Whole genome analysis of a wine yeast strain

Nicole C. Hauser1, Kurt Fellenberg1,2, Rosario Gil3, Sonja Bastuck1, Jörg D. Hoheisel1 and José E. Pérez-Ortíñ1,3*

1 Functional Genome Analysis, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 506, D-69120 Heidelberg, Germany
2 Theoretical Bioinformatics, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 506, D-69120 Heidelberg, Germany
3 Departamento de Bioquímica y Biología Molecular and Servicio de Chips de DNA, Universitat de Valencia, Dr. Moliner 50, E-46100, Burjassot, Spain

*Correspondence to:
J. E. Pérez-Ortíñ, Departamento de Bioquímica y Biología Molecular, Universitat de Valencia, Dr. Moliner 50, E-46100, Burjassot, Spain.
E-mail: jose.e.perez@uv.es

Received: 20 November 2000
Accepted: 21 February 2001

Abstract

Saccharomyces cerevisiae strains frequently exhibit rather specific phenotypic features needed for adaptation to a special environment. Wine yeast strains are able to ferment musts, for example, while other industrial or laboratory strains fail to do so. The genetic differences that characterize wine yeast strains are poorly understood, however. As a first search of genetic differences between wine and laboratory strains, we performed DNA-array analyses on the typical wine yeast strain T73 and the standard laboratory background in S288c. Our analysis shows that even under normal conditions, logarithmic growth in YPD medium, the two strains have expression patterns that differ significantly in more than 40 genes. Subsequent studies indicated that these differences correlate with small changes in promoter regions or variations in gene copy number. Blotting copy numbers vs. transcript levels produced patterns, which were specific for the individual strains and could be used for a characterization of unknown samples. Copyright © 2001 John Wiley & Sons, Ltd.

Keywords: Saccharomyces cerevisiae; wine yeast; genome; transcriptome; DNA arrays

Introduction

Saccharomyces cerevisiae wine yeast strains have been selected for more than 8000 years by human beings under conditions that favoured the evolution towards several specialized features, such as fast growth in high-sugar fruit juices, high yield of and resistance to ethanol and, more recently, sulphite resistance and good flavour production (reviewed in Querol and Ramón, 1996; Pretorius, 2000). Wine yeasts exhibit a greater variety in chromosome size and number than reported for laboratory strains. They are aneuploid (Kunkee and Bisson, 1993; Bakalinsky and Snow, 1990), with disomies or trisomies and, in some cases, they are near diploid or triploid. The aneuploidy can confer selective advantages by increasing the copy number of beneficial genes and protecting against lethal or deleterious mutations (Guijo et al., 1997; Bakalinsky and Snow, 1990). Aneuploidy and/or polyploidy are so widespread that the maintenance of an unbalanced chromosome set has been suggested to be advantageous (Sancho et al., 1986; Adams et al., 1992; Codón et al., 1998). Chromosomal changes include gain or loss of chromosomes, deletions (30–50 kb), presence of hybrid chromosomes (Bidenne et al., 1992; Rachidi et al., 1999) and, in most cases, duplications (30–390 kb) (Adams et al., 1992). It has been suggested that these rearrangements occurred by recombination through subtelomeric repeats and transposable elements (Ty elements) (Rachidi et al., 1999, and references therein). Minor differences, such as point mutations, are also possible. Such variations may also affect strain performance, if they localize inside an open reading frame (ORF) or regulatory regions of a gene, especially if it is a pathway regulating one (Cavaliere et al., 2000).

There are very few DNA sequences of wine yeasts published or stored in databases (Goto-Yamamoto et al., 1998; Masneuf et al., 1998) but it seems that,
overall, the sequence homology between the standard laboratory yeast strain S288c (whose genome was fully sequenced by Goffeau et al., 1996) and wine yeasts is higher than 99% (Masneuf et al., 1998; Pérez-Oritz, unpublished observations). This fact should permit the systematic use in wine yeast of probes and primers obtained or designed from the S288c sequence (Puig et al., 1998, 2000a). DNA arrays made of S288c sequences have been used in recent years for the analysis of many cellular processes in yeast (DeRisi et al., 1997; Wodicka et al., 1997; Holstege et al., 1998; Jelinski and Samson, 1999), but usually with S288c or genetically related strains. However, when using long PCR products as probes for hybridization (DeRisi et al., 1997; Hauser et al., 1998; Cox et al., 1999), point mutations cannot be discriminated. Therefore, this kind of DNA array should also work in the analysis of non-laboratory yeast strains (Cavalieri et al., 2000).

In this study, the comprehensive gene arrays of Hauser et al. (1998) were used for the analysis of both the genomic copy number and transcript levels of wine yeast T73. Even under standard laboratory growth conditions, the transcription profiles of wine and laboratory strains differed significantly for several genes, some of which can be related to special features of wine yeast physiology. Three such genes, YHB1, SSU1 and YJL217w, have been analysed in greater detail. Also, both transcript and genome analyses show that wine strain T73 is much less colonized by Ty transposons than S288c.

Materials and methods

Strains and growth conditions

The S. cerevisiae yeast strains used in this study are FY1679 (MATa/α, ura3-52/ura3-52, trp1-Δ1/TRP1, leu2-3/LEU2, his3-Δ200/HIS3) and MCY730 (MATa, ura3-52, lys2-801, ade2-101, trp1-Δ1, his3-Δ200) as laboratory strains, as well as T73, a wine strain commercialized by Lallemand Inc. (Montreal, Canada) (Querol et al., 1992). Yeast cells were grown at 30°C in YPD rich medium (1% Yeast Extract, 2% Bacto-peptone, 2% glucose). Solid medium was supplemented with 2% agar.

Nomenclature note

We call ‘probes’ the pieces of DNA tethered to the array and ‘target’ the free, labelled DNA-fragments hybridized to the probes. Each probe-DNA was spotted in duplicate; the two spots are referred to as ‘primary’ and ‘secondary’ spot to indicate that they represent the same ORF.

Nucleic acids isolation and hybridization

Genomic DNA was isolated from yeast cells by phenol extraction with glass beads, essentially as described by Hoffman and Winston (1987) or with QIAGEN genomic DNA spin columns, as recommended by the manufacturer.

Total RNA from yeast cells was prepared as described by Sherman et al. (1986), but using a multiple-sample automated device (Fast-Prep, BIO101, Inc.) to break the cells, or following the procedure of Hauser et al. (1998).

All arrays were subjected to a standard control procedure prior to being used in experimentation. First, an oligonucleotide was hybridized that specifically bound to the forward primers of all PCR products. After removal of the oligonucleotide, total genomic DNA from a specific preparation was applied as a second control. While the former hybridization determined accurately the amount of DNA present at each spot, the latter experiment served as an indicator for the usefulness of the individual arrays in complex hybridizations.

Labelling of total RNA by reverse transcription was done as described (Hauser et al., 1998). Genomic DNA was sonicated to fragments and labelled by random priming. Hybridization with either target was performed according to the protocol used for labelled cDNA (Hauser et al., 1998).

Signal acquisition and analysis

Digital images of radioactive signals were acquired with Molecular Dynamics Storm 860 or Fuji FLA3000 phosphorimeters and quantified using the ArrayVision module of AIS (Imaging Research Inc.). Signal intensities of repeated hybridizations were normalized and significance levels assessed by two stringency criteria, as described by Beissbarth et al. (2000). The highly stringent ‘min–max separation’ is calculated by taking the minimum distance between all data points of the two strains. The less stringent criteria, called ‘standard deviation separation’, is defined as the difference of the means of the two data sets diminished by one standard deviation. In the tables, a colour code indicates the two stringency measures.
Whole genome analysis of a wine yeast strain

Northern blotting

Northern blot analysis was made on RNA samples that were separated by electrophoresis in formaldehyde-containing agarose gels (Sambrook et al., 1989). The DNA-transfer to nylon membranes (Hybond-N+, Amersham) was carried out according to the manufacturer’s instructions.

PCR amplification of DNA from strain T73 was made as follows: the PCR mixture was prepared with 200 ng genomic DNA as template, appropriate primer molecules (60 pmol each), 0.2 mM each dNTP, BioTaq buffer, 2.5 mM MgCl$_2$ and 2 U BioTaq (BioLine, UK) in a 50 μL volume. The reaction conditions were: 25 cycles of 30 s at 94°C, 30 s at 50°C and 30 s at 72°C, followed by a final incubation of 3 min at 72°C. PCR products were isolated after agarose gel electrophoresis by the Gene Clean (Bio101 Inc.) procedure and used for probe labelling by random priming or DNA sequencing.

Results

Use of S288c arrays for wine yeast analysis

Several highly stringent hybridizations on different arrays were performed consecutively with random-primed genomic DNA from laboratory and wine strains. The total number of detectable spots was identical within experimental variation, documenting that no major differences exist between the T73 wine yeast and the S288c genetic background. We concluded that overall the existing arrays are well suited for the analysis of yeast strains other than S288c. However, some reproducible differences in the intensity of several individual spots could be seen, as will be discussed below.

Comparative transcriptional analysis of yeast strains MCY730 and T73

Total RNA was obtained from either strain T73 or strain MCY730 (which has a S288c genetic background) grown with orbital agitation in YPD medium to middle logarithmic phase (OD$_{600}$ = 0.5 – 0.6). Repeated hybridizations were performed with material of both strains, resulting in six data sets each, considering primary and secondary spots individually. Relative changes between T73 and MCY730 and a measure of the significance level were calculated, the latter indicated by a colour code, as shown in Table 1. The complete list for all ORFs as well as the median of normalized signal intensities can be downloaded from our web pages: http://scsie.uv.es/chipsdna/ and http://www.dkfz-heidelberg.de/funct_genome/index.html. An overview of the transcript levels is presented in Figure 1. A list of selected genes, which either exhibited the most significant changes or proved to be of particular interest, is given in Table 1.

All of the Ty1 and Ty2 elements present on the array showed higher transcript levels in the laboratory strain MCY730 compared to T73 (Table 2). Every Ty encodes for two genes called TyA and TyB (Boeke and Sandmeyer, 1991). Since the Ty1 transposons are very similar in DNA sequence, the signal at each spot could be considered as an average of the contribution of all these transcripts. We observed much higher differences for Ty1B ORFs compared to Ty1A ORFs, the average ratio MCY730:T73 being 38.8 and 8.6, respectively. Moreover, not only relative transcriptional changes are higher for Ty1B, but also the normalized signal intensities (see Table 2). The other Ty elements, except for one case of Ty2B, gave rise to signal intensities below the significance threshold and thus were not considered.

Another gene that appears to be higher expressed in MCY730 is URA3. Since the strain is ura^-, it is not able to synthesize uracil. However, the mutation $ura3^-52$ is a transposon insertion into the ORF of the wild-type gene (Brachmann et al., 1998) and does not block transcription. This explains why a signal was detected. $URA1$, which functions downstream in the biosynthesis of uracil, also produced higher transcript levels in the $ura3^-$ laboratory strain. Its transcription could be affected by a regulation deficiency in the biochemical pathway because of the lack of one enzyme. Similar explanations could be true for the genes involved in lysine and adenine biosynthesis, because the MCY730 strain is $his2^-$ and $ade2^-$. Similar results have been described for the BY4743 strain, which is $his3^-$ and $lea2^-$(Hughes et al., 2000).

Two genes coding for a-factor specific proteins, $MFa1$ and $MFa2$, also exhibited high expression in MCY730. They are a-specific and should therefore be expressed in $MATA$ strains, such as MCY730, and not expressed in diploid strains, such as T73. It is interesting to note that, in spite of comparing a haploid strain (MCY730) to a near-diploid one (T73), we did not find significant differences.
between the genes described by Galitski et al. (1999) as differentially expressed in dependence on the level of ploidy.

Another 23 of the genes shown in Table 1 are known to be involved in a variety of functions such as amino acid biosynthesis, purine biosynthesis and stress responses. Two of them seemed to be particularly interesting, SSU1 and YHB1. SSU1 encodes for a plasma membrane protein involved in sulphite resistance (Park and Bakalinsky, 2000). This gene had been previously shown to be differentially expressed in wine yeast strains other

Table 1. Genes showing most significant transcriptional changes in wine yeast T73

ORF ID	Gene	Predicted function	Rel. changes T73 vs. MCY73	Signal intensity
YAR015W	ADE1	Phosphoribosylamidimidazole-succinocarboxamide synthase	+4.3	4548.86
YAR068W		Subtelomeric ORF	+3	1870.86
YBL113C		Subtelomeric ORF	+2	36597.81
YBR248C	HIS7	Glutamine amidotransferase/cyclase	+2.1	1555.90
YDL131W	LYS21	Homocitrate synthase	+2.7	8683.12
YDL182W	LYS20	Homocitrate synthase	+3.8	98160.50
YDR019C	GCV1	Glycine decarboxylase, subunit T	+2.8	1447.18
YJR461W	MFA1	Mating pheromone α-factor 1	+4.1	5301.49
YDR513W	TTR1	Guataredoxin	+1.6	2523.61
YDR529C	QCR7	Ubiquinol-cytochrome-c reductase subunit 7	+1.7	6684.11
YEL021W	URA3	Orotidine-5′-phosphate decarboxylase	-30.3	28135.68
YER034W			-9.4	9980.29
YFL068W			-2.4	7875.51
YGL255W	ZRT1	High-affinity zinc transport protein	+3.5	930.60
YGR234W	YHB1	Flavohaemoglobin	-1.6	18264.74
YHR018C	ARG4	Argininosuccinate lyase	+5.6	7829.88
YHR053C	CUP1A	Metallothein	-7	36367.39
YHR055C	CUP1B	Metallothein	-7.8	39818.48
YHR215W	PHD12	Secreted acid phosphatase	-4.4	4740.23
YIL051C	MMD1	Required for maintenance of mitochondrial DNA	-2.9	21835.35
YIL157C	FAK1	Cyclin-dependent kinase inhibitor (CKI)	-6.1	29549.83
YIL200C		Strong similarity to aconitate hydratase	-3.1	3843.52
YIL217W			-5.4	14572.10
YPR025C	BNA1	3-Hydroxyanthranilic acid dehydrogenase	-5.9	6797.81
YKL030W			+1.7	13559.74
YKL156W	RPS27A	Ribosomal protein S27.e	+1.7	7951.90
YKL216W	URA1	Dihydroorotate dehydrogenase	-3.7	7684.74
YKR080W	MTD1	Methylentetrahydrofolate dehydrogenase (NAD +)	-5.1	3345.43
YLR076C			+2.6	1513.76
YLR323W	MET25	0-Acetylhomoserine sulphhydrilase	+6.7	18881.59
YLR359W	ADE13	Adenylosuccinate lyase	+6.1	608.98
YMR173W	DOD18	Heat shock protein	-6.9	7572.92
YMR236W	TAF17	TFIID and SAGA subunit	-2.4	9708.86
YNL055C	POR1	Mitochondrial outer membrane porin	-10.3	27585.02
YNL145W	MFA2	Mating pheromone α-factor 2	-11.4	10438.20
YNL306W	MRPS18	Ribosomal protein of the small subunit, mitochondrial	-2.1	4481.84
YNR050C	LYS9	Saccharopine dehydrogenase	-10.7	42463.49
YOL066W			-24.9	9345.35
YOL126C	MDH2	Malate dehydrogenase, cytoplasmic	-7	3063.58
YOL143C	RUB4	6,7-Dimethyl-8-ribitylumazine synthase	-9.8	27917.32
YPL092W	SSU1	Sulphite transport protein	+2.1	3074.89
YPR023W		Subtelomeric ORF	-3.2	3797.44

Factors of relative changes are highlighted with their respective colour of assessed quality measure: ● high-quality upregulation, ○ mid-quality upregulation, ▲ high-quality downregulation, ▲ mid-quality downregulation.

Copyright © 2001 John Wiley & Sons, Ltd. Comp Funct Genom 2001; 2: 69–79.
than T73 (Goto-Yamamoto et al., 1998). YHB1 encodes a flavohaemoglobin, whose expression is related to the presence of O2 (Liu et al., 2000). Both genes were analysed in greater detail (see below).

The remaining 10 differentially transcribed genes fall into the category of orphans. Two of them, YPR203w and YBL113c, belong to families of subtelomeric proteins, many members of which show partial homologies. Their signal intensities could, at least in part, be the result of cross-hybridization events between the transcripts of the members of their families. Another orphan gene, YJL217w, is analysed in greater detail below.

Figure 1. Comparison of transcript levels in strains T73 and MCY730. (A) Scatterplot of the median of the normalized signal intensities. Each black dot represents a gene. Indicated genes are presented as Northern blot analyses in Figure 2. (B) Presentation of the relative changes in transcript signals (top) and the normalized signal intensities (bottom) of particular ORFs. Dotted lines represent individual measurements, bold lines the respective mean value.
Northern hybridization analysis of selected genes

In order to confirm the results obtained with the arrays, we performed Northern hybridization analysis with probes specific for some of the selected genes. Figure 2 shows typical results for three genes: SSU1, YHB1 and YJL217w, with ACT1 acting as control. In all three cases, differences were observed, which are in agreement with the array results: SSU1 is higher expressed in T73; YHB1 and YJL217w were clearly expressed in MCY730 while their transcript levels were not detectable in T73.

Sequence analysis of some wine yeast promoters

There are several possible explanations for a gene to be differentially expressed in two strains. An obvious one is the presence of differences in the promoter sequence. To test this possibility, we chose few of the genes reported above. Oligonucleotide primers were designed to amplify by PCR the promoter regions from T73. The resulting fragments were then sequenced. In the case of YHB1, the sequence of the T73 promoter was very close to that of S288c, with only five differences in the amplified 577 bp region. All those differences were point mutations or single-base deletions (see Figure 3) except for one, an 8 bp deletion inside a 22 bp AT repeat placed 100 bp upstream of the ATG codon. Although there is no indication of a TATA box or other regulatory elements, it is tempting to speculate that the shortening of the AT repeat could explain the lower level of expression of YHB1 in T73. We also sequenced the SSU1 promoter. It exhibited a gross rearrangement (J. E. Pérez-Ortíñ and S. Puig, in preparation) identical to that observed for another wine strain, which was shown to increase sulphite resistance four-fold (Goto-Yamamoto et al., 1998).

Table 2. Transcriptional and genomic differences of TY elements

ORF ID	Factor of rel. Changes T73 vs. MCY730	Median of normalized Signal Intensity	Genome				
YAR010C	+4.1	YAR010C	MCY730	T73	1.00	1.00	
YBR012W	+4.2	YBR012W	60896.57	14639.46	5316.87	597.46	
YJR066W	+5.4	YJR066W	31505.17	5844.67	1137.12	246.45	
YJR028W	+7.9	YJR028W	37679.33	4763.72	948.76	246.35	
YML040W	+9.1	YML040W	29162.14	3211.06	1279.28	275.28	
YML045W	+15.8	YML045W	15256.40	967.27	1112.14	148.89	
YMRO51C	+8.9	YMRO51C	27453.21	3090.89	1302.26	185.71	
YPL257W	+1.5	YPL257W	1896.05	1262.17	+2.1	7.75	4.92
YAR009C	+4.2	YAR009C	3176.27	747.52	1.00	1.00	
YBR012W	+7.7	YBR012W	67405.91	14138.34	1067.34	175.97	
YER160c	+33.8	YER160c	76458.40	2260.74	3.05	1.00	
YJR027W	+70+	YJR027W	110306.30	14574.86	4093.76	697.73	
YJR029W	+18	YJR029W	695252.05	18295.62	5158.86	859.73	
YCL020W	+2	YCL020W	1436.97	1990.48	526.74	223.59	
YCL019W	+2.3	YCL019W	4991.73	2174.92	748.76	332.11	
YIL028W	+3	YIL028W	2695.01	883.91	92.65	1.00	
YIL114W	+1	YIL114W	1538.25	1721.00	66.36	3.2	
YIL113W	+1.5	YIL113W	580.72	895.95	1.00	1.00	
YCL074W	+3	YCL074W	3016.66	3973.58	10.57	23.97	
YCL075W	+2.2	YCL075W	751.79	1647.94	+2.8	2.62	7.33
YCL076W	+4.2	YCL076W	493.33	2032.22	+12.1	1.28	15.42

Factors of relative changes are highlighted with their respective colour of assessed quality measure: ● high-quality upregulation, ○ mid-quality upregulation, ● high-quality downregulation, ○ mid-quality downregulation.

Copyright © 2001 John Wiley & Sons, Ltd. Comp Funct Genom 2001; 2: 69–79.
Strain characterization by comparisons of genome vs. transcriptome

We plotted the values obtained with RNA targets (transcriptome) against genomic signal intensities (genome) (Figure 4) using data from successive hybridizations, using the very same filter array in order to avoid experimental bias as much as possible. In a scatterplot, such analysis produces a croissant-shaped cloud of dots that seems to be characteristic for each strain. Dots on the top-left corner of the cloud correspond to genes that are highly expressed but have low copy numbers (1–2 copies per haploid genome), such as ribosomal proteins or glycolytic enzymes. Dots on the bottom-right corner of the cloud correspond to genes with high values in genomic hybridization and low levels of expression; in Figure 4, we highlighted in this area a gene family composed of about 30 members with more than 90% similarity in protein sequence; \textit{YPR203w} belongs to this family. Dots located at the top-right corner correspond to genes with both high copy number and high expression levels. Between the two strains analysed here, a clear pattern difference can be seen for the Ty1 family, for example most dots are clustered in top-right corner for FY1679 as opposed to those of T73, corroborating the results obtained for the MCY730/T73 comparison (Table 2).

Discussion

The initial goal of this study was to determine whether the yeast arrays generated with S288c DNA sequences (Hauser \textit{et al.}, 1998) were useful for the analysis of industrial yeast strains. For this purpose, the natural isolate T73 wine yeast strain (Querol \textit{et al.}, 1992) was used, with genomic DNA of the laboratory strains FY1679 and MCY730 acting as controls. In all cases, not all the probes produced a signal. However, the number of those that could be detected was very similar. From this, we conclude that most of the S288c genes are present in the wine strain T73. A similar conclusion can be obtained from a recent experiment on glass microarrays (Cavalieri \textit{et al.}, 2000). As a matter of course, it is possible that this particular wine strain or other industrial yeast strains contain genes which are not present at all or in a different copy number in the standard laboratory strains. This is known, for example, for most members of the families for \textit{SUC} (Carlson and Botstein, 1983; Naumov \textit{et al.}, 1996), \textit{MEL} (Naumov \textit{et al.}, 1990) and \textit{MAL} (Naumov \textit{et al.}, 1994) and a gene that encodes for resistance to toxicity in molasses (Ness and Aigle, 1995). Most of these are translocated repeats of the original locus. However, they should represent only a very small fraction of the entire yeast genome. In our hands, a genomic hybridization of random-primed total DNA-samples proved to be a good procedure to detect differences in the quality of DNA arrays. This way of array validation is more sensitive than the hybridization of oligonucleotide tags, which bind to all the PCR products (Hauser \textit{et al.}, 1998).

The comprehensive gene arrays were used for the analysis of both the genomic copy number and transcript levels of wine yeast T73. RNA was obtained from yeast cells growing in middle logarithmic phase. This comparison has some possible drawbacks. The first is the growth rate. As usual for most industrial strains, T73 grows twice as fast as MCY730 (J. Gimeno, personal communication). This means that the selected conditions might not really be identical for both strains. However, this discrepancy is unavoidable when comparing strains that are so different. One
way to overcome this problem would be to perform
the experiments using chemostat cultures, in which
the growth rate of each strain could be controlled.

Another problem is the fact that MCY730 is a
haploid strain while T73 is near-diploid (Puig et al.,
1998, 2000b). This has been described to affect the
expression of about a dozen genes (Galitski et al.,
1999). We could not detect significant differences in
this set of genes in our experiments. However, in
our study both strains are of very different genetic
background, rather than one being a duplication of
the other, as was the case in the published study.
This might have obscured ploidy differences.

Finally, some genes are known to be defective in
MCY730. For instance, S288c background strains
lack the transcription factor Flo8p (Liu et al.,
1996). Whether or not this gene is active in T73 is
unknown, but the flocculation properties of wine
yeasts are very variable (discussed in Pretorius,
2000), so it is difficult to anticipate the differences

Figure 3. Comparison of the promoter sequence of gene YHB1 in T73 and the S288c sequence stored in the MIPS database
(http://www.mips.biochem.mpg.de/). Sequence differences and the ATG codon are marked. The GenBank Accession
No. for the YHB1 T73 sequence is AF239759.
between MCY730 and T73. Our analysis does not show any significant variation in either FLO8 or its targets, except for the case of FLO1, which is transcribed very poorly in T73 (32 times less than in MCY730), although the statistical confidence for this result only meets the less stringent quality criteria (see web pages). Other genes that differ between both strains are the ones related with MATα mating type or with the MCY730 auxotrophies, such as ura3−. These differences (see Results) serve as an internal control of data quality. For some of the selected genes, the results from the array analysis were confirmed by Northern blot experiments. In such cases, independently isolated RNA preparations were used in order to perform biologically meaningful control experiments. As described by others (Ter Linde et al., 1999), the overall expression differences found in array hybridizations were lower than those on Northern blots. In two cases (YHB1, YJL217w), we could not detect any signal on the T73 RNA samples.

We chose some particular genes for further analysis because of their special interest to wine yeasts. SSU1 has been demonstrated to code for a plasma membrane protein required for sulphite efflux (Park and Bakalinsky, 2000). Sulphite is a widely used preservative in wine production (Pretorius, 2000). The expression level of this gene directly correlates with sulphite resistance of the yeast strain (Goto-Yamamoto et al., 1998; Park and Bakalinsky, 2000). YHB1 codes for a flavohaemoglobin whose function is not well understood. It seems to protect cells against the damage caused by nitrosylation (Liu et al., 2000). Its expression is elevated in aerobic conditions (Liu et al., 2000; Zhao et al., 1996). Thus, this gene seems to be more important for cells growing in O2-rich media. Its low expression in wine yeast may be relevant to physiological features of a strain, which has evolved for millions of generations under the O2-limiting conditions of wine fermentation.

The main difference between the strains in Ty1 and Ty2 transposable elements seems to be the fact that the S288c laboratory genetic background has many more copies of Ty1 transposons than the T73 wine strain. This result confirms previous reports that Ty1 and Ty2 transposable elements are less frequent in wine and brewer’s yeasts than in laboratory and, especially, bakers’ strains (Codo´n et al., 1998). The observation is also compatible with the suggestion that in most or even all the Ty elements transposed recently, and in some situations perhaps in wine fermentations, a selective pressure against accumulation of Ty elements might exist (Jordan and McDonald, 1999). Since the differences at transcript level are more pronounced than at genomic level, it is possible that Ty transcription levels are either higher in each copy of Ty1 or that some Ty1 copies are silent in the wine strain. Ploidy may also significantly alter Ty
expression, which is regulated by the mating pathway (reviewed in Boeke and Sandmeyer, 1991). On the other hand, the much higher labelling levels of Ty1B ORFs compared to Ty1A might reflect the fact that cDNA was synthesized from the 3' end of the mRNA. In Ty transposons, all the regular transcripts end just downstream of or inside the B-ORF (Boeke and Sandmeyer, 1991). Therefore, it is possible that more label was incorporated into this part of the sequence, since many of the retrotranscript molecules did not reach the 5' end of the mRNA. The fact that genomic samples did not show such an effect (Table 2) argues in favour of this hypothesis. However, this would only explain the results for MCY730 but not the ones obtained for T73, in which TyB labelling is not significantly different from TyA. In combination, all these results rather suggest that Ty transcription is in some way defective in T73-producing incomplete results rather suggest that Ty transcription is in for T73, in which TyB labelling is not significantly different from TyA. Therefore, it would be of interest to investigate the TyB labelling in T73-producing cells.

The comparison of genomic copy numbers vs. transcript levels (Figure 4) may be a general way to describe a given yeast strain. Especially the information on Ty elements and large gene families, such as the subtelomeric one shown in Figure 4, which are very variable between strains, could be used as a sensitive molecular tool for industrial strain identification, as has been suggested previously (discussed in Pretorius, 2000).

References

Adams J, Puskas-Rozca S, Simlar J, Wilke CM. 1992. Adaptation and major chromosomal changes in populations of Saccharomyces cerevisiae. *Curr Biol* 22: 13–19.

Bakalinsky AT, Snow R. 1990. The chromosomal constitution of wine strains of Saccharomyces cerevisiae. *Yeast* 6: 367–382.

Beisbarth T, Fellenberg K, Brors B, et al. 2000. Processing and quality control of DNA array hybridization data. *Bioinformatics* 16: 1014–1022.

Bidonne C, Blondin B, Dequin S, Vezinhet F. 1992. Analysis of the chromosomal DNA polymorphism of wine strains of Saccharomyces cerevisiae. *Curr Genet* 22: 1–7.

Boeke JD, Sandmeyer SB. 1991. Yeast transposable elements. In *The Molecular Biology of the Yeast Saccharomyces*, vol 1, Broach JR, Pringle JR, Jones EW (eds). Cold Spring Harbor Laboratory Press: New York; 193–261.

Brachman CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene deletion and other applications. *Yeast* 14: 115–132.

Carlson M, Botstein D. 1983. Organization of the SUC gene family in *Saccharomyces cerevisiae*. *Mol Cell Biol* 5: 2894–2902.

Cavalieri D, Towsend JP, Hartl DL. 2000. Manifest anomalies in gene expression in a vineyard isolate of in *Saccharomyces cerevisiae* revealed by DNA microarray analysis. *Proc Natl Acad Sci U S A* 97: 12369–12374.

Codón AC, Benítez T, Korhola M. 1998. Chromosomal polymorphism and adaptation to specific industrial environments of *Saccharomyces* strains. *Appl Microbiol Biotechnol* 11: 154–163.

Cox KH, Pinchack AB, Cooper TG. 1999. Genome-wide transcriptional analysis in *S. cerevisiae* by mini-array membrane hybridization. *Yeast* 15: 703–713.

DeRisi JL, Iyer VR, Brown PO. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. *Science* 278: 680–686.

Functional Genome Analysis, DKFZ Heidelberg. URL: http://www.dkfz-heidelberg.de/funct_genome/index.html.

Galitski T, Saldanha AJ, Styles CA, Lander ES, Fink GR. 1999. Ploidy regulation of gene expression. *Science* 285: 251–254.

Goffeau A, Barrell BG, Bussey H, et al. 1996. Life with 6000 genes. *Science* 274: 546–567.

Goto-Yamamoto N, Kitano K, Shiki K, et al. 1998. *SSU1-R*, a sulphite resistance gene of wine yeast, is an allele of *SSU1* with a different upstream sequence. *J Ferment Bioeng* 86: 427–433.

Gujo S, Mauricio JC, Salmon JM, Ortega JM. 1997. Determination of the relative ploidy in different *Saccharomyces cerevisiae* strains used for fermentation and ‘flor’ film ageing of dry sherry-type wines. *Yeast* 13: 101–117.

Hauser NC, Vingron M, Scheidelé M, et al. 1998. Transcriptional profiling on all open reading frames of *Saccharomyces cerevisiae*. *Yeast* 14: 1209–1221.

Hoffman CS, Winston F. 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of *Escherichia coli*. *Gene* 57: 267–272.

Holstege FCP, Jennings EG, Wyrick JJ, et al. 1998. Dissecting the regulatory circuitry of a eukaryotic genome. *Cell* 95: 717–728.

Hughes TR, Marton MJ, Jones AR, et al. 2000. Functional discovery via a compendium of expression profiles. *Cell* 102: 109–126.

Jelinsky SA, Samson LD. 1999. Global response of Sacchar-
Whole genome analysis of a wine yeast strain

Pui S, Querol A, Barrio E, Pérez-Ourtín JE. 2000b. ‘Mitotic recombination as a mechanism of genetic change in yeast during wine fermentations’. Appl Environ Microbiol 66: 2057–2061.

Puig S, Ramón D, Pérez-Ourtín JE. 1998. Optimized method to obtain stable food-safe recombinant wine yeast strains. J Agric Food Chem 46: 1689–1693.

Querol A, Huerta T, Barrio E, Ramón D. 1992. Dry yeast strain for use in fermentation of Alicante wines: selection and DNA patterns. J Food Sci 57: 183–185.

Querol A, Ramón D. 1996. The application of molecular techniques in wine microbiology. Trends Food Sci Technol 7: 73–78.

Rachidi N, Barre P, Blondin B. 1999. Multiple Ty-mediated chromosomal translocations lead to karyotype changes in a wine strain of Saccharomyces cerevisiae. Mol Gen Genet 261: 841–850.

Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press: New York.

Sancho ED, Hernández E, Rodríguez-Navarro A. 1986. Presumed sexual isolation in yeast populations during production of sherry-like wine. Appl Environ Microbiol 51: 395–397.

Sherman F, Fink GR, Hicks JB. 1986. Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press: New York.

Ter Linde JJM, Liang H, Davis RW, Steensma HY, Van Dijken JP, Pronk JT. 1999. Genome-wide transcriptional analysis of aerobic and anaerobic chemostat cultures of Saccharomyces cerevisiae. J Bacteriol 181: 7409–7413.

Wodicka L, Dong H, Mittmann M, Ho M-H, Lockhart DJ. 1997. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nature Biotechnol 15: 1359–1367.

Woolford JL, Warner JR. 1991. The ribosome and its synthesis. In The Molecular Biology of the Yeast Saccharomyces, vol 1, Broach JR, Pringle JR, Jones EW (eds). Cold Spring Harbor Laboratory Press: New York; 587–626.

Zhao X-J, Raitt D, Burke PV, Clewell AS, Kwast KE, Poyton RO. 1996. Function and expression of flavohemoglobin in Saccharomyces cerevisiae. J Biol Chem 271: 25131–25138.