Molecular Cloning and Characterization of the Human Diacylglycerol Kinase β (DGKβ) Gene

ALTERNATIVE SPlicing GENERATES DGKβ ISOTYPES WITH DIFFERENT PROPERTIES*

Andrea Caricasole‡, Ezio Bettini§, Cinzia Sala¶, Renza Roncarati*, Naoki Kobayashi**, Fabrizio Caldara‡, Kaoru Goto**, and Georg C. Terstappen

From the GlaxoSmithKline Systems Research and Department of Biology, Via Fleming 4, 37135 Verona, Italy, and the Department of Medicine and Public Health, Section of Pharmacology, University of Verona, 37134 Verona, Italy, and the Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata 990-9585, Japan

Received for publication, October 24, 2001, and in revised form, November 19, 2001

Diacylglycerol kinases are key modulators of levels of diacylglycerol, a second messenger involved in a variety of cellular responses to extracellular stimuli. A number of diacylglycerol kinases encoded by separate genes are present in mammalian genomes. We have cloned cDNAs encoding several isoforms of the human homologue of the rat diacylglycerol kinase β gene and characterized two such isoforms that differ at their carboxyl terminus through alternative splicing and the usage of different polyadenylation signals. Quantitative analysis of gene expression in a panel of human tissue cDNAs revealed that transcripts corresponding to both isoforms are coexpressed in central nervous system tissues and in the uterus, with one variant being expressed at relatively higher levels. As green fluorescent protein fusions, the two isoforms displayed localization to different subcellular compartments, with one variant being associated with the plasma membrane, while the other isoform was predominantly localized within the cytoplasm. Differences were also observed in their subcellular localization in response to phorbol ester stimulation. Enzymatic assays demonstrated that the two isoforms display comparable diacylglycerol kinase activities. Therefore, the human diacylglycerol kinase β gene can generate several enzyme isoforms, which can display different expression levels and subcellular localization but similar enzymatic activities in vitro.

Diacylglycerol (DG)1 represents a key signaling intermediate downstream of Gq/phospholipase C-β coupled receptors. It is synthesized by phospholipase C-β from phosphoinositides as a response to a variety of molecules involved in intercellular communication, including hormones, neurotransmitters, and growth factors. The best known target of DG action is protein kinase C (PKC), whose activity plays a central role in the control of proliferation and differentiation of many different cell types (1). In addition, DG can also modulate the activity of intracellular proteins such as members of the Rho and Ras families, thus potentially affecting other cellular functions such as cytoskeletal organization (2). The control of steady-state levels of DG is therefore crucial to normal cellular physiology. The signaling properties of DG are terminated by its conversion to phosphatidylic acid (itself a second messenger, reviewed in Ref. 3, through the action of diacylglycerol kinases (DGKs), a class of evolutionary conserved enzymes presently counting nine mammalian subtypes encoded by separate genes (α, β, γ, δ, ε, ζ, η, θ, ϵ; reviewed in Ref. 4). The cloning of DGK genes from several mammalian species (5–19) has allowed an analysis of the domain architecture of these proteins. Structurally, mammalian DGK subtypes are characterized by the presence of conserved domains, common to all subtypes and of additional subtype-specific functional domains, which allow their grouping into five separate classes (3, 4). The functional domains shared by all DGK subtypes comprise the catalytic (kinase) domain and a cysteine-rich domain with homology to the C1A and C1B motifs of PKC. By analogy with the C1A and C1B motifs in PKC, the cysteine-rich domains of DGK have been proposed to bind DG and present it to the catalytic domain (4, 20). However, a functional analysis of DGKα, DGKβ, and DGKγ demonstrated that the catalytic domain in these proteins lies in the COOH-terminal region, outside the zinc finger domain (21). The subtype-specific functional domains (present in different DGK classes) include motifs of known function (e.g. calcium binding motifs, pleckstrin homology domains, myristoylated alanine-rich C kinase substrate (MARCKS) phosphorylation site domains) as well as domains showing significant sequence conservation but whose function remains unknown (e.g. the C1 domain of Class I DGKs) (4). Very recently, plant DGK isoforms generated from the same gene through alternative splicing have been characterized which differ at their COOH terminus for the presence of a calmodulin-binding domain (22); however, the presence of calmodulin-binding domains in mammalian DGK enzymes has not been described to date. The precise function of the subtype-specific protein motifs is, in many instances, still unclear. However, the diversity and complexity of DGK enzymes indicates the potential for regulation of DGK activity at several levels, including subcellular localization (e.g. see Refs. 12, 19, and 23), substrate specificity (e.g. see Refs. 11, 15, and 16), and modulation of kinase activity (e.g. see Refs. 24–26).

While the expression of DGK genes in non-central nervous system tissues is relatively limited (except perhaps for the
genes encoding DGκ and DGθ, the brain is a major site of DGK gene expression (4, 27, 28), implicating functional diversification of DGK enzymes in this organ. Recently, a detailed analysis has been carried out of DGK expression in rat brain, with special reference to DGKα, DGKβ, and DGKγ (28), showing localized expression in distinct brain regions for these DGK subtypes. DGKβ is a member of class I DGKs. Like the other members of this subgroup (the DGKα and DGKγ subtypes), it is characterized by the presence of a calcium binding (EF-hand) motif and an additional 70-amino acid domain of uncharacterized function, in addition to the kinase domain and the cysteine-rich domain motifs shared with all DGKs. To date, the only mammalian DGKβ gene for which a full-length cDNA is available has been cloned from the rat (8). In that study, expression of rat DGKβ was found to be predominant in the adult brain, with lower expression levels in spleen, adrenal, small intestine, and heart. In the rat brain, DGKβ expression localizes to the caudate putamen, the nucleus accumbens, the olfactory bulb and tubercle, and the hippocampal pyramidal cell layer (28). The enzymatic properties of DGKβ and its expression pattern make it an important modulator of PKC activation in response to signaling downstream of G protein-coupled receptors, in brain regions representing important glutamatergic, dopaminergic, acetylcholinergic, and serotonergic terminal fields (29). Given the important role proposed for PKC in the control of mood, learning, and memory (e.g. see Ref. 30), modulation of the DG pool in these brain areas by DGKβ may be relevant to cognitive and emotional aspects of central nervous system function.

We have previously reported the identification and characterization of the human DGKβ locus using bioinformatics tools and presented RT-PCR evidence supporting the expression of mRNAs from this locus and the existence of alternative splicing events capable of generating a number of isoforms (31). In particular, one of the transcripts arising from the human DGKβ locus corresponds to an EST annotated in GenBank™ as differentially expressed in bipolar disorder patients (31), which can encode a DGKβ protein displaying a COOH-terminal truncation downstream of the catalytic domain. This EST potenti- ally implicts the control of DGKβ splicing in mood disorders, although nothing is known of the properties of the encoded protein variant and of the relative abundance of its transcripts. Here we report the cloning of cDNAs encoding multiple DGKβ isoforms from human brain, confirming that alternative splicing of the DGKβ locus yields a number of transcripts encoding different DGKβ isoforms. We have then focused our analysis on the alternative splicing event poten- tially associated with mood disorders, which can generate DGKβ isoforms differing at their COOH terminus, and show that the encoded proteins display comparable enzymatic activi- ties but different expression levels, responses to increased substrate availability and subcellular localization. The poten- tial implications of these findings for DG signaling in the con- text of normal and aberrant neuronal physiology are discussed.

EXPERIMENTAL PROCEDURES

PCR Amplification Employing a Proofreading Thermostable DNA Polymerase, Molecular Cloning, and Automated DNA Sequencing— PCR amplification was carried out employing the GeneAmp XL PCR kit (PE Biosystems, Branchburg, NJ), using human adult and fetal brain cDNA (see below) as a template. Reaction conditions (for primers, dNTP, and enzyme) were according to manufacturer's protocol, with a final Mg(OAc)₂ concentration of 0.8 mM. Primer sequences were as follows: primer 5HDAGKFOR (5'-primer), 5'-ATGACAACACCGAAGAAATGG-3'; DAGK2REV (3'-primer for STD isoform), 5'-AGGATTATCTCCGCTGGAG-3'; DAGK7REV (3'-primer for SV3 isoform), 5'-AGCTAATCATTGCCAAAGGG-3'. Reaction details were as follows: 94°C 3 min; 45×(94°C 30 s, 55°C 30 s, 72°C 30 s); 72°C 20 min. PCR products were analyzed by electrophoresis on a 1% agarose gel poured and run in 1 X TAE (Tris acetate-EDTA) buffer (32). The product was purified on a Qiagen PCR chromatography column (Qiagen GmbH, Hilden, Germany) and cloned into pCR2.1-TOPo (Invitrogen, Carlsbad, CA). Plasmid DNA was extracted from several clones using a Qiagen Miniprep columns (Qiagen) and subjected to automated DNA sequencing by standard protocols using an ABI377 machine (PE Biosystems).

Tissue Culture, RNA Isolation, and Northern Blotting— Total RNA was extracted from rat tissues as described (33). Neuro2A, PC12, and NB-OK-1 cells were cultured as described previously (34). Polyadenylated RNA was extracted from subconfluent monolayers employing a modified TRIzol (Life Technologies) protocol (31), and 3 μg of each sample were loaded on denaturing gels and subjected to Northern blot analysis according to standard procedures (31). Blots were exposed on Kodak XAR-5 films at ~80°C with intensifying screens for 10 days. Human polyadenylated RNA from various human tissues was purchased from CLONTECH (Palo Alto, CA).

Real Time Quantitative PCR (TaqMan) Analysis— Real time quantita- tive PCR analysis of DGKβ isoform and β-actin expression was carried out with the aid of an ABI7700 machine (PE Biosystems). A 2× stock mixture of reagents comprising all necessary TaqMan PCR compo- nents except primers and probe was purchased from PE Biosystems and employed according to manufacturer's instructions. TaqMan primers and probe specific for each human DGKβ isoform were as follows: DGKβ STD forward primer (forward), 5'-GCCACAAAACCGCTCAAAA-3'; DGKβ STD reverse primer (reverse), 5'-AGGTGGAGGTCCCATCAGC-3'; DGKβ STD probe was 5'-CTGATTGGCCCAGCTCTAAA-3' and was carboxyfluorescein-labeled at its 5' end. TaqMan DGKβ SV3' primers were as follows: 5'-primer, 5'-TGACTTTCCAAAAACATGGTAGGA-3'; 3'-primer, 5'-TGAAGGAAATACATGTGCTTGTC-3'. The TaqMan DGKβ SV3' probe was 5'-TGGTTTGAGCAAGGATGACACATG-3' and was carboxyflu- orescein-labeled at its 5' end. For TaqMan analysis of rat DGKβ ex- pression, the primers were ratDGKβFOR 5'-GAGATGGAGGCCCCTATGCA-3' (forward) and ratDGKβREV 5'-AGGTTGGAGTCTCCATACGAC-3' (reverse), in combination with the carboxyfluorescein-labeled probe ratDGKβPROBE 5'-AAAAATTACACACAAAGAGAGCCAGCCCAAAA-3'. Final primers and probe concentrations were 300 nM each primer and 200 nM, respectively. Reaction parameters were 50°C 2 min; 95°C 10 min; 35×(95°C 15 s; 53°C 1 min). Three measurements per sample were carried out in each of two independent experiments. Results were analyzed with the ABI sequence detector software version 1.6.3 (PE Biosystems). Quantitation was carried out relative to a standard curve of the corresponding DGKβ cDNA. For β-actin quantitation, a β-actin detection kit was purchased (PE Biosystems) and employed according to manufacturer's instructions.

In Vitro Translation— The cDNAs for hDGKβ STD and hDGKβ SV3' (GenBank™ accession numbers AX032742 and AX032745, respec- tively) were subcloned into expression vector, pcDNA3.1/V5/His-TOPo. The resulting constructs were used as templates for an *in vitro* trans- lation reaction coupled to translation reaction (TNT kit, Promega, Madison, WI). Control reactions contained no template or a luciferase cDNA template. 7.5% SDS-PAGE coupled to Western blot analysis using anti-V5 antibody as a probe was used to identify the protein produced in TNT reactions.

Enzymatic Assays— The cDNAs for hDGKβ STD and hDGKβ SV3' in pcDNA3.1/V5/His-TOPo or the vector alone were transfected into COS cells by use of Lipofectamine (Invitrogen). After 3 days the cells were harvested and lysed by sonication in lysis buffer (6). Immunoblotting was carried out with anti-epitope tag antibody (anti-V5 antibody). The amounts of the expressed proteins (hDGKβ STD and hDGKβ SV3') were equalized by means of densitometric indication of the correspond- ing bands, and the protein concentrations were also adjusted. Equal amount of each lysate was used to measure DG kinase activity in the presence of calcium (0.1 mM) by the octylglucoside mixed-micelle assay towards 1-stearoyl-2-linoleoyl-sn-glycerol (18/18:2 D (Sigma)) as de- scribed previously (8, 9, 12).

Subcellular Localization Studies in HEK-293T Cells— Mammalian expression vectors encoding human DGKβ variants were constructed in pEGFP-C1 (CLONTECH). Full-length DGKβ STD and DGKβ SV3' were fused to a green fluorescent protein (GFP) sequence attached at their NHz termini using a combination of cDNA fragments and engi- neered fusion fragments that ensured reading frame conservation. All PCR-based constructs were verified by digestion chain termination sequencing with dye terminators using an ABI PRISM 6700 Automated nucleic acid work station (PE Biosystems).

GFP-tagged cDNA were transfected into HEK-293T cells, cultured in Dulbecco's modified Eagle's F-12 medium containing heat-inactivated 10% fetal bovine serum, using Lipofectamine (Invitrogen), and trans-
The cloning of human DGKβ cDNAs with different structures indicates that the human locus can generate transcripts potentially encoding several protein isoforms, which differ in the presence or absence of four amino acid insertions of 7, 12, 25, and 35 residues, respectively (see Fig. 1). Of particular interest are DGKβ variants displaying a deletion of the COOH-terminal 35 amino acids, comprising a region 3' of the catalytic domain.
domain. In fact, deletion of this domain is associated with a human DGKβ EST (dbEST Id: 1371986 GenBankTM accession number AF019352) annotated as differentially expressed in mood disorder patients (31) and suggests that DGKβ variants bearing this truncation may be overrepresented in at least some cases of bipolar affective disorder. Given the importance of DG levels for PKC activity, the role of PKC in modulating aspects of cognitive and emotional behavior, and the expression of DGKβ in relevant areas of the rat central nervous system (8, 27, 28), further studies on DGKβ isoforms were focused on the comparative analysis of the expression, function, and subcellular localization of DGKβ proteins lacking the COOH-terminal coding exon.

Quantitative Expression Patterns of DGKβ STD and DGKβ SV3’—To determine the pattern of expression of DGKβ transcripts potentially encoding the DGKβ STD and DGKβ SV3’ isoforms, a series of quantitative RT-PCR (TaqMan) studies were carried out on a panel of cDNAs synthesized from human tissue samples, including several distinct brain regions (e.g. see Ref. 34). Primers and probes were designed to recognize transcripts encoding either the DGKβ STD or the DGKβ SV3’ isoforms, independently of the presence or absence of the internal alternatively spliced exons. The results (Fig. 3) indicate that the human DGKβ locus is expressed predominantly in the central nervous system and uterus, with much lower levels of expression in other tissues. Increased DGKβ transcript levels in adult brain relatively to fetal brain indicate that DGKβ expression may be developmentally regulated. Within the adult brain, the amygdala, caudate nucleus, and hippocampus express the highest levels of DGKβ transcripts, in agreement with data previously reported for the rat DGKβ gene (8, 27, 28). Although the tissue-specific profiles of expression for transcripts encoding the COOH terminus variants are essentially superimposable, important differences are observed in the relative levels of expression. In fact, transcripts encoding DGKβ STD proteins are expressed in the adult brain at levels about 10–100-fold higher than transcripts encoding DGKβ SV3’ isoforms (Fig. 3). An important observation is the expression of DGKβ transcripts in the uterus, suggesting a role for this enzyme in aspects of uterine function. The apparent discrepancy between the absolute and β-actin-normalized expression profiles of DGKβ SV3’ transcripts may be due to the low levels of expression of DGK SV3’ mRNAs in normal human tissue.

Enzymatic Properties of DGKβ STD and DGKβ SV3’ Isoforms—The existence of transcripts capable of encoding DGKβ isoforms differing at their COOH terminus may indicate that the encoded proteins differ in their enzymatic activities. To address this aspect of DGKβ function, experiments were carried out in which the enzymatic activities of DGKβ STD and SV3’ isoforms (comprising the three internal alternatively spliced exons) were assayed as previously described for the rat DGKβ enzyme (8). First, an in vitro translation experiment was set up to determine whether the DGKβ STD and SV3’ cDNAs can be translated into proteins. The results (Fig. 4A) indicated that DGKβ STD and SV3’ cDNAs can direct the synthesis of proteins with an apparent size in accordance with the predicted molecular mass of 90.5 and 87.0 kDa, encoded by their respective open reading frames. Second, a series of DG kinase assays were carried out to investigate the catalytic properties of the two isoforms. These enzymatic assays demonstrated that the DGKβ STD and SV3’ display comparable DG kinase activities under in vitro conditions (Fig. 4B). Therefore, the COOH-terminal region missing in the DGKβ SV3’ does not appear to influence the kinase activity of the enzyme, despite its vicinity to the protein’s catalytic domain.

Differential Localization and Pharmacological Responses of DGKβ STD and DGKβ SV3’ Proteins—An important aspect of the regulation of DGK activity is its subcellular localization. Although many DGKs are predominantly cytosolic, some DGK isoforms (notably the α, γ, δ, and θ isoforms) have been reported to be present in the nucleus (reviewed in Ref. 4) where they are thought to modulate levels of nuclear DG. Nuclear DGK activity has been associated with the control of cell division and may even affect mRNA synthesis and splicing (reviewed in Ref. 4). When overexpressed in COS-7 cells, the rat DGKβ enzyme was found exclusively in the membrane fraction (8). The discovery and cloning of several isoforms of the human DGKβ enzyme (Ref. 31 and this work) prompted an investigation into the possibility of enzyme localization to different subcellular compartments. To this end, translational fusions were constructed between the GFP and STD or SV3’ variants. GFP-DGKβ fusions were then overexpressed in HEK-293T cells and their subcellular distribution investigated under standard culture conditions using confocal microscopy. The results (Fig. 5A) indicated that the DGKβ STD variant localized predominantly to the plasma membrane (in a manner consistent with previous observations on rat DGKβ Ref. 8), while the SV3’ variant was predominantly cytosolic. Notably, neither variant was found in the nucleus. GFP fusion of DGKβ STD was associated with the plasma membrane only in growing cells. Indeed, quiescent cells cultured without serum did not show plasma membrane localization of DGKβ STD (Fig. 5B, upper left panel). Next, the response of GFP-DGKβ isofor fusions to treatment with the phorbol ester TPA in serum-starved HEK-293T cells was investigated (Fig. 5B). Membrane translocation in response to phorbol esters is a well established phenomenon for various
DG-binding proteins such as DGKs (35) PKCs (1) and Munc 13-1 (37), although the exact mechanism of TPA-induced translocation remains to be clarified. Quiescent HEK-293T cells transfected with the DGKβ STD isoform-GFP fusion showed a predominantly cytosolic distribution of the fusion protein. When challenged with TPA, a rapid (10 min) redistribution of the protein to the membrane was observed (Fig. 5B). The possible presence of a membrane-targeting signal in the COOH-terminal tail of DGKβ STD was investigated using various protein motif data bases and software tools such as Pfam (38), PRINTS (39) ProDom (40), Prosite (41), PSORT II (42), and SMART (36). However, no membrane-targeting signal was discovered in DGKβ STD. In contrast, the distribution of the DGKβ SV3′ isoform-GFP fusion was identical in cycling and quiescent HEK-293T cells, with no significant effects of TPA on its subcellular distribution. In conclusion, these results suggest...
adenylation signal usage. This is only the second analysis of mRNAs, as a result of alternative splicing and differential polyadenylation. Of 16 different isoforms can be generated from the human DGK locus. From fetal and adult human brain, we have cloned and expressed the human DGK gene and its encoded proteins and isoforms differ in their subcellular localization and in their response to increased substrate concentration.

DISCUSSION

We report for the first time the identification and functional characterization of cDNAs encoding different isoforms of the human DGKβ gene. The results reported here support the data previously reported using bioinformatics tools (31) and confirm that the human DGKβ gene is transcribed as a complex series of mRNAs, as a result of alternative splicing and differential polyadenylation signal usage. This is only the second analysis concerning a mammalian DGKβ gene and its encoded proteins and the first report providing evidence for the existence of multiple DGKβ isoforms with different properties. The isolation of full-length cDNAs with the potential to encode different DGKβ isoforms suggests the existence of a degree of diversification of human DGKβ activity, which may involve the modulation of isoform expression, enzymatic activity, and/or subcellular localization. The predicted human DGKβ isoforms differ in the presence of three internal, alternatively spliced coding exons and a COOH-terminal region, which is differentially present due to alternative polyadenylation signal usage (31). As a result, a total of 16 different isoforms can be generated from the human DGKβ locus. From fetal and adult human brain, we have cloned and sequenced cDNAs encoding eight of these, which presumably represent the most abundantly transcribed DGKβ mRNA species. Evidence for the existence of transcripts capable of encoding the remaining DGKβ isoforms has been described elsewhere (31). The lack of isoform-specific DGKβ antibodies renders a confirmation of the existence of different DGKβ isoforms in vivo rather difficult, but the cloning and functional data presented here and the expression data reported previously by us indicate that DGKβ transcripts capable of encoding different isoforms are at least transcribed and that these transcripts can be translated in vitro and in vivo (as V5 or GFP fusions) to yield protein products of the expected size.

We focused our analysis on a comparison of the properties of human DGKβ isoforms differing for the presence of the COOH-terminal portion of the gene (that is, the DGKβ STD and SV3’ isoforms). In fact, a human DGKβ EST (dbEST Id: 1371986; GenBank™ accession number AF019352) is annotated in GenBank™ as being differentially expressed in bipolar disorder patients and corresponds to the 3’ region of human DGKβ transcripts encoding the isoforms lacking the COOH-terminal region. This EST does not extend sufficiently toward the 5’ end of the coding sequence to determine the representation of the other alternatively spliced exons and is therefore uninformative toward a possible association between mood disorders and DGKβ alternative splicing events other than that influencing the COOH-terminal coding sequence. Transcripts encoding different protein isoforms of the same gene may differ in their prevalence and/or tissue distribution. Our TaqMan analysis of the expression of mRNAs encoding the DGKβ STD and SV3’ isoforms indicates that the two DGKβ transcript classes are expressed at substantially different levels (with transcripts encoding the STD variants present at 10–100-fold higher levels than those encoding the SV3’ variants), but shows an essentially superimposable pattern of tissue distribution. Therefore, in normal human tissue transcripts encoding the SV3’ isoforms are expressed at far lower levels than those encoding the STD isoforms. It would be extremely interesting to confirm the possible differential expression of the SV3’ isoforms in tissues from bipolar disorder patients. To understand the physiological significance of the existence of DGKβ isoforms differing at their COOH terminus, we have attempted a functional comparison of the DGKβSTD and SV3’ isoforms and investigated their diacylglycerol kinase activities in vitro and in vivo. The results indicate that, despite showing similar enzymatic activity, the two isoforms may display differences in their subcellular localization and in their response to increased substrate availability. These differences may bear important consequences for the activity of the enzyme in vivo. In fact, it has been shown that DGK activity does not occur ubiquitously within the cell. Experiments have shown that membrane translocation has been described to be a necessary (but not sufficient) step for DGK activation and that DGK activity seems to be localized at membrane sites where DG is produced upon receptor-mediated phospholipase C-β activation, rather than acting on DG randomly produced at membrane sites (reviewed in Ref. 4). In line with this view, DGKβ SV3’ isoforms may not be active in vivo, despite showing a relatively normal kinase activity in vitro, due to their inability to associate with the cell membrane. It would therefore be interesting to determine whether these isoforms can show diacylglycerol kinase activity in intact cells in vivo. Taken together, our data suggest that an altered balance in the relative level of STD and SV3’ DGKβ transcripts (such as may be the case in some mood disorder syndromes) may lead to abnormal DG turnover within neurons in the amygdala, caudate nucleus, and hippocampus, regions that are known to be involved in the control of emotional and cognitive behavior.

Although the functional significance for the existence of multiple DGKβ isoforms remains unknown, it is likely that the alternatively spliced exons encoding the 7, 12, 25, and 35 amino acid domains will influence regulatory aspects of the protein’s kinase activity and/or subcellular localization (as shown here for the 35 amino acid COOH-terminal region) or even a coupling with other intracellular signaling pathways. For instance, a recent study demonstrated that an alternatively spliced COOH-terminal domain of tomato DGK functions as a calmodulin-binding domain, thus providing a coupling between calcium and phospholipid signaling in this plant (22). The...
identification of multiple DGKα isoforms described here may spur interest on the possible existence of multiple isoforms of other DGKs. Furthermore, it sheds a novel light on the functional and regulatory aspects of an important enzyme modulating the levels of DG and phosphatidic acid, two key intracellular messengers, in neuronal cells.

Acknowledgments—We thank Federico Faggioni for his excellent DNA sequencing assistance and Joseph Rimland for his enthusiasm and advice.

REFERENCES
1. Newton, A. C. (1995) J. Biol. Chem. 270, 28495–28498
2. Takai, Y., Sasaki, T., and Matozaki, T. (2001) Physiol. Rev. 81, 153–208
3. Topham, M. K., and Prescott, S. M. (1999) J. Biol. Chem. 274, 11447–11450
4. van Blitterswijk, W. J., and Houssa, B. (2000) J. Biol. Chem. 275, 443–449
5. Goto, K., Watanabe, M., Kondo, H., Yuasa, H., Sakane, F., and Kanoh, H. (1993) Brain Res. Mol. Brain Res. 15, 65–75
6. Fujikawa, K., Imai, S., Sakane, F., and Kanoh, H. (1993) Biochem. J. 294, 433–438
7. Goto, K., and Kondo, H. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 7598–7602
8. Goto, K., Funayama, M., and Kondo, H. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 13942–13946
9. Kai, M., Sakane, F., Imai, S., Wada, I., and Kanoh, H. (1994) J. Biol. Chem. 269, 18492–18496
10. Bunting, M., Tang, W., Zimmerman, G. A., McIntyre, T. M., and Prescott, S. M. (1996) J. Biol. Chem. 271, 10230–10236
11. Goto, K., and Kondo, H. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 11196–11201
12. Klauck, T. M., Xu, X., Mousseau, B., and Jaken, S. (1996) J. Biol. Chem. 271, 19781–19788
13. Sakane, F., Imai, S., Kai, M., Wada, I., and Kanoh, H. (1996) J. Biol. Chem. 271, 8394–8401
14. Tang, W., Bunting, M., Zimmerman, G. A., McIntyre, T. M., and Prescott, S. M. (1996) J. Biol. Chem. 271, 10237–10241
15. Houssa, B., Schapa, D., van der Wal, J., Goto, K., Kondo, H., Yamakawa, A., Shibata, M., Takenawa, T., and van Blitterswijk, W. J. (1997) J. Biol. Chem. 272, 10422–10428
16. Kohyama-Koganeya, A., Watanabe, M., and Hotta, Y. (1997) FEBS Lett. 409, 258–264
17. Ding, L., McIntyre, T. M., Zimmerman, G. A., and Prescott, S. M. (1998) FEBS Lett. 429, 109–114
18. Ding, L., Traer, E., McIntyre, T. M., Zimmerman, G. A., and Prescott, S. M. (1998) J. Biol. Chem. 273, 32746–32752
19. Ahmed, S., Kama, R., Lee, J., Monfries, C., Harden, N., and Lim, L. (1991) Biochem. J. 280, 233–241
20. Sakane, F., Kai, M., Wada, I., Imai, S., and Kanoh, H. (1996) Biochem. J. 318, 583–590
21. Sneddon, W. A., and Blumwald, E. (2000) Plant J. 24, 317–326
22. Hurttia, H., and Leino, L. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 8401–8405
23. Hurttia, H., and Leino, L. (1996) Physiol. Rev. 76, 579–585
24. Chen, Q., Klemm, N., and Jeng, I. (1993) J. Neurochem. 60, 1212–1219
25. van der Bend, R. L., de Widt, J., Hilkmann, H., and van Blitterswijk, W. J. (1994) J. Biol. Chem. 269, 4098–4102
26. Martelli, A. M., Tabellini, G., Bortol, R., Manzoli, L., Bareggi, R., Baldini, G., Grill, V., Zweyer, M., Narducci, P., and Cocco, L. (2000) Cancer Res. 60, 815–821
27. Goto, K., and Kondo, H. (1996) J. Lipid Mediat. Cell. Signal. 14, 251–257
28. Goto, K., and Kondo, H. (1999) Chem. Phys. Lipids 100, 99–108
29. Bonhomme, N., and Esposito, I. (1998) J. Clin. Psychopharmacol. 18, 447–454
30. Nogues, X. (1997) Prog. Neuropsychopharmacol. Biol. Psychiatry 21, 507–529
31. Caricasole, A., Caldarra, F., and Sala, F. (2000) Patent WO 0047723
32. Sambrook, J., Fritsch, E. F., Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, pp. 6.6–6.12, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
33. Auffray, C., and Rougeon, F. (1980) Eur. J. Biochem. 107, 303–314
34. Caricasole, A., Sala, C., Roncarati, R., Formenti, E., and Terstappen, G. C. (2000) Biochem. Biophys. Res. Commun. 273, 109–114
35. Maroney, A. C., and Macara, I. G. (1989) J. Cell. Biochem. 40, 165–172
36. Schultz, J., Copley, R. R., Doersch, T., Ponting, C. P., and Bork, P. (2000) Nucleic Acids Res. 28, 231–234
37. Betz, A., Ashery, U., Rickmann, M., Augustin, I., Neher, E., Sudhof, T. C., Rettig, J., and Hove, C. (1998) Neuron 21, 123–136
38. Bateman, A., Birney, E., Durbin, R., Eddy, S. R., Howe, K. L., and Sonnhammer, E. L. (2000) Nucleic Acids Res. 28, 263–266
39. Attwood, T. K., Flower, D. R., Lewis, A. P., Mabey, J. E., Morgan, S. R., Scordis, P., Selley, J., and Wright, W. (1999) Nucleic Acids Res. 27, 220–225
40. Corpet, F., Servant, F., Guzy, J., and Kahn, D. (2000) Nucleic Acids Res. 28, 267–269
41. Hofmann, K., Bucher, P., Falquet, L., and Bairoch, A. (1999) Nucleic Acids Res. 27, 215–219
42. Nakai, K., and Horton, P. (1999) Trends Biochem. Sci. 24, 34–36