Toxicity of N-Nitrosodimethylamine and SiO₂ nanoparticles to HaCaT and caco-2 cell lines found in waste water treatment

Abdulmajeed G. Almutary* and Barbara J. S. Sanderson

Flinders University, School of Medicine, Nursing and Health Sciences Building, South Australia.

*Correspondence: Almu0047@flinders.edu.au

Abstract
Nanoparticles (NPs) offer the possibility of safe removal of pollutants and microbes in water treatment and purification. Nowadays, NPs are used in the detection and purification of water from chemicals and biological substance such as metals (cadmium, copper, lead and zinc) nutrients (nitrate, nitrite ammonia and phosphate) bacteria, viruses, parasite and antibiotics. Metal containing NPs are among the four classes of particles used commonly in water treatment. Membrane technologies such as Ultrafiltration (UF), Nanofiltration (NF) and Reverse Osmosis (RO) have been widely used all over the world especially for water treatment and desalination. NPs after have been incorporated into membranes gained attention due to its ability to enhance membrane permeability, mechanical properties and selectivity in some cases. However, these membranes are suspected to fouling causing NPs and other contaminate to reach waterways. In this study, we tested the toxicity of SiO₂ NPs synthesised by Stöber method and N-Nitrosodimethylamine (NDMA) as potent known carcinogens forms during chlorination on HaCaT and caco-2 cell lines for 4, 24 and 48h using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays also the morphology and size of SiO₂ determined by Scanning electron microscopy (SEM). After exposure to SiO₂ NPs (concentrations between 0.05-2 mg/mL), the concentration of 2 mg/mL inactivated LDH in both cell lines; however, it did not reduce the metabolic activity of both cell lines when MTT assay used. SEM revealed spherical and uniformed SiO₂ particles with size 200 nm in diameter. NDMA (concentrations between 0.1-1000 µg/mL) inactivated LDH leakage in HaCaT and caco-2 also reduced the metabolic activity of HaCaT cell line at 48 hours exposure. The outcome of this study suggest that a concentration of SiO₂<2 mg/mL used in water treatment can reduce the risk of nanomaterials toxicity to human and possibly the ecosystem. Our results urge for more studies on the effect of nanomaterials to the aquatic environment and human exposure to NPs.

Keywords: Water contamination, nanoparticles, SiO₂, N-Nitrosodimethylamine, ultrafiltration, reverse osmosis, toxicity, MTT assay, LDH assay

Background
The rapid development of nanoparticles (NPs) applications have resulted in enhancing the process of products manufacturing, developed products that reduce the concentrations of toxic compounds and assisted in the attainment of water quality standards and health advisories [1]. Therefore, it is necessary to investigate the possible risks related to these small particles to human in environmental exposure. Microfiltration (MF) and Ultrafiltration (UF) are one of the most effective methods for raw water treatment [2]. The majority of UF membranes are formed by hydrophobic polymers such as polysulfone (PS), polyethersulfone (PES), polypropylene (PP), polyethylene (PE) and polyvinylidene fluoride (PVDF) [2]. PES is the most used as UF membrane due to its excellent thermal, mechanical properties and chemical resistance. However, the PES is hydrophobic in nature and is suspected to fouling [3]. The main interest in the clearing efficiency of nanoparticles within sewage plant is to prevent nanomaterials from reaching the waterways [4]. Recently, possible toxic effect of carbon nanotubes to aquatic species such as larval Zebrafish and Daphina Magna has been studied [5,6]. Another study investigated the physiological changes and toxicity to Daphina Magna exposed to Titanium.
dioxide (TiO₂) NPs which is one of the most important metal oxide nanoparticles [7]. These studies urge for clarifying the entrances of nanomaterials into aquatic environment. So far, little is known about the nanomaterials reaching the waterways [8]. Some studies criticised the standard wastewater treatment as it poorly suited to capture Nanomaterials [8]. Moreover, Wiesner et al. (2008) reported that waterways contaminated with nanomaterials water desalination plants may become problematic [9]. Due to the lack of experimental data, the method of nanomaterials disposal is not understood clearly [9,10]. Obviously, this will be a problematic because there is no sufficient data explaining the risk of inorganic nanoparticles dispersed in the environment or public sewage treatment plants. N-nitrosodimethylamine (NDMA) is well known for its carcinogenic properties [11,12]. For many years, NDMA was used in pesticide (nematicide), plasticizer for rubber, battery component, antioxidant, lubricant additive, and in polymers [13]. Recently, some studies revealed that water treatment polymers such as poly (epichlorohydrin dimethylamylamine) (polyamide) and poly (diallyldimethylammonium chloride) (polyDADMAC) may form NDMA if contacted with chloramine water [14]. In addition, NDMA is mainly used in research to induce cancer in mice [15]. Thus, the health concerns of this compound has been the focus for some industries after recognised as disinfection of drinking and wastewater containing chloride and chloramines [16]. Recently, successful attempts have been made to add nanoparticles to polymers in membrane synthesis for removing water contaminants [17,18].

Ceramic membranes have been made with catalytic nanoparticles for synergistic effects on the membrane enhancement [17]. However, other studies suggest that silica polymerisation in the presence of polyvalent cations and anions in Reverse Osmosis (RO) systems are the cause of membranes fouling [19]. RO is by far the most effective method in removing dissolved silica from brackish water. The present study investigates the toxicity of NDMA as a known water contaminant and silica NPs as newly NPs used in membranes separation and found in high concentrations in brackish water [20]. NDMA and silica NPs exposed to human skin keratinocytes (HaCaT) and human colon carcinoma (caco-2) and human colon carcinoma (caco-2), the toxicity determined by MTT assay [21]. A silica precursor of TEOS (1 mL) was added rapidly to a mixture of 95% ethyl alcohol (10 mL) and Milli-Q water (3 mL). The reaction was allowed to proceed for 30 min with mild stirring at 50°C to obtain a homogeneous mixture. Subsequently, ammonia solution (30%) (1 mL) was injected drop-wise over an 8 min period with stirring. The mixture gradually changed from transparent to milky as the nanoparticles formed. The mixture was then stirred for a further 2 h. The resultant precipitate was then centrifuged at 101890 G and washed with Milli-Q water four times. Finally, the silica particles were dried overnight at 75°C.

Preparation of SiO₂ Nanoparticles
Silica NPs were synthesized by Stöber method [21]. A silica precursor of TEOS (1 mL) was added rapidly to a mixture of 95% ethyl alcohol (10 mL) and Milli-Q water (3 mL). The reaction was allowed to proceed for 30 min with mild stirring at 50°C to obtain a homogeneous mixture. Subsequently, ammonia solution (30%) (1 mL) was injected drop-wise over an 8 min period with stirring. The mixture gradually changed from transparent to milky as the nanoparticles formed. The mixture was then stirred for a further 2 h. The resultant precipitate was then centrifuged at 101890 G and washed with Milli-Q water four times. Finally, the silica particles were dried overnight at 75°C.

Nanoparticle characterization
Scanning electron microscopy (SEM) was performed Silica NPs. The samples were sputter coated with a 10 nm layer of platinum using a Qromtech K757X Sputter coater. The images of the sample were collected using a CAMScan MX2500 SEM with a field emission source at an accelerating voltage of 10 kV.

Cell culture
HaCaT and caco-2 cell lines were obtained from American Type Culture Collection (ATCC). HaCaT cells were grown in RPMI and caco-2 cells in DMEM medium with 10% fetal bovine serum (FBS) and incubated at 37°C, 5% CO₂ in a humidified incubator. Cells growth started from 2x10⁶ cells/ml and subcultured when confluence reached 60-70% every 2-3 days.

For toxicity assays
HaCaT and caco-2 cells were seeded at 10,000 cells/well in a 96-flat plate then incubated for 18h to allow adherence. NDMA and SiO₂ were diluted in fresh medium. After incubation, cells were treated with 6 concentrations of silica nanoparticles (0.05-2 mg/mL) and five concentration of NDMA (0.1-1000 µg/mL) for 4, 24 and 48h. The solution was removed and the cells were washed twice with phosphate buffered saline (PBS) twice to remove excess SiO₂ residue.

Materials and methods
Reagents
All reagents were from Sigma Aldrich, Australia unless otherwise stated. These included, (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT, β-nicotinamide adenine dinucleotide hydrate (NADH), β-nicotinamide adenine dinucleotide (NAD), phenazinemethosulfate (PMS), Trizma base, TrizmaHCl, lithium lactate, iodonitrotetrazolium chloride (INT). The culture mediums used were Dulbecco’s Modified Eagle Medium (DMEM) for caco-2 cell line and Roswell Park Memorial Institute (RPMI) for HaCaT cell line with 10% heat-inactivated fetal bovine serum (FBS) (HYQ®, Hyclone, Utah, USA), penicillin and streptomyacin and Triton™ X-100 (positive control). Millipore Milli-Q water with resistivity=18.2 MΩ.cm was used for all the experiments. N-Nitrosodimethylamine solution was provided by Flinders University School of Chemical and Physical.
added to each well at 0.5 mg/mL, and then plates were incubated at 37°C for 4h, then 80 µl of 20% SDS in 0.02 M HCl was added to each well. The plates were kept in the dark at room temperature for overnight. Absorbance was read at a primary wavelength of 570 nm and a reference wavelength of 630 nm by ELISA reader. In each experiment a standard curve was run to convert the OD values to cells/well.

Lactate Dehydrogenase leakage assay
The leakage of LDH in HaCaT and caco-2 cells was detected by LDH assay. Cells were plated into the 96-well plates and exposed to concentrations of SiO2 and NDMA as described previously. At the end of exposure time, 50 µl of aliquot cell medium was used for LDH activity analysis. The absorption was measured using ELISA reader at primary wavelength 490 nm and 630 nm as a reference wavelength. LDH assay experiments were programed in triplicate.

Statistical analysis
The data were expressed as mean +/-SD of at least three independent experiments using one-way analysis of variance (ANOVA) and Tukey–Kramer multiple comparisons test using SPSS software to compare exposure groups. All comparisons were considered significant level \(p<0.05 \).

Result and discussion
Exposure of monodisperse spherical SiO\(_2\) (size 200 nm in diameter) to HaCaT and caco-2 cell lines for 4, 24 and 48h did not interrupt the cells growth. LDH leakage was clearly low at concentrations <2mg/mL in both cell lines. Similarly, all concentrations did not reduce the cell growth using MTT assay in both cell lines compared to positive control Figure 1. Until now, researchers cannot decide with each other on dose and physiochemical properties of NPs that could cause biological respond [24]. Some related the toxicity of NPs to the particle total weight, others to the number of particle per volume [25]. Recently, some studies suggested that the logical way to define particles toxicity is to calculate the dose based on the NPs total surface area also other studies on SiO2 NP found that the shape of particle is the main cause of particle pathogenesis of lung diseases [26-29]. The ecotoxicological impact of SiO\(_2\) NPs on freshwater fish has not been completely understood [30]. Therefore, the haematological, ionoregulatory and enzymological toxicity effect of silica NPs concentrations 1, 5 and 25 mg L\(^{-1}\) were evaluated on freshwater teleost fish Labeorohita [30]. The exposure to Silica NPs concentrations has altered the values of haematological parameters such as haemoglobin (Hb) red blood cells, white blood cells, and plasma electrolytes. The plasma electrolytes such as potassium, sodium, chloride levels and Na\(^+\)/K\(^-\) ATPase activity were shifted by all Silica NPs concentrations through all study exposure times. Moreover, the effect of the Silica NPs was found to be time and concentration dependent [30]. In another study, twelve fish cell lines taken from six species which is rainbow

![Figure 1. The Effect of SiO\(_2\) NPs on HaCaT and caco-2 cell viability using MTT assay also LDH leakage assessed by LDH assay.](image-url)

HaCaT and caco-2 cells were exposed to six concentrations of SiO\(_2\). Data are expressed as means±S.D. from three independent experiments. *\(p<0.05 \) compared with control group.
trout, zebrafish, fathead minnow, haddock and American eel tested for metabolic activity using Alamar Blue assay [31]. The toxicity of SiO₂ NPs (16, 24, and 44 nm in diameter) was related to physiochemical properties such as the size and temperature also dose dependent and tissue specific. SiO₂ NPs (size 44 nm in diameter) concentrations greater than 100 µg/mL for 24h exposure reduced the fish cell lines viability by 50% [31]. Smaller NPs (size 16 nm) were found to induce more toxicity than larger NPs. In addition to size related toxicity, cells derived from external lining epithelial tissues (skin, gills) were more effected by SiO₂ NPs than cells taken from internal tissues (brain, liver, intestine, gonads) [31]. SEM image of the SiO₂ synthesised by Stöber method showed a monodisperse spherical silica particle with a size 200 nm in diameter Figures 2 and 3.

On the other side, exposure of NDMA (concentrations between 0.1-1000 µg/mL) to HaCaT and caco-2 cell lines activated LDH leakage in all concentrations but mostly observed at 4h exposure. The LDH leakage by NDMA reduced after 24 and almost 5% at 48h. Comparably, NDMA interacted the metabolic activity of HaCaT cell line at concentration 1µg/mL and higher after 48h exposure, which show clearly the toxic impact. NDMA formation potential (FP) test is a fast and simple method to detect NDMA precursor concentrations in wastewater [32]. This method was applied on a tertiary wastewater treatment plants using an Ultrafiltration-Reverse Osmosis membranes. The results revealed that the NDMA FP from a variety of water samples were at the ranges between 350 to 1020±20 ng/L [32]. Furthermore, the fate of NDMA precursors was also investigated over two different points of advanced water treatment plants. The final results showed that more than 98.5±0.5% of NDMA precursors were removed by RO [32]. In California, one of the most used herbicides are phenylurea herbicide diuron had a structure that might be an NDMA precursor. NDMA precursors then consistently were found even in the absence of added ammonia which is a cause of nitro-nitrogen formation during chloramination. This is due to the both nitrogen atoms were donated by diuron during chlorination even where there is no ammonia exist.

Conclusion

In summary, SiO₂ NPs synthesised by Stöber method resulted in a monodisperse spherical particle with size 200 nm in diameter.
eter analysed by SEM. Due to multiple factors the membrane can foul and nanoparticles can reach the waterways causing adverse effect on ecosystem. In this study, we tested the toxicity of SiO2 NPs used in water filtration and NDMA as a member of a family of extremely potent carcinogens found in drinking water contaminant resulting from reactions occurring during chlorination. After 4, 24 and 48h exposure of SiO2 (concentrations range between 0.05-2 mg/mL) to HaCaT and caco-2 cell lines using MTT and LDH assays only 2 mg/mL increased LDH leakage compared to positive control. NDMA activated LDH lines using MTT and LDH assays only 2 mg/mL increased LDH leakage compared to positive control. Our finding suggests that SiO2 imposed less environmental risk to humans and animals at the mentioned concentrations.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Authors’ contributions	AGA	BJSS
Research concept and design	✓	✓
Collection and/or assembly of data	✓	--
Data analysis and interpretation	✓	✓
Writing the article	✓	--
Critical revision of the article	✓	✓
Final approval of article	✓	✓
Statistical analysis	✓	--

Acknowledgement

The authors would like to thank the Ministry of Higher Education, Saudi Arabia, for partial support of this project.

Publication history

Editor: David Han, University of Texas at San Antonio, USA.
Received: 26-Mar-2017 Final Revised: 24-Apr-2017
Accepted: 02-May-2017 Published: 17-May-2017

References

1. Salata O. Applications of nanoparticles in biology and medicine. J Nanobiotechnology. 2004; 2:3. [Article] [PubMed Abstract] [PubMed FullText]
2. Shen Jn et al. Preparation and characterization of PES–SiO2 organic–inorganic composite ultrafiltration membrane for raw water pretreatment. Chemical engineering journal. 2011; 168:1272-1278. [Article]
3. Darracq G et al. Clarification: Impact on Ultrafiltration Membrane Fouling in Drinking Water Treatment. Journal Awwa. 2015; 107:12. [Article]
4. Dahle JT and Arau Y. Environmental geochemistry of cerium: applications and toxicity of cerium oxide nanoparticles. Int J Environ Res Public Health. 2015; 12:1253-78. [Article] [PubMed Abstract] [PubMed FullText]
5. Farre M, Gajda-Schrantz K, Kandiani L and Barcelo D. Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem. 2009; 393:81-95. [Article] [PubMed]
6. Baun A, Hartmann NB, Grieger K and Kusk KO. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology. 2008; 17:387-95. [Article] [PubMed]
7. Lovern SB, Stricker JR and Klaper R. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60Hxc270Hx). Environ Sci Technol. 2007; 41:4465-70. [PubMed Abstract] [PubMed FullText]
8. Lynch I. Water governance challenges presented by nanotechnologies: tracking, identifying and quantifying nanomaterials (the ultimate disparate source) in our waterways. Hydrology Research. 2016; 107. [Article]
9. Wiesner MR, Horst EM, Brant JA and Espinasse B. Nanomaterials as possible contaminants: the fullerene example. Water Sci Technol. 2008; 57:305-10. [Article] [PubMed]
10. Thomas K, Aguar P, Kawasaki H, Morris J, Nakashini J and Savage N. Research strategies for safety evaluation of nanomaterials, part VIII: International efforts to develop risk-based safety evaluations for nanomaterials. Toxicol Sci. 2006; 92:23-32. [Article] [PubMed]
11. Halden RU. Epistemology of contaminants of emerging concern and literature meta-analysis. J Hazard Mater. 2015; 282:2-9. [Article] [PubMed Abstract] [PubMed FullText]
12. Sanagi M.M et al. Nano iron porphyrinopoly (amidamine) dendrimer mobil composition matter-41 for extraction of N-nitrosodiphenylamine nitrosamine from water samples. Microporous and Mesoporous Materials. 2015; 213:68-77. [Article]
13. Dimethyltriamine, S., No, and S. No, N-Nitrosodimethylamine (NDMA).
14. Zhang T, Ge J, Hu Y, Zhang Q, Aloni S and Yin Y. Formation of hollow silica colloids through a spontaneous dissolution-regrowth process. Angew Chem Int Ed Engl. 2008; 47:5806-11. [Article] [PubMed]
15. Bogovski P and S. Bogovski. Special report animal species in which n-nitroso compounds induce cancer. International Journal of Cancer. 1981; 27:471-474. [Article]
16. Mitch W.A et al. N-nitrosodimethylamine (NDMA) as a drinking water contaminant: a review. Environmental Engineering Science. 2003; 20:389-404. [Article]
17. Kim J and Van der Bruggen B. The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ Pollut. 2010; 158:2335-49. [Article] [PubMed]
18. Mahapatra S.S and N. Karak. Silver nanoparticle in hyperbranched polyamine: synthesis, characterization and bacterial activity. Materials Chemistry and Physics. 2008; 112:1114-1119. [Article]
19. Koo T, Y. Lee and R. Sheikholeslami. Silica fouling and cleaning of reverse osmosis membranes. Desalination. 2001; 139:43-56.
20. Patil S.S et al. Nanoparticles for environmental clean-up: a review of potential risks and emerging solutions. Environmental Technology & Innovation. 2016; 5:10-21. [Article]
21. Ibrahim I.A, A. Zikry and M.A. Sharaf. Preparation of spherical silica nanoparticles: Stober silica. J. Am. Sci. 2010; 6:985-989.
22. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983; 65:55-63. [Article] [PubMed]
23. Young FM, Phungtamdet W and Sanderson BJ. Modification of MTT assay conditions to examine the cytotoxic effects of amitraz on the human lymphoblastoid cell line, WIL2NS. Toxicol In Vitro. 2005; 19:1051-9. [Article] [PubMed]
24. Park EJ, Choi J, Park YK and Park K. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology. 2008; 245:90-100. [Article] [PubMed]
25. Peyron MA, Mishellany A and Woda A. Particle size distribution of food boluses after mastication of six natural foods. J Dent Res. 2004; 83:578-82. [Article] [PubMed]
26. Liu Y et al. Nanoparticles in wastewaters: hazards, fate and remediation. Powder Technology. 2014; 255:149-156. [Article]
27. Bowman CR, Bailey FC, Eldred-Erickson M, Niam AM and Otter RR. Effects of silver nanoparticles on zebrafish (Danio rerio) and Escherichia coli (ATCC 25922): a comparison of toxicity based on total surface area
versus mass concentration of particles in a model eukaryotic and prokaryotic system. Environ Toxicol Chem. 2012; 31:1793-800. | Article
28. Huang S.M et al. Metabolomics Studies Show Dose-Dependent Toxicity Induced by SiO2 Nanoparticles in MRC-5 Human Fetal Lung Fibroblasts. Advanced healthcare materials. 2012; 1:779-784. | Article
29. Brown S.C. et al. Influence of shape, adhesion and simulated lung mechanics on amorphous silica nanoparticle toxicity. Advanced Powder Technology. 2007; 18:69-79. | Article
30. Krishna Priya K, Ramesh M, Saravanan M and Ponpandian N. Ecological risk assessment of silicon dioxide nanoparticles in a freshwater fish Labeo rohita: Hematology, ionoregulation and gill Na(+)/K(+) ATPase activity. Ecotoxicol Environ Saf. 2015; 120:295-302. | Article | PubMed
31. Vo NT, Bufalino MR, Hartlen KD, Kitaev V and Lee LE. Cytotoxicity evaluation of silica nanoparticles using fish cell lines. In Vitro Cell Dev Biol Anim. 2014; 50:427-38. | Article | PubMed
32. Farre MJ, Keller J, Holling N, Poussade Y and Gernjak W. Occurrence of N-nitrosodimethylamine precursors in wastewater treatment plant effluent and their fate during ultrafiltration-reverse osmosis membrane treatment. Water Sci Technol. 2011; 63:605-12. | Article | PubMed

Citation:
Almutary AG and Sanderson BJS. Toxicity of N-Nitrosodimethylamine and SiO2 nanoparticles to HaCaT and caco-2 cell lines found in waste water treatment. J Toxicol Health. 2017; 4:4. http://dx.doi.org/10.7243/2056-3779-4-4