Predicting synthetic rescues in metabolic networks

Adilson E Motter1,*, Natali Gulbahce2,3,4, Eivind Almaas5 and Albert-László Barabási6,7

1 Department of Physics and Astronomy and Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL, USA, 2 Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA, 3 Department of Physics and Center for Complex Network Research, Northeastern University, Boston, MA, USA, 4 Center for Cancer Systems Biology, Dana Farber Cancer Institute, Boston, MA, USA, 5 Network Biology and Microbial Systems Group, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA, 6 Departments of Physics and Computer Science and Center for Complex Network Research, University of Notre Dame, Notre Dame, IN, USA and 7 Departments of Physics, Biology and Computer Science and Center for Complex Network Research, Northeastern University, Boston, MA, USA

* Corresponding author. Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA. Tel.: +1 847 491 4611; Fax: +1 847 491 9982; E-mail: motter@northwestern.edu

Received 18.9.07; accepted 16.12.07

An important goal of medical research is to develop methods to recover the loss of cellular function due to mutations and other defects. Many approaches based on gene therapy aim to repair the defective gene or to insert genes with compensatory function. Here, we propose an alternative, network-based strategy that aims to restore biological function by forcing the cell to either bypass the functions affected by the defective gene, or to compensate for the lost function. Focusing on the metabolism of single-cell organisms, we computationally study mutants that lack an essential enzyme, and thus are unable to grow or have a significantly reduced growth rate. We show that several of these mutants can be turned into viable organisms through additional gene deletions that restore their growth rate. In a rather counterintuitive fashion, this is achieved via additional damage to the metabolic network. Using flux balance-based approaches, we identify a number of synthetically viable gene pairs, in which the removal of one enzyme-encoding gene results in a non-viable phenotype, while the deletion of a second enzyme-encoding gene rescues the organism. The systematic network-based identification of compensatory rescue effects may open new avenues for genetic interventions.

Molecular Systems Biology 12 February 2008; doi:10.1038/msb.2008.1

Subject Categories: cellular metabolism; computational methods

Keywords: complex networks; genetic interactions; genetic recovery; metabolism; systems biology

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits distribution and reproduction in any medium, provided the original author and source are credited. Creation of derivative works is permitted but the resulting work may be distributed only under the same or similar licence to this one. This licence does not permit commercial exploitation without specific permission.

Introduction

Recent advances in systems and network biology indicate that specific cellular functions are rarely carried out by single genes, but rather by groups of cellular components, including genes, proteins, and metabolites (Elena and Lenski, 1997; Hartwell et al., 1999; Vogelstein et al., 2000; Barabási and Oltvai, 2004; Bonhoeffer et al., 2004; Albert, 2005; Segré et al., 2005). Such a network-based view changes the way we think about the impact of mutations and other genetic defects: the damage caused by a malfunctioning protein or gene is often not localized, but spreads through the cellular network, leading to a loss of cellular function by incapacitating one or several functional modules (Barabási, 2007; Goh et al., 2007). The increasingly sophisticated experimental tools that help us systematically map various cellular interactions offer hope that in the future we will be able to focus not only on the individual components but also monitor and explore the global changes in the cellular network induced by the defective gene or protein. Such network-based approaches indicate that the loss of proteins involved in a large number of protein–protein interactions often results in the death of the organism, a finding that may be useful for the design of antibiotics or cancer drugs. Yet for most genetic diseases, particularly those caused by germ-line mutations, the goal is not to kill the cell, but to recover the lost cellular function or limit the existing damage. This raises an important question: can we develop network-based strategies to predict how to recover function that may have been lost due to defective genes?

In single-cell organisms, the frequently observed reduction in an organism’s growth rate following a gene deletion often represents only a transient effect, reflecting the fact that the metabolic network of the mutant operates in a suboptimal regime until appropriate regulatory changes and mutations accumulate to bring the metabolic system to a new optimal steady state (Fong and Palsson, 2004; Herring et al., 2006). Experiments in fixed nutrient environments show that after many generations mutants typically increase their growth rate,
converging through adaptation to a new optimal value predicted by flux balance analysis (FBA) (Edwards and Palsson, 2000). If the growth rate in this optimal state is zero, then the organism cannot grow, indicating that the deleted gene is essential. We will refer to these genes as *optimally essential* (Box 1).

Often experiments observe no growth for mutants missing a metabolic enzyme that are predicted to be viable by FBA, prompting us to classify the deleted gene as essential. One potential explanation for the observed discrepancy is that the gene may have an unknown function, regulatory or other, whose absence inhibits growth. Yet for some enzymes an equally compelling explanation is the following: an important challenge of each mutant is to reproduce until the evolutionary tuning of its regulatory system approaches the new optimal state. This process can be facilitated by deleting the enzyme catalyzing the M1 reaction, metabolism operates suboptimally after the gene deletion, the FBA-predicted growth rate is zero-non in its absence, while the MOMA-predicted growth rate is zero. Therefore, experiments will probably classify organisms missing a suboptimally essential gene as unable to grow. However, in contrast with the optimally essential genes, a mutant missing a suboptimally essential gene would be determined as viable if its metabolism and regulatory system had the chance to re-adjust to its environment.

Here, we show that the growth rate of an organism lacking a suboptimally essential gene may be restored via the removal of other enzyme-encoding genes. We will refer to this as the *Lazarus effect*, as it restores the growth of mutants initially classified as non-viable by experiments since they displayed zero growth rates. We also discuss *suboptimal recovery*, a weaker manifestation of the proposed mechanism, which forces viable mutants to increase their growth rate following additional gene deletions. Our approach is inspired by a method proposed in Motter (2004) to control cascading failures in complex networks and by microbial optimization methods for the targeted production of metabolites (Burgard et al., 2003; Pharkya and Maranas, 2006).

Results

The principle underlying the proposed rescue effect is illustrated schematically in Figure 1B–E. Consider the situation, where, in the wild-type organism, the optimal growth state corresponds to the utilization of the M1 → M2 → M3 pathway, i.e. the flux of reactions involving the M3 metabolite is either zero or close to zero. In the early state after the deletion of the enzyme catalyzing the M2 → M3 reaction, forcing the cell to use the optimal M1 → M3 → M4 pathway (Figure 1D). It would take additional regulatory and metabolic adjustments to reach this new optimal state. This process can be facilitated by deleting the enzyme catalyzing the M1 → M2 reaction, metabolism operates suboptimally (Figure 1C) by minimizing the necessary flux rearrangement compared to the optimal wild-type flux state (Figure 1B). The optimal postdeletion state, however, requires more drastic flux reorganization, sending most of the flux through the M1 → M3 → M4 pathway (Figure 1D). Therefore, by suppressing stoichiometrically inefficient pathways, we can enforce the cell to enhance the activity of a more efficient set of reactions, resulting in an increased growth rate. Our goal is to show that such additional deletions, whose role is to enhance the activity of the most efficient pathways, can be predicted by systematically comparing the suboptimal and the optimal fluxes under the same conditions.

To implement the approach described in Figure 1, we developed an algorithm to identify rescue deletions for all mutants missing an enzyme-encoding gene. For this, we use MOMA to determine the suboptimal fluxes v_{MOMA} characterizing the mutant shortly after a gene deletion (Figure 1C) and FBA to predict a flux state v_{FBA} compatible with optimal growth for the mutant (Figure 1D). If the mutant’s metabolism operates suboptimally after the gene deletion, the FBA-predicted growth rate for the mutant is larger than the MOMA-predicted growth rate, and thus, we have a chance to intervene and increase the suboptimal growth rate. In this case, based on the difference in flux pattern between v_{FBA} and v_{MOMA} (see Materials and methods), we test a set of secondary rescue gene deletions that aim to reduce the difference between the suboptimal and the optimal growth rates (Figure 1E) by using MOMA to determine the new metabolic flux state v_{MOMA}. If appropriate rescue gene deletions are identified, the obtained growth rate K_{MOMA} is higher than the growth rate of the original mutant, concluding our procedure. If the MOMA-predicted growth rate for the original mutant is zero, the rescue deletions can bring along the Lazarus effect, inducing a non-zero growth rate; if it is non-zero, the rescue deletions may induce a suboptimal recovery, increasing the mutant’s growth rate toward its optimal FBA-predicted value.

Box 1 Summary of new terminology and effects associated with the identification of genetic rescue interactions

Terminology	Definition	Computational method
Synthetically viable gene a	Removal of one gene is lethal but deletion of a second gene rescues the cell	MOMA and FBA
Optimally essential gene b	Gene deletion leads to zero growth rate in growth-maximizing states	FBA
Suboptimally essential gene c	Gene deletion leads to zero growth rate but growth is possible in optimal states	MOMA and FBA
Lazarus effect	Gene deletion restores the growth of otherwise non-viable mutants	MOMA and FBA
Suboptimal recovery	Gene deletion increases the growth of already growing strains	MOMA and FBA

*aSynthetically viable gene sets are defined analogously for interactions involving more genes.
*bThese genes are essential for growth regardless of the state of the other genes.
cThe deletion of these genes is lethal but the genes themselves are not essential.
Note that the identified rescue deletions do not change the optimal growth rate, but affect only the suboptimal growth rate (see Materials and methods). The new terminology related to this recovery mechanism is summarized in Box 1.

We illustrate the proposed procedure in Figure 2 for the TCA cycle of Escherichia coli MG1655 fed arabinose as the sole carbon source (see Materials and methods and Supplementary Information). MOMA predicts that the deletion of the fbaA gene rearranges the fluxes throughout the whole cycle and inhibits the production of phenylalanine, tyrosine, and L-lysine (dotted reactions in Figure 2B), which represent necessary building blocks of the biomass (cf. Figure 2A). Thus, the suboptimal growth rate of this mutant is zero, a prediction supported by experiments in arabinose media (Fraenkel, 1987). In contrast, FBA indicates that a non-zero growth rate can be achieved by a global rearrangement of the flux states (Figure 2C), resulting in changes in flux magnitudes and directions (e.g. the sucCD reaction). Consequently, the organism could grow if it could get past its suboptimal state when, soon after the gene deletion, its growth rate is zero. We can force the organism to approach the new optimal state by deleting, for example, the genes aceA and sucAB, which catalyze reactions that are active in the suboptimal state (Figure 2B) but are not active in the optimal state (Figure 2C).

These two rescue deletions will activate the production of all biomass components after rerouting the fluxes through the pentose phosphate pathway (Figure 2D), and result in a non-zero growth rate, rescuing the otherwise non-viable mutant.

Figure 1 Schematic illustration of the consequences of gene deletion on the organism’s growth rate. (A) The growth rate following the deletion of an enzyme-encoding gene often drops, but after many generations may recover to a new optimal value not very different from the original one (red line). The optimal growth rate before and after the deletion is predicted by FBA (black and green dotted lines). The blue line indicates the predicted buffering effect of additional gene deletions: by deleting appropriately selected additional genes, the suboptimal growth rate shortly after gene deletions is higher than without the rescue deletions. (B–E) The effect of rescue deletions on the fluxes of a metabolic network, where M_1, \ldots, M_6 represent metabolites and the width of the arrows represents the strength of individual fluxes.
the Lazarus effect, and 17 candidates for suboptimal recovery (see Figure 4A). Most of the mutants miss genes involved in the central metabolism, while a few miss genes that participate in amino-acid metabolism and transport processes. Of particular interest are mutants with the genes pynk, fbaA, or tpiA deleted, whose essentiality has been tested and is supported by experiments (Fraenkel, 1987). As we show in Supplementary Table SI and Figure 4A, the growth rate of these mutants is restored by additional targeted gene deletions that increase the suboptimal growth rate from zero to more than 45% of the wild-type growth rate.

In Figure 4B we show that, for various media, the increase in the biomass production rate obtained after the deletion of a single rescue gene can be more than 10% of the wild-type rate. In other cases, however, we need to simultaneously delete several genes to rescue growth. This is illustrated in Figure 3B, where we show that the growth performance of non-viable tpiA-deficient mutants in a glucose medium can be restored only through the concurrent deletion of six genes, aceA, gadA, gadB, tpnA, tynA, and gpt, representing a six-viable set, which is the converse of the k-robust set necessary to suppress cellular growth (Deutscher et al., 2006). The suboptimal tpiA mutant uses the glyoxylate pathway, which is shut down by these rescue deletions. Our prediction, that the glyoxylate pathway is not needed in the optimal state, is supported by a recent experimental observation (Fong et al., 2006). This observation indicates that the flux of the glyoxylate pathway in viable but not fully evolved tpiA mutants is initially non-zero. However, over the course of a few weeks of adaptive evolution in glucose media, the glyoxylate flux converges to zero (Fong et al., 2006). Once the six genes are absent, the concurrent deletion of additional genes can further increase the organism’s growth rate (Figure 3B).
Note that, while the proposed rescue procedure works in all media, the list of mutants that can be rescued by additional deletions as well as the necessary rescue deletions depends on the tested medium. Indeed, we find that the number of *E. coli* mutants whose growth rate increases by more than 10% of the wild-type growth rate after rescue deletions is 8, 21, and 25 in minimal acetate, minimal glucose, and rich media, respectively. Therefore, the rescue effect is more frequent in richer media, where the increased availability of substrates in the environment increases the number of non-essential metabolic genes that can be deleted to improve performance. Furthermore, the proposed rescue mechanism is expected to work for all organisms, allowing us to predict rescue deletions each time an accurate metabolic reconstruction is available. To show this, we determined all single-gene rescues that can recover the growth rate by more than 1% of the wild-type rate in glucose media for deletion mutants of three reconstructed organisms with very different genomes: *Helicobacter pylori* (Segré et al., 2002; Shlomi et al., 2005) for the growth rate of several mutants of FBA (Edwards et al., 2001; Ibarra et al., 2002) and MOMA (Segré et al., 2002; Shlomi et al., 2005) to predict the optimal and suboptimal growth rates of an organism in agreement with experimental data, supports our hypothesis that properly selected gene deletions can improve the growth rate of an organism that has not yet adapted to its environment. To further substantiate this claim, we calculated the reaction fluxes determined by experimental uptake and growth rates (Fong and Palsson, 2004) as well as the corresponding optimal reaction fluxes. We used these flux distributions to test our assumption that gene deletions that increase (not increasing) growth tend to be associated with reactions whose fluxes are much larger (smaller) than the optimal fluxes. As shown in

![Figure 3](image-url)
Supplementary Table SIV, a total of 20 out of 22 E. coli mutants analyzed are correctly predicted with this assumption, in support of the proposed rescue mechanism.

Discussion

The mechanism behind the rescue effect introduced above does not depend on the specific details of MOMA or FBA; in fact, any computational or experimental methodology that can help us estimate the metabolic fluxes can be used to identify candidates for rescue deletions. For example, one could use 13C-tracer techniques (Sauer, 2004) to experimentally determine the reaction fluxes of the suboptimal gene-deficient strain and an optimal, or close to optimal, version of the same strain. Candidates for rescue deletions typically correspond to genes catalyzing reactions that are active in the suboptimal strain and an optimal, or close to optimal, version of the same strain. Candidates for rescue deletions can be experimentally determined using genome-scale metabolic network models, such as MOMA or FBA.

In all panels, we show the results for all mutants with $G_{MOMA} < G_{FBA}$ such that $G_{MOMA} \leq 0.8 G_{FBA}$ and $G_{FBA} \geq 0.2 G_{FBA}$. The experimental information on the lethality of the original E. coli (Edwards and Palsson, 2000; Gerdes et al, 2003; Baba et al, 2006; PEC, 2007) and S. cerevisiae (Giaever et al, 2002; Steinmetz et al, 2002; SGD, 2007) gene-deficient mutants is indicated with (+) for viable mutants, (−) for non-viable mutants, and (×) for a gene absent in the databases. (B, D) Same as in (A, C) for single-gene rescue deletions in various media. We show selected mutants with significant biomass improvements after the rescue deletion of a single gene. The rescue deletion is indicated at the top, and the tested media are indicated at the bottom. The abbreviations stand for acetate (Ac), α-ketoglutarate (Akg), arabinose (Ara), ethanol (Eth), galactose (Gal), glucose (Glc), glucose anaerobic (Glca), glycerol (Gly), lactate (Lac), malate (Mal), mannose (Man), pyruvate (Pyr), rich medium (Rich) (see Supplementary Information), sorbitol (Sor), succinate (Succ), and xylose (Xyl). The biomass fluxes are normalized by the wild-type flux G_{FBA} in all panels. In units of mmol/g DW-h, the wild-type fluxes for E. coli are 0.187 (Ac), 0.535 (Akg), 0.745 (Ara), 0.908 (Glc), 0.367 (Lac), 0.388 (Mal), 0.958 (Man), 0.303 (Pyr), 2.67 (Rich), 0.418 (Succ), and 1.37 (Suc), while for S. cerevisiae they are 0.189 (Ac), 0.311 (Eth), 0.703 (Glc, 0.819 (Glca), 0.180 (Gly), 1.34 (Rich), 0.798 (Sor), and 0.742 (Xyl). All the genes involved in the rescues of (A, C) are listed in Supplementary Information, while the minimum rescue sets are listed in Supplementary Tables SII and SIII, respectively. The alternative rescue genes for each media in (B, D) are listed along with the corresponding recoveries in Supplementary Information.
rescue deletions. However, we find that our in silico predictions are robust to parameter choices and do not rely on the fine tuning of metabolic fluxes or environmental conditions (see Supplementary Information). Furthermore, we predict that the rescue set in an impaired cell is not unique, and the number of rescue combinations that lead to the same effect generally increases with the number of genes in the set (Supplementary Information). These observations corroborate the feasibility of systematic experimental implementation of synthetic rescues. Indeed, the main difficulties expected in verifying our predictions, namely the inaccuracies in matching real genetic and environmental conditions as well as potential side effects of rescue deletions due to, e.g. unknown function, are substantially alleviated by the robustness and flexibility of the rescue interactions. This generality, which transcends particular computational methods, could serve as a bridge to implementations of our approach in multi-cellular organisms, as it facilitates the control of undesirable effects in the recovery of specific cellular functions.

The possibility of rescuing a mutant using additional gene deletions is a general mechanism not limited to metabolism. For example, the removal of comA and sigD genes enhances the growth rate of Bacillus subtilis (see Figure 5), despite the fact that they have no known enzymatic functions. Additionally, it has been observed in E. coli that edd-deficient mutants grow at a reduced rate and eda-deficient mutants do not grow at all in a gluconate medium, while the double edd/eda mutant is viable. In this case, the mechanism for the rescue effect is different from the one discussed above: upon the deletion of eda, the cells accumulate toxic compounds; this accumulation stops when edd is also deleted (Fraenkel, 1987). Gene deletion-induced rescue processes have been observed previously in mammalian cells as well. For example, Irs2 knockout mice develop diabetes in 6–8 weeks (Kushner et al., 2004; Hahnfeldt and Hlatky, 2005). Yet the additional knockout of Ptp1b partially compensates for the lack of Irs2, doubling the survival time. Similar effects were documented for mutations in HK1.ros, HK1.fas, and HK1.TGK-z in tandem with the loss of p53 gene (Wang et al., 2000; Hahnfeldt and Hlatky, 2005). The mechanisms behind these examples involve mostly local gene–gene interactions, as opposed to the global effect we have systematically unveiled here. They indicate, however, that organisms could be characterized in general by potentially extensive sets of synthetically viable double knockouts, representing gene pairs for which the double mutant is viable while one of the single mutants is not. High-throughput techniques, increasingly used to identify synthetically lethal pairs (Tong et al., 2001; Ooi et al., 2003), could be used to uncover such synthetically viable gene pairs as well. Other techniques may be developed to identify similar interactions between gene sets, as proposed above. The results could be used to detect new genetic compensatory mechanisms and would offer a better understanding of cellular functions, just as synthetically lethal gene pairs have deepened our understanding of genetic interactions (Wong et al., 2004; Boone et al., 2007). Furthermore, our results force us to adjust the current paradigm of gene essentiality: even if the deletion of a gene is lethal, the gene is not necessarily essential to support life (Kobayashi et al., 2003; Glass et al., 2006; Hashimoto et al., 2005; Pál et al., 2006) because the organism’s ability to metabolize biomass may be restored by additional gene deletions.

Finally, our findings may also offer a new alternative to restore the loss of cellular function caused by specific mutations. Indeed, current approaches based on gene therapy (Ho and Commins, 2001; Kaiser, 2005; Kimmelman, 2005) may trigger abnormal activity associated with the vector and insertion site, such as oncogenesis, or reinforce the activity of pathways encoding malfunctioning products of the faulty gene, such as misfolding proteins. From a drug design and therapy perspective, it may be more advantageous to block the activity of selected pathways rather than trying to restore the activity of a faulty gene or protein. Specific previous experimental studies that can be related to the recovery mechanism reported here corroborate the feasibility of such an approach. It has been observed, for example, that Myc deletions rescue the Apc deficiency in murine small intestine. This presumably takes place because Myc is required for gene activation involved in cancer development often following Apc

Figure 5 Experimental evidence that gene deletions can enhance suboptimal growth rates: growth rate before (○) and after (●) gene deletions for (A) E. coli MG1655 (Fong and Palsson, 2004) and (B) B. subtilis 168 (Fischer and Sauer, 2005). The deleted genes are indicated at the top. All genes in (A) are involved in the catalysis of central metabolic reactions, and growth is measured after 10 days in α-ketoglutarate (Akg), glucose (Glc), glycerol (Gly), lactose (Lac), malate (Mal), and ribose (Rib) media. The carbon source in (B) is glucose.
inactivation (Sansom et al, 2007). In a different study, the combination of antibiotics exhibiting hyper-antagonistic interactions, where the combined effect of two antibiotics is weaker than at least one alone, has been shown to select against resistant strains (Chait et al, 2007). In the context of our work this means that, in the two-drug sublethal medium, the ‘deficient’ bacterial cells (non-resistant strain) prevail. Another example is found in studies of E. coli mutants unable to grow anaerobically on glucose and other hexoses when gene adh (ethanol production) or gene pta (acetic acid production) is inactivated, but the mutant with both genes deactivated will grow through the production of lactic acid as the major fermentation product (Gupta and Clark, 1989). On the other hand, a non-fermenting mutant of E. coli, NZN111, is rescued to ferment glucose through the inactivation of the ptsG gene, resulting in the production of succinate, acetate, and ethanol by rerouting fluxes that would go through the partially blocked pathways of pyruvate in NZN111 (Chatterjee et al, 2001). In addition, it has been shown that the concurrent deletion of genes zwf, sfdA, maeB, ndh, ldhA, and frdA maximizes the biomass yield in wild-type E. coli MG1655 by eliminating the elementary metabolic modes associated with low biomass yield (Trinh et al, 2006). The latter study also demonstrates the feasibility of creating mutants with several targeted rescue deletions (Causey et al, 2003), in support of our suggestions. These examples are not limited to a single organism and can be interpreted as different manifestations of a common rescue mechanism. Therefore, a combination of experimental and computational studies aimed at systematically uncovering synthetically viable gene pairs and gene sets, as well as the underlying rescue effects, may open new avenues for the next generation of therapeutic strategies.

Identifying rescue gene deletions

Consider a strain generated by the deletion of a metabolic gene that contains at least one of the non-zero metabolic fluxes of the wild-type organism and such that the biomass flux after this deletion is

\(G_{\text{MOMA}} < G_{\text{FBA}} \). To increase \(G_{\text{MOMA}} \), we compute the vector of all metabolic fluxes \(\nu_{\text{FBA}} = (\nu_{\text{FBA}}) \) predicted by FBA and use them to define a second gene deletion. This deletion is defined by identifying the minimum number of metabolic genes that deactivate most or all reactions \(j \) with \(\nu_{\text{FBA}} = 0 \). These gene deletions force the metabolic system to operate closer to the optimal regime predicted by FBA, while they do not change the FBA fluxes and the predicted steady-state biomass production (i.e. \(G_{\text{FBA}} = G_{\text{FBA}} \)). The corresponding changes in the MOMA-predicted fluxes are expected to increase the biomass flux from \(G_{\text{MOMA}} \) to \(G_{\text{MOMA}} > G_{\text{MOMA}} \). We recursively discard the deletions that have no impact on the MOMA-predicted biomass production. The number of gene deletions is further reduced through recursively activating genes from the rescue set that contribute the least to the increase in \(G_{\text{MOMA}} \). Note that this approach increases the biomass production itself, which is not necessarily related to the biomass yield considered in metabolic engineering studies (Causey et al, 2003; Trinh et al, 2006).

Algorithmically, we start with a mutant strain defined by the deletion of one or more metabolic genes, and identify the sets of rescue deletions by adhering to the following procedure:

1. Calculate the FBA optimal flux vector \(\nu_{\text{FBA}} \) for the wild-type strain.
2. Calculate the FBA optimal flux vector \(\nu_{\text{FBA}} \) for the mutant strain.
3. Calculate the MOMA flux vector \(\nu_{\text{MOMA}} \) for the mutant strain, using \(\nu_{\text{FBA}} \) as a reference flux vector.
4. Continue if biomass flux \(G_{\text{MOMA}} < G_{\text{FBA}} \), as a set of rescue deletions may exist.
5. Identify reaction set \(K \) consisting of all reactions \(j \) such that \(\nu_{\text{MOMA}} \neq 0 \) and \(\nu_{\text{FBA}} = 0 \). Potential recovery is implemented by setting \(\nu_{\text{rec}} \) for every \(j \) in \(K \).
6. Identify \(K^* \) as self-consistent subset of \(K \) by obeying the gene–enzyme relationships.
7. Incrementally reduce \(K^* \) by identifying and activating recursively the gene from the rescue set whose deletion contributes the least to the increase of the biomass flux. Gene activation is implemented by restoring the original \(\nu_{\text{rec}} \) of the corresponding reactions.

Materials and methods

Constraint-based approach

For a network with \(m \) metabolites and \(n \) reactions, the stoichiometric constraints are represented by \(\sum_{j} S_{ij} v_j = 0 \), where \(S(S) \) is the \(m \times n \) matrix of stoichiometric coefficients and \(\nu = (v_j) \) is the vector of fluxes. The individual fluxes are limited by thermodynamic constraints, substrate availability, and the maximum reaction rates supported by the catalyzing enzymes and transporting proteins, as

\[
\alpha_i \leq v_i \leq \beta_j
\]

where \(\alpha_i = \beta_i = 0 \) for uptake reactions of substrates not available in the medium. The biomass production is incorporated as an additional reaction \(\sum c_i x_i = 1 \) biomass unit, where the stoichiometric coefficient \(c_i \) corresponds to the experimentally measured biomass composition of metabolite \(x_i \) (Edwards and Palsson, 2000). FBA consists of finding a metabolic state that satisfies these constraints while maximizing the biomass flux \(G \). The deletion of genes responsible for the production of the enzymes involved in reaction \(j \) corresponds to imposing the bounds \(\alpha_j = \beta_j = 0 \) in Equation (1). MOMA aims to find a solution \(\nu_{\text{MOMA}} \), compatible with the constraints imposed to the mutant, while being closest to the original metabolic state \(\nu_{\text{FBA}} \) in terms of Euclidean distance in the space of fluxes. Our implementations of FBA and MOMA are based on the optimization softwares GNU Linear Programming Kit (Makhorin, 2001) and Object-Oriented Quadratic Programming Package (Gertz and Wright, 2001), respectively, and have been tested using independent implementations of the CPLEX solver (ILOG CPLEX, Version 10.2.0, www.ilog.com).

Identifying rescue gene deletions

Consider a strain generated by the deletion of a metabolic gene that contains at least one of the non-zero metabolic fluxes of the wild-type organism and such that the biomass flux after this deletion is

\(G_{\text{MOMA}} < G_{\text{FBA}} \). To increase \(G_{\text{MOMA}} \), we compute the vector of all metabolic fluxes \(\nu_{\text{FBA}} = (\nu_{\text{FBA}}) \) predicted by FBA and use them to define a second gene deletion. This deletion is defined by identifying the minimum number of metabolic genes that deactivate most or all reactions \(j \) with \(\nu_{\text{FBA}} = 0 \). These gene deletions force the metabolic system to operate closer to the optimal regime predicted by FBA, while they do not change the FBA fluxes and the predicted steady-state biomass production (i.e. \(G_{\text{FBA}} = G_{\text{FBA}} \)). The corresponding changes in the MOMA-predicted fluxes are expected to increase the biomass flux from \(G_{\text{MOMA}} \) to \(G_{\text{MOMA}} > G_{\text{MOMA}} \). We recursively discard the deletions that have no impact on the MOMA-predicted biomass production. The number of gene deletions is further reduced through recursively activating genes from the rescue set that contribute the least to the increase in \(G_{\text{MOMA}} \). Note that this approach increases the biomass production itself, which is not necessarily related to the biomass yield considered in metabolic engineering studies (Causey et al, 2003; Trinh et al, 2006).

Algorithmically, we start with a mutant strain defined by the deletion of one or more metabolic genes, and identify the sets of rescue deletions by adhering to the following procedure:

1. Calculate the FBA optimal flux vector \(\nu_{\text{FBA}} \) for the wild-type strain.
2. Calculate the FBA optimal flux vector \(\nu_{\text{FBA}} \) for the mutant strain.
3. Calculate the MOMA flux vector \(\nu_{\text{MOMA}} \) for the mutant strain, using \(\nu_{\text{FBA}} \) as a reference flux vector.
4. Continue if biomass flux \(G_{\text{MOMA}} < G_{\text{FBA}} \), as a set of rescue deletions may exist.
5. Identify reaction set \(K \) consisting of all reactions \(j \) such that \(\nu_{\text{MOMA}} \neq 0 \) and \(\nu_{\text{FBA}} = 0 \). Potential recovery is implemented by setting \(\nu_{\text{rec}} \) for every \(j \) in \(K \).
6. Identify \(K^* \) as self-consistent subset of \(K \) by obeying the gene–enzyme relationships.
7. Incrementally reduce \(K^* \) by identifying and activating recursively the gene from the rescue set whose deletion contributes the least to the increase of the biomass flux. Gene activation is implemented by restoring the original \(\nu_{\text{rec}} \) of the corresponding reactions.

Materials and methods

Constraint-based approach

For a network with \(m \) metabolites and \(n \) reactions, the stoichiometric constraints are represented by \(\sum_{j} S_{ij} v_j = 0 \), where \(S(S) \) is the \(m \times n \) matrix of stoichiometric coefficients and \(\nu = (v_j) \) is the vector of fluxes. The individual fluxes are limited by thermodynamic constraints, substrate availability, and the maximum reaction rates supported by the catalyzing enzymes and transporting proteins, as

\[
\alpha_i \leq v_i \leq \beta_j
\]

where \(\alpha_i = \beta_i = 0 \) for uptake reactions of substrates not available in the medium. The biomass production is incorporated as an additional reaction \(\sum c_i x_i = 1 \) biomass unit, where the stoichiometric coefficient \(c_i \) corresponds to the experimentally measured biomass composition of metabolite \(x_i \) (Edwards and Palsson, 2000). FBA consists of finding a metabolic state that satisfies these constraints while maximizing the biomass flux \(G \). The deletion of genes responsible for the production of the enzymes involved in reaction \(j \) corresponds to imposing the bounds \(\alpha_j = \beta_j = 0 \) in Equation (1). MOMA aims to find a solution \(\nu_{\text{MOMA}} \), compatible with the constraints imposed to the mutant, while being closest to the original metabolic state \(\nu_{\text{FBA}} \) in terms of Euclidean distance in the space of fluxes. Our implementations of FBA and MOMA are based on the optimization softwares GNU Linear Programming Kit (Makhorin, 2001) and Object-Oriented Quadratic Programming Package (Gertz and Wright, 2001), respectively, and have been tested using independent implementations of the CPLEX solver (ILOG CPLEX, Version 10.2.0, www.ilog.com).
Gerdes SY, Gerdes SY, Scholle MD, Campbell JW, Bálazsi G, Ravasz E, Fraenkel DG (1987) Glycolysis, pentose phosphate pathway, and Gertz EM, Wright SJ (2001) Object-Oriented Software for Quadratic Edwards JS, Ibarra RU, Palsson BO (2001) Exploring genetic interactions Boone C, Bussey H, Andrews BJ (2007) Exploring genetic interactions and networks with yeast. Nat Rev Genet 8: 437–449 Burgard AP, Pharkya P, Maranas CD (2003) OptKnock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biochim Biophys Acta 1647: 647–657 Causey TB, Zhou S, Shanmugam KT, Ingram LO (2003) Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: homoacetate production. Proc Natl Acad Sci USA 100: 825–832 Chait R, Craney A, Kishon R (2007) Antibiotic interactions that select against resistance. Nature 446: 668–671 Chatterjee R, Millard CS, Champion K, Clark DP, Donnelly MJ (2001) Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Appl Environ Microbiol 67: 148–154 Deutscher D, Meilijson I, Kupiec M, Ruppin E (2006) Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nat Rev Genet 38: 993–998 Duarte NC, Herrgard MJ, Palsson BO (2004) Reconstruction and validation of Saccharomyces cerevisiae INd750, a fully compartmentalized genome-scale metabolic model. Genome Res 14: 1298–1309 Edwards JS, Ibarra RU, Palsson BO (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19: 125–130 Edwards JS, Palsson BO (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci USA 97: 5528–5533 Elena SF, Lenski RE (1997) Test of synergistic interactions among deleterious mutations in bacteria. Nature 390: 395–398 Fischer E, Sauer U (2005) Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nat Rev Genet 37: 636–640 Fong SS, Nanchen A, Palsson BO, Sauer U (2006) Latent pathway activation and increased pathway capacity enable Escherichia coli adaptation to loss of key metabolic enzymes. J Biol Chem 281: 8024–8033 Fong SS, Palsson BO (2004) Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nat Genet 36: 1056–1058 Fraenkel DG (1987) Glycolysis, pentose phosphate pathway, and Entner–Doudoroff pathway. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, Neidhardt FC (ed), Vol. 1, pp 142–150. Washington: Am Soc Microbiol Gerdes SY, Gerdes SY, Scholle MD, Campbell JW, Balázs G, Ravasz E, Daugherty MD, Somera AL, Kyrpides NC, Anderson I, Gelfand MS, Bhattacharya A, Kapratel V, D’Souza M, Baev MV, Grechkin Y, Mseeh F, Fonsoten RE, Overbeek R, Barabási A-L, Bhattacharya A, Kapatral V, D’Souza M, Baev MV, Grechkin Y, Mseeh F, Fonsoten RE, Overbeek R, Barabási A-L, Papp B, Lercher MJ, Csermely P, Oliver SG, Hurst LD (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185: 5673–5674 Gertz EM, Wright SJ (2001) Object-Oriented Software for Quadratic Programming (OOQP). Available online at: www.cs.wisc.edu/~swright/ooqp/ Giaever G, Chu AM, Ni K, Connelly C, Riles L, Veronneau S, Dow S, Lucas-Danila A, Anderson K, André B, Arkin AP, Aströmoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418: 387–391 Glass JI, Assad-Garcia N, Alperovich N, Yooshep S, Lewis MR, Marul M, Hutchison III CA, Smith HO, Venter JC (2006) Essential genes of a minimal bacterium. Proc Natl Acad Sci USA 103: 425–430 Goh KI, Cusick JE, Valle D, Childs E, Vidal M, Barabási A-L (2007) The human disease network. Proc Natl Acad Sci USA 104: 86850–86890 Gupta S, Clark PD (1989) Escherichia coli derivatives lacking both alcohol dehydrogenase and phosphotransacetylase grow anaerobically by lactate fermentation. J Bacteriol 171: 3650–3655 Hahnfeldt P, Hlatky L (2005) in preparation Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402: C47–C52 Hashimoto M, Ichimura T, Mizoguchi H, Tanaka K, Fujimitsu K, Keyamura K, Ote T, Yamakawa T, Yamazaki Y, Mori H, Katayama T, Kato J (2005) Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome. Mol Microbiol 55: 137–149 Herring CD, Raghunathan A, Honisch C, Patel T, Applebee MK, Joyce AR, Albert TJ, Blattner FR, van den Boom D, Cantor CR, Palsson BO (2006) Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nat Rev Genet 38: 1406–1412 Ho M-W, Commings J (2001) Common gene therapy vector causes cancer as well as toxic shock. ISIS Report, 20 September (The Institute of Science in Society, London) Ibarra RU, Edwards JS, Palsson BO (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420: 186–189 Kaiser J (2005) Gene therapy: putting the fingers on gene repair. Science 310: 1894–1896 Kimmelman J (2005) Recent developments in gene transfer: risk and ethics. BMJ 330: 79–82 Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M, Asai K, Ashikaga S, Aymierich S, Bessieres P, Boland F, Brignell SC, Bron S, Bunai K, Chapuis J, Christiansen LC, Danchin A, Débarbouille M, Dervyn E, Deuerling E et al (2005) Essential Bacillales subsitits genes. Proc Natl Acad Sci USA 100: 4678–4683 Kushner JA, Haj FG, Klamdan LD, Dow MA, Kahn BB, Neel BG, White MF (2004) Islet-sparing effects of protein tyrosine phosphatase-1b deficiency delays onset of diabetes in IRS2 knockout mice. Diabetes 53: 61–66 Makhorin A (2001) GNU Linear Programming Kit (GLPK). Available online at: www.gnu.org/software/glpk/glpk.html Motter AE (2004) Cascade control and defense in complex networks. Phys Rev Lett 93: 098701 Ooi SL, Shoemaker DD, Boeke JD (2003) DNA helicase gene interaction network defined using synthetic lethality analyzed by microarray. Nat Genet 35: 277–286 Pál C, Papp B, Lercher MJ, Csermely P, Oliver SG, Hurst LD (2006) Chance and necessity in the evolution of minimal metabolic networks. Nature 440: 667–670 PEC (2007) Profiling of Escherichia coli chromosome (PEC) database. Available online at: http://www.shigen.nig.ac.jp/ecoli/pec/ Pharkya P, Maranas CD (2006) An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metab Eng 8: 1–13 Sansom OJ, Meniel VS, Muncan V, Phesse TJ, Wilkins JA, Reed KR, Vass JK, Athineos D, Clevvers H, Clarke AR (2007) Myc deletion rescues Apc deficiency in the small intestine. Nature 446: 676–679 Sauer U (2004) High-throughput phenomics: experimental methods to modular cell biology. Curr Opin Biotechnol 15: 58–63 SGD (2007) Saccharomyces Genome Database (SGD). Available online at: http://www.yeastgenome.org/ Segrè D, DeLuna A, Church GM, Kishony R (2005) Modular epistasis in yeast metabolism. Nat Genet 37: 77–83 Segrè D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci USA 99: 15112–15117
Shlomi T, Berkman O, Ruppin E (2005) Regulatory on/off minimization of metabolic flux changes after genetic perturbations. *Proc Natl Acad Sci USA* **102**: 7695–7700

Steinmetz LM, Scharfe C, Deutschbauer AM, Mokranjac D, Herman ZS, Jones T, Chu AM, Giaever G, Prokisch H, Oefner PJ, Davis RW (2002) Systematic screen for human disease genes in yeast. *Nat Genet* **31**: 400–404

Tong AHY, Evangelista M, Parsons AB, Xu H, Bader GD, Pagé N, Robinson M, Raghibizadeh S, Hogue CWV, Bussey H, Andrews B, Tyers M, Boone C (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. *Science* **294**: 2364–2368

Trinh CT, Carlson R, Wlaschin A, Srienc F (2006) Design, construction and performance of the most efficient biomass producing *E. coli* bacterium. *Metabol Eng* **8**: 628–638

Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. *Nature* **408**: 307–310

Wang XJ, Greenhalgh DA, Donehower LA, Roop DR (2000) Cooperation between Ha-ras and fos or transforming growth factor alpha overcomes a paradoxic tumor-inhibitory effect of p53 loss in transgenic mouse epidermis. *Mol Carcinog* **29**: 67–75

Wong SL, Zhang LV, Tong AHY, Li Z, Goldberg DS, King OD, Lesage G, Vidal M, Andrews B, Bussey H, Boone C, Roth PF (2004) Combining biological networks to predict genetic interactions. *Proc Natl Acad Sci USA* **101**: 15682–15687

Molecular Systems Biology is an open-access journal published by European Molecular Biology Organization and Nature Publishing Group.

This article is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 Licence.