P123
Study of naive and memory T helper cell responses in patients of chronic rhinosinusitis with nasal polyps (CRSsNP) after in vitro exposure to Aspergillus flavus

Shukla Davi1, Gargi Rai1, Muhammad Ahmad Ansari1, Praveen Kumar Singh1, Sajjad Ahmad Dar1, Naseema Gupta1, Sonal Sharma1
1Department of Microbiology, University College of Medical Sciences (University of Delhi) and Guru Teg Bahadur Hospital, Delhi, India
2Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, KSA
3Department of Otorhinolaryngology, University College of Medical Sciences (University of Delhi) and Guru Teg Bahadur Hospital, Delhi, India
4Department of Pathology, University College of Medical Sciences (University of Delhi) and Guru Teg Bahadur Hos-

del, India

Poster session 1, September 21, 2022, 12:30 PM - 1:30 PM

Objectives: To study the CD4+RA (naive) and CD4+RB (memory) in CD4+ T cell population after in vitro stimulation to Aspergillus flavus antigen in CRSsNP patients and healthy controls.

Methods: The study included 30 cases of CRSsNP (before and after six months of treatment) and 30 healthy controls. Postoperatively biopsy (polyp tissue) were subjected to KIT and culture for mycological investigation. Preoperatively, blood sample (4 ml) was collected from cases and controls for peripheral blood mononuclear cells (PBMCs) separation. PBMCs were stained in vitro by Aspergillus flavus antigen (20 μg) and Phorhambathyamine and incubated for 18 h at 37°C in CO2 incubator. Cells were harvested after incubation and stained with different monoclonal antibodies such as CD3, CD4, CD45RA, and CD45RO for flow cytometry analysis. Statistical analysis was done using SPSS software. Data were expressed as mean ± SD and the significance level was considered at probability below 0.01.

Results: The profiles of various CRSsNP patients and healthy controls were studied. The mean age and duration of disease of the patients were recorded as 28 ± 12 years and 12 ± 8 months. A total of 24(80%) cases were found positive for Aspergillus flavus from KIT/culture investigation. The percentage positivity of CD4+ CD4+ T cells was significantly increased after A. flavus stimulation in patients as compared with healthy controls. Decreased levels of CD4+RA in CD4+ T cells were analyzed in patients before and after treatment as compared with healthy controls. The percentage of CD4+RA in CD4+ T cells was found to be increased upon A. flavus stimulation in patients compared with the healthy control group.

Conclusions: The continuous exposure to fungal spores may induce unusual immune responses to Aspergillus flavus spores, triggering an allergic inflammatory reaction with increased CD4+ T cell response. Increased levels of CD4+CD45RA+ in CD4+ T cells may transform the pathogenic reaction and highlight the damage of A. flavus reactive T cells involvement in initiating inflammation in cases of CRSsNP.

P124
Cryptococcus neoformans-and Cryptococcus gattii-specific antibodies vary among children and adults with cryptococcosis and healthy from Colombia

Paola Bogaera-Alvarez1, Patricia Escalozon2, Jairo Lizarraga3, Óscar Quinto-Gómez3, Carolina Fincavage1
1Studies in Translational Microbiology and Emerging Diseases Research Group (MICRODS), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
2Group of Microbiology, National Institute of Health, Bogotá, Colombia
3Internal Medicine Department, Hospital Universitario Erasmo Mez, Universidad de Pamplona, Cartago, Colombia

Poster session 1, September 21, 2022, 12:30 PM - 1:30 PM

Background: Cryptococcus neoformans (Cn) and Cryptococcus gattii (Cg) cause cryptococcosis, a life-threatening systemic mycosis of global distribution affecting mainly immunocompromised adults.

Objectives: This study aims to determine total and specific antibodies against C. neoformans and C. gattii antigens in sera from patients with cryptococcosis and from healthy individuals from Colombia, which will help to elucidate sero-

epidemiological variations in the incidence of the disease in the country.

Methods: Sera from child and adult patients with cryptococcosis (n = 109) and sera from healthy children and adults from Colombia (n = 119) were studied. Using ELISA, total and Cyo- and Cg-specific levels of immunoglobulins IgG, IgA, and IgM were determined in sera.

Results: Total IgG, IgA, and IgM levels were higher in HIV+ as compared with HIV− patients with cryptococcosis. Specific IgG, IgA, and IgM levels tended to be higher in cryptococcosis patients than in healthy controls and to be higher in adults than in children, with a positive correlation between antibody reactivity and age. All serum immunoglobulins were more reactive against C. neoformans than C. gattii. Including all samples, a positive correlation between total and specific IgG, IgA, and IgM levels was found.

Conclusions: In cryptococcosis patients from Colombia, serum immunoglobulins levels differed depending on HIV status, as reported previously. However, this study shows for the first-time variations in immunoglobulin production among adults and children with cryptococcal disease and between Cn and Cg protein antigens. The observation of differential antibody reactivity with cryptococcal proteins encourages further studies of the humoral immune to host defense against cryptococcosis.

P125
Histoplasma capsulatum modulates the immune response exerted by mesenchymal stem cells

Carolina Rodrigues-Echeverren1, Tatiana Tamey2, Beatriz L. Gomez3, Angel Gonzalez1
1Basic and Applied Microbiology Research Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellín, Colombia, Medellín, Colombia
2Translational Microbiology and Emerging Diseases (MICROS), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia

Poster session 1, September 21, 2022, 12:30 PM - 1:30 PM

Background: Mesenchymal stem cells (MSCs) have become a tool not only for tissue regeneration but also for the treatment of inflammatory diseases. Several studies have demonstrated the therapeutic potential of MSCs for the treatment of noninfectious inflammatory diseases; however, they appear to play a dual role in infection diseases. Histoplasma is a systemic mycosis caused by Histoplasma spp., which occurs mainly in immunocompromised individuals; this mycosis can present a severe clinical picture with dissemination to various organs and is associated with an exacerbated inflammatory response and with anemia and panleucopenia if bone marrow is affected. So far, the effect of a possible interaction of Histoplasma with stem cells present in the bone marrow is unknown.

Objectives: To examine, in vitro, the immunomodulatory effects of MSCs in response to H. capsulatum infection.

Methods: MSCs were obtained from bone marrow of C57BL/6 mice, after isolation and purification, they were induced to mesenchymal lineage and characterized by flow cytometry. Live the basal expression of red blood cell receptor (TLR)-2, TLR-4, and DC1-1 was determined using flow cytometry. MSCs were induced with H. capsulatum yeast (isoat CB 1960) in a multiplicity of infection (MOI) of 5 and incubated for 24 h. In addition, some of the co-cultures were previously treated with non-specific blocking antibodies for TLR2 and TLR4 or with a blocking peptide specific for Dectin-1 (CE-207A). Furthermore, phenotypic, functional, and cell proliferation assays were done, and the expression of the genes encoding the cytokines IL-1β, IL-6, IL-10, IL-17, TNF-α, and TGF-β, as well as those for arginase 1 and iNOS were assessed.

Results: We observed that H. capsulatum has the capability to adhere and internalize within these MSCs, nonetheless, this process did not affect the survival of the fungus. The interaction of H. capsulatum with MSCs induced a slight but significantly increased expression of TLR2 but not TLR4 nor Dectin-1. In addition, the fungal infection significantly augmented the expression of IL-1β and a decrease in the expression of IL-4, IL-17, TNP-α, TGF-β, as well as the immune modulators Arg-1 and iNOS. Interestingly, blockade of those receptors did not affect phagocytosis, but increased IL-1β, IL-17, and TNF-α expression and reduced the expression of IL-4. Noteworthy, H. capsulatum-induced apoptosis and inhibited the proliferation of those stem cells; furthermore, this fungus significantly reduced the expression of genes related toadaptive differentiation and increased the expression of genes related to the adaptive differentiation process.

Conclusions: The above results indicate that MSCs do not exert a notable antifungal effect against H. capsulatum; on the contrary, this fungal pathogen not only modulates the expression of inflammatory mediators in MSCs, by a mechanism dependent on TLR2, TLR4, and Dectin-1, but also affects their viability and their ability to differentiate into a different type of specialized cells. These events could, in principle, affect both hematopoiesis and the immune responses in the infected host, and in addition, these stem cells may provide a niche for this fungus, allowing it to persist and evade host immunity.

P126
Effects of Histoplasma capsulatum infection on activation and proliferation of hematopoietic stem cells

Carolina Rodrigues-Echeverren1, Beatriz L. Gomez1, Angel Gonzalez1
1Basic and Applied Microbiology Research Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellín, Colombia
2Translational Microbiology and Emerging Diseases (MICROS), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia

Poster session 1, September 21, 2022, 12:30 PM - 1:30 PM

Background: Hematopoietic stem cells (HSCs) are considered a multipotent population with high proliferative potential, and are widely used in the treatment of leukemias, multiple myelomas, and some lymphomas. In the context of infectious diseases, some microorganisms have been reported to induce changes in the expression of surface markers in HSCs by a direct effect or through the induction of cytokines. Systemic infections are characterized by inducing stress on the bone marrow, which is reflected in an increase or decrease in leukocytes and platelets in peripheral blood, a process known as ‘emergency hematopoiesis’. Histoplasma is a systemic mycosis caused by Histoplasma spp., which occurs mainly in immunocompromised individuals; this mycosis can present a severe clinical picture with dissemination to various organs, including the bone marrow, and is associated with anemia and panleucopenia. So far, the effect of a possible interaction of Histoplasma with HSCs is unknown.

Objectives: To evaluate, in vitro, the effects of Histoplasma capsulatum infection on activation and proliferation of HSCs.

Methods: HSCs were obtained from bone marrow of C57BL/6 mice after isolation and purification, they were characterized by flow cytometry. Live the basal expression of red blood cell receptor (TLR)-2, TLR-4, and Dectin-1 was determined using flow cytometry. HSCs were induced with H. capsulatum yeast in a multiplicity of infection (MOI) of 3 and incubated for 24 h. In addition, some of the co-cultures were previously treated with specific blocking antibodies for TLR2 and TLR4 or with a blocking peptide specific for Dectin-1 (CE-207A). Furthermore, phenotypic, functional, and cell proliferation assays were done, and the expression of the genes encoding the cytokines IL-1β, IL-6, IL-10, IL-17, TNF-α, and TGF-β, as well as arginase-1 and iNOS were assessed.