A Short Proof of the Pontryagin Maximum Principle on Manifolds

Dong Eui Chang
Applied Mathematics
University of Waterloo
200 University Ave. West
Waterloo, ON, N2L 3G1
CANADA
Tel: +1-519-888-4567, ext. 37213
Fax: +1-519-746-4319
Email: dechang@math.uwaterloo.ca

10 January 2008; This Version 20 April 2009

Abstract
Applying the Tubular Neighborhood Theorem, we give a short and new proof of the Pontryagin Maximum Principle on a smooth manifold. The idea is as follows. Given a control system on a manifold M, we embed it into an open subset of some \mathbb{R}^n, and extend the control system to the open set. Then, we apply the Pontryagin Maximum Principle on \mathbb{R}^n to the extended system and project the consequence to M.

keywords: optimal control, Pontryagin maximum principle, tubular neighborhood

1 Introduction

The classic book by Pontryagin et al. [8] gives a proof of the celebrated Pontryagin Maximum Principle (PMP) for control systems on \mathbb{R}^n. See also [5] for another proof of the PMP in \mathbb{R}^n. Although several books or journal articles have mentioned versions of the PMP for control systems on a smooth manifold, its proofs began to appear in the literature quite recently [2, 3]. In general there can be three kinds of proof of the PMP on manifolds. The first is to translate the proof in [8] into the modern differential-geometric language, [2, 3]. Although this approach gives a good geometric insight into the principle, it has the drawback that the proof becomes long since it follows the original proof in [8]. The second kind of the proof is to adapt the proof in [8] to manifolds by patching up a finite number of local charts covering an optimal trajectory without use of any modern differential-geometric machinery. A drawback of the second approach is that the proof becomes very long too, involving coordinate transformations and repeating the proof in [8]. To our knowledge, there is no literature containing the second kind of proof. The third kind of proof is the one that we present in this paper, which is a new and short proof of the PMP on manifolds, by combining the Tubular Neighborhood Theorem and the PMP on \mathbb{R}^n. This proof does not repeat the proof in [8], and is thus much shorter than and different from the two kinds of proofs mentioned above.

The idea in our proof is simple. Given a control system on a manifold M, we embed M into some \mathbb{R}^n, take a tubular neighborhood V of M in \mathbb{R}^n, and construct a control system
on V whose restriction to M agrees with the original system. Since M is an invariant manifold for the extended system on \mathbb{R}^n, we can reformulate the original optimal control problem with a point-to-point transfer on M into an equivalent optimal control problem with a point-to-submanifold transfer in \mathbb{R}^n where the submanifold is transversal to M. We apply the PMP on \mathbb{R}^n to the equivalent problem, and then project (or, restrict) the result to M, to prove the PMP on M. Our proof is pedagogically meaningful in optimal control theory, and it illustrates a nice application of the Tubular Neighborhood Theorem to control theory.

2 Main Results

2.1 Review of the Pontryagin Maximum Principle on \mathbb{R}^n

Consider a control system on \mathbb{R}^n:

$$\dot{x} = f(x, u), \quad x \in \mathbb{R}^n, u \in W.$$ \hspace{1cm} (1)

We want to find an optimal control $u(t)$ such that

$$\int_{t_0}^{t_1} f^0(x, u)dt$$

is minimized (2)

with free terminal time t_1, and

$$x(t_0) = x_0, \quad x(t_1) = x_1.$$ \hspace{1cm} (3)

For convenience, we assume that W is a subset of a Euclidean space and that $f : \mathbb{R}^n \times W \rightarrow \mathbb{R}^n$ and $f^0 : \mathbb{R}^n \times W \rightarrow \mathbb{R}$ are smooth.

Theorem 2.1 ($[8, 6]$). Suppose that $u(t), t_0 \leq t \leq t_1$ is a piecewise continuous optimal control and $x(t)$ is the corresponding optimal trajectory for (1) – (3). Then, there exists a non-vanishing continuous curve $(p_0(t), p(t)) \in \mathbb{R} \times \mathbb{R}^n = \mathbb{R} \times T^*_x\mathbb{R}^n$ such that:

1. The trajectory $(x(t), p(t))$ satisfies

$$\dot{x}^i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial x^i}, \quad i = 1, \ldots, n,$$ \hspace{1cm} (4)

i.e., it is a flow of the Hamiltonian vector field

$$X_H(x, p; p_0, u(t)) = \Omega^2dH$$ \hspace{1cm} (5)

where Ω is the canonical symplectic form on $T^*\mathbb{R}^n = \mathbb{R}^n \times \mathbb{R}^n$ and the Hamiltonian H is given by

$$H(x, p, p_0, u) = p_0f^0(x, u) + \langle p, f(x, u) \rangle.$$

2. $u(t) = \arg \max_{v \in W} H(x(t), p(t), p_0(t), v)$ for every $t \in [t_0, t_1]$.

3. $p_0 \leq 0$ and is constant in t.

4. $H(x(t), p(t), p_0, u(t)) = 0$ for every $t \in [t_0, t_1]$.

2
Theorem 2.2 ([8, 6]). Let \(u(t), t_0 \leq t \leq t_1, \) be a piecewise continuous optimal control and \(x(t) \) the corresponding trajectory for (4), (5) and

\[
x(t_0) \in S_0, \quad x(t_1) \in S_1
\]

where \(S_0 \) and \(S_1 \) are smooth submanifolds of \(\mathbb{R}^n \). Then, all of the conclusions in Theorem 2.1 hold, and additionally the transversality conditions

\[
\langle p(t_0), T_{x(t_0)}S_0 \rangle = 0, \quad \langle p(t_1), T_{x(t_1)}S_1 \rangle = 0
\]

are satisfied.

Remark. Theorems 2.1 and 2.2 will still hold for a control system on an open subset \(U \) of \(\mathbb{R}^n \) if every trajectory of the control system leaves \(U \) (positively) invariant. Since the cotangent lift of a diffeomorphism of \(U \) onto a set \(V \) is a symplectomorphism of \((T^*U, \Omega) \) onto \((T^*V, \Omega) \) where \(\Omega \) is the canonical symplectic form on the respective cotangent bundle (see Theorem Proposition 6.3.2. in [7]), Theorems 2.1 and 2.2 still hold for a control system on any set \(V \) that is diffeomorphic to an open subset of \(\mathbb{R}^n \). In this case, we need replace \(T^*\mathbb{R}^n \) by \(T^*V \) and use (5) preferably to (4) in Theorem 2.1.

2.2 Pontryagin Maximum Principle on Manifolds

We consider the optimal control problem of finding control \(u(t) \) for the control system on an \(n \)-dimensional manifold \(M \)

\[
\dot{x} = f(x, u), \quad x \in M, u \in W \tag{6}
\]

such that

\[
\int_{t_0}^{t_1} f^0(x, u)dt \text{ is minimized} \tag{7}
\]

with free terminal time \(t_1 \), and

\[
x(t_0) = x_0, \quad x(t_1) = x_1. \tag{8}
\]

For convenience, we assume that \(W \) is a subset of a Euclidean space and that \(f \) and \(f^0 \) are smooth.

Theorem 2.3. Suppose that \(u(t), t_0 \leq t \leq t_1 \) is a piecewise continuous optimal control and \(x(t) \) is the corresponding trajectory. Then, there exists a non-vanishing continuous curve \((\lambda_0(t), \lambda(t)) \in \mathbb{R} \times T^*_{x(t)}M \) such that:

1. The trajectory \((x(t), \lambda(t))\) is the flow of

\[
X_H(x, \lambda; \lambda_0, u) = \Omega^t dH \tag{9}
\]

where \(\Omega \) is the canonical symplectic form on \(T^*M \) and

\[
H(x, \lambda, \lambda_0, u) = \lambda_0 f^0(x, u) + \langle \lambda, f(x, u) \rangle. \tag{10}
\]

2. \(\lambda_0 \leq 0 \) and is constant in \(t \).

3. \(u(t) = \arg \max_{v \in W} H(x(t), \lambda(t), \lambda_0(t), v) \) for every \(t \in [t_0, t_1] \).

4. \(H(x(t), \lambda(t), \lambda_0, u(t)) = 0 \) for every \(t \in [t_0, t_1] \).
Proof. By the Whitney Embedding Theorem [3], we may assume that M is an embedded submanifold and a closed subset of \mathbb{R}^N for some $N \in \mathbb{N}$. By the Tubular Neighborhood Theorem [5], there is an open neighborhood V of M in \mathbb{R}^N with a smooth retraction π_V of V onto M. Since M is a closed subset of V, by Proposition 2.26 in [5] there is a smooth bump function $\rho : \mathbb{R}^N \to [0, 1]$ such that $\text{supp } \rho \subset V$, and $\rho(z) = 1$ for every $z \in M$. Define a control vector field $F : V \times W \to TV$ by

$$F(z, u) = \rho(z)f(\pi_V(z), u) \in \mathbb{R}^N. \quad (11)$$

It is straightforward to verify that the restriction of F to M agrees with f and that both V and M are invariant under the flow of F. Hence, the optimal control problem in (6) – (8) is equivalent to the problem of finding control $u(t)$, $t_0 \leq t \leq t_1$ for

$$\dot{z} = F(z, u), \quad z \in V, u \in W \quad (12)$$

such that

$$\int_{t_0}^{t_1} f^0(\pi_V(z), u)dt \text{ is minimized} \quad (13)$$

with free terminal time t_1, and

$$z(t_0) = x_0 \in M \hookrightarrow V, \quad z(t_1) \in \pi_V^{-1}(x_1) \quad (14)$$

where $\pi_V^{-1}(x_1)$ is an $(N - n)$-dimensional submanifold of V, and $\pi_V^{-1}(x_1) \cap V = \{x_1\}$.

Let $u(t)$, $t_0 \leq t \leq t_1$, be a piecewise continuous optimal control for (6) – (8), and $x(t)$ be its optimal trajectory in M. By the equivalence of the two optimal control problems (3) – (8) and (12) – (14) and by the invariance of M, the trajectory

$$z(t) := x(t) \in M \hookrightarrow V \quad (15)$$

is the optimal trajectory associated with the control $u(t)$ for (12) – (14). By the remark below Theorem 2.22 we can apply Theorem 2.22 to (12) – (14). Hence, there exists a non-vanishing continuous curve $(p_0, p(t)) \in \mathbb{R} \times T_{z(t)}^*V$ such that with the Hamiltonian $\tilde{H} : T^*V \times \mathbb{R} \times W \to \mathbb{R}$ defined by

$$\tilde{H}(z, p; p_0, u) = p_0 f^0(\pi_V(z), u) + \langle p, F(z, u) \rangle,$$

statements 1–4 in Theorem 2.21 and the transversality condition

$$\langle p(t_1), T_{x_1}(\pi_V^{-1}(x_1)) \rangle = 0 \quad (16)$$

are satisfied where

$$T_{x_1}(\pi_V^{-1}(x_1)) \oplus T_{x_1}V = T_{z_1}V = \mathbb{R}^N. \quad (17)$$

Define a function $H : T^*M \times \mathbb{R} \times W \to \mathbb{R}$ by

$$H(x, \lambda; \lambda_0, u) = \lambda_0 f^0(x, u) + \langle \lambda, f(x, u) \rangle. \quad (18)$$

Let $T^*V|_M$ be the restriction of T^*V to M. Let $i : T^*V|_M \hookrightarrow T^*V$ be the canonical inclusion and $\pi : T^*V|_M \to T_*M$ the canonical projection defined by restricting $\alpha \in T_z^*V$ for $z \in M$ to T_zM. Then, it is easy to show

$$\tilde{H} \circ i = H \circ \pi \quad (19)$$

on $T^*V|_M$. Since $z(t) \in M$, $(z(t), p(t)) \in T^*V|_M$ for every $t \in [t_0, t_1]$. Let us assume that both T^*V and T^*M are equipped with the canonical symplectic forms. We need the following lemma:
Lemma 2.4. Suppose that M is an n-dimensional embedded submanifold of an N-dimensional manifold L. Let $T^*L|_M$ be the restriction of T^*L to M. Let $i : T^*L|_M \to T^*L$ the canonical inclusion and $\pi : T^*L|_M \to T^*M$ the canonical projection, where both T^*L and T^*M are equipped with the canonical symplectic forms. If $\tilde{H} : T^*L \to \mathbb{R}$ and $H : T^*M \to \mathbb{R}$ are functions such that
\[
\tilde{H} \circ i = H \circ \pi
\] (20)
on $T^*L|_M$, then the Hamiltonian flow $\tilde{\varphi}_t$ with the Hamiltonian \tilde{H} leaves $T^*L|_M$ invariant, so it induces canonically a flow φ_t on T^*M satisfying $\pi \circ \tilde{\varphi}_t = \varphi_t \circ \pi$ on $T^*L|_M$, and the flow φ_t is a Hamiltonian flow on T^*M for the Hamiltonian H.

Proof. This lemma is a simple corollary to standard results in geometric mechanics [1, 7], but we could not find a reference that explicitly states this lemma, so we give a quick proof.

Let us choose a set of local coordinates $(x, y) \in \mathbb{R}^n \times \mathbb{R}^{N-n}$ for L such that $y = 0$ corresponds to M. Let $((x, y), (\alpha, \beta))$ be the corresponding cotangent bundle coordinates for T^*L. Then, (x, α, β) are local coordinates for $T^*L|_M$ and (x, α) for T^*M. In these coordinates, (20) becomes $\tilde{H}((x, 0), (\alpha, \beta)) = H(x, \alpha)$ for every $((x, 0), (\alpha, \beta)) \in T^*L|_M$.

Then, for any $((x, 0), (\alpha, \beta)) \in T^*L|_M$, the Hamiltonian vector field $X_{\tilde{H}}(z)$ is given by

\[
\begin{align*}
\dot{x}^i &= \frac{\partial \tilde{H}}{\partial \alpha_i}((x, 0), (\alpha, \beta)) = \frac{\partial H}{\partial \alpha_i}(x, \alpha), \\
\dot{y}^a &= \frac{\partial \tilde{H}}{\partial \beta_a}((x, 0), (\alpha, \beta)) - \frac{\partial H}{\partial \beta_a}(x, \alpha) = 0, \\
\dot{\alpha}_i &= \frac{\partial \tilde{H}}{\partial x^i}((x, 0), (\alpha, \beta)) = \frac{\partial H}{\partial x^i}(x, \alpha), \\
\dot{\beta}_a &= -\frac{\partial \tilde{H}}{\partial y^a}((x, 0), (\alpha, \beta)).
\end{align*}
\] (21) and (22)

Since $\dot{y}^a = 0$, $X_{\tilde{H}}(z)$ is tangent to $T^*L|_M$ at every $z \in T^*L|_M$, so its flow $\tilde{\varphi}_t$ leaves $T^*L|_M$ invariant. Then, it is not hard to see that we have a globally well-defined flow φ_t on T^*M such that $\pi \circ \tilde{\varphi}_t = \varphi_t \circ \pi$ on $T^*L|_M$. Equations (21) and (22) imply that φ_t is a Hamiltonian flow of the Hamiltonian H. \qed

From Lemma 2.4 with $L = V$, it follows that $(x(t), \lambda(t)) := \pi(z(t), p(t))$ is a flow of the Hamiltonian vector field

\[
X_H(\cdot; p_0, u(t)) = \Omega^B dH(\cdot; p_0, u(t))
\] (23)
on T^*M, where Ω is the canonical symplectic form on T^*M. Notice that $x(t)$ is the optimal trajectory we began with in [15] and that $\lambda(t)$ is the restriction of $p(t)$ to $T_{x(t)}M$, i.e.,

\[
\lambda(t) = p(t)|_{T_{x(t)}M}.
\] (24)

Setting $\lambda_0 = p_0$, we see that statement 1 in Theorem 2.3 holds. By statement 2 in Theorem 2.1, $\lambda_0 = p_0$ is a non-positive constant, so statement 2 in Theorem 2.3 holds. Since $(z(t), p(t)) \in T^*V|_M$, by (19)

\[
\tilde{H}(z(t), p(t); p_0, v) = H(z(t), \lambda(t); \lambda_0, v)
\] (25)
for every $v \in W$. By statement 3 in Theorem 2.1, for every $t \in [t_0, t_1]$

\[
\begin{align*}
u(t) &= \arg \max_{v \in W} \tilde{H}(z(t), p(t); p_0, v) \\
&= \arg \max_{v \in W} H(x(t), \lambda(t); \lambda_0, v),
\end{align*}
\]
which implies that statement 3 in Theorem 2.3 holds. By (25) and statement 4 in Theorem 2.4, statement 4 in Theorem 2.3 holds.

We now show that the continuous curve \((\lambda_0, \lambda(t))\) never vanishes. Suppose that there is a \(\bar{t} \in [t_0, t_1]\) such that \((\lambda_0, \lambda(\bar{t})) = (0, 0)\). By \(\lambda_0\) being constant and (23), the curve \((\lambda_0, \lambda(t))\) satisfies

\[
\dot{\lambda}_0 = 0; \quad \dot{\lambda}_i = -\frac{\partial H}{\partial x^i}, i = 1, \ldots, n
\]

in a local chart containing \((x(\bar{t}), \lambda(\bar{t}))\), which is a (non-autonomous) linear ordinary differential equation for \((\lambda_0, \lambda)\) since \(H\) in (18) is linear in \((\lambda_0, \lambda)\). By the uniqueness of ODE solutions, \((\lambda_0, \lambda(t)) \equiv (0, 0)\) as long as \((x(t), \lambda(t))\) stays in the local chart. By patching up a finite number of local charts, we get \((\lambda_0, \lambda(t_1)) = (0, 0)\), which, together with (16), (17) and (24), implies that \((p_0, p(t_1)) = (0, 0)\), contradicting the non-vanishing assumption on \((p_0, p(t))\). Therefore, \((\lambda_0, \lambda(t))\) never vanishes. This completes the proof of Theorem 2.4. ❄

Remark. Notice that using \(z(t_1) \in \pi^{-1}_V(x_1)\) in (14) instead of \(z(t_1) = x_1\) is crucial in the proof since the condition \(z(t_1) = x_1\) would not guarantee the non-vanishing property of \((\lambda_0, \lambda(t))\) in the last part of the proof.

Consider the optimal control problem in (6) – (8) where the fixed endpoint condition in (8) is replaced by

\[
x(t_0) \in S_0, \quad x(t_1) \in S_1
\]

where \(S_0\) and \(S_1\) are smooth submanifolds of \(M\). Then, the following theorem holds:

Theorem 2.5. Let \(u(t), t_0 \leq t \leq t_1\), be a piecewise continuous optimal control and \(x(t)\) the corresponding trajectory for (6), (7) and (20). Then, it is necessary that there exists a nonzero continuous \((\lambda_0, \lambda(t)) \in \mathbb{R} \times T_{x(t)}M\), which satisfies the conclusions in Theorem 2.4 and, in addition, the transversality conditions

\[
\langle \lambda(t_0), T_{x(t_0)}S_0 \rangle = 0, \quad \langle \lambda(t_1), T_{x(t_1)}S_1 \rangle = 0.
\]

Proof. The same arguments in the proof of Theorem 2.4 apply here except that we use

\[
z(t_0) \in S_0 \leftrightarrow V, \quad z(t_1) \in \pi^{-1}_V(S_1)
\]

instead of (14). ❄

Example. Consider a time optimal control problem for the following system on the unit 2-sphere \(S^2\) that is embedded in \(\mathbb{R}^3\):

\[
\dot{x} = \begin{pmatrix}
0 & u_1 & 0 \\
-u_1 & 0 & u_2 \\
0 & -u_2 & 0
\end{pmatrix} x, \quad x \in \mathbb{R}^3
\]

where \(|u_1| \leq 1, |u_2| \leq 1, x(0) = (1, 0, 0),\) and \(x(t_1) = (0, 0, 1)\). As in the proof of Theorem 2.3 we can replace the terminal condition \(x(t_1) = (0, 0, 1)\) by

\[
x(t_1) \in \{ x = (x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 = x_2 = 0, \ 0 < x_3 < 2 \}
\]

and apply the PMP on \(\mathbb{R}^3\). This time optimal control problem is solved from this viewpoint in [4].
References

[1] R. Abraham and J.E. Marsden, *Foundations of Mechanics*, Addison Wesley Publishing Company, 1978.

[2] A.A. Agrachev and Y.L. Sachkov, *Control Theory from the Geometric Viewpoint*, Springer, 2004.

[3] M. Barbero-Linan and M.C. Munoz-Lecanda, “Geometric approach to Pontryagin’s maximum principle,” Acta Appl. Math., DOI 10.1007/s10440-008-9320-5; arXiv:0805.1169.

[4] D.E. Chang and R. Sepulchre, “Time-optimal control of a 3-level quantum system and its generalization,” Dynamics of Continuous, Discrete and Impulsive Systems, 14, pp. 575–592, 2007.

[5] J.M. Lee, *Introduction to Smooth Manifolds*, Springer, 2002.

[6] E.B. Lee and L. Markus, *Foundations of Optimal Control Theory*, J. Wiley, New York, 1967.

[7] J.E. Marsden and T. Ratiu, *Introduction to Mechanics and Symmetry*, 2nd Edition, Springer, 1999.

[8] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, and E.F. Mishchenko, *The Mathematical Theory of Optimal Processes*, John Wiley & Sons, Inc.: New York, 1962.