Big Genes, Small Effectors: Pea Aphid Cassette Effector Families Composed From Miniature Exons
Matthew Dommel, Jonghee Oh, Jose Carlos Huguet-Tapia, Endrick Guy, Hélène Boulain, Akiko Sugio, Marimuthu Murugan, Fabrice Legeai, Michelle Heck, Michael C. Smith, et al.

To cite this version:
Matthew Dommel, Jonghee Oh, Jose Carlos Huguet-Tapia, Endrick Guy, Hélène Boulain, et al.. Big Genes, Small Effectors: Pea Aphid Cassette Effector Families Composed From Miniature Exons. Frontiers in Plant Science, 2020, 11, pp.1-11. 10.3389/fpls.2020.01230. hal-03065308

HAL Id: hal-03065308
https://inria.hal.science/hal-03065308v1
Submitted on 28 May 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Big Genes, Small Effectors: Pea Aphid Cassette Effector Families Composed From Miniature Exons

Matthew Dommel†1, Jonghee Oh‡2, Jose Carlos Huguet-Tapia†1, Endrick Guy3, Hélène Boulain3, Akiko Sugio3, Marimuthu Murugan4, Fabrice Legeai3, Michelle Heck5, C. Michael Smith4 and Frank F. White1*

1 Department of Plant Pathology, University of Florida, Gainesville, FL, United States, 2 Department of Plant Pathology, Kansas State University, Manhattan, KS, United States, 3 INRAE, UMR Institute of Genetics, Environment and Plant Protection, Le Rheu, France, 4 Department of Entomology, Kansas State University, Manhattan, KS, United States, 5 USDA-ARS, Cornell University, Ithaca, NY, United States

Aphids secrete proteins from their stylets that evidence indicates function similar to pathogen effectors for virulence. Here, we describe two small candidate effector gene families of the pea aphid, *Acyrthosiphon pisum*, that share highly conserved secretory signal peptide coding regions and divergent non-secretory coding sequences derived from miniature exons. The KQY candidate effector family contains eleven members with additional isoforms, generated by alternative splicing. Pairwise comparisons indicate possible four unique KQY families based on coding regions without the secretory signal region. KQY1a, a representative of the family, is encoded by a 968 bp mRNA and a gene that spans 45.7 kbp of the genome. The locus consists of 37 exons, 33 of which are 15 bp or smaller. Additional KQY members, as well as members of the KHI family, share similar features. Differential expression analyses indicate that the genes are expressed preferentially in salivary glands. Proteomic analysis on salivary glands and saliva revealed 11 KQY members in salivary proteins, and KQY1a was detected in an artificial diet solution after aphid feeding. A single KQY locus and two KHI loci were identified in *Myzus persicae*, the peach aphid. Of the genes that can be anchored to chromosomes, loci are mostly scattered throughout the genome, except a two-gene region (KQY4/KQY6). We propose that the KQY family expanded in *A. pisum* through combinatorial assemblies of a common secretory signal cassette and novel coding regions, followed by classical gene duplication and divergence.

Keywords: pea aphid, *Acyrthosiphon pisum*, salivary gland, secretion protein, effector protein, gene family, proteomic analysis

INTRODUCTION

Aphids are important pests of plants that can cause economical damage through loss of crop yield and dissemination of plant viruses through their feeding habits (Miles, 1999). There are many different species of aphid that have been found to cause crop damage, including the pea aphid, *Acyrthosiphon pisum*. The various species of aphid all display a diversity of host ranges, extending...
from narrow to broad (Jaouannet et al., 2014). An aphid with a narrow host range consumes either one individual species or closely related plants within a single family. An aphid with a broad host range can feed on many different plant species spanning different taxonomic families. During this interaction, aphids extract phloem sap from the leaves and stems of the host plant through stylets, which are inserted into phloem cells. Plants possess both a constitutive and inducible immune response that fights insect consumption (Cook et al., 2015). Once fed upon, a plant can mount a defensive response to thwart parasitic processes. Aphid interactions with non-host plants are hypothesized to fail, in part, due to an immune reaction, while a successful aphid feeding involves suppressing the plant immune response (Jaouannet et al., 2014).

During feeding, aphids secrete saliva, which contains numerous proteins, enzymes, and other compounds, that assist stylet insertion, nutrient extraction, and host tissue interactions (Miles, 1999; Tjallingii, 2006; Will et al., 2007). Upon probing of a potential feeding plant, aphids secrete gelling saliva that acts to surround and protect the stylet. After puncturing the plant, the aphids secrete a watery saliva to thwart plant defenses (Miles, 1999). Components of the salivary proteins are hypothesized to play a role in facilitating the interaction with the host, in analogy to effectors of plant pathogenic bacteria and fungi. In contrast to pathogen effectors, functional evidence for effector action is limited in aphids. Nonetheless, variations in candidate effectors of aphids are hypothesized to contribute to the adaptation of aphid populations to specific host species (biotypes) and genotypes. Ectopic expression and silencing of some candidate aphid effectors have been shown to affect aphid fecundity and growth on host plants (Mutti et al., 2008; Pitino and Hogenhout, 2013).

Effector proteins are often relatively small proteins with no clear function based on relatedness to other proteins and are secreted into the host cell or extracellular milieu. A prominent example of a pea aphid effector is the protein C002. Identified initially from an EST library from the salivary glands, C002 is secreted into the target plant and hypothesized to assist in feeding (Mutti et al., 2008). Reduced expression through inhibitory RNA (RNAi) of the C002 transcript resulted in reduced feeding time of the aphids and, ultimately, premature death. Since the discovery of C002, C002 homologs and additional candidate aphid effectors have been identified (Elzenga and Jander, 2013; Rodriguez and Bos, 2013; Chaudhary et al., 2015; Thorpe et al., 2016; Boulain et al., 2018). One effector of M. persicae, Mp10, has been immunologically localized to the cytoplasm and chloroplasts of plant cells (Mugford et al., 2016).

The pea aphid is a model aphid species that exhibits a narrow host range feeding on legumes exclusively. The pea aphid genome and multiple other aphid genomes are available for analysis and comparisons (Richards et al., 2010; Burger and Botha, 2017; Wenger et al., 2017; Chen et al., 2019; Li et al., 2019; Quan et al., 2019). Additional genomic resources and salivary gland expressed sequence tag (EST) libraries of A. pism, and other phytophagous aphids, provide numerous effector candidates (International Aphid Genomics Consortium, 2010; Legeai et al., 2010; Shigenobu et al., 2010). Additionally, mass spectrometry proteomic analysis has been used to identify these proteins from salivary glands tissue and saliva secreted into artificial diets (Carolan et al., 2009; Cooper et al., 2010; Carolan et al., 2011; Rao et al., 2013; Chaudhary et al., 2015; Boulain et al., 2018). Despite this progress, much remains to be known about the effectors of aphid salivary proteins in aphid-host plant interactions (Mutti et al., 2006; Carolan et al., 2011; Rao et al., 2013; Boulain et al., 2018). Here, we report the identification of two candidate effector gene families of A. pism and M. persicae.

RESULTS

Identification of Cassette Gene Families in Pea Aphid

Previously sequenced salivary gland cDNA sequences for A. pism were retrieved from NCBI, and dataset was analyzed for sequences encoding predicted secreted peptides. Multiple transcripts were identified that encoded relatively short (100–450 aa) proteins and, upon alignment, could be divided into two families based on predicted amino acid sequence similarities (Supplemental Figures 1 and 2). Each family, named KQY and KHI, was composed of multiple genes and, in some cases, two to four isoforms, which were produced by alternative splicing (Table 1). At least one member of the loci, with the exception of KQY2, were found previously to be up-regulated in salivary glands (Table 1, Boulain et al., 2018). Three related sequences were also identified in the peach aphid (Myzus persicae) genome (Table 1). The notable feature of the predicted proteins is the conserved signal peptide region, ranging in size from 19 to 28 amino acids, combined with C-terminal divergent sequences (Figures 1A, B). The families were, hereafter, referred to as candidate cassette effectors, and the two families were named KQY and KHI after conserved amino acid sequences in the N-terminal region of all or most members (Figures 1A, B). The KQY family is comprised of eleven genes and seventeen different isoforms due to splicing variants (Table 1). One member was identified in M. persicae. The KHI family is composed of six genes and 10 isoforms. Two members were identified in M. persicae. The proteins range from 9.2 to 24.4 kDa.

A maximum likelihood phylogeny was produced, using the N-terminal nucleotides coding sequences for signal peptide region that is unique for each gene (Figures 1C, D). Two distinct groups of KQY genes cluster together through high bootstrap values; KQY1, KQY4, KQY6, and KQY8, KQY11. KQY1, KQY4, and KQY6 possess a related bootstrap value of 87, though the KQY4 and KQY6 are more distantly related within this group, only containing a bootstrap value of 36. KQY8 and KQY11 are highly similar, which is related in their bootstrap value of 99. Beyond the secretory signal peptide coding region, pairwise BLAST analysis of the KQY coding sequences indicates four possible gene families (KQY1, 4, 6; KQY2, 5, 9, 10; KQY3, 8, 11, Mp; KQY 7) at the probability level of 1 x 10^-7 (Supplemental
Gene Family	Gene/ Isoform	Gene Locus	Transcript ID	SG Up	Protein ID	Signal Peptide Predication(TargetP-2.0)
KQY	KQY1a	LOC100158789 ACYPI000223	NM_001162442 +	NP_001155914	MIFFKQYSMIMTHFAWMVMPAITSE (0.8578)	
	KQY1b	LOC100158789 ACYPI000223	AK339882	BAH70584	MIFFKQYSMIMTHFAWMVMPAITSE (0.855)	
	KQY2a	LOC100302371	AK342599	BAH72568	MVFKQYLLTCITCVIWMPTSA (0.9902)	
	KQY2b	LOC100302371	AK342927	BAH72760	MVFKQYLLTCITCVIWMPTSA (0.9902)	
	KQY3	LOC100301916 ACYPI073633	AK341661	BAH72003	NP_001153885	
	KQY4a	LOC100302370	AK342948	BAH72770	NP_001153885	
	KQY4b	LOC100302370	AK342242	BAH72349	BAH72349	
	KQY4c	LOC100302370	AK342690	BAH72627	BAH72627	
	KQY5a	LOC100320375	AK342408	BAH72443	NP_001156348	
	KQY5b	LOC100302376	AK342378	BAH72425	NP_001156343	
	KQY6	LOC100302481 (NV12)	AK340126	BAH70788	NP_001156817	
	KQY7	LOC100302485 (NV22)	AK340563	BAH71149	NP_001156835	
	KQY8	LOC1003024906 ACYPI124906	AK342473	BAH72466	NP_001155691	
	KQY9	LOC100302403	AK342683	BAH72621	NP_001156009	
	KQY10	LOC100302381	AK342808	BAH72693	NP_001156441	
	KQY11	LOC100302480	AK340121	BAH70784	NP_001156816	
	KQY12	LOC111039170 (Myzus persicae)	XM_022322515			
	KHI	KHI1a	LOC100159750 ACYPI001099	AK339863	BAH70570	MFKHIIVLVCFMAYFVGNLDA (0.998)
	KHI1b	LOC100159750 ACYPI001099	AK339862	BAH70569	MFKHIIVLVCFMAYFVGNLDA (0.9983)	
	KHI2a	LOC100302383	AK341162	BAH71618	MFKHIIVLVCFMAYFVGNLDA (0.9983)	
	KHI2b	LOC100302383	AK341161	BAH71617	MFKHIIVLVCFMAYFVGNLDA (0.9983)	
	KHI2c	LOC100302383	AK342769	BAH72672	MFKHIIVLVCFMAYFVGNLDA (0.9983)	
	KHI3a	LOC1001666702	AK340197	BAH70850	NP_001155644	
	KHI3b	LOC1001666702	AK342603	BAH72572	NP_001155718	
	KHI4	LOC10030570519 ACYPI41654	AK341077	BAH71554	NP_001290397	
	KHI5	LOC1003548363	AK341390	BAH71796	NP_001191953	
	KHI6	LOC1003571651	AK340760	BAH71306	NP_001233103	
	KHI10	LOC111029516 XM_022308527	XM_022308527	nd	XP_022164219	MVRHIIVLACIMYIIGNMALSAPR
	KHI10	LOC111029516 XM_022308528	XM_022308528	nd	XP_022164220	MVRHIIVLACIMYIIGNMALSAPR
	KHI10	LOC111029516 XM_022308529	XM_022308529	nd	XP_022164221	MVRHIIVLACIMYIIGNMALSAPR
	KHI10	LOC111029516 XM_022308532	XM_022308532	nd	XP_022164222	MVRHIIVLACIMYIIGNMALSAPR
	KHI10	LOC111029516 XM_022308533	XM_022308533	nd	XP_022164223	MVRHIIVLACIMYIIGNMALSAPR
	KHI10	LOC111029516 XM_022308534	XM_022308534	nd	XP_022164224	MVRHIIVLACIMYIIGNMALSAPR
	KHI10	LOC111029516 XM_022308536	XM_022308536	nd	XP_022164225	MVRHIIVLACIMYIIGNMALSAPR
	C002	C002Ap LOC100158789 ACYPI000223	XM_022308527	nd	XP_022164219	MVRHIIVLACIMYIIGNMALSAPR

aMp, Myzus persicae, Ap, Acyrthosiphon pisum.
b+, Identified as up-regulated in salivary glands in comparison to alimentary tract by Boulain et al. (2018). Up-regulation of locus is indicated, and no differential expression of isoforms is implied. nd, not detected, no salivary gland ESTs from M. persicae were identified by BLAST.

KQY10 and KHI9 isoforms predicted N-terminal peptide, which may be misannotated.
Figure 3). KQY7 shares no sequence relatedness beyond the secretory signal region at the DNA or protein level. At the same time, all members share some sequence identity in 3’ region of the transcripts at the nucleotide level, with the exception of KQY7 and KQYMp (Supplemental Figure 4).

Similarly, within the KHI gene family, only two KHI members cluster close together according to bootstrap values, KHI4 and KHI5. KHI4 and KHI5 possess a bootstrap value of 94, indicated high homology. The remaining the KHI gene signal peptides are loosely related with KHI1, KHI6, and KHI2, KHI3 clustering with bootstrap values of 68 and 59, respectively.

KQY10 is annotated with twenty-nine additional N-terminal amino acid residues in comparison to the other family members (Table 1). Both the sequence, as annotated, or a shortened version are predicted to contain a signal peptide. Similarly, the KHIMp2 locus, including all isoforms, are annotated with three additional amino acid residues at the N-terminus (Table 1).

Identification of Candidate Cassette Effectors by Proteomic Analysis of Salivary Gland Proteins

A proteomic analysis was conducted to determine whether member of the two families were present in salivary glands and secreted in salivary fluids (Figure 2A). Proteins were extracted from the salivary gland tissues of A. pisum and separated on a SDS-PAGE (1DE) gel (Figure 2B). Proteins in 10–60 kDa range were then subjected to 1-D GeLC-MS/MS. Of the 480 proteins, 77 proteins with predicted secretion signals were present (Supplemental Table 1). Notably, 16 of the candidate secreted gland proteins were members of the KQY and KHI families (Table 2, Supplemental Table 1). Ten KQY proteins were found, namely KQY1a, KQY2a, KQY2b, KQY3, KQY4a, KQY4c, KQY5b, KQY9, KQY10, and KQY11. KQY2a and b, KQY4a and c, and KHI2a and b were the isoforms found concurrently. Five of the KHI gene family corresponding proteins of the six KHI genes were identified, and six out of the ten protein isoforms were found (Table 2, Supplemental Table 1). In addition to other candidate effectors, the analysis identified the conserved aphid effector C002 (Table 2).

Proteins were collected from artificial diet media after feeding by A. pisum to determine if any of the family members could be detected in extracellular fluids using an artificial diet (Figure 2C). Total protein was analyzed through 1-D GeLC-MS/MS (Figure 2B). A total of nine aphid proteins were identified, including KQY protein, KQY1a (Table 3). Additional proteins included amino peptidase and angiotensin converting enzymes and have been previously observed (Boulain et al., 2018).

Large Gene Structure and Genomic Location of Candidate Cassette Effector Genes

The pea aphid genome consists of four different chromosomes. The gene for KQY1a protein (gi|241896885) is anchored on the A1 chromosome in the A. pisum strain A14F genome (GCF_005508785.1) (Table 4). Each of the pea aphid KQY genes have been found placed within the genome except for...
FIGURE 2 | Proteomic analysis of pea aphid salivary gland secretion proteins. (A) Schematic representation of secretion proteome analysis of pea aphid salivary gland. (B) 1-D GeLC-MS/MS Proteomics flowchart to identify salivary gland secretion proteins. (C) Schematic of artificial diet feeding experiment.

TABLE 2 | Cassette effectors from proteomic analysis A. pisum salivary glands.

Gene Family	Protein Name	NCBI Accession Number	# of Peptides (Unique)	% Coverage	
KQY	KQY1a	NP_001155914	17 (14)	66	
	ACYP0002223				
	LOC100158789				
	KQY2a	BAH72568	9 (8)	47	
	LOC100302371				
	KQY2b	NP_001156348	8 (6)	36	
	LOC100302371				
	KQY3	NP_001153885	2 (1)	13	
	LOC100301916				
	KQY4a	NP_001156343	10 (9)	43	
	LOC100302370				
	KQY4c	BAH72627	10 (9)	45	
	LOC100302370				
	KQY5b	NP_001156435	8 (8)	45	
	LOC100302376				
	KQY9	NP_001156509	3 (3)	32	
	LOC100302403				
	KQY9	NP_001156509	3 (3)	24	
	LOC100302403				
	KQY10	NP_001156441	1 (1)	6	
	LOC100302381				
	KQY11	NP_001156816	3 (3)	24	
	LOC100302480				
	KHI	KHI1a	NP_001155863	4 (3)	33
	ACYP001099				
	LOC100159750				
	KHI2a	BAH71618	2 (2)	14	
	LOC100302983				
	KHI2b	NP_001156448	2 (2)	14	
	LOC100302983				
	KHI3a	NP_001156548	12 (9)	56	
	LOC100166702				
	KHI5	NP_001191963	6 (6)	38	
	LOC100534636				
	KHI6	NP_001233103	4 (4)	44	
	LOC100571631				
	C002	C002	XM_001943823	5 (4)	33
KQY11. KQY genes can be found placed on chromosome A1, A2, and X but not A3 (Table 4, Figure 3). Two of the KHI genes, KHI2 and KHI6, were unable to be placed within the pea aphid genome, and the remaining KHI genes were also found on chromosome A1, A2, and X, but not A3 (Table 4, Figure 3).

KQY1a covers approximately 45.7 kb, and the transcript is comprised of 37 relatively small exons (6–416 bp) (Figure 4). This structure of a large gene coding for a small protein using many miniature exons is also observed with other KQY gene family members (Table 4). KHI members are also generated from relatively large genes. The KHI6 transcript (gi|239789352) is 943 bps long and comes from 10 exons in a gene that is 21.789 kbps long (Figure 4). The gene sizes of the mentioned gene families range from 12 kbp to 87 kbp. The first reported pea aphid effector/secretion protein, C002, shown here for contrast, has relatively small gene size (~6 kb) with only two exons (Figure 4). No significant similar/conserved protein motifs and domains were found. The protein function of the gene family is unknown (hypothetical protein). A separate predicted locus (LOC100569066) can be found within an intron of KQY2. The gene product is highly conserved RAD50-interacting protein 1 (XP_016658051).

DISCUSSION

Here, we add to the characterization of candidate effectors of A. pisum, and, by sequence relatedness, possibly, M. persicae with the description of two families of genes, which by several criteria, appear to be variable secreted salivary gland proteins (Carolan et al., 2009; Carolan et al., 2011; Rao et al., 2013; Boulain et al., 2018). Twenty-seven protein candidates based on representative cDNAs could be assigned to either the KQY or KHI families, and most of the cDNA were represented in salivary gland RNAseq libraries. All of the loci, with exception of KQY2, were previously shown to have at least one isoform up-regulated in salivary gland in relation to alimentary tract expression, and all are predicted to encode secreted small molecular weight proteins (~12–28 kDa).

Furthermore, peptides from a majority of the loci were detected in protein extractions of washed salivary glands, and one was detected in artificial feeding media. In a previous analysis, unidentified isoforms of three cassette effectors were detected in an artificial diet, including KQY2, which lacked clear evidence for salivary gland expression (Boulain et al., 2018).

The members of the two families were named cassette effectors due to the conserved N-terminal region, which harbors the signal secretion motif, and the divergent coding sequences distal to the secretory signal region. The model implies that novel coding sequences could be swapped on to the signal cassette, generating novel secreted proteins, which, in turn, can then facilitate the adaptation process of the aphid to new hosts or host varieties. The KQY genes can be grouped into three gene subfamilies that have, at least in part, expanded by gene duplication and divergence. KQY7 constitutes a single gene subfamily. Nonetheless, members of different families share sequence similarities beyond the coding regions indicating possible mosaic gene structure. The presence of a single KQY candidate from the related but distant green peach aphid (M. persicae) may be the result of amplification of a single gene during adaptation of pea aphids to various leguminous hosts. Whether cassette swapping was involved in adaption to a new host cannot be definitively stated. Analysis of various biotypes of A. pisum may reveal subspecies cassette gene content. Cassette effectors analogous to KQY and KHI have been previously identified in the Hessian fly genome, where the SSSGP-1 family share a similar structure (Chen et al., 2010), and domain swapping with secretory domains has been proposed, to name a few, to drive complexity in scorpion venom, in the evolution of placental nuclear encoded proteins, and new virulence in nematodes (Tonkin et al., 2008; Vanholme et al., 2009; Wang et al., 2016). Exon shuffling has long been proposed, in itself, as one benefit of eukaryotic gene structure (Koonin et al., 2013; Smithers et al., 2019). The KQY and KHI genes are represented by varying numbers of mRNAs isoforms. However, definitive conclusions with regards to the levels of individual isoforms or loci remain unclear.

Some of the candidate cassette effector genes are quite large. KQY1a, as an example, is produced from a 986 base mRNA, which,
in turn, is spliced from 46 kb of DNA, containing 37 exons and 36 introns. The gene sizes are not the largest, but, given the protein product, they are remarkable. The human gene for type III collagen, for example, is 44 kb and has 52 exons. However, the mRNA is 5460 bases, encoding a protein of 1446 amino acid residues in length, compared to the 986 mRNA and 204 aa products.

TABLE 4 | Genome locations of KQY and KHI families.

Gene Family	Gene/Isosform Designation	Gene Locus	Chromosome	Location	Size (kb)/exons (range bp)/introns (range bp)
KQY	KQY1a LOC100158789	Chr A1	NC_042494.1	167,823,999–167,869,655	45.7 (37(6-416)/36(180-5168))
	KQY1b LOC100158789	Chr X	NC_042493.1	118,679,504–118,712,594	33.1
	KQY2a LOC100302371	Chr X	NC_042493.1	112,529,404–112,604,186	74.8
	KQY2b LOC100302371	Chr X	NC_042493.1	116,127,940–168,141,540	13.6
	KQY3 LOC100301916	Chr A1	NC_042494.1	Complement	>13(5-240)/>12(113-9442)
	KQY4a LOC100302370	Chr X	NC_042493.1	24,100,856–24,188,627	87.8
	KQY4b LOC100302370	Chr X	NC_042493.1	112,481,406–112,505,954	24.5
	KQY4c LOC100302370	Chr X	NC_042493.1	61,298,211–61,309,480	11.3
	KQY4d LOC100302370	Chr X	NC_042493.1	22,473,653–22,510,347	36.7
	KQY5a LOC100302375	Chr X	NC_042493.1	127,899,606–127,978,192	78.6
	KQY5b LOC100302376	Chr A1	NC_042494.1	96,124,545–96,133,787	9.2
	KQY6 LOC100302481 (NV12)	Chr X	NC_042493.1	24,100,856–24,188,627	87.8
	KQY7 LOC100302485 (NV22)	Chr A1	NC_042494.1	112,481,406–112,505,954	24.5
	KQY8 LOC100302439	Chr A2	NC_042495.1	61,298,211–61,309,480	36.7
	KQY9 LOC100302403	Chr X	NC_042493.1	22,473,653–22,510,347	36.7
	KQY10 LOC100302381	Chr A1	NC_042494.1	127,899,606–127,978,192	78.6
	KQY11 LOC100302480	NW_021761267.1	170,866,182–170,699,132	12.8, 11(27-564)/10(170-2537)	
KHI	H-K1a LOC100159750	Chr A1	NC_042494.1	170,866,182–170,699,132	12.8, 11(27-564)/10(170-2537)
	H-K1b LOC100159750	Chr X	NC_042493.1	96,124,545–96,133,787	9.2
	H-K1c LOC100159750	Chr X	NC_042493.1	24,100,856–24,188,627	87.8
	H-K1d LOC100159750	Chr X	NC_042493.1	112,481,406–112,505,954	24.5
	H-K1e LOC100159750	Chr X	NC_042493.1	61,298,211–61,309,480	36.7
	H-K1f LOC100159750	Chr X	NC_042493.1	22,473,653–22,510,347	36.7
	H-K1g LOC100159750	Chr X	NC_042493.1	127,899,606–127,978,192	78.6
	H-K1h LOC100159750	Chr X	NC_042493.1	96,124,545–96,133,787	9.2
	H-K1i LOC100159750	Chr X	NC_042493.1	24,100,856–24,188,627	87.8
	H-K1j LOC100159750	Chr X	NC_042493.1	112,481,406–112,505,954	24.5
	H-K1k LOC100159750	Chr X	NC_042493.1	61,298,211–61,309,480	36.7
	H-K1l LOC100159750	Chr X	NC_042493.1	22,473,653–22,510,347	36.7
	H-K1m LOC100159750	Chr X	NC_042493.1	127,899,606–127,978,192	78.6
	H-K1n LOC100159750	Chr X	NC_042493.1	96,124,545–96,133,787	9.2
	H-K1o LOC100159750	Chr X	NC_042493.1	24,100,856–24,188,627	87.8
	H-K1p LOC100159750	Chr X	NC_042493.1	112,481,406–112,505,954	24.5
	H-K1q LOC100159750	Chr X	NC_042493.1	61,298,211–61,309,480	36.7
	H-K1r LOC100159750	Chr X	NC_042493.1	22,473,653–22,510,347	36.7

MATERIALS AND METHODS

Pea Aphids, Salivary Glands, Proteins Collection

Pea aphid (A. pisum) clone LSR1 was maintained on Vicia faba at 20°C. Salivary glands of feeding adult aphid on the host plants were dissected following a protocol of the previous study (Mutti et al., 2006). For salivary gland protein extraction, the dissected salivary glands of A. pisum were stored in PBS solution with protease inhibitor cocktail (Roche) and centrifuged at 12,000 × g for 15 min at 4°C with tissue homogenization to avoid cellular proteins. After centrifugation and collecting supernatant, salivary gland proteins of the supernatant were precipitated with 20% TCA (v/v) and incubated at -20°C overnight. The protein pellet was collected by centrifugation (1,500 × g for 10 min, 4°C) and then washed with 100% acetone 3 times and
allowed the protein pellet to air dry. The protein pellet was dissolved in SDS-PAGE sample buffer [0.25 M Tris-HCl (pH 6.8), 50% glycerol, 5% SDS, and 5% β-mercaptoethanol] for protein separation by 1-D SDS-PAGE for proteome analysis.

Saliva Collection From Artificial Diet

Synthetic diet preparation and saliva collection were conducted under aseptic conditions (Will et al., 2007). Pea aphid saliva collection plates were prepared by stretching sterilized parafilm over the bottom of the 100 by 15 mm plastic petri dishes. Parafilm sheet surface sterilized and exposed to UV light for 30 min and the parafilms were stretched to 50% of the original size. Five milligrams chemically defined synthetic diet (35% sucrose solution) was placed on the stretched parafilm and cover with the other sterilized stretched parafilm (Figure 1A). Fifteen aphid saliva collection plates (approximately 1,600 pea aphid on each plate) were prepared for the secreted saliva collection from the synthetic diet. The diet from a 24 h collection period was pooled to give a volume approximately 75 ml, followed by concentration using a Vivaspin concentrator (GE Healthcare) with 3,000 molecular weight cut-off PES membrane at 4°C. The concentrated proteins were separated by 1-D SDS-PAGE and visualized with Coomassie blue R-250.

In Gel Sample Preparation for Mass Spectrometry

For salivary gland proteome analysis, we have identified salivary gland proteins using by 1-D GeLC-MS/MS proteome approach. Proteins from salivary gland tissues and artificial diet were separated on 8%–16% Tris-HCl precast gel (Bio-Rad) in a Mini-Protean Electrophoresis Unit (Bio-Rad) and stained with
Coomassie blue R-250 (Figure 1A). The stained protein bands of interest were excised using sterile surgical blades and the gel slices (no larger than 2 × 5 mm) were transferred to individual 1.5 ml microcentrifuge tubes with 10 µl HPLC grade water to prevent dehydration and prepared In-gel digestion. Proteins in the gel slices were reduced with 10 mM DTT in 200 mM ammonium bicarbonate at 60°C for 15 min, and then subjected to amidation in 20 mM iodoacetamide in 200 mM ammonium bicarbonate at room temperature in the dark for 30 min. The gel pieces were washed with 200 mM ammonium bicarbonate/50% acetonitrile (v/v) before addition of 250 µl of acetonitrile and incubation at room temperature for 15 min. The remaining solvent was removed, and the gel slices were completely dried using SpeedVac system (Thermo Fisher Scientific). The proteins in the gel slices were digested with 5 ng/ml sequencing grade modified porcine trypsin (Promega) in 200 mM ammonium bicarbonate/10% acetonitrile (v/v) at 55°C for 2 h. Trypsin was inactivated by adding 0.1% trifluoroacetic acid after protein digestion and the supernatant was transferred into 0.5 ml microcentrifuge tube for mass spectrometric analysis.

Capillary Liquid Chromatography-Mass Spectrometry Analysis for Protein Identification

Samples were analyzed by LC-MS/MS using a NanoAcquity chromatographic system (Waters Corp., Milford, MA) coupled to an LTQ-FT mass spectrometer (ThermoFinnigan, Bremen, Germany). Peptides were separated on a reverse-phase C18 column, 5 cm, 50 µm i.D. (CVC Microtech). A gradient was developed from 1% to 40% B (99.9% acetonitrile, 0.1% formic acid) in 50 min, ramped to 95% B in 4 min and held at 95% B for 5 min at a flow rate of 20 µl/min with solvents, A (99.9% H2O, 0.1% formic acid) and B. NanoAcquity UPLC Console (Waters Corp., Version 1.3) was used to execute the injections and gradients. The ESI source was operated with spray voltage of 2.8 kV, a tube lens offset of 160 V and a capillary temperature of 200°C. All other source parameters were optimized for maximum sensitivity of the YGGFl peptide MH+ ion at m/z 556.27. The instrument was calibrated using an automatic routine based on a standard calibration solution containing caffeine, peptide MRFA, and Ultramark 1621 (Sigma). Data-dependent acquisition method for the mass spectrometer (configured version LTQ-FT 2.2) was set up using Xcalibur software (ThermoElectron Corp., Version 2.0). Full MS survey scans were acquired at a resolution of 50,000 with an Automatic Gain Control (AGC) target of 5×106. Five most abundant ions were fragmented in the linear ion trap by collision-induced dissociation with AGC target of 2×104 or maximum ion time of 300 ms. The ion selection threshold was 500 counts. The LTQ-FT scan sequence was adapted from the reference (Olsen and Mann, 2004).

Database Searches

MS/MS spectra were analyzed using Mascot (Matrix Science, London, UK; Version 2.3). Mascot was set up to search the SwissProt database and our pea aphid salivary gland transcriptome data of A. pisum assuming the trypsin digestion. Search was performed with a fragment ion mass tolerance of 0.20 Da and a parent ion tolerance of 20 PPM. Iodoacetamide derivative of cysteine was specified as a fixed modification. Oxidation of methionine was specified as a variable modification. Scaffold software (Version 3.6, Proteome Software Inc., Portland, OR) was used to validate MS/MS based peptide and protein identifications. Peptide identification from the MS/MS data was performed using the MASCOT to correlate the data against NCBI non-redundant database and our salivary gland transcriptome data of A. pisum. To improve peptide identification accuracy, the results of protein identification were validated by multiple search engines (Mascot, Sequest and X! Tandem) using Scaffold software. Peptide identifications were accepted if they could be established at greater than 50.0% probability as specified by the Peptide Prophet algorithm (Keller et al., 2002). Protein identifications were accepted if they could be established at greater than 99.0% probability and contained at least two identified peptides. Protein probabilities were assigned by the Protein Prophet algorithm (Nesvizhskii et al., 2003). Proteins that contained similar peptides and could not be differentiated based on MS/MS analysis alone were grouped to satisfy the principles of parsimony.

Protein Sequence and Domain/Motif Analysis

The amino acid sequence of the proteins of the gene family was analyzed with ClustalW alignment program for the gene family protein grouping (https://www.genome.jp/tools-bin/clustaw) using the slow parameters of a 10.0 gap open penalty and a 0.1 gap extension penalty with the BLOSUM (for protein) weight matrix. The amino acid alignment was produced by T-Coffee using default parameters (ebi.ac.uk/Tools/msa/tcoffee/) and illustrated using BoxShade (embnet.vital-it.ch/software/BOX_form.html). The MS-identified protein sequences were analyzed with the ScanProsite and SMART program at the ExPaSy (http://expasy.org/), and EMBL (http://smart.embl-heidelberg.de/) for the domain/motif analysis to predict protein functions. Signal peptide of the all MS-identified proteins was predicted by using SignalP 4.1 server (http://www.cbs.dtu.dk/services/SignalP/) with a euarkyote D-cutoff value of 0.6. The pea aphid genome map was produced using karyoploteR (bioconductor.org/packages/release/bioc/html/karyoploteR.html) (Gel and Serra, 2017). Transcript similarity analysis was done using BLASTN comparing two or more sequences (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch). The KQY3 transcript without the secretory peptide and polyA regions was analyzed using BLASTN against single members of the KQY gene families also without their signal peptide and polyA nucleotides.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in Supplementary Table 1. Further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

MD and JO are co-first authors. All authors contributed to the article and approved the submitted version.
ACKNOWLEDGMENTS
The authors wish to thank Nadya Galeva at the Mass Spectrometry & Analytical Proteomics Laboratory, The University of Kansas for advice with mass spectrometry analysis. FW and JO wish to thank the Kansas State University Arthropod Genomics Center of Excellence for funds to conduct this project.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2020.01230/full#supplementary-material

REFERENCES
Boulain, H., Legeai, F., Guy, E., Morlière, S., Douglass, N. E., Oh, J., et al. (2018). Fast evolution and lineage-specific gene family expansions of aphid salivary effectors driven by interactions with host-plants. * Genome Biol. Evol.* 10, 1554–1572. doi: 10.1093/gbe/eyy097

Burger, N. F. V., and Botha, A. M. (2017). Genome of Russian wheat aphid an

Carolan, J. C., Fitzroy, C.II, Ashton, P. D., Douglas, A. E., and Wilkinson, T. L. (2013). Proteomic profiling of cereal aphid salivary gland proteins from a gall midge. * BMC Evol. Biol.* 10, 296. doi: 10.1186/1471-2148-10-296

Chen, W., Shakir, S., Bigham, M., Richter, A., Fei, Z., and Jander, G. (2019). GeniculateR: An R/Bioconductor package to plot isoform was used for each gene.

Chen, M. S., Liu, X., Yang, Z., Zhao, H., Shukle, R. H., Stuart, J. J., et al. (2010). A dual transcriptomic/proteomic approach. * Proc. Natl. Acad. Sci.* 107, 39–44. doi: 10.1073/PNAS.0914261

Dommel et al. Pea Aphid Cassette Effector Families

Doh, H. S., Koo, B. H., Park, H., Park, H., Smith, T. E., and Moran, N. A. (2019). Gene family evolution in the pea aphid. * Genome Biol. Evol.* 11, 976–996. doi: 10.1093/gbe/evz094

Doh, E., Lee, K., Kim, H., Moon, I., and Hwang, J. H. (2010). Predicted effector molecules in the salivary secretome of the pea aphid, * Acyrthosiphon pisum*: A dual transcriptomic/proteomic approach. *J. Proteome Res.* 10, 1505–1518. doi: 10.1021/pr100881q

Escudero-Martinez, C., et al. (2014). Plant immunity in plant-aphid interactions. * Mol. Plant Microbe.* 27, 1391–1403. doi: 10.1097/MPM.0000000000000326

Fitch). Richman, S., Gibbs, R. A., Gerardo, N. M., Moran, N., Nakabachi, A., Stern, D., & Analytical Proteomics Laboratory, The University of Kansas for

Gel, B., and Serra, E. (2017). KaryoploteR: An R/Bioconductor package to plot customizable genomes displaying arbitrary data. *Bioinformatics* 33, 3088–3090. doi: 10.1093/bioinformatics/btx346

International Aphid Genomics Consortium (2010). Genome sequence of the pea aphid *Acyrthosiphon pisum*. * PLoS Biol.* 8, e1000313. doi: 10.1371/journal.pbio.1000313

Jauwannaet, M., Rodriguez, P. A., Thorpe, P., Lenoir, C. J. G., MacLeod, R., Escudero-Martinez, C., et al. (2014). Plant immunity in plant-aphid interactions. *Front. Plant Sci.* 5, 663. doi: 10.3389/fpls.2014.00663

Keller, A., Nesvizhskii, A.II, Kolker, E., and Aebersold, R. (2002). Empirical statistical database search. * Anal. Chem.* 74, 5383–5392. doi: 10.1021/ac025747h

Koonin, E. V., Couros, M., and Rogozin, I. B. (2013). Whence genes in pieces: reconstruction of the exon-intron gene structures of the last eukaryotic common ancestor and other ancestral eukaryotes. *Wiley Interdiscip. Rev. RNA* 4, 93–105. doi: 10.1002/wrna.1143

Legnai, F., Shigenobu, S., Gauthier, J.P., Colbourne, J., Ruspe, C., Collin, O., et al. (2010). AphidBase: a centralized bioinformatic resource for annotation of the pea aphid genome. * Insect Mol. Biol.* 19 Suppl 2, 5–12. doi: 10.1111/j.1365-2583.2009.00930.x

Li, Y., Park, H., Smith, T. E., and Moran, N. A. (2019). Gene family evolution in the pea aphid based on chromosome-level genome assembly. * Mol. Biol. Evol.* 36, 2143–2156. doi: 10.1093/molbev/msz138

Miles, P. W. (1999). Aphid saliva. * Biol. Rev.* 74, 41–85. doi: 10.1111/1469-185X.1999.tb00181.x

Mugford, S. T., Barclay, E., Drurye, C., Findlay, K. C., and Hogenhout, S. A. (2016). An immune-suppressive aphid saliva protein is delivered into the cytosol of the plant mesophyll cells during feeding. * Mol. Plant Microbe* 29, 854–861. doi: 10.1094/MPMI-08-16-0168-R

Muti, N. S., Park, Y., Reese, J. C., and Reck, G. R. (2006). RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, *Acyrthosiphon pisum*. * J. Insect Sci.* 6, 1–7. doi: 10.1673/031.006.3801

Muti, N. S., Lewis, J., Pappan, L. K., Pappan, K., Begum, K., Chen, M.-S., et al. (2008). A protein from the salivary glands of the pea aphid, *Acyrthosiphon pisum*, is essential in feeding on a host plant. * Proc. Natl. Acad. Sci.* 105, 9965–9969. doi: 10.1073/pnas.0708958105

Nesvizhskii, A.II, Keller, A., Kolker, E., and Aebersold, R. (2003). A statistical model for identifying proteins by tandem mass spectrometry. * Anal. Chem.* 75, 4646–4658. doi: 10.1021/ac0341261

Olsen, J. V., and Mann, M. (2004). Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation. *Proc. Natl. Acad. Sci.* 101, 13417–13422. doi: 10.1073/PNAS.0405549101

Pinth, M., and Hogenhout, S. A. (2013). Aphid protein effectors promote aphid colonization in a plant species-specific manner. * Mol. Plant Microbe* 26, 130–139. doi: 10.1094/mpmi

Quan, Q., Hu, X., Pan, B., Zeng, B., Wu, N., Fang, G., et al. (2019). Draft genome of the cotton aphid *Aphis gossypii*. *Insect Biochem. Mol. Biol.* 105, 25–32. doi: 10.1016/j.ibmb.2018.12.007

Rao, S. A. K., Carolan, J. C., and Wilkinson, T. L. (2013). Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins. * PloS One* 8, 57413. doi: 10.1371/journal.pone.0057413

Richards, S., Gibbs, R. A., Gerardo, N. M., Moran, N., Nakabachi, A., Stern, D., et al. (2010). Genome sequence of the pea aphid * Acyrthosiphon pisum*. * PLoS Biol.* 8, e1000313. doi: 10.1371/journal.pbio.1000313

Rodriguez, P. A., and Bos, J. I. (2013). Toward understanding the role of aphid effectors in plant infestation. * Mol. Plant Microbe Interaction*. 26, 25–30. doi: 10.1094/MPMI-05-12-0119-FI

Shigenobu, S., Richards, S., Cree, A. G., Morioka, M., Fukatsu, T., Kudo, T., et al. (2010). A full-length cDNA resource for the pea aphid, *Acyrthosiphon pisum*. *Insect Mol. Biol.* 19, 23–31. doi: 10.1111/j.1365-2583.2009.00946.x

Smithers, B., Oates, M., and Gough, J. (2019). ‘Why genes in pieces?’—revisited. * Nucleic Acids Res.* 47, 4970–4973. doi: 10.1093/nar/gkz284

Thorpe, P., Cock, P., and Bos, J. (2016). Comparative transcriptomics and proteomics of three different aphid species identifies core and diverse effector sets. * BMC Genomics* 12, 172. doi: 10.1186/s12864-016-2496-6
Tjallingii, W. F. (2006). Salivary secretions by aphids interacting with proteins of phloem wound responses. *J. Exp. Bot.* 57, 739–745. doi: 10.1093/jxb/erj088

Tonkin, C. J., Foth, B. J., Ralph, S. A., Struck, N., Cowman, A. F., and McFadden, G. I. (2008). Evolution of malaria parasite plastid targeting sequences. *Proc. Natl. Acad. Sci. U. S. A.* 105, 4781–4785. doi: 10.1073/pnas.0707827105

Vanholme, B., Kast, P., Haegeman, A., Jacob, J., Grunewald, W., and Gheysen, G. (2009). Structural and functional investigation of a secreted chorismate mutase from the plant-parasitic nematode *Heterodera schachtii* in the context of related enzymes from diverse origins. *Mol. Plant Pathol.* 10, 189–200. doi: 10.1111/j.1364-3703.2008.00521.x

Wang, X., Gao, B., and Zhu, S. (2016). Exon shuffling and origin of scorpion venom biodiversity. *Toxins (Basel)* 9, E10. doi: 10.3390/toxins9010010

Wenger, J. A., Cassone, B. J., Legeai, F., Johnston, J. S., Bansal, R., Yates, A. D., et al. (2017). Whole genome sequence of the soybean aphid, *Aphis glycines*. *Insect Biochem. Mol. Biol.* 102917, 1–10. doi: 10.1016/j.ibmb.2017.01.005. pii: S0965-1748(17)30005-X.

Will, T., Tjallingii, W. F., Thö, A., and Van Bel, A. J. E. (2007). Molecular sabotage of plant defense by aphid saliva. *Proc. Natl. Acad. Sci.* 104, 10536–10541. doi: 10.1073/pnas.0703535104

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewer SH declared a past co-authorship with one of the authors AS to the handling editor.

Copyright © 2020 Dommel, Oh, Huguet-Tapia, Guy, Boukain, Sugio, Murugan, Legeai, Heck, Smith and White. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.