd, G.M., Kodikara, J., 2000. Field studies of the leachability of aged brown coal ash. J. Hazard. Mater. 76, 159-192.

Mullai, F., 1984. Heavy mimnerals in coals of the coal-bearing basin of Tirana. Bul. Shkencave Gjeol. 3, 125-137.

Nalwalk, A.J., Friedel, R.A., Queiser, J.A., 1974. Peroxidation of coals-analysis of minerals. Energy Sources 1, 179-187.

Nelson, J. B., 1953, Assessment of the mineral species associated with coal. The British Coal Utilization Research Association Monthly Bulletin 17, 41-55.

Oliveira, M.L., Ward, C.R., French, D., Hower, J.C., Querol, X., Silva, L.F., 2012. Mineralogy and leaching characteristics of beneficiated coal products from Santa Catarina, Brazil. Int. J. Coal Geol. 94, 314 – 323.

Oliveira, M.L.S., Ward, C.R., Sampaio, C.H., Querol, X., Cutrimeo, C., Taffarel, S.R., Silva, L.F.O., 2013. Partitioning of mineralogical and inorganic geochemical components of coals from Santa Catarina, Brazil, by industrial beneficiation processes. Int. J. Coal Geol. 116, 75-92.

O’Gorman, J., 1971. Studies on mineral matter and trace elements in North American coals. Ph.D. dissertation, Penn State University.

O’Gorman, J.V., Walker, P.L., 1971. Mineral matter characteristics of some American coals. Fuel 50, 135–151.

Oskay, R.G., Christianis, K., Inaner, H., Salman, M., Taka, M., 2016. Palaeoenvironmental reconstruction of the eastern part of the Karapınar-Ayrancı coal deposit (Central Turkey). Int. J. Coal Geol. 163, 100-111.

Palmer, C.A., Wandless, M.V., 1985. Distribution of trace elements in coal minerals of selected eastern United States coals. Proc. Int. Conf. Coal Sci., Pergamon, Sydney, NSW, pp. 792-795.

Papanicolaou, C., Kotis, T., Foscolos, A., Goodarzi, F., 2004. Coals of Greece: a review of properties, uses and future perspectives. Int. J. Coal Geol. 58, 147-169.

Permana, A.K., Ward, C.R., Li, Z., Gurba, L.W., 2013. Distribution and origin of minerals in high-rank coals of the South Walker Creek area, Bowen Basin, Australia. Int. J. Coal Geol. 116–117, 185–207.

Petrov, N.P., 1963. Molybdenum in a brown coal deposit of Uzbekistan. Int. Geol. Rev. 5, 335-338
Pollock, S.M., Goodarzi, F., Riediger, C.L., 2000. Mineralogical and elemental variation of coal from Alberta, Canada: an example from the No. 2 seam, Genesee Mine. Int. J. Coal Geol. 43, 259-286.

Querol, X., Alastuey, A., Lopez-Soler, A., Plana, F., Fernandez-Turiel, J.L., Zeng, R., Xu, W., Zhuang, X., Spiro, B., 1997a. Geological controls on the mineral matter and trace elements of coals from the Fuxin basin, Liaoning Province, northeast China. Int. J. Coal Geol. 34, 89-109.

Querol, X., Alastuey, A., Plana, F., Lopez-Soler, A., Tuncali, E., Toprak, S., Ocakoglu, F., Koker, A., 1999. Coal geology and coal quality of the Miocene Mugla basin, southwestern Anatolia, Turkey. Int. J. Coal Geol. 41, 311-332.

Querol, X., Cabrera, L., Pickel, W., López-Soler, A., Hagemann, H.W., Fernández-Turiel, J.L., 1996. Geological controls on the coal quality of the Mequinenza subbituminous coal deposit, northeast Spain. Int. J. Coal Geol. 29, 67-91.

Querol, X., Chinenon, S., Lopez-Soler, A., 1989. Iron sulphide precipitation sequence in Albian coals from the Maestrazgo basin, southeastern Iberian Range, northeastern Spain. Int. J. Coal Geol. 11, 171–189.

Querol, X., Fernández-Turiel, J.L., López-Soler, A., Hagemann, H.W., Dehmer, J., Juan, R., Ruiz, C., 1991. Distribution of sulfur in coals of the Teruel mining district, Spain. Int. J. Coal Geol. 18, 327-346.

Querol X., Klika Z., Weiss, Z.,Finkelman, R.B.;,Juan R., Lopez-Soler A., Plana F., Kolker, A., Chenery, S., 2001, Determination of element affinities by density fractionation of bulk coal samples. Fuel. 80, 83-95.

Querol, X., Whateley, M.K.G., Fernandez-Turiel, J.L., Tuncali, E., 1997b. Geological controls on the mineralogy of the Bypazari lignite, central Anatolia, Turkey. Int. J. Coal Geol. 33, 255–271.

Raask, E., 1985. Mineral Impurities in Coal Combustion: Behavior, Problems, and Remedial Measures. Hemisphere Publishing Corporation, Washington, 484 p.

Rao, D. P., 1977. Petrographic, mineralogical and chemical characterization of certain arctic Alaskan coals from the Cape Beaufort region. Geological Association of Canada, Program with Abstracts, v. 2, p. 43.

Rao, C.P., Gluskoter, H.J., 1973. Occurrence and Distribution of Minerals in Illinois Coals. Illinois State Geological Survey Circular 476 (56 pp.).

Rao, P.D.,Walsh, D.E., 1997. Nature and distribution of phosphorus minerals in Cook Inlet coals, Alaska. Int. J. Coal Geol. 33, 19–42.
Rao, P.D., Walsh, D.E., 1999. Influence of environments of coal deposition on phosphorus accumulation in a high latitude, northern Alaska, coal seam. Int. J. Coal Geol. 38, 261 – 284.

Regina, J.R., DuPont, J.N., Marder, A.R., 2004. Corrosion behavior of Fe-Al-Cr alloys in sulfur- and oxygen-rich environments in the presence of pyrite. Corrosion 60, 501-509.

Rekus, A.F., Haberkorn, Ill, A.R., 1966. Identification of minerals in single particles of coal by the X-ray powder method. Journal of the Institute of Fuel 39, 474-477.

Ren, D., Zhao, F., Dai, S., Zhang, J., Luo, K., 2006. Geochemistry of Trace Elements in Coal. Science Press, Beijing. 556 pp. (in Chinese with English abstract).

Ribeiro, J., Suarez-Ruiz, I., Ward, C.R., Flores, D., 2016. Petrography and mineralogy of self-burning coal wastes fromanthracitemining in the El Bierzo Coalfield (NW Spain). Int. J. Coal Geol. 154-155, 92 – 106.

Riley, K.W., French, D.H., Farrell, O.P., Wood, R.A., Huggins, F.E., 2012. Modes of occurrence of trace and minor elements in some Australian coals. Int. J. Coal Geol. 94, 214-224.

Ruan, C.D., Ward, C.R., 2002. Quantitative X-ray powder diffraction analysis of clay minerals in Australian coals using Rietveld methods. Applied Clay Science 21, 227-240.

Ruppert, L., Finkelman, R., Boti, E., Milosavljevic, M., Tewalt, S., Simon, N., Dulong, F., 1996. Origin and significance of high nickel and chromium concentrations in Pliocene lignite of the Kosovo Basin, Serbia. Int. J. Coal Geol. 29, 235-258.

Sarofim, A.F., Howard, J.B., Padia, A.S., 1977. The physical transformation of the mineral matter in pulverized coal under simulated combustion conditions. Combustion Science and Technology 16, 187-204.

Seredin, V.V., 2012. From coal science to metal production and environmental protection: A new story of success. Int. J. Coal Geol. 90, 1-3.

Seredin, V.V., Dai, S., 2012. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol. 94, 67-93.

Seredin, V.V., Finkelman, R.B., 2008. Metalliferous coals: A review of the main genetic and geochemical types. Int. J. Coal Geol. 76, 253-289.

Shahhosseini, M., Doulati Ardejani, F., Baafi, E., 2017. Geochemistry of rare earth elements in a neutral mine drainage environment, Anjir Tangeh, northern Iran. Int. J. Coal Geol. 183, 120-135.

Shaver, S.A., Eble, C.F., Hower, J.C., Saussy, F.L., 2006. Petrography, palynology, and paleoecology
of the lower Pennsylvanian Bon Air coal, Franklin County, Cumberland Plateau, southeast Tennessee. Int. J. Coal Geol. 67, 17-46.

Shotyk, W., Nesbitt H.W., Fyfe, W.S., 1992. Natural and antropogenic enrichments of trace metals in peat profiles. Int. J. Coal Geol. 20, 49-84

Silva, L.F.O., Wollenschlager, M., Oliveira, M.L.S., 2011. A preliminary study of coalmining drainage and environmental health in the Santa Catarina region, Brazil. Environ. Geochem. Health 33, 55 – 65.

Spears, D.A., Arbuzov, S.I., 2019. A geochemical and mineralogical update on two major tonsteins in the UK Carboniferous Coal Measures. Int. J. Coal Geol. 210, 103199.

Spears, D.A., Zheng, Y., 1999. Geochemistry and origin of elements in some UK coals. Int. J. Coal Geol. 38, 161-179.

Spencer, L.J., 1910. On the Occurrence of Alstonite and Ullmannite (A Species New to Britain) in a Barytes-Witherite Vein at the New Brancepeth Colliery Near Durham Mineralogical Magazine 15, 302-311.

Spiro, B.F., Liu, J., Dai, S., Zeng, R., Large, D., French, D., 2019. Marine derived 87Sr/86Sr in coal, a new key to geochronology and palaeoenvironment: elucidation of the India-Eurasia and China-Indochina collisions in Yunnan, China. Int. J. Coal Geol. (under review).

Stewart, B.W., Capo, R.C., Hedin, B.C., Hedin, R.S., 2017. Rare earth element resources in coal mine drainage and treatment precipitates in the Appalachian Basin, USA. Int. J. Coal Geol. 169, 28-39.

Stutzer, O., 1940, Geology of Coal. University of Chicago Press, 461 p.

Sudo, T., Shimoda, S., Yotsumoto, H. and Aita, S., 1981. Electron Micrographs of Clay Minerals. Elsevier, Amsterdam, 203 pp.

Susilawati, R., Ward, C.R., 2006. Metamorphism of mineral matter in coal from the Bukit Asam deposit, south Sumatra, Indonesia. Int. J. Coal Geol. 68, 171–195.

Sutcu, E.C., Karayigit, A.I., 2015. Mineral matter, major and trace element content of the Afşin-Elbistan coals, Kahramanmaraş, Turkey. Int. J. Coal Geol. 144-145, 111-129.

Swaine, D. J., 1967, Inorganic constituents in Australian coals.

Swaine, D. J., 1975. Trace elements in coal. In Recent contributions to geochemistry and analytical chemistry. Tugarinov, A.I., editor. Israel Program for Scientific Translantions, Jerusalem. p. 539-550.
Swaine, D.J., 1990. Trace Elements in Coal. Butterworths, London, U.K. (278 pp.).

Tarriba, P.J., Gamson, P.D., Warren, J.K., 1995. Secondary mineralization in coal seams, Hunter Valley Coalfield, New South Wales: unique mode of occurrence for Sr–Ba–Ca carbonates. In: Boyd, R.L., McKenzie, G.A. (Eds.), Proceedings of the 29th Newcastle Symposium, “Advances in the Study of the Sydney Basin”. Department of Geology, University of Newcastle, Newcastle, New South Wales, pp. 87–93.

Tian, L., 2005. Coal Combustion Emissions and Lung Cancer in Xuan Wei, China. Ph.D. thesis, University of California, Berkeley.

Tian, L., Dai, S., Wang, J., Huang, Y., Ho, S.C., Zhou, Y., Lucas, D., Koshland, C.P., 2008. Nanoquartz in Late Permian C1 coal and the high incidence of female lung cancer in the Pearl River Origin area: a retrospective cohort study. BMC Public Health 8, 398.

Tian, C., Zhang, J., Zhao, Y., Gupta, R., 2014. Understanding of mineralogy and residence of trace elements in coals via a novel method combining low temperature ashing and float-sink technique. Int. J. Coal Geol. 131, 162-171.

Ural, S., Akyıldız, M., 2004. Studies of the relationship between mineral matter and grinding properties for low-rank coals. Int. J. Coal Geol. 60, 81-84.

Valentim, B., Flores, D., Guedes, A., Shreya, N., Paul, B., Ward, C.R., 2016. Vermicular kaolinite relics in fly ash derived from Bokaro and Jharia coals (Jharkhand, India). Int. J. Coal Geol. 162, 151-157.

Vassilev, S.V., Eskenazy, G.M., Vassileva, C.G., 2000. Contents, modes of occurrence and origin of chlorine and bromine in coal. Fuel 79, 903-921.

Vassilev, S.V., Menendez, R., Alvarez, D., Diaz-Somoano, M., Martinez-Tarazona, M.R., 2003. Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 1. Characterization of feed coals and fly ashes. Fuel 82, 1793 – 1811.

Vassilev, S.V., Vassileva, C.G., Karayigit, A.I., Bulut, Y., Alastuey, A., Querol, X., 2005. Phase-mineral and chemical composition of composite samples from feed coals, bottom ashes and fly ashes at the Soma power station, Turkey. Int. J. Coal Geol. 61, 35 – 63.

Vassilev, S.V., Yossifova, M.G., Vassileva, C.G., 1994. Mineralogy and geochemistry of Bobov Dol coals, Bulgaria. Int. J. Coal Geol. 26, 185-213.

Vertushkov, G. N., 1953, Messelite from the Kustanaya region Kazakhstan S.S.R. Chemical Abstracts 80 (18), 450-451.

Wagner, M., 1982. Doppleritization of xylitic coal in the light of petrographic and chemical investigations. Int. J. Coal Geol. 2, 181-194.
Wagner, N.J., Tlotleng, M.T., 2012. Distribution of selected trace elements in density fractionated Waterberg coals from South Africa. Int. J. Coal Geol. 94, 225-237.

Wagner, N.J., Matiane, A., 2018. Rare earth elements in select Main Karoo Basin (South Africa) coal and coal ash samples. Int. J. Coal Geol. 196, 82-92.

Wang, W., Qin, Y., Liu, J., Li, J., Yuan, L., 2012. Mineral microspherules in Chinese coal and their geological and environmental significance. Int. J. Coal Geol. 94, 111-122.

Wang, X., Wang, X., Pan, S., Yang, Q., Hou, S., Jiao, Y., Zhang, W., 2018. Occurrence of analcime in the middle Jurassic coal from the Dongsheng Coalfield, northeastern Ordos Basin, China. Int. J. Coal Geol. 196, 126-138.

Ward, C.R., 1974. Isolation of mineral matter from Australian bituminous coals using hydrogen peroxide. Fuel 53, 220-221.

Ward, C.R., 1991. Mineral matter in low-rank coals and associated strata of the Mae Moh Basin, northern Thailand. Int. J. Coal Geol. 17, 69–93.

Ward, C.R., 1992. Mineral matter in Triassic and Tertiary low-rank coals from South Australia. Int. J. Coal Geol. 20, 185–208.

Ward, C.R., 2002. Analysis and significance of mineral matter in coal seams. Int. J. Coal Geol. 50, 135 – 168.

Ward, C.R., 2016. Analysis, origin and significance of mineral matter in coal: An updated review. Int. J. Coal Geol. 165, 1-27.

Ward, C.R., Corcoran, J.F., Saxby, J.D., Read, H.W., 1996. Occurrence of phosphorus minerals in Australian coal seams. Int. J. Coal Geol. 30, 185-210.

Ward, C.R., Bocking, M., Ruan, C.D., 2001a. Mineralogical analysis of coals as an aid to seam correlation in the Gloucester Basin, New South Wales, Australia. Int. J. Coal Geol. 47, 31-49.

Ward, C.R., Roberts, F.I., 1990. Occurrence of spherical halloysite in bituminous coals of the Sydney Basin, Australia. Clays and Clay Minerals 38, 501–506.

Ward, C.R., Spears, D.A., Booth, C.A., Staton, I., Gurba, L.W., 1999. Mineral matter and trace elements in coals of the Gunnedah Basin, New South Wales, Australia. Int. J. Coal Geol. 40, 281 – 308.

Ward, C.R., Taylor, J.C., Matulis, C.E., Dale, L.S., 2001b. Quantification of mineral matter in the Argonne Premium Coals using interactive Rietveld-based X-ray diffraction. Int. J. Coal Geol. 46, 67-82.
Weber, P.A., Skinner, W.M., Hughes, J.B., Lindsay, P., Moore, T.A., 2006. Source of Ni in coal mine acid rock drainage, West Coast, New Zealand. Int. J. Coal Geol. 67, 214-220.

Wei, Q., Dai, S., Lefticariu, L., Costin, G., 2018. Electron probe microanalysis of major and trace elements in coals and their low-temperature ashes from the Wulantuga and Lincang Ge ore deposits, China. Fuel 215, 1-12.

Wert, C.A., Hsieh, K.-C., Tseng, B.-H., Ge, Y.-P., 1987. Applications of transmission electron microscopy to coal chemistry. Fuel 66, 914-920.

White, E. W., 1958. Uranium mineralization in some North and South Dakota lignites. M. S. Thesis, Department of Mineralogy, The Pennsylvania State University, 79 p. Cited in Akers et al., (1978).

Yossifova, M.G., 2007. Mineral and inorganic chemical composition of the Pernik coal, Bulgaria. Int. J. Coal Geol. 72, 268-292.

Yossifova, M.G., 2014. Petrography, mineralogy and geochemistry of Balkan coals and their waste products. Int. J. Coal Geol. 122, 1-20.

Yossifova, M.G., Eskenazy, G.M., Valčeva, S.P., 2011. Petrology, mineralogy, and geochemistry of submarine coals and petrified forest in the Sozopol Bay, Bulgaria. Int. J. Coal Geol. 87, 212-225.

Yudovich, Ya.E., Ketris, M.P., 2006a. Selenium in coal: A review. Int. J. Coal Geol. 67, 112-126.

Yudovich, Ya.E., Ketris, M.P., 2006b. Chlorine in coal: A review. Int. J. Coal Geol. 67, 127-144.

Yudovich, Ya. E., Ketris, M.P., Merts, A.V., 1985. Trace Elements in Fossil Coals. Nauka [Science Publ. House], Leningrad (239 pp).

Zák, K., Skála, R., 1993. Carbon isotopic composition of whewellite (CaC$_2$O$_4$·H$_2$O) from different geological environments and its significance. Chem. Geol. 106, 123–131.

Zhao, L., Dai, S., Nechaev, V.P., Nechaeva, E.V., Graham, I.T., French, D., Sun, J., 2019. Enrichment of critical elements (Nb-Ta-Zr-Hf-REE) within coal and host rocks from the Datanhao mine, Daqingshan Coalfield, northern China. Ore Geo. Rev. 111, 102951.

Zhao, L., Ward, C.R., French, D., Graham, I.T., 2012a. Mineralogy of the volcanic-influenced Great Northern coal seam in the Sydney Basin, Australia. Int. J. Coal Geol. 94, 94 – 110.

Zhao, L., Ward, C.R., French, D., Graham, I.T., 2014. Mineralogy and inorganic geochemistry of the Early Permian Greta seam, Sydney Basin, Australia. Aust. J. Earth Sci. 61, 375 – 394.
Zhao, L., Ward, C.R., French, D., Graham, I.T., Dai, S., Yang, C., Xie, P., Zhang, S., 2018. Origin of a kaolinite-NH$_4$-illite-pyrophylite-chlorite assemblage in a marine-influenced anthracite and associated strata from the Jincheng Coalfield, Qinshui Basin, Northern China. Int. J. Coal Geol. 185, 61-78.

Zhao, Y., Zhang, J., Zheng, C., 2012b. Transformation of aluminium-rich minerals during combustion of a bauxite-bearing Chinese coal. Int. J. Coal Geol. 94, 182 – 190.
Table 1. Minerals reported in coal and coal low temperature ash (LTA). The data is taken primarily from Finkelman (1980) and Ward (2016) but with additional information from various sources. The minerals in **bold** have been confirmed by X-ray diffraction, a unique chemistry, or multiple observations. The validity of those in *italics* has not been confirmed.

Class	Mineral	Formula	Abundance	Comment	Sources
Elements	Gold	Au	Rare		Finkelman et al. (1979), Seredin and Finkelman (2008)
Elements	Diamond	C	Rare		This study
Elements	Sulfur	S	Rare		Stutzer (1940), Chou (2012)
Sulfides	Bornite	Cu₅FeS₄	Rare		Swaine (1967, 1975), Li et al. (2008), Hower et al., 2018b
Sulfides	Argentite	Ag₂S	Rare		Finkelman et al. (1979), Seredin and Finkelman (2008)
Sulfides	Pentlandite	(Fe,Ni)₅S₈	Rare		Belkin et al. (2010)
Sulfides	Chalcopyrite	CuFeS₂	Common		
Sulfides	Greenockite	CdS	Rare		Hower et al. (2018b)
Sulfides	Covellite	CuS	Rare		Karayigit et al. (2000b)
Sulfides	Sphalerite	ZnS	Common		
Sulfides	Pyrrhotite	Fe₁₋ₓS	Rare		Finkelman et al. (1979), Vassilev et al. 1994), Yossifova et al. (2007)
Sulfides	Millerite	NiS	Uncommon		Lawrence et al. (1960), Dai et al. (2015f)
Sulfides	Galena	PbS	Common		
Sulfides	Se-bearing	Pb(Se,S)	Rare		Dai et al. (2006a)
Sulfides	Alabandite	MnS	Rare		Dai et al. (2007)
Sulfides	Cinnabar	HgS	Rare		Finkelman (1980); Dvornikov (1990)
Sulfides	Linnaeite	Co³⁺Co³⁺₂S₄	Uncommon		Finkelman et al. (1979)
Sulfides	Polydimite	Ni$_{2+}$Ni$_{3+}$S$_4$	Rare	Kullerud G, personal communication, 1980; Coveney et al. (1994)	
----------	------------	------------------------	------	---	
Sulfides	Siegenite	(Ni,Co)$_3$S$_4$	Rare	Dai et al. (2015f)	
Sulfides	Greigite	Fe$_3$S$_4$	Rare	Harvey and Ruch (1984); Bouška and Pešek (1999)	
Sulfides	Bismuthinite	Bi$_2$S$_3$	Rare	Finkelman (1981), Karayigit et al. (2000a)	
Sulfides	Stibnite	Sb$_2$S$_3$	Rare	Karayigit et al. (2000b)	
Sulfides	Molybdenite	MoS$_2$	Rare	Hower et al. (2000), Seredin and Finkelman (2008)	
Sulfides	Cattierite	CoS$_2$	Rare	Dai et al. (2015f)	
Sulfides	Pyrite	FeS$_2$	Common		
Sulfides	Marcasite	FeS$_2$	Uncommon	Querol et al. (1989); Kolker (2012)	
Sulfides	Arsenopyrite	FeAsS	Rare	Ding et al. (2001)	
Sulfides	Mullmannite	NiSbS	Rare	Sarofin et al. (1977), Finkelman (1995)	
Sulfides	Realgar	α-As$_4$S$_4$	Rare	Cech and Petrík (1973), Brownfield et al. (2005)	
Sulfides	Orpiment	As$_2$S$_3$	Rare	Cech and Petrík (1973), Ding et al. (2001)	
Sulfides	Getchellite	AsSbS$_3$	Rare	Dai et al. (2006b)	
Selenides	Tiemannite	HgSe	Rare	Dvornikov (1990); Finkelman (2003)	
Selenides	Eskebornite	CuFeSe$_2$	Rare	Dai et al. (2015f)	
Selenides	Clausthalite	PbSe	Common		
Selenides	Krutaite	CuSe$_2$	Rare	Dai et al. (2015f)	
Selenides	Ferroselite	FeSe$_2$	Rare	Dai et al. (2015f)	
Halides	Halite	NaCl	Uncommon	Kalaitzidis et al. (2010); Karayığı et al. (2015)	
Halides	Sylvite	KCl	Uncommon	Cressey and Cressey (1988); Vassilev et al. (1994)	
Halides	Bischofite	MgCl$_2$·6H$_2$O	Rare	Mackowsky (1968), Finkelman (1981)	
Fluorides	Fluorite	CaF$_2$	Rare	Dai et al. (2013a)	
Oxides	Spinel	MgAl$_2$O$_4$	Rare	Alekseev (1960), Hower et al. (2018b)	
Oxides	Compound	Formula	Abundance	References	
------------	-------------------	------------------	-----------	--------------------------------------	
Chromite	(Mg,Fe)Cr$_2$O$_4$	Rare		Finkelman and Stanton (1978), Ruppert et al. (1996)	
Magnetite	FeFe$_2$O$_4$	Uncommon		Pollock et al. (2000)	
Corundum	Al$_2$O$_3$	Rare		Finkelman et al. (1979), Vassilev et al. (1994)	
Hematite	Fe$_2$O$_3$	Uncommon		Silva et al. (2011)	
Ilmenite	FeTiO$_3$	Uncommon		Mullai (1984); Ruppert et al. (1996); Ward et al. (1999)	
Cassiterite	SnO$_2$	Rare		O’Gorman (1971); Merritt (1988)	
Rutile	TiO$_2$	Common			
Anatase	TiO$_2$	Common			
Brookite	TiO$_2$	Uncommon		Cressey and Cressey (1988)	
Columbite	(Fe,Mn)Nb$_2$O$_6$	Rare		Merritt (1988)	
Brannerite	UTi$_2$O$_4$	Rare		Dai et al. (2015d,f)	
Uraninite	UO$_2$	Rare		Finkelman (1981), Dai et al. (2015d,f)	
Diaspore	α-AlO(OH)	Uncommon		Dai et al. (2012c)	
Goethite	FeO(OH)	Uncommon		Huggins et al. (1980), Ural and Akyildiz (2004)	
Gibbsite	Al(OH)$_3$	Uncommon		Kalkreuth et al. (2010)	
Boehmite	γ-AlO(OH)	Uncommon		Ward (2002), Dai et al. (2006a)	
Lepidocrocite	γ-FeO(OH)	Uncommon		Huggins et al. (1980), Kostova and Zdravkov (2007)	
Ilsemannite	Mo$_x$O$_{y}$·nH$_2$O	Rare		Petrov (1963)	
Becquerelite	Ca(UO$_2$)$_2$O$_4$(OH)$_n$.8H$_2$O	Rare		Akers et al. (1978)	
Calcite	CaCO$_3$	Common			
Aragonite	CaCO$_3$	Uncommon		Ward (2002)	
Magnesite	MgCO$_3$	Uncommon		Brown et al. (1959), Kortenski (1992)	
Siderite	FeCO$_3$	Common			
	Mineral	Chemical Formula	Abundance	References	
----------	--------------	-----------------------	-----------	---	
Carbonates	Ankerite	Ca(Fe, Mg, Mn)(CO$_3$)$_2$	Common		
Carbonates	Dolomite	CaMg(CO$_3$)$_2$	Common		
Carbonates	Strontianite	SrCO$_3$	Rare	Dai et al. (2013b, 2018c)	
Carbonates	Witherite	BaCO$_3$	Uncommon	Kortenski and Sotirov (2004)	
Carbonates	Alstonite	BaCa(CO$_3$)$_2$	Rare	Spencer (1910), Tarriba et al. (1995), Ward (2002)	
Carbonates	Malachite	Cu$_2$CO$_3$(OH)$_2$	Rare	Shotyk et al. (1992)	
Carbonates	Dawsonite	NaAlCO$_3$(OH)$_2$	Uncommon	Cook (1976), Golab et al. (2006), Dai et al. 2008a, Zhao et al. (2014)	
Carbonates	Bastnaesite	(Ce,La)CO$_3$F	Rare	Dai et al. (2017)	
Nitrates			Rare		
Sulfates	Thenardite	Na$_2$SO$_4$	Rare	O’Gorman and Walker (1971)	
Sulfates	Glauberite	Na$_2$Ca(SO$_4$)$_2$	Rare	Ward (2002, 2016)	
Sulfates	Anhydrite	CaSO$_4$	Uncommon	Filippidis et al. (1996); Matjie et al. (2015)	
Sulfates	Barite	BaSO$_4$	Common		
Sulfates	Celestine	SrSO$_4$	Rare	Originally described as celestite, Alekseev (1960), Dai et al. (2013b, 2014a, 2016b)	
Sulfates	Alunite	KAl$_3$(SO$_4$)$_2$(OH)$_6$	Uncommon	Dawson et al. (2012), Ward (2016)	
Sulfates	Natroalunite	(Na,K)Al$_3$(SO$_4$)$_2$(OH)$_6$	Uncommon	Lipiarski et al. (2004)	
Sulfates	Jarosite	KFe$_3$(SO$_4$)$_2$(OH)$_6$	common		
Sulfates	Natrojarosite	(Na,K)Fe$_3$(SO$_4$)$_2$(OH)$_6$	Uncommon	Dawson et al. (2012)	
Sulfates	Kieserite	MgSO$_4$.H$_2$O	Rare	Mackowsky (1968), Ward (1991)	
Sulfates	Szomolnokite	FeSO$_4$.H$_2$O	Uncommon	Rao and Gluskoter (1973), Oliveira et al. (2012), Dai et al. (2013b)	
Sulfates	Rozenite	FeSO$_4$.4H$_2$O	Uncommon	Querol et al. (1991)	
Sulfates	Siderotil	FeSO$_4$.5H$_2$O	rare	Finkelman et al. (1979), Li et al. (2016a)	
Minerals	Name	Formula	State	References	
----------	---------------	------------------	-----------	--	
Sulfates	Hexahydrate	MgSO$_4$.6H$_2$O	Uncommon	Foscolos et al. (1989), Ward (1991, 1992)	
Sulfates	Melanterite	FeSO$_4$.7H$_2$O	Uncommon	Rao and Gluskoter (1973), Oliveira et al. (2012)	
Sulfates	Epsomite	MgSO$_4$.7H$_2$O	Uncommon	Querol et al. (1991), Ward (1992), López-Buendía et al. (2007)	
Sulfates	Alunogen	Al$_2$(SO$_4$)$_3$.17H$_2$O	Uncommon	Frazer and Belcher (1973), Miller et al. (1979), Ward et al. (2001b)	
Sulfates	Coquimbite	Fe$_2$(SO$_4$)$_3$.9H$_2$O	Uncommon	Rao and Gluskoter (1973), Oliveira et al. (2012)	
Sulfates	Romerite	FeFe$_2$(SO$_4$)$_4$.12H$_2$O	Rare	Gluskoter (1975)	
Sulfates	Halotrichite	FeAl$_2$(SO$_4$)$_4$.22H$_2$O	Uncommon	Shaver et al. (2006)	
Sulfates	Pickeringite	MgAl$_2$(SO$_4$)$_4$.22H$_2$O	Uncommon	Cobb et al. (1979), Ward (2016)	
Sulfates	Al-rich		Uncommon	Cobb et al. (1979)	
Sulfates	Kalinite	KAl(SO$_4$)$_2$.11H$_2$O	Uncommon	Stutzer (1940)	
Sulfates	Alum-(K)	KAl(SO$_4$)$_2$.12H$_2$O	Uncommon	Foscolos et al. (1989), Ward (1991, 1992)	
Sulfates	Tschermigite	NH$_4$Al(SO$_4$)$_2$.12H$_2$O	Uncommon	Mackowsky (1968), López-Buendía et al. (2007)	
Sulfates	Blödite	Na$_2$Mg(SO$_4$)$_2$.4H$_2$O	Uncommon	Yossifova (2007, 2014)	
Sulfates	Mirabilite	Na$_2$SO$_4$.10H$_2$O	Uncommon	Mackowsky (1968), López-Buendía et al. (2007)	
Sulfates	Gypsum	CaSO$_4$.2H$_2$O	Common		
Sulfates	Bassanite	CaSO$_4$.0.5H$_2$O	Common		
Sulfates	Copiapite	FeFe$_4$(SO$_4$)$_6$(OH)$_2$.20H$_2$O	Uncommon	Querol et al. (1991)	
Sulfates	Aluminate	Al$_2$SO$_4$(OH)$_4$.7H$_2$O	Uncommon	Ward et al. (2001b), Cutruneo et al. (2014)	
Sulfates	Sideronatrite	Na$_2$Fe(SO$_4$)$_2$(OH)$_2$.3H$_2$O	Uncommon		
Chromates	Crocoite	PbCrO$_4$	Uncommon	Li et al. (2001)	
Phosphates	Xenotime	YPO$_4$	Uncommon	Finkelman and Stanton (1978); Dai et al. 2016a	

42
Phosphates	Monazite	CePO₄	Uncommon	Hower et al. (1999); Dai et al. (2014a, 2015a)	
Phosphates	Crandallite	Ca₃Al₃(PO₄)₂(OH)₃·H₂O	Uncommon	Cressey and Cressey (1988), Ward et al. (1996), Rao and Walsh (1997, 1999), Dai et al. (2015a)	
Phosphates	Goyazite	Sr₃Al₃(PO₄)₂(OH)₃·H₂O	Uncommon	Cressey and Cressey (1988), Ward et al. (1996), Rao and Walsh (1997, 1999), Dai et al. (2015a)	
Phosphates	Gorceixite	Ba₃Al₃(PO₄)₂(OH)₃·H₂O	Uncommon	Cressey and Cressey (1988), Ward et al. (1996), Rao and Walsh (1997, 1999), Dai et al. (2015a)	
Phosphates	Florencite	Ce₃Al₃(PO₄)₂(OH)₆	Uncommon	Cressey and Cressey (1988), Ward et al. (1996), Rao and Walsh (1997, 1999), Dai et al. (2015a)	
Phosphates	Crandallite	Ca₅(PO₄)₃(F,Cl,OH)	Common	Cressey and Cressey (1988), Ward et al. (1996), Rao and Walsh (1997, 1999), Dai et al. (2015a)	
Phosphates	Vivianite	Fe³⁺₃(PO₄)₂·8H₂O	Rare	Akers et al. (1978), Ward et al. (1996)	
Phosphates	Messelite	Ca₂(Fe²⁺,Mn³⁺)(PO₄)₂·H₂O	Rare	Vertushkov (1953)	
Phosphates	Rhabdophane	Ce(PO₄)·H₂O	Uncommon	Dai et al. (2014b, 2015a)	
Phosphates	Autinite	Ca(UO₂)₂(PO₄)₂·10-12H₂O	Rare	Akers et al. (1978)	
Phosphates	Meta-autinite	Ca(UO₂)₂(PO₄)₂·2-6H₂O	Rare	Akers et al. (1978)	
Phosphates	Chernikovite	(H₂O)(UO₂)(PO₄)₃·3H₂O	Rare	Originally described as H-autinite Akers et al. (1978)	
Phosphates	Na-Atunite	Na₂(UO₂)₂(PO₄)₂·8H₂O	Rare	Akers et al. (1978)	
Phosphates	Metaurancircite	Ba(UO₂)(PO₄)₂·6-8H₂O	Rare	Akers et al. (1978)	
Phosphates	Torbernite	Cu(UO₂)(PO₄)₂·12H₂O	Rare	Akers et al. (1978), Eskenazy and Velichkov (2012)	
Phosphates	Saleeite	Mg(UO₂)(PO₄)₂·10H₂O	Rare	Akers et al. (1978)	
Phosphates	Metatorbernite	Cu(UO₂)(PO₄)₂·8H₂O	Rare	Akers et al. (1978)	
Phosphates	Sabugalite	HAI(UO₂)₄(PO₄)₄·16H₂O	Rare	Akers et al. (1978)	
Arsenates	Zeunerite	Cu(UO₂)₂(AsO₄)₂·10-16H₂O	Rare	Akers et al. (1978), Eskenazy and Velichkov (2012)	
Arsenates	Abernathyite	K(UO₂)(AsO₄)₃·3H₂O	Rare	Akers et al. (1978)	
Category	Mineral	Formula	Abundance	References	
-------------------	------------------	--	-----------	--	
Vanadates	Carnotite	$K_2(UO_2)(VO_4)_{2.3}H_2O$	Rare	Akers et al. (1978), Papanicolaou et al. (2004), Dai and Finkelman (2018)	
Silicates	Olivine	$(Mg,Fe)_2SiO_4$	Rare	Erkoyun et al. (2017), This study	
Silicates	Zircon	$ZrSiO_4$	Common		
Silicates	Coffinite	$U(SiO_4)_{2.4}OH_{4x}$	Rare	Akers et al. (1978), Dai et al. (2015f)	
Silicates	Titanite	$CaTiSiO_4(O,OH,F)$	Rare	Originally described as sphene	
Silicates	Garnet	$(Mg,Fe,Mn,Ca)_3(Al,FeTi,Cr)Si_3O_12	Uncommon	Finkelman and Stanton (1978), Sutcu and Karayigit (2015)	
Silicates	Grossular	$Ca_3Al_2Si_3O_{12}$	Rare	Originally described as grossularite	
Silicates	Mullite	$Al^{4+}_{2.2}Si_{2.2}O_{10-x}$	Rare	Mitra (1954), Wang et al. (2012)	
Silicates	Andalusite	$Al_2(SiO_4)O$	Rare	Marshall (1959), Golab and Carr (2004)	
Silicates	Kyanite	$Al_2(SiO_4)O$	Rare		
Silicates	Uranophane	$Ca(UO_2)_2SiO_3(OH)_{2.5}H_2O$	Rare	Akers et al. (1978)	
Silicates	Staurolite	$(Fe,Mg,Zn)_3(Al,FeTi)_3O_6[[Si,Al]O_4][O,OH]_{4}$	Rare		
Silicates	Topaz	$Al_3SiO_4(OH,F)_{2}$	Rare	Nelson, (1953)	
Sorosilicates	Epidote	$Ca_2Al_2O((Al,Fe,Mn)OH[Si2O_7]SiO_4$	Uncommon	Kortenski and Sotirov (2000)	
Sorosilicates	Allanite	$(Ca,Mn,Ce,La,Y,Th)_3(Fe^{2+},Fe^{3+},Ti)(Al,Fe^{3+})_3O_6[[Si,Al]O_4][O,OH]_{4}$	Rare	Finkelman and Stanton (1978)	
Cyclosilicates	Tourmaline	$(Na,Ca)(Mg,Fe,Mn,Li,Al)_{3}(Al,Mg,Fe^{3+})_{3}[Si_{6}O_{18}]BO_{3}[[Si,Al]O_4][O,OH]_{4}(OH,F)$	Uncommon	Querol et al. (1996), Boyd (2002)	
Inosilicates	Pyroxene	$(Ca,Na,Li)(Mg,Fe^{2+},Fe^{3+},Mn,CrAl)Si_2O_6$	Uncommon	Brownfield et al. (1995)	
Mineral Class	Type	Formula	Abundance	Source(s)	
--------------	------	---------	-----------	-----------	
Inosilicate	Diopside	CaMgSi$_2$O$_6$	Rare	Finkelman and Stanton (1978)	
Inosilicate	Augite	(Ca, Mg, Fe$^{2+}$),Al)Si$_2$O$_6$	Uncommon	Kortenski and Sotirov (2002), Grigore and Sakurovs (2016)	
Inosilicate	Amphibole	(Na, K, Ca)(Na, Mg, Fe$^{3+}$, Mn$^{2+}$, Al, Fe$^{3+}$, Cr$^{3+}$, Mn$^{3+}$, Ti)$_2$(Si, Al, Ti)O$_{22}$(OH, F, Cl, O)$_2$	Uncommon	Yossifova et al. (2011)	
Inosilicate	Hornblende	Ca$_2$(Mg, Fe$^{2+}$)$_4$Al(Si$_7$AlO$_{22}$)(OH, F)$_2$	Rare	Francis (1961), Brownfield et al. (1995), Erik and Sancar (2010)	
Inosilicate	Magnesioarfvedsonite	(Na, K)Na$_2$Mg$_4$Fe$^{3+}$Si$_8$O$_{22}$(OH)$_2$	Rare	Finkelman and Stanton (1978)	
Phyllosilicate-Mica	Muscovite	KAl$_2$(AlSi$_3$)O$_{10}$OH$_2$	Uncommon	Dai et al. (2018b)	
Phyllosilicate-Mica	Paragonite	NaAl$_2$(AlSi$_3$)O$_{10}$OH$_2$	Uncommon	Susilawati and Ward (2006); Permana et al. (2013)	
Phyllosilicate-Mica	Roscoelite	KV$_2$(AlSi$_3$)O$_{10}$OH$_2$	Rare	Dai et al. (2017)	
Phyllosilicate-Mica	Biotite	K(Mg, Fe$^{3+}$)$_3$(Al, Fe$^{3+}$)Si$_3$O$_{10}$(OH, F)$_2$	Uncommon	Erkoyun et al. (2019)	
Phyllosilicate	Talc	Mg$_6$Si$_8$O$_{20}$(OH)$_4$	Rare	Finkelman and Stanton (1978)	
Phyllosilicate-Chlorite	Pyrophyllite	Al$_4$(Si$_8$O$_{20}$)(OH)$_4$	Uncommon	Dai et al. (2018b)	
Phyllosilicate-Chlorite	Chlorite	[Mg, Fe$^{2+}$, Fe$^{3+}$, Mn, Ni, Na, Li, Al]$_4$[Si$_8$Al$_2$O$_{10}$](OH)$_8$	Uncommon	Dai and Chou (2007); Dai et al. (2018b)	
Phyllosilicate-Chlorite	Chamosite	Fe$^{3+}$[Fe$^{2+}$, Al]$_2$Si$_6$Al$_2$(OH)$_{16}$	Uncommon	Also includes material previously identified as thuringite (no longer a valid mineral name)	Dai and Chou (2007)
Phyllosilicate-Chlorite	Cookeite	Al$_4$(Li$_2$,Al$_2$)[Si$_6$Al$_2$O$_{20}$](OH)$_{16}$	Uncommon	Zhao et al. (2018)	
Phyllosilicate-Chlorite	Pennantite	Mn$^{2+}$(Mn$^{3+}$, Al)[Si_6Al_2$]O$_{20}(OH)_{16}$	Rare		
Phyllosilicate-Chlorite	Clinohlore	Mg₅Al(AlSi₃O₁₀)(OH)₈	Uncommon	Originally identified as prochlorite (no longer a valid mineral name)	Montross et al. (2018)
-------------------------	------------	----------------------	----------	--	----------------------
Phyllosilicate-Chrysotile	Chrysotile	Mg₃Si₂O₅(OH)₄	Rare		Rekus and Haberkorn (1966); Brownfield et al. (1995)
Phyllosilicate-Kaolinite	Kaolinite	Al₂[Si₂O₅](OH)₄	Common		Nalwalk et al. (2017); Zhao et al. (2013), Zhao et al. (2018)
Phyllosilicate-Dickite	Dickite	Al₂[Si₂O₅](OH)₄	Uncommon		Nalwalk et al. (1974), Permana et al. (2013), Zhao et al. (2018)
Phyllosilicate-Nacrite	Nacrite	Al₂[Si₂O₅](OH)₄	Rare		Nalwalk et al. (1974), Permana et al. (2013)
Phyllosilicate-Halloysite	Halloysite	Al₂[Si₂O₅](OH)₄·2H₂O	Uncommon		Ward and Roberts (1990)
Phyllosilicate-Allophane	Allophane	(Al₂O₃)(SiO₂)₁·3·2·2.5·3H₂O	Rare		Deul (1959), Sudo et al. (1981)
Phyllosilicate-Illite	Illite	K₀.₆₅(Al,Fe,Mg)₂·₀·₆[Al₀.₆₅,Σ₁.₅]O₁₀(OH)₂	Common	Includes hydromuscovite and hydromica as these are no longer valid names	
Phyllosilicate-Glaucopite	Glaucopite	K₀.₈R³⁺₁₃.₃₃R²⁺₀.₆₇₂(Al₀.₁₃,Σ₁.₃₈)O₁₀(OH)₂	Rare		Falcon (1978)
Phyllosilicate-Brammallite	Brammallite	Na₀.₆₅Al₂·₀[A[₀.₆₅,Σ₁.₅]O₁₀(OH)₂	Rare		Foster and Feicht (1946)
Phyllosilicate-Tobelite	Tobelite	NH₆Al₂(AlSi₂)O₁₀OH₂	Uncommon		Daniels and Altaner (1993), Dai et al. (2012c, 2017), Permana et al. (2013)
Phyllosilicate-Smectite	Smectite	M₄⁺(Si₄)[Al₂−₄⁺(Mg,Fe)₄]O₁₀(OH)₂.nH₂O	Uncommon		Zhao et al. (2012a, 2012b)
Phyllosilicate-Montmorillonite	Montmorillonite	M₄⁺(Si₄,Al₂⁺)O₁₀(OH)₂.nH₂O	Uncommon		Zhao et al. (2012a, 2012b)
Phyllosilicate-Beidellite	Beidellite	M₄⁺(Si₄⁺,Al₂⁺)O₁₀(OH)₂.nH₂O	Rare		Erkoyun et al. (2017)
Mineral Type	Name	Formula	Rarity	References	
----------------------	-------------------	--	----------	-----------------------------------	
Phyllosilicate-Clay	Nontronite	$M_x(Si_{4-x},Al_x)(Fe^{3+})_2O_{10}(OH)_2.nH_2O$	Rare	Ruppert et al. (1996), Liu et al. (2019)	
Phyllosilicate-Clay	Vermiculite	$Mg_x(H_2O)_n[(Si,Al)_4(Mg,Al,Fe)_3O_{20}](OH)_2$	Rare	Valentim et al. (2016)	
Tectosilicate silica minerals	Quartz	SiO$_2$	Common		
Tectosilicate silica minerals	Opal	SiO$_2$.nH$_2$O	Uncommon	Querol et al. (1999)	
Tectosilicate silica minerals	Chalcedony	SiO$_2$	Uncommon	Burger et al. (1990)	
Tectosilicate feldspars	Microcline	KAISi$_3$O$_8$	Uncommon	Querol et al. (1997a)	
Tectosilicate feldspars	Orthoclase	KAISi$_3$O$_8$	Uncommon	Golab and Carr (2004)	
Tectosilicate feldspars	Sanidine	[Na,K]AlSi$_3$O$_8$	Uncommon	Dai et al. (2008a, 2018a)	
Tectosilicate feldspars	Plagioclase	NaAlSi$_3$O$_8$	Uncommon	Zhao et al. (2012a), Dai et al. (2018a)	
Tectosilicate feldspars	Anorthite	CaAl$_2$Si$_3$O$_8$	Uncommon	Kortenski and Sotirov (2000)	
Tectosilicate feldspars	Albite	NaAlSi$_3$O$_8$	Uncommon	Dai et al. (2013b, 2018a,c)	
Tectosilicate feldspars	Buddingtonite	NH$_4$AlSi$_3$O$_8$	Uncommon	Dai et al. (2018c)	
Tectosilicate-zeolite	Analcime	Na[AlSi$_2$O$_4$].H$_2$O	Rare	Rao (1977), Finkelman (1988), Wang et al. (2018)	
Tectosilicate-zeolite	Heulandite	(Ca$_{0.5}$,Sr$_{0.5}$,Ba$_{0.5}$,Mg$_{0.5}$,Na,K)$_3$[Al$_8$Si$_{12}$O$_{24}$].24H$_2$O	Rare	Querol et al. (1997b)	
Tectosilicate-zeolite	Clinoptilolite	[Na,K,Ca$_{0.5}$,Sr$_{0.5}$,Ba$_{0.5}$,Mg$_{0.5}$]$_3$[Al$_6$Si$_{12}$O$_{24}$].22H$_2$O	Rare	Querol et al. (1997b) and Pollock et al. (2000)	
Tectosilicate-zeolite	Laumontite	Ca$_4[Al$_2Si_6O_{18}]$.18H$_2$O	Rare	Cook (1976)	
Tectosilicate-zeolite	Lawsonite	CaAl$_2$(Si$_2$O$_3$)(OH)$_2$.H$_2$O	Rare	Sarofim et al. (1977)	
Organic	Weddellite	Ca$_2$O$_4$.2H$_2$O	Rare	Ward (1974), Dai et al. (2015c)	
Organic	Whewellite	CaC$_2$O$_4$.H$_2$O	Rare	Ward (1974), Dai et al. (2015c)	
Organic	Mellite	Al$_2$(C$_6$(COO)$_6$).16H$_2$O	Rare	Goldschmidt (1954)	
Amorphous/mixtures	Melnikovite	FeS₂	Uncommon	Amorphous equivalent of pyrite	Çelik et al. (2017)
-------------------	-------------	------	----------	--------------------------------	---------------------
Amorphous/mixtures	Jordisite	MoS₂	Rare	Amorphous equivalent of molybdenite	Petrov (1963)
Amorphous/mixtures	Collophane	Ca₅(PO₄)₃(F,CO₃)	Uncommon	Amorphous equivalent of apatite	Mackowsky (1968), Ward (1992), Ward et al. (1996)
Amorphous/mixtures	Pitchblende		Rare	Mixed uranium oxides. Not a valid mineral species	Dai et al. (2015a,b)
Amorphous/mixtures	Leucoxene		Uncommon	Mixed iron-titanium oxides. Not a valid mineral species	
Amorphous/mixtures	Limonite		Uncommon	Mixed ion oxy-hydroxides. Not a valid mineral species	Swaine (1990)
Amorphous/mixtures	Dopplerite		Rare	Amorphous Ca bearing organic resin.	Lissner (1956), Wagner (1982)
Amorphous/mixtures	Sericite		Rare	A descriptive term applied to fine-grained white mica.	Kortenski and Sotirov (2000)

*, U-bearing minerals from Akers et al. (1978); King and Young (1956), and White (1958); otherwise as indicated.