Prediction of Functional Class of Proteins and Peptides Irrespective of Sequence Homology by Support Vector Machines

Zhi Qun Tang¹, Hong Huang Lin¹, Hai Lei Zhang¹, Lian Yi Han¹, Xin Chen² and Yu Zong Chen¹,³

¹Department of Pharmacy and Department of Computational Science, National University of Singapore, Republic of Singapore, 117543. ²Department of Biotechnology, Zhejiang University, Hang Zhou, Zhejiang Province, P. R. China, 310029. ³Shanghai Center for Bioinformatics Technology, Shanghai, P. R. China, 201203.

Abstract: Various computational methods have been used for the prediction of protein and peptide function based on their sequences. A particular challenge is to derive functional properties from sequences that show low or no homology to proteins of known function. Recently, a machine learning method, support vector machines (SVM), have been explored for predicting functional class of proteins and peptides from amino acid sequence derived properties independent of sequence similarity, which have shown promising potential for a wide spectrum of protein and peptide classes including some of the low- and non-homologous proteins. This method can thus be explored as a potential tool to complement alignment-based, clustering-based, and structure-based methods for predicting protein function. This article reviews the strategies, current progresses, and underlying difficulties in using SVM for predicting the functional class of proteins. The relevant software and web-servers are described. The reported prediction performances in the application of these methods are also presented.

Keywords: machine learning method, peptide function, protein family, protein function, protein function prediction, support vector machines

Introduction

Functional clues contained in the amino acid sequence of proteins and peptides (Bork et al. 1998; Eisenberg et al. 2000; Bock and Gough, 2001; Lo et al. 2005) have been extensively explored for computer prediction of protein function and functional peptides. Sequence similarity (Baxevanis, 1998; Bork and Koonin, 1998; Schuler, 1998), motifs (Hodges and Tsai, 2002), clustering (Enright and Ouzounis, 2000; Enright et al. 2002; Fujiwara and Asogawa, 2002), and evolutionary relationships (Eisen, 1998; Benner et al. 2000) are typical examples of highly successful methods for facilitating functional prediction of proteins and peptides, which are primarily based on some form of sequence similarity or clustering. However, these methods tend to become less effective in the absence of sufficiently clear sequence similarities (Eisen, 1998; Rost, 2002; Whisstock and Lesk, 2003). In a comprehensive evaluation of sequence alignment methods against 15,208 enzymes labeled with an International Enzyme Commission EC class index, it has been found that approximately 60% of the EC classes containing two or more enzymes could not be perfectly discriminated by sequence similarity at any threshold (Shah and Hunter, 1997). The low and non-homologous proteins of unknown function constitute a substantial percentage, up to 20%~100%, of the open reading frames (ORFs) in many of the currently completed genomes (Han et al. 2004a). Therefore, it is desirable to explore other methods that are less dependent or independent of sequence or structural similarity (Smith and Zhang, 1997; Eisenberg et al. 2000).

In the last few years, there have been significant progresses in the development of alternative functional prediction methods to reduce the dependence on sequence similarity and clustering. For instance, non-sequence features such as structural features (Teichmann et al. 2001; Todd et al. 2001), interaction profiles (Aravind, 2000; Bock and Gough, 2001), and protein/gene fusion data (Enright et al. 1999; Marcotte et al. 1999) have been used for predicting protein functions. Machine learning methods have been explored for predicting protein function from amino acid sequence derived structural and physicochemical properties (des Jardins et al. 1997; Jensen et al. 2002; Karchin et al. 2002; Jensen...
et al. 2003; Cai et al. 2003; Cai and Lin, 2003; Cai et al. 2004b; Bhasin and Raghava, 2004a; Han et al. 2004b; Cai and Chou, 2005; Guo et al. 2006). In particular, one of the machine learning methods, support vector machines (SVM), have shown promising potential for predicting proteins and peptides of various biochemical classes (e.g. receptors (Bhasin and Raghava, 2004a; Bhasin and Raghava, 2004b; Yabuki et al. 2005), nucleic acid or lipid binding proteins (Cai and Lin, 2003; Bhardwaj et al. 2005; Guo et al. 2006; Lin et al. 2006c), enzymes (Cai et al. 2004b; Cai and Chou, 2005; Dobson and Doig, 2005)), therapeutic groups (e.g. hormone proteins (Jensen et al. 2003), stress response proteins (Jensen et al. 2003), cytokines (Huang et al. 2006), MHC-binding peptides (Bhasin and Raghava, 2004c)), and other broadly defined functional classes (e.g. crystallizable proteins (Smialowski et al. 2006), mitochondrial proteins (Kumar et al. 2006), and functional classes in yeast (Cai and Doig, 2004)).

This article reviews the strategies, performances, current progresses and difficulties in applying SVM for predicting various functional classes and interaction profiles of proteins and peptides. Algorithms for representing proteins and peptides by using amino acid sequence derived structural and physicochemical descriptors (Bock and Gough, 2001; Karchin et al. 2002; Cai et al. 2003; Gasteiger, 2005) are also discussed. Web servers for facilitating the computation of these descriptors and for predicting the functional classes of proteins and peptides by the SVM method are discussed.

Functional Classes of Proteins and Peptides

Apart from sequence and structural classes, proteins have been classified into functional classes. Active sites of the members of each class share common structural and physicochemical properties to support the common functionality, which can be explored for predicting the function of proteins from amino acid sequence derived structural and physicochemical descriptors independent of sequence homology. One example is enzyme families. Enzymes represent the largest and most diverse group of all proteins, catalyzing chemical reactions in the metabolism of all organisms. Based on their catalyzed chemical reactions, enzymes can be divided into three levels of functional classes. The first level is composed of 6 super families (EC1 oxidoreductases, EC2 transferases, EC3 hydrolases, EC4 lyases, EC5 isomerases, and EC6 ligases), the second level contains 63 families (such as EC3.4 hydrolases acting on peptide bonds and EC4.1 carbon-carbon lyases), and the third level contains 254 subfamilies (such as EC2.7.1 phosphotransferases with an alcohol group as acceptor). Active sites of enzymes are inherently reactive environments packed with specific types of amino acid residues and cofactors, and these and other structural features facilitate binding and catalysis of specific types of substrates (Cai et al. 2004b).

Another example is DNA binding proteins, which play critical roles in regulating such genetic activities as gene transcription, DNA replication, DNA packaging, and DNA repair (Lewin, 2000). Prediction of DNA-binding proteins is important for studying proteins involved in genetic regulation (Aguilar et al. 2002; Stawiski et al. 2003; Sarai and Kono, 2005). DNA recognition by proteins is primarily mediated by combination of such structural and physicochemical features as specific DNA binding domains (Bewley et al. 1998; Garvie and Wolberger, 2001), helix structures (Garvie and Wolberger, 2001), minor groove binding architectures (Bewley et al. 1998), asymmetric phosphate charge neutralization (Bewley et al. 1998), conserved amino acids (Luscombe and Thornton, 2002), hydrogen bonds (Luscombe et al. 2001), water-mediated bonds (Fujii et al. 2000; Luscombe et al. 2001), and indirect recognition mechanism (Steffen et al. 2002). DNA-binding proteins can be further divided into 9 major functional classes plus several smaller ones (such as covalent protein-DNA linkage proteins and terminal addition proteins). The 9 major classes are DNA condensation (for wrapping of DNA around histones), DNA integration (mediating the insertion of duplex DNA into a chromosome), DNA recombination (for cleaving and rejoining DNA), DNA repair, DNA replication, DNA-directed DNA polymerase (catalyzing DNA synthesis by adding deoxyribonucleotide units to a DNA chain using DNA as a template), DNA-directed RNA polymerase (catalyzing RNA synthesis by adding ribonucleotide units to a RNA chain using DNA as a template), repressor (interfering with transcription by binding to specific sites on DNA), and transcription factor.

The third example is transporter families. Transporters play key roles in transporting cellular molecules across cell and cellular compartment
boundaries, mediating the absorption and removal of various molecules, and regulating the concentration of metabolites and ionic species (Hediger, 1994; Seal and Amara, 1999; Borst and Elférink, 2002). Specific transporters have been explored as therapeutic targets (Dutta et al. 2003; Joet et al. 2002; Birch et al. 2004) and a variety of transporters are responsible for the absorption, distribution and excretion of drugs (Kunta and Sinko, 2004; Lee and Kim, 2004). Thus functional assignment of transporters is important for facilitating drug discovery and research of genomics, cellular processes and diseases. There are active and passive transporters. Active transporters couple solute transport to the input of energy and these can be divided into two classes: ion-coupled and ATP-dependent transporters. Ion-coupled transporters link uphill solute transport to downhill electrochemical ion gradients. ATP-dependent transporters are directly energized by the hydrolysis of ATP and they transport a heterogeneous set of substrates. Passive transporters include facilitated transporters and channels, which allow the diffusion of solutes across membranes. These transporters evolve from common themes into families of different architectures (Hediger, 1994; Driessen et al. 2000; Saier, 2000). Transporters are divided into TC families based on their mode of transport, energy coupling mechanism, molecular phylogeny and substrate specificity (Saier, 2000). TC families are classified at four levels (TC class, TC sub-class, TC family, and TC sub-family) as indicated by a specific TC number TC I.X.J.K.L. Here I = 1, ..., 9 represents each of the 9 TC classes, X = A, B, C, D, E, ... represents each of the TC sub-classes that belong to a TC class, J = 1, ... represents each of the TC families that belong to a TC sub-class, K = 1, ... represents each of the TC sub-families that belong to a TC family, and L = 1, ... represents individual transporters under a sub-family.

The fourth example is lipid-binding proteins, which play important roles in cell signaling and membrane trafficking (Downes et al. 2005), lipid metabolism and transport (Glatz et al. 2002; Haunerland and Spener, 2004), innate immune response to bacterial infections (Bingle and Craven, 2004), and regulation of gene expression and cell growth (Bernlohr et al. 1997). Prediction of the functional roles of lipid-binding proteins is important for facilitating the study of various biological processes and the search of new therapeutic targets. Lipid-binding proteins are diverse in sequence, structure, and function (Niggli, 2001; Pebay-Peyroula and Rosenbusch, 2001; Hanhoff et al. 2002; Weisiger, 2002; Bolanos-Garcia and Miguel, 2003; Palsdottir and Hunte, 2004; Fyfe et al. 2005; Balla 2005). Non-the-less, lipid recognition by proteins is primarily mediated by some combination of a number of structural and physicochemical features including conserved fold elements (Bernlohr et al. 1997), specific lipid-binding site architectures (Niggli, 2001) and recognition motifs (Palsdottir and Hunte, 2004; Balla, 2005), ordered hydrophobic and polar contacts between lipid and protein (Pebay-Peyroula and Rosenbusch, 2001), and multiple noncovalent interactions from protein residues to lipid head groups and hydrophobic tails (Palsdottir and Hunte, 2004). There are 8 major lipid-binding classes, which include lipid degradation, lipid metabolism, lipid transport, lipid-binding, lipopolysaccharide biosynthesis, lipoprotein (proteins posttranslationally modified by the attachment of at least one lipid or fatty acid, e.g. farnesyl, palmitate and myristate), lipoil (proteins containing at least one lipoil-binding domain).

One of the intensively studied peptide classes is MHC-binding peptides (Bhasin and Raghava, 2004c). Peptide binding to MHC is critical for antigen recognition by T-cells. One of the mechanisms of immune response to foreign or self protein antigens is the activation of T-cells by the recognition of T-cell receptors of specific peptides degraded from these proteins and transported to the surface of antigen presenting cells (Abbas and Lichtman, 2005). Peptides recognized by T-cells are potential tools for diagnosis and vaccines for immunotherapy of infectious, autoimmune, and cancer diseases (Shoshan and Admon, 2004). In many respects, MHC-binding and other protein-binding peptides possess similar characteristics as proteins of specific functional classes in that they also share some structural and physicochemical features to facilitate the common function: binding to MHC or other proteins (Matsumura et al. 1992; Zhang et al. 1998; McFarland and Beeson, 2002).

Support Vector Machine Approach for Predicting Functional Classes of Proteins and Peptides

Support vector machines can be explored for functional study of proteins and peptides by determining whether their amino acid sequence
derived properties conform to those of known proteins and peptides of a specific functional class (Cai and Lin, 2003; Cai et al. 2004b; Cai and Doig, 2004; Han et al. 2004b; Dobson and Doig, 2005).

The advantage of this approach is that more generalized sequence-independent characteristics can be extracted from the sequence derived structural and physicochemical properties of the multiple samples that share common functional or interaction profiles irrespective of sequence similarity. These properties can be used to derive classifiers (Bock and Gough, 2001; Bock and Gough, 2003; Cai and Lin, 2003; Han et al. 2004b; Xue et al. 2004b; Bhasin and Raghava, 2004c; Cai et al. 2004b; Cai and Doig, 2004; Dobson and Doig, 2005; Lo et al. 2005; Martin et al. 2005; Ben-Hur and Noble, 2005) for predicting other proteins and peptides that have the same functional or interaction profiles.

The task of predicting the functional class of a protein or peptide can be considered as a two-class (positive class and negative class) classification problem for separating members (positive class) and non-members (negative class) of a functional or interaction class. SVM and other well established two-class classification-based machine learning methods can then be applied for developing an artificial intelligence system to classify a new protein or peptide into the member or non-member class, which is predicted to have a functional or interaction profile if it is classified as a member. Sequence-derived structural and physicochemical properties have frequently been used for representing proteins and peptides (Bock and Gough, 2001; Bock and Gough, 2003; Cai and Lin, 2003; Bhasin and Raghava, 2004c; Cai et al. 2004b; Cai and Doig, 2004; Han et al. 2004b; Ben-Hur and Noble, 2005; Dobson and Doig, 2005; Lo et al. 2005; Martin et al. 2005) in the development of SVM and other machine learning classification systems for predicting the functional and interaction profiles of proteins.

Figure 1 illustrates the process of using SVM for training and predicting proteins or peptides that have a specific common functional or interaction profile. Proteins or peptides known to have and not have the profile are represented by separate sets of feature vectors, which are composed of descriptors derived from the sequence of these proteins or peptides for representing their structural and physicochemical properties. These two sets of feature vectors are projected into a multi-dimensional space in which they are separated by a hyper-plane in such a way that those having the profile are on one side and those without the profile are on the other side of the hyper-plane. A new protein or peptide can be predicted to have the same profile if its feature vector is projected on the side of the hyper-plane where other proteins or peptides having the profile are located.

Representation of Protein and Peptide Sequences

Protein or peptide sequences have been represented by a number of amino acid sequence derived structural and physicochemical descriptors (Bock and Gough, 2001; Karchin et al. 2002; Cai et al. 2003; Gasteiger, 2005). They include amino acid composition, dipeptide composition, sequence autocorrelation descriptors, sequence coupling descriptors, and the descriptors for the composition, transition and distribution of hydrophobicity, polarity, polarizability, charge, secondary structures, and normalized Van der Waals volumes. Web servers such as PROFEAT (Li et al. 2006) (http://jing.cz3.nus.edu.sg/cgi-bin/prof/prof.cgi) and ProtParam (Gasteiger et al. 2005) (http://www.expasy.org/tools/protparam.html) have appeared for facilitating the computation of these descriptors. CBS Prediction Servers (http://www.cbs.dtu.dk/services/) can be used for computing other sequence derived features such as cleavage sites, nuclear export signals, and subcellular localization.

Amino acid composition is the fraction of each amino acid type in a sequence \(f(r) = N_r / N \), where \(r = 1, 2, 3, \ldots, 20 \), \(N_r \) is the number of amino acid of type \(r \) and \(N \) is sequence length. Dipeptide composition is defined as \(f(r,s) = N_{rs} / (N-1) \), where \(r,s = 1, 2, 3, \ldots, 20 \), and \(N_{rs} \) is the number of dipeptide represented by amino acid type \(r \) and \(s \) (Bhasin and Raghava, 2004a). Autocorrelation descriptors are defined from the distribution of amino acid properties along the sequence (Kawashima and Kanehisa, 2000). The amino acid indices used in these autocorrelation descriptors include hydrophobicity scales (Cid et al. 1992), average flexibility indices (Bhaskaran and Ponnesswamy, 1988), polarizability parameter (Charton and Charton, 1982), free energy of solution in water (Charton and Charton, 1982), residue accessible surface area in trepeptide (Chothia, 1976), residue volume (Bigelow, 1967), steric parameter (Charton, 1981), and relative mutability (Dayhoff and Calderone, 1978). Each of these
indices is centralized and normalized before the calculation. The frequently used autocorrelated descriptors include Moreau-Broto autocorrelation descriptors, normalized Moreau-Broto autocorrelation descriptors and Geary autocorrelation descriptors. The quasi-sequence-order descriptors are derived from both the Schneider-Wrede physicochemical distance matrix (Schneider and Wrede, 1994; Chou, 2000; Chou and Cai, 2004) and the Grantham chemical distance matrix (Grantham, 1974) between the 20 amino acids.
Three descriptors, composition (C), transition (T) and distribution (D), are derived for each of the following physicochemical properties: hydrophobicity, polarity, polarizibility, charge, secondary structures, and normalized Van der Waals volume (Dubchak et al. 1995; Dubchak et al. 1999; Cai et al. 2003). For each property, the constituent amino acids in a protein or peptide are divided into three classes according to its attribute such that each amino acid is encoded by one of the indices 1, 2, 3 according to the class it belongs to. For instance, amino acids can be divided into hydrophobic (CVLIMFW), neutral (GASTPHY), and polar (RKEDQN) groups. C represents the number of amino acids of a particular property (such as hydrophobicity) divided by the total number of amino acids in a protein sequence. T characterizes the percent frequency with which amino acids of a particular property is followed by amino acids of a different property. D measures the chain length within which the first, 25%, 50%, 75% and 100% of the amino acids of a particular property is located respectively. Overall, there are 21 elements representing these three descriptors: 3 for C, 3 for T and 15 for D.

Algorithms and Software Tools of Support Vector Machines

SVM can be divided into linear and nonlinear SVM. Linear SVM directly constructs a hyperplane in the feature space to separate positive examples from negative examples. On the other hand, nonlinear SVM projects both positive and negative examples into a higher-dimensional feature space and then separates them in that space. The following is a brief description of the algorithms of SVM. SVM software tools and SVM-based servers for predicting functional class of proteins and peptides are listed in Table 1.

Let the training data of two separate classes, each containing \(n \) samples, be represented by \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\), \(i = 1, 2, \ldots, n \), where \(x_i \in \mathbb{R}^N \) is a vector in an \(N \)-dimensional space representing various physicochemical and structural properties of a protein or peptide, and \(y_i \in \{-1, +1\} \) indicates class label (e.g. (+) represents members and (−) non-members of a functional class). In linear SVM, given a weight vector \(w \) and a bias \(b \), it is assumed that these two classes can be separated by two margins parallel to the hyper-plane as illustrated in Figure 2 (a), which can be represented as a single inequality:

\[
y_i(w \cdot x_i + b) \geq 1, \quad \text{for } i = 1, 2, \ldots, n \tag{1}
\]

where \(w = (w_1, w_2, \ldots, w_n)^T \) is a vector of \(n \) elements. As shown in Figure 2 (b), there are a number of separate hyper-planes for an identical group of training data. The objective of SVM is to determine the optimal weight \(w_0 \) and optimal bias \(b_0 \) such that the corresponding hyper-plane separates \(S^+ \) and \(S^- \) with a maximum margin and gives the best prediction performance. This hyper-plane is called Optimal Separating Hyper-plane (OSH) as illustrated in Figure 2 (c).

The equation for a hyper-plane can be written as:

\[
w \cdot x_i + b = 0 \tag{2}
\]

By using geometry, the distance between the two corresponding margins is \(2/\|w\| \). Therefore, the OSH can be obtained by minimizing \(\|w\| \) under inequality constraints (Eq. (1)). This optimization problem could be efficiently solved with the introduction of Lagrangian multiplier \(a_i \).

\[
L(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{n} a_i \left[y_i (w \cdot x_i + b) - 1 \right] \tag{3}
\]

The solution to this optimization Quadratic Programming (QP) problem requires that the gradient of \(L(w, b, \alpha) \) with respect to \(w \) and \(b \) vanishes, resulting in the following conditions:

\[
w_0 = \sum_{i=1}^{n} a_i y_i x_i \tag{4}
\]

\[
\sum_{i=1}^{n} a_i y_i = 0 \tag{5}
\]

By substituting Eqs. (4) and (5) into Eq. (3), the QP problem becomes the maximization of the following expression:

\[
L(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j (x_i \cdot x_j) \tag{6}
\]

under the constraints

\[
\sum_{i=1}^{n} \alpha_i y_i = 0, \quad 0 \leq \alpha_i \leq C, \quad i = 1, 2, \ldots, n \tag{7}
\]
where \(C \) is a penalty for training errors for soft-margin SVM and is equal to infinity for hard-margin SVM.

The points located on the two optimal margins will have nonzero coefficients \(\alpha_i \) among the solutions to Eq. (6), and are called Support Vectors (SV). The bias \(b_0 \) can be calculated as follows:

\[
b_0 = -\frac{1}{2} \left\{ \min_{\{ y_i = +1 \}} (w_0 \cdot x_i) + \max_{\{ y_i = -1 \}} (w_0 \cdot x_i) \right\}
\]

After determination of support vectors and bias, the decision function that separates the two classes can be written as:

\[
f(x) = \text{sign} \left[\sum_{i=1}^{n} \alpha_i y_i x_i \cdot x + b_0 \right]
\]

Nonlinear SVM projects feature vectors into a high dimensional feature space by using a kernel function \(K(x, y) \). The linear SVM procedure is then applied to the feature vectors in this feature space. After the determination of \(w \) and \(b \), a given vector \(x \) can be classified by using

\[
f(x) = \text{sign} \left[\sum_{SV} \alpha_i y_i x_i \cdot x + b_0 \right]
\]

A positive or negative value indicates that the vector \(x \) belongs to the members or non-members of a functional class, respectively.

In Equation (10), Kernel function \(K(x, y) \) represents a legitimate inner product in the input space:

\[
K(x, y) = \phi(x) \cdot \phi(y)
\]

A number of kernel functions have been used in SVM. Examples of the most popular ones are:

Polynomial: \(K(x_i, x_j) = (x_i \cdot x_j + 1)^p \)

Gaussian: \(K(x_i, x_j) = e^{-\|x_i-x_j\|^2/2\sigma^2} \)

Sigmoid: \(K(x_i, x_j) = \tanh(\kappa x_i x_j + c) \)

A vector has a limited number of components, each representing a specific physicochemical, structural or biological quantity. Each quantity is normalized or scaled, such that its value is of finite value. From a practical point of view, \(x \cdot y \) is of finite value so as to avoid the value of polynomial kernel reaching infinity.

Methods for Training, Testing and Estimating Generalization Capabilities of Support Vector Machines Classification Systems

Several validation methods have been used for training, testing, and estimating generalization errors of a SVM model (Bhasin and Raghava, 2004a; Martin et al. 2005; Plewczynski et al. 2005; Lei and Dai, 2006) based on a “re-sampling” strategy (Weiss and Kulikowski, 1991; Shao and Tu, 1995). The commonly used validation methods include N-fold cross validation, leave one out, leave \(v \) out, jack-knifing, and bootstrapping. In N-fold cross validation, samples are randomly divided into \(N \) subsets of approximately equal size. \(N-1 \) subsets are used as a training set for developing a SVM model, and the remaining one is used as a testing set for evaluating the prediction performance of that model. This process is repeated \(N \) times such that every subset is used as a testing set once. The average accuracy of the \(N \) number of SVM models is used for measuring the generalization capability of the SVM method. When \(N \) equals to the total number of samples, the method is called “leave one out” such that every sample is used for testing a SVM model trained by using all of the other samples. “Leave-v-out” is a more elaborate and expensive version of the “leave something out” cross-validation that involves leaving out all possible combinations of \(v \) samples as a test set. In jack-knifing, samples are distributed and used for training and testing the SVM models in the same way as that of “leave one out” method, but the generalization error of the derived SVM models is estimated based on the comparison of the average accuracy of subsets and that of all sets of these SVM models. In bootstrapping, different combinations of randomly selected subsets of samples are separately used for training SVM models each of which is tested by using the compounds not included in the respective training set.
Moreover, independent evaluation sets have also been used for testing the performance of SVM classification systems (Cai et al. 2003; Liu et al. 2005; Wang et al. 2005; Lin et al. 2006c). In using this approach, samples are divided into training, testing, and independent validation set based on their distribution in protein or peptide descriptor space. Protein or peptide descriptor space is defined by the commonly used structural and chemical descriptors of proteins or peptides. Samples can

Category	Web-server or software	URL
Server for Predicting Protein Functional Class	CTKPred: SVM prediction and classification of the cytokine family	http://bioinfo.tsinghua.edu.cn/~huangni/CTKP red/
	GPCRPred: SVM prediction of families and subfamilies of G-protein coupled receptors	http://www.imtech.res.in/raghava/gpcrpred/info.html
	pSLIP: SVM protein subcellular localization prediction	http://pslip.bii.a-star.edu.sg/
	SVMProt: SVM protein functional family prediction from protein sequence	http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi
Server for Predicting Peptide Functional Class	MHC-BPS: SVM prediction of MHC-binding peptides of flexible lengths	http://bidd.cz3.nus.edu.sg/mhc/
	SVMHC: SVM prediction of MHC-binding peptides	http://www.sbc.su.se/svmhc/
	SVRMHC: SVM prediction of MHC-binding peptide	http://svrmhc.umn.edu/SVRMHCdb/
	WAPP: SVM prediction of MHC-binding, proteosomal cleavage and TAP transport peptides	http://www-bs.informatik.uniuebingen.de/WAPP
SVM Software and servers	SVM light	http://svmlight.joachims.org/
	LIBSVM	http://www.csie.ntu.edu.tw/~cjlin/libsvm/
	mySVM	http://www-ai.cs.unidortmund.de/SOFTWARE/MYSVM/index.html
	SMO	http://www.datalab.uci.edu/people/xge/svm/
	BSVM	http://www.csie.ntu.edu.tw/~cjlin/bsvm/
	WinSVM	http://www.cs.ucl.ac.uk/staff/M.Sewell1/winsvm/
	LS-SVMLab	http://www.esat.kuleuven.ac.be/sista/lsvmlab/
	GIST SVM Server	http://svm.sdsc.edu

Table 1. Web-servers for computing functional class of proteins and peptides by using support vector machines. Web-sites of support vector machine software are also given.
be clustered into groups based on their distance in the descriptor space by using such methods as hierarchical clustering (Johnson, 1967). An upper-limit of the largest separation of r can be used for restricting the size of each cluster. One or more representative samples are randomly selected from each group to form a training set that is sufficiently diverse and broadly distributed in the chemical space. One or more of the remaining compounds in each group are randomly selected to form the testing set. The remaining samples are used as the independent evaluation set, which show reasonable level of structural diversity and distinction with respect to compounds of other groups.

The performance of SVM has been measured by using the positive prediction accuracy P_+ for...
proteins that have a specific property and the negative prediction accuracy P_- for proteins without that property (Bock and Gough, 2001; Bock and Gough, 2003; Cai and Lin, 2003; Bhasin and Raghava, 2004c; Cai et al. 2004b; Cai and Doig, 2004; Han et al. 2004b; Xue et al. 2004b; Dobson and Doig, 2005; Lo et al. 2005; Martin et al. 2005; Ben-Hur and Noble, 2005). Moreover, an overall accuracy $P = (TP + TN)/N$, where TP and TN is the true positive and true negative respectively and N is the number of proteins or peptides, can also be used to indicate the overall prediction performance. In some cases, P, P_+ and P_- are insufficient to provide a complete assessment of the performance of a discriminative method (Provost et al. 1998; Baldi et al. 2000). Thus the Matthews correlation coefficient $MCC = (TP \times TN - FP \times FN) / \sqrt{(TP + FN)(TP + FP)(TN + FP)(TN + FN)}$ has been used for measuring the performance of support vector machine (Bhasin and Raghava 2004a; Bhasin and Raghava 2004b; Cai et al. 2004b; Han et al. 2004b; Huang et al. 2005; Kumar et al. 2006).

Performance for predicting functional classes of novel proteins

The performance of SVM for predicting the functional profile of novel proteins has also been evaluated by several studies listed in Table 4. These novel proteins are of two types. The first includes several groups of proteins that have no homologous counterpart in well-established protein database, and the second contains pairs of homologous enzymes that belong to different functional families. The non-homologous nature of the first type of novel proteins complicates the task of using sequence alignment and clustering methods for determining their functions. On the other hand, the homologous nature of the second type of novel proteins may result in false association of proteins of different functional families if sequence similarity is used as the sole indicator of functional association. Therefore, it is desirable to explore other methods with less or no reliance on homology to complement sequence similarity and clustering methods (Smith and Zhang, 1997; Eisenberg et al. 2000). From Table 4, SVM appears to have the capacity of correct prediction of 46.3%~76.7% of the novel proteins found from the literatures. The ability of SVM in predicting the functional profile of the first type of novel proteins have been attributed to the non-discriminative nature of SVM for selecting class members, and to the use of structural and physicochemical descriptors for representing proteins (Hou et al. 2004; Han et al. 2004a; Cui et al. 2005; Han et al. 2005a; Zhang et al. 2005). In some cases, protein function is determined by specific structural and chemical features at active sites, and these features are shared by distantly related as well as closely related proteins of the same functional property (Schomburg et al. 2002). Some of these function-related features might be captured by the residue properties such as hydrophobicity, normalized van der Waals volume, polarity, polarizability, charge, surface tension, secondary structures

Assessment of the Performance of Support Vector Machine Classification Systems

Performance for predicting functional classes of proteins and peptides

Table 2 summarizes the reported performance of the use of SVM for predicting protein functional classes. The reported P_+ and P_- values are in the range of 25.0%~100.0% and 69.0%~100.0%, with the majority concentrated in the range of 75%~95% and 80%~99.9% respectively. Based on these reported results, SVM generally shows certain level of capability for predicting the functional class of proteins and protein-protein interactions. In many of these reported studies, the prediction accuracy for the non-members appears to be better than that for the members. The higher prediction accuracy for non-members likely results from the availability of more diverse set of non-members than that of members, which enables SVM to perform a better statistical learning for recognition of non-members.

The performance of SVM for predicting functional classes of peptides are given in Table 3. Prediction of protein-binding peptides have primarily been focused on MHC-binding peptides (Bhasin and Raghava, 2004c), the reported P_+ and P_- values for MHC binding peptides are in the range of 75.0%~99.2% and 97.5%~99.9%, with the majority concentrated in the range of 93.3%~95.0% and 99.7%~99.9% respectively. These studies have demonstrated that, apart from the prediction of protein functional classes, SVM is equally useful for predicting protein-binding peptides and small molecules.
Table 2. Performance of machine learning methods for predicting functional class of proteins as reported in the literature. All of the data and results were collected from the original papers. Please refer to the respective references for complete results. \(N^+ \), \(N^- \) and \(N \) are the number of class members, non-members and all proteins (members + non-members) respectively, \(P^+ \) and \(P^- \) are prediction accuracy for class members and non-members respectively, \(P \) is the overall accuracy, and MCC is the Matthews correlation coefficient.

Protein functional class	Protein Sub-classes	Protein descriptors	Number of proteins in training Set \(N (N^+/N^-) \)	Validation method	Reported prediction accuracy	Ref
Enzymes	46 sub-classes:	Physicochemical properties	956–9216 (35–3892/807–5324)	Independent evaluation	53.0~ 85.0~ 81.8~ 0.31	(Cai et al. 2003; Cai et al. 2004b)
	EC1.1~EC1.11, EC1.13~EC1.15, EC1.17, EC1.18, EC2.1~EC2.8, EC3.1~EC3.6, EC4.1~EC4.4, EC4.6, EC5.1~EC5.5, EC5.99, EC6.1~EC6.5					
	54 sub-classes:	Functional Domain Composition and pseudo amino acid composition	503–3582 (3–2002/327–3548)	Jackknife Test	25.0~ 100.0	(Cai and Chou, 2005)
Transporters	20 sub-classes:	Physicochemical properties	613–7508 (50–1220/513–7299)	Independent evaluation	60.6~ 91.5~ 91.4~ 0.27~	(Lin et al. 2006b)
	TC1.A, TC1.A.1, TC1.B, TC1.E, TC2.A, TC2.A.1, TC2.A.3, TC2.A.6, TC2.C, TC3.A, TC3.A.1, TC3.A.3, TC3.A.5, TC3.A.15, TC3.D, TC3.E, TC4 A, TC8.A, TC9.A, TC9.B					
Allergenic proteins	Amino acid	1278 (578/700)	Independent evaluation	88.9 81.9 85.0 0.71	(Saha and Raghava, 2006)	
	Dipeptide composition	1278 (578/700)	Independent evaluation	82.8 85.0 84.0 0.68	(Cui et al. 2007b)	
	Physicochemical properties	23474 (1005/22469)	Independent evaluation	93.0 99.9 99.7 0.96	(Continued)	
Table 2. (Continued)

Protein functional class	Protein sub-classes	Protein descriptors	Number of proteins in training set N (N+/N–)	Validation method	Reported prediction accuracy	Ref
Crystallizable proteins	Mono-, di-, tri-	923 (721/202)	10-fold CV	65.0 69.0 67.0 (Smialowski et al. 2006)		
Mitochondrial proteins	Amino acid composition	10372 (1432/8940)	5-fold CV	78.9 90.0 88.2 (Kumar et al. 2006)		
G-protein coupled receptors	Physicochemical properties	2247 (927/1320)	Independent evaluation	95.6 98.1 97.4 (Cai et al. 2003)		
	Dipeptide composition	3302 (778/2524)	5-fold CV	98.6 99.8 99.5 (Bhasin and Raghava, 2004b)		
	Protein power spectrum	946	Jackknife	77.0 78.3 (Guo et al. 2006)		
Gi/o binding type	Structural characteristics	132 (61/71)	4-fold CV	68.1 72.7 (Yabuki et al. 2005)		
Gq/11 binding type	(extra cellular loops, intracellular loops etc.)	132 (47/85)	4-fold CV			
Gs binding type	Protein power spectrum	132 (24/108)	4-fold CV	83.3 95.2 (Guo et al. 2006)		
Rhodopsin-like (Class A)		540	Jackknife	97.0 0.93		
Secretin-like (Class B)		187	Jackknife	95.3 0.94		
Metabotropic glutamate (Class C)		103	Jackknife	94.2 0.95		
Fungal pheromone (Class D)		21	Jackknife	81.0 0.92		
cAMP receptors (Class E)		5	Jackknife	100.0 1		
Frizzled/smoothened (Class F)		90	Jackknife	95.6 0.94		
Nuclear receptors	All nuclear receptors	282	5-fold CV	82.6 0.74 (Bhasin and Raghava, 2004a)		
	Amino acid composition	282	5-fold CV	97.5 0.96 (Cai et al. 2003)		
	Dipeptide composition	872 (334/538)	Independent evaluation	89.5 97.6		

(Continued)
Table 2. (Continued)

Protein functional class	Protein sub-classes	Protein descriptors	Number of proteins in training Set N (N+/N−)	Validation method	Reported prediction accuracy	Ref			
	Protein power spectrum		465	Jackknife	95.3	(Guo et al. 2006)			
Thyroid hormone-like	Protein power spectrum		165	Jackknife	95.8	0.95			
HNF4-like	Protein power spectrum		114	Jackknife	97.4	0.96			
Estrogen-like	Protein power spectrum		130	Jackknife	97.7	0.96			
Fusitazaru-F1 like	Protein power spectrum		35	Jackknife	94.3	0.97			
Nerve growth factor IB-like	Protein power spectrum		5	Jackknife	80.0	0.89			
Germ cell nuclear receptor	Protein power spectrum		2	Jackknife	100.0	1.0			
0A Knirps-like	Protein power spectrum		7	Jackknife	42.9	0.65			
0B DAX-like	Protein power spectrum		7	Jackknife	71.4	0.84			
RNA-binding proteins	Amino acid composition and limited range correlation of hydrophobicity and solvent accessible surface area		6264 (1496/4768)	10-fold CV	76.5	97.2	92.2	(Cai and Lin, 2003)	
	Physicochemical properties		5126 (2161/2965)	Independent evaluation	97.8	96.0	96.1	0.8	(Han et al. 2004b)
	Amino acid composition, limited range correlation of hydrophobicit, solvent accessible surface area		5824 (1056/4768)	10-fold CV	100.0	99.9	99.9	(Cai and Lin, 2003)	
rRNA-binding	Physicochemical properties		1680 (708/972)	Independent evaluation	94.1	98.7	98.6	0.74	(Han et al. 2004b)
tRNA-binding	Physicochemical properties		886 (94/792)	Independent evaluation	94.1	99.9	99.8	0.92	(Han et al. 2004b)
mRNA-binding	Physicochemical properties		2383 (277/2106)		79.3	96.5	96.0	0.53	
snRNA-binding	Physicochemical properties		2021 (33/1988)		45.0	99.7	99.5	0.38	

(Continued)
Protein functional class	Protein sub-classes	Protein descriptors	Number of proteins in training Set N (N+/N–)	Validation method	Reported prediction accuracy	Ref
DNA-binding proteins	All DNA-binding proteins	Amino acid composition, limited range correlation of hydrophobicity, solvent accessible surface area Surface and overall composition, overall charge and positive potential patches on the protein surface	12507 (7739/4768)	10-fold CV	92.8 77.1 86.8	(Cai and Lin, 2003)
DNA condensation	Physicochemical properties	359 (121/238)	5-fold CV	Jackknife leave 1-pair holdout Leave-half holdout Independent evaluation	89.1 82.1 93.9	(Bhardwaj et al. 2005)
DNA integration	Physicochemical properties	8575 (4240/4335)	Independent evaluation		90.9 87.6 88.5 0.74	(Cai et al. 2003; Lin et al. 2006b)
DNA recombination	Physicochemical properties	2410 (50/2360)	Independent evaluation		94.9 98.3 98.3 0.47	(Cai et al. 2003; Lin et al. 2006b)
DNA repair	Physicochemical properties	1307 (134/1173)			87.9 99.9 99.7 0.91	(Cai et al. 2003; Lin et al. 2006b)
DNA replication	Physicochemical properties	3357 (889/2468)			87.8 98.9 97.9 0.87	(Cai et al. 2003; Lin et al. 2006b)
DNA replication	Physicochemical properties	5785 (2142/3643)			88.7 96.8 95.3 0.84	(Cai et al. 2003; Lin et al. 2006b)
DNA replication	Physicochemical properties	3734 (1131/2603)			85.6 96.6 95.4 0.79	(Cai et al. 2003; Lin et al. 2006b)
DNA-directed	Physicochemical properties	2348 (273/2075)			72.9 99.7 98.9 0.79	(Cai et al. 2003; Lin et al. 2006b)
DNA-directed	Physicochemical properties	2594 (484/2110)			90.8 99.4 98.8 0.91	(Cai et al. 2003; Lin et al. 2006b)
RNA polymerase	Physicochemical properties	3684 (1337/2347)			93.3 95.6 95.4 0.76	(Cai et al. 2003; Lin et al. 2006b)
Repressor	Physicochemical properties	2354 (670/1684)			86.1 99.5 99.3 0.79	(Cai et al. 2003; Lin et al. 2006b)
Transcription factors	All lipid-binding proteins	Physicochemical properties	6933 (3232/3701)	Independent evaluation	89.9 97 94.1 0.88	(Cai et al. 2003; Lin et al. 2006c)

(Continued)
Protein functional class	Protein sub-classes	Protein descriptors	Number of proteins in training Set N (N+/N−)	Validation method	Reported prediction accuracy	Ref
Lipid transport			2262 (153/2109)		79.5 99.8 99.6 0.8	
Lipid metabolism			2262 (293/1969)		79.5 99.2 98.8 0.72	
Lipid synthesis			3498 (891/2607)	jackknife test	82.2 99.6 98.1 0.87	
Lipid degradation			2178 (403/1775)	independent test	78.9 99.9 99.3 0.87	
Transmembrane proteins	Functional		2059	jackknife test	86.3 (Huang et al. 2005)	
	Domain			self-consistency	67.5	
	Composition			test	93.9	
		Pseudo-amino acid composition	2059	jackknife test	82.4 (Wang et al. 2004)	
				independent test	90.3	
				self-consistency	99.9	
		Physicochemical properties	4668 (2105/2563)	Independent evaluation	90.1 86.7 86.7 0.75	(Cai et al. 2003)
Cytokines	All cytokines		1110 (437/673)	7-fold CV	92.5 97.2 95.3 0.9	
	Dipeptide composition		437 (83/354)		92.7 98.6 97.5 0.92	
		FGF/HBGF	437 (190/247)		97.4 94.7 95.8 0.92	
		TGF-β	437 (96/341)		94.0 98.8 97.7 0.94	
		TNF	437 (68/369)		91.0 99.7 98.4 0.94	
	Joint class (IL-6, LIF/ OSM, MDK/PTN, NGF)				46.7~ 85.5~ 84~ 0.65~	
	6 sub-classes:				100 100 98 0.96	
	BMP, GDF, GDNF, INH, TGFB, other					

(Continued)
Table 2. (Continued)

Protein descriptors	Number of proteins in training set \(n \)	Validation method	Reported prediction accuracy	\(P^+ \) (\%)	\(P^- \) (\%)	MCC	Ref		
Functional sub-classes	Protein functional class	Description	4902	86~725	Jackknife	Jackknife	72.0	15~90	(Cai and Doig, 2004)

and solvent accessibility (Bull and Breese, 1974; Lin and Timasheff, 1996), which have been incorporated in the descriptors used in the construction of the feature vectors for these proteins.

The function of a protein is determined by a variety of factors. Changes such as local active-site mutation, variations in surface loops, and recruitment of additional domains may result in functional diversity among homologous proteins (Todd et al. 2001). While these changes appear to be small at the local sequence level, some of the aspects of these changes may also be captured by the descriptors associated with hydrophobicity, normalized van der Waals volume, polarity, polarizability, charge, surface tension, secondary structure and solvent accessibility.

Performance for predicting proteins with specific structural characteristics

Subgroups of proteins of specific functional classes are known to have common structural features. For instance, a number of RNA-binding proteins have a modular structure and contain RNA-binding domains of 70–150 amino acids that mediate RNA recognition (Mattaj, 1993; Perez-Canadillas and Varani, 2001). Three classes of RNA-binding domains have been documented to bind RNA in a sequence independent manner, and these domains are RNA-recognition motif (RRM), double-stranded RNA-binding motif (dsRM), and K-homology (KH) domain (Perez-Canadillas and Varani, 2001). A fourth class of RNA-binding domain, S1 RNA-binding domain, has also been found in a number of RNA-associated proteins (Bycroft et al. 1997). These domains have distinguished structural features responsible for RNA recognition and binding. Thus the performance of SVM classification of functional classes of proteins can be evaluated by examining whether or not proteins containing one of these domains can be correctly classified into the respective class (Han et al. 2004b; Leslie et al. 2004; Kunik et al. 2005; Lin et al. 2006c).

A search of protein family and sequence databases shows that there are a total of 260, 74, 190, and 41 RNA-binding protein sequences known to contain RRM, dsRM, KH and S1 RNA-binding domain respectively. The majority of these sequences are included in the training and testing set of all RNA-binding proteins. In the corresponding independent evaluation set, there are 35, 16,
Prediction of functional class of proteins and peptides

Table 3. Performance of support vector machine prediction of functional classes of peptides. N+ and N– are the number of members and non-members in a class, P+ and P– are the reported prediction accuracy for members and non-member respectively, and P is the reported overall accuracy.

HLA Allele	Peptide descriptors	Number of peptides in training set (N+/N–)	Validation method (N+/N–)	Reported prediction accuracy	Reference
A0201	Orthogonal factors from physical properties Amino acid sequence	(36/167)	10-fold cross validation	76.3, 71.2, 71.6	(Zhao et al. 2003)
	physico-chemical properties	(1125/6911)	Validation set (130/6664)	99.2, 97.5, 97.5	(Donnes and Elofsson, 2002)
A1	Amino acid sequence	(113)	10-fold cross validation	90.0, 78.0	(Mc)
	physico-chemical properties	(200/6831)	Validation set (40/6830)	75.0, 99.7, 99.6	(Donnes and Elofsson, 2002)
A3	Amino acid sequence	(73)	10-fold cross validation	91.0, 80.0	(Mc)
	physico-chemical properties	(139/6833)	Validation set (30/6833)	93.3, 98.8, 98.7	(Donnes and Elofsson, 2002)
B8	Amino acid sequence	(25)	10-fold cross validation	91.0, 79.0	(Mc)
	physico-chemical properties	(168/6833)	Validation set (20/6830)	95.0, 99.8, 99.8	(Donnes and Elofsson, 2002)
B2705	Amino acid sequence	(29)	10-fold cross validation	100.0, 100.0	(Mc)
	physico-chemical properties	(141/7361)	Validation set (21/7359)	95.0, 99.9, 99.9	(Donnes and Elofsson, 2002)
DRB1.0401	Binary code of amino acid sequence physico-chemical properties	(567)	5-fold cross validation	80.287.1, 77.485.0, 78.886.1	(Bhasin and Raghava, 2004d)
	physico-chemical properties	(539/6883)	Validation set (100/6704)	95.0, 99.9, 99.9	
Protein group and year of report	No. of proteins or protein pairs	Percentage of correctly predicted proteins	Examples of correctly predicted proteins or protein pairs	Examples of incorrectly predicted proteins or protein pairs	
---------------------------------	---------------------------------	---	---	--	
Enzymes without a homolog in NR databases 2004 (Han et al. 2004a)	12	66.7%	Thiocyanate hydrolase beta subunit (EC 3.5.5.8) [O68186]	Extracellular phospholipase (EC 3.1.1.5) [P82476]	
Enzymes without a homolog in Swissprot database 2004 (Han et al. 2004a)	50	72%	DNA polymerase III, theta subunit (EC 2.7.7.7) [P28689]	Beta-agarase B (EC 3.2.1.81) [P488401]	
Viral proteins without a homolog in Swissprot database 2004 (Han et al. 2005a)	25	72%	Endonuclease II[P07059]	Telomere elongation protein (EC2.7.7.-) [P17214]	
Bacterial proteins without a homolog in Swissprot database 2004 (Cui et al. 2005)	90	76.7%	2-aminomuconate deaminase [P81593]	Ammonia monoxygenase (EC 1.13.12.-) [Q04508]	
Plant proteins without a homolog in Swissprot database (Han et al. 2005b)	31	71.4%	Antimicrobial peptide 4 [AAL05055]	LeMan3 [Q9FUQ6]	
Pairs of homologous enzymes of different families 2004 (Han et al. 2004a)	8	62%	Glycolate oxidase [P05414] and IPP isomerase [Q8W37]	Cystathionine gamma-synthase [P38675] and Methionine gamma-lyase [P13254]	
Remote homologs (Zhang et al. 2005) from FSSP database (Holm and Sander, 1996) 2005	445	46.3%	1cem (1,4-D-glucan- glucanohydrolase catalytic domain) and it’s remote homolog 1qazA (Alginate lyase A1-III from Sphingomonas Species; Chain: A;)	Excocellulobiolydrolase 1[P38676] and Cystothionine gamma-lyase [Q8VCN5]	
examples of these families are TIM, PP-binding or GCV_H. These families have distinguished structural features responsible for lipid recognition and binding. A search of protein family and sequence databases shows that there are 227, 184, and 139 lipid-binding protein sequences known to contain TIM, PP-binding or GCV_H domain respectively. The majority of these sequences are included in the training and testing set of all lipid-binding proteins. In the corresponding independent evaluation set, there are 81, 27, and 30 sequences containing TIM, PP-binding or GCV_H domain respectively. Most of these protein sequences are correctly classified as lipid-binding by SVM, and there is only 1, 1, and 2 misclassified sequences in the TIM, PP-binding or GCV_H domain families respectively (Lin et al. 2006c). The incorrectly predicted protein sequences are triosephosphate isomerase (fragment), putative acyl carrier protein, mitochondrial precursor, glycine cleavage system H protein, mitochondrial precursor (fragment), probable glycine cleavage system H protein 2 and mitochondrial precursor. Most of these incorrectly predicted sequences are fragments. Therefore, sequence incompleteness appears to be a factor that partially contributes to the incorrect prediction of these sequences by SVM.

Effect of different sets of protein descriptors to the classification of functional classes of proteins

As shown in Table 2 and Table 3, different sets of protein descriptors have been used in SVM prediction of various functional classes of proteins and peptides, all of which have shown impressive predictive performances (Chou and Cai, 2005; Gao et al. 2005; Li et al. 2006). Non-the-less, there is a need to comparatively evaluate the effectiveness of these descriptor-sets in a single study and to examine whether combined use of these descriptor-sets help to improve predictive performance. For such a purpose, we tested the performance of seven popular descriptor-sets and two of their combinations in SVM prediction of six different classes of proteins. These sets are amino acid composition (Chou and Cai, 2005) (class 1), dipeptide composition (Gao et al. 2005) (class 2), normalized Moreau–Broto autocorrelation (Feng and Zhang, 2000; Lin and Pan, 2001) (class 3), Moran autocorrelation (Horne, 1988) (class 4), Geary autocorrelation (Sokal and Thomson, 2006) (class 5), sets of composition, transition and distribution of physicochemical properties (Dubchak et al. 1995; Dubchak et al. 1999; Bock and Gough, 2001; Cai et al. 2003; Cai et al. 2004a; Han et al. 2004b; Lo et al. 2005; Lin et al. 2006a; Cui et al. 2007a) (class 6), sequence order (Granath 1974; Schneider and Wrede, 1994; Chou, 2000; Chou and Cai, 2004) (class 7), the frequently used combination of amino acid composition and dipeptide composition (Gao et al. 2005) (class 8), and combination of the seven individual sets of descriptors (class 9). The six protein functional classes are enzyme EC2.4 (NC-IUBMB 1992), G protein-coupled receptors, transporter TC8.A (Saier et al. 2006), chlorophyll (Suzuki et al. 1997), lipid synthesis proteins involved in lipid synthesis, and rRNA-binding proteins. These classes were selected because of their functional diversity and level of difficulty in achieving high prediction performance. The reported SVM prediction performance for these classes tend to be lower than other classes (Cai et al. 2004a), which are ideal for critically evaluating the effectiveness of different descriptor-sets.

The dataset statistics and SVM performance of the nine descriptor-sets are given in Table 5 and the overall performance scores of these descriptor-sets are given in Table 6. The overall performance scores are composed of 4 categories defined by the values of MCC of a SVM model: “Exceptional”, “Good”, “Fair” and “Poor” when MCC is in the range of >0.9, 0.8–0.9, 0.6–0.8, and <0.6 respectively. Overall, there is no single preferred descriptor-set for all cases. Sets 6, 8, and 9 tend to exhibit higher sensitivity, with the exception of chlorophyll proteins, while classes 1 and 7 tend to be among the lowest ranked. The combined classes 8 and 9 generally give the highest MCC values, again with the exception of chlorophyll proteins, while classes 1 and 7 tend to return the lowest MCC values. These findings are consistent with the results from a reported study that suggest that amino acid composition, polarity, solvent accessibility and charge, are more important than other properties, in order of prominence, for SVM classification of specific protein functional classes (Lin et al. 2006b).

Using the entire set of descriptors (class 9) does not necessarily always gives better performance, which is consistent with the findings that analysis of the contribution of individual descriptors and the selection of the relevant ones are highly useful
Table 5. Dataset statistics and prediction performance of SVM prediction of six protein functional classes by using different descriptor sets.

Protein functional class	Descriptor family	Trainingset P	Trainingset N	Testing set P	Testing set N	Independent evaluation set P	Independent evaluation set N	Q(%)	MCC
EC2.4		1249	2120	1154	9065	724	176	80.4	0.879
		2120		2120		806	1	82.9	0.884
		1105	1756	1295	9166	768	132	85.3	0.911
		1239	2221	1161	8701	756	144	84.0	0.903
		1242	2223	1160	8690	753	147	83.7	0.900
		1214	2077	1145	8846	741	159	82.3	0.903
		1293	2624	1072	8295	696	204	77.3	0.903
		1275	2747	1129	8177	782	118	86.9	0.921
		1358	3887	1015	7040	796	104	88.4	0.930
gPCR		1590	7458	1847	14166	501	12	97.7	0.927
		564	711	1728	14121	498	15	97.1	0.946
		1169	4628	1122	10208	491	22	95.7	0.946
		1257	4474	1037	10363	492	21	95.9	0.965
		1290	4724	997	10113	487	26	94.9	0.965
		757	2060	1536	12777	494	19	96.3	0.971
		812	2950	1482	11887	487	26	94.9	0.971
		1590	7458	693	7322	503	10	98.1	0.971
		834	4361	1461	10476	493	20	96.1	0.971
TC8.A		98	8014	9	13105	17	46	27.0	0.518
		94	7962	50	14824	41	22	65.1	0.806
		94	7962	53	14501	42	21	66.7	0.915
		94	7962	47	11250	37	26	58.7	0.915
		94	7962	47	11137	37	26	58.7	0.915
		94	7962	64	15283	44	19	69.8	0.915
		94	7962	59	15045	43	20	68.3	0.915
		114	810	52	15114	41	22	65.1	0.915
		103	1077	63	14847	47	16	74.6	0.915
Chlorophyll		523	1559	166	14297	70	12	85.4	0.83
		440	934	248	7927	73	9	89.0	0.91
		425	603	264	15253	77	5	93.9	0.91
		415	574	273	15282	75	7	91.5	0.91
		429	615	259	15240	75	7	91.5	0.91
		462	946	202	14910	72	10	87.8	0.91
		394	3337	210	12517	62	20	75.6	0.79

(Continued)
Table 5 (Continued)

Protein functional family	Descriptor class	Trainingset	Testing set	Independent evaluation set	Q(%)	MCC
		P N	P N	P N		
		TP FN TN FP	TP FN TN FP	TP FN TN FP		

8 1273 399 289 1 14582 1 77 5 93.9 6832 14 99.8 99.7 0.89
9 477 458 231 0 15379 0 76 6 92.7 6842 4 99.9 99.9 0.93

Lipid synthesis
8 849 2026 705 3 8229 7 476 159 75.0 5882 4 99.9 97.5 0.850
9 927 2037 629 1 8225 0 507 128 79.8 5886 0 100.0 98.0 0.884
3 898 2968 659 0 7294 0 509 126 80.2 5886 0 100.0 98.1 0.886
4 968 3227 588 1 7035 0 493 142 77.6 5886 0 100.0 97.8 0.871
5 970 3280 586 1 6982 0 491 144 77.3 5886 0 100.0 97.8 0.869
6 874 2112 681 2 8149 1 525 110 82.7 5884 2 100.0 98.3 0.899
7 863 2415 692 2 7845 2 512 123 80.6 5883 3 100.0 98.1 0.886
8 878 3211 705 3 8229 7 476 159 75.0 5882 4 99.9 97.5 0.850
9 815 1613 740 2 8638 11 525 110 80.7 5879 7 99.9 98.2 0.961

rRNA binding
1 548 579 3390 6 9598 22 1821 90 95.3 4662 6 99.9 98.5 0.964
2 1133 1225 2811 0 8974 0 1827 84 95.6 4668 0 100.0 98.7 0.969
3 1126 1638 2816 2 8560 1 1811 100 94.8 4668 0 100.0 98.5 0.963
4 1337 1958 2697 0 8241 0 1783 128 93.3 4668 0 100.0 98.1 0.953
5 1372 1976 2572 0 8223 0 1784 127 93.4 4668 0 100.0 98.1 0.953
6 921 1208 2971 52 8991 0 1824 87 95.5 4668 0 100.0 98.7 0.968
7 878 2743 3040 26 7442 14 1808 103 97.9 4634 34 99.3 97.9 0.951
8 810 972 3075 3 9182 2 1848 63 96.7 4668 0 100.0 99.0 0.977
9 1103 3175 2815 26 7024 0 1805 106 94.5 4668 0 100.0 98.4 0.961
for improving SVM prediction performance (Glen et al. 1989; Xue et al. 1999; Xue and Bajorath 2000; Xue et al. 2000).

Contribution of individual protein descriptors to the classification of functional classes of proteins
In using SVM for predicting functional classes of proteins, several descriptors have been used to describe physicochemical characteristics of each protein (Bock and Gough, 2001; Ding and Dubchak, 2001; Cai et al. 2002a; Cai et al. 2002b; Cai et al. 2003; Han et al. 2004b). It has been reported that, not all descriptors contribute equally to the classification of proteins, some have been found to play relatively more prominent role than others in specific aspects of proteins (Ding and Dubchak, 2001). It is therefore of interest to examine which descriptors are more important in the classification of proteins. Contribution of individual descriptors to protein classification has been investigated by separately conducting classification using each feature property (Ding and Dubchak, 2001). By using the same method, one finds that, in order of prominence, the polarity, hydrophobicity, amino acid composition, and solvent accessibility play more prominent roles than other feature properties in the classification of lipid-binding protein (Lin et al. 2006c). Polarity and hydrophobicity have been shown to be important for lipid-protein interactions such that lipid binding sites are located in a hydrophobic and low polarity environment (Lugo and Sharom, 2005). High-affinity lipid binding site in some proteins appear to be located at sequence segments with specific amino acid composition (Hamilton et al. 1986), and specific sequence motifs have been used for predicting lipid-binding proteins (Gonnet and Lisacek, 2002; Eisenhaber et al. 2003; Juncker et al. 2003; Gonnet et al. 2004; Eisenhaber et al. 2004). A study of apolipopophorin-III in lipid-free and phospholipid-bound states showed that lipid-binding involves increased solvent accessibility due to gross tertiary structural reorganization (Raussens et al. 1996). Therefore, the selected descriptors are consistent with these experimental findings.

Analysis of descriptor contributions by using feature selection method
More rigorous feature selection methods (Xue et al. 2004a; Al-Shahib et al. 2005a; Al-Shahib et al. 2005b), such as recursive feature elimination (RFE) (Guyon et al. 2002), can be applied to the SVM classification of functional classes of proteins to select those descriptors most relevant to the prediction of proteins of a particular class (Guyon et al. 2002; Yu et al. 2003). The details of the implementation of this method can be found in the literatures (Xue et al. 2004a; Xue et al. 2004b). Feature selection procedure can be demonstrated by the following illustrative example of the development of a SVM classification system for predicting DNA-binding proteins: This system is trained by using a Gaussian kernel function with an adjustable parameter σ. Sequential variation of σ is conducted against the whole training set to find a value that gives the best prediction accuracy. This prediction accuracy is evaluated by means of 5-fold cross-validation. In the first step, for a fixed σ, the SVM classifier is trained by using the complete set of features (protein descriptors) described in the previous section. The second step involves the computation of the ranking criterion score DJ(i) for each feature in the current set. All of the computed DJ(i) is subsequently ranked in descending order. The third step involves the removal the m features with smallest criterion scores. In the fourth step, the SVM classification system is re-trained by using the remaining set of features, and the corresponding prediction accuracy is computed by means of 5-fold cross-validation. The first to fourth steps are then repeated for other values of σ. After the completion of these procedures, the set of features and parameter σ that give the best prediction accuracy are selected.

A total of 28 features were selected by RFE, which are given in Table 7. In order of prominence, compositions of specific amino acids, Van der Waals volume, polarity, polarizability, surface tension, secondary structure, and solvent accessibility are found to be important for predicting DNA-binding proteins. Protein-DNA binding is known to involve specific recognition sequence and induced conformation changes (Cheng et al. 1993). Therefore it is expected that the combined features of amino acid composition and surface tension is important for characterizing DNA-binding proteins. DNA binding also involves spatial arrangement or pre-arrangement of specific group of amino acids at the binding site (Patel et al. 2006). It is thus not surprising that such important interactions as polarizability, hydrophobicity, polarity and surface tension are coupled to the size of the amino acid
sequence segment at a DNA-binding site. Many proteins bind DNA via minor groove interaction between protein non-polar surfaces and DNA hydrophobic sugar clusters (Tolstorukov et al. 2004). As a result, the combined features of hydrophobicity and solvent accessibility are expected to be important for describing these proteins.

The usefulness of these 28 selected features can be further tested by constructing a SVM classification system based solely on these features. The prediction accuracies of this new system are 87.2% and 92.6% for DNA-binding and non-DNA-binding proteins respectively, which is slightly improved against those of 85.7% and 91.2% by using all features. This suggests that the use of selected subset of features enhances prediction performance by reducing the noise created by the redundant and irrelevant features.

Comparison of SVM prediction performance under different kernel functions

Apart from the Gaussian kernel function of sequence-derived physicochemical properties, several other kernel functions have been developed and applied for SVM classification of proteins and DNAs (Jaakkola et al. 1999; Zien et al. 2000; Tsuda et al. 2002; Vert et al. 2003; Vishwanathan and Smola, 2003; Leslie et al. 2003; Liao and Noble, 2003; Ratsch et al. 2005; Kuang et al. 2005). It is of interest to test the usefulness of some of these kernel functions for predicting functional classes of proteins. The string-kernel function has been extensively used and it has shown promising potential for protein and DNA studies (Vishwanathan and Smola, 2003; Ratsch et al. 2005). This kernel function is constructed by comparison of sequences of classes of proteins or DNAs and the assignment of individual weights to amino acids or nucleotides to describe physicochemical or other characteristics of the proteins and DNAs. This kernel function is used to develop three SVM systems for predicting the class of lipid-degradation, lipid metabolism, and lipid synthesis proteins. Spectrum kernel with mismatches (Leslie et al. 2003) is used to generate the string-kernel for each protein. Testing results by using an independent set of proteins for each class show that the SE is 77.2%, 75.8%, 77.8%, and the SP is 97.6%, 96.4%, 94.2% for each of these classes respectively (Lin et al. 2006c). Thus comparable prediction performance can be achieved by using string-kernel SVM, which suggests the usefulness of this and other kernel functions for SVM prediction of functional classes of proteins.

Comparison of SVM prediction performance with other machine learning methods

Several other machine learning (ML) methods have been explored for predicting the functional classes of proteins and peptides. These methods include artificial neural network (ANN), k-nearest neighbors (KNN), decision tree and hidden Markov model (HMM). They have been used for predicting enzymes (Jensen et al. 2002), receptors (Jensen et al. 2003), transporters (Jensen et al. 2003), structural proteins (Jensen et al. 2003), mitochondrial proteins (Kumar et al. 2006), cell cycle regulated proteins (de Lichtenberg et al. 2003), growth factors (Jensen et al. 2003), and allergen proteins (Zorzet et al. 2002; Soeria-Atmadja et al. 2004). The reported P+ and P− values of these ML methods are in the range of 37.8%~87% and 66.0%~99.9%, with the majority concentrated in the range of 60%~85% and 70%~90% respectively. These values are slightly lower than the values of 75%~95% and 80%~99.9%.

Table 6. MCC-based performance scores of SVM prediction of different protein functional classes by using different descriptor classes.

Protein functional class	Exceptional	Good (0.8–0.9)	Fair (0.6–0.8)	Poor (< 0.6)
EC2.4	> 0.9	6, 2, 1, 7		
GPCR	9, 6, 2, 3, 8, 4, 5, 1	9, 6, 7, 3, 2, 8	4, 5	1
TC8.A	3, 5, 4, 9, 6, 2	8, 1		
Chlorophyll	8, 9	6, 7, 3, 2, 4, 5, 1		
Lipid synthesis	8, 2, 6, 1, 3, 9, 5, 4, 7			
rRNA binding				
Table 7. Protein descriptors important for characterizing DNA-binding proteins as selected by a feature selection method, recursive feature elimination method.

Descriptor ranking	Descriptor index	Structural or physicochemical property of descriptor
1	F168	Solvent accessibility Composition Group 1
2	F166	Secondary structure Group 3 3/4th Distribution
3	F147	Secondary structure Composition Group 1
4	F75	Polarity Group 2 1/4th First Distribution
5	F43	Normalized Van der Waals volume Composition Group 2
6	F155	Secondary structure Group 1 2/4th Distribution
7	F91	Polarizability Group 1 1/4th First Distribution
8	F143	Surface tension Group 3 1/4th First Distribution
9	F171	Solvent accessibility Transition Group 1
10	F126	Surface tension Composition Group 1
11	F87	Polarizability Transition Group 1
12	F145	Surface tension Group 3 3/4th Distribution
13	F15	Composition of R
14	F6	Composition of G
15	F177	Solvent accessibility Group 1 3/4th Distribution
16	F154	Secondary structure Group 1 1/4th First Distribution
17	F89	Polarizability Transition Group 3
18	F133	Surface tension Group 1 1/4th First Distribution
19	F42	Normalized Van der Waals volume Composition Group 1
20	F85	Polarizability Composition Group 2
21	F175	Solvent accessibility Group 1 1/4th First Distribution
22	F130	Surface tension Transition Group 2
23	F127	Surface tension Composition Group 2
24	F151	Secondary structure Transition Group 2
25	F98	Polarizability Group 2 3/4th Distribution
26	F8	Composition of I
27	F67	Polarity Transition Group 2
28	F148	Secondary structure Composition Group 2

of the SVM, suggesting that other ML methods are also useful for predicting the functional class of proteins and peptides.

Underlying Difficulties in Using Support Vector Machines
The performance of SVM critically depends on the diversity of samples (proteins and peptides) in a training dataset and the appropriate representation of these samples. The datasets used in many of the reported studies are not expected to be fully representative of all of the proteins, peptides and small molecules with and without a particular functional and interaction profile. Various degrees of inadequate sampling representation likely affect, to a certain extent, the prediction accuracy of the developed statistical learning models. SVM is not applicable for proteins, peptides and small molecules with insufficient knowledge about their specific functional and interaction profile. Searching of the information about proteins, peptides and small molecules known to possess a particular profile and those do not possess that profile is a key to more extensive exploration of statistical learning methods for facilitating the study of protein functional and interaction profiles. Apart from literature sources such as PubMed (Beebe, 2006), databases such as Swiss-Prot (Dorazilova and Vedralova, 1992), Genbank (Benson et al. 2004), pirpsd (Barker et al. 1999), geneontology (Chalmel et al. 2005), PDB (Berman et al. 2000), enzyme database (Bairoch, 2000), TransportDB (Ren et al. 2004), HMTD (Yan and Sadee, 2000), ABCdb (Quentin and Fichant, 2000), TiPS (Alexander, 1999), GPCRDB (Horn et al. 2003), SYFPEITHI (Ram-mensee et al. 1999), MHCPEP (Brusic et al. 1996), JenPep (Blythe et al. 2002), MHCBN (Bhasin et al. 2003), FIMM (Schonbach et al. 2000), and FSSP database (Holm and Sander, 1996) are also useful for obtaining information about protein/peptide functional and interaction profiles.
In the datasets of some of the reported studies, there appears to be an imbalance between the number of samples having a profile and those without the profile. SVM method tends to produce feature vectors that push the hyper-plane towards the side with smaller number of data (Veropoulos, 1999), which often lead to a reduced prediction accuracy for the class with a smaller number of samples or less diversity than those of the other class. It is however inappropriate to simply reduce the size of non-members to artificially match that of members, since this compromises the diversity needed to fully represent all non-members. Computational methods for re-adjusting biased shift of hyperplane are being explored (Brown et al. 2000). Application of these methods may help improving the prediction accuracy of SVM in the cases involving imbalanced data.

While a number of descriptors have been introduced for representing proteins and peptides (Bock and Gough, 2001; Karchin et al. 2002; Cai et al. 2003; Gasteiger, 2005), most reported studies typically use only a portion of these descriptors. It has been found that, in some cases, selection of a proper subset of descriptors is useful for improving the performance of SVM (Xue et al. 2004a; Al-Shahib et al. 2005a; Al-Shahib et al. 2005b). Therefore, there is a need to explore different combination of descriptors and to select more optimum set of descriptors for more cases, which can be conducted by using feature selection methods (Xue et al. 2004a; Al-Shahib et al. 2005a; Al-Shahib et al. 2005b). Efforts have also been directed at the improvement of the efficiency and speed of feature selection methods (Furlanello et al. 2003), which will enable a more extensive application of feature selection methods. Moreover, indiscriminate use of the existing descriptors, particularly those of overlapping and redundant descriptors, may introduce noise as well as extending the coverage of some aspects of these special features. Thus, it may be necessary to introduce new descriptors for the systems that have been described by overlapping and redundant descriptors. Investigation of cases of incorrectly predicted samples have also suggested that the currently-used descriptors may not always be sufficient for fully representing the structural and physicochemical properties of proteins, peptides and small molecules (Xue et al. 2004b; Li et al. 2005; Yap and Chen, 2005). These have prompted works for developing new descriptors (Bhardwaj et al. 2005).

Concluding remarks
SVM has consistently shown promising capability for predicting functional classes of proteins and peptides. Proper use of descriptors for representing proteins and peptides may help further improving the performance of SVM for predicting functional profiles of proteins and peptides. The introduction of new descriptors would better represent characteristics that correlate with novel functional and interaction profiles. Moreover, various feature selection methods may be used for selecting optimal set of descriptors for a particular prediction problem. Existing algorithms can be improved and new algorithms may be introduced for enhancing the performance and accuracy of support vector machine. The prediction capability of SVM can be further enhanced with increasing availability of biological data and more extensive knowledge about sequence, structure, transcription, post-transcriptional processing features that define the functional profiles of proteins and peptides. These efforts will enable the development of SVM into useful tools for facilitating the study of functional profiles of proteins and peptides to complement other well-established methods such as sequence similarity and clustering methods.

References
Abbas, A.K. and and Lichtman, A.H. 2005. Cellular and Molecular Immunology, Updated Edition. Saunders, 5th ed.
Aguilar, D., Oliva, B., Aviles, F.X. et al. 2002. TranScut: prediction of gene expression regulatory proteins from their sequences. Bioinformatics, 18:597–607.
Al-Shahib, A., Breitling, R. and Gilbert, D. 2005a. Feature selection and the class imbalance problem in predicting protein function from sequence. Appl Bioinformatics, 4:195–203.
Al-Shahib, A., Breitling, R. and Gilbert, D. 2005b. FrankSum: new feature selection method for protein function prediction. Int. J. Neural Syst, 15:259–75.
Alexander, S., Peters, J., Mead, A. et al. 1999. TiPS receptor and ion channel nomenclature supplement. Trends Pharmacol. Sci., 19:5–85.
Aravind, L. 2000. Guilt by association: contextual information in genome analysis. Genome Res., 10:1074–7.
Bairoch, A. (2000). The ENZYME database in 2000. Nucleic Acids Res., 28:304–5.
Baldi, P., Brunak, S., Chauvin, Y. et al. 2000. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics, 16:412–24.
Ball, T. 2005. Inositol-lipid binding motifs: signal integrators through protein-lipid and protein-protein interactions. J. Cell. Sci., 118:2093–104.
Barker, W.C., Garavelli, J.S., McCarvey, P.B. et al. 1999. The PIR-International Protein Sequence Database. Nucleic Acids Res., 27:39–43.
Baxevanis, A.D. 1998. Practical aspects of multiple sequence alignment. Methods Biochem. Anal, 39:172–88.
Beebe, D.C. 2006. Public access success at PubMed. Science, 313:1571–2.
Ben-Hur, A. and Noble, W.S. 2005. Kernel methods for predicting protein-protein interactions. Bioinformatics, 21 Suppl 1:i38–i46.
Dorazilova, V. and Vedralova, J. 1992. Secretory meningioma. *Cesk Patol.*, 28:245–7.

Downes, C.P., Gray, A. and Lucaoq, J.M. 2005. Probing phosphoinositide functions in signaling and membrane trafficking. *Trends Cell. Biol.*, 15:259–68.

Driessen, A.J., Rosen, B.P. and Konings, W.N. 2000. Diversity of transport mechanisms: common structural principles. *Trends Biochem. Sci.*, 25:397–401.

Dubchak, I., Muchnik, I., Holbrook, S.R. et al. 1995. Prediction of protein folding class using global description of amino acid sequence. *Proc. Natl. Acad. Sci. USA.*, 92:8700–4.

Dubchak, I., Muchnik, I., Mayor, C. et al. 1999. Recognition of a protein fold in the context of the Structural Classification of Proteins (SCOP) classification. *Proteins*, 35:401–7.

Dutta, A.K., Zhang, S., Kolhatkar, R. et al. 2003. Dopamine transporter as target for drug development of colchane dependence medications. *Eur. J. Pharmacol.*, 479:93–106.

Eisen, J.A. 1998. Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. *Genome Res.*, 8:163–7.

Eisenhaber, F., Eisenhaber, B., Kubina, W. et al. 2003. Prediction of lipid posttranslational modifications and localization signals from protein sequences: big-Pi, NMT and PTS1. *Nucleic Acids Res.*, 31:3631–4.

Enright, A.J., Iliopoulos, I., Kyprides, N.C. et al. 1999. Protein interaction maps for complete genomes based on gene fusion events. *Nature*, 402:86–90.

Enright, A.J. and Ouzounis, C.A. 2000. GeneRAGE: a robust algorithm for sequence clustering and domain detection. *Bioinformatics*, 16:451–7.

Enright, A.J., Van Dongen, S. and Ouzounis, C.A. 2002. An efficient algorithm for large-scale detection of protein families. *Nucleic Acids Res.*, 30:1575–84.

Feng, Z. and Zhang, C. 2000. Prediction of membrane protein types based on the hydrophobic index of amino acids. *J. Protein Chem.*, 19:262–75.

Fujii, Y., Shimizu, T., Toda, T. et al. 2000. Structural basis for the diversity of DNA recognition by bZIP transcription factors. *Nat Struct Biol.*, 7:889–93.

Fujivara, Y. and Asogawa, M. 2002. Protein function prediction using hidden Markov models and neural networks: big-Pi, NMT and PTS1. *Nucleic Acids Res.*, 18:3611–3.

Garvie, C.W. and Wolberger, C. 2001. Recognition of specific DNA binding sites by DNA-bending proteins. *J. Biol. Chem.*, 276:21493–502.

Gasteiger, E., Hoogland, C., Gattiker, A. et al. 2005. Protein Identification and Analysis Tools on the ExPASy Server. In *John MW Ed. The Proteomics Protocols Handbook*, Humana Press, p 571–607.

Gasteiger, E., Hoogland, C., Gattiker, A. et al. 2005. Protein Identification and Analysis Tools on the ExPASy Server In Walker JM, ed. The Proteomics Protocols Handbook. *Humana Press*, p 571–607.

Gonnet, P. and Lisacek, F. 2002. Probabilistic alignment of motifs with sequences. *Bioinformatics*, 18:1091–101.

Gonnet, P., Rudd, K.E. and Lisacek, F. 2004. Fine-tuning the prediction of sequences cleaved by signal peptidase II: a curated set of proven and predicted lipoproteins of *Escherichia coli* K-12. *Proteomics*, 4:1597–613.

Granath, R. 1974. Amino acid difference formula to help explain protein evolution. *Science*, 185:862–4.

Guo, Y.Z., Li, M., Lu, M. et al. 2006. Classifying G protein-coupled receptors and nuclear receptors on the basis of protein power spectrum from fast Fourier transform. *Amino Acids*, 30:397–402.

Guyon, I., Weston, J., Barnhill, S. et al. 2002. Gene selection for cancer classification using support vector machines. *Machine Learning*, 46:389–422.

Hamilton, S.E., Recny, M. and Hager, L.P. 1986. Identification of the high-affinity lipid binding site in *Escherichia coli* pyruvate oxidase. *Biochemistry*, 25:8178–83.

Han, L.Y., Cai, C.Z., Ji, Z.L. et al. 2004a. Predicting functional family of novel enzymes irrespective of sequence similarity: a statistical learning approach. *Nucleic Acids Res.*, 32:6437–44.

Han, L.Y., Cai, C.Z., Ji, Z.L. et al. 2005a. Prediction of functional class of novel viral proteins by a statistical learning method irrespective of sequence similarity. *Virology*, 331:136–43.

Han, L.Y., Cai, C.Z., Lo, S.L. et al. 2004b. Prediction of RNA-binding proteins from primary sequence by a support vector machine approach. *Rna*, 10:355–68.

Han, L.Y., Zheng, C.J., Lin, H.H. et al. 2005b. Prediction of functional class of novel plant proteins by a statistical learning method. *New Phytol.*, 168:109–21.

Hanhoff, T., Lücke, C. and Spener, F. 2002. Insights into binding of fatty acids by fatty acid binding proteins. *Mol. Cell. Biochem.*, 239:45–54.

Hauderlen, N.H. and Spener, F. 2004. Fatty acid-binding proteins—insights from genetic manipulations. *Prog Lipid Res.*, 43:328–49.

Hediger, M.A. 1994. Structure, function and evolution of solute transporters in prokaryotes and eukaryotes. *J. Exp. Biol.*, 196:15–49.

Hedges, H. and Tsai, J. 2002. 3D-Motifs: An informatics approach to protein function prediction. *FASEB J.*, 16:A543–A543.

Holm, L. and Sander, C. 1996. Mapping the protein universe. *Science*, 273:595–603.

Horn, F., Bettler, E., Oliveira, L., Campagne, F., Cohen, F. and Vriend, G. 2003. GPCRDB information system for G protein-coupled receptors. *Nucleic Acids Res.*, 31:294–7.

Horne, D. 1988. Prediction of protein helix content from an autocorrelation analysis of sequence hydrophobicities. *Biopolymers*, 27:451–77.

Hou, Y., Hsu, W., Lee, M.L. et al. 2004. Remote homolog detection using local sequence-structure correlations. *Proteins*, 57:518–30.

Huang, N., Chen, H. and Sun, Z. 2005. CTKPred: an SVM-based method for the prediction and classification of the cytokine superfamily. *Protein Eng Des Sel.*, 18:365–8.

Jaakkola, T., Diekhans, M. and Haussler, D. 1999. Using the Fisher Kernel method to detect Remote Protein HomologiesIn Lengauer T et al. eds. *Proceedings of the Seventh International Conference on Intelligent Systems for Molecular Biology; AAAI Press, Menlo Park, CA*, p 149–58.

Jensen, L.J., Gupta, R., Blom, N. et al. 2002. Prediction of human protein function from post-translational modifications and localization features. *J. Mol. Biol.*, 319:1257–65.

Jensen, L.J., Gupta, R., Staerfeldt, H.H. et al. 2003. Prediction of human protein function according to Gene Ontology categories. *Bioinformatics*, 19:635–42.

Joet, T., Morin, C., Fischburg, J. et al. 2003. Why is the *Plasmodium falciparum* hexose transporter a promising new drug target?. *Expert Opin. Ther. Targets*, 7:593–602.

Johnson, S.C. 1967. Hierarchical clustering schemes. *Psychometrika*, 32:241–54.

Juncker, A.S., Willenbrock, H., Von Heijne, G. et al. 2003. Prediction of lipoprotein signal peptides in Gram-negative bacteria. *Protein Sci.*, 12:1652–62.
Karchin, R., Karpplus, K. and Haussler, D. 2002. Classifying G-protein coupled receptors with support vector machines. Bioinformatics, 18:147–59.

Kawahima, S. and Kancheisa, M. 2000. A.Aindex: amino acid index database. Nucleic Acids Res., 28:374.

Kuang, R., Ie, E., Wang, K. et al. 2005. Profile-based string kernels for remote homology detection and motif extraction. J. Bioinform Comput. Biol., 3:527–50.

Kumar, M., Verma, R. and Raghava, G.P. 2006. Prediction of mitochondrial proteins using support vector machine and hidden markov model. J. Biol. Chem., 281:5357–63.

Kunik, V., Solan, Z., Edelman, S. et al. 2005. Motif extraction and protein classification. Proc. IEEE Comput. Syst Bioinform Conf, p 80–5.

Kunta, J.R. and Sinko, P.J. 2004. Intestinal drug transporters: in vivo function and clinical importance. Curr. Drug Metab., 5:109–24.

Lee, W. and Kim, R.B. 2004. Transporters and renal drug elimination. Annu Rev. Pharmacol. Toxicol., 44:137–66.

Lin, Z. and Dai, Y. 2006. Assessing protein similarity with Gene Ontology and its use in subnuclear localization prediction. BMC Bioinformatics, 7:491.

Leslie, C., Kuang, R. and Eskin, E. 2003. Inexact matching string kernels for protein classification. In “Kernel Methods in Computational Biology.” pp. 95–112. MIT Press, Cambridge.

Leslie, C.S., Eskin, E., Cohen, A. et al. 2004. Mismatch string kernels for discriminative protein classification. Bioinformatics, 20:467–76.

Lewin, B. 2000. Genes VII. Oxford University Press, Oxford.

Li, H., Ung, C., Yap, C. et al. 2005. Prediction of Genotoxicity of Chemical Compounds by Statistical Learning Methods. Chemical Research in Toxicology, 18:1071–80.

Li, Z.R., Lin, H.H., Han, L.Y. et al. 2006. PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res., 34:W32–7.

Liao, L. and Noble, W.S. 2003. Combining pairwise sequence similarity and support vector machines for detecting remote protein evolutionary and structural relationships. J. Comput. Biol., 10:857–68.

Lin, H.H., Han, L.Y., Cai, C.Z. et al. 2006a. Prediction of transporter family from protein sequence by support vector machine approach. Proteins, 62:218–31.

Lin, H.H., Han, L.Y., Zhang, H.L. et al. 2006b. Prediction of the functional class of DNA-Binding proteins from sequence derived structural and physicochemical properties. Submitted.

Lin, H.H., Han, L.Y., Zhang, H.L. et al. 2006c. Prediction of the functional class of lipid binding proteins from sequence-derived properties irrespective of sequence similarity. J. Lipid Res., 47:824–31.

Lin, T.Y. and Timasheff, S.N. 1996. On the role of surface tension in the cation system for biological membrane transport systems. Nucleic Acids Res., 24:W86–4.

Lugo, M.R. and Sharam, F.J. 2005. Interaction of LDS-751 with P-glycoprotein and mapping of the location of the R drug binding site. Biochemistry, 44:643–55.

Luscombe, N.M., Laskowski, R.A. and Thornton, J.M. 2001. Amino acid-base interactions: a three-dimensional analysis of protein-DNA interactions at an atomic level. Nucleic Acids Res., 29:2860–74.

Luscombe, N.M. and Thornton, J.M. 2002. Protein-DNA interactions: amino acid conservation and the effects of mutations on binding specificity. J. Mol. Biol., 320:991–1009.

Marcotte, E.M., Pellegrini, M., Ng, H.L. et al. 1999. Detecting protein function and protein-protein interactions from genome sequences. Science, 285:751–3.

Martin, S., Roe, D. and Faulon, J.L. 2005. Predicting protein-protein interactions using signature products. Bioinformatics, 21:218–26.

Matsumura, M., Fremont, D.H., Peterson, P.A. et al. 1992. Emerging principles for the recognition of peptide antigens by MHC class I molecules. Science, 257:927–34.

Mattaj, I.W. 1993. RNA recognition: a family matter?. Cell, 73:837–40.

McFarland, B.J. and Beeson, C. 2002. Binding interactions between peptides and proteins of the class II major histocompatibility complex. Med. Res. Rev., 22:168–203.

NC-IUBMB (International Union of Biochemistry and Molecular Biology, Nomenclature Committee. 1992. Enzyme Nomenclature. Academic Press, San Diego, California.

Niggli, V. 2001. Structural properties of lipid-binding sites in cytoskeletal proteins. Trends Biochem. Sci., 26:604–11.

Palsdottir, H. and Hunte, C. 2004. Lipids in membrane protein structures. Biochim Biophys. Acta., 1666:2–18.

Patel, A., Shuman, S. and Mondragon, A. 2006. Crystal structure of a bacterial type IB DNA topoisomerase reveals a preassembled active site in the absence of DNA. J. Biol. Chem., 281:6030–7.

Pebay-Peyroula, E. and Rosenbusch, J.P. 2001. High-resolution structures and dynamics of membrane protein–lipid complexes: a critique. Curr. Opin. Struct Biol., 11:427–52.

Perez-Canadillas, J.M. and Varani, G. 2001. Recent advances in RNA-protein recognition. Curr. Opin. Struct Biol., 11:53–8.

Plewczynski, D., Tkacz, A., Godzik, A. et al. 2005. A support vector machine approach to the identification of phosphorylation sites. Cell. Mol. Biol. Lett., 10:73–89.

Provost, F., Fawcett, T. and Kohavi, R. 1998. The case against accuracy estimation for comparing induction algorithms. In Proc. 15th International Conf. on Machine Learning. Morgan Kaufmann, San Francisco, CA, p 445–53.

Quentin, Y. and Fichant, G. 2000. ABCdb: an ABC transporter database. J. Mol. Microbiol Biotechnol., 2:501–4.

Rammensee, H., Bachmann, J., Emmerich, N.P. et al. 1999. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics, 50:213–9.

Ratsch, G., Sonnenburg, S. and Scholkopf, B. 2005. RASE: recognition of alternatively spliced exons in C.elegans. Bioinformatics, 21 Suppl 1:i369–i377.

Rausens, V., Narayanaswami, V., Goormaghtigh, E. et al. 1996. Hydrogen/deuterium exchange kinetics of apolipoporphin-III in lipid-free and phospholipid-bound states: An analysis by Fourier transform infrared spectroscopy. J. Biol. Chem., 271:23809–95.

Ren, Q., Kang, K.H. and Paulsen, I.T. 2004. TransportDB: a relational database of cellular membrane transport systems. Nucleic Acids Res., 32:D284–8.

Rost, B. 2002. Enzyme function less conserved than anticipated. J. Mol. Biol., 318:595–608.

Saha, S. and Raghava, G.P. 2006. AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res., 34:W202–9.

Saier, MHJ. 2000. A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol. Biol. Rev., 64:354–411.

Saier, MHJ., Tran, C.V. and Barabote, R.D. 2006. TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acid Res., 34:D181–D186.

Sarai, A. and Kono, H. 2005. Protein-DNA recognition patterns and predictions. Annu Rev. Biophys. Biomol Struct., 34:379–98.

Schneider, G. and Wrede, P. 1994. The rational design of amino acid sequences by artificial neural networks and simulated molecular evolution: de novo design of an idealized leader peptide cleavage site. Biochim. J., 66:335–44.

Schomburg, I., Chang, A. and Schomburg, D. 2002. BRENDA, enzyme data and metabolic information. Nucleic Acids Res., 30:47–9.

Schonbach, C., Koh, J.L., Sheng, X. et al. 2000. FIMM, a database of functional molecular immunology. Nucleic Acids Res., 28:222–4.

Schuler, G.D. 1998. Sequence alignment and database searching. Methods Enzymol. Anal., 39:145–71.

Seal, R.P. and Amara, S.G. 1999. Excitatory amino acid transporters: a family in flux. Annu Rev. Pharmacol. Toxicol., 39:431–56.
Weisser, R.A. 2002. Cytosolic fatty acid binding proteins catalyze two distinct steps in intracellular transport of their ligands. Mol. Cell. Biochem., 239:35–43.

Weiss, S.M. and Kulikowski, C.A. 1991. Computer systems that learn: classification and prediction methods from statistics, neural nets, machine learning, and expert systems. Morgan Kaufmann Publishers Inc, San Francisco, CA, USA.

Whistock, J.C. and Lesk, A.M. 2003. Prediction of protein function from protein sequence and structure. Q. Rev. Biophys., 36:307–40.

Xue, L. and Bajorath, J. 2000. Molecular Descriptors in Chemoinformatics, Computational Combinatorial Chemistry, and Virtual Screening. Comb Chem. High Throughput Screen, 3:363–72.

Xue, L., Godden, J. and Bajorath, J. 1999. Identification of a preferred set of descriptors for compound classification based on principal component analysis. J. Chem. Inf Comput. Sci., 39:669–704.

Xue, L., Li, Z.R., Yap, C.W. et al. 2004a. Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents. J. Chem. Inf Comput. Sci., 44:1630–8.

Xue, Y., Yap, C.W., Sun, L.Z. et al. 2004b. Prediction of P-glycoprotein substrates by a support vector machine approach. J. Chem. Inf Comput. Sci., 44:1497–505.

Yabuki, Y., Muramatsu, T., Hirokawa, T. et al. 2005. GRIFFIN: a system for predicting GPCR-G-protein coupling selectivity using a support vector machine and a hidden Markov model. Nucleic Acids Res., 33:W148–53.

Yan, Q. and Sadee, W. 2000. Human membrane transporter database: a Web-accessible relational database for drug transport studies and pharmacogenomics. AAPS PharmSci., 2:E20.

Yap, C.W. and Chen, Y.Z. 2005. Prediction of cytochrome P450 3A4, 2D6, and 2C9 inhibitors and substrates by using support vector machines. Journal of Chemical Information and Modeling, 45:982–92.

Yu, H., Yang, J., Wang, W. et al. 2003. Discovering Compact and Highly Discriminative Features or Feature Combinations of Drug Activities Using Support Vector Machines. In IEEE Computer Society Bioinformatics Conference CSB’03, Stanford, California, p 220–8.

Zhang, C., Anderson, A. and DeLisi, C. 1998. Structural principles that govern the peptide-binding motifs of class I MHC molecules. J. Mol. Biol., 281:929–47.

Zhang, Z., Kochhar, S. and Grigorov, M.G. 2005. Descriptor-based protein remote homology identification. Protein Sci., 14:431–44.

Zhao, Y., Pinilla, C., Valmori, D. et al. 2003. Application of support vector machines for T-cell epitope prediction. Bioinformatics, 19:1978–84.

Zien, A., Ratsch, G., Mika, S. et al. 2000. Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics, 16:799–807.

Zorzet, A., Gustafsson, M. and Hammerling, U. 2002. Prediction of food protein allergenicity: a bioinformatic learning systems approach. In Silico Biol., 2:525–34.