Khadijeh Baghaei

Blow-up, non-extinction and exponential growth of solutions to a fourth-order parabolic equation

Volume 350 (2022), p. 47-56

<https://doi.org/10.5802/crmeca.102>

© Académie des sciences, Paris and the authors, 2022.
Some rights reserved.

This article is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
Short paper / Note

Blow-up, non-extinction and exponential growth of solutions to a fourth-order parabolic equation

Khadijeh Baghaei

Abstract. This paper is concerned with the following fourth-order parabolic problem:

\[
\begin{align*}
 u_t + u_{xxxx} &= |u|^{p-1}u - \frac{1}{|\Omega|} \int_{\Omega} |u|^{p-1} u \, dx, & x \in \Omega, \ t > 0, \\
 u_x = u_{xxx} &= 0, & x \in \partial \Omega, \ t > 0, \\
 u(x,0) &= u_0, & x \in \Omega
\end{align*}
\]

with \(\Omega = (0, a) \) and \(p > 1 \). Here, \(u_0 \in H^2(\Omega) \) is the initial function which satisfies \(\int_{\Omega} u_0(x) \, dx = 0 \) with \(u_0(x) \neq 0 \).

We prove that the solutions for the preceding problem blow-up at finite time \(t_* \) provided that:

\[
\frac{\lambda(2(p+1) - m)}{(p+1)} - |\Omega|^{-(p-1)/2} \|u_0\|_2^{p+1} + \frac{m-4}{2c^*} \|u_0\|^2 - m J(u_0) \geq 0.
\]

Here, \(4 < m < 2(p+1), 0 < \lambda < 1 \) and \(c^* \) is a positive constant related to the Poincaré inequality. Here, \(J(u) \) is the energy functional. The above condition trivially holds for \(J(u_0) \leq 0 \). Thus, the blow-up result is valuable for arbitrary positive initial energy and suitable initial data. We also obtain upper and lower bounds for the blow-up time. Hence, the exact blow-up time is obtained under some conditions. Besides, if \(J(u_0) > 0 \) and the above condition holds in the strict sense or \(J(u_0) \leq 0 \), then for every \(q \geq 2, \|u(t)\|_q \) grows exponentially for all \(0 < t < t_* \), also, under the same conditions, the solution for this problem does not extinct in finite time if \(\|u_0\|^2 > 0 \). The non-extinction of solutions also holds in the equal sense of the above condition. These results extend the recent results obtained for this problem.

Keywords. Fourth-order equation, Blow-up, Exact blow-up time, Non-extinction, Exponential growth.

1. Introduction

In this paper, we study the following fourth-order parabolic problem which describes

\[
\begin{align*}
 u_t + u_{xxxx} &= |u|^{p-1}u - \frac{1}{|\Omega|} \int_{\Omega} |u|^{p-1} u \, dx, & x \in \Omega, \ t > 0, \\
 u_x = u_{xxx} &= 0, & x \in \partial \Omega, \ t > 0, \\
 u(x,0) &= u_0, & x \in \Omega
\end{align*}
\]

ISSN (electronic) : 1873-7234
Here, $\Omega = (0, a), p > 1$ and $u_0 \in H^2(\Omega)$ is the initial function which satisfies $\int_\Omega u_0(x) \, dx = 0$ with $u_0(x) \neq 0$. The energy functional for this problem is as follows:
\[
J(u(t)) = \frac{1}{2} \|u_{xx}(t)\|^2_2 - \frac{1}{p+1} \|u(t)\|_{p+1}^{p+1},
\]
(1.2)

The mathematical model of (1.1) is a simplified model of the fourth-order parabolic equation that is introduced in [1–3]. This model describes the evolution of the epitaxial growth of thin films at the nanoscale. The physical importance of this model has led many authors to study these types of equations, and the global existence and blow-up of solutions to these equations have been investigated. To view these results, we refer interested readers to [4–10] and the references therein. Also, to see the results of other fourth-order parabolic equations, we refer to [11–13]. We now state the results obtained for problem (1.1). For this problem, if $0 < p \leq 1$, it is proved that the weak solutions are global [8], also, if $J(u_0) := J_0 \leq 0$, then the solution does not extinct in finite time. For $p > 1$, in the case of $J_0 \leq 0$, it is proved that the solutions blow-up in finite time [9]. Moreover, if $d = \inf_N J(u)$, where N is defined as
\[
N = \left\{ u \in H^2(\Omega) \mid I(u) = \|u_{xx}(t)\|^2_2 - \|u\|_{p+1}^{p+1} = 0, \|u_{xx}(t)\|^2_2 \neq 0 \right\},
\]
then for $0 < J_0 < d$, if $I(u_0) > 0$, then the weak solutions are global and do not vanish in finite time, whereas for $I(u_0) < 0$, the weak solutions blow-up in finite time [9]. Also, the similar results with $0 < J_0 < d$ in the case $J_0 = d$ hold [9]. Recently, the blow-up of weak solutions with the positive initial energy with other constraints is proved in [10]. In fact, it is proved that the weak solutions blow-up in finite time provided that $J_0 < E_1$ and $\|u_{0xx}\|_2 > \lambda$, where E_1 and λ are positive constants which are introduced in [10]. Also, in [10], an upper bound for the blow-up time is obtained.

In the present paper, we prove that the solutions to problem (1.1) blow-up at finite time τ_* provided that:
\[
\frac{\lambda(2(p+1) - m)}{(p+1)} |\Omega|^{-(p-1)/2} \|u_0\|^2_2 + \frac{m-4}{2c^*} \|u_0\|^2_2 - mJ(u_0) \geq 0,
\]
where $p > 1, 4 < m < 2(p+1), 0 < \lambda < 1$, and c^* comes from the Poincaré inequality. The above condition trivially holds for $J(u_0) \leq 0$. Thus, the blow-up result is valuable for arbitrary positive initial energy and suitable initial data. We also obtain upper and lower bounds for the blow-up time. Furthermore, if $J(u_0) > 0$ and the preceding condition holds in the strict sense or $J(u_0) \leq 0$, then:

- for every $q \geq 2, \|u(t)\|_q$ grows exponentially for all $0 < t < \tau_*$;
- the solution of (1.1) does not extinct in finite time if $\|u_0\|_2 > 0$.

The non-extinction of solutions also holds in the equal sense of the above condition.

In the next section, we prove our results about the blow-up in finite time and in the last section, we show the exponential growth and non-extinction of solutions.

2. Blow-up in finite time

In this section, we prove the blow-up of solutions to problem (1.1) and obtain upper and lower bounds for the blow-up time.

Definition 2.1. A function $u(x, t)$ is called a weak solution to problem (1.1), if $u \in L^\infty(0, T, H^2(\Omega)), u_t \in L^2(0, T, H^2(\Omega))$ and $u(x, t)$ satisfies:
\[
\int_0^t \int_\Omega \left[u_t \phi + u_{xx} \phi_{xx} - \left(\|u\|_{p-1}^{p-1} u - \frac{1}{|\Omega|} \int_\Omega |u|^{p-1} u \right) \phi \right] \, dx \, dt = 0
\]
for all $\phi \in L^2(0, T, H^2(\Omega))$ with $\phi_x = 0$ on $\partial \Omega$.

C. R. Mécanique — 2022, 350, 47-56
Throughout this paper, we assume that the local solution to problem (1.1) exists.

Lemma 2.2. The energy functional $J(t)$ is non-increasing and satisfies:
\[
J(t) = J(0) - \int_0^t \| u_\tau(\tau) \|^2_2 \, d\tau
\]
with
\[
J(0) = \frac{1}{2} \| u_{0xx} \|^2_2 - \frac{1}{p+1} \| u_0 \|_{p+1}^{p+1}.
\]

Proof. Differentiating (1.2) and making use of (1.1), we obtain
\[
\frac{d}{dt} J(t) = \frac{d}{dt} \left(\frac{1}{2} \| u_{xx}(t) \|^2_2 - \frac{1}{p+1} \| u(t) \|_{p+1}^{p+1} \right)
\]
\[
= \int_\Omega \left(u_{xx}(t) u_{xxt}(t) - |u(t)|^{p-1} u(t) u_\tau(t) \right) \, dx
\]
\[
= -\int_\Omega u_\tau(t) (-u_{xxxx}(t) + |u(t)|^{p-1} u(t)) \, dx
\]
\[
= -\int_\Omega u_\tau(t) \left(u_\tau(t) + \frac{1}{|\Omega|} \int_\Omega |u(t)|^{p-1} u(t) \, dx \right) \, dx
\]
\[
= -\int_\Omega (u_\tau(t))^2 \, dx - \left(\frac{d}{dt} \int_\Omega u(t) \, dx \right) \left(\frac{1}{|\Omega|} \int_\Omega |u(t)|^{p-1} u(t) \, dx \right).
\]

We now integrate from (1.1) and use integration by parts to obtain
\[
\frac{d}{dt} \int_\Omega u(t) \, dx = 0.
\]
This inequality along with (2.2) gives
\[
\frac{d}{dt} J(t) = -\int_\Omega u_\tau^2(t) \, dx.
\]
Integrating of (2.4) results in
\[
J(t) = J(0) - \int_0^t \| u_\tau(\tau) \|^2_2 \, d\tau.
\]
This completes the proof. □

Lemma 2.3. Assume that $p > 1$ and u is the weak solution of (1.1). Then for any $\mu > 0$, the following estimate holds:
\[
\frac{d}{dt} \| u(t) \|^2_2 \geq (k_1 \mu + k_2) \| u(t) \|^2_2 + k_3 \| u(t) \|_{p+1}^{p+1} - k_4 \mu^{(p+1)/(p-1)} - k_3
\]
with
\[
k_1 = \lambda \left(2 - \frac{m}{p+1} \right), \quad k_2 = \frac{1}{c^*} \left(-2 + \frac{m}{2} \right), \quad k_3 = (1 - \lambda) \left(2 - \frac{m}{p+1} \right) |\Omega|^{-(p-1)/2}
\]
\[
k_4 = |\Omega| \left(2 - \frac{m}{p+1} \right) \left(\frac{2}{p+1} \right)^{(2/p-1)} \left(\frac{p-1}{p+1} \right) \lambda, \quad k_3 = m J_0,
\]
where m and λ are some positive constants with $4 < m < 2(p+1)$ and $0 < \lambda < 1$, also, c^* comes from the Poincaré inequality.

Proof. At first, integrating (2.3), we are led to
\[
\int_\Omega u(t) \, dx = \int_\Omega u_0 \, dx.
\]
By assumption $\int_\Omega u_0 \, dx = 0$, we have
\[
\int_\Omega u(t) \, dx = 0.
\]

Khadijeh Baghaei — *C. R. Mécanique — 2022, 350, 47-56*
Making use (1.1) and (2.7), we obtain
\[
\frac{d}{dt} \|u(t)\|_2^2 = 2 \int_\Omega u(t) u_t(t) \, dx = -2 \int_\Omega |u_{xx}(t)|^2 \, dx + 2 \int_\Omega |u(t)|^{p+1} \, dx. \tag{2.8}
\]
From (2.8), (1.2) and (2.1), we can write
\[
\frac{d}{dt} \|u(t)\|_2^2 = -2 \|u_{xx}(t)\|_2^2 + 2 \|u(t)\|_2^{p+1} + mJ(t) - mJ(t)
\]
\[
= -2 \|u_{xx}(t)\|_2^2 + 2 \|u(t)\|_2^{p+1} + \frac{m}{2} \|u_{xx}(t)\|_2^2 - \frac{m}{p+1} \|u(t)\|_2^{p+1}
\]
\[
- mJ_0 + m \int_0^t \|u_\tau(t)\|_2^2 \, d\tau
\]
\[
= \left(-2 + \frac{m}{2}\right) \|u_{xx}(t)\|_2^2 + \left(2 - \frac{m}{p+1}\right) \|u(t)\|_2^{p+1} - mJ_0 + m \int_0^t \|u_\tau(t)\|_2^2 \, d\tau \tag{2.9}
\]
with \(4 < m < 2(p+1)\). In the rest of the proof, we obtain a lower bound for the first term on the right hand side of (2.9). In order to do this, we apply the Poincaré–Wirtinger inequality to obtain
\[
\left\|u(t) - \frac{1}{|\Omega|} \int_\Omega u(t) \, dx\right\|_2 \leq c_1 \|u_x(t)\|_2^2,
\]
where \(c_1\) is the best constant in the Poincaré–Wirtinger inequality. By considering \(\int_\Omega u(t) \, dx = 0\), the preceding inequality becomes
\[
\|u(t)\|_2^2 \leq c_1 \|u_x(t)\|_2^2. \tag{2.10}
\]
Because of \(u_x = 0\) on \(\partial\Omega\), we can apply the Poincaré inequality to obtain
\[
\|u_x(t)\|_2^2 \leq c_2 \|u_{xx}(t)\|_2^2,
\]
where \(c_2\) is the best constant in the Poincaré inequality. This inequality along with (2.10) yields
\[
\|u(t)\|_2^2 \leq c^* \|u_{xx}(t)\|_2^2, \tag{2.11}
\]
with \(c^* = c_1 c_2\). Combining (2.11) with (2.9) gives
\[
\frac{d}{dt} \|u(t)\|_2^2 \geq \frac{1}{c^*} \left(-2 + \frac{m}{2}\right) \|u(t)\|_2^2 + \left(2 - \frac{m}{p+1}\right) \|u(t)\|_2^{p+1} - mJ_0. \tag{2.12}
\]
We now write the second term on the right hand side of (2.12) as
\[
\left(2 - \frac{m}{p+1}\right) \|u(t)\|_2^{p+1} = \lambda \left(2 - \frac{m}{p+1}\right) \|u(t)\|_2^{p+1} + (1 - \lambda) \left(2 - \frac{m}{p+1}\right) \|u(t)\|_2^{p+1},
\]
with \(0 < \lambda < 1\). Thus the estimate (2.12) is written as
\[
\frac{d}{dt} \|u(t)\|_2^2 \geq \frac{1}{c^*} \left(-2 + \frac{m}{2}\right) \|u(t)\|_2^2 + \lambda \left(2 - \frac{m}{p+1}\right) \|u(t)\|_2^{p+1} + (1 - \lambda) \left(2 - \frac{m}{p+1}\right) \|u(t)\|_2^{p+1} - mJ_0. \tag{2.13}
\]
We apply the Hölder inequality to obtain
\[
\int_\Omega |u(t)|^{p+1} \, dx \geq |\Omega|^{(p-1)/2} \left(\int_\Omega u^2(t) \, dx\right)^{(p+1)/2}. \tag{2.14}
\]
Combining the preceding inequality with (2.13) gives
\[
\frac{d}{dt} \|u(t)\|_2^2 \geq \frac{1}{c^*} \left(-2 + \frac{m}{2}\right) \|u(t)\|_2^2 + (1 - \lambda) \left(2 - \frac{m}{p+1}\right) \|\Omega|^{-(p-1)/2} \|u(t)\|_2^{p+1}
\]
\[
+ \lambda \left(2 - \frac{m}{p+1}\right) \|u(t)\|_2^{p+1} - mJ_0. \tag{2.15}
\]
In order to obtain a lower bound for the third term on the right hand side of (2.15), we apply the Young inequality to obtain
\[
\frac{d}{dt} \|u(t)\|_2^2 \geq \frac{\lambda}{2} \left(2 - \frac{m}{p+1} \right) \|u_0\|_2^2 + \frac{m}{2c^*} \|u_0\|_2^2 + \frac{m}{2c^*} \langle \mu \rangle^p \left(\frac{2}{p+1} \right)^{2(p-1)} \left(\frac{p-1}{p+1} \right)^{p-1} \|u_0\|_2^2 \|u(t)\|_2^2,
\]
where \(\|u(t)\|_2^2 \geq \|k_1 \mu + k_2\| u(t)^2_2 + k_3\| u(t)\|_2^2 \) yields
\[
\frac{d}{dt} \|u(t)\|_2^2 \geq (k_1 \mu + k_2)\| u(t)\|_2^2 + k_3\| u(t)\|_2^2 \geq -k_4 \mu^{(p+1)/(p-1)} - k_5
\]
with
\[
k_1 = \lambda \left(2 - \frac{m}{p+1} \right), \quad k_2 = \frac{1}{c^*} \left(-2 + \frac{m}{2} \right), \quad k_3 = (1 - \lambda) \left(2 - \frac{m}{p+1} \right) \|\Omega\|^{-(p-1)/2}
\]
Thus, we obtain the desired result.

\[\text{Lemma 2.4.} \quad \text{Assume that } p > 1 \text{ and } u \text{ is the weak solution of (1.1). Then the following estimate holds:} \]
\[
\frac{d}{dt} \|u(t)\|_2^2 \geq \left(k_6 \|u_0\|_2^{p+1} + k_7 \|u_0\|_2^2 - k_3 \right) e^{(k_1 \mu + k_2) t} + k_3 \| u(t)\|_2^2,
\]
with
\[
k_6 = \frac{\lambda (2(p+1) - m)}{p+1} \|\Omega\|^{-(p-1)/2} \quad \text{and} \quad k_7 = \frac{\lambda (2(p+1) - m)}{2} \|\Omega\|^{-(p-1)/2},
\]
where \(k_2, k_3\) and \(k_5\) are defined in (2.6) and \(m\) and \(\lambda\) are some positive constants with \(4 < m < 2(p+1)\) and \(0 < \lambda < 1\).

Proof. By considering the inequality (2.5), we can write
\[
\frac{d}{dt} \|u(t)\|_2^2 \geq \|k_1 \mu + k_2\| u(t)^2_2 \geq -k_4 \mu^{(p+1)/(p-1)} - k_5.
\]
This inequality yields
\[
\|u(t)\|_2^2 \geq \|u_0\|_2^2 e^{(k_1 \mu + k_2) t} + \left(\frac{k_4 \mu^{(p+1)/(p-1)} + k_5}{k_1 \mu + k_2} \right) \left(1 - e^{(k_1 \mu + k_2) t} \right)
\]
\[
= \frac{1}{(k_1 \mu + k_2)} \left[(k_1 \mu + k_2)\| u_0\|_2^2 - k_4 \mu^{(p+1)/(p-1)} - k_5 \right] e^{(k_1 \mu + k_2) t} + k_4 \mu^{(p+1)/(p-1)} + k_3.
\]
(2.19)

As in [14], we define
\[
F(\mu) = (k_1 \mu + k_2)\| u_0\|_2^2 - k_4 \mu^{(p+1)/(p-1)} - k_5
\]
\[
= \left[\lambda \left(2 - \frac{m}{p+1} \right) \mu + \frac{m-4}{2c^*} \right] \|u_0\|_2^2 - \mu^{(p+1)/(p-1)} \left(2 - \frac{m}{p+1} \right) \left(\frac{2}{p+1} \right)^{2(p-1)} \left(\frac{p-1}{p+1} \right)^{p-1} \|\Omega\| - m J_0.
\]
Thus, we can write (2.19) as follows:
\[
\|u(t)\|_2^2 \geq \frac{1}{(k_1 \mu + k_2)} \left[F(\mu) e^{(k_1 \mu + k_2) t} + k_4 \mu^{(p+1)/(p-1)} + k_3 \right].
\]
(2.20)

Combining (2.20) with (2.5) yields
\[
\frac{d}{dt} \|u(t)\|_2^2 \geq F(\mu) e^{(k_1 \mu + k_2) t} + k_3 \| u(t)\|_2^2 + \mu^{(p+1)/(p-1)}.
\]
(2.21)

We now compute
\[
F'(\mu) = \lambda \left(2 - \frac{m}{p+1} \right) \left[\|u_0\|_2^2 - |\Omega| \left(\frac{2}{p+1} \right)^{2(p-1)} \mu^{2(p-1)} \right].
\]
By solving \(F'(\mu) = 0\), we obtain
\[
\mu_{\text{max}} = \left(\frac{p+1}{2} \right) |\Omega|^{-(p-1)/2} \|u_0\|_2^{p-1},
\]
where \(\mu_{\text{max}}\) is the absolutely maximum point of the function \(F\). Thus, we have
\[
k_1\mu_{\text{max}} + k_2 = k_1 \left(\frac{p+1}{2} \right) |\Omega|^{-(p-1)/2} \|u_0\|_2^{p-1} + k_2 = \frac{\lambda(2(p+1)-m)}{2} |\Omega|^{-(p-1)/2} \|u_0\|_2^{p-1} + k_2.
\]
For convenience, we set \(k_7 = (\lambda(2(p+1)-m))/2|\Omega|^{-(p-1)/2}\). Then we have
\[
k_1\mu_{\text{max}} + k_2 = k_7 \|u_0\|_2^{p-1} + k_2.
\]
We also have
\[
F(\mu_{\text{max}}) = \left[\frac{\lambda(2(p+1)-m)}{2} |\Omega|^{-(p-1)/2} \|u_0\|_2^{p-1} + \frac{m-4}{2c^*} \right] \|u_0\|_2^2
- \frac{\lambda(p-1)(2(p+1)-m)}{2(p+1)} |\Omega|^{-(p-1)/2} \|u_0\|_2^{p+1} - mJ_0
= \frac{\lambda(2(p+1)-m)}{(p+1)} |\Omega|^{-(p-1)/2} \|u_0\|_2^{p+1} + \frac{m-4}{2c^*} \|u_0\|_2^2 - mJ_0.
\]
Now by considering the values of \(k_2\) and \(k_5\) from (2.6) and setting \(k_6 = (\lambda(2(p+1)-m))/(p+1) |\Omega|^{-(p-1)/2}\), we can write
\[
F(\mu_{\text{max}}) = k_6 \|u_0\|_2^{p+1} + k_2 \|u_0\|_2^2 - k_5.
\]
By considering the preceding computations, we can write (2.20) and (2.21) as follows:
\[
\|u(t)\|_2^2 \geq \frac{1}{(k_7 \|u_0\|_2^{p-1} + k_2)} \left\{ [k_6 \|u_0\|_2^{p+1} + k_2 \|u_0\|_2^2 - k_5] e^{(k_2 \|u_0\|_2^{p-1} + k_2)t} + k_4(\mu_{\text{max}})^{(p+1)/(p-1)} + k_5 \right\}
\]
(2.22)
and
\[
\frac{d}{dt} \|u(t)\|_2^2 \geq [k_6 \|u_0\|_2^{p+1} + k_2 \|u_0\|_2^2 - k_5] e^{(k_2 \|u_0\|_2^{p-1} + k_2)t} + k_3 \|u(t)\|_2^{p+1}.
\]
(2.23)
This completes the proof.

Lemma 2.5. Assume that \(u\) is the weak solution of (1.1). Moreover, assume that \(p > 1\), \(4 < m < 2(p+1)\) and \(0 < \lambda < 1\). If the following condition holds:
\[
k_6 \|u_0\|_2^{p+1} + k_2 \|u_0\|_2^2 - k_5 \geq 0,
\]
(2.24)
then the solution of problem (1.1) blows up at finite time \(t_*\) and \(t_* \leq T\) with
\[
T = \frac{2 \|u_0\|_2^{1-p}}{(p-1)k_3},
\]
where \(k_2, k_3, k_5\) and \(k_6\) are defined in (2.6) and (2.18).

Proof. By considering the condition (2.24), the inequality (2.17) implies that
\[
\frac{d}{dt} \|u(t)\|_2^2 \geq k_3 \|u(t)\|_2^{p+1}.
\]
This inequality yields
\[
\|u(t)\|_2^{2-(p+1)/2} \frac{d}{dt} \|u(t)\|_2^2 \geq k_3.
\]
(2.25)
Integrating (2.25) from 0 to t gives
\[\| u(t) \|_2^{-(p-1)} \leq \| u_0 \|_2^{1-p} - \frac{(p-1)}{2} k_3 t. \] (2.26)

This inequality cannot hold for all $t > 0$. In fact we conclude from (2.26) that $\lim_{t \to t_*^+} \| u(t) \|_2^2 = +\infty$, where t_* is bounded from above by
\[t_* \leq T = \frac{2\| u_0 \|_2^{1-p}}{(p-1)k_3}. \]

This completes the proof. \qed

Remark 2.6. In the case of $J_0 \leq 0$, the inequality (2.12) implies that
\[\frac{d}{dt} \| u(t) \|_2^2 \geq \left(2 - \frac{m}{p+1} \right) \| u(t) \|_{p+1}^{p+1}. \]

Making use of the inequality (2.14), the preceding inequality becomes
\[\frac{d}{dt} \| u(t) \|_2^2 \geq \left(2 - \frac{m}{p+1} \right) |\Omega|^{-(p-1)/2} \| u \|_2^{p+1}. \] (2.27)

Similar to Lemma 2.5, we can conclude from the inequality (2.27) that $\lim_{t \to t_*^+} \| u(t) \|_2^2 = +\infty$, and:
\[t_* \leq T = \frac{2(p+1)\| u_0 \|_2^{1-p}}{(p-1)(2(p+1)-m)} |\Omega|^{(p-1)/2}. \]

Remark 2.7. By considering Lemma 2.5 and Remark 2.6, we know that if $J_0 > 0$ and the condition (2.24) holds or $J_0 \leq 0$, then $\lim_{t \to t_*^-} \| u(t) \|_2^2 = +\infty$, thus the inequality (2.14) implies that $\lim_{t \to t_*^-} \| u(t) \|_{p+1}^{p+1} = +\infty$. Finally, the Sobolev inequality $\| u(t) \|_{p+1} \leq c_s \| u_{xx} \|_2$ deduces that $\lim_{t \to t_*^-} \| u_{xx} \|_2^2 = +\infty$. Hence, we can write
\[\lim_{t \to t_*^-} \left(\| u_{xx}(t) \|_2^2 + \| u(t) \|_{p+1}^{p+1} \right) = +\infty. \]

In the following lemma, we use the technique used in [15] and obtain a lower bound for the blow-up time, when the blow-up occurs.

Lemma 2.8. Assume that u is the weak solution of (1.1). Also, assume that $p > 1$. If $J_0 > 0$ and the condition (2.24) holds or $J_0 \leq 0$, then the blow-up occurs at finite time t_* and t_* is bounded from below by
\[t_* \geq \frac{1}{2} \frac{c_s^{2p}(p-1)|\psi|^{p-1}(0)}, \]

where c_s is the best constant in the Sobolev inequality and:

\[\psi(0) = \frac{1}{2} \| u_{xx} \|_2^2 + \frac{1}{p+1} \| u_0 \|_{p+1}^{p+1}. \]

Proof. In view of Lemma 2.5 and Remark 2.6, we know that if $J_0 > 0$ and the condition (2.24) holds or $J_0 \leq 0$, then the blow-up occurs at finite time t_*. Thus, we find a lower bound for the blow-up time. In order to find a lower bound for the blow-up time, we define the function ψ as:

\[\psi(t) = \frac{1}{2} \| u_{xx}(t) \|_2^2 + \frac{1}{p+1} \| u(t) \|_{p+1}^{p+1}. \]

We now compute
\[\psi'(t) = \int_{\Omega} u_{xx}(t) u_{xx}(t) \, dx + \int_{\Omega} |u(t)|^{p-1} u(t) u_t(t) \, dx \]
\[= \int_{\Omega} \left(u_{xxx}(t) + |u(t)|^{p-1} u(t) u_t(t) \right) \, dx \]
\[= \int_{\Omega} \left(2|u(t)|^{p-1} u(t) - u_t(t) - |\Omega|^{-1} \int_{\Omega} |u(t)|^{p-1} u(t) \, dx \right) u_t(t) \, dx \]
holds in the strict sense. Then for every q\footnote{\label{note:q}See Remark \ref{rem:q} for more details about the value of q.}

\section*{3. Exponential growth and non-extinction of solutions}

In this section, we prove the exponential growth and non-extinction of solutions.

\begin{lm}
Assume that $J_0 > 0$ and u is the weak solution of \eqref{eq:nls}. Also, assume that condition \eqref{cond:J0} holds in the strict sense. Then for every $q \geq 2$, $\|u(t)\|_q$ grows exponentially for all $0 < t < t_*$.\footnote{\label{note:t*}This time t_* is unique.}

\textbf{Proof.} By considering $J_0 > 0$, the inequality \eqref{ineq:J0} yields

$$
\|u(t)\|_2^2 \geq \frac{1}{(k_7 \|u_0\|_2^{p-1} + k_2)} |k_6\|u_0\|_2^{p+1} + k_2 \|u_0\|_2^2 - k_3|e^{(k_7 \|u_0\|_2^{p-1} + k_2)t}. \tag{3.1}
$$

Making use of Hölder’s inequality, for every $q > 2$, we can write

$$
|\Omega|^{(q-2)/q} \|u(t)\|_q^2 \geq \|u(t)\|_2^2. \tag{3.2}
$$

This inequality along with \eqref{ineq:J0} gives

$$
\|u(t)\|_q^2 \geq \frac{1}{(k_7 \|u_0\|_2^{p-1} + k_2)} |k_6\|u_0\|_2^{p+1} + k_2 \|u_0\|_2^2 - k_3|e^{(k_7 \|u_0\|_2^{p-1} + k_2)t}. - (q-2)/q |\Omega| \|u(t)\|_q^{(q-2)/q}.
$$

In view of the condition \eqref{cond:J0}, we see that the inequality \eqref{ineq:J0} and the last inequality deduce that for every $q \geq 2$, $\|u(t)\|_q$ grows exponentially for all $0 < t < t_*$. \hfill \qed
Remark 3.2. In the case of $J_0 \leq 0$, the inequality (2.12) implies that
\[
\frac{d}{dt} \|u(t)\|_2^2 \geq \frac{1}{c^*} \left(-2 + \frac{m}{2} \right) \|u(t)\|_2^2 + \left(2 - \frac{m}{p+1} \right) \|u(t)\|_{p+1}^2
\]
with $4 < m < 2(p + 1)$. Making use of the inequality (2.16) with $\mu = ((p + 1)/2)|\Omega|^{-(p-1)/2}\|u_0\|_2^{-p+1}$, the preceding inequality becomes
\[
\frac{d}{dt} \|u(t)\|_2^2 \geq k_9 \|u\|_2^2 - k_{10}
\]
with $k_9 = ((p + 1 - m)/2)|\Omega|^{-(p-1)/2}\|u_0\|_2^{-1} + k_2$ and $k_{10} = ((p - 1)(2(p + 1) - m)/2(p + 1)|\Omega|^{-(p-1)/2}\|u_0\|_2^{-p+1}$. This inequality yields
\[
\|u(t)\|_2^2 \geq \frac{1}{k_9} \left(2(p + 1) - m \right) \|u_0\|_2^2 + k_2 \|u_0\|_2^2 + \frac{k_9}{k_2} \left(1 - e^{k_3 t} \right)
\]
For every $q > 2$, this inequality along with (3.2) yields
\[
\|u(t)\|_q^2 \geq \frac{1}{k_9} \left(2(p + 1) - m \right) \|u_0\|_2^2 + k_2 \|u_0\|_2^2 \left(|\Omega|^{-(p-1)/2}\|u_0\|_2^{p-1} \right) e^{k_3 t} \|u_0\|_q^2, \quad 0 < t < t_*.\]
Thus, we conclude that if $J_0 \leq 0$ and $\|u_0\|_2 > 0$, then for every $q \geq 2$, $\|u(t)\|_q$ grows exponentially for all $0 < t < t_*$.

Lemma 3.3. Assume that u is the weak solution of (1.1) and $u_0 \in H^2(\Omega)$ with $\|u_0\|_2 > 0$. Moreover, assume that $J_0 > 0$ and the condition (2.24) holds. Then, the solution does not extinct in finite time.

Proof. By considering the condition (2.24) in the strict sense, we can write the inequality (2.22) as follows:
\[
\|u(t)\|_2^2 \geq \frac{1}{k_7 \|u_0\|_2^{p-1} + k_2} \left[k_6 \|u_0\|_2^{p-1} + k_2 \|u_0\|_2^2 + k_4 \|u_0\|_2^{p+1} \right]
\]
\[
= \frac{1}{k_7 \|u_0\|_2^{p-1} + k_2} \left[k_7 \|u_0\|_2^{p-1} + k_2 \right] \|u_0\|_2^2
\]
\[
= \|u_0\|_2^2 > 0, \quad t \geq 0.
\]
Here, we have used from the facts that $e^{(k_7 \|u_0\|_2^{p-1} + k_2)t} \geq 1$ and:
\[
k_6 \|u_0\|_2^{p-1} + k_4 \|u_0\|_2^{p+1} = k_7 \|u_0\|_2^{p-1}.
\]
Also, when the condition (2.24) holds in the equal sense, the inequality (2.22) implies that
\[
\|u(t)\|_2^2 \geq \frac{k_4 \|u_0\|_2^{p+1}(p+1)/(p-1)}{k_7 \|u_0\|_2^{p-1} + k_2} > 0, \quad t \geq 0.
\]
We now apply the Hölder inequality for every $q > 1$ to obtain
\[
0 < \|u(t)\|_2^2 \leq \|u(t)\|_q^2 \|u(t)\|_2^2 \|u(t)\|_q^2, \quad t \geq 0.
\]
Thus, there does not exist $\tilde{t} > 0$ such that
\[
\lim_{t \to \tilde{t}} \|u(t)\|_q = 0. \quad \Box
\]

Remark 3.4. We see that in the case of $J_0 \leq 0$, the condition (2.24) is a trivial inequality. Thus in this case under the condition $\|u_0\|_2 > 0$, the result of Lemma 3.3 holds.
Conflicts of interest

Authors have no conflict of interest to declare.

Acknowledgement

This research was in part supported by a grant from IPM (No. 1400350030).

References

[1] T. P. Schulze, R. V. Kohn, “A geometric model for coarsening during spiral-mode growth of thin films”, *Physica D* **132** (1999), no. 4, p. 529-542.
[2] E. A. Ortiz, H. Si Repetto, “A continuum model of kinetic roughening and coarsening in thin films”, *J. Mech. Phys. Solids* **47** (1999), no. 4, p. 697-730.
[3] B. B. King, O. Stein, M. Winkler, “A fourth-order parabolic equation modeling epitaxial thin film growth”, *J. Math. Anal. Appl.* **286** (2003), p. 459-490.
[4] G. Xu, J. Zhou, “Global existence and finite time blow-up of the solution for a thin-film equation with high initial energy”, *J. Math. Anal. Appl.* **458** (2018), p. 521-535.
[5] F. Sun, L. Liu, Y. Wu, “Finite time blow-up for a thin-film equation with initial data at arbitrary energy level”, *J. Math. Anal. Appl.* **458** (2018), p. 9-20.
[6] J. Zhou, “Global asymptotical behavior and some new blow-up conditions of solutions to a thin-film equation”, *J. Math. Anal. Appl.* **464** (2018), p. 1290-1312.
[7] Z. Dong, J. Zhou, “Global existence and finite time blow-up for a class of thin-film equation”, *Z. Angew. Math. Phys.* **68** (2017), p. 68-89.
[8] Y. Cao, C. Liu, “Global existence and non-extinction of solutions to a fourth-order parabolic equation”, *Appl. Math. Lett.* **61** (2016), p. 20-25.
[9] C. Qu, W. Zhou, “Blow-up and extinction for a thin-film equation with initial-boundary value conditions”, *J. Math. Anal. Appl.* **436** (2016), p. 796-809.
[10] J. Zhou, “Blow-up for a thin-film equation with positive initial energy”, *J. Math. Anal. Appl.* **446** (2017), p. 1133-1138.
[11] Y. A. Galaktionov, “On a spectrum of blow-up patterns for a higher-order semilinear parabolic equation”, *Proc. Math. Phys. Eng. Sci.* **457** (2011), no. 2001, p. 1623-1643.
[12] Y. A. Galaktionov, “Hermitian spectral theory and blow-up patterns for a fourth-order semilinear Boussinesq equation”, *Stud. Appl. Math.* **121** (2008), no. 4, p. 395-431.
[13] Y. Han, “A class of fourth-order parabolic equation with arbitrary initial energy”, *Nonlinear Anal. Real World Appl.* **43** (2018), p. 451-466.
[14] A. Khelghati, K. Baghaei, “Blow-up phenomena for a nonlocal semilinear parabolic equation with positive initial energy”, *Comput. Math. Appl.* **70** (2015), p. 896-902.
[15] K. Baghaei, “Lower bounds for the blow-up time in a superlinear hyperbolic equation with linear damping term”, *Comput. Math. Appl.* **73**, no. 4, p. 560-564.