Single cell genome analysis of an uncultured heterotrophic stramenopile

Rajat S. Roy1,2, Dana C. Price2, Alexander Schliep1,3, Guohong Cai4, Anton Korobeynikov5,6, Hwan Su Yoon7, Eun Chan Yang8 & Debashish Bhattacharya2

1Department of Computer Science, Rutgers University, Piscataway, NJ 08854, USA, 2Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA, 3BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, NJ 08854, USA, 4Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA, 5Faculty of Mathematics and Mechanics, Department of Statistical Modeling, Saint Petersburg State University, Universitetskiy 28, 198504, Stary Peterhof, Saint Petersburg, Russia, 6Algorithmic Biology Laboratory, Saint Petersburg Academic University, Khlopina 8/3, 194021, Saint Petersburg, Russia, 7Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Korea, 8Marine Ecosystem Research Division, Korea Institute of Ocean Science and Technology, Ansan 426-744, Korea.

A broad swath of eukaryotic microbial biodiversity cannot be cultivated in the lab and is therefore inaccessible to conventional genome-wide comparative methods. One promising approach to study these lineages is single cell genomics (SCG), whereby an individual cell is captured from nature and genome data are produced from the amplified total DNA. Here we tested the efficacy of SCG to generate a draft genome assembly from a single sample, in this case a cell belonging to the broadly distributed MAST-4 uncultured marine stramenopiles. Using de novo gene prediction, we identified 6,996 protein-encoding genes in the MAST-4 genome. This genetic inventory was sufficient to place the cell within the ToL using multigene phylogenetics and provided preliminary insights into the complex evolutionary history of horizontal gene transfer (HGT) in the MAST-4 lineage.
results

Sample collection and preliminary analysis. A water sample collected from Narragansett, Rhode Island, USA was sorted using FACS. Single heterotrophic cells <10 μm in size lacking chlorophyll autofluorescence were retained for MDA prior to rDNA identification and phylogenomic analysis. Analysis of 18S rDNA sequence showed that one was related to uncultured, heterotrophic stramenopiles identified in the English Channel and from Saanich Inlet in Vancouver, Canada (Fig. 1). High sequence identity of the stramenopile rDNA to taxa in the marine stramenopile group 4 (MAST-4; e.g., accessions RA010412.25, 14H3Te600, RA080215ST.0778) identifies this cell as a member of this abundant, globally distributed member of the plankton that consumes bacteria and picophytoplankton18–24.

Genome assembly, gene prediction, and search for contaminant DNA. A total of 6.62 Gbp of Illumina paired-end reads were generated from the MAST-4 MDA sample and assembled using SPAdes genome data using ab initio gene prediction identified 6,996 protein-encoding genes in the genome of the isolate. This represents >70% of the expected gene inventory of the MAST-4 lineage. Using these partial data we included the MAST-4 cell in the ToL using multigene phylogenetics and gained insights into its complex evolutionary history of horizontal gene transfer (HGT).

Results

Sample collection and preliminary analysis. A water sample collected from Narragansett, Rhode Island, USA was sorted using FACS. Single heterotrophic cells <10 μm in size lacking chlorophyll autofluorescence were retained for MDA prior to rDNA identification and phylogenomic analysis. Analysis of 18S rDNA sequence showed that one was related to uncultured, heterotrophic stramenopiles identified in the English Channel and from Saanich Inlet in Vancouver, Canada (Fig. 1). High sequence identity of the stramenopile rDNA to taxa in the marine stramenopile group 4 (MAST-4; e.g., accessions RA010412.25, 14H3Te600, RA080215ST.0778) identifies this cell as a member of this abundant, globally distributed member of the plankton that consumes bacteria and picophytoplankton18–24.

Genome assembly, gene prediction, and search for contaminant DNA. A total of 6.62 Gbp of Illumina paired-end reads were generated from the MAST-4 MDA sample and assembled using SPAdes

Figure 1 | Analysis of protist SCG data. Phylogenetic position of the Rhode Island MAST-4 single cell isolate used for genome sequencing. NCBI “gi” numbers are shown for each rDNA sequence. Known members of the MAST-4 clade24 are shown in red text. Bootstrap values shown above and below the branches are from RAxML and PhyML (in italic text) analyses, respectively, using 1,000 iterations and the GTR+GAMMA model of sequence evolution.
contigs had atypically high genome coverage due to MDA bias15,28. Given these data, we identified all prokaryote top hits to the MAST-4 predicted proteins. This analysis (Supplementary Table S3) turned up 294 scaffolds that contained a prokaryote top hit (total of 351 genes, 5\% of the total). Of these, 119 scaffolds encoded a single prokaryote gene. All scaffolds with >1 prokaryote gene (232) also encoded genes of eukaryote origin, suggesting independent HGTs in these genome regions rather than contaminating prokaryote DNA. This is not surprising because protists have been shown to contain a large number of genes of prokaryote origin derived through HGT6,9,29. We however recognize that the MAST-4 assembly will likely contain some chimeric scaffolds (i.e., independently derived bacterial and eukaryotic genes that are artifactualy assembled in one fragment), but it would be very surprising if all 232 scaffolds were chimeric. Finally, the 119 scaffolds that encode single prokaryotic genes comprise only 1\% of the total gene set and had a minor impact on the overall phylogenetic analyses (see below).

The search for foreign eukaryote (i.e., prey or contamination) DNA in the assembly was repeated for MAST-4 proteins that had a BLASTP top hit to eukaryotes other than stramenopiles, alveolates, or rhizarians (the SAR clade). Although still a controversial issue, SAR taxa have been grouped together in phyllogenies and likely share a sister group relationship30,31. This analysis turned up 13 scaffolds that encode >5 top hits to lineages such as metazoans, fungi, and Viridiplantae (Supplementary Table S4). To investigate these results further, we generated a RAxML bootstrap tree for each predicted MAST-4 protein, resulting in 4,385 phylogenies. Manual analysis of trees derived from proteins encoded on the 13 scaffolds of interest did not identify any cases in which a single eukaryote source gave rise to the foreign genes. Most of these proteins were placed with SAR taxa in the RAxML trees (results not shown) indicating that the BLASTP result was not accurate. This suggests that eukaryote-derived food DNA likely does not exist in our MAST-4 assembly. We recognize however that proving clear instances of eukaryote-derived HGT (even from a single “food” lineage) is more difficult, in particular if the foreign sequences derive from SAR taxa. Intraspecies HGT is difficult to identify without additional genomes to provide a more fine-grained history of stramenopile and SAR gene phylogeny.

Comparing results of the MAST-4 and control diatom MDA analyses

To explore the effectiveness of our approach to creating the MAST-4 assembly and predicted proteins, we generated three independent MDA samples (named A, B, and C) from total DNA prepared from a unialgal culture of the diatom *Thalassiosira pseudonana* (CCMP1335). This species has a high-quality completed genome of size 34.5 Mbp that encodes 11,242 proteins32. Illumina paired-end data generated from the diatom MDA samples were assembled (Table 1) separately and when combined in one dataset and the encoded genes predicted (Table 2) as described above. Comparison of the MAST-4 SCG assembly with the assembly derived from the three *T. pseudonana* MDA samples indicates they are similar in terms of maximum scaffold and N50 lengths (Table 1).

The fraction of diatom reference proteins32 having at least 70\% coverage with a BLASTP hit to our predicted proteins was 64\%, 65\%, 68\%, and 71\%, respectively in the individual and combined diatom MDA-derived genome data (Supplementary Fig. S2A). In comparison, CEGMA recovered only 86.7\% of the core proteins in the diatom reference assembly (that included organelle DNA) and the predicted proteins encompassed 73.40\% of the reference diatom proteins with ≥70\% coverage. Analysis of core CEGMA proteins within the predicted data from the MAST-4 SCG and diatom showed that ca. 60\% and ≥90\%, respectively, of the 458 genes were identified when compared to the *Arabidopsis thaliana* reference set (Supplementary Fig. S2B). When the alignment length of the MAST-4 and *A. thaliana* reference proteins was reduced to a minimum of 70\%, then 326 (71\%) core CEGMA proteins were identified in the MAST-4 data. This value climbed to 410 proteins (90\%) when the alignment length was reduced to 50\%. Analysis of the 248 ultra-conserved protein set in CEGMA showed that 89 complete proteins from this set was identified in the MAST-4 data. These results demonstrate that gene prediction from SCG data can detect a significant number of proteins (both complete and partial [i.e., the latter due to a fragmented assembly] in a microbial eukaryote without an available reference genome or transcriptome data.

The ca. 30\% difference between the efficiency of recovery of complete proteins from the core set between the MAST-4 and diatom MDA samples (Supplementary Fig. S2A, S2B) likely reflects the fact that the diatom DNA was derived from a culture and therefore many copies of each chromosomal region were available for WGA. In contrast, the MAST-4 SCG data were derived from a single copy of the template DNA and some genome regions were apparently poorly sampled by MDA4,33 and missing from the final assembly. Consistent with this hypothesis, recent work with the highly reduced genome (1.6 Mbp) from the prokaryote endosymbiont *Bartonella australis* has demonstrated that the MDA procedure is significantly impacted by template DNA concentration34. These authors found that the level of MDA amplification bias was dependent on the quantity of template DNA, with greater amounts of starting material resulting in higher quality genome assemblies. Given these observations, pooling DNA from multiple cells derived from a single population of protists may result in better coverage of the target genome. In this case, however it would be critical to ascertain whether any of the single cells contain significant foreign DNA (e.g., prey bacteria, viruses) that could substantially weaken the combined cell assembly.

The hypothesis that data fragmentation and low coverage, rather than complete absence may provide an explanation for the low number of CEGMA proteins recovered from the MAST-4 data is impossible to address without a reference genome from this currently uncultivated lineage. However, consistent with this assertion is the finding that in comparison to the three *T. pseudonana* MDA samples that had significant representation of CEGMA proteins, the MAST-4 results provided similar assembly statistics and had a better average scaffold length (Table 1). The scaffold length alignment was not done for the MAST-4 cell because of the lack of a reference genome.

Table 1 | Assembly statistics for the MAST-4 cell and for the three (A, B, C) *T. pseudonana* samples

Dataset	Total data (Gbp)	Assembly Size (Mbp)	Scaffold length (Mbp) with ≥90% alignment to reference genome	No of Scaffolds	N50 (Kbp)	Maximum Scaffold Length (Kb)
MAST-4	6.61	17	N/A	4611	14	111
A	1.30	45	33.80	38245	7	101
B	0.98	41	21.43	22838	25	204
C	1.18	44	25.79	23466	17	168
Combined	3.46	48	28.48	27397	16	201

The scaffold length alignment was not done for the MAST-4 cell because of the lack of a reference genome.
and psbO as are missing nuclear encoded photosystem II precursors such as urea cycle and photosynthesis are absent and presumably do not exist. Analysis (Supplemental Fig. S3) demonstrates that many conserved rather indicates true absence. Given this hypothesis, the KEGG pathway components are present in MAST-4. Therefore if a particular pathway is present in the MAST-4 cell, then it would be partially filled and if a pathway is absent in the KEGG analysis, then there is no reason to expect that this reflects an assembly artifact, but rather indicates true absence. Given this hypothesis, the KEGG analysis (Supplemental Fig. S3) demonstrates that many conserved pathways are present (e.g., TCA cycle), whereas others such as the urea cycle and photosynthesis are absent and presumably do not exist in the MAST-4 cell. For example, unlike the diatom no light harvesting chlorophyll complex proteins are present in the MAST-4 cell, as are missing nuclear encoded photosystem II precursors such as psbO and psbM. Genes present in MAST-4 that are missing in the diatom include a member of glycosyltransferase family 29 involved in galactose metabolism (protein 230; EC:3.2.1.23) and several enzymes involved in amino acid and nucleotide metabolism (Supplementary Fig. S3). Analysis of proteins involved in protein synthesis [e.g., ribosomal proteins, aminoacyl-tRNA biosynthesis (Supplementary Fig. S4)] and metabolic functions [e.g., purine metabolism, fatty acid metabolism (Supplementary Fig. S5)] shows that the majority of these pathway components are present in MAST-4.

Analysis of MAST-4 and diatom predicted proteins using KEGG.

To gain preliminary insights into the functions encoded by MAST-4 predicted proteins, we mapped these sequences to the Kyoto Encyclopedia of Genes and Genomes (KEGG) categories. Given the incomplete assembly, we assumed in the KEGG analysis that missing proteins are randomly distributed across pathways. Therefore if a particular pathway is present in the MAST-4 cell, then it would be partially filled and if a pathway is absent in the KEGG analysis, then there is no reason to expect that this reflects an assembly artifact, but rather indicates true absence. Given this hypothesis, the KEGG analysis (Supplemental Fig. S3) demonstrates that many conserved pathways are present (e.g., TCA cycle), whereas others such as the urea cycle and photosynthesis are absent and presumably do not exist in the MAST-4 cell. For example, unlike the diatom no light harvesting chlorophyll complex proteins are present in the MAST-4 cell, as are missing nuclear encoded photosystem II precursors such as psbO and psbM. Genes present in MAST-4 that are missing in the diatom include a member of glycosyltransferase family 29 involved in galactose metabolism (protein 230; EC:3.2.1.23) and several enzymes involved in amino acid and nucleotide metabolism (Supplementary Fig. S3). Analysis of proteins involved in protein synthesis [e.g., ribosomal proteins, aminoacyl-tRNA biosynthesis (Supplementary Fig. S4)] and metabolic functions [e.g., purine metabolism, fatty acid metabolism (Supplementary Fig. S5)] shows that the majority of these pathway components are present in MAST-4.

Inference of the ToL. Phylogenomic analysis of individual MAST-4 proteins demonstrated the expected sister-group relationship to stramenopiles (e.g., diatoms and oomycetes) and minimal evidence of contaminating DNA (i.e., 94.8% of the trees summarized in Supplementary Fig. S6 show a eukaryotic affiliation for MAST-4 proteins). To test the usefulness of these data for inferring the eukaryotic ToL, we generated a concatenated alignment from a broad collection of completed genomes that incorporated the 458 CEGMA proteins (i.e., with some missing data from MAST-4 and other taxa). This alignment had a length of 25,145 amino acids and maximum likelihood analysis shows 100% RAxML bootstrap support for the phylogenetic affiliation of MAST-4 with other stramenopiles in a tree that provides robust bootstrap support for many other nodes (Fig. 2 and Supplementary Fig. S7). RAxML analysis of a reduced dataset of 159 CEGMA core eukaryote proteins (12,627 amino acids) that were complete in the MAST-4 assembly provided similar results (Fig. 2). Although the phylogenetic position of the MAST-4 lineage is well known based on rDNA comparisons (e.g., Fig. 1), the multi-genome analysis demonstrates the utility of SCG data for inferring the phylogenetic position of other uncultured eukaryotes that may be of unknown or uncertain affiliation. The phylogenomic output shows that a strong signal also exists for foreign gene acquisition in MAST-4 that conflicts with the topology of the CEGMA-based tree. These latter data reflect the expected HGT contribution to protist genomes44, but also may derive from alga-derived EGT that persists in MAST-4, potentially reflecting a photosynthetic past for this lineage39–41.

Using a protein coverage cut-off of ≥70% of the reference sequence in the database, 97 and 119 trees showed a sister group relationship between MAST-4 and green and red algal proteins, respectively (Supplementary Fig. S6). Two of these trees that incorporate GOs data are shown in Figure S8. Here a putative ion transporter protein (Supplementary Fig. S8A) is shared with and potentially derived from red algae in the MAST-4 cell as well as in photosynthetic haptophytes, rhizarians, and the diatom Fragilariaopsis cylindrus. Another example is a putative glutathione S-transferase protein (Supplementary Fig. S8B) shared with cyanobacteria, stramenopiles, and rhizarians. More intriguing is the violaxanthin de-epoxidase (VDE) tree (Fig. 3a), in which all other taxa are photosynthetic eukaryotes. In algae and plants, plastid thylakoid localized VDE catalyzes the conversion of violaxanthin to zeaxanthin in the photo-protective xanthophyll cycle. The MAST-4 VDE-like protein appears to be green algae-derived, but in the non-photosynthetic stramenopile may function as a lipocalin, the broad functional group that gave rise to VDE40. This predicted protein 1451 lacks an N-terminal extension and its position in the genome contig suggests it is not the result of an assembly artifact or contamination (Fig. 3b); i.e., co-localized proteins in the contig [e.g., proteins 1447, 1448, and 1453 (Supplementary Fig. S9)] are of stramenopile or eukaryotic affiliation. Two other examples of putative algal-derived EGTs (a serine/threonine kinase domain containing protein and a myosin/kinesin motor domain, both shared with green algae) are shown in Supplementary Fig. S10.

Discussion

SCG is a rapidly developing field in medical and environmental science. In the latter area, virtually all work done until now has focused on prokaryotic taxa33 that have smaller, less complex genomes than eukaryotes. These microbes are more amenable to genome assembly when using MDA-derived sequence data. The initial work on marine protist SCG showed complex biotic interactions for taxa (e.g., presence of prey and pathogen DNA in the MDA sample13–15) that precluded a robust assembly of the host nuclear genome. Here we show that if a MDA sample derived from the natural environment is largely free of contaminating DNA, that it is possible to generate a useful, partial draft assembly from the cell. Applications of these SCG data include generating a gene inventory for the uncultivated taxon to study metabolic pathways and placing it in the ToL using multigene phylogenetics. With regard to inferring the ToL, our results demonstrate that the CEGMA proteins are well suited for this purpose even in the face of significant HGT in marine microbes. Regardless of how the MAST-4 trees are interpreted with respect to direction of gene transfer or the role of phylogenetic artifacts in explaining some of the topologies39, our data make it clear that the MAST-4 genome contains divergent phylogenetic histories. One of

Table 2	Protein prediction results for the three (A, B, C) diatom MDA samples			
Dataset	Number of predicted proteins	Reference proteins with ≥70% alignment	Number of complete core proteins found	Proteins with ≥60% alignment to A. thaliana core proteins
A	13523	7500	373	398
B	13022	7658	397	421
C	14933	8060	397	432
Combined	16439	8341	398	421
Reference	9413	8644	396	413

Dataset	Number of complete proteins	Reference proteins with ≥70% alignment	Number of complete core proteins found	Proteins with ≥60% alignment to A. thaliana core proteins
A	13523	7500	373	398
B	13022	7658	397	421
C	14933	8060	397	432
Combined	16439	8341	398	421
Reference	9413	8644	396	413
these histories (i.e., the CEGMA data) follows the expected trajectory of vertical inheritance, whereas the second involves a reticulate history of foreign gene sharing. This latter feature is typical of many photosynthetic algae (e.g., in Fig. 3a, Bigelowiella natans, Guillardia theta5,6,9) and as shown here characterizes the genome of a widely distributed plastid-lacking plankton.

In the future, generation of protist (particularly picoeukaryotic) marine metagenome data will potentially enable mapping of eukaryote-derived SCG proteins directly to natural environments. These data should provide the opportunity to elucidate the connection between the complex history of gene sharing via E/HGT and the global distribution of microbial eukaryotes5–7,9,40–42. Ultimately, it should be possible to map the global network of taxon-associated genes and gene families and to correlate these data to their evolutionary histories.

Methods

Cell collection and DNA preparation. A 500 mL sample of estuarine water was collected at low tide from the Pettaquamscutt River, Narragansett, Rhode Island, USA (41°26′57.32″N 71°26′59.49″W) on September 16th, 2009. The sample was kept in the dark and low temperature (-4 °C) until processing, which was ≤6 hours thereafter at the Single Cell Genomics Center at the Bigelow Laboratory for Ocean Sciences, ME, USA. Environmental samples were pre-screened through a 70 μm mesh-size strainer (Becton Dickinson). A 3 mL subsample was incubated with the Lysotracker Green DND-26 (75 nmol L-1; Invitrogen) for 10 min in order to stain protist food vacuoles using pH-sensitive green fluorescence43. Target cells were identified and sorted using a MoFloTM (Beckman-Coulter) flow cytometer equipped with a 488 nm laser for excitation. Prior to target cell sorting, the cytometer was cleaned thoroughly with bleach. A 1% NaCl solution (0.2 mm filtered and UV treated) was used as sheath fluid44. Heterotrophic protist identification, single cell isolation, and total DNA amplifications were carried out as described by Yoon and co-authors14. Two criteria were used for the heterotrophic cell sorting, the presence of Lysotracker fluorescence and <10 μm cell diameter. Cells were deposited into a 384-well PCR plate containing 0.6 mL of 1× TE buffer, centrifuged briefly and stored -20 °C until further processing (plate no. AB108). Cells frozen in TE buffer were exposed to cold KOH for cell lysis and DNA denaturation45. Cell lysate genomic DNA was amplified using multiple displacement amplification (MDA46). The single cell amplified genomes were diluted 100-fold in sterile TE buffer, then screened by PCR and sequencing of conserved 18S rDNA. All sample 18S rDNA sequences were compared against RefSeq (http://www.ncbi.nlm.nih.gov/refseq) and their phylogenetic positions inferred based on a maximum likelihood tree with 100 bootstrap replications (RAxML Version 7.2.830). One MDA sample, AB108-Rc103, was identified as a member of the uncultured MAST-4 stramenopiles (Fig. 1). This sample was re-amplified using the REPLI-g Midi Kit (Qiagen) to generate sufficient DNA for downstream uses, following the manufacturer’s instructions. The second MDA library was prepared using the Nextera DNA sample prep kit (Illumina) according to the manufacturer’s instructions using 50 ng of input DNA. Because the fragmentation was transposon-mediated, the average fragment size spanned the range 200–500 bp. Sequencing utilized the 500-cycle MiSeq Reagent Kit V2 (Illumina) in a 2 × 250 bp paired-end run.
For the diatom (*T. pseudonana*) sample, DNA was extracted from the algal culture using the Qiagen DNAeasy Plant Kit following the manufacturer’s protocol. Three separate MDA reactions were done using the REPLI-g kit (Qiagen) according to the manufacturer’s protocol starting with 50 ng of putative DNA in each reaction. Three sequencing libraries were prepared using the Nextera DNA Sample Prep kit v2 manufacturer’s protocol starting with 50 ng of input diatom DNA in each reaction. The libraries were multiplexed on one MiSeq sequencing run.

Single cell genome assembly. MDA to facilitate whole genome amplification (WGA) generates sufficient DNA from single cells for next generation sequencing [the recently described MALBAC procedure offers another promising approach]. MDA may however produce significant coverage bias, resulting in fragmented and incomplete assemblies. Therefore, although it is clear that SCG may not provide complete genome assemblies, the challenge nonetheless is to maximize the quantity of the data from uncultured taxa. Given these constraints, we applied a specialized assembler to the SCG data. Here SPAdes 2.425 was used because it demonstrates high performance when assembling bacterial single cell libraries (http://bioinf.spbau.ru/spades/). Initial assembly of the read library with default settings demonstrated that despite the maximum read length of 250 bp the median insert size was only 130 bp (with a standard deviation of 65 bp). In addition, the distribution of the library insert sizes varied widely and a significant amount of paired-end reads were of length 100–150 bp or shorter; many of the reads overlapped by 100–200 bp. In an attempt to improve the original data quality, we removed reads shorter than 150 bp in length, which increased the median insert size up to 200 bp but the resulting assembly was very fragmented due to loss of coverage. The unique iterative mode in SPAdes was used to recover the usable insert length and to preserve as much coverage as possible. The program was run using k-mer lengths of 21, 33, 55, 85, 95, and 127 in ‘careful’ mode. Using this approach, shorter k-mer lengths allowed us to keep the coverage, whereas longer k-mer exploited the usable part of insert size distribution to provide proper repeat resolution. Gene prediction began with a k-mer length of 21, 33, 55, 85, 95, and 127 in ‘careful’ mode. Using this approach, shorter k-mer lengths allowed us to keep the coverage, whereas longer k-mer exploited the usable part of insert size distribution to provide proper repeat resolution.

**KEGG ontology terms for the predicted MAST-4 proteins and for the known *T. pseudonana* proteome were obtained using the Automatic Annotation Server (http://www.genome.jp/tools/kaas/) with a (single/bidirectional) best hits method against the ortholog database. These terms were then used in the KEGG Mapper Pathway Reconstruction tool (http://www.genome.jp/kegg/tool/map_pathway.html) to annotate representative pathways.

Over-assembly of SCG data. As expected with MDA-derived genome data, we found a considerable fraction of over-assembly of diatom reads when compared to the *T. pseudonana* reference genome. The assemblies were larger than the reference genome (32.61 Mbp) by 38%, 25%, and 35%, respectively for the three independent MDA samples and 47% for the combined data. It should however be noted that SCG assemblies such as IDBA-UD and SPAdes 2.4 were tested and optimized for bacterial datasets and there exists no dedicated SCG for larger, more complex eukaryotic genomes. Therefore, it was not our expectation that a perfect or near-perfect assembly would result from either the reference diatom or the MAST-4 genome. As a consequence, the set of predicted proteins we generated is also incomplete.

Phylogenomics. Phylogenomic analysis was performed as described previously. Briefly, the MAST-4 predicted proteins were used in a BLASTP query against an in-house peptide database consisting of ca. 16.9 million sequences derived from RefSeq
v.5 with the addition of sequenced eukaryote (e.g., Fungi, Metazoa, Viridiplantae, and stramenopiles) taxa from the Joint Genome Institute (http://www.jgi.doe.gov) and 6-frame translated eukaryote EST sequences retrieved from NCBI dbEST (http://www.ncbi.nlm.nih.gov/dbEST). A taxonomically diverse set of target peptides were selected, aligned via MAFFT v6.11, and used for phylogenetic reconstruction under the PROTGAMMALG evolutionary model of RAxML v7.2.830. The resulting trees were sorted for patterns of monophyly using PhyloSort. A multi-protein alignment of length 25,143 amino acids was produced by sampling our in-house database for homologs to the 450 CEGs. Each individual CEG family was aligned with its MAST-4 peptide homolog via MUSCLE, and Gblocks was used to extract conserved sites from the alignment prior to concatenation and phylogenetic inference with RAxML (100 bootstraps, PROTGAMMALG model).

1. Parfrey, L. W. et al. Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Syst. Biol. 59, 518–533 (2010).
2. Pawlowski, J. et al. Phylogenomic evidence for the early evolution of eukaryotic plastids. Science 324, 1438–1438 (2010).

13. Vaulot, D. et al. Gene tree sorting provides new insights on ubiquity versus endemism in microbial eukaryotes. PLoS One 8, e82319 (2013).
14. Rodriguez, S. et al. Whole genome amplification and de novo assembly of single bacterial cells. PLoS One 4, e6864 (2009).
15. Chitsaz, H. et al. Efficient de novo assembly of single-cell bacterial genomes from short-read data sets. Nat. Biotechnol. 29, 915–921 (2011).
16. Palenik, B. et al. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton specialization. Proc. Natl. Acad. Sci. USA 101, 7705–7710 (2007).
17. Tyler, B. M. et al. Phylotype genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313, 1261–1266 (2006).
18. Stiller, J. W., Huang, J., Ding, Q., Tian, J. & Goodwillie, C. Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses? BMC Genomics 10, 484 (2009).
19. Frommolt, R. et al. Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesis. Mol. Biol. Evol. 25, 2563–2567 (2008).
20. Archibald, J. M. et al. Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid–containing alga Bigelowiella natans. Proc. Natl. Acad. Sci. USA 100, 7678–7683 (2003).
21. Andrewartha, J. O. Gene transfer and diversification of microbial eukaryotes. Annu. Rev. Microbiol. 63, 173–99 (2009).
22. Rose, J. M., Caron, D. A., Sieracki, M. E. & Poulet, N. Counting heterotrophic nanoplanктonic protists in cultures and aquatic communities by flow cytometry. Aquat. Microbial Ecol. 34, 263–277 (2004).
23. Stepanauskas, R. & Sieracki, M. E. Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc. Natl. Acad. Sci. USA 104, 9052–9057 (2007).
24. Raghunathan, A. et al. Genomic DNA amplification from a single bacterium. Appl. Environ. Microbiol. 71, 3342–3347 (2005).
25. Dean, F. et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl. Acad. Sci. USA 99, 5261–5266 (2002).
26. Zong, C., Lu, S., Chapman, A. R. & Xie, X. S. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338, 1622–1626 (2012).
27. Woyte, T. et al. Assembling the marine metagenome, one cell at a time. PLoS One 4, e5299 (2009).
28. Peng, Y. et al. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012).
29. Price, D. C. et al. Cyanophora paradoxia genome elucidates origin of photosynthesis in algae and plants. Science 335, 843–847 (2012).
30. Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).
31. Moustafa, A. & Bhattacharya, D. PhyloSort: a user-friendly phylogenetic sorting tool and its application to estimating the cyanobacterial contribution to the nuclear genome of Chlamydomonas. BMC Evol. Biol. 8, 6 (2008).
32. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
33. Talvare, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577 (2007).

Acknowledgments

We thank members of the D.B. lab for helpful discussions, Kay Bidle for providing the diatom DNA, and the School of Environmental and Biological Sciences and members of the Genome Cooperative at Rutgers for supporting this research. D.B. and H.S.T. lab members are funded by the National Science Foundation and H.S.Y. is funded by a Korean RDA grant.

Author contributions

E.C.Y. and H.S.Y. collected and prepared the single cell DNA that was processed at the Single Cell Genomics Center at the Bigelow Laboratory, ME, USA. G.C.G. was in charge of Illumina library preparation, single cell sequencing on the MiSeq instrument, and was involved in helping to design the downstream bioinformatic analyses. D.C.P. processed the data and through genome assembly, gene prediction, and phylogenomics. R.S.R. and A.K. generated the final genome assembly and gene models and R.S.R. did the phylogenomic analyses. D.B. generated the phylogenetic trees presented in the text. D.B., A.S. and R.S.R. designed the study. R.S.R., D.B. and D.C.P. wrote the paper. All authors discussed the results and commented on the manuscript.
Additional information

Accession codes: The sequence data used to assemble the draft stramenopile MAST-4 single cell genome are available through NCBI BioProject PRJNA244411. The assembled genome, gene models, gene annotations, phylogenomic output, multigene alignments, and other material are available at http://cyanophora.rutgers.edu/MAST4/.

Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Roy, R.S. et al. Single cell genome analysis of an uncultured heterotrophic stramenopile. Sci. Rep. 4, 4780; DOI:10.1038/srep04780 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. The images in this article are included in the article’s Creative Commons license, unless indicated otherwise in the image credit; if the image is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the image. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/