A new record of *Peloribates barbatus* Aoki, 1977 (Oribatida: Haplozetidae) from Korea

Jiwon Kim, Badamdorj Bayartogtokh and Chuleui Jung

*Apple Research Institute, National of Horticultural & Herbal Science, Rural Development Administration, Gunwi 39000, Republic of Korea
Department of Zoology, School of Biology and Biotechnology, National University of Mongolia, Ulaanbaatar 210646, Mongolia
Department of Bioresource Science, Graduate School, Andong National University, Andong 36729, Republic of Korea

Correspondent: cjung@andong.ac.kr

The genus *Peloribates* is comparatively species rich and distributed worldwide. More than 90 species have been assigned to this genus, but three species were reported in Korea. We recovered a new species, *Peloribates barbatus* Aoki, 1977 to Korean inventory in the family Haplozetidae (Acari: Oribatida) from the straw mat covering the cherry trees. This species was originally reported as inhabiting in lichens growing on tombstones in Japan. In this paper, we present a comparative account of morphological description of the species with other three congeneric species in Korea.

Keywords: biodiversity, diagnosis, mite, Oribatida, soil

© 2016 National Institute of Biological Resources
DOI:10.12651/JSR.2016.5.3.364

INTRODUCTION

According to the catalogue of Subías (2004, Online version 2012), Haplozetidae comprises 19 genera, 11 subgenera, 230 species. The genus *Haplozetes* was proposed by Willmann (1935) with *Peloribates vindobonensis* Willmann, 1935 as the type species. Subsequently, Grandjean (1936) redefined the type species, and ascertained generic status of *Haplozetes* and proposed the family Haplozetidae (Ermilov et al., 2013). This family is diagnosed by the movable pteromorphs; rostrum rounded; lamellae narrow, without translamella; 10-14 pairs of notogastral setae; four to five pairs of genital setae; monodactylous or tridactylous legs (Bayartogtokh, 2010). The genus *Peloribates* is one of the species rich genera of the family Haplozetidae, and distributed worldwide, about 90 species have been assigned to this genus. They were previously known from widely scattered areas of the most of biogeographical regions of the world. Several species have wide distribution and majorities have been described from Palaearctic, Nearctic and Oriental regions (Bayartogtokh, 2000; Bayartogtokh and Smelyansky, 2008). In Korea, the genus *Peloribates* is represented by three species, namely *Peloribates acutus* Aoki, 1961, *Peloribates longisetosus* Willmann, 1930 and *Peloribates rangiroaensis asiaticus* Aoki and Nakatamari, 1974 (NIBR, 2013).

We found a new species to Korean inventory compared to the present existing checklist of oribatid mite from NIBR (2013). In this work, we present a taxonomic diagnosis of the genus and species, and morphological characteristics with detailed illustration.

MATERIALS AND METHODS

The specimen was collected from the straw mat covering the cherry trees in Andong National University, Andong, Gyeongsangbuk-do in January, 2012. Oribatid mites were extracted by using a modified-Tullgren funnel for 72 hrs with 30-watt bulb (Kim and Jung, 2008; Jung et al., 2010; Kim et al., 2010; Kim et al., 2011). The extracted mites were mounted on the slides using polyvinyl alcohol (PVA) mounting medium (Downs, 1943; BioQuip, Rancho Dominiquez, CA, USA). The terminology and measurement were used following the standard methods described by Aoki (1977), Weigmann (2006), and Bayartogtokh (2010).
RESULTS AND DISCUSSION

Genus Peloribates Berlese, 1908
Capillozetes Balogh, 1943
Parazetes Willmann, 1930
Euryparazetes Radford, 1950
Indobates Pandit and Bhattacharya, 1999

Type species. Oribates peloptoides Berlese, 1888: 215, fig. 3.

Diagnosis. Adults small to large in size (240-620 μm in length). Rostrum rounded. Notogaster with 14 pairs of setae. Four pairs of sacculi. Pteromorphae movable, fully hinged. Lamellae well developed. The true transverse lamella is absent or lineated, never completely crossing space between lamellar setae. Five pairs of genital setae. One or three pairs of aggenital setae. Legs usually tridactylous, but rarely monodactylous (Bayartogtokh, 2000).

Distribution. Palaearctic, Nearctic, Oriental regions, Neotropical, Australian (as described in Bayartogtokh, 2000).

Remarks. There was three species recorded in Korea, such as Peloribates acutus Aoki, 1961, P. longisetosus Willmann, 1930, and P. rangiroaensis asiaticus Aoki and Nakatamari, 1974.

Peloribates barbatus Aoki, 1977
수염소매응애 (신칭) (Figs. 1, 2)
Peloribates barbatus Aoki, 1977: 190, fig. 2.

Material examined. Two mites marked on the slide. Straw mat covering the cherry tree, Andong National Univ., Andong, Gyeongsangbuk-do, Korea, 8. I. 2012.

Diagnosis. Adult body length 360 μm and width 265 μm. Body color chestnut brown.

Prodorsum: tip of rostrum round; interlamellar seta (in) the longest among the prodorsal setae, lamellar setae (le) and rostral setae (ro) long; they all barbed throughout their length, sharply pointed at tip except for interlamellar setae. Sensillus (ss) club-shaped and short stalk, with a strongly swollen head. Prodorsal surface with distinct foveolae.

Notogaster: 14 pairs of notogastral setae very long, reaching to or extending beyond the insertions of next row setae, blunt at tip and strongly barbed; all the notogastral setae, even the longest and setae h₁, are shorter than their mutual distances; integument of notogaster and pteromorpha shows the foveolae, notogaster, pteromorpha finely striated transversely.

Ventral side: anal and genital plates with large, round

Fig. 1. Dorsal aspect of Peloribates barbatus Aoki, 1977.: Lamellar setae (le), rostral setae (ro), interlamellar setae (in), and Sensillus (ss). Notogastral seta: lm, dp, lp, h₁; Sacculus: Sa, Si, S₂.

Fig. 2. Peloribates barbatus Aoki, 1977. (A) Sensillus (ss) and bothridium (bo). (B) Notogastral seta. (C) Genital plates with setae: g₁, g₂, g₃, g₄, g₅. (D) Anal plates with setae: an₁, an₂.
foveolae; genital plate with a few foveolae, relatively long setae; anal plate with two minutely barbed setae; integument of the plate shows large and small foveolae mixed. Three pairs of adanal setae weakly barbed. Aggenital setae weakly barbed, almost twice as long as adanal setae.

Distribution. Korea (new record), Japan, Eastern Palaeartic region (as described in Subías, 2012).

Remarks. This species is having distinctly foveolate body integument and notogastral setae stiff and blunt at tip. Notogastral setae of this species are longer than adanal setae.

Deposition. NIBR No. NIBRIV0000325962.

Identifiers. Jiwon Kim, Badamdorj Bayartogtokh and Chuleui Jung.

Key to adults of *Peloribates* species in Korea

1. Sensillus short or medium long, with clavate or club-shaped head ... 2
 1.1. Sensillus very long, with spine-like, sharply pointed head; body length 557-563 μm, width 397-410 μm ... *P. acutus* Aoki, 1961

2. Notogastral setae very long, reaching to or extending beyond the insertions of next row setae ... 3
 2.1. Notogastral setae medium long, not reaching to the insertions of next row setae ... 4
3. Prodorsum, anal and genital plates with large, round foveolae; notogaster with minute foveolae; pteromorphia finely striated transversely; sensillus with short stalk; body length 330-415 μm, width 234-300 μm ... *P. barbatus* Aoki, 1977

4. Whole prodorsum with large foveolae, the size of which increasing towards tip of rostrum; notogastral sacculus *S₁* located closer to notogastral seta *dp* than *lp*; sacculus *Sa* located posterolateral to seta *lm*; sacculus *S₂* located anteromedial to seta *hs*; body length 375 μm ... 5

P. rangiroensis asiaticus Aoki and Nakatamari, 1974

ACKNOWLEDGEMENTS

This work was supported by a grant from the National Institute of Biological Resources (NIBR), Ministry of Environment of the Republic of Korea (NIBR20151201), and the Agenda Research Grant PJ009970042016 of Rural Development Administration of Korea. JK was supported by BioBK21 plus, Andong National University from MEST.

REFERENCES

Aoki, J. 1961. On six new oribatid mites from Japan. Japanese Journal of Sanitary Zoology 12(4):233-238.

Aoki, J. 1977. Two new *Peloribates*-Species (Acari, Oribatida) collected from lichens growing on tombstones in Ichihara-shi, central Japan. Annotationes Zoologicae Japonenses 50(3):187-190.

Aoki, J. and S. Nakatamari. 1974. Oribatid mites from Iriomote-jima, the Southernmost Island of Japan. II. Memoirs of the National Science Museum (7):131-134.

Bayartogtokh, B. 2000. A new oribatid mite of the genus *Peloribates* Berlese, 1908 (Acari, Oribatida, Hoplizetidae) from Mongolia. Graellsia 56:15-20.

Bayartogtokh, B. and I.E. Smelyansky. 2008. Contribution to the knowledge of soil mite genera *Zygoribatula* and *Peloribates* (Acari: Oribatida: Oripodoidae) in Central Asia. Soil Organisms 80(1):19-44.

Bayartogtokh, B. 2010. Oribatid mites of Mongolia (Acari: Oribatida). KMK Scientific Press, Moscow (in Russian).

Berlese, A. 1888. Acari Austro-Americani quos collegit Aloysius Balzan. Manupulus primus. Species novas circiter quinquaginta complectens. Bollettino della Società Entomologica Italiana 20:171-222.

Ermilov, S.G., B. Bayartogtokh, D. Sandmann, F. Marian and M. Maraun. 2013. New and little known species of oribatid mites of the family Hoplizetidae (Acari, Oribatida) from Ecuador. Zooykes 346:43-57.

Downs, W.G. 1943. Polyvinyl alcohol: a medium for mounting and clearing biological specimens. Science 97:539-540.

Grandjean, F. 1936. Observations sur les Oribates (10e série). Bulletin du Muséum National d’histoire Naturelle 2:246-253.

Hammer, M. 1958. Investigations on the oribatid fauna of the Andes Mountains. I. The Argentine and Bolivia. Biologiske Skriften Kongelige Danske Videnskabernes Selskab 10(1):1-129.

Jung, C., J.W. Kim, T. Marquardt and S. Kaczmarek. 2010. Species richness of soil gamasid mites (Acari: Mesostigmata) in fire-damaged mountain sites. Journal of Asia-Pacific Entomology 13:233-237.

Kim, J.W. and C. Jung. 2008. Abundance of soil microarthropods associated with forest fire severity in Samcheok, Korea. Journal of Asia-Pacific Entomology 11:77-81.

Kim, J.W., E.S. Keum and C. Jung. 2010. Comparison of soil microarthropod fauna with emphasis on oribatid mite in *Pinus densiflora* and *Larix leptolepis* forest stands in Bonghwa, Korea. Korean Journal of Soil Zoology 14:5-11.

Kim, J.W., E.S. Keum and C. Jung. 2011. Comparison of soil microarthropod composition and oribatid mite communities relative to the disturbance gradient. Korean Journal of Soil Zoology 15:14-20.
NIBR. 2013. National list of Korea [Inverteterbrate III]. National Institute of Biological Resources.

Subías, L.S. 2004. Listado sistemático, sinonímico y biogeográfico de los ácaros oribátidos (Acarífrómes, Oribatida) del mundo (1758-2002). Gnaellsìa 60:3-305.

Subías, L.S. 2012. Listado sistemático, sinonímico y biogeográfico de los ácaros oribátidos (Acarífrómes, Oribatida) del mundo (Excepto fósiles). [Available from: http://www.ucm.es/info/zoo/Artropodos/Catalogo.pdf, online version accessed in April 2012].

Weigmann, G. 2006. Acari, Actinochaetida. Hornmilben (Oribatida). Goecke & Evers, Keltern (in German).

Willmann, C. 1930. Neue Oribatiden aus Guatemala. Zoológischer Anzeiger 88:232-946.

Willmann, C. 1935. IV. Die Milbenfauna - Oribatei. In: I. Jaus (ed.), Faunistisch-ökologische Studien im Anningergebiet, mit besonderer Berücksichtigung der xerothermen Formen. Zoologische Jahrbücher (Systematik) 66(5):331-344.

Submitted: August 3, 2016
Revised: September 29, 2016
Accepted: October 13, 2016