Research Article

The Relationships between Morphological Characteristics and Foraging Behavior in Four Selected Species of Shorebirds and Water Birds Utilizing Tropical Mudflats

Nor Atiqah Norazlimi and Rosli Ramli

Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence should be addressed to Nor Atiqah Norazlimi; noratiqahnorazlimi@gmail.com

Received 26 May 2015; Revised 28 July 2015; Accepted 29 July 2015

1. Introduction

Shorebirds are a highly mobile group of animals and have sophisticated site-sampling processes that operate on larger spatial scales than most other animals [1]. Shorebirds generally forage during low tide and can be observed on beaches, intertidal mudflats, freshwater and brackish wetlands, farmland, and salt marshes [2]. Meanwhile, water birds refer to the bird species that entirely depend on wetlands for a variety of activities such as foraging, nesting, loafing, and moulting [3]. Both shorebirds and water birds are the important components of estuarine mudflats.

Estuarine mudflats are very important for many shorebird populations during winter and migration, many species of which feed almost exclusively on intertidal benthic invertebrates at low tide [4]. Besides that, mudflats in estuaries are also vital feeding habitats for resident bird populations [5]. In tropical regions, the biodiversity of benthic macrofauna on intertidal mudflats is much higher; macrofauna are produced ten times faster here than in temperate intertidal habitats [6, 7]. During migratory seasons, foraging is the most important activity for shorebirds utilizing the mudflats area, as it allows them to survive and ensures their safe arrival at the breeding ground. The foraging ecology is often characterized by food selection, habitat preference, and prey capturing tactics or behavior employed by avian species in a particular habitat [8, 9].

The morphology of a bird is considered an important factor in restricting the ranges of foraging maneuvers it can perform [10, 11]. Bill length and shape have important implications on foraging behavior [12–15], microhabitat selection [16], and choice of diet [15, 17–19]. Longer bills are associated with probing depth and plunging or sweeping bill movements in the water, while shorter bills are associated with routing and pecking at the substrate surface [14]. Furthermore, the foraging depths are also correlated with culmen and tarsus lengths [20]. The bill’s shape (either straight or curved) influences the foraging techniques used by Calidris mauri (Western sandpipers) [15]. Pecking or feeding on epifaunal invertebrates is associated with a straight bill, while probing
or feeding on infaunal prey is facilitated by bill curvature. In terms of foraging strategies, the functional requirement of a tactile foraging strategy is a high penetration capacity, which is then influenced by the morphological characters of a bird’s bill [13]. The general morphological requirements necessitate that the bill be long and narrow but not very slender, and the penetrating portion should be flattened either vertically or horizontally. Time spent feeding also varies with respect to the size of the bird [21]. Larger birds spent less time foraging than smaller birds by eating larger and more profitable prey.

The majority of the studies on the foraging behavior of shorebirds and water birds were conducted in temperate climate areas. The feeding ecology of shorebird and water birds species in tropical countries, especially Malaysia, is poorly understood. A previous study [28] focused on the correlation between bird density and prey density, whereas one study [29] focused on birds’ habitat utilization. To date, no detailed information has been obtained on the correlation between the morphological characteristics of birds and their feeding ecology in Malaysia. Therefore, this study aims to determine the significant relationships between morphological characters and foraging behavior adapted by shorebird and water birds species utilizing the mudflats area of Jeram Beach and Remis Beach, Selangor, Peninsular Malaysia.

2. Materials and Methods

2.1. Study Area. The Jeram and Remis Beaches are located on the Selangor Coast on the West Coast of Peninsular Malaysia (3°13’27’’N, 101°18’13’’E) (Figure 1) where semidiurnal tides prevail. In Jeram Beach, the flat was fringed by a mangrove stand of stunted Avicennia alba Blume and few scattered Sonneratia spp. [30]. The distance between Jeram Beach and Remis Beach is approximately 2 km. The selected study areas comprise approximately 55 ha of intertidal mudflats, that is, 27 ha on Jeram Beach and 28 ha on Remis Beach. The selection of these sites was based on past shorebird counts reported by Wetland Internationals from 1999 to 2004 [31], which shows that these areas were previously known to be important stopover sites for shorebirds.

2.2. Foraging Behavior. The foraging behavior of birds was studied from August 2013 to July 2014 using direct observation techniques. Selected focal birds were observed using binoculars (12 × 42 magnifications), stopwatches, and video recorders. The selected focal bird must be actively foraging (each individual was observed until they were done foraging, i.e., starting from the time the bird began actively searching for prey until the prey was completely swallowed); if the bird left within 30 seconds, it was eliminated from the study [32]. The focal observations were recorded for at least 30 seconds for up to a maximum of five minutes. The data recorded from the different sites and months were pooled to increase replications [33] so that the data was strong enough to be analyzed. The focal observations were done only during low tide period (i.e., during ebbing tide, low tide peak, and rising tide) so that birds of all sizes (either with longer or shorter legs) can use the mudflats area for foraging at the same time.

The observations were conducted during four-interval period (i.e. 0800–1000 hours, 1000–1200 hours, 1400–1600 hours, and 1600–1800 hours). Since the sites were situated nearest to each other (i.e., 2 km apart), the differentiation of habitat characteristics was not obvious. First, individual focal birds were selected from a flock. Once a bird was chosen, the next bird selected for observation must be located at least 10 meters away from the previously observed bird. This was done to avoid multiple observations of the same individual. Four species of shorebirds and water birds (Lesser adjutant (Leptoptilos javanicus), Common redshank (Tringa totanus), Little heron (Butorides striata), and Whimbrel (Numenius phaeopus)) were chosen for this study due to their size differences and foraging techniques and because they are easily distinguished from one another. The data, such as estimated probing depth, time spent foraging (total searching and handling time), foraging techniques, prey type, estimated prey size, and estimated water or mud depth in which they forage, were gathered. Foraging techniques used by bird were divided into three categories: (1) tactile-hunting species techniques, where birds forage as they walk, probing continuously with the bill into the substrate [34, 35]; (2) visual-feeding techniques, where they forage in a continuous...
Table 1: Measurements of bill size and tarsus length based on previous studies.

Species	Literature	Bill length (mm)	Average bill length (mm)	Tarsus length (mm)	Average tarsus length (mm)
Lesser adjutant	[22]	266.7	266.7	228.6	228.6
Common redshank	[23, 24]	43.7	42.8	51.6	49.6
		41.8			
Little heron	[25]	75.0	75.0	49.0	49.0
Whimbrel	[26, 27]	87.2	84.6	55.9	59.9
		82.0			

Table 2: Summary of frequency of individual of shorebird and water bird species observed (n) from August 2013 until July 2014.

Months	Lesser adjutant	Common redshank	Little heron	Whimbrel
August	6	4	8	4
September	10	20	2	3
October	11	42	2	2
November	3	23	4	2
December	7	33	7	4
January	9	19	5	4
February	5	17	3	4
March	5	17	5	3
April	5	11	5	3
May	6	10	5	3
June	4	5	4	3
July	4	4	3	3
	75	205	53	38

Previous studies. Below are the formulae used to illustrate the estimation of probing depth and water or mud depths:

\[
\begin{align*}
\text{Water/mud depth (mm)} & = \frac{\text{Percentage of estimated leg immersed in the water or mud}}{100\%} \times \text{leg length}, \\
\text{Probing depth (mm)} & = \frac{\text{Percentage of estimated bill inserted into the mud or water}}{100\%} \times \text{bill size}, \\
\text{Prey size (mm)} & = \frac{\text{Percentage of estimated prey in bill}}{100\%} \times \text{bill size}.
\end{align*}
\]

2.3. Data Analysis. Statistical software [39] was used to analyze all data. In preparation for statistical testing, all data sets were tested with Shapiro Wilk's W test and Anderson's Darling test for normality. In all cases, \(\alpha = 0.05 \) was used. A total of 205 focal observations were recorded for Common redshank, 75 observations for Lesser adjutant, 53 observations for Little heron, and 38 observations for Whimbrel (Table 2). Due to differences in number of focal observations recorded, all data taken were divided into 12 months (i.e., from August 2013 until July 2014) to obtain the average or mean of each data. A Spearman Rank Correlation Analysis was used to determine the correlation between the bill size of the bird and the time spent foraging [40]; the bill size of the bird and the estimated prey size; the bill size of the bird and probing depth; and the leg length of the bird and water or mud depth. The nonparametric Kruskal-Wallis Test was used to study the relationships between bird species and probing depth (mm). Moreover, a one-way ANOVA was used to determine the differences in time spent foraging and different foraging techniques. All the requisites of data reliability have been followed [41]. The statistical test used was based on [42].

3. Results

Our results show that time of the day and tidal conditions do not influence the use of habitat for foraging by shorebird...
Table 3: Summary of bill size, average estimated probing depth, length of leg, average estimated water/mud depth per year, and average time spent foraging by shorebirds and water birds.

Species	Bill size (mm)	Estimated probing/foraging depth (mm)	Length of the leg (mm)	Estimated water/mud depth (mm)	Time spent foraging (s)
Little heron	75	24	98	27	1,130
Lesser adjutant	266.7	82	457.2	134	3,186
Whimbrel	84.6	41	119.8	22	2,085
Common redshank	42.8	33	99.2	38	1,280

Table 4: Diet choice and abundance chosen by shorebird and water bird species.

Species	Prey type	Number of prey counted
Little heron	Fish	35
	Bivalve	0
	Worm	0
	Crab	0
	Unknown	17
Lesser adjutant	Fish	51
	Bivalve	7
	Worm	2
	Crab	2
	Unknown	15
Whimbrel	Fish	8
	Bivalve	17
	Worm	1
	Crab	7
	Unknown	0
Common redshank	Fish	13
	Bivalve	102
	Worm	25
	Crab	34
	Unknown	35

Test proved that the significant difference occurred between Little heron and Lesser adjutant ($z = -1.667, p = 0.009$) and between Lesser adjutant and Common redshank ($z = 1.583, p = 0.016$). In this study, we found that the time spent foraging, prey size, and probing depth differed with respect to the bill size of the shorebird and water bird species. Moreover, the water or the mud depth where the bird stood while foraging was also influenced by the length of the leg of the bird species. A Spearman Rank Correlation shows a significant relationship between bill size and time spent foraging ($R = 0.443, p < 0.05$); the bill sizes and the estimated prey size obtained while foraging ($R = -0.052, p < 0.05$); the bill sizes and the probing depth applied while foraging ($R = 0.42, p = 0.003$); and the length of the leg and the water or mud depth in the feeding area ($R = 0.706, p < 0.005$) (Table 3).

Table 5 shows foraging techniques practiced by shorebird and water bird species. Little herons only practiced pause-travel techniques, while Lesser adjutants and Common redshanks used all techniques while foraging. However, the most preferred feeding technique used by Lesser adjutants and Common redshanks was the tactile-hunting feeding technique. In contrast, the Whimbrel engaged in both tactile-hunting and visual-feeding techniques, but not pause-travel techniques. No significant differences were found between time spent foraging and different feeding techniques ($F = 0.26, p = 0.778$).

4. Discussion

We found that time of the day and tidal conditions do not influence the foraging behavior of shorebird and water bird species utilizing the areas of the study. Similar results were
foraging, and foraging techniques used by species.

Species	Foraging techniques	Time spent foraging (s)	n	Mean	Standard error
Little heron	Pause-travel	53	68.62	5.69	
	Tactile-hunting	0	0.00	0.00	
	Visual-feeding	0	0.00	0.00	
Lesser adjutant	Pause-travel	17	134.65	18.50	
	Tactile-hunting	56	77.34	8.13	
	Visual-feeding	2	24.00	4.00	
Whimbrel	Pause-travel	0	0.00	0.00	
	Tactile-hunting	33	36.70	2.03	
	Visual-feeding	5	120.00	0.00	
Common redshank	Pause-travel	2	50.00	0.00	
	Tactile-hunting	171	46.09	2.58	
	Visual-feeding	32	39.53	2.54	

Shorter billed birds tended to insert the majority or all of their bills into the mud or water while foraging. Usually, the Common redshank inserted the majority of its bill into the mud while foraging, whereas the Lesser adjutant, Whimbrel, and Little heron only inserted their bills halfway or less while foraging. Deeper probing resulted in a more profitable prey item. The size of the prey increased with respect to burrowing depth. A previous study [48] found that a larger worm species (Nereis diversicolor), which is longer than 10 cm, was usually found at a depth of 10 to 14 cm.

The longer the leg, the deeper the mud or water depth in which the birds stood while foraging. This study revealed that the Lesser adjutant tended to forage in the deeper mud and areas close to the water's edge. Meanwhile, the Common redshank was commonly found utilizing the area closest to the beach, which was shallower and drier compared to the area closest to the water's edge. Similar results [49] show that shorebirds with shorter legs and tarsi (i.e., Calidris minutilla (Least Sandpiper), Calidris mauri (Western Sandpiper), Limnodromus spp. (Dowitcher), and Calidris alpina (Dunlin)) were constrained to use mudflats or shallow water zones along the wetland's edge. Leg length was positively correlated with water depth in which shorebirds foraged [20]. Other data [50] also revealed an increase in the range of depths used by larger shorebird species, which wade in deeper habitats. Foraging close to the water’s edge might be advantageous because of increased penetrability and prey activity [51]. Therefore, drier substrates and more structurally complex microhabitats may be favored by birds with shorter bills [52, 53].

Our results show a significant difference between average estimates of probing depth and species. The differences in probing depth exist only between Little herons and Lesser adjutants. This may be due to differences in their bill sizes. Lesser adjutants have longer bills than Little herons. Birds with longer bills will benefit by probing deeper into the mud. The differences in habitat use exist in sandpipers due to variations in bill length [54]; that is, longer billed individuals foraged in muddier habitats than did shorter billed individuals.

The foraging techniques engaged in while foraging also differed between species. Tactile hunting was the most dominant technique used by the Lesser adjutant, Whimbrel, and Common redshank, whereas the pause-travel technique was the only technique used by the Little heron. The different types of feeding techniques are likely to influence the vigilance patterns of shorebird species. Pause-travel species can be more vigilant with their heads up, scanning the environment; when they locate a prey item, they run to catch it [55]. We assume that tactile-hunting techniques increase the chances of successful foraging, since much of the bird's time is concentrated on searching for food, compared to pause-travel techniques, in which the bird spends much of its time being more vigilant than foraging. Moreover, shorter billed birds were restricted to a certain mud depth or water level compared to the longer billed bird. Therefore, tactile-hunting techniques were observed to be the most profitable, since the bird using this technique will probe as deep as possible to obtain more profitable prey, which burrow deep.
into the mud. Our study suggests that time spent foraging did not differ between foraging techniques. However, different results have been shown [56], where Plovers, which exhibit visual foraging techniques, spend less time feeding than Sandpipers, which exhibit tactile or continuous hunting techniques. Furthermore, the pause-travel species was frequently observed foraging alone, whereas tactile and visual feeding species usually foraged in intraspecies or interspecies flocks. Foraging in groups is beneficial because it reduces the risk of predation and, thus, reduces the cost of vigilance [32]. For conclusion, the morphologies of birds play an important role in determining foraging behaviors. Species with different foraging strategies will acquire food resources from different habitats and may be able to avoid interspecies competition. Thus, sufficient energy and nutrients can be replenished to enhance the survival of bird species in the area.

Conflict of Interests

Both authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The authors thank the staff at the Institute of Biological Science for assistance in the field. This study was funded by a University of Malaya Research Grant (PG031-2013B) and a MyBrainSc Scholarship from the Ministry of Education, Malaysia.

References

[1] G. Quaintenne, J. A. Van Gils, P. Bocher, A. Dekinga, and T. Piersma, “Scaling up ideals to freedom: are densities of red knots across western Europe consistent with ideal free distribution?”, Proceedings of the Royal Society B: Biological Sciences, vol. 278, no. 1719, pp. 2728–2736, 2011.

[2] B. Lane, Shorebirds in Australia, Nelson Publishers, Melbourne, Australia, 1987.

[3] M. N. Raipar and M. Zakaria, “Density and diversity of water birds and terrestrial birds at Paya Indah Wetland Reserve, Selangor Peninsular Malaysia,” Journal of Biological Sciences, vol. 10, no. 7, pp. 658–666, 2010.

[4] P. L. A. Erftemeijer and R. Lewis, “Planting mangroves on intertidal mudflats: habitat restoration or habitat conversion?” in Proceedings of the 8th ECOTONE Seminar “Enhancing Coastal Ecosystem Restoration for the 21st Century”, pp.1–13, Ranong and Phuket, Thailand, 1999.

[5] J. D. Goss-Custard and N. Verboven, “Disturbance and feeding shorebirds on the Exe estuary,” Wader Study Group Bulletin, vol. 68, pp. 59–66, 1993.

[6] D. Alongi, “The ecology of tropical soft-bottom benthic ecosystems,” in Oceanography and Marine Biology: An Annual Review, vol. 28, pp. 381–496, 1990.

[7] A. D. Ansell, D. S. McLusky, A. Stirling, and A. Trevallion, “Production and energy flow in the macrobenthos of two sandy beaches in South West India,” Proceedings of the Royal Society of Edinburgh. Section B: Biological Sciences, vol. 76, no. 04, pp. 269–296, 1978.

[8] E. Danchin, L. Giraldo, and F. Cézilly, Behavioural Ecology, Oxford University Press, New York, NY, USA, 2008.

[9] A. B. H. Aboushiba, R. Ramli, and M. S. Azirun, “Foraging behaviour of five egret species in POME Pond Area at Carey Island, Peninsular Malaysia,” The Journal of Plant & Plant Sciences, vol. 23, no. 1, pp. 129–135, 2013.

[10] T. E. Martin and J. R. Karr, “Behavioral plasticity of foraging maneuvers of migratory warblers: multiple selection periods for niches?” Studies in Avian Biology, vol. 13, pp. 353–359, 1990.

[11] M. C. K. Soh, “Foraging behaviour of two tailorbirds in Singapore: habitat, morphological and temporal comparisons,” The Raffles Bulletin of Zoology, vol. 49, no. 2, pp. 173–180, 2001.

[12] J. P. Pierre, “Effects of sexual dimorphism on feeding behaviour of the bar-tailed godwit (Limosa lapponica) at a Southern Hemisphere wintering site,” New Zealand Natural Sciences, vol. 21, pp. 109–112, 1994.

[13] A. A. Gerritsen and G. F. C. Zweers, “Transitions from pecking to probing mechanisms in waders,” Netherlands Journal of Zoology, vol. 47, no. 2, pp. 161–208, 1996.

[14] A. Barbosa and E. Moreno, “Evolution of foraging strategies in shorebirds: an ecomorphological approach,” The Auk, vol. 116, no. 3, pp. 712–725, 1999.

[15] S. Nebel, D. L. Jackson, and R. W. Elner, “Functional association of bill morphology and foraging behaviour in calidrid sandpipers,” Animal Biology, vol. 55, no. 3, pp. 235–243, 2005.

[16] Y. Van Heezik and A. Gerritsen, “Substrate preference and substrate related foraging behavior in three Calidris species,” Netherlands Journal of Zoology, vol. 35, no. 4, pp. 671–692, 1984.

[17] B. Lauro and E. Nol, “Feeding behavior, prey selection and bill size of Pied and Sooty Oystercatchers in Australia,” Wilson Bulletin, vol. 107, pp. 629–640, 1995.

[18] V. Mascitti and F. O. Kravetz, “Bill morphology of South American flamingos,” The Condor, vol. 104, no. 1, pp. 73–83, 2002.

[19] D. Durant, H. Fritz, S. Blais, and P. Duncan, “The functional response in three species of herbivorous Anatidae: effects of sward height, body mass and bill size,” Journal of Animal Ecology, vol. 72, no. 2, pp. 220–231, 2003.

[20] M. C. Baker, “Morphological correlates of habitat selection in a community of shorebirds (Charadriiformes),” Oikos, vol. 33, no. 1, pp. 121–126, 1979.

[21] Y. Ntimao-Baidu, T. Piersma, P. Wiersma, M. Poot, P. Battley, and C. Gordon, “Water depth selection, daily feeding routines and diets of waterbirds in coastal lagoons in Ghana,” Ibis, vol. 140, no. 1, pp. 89–103, 1998.

[22] J. A. Murray, The Avifauna of the Island of Ceylon, Educational Society Press, Bombay, India, 1890.

[23] W. G. Hale, F. Scarton, and R. Valle, “The taxonomic status of Redshank Tringa totanus in Italy,” Bulletin of British Ornithologist’s Club, vol. 125, no. 4, pp. 261–275, 2005.

[24] P. S. Thompson, C. McCarty, and W. G. Hale, “Growth and response in three species of herbivorous Anatidae: effects of sward height, body mass and bill size,” Journal of Animal Ecology, vol. 72, no. 2, pp. 220–231, 2003.

[25] D. R. Wells, The Birds of the Thai-Malay Peninsula: Non-Passerines, Academic Press, London, UK, 1999.

[26] A. Poole and F. Gill, The Birds of North America, The Birds of North America, Philadelphia, Pa, USA, 2000.

[27] V. V. Morozov, “Current status of the southern subspecies of the Whimbrel Numenius phaeopus albazzilaris (Lowe 1921) in
Russia and Kazakhstan," Wader Study Group Bulletin, vol. 92, pp. 30–37, 2000.

[28] R. M. Lomoljo, Diversity of migratory shorebirds and their habitat characteristics in Kuala Gula Bird Sanctuary, Perak, Malaysia [Dissertation for Doctoral Degree], Universiti Putra Malaysia, Seri Kembangan, Malaysia, 2011.

[29] K. M. Riak, An ecological assessment of wetland habitat utilized by migratory shorebirds at Kapar, Pantai Remis and Kuala Selangor Nature Park, Malaysia [Ph.D. thesis], Universiti Putra Malaysia, Seri Kembangan, Malaysia, 2004.

[30] G. Polgar, "The polychaete reefs of Jeram, Selangor," in Ecology of Klang Strait, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia, 2nd edition, 2012.

[31] Z. W. D. Li and R. Ounsted, The Status of Coastal Waterbirds and Wetlands in Southeast Asia: Results of Waterbirds Surveys in Malaysia (2004–2006) and Thailand and Myanmar (2006), Wetland International, Kuala Lumpur, Malaysia, 2007.

[32] J. Burger, S. A. Carlucci, C. W. Jeitner, and L. Niles, "Habitat choice, disturbance, and management of foraging shorebirds and gulls at a migratory stopover," Journal of Coastal Research, vol. 235, no. 5, pp. 1159–1166, 2007.

[33] L. Green, D. T. Blumstein, and P. Feng, "Macrostomal mats in a eutrophic estuary obscure visual foraging cues and increase variability in prey availability for some shorebirds," Estuaries and Coasts, vol. 38, no. 3, pp. 917–926, 2015.

[34] A. F. C. Gerritsen and J. G. Sevenster, "Foraging behavior and bill anatomy in sandpipers," Fortschritte der Zoologie, vol. 30, pp. 237–239, 1985.

[35] M. C. Baker and A. E. Baker, "Niche relationships among six species of shorebirds on their wintering and breeding ranges," Ecological Monographs, vol. 43, no. 2, pp. 193–212, 1973.

[36] M. Andersson, "On optimal predator search," Theoretical Population Biology, vol. 19, no. 1, pp. 58–86, 1981.

[37] M. W. Pienkowski, "Changes in the foraging pattern of plovers in relation to environmental factors," Animal Behaviour, vol. 31, no. 1, pp. 244–264, 1983.

[38] N. B. Metcalfe, "Prey detection by intertidally feeding Lapwing," Zeitschrift für Tierpsychologie, vol. 67, no. 1–4, pp. 45–57, 1985.

[39] StatSoft, STATISTICA (Data Analysis Software System). Version 8.0, StatSoft, Tulsa, Okla, USA, 2007, http://www.statsoft.com/.

[40] K. Kober, Foraging ecology and habitat use of wading birds and shorebirds in the mangrove ecosystem of the Caeté Bay, Northeast Pará, Brazil [Dissertation for Doctoral Degree], University of Bremen, Bremen, Germany, 2004.

[41] C. Battisti, G. Dodaro, and D. Franco, "The data reliability in ecological research: a proposal for a quick self-assessment tool," Natural History Sciences, vol. 1, no. 2, pp. 75–79, 2014.

[42] E. McCrum-Gardner, "Which is the correct statistical test to use?" British Journal of Oral and Maxillofacial Surgery, vol. 46, no. 1, pp. 38–41, 2008.

[43] J. Burger, "Abiotic factors affecting migrant shorebirds," in Shorebirds: Migration and Foraging Behavior, J. Burger and B. L. Olla, Eds., pp. 125–202, Plenum Press, New York, NY, USA, 1984.

[44] J. Burger, M. A. Howe, D. C. Hahn, and J. Chase, "Effects of tide cycles on habitat selection and habitat partitioning by migrating shorebirds," The Auk, vol. 94, no. 4, pp. 743–758, 1977.

[45] T. C. Moermond, "A functional approach to foraging: morphology, behavior and the capacity to exploit," in Studies in Avian Biology, M. L. Morrison, C. J. Ralph, J. Verner, and J. R. Jehl Jr., Eds., vol. 13, pp. 427–430, Cooper Ornithological Society, San Diego, Calif, USA, 1990.

[46] S. E. A. Le V. Dit Durell, "Individual feeding specialisation in shorebirds: population consequences and conservation implications," Biological Review, vol. 75, no. 4, pp. 503–518, 2000.

[47] G. Fernández and D. B. Lank, "Foraging behaviour of non-breeding Western Sandpipers Calidris mauri as a function of sex, habitat and flocking," Ibis, vol. 150, no. 3, pp. 518–526, 2008.

[48] P. Esselink and L. Zwarte, "Seasonal trend in burrow depth and tidal variation in feeding activity of Nereis diversicolor," Marine Ecology Progress Series, vol. 56, pp. 243–254, 1989.

[49] C. R. Isola, M. A. Colwell, O. W. Taft, and R. J. Safran, "Interspecific differences in habitat use of shorebirds and waterfowl foraging in managed wetlands of California’s San Joaquin Valley," Waterbirds, vol. 23, no. 2, pp. 196–203, 2000.

[50] L. M. Weber and S. M. Haig, "Shorebird use of South Carolina managed and natural coastal wetlands," The Journal of Wildlife Management, vol. 60, no. 1, pp. 73–82, 1996.

[51] M. A. Colwell and S. L. Landrum, "Nonrandom shorebird distribution and fine-scale variation in prey abundance," The Condor, vol. 95, no. 1, pp. 94–103, 1993.

[52] D. P. Whitfield, "Individual feeding specializations of wintering turnstone Arenaria interpres," Journal of Animal Ecology, vol. 59, no. 1, pp. 193–211, 1990.

[53] Y. Zharikov and G. A. Skilleter, "Sex-specific intertidal habitat use in subtopically wintering bar-tailed godwits," Canadian Journal of Zoology, vol. 80, no. 11, pp. 1918–1929, 2002.

[54] B. A. Harrington, "Morphometric variation and habitat use of Semipalmated Sandpipers during a migratory stopover," Journal of Field Ornithology, vol. 53, no. 3, pp. 258–262, 1982.

[55] A. Barbosa, "Foraging strategies and their influence on scanning and flocking behaviour of waders," Journal of Avian Biology, vol. 26, no. 3, pp. 182–186, 1995.

[56] M. W. Pienkowski, "Differences in habitat requirements and distribution patterns of plovers and sandpipers," Verhandlungen der Ornithologischen Gesellschaft in Bayern, vol. 23, pp. 105–124, 1981.