An elementary solution to the Busemann-Petty problem

F. Barthe, M. Fradelizi and B. Maurey

Abstract

A unified analytic solution to the Busemann-Petty problem was recently found by Gardner, Koldobsky and Schlumprecht. We give an elementary proof of their formulas for the inverse Radon transform of the radial function ρ_K of an origin-symmetric star body K.

Let K and L be two symmetric convex bodies in \mathbb{R}^n such that for every hyperplane H through the origin

$$\text{Vol}_{n-1}(K \cap H) \leq \text{Vol}_{n-1}(L \cap H);$$

does it follow that $\text{Vol}_n(K) \leq \text{Vol}_n(L)$? The answer to this question of Busemann and Petty [BP] is negative for $n \geq 5$ (Gardner [G1], Papadimitrakis [P]) and positive for smaller dimensions (Gardner [G2] for $n = 3$, Zhang [Z2] for $n = 4$). A unified solution was recently provided by Gardner, Koldobsky and Schlumprecht in [GKS], using Fourier transform. We give an elementary proof of their formulas for the inverse Radon transform of the radial function ρ_K.

On \mathbb{R}^n, we denote the scalar product by $\langle \cdot, \cdot \rangle$ and the Euclidean norm by $| \cdot |$. We write B^n for the unit ball and S^{n-1} for the unit sphere, and v_n, s_{n-1} denote their respective volumes. If $K \subset \mathbb{R}^n$ is a star body, its radial function ρ_K is defined for every $x \in S^{n-1}$ by

$$\rho_K(x) = \sup \{ \lambda > 0; \lambda x \in K \}.$$

The connection between the Busemann-Petty problem and the spherical Radon transform R is due to Lutvak [L]. Recall that R acts on the space of continuous functions on S^{n-1} by setting

$$Rf(\xi) = \int_{S^{n-1} \cap \xi^\perp} f(u) \, d\sigma_{n-2}(u)$$

for every $\xi \in S^{n-1}$; here σ_{n-2} is the Haar measure of total mass s_{n-2} on principal $n-2$ spheres. It follows from Lutvak [L], Zhang [Z2], that the Busemann-Petty problem has a positive answer in \mathbb{R}^n if and only if every symmetric convex body K in \mathbb{R}^n, with positive curvature and C^∞ radial function, is such that $R^{-1}\rho_K$ is a non-negative function. In [GKS], the authors express $R^{-1}\rho_K$ in terms of

$$A_\xi(t) = \text{Vol}_{n-1}(K \cap (t\xi + \xi^\perp)), \quad \xi \in S^{n-1}$$
as follows:

Theorem Let $n \geq 3$. Let $K \subset \mathbb{R}^{n}$ be an origin-symmetric star body, with C^∞ radial function ρ_{K}.

If n is even, then

$$(-1)^{\frac{n}{2}} 2^{n} \pi^{n-2} \rho_{K} = R \left(\xi \mapsto A_{\xi}^{(n-2)}(0) \right).$$

If n is odd, then

$$\frac{(-1)^{\frac{n+1}{2}} (2\pi)^{n-1}}{(n-2)!} \rho_{K} = R \left(\xi \mapsto \int_{0}^{\infty} t^{-n+1} \left(A_{\xi}(t) - \sum_{k=0}^{\frac{n-3}{2}} A_{\xi}^{(2k)}(0) \frac{t^{2k}}{(2k)!} \right) dt \right).$$

Remark. Let us recall why this solves the case $n = 4$ of the Busemann-Petty problem ([Z2], [GKS]). If $n = 4$, then $R^{-1} \rho_{K}(\xi) = -A''_{\xi}(0)/16\pi^{2}$. If K is convex and symmetric, the latter is non-negative (by Brunn-Minkowski, the largest hyperplane section orthogonal to ξ is indeed the one through the origin).

Proof. We first compute the Radon transform of $\xi \mapsto A_{\xi}(t)$, for any given $t \geq 0$. Let $e \in S^{n-1}$ and set $f(t) := R(\xi \mapsto A_{\xi}(t))(e)$. We identify e^{\perp} and \mathbb{R}^{n-1}, and for $y \in \mathbb{R}^{n-1}$, we set $\phi(y) = \text{Vol}_{1}(K \cap (y + Re))$. Then

$$f(t) = \int_{S^{n-1}} \int_{x \in \mathbb{R}^{n}, \langle x, \xi \rangle = t} 1_{K}(x) d^{n-1}(x) d\sigma_{n-2}(\xi)$$

$$= \int_{S^{n-1}} \int_{y \in e^{\perp}, \langle y, \xi \rangle = t} \phi(y) d^{n-2}(y) d\sigma_{n-2}(\xi).$$

Considered as a function of g, the quantity

$$\int_{S^{n-1} \cap e^{\perp}} \int_{y \in e^{\perp}, \langle y, \xi \rangle = t} g(y) d^{n-2}(y) d\sigma_{n-2}(\xi)$$

(where g is defined on $e^{\perp} \simeq \mathbb{R}^{n-1}$) is linear, continuous and rotation invariant. Hence there exists a measure μ_{t} on \mathbb{R}^{+} such that for all g the previous expression is equal to

$$\int_{\mathbb{R}^{+}} \left(\int_{S^{n-2}} g(ru) d\sigma_{n-2}(u) \right) d\mu_{t}(r).$$

Applying the definition of μ_{t} with the function $g = 1_{r B^{n-1}}$ yields

$$s_{n-2} \mu_{t}([0, r]) = \int_{S^{n-2}} \int_{\langle y, \xi \rangle = t} 1_{r B^{n-1}}(y) d^{n-2}(y) d\sigma_{n-2}(\xi)$$

$$= s_{n-2} \nu_{n-2} 1_{\{t \leq r\}}(r^{2} - t^{2})^{\frac{n-2}{2}}.$$

Consequently, $d\mu_{t}(r) = s_{n-3} r(r^{2} - t^{2})^{\frac{n-4}{2}} \Phi(r) dr$. Thus we have proved that

$$f(t) = s_{n-3} \int_{t}^{\infty} r(r^{2} - t^{2})^{\frac{n-4}{2}} \Phi(r) dr,$$
We conclude by exchanging the order of the Radon transform and the derivative. The first term is a polynomial in t.

Let

$$
F(t) = \int_0^\infty r(r^2 - t^2)^{\frac{n-4}{2}} \Phi(r) \, dr - t^{n-2} \int_0^1 u(u^2 - 1)^{\frac{n-4}{2}} \Phi(u) \, du.
$$

Then the quantity $\frac{F(t) - P(t)}{t^{n-1}}$ is equal to

$$
\int_t^\infty \left(\sum_{k=\frac{n-1}{2}}^{\infty} a_k (t^{-1} r)^{n-2-2k} \right) \Phi'(r) \, dr - \int_0^t \left(\sum_{k=0}^{\frac{n-1}{2}} a_k (t^{-1} r)^{n-2-2k} \right) \Phi'(r) \, dr
$$

$$
= \int_1^\infty \left(\sum_{k=\frac{n-1}{2}}^{\infty} a_k u^{n-2-2k} \right) \Phi'(tu) \, du - \int_0^1 \left(\sum_{k=0}^{\frac{n-1}{2}} a_k u^{n-2-2k} \right) \Phi'(tu) \, du.
$$

Notice that Φ is even, compactly supported and C^∞ in some neighborhood of the origin. Our aim now is to relate $f(t)$ and $\Phi(0) = 2\rho_K(e) s_{n-2}$. The case $n = 4$ is very simple: $f(t) = 2\pi \int_0^\infty r \Phi(r) \, dr$, hence $f''(0) = -2\pi \Phi(0) = -16\pi^2 \rho_K(e)$. By exchanging the order of the Radon transform and the derivative, we conclude that ρ_K is the Radon transform of $\xi \mapsto -A''_\xi(0)/16\pi^2$.

If n is even:

$$
\frac{f(t)}{s_{n-3}} = \int_0^\infty r(r^2 - t^2)^{\frac{n-4}{2}} \Phi(r) \, dr - t^{n-2} \int_0^1 u(u^2 - 1)^{\frac{n-4}{2}} \Phi(u) \, du.
$$

The first term is a polynomial in t, of degree $n - 4$ and Φ is C^∞ in some neighborhood of 0, thus

$$
f''(0) = -s_{n-3}(n-2)! \int_0^1 u(u^2 - 1)^{\frac{n-4}{2}} \Phi(0) \, du = (-1)^{\frac{n-2}{2}} 2^n \pi^{n-2} \rho_K(e).
$$

We conclude by exchanging the order of the Radon transform and the derivative.

If n is odd: the basic principle is still very simple, but the technical details are slightly unpleasant. We shall begin by writing the proof as if Φ were C^∞ on \mathbb{R}; but this is not true, because there are points of e^\perp where our initial function ϕ is not differentiable, for example the points of the boundary of the projection of K on e^\perp; we shall indicate afterwards the standard approximation argument that fixes this difficulty. Integrating by parts, we get

$$
F(t) := -\frac{n-2}{s_{n-3}} f(t) = \int_t^\infty (r^2 - t^2)^{\frac{n-2}{2}} \Phi'(r) \, dr.
$$

For $k \geq 0$, let $a_k = (-1)^k \left(\frac{n-2}{k} \right) = (-1)^k \frac{1}{k!} \prod_{j=0}^{k-1} \left(\frac{n-2}{2} - j \right)$. Notice that $\sum |a_k| < \infty$. Let

$$
P(t) = \sum_{k=0}^{\frac{n-3}{2}} a_k t^{2k} \int_0^\infty r^{n-2-2k} \Phi'(r) \, dr.
$$

Then the quantity $\frac{F(t) - P(t)}{t^{n-1}}$ is equal to

$$
\int_t^\infty \left(\sum_{k=\frac{n-1}{2}}^{\infty} a_k (t^{-1} r)^{n-2-2k} \right) \Phi'(r) \, dr - \int_0^t \left(\sum_{k=0}^{\frac{n-1}{2}} a_k (t^{-1} r)^{n-2-2k} \right) \Phi'(r) \, dr
$$

$$
= \int_1^\infty \left(\sum_{k=\frac{n-1}{2}}^{\infty} a_k u^{n-2-2k} \right) \Phi'(tu) \, du - \int_0^1 \left(\sum_{k=0}^{\frac{n-1}{2}} a_k u^{n-2-2k} \right) \Phi'(tu) \, du.
$$
By Fubini’s theorem and since \(\int_0^\infty \Phi'(tu) \, dt = -\Phi(0)/u \), we get
\[
\int_0^\infty \frac{F(t) - P(t)}{t^{n-1}} \, dt = \Phi(0) \left(\sum_{k=0}^{\infty} \frac{a_k}{n - 2 - 2k} \right) = c_n \rho_K(e),
\]
which is finite. Thus, \(P \) is the Taylor polynomial of \(F \) of order \(n - 3 \) at zero, and the above integral represents the action of the distribution \(t_+^{n+1} \) on \(F \). We obtain therefore
\[
\langle t_+^{n+1}, R(\xi \rightarrow A_\xi (t))(e) \rangle = -c_n \frac{s_{n-3}}{n-2} \rho_K(e).
\]
A soft manner to compute \(c_n \) is to replace \(\Phi \) by \(G(x) = e^{-x^2} \) in the previous computation. Once again, we end the proof by exchanging the order in which the Radon transform and the distribution \(t_+^{n+1} \) act (we shall give some explanation about this at the end).

We now explain how to deal with the fact that \(\Phi \) is not \(C^\infty \) everywhere. To every continuous and even function \(\Phi_1 \) on \(\mathbb{R} \), which is \(C^\infty \) in a neighborhood of 0 and supported on a fixed interval \([-R, R]\) containing the support of \(\Phi \), we associate the even function \(F_1 \) on \(\mathbb{R} \) defined for \(t \geq 0 \) by
\[
F_1(t) := -(n - 2) \int_t^\infty r(r^2 - t^2)^{\frac{n-4}{2}} \Phi_1(r) \, dr.
\]
Let \(Q(u) \) be the Taylor polynomial of degree \(n - 3 \) for \((1 - u^2)^{(n-4)/2}\) at the origin, and let \(P_1(t) := -(n - 2) \int_0^\infty r^{n-3}Q(t/r)\Phi_1(r) \, dr \) (of course, \(F_1 = F \) and \(P_1 = P \) when \(\Phi_1 = \Phi \)). One can get easily the following estimates (where \(C(n, R) \) or \(C(a, n, R) \) denote constants depending only upon \(n, R \) or \(a, n, R \)):

1. First, \(\|F_1\|_\infty \leq R^{n-2} \|\Phi_1\|_\infty \);
2. For every \(t \), we have \(|P_1(t)| \leq C(n, R) (1 + |t|^{n-3}) \|\Phi_1\|_\infty \);
3. Finally, when \(\Phi_1 \) vanishes on some neighborhood \((-a, a)\) of 0, one can see that \(|F_1(t) - P_1(t)| \leq C(a, n, R) t^{n-1} \|\Phi_1\|_\infty \) for \(0 \leq t \leq 1 \).

These three estimates imply that the integral \(\int_0^\infty t^{-n+1}(F_1(t) - P_1(t)) \, dt \) converges to \(\int_0^\infty t^{-n+1}(F(t) - P(t)) \, dt \) when we let \(\Phi_1 \), equal to \(\Phi \) on a fixed interval \([-a, a]\) and supported on \([-R, R]\), tend uniformly to \(\Phi \).

Let us turn finally to the interchange of the actions of the Radon transform and the distribution \(t_+^{n+1} \) on the function \((\xi, t) \rightarrow A_\xi (t)\). It follows from our hypothesis that this function is \(C^\infty \) on \(S^{n-1} \times (-a, a) \) for some \(a > 0 \). Let us assume \(n = 5 \) for example. Since \(K \) is symmetric, we may write
\[
A_\xi(t) = f_0(\xi) + t^2 f_2(\xi) + t^4 g(\xi, t)
\]
where \(f_0, f_2 \) and \(g \) are continuous and bounded on \(S^{n-1} \) and \(S^{n-1} \times \mathbb{R} \) respectively. Since \(A_\xi \) vanishes for \(|t| > R \), we have \(g(\xi, t) = -t^{-4} f_0(\xi) - t^{-2} f_2(\xi) \) for \(t > R \), and
\[
\langle A_\xi, t_+^{n+4} \rangle = \int_0^R g(\xi, t) \, dt - \frac{R^{-3}}{3} f_0(\xi) - R^{-1} f_2(\xi),
\]
which shows that the interversion with the integral over $\xi \in S^{n-1}$ causes no trouble. □

References

[BP] H. Busemann and C. M. Petty, Problems on convex bodies, Math. Scand. 4 (1956), 88–94.

[G1] R. J. Gardner, Intersection bodies and the Busemann-Petty problem, Trans. Amer. Soc. 342 (1994), 435–445.

[G2] R. J. Gardner, A positive answer to the Busemann-Petty problem in three dimensions, Annals of Math. 140 (1994), 435–447.

[GKS] R. J. Gardner, A. Koldobsky and T. Schlumprecht, An analytic solution to the Busemann-Petty problem on sections of convex bodies, Preprint.

[L] E. Lutwak, Intersection bodies and dual mixed volumes, Advances in Math. 71 (1988), 232–261.

[P] M. Papadimitrakis, On the Busemann-Petty problem about convex, centrally symmetric bodies in \mathbb{R}^n, Mathematika 39 (1992), 258–266.

[Z1] G. Zhang, Centered bodies and dual mixed volumes, Trans. Amer. Soc. 345 (1994), 777–801.

[Z2] G. Zhang, A positive answer to the Busemann-Petty problem in four dimensions, Preprint.

Mathematics Subject Classification: 44A12, 52A20, 52A38.

Keywords: convex body, star body, Busemann-Petty problem, Radon transform.

Equipe d’Analyse et Mathématiques Appliquées
Université de Marne la Vallée
Boulevard Descartes, Cité Descartes, Champs sur Marne
77454 Marne la Vallée Cedex 2, FRANCE

barthe@math.univ-mlv.fr
fradeliz@math.univ-mlv.fr
maurey@math.univ-mlv.fr