Cognitive assessment in asymptomatic COVID-19 subjects

Sridhar Amalakanti1 · Kesava Venkata Raman Arepalli2 · Jyothi Priya Jillella3

Received: 4 September 2020 / Accepted: 26 January 2021 / Published online: 15 February 2021

© Indian Virological Society 2021

Abstract Neurological features of COVID-19 have been reported in addition to the respiratory manifestations, but cognitive dysfunction has been scarcely described. And cognitive assessment has not been studied in asymptomatic subjects. We compared the cognitive assessment scores between asymptomatic SARS-CoV-2 infected subjects with that of controls to detect mild cognitive impairment by the Montreal Cognitive Assessment test. Asymptomatic COVID-19 subjects secured lower scores in certain domains of the MoCA in comparison with the controls. The domains were visuoperception (2.4 ± 0.7 vs 2.8 ± 0.7, p = 0.032), naming (3.6 ± 0.5 vs 3.9 ± 0.2, p = 0.016) and fluency (0.9 ± 0.6 vs 1.6 ± 0.7, p = < 0.001). Also, older aged COVID-19 positive subjects scored lower in the MoCA when compared to the younger people. Our study shows that even otherwise asymptomatic COVID-19 subjects have cognitive deficits in certain subdomains and suggests the need for a detailed psychometric assessment especially in the elderly population.

Keywords COVID-19 brain · COVID-19 neurological · COVID-19 psychiatric · COVID-19 neuropsychiatric · COVID-19 cognition

COVID-19, caused by SARS-CoV-2 has killed millions of people across the world in less than a year. It has affected almost all of the human population directly or indirectly. Directly by causing a spectrum of disorders ranging from no symptoms to death. Indirectly by resulting in sickness or loss of a family member or socioeconomic turbulence due to restricted movement of parcels and people [1]. The people afflicted with SARS-CoV-2 were reported to have respiratory symptoms in the earliest studies. Thereafter a number of extra respiratory features were also observed. These included neurological deficits also. Some of these were stroke, seizures, neuropathy and movement disorders [2]. Recent pathological studies have shown the neurotropism of SARS-CoV-2, thus establishing a direct pathophysiological basis to the neurological features [3].

Neurological features of higher mental functions were reported by Zhou et al. who performed a study on the cognitive functions of 29 COVID-19 recovered patients. The patients secured lower scores in Continuous Performance Test (which is used to assess attention and impulse) than the controls [4]. Others have reported a dysexecutive syndrome in the COVID patients [5]. Thus symptomatic patients do suffer cognitive deficits in addition to the earlier reported neurological features. Neurological features such as weakness, pain and numbness are reported readily as they are easily noticed by the patients. However dysfunctions of the higher mentation go unnoticed especially if they are mild and occur in otherwise asymptomatic persons [6]. Such unrecognised deficits have been brought out in asymptomatic subjects in many other diseases by targeted cognitive tests like MiniMental Status Examination (MMSE) and Montreal Cognitive Assessment(MoCA) [7, 8]. Although MMSE has been widely used for detecting cognitive impairment, it has been found inferior [9] to the MoCA in detecting Mild cognitive impairment (MCI).
MoCA has been widely validated in diagnosing MCI in many studies [6]. We used the MoCA test to detect MCI in asymptomatic COVID-19 subjects.

As a case control study at the department of General Medicine, Great Eastern Medical School and Hospital, Ragole, India we compared the cognitive assessment scores of 93 asymptomatic COVID-19 subjects with those of 102 controls. The study was conducted from June 2020 to July 2020. Laboratory-confirmation of SARS-CoV-2 infection was done by RT-PCR on nasopharyngeal swabs. The subjects were recruited from relatives of COVID-19 patients brought to the hospital. Control subjects were negative for the infection. All subjects with age less than 5 years scored lower in the MoCA when compared to the controls. There were no differences between the two genders (Supplementary table).

In our study we finalised 93 asymptomatic COVID patients and 102 controls after exclusion due to lack of consent and insufficient data. The mean age of the patients was 36.2 ± 11.7 and that of the controls was 35.6 ± 9.8. In the CoViD subjects 52.3% were women and in the controls 54.7% were women.

There was no significant difference in the overall cognitive assessment scores between the two groups, but COVID-19 patients secured lower scores than controls in the domains of visuo-perception, naming and fluency (Table 1). Also, COVID positive subjects aged greater than 50 years scored lower in the MoCA when compared to the younger people. (Table 2). There were no differences between the two genders (Supplementary table).
vigilant care [18] as their activities of daily living (ADL) might be affected.

From our findings, it may be suggested that people employed in highly intellectual occupations might fall short of their work requirements if they have CoViD infection even symptomatically. This is pertinent as doctors and medical personnel who are at a very high risk for the infection come under this category and their mental health condition is paramount to every medical strategy against CoViD 19.

Previous literature has hypothesized that COVID-19 affected patients might be at high risk of developing cognitive decline after overcoming the primary infection [19]. The cognitive impairment reported in our study and the previous studies [4, 5] suggests the need for long term follow up of the COVID affected subjects as people with MCI are prone to dementia [20].

Our study is limited by the small sample and the hospital bias but it suggests MCI in asymptomatic COVID subjects. And since only one test was done, a full psychometric assessment study is warranted to fully understand the pattern better.

Acknowledgements We thank Dr Anikha Bellad MD for critical internal peer review.

Funding None.

Compliance with ethical standards

Conflicts of interest The authors declare that they have no conflict of interest.

References

1. Meier K, Glatz T, Guijt MC, Piccininni M, van der Meulen M, Atmar K, Jolink AT, Kurth T, Rohmann JU, Zamanipoor Najafabadi AH. COVID-19 Survey Study group. Public perspectives on protective measures during the COVID-19 pandemic in the Netherlands, Germany and Italy: A survey study. PLoS ONE. 2020;15(8):e0236917.

2. Asadi-Pooya AA, Simani L. Central nervous system manifestations of COVID-19: A systematic review. J Neurol Sci. 2020;11:116832.

3. Ahmad I, Rathore FA. Neurological manifestations and complications of COVID-19: A literature review. J Clin Neurosci. 2020.

4. Zhou H, Lu S, Chen J, Wei N, Wang D, Lyu H, Shi C, Hu S. The landscape of cognitive function in recovered COVID-19 patients. J Psychiatr Res. 2020.

5. Ardila A, Lahiri D. Executive dysfunction in COVID-19 patients. Diabetes Metab Syndr. 2020;14(5):1377–8.

6. Smith NA, Yeow YY. Use of the Montreal Cognitive Assessment test to investigate the prevalence of mild cognitive impairment in the elderly elective surgical population. Anaesth Intensive Care. 2016;44(5):581–6.

7. Martínez-Banfi M, Vélez JJ, Perea MV, García R, Puentes-Rozo PJ, Mebarak Chams M, Ladera V. Neuropsychological performance in patients with asymptomatic HIV-1 infection. AIDS care. 2018;30(5):623–33.

8. Lal BK, Dux MC, Sikdar S, Goldstein C, Khan AA, Yokemick J, Zhao L. Asymptomatic carotid stenosis is associated with cognitive impairment. J Vasc Surg. 2017;66(4):1083–92.

Table 1 Montreal cognitive assessment scores of the subjects

Domain (Max. score)	Asymptomatic COVID-19 subjects (93)	Controls (102)	p value	95% CI
Mean total score (30)	26 ± 2.6	26.1 ± 3.0	0.887	−1.492 to 1.292
Executive function (1)	0.9 ± 0.2	0.9 ± 0.2	1	−0.105 to 0.105
Fluency (2)	0.9 ± 0.6	1.6 ± 0.7	< 0.001	−1.002 to −0.378
Orientation (6)	5.6 ± 0.6	5.6 ± 1	1	−0.353 to 0.353
Calculation (3)	2.4 ± 0.8	2.4 ± 0.9	1	−0.426 to 0.426
Abstraction (3)	2.8 ± 0.5	2.6 ± 1	0.209	−0.114 to 0.514
Delayed recall (5)	3.1 ± 1.1	3.2 ± 1	0.728	−0.668 to 0.468
Visuoperception (3)	2.4 ± 0.7	2.8 ± 0.7	0.032	−0.766 to −0.034
Naming (4)	3.6 ± 0.5	3.9 ± 0.2	0.016	−0.545 to −0.055
Attention (3)	2.5 ± 0.5	2.6 ± 0.8	0.496	−0.390 to 0.190

Table 2 Age wise comparison of the MoCA scores

Age	Mean MoCA Score in cases	Mean MoCA score in controls	p value
18–29	25.9 ± 2.1	27 ± 1.7	0.018
30–49	25.9 ± 2.3	25.6 ± 4.3	0.537
50 and above	24 ± 3.5	24.5 ± 3.5	0.537

Number of cases = 33(Age 18–29) versus 42(30–49) versus 18 (50 and above). Number of controls 48 versus 42 versus 12
9. Bhat G, Yost G, Mahoney E. Cognitive function and left ventricular assist device implantation. J Heart Lung Transp. 2015;34(11):1398–405.

10. Julayanont P, Nasreddine ZS. Montreal Cognitive Assessment (MoCA): concept and clinical review. In Cognitive screening instruments. Springer: Cham; 2017. pp. 139–195

11. Reichard RR, Kashani KB, Boire NA, Constantopoulos E, Guo Y, Lucchinetti CF. Neuropathology of COVID-19: a spectrum of vascular and acute disseminated encephalomyelitis (ADEM)-like pathology. Acta Neuropathol. 2020;24:1–6.

12. Polak SB, Van Gool IC, Cohen D, Jan H, van Paassen J. A systematic review of pathological findings in COVID-19: a pathophysiological timeline and possible mechanisms of disease progression. Mod Pathol. 2020;22:1–1.

13. Kremer S, Lesy F, de Sèze J, Ferré JC, Maamar A, Carsin-Nicol B, Collange O, Bonneville F, Adam G, Martin-Blondel G, Rafiq M. Brain MRI findings in severe COVID-19: a retrospective observational study. Radiology. 2020;16:202222.

14. Katal S, Balakrishnan S, Gholamrezanezhad A. Neuroimaging findings in COVID-19 and other coronavirus infections: a systematic review in 116 patients. J Neuroradiol. 2020.

15. Yavarpour-Bali H, Ghasemi-Kasman M. Update on neurological manifestations of COVID-19. Life Sci. 2020;9:118063.

16. Hu Z, Song C, Xu C, Jin G, Chen Y, Xu X, Ma H, Chen W, Lin Y, Zheng Y, Wang J. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing. China Sci China Life Sci. 2020;63(5):706–11.

17. Ottestad W, Seim M, Mehlom JO. COVID-19 with silent hypoxemia. Tidsskrift for Den norske legeforening. 2020.

18. Goodman-Casanova JM, Dura-Perez E, Guzman-Parra J, Cuesta-Vargas A, Mayoral-Cleries F. Telehealth home support during COVID-19 confinement for community-dwelling older adults with mild cognitive impairment or mild dementia: survey study. J Med Int Res. 2020;22(5):e19434.

19. Heneka MT, Golenbock D, Latz E, Morgan D, Brown R. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimer’s Res Ther. 2020;12:1–3.

20. Saunders S, Ritchie K, Russ TC, Muniz-Terrera G, Ritchie CW. Evolution and future directions for the concept of mild cognitive impairment. Int Psychogeriatr. 2018;30(10):1431–4.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.