Creating a Disaggregated CGE Model for Trade Policy Analysis: GTAP-MVH

Peter B. Dixon¹, Maureen Rimmer¹ and Nhi Tran¹

Abstract
Thousands of economists spread across almost every country use the GTAP model to analyse trade policies including trade wars and trade agreements. GTAP has an impressive regional coverage (140 countries), but the standard commodity coverage (57 commodities/industries) can cause frustration when tariffs on narrowly defined products are being negotiated. This article sets out a method for disaggregating commodities/industries in computable general equilibrium models such as GTAP and applies it to GTAP’s motor vehicle sector. The method makes use of readily available highly disaggregated trade data supplemented by detailed input–output data where available and data from a variety of other sources such as commercial market reports.

JEL Codes: C68, F13, F14, F17

Keywords
GTAP disaggregation, motor vehicle sector, intra-NAFTA tariffs

Introduction
For over 50 years, computable general equilibrium (CGE) models have been used in analysing the effects of changes in trade policies and have now become a standard tool.¹ CGE-based analyses have been helpful in identifying indirect effects. While it may be obvious that the motor vehicle industry in the US benefits from...
higher tariffs on imported finished vehicles, it may not be so obvious that export-oriented activities such as US higher educational services are harmed. As captured by a CGE model, the vehicle industry and higher education are linked via the real exchange rate. Less imported vehicles strengthen the exchange rate and hurt the export prospects of industries such as higher education.

The world’s best known and most widely used CGE trade model is GTAP. Its full database consists of mutually consistent input–output tables, trade flows and protection rates in 140 countries. Documentation of GTAP’s theory and data can be found in Hertel (1997), Corong, Hertel, McDougall, Tsigas, and van der Mensbrugghe (2017) and Aguiar, Narayanan, and McDougall (2016). Flexible aggregation programmes are available to form versions of GTAP with manageable regional disaggregation highlighting regions of interest for particular applications. Later in this article we describe simulations with a 10-region version of GTAP. The regions are shown in Table 1.

While GTAP’s regional detail is more than adequate for most purposes, the standard commodity/industry detail does not fully meet the requirements for convincing analysis to support contemporary trade negotiations. The database for the standard GTAP model distinguishes 57 sectors. At this level of disaggregation, key sectors in trade negotiations are often represented as a single amalgam of activities at various stages of a supply chain. For example, the production of all motor vehicle products in each country is represented in standard GTAP as a single sector, denoted by motor vehicles (mvh). This means that there is no recognition of differences between brakes, transmissions, interior trimming, finished vehicles, etc., in input requirements, sales patterns and rates of protection.

In the second section, we set out a method for disaggregating commodities/industries in computable general equilibrium models such as GTAP and apply it to GTAP’s motor vehicle sector. The method makes use of readily available highly

No.	Regions
1	USA
2	Canada
3	Mexico
4	Japan
5	South Korea
6	China
7	Germany
8	EU26 (= EU28 less Germany and the UK)
9	UK
10	Rest of the World (ROWs)

Source: Author’s own.
disaggregated trade data supplemented by detailed input–output data where available and data from a variety of other sources such as commercial market reports. Using our disaggregation method, we split GTAP’s mvh sector into nine commodities/industries to create GTAP-MVH. In the third section we describe illustrative simulations with GTAP-MVH, showing the effects of tariffs imposed by North American Free Trade Agreement (NAFTA) countries on finished vehicles while leaving tariffs on parts unchanged. Concluding remarks are given in the fourth section.

Transforming Standard GTAP into GTAP-MVH

In simplified form (omitting taxes and international transport margins), the database for the GTAP model is represented by Table 2. Part A is referred to as the NATIONAL matrix for region d. It shows flows of domestic commodities and imported commodities (undifferentiated by region of origin) to industries in

Table 2. Database for a GTAP Model
Part A. NATIONAL Matrix for Region d

Industries in Region d	Final Demands in Region d (excludes exports)	Total Demand in d
Domestic inputs mvh	(a)	(c)
	(e)	
Imported inputs mvh	(b)	(d)
	(e)	
Primary factors		
Industry outputs in d		

| Part B. TRADE Matrix for Commodity c |

Destination Region	USA	Canada	…	…	…	ROW
Source region	USA	Canada	…	…	…	ROW
	USA					
Source region	CAN					

Source: Author’s own.
region d and to final users excluding exports. It also shows the use of primary factors by industries in region d. Part B is referred to as the TRADE matrix. For each commodity, it shows sources and destinations of international trade flows. The data in the two parts satisfy two balance conditions. First, the cth row sum in the imports part of d’s NATIONAL matrix equals the sum across sources of d’s imports of c from the TRADE matrix (sum of dth column of the TRADE matrix for commodity c). Second, the cth row sum in the domestic part of d’s NATIONAL matrix plus d’s exports of c from the TRADE matrix (sum of the dth row in the TRADE matrix for commodity c) equals d’s output of c obtained as the cth column sum in the industry part of d’s NATIONAL matrix.

In Table 2, without loss of generality, we have marked mvh as the first industry and first commodity. The disaggregation task described in this section is to replace the mvh part of the TRADE matrix with matrices for each sub-mvh commodity and to split the mvh column and the two mvh rows in the NATIONAL matrix for each country d into sub-mvh industries and commodities. As will become apparent in subsection ‘Disaggregation Theory’, (a) to (e) in the NATIONAL matrix represent different disaggregation formulas. These formulas split GTAP data items: the disaggregated database reproduces the original database when re-aggregated.

In the rest of this section, we describe the theory (subsection ‘Disaggregation Theory’) and data (subsection ‘Disaggregation Data’) by which we disaggregated GTAP’s mvh industry/commodity into nine North American Industrial Classification System (NAICS)-based industries/commodities. We also briefly describe some disaggregation results (subsection ‘Sales Matrices for Disaggregated mvh Products: Outcomes of the Disaggregation Procedures’). As mentioned already, we performed the disaggregation on a 10-region version of GTAP (see Table 1). It was also convenient from a computational and data-management point of view to aggregate GTAP’s 56 non-mvh industries/commodities into 17. For example, in GTAP-MVH the 12 GTAP agricultural industries/commodities are aggregated into one. The full list of 26 (=9 + 17) industries/commodities in GTAP-MVH is in Table 3, with the disaggregated mvh industries/commodities shaded and in bold type.

Highly disaggregated trade data are available for almost every country to provide a basis for disaggregation of TRADE matrices. By contrast, the input–output matrices that underlie NATIONAL matrices are usually published at a relatively aggregated level, much more aggregated than the trade data. In our disaggregation theory, we start by assuming that satisfactory disaggregated TRADE matrices can be formed, although as we will see in subsection ‘Disaggregation Data’, this may require considerable work on concording commodity/industry classifications between trade and input–output data. To disaggregate NATIONAL matrices we need data for disaggregated commodities/industries on outputs, inputs and sales. For our mvh disaggregation task, direct data for these variables are not available for most countries. We estimate the missing data taking account of what is available: trade data and detailed input–output data for some key countries. The estimates become the basis for splitting shares that are applied to the original GTAP data.
No.	Sectors	Description	NAICS Codes	Original GTAP Sectors
1	Agriculture	Agriculture	1111–1123	Paddy rice; wheat; cereal grains n.e.c.; vegetables, fruits, nuts; oil seeds; sugarcane, sugar beet; plant-based fibres; crops n.e.c.; bovine cattle, sheep and goats, horses; animal products n.e.c.; raw milk; wool, silk-worm cocoons.
2	ForFishMinng	Forestry, fishery and mining	1130–2131	Forestry; fishing; coal, oil, gas; minerals n.e.c.
3	FoodBevTob	Food, beverages and tobacco products	3111–3122	Bovine meat products; meat products n.e.c.; vegetable oils and fats; dairy products; processed rice; sugar; food products n.e.c.; beverages and tobacco products.
4	TCF	Textile, clothing and footwear	3131–3160	Textiles; wearing apparel; leather products.
5	WoodProd	Wood products	3211–3219	Wood products.
6	NMetMinrlPrd	Non-metal mineral materials	3271–3279	Mineral products n.e.c.
7	PaperPublish	Paper, printing and publishing	3221–3231, 48A000–5111A0	Paper products, publishing.
8	PetrolCoal	Petroleum and coal products	3241	Petroleum, coal products.
9	ChemRubPlast	Chemicals, rubber and plastic products	3251–3262	Chemicals, rubber and plastic products.
10	FeMetal	Ferrous metal	3311, 3312, 331510	Ferrous metals.
11	OthMetals	Non-ferrous metals	3313–3314, 331520	Metals n.e.c.
12	MetalProd	Fabricated metal products	3321–3329	Metal products.
13	Automobile	Automobile manufacturing	336111	Motor vehicles and parts
14	MVGasEngPrts	Motor vehicle gasoline engine and engine parts	336312	Motor vehicles and parts
No.	Sectors	Description	NAICS Codes	Original GTAP Sectors
-----	------------------	---	-------------	-----------------------
15	MVSteerSuspn	Motor vehicle steering, suspension component (except spring) manufacturing	336330	
16	MVBrakes	Motor vehicle brakes and brake systems	336340	
17	MVPwrTrTrain	Motor vehicle transmission and power train parts	336350	
18	MVSeatInter	Motor vehicle interior trim, seats and seat parts	336360	
19	MVMtlStamp	Motor vehicle metal stamping	336370	
20	OthMVParts	Other motor vehicle parts manufacturing	336390	
21	TruckUteTrlr	Manufacturing of trucks, utility vehicles, trailers, motor homes and campers	336112, 336120, 336212, 336213, 336214	
22	OthTransEq	All other transportation equipment manufacturing	3364–3369	Transport equipment n.e.c.
23	ElectrnicsEq	Electronic equipment	3341–3345	Electronic equipment.
24	OthMachEq	Other machinery and equipment	3331–3339, 3346–3359, 3391,	Machinery and equipment n.e.c.
25	OthManuf	Other manufacturing products, n.e.c.	3371–3379	Manufactures n.e.c.
26	Services	Services	2211–2334, 4200–8140	Electricity; gas manufacture, distribution; water; construction; trade; transport n.e.c.; water transport; air transport; communication; financial services n.e.c.; insurance; business services n.e.c.; recreational and other services; public administration, defence, education, health; dwellings.

Source: Author’s own.
Disaggregation Theory

The central part of our disaggregation theory is a system of equations in which we treat trade flows in disaggregated products as observable exogenous variables. This allows us to make full use of comprehensive disaggregated trade data published by the United Nations. The equations also rely on the availability of detailed input–output data for one or more leading producer countries in the sector being disaggregated.

In the case of mvh, the inputs to the disaggregation equation system are data (adjusted to 2015 levels where required) on: trade flows for disaggregated mvh products; US and Canadian input–output data for these products; and initial estimates (described in subsection ‘Disaggregation Data’) for outputs of and demands for mvh products in regions other than the USA and Canada.

Endogenous Variables in the Disaggregation Equation System for mvh

In formal terms, we estimate for 2015 the US dollar values of:

- \(VQ(n,s) \) for \(n \in \text{MVH, } s \in \text{OTHREG} \)
 where MVH is the set of nine mvh industries/commodities; \(VQ(n,s) \) is the value of output of commodity \(n \) in region \(s \); and OTHREG is the set of eight regions in Table 1 excluding Canada and the USA. We do not estimate \(VQ(n,\text{US}) \) and \(VQ(n,\text{Canada}) \). These are known from detailed input–output data for the two countries.

- \(Z(n,j,s) \) for \(n, j \in \text{MVH, } s \in \text{OTHREG} \)
 where \(Z(n,j,s) \) is the value of mvh product \(n \) (domestic plus imported) flowing to mvh industry \(j \) in region \(s \). For \(s = \text{USA and Canada} \), \(Z(n,j,s) \) is known from detailed input–output data.

- \(Z\text{dom}(n,j,s) \) and \(Z\text{imp}(n,j,s) \) for \(n, j \in \text{MVH, } s \in \text{OTHREG} \)
 where \(Z\text{dom}(n,j,s) \) and \(Z\text{imp}(n,j,s) \) are the values of the flows of domestically produced and imported mvh-commodity \(n \) to mvh-industry \(j \) in region \(s \). For \(s = \text{USA and Canada} \), \(Z\text{dom}(n,j,s) \) and \(Z\text{imp}(n,j,s) \) are known from detailed input–output data.

- \(OD(n,f,s) \) for \(n \in \text{MVH, } f \in \text{NonMVH, } s \in \text{OTHREG} \)
 where \(OD(n,f,s) \), other domestic demand, is the value of mvh-commodity \(n \) (domestic plus imported) used in region \(s \) by domestic purchaser \(f \) in the set NonMVH. This is the set of domestic purchasers outside the mvh sector. These are non-mvh industries and final demanders (households, capital creators and government but not exports). For \(s = \text{USA and Canada} \), \(OD(n,f,s) \) is known from detailed input–output data.

- \(OD\text{dom}(n,f,s) \) and \(OD\text{imp}(n,f,s) \) for \(n \in \text{MVH, } f \in \text{NonMVH, } s \in \text{OTHREG} \)
 where \(OD\text{dom}(n,f,s) \) and \(OD\text{imp}(n,f,s) \) are the values of domestically produced and imported mvh-commodity \(n \) used in region \(s \) by domestic purchaser \(f \) in the set NonMVH. For \(s = \text{USA and Canada} \), \(OD\text{dom}(n,f,s) \) and \(OD\text{imp}(n,f,s) \) are known from detailed input–output data.
• \(\text{ABS}(n,d)\) for \(n \in \text{MVH}, d \in \text{OTHREG}\)
where \(\text{ABS}(n,d)\) is the value of total absorption (domestic plus imported) of mvh-commodity \(n\) in region \(d\). For \(s = \text{USA and Canada}\), \(\text{ABS}(n,d)\) is known from detailed input–output data.
We also estimate
• \(\text{ADJ}(n,d)\) for \(n \in \text{MVH}, d \in \text{OTHREG}\)
where \(\text{ADJ}(n,d)\) is an adjustment factor on demand for and supply of mvh-commodity \(n\) in region \(d\). As we will see shortly, this factor is used to adjust our initial estimates of demand and supply variables to align estimates of absorption in each region based on supply (output plus imports less exports) and demand (intermediate and final use excluding exports). A value of \(\text{ADJ}(n,d)\) of greater than one adjusts demand variables up and supply variables down.
• \(A_{\text{USCAN}}(n,j)\) for \(n, j \in \text{MVH}\)
where \(A_{\text{USCAN}}(n,j)\) is the average input–output coefficient for Canada and the USA for the use of mvh-commodity \(n\) in mvh-industry \(j\). These average input–output coefficients are calculated from detailed input–output data for the two countries.
• \(\text{MSH}(n,d)\) for \(n \in \text{MVH}, d \in \text{OTHREG}\)
where \(\text{MSH}(n,d)\) is the share of the absorption of mvh-commodity \(n\) in region \(d\) accounted for by imports. Import shares in USA and Canadian absorption of disaggregated mvh commodities are known from detailed input–output and trade data.

Exogenous Variables in the Disaggregation Equation System for mvh

We base the estimates of the endogenous variables on values given by data or initial estimates of:

• \(\text{TR}(n,s,d)\) for \(n \in \text{MVH}, s, d \in \text{REG}\),
where \(\text{REG}\) is the set of 10 regions in Table 1; and \(\text{TR}(n,s,d)\) is the value of commodity \(n\) exported from region \(s\) to region \(d\).
• \(VQ_{\text{USCAN}}(n)\) for \(n \in \text{MVH}\),
where \(VQ_{\text{USCAN}}(n)\) is the aggregate value, calculated from USA and Canadian input–output data updated to 2015, of input \(n\) produced in the two countries.
• \(Z_{\text{USCAN}}(n,j)\) for \(n, j \in \text{MVH}\)
where \(Z_{\text{USCAN}}(n,j)\) is the aggregate value, calculated from USA and Canadian input–output data updated to 2015, of input \(n\) (domestic plus imported if \(n\) is a commodity) used in the production of \(j\) in the two countries.
• \(VQ1(n,s)\) for \(n \in \text{MVH}, s \in \text{OTHREG}\)
where \(VQ1(n,s)\) is our initial estimate of the value of commodity \(n\) produced in region \(s\).
• \(\text{OD1}(n,f,s)\) for \(n \in \text{MVH}, f \in \text{NonMVH}, s \in \text{OTHREG}\)
where \(\text{OD1}(n,f,s)\) is our initial estimate of the value of commodity \(n\) (domestic plus imported) used by purchaser \(f\) in region \(s\).
We make the estimates using the equation system listed below. In this system the variables to be estimated are in black normal type. The variables we take as given are in red italics.

Equation System for Disaggregating mvh in the NATIONAL Matrices: Equations (1)–(11)

Absorption of mvh-commodity \(n \) in region \(d \) calculated as imports + output − exports:

\[
\text{ABS}(n,d) = \sum_{s \in \text{Reg}} \sum_{s \neq d} TR(n,s,d) + VQ(n,d) - \sum_{s \in \text{Reg}} TR(n,d,s)
\]

for all \(n \in \text{MVH}, d \in \text{OTHREG} \) (1)

Absorption of mvh-commodity \(n \) in region \(d \) calculated as intermediate demands in the mvh sector and demand outside the mvh sector:

\[
\text{ABS}(n,d) = \sum_{j \in \text{MVH}} Z(n,j,d) + \sum_{f \in \text{NonMVH}} OD(n,f,d)
\]

for all \(n \in \text{MVH}, d \in \text{OTHREG} \) (2)

Calculation of mvh-mvh input–output coefficients from USA and Canadian input–output data:

\[
A_{\text{USCAN}}(n,j) = Z_{\text{USCAN}}(n,j) / VQ_{\text{USCAN}}(j)
\]

for all \(n, j \in \text{MVH} \) (3)

Intermediate use of mvh-commodity \(n \) in mvh-industry \(j \) in region \(d \) estimated by applying USA/Canada input–output coefficients and adjusting to reconcile absorption of \(n \) in \(d \) calculated by Equations (1) and (2):

\[
Z(n,j,d) = A_{\text{USCAN}}(n,j) * VQ(j,d) * \text{ADJ}(n,d)
\]

for all \(n, j \in \text{MVH}, d \in \text{OTHREG} \) (4)

Other (NonMVH) demands for \(n \) in region \(d \) after adjustment:

\[
\text{OD}(n,f,d) = OD\text{I}(n,f,d) * \text{ADJ}(n,d)
\]

for all \(n \in \text{MVH}, f \in \text{NonMVH}, d \in \text{OTHREG} \) (5)

Output of \(n \) in \(d \) after adjustment:

\[
VQ(n,d) = \frac{VQ\text{I}(n,d)}{\text{ADJ}(n,d)}
\]

for all \(n \in \text{MVH}, d \in \text{OTHREG} \) (6)

Calculation of the shares in \(d \)'s absorption of mvh commodity \(n \) accounted for by imports:
Calculations of import and domestic flows of mvh-commodities to users in region d:

$$Z_{imp}(n, j, d) = Z(n, j, d) \times MSH(n, d) \quad \text{for all } n, j \in MVH, d \in OTHREG \quad (8)$$

$$Z_{dom}(n, j, d) = Z(n, j, d) - Z_{imp}(n, j, d) \quad \text{for all } n, j \in MVH, d \in OTHREG \quad (9)$$

$$OD_{imp}(n, f, d) = OD(n, f, d) \times MSH(n, d), \quad n \in MVH,$$

$$f \in \text{NonMVH}, \ d \in OTHREG \quad (10)$$

$$OD_{dom}(n, f, d) = OD(n, f, d) - OD_{imp}(n, f, d), \quad n \in MVH,$$

$$f \in \text{NonMVH}, \ d \in OTHREG \quad (11)$$

Solving the Equation System

Substituting from Equations (3), (4), (5) and (6) into Equations (1) and (2) gives

$$\sum_{s \in s_{d}} TR(n, s, d) + \frac{VQ(n, d)}{ADJ(n, d)} = \sum_{s \in s_{d}} TR(n, d, s)$$

$$= \sum_{j \in MVH} \frac{Z_{USCAN}(n, j)}{VQ_{USCAN}(j)} \times \frac{VQ(n, d)}{ADJ(n, d)}$$

$$+ \sum_{f \in \text{NonMVH}} OD(n, f, d) \times ADJ(n, d)$$

for all $n \in MVH$ and $d \in OTHREG \quad (12)$

The values of the adjustment factors, $ADJ(n,d)$ can be computed from Equation (12). Once they have been computed the values of all the other unknowns in Equations (1)–(11) can be determined recursively.

Deriving the GTAP-MVH Database by Applying SplitCom

Using the solution from Equations (1) to (11), we can compute splitting shares that can be presented to SplitCom. This is a programme created by Horridge (2008a, 2008b). Users of SplitCom nominate the GTAP sectors to be disaggregated and the shares by which entries in the relevant columns and rows of the NATIONAL matrix for region d should be allocated to the disaggregated subindustries and subcommodities. Having made an initial allocation, SplitCom undertakes a RAS procedure to ensure that the disaggregated database meets balance conditions and the condition that disaggregated cells add to the values in the origi-
Table 4. Splitting Shares for Creation of Database for GTAP-MVH

Cell in Original GTAP Database	Splitting Share
(a) Diagonal flow	
Domestic mvh–mvh flow for	
region d	Zdom(n, j, d) / ∑_{m ∈ MVH} ∑_{k ∈ MVH} Zdom(m, k, d) n, j ∈ MVH
(b) Diagonal flow	
Imported mvh–mvh flow for	
region d	Zimp(n, j, d) / ∑_{m ∈ MVH} ∑_{k ∈ MVH} Zimp(m, k, d) n, j ∈ MVH
(c) Rest of mvh domestic row	
Domestic mvh flow to user	
f outside MVH (excluding	ODdom(n, f, d) / ∑_{m ∈ MVH} ODdom(m, f, d) n ∈ MVH, f ∈ NonMVH
exports) in region d	
(d) Rest of mvh import row	
Imported mvh flow to user	
f outside MVH (excluding	ODimp(n, f, d) / ∑_{m ∈ MVH} ODimp(m, f, d) n ∈ MVH, f ∈ NonMVH
exports) in region d	
(e) Rest of mvh column	
Primary factor flows and flows	VQ(n, d) / ∑_{m ∈ MVH} VQ(m, d) n ∈ MVH
of domestic and imported non-	
mvh intermediate inputs to the	
mvh industry in region d	

Source: Author’s own.

Note: * Rather than using outputs as the basis for splitting shares for non-mvh inputs to mvh industries, a potentially preferable approach would be to use outputs multiplied by US–Canada input–output coefficients.

Table 4 shows the splitting shares, (a) to (e), that we used on the different parts of the GTAP NATIONAL matrix for region \(d\) (Table 2, Part A) in creating the NATIONAL matrix for region \(d\) in GTAP-MVH.

Disaggregation Data

To apply the theory described in subsection ‘Disaggregation Theory’, we need to assemble TRADE matrices for disaggregated mvh products \([TR(n,s,d)]\) and to make informed initial estimates for outputs of disaggregated mvh products in each region \([VQ1(n,d)]\) and non-export demands for these products outside the mvh sector \([OD1(n,f,d)]\).

Trade Data

The first data requirement for applying the theory described in subsection ‘Disaggregation Theory’ is TRADE matrices for disaggregated mvh products \([TR(n,s,d)]\).
We downloaded data for 2015 on import and export values for mvh products at the 6-digit HS (Harmonised code) level for the year 2015 from the COMTRADE database (UN Comtrade, 2018, Chapters 84 and 87). For each trade flow, the data show fob values, export taxes, import tariffs and international transport margins. We developed the disaggregated mvh TRADE matrices on the basis of fob values.

The main task in using the Comtrade data was to map and aggregate it into the nine mvh commodities in GTAP-MVH. To do this, we developed the concordance between 6-digit HS codes and GTAP-MVH commodities shown in Table 5. The concordance is based on Aguiar (2016) and a careful examination of HS codes and their descriptions, as well as the descriptions of the mvh commodities in NAICS (United States Census Bureau, 2017).

The COMTRADE data come in the form EXPORTS\(\left(c, s, d\right)\), that is, exports of commodity \(c\) from reporting region \(s\) to partner region \(d\), and IMPORTS\(\left(c, s, d\right)\), that is, imports of \(c\) to reporting region \(d\) from partner region \(s\). In principle, after conversion to compatible valuation bases, these two types of data must match, that is, for the same commodity \(c\) and the same country pair \(s, d\), we expect EXPORTS\(\left(c, s, d\right) = \text{IMPORTS}\left(c, s, d\right)\). However, it is well known that there are discrepancies in these data (see, e.g., Ferrantino, Liu, & Wang, 2012; Gehlhar, 1996; Shaar, 2017), which can be quite large.

There are several approaches handling import/export discrepancies. Gehlhar (1996) and Shaar (2017) compile reliability and data quality indices for all countries, and then accept the reported trade flows of the more reliable partner in each country pair. Calderon, Chong, and Stein (2007) give primacy to the data reported by the country with the higher income in each country pair. Here we adopted the second approach. Among GTAP-MVH’s 10 regions, we consider the USA, Canada, Japan, South Korea, Germany, EU26 and the UK as higher income countries, and the remaining regions (Mexico, China and RoW) as lower income countries. For trade flows from higher income countries to lower income countries, we adopted export values reported by the higher income countries. For trade flows from lower income countries to higher income countries, we adopted import values reported by higher income countries. For trade flows amongst similar income level country pairs, we adopted the average values of imports and exports.

To complete the preparation of the TRADE matrices for mvh products in GTAP-MVH, we scaled to ensure that when aggregated over all mvh products

\[
\sum_{n \in \text{MVH}} TR(n,s,d) = TR_{GTAP}(mvh,s,d) \quad \text{for all } s, d \in \text{REG}, s \neq d
\]

(13)

where \(TR_{GTAP}(mvh,s,d)\) is the value of mvh exports from \(s\) to \(d\) in the original GTAP database.

Data to Inform our Initial Estimates for Outputs \([VQL(n,d)]\) and Non-export Demands for mvh Products Outside the mvh Sector \([ODL(n,f,d)]\)

For Canada, input–output data identify outputs and other demands for all nine disaggregated mvh commodities/industries (see Statistics Canada, 2017). For the
mvh Commodities in GTAP-MVH	HS Code	Description
13 Automobile manufacturing	8702	(Motor vehicles for the transport of 10 or more persons, including the driver)
13 Motor vehicle gasoline engine and engine parts manufacturing	840731–840734, 840820, 840891, 840899	(Spark ignition reciprocating piston engines and parts)
15 Motor vehicle steering, suspension component (except spring) manufacturing	870880	(Suspension systems and parts thereof)
15 Motor vehicle steering, suspension component (except spring) manufacturing	870894	(Steering wheels, columns, boxes)
16 Motor vehicle brakes and brake systems	870830	(Brakes and servo-brakes of motor vehicle)
17 Motor vehicle transmission and power train parts	870840	(Gear boxes and parts thereof)
17 Motor vehicle transmission and power train parts	870850	(Drive-axles with differential, whether/not provided with other transmission components and non-driving axles; parts thereof of the motor vehicles of headings 87.01–87.05.)
18 Motor vehicle interior trim, seats and seat parts	870821	(Safety seat belts for motor vehicles)
18 Motor vehicle interior trim, seats and seat parts	870870	(Road wheels and parts and accessories thereof)
19 Motor vehicle metal stamping (fenders, tops, body parts, trim and moulding)	8707	(Bodies (including cabs), for the motor vehicles of headings 87.01–87.05)
19 Motor vehicle metal stamping (fenders, tops, body parts, trim and moulding)	870810	(Bumpers and parts)
19 Motor vehicle metal stamping (fenders, tops, body parts, trim and moulding)	870829	(Parts and accessories of bodies (incl. cabs) of the motor vehicles of 87.01–87.05, n.e.s. in 87.08)
mvh Commodities in GTAP-MVH	HS Code	
----------------------------	---------	
20 Other motor vehicle parts manufacturing	870891 (Radiators and parts)	
870892 (Silencers and exhaust pipes)		
870893 (Clutches and parts thereof, for tractors)		
870895 (Safety airbags with inflator system)		
870899 (Other parts and accessories for motor vehicle)		
21 Truck, utility vehicle, trailer, motor home, travel trailer and camper manufacturing	870120 (Road tractors for semitrailers)	
8704 (Motor vehicles for the transport of goods.)
8705 (Special purpose motor vehicles, other than those principally designed for the transport of persons or goods (e.g., breakdown lorries, crane lorries, fire fighting vehicles, concrete-mixer lorries, road sweeper lorries, spraying lorries, mobile work)
8709 (Work trucks, self-propelled, not fitted with lifting or handling equipment, of the type used in factories, warehouses, dock areas or airports for short distance transport of goods; tractors of the type used on railway station platforms; parts of the fore)
8710 (Tanks and other armoured fighting vehicles, motorised, whether or not fitted with weapons, and parts of such vehicles.)
8716 (Trailers and semi-trailers; other vehicles, not mechanically propelled; parts thereof) excl. 871680 (Other vehicles, not mechanically propelled, n.e.s.) |

Source: Author's own.
USA, input–output data for these disaggregated commodities/industries are almost complete (see Dixon, Rimmer, & Waschik, 2017). Consequently, for these two countries we do not need initial estimates of outputs and other demands as inputs to Equations (1)–(11). Instead, as can be seen in these equations, we use input–output data from Canada and the USA to help us make judgements about input–output coefficients in the mvh sector for other countries.

For Japan, China and South Korea, shares of disaggregated mvh outputs and other demands in total mvh outputs and other demands were calculated directly from input–output data. These countries have useful levels of disaggregation for mvh in their input–output data, but less than the nine commodities/industries required. In these cases, we used US–Canada shares to complete the splits. For example, the Japanese input–output data distinguishes four mvh commodities/industries: (a) automobiles; (b) trucks, utility vehicles and trailers; (c) mvh gas engines and parts; and (d) other motor vehicle parts, see Ministry of Internal Affairs and Communications [MIC] (2016). The first three industries are the same as those required for GTAP-MVH. The last industry is an aggregation of the six remaining required mvh commodities/industries. We used the shares of these six in their aggregate sector from the US–Canada database to split the corresponding aggregate sector in the Japanese data into the six required mvh commodities/industries.

For the remaining countries/regions (Mexico, Germany, EU26, the UK and RoW) shares of disaggregated mvh outputs and other demands in total mvh outputs and other demands were calculated starting from data published by the United Nations Industrial Development Organization (UNIDO, 2018). These data provide information on two mvh sectors: (a) cars, trucks and trailers and (b) parts and accessories for motor vehicles. We disaggregated the parts commodity in the UNIDO data into ‘MV gas engines’ and ‘Other MV parts’, using data from Barnes reports (Barnes Reports, 2017a–c). At this stage, we had three mvh commodities. These were disaggregated to the required nine using the average US–Canada shares.

While the use of the US–Canada shares in assisting in the splits of outputs and demands for other countries is not ideal, it should be recalled that we are using this method only to obtain initial estimates, \(VQ1(n,d)\) and \(OD1(n,f,d)\) for \(n \in MVH, f \in NonMVH, d \in OTHREG\). These initial estimates are modified in our Equation system (1)–(11) taking account of detailed disaggregated data on trade.

Sales Matrices for Disaggregated mvh Products: Outcomes of the Disaggregation Procedures

Tables 6a–6i contain sales matrices for the nine mvh commodities in GTAP-MVH valued at market prices (production costs in the producing country). These are TRADE matrices with diagonal flows added to show intra-region sales. The tables were generated by disaggregating GTAP data for 2015 using the disaggregation procedures described in subsections ‘Disaggregation Theory’ and ‘Disaggregation Data’. For each commodity, the rows in the tables show sales from source regions
Source	1. USA	2. Canada	3. Mexico	4. Japan	5. South Korea	6. China	7. Germany	8. EU26	9. UK	10. RoW	Total
1. USA	108,861	4,853	2,173	257	99	1,048	690	455	204	4,033	122,673
2. Canada	11,422	8,223	429	26	18	211	33	126	24	651	21,162
3. Mexico	14,612	1,812	8,892	142	45	517	1,293	382	132	3,971	31,799
4. Japan	26,910	3,149	2,434	30,372	1,297	13,937	2,270	7,067	3,636	51,363	142,435
5. South Korea	7,090	1,127	512	517	7,016	3727	617	3,802	456	23,507	48,370
6. China	1,090	116	79	604	197	155,089	212	503	251	5,197	163,338
7. Germany	11,770	1,610	988	3,414	1,355	13,406	17,908	59,032	17,564	34,460	161,507
8. EU26	3,239	361	486	1,298	500	4,009	27,226	112,011	18,159	29,217	196,506
9. UK	2,364	250	77	454	113	2,201	3,468	10,286	8,603	8,229	36,046
10. RoW	2,455	276	784	1,450	249	655	2,774	6,667	1,813	159,014	176,136
Total	189,814	21,778	16,856	38,534	10,890	194,798	56,491	200,331	50,841	319,641	1,099,973

Source: Author's own calculations.
Source	1. USA	2. Canada	3. Mexico	4. Japan	5. South Korea	6. China	7. Germany	8. EU26	9. UK	10. RoW	Total
1. USA	24,153	3,046	2,486	145	154	838	603	246	42	1,521	33,233
2. Canada	2,233	3,390	195	6	11	67	12	27	2	98	6,040
3. Mexico	2,606	414	2,494	29	26	149	408	75	10	544	6,754
4. Japan	1,827	274	385	41,840	277	1,531	273	527	103	2,675	49,713
5. South Korea	545	111	92	45	9,458	464	84	321	15	1,385	12,520
6. China	720	98	122	455	412	65,596	248	365	69	2,636	70,720
7. Germany	1,691	295	330	563	618	3,129	14,116	9,329	1,055	3,796	34,921
8. EU26	659	93	229	301	324	1,330	9,863	29,025	1,544	4,563	47,933
9. UK	402	54	30	88	62	611	1,053	1,926	1,154	1,074	6,454
10. RoW	555	79	410	373	179	241	1,115	1,657	171	32,488	37,270
Total	35,391	7,854	6,772	43,845	11,521	73,957	27,774	43,498	4,165	50,779	305,558

Source: Author's own calculations.
Source	1. USA	2. Canada	3. Mexico	4. Japan	5. South Korea	6. China	7. Germany	8. EU26	9. UK	10. RoW	Total
1. USA	12,106	710	482	22	17	167	90	40	8	229	13,870
2. Canada	405	1,748	34	1	1	12	2	4	0	13	2,220
3. Mexico	641	118	845	5	3	36	74	15	2	100	1,841
4. Japan	244	43	49	1,113	21	204	27	57	13	269	16,038
5. South Korea	128	30	21	8	3,000	108	15	61	3	244	3,617
6. China	224	35	36	106	71	21,295	57	91	20	616	22,552
7. Germany	304	62	57	76	62	559	4,978	1,347	176	511	8,132
8. EU26	125	21	42	43	34	250	1,384	9,090	272	647	11,909
9. UK	38	6	3	6	3	58	74	147	856	77	1,269
10. RoW	120	20	85	61	22	52	179	288	34	11,651	12,511
Total	14,335	2,792	1,654	15,440	3,235	22,741	6,879	11,140	1,385	14,357	93,958

Source: Author's own calculations.
Table 6d. Motor Vehicle Brakes and Brake Systems: Flows from Source to Destination (US$ Million, 2015)

Source	1. USA	2. Canada	3. Mexico	4. Japan	5. South Korea	6. China	7. Germany	8. EU26	9. UK	10. RoW	Total
1. USA	6,800	282	171	8	7	45	40	17	3	90	7,463
2. Canada	121	751	9	0	0	3	1	1	0	4	891
3. Mexico	237	46	492	2	1	10	32	6	1	38	865
4. Japan	108	20	20	7,958	9	64	14	28	6	123	8,350
5. South Korea	64	16	10	4	1,592	38	9	34	2	126	1,892
6. China	225	37	34	100	73	10,370	67	101	20	638	11,666
7. Germany	160	34	28	38	33	209	2,664	788	93	279	4,326
8. EU26	80	14	25	26	22	113	1,038	4,768	173	427	6,685
9. UK	40	6	3	6	4	43	91	170	323	83	769
10. RoW	47	8	31	22	9	14	81	124	13	6,369	6,717
Total	7,882	1,214	824	8,164	1,751	10,907	4,037	6,037	634	8,176	49,624

Source: Author’s own calculations.
Source	1. USA	2. Canada	3. Mexico	4. Japan	5. South Korea	6. China	7. Germany	8. EU26	9. UK	10. RoW	Total
1. USA	30,558	2,492	2,154	99	117	1,224	406	196	35	1,095	38,376
2. Canada	937	3,453	77	2	4	44	4	10	1	32	4,563
3. Mexico	2,123	299	2,768	17	17	193	243	53	7	346	6,068
4. Japan	3,022	404	599	36,192	377	4,028	330	756	154	3,461	49,323
5. South Korea	618	112	98	38	8,432	837	70	316	15	1,229	11,764
6. China	294	35	46	137	138	67,093	74	129	26	840	68,812
7. Germany	1,347	209	249	332	406	3,975	13,675	6,442	759	2,364	29,757
8. EU26	340	43	112	116	138	1,091	3,727	24,809	720	1,838	32,933
9. UK	137	16	10	22	17	332	262	568	2,058	285	3,709
10. RoW	297	38	207	149	79	205	437	769	83	30,053	32,317
Total	39,671	7,102	6,320	37,104	9,725	79,024	19,227	34,048	3,858	41,543	277,622

Source: Author’s own calculations.
Table 6f. Motor Vehicle Interior Trim, Seats and Seat Parts: Flows from Source to Destination (US$ Million, 2015)

Source	1. USA	2. Canada	3. Mexico	4. Japan	5. South Korea	6. China	7. Germany	8. EU26	9. UK	10. RoW	Total
1. USA	20,237	1,038	398	56	19	127	161	53	8	225	22,322
2. Canada	276	3,261	12	1	4	1	2	0	5	3,563	
3. Mexico	435	72	1,934	6	2	12	55	8	1	41	2,565
4. Japan	53	8	5	35,709	3	21	6	10	2	35	35,853
5. South Korea	86	18	7	8	6,465	34	11	33	1	99	6,763
6. China	490	69	40	362	105	40,142	136	163	28	805	42,340
7. Germany	191	35	18	75	26	164	12,012	693	70	193	13,477
8. EU26	111	16	19	61	21	104	1,351	12,631	154	346	14,813
9. UK	25	4	1	7	1	18	54	80	869	31	1,090
10. RoW	138	20	50	110	17	28	226	272	25	13,132	14,018
Total	22,043	4,542	2,485	36,395	6,659	40,652	14,013	13,945	1,159	14,910	156,803

Source: Author's own calculations.
Table 6g. Motor Vehicle Metal Stamping: Flows from Source to Destination (US$ Million, 2015)

Source	1. USA	2. Canada	3. Mexico	4. Japan	5. South Korea	6. China	7. Germany	8. EU26	9. UK	10. RoW	Total
1. USA	19,696	1,155	758	37	28	316	175	67	9	330	22,571
2. Canada	439	4,513	213	5	8	91	12	26	2	76	5,385
3. Mexico	354	387	2,182	18	12	139	291	50	5	291	3,728
4. Japan	99	102	114	40,665	50	567	77	140	23	571	42,409
5. South Korea	77	108	72	30	7,170	452	63	225	9	776	8,980
6. China	74	69	68	213	141	55,891	132	183	29	1,060	57,861
7. Germany	170	204	182	259	208	2,148	12,614	4,614	434	1,500	22,333
8. EU26	68	66	129	142	111	928	5,267	19,119	647	1,835	28,312
9. UK	23	21	10	23	12	237	312	538	1,034	239	2,448
10. RoW	67	66	271	207	72	198	701	980	84	20,076	22,723
Total	21,066	6,691	3,998	41,598	7,812	60,967	19,643	25,943	2,276	26,753	216,749

Source: Author's own calculations.
Table 6h. Other Motor Vehicle Parts: Flows from Source to Destination (US$ Million, 2015)

Destination	1. USA	2. Canada	3. Mexico	4. Japan	5. South Korea	6. China	7. Germany	8. EU26	9. UK	10. RoW	Total
1. USA	46,474	9,667	8,058	498	439	3,228	2,131	1,128	182	6,147	77,952
2. Canada	3,855	5,104	163	5	8	66	10	32	2	102	9,348
3. Mexico	5,421	411	5,850	31	23	179	448	107	13	681	13,164
4. Japan	2,318	166	238	71,213	150	1,116	182	458	85	2,047	77,973
5. South Korea	3,238	314	265	140	11,846	1,587	264	1,307	56	4,966	23,985
6. China	1,833	119	151	600	448	111,871	334	637	115	4,047	120,153
7. Germany	3,138	262	300	541	490	3,336	30,865	11,839	1,263	4,245	56,279
8. EU26	1,771	120	302	421	373	2,053	14,013	64,390	2,682	7,383	93,506
9. UK	642	41	24	74	42	559	887	2,100	5,087	1,030	10,486
10. RoW	1,233	84	446	431	171	308	1,312	2,524	246	64,499	71,255

Total: 69,922 16,288 15,797 73,954 13,989 124,303 50,448 84,521 9,732 95,148 554,101

Source: Author's own calculations.
Source	1. USA	2. Canada	3. Mexico	4. Japan	5. South Korea	6. China	7. Germany	8. EU26	9. UK	10. RoW	Total
1. USA	260,896	23,877	5,898	548	337	1,318	2,610	1,838	630	16,180	314,132
2. Canada	33,973	14,597	371	18	20	85	40	163	24	834	50,124
3. Mexico	28,325	1,856	15,612	63	32	135	1,011	320	85	3,309	50,748
4. Japan	8,853	551	232	2,045	153	605	298	998	393	7,241	123,892
5. South Korea	2,122	179	44	35	30,840	147	74	489	45	3,012	36,986
6. China	4,870	275	103	612	320	243,799	381	970	370	9,964	261,606
7. Germany	8,290	602	202	538	344	1242	79,734	17,817	4,045	10,376	123,188
8. EU26	3,993	235	174	358	223	652	13,454	149,363	7,311	15,387	191,151
9. UK	861	48	8	36	15	104	502	1,595	26,195	1,275	30,639
10. RoW	4,272	253	396	571	158	152	1,948	5,000	1,037	227,306	241,095
Total	356,456	42,473	23,042	107,345	32,443	248,179	100,052	178,551	40,135	294,884	1,423,560

Source: Author's own.
Region	1. USA	2. Canada	3. Mexico	4. Japan	5. South Korea	6. China	7. Germany	8. EU26	9. UK	10. RoW	Total
1. Automobile	54.0	38.9	2.0	0.1	0.1	1.0	0.2	0.6	0.1	3.1	100.0
2. MVGasEngPrts	37.0	56.1	3.2	0.1	0.2	1.1	0.2	0.4	0.0	1.6	100.0
3. MVSteerSuspn	18.2	78.8	1.5	0.0	0.1	0.5	0.1	0.2	0.0	0.6	100.0
4. MVBrakes	13.6	84.3	1.1	0.0	0.0	0.3	0.1	0.1	0.0	0.5	100.0
5. MVPwrTrTrain	20.5	75.7	1.7	0.0	0.1	1.0	0.1	0.2	0.0	0.7	100.0
6. MVSeatInter	7.7	91.5	0.3	0.0	0.0	0.1	0.0	0.1	0.0	0.2	100.0
7. MVMtlStamp	8.1	83.8	4.0	0.1	0.1	1.7	0.2	0.5	0.0	1.4	100.0
8. OthMVParts	41.2	54.6	1.7	0.1	0.1	0.7	0.1	0.3	0.0	1.1	100.0
9. TruckUteTrlr	67.8	29.1	0.7	0.0	0.0	0.2	0.1	0.3	0.0	1.7	100.0
All mvh commodities	51.9	43.6	1.5	0.1	0.1	0.6	0.1	0.4	0.1	1.8	100.0

Source: Author's own.
where the commodity is produced, and the columns show the destination regions where the commodity is used. The row totals show output values of the commodity in the source regions. The column totals show absorption values of the commodity in the destination regions.

The tables show that, apart from the finished product automobiles, the main destination for a country’s motor vehicle commodities is usually the country itself. Exceptions include the production of gasoline engines by Mexico and the UK, and the production of Trucks, etc., by Canada and Mexico. In the case of automobiles, the principal user is often outside the source country. For example, the USA is the principal user of automobiles produced by Canada and Mexico. Rest of the world is the principal user of automobiles produced by Japan and South Korea. EU26 is the principal user of automobiles produced by Germany and the UK. EU26, RoW, China and Germany are the biggest producers of automobiles, while the USA and China are the biggest producers of trucks, utility vehicles, trailers, motor homes and campers. Japan and China are the biggest producers of nearly all mvh components.

The tables can be converted to percentages in either the row direction or the column direction to highlight sales and demand patterns. We can also create new tables to highlight the data for all products for a particular country. This is done in Table 7 which shows destination percentages in the sales of Canadian mvh products. The table shows that the USA is by far the biggest export market for Canadian mvh products. Exports to the US account for more than half of Canadian automobiles and trucks, etc., and over one third of Canadian gasoline engines and other motor vehicle parts. In total, exports to the US account for 51.9 per cent of Canada’s mvh output and 92 per cent of Canada’s mvh exports \(=\frac{100 \times 51.9}{56.4}\). RoW and Mexico rank second and third among export markets for Canada’s mvh products. But exports to these markets account for only small shares of Canadian output (1.8% and 1.5%).

Illustrative GTAP-MVH Simulations

During 2017 and 2018, mainly at the behest of the USA, the three NAFTA countries held lengthy trade negotiations. Numerous proposals were made, particularly with regard to the motor vehicle sector. In this section, we show how GTAP-MVH can be used to provide information to negotiators. We simulate the effects of two proposed sets of changes to the powers of the tariffs applying to imports of finished motor vehicles (commodities 13 and 21 in GTAP-MVH, see Table 3). In simulation 1 we impose the percentage increases in intra-NAFTA tariffs shown in the upper part of Table 8. In simulation 2, we impose the same increases as in simulation 1 plus a 25 per cent increase in the power of the US tariff on imports of finished vehicles from non-NAFTA countries. Because the initial tariff rates are zero or close to zero, the increases in Table 8 are the new levels of tariff rates.
For simulation purposes, we treat the tariffs as though they were imposed in 2016. Tables 9 and 10 show effects from simulations 1 and 2 on outputs in the 10 regions of GTAP-MVH for: the motor vehicle sector as a whole; finished motor vehicles (commodities 13 and 21); and motor vehicle parts (commodities 14–20). Regional macro effects from the two simulations are in Tables 11 and 12. All effects are expressed as percentage deviations from a baseline in which there are no tariff changes. While we do not explain the baseline or GTAP-MVH theory here, key features will be apparent from our explanation of the results.

Simulation 1: Output Effects in the MVH Sector (Table 9)

Output of motor vehicles and parts declines in the three NAFTA countries. While the motor vehicle sector in each of the three countries benefits from reduced competition from its NAFTA partners, it suffers an offsetting effect from reduced demand from its NAFTA partners. So why are the overall effects negative? This is because non-NAFTA countries gain market share in NAFTA destinations: in this simulation non-NAFTA countries do not suffer a tariff increase on their exports to NAFTA. The gain in market share for non-NAFTA countries in NAFTA markets explains why the motor vehicle sector is stimulated in non-NAFTA countries.

Because the tariffs are applied only on finished vehicles, the negative effects on the production of finished vehicles in NAFTA are larger than those for parts. Nevertheless, parts production generally declines in the three NAFTA countries, reflecting reductions in sales to NAFTA’s finished vehicles industries.

Against the general pattern of the other results, output of parts in Mexico initially increases slightly (0.034% in 2016, Table 9). At the macro level, Mexico experiences a bigger real devaluation than the other two NAFTA countries: Mexico is more dependent on motor vehicle exports than the other two countries. Greater real devaluation allows the Mexican parts sector to compete successfully outside NAFTA. This slight positive effect is offset in the long run by continuing

Table 8. Proposed Percentage Increases in Powers of Tariffs on Finished Vehicles: Commodities 13 and 21 in GTAP-MVH

On Imports From:	USA	Canada	Mexico
Shocks in simulation 1			
USA	2.5	10.8	
Canada	0.7	6.4	
Mexico	1.1	3.1	
Additional shock in simulation 2			
Non-NAFTA countries	25.0	0.0	0.0

Source: Author’s own.
Table 9. Simulation 1 (Tariff Increases in NAFTA): Percentage Effects on Outputs of Motor Vehicles

	2016	2017	2018	2019	2020	2021	2022	2023
Motor vehicles and parts								
1. USA	-0.360	-0.390	-0.397	-0.398	-0.398	-0.399	-0.399	-0.399
2. Canada	-0.169	-0.285	-0.369	-0.425	-0.456	-0.469	-0.472	-0.467
3. Mexico	-0.095	-0.308	-0.506	-0.677	-0.818	-0.930	-1.020	-1.090
4. Japan	0.106	0.171	0.213	0.239	0.259	0.272	0.283	0.292
5. South Korea	0.058	0.099	0.103	0.154	0.173	0.189	0.202	0.213
6. China	0.033	0.042	0.047	0.050	0.051	0.052	0.053	0.053
7. Germany	0.127	0.133	0.141	0.148	0.152	0.157	0.160	0.163
8. EU26	0.035	0.049	0.058	0.065	0.070	0.073	0.076	0.079
9. UK	0.085	0.091	0.099	0.106	0.111	0.115	0.119	0.122
10. RoW	0.036	0.054	0.065	0.072	0.077	0.079	0.081	0.083

Finished vehicles								
1. USA	-0.484	-0.493	-0.482	-0.470	-0.463	-0.459	-0.457	-0.456
2. Canada	-0.260	-0.400	-0.488	-0.534	-0.547	-0.538	-0.519	-0.493
3. Mexico	-0.163	-0.489	-0.774	-1.012	-1.202	-1.305	-1.464	-1.551
4. Japan	0.194	0.241	0.277	0.302	0.323	0.331	0.342	0.349
5. South Korea	0.122	0.190	0.237	0.272	0.296	0.314	0.329	0.340
6. China	0.060	0.063	0.068	0.072	0.073	0.073	0.073	0.073
7. Germany	0.179	0.191	0.203	0.213	0.218	0.224	0.228	0.231
8. EU26	0.040	0.056	0.065	0.071	0.075	0.078	0.081	0.083
9. UK	0.090	0.100	0.109	0.118	0.123	0.129	0.133	0.136
10. RoW	0.045	0.069	0.083	0.091	0.096	0.098	0.100	0.101

Vehicle parts								
1. USA	-0.128	-0.193	-0.231	-0.254	-0.269	-0.278	-0.284	-0.287
2. Canada	-0.042	-0.122	-0.199	-0.267	-0.323	-0.367	-0.401	-0.425
3. Mexico	0.034	0.033	-0.006	-0.056	-0.113	-0.171	-0.227	-0.280
4. Japan	0.078	0.146	0.191	0.217	0.237	0.251	0.263	0.271
5. South Korea	0.007	0.027	0.046	0.063	0.078	0.092	0.104	0.115
6. China	0.022	0.033	0.039	0.042	0.044	0.045	0.045	0.045
7. Germany	0.064	0.061	0.064	0.067	0.070	0.072	0.074	0.076
8. EU26	0.027	0.037	0.046	0.054	0.060	0.065	0.068	0.072
9. UK	0.062	0.055	0.055	0.056	0.057	0.058	0.059	0.060
10. RoW	0.017	0.022	0.027	0.031	0.034	0.037	0.038	0.040

Source: Author’s own.
Table 10. Simulation 2 (Tariff Increases in NAFTA and US Tariffs on Non-NAFTA): Percentage Effects on Outputs of Motor Vehicles

	2016	2017	2018	2019	2020	2021	2022	2023
Motor vehicles and parts								
1. USA	4.143	4.713	5.059	5.168	5.138	5.045	4.967	4.89
2. Canada	4.470	7.876	10.271	11.888	12.907	13.505	13.866	14.068
3. Mexico	0.931	2.984	4.680	6.040	7.101	7.900	8.499	8.949
4. Japan	-3.096	-3.818	-4.394	-4.781	-5.041	-5.131	-5.201	-5.236
5. South Korea	-1.412	-2.104	-2.643	-3.040	-3.309	-3.499	-3.638	-3.736
6. China	-0.651	-0.803	-0.893	-0.933	-0.925	-0.911	-0.896	-0.880
7. Germany	-2.638	-2.647	-2.762	-2.812	-2.787	-2.776	-2.765	-2.751
8. EU26	-0.659	-0.863	-0.998	-1.076	-1.108	-1.124	-1.132	-1.134
9. UK	-2.097	-2.282	-2.490	-2.613	-2.648	-2.681	-2.698	-2.706
10. RoW	-0.477	-0.650	-0.756	-0.812	-0.825	-0.821	-0.809	-0.795

	2016	2017	2018	2019	2020	2021	2022	2023
Finished vehicles								
1. USA	5.341	5.779	5.994	5.966	5.811	5.620	5.478	5.355
2. Canada	7.108	11.98	15.199	17.192	18.281	18.770	18.955	18.960
3. Mexico	1.522	4.572	7.011	8.926	10.387	11.463	12.247	12.819
4. Japan	-4.424	-4.970	-5.541	-5.876	-6.113	-6.082	-6.114	-6.109
5. South Korea	-2.620	-3.847	-4.721	-5.296	-5.612	-5.799	-5.911	-5.974
6. China	-0.922	-1.148	-1.279	-1.337	-1.315	-1.291	-1.266	-1.242
7. Germany	-3.476	-3.649	-3.873	-3.968	-3.941	-3.926	-3.903	-3.878
8. EU26	-0.654	-0.888	-1.033	-1.108	-1.129	-1.135	-1.133	-1.129
9. UK	-2.257	-2.528	-2.792	-2.944	-2.990	-3.028	-3.046	-3.054
10. RoW	-0.494	-0.725	-0.870	-0.948	-0.969	-0.965	-0.951	-0.932

	2016	2017	2018	2019	2020	2021	2022	2023
Vehicle parts								
1. USA	1.865	2.643	3.196	3.557	3.769	3.871	3.916	3.925
2. Canada	0.448	1.450	2.511	3.513	4.394	5.115	5.684	6.121
3. Mexico	-0.287	-0.351	-0.148	0.153	0.503	0.865	1.215	1.542
4. Japan	-2.667	-3.423	-3.999	-4.401	-4.670	-4.797	-4.879	-4.926
5. South Korea	-0.483	-0.783	-1.076	-1.342	-1.575	-1.768	-1.926	-2.052
6. China	-0.535	-0.670	-0.748	-0.784	-0.783	-0.775	-0.766	-0.754
7. Germany	-1.624	-1.415	-1.384	-1.367	-1.334	-1.322	-1.317	-1.309
8. EU26	-0.665	-0.816	-0.936	-1.020	-1.068	-1.101	-1.125	-1.139
9. UK	-1.439	-1.254	-1.227	-1.222	-1.205	-1.208	-1.216	-1.221
10. RoW	-0.439	-0.488	-0.507	-0.510	-0.500	-0.490	-0.482	-0.473

Source: Author’s own.
Table 11. Simulation 1 (Tariff Increases in NAFTA): Percentage Deviations in Macro Aggregates by Region

Region	2016	2017	2018	2019	2020	2021	2022	2023
Real GDP								
USA	-0.005	-0.003	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
Canada	-0.038	-0.030	-0.027	-0.025	-0.023	-0.021	-0.020	-0.020
Mexico	-0.036	-0.054	-0.070	-0.081	-0.090	-0.097	-0.102	-0.106
Japan	0.004	0.005	0.004	0.004	0.004	0.004	0.004	0.003
South Korea	0.006	0.004	0.004	0.005	0.005	0.005	0.005	0.004
China	0.003	0.001	0.001	0.002	0.002	0.002	0.002	0.001
Germany	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.001
EU26	0.001	0.001	0.002	0.002	0.002	0.002	0.002	0.002
UK	0.002	0.001	0.002	0.002	0.002	0.002	0.002	0.002
ROW	0.000	0.001	0.002	0.002	0.002	0.002	0.002	0.002

Employment

Region	2016	2017	2018	2019	2020	2021	2022	2023
USA	-0.007	-0.003	-0.002	-0.001	-0.001	-0.001	0.000	0.000
Canada	-0.052	-0.027	-0.014	-0.008	-0.004	-0.002	0.000	0.000
Mexico	-0.060	-0.048	-0.041	-0.035	-0.029	-0.024	-0.019	-0.015
Japan	0.005	0.004	0.002	0.001	0.001	0.001	0.000	0.000
South Korea	0.007	0.003	0.002	0.001	0.001	0.001	0.001	0.000
China	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Germany	0.005	0.003	0.002	0.001	0.001	0.000	0.000	0.000
EU26	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.000
UK	0.002	0.001	0.001	0.001	0.001	0.000	0.000	0.000
ROW	0.001	0.001	0.001	0.001	0.001	0.000	0.000	0.000

Capital

Region	2016	2017	2018	2019	2020	2021	2022	2023
USA	0.000	-0.003	-0.005	-0.005	-0.006	-0.006	-0.007	-0.007
Canada	0.000	-0.031	-0.046	-0.054	-0.058	-0.060	-0.061	-0.061
Mexico	0.000	-0.039	-0.067	-0.089	-0.106	-0.119	-0.130	-0.138
Japan	0.000	0.005	0.007	0.007	0.007	0.007	0.007	0.007
South Korea	0.000	0.005	0.006	0.007	0.008	0.008	0.008	0.008
China	0.000	0.003	0.004	0.004	0.005	0.005	0.005	0.005
Germany	0.000	0.003	0.004	-0.004	0.004	0.004	0.004	0.004
EU26	0.000	0.002	0.003	0.004	0.005	0.005	0.005	0.006
UK	0.000	0.002	0.003	0.003	0.004	0.004	0.004	0.004
ROW	0.000	0.001	0.002	0.003	0.004	0.004	0.004	0.004

(Table 11 Continued)
Table 11. Real private and public consumption

Region	2016	2017	2018	2019	2020	2021	2022	2023
USA	−0.004	−0.003	−0.002	−0.002	−0.002	−0.002	−0.002	−0.002
Canada	−0.023	−0.016	−0.012	−0.010	−0.007	−0.006	−0.005	−0.005
Mexico	−0.028	−0.035	−0.043	−0.047	−0.048	−0.049	−0.049	−0.049
Japan	0.005	0.005	0.004	0.003	0.003	0.003	0.003	0.003
South Korea	0.011	0.006	0.006	0.006	0.006	0.005	0.005	0.005
China	0.003	0.000	0.000	0.000	0.000	0.000	0.000	−0.001
Germany	0.001	0.002	0.002	0.003	0.002	0.002	0.002	0.002
EU26	−0.003	−0.001	0.000	0.001	0.001	0.001	0.001	0.001
UK	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
ROW	−0.002	0.000	0.000	0.001	0.001	0.001	0.000	0.000

Source: Author’s own.

Table 12. Simulation 2 (Tariff Increases in NAFTA and US Tariffs on Non-NAFTA): Percentage Deviations in Macro Aggregates by Region

Region	2016	2017	2018	2019	2020	2021	2022	2023
USA	−0.092	−0.084	−0.076	−0.074	−0.075	−0.078	−0.079	−0.080
Canada	−0.104	0.093	0.087	0.082	0.075	0.071	0.070	0.070
Mexico	0.047	0.101	0.152	0.191	0.220	0.241	0.257	0.269
Japan	−0.048	−0.040	−0.035	−0.031	−0.028	−0.025	−0.025	−0.024
South Korea	−0.061	−0.052	−0.047	−0.043	−0.039	−0.037	−0.036	−0.035
China	−0.005	0.001	0.004	0.002	0.000	−0.002	−0.004	−0.005
Germany	−0.055	−0.019	−0.001	0.008	0.014	0.016	0.016	0.016
EU26	0.003	0.009	0.011	0.010	0.008	0.006	0.003	0.002
UK	−0.007	0.000	0.004	0.004	0.005	0.004	0.003	0.002
ROW	0.018	0.021	0.021	0.019	0.017	0.014	0.012	0.011

Employment

Region	2016	2017	2018	2019	2020	2021	2022	2023
USA	−0.078	−0.034	−0.012	−0.003	−0.001	0.000	0.000	0.000
Canada	0.125	0.058	0.027	0.009	−0.004	−0.008	−0.007	−0.006
Mexico	0.096	0.057	0.055	0.048	0.039	0.031	0.025	0.020
Japan	−0.072	−0.043	−0.026	−0.016	−0.008	−0.004	−0.003	−0.002
South Korea	−0.091	−0.056	−0.034	−0.021	−0.011	−0.007	−0.004	−0.003

(Table 12 Continued)
(Table 12 Continued)

	2016	2017	2018	2019	2020	2021	2022	2023
6. China	−0.003	0.000	0.003	0.002	0.000	−0.002	−0.002	−0.003
7. Germany	−0.089	−0.033	−0.010	0.000	0.006	0.006	0.005	0.003
8. EU26	0.009	0.002	0.002	0.001	−0.001	−0.002	−0.003	−0.003
9. UK	−0.008	−0.010	−0.006	−0.004	−0.002	−0.002	−0.002	−0.002
10. ROW	0.024	0.008	0.002	−0.001	−0.003	−0.003	−0.003	−0.003

Capital

	2016	2017	2018	2019	2020	2021	2022	2023
1. USA	0.000	−0.087	−0.124	−0.138	−0.143	−0.145	−0.145	−0.145
2. Canada	0.000	0.076	0.114	0.132	0.138	0.137	0.132	0.128
3. Mexico	0.000	0.117	0.192	0.254	0.303	0.341	0.369	0.390
4. Japan	0.000	−0.020	−0.030	−0.035	−0.037	−0.037	−0.036	−0.036
5. South Korea	0.000	−0.025	−0.040	−0.049	−0.054	−0.056	−0.057	−0.056

Real private and public consumption

	2016	2017	2018	2019	2020	2021	2022	2023
1. USA	−0.058	−0.045	−0.031	−0.023	−0.021	−0.021	−0.020	−0.020
2. Canada	0.171	0.133	0.108	0.087	0.068	0.057	0.052	0.049
3. Mexico	0.241	0.213	0.221	0.212	0.198	0.185	0.175	0.168
4. Japan	−0.085	−0.075	−0.065	−0.058	−0.053	−0.051	−0.052	−0.052
5. South Korea	−0.159	−0.133	−0.118	−0.111	−0.101	−0.099	−0.098	−0.098

Source: Author’s own.

Negative adjustment in the finished motor vehicle industry in the NAFTA countries, reducing demand for Mexican parts within NAFTA.

Continuing negative adjustment of the finished motor vehicle industries in the NAFTA countries is caused by gradual downward adjustment in their capital stocks.
Simulation 2: Output Effects in the MVH Sector (Table 10)

This simulation imposes two sets of shocks: (a) the quite small intra-NAFTA tariff shocks that were applied in the first simulation and (b) a 25 per cent US tariff against imports of finished vehicles from non-NAFTA countries. The second set of shocks is dominant in most of our results.

The US tariff on finished motor vehicles from non-NAFTA countries stimulates output of both finished goods and parts in the USA. It also has a generally stimulatory effect in the motor vehicle sector in the other two NAFTA countries. Output of finished motor vehicles in these countries benefits from reduced competition in the US market from non-NAFTA countries. Parts production in Canada benefits from expansion in its own finished motor vehicle industry and that of the USA.

The results for parts production in Mexico in the early years of the simulation are negative. This is explained by a symmetrical argument to that given for the result for Mexican parts production in Table 9. This time Mexico is a major beneficiary from the US tariff on finished vehicles (includes trucks) from non-NAFTA countries. Associated real appreciation of the Mexican currency initially hurts its parts sales outside Mexico.

Motor vehicle production in non-NAFTA countries shows strongly negative effects, especially for Japan for which the USA is a major market (see Table 6a).

Simulation 1: Regional Macro Results (Table 11)

In the short run, raising tariffs within NAFTA reduces GDP in the NAFTA countries but increases GDP for other countries, which gain from diversion of demand by NAFTA countries away from their NAFTA partners. The NAFTA countries lose by increasing the costs of finished cars and trucks to their households and capital creators. These increases in costs reduce the number of people who can be employed at current real wages. Eventually wages adjust down so that employment in the NAFTA countries is restored gradually to baseline. This process is complete by 2023 for the USA and Canada, but still has some distance to go for Mexico. Even though the employment effects are eliminated in the long run, the GDP deviations for the NAFTA countries remain negative. This is because the NAFTA countries lose capital in the long run. With higher tariffs, capital must become more scarce for rates of return to be restored to baseline levels, or explained another way, reduced real wages mean that an economy’s K/L ratio will fall implying, with L returning to baseline, a long-run reduction in K.

The final panel in Table 11 shows percentage deviations in private and public consumption, which we assume move together. These deviations can be interpreted as welfare effects. In the long run, the intra-NAFTA tariffs reduce the welfare of all three NAFTA countries. Outside NAFTA the results are generally positive. Most of the non-NAFTA countries (or regions) identified in GTAP-MVH benefit from terms-of-trade improvements associated with improved competitiveness in NAFTA markets.
Simulation 2: Regional Macro Results (Table 12)

Raising tariffs on finished motor vehicles imported from outside NAFTA reduces employment in the USA in the short run (−0.078% in 2016) and capital in the long run (−0.145% in 2023). The explaining mechanisms can be understood from our commentary on K and L movements in Table 11. Together, the labour and capital effects leave US GDP reduced by the policy in both the short and long run.

For Canada and Mexico, the GDP effects in simulation 2 are positive in both the short and long run. In the short run, both countries experience employment gains associated with their improved competitiveness in the US motor vehicle market and in the long run both countries experience increases in their capital stock associated with higher real wages.

For Canada, the long-run employment effect is slightly negative (−0.006% in 2023). As illustrated in Figure 1, this is a very minor effect and should not be considered either policy relevant or reliable. What is reliable is that aggregate employment in the long run returns closely to baseline. Sometimes in our modelling, which involves difference equations, the return of employment to baseline exhibits damped oscillations of the type apparent in the figure.

For Japan and South Korea, the macro effects of the US tariff against their exports of finished motor vehicles are negative. Both these countries have significant exports of finished motor vehicles to the USA. For other non-NAFTA countries, the direct effects of US tariffs on finished motor vehicles, while negative, are small: these countries do not export large quantities of finished motor vehicles to the USA. For these countries, the negative direct effects can be outweighed by positive indirect effects.

![Figure 1. Percentage Deviations for Canada in Macro Variables: Simulation 2 (Colour Online)](image)

Source: Author’s own.
There are two types of positive indirect effects for non-NAFTA countries. First, US tariffs cause real appreciation in the USA (loss in competitiveness), reducing US exports of all products (not just motor vehicles). This is a source of gain for countries that compete with the USA in third markets. Second, US tariffs on finished vehicles from non-NAFTA counties are bad for investment in the USA. Investment in the US accounts for about 17 per cent of worldwide investment. The downward effect on US investment has a noticeable effect on worldwide investment. The negative impact on worldwide investment is stronger than the negative effect on worldwide saving. Consequently, worldwide interest rates fall. This leads to extra capital in many countries. Only the USA and countries with a strong link to the USA through exports to the USA of finished cars have negative results for aggregate capital. Countries which gain capital, wind up with extra GDP, but not necessarily extra consumption. Their consumption can be adversely affected by negative terms of trade effects, especially if they import a lot from the USA.

Concluding Remarks

Trade negotiations are often conducted in terms of narrowly defined commodities, well below the commodities/industries identified in standard CGE models. Most negotiators are lawyers rather than economists. In these circumstances, CGE analyses can be dismissed because to non-economists the models seem insufficiently focussed on the issues at hand. This is unfortunate because even when CGE models cannot capture the exact details of a proposed trade policy, they can still provide valuable insights. These general insights are mainly of the form of alerting negotiators that increases in protection are ineffective as a macro policy. They may save jobs in the protected sector, but they reduce employment in other parts of the economy.

Disaggregating industries and commodities in a CGE model increases the likelihood that the model can be applied directly in the analysis of a particular policy. This leaves the general messages intact while at the same time increasing the acceptability of the analysis and potentially producing new policy-specific messages. For example, with the disaggregated Motor vehicle sector included in GTAP-MVH, we found that tariffs on finished motor vehicle trade within NAFTA were not only negative at a macro level for the three NAFTA countries, but were also negative for output from their Motor vehicle sectors.

The disaggregation method that we have described in this article and implemented for the Motor vehicle sector is applicable to other sectors. In the GTAP model, it could be used to disaggregate sectors such as textiles, wearing apparel, fabricated metal products, other transport equipment, electronic equipment and other machinery. Detailed trade data, necessary for our disaggregation method, exist for products within all these sectors. Disaggregating these sectors would not only enhance the GTAP model as a tool for trade policy analysis, but would also be a step towards the development of new models required for analysing trade dominated by global supply chains.
Acknowledgements

We thank Global Affairs Canada for financial support that made it possible for us to undertake this project. Shenjie Chen and Jeff Bennett from Global Affairs provided valuable advice. However, neither they nor their employer is responsible for any part of this article.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Funding

The authors received no financial support for the research, authorship and/or publication of this article, apart from that mentioned in the acknowledgements.

Notes

1. Early contributions include Evans (1972), Deardorff, Stern, and Baum (1977) and Dixon, Parmenter, Ryland, and Sutton (1977) and Dixon, Parmenter, Sutton, and Vincent (1982).
2. GTAP stands for Global Trade Analysis Project. The model was created by the GTAP research group at Purdue University.
3. The Chinese input–output database contains two mvh industries, namely Motor vehicles and MV parts, see Mai, Dixon, and Rimmer (2010). The South Korean input–output database contains three mvh industries, namely Motor vehicles; Mvh gas engines and Mvh parts, see Bank of Korea Economic Statistics System (2014).
4. Details of the baseline and theory of GTAP-MVH can be found in our working paper (Dixon, Rimmer, & Tran, 2019).
5. Walmsley and Minor (2017) produce a version of GTAP that they refer to as a supply chain model. The standard version of GTAP identifies flows of commodity c from source country s to destination country d but then assumes that the source composition of imported c in d is the same for all users. Walmsley and Minor make a valuable contribution by equipping GTAP with data that identify imports by source country for each using agent in d. However, they do not address sectoral disaggregation. We consider this to be a fundamental requirement for converting GTAP into a model for analysing global supply chain trade.

References

Aguiar, A. (2016). Concordances—Six-digit HS sectors to GTAP sectors. GTAP Resource #5111. Retrieved from https://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=5111
Aguiar, A., Narayanan, B., & McDougall, R. (2016). An overview of the GTAP 9 data base. Journal of Global Economic Analysis, 1(1), 181–208.
Bank of Korea Economic Statistics System. (2014). 2010 updated input-output tables. Retrieved from https://ecos.bok.or.kr/flex/EasySearch_e.jsp
Barnes Reports. (2017a). Automobile & motor vehicle mfg. industry NAICS 33611. 2017 World Industry & Market Outlook Report (pp. 1–139).
Barnes Reports. (2017b). Automobile gas engine & engine parts mfg. NAICS 33631. 2017 World Industry & Market Outlook Report (pp. 1–139).
United Nations Industrial Development Organization (UNIDO). (2018). *IDSB—Industrial demand-supply balance database.* United Nations Industrial Development Organization (UNIDO). Retrieved from https://www.unido.org/researchers/statistical-databases

United States Census Bureau. (2017). *North American industry classification system.* Retrieved from https://www.census.gov/eos/www/naics/

Walmsley, T., & Minor, P. (2017). Reversing NAFTA: A supply chain perspective (ImpactECON Working Paper, p. 30). Retrieved from https://impactecon.com/wp-content/uploads/2017/02/NAFTA-Festschrift-Paper-1.pdf