Polysilane-Inserted Methylammonium Lead Iodide Perovskite Solar Cells Doped with Formamidinium and Potassium

Takeo Oku 1,*, Satsuki Kandori 1, Masaya Taguchi 1, Atsushi Suzuki 1, Satoshi Minami 2, Sakiko Fukunishi 2 and Tomoharu Tachikawa 2

1 Department of Materials Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533, Japan; os21skandori@ec.usp.ac.jp (S.K.); of21mtaguchi@ec.usp.ac.jp (M.T.); suzuki@mat.usp.ac.jp (A.S.)
2 Osaka Gas Chemicals Co., Ltd., 5-11-61 Torishima, Konohana-ku, Osaka 554-0051, Japan; okita@ogc.co.jp (M.O.); s-minami@ogc.co.jp (S.M.); fukunishi@ogc.co.jp (S.F.); t-tachikawa@ogc.co.jp (T.T.)

* Correspondence: oku@mat.usp.ac.jp; Tel.: +81-749-28-8368

Received: 7 August 2020; Accepted: 9 September 2020; Published: 13 September 2020

Abstract: Polysilane-inserted CH$_3$NH$_3$PbI$_3$ perovskite photovoltaic devices combined with potassium and formamidinium iodides were fabricated and characterized. Decaphenylcyclopentasilane layers were inserted at the perovskite/hole transport interface and annealed across a temperature range of 180–220 °C. These polysilane-coated cells prevented PbI$_2$ formation, and the conversion efficiencies were improved over extended periods of time.

Keywords: polysilane; decaphenylcyclopentasilane; perovskite; photovoltaic device; solar cell; formamidinium; potassium

1. Introduction

Although the most commonly used solar cells are currently silicon-based, these silicon devices have a complicated fabrication process, and the silicon semiconductor has an indirect transition band structure. Since recently developed CH$_3$NH$_3$PbI$_3$ (MAPbI$_3$)-based perovskite compounds have demonstrated numerous advantages, such as direct bandgaps, easy fabrication process, and high conversion efficiencies [1–4], these compounds are considered as major candidates for next-generation solar cell materials. However, lead halide compounds are typically unstable in air; thus, the stability of the corresponding perovskite photovoltaic devices should be improved for inclusion in the actual cell module [5,6]. The instability of the perovskite photovoltaic devices results from the migration of CH$_3$NH$_3$ (MA) and reactivity with H$_2$O [7,8].

To improve the stability of the perovskite photovoltaic devices, polymeric materials have been investigated [9–14]. For instance, poly(methyl methacrylate) and poly(propylene carbonate) have been used to protect the perovskite layer from oxygen and moisture [15,16] and to enhance stability. Both polymeric materials formed cross-linked networks comprising perovskite grains, which suppressed defects. Furthermore, the stability was also influenced by hole transport layers (HTLs) [17]. In practice, 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) is widely applied as a HTL for perovskite photovoltaic devices; however, this material is expensive, and the electronic properties degrade at elevated air temperatures. Alternative hole transport materials have been reported [18,19], and polysilane derivatives have also been investigated [20].

Polysilane derivatives exhibit two important advantages. The first relates to polysilanes being p-type semiconductors that facilitate hole transfer and rectification at the p-n junction [20]. The second
where \(r \) is the ionic radius of the A, B, and X ions. When \(t \) is close to 1, the perovskite structure is expected to be more structurally stable, although the ionic properties are not considered.

The tolerance factor of MAPbI\(_3\) is calculated to be 0.912 [27], and this indicates that MAPbI\(_3\) may be slightly unstable. To increase the \(t \)-factor and reduce the migration of MA, formamidinium (FA: \(\text{CH}_3(\text{NH}_2)_2 \)) with a larger ionic radius (2.53 Å) than MA (2.17 Å) was doped at the MA site, and the stabilities of the perovskite solar cells were improved by FA addition [31–33]. Studies on devices with ethylammonium (EA: \(\text{CH}_3\text{CH}_2\text{NH}_3 \)) [34,35] or guanidinium (GA: \(\text{C}(\text{NH}_2)_3 \)) [36,37] addition to perovskites have also been reported.

Since the above MA, FA, EA, and GA are molecules, they may affect the stabilities of the perovskite crystals. Therefore, substitution of alkali metal elements such as cesium (Cs), rubidium (Rb), potassium (K), and sodium (Na) might be effective in avoiding the migration and desorption of A-site elements in the perovskite crystals. It is also expected that the semiconductor characteristics of the perovskite crystals can be controlled by alkali element doping. Effects of Na and K doping to MAPbI\(_3\) crystals on the electronic structures were investigated by first-principles calculation [42]. Partial substitution of MA with Na or K generated electronic orbitals of Na or K above the conduction band, which would facilitate charge transfer from the alkali metals to the conduction band. This may then accelerate carrier diffusion related to the photovoltaic performances. Conversion efficiencies and stabilities were reported to be improved by adding Cs\(^+\) and Rb\(^+\) to perovskite precursor solutions, which increased grain sizes and reduced defect densities [43–46]. Conversion efficiencies were also improved by using K, which offers a lower cost than Rb and Cs. A calculated \(t \)-factor of K doping alone to MAPbI\(_3\) indicates that the structural stability of perovskite compounds was reduced [27], and other cations with larger cationic radii, such as FA and EA, may be necessary to form more stable perovskite structures.

Herein, the focus is to investigate the photovoltaic properties and stabilities of DPPS-inserted MAPbI\(_3\) perovskite solar cells doped with potassium (K) and formamidinium (FA), which are denoted as MA(FA,K)PbI\(_3\). Previously, co-addition of K and FA was reported to be effective for enhancing the photovoltaic properties [47–51]. In the present work, the MA(FA,K)PbI\(_3\) perovskite compounds, prepared at temperatures in the range of 180–220 °C in ambient air, were evaluated in terms of the
photovoltaic properties and stability. The effects of annealing temperatures and polysilane addition on the microstructures and photovoltaic properties of the MA(FA, K)PbI₃ perovskite solar cells were investigated using current density voltage (J-V) characteristics and X-ray diffraction (XRD).

2. Materials and Methods

A fabrication process of the present solar cell devices is schematically illustrated in Figure 1. The fabrication conditions were ~27 °C temperature and ~40% humidity in ambient air [52,53]. F-doped tin oxide (FTO, Nippon Sheet Glass Company, Tokyo, Japan, ~10 Ω/cm²) substrates were cleaned by methanol and acetone in an ultrasonic bath and an ultraviolet ozone cleaner (Asumi Giken, Tokyo, Japan, ASM401N) [26,54]. Next, 0.15 and 0.30 M precursor solutions of TiO₂ compact layers were prepared from 1-butanol (Wako Pure Chemical Industries, Osaka, Japan) and titanium disopropoxide bis(acetylacetonate) (Sigma Aldrich, Tokyo, Japan). These precursor solutions of compact TiO₂ were spin-coated on the FTO substrate at 3000 rpm for 30 s, and the substrates were annealed at 125 °C for 5 min. To form a uniform compact TiO₂ layer, the 0.30 M precursor solution was spin-coated twice. Then, the FTO substrate was annealed at 550 °C for 30 min to form the compact TiO₂ layer. After that, a TiO₂ paste (precursor solution for mesoporous TiO₂) was spin-coated on the compact TiO₂ layer at 5000 rpm for 30 s. This TiO₂ paste was prepared by mixing distilled water (0.5 mL), poly(ethylene glycol) PEG-20000 (Nacalai Tesque, Kyoto, Japan, PEG #20000, 20 mg), and TiO₂ powder (Aerosil, Tokyo, Japan, P-25, 200 mg). This solution was further mixed with the surfactant Triton X-100 (Sigma Aldrich, 10 µL) and acetylacetone (Wako Pure Chemical Industries, 20 µL) for 30 min, and it was left untouched for 24 h to remove bubbles in the solution [53]. To form the mesoporous TiO₂ layer, the TiO₂-coated substrates were annealed at 550 °C for 30 min.

![Figure 1. Schematic illustration detailing the processes adopted to fabricate the perovskite photovoltaic devices and a photograph of the device.](image)

The perovskite compounds were prepared by mixing N,N-dimethylformamide (DMF; Sigma Aldrich) solutions of KI (Wako Pure Chemical Industries), HC(NH₂)₂I (Tokyo Chemical Industry, Tokyo, Japan), CH₃NH₃I (Tokyo Chemical Industry), and PbCl₂ (Sigma Aldrich) at 60 °C for 1 day. The basic precursor of MAPbI₃ was prepared with molar concentrations of PbCl₂ and MAI of 0.8 and 2.4 M, respectively [53,55], and MA₀.₆₄FA₀.₃₁K₀.₀₅PbI₃ and MA₀.₄₈FA₀.₄₇K₀.₀₅PbI₃ precursors were prepared by adding FAI and KI to control the desired molar ratio. As the FA composition increased, the tolerance factor (t-factor) increased toward 1 [27], which indicated the crystal distortion in the perovskite structure could be reduced by FA addition. Perovskite precursor solutions were spin-coated on the mesoporous TiO₂ layer three times. For the first spin-coating, the perovskite solutions were spin-coated at 2000 rpm for 60 s. During the second and third spin-coatings, a hot air-blowing method was applied [27]. Temperatures of the cells during the air-blowing were set at 90 °C. A polysilane solution was prepared by mixing chlorobenzene (Fujifilm Wako Pure Chemical Corporation, 0.5 mL) with DPPS (Osaka Gas Chemicals, Osaka, Japan, OGSOL SI-30-10, 10 mg). During the last 15 s of
the third spin-coating of the perovskite precursor solutions, the DPPS polysilane solution was also spin-coated on the perovskite layer [24]. The prepared cells were then annealed at 180 and 200 °C for 10 min, and at 220 °C for 5 min in ambient air.

Hole transporting layers were spin-coated at 4000 rpm for 30 s. A precursor solution of the hole transporting layer was prepared by mixing chlorobenzene (0.5 mL; Wako Pure Chemical Industries) and spiro-OMeTAD (Sigma Aldrich 36.1 mg) for 24 h. An acetonitrile (Nacalai Tesque, 0.5 mL) solution of lithium bis(trifluoromethylsulfonyl)imide (Tokyo Chemical Industry, 260 mg) was similarly prepared by 24 h stirring. This lithium bis(trifluoromethylsulfonyl)imide solution (8.8 µL) was added to the spiro-OMeTAD solution mixed with 4-tert-butylpyridine (Sigma Aldrich, 14.4 µL) and stirred at 70 °C for 30 min. Lastly, top-electrodes of gold (Au) were formed by a vacuum evaporating system (Sanyu Electron, Tokyo, Japan, SVC-700TMSG). All the fabricated devices were stored at 22 °C and ~30% humidity in ambient air.

The current density voltage characteristics (Keysight, Santa Rosa, CA, USA, B2901A) of the fabricated devices were measured under a solar simulating light source (San-ei Electric, Osaka, Japan, XES-301S) operated at 100 mW cm\(^{-2}\) (air mass 1.5). The exposed area of the photovoltaic devices was 0.080 cm\(^2\). An X-ray diffractometer (Bruker, Billerica, MA, USA, D2 PHASER) was used for microstructural analysis of the perovskite crystals.

3. Results

Conversion efficiencies and other parameters of the present perovskite solar cells are summarized in Table 1, where \(\eta\) is the photoconversion efficiency, \(\eta_{\text{ave}}\) is the average conversion efficiency of the three devices, \(V_{\text{OC}}\) is the open-circuit voltage, \(J_{\text{SC}}\) is the short-circuit current density, \(R_{\text{sh}}\) is the shunt resistance, \(R_{S}\) is the series resistance, and FF is the fill factor. For the as-prepared devices, those annealed at 200 °C exhibited the highest photoconversion efficiencies of 10.99% and 6.20% for MA\(_{0.64}\)FA\(_{0.31}\)K\(_{0.05}\)PbI\(_3\) and MA\(_{0.48}\)FA\(_{0.47}\)K\(_{0.05}\)PbI\(_3\), respectively.

Devices	Annealing (°C)	\(J_{\text{SC}}\) (mA cm\(^{-2}\))	\(V_{\text{OC}}\) (V)	FF	\(R_{S}\) (Ω cm\(^2\))	\(R_{\text{sh}}\) (Ω cm\(^2\))	\(\eta\) (%)	\(\eta_{\text{ave}}\) (%)
MA\(_{0.64}\)FA\(_{0.31}\)K\(_{0.05}\)PbI\(_3\)	180	13.1	0.383	0.333	15.53	83	1.67	1.51
MA\(_{0.64}\)FA\(_{0.31}\)K\(_{0.05}\)PbI\(_3\)	200	17.9	0.980	0.625	7.93	177,200	10.99	7.84
MA\(_{0.64}\)FA\(_{0.31}\)K\(_{0.05}\)PbI\(_3\)	220	13.5	0.864	0.573	8.18	715	6.67	5.54
MA\(_{0.48}\)FA\(_{0.47}\)K\(_{0.05}\)PbI\(_3\)	180	12.7	0.159	0.303	7.31	26	0.613	0.381
MA\(_{0.48}\)FA\(_{0.47}\)K\(_{0.05}\)PbI\(_3\)	200	12.6	0.900	0.545	14.83	676	6.20	4.74
MA\(_{0.48}\)FA\(_{0.47}\)K\(_{0.05}\)PbI\(_3\)	220	10.9	0.871	0.604	10.67	1400	5.74	4.51

After 163 days

Devices	Annealing (°C)	\(J_{\text{SC}}\) (mA cm\(^{-2}\))	\(V_{\text{OC}}\) (V)	FF	\(R_{S}\) (Ω cm\(^2\))	\(R_{\text{sh}}\) (Ω cm\(^2\))	\(\eta\) (%)	\(\eta_{\text{ave}}\) (%)
MA\(_{0.64}\)FA\(_{0.31}\)K\(_{0.05}\)PbI\(_3\)	180	20.3	0.970	0.700	5.12	5394	13.82	12.80
MA\(_{0.64}\)FA\(_{0.31}\)K\(_{0.05}\)PbI\(_3\)	200	19.1	0.966	0.595	9.00	1863	10.96	9.64

XRD patterns of the perovskite solar cells are shown in Figure 2. In all devices, highly (100)-oriented crystals of the perovskite compounds were observed, which were formed by the hot air-blowing method [27]. All devices presented few peaks corresponding to PbI\(_2\), which indicated the effectiveness of the DPPS layer against high-temperature annealing at ~200 °C. Although peaks of lesser intensities, assigned to PbI\(_2\), were observed for the MA\(_{0.64}\)FA\(_{0.31}\)K\(_{0.05}\)PbI\(_3\) devices, especially when annealed at 200 °C, almost no PbI\(_2\) formation was observed for the MA\(_{0.48}\)FA\(_{0.47}\)K\(_{0.05}\)PbI\(_3\) devices, even after annealing at 220 °C. The FA-rich composition contributed to the stability of the cubic perovskite and suppressed PbI\(_2\) formation.
The lattice constants of the perovskites increased as a function of temperature, as shown in Table 2. Additionally, the lattice constant should also increase as FA composition increases because of the larger FA ionic size compared with MA. However, the lattice constant of FA-rich MA$_{0.48}$FA$_{0.47}$K$_{0.05}$PbI$_3$ was smaller than that of MA$_{0.64}$FA$_{0.31}$K$_{0.05}$PbI$_3$, which is suggested to be related with K occupancy at the MA site.

Table 2. Measured lattice constants and crystallite sizes of the perovskite compounds.

Devices	Annealing (°C)	Lattice Constant (Å)	Crystallite Size (nm)
MA$_{0.64}$FA$_{0.31}$K$_{0.05}$PbI$_3$	180	6.303(1)	77
MA$_{0.64}$FA$_{0.31}$K$_{0.05}$PbI$_3$	200	6.302(0)	80
MA$_{0.64}$FA$_{0.31}$K$_{0.05}$PbI$_3$	220	6.304(1)	128
MA$_{0.48}$FA$_{0.47}$K$_{0.05}$PbI$_3$	180	6.298(2)	86
MA$_{0.48}$FA$_{0.47}$K$_{0.05}$PbI$_3$	200	6.299(1)	133
MA$_{0.48}$FA$_{0.47}$K$_{0.05}$PbI$_3$	220	6.301(0)	101
After 184 days			
MA$_{0.64}$FA$_{0.31}$K$_{0.05}$PbI$_3$	180	6.294(1)	186

Figure 2. Measured XRD patterns of the present perovskite solar cells.
Figure 3 shows conversion efficiency changes of the perovskite photovoltaic devices. For the as-prepared devices, those annealed at 200 °C showed the highest conversion efficiencies and were almost identical to the conversion efficiencies after 163 days. Conversely, the conversion efficiency of the MA_{0.48}FA_{0.47}K_{0.05}PbI_3 device, prepared at 180 °C, improved from 0.613% to 8.18% after 109 days, as shown in Figure 3. For the devices annealed at 220 °C, the conversion efficiencies decreased after 50 days.

![Graph showing conversion efficiency changes over time for various perovskite devices.]

Figure 3. Changes of photoconversion efficiencies of the present perovskite photovoltaic devices.

Changes to the J-V characteristics of the MA_{0.64}FA_{0.31}K_{0.05}PbI_3 device, prepared at 180 °C, are shown in Figure 4. For the as-prepared device, the highest conversion efficiency was observed at 1.67%, as shown in Table 1. After 42 days, V_{OC} and J_{SC} were improved. Furthermore, FF also improved after 131 days. After 163 days, the photovoltaic properties of the MA_{0.64}FA_{0.31}K_{0.05}PbI_3 device were further enhanced, and the highest conversion efficiency of 13.82%, a V_{OC} of 0.970 V, a J_{SC} of 20.3 mA cm^{-2}, and a FF of 0.700 were obtained, as shown in Figure 3 and Table 1.

![Graph showing J-V characteristics for various perovskite devices.]

Figure 4. Changes of current density voltage characteristics of the MA_{0.64}FA_{0.31}K_{0.05}PbI_3 device prepared at 180 °C for 10 min.
Microstructural changes of the MA\textsubscript{0.64}FA\textsubscript{0.31}K\textsubscript{0.05}PbI\textsubscript{3} device annealed at 180 °C were investigated by XRD, as shown in Figure 5. Small PbI\textsubscript{2} peaks were observed in both XRD patterns, and further PbI\textsubscript{2} formation was suppressed, even after six months. Full-width at half maximum (FWHM) for the MA\textsubscript{0.64}FA\textsubscript{0.31}K\textsubscript{0.05}PbI\textsubscript{3} device was reduced after six months, which indicated the crystallite size of the perovskite compound increased, as shown in Table 2. The XRD observations indicated the crystal growth of the perovskite compound, which led to a decrease in the grain boundary area and point defects and, hence, improvement in the photovoltaic performance. The lattice constant of the perovskite compound was observed to decrease slightly, as shown in Table 2, which relates to the desorption of a small amount of MA.

![Figure 5. Comparison of the XRD patterns of the MA\textsubscript{0.64}FA\textsubscript{0.31}K\textsubscript{0.05}PbI\textsubscript{3} devices as a function of time, prepared at 180 °C for 10 min.](image)

Conversion efficiencies of polysilane-inserted perovskite solar cells were improved in previous studies [22,24]. The MAPbI\textsubscript{3} device annealed at 190 °C showed an efficiency of 11.57%, which increased to 13.36% after four weeks, and the increases were within 2%. On the other hand, the conversion efficiency of the present solar cell prepared at 180 °C increased from 1.67% to 13.82%, with an increase of efficiency over 12%. To describe this abnormal increase, three mechanisms for the rise in conversion efficiencies of the MA\textsubscript{0.64}FA\textsubscript{0.31}K\textsubscript{0.05}PbI\textsubscript{3} device, prepared at 180 °C, can be considered.

The first is crystallization of the amorphous phase into the perovskite crystal at room temperature. During the spin-coating of DPPS, a mixed composite layer comprising amorphous perovskite and DPPS, having a dense interface, was formed during room temperature aging. In addition, K might compensate MA defects during the aging. Since DPPS also functions as a HTL [20], holes are able to smoothly transport at the perovskite/spiro-OMeTAD interface. Other annealing methods, such as laser-annealing and flash light annealing, have been reported [56,57] and may also be effective for the crystallization of the perovskite compounds.

The second mechanism relates to the formation of a small amount of PbI\textsubscript{2} at the perovskite surface immediately under the DPPS and spiro-OMeTAD layers. A small decrease of the MA\textsubscript{0.64}FA\textsubscript{0.31}K\textsubscript{0.05}PbI\textsubscript{3} lattice constant implies desorption of MA, with PbI\textsubscript{2} suggested to be formed at the surface of the perovskite crystals. PbI\textsubscript{2} is a p-type semiconductor with a bandgap energy of ~2.5 eV and functions as an electron blocking layer [58,59]. Thereafter, FF and conversion efficiency increase.
The third mechanism relates to the interface at the perovskite/spiro-OMeTAD. Since the V_{OC} and R_{sh} had a fairly large increase, the interface would also act as an $n-i-p$ junction instead of the simple back-surface field effect in Si solar cells. The $I-V$ curve as a function of time in Figure 4 demonstrated a typical shape change as the R_{sh} increased. Slow annealing at lower temperatures may provide more uniform and dense perovskite layers.

4. Conclusions

In summary, the influences of DPPS layer insertion between the MA(FA, K)PbI$_3$ perovskite layer and HTL on the microstructures and photovoltaic properties were examined. For the as-prepared devices, those annealed at 200 °C exhibited the highest photoconversion efficiencies, whereas the conversion efficiencies of the devices annealed at 220 °C decreased after 50 days. Conversely, the photovoltaic properties of the MA$_{0.64}$FA$_{0.31}$K$_{0.05}$PbI$_3$ device annealed at 180 °C were improved after 163 days, and the device provided the highest photoconversion efficiency of 13.82%. Microstructures of the perovskite compounds were investigated by XRD, which indicated suppression of PbI$_2$ formation for the DPPS-added device formed at 180 °C, even after six months. Increased crystallite sizes of the MA$_{0.64}$FA$_{0.31}$K$_{0.05}$PbI$_3$ perovskite promoted a decrease of the grain boundary area and point defects, which reduced the current leakage and improved the photovoltaic performance. The present results indicate that polysilane insertion and high-temperature annealing are effective for the improvement of the conversion efficiencies of perovskite photovoltaic devices.

Author Contributions: Conceptualization, T.O. and S.K.; Methodology, T.O., S.K., M.T., and A.S.; Formal Analysis, T.O. and S.K.; Investigation, S.K.; Resources, M.O., S.M., S.F., and T.T.; Data Curation, T.O. and S.K.; Writing—Original Draft Preparation, T.O.; Writing—Review & Editing, S.K., M.T., A.S., M.O., S.M., S.F., and T.T.; Project Administration, T.O.; Funding Acquisition, T.O. All authors have read and agreed to the published version of the manuscript.

Funding: A part of the present study was supported by the Japan Science and Technology Agency (JST).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Li, N.; Zhu, Z.; Chueh, C.C.; Liu, H.; Peng, B.; Petrone, A.; Li, X.; Wang, L.; Jen, A.K.Y. Mixed cation FA$_x$PEA$_{1-x}$PbI$_3$ with enhanced phase and ambient stability toward high-performance perovskite solar cells. Adv. Energy Mater. 2017, 7, 1601307. [CrossRef]
2. Gedamu, D.; Asuo, I.M.; Benetti, D.; Basti, M.; Ka, I.; Cloutier, S.G.; Rosei, F.; Nechache, R. Solvent-antisolvent ambient processed large grain size perovskite thin films for high-performance solar cells. Sci. Rep. 2018, 8, 12885. [CrossRef] [PubMed]
3. Miyasaka, T.; Kulkarni, A.; Kim, G.M.; Öz, S.; Jena, A.K. Perovskite solar cells: Can we go organic-free, lead-free, and dopant-free? Adv. Energy Mater. 2020, 10, 1902500. [CrossRef]
4. Tong, J.; Song, Z.; Kim, D.M.; Chen, X.; Chen, C.; Palmstrom, A.F.; Ndione, P.F.; Reese, M.O.; Dunfield, S.P.; Reid, O.G.; et al. Carrier lifetimes of >1 µs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 2019, 364, 475-479. [CrossRef] [PubMed]
5. Zhang, X.; Yin, J.; Nie, Z.; Zhang, Q.; Sui, N.; Chen, B.; Zhang, Y.; Qu, K.; Zhao, J.; Zhou, H. Lead-free and amorphous organic–inorganic hybrid materials for photovoltaic applications: Mesoscopic CH$_3$NH$_3$MnI$_3$/TiO$_2$ heterojunction. RSC Adv. 2017, 7, 37419-37425. [CrossRef]
6. Dong, H.; Wu, Z.; Xi, J.; Xu, X.; Zuo, L.; Lei, T.; Zhao, X.; Zhang, L.; Hou, X. Pseudohalide-induced recrystallization engineering for CH$_3$NH$_3$PbI$_3$ film and its application in highly efficient inverted planar heterojunction perovskite solar cells. Adv. Funct. Mater. 2017, 28, 1704836. [CrossRef]
7. Dunfield, S.P.; Bliss, L.; Zhang, F.; Luther, J.M.; Zhu, K.; Van Hest, M.F.A.M.; Reese, M.O.; Berry, J.J. From defects to degradation: A mechanistic understanding of degradation in perovskite solar cell devices and modules. Adv. Energy Mater. 2020, 10, 1904054. [CrossRef]
8. Lee, J.W.; Kim, S.G.; Yang, J.M.; Yang, Y.; Park, N.G. Verification and mitigation of ion migration in perovskite solar cells. APL Mater. 2019, 7, 041111. [CrossRef]
9. Chen, H.W.; Huang, T.Y.; Chang, T.H.; Sanehira, Y.; Kung, C.W.; Chu, C.W.; Ikegami, M.; Miyasaka, T.; Ho, K.C. Efficiency enhancement of hybrid perovskite solar cells with MEH-PPV hole-transporting layers. Sci. Rep. 2016, 6, 34319. [CrossRef]

10. Bi, D.; Yi, C.; Luo, J.; Decoppet, J.D.; Zhang, F.; Zakeeruddin, S.M.; Li, X.; Hagfeldt, A.; Gratzel, M. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 2016, 1, 16142. [CrossRef]

11. Zhang, S.; Lu, Y.; Lin, B.; Zhu, Y.; Zhang, K.; Yuan, N.Y.; Ding, J.N.; Fang, B. PVDF-HFP additive for visible-light-semitransparent perovskite films yielding enhanced photovoltaic performance. Sol. Energy Mater. Sol. Cells 2017, 170, 178–186. [CrossRef]

12. Zuo, L.; Guo, H.; deQuilettes, D.W.; Jariwala Marco, S.N.D.; Dong, S.; De Block, R.; Ginger, D.S.; Dunn, B.; Wang, M. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci. Adv. 2017, 3, e1700106. [CrossRef] [PubMed]

13. Zhang, H.; Shi, J.; Zhu, L.; Luo, Y.; Li, D.; Wu, H.; Meng, Q. Polystyrene stabilized perovskite component, grain and microstructure for improved efficiency and stability of planar solar cells. Nano Energy 2018, 43, 383–392. [CrossRef]

14. Chen, Z.; Dong, Q.; Liu, Y.; Bao, C.; Fang, Y.; Lin, Y.; Tang, S.; Wang, Q.; Xiao, X.; Bai, Y.; et al. Thin single crystal perovskite solar cells to harvest below-bandgap light absorption. Nat. Commun. 2017, 8, 1890. [CrossRef]

15. Wang, F.; Shimazaki, A.; Yang, F.; Kanahashi, K.; Matsuki, K.; Miyauchi, Y.; Takenobu, T.; Wakamiya, A.; Murata, Y.; Matsuda, K. Highly efficient and stable perovskite solar cells by interfacial engineering using solution-processed polymer layer. J. Phys. Chem. C 2017, 121, 1562–1568. [CrossRef]

16. Han, T.H.; Lee, J.W.; Choi, C.; Tan, S.; Lee, C.; Zhao, Y.; Dai, Z.; Marco, N.D.; Lee, S.J.; Bae, S.H.; et al. Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat. Commun. 2019, 10, 520. [CrossRef]

17. Kim, G.W.; Choi, H.; Kim, M.; Lee, J.; Son, S.Y.; Park, T. Hole transport materials in conventional structural (n–i–p) perovskite solar cells: From past to the future. Adv. Energy Mater. 2020, 10, 1903403. [CrossRef]

18. Tavakoli, M.M.; Tavakoli, R.; Prochowicz, D.; Yadav, P.; Saliba, M. Surface modification of a hole transporting layer for an efficient perovskite solar cell with an enhanced fill factor and stability. Mol. Syst. Des. Eng. 2018, 3, 717–722. [CrossRef]

19. Mabrouk, S.; Zhang, M.; Wang, Z.; Liang, M.; Bahrami, B.; Wu, Y.; Wu, J.; Qiao, Q.; Yang, S. Dithieno[3,2-b:2′,3′-d]pyrrole-based hole transport materials for perovskite solar cells with efficiencies over 18%. J. Mater. Chem. A 2018, 6, 7950–7958. [CrossRef]

20. Oku, T.; Nakagawa, J.; Iwase, M.; Kawashima, A.; Yoshida, K.; Suzuki, A.; Akiyama, T.; Tokumitsu, K.; Yamada, M.; Nakamura, M. Microstructures and photovoltaic properties of polysilane-based solar cells. Jpn. J. Appl. Phys. 2013, 52, 04CR07. [CrossRef]

21. Shirahata, Y.; Yamamoto, Y.; Suzuki, A.; Oku, T.; Fukunishi, S.; Kohno, K. Effects of polysilane-doped spiro-OMeTAD hole transport layers on photovoltaic properties. Phys. Status Solidi A 2017, 214, 1600591. [CrossRef]

22. Taguchi, M.; Suzuki, A.; Oku, T.; Fukunishi, S.; Minami, S.; Okita, M. Effects of decaphenylcyclopentasilane addition on photovoltaic properties of perovskite solar cells. Coatings 2018, 8, 461. [CrossRef]

23. Oku, T.; Nomura, J.; Suzuki, A.; Tanaka, H.; Fukunishi, S.; Minami, S.; Tsukada, S. Fabrication and characterization of CH$_3$NH$_3$PbI$_3$ perovskite solar cells added with polysilanes. Int. J. Photoenergy 2018, 8654963. [CrossRef]

24. Taguchi, M.; Suzuki, A.; Oku, T.; Ueoka, N.; Minami, S.; Okita, M. Effects of annealing temperature on decaphenylcyclopentasilane-inserted CH$_3$NH$_3$PbI$_3$ perovskite solar cells. Chem. Phys. Lett. 2019, 737, 136822. [CrossRef]

25. Ueoka, N.; Oku, T.; Suzuki, A. Additive effects of alkali metals on Cu-modified CH$_3$NH$_3$PbI$_3$Cl$_6$ photovoltaic devices. RSC Adv. 2019, 9, 24231–24240. [CrossRef]

26. Ueoka, N.; Oku, T. Effects of co-addition of sodium chloride and copper(II) bromide to mixed-cation mixed-halide perovskite photovoltaic devices. ACS Appl. Energy Mater. 2020, 3, 7272–7283. [CrossRef]

27. Oku, T. Crystal structures of perovskite halide compounds used for solar cells. Rev. Adv. Mater. Sci. 2020, 59, 264–305. [CrossRef]
28. Travis, W.; Glover, E.N.K.; Bronstein, H.; Scanlon, D.O.; Palgrave, R.G. On the application of the tolerance factor to inorganic and hybrid halide perovskites: A revised system. *Chem. Sci.* 2016, 7, 4548–4556. [CrossRef]

29. Hoefler, S.F.; Trimmel, G.; Rath, T. Progress on lead-free metal halide perovskites for photovoltaic applications: A review. *Monatsh. Chem.* 2017, 148, 795–826. [CrossRef]

30. Tanaka, H.; Oku, T.; Ueoka, N. Structural stabilities of organic–inorganic perovskite crystals. *Jpn. J. Appl. Phys.* 2018, 57, 08RE12. [CrossRef]

31. Zhou, Y.; Yang, M.; Pang, S.; Zhu, K.; Padture, N.P. Exceptional morphology-preserving evolution of formamidinium lead triiodide perovskite thin films via organic-cation displacement. *J. Am. Chem. Soc.* 2016, 138, 5535–5538. [CrossRef] [PubMed]

32. Hu, M.; Liu, L.; Mei, A.; Yang, Y.; Liu, T.; Han, H. Electronic structures, spectroscopic properties, and thermodynamic effects of guanidinium addition to CH\(_3\)NH\(_3\)PbI\(_3\) perovskite solar cells added with ethylammonium bromide and formamidinium iodide. *Coatings* 2020, 10, 410. [CrossRef]

33. Suzuki, A.; Kato, M.; Ueoka, N.; Oku, T. Additive effect of formamidinium chloride in methylammonium lead halide compound-based perovskite solar cells. *J. Electron. Mater.* 2019, 48, 3900–3907. [CrossRef]

34. Wang, Y.; Zhang, T.; Li, G.; Xu, F.; Li, Y.; Yang, Y.; Zhao, Y. A mixed-cation lead iodide MA\(_{1−x}\)EA\(_x\)PbI\(_3\) absorber for perovskite solar cells. *J. Energy Chem.* 2018, 27, 215–218. [CrossRef]

35. Nishi, K.; Oku, T.; Kishimoto, T.; Ueoka, N.; Suzuki, A. Photovoltaic characteristics of CH\(_3\)NH\(_3\)PbI\(_3\) perovskite solar cells added with ethylammonium bromide and formamidinium iodide. *Coatings* 2020, 10, 410. [CrossRef]

36. Jodlowski, A.D.; Roldán-Carmona, C.; Grancini, G.; Salado, M.; Ralaiarisoa, M.; Ahmad, S.; Koch, N.; Camacho, L.; Miguel, G.; Nazeruuddin, M. Large guanidinium cation with methylammonium in lead iodide perovskites for 19% efficient solar cells. *Nat. Energy* 2017, 2, 972–979. [CrossRef]

37. Kishimoto, T.; Suzuki, A.; Ueoka, N.; Oku, T. Effects of guanidinium addition to CH\(_3\)NH\(_3\)PbI\(_3−x\)Cl\(_x\) perovskite photovoltaic devices. *J. Ceram. Soc. Jpn.* 2019, 127, 491–497. [CrossRef]

38. Liu, D.; Li, Q.; Wu, K. Ethylammonium as an alternative cation for efficient perovskite solar cells from first-principles calculations. *RSC Adv.* 2019, 9, 7356–7361. [CrossRef]

39. Arkan, F.; Mohammad, I. Computational modeling of the photovoltaic activities in EABX\(_3\) (EA = ethylammonium, B = Pb, Sn, Ge, X = Cl, Br, I) perovskite solar cells. *Comput. Mater. Sci.* 2018, 152, 324–330. [CrossRef]

40. Zhang, F.; Cong, J.; Li, Y.; Bergstrand, J.; Liu, H.; Cai, B.; Hajian, A.; Yao, Z.; Wang, L.; Hao, Y.; et al. A facile route to grain morphology controllable perovskite thin films towards highly efficient perovskite solar cells. *Nano Energy* 2018, 53, 405–414. [CrossRef]

41. Ueoka, N.; Oku, T.; Tanaka, H.; Suzuki, A.; Sakamoto, H.; Yamada, M.; Minami, S.; Miyauchi, S.; Tsukada, S. Effects of PbI\(_2\) addition and TiO\(_2\) electron transport layers for perovskite solar cells. *Jpn. J. Appl. Phys.* 2018, 57, 08RE05. [CrossRef]

42. Suzuki, A.; Miyamoto, Y.; Oku, T. Electronic structures, spectroscopic properties, and thermodynamic characterization of sodium or potassium-incorporated CH\(_3\)NH\(_3\)PbI\(_3\) by first principles calculation. *J. Mater. Sci.* 2020, 55, 9728–9738. [CrossRef]

43. Bush, K.A.; Frohna, K.; Prasanna, R.; Beal, R.E.; Leijtens, T.; Swifter, S.A.; McGhee, M.D. Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation. *ACS Energy Lett.* 2018, 3, 428–435. [CrossRef]

44. Liu, C.; Kong, W.; Li, W.; Chen, H.; Li, D.; Wang, W.; Xu, B.; Cheng, C.; Jen, A.K.Y. Enhanced stability and photovoltage for inverted perovskite solar cells via precursor engineering. *J. Mater. Chem. A* 2019, 7, 15880–15886. [CrossRef]

45. Zhang, M.; Yun, J.S.; Ma, Q.; Zheng, J.; Lau, C.F.J.; Deng, X.; Kim, J.; Kim, D.; Seidel, J.; Green, M.A.; et al. High-efficiency rubidium-incorporated perovskite solar cells by gas quenching. *ACS Energy Lett.* 2017, 2, 438–444. [CrossRef]

46. Turren-Cruz, S.H.; Saliba, M.; Mayer, M.T.; Juárez-Santiesteban, H.; Mathew, X.; Nienhaus, L.; Tress, W.; Erodic, M.P.; Sher, M.J.; Bavendi, M.G.; et al. Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells. *Energy Environ. Sci.* 2018, 11, 78–86. [CrossRef]
47. Zheng, F.; Chen, W.; Bu, T.; Ghiggino, K.P.; Huang, F.; Cheng, Y.; Tapping, P.; Kee, T.W.; Jia, B.; Wen, X. Triggering the passivation effect of potassium doping in mixed-cation mixed-halide perovskite by light illumination. *Adv. Energy Mater.* 2019, 9, 1901016. [CrossRef]

48. Liu, X.; Zhang, Y.; Shi, L.; Liu, Z.; Huang, J.; Yun, J.S.; Zeng, Y.; Pu, A.; Sun, K.; Hameiri, Z.; et al. Exploring inorganic binary alkaline halide to passivate defects in low-temperature-processed planar-structure hybrid perovskite solar cells. *Adv. Energy Mater.* 2018, 8, 1800138. [CrossRef]

49. Jalebi, M.A.; Garmaroudi, Z.A.; Pearson, A.J.; Divitini, G.; Cacovich, S.; Philippe, B.; Rensmo, H.; Ducati, C.; Friend, R.H.; Stranks, S.D. Potassium- and rubidium-passivated alloyed perovskite films: Optoelectronic properties and moisture stability. *ACS Energy Lett.* 2018, 3, 2671–2678. [CrossRef]

50. Machiba, H.; Oku, T.; Kishimoto, T.; Ueoka, N.; Suzuki, A. Fabrication and evaluation of K-doped MA$_{0.8}$FA$_{0.1}$K$_{0.1}$PbI$_3$(Cl) perovskite solar cells. *Chem. Phys. Lett.* 2019, 730, 117–123. [CrossRef]

51. Kandori, S.; Oku, T.; Nishi, K.; Kishimoto, T.; Ueoka, N.; Suzuki, A. Fabrication and characterization of potassium- and formamidinium-added perovskite solar cells. *J. Ceram. Soc. Jpn.* 2020, 128, in press.

52. Oku, T.; Zushi, M.; Imanishi, Y.; Suzuki, A.; Suzuki, K. Microstructures and photovoltaic properties of perovskite-type CH$_3$NH$_3$PbI$_3$ compounds. *Appl. Phys. Express* 2014, 7, 121601. [CrossRef]

53. Oku, T.; Ohishi, Y.; Ueoka, N. Highly (100)-oriented CH$_3$NH$_3$PbI$_3$(Cl) perovskite solar cells prepared with NH$_4$Cl using an air blow method. *RSC Adv.* 2018, 8, 10389–10395. [CrossRef]

54. Oku, T.; Ohishi, Y.; Suzuki, A.; Miyazawa, Y. Effects of NH$_4$Cl addition to perovskite CH$_3$NH$_3$PbI$_3$ photovoltaic devices. *J. Ceram. Soc. Jpn.* 2017, 125, 303–307. [CrossRef]

55. Oku, T.; Ohishi, Y. Effects of annealing on CH$_3$NH$_3$PbI$_3$(Cl) perovskite photovoltaic devices. *J. Ceram. Soc. Jpn.* 2018, 126, 56–60. [CrossRef]

56. Jung, D.H.; Park, J.H.; Lee, H.E.; Byun, J.; Im, T.H.; Lee, G.Y.; Seok, J.Y.; Yun, T.; Lee, K.J.; Kim, S.O. Flash-induced ultrafast recrystallization of perovskite for flexible light-emitting diodes. *Nano Energy* 2019, 61, 236–244. [CrossRef]

57. You, P.; Li, G.; Tang, G.; Cao, J.; Yan, F. Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells. *Energy Environ. Sci.* 2020, 13, 1187–1196. [CrossRef]

58. Chen, Q.; Zhou, H.; Song, T.B.; Luo, S.; Hong, Z.; Duan, H.S.; Dou, L.; Liu, Y.; Yang, Y. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. *Nano Lett.* 2014, 14, 4158–4163. [CrossRef]

59. Ueoka, N.; Oku, T. Stability characterization of PbI$_2$-added CH$_3$NH$_3$PbI$_3$-xCl$_x$ photovoltaic devices. *ACS Appl. Mater. Interfaces* 2018, 10, 44443–44451. [CrossRef]