The effect of mining data k-means clustering toward students profile model drop out potential

Windania Purba*, Saut Tamba, Jepronel Saragih

Faculty of Technology and Computer Science, Universitas Prima Indonesia, Indonesia

E-mail: *winda.nia04@gmail.com.

Abstract. The high of student success and the low of student failure can reflect the quality of a college. One of the factors of fail students was drop out. To solve the problem, so mining data with K-means Clustering was applied. K-Means Clustering method would be implemented to clustering the drop out students potentially. Firstly the result data would be clustering to get the information of all students condition. Based on the model taken was found that students who potentially drop out because of the unexciting students in learning, unsupported parents, diffident students and less of students behavior time. The result of process of K-Means Clustering could known that students who more potentially drop out were in Cluster 1 caused Credit Total System, Quality Total, and the lowest Grade Point Average (GPA) compared between cluster 2 and 3.

1. Introduction

The highest of successful and the lowest of unsuccessful students were reflecting from the quality of the university. The university becomes the main social in scoring successful or unsuccessful in high education. The successful or students achievement study could be seen as successful and superior of university. Vise versa, the unsuccessful or the lowest students study was unable of university in doing learning process in high education. One of the problem is students drop out. Drop out was a process of students quit from students status, that caused many things that depend on university itself. The highest number of drop out students in university can be minimize with the university policy to guide and prevent students from drop out to detect students in first education was very important to keep students from drop out. It maybe department organizer education to give guidelines to the students needed [1].

The students understanding information who potentially drop out was important to known and understood. The understanding could be done by find the data to showing the data which had and then clustering to the result of data so showing the pattern or students drop out clustering. This education could be used in helping university to knowing the students situation and become education early in processing of taking a decision to preventive in anticipation of drop out students, to increase the achievement students, to increase curriculum, to increase process of learning and teaching activity and there were another advantages that could be gotten from the result of getting data.

2. Review Literature

Mining data is the using automatic of analysis technique to knowing the previous relationship cannot detected between the item data. Mining data is a process to finding the same data from database/data...
set in different area likely, financial, retail industry, science, statistic, medicine, intelliegece, neurology. The size of data is increase quickly, so the new technology and high speed and algorithm that needed to collect and process of data [2-3]. Clustering is one of data mining that unsupervised. Clustering is one of data mining that unsupervised. Clustering is a process divided data to the cluster based on the similarity. K-Means is a cluster technique data that the point data of existence in cluster is depend on degree of the member [4].

Steps to do clustering with K-Means is: 1) Determining how many cluster that want to shape, where K value is the number of cluster; 2) Determining the centroid cluster first. The begining Centroid was depend on randomly from the data and number of centroid same with the number of cluster; 3) After determined the begining centroid, so very data will find nearby centroid is count every distance of each centroid by using correlations formula between two objects of Euclidean Distance; 4) After counting the distance of data the centroid, so the next steps is clustering of data based on minimum distance. A data will become a member of cluster that has the nearest (small) from the cluster; 5) Based on the clustering, the next is finding the new centroid based on membership from each cluster is counting the cluster average; 6) Back to step 3; 7) Iteration stop means if there is no any moving data. Determine centroid in iteration wil use the formula below:
\[\bar{v}_{ij} = \frac{1}{N_i} = \sum_{k=0}^{N_i} x_{ki} \]

(1). Where: 1) \(V_{ij} \) Centroid of average cluster k-i to k-j variable; 2) \(N_i \) The number of members of cluster; 3) k-i, i, k index from cluster; 4) j Index from variable; 5) \(X_{kj} \) The value of data k variable ke-j in the cluster. Determine the correlation between two objects is using Euclidean Distance below:
\[d_{\text{Euclidean}}(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} \]

(2) Where: 1) \(d_{xy} \) the distance of x to cluster y; 2) \(x_i \) The data i in data attribute to n; 3) \(y_i \) The data to-j in data attribute to n. That is the formula which is used to determine the correlation between two objects with Euclidean Distance formula [5-8].

3. Result and Discussion

The mechanism of test would be done was:
To determining the cluster based on data that had been available, it needed a flowchart to easier in determine the counting plot as a plot to find the result of cluster implementation to processing the data. There were some steps. They were:
Figure 1. Flowchart Algorithm K-Means Clustering.

There was variable that used in clustering was Semester Credit System, quality and Grade Predicate Academic (GPA), the students data that belong to drop out in last four years, so their score could be seen in table 1.
Table 1. Student Data.

No	NIM	Name	Courses Program	Credits	Sks	Quality Total	GPA
M1	8330303014	Vera	S1 - Teknik Informatika	14	47	3.36	
M2	8330303015	Caroline Nata Wijaya	S1 - Teknik Informatika	14	56	4.00	
M3	8330303016	Silvia	S1 - Teknik Informatika	3	12	4.00	
M4	8330303017	Dewi Sandro Maria	S1 - Teknik Informatika	14	24	1.71	
M5	9330303001	Dearni Rapita Saragih	S1 - Teknik Informatika	57	154	2.70	
M6	9330303002	Hamonangan Nasution	S1 - Teknik Informatika	88	106	1.20	
M7	9330303003	Dadang Suhenda	S1 - Teknik Informatika	61	157	2.57	
M8	9330303004	Paulus P.H Nababan	S1 - Sistem Infomasi	48	154	3.21	
M9	9330303006	Muhammad Tarmizi	S1 - Sistem Infomasi	48	144	3.00	
M10	9330303007	Bunga Andriani Lubis	S1 - Sistem Infomasi	57	151	2.65	
M11	9330303008	Muhammad Fachri	S1 - Sistem Infomasi	48	148	3.08	
M12	9330303009	Rizkina Fitri Fauziah	S1 - Sistem Infomasi	48	121	2.52	
M13	9330303011	Melda Riski Harahap	S1 - Sistem Infomasi	57	181	3.18	
M14	9330303013	Eka Fitri Siregar	S1 - Sistem Infomasi	57	165	2.89	
M15	9330303015	Siskia Lasmana Togatorop	S1 - Sistem Infomasi	57	160	2.81	
M16	9330303016	Rohani Tinambunan	S1 - Sistem Infomasi	62	138	2.23	
M17	9330303018	Hanova Margareth	S1 - Sistem Infomasi	57	168	2.95	
M18	9330303019	Sherly Minarti Nainggolan	S1 - Sistem Infomasi	23	0	0.00	
M19	9330303020	Musmulyadi	S1 - Sistem Infomasi	57	164	2.88	
M20	9330303022	Robin	S1 - Sistem Infomasi	57	163	2.86	
M21	9330303024	Eddy	S1 - Sistem Infomasi	57	176	3.09	
M22	9330303025	Feriyanto Tanwijaya	S1 - Sistem Infomasi	57	162	2.84	
M23	9330303027	Melianty Sitompul	S1 - Sistem Infomasi	65	173	2.66	
M24	9330303028	Shahani Singh	S1 - Sistem Infomasi	71	163	2.30	
M25	9330303031	Jovin	S1 - Sistem Infomasi	54	168	3.11	
M26	9330303032	Yoko Junior	S1 - Sistem Infomasi	57	136	2.39	
M27	9330303037	Ferry Wijaya	S1 - Sistem Infomasi	54	156	2.89	
M28	9330303041	Muhammad Ramadhan Lubis	S1 - Sistem Infomasi	54	149	2.76	
M29	9330303048	Radius Hia	S1 - Sistem Infomasi	47	128	2.72	
M30	9330301302	Winter Pandiangan	S1 - Sistem Infomasi	14	0	0.00	
M31	10330303001	Abdul Ghani Abadi	S1 - Teknik Informatika	98	322	3.29	
M32	10330303004	Armando Pernando Sitorus	S1 - Teknik Informatika	21	0	0.00	
M33	10330303005	Bayakta Sebayang	S1 - Teknik Informatika	159	200	1.26	
M34	10330303008	Indra Putra	S1 - Teknik Informatika	104	291	2.80	
M35	10330303009	Jeffri Aritonang	S1 - Teknik Informatika	101	302	2.99	
M36	10330303010	Jeffry Suherman	S1 - Teknik Informatika	98	338	3.45	

To do the cluster data become cluster it was done some steps, there were:
1. Determine the specific cluster. In this research the data would be clustering become three clusters. In cluster 1 had a characteristic data. That was students that potentially in drop out.
2. In cluster 2 belonged to good characteristic data. In cluster 3 was gotten to characteristic very good students.

Determined the centroid cluster begining. In this research the string point was determined randomly and gotten in the starting point every cluster. It could be seen in table 4.3. where cluster point that taken.

Table 2. The Central Point Of The Initial Cluster.

1st Data	Cluster	Credit Total	Quality Total	GPA
4	C1	14	24	1.71
After determining the centroid, so every data would found the near centroid by counting the distance every data to each centroid by using correlation formula between two objects of Euclidean Distance. There was a count of manual centroid. It had just count 36 data only.

Table 3. Clustering Result.

Cluster	Member of Cluster	Number of members
1	[1, 2, 3, 4, 18, 30, 32]	7 member
2	[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 33]	25 member
3	[31, 34, 35, 36]	4 member

From the conclusion above it can be shown that students that have potentially dropped out more belong to cluster 1. It was caused of total od System Credit Semester, Quality Total and the lowest of GPA. It could be compared between cluster 2 and 3.

4. Conclusion
Based on the the discussion and result of test, so it could be concluded:
1. Based on the result of the test so the clustering was taken from students position that potentially drop out was 3 clusters. They were students who very drop out potentially, drop out potentially, and not belong to drop out.
2. Clustering result could be used to conclude in determine students who potentially drop out.
3. To predict the students who potentially drop out, the data which was analyzed consist of scoring students data, quality and GPA.
4. The result of counting for all datas (36 records) based on the test that showed thet cluster 0 consists of 7 members that shown the students who potentially drop out. Then cluster 1 that consist of 25 members shown the well students cluster. Meanwhile cluster 2 shown the very good students with 4 members.

References
[1] Dekker, G.W., 2009, Prediction student drop out: A case study, USA, Academic Press, 2nd international Conference On Educational Data Mining, Cordoba, Spain.
[2] Ramesh Singh Yadava and P.K.Mishra. (2012). “Performance Analysis of High Performance k-Mean Data Mining Algorithm for Multicore Heterogeneous Compute Cluster.” Vol. 2 No.4.
[3] Tutik Khotimah 2014. “Pengelompokan Surat Dalam Al Qur’an Menggunakan Algoritma K-Means.” Ed. Jurnal Simetris, Vol 5 No 1.
[4] Deka Dwawinta 2014. “Klasterisasi Judul Buku dengan Menggunakan Metode K-Means.” Ed. Seminar Nasional Aplikasi Teknologi Informasi (SNATT).
[5] Bondu Venkateswarlu and Prof G.S.V.Prasad Ratu. 2013. “Mine Blood Donors Information through Improved K-Means Clustering.” International Journal of Computational Science and Information Technology (IJCSTITY) Vol.1, No.3.
[6] Johan Oscar Ong. 2013. “Implementasi Algoritma K-Means Clustering Untuk Menentukan Strategi Marketing Presiden University.” Ed. Jurnal Ilmiah Teknik Industri, Vol.12, No.1.
[7] Afrisawati. 2013. “Implementasi Data Mining Pemilihan Pelanggan Potensial Menggunakan Algoritma K-Means.” Ed. Pelita Informatika Budi Darma, Volume : V,No. 3.
[8] Budanis Dwi Meilani dan Nofi Susanti, 2014, “Aplikasi Data Mining Untuk Menghasilkan Pola Kehilusan Siswa Dengan Metode Naive Bayes.” Ed. Jurnal LINK Vol 21/No. 2.
[9] Dr. M.P.S. Bhatia and Deepika Khurana. 2013. “Experimental study of Data clustering using k-Means and modified algorithms.” International Journal of Data Mining & Knowledge Management Process (IJDMP). Vol. 3 No.3.

[10] Er. Nikhil Chaturvedi and Er. Anand Rajavat. 2013. “An Improvement in K-mean Clustering Algorithm Using Better Time and Accuracy.” International Journal of Programming Language and Aplications (IJPLA) Vol. 3 No.4.

[11] Fadlina. 2014. “Data Mining untuk Analisa Tingkat Kejahatan Jalan Dengan Algoritma Association Rule Metode Apriori (Studi Kasus Di Polsekta Medan Sunggal).” Volume III No.1.

[12] Goldie Gunadi and Dana Indra Sensuse. 2012. “Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Buku Dengan Menggunakan Algoritma Apriori dan Frequent Pattern Growth (FP-Growth) : Studi Kasus Percetakan PT. Gramedia.” Ed. Jurnal Telematika MKom Vol.4 No.1.

[13] Lindawati. 2008. “Data Mining Dengan Teknik Clustering Dalam Pengklasifikasian Data Mahasiswa Studi Kasus Prediksi Lama Studi Mahasiswa Universitas Bina Nusantara.” Ed. Seminar Nasional Informatika.

[14] Mujib Ridwan, 2013. “Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naïve Bayes Classifier.” Ed. Jurnal EECCIS Vol.7, No.1.

[15] Oyelade. O. J, 2010. “Application of k-Means Clustering algorithm for prediction of Students’ Academic Performance.” International Journal of Computer Science and Information Security. Vol. 7 No.1.

[16] Rajashree, 2010. “A hybridized K-means clustering approach for high dimensional dataset.” International Journal of Engineering, Science and Technology Vol. 2, No. 2.

[17] Ramzi A. Haraty, 2015. “An Enhanced k-Means Clustering Algorithm for Pattern Discovery in Healthcare Data.” Hindawi Publishing Corporation International Journal of Distributed Sensor Networks Volume 2015, Article ID 615740.