Triassic to Middle Jurassic radiolarians from pelagic cherts in the Nanjō Mountains, Southwest Japan – Part 1. Imajō district

Satoshi Nakae

Satoshi Nakae (2013) Triassic to Middle Jurassic radiolarians from pelagic cherts in the Nanjō Mountains, Southwest Japan – Part 1. Imajō district. Bull. Geol. Surv. Japan, vol. 64 (3/4), p. 85-112, 3 figures, 2 tables, 5 plates.

Abstract: The Nanjō Mountains located in the central region of Fukui Prefecture, Southwest Japan, are chiefly underlain by a sedimentary complex consisting of various rock-types such as basalt, limestone, chert, mudstone and sandstone. Among these rocks within the mountains, 27 chert outcrops were explored for their radiolarian content. In the studied Imajō district, the 14 rock samples from 10 localities yielded moderately- to poorly-preserved radiolarian remains as a result. Most of the samples contained Triassic to Middle Jurassic species, with Spumellaria and Entactinaria dominant among the Triassic faunas and Nassellaria dominant among the Jurassic faunas. The description and faunal analysis of these radiolarians revealed that the cherts in the Imajō district indicate a long range in age from the Olenekian? stage to the Bajocian stage.

Keywords: radiolaria, Triassic, Middle Jurassic, Nanjō Mountains, Imajō district, Fukui Prefecture, Southwest Japan

1. Introduction

The Nanjō Mountains, which extend over an area of ca. 40 km x 20 km in the central region of Fukui Prefecture, are geotectonically divided into the Mino and Ultra-Tamba belts of the Inner Zone of Southwest Japan. The lithologic assemblages of each belt differ from one other; the accretionary complex of the Mino belt is regarded as one of the Jurassic accretionary complexes that formed along the eastern margin of the paleo-Asian continent (e.g., Wakita, 1988). The Mino belt consists of thrust-bounded units of basalt and limestone of oceanic island/ seamount origin, cherts of pelagic origin and terrigenous clastic rocks (Wakita, 1988; Nakae et al., in press). Conversely, the accretionary complex of the Ultra-Tamba belt is dominated by pale or greenish gray sandstone with subordinate chert and phylitic mudstone of Permian age (Umeda et al., 1996; Nakae, 2012). 1:50,000 scale maps of the “Imajō” and “Kanmuri Yama” districts almost cover the entire area of the Nanjō Mountains (Fig.1).

The age of the cherts in the Nanjō Mountains has so far been determined to be Triassic to Jurassic (e.g., Hattori and Yoshimura, 1982; Takamura and Hayami, 1985; Taga, 1997; Umeda and Taga, 2003). Through this work, additional extraction of radiolarians from the accretionary complex of the Mino belt in the Nanjō Mountains was therefore conducted for detailed age determination of its component rocks. Consequently, this first report documents all of the radiolarian species extracted from the cherts in the Imajō district; radiolarians from the Kanmuri Yama district will be described in a subsequent report.

2. Materials and Method

Through the course of this study, approximately 530 samples were collected from the Imajō and Kanmuri Yama districts in the Nanjō Mountains. The samples were undertaken using an usual technique for radiolarian extraction; briefly, the rock samples were individually soaked in dilute hydrofluoric acid (HF) solution (5%) for 10 to 15 hours, before being washed through a 62µm mesh sieve (235#). As a result, age-diagnostic radiolarians representative of Triassic to Middle Jurassic ages were recovered from 40 chert samples, 14 of which were from the Imajō district. The residues of each processed sample were then examined under a stereomicroscope, and radiolarian remains were selected for examination by scanning electronic microscope (SEM). All figured specimens were deposited and registered with the Geological Museum, Geological Survey of Japan under catalogue numbers (GSJ F).
Fig. 1 Index map of the Imajō district in the Nanjō Mountains.
(a): The Nanjō Mountains are situated in a central region of Fukui Prefecture. (b): A simplified geological map of the mountains,
most part of which geotectonically belongs to the Mino belt, Southwest Japan. The Imajō district contains the western part of
the Nanjō Mountains and Tsuruga Bay. Detailed radiolarian localities with symbols are given in Fig. 2.

3. Radiolarian locality and fauna

Fourteen chert samples comprising part of a suite of 222 samples that were collected from the Imajō district
in the Nanjō Mountains yielded moderately- to poorly-
preserved radiolarian faunas. Most of the faunas consist
of radiolarians, which are identifiable as Triassic to Middle
Jurassic species. Radiolarian localities (Ic-1 – Ic10) are
shown in Figs. 1 and 2, and the identified species are listed
in Table 1. Below is a detailed description of the localities
investigated and their faunal contents.

(1) Locality Ic-1 (Fig. 2a)
Location: South of Tochinoki-tōge, Yogo, Nagahama City.
(lat. 35º41’34.6" N, long. 136º9’43.7" E)
Sample number: IJ 1502g.
Lithology: Thinly bedded gray chert.
Fauna: Cryptostephanidium spp., Protopsium spp. (Plate 1).
Age: Probably early Anisian – late Carnian.

(2) Locality Ic-2 (Fig. 2d)
Location: North of Ōgiri, Minamiechizen Town.
(lat. 35º46’44.7" N, long. 136º8’36.1" E)
Sample number: IJ 2202.
Lithology: Thinly bedded light-gray chert. Slightly
tuffaceous.
Fauna: Archaeocenosphaera? spp., Entactinia? spp.
(Plate 1).
Age: Probably early Olenekian – middle Anisian.

(3) Locality Ic-3 (Fig. 2d)
Location: Northeast of Imajō, Minamiechizen Town.
(lat. 35º46’54" N, long. 136º12’0.9" E)
Sample number: IJ 2703.
Lithology: Thinly bedded light-gray chert.
Fauna: Pantanellium sp., Praewilliriedellum? spp.,
Praezhamoidellum? sp., Eucyrtidiellum unumaense (Yao),
Parahsuum spp., Praeparvicingula? sp., Lantus sp. cf. L.
sixi Yeh, Lantus? sp. (Plate 1)
Age: Early Bajocian.

(4) Locality Ic-4 (Fig. 2d)
Location: Yashirodani, Minamiechizen Town.
(lat. 35º47’39.2" N, long. 136º12’09.7” E)
Sample number: IJ 2901.
Lithology: Thinly bedded gray chert.
Fauna: Pantanellium sp., Archaeocenosphaera sp.,
Plafkerium? spp., Plafkerium? antiquum Sugiyama,
Protopsium sp., Eptingium? sp., Cryptostephanidium
japonicum (Nakaseko and Nishimura), Cryptostephanidium
sp. cf. C. longispinosum (Sashida), Pseudostylosphaera
sp. A sensu Sugiyama (1992), Pseudostylosphaera
sp. (Plate 2).
Age: Early – middle Anisian.

(5) Locality Ic-5 (Fig. 2d)
Location: Northwest of Somayama, Minamiechizen Town.
Triassic to Middle Jurassic radiolarians from cherts in the Nankō Mountains – Part 1. Imajō district (Nakae)

Sample number: IJ 3205.
Lithology: Thinly bedded light-gray chert.
Fauna: Plafkerium? sp., Protopsium spp. (Plate 2).
Age: Probably middle Anisian – late Rhaetian.

(6) Locality Ic-6 (Fig. 2b)
Location: Hashitate, Minamiechizen Town.
(lat. 35°43′17.3″ N, long. 136°14′13″ E)
Sample number: IJ 4001.
Lithology: Thinly bedded light-gray chert.
Fauna: Spumellaria gen. et sp. indet (Plate 2).
Age: Probably late Anisian – late Rhaetian.

(7) Locality Ic-7 (Fig. 2d)
Location: West of Okunono, Minamiechizen Town.
(lat. 35°48′21.5″ N, Long. 136°8′59.9″ E)
Sample number: IJ 5502.
Lithology: Thinly bedded light-gray chert.
Fauna: Eptingium sp. cf. E. manfredi Dumitrică, Cryptostephanidium spp., Pseudostylosphaera japonica (Nakaseko and Nishinura), Pseudostylosphaera spp., Bulbocyrtium sp. A sensu Sugiyama (1997), Triassocampe deweveri (Nakaseko and Nishimura), Triassocampe sp. aff. T. diordinis Brtin sensu Sugiyama (1992) (Plate 3).
Age: Late Anisian.

Fig. 2 Localities of chert samples yielding Triassic to Middle Jurassic radiolarians.
Parts of topographic maps of “Itadori” for figures (a) and (b), “Kôno” for figure (c) and “Imajô” for figure (d), published from the Geospatial Information Authority of Japan, are used.

(lat. 35°48′22.9″ N, long. 136°12′41.7″ E)
Sample number: IJ 3205.
Lithology: Thinly bedded light-gray chert.
Fauna: Plafkerium? sp., Protopsium spp. (Plate 2).
Age: Probably middle Anisian – late Rhaetian.

Locality Ic-6 (Fig. 2b)
Location: Hashitate, Minamiechizen Town.
(lat. 35°43′17.3″ N, long. 136°14′13″ E)
Sample number: IJ 4001.
Lithology: Thinly bedded light-gray chert.
Fauna: Spumellaria gen. et sp. indet (Plate 2).
Age: Probably late Anisian – late Rhaetian.

Locality Ic-7 (Fig. 2d)
Location: West of Okunono, Minamiechizen Town.
(lat. 35°48′21.5″ N, Long. 136°8′59.9″ E)
Sample number: IJ 5502.
Lithology: Thinly bedded light-gray chert.
Fauna: Eptingium sp. cf. E. manfredi Dumitrică, Cryptostephanidium spp., Pseudostylosphaera japonica (Nakaseko and Nishinura), Pseudostylosphaera spp., Bulbocyrtium sp. A sensu Sugiyama (1997), Triassocampe deweveri (Nakaseko and Nishimura), Triassocampe sp. aff. T. diordinis Brtin sensu Sugiyama (1992) (Plate 3).
Age: Late Anisian.

Fig. 2 Localities of chert samples yielding Triassic to Middle Jurassic radiolarians.
Parts of topographic maps of “Itadori” for figures (a) and (b), “Kôno” for figure (c) and “Imajô” for figure (d), published from the Geospatial Information Authority of Japan, are used.
Table 1 List of radiolarian species detected from the Imajō district in the Nanjō Mountains.

Locality Number (Ic-)	1	2	3	4	5	6	7	8	9	10

- Gorgasantium sp. cf. G. gongyoideum Kishida and Hisada +
- Pantanellium sp. cf. P. foveatum Mizutani and Kido +
- Pantanellium sp. cf. P. tamunense Pessagno and Blome +
- Pantanellium spp. + + +
- Pantanellium ? spp. +
- Archaeoencephalura sp. +
- Archaeoencephalura ? spp. +
- Emilevia sp. +
- Pflaikermia ? antiquum Sugiyama +
- Pflaikermia ? spp. + + +
- Paronella sp. cf. P. notabilis Whalen and Carter +
- Protopsium spp. + +
- Pantanelliidae gen. et sp. indet. +
- Spumellaria gen. et sp. indet. + + + +
- Thurstonia sp. +
- Entactinia ? spp. +
- Eptingium sp. cf. E. manfredi Dumitriča +
- Eptingium ? sp. +
- Cryptostephanidium japonicum (Nakaseko and Nishimura) +
- Cryptostephanidium sp. cf. C. longispinosum (Sashida) +
- Cryptostephanidium spp. + + +
- Hindeosphaera sp. cf. H. spinulosa (Nakaseko and Nishimura) +
- Pseudostylosphaera japonica (Nakaseko and Nishimura) +
- Pseudostylosphaera sp. A sensu Sugiyama (1992) +
- Pseudostylosphaera spp. + +
- Mesosaturnalis spp. +
- Entactinaria gen. et sp. indet. +
- Hozmadia rotunda (Nakaseko and Nishimura) +
- Hozmadia sp. cf. H. giganteus Sugiyama +
- Diceratigalea sp. +
- Napora spp. +
- Bulbocyrtium sp. A sensu Sugiyama (1997) +
- Wiliistriedellum ? sp. +
- Praewilliriedellum ? spp. +
- Praezhamoidellum yaoi Kozur +
- Praezhamoidellum sp. cf. P. yaoi Kozur +
- Praezhamoidellum sp. cf. P. convexa (Yao) +
- Praezhamoidellum ? spp. +
- Eucyrtidiellum unumaense (Yao) +
- Eucyrtidiellum gymnus Cordley +
- Eucyrtidiellum spp. + +
- Triassocampe deweveri (Nakaseko and Nishimura) +
- Triassocampe sp. aff. T. diordinisi Bragin sensu Sugiyama (1992) +
- Triassocampe +
- Bagotum maudense Pessagno and Whalen +
- Bagotum modestum Pessagno and Whalen +
- Bagotum sp. +
- Broctus ruezi Yeh +
- Hsuum spp. + +
- Parahsuum spp. + + + +
- Praseparvicingula ? sp. +
- Elodium sp. cf. E. pessagnoi Yeh and Cheng +
- Katroma angusta Yeh +
- Katroma brevitubus Dumitrica and Gorčan +
- Katroma spp. +
- Teesium ? sp. +
- Streptocapsa plicarum (Yao) +
- Corum ? sp. +
- Stichomitra spp. +
- Dictyomitrella sp. +
- Lantus sp. cf. L. sici Yeh +
- Lantus ? sp. +
- Poulpiidae gen. et sp. indet. + + + +
- Multisegmented Nassellaria gen. et sp. indet. + + + +
- Nassellaria gen. et sp. indet. + +

Bulletin of the Geological Survey of Japan, vol. 64 (3/4), 2013
(8) Locality Ic-8 (Fig. 2d)
Location: West of Okunono, Minamiechizen Town.
(lat. 35°48′19.4″ N, long. 136°8′58.1″ E)
Sample number: IJ 5503.
Lithology: Thinly bedded pale-gray chert.
Fauna: Hindeosphaera sp. cf. H. spinulosa (Nakaseko and Nishimura), Triassocampe sp. (Plate 3).
Age: Probably early – late Anisian.

(9) Locality Ic-9 (Fig. 2d)
Location: West of Yunō, Minamiechizen Town.
(lat. 35°47′41.7″ N, long. 136°9′48.2″ E)
Sample number: IJ 5702a.
Lithology: Thinly bedded pale-gray chert.
Fauna: Pantanellium sp. (Plate 4), Kido, Straitojaponocapsa plicarum (Yao), Dictyomitrella sp. (Plate 4).
Age: Late Anisian.

Locality Ic-10 (Fig. 2c)
Location: South of Kōno, Minamiechizen Town.
(lat. 35°48′15.4″ N, long. 136°9′28.5″ E)
Sample number: IJ 6901a.
Lithology: Thinly bedded reddish-brown chert.
Fauna: Pantanellium sp., Williriedellum? sp., Praezhamoidellum? sp., Bagotum sp., Parahsuum sp., Corum? sp., Stichomitra sp. (Plate 5).
Age: Probably early Sinemurian – early Toarcian.

Sample number: IJ 6901b.
Lithology: Thinly bedded reddish-brown chert.
Fauna: Pantanellium sp., Emiliuvia sp., Paronaella sp. cf. P. notabilis Whalen and Carter, Praezhamoidellum sp. cf. P. convexa (Yao), Eucyrtidiellum gunense Cordey, Eucyrtidiellum sp., Bagotum maudense Pessagno and Whalen, Broctus ruesti Yeh, Parahsuum sp., Katroma angusta Yeh, Katroma sp., Teestium? sp. (Plate 4).
Age: Early Pliensbachian – early Toarcian.

Sample number: IJ 5702b.
Lithology: Thinly bedded pale-gray chert.
Fauna: Pantanellium sp. cf. P. foveatum Mizutani and Kido, Napora sp., Praezhamoidellum yaoi Kozur, Straitojaponocapsa plicarum (Yao), Dictyomitrella sp. (Plate 4).
Age: Bajocian.

Sample number: IJ 5702i.
Lithology: Thinly bedded light-gray chert.
Fauna: Gorganiun sp. cf. G. gongyloideum Kishida and Hisada, Pantanellium sp. cf. P. tanuense Pessagno and Blome, Pantanellium spp., Thurstonia sp., Mesosaturnalis spp., Diceratigalea sp., Eucyrtidiellum sp., Hsuum sp., Parahsuum sp., Elodium sp. cf. E. pessagnoi Yeh and Cheng, Katroma angusta Yeh, Katroma sp., Teestium? sp. (Plate 4).
Age: Late Pliensbachian – early Toarcian.

Sample number: IJ 6901c.
Lithology: Thinly bedded reddish-brown chert.
Fauna: Praezhamoidellum sp. cf. P. yaoi Kozur, Bagotum modestum Pessagno and Whalen, Hsuum sp. (Plate 5).
Age: Early Pliensbachian – early Toarcian.

4. Age determination

In order to determine the age of the radiolarian faunas extracted from the chert samples and described in this report, the zonation schemes proposed by Sugiyama (1992, 1997) for the Triassic, by Hori (1990) and Carter et al. (1998, 2010) for the Lower Jurassic, and by Baumgartner et al. (1995) and Matsuoka (1995) for the Middle Jurassic periods, are primarily applicable. The biostratigraphic ranges that were recently extensively analyzed by O’Dogherty et al. (2009) are used for the radiolarian genera listed in Table 2. In addition, the biostratigraphic ranges of the radiolarian species discussed below are mainly based on Yao (1984), Kozur (1984) and Yeh (1987), together with the above literatures.

Genus	Range
Gorganiun	upper Norian – upper Valanginian
Pantanellium	upper Carnian – lower Aptian
Archaeocenosphaera	middle Anisian – upper Campanian
Emiliuvia	lower Sinemurian – upper Valanginian
Ptakeriun	middle Anisian – upper Rhaetian
Paronaella	lower Rhaetian – upper Coniacian
Protopsium	upper Hettangian – lower Toarcian
Thurstonia	low Hettangian – lower Toarcian
Entactinia	upper Devonian – lower Olenekian
Eptingium	lower Anisian – upper Carnian
Cryptostephanidium	upper Anisian – upper Norian
Hindeosphaera	upper Anisian – upper Carnian
Pseudozystosphaera	upper Olenekian – lower Carnian
Mesosaturnalis	middle Norian – upper Coniacian
Hsuum	upper Olenekian – upper Carnian
Diceratigalea	lower Pliensbachian – upper Aalenian
Napora	upper Sinemurian – lower Turonian
Bulboechythium	upper Carnian – middle Norian
Williriedellum	upper Anisian – lower Aptian
Praewilliriedellum	upper Aalenian – upper Barremian
Praezhamoidellum	upper Aalenian – upper Barremian
Eucyrtidiellum	lower Pliensbachian – upper Tithonian
Triassocampe	lower Anisian – upper Norian
Bagotum	lower Sinemurian – lower Toarcian
Broctus	upper Sinemurian – lower Toarcian
Hsuum	lower Pliensbachian – lower Carnian
Parahsuum	lower Hettangian – upper Kimmeridgian
Praeaparvicingula	middle Toarcian – upper Barremian
Elodium	middle Toarcian – upper Aalenian
Katroma	lower Sinemurian – lower Toarcian
Teestium	upper Sinemurian
Corum	Ladinian – middle Norian
Straitojaponocapsa	lower Bajocian – upper Callovian
Lantus	lower Pliensbachian – upper Kimmeridgian

— 89 —
Samples IJ1502g, IJ2202, IJ3205, IJ4001 and IJ5503 contain radiolarian faunas with very low diversity. Sample IJ2202 yields poorly-preserved Archaeocenosphaera? spp. and Entactinia? spp. The biostratigraphic ranges of each genus are middle Anisian – upper Campanian and upper Devonian – lower Olenekian, therefore probably implying that the age of this fauna is estimated to be an early Olenekian? – middle Anisian interval. Sample IJ5503 includes poorly-preserved specimens belonging to genera Triassocampe, which existed in an interval from early Pliensbachian to earliest Toarcian. Among the other Jurassic species, there are Triassocampe aff. T. diordinis Bradin sensu Sugiyama (1992) recognized in the former sample, and the occurrence of Hozmadia rotunda (Nakaseko and Nishimura) and numerous species belonging to Jurassic genera. Coexistence of the first three species is restricted to the interval from early to middle Anisian age (Sugiyama, 1992, 1997).

Samples IJ5502 and IJ5702a are estimated to be late Anisian age, based on the co-occurrence of Pseudostylosphaera sp. A sensu Sugiyama (1997), Triassocampe deweveri (Nakaseko and Nishimura) and Triassocampe sp. aff. T. diordinis Bradin sensu Sugiyama (1992) recognized in the former sample, and the occurrence of Hozmadia rotunda (Nakaseko and Nishimura) in the latter sample.

Bagotum sp. is the only a diagnostic radiolarian specimen in Sample IJ6901a, indicating that it is from an early Sinemurian – early Toarcian interval. Bagotum modestum Pessagno and Whalen in Sample IJ6901c and Katroma angusta Yeh in Sample IJ5702i are also diagnostic species, with their ages assigned to an early Pliensbachian – early Toarcian interval and a late Pliensbachian – early Toarcian interval, respectively.

Sample IJ6901b yielded Eucyrtidiellum gunense Cordey, Bagotum modestum Pessagno and Whalen, Brocuts ruesti Yeh and Katroma brevitubus Dumitrica and Goričan, therefore indicating that age of this sample is constrained with these species which co-exist in an interval from early Pliensbachian to earliest Toarcian.

Sample IJ2703 contains Eucyrtidiellum unumaense (Yao) and numerous species belonging to Jurassic genera. Eucyrtidiellum unumaense (Yao) has a relatively longer age range extending from the lower Bajocian to the lower Oxfordian. Among the other Jurassic species, Parahsuum spp. are poorly-preserved but the presence of short and inflated spindle-shaped test with simple square pore frames. These morphologic features indicate that they are probably correlated with Parahsuum izeense (Pessagno and Whalen), which ranges from before the

Fig. 3 Geologic age of each chert sample based on the detected radiolarians.

Radiolarians zonation schemes proposed by after-mentioned literatures are primarily adapted in this figure. These zones are arranged in ascending order: TR0 – TR8 for Triassic (Sugiyama, 1997); Pl, Kk, Ec, Te, Mh and Pg for Hettangian – lower Aalenian (Hori, 1990); Cm, Pa, Pb, Ct, Ps, CW, Js for Hettangian – Sinemurian (Carter et al., 1998); 2 – 33 for uppermost Sinemurian – Toarcian (Carter et al., 2010); JR3 – JR8 for Middle Jurassic (Matsuoka, 1995); UAZ1 – UAZ8 for Middle Jurassic (Baumgartner et al., 1995). Abbreviations are as follows. Pl: Parahsuum aff. longiconicum, Kk: Katroma kurusuensis, Ec: Eucyrtidiellum? sp. C, Te: Trillius elkhornensis, Mh: Mesosaturnalis hexagonus, Pg: Parahsuum? grande, Cm: Canoptum merum, Pa: Protokatroma australi, Pb: Pantanellium browni, Ct: Crucella hettangica, Ps: Parahsuum simiplum, CW: Canatus rockshensis and Wrangelium thurstonense, Js: Jaco? sandspitensis, UAZ: Unitary Association Zone.
middle Bajocian. On the basis of coexistence of the above two species, the age of this sample is estimated to be an interval of between early and late Bajocian.

Praezhamoidellum yaoi Kozur and *Striatojaponocapsa plicarum* (Yao) detected from Sample IJ5702b are diagnostic species of the Middle Jurassic period. *Praezhamoidellum yaoi* Kozur has a range that probably extends from the Aalenian to Bajocian ages. *Striatojaponocapsa plicarum* s.l. (Yao) has a slightly long range from the lower Bajocian to lower Oxfordian ages, and is divided into different morphological types with slightly different age ranges (Baumgartner, 1984; Baumgartner et al., 1995). The examined specimens are included in a broad type (Baumgartner, 1984) or they may belong to *Striatojaponocapsa plicarum* ssp. A (Baumgartner et al., 1995), in which case the age range of these specimens would extend from the upper Bajocian to lower Bathonian. Nevertheless, due to their poorly-preserved state, these specimens are treated as *Striatojaponocapsa plicarum* s.l. This consideration may suggest a Bajocian age.

5. Conclusion

Moderately- to poorly-preserved radiolarian faunas were extracted from 14 chert samples of 10 localities in the Imajō district, the Nanjō Mountains, Southwest Japan, and were examined to constrain the ages of the cherts. Based on the recent biostratigraphic data of the Triassic to Middle Jurassic radiolarians, the studied faunas contain a long range in age from the Olenekian? stage to the Bajocian stage (Fig. 3).

6. Systematic Paleontology

Descriptions of the radiolarian species examined in this report, mainly employed the taxonomic classification of De Wever et al. (2001) and O’Dogherty et al. (2009).

Subclass **RADIOLARIA** Müller 1858
Order **SPUMELLARIA** Ehrenberg 1875, emend. De Wever, Dumitrica, Caulet, Nigrini and Caridroit 2001

Family **Pantanellidae** Pessagno 1977b

Genus *Gorgansium* Pessagno and Blome 1980
Type species *Gorgansium siviesense* Pessagno and Blome 1980

Gorgansium sp. cf. *G. gongyloideum* Kishida and Hisada 1985
(Plate 4, fig. 13)
Remarks: The specimen is characterized by having a spherical cortical shell with hexagonal pore frames and lacking well-developed nodes at vertices. Two spines are nearly equal in length, whereas the third spine is slightly longer. It may be assignable to *Gorgansium gongyloideum* Kishida and Hisada, but is partly broken due to poor preservation.

Genus *Pantanellium* Pessagno 1977a
Type species *Pantanellium riedeli* Pessagno 1977a

Pantanellium sp. cf. *P. foveatum* Mizutani and Kido 1983
(Plate 4, figs. 1-2)
Remarks: The specimen is similar to *Pantanellium foveatum* Mizutani and Kido, but differs slightly from it by having an elongated cortical shell.

Pantanellium sp. cf. *P. tanuense* Pessagno and Blome 1980
(Plate 4, fig. 10)
Remarks: The specimen is poorly preserved but is morphologically similar to *Pantanellium tanuense* Pessagno and Blome by having a spherical cortical shell with small nodes at vertices.

Pantanellium spp.
(Plate 1, fig. 21; Plate 4, figs. 11-12; Plate 5, figs. 1, 11)
Remarks: Four of the obtained specimens lack one of the bipolar spines, and cortical shell of the remaining specimen is partially broken. However, they are identical with species of *Pantanellium* on the basis of the spherical cortical shell that is composed of massive polygonal pore frames having nodes at vertices.

Pantanellium? spp.
(Plate 2, figs. 3-4)
Remarks: The obtained specimens are similar to genus *Pantanellium* in general shape, but their surface structures are indistinct.

Family **Xiphostylidae** Haeckel 1881, emend. De Wever, Dumitrica, Caulet, Nigrini and Caridroit 2001

Genus *Archaeocenosphaera* Pessagno and Yang in Pessagno, Six and Yang 1989
Type species *Archaeocenosphaera ruesti* Pessagno and Yang in Pessagno, Six and Yang 1989

Archaeocenosphaera sp.
(Plate 2, fig. 1)
Remarks: Spherical cortical shell of the figured specimen consists of two fused latticed layers with symmetrical polygonal pore frames.

Archaeocenosphaera? spp.
(Plate 1, figs. 7-8)
Remarks: The obtained specimens are similar to genus *Archaeocenosphaera* in general shape, but their surface structure is indistinct.

Family **Emiluviiidae** Dumitrica 1995

Genus *Emiluvia* Foreman 1973
Type species *Emiluvia chica* Foreman 1973

Emiluvia sp.
Remarks: A poorly-preserved specimen was obtained. It is similar to genus *Emiluvia* in possessing a modified rectangular shell with four spines, two of which are broken.

Genus *Plafkerium* Pessagno in Pessagno, Finch and Abbott 1979
Type species *Plafkerium abbotti* Pessagno in Pessagno, Finch and Abbott 1979

Plafkerium? antiquum Sugiyama 1992
(Plate 2, fig. 12)
1980 *Staurosphaera?* sp. B – Yao, Matsuda and Iozaki, plate 1, fig. 6.
1982 *Staurodoras?* sp. – Mizutani and Koike, plate 4, fig. 5.
1992 *Plafkerium? antiquum* Sugiyama – Sugiyama, p.1219, figs. 18-4, 18-5, 18-6.
Remarks: The specimen resembles *Plafkerium? antiquum* Sugiyama in having the four long coplanar spines which are three-bladed proximally, but needle-like distally. It differs from other species of *Plafkerium* by having non-twisted spines.
Range: Upper Spathian – middle Anisian (Sugiyama, 1992).

Plafkerium? spp.
(Plate 2, figs. 10-11, 27; Plate 3, figs. 26-27)
Remarks: Cortical shell of the obtained specimens is slightly spherical rather than square in shape. Four triradiate spines, some of which are broken, extend from each corner of the shell.

Family *Archaeospongoprunidae* Pessagno 1973
Genus *Protopsium* Pessagno and Poisson 1981
Type species *Protopsium ehrenbergi* Pessagno and Poisson 1981

Protopsium spp.
(Plate 1, figs. 5-6; Plate 2, figs. 7, 23-25)
Remarks: Although lacking patagium-like mass, the examined specimens are similar to genus *Protopsium* in general shape.

Order *ENTACTINARIA* Kozur and Mostler 1982
Family *Entactiniidae* Riedel 1967
Genus *Thurstonia* Whalen and Carter 1998
Type species *Thurstonia minutaglobus* Whalen and Carter 1998

Thurstonia sp.
(Plate 4, fig. 15)
Remarks: The figured specimen possesses a spherical shell and six spines; two spines are bipolar, and four spines are arranged at right angles in radial plane. The cortical shell consists of polygonal pore frames with nodes at the vertices. These appearances are similar to those of genus *Thurstonia*.

Genus *Entactinia* Foreman 1963
Type species *Entactinia herculea* Foreman 1963

Entactinia? spp.
(Plate 1, figs. 10-20)
Remarks: Some poorly-preserved specimens were examined. They have a subspherical shell in lateral view and main spines.

Family *Eptingiidae* Dimitrić 1978
Genus *Eptingium* Dimitrić 1978
Type species *Eptingium manfredi* Dimitrić 1978

Eptingium sp. cf. *E. manfredi* Dimitrić 1978
(Plate 3, fig. 4)
Remarks: This specimen, damaged and broken, is similar to *Eptingium manfredi* Dimitrić in overall shape, but different slightly by having stout and twisted rays.

Eptingium? sp.
(Plate 2, fig. 15)
Remarks: This specimen is intensely damaged and one of the horns lacks due to poor preservation.

Genus *Cryptostephanidium* Dimitrić 1978
Type species *Cryptostephanidium cornigerum* Dimitrić 1978

Cryptostephanidium japonicum (Nakaseko and Nishimura) 1979
(Plate 2, fig. 9)
1979 *Trilonche japonica*, n. sp. – Nakaseko and Nishimura, p.72, plate 4, figs. 8, 10.
1990 *Cryptostephanidium japonicum* (Nakaseko and Nishimura) – Yeh, p.22, plate 4, fig. 10; plate 5, figs.1, 2, 7; plate 10, fig. 11; plate 11, fig. 18.
1995 *Cryptostephanidium japonicum* (Nakaseko and Nishimura) – Ramovš and Goričan, p.184, plate 5, fig. 1.
1996 *Cryptostephanidium japonicum* (Nakaseko and
Nishimura) – Kozur, Krainer and Mostler, p.207-208, plate 6, figs. 1-3.
Remarks: This specimen is characterized by having a spherical shell with high and strong nodes on the vertices of pore frames and by spines, one of which is broken, that are cylindrical in cross section.
Range: Upper Spathian – lowermost Ladinian (Sugiyama, 1997).

Cryptostephanidium sp. cf. C. longispinosum (Sashida) 1991
(Plate 2, fig. 8)
Remarks: This specimen is characterized by having a spherical shell with short and irregular nodes at the vertices of pore frames. But it differs from Cryptostephanidium longispinosum (Sashida) by having slightly longer rod-like spines.

Cryptostephanidium spp.
(Plate 1, figs. 1-2; Plate 3, figs. 5-8, figs. 23-25)
Remarks: The illustrated specimens are similar to species of genus Cryptostephanidium in having a globular cephalis with three horns, one of which lacks due to poor preservation.

Family Hindeosphaeridae Kozur and Mostler 1981
Genus Hindeosphaera Kozur and Mostler 1979
Type species Hindeosphaera foremanae Kozur and Mostler 1979

Hindeosphaera sp. cf. H. spinulosa (Nakaseko and Nishimura) 1979
(Plate 3, fig. 18)
Remarks: The examined specimen is characterized by having a slightly ellipsoidal shell and polar spines which are quite different in length. The irregularly spongy meshwork which is characteristic of Hindeosphaera spinulosa (Nakaseko and Nishimura) and is constructed by polygonal pore frames, is obscure in this specimen, due to poor preservation.

Genus Pseudostylosphaera Kozur and Mostler 1981
Type species Pseudostylosphaera gracilis Kozur and Mostler 1981

Pseudostylosphaera japonica (Nakaseko and Nishimura) 1979
(Plate 3, fig. 1)
1979 Archaeospongoprunum japonica n. sp. – Nakaseko and Nishimura, p.67-68, plate 1, figs. 2, 4, 9.
1986 Pseudostylosphaera japonica (Nakaseko and Nishimura) – Blome, Jones, Murchey and Liniecki, plate 8, figs. 1, 2.
1990 Pseudostylosphaera japonica (Nakaseko and Nishimura) – Yeh, p.15, plate 4, figs. 5-7.
Remarks: The illustrated specimen is characterized by having an ellipsoidal shell with two polar spines which are equal in length. The spines are moderately long, massive and three-bladed in axial section.
Range: Middle Anisian – lower Carnian (Sugiyama, 1997).

Pseudostylosphaera sp. A sensu Sugiyama 1992
(Plate 2, fig. 6)
1992 Pseudostylosphaera sp. A – Sugiyama, p.1209, figs. 14-1, 14-2.
1997 Pseudostylosphaera sp. A – Sugiyama, p.168, fig. 46–8.
Remarks: Although poorly preserved, the illustrated specimen is characterized by having three-bladed polar spines which are obliquely directed.
Range: Lower Anisian – Middle Anisian (Sugiyama, 1997).

Pseudostylosphaera spp.
(Plate 2, fig. 5; Plate 3, figs. 2-3, 19-22)
Remarks: The obtained specimens, some of which are poorly-preserved, resemble Pseudostylosphaera in general shape.

Family Saturnalidae Deflandre 1953, emend. Kozur and Mostler, 1972
Genus Mesosaturnalis Kozur and Mostler 1981
Type species Palaeosaturnalis levis Donofrio and Mostler 1978

Mesosaturnalis spp.
(Plate 4, figs. 20-23)
Remarks: On the basis of their general characters, the illustrated specimens are identical with genus Mesosaturnalis.

Order NASSELLARIA Ehrenberg 1875
Family Poulpidae De Wever 1981
Genus Hozmadia Dumitrică, Kozur and Mostler 1980
Type species Hozmadia reticulata Dumitrică, Kozur and Mostler 1980

Hozmadia rotundum (Nakaseko and Nishimura) 1979
(Plate 3, fig. 31)
1979 Tripilidium rotundum n. sp. – Nakaseko and Nishimura, p.81-82, plate 8, figs. 1-3.
1994 Hozmadia rotunda (Nakaseko and Nishimura) – Kozur and Mostler, p.116, plate 29, figs. 3, 4, 7.
Remarks: The shell of this specimen is spherical with large hexagonal or pentagonal pore frames. Its apical horn is slightly shorter. Although the three feet are broken, this specimen belongs to Hozmadia rotunda (Nakaseko and Nishimura).
Range: Upper Anisian (Sugiyama, 1997).
Hozmadia sp. cf. H. gifuensis Sugiyama 1992
(Plate 3, figs. 29-30)
Remarks: The cephalic shell of the illustrated specimen is constricted at its base as with *Hozmadia gifuensis* Sugiyama, but its apical spine is not stout.

Family **Foremanellinidae** Dumitrica 1982

Genus **Diceratigalea** Takemura and Nakaseko 1982
Type species *Diceratigalea hemisphaera* Takemura and Nakaseko 1982

Diceratigalea sp.
(Plate 4, fig. 19)
Remarks: The poorly-preserved specimen possesses two apical spines and four feet, one of which is broken. This appearance coincides with the diagnostic features of genus *Diceratigalea*.

Family **Ultranaporidae** Pessagno 1977b

Genus **Napora** Pessagno 1977a
Type species *Napora bukryi* Pessagno 1977a

Napora spp.
(Plate 4, figs. 3-4)
Remarks: The poorly-preserved specimens are composed of a two-segmented test with a conical cephalis and a large thorax, and are similar to genus *Napora* in possessing a massive apical horn and three slightly curved feet, one of which is broken, at the base.

Family **Bulbocyrtiidae** Kozur and Mostler 1981

Genus **Bulbocyrtium** Kozur and Mostler 1981
Type species *Bulbocyrtium reticulatum* Kozur and Mostler 1981

Bulbocyrtium sp. A sensu Sugiyama 1997
(Plate 3, fig. 10)
1990 *Yeharaia?* sp. A – Yeh, p.30, plate 7, fig.13; plate 9, figs.13,18.
1997 *Bulbocyrtium* sp. A – Sugiyama, p.147, fig.37-11.
Remarks: This specimen is characterized by having a large balloon-like cephalis with a stout apical horn, thus indicating that it can be correlated with *Bulbocyrtium* sp. A sensu Sugiyama.
Range: Middle Anisian – lower Ladinian (Sugiyama, 1997).

Family **Williriedellidae** Dumitrică 1970

Genus **Williriedellum** Dumitrică 1970
Type species *Williriedellum crystallinum* Dumitrică 1970

Williriedellum? sp.
(Plate 5, fig. 2)
Remarks: The obtained specimen is similar to genus *Williriedellum* in general form, but its constricted aperture does not appear clearly.

Genus **Praewilliriedellum** Kozur 1984
Type species *Praewilliriedellum cephalospinosum* Kozur 1984

Praewilliriedellum? spp.
(Plate 1, figs. 24-25)
Remarks: The specimens are similar to genus *Praewilliriedellum* in general form, but internal structures of their cephalothorax are indistinct.

Genus **Praezhamoidellum** Kozur 1984
Type species *Praezhamoidellum yaoi* Kozur 1984

Praezhamoidellum yaoi Kozur 1984
(Plate 4, fig. 5)
1973 “*Hemicryptocapsa*” sp. – Ichikawa and Yao, plate 4, fig. 7.
1979 *Tricolocapsa* sp. cf. *T. rüsti* Tan – Yao, p.30-31, plate 3, figs. 8-20.
1984 *Praezhamoidellum yaoi* n. sp. – Kozur, p.53-54, plate 3, fig. 3.
Remarks: This specimen is composed of a spherical cephalis, truncated conical thorax and globose abdomen. The entire shell surface has a large hexagonal frame with narrow ridges, in the center of which there is a small circular pore.
Range: Upper Aalenian? – lower Bajocian? (Yao, 1984).

Praezhamoidellum sp. cf. P. yaoi Kozur 1984
(Plate 5, fig. 23)
Remarks: The examined specimen is poorly-preserved, but similar to *Praezhamoidellum yaoi* Kozur in general form and in having hexagonal pore frames on the surface of abdomen.

Praezhamoidellum sp. cf. P. convexus (Yao) 1979
(Plate 5, fig. 22)
Remarks: The illustrated specimen is similar to *Praezhamoidellum convexus* (Yao) by having a test consisting of four segments, especially by having a poreless cephalis. It, however, differs from the latter by possessing larger pores on the surface of its fourth segment.

Praezhamoidellum? spp.
(Plate 1, fig. 26; Plate 5, fig. 3)
Remarks: It is difficult to identify the examined specimens due to their poor preservation. However, they are slightly...
similar to genus *Praezhamoidellum* in general form and in having a cephalothorax that is weakly depressed into the abdominal cavity.

Family **Eucyrtidiellidae** Takemura 1986

Genus **Eucyrtidiellum** Baumgartner 1984

Type species *Eucyrtidiellum? unumaensis* Yao 1979

Eucyrtidiellum unumaense (Yao) 1979

(Plate 1, fig. 27)

1979 *Eucyrtidiellum? unumaensis* n. sp. – Yao, p.39, plate 9, figs. 1-11.
1984 *Eucyrtidiellum unumaensis* (Yao) – Baumgartner, p.765, plate 4, fig. 6.
1987 *Eucyrtidiellum unumaense* (Yao) – Nagai, plate 2, figs. 1a, 1b, 1c.
1990a *Eucyrtidiellum unumaense* (Yao) – Nagai, p.597, figs. 4-6, 4-7.

Remarks: The cephalis is somewhat broken and an apical horn is lacked. Hexagonal meshwork is preserved on the surface of the thorax. The abdomen is relatively large and inflated-hemispherical in shape with poreless and smooth surface. Circular pores are arranged in transverse row at the base of the abdomen.

Range: Lower Bajocian – lower Oxfordian (Baumgartner 1984).

Eucyrtidiellum gunense Cordey 1998

(Plate 5, fig. 14)

1986 *Eucyrtidiellum* sp. C group – Nagai, p.12, plate 2, fig. 10.
1990b *Eucyrtidiellum* sp. C1 – Nagai, plate 4, figs. 2-3.
1998 *Eucyrtidiellum gunense* n. sp. – Cordey, p.109, plate 25, figs. 8-9.

Remarks: This specimen is characterized by having a cylindrical cephalis with a stout and longer apical horn. The wide abdomen possesses pores with thick hexagonal pore frames. The fourth segment is lacked.

Range: Lower Pliensbachian – middle Toarcian (Carter et al., 2010).

Eucyrtidiellum spp.

(Plate 4, fig. 24; Plate 5, fig. 15)

Remarks: The examined specimens are poorly-preserved, but similar to genus *Eucyrtidiellum* in general form and in having a very inflated abdomen.

Family **Ruesticyrtidae** Kozur and Mostler 1979

Genus **Triassocampe** Dumitrică, Kozur and Mostler 1980

Type species *Triassocampe scalaris* Dumitrică, Kozur and Mostler 1980

Triassocampe deweveri (Nakaseko and Nishimura) 1979

(Plate 3, figs. 12-13)

1979 *Dictyomitrella deweveri* n. sp. – Nakaseko and Nishimura, p.77, plate 10, figs. 8-9.
1982 *Triassocampe deweveri* (Nakaseko and Nishimura) – Yao, plate 1, figs. 1-3.
1994 *Triassocampe deweveri* (Nakaseko and Nishimura) – Kozur and Mostler, p.140-141, plate 45, fig. 6.

Remarks: The illustrated specimens are not well preserved, but have characteristic features of *Triassocampe deweveri* (Nakaseko and Nishimura); the cephalis is dome-shaped and imperforate, and post-cephalic segments increase slightly in width toward the distal end. On the surface of the segments, a single row of small knob-like protrusions is circumferentially arranged between well-developed circumferential ridges.

Range: Upper Anisian – upper Ladinian (Sugiyama, 1997).

Triassocampe sp.

(Plate 3, fig. 14)

Remarks: The obtained specimen belongs to genus *Triassocampe* on the basis of its well-developed circumferential ridges on the long subcylindrical test.

Family **Bagotidae** Pessagno and Whalen 1982

Genus **Bagotum** Pessagno and Whalen 1982

Type species *Bagotum maudense* Pessagno and Whalen 1982

Bagotum maudense Pessagno and Whalen 1982

(Plate 5, figs. 16-17)

1982 *Bagotum maudense* n. sp. – Pessagno and Whalen, p.118-120, plate 3, figs. 6, 11, 20.
1997 *Bagotum maudense* Pessagno and Whalen – Yao, plate 13, fig. 637.
2001 *Bagotum maudense* Pessagno and Whalen – Gawlick, Suzuki and Missoni, plate 5, fig. 8.

Remarks: The illustrated specimens resemble *Bagotum maudense* Pessagno and Whalen in possessing an elongated, slender and less inflated test. Cephalis and thorax with irregular tetragonal or pentagonal pore frames, and remaining segments with linearly arranged square to rectangular pore frames.

Range: Lower Pliensbachian – middle Toarcian (Carter et al., 2010).

Bagotum modestum Pessagno and Whalen 1982

(Plate 5, fig. 24)

1982 *Bagotum modestum* n. sp. – Pessagno and Whalen, p.120, plate 3, figs. 7, 16, 17.
2002 *Bagotum modestum* Pessagno and Whalen – Whalen and Carter, p.116, plate 10, figs. 9, 11, 12.
2003 *Bagotum modestum* Pessagno and Whalen – Goričan, Šmuca and Baumgartner, p.296, plate 5, fig. 22.
2004 *Bagotum modestum* Pessagno and Whalen – Matsuoka, fig. 193.

Remarks: This specimen resembles *Bagotum modestum* Pessagno and Whalen in overall shape, possessing a broader test. Square to rectangular pore frames on the post-abdominal segments are linearly arranged.

Range: Lower Pliensbachian – lower Toarcian (Carter et al., 2010).

Bagotum sp. (Plate 5, fig. 4)

Remarks: The obtained specimen consists of an ellipsoidal test possessing a final post-abdominal segment terminating in a dome-shaped cap. Then, it belongs to genus *Bagotum*.

Genus Broctus Pessagno and Whalen 1982
Type species *Broctus selwynensis* Pessagno and Whalen 1982

Broctus ruesti Yeh 1987
(Plate 5, figs. 18-19)
1987 *Broctus ruesti* n. sp. – Yeh, p.54, plate 4, figs. 1-3, 7, 21.
2004 *Broctus ruesti* Yeh – Ziabrev, Aitchison, Abrajevitch, Badengzhu, Davis and Luo, figs. 5-9.

Remarks: This specimen is characterized by possessing a spindle-like test. Massive costae and thin transverse bars on the thorax and subsequent segments form rectangular pore frames.

Range: Lower Pliensbachian – lowermost Toarcian (Carter et al., 2010).

Family Hsuidae Pessagno and Whalen 1982
Genus Hsuum Pessagno 1977a, *emend.* Takemura 1986

Hsuum spp. (Plate 4, fig. 27; Plate 5, fig. 26)

Remarks: The obtained specimens consist of a long conical and multi-segmented test that is covered by weakly developed longitudinal costae.

Genus Parahsuum Yao 1982
Type species *Parahsuum simplum* Yao 1982

Parahsuum spp. (Plate 1, figs. 30-34; Plate 4, fig. 25; Plate 5, figs. 8-9, 20)

Remarks: Some morphotypes are recognized among the obtained specimens, but they are characterized by pores on the test that are arranged in both longitudinal and lateral lines.

Family *Parvicingulidae* Pessagno 1977a

Genus Praeparvicingula Pessagno, Blome and Hull in Pessagno, Blome, Hull and Six 1993
Type species *Parvicingula profunda* Pessagno and Whalen 1982

Praeparvicingula? sp. (Plate 1, fig. 36)

Remarks: The obtained specimen is characterized by two or three rows of pores that are laterally arranged between thick circumferential ridges. However, it is unclear that this specimen belongs to genus *Praeparvicingula*.

Genus Elodium Carter in Carter, Whalen and Guex 1998
Type species *Elodium cameroni* Carter in Carter, Whalen and Guex 1998

Elodium sp. cf. E. pessagnoi Yeh and Cheng 1996 (Plate 4, fig. 26)

Remarks: This specimen is broken and poorly preserved, but is similar to *Elodium pessagnoi* Yeh and Cheng in general form and in having a conical test with a massive apical horn.

Family Syringocapsidae Foreman 1973

Genus Katroma Pessagno and Poinsson 1981, *emend.* De Wever 1982, *emend.* Whalen and Carter 1998
Type species *Katroma neagui* Pessagno and Poinsson 1981

Katroma angusta Yeh 1987
(Plate 4, fig. 28)
1987 *Katroma angusta* n. sp. – Yeh, p.79, plate 23, fig. 8; plate 30, fig. 10.
2002 *Katroma angusta* Yeh – Whalen and Carter, p.134, plate 14, figs. 1-3, 9-10; plate 18, figs. 7-8.

Remarks: Although the apical horn and tubular extension are partly broken, this specimen resembles *Katroma angusta* Yeh in having an inflated post-abdominal chamber.

Range: Upper Pliensbachian – lower Toarcian (Yeh, 1987).

Katroma brevitubus Dumitrica and Goričan in Goričan et al., 2006 (Plate 5, fig. 21)
1982 *Syringocapsa* sp. B – Yao, plate 4, figs.14-15.
1990 *Syringocapsa* sp. B – Hori, plate 8, fig.11.
1998 *Katroma megasphaera* n. sp. – Yeh and Cheng, p.28-29, plate 7, figs. 9, 20.
2006 *Katroma brevitubus* n. sp. – Goričan et al., p.220, plate KAT12, figs. 1-9.

Remarks: This specimen resembles *Katroma brevitubus* Dumitrica and Goričan in having an inflated spherical abdomen and a short tubular extension.

Range: Lower Pliensbachian – lowermost Toarcian (Carter et al., 2010).
Katroma spp.
(Plate 4, figs. 29-30)
Remarks: The examined specimens are comprised of four segmented test. Post-abdominal segment is subspherical in shape and terminates in cylindrical tubular extension. This appearance is characteristic features of genus *Katroma*.

Genus *Teesium* Whalen and Carter 1998
Type species *Teesium insignitum* Whalen and Carter 1998

Teesium? sp.
(Plate 4, fig. 16)
Remarks: Genus *Teesium* consists of a test with cephalis, thorax and large inflated abdomen: one prominent cylindrical horn and two cylindrical arms are attached to top of cephalis and base of abdomen, respectively (Whalen and Carter, 1998). This form is similar to that of the obtained specimen, but pore frame structure of the specimen is unclear.

Genus *Striatojaponocapsa* Kozur 1984
Type species *Tricolocapsa plicarum* Yao 1979

Striatojaponocapsa plicarum (Yao 1979)
(Plate 4, figs. 6-7)
1979 *Tricolocapsa plicarum* n. sp. – Yao, p.32-33, plate 4, figs. 1-11.
1983 *Tricolocapsa plicarum* (Yao) – Matsuoka, p.20, plate 3, figs. 1-2.
1984 *Tricolocapsa plicarum* (Yao) – Baumgartner, p.790, plate 10, figs. 6-7.
1984 *Striatojaponocapsa plicarum* (Yao) – Kozur, plate 7, fig. 3.
1997 *Striatojaponocapsa plicarum plicarum* (Yao) – Hull, p168, plate 37, figs. 6, 9.
Remarks: Two morphotypes, broadly spindle-shaped and slenderly spindle-shaped, are included in this species (Baumgartner, 1984). The obtained specimens are grouped into the broad type which has longitudinal plicae. 16-18 plicae are visible in lateral view. A dish-like basal appendage of each of the specimens is broken. Baumgartner *et al.* (1995) distinguished this type as *Striatojaponocapsa plicarum* ssp. A, which possesses a circular depression near aperture, but the depression is indistinct on the obtained specimen.
Range: Upper Bajocian – lower Bathonian (Baumgartner *et al.*, 1995).

Family Pseudodictyomitridae Pessagno 1977b

Genus *Corum* Blome 1984
Type species *Corum speciosum* Blome 1984

Corum? sp.
(Plate 5, fig. 5)
Remarks: A poorly-preserved specimen was obtained and resembles genus *Corum* in having discontinuous costae on the surface of abdomen and post-abdominal segments, but one row of primary pores at the end of the costae are indistinct.

Family Eucyrtidiidae Ehrenberg 1847

Genus *Stichomitra* Cayeux 1897
Type species *Stichomitra bertrandii* Cayeux 1897

Stichomitra spp.
(Plate 5, figs. 6-7)
Remarks: The examined specimens consist of a multi-segmented test. Cephalis without apical horn distinctively tends to be knob-like. Polygonal pore frames cover almost all portion of test. This appearance is characteristic features of genus *Stichomitra*.

NASSELLARIA Incertae sedis

Genus *Dictyomitrella* Haeckel 1887
Type species *Eucyrtidium articulatum* Ehrenberg 1875

Dictyomitrella sp.
(Plate 4, fig. 8)
Remarks: The illustrated specimen is composed of a conical multi-segmented test which has circumferential ridges with each one row of pores below and above. On the basis of this appearance, this specimen is assigned to genus *Dictyomitrella*.

Genus *Lantus* Yeh 1987
Type species *Lantus sixi* Yeh 1987

Lantus sp. cf. L. sixi Yeh 1987
(Plate 1, fig. 28)
Remarks: Although poorly preserved, the obtained specimen is similar to *Lantus sixi* Yeh in overall shape. However, it differs slightly from the type species by having less developed strictures between post-abdominal chambers.

Lantus? sp.
(Plate 1, fig. 29)
Remarks: The examined specimen is similar to genus *Lantus* in having a final post-abdominal segment which is closed with an ellipsoidal cap, but is slightly different from it in overall form.

Acknowledgements: This report is based on results of the study “Geology of the Imajō and Takenami district” which has been conducted by the Geological Survey of Japan, AIST. Thanks are extended to Dr. M. Saito (GSJ) for his comments regarding the radiolarian identification. Associate Prof. Y. Kamata (University of Tsukuba) is gratefully acknowledged for thorough review of the manuscript.
References

Baumgartner, P.O. (1980) Late Jurassic Hagiastridae and Patulibrachiodoridae (Radiolaria) from the Argolis Peninsula (Peloponnesus, Greece). *Micropaleontology*, 26, 274-322.

Baumgartner, P.O. (1984) A Middle Jurassic–Early Cretaceous low-latitude radiolarian zonation based on Unitary Associations and age of Tethyan radiolarians. *Ecolgeae Geologicae Helvetiae*, 77, 729-837.

Baumgartner, P.O., Bartolini, A., Carter, E.S., Conti, M., Cortese, G., Danelian, T., De Wever, P., Dumitrca, P., Dumitrca-Jud, R., Gorican, S., Guex, J., Hull, D.M., Kito, N., Marucci, M., Matsuoka, A., Murchey, B., O’Dogherty, L., Savary, J., Vishnevskaya, V., Witz, D. and Yao, A. (1995) Middle Jurassic to Early Cretaceous radiolarian biochronology of Tethys based on Unitary Association. *In* Baumgartner, P.O., O’Dogherty, L., Gorican, S., Urquhart, E., Pilleuvuit, A. and De Wever, P. eds., *Middle Jurassic to Early Cretaceous Radiolaria of Tethys: occurrence, systematics, biochronology*. Mémoires de Géologie (Lausanne), no.23, Lausanne, Switzerland, 1013-1048.

Blome, C.D. (1984) Upper Triassic Radiolaria and radiolarian zonation from western North America. *Bull. American Paleontology*, 85, 5-88.

Blome, C., Jones, D., Murchey, B.L. and Liniecki, M. (1986) Geologic implications of radiolarian-bearing Paleozoic and Mesozoic rocks from the Blue Mountains Province, eastern Oregon. *US Geol. Surv., Professional Paper*, no.1435, 79-93.

Bragin, N.Ju. (1991) Radioljarrii i nižne-mezozojskie tošči vostoka SSSR (Radiolaria of Lower Mesozoic rocks) of the eastern USSR, east regions. *Doklady Akademii Nauk SSSR Trans. Acad. Sci. USSR*, 469, 1-122. (in Russian with English summary)

Carter, E.S., Whalen, P.A. and Guex, J. (1998) Biochronology and paleontology of Lower Jurassic (Hettangian and Sinemurian) radiolarians, Queen Charlotte Islands, British Columbia. *Geol. Surv. Canada Bull.*, no.496, 1-162.

Carter, E.S., Goričan, Š., Guex, J., O’Dogherty, L., De Wever, P., Dumitrca, P., Hori, R.S., Matsuoka, A and Whalen, P.A. (2010) Global radiolarian zonation for the Pliensbachian, Toarcian and Aalenian. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 297, 401-419.

Cayeux, L. (1897) Contribution à l’étude micrographique des terrains sédimentaires. 1. Étude de quelques dépots siliceux secondaires et terriaires du Bassin de Paris et de la Belgique. 2. Craie de Bassin de Paris. *Mémoires de la Société Géologique de Nord*, Lille, 4, 1-591.

Cordey, F. (1998) Radiolaries des complexes d’accrétion de la Cordillère Canadienne (Colombie-Britannique). *Commission Géologique du Canada, Bull.*, no.509, 1-209.

Deflandre, G. (1953) Radiolaires fossiles. *In* Grassé, P.P. ed., *Traite de zoologie*. Masson, Paris, 389-436.

De Wever, P. (1981) Une nouvelle sous-famille, les Poulpiniae, et quatre nouvelles espèces de Saitoum radiolaires mésozoïques téthysiens. *Géobios*, 14, p.5-15.

De Wever, P. (1982) Nassellaria (Radiolaries polycystines) du Lias de Turquie. *Revue de Micropaleontology*, 24, 189-232.

De Wever, P., Dumitrca, P., Cautel, J.P., Nigrini, C. and Caridroit, M. (2001) *Radiolarians in the sedimentary record*. Gordon and Breach Science Publishers, 533p.

Donofrio, D. and Mostler, H. (1978) Zur Verbreitung der Saturnalidae (Radiolaria) im Mesozoikum der Nordlichen Kalkalpen und Sudalpen. *Geologisch Paläontologische mitteilungen Innsbruck*, 7, 1-55.

Dumitrca, P. (1970) Cyrtococephalic and cyrtothracic Nassellaria in some Mesozoic deposits of Romania. *Revue Roumaine de Géologie, Géophysique et Géographie (série de Géologie)*, 14, 45-124.

Dumitrca, P. (1978) Family Eptingiidae n. fam., extinct Nassellaria (Radiolaria) with sagittal ring. *Deri di Seama ale sedintelor, Institutul de Geologie si Geofizica, Bucuresti*, 64, 27-38.

Dumitrca, P. (1982) Foremanellinidae, a new family of Triassic Radiolaria. *Dari de Seama ale Sedinelor, Institutul de Geologie si Geofizica, Bucuresti*, 67, 75-82.

Dumitrca, P. (1995) Systematic framework of Jurassic and Cretaceous Radiolaria. *In* Baumgartner, P.O., O’Dogherty, L., Gorican, S., Urquhart, E., Pilleuvuit, A. and De Wever, P. eds., *Middle Jurassic to Early Cretaceous Radiolaria of Tethys: occurrence, systematics, biochronology*. Mémoires de Géologie (Lausanne), no.23, Lausanne, Switzerland, 19-35.

Dumitrca, P., Kozur, H. and Mostler, H. (1980) Contribution to the radiolarian fauna of the Middle Triassic of the Southern Alps. *Geologisch Paläontologische mitteilungen Innsbruck*, 10, 1-46.

Ehrenberg, C.G. (1847) Über die mikroskopischen kieselschaligen Polycystinen als mächtige Gebirgsmasse von Barbados und über das Verhältniss der aus mehr als 300 neuen Arten bestehenden ganz eigenthümlichen Formengruppe jener Felssmale zu den jetzt lebenden Thieren und zur Kreidebildung Eine neue Anregung zur Erforschung des Erdlebens. *Bericht der königlichen preussischen Akademie der Wissenschaften zu Berlin, Abhandlungen*, Jahre 1847, 40-60.

Ehrenberg, C.G. (1875) Fortsetzung der mikrogeologischen Studien als Gesammt-Übersicht der mikroskopischen Paläontologie gleichartig analysirter Gebirgsarten der Erde, mit specieller Rucksicht auf den Polycystinen-Mergel von Barbados. *Bericht der königlichen preussischen Akademie der Wissenschaften zu Berlin, Abhandlungen*, Jahre 1875, 1-225.

Foreman, H.P. (1963) Upper Devonian Radiolaria from the Huron member of the Ohio shale. *Micropaleontology*,
Foreman, H.P. (1973) Radiolaria from DSDP Leg 20. *In Heezen, B.C., MacGregor, I.D. et al. eds., Initial report of the Deep Sea Drilling Project*, 20, 249-305.

Goričan, Š., Šmuca, A. and Baumgartner, P.O. (2003) Toarcian Radiolaria from Mt. Mangart (Slovenian – Italian border) and their paleoecological implications. *Marine Micropaleontology*, 49, 275-301.

Goričan, Š., Carter, E.S., Dumitricǎ, P., Whalen, P.A., Hori, R.S., De Wever, P., O’Dogherty, L., Matsuoka, A. and Guex, J. (2006) *Catalogue and systematics of Pliensbachian, Toarcian and Aalenian radiolarian genera and species*. Založba ZRC/ZRC Publishing, ZRC SAZU, Ljubljana, 446p.

Gawlick, H.-J., Suzuki, H. and Missoni, S. (2001) Nachweis von unterliassischen Beckensedimenten in Hallstätter Fazies (Dürrnberg-Formation) im Bereich der Hallein-Berchtesgadener Hallstätter Zone und des Lammer Beckens (Hettangium – Sinemurium). *Mitteilungen der Gesellschaft der Geologie und Mitteilungen der Gesellschaft der Geologie und Bergbaustudenten in Österreich, 45*, 39-55. (in German with English abstract)

Haeckel, E. (1881) Entwurf eines Radiolarien-Systems. *Jenaische Zeitschrift für Naturwissenschaft, 15*, 418-472.

Haeckel, E. (1887) Report on the Radiolaria collected by H.M.S. Challenger during the years 1873-1876. *Report on the Scientific Results of the Voyage of the H.M.S. Challenger, Zoology, 18*, 1803p.

Hattori, I. and Yoshimura, M. (1982) Lithofacies distribution and radiolarian fossils in the Nanjo area in Fukui Prefecture, central Japan. *News of Osaka Micropaleontologists*, spec. vol. no.5, 103-116. (in Japanese with English abstract)

Hori, R. (1990) Lower Jurassic radiolarian zones of SW Japan. *Trans. Proc. Palaeont. Soc. Japan. New series*, no.159, 562-586.

Hull, D. Meyerhoff (1997) Upper Jurassic Tethyan and southern Boreal radiolarians from western North America. *Micropaleontology*, 43, supplement no.2, 1-202.

Ichikawa, K. and Yao, A. (1973) Scanning electron microscope studies of pores of some cyrtoid radiolarians. *Jour. Geosciences, Osaka City Univ.*, 16, 125-144.

Kishida, Y. and Hisada, K. (1985) Late Triassic to Early Jurassic radiolarian assemblages from the Ueno-mura area, Kanto Mountains, central Japan. *Mem. Osaka Kyoiku Univ., ser. III (Natural Science)*, 34, 103-129.

Kozur, H. (1984) New radiolarian taxa from the Triassic and Jurassic. *Geologisch Paläontologische mitteilungen Innsbruck*, 13, 49-88.

Kozur, H. and Mostler, H. (1972) Beiträge zur Erforschung der mesozoischen Radiolarien. Teil I: Revision der Oberfamilie Coccosiscacea Haeckel 1862 emend. und Beschreibung ihrer triassischen Vertreter. *Geologisch Paläontologische mitteilungen Innsbruck*, 2, 1-60.
Preussische Akademie der Wissenschaften zu Berlin, Abhandlungen, Jahre 1858, 1-62.

Nakae, S. (2012) Geology of the Permian Higashimata Complex in the Nanjō Mountains, Fukui Prefecture, Southwest Japan. Bulletin of Geological Survey of Japan, 63, p.269-281.

Nakae, S., Komatsubara, T. Takahashi, Y. and Yoshikawa, T. (in press) Geology of the Imajō and Takenami district. Quadrangle Series, 1:50000, Geological Survey of Japan, AIST. (in Japanese with English abstract)

Nagai, H. (1986) Jurassic Eucyrtidiellum (Radiolaria) from central Japan. Bull. Nagoya Univ. Museum, no.2, 1-22.

Nagai, H. (1987) Middle Jurassic Eucyrtidiellum (Radiolaria) from Kutsuwano, Gifu Prefecture, central Japan. Bull. Nagoya Univ. Museum, no.3, 1-11. (in Japanese with English abstract)

Nagai, H. (1990a) Jurassic (Lower Toarcian) radiolarians from the Mino terrane. Trans. Proc. Paleont. Soc. Japan. New series, no.159, 587-602.

Nagai, H. (1990b) Jurassic (Lower Toarcian) radiolarians from the Hyde Formation, central Oregon, North America. Bull. Nagoya Univ. Museum, no.6, p.1-7. (in Japanese with English abstract)

Nakaseko, K. and Nishimura, A. (1979) Upper Triassic Radiolaria from Southwest Japan. Sci. Rep., Col. Educ., Osaka Univ., 28, 61-109.

O’Dogherty, L., Carter, E.S., Dumitrica, P., Goričan, Š., and De Wever, P. (2009) An illustrated and revised catalogue of Mesozoic radiolarian genera – objectives, concepts and guide for users. Geodiversitas, 31, 191-356.

Pessagno, E.A. (1971) Jurassic and Cretaceous Hagiastridae from the Black-Bahama Basin (Site 5A, JOIDES Leg 1) and the Great Valley Sequence, California Coast Ranges. Bull. American Paleontology, 60, 5-83.

Pessagno, E.A. (1973) Upper Cretaceous Spumellarina from the Great Valley Sequence, California Coast Ranges. Bull. American Paleontology, 63, 49-102.

Pessagno, E.A. (1977a) Upper Jurassic Radiolaria and radiolarian biostratigraphy of the California Coast Ranges. Micropaleontology, 23, 56-113.

Pessagno, E.A. (1977b) Lower Cretaceous radiolarian biostratigraphy of the Great Valley Sequence and Franciscan Complex, California Coast Ranges. Cushman Foundation for Foraminiferal Research, Special publication, no.15, 87p.

Pessagno, E.A. and Blome, C.D. (1980) Upper Triassic and Jurassic Pantannellinae from California, Oregon and British Columbia. Micropaleontology, 26, 225-273.

Pessagno, E.A. and Poisson, A. (1981) Lower Jurassic Radiolaria from the Kümüşlü Allochton of southwestern Turkey (Taurides occidentals). Bull. Mineral Research and Exploration Inst. Turkey, 92, 47-69.

Pessagno, E.A. and Whalen, P.A. (1982) Lower and Middle Jurassic Radiolaria (multicyrtild Nassellariina) from California, east-central Oregon and the Queen Charlotte Islands, B.C. Micropaleontology, 28, 111-169.

Pessagno, E.A., Finch, W. and Abbott, P.L. (1979) Upper Triassic Radiolaria from the San Hilpólito Formation, Baja California. Micropaleontology, 25, 160-197.

Pessagno, E.A., Six, W.M. and Yang, Q. (1989) The Xiphostylidae Haeckel and Parvivaccidae, n. fam. (Radiolaria) from the North America Jurassic. Micropaleontology, 35, 138-255.

Pessagno, E.A., Blome, C.D., Hull, D. Meyerhoff and Six, W.M. (1993) Jurassic Radiolaria from the Josephine ophiolite and overlying strata, Smith River subterranne (Klamath Mountains), northwestern California and southwestern Oregon. Micropaleontology, 39, 93-166.

Ramovšt, A. and Goričan, Š. (1995) Late Anisian-Early Ladinian radiolarians and conodonts from Šmarma Gora near Ljublana, Slovenia. Razprave IV. Razreda Ladinian radiolarians and conodonts from Šmarma Gora near Ljublana, Slovenia. Razprave IV. Razreda, 36, 179-221.

Riedel, W.R. (1967) Subclass Radiolaria. In Harland, W.B. et al. eds., The fossil record. A symposium with documentation. Geol Soc. London, 291-298.

Sashida, K. (1991) Early Triassic radiolarians from the Ogamata Formation, Kanto Mountains, central Japan. Part 2. Trans. Proc. Paleont. Soc. Japan. New series, no.161, 681-696.

Sugiyama, K. (1992) Lower and Middle Triassic radiolarians from Mt. Kinkazan, Gifu Prefecture, central Japan. Trans. Proc. Paleont. Soc. Japan. New series, no.167, 1180-1223.

Sugiyama, K. (1997) Triassic and Lower Jurassic radiolarian biostratigraphy in the siliceous claystone and bedded chert units of the southeastern Mino Terrane, central Japan. Bull. Mizunami Fossil Museum, no.24, 79-193.

Taga, H. (1997) Palaeozoic and Mesozoic radiolarian fossils found in chert of the Nanjo massif, central Japan. Bulletin of Fukui City Museum of Natural History, no.44, p.35-55. (in Japanese)

Takamura, Y. and Hayami, T. (1985) On the Palaeozoic and Mesozoic strata in the eastern area of Imajo-cho, Fukui Prefecture, central Japan. Bulletin of Fukui City Museum of Natural History, no.31, p.1-16. (in Japanese)

Takemura, A. (1986) Classification of Jurassic nassellarians (Radiolaria). Palaeontographica. Abteilung A: Palaeozoologie-Stratigraphie, 195, 29-74.

Takemura, A. and Nakaseko, K. (1982) Two new Jurassic genera of family Palaeoscenidiidae (Radiolaria). Trans. Proc. Paleont. Soc. Japan. New series, no.128, 452-464.

Umeda, M. and Taga, H. (2003) Note of occurrence of radiolarian fossils in the Nanjo massif, Fukui Prefecture, central Japan – No. 7 – Takura-gawa area. Bulletin of Fukui City Museum of Natural History, no.50, p.2736. (in Japanese)
Umeda, M., Taga, H. and Hattori, I. (1996) Discovery and its geologic significance of Permian radiolarians from clastic rocks at the northern margin of the Nanjo massif, Fukui Prefecture, central Japan. *Jour. Geol. Soc. Japan*, 102, p.635-638. (in Japanese with English abstract)

Wakita, K. (1988) Origin of chaotically mixed rock bodies in the Early Jurassic to Early Cretaceous sedimentary complex of the Mino terrane, central Japan. *Bull. Geological Survey of Japan*, 39, 675-757.

Whalen, P.A. and Carter, E.S. (1998) Part II. Systematic paleontology. In Carter, E. S., Whalen, P. A. and Guex, J. eds., Biochronology and paleontology of Lower Jurassic (Hettangian and Sinemurian) radiolarians, Queen Charlotte Islands, British Columbua. *Geological Survey of Canada Bull.*, no.496, 36-162.

Whalen, P.A. and Carter, E.S. (2002) Pliensbachian (Lower Jurassic) Radiolalia from Baja Californian Sur, Mexico. *Micropaleontology*, 48, 97-151.

Yao, A. (1979) Radiolarian fauna from the Mino belt in the northern part of the Inuyama area, central Japan. Part II: Nassellaria I. *Jour. Geosci., Osaka City Univ.*, 22, 21-72.

Yao, A. (1982) Middle Triassic to Early Jurassic radiolarians from the Inuyama area, central Japan. *Jour. Geosci., Osaka City Univ.*, 25, 53-70.

Yao, A. (1984) Subdivision of the Mesozoic complex in Kii-Yura area, Southwest Japan and its bearing on the Mesozoic basin development in the Southern Chichibu terrane. *Jour. Geosci., Osaka City Univ.*, 27, 41-103.

Yao, A. (1997) Faunal change of Early – Middle Jurassic radiolarians. *News of Osaka Micropaleontologists, spec. vol. no.10*, 155-182. (in Japanese with English abstract)

Yao, A., Matsuda, T. and Isozaki, Y. (1980) Triassic and Jurassic radiolarians from the Inuyama area, central Japan. *Jour. Geosci., Osaka City Univ.*, 25, 153-154.

Yeh, K.-Y. (1987) Taxonomic studies of Lower Jurassic Radiolaria from east–central Oregon. *Special Publication, National Museum of Natural Science, Taiwan*, no.2, 169p.

Yeh, K.-Y. (1990) Taxonomic studies of Triassic Radiolaria from Busuanga Island, Philippines. *Bull. National Museum of Natural Science, Taiwan*, no.2, p.1-63.

Yeh, K.-Y. and Cheng, Y.-N. (1996) Jurassic radiolarians from the northwest coast of Busuanga Island, north Palawan block, Philippines. *Micropaleontology*, 42, 93-124.

Yeh, K.-Y. and Cheng, Y.-N. (1998) Radiolarians from the Lower Jurassic of the Busuanga Island, Philippines. *Bull. National Museum of Natural Science, Taiwan*, no.11, p.1-65.

Ziabrev, S.V., Aitchison, J.C., Abrajevitch, A.V., Badengzhu, Davis, A.M. and Luo, H. (2004) Bainang terrane, Yarlung – Tsangpo suture, south Tibet (Xizang, China): a record of intra-Neotethyan subduction-accretion processes preserved on the roof of the world. *Jour. Geological Society, London*, 161, 523-538.

Received January 31, 2013
Accepted March 22, 2013
Plate 1 SEM images of Triassic to Middle Jurassic radiolarians from the Imajō district.

IJ1502g (Locality Ic-1: South of Tochinoki-tōge)
1-2: *Cryptostephanidium* spp. (1: GSJ F18100-000, 2: -004)
3: Entactinaria gen. et sp. indet. (GSJ F18100-003)
4: Spumellaria gen. et sp. indet. (GSJ F18100-007)
5-6: *Protopsis* spp. (5: GSJ F18100-006, 6: -005)

IJ2202 (Locality Ic-2: North of Ōgiri)
7-8: *Archaeocenosphaera*? spp. (7: GSJ F18101-007, 8: -013)
9: Spumellaria gen. et sp. indet. (GSJ F18101-001)
10-20: *Entactinia*? spp. (10: GSJ F18101-004, 11: -003, 12: -015, 13: 005, 14: -009, 15: -008, 16: -012, 17: -014, 18: -010, 19: -006, 20: -002)

IJ2703 (Locality Ic-3: Northeast of Imajō)
21: *Pantanellium* sp. (GSJ F18102-017)
22-23: *Pantanellidae* gen. et sp. indet. (22: GSJ F18102-015, 23: -013)
24-25: *Praewilliriedellum*? spp. (24: GSJ F18102-016, 25: -014)
26: *Praezhamoidellum*? sp. (GSJ F18102-009)
27: *Eucyrtidiellum unumaense* (Yao) (GSJ F18102-008)
28: *Lantus* sp. cf. *L. sici* Yeh (GSJ F18102-005)
29: *Lantus*? sp. (GSJ F18102-010)
30-34: *Parahsuum* spp. (30: GSJ F18102-001, 31: -003, 32: -002, 33: -007, 34: -004)
35: *Nassellaria* gen. et sp. indet. (GSJ F18102-012)
36: *Praeparvicingula*? sp. (GSJ F18102-011)

All scale bars are equal to 0.1 mm.
Plate 2 SEM images of Triassic to Middle Jurassic radiolarians from the Imajō district.

IJ2901 (Locality Ic-4: Yashirodani)
1: *Archaeocenosphaera* sp. (GSJ F18103-015)
2: Spumellaria gen. et sp. indet. (GSJ F18103-006)
3-4: *Pantanellium?* spp. (3: GSJ F18103-010, 4: -011)
5: *Pseudostylosphaera* sp. (GSJ F18103-009)
6: *Pseudostylosphaera* sp. A sensu Sugiyama (1992) (GSJ F18103-008)
7: *Protopsium* sp. (GSJ F18103-014)
8: *Cryptostephanidium* sp. cf. *C. longispinosum* (Sashida) (GSJ F18103-003)
9: *Cryptostephanidium japonicum* (Nakaseko and Nishimura) (GSJ F18103-007)
10-11: *Plafkerium?* spp. (10: GSJ F18103-001, 11: -002)
12: *Plafkerium? antiquum* Sugiyama (GSJ F18103-004)
13-14: Spumellaria gen. et sp. indet. (13: GSJ F18103-005, 14: -012)
15: *Eptingium?* sp. (GSJ F18103-013)

IJ3205 (Locality Ic-5: Northwest of Somayama)
16-22: Spumellaria gen. et sp. indet. (16: GSJ F18104-014, 17: -003, 18: -010, 19: -016, 20: -012, 21: -001, 22: -007)
23-25: *Protopsium* spp. (23: GSJ F18104-008, 24: -005, 25: -015)
26: Spumellaria gen. et sp. indet. (GSJ F18104-002)
27: *Plafkerium?* sp. (GSJ F18104-011)
28-30: Spumellaria gen. et sp. indet. (28: GSJ F18104-004, 29: -013, 30: -006)

IJ4001 (Locality Ic-6: Hashitate)
31-35: Spumellaria gen. et sp. indet. (31: GSJ F18105-001, 32: -002, 33: -003, 34: -004, 35: -005)

All scale bars are equal to 0.1 mm.
Plate 3 SEM images of Triassic to Middle Jurassic radiolarians from the Imajō district.

IJ5502 (Locality Ic-7: West of Okunono)
1: *Pseudostylosphaera japonica* (Nakaseko and Nishimura) (GSJ F18117-015)
2-3: *Pseudostylosphaera* spp. (2: GSJ F18117-017, 3: -013)
4: *Eptingium* sp. cf. *E. manfredi* Dumitrică (GSJ F18117-018)
5-8: *Cryptostephanidium* spp. (5: GSJ F18117-007, 6: -014, 7: -010, 8: -012)
9: *Nassellaria* gen. et sp. indet. (GSJ F18117-008)
10: *Bulbocyrtium* sp. A sensu Sugiyama (1997) (GSJ F18117-020)
11: *Triassocampe* sp. aff. *T. diordinis* Brigin 1991 sensu Sugiyama (1992) (GSJ F18117-001)
12-13: *Triassocampe deweveri* Nakaseko and Nishimura (12: GSJ F18117-003, 13: -004)

IJ5503 (Locality Ic-8: West of Okunono)
14: *Triassocampe* sp. (GSJ F18118-002)
15: Multisegmented *Nassellaria* gen. et sp. indet (GSJ F18118-003)
16-17: Poulpidae gen. et sp. indet. (16: GSJ F18118-005, 17: -006)
18: *Hindeosphaera* sp. cf. *H. spinulosa* (Nakaseko and Nishimura) (GSJ F18118-007)

IJ5702a (Locality Ic-9: West of Yunō)
19-22: *Pseudostylosphaera* spp. (19: GSJ F18119-003, 20: -011, 21: -010, 22: -006)
23-25: *Cryptostephanidium* spp. (23: GSJ F18119-002, 24: -001, 25: -005)
26-27: *Plafkerium*? spp. (26: GSJ F18119-012, 27: -009)
28: *Spumellaria* gen. et sp. indet. (GSJ F18119-013)
29-30: *Hozmadia* sp. cf. *H. gifuensis* Sugiyama (29: GSJ F18119-007, 30: -004)
31: *Hozmadia rotunda* (Nakaseko and Nishimura) (GSJ F18119-008)

All scale bars are equal to 0.1 mm.
Plate 4 SEM images of Triassic to Middle Jurassic radiolarians from the Imajō district.

IJ5702b (Locality Ic-9: West of Yunō)
1-2: *Pantanellium* sp. cf. *P. foveatum* Mizutani and Kido (1: GSJ F18120-005, 2: -006)
3-4: *Napora* sp. (3: GSJ F18120-003, 4: -004)
5: *Praezhamoidellum yaoi* Kozur (GSJ F18120-007)
6-7: *Striatojaponocapsa plicarum* (Yao) (6: GSJ F18120-008, 7: -009)
8: *Dictyomitrella* sp. (GSJ F18120-002)
9: Multisegmented *Nassellaria* gen. et sp. indet. (GSJ F18120-001)

IJ5702i (Locality Ic-9: West of Yunō)
10: *Pantanellium* sp. cf. *P. tanuense* Pessagno and Blome (GSJ F18121-006)
11-12: *Pantanellium* spp. (11: GSJ F18121-009, 12: -015)
13: *Gorgansium* sp. cf. *G. gongyloideum* Kishida and Hisada (GSJ F18121-014)
14: *Spumellaria* gen. et sp. indet. (GSJ F18121-019)
15: *Thurstonia* sp. (GSJ F18121-020)
16: *Teesium* sp. (GSJ F18121-018)
17-18: *Poulpidae* gen. et sp. indet. (17: GSJ F18121-012, 18: -011)
19: *Diceratigalea* sp. (GSJ F18121-010)
20-23: *Mesosaturnalis* spp. (20: GSJ F18121-021, 21: -022, 22: -023, 23: -024)
24: *Eucyrtidiellum* sp. (GSJ F18121-017)
25: *Parahsuum* sp. (GSJ F18121-001)
26: *Elodium* sp. cf. *E. pessagnoi* Yeh and Cheng (GSJ F18121-003)
27: *Hsuum* sp. (GSJ F18121-002)
28: *Katroma angusta* Yeh (GSJ F18121-008)
29-30: *Katroma* spp. (29: GSJ F18121-007, 30: -005)

All scale bars are equal to 0.1 mm.
Triassic to Middle Jurassic radiolarians from cherts in the Nanjō Mountains – Part 1. Imajō district (Nakae)
Plate 5 SEM images of Triassic to Middle Jurassic radiolarians from the Imajō district.

IJ6901a (Locality Ic-10: South of Kōno)
1: *Pantanellium* sp. (GSJ F18127-010)
2: *Williriedellum?* sp. (GSJ F18127-009)
3: *Praezhamoidellum?* sp. (GSJ F18127-011)
4: *Bagotum* sp. (GSJ F18127-008)
5: *Corum?* sp. (GSJ F18127-001)
6-7: *Stichomitra* spp. (6: GSJ F18127-002, 7: -006)
8-9: *Parahsuum* spp. (8: GSJ F18127-007, 9: -003)
10: Multisegmented Nassellaria gen. et sp. indet. (GSJ F18127-004)

IJ6901b (Locality Ic-10: South of Kōno)
11: *Pantanellium* sp. (GSJ F18128-010)
12: *Emiluvia* sp. (GSJ F18128-011)
13: *Paronaella* sp. cf. *P. notabilis* Whalen and Carter (GSJ F18128-012)
14: *Eucyrtidiellum gunense* Cordey (GSJ F18128-007)
15: *Eucyrtidiellum* sp. (GSJ F18128-008)
16-17: *Bagotum maudense* Pessagno and Whalen (16: GSJ F18128-004, 17: -005)
18-19: *Broctus ruesti* Yeh (18: GSJ F18128-003, 19: -002)
20: *Parahsuum* sp. (GSJ F18128-001)
21: *Katroma brevitubus* Dumitrca and Goričan (GSJ F18128-006)
22: *Praezhamoidellum* sp. cf. *P. convexa* (Yao) (GSJ F18128-009)

IJ6901c (Locality Ic-10: South of Kōno)
23: *Praezhamoidellum* sp. cf. *P. yaoi* Kozur (GSJ F18129-004)
24: *Bagotum modestum* Pessagno and Whalen (GSJ F18129-003)
25: Multisegmented Nassellaria gen. et sp. indet. (GSJ F18129-001)
26: *Hsuum* sp. (GSJ F18129-002)

All scale bars are equal to 0.1 mm.
西南日本南条山地における遠洋性チャートから産出した
三畳紀 - 中期ジュラ紀放散虫 - 第1部. 今庄地域

中江 訓

要 旨

西南日本福井県中央部に位置する南条山地の主要域には、玄武岩・石灰岩・チャート・泥岩・砂岩などの多様な岩石から構成される堆積岩複合岩体が分布する。南条山地におけるこれらの岩石のおうち27地点のチャートについて、含有される放散虫化石の検討を行った。その結果、今庄地域では10地点14試料からSpumellaria目ならびにEntactinaria目が卓越する三畳紀群集とNassellaria目が卓越するジュラ紀群集が産出した。本報告ではこれらの放散虫化石群集を記載するとともに、その種構成に基づき今庄地域に分布するチャートの地質時代は前期三畳紀 (Olenekian?) ～中期ジュラ紀 (Bajocian)に至ると結論した。

雑談・重要地名
Fukui: 福井, Hashitate: 橋立, Imajō: 今庄, Kanmuri Yama: 冠山, Kōno: 河野, Minamiechizen: 南越前, Mino: 美濃, Nagahama: 長浜, Nanjō: 南条, Ōgiri: 大桐, Okunono: 奥野々, Somayama: 杢山, Tochinoki-tōge: 栃ノ木峠, Yashirodani: 社谷, Yogo: 余呉, Yunō: 湯尾.