Cardiac damage is one of major cause of worldwide morbidity and mortality. Despite the development in pharma-
totherapy, cardiolsurgery and interventional cardiology, many patients remain at increased risk of developing adverse
cardiac remodeling. An alternative treatment approach is the application of stem cells. Mesenchymal stem cells are
among the most promising cell types usable for cardiac regeneration. Their homing to the damaged area, differentia-
tion into cardiomyocytes, paracrine and/or immunomodulatory effect on cardiac tissue was investigated extensively.
Despite promising preclinical reports, clinical trials on human patients are not convincing. Meta-analyses of these trials
open many questions and show that routine clinical application of mesenchymal stem cells as a cardiac treatment
may be not as helpful as expected.
This review summarizes contemporary knowledge about mesenchymal stem cells role in cardiac tissue repair and
discusses the problems and perspectives of this experimental therapeutical approach.

Key words: mesenchymal stem cells, cardiomyocytes, cardiology, cardiac regeneration, results translation

INTRODUCTION
Cardiac diseases remain a major cause of worldwide morbidity and mortality1. In the United States of America
every 34 seconds somebody suffers a coronary event2. Cardiac function of these patients is increasingly compro-
mised with the progression of adverse cardiac remodeling and many patients eventually develop a fatal end-stage
cardiac failure3.
Progress in cardiovascular pharmacotherapy, cardiolsurgery and interventional cardiology decreased mortality
rate in cardiac diseases, but patients still remain at high risk of cardiac failure, especially when the damaged car-
diac mass is large and the extensive cardiac cell loss is not compensated properly4. Only known effective treatment
of cardiac diseases is heart transplantation, where donor shortage is a great problem5. New alternative approaches
of endogenous repair have been investigated in adult mammalian hearts6, consisting of mechanisms that involve mo-
bilization of bone marrow and blood-derived progenitor cells7, in situ turnover of regular cardiomyocytes8, and the
presence of resident cardiac stem cells having the ability to differentiate into vascular and mature cardiac cells9.
However, all these mechanisms are not sufficient to pre-
vent deleterious re-modeling of cardiac tissue.
Stem cells based therapies are now in worldwide inter-
est as a promising treatment of various diseases8, including cardiovascular diseases, where intensive research is
performed10. Initially, the goal of stem cell based thera-
pies was to provide a source of proliferating and func-
tional cardiomyocytes, which will substitute cardiac cell
loss and minimize damaged area. This aim has not been
achieved to date. For clinical application various stem cell
types are relevant, but their capability of creating mature
cardiomyocytes in vivo is limited11. Therefore, stem cell
based therapy aims have been expanded to more areas,
including prevention of myocardial inflammatory and stress responses, improvement of myocardial perfusion
via neovascularization, prevention of myocardial apop-
tosis and correction of metabolic and electromechanical
disturbances4.
Many cell types were investigated for cardiovascular
repair properties and the most of attention was payed on
stem cells exhibiting self-renewal, high replicative poten-
tial (Table 1) (ref.12-18). Promising results were obtained in animal models by application of human embryonic stem
cells19 or cardiomyocytes derived from induced pluripo-
tent stem cells20. However, it was not possible to verify
these results in patients, because of ethical concerns and
high oncogenic risks21. More easily available stem cell
types for effective clinical application include hematopoi-
etic stem cells, adipose tissue derived cells or mesenchy-
mal stem cells (MSCs), which undergone both preclinical
and clinical testing successfully22,23. Therefore, this review
focuses on current knowledge, achievements and failures
of MSCs application in cardiac tissue repair.
In vitro and animal studies were searched in Web of
Science database and key words “mesenchymal stem cell”
and “cardio” were used. Clinical trials were searched at
clinicaltrials.gov and key words “mesenchymal stem cell”
and “heart” were used.
According to the minimal criteria of Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy, MSCs are defined as adherent fibroblast-like cells expressing CD105, CD73 and CD90, not expressing CD34, CD45, CD14 or CD11b, CD79a or CD19, and HLA-DR and with the ability to differentiate into adipocyte, osteoblast and chondrocyte cell types24. They can be found in different tissues including bone marrow25, cord blood26, placenta27, fat28, skin29, muscle30, tendon31 and synovium fluid31 or teeth32. In opposite, MSCs are rarely detected in peripheral blood33. Further more, some studies indicate that the whole body MSC distribution can originate in a perivascular origin of MSCs. Perivascular CD146pos cells isolated from many tissues (muscles, pancreas, fat, etc.) express MSC surface markers (CD73, CD90, CD105) and differentiate into osteo-, chondro- and adipolineage34. These findings suggest that distribution of MSCs in adult organism is related to their existence in the perivascular niche33.

MSCs CHARACTERISTICS AND SOURCES

Although MSCs from different sources express the same set of surface markers and differentiate into three mesodermal lineages, various abilities are reported. Bone marrow is a rich source of cells and the success rate of MSC isolation from it is nearly 100%. Bone marrow derived MSCs are able to proliferate in vivo and also in vitro, where their growth is reported to be arrested around 11-12 passage. According to colony forming unit-fibroblast assay (CFU-Fa), these MSCs form 16.5 ± 4.4 colonies in third passage35. In heart regeneration research, bone marrow MSCs improve heart regeneration after myocardial infarction in many species, reduction in scar size together with improved heart function was reported14,18,20,36. As they were discovered first36, majority of MSCs characteristics was found through experiments with bone marrow derived MSCs. Those characteristics represent standards for comparison up to date.

Adipose tissue contains 500 times more stem cells in 1g of fat than in 1g of bone marrow. Many people undergo liposuction voluntarily, so it is easy to obtain material for adipose tissue MSCs isolation. Adipose tissue derived MSCs showed similar cardio protective potential as bone marrow MSCs when applied to doxorubicin treated diabetic rat model37. On the other hand it has been found that proliferation potential, growth rate and culture time of adipose tissue derived MSCs is lower. CFU-Fa showed only 6.4 ± 1.6 formed colonies in third passage, cell growth was arrested around passage 11 (ref.35). Evenmore, it has been shown that adipose derived MSCs possess different abilities according to the tissue of origin38,39. Comparison of MSCs from abdominal fat, mesodermal origin, eyelid adipose tissue MSCs, and ectodermal origin, showed different phenotypes of cells together with variety in CD90 expression, suggesting higher abdominal fat MSCs response to angiogenic factors38. Comparison of cardiac adipose tissue derived MSCs and abdominal fat MSCs, both of mesodermal

Stem cell type	Animal model / disease	Injection of cells	Effect	Outcome	Ref.
Mesenchymal stem cells	minipig / MI	PIM	very positive	Improved heart perfusion, higher cell density, lower heart wall damage	18
	rat / MI	IM	positive	Improved cardiac function, decreased fibrosis	20
	rat / IHF	IM	positive	Improved left ventricular function, scar size reduction	14
	mice / cardiomyopathy	IC	positive	Reduced heart dilatation, reduced inflammation	13
Hematopoietic stem cells	rat / MI	IM	positive	Improved left ventricular ejection fraction, reduced scar size	12
BM derived mononuclear cells	human / MI	IM	positive	Improved heart perfusion	18
AT derived stem cells	pig / MI	IC	positive	Increased neovascularization	17
Human embryonic stem cells	pig / MI	IM	positive	Full restoration of ventricle function	19
iPSCs derived cardiomyocytes	rat / MI	IM	very positive	Improved cardiac function, decreased fibrosis	20
Endothelial progenitor cells	rat / MI	IM	positive	Improved left ventricular ejection fraction, scar size decrease, increased neovascularization	15

BM – bone marrow, AT – adipose tissue, iPSCs – induced pluripotent stem cells, MI – myocardial infarction, IHF – ischemic heart failure, PIM – percutaneous intramyocardial, IM – intramyocardial, IC – intracardial injection.

Table 1. Overview of stem cell types investigated for cardiac tissue repair.
origin, showed that cells were phenotypically identical, but cardiac MSCs constituted intrinsic properties toward myogenesis and vasculogenesis in significantly higher percentage and therefore have much better regenerative potential, especially for cardiac therapy.

Umbilical cord blood is a rich source of cells, with MSCs also being present. MSCs isolation and cultivation from this source is complicated and the success rate of isolation is 63% (ref.35). If successful, their culture lasts for long time periods, their proliferation is arrested at passage 14-16. CFU-Fa showed highest ability to form colonies (23.7 ± 5.8) (ref.35) compared to others, but there are also evidence that in culture these MSCs display very low proliferation ability. It was shown that MSCs from umbilical cord together with MSCs from amniotic membrane possess higher immunomodulatory capacity, based on gene expression profiling than bone marrow MSCs.

MSCs from all three sources mostly used in research possess promising abilities for regenerative medicine, but, as it was mentioned before, they all have limits. Low-yielding isolation and complicated cultivation of umbilical cord MSCs makes them a not reliable source of cells. Easy isolation and cultivation of adipose tissue derived MSCs is very promising, but tissue specific effect of MSCs from different adipose tissue sites makes them too variable. Human cardiac fat MSCs, showing the best qualities for cardiac regeneration, are hard to obtain and not convenient for detailed research. Therefore bone marrow-derived MSCs, a well documented type of MSCs, are in center of interest in cardiac regeneration research and are further discussed in more details.

Aging of MSCs

Important issue about therapeutical MSCs application is their aging. In vitro cultured MSCs obtained from older individuals, are larger, broader, flatten and show no spindle-formed morphology contrary to younger spindle shaped MSCs (ref.35). Aged MSCs contain more stress actin fibres, form small colonies and show telomerase deficiency. Young MSCs are capable to reach 30-40 times maximal population doubling, aged MSCs have significant decline in replicative lifespan. Aged MSCs also express different levels of various regulatory molecules. MSCs emission of pro-inflammatory interleukin 6 (IL6) increases with age, whereas production of anti-inflammatory and cell protective interleukin 11 (IL11) decreases with age. Finally, aged MSCs have lower differentiation ability and proliferation potential and the age related loss of regenerative potential of MSCs is even dependent on the source of MSCs (ref.47).

IN VITRO STUDIES

Based on both in vitro and in vivo studies, three main mechanisms of action of MSCs implementation in cardiac tissue reparation process are suggested – differentiation into functional cardiomyocytes (CMCs), paracrine and immunomodulatory effect (Fig. 1).

Fig. 1. Scheme of MSCs effect on CMCs and cardiac repair. Differentiation, paracrine effect and immunomodulation – three postulated mechanisms of action of MSCs on damaged cardiac tissue. Cardiomyocytes, smooth muscle cells, endothelial cells and fibroblasts are influenced by MSCs and participate in cardiac tissue regeneration. MSCs-mesenchymal stem cells, CMCs-cardiomyocytes, CSCs-cardiac stem cells, ILs - interleukins, VEGF-vascular endothelial growth factor, FGF-2-fibroblast growth factor-2, TGF-β-transforming growth factor-β, IGF-insulin-like growth factor, SDF-stromal cell-derived factor, HGF-hepatocyte growth factor, PDGF-platelet-derived growth factor, Ang-2-angiopoietin-2.
Differentiation of MSCs to CMCs
MSCs show ability to differentiate into CMCs in vitro. This differentiation can be induced by addition of 5-azacytidine, retinoic acid and dimethyl sulfoxide (DMSO) into cultivation media. When MSCs are treated by 5-azacytidine they start to be positive for desmin and α-sarcomeric actin. Later, they show presence of sarcoplasmic reticulum, T-tubules and intercalated disc-like structures. When MSCs are stimulated to CMC differentiation the expression of nesprin-1 protein is higher, which suggests it plays an important role in mediating MSCs differentiation. MSCs can differentiate into CMCs also without 5-azacytidine, but the presence of insulin-like growth factor 1 (IGF-1), fibroblast growth factor 4 (FGF-4), hepatocyte growth factor (HGF), transforming growth factor β (TGF-β1) and bone morphogenic protein 2 (BMP-2) is required. Even only cell-to-cell contacts of MSCs and isolated CMCs are able to support MSC differentiation into new CMCs. It is further documented that N-cadherin (CD325) negative fraction of MSCs has lower CMCs differentiation potential than N-cadherin positive fraction of MSCs, which expresses significantly elevated mRNA levels of cardiomyogenic progenitor-specific transcription factors, including Nkx2.5, Hand1, and GATA4.

Paracrine and immunomodulatory effect of MSCs on CMCs
Bioactive molecules released by MSCs can positively modulate the functions of CMCs by paracrine and trophic mode. Cytokines from interleukin 6 (IL6) family secreted by MSCs bind to receptor glycoprotein 130 (gp130) and activate the JAK-STAT3 signaling pathway which results in increased expression of STAT3 targets hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF). Conditioned media from MSCs can also protect CMCs from apoptosis when it inhibits caspase-3 activation and the release of cytochrome C from the mitochondria. These findings suggest that MSCs paracrine signalling helps to protect CMCs by interfering with mitochondria-mediated apoptotic pathway. Factors released by MSCs can also protect CMCs from ischemia, when MSCs conditioned media decreases the numbers of apoptotic cells, the numbers of dead cells and improves CMCs metabolic activity. These improvements are regulated via Akt, ERK1/2 and STAT3 signaling pathways.

ANIMAL STUDIES
The large number of studies investigating MSCs influence on variety of heart diseases on animal models has been done. In many animal experiments, the application of MSCs to differentiate into functional CMCs hardly or even not at all occurs. MSCs overexpressing Akt (Akt-MSCs) injected into mouse model of infarcted myocardium engraft the infarcted area at higher extent than MSCs, but only rare differentiation of both types of MSCs into functional CMCs is observed. Despite this, Akt-MSCs restore early cardiac function and decrease infarct size indicating another mechanism of MSCs facilitated tissue repair. In another study is demonstrated that MSCs injected into mouse infarcted myocardium migrate into site of injury and survive there for 14 days, but no significant differentiation into functional CMCs or improvement of cardiac function is detected. Even more, same MSCs treated by pro-cardiomyogenic agents or by co-culture with beating CMCs do not differentiate into new CMCs.

Paracrine and immunomodulatory effect of MSCs on cardiac tissue
Despite the inconsistent results in the ability of MSCs to differentiate into CMCs, some studies show that MSC transplantation improves cardiac functions. In these cases, the paracrine and immunomodulatory effect of MSCs on cardiac repair is more likely. In many animal experiments, the application of MSCs after MI had a positive effect on cardiac functions in comparison with controls. Improvement in left ventricu-
lar ejection fraction, reduction in infarct scar size and inhibition of left ventricle remodeling was observed together with decrease in end-systolic and end-diastolic volumes. Anyway, the particular cellular mechanisms and regulating molecules or signal pathways responsible for the cardiac function improvement remain undetailed. The decrease in CMCs apoptosis rate, decrease in inflammation and scar formation and increase in CMCs proliferation and cardiac tissue neovascularization are described as the most probable cellular mechanisms.

Particularly, diabetic rats treated by anti-cancer drug doxorubicin (DOX) possessing cardiotoxicity were co-treated by MSCs. MSCs prevented DOX-induced myocardial damage and significantly induced angiogenesis and reduced immune cell infiltration and collagen deposition. In MI rat model, injected MSCs increased levels of angiogenic factors FG-2, VEGF and stem cell homing factor (SDF-1α) in infarcted hearts. This was followed by declined CMCs apoptosis, increased capillary density and improved left ventricular contractility. In another study, mice suffered from insulin resistance and MI and treated by MSCs showed improved cardiac function connected with enhanced glucose uptake by peripheral tissues and mitochondrial oxidative phosphorylation efficiency. Moreover, MSCs improved insulin signaling via Akt phosphorylation and maintaining of glucose transporter type 4 (ref. 69). Some investigators stimulated paracrine function of therapeutically applied MSCs by over-expression of VEGF (ref. 70) or by over-expression of miRNA-126 (ref. 71), which led to improved cardiac function after MI. The Akt molecule was identified responsible for the protective role of MSCs in cardiac repair function.

Homing of MSC into damaged cardiac tissue

The ability of MSCs to home into damaged cardiac tissue is documented in some studies but it is still a very limited factor of MSCs cardiac therapy. Recent study demonstrated that up to 70% of MSCs applied into rat peripheral blood stream was trapped in lungs and some cells were detected in heart, kidney, spleen and bladder. The fraction of MSCs homed to the ischemic heart was only around 6% (ref. 73). Even the ability of MSCs to circulate in blood stream is limited. Therefore, the extensive investigation is performed to describe MSCs homing mechanisms and to improve this process.

As in the homing of other cell types, the homing of MSCs is based on the process of chemotaxis. Ischemic myocardium is rich in many chemokines and adhesion molecules including chemokine (CC motif) ligands (CCL) 2, 6, 7, 9, chemokine (CXC motif) ligands (CXCL) 1, 2, SDF-1, IL-6, TGF-β, VEGF, intercellular adhesion molecule (ICAM), vascular adhesion molecule (VCAM) or fibronectin, and the expression of particular receptors on MSCs’ surface should govern the process of homing.

Frequently investigated ligand/receptor pair is SDF-1/CXC chemokine receptor 4 (CXCR4). The level of surface CXCR4 in MSCs is low and unstable and their expression needs to be stimulated to facilitate cardiac function repair. Also over-expression of CC chemokine receptor 1 (CCR1) promoted migration of MSCs and their homing to injured heart. Another studies detected integrin β1 (ref. 76), hyaluronic acid/CD44 (ref. 76), N-formyl peptide receptor (FPR) and the formyl peptide receptor-like-1 (FPRL1) (ref. 76) or platelet-derived growth factor-AB (PDGF-AB)/PDGF receptor alpha and beta and insulin-like growth factor 1 (IGF-1)/IGF receptor as crucial ligands and receptors for MSCs homing into injured cardiac tissue.

The importance of cell delivery routes

Current routes for MSCs delivery in heart treatment include intravenous injection (IV), where the MSCs are applied into the peripheral blood stream, intramyocardial injection (IM), where the MSCs are applied by surgeons directly to heart peripheratively, or alternatively using percutaneous endoventricular injection using dedicated catheters, and intracoronary injection (IC), where percutaneous cathether delivers MSCs into coronary arteries.

Systemic IV injection is used because of low invasiveness, low cost and reported MSCs homing ability. In the case of heart damage, local and systemic chemokine-attractants are upregulated, including various interleukines, stromal cell-delivery factors and adhesion molecules. However, this homing signal seems to be not sufficient. It has been demonstrated that after IV injection of MSCs, only few of them were accumulated in infarcted myocardium of mice, majority of the cells was found in lungs.

Purpose of IM injection is to deliver MSCs directly to the damaged heart area via epicardial, endocardial or transvascular application. Advantages of this method are that it is similar to routine cardiac surgery, for surgeons it is easy to perform, and there is no risk of coronary embolism like in other application forms. Also there is no need to rely on up-regulation of homing signal particles, because of MSCs delivery directly to the site of damage. However, there is also a disadvantage, MSCs have tendency to form islet-like clusters consisting of donor cells and host inflammatory cells generating electrical and biological heterogeneity in the host myocardium, which potentially results in arrhythmia occurrence.

IC injection method achieves higher first-pass delivery of MSCs into the heart and more homogenous cell distribution in target area with less inflammatory response. Unfortunately donor MSCs engraftment is similarly poor as after IM injection. It has been demonstrated that initial retention of applied cells is 15%, but after one hour only 5% of donor MSCs have been detected in damaged heart area. Also it has been reported that IC applied MSCs are relatively large which may result in microvascular obstruction and ischemia. Elevation of cardiac infarct markers and changes on electrocardiogram after IC injection of MSCs has been reported.

Despite extensive research, MSCs engraftment in damaged cardiac tissue is still poor and several explanations have been suggested. First, the injection of MSCs by thin needle can cause damage to MSCs, which could lead to their apoptosis or death. Second, MSCs harvested for application by trypsin can lose their surface proteins and...
reduce cell-cell affinity, which can cause quick flush out of MSCs (ref.88). Third, MSCs in late passages can lose
their surface expressions of chemokine receptors, which
can disrupt their chemotactic ability76. Despite low MSCs
retention in the damaged heart site, the majority of experi-
ments show improvement in cardiac function and dam-
gaged area size after MSCs treatment.

CLINICAL STUDIES

Till today, 21 clinical trials are registered at clinicaltrials.gov when searching for the keywords “mesenchymal stem cells” AND heart, which have been completed. From those, results were published from 9 trials and are sum-
marized in Table 2 and the following text.

Patients with left ventricule disfunction, ischemic cardiomypathy, acute or chronic myocardial infarction, idiopathic dilated cardiomypathy or ischemic heart failure were included into clinical trials. At 6 trials out of 9, autologous MSCs isolated from bone marrow were applied by intramyocardially, intracorony or transendoc-
Cardially. The general effect of MSCs application was the
improvement of left ventricule ejection fraction (LVEF)
and reduction of infarcted tissue area (Table 2).

Hare et al.89 performed a series of clinical trials fo-
cused on evaluation of safety and efficacy of MSCs ap-
lication into patients with ischemic cardiomypathy. ROSEIDON, one of the first clinical trials in this field, compared the effect of autologous and allogeneic MSCs applied transcendocardially into 30 patients with isch-
emic cardiomypathy. After 1year follow-up it was shown
that this application is safe and beneficial for patients. Application of both auto- and allo- MSCs had low rate of serious adverse events (SAE), reduction in infarcted size area was observed, but no improvement in LVEF was shown. Only autologous MSCs’s application led to signifi-
cant improvement in a 6 min walking test. However, lack
of placebo control prevented additional comparisons89.

In the following TAC-HFT clinical trial, autologous bone
morrow MSCs application was compared with bone mar-
row mononuclear cells application and placebo group,
also focused on safety and efficacy of cell application. In this trial, 65 patients with ischemic cardiomypathy
were enrolled. Transendocardial injection in 10 left ven-
tricule sites showed that application is safe, with no SAE,
but only MSCs improved myocardial functions, including contractility. No change in LVEF was observed89.

In PROMETHEUS, the clinical trial where autologous
bone marrow MSCs were injected into infarcted site of
myocardium of 6 patients not eligible for bypass surgery, it was shown that MSCs reduce scar mass size for 48%

Codename	Years of performance	Disease	MSCs source	Application form	Number of patients	Follow up (months)	Outcome
PROMETHEUS	2007-2011	LV dysfunction/CHMI	BM (auto)	IM	6	18	Significant improvement in LVEF; reduced scar formation
CHART-1	2012-2017	LV dysfunction	BM (auto)	IM	315	12	Decreases in LVEDV and LVESV
TAC-HFT	2008-2013	LV dysfunction/CHMI	BM (auto)	TE	65	12	Low rates of treatment-emergent SEAs; reduced infarcted tissue area; improved cardiac parameters
-	2007-2010	AMI	BM (auto)	IC	58	6	Low rates of treatment-emergent SEAs; improvement in LVEF
MSC-HF	2008-2015	IHF	BM (auto)	IM	60	6	Improvement in LVEF, LVESV, stroke volume, myocardial mass
POSEIDON	2010-2012	LV dysfunction/ICM	BM (auto/ allo)	TE	30	13	No difference between auto/allo; low rates of treatment-emergent SEAs; positive improvement of LV remodeling
STEMPEUCEL	2009-2012	AMI	BM (allo)	IV	20	24	Safe application of allogenic MSCs; no difference between treated and placebo group
-	2011-2012	AMI	WJ (allo)	IC	116	18	No harmful effects; significant increase in LVEF
RIMECARD	2012-2014	LV dysfunction	UC (allo)	IV	30	12	LVEF improvement

TE – transcendocardial application, IM – intramyocardial application, IV – intravenous application, IC – intracoronary application, auto – autologous transplantation, allo – allogeneic transplantation, LVEF – left ventricule ejection fraction; IDCM – idiopathic dilated cardiomypathy; SAEs – serious adverse events; CHMI – chronic myocardial infarction; IDCM – idiopathic dilated cardiomypathy; IHF – ischemic heart failure; LVESV – left ventricular end-systolic volumes; LVEDV – left ventricular end-diastolic volumes.
compared to baseline. Also improvement in contractility and perfusion in these patients was shown together with improved LVEF (ref.91).

Effect of clinical application of MSCs was also tested on acute myocardial infarction (AMI) patients a few days and up to a month after AMI. Lee et al.92 applied bone marrow MSCs into infarcted site of myocardium of 80 patients and followed them for 6 months. 58 patients completed the trial and it was shown that application of MSCs is safe and even effective when performed month after AMI. LVEF, measured by SPECT, was improved for 6% in the 6th month of follow-up, in comparison to control group, receiving regular treatment only93.

As a possible treatment for acute myocardial infarction also Wharton jelly MSCs (WJ-MSCs) application was tested. Intracoronary application of WJ-MSCs into 116 patients in 5-7 days after reperfusion treatment showed increased myocardial viability, measured by PET, and improved heart perfusion in 4 months. In the end of study, after 18 months of follow-up, LVEF was significantly improved (7%) in comparison to controls94.

Autologous bone marrow MSCs were shown to be beneficial also for patients with ischemic heart failure where no more therapeutic options are available. 40 patients, out of 60 involved in study called MSC-HF, received intramyocardial injection of MSCs, follow-up for 6 months was performed. In the end of the clinical trial, LVEF of patients who received MSCs was improved for 6% and their left ventricle end-systolic volume was reduced for 7%, in comparison to placebo control, suggesting improved myocardial function95. Similary, in CHART-I study 164 patients with symptomatic advanced heart failure secondary to ischaemic heart disease were intramyocardially transplanted with bone-marrow-derived, lineage-directed, autologous cardiopoietic mesenchymal stem cells which resulted in the significant decreases in LVEDV and LVESV in 12 months of follow-up96.

Umbilical cord-derived MSCs (UC-MSCs) are described as efficient in animal studies of heart failure treatments. In clinical set-up, 15 patients with LVEF dysfunction were intravenously transplanted by allogenic UC-MSCs which was followed by LVEF improvement and harmless of UC-MSCs application97.

Contrary, in order to make MSCs application as less invasive for patients as it is possible, intravenous application was tested. In clinical trial STEMPEUCEL bone marrow derived MSCs were injected into antecubital vein of 10 patients with AMI two days after coronary intervention. After a 2 year follow-up and in comparison with placebo control it was shown that this application does not cause SAE and is safe for patients, but no beneficial effect was observed and no significant differences between MSCs and placebo group has been found in any tested parameter98.

Meta-analyses of performed clinical studies showed confusing correlation between discrepancies and positive results. More methodical discrepancies have been found in research, where better results were reported. According to meta-analyses, studies with no discrepancies showed negative results99, which is disturbing.

PROBLEMS AND PERSPECTIVES

MSCs and their influence on heart have been studied intensively. It has been reported that MSCs possess ability to home into site of cardiac damage and support damaged myocardium by differentiation into CMC, by paracrine signaling and immunomodulation properties. MSCs differentiation into CMC was shown to be not significant in vivo, but all other properties were confirmed in vitro and also in vivo.

In preclinical studies MSCs showed to be a safe and promising treatment for variety of cardiac tissue damages. Some clinical trials performed on patients also showed positive effect of MSCs application, but no all of them. All performed clinical studies agreed that the application of MSCs is safe for patients. However, new evidence is questioning the effect of MSCs in patients with cardiac diseases and therefore implementation of MSCs treatment as a regular therapy in the clinic might be further away than expected/hoped for. It has been also shown that application of MSCs may not be beneficial enough to use it as a standart treatment. This could depend on several factors including age and source of MSCs, their manipulation after isolation and the route of application when e.g. IC application of MSC could be associated with the risk of microembolism.

As discussed earlier, age of MSCs is a very important factor. Usually, patients are older and therefore autologous transplantation of MSCs might not be efficient enough. In respect to therapy efficiency, use of MSCs from young and healthy donors, more active and capable of regenerative potential, should be considere. Especially after repeated prove, that allogeneic and autologous transplantation are both safe and have a similar effect.

Another consideration should be the source of MSCs. Bone marrow MSCs are the best investigated ones known to improve heart functions, but also cardiac adipose tissue derived MSCs, which are rarer and harder to harvest, show promising and even better cardiac specific abilities.

Any MSCs chosen for application need to be cultured in order to achieve satisfactory numbers for application. Cultivation conditions as well as cell harvesting are well described, but there is room for improvement. MSCs have documented homing ability into site of injury, but a large number of researchers reported minimal homing to the cardiac damaged sites in human. The final harvesting procedure before application may destroy surface receptors of the MSCs, so they are unable to find the cardiac site of damage, instead they are trapped elsewhere.

In consideration of previous discussed challenges, the chosen form of application is crucial. Peripheral application is the cheapest and the most comfortable for patients and medical personal, but the risk that MSCs will be trapped outside of the heart is big. Intracoronary or transmyocardial application is more reliable, but possesses risk of microembolism. All these facts need to be taken into consideration together with application speed, application number and number of application doses.

The most important question for the future of MSCs therapeutic application is what should be considered
as a positive result of application. Should it be any positive effect which is statistically significant or is it better to agree on a general evaluation protocol? Many facts are well known, but many more questions need to be answered, before the MSCs application will become a real treatment option for cardiac patients.

SEARCH STRATEGY AND SELECTION CRITERIA

Our research strategy was focused on the studies dealing with mesenchymal stem cells (MSCs) effects on cardiac repair. First, we aimed to summarize MSCs characteristics, sources and effect of aging. Afterwards, we wanted to cover the knowledge about MSCs cardiac repair potential obtained in in vitro, animal and clinical studies. Web of Science database was used for the search of in vitro and animal studies. Web page https://clinicaltrials.gov/ was used for the search of clinical trials. Publications from years 1990-2017 and only completed clinical trials were taken into account. Search terms were mesenchymal stem cell AND cardiomyocyte for in vitro studies; mesenchymal stem cell AND cardiac repair OR failure for animal studies; mesenchymal stem cells AND heart for clinical trials.

Acknowledgment: This study was supported by Charles University Grant Agency no. 2090214, by the National Sustainability Program I (NPU I) Nr. LO1503 provided by the Ministry of Education Youth and Sports of the Czech Republic and by project No. CZ.02.1.01/0.0/0.0/16_019/0000787 “Fighting INfectious Diseases”, awarded by the MEYS CR. financed from EFRR.

Author contributions: MB, LV: manuscript writing; TJÁ, DL, MH and FK: manuscript revision.

Conflict of interest statement: Authors declare that they have no conflict of interest.

REFERENCES

1. Silva DN, de Freitas Souza BS, Azevedo CM, Vasconcelos JF, Carvalho RH, Soares MB, Dos Santos RR. Intramyocardial transplantation of cardiac mesenchymal stem cells reduces myocarditis in a model of chronic Chagas disease cardiomyopathy. Stem Cell Res Ther 2014;5:81.

2. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco SR, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, MARELLI A, MATCHAR DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics Committee and Stroke Statistics Committee. Executive summary: heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation 2013;127:143-52.

3. Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 2000;101:2981-8.

4. Psaltis PJ, Spoon DB, Wong DT, Gutti R. An update on stem cell therapies for acute coronary syndrome. Curr Cardiol Rep 2014;16:526.

5. Narita T, Suzuki K. Bone marrow-derived mesenchymal stem cells for the treatment of heart failure. Heart Fail Rev 2015;20:53-68.

6. Schoenfeld M, Frishman WH, Leri A, Kajstura J, Anversa P. The existence of myocardial repair: mechanistic insights and enhancements. Cardiol Rev 2013;21:111-20.

7. Mouquet P, Pfluster O, Jain M, Oikonomopoulous A, Ngoy S, Summer PM, Fine A, Liao R. Restoration of cardiac progenitor cells after myocardial infarction by self-proliferation and selective homing of bone marrow-derived stem cells. Circ Res 2005;97:1090-2.

8. Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu TD, Guerquin-Kern JL, Lechene CP, Lee RT. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 2013;493:433-6.

9. Housk Z, Czembel J, Kudla V, Babuska V, Cediakova M, Králíková M, Pachernik J, Stefano GB, Vozel F. Intracardial application of P19-derived neuroprogenitor and naive stem cells to Lurcher mutant and wild type B6CBA mice. Med Sci Monit 2012;18:b174-Br180.

10. Mao Q, Lin C, Gao J, Liang X, Gao W, Shen L, Kang L, Xu B. Mesenchymal stem cells overexpressing integrin-linked kinase attenuate left ventricular remodeling and improve cardiac function after myocardial infarction. Mol Cell Biochem 2014;397:203-14.

11. Shen Y, Liu X, Huang Z, Pei N, Xu J, Li Z, Wang Y, Qian J, Ge J. Comparison of Magnetic Intensities for Mesenchymal Stem Cell Targeting Therapy on Ischemic Myocardial Repair: High Magnetic Intensity Improves Cell Retention but Has No Additional Functional Benefit Cell Transplant 2015;24(10):1981-97. doi: 10.3727/096368914X685302

12. Armanin A, Gandia C, Garcia-Verdujo JM, Lledo E, Trigueros C, Ruiz-Saurí A, Minana MD, Solves P, Paya R, Montero JA, Sepulveda P. Mesenchymal stem cells provide better results than hematopoietic precursors for the treatment of myocardial infarction. J Am Coll Cardiol 2010;55:2244-53.

13. Jasmin, Jelicks LA, Tanowitz HB, Peters VM, Mendez-Otero R, Campos de Carvalho AC, Spray DC. Molecular imaging, biodistribution and efficacy of mesenchymal bone marrow cell therapy in a mouse model of Chagas disease. Microbes Infect 2014;16:923-35.

14. Karpov AA, Uspsenskaya YK, Miniasian SM, Puzanov MV, Dmitrievia RI, Bilbina AA, Anisimov SV, Galagudza MM. The effect of bone marrow- and adipose tissue-derived mesenchymal stem cell transplantation on myocardial remodelling in the rat model of ischaemic heart failure. Int J Exp Pathol 2013;94:169-77.

15. Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, Silver M, Ma H, Kearney M, Isern JM, Asahara T. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 2001;103:634-7.

16. Kim, IJ, Poveshchenko OV, Bondarenko NA, Lykov AP, Poveshchenko KF, Khabarov DV, Pokushalov EA, Romanov AB, Karaskov AM, Konenko VI. Effect of morphofunctional properties of mobilized progenitor cells of patients with chronic heart failure on the efficiency of autologous intramyocardial cell transplantation. Bull Exp Biol Med 2014;157:695-700.

17. Rigol M, Solanas N, Roula S, Roque M, Novenss Z, Danpas AP, Martorell J, Stiges M, Ramirez J, Bayes-Genis A, Heras M. Allogeneic adipose stem cell therapy in acute myocardial infarction. Eur J Clin Invest 2014;44:83-92.

18. Tao B, Cui M, Wang C, Ma S, Wu F, Yi F, Qin X, Liu J, Wang H, Wang Z, Ma X, Tian J, Chen Y, Wang J, Cao F. Percutaneous intramyocardial delivery of mesenchymal stem cells induces superior improvement in regional left ventricular function compared with bone marrow mononuclear cells in porcine myocardial infarcted heart. Theranostics 2015;5:196-205.

19. Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R, Arbel G, Huber I, Satin J, Itskovitz-Eldor J, Gepstein L. Electromechanical integration of embryonic cardiomyocytes in the Lurcher mutant mouse. Proc Natl Acad Sci USA 2005;102:12823-8.

20. Citro L, Naidu S, Hassan F, Kuppusamy ML, Kuppusamy P, Angelos MG, Khan M. Comparison of human induced pluripotent stem-cell derived cardiomyocytes with human mesenchymal stem cells following acute myocardial infarction. PLoS One 2014;9:e116281.

21. Barad L, Schick R, Zeeki-Levin N, Itskovitz-Eldor J, Binah O. Human embryonic stem cells vs human induced pluripotent stem cells for cardiac repair. Curr J Cardiol 2014;39:1279-87.

22. Secunda R, Vennila R, Mohanashankar AM, Rajasundari M, Jeswanth S, Surendran R. Isolation, expansion and characterisation of mesenchymal stem cells from human bone marrow, adipose tissue, umbilical cord blood and matrix: a comparative study. Cytotechnology 2015;67:793-807.
by human bone marrow: effects of age and estrogen status. J Clin Endocrinol Metab 1998;83:2043-51.

45. Kuliwaba JS, Findlay DM, Atkins GJ, Forwood MR, Fazzaletti NL. Enhanced expression of osteocalcin mRNA in human osteoarthritic trabecular bone of the proximal femur is associated with decreased expression of interleukin-6 and interleukin-11 mRNA. J Bone Miner Res 2000;15:332-41.

46. Asumda FZ, Chase PB. Age-related changes in rat bone-marrow mesenchymal stem cell plasticity. BMC Cell Biol 2011;12:44.

47. Beane OS, Fonseca VC, Cooper LL, Koren G, Darling EM. Impact of aging on the regenerative properties of bone marrow-, muscle-, and adipose-derived mesenchymal stem/stromal cells. PLoS One 2014;9:e115963.

48. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomycyte phenotype in the adult murine heart. Circulation 2002;105:93-8.

49. Deng F, Lei H, Yu H, Le F, Fu H, Feng R, Feng P, Huang W, Wang X, Chang J. Combination of retinoic acid, dimethyl sulfoxide and 5-azacytidine promotes cardiac differentiation of human fetal liver-derived mesenchymal stem cells. Cell Tissue Bank 2016 Mar;17(1):147-59. doi: 10.1007/s10561-015-9514-9

50. Yang W, Zheng H, Wang Y, Lian F, Hu Z, Xue S. Nesprin-1 has key roles in the process of mesenchymal stem cell differentiation into cardiac-like myocyte-like cells in vivo and in vitro. Mol Med Rep 2015;11:133-42.

51. Piryaei A, Soleimani M, Heidari MH, Saheli M, Rohani R, Almassieh M. Ultrastructural maturation of human bone marrow mesenchymal stem cells-derived cardiomycocytes under alternative induction of 5-azacytidine. Cell Biol Int 2015;39:519-30.

52. Hou J, Lu AL, Liu BW, Xing YJ, Da J, Hou ZL, Ai SY. Combination of BMP-2 and S-AZA is advantageous in rat bone-marrow-derived mesenchymal stem cells differentiation into cardiomycocytes. Cell Biol Int 2013;37:1291-9.

53. Wang T, Xu Z, Jiang W, Ma A. Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomycyte and smooth muscle cell. Int J Cardiol 2006;109:74-81.

54. Ishimine H, Yamakawa N, Sasaos M, Tadokoro M, Kami D, Komazaki S, Tokuhara M, Takada H, Ito Y, Kuno S, Yoshimura K, Umezawa A, Ohgushi H, Asashima M, Kurisaki A. N-Cadherin is a prospective cell surface marker of human mesenchymal stem cells that have high ability for cardiomycyte differentiation. Biochem Biophys Res Commun 2013;438:753-9.

55. Shabbir A, Zisa D, Lim H, Masi R, Roloff G, Suzuki K, Lee T. Activation of host tissue trophic factors through JAK-STAT3 signaling: a mechanism of mesenchymal stem cell-mediated cardiac repair. Am J Physiol Heart Circ Physiol 2010;299:H1428-1438.

56. Xiang MX, Gnecchi M, Lopez-Ilasaca M, Zhang L, Solomon SD, Deb A, Dzau VJ, Pratt RE. Mesenchymal stem cells plasticity. Annals of Thoracic and Cardiovascular Surgery 2014;20:398-406.

57. Garikipati VN, Jadhav S, Pal L, Prakash P, Dikshit M, Nityanand S. Intravenous administration of atorvastatin-pretreated mesenchymal stromal cells. European Journal of Cardio-Thoracic Surgery 2010;37:1291-9.

58. Li L, Xia YF. Study of Adipose Tissue-Derived Mesenchymal Stem Cells Transplantation for Rats with Dilated Cardiomyopathy. Annals of Thoracic and Cardiovascular Surgery 2014;20:398-406.

59. Garikipati VN, Jadhav S, Pal L, Prakash P, Dikshit M, Nityanand S. Mesenchymal stem cells from fetal heart attenuate myocardial injury after infarction: an in vivo serial pinhole gated SPECT-CT study in rats. PLoS One 2014;9:e100982.

60. Yannarelli G, Tosporis JN, Desjardins JF, Wang XH, Pourjabbar A, Viswanathan S, Parker TG, Keating A. Donor mesenchymal stromal cells (MSCs) undergo variable cardiac reprogramming in vivo and predominantly co-express cardiac and stromal determinants after experimental acute myocardial infarction: role of CXCR4. Am J Trans Res 2015;7:1058-70.

61. Noisieux N, Gnechci C, Lopez-Ilasaca M, Zhang L, Solomon SD, Deb A, Dzau VJ, Pratt RE. Mesenchymal stem cells overexpressing Akt dramatically repair injured myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther 2006;14:840-50.
63. Siegel G, Krause P, Wohrle S, Nowak P, Ayturnur M, Kluba T, Brehm BR, Neumeister B, Kohler D, Rosenberger P, Just L, Northoff H, Schafer R. Bone marrow-derived human mesenchymal stem cells express cardiomyogenic proteins but do not exhibit functional cardiomyogenic differentiation potential. Stem Cells Dev 2010;19:2457-70.

64. Jiang S, Li H, Ren M, Tian J, Su Y, Leng X. Evaluation of Left Ventricular Regional Systolic Function Using Tissue Doppler Echocardiography After Mesenchymal Stem Cell Transplantation in Rabbits With Myocardial Infarction. J Ultrasound Med 2015;34:1217-25.

65. Madonna R, Petrov L, Teberino MA, Manzoli L, Karam JP, Renna FV, Ferdinandy P, Tudort N, Montero-Menei CN, Yla-Herttuala S, De Caterina R. Transplantation of adipose tissue mesenchymal cells conjugated with VEGF-releasing microparticles promotes repair in murine myocardial infarction. Cardiovasc Res 2015;108:39-49.

66. Shue JJ, Lee FY, Yuen CM, Chen YL, Huang TH, Chua S, Chen YL, Chen CH, Chai HT, Sung PH, Chang HW, Sun CK, Yip HK. Combined therapy with shock wave and autologous bone marrow-derived mesenchymal stem cells alleviates left ventricular dysfunction and remodeling through inhibiting inflammatory stimuli, oxidative stress & enhancing angiogenesis in a swine myocardial infarction model. Int J Cardiol 2015;193:69-83.

67. Ranganath SH, Levy O, Inamdar MS, Karp JM. Harnessing the Mesenchymal Stem Cell Secretome for the Treatment of Cardiovascular Disease. Cell Stem Cell 2012;10:244-58.

68. Tang YL, Zhao Q, Qin XY, Shen LP, Cheng LL, Ge JB, Phillips MI. Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thor Surg 2005;80:229-237.

69. Hughey CC, Ma LL, James FD, Brady DP, Wang ZZ, Wasserman DH, Rottman JN, Hittel DS, Shearer J. Mesenchymal stem cell transplantation for the injured heart: therapeutic potential for insulin resistance beyond the heart. Cardiovasc Diabetol (2013):12:128.

70. Matsumoto R, Omura T, Yoshimura M, Hayashi T, Inamoto S, Koh KR, Ohta K, Izumi Y, Nakamura Y, Akioka K, Kitaura Y, Takeuchi K, Yoshikawa J. Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler Thromb Vasc Biol 2005;25:1168-73.

71. Chen JJ, Zhou SH. Mesenchymal stem cells overexpressing MI-R126 enhance ischemic angiogenesis via the AKT/ERK-related pathway. Cardiology Journal 2011; 18:865-71.

72. Gnecci M, He H, Melo LG, Noiausen N, Morello F, de Boer RA, Zhang L, Pratt RE, Dzau VJ, Ingwall JS. Early Beneficial Effects of Bone Marrow-Derived Mesenchymal Stem Cells Overexpressing Akkt on Cardiac Metabolism After Myocardial Infarction. Stem Cells 2009;27:971-9.

73. Assis AC, Carvalho JL, Jacoby BA, Ferreira RL, Castanheira P, Diniz SO, Cardoso VN, Goes AM, Ferreira AJ. Time-dependent migration of bone marrow-derived mesenchymal stem cells following myocardial infarction. Cell Transplant 2010;19:319-28.

74. Hoogduijn MJ, Rettenger MMA, Engela AU, Korevaar SS, Roemeling-Assis AC, Carvalho JL, Jacoby BA, Ferreira RL, Castanheira P, Diniz SO, Cardoso VN, Goes AM, Ferreira AJ. Time-dependent migration of bone marrow-derived mesenchymal stem cells for cardiac repair. International J Cardiol 2013;167:2073-81.

75. Huang J, Zhang ZP, Guo JA, Ni AG, Deb A, Zhang LN, Mirotssou M, Pratt RE, Dzau VJ. Genetic Modification of Mesenchymal Stem Cells Overexpressing CCRI Increases Cell Viability, Migration, Engraftment, and Capillary Density in the Injured Myocardium. Circulation Research 2010;106:1753-U1189.

76. Ip JE, Wu Y, Huang J, Zhang L, Pratt RE, Dzau VJ. Mesenchymal stem cells use integrin beta1 not CXC chemokine receptor 4 for myocardial migration and survival. Stem Cells Dev 2017;18:873-82.

77. Kang SK, Shin IS, Ko MS, Jo JY, Ra JC. Journey of mesenchymal stem cells for homing: strategies to enhance efficacy and safety of stem cell therapy. Stem Cells Int 2012;2012:342968.

78. Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzioni S, Tessone A, Miller L, Guetta E, Zipori D, Kedes LH, Klener RA, Leor J. Systemic delivery of bone marrow mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 2003;108:863-8.

79. Narita T, Shintani Y, Ikebe C, Kaneko M, Harada N, Tsumura N, Takahashi K, Campbell NG, Copper SR, Yashiro K, Sawa Y, Suzuki K. The use of cell-sheet technique eliminates arrhythmogenicity of skeletal myoblast-based therapy to the heart with enhanced thera-peutic effects. Int J Cardiol 2013;168:261-9.
X. Intracoronary infusion of Wharton’s jelly-derived mesenchymal stem cells in acute myocardial infarction: double-blind, randomized controlled trial. BMC Med 2015;13:162. doi: 10.1186/s12916-015-0399-z

94. Mathiasen AB, Qayyum AA, Jorgensen E, Helqvist S, Fischer-Nielsen A, Kofoed KF, Haack-Sorensen M, Ekblond A, Kastrup J. Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: a randomized placebo-controlled trial (MSC-HF trial). Eur Heart J 2015;36:1744-53.

95. Teerlink JR, Metra M, Filippatos GS, Davison BA, Bartunek J, Terzic A, Gersh BJ, Povsic TJ, Henry TD, Alexandre B, Homsy C, Edwards C, Seron A, Wijns W, Cotter G, Investigators C. Benefit of cardiopoietic mesenchymal stem cell therapy on left ventricular remodelling: results from the Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) study. Eur J Heart Fail 2017;19:1520-29.

96. Bartolucci J, Verdugo FJ, Gonzalez PL, Larrea RE, Abarzua E, Goset C, Rojo P, Palma I, Lamich R, Pedreros PA, Vaidavia G, Lopez VM, Nazzal C, Alcayaga-Miranda F, Cuenca J, Brobeck MJ, Patel AN, Figueroa FE, Khoury M. Safety and Efficacy of the Intravenous Infusion of Umbilical Cord Mesenchymal Stem Cells in Patients With Heart Failure A Phase 1/2 Randomized Controlled Trial (RIMECARD Trial [Randomized Clinical Trial of Intravenous Infusion Umbilical Cord Mesenchymal Stem Cells on Cardiopathy]). Circulation Research 2017;121:1192.

97. Chullikana A, Sen Majumdar A, Gottipamula S, Krishnamurthy S, Kumar AS, Prakash VS, Gupta PK. Randomized, double-blind, phase I/II study of intravenous allogeneic mesenchymal stromal cells in acute myocardial infarction. Cytotherapy 2015;17:250-61.

98. Nowbar AN, Mielewczik M, Karavassilis M, Dehbi HM, Shun-Shin MJ, Jones S, Howard JP, Cole GD, Francis DP, group Dw. Discrepancies in autologous bone marrow stem cell trials and enhancement of ejection fraction (DAMASCENE): weighted regression and meta-analysis. BMJ 2014;348:g2688.