Spontaneous Orbifold Symmetry Breaking and Generation of Mass Hierarchy

Israel Quiros

Departamento de Fisica. Universidad Central de Las Villas. Santa Clara. CP: 54830 Villa Clara.

Cuba

(March 27, 2022)

Abstract

A very simple mechanism is proposed that stabilizes the orbifold geometry within the context of the Randall-Sundrum proposal for solving the hierarchy problem. The electro-weak TeV scale is generated from the Planck scale by spontaneous breaking of the orbifold symmetry.

04.50.+h, 98.80.Cq
M-theory represents the most remarkable theoretical success of the end of the millennium. The moduli space of this theory contains all five, anomaly free, ten-dimensional superstring theories and the eleven-dimensional supergravity. In this context the most successful cosmological construction is that of Horava and Witten [1]. Compactification of the Horava-Witten theory on an eleven-dimensional orbifold $R^{10} \times S^1/Z_2$ to four dimensions on a deformed Calabi-Yau manifold yields that the resulting theory has $N = 1$ supersymmetry. This implies, in turn, that the early universe has undergone a phase where it was five-dimensional [2]. In Ref. [3] an effective five-dimensional theory was derived by direct compactification of the Horava-Witten theory on a Calabi-Yau space. A static solution to the field equations of this theory exists that may be interpreted as a pair of parallel three-branes that are located at the fixed points of the circle that represent the boundaries of the orbifold S^1/Z_2.

A set-up with two three-branes located at the boundaries of a five-dimensional AdS_5 spacetime has been used recently by Randall and Sundrum to address the hierarchy problem [4]. They proposed an scenario where the metric is not factorizable. The four-dimensional metric, in this scenario, is multiplied by a "warp" factor which is a function of the additional dimension

$$ds^2 = e^{-2k|y|} \eta_{mn}dx^ndx^m + dy^2,$$

where k is a scale of order the Planck scale, x^a are the usual 4-d coordinates and $0 \leq y \leq \pi \lambda$ is the coordinate of the extra dimension. This line-element is consistent with orbifold symmetry ($y \rightarrow -y$) and with four-dimensional Poincare invariance [4]. Randall and Sundrum have shown that this metric is a solution to Einstein’s equations in a simple set-up with two three-branes and appropriate cosmological terms. The two three-branes are located at the orbifold fixed points $y = 0$ and $y = \pi \lambda$. These represent the boundaries of the five-dimensional spacetime.

Working out the consequences of the localized energy density inherent to the brane set-
up, Randall and Sundrum found a new solution to the hierarchy problem. In the Randall-Sundrum proposal four-dimensional mass scales are related to five-dimensional input mass parameters and the "warp" factor, $e^{-2k|y|}$. This small exponential factor is the source of the large hierarchy between the observed Planck and weak scales \[^4\]. In this set-up the relation between the Planck scale and the fundamental scale is found to be

$$M_{Pl}^2 = 2M^3 \int_0^{\pi \lambda} dy e^{-2k|y|} = \frac{M^3}{k}(1 - e^{-2k\pi\lambda}), \quad (2)$$

and M_{Pl}^2 is a well-defined value even in the limit $\lambda \rightarrow \infty$, in contrast to the product-space expectation that $M_{Pl}^2 = M^3\lambda\pi$. By taking the second "regulator" brane at infinity and considering the coordinate $y = 0$ to be the location of the Planck brane, one can derive \[^4\]

$$M_{Pl}^2 = 2M^3 \int_0^{\infty} dy e^{-2k|y|} = \frac{M^3}{k}, \quad (3)$$

so that if M and k are of order $M_{Pl} = 10^{19}$GeV, the graviton zero mode is coupled correctly to generate four-dimensional gravity. For a brane located a distance y_0 from the Planck brane we have $M_{Pl} e^{-k|y_0|} \sim TeV$, i. e., the electroweak scale (of order TeV) is reproduced by physics confined to the brane located a distance y_0 from the brane where the graviton is localized. The generation of this hierarchy requires an exponential of order 30. The advantage of taking a five-dimensional spacetime with infinite extension in the y-direction is that one has a better chance of addressing issues such as the cosmological constant problem and black-hole physics \[^5\].

In this letter we further exploit the ideas of Randall and Sundrum. We present a very simple mechanism of orbifold geometry stabilization that allows determining the location of the TeV brane. It is literally a mechanism of spontaneous orbifold symmetry breaking. Our starting point is a generalization of the Randall-Sundrum 5-d line-element in the form

$$ds^2 = e^{-2k\sigma(y)} g_{mn}(x) dx^m dx^n + e^{l\gamma(y)+h(x)} dy^2, \quad (4)$$

where l is an arbitrary constant factor, σ and γ are arbitrary functions of the additional
y-coordinate, while the four-dimensional metric g_{ab} and h are functions of the familiar 4-d coordinates x^a. For our purposes it suffices to study a general five-dimensional spacetime without fixing the matter content. Neither standard model nor hidden matter sectors are specified. Therefore, we do not pretend to give any realistic particle picture, but a general five-dimensional gravity set-up. The effective 5-d action we shall study is,

$$S = \int d^5x \sqrt{-G}(2M^3 R - \Lambda),$$ \hspace{1cm} (5)

where G is the determinant of the five-dimensional metric $G_{AB} (A, B = 0, 4)$, R is the Ricci scalar obtained from the 5-d Ricci tensor R_{AB} ($R = G^{MN}R_{MN}$) and Λ is a cosmological constant that plays the role of a vacuum energy density in the five-dimensional spacetime. The field equations derivable from (5) are

$$R_{AB} - \frac{1}{2} G_{AB} R = - \frac{\Lambda}{4M^3} G_{AB},$$ \hspace{1cm} (6)

These equations can be split into the following set of equations:

$$R_{ab} - \frac{1}{2} g_{ab} e^{-2k\sigma} R = - \frac{\Lambda}{4M^3} e^{-2k\sigma} g_{ab},$$ \hspace{1cm} (7)

$$R_{44} - \frac{1}{2} e^{t\gamma + h} R = - \frac{\Lambda}{4M^3} e^{t\gamma + h},$$ \hspace{1cm} (8)

and

$$R_{a4} = - \frac{3}{2} k \sigma' h_{,a} = 0,$$ \hspace{1cm} (9)

where the prime denotes derivative with respect to the additional y-coordinate. Eq.(9) implies two possibilities; either $\sigma' = 0$ ($\sigma = const.$) or $h_{,a} = 0$ ($h = const.$). In this letter we shall interested in the 2nd possibility and we shall set $h = const. = 0$ so the line-element (4) can be written as,

$$ds^2 = e^{-2k\sigma(y)} g_{mn}(x) dx^m dx^n + e^{t\gamma(y)} dy^2.$$ \hspace{1cm} (10)
Therefore the field equations (7) and (8) yield

\[4R_{ab} - \frac{1}{2}g_{ab} 4R = 3k e^{-2k\sigma - l\gamma}(\sigma'' - \frac{l}{2}\gamma'\sigma' - 2k\sigma'^2)g_{ab} - \frac{\Lambda}{4M^3}e^{-2k\sigma}g_{ab}, \quad (11) \]

and

\[\sigma'^2 = \frac{e^{l\gamma}}{12k^2}(e^{2k\sigma} 4R - \frac{\Lambda}{2M^3}), \quad (12) \]

respectively. \(4R_{ab}\) refers to the familiar four-dimensional Ricci tensor made out of the 4-d Christoffel symbols \(\{^a_{bc}\} = \frac{1}{2}g^{an}(g_{bn,c} + g_{cn,b} - g_{bc,n})\) and \(4R = g^{mn} 4R_{mn}\) is the four-dimensional Ricci scalar. The 5-d and 4-d Ricci scalars are related through \(R = e^{2k\sigma} 4R + 2k e^{-l\gamma}(4\sigma'' - 2l\gamma'\sigma' - 10k\sigma'^2)\). Combining the trace of Eq.(11) with Eq.(12) one obtains:

\[\sigma'' - \frac{l}{2}\gamma'\sigma' - 2k\sigma'^2 = \frac{\Lambda}{24kM^3}e^{l\gamma}. \quad (13) \]

For further simplification of our analysis let us set \(g_{ab} = \eta_{ab}\) - the usual four-dimensional Minkowski metric. In this case \(4R_{ab} = 4R = 0\) so, from Eq.(11), one gets

\[\sigma'' - \frac{l}{2}\gamma'\sigma' - k\sigma'^2 = \frac{\Lambda}{12kM^3}e^{l\gamma}. \quad (14) \]

Combining Eqs.(13) and (14) yields

\[\sigma'' = \frac{l}{2}\gamma'\sigma', \quad (15) \]

which, after integrating, gives

\[\sigma' = Ce^{\frac{l}{2}\gamma}, \quad (16) \]

where \(C\) is some integration constant. If we put Eq.(15) into Eq.(13) or (14), we obtain

\[\sigma'^2 = -\frac{\Lambda}{24k^2M^3}e^{l\gamma}, \quad (17) \]
so the integration constant \(C = \sqrt{-\frac{\Lambda}{24k^2M^3}} \). Eq.(17) (or Eq.(16)) makes sense only for negative \(\Lambda < 0 \) (i.e., \(C^2 > 0 \) and the constant \(C \) is real). This leads that our model five-dimensionsal spacetime is \(AdS_5 \).

If we introduce a new coordinate through \(\frac{d\sigma}{\gamma} = dy \), it is encouraging noting that the line-element (10) can then be written as

\[
ds^2 = e^{-2k|\sigma|} \eta_{mn} dx^m dx^n + r_c^2 d\sigma^2,
\]

where \(r_c = \sqrt{\frac{24k^2M^3}{-\Lambda}} \) and the orbifold symmetry \(\sigma \rightarrow -\sigma \) has been taken into account. While deriving Eq.(18) we have used the following chain of equalities: \(e^{\ell \gamma} dy^2 = \frac{e^{\ell \gamma}}{\sigma^2} d\sigma^2 = \frac{24k^2M^3}{-\Lambda} d\sigma^2 \). The line-element (18) exactly coincides with that of Randall and Sundrum if we set \(\Lambda = -24k^2M^3 \).

The most interesting feature of our set-up is contained in Eq.(17) (or Eq.(16)). Since both \(\sigma \) and \(\gamma \) are functions of the coordinate \(y \), Eq.(17) can be written in the general form

\[
\sigma'^2 + U(\sigma) = \mathcal{E},
\]

where \(\mathcal{E} \) is an arbitrary positive constant and \(U(\sigma) \) is an arbitrary function of \(\sigma \). Then Eq.(19) implies that (see Eq.(17))

\[
e^{\ell \gamma} = r_c^2 [\mathcal{E} - U(\sigma)].
\]

Therefore, any solution \(\sigma(y) \) of the differential equation (19) in the form

\[
\pm \int \frac{d\sigma}{\sqrt{\mathcal{E} - U(\sigma)}} = y + C_1,
\]

implies, in virtue of Eq.(20), a solution \(\gamma(y) \). This feature enables us some freedom in the choice of the function \(U(\sigma) \). This is, precisely, the feature we shall exploit in searching for a mechanism of orbifold geometry stabilization. In fact, Eq.(19) may be given the following particle interpretation: it represents a scalar \(\sigma \)-particle with kinetic energy \(\sigma'^2 \) and total
energy E, that moves along the y-direction in a potential $U(\sigma)$. In other words this can be put as follows. The derivative of Eq.(20) yields

$$l\gamma' = -\frac{dU}{d\sigma}\sigma'/(E - U), \quad (22)$$

so, if we put Eq.(22) into Eq.(15) and, taking into account Eq.(19), one gets

$$\sigma'' = -\frac{1}{2} \frac{dU}{d\sigma}. \quad (23)$$

This equation of motion can also be obtained with the help of the variational principle from the action $S_y = \int dy L[\sigma', \sigma]$, where $L[\sigma', \sigma] = \sigma'^2 - U(\sigma)$.\footnote{From Eq.(23) one sees that the potential should respect orbifold symmetry, i.e., $U(\sigma) = U(-\sigma)$} Solutions to the equation of motion (23) that correspond to states of least energy are those with $\sigma = \sigma_i$ such that $U(\sigma_i)$ is a minimum. For these solutions the classical hamiltonian $H \sim \int dy[\sigma'^2 + U(\sigma)]$ is a minimum too. Therefore, solutions to Eq.(23) for which $\sigma = \sigma_i$ represent the ground σ-states of the system. These ground states stabilize the orbifold geometry in the sense that the points $\sigma = \sigma_i$ correspond to stable (ground) configurations of the scalar field σ, yielding that branes located at these points are stable against small perturbations of σ.

One instructive example is provided by the potential $U(\sigma) = \lambda \sigma^2$, where λ is an arbitrary constant. For positive $\lambda > 0$ Eq.(21) can be readily integrated to give

$$\sigma(y) = \sqrt{\frac{E}{\lambda}} \sin \sqrt{\lambda} y, \quad (24)$$

where $-\frac{\pi}{2\sqrt{\lambda}} \leq y \leq \frac{\pi}{2\sqrt{\lambda}}$, so $-\sqrt{\frac{E}{\lambda}} \leq \sigma \leq \sqrt{\frac{E}{\lambda}}$ (we have set $C_1 = 0$). In this case the five-dimensional spacetime has two boundaries that are located at $\sigma = -\sqrt{\frac{E}{\lambda}}$ and $\sigma = \sqrt{\frac{E}{\lambda}}$ respectively. However these are not stable configurations in σ. The only stable configuration may be localized at $\sigma = 0$. For negative $\lambda < 0$, we would have, instead,

$$\sigma(y) = \sqrt{\frac{E}{-\lambda}} \sinh \sqrt{-\lambda} y, \quad (25)$$
where now $-\infty \leq y \leq \infty$ and $-\infty \leq \sigma \leq \infty$ so, the σ-direction is unbounded. In this case there is no stable configuration supporting four-dimensional physics. We recall that this is just an instructive example.

A potential that supports the Randall-Sundrum mechanism for generating the mass hierarchy is the following

$$U(\sigma) = \lambda(\sigma_0^2 - \sigma^2)^2,$$ \hspace{1cm} (26)

where $-\infty \leq \sigma \leq \infty$, i. e., we have an orbifold of AdS_5 geometry with infinite extent in the σ-direction. Following Ref. [5] we locate the Planck brane at the origin of the σ-coordinate $\sigma = 0$. The constant σ_0 is taken in such a way that $e^{-k|\sigma_0|} = T eV/M_{Pl}$ ($k \sim 10^{19}$GeV). For positive $\lambda > 0$, the potential $U(\sigma)$ in Eq.(26) has two minima at $\sigma = \sigma_0$ and $\sigma = -\sigma_0$ respectively. The origin $\sigma = 0$ is a local maximum. In other words, the stable ground σ-states are located at the minimuma $\sigma = \pm \sigma_0$. In this case the electroweak TeV scale is generated from the Planck scale by spontaneous orbifold symmetry breaking. In fact, if the system was initially at $\sigma = 0$ (the Planck brane) it "rolls down" until the ground state at $\sigma = \sigma_0$ or at $\sigma = -\sigma_0$ is reached. Once the ground state is reached, say at $\sigma = -\sigma_0$, the orbifold symmetry inherent to the line-element (18) is not a symmetry of this ground state.

This mechanism also applies in the case of an arbitrary metric g_{ab} if we make the identification

$$4\Lambda \equiv \left(\frac{\Lambda}{4M^3} - 3ke^{-l^2/2}\gamma\sigma'' - \frac{l}{2}\gamma'\sigma' - 2k\sigma'^2 \right)e^{-2k\sigma},$$ \hspace{1cm} (27)

where 4Λ is a four-dimensional cosmological constant. In this case Eq.(11) can be written as

\footnote{For negative $\lambda < 0$, instead, this potential has two maxima at $\sigma = \pm \sigma_0$ and a local minimum at $\sigma = 0$. This theory has no bound σ-states since there may be tunneling from the region $|\sigma| \leq \sigma_0$ into the unbounded region $|\sigma| > \sigma_0$}
therefore, the requirement that the 4-d cosmological constant should be zero ($^4\Lambda = 0$) enables our mechanism to work since, in this case, Eq.(14) and the subsequent set of equations (including Eq.(17)) hold true.

What we have proposed here is a very simple mechanism, literally a mechanism of spontaneous orbifold symmetry breaking, that allows stabilization of the orbifold geometry while solving the hierarchy problem a la Randall-Sundrum. However it is not addressed to give a realistic particle picture. A more realistic approach must contain matter sectors. This will be the subject of forthcoming work.

I acknowledge useful conversations with colleagues Rolando Cardenas and Rolando Bonal and MES of Cuba by financial support of this research.
REFERENCES

[1] P. Horava and E. Witten, Nucl. Phys. B 460, 506(1996); E. Witten, Nucl. Phys. B 471, 135(1996); P. Horava and E. Witten, Nucl. Phys. B 475, 94(1996).

[2] J. E. Lidsey, D. Wands and E. J. Copeland, Phys. Rept. 337, 343(2000).

[3] A. Lukas, B. A. Ovrut, K. S. Stelle and D. Waldram, Phys. Rev. D 59, 086001(1999); H. S. Reall, Phys. Rev. D 59, 103506(1999).

[4] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370(1999); ibid 83, 4690(1999).

[5] J. Lykken and L. Randall, JHEP 0006, 014(2000).