Punctual Hilbert Schemes and Certified Approximate Singularities

Angelos Mantzaflaris\textsuperscript{a} Bernard Mourrain\textsuperscript{a} Agnes Szanto\textsuperscript{b}

\textsuperscript{a}INRIA, Sophia Antipolis, 2004 route des Lucioles, B.P. 92, 06902 Sophia Antipolis, Cedex France. angelos.mantzaflaris@inria.fr bernard.mourrain@inria.fr
\textsuperscript{b}Department of Mathematics, North Carolina State University, Campus Box 8205, Raleigh, NC, 27965, USA. azsanto@ncsu.edu

Abstract
In this paper we provide a new method to certify that a nearby polynomial system has a singular isolated root with a prescribed multiplicity structure. More precisely, given a polynomial system \( f = (f_1, \ldots, f_N) \in \mathbb{C}[x_1, \ldots, x_n]^N \), we present a Newton iteration on an extended deflated system that locally converges, under regularity conditions, to a small deformation of \( f \) such that this deformed system has an exact singular root. The iteration simultaneously converges to the coordinates of the singular root and the coefficients of the so called inverse system that describes the multiplicity structure at the root. We use \( \alpha \)-theory test to certify the quadratic convergence, and to give bounds on the size of the deformation and on the approximation error. The approach relies on an analysis of the punctual Hilbert scheme, for which we provide a new description. We show in particular that some of its strata can be rationally parametrized and exploit these parametrizations in the certification. We show in numerical experimentation how the approximate inverse system can be computed as a starting point of the Newton iterations and the fast numerical convergence to the singular root with its multiplicity structure, certified by our criteria.

Key words: certification ;singularity ;multiplicity structure ;Newton’s method ;inverse system ;multiplication matrix

1 Introduction

Local numerical methods such as Newton iterations have proved their efficiency to approximate and certify the existence of simple roots. However for multiple roots they dramatically fail to provide fast numerical convergence and certification. The motivation for this work is to find a method with fast convergence to an exact singular point and its multiplicity structure for a small perturbation of the input polynomials, and to give numerical tests that can certify it.

\footnote{Agnes Szanto’s research was partly supported by NSF grant CCF-1813340}
In [Mou97] a method called later integration method is devised to compute the so-called inverse system or multiplicity structure at a multiple root. It is used in [MM11] to compute an approximation of the inverse system, given an approximation of that root and to obtain a perturbed system that satisfies the duality property. However, this method did not give a way to improve the accuracy of the initial approximation of the root and the corresponding inverse system. In [HMS16] a new one-step deflation method is presented that gave an overdetermined polynomial system in the coordinates of the roots and the corresponding inverse system, serving as a starting point for the present paper. However, for certification, [HMS16] refers to the symbolic-numeric method in [AAHS18] that only works if the input system is given exactly with rational coefficients and have a multiple root with the prescribed multiplicity structure.

In the present paper we give a solution for the following problem:

**Problem 1.1.** Given a polynomial system \( f = (f_1, \ldots, f_N) \in \mathbb{C}[x_1, \ldots, x_n]^N \) and a point \( \xi \in \mathbb{C}^n \), give an iterative method that quadratically converges to the triple \( (\xi^*, \mu^*, \epsilon^*) \) such that \( \xi^* \in \mathbb{C}^n \), \( \mu^* \) defines the coefficients of a basis \( \Lambda^* = \{\Lambda_1^*, \ldots, \Lambda_r^*\} \subset \mathbb{C}[d_x] \) dual to the set \( B_{\xi^*} = \{(x - \xi^*)^{\beta_1}, \ldots, (x - \xi^*)^{\beta_r}\} \subset \mathbb{C}[x] \) and \( \epsilon^* \) defines a perturbed polynomial system \( f_{\epsilon^*} := f + \epsilon^* B_{\xi^*} \) with the property that \( \xi^* \) is an exact multiple root of \( f_{\epsilon^*} \) with inverse system \( \Lambda^* \). Furthermore, certify this property and give an upper bound on the size of the perturbation \( \|\epsilon^*\| \).

The difficulty in solving Problem 1.1 is that known polynomial systems defining the coordinates of the roots and the inverse system are overdetermined, and we need a square subsystem of it in the Newton iterations to guarantee quadratic convergence. Thus, roots of this square subsystem may not be exact roots of the complete polynomial system, and we cannot certify numerically that they are approximations of a root of the complete system. This is the reason why we introduce the variables \( \epsilon \) that allow perturbation of the input system. One of the goals of the present paper is to understand what kind of perturbations are needed and to bound their magnitude.

Certifying the correctness of the multiplicity structure that the numerical iterations converge to poses another significant challenge: the set of parameter values describing an affine point with multiplicity \( r \) forms a projective variety called the punctual Hilbert scheme. The goal is to certify that we converge to a point on this variety. We study an affine subset of the punctual Hilbert scheme and give a new description using multilinear quadratic equations that have a triangular structure. These equations appear in our deflated polynomial system, have integer coefficients, and have to satisfied exactly without perturbation, otherwise the solution does not define a proper inverse system, closed under derivation. Fortunately, the structure allowed us to define a rational parametrization of a strata of the punctual Hilbert scheme, called the regular strata. In turn, this rational parametrization allows certification when converging to a point on this regular strata.

Our method comprises of the following parts:

1. We apply the Integration Method (Algorithm 1) with input \( f \) and \( \tilde{\xi} \) to compute the multiplicity \( r \in \mathbb{N} \), a set of monomials \( B = \{x^{\beta_1}, \ldots, x^{\beta_r}\} \) and an approximate inverse system \( \tilde{\Lambda} \) with coefficients \( \tilde{\mu} \) dual to \( B \).
(2) Using $B$ we set up a polynomial system $F(x, \mu)$ in the original variables $x$ and new variables $\mu$ that deflate our input system $f(x)$ at a multiple root with inverse system defined by $\mu$ dual to $B$.

(3) We choose a maximal square subsystem $F_0(x, \mu)$ of $F$ such that its Jacobian matrix near $(\tilde{\xi}, \tilde{\mu})$ is non-singular. Denote by $F_1 := F \setminus F_0$.

(4) We certify that under some regularity condition, the solutions of $F_0(x, \mu)$ define an inverse system that is closed under derivation and dual to $B$. This is done by computing a rational parametrization of a component of the punctual Hilbert scheme containing the set of points with inverse systems dual to $B$ if one exists. See Proposition 4.4 and Algorithm 2 for details.

(5) We show that if the Newton iteration defined by $F_0$ starting from $(\tilde{\xi}, \tilde{\mu})$ converges to some regular point $(\xi^*, \mu^*)$, then it is an exact multiple point with multiplicity structure $\mu^*$ of a perturbed system $f_{\epsilon^*} := f - \epsilon^* B_{\xi^*}$, where $\epsilon^* = F_1(\xi^*, \mu^*)$. See Theorem 5.1 for details.

(6) Using symbolic computation, we verify the regularity of the basis $B$, using the rational parametrization we compute for the component of the punctual Hilbert scheme. See Theorem 6.1 for details.

(7) Using $\alpha$-theory, we provide a certification that Newton iterations converge quadratically to the regular point $(\xi^*, \mu^*)$, which defines the multiple root with its multiplicity structure at $\xi^*$ of the system $f_{\epsilon^*}$, bounding the distance $\| (\xi^*, \mu^*) \|$ and the perturbation $\| \epsilon^* \|$. See Theorem 6.1 for details.

1.1 Related Work

There are many works in the literature studying the certification of isolated singular roots of polynomial systems. One approach is to give separation bounds for isolated roots, i.e. a bound that guarantees that there is exactly one root within a neighborhood of a given point. Worst case separation bounds for square polynomial systems with support in given polytopes and rational coefficients are presented in [EMT10]. In the presence of singular roots, turned into root clusters after perturbations, these separation bounds separate the clusters from each other and bound the cluster size. [Yak00, Yak02, GLSY05] give separation bounds and numerical algorithms to compute clusters of zeroes of univariate polynomials. [DS01] extends $\alpha$-theory and gives separation bounds for simple double zeroes of polynomial systems, [GLSY07] extend these results to zeroes of embedding dimension one.

Another approach, called deflation, comprises of transforming the singular root into a regular root of a new system and to apply certification techniques on the new system. [KO97] uses a square deflated system to prove the existence of singular solutions. [LVZ06] devises a deflation technique that adds new variables to the systems for isolated singular roots that accelerates Newton’s method and [LVZ08] modifies this to compute the multiplicity structure. [RG10] computes error bounds that guarantee the existence of a simple double root within that error bound from the input, [LZ13, LZ14] generalizes [RG10] to the breadth one case and give an algorithm to compute such error bound. [LS15] gives verified error bounds for isolated and some non-isolated singular roots using higher order deflations. [WZ08a, WZ08b, DLZ11] give deflation techniques based on numerical linear algebra on the Macaulay matrices that compute the coefficients of the inverse system. [GY13, GY18] give a new deflation method
that does not introduce new variables and extends $\alpha$-theory to general isolated multiple roots for the certification to a simple root of a subsystem of the overdetermined deflated system. In [HMS16] a new deflated system is presented, which simple roots correspond to the isolated singular points with their multiplicity structure. A somewhat different approach is given in [AAHS18], where they use a symbolic-numeric certification techniques that certify that polynomial systems with rational coefficients have exact isolated singular roots. More recently, [LLZ19] design a square Newton iteration and provide separation bounds for roots when the deflation method of [LVZ06] terminates in one iteration, and give bounds for the size of the clusters.

The certification approach that we propose is based of an algebraic analysis of some strata of the punctual Hilbert scheme. Some of its geometric properties have been investigated long time ago, for instance in [Bri77, Iar77, BI78] or more recently in the plane [BS17]. However, as far as we know, the effective description that we use and the rational parametrization of the regular strata that we compute have not been developed previously.

2 Preliminaries

Let $f := (f_1, \ldots, f_N) \in \mathbb{C}[x]^N$ with $x = (x_1, \ldots, x_n)$. Let $\xi = (\xi_1, \ldots, \xi_n) \in \mathbb{C}^n$ be an isolated multiple root of $f$. Let $I = (f_1, \ldots, f_N)$, $m_\xi$ be the maximal ideal at $\xi$ and $Q$ be the primary component of $I$ at $\xi$ so that $\sqrt{Q} = m_\xi$. The shifted monomials at $\xi$ will be denoted for $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$ by

$$x_\xi^\alpha := (x_1 - \xi_1)^{\alpha_1} \cdots (x_n - \xi_n)^{\alpha_n}.$$ 

Consider the ring of power series $\mathbb{C}[[d_\xi]] := \mathbb{C}[[d_{1,\xi}, \ldots, d_{n,\xi}]]$ and we denote $d_\xi^\beta := d_{1,\xi}^{\beta_1} \cdots d_{n,\xi}^{\beta_n}$, with $\beta = (\beta_1, \ldots, \beta_n) \in \mathbb{N}^n$. We identify $\mathbb{C}[[d_\xi]]$ with the dual space $\mathbb{C}[x]^*$ by considering the action of $d_\xi^\beta$ on polynomials as derivations and evaluations at $\xi$, defined as

$$d_\xi^\beta(p) := \partial^{\beta}(p) \bigg|_{\xi} = \frac{\partial^{\beta}p}{\partial x_1^{\beta_1} \cdots \partial x_n^{\beta_n}}(\xi) \quad \text{for } p \in \mathbb{C}[x].$$  \hspace{1cm} (1)

Hereafter, we reserve the notation $d$ and $d_i$ for the dual variables while $\partial$ and $\partial_{x_i}$ for derivation. We indicate the evaluation at $\xi \in \mathbb{C}^n$ by writing $d_{i,\xi}$ and $d_\xi^\alpha$, and for $\xi = 0$ it will be denoted by $d_i$. The derivation with respect to the variable $d_{i,\xi}$ in $\mathbb{C}[[d_\xi]]$ is denoted $\partial_{d_{i,\xi}}$ ($i = 1, \ldots, n$). Observe that

$$\frac{1}{\beta!} d_\xi^\beta((x - \xi)^\alpha) = \begin{cases} 1 & \text{if } \alpha = \beta, \\ 0 & \text{otherwise}, \end{cases}$$

where $\beta! = \beta_1! \cdots \beta_n!$.

For $p \in \mathbb{C}[x]$ and $\Lambda \in \mathbb{C}[[d_\xi]] = \mathbb{C}[x]^*$, let $p \cdot \Lambda : q \mapsto \Lambda(p \cdot q)$. We check that $p = (x_i - \xi_i)$ acts as a derivation on $\mathbb{C}[[d_\xi]]$: $(x_i - \xi_i) \cdot d_\xi^\alpha = \partial_{d_{i,\xi}}(d_\xi^\alpha) = \beta_i d_\xi^{\beta_i - \alpha}$. Throughout the paper we use the notation $e_1, \ldots, e_n$ for the standard basis of $\mathbb{C}^n$ or for a canonical basis of any vector space $V$. 

\hspace{1cm}
of dimension $n$. We will also use integrals of polynomials in $\mathbb{C}[[d_\xi]]$ as follows: for $\Lambda \in \mathbb{C}[[d_\xi]]$ and $k = 1, \ldots, n$, $f_k \Lambda$ denotes the polynomial $\Lambda^* \in \mathbb{C}[[d_\xi]]$ such that $\partial_{d_k,\xi}(\Lambda^*) = \Lambda$ and $\Lambda^*$ has no constant term. We introduce the following shorthand notation

$$
\int_k \Lambda := \int_k \Lambda(d_{1,\xi}, \ldots, d_{k,\xi}, 0, \ldots, 0).
$$

(2)

For an ideal $I \subset \mathbb{C}[x]$, let $I^\perp = \{ \Lambda \in \mathbb{C}[[d_\xi]] \mid \forall p \in I, \Lambda(p) = 0 \}$. The vector space $I^\perp$ is naturally identified with the dual space of $\mathbb{C}[x]/I$. We check that $I^\perp$ is a vector subspace of $\mathbb{C}[[d_\xi]]$ which is closed under the derivations $\partial_{d_i,\xi}$ for $i = 1, \ldots, n$.

**Lemma 2.1.** If $Q$ is a $m_\xi$-primary isolated component of $I$, then $Q^\perp = I^\perp \cap \mathbb{C}[d_\xi]$.

This lemma shows that to compute $Q^\perp$, it suffices to compute all polynomials of $\mathbb{C}[d_\xi]$ which are in $I^\perp$. Let us denote this set $\mathcal{D} = I^\perp \cap \mathbb{C}[d_\xi]$. It is a vector space stable under the derivations $\partial_{d_i,\xi}$. Its dimension is the dimension of $Q^\perp$ or $\mathbb{C}[x]/Q$, that is the *multiplicity* of $\xi$, denoted $r_\xi(I)$, or simply $r$ if $\xi$ and $I$ is clear from the context.

For an element $\Lambda(d_\xi) \in \mathbb{C}[d_\xi]$ we define the degree or *order* $\text{ord}(\Lambda)$ to be the maximal $|\beta|$ s.t. $d^\beta_\xi$ appears in $\Lambda(d_\xi)$ with non-zero coefficient.

For $t \in \mathbb{N}$, let $\mathcal{D}_t$ be the elements of $\mathcal{D}$ of order $\leq t$. As $\mathcal{D}$ is of dimension $r$, there exists a smallest $t \geq 0$ s.t. $\mathcal{D}_{t+1} = \mathcal{D}_t$. Let us call this smallest $t$, the *nil-index* of $\mathcal{D}$ and denote it by $\delta_\xi(I)$, or simply by $\delta$. As $\mathcal{D}$ is stable by the derivations $\partial_{d_i,\xi}$, we easily check that for $t \geq \delta_\xi(I)$, $\mathcal{D}_t = \mathcal{D}$ and that $\delta_\xi(I)$ is the maximal degree of elements of $\mathcal{D}$.

For an $m_\xi$-primary ideal $Q$, let

$$
M_i : \mathbb{C}[x]/Q \to \mathbb{C}[x]/Q
$$

$p \mapsto (x_i - \xi_i) p$

be the *multiplication operator* by $x_i - \xi_i$ in $\mathbb{C}[x]/Q$. Its transpose operator is

$$
M^T_i : \mathcal{D} \to \mathcal{D}
$$

$\Lambda \mapsto \Lambda \circ M_i = (x_i - \xi_i) \cdot \Lambda = \partial_{d_i,\xi}(\Lambda),$

where $\mathcal{D} = Q^\perp \subset \mathbb{C}[d_\xi]$.

Let $B = \{x_1^{\beta_1}, \ldots, x_r^{\beta_r}\}$ be a basis of $\mathbb{C}[x]/Q$. We can identify the elements of $\mathbb{C}[x]/Q$ with the elements of the vector space $\text{span}_\mathbb{C}(B)$. We define the normal form $N(p)$ of a polynomial $p$ in $\mathbb{C}[x]$ as the unique element $b$ of $\text{span}_\mathbb{C}(B)$ such that $p - b \in Q$. Hereafter, we are going to identify the elements of $\mathbb{C}[x]/Q$ with their normal form in $\text{span}_\mathbb{C}(B)$. For $\alpha \in \mathbb{N}^n$, we will write the normal form of $x_\xi^\beta$ as

$$
N(x_\xi^\beta) = \sum_{i=1}^r \mu_{\beta_i,\alpha} x_\xi^{\beta_i}.
$$

(3)
The matrix of the operator $M_k$ of multiplication by $x_k$ in the basis $B$ of $\mathbb{C}[x]/Q$ is $M_k = [\mu_{\beta_i,\beta_j+e_k}]$.

### 2.1 The multiplicity structure

We start this subsection by recalling the definition of graded primal-dual pairs of bases for the space $\mathbb{C}[x]/Q$ and its dual. The following is a definition/lemma:

**Lemma 2.2** (Graded primal-dual basis pair). Let $f$, $\xi$, $Q$, $D$, $r = r_\xi(f)$ and $\delta = \delta_\xi(f)$ be as above. Then there exists a primal-dual basis pair of the local ring $\mathbb{C}[x]/Q$ with the following properties:

1. The primal basis $B$ of the local ring $\mathbb{C}[x]/Q$ has the form
   
   $$B := \{x^{\beta_1}_\xi, x^{\beta_2}_\xi, \ldots, x^{\beta_r}_\xi\}.$$  

   We can assume that $\beta_1 = 0$ and that the ordering of the elements in $B$ are increasing in degree. Define the set of exponents in $B$ as $E := \{\beta_1, \ldots, \beta_r\} \subset \mathbb{N}^n$.

2. The unique dual basis $\Lambda = \{\Lambda_1, \Lambda_2, \ldots, \Lambda_r\}$ of $D \subset \mathbb{C}[d_\xi]$ dual to $B$ has the form:

   $$\Lambda_1 = d^{\beta_1}_\xi = 1$$

   $$\Lambda_2 = \frac{1}{\beta_2!}d^{\beta_2}_\xi + \sum_{\substack{\alpha \leq |\beta_2| \\beta_2 \in E}} \mu_{\beta_2,\alpha} \frac{1}{\beta_1!}d^{\alpha}_\xi$$

   $$\vdots$$

   $$\Lambda_r = \frac{1}{\beta_r!}d^{\beta_r}_\xi + \sum_{\substack{\alpha \leq |\beta_r| \\beta_r \in E}} \mu_{\beta_r,\alpha} \frac{1}{\beta_1!}d^{\alpha}_\xi,$$

   where $D_t$ denotes the elements of $D$ of order $\leq t$, as above.

   We have $0 = \text{ord}(\Lambda_1) \leq \cdots \leq \text{ord}(\Lambda_r)$, and for all $0 \leq t \leq \delta$ we have

   $$D_t = \text{span}\{\Lambda_j : \text{ord}(\Lambda_j) \leq t\},$$

   where $D_t$ denotes the elements of $D$ of order $\leq t$, as above.

A graded primal-dual basis pair $(B, \Lambda)$ of $D$ as described in Lemma 2.2 can be obtained from any basis $A$ of $D$ by first choosing pivot elements that are the leading monomials with respect to a graded monomial ordering on $\mathbb{C}[d]$, these leading monomials define $B$, then transforming the coefficient matrix of $A$ into row echelon form using the pivot leading coefficients, defining $\Lambda$.

A monomial set $B$ is called a graded primal basis of $f$ at $\xi$ if there exists $\Lambda \subset \mathbb{C}[d_\xi]$ such that $(B, \Lambda)$ is a graded primal-dual basis pair and $\Lambda$ is complete for $f$ at $\xi$.

Next we describe the so-called integration method introduced in [Mou97, MM11] that computes a graded pair of primal-dual bases as in Lemma 2.2 if the root $\xi$ is given. The integration method performs the computation of a basis order by order. We need the following proposition, a new version of [Mou97, Theorem 4.2]:
Proposition 2.3. Let \( \Lambda_1, \ldots, \Lambda_s \in \mathbb{C}[d] \) and assume that \( \text{ord}(\Lambda_i) \leq t \) for some \( t \in \mathbb{N} \). Suppose that the subspace \( D := \text{span}(\Lambda_1, \ldots, \Lambda_s) \subset \mathbb{C}[d] \) is closed under derivation. Then \( \Delta \in \mathbb{C}[d] \) with no constant term satisfies \( \partial_{d_k}(\Delta) \in D \) for all \( k = 1, \ldots, n \) if and only if \( \Delta \) is of the form

\[
\Delta = \sum_{i=1}^{s} \sum_{k=1}^{n} \nu_i^k \int_k \Lambda_i
\]

for some \( \nu_i^k \in \mathbb{C} \) satisfying

\[
\sum_{i=1}^{s} \nu_i^k \partial_{d_i}(\Lambda_i) - \nu_i^l \partial_{d_k}(\Lambda_i) = 0 \quad \text{for} \quad 1 \leq k < l \leq n.
\]

Furthermore, (6) and (7) implies that

\[
\partial_{d_k}(\Delta) = \sum_{i=1}^{s} \nu_i^k \Lambda_i \quad \text{for} \quad k = 1, \ldots, n.
\]

Proof. Without loss of generality we can assume that \( \xi = 0 \). Suppose \( \Lambda \in \mathbb{C}[d] \) with no constant term satisfies \( \partial_{d_k}(\Lambda) \in D \) for all \( k = 1, \ldots, n \). To prove (6), we can proceed exactly as in the proof of [Mou97, Theorem 4.2]: we write \( \Delta \) uniquely as

\[
\Delta = \Delta_1(d_1, \ldots, d_n) + \Delta_2(d_2, \ldots, d_n) + \cdots + \Delta_n(d_n)
\]

with \( \Delta_i \in \mathbb{C}[d_1, \ldots, d_n] \setminus \mathbb{C}[d_{i+1}, \ldots, d_n] \). Then \( \int_k \partial_{d_i} \Delta_i = \Delta_i \). Then we prove that by induction on \( k \) that if \( \sigma_k := \Delta_1 + \cdots + \Delta_k \) then

\[
\Delta_k = \sum_{j=1}^{s} \nu_j^k \int_k \Lambda_j - (\sigma_{k-1} - \sigma_{k-1}|_{d_k=0})
\]

and

\[
\sigma_k = \Delta_k + \sigma_{k-1} = \sum_{j=1}^{s} \nu_j^k \int_k \Lambda_j + \sigma_{k-1}|_{d_k=0}
\]

\[
= \sum_{j=1}^{s} \nu_j^k \int_k \Lambda_j + \sum_{j=1}^{s} \nu_j^{k-1} \int_k \Lambda_j|_{d_k=0} + \cdots + \sum_{j=1}^{s} \nu_j^{1} \int_k \Lambda_j|_{d_k=0, \cdots d_2=0}.
\]

Conversely, suppose that \( \Lambda \in \mathbb{C}[d] \) with no constant term is of the form (6) satisfying (7). Define \( \bar{\Delta}_1 = \bar{\sigma}_1 := \sum_{j=1}^{s} \nu_j^1 \int_k \Lambda_j \) and for \( k = 2, \ldots, n \) define \( \bar{\Delta}_k := \sum_{j=1}^{s} \nu_j^k \int_k \Lambda_j - (\sigma_{k-1} - \sigma_{k-1}|_{d_k=0}) \) and \( \bar{\sigma}_k := \bar{\Delta}_1 + \cdots + \bar{\Delta}_k \). Then in the proof of [Mou97, Theorem 4.2] it is shown that \( \bar{\Delta}_k \in \mathbb{C}[d_{k+1}, \ldots, d_n] \setminus \mathbb{C}[d_{k+1}, \ldots, d_n] \) and

\[
\bar{\sigma}_k = \sum_{j=1}^{s} \nu_j^k \int_k \Lambda_j + \sum_{j=1}^{s} \nu_j^{k-1} \int_k \Lambda_j|_{d_k=0} + \cdots + \sum_{j=1}^{s} \nu_j^{1} \int_k \Lambda_j|_{d_k=0, \cdots d_2=0}
\]

so we get that \( \partial_{d_k}(\Lambda) = \partial_{d_k}(\bar{\sigma}_k) = \sum_{j=1}^{s} \nu_j^k \Lambda_j \in D \) as claimed. \( \square \)
Let \( Q \) be a \( \mathfrak{m}_x \)-primary ideal. Proposition 2.3 implies that if \( \Lambda = \{\Lambda_1, \ldots, \Lambda_r\} \subset \mathbb{C}[d_x] \) with \( \Lambda_1 = 1 \) is a basis of \( Q^\perp \), dual to the basis \( B = \{x_\xi^{\beta_1}, \ldots, x_\xi^{\beta_r}\} \subset \mathbb{C}[x] \) of \( \mathbb{C}[x]/Q \) with \( \text{ord}(\Lambda_i) = |\beta_i| \), then there exist \( \nu_{i,j}^{k} \in \mathbb{C} \) such that

\[
\partial_{d_k}(\Lambda_i) = \sum_{|\beta_j|<|\beta_i|} \nu_{i,j}^{k} A_j.
\]

Therefore, the matrix \( M_k \) of the multiplication map \( M_k \) by \( x_k - \xi_k \) in the basis \( B \) of \( \mathbb{C}[x]/Q \) is

\[
M_k = [\nu_{j,i}^{k}]_{1 \leq i,j \leq r} = [\mu_{\beta_i,\beta_j+e_k}]_{1 \leq i,j \leq r},
\]

using the notation (3) and the convention that \( \nu_{i,j}^{k} = \mu_{\beta_i,\beta_j+e_k} = 0 \) if \( |\beta_i| \geq |\beta_j| \). Consequently,

\[
\nu_{i,j}^{k} = \mu_{\beta_i,\beta_j+e_k} \quad i, j = 1, \ldots, r, k = 1, \ldots, n,
\]

and we have

\[
\Lambda_i = \sum_{|\beta_j|<|\beta_i|} \sum_{k=1}^{n} \mu_{\beta_i,\beta_j+e_k} \int_k \Lambda_j,
\]

where \( \mu_{\beta_i,\beta_j+e_k} \) is the coefficient of \( x_\xi^{\beta_i} \) in the normal form of \( x_\xi^{\beta_j+e_k} \) in the basis \( B \) of \( \mathbb{C}[x]/Q \).

Next we give a result that allows to simplify the linear systems involved in the integration method. We first need a definition:

**Definition 2.4.** Let \( E \subset \mathbb{N}^n \) be a set of exponents. We say that \( E \) is closed under division if \( \beta = (\beta_1, \ldots, \beta_n) \in E \) implies that \( \beta - e_k \in E \) as long as \( \beta_k > 0 \) for all \( k = 1, \ldots, n \). We also call the corresponding primal basis \( B = \{x_\xi^{\beta_1}, \ldots, x_\xi^{\beta_r}\} \) closed under division.

The following lemma provides a simple characterization of dual basis stable by derivation, that we will use in the integration algorithm.

**Lemma 2.5.** Let \( B = \{x_\xi^{\beta_1}, \ldots, x_\xi^{\beta_r}\} \subset \mathbb{C}[x] \) be closed under division and ordered by degree. Let \( \Lambda = \{\Lambda_1, \ldots, \Lambda_r\} \subset \mathbb{C}[d_x] \) be a linearly independent set such that

\[
\Lambda_i = \sum_{|\beta_j|<|\beta_i|} \sum_{k=1}^{n} \mu_{\beta_i,\beta_j+e_k} \int_k \Lambda_j, \quad i = 1, \ldots, r.
\]

Then \( \text{span}\Lambda_1, \ldots, \Lambda_r \) is closed under derivation iff for all \( i, s = 1, \ldots, r, |\beta_s| < |\beta_i| \) and \( k \neq l \in \{1, \ldots, n\} \) we have

\[
\sum_{j: |\beta_j|<|\beta_i|} \mu_{\beta_i,\beta_j+e_k} \mu_{\beta_j,\beta_s+e_l} - \mu_{\beta_i,\beta_j+e_l} \mu_{\beta_j,\beta_s+e_k} = 0.
\]

Furthermore, \( (B, \Lambda) \) is a graded primal-dual basis pair iff they satisfy (10) and

\[
\mu_{\beta_i,\beta_j+e_k} = \begin{cases} 1 & \text{for } \beta_i = \beta_j + e_k \\ 0 & \text{for } \beta_j + e_k \in E, \beta_i \neq \beta_j + e_k \end{cases}
\]
Proof. Assume $\Lambda = \{\Lambda_1, \ldots, \Lambda_r\}$ is linearly independent and $D = \text{span}(\Lambda)$ is closed under derivation. For $t \in \{0, \ldots, \delta\}$ denote by $\{\Lambda_1, \ldots, \Lambda_r\} = \Lambda \cap \mathbb{C}[d]_t$ and $D_t = \text{span}(\Lambda_1, \ldots, \Lambda_r)$. Then by Proposition 2.3, $\Lambda$ satisfy equations (8) for $t = 0, \ldots, \delta$ and for $j = 1, \ldots, r$, $k = 1, \ldots, n$, we have $\partial_{d_k}(\Lambda_j) = \sum_{|\beta| < |\beta_j|} \mu_{\beta, \beta_j + e_k} \Lambda_s$. Substituting this to (7) we get for $i = 1, \ldots, r$

$$ \sum_{|\beta_j| < |\beta_i|} \mu_{\beta_i, \beta_j + e_k} \sum_{|\beta_s| < |\beta_j|} \mu_{\beta_j, \beta_s + e_k} \Lambda_s - \sum_{|\beta_s| < |\beta_j|} \mu_{\beta_j, \beta_s + e_k} \Lambda_s = 0. \tag{12} $$

Then using linear independence and collecting the coefficients of $\Lambda_s$ we get (10).

Conversely, assume that (10) is satisfied. Then (12) is also satisfied. We use induction on $t$ to prove that $D_t$ is closed under derivation. For $t = 0$ there is nothing to prove. Assume $D_{t-1}$ is closed under derivation. Then by Proposition 2.3 if $|\beta_j| < t$ then $\partial_{d_k}(\Lambda_j) = \sum_{|\beta| < |\beta_j|} \mu_{\beta, \beta_s + e_k} \Lambda_s$ for $k = 1, \ldots, n$. Thus for $|\beta_i| = t$, (12) implies that

$$ \sum_{|\beta_j| < |\beta_i|} \mu_{\beta_i, \beta_j + e_k} \partial_{d_k}(\Lambda_j) - \sum_{|\beta_s| < |\beta_j|} \mu_{\beta_j, \beta_s + e_k} \partial_{d_k}(\Lambda_j) = 0. $$

Again, by Proposition 2.3 we get that $D_t$ is closed under derivation.

Next, assume first that $(B, \Lambda)$ is a graded primal-dual basis pair. This means that for $i = 1, \ldots, r$ and for $t$ such that $|\beta_t| \leq |\beta_i|

$$ \delta_{i,t} = \Lambda_i \left( x^{\beta_t} \right) = \sum_{k=1}^{n} \sum_{|\beta_j| < |\beta_i|} \mu_{\beta_i, \beta_j + e_k} \frac{\Lambda_j \left( x^{\beta_j} \right)}{\beta_i!} = \sum_{k=1}^{n} \sum_{|\beta_j| < |\beta_i|} \mu_{\beta_i, \beta_j + e_k} \text{coeff} (d_{\beta_j}^{\beta_k}, \frac{\Lambda_j}{\beta_i!}) $$

Fix $k$ to be the index of the last non-zero entry of $\beta_t$. For all other $k$’s $d_{\beta_t}^{\beta_k}$ becomes zero when we substitute 0 into $d_{k+1}, \ldots, d_n$ in $\frac{\Lambda_j}{\beta_i!}$. Thus,

$$ \Lambda_i \left( x^{\beta_t} \right) = \sum_{|\beta_j| < |\beta_i|} \mu_{\beta_i, \beta_j + e_k} \text{coeff} (d_{\beta_j}^{\beta_k}, \frac{\Lambda_j}{\beta_i!}) \frac{\Lambda_j}{\beta_t!}, \frac{\Lambda_j}{\beta_t - e_k!} $$

Since $E$ is closed under division, $\beta_t - e_k = \beta_m \in E$ for some $m < l$. By duality we have that $\text{coeff} (d_{\beta_t}^{\beta_m}, \Lambda_j) = \delta_{m,j}$, so

$$ \Lambda_i \left( x^{\beta_t} \right) = \mu_{\beta_i, \beta_m + e_k} = \mu_{\beta_i, \beta_t}. $$

To satisfy $\Lambda_i \left( x^{\beta_t} \right) = \delta_{i,t}$ we must have

$$ \mu_{\beta_i, \beta_m + e_k} = \begin{cases} 1 & \text{if } \beta_i = \beta_m + e_k \\ 0 & \text{if } \beta_m + e_k = \beta_t \in E \text{ but } i \neq l. \end{cases} $$
Conversely, by induction on \( t = |\beta_i| \) we have that \( \deg(\Lambda_i) \leq |\beta_i| \). Then \( \Lambda_i(x_{\xi}^{\beta_i}) = 0 \) when \( |\beta_i| > |\beta_i| \). For \( |\beta_i| \leq |\beta_i| \), Equations (11) imply that the coefficient of \( \frac{d_{\beta_i}}{d_t} \) in \( \Lambda_i \) is 0 if \( i \neq l \) and 1 if \( i = l \). Therefore \((B, \Lambda)\) is a graded primal-dual basis pair.

To compute the inverse system \( \mathcal{D} \) of \( f \) at a point \( \xi \), we will consider the additional systems of equations in \( \xi \) and \( \mu = \{\mu_{\beta_i,0}\} \):

\[
\Lambda_i(f_j) = 0 \quad \text{for} \quad 1 \leq i \leq r, \quad 1 \leq j \leq N. \tag{13}
\]

Throughout the paper we use the following notation:

**Notation 2.6.** Let \( f_1, \ldots, f_N \in \mathbb{C}[x] \) and fix \( t \in \mathbb{N} \). Let \( B_{t-1} = \{x_{\xi}^{\beta_1}, \ldots, x_{\xi}^{\beta_{r-1}}\} \subset \mathbb{C}[x_{\xi}]_{t-1} \) be closed under division and \( \Lambda_{t-1} = \{\Lambda_1, \ldots, \Lambda_{r-1}\} \subset \mathbb{C}[d_{\xi}]_{t-1} \) dual to \( B_{t-1} \) with \( \Lambda_i = \sum_{j:|\beta_j|<|\beta_i|} \sum_{k=1}^n \mu_{\beta_i,\beta_j+e_k} \Lambda_j \). Consider the following homogeneous linear system of equations in the variables \( \{\nu^k_j : j = 1, \ldots, r_{t-1}, \quad k = 1, \ldots, n\} \):

\[
\sum_{j:|\beta_j|<|\beta_i|} \nu^k_j \mu_{\beta_j,\beta_i+e_k} - \nu^l_j \mu_{\beta_j,\beta_i+e_k} = 0, \quad 1 \leq k < l \leq n. \tag{14}
\]

\[
\nu^k_j = 0 \quad \text{if} \quad \beta_j + e_k = \beta_l \quad \text{for some} \quad 1 \leq l \leq r_{t-1} \tag{15}
\]

\[
\left(\sum_{j=1}^{r_{t-1}} \sum_{k=1}^n \nu^k_j \Lambda_j \right)(f_l) = 0 \quad l = 1, \ldots, N. \tag{16}
\]

We will denote by \( H_t \) the coefficient matrix of the equations in (14) and (15) and by \( K_t \) the coefficient matrix of the equations in (14)-(16).

By Proposition 2.3 and Lemma 2.5, if \( K_t \nu = 0 \) where \( \nu = [\nu^k_j : j = 1, \ldots, s, \quad k = 1, \ldots, n] \), then \( \Lambda = \sum_{j=1}^s \sum_{k=1}^n \nu^k_j \Lambda_j \in (f)^+ \cap [d_{\xi}]_t = \mathcal{D}_t \). The main loop of the integration method described in Algorithm 1 consists in computing the new basis elements in \( \mathcal{D}_t \) and the new basis monomials in \( B_t \) of degree \( t \) from the primal-dual basis pair \((B_{t-1}, \Lambda_{t-1})\) in degree \( t - 1 \).

The full **Integration Method** consists of taking \( \Lambda_1 := 1_{\xi} \) for \( t = 0 \), a basis of \( \mathcal{D}_0 \) and then iterating algorithm **Integration Method - Iteration** \( t \) until we find a value of \( t \) when \( \mathcal{D}_t = \mathcal{D}_{t-1} \). This implies that the order \( \delta = \delta_{\xi}(f) = t - 1 \). This leads to the following definition.

**Definition 2.7.** We say that \( \mathcal{A} \subset [d_{\xi}] \) is complete for \( f \) at \( \xi \) if the linear system \( K_t \) of the equations (14)-(16) in degree \( t = \delta + 1 = \text{ord}(\mathcal{A}) + 1 \) is such that \( \ker K_{\delta+1} = \{0\} \).

Notice that the full **Integration Method** constructs a graded primal-dual basis pair \((B, \Lambda)\). The basis \( \Lambda \subset (f)^+ \) spans a space stable by derivation and is complete for \( f \), so that we have \( \text{span}(\Lambda) = (f)^+ \cap [d_{\xi}] = Q^+ \) where \( Q \) is the primary component of \( f \) at \( \xi \).

To guarantee that \( B_t \) is closed under division, one could choose a graded monomial ordering \( \prec \) of \( [d_{\xi}] \) and compute an auto-reduced basis of \( \ker H_t \) such that the initial terms for \( \prec \) are \( d_{\xi}^{\beta_i} \). The set \( B_t \) constructed in this way would be closed under division, since \( \mathcal{D}_t \) is stable.
Algorithm 1  **Integration Method - Iteration t**

**Input:** $t > 0$, $f = (f_1, \ldots, f_N) \in \mathbb{C}[x]^N$, $\xi \in \mathbb{C}^n$, $B_{t-1} = \{x_\xi^{\beta_{1}}, \ldots, x_\xi^{\beta_{r_{t-1}}}\} \subset \mathbb{C}[x]$ closed under division and $\Lambda_{t-1} = \{\Lambda_1, \ldots, \Lambda_{r_{t-1}}\} \subset \mathbb{C}[d_{\xi}]$ a basis for $\mathcal{D}_{t-1}$ dual to $B_{t-1}$, of the form (9).

**Output:** Either “$\mathcal{D}_t = \mathcal{D}_{t-1}$” or $B_t = \{x_\xi^{\beta_{1}}, \ldots, x_\xi^{\beta_{r_t}}\}$ for some $r_t > r_{t-1}$ closed under division and $\Lambda_t = \{\Lambda_1, \ldots, \Lambda_{r_t}\}$ with $\lambda_t$ of the form (9), satisfying (10), (11) and (13).

1. Set up the coefficient matrix $K_t$ of the homogeneous linear system (14)-(16) in Notation 2.6 in the variables $\{\nu_{j}^{k}\}_{j=1, \ldots, r_{t-1}, k=1, \ldots, n}$ associated to an element of the form $\Lambda = \sum^{r_{t-1}}_{j=1} \sum^{n}_{k=1} \nu^{k}_{j,k}x_{\Lambda}$. Let $t_t := \dim \ker K_t$.
2. If $t_t = 0$ then return “$\mathcal{D}_t = \mathcal{D}_{t-1}$”. If $t_t > 0$ define $r_t := r_{t-1} + t_t$.
3. Perform a triangulation of $H_t$ by row reductions with row permutations and column pivoting so that the non-pivoting columns correspond to exponents $\beta_{r_{t-1}+1}, \ldots, \beta_{r_t}$ with strict divisors in $B_{t-1}$. Let $B_t = B_{t-1} \cup \{x_{\xi}^{\beta_{r_{t-1}+1}}, \ldots, x_{\xi}^{\beta_{r_t}}\}$.

(1) Set up the coefficient matrix $K_t$ of the homogeneous linear system (14)-(16) in Notation 2.6 in the variables $\{\nu_{j}^{k}\}_{j=1, \ldots, r_{t-1}, k=1, \ldots, n}$ associated to an element of the form $\Lambda = \sum^{r_{t-1}}_{j=1} \sum^{n}_{k=1} \nu^{k}_{j,k}x_{\Lambda}$. Let $t_t := \dim \ker K_t$.

(2) If $t_t = 0$ then return “$\mathcal{D}_t = \mathcal{D}_{t-1}$”. If $t_t > 0$ define $r_t := r_{t-1} + t_t$. Performed a triangulation of $H_t$ by row reductions with row permutations and column pivoting so that the non-pivoting columns correspond to exponents $\beta_{r_{t-1}+1}, \ldots, \beta_{r_t}$ with strict divisors in $B_{t-1}$. Let $B_t = B_{t-1} \cup \{x_{\xi}^{\beta_{r_{t-1}+1}}, \ldots, x_{\xi}^{\beta_{r_t}}\}$.

(3) Compute a basis $\Lambda_{r_{t-1}+1}, \ldots, \Lambda_{r_t} \in \mathbb{C}[d_{\xi}]$ of $\ker K_t$ from the triangular reduction of $H_t$ by setting the coefficients of the non-pivoting columns to 0 or 1. This yields a basis $\Lambda_t = \Lambda_{t-1} \cup \{\Lambda_{r_{t-1}+1}, \ldots, \Lambda_{r_t}\}$ dual to $B_t$. The coefficients $\nu_{i,j}^{k}$ of $\Lambda_t$ are the coefficients $\mu_{\beta_{t} \mu_{t}} \in (9)$ so that Equations (13) are satisfied. Equations (11) are satisfied, since $\Lambda_t$ is dual to $B_t$.

under derivation. In the approach we use in practice, we choose the column pivot taking into account the numerical values of the coefficients and not according to a monomial ordering and we check a posteriori that the set of exponents is closed under division (See Example 7.1).

The main property that we will use for the certification of multiplicities is given in the next theorem.

**Theorem 2.8.** If $\xi^*$ is an isolated solution of the system $f(x) = 0$ and $B$ is a graded primal basis at $\xi^*$ closed under division, then the system $F(\xi, \mu) = 0$ of all equations (10), (11) and (13) admits $(\xi^*, \mu^*)$ as an isolated simple root, where $\mu^*$ defines the basis $\Lambda^*$ of the inverse system of $(f)$ at $\xi$ dual to $B$, by the relations (9).

**Proof.** This is a direct consequence of [HMS16, Theorem 4.11], since the system of equations (10)-(13) is equivalent to the system (14) in [HMS16, Theorem 4.11]. The equations (10) express the commutation of the transposed of the parametric operator of multiplication in $B$, which are the same as the equations of commutation of the operators. By Lemma 2.5, the equations (11) are equivalent to the fact that $(B, \Lambda^*)$ is a graded primal-dual basis pair. Finally, the equations (13) are the same as $\mathcal{N}(f_i) = 0$, $i = 1, \ldots, s$ where $\mathcal{N}$ is the parametric normal form defined in [HMS16][see Definition 4.7 and following remark]. Therefore the two systems are equivalent. By [HMS16, Theorem 4.11], they define the simple isolated solution $(\xi^*, \mu^*)$, where $\mu^*$ defines the basis $\Lambda^*$ dual to $B$ by the relations (9).
3 Punctual Hilbert scheme

The results in Sections 3 and 4 do not depend on the point \( \xi \in \mathbb{C}^n \), so to simplify the notation, we assume in these sections that \( \xi = 0 \). Let \( \mathfrak{m} = (x_1, \ldots, x_n) \) be the maximal ideal defining \( \xi = 0 \in \mathbb{C}^n \). Let \( \mathbb{C}[d] \) be the space of polynomials in the variables \( d = (d_1, \ldots, d_n) \) and \( \mathbb{C}[d]_t \subset \mathbb{C}[d] \) the subspace of polynomials in \( d \) of degree \( \leq t \).

For a vector space \( V \), let \( \mathcal{G}_r(V) \) be the projective variety of the \( r \) dimensional linear spaces of \( V \), also known as the Grassmannian of \( r \)-spaces of \( V \). The points in \( \mathcal{G}_r(V) \) are the projective points of \( \mathbb{P}(\wedge^r V) \) of the form \( v = v_1 \land \cdots \land v_r \) for \( v_i \in V \). Fixing a basis \( e_1, \ldots, e_s \) of \( V \), the Plücker coordinates of \( v \) are the coefficients of \( \Delta_{i_1, \ldots, i_r}(v) \) of \( v = \sum_{i_1 < \cdots < i_r} \Delta_{i_1, \ldots, i_r}(v) e_{i_1} \land \cdots \land e_{i_r} \). When \( V = \mathbb{C}[d]_{r-1} \), a natural basis is the dual monomial basis \( \{d_1^{i_1} \cdots d_n^{i_n}\} \). The Plücker coordinates of an element \( v \in \mathcal{G}_r(\mathbb{C}[d]_{r-1}) \) for this basis are denoted \( \Delta_{\alpha_1, \ldots, \alpha_r}(v) \) where \( \alpha_i \in \mathbb{N}^n \) and \( |\alpha_i| < r \).

If \( \Lambda = \{\Lambda_1, \ldots, \Lambda_r\} \) is a basis of a \( r \)-dimensional space \( D \) in \( \mathbb{C}[d]_{r-1} \) with \( \Lambda_i = \sum_{|\alpha| < r} \mu_{i, \alpha} d_\alpha \), the Plücker coordinates of \( D \) are, up to a scalar, of the form

\[
\Delta_{\alpha_1, \ldots, \alpha_r} = \det \left[ \mu_{i, \alpha} \right]_{1 \leq i, j \leq r}.
\]

In particular, a monomial set \( B = \{x^{\beta_1}, \ldots, x^{\beta_r}\} \subset \mathbb{C}[x]_{r-1} \) has a dual basis in \( D \) iff \( \Delta_{\beta_1, \ldots, \beta_r}(D) \neq 0 \). If \( B = \{x^{\beta_1}, \ldots, x^{\beta_r}\} \) is a graded primal-dual basis pair, then \( \mu_{i, \beta_j} = \delta_{i, j} \). To keep our notation consistent with the previous sections, the coordinates of \( \Lambda_i \in \Lambda \) when \( \Lambda \) is dual to \( D \) will be denoted by \( \mu_{\beta_{i, \alpha}} \) instead of \( \mu_{i, \alpha} \). By properties of the determinant, the Plücker coordinates of \( D \) are such that

\[
\mu_{\beta_{i, \alpha}} = \frac{\Delta_{\beta_{1, \alpha}, \beta_{i+1, \beta_{1, \alpha}}, \ldots, \beta_r}}{\Delta_{\beta_1, \ldots, \beta_r}} \quad i = 1, \ldots, r. \tag{17}
\]

If \( D \) is the dual of an ideal \( Q = D^\perp \subset \mathbb{C}[x] \) and \( B = \{x^{\beta_1}, \ldots, x^{\beta_r}\} \) is a basis of \( \mathbb{C}[x]/Q \) so that \( \Delta_{\beta_1, \ldots, \beta_r}(D) \neq 0 \), the normal form of \( x^\alpha \in \mathbb{C}[x]_{r-1} \) modulo \( Q = D^\perp \) in the basis \( B \) is

\[
N(x^\alpha) = \sum_{j=1}^r \mu_{\beta_{1, \alpha}} x^{\beta_j} = \sum_{j=1}^r \frac{\Delta_{\beta_{1, \alpha}, \beta_{j+1, \beta_{1, \alpha}}, \ldots, \beta_r}}{\Delta_{\beta_1, \ldots, \beta_r}} x^{\beta_j}.
\]

(if \( \deg(x^\alpha) \geq r \), then \( N(x^\alpha) = 0 \)).

**Definition 3.1.** Let \( \mathcal{H}_r \subset \mathcal{G}_r(\mathbb{C}[d]_{r-1}) \) be the set of linear spaces \( D \) of dimension \( r \) in \( \mathbb{C}[d]_{r-1} \) which are stable by the derivations \( \partial_{d_i} \) with respect to the variables \( d \) (i.e. \( \partial_{d_i} D \subset D \) for \( i = 1, \ldots, n \)). We called \( \mathcal{H}_r \) the punctual Hilbert scheme of points of multiplicity \( r \).

If \( D \subset \mathbb{C}[d] \) is stable by the derivations \( \partial_{d_i} \), then by duality \( I = D^\perp \subset \mathbb{C}[x] \) is a vector space of \( \mathbb{C}[x] \) stable by multiplication by \( x_i \), i.e. an ideal of \( \mathbb{C}[x] \).

**Proposition 3.2.** \( D \in \mathcal{H}_r \) iff \( D^\perp = Q \) is an \( m \)-primary ideal such that \( \dim \mathbb{C}[x]/Q = r \).

**Proof.** Let \( D \in \mathcal{H}_r \). We prove that \( D^\perp = Q \) is an \( m \)-primary ideal. As \( D \) is stable by derivation, \( Q = D^\perp \) is an ideal of \( \mathbb{C}[x] \). This also implies that \( 1 \in D \), so that \( Q \subset m \).
As \( \dim D = \dim \mathbb{C}[x]/Q = r \), \( \delta = \text{ord}(D) \) is finite and \( m^{t+1} \subset D^\perp = Q \). Therefore, \( Q \) is \( m \)-primary, which shows the first implication.

Conversely, let \( Q \) be a \( m \)-primary ideal such that \( \dim \mathbb{C}[x]/Q = r \). Then by Lemma 2.1, \( D = Q^\perp \subset \mathbb{C}[d]_t \) is stable by derivation and of dimension \( r = \dim \mathbb{C}[x]/Q \). Thus \( D \in \mathcal{H}_r \). This concludes the proof of the proposition.

For \( D \in \mathcal{H}_r \), we denote by \( D_t \) the vector space of elements of \( D \) of order \( \leq t \). We verify that \( D_t^\perp = D^\perp + m^{t+1} \).

**Theorem 3.3.** For \( B \subset \mathbb{C}[x] \) such that \( |B| = r \) and \( \delta = \deg(B) \), the following points are equivalent:

1. \( D \in \mathcal{H}_r \) and \( B_t \) is a basis of \( \mathbb{C}[x]/(D^\perp + m^{t+1}) \) for \( t = 1, \ldots, \delta \).
2. The dual basis \( \Lambda = \{\Lambda_1, \ldots, \Lambda_r\} \) of \( B \) satisfies \( \Lambda_1 = 1 \) and the equations (9), (10) and (11).

**Proof.** (1) \( \Rightarrow \) (2) Assume that \( D \in \mathcal{H}_r \) and that \( B_t \) is a basis of \( \mathbb{C}[x]/(D^\perp + m^{t+1}) \). Let \( \Lambda_t = \{\Lambda_1, \ldots, \Lambda_r\} \) be a basis of \( D_t \) dual to \( B_t \) with \( r_t = |B_t| \). Then, for \( j = r_{t-1} + 1, \ldots, r_t \), \( \Lambda_j \in D_t \) is such that \( \partial_{d_k}(\Lambda_j) = \sum_{i=1}^{r_t} \nu_{i,k} \Lambda_i \) for \( t = 1, \ldots, \delta \). By Proposition 2.3, Equations (9) and (10) are satisfied. As \( B_t \) is dual to \( \Lambda_1, \ldots, \Lambda_r \), Equation (11) is satisfied.

(2) \( \Rightarrow \) (1) Let \( \Lambda_i \in \mathbb{C}[d]_{r-1} \) for \( i = 1, \ldots, r \) be elements of \( \mathbb{C}[d]_{r-1} \) dual to \( B \), which satisfies Equations (9), (10) and (11). By induction on \( t = 0, \ldots, \delta = \deg(B) \), we prove that if \( \Lambda_t = \{\Lambda_1, \ldots, \Lambda_r\} \) is dual to \( B_t \), then \( \Lambda_1, \ldots, \Lambda_r \in \mathbb{C}[d]_t \). The property is true for \( t = 0 \) since \( \Lambda_1 = 1 \). If it is true for \( t-1 \), for \( \Lambda_j \) with \( j = r_{t-1} + 1, \ldots, r_t \), we have by (9), (10) and Proposition 2.3, that \( \partial_{d_k}(\Lambda_j) = \sum_{i=1}^{r_t} \nu_{i,k} \Lambda_i \) for \( k = 1, \ldots, n \). Thus \( \Lambda_j \in \mathbb{C}[d]_t \). This shows that \( D_t \) is stable by derivation where \( D_t \subset \mathbb{C}[d]_t \) is the vector space spanned \( \Lambda_1, \ldots, \Lambda_r \in \mathbb{C}[d]_t \). Let \( D = D_\delta \). Since, by (11), \( B_t \) is dual to \( \Lambda_1, \ldots, \Lambda_r \in \mathbb{C}[d]_t \), we see that \( D \cap \mathbb{C}[d]_t = D_t \). By Proposition 3.2, \( Q = D^\perp \) is a \( m \)-primary ideal such that \( \dim \mathbb{C}[x]/Q = \dim D = |B| = r \). Moreover, since \( B_t \) is dual to the basis \( \{\Lambda_1, \ldots, \Lambda_r\} \) of \( D_t \), \( B_t \) is a basis \( \mathbb{C}[x]/(D^\perp + m^{t+1}) \).

This proves the reverse inclusion.

For a sequence \( h = (h_0, h_1, \ldots, h_\delta) \in \mathbb{N}^{\delta+1}_t \) and \( 0 \leq t \leq \delta \), let \( h_t = (h_0, \ldots, h_t) \), \( r_t = \sum_{i=0}^t h_i \). For \( r \geq 1 \) we denote by \( S^r \) the set of sequences \( h \) of some length \( \delta < r \) with \( h_i \neq 0 \), \( h_0 = 1 \) and \( r_\delta = r \). For \( h \in S^r \), we consider the following subvarieties of \( \mathcal{H}_r \):

\[
\mathcal{H}_{hr} = \{ D \in \mathcal{H}_r \mid \dim D_t = \dim D \cap \mathbb{C}[d]_t \leq r_t, i = 0, \ldots, t \}.
\]

These are projective varieties in \( \mathcal{H}_r \) defined by rank conditions on the linear spaces \( D \cap \mathbb{C}[d]_t \) for \( D \in \mathcal{H}_r \), that can be expressed in terms of homogeneous polynomials in the Plücker coordinates of \( D \). In particular, the varieties \( \mathcal{H}_h := \mathcal{H}_{h_0} \) are projective subvarieties of \( \mathcal{H}_r \).

We will study a particular component of \( \mathcal{H}_h \), that we call the regular component of \( \mathcal{H}_h \), denoted \( \mathcal{H}_h^{reg} \). It is characterized as follows. Let \( \mathcal{H}_h^{reg} = \{1\} = \{\mathbb{C}[d]_0\} = \mathcal{G}_1(\mathbb{C}[d]_0) \) and
assume that $\mathcal{H}_{\mathfrak{h}_{t-1}}^{reg}$ has been defined as an irreducible component of $\mathcal{H}_{\mathfrak{h}_{t-1}}$. Let

$$W_t = \{(D_{t-1}, E_t) \mid D_{t-1} \in \mathcal{H}_{\mathfrak{h}_{t-1}}, E_t \in \mathcal{G}_r(\mathbb{C}[d]_{t}) \cap \mathcal{D}_{t-1}, \partial_d E_t \subset \mathcal{D}_{t-1}\}$$

The condition $E_t \cap \mathcal{D}_{t-1} = \mathcal{D}_{t-1}$ says that $E_t$ is a linear space containing $\mathcal{D}_{t-1}$. The condition $\partial_d E_t \subset \mathcal{D}_{t-1}$ says that $E_t$ is stable by derivation. These two constraints define a linear system of equations in the Plücker coordinates of $E_t$ (see e.g. [DRS74]), corresponding to the equations (9), (14). By construction, the projection of $W_t \subset \mathcal{H}_{\mathfrak{h}_{t-1}} \times \mathcal{G}_r(\mathbb{C}[d]_{t})$ on the second factor $\mathcal{G}_r(\mathbb{C}[d]_{t})$ is $\pi_2(W_t) = \mathcal{H}_{\mathfrak{h}_{t}}$, and the projection on the first factor is $\pi_1(W_t) = \mathcal{H}_{\mathfrak{h}_{t-1}}$.

There exists a dense subset $U_{t-1}$ of the irreducible variety $\mathcal{H}_{\mathfrak{h}_{t-1}}^{reg}$ (with $\overline{U_{t-1}} = \mathcal{H}_{\mathfrak{h}_{t-1}}^{reg}$) such that the rank of the linear system corresponding to (9) and (14) defining $E_t$ is maximal. Since $\pi_1^{-1}(\mathcal{D}_{t-1})$ is irreducible (in fact linear) of fixed dimension for $\mathcal{D}_{t-1} \subset U_{t-1} \subset \mathcal{H}_{\mathfrak{h}_{t-1}}^{reg}$, there is a unique irreducible component $W_{t,reg}$ of $W_t$ such that $\pi_1(W_{t,reg}) = \mathcal{H}_{\mathfrak{h}_{t-1}}$ (see e.g. [Sha13][Theorem 1.26]). We define $\mathcal{H}_{\mathfrak{h}_{t}}^{reg} = \pi_2(W_{t,reg})$. It is an irreducible component of $\mathcal{H}_{\mathfrak{h}_{t}}$, since otherwise $W_{t,reg} = \pi_2^{-1}(\mathcal{H}_{\mathfrak{h}_{t}}^{reg})$ would not be a component of $W_t$ but strictly included in one of the irreducible components of $W_t$.

**Definition 3.4.** Let $\pi_t : \mathcal{H}_{\mathfrak{h}_{t}} \to \mathcal{H}_{\mathfrak{h}_{t-1}}, \mathcal{D} \mapsto \mathcal{D} \cap \mathbb{C}[d]_{t-1}$ be the projection in degree $t-1$. We define by induction on $t$, $\mathcal{H}_{\mathfrak{h}_{0}}^{reg} = \{1\}$ and $\mathcal{H}_{\mathfrak{h}_{t}}^{reg}$ is the irreducible component $\pi_t^{-1}(\mathcal{H}_{\mathfrak{h}_{t-1}}^{reg})$ of $\mathcal{H}_{\mathfrak{h}_{t}}$ for $t = 1, \ldots, \delta$.

4 Rational parametrization

Let $B = \{x^{\beta_1}, \ldots, x^{\beta_r}\} \subset \mathbb{C}[x]_{r-1}$ be a monomial set. In this section we assume that $B$ is closed under division and its monomials are ordered by their degree. For $t \in \mathbb{N}$, we denote by $B_t = B \cap \mathbb{C}[x]_t$, by $B_{[t]}$ the subset of its monomials of degree $t$. Let $h_t = |B_{[t]}|$, $r_t = \sum_{0 \leq t \leq t} h_t = |B_t|$ and $\delta = \deg(B)$.

Let $\mathcal{H}_B := \{\mathcal{D} \in \mathcal{H}_r \mid B_t$ is a basis of $\mathbb{C}[x]/(\mathcal{D}^\perp + m^{t+1}), t = 0, \ldots, \delta\}$.

By Theorem 3.3, $\mathcal{H}_B$ is the set of linear spaces $\mathcal{D} \in \mathcal{H}_r$ such that $\mathcal{D}_t = \mathcal{D} \cap \mathbb{C}[d]_t$ satisfy Equations (9), and (14) for $t = 1, \ldots, \delta$. It is the open subset of $\mathcal{D} \in \mathcal{H}_{\mathfrak{h}}$ such that $\Delta_{B_t}(\mathcal{D}_t) \neq 0$, where $\Delta_{B_t} := \Delta_{\beta_1, \ldots, \beta_r}$ denotes the Plücker coordinate for $\mathcal{G}_r(\mathbb{C}[d]_t)$ corresponding to the monomials in $B_t$.

Since for $\mathcal{D} \in \mathcal{H}_B$ we have $\Delta_B(\mathcal{D}) \neq 0$, we can define the affine coordinates of $\mathcal{H}_B$ using the coordinates of the elements of the basis $\Lambda = \{\Lambda_1, \ldots, \Lambda_r\}$ dual to $B$:

$$\left\{ \mu_{\beta_j, \alpha} = \frac{\Delta_{\beta_1, \ldots, \beta_{j-1}, \alpha, \beta_{j+1}, \ldots, \beta_r}}{\Delta_B} : j = 1, \ldots, r, |\alpha| < r \right\}.$$

The following lemma shows that the values of the coordinates $\{\mu_{\beta_i, \beta_j + e_k} : i, j = 1, \ldots, r, |\beta_j| < |\beta_i|, k = 1, \ldots, n\}$ uniquely define $\Lambda$.

**Lemma 4.1.** Let $B = \{x^{\beta_1}, \ldots, x^{\beta_r}\}$ closed under division, $\mathcal{D} \in \mathcal{H}_B$ and $\Lambda = \{\Lambda_1, \ldots, \Lambda_r\}$ be the unique basis of $\mathcal{D}$ dual to $B$ with $\Lambda_i = \sum_{|\alpha| \leq |\beta|} \mu_{\beta_i, \alpha} \frac{d^n}{dx^n}$ for $i = 1, \ldots, r$. Then $\Lambda_1 = 1$.
and for \( i = 2, \ldots, r \)
\[
\Lambda_i = \sum_{|\beta_j| < |\beta_i|} \sum_{k=1}^{n} \mu_{\beta_i, \beta_j+e_k} \int_k \Lambda_j.
\]
Thus, \( \mu_{\beta_i, \alpha} \) is a polynomial functions of \( \{ \mu_{\beta_i, \beta_j+e_k} : |\beta_k| \leq |\beta_i|, |\beta_j| < |\beta_i|, k = 1, \ldots, n \} \) for \( i = 1, \ldots, r \), \( |\alpha| < |\beta_i| \).

**Proof.** Since \( D \) is closed under derivation, by Proposition 2.3 there exist \( c_{i,s,k} \in \mathbb{C} \) \( \partial_{d_k}(\Lambda_i) = \sum_{|\beta_j| < |\beta_i|} c_{i,s,k} \Lambda_s \). Then
\[
\mu_{\beta_i, \beta_j+e_k} = \Lambda_i(\mathbf{x}^{\beta_j+e_k}) = \partial_{d_k}(\Lambda_i)(\mathbf{x}^{\beta_j}) = \sum_{|\beta_j| < |\beta_i|} c_{i,s,k} \Lambda_s(\mathbf{x}^{\beta_j}) = c_{i,j,k}.
\]
The second claim follows from obtaining the coefficients in \( \Lambda \) recursively from \( \Lambda_1 = 1 \) and \( \Lambda_i = \sum_{|\beta_j| < |\beta_i|} \sum_{k=1}^{n} \mu_{\beta_i, \beta_j+e_k} \int_k \Lambda_j \) for \( i = 2, \ldots, r \). \( \square \)

We define
\[
\mu := \{ \mu_{\beta_i, \beta_j+e_k} : i, j = 1, \ldots, r, |\beta_j| < |\beta_i|, k = 1, \ldots, n \}
\]
and also define \( \mu_t := \{ \mu_{\beta_i, \beta_j+e_k} \in \mu : |\beta_i| \leq t \} \subset \mu \) which are the affine coordinates of \( \mathcal{H}_{B_t} \), and \( \mu(t) := \{ \mu_{\beta_i, \beta_j+e_k} \in \mu : |\beta_j| = t \} \subset \mu_t \). The next definition uses the fact that Equations (14) and (15) are linear in \( \nu_j^k \) with coefficients depending on \( \mu_{t-1} \):

**Definition 4.2.** Given \( D_{t-1} \in \mathcal{H}_{B_{t-1}} \) with a unique basis \( \Lambda_{t-1} = \{ \Lambda_1, \ldots, \Lambda_{r_t-1} \} \) with \( \Lambda_i = \sum_{|\alpha| < t} \mu_{\beta_i, \alpha} \frac{d^\alpha}{\alpha!} \) for \( j = 1, \ldots, r_{t-1} \) that is dual to \( B_{t-1} \), uniquely determined by \( \mu_{t-1} = \{ \mu_{\beta_i, \beta_j+e_k} : |\beta_i| \leq t-1, |\beta_j| < |\beta_i| \} \) as above. Recall from Notation 2.6 that \( H_t \) is the coefficient matrix of the homogeneous linear system (14) and (15) in the variables \( \{ \nu_j^k : j = 1, \ldots, r_{t-1}, k = 1, \ldots, n \} \). To emphasize the dependence of its coefficients on \( D_{t-1} \) or \( \mu_{t-1} \) we use the notation \( H_t(D_{t-1}) \) or \( H_t(\mu_{t-1}) \). For \( D \in \mathcal{H}^{reg}_{h} \) in an open subset, the rank of \( H_{t-1}(D_{t-1}) \) is maximal. We denote it \( \rho_t \).

The next definition describes a property of a monomial set \( B \) such that it will allow us to give a rational parametrization of \( \mathcal{H}_B \):

**Definition 4.3.** For \( t = 1, \ldots, \delta = \deg(B) \) we say that \( D_t \in \mathcal{G}_r(\mathbb{C}[d]_t) \) is regular for \( B_t \) if,

- \( \dim(D_t) = r_t = |B_t| \),
- \( \text{rank } H_t(D_{t-1}) = \rho_t \) the generic rank \( H_{t-1} \) on \( \mathcal{H}^{reg}_{h_t} \),
- \( \Delta_{B_{[t]}(D_{[t]})} \neq 0 \) where \( \Delta_{B_{[t]}(D_{[t]})} \) is the Plücker coordinate of \( D_{[t]} \in \mathcal{G}_r(\mathbb{C}[d]_r) \) corresponding to the monomials in of \( B_{[t]} \).

Let
\[
U_t := \{ D_t \in \mathcal{H}^{reg}_{h_t} : D_t \text{ is regular for } B_t \}.
\]
Then \( U_t \) is either an open dense subset of the irreducible variety \( \mathcal{H}^{reg}_{h_t} \) or empty if \( \Delta_{B_{[t]}(D_{[t]})} = 0 \) for all \( D \in \mathcal{H}^{reg}_{h_t} \).

We say that \( B \) is a regular basis if \( U_t = \mathcal{H}^{reg}_{h_t} \) (or \( U_t \neq \emptyset \)) for \( t = 1, \ldots, \delta \).

We denote by \( \gamma_{[t]} = \dim \mathcal{G}_r(\ker H_t(D_{t-1})) \) for \( D_{t-1} \in U_{t-1} \) and \( \gamma = \sum_{t=0}^{\delta} \gamma_{[t]} \).
When the basis $B$ is closed under division and is a regular basis, $\mathcal{H}_B^{\text{reg}}$ can be parametrized by rational functions of free parameters $\mathbf{p}$ as described in the next proposition. We present hereafter an algorithm (Algorithm 2) to compute such a parametrization iteratively.

**Proposition 4.4.** Let $B = \{\mathbf{x}^\beta_1, \ldots, \mathbf{x}^\beta_r\} \subset \mathbb{C}[\mathbf{x}]_{\geq 1}$ be closed under division and assume that $B$ is a regular basis. There exist a subset $\mathbf{p} \subset \mu$ with $|\mathbf{p}| = \gamma$ and rational functions $q_{\beta_j, \alpha}(\mathbf{p}) \in \mathbb{Q}(\mathbf{p})$ for $j = 1, \ldots, r$ and $|\alpha| < r$, such that the map $\Phi : \mathbb{C}^r \to \mathcal{H}_B$ defined by

$$\Phi : \mathbf{p} \mapsto \left(q_{\beta_j, \alpha}(\mathbf{p})\right)_{j=1, \ldots, r, |\alpha| < r}$$

parametrizes a dense subset of $\mathcal{H}_B^{\text{reg}}$.

**Proof.** Let us define, by induction on $t$, parameters $\mathbf{p}_t$ with $|\mathbf{p}_t| = \sum_{i=1}^t \gamma_i$, and a rational parametrization of a basis $\Lambda_1(\mathbf{p}_t), \ldots, \Lambda_{r_t}(\mathbf{p}_t)$ of a generic element of $\mathcal{H}_B^{\text{reg}}$. For $t = 0$, we define $\Lambda_1 = 1$ and $\mathbf{p}_0 = 0$. Assume that there exist $\mathbf{p}_{t-1} \subset \mu_{t-1}$ and a rational parametrization $\Lambda_1(\mathbf{p}_{t-1}), \ldots, \Lambda_{r_{t-1}}(\mathbf{p}_{t-1})$ of a basis dual to $B_{t-1}$ for a generic element $\mathcal{H}_{B_{t-1}}$ defined by the map

$$\Phi_{t-1} : \mathbf{p}_{t-1} \mapsto \left(q_{\beta_j, \alpha}(\mathbf{p}_{t-1})\right)_{|\beta_j| \leq t-1, |\alpha| < r}.$$

This means that $\text{im} \Phi_{t-1} \subset \mathcal{H}_{B_{t-1}}$. Denote by $\mathcal{D}_{t-1}(\mathbf{p}_{t-1}) \in \mathcal{G}_{r_{t-1}}(Q(\mathbf{p}_{t-1})[\mathbf{d}]_{t-1})$ the space spanned by $\{\Lambda_1(\mathbf{p}_{t-1}), \ldots, \Lambda_{r_{t-1}}(\mathbf{p}_{t-1})\}$ over the fraction field $Q(\mathbf{p}_{t-1})$.

By Theorem 3.3 and Lemma 2.5, to define $\mathbf{p}_t$ and to extend $\mathcal{D}_{t-1}(\mathbf{p}_{t-1})$ to $\mathcal{D}_t(\mathbf{p}_t)$, we need to find $\Lambda_{r_{t-1}+1}, \ldots, \Lambda_{r_t}$ of the form

$$\Lambda_i = \sum_{j=1}^{r_t} \sum_{k=1}^n \mu_{\beta_i, \beta_j + \mathbf{e}_k} \int_k \Lambda_j(\mathbf{p}_{t-1}) \quad i = r_{t-1} + 1, \ldots, r_t,$$

satisfying the system of equations (14) and (15) and dual to $B_{[j]}$, i.e. such that

$$\Lambda_i \in \ker H_t(\mathbf{p}_{t-1}) \quad \text{for } i = r_{t-1} + 1, \ldots, r_t,$$

where $H_t(\mathbf{p}_{t-1}) = H_t(\Phi_{t-1}(\mathbf{p}_{t-1}))$ and such that $\Lambda_i(\mathbf{x}^{\beta_j}) = \delta_{ij}$ for $r_{t-1} + 1 \leq i, j \leq r_t$.

Since $B$ is a regular basis, the kernel of $H_t(\mathbf{p}_{t-1})$ over $Q(\mathbf{p}_{t-1})$ contains a subspace $\mathcal{D}_{[j]}$ of dimension $h_t = |B_{[j]}|$ with $\Delta_{B_{[j]}(\mathcal{D}_{[j]})} \neq 0$. Therefore, the systems $H_t(\mathbf{p}_{t-1}) \nu = 0$ with $\nu = [\nu^j_k : j = 1, \ldots, r_{t-1}, k = 1, \ldots, n]^{T}$ can be decomposed as

$$\begin{bmatrix} A(\mathbf{p}_{t-1}) & B(\mathbf{p}_{t-1}) & C(\mathbf{p}_{t-1}) \end{bmatrix} \begin{bmatrix} \nu' \\ \nu'' \\ \mathbf{p} \end{bmatrix} = 0, \quad \text{(18)}$$

where $\nu'$ is associated to a maximal set of independent columns of $H_t(\mathbf{p}_{t-1})$, $\nu'' = \{\nu^j_k : \mathbf{x}^{\beta_j + \mathbf{e}_k} \in B_{[j]}\}$ and $\mathbf{p}$ is associated to the remaining set of columns. Note that $|\mathbf{p}| = \dim(\ker H_t(\mathbf{p}_{t-1})) - h_t$. Thus, $\nu'' \cup \mathbf{p}$ is the set of free variables of the homogeneous system $H_t(\mathbf{p}_{t-1}) \nu = 0$ and a general solution is such that the variables in $\nu'$ are linear functions of the variables in $\nu''$ and $\mathbf{p}$, with rational coefficients in $\mathbf{p}_{t-1}$.
We obtain the coefficients of $\Lambda_{r_{t-1}+1}, \ldots, \Lambda_{r_t}$ that satisfy equations (14) and (15) from the general solutions of $H_t(\mathbf{\bar{p}}_{t-1}) \nu = 0$ by further specializing the variables in $\nu''$ to 0’s and 1’s, according to the duality conditions. Define $\mathbf{p}_{[t],i} := \{ \mu_{\beta_j,\beta_k + \nu_{j,k}} : \nu_{j,k} \in \mathbf{p} \} \subset \mu_{[t]}$. Thus, the parameters in $\mu_{[t]}$ are linear functions of $\mathbf{p}_{[t],i}$ with rational coefficients in $\mathbf{p}_{t-1}$. The denominator in these coefficients is a factor of the numerator of a maximal non-zero minor of $A(\mathbf{p}_{t-1})$. Note that the rest of the coefficients of $\Lambda_t$ are polynomial functions of the parameters $\mu_{t-1} \cup \mu_{[t]}$ by Lemma 4.1. Define

$$
\mathbf{p}_t := \mathbf{p}_{t-1} \cup \bigcup_{i=r_{t-1}+1}^{r_t} \mathbf{p}_{[t],i}.
$$

Thus, we get a parametrization of the coefficients of $\Lambda_{r_{t-1}+1}(\mathbf{p}_t), \ldots, \Lambda_{r_t}(\mathbf{p}_t)$ in terms of $\mathbf{p}_t$, which defines the degree $t$ part of the map $\Phi_t : \mathbf{p}_t \mapsto (q_{\beta_j,\alpha}(\mathbf{p}_t))_{|\beta| \leq t, |\alpha| < r}$. For $\mathcal{D}_t \in \mathbb{H}_B$, the coefficients of its basis dual to $B_t$ can be parametrized by $\Phi_t$ for parameter values $\mathbf{p}_t$ such that a maximal non-zero minor of $A(\mathbf{p}_{t-1})$ in $\mathbb{Q}(\mathbf{p}_{t-1})$ does not vanish.

Note that the number of new parameters introduced is

$$(\mathbf{p}_t \setminus \mathbf{p}_{t-1}) \cdot (\mathbf{p}_{[t],i}) = h_t \left( \dim \ker H_t(\mathbf{p}_{t-1}) - h_t \right)
$$

which is equal to $\gamma_{[t]} = \dim \mathcal{G}_{h_t}(\ker H_t(\mathbf{p}_{t-1})) = \dim \mathcal{G}_{h_t}(\ker H_t(\mathcal{D}_{t-1}))$ for $\mathcal{D}_{t-1}$ generic in $U_{t-1}$ as claimed.

To prove that $\Phi_t$ parametrizes a dense subset of the projective variety $\mathbb{H}_{\mathbb{H}_{\mathbb{H}}}$, note that the image $\im(\Phi_t)$ of $\Phi_t$ is a subset of $\mathbb{H}_{\mathbb{H}}$, the Zariski closure $V_t$ of $\im(\Phi_t)$ is an irreducible subvariety of $\mathbb{H}_{\mathbb{H}}$. Furthermore, its projection $\pi_{t-1}(V_t) \subset \mathbb{H}_{\mathbb{H}_{t-1}}$ is the closure of the image of $\im(\Phi_{t-1})$ since if $\mathcal{D}_t = \im(\Phi_t(\mathbf{p}_t))$ then $\mathcal{D}_{t-1} = \mathcal{D}_t \cap \mathbb{C}[\mathcal{D}]_{t-1} = \Phi_{t-1}(\mathbf{p}_{t-1})$. By induction hypothesis, $\pi_{t-1}(V_t) = \im(\Phi_{t-1}) = \mathbb{H}_{\mathbb{H}_{t-1}}^{\text{reg}}$. Thus, $V_t$ is the irreducible component of $\mathbb{H}_{\mathbb{H}}$ which projects onto $\mathbb{H}_{\mathbb{H}_{t-1}}^{\text{reg}}$, that is $\mathbb{H}_{\mathbb{H}}^{\text{reg}}$. $\square$

**Definition 4.5.** We note by $H_t(\mu)$ a maximal square submatrix of $A$ in (18) such that $\det(H_t(\mathbf{p}_{t-1})) \neq 0$ and the rows $R_t$ of $H_t$ corresponding to $H_t$ contain all equations in (15).

The size of $H_t(\mu)$ is the size of $\nu'$ in (18), that is the maximal number of independent columns in $H_t(\mathbf{p}_{t-1})$. Given an element $\mathcal{D} = \Lambda_1 \wedge \cdots \wedge \Lambda_r \in \mathcal{G}_r(\mathbb{C}[\mathcal{D}]_{r-1})$, in order to check that $\mathcal{D}$ is regular for $B$, it is sufficient to check first that $\Delta_B(\mathcal{D}) \neq 0$ and secondly that $|H_t(\mu)| \neq 0$ for all $t = 0, \ldots, \delta$, where $\mu = (\mu_{\beta,\alpha})$ is the ratio of Plücker coordinates of $\mathcal{D}$ defined by the formula (17).

5 **Newton’s iterations**

In this section we describe the extraction of a square, deflated system that allows for a Newton’s method with quadratic convergence. We assume that the sole input is the equations $\mathbf{f} = (f_1, \ldots, f_N) \in \mathbb{C}[x]^N$, an approximate point $\xi \in \mathbb{C}^n$ and a tolerance $\varepsilon > 0$. 

17
\textbf{Algorithm 2} RATIONAL PARAMETRIZATION - ITERATION \(t\)

\textbf{Input:} \(t > 0, B_t = \{x_1^{\beta_1}, \ldots, x_\gamma^{\beta_\gamma}\} \subset \mathbb{C}[x]_t\) closed under division and regular, \(\Phi_{t-1} \subset \mu_{t-1}\) and \(\Phi_{t-1} : \bar{\mu}_{t-1} \mapsto (q_{\beta_j,\alpha}(\bar{\mu}_{t-1}))_{|\beta_j|\leq \mu_{t-1},|\alpha|< r}\) with \(q_{\beta_j,\alpha} \in \mathbb{Q}(\bar{\mu}_{t-1})\) parametrizing a dense subset of \(H_{t-1}^{\text{reg}}\).

\textbf{Output:} \(\bar{\mu}_t \subset \mu_t\) and \(\Phi_t : \bar{\mu}_t \mapsto (q_{\beta_j,\alpha})_{|\beta_j|\leq \mu_t,|\alpha|< r}\), \(q_{\beta_j,\alpha} \in \mathbb{Q}(\bar{\mu}_t)\) extending \(\Phi_{t-1}\) and parametrizing a dense subset of \(H_t^{\text{reg}}\).

(1) Let \(H_t\) be as in Notation 2.6 and \(\nu = [\nu_j^k : j = 1, \ldots, r_{t-1}, k = 1, \ldots, n]^T\). Decompose \(H_t(\Phi_{t-1}(\bar{\mu}_{t-1})) \cdot \nu = 0\) as

\[
\begin{pmatrix}
A(\bar{\mu}_{t-1}) & B(\bar{\mu}_{t-1}) & C(\bar{\mu}_{t-1})
\end{pmatrix}
\begin{pmatrix}
\nu' \\
\nu'' \\
\nu
\end{pmatrix} = 0,
\]

where \(\nu'\) is associated to a maximal set of independent columns of \(H_t(\Phi_{t-1}(\bar{\mu}_{t-1}))\), \(\nu'' = \{\nu_j^k : x_j^{\beta_j + e_k} \in B_{[\ell]}\}\) and \(\nu\) is associated to the remaining set of columns. If no such decomposition exists, return that \(B_t\) is not regular.

(2) For \(\nu_j^k \in \nu'\) express \(\nu_j^k = \varphi_j^k(\nu', \nu'') \in \mathbb{Q}(\bar{\mu}_{t-1})[\nu', \nu'']_1\) as the generic solution of the system \(H_t(\Phi_{t-1}(\bar{\mu}_{t-1})) \cdot \nu = 0\).

(3) For \(i = r_{t-1} + 1, \ldots, r_t\) do:

(3.1) Define \(\bar{\mu}_{t,i} := \{\mu_{\beta_i,\beta_j + e_k} : \nu_{j,k} \in \nu\}, \mu_{t,i}^{\prime} = \{\mu_{\beta_i,\beta_j} + e_k : \nu_j^k \in \nu'\}, \mu_{t,i}^{\prime\prime} = \{\mu_{\beta_i,\beta_j} + e_k : \nu_j^k \in \nu''\}\), and \(\bar{\mu}_t := \bar{\mu}_{t-1} \cup \bigcup_{i=r_{t-1}+1}^{r_t} \bar{\mu}_{t,i}\).

(3.2) For \(\mu_{\beta_i,\beta_j} + e_k \in \mu_{t,i}^{\prime\prime}\), set \(q_{\beta_i,\beta_j + e_k} = \mu_{\beta_i,\beta_j} + e_k = 1\) if \(\beta_i = \beta_j + e_k\) and 0 otherwise.

(3.3) For \(\mu_{\beta_i,\beta_j} + e_k \in \mu_{t,i}^{\prime}\), define

\[
q_{\beta_i,\beta_j} := \varphi_j^k(\bar{\mu}_{t,i}, \mu_{t,i}^{\prime\prime}) \in \mathbb{Q}(\bar{\mu}_t)
\]

(3.4) For \(|\alpha| < r\) and \(\mu_{\beta_i,\alpha} \not\in \mu_{t}\) find \(q_{\beta_i,\alpha}\) using Lemma 4.1.

Using this input we first compute an approximate primal-dual pair \((B, A)\) by applying the iterative Algorithm 1. The rank and kernel vectors of the matrices \(K_t\) (see Algorithm 1) are computed numerically within tolerance \(\varepsilon\), using SVD. The algorithm returns a basis \(B = \{x_1^{\beta_1}, \ldots, x_\gamma^{\beta_\gamma}\}\) with exponent vectors \(E = \{\beta_1, \ldots, \beta_\gamma\}\), as well as approximate values for the parameters \(\mu = \{\mu_{\beta_i,\beta_j + e_k} : |\beta_j| < |\beta_i| \in E, k = 1, \ldots, n\}\). These parameters will be used as a starting point for Newton’s iteration. Note that, by looking at \(B\), we can also deduce the multiplicity \(r\), the maximal order \(\delta\) of dual differentials, the sequences \(r_t = |B_t|\), and \(h_t = |B_{[\ell]}|\) for \(t = 0, \ldots, \delta\).

Let \(F\) be the deflated system with variables \((x, \mu)\) defined by the relations (9) and Equa-
The perturbed system is
\[ F(x, \mu) = \begin{cases} 
\sum_{|\beta_i|<|\beta_j|<|\beta_k|} \mu_{\beta_i, \beta_j} + e_k \mu_{\beta_j, \beta_k} + e_l - \mu_{\beta_i, \beta_j} + e_l \mu_{\beta_j, \beta_k} + e_k = 0 \quad (a) \\
\quad \text{for all } i = 1, \ldots, r, \ |\beta_k| < |\beta_i|, k \neq l \in \{1, \ldots, n\} \\
\mu_{\beta_i, \beta_j} + e_k = \begin{cases} 
1 & \text{for } \beta_i = \beta_j + e_k \\
0 & \text{for } \beta_j + e_k \in \mathcal{E}, \ \beta_i \neq \beta_j + e_k, \\
\Lambda_i(f_j) = 0, & i = 1, \ldots, r, j = 1, \ldots, N. 
\end{cases} 
\end{cases} \]

Here \( \Lambda_1 = 1_x \) and \( \Lambda_i = \sum_{|\beta_i|<|\beta_j|} \sum_{k=1}^n \mu_{\beta_i, \beta_j} + e_k \Lambda_j \in \mathbb{C}[\mu][d_x] \) denote dual elements with \( C \) parametric coefficients defined recursively. Also, if \( \Lambda_i = \sum_{|\alpha| \leq |\beta_i|} \mu_{\beta_i, \alpha} \frac{d\alpha}{\alpha!} \) then

\[ \Lambda_i(f_j) = \sum_{|\alpha| \leq |\beta_i|} \mu_{\beta_i, \alpha} \frac{\partial^\alpha(f_j)(x)}{\alpha!} \]

which is in \( \mathbb{C}[x, \mu] \) by Lemma 4.1. Note, however, that \((a)\) and \((b)\) are polynomials in \( \mathbb{C}[\mu] \), only \((c)\) depends on \( x \) and \( \mu \). Equations \((b)\) define a simple substitution into some of the parameters \( \mu \). Hereafter, we explicitly substitute them and eliminate this part \((b)\) from the equations we consider and reducing the parameter vector \( \mu \).

By Theorem 2.8, if \( B \) is a graded primal basis for the system \( f \) at the root \( \xi^* \) then the above overdetermined system has a simple root at a point \((\xi^*, \mu^*)\).

To extract a square subsystem defining the simple root \((\xi^*, \mu^*)\) in order to certify the convergence, we choose a maximal set of equations whose corresponding rows in the Jacobian are linearly independent. This is done by extracting first a maximal set of equations in \((a)\) with linearly independent rows in the Jacobian. For that purpose, we use the rows associated to the maximal invertible matrix \( H_t \) (Definition 4.5) for each new basis element \( \Lambda_i \in D[t] \) and \( t = 1, \ldots, r \). We denote by \( G_0 \) the subsystem of \((a)\) that correspond to rows of \( H_t \).

We complete the system of independent equations \( G_0 \) with equations from \((c)\), using a QR decomposition and thresholding on the transposed Jacobian matrix of \( G_0 \) and \((c)\) at the approximate root. Let us denote by \( F_0 \) the resulting square system, whose Jacobian, denoted by \( J_0 \), is invertible.

For the remaining equations \( F_1 \) of \((c)\), not used to construct the square system \( F_0 \), define \( \Omega = \{(i, j) : \Lambda_i(f_j) \in F_1\} \). We introduce new parameters \( \epsilon_{i,j} \) for \((i, j) \in \Omega \) and consider the perturbed system

\[ f_{i,\epsilon} = f_i - \sum_{j \in (i,j) \in \Omega} \epsilon_{i,j} x^{\beta_j}. \]

The perturbed system is \( f_\epsilon = f - \epsilon B \), where \( \epsilon \) is the \( N \times r \) matrix with \([\epsilon]_{i,j} = \epsilon_{i,j} \) if \((i, j) \in \Omega \) and \([\epsilon]_{i,j} = 0 \) otherwise. Denote by \( F(x, \mu, \epsilon) \) the system \( F(x, \mu) \) where \( \Lambda_j(f_i) \) is replaced by \( \Lambda_j(f_{i,\epsilon}) \) for \( j = 1, \ldots, r, i = 1, \ldots, N \). Then the equations used to construct the square Jacobian \( J_0 \) are unchanged. The remaining equations are of the form

\[ \Lambda_j(f_{i,\epsilon}) = \Lambda_j(f_i) - \epsilon_{i,j} = 0 \quad (i, j) \in \Omega. \]
Therefore the Jacobian of the complete system \( F(x, \mu, \epsilon) \) is a square invertible matrix of the form

\[
J_{\epsilon} := \begin{pmatrix} J_0 & 0 \\ J_1 & \text{Id} \end{pmatrix}
\]

where \( J_1 \) is the Jacobian of the system \( F_1 \) of polynomials \( \Lambda_j(f_i) \in \mathbb{C}[x, \mu] \) with \((i, j) \in \Omega\).

Since \( J_{\epsilon} \) is invertible, the square extended system \( F(x, \mu, \epsilon) \) has an isolated root \((\xi^*, \mu^*)\) corresponding to the isolated root \((\xi, \mu^*)\) of the square system \( F_0 \). Furthermore, \( \Lambda_j^*(f_i) = \epsilon_{i,j}^* = 0 \) for \((i, j) \in \Omega\). Here \( \Lambda_1^*, \ldots, \Lambda_r^* \in \mathbb{C}[d_{\xi^*}] \) are defined from \((\xi^*, \mu^*)\) recursively by

\[
\Lambda_1^* = 1_{\xi^*} \quad \text{and} \quad \Lambda_r^* = \sum_{|\beta_j| < |\beta_i|} \sum_{k=1}^n \mu_{\beta_i, \beta_j + e_k}^* \int_k \Lambda_j^*.
\]

We have the following property:

**Theorem 5.1.** If the Newton iteration

\[
(\xi_{k+1}, \mu_{k+1}) = (\xi_k, \mu_k) - J_0(\xi_k, \mu_k)^{-1}F_0(\xi_k, \mu_k),
\]

starting from a point \((\xi_0, \mu_0)\) converges when \( k \to \infty \), to a point \((\xi^*, \mu^*)\) such that \( B \) is a regular basis for the inverse system \( D^* \) associated to \((\xi^*, \mu^*)\) and \( D^* \) is complete for \( \mathfrak{f} \), then there exists a perturbed system \( f_{i, \epsilon^*} = f_i - \sum_{j \in \Omega} \epsilon^*_{i,j} x_{i,j}^{\beta_j} \) with \( \epsilon^*_{i,j} = \Lambda_j^*(f_i) \) such that \( \xi^* \) is a multiple root of \( f_{i, \epsilon^*} \) with the multiplicity structure defined by \( \mu^* \).

**Proof.** If the sequence \((\xi_k, \mu_k)\) converges to the fix point \((\xi^*, \mu^*)\), then we have \( F_0(\xi^*, \mu^*) = 0 \) and in particular, \( G_0(\xi^*, \mu^*) = 0 \) where \( G_0(\xi^*, \mu^*) = 0 \) is the subset of equations selected from \((a)\).

As \( \mu^* \) is regular for \( B \), if it satisfies \( G_0(\xi^*, \mu^*) = 0 \), it must satisfy all equations \((a)\). Therefore \( \mu^* \) defines a point \( D^* = \Lambda_1^* \land \cdots \land \Lambda_r^* \in \mathcal{H}_{B}^{\text{reg}}. \)

As \((\Lambda_i^*)\) is a basis of \( D^* \) dual to \( B \) and \( f_{i, \epsilon^*} = f_i - \sum_{j \in \Omega} \epsilon^*_{i,j} x_{i,j}^{\beta_j} \) with \( \epsilon^*_{i,j} = \Lambda_j^*(f_i) \) for \((i, j) \in \Omega\), we have that if \((i, j) \in \Omega\) then \( \Lambda_j^*(f_{i, \epsilon^*}) = \Lambda_j^*(f_i) - \epsilon^*_{i,j} = 0 \). Otherwise \( \Lambda_j^*(f_{i, \epsilon^*}) = \Lambda_j^*(f_i) \), since it is one of the equations selected in \((c)\) to construct the system \( F_0 \) and \( F_0(\xi^*, \mu^*) = 0 \). This shows that \( f_{\epsilon^*} = (f_{i, \epsilon^*})_{i=1}^n \subset (D^*)^\perp \). Since \( f_{\epsilon^*} \) is obtained from \( f \) by adding elements in \( B \), the system \((c)\), at order \( \delta + 1 \) for \( f_{\epsilon^*} \) and \( f \) are equivalent. Thus \( D^* \) is complete for \( f \) and \( f_{\epsilon^*} \) and \( D^* = (f_{\epsilon^*})^\perp \cap \mathbb{C}[d_{\xi^*}] \) is the inverse system at \( \xi^* \) of the system \( f_{\epsilon^*} \).

6 Certification

In this section we describe how to certify that the Newton iteration defined in Section 5 quadratically converges to a point that defines an exact root with an exact multiplicity
structure of a perturbation of the input polynomial system \( f \). More precisely, we are given \( f = (f_1, \ldots, f_N) \in \mathbb{C}[x]^N \), \( B = \{x^{\beta_1}, \ldots, x^{\beta_r}\} \subset \mathbb{C}[x] \) in increasing order of degrees and closed under division, \( \delta := |\beta_r| \). We are also given the deflated systems \( F_0(x, \mu) \), its square sub-system \( F_0(x, \mu) \) defined in Section 5 and \( F_1(x, \mu) \) the remaining equations in \( F(x, \mu) \). Finally, we are given \( \tilde{\xi} \in \mathbb{C}^n \) and \( \tilde{\mu} = \{\mu_{\beta_1, \ldots, \beta_r} + \epsilon_k \in \mathbb{C} : i, j = 1, \ldots, r, |\beta_j| < |\beta_i|, k = 1, \ldots, n\} \). Our certification will consist of a symbolic and a numeric part:

**Regularity certification.** We certify that \( B \) is regular (see Definition 4.3). This part of the certification is purely symbolic and inductive on \( t \). Suppose for some \( t - 1 < \delta \) we certified that \( B_{t-1} \) is regular and computed the parameters \( \overline{\mu}_{t-1} \) and the parametrization

\[
\Phi_{t-1} : \overline{\mu}_{t-1} \mapsto (q_{\beta, \alpha}(\overline{\mu}_{t-1}))_{|\beta| \leq t-1, |\alpha| \leq t-1}
\]

(Algorithm 2). Then to prove that \( B_t \) is regular, we consider the coefficient matrix \( H_t \) of equations (14) and (15). We substitute the parametrization \( \Phi_{t-1} \) to get the matrices \( H_t(\overline{\mu}_{t-1}) \). We symbolically prove that the rows of \( H_t(\overline{\mu}_{t-1}) \) (Definition 4.5) are linearly independent and span all rows of \( H_t(\overline{\mu}_{t-1}) \) over \( \mathbb{Q}(\overline{\mu}_{t-1}) \). If that is certified, we compute the parameters \( \overline{\mu}_t \) and the parametrization \( \Phi_t : \overline{\mu}_t \mapsto (q_{\beta, \alpha}(\overline{\mu}_t))_{|\beta| \leq t, |\alpha| \leq t} \) as in Algorithm 2 inverting the square submatrix \( H_t \) of \( H_t \) such that the denominators of \( q_{\beta, \alpha} \) for \( |\beta| = t \) divide \( \det(H_t(\overline{\mu}_{t-1})) \neq 0 \).

**Singularity certification.**

(C1) We certify that the Newton iteration for the square system \( F_0 \) starting from \((\tilde{\xi}, \tilde{\mu})\) quadratically converges to some root \((\xi^*, \mu^*)\) of \( F_0 \), such that \( \| (\xi, \mu) - (\xi^*, \mu^*) \|_2 \leq \beta \), using \( \alpha \)-theory.

(C2) We certify that \( \mathcal{D}^* = \text{span}(A^*) \) is regular for \( B \) (see Definition 4.3), by checking that \( \| H_t(\mu^*) \| \neq 0 \) for \( t = 1, \ldots, \delta \) (See Definition 4.5), using the Singular Value Decomposition of \( H_t(\mu) \) and the distance bound \( \beta \) between \( \mu^* \) and \( \tilde{\mu} \).

(C3) We certify that \( \Lambda^* \) is complete for \( f \) at \( \xi^* \) (see Definition 2.7), where \( \Lambda^* \subset \mathbb{C}[d_{\xi^*}] \) is the dual systems defined from \((\xi^*, \mu^*)\) recursively as in (20). This is done by checking that \( \ker K_{\delta+1}(\xi^*, \mu^*) = \{0\} \) (See Definition 2.7), using the Singular Value Decomposition of \( K_{\delta+1}(\tilde{\xi}, \tilde{\mu}) \) and the distance bound \( \beta \) between \((\xi^*, \mu^*)\) and \((\tilde{\xi}, \tilde{\mu})\).

Let us now consider \( \gamma = \sup_{k \geq 2} \| D F_0^{-1}(\xi, \mu) \frac{D^* F_0(\xi, \mu)}{dt} \|^{1/2} \), \( \alpha = \beta \gamma \) and for a matrix function \( A(\xi, \mu) \), let \( \mathcal{L}_1(A; \xi, \mu; r) \) be a bound on its Lipschitz constant in the ball \( B_r(\xi, \mu) \) of radius \( r \) around \((\xi, \mu)\) such that \( \| A(\xi, \mu) - A(\tilde{\xi}, \tilde{\mu}) \| \leq \mathcal{L}_1(A; \xi, \mu; r) \| (\xi, \mu) - (\tilde{\xi}, \tilde{\mu}) \| \) for \((\xi, \mu) \in B_r(\xi, \mu) \). For a matrix \( M \), let \( \sigma_{\min}(M) \) be its smaller singular value. We have the following result:

**Theorem 6.1.** Let \( B = \{x^{\beta_1}, \ldots, x^{\beta_r}\} \subset \mathbb{C}[x] \) be closed under division and suppose \( B \) is regular. Suppose that \( \alpha < \alpha_0 := 0.26141 \), \( \mathcal{L}_1(K_{\delta+1}; \xi, \mu; \beta) < \sigma_{\min}(K_{\delta+1}(\tilde{\xi}, \tilde{\mu})) \) and for \( t = 1, \ldots, \delta \)

\[
\mathcal{L}_1(H_t; \tilde{\mu}; \beta) < \sigma_{\min}(H_t(\tilde{\mu})) \].

The Newton iteration on the square system \( F_0 \) starting from \((\tilde{\xi}, \tilde{\mu})\) converge quadratically to a point \((\xi^*, \mu^*)\) corresponding to a multiple point \( \xi^* \) with multiplicity structure \( \mu^* \) of the perturbed system \( f^* = f - \epsilon^* B_{\xi^*} \) such that \( \| \epsilon^* \| \leq \| F_1(\tilde{\xi}, \tilde{\mu}) \| + \mathcal{L}_1(F_1; \tilde{\xi}, \tilde{\mu}; \beta) \), where \( B_{\xi^*} = \{x_{\xi^*}^{\beta_1}, \ldots, x_{\xi^*}^{\beta_r}\} \).
Proof. By the \( \alpha \)-theorem [BCSS98][Chap. 8, Thm. 1], the Newton iteration on \( F_0 \) starting from \( (\tilde{\xi}, \tilde{\mu}) \) converges quadratically to a point \( (\xi^*, \mu^*) \) such that \( \| (\xi^*, \mu^*) - (\tilde{\xi}, \tilde{\mu}) \| < \beta \). We deduce that

\[
\| K_{\delta+1}(\xi^*, \mu^*) - K_{\delta+1}(\tilde{\xi}, \tilde{\mu}) \| \leq L_1(K_{\delta+1}; \tilde{\xi}, \tilde{\mu}; \beta) \| (\xi^*, \mu^*) - (\tilde{\xi}, \tilde{\mu}) \| < \sigma_{\min}(K_{\delta+1}(\tilde{\xi}, \tilde{\mu})).
\]

Therefore \( K_{\delta+1}(\xi^*, \mu^*) \) is within a ball around \( K_{\delta+1}(\tilde{\xi}, \tilde{\mu}) \) of matrices of maximal rank, since \( \sigma_{\min}(K_{\delta+1}(\tilde{\xi}, \tilde{\mu})) \) is the distance between \( K_{\delta+1}(\xi, \mu) \) and the set of matrices not of maximal rank. Thus \( \ker K_{\delta+1}(\xi^*, \mu^*) = \{0\} \). A similar argument shows that \( |h_t(\mu^*)| \neq 0 \) for \( t = 1, \ldots, \delta \). By Theorem 5.1, \( (\xi^*, \mu^*) \) defines a multiple root \( \xi^* \) with multiplicity structure \( \mu^* \) for the perturbed system \( f_\epsilon = f - \epsilon^* B_{\xi^*} \) with

\[
\| \epsilon^* \| = \| F_1(\xi^*, \mu^*) \| F_1(\tilde{\xi}, \tilde{\mu}) \| + \| F_1(\xi^*, \mu^*) - F_1(\xi^*, \mu^*) \| \\
\leq \| F_1(\tilde{\xi}, \tilde{\mu}) \| + L_1(F_1; \tilde{\xi}, \tilde{\mu}; \beta) \| (\xi^*, \mu^*) - (\tilde{\xi}, \tilde{\mu}) \| \\
\leq \| F_1(\tilde{\xi}, \tilde{\mu}) \| + L_1(F_1; \tilde{\xi}, \tilde{\mu}; \beta) \beta.
\]

\[\square\]

7 Experimentation

In this section we work out some examples with (approximate) singularities. The experiments are carried out using Maple, and our code is publically available at \( \text{https://github.com/filiatra/polyonimo} \).

Example 7.1. We consider the equations

\[
f_1 = x_1^3 + x_2^2 + x_3^2 - 1, \quad f_2 = x_2^3 + x_1^2 + x_3^2 - 1, \quad f_3 = x_3^3 + x_1^2 + x_2^2 - 1,
\]

the approximate root \( \xi_0 = (0.002, 1.003, 0.004) \) and an error threshold \( \varepsilon = 0.01 \).

We shall first compute a primal basis using Algorithm 1. At the first iteration we compute the \( 3 \times 3 \) matrix \( K_1 = K_1(\xi_0) \). The elements in the kernel of this matrix consists of elements of the form \( \Lambda = \nu_1^1 d_1 + \nu_2^2 d_2 + \nu_3^3 d_3 \). The singular values of \( K_1(\xi_0) \) are \( 4.1421, 0.0064, 0.0012 \), which implies a two-dimensional kernel, since two of them are below threshold \( \varepsilon \). The (normalized) elements in the kernel are \( \tilde{\Lambda}_2 = d_1 - 0.00117 d_2 \) and \( \tilde{\Lambda}_3 = d_3 - 0.00235 d_2 \). Note that \( d_2 \) was not chosen as a leading term. This is due to a pivoting that we apply in the numeric process, in order to avoid leading terms with coefficients below the tolerance \( \varepsilon \). The resulting primal basis \( B_1 = \{1, x_1, x_3\} \) turns out to be closed under derivation.

Similarly, in degree 2 we compute one more dual element \( \tilde{\Lambda}_4 = d_1 d_3 - 0.00002 d_1^2 - 0.0023 d_1 d_2 + 5.5 \cdot 10^{-6} d_2^2 - 0.00117 d_2 d_3 - 0.00002 d_3^2 + 5.9 \cdot 10^{-6} d_2 \).

In the next step, we have \( \ker K_3 = \{0\} \), since the minimum singular value is \( \sigma_{\min} = 0.21549 \), therefore we stop the process, since the computed dual is approximately complete (cf. Definition 2.7). We derive that the approximate multiple point has multiplicity \( r = 4 \) and one primal basis is \( B = \{1, x_1, x_3, x_1 x_3\} \).
The parametric form of a basis of $D_1$ is $\ker K_1 = \langle \Lambda_2 = d_1 + \mu_{2,1} d_2, \Lambda_3 = d_3 + \mu_{3,1} d_2 \rangle$. Here we incorporated (11), thus fixing some of the parameters according to primal monomials $x_1$ and $x_3$.

The parametric form of the matrix $K_2(\xi, \mu)$ of the integration method at degree 2 is

$$
\begin{pmatrix}
\nu_1^1 & \nu_1^2 & \nu_1^3 & \nu_2 & \nu_3^1 & \nu_3^2 & \nu_3^3 \\
0 & 0 & 0 & 0 & -\mu_{2,1} & 0 & 1 \\
0 & 0 & 0 & 0 & -1 & 1 & 0 \text{ (10)} \\
0 & 0 & 0 & \mu_{2,1} & -1 & 0 & \mu_{3,1} \text{ (10)} \\
\lambda(f_1) & 3\xi_1^2 & 2\xi_2 & 2\xi_3 & 3\xi_1 & \mu_{2,1} & 0 & 3\xi_1 & \mu_{3,1} & 1 \\
\lambda(f_2) & 2\xi_1 & 3\xi_2^2 & 2\xi_3 & 1 & 3\mu_{2,1} \xi_2 & 0 & 0 & 3\mu_{3,1} \xi_2 & 1 \\
\lambda(f_3) & 2\xi_1 & 2\xi_2 & 3\xi_3^2 & 1 & \mu_{2,1} & 0 & 0 & \mu_{3,1} & 3\xi_3 \\
\end{pmatrix}
$$

where the columns correspond to the parameters in the expansion (6):

$$
\Lambda_4 = \nu_1^1 d_1 + \nu_2^2 d_2 + \nu_3^3 d_3 + \nu_4^2 (d_1^2) + \nu_5^2 (d_1 d_2 + \mu_{2,1} d_2^2) + \nu_6^2 (d_1 d_3 + \mu_{2,1} d_3 d_2) + \nu_7^1 \cdot 0 + \nu_8^2 (\mu_{3,1} d_2^2) + \nu_9^3 (d_3^2 + \mu_{3,1} d_2 d_3)
$$

Setting $\Lambda_4(x_1 x_3) = 1$ and $\Lambda_4(x_1) = \Lambda_4(x_3) = \Lambda_4(1) = 0$, we obtain $\nu_1^1 = \nu_3^3 = 0$ and $\nu_2^3 = 1$. The dual element of order 2 has the parametric form

$$
\Lambda_4 = d_1 d_3 + \mu_{4,1} d_2 + \mu_{4,2} d_1^2 + \mu_{4,3} d_1 d_2 + \mu_{4,4} d_1 d_3 + \mu_{4,5} d_2^2 + \mu_{4,6} d_3^2 + (\mu_{2,1} \mu_{4,3} + \mu_{3,1} \mu_{4,5}) d_2^2
$$

(21)

$(\nu_1 = \mu_{4,1}, \nu_2 = \mu_{4,2}, \nu_3^1 = \mu_{4,3}, \nu_3^2 = \mu_{4,4}, \nu_3^3 = \mu_{4,5}, \nu_3^4 = \mu_{4,6})$. Overall 8 parameters are used in the representation of $D_2$.

The highlighted entries of $K_2(\xi, \mu)$ form the non-singular matrix $H_2$ in Definition 4.5, therefore $D_2$ is regular for $B$ (cf. Definition 4.3). We obtain the polynomial parameterization $\mu_{4,3} = \mu_{2,1} \mu_{4,2} + \mu_{3,1}, \mu_{4,4} = 1, \mu_{4,5} = \mu_{2,1} + \mu_{3,1} \mu_{4,6}$ with the free parameters $\tilde{\mu} = (\mu_{2,1}, \mu_{3,1}, \mu_{4,1}, \mu_{4,2}, \mu_{4,6})$. There is no denominator since $\det H_2 = 1$.

We now setup the numerical scheme. The over determined and deflated system $F(x, \mu)$ consists of 15 equations:

$$
\mu_{2,1} \mu_{4,2} + \mu_{3,1} - \mu_{4,3}, -\mu_{4,4} + 1, -\mu_{2,1} \mu_{4,4} - \mu_{3,1} \mu_{4,6} + \mu_{4,5},
\Lambda_1(f_1) = f_1, \Lambda_1(f_2) = f_2, \Lambda_1(f_3) = f_3, \Lambda_2(f_1) = 2\mu_{2,1} x_2 + 3x_1^3,
\Lambda_2(f_2) = 3\mu_{2,1} x_2^2 + 2x_1, \Lambda_2(f_3) = 2\mu_{2,1} x_2 + 2x_1, \Lambda_3(f_1) = 2\mu_{3,1} x_2 + 2x_3,
\Lambda_3(f_2) = 3\mu_{3,1} x_2^2 + 2x_3, \Lambda_3(f_3) = 2\mu_{3,1} x_2 + 3x_3^2,
\Lambda_4(f_1) = \mu_{2,1} \mu_{4,3} + \mu_{3,1} \mu_{4,5} + 2\mu_{4,1} x_2 + 3\mu_{4,2} x_1 + \mu_{4,6},
\Lambda_4(f_2) = 3\mu_{2,1} \mu_{4,3} x_2 + 3\mu_{3,1} \mu_{4,5} x_2 + 3\mu_{4,1} x_2^2 + \mu_{4,2} + \mu_{4,6},
\Lambda_4(f_3) = \mu_{2,1} \mu_{4,3} + \mu_{3,1} \mu_{4,5} + 2\mu_{4,1} x_2 + 3\mu_{4,6} x_3 + \mu_{4,2}
$$

We now consider $J_F(\xi_0, \mu_0)$. This Jacobian is of full rank, and we can obtain a maximal
minor by removing $\Lambda_1(f_2), \Lambda_1(f_3), \Lambda_2(f_3)$ and $\Lambda_3(f_3)$ from $F$. We obtain the square $11 \times 11$ system denoted by $F_0$.

The initial point of the Newton iterations is $\xi_0 = (0.002, 1.003, 0.004)$ and the approximation of the variables $\mu_{i,j}$ provided by the numerical integration method: $\mu_0 = (-0.00117, -0.00235, 5.9 \cdot 10^{-6}, -0.00002, -0.00235, 1.0, -0.00117, -0.00002)$.

We now use Theorem 6.1 to certify the convergence to a singular system. We can compute for $(\xi_0, \mu_0)$ the value $\beta \approx 0.01302$. Moreover, $\sigma_{\min}(K_{\delta+1}(\xi_0, \mu_0)) = 0.21549$ and the minimum singular value of the highlighted submatrix of $K_2(\xi_0, \mu_0)$ is equal to one. Therefore $\beta$ is at least one order of magnitude less than both of them, which is sufficient, since the involved Lipschitz and $\gamma$ constants are of the order of 1 for the input polynomials. In the first iteration we obtain $\beta \approx 0.00011$ which clearly indicates that we are in the region of convergence. Indeed, the successive residuals for 7 iterations are $0.00603, 0.00004, 2.07 \cdot 10^{-9}, 8.6 \cdot 10^{-18}, 3.55 \cdot 10^{-35}, 6.78 \cdot 10^{-70}, 4.15 \cdot 10^{-140}, 5.1 \cdot 10^{-281}$. Clearly, the residual shrinks with a quadratic rate.

We obtain $\xi_7 = (1.48 \cdot 10^{-286}, 1.0, 4.7 \cdot 10^{-284})$ and the overdetermined system is satisfied by this point and in particular $\|F(\xi_7, \mu_7)\|_\infty = 7.9 \cdot 10^{-281}$; the final dual structure is $D_2^* = \{1, d_1, d_3, d_1 d_3\}$.

**Example 7.2.** We demonstrate how our method handles inaccuracies in the input, and recovers a nearby system with a true multiple point. Let

$$f_1 = x_1^2 + x_1 - x_2 + 0.003 \quad , \quad f_2 = x_2^2 + x_1 - x_2 + 0.004 x_1.$$ 

There is a cluster of three roots root around $\xi_0 = (0.001, -0.002)$. Our goal is to squeeze the cluster down to a three-fold real root. Starting with $\xi_0$, and a tolerance equal to $10^{-2}$ Algorithm 1 produces an approximate dual $1, d_1 + 1.00099651 d_2, d_1^2 + 1.00099651 d_1 d_2 + 1.00266222 d_2^2 + 0.99933134 d_2$ and identifies the primal basis $B = \{1, x_1, x_1^2\}$ using pivoting thresholding on the integration matrix. The sole stability condition reads $\mu_{1,1} - \mu_{2,2} = 0$, where we considered $\Lambda_1 = 1, \Lambda_2 = \mu_{1,1} d_2, \Lambda_3 = d_1^2 + \mu_{1,1} d_1 d_2 + \mu_{2,2} d_2 + \mu_{2,2} \mu_{1,1} d_2^2$.

The nearby system that we shall obtain is deduced by the residue in Newton’s method. In particular, starting from $\xi_0$, we consider the square system given by removing the equations $\Lambda_1(f_1) = 0$ and $\Lambda_2(f_2) = 0$. The rank of the corresponding Jacobian matrix remains maximal, therefore such a choice is valid. The Newton’s iterations converge quadratically to the point $(\xi_7, \mu_7) = (10^{-151}, 10^{-151}, 1, 1, 1)$. The full residual is now

$$F(\xi_7, \mu_7) = (0, 0.003, -10^{-300}, 10^{-150}, 0.004, 0, -10^{-150}).$$

This yields a perturbation $\tilde{f}_1 \approx f_1 - 0.003$ and $\tilde{f}_2 \approx f_2 - 0.004(x_1 - \xi_1^*)$ to obtain a system with an exact multiple root at the origin (cf. Th. 6.1). Of course, this choice of the square sub-system is not unique. By selecting to remove equations $\Lambda_1(f_1) = 0$ and $\Lambda_1(f_2) = 0$ instead, we obtain $(\xi_7, \mu_7) = (0.00066578, -0.00133245, 1.001, 1.0, 1.001)$ and the residual $F(\xi_7, \mu_7) = (0, 0.005, 0.002, 0, 0, 0, 0, 0)$, which implies that the following nearby system

$$f_1^* \approx x_1^2 + x_1 - x_2 + 0.008, \quad f_2^* \approx x_2^2 + x_1 - x_2 + 0.004 x_1 + 0.002$$

has a singularity at the limit point $\xi^* \approx (0.00066578, -0.00133245)$ described locally by the coefficients $\mu^* \approx (1.001, 1.0, 1.001)$. 

24
Example 7.3. We show some execution details on a set of benchmark examples in taken from [DZ05], see also [MM14]. For this benchmark, we are given systems and points with multiplicities. We perturb the given points with a numerical perturbation of order $10^{-2}$. We use 150 digits of accuracy and setup Newton’s iteration; with less than 10 iterations, the root was approximated within the chosen accuracy.

| System  | $r/n$ | IM    | SC | $\#\mu$ | OS         |
|---------|-------|-------|----|---------|------------|
| cmbs1   | 11/3  | 27 × 23 | 75 | 74      | 108 × 77   |
| cmbs2   | 8/3   | 21 × 17 | 21 | 33      | 45 × 36    |
| mth191  | 4/3   | 10 × 9  | 3  | 9       | 15 × 12    |
| decker2 | 4/2   | 5 × 5   | 4  | 8       | 12 × 10    |
| Ojika2  | 2/3   | 6 × 5   | 0  | 2       | 6 × 5      |
| Ojika3  | 4/3   | 12 × 9  | 15 | 14      | 27 × 17    |
| KSS     | 16/5  | 155 × 65| 510|362      | 590 × 367  |
| Capr.   | 4/4   | 22 × 13 | 6  | 15      | 22 × 19    |
| Cyclic-9| 4/9   | 104 × 33| 36 |40       | 72 × 49    |

Table 1
Size of required matrices and parameters for deflation.

In Table 1, “IM” is the maximal size of the (numeric) integration matrix that is computed to obtain the multiplicity, “$\#\mu$” is the number of new parameters that are needed for certified deflation, “SC” is the number of stability constraints that were computed and “OS” stands for the size of the overdetermined system (equations × variables). This is the size of the Jacobian matrix that must be computed and inverted in each Newton’s iteration. We can observe that the number of parameters required can grow significantly.

References

[AAHS18] Tulay Ayyildiz Akoglu, Jonathan D. Hauenstein, and Agnes Szanto. Certifying solutions to overdetermined and singular polynomial systems over Q. Journal of Symbolic Computation, 84:147–171, 2018.

[BCSS98] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and Real Computation. Springer, NY, 1998.

[Bi78] J Briançon and A Iarrobino. Dimension of the punctual Hilbert scheme. Journal of Algebra, 55(2):536–544, December 1978.

[Bri77] Joel Briançon. Description de $\text{Hilb}^n\mathbb{C}\{x,y\}$. Inventiones mathematicae, 41:45–90, 1977.

[BS17] Dori Bejleri and David Stapleton. The tangent space of the punctual Hilbert scheme. The Michigan Mathematical Journal, 66(3):595–610, August 2017.
[DLZ11] B. H. Dayton, T.-Y. Li, and Z. Zeng. Multiple zeros of nonlinear systems. *Math. Comput.*, 80(276):2143–2168, 2011.

[DRS74] Peter Doubilet, Gian-Carlo Rota, and Joel Stein. On the Foundations of Combinatorial Theory: IX Combinatorial Methods in Invariant Theory. *Studies in Applied Mathematics*, 53(3):185–216, 1974.

[DS01] Jean-Pierre Dedieu and Mike Shub. On simple double zeros and badly conditioned zeros of analytic functions of $n$ variables. *Math. Comp.*, 70(233):319–327, 2001.

[DZ05] B. H. Dayton and Z. Zeng. Computing the multiplicity structure in solving polynomial systems. In *Proc. of ISSAC ’05*, pages 116–123, NY, USA, 2005. ACM.

[EMT10] Ioannis Z. Emiris, Bernard Mourrain, and Elias Tsigaridas. The DMM bound: multivariate (aggregate) separation bounds. In S. Watt, editor, *Proceedings of the ISSAC’10*, pages 243–250, Munich, Germany, July 2010. ACM.

[GLSY05] M. Giusti, G. Lecerf, B. Salvy, and J.-C. Yakoubsohn. On location and approximation of clusters of zeros of analytic functions. *Found. Comput. Math.*, 5(3):257–311, 2005.

[GLSY07] M. Giusti, G. Lecerf, B. Salvy, and J.-C. Yakoubsohn. On location and approximation of clusters of zeros: Case of embedding dimension one. *Foundations of Computational Mathematics*, 7:1–58, 2007.

[GY13] M. Giusti and J.-C. Yakoubsohn. Multiplicity hunting and approximating multiple roots of polynomial systems. In *Recent advances in real complexity and computation*, volume 604 of *Contemporary Mathematics*, pages 105–128. AMS, 2013.

[GY18] M. Giusti and J.-C. Yakoubsohn. Approximation numérique de racines isolées multiples de systèmes analytiques, 2018. arXiv:1809.05446.

[HMS16] Jonathan D. Hauenstein, Bernard Mourrain, and Agnes Szanto. On deflation and multiplicity structure. *Journal of Symbolic Computation*, 83:228–253, 2016.

[Iar77] Anthony A Iarrobino. *Punctual Hilbert Schemes*, volume 188 of *Memoirs of the American Mathematical Society*. AMS, Providence, 1977.

[KO97] Yuchi Kanzawa and Shin’ichi Oishi. Approximate singular solutions of nonlinear equations and a numerical method of proving their existence. Number 990, pages 216–223. 1997. Theory and application of numerical calculation in science and technology, II (Japanese) (Kyoto, 1996).

[LLZ19] Kisun Lee, Nan Li, and Lihong Zhi. On isolation of singular zeros of multivariate analytic systems, 2019. arXiv:1904.0793.

[LS15] Zhe Li and Haifeng Sang. Verified error bounds for singular solutions of nonlinear systems. *Numer. Algorithms*, 70(2):309–331, 2015.

[LVZ06] A. Leykin, J. Verschelde, and A. Zhao. Newton’s method with deflation for isolated singularities of polynomial systems. *Theoretical Computer Science*, 359(1-3):111 – 122, 2006.

[LVZ08] A. Leykin, J. Verschelde, and A. Zhao. Higher-order deflation for polynomial systems with isolated singular solutions. In A. Dickenstein, F.-O. Schreyer, and A.J. Sommese, editors, *Algorithms in Algebraic Geometry*, volume 146 of *The IMA Volumes in Mathematics and its Applications*, pages 79–97. Springer, 2008.
[LZ13] Nan Li and Lihong Zhi. Verified error bounds for isolated singular solutions of polynomial systems: case of breadth one. *Theoret. Comput. Sci.*, 479:163–173, 2013.

[LZ14] Nan Li and Lihong Zhi. Verified error bounds for isolated singular solutions of polynomial systems. *SIAM J. Numer. Anal.*, 52(4):1623–1640, 2014.

[MM11] Angelos Mantzaflaris and Bernard Mourrain. Deflation and certified isolation of singular zeros of polynomial systems. In *Proc. of ISSAC ’11*, pages 249–256, NY, USA, 2011. ACM.

[MM14] Angelos Mantzaflaris and Bernard Mourrain. Singular zeros of polynomial systems. In Tor Dokken and Georg Muntingh, editors, *Advances in Shapes, Geometry, and Algebra*, volume 10 of *Geometry and Computing*, pages 77–103. Springer, 2014.

[Mou97] B. Mourrain. Isolated points, duality and residues. *Journal of Pure and Applied Algebra*, 117-118:469 – 493, 1997.

[RG10] S. Rump and S. Graillat. Verified error bounds for multiple roots of systems of nonlinear equations. *Numerical Algorithms*, 54:359–377, 2010.

[Sha13] I. R. Shafarevich. *Basic Algebraic Geometry 1: Varieties in Projective Space*. Springer, New York, 3rd edition edition, 2013.

[WZ08a] X. Wu and L. Zhi. Computing the multiplicity structure from geometric involutive form. In *Proceedings of ISSAC’08*, pages 325–332, NY, USA, 2008. ACM.

[WZ08b] X. Wu and L. Zhi. Determining singular solutions of polynomial systems via symbolic-numeric reduction to geometric involutive form. *J. Symb. Comput.*, 27:104–122, 2008.

[Yak00] Jean-Claude Yakoubsohn. Finding a cluster of zeros of univariate polynomials, volume 16, pages 603–638. 2000. Complexity theory, real machines, and homotopy (Oxford, 1999).

[Yak02] Jean-Claude Yakoubsohn. Simultaneous computation of all the zero-clusters of a univariate polynomial. In *Foundations of computational mathematics (Hong Kong, 2000)*, pages 433–455. World Sci. Publ., River Edge, NJ, 2002.