Research Paper:
Meta-analysis Study of Work-related Musculoskeletal Disorders in Iran

Ayoub Parno1, Kourosh Sayehmiri2, Reza Nabi Amjad3, Reyhaneh Ivanbagha4, Mir Mohammad Hosseini Ahagh1, Shiva Hosseini Foladi6, *Alireza Khammar7, *Mohsen Poursadeqiyan8,9

1. Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
2. Department of Biostatistic, Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran.
3. Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
4. Department of Midwife, School of Nursing, Khalkhal University Medical Sciences, Khalkhal, Iran.
5. Department of Public Health, Khalkhal University of Medical Sciences, Khalkhal, Iran.
6. Department of Health Services Management, Student Research committee, Isfahan University of Medical Sciences, Isfahan, Iran.
7. Department of Occupational Health, Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran.
8. Department of Occupational Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
9. Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.

Objective

Work-related musculoskeletal disorders are one of the major causes of lost working time, increased costs, human injuries and burnout. The International Labor Organization estimates that about 160 million work-related illnesses occur worldwide each year, where the highest prevalent illnesses are musculoskeletal disorders. Several studies have been conducted in Iran to investigate the prevalence of these disorders, each providing different statistics. Therefore, considering the importance of these disorders, it is necessary to obtain accurate results with high statistical power and validate them. The aim of this study was to investigate the prevalence of work-related musculoskeletal disorders in Iran in order to obtain more accurate results by conducting a meta-analysis.

Materials & Methods

For this meta-analysis, searching was conducted in SID, MagIran, IranMedex, Google Scholar, Scopus, Web of Science, and PubMed databases using the keyword “work-related musculoskeletal disorders” in both Persian and English on studies conducted during 2001-2016 in various cities of Iran. Inclusion criteria were: investigating the prevalence of musculoskeletal disorders in a period of one year, being a cross-sectional or descriptive-analytical study, publication in Persian or English, availability of full-texts, assessment using standard methods (e.g. Nordic Musculoskeletal Questionnaire) and considering the prevalence of musculoskeletal disorders throughout the body (upper and lower extremities). The heterogeneity of the articles was evaluated using the I2 statistics and the data were analyzed in STATA software using meta-analysis and random-effects model.

Results

In this study, 45 papers on work-related musculoskeletal disorders were studied. The overall sample size of these studies was 9813, with a mean number of 218 for each study. Most of studies were descriptive-analytical and cross-sectional. In all of them, the prevalence of musculoskeletal disorders in different parts of the body had been investigated. According to their results, the most prevalent work-related musculoskeletal disorder in lower extremity was low back pain (0.49%) and in upper extremity, it was neck pain (39.3%). The prevalence of musculoskeletal disorders in other parts of the body were 39.32% in the neck, 36.9% in shoulders, 36.8% in the back, 34% in the wrist, 26.9% in legs, 20.5% in thighs and hips, and 16.2% in elbows.

ABSTRACT

Objective

Work-related musculoskeletal disorders are one of the major causes of lost working time, increased costs, human injuries and burnout. The International Labor Organization estimates that about 160 million work-related illnesses occur worldwide each year, where the highest prevalent illnesses are musculoskeletal disorders. Several studies have been conducted in Iran to investigate the prevalence of these disorders, each providing different statistics. Therefore, considering the importance of these disorders, it is necessary to obtain accurate results with high statistical power and validate them. The aim of this study was to investigate the prevalence of work-related musculoskeletal disorders in Iran in order to obtain more accurate results by conducting a meta-analysis.

Materials & Methods

For this meta-analysis, searching was conducted in SID, MagIran, IranMedex, Google Scholar, Scopus, Web of Science, and PubMed databases using the keyword “work-related musculoskeletal disorders” in both Persian and English on studies conducted during 2001-2016 in various cities of Iran. Inclusion criteria were: investigating the prevalence of musculoskeletal disorders in a period of one year, being a cross-sectional or descriptive-analytical study, publication in Persian or English, availability of full-texts, assessment using standard methods (e.g. Nordic Musculoskeletal Questionnaire) and considering the prevalence of musculoskeletal disorders throughout the body (upper and lower extremities). The heterogeneity of the articles was evaluated using the I2 statistics and the data were analyzed in STATA software using meta-analysis and random-effects model.

Results

In this study, 45 papers on work-related musculoskeletal disorders were studied. The overall sample size of these studies was 9813, with a mean number of 218 for each study. Most of studies were descriptive-analytical and cross-sectional. In all of them, the prevalence of musculoskeletal disorders in different parts of the body had been investigated. According to their results, the most prevalent work-related musculoskeletal disorder in lower extremity was low back pain (0.49%) and in upper extremity, it was neck pain (39.3%). The prevalence of musculoskeletal disorders in other parts of the body were 39.32% in the neck, 36.9% in shoulders, 36.8% in the back, 34% in the wrist, 26.9% in legs, 20.5% in thighs and hips, and 16.2% in elbows.

* Corresponding Authors:

Mohsen Poursadeqiyan
Address: Department of Occupational Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
Tel: +98 (51)52226011
E-Mail: mo.poursadeghiyan@uswr.ac.ir

Alireza Khammar
Address: Zabol Medicinal Plants Research Center, Department of Occupational Health, School of Health, Zabol University of Medical Sciences, Zabol, Iran.
Tel: +98 (54) 32232190
E-Mail: alireza.khammar@zbmu.ac.ir
Introduction

The National Institute for Occupational Safety and Health (NIOSH) defines musculoskeletal disorders as a group of conditions that affect nerves, tendons, muscles, and supporting structures such as intervertebral discs [1, 2]. These disorders are the main causes of lost working time, increased costs, human injuries, burnout and the imposition of direct and indirect costs on the health system [2-7]. In Japan, the growth of musculoskeletal disorders from the 1960s to the 1980s was often seen among people who worked as typewriters, telephone operators, and assembly line workers, and most of them had discomfort in the hands, arms, and shoulders. In the Scandinavian countries, these problems became apparent in the 1980s and were often associated with back pain among white-collar workers and neck, wrist and shoulder injuries among blue-collar workers. Nordic studies of factors causing neck and arm pains increased the accuracy of the study [8]. According to studies in Europe, there are about 40 million workers with musculoskeletal disorders (more than 30% of workers) whose cost is equal to 0.5-2% of EU gross domestic product [9].

Many studies have been done in this regard in Iran. The results of the study of musculoskeletal disorders and factors associated with the development of these disorders in 94 workers in the painting industry showed that the symptoms of musculoskeletal disorders in some areas of the body such as back, wrist, knee and shoulder are more than in other parts of the body [10]. The results of ergonomic risk assessment study and the prevalence of musculoskeletal disorders among 99 people working in the auto repair industry showed that the most symptoms of musculoskeletal disorders was in the lower back area (62.6%); most complaints was related to the wrist area (64.6%), and (55.5%) at high risk for pain and discomfort [11].

Choobineh et al. [12] in a study in Isfahan on 1439 weavers showed that the prevalence of these disorders was high among carpet weavers and was mainly seen in back (45.2%), hips and thighs (1.6%), knees (34.6%) and ankles (23.7%) (34.6%). In another study conducted by Mo’staghisi et al. [13] on 92 workers in the food industry in Yazd, they reported a low back pain prevalence of 44.6% [13]. Due to the need to know the latest statistics of musculoskeletal disorders for health planning and considering that many studies in this field need accreditation [14], this meta-analysis study aimed to determine the prevalence of work-related musculoskeletal disorders in Iran based on location.

Materials & Methods

This is a meta-analysis study. A search was conducted in SID (Jihad University Database), MagIran, MedexIran, Google Scholar, Scopus, WOS and Pubmed databases among studies conducted between 2001 and 2016 in different cities of Iran, by using the keyword “prevalence of musculoskeletal disorder” in both Persian and English. Criteria for inclusion of studies in the study were: investigating the prevalence of musculoskeletal disorders in a period of one year, being a cross-sectional or descriptive-analytical study, publication in Persian or English, availability of full-texts, assessment using standard methods (e.g. Nordic Musculoskeletal Questionnaire) and considering the prevalence of musculoskeletal disorders throughout the body (upper and lower extremities). Figure 1 presents a flowchart for the process of selecting articles for meta-analysis.

Considering that the prevalence of musculoskeletal disorders and the sample size were present in all articles, a binomial distribution was used to calculate the variance and the weighted mean was used to combine the prevalence in the studies. Each study was weighted according to its inverse variance. On the other hand, since there was a large difference in the prevalence rates between the studies and the heterogeneity was more than 97%, it was considered as a severe heterogeneity according to the following classifi-
REHABILITATION

variation in measured parameters
ferences are due to using different sampling method and ment. According to this model, it is assumed that the dif heterogeneity. Random-effects model was used for assess
ification method: $I^2 < 25\% = \text{partial heterogeneity}, I^2 \text{between} 25 \text{and} 75\% = \text{moderate heterogeneity}, \text{and } I^2 > 75\% = \text{severe heterogeneity. Random-effects model was used for assessment. According to this model, it is assumed that the differences are due to using different sampling method and variation in measured parameters}[42].

Figure 1. The process of selecting studies for meta-analysis

Moreover, according to the type of study data, the plotting of graphs and determining the publication bias for all disorders were not performed. Meta-Regression was used to calculate the relationship between the prevalence of musculoskeletal disorders and the year of study and sample size. Data analysis was performed in STATA V.10 software.

Study ID	ES (95% CI)	Weight
Ghasaraghi F (2001)	0.17 (0.05, 0.29)	2.17
Chobine A (2005)	0.43 (0.34, 0.54)	4.24
Mrl Mohammadi M (2002)	0.32 (0.21, 0.43)	2.34
Saeidi M (2006)	0.47 (0.33, 0.60)	2.39
Chobine A (2009)	0.62 (0.54, 0.69)	2.33
Aslani A (2009)	0.35 (0.27, 0.42)	2.35
الإيرال A (2002)	0.51 (0.42, 0.60)	2.57
Next eie T (2006)	0.55 (0.46, 0.59)	2.37
Chobine A (2006)	0.61 (0.45, 0.77)	2.30
Hayee F (2007)	0.59 (0.49, 0.68)	2.37
Chobine A (2009)	0.39 (0.33, 0.46)	2.38
Chobine A (2009)	0.56 (0.47, 0.65)	2.31
Chobine A (2009)	0.39 (0.34, 0.52)	0.19
Sadrhori H (2003)	0.81 (0.77, 0.85)	2.30
Rangaraj B (2004)	0.52 (0.33, 0.71)	1.76
Memarzadeh A H (2008)	0.31 (0.24, 0.38)	2.37
Derakhshani H (2008)	0.41 (0.33, 0.49)	2.38
Hamedeh H (2008)	0.30 (0.22, 0.41)	2.38
Pourkarim M (2009)	0.49 (0.42, 0.56)	2.38
Mehdizadeh M (2009)	0.52 (0.44, 0.60)	2.38
Moslehi A (2010)	0.50 (0.43, 0.57)	2.38
Akbari F (2011)	0.37 (0.29, 0.44)	2.38
Ramezani M (2011)	0.17 (0.08, 0.26)	2.38
Ramezani M (2011)	0.26 (0.18, 0.33)	2.38
Chobine A (2012)	0.62 (0.57, 0.68)	2.37
Naseri M (2012)	0.72 (0.66, 0.79)	2.35
Gharib H (2012)	0.56 (0.49, 0.62)	2.35
Sharifi H (2013)	0.52 (0.45, 0.58)	2.35
Loghmani A (2013)	0.58 (0.52, 0.64)	2.35
Eslamifard K H (2015)	0.55 (0.49, 0.62)	2.35
Soltani P (2016)	0.68 (0.60, 0.76)	2.34
Barzinjia S (2016)	0.43 (0.36, 0.50)	2.34
Mousavi M (2017)	0.52 (0.46, 0.58)	2.34
Nezam D (2018)	0.61 (0.55, 0.67)	2.34
Ghasemi K (2018)	0.53 (0.47, 0.60)	2.34
Azadi M (2019)	0.49 (0.42, 0.56)	2.34
Ablakchi F H (2020)	0.44 (0.37, 0.51)	2.34

Figure 2. Studies reported the prevalence of lower back pain in lower extremity presented based on a random-effects model.
Table 1. Prevalence of musculoskeletal disorders in Iran

Location	Year	Sample Size	Prevalence of Musculoskeletal Disorders in Upper Extremity
Tehran	2003	220	Table 1 0.24 0.17 0.23 -
Tehran	2004	47	Table 2 0.83 0.62 0.468 085
Tehran	2009	115	Tehran 0.2608 0.4434 0.4 0.148
Kermanshah	2001	36	Tehran 0.83 0.62 0.468 085
Tehran	2009	20	Tehran 0.2608 0.4434 0.4 0.148
Yazd	2008	102	Tehran 0.2608 0.4434 0.4 0.148
Yazd	2009	72	Tehran 0.2608 0.4434 0.4 0.148
Yazd	2010	92	Tehran 0.2608 0.4434 0.4 0.148
Shiraz	2006	288	Tehran 0.2608 0.4434 0.4 0.148
Tehran	2005	22	Tehran 0.2608 0.4434 0.4 0.148
Urmia	2006	89	Tehran 0.2608 0.4434 0.4 0.148
Tekab	2007	110	Tehran 0.2608 0.4434 0.4 0.148
Shiraz	2007	375	Tehran 0.2608 0.4434 0.4 0.148
Tehran	2009	145	Tehran 0.2608 0.4434 0.4 0.148
Isfahan	2003	1439	Tehran 0.2608 0.4434 0.4 0.148
Qom	2008	47	Tehran 0.2608 0.4434 0.4 0.148
Qom	2008	268	Tehran 0.2608 0.4434 0.4 0.148
Tehran	2009	332	Tehran 0.2608 0.4434 0.4 0.148
Arak	2008	334	Tehran 0.2608 0.4434 0.4 0.148
Shiraz	2005	454	Tehran 0.2608 0.4434 0.4 0.148
Amol	2009	400	Tehran 0.2608 0.4434 0.4 0.148
Sabzevar	2007	364	Tehran 0.2608 0.4434 0.4 0.148
Kerman	2009	384	Tehran 0.2608 0.4434 0.4 0.148
Meybod	2009	54	Tehran 0.2608 0.4434 0.4 0.148
Isfahan	2009	50	Tehran 0.2608 0.4434 0.4 0.148
Shiraz	2008	156	Tehran 0.2608 0.4434 0.4 0.148
Shiraz	2005	75	Tehran 0.2608 0.4434 0.4 0.148
Qazvin	2012	54	Tehran 0.2608 0.4434 0.4 0.148
Yazd	2013	220	Tehran 0.2608 0.4434 0.4 0.148
Rafsanjan	2012	400	Tehran 0.2608 0.4434 0.4 0.148
Hamedan	2011	71	Tehran 0.2608 0.4434 0.4 0.148
Babol	2014	64	Tehran 0.2608 0.4434 0.4 0.148
Hamedan	2014	30	Tehran 0.2608 0.4434 0.4 0.148
Isfahan	2015	138	Tehran 0.2608 0.4434 0.4 0.148
Tehran	2013	176	Tehran 0.2608 0.4434 0.4 0.148
Sari	2015	940	Tehran 0.2608 0.4434 0.4 0.148
Tekab	2015	222	Tehran 0.2608 0.4434 0.4 0.148
Iran	2015	254	Tehran 0.2608 0.4434 0.4 0.148
Sanandaj	2013	250	Tehran 0.2608 0.4434 0.4 0.148
Karaj	2012	36	Tehran 0.2608 0.4434 0.4 0.148
Guilan	2011	92	Tehran 0.2608 0.4434 0.4 0.148
Isfahan	2013	91	Tehran 0.2608 0.4434 0.4 0.148
Prevalence of Musculoskeletal Disorders in Upper Extremity

Location	Year	Sample Size	Prevalence of Musculoskeletal Disorders in Upper Extremity			
			Neck	Shoulder	Wrist	Elbow
Tabriz	2012	200	0.787	0.489	0.553	0.277
Sari	2013	100	0.310	0.370	0.200	0.240
Iran	2012	385	0.486	0.455	0.481	0.158

Prevalence of Musculoskeletal Disorders in Lower Extremity

Location	Year	Sample Size	Prevalence of Musculoskeletal Disorders in Lower Extremity			
			Back	Hip and thigh	Knee	Ankle
Tehran	2003	09	0	-	0.23	
Tehran	2004	0.511	0.255	0.234	-	
Tehran	2009	0.452	0.1217	0.5043	0.200	
Kermanshah	2001	0.501	0.056	0.056		
Tehran	2009	0.38	0.17	0.47	0.374	
Yazd	2008	-	0.029	0.090	-	
Yazd	2009	-	-	-	-	
Yazd	2010	-	-	-	-	
Shiraz	2006	0.547	0.216	0.394	0.317	
Tehran	2005	0.273	0.344	0.591	0.227	
Urmia	2006	0.124	0.067	0.337	0.011	
Tekab	2007	-	0.555	0.436	0.455	
Shiraz	2007	0.546	0.307	0.581	0.590	
Tehran	2009	0.441	0.097	0.193	0.324	
Isfahan	2003	0.377	0.16	0.346	0.237	
Qom	2008	-	0.128	0.298	0.085	
Qom	2008	0.146	0.134	0.362	0.213	
Tehran	2009	0.383	0.124	0.401	0.154	
Arak	2008	-	0.612	0.539		
Shiraz	2005	-	0.170	0.480	0.374	
Arnol	2009	-	0.365	-	-	
Sabzevar	2007	0.436	0.190	0.44	0.226	
Kerman	2009	-	-	-	0.333	
Meybod	2009	-	-	-	-	
Isfahan	2009	0.046	0.48	0.66	0.24	
Shiraz	2008	0.212	-	0.429	0.109	
Shiraz	2005	0.653	0.747	0.251	0.160	
Qazvin	2012	0.722	0.704	0.593	0.371	
Yazd	2013	-	-	-	-	
Rafsanjan	2012	0.162	0.114	0.270	0.065	
Hamedan	2011	0.239	-	0.141	-	
Babol	2014	0.079	-	-	0.100	
Hamedan	2014	0.300	-	0.200	0.100	
Isfahan	2015	0.304	-	0.116	-	
Results

In the studies, overall sample size was 9813 with a mean number of 218 samples in each study. The mean age and work experience of samples in these studies were between 7.91-33.54 and 6.79-10.27 years, respectively. Based on the results shown in Table 1, the overall prevalence of musculoskeletal disorders in the upper extremity was estimated to be 39.3% in the neck, 36.9% in the shoulder, 16.2% in the elbow, 34% in the wrist and 36.8% in the back. Moreover, the overall prevalence of musculoskeletal disorders in the lower extremity was estimated to be 49% in the lower back, 20.5% in hips and thighs, 39.2% in the knee, and 26.9% in the ankle.

Regarding the prevalence of disorders based on occupation, the highest back pain prevalence was reported in office workers with a prevalence of 53% followed by hospital staff (medicine, dentistry, nursing, etc.) with a prevalence of 50%; the highest prevalence of hip and thighs pain in office workers (27.9%); the highest prevalence of knee pain in computer users (47.8%); the highest prevalence of ankle pain in office workers (55.8%); the highest prevalence of shoulder pain in computer users (40.9%); the highest prevalence of neck pain

![Figure 3](image_url)
Figure 3. Funnel plot of publication bias for the prevalence of lower back pain in Iran during 2001-2016. According to this chart, the prevalence was not significant.
REHABILITATION

July 2020. Vol 21. Num 2

REHABILITATION

Figure 4. Meta-regression scatterplot of the relationship between the prevalence of lower back pain and age. According to this chart, the relationship was not significant.

Figure 5. Meta-regression scatterplot of the relationship between the prevalence of lower back pain and work experience. According to this chart, the relationship was not significant.

Discussion

The results of this study showed a high prevalence of musculoskeletal disorders, especially in the lower back. The highest overall prevalence of work-related musculoskeletal disorders was in the neck (39.3%) and shoulder (36.9%). Azizipour et al. reported the prevalence of lower back pain in Iran as 51.6% [43]. Louw et al. reported a 50% prevalence of lower back pain in African workers [44], which is consistent with the results of the present study. Hoe et al. (2012) also reported that lower back pain is a major problem in the

(49.4%) and hand pain (37.7%) in medical staff; the highest prevalence of elbow pain in office workers (22.8%); and the highest back pain prevalence in computer users (47.1%) these results are shown in Figures 2-6.
According to them, the prevalence of one-year global musculoskeletal problems was between 22-65% [45].

In our study, although the maximum rate was 57.5%, it was almost similar to the results of other countries in Hoe et al.’s study; the minimum prevalence reported in our study was almost twice that of their study. Therefore, it can be acknowledged that this problem has been more acute among Iranian employees and needs further studies to investigate the causes of this prevalence. Mehrparvar et al. showed that the prevalence of musculoskeletal disorders in the lower back, shoulder, neck and wrist areas were 44.6%, 17.4, 9.9, and 22.2%, respectively, which indicates a high prevalence of these disorders in the lower back [13].

This is also consistent with the results of our study. Osborne et al. (2012) reported that the prevalence of musculoskeletal disorders of any kind during the life of farmers was 90.6%; the prevalence of these disorders in the upper extremity was in the range of 3.6-71.4% and in the lower extremity as 10.4-41% [46]. However, in this study, low back pain with a prevalence of 49% was the highest prevalent musculoskeletal disorder which was more prevalent in office workers (53%). Therefore, more attention should be paid to the health of employees, and ergonomic intervention programs should be designed by managers and officials of organizations to prevent musculoskeletal disorders related at workplaces.

The prevalence of musculoskeletal disorders in the upper extremity was higher in Tehran and Shiraz cities and lower in Yazd city, which is consistent with the results of Azizpour et al. [43]. Moreover, the prevalence of musculoskeletal disorders in the upper extremities was higher in studies conducted in 2005 than in other years. The highest prevalence of musculoskeletal disorders in Tehran was observed in a study conducted on the employees of one of the household appliance manufacturing industries. The prevalence of musculoskeletal disorders reported in one year in the upper extremity in the study by Mir Mohammadi et al. (2004) was 24% in the neck, 17% in the shoulder and arms, 9% in the upper back, and 50% in the lower back [17] which is consistent with the results of our study. On the other hand, the prevalence of low back pain was not significantly related to the age factor.

Overall, it can be said that ergonomic design of workplaces and ergonomic training reduces the risk of work-related musculoskeletal disorders, especially in the upper extremity including lower back. Therefore, ergonomic and occupational health training based on the prevention of such disorders [47] is recommended. It is suggested that in future researches on the prevalence of musculoskeletal diseases, a valid shortened form of questionnaire in Persian be used [48, 49] and more detailed studies should be performed to evaluate pain and discomfort [50].

Conclusion

In this study, the highest injury in all work groups was in the lower extremity, especially in the lower back (49%) and knee (39.2%); in the upper extremity, musculoskeletal disorders were higher in the neck. Considering the age, work
experience, academic year, and physical ability of individuals to employ them in different departments, ergonomic training of employees in the field of the best correct way to perform work and the best physical condition while working or sitting, is one of strategies that can play an effective role in preventing musculoskeletal disorders.

Accordingly, it is suggested that ergonomic and occupational health intervention programs be implemented to control or eliminate the risk factors for occupational diseases in various jobs. Ergonomic design of workplaces and ergonomic intervention programs can reduce the risk of work-related musculoskeletal disorders in the upper and lower extremities. Since the employees/workers in Iran are young, there may not be high musculoskeletal complaints at the present time, but in the future it will create some problems for them.

Therefore, reducing working hours and changing workplace design such that the design of ordered chairs and tables be in accordance with ergonomics principles and body dimensions. The use of appropriate footrests, scheduling time for employees to exercise, and providing training courses for them to maintain proper physical condition at work are also suggested as strategies to reduce the risk of musculoskeletal disorders. Most of the studies were cross-sectional and used self-report tools to assess the prevalence of musculoskeletal disorders.

Lack of access to the full text of all articles, lack of a specific framework for reporting published articles, lack of access to theses, and low quality and quantity of databases were other limitations of the present study. This study, like other studies had some limitations and obstacles, such as: lack of access to the full text of all articles, lack of a specific framework for reporting published articles, lack of access to dissertation results and low quality and quantity of databases.

Ethical Considerations

Compliance with ethical guidelines

All ethical principles are considered in this article.

Funding

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.

Authors’ contributions

All authors contributed in preparing this article.
مقاله پژوهشی:
فراتحلیل شیوع اختلالات اسکلرال-عضلانی ناشی از کار در ایران

این مقاله پژوهشی با هدف تعیین میزان شیوع اختلالات اسکلرال-عضلانی مرتبط با کار در ایران به روش متاآنالیز انجام شد.

تحقیق حاضر یک مطالعه فرا تحلیل (متاآنالیز) درباره اختلالات اسکلرال-عضلانی مرتبط با کار در ایران است. مقالات مرتبط با این سیمپتوم نیز در پایگاه‌های علمی جهانی (WOS) و کلمه ایران در پایگاه‌های دانشگاهی، اسکوپوس، گوگل اسکالر، ایران مدکس، مگ ایران، پابمد و پابمایک نوشته شده بودند.

میزان شیوع اختلالات اسکلرال-عضلانی در ایران در بین سال‌های 2001 تا 2016 بررسی و اکثر مقالات در یک بانه چهار ساله (45 ماه) بین سال‌های 2007-2011 و 2012-2016 در نظر گرفته شدند.

طرح اصلی مطالعه بررسی شیوع اختلالات اسکلرال-عضلانی مرتبط با کار در ایران در بین سال‌های 2001-2016 بود.

نتایج نشان‌داد که با استفاده از روش‌های آماری، میزان کل اختلالات اسکلرال-عضلانی مربوط به کار در ایران در بین سال‌های 2001-2016 به طور معنی‌داری افزایش یافته است.

کلمات کلیدی:
ارگونومی، اندام‌های فوقانی، اندام‌های هایانی، متاآنالیز

نویسندگان مسئول:
محسن پورصادقیان

نشانی:
بهداشتی.

تلفن:
+98 (81) 9832-0348

پست الکترونیک:
mo.poursadeghiyan@uswr.ac.ir
صفحه 21، شماره 2

بر اساس، بیش از یک میلیون کارگر در ایالات متحده آمریکا به نتایج اختلالات اسکلتی-عضلانی ناشی از کار مبتلا می‌شوند. این اختلالات به عنوان یکی از مشکلات شغلی بزرگی می‌باشد که باعث افت توانمندی کارگران و بهبود کارکردی کارهای آنها می‌شود. این مشکل برای ارزیابی و درمان نیازمند به روشهای فوق‌العاده‌ای است.

در این مقاله، احتمال و روش‌هایی برای کاهش آسایش برخی از این اختلالات بیان شده است. این مطالعه با استفاده از داده‌های جمع‌آوری شده از سازمان‌های بهداشتی و کارشناسان، به احتمال و روش‌هایی برای کاهش آسایش برخی از این اختلالات بیان شده است.

مقدمه

اختلالات اسکلتی-عضلانی ناشی از کار در ایران، بهترین نمونه‌ای برای بررسی این بهبود این مشکل می‌باشد. این بهبود با استفاده از روشهای فوق‌العاده می‌تواند به بهبود کارکرد آنها و افزایش توانمندی کارگران کمک کند.

1. National Institution of Safety and Health
2. International Labor Organization

روش‌ها و نتایج

در این مقاله، پیشنهادات و روشهایی برای کاهش آسایش برخی از این اختلالات بیان شده است. این بهبود بهبود با استفاده از روشهای فوق‌العاده می‌تواند به بهبود کارکرد آنها و افزایش توانمندی کارگران کمک کند.
همچنین تابع مطالعات ارزیابی ریسک ارگزومی و بررسی شیوع اختلالات اسکلتی-عضلانی در میان 99 نفر از کارگران تولید مواد غذایی در یک کارخانه در تبریز در اثر موارد مختلف ارگزومی و بررسی شیوع اختلالات اسکلتی-عضلانی در کارگران به صورت نمونه‌برداری از استراحتات ارگزومی (NMQ) و داده‌های فیزیکی از افراد مورد ارزیابی در این مطالعه توسط ریسک‌پیشگیری و مراقبت از بیماران روانی که تا به حال به بیماران مربوط بوده‌اند در فهرستی جمع‌آوری شدند و در مرحله بعد از خواندن پرسشنامه شیوع اختلالات اسکلتی-عضلانی توسط پرسشنامه شیوع اختلالات اسکلتی-عضلانی توسط پرسشنامه تطبیق شده با کارگران در ناحیه کار. همچنین پرسشنامه شیوع اختلالات اسکلتی-عضلانی توسط پرسشنامه شیوع اختلالات اسکلتی-عضو

آماری با توجه به اینکه در آنالیز مطالعات میزان شیوع اختلالات اسکلتی–عضلانی و حجم نمونه در تمام مقالات وجود داشت، از توزیع دو جمله‌ای برای محاسبه واریانس و از میانگین وزنی نیز برای ترکیب میزان شیوع در مطالعات انجام‌پذیر عله استفاده شد. به هر مطالعه نیز متناسب با عکس واریانس آن وزن داده شد.

از طرفی با توجه به اینکه تفاوت زیادی میان میزان شیوع در مطالعات صورت گرفته وجود داشت و میزان تجانس در اندازه‌های درصد بود و با توجه به دسته‌بندی

97 میزان شیوع بیشتر از درصد 75 تا 25 درصد ناهمگنی جزئی، کمتر از

I2 شاخص ناهمگنی شدید مشخص درصد 75 ناهمگنی متوسط و بیش از می‌شود و به عنوان میزان در این مطالعات به عنوان ناهمگنی شدید طبقه‌بندی می‌شود.

در این مطالعه از مدل اثرات تصادفی جهت بررسی ها استفاده شد. بر اساس مدل اثرات تصادفی فرض بر این است که تفاوت‌های موجود، ناشی از نمونه‌گیری های مختلف و تفاوت در پارامتر ایجاد اثراتی بر روی نتایج ندارند. در این مطالعه بررسی شده است. مدل تصادفی بهترین روش برای مطالعاتی است که در آن اکتشافات ایجاد شده در شرایط مختلفی، به‌صورت کلی بررسی شده و در محدوده‌ای که در مورد نمونه‌های اولیه آزمایشگری گذشته‌اند مورد بررسی قرار گرفته‌اند.

پرسش‌نامه نوردرکی از نظر داده‌های مورد بررسی که در تمام مقالات شیوع اختلالات اسکلتی–عضلانی مورد بررسی قرار گرفته بود، از رسم تجزیه و تحلیل داده‌ها صورت پذیرفت.

10 نسخه STATA در این مطالعه شناسایی شد.

به‌طور کلی، این مطالعه در جستجوی اولیه مقاله‌هایی که پس از ارزیابی عنوان و چکیده آن‌ها، مقاله‌ای به صورت مطالعاتی وارد مرحله بعد شدند. پس از ارزیابی نهایی، به انجام رسیده بود با توجه به نوع داده‌ها که در تمام مقالات میزان شیوع اختلالات اسکلتی–عضلانی مورد بررسی قرار گرفته بود، توجه به نوع داده‌ها که در تمامی مقالات میزان شیوع اختلالات اسکلتی–عضلانی مورد بررسی قرار گرفته بود، از رسم تجزیه و تحلیل داده‌ها صورت پذیرفت.

10 نسخه STATA در این مطالعه شناسایی شد.

وبیان شده در این مطالعه، میزان شیوع اختلالات اسکلتی–عضلانی در ایران بین درصد 75 تا 25 درصد (فاصله اطمینان 95 درصد: 72/40، با استاندارد اطمینان 95 درصد: 0/20) و قسمت پشت 188/08، با استاندارد اطمینان 95 درصد: 0/20) و قسمت پشت
پژوهشی و همکاران. فرآیندهای درمان اختلالات اسکلتی - عضلانی در ایران

جدول 2. شیوع اختلالات اسکلتی - عضلانی در ایران

محل محل واقعی	فعالیت محل واقعی	تعداد مراجعه مطلقه	سال انجام	محل محل واقعی	فعالیت محل واقعی	تعداد مراجعه مطلقه
تهران	مرکزی	420	2003	کرمانشاه	مرکزی	420
تهران	مرکزی	420	2006	اصفهان	مرکزی	420
میبد	مرکزی	420	2007	اصفهان	مرکزی	420
یزد	مرکزی	420	2008	اصفهان	مرکزی	420
اصفهان	مرکزی	420	2009	اصفهان	مرکزی	420
آمل	مرکزی	420	2010	اصفهان	مرکزی	420
ساری	مرکزی	420	2011	اصفهان	مرکزی	420
بابل	مرکزی	420	2012	اصفهان	مرکزی	420
شیراز	مرکزی	420	2013	اصفهان	مرکزی	420
کرمانشاه	مرکزی	420	2014	اصفهان	مرکزی	420
یزد	مرکزی	420	2015	اصفهان	مرکزی	420
مرکزی	مرکزی	420	2016	اصفهان	مرکزی	420
مرکزی	مرکزی	420	2017	اصفهان	مرکزی	420
مرکزی	مرکزی	420	2018	اصفهان	مرکزی	420
مرکزی	مرکزی	420	2019	اصفهان	مرکزی	420

جدول 2. شیوع اختلالات اسکلتی - عضلانی در ایران

محل محل واقعی	فعالیت محل واقعی	تعداد مراجعه مطلقه	سال انجام	محل محل واقعی	فعالیت محل واقعی	تعداد مراجعه مطلقه
تهران	مرکزی	420	2003	کرمانشاه	مرکزی	420
تهران	مرکزی	420	2006	اصفهان	مرکزی	420
میبد	مرکزی	420	2007	اصفهان	مرکزی	420
یزد	مرکزی	420	2008	اصفهان	مرکزی	420
اصفهان	مرکزی	420	2009	اصفهان	مرکزی	420
آمل	مرکزی	420	2010	اصفهان	مرکزی	420
ساری	مرکزی	420	2011	اصفهان	مرکزی	420
بابل	مرکزی	420	2012	اصفهان	مرکزی	420
شیراز	مرکزی	420	2013	اصفهان	مرکزی	420
کرمانشاه	مرکزی	420	2014	اصفهان	مرکزی	420
یزد	مرکزی	420	2015	اصفهان	مرکزی	420
مرکزی	مرکزی	420	2016	اصفهان	مرکزی	420
مرکزی	مرکزی	420	2017	اصفهان	مرکزی	420
مرکزی	مرکزی	420	2018	اصفهان	مرکزی	420
مرکزی	مرکزی	420	2019	اصفهان	مرکزی	420
شماره ۲۱ - دوره ۱۳۹۹ تابستان
سال های روند زمانی میزان شیوع کمردرد در ایران در فاصله نشان داده شده است که توجه به اینکه تعداد اندام های مطمئن میزان شیوع را در هر مطالعه نشان می‌دهند، نقطه وسط برای کلیه مطالعات برحسب نواحی مختلف ایران و بر اساس مدل در هر مطالعه نشان می‌دهد. نقطه وسط هر پاره خط، برآورد افقی حول میانگین اصلی ترسیم شده است و میزان شیوع را در فاصله ۵۰٪ تا ۱۰۰٪ میزان می‌نماید. در این نمودار میزان شیوع کمردرد به عنوان میزان شیوع کمردرد در ایران در فاصله سال‌های ۲۰۰۱-۲۰۱۶ نشان داده شده است.

درصد (قاب‌های اطمینان ۹۵ درصد: ۲۲/۳۸ درصد: ۲۸/۷۳ درصد: ۳۷/۹۳ درصد: ۴۶/۹۸ درصد: ۵۶/۳۸ درصد: ۶۶/۹۳ درصد: ۷۶/۹۳ درصد: ۸۶/۹۳ درصد: ۹۶/۹۳ درصد) بیماری‌های مرتبط با کمردرد در کل مطالعات در ایران در فاصله سال‌های ۲۰۰۱-۲۰۱۶ نشان داده شده است. درصد (قاب‌های اطمینان ۹۵ درصد: ۲۲/۳۸ درصد: ۲۸/۷۳ درصد: ۳۷/۹۳ درصد: ۴۶/۹۸ درصد: ۵۶/۳۸ درصد: ۶۶/۹۳ درصد: ۷۶/۹۳ درصد: ۸۶/۹۳ درصد: ۹۶/۹۳ درصد) بیماری‌های مرتبط با کمردرد در کل مطالعات در ایران در فاصله سال‌های ۲۰۰۱-۲۰۱۶ نشان داده شده است. درصد (قاب‌های اطمینان ۹۵ درصد: ۲۲/۳۸ درصد: ۲۸/۷۳ درصد: ۳۷/۹۳ درصد: ۴۶/۹۸ درصد: ۵۶/۳۸ درصد: ۶۶/۹۳ درصد: ۷۶/۹۳ درصد: ۸۶/۹۳ درصد: ۹۶/۹۳ درصد) بیماری‌های مرتبط با کمردرد در کل مطالعات در ایران در فاصله سال‌های ۲۰۰۱-۲۰۱۶ نشان داده شده است.
در تصور شماره 8 از مجموع شیوع کمرد، به هر منطقه ای افراد امتحان می‌شوند تا در این منطقه میزان شیوع اختلالات اسکلتی در افراد با مشاهده گردیده و بر اساس تعداد و وسعت فعالیت امتحان میزان شیوع را برای گروه‌های مختلف مشاهده کنند.

نام انجمن	میزان شیوع	%	وزن	اس (95%GI)
Gheraghoti (2001)	0.49 (0.37, 0.61)	0.49	0.37	0.61
Chahine (2003)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Mt. Moghadam M (2002)	0.35 (0.24, 0.46)	0.35	0.24	0.46
Nafisi M (2004)	0.56 (0.47, 0.65)	0.56	0.47	0.65
Chahine (2005)	0.30 (0.19, 0.41)	0.30	0.19	0.41
Nafisi M (2006)	0.30 (0.19, 0.41)	0.30	0.19	0.41
Chahine (2007)	0.30 (0.19, 0.41)	0.30	0.19	0.41
Hafez G (2003)	0.30 (0.19, 0.41)	0.30	0.19	0.41
Ghamar T (2004)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2005)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Nasri D (2006)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2007)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2008)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Ghamar F (2004)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2005)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2006)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Hafez G (2003)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2004)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2005)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2006)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2007)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2008)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2009)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Ghamar T (2004)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2005)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2006)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2007)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2008)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2009)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Ghamar F (2004)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2005)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2006)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2007)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2008)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2009)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Ghamar F (2004)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2005)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2006)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2007)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2008)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2009)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Ghamar F (2004)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2005)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2006)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2007)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2008)	0.40 (0.29, 0.51)	0.40	0.29	0.51
Chahine (2009)	0.40 (0.29, 0.51)	0.40	0.29	0.51
دوره ۱۳۹۹ تابستان
شماره ۲۱
تیتر: برنامه‌ریزی درمان درمانی میزان بیماری‌های قلبی-عروقی
نویسنده: مهدی شریفی، صادق مسعودی، اسماعیل حسینی، امیرحسین سیاوشی
منبع: مجله دانشگاه علوم پزشکی تهران

ID	Study	ES (95% CI)	% Weight
1	Sharafi N (2013)	0.97 (0.82, 1.14)	2.58
2	Nazari j (2012)	0.89 (0.75, 1.04)	2.54
3	Nasl seraji G (2006)	0.85 (0.69, 1.03)	2.33
4	West of Iran	0.85 (0.71, 1.00)	2.33
5	East of Iran	0.85 (0.71, 1.00)	2.33
6	Sharifi H (2009)	0.85 (0.71, 1.00)	2.33
7	Etemadinezhad S (2013)	0.85 (0.71, 1.00)	2.33
8	Mosavi fard A (2012)	0.85 (0.71, 1.00)	2.33
9	Mohammad Fam E (2009)	0.85 (0.71, 1.00)	2.33
10	Dehghani Y (2009)	0.85 (0.71, 1.00)	2.33
11	Sharifnia H (2009)	0.85 (0.71, 1.00)	2.33
12	Ghasem Khani M (2006)	0.85 (0.71, 1.00)	2.33
13	Moayed V (2009)	0.85 (0.71, 1.00)	2.33
14	Mostafaei K (2009)	0.85 (0.71, 1.00)	2.33
15	Rasek M (2011)	0.85 (0.71, 1.00)	2.33
16	Moslemi B (2012)	0.85 (0.71, 1.00)	2.33
17	Soltani M (2013)	0.85 (0.71, 1.00)	2.33
18	Daeimoddini H (2013)	0.85 (0.71, 1.00)	2.33
19	Soltani M (2013)	0.85 (0.71, 1.00)	2.33
20	Hashemi Negad N (2009)	0.85 (0.71, 1.00)	2.33
21	Chobine A (2008)	0.85 (0.71, 1.00)	2.33
22	Mostaghaei M (2010)	0.85 (0.71, 1.00)	2.33
23	Khorshidi M (2011)	0.85 (0.71, 1.00)	2.33
24	Moghaddas A (2012)	0.85 (0.71, 1.00)	2.33
25	Halvani G (2008)	0.85 (0.71, 1.00)	2.33
26	Nasl seraji G (2007)	0.85 (0.71, 1.00)	2.33
27	Chobine A (2003)	0.85 (0.71, 1.00)	2.33
28	Mehrparvar A (2009)	0.85 (0.71, 1.00)	2.33
29	Mehrparvar A (2009)	0.85 (0.71, 1.00)	2.33
30	Mehrparvar A (2009)	0.85 (0.71, 1.00)	2.33

NOTE: Weights are from random effects analysis.
Begg's funnel plot with pseudo 95% confidence limits

Study	ES (95% CI)	s.e. of ES	Lower back
Computer users			
Chobine A (2005)	0.51 (0.45, 0.57)	0.08	-1.06
Hossein G (2006)	0.56 (0.48, 0.63)	0.08	-0.93
Hassani (2003)	0.47 (0.39, 0.55)	0.08	-0.90
Sadek M (2011)	0.41 (0.33, 0.50)	0.06	-0.78
Subtotal	(random: 91.4%, p = 0.000)		
Medical staff			
Etemadinezhad S (2012)	0.47 (0.39, 0.55)	0.07	-0.72
Chobine A (2005)	0.56 (0.48, 0.63)	0.08	-0.93
Nasiri D (2015)	0.41 (0.33, 0.50)	0.06	-0.78
Subtotal	(random: 97.9%, p = 0.000)		
Bakery sector workers			
Loghmani A (2013)	0.53 (0.47, 0.59)	0.06	-0.76
Mosavi fard A (2012)	0.55 (0.49, 0.64)	0.06	-0.78
Administrative employees			
Khorshid A (2006)	0.52 (0.46, 0.59)	0.06	-0.77
Sharifi A (2009)	0.49 (0.43, 0.55)	0.06	-0.79
Mireskandar S (2010)	0.53 (0.47, 0.60)	0.06	-0.76
Subtotal	(random: 97.9%, p = 0.000)		

NOTE: Weights are from random effects analysis
بوده است اما می‌توان به برخی از تحقیقات مرتبط از جمله مطالعه موری و مقدماتی انجام شده از جمله تحقیقات انجام شده توسط عزیزلحیان و همکاران با عنوان بررسی شیوع کمردرد در طی زندگی در ایران، اشاره کرد.

نتایج این مطالعه که به روش میترالیز انجام شده بود نشان دادن است مطالعات موجود در تحقیق آنها بهشته نامناسب و درای ساختم نامناسب 1887/۱۷۱ و ارائه می‌تواند برای لیز میانگین سن کل افراد و اختلالات سکлетالی-عضلانی در اندام‌های تحتانی (کمردرد) وجود ندارد.

میانگین سن افراد با تابع ریجسیون بین شیوع اختلالات سکلتالی-عضلانی و سن کل افراد و اختلالات سکلتالی-عضلانی در اندام‌های تحتانی (کمردرد) وجود ندارد.

میانگین شیوع این اختلالات با تابع ریجسیون بین شیوع اختلالات سکلتالی-عضلانی و سابقه کاری کل افراد و اختلالات سکلتالی-عضلانی در اندام‌های تحتانی (کمردرد) وجود ندارد.
این ناحیه ـ در بین کارکنان ایرانی است. لیو و همکاران یک نظر مربوط به میزان شیوع کمردرد را در مطالعه مورد نظر معرفی کردند و در این مطالعه افرادی با استفاده از 77 مقاله مورد بررسی قرار گرفته‌اند. نتایج مطالعه آنها نشان داد که با وجود میزان میزان شیوع کمردرد 60 درصد بود که همانند نتایج مطالعه ما بود، این نتایج با نتایج مطالعه عظیمپور و همکاران هماهنگ و هم‌راست بودند که نشان دادند میزان شیوع کمردرد در طول زندگی در مطالعات انجام شده در مناطق مختلف ایران، میزان کمردرد به ترتیب در شمال ایران 57/8 درصد، در شرق ایران 50/2 درصد، در جنوب ایران 51/6 درصد، در غرب ایران 49 درصد و در مرکز ایران 47/2 درصد بوده‌اند. این نتایج نشان داد که بیشتر افرادی که در مناطق مختلف ایران کار می‌کنند، بیشتر در مناطق جنوبی کشور ایران کار می‌کنند. این نتایج نشان داد که بیشتر افرادی که در مناطق جنوبی کشور ایران کار می‌کنند، بیشتر در مناطق جنوبی کشور ایران کار می‌کنند.
روان‌های مختلفی از طریق ارگونومی، رسک ابتلا به اختلالات اسکلتی-عضلانی با کار مرتبط می‌باشد. این ارتباط بین افرادی که در کار با همکاران مشترک در مطالعه روزگار می‌کنند، به‌وجود آمده است و نتایج در سال‌های مختلف نشان داده شده‌اند که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

مطالعات مختلفی از مقالات حاکی از این زمینه می‌باشد که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

یکی از پژوهش‌های انجام شده در این زمینه در سال 2005، نتایج منتشر شده بود که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

نتایج این مطالعه نشان داد که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

پژوهش‌های بعدی نیز نشان داد که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

این موضوع به توجه به پیشرفت‌های جدید در ارگونومی و مطالعات این زمینه، بهبود یافته است.

در ضمن، نتایج این مطالعه نشان داد که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

پژوهش‌های بعدی نیز نشان داد که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

نتایج این مطالعه نشان داد که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

پژوهش‌های بعدی نیز نشان داد که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

نتایج این مطالعه نشان داد که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

پژوهش‌های بعدی نیز نشان داد که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

نتایج این مطالعه نشان داد که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

پژوهش‌های بعدی نیز نشان داد که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

نتایج این مطالعه نشان داد که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

پژوهش‌های بعدی نیز نشان داد که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

نتایج این مطالعه نشان داد که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

پژوهش‌های بعدی نیز نشان داد که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

نتایج این مطالعه نشان داد که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

پژوهش‌های بعدی نیز نشان داد که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

نتایج این مطالعه نشان داد که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

پژوهش‌های بعدی نیز نشان داد که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

نتایج این مطالعه نشان داد که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

پژوهش‌های بعدی نیز نشان داد که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

نتایج این مطالعه نشان داد که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

پژوهش‌های بعدی نیز نشان داد که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

نتایج این مطالعه نشان داد که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

پژوهش‌های بعدی نیز نشان داد که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

نتایج این مطالعه نشان داد که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

پژوهش‌های بعدی نیز نشان داد که اختلالات اسکلتی-عضلانی در افرادی که در کار با همکاران مشترک هستند، بهبود یافته است.

نتایج این مطالعه نشان داد که اختلالات اسکلتی-عضو
References

[1] National Institute for Occupational Safety and Health (NIOSH). Work-related musculoskeletal disorders (NIOSH Facts, document No. 70500). Washington DC: NIOSH; 1997.

[2] Parno A, Sayehmiri K, Parno M, Khandan M, Poursadeghiyan M, Maghsoudipour M, et al. The prevalence of occupational musculoskeletal disorders in Iran: A meta-analysis study. Work. 2017; (58):203-214. [DOI:10.3233/WOR-172619] [PMID]

[3] Khandan M, Koojpaee A, Kohansal Aghchay M, Ebrahimif MH, Khammar A, Arsang Jang S. [Assessing the factors predicting work-related musculoskeletal disorders among Iranian port's personnel using regression model (Persian)]. Iranian Rehabilitation Journal. 2017; 15(4):309-16. [DOI:10.29252/nirijr.15.4.309]

[4] Khandan M, Vosoughi S, Poursadeghiyan M, Azizi F, Ahounbar E, Koojpaee A. [Ergonomic assessment of posture risk factors among Iranian Workers: An alternative to conventional methods (Persian)]. Iranian Rehabilitation Journal. 2018; 16(1):11-6. [DOI:10.29252/nirijr.16.11.111]

[5] Azadi F, Amjad RN, Marioryad M, Karimpour Vazifekhorhori A, Poursadeghiyan M. [Effect of 12-week neck, core, and combined stabilization exercises on the pain and disability of elderly patients with chronic non-specific neck Pain: A clinical trial (Persian)]. Salmand: Iranian Journal of Ageing. 2019; 13(5):614-25. [DOI:10.32598/SIJA.13.Special-Issue.614]

[6] International Labor Organization (ILO). Recommendation concerning the list of occupational diseases and the recording and notification of occupational accidents and diseases (Recommendation R194). Geneva; ILO. 2002. [Updated 2004 Mar 24]. Available from: https://www.ilo.org/dyn/normlex/en/TF?p=NORMLEXUB:1210000:CNOc:PY21000_INSTRUMENT_ID:312532

[7] Wehrer G, Leigh P, Miller T. Costs of occupational injury and illness within the health service sector. International Journal of Health Services. 2005; 35(2):243-359. [DOI:10.2190/RNQ3-0C13-U09M-TENP] [PMID]

[8] Cooper C, Marshall J. Sources of managerial and white collar stress. I. Cl, Cooper & R. Payne (Red.). Stress at Work. 1978. https://www.semanticscholar.org/paper/Sources-of-managerial-and-white-collar-stress-Cooper-Marshall/d8075d3702ad52c48b829882da1718f2cbe770199b

[9] Croasman J. Robotic legs may make difficult tasks easier. The trusted source for ergonomics. Ergonomics today [Internet]. 2004; 7(7):619. https://www.sid.ir/en/journal/ViewPaper.aspx?id=112478

[10] Cooper C, Marshall J. Sources of managerial and white collar stress. I. Cl, Cooper & R. Payne (Red.). Stress at Work. 1978. https://www.semanticscholar.org/paper/Sources-of-managerial-and-white-collar-stress-Cooper-Marshall/d8075d3702ad52c48b829882da1718f2cbe770199b

[11] Moradi M, Poursadeghiyan M, Khammar A, Hami M, Darsoj A, Yarmohammadi H. REBA method for the ergonomic risk assessment of auto mechanics postural stress caused by working conditions in Kermanshah (Iran). Annals of Tropical Medicine and Public Health. 2017; 10(3):589. [DOI:10.4103/ATMPH.ATMPH_303_17]

[12] Choubineh AR, Mehrparvar A, Ranjbar S, Mostaghaci M, Salehi M. Risk assessment of musculoskeletal disorders by QEC method in a food production factory. Occupational Medicine Quarterly Journal. 2011; 3(3):56-60. http://ijstu.ac.ir/article-1-48-fa.html

[13] Steiner M. Postnatal depression: A few simple questions. Family Practice. 2002; 19(5):469-70. [DOI:10.1093/fampra/19.5.469] [PMID]

[14] Halvani G, Salmani Nodousgan Z. [Survey of Musculoskeletal disorders among bank staff in Yazd (Persian)]. Occupational Medicine Quarterly Journal. 2011; 3(1):1-7. http://ijstu.ac.ir/article-1-48-fa.html

[15] Choobineh AR, Hosseini M, Lahmi M, Khani Jazani R, Shahnazv H. Musculoskeletal problems in Iranian hand-woven carpet industry in Iran. Applied Ergonomics. 2007; 38(5):671-24. [DOI:10.1016/j.apenergy.2006.06.005]

[16] Mirmohamadi M, Seraji JN, Shahtaheri J, Lahmi M, Ghasemkhani M. Evaluation of risk factors causing musculoskeletal disorders using QEC method in a furniture producing unite. Iranian Journal of Public Health. 2004; 33(2):24-7. https://ijph.tums.ac.ir/index.php/ijph/article/view/1912

[17] Sarem M, Lahmi M, Faghihzadeh S. [The effect of ergonomic intervention on dentists’ musculoskeletal disorders (Persian)]. Duneshvar Medicine. 2006; 13(4):55-62. https://www.sid.ir/en/journal/ViewPaper.aspx?id=66286

[18] Keshkatar A, Dayiali A. [Ergonomics disorders in the personnel of medical records department at training hospitals of Shiraz university of medical sciences (Persian)]. Health Information Management. 2007; 4(7):619. https://www.sid.ir/en/journal/ViewPaper.aspx?id=112478

[19] Ghasemkhani M, Rahimi M, Mosayez Zadeh M. [Musculoskeletal symptom survey among cement drillers (Persian)]. Iranian Occupational Health. 2005; 2(1):28-31. http://ioh.itums.ac.ir/article-1-78-fa.html

[20] Choubineh AR, Mokhtazarzadeh A, Salehi M, Tabarabaei SHR. [Ergonomic evaluation of exposure to musculoskeletal disorders risk factors by qec technique in a rubber factory (Persian)]. Jundishapur Scientific Medical Journal. 2008; 7(5):46-55. https://www.sid.ir/en/journal/ViewPaper.aspx?id=123560

[21] Choobineh AR, Mokhtarzadeh A, Salehi M, Tabarabaei SHR. [Ergonomic evaluation of exposure to musculoskeletal disorders risk factors by qec technique in a rubber factory (Persian)]. Jundishapur Scientific Medical Journal. 2008; 7(5):46-55. https://www.sid.ir/en/journal/ViewPaper.aspx?id=123560

[22] Choobineh AR, Nouri E, Arjmandzadeh A, Mohamadi Baghi A. [Musculoskeletal disorders among bank computer operators (Persian)]. Iran Occupational Health. 2006; 3(2):3. http://ioh.itums.ac.ir/article-1-472-fa.html

[23] Nasl Seraji J, Hajaghazadeh Firvaraghi M, Hosseini SM, Adl J. [Musculoskeletal disorders study in a construction industry workers (Persian)]. Occupa Occupational Medicine Quarterly Journal. 2011; 3(2):54-60. [DOI:10.1093/fammpr/afr.19.5.469] [PMID]

[24] Choobineh AR, Solaymani E, Mohammad Beigi A. [Musculoskeletal symptoms among workers of metal structure manufacturing industry in Shiraz, 2005 (Persian)]. Iranian Journal of Epidemiology. 2009; 5(3):35-43. https://irje.tums.ac.ir/article-1-108-en.pdf
[25] Khoshroabadi A, Razavi S, Fallahi M, Akhberi A. The prevalence of musculoskeletal disorders in health-treatment employees at Sabzevar University of Medical Sciences, Iran in 2008 (Persian)]. Journal of Sabzevar University of Medical Sciences. 2010; 17(3):218-23. http://jsums.med saber.ac.ir/article_59_ea60c5e2742085b36c97abb188f16e27.pdf

[26] Rahimifard H, Hashemi Nejad N, Choobineh A, Heidari H, Tahatabachi H. Assessment of risk factors and prevalence of musculoskeletal disorders in raw furniture preparation workshops of the furniture industry (Persian). Journal of School of Public Health and Institute of Public Health Research. 2010; 8(1):53-68. https://sspb.tums.ac.ir/article-1-94-fa.pdf

[27] Barakhordar A, Jafari Nodoushan R, Varani Shoua J, Halvani G, Sahmani Nodoushan M. Posture evaluation using OWAS, RULA, QEC Method in FERO-ALEAGE factory workers of kerman (Persian)]. Occupational Medicine Quarterly Journal. 2011; 2(1):14-9. http://tkj.ssu.ac.ir/browse.php?mag_id=5&side_lang=en&sid=1

[28] Haghdoot AA, Hajhosseini F, Hojjati H. Relationship between the musculoskeletal disorders with the ergonomic factors in nurses (Persian)]. Koomesh. 2011; 12(4):372-8. http://koomeshjournal.semums.ac.ir/article-1-1347-fa.html

[29] Mirmohammadi S, Mehrparvar A, Soleimani H, Lotfi MH, Akbari H, Heidari N. Musculoskeletal disorders among Video Display Terminal (VDT) workers comparing with other office workers (Persian)]. Iran Occupational Health. 2010; 7(2):11-4. http://ioh.iums.ac.ir/article-1-285-fa.pdf

[30] Aminin O, Pouryaghoub G, Shanbeh M. One year study of musculoskeletal disorders and their relation to occupational stress among office workers: A brief report. Tehran University Medical Journal. 2012; 70(3):194-9. http://turnij.tums.ac.ir/article-1-136-en.html

[31] Mohammadfam I, Kianfar A, Afsartala B. The prevalence of work-related musculoskeletal disorders in the lower limbs among Iranian workers: A meta-analysis study (Persian)].Iran Occupational Health. 2016; 13(5):50-9. http://ioh.iums.ac.ir/article-1-1435-fa.pdf

[32] Habibi E, Ghanb S, Shakerian M, Hasanzadeh A. The prevalence of musculoskeletal disorders and analyzing the ergonomic status of workers involved manually carrying goods in the dairy industry (Persian)]. Journal of Health System Research. 2011; 6(4):649-57. http://jsums.medsab.ac.ir/article_80964.html

[33] Soltani R, Delghehni Y, Saeghi Naehi H, Falahati M, Zolak M. The welders posture assessment by owas technique (Persian)]. Occupational Medicine. 2011; 3(1):34-9. http://ijosu.ac.ir/article-1-53-fa.html

[34] Eskandari D, Ghahiri A, Ghollarie A, Motalebi Kashani M, Mousavi SGA. Prevalence of musculoskeletal disorders and work-related risk factors among the employees of an automobile factory in Tehran during 2009-10 (Persian)]. KAUMS Journal (FEYZ). 2011; 14(5):539-45. http://feyz.kau.ac.ir/article-1-1091-fa.pdf

[35] Tajyar A, Hasheminejad N, Bahrampoure A, Chubineh A, Jalali A. Musculoskeletal disorders among small maize workers: A survey in the bakeries. Hormozgan Medical Journal. 2012; 15(4):883-40. https://sites.kowsarpub.com/hmj/articles/88340.html

[36] Khani Jazani R, Fallah H, Barakhordar A, Halvani GH, Holkmabadi RA. The prediction of the incidence rate of upper limb musculoskeletal disorders, with CTD risk index method on potters of Meybod City. Zahedan Journal of Research in Medical Sciences. 2012; 13(9):e93733. https://sites.kowsarpub.com/zjrms/articles/93733.html

[37] Choobineh A, Movahed M, Tahatabachi SH, Kumashiro M. Perceived demands and musculoskeletal disorders in operating room nurses of Shiraz city hospitals. Industrial Health. 2010; 48(1):74-84. [DOI:10.2466/indhealth.48.74] [PMID]

[38] Ghahreghozlou F, Karami Matin B. Ergonomic assessment of manual material handling and work - related musculoskeletal disorders in miners (kermanshah, 2001). Journal of Kermanshah University of Medical Sciences (Behbood). 2002; 6(1):80964. https://sites.kowsarpub.com/jkums/articles/80964.html

[39] Nasl Seraji J, Zeraati H, Pouryaghoub GR, Gheybi L. Musculoskeletal disorders study in damming construction workers by fox equation and measurement heart rate at work (Persian)]. Iran Occupational Health. 2008; 5(1-2):55-60. http://ioh.iums.ac.ir/article-1-122-fa.pdf

[40] Ghamari F, Mohammadbeigi A, Khoedayari M. Work stations revision by ergonomic posture analyzing of Arak bakery workers (Persian)]. Journal of Advances in Medical and Biomedical Research. 2010; 18(70):80-90. http://sums.ac.ir/article/journal/1-1087-fa.pdf

[41] Rahimifard H, Nejad N, Choobineh A, Heidari H, Tahatabachi H. Evaluation of musculoskeletal disorders risk factors in painting workshops of furniture industry (Persian)]. Qom University of Medical Sciences Journal. 2010; 4(2):42-54. http://journal.mq.ac.ir/article-1-56-fa.html

[42] Parno A, Sayehmimi K, mokarami H, parno m, Azrah K, Ebhami MH, et al. The prevalence of work-related musculoskeletal disorders in the lower limbs among Iranian workers: A meta-analysis study (Persian)]. Iran Occupational Health. 2016; 13(5):50-9. http://ioh.iums.ac.ir/article-1-1435-fa.pdf

[43] Azizpour Y, Hemmati F, Sayehmimi K. Prevalence of life-time back pain in Iran: A systematic review and meta-analysis (Persian)]. Scientific Journal of Kurdistan University of Medical Sciences. 2013; 18(4):102-12. http://skjmuk.ac.ir/article-1-1193-fa.pdf

[44] Louw QA, Morris LD, Grimmer-Somers K. The prevalence of low back pain in Africa: A systematic review. BMC Musculoskeletal Disorders. 2007; 8(1):105. [DOI:10.1186/1471-2474-8-105] [PMID] [PMCID]

[45] Hoe VG, Urquhart DM, Kelsall HL, Sim MR. Ergonomic design and training for preventing work-related musculoskeletal disorders of the upper limbs and neck in adults. Cochrane Database of Systematic Reviews. 2012; 2012(8). [DOI:10.1002/14651858.CD008570.pub2] [PMID] [PMCID]

[46] Osborne A, Blake C, Fullen BM, Meredith D, Phelan J, McNamara J, et al. Prevalence of musculoskeletal disorders among farmers: A systematic review. American Journal of Industrial Medicine. 2012; 55(2):143-58. [DOI:10.1002/ajim.21033] [PMID]

[47] Yarmohammedi H, Niksima S H, Yarmohammedi S, Khammari A, Marioyad H, Poursadeghiyan M. Evaluating the prevalence of musculoskeletal disorders in drivers systematic review and meta-analysis. Journal of Health and Safety at Work. 2019; 9(3):221-30. http://fhw.tums.ac.ir/article-1-4168-en.html

[48] Mohammadi HY, Sohrabi Y, Poursadeghiyan M,rostamiR, Rahmani Tabar A, Abdollahzadeh D, Rahmani Tabar F. Comparing the posture assessments based on RULA and QEC methods in a carpentry workshop. Research Journal of Medical Sciences. 2016; 10(3):80-3. http://docsdrive.com/pdfs/medwelljournals/rjmsci/2016/10-83.pdf
[49] Poursadeqiyan M, Arefi MF, Khaleghi S, Moghadam AS, Mazloumi E, Raci M, et al. Investigation of the relationship between the safety climate and occupational fatigue among the nurses of educational hospitals in Zabol. Journal of Education and Health Promotion. 2020; 9:238. https://www.jehp.net/article.asp?issn=2277-9531;year=2020;volume=9;issue=1;spage=238;epage=238;aulast=Poursadeqiyan

[50] Omidianidost A, Hosseini S, Jabari M, Poursadeghiyan M, Dabirian M, Charganeh SS, et al. The relationship between individual, occupational factors and LBP (Low Back Pain) in one of the auto parts manufacturing workshops of Tehran in 2015. Journal of Engineering and Applied Sciences. 2016; 11(5):1074-7. [DOI:10.36478/jeasci.2016.1074.1077]