Finite quantum tomography via semidefinite programming

M. A. Jafarizadeha,b,c, M. Mirzaeea,b †, M. Rezaeea,b ‡

aDepartment of Theoretical Physics and Astrophysics, Tabriz University, Tabriz 51664, Iran.
bInstitute for Studies in Theoretical Physics and Mathematics, Tehran 19395-1795, Iran.
cResearch Institute for Fundamental Sciences, Tabriz 51664, Iran.

February 1, 2008

∗E-mail:jafarizadeh@tabrizu.ac.ir
†E-mail:mirzaee@tabrizu.ac.ir
‡E-mail:karamaty@tabrizu.ac.ir
Abstract

Using the convex semidefinite programming method and superoperator formalism we obtain the finite quantum tomography of some mixed quantum states such as: qudit tomography, N-qubit tomography, phase tomography and coherent spin state tomography, where that obtained results are in agreement with those of References [21, 24, 25, 4, 26]. Keywords: finite quantum tomography, Semi-definite programming, superoperator formalism, qubit quantum tomography and truncation. PACs Index: 03.65.Ud
1 Introduction

The quantum complementarity principle does not allow to recover the quantum state from measurements on a single system, unless we have some prior information on it. On the other hand, the no cloning theorem ensures that it is not possible to make exact copies of a quantum system, without having prior knowledge of its state. Hence, the only possibility for devising a state reconstruction procedure is to provide a measuring strategy that employs numerous identical (although unknown) copies of the system, so that different measurements may be performed on each of the copies.

The problem of state estimation resorts essentially to estimating arbitrary operators of a quantum system by using the result of measurements of a set of observables. If this set of observables is sufficient to give full knowledge of the system state, then we define it a quorum. Notice that, in general, a system may allow various, different quorums. Quantum tomography was born [1, 2] as a state reconstruction technique in the optical domain, and has recently been extended [3] to a vast class of systems. By extension, we now denote as Quantum Tomography all unbiased quantum state reconstruction procedures, i.e. those procedures which are affected only by statistical errors that can be made arbitrarily small by increasing the number of measurements. Tomography makes use of the results of the quorum measurements in order to reconstruct the expectation value of arbitrary operators (even not observables) acting on the system Hilbert space.

In principle, a precise knowledge of the density matrix would require an infinite number of measurements on identical preparations of radiation. However, in real experiments one has only a finite number of data at ones disposal, and thus a statistical analysis and errors estimation are needed.

Authors of Ref. [4] presented several schemes for a reconstruction of states of quantum systems from measured data:
(1) The maximum entropy (MaxEnt) principle leads to a complete reconstruction of quantum states, i.e. quantum states are uniquely determined.

(2) Quantum systems can be estimated with the help of quantum Bayesian inference.

(3) Estimation of a quantum state with the highest fidelity and showed how this optimal measurement can in principle be realized [4].

On the other hand, over the past years, semidefinite programming (SDP) has been recognized as valuable numerical tools for control system analysis and design. In (SDP) one minimizes a linear function subject to the constraint that an affine combination of symmetric matrices is positive semidefinite. SDP, has been studied (under various names) as far back as the 1940s. Subsequent research in semidefinite programming during the 1990s was driven by applications in combinatorial optimization[5], communications and signal processing [6, 7, 8], and other areas of engineering[9]. Although semidefinite programming is designed to be applied in numerical methods it can be used for analytic computations, too. Some authors try to use the SDP to construct an explicit entanglement witness [10, 11]. Kitaev used semidefinite programming duality to prove the impossibility of quantum coin flipping [12], and Rains gave bounds on distillable entanglement using semidefinite programming [13]. In the context of quantum computation, Barnum, Saks and Szegedy reformulated quantum query complexity in terms of a semidefinite program [14]. The problem of finding the optimal measurement to distinguish between a set of quantum states was first formulated as a semidefinite program in 1972 by Holevo, who gave optimality conditions equivalent to the complementary slackness conditions [15]. Recently, Eldar, Megretski and Verghese showed that the optimal measurements can be found efficiently by solving the dual followed by the use of linear programming [16]. Also in [17] used semidefinite programming to show that the standard algorithm implements the optimal set of measurements. All of the above mentioned applications indicate that the method of SDP is very useful.

In a laboratory and in practice, we always deal with finite ensembles of copies of the
measured system. This implies the need of developing novel tools specially designed to process realistic and finite experimental samples. Then it is necessary to truncate the Hilbert space to a finite dimensional basis [18]. In this paper we use the SDP method in order to obtain quantum tomography with truncating the infinite Banach space to a finite dimensional basis.

The paper is organized as follows: In section-2 we define semidefinite programming. In section -3 we define superoperator formalism. In section -4 we describe the projection method and using SDP method and superoperator formalism we obtain finite quantum tomography. In section -5 we obtain some typical finite quantum tomographic examples, such as: finite dimensional qudit quantum tomography, N-qubit tomography, finite dimensional phase tomography and coherent spin state tomography with SDP method and superoperator formalism. The paper is ended with a brief conclusion.

2 Semi-definite programming

A SDP is a particular type of convex optimization problem [19]. A SDP problem requires minimizing a linear function subject to a linear matrix inequality (LMI) constraint [20]:

\[
\begin{align*}
\text{minimize} & \quad \mathcal{P} = c^T x \\
\text{subject to} & \quad F(x) \succeq 0,
\end{align*}
\]

where \(c\) is a given vector, \(x^T = (x_1, ..., x_n)\), and \(F(x) = F_0 + \sum_i x_i F_i\), for some fixed hermitian matrices \(F_i\). The inequality sign in \(F(x) \succeq 0\) means that \(F(x)\) is positive semidefinite.

This problem is called the primal problem. Vectors \(x\) whose components are the variables of the problem and satisfy the constraint \(F(x) \succeq 0\) are called primal feasible points, and if they satisfy \(F(x) > 0\) they are called strictly feasible points. The minimal objective value \(c^T x\) is by convention denoted as \(\mathcal{P}^*\) and is called the primal optimal value.

Due to the convexity of set of feasible points, SDP has a nice duality structure, with, the
associated dual program being:

\[
\begin{align*}
\text{maximize} & \quad -\text{Tr}[F_0 Z] \\
Z & \geq 0 \\
\text{subject to} & \quad \text{Tr}[F_i Z] = c_i.
\end{align*}
\]

(2-2)

Here the variable is the real symmetric (or Hermitean) matrix \(Z \), and the data \(c, F_i \) are the same as in the primal problem. Correspondingly, matrices \(Z \) satisfying the constraints are called dual feasible (or strictly dual feasible if \(Z > 0 \)). The maximal objective value \(-\text{Tr}F_0 Z \), the dual optimal value, is denoted as \(d^* \).

The objective value of a primal(dual) feasible point is an upper (lower) bound on \(P^*(d^*) \). The main reason why one is interested in the dual problem is that one can prove that \(d^* \leq P^* \), and under relatively mild assumptions, we can have \(P^* = d^* \). If the equality holds, one can prove the following optimality condition on \(x \):

A primal feasible \(x \) and a dual feasible \(Z \) are optimal which is denoted by \(\hat{x} \) and \(\hat{Z} \) if and only if

\[
F(\hat{x})\hat{Z} = \hat{Z}F(\hat{x}) = 0.
\]

(2-3)

This latter condition is called the complementary slackness condition.

In one way or another, numerical methods for solving SDP problems always exploit the inequality \(d \leq d^* \leq P^* \leq P \), where \(d \) and \(P \) are the objective values for any dual feasible point and primal feasible point, respectively. The difference

\[
P - d = c^T x + \text{Tr}[F_0 Z] = \text{Tr}[F(x)Z] \geq 0
\]

(2-4)

is called the duality gap. If the equality \(d^* = P^* \) holds, i.e., the optimal duality gap is zero, then we say that strong duality holds.
3 Superoperator formalism

In order to treat discrete and continuous density operator representations on an equal footing, we introduce the following superoperator formalism. The set of linear operators acting on a D-dimensional Hilbert space \(\mathcal{H} \) is a \(D^2 \)-dimensional complex vector space \(\mathcal{L}(\mathcal{H}) \). Let us introduce operator "kets" \(|A\rangle = A \) and "bras" \(\langle A| = A^\dagger \), distinguished from vector kets and bras by the use of round brackets. Then the natural inner product on \(\mathcal{L}(\mathcal{H}) \), the trace-norm inner product, can be written as \(\langle A | B \rangle = \text{tr}(A^\dagger B) \). The notation \(S = |A\rangle\langle B| \) defines a superoperator \(S \) acting like

\[
S |X\rangle = |A\rangle\langle B| \langle X| \equiv \text{tr}(B^\dagger X)A. \tag{3-5}
\]

Now let the set \(\{|N_j\rangle\} \) constitute a (complete or overcomplete) operator basis; i.e., let the operator kets \(|N_j\rangle \) span the vector space \(\mathcal{L}(\mathcal{H}) \). It follows that the superoperator \(\mathcal{G} \) defined by

\[
\mathcal{G} = \sum_j |N_j\rangle\langle N_j| \tag{3-6}
\]

is invertible. The operators

\[
Q_j = \mathcal{G}^{-1} |N_j\rangle \tag{3-7}
\]

form a dual basis, which gives rise to the following resolutions of the superoperator identity:

\[
1 = \sum_j |Q_j\rangle\langle N_j| = \sum_j |N_j\rangle\langle Q_j|. \tag{3-8}
\]

An arbitrary operator \(A \) can be expanded as

\[
A = \sum_j |N_j\rangle\langle Q_j| \equiv \sum_j N_j \text{tr}(Q_j^\dagger A) \tag{3-9}
\]

and

\[
A = \sum_j |Q_j\rangle\langle N_j| \equiv \sum_j Q_j \text{tr}(N_j^\dagger A) \tag{3-10}
\]

These expansions are unique if and only if the operators \(N_j \) are linearly independent[21].
4 Projection method as a semidefinite programming and finite quantum tomography

4.1 Bases and frames

In this section we collect some rudimentary facts that will be used in what follows.

A basis is one of the most fundamental concepts in linear algebra.

A set of linearly independent vectors \(\{e_i\}_{i=1}^n \) in a finite dimensional complex vector space \(V \) is a basis for \(V \) if, for each \(f \in V \), there exist coefficients \(c_1, c_2, ..., c_n \in \mathbb{C} \) such that

\[
 f = \sum_{i=1}^{n} c_i e_i. \tag{4-11}
\]

The independence condition implies that the coefficients \(c_1, ..., c_n \) are unique.

For infinite dimensional vector spaces, the concept of a basis is more complicated.

An \(\{e_i\}_{i=1}^{\infty} \subseteq \mathcal{H} \) is an orthonormal system (ONS) \([22]\) if

\[
 < e_i, e_j > = \delta_{ij}. \tag{4-12}
\]

An ONS \(\{e_i\}_{i=1}^{\infty} \) is an orthonormal basis (ONB) if

\[
 \mathcal{H} = \text{span}\{e_i\}_{i=1}^{\infty} \tag{4-13}
\]

when \(\{e_i\}_{i=1}^{\infty} \) is an ONB, each \(f \in \mathcal{H} \) can be written as

\[
 f = \sum_{i=1}^{\infty} < f, e_i > e_i. \tag{4-14}
\]

Definition: Two sequences \(\{x_i\} \) and \(\{y_i\} \) in a Hilbert space \(\mathcal{H} \) are said to be biorthonormal, if

\[
 < x_i, y_j > = \delta_{ij}. \tag{4-15}
\]

A sequence \(\{y_i\} \) biorthogonal to a basis \(\{x_i\} \) for \(\mathcal{H} \) is itself a basis for \(\mathcal{H} \), and we have for each \(x \) the representation

\[
 x = \sum_{i=1}^{\infty} < x, y_i > x_i, \text{ and } x = \sum_{i=1}^{\infty} < x, x_i > y_i. \tag{4-16}
\]
Frame: A family of elements \(\{f_i\}_{i \in I} \subseteq \mathcal{H} \) is called a frame for \(\mathcal{H} \) if there exist constants \(A, B > 0 \) such that

\[
A \|f\|^2 \leq \sum_{i \in I} |<f, f_i>|^2 \leq B \|f\|^2, \quad \forall f \in \mathcal{H},
\]

where \(I \) is a countable index set. The numbers \(A, B \) are called frame bounds. They are not unique. The optimal frame bounds are the biggest possible value for \(A \) and the smallest possible value for \(B \) in (4-17). If we can choose \(A = B \), the frame is called tight. If a frame ceases to be a frame when any element is removed, the frame is said to be exact. Since a frame \(\{f_i\}_{i \in I} \) is a Bessel sequence, the operator

\[
T : l^2(I) \to \mathcal{H}, \quad T \{c_i \}_{i \in I} = \sum_{i \in I} c_i f_i,
\]

is bounded and linear; \(T \) is sometimes called the preframe operator. The adjoint operator is given by

\[
T^* : \mathcal{H} \to l^2(I), \quad T^* f = \{<f, f_i>\}_{i=1}^\infty.
\]

By composing the operators \(T \) and \(T^* \), we obtain the operator

\[
S : \mathcal{H} \to \mathcal{H}, \quad S f = TT^* f = \sum_{i=1}^\infty <f, f_i> f_i,
\]

where \(S \) is called the frame operator with

\[
AI \leq S \leq BI.
\]

The frame operator is a bounded, positive, and invertible operator.

4.2 Frames in finite-dimensional spaces

We investigate the properties of a frame generated by a finite subset of a Hilbert space.

Calculation of the frame coefficients \(\{<f, S^{-1} f_i>\} \) involves inversion of the frame operator \(S \). In practice it can be a problem if the underlying Hilbert space is infinite dimensional. There is an approach to the problem as follows [22]:

...
Given the frame $\{f_i\}_{i=1}^\infty$ we consider finite subsets $\{f_i\}_{i=1}^n, n \in N$. It can be shown that $\{f_i\}_{i=1}^n$ is a frame for $\mathcal{H}_n = \text{span}\{f_i\}_{i=1}^n$ and the corresponding frame operator is $S_n : \mathcal{H}_n \to \mathcal{H}_n$ and the orthogonal projection P_n on \mathcal{H}_n is

$$P_n f = \sum_{i=1}^n <f, S_n^{-1} f_i> f_i, \ f \in \mathcal{H}. \tag{4-22}$$

For $n \to \infty$, $P_n f \to f = \sum_{i=1}^\infty <f, S^{-1} f_i> f_i$, one can hope that the coefficients $<f, S_n^{-1} f_i>$ converges to the frame coefficients for f, i.e., that

$$<f, S_n^{-1} f_i> \to <f, S^{-1} f_i> \quad \text{as} \ n \to \infty, \forall i \in I, \forall f \in \mathcal{H}. \tag{4-23}$$

If (4-23) is satisfied we say that the projection method works. In this case the frame coefficients can be approximated as close as we want using finite dimensional methods, i.e., linear algebra, since S_n is an operator on the finite dimensional space \mathcal{H}_n. This is a very important property for applications: for example, it makes it possible to use computers to approximate the frame coefficients.

In the following subsection we obtain finite quantum tomography using semidefinite programming.

4.3 Finite quantum tomography via semidefinite programming

Quantum state reconstruction schemes can be understood as an a posterior estimation of density operator of a given quantum mechanical system based on data obtained with the help of a macroscopic measurement apparatus. Only if an infinite ensemble is given can one find out the state. But infinite ensembles don’t exist in practice. In a laboratory and in practice, we always deal with finite ensembles of copies of the measured system. This implies the need of developing novel tools specially designed to process realistic and finite experimental samples. Then it is necessary to truncate the Hilbert space to a finite dimensional basis [18].

Now in this work using the projection method and semidefinite programming we express the
mathematical structure correspond to finite tomography and obtain the tomographic formula based on finite Banach space.

At first from (3-9) or (3-10) we assume that

$$\rho = \sum_j |Q_j(N_j | \rho) = \sum_j Q_j tr(N_j^\dagger \rho)$$ \hspace{1cm} (4-24)

is a density matrix in infinite dimensional Banach space, where \(\{N_j\}\) constitute a operator basis in superoperator formalism. Also let

$$\rho^n = \sum_{j=1}^n \lambda_j |N_j)$$ \hspace{1cm} (4-25)

be a density matrix in finite dimensional banach space which is obtained from truncating the infinite dimensional Banach space.

Using the properties of density matrix we have

$$\rho - \rho^n \geq 0,$$ \hspace{1cm} (4-26)

which in comparison with semidefinite programming we get

$$F_0 = \rho, \hspace{0.2cm} F_j = |N_j) \hspace{0.2cm} and \hspace{0.2cm} x_j = \lambda_j, \hspace{0.2cm} for \hspace{0.2cm} j = 1, \ldots, n.$$

If we use the complementary slackness condition, and for a feasible \((\hat{Z}, \lambda_{j\text{ max}})\), for \(j = 1, \ldots, n\), we have

$$\hat{Z}(\rho - \rho^n) = 0,$$ \hspace{1cm} (4-27)

or

$$\hat{Z}(\rho - \sum_{j=1}^n \lambda_j |N_j)) = 0.$$ \hspace{1cm} (4-28)

Using resolution of the superoperator identity (3-8) we obtain

$$\sum_i \hat{Z} |N_i)(Q_i | [\rho - \sum_{j} \lambda_j |N_j]) = 0, \hspace{0.2cm} for \hspace{0.2cm} j = 1, \ldots, n$$ \hspace{1cm} (4-29)

Therefore, we have

$$\sum_i (\hat{Z} |N_i)(Q_i | \rho - \lambda_i) = 0, \hspace{0.2cm} i = 1, \ldots n.$$ \hspace{1cm} (4-30)
It is obvious that $(\hat{Z} \mid N_i) = 0$ for $i > n$ then we conclude that $|N_i\rangle \in ker \hat{Z}$. Then we obtain

$$\lambda_i = (Q_i \mid \rho) = tr[\rho N_i^\dagger]. \tag{4-31}$$

Therefore we obtain the tomography formula in finite dimensional Banach space as the follow:

$$\rho^n = \sum_{i=1}^{n} |N_i\rangle\langle Q_i| \rho = \sum_{i=1}^{n} |N_i\rangle tr[\rho N_i^\dagger]. \tag{4-32}$$

In the following, we will consider density matrix with orthogonal states of the form:

$$\rho = \sum_{j}^\infty tr(\rho |\psi_j\rangle\langle \psi_j|) |\psi_j\rangle\langle \psi_j|$$

where is a density matrix in infinite dimensional Hilbert space. In the superoperator formalism we can write

$$|N_j\rangle = |Q_j\rangle = |\psi_j\rangle\langle \psi_j| \tag{4-33}$$

Also let

$$\rho^n = \sum_{j=1}^{n} \lambda_j |N_j\rangle = \sum_{j=1}^{n} \lambda_j |\psi_j\rangle\langle \psi_j|$$

be a density matrix in finite dimensional Hilbert space which is obtained from truncating the infinite dimensional Hilbert space and $|\psi\rangle$ is an orthogonal state.

Using (4-32) we obtain the tomography formula in finite dimensional Hilbert space as the follow:

$$\rho^n = \sum_{j=1}^{n} tr(\rho |\psi_j\rangle\langle \psi_j|) |\psi_j\rangle\langle \psi_j|. \tag{4-34}$$

In the following we describe some examples for finite dimensional quantum tomography.
5 Some examples for finite quantum tomography with semidefinite programming

5.1 Qudit tomography

We begin with the set of Hermitian generators of SU(D); the generators, denoted by λ_j, are labeled by a Roman index taken from the middle of the alphabet, which takes on values $j = 1, \ldots, D^2 - 1$ [23]. We represent the generators in an orthonormal basis $|a>$, labeled by a Roman letter taken from the beginning of the alphabet, which takes on values $a = 1, \ldots, D$.

With these conventions the generators are given by

\[
\lambda_j = \Gamma_a \equiv \frac{1}{\sqrt{a(a-1)}} \left(\sum_{b=1}^{a-1} |b><b| - (a-1)|a><a| \right), \quad 2 \leq a \leq D , \quad (5-35)
\]

\[
j = D, \ldots, (D + 2)(D - 1)/2 :
\]

\[
\lambda_j = \Gamma_{ab}^{(+)} \equiv \frac{1}{\sqrt{2}} (|a><b| + |b><a|), \quad 1 \leq a < b \leq D , \quad (5-36)
\]

\[
j = D(D + 2)/2, \ldots, D^2 - 1 :
\]

\[
\lambda_j = \Gamma_{ab}^{(-)} \equiv -\frac{i}{\sqrt{2}} (|a><b| - |b><a|), \quad 1 \leq a < b \leq D . \quad (5-37)
\]

In Eqs.(5-36) and (5-37), the Roman index j stands for the pair of Roman indices, ab, whereas in Eq.(5-35), it stands for a single Roman index a. The generators are traceless and satisfy

\[
\lambda_j \lambda_k = \frac{1}{D} \delta_{jk} + d_{jkl} \lambda_l + i f_{jkl} \lambda_l . \quad (5-38)
\]

Here and wherever it is convenient throughout this paper, we use the summation convention to indicate a sum on repeated indices. The coefficients f_{jkl}, the structure constants of the Lie group SU(D), are given by the commutators of the generators and are completely antisymmetric in the three indices. The coefficients d_{jkl} are given by the anti-commutators of the generators and are completely symmetric.
By supplementing the $D^2 - 1$ generators with the operator
\[\lambda_0 \equiv \frac{1}{\sqrt{D}} I , \] (5-39)
where I is the unit operator, we obtain a Hermitian operator basis for the space of linear operators in the qudit Hilbert space. This is an orthonormal basis, satisfying
\[\text{tr}(\lambda_\alpha \lambda_\beta) = \delta_{\alpha\beta} . \] (5-40)
Here the Greek indices take on the values 0, . . . , $D^2 - 1$; throughout this paper, Greek indices take on D^2 or more values. Using this orthonormality relation, we can invert Eqs.(5-35)-(5-37) to give
\[
|a\rangle\langle a| = \frac{I}{D} + \frac{1}{\sqrt{a(a-1)}} \left(-(a-1)\Gamma_a + \sum_{b=a+1}^D \Gamma_b \right) , \] (5-41)
\[
|a\rangle\langle b| = \frac{1}{\sqrt{2}} \left(\Gamma_{ab}^{(+)} + i\Gamma_{ab}^{(-)} \right) , \quad 1 \leq a, b \leq D , \] (5-42)
\[
|b\rangle\langle a| = \frac{1}{\sqrt{2}} \left(\Gamma_{ab}^{(+)} - i\Gamma_{ab}^{(-)} \right) , \quad 1 \leq a < b \leq D . \] (5-43)

Any qudit density operator can be expanded uniquely as
\[\rho = \frac{1}{D} \sum_{\alpha} c_\alpha \lambda_\alpha , \] (5-44)
where the (real) expansion coefficients are given by
\[c_\alpha = D \text{tr}(\rho \lambda_\alpha) . \] (5-45)
Normalization implies that $c_0 = \sqrt{D}$, so the density operator takes the form
\[\rho = \frac{1}{D} (I + c_j \lambda_j) = \frac{1}{D} (I + \bar{c} \cdot \bar{\lambda}) . \] (5-46)
Here $\bar{c} = c_j \bar{e}_j$ can be regarded as a vector in a $(D^2 - 1)$-dimensional real vector space, spanned by the orthonormal basis \bar{e}_j, and $\bar{\lambda} = \lambda_j \bar{e}_j$ is an operator-valued vector.
In order to treat discrete density operator representation for a qudit we introduce the superoperator formalism and SDP method. Consider a discrete set of projection operators \[23\] define in finite dimensional Banach space

\[
N_{\bar{m}_{\alpha}} = |\bar{m}_{\alpha} > < \bar{m}_{\alpha}| = \frac{1}{D}(1 + \bar{m}_{\alpha} \cdot \bar{n}_{\alpha}) , \quad \alpha = 1, ..., K. \tag{5-47}
\]

The corresponding superoperator,

\[
\mathcal{G} = \frac{K}{D(D+1)} \left((D+1) \frac{|I|I}{D} + T \right), \tag{5-48}
\]

where, orthonormal eigenoperators of \(\mathcal{G}\) are \(\lambda_0 = I/\sqrt{D}\) and \(T = \sum_j |\lambda_j > < \lambda_j|\).

We are now prepared to write the inverse of \(\mathcal{G}\) with respect to the left-right action as

\[
\mathcal{G}^{-1} = \frac{D(D+1)}{K} \left(\frac{1}{D+1} \frac{|I|I}{D} + T \right). \tag{5-49}
\]

Thus the dual operators are given by

\[
|Q_{n_{\alpha}}\rangle = \mathcal{G}^{-1}|N_{n_{\alpha}}\rangle = \frac{D(D+1)}{K} (|N_{\alpha}\rangle - \frac{|I|}{D+1}). \tag{5-50}
\]

Using SDP method we get

\[
F_0 = \frac{1}{D}(1 + c.\lambda) , \quad f_{\alpha} = |N_{\alpha}\rangle \quad \text{and} \quad x_{\alpha} = \Lambda_{\alpha} \quad \text{for} \quad \alpha = 1, ..., K. \tag{5-51}
\]

From complementary slackness condition we have

\[
\Lambda_{\alpha} = (Q_{n_{\alpha}} | \rho). \tag{5-52}
\]

Therefore, tomography relation in finite dimensional Banach space can be represented in the form

\[
\rho^K = \sum_{\alpha=1}^{K} |N_{n_{\alpha}}\rangle (Q_{n_{\alpha}} | \rho) = \sum_{\alpha=1}^{K} Tr[Q_{n_{\alpha}}^\dagger \rho] N_{n_{\alpha}} = \frac{D(D+1)}{K} \sum_{\alpha=1}^{K} N_{\alpha}(I + Tr[N_{n_{\alpha}}\rho]). \tag{5-53}
\]

A qubit is two-level system, for which \(D = 2\). There is a one-to-one correspondence between the pure states of a qubit and the points on the unit sphere, or Bloch sphere\[21\]. Any pure state of a qubit can be written in terms of the Pauli matrices \((\sigma_1, \sigma_2, \sigma_3)\), as

\[
N_{\bar{n}} = |\bar{n} > < \bar{n}| \quad \text{and} \quad |\bar{n},\bar{n}'\rangle = \frac{1}{\sqrt{2}} \left(|\bar{n}\rangle \otimes |\bar{n}'\rangle - |\bar{n}'\rangle \otimes |\bar{n}\rangle \right). \tag{5-54}
\]
where \(\vec{n} = (n_1; n_2; n_3) \) is a unit vector, and 1 denotes the unit matrix. An arbitrary state \(\rho \), mixed or pure, of a qubit can be expressed as

\[
\rho = \frac{1}{2}(1 + \vec{S} \cdot \vec{\sigma})
\]

where \(0 \leq |S| \leq 1 \).

In order to treat discrete density operator representation for a qubit we introduce the superoperator formalism and SDP method. Consider a discrete set of projection operators \([21]\) in superoperator formalism

\[
N_{\vec{n}_\alpha} = |\vec{n}_\alpha\rangle \langle \vec{n}_\alpha| = \frac{1}{2}(1 + \vec{\sigma} \cdot \vec{n}_\alpha), \quad \alpha = 1, ..., K.
\]

The corresponding superoperator,

\[
G = \sum_{\alpha=1}^{K} |N_{\vec{n}_\alpha}\rangle \langle N_{\vec{n}_\alpha}| = \frac{1}{4}[|1\rangle(1| + \sum_{\alpha} [\vec{n}_\alpha\cdot \vec{\sigma}] (1| + 1)(\vec{\sigma} | . \vec{n}_\alpha] + \sum_{j,k} |\sigma_j\rangle(\sigma_j | \sum_{\alpha} (n_\alpha)_j(n_\alpha)_k],
\]

generates dual-basis operators and expansion coefficients proportional to those for the continuous representation \([21]\) if and only if

\[
0 = \sum_{\alpha} \vec{n}_\alpha
\]

\[
\frac{1}{3} \delta_{jk} = \frac{1}{K} \sum_{\alpha} (n_\alpha)_j(n_\alpha)_k.
\]

When these conditions are satisfied, the superoperator (5-56) simplifies to

\[
G = \frac{K}{4}[|1\rangle(1| + \frac{1}{3} \sum_{j} |\sigma_j\rangle(\sigma_j |],
\]

with an inverse

\[
G^{-1} = \frac{1}{K}[|1\rangle(1| + 3 \sum_{j} |\sigma_j\rangle(\sigma_j |],
\]

which generates dual-basis operators

\[
Q_{\vec{n}_\alpha} = G^{-1} \cdot N_{\vec{n}_\alpha} = \frac{1}{K}(1 + 3 \vec{\sigma} \cdot \vec{n}_\alpha).
\]
Then the density matrix in finite dimensional Banach space is given by (4-25). Using SDP method we get

\[F_0 = \frac{1}{2}(1 + S.\sigma) , \quad f_\alpha = \langle N_\alpha \rangle \] and \(x_\alpha = \lambda_\alpha \) for \(\alpha = 1, ..., K \). (5-61)

From complementary slackness condition we have

\[\lambda_\alpha = \langle Q_{n_\alpha} | \rho \rangle = Tr\left[\frac{1}{2K}(1 + 3\bar{\sigma} \cdot \bar{\pi}_{\alpha})(1 + \overrightarrow{S} \cdot \overrightarrow{\sigma}) \right] = \frac{1}{K}(1 + 3\overrightarrow{S} \cdot \overrightarrow{\pi}_{\alpha}) \]. \] (5-62)

Therefore, tomography relation (4-32) in finite dimensional Banach space can be represented in the form

\[\rho^K = \sum_{\alpha=1}^{K} | Q_\alpha \rangle \langle N_\alpha | \rho \rangle = \frac{1}{K} \sum_{\alpha=1}^{K} N_\alpha(1 + 3\overrightarrow{S} \cdot \overrightarrow{\pi}_{\alpha}), \] (5-63)

For M qubits, we define the pure-product-state projector

\[N(\alpha) = N_{\alpha_1} \otimes ... \otimes N_{\alpha_M} = \frac{1}{2^M}(1 + s n_{\alpha_1}) \otimes ... \otimes (1 + s n_{\alpha_M}), \] (5-64)

and

\[Q(\alpha) = Q_{n_{\alpha_1}} \otimes ... \otimes Q_{n_{\alpha_M}} = \frac{1}{4\pi^M}(1 + 3s \cdot n_{\alpha_1}) \otimes ... \otimes (1 + 3s \cdot n_{\alpha_M}), \] (5-65)

where \(n \) stands for the collection of unit vectors \(n_1, ..., n_M \). Any M-qubit density operator can be expanded as

\[\rho^K = \sum_{\alpha=1}^{K} | N_\alpha \rangle \langle Q_\alpha | \rho \rangle = \frac{1}{K^M} \sum_{\alpha_1, ..., \alpha_M=1}^{K} N_{\alpha_1}(1 + 3\overrightarrow{S} \cdot \overrightarrow{\pi}_{\alpha_1}) \otimes ... N_{\alpha_M}(1 + 3\overrightarrow{S} \cdot \overrightarrow{\pi}_{\alpha_M}), \] (5-66)

where thus obtained result is in agreement with those of already obtained by one of the authors in [21, 4].

5.2 Phase tomography

One possible means of describing the phase of a quantum mechanical fields is in terms of the Pegg-Barnett hermitian phase operator \(\hat{\Phi} \) [24, 25, 4]. This operator is defined in a finite (but
arbitrary large) dimensional Hilbert space. In a (s+1)-dimensional Hilbert space the phase state are defined as

$$| \theta > = \frac{1}{\sqrt{s + 1}} \sum_{n=0}^{s} e^{i n \Phi} | n >,$$

(5-67)

this Hilbert space is spanned by a complete orthonormal set of basis phase state $| \theta_m >$, given by (5-67) with

$$\theta_m = \theta_0 + \frac{2 \pi m}{s + 1}, \quad m = 0, 1, ..., s,$$

(5-68)

where θ_0 is a reference phase. In terms of the state $| \theta_m >$ the Hermitian phase operator is

$$\hat{\Phi}_\theta = \sum_{m=0}^{s} \theta_m | \theta_m > < \theta_m |.$$

(5-69)

From the definition of the phase state (5-67), we can express the projector $\theta_m | \theta_m > < \theta_m |$ in terms of the number state basis:

$$| \theta_m > < \theta_m | = (s + 1)^{-1} \sum_{n=0}^{s} \sum_{n' = 0}^{s} e^{i (n' - n) \Phi} | n' > < n |.$$

(5-70)

In this case Φ_θ is orthonormal then we can write the tomography using semidefinite programming.

At first we assume that

$$\rho = \int_{\theta} Tr(\rho \hat{\Phi}_\theta) d\mu_\theta,$$

(5-71)

is a density matrix in infinite dimensional Banach space. Also let

$$\rho' = \sum_{\theta} \lambda_\theta | \hat{\Phi}_\theta >,$$

(5-72)

be a density matrix in finite dimensional Banach space which is obtained from truncating the infinite dimensional Banach space. Using the properties of density matrix we have

$$\rho - \rho' \geq 0,$$

(5-73)

which is comparison with semidefinite programming we get

$$F_0 = \rho, \quad F_\theta = | \hat{\Phi}_\theta > \quad \text{and} \quad \lambda_\theta = x_\theta, \quad \text{for} \ \theta = \theta_0, ..., \theta_0 + 2 \pi.$$

(5-74)
If we use the complementary slackness condition, and for a feasible \((\hat{Z}, \lambda_{\theta_{\text{max}}})\), for \(\theta = \theta_0, \ldots, \theta_0 + 2\pi\), we have
\[
\hat{Z}(\rho - \rho') = 0 \quad \text{or} \quad \hat{Z}(\rho - \lambda_{\theta} | \Phi_{\theta})) = 0.
\]
(5-75)

Similar to superoperator formalism we obtain
\[
\lambda_{\theta} = (\Phi_{\theta} | \rho) = \text{Tr}[\rho \Phi_{\theta}].
\]
(5-76)

Therefore we obtain the tomography formula in finite dimensional Hilbert space as the follow:
\[
\rho' = \sum_{\theta} | \Phi_{\theta}\rangle \langle \Phi_{\theta} | \rho) = \sum_{\theta} | \Phi_{\theta}\rangle \text{Tr}[\rho \Phi_{\theta}].
\]
(5-77)

If we generalized it when \(\theta\) is continuous, in this case we have
\[
\rho = \int_{\theta_0}^{\theta_0 + 2\pi} \text{Tr}[\rho \Phi_{\theta}] \Phi_{\theta} d\theta.
\]
(5-78)

Using (5-69) \(\text{Tr}[\rho \Phi_{\theta}]\) obtain as follows
\[
\text{Tr}[\rho \Phi_{\theta}] = \text{Tr}[\rho \sum_{m=0}^{s} \theta_m | \theta_m >= < \theta_m |] = 2\pi \sum_{m} \theta_m \frac{1}{s+1} P_{PB}(\theta)_m,
\]
(5-79)

where \(P_{PB}\) is probability of measuring a particular value of phase and is normalized so that the integral of \(P_{PB}(\Phi_{\theta})\) over a \(2\pi\) region of \(\theta\) is equal to one.

\[
P_{PB}(\Phi_{\theta}) = \frac{1}{2\pi} \sum_{n, n'} e^{i(n'-n)\phi} < n | \rho | n' >= < \theta | \rho | \theta >,
\]
(5-80)

where thus obtained results are in agreement with those of already obtained by one of the authors in [24, 25, 4].

A very important subset of these states will be the physical partial phase states, of which the coherent state is a particular example. The phase states are themselves unphysical and so the best attempt at a physical phase measurement will only project the system into a physical partial phase state [24]. In the following, we obtain a physical partial phase state tomography i.e., coherent spin states tomography.
5.3 Coherent spin states tomography

To reconstruct a mixed or pure quantum state of a spin s is possible through coherent states: its density matrix is fixed by the probabilities to measure the value s along \(4s(s+1)\) appropriately chosen directions in space. Thus, after inverting the experimental data, the statistical operator is parameterized entirely by expectation values.

A coherent spin state \(|n>\) is associated to each point of the surface of the unit sphere.

\[|n> \equiv \exp[-i\theta m(\phi).\hat{s}] |s, n_z>,\]
(5-81)

where \(m(\phi) = (-\sin\phi, \cos\phi, 0)\).

A stereographic projection of the surface of the sphere to the complex plane give the expansion of a coherent state [26] as follows

\[|s, n> = \frac{1}{(1+|z|^2)^{s}} \sum_{k=0}^{2s} \left(\frac{2s/k}{k}\right)^{1/2} z^k |s-k, n_z>\]
(5-82)

In order to show that the density matrix \(\rho\) of a spin s is determined unambiguously by appropriate measurement with a Stern-Gerlach apparatus one precedes as follows. Distribute \(N_s = (2s+1)^2\) axes \(|s, n>\) with \(1 \leq n \leq N_s\), over \((2s+1)\) cones about the z axis with different opening angles such that the set of the \((2s+1)\) directions on each cone is invariant under a rotation about z by an angle \(\frac{2\pi}{(2s+1)}\).

An unnormalized statistical density operator is then fixed by measuring the \(N_s\) relative frequencies

\[p_n(n_n) = <n_n | \rho | n_n> , \quad 1 \leq n \leq N_s,\]
(5-83)

that is, by the expectation values of the statistical operator \(\hat{\rho}\) in the coherent states \(|n_n>\).

You obtain \(N_s\) linear relations between probabilities \(P_n(n_n)\) and the matrix elements of the density matrix with respect to the basis \(|s-k, n_z>\). This set of equations can be inverted by standard techniques if the directions \(n_n\) are chosen as described above. For a spin s, the projection operators

\[|Q_n) = |n_n><n_n|,\]
(5-84)
constitute thus a quorum Q. In general, a quorum is defined as a collection of (hermitian) operators having the property that their expectation values are sufficient to reconstruct the quantum state of the system at hand. (Q^n | defined as the dual of the quorum (5-84):

$$\frac{1}{(2s + 1)} \sum_{n=1}^{N_s} \sum_{n'=1}^{N_s} | Q_n)(Q^{n'} | = \delta_{n'}^{n} , \quad 1 \leq n, n' \leq N_s. \quad (5-85)$$

Therefore, this coherent spin state introduced above is same as the phase state.

In order to obtain spin tomography relation in the finite dimensional Banach space we assume that

$$\rho = \int Tr(\rho | Q_n))(Q^n | d\mu_n, \quad (5-86)$$

is a density matrix in infinite dimensional Banach space. Also let

$$\rho' = \sum \lambda_n | \hat{Q}^n), \quad (5-87)$$

be a density matrix in finite dimensional Banach space which is obtained from truncating the infinite dimensional Banach space. Using the properties of density matrix we have

$$\rho - \rho' \geq 0, \quad (5-88)$$

which is comparison with semidefinite programming and using complementary slackness condition, we get

$$\hat{Z}(\rho - \rho') = 0 \quad \text{or} \quad \hat{Z}(\rho - \lambda_n | \hat{Q}^n)) = 0. \quad (5-89)$$

Similar to superoperator formalism we obtain

$$\lambda_n = (\hat{Q}_n | \rho) = Tr[\rho \hat{Q}_n] = P_n. \quad (5-90)$$

Therefore we obtain the tomography formula in finite dimensional Hilbert space as the follow:

$$\rho^s = \frac{1}{2s + 1} \sum_{n=1}^{N_s} P_n Q^n, \quad (5-91)$$

where the coefficients P_n satisfy

$$0 \leq P_n \leq 1 , \quad 1 \leq n \leq N_s. \quad (5-92)$$
The operators Q_n do even define an optimal quorum since exactly $(2s + 1)^2$ numbers have to be determined experimentally which equals the number of free real parameters of the (unnormalized) hermitian density matrix $\hat{\rho}$. Thus obtained results are in agreement with those of already obtained by one of the authors in [24, 25, 4, 26].

It is important to note that, although each of the P_n is a probability, they do not sum up to unity:

$$0 < \sum_{n=1}^{N_s} P_n < (2s + 1)^2$$

This is due to the fact that they all refer to different orientations of the Stern-Gerlach apparatus, being thus associated with the measurement of incompatible observables,

$$[Q_n, Q_{n'}] \neq 0, 1 \leq n, n' \leq N_s,$$

since the scalar product $< n_n | n'_n >$ of two coherent states is different from zero. The sum in (5-93) cannot take the value $(2s + 1)^2$ since this would require a common eigenstate of all the operators Q_n which does not exist due to (5-94). By an appropriate choice of the directions n_n (all in the neighborhood of one single direction n_0, say), the sum can be arbitrarily close to $(2s + 1)^2$ for states peaked about n_0. Similarly, the sum of all P_n cannot take on the value zero since this would require a vanishing density matrix which is impossible. If, however, considered as a sum of expectation values, there is no need for the numbers P_n to sum up to unity. Nevertheless, they are not completely independent when arising from a statistical operator: its normalization implies that

$$\text{Tr}[\rho^s] = \text{Tr}[\frac{1}{2s + 1} \sum_{n=1}^{N_s} P_n Q^n] = 1,$$

turning one of the probabilities into a function of the $(2s + 1)^2 - 1 = 4s(s + 1)$ others, leaving us with the correct number of free real parameters needed to specify a density matrix[26].
6 Conclusion

Using the elegant method of convex semidefinite optimization method and superoperator formalism, we have been able to obtain the quantum tomography in finite dimensional representation for some set of mixed density matrices. In this method we have been able to obtain finite qudit, N-qubit quantum tomography, phase tomography and coherent spin state tomography, where these results that obtained are in agreement with those of ref[21] and [24, 25, 4, 26].

References

[1] M. G. Raymer and W. Schleich. Special Issue on Quantum state Preparation and Measurement, J. Mod. Opt. 44, 11-12 (1997).

[2] D. F. McAlister and M. G. Raymer, Phys. Rev. A 55, R1609 (1997).

[3] G. M. DAriano, Phys. Lett. A 268 151 (2000).

[4] V.Buzek G.Drobny, R.Derka, G.Adam, and H.Wiedeman, Chaos, Solitons and Fractals 10, 981-1074, (1999).

[5] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the Association for Computing Machinery, 42(6): 1115-1145, (1995).

[6] Z. Q. Luo. Applications of convex optimization in signal processing and digital communication. Mathematical Programming Series B, 97: 177-207, (2003).

[7] T. N. Davidson, Z.-Q. Luo, and K. M. Wong. Design of orthogonal pulse shapes for communications via semidefinite programming. IEEE Transactions on Signal Processing, 48(5): 1433-1445, (2000).
[8] W. K. Ma, T. N. Davidson, K. M. Wong, Z.-Q. Luo, and P. C. Ching. Quasi- maximum-likelihood multiuser detection using semidefinite relaxation with application to synchronous CDMA. IEEE Transactions on Signal Processing, 50: 912-922, (2002).

[9] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in System and Control Theory. Society for Industrial and Applied Mathematics, (1994).

[10] A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri. Phys. Rev. Lett. 88, 187904, (2002).

[11] P. A. Parrilo, A. C. Doherty, and F. M. Spedalieri. Proceedings of the 41st IEEE Conference of Decision and Control, (2002).

[12] Alexei Kitaev. Quantum coin flipping. Talk at Quantum Information Processing 2003, slides and video at http://www.msri.org, December (2002).

[13] E. M. Rains. IEEE Transactions on Information Theory, 47(7): 2921-2933, November (2001).

[14] H. Barnum, M. Saks, and M. Szegedy. In Proceedings of the 18th IEEE Annual Conference on Computational Complexity, pages 179-193, (2003).

[15] C. W. Helstrom. Quantum Detection and Estimation Theory. Academic Press, (1976).

[16] Y. C. Eldar, A. Megretski, and G. C. Verghese. IEEE Transactions on Information Theory, 49(4):1007-1012, (2003).

[17] Lawrence. Ip, Shor’s Algorithm is Optimal, University of California, Berkeley, USA MU Seminar, http://www.qcaustralia.org (2003).

[18] V. R. BUZEK and G. DROBNY, Journal of Modern Optics, vol. 47, no. 14/15, 2823-2839, (2000)

[19] L. Vandenberghe, S. Boyd SIAM Review 38 (1996)49 - 95
[20] L. Vandenberghe and S. Boyd, http://www.stanford.edu/boyd/cvxbook.html (unpublished).

[21] R. Schack and C. M. Caves, Separable states of N quantum bits, in Proceedings of the X. International Symposium on Theoretical Electrical Engineering, edited by W. Mathis and T. Schindler (Otto-von-Guericke University of Magdeburg, Germany, pp. 73-78 (1999).

[22] O. Christensen, T. K. Jensen. An introduction to the theory of bases, frames and wavelets, Technical University of Denmark, lecture note (1999).

[23] P. Rungta and W. J. Munro and K. Nemoto and P. Deuar and G. J. Milburn and C. M. Caves, Qudit Entanglement, accepted for the Dan Walls Memorial Volume, edited by H. Carmichael, R. Glauber, and M. O. Scully (Springer, Berlin, 2000), eprint=’’xxx.lanl.gov e-print quant-ph/0001075.

[24] D. T. Pegg and S. M. Barnett, Phys. Rev. A. 39. 1665. (1989).

[25] S. M. Barnett and D. T. Pegg, J. Mod. Opt. 36. 7. (1989).

[26] St. Weigert, Act. Phys. Slov. 4, 613-620 (1999)