Sequence comparison of the mitochondrial genomes of five brackish water species of the family Neritidae: Phylogenetic implications and divergence time estimation

Jing Miao1 | Jiantong Feng1 | Xiaojuan Liu2 | Chengrui Yan1 | Yingying Ye1 | Jiji Li1 | Kaida Xu3 | Baoying Guo1 | Zhenming Lü1

1National Engineering Research Center for Facilitated Marine Aquaculture, Zhejiang Ocean University, Zhoushan, China
2Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong, China
3Marine Fishery Institute of Zhejiang Province, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhejiang Ocean University, Zhoushan, China

Correspondence
Yingying Ye and Jiji Li, National Engineering Research Center for Facilitated Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China. Email: yeyy@zjou.edu.cn and lijiji@zjou.edu.cn

Funding information
Fundamental Research Funds for Zhejiang Provincial Universities and Research Institutes (No. 2021J005), National Key R&D Program of China (Grant No.: 2019YFD0901204), the Key R&D Program of Zhejiang Province (Grant No.: 2019C02056), the Foundation of Guangdong Provincial Key Laboratory of Marine Biotechnology (No. GPKLMB202103) and the Project of Bureau of Science and Technology of Zhoushan (No. 2020C21026 and No. 2021C21017).

Abstract
Neritids are ancient gastropod species which can live in marine, brackish water, and freshwater environments. In this study, we sequenced and annotated the mitochondrial genomes of five brackish water neritids (i.e., Clithon corona, Clithon lentiginosum, Clithon squarrosum, Neritina iris, and Septaria lineata). The mitogenomes ranged from 15,618 to 15,975 bp, and all contain 13 protein-coding genes (PCGs), 22 tRNA genes, and two rRNA genes, with a closed ring structure. We calculated the Ka/Ks values of all 13 PCGs of Neritidae species, all ratios are less than 1, under purification selection. Phylogenetic analysis of the 13 PCGs showed that Neritimorpha is a sister group with Vetigastropoda and Caenogastropoda, genus Clithon is a sister group with Neritina and Septaria. Estimation of divergence time for all species of Neritidae showed that the main differentiation of Neritidae occurred in Cenozoic period (65 Mya), C. corona and C. lentiginosum were differentiated in the Cenozoic Neogene, the other three species diverged in the Cenozoic Paleogene. These results will help to better understand the evolutionary position of Neritidae and provide reference for further phylogenetic research on Neritidae species.

Keywords
divergence time, mitogenome, Neritid, phylogenetic

Taxonomy Classification
Genomics; Phylogenetics
1 | INTRODUCTION

Neritidae (Gastropoda: Neritimorpha: Cycloneritida) is one of the most diverse taxa in the Neritimorpha (Rafinesque, 1815). At present, there are 16 genera, comprising around 280 species (Hamish et al., 2007), with about 40 species having been found on the southeast coast of China before 2008 (Zhang, 2008). The fossil record of neritids dates back to the late Cretaceous (Kano, 2002), showing ecological radiation and extreme diversity in form. Neritids occur mainly in intertidal zone (Sasaki et al., 2002). They are euryhaline, and can live in marine, brackish water, and freshwater ecosystems. Nerita species are almost exclusively found in marine environments, Clithon and Neritina animals are mostly found in freshwater and brackish water environments (Tan & Clements, 2008). There have been at least five or six evolutionary transitions from hypersaline environments to freshwater in the evolutionary history of Neritidae (Frey, 2010; Holthuis, 1995). However, most freshwater lineages retain a dispersed planktonic marine larval stage, in which adults develop, reproduce in rivers, hatch larvae enter the sea, grow into adults, and return to freshwater in a cycle (Abdou et al., 2015).

The metazoan mitochondrial genome (mitogenome) is a double-stranded molecular structure in the form of a closed ring. It usually has 37 coding genes, including 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNA), 22 transfer ribonucleic acid (tRNA) genes, and a noncoding control region (CR) (Fernández-Silva et al., 2003; Wolstenholme & David, 1992). The mitogenome is characterized by high conservation, lack of extensive recombination, maternal inheritance, and a high mutation rate (Curole & Kocher, 1999; William et al., 2004). Compared with some gene fragments, such as COI (cytochrome c oxidase subunit 1) and 16S rRNA, mitogenome sequences can better elucidate evolutionary relationships between species, it has been widely used in phylogenetic researches (Zardoya & Meyer, 1996).

Next-generation sequencing (NGS) have been widely used in phylogenetic analysis, and the study of Neritidae classification has been ongoing for a long period. However, there are insufficient studies on the mitochondrial data and divergence time of neritids. In this study, we chose five neritid species: Clithon corona, Clithon lentiginosum, Clithon squarrosum, Neritina iris, and Septoria lineata, which can live in both fresh and brackish water environments. After sequencing, assembly, annotation, and analysis of the complete mitogenome, we analyzed their basic characteristics in the five species, calculated the average nonsynonymous to synonymous substitution ratio (Ka/Ks) of 19 Neritidae species, constructed the phylogenetic tree of mitogenomes of Gastropoda to analyze the phylogenetic position and relationship in Neritidae, and speculated the differentiation time of neritids.

2 | MATERIALS AND METHODS

2.1 | Sample collection and DNA extraction

Five species of Neritidae C. corona, N. iris, S. lineata, C. squarrosum, and C. lentiginosum were collected from the coastal area of Huizhou, Guangdong Province, China (Table 1). The preliminary morphological identification of these samples was carried out by consulting the taxonomic experts of the Marine Biological Museum of Zhejiang Ocean University. Store samples in absolute ethanol, take a small piece of fresh foot tissue to extract total DNA by salting-out method (Aljanabi & Martinez, 1997), and store at −20°C.

2.2 | Mitogenome sequencing, assembly, and annotation

The complete mitogenomes of five species were sequenced on the Illumina Hiseq X Ten platform by Originging Bio-pharm Technology Co., Ltd. (Shanghai, China). The Covaris M220 physical method (ultrasonic) was used to fragment the DNA, and the length of the fragments was 300–500 bp. Then, the DNA fragments were purified to construct a sequencing library. The Illumina HiSeq platform was used for sequencing after library quality inspection, and a 10 Gb data volume was used for sequencing. Data quality control was performed by Trimmomatic v0.39 (http://www.usadellab.org/cms/index.php?page=trimmomatic) (Bolger et al., 2014), filter out low-quality reads, duplicated reads, sequences with an “N” rate greater than 10%, and sequencing linker sequences. Clean data with high quality was obtained and the reads of the five species were de novo assembled using NOVOPlasty assembly software (https://github.com/ndierckx/NOVOPlasty) (Dierckxsens et al., 2017). The stack cluster was compared with reference genome in the GenBank database, and majority of the mitogenome sequence information was obtained. Then, the online software MITOS (http://mitos.bio-inf.uni-leipzig.de/index.py) was used for structural and functional annotation and manual correction (Bernt et al., 2013), the complete mitogenome was finally obtained. Sequenced mitogenomes were uploaded to GenBank database at the National Center for Biotechnology Information (NCBI).

2.3 | Sequence analysis

Circular genome visualization of five species was generated using the online CGView server (http://cgview.ca/) (Stothard & Wishart,
2.4 | Phylogenetic analyses

The phylogenetic analyses of the five species were performed using the sequences of complete mitogenomes from 81 species (Table 2). A total of 74 Gastropoda species from Neritimorpha, Vetigastropoda, Caenogastropoda, Patello gastropoda, and Heterobranchia were downloaded from GenBank (https://www.ncbi.nlm.nih.gov/genbank/) for phylogenetic analysis. Two Veneridae species Dosinia tro nd (NC_037917) and Dosinia japonica (NC_038063) were used as outgroups. The sequence of the 13 PCGs of each species were identified using DAMBE 7 (Xia, 2018), the PCGs of each sample were concatenated together in the same order, the tree building sequence set was obtained by combining them in a unified sequence. The PCGs sequences of these 81 species were aligned using ClustalW of MEGA-X. Nucleotide substitution saturation was analyzed using DAMBE 7 to evaluate whether these sequences were suitable for phylogenetic tree construction.

The Bayesian inference (BI) method of the program MrBayes 3.2.7a (Ronquist et al., 2012) and the maximum likelihood (ML) method of IQ-tree 2.1.3 (Minh et al., 2020) were used to analyze the phylogenetic relationships. The Bayesian method model measurement firstly used PAUP 4 (Swofford, 2002) software for format conversion, and then used MRMTGUI (Nhuin, 2005) software to associate PAUP 4, ModelTest 3.7 (Posada, 2005) and MRModelTest 2.3 (Nylander et al., 2004) programs to determine the best alternative model under the Akaike information criterion (AIC) as GTR + I + G. BI analysis was performed using two Markov chain Monte Carlo (MCMC) run with 2 million generations, and sampling was performed once every 10000 generations. The first 25% of trees were discarded as burn-in, and convergence for independent operation was evaluated using the mean standard deviation of the splitting frequency (≤0.01).

The ML tree best fit replacement model (GTR + F + I + G4) selected by Bayesian information criterion (BIC) using ModelFinder (Kalyaanamoorthy et al., 2017), setting the boot copy number with 1000 ultra-fast bootstraps in order to reconstruct the consensus tree. Finally, the phylogenetic tree was viewed, edited, and visualized using the Figtree 1.4.4 (Rambaut, 2018) software.

3 | RESULTS AND DISCUSSION

3.1 | Genome structure, composition, and skewness

The complete mitogenome sequences of the five Nerita species consist of 15,975 bp (C. corona), 15,885 bp (C. lentiginosum), 15,905 bp (C. squarrosus), 15,618 bp (N. iris), and 15,697 bp (S. lineata), the smallest being for N. iris and the largest for C. corona. The GenBank accession numbers are MZ189741, MZ152905, MZ297477, MZ189742, and MZ315041, respectively (Figure 1). They are all closed, circular, double-stranded DNA molecules, containing 37 typical coding genes, including 13 PCGs, 22 tRNA genes, two rRNA genes (12S rRNA and 16S rRNA), and a control region (CR). Among them, 15 genes (seven PCGs and eight tRNA genes) are located on the heavy chain, while the others were located on the light chain (Figure 1). The longest gene was ND5, with a length of 1702 to 1717 bp, and the shortest was the ATP8 gene, with a consistent length of only 165 bp (Table 3).

In the five mitogenomes at present study, the average AT content was higher than CG, with a bias of 64.90%. The average AT-skew was ~0.0545, and GC-skew was 0.1486 (Table 4). The base content of As was lower than that of Ts, and the base content of Gs was higher than that of Cs. In general, the average content of each species in...
Subclass	Family	Species	Size (bp)	Accession no.
Heterobranchia	Placobranchidae	Elysia cornigera	14,118	NC_035489
	Plakobranchus ocellatus	14,173	AP014544	
Aplysiidae	Aplysia dactylo molea	14,128	DQ991927	
	Aplysia kurodai	14,131	KF148053	
Onchidiidae	Peronia peroni	13,968	JN619346	
	Platevindex mortoni	13,991	NC_013934	
Ellobiidae	Myosotella myosotis	14,246	NC_012434	
	Auriculinella bidentata	14,135	JN606066	
	Ellobium chinense	13,979	NC_034292	
	Carychi um tridentatum	13,908	KT696545	
	Ovatella vulc oni	14,274	JN615139	
Volvatellidae	Ascobulla fragilis	14,745	AY345022	
Siphonariidae	Siphonaria gigas	14,514	NC_016188	
	Siphonaria pectinata	14,065	NC_012383	
Polyceridae	Nembrotha kubaryana	14,395	NC_034920	
	Roboaistra europaea	14,472	NC_004321	
	Notodoris gardineri	14,424	NC_015111	
Patellogastropoda	Nacellidae	Nacella clypeater	16,742	KT990124
		Nacella magellanica	16,663	KT990125
		Nacella concinna	16,761	KT990126
		Cellana grata	16,181	MW722939
		Cellana nigrolineata	16,153	LC600801
		Cellana radiata	16,194	MH916651
	Patella ferruginea	14,400	MH916654	
	Patella pellucida	14,949	OU795045.1	
	Patella vulgata	14,808	MH916653	
Pectinodontidae	Bathycmaela lactea	18,446	MW309841	
	Bathycmaela nipponica	16,792	MF095859	
Caenogastropoda	Muricidae	Ceratostoma burnettii	15,334	NC_046569
		Ceratostoma roriflum	15,338	MK411750
		Ocinebrellus falcatus	15,326	NC_046052
		Boreotrophon candelabrum	15,265	NC_046505
	Conidae	Conus betulinus	16,240	NC_039922
		Conus tulipa	15,756	KR006970
	Naticidae	Euspira silva	15,315	NC_046593
		Euspira pila	15,244	NC_046703
		Mammilla kurodai	15,309	NC_046596
Pomatiopsidae	Oncomelania quadrasi	15,184	LC276227	
Muricidae	Chicoreus torrefactus	15,359	NC_039164	
	Indothis lacer	15,272	NC_037221	
	Rapana venosa	15,272	NC_011193	
	Menathais tuberosa	15,294	NC_031405	
Clavatulidae	Turricula nelliae spuria	16,453	MK251986	
	Turritella bacillum	15,868	NC_029717	
the complete mitogenome was T > A > G > C (Table 3), which is consistent with the reported complete neritids mitogenomes (Arquez et al., 2014; Feng et al., 2020, 2021).

3.2 | Protein-coding genes and codon usage

The mitogenome of the Neritidae in this study contains 13 PCGs, including a cytochrome b (Cyt b), two ATPases (ATP6 and ATP8), three cytochrome oxidases (COI–III), and seven NADH dehydrogenases (ND1–6 and ND4L). The length of the PCGs in these five species is between 11,054 and 11,140 bp (Table 3). The base composition of these species also showed a high AT bias, with the highest AT content being seen in S. lineata, at 65.75%. The AT bias values of each species were negative, in addition to N. iris at −0.07, the values of the other four species are −0.05, with the T base content being higher than that of the A base. In these five neritid species, the start codon was ATN, almost all genes initiated with ATG, and only a few genes initiated with ATA (Table 5). The majority of the 13 PCGs terminated with TAG or TAA as stop codons, and some of the PCGs terminated with T as an incomplete codon, which was often found in ND2 and ND5. This incomplete stop codon was usually

Table 2 (Continued)

Subclass	Family	Species	Size (bp)	Accession no.
Vetigastropoda	Turbinidae	Angaria neglecta	19,470	NC_028707
		Astratium haematragum	16,310	NC_031858
		Bolma rugosa	17,432	NC_029366
		Lunella granulate	17,190	NC_031857
Tegulidae	Chlorostoma argyrostromum	17,780	KX298892	
	Omphalius nigerinus	17,755	NC_031862	
	Tegula brunnea	17,690	NC_016954	
	Tegula lividomaculata	17,375	NC_029367	
Haliotiidae	Haliotis iris	17,131	NC_031361	
Trochidae	Gibbula umbilicalis	16,277	NC_035682	
	Monodonta labio	16,440	MK240320	
	Stomatella planulata	17,151	NC_031861	
	Umbonium thomasi	15,998	MH729882	
Peltospiridae	Chrysomallon squamiferum	15,388	AP013032	
	Gigantopelta aegis	15,176	MT312227	
Phasianellidae	Phasianella solida	16,698	NC_028709	
Neritimorpha	Neritidae	Clithon corona*	15,975	MZ189741
		Clithon lentiginosum*	15,885	MZ152905
		Clithon squarrosus*	15,905	MZ297477
		Clithon ovalaniense	15,705	MT568501
		Clithon retroptictus	15,802	NC_037238
		Clithon sowerbianum	15,919	MT230542
		Nerita iris*	15,678	MZ189742
		Neritina violacea	15,710	KY021066
		Septaria lineata*	15,697	MZ315041
		Nerita albigilla	15,314	MK516738
		Nerita balteata	15,571	MN477253
		Nerita chamaeleon	15,716	MT161611
		Nerita undata	15,583	MN477254
		Nerita versicolor	15,866	KF728890
		Nerita fulgurans	15,343	KF728888
		Nerita tessellata	15,741	KF728889
		Nerita japonica	15,875	MN747116
		Nerita melanotragus	15,261	GU810158
		Nerita yoldii	15,719	MK395169
supplemented during transcription to obtain a complete stop codon T(AA) (Ojala et al., 1981).

The amino acid composition used in PCGs was relatively similar in all five species (Figure 2). The use of Leu, Lys, Ser, Phe, and Val were relatively frequent, and His and Arg were the least common amino acids. Comparing the relative synonymous codon usage (RSCU) of five species, the result showed that the average frequency of GCU (Ala), CCU (Pro), UUA (Leu2), and ACU (Thr) codons were higher than others. The amino acid content and codon usage of the 13 PCGs in these five species are similar.

3.3 | Transfer RNAs, ribosomal RNAs, and CR

Like other complete neritids mitogenomes, there are 22 tRNA genes in these five species, including two larger regions: MYCWQGE (tRNA-Met, Tyr, Cys, Trp, Gln, Gly, Glu) and KARNI (tRNA-Lys, Ala, Arg, Asn, Ile) between 12S rRNA and ND3, and separated by COIII gene. The other ten tRNAs are scattered between PCGs and rRNAs (Figure 1, Table 6). The average total length of the tRNAs is 1467 bp, ranging from 56 to 72 bp (Tables 4 and 7). All of the tRNAs show significant AT base bias, with an AT content of 63.23%. The AT-skew and GC-skew are -0.0187 and 0.1725, respectively, showing a slight bias toward the use of T and a large bias toward C (Table 4).

The average length of the rRNAs is 2198 bp, with the shortest lengths of 16sRNA and 12sRNA being 1328 and 864 bp, respectively (Tables 4 and 7). These also show an AT base bias, with an AT content of 67.16%. Both the AT-skew (0.0841) and GC-skew (0.0405) are positive, indicating a bias toward A and G.

In the complete mitogenome of the Neritidae, the control region (CR) is the largest noncoding region, and the mitochondrial CR of all neritid species in this study was located between tRNA-Glu and COI, with a length of 527–891 bp (Table 6). This area usually presents a high AT bias, being an A + T rich area. This is an essential element involved in mitogenome replication and transcription initiation (Fernández-Silva et al., 2003).

3.4 | Ka/Ks

Ka/Ks has been used as an effective way to understand the dynamic evolution of protein-coding genes. Therefore, the Ka/Ks ratios of the 13 PCGs were calculated using the 19 sequenced Neritidae species in order to study the relationship between evolution and selection pressure (Figure 3). The results showed that the Ka/Ks ratios of the PCGs range from 0.053 for COI to 0.712 for ND6. COI has the lowest Ka/Ks value, suggesting that COI is under the lowest selective pressure to conserve the protein sequence. It is therefore widely used as a potential molecular marker in species identification and phylogenetic studies (Astrin et al., 2016).

In general, a gene is considered to be positively selected only when the Ka/Ks ratio is greater than 1. The majority of the 13 PCGs genes of the species involved in this study had relatively lower Ka/
Table 3: Composition and skewness in the mitogenomes of five neritid species
Mitogenome

Mitogenome
COI
COII
ATP8
ATP6
COIII
ND3
ND1
ND5
ND4
ND4L
ND6
Cytb
ND2

(Continues)
S1	Size(bp)	A(%)	T(%)	G(%)	C(%)	A+T(%)	AT-skew	Size(bp)	A(%)	T(%)	G(%)	C(%)	A+T(%)	AT-skew
tRNAs	1471	30.80	31.61	22.16	15.43	62.41	-0.01	1417	31.12	32.67	21.38	14.82	63.79	-0.02
rRNAs	2204	35.53	30.54	17.60	16.33	66.07	0.08	2197	36.55	30.45	17.25	15.75	67.00	0.09
PCGs	11,140	25.89	37.35	18.23	18.53	63.24	-0.18	11,078	25.46	38.02	18.51	18.01	63.48	-0.20
Mitogenome	15,697													
COI	1548													
COII	690													
ATP8	165													
ATP6	702													
COIII	780													
ND3	354													
ND1	933													
ND5	1716													
ND4	1323													
ND4L	294													
ND6	495													
Cytb	1137													
ND2	1003													
tRNAs	1478													
rRNAs	2204													
PCGs	11,140													
Ks ratios, ratio is less than 1. Therefore, we suggest that these PCGs may be under the influence of purification selection.

3.5 Phylogenetic relationships

The 13 PCGs of the mitogenome of 79 species from five subclasses of Gastropoda (Vetigastropoda, Caenogramopoda, Neritimorpha, Patellogramopoda, and Heterobranchia) and other two species as outgroups were used to construct phylogenetic trees (Figure 4, Table 2). The result showed that the ML tree and BI tree have a consistent topological structure, therefore, only the topology of BI tree was displayed, with strong bootstrapping for the ML tree and posterior probability values.

Our phylogenetic analysis showed that Neritimorpha is closely related to Caenogastropoda and Patellogastropoda, five subclasses within the Gastropoda show the following relationship: (Vetigastropoda + Caenogastropoda + Neritimorpha + Patellogastropoda + Heterobranchia), which was consistent with Feng et al. (2020, 2021). Kocot et al. (2011) analyze the phylogenetic relationships of Gastropoda species showing that Caenogastropoda and Heterobranchia were sister groups, and Neritimorpha is closely related to them. Patellogastropoda is on the outermost side of the phylogenetic tree. Osca et al. (2014) constructed a
FIGURE 2 The frequency of mitochondrial PCG amino acids and relative synonymous codon usage (RSCU) of five newly sequenced neritid mitogenomes.
phylogenetic tree, finding a different result, Neritimorpha is closely related to Caenogastropoda, and then closely with Vetigastropoda. Subsequently, Uribe, Colgan, et al. (2016) added a subclass, Neomphalina, based on the research of Osca. This subclass is between Heterobranchia and Vetigastropoda in terms of evolutionary time. Zapata et al. (2014) assessed the various hypotheses that have been put forward about the inner branches of gastropod evolutionary trees in recent decades, concluding that Neritimorpha appeared on the outermost branch only once.

The phylogenetic tree of the Neritidae showed that the genus *Neritina* and *Septaria* clustered together, as a sister group with *Clithon*, the genus *Nerita* is independently distributed in Neritimorpha. According to their living habits, *Nerita* species were the only organisms widely distributed in the marine environment. Species from the genus *Neritina*, *Septaria*, and *Clithon* were common in fresh and brackish water, so they had relatively closed evolutionary relationships. Phylogenetic relationships analysis showed that all of Neritidae species were grouped together, all the posterior probability values

Table 6: Intergenic nucleotides of five neritid species

Intergenic	Cc	Cl	Cs	Ni	Sl	Summary
COI	11	11	11	11	11	11
COII	−5	2	1	1	1	−5 to 2
tRNAAsp	0	0	0	0	0	0
ATP8	6	6	6	6	6	6
ATP6	31	22	28	22	22	22–31
tRNAAsp	0	0	0	0	0	0
ND5	0	0	0	0	0	0
tRNAAsp	0	0	0	0	0	0
ND4	2	2	2	2	2	2
ND4L	4	4	4	4	4	4
tRNAThr	8	8	9	8	3	3–9
tRNAAsp(CUN)	5	5	5	5	5	5
Cytb	10	10	11	10	19	10–19
ND6	7	7	7	7	7	7/13
tRNAPro	1	1	1	1	1	1
ND1	0	0	0	0	0	0
tRNAAsp(UUR)	0	0	0	14	4	0
tRNAAsp(CUN)	−25	−25	−25	−22	−22/−25	
16S rRNA	−4	−4	−8	−10	−10	−4 (−10)
tRNAVal	−1	−1	−1	−1	−1	−1
12S rRNA	−1	−1	−1	−1	−1	−1
tRNAMet	4	4	4	5	5	4–5
tRNAThr	4	4	4	5	6	4–6
tRNAPro	0	0	0	0	0	0
tRNAThr	0	0	0	0	0	0
tRNAAsn	10	11	10	10	13	10–13
tRNAThr	1	1	1	1	0	0/1
ND3	3	3	3	4	4	3/4
tRNAAsp(AGY)	9	9	9	9	9	9
ND2	99	99	99	99	99	99
were 1, and the bootstraps values were greater than 78. Using COI and 16s rRNA to conduct a phylogenetic tree, the results of Bunje and Lindberg (2007) show the genus Neritina and Septaria as sister groups, Nerita is a separate branch in the Neritidae. Chee and Mohd (2014) constructed a NJ tree using DNA barcoding of 12 species in the Neritidae, finding that Neritina and Clithon had a closed phylogenetic relationship, as sister groups with Nerita, this result was also consistent with recent research. Such branching results correspond to their living environment, species in Neritidae were distinguished by the difference in the salt content of the living environment.

gene	Cc	Cs	Cl	Ni	Sl	Summary
tRNA^{Asp}	66	67	66	66	67	66/67
tRNA^{Phe}	66	66	66	68	68	66/68
tRNA^{His}	66	66	66	66	66	66
tRNA^{Thr}	68	68	68	68	68	68
tRNA^{Met}	68	67	68	67	67	67/68
tRNA^{Tyr}	68	68	68	68	69	68/69
tRNA^{Cys}	64	64	64	65	65	64/65
tRNA^{Pro}	66	66	66	67	66	66/67
tRNA^{Ala}	67	67	67	67	67	67/68
tRNA^{Thr}	68	67	68	68	69	68/69
tRNA^{Met}	68	67	68	68	69	69
tRNA^{Tyr}	68	68	68	68	68	68
tRNA^{Cys}	64	64	64	65	65	64/65
tRNA^{Pro}	66	66	66	67	66	66/67
tRNA^{Ala}	67	67	67	67	67	67
tRNA^{Thr}	68	67	68	68	69	68/69
tRNA^{Met}	68	67	68	68	69	69
tRNA^{Tyr}	68	68	68	68	68	68
tRNA^{Cys}	64	64	64	65	65	64/65
tRNA^{Pro}	66	66	66	67	66	66/67
tRNA^{Ala}	67	67	67	67	67	67
tRNA^{Thr}	68	67	68	68	69	68/69
tRNA^{Met}	68	67	68	68	69	69
tRNA^{Tyr}	68	68	68	68	68	68
tRNA^{Cys}	64	64	64	65	65	64/65
tRNA^{Pro}	66	66	66	67	66	66/67
tRNA^{Ala}	67	67	67	67	67	67
tRNA^{Thr}	68	67	68	68	69	68/69
tRNA^{Met}	68	67	68	68	69	69
tRNA^{Tyr}	68	68	68	68	68	68
tRNA^{Cys}	64	64	64	65	65	64/65
tRNA^{Pro}	66	66	66	67	66	66/67
tRNA^{Ala}	67	67	67	67	67	67
tRNA^{Thr}	68	67	68	68	69	68/69
tRNA^{Met}	68	67	68	68	69	69
tRNA^{Tyr}	68	68	68	68	68	68

FIGURE 3 The average nonsynonymous to synonymous substitution ratio (Ka/Ks) of all 13 PCGs of 19 Neritidae species
3.6 | Divergence times

Our results showed that Neritimorpha originated from about 216.53 Mya (95% highest posterior density (HPD) = 206.56–226.37 Mya) (Figure 5), which is close to previous studies (Feng et al., 2020, 2021). The first divergence of the Neritimorpha was in the Triassic period, the first period of Mesozoic, which was the transition period involving the disappearance of Paleozoic biota and the formation of post-modern biota. During this period, the marine invertebrate fauna underwent great changes (Uribe, Kano, et al., 2016). In the Neritidae, the differentiation of the four genera occurred about 102.74 Mya, the results obtained from this analysis were slightly older than the age of the origin of the Spadonidae estimated in previous reports (Feng et al., 2020, 2021). This may be due to differences...
between results from the fossil record and different evolutionary classification methods, which are limited by their different areas of experience and expertise. Further revision of the fossil record of the genus is needed to address the attribution of the different genera.

The genus Nerita was differentiated in 70.94 Mya, and other three genera were differentiated in 71.35 Mya. These five species differentiated in the Paleogene and Neogene of Cenozoic (23.03–65.50 Mya), the period of the emergence and evolution of modern organisms. The most striking effect of the Early Tertiary was the Himalayan movement: this was the period when the Qinghai-Tibet Plateau began to rise. At this time, the continental transgression of China decreased rapidly and marine sediments appeared in the marginal areas. This crustal movement might have contributed to the rapid differentiation of the neritids during this period.

4 | CONCLUSIONS

We sequenced the complete mitogenomes of five species in Neritidae, and analyzed basic characteristics of gene sequences, found the genome size, gene order, and nucleotide composition were similar with previous findings. The Ka/Ks ratios of 13 PCGs in 19 Neritidae species showing that these genes were under purifica-
tion selection. Phylogenetic analyses indicated genus Neritina and Septaria were sister groups, and clustered with Clithon, genus Nerita was a separate branch in Neritidae. According to the estimation of divergence times, five species differentiated in the Cenozoic. This result provides a reference for the study of phylogenetic analysis and evolution research. In this study, three of five species belong to genus Clithon, data from genus Neritina and Septaria are limited, further studies are needed to follow up these findings and explore the evolutionary processes of neritids.

AUTHOR CONTRIBUTION

Jing Miao: Data curation (equal); Writing – original draft (equal). Jiantong Feng: Data curation (equal); Writing – original draft (equal). Xiaojuan Liu: Methodology (equal); Resources (equal). Chengrui Yan: Methodology (equal); Resources (equal). Yingying Ye: Funding acquisition (lead); Supervision (lead); Writing – review & editing (lead). Jiji Li: Funding acquisition (lead); Supervision (lead); Writing – review & editing (lead). Kaida Xu: Data curation (supporting); Writing – original draft (supporting). Baoying Guo: Data curation (supporting); Writing – original draft (supporting). Zhenming Lü: Data curation (supporting); Writing – original draft (supporting).
ACKNOWLEDGEMENTS
This work was financially supported by the Fundamental Research Funds for Zhejiang Provincial Universities and Research Institutes (No. 2021J005), National Key R&D Program of China (Grant No.: 2019YFD0901204), the Key R&D Program of Zhejiang Province (Grant No.: 2019C02056), the Foundation of Guangdong Provincial Key Laboratory of Marine Biotechnology (No. GPKLMB202103) and the Project of Bureau of Science and Technology of Zhoushan (No. 2020C21026 and No. 2021C21017).

CONFLICT OF INTEREST
All the authors declared no potential interest.

DATA AVAILABILITY STATEMENT
The following information was supplied regarding the availability of DNA sequences: The complete mitogenomes of Clithon corona, Clithon lentiginosum, Clithon squarrosum, Nerita iris, and Septaria lineata are deposited in GenBank of NCBI under accession number MZ189741, MZ152905, MZ229747, MZ189742, and MZ315041, respectively.

ORCID
Yingying Ye https://orcid.org/0000-0003-0056-030X

REFERENCES
Abdou, A., Keith, P., & Galzin, R. (2015). Freshwater neritids (Mollusca: Gastropoda) of tropical islands: Amphidromy as a life cycle, a review. Revue D Ecologie, 70(4), 387–397.
Aljanabi, S. M., & Martinez, I. (1997). Universal and rapid salt-extraction of high quality gnomic dna for pcr-based techniques. Nucleic Acids Research, 25(22), 4692–4693. https://doi.org/10.1093/nar/25.22.4692
Arquez, M., Colgan, D., & Castro, L. R. (2014). Sequence and comparison of mitochondrial genomes in the genus Nerita (Gastropoda: Neritimorpha: Neritidae) and phylogenetic considerations among gastropods. Marine Genomics, 15, 45–54. https://doi.org/10.1016/j.margen.2014.04.007
Astrin, J. J., Hfer, H., Spelda, J., Holstein, J., & Muster, C. (2016). Towards a DNA barcode reference database for spiders and harvestmen of Germany. PLoS One, 11(9), e0162624. https://doi.org/10.1371/journal.pone.0162624
Bernt, M., Donath, A., Jühlung, F., Externbrink, F., Florentz, C., Fritsch, G., Pütz, J., Middendorf, M., & Stadler, P. F. (2013). MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 69, 313–319. https://doi.org/10.1016/j.ympev.2012.08.023
Bolger, A. M., Marc, L., & Bjorn, U. (2014). Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
Bunje, P., & Lindberg, D. R. (2007). Lineage divergence of a freshwater snail clade associated with post-Tethys marine basin development. Molecular Phylogenetics and Evolution, 42(2), 373–387. https://doi.org/10.1016/j.ympev.2006.06.026
Chee, S. Y., & Mohd Nor, S. A. (2014). DNA barcoding reveals neritid diversity (Mollusca: Gastropoda) diversity in Malaysian waters. Mitochondrial DNA Part A, 27(3), 2282–2284. https://doi.org/10.3109/19401736.2014.987237
Curole, J. P., & Kocher, T. D. (1999). Mitogenomics: Digging deeper with complete mitochondrial genomes - sciencedirect. Trends in Ecology and Evolution, 14(10), 394–398. https://doi.org/10.1016/S0169-3347(99)01660-2
Dierckxsens, N., Mardulyn, P., & Smits, G. (2016). NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Research, 43(4), e18. https://doi.org/10.1093/nar/gkw955
Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29(8), 1969–1973. https://doi.org/10.1093/molbev/msss075
Feng, J. T., Guo, Y. H., Yan, C. R., Ye, Y. Y., Li, J. J., Guo, B. Y., & Lü, Z. M. (2020). Sequence comparison of the mitochondrial genomes in two species of the genus Nerita (Gastropoda: Neritimorpha: Neritidae): Phylogenetic implications and divergence time estimation for Neritimorpha. Molecular Biology Reports, 47(10), 7903–7916. https://doi.org/10.1007/s11033-020-05870-0
Feng, J. T., Xia, L. P., Yan, C. R., Miao, J., Ye, Y. Y., Li, J. J., Guo, B. Y., & Lü, Z. M. (2021). Characterization of four mitochondrial genomes of family Neritididae (Gastropoda: Neritimorpha) and insight into its phylogenetic relationships. Scientific Reports, 11(1), 1–15. https://doi.org/10.1038/s41598-021-9313-0
Fernández-Silva, P., Enriquez, J. A., & Montoya, J. (2003). Replication and transcription of mammalian mitochondrial DNA. Experimental Physiology, 88(1), 41–56. https://doi.org/10.1113/ehp880214
Frey, M. A. (2010). The relative importance of geography and ecology in species diversification: Evidence from a tropical marine intertidal snail (Nerita). Journal of Biogeography, 37(8), 1515–1528. https://doi.org/10.1111/j.1365-2699.2010.02283.x
Frey, M. A., & Vermeij, G. J. (2008). Molecular phylogenies and historical biogeography of a circumtropical group of gastropods (Genus: Nerita): Implications for regional diversity patterns in the marine tropics. Molecular Phylogenetics and Evolution, 48(3), 1067–1086. https://doi.org/10.1016/j.ympev.2008.05.009
Hamish, G. S., Jonathan, M. W., & Thomas, E. E. (2007). Taxonomy and nomenclature of black nerites (Gastropoda: Neritimorpha: Nerita) from the South Pacific. Invertebrate Systematics, 21(3), 229–237. https://doi.org/10.1071/IS06038
Hassanin, A., Leger, N. E. L. L. Y., & Deutsch, J. (2005). Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of Metazoa, and consequences for phylogenetic inferences. Systematic Biology, 54(2), 277–298. https://doi.org/10.1080/10635150590947843
Hedges, S. B., Dudley, J., & Kumar, A. S. (2006). TimeTree: A public knowledge-base of divergence times among organisms. Bioinformatics, 22(23), 2971–2972. https://doi.org/10.1093/bioinformatics/btl505
Holthuis, B. V. (1995). Evolution between marine and freshwater habitats: a case study of the gastropod suborder Neritopsina. Doctoral Dissertation University of Washington.
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., Von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast model selection foraccurate phylogenetic estimates. Nature Methods, 14(6), 587–589. https://doi.org/10.1038/nmeth.4285
Kano, Y., Chiba, S., & Kase, T. (2002). Major adaptive radiation in neritopsine gastropods estimated from 28s rRNA sequences and fossil records. Proceedings: Biological Sciences, 269(1508), 2457–2465. https://doi.org/10.1098/rspb.2002.2178
Kocot, K. M., Cannon, J. T., Todt, C., Citarella, M. R., Kohn, A. B., Meyer, A., Santos, S. R., Schander, C., Moroz, L. L., Lieb, B., & Halanych, K. M. (2011). Phylogenomics reveals deep mulluscan relationships. Nature, 477(7365), 452–456. https://doi.org/10.1038/nature10382
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., Von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. *Molecular Biology and Evolution*, 37(5), 1530–1534. https://doi.org/10.1093/molbev/msaa015

Nuin, P. (2005). MrM1TGUI 1.0 (version 1.6). Program distributed by the author at http://www.genedrift.org/mrtgui.php

Nylander, J. A. A. (2004). MrModeltest 2.3. Program distributed by the author. Evolutionary Biology Centre, Uppsala University. http://www.abc.se/~nylander

Ojala, D., Montoya, J., & Attardi, G. (1981). tRNA punctuation model of RNA processing in human mitochondria. *Nature*, 290(5806), 470–474. https://doi.org/10.1038/290470a0

Osca, D., Templado, J., & Zardoya, R. (2014). The mitochondrial genome of Ifremeria nautili and the phylogenetic position of the enigmatic deep-sea Abyssochrysoidea (Mollusca: Gastropoda). *Gene*, 547(2), 257–266. https://doi.org/10.1016/j.gene.2014.06.040

Posada, D. (2005). Modeltest: A tool to select the best-fit model of nucleotide substitution. Version 3.7. http://www.darwin.uvigo.es

Postaire, B., Bruggemann, J. H., Magalon, H., & Faure, B. (2014). Evolutionary dynamics in the southwest Indian Ocean marine biodiversity hotspot: A perspective from the rocky shore gastropod genus Nerita. *PLoS One*, 9(7), e95040. https://doi.org/10.1371/journal.pone.0103393

Rafinesque, C. S. (1815). *Analyse de la nature ou Tableau de l’univers et des corps organisés*. *Palermo*, 1–224. https://doi.org/10.5962/bhl.title.106607

Rambaut, A. (2018). FigTree, version 1.4.4. Accessed November 26. http://tree.bio.ed.ac.uk/software/figtree/

Rambaut, A., & Suchard, M. A. (2014). Tracer v1.6. http://tree.bio.ed.ac.uk/software/tracer/

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology*, 61(3), 539–542. https://doi.org/10.1093/sysbio/sys029

Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. *Molecular Biology and Evolution*, 34(12), 3299–3302. https://doi.org/10.1093/molbev/msx248

Sasaki, T., & Ishikawa, H. (2002). The first occurrence of a neritopsine gastropod from a phreatic community. *Journal of Molluscan Studies*, 68(3), 286–288. https://doi.org/10.1093/mollus/68.3.286

Stothard, P., & Wishart, D. S. (2005). Circular genome visualization and exploration using CGView. *Bioinformatics*, 21(4), 537–539. https://doi.org/10.1093/bioinformatics/bti054

Swofford, D. L. (2002). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10. mac version.

Tan, S. K., & Clements, R. (2008). Taxonomy and distribution of the Neritidae (Mollusca: Gastropoda) in Singapore. *Zoological Studies*, 47(4), 481–494. https://doi.org/10.1093/beheco/arv088

Uribe, J. E., Colgan, D., Castro, L. R., Kano, Y., & Zardoya, R. (2016). Phylogenetic relationships among superfamilies of Neritimorpha (Mollusca: Gastropoda). *Molecular Phylogenetics and Evolution*, 104, 21–31. https://doi.org/10.1016/j.ympev.2016.07.021

Uribe, J. E., Irisarri, I., Templado, J., & Zardoya, R. (2019). New Patellogastropod mitogenomes help counteracting long-branch attraction in the deep phylogeny of gastropod mollusks. *Molecular Phylogenetics and Evolution*, 133, 12–23. https://doi.org/10.1016/j.ympev.2018.12.019

Uribe, J. E., Kano, Y., Templado, J., & Zardoya, R. (2016). Mitogenomics of vetigastropoda: Insights into the evolution of pallial symmetry. *Zoologica Scripta*, 45(2), 145–159. https://doi.org/10.1111/zsc.12146

William, J., Ballard, O., & Whitlock, M. C. (2004). The incomplete natural history of mitochondria. *Molecular Ecology*, 13(4), 729–744. https://doi.org/10.1046/j.1365-294X.2003.02063.x

Wolstenholme, D. R. (1992). Animal mitochondrial DNA: Structure and evolution. *International Review of Cytology*, 141, 173–216. https://doi.org/10.1016/0074-7696(92)82066-5

Xia, X. (2018). DAMBE7: New and improved tools for data analysis in molecular biology and evolution. *Molecular Biology and Evolution*, 35(6), 1550–1552. https://doi.org/10.1093/molbev/msy073

Zapata, F., Wilson, N. G., Howison, M., Andrade, S. C. S., Jörger, K. M., Schrödl, M., Goetz, F. E., Giribet, G., & Dunn, C. W. (2014). Phylogenomic analyses of deep gastropod relationships reject orthogastropoda. *Proceedings of the Royal Society B Biological Sciences*, 281(1794), 20141739. https://doi.org/10.1098/rspb.2014.1739

Zardoya, R., & Meyer, A. (1996). Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates. *Molecular Biology and Evolution*, 13(7), 933–942. https://doi.org/10.1093/oxfordjournals.molbev.a025661

Zhang, S. P. (2008). Chinese marine shellfish atlas. *China Ocean Press*, 46–50.

How to cite this article: Miao, J., Feng, J., Liu, X., Yan, C., Ye, Y., Li, J., Xu, K., Guo, B., & Lü, Z. (2022). Sequence comparison of the mitochondrial genomes of five brackish water species of the family Neritidae: Phylogenetic implications and divergence time estimation. *Ecology and Evolution*, 12, e8948. https://doi.org/10.1002/ece3.8948