Angular analysis of $B^0 \to \phi K^*$ decays and search for CP violation at Belle

M. Prim,22 I. Adachi,11 H. Aihara,56 D. M. Asner,43 T. Asuhev,19 A. M. Bakich,51 A. Bala,44 B. Bhuyan,13 G. Bonvicini,62 A. Bozek,39 M. Bračko,29 T. E. Browder,10 D. Červenkov,4 M.-C. Chang,7 P. Chang,38 V. Chekelian,30 A. Chen,56 P. Chen,38 B. G. Cheon,9 R. Chistov,19 K. Cho,23 V. Chobanova,30 Y. Choi,50 D. Cinabro,62 M. Danilov,19,32 Z. Doležal,4 Z. Drášal,4 D. Dutta,13 S. Eidelman,3 H. Farhat,52 M. Feindt,22 T. Ferber,6 A. Frey,55 V. Gaur,52 S. Ganguly,62 R. Gillard,62 Y. M. Goh,9 B. Golob,27,26 H. Hayashii,66 M. Heider,22 Y. Hoshi,54 W.-S. Hou,38 Y. B. Hsiung,38 T. Iijima,35,34 K. Inami,34 A. Ishikawa,55 R. Itoh,11 I. Jaegle,10 T. Julius,31 D. H. Kah,25 H. Kawai,5 T. Kawasaki,41 H. Kichimi,11 C. Kiesling,30 D. Y. Kim,49 H. O. Kim,25 J. B. Kim,24 J. H. Kim,23 M. J. Kim,25 Y. J. Kim,23 K. Kinoshita,67 J. Khucar,20 B. R. Ko,24 P. Kodyš,4 P. Križan,27,20 P. Krokovny,3 B. Kronenbitter,22 T. Kuhl,22 T. Kuma,58 Y.-J. Kwon,64 J. S. Lange,8 S.-H. Lee,24 J. Li,48 J. Libby,14 P. Lukin,3 D. Matvienko,3 K. Miyabayashi,56 H. Miyata,41 R. Mizuk,19,32 G. B. Mohanty,52 A. Moll,30,53 N. Muramatsu,46 R. Musa,18 I. Nakanura,11 E. Nakano,42 M. Nakao,11 M. Nayak,14 E. Nedelkovska,30 C. Niebuhr,6 N. K. Nishar,52 S. Nishiya,11 O. Nitoh,50 Y. Omi,56 G. Pakhlova,19 H. Park,25 K. H. Park,25 T. K. Pedlar,28 R. Pestotnik,20 M. Petrič,20 L. E. Piilonen,61 M. Ritter,30 M. Röhrken,22 A. Rostomyan,6 M. Rozanska,39 H. Sahoo,10 T. Saito,55 Y. Sakai,11 S. Sandilya,52 T. Samuki,55 Y. Sato,55 V. Savinov,45 O. Schneider,26 G. Schnell,1,12 C. Schwanda,16 D. Semmler,8 K. Senyo,63 M. E. Sevior,31 M. Shapkin,17 C. P. Shen,2 T.-A. Shibata,57 J.-G. Shiu,58 A. Sibidanov,31 Y.-S. Sohn,64 A. Sokolov,17 E. Solovieva,19 M. Starič,20 M. Steder,8 T. Sumiyoshi,58 U. Tamponi,18,60 G. Tashibhili,43 Y. Teramoto,42 K. Trabelsi,11 T. Tsuboyama,11 M. Uchida,57 S. Uehara,11 T. Uglov,19,33 Y. Unno,9 S. Uno,11 Y. Usos,13 E. Vahsen,10 C. Van Hulse,1 P. Vanhoefer,30 G. Varner,10 V. Vorobyev,3 C. H. Wang,37 M.-Z. Wang,38 P. Wang,15 X. L. Wang,61 M. Watanabe,41 Y. Watanabe,21 K. M. Williams,61 E. Won,24 Y. Yamashita,40 S. Yashchenko,6 Z. P. Zhang,47 V. Zhilich,3 and A. Zupane22

(The Belle Collaboration)

1University of the Basque Country UPV/EHU, 48080 Bilbao
2Beihang University, Beijing 100191
3Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk 630090
4Faculty of Mathematics and Physics, Charles University, 121 16 Prague
5Chiba University, Chiba 263-8522
6Deutsches Elektronen-Synchrotron, 22607 Hamburg
7Department of Physics, Fu Jen Catholic University, Taipei 24205
8Justus-Liebig-Universität Gießen, 35392 Gießen
9Hanyang University, Seoul 133-791
10University of Hawaii, Honolulu, Hawaii 96822
11High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
12Ikerbasque, 48011 Bilbao
13Indian Institute of Technology Guwahati, Assam 781039
14Indian Institute of Technology Madras, Chennai 600036
15Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
16Institute of High Energy Physics, Vienna 1050
17Institute for High Energy Physics, Protvino 142281
18INFN - Sezione di Torino, 10125 Torino
19Institute for Theoretical and Experimental Physics, Moscow 117218
20J. Stefan Institute, 1000 Ljubljana
21Kanagawa University, Yokohama 221-8686
22Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
23Korea Institute of Science and Technology Information, Daejeon 305-806
24Korea University, Seoul 136-713
25Kyungpook National University, Daegu 702-701
26École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015
27Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana
28Luther College, Decorah, Iowa 52101
29University of Maribor, 2000 Maribor
30Max-Planck-Institut für Physik, 80805 München
31School of Physics, University of Melbourne, Victoria 3010
32Moscow Physical Engineering Institute, Moscow 115309
33Moscow Institute of Physics and Technology, Moscow Region 141700
34Graduate School of Science, Nagoya University, Nagoya 464-8602
35Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602
36National Central University, Chung-li 32054
We report the measurements of branching fractions and CP violation asymmetries in $B^0 \to \phi K^*$ decays obtained in an angular analysis using the full data sample of 772×10^3 $B\bar{B}$ pairs collected at the KEKB asymmetric-energy e^+e^- collider. We perform a partial wave analysis to distinguish among scalar $[B^0 \to \phi (K\pi)_0^0]$, vector $[B^0 \to \phi K^*(892)^0]$ and tensor $[B^0 \to \phi K_2^*(1430)^0]$ components, and determine the corresponding branching fractions to be $\mathcal{B}[B^0 \to \phi (K\pi)_0^0] = (4.3 \pm 0.4 \pm 0.4) \times 10^{-6}$, $\mathcal{B}[B^0 \to \phi K^*(892)^0] = (10.4 \pm 0.5 \pm 0.6) \times 10^{-6}$ and $\mathcal{B}[B^0 \to \phi K_2^*(1430)^0] = (5.5^{+0.9}_{-0.7} \pm 1.0) \times 10^{-6}$. We also measure the longitudinal polarization fraction f_L in $B^0 \to \phi K^*(892)^0$ and $B^0 \to \phi K_2^*(1430)^0$ decays to be 0.499 ± 0.030 ± 0.018 and 0.918 ± 0.029 ± 0.012, respectively. The first quoted uncertainties are statistical and the second are systematic. In total, we measure 26 parameters related to branching fractions, polarization and CP violation in the $B^0 \to \phi K^*$ system. No evidence for CP violation is found.

PACS numbers: 13.25.Hw, 11.30.Er, 13.88.+e

I. INTRODUCTION

In the standard model (SM) of electroweak interactions, the effect of CP violation is explained by a single irreducible phase in the 3×3 Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix. So far, analyses searching for CP violation have shown no significant deviation with respect to the SM predictions.

The CKM mechanism alone is not sufficient to explain the observed matter-antimatter asymmetry in the universe, and thus new sources of CP violation are necessary. Decays dominated by $b \to s$ penguin (loop) transitions in the SM, such as $B^0 \to \phi K^*$, as shown in Fig. 1 are sensitive to such new contributions. New particles could appear in virtual loops, resulting in significant deviations from the SM expectations of negligible direct CP violation. Previous studies by Belle and BaBar in $B^0 \to \phi K^*(892)^0$ did not find any evidence for CP violation. On the other hand, the longitudinal polarization fractions $f_L = 0.45 \pm 0.05 \pm 0.02$ (Belle) and $f_L = 0.494 \pm 0.034 \pm 0.013$ (BaBar) in this decay were found to deviate from a naive expectation based on the factorization approach, which predicts a longitudinal polarization fraction close to unity. In contrast, BaBar measured the longitudinal polarization fraction in $B^0 \to \phi K_2^*(1430)^0$ to be $f_L = 0.901^{+0.046}_{-0.058} \pm 0.037$, consistent with the factorization prediction.

In this paper, we present an improved analysis of the $B^0 \to \phi K^*$ system using the full Belle data sample collected at the $\Upsilon(4S)$ resonance. We perform a partial wave analysis to distinguish among the different K^*

Note: The text contains mathematical expressions and references, which might not render properly in a plain text representation. The full context and references are essential for complete understanding and verification.
states. Overall, 26 parameters related to branching fractions, polarization, interference effects and CP violation are measured.

The measurement of polarization in flavor specific $B^0 \rightarrow \phi K^*$ decays can be used further to distinguish between CP-even and -odd fractions in the decay $B^0/\bar{B}^0 \rightarrow \phi K^*_0 \pi^0$. This decay channel can also be used for a time-dependent measurement of the angle $\phi = \arg \left(-V_{td}^\ast V_{cb} / V_{td} V_{cb}^\ast \right)$ of the CKM unitarity triangle in $b \rightarrow (s\bar{s})s$ transitions.

II. ANALYSIS STRATEGY

We perform a partial wave analysis of the $B^0 \rightarrow \phi K^*$ system with $\phi \rightarrow K^+ K^-$ and $K^* \rightarrow K^+ \pi^-$. We use the K^* notation to indicate all possible contributions from scalar (S-wave, spin $J = 0$), vector (P-wave, $J = 1$) and tensor (D-wave, $J = 2$) components from $(K\pi)_0^0$, $K^*(892)^0$ and $K_2^*(1430)^0$, respectively. We assume no further resonant contributions. The analysis region is limited to a $K^+ \pi^-$ invariant mass below 1.55 GeV, as the LASS model [9], used to parametrize the S-wave contribution, is not valid above this value. Furthermore, no significant contribution from K^* states beyond 1.55 GeV is observed [10]. We use mass and angular distributions to distinguish among the three contributing channels $B^0 \rightarrow \phi (K\pi)_0^0$, $B^0 \rightarrow \phi K^*(892)^0$, and $B^0 \rightarrow \phi K_2^*(1430)^0$, and to determine the polarization in vector–vector and vector–tensor decays, as well as a number of parameters related to CP violation. We also determine the branching fraction for each of the three channels.

We first explain the parametrization of the angular distribution, which is followed by a description of the $K^+ \pi^-$ invariant-mass distribution. Finally, we derive the combined model of mass and angular distributions of partial waves used for the parameter extraction in a maximum likelihood fit.

A. Angular distribution

The angular distribution in the $B^0 \rightarrow \phi K^*$ system with $\phi \rightarrow K^+ K^-$ and $K^* \rightarrow K^+ \pi^-$ is described by the three helicity angles θ_1, θ_2, and Φ, which are defined in the rest frame of the parent particles as illustrated in Fig. 2.

In general, due to the angular momentum conservation, the partial decay width for a two-body decay of a pseudoscalar B meson into particles with spins J_1 and J_2 is given by

$$
\frac{d^4\Gamma}{d\cos \theta_1 d\cos \theta_2 d\Phi} \propto \left| \sum_{\lambda} A_{\lambda} Y_{J_1}^\ast (\theta_1, \Phi) Y_{J_2}^{-\lambda} (-\theta_2, 0) \right|^2,
$$

where Y_{l}^m are the spherical harmonics, the sum is over the helicity states λ, and A_{λ} is the complex weight of the corresponding helicity amplitude. The parameter λ takes all discrete values between $-j$ and $+j$, with j being the smaller of the two daughter particle spins J_1 and J_2. As the ϕ is a vector meson, $J_2 = 1$ in this analysis, whereas $J_1 = 0$ for $(K\pi)_0^0$, $J_1 = 1$ for $K^*(892)^0$, and $J_1 = 2$ for $K_2^*(1430)^0$. The partial decay width of each partial wave with spin $J \equiv J_1$ is therefore

$$
\frac{d^3\Gamma}{d\cos \theta_1 d\cos \theta_2 d\Phi} \propto \left| \sum_{\lambda} A_{J\lambda} Y_{J_1}^\ast (\theta_1, \Phi) Y_{J_1}^{-\lambda} (-\theta_2, 0) \right|^2,
$$

with $A_{J\lambda}$ being the complex weight of the corresponding helicity amplitude of the partial wave with spin J.

The helicity basis is not a basis of CP eigenstates. Polarization measurements are commonly performed in the transversity basis of CP eigenstates with the transformation $A_{J\pm 1} = (A_{J\parallel} \pm A_{J\perp})/\sqrt{2}$ for two of the amplitudes. In this basis, the longitudinal polarization $A_{J\parallel}$ and the parallel polarization $A_{J\parallel}$ are even under CP transformation while the perpendicular component $A_{J\perp}$ is CP-odd. Throughout this article, we use A for B^0 and \bar{A} for \bar{B}^0 related complex weights of the helicity and transversity amplitudes. Furthermore, depending on the context, we use either of the two bases with $\lambda = -1, 0, +1$ or $\lambda = 0, ||, \perp$. Where necessary, we explicitly state the
basis used. We use polar coordinates to define the complex weights $A_{j\lambda} = a_{j\lambda} \exp(i \varphi_{j\lambda})$ and apply the same implicit definition of the basis; e.g., $a_{2 \perp}$ would be the magnitude of the perpendicular D-wave component in the transversity basis.

B. Mass distribution

To distinguish among different partial waves, we study their $K^+\pi^-$ invariant-mass spectrum $M_{K\pi}$. To parametrize the lineshape of the P- and D-wave components as a function of the invariant mass m, we use a relativistic spin-dependent Breit–Wigner (BW) amplitude R_j[11]:

$$R_j(m) = \frac{m_j \Gamma_j(m)}{(m_j^2 - m^2) - im_j \Gamma_j(m)} = \sin \delta_j e^{i \delta_j},$$

where we use the convention

$$\cot \delta_j = \frac{m_j^2 - m^2}{m_j \Gamma_j(m)}.$$

For spin $J = 1$ and $J = 2$, the mass-dependent widths are given by

$$\Gamma_1(m) = \Gamma_1 m_1 \frac{1 + r^2 q_1^2}{m_1} \left(\frac{q}{q_1} \right)^3,$$

$$\Gamma_2(m) = \Gamma_2 m_2 \frac{9 + 3r^2 q_2^2 + 9r^4 q_2^4}{m_2} \left(\frac{q}{q_2} \right)^5,$$

where Γ_j is the resonance width, m_J the resonance mass, q the momentum of a daughter particle in the rest frame of the resonance, q_j this momentum evaluated at $m = m_J$, and r the interaction radius. This parametrization of the mass-dependent width uses the Blatt–Weisskopf penetration factors [11].

The S-wave component is parametrized using $K\pi$ scattering results from the LASS experiment [9]. It was found by LASS that the scattering is elastic up to about $1.5 - 1.6$ GeV and thus can be parametrized as

$$R_0(m) = \sin \delta_0 e^{i \delta_0},$$

where

$$\delta_0 = \Delta R + \Delta B,$$

ΔR representing a resonant contribution from $K^0_s(1430)^0$ while ΔB denoting a non-resonant contribution. The resonant part is defined as

$$\cot \Delta R = \frac{m_0^2 - m^2}{m_0 \Gamma_0(m)},$$

where m_0 and Γ_0 are the resonance mass and width, and $\Gamma_0(m)$ is given by

$$\Gamma_0(m) = \Gamma_0 \frac{m_0}{m} \left(\frac{q}{q_0} \right).$$

The non-resonant part is defined as

$$\cot \Delta B = \frac{1}{aq} + \frac{bq}{2},$$

where a is the scattering length and b is the effective range.

The amplitude $M_J(m)$ is obtained by multiplying the lineshape with the two-body phase space factor

$$M_J(m) = \frac{m}{q} R_J(m).$$

The resonance parameters used in the analysis are given in Table I.

Parameter	$(K\pi)_0^0$	$K^+(982)^0$	$K^0_2(1430)^0$
m_J (MeV)	$1435 \pm 5 \pm 5$	895.94 ± 0.22	1432.4 ± 1.3
Γ_J (MeV)	$279 \pm 6 \pm 21$	48.7 ± 0.8	109 ± 5
r (GeV$^{-1}$)	3.4 ± 0.7	2.7 ± 1.3	2.7 ± 1.3
a (GeV$^{-1}$)	$1.95 \pm 0.09 \pm 0.06$	\cdots	\cdots
b (GeV$^{-1}$)	$1.76 \pm 0.36 \pm 0.67$	\cdots	\cdots

C. Mass-angular distribution

We combine the mass distribution with the angular distribution to obtain the partial decay width

$$\frac{d^4 \Gamma}{d \cos \theta_1 d \cos \theta_2 d \Phi d M_{K\pi}} \propto |M|^2 \times F_{M_{\phi K}}(M_{K\pi}),$$

where $F_{M_{\phi K}}(M_{K\pi})$ is a phase space factor that takes into account the three-body kinematics in $B^0 \rightarrow \phi K^+\pi^-$. As we expect no resonant charmless structure in the ϕK^+ invariant-mass distribution, we assume a constant amplitude that can be computed for each value of $M_{K\pi}$ following the section on kinematics in Ref. [11] as

$$F(m) = 2m \left[m_{\text{max}}^2(m) - m_{\text{min}}^2(m) \right],$$

with m_{max}^2 (m_{min}^2) being the maximum (minimum) value of the Dalitz plot range of the ϕK^+ invariant mass $M_{\phi K}$ at a given $M_{K\pi}$ value.

The matrix element squared $|M|^2$ is given by the coherent sum of the corresponding S-, P-, and D-wave amplitudes A_J as

$$|M|^2 = |A_0(K_{\pi\pi}, \cos \theta_1, \cos \theta_2, \Phi) + A_1(K_{\pi\pi}, \cos \theta_1, \cos \theta_2, \Phi) + A_2(K_{\pi\pi}, \cos \theta_1, \cos \theta_2, \Phi)|^2,$$
where we have omitted the explicit dependence of M on $(M_{K\pi}, \cos \theta_1, \cos \theta_2, \Phi)$ for readability. Each partial wave for a given spin J is parametrized as the product of the angular distribution from Eq. (12) and the mass distribution from Eq. (10). For the S, P, and D-wave, we obtain

$$A_0 \left(M_{K\pi}, \cos \theta_1, \cos \theta_2, \Phi \right) = A_{0\theta}(\theta_1, \Phi) Y_{1\theta}^{-\theta}(0) \times M_0(M_{K\pi}),$$

$$A_1 \left(M_{K\pi}, \cos \theta_1, \cos \theta_2, \Phi \right) = \sum_{\lambda=0,\pm 1} A_{\lambda\theta} Y_{1\lambda}^{-\theta}(\theta_1, \Phi) Y_{1\lambda}^{-\theta}(0) \times M_1(M_{K\pi}),$$

and

$$A_2 \left(M_{K\pi}, \cos \theta_1, \cos \theta_2, \Phi \right) = \sum_{\lambda=0,\pm 1} A_{2\lambda} Y_{2\lambda}^{-\theta}(\theta_1, \Phi) Y_{2\lambda}^{-\theta}(0) \times M_2(M_{K\pi}),$$

respectively.

Overall, the seven complex helicity amplitudes contributing to these formulas can be parametrized by 14 real parameters (28 if B^0 and B^0 are measured independently).

We define the normalized partial decay width as

$$d\Gamma \propto \frac{d\cos \theta_1 d\cos \theta_2 d\Phi dM_{K\pi}}{2N} = F_{M_{K\pi}} \left(M_{K\pi} \right) \times \frac{(1+Q) \times |M^+|^2 + (1-Q) \times |M^-|^2}{2N},$$

where M^+ [M^-] is the matrix element for $B^0 \to \phi(K^+\pi^-)^*$ [$B^0 \to \phi(K^-\pi^+)^*$], Q is ± 1 depending on the charge of the primary charged kaon from the B meson and N is the overall normalization given by

$$N = \frac{1}{2} \int |M^+|^2 \times F_{M_{K\pi}} \left(M_{K\pi} \right) d\cos \theta_1 d\cos \theta_2 d\Phi dM_{K\pi}$$

and

$$+ \frac{1}{2} \int |M^-|^2 \times F_{M_{K\pi}} \left(M_{K\pi} \right) d\cos \theta_1 d\cos \theta_2 d\Phi dM_{K\pi}.$$
$B^0 \to \phi K^+$ system with $K^+ \to K^+ \pi^-$. These 26 parameters can be used to define a more common set of parameters shown in Table II which are used in the review of polarization in B decays in Ref. [11]. For each partial wave J, we define parameters such as the longitudinal (perpendicular) polarization fractions $f_{L,J}$ ($f_{L,J}$), the relative phase of the parallel (perpendicular) amplitude $\phi_{L,J}$ ($\phi_{L,J}$) to the longitudinal amplitude, and strong phase difference between the partial waves $\delta_{L,J}$ and a number of parameters related to CP violation. The 27^{th} parameter, $\Delta \phi_{00} = \Delta \phi_{00} = \frac{i}{2} \text{arg}(A_{00}/\bar{A}_{00})$, could only be measured in a time-dependent analysis of CP violation in $B^0/\bar{B}^0 \to \phi K^0_S \pi^0$ decays that is beyond the scope of this analysis, so we fix $\Delta \phi_{00} = 0$. Furthermore, we fix a_{10} as it has the largest relative magnitude among all amplitudes and choose it as our reference amplitude. Fixing a_{10} does not decrease the number of free parameters as the absolute magnitude, defined by the signal yield, remains a free parameter in the fit. Overall, we are left with 26 real parameters to be determined.

In the previous analysis [1], a twofold phase ambiguity was observed in the decay of $B^0 \to \phi K^+(892)^0$; this is a fourfold ambiguity if B^0 and \bar{B}^0 are measured independently, as the sets $(\phi_{L,J}, \phi_{L,J}, \Delta \phi_{L,J}, \Delta \phi_{L,J})$ and $(2\pi - \phi_{L,J}, \pi - \phi_{L,J}, -\Delta \phi_{L,J}, -\Delta \phi_{L,J})$ solve all angular equations. Even the interference terms in $|M|^2$ are invariant under such transformation if we flip the sign of the strong phase $\delta_{L,J}$. However, the mass dependence of $\delta_{L,J}$ is unique: it either increases or decreases with increasing $K^+ \pi^-$ invariant mass. We solve this ambiguity for B^0 and \bar{B}^0 using Wigner’s causality principle [12], which states that the phase of a resonance increases with increasing invariant mass.

From the measured weights, we can also calculate the triple-product correlations in $B^0 \to \phi K^+(892)^0$, given in our previous measurement. The T-odd quantities

$$A_L^0 = \text{Im}(A_{L} A_{10}^*) \quad \text{and} \quad A_L^\parallel = \text{Im}(A_{L} A_{11}^*)$$

from Ref. [13] and the corresponding asymmetries A_{L}^0/\parallel between B^0 and \bar{B}^0 are sensitive to T-odd CP violation.

III. EVENT RECONSTRUCTION

A. Data sample and detector

We use the full Belle data sample, consisting of an integrated luminosity of 711 fb$^{-1}$ containing $(772 \pm 11) \times 10^6 BB$ pairs collected at the $\Upsilon(4S)$ resonance at the KEKB asymmetric-energy e^+e^- $(3.5$ on 8 GeV) collider [15]. An additional data sample of 79 fb$^{-1}$ integrated luminosity collected 60 MeV below the $\Upsilon(4S)$ resonance, referred to as the off-resonance data, is utilized for background studies.

The Belle detector [16] is a large-solid-angle magnetic spectrometer that consists of a silicon vertex detector, a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter composed of CsI(Tl) crystals located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux-return located outside of the coil is instrumented to detect K^0_L mesons and to identify muons. Two inner detector configurations were used. A 2.0 cm beampipe and a 3-layer silicon vertex detector were used for the first sample of $152 \times 10^6 BB$ pairs, while a 1.5 cm beampipe, a 4-layer silicon detector and a small-cell inner drift chamber were used to record the remaining $620 \times 10^6 BB$ pairs [17].

B. Event reconstruction and selection

We reconstruct B^0 candidates in the decay mode $B^0 \to \phi K^+ \pi^-$ with $\phi \to K^+ K^-$. The charged tracks are required to have a transverse (longitudinal) distance of closest approach to the interaction point (IP) of less than 0.1 (4.0) cm. For particle identification (PID) of track candidates, specific energy loss measured in the CDC and information from the ACC and the TOF are combined using a likelihood-ratio approach. The selection requirement on the combined PID quantity has a kaon (pion) identification efficiency of 95% (98%) with an associated pion (kaon) misidentification rate of 26% (9%) for the track candidates not used as primary kaon from the B meson. For a primary kaon from the B meson candidate, the kaon identification efficiency is 90% with an associated pion misidentification rate of 28%. The $K^+ K^-$ invariant mass for ϕ candidates is required to be $M_{KK} < 1.05$ GeV. The $K^+ \pi^-$ invariant mass must satisfy the criterion 0.7 GeV < $M_{K\pi} < 1.55$ GeV.

The selection of B^0 candidates is based on the beam-energy-constrained mass $M_{bc} = \sqrt{(E_{\text{beam}})^2 - (p_B)^2}$ and the energy difference $\Delta E = E_B^* - E_{\text{beam}}$, where E_{beam} is the beam energy, and p_B^* and E_B^* are the momentum and energy of the B^0 candidates in the center-of-mass (CM) frame, respectively. Candidates with 5.24 GeV < $M_{bc} < 5.29$ GeV and −150 MeV < ΔE < 150 MeV are retained for further analysis. The range 5.24 GeV < $M_{bc} < 5.26$ GeV is used as the sideband, whereas 5.26 GeV < $M_{bc} < 5.29$ GeV is used as the nominal fit region.

In 17% of all signal events, more than one B^0 candidate passes the above selection; we select the candidate with the smallest χ^2 for the hypothesis that all tracks form a common vertex within the IP region. This requirement selects the correct candidate with a probability of 64% according to Monte Carlo (MC) simulations.

The dominant background arises from $e^+e^- \to q\bar{q}$ ($q \in \{u, d, s, c\}$) continuum events, which are suppressed using a neural network (NN) implemented with the NeuroBayes package [18]. In the NN, we combine $\cos \theta_B$, the polar angle of the B^0 candidate with respect to the beam direction in the CM frame, a likelihood constructed
from 16 modified Fox–Wolfram moments [19] and \(\cos \theta_T \), the polar angle between the thrust axis of the \(B^0 \) candidate and the remaining tracks in the event. The NN assigns each candidate a value, \(C_{\text{NB}} \), in the interval \([-1, 1]\) with \(-1\) \((+1)\) being background (signal)-like. We require \(C_{\text{NB}} > 0 \) to reject \(86\% \) of the background while retaining \(83\% \) of the signal. Hereinafter, we refer to the continuum background, together with a \(2\% \) contribution from random combinations of tracks from \(BB \) events, as the combinatorial background.

The remaining background contribution arises from \(BB \) events and is due either to signal events in which we select a candidate with at least one track originating from the other \(B \) [referred to as self-crossfeed (SCF)], or peaking background from \(B \) decays. The SCF events are mainly due to partially reconstructed \(B^0 \) candidates, with a \(\pi^- \) track from the other \(B \) meson. Often, the pion momentum is low compared to the kaon momentum. These combinations tend to peak in the region of high \(\cos \theta_1 \) values. The peaking background originates from either \(B^0 \to D^+_sK^+ \) with \(D^+_s \to \phi \pi^- \), which peaks sharply near 0.8 in the \(\cos \theta_1 \) distribution, or from \(B^0 \to f_0(980)K^+(892)^0 \) events. We require \(\cos \theta_1 < 0.75 \) to reject the peaking \(B^0 \to D^+_sK^+ \) events completely as well as a majority of the SCF events. With respect to signal, about 5\% of the events are due to SCF that will be discussed further in Sec. IV.D.

The reconstruction and selection procedures are established using MC events generated with the EvtGen program [20] and a full detector simulation based on GEANT3 [21]. The PHOTOS package [22] is used to take into account final state radiation. The MC statistics for CKM-favored \(b \to c \) transitions and \(q \bar{q} \) decays correspond to four times the data statistics. In addition, we use an MC sample of rare \(b \to s \) decays with 50 times the statistics of the data sample. We further use a very large sample of \(B^0 \to \phi K^+ \pi^- \) three-body phase space decays for our studies and several samples with different polarizations for cross-checks.

C. Efficiency

We derive the four-dimensional efficiency function \(\alpha(M_{K\pi}, \cos \theta_1, \cos \theta_2, \Phi) \) using MC samples of \(B^0 \to \phi K^+ \pi^- \) three-body phase space decays. It is found that the efficiency function can be parametrized by the product of one-dimensional projections \(\alpha(M_{K\pi}, \cos \theta_1, \cos \theta_2, \Phi) \equiv \alpha(M_{K\pi}) \times \alpha(\cos \theta_1) \times \alpha(\cos \theta_2) \times \alpha(\Phi) \). We model the efficiency as a function of \(M_{K\pi} \) with a second-order polynomial function. The efficiency as a function of \(\cos \theta_1 \) is parametrized by a fourth-order polynomial function for \(\cos \theta_1 < 0.75 \) and zero above. Both distributions are shown in Fig. 3. The efficiency as a function of \(\cos \theta_2 \) and \(\Phi \) is found to be uniform.

For a \(B^0 \to \phi K^+ \pi^- \) three-body phase-space decay, we obtain an averaged reconstruction efficiency of about 28\% within the analysis region. The reconstruction efficiency \(\epsilon_{\text{reco}, J} \) for a given partial wave \(J \) depends on the observed angular distribution and can be obtained only after the polarization is measured. For the partial wave amplitudes with spin \(J \) in Eqs. (16) to (18), we compute \(\epsilon_{\text{reco}, J} \) using

\[
\epsilon_{\text{reco}, J} = \frac{\int \alpha(M_{K\pi}, \cos \theta_1, \cos \theta_2, \Phi) |A_J|^2}{\int |A_J|^2} = \frac{n}{d} \quad (24)
\]

The numerator \(n \) is the integral over the phase space with the efficiency included and is given by

\[
n = \int_{m_{B^0}}^{m_{B^0}+m_{\phi}+1} \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \alpha(A_J)^2 dM_{K\pi} d\cos \theta_1 d\cos \theta_2 d\Phi,
\]

where \(m_{B^0}, m_{\phi}, m_K \) and \(m_\pi \) are the nominal particle masses that limit the \(M_{K\pi} \) phase space. We omit the explicit dependencies of \(\alpha \) and \(A_J \) for readability. The denominator of Eq. (24), \(d \), is given by the integral over the full phase space with a uniform efficiency

\[
d = \int_{m_{B^0}}^{m_{B^0}+m_{\phi}+1} \int_{-1}^{1} \int_{-1}^{1} |A_J|^2 dM_{K\pi} d\cos \theta_1 d\cos \theta_2 d\Phi.
\]

IV. PARTIAL WAVE ANALYSIS

We use an unbinned extended maximum-likelihood (ML) fit to extract the 26 parameters related to polarization and \(CP \) violation defined in Eqs. (21) and (22), and denoted \(\bar{\mu} \) in the following. The log-likelihood function is given by

\[
\ln L = \sum_{j=1}^{N_c} \ln \left(\sum_{i=1}^{N_t} N_i p_i (\bar{x}; \bar{\mu}; \bar{\theta}) \right) - \sum_{i=1}^{N_t} N_i, \quad (27)
\]

where \(N_c \) is the total number of candidate events in the data set, \(N_i \) is the number of contributions, \(N_i \) is the expected number of events for the \(i \)th contribution, \(P_i \) is
the probability density function (PDF) for the i^{th} contribution, \vec{x}_j is the nine-dimensional vector of observables for the j^{th} event, and $\vec{\phi}$ denotes remaining parameters such as those related to PDF shapes.

We include three contributions in our fit model: the signal decay $B^0 \rightarrow \phi K^*$ ($i = 1$), peaking background from $B^0 \rightarrow f_0(980)K^*(892)^0$ decays ($i = 2$), and combinatorial background ($i = 3$). Each event is characterized by a nine-dimensional set of observables $\vec{x}_j = \{M_{bc}, \Delta E, C_{NB}', M_{KK}, M_{K\pi}, \cos \theta_1, \cos \theta_2, \Phi, Q\}$, with the beam-energy-constrained mass M_{bc}, the energy difference ΔE, the transformed continuum NN output $C_{NB}' = \ln \{C_{NB}/(1 - C_{NB})\}$, the invariant mass of the ϕ candidate M_{KK}, the invariant mass of the K^* candidate $M_{K\pi}$, the three helicity angles $\cos \theta_1, \cos \theta_2$ and Φ, and the charge $Q = \pm 1$ of the primary kaon from the B meson, denoting the B meson flavor. The transformed C_{NB}' is used instead of C_{NB} as it has a Gaussian-like shape and can be described by an analytic parametrization.

A. PDF parametrization

The PDF $P_i(\vec{x}_j; \vec{\mu}; \vec{\phi})$ for a given contribution i is constructed as a joint PDF of the distributions of the observables \vec{x}. With a few exceptions, explained below, we find no significant correlations among the fit observables. We use the method described in Ref. [23] to check for linear and non-linear correlations among the observables using MC samples as well as sideband and off-resonance data for cross-checks.

The signal PDF for $B^0 \rightarrow \phi K^*$ is modeled with a double Gaussian function for M_{bc}. The ΔE distribution is modeled with the sum of a Gaussian and two asymmetric Gaussian functions. In addition, to take into account a significant linear correlation between M_{bc} and ΔE for the signal, the mean of the ΔE distribution is parametrized by a linear function of M_{bc}. The C_{NB}' distribution is parametrized by a sum of two asymmetric Gaussian functions. The ϕ candidate mass M_{KK} is modeled by a relativistic spin-dependent BW convolved with a Gaussian function to account for resolution effects; the BW parameters can be found in Table [11]. For $M_{K\pi}$, the helicity angles and Q we refer to Eq. [19], which we multiply with the experimentally derived efficiency function $\alpha \{M_{K\pi}, \cos \theta_1, \cos \theta_2, \Phi\}$ to obtain the mass-angular signal PDF.

The peaking background PDF for $B^0 \rightarrow f_0(980)K^*(892)^0$ is constructed using the same parametrization as signal for M_{bc}, ΔE and C_{NB}'. The M_{KK} distribution of the $f_0(980)$ candidates is modeled by a Flatté function [25]. The resonance parameters are given in Table [11]. The $M_{K\pi}$ distribution is parametrized by a relativistic spin-dependent BW for $K^*(892)^0$ using the same parameters as the signal component. The angular distribution of this pseudoscalar to scalar–vector decay is uniform in $\cos \theta_2$ and Φ, and is proportional to $\cos^2 \theta_1$; we correct for detector acceptance effects. We use a uniform distribution for Q.

The combinatorial background PDF follows an empirically determined shape for the M_{bc} distribution, given by

$$f(M_{bc}) \propto M_{bc} \sqrt{1 - \frac{M_{bc}^2}{E_{beam}^2}} \exp \left[c \left(1 - \frac{M_{bc}^2}{E_{beam}^2}\right)\right],$$

where c is a free parameter. This function was first introduced by the ARGUS Collaboration [29]. The ΔE distribution is parametrized by a first-order polynomial function. The C_{NB}' distribution is parametrized with a sum of two asymmetric Gaussians. To account for background that contains real ϕ candidates and a non-resonant component, the M_{KK} distribution is parametrized by the sum of resonant and non-resonant contributions. Similar to signal, the resonant contribution is parametrized with a relativistic spin-dependent BW convolved with the same resolution function. The non-resonant component is described by a threshold function as

$$f(M_{KK}) \propto \arctan \left(\sqrt{(M_{KK} - 2m_K)/a}\right),$$

where m_K is the K^\pm mass and a a free parameter in the fit. The $M_{K\pi}$ distribution is also parametrized by a sum of resonant and non-resonant components. The resonant component from $K^*(892)^0$ is modelled with a relativistic spin-dependent BW using the same parameters as the signal component. The non-resonant contribution is parametrized by a fourth-order Chebyshev polynomial. We find a significant non-linear correlation between $M_{K\pi}$ and $\cos \theta_1$ in the non-resonant component of the combinatorial background. The resonant component in $M_{K\pi}$ is uniform in $\cos \theta_1$, whereas the non-resonant contribution is parametrized by a fifth-order Chebyshev polynomial, where the parameters depend linearly on $M_{K\pi}$. The $\cos \theta_2$ distribution is parametrized by a second-order Chebyshev polynomial and the distributions in Φ and Q are uniform. The combinatorial background PDF is verified using off-resonance and sideband data. The 2% contribution due to the combinatorial background from BB events, which is present in the sideband, has no significant effect on the shape parameters.

We use sideband data events to determine the free parameters of the combinatorial background PDF. Due to

TABLE III: Parameters used for the ϕ resonance are taken from [11], except for r, we make an assumption based on the values found in $K\pi$ scattering. For $f_0(980)$, we use values from BES [24].

Parameter	ϕ	$f_0(980)$
m_J (MeV)	1019.455 ± 0.020	965 ± 10
Γ_J (MeV)	4.26 ± 0.04	⋯
r (GeV$^{-1}$)	3.0 ± 1.0	⋯
g_π (MeV)	⋯	165 ± 18
g_k (MeV)	⋯	(4.21 ± 0.33)g_e
the presence of a clear ϕ peak in these events, we also determine the M_{KK} resolution (about 1 MeV) from this fit and use it for the signal model in the nominal fit region.

The M_{bc}, ΔE and C_{NB} distributions of the signal and peaking background components are cross-checked by fitting to a large-statistics control sample of $B^0 \rightarrow J/\psi K^*(892)^0$ events. In the control channel, we find excellent agreement between data and simulations for the distributions of M_{bc} and C_{NB}. We also confirm the linear correlation between M_{bc} and ΔE and that our conditional PDF based on MC simulations describes the data well. The only difference we observe is due to the ΔE resolution, for which we derive a scale factor $s = 1.124 \pm 0.062$ by comparing data and MC events in the control sample. The scale factor is applied to the signal and peaking background model on data.

In the fit to the nominal fit region, we use the combinatorial background model derived from the fit to the sideband data and fix all parameters except one. The parameter c from the M_{bc} background shape is the only floated parameter related to the combinatorial background in the nominal fit region. Beside this, we float the three yields N_i and the 26 signal parameters μ.

The log-likelihood function is minimized using the MINUIT [27] algorithm in the RooFit package [28] within the ROOT framework [29]. The RooFit package provides an interface that allows us to extend it with the PDFs necessary for the partial wave analysis. Further, it provides functionality for the normalization of PDFs and visualization of fit results.

B. Optimization of normalization integrals

The normalization integrals in Eq. (20) require four-dimensional numeric integration, which is computationally expensive. As the weights in M are adjusted during an ML fit, this operation needs to be performed thousands of times. However, such integration can be optimized drastically when certain conditions are satisfied.

The integration over a simple matrix element $|M|^2$ with two amplitudes $A_i(\vec{x})$ ($i = 0, 1$) depending on observables \vec{x} and their complex weights $A_i = a_i \exp(i \varphi_i)$

$$\int |M|^2 \, d\vec{x} = \int |A_0 \cdot A_0(\vec{x}) + A_1 \cdot A_1(\vec{x})|^2 \, d\vec{x}, \quad (30)$$

can be expanded to

$$\int |M|^2 \, d\vec{x} = a_0^2 \int |A_0(\vec{x})|^2 \, d\vec{x} + a_1^2 \int |A_1(\vec{x})|^2 \, d\vec{x}$$

$$+ 2a_0a_1 \cos \Delta \varphi \int \Re\{A_0(\vec{x})A_1^*(\vec{x})\} \, d\vec{x}$$

$$- 2a_0a_1 \sin \Delta \varphi \int \Im\{A_0(\vec{x})A_1^*(\vec{x})\} \, d\vec{x}, \quad (31)$$

with $\Delta \varphi = \varphi_0 - \varphi_1$. Given n amplitudes A_i, we always obtain n integrals over A_i squared and $(n^2 - n)/2$ integrals over the real and imaginary parts of the product of two amplitudes, respectively. If the amplitudes A_i have no free parameters, all integrals become constant as only the weights are adjusted.

In the context of this analysis, we have $n = 7$ helicity amplitudes, resulting in 49 constant integrals, as parameters such as resonance masses, interaction radii and other similar quantities are fixed. These integrals are computed once with high precision and are then used on demand, thereby significantly reducing the amount of CPU time. This method is several orders of magnitude faster than the numeric integration in each iteration of the fit. For cross-checks, we performed a comparison between our approach and the numeric integration. This exercise confirmed the validity of our approach but required several days of CPU time.

This technique can also be used to improve the computation of projection integrals onto one dimension d in \vec{x} for a fixed value of x_d. In a typical projection plot, hundreds of $(\dim \vec{x} - 1)$-dimensional integrations that could require several hours of CPU time are necessary per plot. These can be computed in parallel and stored on a large scale cluster. If loaded on demand, the improvement in speed is again several orders of magnitude.

C. Validation

The entire analysis is performed as a blind analysis and all methods are tested and fixed before being applied to the data. Beside the above mentioned cross-checks of PDFs on the control channel, sideband and off-resonance data, and the optimized computation of normalization integrals, we have made further studies to validate the analysis chain.

The $b \rightarrow c$ and $b \rightarrow s$ MC samples are used to search for possible backgrounds beside the already described $B^0 \rightarrow f_0(980)K^*+(892)$ and $B^0 \rightarrow D^-_s K^+$. In the case of particle misidentification, $B^0 \rightarrow \phi \phi$ or $B^0 \rightarrow \phi p^0$ (for example) could mimic signal but no statistically significant contribution is expected from these or other decays. After unblinding the data, we create projections of the data and likelihood function in regions that show an enhancement from such decays. In all cases, the difference between data and the fit model is within the statistical uncertainty.

We also generate a large number of independent pseudo-experiments from the PDF, using results from previous measurements on the polarization parameters as well as various assumptions. In all pseudo-experiments, we find the fit procedure to be robust and the mean and width of the pull distributions to be consistent with the expectation.

We further use simulated $B^0 \rightarrow \phi K^- \pi^+$ phase space signal events, which we reweight according to different polarizations, as well as the four independent samples of $b \rightarrow c$ and $q\bar{q}$ events to perform fits. Again, the expected inputs are reproduced within the statistical errors.

Finally, we check the fit stability with respect to mult-
multiple solutions by fitting samples repeatedly with random starting values for the signal parameters. The MINUIT algorithm is not always able to find the global minimum for a given sample and only in about 30% of fits the correct minimum is found. In the remaining 70%, the algorithm is trapped in a local minimum, which has significantly larger $-2 \ln L$ value ($-2 \Delta \ln L > 50$) than the global minimum, or stops without finding a minimum. We therefore repeat the final fit on data 100 times and select the best solution by the lowest negative log-likelihood value.

D. Systematics

We split various sources of systematics into two main groups. Systematics in the first group are summarized in Table IV and include uncertainties that enter the computation of the branching fraction and are rather decoupled from the polarization and CP violation parameters. Systematics from the second group are summarized in Tables VI and VII and include uncertainties that affect the polarization and CP violation parameters, including triple-product correlations.

Due to uncertainties in the reconstruction efficiency for charged tracks, we assign 0.35% uncertainty per track, which results in 1.4% total uncertainty. These values have been estimated from a study of partially reconstructed $D^{*+} \rightarrow D^0 \pi^+ \rightarrow (K^0_S \pi^+ \pi^-) \pi^+$ decays. The uncertainty due to PID selection is estimated from $D^{*+} \rightarrow D^0 \pi^+ \rightarrow (K^- \pi^+) \pi^+$ samples and tabulated as a function of track momentum and polar angle. The assigned value of $(3.3-3.4)\%$ varies among different partial waves as it depends slightly on the polarization. To evaluate the difference between data and simulations for the selection based on C_{NB}, we use the $B^0 \rightarrow J/\psi K^* (892)^0$ control sample but find no need for any correction. We assign a systematic uncertainty of 0.7% on the C_{NB} requirement due to finite data statistics in the control channel. Due to limited MC statistics, we assign 0.5% uncertainty on the absolute scale of efficiency. Uncertainties due to daughter branching fractions of ϕ and $K^*_2(1430)^0$ are taken from Ref. [11]. Finally, the uncertainty on the total number of BB pairs in data is estimated to be 1.4%. All uncertainties are summarized in Table IV including the total uncertainty estimated by adding the individual errors in quadrature.

As for systematics on the polarization and CP violation parameters, we first consider uncertainties due to the PDF model. The external inputs on resonance masses, widths, and other fixed parameters in our measurement are given in Tables II and III together with their uncertainties. Besides parameters shown in these tables, we have fixed combinatorial background shape parameters from the fit to sideband data as well as signal and peaking background shape parameters from fits to MC and the control channel. We vary all those parameters one by one by $\pm 1\sigma$, with σ being their statistical uncertainty, and add the differences with respect to the nominal fit result in quadrature and assign it as the systematic uncertainty. Most PDF systematics are dominated by the uncertainties on the external inputs.

We also study the effect of neglecting the resolution in $M_{K\pi}$ and the three helicity angles by creating pseudo-experiments, which we fit with and without applying an additional Gaussian smearing with the resolution derived from MC samples. We find the relative difference to be $O(10^{-4})$ and thus negligible as compared to other systematics.

The uncertainty in the efficiency function is estimated by varying the efficiency model parameters one by one by $\pm 1\sigma$. The differences between the efficiency functions for B^0 and \bar{B}^0 are found to be smaller than the statistical uncertainties. Again, we add the differences to the nominal fit result in quadrature and take it as the systematic uncertainty.

To assess the impact of the remaining fraction of SCF events, we generate pseudo-experiments and fit them with and without adding SCF events from the MC samples. We use SCF events from MC simulations that correspond to the observed polarization. The mean of the residual between fits with and without additional SCF events is found to be consistent with zero and we take the width of the obtained residual distribution as a systematic uncertainty.

Concerning the shape parametrization of the invariant $K^+ K^-$ mass M_{KK} for the peaking background of $B^0 \rightarrow f_0(980) K^* (892)^0$, we consider also a non-resonant contribution from $B^0 \rightarrow K^+ K^- K^* (892)^0$ events. We

TABLE IV: Systematic errors (%) that enter only the calculation of the branching fraction.

Parameter	PDF	Eff.	SCF	KK	Interf.	Total
$A^0_f B^0$	0.003	0.003	0.003	0.002	0.008	0.010
$A^3_f B^0$	0.003	0.003	0.003	0.001	0.003	0.006
$A^0_f B^0$	0.004	0.001	0.006	0.000	0.012	0.014
$A^3_f B^0$	0.002	0.002	0.003	0.000	0.010	0.011
A^0_f	0.009	0.006	0.014	0.003	0.015	0.023
A^3_f	0.087	0.061	0.511	0.012	0.004	0.522

TABLE V: Systematic errors (absolute values) on the triple-product correlations for $B^0 \rightarrow \phi K^* (892)^0$. See Table VI for column details.

Parameter	$\phi (K\pi)_0^0$	$\phi K^* (892)^0$	$\phi K^*_2 (1430)^0$
$J = 0$	1.4	1.4	1.4
$J = 1$	3.3	3.3	3.4
$J = 2$	0.7	0.7	0.7
C_{NB} requirement	0.5	0.5	0.5
MC statistics	2.4	2.4	2.4
NB	1.4	1.4	1.4
Total	4.1	4.1	4.8
modify the fit model to allow for a coherent sum of both components with relative amplitude and phase between them. Taking into account the change in the number of degrees of freedom, negative log-likelihoods obtained from this alternative fit and the nominal fit yield equally good solutions. The coherent sum shows a very strong destructive interference, which is also often observed in Dalitz analyses (e.g. Ref. [30]) that include \(K^+K^-\). We therefore choose the nominal fit model as the default model and take the difference between the two fits as a systematic uncertainty. We do not consider a model with only \(B^0 \rightarrow K^+K^-K^*(892)^0\), as this hypothesis shows significant deviations between data and fit model in the \(M_{KK}\) region below the \(\phi\) peak.

We further consider the possibility of interference effects between the S- and P-wave \(K^+K^-\) components in \(B^0 \rightarrow f_0(980)K^*(892)^0\) and \(B^0 \rightarrow \phi K^*(892)^0\) decays. In principle, these interference effects can be treated in a similar manner to those in the invariant \(K^+\pi^-\) mass by including all amplitudes with their corresponding angular distributions in the matrix element and leading to a full partial wave analysis of \(B^0 \rightarrow (K^+K^-)(K^+\pi^-)^*\) decays. To estimate the systematic uncertainty from neglecting this interference, we include the interference term of \(B^0 \rightarrow f_0(980)K^*(892)^0\) and \(B^0 \rightarrow \phi K^*(892)^0\) decays into the fit model. We neglect the interference of \(B^0 \rightarrow f_0(980)K^*(892)^0\) with \(B^0 \rightarrow \phi(K\pi)^0\) and \(B^0 \rightarrow \phi K^*_2(1430)^0\), as there is little overlap between these channels. We use the difference of this fit with respect to the nominal fit as the systematic uncertainty due to interference effects.

A charge bias in the reconstruction efficiency that would affect the relative yields between \(B^0\) and \(B^0\) is estimated following the procedures in the analysis of \(D^+ \rightarrow K^0_SK^+\) [31] and \(D^+ \rightarrow K^0_S\pi^+\) [32] decays; it is found to be consistent with zero. We assign the uncertainty of 1.2% in this estimate as a systematic uncertainty.

Table VI: Systematic errors (absolute values) on the physics parameters defined in Table II.

Parameter	PDF	Eff.	SCF	KK	Interf. Charge	Total	
\(N_{ss}\)	25.780	1.371	2.009	10.720	0.769	28.115	
\(FF_0\)	0.021	0.002	0.002	0.003	0.002	0.021	
\(\mathcal{A}_{CP0}\)	0.008	0.003	0.006	0.001	0.005	0.012	0.017
\(FF_1\)	0.013	0.007	0.001	0.004	0.002	0.015	
\(\mathcal{A}_{CP1}\)	0.004	0.002	0.003	0.002	0.016	0.012	0.021
\(FF_2\)	0.017	0.005	0.001	0.001	0.001	0.018	
\(\mathcal{A}_{CP2}\)	0.025	0.012	0.013	0.001	0.000	0.012	0.033
\(f_{L1}\)	0.005	0.016	0.002	0.005	0.002	0.018	
\(f_{L2}\)	0.003	0.007	0.001	0.003	0.001	0.008	
\(\phi_{\parallel}\)	0.015	0.005	0.009	0.002	0.010	0.020	
\(\phi_{\perp}\)	0.014	0.005	0.013	0.004	0.037	0.042	
\(\delta_0\)	0.078	0.018	0.006	0.007	0.011	0.081	
\(\Delta\mathcal{A}_{CP1}\)	0.003	0.002	0.003	0.001	0.005	0.007	
\(\Delta\mathcal{A}_{CP2}\)	0.006	0.004	0.004	0.001	0.008	0.011	
\(\Delta\phi_{\parallel}\)	0.009	0.004	0.005	0.001	0.005	0.012	
\(\Delta\phi_{\perp}\)	0.008	0.005	0.012	0.001	0.010	0.018	
\(\Delta\phi_{001}\)	0.006	0.004	0.006	0.001	0.001	0.010	
\(\Delta\phi_{012}\)	0.011	0.006	0.003	0.000	0.000	0.012	
\(\Delta\phi_{012}\)	0.008	0.003	0.003	0.001	0.000	0.009	
\(\phi_{012}\)	0.138	0.072	1.314	0.009	0.017	1.323	
\(\phi_{012}\)	0.121	0.049	0.010	0.007	0.013	0.131	
\(\delta_{012}\)	0.177	0.053	0.010	0.002	0.002	0.185	
\(\Delta\mathcal{A}_{CP2}\)	0.008	0.001	0.002	0.000	0.000	0.008	
\(\Delta\mathcal{A}_{CP2}\)	0.077	0.020	0.030	0.010	0.002	0.085	
\(\Delta\phi_{012}\)	0.254	0.062	0.979	0.010	0.017	1.014	
\(\Delta\phi_{012}\)	0.101	0.023	0.013	0.006	0.014	0.106	
\(\Delta\phi_{012}\)	0.011	0.003	0.009	0.001	0.003	0.015	
\(N_{ss} (\%)\)	2.3	0.1	0.3	1.0	0.1	2.5	
\(FF_0 (\%)\)	7.7	0.7	0.7	1.1	0.7	7.9	
\(FF_1 (\%)\)	2.2	1.2	0.2	0.7	0.3	2.6	
\(FF_2 (\%)\)	17.2	5.1	1.0	1.0	1.0	18.0	
All systematics that neither cancel nor are negligible are evaluated in terms of their effects on the triple-product correlations and the parameters defined in Tables IV and VI as well as on the fit fraction per partial wave, which is defined in Sec. V. The systematic errors are summarized in Tables IV and VI together with the total uncertainty by adding the individual errors in quadrature. All parameters in Table VI that enter the calculation of the branching fraction are also summarized with relative errors.

V. RESULTS

We observe a signal yield of $N_{\text{sig}} = 1112 \pm 40$ events, a peaking background yield of $N_{\text{peak}} = 140 \pm 19$ events, and a combinatoric background yield of $N_{\text{comb}} = 14522 \pm 122$ events, where the errors are statistical only. To illustrate the fit result, we show projections of the fit onto various discriminating observables in Figs. 4 and 5. In each plot of Fig. 4 we apply a signal-enhancing requirement on all four observables, which is used to calculate the fit fraction FF_j per partial wave A_j, which is defined as

$$FF_j = \frac{\int |A_j|^2}{\int |M|^2} = \frac{\int |A_j|^2}{\int |A_0 + A_1 + A_2|^2}. (32)$$

The fit fractions are given in Table VII and their sum is $(97.2 \pm 0.7)\%$, where the error is statistical only. This indicates the presence of destructive interference between the partial waves.

From the product of signal yield and fit fraction, we obtain the yield per partial wave N_j, which is used to calculate the branching fraction. The results for the branching fraction are summarized in Table VIII and the results for the polarization and CP violation asymmetries are summarized in Table VII. The results for $B^0 \rightarrow \phi K^*(892)\bar{B}$ supersede our previous results; all results on
TABLE VII: Summary of the results on the $B^0 \to \phi K^*$ system. See Table [I] and Eq. (32) for the parameter definition. In this table, we give the fit fraction FF_J per partial wave instead of the branching fraction B_J, which is given in Table [VIII] together with the yields per partial wave. The first error is statistical and the second due to systematics.

Parameter	$\phi(K\pi)_0^*$	$\phi K^*(892)^0$	$\phi K^*_2(1430)^0$		
FF_J	0.273 ± 0.024 ± 0.021	0.600 ± 0.020 ± 0.015	0.099 ± 0.012 ± 0.018		
f_{LJ}	...	0.490 ± 0.030 ± 0.018	0.918 ± 0.062 ± 0.012		
f_{LJ}	...	0.238 ± 0.026 ± 0.008	0.056 ± 0.035 ± 0.009		
$\phi_{		} (\text{rad})$...	2.23 ± 0.10 ± 0.02	3.76 ± 2.88 ± 1.32
$\phi_{\perp} (\text{rad})$...	2.37 ± 0.10 ± 0.04	4.43 ± 0.38 ± 0.13		
$\phi_{\perp} (\text{rad})$...	2.91 ± 0.10 ± 0.08	3.53 ± 0.11 ± 0.19		
$\Delta \phi_{		} (\text{rad})$...	-0.07 ± 0.04 ± 0.021	-0.155 ± 0.132 ± 0.033
$\Delta \phi_{\perp} (\text{rad})$...	-0.030 ± 0.061 ± 0.007	-0.016 ± 0.055 ± 0.008		
$\Delta \phi_{\parallel} (\text{rad})$...	-0.14 ± 0.11 ± 0.01	-0.01 ± 0.067 ± 0.09		

FIG. 6: Scan of the negative log likelihood as function of (a) $\phi_{||}$ and (b) ϕ_{\perp}. One single discrete solution is found for each of the two phases.

We resolve the ambiguity in the phase parameters $\phi_{||}$ and ϕ_{\perp} from our previous measurement. In Fig. 6, we show a scan of the negative log-likelihood as a function of $\phi_{||}$ and ϕ_{\perp}, each of which shows a single solution. We also confirm the large longitudinal polarization fraction in the decay $B^0 \to \phi K^*_2(1430)^0$ observed by BaBar. In general, all parameters related to CP violation in the S, P, and D-wave components are consistent with its absence.

Due to our requirement on $\cos \theta_1$ and the large longitudinal polarization in $B^0 \to \phi K^*_2(1430)^0$ we observe a proportionally large drop in the efficiency with respect to the other channels, which results in larger statistical uncertainties on the related parameters.

The results on the triple-product correlations in $B^0 \to \phi K^*(892)^0$ are summarized for B^0 and \bar{B}^0, together with the asymmetries, in Table IX. They are consistent with SM predictions of no CP violation.

TABLE VIII: Summary of the branching fraction results for the $B^0 \to \phi K^*$ system. The result for $B^0 \to \phi(K\pi)_0^*$ is quoted for $M_{K_K} < 1.55$ GeV. The first error is statistical and the second due to systematics. The error on $\epsilon_{reco,J}$ is due to MC statistics only. For the overall efficiency ϵ_{J}, defined as $\epsilon_{reco,J}$ times daughter branching fractions, the error is due to MC statistics and daughter branching fractions.

Parameter	$\phi(K\pi)_0^*$	$\phi K^*(892)^0$	$\phi K^*_2(1430)^0$
N_J (events)	303 ± 29 ± 25	668 ± 34 ± 24	110 ± 18 ± 20
$\epsilon_{reco,J}$ (%)	28.7 ± 0.1	26.0 ± 0.1	16.3 ± 0.1
ϵ_{J} (%)	9.4 ± 0.1	8.5 ± 0.1	2.6 ± 0.1
B_J (10^{-6})	4.3 ± 0.4 ± 0.4	10.4 ± 0.5 ± 0.6	5.5 ± 0.9 ± 1.0

TABLE IX: Triple-product correlations obtained from the weights of the $B^0 \to \phi K^*(892)^0$ partial wave. The first error is statistical and the second due to systematics.

| $A_T^{0/||}$ | $A_T^{0/\perp}$ |
|--------------|--------------|
| B^0 | 0.273 ± 0.039 ± 0.010 | 0.015 ± 0.029 ± 0.006 |
| \bar{B}^0 | 0.210 ± 0.039 ± 0.014 | 0.050 ± 0.029 ± 0.011 |

VI. CONCLUSION

In summary, we have performed a partial wave analysis of the $B^0 \to \phi K^*$ system and measured branching fraction and polarization parameters for the S, P, and D-wave contribution from $B^0 \to \phi(K\pi)_0^*$, $B^0 \to \phi K^*(892)^0$, and $B^0 \to \phi K^*_2(1430)^0$, respectively. We have resolved all phase ambiguities present in our previous polarization measurements in these decays. We have further searched for CP violation in these decays. Results are summarized in Tables VII, VIII, and IX. All parameters related to CP violation are consistent with its absence in the studied decays and no evidence for new
Acknowledgments

We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group for valuable computing and SINET4 network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council and the Australian Department of Industry, Innovation, Science and Research; Austrian Science Fund under Grant No. P 22742-N16; the National Natural Science Foundation of China under contract No. 10575109, 10775142, 10875115 and 10825524; the Ministry of Education, Youth and Sports of the Czech Republic under contract No. MSM0021620859; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; The BK21 and WCU program of the Ministry Education Science and Technology, National Research Foundation of Korea Grant No. 2010-0021174, 2011-0029457, 2012-0008143, 2012R1A1A2008330. BRL program under NRF Grant No. KRF-2011-0020333, and GSDC of the Korea Institute of Science and Technology Information; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Education and Science of the Russian Federation and the Russian Federal Agency for Atomic Energy; the Slovenian Research Agency; the Basque Foundation for Science (IKERBASQUE) and the UPV/EHU under program UFI 11/55; the Swiss National Science Foundation; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy and the National Science Foundation. This work is supported by a Grant-in-Aid from MEXT for Science Research in a Priority Area (“New Development of Flavor Physics”), and from JSPS for Creative Scientific Research (“Evolution of Tau-lepton Physics”).

[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
[2] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[3] Y. Amhis et al. (Heavy Flavor Averaging Group), arXiv:1207.1158 [hep-ex] and online update at http://www.slac.stanford.edu/xorg/hfag.
[4] K.-F. Chen et al. (Belle Collaboration), Phys. Rev. Lett. 94, 221804 (2005).
[5] B. Aubert et al. (BaBar Collaboration), Phys. Rev. D 78, 092008 (2008).
[6] A. Datta et al., Phys. Rev. D 77, 114025 (2008) and references therein for discussions of SM and new-physics explanations of f_L/f_T.
[7] Throughout this paper, the inclusion of the charge-conjugate mode decay is implied unless otherwise stated.
[8] Another naming convention $\beta (= \phi_1)$ is also used in the literature.
[9] D. Aston et al. (LASS Collaboration), Nuclear Phys. B 296, 493 (1988).
[10] B. Aubert et al. (BaBar Collaboration), Phys. Rev. D 76, 051103(R) (2007).
[11] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012).
[12] E. P. Wigner, Phys. Rev. 98, 145 (1955).
[13] A. Datta and D. London, Int. J. Mod. Phys. A 19, 2505 (2004).
[14] We take the definitions of $A_T^0 = A_T^{(1)}$ and $A_T^0 = A_T^{(2)}$, but $\bar{A}_T^0 = -\bar{A}_T^{(1)}$ and $\bar{A}_T^0 = -\bar{A}_T^{(2)}$. The variables $A_T^{(1)}$ and $A_T^{(2)}$ are defined in Ref. [13].
[15] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res. Sect. A 499, 1 (2003), and other papers included in this Volume; T. Abe et al., Prog. Theor. Exp. Phys. (2013) 03A001 and following articles up to 03A011.
[16] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res. Sect. A 479, 117 (2002); also see detector section in J. Brodzicka et al., Prog. Theor. Exp. Phys. (2012) 04D001.
[17] Z. Natkaniec et al. (Belle SVD2 Group), Nucl. Instrum. Methods Phys. Res. Sect. A 560, 1 (2006).
[18] M. Feindt and U. Kerzel, Nucl. Instrum. Methods Phys. Res. Sect. A 559, 190 (2006).
[19] The Fox–Wolfram moments were introduced in G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978). The Fisher discriminant used by Belle, based on modified Fox–Wolfram moments (SFW), is described in K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 87, 101801 (2001) and K. Abe et al. (Belle Collaboration), Phys. Lett. B 511, 151 (2001).
[20] D. J. Lange, Nucl. Instrum. Methods Phys. Res. Sect. A 462, 152 (2001).
[21] R. Brun et al., GEANT 3.21, CERN Report No. DD/EE/84-1 (1987).
[22] E. Barberio and Z. Was, Comput. Phys. Commun. 79, 291 (1994).
[23] M. Feindt and M. Prim, Nucl. Instrum. Methods Phys. Res. Sect. A 698, 84 (2013).
[24] M. Ablikim et al. (BES Collaboration), Phys. Lett. B 607, 243 (2005).
[25] S. M. Flatte, Phys. Lett. B 63, 224 (1976).
[26] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).
[27] F. James et al., MINUIT, Function Minimization and Error Analysis CERN Program Library.
[28] W. Verkerke and D. Kirkby, The RooFit Toolkit for Data Modeling, Proceedings from CHEP03 (2003).
[29] R. Brun and F. Rademakers, Nucl. Inst. Meth. A 389, 81 (1997).
82, 073011 (2010).

[31] B. R. Ko et al. (Belle Collaboration), Phys. Rev. Lett. 109, 021601 (2012) and Phys. Rev. Lett. 109, 119903(E) (2012).

[32] B. R. Ko et al. (Belle Collaboration), JHEP 02, 98 (2013).