Characterisation of mobile genetic elements in *Mycoplasma hominis* with the description of ICEHo-II, a variant mycoplasma integrative and conjugative element

Birgit Henrich 1*, Stephanie Hammerlage 1, Sebastian Scharf 1,2, Diana Haberhausen 1, Ursula Fürnkranz 2, Karl Köhrer 4, Lena Peitzmann 4, Pier Luigi Fiori 5, Joachim Spergser 6, Klaus Pfeffer 1 and Alexander T. Dilthey 1,7,8

Abstract

Background: Mobile genetic elements are found in genomes throughout the microbial world, mediating genome plasticity and important prokaryotic phenotypes. Even the cell wall-less mycoplasmas, which are known to harbour a minimal set of genes, seem to accumulate mobile genetic elements. In *Mycoplasma hominis*, a facultative pathogen of the human urogenital tract and an inherently very heterogeneous species, four different MGE-classes had been detected until now: insertion sequence ISMhom-1, prophage MHoV-1, a tetracycline resistance mediating transposon, and ICEHo, a species-specific variant of a mycoplasma integrative and conjugative element encoding a T4SS secretion system (termed MICE).

Results: To characterize the prevalence of these MGEs, genomes of 23 *M. hominis* isolates were assembled using whole genome sequencing and bioinformatically analysed for the presence of mobile genetic elements. In addition to the previously described MGEs, a new ICEHo variant was found, which we designate ICEHo-II. Of 15 ICEHo-II genes, five are common MICE genes; eight are unique to ICEHo-II; and two represent a duplication of a gene also present in ICEHo-I. In 150 *M. hominis* isolates and based on a screening PCR, prevalence of ICEHo-I was 40.7%; of ICEHo-II, 28.7%; and of both elements, 15.3%. Activity of ICEHo-I and -II was demonstrated by detection of circularized extrachromosomal forms of the elements through PCR and subsequent Sanger sequencing.

Conclusions: Nanopore sequencing enabled the identification of mobile genetic elements and of ICEHo-II, a novel MICE element of *M. hominis*, whose phenotypic impact and potential impact on pathogenicity can now be elucidated.

Keywords: Mobile genetic element, Mycoplasma, *M. hominis*, Nanopore sequencing

* Correspondence: birgit.henrich@hhu.de
1 Institute of Med. Microbiology and Hospital Hygiene of the Heinrich-Heine-University Dusseldorf, Duesseldorf, Germany
Full list of author information is available at the end of the article

© The Author(s). 2020, corrected publication 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Background

Mycoplasma hominis is a facultative pathogen of the human urogenital tract and associated with bacterial vaginosis, pelvic inflammatory disease, septic arthritis, preterm birth or even neonatal meningitis [1–3]. The factors accounting for the pathogenic potential of this heterogeneous species with the second smallest genome described so far are not fully understood. Several studies were conducted to characterize host-pathogen interactions in vitro [4–6] and in vivo [7–9], including microarray-based characterization of host [10] and pathogen [11] transcriptome changes in *M. hominis* infection. With increasing numbers of completely resolved *M. hominis* genomes (20 at the time of writing; https://www.ncbi.nlm.nih.gov/genome/), however, it became increasingly clear that mobile genetic elements, such as of MhoV-1 [12], ISMhom-1 [13], the tet(M)-carrying transposon [14], and the recently detected ICEHo element [15], significantly contribute to genomic plasticity of *M. hominis* [16].

The present study was conducted to elucidate the presence and prevalence of mobile genetic elements in selected clinical strains of *M. hominis*. To ensure the correct resolution and localization of MGE-associated genomic repeats, a Nanopore-based long-read sequencing approach was combined with an Illumina-based assembly polishing strategy.

Results

Generation of high-quality assemblies of 11 *M. hominis* strains

A hybrid approach combining short- and long-read sequencing data (Table 1) was used to generate high-quality assemblies of 11 isolates of *M. hominis*. Briefly, the Oxford Nanopore and Pacific Biosciences technologies were used to generate ≥500X of long-read sequencing data for each isolate genome; these data were assembled using Canu [17] or HGAP [18] and polished using ≥100X of short-read Illumina sequencing data for each sample. All assemblies were manually inspected for

Strain	Short-read sequencing	Long-read sequencing
	Protocol Generated data (Mb) Est. coverage (X)	Technology Kit Generated data (Mb) Est. coverage (X) Median read length/kb
FBG	2 × 300 1612 2067	Nanopore SQK-RAD003 3542 4541 2.5
8958	2 × 300 157 231	Nanopore SQK-RAD003 657 966 4.5
2539	2 × 300 2344 3119	Nanopore SQK-LSK108 384 511 12.6
A136	2 × 300 240 344	Nanopore EXP-NBD103 + SQK-LSK108 707 1016 13.6
SP2565	2 × 300 205 287	Nanopore 732 1053 10.5
475	2 × 300 184 257	Nanopore 638 889 5.3
SS10	2 × 300 1648 2353	Nanopore 756 1080 5.7
SS25	2 × 300 1865 2772	Nanopore 732 1088 8.3
VO31120	2 × 250 89 130	Nanopore 728 1069 6.3
SP10291	2 × 250 80 106	Nanopore 562 749 4.4
SP3615	2 × 250 99 138	PacBio SMRTbell Template Prep Kit 1.0 + Sequel Binding and Internal Control Kit 2.1 7447 10,401 2.9
727 J	Nanopore EXP-NBD103 + SQK-LSK108 17 21 5.2	
942 J	Nanopore 38 47 44.1	
2740	Nanopore 15 16 4.1	
7388VA	Nanopore 39 47 41.2	
7447VA	Nanopore 59 66 1.7	
10936VA	Nanopore 53 66 3.0	
12256 U	Nanopore 35 42 14.5	
14352VA	Nanopore 37 47 32.3	
16753	Nanopore 7 9 4.4	
18847	Nanopore 38 49 45.7	
19791	Nanopore 44 52 4.6	
21127VA	Nanopore 38 44 42.4	
quality. A full description of the sequencing and assembly process is given in the Methods section. Genome lengths of all 11 isolates were larger than that of type strain PG21 (665 kbp [19]), ranging from 673 kbp (SS25) to 780 kbp (FBG); the number of annotated genes, predicted by Prokka [20], ranged from 580 (SS25) to 680 genes (FBG). Two additional publicly available genome sequences were also incorporated into the analysis (TO0613 and PL5).

Detection of mobile genetic elements (MGE) in selected M. hominis strains

The online software tool Mauve [21] was used for genome alignments (Fig. 1) illustrating homologous regions by colour. Thus, larger isolate-specific regions of gene gain were evident by blocks of zero similarity (e.g. uncoloured sections) and classified as putative mobile genetic elements (MGE).

Four different classes of MGE were characterized in the M. hominis genomes: i) insertion sequence ISMhom-1, first described in 2008 [13], ii) prophage MHoV-1 [12], iii) a tetracycline resistance mediating transposon [14], and iv) ICEHo-I and -II, two M. hominis-specific variants of MICE, a mycoplasma integrative and conjugative element [22], of which ICEHo-I corresponds to ICEHo recently published [15]. All MGE insertion sites are shown in Table 2 and visualized in Fig. 1. We detected between 0 (isolates 8958, SS25, and VO31120) and 8 MGEs (isolate FBG) per genome; of note, the three isolates in which no MGEs were detected had the smallest genome sizes.

ISMhom-1

ISMhom-1 (1.26 kb) was found in two isolates; isolate SP10291 contained one copy, and isolate FBG carried five copies. ISMhom-1 was highly conserved in sequence, carrying an open reading frame similar to transposase gene

\[\text{tnpA} \]

of the IS30 family [13], which was flanked by a nontranslated region (108 bp on the 5’ end and 140 bp 3’) with terminal inverted repeats of 27 bp. Generation of inverted repeats by IS elements was first described for an IS30-type insertion element of M.

Fig. 1 Mauve alignment of M. hominis genomes. In Mauve progressive alignment of genomes of M. hominis strains FBG, 8958, 2539, SP10291, A136, SP2565, 475, SS10, SS25, VO31120 and SP3615 the FBG genome served as a reference. Regions with the same colour represent locally collinear blocks without rearrangement of the homologous backbone sequences. Open reading frames of both strands are depicted below with rRNA genes in red. Local positions of MGE are marked above genomes by vertical arrows in specific colouring: ICEHo-I in red, ICEHo-I vestiges in pink, ICEHo-II in yellow, MHoV-1 in green, tet(M) in dark blue, truncated tet(M) in light blue and ISMhom-1 in light purple.
fermentans [23]. ISMhom-1 insertion positions included un-translated regions (FBG ISMhom-1_1, ISMhom-1_2, ISMhom-1_3, and SP10291) and the 3’ ends of the annotated genes BHBFJMJE_00532 and BHBFJMJE_00625 (FBG ISMhom-1_4 and ISMhom-1_5, respectively). The concomitant generation of insertion site-specific inverted repeats resulted in integrity of both ORFs (Table 3).

Prophage MHoV-1

Prophage MHoV-1 was detected in six isolates (five de novo assembled genomes and one publicly available genome, TO0613). Presence and sequence of genes (from repB to exsS, i.e., spanning the complete MHoV-1 element as defined by [12], and terminated by indirect (IR; AAAGTCCC) repeats of the phage) were highly conserved across the de novo assembled genomes (Table 3). The respective prophage region in TO0613 was structurally consistent with the de novo assembled sequences; several annotated TO0613 genes, however, were disrupted, suggesting a potential assembly problem in the published MiSeq-based assembly of TO0613. No systematic patterns of MHoV-1 integration positions were observed (Table 3). In four cases (strains A136, SP2565, 475 and TO0613), MHoV-1 integrated into intergenic regions; in two cases (strains 2539 and SS10), into open reading frames encoding hypothetical genes of unknown function, leading to premature disruption of the predicted hypothetical genes.

tet(M)-harbouring transposon

A tet(M)-harbouring transposon of 25 kb length, mediating tetracycline resistance, was detected in four *M. hominis* strains (2539, 475, SP2565, and PL5). The transposon was highly conserved in gene organisation (see Fig. 2) and sequence (> 94% nucleotide identity), and comprised a 13.3 kb region homologous to transposon Tn916 [14]. Insertion sites of the tet(M)-harbouring transposon were highly conserved, targeting the 3’ end of the rumA gene and leading to RumA C-terminal extension, consistent with findings in strain SPROTT [14], in which a homologous full-length transposon is also present (Fig. 2). Truncated versions of the element were found in strain SP3615 (encompassing conjugative transposon genes but missing integrase gene *int*), as well as in *Ureaplasma urealyticum*, serovar 9 (Fig. 2). The functional relevance of these truncations remains unclear. Further BLAST analyses identified a homologous transposon in *Parvimonas micra* (> 87% nucleotide identity),

Table 2 Presence and genomic position of mobile genetic elements

Strain	Genome / bp	ISMhom-1 / bp x – bp y	MHoV-1 / bp x – bp y	tet(M) / bp x – bp y	ICEHo-I / bp x – bp y	ICEHo-II / bp x – bp y
FBG	780,024	85,753–87,012	349,147–350,406	–	136,576–109,789	–
		404,580–403,321	593,967–595,226	–	508,629–535,415	–
		708,740–709,999		–	747,727–774,523	–
				–	307,652 – 309,385	(675938–675,828)
8958	680,851	–	–	–	–	–
2539	751,326	–	407,989–392,742	619,357–644,618	–	–
SP10291	750,518	293,110–294,369	–	–	646,629–616,362	13,153–31,485
A136	696,338	–	301,276–286,023	–	–	–
SP2565	712,781	–	91,014–75,747	593,982–619,248	–	–
475	717,789	–	419,415–434,419	590,550–615,528	–	–
SS10	700,146	637,906–622,632	–	–	–	–
SS25	672,843	–	–	–	–	–
V031120	681,374	–	–	–	–	–
SP3615	715,990	–	613,432–620,439	–	543,628–561,978	–
TO0613	766,228	–	694,774–710,019	–	49,522–18,905	310,644–280,027
	767,767	(JRXA01)	74,216–99,476(000009.1)	–	[89,704–90,264] – [1950–3140]	
			(_000001.1)	–	(_000001.1)	(1814–1029) – [18,377–17,187]
			(_000000.1)	–	(000000.1)	(000000.1)

MGE elements used in BLAST analysis: a ISMhom-1 (acc.-no. dq973625); b MHoV-1 prophage region from repB to exsS (acc.- no. CP009652; bp 596,991–bp 581,744); c tet(M) of SPROTT (acc.- no. CP011538; bp 573,817–599,077); d ICEHo-I region of FBG (CDS1 to CDS22, bp 508,629 – 535,415); e ICEHo-II region of SP3615 (CDS1 to CDS22, bp 543,628 – bp 561,978); f ICEHo-I vestige (corresponding FBG ICEHo-I-2; bp 508,629 – bp 510,361); g ICEHo-I vestige (corresponding to FBG ICEHo-I-2 untranslated region 535,715–535,827); h truncated tet(M) transposon corresponding to bp 577,017 - bp 584,024 of SPROTT; accession numbers of i TO0613 genome (acc.-no CP033021.1) and j PIS contigs (JRXA01_000001.1 to JRXA01_000010.1)
MGE	Gene / contig	PG21-homologue	Gene product	Gene length (nt)	Insertion site in gene (nt)	DR / IR
FBG_ISMhom-1_1	dBHBFJMJE_00070		IGR * (dMHO_0640)	–	–	–
FBG_ISMhom-1_2	dBHBFJMJE_00328		IGR * (dMHO_2560)	–	–	–
FBG_ISMhom-1_3	dBHBFJMJE_00386		IGR * (dMHO_3070)	–	–	–
FBG_ISMhom-1_4	BHBFJMJE_00532		MHO_4140	807	807	AAAATA
FBG_ISMhom-1_5	BHBFJMJE_00629		MHO_5205	828	828	AAAATAGC
SP10291_ISMhom-1	dHPAMDCMO_00271		IGR * (dMHO_2210)	–	–	TGGGCTTTT
2539_MHovVI	KLHMDFE_00358	MHO_3090	hypothetical protein	1134	808	ATTTTTAT / ATTTTTTT
A136_MHovVI	dMNIFKBBE_00264		IGR * (dMHO_2560)	–	–	TTTTTTT / CTTTTTT
SP2565_MHovVI	dHHAOGLDO_00056		IGR * (dMHO_0530)	–	–	ATTTTTATA / ATTTTTCTA
475_MHovVI	dMOHCKOGE_00391		IGR * (dMHO_3470)	–	–	TTTTTT / CTTTTT
SS10_MHovVI	MFOAKDDO_00058	MHO_4930	hypothetical protein	903	867	CTTTTT (866–867)
TO0613_MHovVI	dKN7I_002970		IGR * (dMHO_4930)	–	–	–
FBG_ICEHo-I-1	BHBFJMJE_00092	MHO_0820	hypothetical protein	651	394	AAAATA (387–394)
FBG_ICEHo-I-2	BHBFJMJE_00459	MHO_3720	P75 precursor	1950	1950 + 1 h	CAAATAA / AATCTTTI (1323–1950)
FBG_ICEHo-I-3	BHBFJMJE_00651	MHO_5300	conserved hypothetical protein	432	432 + 2 h	AAAATAA (427–432)
FBG_ICEHo-I-4 vestige	BHBFJMJE_00287	MHO_2250	hypothetical protein	663	44	–
FBG_ICEHo-I-5 vestige	dBHBFJMJE_00595		IGR * (dMHO_4730)	–	–	–
SP10291_ICEHo-I	dHIDENHDDO_00930		IGR * (dMHO_4550)	–	–	–
TO0613_ICEHo-I-1	dKN7I_000220		IGR * (dMHO_0170)	–	–	–
TO0613_ICEHo-I-2	KN17I_01280	MHO_2080	conserved hypothetical lipoprotein	1734	1407	TGGAAAT (1401–1407)
PL5_ICEHo-I-1	JRXA01000010.1	MHO_0120	type III restriction enzyme	2453	853	TTTTTAAA (846–853)
PL5_ICEHo-I-2	JRXA01000004.1	MHO_1960	hypothetical protein	369	4	AAATAAAG (4–12)
SP3615_ICEHo-II	dKPGPEAHEF_00485		methylase Opmill	–	–	TAATATA
SP3615_ICEHo-II	JRXA01000005.1	MHO_130	site-specific DNA methyltransferase	1200	1152	AAATCTTT (1145–1152)

*Contigs only shown for strain PL5, due to assembly fragmentation; printed in italics; ** MHO genes of PG21 according to acc.-no: FP236530.1; *** DR = direct repeat; IR = inverted repeat; ^ gene_X = insertion site downstream of gene X; _ gene on reverse complementary strand; 1st IGR (= intergenic region) downstream of MHO-homologous gene X (dMHO_X); 2nd downstream DR identical to 3’ end of the gene, protein encoding regions in bold; 3rd DR region in the affected gene (nt x to nt y); 4th + 1 / 2 = direct repeat terminates 1 nt / 2 nt downstream of gene x resulting in downstream DR containing 3’ end of the gene; 5th NO DR but duplicated region of p75 (nt 1323–1950)
a pathogen which is commonly found in the oral cavity or gastrointestinal tract [24], and two homologous regions in *Haemophilus ducreyi* strain 33,921 (acc.-no. CP011228.1), covering the entire transposon with > 87% nucleotide identity.

Mycoplasma integrative and conjugative elements

Two different MICE variants, ICEHo-I and ICEHo-II, were detected in the *M. hominis* genomes sequenced in this study. The first of these, ICEHo-I, was previously characterized by Meygret et al [15], and named ICEHo.

Integrative and conjugative element ICEHo-I

ICEHo-I was detected in four isolate genomes, with copy numbers varying between 1 (SP10291), 2 (strains TO0613 and PL5), and 3 (strain FBG); the genomic locations and features of the integration sites of ICEHo-I are summarized in Tables 2 and 3.

ICEHo-I carried a set of 13 MICE core genes as defined in an analysis of MICE of *M. fermentans* M64 and *M. agalactiae* 5632 [22]. MICE core genes exhibited a high degree of conservation across the assembled *M. hominis* genomes; inter-strain homologies of the MICE core proteins ranged from 76% to 100% with respect to strain FBG (Fig. 3). Inter-species homologies, by contrast, were lower; for example, protein homologies with respect to MICEF-II of *M. fermentans* [22] ranged from 21% (CDS19) to 58% (CDS21). Of note, the set of MICE core genes present in ICEHo-I included CDS6. In the original description of ICEHo-I [15], a highly homologous gene (EV)69_RS02240 in strain 4788; 100% amino acid identity) had been classified as a non-core MICE gene [15]; identification with CDS6, however, was justified by 32.3% amino acid identity and 53.2% amino acid similarity to ICEF-ORF6 of *M. fermentans* (Additional file 1).

An analysis of MICE non-core (i.e. cargo) genes in ICEHo-I showed that the genes *dcm*, *MhoM*, *MhoE*, and *MhoC* were always present at a single copy, and their relative position was conserved (Fig. 3). *MhoH*, *MhoG*, *MhoF*, and *MhoJ* were consistently located between CDS11 and MhoE, and their copy number was variable (ranging from 0 to 1 for MhoG and MhoF; from 0 to 2, for MhoJ; and from 0 and 3, for MhoH). *MhoA*, *MhoK*, and *MhoL* were located between CDS19 and CDS22 and varied in copy number between 0 and 1 (MhoL and MhoK) and 0 and 2 (MhoA). In a phylogenetic analysis of *MhoH*, *MhoJ*, and *MhoF*, *MhoF* of strain 4788 clustered with *MhoH* (Additional file 2), demonstrating that *MhoH* and MhoF are closely related.

ICEHo-I untranslated regions (210 bp upstream of CDS1 and 413 bp downstream of CDS22) were highly conserved and terminated by an inverted repeat. ICEHo-I integration into host genomes resulted in the generation of direct repeats (Table 3). In two instances, integration was associated with a premature stop of translation, affecting a hypothetical protein (strain FBG; at nucleotide 394/651 of the MHO-0820-homologous BHBF1MJJE_00092) and a lipoprotein (strain TO0613; at nucleotide 1407/1734 of the MHO-2080 homologue). In strain PL5, analysis of insertion sites was limited by
incomplete genome resolution, but BLAST analysis suggested an insertion into the MHO-0120- and MHO-1960-homologous genes, putatively encoding a type III restriction enzyme and a hypothetical protein, respectively. In strain FBG, integration of ICEHo-I-2 was associated with a large duplication within the P75 precursor gene resulting in an upstream intact P75-precursor gene (nucleotide 1–1950) and a downstream remnant (nucleotide 1323–1950).

The three complete copies of ICEHo-I in strain FBG exhibited a high degree of conservation and differed by only four nucleotides, associated with a single amino acid exchange in CDS14 of ICEHo-I_3 (Asn485Ile). In addition to three complete copies of ICEHo-I, strain FBG also harboured two ICEHo-I vestiges (FBG ICEHo-I-4 and -5; see Fig. 1 and Table 3).

Integrative and conjugative element ICEHo-II

The detection of two additional regions of zero similarity with respect to the other M. hominis genomes in strains SP3615 and SP10291 (highlighted in Fig. 1) led to the discovery of another mycoplasma integrative and conjugative element, referred to as ICEHo-II. ICEHo-II was conserved in length (~18kbp) and sequence of 15 open reading frames (Fig. 3; 94.9–100% AA identity).

Protein homology analyses classified five of the open reading frames as MICE-core genes CDS-1, −16, −17, −19, and −22, with homologies of the encoded proteins...
to the respective ICEHo-I proteins of FBG-ICEHo-I ranging from 14.1% (CDS19) to 25.7% (CDS17). Of the ICEHo-II cargo gene encoded proteins (MhoM to MhoU), only protein MhoM, duplicated in ICEHo-II, was also found in ICEHo-I with 30–50% AA identity. A phylogenetic analysis showed that MhoM generally clustered distinctly from CDS11 into ICEHo-I- or -II-specific branches; except for ICEHo-I MhoM protein of TO0613, which was phylogenetically positioned between ICEHo-II MhoM and CDS11 (Additional file 3).

ICEHo-II untranslated regions (207 bp upstream of CDS1 and 210 bp downstream of CDS 22) were terminated by inverted repeats (IRL: TATAAGGAAT and IRR: ATTCCTTTAATAATACACGACC). In strain SP10291, ICEHo-II insertion led to a premature stop in the MHO-0130-homologous gene, putatively encoding a site-specific DNA methyltransferase belonging to the DEAD/DEAH box helicase family (see Table 3). In strain SP3615, ICEHo-II was reversely inserted between the MHO-4180- and MHO-4190-homologous genes, and three additional genes (KGPEAEHF_0485 to KGPEAEHF_0483) were detected between MHO_4180 and ICEHo-II. A Phyre2 analysis of these genes showed homologies to two methyltransferases (KGPEAEHF_0485 and KGPEAEHF_0486) and a S. pneumoniae endonuclease encoded in the DpnII gene cassette (KGPEAEHF_0483).

A BLAST analysis identified ICEHo-II-homologous regions in other mycoplasma species, M. phocicerebrale [25] and M. anseris [26] (Fig. 3). In the seal pathogen M. phocicerebrale a truncated ICEHo-II region was detected, extending from gene MhoT to CDS22. In the duck and goose pathogen M. anseris a hybrid ICEHo element was found, carrying the ICEHo-I- homologous MICE genes CDS3, –5, –12, –18, and dcm, and the ICEHo-II homologous MICE genes CDS1, –16, –17, –19, –22, and MhoT, suggesting a common ancestor or a product of recombination of both ICEHo elements.

Prevalence of ICEHo-I and ICEHo-II elements

Using a Real time PCR (qPCR) screening approach targeting ICEHo-I and -II-specific small gene fragments, 150 isolates from the M. hominis strain collection of our institute were tested for the presence of ICEHo elements (see Methods). For ICEHo-I, 57.3% of the M. hominis strains (86/150) were rated as unambiguously ICEHo-I-negative, and 28% (42/150) were classified as unambiguously ICEHo-I-positive. Of the remaining 22 isolates with ambiguous ICEHo-I-specific probe detection results, 19 isolates were rated as ICEHo-I positive, yielding an overall ICEHo-I detection rate of 40.7% (61/150). For ICEHo-II, 28.7% of the M. hominis strains (43/150) were tested ICEHo-II-positive; including 15.3% strains (23/150) also positive for ICEHo-I.

To verify the accuracy of the qPCR screen, additional Nanopore long-read sequencing data were generated on 12 isolates (Table 1), draft de novo assembly was carried out, and ICEHo-I and -II copy number counts agreed with the screening-based results for each evaluated isolate, confirming the accuracy of the qPCR screen. Variability in ICEHo-I structure, as already observed in the set of genomes assembled to high quality, was also found in the newly sequenced isolates; by contrast, the structure of ICEHo-II was found to be highly conserved (Additional file 4).

MGE co-occurrence analysis

MGE copy numbers were tabulated across the assembled genomes (Table 4) and statistical tests were carried out to assess the evidence for non-random co-occurrence of different MGEs, using the Chi-Square test to detect associations at the level of presence and absence and Spearman’s rank correlation test to detect associations at the level of MGE multiplicity. No statistically significant association at \(p = 0.05 \) was found between the presence or multiplicity of ICEHo-II in a given strain and presence of any other MGE; the lowest \(p \)-values were achieved for MhoV-1 being present more often in the absence of ICEHo-I \((p = 0.066) \) and ISMhom-1 only occurring when ICEHo-I was present \((p = 0.096) \).

Episomal occurrence of ICEHo elements

Nanopore reads of the 23 sequenced M. hominis strains were mapped to circularized ICEHo-I (strains FBG and SP10291) and ICEHo-II (SP3615 and SP10291). Reads overlapping the IRR-IRL junction site were only detected in strains FBG (ICEHo-I) and 19791 (ICEHo-II). To detect the presence of episomal ICEHo-I and ICEHo-II with increased sensitivity, a Real time PCR assay, designed to exclusively amplify episomal circularized ICEHo (cICEHo), was employed (see Methods). Application of this cICEHo screening assay to 80 ICEHo-positive isolates from our collection showed that more than two thirds (49/60) of the ICEHo-I- and more than half (27/43) of the ICEHo-II-carrying strains harbour episomal circularized versions of ICEHo-I and -II, respectively (see Additional file 5).

In all whole-genome-sequenced samples, the coupling region (CR) of the episomal ICEs was characterized with Sanger sequencing. In all cases except for cICEHo-I of strain 19791, the detected cICEHo-I and cICEHo-II CR sequences had a length of 6 nucleotides (Fig. 4). The CR of cICEHo-I in strain 19791 consisted of a mixture of six- and eight-nucleotide sequences (ATGAGT and ATATGAGT), with the longer version dominating (see Methods).
CR sequences were characterized by a dominance of weak nucleotides (W = A or T) and generally corresponded to the genomic sequences of the IRR−/IRL-flanking direct repeats. The CR of circularized ICEHo-I was typically composed of nucleotides 1–6 of the DR (n = 11), less often of nucleotides 3–8 (n = 4) or 1–8 (n = 1). The CR of circularized ICEHo-II, by contrast, was typically composed of nucleotides 3–8 of the DR (n = 7), less often of nucleotides 1–6 (n = 4) or 2–7 (n = 1).

The detection of major and minor CR sequence variants may reflect (i) simultaneous usage of different DR subregions from the same ICEHo element (see underlined sequence regions of DR in Fig. 4.C), (ii) simultaneous observation of multiple ICEHo-I−II elements with different DR sequences (ICEHo-II of strain 12256 U), (iii) circularisation- or recombination-associated mutagenesis in the circularized ICEHo product, (iv) sequencing error. Of note, minor CR sequence variants were also observed in isolates in which only one ICEHo copy was present (e.g. ICEHo-II of SP10291), and we observed mismatches between CR and the underlying genomic DR sequences in both high quality and draft de novo assembled genomes (e.g. AAAAAA in ICEHo-I of FBG, TTTTT in ICEHo-I of 14352VA, and TTTTTT ICEHo-II of 16753). Of note, joint analysis of CR and DR sequences enabled the mapping of circularized ICEHo copies to their respective genomic origins in strains FBG (for ICEHo-I_1 and _3), 21127 (ICEHo-I_2), 19791 (ICEHo-II_2), and 2740 (ICEHo-II_1). In strain 16753, both copies of ICEHo-II were found in circularized form.

Discussion

Mobile genetic elements play an important role in mediating prokaryotic genome plasticity, often contributing
to important phenotypes such as virulence and antibiotic resistance. MGEs can exert their effect by expanding the gene set of the host, or via the disruption of existing genes in the case of integration events. In the present study, we detected and characterized four types of MGEs in clinical isolates of *M. hominis*: ISMhom-1, an insertion sequence; prophage MHoV-1; a tet(M)-carrying transposon; and ICEHo-I and -II, two *M. hominis*-specific integrative and conjugative elements.

MGE insertion patterns

In our study, ISMhom-1 was found exclusively in non-coding chromosomal regions; in other studies, IS element insertions are also reported in MICEs [28] or MICE.
vestiges [29]. The other types of MGEs detected here were also found to be inserted in coding regions; 2 of 7 detected MhoV-1 insertions led to the interruption of a gene; 6 of 10 ICEHo-I insertion events; and 1 of 2 ICEHo-II insertion events. In more than half of the 11 \textit{M. hominis} genomes assembled to high quality, a chromosomal gene was found to be disrupted by insertion of an MGE. No statistically significant effects were identified during the MGE co-occurrence analysis; the conjecture that ICEHo-I-free isolates may be less susceptible to the entry of other mobile elements [15] was not replicated here.

ICEHo-I and -II gene content

Horizontal transfer of ICEs from one host to the other is mediated by type IV secretion systems (T4SS), typically comprising the surface-localized pilus, the integral membrane core channel, a protein complex at the cytoplasmic site of the membrane, and ATPases at the cytoplasmic site of the channel [30]. In addition, mobilization and integration of ICEs typically require the presence of a relaxase or integrase enzyme. Genes that participate in the mobilization or conjugation process are referred to as core genes, whereas cargo genes often encode ICE-associated phenotypes of interest, such as resistance [14], metabolic traits [31], or virulence [32]. Characterization of ICEs in mycoplasmas (MICE) has enabled the definition of a MICE core gene set [22], including a mycoplasma-minimized T4SS [22]. ICEHo-II contains a smaller set of MICE core genes than ICEHo-I, but the impact of this on the transfer potential of ICEHo-II remains to be studied. Table 5 shows results of a bioinformatics analysis of putative gene functions, and an integrated view of putative MICE gene functions incorporating results from the literature is shown in Additional file 6. Low levels of homology present significant challenges for the in silico characterization of MICE genes; follow-up experimental studies will be necessary to better characterize the functions of ICEHo-I and -II genes.

Circularization is likely indicative of ICEHo-I and -II transfer potential

For ICEs, excision and circularization represent key steps in the mobilization process [33]. We used a specifically developed PCR assay to demonstrate the presence of ICEHo-I and -II in their episomal circularized forms across many isolates in our screened cohort. The detection of circularized ICEHo-I and -II demonstrates the first step in the potential horizontal transfer of these elements and indicates that ICEHo-I and -II likely retain their mobile potential. Interestingly, we also detected the presence of minor sequence variants in the coupling region of circularized ICEHo-I and -II elements that could not readily be explained based on the respective genomic DR regions. Follow-up studies to confirm the existence of these minor CR sequence variants and to characterize their potential functional are an important direction for future work.

Conclusions

Nanopore sequencing enabled the characterization of mobile genetic elements and the identification of ICEHo-II, a novel MICE element of \textit{M. hominis}. Our characterization provides a starting point for the elucidation of the function of the ICEHo-I and -II cargo genes and their phenotypic impact, in particular with respect to a potential impact on the pathogenicity of this genetically heterogeneous human facultative pathogen.

Methods

\textbf{M. hominis strains}

\textit{M. hominis} strains were isolated from human specimens. Strains FBG, 8958 and 2539 were part of a collection of clinical \textit{M. hominis} strains, created at the Institute of Pathology of the Johannes Gutenberg University Mainz, Germany, and transferred in 1988 to the Institute of Med. Microbiology and Hospital Hygiene at the Medical Faculty of the Heinrich-Heine-University of Duesseldorf; strains 475 and A136 derived from the Institute of Microbiology, University of Veterinary Medicine Vienna, Austria; strains SS10 and SS25 from the Institute for Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Immunology and Infectiology, Medical University of Vienna, Austria; and strains SP3615, VO31120, SP10291 and SP2656 were part of the strain collection of our institute, collected within the last 10 years. FBG, 8958 and 2539 were isolated from women; only for isolate 8958, the donor’s age (64) and strain location (vaginal) are known. Strain 475 was isolated from vaginal specimen; A136 and SP3615 were isolated from placenta after preterm birth; VO31120 was isolated from pleura of a patient with pneumonia; SP10291 was isolated from brain material after cerebral infarction; SP2565 was derived from blood culture of a patient in NHL remission [34]; SS10 and SS25 were isolated from in vitro cultured \textit{T. vaginalis} (as endosymbionts). Protozoa were isolated from women affected by acute trichomoniasis respectively in 1996 and 1999, at the Department of Biomedical Sciences, University of Sassari, Italy [35]. All other \textit{M. hominis} strains were taken from the strain collection of our institute in Duesseldorf, lacking information about associated diseases.

\textbf{M. hominis culturing and genomic DNA preparations}

\textit{M. hominis} strains were cultivated in arginine-medium as described in detail previously [36]. Genomic DNA of the strains was isolated by the use of the QIAamp Blood and Tissue kit (Hilden, Germany) following the tissue
Table 5 Sequence-based characteristics of ICEHo-II encoded proteins

MICE-CDS	SP3615-ICEHo-II	SP10291-ICEHo-II	Homologues proteins	Species	Accession number	TMHMM v.2.0	SignalP v.5.0	Motif Reference of motif	DEPP S - T - Y	Protein length (AA)	Query cover (%)	E-value	Identity (%)
ICEF-IA CDS1	AY160953.1	–	–	procC2	CHL00117	2/21-0/10-0/12	252	88.89	4.22E-03	36.60			
MhoM	WP_158532045.1	–	–	–	6/7-1/2-1/6	108	90.00	1.00E-58	87.76				
MhoN	WP_04829953.1	–	–	–	3/13-1/1-0/9	157	21.00	3.30E-01	61.76				
MhoO	WP_029513615.1	–	–	–	0/8-0/8-0/20	217	64.98	2.00E-14	37.59				
MhoP	WP_129694644.1	1	–	pfam01540	0/14-0/13-1/14	272	45.96	3.86E-09	33.60				
MhoQ	WCO2336.1	–	–	AcrB	COG0841	0/4-0/3-0/2	93	59.00	7.40E-02	38.18			
MhoR	WP_152751962.1	–	–	–	1/10-0/2-0/2	102	87.00	9.90E-01	29.59				
MhoS	WP_116171775.1	–	–	–	5/27-1/21-2/22	415	99.00	1.00E-10	45.93				
MhoT	WP_11617528.1	2	–	–	0/7-0/9-0/1	98	94.00	1.00E-19	72.04				
MhoU	WP_11617527.1	2	–	–	0/3-0/5-0/5	85	97.00	1.00E-14	42.86				
MICE-CDS16	WP_11617526.1	7	–	smc_procA	TIGR02169	6/36-2/18-2/20	536	98.00	0.0	56.96			
MICE-CDS17	WP_11617521.3	3	–	TraF_T-type	TIGR02746	0/38-5/49-1/35	885	99.00	0.0	65.34			
MICE-CDS19	WP_11617520.1	2	–	poIC	PRK0048	15/112-7/113-5/99	1821	99.00	0.0	44.38			
MICE-CDS22	WP_11617517.1	–	–	UPF0236	pfam06782	0/21-0/12-0/24	387	100.00	8.00E-12	52.20			

- = no detections; a number of the respective ICEHo_II ORFs in SP3615_(KGPEAEHF_00500 to _00468) and SP10291 (HPAMDCMO_00016 to _00030) according to Additional file 7; b homologous proteins identified by PSI-BLAST; c DEPP predicted phosphorylation sites (x) compared to total numbers of possible phosphorylation sites (y) of S serine, T threonine, Y tyrosine
protocol with minor modifications as published [37]. Concentration of genomic DNA was measured by Invitrogen Qubit 4 Fluorometer Qubit and its quality verified spectrophotometrically by NanoDrop 1000 Spectrophotometer and on a Fragment Analyzer System (Agilent, Santa Clara, CA USA) with method DNF-464-33 for high sensitivity large fragment 50 kb analysis.

Whole genome sequencing and assembly of \textit{M. hominis} strains

\textbf{Generation of short-read sequencing data}

Short-read Illumina sequencing was carried out for 11 isolates. Sequencing libraries were prepared according to the manufacturer’s instructions and sequenced on the MiSeq platform with 2 × 300 bp or 2 × 250 bp paired-end sequencing protocols (Table 1).

\textbf{Nanopore sequencing and assembly}

22 \textit{M. hominis} strains were sequenced on a MinION MK1B device. Sequencing libraries from quality-controlled genomic DNA were prepared according to the manufacturer’s instructions, employing the rapid (2 samples), ligation-based (1 sample), and barcoded ligation-based (19 samples) protocols (Table 1). Basecalling and demultiplexing were carried out with MinKNOW (basecalling only) and Albacore (basecalling and demultiplexing).

Canu [17] 1.6 (with parameters -genomeSize = 1 m -nanopore-raw) was used for the assembly of the generated long-read data, yielding one large contig for each sample but one. Two smaller contigs in the assemblies of samples SS25 and SP2565 had only spurious read support as reported by Canu and were removed from the assembly. To generate “high quality” assemblies for the samples for which short-read data were available, the assemblies of the first 10 samples (Table 1) were polished with Nanopolish [38] 0.8.4, circular overlaps at the ends of contigs were removed, and orientation to the PG21 type strain genome was carried out. Two rounds of Pilon [39] 1.22 were used for further polishing based on short reads for each of the “high-quality” assemblies. Finally, short-read data were aligned against the Pilon-polished assemblies; GATK [40] 3.7 (with parameters -T HaploTypoCaller -ploidy 1) was used to call variants; and reference alleles were substituted with variant alleles whenever the reference allele frequency, measured via samtools mpileup -q0 -Q10 [41], was ≤10%. All short-read alignments were generated with bwa mem [42] 0.7.15-r1140. The genome structure of the generated assemblies was examined with nucmer [43] and the effectiveness of the polishing strategy was assessed by visually screening for potential base errors in IGV [44]. For the remaining 12 samples for which no short-read data were available, Nanopore-only based assemblies (referred to as “draft assemblies”) as produced by Canu were only used to characterize the MGEs contain within them. Draft genomes were oriented to the PG21 type strain and the circular contig overlap region was substituted with a consensus sequence of the two underlying overlaps, computed with SeqMan Version 6.0 (DNASTAR, Madison, WI). Of note, ambiguities in the computed consensus were represented using IUPAC ambiguity characters.

To further improve sequence quality for a triplicate repeat (later identified as ICEHo-I) identified by our inspection strategy in the genome of sample FBG, we applied a modification of the GATK-based polishing strategy described above. First, all short reads aligned to any of the three copies of the repeat in the genome of sample FBG were extracted. Second, for the three assembled repeat sequences independently, the complete set of extracted reads was aligned against the individual instance of the repeat and variants were called with GATK (using -ploidy 3). Finally, reference alleles were substituted with variant alleles at homozygous variant positions with reference allele frequency ≤10%. A manuscript describing a generalization of our approach and presenting a stand-alone software implementation is currently under preparation.

\textbf{PacBio sequencing and assembly}

Library preparation for long-read sequencing of \textit{M. hominis} isolate SP3615 on the Sequel system was carried out with the SMRTbell Template Prep Kit 1.0 and the Sequel Binding and Internal Control Kit 2.1, using the “Greater than 10kb Template Protocol” and 10 h movie time. Assembly was carried out with HGAP4 (SMRT Link Version 5.1.0.26412) [18] and polished with Arrow. Orientation and removal of circular overlaps were carried out as described above. Visual inspection was used to confirm the quality of the generated assembly.

\textbf{qPCR}

Oligonucleotides used in qPCRs were designed using Probefinder (Roche Applied Science) (https://qpcr.probefinder.com). Primers are listed in Table 6.

qPCR assays were carried out in a total volume of 25 μl consisting of 1 × MesaGreen MasterMix, 5 mM MgCl₂, Amperease, 300 nM of each primer and 2.5 μl of genomic DNA or cDNA solution, which was derived from 20 ng RNA. Thermal cycling conditions were as follows: 1 cycle at 50 °C for 10 min, 1 cycle at 95 °C for 5 min followed by 45 cycles of 95°C for 15 s and 60 °C for 1 min (protocol 1) or 1 cycle at 95 °C for 5 min followed by 35 cycles of 95°C for 15 s, 30 s 55°C and 60°C for 45 s (protocol 2). The product was then heated from 65°C to 95°C with an increment of 0.5°C/15 s and the plate read for melt curve analysis to check the identity of the amplicon. Each sample was analysed in duplicate.
Cycling, fluorescent data collection and analysis were carried out on a CFX-Cycler of BioRad Laboratories (Munich, Germany) according to the manufacturer’s instructions.

ICEHo qPCR screening assay

Real time PCR (qPCR) was used to screen for the presence of ICEHo-I and -II. For ICEHo-I, qPCR was used to determine the presence of MICE core genes CDS5, −14, −16, −17, and of the ICEHo-I specific dcm gene. For ICEHo-II, qPCR was used to determine the presence of a conserved region of the ICEHo-II CDS17 gene. Utilized primers are listed in Table 6. Ct values were interpreted relative to the chromosomal M. hominis-specific hitA gene [45, 46] (see Additional file 5), with ΔCt values (defined as Ct (ICEHo gene X) − Ct (hitA)) ≥ 10 classified as negative, and ΔCt-values < 10 classified as positive. The utilized ΔCt value threshold of 10 was determined based on strains FBG (ICEHo-I), SP13615 (ICEHo-II), and SP10291 (ICEHo-I and -II) as positive controls, and ICEHo-free strains PG21, 8958, 2539, SP2565, SS10, and VO31120 as negative controls. For ICEHo-I, isolates in which all PCRs were positive were classified as unambiguously positive; isolates in which at least two PCRs were positive were classified as positive; and isolates in which 0 or 1 PCRs were positive were classified as negative. With the chosen threshold values and decision algorithm, assembly- and qPCR-based results were in perfect agreement for the sequenced strains (Additional file 5).

qPCR screening for episomal circularized ICEHo (cICEHo)

Real time PCR (qPCR) was used to screen for the presence of ICEHo-I and -II in their episomal circularized forms, utilizing outwards-facing primer pairs (cICE_I-F/ _I-R and cICE_II-F/ _II-R; see Table 6). For ICEHo-I, these primers targeted the conserved untranslated regions 266 bp downstream of CDS22 (cICE_I-F) and 175 bp upstream of CDS1 (cICE_I-R), leading to PCR products of 0.2 kb in case of episomal circularisation. For ICEHo-II, they targeted the conserved untranslated regions just downstream of CDS22 (cICE_II-F) and 152 bp upstream of CDS1, leading to cICE-II PCR products of 0.3 kb in case of episomal circularisation (see Fig. 4.A). In the whole-genome-sequenced samples, all cICE amplification products were sequenced with Sanger sequencing, confirming cICE detection results through the detection of a valid IRR-IRL junction and coupling region (CR) in all but two cases with high qPCR Ct values (33 and 31; Additional file 5).

Table 6 Primers used

Gene	qPCR primer	Sequence (5’-3’)	Amplicon length (nt)	PCR protocol
ICEHo-I_dcm	463_F	CACGGATCTCCCTGTTCAAGAT	91	1
	463_R	TGGTTCCCCACATCAACTTACGCG	64	1
ICEHo-I_CDS5	462_F	AGAAGATTTTAATGAACTCCTAAGA	62	1
	462_R	ACCACTTTTGTCATCAGGCTA	73	1
ICEHo-I_CDS14	474_F	CCAATCTTCCCAACACGCGAATC	165	1
	474_R	TCTGTTTTAAACTTGAGGGTTG	84	1
ICEHo-I_CDS16	476_F	GCAATTGCTCTTTGTTGGAAGT	185	2
	476_R	CGATCTTGGTCCAGCAGATCAG	290	2
ICEHo-I_CDS17	17-II_F	CGCAATAAATCCGATACGAACTTAC	81	1
	17-II_R	AAGGCTTACCTTAAGGATGTTAG	95	1
circular ICEHo-I	cICE_I-F	GCAGGCGCGGTAGAGCAT	185	2
	cICE_I-R	TATTTGGAATTAACCCACACATTTC	290	2
circular ICEHo-II	cICE_II-F	CAATATCGATTTAATTACTAATAAACAAAA	81	1
	cICE_II-R	AGAGCATGACGCAAGAGAAAAAAATAGA	95	1
hitA	hitA_F	TGGGAGGCACAGCAATAGC	185	2
	hitA_R	AAGGCTTACCTTAAGGATGTTAG	290	2
gap	gap_F	GCAGCGCTTATATATTGATGCTACT	95	1
	gap_R	GATGATCTATTGCTGATATCAGC	95	1
At higher cycle counts (>30), SybrGreen-based qPCRs are known to be prone to false-positives due to the generation of primer dimers or mispriming to imperfect binding sites. For the wider cohort of samples that were only screened with qPCR, all cICE-PCRs with Ct values >30 were thus classified as negative, unless Sanger sequencing of the PCR product proved the presence of a CR region in the amplification product (Additional file 5). Major and minor CR sequence variants were detected by applying the algorithm Mixed Sequence Reader [27] to the Sanger chromatogram data.

Annotation and bioinformatic analysis of M. hominis genomes

Prokka [20] was used to annotate the assembled genomes. PHAST (PHAge Search Tool) (http://phast.wishartlab.com/) was used to identify and annotate prophage sequences [47]. BLAST Microbes (https://BLAST.ncbi.nlm.nih.gov/BLAST.cgi) was used for detection of homologous genes and plasmids. Multiple sequence alignments were calculated by using Genious Pro (vers. 5.5.8) and MegAlign version 6.0 of the Lasergene software package (DNAStar, Madison, WI). Genome alignments illustrating gene gain, loss and rearrangement were done with Mauve [21]. The Phyre2 web portal was used for protein modelling, prediction and analysis [48]; RADAR for detection and alignment of repeats in protein sequences (https://www.ebi.ac.uk/Tools/services/web_radar/toolform.ebi); MEME for discovering novel, ungapped motifs (recurring, fixed-length patterns) ([50]http://meme-suite.org/tools/meme); Disorder Enhanced Phosphorylation Predictor (DEPP) (http://www.pondr.com/cgi-bin/depp.cgi).

Statistical programs used

Statistical tests were performed in Stata 14 (StataCorp, TX). Associations of presence of different MGEs were assessed by Chi-square test, associations of abundance by Spearman’s rank correlation.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s13100-020-00225-9.

Additional file 1. Homology of CDS6. Deduced protein sequences of CDS6 derived from M. hominis strains FBG (BHFBJM3168_00471), SP10291 (HDENHCDX_00553), T00613 (WP_036439043.1), PL5 (WP_036439043.1), and 4788 (WP_036439043.1) and of M. fermentans strains M64 (ADV34390.1 (I) and ADV34456.1(II)) and PG18 (ICEF-IA (AAN82516.1 (I)), and ICEF-II-A (AAN82529.1 (II)-A)). Two chromosomal proteins of M. hominis PG21 (MHO_0070 (CA.X37141.1) and MHO_1280 (CA.X37262.1)) were used as unrelated ICE-outliners in ClustalW-based Multiple Sequence Alignment. A. Phylogenetic tree; B. Percent amino acid identities and divergences; and C. Multiple Sequence Alignment of CDS6 encoded proteins. Identical amino acids are marked in green, isofunctional amino acids marked in yellow.

Additional file 2. Clustering of MhoM and MhoJ. MhoM and MhoJ proteins of FBG, SP10291, PL5 and T00613 were clustered in multiple sequence alignment using Clustal W and divided in five subgroups (MhoM1 to MhoM3 and MhoJ1 and MhoJ2) according to their phylogenetic relationship (A). All MhoM and MhoJ proteins carried the TAL-effector motif in the C-terminal part (B). Percent amino acid identities and divergences are shown in C.

Additional file 3. Phylogeny of MhoM and CDS11. MhoM encoded proteins of ICEHo-I and -II elements of strains FBG, SP10291, PL5, 4788 and T00613 were clustered with the respective (CDS11 genes in multiple sequence alignment using Clustal W. A) Phylogenetic tree of MhoM and CDS11 encoded proteins. B) Percent identities and divergences of MhoM and CDS11 proteins.

Additional file 4. ICEHo locations in draft genomes. Positions and gene presence patterns of ICEHo-I and -II in draft de novo assemblies of 12 M. hominis strains sequenced only with Nanopore. ICEHo positions in the draft assemblies were determined by aligning the sequences of ICEHo-I of strain FBG and of ICEHo-II of strain SP3615 to the draft assemblies. The additional columns show the homology (nucleotide identity %) between the genes present in the draft assembly ICEHo elements and the genes present in ICEHo-I of FBG and the genes present in ICEHo-II of SP3615 (gene order and names correspond to Fig. 3).

Additional file 5. qPCR data of ICEHo and cICE. Ct and ΔCt values for ICEHo-I, -II and cICE detection, as well as ICEHo-I and -II status based on the assembled genomes, and confirmatory detection of cICE by Sanger sequencing.

Additional file 6. ICEHo-I and ICEHo-II putative gene functions. ICEHo-I and -II putative gene functions, based on bioinformatics analyses (see main text) and literature review.

Additional file 7. M. hominis genomes in GB.

Abbreviations

CDS: CoDiNG sequence; CR: Coupling Region; DEPP: Disorder enhanced phosphorylation predictor; DR: Direct repeat; ICE: Integrative and conjugative element; ICEHo: Integrative and conjugative element of M. hominis; MICe: Mycoplasmal integrative and conjugative element; MGE: Mobile genetic element; MTase: Methyltransferase; PHAST: PHAge search tool; qPCR: Real time quantitative PCR; R-M system: Restriction-modification system; SRP: Signal recognition particle; T4SS: Type IV secretion system; TAL: Transcription activator-like

Acknowledgements

We thank two members of the Institute of Medical Microbiology and Hospital Hygiene, Dara Belic for excellent technical assistance, and Malte Kohs Vasconcelos for statistical support. Computational support and infrastructure were provided by the ‘Centre for Information and Media Technology’ (ZIM) at the University of Duesseldorf (Germany).

Authors’ contributions

SH and DH performed the PCR-based screening of M. hominis strains for ICEHo prevalence; UF, PLF and JS isolated and characterised some of the pathogenic clinical strains of M. hominis. KK, SS, LP and ATD performed NGS sequencing and bioinformatics analyses; BH, ATD and KP defined the study design; BH and AD were major contributors in writing the manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by the Jürgen Manchot Foundation and departmental funds from the Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University of Duesseldorf, Germany. Open Access funding enabled and organized by Projekt DEAL.

Availability of data and materials

Genome sequences of strains LBD-4 (acc.-no. CP009652.1), PG21 (acc.-no. FP236530.1), SPROTT (acc.-no. CP011538.1), T00613 (acc.-no: CP033021.1) and contigs of strain PL5 (acc.-nos: JRXA01000001.1 - JRXA010000016.1) were downloaded from NCBI (https://www.ncbi.nlm.nih.gov/nuccore/). All raw sequencing data and high-quality assemblies are made available under BioProject PRJNA429440, all draft assemblies are available at OSF (DOI:
https://doi.org/10.17605/OSF.IO/CZRBT. Generated genome sequences in FASTA format are available at NCBI. Generated genome sequences in GenBank format and annotated using this publication's annotation terminology are provided as an Additional file 7.

Ethics approval and consent to participate

The study was approved by the Ethical Committee of the Medical Faculty of the Heinrich-Heine University. Study-No.: 018–98-Retro(DeUA). Consent to participate is not applicable due to the retrospective analysis of M. hominis strains.

Consent for publication

Not applicable.

Competing interests

Not applicable.

Author details

1 Institute of Med. Microbiology and Hospital Hygiene of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany. 2 Department of Haematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany. 3 Institute of Specific Prophylaxis and Haematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany. 4 Department of Biomedical Sciences, University of Sassari, Sassari, Italy. 5 Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria. 6 Institute of Medical Statistics and Computational Biology, University of Cologne, Cologne, Germany. 7 Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.

Received: 29 May 2020 Accepted: 22 October 2020

Published online: 07 November 2020

References

1. Taylor-Robinson D, Furr PM. Genital mycoplasma infections. Wien Klin Wochenschr. 1997;109:578–83.
2. Xiang L, Lu B. Infection due to mycoplasma hominis after left hip replacement: case report and literature review. BMC Infect Dis. 2019;19:50.
3. Waites KB, Katz B, Scheininka RL. Mycoplasmas and ureaplasmas as neonatal pathogens. Clin Microbiol Rev. 2005;18:757–89.
4. Goret J, Beven L, Faustin B, Contin-Bordes C, Le Roy C, Claverol S, Renaudin H, Bebear C, Pereyre S. Interaction of mycoplasma hominis PG21 with human dendritic cells. Interleukin-23-inducing Mycoplasmal lipoproteins and inflammatory activation of the cell. J Bacteriol. 2017;199:e00213-17.
5. Goret J, Le Roy C, Touati A, Mesureur J, Renaudin H, Claverol S, Bebear C, Beven L, Pereyre S. Surface lipoproteome of mycoplasma hominis PG21 and differential expression with contact human with dendritic cells. Future Microbiol. 2016;11:79–94.
6. Stalberg C, Noda N, Poletti J, Jacobsson B, Menon R. Anti-inflammatory Elafin in human fetal membranes. J Perinat Med. 2017;45:237–44.
7. Rappelli P, Carta F, Delogu G, Addis MF, Desi D, Cappuccinelli P, Fiori PL. Mycoplasma hominis and Trichomonas vaginalis symbiosis: multiplicity of infection and transmissibility of M. hominis to human cells. Arch Microbiol. 2001;175:70–4.
8. Cacciotto C, Dessi D, Cubeddu T, Cocco AR, Pisano A, Tore G, Fiori PL, Rapelli P, Pittau M, Alberti A, Mho AH. 0730 is a surface-exposed calcium-dependent nucleic of mycoplasma hominis promoting neutrophils extracellular traps formation and escape. J Infect Dis. 2019. https://doi.org/10.1093/infdis/jiz040.
9. Pekmezovic M, Mogavero S, Naglik JR. Hubei B. Host-pathogen interactions during female genital tract infections. Trends Microbiol. 2019. https://doi.org/10.1016/j.tim.2019.07.006.
10. Hopfe M, Deenhen R, Degrandi D, Kohrer C, Henrich B. Host cell responses to persistant mycoplasmas-different stages in infection of HeLa cells with mycoplasma hominis. Plos One. 2013;8:e4219.
11. Henrich B, Kretzmer F, Deenhen R, Kohrer K. Validation of a novel mho microarray for a comprehensive characterisation of the mycoplasma hominis action in HeLa cell infection. Plos One. 2017;12:e0181383.
12. Calcott MJ, Foecking MF. Analysis of the complete mycoplasma hominis LBD-4 genome sequence reveals strain-variable Prophage insertion and distinctive repeat-containing surface protein arrangements. Genome Announc. 2015;3:e00825–14.
13. Degrange S, Renaudin H, Charron A, Bebear C, Bebear CM. Tetracycline resistance in Ureaplasma spp, and mycoplasma hominis prevalence in Bordeaux, France, from 1999 to 2002 and description of two tet(M)-positive isolates of M. hominis susceptible to tetracyclines. Antimicrob Agents Chemother. 2008;52:742–4.
14. Calcott MJ, Foecking MF. An excision-competent and exogenous mosaic transpon harbors the tetM gene in multiple mycoplasma hominis lineages. Antimicrob Agents Chemother. 2015;59(6):665–6.
15. Meygret A, Peuchant O, Dordet-Frisoni E, Sian-Rugnet P, Citti B, Bebear C, Beven L, Pereyre S. High prevalence of integrative and conjugative elements encoding transcription activator-like effector repeats in mycoplasma hominis. Front Microbiol. 2019;10:2385.
16. Citti B, Baranowski E, Dordet-Frisoni E, Faucher M, Nouvel LX. Genomic Islands in mycoplasmas. Genes (Basel). 2020;11:836.
17. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phlipppiy AM. Canu scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–36.
18. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Claman A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods. 2013;10:563–9.
19. Pereyre S, Sian-Rugnet P, Beven L, Charron A, Renaudin H, Barre A, Avenoud P, Jacob D, Couloux A, Barbé V, de Daruvar A, Blanchard A, Bebear C. Life on arginine for mycoplasma hominis: clues from its minimal genome and comparison with other human urogenital mycoplasmas. Plos Genet. 2009;5:e1000677.
20. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(20):2096–9.
21. Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. Plos One. 2010;5:e11147.
22. Baranowski E, Dordet-Frisoni E, Sagne E, Hygönenc MQ, Pretre G, Claverol S, Fernandez L, Nouvel LX, Citti B. The integrative conjugative element (ICE) of mycoplasma agalactiae: key elements involved in horizontal dissemination and influence of Coreident ICEs. MBio. 2018;9:e00873–18.
23. Calcott MJ, Lavrar JL, Wise KS. IS1630 of mycoplasma fermentans, a novel IS30-type insertion element that targets and duplicates inverted repeat of variable length and sequence during insertion. J Bacteriol. 1999;181:797–607.
24. Murdock DA. Gram-positive anaerobic cocci. Clin Microbiol Rev. 1998;11:81–120.
25. Aylng RD, Bathiruddin S, Davison NJ, Foster G, Dagleish MP, Nicholas RA. The occurrence of mycoplasma phocericrecale, mycoplasma phocidiae, and mycoplasma phocinii in grey and common seals (Halichoerus grypus and Phoca vitulina) in the United Kingdom. J Wildl Dis. 2011;47:471–5.
26. Grozner D, Forro B, Sulyok KM, Marton S, Kreizinger Z, Banyai K, Gyuranecz G. Complete genome sequence of mycoplasma anatis, M. anseris, and M. cloacae type strains. Microbiol Resouncc. 2018;7:e00939–18.
27. Chang C-T, Tsai C-N, Tang CY, Chen C-H, Lian J-H, Hu C-Y, Tsai C-L, Chao A, Lai C-H, Wang T-H, Lee Y-S. Mixed sequence reader: a program for analyzing DNA sequences with Heterozygous Base calling. Sci World J. 2012; 2012:2365104.
28. Tardy F, Mich V, Dordet-Frisoni E, Marends M, Sian-Rugnet P, Blanchard A, Citti B. Integrative conjugative elements are widespread in field isolates of mycoplasma species pathogenic for ruminants. Appl Environ Microbiol. 2015;81:1634–43.
29. Citti B, Dordet-Frisoni E, Nouvel LX, Kuo CH, Baranowski E. Horizontal gene transfers in mycoplasmas (Molllicutes). Curr Issues Mol Biol. 2018;29:22–3.
30. Cabezon E, Ripoll-Rozada J, Pena A, de la Cruz F, Arechaga I. Towards an integrated model of bacterial conjugation. FEMS Microbiol Rev. 2015;39:811–95.
31. Johnson OM, Grossman AD. Integrative and conjugative elements (ICEs): what they do and how they work. Annu Rev Genet. 2015;49:577–701.
32. Leanza AG, Matteo MJ, Crespo O, Antelo P, Olmos J, Catalano M. Genetic characterisation of heliobacter pylori isolates from an Argentinian adult population based on cag pathogenicity island right-end motifs, lspa-glmM polymorphism and icseA and vaA genotypes. Clin Microbiol Infect. 2004;10:811–9.
33. Szpulewska M, Czarnicki J, Bartosik D. Autonomous and non-autonomous Trn-family transposons and their role in the evolution of mobile genetic elements. Mob Genet Elements. 2014;1:4–4.
34. Mackenzie CR, Nischik N, Kram R, Krauspe R, Jager M, Henrich B. Fatal outcome of a disseminated dual infection with drug-resistant mycoplasma hominis and Ureaplasma parvum originating from a septic arthritis in an immunocompromised patient. Int J Infect Dis. 2010;14(Suppl 3):e307–9.
35. Fichorova R, Fraga J, Rappelli F, Fiori PL. Trichomonas vaginalis infection in symbiosis with Trichomonasvirus and mycoplasma. Res Microbiol. 2017;168:882–91.
36. Henrich B, Feldmann RC, Hadding U. Cytoadhesins of mycoplasma hominis. Infect Immun. 1993;61:2945–51.
37. Henrich B, Lang K, Kitzerov A, MacKenzie C, Hadding U. Truncation as a novel form of variation of the p50 gene in mycoplasma hominis. Microbiology. 1998;144:Pt 1:2979–85.
38. Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods. 2015;12:733–5.
39. Walker BJ, Abeel T, Shea T, Priest M, Abouelzeiel A, Sakhikumar S, Cuomo CA, Zeng Q, Wottman J, Young SK, Earl AM. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PloS One. 2014;9:e112963.
40. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491–8.
41. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. Genome Project Data Processing S. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
42. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv e-prints. arXiv. 2013;1303.3997.
43. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. Versatile and open software for comparing large genomes. Genome Biol. 2004;5:R12.
44. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. Integrative genomic viewer. Nat Biotechnol. 2011;29:24–6.
45. Hopf M, Hegemann JH, Henrich B. HinT proteins and their putative interaction partners in Mollicutes and Chlamydiaceae. BMC Microbiol. 2005;5:27.
46. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45.
47. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wiltma DS. PHAST: a fast phage search tool. Nucleic Acids Res. 2011;39:W347–52.
48. Kelley LA, Meuznis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58.
49. Madeira F, Ym P, Lee J, Buso N, Gut T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, Lopez R. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47:W636–41.
50. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37:W202–8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.