Membrane-Bound IL-21 Promotes Sustained Ex Vivo Proliferation of Human Natural Killer Cells

Cecile J. Denman¹, Vladimir V. Senyukov¹, Srinivas S. Somanchi⁰, Prasad V. Phatarpekav¹,², Lisa M. Kopp¹, Jennifer L. Johnson¹, Harjeet Singh¹, Lenka Hurton¹,², Sourindra N. Maiti¹, M. Helen Huls¹, Richard E. Champlin³, Laurence J. N. Cooper¹,², Dean A. Lee¹,²

¹ Division of Pediatrics, MD Anderson Cancer Center, The University of Texas, Houston, Texas, United States of America, ² Graduate School of Biomedical Sciences, Health Science Center, The University of Texas, Houston, Texas, United States of America, ³ Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, The University of Texas, Houston, Texas, United States of America

Abstract

NK cells have therapeutic potential for a wide variety of human malignancies. However, because NK cells expand poorly in vitro, have limited life spans in vivo, and represent a small fraction of peripheral white blood cells, obtaining sufficient cell numbers is the major obstacle for NK-cell immunotherapy. Genetically-engineered artificial antigen-presenting cells (aAPCs) expressing membrane-bound IL-15 (mbIL15) have been used to propagate clinical-grade NK cells for human trials of adoptive immunotherapy, but ex vivo proliferation has been limited by telomere shortening. We developed K562-based aAPCs with membrane-bound IL-21 (mbIL21) and assessed their ability to support human NK-cell proliferation. In contrast to mbIL15, mbIL21-expressing aAPCs promoted log-phase NK cell expansion without evidence of senescence for up to 6 weeks of culture. By day 21, parallel expansion of NK cells from 22 donors demonstrated a mean 47,967-fold expansion (median 31,747) when co-cultured with aAPCs expressing mbIL21 compared to 825-fold expansion (median 325) with mbIL15. Despite the significant increase in proliferation, mbIL21-expanded NK cells also showed a significant increase in telomere length compared to freshly obtained NK cells, suggesting a possible mechanism for their sustained proliferation. NK cells expanded with mbIL21 were similar in phenotype and cytotoxicity to those expanded with mbIL15, with retained donor KIR repertoires and high expression of NCRs, CD16, and NKG2D, but had superior cytokine secretion. The mbIL21expanded NK cells showed increased transcription of the activating receptor CD160, but otherwise had remarkably similar mRNA expression profiles of the 96 genes assessed. mbIL21-expanded NK cells had significant cytotoxicity against all tumor cell lines tested, retained responsiveness to inhibitory KIR ligands, and demonstrated enhanced killing via antibody-dependent cell cytotoxicity. Thus, aAPCs expressing mbIL21 promote improved proliferation of human NK cells with longer telomerases and less senescence, supporting their clinical use in propagating NK cells for adoptive immunotherapy.

Introduction

NK cells are potent effectors of the innate immune system [1] with cytotoxic and immunoregulatory function [2,3]. Human NK cells are typically characterized as lymphocytes (CD2⁺) expressing CD56 or CD16 and lacking CD3 expression [4], and make up from 1–32.6% of peripheral blood lymphocytes in normal subjects [5]. Unlike T-cells, NK cells recognize targets in a major histocompatibility complex (MHC)-unrestricted manner. NK cells display a variety of activating receptors, including NKG2D and the natural cytotoxicity receptors NKP30, NKP44, NKP46, whose activation signals compete with inhibitory signals provided primarily by killer immunoglobulin receptors (KIR) and CD94/NKG2A. NK cells play an important role in initiating responses to infection, including infections of importance in the peri-transplant setting such as cytomegalovirus (CMV), herpes simplex virus (HSV), respiratory syncitial virus (RSV), and influenza. Donor KIR-mismatched NK cells can suppress recipient derived lymphocytes, reducing the risk of rejection, and react against recipient dendritic cells [7], thereby reducing the allostimulatory for GvHD [8].

With antiviral, anti-GvH, and anti-cancer potential, adoptive immunotherapy with natural killer (NK) cells has emerged as promising anti-cancer treatment. NK cells have therapeutic potential for a wide variety of human malignancies, including sarcomas [9,10], myeloma [11], carcinomas [12,13,14,15], lymphomas [16], and leukemias [14,17,18]. Until recently, the clinical efficacy and effective application of NK cell immunotherapy has been limited by the inability to obtain sufficient cell numbers for adoptive transfer, as these cells represent a small fraction of peripheral white blood cells, expand poorly ex vivo, and have limited life spans in vivo. The ability to harvest large numbers of peripheral blood lymphocytes through leukapheresis, deplete alloreactive T cells, and activate the remaining NK cells with IL-2 has enabled NK cell adoptive immunotherapy, but this process is expensive, invasive, and remains limited in cell dose to a single infusion of typically less...
than 2×10^7 NK cells/kg [19]. Using this approach, Miller et al. [14] demonstrated that infusion of haploidentical NK cells after chemotherapy could induce remission in poor-prognosis AML patients, and remission was associated with KIR mismatch. In a similar study, Rubnitz et al. [10] reported the safety of KIR-mismatched NK cell infusion as post-remission consolidation therapy for children with AML, with no relapses reported in the 10 patients treated. A similar approach has been used for adoptive transfer of NK cells in patients with refractory lymphoma [16] and multiple myeloma [20]. GoHD was not reported in any of these studies.

Identifying the optimal signal for propagation of NK cells in vitro has been problematic due in part to the large number of activating and inhibitory receptors, cooperative receptor pairs, and overlapping signaling pathways involved in maturation, activation, and proliferation. Expansion of donor NK cells has been reported with various combinations of cytokines [17,21,22,23,24,25,26,27,28], cytokine fusion proteins [29,30], cytokines and OKT3 [11,12,31,32,33,34], cytokines and stromal support [35], antibody-coated beads [36], bisphosphonate-capped dendraimers [37], methyl-β-cyclodextrin [38], or feeder cells derived from EBV-lymphoblastoid cell lines [39,40,41,42,43] or K562 [44,45,46,47]. K562-based aAPCs transduced with 4-1BBL (CD137L) and membrane-bound IL-15 (mbIL15) [45] promoted a mean NK-cell expansion of 277-fold in 21 days, but continued proliferation was limited by senescence attributed to telomere shortening. K562 expressing CD137L, MICA, and soluble IL-15 yielded a mean NK cell expansion of 550-fold in 24 days [46]. The highest doses of NK cells yet reported to be infused into patients were derived by expanding autologous CD3-depleted pheresis products for three weeks with IL-2, OKT3, and irradiated PBMC feeder cells [48]. With the development of methods to expand primary human NK cells in vitro, there is now renewed interest in NK cell immunotherapy [13,22,26,41,45].

Common β-chain cytokines, of which IL-2, IL-15 and IL-21 are members, are important in NK cell activation, maturation, and proliferation. IL-15 has a well-recognized role in maturation, survival, and homeostatic expansion of NK cells. The discovery of IL-21 was linked to its role in proliferation and maturation of NK cells [49], but subsequent studies have been widely disparate, identifying it as both activating and suppressive [50,51,52]. Although soluble IL-21 alone does not induce significant proliferation of mature murine NK cells and IL-21R knockout mice have normal NK cell numbers [50], IL-21 synergizes with IL-2, IL-15, and Flt-3L in the generation of NK cells from bone marrow [49] and cord blood [49,53,54,55,56]. IL-21 may activate NK cell lytic activity through upregulation of costimulatory receptors, perforin, and granzyme [57]. To exploit this potential of these cytokines, we developed membrane-bound chimeras of IL-21 (mbIL21) and IL-15 (mbIL15), and investigated NK cell expansion, phenotype, and function in response to K562 aAPCs genetically modified with mbIL21 and/or mbIL15.

Materials and Methods

Ethics Statement

All work with human samples was performed under protocols approved by the Institutional Review Board of MDACC and/or BCM. Written informed consent to participation in an approved protocol was obtained from all participants (or next of kin/legal guardian) prior to collection of samples, with the exception of such cases in which the requirement for consent was waived by the IRB (e.g., anonymized buffy coats from the local blood bank or commercially available human cell lines). Human NK cells were purified or expanded from anonymized blood bank buffy coats obtained under this IRB-approved protocol. Human tumor xenografts were established according to protocol 05-07-04832 approved by the Institutional Animal Care and Use Committee of MDACC.

Cells and cell lines

Anonymized normal human donor buffy coats were obtained from the Gulf Coast Regional Blood Center (Houston, TX). Cells and cell lines

aAPC name	Cytokine transgene
Clone 9	None
Clone 4	Membrane-bound IL-15 mutein (mbIL15)
Clone 27	IL-15 fused to IL-15Rx with linker
Clone 9.mbIL21	Membrane-bound IL-21 mutein (mbIL21)
Clone D2	mbIL15 and mbIL21

All aAPCs include the transgenes for tCD19, CD64, CD86, and CD137L.

DOI:10.1371/journal.pone.0030264.001
Antibodies
Murine anti-human NKp30, NKp44, NKp46, CD16, CD56, NKG2D, isotype control mAb, and the mouse IgG2a anti-disialoganglioside GD2 (clone 14.G2a) were obtained from BD Biosciences (Bedford, MA). Murine anti-human KIR2DL2/3 was obtained from Miltenyi (Auburn, CA). Murine anti-human KIR2DL1 and KIR3DL1 were obtained from R&D Systems (Minneapolis, MN). The humanized IgG1 anti-human CD20 (rituximab, Genentech) was purchased through the institutional pharmacy.

NK cell purification by negative selection
NK cells were enriched from buffy coats with RosetteSep Human NK Cell Enrichment Cocktail (StemCell Technologies, Inc., Vancouver, BC, Canada), using 10 μL per 1 mL of buffy coat. When further purification was needed to achieve NK cell purity to ≥95% (as assessed by flow cytometry as CD3negCD56pos), or for depletion of T cells during NK cell expansion, the method of Warren et al. was used [63], in which 3rd party RBCs were added to enhance agglutination and depletion of unwanted cells.

Ex vivo expansion of human NK cells
NK cells were cultured in NK cell media consisting of RPMI 1640 (Cellgro/Mediatech, Manassas, VA) supplemented with 50 IU/ml recombinant human IL-2 (Proleukin, Novartis Vaccines and Diagnostics, Inc), 10% Fetal Bovine Serum (Invitrogen, Carlsbad, CA), L-glutamine (Gibco/Invitrogen, Carlsbad, CA), and penicillin/streptomycin (Cellgro/Mediatech, Manassas, VA). NK cells were expanded from PBMC as previously described (Figure 2) [64]. Briefly, peripheral blood mononuclear cells (PBMC) were first isolated from buffy coats using Ficoll-Paque Plus (GE HealthCare, Piscataway, NJ). PBMC were co-cultured in T-75 flasks (Corning, Corning, NY) with irradiated (100 cGy) K562 aAPCs at a ratio of 1:2 (PBMC:aAPC) in NK cell media at 2 × 10^5 PBMC/mL. Cultures were refreshed with half-volume media changes every two to three days, and re-stimulated with aAPCs at ratio of 1:1 every seven days. When necessary, a portion of the expanding cells was carried forward for subsequent stimulations, and the remaining cells cryopreserved. NK cell expansion was calculated from the resulting cultures as if all cells

Figure 1. Surface expression of CD15 and transgene receptors on Clone 9.mbl21 aAPC, and stability of expression of relevant receptors. After limiting-dilution cloning, cloned aAPCs were assessed for expression of transgenes. A, Since CD15 expression was variable among the clones and is felt to play a role in NK cell activation, its expression was also assessed. After selection of a clone with expression of all surface proteins, the clone was maintained in culture for 6 months, with periodic re-evaluation of CD137L and mbl21 expression. B. doi:10.1371/journal.pone.0030264.g001

Figure 2. Schema for NK cell manufacturing with aAPCs. Artificial antigen-presenting cells (aAPCs) were produced by genetic modification of K562 to express costimulatory molecules and membrane-bound cytokines. To expand NK cells ex vivo, unfraccionated PBMC are stimulated weekly with irradiated PBMC, inducing rapid proliferation of NK cells and in some cases non-specific expansion of T cells. Contaminating T cells may be depleted, and the remaining purified NK cells may be stimulated weekly by the aAPCs as needed to obtain sufficient numbers. Expanded NK cells may be used directly or cryopreserved for future use. doi:10.1371/journal.pone.0030264.g002
were carried forward in the expansion. Where indicated in Figure 3B and D, expansion cultures were initiated from purified NK cells instead of unfractionated PBMC, or T cells were depleted from the expansion culture prior to the 3rd stimulation at day 14.

Flow cytometry

For direct surface staining, cells were incubated with indicated antibodies for 30 min at 4°C, washed, and resuspended in staining buffer. Data were acquired using a FACSCalibur cytometer (BD Biosciences) and analyzed using FlowJo software (Tree Star, Inc., Ashland, OR). The expanding cell subpopulations (T/NKT (CD3pos) and NK (CD3neg and CD16-or-56pos)) and NK cell phenotypes were determined weekly during expansion.

Cytotoxicity assay

NK cell cytotoxicity was determined using the calcein release assay, a fluorometric assay comparable to the chromium release assay in determining NK cell cytotoxicity [65,66], as described [64]. Target cells were labeled with 0.5–5 \(\mu \)g/mL (titrated for each target cell line) of calcein-AM (Sigma-Aldrich) for 1 h at 37°C with occasional shaking. Cells were co-cultured at the indicated effector-to-target (E:T) ratios and incubated at 37°C for 4 h. After incubation, 100 \(\mu \)L of the supernatant was harvested and transferred to a new plate. Absorbance at 570 nm was determined using a SpectraMax Plus spectrophotometer. The percent lysis was calculated according to the formula \([\text{experimental release} - \text{spontaneous release}] / [\text{maximum release} - \text{spontaneous release}] \times 100\). For ADCC experiments, antibodies were added to the lysis culture at 1 \(\mu \)g/mL. Video fluorescent microscopy of NK cells lysing calcein-loaded neuroblastoma targets was performed at a 5:1 E:T ratio using the Nikon BioStation, with images obtained every 4 minutes.

Telomere length analysis

NK cells were purified from buffy coat by the RosetteSep method, and an aliquot of the NK cells viably frozen. The

Figure 3. NK cell expansion and purity after repeated weekly stimulation with aAPCs expressing membrane-bound cytokines. A, Mean expansion of CD3neg/CD16-or-56pos NK cells from 22 donors expanded for 21 days using aAPCs bearing mbIL15 or mbIL21. NK cells from five donors were also expanded with aAPCs expressing both mbIL15 and mbIL21. B, Mean expansion of NK cells from 4 donors expanded for 42 days using aAPCs bearing mbIL15 or mbIL21. C, Percent of CD3pos T/NKT cells and CD3neg/CD16-or-56pos NK cells in the starting PBMC product (day 0) and at the end of 21 days of expansion on Clone 9.mbIL21 from 20 donors. D, Mean expansion of CD3neg/CD16-or-56pos NK cells on Clone 9.mbIL21 from unfractionated PBMC (n = 19), unfractionated PBMC followed by NK purification at day 14 of expansion (n = 3), or from NK cells purified from PBMC at day 0 prior to expansion (n = 13). Mean ±/− SD is shown for each plot. All p values indicated are for t-test of fold expansion at the end of the expansion period.

doi:10.1371/journal.pone.0030264.g003
remaining NK cells were cocultured with irradiated aAPCs for 7 days in NK cell media as described above. At the end of one week the expanded NK cells were frozen. Matched sets of expanded and unexpanded NK cells were thawed and assayed for telomere length using the reference cell line CEM-1301 as previously described [67] with minor modification. Briefly, 10^6 cells were resuspended in hybridization buffer containing 75% deionized formamide (Spectrum Chemicals), 20 mM Tris, pH 7.0, 1% BSA, or with or without 0.3 g/ml telomere-specific FITC conjugated (C3TA2)3 PNA probe (Panagene). Samples were prepared in duplicate and subjected to heat denaturation of DNA for 15 min at 80°C followed by hybridization for 3 h at RT. Cells were then washed three times with 1 ml of wash buffer containing 70% formamide, 10% 10 mM Tris, 0.1% BSA, and 0.1% Tween 20 and once with 5% dextrose containing 10 mM Hepes, 0.1% BSA, and 0.1% Tween 20. After the last wash cells were resuspended in PBS containing 0.1% BSA, 10 μg/ml RNAse A (Cayman Chemical) and 0.06 μg/ml propidium iodide (BD Biosciences), incubated 2–3 h at room temperature and analyzed on a FACScalibur flow cytometer (BD Biosciences). FITC-labeled fluorescent calibration beads (Quantum™ FITC MESF, Bangs Laboratories) were used for daily calibration of the FACS machine. Relative telomere length (RTL) was determined using CEM-1301 reference cells, calculated as: RTL = (MFIreference cells with probe− MFIreference samples without probe)/(MFIreference cells with probe− MFIsample cells without probe). The RTL of expanded NK cells was compared directly with same-donor unexpanded cells and reported as percent change.

Determination of cytokine secretion by NK cells

NK cells were co-cultured overnight with parental K562 at a 1:1 ratio. Supernatants were collected and concentrations of TNF-α, IFN-γ, and IL-6 were simultaneously determined using micro-particle-based cytokine capture on Cytometric Bead Array (CBA) kits (BD Biosciences). Concentrations were calculated from mean fluorescence intensity based on standard curves and formulas provided with the kit.

nCounter digital multi-plexed gene expression analysis

Gene expression in NK cells stimulated with mbIL15 or mbIL21 was assessed using the nCounter platform (nanoString Technologies, Inc., Seattle, WA) [60]. Purified NK cells from four donors were stimulated for one week in parallel expansions with either Clone 4 (mbIL15) or Clone 9.mbIL21. Total RNA was purified from each sample and assessed for expression of 96 genes. Gene expression was normalized to LDH (mean 6,076 copies detected from 100 ng of loaded mRNA), and plotted as mean ± SEM. Genes with borderline detection (≤10 normalized transcripts detected) were excluded from further analyses. Genes having ≥2-fold difference in mean expression between mbIL21 and mbIL15 culture were then identified.

Statistics

Results are expressed as the mean ± SD or mean ± SEM as indicated. Student’s t test was performed for pair-wise comparisons. Cytotoxicity across E:T ratios were compared between groups using Two-way Repeated Measures ANOVA. One-way ANOVA with Dunnett’s multiple comparisons test was applied to telomere lengths after stimulation with Clone 4 (mbIL15) as compared to other aAPCs. Statistical analysis was performed using Prism 5 for Mac Os X, version 5.0c (GraphPad Software, La Jolla, CA). P values less than 0.05 (*), less than 0.01 (**), less than 0.001 (***) or less than 0.0001 (****) were considered significant.

Results

mbIL21 supports improved proliferation of NK cells compared to mbIL15

We developed aAPCs for expansion of antigen-specific T cells by lentiviral transduction of the K562 cell line with CD64, CD86, CD137L, and truncated CD19, with (Clone 9) or without (Clone 4) mbIL15 [61,69]. Based on a potential role of IL-21 in T-cell and NK-cell maturation and proliferation, we then developed mbIL21 [61] and used Sleeping Beauty transposition to produce derivative aAPCs bearing an IL-15:IL15Rα fusion (Clone 27), mbIL21 (Clone 9.mbIL21), or both mbIL15 and mbIL21 (Clone D2) (Table 1). Typical transgene expression of Clone 9.mbIL21 is shown (Figure 1A), and we confirmed stability of the transgenes during 6 months of continuous culture (Figure 1B).

Using Clone 4, Clone 9.mbIL21, and Clone D2, we compared the expansion of NK cells in response to recursive stimulation by these aAPCs (Figure 2), normalizing the expansion to the NK cell content of each starting PBMC product. From PBMCs of 22 donors expanded in parallel with Clone 4 and Clone 9.mbIL21, we found that mbIL21 resulted in significantly greater fold expansion at 3 weeks (47,967+/−42,230, mean +/- SD) than mbIL15 (825+/−1108, mean +/- SD) (Figure 3A). PBMCs from four of these donors were also expanded with Clone D2 aAPCs expression both of these membrane-bound cytokines, which did not yield significantly greater expansion than mbIL21 alone (Figure 3A).

Since expansion of NK cells on aAPC expressing IL15 had previously been shown to be limited by telomere-induced senescence, we then initiated expansion of purified NK cells from four additional donors with Clone 4 (mbIL15) and Clone 9.mbIL21, and continued the expansion for 6 weeks to determine whether mbIL21-expanded NK cells would also undergo senescence. We found that mbIL15-supported NK cells slowed in their proliferative rate at 4–6 weeks as previously reported, whereas mbIL21-supported NK cells did not (Figure 3B).

Expansion of NK cells from PBMC induces donor-dependent non-specific T-cell expansion

We noted that both Clone 4 and Clone 9.mbIL21 also stimulated significant non-specific T-cell expansion when PBMC were used as the starting product for NK-cell expansion. Among 20 NK-cell expansions with mbIL21 starting from an unfracti-ated PBMC product, we found that with successive stimulations during the culture period NK cells gradually became the predominant cell type with a relative loss of T cells (Figure 3C), during the culture period NK cells gradually became the predominant cell type with a relative loss of T cells (Figure 3C), as has been noted with other methods of NK-cell expansion [11]. Although NK cells rapidly increased in percentage for all donors over the first two weeks, this differential proliferation of NK cells tapered thereafter, resulting in a mean T-cell contamination of 21.7% (median 7.8%) by day 21. Although there was wide inter-donor variation, it was apparent that T-cell depletion would be required if the expanded products were to be given clinically in the setting of allogeneic adoptive transfer.

Since the expansion of purified NK cells (Figure 3B) appeared to be delayed during the first week compared to those expanded from PBMC (Figure 3A), we then determined whether NK cell expansion was affected by T-cell depletion in order to determine when it would be best performed to produce a clinically-viable product. Compared with NK cell proliferation in T-cell replete cultures, T-cell depletion prior to NK cell expansion or on day 14 just prior to the third stimulation resulted in no difference in proliferative rates.
NK-cell expansion supported by mbIL15 or mbIL21 results in similar expression of activating and inhibitory receptors

Because IL-15 and IL-21 signal primarily through different STAT family molecules (STAT5 vs. STAT3, respectively), we questioned whether expansion with mbIL15 and mbIL21 might result in different NK-cell phenotypes, and assessed surface expression of the major NK-cell receptors on expanded NK cells. Although there was variation between donors, particularly in expression of KIR, Clone 4- and Clone 9.mbIL21-expanded NK cells were similar in both the percentage of positive cells and the relative receptor expression (MFI) for the receptors assessed (Figure 4A), with a slight decrease in NKp46^{pos} cells and a non-statistical trend towards increased number of CD56^{dim}CD16^{dim} cells (Figure 4B). NK cells expanded by both methods were primarily CD16^{bright}CD56^{dim} and expressed high levels of natural cytotoxicity receptors and KIR. When compared with freshly-isolated NK cells, mbIL21-expanded NK cells were similar to mbIL15-expanded NK cells in increased numbers of cells positive for KIR2DL2,3 and NKp44, and slightly decreased in NKp30^{pos} cells (Figure 4B). NK cells expanded by both methods were primarily CD16^{bright}CD56^{pos} and expressed high levels of natural cytotoxicity receptors and KIR. When compared with freshly-isolated NK cells, mbIL21-expanded NK cells were similar to mbIL15-expanded NK cells in increased numbers of cells positive for KIR2DL2,3 and NKp44, and slightly decreased in NKp30^{pos} cells (Figure 4B).

NK-cell expansion supported by mbIL15 or mbIL21 results in similar expression of immune-related genes

We applied the nCounter technology for multiplex measurement of RNA [68] to accurately identify subtle changes in transcriptional profiles induced by mbIL21 as compared to mbIL15. We used a 96-gene panel initially developed for evaluating gene expression in T cells propagated on K562 aAPCs, and which assesses a broad variety of signaling, cytokine, chemokine, and cytolytic-related genes (Table S1). We found very high correlation between NK cells propagated with the support of mbIL15 and mbIL21 (Figure 5), with only 9 genes showing more than 2-fold differential expression between the two conditions. Only one of these, CD160, reached statistical significance between donor replicates when corrected for multiple comparisons (Figure 5, inset). Of note, the top ten genes expressed in these cells (other than LDH) were GZMB, PRF, FOS, CCL5, JUNB, IL2RG, IL2RB, TGFB1, IFNG, and SI100A4, all associated with increased cell proliferation, activation, or known NK-cell effector function.

NK-cell expansion with mbIL21 results in a significant increase in telomere length compared to mbIL15

Since expansion with mbIL15 was previously shown to be limited by telomere shortening [70] and we had seen significantly reduced senescence when NK cells were expanded with mbIL21, we questioned whether the telomeres of expanded NK cells differed depending on the cytokine support they received. To ensure that the telomere shortening previously shown was not a result of inadequate signaling of the mbIL15 because of lacking higher-affinity binding provided by the sushi domain during transpresentation by IL15Rα, we also constructed an aAPC (Clone 27) expressing the IL15:IL15Rα fusion (IL-15 fused with a linker to IL-15Rα). We then determined the telomere lengths of fresh NK cells seven days after stimulation with Clone 4, Clone 27, Clone 9, or Clone 9.mbIL21, as compared to the telomere length of freshly-obtained unstimulated NK cells. IL-2 or mbIL15-expanded NK cells showed a nonsignificant trend towards slightly longer mean telomere lengths during this first week, whereas mbIL21 caused a significant increase in the mean telomere lengths of expanded NK cells (Figure 6A) despite having the greatest amount of proliferation. We then assessed the telomere lengths of 21-day expanded NK cells compared to fresh NK cells. Despite a mean 58-fold greater expansion at this timepoint mbIL21-expanded NK cells had increased their telomere lengths by a mean of 11.69%, whereas expansion with mbIL15 resulted in a mean 11.85% decrease in telomere length (Figure 6B).

mbIL21-expanded NK cells have high cytotoxicity and cytokine secretion and retain KIR inhibition

With high expression of granzyme B and perforin (Figure 5), we expected NK cells expanded with mbIL21 to be cytotoxic against tumor targets. However, others have reported that IL-21 has an...
inhibitory effect on some NK cells [50,56] and may reduce expression of activating receptors [71], and the high expression of inhibitory KIR on expanded NK cells (Figure 4) led us to question whether they had enhanced inhibition by KIR ligands compared to that of non-expanded NK cells. We used the 721.221 cell line, which is HLA-negative, and two variants of this cell line transduced to express a group C1 (HLA-C*0702) or Bw4 (B*5801) KIR ligand as previously described [58], and assessed cytokine secretion in response to the parental K562 cell line. We found that the cytolytic ability of the mbIL15- or mbIL21-expanded NK cells toward the 721.221 cell line were similar and much greater than that of freshly isolated NK cells (Figure 7A). In contrast, mbIL21-expanded NK cells expressed significantly higher amounts of IFN-γ (mean 2629 pg/ml vs 26 pg/ml) and TNF-α (mean 90 pg/ml vs. 2 pg/ml) than mbIL15-expanded NK cells (Figure 7B). When cryopreserved mbIL21-expanded NK cells were recovered overnight with IL-2, they exhibited similar cytolyis of each of the KIR-ligand-expressing 721 targets (Figure 7C–E) as cryopreserved unexpanded NK cells recovered overnight with IL-2, suggesting that their responses to KIR ligands were unaffected by expansion.

NK cells expanded with mbIL21 retain cytotoxicity against a wide variety of tumor cell lines and participate in ADCC

We next evaluated the cytotoxicity of mbIL21-expanded NK cells from four donors against a panel of human tumor cell lines representing myeloid, lymphoid, sarcoma, and carcinoma tumor types (Figure 8). In order to allow the most consistent comparisons between multiple donors and across multiple cell targets, we cryopreserved the NK cells after expansion. Unlike most reports of primary NK cells which cryopreserve poorly, we found that the expanded NK cells retained high viability 24 h after thawing with low-dose IL-2 rescue (>90%, data not shown). We found moderate to high cytotoxicity against all cell lines tested, with high sensitivity of AML (Figure 8 A, B) and neuroblastoma (Figure 8 E, F) as is commonly described.

To evaluate the interactions between NK cells and tumor targets during the killing process, we performed video microscopy of expanded NK cells co-cultured with calcin-labeled CHP-134 neuroblastoma cells as targets (Movie S1). The apparent contact time between NK cells and targets ranged from 1 to 8 frames (4 to 32 minutes), and some NK cells appeared to kill several target cells in rapid succession.

Figure 5. Gene expression in NK cells stimulated with mbIL15 or mbIL21 as assessed using the nCounter platform. Paired aliquots of purified NK cells from 4 donors were stimulated for one week with either Clone 4 (mbIL15) or Clone 9.mbIL21. Total RNA was purified and equal quantities hybridized for detection of expression of 96 genes. Gene expression was normalized to LDH (mean 6,076 copies detected), and the remaining data for each gene plotted as mean +/- SEM for each expansion condition. Genes with detection below background (set at ≤10 detected copies) were excluded as not biologically significant (gray box). The ten highest-expressed genes in addition to LDH are labeled, as are genes that are differentially expressed by >2 fold (red) or <0.5 fold (blue) in mbIL21-expanded cells. Differentially expressed genes were replotted (inset) for comparison, and two-tailed t-test applied.

doi:10.1371/journal.pone.0030264.g005
Since our expanded NK cells were CD16 bright by flow cytometry, we also hypothesized that they would participate in ADCC and exhibit enhanced cytotoxicity to antibody-labeled targets. Despite already exhibiting high baseline cytotoxicity towards Raji, the expanded NK cells showed a significant increase in cytotoxicity with the addition of rituximab (Figure 8I). Moreover, the ARH-77 cell line, which is reported to be rituximab-resistant, also showed significant sensitivity to rituximab-mediated ADCC (Figure 8J). Despite poor reported affinity of human CD16 for murine IgG2a, the 14.G2a anti-GD2 monoclonal also mediated significant ADCC by expanded NK cells when tested against GD2-expressing neuroblastoma and melanoma cell lines (Figure 8K–L).

Discussion

Pilot studies of adoptive transfer of IL-2-activated NK cells have demonstrated responses in a wide variety of malignancies (reviewed in reference [72]). However, advances in adoptive immunotherapy with NK cells have been hindered by the lack of robust, clinically-relevant methods for NK cell expansion. There have been important recent advances in this regard, but the methods describing the greatest fold expansion to date have nonetheless been limited by NK cell senescence resulting from telomere shortening. Here we describe the introduction of a membrane-bound chimera of IL-21 to K562-based aAPCs, abrogating the need for clinical-grade production of cytokines.
other than IL-2 and enabling sustained ex vivo expansion of NK cells with increased telomere lengths and greatly reduced senescence.

IL-2, IL-15, and IL-21 are all members of the common γ-chain receptor family and their effects on NK cells are well-described. IL-21 is known to signal primarily through the STAT3 component of the JAK/STAT pathway with very little STAT5 involvement, whereas IL-15 signals primarily through STAT5. STAT3 is known to be an activator of human telomerase reverse transcriptase (hTERT) [73], and NK-cell senescence from mbIL15-mediated expansion can be restored with hTERT gene modification [70], though the cells become cytogenetically unstable. We found that NK cells expanded with mbIL21 have longer telomeres than those expanded with mbIL15. NK cells expanded with mbIL15 had shorter telomeres than those expanded with soluble IL2 alone, but this was likely a result of increased proliferation, not decreased hTERT activity. Increased TERT expression may also increase survival through mechanisms independent of telomere shortening [74]. Thus, the influence of IL-21 and STAT3 signaling on NK cell apoptosis should be explored. Adoptive transfer of lymphocytes with longer telomeres, e.g. “young TIL”, may have a significant advantage in the clinical setting through their greater potential for in vivo expansion [75].

IL-21 has both immunosuppressive and immunostimulatory effects on anti-tumor immunity [76]. IL-21 and STAT3 signaling are dispensable in some murine models of immunity [77,78] and essential in others [79]. IL-21 has a differential effect on malignant lymphoid cell lines of B cell and T cell origin- it induces growth stimulation in B cell lines, but in T cell lines it promotes apoptosis through increased Bax, caspase-3, and caspase-8, but decreased Bcl-2 expression [80]. However, the direct role of IL-21 and STAT3 activation on NK cells is less well defined and somewhat
controversial. IL-21 promotes differentiation of cord blood hematopoietic stem cells into NK-like lymphocytes when combined with Flt3-L and stem cell factor (SCF) [81]. IL-15 and IL-21 are synergistic for cytokine secretion [30,82], cytotoxicity [50], proliferation [27,83], and KIR expression [27], but soluble IL-21 severely blocks the IL-15-induced proliferation of murine NK cells [30,31], in sharp contrast to our findings of enhanced proliferation when mbIL21 was added to mbIL15. Though IL-21 has been reported to downregulate NKG2D in NK cells [71], we found no difference in NKG2D expression between NK cells expanded with mbIL15 and mbIL21 in our system.

We also found that expression of CD160 mRNA transcripts was increased in mbIL121-expanded NK cells compared to those expanded with mbIL15, and confirmed increased expression of CD160 by flow cytometry (not shown). The transmembrane form of CD160 has been identified as a receptor selectively expressed on activated NK cells [84,85]. K562 may express small amounts HLA-C, the physiologic ligand for CD160, and engagement of CD160 results in distinct cytokine secretion profile of IL-6, IFN-γ, and TNF-α [86]. Thus, increased CD160 expression in mbIL21-expanded NK cells may effect proliferation, cytokine profiles, or anti-tumor activity.

NK cells play a crucial role in antibody immunotherapy through ADCC, but expansion of NK cells has been sufficiently problematic in the past that others have proposed adoptive immunotherapy with expanded γδ T cells [87] or CD16 gene-modified [88] T cells as alternative approaches to enhancing ADCC of anti-cancer antibodies. IL-21 can enhance cytotoxicity to antibody-coated tumor targets [89], consistent with our finding of high expression of CD16 and functional ADCC in mbIL21-expanded NK cells. The relatively minor increase in cytotoxicity provided by ADCC with anti-GD2 mAb may be a result of the low affinity of this murine relatively minor increase in cytotoxicity provided by ADCC with alternative approaches to enhancing ADCC of anti-cancer expanded NK cells may effect proliferation, cytokine profiles, or anti-tumor activity.

NK cells play a crucial role in antibody immunotherapy through ADCC, but expansion of NK cells has been sufficiently problematic in the past that others have proposed adoptive immunotherapy with expanded γδ T cells [87] or CD16 gene-modified [88] T cells as alternative approaches to enhancing ADCC of anti-cancer antibodies. IL-21 can enhance cytotoxicity to antibody-coated tumor targets [89], consistent with our finding of high expression of CD16 and functional ADCC in mbIL21-expanded NK cells. The relatively minor increase in cytotoxicity provided by ADCC with anti-GD2 mAb may be a result of the low affinity of this murine relatively minor increase in cytotoxicity provided by ADCC with alternative approaches to enhancing ADCC of anti-cancer expanded NK cells may effect proliferation, cytokine profiles, or anti-tumor activity.

NK cells play a crucial role in antibody immunotherapy through ADCC, but expansion of NK cells has been sufficiently problematic in the past that others have proposed adoptive immunotherapy with expanded γδ T cells [87] or CD16 gene-modified [88] T cells as alternative approaches to enhancing ADCC of anti-cancer antibodies. IL-21 can enhance cytotoxicity to antibody-coated tumor targets [89], consistent with our finding of high expression of CD16 and functional ADCC in mbIL21-expanded NK cells. The relatively minor increase in cytotoxicity provided by ADCC with anti-GD2 mAb may be a result of the low affinity of this murine relatively minor increase in cytotoxicity provided by ADCC with alternative approaches to enhancing ADCC of anti-cancer expanded NK cells may effect proliferation, cytokine profiles, or anti-tumor activity.

NK cells play a crucial role in antibody immunotherapy through ADCC, but expansion of NK cells has been sufficiently problematic in the past that others have proposed adoptive immunotherapy with expanded γδ T cells [87] or CD16 gene-modified [88] T cells as alternative approaches to enhancing ADCC of anti-cancer antibodies. IL-21 can enhance cytotoxicity to antibody-coated tumor targets [89], consistent with our finding of high expression of CD16 and functional ADCC in mbIL21-expanded NK cells. The relatively minor increase in cytotoxicity provided by ADCC with anti-GD2 mAb may be a result of the low affinity of this murine relatively minor increase in cytotoxicity provided by ADCC with alternative approaches to enhancing ADCC of anti-cancer expanded NK cells may effect proliferation, cytokine profiles, or anti-tumor activity.

NK cells play a crucial role in antibody immunotherapy through ADCC, but expansion of NK cells has been sufficiently problematic in the past that others have proposed adoptive immunotherapy with expanded γδ T cells [87] or CD16 gene-modified [88] T cells as alternative approaches to enhancing ADCC of anti-cancer antibodies. IL-21 can enhance cytotoxicity to antibody-coated tumor targets [89], consistent with our finding of high expression of CD16 and functional ADCC in mbIL21-expanded NK cells. The relatively minor increase in cytotoxicity provided by ADCC with anti-GD2 mAb may be a result of the low affinity of this murine relatively minor increase in cytotoxicity provided by ADCC with alternative approaches to enhancing ADCC of anti-cancer expanded NK cells may effect proliferation, cytokine profiles, or anti-tumor activity.

NK cells play a crucial role in antibody immunotherapy through ADCC, but expansion of NK cells has been sufficiently problematic in the past that others have proposed adoptive immunotherapy with expanded γδ T cells [87] or CD16 gene-modified [88] T cells as alternative approaches to enhancing ADCC of anti-cancer antibodies. IL-21 can enhance cytotoxicity to antibody-coated tumor targets [89], consistent with our finding of high expression of CD16 and functional ADCC in mbIL21-expanded NK cells. The relatively minor increase in cytotoxicity provided by ADCC with anti-GD2 mAb may be a result of the low affinity of this murine relatively minor increase in cytotoxicity provided by ADCC with alternative approaches to enhancing ADCC of anti-cancer expanded NK cells may effect proliferation, cytokine profiles, or anti-tumor activity.

NK cells play a crucial role in antibody immunotherapy through ADCC, but expansion of NK cells has been sufficiently problematic in the past that others have proposed adoptive immunotherapy with expanded γδ T cells [87] or CD16 gene-modified [88] T cells as alternative approaches to enhancing ADCC of anti-cancer antibodies. IL-21 can enhance cytotoxicity to antibody-coated tumor targets [89], consistent with our finding of high expression of CD16 and functional ADCC in mbIL21-expanded NK cells. The relatively minor increase in cytotoxicity provided by ADCC with anti-GD2 mAb may be a result of the low affinity of this murine relatively minor increase in cytotoxicity provided by ADCC with alternative approaches to enhancing ADCC of anti-cancer expanded NK cells may effect proliferation, cytokine profiles, or anti-tumor activity.

NK cells play a crucial role in antibody immunotherapy through ADCC, but expansion of NK cells has been sufficiently problematic in the past that others have proposed adoptive immunotherapy with expanded γδ T cells [87] or CD16 gene-modified [88] T cells as alternative approaches to enhancing ADCC of anti-cancer antibodies. IL-21 can enhance cytotoxicity to antibody-coated tumor targets [89], consistent with our finding of high expression of CD16 and functional ADCC in mbIL21-expanded NK cells. The relatively minor increase in cytotoxicity provided by ADCC with anti-GD2 mAb may be a result of the low affinity of this murine relatively minor increase in cytotoxicity provided by ADCC with alternative approaches to enhancing ADCC of anti-cancer expanded NK cells may effect proliferation, cytokine profiles, or anti-tumor activity.

NK cells play a crucial role in antibody immunotherapy through ADCC, but expansion of NK cells has been sufficiently problematic in the past that others have proposed adoptive immunotherapy with expanded γδ T cells [87] or CD16 gene-modified [88] T cells as alternative approaches to enhancing ADCC of anti-cancer antibodies. IL-21 can enhance cytotoxicity to antibody-coated tumor targets [89], consistent with our finding of high expression of CD16 and functional ADCC in mbIL21-expanded NK cells. The relatively minor increase in cytotoxicity provided by ADCC with anti-GD2 mAb may be a result of the low affinity of this murine relatively minor increase in cytotoxicity provided by ADCC with alternative approaches to enhancing ADCC of anti-cancer expanded NK cells may effect proliferation, cytokine profiles, or anti-tumor activity.

NK cells play a crucial role in antibody immunotherapy through ADCC, but expansion of NK cells has been sufficiently problematic in the past that others have proposed adoptive immunotherapy with expanded γδ T cells [87] or CD16 gene-modified [88] T cells as alternative approaches to enhancing ADCC of anti-cancer antibodies. IL-21 can enhance cytotoxicity to antibody-coated tumor targets [89], consistent with our finding of high expression of CD16 and functional ADCC in mbIL21-expanded NK cells. The relatively minor increase in cytotoxicity provided by ADCC with anti-GD2 mAb may be a result of the low affinity of this murine relatively minor increase in cytotoxicity provided by ADCC with alternative approaches to enhancing ADCC of anti-cancer expanded NK cells may effect proliferation, cytokine profiles, or anti-tumor activity.

NK cells play a crucial role in antibody immunotherapy through ADCC, but expansion of NK cells has been sufficiently problematic in the past that others have proposed adoptive immunotherapy with expanded γδ T cells [87] or CD16 gene-modified [88] T cells as alternative approaches to enhancing ADCC of anti-cancer antibodies. IL-21 can enhance cytotoxicity to antibody-coated tumor targets [89], consistent with our finding of high expression of CD16 and functional ADCC in mbIL21-expanded NK cells. The relatively minor increase in cytotoxicity provided by ADCC with anti-GD2 mAb may be a result of the low affinity of this murine relatively minor increase in cytotoxicity provided by ADCC with alternative approaches to enhancing ADCC of anti-cancer expanded NK cells may effect proliferation, cytokine profiles, or anti-tumor activity.
platform by nCounter, with a custom designed probe set. The common gene name, the accession number and region for the platform by nCounter, with a custom designed probeset.

Movie S1 Video fluorescent microscopy of NK cell lysis of neuroblastoma targets. CHP134 neuroblastoma targets were loaded with calcine dye as described. NK cells were added to target cells at a 5:1 E:T ratio, and fluorescent and brightfield images were acquired at 4-minute intervals using the Nikon BioStation. Sudden loss of fluorescence indicates a loss of cell membrane integrity associated with perforin release by NK cells. Total duration of the movie file spans 2 hours 40 minutes. (MOV)

Acknowledgments
The authors would like to thank Carl June (U of Pennsylvania) for his collaboration in generating the original Clone 4 and Clone 9 aAPCs.

Author Contributions
Conceived and designed the experiments: MHHC REC LJNC DAL. Performed the experiments: CJD VVS SSS PVP LMK JLJ HS LH SNM DAL. Analyzed the data: VVS SNM DAL. Contributed reagents/materials/analysis tools: HS LH SNM MHHC REC. Wrote the paper: CJD VVS SSS HS DAL. Designed the nCounter probe set: SNM Developed the APC expansion SOPs: MHHC.
90. Cassard L, Cohen-Solal JF, Fournier EM, Camilleri-Boet S, Spatz A, et al. (2008) Selective expression of inhibitory Fc gamma receptor by metastatic melanoma impairs tumor susceptibility to IgG-dependent cellular response. Int J Cancer 123: 2832–2839.

91. Jung ST, Kang TH, Kelton W, Georgiou G (2011) Bypassing glycosylation: engineering aglycosylated full-length IgG antibodies for human therapy. Curr Opin Biotechnol.

92. Vitale M, Della Chiesa M, Carlomagno S, Romagnani C, Thiel A, et al. (2004) The small subset of CD56brightCD16- natural killer cells is selectively responsible for both cell proliferation and interferon-gamma production upon interaction with dendritic cells. Eur J Immunol 34: 1715–1722.

93. Romagnani C, Juelke K, Falco M, Morandi B, D’Agostino A, et al. (2007) CD56brightCD16- killer Ig-like receptor- NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. J Immunol 178: 4947–4955.

94. Rose MJ, Brooks AG, Stewart LA, Nguyen TH, Schwarer AP (2009) Killer Ig-like receptor ligand mismatch directs NK cell expansion in vitro. J Immunol 183: 4502–4508.

95. Le Bouteiller P, Barakonyi A, Giustiniani J, Lenfant F, Marie-Cardine A, et al. (2002) Engagement of CD160 receptor by HLA-C is a triggering mechanism used by circulating natural killer (NK) cells to mediate cytotoxicity. Proc Natl Acad Sci U S A 99: 16963–16968.

96. Suh J, Ali E (2011) Ex vivo expansion of natural killer cells: a question of function. Cytotherapy, 2011/03/08 ed.

97. Numbenjapon T, Serrano LM, Singh H, Kowolik CM, Olivares S, et al. (2006) Characterization of an artificial antigens-presenting cell to propagate cytolytic CD19-specific T cells. Leukemia 20: 1829–1832.

98. Singh H, Manieri PR, Olivares S, Darza N, Dawson MJ, et al. (2008) Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system. Cancer Res 68: 2961–2971.

99. Berg M, Childs R (2010) Ex-vivo expansion of NK cells: what is the priority—high yield or high purity? Cytotherapy 12: 969–970.

100. Miller JS (2009) Should natural killer cells be expanded in vivo or ex vivo to maximize their therapeutic potential? Cytotherapy 11: 259–260.