RESEARCH ARTICLE

EFFECT OF YOGA THERAPY ON FREQUENCY DOMAIN PARAMETERS OF HEART RATE VARIABILITY IN PREDIABETICS

Neha Saboo and Sudhanshu Kacker

Abstract

Introduction: Prediabetes is the budding stage of type 2 diabetic mellitus and imposes the elevated risk for cardiovascular diseases (CVDs) with significant morbidity and mortality. Non-pharmacological strategies such as yoga therapy have marked impact in the mitigation of prediabetes. In this backdrop, the present study was conducted to study the effect of six months yoga intervention on heart rate variability in patients diagnosed with prediabetes. Further, it has been used as a tool for the maintenance of autonomic nervous system and to reduce the progression of diabetes.

Material and Method: The study was conducted on 250 prediabetic adults aged ranging from 30-50 years attending the OPD of Jaipuria Hospital and from different yoga centers. Then the effect of yoga intervention on frequency domain parameters of heart rate variability such as Low frequency (LF), High frequency (HF), Ratio of LF to HF. The patients were divided into two groups as follows, Group A (n=125) were subjected to intervention with yoga exercises and Group B (n=125) were not advised for any yoga exercises. Data analysis was done by One-way ANOVA for comparison between the groups and significance was analysed post hoc analysis followed by Tukey’s and Schaffe’s tests.

Results: In group A, yoga intervention leads to significant (p <0.001) decrease in LF component with an substantial elevation in HF component and the LF/HF ratio shifted towards the parasympathetic dominance as compared to group B at baseline, 3 and 6 months.

Conclusion: Thus the study reveals that yoga intervention for six months significantly shifted ANS system towards the parasympathetic dominance in prediabetic patients. Thus, routine yoga session could alleviate the cardiometabolic risk factors in individuals affected with prediabetes.
Prediabetes is a condition in which there is an elevated blood sugar level but the level is not sufficient to diagnose it as diabetes. Pre-diabetes represents the initial stage of diabetes and it may develop to diabetes when pancreatic beta-cells lack the capability to produce insulin to decrease the insulin resistance leading to hyperglycemia. The diagnostic criteria proposed by the American Diabetes Association for prediabetes is the fasting plasma glucose level between 100-125 mg/dl, glycated haemoglobin (HbA1c) level ranging between 5.7% to 6.4% and plasma glucose level between 140-199/dl after oral glucose tolerance test. The autonomic nervous system (ANS) orchestrates a vital role in the pathogenesis of various conditions such as diabetic neuropathy and cardiovascular diseases. The cardiovascular physiology is orchestrated by various mechanism encompassing nervous and hormonal pathways. The parasympathetic mediated by vagus nervesand the sympathetic system, encompassing adrenal medullamediates an important role in cardiovascular physiology. Autonomic dysfunction mediated by elevated sympathetic and decreased parasympathetic activity and hyper sympathetic activity are majorly involved in the development of arrhythmia and cardiac arrest. Alteration in the regulation of cardiovascular autonomic functions leads to elevated sympathetic and decreased parasympathetic tone and overture in the progression of coronary artery disease and cardiac arrhythmia. Measurement of Heart rate variability (HRV) is the predominant non invasive method for the assessment of autonomic function at sinoatrial level. Cardiac autonomic dysfunction (CAN) evaluated using HRV is linked with metabolic disorders such as obesity, prediabetes and diabetes. HRV is defined as the change in the time interval between heartbeats and controlled by ANS. Heart rate variability (HRV) is a reliable parameter to measure the autonomic regulation and used as a marker to evaluate the changes during exercise and mind body which is regulated by autonomic systems. HRV arises as a result of vagal tone and it signifies the association between sympathetic and parasympathetic system. HRV evaluation encompasses series of measurement such as Interbeat (RR) interval variation originating in sinus which elicits the details of autonomic tone. During the year 1996, European society of cardiology and North American Society of Pacing and Electrophysiology framed the criteria for evaluation, physiological and pathological interpretation and clinical utility of HRV. Time and frequency domain indices, geometric measures i.e. poincare plot and histogram are chief parameters used for the evaluation. Frequency domain analysis reveals the oscillations of heart rate signal at various time points decomposed at array of frequencies and amplitudes and also elicits its quantum of relative intensity and referred as power in the heart's sinus rhythm. Yoga exercises restores body internal balance andhomeostasis by acting on the neuroendocrine level and thus influences the various organ system. The body encompasses various glands which has both internal and external hormone release. The classical example is pancreas which releases insulin. Thus Yoga therapy reactivates the internal hormone secretion to normal and maintains the viability of endocrine structures. Yogic postures are the effective non pharmacological strategies to mitigate stress, anxiety, depression and also increases cortisol level with significant reduction in sympathetic activity. The yoga therapy mediates it action though decreasing the probably hypothalamic pituitary adrenal axis (HPAA) activation and triggers the vagus nerve that elevates the parasympathetic activity which in turn increase insulin sensitivity, glucose tolerance and also maintains lipid profile. Yoga therapy has mounting merits such as low economy, easy accessible and reduces the cardiometabolic risk factors and increases the exercise capacity in individuals affected with prediabetes.

Till date no studies are available on the effect of yoga on heart rate variability in prediabetes subject and in this backdrop the present study was undertaken to evaluate the of effect of yoga on heart rate variability in prediabetes individuals. So the main aim of the study was to assess the outcome of Integrated Approach of Yoga Therapy on Frequency domain parameter of Heart Rate Variability.

Materials And Methods:-
This was a prospective comparative study conducted among the adults aged between 30 to 50 years in RUHS college of Medical Sciences and Associated Rukmani Devi Beni Prasad Jaipuria in Jaipur city for the period between July to December 2018. The written patient consent form was obtained and the study was approved by Institutional ethics committee (Registration No.ECR/762) of RUHS College of Medical Sciences. In this study 2000 participants were screened in a tertiary health care centre and out of these 250 were prediabetic. The prediabetes prevalence rate in this was 12.5%. The information collection proforma contained details about the age, gender, family history, sociodemographic, lifestyle, physical activity, Stress scale by Cohen perceived scale, Body mass index (BMI), dietary habits by semi-quantitative Food Frequency Questionnaire (FFQ), personal history medical factors. Data collected by an interviewed questionnaire, anthropometric measurements and laboratory investigation. Base line parameters like Anthropometric, blood pressure, pulse and Heart rate variability Frequency
domain low frequency (LF), high frequency (HF) and LF/HF ratio were recorded by Analogue Digital Instrument (AD), physiograph (Model number 3818).

Table 1: Possible Risk Factors for prediabetes.

S.No	Variable	PREDIABETES
1.	Age= 30 to 50 years	250
2.	Female gender	150
3.	Family history of diabetes	125
4.	BMI>25	170
5.	Central obesity	175
6.	Physical inactivity	200
7.	Psychosocial stress	200
8.	Vegetables< 2 servings a day	200
9.	Red meat, chicken, fish and egg>once time a week	40
10.	Fruit < one time in a week	152
11.	Green leafy vegetable < 3 times a day	178
12.	Bakery Items > once time a week	60
13.	Deep Fried Snacks	72
14.	Carbonated drinks>once a week	22
15.	Sweet> 3 time a week	80
16.	Tobacco use	40
17.	Alcohol use	60

Sample size calculation: As the prevalence of diabetes in India is 8% taking it as a reference the sample size is calculated using the appropriate size formula z^2pq/d^2 where p & q were taken as .08 and .92 to get the maximum sample size with 5% permissible error (precision) and 10% non response rate the desired sample size is 250 with 95% confidence interval.

Participants should fulfil the inclusion criteria i.e, Fasting blood glucose level of: 110 to 125 mg/dL (6.1 mM/L to 6.9 mM/L) & Glycated haemoglobin 5.7 to 6.4 (ADA criteria) and subjects with no history of cardiovascular disease or in first-degree relatives, and no current history of anti diabetic medications. Exclusion criteria was subjects those have Fasting blood glucose < 100mg/dl &>126 mg/dl, Oral Glucose Tolerance Test (OGTT)< 140 &>200 mg/dl, Liver disease, alcoholic individuals, Renal dysfunction, Diabetic Retinopathy and Neuropathy, spinal injury and interstitial fibrotic disease or any other major complications. Those being treated with anti-inflammatory medication were not included in the study.

HRV is evaluated based on the 5 minute or 24 hours recording of ECG and also beat-to-beat intervals (R-R intervals) are obtained from ECG. The software based analysis was carried out and each normal cardiac cycle will lead to peripheral pulse and pulse peak-to-peak interval corresponds to the R-R interval.

Procedure: Power Lab device is started and USB cable was fixed to computer. Then the Finger Pulse Transducer is connected to the Power Lab front panel. The electrodes were placed on pressure pad of the Finger Pulse Transducer. The HRV analysis in the frequency domain reflects the speed variation in heart rate. Further, this method also gives information about different frequency components of the N-N intervals and their power, or variance.

Required Equipment
1. LabChart software
2. PowerLab Data Acquisition Unit
3. Finger Pulse Transducer

Study group, (n=125) were engaged in lectures on yoga, prayer, omkar recitation, practice of yoga postures (asana), regulated breathing (pranayama) and Control group (n=125) had not performed any sessions.
Analogue Digital physiograph Instrument are eight channel digital physiograph for assessing Heart rate variability, electrocardiogram, Galvanic skin resistance, Reaction time and Hand grip dynamometry. In this study, HRV was estimated frequency domain analysis which denotes HR signal oscillations at different time points, decomposed at various frequencies and amplitudes and gives information on the quantum of relative intensity and referred as variance or power in the heart's sinus rhythm. Power spectral was evaluated by two methods, the first one was by fast Fourier transformation (FFT), which elicits discrete peaks for various frequency components and the second one by autoregressive model evaluation by continuous smooth spectrum of activity. During FFT, the single RR intervals are converted to bands with various spectral frequencies. The power spectrum encompasses four frequency bands ranging from 0 to 0.5 Hz such as ultra low frequency, very low frequency, low frequency and high frequency band.

Figure 1:- Analysis of frequency domain parameters by digital physiograph.

The Integrated Approach of Yoga Therapy included Prayer, Omkar recitation, yoga postures (asanas), breathing (pranayama) techniques, Shavasana, Counseling and diet (i.e., food that are considered sattvic include most vegetables, ghee, fruits, legumes and whole grain). Yoga was employed as an interventional therapy in this study. Yoga asanas were guided and demonstrated by certified yoga instructor. Yoga sessions were approximately 45 minutes six days per week for six months. To facilitate and guide home practice, participants were given a video recording (CD) of the Integrated Approach of Yoga Therapy recorded under direction of the certified yoga instructor and session in morning 7 to 7.45 AM. Compliance of subjects were checked by message daily and weekly telephonic conversions. Evaluation was done before yoga intervention then after three and six months post intervention. The components of our intervention using Integrated approach of yoga therapy are detailed in Table 2, shows the protocol of yoga practices in this study.

Table 2:- Schedule of yoga practices.

S.No.	Yogic Practices	Duration	
1	Prayer	3 Minutes	
2	Omkar recitation	3 Minutes	
3	Pranayama	5 Minutes	
4	Asans (SuryaNamaskar,Sukhasana, Bhujangasana, Pashimottanasana, Padmasana, Tadasana, Trikonasana, Sarvangasana, Ardhamatsyendrasana, Pawanmuktasana, Vajrasana, Dhanurasana, Shavasana)	30 Minutes	5 Minutes
	Shavasana		

Table 3:- Schedule of yoga practices.

Statistical Analysis: Mean and standard deviations were calculated for each parameter. The appropriate tool for comparison the change in the level of a variable is student’s paired t test for Intragroup comparison before applying this test the Smirnov-Kolmogorov test was performed to assess the normality of each parameter. Apart from comparing the various parameters of the data with respect to before and after Yoga, comparison is made with respect to a control group. There were 125 persons in this group. To show that initially the two groups are on the same platform for each parameter, student’s unpaired t test was conducted for Intergroup comparison. The value of p>0.05 was considered as non-significant, between the two groups comparison at baseline, three months and six months by using one way analysis of variance and significance was tested by post hoc analysis by Tukey’s and Scheffe’s tests.

Results:- All the parameters of the data are quantitative variables. The main aim of the study was to compare the levels of these parameters before initiating Integrated approach of yoga therapy (IAYT) and after three month and six month of practicing IAYT. Apart from comparing the various parameters of the data with respect to before and after Yoga, comparison is made with respect to a control group. There were 125 prediabetics in each study and control groups.
individuals perfor s. autonomic es help in reducing cardiovascular risk 26 is the main etiological factor during the nctions regulate the activity of all muscles 31, ent study LF system as compared to the individuals not performing the ming yoga elicited well there is a dominance of 31 irst line of treatment before pharmacological management to mitigate high reported that 10 min yoga intervention decreased LF ,Increased HF and decreased LF/HF ratio as compare to control group which was similar with present study. In contrary, Chaya 35 et al reported that the individuals practising yoga displayed increased low frequency power and decreased normalized high-frequency power.

Table 3:- Age and gender of the patients.

Age group	Male	Female	Total
30-40 years	25	50	75
41-50 years	75	100	175
Total	100	150	250

Table 4:- Intragroup comparison of Results of Heart Rate variability.

S.NO	Control	Study base line	Study 3 month	Study 6 month	F	P Value
LF/HF Ratio	2.20 ± 1.05	2.19 ± 1.09	1.01 ± .54	.57±.20	81.081	<.001

p value <.001 Highly significant

Table 4 shows mean values of LF, HF, LF/HF Ratio for control and study groups Intergroup Comparison of Results of heart rate variability in control and study groups. One way analysis of variance (ANOVA) for measures taken at different times, significance level tested by Post Hoc test Tukey's test and Scheffe's test.

Discussion:-

The present study results showed the importance of yoga intervention for shifting of autonomic nervous system towards the parasympathetic limb. The present study highlights that yoga sessions would be a possible cardiovascular risk reduction strategy for prediabetics. Regular yoga practices help in reducing cardiovascular risk factors and improve homeostasis at the neuro endocrin level which increased exercise self-efficacy for pre diabetics that perform yoga postures 24

Yoga postures enhances autonomic regulation and vagal dominance as evidenced by HRV values. Alteration in HRV during yoga elicits resonance outcomes betwixt respiration, muscle contractions, heart rate, and baroreflexes which increasesautonomic potential. The The parasympathetic vagus nerves and sympathetic adrenal medulla orchestrates a vital role in the maintenance of cardiovascular system. Further, daily yoga postures leads to decreased stress by enhancing the serotonin levels.

Lifestyle modification (LSM) strategy is the first line of treatment before pharmacological management to mitigate the development of prediabetes to diabetes. LSM is highly effective, low cost and devoid of side effects during the prevention of type 2 diabetes. 25

Autonomic balance is the body’s capacity to maintain equilibrium when there is internal and external stimuli. This system orchestrates a predominant role in bringing about adaptation of human body to environmental changes, thereby modulating the sensory, visceral, motor and neuroendocrine functions regulate the activity of all muscles and certain glands. 28Hyperactivity of sympathetic nervous as a result of hyperglycemiadue to epinephrineresponse and in association with increased level of endogenous opioid peptides the main etiological factor during the progression type II diabetes. 27HRV is simple and non invasive marker to estimate the sympathovagal balance at the sinoatrial level for the evaluation of autonomic and fitness status of the individual. 29In this present study LF component and LF/HF ratio decreased and HF component increased as compared to control which was similar with Sarang 29 et al reported that cyclic meditation activates the sympathetic system, while performing different yoga posture followed by cyclic meditationthere is a dominance of parasympathetic nervous system . Vempati et al reported that 10 min yoga intervention decreased LF ,Increased HF and decreased LF/HF ratio as compare to control group which was similar with present study. 31, AnH 26 et al reported that nonlinear measure was the sampling entropy i.e increase in the meditative group as that of the control group. Several studies reported by Howorka K 27, Piata et al 33, Muralikrishnan k 32 et al reported that individuals performing yoga elicited well balanced activity of vagal efferents, and sympathovagal system as compared to the individuals not performing the yoga, which is line with the present study . Friis AM 33 reported that individuals practising yoga for extended period has effectiveautonomic flexibility. Satin JR 34 reported that Yogis and runners displayed increased parasympathetic activity respective to time or frequency domain which is concurrent with the present study. In contrary, Chaya 35 et al reported that the individuals practising yoga displayed increased low frequency power and decreased normalized high-frequency power.
Limitations
The findings of this study need to be explored in larger sample size involving prediabetics. Future research is highly vital to evaluate the effect of yoga practice for chronic period on heart rate variability in prediabetic individuals to determine the yoga effect on autonomic homeostasis. In this study only one component of heart rate variability i.e Frequency domain analyzed other components time domain, poincare plot and histogram and comparison of their result should be done on larger sample.

Conclusion:-
This study highlights importance of six month’s yoga intervention on autonomic nervous system. The present preliminary study showed that the yoga therapy is a suitable strategy to reduce the risk of developing type 2 diabetes in prediabetes subjects. Further, yoga programs would be an effective strategy to reduce cardiovascular risk factors and also increase the exercise capability in prediabetic individuals performing yoga. Yoga therapy effectively improves autonomic regulation and increases vagal dominance which is evident from the results of HRV.

Acknowledgements:-
The authors thank the participants and yoga instructor Dr. Harish Bhatnagar and staff of the departments of Physiology for their invaluable patience and cooperation.

References:-
1. Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 2011; 94: 311-21.
2. Ford ES, Zhao G, Li C: Pre-diabetes and the risk for cardiovascular disease: a systematic review of the evidence. J Am Coll Cardiol 2010; 55: 1310–1317.
3. Lee M, Saver JL, Hong KS, Song S, Chang KH, Ovbiagele B: Effect of pre-diabetes on future risk of stroke: meta-analysis. BMJ 2012;344:e3564.
4. Larson H, Lindgarde F, Berglund G, Ahren B (2004) Prediction of diabetes using ADA or WHO criteria in post-menopausal women: a 10-year follow-up study. Diabetology 43: 1224–1228
5. American Diabetes Association Diagnosis and classification of diabetes mellitus. Diabetes Care. 2011 Jan; 34 (Suppl 1):S62–9. DOI: http://dx.doi.org/10.2337/dc11-S062. [PMC free article] [PubMed]
6. Zipes DP, Wellens HJJ. Sudden cardiac death. Circulation 1998;98:2334–51.
7. Kjellgren O, Gomes JA. Heart rate variability and baroreflex sensitivity in myocardial infarction. Am Heart J 1993;125: 204–14.
8. Kaicker S, Saboo N, Sharma S, Sharma M, Sharma M, Jitender. Effect of Meditation on Time and Frequency Domain Parameters of Heart Rate Variability. Int J Med Res Prof 2016; 2(6):241-51. DOI:10.21276/ijmrp.2016.2.6.049
9. Tyagi A, Cohen M. Yoga and heart rate variability: A comprehensive review of the literature. Int J Yoga. 2016;9(2): 97–113.
10. Kaicker S, Saboo N, Sharma M, Sharma M, Sharma S, Jitendra. Effect of advance meditation program on poincare plot of heart rate variability in young population. IJBAMR 2016; 5 (4) : 868-889.
11. Stein PK, Bosner MS, Kleiger RE, Conger BM. Heart rate variability: A measure of cardiac autonomic tone. Am Heart J 1994; 127:1376–81.
12. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Circulation 1996;93:1043–65.
13. Kleiger RE, Stein PK, Bosner MS, Rottman JN. Time domain measurements of heart rate variability. Amb Electrocardiol 1992;10:487–98.
14. Malliani A, Lombardi F, Pagani M. Power spectrum analysis of heart rate variability: a tool to explore neural regulatory mechanisms. Br Heart J 1994;71:1–2.
15. Tsuji H, Venditti Jr FJ, Manders ES, Evans JC, Larson MG, Feldman CL, et al. Determinants of heart rate variability. J Am Coll Cardiol 1996;28:1539–46
16. Echouffo-Tcheugui JB, Dagogo-Jack S. Preventing diabetes mellitus in developing countries. Nat Rev Endocrinol. 2012;8:557–62.
17. Rajak C, Rampalliwat S, Mahour J.A study of combined effect of yoga(Yogic exercises, Pranayam & meditation) on Hyper –reactivity to cold pressor test in healthy individuals, National Journal of Physiology, Pharmacy & Pharmacology 2012; Vol2(2): 140-145.
18. Madanmohan, Bhavanani AB, Dayanidy G, Sanjay Z, Basavaraddi IV. Effect of yoga therapy on reaction time, biochemical parameters and wellness score of peri and post-menopausal diabetic patients. International journal of yoga 2012;5(1):10-15. doi: 10.4103/0973-6131.9169.
19. Akter S, Rahman M, Sultana P, Prevalence of diabetes and prediabetes and their risk factors among Bangladeshi adults: a nationwide survey, Bull World Health Organ 2014; 92(3):204–213A.
20. Tsuji H, Venditti Jr FJ, Manders ES, Evans JC, Larson MG, Feldman CL, et al. Determinants of heart rate variability. J Am Coll Cardiol 1996;28:1539–46.
21. Kacker S, Saboo N, Sharma S, Sorout J. Quasi prospective comparative study on effect of yoga among prediabetics on progression of cardiovascular risk factors. Int J Yoga [serial online] 2019 [cited 2020 Mar 25];12:114-9. Available from: http://www.ijoy.org.in/text.asp?2019/12/2/114/257626
22. Echouffo-Tcheugui JB, Dagogo-Jack S. Preventing diabetes mellitus in developing countries. Nat Rev Endocrinol. 2012;8:557–62.
23. McCall T. 1st ed. New York: Bantam Publishers; 2007. Yoga as Medicine: The Yogic Prescription for Health and Living.
24. Kacker S, Saboo N, Sorout J. Effect of Yoga on Nonlinear Dynamics of Heart Rate in Prediabetic Subjects [Internet]. 2019 January [Cited March 25, 2020];13(1):CC05–CC11. doi:10.7860/JCDR/2019/37571/12514
25. Acharya UR, Joseph KP, Kannathal N, Min LC, Suri JS. Heart rate variability. Advances in Cardiac Signal Processing. In: Acharya UR, Suri JS, editors. New York: Springer; 2007
26. An H, Kulkarni R, Nagarahtha R, Nagendra H. Measures of heart rate variability in women following a meditation technique. Int J Yoga. 2010;3:6–9.
27. Howorka K, Pumphra J, Heger G, Thoma H, Opavsky J, Salinger J. Computerised Assessment of Autonomic Influences of Yoga Using Spectral Analysis of Heart Rate Variability. In Engineering in Medicine and Biology Society, 1995 and 14th Conference of the Biomedical Engineering Society of India. An International Meeting, Proceedings of the First Regional Conference, IEEE; 1995
28. Reyes del Paso GA, Langewitz W, Mulder LJ, van Roon A, Duschek S. The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: A review with emphasis on a reanalysis of previous studies. Psychophysiology. 2013;50:477–87.
29. Sarang SP, Telles S. Effects of two yoga based relaxation techniques on heart rate variability (HRV) Int J Stress Manag. 2006;13:460–75.
30. Vempati RP, Telles S. Baseline occupational stress level and physiological response to a two day stress management program. Jindian Psychol 2000. 2000:33–7.
31. Pital R, Tajane K, Phadke L, Joshi A, Umale J. Characteristics of HRV Patterns for Different Yoga Postures. In 11th IEEE India Conference: Emerging Trends and Innovation in Technology. INDICON 2014. 2015
32. Muralikrishnan K, Balakrishnan B, Balasubramanian K, Visnegarawla F. Measurement of the effect of Isha Yoga on cardiac autonomic nervous system using short-term heart rate variability. J Ayurveda Integr Med. 2012;3:91–6.
33. Friis AM, Sollers Iii JJ. Yoga improves autonomic control in males: A preliminary study into the heart of an ancient practice. J Evid Based Complement Altern Med. 2013;18:176–82.
34. Satin JR, Linden W, Millman RD. Yoga and psychophysiological determinants of cardiovascular health: Comparing yoga practitioners, runners, and sedentary individuals. Ann Behav Med. 2014;47:231–41.
35. Chaya MS, Ramakrishnan G, Shastry S, Kishore RP, Nagendra H, Nagarathna R, et al. Insulin sensitivity and cardiac autonomic function in young male practitioners of yoga. Natl Med J India. 2008;21:217–21.