Nielsen-Schreier implies the finite Axiom of Choice

Philipp Kleppmann*

October 13, 2015

Abstract
We present a new proof that the statement ‘every subgroup of a free group is free’ implies the Axiom of Choice for finite sets.

1 Introduction

In 1921, Nielsen [4] proved that every subgroup of a finitely generated free group is free. This result was generalised to arbitrary free groups by Schreier [5] in 1927, giving us the following result.

NS (Nielsen-Schreier): If \(F \) is a free group and \(K \leq F \) is a subgroup, then \(K \) is a free group.

Since every proof of NS uses the Axiom of Choice, it is natural to ask whether it is equivalent to the Axiom of Choice. The first step was made by Läuchli [3], who showed that NS cannot be proved in ZF set theory with atoms. Jech and Sochor’s embedding theorem [2] allows this result to be transferred to standard ZF set theory. It was improved in 1985 by Howard [1], who showed that NS implies AC_{fin}, the Axiom of Choice for finite sets:

AC_{fin} (Axiom of Choice for finite sets): Every set of non-empty finite sets has a choice function.

Another Choice principle used in this article is the Axiom of Choice for pairs:

AC_2 (Axiom of Choice for pairs): Every set of 2-element sets has a choice function.

The purpose of this paper is to provide a new and shorter proof of Howard’s result.

*Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WB, UK. Email: P.Kleppmann@dpmms.cam.ac.uk.
2 Nielsen-Schreier implies AC_{fin}

Before beginning the proof, we must fix some notation and terminology. If X is a set, let $X^- = \{ x^{-1} : x \in X \}$ be a set of formal inverses of X. It does not matter what the elements of X^- are, as long as X^- is disjoint from X. Members of $X^\pm = X \cup X^-$ are called X-letters. Finite sequences $x_1 \cdots x_n$ with $x_1, \ldots, x_n \in X^\pm$ are X-words. An X-word $x_1 \cdots x_n$ is X-reduced if $x_i \neq x_{i+1}^{-1}$ for $i = 1, \ldots, n-1$. If α is an X-word, the X-reduction of α is the X-reduced X-word obtained by performing all possible cancellations within α. For notational simplicity, we don’t distinguish between X-words and their X-reductions. Reference to X is omitted if X is clear from the context.

If G is a group and $S \subseteq G$, then $\langle S \rangle$ is the subgroup of G generated by S.

Definition 1. Let X be a set. The free group on X, written $F(X)$, consists of all reduced X-words. The group operation is concatenation followed by reduction, and the identity is the empty word 1.

A group G is free if it is isomorphic to $F(X)$ for some $X \subseteq G$. If this is the case, X is a basis for G.

The following proofs will start with a family Y of non-empty sets and construct a choice function $c : Y \to \bigcup Y$. Without loss of generality, we assume that the members of Y are pairwise disjoint. We then define $X = \bigcup Y$ to be the basis of the free group $F = F(X)$. With every $y \in Y$ we associate a function $\sigma_y : F \to \mathbb{Z}$ which counts the number of occurrences of y-letters in words $\alpha \in F$ as follows.

Write $\alpha = x_1^{\epsilon_1} \cdots x_n^{\epsilon_n}$ as an X-reduced word with $x_1, \ldots, x_n \in X$ and $\epsilon_1, \ldots, \epsilon_n \in \{ \pm 1 \}$. Then define

$$
\sigma_y(\alpha) = |\{ i : x_i \in y \land \epsilon_i = 1 \}| - |\{ i : x_i \in y \land \epsilon_i = -1 \}|.
$$

It is easily checked that, for each $y \in Y$, σ_y is a group homomorphism from the free group F to the additive group of integers.

Before proving theorem [2] we handle a special case in lemma [2]. Its proof serves as an introduction to ideas used in the proof of the main theorem.

Lemma 2. $\text{ZF} \vdash \text{NS} \Rightarrow \text{AC}_2$

Proof. Let Y be a family of 2-element sets. Without loss of generality, assume that the members of Y are pairwise disjoint.

Let $X = \bigcup Y$, let $F = F(X)$ be the free group on X, and define the subgroup $K \leq F$ by

$$
K = \langle \{ wx^{-1} : (\exists y \in Y) w, x \in y \} \rangle.
$$

By the Nielsen-Schreier theorem, K has a basis B. Note that

$$
\sigma_y(\alpha) = 0 \text{ for all } y \in Y \text{ and all } \alpha \in K. \quad (1)
$$
We will construct a choice function for Y, i.e. a function $c : Y \rightarrow X$ satisfying $c(y) \in y$ for each $y \in Y$.

Let $y \in Y$. Define the function $s_y : y \rightarrow y$ to swap the two elements of y. For any choice of $x \in y$, $y = \{x, s_y(x)\}$. To simplify notation, we set $x_i = s_y^i(x)$ for all $i \in \mathbb{Z}$; hence $y = \{x_0, x_1\}$. Express $x_0 x_1^{-1}$ and $x_1 x_0^{-1}$ as reduced B-words:

\[
\begin{align*}
x_0 x_1^{-1} &= b_{0,1} \cdots b_{0,l_0} \\
x_1 x_0^{-1} &= b_{1,1} \cdots b_{1,l_1},
\end{align*}
\]

where $b_{i,j} \in B^\pm$ for all i, j. As $x_0 x_1^{-1} = (x_1 x_0^{-1})^{-1}$, it follows that $l_0 = l_1 = l$, say, and that

\[b_{1,1} = b_{0,1}^{-1}, \ldots, b_{1,l} = b_{0,l}^{-1}. \tag{2}\]

There are two cases:

\begin{itemize}
 \item[(i)] l is odd:
 \begin{itemize}
 \item Let $m = (l - 1)/2$. The middle B-letter of $x_0 x_1^{-1}$ is $b_{0,m+1}$, whereas the middle B-letter of $x_1 x_0^{-1}$ is $b_{1,m+1} = b_{0,m+1}^{-1}$ by (2). One of these two is in B, while the other is in B^-. Define $c(y)$ to be the unique element $x \in y$ such that the middle B-letter of $x s_y(x)^{-1}$ is a member of B.
 \end{itemize}
 \item[(ii)] l is even:
 \begin{itemize}
 \item Let $m = l/2$. The following two functions are the key to the proof.
 \[
 \begin{align*}
 f_y : y \rightarrow K : x_i &\mapsto b_{i,1} \cdots b_{i,m} \\
 g_y : y \rightarrow F : x &\mapsto f_y(x)^{-1} \cdot x
 \end{align*}
 \]
 \end{itemize}
\end{itemize}

The idea of f_y is to map x_i to the ‘first half’ of $x_i x_{i+1}^{-1}$ in terms of the new basis B. $f_y(x)$ is intended to represent x in K.

Using (2), we obtain

\[
\begin{align*}
f_y(x_i) f_y(x_{i+1})^{-1} &= b_{i,1} \cdots b_{i,m} b_{i+1,m}^{-1} \cdots b_{i+1,1}^{-1} \\
&= b_{i,1} \cdots b_{i,m} b_{i,m+1}^{-1} \cdots b_{i,2m} \tag{3}
\end{align*}
\]

It follows that $g_y(x_0) = g_y(x_1)$. Hence the image of y under g_y has a single member, α_y, say. Note that

\[
\begin{align*}
\sigma_y(\alpha_y) &= \sigma_y(g_y(x_0)) \\
&= \sigma_y(f_y(x_0)^{-1} x_0) \\
&= \sigma_y(f_y(x_0)^{-1}) + \sigma_y(x_0) \tag{4}
\end{align*}
\]

is non-zero. This means that α_y mentions at least one y-letter. So we define $c(y)$ to be the y-letter which appears first in the X-reduction of α_y.

3
We are now ready to prove the general case:

Theorem 3. $\text{ZF} \vdash \text{NS} \Rightarrow \text{AC}_{\text{fin}}$.

Proof. Let Z be a family of non-empty finite sets. Without loss of generality, assume that the members of Z are pairwise disjoint. We form a new family $$Y = \{y : y \neq \emptyset \land (\exists z \in Z) y \subseteq z\},$$ i.e. the closure of Z under taking non-empty subsets. Since $Z \subseteq Y$, any choice function for Y immediately gives a choice function for Z.

Let $X = \bigcup Y$, let $F = F(X)$ be the free group on X, and let $K \leq F$ be the subgroup defined by $$K = \langle \{wx^{-1} : (\exists y \in Y) wx \rangle w, x \in y \rangle \rangle.$$

By the Nielsen-Schreier theorem, K has a basis B.

For each $n < \omega$, let $Y(n) = \{y \in Y : |y| = n\}$ and $Y(\leq n) = \{y \in Y : |y| \leq n\}$. By induction on n, we will find a choice function c_n on $Y(\leq n)$ for each $2 \leq n < \omega$. By construction, the c_n will be nested, so that $\bigcup_{2\leq n<\omega} c_n$ is a choice function for Y.

A choice function c_2 on $Y(\leq 2)$ is guaranteed by lemma 2.

Assume that $n \geq 3$ and that there is a choice function c_{n-1} for $Y(\leq n-1)$. For every $y \in Y(n)$ we define a function s_y by $$s_y : y \rightarrow y : x \mapsto c_{n-1}(y \setminus \{x\}).$$

Note that, as Y is closed under taking non-empty subsets, $y \setminus \{x\} \in Y(n-1)$, so $c_{n-1}(y \setminus \{x\})$ is defined. There are four cases:

(i) s_y is not a bijection:

In this case, $|\{s_y(x) : x \in y\}| \leq n - 1$, so defining $$c_n(y) = c_{n-1}(\{s_y(x) : x \in y\})$$ gives a choice for y.

(ii) s_y is a bijection with at least two orbits:

Since there are at least two orbits, each orbit has size $\leq n - 1$. Moreover, as $s_y(x) \neq x$ for all $x \in y$, the number of orbits is also $\leq n - 1$. So choosing one point from each orbit, and then choosing one point from among the chosen points gives a single element of y. More specifically, if we write $\text{orb}(x)$ for the orbit of $x \in y$ under s_y, we define $$c_n(y) = c_{n-1}(\{c_{n-1}(\text{orb}(x)) : x \in y\}).$$

\[\footnote{Thanks to Thomas Forster for suggesting a simplification of this part of the proof.}\]
(iii) \(s_y \) is a bijection with one orbit, and \(n \) is even:

If \(n \) is even, \(s_y^2 \) is a bijection with two orbits. Remembering that we are assuming \(n \geq 3 \), this gives us \(\leq n - 1 \) orbits of size \(\leq n - 1 \) each. A choice is made as in the previous case.

(iv) \(s_y \) is a bijection with one orbit, and \(n \) is odd:

Notice that, for any \(x \in y \), \(y = \{x, s_y(x), s_y^2(x), \ldots, s_y^{n-1}(x)\} \). \(s_y(x) \) may be viewed as the successor of \(x \). For simplicity, we set \(x_i = s_y^i(x) \) for \(i \in \mathbb{Z} \), so that \(y = \{x_0, x_1, \ldots, x_{n-1}\} \).

In order to further simplify our notation, we shall assume that the elements of \(Y^{(n)} \) are pairwise disjoint. Of course, this is not possible when \(Y \) is constructed as above. But replacing every \(y \in Y^{(n)} \) with \(y \times \{y\} \) makes no difference to the argument, so the proof carries over without any changes.

Recall the basis \(B \) of the subgroup \(K \) defined earlier in the proof. We may write

\[
\begin{align*}
x_0x_1^{-1} &= b_{0,1} \cdots b_{0,l_0} \\
x_1x_2^{-1} &= b_{1,1} \cdots b_{1,l_1} \\
&\quad \vdots \\
x_{n-1}x_0^{-1} &= b_{n-1,1} \cdots b_{n-1,l_{n-1}}
\end{align*}
\]

as reduced \(B \)-words, with \(b_{i,j} \in B^{\pm} \) for all \(i, j \). First, we make two simplifications:

(a) If it is not the case that \(l_0 = \ldots = l_{n-1} \), let \(l = \min \{l_i : i = 0, \ldots, n-1\} \).

Then \(\{x_i : l_i = l\} \) is a proper non-empty subset of \(y \), and we define

\[
c_n(y) = c_{n-1}(\{x_i : l_i = l\}).
\]

From now on it is assumed that \(l_0 = \ldots = l_{n-1} = l \), say.

(b) Note that

\[
(x_0x_1^{-1})(x_1x_2^{-1}) \cdots (x_{n-1}x_0^{-1}) = 1,
\]

i.e.

\[
(b_{0,1} \cdots b_{0,l})(b_{1,1} \cdots b_{1,l}) \cdots (b_{n-1,1} \cdots b_{n-1,l}) = 1.
\]

For \(i = 0, \ldots, n-1 \), let \(k_i \) be the number of \(B \)-cancellations in

\[
(b_{i,1} \cdots b_{i,l})(b_{i+1,1} \cdots b_{i+1,l}).
\]

If it is not the case that \(k_0 = \ldots = k_{n-1} \), let \(k = \min \{k_i : i = 0, \ldots, n-1\} \). Then \(\{x_i : k_i = k\} \) is a proper non-empty subset of \(y \), and we define

\[
c_n(y) = c_{n-1}(\{x_i : k_i = k\}).
\]

From now on it is assumed that \(k_0 = \ldots = k_{n-1} = k \), say.
As letters always cancel in pairs, (5) implies that nl is even. Since we are assuming that n is odd, it follows that l is even. Define $m = l/2$, and note that $k \geq m$: if not, then complete cancellation in (5) would not be possible. This allows us to define functions f_y and g_y, as in the proof of lemma 2:

\[f_y : y \rightarrow K : \quad x_i \mapsto b_{i,1} \cdots b_{i,m} \]
\[g_y : y \rightarrow F : \quad x \mapsto f_y(x)^{-1}x. \]

Since there are $k \geq m$ cancellations in (6), we have $b_{i+1,1} = b_{i,l}^{-1} \ldots, b_{i+1,m} = b_{i,l-m+1}^{-1} b_{i,m+1}$ for all i. By the same calculation as in (5), it follows that

\[f_y(x_i) f_y(x_{i+1})^{-1} = x_i x_{i+1}^{-1} \]

for all i, and hence that $g_y(x_i) = g_y(x_{i+1})$ for all i. So $g_y : y \rightarrow F$ is a constant function, taking a single value α_y, say. The same calculation as (4) yields

\[\sigma_y(\alpha_y) = 1. \]

So we set $c_n(y)$ to be the first y-letter occurring in the X-reduction of α_y.

\[\square \]

Whether or not the Nielsen-Schreier theorem is equivalent to the Axiom of Choice still remains an open question. A positive answer might be obtainable by adapting the proof of theorem 3. Finiteness of the sets was used to define the choice function recursively, splitting up in cases (i) – (iv). Cases (i) – (iii) were easily dealt with. Case (iv) gave us a cyclic ordering on the finite set – enough structure to use the basis of the subgroup K to choose a single element.

References

[1] P. Howard. Subgroups of a Free Group and the Axiom of Choice. Journal of Symbolic Logic, 50:458–467, 1985.

[2] T. Jech. The Axiom of Choice. Dover Publications, Inc., 2008.

[3] H. L"{a}uchli. Auswahlaxiom in der Algebra. Commentarii Mathematici Helvetici, 37:1–18, 1962.

[4] J. Nielsen. Om Regning med ikke-kommutative Faktorer og dens Anvendelse i Gruppeterien. Matematisk Tidsskrift, B:77–94, 1921.

[5] O. Schreier. Die Untergruppen der freien Gruppen. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 5:161–183, 1927.

\[^2 \]I would like to thank John Truss and Benedikt Löwe for finding an error in this proof and suggesting a solution.