Topological superconductivity in a designer ferromagnet-superconductor van der Waals heterostructure

Shawulienu Kezilebieke,1, 2 Md Nurul Huda,1 Viliam Vaño,1 Markus Aapro,1 Somesh C. Ganguli,1 Orlando J. Silveira,1 Szczepan Glodzik,2 Adam S. Foster,1, 3 Teemu Ojanen,4, 5 and Peter Liljeroth1, 6

1Department of Applied Physics, Aalto University School of Science, PO Box 15100, 00076 Aalto, Finland
2Institute of Physics, M. Curie-Skłodowska University, 20-031 Lublin, Poland
34 WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
4Computational Physics Laboratory, Physics Unit, Faculty of Engineering and Natural, Sciences, Tampere University, PO Box 692, FI-33014 Tampere, Finland
5Helsinki Institute of Physics PO Box 64, FI-00014, Finland

(Dated: February 11, 2020)
Abstract

The designer approach has become a new paradigm in accessing novel quantum phases of matter. Moreover, the realization of exotic states such as topological insulators, superconductors and quantum spin liquids often poses challenging or even contradictory demands for any single material. For example, it is presently unclear if topological superconductivity, which has been suggested as a key ingredient for topological quantum computing, exists at all in any naturally occurring material. This problem can be circumvented by using designer heterostructures combining different materials, where the desired physics emerges from the engineered interactions between the different components. Here, we employ the designer approach to demonstrate two major breakthroughs – the fabrication of van der Waals (vdW) heterostructures combining 2D ferromagnetism with superconductivity and the observation of 2D topological superconductivity. We use molecular-beam epitaxy (MBE) to grow two-dimensional islands of ferromagnetic chromium tribromide (CrBr$_3$) on superconducting niobium diselenide (NbSe$_2$) and demonstrate the existence of the one-dimensional Majorana edge modes using low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS). The fabricated two-dimensional vdW heterostructure provides a high-quality controllable platform for electronic devices harnessing topological superconductivity.
There has been a surge of interest in designer materials that would realize electronic responses not found in naturally occurring materials\cite{1-7}. Topological superconductors are one of the main targets of these efforts and they are currently attracting intense attention due to their potential as building blocks for Majorana-based qubits for topological quantum computation\cite{7-9}. Majorana zero-energy modes (MZM) have been reported in several different experimental platforms, with the most prominent examples being semiconductor nanowires with strong spin-orbit coupling and ferromagnetic atomic chains proximitized with an s-wave superconductor\cite{7,9-14}. It is also possible to realize MZMs in vortex cores on a proximitized topological insulator surface\cite{15-17} or on FeTe$_{0.55}$Se$_{0.45}$ superconductor surface\cite{18,19}. In these cases the MZM were spectroscopically identified as zero energy conductance signals that are localized at the ends of the one dimensional (1D) chain or in the vortex core. In two-dimensional systems, 1D dispersive chiral Majorana fermions are expected to localize near the edge of the system (Fig. 1A). For example, it was proposed that the dispersing Majorana states can be created at the edges of an island of magnetic adatoms on the surface of an s-wave superconductor\cite{20-22}. Experimentally, promising signatures of such 1D chiral Majorana modes have recently been reported around nanoscale magnetic islands either buried below a single atomic layer of Pt\cite{23}, or adsorbed on a Re substrate\cite{24}, and in domain walls in FeTe$_{0.55}$Se$_{0.45}$\cite{25}. However, these types of systems can be sensitive to disorder and may require interface engineering through, e.g., the use of an atomically thin separation layer. In addition, it is difficult to incorporate these materials into device structures. These problems can be circumvented in van der Waals (vdW) heterostructures, where the different layers interact only through vdW forces\cite{1}. VdW heterostructures naturally allow for very high quality interfaces and a multitude of practical devices have been demonstrated. While vdW materials with a wide range of properties have been discovered, ferromagnetism has been notably absent until recent discoveries of atomically thin Cr$_2$Ge$_2$Te$_6$\cite{26}, CrI$_3$\cite{27} and CrBr$_3$\cite{28,29}. The first reports relied on mechanical exfoliation for the sample preparation, but CrBr$_3$\cite{30} and Fe$_3$GeTe$_2$\cite{31} have also been grown using molecular-beam epitaxy (MBE) in ultra-high vacuum (UHV). This is essential for realizing clean edges and interfaces.

Among the various known vdW materials, the recently discovered monolayer ferromagnet transition metal trihalides combined with transition metal dichalcogenide (TMD) superconductors form an ideal platform for realizing 2D topological superconductivity (Fig. 1A). Here, we use MBE to grow high-quality monolayer ferromagnet CrBr$_3$ on a NbSe$_2$ super-
FIG. 1. Realization of topological superconductivity in CrBr$_3$-NbSe$_2$ heterostructures. (A) Schematic of the experimental setup. (B,C) Schematic of the bandstructure engineering to realize topological superconductivity. Effect of adding spin-orbit interactions and weaker and stronger Zeeman-type magnetization on the low-energy band structure in the normal (B) and superconducting states (C). (D) STM image of a monolayer thick CrBr$_3$ island grown on NbSe$_2$ using MBE (STM feedback parameters: $V_{\text{bias}} = +1$ V, $I = 10$ pA, scale bar: 10 nm). (E) Atomically resolved image on the CrBr$_3$ layer (STM feedback parameters: $V_{\text{bias}} = +1.7$ V, $I = 0.5$ nA, image size: 19×19 nm2). (F) Calculated structure and the induced spin-polarization from density-functional theory calculations. (G) Experimental dI/dV spectroscopy on the NbSe$_2$ substrate (blue), the middle of the CrBr$_3$ island (red) and at the edge of the CrBr$_3$ island (green) measured at $T = 350$ mK.
conducting substrate. The mirror symmetry is broken at the interface between the different materials and this lifts the spin degeneracy due to the Rashba effect. Therefore, we have all the necessary ingredients – magnetism, superconductivity and Rashba spin-orbit coupling – required to realize a designer topological superconductor\cite{32,33}. We demonstrate the existence of the one-dimensional Majorana edge modes using low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS). Realizing topological superconductivity in a van der Waals heterostructure has significant advantages compared to the other possible platforms: vdW heterostructures can potentially be manufactured by simple mechanical exfoliation, the interfaces are naturally very uniform and of high quality, and the structures can be straightforwardly integrated in device structures. Finally, layered heterostructures can be readily accessed by a large variety of external stimuli making external control of 2D topological superconductivity potentially possible by electrical\cite{34}, mechanical\cite{35}, chemical\cite{36}, and optical approaches\cite{29}.

Pioneering theoretical works\cite{32,33} demonstrated that topological superconductivity may arise from a combination of out-of-plane ferromagnetism, superconductivity and Rashba-type spin-orbit coupling, as illustrated in Fig. 1B,C. In this scheme, the Rashba coupling lifts the spin-degeneracy of the conduction band while Zeeman splitting due to proximity magnetization lifts the remaining Kramers degeneracy. Adding superconductivity creates a particle-hole symmetric band structure and the superconducting pairing opens gaps at the Fermi energy. In our theoretical model for magnetically covered NbSe\textsubscript{2}, a similar picture arises for the real band structure around any of the high symmetry points of the hexagonal Brillouin zone (Γ, K, or M) where Rashba coupling vanishes. Depending on the magnitude of the magnetization induced gap M and the position of the Fermi energy μ, the system enters a topological phase when $|\epsilon(k_0) - \mu| \leq M$, where $\epsilon(k_0)$ is the energy of the band crossing at the high symmetry point in the absence of magnetization. This is due to the created effective p-wave pairing symmetry. The power of the designer approach with vdW heterostructures comes from the fact that the different components retain their intrinsic properties allowing for rational design of emergent quantum phases of matter and realizing schemes such as shown in Fig. 1B,C.

In Fig. 1D, we show a constant-current STM image of the CrBr$_3$ island grown on a freshly cleaved bulk NbSe$_2$ substrate by MBE (details of sample growth and STM experiments are given in the Supplementary Material (SM)). The CrBr$_3$ islands show a well-ordered moiré
superstructure with 6.3 nm periodicity arising from the lattice mismatch between the CrBr$_3$ and the NbSe$_2$ layers. Fig. 1E shows an atomically resolved STM image of the CrBr$_3$ monolayer, revealing periodically spaced triangular protrusions. These features are formed by the three neighboring Br atoms as highlighted in the Fig. 1F (red triangle) showing the fully relaxed geometry of CrBr$_3$/NbSe$_2$ heterostructure obtained through density functional theory (DFT) calculations (see SM for details). The measured in-plane lattice constant is 6.5 Å, consistent with the recent experimental value (6.3 Å) of monolayer CrBr$_3$ grown on graphite and our DFT calculations. As expected for a weakly-interacting vdW heterostructure, DFT calculations further confirm that the CrBr$_3$ monolayer retains its ferromagnetic ordering with a magnetocrystalline anisotropy favouring an out-of-plane spin orientation as shown in Fig. 1F. The magnetization density (Fig. 1F) shows that the magnetism arises from the partially filled d orbitals of the Cr$^{3+}$ ion. While the largest magnetization density is found close to the Cr atoms, as expected, there is also significant proximity induced magnetization on the Nb atoms in the underlying NbSe$_2$ layer.

This establishes that our system has the required key ingredients for topological superconductivity and now we probe the resulting emergent quantum matter with STS measurements at a temperature of $T = 350$ mK. Fig. 1G shows experimental dI/dV spectra (raw data) taken at different locations indicated in Fig. 1D (marked by filled circles). The dI/dV spectrum of bare NbSe$_2$ has a hard gap with an extended region of zero differential conductance around zero bias, which can be fitted by a double gap s-wave BCS-type spectrum (see SM for details). In contrast, the spectra taken in the middle of the CrBr$_3$ island have small but distinctly non-zero differential conductance inside the gap of the NbSe$_2$ substrate. Moreover, we observe pairs of conductance onsets at ± 0.3 mV around zero bias (red arrows). The magnetization causes the formation of energy bands (dubbed Shiba bands) that exist inside the superconducting gap of the substrate. By introducing spin-orbit interactions (as discussed above), the system can be driven into a topological phase with associated closing and reopening of the gap between the Shiba bands.

We observe edge modes consistent with the expected Majorana modes along the edge of the magnetic island that are the hallmark of 2D topological superconductivity. Moreover, the spectroscopic feature of the Majorana edge mode appears inside the gap defined by the Shiba bands (the topological gap) and is centred around the Fermi level (E_F). A typical spectrum taken at the edge of the CrBr$_3$ island is shown in Fig. 1G, where a peak
FIG. 2. **Electronic structure of CrBr$_3$-NbSe$_2$ heterostructures.** (A) The band structure of the spin-split Nb d-band used in the effective model for topological superconductivity with magnetization $M = 100$ meV. The inset shows the 1st Brillouin zone, where the six M-points and the Rashba texture around them has been highlighted. (B) Calculated phase diagram of the magnetized NbSe$_2$ based on the effective low-energy model. The color scale indicates the energy gap E_{gap} (in the units of Δ). (C) The calculated topological gap Δ_t as a function of the Rashba and magnetization energies (in units of the superconducting gap Δ). (D) Calculated band structure of the topological phase based on a phenomenological tight-binding model (see SM for details).

localized at E_F is clearly seen. Furthermore, there are two side peaks located at ± 0.41 mV (see SM for a more detailed analysis) that are very close in energy to the Shiba bands on the CrBr$_3$ layer.

To account for the experimental observations and to corroborate the topological nature of the edge modes, we model the system through DFT calculations and develop an effective low-energy model for the system (see SM for details). The band structure of the Nb d-states derived band used in the effective model is shown in Fig. 2A (direct comparison with DFT is shown in the SM). Topological superconductivity can be generated when magnetization is sufficiently strong to push one of the spin-degenerate bands at a high-symmetry point above
the Fermi energy. We identify the observed topological phase as a state arising from the
gap-closing transition at M point with a Chern number $C = 3$. The calculated topological
phase diagram in Fig. 2B indicates that for a reasonable magnetization of $M \lesssim 100$ meV,
the $C = 3$ state lies approximately 100-200 meV below the Fermi energy of pristine NbSe$_2$.
Thus, a small renormalization of the chemical potential resulting from the contact with the
magnetic material will drive the system to the topological phase. The two other nontrivial
phases that originate from gap closings at the Γ point and K points give rise to topological
phases with $C = -1$ and $C = -2$. Realization of either of these phases would require notably
larger shifts in chemical potential (~ 0.6 eV), making them improbable for the experimental
observations. The absolute values of the nontrivial Chern numbers can be understood by a
three-fold rotational symmetry (see SM).

The key quantity characterizing robustness of the nontrivial phase is the topological
energy gap Δ_t. This scale should be much larger than temperature for the state to be
observable in experiment. In the simple parabolic band model this quantity can be esti-
mated by $\Delta_t = \alpha k_F/[(\alpha k_F)^2 + M^2]^{1/2}$, where α is the Rashba coupling and k_F
the Fermi wavelength. The calculated gap based on our more realistic tight-binding (TB) model
is shown in Fig. 2C. Based on the experimental results shown in Fig. 1G, the topological
gap is $\Delta_t \approx 0.3\Delta$. The calculated band structure in a strip geometry corresponding to the
experimental gap is shown in Fig. 2D, where we see the Majorana edge modes crossing the
topological gap. The edge modes are seen to coexist with the bulk states in a finite subgap
energy window in agreement with experimental observations.

To further elucidate the properties of the Majorana edge modes, we have carried out
spatially resolved dI/dV spectroscopy over the edge of the CrBr$_3$ island (Fig. 3A). It can
be seen that the edge mode is more localized at the edge at zero bias (deeper within the
topological gap), but becomes more delocalized at energies closer to the topological gap edge.
Moreover, the energy dependence of the main feature of the edge mode LDOS is such that it
splits off from the top edge of the topological gap inside the CrBr$_3$ island, smoothly crosses
the topological gap and merges with its lower edge outside the CrBr$_3$ island. In order to
visualize the evolution of the spatial extension of the Majorana edge modes, we have recorded
grid dI/dV spectroscopy maps (Fig. 3B-G). At E_F, the Majorana edge modes are confined
within ~ 2.4 nm of the edge of the island (see SM). In addition to the edge mode signature
close to the Fermi level, there is also enhanced LDOS at the energies similar to size of the
FIG. 3. **Spatially resolved spectroscopy of the Majorana zero modes.** (A) dI/dV spectroscopy over the edge of the CrBr$_3$ island (STM topography shown on the top). (B-G) STM topography and spatially resolved LDOS maps extracted from grid spectroscopy experiments. STM feedback parameters: (A) $V_{\text{bias}} = +1$ V, $I = 10$ pA; (B) $V_{\text{bias}} = +0.8$ V, $I = 10$ pA. Scale bars: (A) 4 nm; (B) 12 nm. (H-N) Corresponding calculated linespectra (H) and LDOS maps (J-N) with the island shape shown in (I) (see SM for details).

topological gap (Fig. 3E,F) where we also see significant excitations inside the magnetic island. The theoretically computed LDOS (Fig. 3H-N, see SM for details) reproduces the essential features of the experimental results and shows exponential localization of Majorana edge modes at the edge of the island at subgap energies. In particular, we confirm the...
experimental finding that the distribution of the spectral weight of the edge mode along
the edge (excluding the regular moiré pattern) should be non-uniform. This stems from
the geometric irregularities of the island boundary with characteristic length scale that
is comparable to the edge mode penetration depth. However, this does not imply the
edge modes are discontinuous along the edge. It simply means that the interference effects
near edge irregularities suppress the visibility of the edge mode due to finite experimental
resolution. The simulations also reproduce the slightly dispersing peaked LDOS across the
island edge, and the enhanced LDOS at the islands edges at and above the topological gap
edge.

It is conceivable that the experimentally observed edge modes could possess a topologi-
cally trivial origin, unrelated to the existence of a topological superconducting state. How-
ever, in addition to the near quantitative match with the theoretical results incorporating
the main ingredients of the experimental system, the edge mode signature is experimentally
very robust. We consistently observe it in our hybrid vdW heterostructures on all CrBr₃
islands, irrespective of their specific size and shape (see SM for more examples). To prove
the observed edge modes of the hybrid heterostructures are strongly linked to the supercon-
ductivity of the NbSe₂ substrate, we have carried out experiments in magnetic fields up to
4 T, suppressing superconductivity in the NbSe₂ substrate. All features associated with the
gap at the center of the island and the edge modes disappear in the absence of superconduc-
tivity in NbSe₂ (see SM for details). This rules out trivial edge modes as the cause of the
observed results. Another non-topological reason for resonances close to the Fermi energy,
the Kondo effect, should also be present in the normal state and can hence be ruled out as
well.

In conclusion, our work constitutes two breakthroughs in designer quantum materials.
By fabricating vdW heterostructures with 2D ferromagnet epitaxially coupled to super-
conducting NbSe₂, we obtained a near ideal designer structure exhibiting two competing
electronic orders. The induced magnetization and spin-orbit coupling renders the supercon-
ductor topologically nontrivial, supporting Majorana edge channels which we characterized
by STM and STS measurements. The demonstrated heterostructure provides a high-quality
platform for electrical devices employing topological superconductivity. This is an essen-
tial step towards practical devices employing topological superconductivity and the demon-
strated system would in principle allow electrical control of the topological phase through
electrostatic tuning of the chemical potential.

ACKNOWLEDGMENTS

This research made use of the Aalto Nanomicroscopy Center (Aalto NMC) facilities and was supported by the European Research Council (ERC-2017-AdG no. 788185 “Artificial Designer Materials”), Academy of Finland (Academy professor funding no. 318995 and 320555, and Academy postdoctoral researcher no. 309975), and the Aalto University Centre for Quantum Engineering (Aalto CQE). SG acknowledges the support of National Science Centre (NCN, Poland) under grant 2017/27/N/ST3/01762. Computing resources from the Aalto Science-IT project and CSC, Helsinki are gratefully acknowledged. ASF has been supported by the World Premier International Research Center Initiative (WPI), MEXT, Japan.

*Email: kezilebieke.shawulienu@aalto.fi, teemu.ojanen@tuni.fi, peter.liljeroth@aalto.fi

1. A. K. Geim, I. V. Grigorieva, Van der Waals heterostructures, *Nature* **499**, 419 (2013).
2. K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro Neto, 2D materials and van der Waals heterostructures, *Science* **353**, aac9439 (2016).
3. Y. Cao, *et al.*, Unconventional superconductivity in magic-angle graphene superlattices, *Nature* **556**, 43 (2018).
4. M. Gibertini, M. Koperski, A. F. Morpurgo, K. S. Novoselov, Magnetic 2D materials and heterostructures, *Nat. Nanotechnol.* **14**, 408 (2019).
5. L. Yan, P. Liljeroth, Engineered electronic states in atomically precise artificial lattices and graphene nanoribbons, *Adv. Phys. X* **4**, 1651672 (2019).
6. A. A. Khajetoorians, D. Wegner, A. F. Otte, I. Swart, Creating designer quantum states of matter atom-by-atom, *Nat. Rev. Phys.* (2019).
7. R. M. Lutchyn, *et al.*, Majorana zero modes in superconductor-semiconductor heterostructures, *Nat. Rev. Mater.* **3**, 52 (2018).
8. C. Nayak, S. H. Simon, A. Stern, M. Freedman, S. Das Sarma, Non-Abelian anyons and topological quantum computation, *Rev. Mod. Phys.* **80**, 1083 (2008).
9 M. Sato, Y. Ando, Topological superconductors: a review, *Rep. Prog. Phys.* **80**, 076501 (2017).

10 V. Mourik, *et al.*, Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices, *Science* **336**, 1003 (2012).

11 S. Nadj-Perge, *et al.*, Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor, *Science* **346**, 602 (2014).

12 H. Kim, *et al.*, Toward tailoring Majorana bound states in artificially constructed magnetic atom chains on elemental superconductors, *Sci. Adv.* **4**, eaar5251 (2018).

13 P. Liu, J. R. Williams, J. J. Cha, Topological nanomaterials, *Nat. Rev. Mater.* **4**, 479 (2019).

14 B. Jäck, *et al.*, Observation of a Majorana zero mode in a topologically protected edge channel, *Science* **364**, 1255 (2019).

15 L. Fu, C. L. Kane, Superconducting proximity effect and Majorana fermions at the surface of a topological insulator, *Phys. Rev. Lett.* **100**, 096407 (2008).

16 H.-H. Sun, *et al.*, Majorana zero mode detected with spin selective Andreev reflection in the vortex of a topological superconductor, *Phys. Rev. Lett.* **116**, 257003 (2016).

17 S. Zhu, *et al.*, Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor, *Science* **367**, 189 (2020).

18 P. Zhang, *et al.*, Observation of topological superconductivity on the surface of an iron-based superconductor, *Science* **360**, 182 (2018).

19 D. Wang, *et al.*, Evidence for Majorana bound states in an iron-based superconductor, *Science* **362**, 333 (2018).

20 J. Röntynen, T. Ojanen, Topological superconductivity and high Chern numbers in 2D ferromagnetic Shiba lattices, *Phys. Rev. Lett.* **114**, 236803 (2015).

21 J. Li, *et al.*, Two-dimensional chiral topological superconductivity in Shiba lattices, *Nat. Commun.* **7**, 12297 (2016).

22 S. Rachel, E. Mascot, S. Cocklin, M. Vojta, D. K. Morr, Quantized charge transport in chiral Majorana edge modes, *Phys. Rev. B* **96**, 205131 (2017).

23 G. C. Ménard, *et al.*, Two-dimensional topological superconductivity in Pb/Co/Si(111), *Nat. Commun.* **8**, 2040 (2017).

24 A. Palacio-Morales, *et al.*, Atomic-scale interface engineering of Majorana edge modes in a 2D magnet-superconductor hybrid system, *Sci. Adv.* **5**, eaav6600 (2019).
25 Z. Wang, et al., Evidence for dispersing 1D Majorana channels in an iron-based superconductor, *Science* **367**, 104 (2020).

26 C. Gong, et al., Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, *Nature* **546**, 265 (2017).

27 B. Huang, et al., Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, *Nature* **546**, 270 (2017).

28 D. Ghazaryan, et al., Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr$_3$, *Nature Electronics* **1**, 344 (2018).

29 Z. Zhang, et al., Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr$_3$, *Nano Lett.* **19**, 3138 (2019).

30 W. Chen, et al., Direct observation of van der Waals stacking-dependent interlayer magnetism, *Science* **366**, 983 (2019).

31 S. Liu, et al., Wafer-scale two-dimensional ferromagnetic Fe$_3$GeTe$_2$ thin films grown by molecular beam epitaxy, *npj 2D Mater. Appl.* **1**, 30 (2017).

32 M. Sato, S. Fujimoto, Topological phases of noncentrosymmetric superconductors: Edge states, Majorana fermions, and non-Abelian statistics, *Phys. Rev. B* **79**, 094504 (2009).

33 J. D. Sau, R. M. Lutchyn, S. Tewari, S. Das Sarma, Generic new platform for topological quantum computation using semiconductor heterostructures, *Phys. Rev. Lett.* **104**, 040502 (2010).

34 S. Jiang, J. Shan, K. F. Mak, Electric-field switching of two-dimensional van der Waals magnets, *Nat. Mater.* **17**, 406 (2018).

35 Z. Wu, J. Yu, S. Yuan, Strain-tunable magnetic and electronic properties of monolayer CrI$_3$, *Phys. Chem. Chem. Phys.* **21**, 7750 (2019).

36 S. Jiang, L. Li, Z. Wang, K. F. Mak, J. Shan, Controlling magnetism in 2D CrI$_3$ by electrostatic doping, *Nat. Nanotechnol.* **13**, 549 (2018).

37 J. Alicea, Majorana fermions in a tunable semiconductor device, *Phys. Rev. B* **81**, 125318 (2010).