The clinical value of serial measurement of high-sensitivity cardiac troponin T in acute exacerbations of chronic obstructive pulmonary disease

Arne Didrik Høiseth, 1,2 Anke Neukamm, 1,2 Tor-Arne Hagve, 2,3 Torbjørn Omland, 1,2 Pål H Brekke, 1,2 Vidar Søyseth 1,2

ABSTRACT

Objective: To assess the prevalence and long-term prognostic value of a dynamic (rise/fall) pattern of cardiac troponin T (hs-cTnT) elevation during acute exacerbation of chronic obstructive pulmonary disease (AECOPD) compared with a stable hs-cTnT elevation.

Methods: Prospective cohort study of unselected patients admitted with AECOPD to the emergency room of a university hospital. Serial hs-cTnT measurements were made during admission. Survival after a median of 1.8 years was recorded.

Results: 83 patients with a mean age of 72 years and a mean forced expiratory volume in 1 s (FEV1) of 0.9 L. The mortality rate was 62%. The median hs-cTnT at admission was 27 ng/L (IQR 13.4–51). 65 patients (78%) had at least one hs-cTnT measurement ≥14 ng/L, and among these the median change in hs-cTnT was 50.7% (IQR 25.2–89.4). Of the patients with serial hs-cTnT measurements, 53 (82%) had a dynamic pattern (ie, ΔcTnT ≥20%). In multivariate analysis, stable hs-cTnT elevation was associated with increasing age (OR per 5 years with 95% CI 1.9 (1.01 to 3.7), p=0.045) and low Hb (OR 7.3 (1.1 to 49), p=0.039). Stable hs-cTnT elevation was associated with increased mortality with an HR of 2.4 (95%CI 1.1 to 5.3, p=0.027) in the multivariate Cox regression analysis.

Conclusions: Among the patients with at least one hs-cTnT above the 99th centile, 82% had a rise/fall pattern, as requested to make a diagnosis of myocardial infarction. Compared to a dynamic rise/fall pattern of hs-cTnT, a stable and moderately elevated hs-cTnT during AECOPD is associated with poor long-term prognosis.

INTRODUCTION

Patients with chronic obstructive pulmonary disease (COPD) may suffer from a range of comorbidities that affect mortality. Among these are cardiovascular diseases (CVDs), which are found to be more prevalent among patients with COPD than in the general population, even after adjustment for important confounders such as smoking habits. Heart failure (HF) and myocardial infarction (MI) are prevalent and often unrecognised in patients with COPD.

In the diagnosis of CVD, two families of biomarkers are central: the cardiac troponins (cTn), and the natriuretic peptides, B-type natriuretic peptide (BNP) and the amino-terminal fragment of its precursor proBNP (NT-proBNP). These biomarkers have all been measured in patients with COPD, both in the stable phase and during acute exacerbations (acute exacerbation of chronic obstructive pulmonary disease; AECOPD).

Owing to the different assays, cut-offs and patient populations, the results are not directly comparable, but there are some emerging patterns: concentrations above normal of cTn or NT-proBNP are relatively common among patients with COPD and are associated with increased mortality. It has not been established to what degree the release of these markers during AECOPD is attributable to MI (type 1 or 2), increased pressure in the left or right heart, myocardial remodelling or a combination of these mechanisms. Trying to elucidate this, we and other investigators have assessed the associations between cTn elevation and clinical features essential in the diagnosis of...
MI (ie, chest pain or electrocardiographic changes) among patients with AECOPD, but found none.13, 24, 25 Moreover, we have failed to demonstrate any association between hypoxaemia, which may cause a type 2 MI, and cTn. We have, however, shown that tachycardia during AECOPD is associated with increased cTnT concentrations, a finding that supports the type 2 MI theory.14, 25

Detection of a cTn above the 99th centile is a \textit{conditio sine qua non} in the diagnosis of MI, but a number of cardiac and non-cardiac conditions may also promote cardiomyocyte injury or death causing elevated cTn.26 Hence, additional criteria must be satisfied to establish the MI diagnosis. One important criterion is that cTn should show a characteristic rise and/or fall pattern indicating acute cardiomyocyte death rather than chronic cell death or injury. The guidelines do not specify how great the change in cTn should be, except in the setting of reinfarctions, but the topic is frequently discussed in the literature.27 The National Academy of Clinical Biochemistry and the European Society of Cardiology recommend that a 20% change should be considered clinically relevant.27, 28 With more sensitive assays being introduced, intrindividual changes as well as analytical variations must be considered,29 calculating reference change values (RCVs) for each cTn assay. Using Roche’s highly sensitive troponin T (hs-cTnT) assay, an RCV as high as 85% was found to be necessary to define a changing pattern during short-term serial testing in the low, normal range (0–6 ng/L).30

In an interesting paper, Patel \textit{et al.}31 recently reported serial cTnT measurements during light exacerbations of COPD. To the best of our knowledge, the prevalence of cTn rise/fall during severe AECOPD has not been assessed until now, so the proportion of cTn positive patients with AECOPD satisfying the MI definition remains unknown. McAllister found that 8.5% of 242 patients with AECOPD fulfilled the MI criteria, taking a thorough chest pain history and analysing serial ECGs. However, as we understand their paper, they did not perform serial measurements of cTn, but regarded a single measurement above the 99th centile as a rise from a presumably normal concentration. Since baseline hs-cTnT concentration in COPD may be elevated,12 the assumption that a single elevated measurement represents an MI may not hold true.

The aim of this study was to investigate the pattern of hs-cTnT in serial measurements in patients with at least one hs-cTnT measurement above the 99th centile during hospitalisation for AECOPD. We further wanted to identify demographic, historical and clinical determinants of different hs-cTnT patterns and to assess whether different hs-cTnT patterns were associated with long-term mortality.

METHODS
From 3 January 2005 through 30 November 2006, 99 unselected patients hospitalised with AECOPD were included at admission and followed until 31 December 2008 or death. We recorded medical history including smoking history, body mass index (BMI) and spirometry, laboratory data, chest radiograph, admission ECG, medications on admission and discharge, discharge diagnoses and readmissions. Details regarding the patient inclusion, data collection, and description of procedures and analytical methods have been described in a previous paper,14 and are presented as online supplementary material. Blood was drawn in the emergency department on admission (day 0) and on the morning rounds on days 1, 2 and 4. Study-specific blood analyses were not performed until 2009, leaving the treating physicians blinded to the results.

Postbronchodilation spirometry data from a stable phase were recorded when available. ECG recordings were obtained on admission and subsequently analysed by two independent and blinded researchers. They recorded the heart rhythm, the QRS axis and signs of right or left ventricular hypertrophy, current ischaemia (ST segment depression or elevation) and prior MI (pathological Q waves, poor R wave progression, left bundle branch block, T wave inversion). The ruling of a third investigator was used in cases of disagreement. Chest radiographs were also read by two blinded investigators, who assessed the presence or the absence of pulmonary congestion, cardiomegaly, pleural effusions and infiltrates.

Statistical analyses
Baseline analyses
Only patients with at least one hs-cTnT measurement above the 99th centile (14 ng/L) were included in the analyses for this paper. ΔTnT was calculated by the formula (maximum cTnT−minimum cTnT)/minimum cTnT. A dynamic hs-cTnT pattern was defined as ΔTnT ≥20%. Differences in baseline characteristics for patients with stable vs dynamic hs-cTnT patterns were analysed using the \(\chi^2 \), t test or Wilcoxon rank sum test. We analysed the following variables: age, gender, lung function (forced expiratory volume in 1 s (FEV\(_1\)) in litres and per cent of predicted, and FEV\(_1\)/forced vital capacity), BMI, medical history (coronary artery disease (CAD), left or right HF, arterial hypertension, diabetes mellitus, atrial fibrillation), biochemistry (haemoglobin (Hb), white blood cell and platelet counts, C reactive protein, serum creatinine, epidermal growth factor receptor (eGFR; MDRD formula), NT-proBNP) and ECGs and chest radiographs as described above. As eGFR by the MDRD formula has been validated only for values <60 mL/min/1.73 m\(^2\), we used the non-parametric test for comparison of eGFR.

Determinants of the hs-cTnT pattern
Variables that were different between patients with stable and dynamic hs-cTnT (p value <0.20) were included in a logistic regression model with the hs-cTnT pattern as the dependent variable. The full model was manually
Survival analysis
For each of the variables that were different between patients with stable and dynamic hs-cTnT patterns, we also performed a survival analysis using an age-adjusted log-rank test. In these analyses, continuous covariables were categorised according to prespecified limits: age <65 years, 65–75 years and ≥75 years, Hb <13 g/L in males and <12 g/L in women, eGFR<60 and NT-proBNP in tertiles. The covariables that were associated with mortality (age-adjusted log-rank p value <0.20) as well as with the hs-cTnT pattern were investigated for confounding and effect modification by stratified analyses of mortality and comparison of mortality rates using the Mantel-Haentzel test. The variables were finally analysed in a multivariate Cox regression model that was manually reduced using backward elimination. Covariables were removed from the model one at a time if the p value in the multivatate model was >0.05 and its removal did not change the coefficient between the hs-cTnT pattern and mortality more than 10%.

The proportional hazards assumption was checked using the Martingale residuals. All analyses were performed using SAS V9.2 (SAS Institute Inc, Cary, North Carolina, USA).

RESULTS
Of the initial cohort, 83 had repeated measures of hs-cTnT. The only variable that differed significantly (p<0.05) between patients with only one and more hs-cTnT measurements was age (mean 76.9 vs 70.4 years, p=0.007). Of the patients with repeated measurements, 65 (78%) had at least one measurement above 14 ng/L, and these 65 patients constitute the study population. Their mean age was 71.9 years (SD 8.9) and 28 (43%) of them were women. The mean FEV1 was 0.91 L (SD 0.45).

The hs-cTnT concentrations, stratified by the hs-cTnT pattern, are shown in figure 1. The median baseline hs-cTnT was 34.3 (IQR 18.9–58.7) ng/L and the median ΔTnT was 50.7% (IQR 25.2–89.4). Fifty-three patients (82%) had a dynamic hs-cTnT pattern. It is evident from figure 1 that some patients experienced both a rise and a fall. (In the figure, patients are classified based on whatever occurred first for clarity, but no such distinction is made in the analyses.) Baseline characteristics of the two groups with different hs-cTnT patterns are shown in table 1 for relevant variables. Patients with a dynamic hs-cTnT pattern were significantly younger (mean 70.3 vs 78.9 years, p=0.002), and they had a higher Hb (mean 14.2 vs 12.9 g/dL, p=0.016). There were also trends towards lower NT-proBNP concentrations (pg/mL, median with IQR: 465 (183–1438) vs 1249 (561–2055), p=0.052) and less history of CAD (17% vs 42%, p=0.060). Of the 53 patients with a dynamic hs-cTnT pattern, 4 experienced chest pain, and 19 had signs of ischaemia in their ECG (none had both). Thus, 23 (43%) of the patients with a dynamic hs-cTnT pattern satisfied the universal MI criteria (corresponding to 35% of the patients with elevated hs-cTnT).

As shown in table 1, kidney function, assessed by both serum creatinine and eGFR, did not differ between the hs-cTnT groups.

Determinants of the hs-cTnT pattern
In a logistic regression model, age and low Hb were significantly associated with the hs-cTnT pattern with ORs per 5 years (with 95% CIs) of 1.9 (1.01 to 3.07, p=0.045) and 7.3 (1.1–49, p=0.039), respectively. Neither creatinine nor eGFR showed p values <0.10 when added to the final model.

Survival analysis
During a median follow-up of 1.8 years, 40 patients (62%) died. The mortality rates per 100 patient-years among patients with stable and dynamic hs-cTnT patterns were 113 (95% CI 63 to 204) and 27 (19 to 39), respectively, corresponding to a mortality rate ratio of 4.2 favouring patients with a dynamic hs-cTnT pattern (log-rank p value 0.007, figure 2). For the variables that were associated with the hs-cTnT pattern and survival (age, history of CAD or LVHF, NT-proBNP and low Hb) we then performed stratified survival analyses (table 2).

These indicated that some confounding was present as the adjusted mortality rate ratios (table 2,

![Figure 1](http://openheart.bmj.com/) hs-cTnT concentrations during admission for acute exacerbation of chronic obstructive pulmonary disease in patients with stable (A), rising (B) and falling (C) patterns of cTnT. Two outliers have been excluded for clarity. Their hs-cTnT concentrations were 256–387 pg/mL (B) and 192–124 (C).
rightmost column) differed from the crude value of 4.2 (table 2, last line). Additionally, the corresponding Mantel-Haentzel tests indicated effect modification between the hs-cTnT pattern and NT-proBNP, and between the hs-cTnT pattern and age (both p values <0.001). The corresponding interaction terms were therefore included in the initial multivariate model, but without being significant. In the multivariate analysis, a history of CAD did not remain significantly associated with mortality, leaving only NT-proBNP and the hs-cTnT pattern as significantly associated with mortality in the final model (table 3). Age and gender were kept in the model by convention. Adding the history of CAD or HF to the final model did not show significant associations, and the association between the hs-cTnT pattern and mortality remained statistically significant. Restricting the final analysis to patients without CAD or HF made only decimal changes in the estimates (data not shown).

Based on the discharge diagnoses, one female patient was diagnosed with MI. She had no history of CVD, but there was poor R wave progression in the precordial ECG leads. She did not have chest pain on admission. The hs-cTnT concentrations were 133–68-27 ng/L, NT-proBNP 104.3 pg/mL, and she survived the observation period. The remaining patients had discharge diagnoses of COPD with or without airway infection. With regard to the hs-cTnT concentrations, there was an outlier with hs-cTnT concentrations of 250–400 ng/L. This was an 80-year-old man with no known CVD and no chest pain. The ST segment was depressed, and NT-proBNP was 973 pg/mL. No heart disease was diagnosed or treated. He died 17 months later. Excluding one or both of the above from the final analyses widened the CIs somewhat, but made only decimal changes in the estimates.

The Cox models did not violate the proportional hazards assumption.

DISCUSSION

To our knowledge, this is the first study to perform serial measurements of cardiac troponin in patients with

| Table 1 Baseline characteristics of 65 patients having elevated hs-cTnT concentrations (≥14 ng/L) on admission for AECOPD |
|---------------------------------|-----------------|-----------------|-----------------|
| **Variable** | **Stable (n=12)** | **Dynamic (n=53)** | **p Value** |
| Demographics | | | |
| Age, years (SD) | 78.9 (6.5) | 70.3 (8.7) | 0.002 |
| Female, n (%) | 4 (33%) | 24 (45%) | 0.531 |
| Medical history | | | |
| Coronary artery disease, n (%) | 5 (42%) | 9 (17%) | 0.060 |
| Left heart failure, n (%) | 3 (25%) | 5 (9.4%) | 0.158 |
| Right heart failure, n (%) | 0 | 3 (5.7%) | 0.399 |
| FEV1, L (SD)* | 0.88 (0.39) | 0.91 (0.47) | 0.845 |
| FEV1/FVC ratio, % (SD)* | 44 (11) | 46 (14) | 0.719 |
| Current smokers, n (%) | 3 (25%) | 19 (36%) | 0.737 |
| Prior smokers, n (%) | 8 (67%) | 27 (51%) | 0.359 |
| Never smokers, n (%) | 0 | 0 | – |
| Laboratory tests | | | |
| Hb, g/dL, mean (SD) | 12.9 (1.5) | 14.2 (1.6) | 0.016 |
| Creatinine, µg/L, mean (SD) | 82 (36) | 77 (41) | 0.493 |
| eGFR, mL/min/1.73 m², mean (SD) | 85 (38) | 93 (38) | 0.510 |
| First hs-cTnT, ng/L, median (IQR)| 38.2 (28.0–53.7)| 31.2 (17.8–60.3)| 0.577 |
| Highest hs-cTnT, ng/L, median (IQR)| 38.9 (28.8–53.7)| 39.4 (21.9–71.1)| 0.987 |
| NT-proBNP tertile | | | 0.073 |
| 1 (<283 pg/mL), n (%) | 1 (8.3%) | 20 (38%) | |
| 2 (283–1181 pg/mL), n (%) | 4 (33%) | 18 (34%) | |
| 3 (≥1181 pg/mL), n (%) | 8 (58%) | 15 (28%) | |
| ECG analysis | | | 0.706 |
| Current ischaemia, n (%) | 5 (42%) | 19 (36%) | 0.706 |
| Prior myocardial infarction, n (%)| 3 (25%) | 7 (13%) | 0.376 |
| Atrial fibrillation, n (%) | 2 (17%) | 3 (5.7%) | 0.227 |
| P pulmonale | 4 (33%) | 15 (28%) | 0.735 |
| Right ventricular hypertrophy | 1 (8.3%) | 8 (15%) | 0.999 |

The table includes variables that differed with a p value <0.20. Gender, lung and kidney function, smoking status, chest pain and ECG analyses are also included for characterisation of the cohort.

*Spirometry missing in seven patients, n=10 and 48.

AECOPD, acute exacerbation of chronic obstructive pulmonary disease; BNP, B-type natriuretic peptide; eGFR, epidermal growth factor receptor; FEV, forced expiratory volume in 1 s; FVC, forced vital capacity; Hb, haemoglobin.
COPD with acute exacerbation, and we found that a modestly and stably elevated hs-cTnT, as compared to a rise/fall pattern, was associated with increased mortality, even in multivariate analysis. This association is independent of NT-proBNP concentration and a history of HF, indicating that it is some other factor than HF that explains the stably elevated hs-cTnT.

Patients with a rising or falling cTn pattern may satisfy the MI criteria, and the appropriate therapy is readily available in widely published guidelines. Our main result, however, shows that it is important to also search for the underlying conditions available to treatment in patients with a stable cTn pattern. Based on our results, with the association between the hs-cTnT pattern and mortality being independent of NT-proBNP, the history of HF and eGFR, this underlying condition is some condition other than heart or kidney failure. There may still be residual confounding, however, of some unidentified underlying factor that connects these variables.

Reduced Hb was strongly associated with a stable hs-cTnT pattern. Parallel to a type 2 MI, there is a possibility that the myocardium suffers from a chronically reduced oxygen delivery. Moreover, anaemia is an established comorbidity in COPD, possibly resulting from chronic systemic inflammation, a process that also promotes CVD. It may be that patients susceptible to developing anaemia also suffer chronic cardiac injury, with a persistent leak of cTn. Occult gastrointestinal bleeding may also explain the low haemoglobin levels in some patients. How this should promote cTn leak is not obvious, apart from the reduced oxygen delivery.

The absence of any association between the hs-cTnT pattern and kidney function was somewhat surprising, as in clinical practice, moderately elevated cTn concentrations are often attributed to kidney failure. This lack of association may be due to the observation that most of the patients had relatively normal kidney function.

We found that only 10% of patients reported chest pain on admission. This is in contrast to 51%, as reported by McAllister et al, who performed a very thorough patient interview with particular focus on chest pain. We do admit that a more thorough examination may have resulted in a higher proportion of patients with chest pain.

Table 2	Mortality (m), MR per 100 patient-years and mortality rate ratios after admission for AECOPD				
Variable		hs-cTnT pattern		Unadjusted	Adjusted
		Stable (n=12)		Dynamic (n=53)	
Age (years)					
<65	0	5 (13)		0	2.5
65–75	3 (74)	13 (35)		11 (34)	2.1
>75	8 (141)			4.1	
History of CAD	No	7 (131)	22 (23)		5.7
Yes	4 (91)	7 (52)		1.8	
History of LVHF	No	9 (133)	26 (27)		4.9
Yes	2 (67)	3 (28)		2.4	
NT-proBNP tertile	1 (<283 pg/mL)	0	5 (9.0)		0
2 (283–1181 pg/mL)	4 (172)	12 (38)		4.5	
3 (≥1181 pg/mL)	7 (136)	12 (58)		2.3	
Low Hb*	No	5 (120)	23 (24)		5.0
Yes	5 (109)	6 (49)		2.2	
Total	11 (113)	29 (27)		4.2	

Stratified by potential confounders of the association between hs-cTnT pattern and mortality.

*A verbal history in men and <12 in women.

AECOPD, acute exacerbation of chronic obstructive pulmonary disease; BNP, B-type natriuretic peptide; CAD, coronary artery disease; Hb, haemoglobin; LVHF, left ventricular heart failure; MR, mortality ratio.
pain or discomfort in our material, and the proportion of patients satisfying the MI criteria thus could have been higher. In contrast to McAllister, we did not retrieve serial ECG recordings. We did record the established ECG criteria of ischaemia, but the ST-T changes may be unspecific, resulting in false positive measures of ischaemia. On the other hand, the old ECG changes may mask current ischaemia, resulting in false negatives, and patients with no prior CVD may present with MI and a normal ECG.

LIMITATIONS

The study sample is small but unselected. As is evident from the supplementary figure, 49% of the preliminarily included in patients were not approached for consent. The primary reason was the research fellow’s absence during weekends and holidays, which we believe to be independent of the individual patient’s clinical status. Moreover, the demographics and clinical status of our cohort are comparable to those in other AECOPD studies.16–19 Hence, we believe our cohort may be considered a random sample from the source population. Not all (83 of 99) included patients had serial measurements of hs-cTnT. Failure to obtain blood on subsequent days was primarily for administrative reasons. Nevertheless, there was a difference in age (but no other investigated variables) among patients with one and more than one hs-cTnT sample. In what way it would influence our results had all patients had serial measurements, will remain unknown. That we, despite the relatively low number of patients, identified significant associations with mortality means that these are consistent in this material, and may also indicate that our results can be applicable and relevant in a clinical setting. Still, our findings should be verified in larger cohorts.

One might argue that the patients with a dynamic hs-cTnT pattern have a better prognosis because they were regarded as patients with MI and treated as such, whereas patients with stable hs-cTnT elevations received less treatment directed towards their cardiovascular system. Importantly, as the blood samples were not analysed until years after inclusion, the treating physicians were blinded to the hs-cTnT results. Although some patients did have fourth generation cTnT measured at the discretion of the physicians, the recorded diagnoses at discharge and medication use both at discharge and at subsequent admissions (data not shown) do not suggest any such bias in the analysis.

The intervals between the blood sampling were not standardised, and the time between the two first hs-cTnT measurements may vary several hours between patients. In most patients with a dynamic hs-cTnT pattern, the rise of fall occurred between the first and second measurements (figure 1). When the time between the first two measurements was long, a transient rise and fall may have been missed, misclassifying dynamic patterns as stable. It is unclear whether, and to what extent, this potential error has inflated or attenuated the difference between the groups.

We defined a dynamic hs-cTnT pattern as a ΔTnT ≥20%. With very low concentrations, a higher δ value may be needed for the measurements to reliably represent a change.20 Using a higher δ value to define a rise/fall, the estimated HR will move towards 1 (data not shown). We chose 20% as it is recommended in the literature,27 28 and patients with concentrations in the low levels, where higher δ values are recommended, were not included in this study.

At the baseline, there were no significant differences in smoking habits between the groups. We did not record smoking cessation during follow-up, however, and do not know to what extent that may have influenced the results.

Future studies investigating cardiac biomarkers in patients with COPD should include echocardiography, which may provide valuable haemodynamic data from both the right and left heart.

CONCLUSION

Among the patients with at least one hs-cTnT above the 99th centile, 82% had a rise/fall pattern, as requested to make a diagnosis of MI. Compared to a rise/fall pattern of hs-cTnT, a stable and moderately elevated hs-cTnT during AECOPD is associated with poor long-term prognosis, also after adjustment for medical history, kidney function and NT-proBNP.

Acknowledgements The authors would like to thank Dr Lars Øivind Høiseth, Ullevål University Hospital, for analysing the ECGs and Dr Bo Daniel Karlsson, Akershus University Hospital, for analysing the chest radiographs.

Funding The study was financed by The Norwegian Association of Heart and Lung Patients and EXTRA funds from the Norwegian Foundation for Health and Rehabilitation.

Competing interests TO has received speaker’s honoraria from Abbott Diagnostics, Siemens Healthcare Diagnostics and Roche Diagnostics; and research grant support from Abbott Diagnostics and Roche Diagnostics through Akershus University Hospital.

Data sharing statement No additional data are available.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-

Table 3	Cox regression analysis showing HRs for long-term mortality after admission for AECOPD	
Variable	All patients (n=65)	
	HR (95% CI)	p Value
Age, per 5 years	1.05 (0.83 to 1.3)	0.664
Female vs male	1.4 (0.69 to 3.0)	0.333
NT-proBNP tertile		
1 (<283 pg/mL)	1	
2 (283–1181 pg/mL)	4.4 (1.5 to 13)	0.006
3 (≥1181 pg/mL)	5.6 (1.8 to 17)	0.003
Stable hs-cTnT pattern	2.4 (1.1 to 5.3)	0.027

AECOPD, acute exacerbation of chronic obstructive pulmonary disease; BNP, B-type natriuretic peptide.
REFERENCES

1. Agusti AG. Systemic effects of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2005;2:367–70.
2. Barnes PJ, Celli BR. Systemic manifestations and comorbidities of COPD. Eur Respir J 2009;33:1165–85.
3. Sin DD, Anthonisen NR, Soriano JB, et al. Mortality in COPD: role of comorbidities. EurRespir J 2006;28:1245–57.
4. Maclay JD, McAllister DA, Macnee W. Cardiovascular risk in chronic obstructive pulmonary disease. Respiratology 2007;12:634–41.
5. Huiart L, Ernst P, Suissa S. Cardiovascular morbidity and mortality in COPD. Chest 2005;128:2640–6.
6. Sidney S, Sorel M, Quesenberry CP Jr, et al. COPD and incident cardiovascular disease hospitalizations and mortality: Kaiser Permanente Medical Care Program. Chest 2005;128:2068–75.
7. Curkendall SM, DeLuise C, Jones JK, et al. Cardiovascular disease in patients with chronic obstructive pulmonary disease, Saskatchewan Canada cardiovascular disease in COPD patients. Ann Epidemiol 2006;16:63–70.
8. BujaIjorel I, Ebbesen J, Eriksen J, et al. Fatal adverse drug events: the paradox of drug treatment. J Intern Med 2001;250:327–41.
9. Brekke PH, Omland T, Smith P, et al. Underdiagnosis of myocardial infarction in COPD. Respir Med 2008;102:1243–7.
10. McCullough PA, Holmedahl SH, et al. Uncovering heart failure in patients with a history of pulmonary disease: rationale for the early use of B-type natriuretic peptide in the emergency department. Acad Emerg Med 2003;10:198–204.
11. Rudge HI, McMurphy KG, Kramer MJ, et al. Recognising heart failure in elderly patients with stable chronic obstructive pulmonary disease in primary care: cross sectional diagnostic study. BMJ 2005;331:1379.
12. Neukamm AM, Hoiseth AD, Hagve TA, et al. High-sensitivity cardiac troponin T levels are increased in stable COPD. Heart 2013;99:382–5.
13. Soyseth V, Bhatnagar R, Holmedahl NH, et al. Acute exacerbation of COPD is associated with fourfold elevation of cardiac troponin T. Heart 2013;99:122–6.
14. Hoiseth AD, Neukamm A, Karlsson BD, et al. Elevated high-sensitivity cardiac troponin T is associated with increased mortality after acute exacerbation of chronic obstructive pulmonary disease. Thorax 2011;66:775–81.
15. Hoiseth AD, Omland T, Hagve TA, et al. NT-proBNP independently predicts long-term mortality after acute exacerbation of COPD—a prospective cohort study. Respir Res 2012;13:97.
16. Chang CL, Robinson SC, Mills GD, et al. Biochemical markers of cardiac dysfunction predict mortality in acute exacerbations of COPD. Thorax 2011;66:764–8.
17. McAllister DA, Maclay JD, Mills NL, et al. Diagnosis of myocardial infarction following hospitalisation for exacerbation of COPD. Eur Respir J 2012:1097–103.
18. Medina AM, Marteles MS, Saiz EB, et al. Prognostic utility of NT-proBNP in acute exacerbations of chronic pulmonary diseases. Eur J Intern Med 2011;22:167–71.
19. Brekke PH, Omland T, Holmedahl SH, et al. Troponin T elevation and long-term mortality after chronic obstructive pulmonary disease exacerbation. Eur Respir J 2008;31:563–70.
20. Baillard C, Boussairar M, Fossa JP, et al. Cardiac troponin I in patients with severe exacerbation of chronic obstructive pulmonary disease. Intensive Care Med 2003;29:584–9.
21. Martins CS, Rodrigues MJ, Miranda VP, et al. Prognostic value of cardiac troponin I in patients with COPD acute exacerbation. Neth J Med 2009;67:341–9.
22. Fruchtner O, Yigla M. Cardiac troponin-I predicts long-term mortality in chronic obstructive pulmonary disease. COPD 2009;6:155–61.
23. Harvey MG, Hancock RJ. Elevation of cardiac troponins in exacerbation of chronic obstructive pulmonary disease. Emerg Med Australas 2004;16:212–15.
24. Hoiseth AD, Omland T, Hagve TA, et al. Determinants of high-sensitivity cardiac troponin T during acute exacerbation of chronic obstructive pulmonary disease: a prospective cohort study. BMC Pulm Med 2012;12:22.
25. Brekke PH, Omland T, Holmedahl SH, et al. Determinants of cardiac troponin T elevation in COPD exacerbation—a cross-sectional study. BMC Pulm Med 2009;9:35.
26. Thygesen K, Alpert JS, Jaffe AS, et al. Third universal definition of myocardial infarction. Circulation 2012;60:1518–98.
27. Thygesen K, Mair J, Giannitsis E, et al. How to use high-sensitivity cardiac troponin in acute cardiac care. Eur Heart J 2012;33:2252–7.
28. Group NW, Wu AH, Jaffe AS, et al. National Academy of Clinical Biochemistry laboratory medicine practice guidelines: use of cardiac troponin and B-type natriuretic peptide or N-terminal proB-type natriuretic peptide for etiologies other than acute coronary syndromes and heart failure. Clin Chem 2007;53:2086–96.
29. Wu AH, Jaffe AS. The clinical need for high-sensitivity cardiac troponin assays for acute coronary syndromes and the role for serial testing. Am Heart J 2008;155:208–14.
30. Vasile VC, Saenger AK, Kroning JM, et al. Biological and analytical variability of a novel high-sensitivity cardiac troponin T assay. Clin Chem 2010;56:1086–90.
31. Patel AR, Kowlessar BS, Donaldson GC, et al. Cardiorenal risk, myocardial injury, and exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2013;188:1091–9.
32. Stolz D, Bredthardt T, Christ-Crain M, et al. Use of B-type natriuretic peptide in the risk stratification of acute exacerbations of COPD. Chest 2008;133:1088–94.
Additional material - details regarding patient inclusion, data collection, and description of procedures and analytical methods.

The study was conducted at Akershus University Hospital (AUH), Norway, a secondary teaching hospital that, with the exception of severe trauma and patients with ST-elevation myocardial infarctions, receives all medical emergencies from its catchment area. At the time the study was conducted, the hospital served a population of about 300,000 inhabitants living in urban, suburban and rural communities.

Patients were included from January 3rd 2005 through to November 30th 2006 and followed until December 31st 2008 or death. All patients admitted with assumed AECOPD were eligible for preliminary inclusion in the emergency room, prior to the emergency physicians’ knowledge of any blood tests. The research fellow contacted the patient on the ward within a day to retrieve written informed consent and medical history. Exclusion criteria were: age <50 years, metastatic cancer and ECOG performance status grade ≥2, neuromuscular disease with respiratory failure, and non-cooperability. The diagnosis of AECOPD, as defined by the British Thoracic Society in 2004, was later verified by two study doctors by independent review of the hospital records, blinded for the result of the troponin analysis. In case of disagreement, the diagnosis was settled by consensus. Mortality data were gathered from the National Population Registry.

On admission, data were obtained from 234 patients admitted with assumed AECOPD. Out of these, 114 were not included either because the research fellow was absent or because he had not been informed of the patients’ arrival. Of the remaining 120 patients, nine failed to fulfill study entry criteria, leaving 111 consenting patients. Nine patients were excluded as review of their spirometry
showed that they did not have COPD. Three patients with COPD were excluded as the primary cause of hospitalisation was pulmonary embolism or pneumothorax, leaving 99 patients for analysis.

Spirometries from stable phase only were recorded, and recordings from the outpatient clinic prior to inclusion were preferred. To make the data as complete as possible, we retrieved spirometry reports from collaborating hospitals in some cases. Median time from spirometry (n=88) to inclusion was 179 days (interquartile range 11–416 days), including both before (maximum 1250 days) and after (maximum 341 days) inclusion. In the lung outpatient clinic, spirometry with reversibility testing is the routine, and post bronchodilatation results were used in the analyses. There was no significant difference in NT-proBNP concentrations between the patients who had spirometry available and those who had not. Of the 11 patients who did not have spirometry available, eight died during follow-up.

During the index admissions, no patients were diagnosed with heart failure. Two patients received diagnosis of heart failure during subsequent admissions, and both patients died. One patient received a discharge diagnosis of an acute coronary syndrome (ACS) during the index hospitalization, and our patients received the diagnosis of ACS during subsequent admissions. All five patients survived.

After venepuncture and processing, serum and plasma were stored at -80°C for subsequent analysis of serum creatinine, NT-proBNP and hs-cTnT, using a Cobas e411 analyzer. The Elecsys hs-cTnT assay (Roche Diagnostics, Mannheim, Germany) had a reported lower limit of detection of 3.0 ng/L, a 99th percentile in healthy individuals at 14 ng/L and a coefficient of variation <10% for concentrations >13 ng/L at the time of biochemical and statistical analysis. Later, a limit of blank at 3.0 ng/L and a limit of detection of 5.0 ng/L has been reported. NT-proBNP was also analyzed with a Roche kit. According to the manufacturer, the assay had a limit of detection of 5.0 pg/mL. The coefficients of variation were reported to be 4.2%, 2.4% and 1.3% at concentrations of 44 pg/mL, 126 pg/mL and 2410 pg/mL, respectively. These study specific analyses were performed by a dedicated biochemist using the
same batch. Glomerular filtration rate was estimated (eGFR) by the MDRD formula. 15.5% of the samples had eGFR <60 mL/min/1.73 m², and 2% were <30 mL/min/1.73 m². When stratifying for renal function, the mortality rate ratios were 2.4 and 2.2 for creatinine <100 and ≥100 µmol/L, respectively (p=0.882 for interaction).

Supplementary figure 1: Flowchart showing the derivation of the study population.