Stability Analysis of Systems With Time-Varying Delays via an Improved Integral Inequality

JUNKANG TIAN AND ZERONG REN
School of Mathematics, Zunyi Normal University, Zunyi 563006, China
Corresponding author: Junkang Tian (tianjunkang1980@163.com)

This work was supported by the Department of Science and Technology of Guizhou Province of China through the New Academic Talents and Innovation Exploration Project under Grant (Qian ke he pingtai rencai[2017]5727-19).

I. INTRODUCTION

Over the past few decades, stability analysis has been one of hot issues for many dynamic systems such as delayed differential systems [1], nonlinear stochastic networked control systems [2], time-delay systems [3]. For the stability of time-delay systems, the LKF method has been widely used to get stability results by LMI [4]. Choosing LKF [5] and estimating the derivative [6]–[10] are the main factors in leading to conservatism. Therefore, how to establish effective integral inequality techniques for this estimation becomes an important task to get less conservative results for the systems with time-varying delays. The Jensen inequality [11] has been widely used to estimate the bound of the single integral term although it may introduce undesirable conservatism. Recently, to overcome the conservatism, the Wirtinger-based inequality was introduced in [12]. Then, further improvements were proposed by using a free matrix-based integral inequality [13]. More recently, based on Legendre polynomials, some new integral inequalities were derived in [14], which include Jensen and Wirtinger-based inequalities and also the recent inequalities [15], [16] as particular cases. However, these new inequalities were mainly used to the case of constant delays [14], [15]. Very recently, various improved inequalities were proposed to obtain stability criteria for systems with time-varying discrete delays, such as improved Jensen inequality [17], second-order Bessel-Legendre inequality [18], generalized reciprocally convex inequality [19], quadratic-partitioning based inequality [20], generalized free-weighting-matrix based inequality [21], generalized free-matrix-based integral inequality [22], [23]. Among all of the inequalities, the generalized free-matrix-based integral inequality [23] can reduce the conservatism effectively. The relationship between \(\int_c^d (t-c)\frac{k}{2} y(t)dt \) and \(\int_c^d y(t)dt, \int_c^d \int_{u_1}^t y(t)dtdu_1, \int_c^d \int_{u_1}^t \int_{u_2}^t y(t)dtdu_1du_2 \) was not considered in [17], which motivates further investigation.

This paper presents a generalized integral inequality which includes those in [11], [12], [17], [24] as special cases. Based on the generalized integral inequality, a new stability criterion is proposed. An example is introduced to show the superiority of the proposed criterion. The contributions of our paper are as follows:

- The integral \(\int_a^b y^T(s)\Psi(s)ds \) is estimated as \(\int_a^b y^T(s)P\Psi(s)ds \) based on the generalized integral inequality and the new LKF include fourth integrals, which may obtain more general results.

- In this paper, the relationship between \(\int_c^d (t-c)\frac{k}{2} y(t)dt \) \(\int_c^d y(t)dt, \int_c^d \int_{u_1}^t y(t)dtdu_1, \int_c^d \int_{u_1}^t \int_{u_2}^t y(t)dtdu_1du_2 \) is considered.

Notation: See TABLE 1.
II. PRELIMINARY

Consider the systems described by

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bx(t - h(t)) \\
\frac{dx(t)}{dt} &= \phi(t), \quad t \in [-h_2, 0]
\end{align*}
\]

where \(x(t) \in \mathbb{R}^n\) is the system state, \(A, B\) are \(n \times n\) constant matrices. The time-varying delay \(h(t)\) satisfies

\[
0 \leq h_1 \leq h(t) \leq h_2, \quad h_3 = h_2 - h_1
\]

Lemma 1 ([17]): For \(k = 0, 1, 2, \ldots\), define

\[
\varphi_{2k}(s) = \left(s - \frac{c + d}{2}\right)^{2k} + \sum_{i=0}^{k-1} a_{2k-i} \left(s - \frac{c + d}{2}\right)^{2i},
\]

\[
\varphi_{2k+1}(s) = \left(s - \frac{c + d}{2}\right)^{2k+1} + \sum_{i=0}^{k-1} b_{2k-i} \left(s - \frac{c + d}{2}\right)^{2i+1},
\]

\[
\forall i = 0, 1, 2, \ldots, k - 1,
\]

\[
\int_c^d \varphi_{2k}(s)\varphi_{2k}(s)ds = \int_c^d \varphi_{2k+1}(s)\varphi_{2k+1}(s)ds = 0
\]

Then, we obtain

\[
\int_c^d x^T(t)Rx(t)dt \geq \sum_{i=0}^1 -\Omega_i^T(x)\Omega_i(x)
\]

where \(p_i = \int_c^d \varphi_i^2(s)ds > 0\) and \(\Omega_i(x) = \int_c^d \varphi_i(s)x(s)ds\)

Lemma 2 ([24]): For a continuously function \(F(y) : [c, d] \rightarrow \mathbb{R}^n\), and any \(\alpha \in (c, d)\), then we obtain

\[
\int_a^b dx_1 \int_a^b dx_2 \ldots \int_a^b F(x_{n+1})dx_{n+1} = \frac{1}{n!} \int_a^b (y - \alpha)^nF(y)dy
\]

Lemma 3 ([24]): For any matrix \(P \in \mathbb{S}^n_+\), and any continuously differentiable function \(y : [a, d] \rightarrow \mathbb{R}^n\), then we can obtain

\[
\int_a^d \dot{y}^T(t)Py(t)dt \geq \frac{1}{d-a} \sum_{i=0}^3 \Omega_i^T P \Omega_i
\]

where

\[
\begin{align*}
\Omega_0 &= y(d) - y(a) \\
\Omega_1 &= y(d) + y(a) - \frac{2}{d-a} \int_a^d y(t)dt \\
\Omega_2 &= y(d) - y(a) + \frac{6}{d-a} \int_a^d y(t)dt - \frac{12}{(d-a)^2} \int_a^d \int_a^d y(t)dtdu \\
\Omega_3 &= y(d) + y(a) - \frac{12}{d-a} \int_a^d y(t)dt + \frac{60}{(d-a)^2} \int_a^d \int_a^d y(t)dtdu
\end{align*}
\]

Lemma 4: For a matrix \(P \in \mathbb{S}^n_+\), and any continuously differentiable function \(y : [a, d] \rightarrow \mathbb{R}^n\), then we can obtain

\[
\int_a^d \dot{y}^T(t)Py(t)dt \geq \frac{1}{d-a} \sum_{i=0}^3 \Omega_i^T P \Omega_i
\]

where \(\Omega_i, i = 0, 1, 2, 3\) are the same as in Lemma 3.

Proof: Based on Lemma 1 and Lemma 3, we obtain

\[
\int_a^d \dot{y}^T(s)P\dot{y}(s)ds \geq \sum_{i=0}^3 \frac{1}{p_i} \Omega_i^T \Omega_i + \frac{1}{p_4} \Omega_4^T \Omega_4
\]

where \(\Omega_i, i = 0, 1, 2, 3\) are the same as in Lemma 3.

By Lemma 1, we have

\[
\tilde{\Omega}_4(y) = \int_a^d \varphi_4(s)\dot{y}(s)ds,
\]

\[
\varphi_4(s) = \left(s - \frac{a + d}{2}\right)^4 - \frac{(d-a)^2}{12},
\]

Then, we calculate the values of \(a_{20}\) and \(a_{21}\).

According to the following two equations

\[
\begin{align*}
\int_a^d \varphi_4(s)\varphi_4(s)ds &= 0 \\
\int_a^d \varphi_4(s)\varphi_2(s)ds &= 0
\end{align*}
\]

We have \(a_{20} = \frac{3}{560(d-a)^4}, a_{21} = -\frac{3}{14}(d-a)^2\),

\[
p_4 = \int_a^d \varphi_4^2(s)ds = \frac{1}{44100}(d-a)^9
\]

Then, by Lemma 2, we have

\[
\tilde{\Omega}_4(y) = \int_a^d \varphi_4(s)\dot{y}(s)ds
\]

\[
= \int_a^d \left[(s - a)^4 - 2(s-a)^3(d-a) + \frac{9}{7}(s-a)^2(d-a)^2 - \frac{2}{7}(s-a)(d-a)^3 + \frac{1}{70}(d-a)^4\right]\dot{y}(s)ds
\]
Substituting (10) and (11) into (8) yields (7). The proof is completed.

Remark 1: The integral \(\int_{a}^{d} \dot{y}(s) R_{i}(s) ds \) is estimated as \(V_{ad}(\dot{y}(s)) \geq \frac{1}{\alpha-a} \Phi(\dot{y}(s)) \geq \frac{1}{\alpha-a} \sum_{i=0}^{\infty} R_{i} \), where \(\Phi(\dot{y}(s)) \) includes those in [11], [12], [17], [24], respectively. In this paper, the integral \(\int_{a}^{d} \dot{y}(s) R_{i}(s) ds \) is estimated as \(V_{ad}(\dot{y}(s)) \geq \frac{1}{\alpha-a} \sum_{i=0}^{\infty} R_{i} \), where \(\Phi(\dot{y}(s)) \) includes those in [11], [12], [17], [24] as special cases. This may yield less conservative results.

Lemma 5 ([19]): For any matrices \(Q \in S_{+}^{n}, M, N \in R^{m \times n}, \gamma \in R^{2n \times m} \), \(\forall \alpha \in (0, 1) \), the inequality

\[
-\gamma^{T} \begin{bmatrix}
\frac{1}{\alpha} Q & 0 \\
0 & 1-\alpha Q
\end{bmatrix} \gamma \\
\leq -\gamma^{T} \sum_{i=1}^{n} \tilde{\mu}_{i}^{2} \dot{y}(s) - \gamma^{T} \begin{bmatrix}
(1-\alpha) M_{1}^{T} \\
\alpha M Q^{-1} M^{T} + (1-\alpha) N Q^{-1} N^{T}
\end{bmatrix} \gamma
\]

holds, where

\[
\sum_{i=1}^{n} \tilde{\mu}_{i}^{2} \dot{y}(s) = \sum_{i=1}^{n} \alpha_{i}^{2} \dot{\mu}_{i}^{2}
\]

III. MAIN RESULTS

Theorem 1: For given scalars \(h_{1}, h_{2} \), system (1) is asymptotically stable if there exist matrices \(P \in S_{+}^{n}, Q_{1}, Q_{2}, Q_{3}, Q_{4} \in S_{+}^{n}, N_{1}, N_{2} \in R^{16n \times 5n} \), such that

\[
\Phi(\alpha) = \begin{bmatrix}
\phi_{1}(\alpha) + \phi_{2}(\alpha) \\
\alpha M_{1}^{T} + (1-\alpha) M_{2}^{T}
\end{bmatrix} < 0
\]

holds for \(\alpha = (0, 1) \), where

\[
\phi_{1}(\alpha) = He(\Sigma_{i=0}^{\infty} P \Sigma_{i+1} + \epsilon_{i}^{T} Q_{i} \epsilon_{i} - \epsilon_{i}^{T} Q_{i} \epsilon_{i+1} + \epsilon_{i}^{T} Q_{i} \epsilon_{i+2})
\]

\[
\phi_{2}(\alpha) = \sum_{i=0}^{4} (2i+1) \Sigma_{i+3}^{T} Q_{i} \Sigma_{i+3}
\]

\[
\Sigma(\alpha) = \begin{bmatrix}
\epsilon_{i}^{T} Q_{i} \epsilon_{i} + h_{1}^{2} \epsilon_{i}^{T} Q_{i} \epsilon_{i} + h_{2}^{2} \epsilon_{i}^{T} Q_{i} \epsilon_{i}
\end{bmatrix}
\]

and \(\epsilon_{i} \in R^{n \times 1} \) is defined as

\[
\epsilon_{i} = \begin{bmatrix}
0_{n \times (i-1)n} & I_{n} & 0_{n \times (16-i)n}
\end{bmatrix}
\]

for \(i = 1, 2, \ldots, 16 \).

Proof: Introduce a LKF given by

\[
V(x_{i}) = \eta^{T}(t) P_{i}(t) + \int_{t_{i-\delta_{i}}}^{t_{i}} x^{T}(s) Q_{1} x(s) ds + \int_{t_{i-\delta_{i}}}^{t_{i}} x^{T}(s) Q_{2} x(s) ds
\]

\[
+ \int_{t_{i-\delta_{i}}}^{t_{i}} x^{T}(s) Q_{3} x(s) ds + \int_{t_{i-\delta_{i}}}^{t_{i}} x^{T}(s) Q_{4} x(s) ds
\]

where

\[
\eta(t) = \begin{bmatrix}
\epsilon_{1}^{T}(t) & \int_{t_{i-\delta_{i}}}^{t_{i}} x^{T}(s) ds & \int_{t_{i-\delta_{i}}}^{t_{i}} x^{T}(s) ds & v_{i}^{T}(t)
\end{bmatrix}
\]

\[
v_{i}^{T}(t) = \begin{bmatrix}
\int_{t_{i-\delta_{i}}}^{t_{i}} x^{T}(s) ds & v_{i}^{T}(t)
\end{bmatrix}
\]
\[
\begin{align*}
v_1(t) &= \int_{t-h_1}^{t} \int_{t-h_2}^{t} x(s)ds du_v \\
v_2(t) &= \int_{t-h_1}^{t} \int_{t-h_2}^{t} y(s)ds du_{v_2} du_1 \\
v_3(t) &= \int_{t-h_1}^{t} \int_{t-h_2}^{t} \int_{t-h_3}^{t} y(s)ds du_{v_3} du_2 du_1
\end{align*}
\]

The derivative of \(V(x(t))\) is
\[
\dot{V}(x(t)) = 2\eta^T(t)P\dot{y}(t) + \eta^T(t)Q_1x(t) - x^T(t)(t-h_1)Q_1x(t-h_1) + x^T(t-h_1)Q_2x(t-h_1) - x^T(t-h_2)Q_2x(t-h_2) + h_1\dot{x}(t)Q_3\dot{x}(t) + h_2\dot{x}(t)Q_4\dot{x}(t)
\]
\[
- h_1 \int_{t-h_1}^{t} \hat{x}(t)Q_3\hat{x}(t)ds \\
- h_1 \int_{t-h_2}^{t} \hat{x}(t)Q_4\hat{x}(t)ds
\]

Then, we obtain
\[
\begin{align*}
\dot{V}(x(t)) &= \xi^T(t) \left[H(e^{1}\Sigma^1 P \Sigma_2) + e^{2}_1 Q_1 e_1 - e^{2}_2 Q_1 e_2 + e^{2}_2 Q_2 e_2 \\
&\quad - e^{2}_2 Q_2 e_4 + h_1^2 + e^{2}_0 Q_3 e_0 + h_2^2 + e^{2}_0 Q_4 e_0 \right] \xi(t) \\
&\quad - h_1 \int_{t-h_1}^{t} \hat{x}(t)Q_3\hat{x}(t)ds \\
&\quad - h_1 \int_{t-h_2}^{t} \hat{x}(t)Q_4\hat{x}(t)ds
\end{align*}
\]

where
\[
\xi(t) = \begin{bmatrix}
x^T(t) & x^T(t-h_1) & x^T(t-h_2)
\end{bmatrix}^T
\]
\[
\rho_1(t) = h(t) - h_1, \quad \rho_2(t) = h_2 - h(t)
\]
\[
\phi_1(t) = \begin{bmatrix}
\frac{1}{\rho_1(t)} \int_{t-h_1}^{t-h_1} x^T(s)ds & \frac{1}{\rho_2(t)} \int_{t-h_2}^{t-h_2} x^T(s)ds & 0 & 0
\end{bmatrix}^T
\]
\[
\phi_2(t) = \begin{bmatrix}
\frac{1}{\rho_1(t)} \int_{t-h_1}^{t-h_1} x^T(s)dsdu_v & \frac{1}{\rho_2(t)} \int_{t-h_2}^{t-h_2} x^T(s)dsdu_v & 0 & 0
\end{bmatrix}^T
\]
\[
\phi_3(t) = \begin{bmatrix}
\frac{1}{\rho_1(t)} \int_{t-h_1}^{t-h_1} \int_{t-h_1}^{t-h_1} y^T(s)dsdu_v & \frac{1}{\rho_2(t)} \int_{t-h_2}^{t-h_2} \int_{t-h_2}^{t-h_2} y^T(s)dsdu_v & 0 & 0
\end{bmatrix}^T
\]
\[
\phi_4(t) = \begin{bmatrix}
\frac{1}{\rho_1(t)} \int_{t-h_1}^{t-h_1} \int_{t-h_1}^{t-h_1} \int_{t-h_1}^{t-h_1} y^T(s)dsdu_v & \frac{1}{\rho_2(t)} \int_{t-h_2}^{t-h_2} \int_{t-h_2}^{t-h_2} \int_{t-h_2}^{t-h_2} y^T(s)dsdu_v & 0 & 0
\end{bmatrix}^T
\]

Let \(\alpha = \frac{h(t)-h_1}{h_2}\), applying Lemma 4, we can get
\[
\begin{align*}
\int_{t-h_1}^{t} \hat{x}(t)Q_3\hat{x}(t)ds & \leq -\xi^T(t)\left(\sum_{i=0}^{4} (2i+1)\Sigma_{i+3}^{T} Q_3 \Sigma_{i+3} \right) \xi(t) \\
&\quad - h_1 \int_{t-h_1}^{t} \hat{x}(t)Q_3\hat{x}(t)ds \\
&\quad - h_1 \int_{t-h_1}^{t} \hat{x}(t)Q_4\hat{x}(t)ds
\end{align*}
\]

By Lemma 5, we can obtain
\[
\begin{align*}
-\gamma^T &\begin{bmatrix}
\frac{1}{\alpha} & 0 \\
0 & 1 - \alpha
\end{bmatrix} \gamma \\
&\leq \phi_2(\alpha) + \alpha M_1 \Theta^{-1} M_1^T + (1 - \alpha) M_2 \Theta^{-1} M_2^T \\
&= \eta(\alpha)
\end{align*}
\]

From (15)-(18), the \(V(x(t))\) can be estimated as
\[
\dot{V}(x(t)) \leq -\xi^T(t)(\phi_1(\alpha) + \eta(\alpha))\xi(t)
\]

If the LMI (13) is verified for \(\alpha = 0, 1\), then the inequality \(\phi_1(\alpha) + \eta(\alpha) < 0\) holds for all \(\alpha \in (0, 1)\). This completes the proof.

Remark 2: A new LKF which contains a fourth integral is chosen to derive novel stability results. The \(\int_{t-h_1}^{t} \int_{t-h_2}^{t} \int_{t-h_3}^{t} y^T(s)dsdu_v du_1 du_2 du_3\) is added as a state vector, which may obtain more general results.

IV. A NUMERICAL EXAMPLE

A numerical example is given to demonstrate advantages of the proposed criterion.

Example 1: Consider system (1) with:
\[
A = \begin{bmatrix}
-2.0 & 0 \\
0 & -0.9
\end{bmatrix}, \quad B = \begin{bmatrix}
-1.0 & 0.0 \\
-1.0 & -1.0
\end{bmatrix}
\]

Table 1 presents the admissible upper bound of \(h_2\) for different \(h_1\). From table 1, one can conclude that the theorem 1 is
less conservative than those in [3], [14]–[16], [18], [23]. For $h_2 = 2.44$, $x(0) = (0.01, -0.01)^T$, the state responses of the system (1) are given in Figure 1.

V. CONCLUSION

This paper focuses on the stability of systems with time-varying delays. By using a new augmented LKF and combined with a generalized integral inequality, a new stability criterion is obtained. Both the generalized integral inequality and the new augmented LKF include fourth integrals, which may obtain more general results. A numerical example is given to show the effectiveness of the proposed criterion. In the future work, the proposed stability approach can be applied to other dynamic systems such as a singular system and a neural network system.

REFERENCES

[1] B. Li, Z. Wang, and Q.-L. Han, “Input-to-State stabilization of delayed differential systems with exogenous disturbances: The event-triggered case,” *IEEE Trans. Syst., Man, Cybern. Syst.*, vol. 49, no. 6, pp. 1099–1109, Jun. 2019.

[2] B. Li, Z. Wang, Q.-L. Han, and H. Liu, “Input-to-State stabilization in probability for nonlinear stochastic systems under quantization effects and communication protocols,” *IEEE Trans. Cybern.*, vol. 49, no. 9, pp. 3242–3254, Sep. 2019.

[3] B. Li, Z. Wang, L. Ma, and H. Liu, “Observer-based event-triggered control for nonlinear systems with mixed delays and disturbances: The Input-to-State stability,” *IEEE Trans. Cybern.*, vol. 49, no. 7, pp. 2806–2819, Jul. 2019.

[4] Y. Yin, L. Zhu, H. Zeng, Y. Liu, and F. Liu, “Stochastic stability analysis of integral non-homogeneous Markov jump systems,” *Int. J. Syst. Sci.*, vol. 49, no. 3, pp. 479–485, Feb. 2018.

[5] F. Long, C.-K. Zhang, L. Jiang, Y. He, and M. Wu, “Stability analysis of systems with time-varying delay via improved Lyapunov-Krasovskii functionals,” *IEEE Trans. Syst., Man, Cybern. Syst.*, early access, May 13, 2019, doi: 10.1109/TSMC.2019.2914367.

[6] M. Syed Ali and P. Balasubramaniam, “Stability analysis of uncertain fuzzy hopfield neural networks with time delays,” *Commun. Nonlinear Sci. Numer. Simul.*, vol. 14, no. 6, pp. 2776–2783, Jun. 2009.

[7] M. Syed Ali, N. Gunasekaran, and Q. Zhu, “State estimation of T-S fuzzy delayed neural networks with Markovian jumping parameters using sampled-data control,” *Fuzzy Sets Syst.*, vol. 306, pp. 87–104, Jan. 2017.

[8] R. Saravanakumar, M. Syed Ali, C. K. Ahn, H. R. Karimi, and P. Shi, “Stability of Markovian jump generalized neural networks with interval time-varying delays,” *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 28, no. 8, pp. 1840–1850, Aug. 2017.

[9] M. Syed Ali, S. Arik, and R. Saravanakumar, “Delay-dependent stability criteria of uncertain Markovian jump neural networks with discrete interval and distributed time-varying delays,” *Neurocomputing*, vol. 158, pp. 167–173, Jun. 2015.

[10] M. Syed Ali, R. Saravanakumar, and J. Cao, “New passivity criteria for memristor-based neutral-type stochastic BAM neural networks with mixed time-varying delays,” *Neurocomputing*, vol. 171, pp. 1533–1547, Jan. 2016.

[11] K. Gu, V. Kharitonov, and J. Chen, *Stability of time-delay systems*. Boston, MA, USA: Birkhauser, 2003.
[12] A. Seuret and F. Gouaisbaut, “Wirtinger-based integral inequality: Application to time-delay systems,” *Automatica*, vol. 49, no. 9, pp. 2860–2866, Sep. 2013.

[13] H.-B. Zeng, Y. He, M. Wu, and J. She, “Free-matrix-based integral inequality for stability analysis of systems with time-varying delay,” *IEEE Trans. Autom. Control*, vol. 60, no. 10, pp. 2768–2772, Oct. 2015.

[14] A. Seuret and F. Gouaisbaut, “Hierarchy of LMI conditions for the stability analysis of time-delay systems,” *Syst. Control Lett.*, vol. 81, pp. 1–7, Jul. 2015.

[15] H.-B. Zeng, Y. He, M. Wu, and J. She, “New results on stability analysis for systems with discrete distributed delay,” *Automatica*, vol. 60, pp. 189–192, Oct. 2015.

[16] P. Park, W. I. Lee, and S. Y. Lee, “Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems,” *J. Franklin Inst.*, vol. 352, no. 4, pp. 1378–1396, Apr. 2015.

[17] J.-H. Kim, “Further improvement of jensen inequality and application to stability of time-delayed systems,” *Automatica*, vol. 64, pp. 121–125, Feb. 2016.

[18] K. Liu, A. Seuret, and Y. Xia, “Stability analysis of systems with time-varying delays via the second-order Bessel–Legendre inequality,” *Automatica*, vol. 76, pp. 138–142, Feb. 2017.

[19] A. Seuret, K. Liu, and F. Gouaisbaut, “Generalized reciprocally convex combination lemmas and its application to time-delay systems,” *Automatica*, vol. 95, pp. 488–493, Sep. 2018.

[20] J. Chen, J. H. Park, and S. Y. Xu, “Stability analysis of systems with time varying delay: A quadratic-partitioning method,” *IET Control Theory Appl.*, vol. 13, no. 18, pp. 3184–3189, Dec. 2019.

[21] C. K. Zhang, Y. He, L. Jiang, W. J. Lin, and M. Wu, “Delay-dependent stability analysis of neural networks with time-varying delay: A generalized free-weighting-matrix approach,” *Appl. Math. Comput.*, vol. 294, pp. 102–120, Feb. 2017.

[22] H. B. Zeng, X. G. Liu, and W. Wang, “A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems,” *Appl. Math. Comput.*, vol. 354, pp. 1–8, Aug. 2019.

[23] H.-B. Zeng, X.-G. Liu, W. Wang, and S.-P. Xiao, “New results on stability analysis of systems with time-varying delays using a generalized free-matrix-based inequality,” *J. Franklin Inst.*, vol. 356, no. 13, pp. 7312–7321, Sep. 2019.

[24] J. Tian, Z. Ren, and S. Zhong, “A new integral inequality and application to stability of time-delay systems,” *Appl. Math. Lett.*, vol. 101, Mar. 2020, Art. no. 106058.

Junkang Tian received the B.S. degree from Leshan Normal University, Leshan, China, in 2004, and the M.S. and Ph.D. degrees from the University of Electronic Science and Technology of China, Chengdu, China, in 2007 and 2013, respectively. He is currently an Associate Professor with Zunyi Normal University, Zunyi, China. His current research interests include system and control theory, networked control systems, robust control, and nonlinear systems.

Zerong Ren received the B.S. degree from Leshan Normal University, Leshan, China, in 2004, and the M.S. degree from Southwest Petroleum University, Chengdu, China, in 2014. She is currently a Lecturer with Zunyi Normal University, Zunyi, China. Her current research interests include time-delay systems, impulsive systems, and complex networks.
