RESIDUE FORMULAS FOR LOGARITHMIC FOLIATIONS AND APPLICATIONS

MAURÍCIO CORRÊA AND DIÓGO DA SILVA MACHADO

ABSTRACT. In this work we prove a Baum-Bott type formula for non-compact complex manifold of the form $\tilde{X} = X - D$, where X is a complex compact manifold and D is a normal crossing divisor on X. As applications, we provide a Poincaré-Hopf type Theorem and an optimal description for a smooth hypersurface D invariant by an one-dimensional foliation \mathcal{F} on \mathbb{P}^n satisfying $\text{Sing}(\mathcal{F}) \subset \subset D$.

1. Introduction

In [4] P. Baum and R. Bott developed a work about residues of singularities of holomorphic foliations on complex manifolds. In the case of one-dimensional holomorphic foliation \mathcal{F}, with isolate singularities, on an n-dimensional complex compact manifold X we have the following classical Baum-Bott formula:

$$\int_X c_n(T_X - T_\mathcal{F}) = \sum_{p \in \text{Sing}(\mathcal{F})} \mu_p(\mathcal{F}), \quad (Baum-Bott \text{ formula})$$

where the $\mu_p(\mathcal{F})$ are the Milnor number of \mathcal{F} in p. Baum-Bott formula is a generalization (for holomorphic vector fields) of the Poincaré-Hopf Theorem

$$\int_X c_n(T_X) = \sum_{p \in \text{Sing}(\mathcal{F})} \mu_p(\mathcal{F}),$$

where \mathcal{F} is a foliation induced by a global holomorphic vector field, with isolated singularities, on X.

In this work we provide a Baum-Bott type formula for non-compact complex manifold of the form $\tilde{X} = X - D$, where X is a complex compact manifold and D is an analytic divisor contained in X invariant by an one-dimensional holomorphic foliation \mathcal{F} which is called by logarithmic foliation along D. As an application, we obtained a Poincaré-Hopf type Theorem for these non-compact manifolds. Furthermore, for logarithmic foliations on projective spaces, we prove a necessary and sufficient conditions for all singularities of the foliation occur in an analytic invariant hypersurface.

We prove the following result.

1991 Mathematics Subject Classification. Primary 32S65, 32S25, 14C17.

Key words and phrases. Logarithmic foliations, Poincaré-Hopf type Theorem, residues.
Theorem 1. Let \tilde{X} be an n-dimensional complex manifold such that $\tilde{X} = X - D$, where X is an n-dimensional complex compact manifold and D is a smooth hypersurface on X. Let F be a foliation of dimension one on X, with isolated singularities and logarithmic along D. Suppose that $\text{Ind}_{\log D, p}(F) = 0$, for all $p \in \text{Sing}(F) \cap D$. Then
\[\int_X c_n(T_X(-\log D) - T_F) = \sum_{p \in \text{Sing}(F) \cap (\tilde{X} \setminus D)} \mu_p(F). \]

Here, $\text{Ind}_{\log D, p}(F)$ denotes the logarithmic index of F on p, see section 2.4.

The classical Gauss-Bonnet theorem for a complex compact manifold X, proved by S. Chern in [8], says us that
\[\int_X c_n(T_X) = \chi(X). \]

The following version of Gauss-Bonnet formula for non-compact manifolds was initially proposed by S. Iitaka [13] and proved by Y. Norimatsu [17], R. Silvotti [20] and P. Aluffi [2]:

Theorem (Norimatsu-Silvotti-Aluffi). Let \tilde{X} be an n-dimensional complex manifold such that $\tilde{X} = X - D$, where X is an n-dimensional complex compact manifold and D is a normally crossing hypersurface on X. Then
\[\int_X c_n(T_X(-\log D)) = \chi(\tilde{X}), \]

where $\chi(\tilde{X})$ denotes the Euler characteristic given by
\[\chi(\tilde{X}) = \sum_{i=1}^n \dim H^i_c(\tilde{X}, \mathbb{C}). \]

X. Liao in [16] has provided more general formulas in terms of Chern-Schwartz-MacPherson class of \tilde{X}.

In the Section 4, we consider the case where D is a normal crossing hypersurface and we prove the following Baum-Bott type formula:

Theorem 2. Let \tilde{X} be an n-dimensional complex manifold such that $\tilde{X} = X - D$, where X is a n-dimensional complex compact manifold, D is a normally crossing hypersurface on X. Let F be a foliation on X of dimension one, with isolated singularities (non-degnerates) and logarithmic along D. Then,
\[\int_X c_n(T_X(-\log D) - T_F) = \sum_{p \in \text{Sing}(F) \cap (\tilde{X})} \mu_p(F). \]

As a consequence of Theorem 2 and Norimatsu-Silvotti-Aluffi Theorem we obtain the following Poincaré-Hopf type Theorem.
Corollary 1. Let \(\tilde{X} \) be an \(n \)-dimensional complex manifold such that \(\tilde{X} = X - D \), where \(X \) is an \(n \)-dimensional complex compact manifold, \(D \) is a reduced normal crossing hypersurface on \(X \). Let \(\mathcal{F} \) be a foliation on \(X \) of dimension one given by a global holomorphic vector field, with isolated singularities (non-degenerates) and logarithmic along \(D \). Then

\[
\chi(\tilde{X}) = \sum_{p \in \text{Sing}(\mathcal{F}) \cap \tilde{X}} \mu_p(\mathcal{F}),
\]

where \(\mu_p(\mathcal{F}) \) denotes the Milnor number of \(\mathcal{F} \) on \(p \).

Finally, in the Section 6, we prove a complete characterization in order that an invariant hypersurface contains all the singularities of the projective foliation.

Theorem 3. Let \(D \subset \mathbb{P}^n \) be a smooth and irreducible hypersurface and let \(\mathcal{F} \) be a foliation of dimension one on \(\mathbb{P}^n \), with isolated singularities (non-degenerates) and logarithmic along \(D \). Then, the following properties hold

1. If \(n \) is odd, then:
 - (a) \# (Sing(\mathcal{F}) \cap \mathbb{P}^n \setminus D) > 0 \iff \deg(D) < \deg(\mathcal{F}) + 1;
 - (b) \# (Sing(\mathcal{F}) \cap \mathbb{P}^n \setminus D) = 0 \iff \deg(D) = \deg(\mathcal{F}) + 1.

2. If \(n \) is even, then:
 - (a) \# (Sing(\mathcal{F}) \cap \mathbb{P}^n \setminus D) > 0 \iff \begin{cases} \deg(D) \neq \deg(\mathcal{F}) + 1 \\ or \\ \deg(D) = \deg(\mathcal{F}) + 1, \text{ with } \deg(\mathcal{F}) \neq 0 \end{cases}
 - (b) \# (Sing(\mathcal{F}) \cap \mathbb{P}^n \setminus D) = 0 \iff \deg(D) = 1 \text{ and } \deg(\mathcal{F}) = 0.

3. In general, we have the formula

\[
\# (\text{Sing}(\mathcal{F}) \cap \mathbb{P}^n \setminus D) = \sum_{i=0}^{n} (-1)^i \binom{n}{i} (\deg(D) - 1)^i \deg(\mathcal{F})^{n-i}.
\]

Observe that if \(n \) is odd, then \(\text{Sing}(\mathcal{F}) \subseteq D \) if and only if the Soares’s bound for the Poincaré problem is achieved \([21]\).

Acknowledgments. We are grateful to Gilcione Nonato, Jean-Paul Brasselet, Tatsuo Suwa and Marcio G. Soares for interesting conversations. This work was partially supported by CNPq, CAPES, FAPEMIG and FAPESP-2015/20841-5. Finally, we would like to thank the referees by the suggestions, comments and improvements to the exposition.
2. Preliminaries

2.1. Logarithmics forms and logarithmics vector fields. Let \(X \) an \(n \)-dimensional complex manifold and \(D \) a reduced hypersurface on \(X \). Given a meromorphic \(q \)-form \(\omega \) on \(X \), we say that \(\omega \) is a logarithmic \(q \)-form along \(D \) at \(x \in X \) if the following conditions occurs:

(i) \(\omega \) is holomorphic on \(X - D \);

(ii) If \(h = 0 \) is a reduced equation of \(D \), locally at \(x \), then \(h \omega \) and \(h d\omega \) are holomorphic.

Denoting by \(\Omega^q_X,\omega(x) (\text{log} D) \) the set of germs of logarithmic \(q \)-form along \(D \) at \(x \), we define the following coherent sheaf of \(\mathcal{O}_X \)-modules

\[
\Omega^q_X(\text{log} D) := \bigcup_{x \in X} \Omega^q_{X,x}(\text{log} D),
\]

which is called by sheaf of logarithmic \(q \)-forms along \(D \). See [9], [14] and [18] for details.

Now, given \(x \in X \), let \(v \in T_{X,x} \) be germ at \(x \) of a holomorphic vector field on \(X \). We say that \(v \) is a logarithmic vector field along of \(D \) at \(x \), if \(v \) satisfies the following condition: if \(h = 0 \) is a equation of \(D \), locally at \(x \), then the derivation \(v(h) \) belongs to the ideal \(\langle h_x \rangle \mathcal{O}_{X,x} \). Denoting by \(T_{X,x}(\text{− log} D) \) the set of germs of logarithmic vector field along of \(D \) at \(x \), we define the following coherent sheaf of \(\mathcal{O}_X \)-modules

\[
T_X(\text{− log} D) := \bigcup_{x \in X} T_{X,x}(\text{− log} D),
\]

which is called by sheaf of logarithmic vector fields along \(D \).

It is known that \(\Omega^1_X(\text{log} D) \) and \(T_X(\text{− log} D) \) is always a reflexive sheaf, see [18] for more details. If \(D \) is an analytic hypersurface with normal crossing singularities, the sheaves \(\Omega^1_X(\text{log} D) \) and \(T_X(\text{− log} D) \) are locally free, furthermore, the Poincaré residue map

\[
\text{Res} : \Omega^1_X(\text{log} D) \longrightarrow \mathcal{O}_D \cong \bigoplus_{i=1}^N \mathcal{O}_{D_i}
\]

give the following exact sequence of sheaves on \(X \)

\[
0 \longrightarrow \Omega^1_X \longrightarrow \Omega^1_X(\text{log} D) \xrightarrow{\text{Res}} \bigoplus_{i=1}^N \mathcal{O}_{D_i} \longrightarrow 0,
\]

(4)

where \(\Omega^1_X \) is the sheaf of holomorphics 1-forms on \(X \) and \(D_1, \ldots, D_N \) are the irreducible components of \(D \).

Now, if \(D \) is such that \(\text{cod}(\text{Sing}(D)) > 2 \) then there exist the following exact sequence of sheaves on \(X \) (see V. I. Dolgachev [10]):

\[
0 \longrightarrow \Omega^1_X \longrightarrow \Omega^1_X(\text{log} D) \longrightarrow \mathcal{O}_D \longrightarrow 0,
\]

(5)
On the projective space \(\mathbb{P}^n \), if \(D \) is a smooth hypersurface, then there exist the following exact sequence of sheaves (see E. Angeline \[3\]):

\[
0 \longrightarrow T_{\mathbb{P}^n}(-\log D) \longrightarrow \mathcal{O}_{\mathbb{P}^n}(1)^{n+1} \longrightarrow \mathcal{O}_{\mathbb{P}^n}(k) \longrightarrow 0,
\]

where \(k \) is the degree of \(D \).

2.2. Singular one-dimensional holomorphic foliations.

Definition 2.1. Let \(X \) be a connected complex manifold. An one-dimensional holomorphic foliation is given by the following data:

\(i \) an open covering \(\mathcal{U} = \{ U_\alpha \} \) of \(X \);

\(ii \) for each \(U_\alpha \) an holomorphic vector field \(\zeta_\alpha \);

\(iii \) for every non-empty intersection, \(U_\alpha \cap U_\beta \neq \emptyset \), a holomorphic function \(f_{\alpha\beta} \in \mathcal{O}^*_X(U_\alpha \cap U_\beta) \);

such that \(\zeta_\alpha = f_{\alpha\beta} \zeta_\beta \) in \(U_\alpha \cap U_\beta \) and \(f_{\alpha\beta}f_{\beta\gamma} = f_{\alpha\gamma} \) in \(U_\alpha \cap U_\beta \cap U_\gamma \).

We denote by \(K_\mathcal{F} \) the line bundle defined by the cocycle \(\{ f_{\alpha\beta} \} \in H^1(X, \mathcal{O}^*) \).

Thus, a one-dimensional holomorphic foliation \(\mathcal{F} \) on \(X \) induces a global holomorphic section \(\zeta_\mathcal{F} \in H^0(X, T_X \otimes K_\mathcal{F}) \).

The line bundle \(T_\mathcal{F} := (K_\mathcal{F})^* \hookrightarrow T_X \) is called the *tangente bundle* of \(\mathcal{F} \). The singular set of \(\mathcal{F} \) is \(\text{Sing}(\mathcal{F}) = \{ \zeta_\mathcal{F} = 0 \} \). We will assume that \(\text{cod}(\text{Sing}(\mathcal{F})) \geq 2 \).

Definition 2.2. Let \(V \) an analytic subspace of a complex manifold \(X \). We say that \(V \) is invariant by a foliation \(\mathcal{F} \) if \(T_\mathcal{F}|_V \subset (\Omega^1_V)^* \). If \(V \) is a hypersurface we say that \(\mathcal{F} \) is *logarithmic along* \(V \).

Definition 2.3. A foliation on a complex projective space \(\mathbb{P}^n \) is called by *projective foliation*. Let \(\mathcal{F} \) be a projective foliation with tangent bundle \(T_\mathcal{F} = \mathcal{O}_{\mathbb{P}^n}(r) \). The integer number \(d := r + 1 \) is called by the *degree* of \(\mathcal{F} \).

2.3. The GSV-Index.

X. Gomez-Mont, J. Sead and A. Verjovsky \[12\] introduced the *GSV-index* for a holomorphic vector field over an analytic hypersurface, with isolated singularities, on a complex manifold, generalizing the (classical) Poincaré-Hopf index. The concept of GSV-index was extended to holomorphic vector field on more general contexts. For example, J. Seade and T. Suwa in \[19\], defined the GSV-index for holomorphic vector field on analytic subvariety type isolated complete intersection singularity. J.-P. Brasselet, J. Seade and T. Suwa in \[5\], extended the notion of GSV-index for vector fields defined in certain types of analytical subvariety with non-isolated singularities.

In \[11\] X. Gomez-Mont defined the *homological index* of holomorphic vector field on an analytic hypersurface with isolated singularities, which coincides with GSV-index. There is also the *virtual index*, introduced by D. Lehmann, M. Soares and T. Suwa \[15\], that via Chern-Weil theory can be interpreted as the GSV-index.
M. Brunella [7] also present the GSV-index for foliations on complex surfaces by a different approach.

Let \(X \) be an \(n \)-dimensional complex manifold, \(D \) a isolated hypersurface singularity on \(X \) and let \(\mathcal{F} \) be a foliation on \(X \) of dimension one, with isolated singularities. Suppose \(\mathcal{F} \) logarithmic along \(D \), i.e., the analytic hypersurface \(D \) is invariant by each holomorphic vector field that is a local representative of \(\mathcal{F} \). The GSV-index of \(\mathcal{F} \) in \(x \in D \) will be denoted by \(\text{GSV}(\mathcal{F}, D, x) \).

For definition and details on the GSV-index we refer to [6] and [22].

2.4. The Logarithmic Index. Recently, A. G. Aleksandrov introduced in [1] the notion of logarithmic index for logarithmic a vector field. Let \(\mathcal{F} \) be an one-dimensional holomorphic foliation on \(X \) with isolated singularities and logarithmic along \(D \). Fixed a point \(x \in X \), let \(v \in T_X(-\log D)|_U \) a germ of vector field on \((U, x)\) tangent to \(\mathcal{F} \). The interior multiplication \(i_v \) induces the complex of logarithmic differential forms

\[
0 \longrightarrow \Omega^0_{X,x}(\log D) \xrightarrow{i_v} \Omega^{-1}_{X,x}(\log D) \xrightarrow{i_v} \cdots \xrightarrow{i_v} \Omega^1_{X,x}(\log D) \xrightarrow{i_v} \mathcal{O}_{n,x}.
\]

Since all singularities of \(v \) are isolated, the \(i_v \)-homology groups of the complex \(\Omega^*_{X}(\log D) \) are finite-dimensional vector spaces (see [1]). Thus, the Euler characteristic

\[
\chi(\Omega^*_{X}(\log D), i_v) = \sum_{i=0}^{n} (-1)^i \dim H_i(\Omega^*_{X,x}(\log D), i_v).
\]

of the complex of logarithmic differential forms is well defined. Since this number does not depend on local representative \(v \) of the foliation \(\mathcal{F} \) at the point \(x \), we define the logarithmic index of \(\mathcal{F} \) at the point \(x \) by

\[
\text{Ind}_{\log D,x}(\mathcal{F}) := \chi(\Omega^*_{X}(\log D), i_v).
\]

It follows from the definition that \(\text{Ind}_{\log D,x}(\mathcal{F}) = 0 \) for all \(x \in X - \text{Sing}(\mathcal{F}) \).

We have the following important property (see [1]):

Proposition 2.4. [1] Let \(X, D \) and \(\mathcal{F} \) be as described above. Then, for each \(x \in \text{Sing}(\mathcal{F}) \cap D \) we have

\[
\text{Ind}_{\log D,x}(\mathcal{F}) = \mu_x(\mathcal{F}) - \text{GSV}(\mathcal{F}, D, x)
\]

where \(\mu_x(v) \) and \(\text{GSV}(v, D, x) \) denote, respectively, the Milnor number and GSV index of \(v \).

Remark 2.5. If \(x \in \text{Sing}(\mathcal{F}) \cap D_{\text{reg}} \), we obtain

\[
\text{Ind}_{\log D,x}(\mathcal{F}) = \mu_x(\mathcal{F}) - \mu_x(\mathcal{F}|_{D_{\text{reg}}}),
\]

since, in this case, the GSV index of \(\mathcal{F} \) in \(x \) coincides with the Milnor number of \(\mathcal{F}|_{D_{\text{reg}}} \) in \(x \). In particular,

\[
\text{Ind}_{\log D,x}(\mathcal{F}) = 0,
\]
whenever x is a non-degenerate singularity of \mathcal{F}.

3. Proof of Theorem [\textit{\ref{thm:main}}]

To prove the Theorem [\textit{\ref{thm:main}}] we will firstly prove the following result.

Theorem 3.1. Let X be an n-dimensional complex compact manifold and \mathcal{D} a smooth hypersurface on X. Then for all line bundle L on X we have

$$\int_X c_n(T_X(-\log \mathcal{D}) - L) = \int_X c_n(T_X - L) - \int_{\mathcal{D}} c_{n-1}(T_X - [\mathcal{D}] - L).$$

Proof. By using properties of Chern class we get

$$\int_X c_n(T_X(-\log \mathcal{D}) - L) = \sum_{j=0}^{n} \int_X c_{n-j}(T_X(-\log \mathcal{D})) c_1(L)^j = \sum_{j=0}^{n} (-1)^{n-j} \int_X c_{n-j}(\Omega^1_X(\log \mathcal{D})) c_1(L)^j.$$

On the one hand, since \mathcal{D} is smooth we can use the exact sequence \[(\ref{eq:exact_sequence})\] to obtain

$$c_i(\Omega^1_X(\log \mathcal{D})) = \sum_{k=0}^{i} c_{i-k}(\Omega^1_X) c_k(\mathcal{O}_\mathcal{D}), \forall i \in \{1, \ldots, n\}.$$

On the other hand, the Chern classes of $\mathcal{O}_\mathcal{D}$ are

$$c_k(\mathcal{O}_\mathcal{D}) = c_k(\mathcal{O}_X - \mathcal{O}(-\mathcal{D})) = c_1([\mathcal{D}])^k, \quad k = 1, \ldots, n.$$

Thus,

$$\int_X c_n(T_X(-\log \mathcal{D}) - L) = \sum_{j=0}^{n} (-1)^{n-j} \int_X \left[\sum_{k=0}^{n-j} c_{n-j-k}(\Omega^1_X) c_1([\mathcal{D}])^k \right] c_1(L)^j.$$

Now, we split this sum in two parts as follows:

$$\sum_{j=0}^{n} (-1)^{n-j} \int_X \left[\sum_{k=0}^{n-j} c_{n-j-k}(\Omega^1_X) c_1([\mathcal{D}])^k \right] c_1(L)^j = \sum_{j=0}^{n} (-1)^{n-j} \int_X \left[\sum_{k=1}^{n-j} c_{n-j-k}(\Omega^1_X) c_1([\mathcal{D}])^k \right] c_1(L)^j + \sum_{j=0}^{n} (-1)^{n-j} \int_X c_{n-j}(\Omega^1_X) c_1(L)^j.$$
In the first part appears all terms with \(k \geq 1 \) and in second one part are the terms with \(k = 0 \). By using the Poincaré duality, we compute the first part as follow:

\[
\sum_{j=0}^{n-1} (-1)^{n-j} \int_X \left[\sum_{k=1}^{n-j} c_{n-j-k}(\Omega_X^1) c_1([\mathcal{D}])^k \right] c_1(L^*)^j = \\
= \sum_{j=0}^{n-1} (-1)^{n-j} \int_X \left[\sum_{k=1}^{n-j} c_{n-j-k}(\Omega_X^1) c_1([\mathcal{D}])^{k-1} \right] c_1(L^*)^j = \\
= -\sum_{j=0}^{n-1} \int_D \left[\sum_{k=1}^{n-j} (-1)^{n-j-k} c_{n-j-k}(\Omega_X^1)(-1)^{k-1} c_1([\mathcal{D}])^{k-1} \right] c_1(L^*)^j = \\
= -\sum_{j=0}^{n-1} \int_D c_{n-1-j}(T_X - [\mathcal{D}]) c_1(L^*)^j = \\
= -\int_D c_{n-1}(T_X - [\mathcal{D}] - L).
\]

Now, by basics proprieties of Chern classes we compute the second sum as follow:

\[
\sum_{j=0}^{n} (-1)^{n-j} \int_X c_{n-j}(\Omega_X^1) c_1(L^*)^j = \sum_{j=0}^{n} (-1)^{n-j} \int_X (-1)^{n-j} c_{n-j}(T_X) c_1(L^*)^j = \\
= \sum_{j=0}^{n} \int_X c_{n-j}(T_X) c_1(L^*)^j = \\
= \int_X c_n(T_X - L).
\]

Finally, we conclude that

\[
\sum_{j=0}^{n} (-1)^{n-j} \int_X \left[\sum_{k=0}^{n-j} c_{n-j-k}(\Omega_X^1) c_1([\mathcal{D}])^k \right] c_1(L^*)^j = -\int_D c_{n-1}(T_X - [\mathcal{D}] - L) + \int_X c_n(T_X - L).
\]

and this proves the result. □

Now, we will prove the Theorem 3.1

Proof. Since \(\mathcal{D} \) is smooth, we can invoke the formula (1) of the Theorem 3.1 to obtain the following equality

\[
\int_X c_n(T_X(-\log \mathcal{D}) - T_{\mathcal{F}}) = \int_X c_n(T_X - T_{\mathcal{F}}) - \int_X c_{n-1}(T_X - [\mathcal{D}] - T_{\mathcal{F}}).
\]

By hypothesis, the one-dimensional foliation \(\mathcal{F} \) is logarithmic along \(\mathcal{D} \) and has only isolated singularities, then it follows from \([22]\) that the top Chern number of
restriction \((T_X - [D] - T_\mathcal{F})|_D \) coincides with the sum of GSV-Index of \(\mathcal{F} \) along \(D \). That is

\[
\int_D c_n-1(T_X - [D] - T_\mathcal{F}) = \sum_{p \in \text{Sing}(\mathcal{F}) \cap D} GSV(\mathcal{F}, D, p),
\]

Hence

\[
\int_X c_n(T_X - \log D - T_\mathcal{F}) = \int_X c_n(T_X - T_\mathcal{F}) - \sum_{p \in \text{Sing}(\mathcal{F}) \cap D} GSV(\mathcal{F}, D, p)
\]

\[
= \sum_{p \in \text{Sing}(\mathcal{F})} \mu_p(\mathcal{F}) - \sum_{p \in \text{Sing}(\mathcal{F}) \cap D} GSV(\mathcal{F}, D, p),
\]

where in the last step we are using the Baum-Bott classical formula (1). Now, since \(\text{Ind}_{\log D, p}(\mathcal{F}) = 0 \) for all \(p \in \text{Sing}(\mathcal{F}) \cap D \), by Proposition 2.4 we get the following relation

\[
\text{GSV}(\mathcal{F}, D, p) = \mu_p(\mathcal{F}), \forall p \in \text{Sing}(\mathcal{F}) \cap D.
\]

Therefore, we obtain

\[
\sum_{p \in \text{Sing}(\mathcal{F})} \mu_p(\mathcal{F}) = \sum_{p \in \text{Sing}(\mathcal{F}) \cap (X \setminus D)} \mu_p(\mathcal{F}),
\]

and the desired formula is proved. \(\square \)

4. Proof of Theorem 2

In this section we will consider \(D = D_1 \cup \ldots \cup D_N \) an analytic hypersurface on \(X \), with normal crossing singularities. Fixing an irreducible component, say \(D_N \), we define

\[
\mathcal{D}_N := \bigcup_{j=1}^{N-1} D_j \quad \text{and} \quad \mathcal{D}_N|D_N := \bigcup_{j=1}^{N-1} D_j \cap D_N.
\]

We note that \(\mathcal{D}_N|D_N \) is an analytic hypersurface on \(D_N \) with normal crossings singularities and \(N - 1 \) irreducible components. We will use the following multiple index notation: for each multi-index \(J = (j_1, \ldots, j_N) \) and \(J' = (j'_1, \ldots, j'_{N-1}) \), with \(1 \leq j_i, j'_i \leq n \), we denote

\[
c_1(D)^J = c_1([D_1])^{j_1} \cdots c_1([D_N])^{j_N},
\]

\[
c_1(\mathcal{D}_N)^{J'} = c_1([D_1])^{j'_1} \cdots c_1([D_{N-1}])^{j'_{N-1}}.
\]

Lemma 4.1. In the above conditions, for each \(i = 1, \ldots, n \), we have

\[
c_i(\Omega_X^1(\log D)) = \sum_{k=0}^{n} c_{i-k}(\Omega_X^1) c_1(D)^J.
\]

Proof. Since \(D \) is an analytic hypersurface with normal crossing singularities, the Poincaré residue map

\[
\text{Res} : \Omega_X^1(\log D) \longrightarrow \mathcal{O}_D \cong \bigoplus_{i=1}^{N} \mathcal{O}_{D_i}
\]
induces the following exact sequence

$$0 \rightarrow \Omega^1_X \rightarrow \Omega^1_X(\log D) \xrightarrow{\text{Res}} \bigoplus_{i=1}^N \mathcal{O}_{D_i} \rightarrow 0.$$

By using this exact sequence, we get

$$c_i(\Omega^1_X(\log D)) = \sum_{k=0}^i c_{i-k}(\Omega^1_X)c_k\left(\bigoplus_{i=1}^N \mathcal{O}_{D_i}\right)$$

$$= \sum_{k=0}^i c_{i-k}(\Omega^1_X) \left(\sum_{j_1+\ldots+j_N=k} c_{j_1}(\mathcal{O}_{D_1}) \ldots c_{j_N}(\mathcal{O}_{D_N}) \right)$$

$$= \sum_{k=0}^i c_{i-k}(\Omega^1_X) \left(\sum_{j_1+\ldots+j_N=k} c_1([D_1])^{j_1} \ldots c_1([D_N])^{j_N} \right),$$

where in last equality we use the following relations

$$c_i(\mathcal{O}_{D_j}) = c_1([D_j])^i, \quad i = 1, \ldots, n,$$

which can be obtained of \(\mathcal{O} \). \(\square \)

Lemma 4.2. In the above conditions, for each \(i = 1, \ldots, n-1 \),

$$c_i(\Omega^1_X)|_{D_N} = c_i(\Omega^1_{D_N}) - c_{i-1}(\Omega^1_{D_N})c_1([D_N])_{|D_N}.$$

Proof. It follows from by taking the total Chern class in the exact sequence

$$0 \rightarrow T_{D_N} \rightarrow T_X|_{D_N} \rightarrow [D_N]|_{D_N} \rightarrow 0.$$

Lemma 4.3. In the above conditions, if \(L \) is a holomorphic line bundle on \(X \), then the following relations hold:

(10) \[\int_X c_n(T_X(-\log D) - L) = \sum_{j=0}^n \sum_{k=0}^{n-j} \sum_{|J|=k} \int_X (\text{Res})c_{n-j-k}(\Omega^1_X)c_1(D)^j c_1(L^*)^j. \]

In particular,

(11) \[\int_X c_n(T_X(-\log \hat{D}_N) - L) = \sum_{j=0}^n \sum_{k=0}^{n-j} \sum_{|J'|=k} \int_X (\text{Res})c_{n-j-k}(\Omega^1_X)c_1(\hat{D}_N)^{j'} c_1(L^*)^{j'}. \]

and

(12) \[\int_{D_N} c_{n-1}(T_{D_N}(-\log ([D_N]|D_N)) - L|_{D_N}) = \sum_{j=0}^{n-1} \sum_{k=0}^{n-1-j} \sum_{|J'|=k} \int_{D_N} (\text{Res})c_{n-1-j-k}(\Omega^1_{D_N})c_1(\hat{D}_N)^{j'} c_1(L^*)^{j}. \]
Proof. By basics proprieties of Chern classes, we get
\[
\int_X c_n(T_X(-\log D) - L) = \int_X \sum_{j=0}^n c_{n-j}(T_X(-\log D))c_1(L^*)^j
\]
\[
= \int_X \sum_{j=0}^n (-1)^{n-j}c_{n-j}(\Omega_X^1(\log D))c_1(L^*)^j.
\]
By Lemma 4.1 we get
\[
c_{n-j}(\Omega_X^1(\log D)) = \sum_{k=0}^{n-j} \sum_{|J|=k} c_{n-j-k}(\Omega_X^1) c_1(D)^J c_1(L^*)^j.
\]
Substituting this, we obtain (10). The relation (11) is obtained by taking \(D = \hat{D}_N\) in relation (10). Analogously, applying the relation (11), we can obtain (12) by taking \(X = D_N\) as a complex manifold of dimension \(n-1\) and \(D = D_N|D_N\) as an analytic subvariety of \(D_N\) with normal crossings. \(\square\)

Proposition 4.4. In the above conditions, if \(L\) is a holomorphic line bundle on \(X\), then
\[
\int_X c_n(T_X(-\log D) - L) = \int_X c_n(T_X(-\log(D_N) - L) - \int_{D_N} c_{n-1}(T_{D_N}(-\log(D_N|D_N) - L|D_N).\]

Proof. By Lemma 4.3, it is sufficient to show that the following equality occurs
\[
\sum_{j=0}^n \sum_{k=0}^{n-j} \sum_{|J|=k} \int_X (-1)^{n-j}c_{n-j-k}(\Omega_X^1) c_1(D)^J c_1(L^*)^j =
\]
\[
\sum_{j=0}^n \sum_{k=0}^{n-j} \sum_{|J'|=k} \int_X (-1)^{n-j}c_{n-j-k}(\Omega_X^1) c_1(D)^{J'} c_1(L^*)^j =
\]
\[
- \sum_{j=0}^{n-1} \sum_{k=0}^{n-1-j} \sum_{|J'|=k} \int_{D_N} (-1)^{n-1-j}c_{n-1-j-k}(\Omega_{D_N}^1) c_1(D)^{J'} c_1(L^*)^j.
\]
Indeed, we can decompose the sum on the left hand side into the terms with \(k = 0\) and those with \(k \geq 1\) as follows:
\[
\sum_{j=0}^n \sum_{k=0}^{n-j} \sum_{|J|=k} \int_X (-1)^{n-j}c_{n-j-k}(\Omega_X^1) c_1(D)^J c_1(L^*)^j =
\]
\[
= \sum_{j=0}^n \int_X (-1)^{n-j}c_{n-j}(\Omega_X^1) c_1(L^*)^j + \sum_{j=0}^{n-1} \sum_{k=1}^{n-j} \sum_{|J|=k} \int_X (-1)^{n-j}c_{n-j-k}(\Omega_X^1) c_1(D)^J c_1(L^*)^j.
\]
By using the fact that we obtain:

$$\sum_{j=0}^{n-1} \sum_{k=1}^{n-j} \sum_{|J|=k} \int_X (-1)^{n-j} c_{n-j-k}(\Omega_X^1 c_1(D))^j c_1(L^*)^j =$$

$$\sum_{j=0}^{n-1} \sum_{k=1}^{n-j} \sum_{|J|=k} \int_X (-1)^{n-j} c_{n-j-k}(\Omega_X^1 c_1(D))^j c_1(L^*)^j +$$

$$+ \sum_{j=0}^{n-1} \sum_{k=1}^{n-j} \sum_{|J|=k} \sum_{j_N \geq 1} \int (\Omega_X^1 c_1([D_L])^{j_1} \ldots c_1([D_N])^{j_N-1} c_1(L^*)^j.$$

By using the fact that $c_1([D_N])$ is Poincaré dual to the fundamental class of D_N, we obtain:

$$\sum_{j=0}^{n-1} \sum_{k=1}^{n-j} \sum_{|J|=k} \int_X (-1)^{n-j} c_{n-j-k}(\Omega_X^1 c_1(D))^j c_1(L^*)^j =$$

$$\sum_{j=0}^{n-1} \sum_{k=1}^{n-j} \sum_{|J|=k} \int_X (-1)^{n-j} c_{n-j-k}(\Omega_X^1 c_1(D))^j c_1(L^*)^j +$$

$$+ \sum_{j=0}^{n-1} \sum_{k=1}^{n-j} \sum_{|J|=k} \sum_{j_N \geq 1} \int (\Omega_X^1 c_1([D_L])^{j_1} \ldots c_1([D_N])^{j_N-1} c_1(L^*)^j.$$

Now, using the relation of Lemma 1.2, we get

$$\sum_{j=0}^{n-1} \sum_{k=1}^{n-j} \sum_{|J|=k} \int_D (-1)^{n-j} c_{n-j-k}(\Omega_X^1 c_1([D_L])^{j_1} \ldots c_1([D_N])^{j_N-1} c_1(L^*)^j =$$

$$= \sum_{j=0}^{n-1} \sum_{k=1}^{n-j} \sum_{|J|=k} \int_D (-1)^{n-j} c_{n-j-k}(\Omega_X^1 c_1([D_L])^{j_1} \ldots c_1([D_N])^{j_N-1} c_1(L^*)^j -$$

$$- \sum_{j=0}^{n-1} \sum_{k=1}^{n-j} \sum_{|J|=k} \sum_{j_N \geq 1} \int_D (-1)^{n-j} c_{n-j-k}(\Omega_X^1 c_1([D_L])^{j_1} \ldots c_1([D_N])^{j_N-1} c_1(L^*)^j =$$

$$= \sum_{j=0}^{n-1} \int_D (-1)^{n-j} c_{n-j-1}(\Omega_X^1 c_1(L^*)^j + \sum_{j=0}^{n-1} \sum_{k=1}^{n-j-1} \sum_{|J|=k} \int_D (-1)^{n-j} c_{n-j-k}(\Omega_X^1 c_1(D)^j c_1(L^*)^j =$$

$$= - \sum_{j=0}^{n-1} \sum_{k=0}^{n-j-1} \sum_{|J|=k} \int_D (-1)^{n-1-j} c_{n-1-j-k}(\Omega_X^1 c_1(D)^j c_1(L^*)^j.$$

Hence,
We will prove by induction on the number of irreducible components of D. Indeed, if the number of irreducible component of D is 1, then D is smooth. By hypothesis, the singularities of \mathcal{F} are non-degenerate, and thus the theorem follows from Theorem 1.

Let us suppose that for every analytic hypersurface on X, satisfying the hypothesis of theorem and having $N - 1$ irreducible components, the formula (3) holds. Let D be an analytic hypersurface on X with N irreducible components, satisfying the hypotheses of the theorem. We will prove that the formula (3) is true for D.

We know that D_N is an analytic hypersurface on X and $D_N|D_N$ is an analytic hypersurface on D_N, both with normal crossing singularities and having exactly $N - 1$ irreducible components. Moreover, \mathcal{F} and its restriction $\mathcal{F}|D_N$ on D_N are

\[
\sum_{j=0}^{n-1} \sum_{k=0}^{n-j} \sum_{|J|=k}^{n-j} \int_X (-1)^{n-j} c_{n-j-k}(\Omega^1_X) c_1(D)^j c_1(L)^j =
\]

\[
\sum_{j=0}^{n-1} \sum_{k=0}^{n-j} \sum_{|J|=k}^{n-j} \int_X (-1)^{n-j} c_{n-j-k}(\Omega^1_X) c_1(\tilde{D}_N)^j c_1(L)^j -
\]

\[
- \sum_{j=0}^{n-1} \sum_{k=0}^{n-j} \sum_{|J|=k}^{n-j} \int_{D_N} (-1)^{n-j} c_{n-j-k}(\Omega^1_{D_N}) c_1(\tilde{D}_N)^j c_1(L)^j =
\]

\[
= \sum_{j=0}^{n} \int_X (-1)^{n-j} c_{n-j}(\Omega^1_X) c_1(L)^j + \sum_{j=0}^{n-1} \sum_{k=0}^{n-j} \sum_{|J|=k}^{n-j} \int_X (-1)^{n-j} c_{n-j-k}(\Omega^1_X) c_1(\tilde{D}_N)^j c_1(L)^j -
\]

\[
- \sum_{j=0}^{n-1} \sum_{k=0}^{n-j} \sum_{|J|=k}^{n-j} \int_{D_N} (-1)^{n-j} c_{n-j-k}(\Omega^1_{D_N}) c_1(\tilde{D}_N)^j c_1(L)^j =
\]

\[
= \sum_{j=0}^{n} \int_X (-1)^{n-j} c_{n-j}(\Omega^1_X) c_1(L)^j + \sum_{j=0}^{n-1} \sum_{k=0}^{n-j} \sum_{|J|=k}^{n-j} \int_X (-1)^{n-j} c_{n-j-k}(\Omega^1_X) c_1(\tilde{D}_N)^j c_1(L)^j -
\]

\[
- \sum_{j=0}^{n-1} \sum_{k=0}^{n-j} \sum_{|J|=k}^{n-j} \int_{D_N} (-1)^{n-j} c_{n-j-k}(\Omega^1_{D_N}) c_1(\tilde{D}_N)^j c_1(L)^j.
\]

Now, we will prove the Theorem 2:

Proof. We will prove by induction on the number of irreducible components of D. Indeed, if the number of irreducible component of D is 1, then D is smooth. By hypothesis, the singularities of \mathcal{F} are non-degenerate, and thus the theorem follows from Theorem 1.
logarithmic along D_N and $\hat{D}_N|D_N$, respectively. Thus, we can use the induction hypothesis and we obtain

$$\sum_{p \in \text{Sing}(\mathcal{F}) \cap (X \setminus \hat{D}_N)} \mu_p(\mathcal{F}) = \int_X c_n(T_X(- \log \hat{D}_N) - T_{\mathcal{F}})$$

and

$$\sum_{p \in \text{Sing}(\mathcal{F}) \cap [D_N \setminus (\hat{D}_N|D_N)]} \mu_p(\mathcal{F}) = \int_{D_N} c_n - (T_D_N(- \log (\hat{D}_N|D_N)) - T_{\mathcal{F}|D_N}).$$

By using the following identity

$$X - D = (X - \hat{D}_N) - [D_N - (\hat{D}_N \cap D_N)],$$

we get

$$\sum_{p \in \text{Sing}(\mathcal{F}) \cap (X \setminus \hat{D}_N)} \mu_p(\mathcal{F}) = \sum_{p \in \text{Sing}(\mathcal{F}) \cap (X \setminus \hat{D}_N)} \mu_p(\mathcal{F}) - \sum_{p \in \text{Sing}(\mathcal{F}) \cap [D_N \setminus (\hat{D}_N|D_N)]} \mu_p(\mathcal{F}).$$

Therefore, by (14) and (15), we get

$$\sum_{p \in \text{Sing}(\mathcal{F}) \cap (X \setminus \hat{D}_N)} \mu_p(\mathcal{F}) = \int_X c_n(T_X(- \log \hat{D}_N) - T_{\mathcal{F}}) - \int_{D_N} c_n - (T_D_N(- \log (\hat{D}_N|D_N)) - T_{\mathcal{F}|D_N}),$$

and we obtain the desired equality by applying the Proposition 4.4. Thus, we prove that the formula (3) is true for D and the proof of the theorem follows by induction.

□

5. Application: A Poincaré-Hopf Type Theorem

In this section we will prove a Poincaré-Hopf type Theorem for non-compact complex manifolds. More precisely, we prove the following:

Corollary 1 Let \hat{X} be an n-dimensional complex manifold such that $\hat{X} = X - D$, where X is an n-dimensional complex compact manifold, D is a reduced normal crossing hypersurface on X. Let \mathcal{F} be a foliation on X of dimension one given by a global holomorphic vector field, with isolated singularities (non-degenerates) and logarithmic along D. Then

$$\chi(\hat{X}) = \sum_{p \in \text{Sing}(\mathcal{F}) \cap \hat{X}} \mu_p(\mathcal{F}),$$

where $\mu_p(\mathcal{F})$ denotes the Milnor number of \mathcal{F} on p.

Proof. On the one hand, it follows from Norimatsu-Silvotti-Aluffi Theorem that

$$\int_X c_n(T_X(- \log D)) = \chi(\hat{X}).$$

On the other hand, since D is a normal crossing hypersurface, it follows from Theorem 2 that

$$\int_X c_n(T_X(- \log D)) = \sum_{p \in \text{Sing}(\mathcal{F}) \cap \hat{X}} \mu_p(\mathcal{F}).$$
6. Application to one-dimensional projective foliations

In this section we give an optimal description for a smooth hypersurface D invariant by an one-dimensional foliation \mathcal{F} on \mathbb{P}^n satisfying $\text{Sing}(\mathcal{F}) \subseteq D$. More precisely, we will prove the Theorem 3.

Firstly, we need some preliminary results.

Lemma 6.1. Let $f(x,y) = \sum_{i=0}^{n} \sum_{j=0}^{n-i} \left(\frac{n+1}{n-i-j} \right) x^j y^i$, with $n \in \mathbb{N}$.

(i) If $x \neq y$, then $f(x,y) = \frac{(1+x)^{n+1} - (1+y)^{n+1}}{x-y}$.

(ii) If $x = y$, then $f(x,y) = (n+1)(1+x)^n$

Proof. Developing the summation in the following triangular format

$$
f(x,y) = \binom{n+1}{n} x + \binom{n+1}{n-2} x^2 + \ldots + \binom{n+1}{0} x^n + \binom{n+1}{n-1} y + \binom{n+1}{n-2} yx + \ldots + \binom{n+1}{0} yx^{n-1} + \binom{n+1}{n-2} y^2 + \ldots + \binom{n+1}{0} y^2 x^{n-2} + \ldots + \binom{n+1}{0} y^n.
$$

We can put in evidence the common factor in each columns and we get the following forma:

$$
f(x,y) = \sum_{k=0}^{n} \left[\binom{n+1}{n-k} \left(\sum_{j=0}^{k} x^{k-j} y^j \right) \right].
$$

(i) Suppose $x \neq y$. Since

$$x^k + x^{k-1} y + \ldots + xy^{k-1} + y^k = \frac{x^{k+1} - y^{k+1}}{x-y}, \quad 0 \leq k \leq n,$$
we obtain

\[f(x, y) = \sum_{k=0}^{n} \left(\frac{n+1}{n-k} \right) \left(\frac{x^{k+1} - y^{k+1}}{x-y} \right) \]

\[= \frac{1}{x-y} \left[\sum_{k=0}^{n} \left(\frac{n+1}{n-k} \right) x^{k+1} - \sum_{k=0}^{n} \left(\frac{n+1}{n-k} \right) y^{k+1} \right] \]

\[= \frac{(1+x)^{n+1} - (1+y)^{n+1}}{x-y}, \]

where in the last equality we have used the binomial theorem.

(ii) Consider the case where \(x = y \). By equality (16) we have

\[f(x, y) = \left(\frac{n+1}{n} \right) + \left(\frac{n+1}{n-1} \right) 2x + \left(\frac{n+1}{n-1} \right) 3x^2 + \ldots + \left(\frac{n+1}{0} \right)(n+1)x^n. \]

Hence, by using the binomial theorem we obtain

\[f(x, y) = \frac{d}{dx} (1 + x)^{n+1} \]

\[= (n+1)(1+x)^n. \]

\[\square \]

Lemma 6.2. Let \(k, d \) and \(n \) natural numbers, with \(k \geq 1, \ d \geq 0 \) and \(n \geq 2 \). Consider the natural number \(\delta(k, d, n) \) defined by the relation

\[\delta(k, d, n) = \sum_{i=0}^{n} \sum_{j=0}^{n-i} \left(\frac{n+1}{n-i-j} \right) (-k)^j (d-1)^i. \]

Then \(\delta(k, d, n) \) satisfies the following conditions:

(i) If \(n \) is odd, then:

(a) \(\delta(k, d, n) > 0 \iff k < d + 1; \)

(b) \(\delta(k, d, n) = 0 \iff k = d + 1; \)

(c) \(\delta(k, d, n) < 0 \iff k > d + 1. \)

(ii) If \(n \) is even, then \(\delta(k, d, n) \geq 0 \) and moreover:
(a) \(\delta(k, d, n) > 0 \iff \begin{cases} k \neq d + 1 \\
 or \\
 k = d + 1, \text{ with } d \neq 0 \end{cases} \)

(b) \(\delta(k, d, n) = 0 \iff k = 1 \text{ and } d = 0. \)

(iii) \(\delta(k, d, n) = \sum_{i=0}^{n} (-1)^i (k - 1)^i d^{n-i}. \)

Proof. In order to prove the present lemma, we can consider \(x = -k \) and \(y = d - 1 \) in \(f(x, y) \) of the lemma 6.1. Hence, we obtain

\[
\delta(k, d, n) = \frac{(1 - k)^{n+1} - d^{n+1}}{-k - d + 1}, \text{ if } k \neq 1 \text{ or } d \neq 0
\]

and

\(\delta(k, d, n) = 0, \text{ if } k = 1 \text{ and } d = 0. \)

The proof of items (i) and (ii) can readily be obtained by the study of sign of the expression

\[
\frac{(1 - k)^{n+1} - d^{n+1}}{-k - d + 1}
\]

and also using the relation (17).

Now, let us consider the summation \(\sum_{i=0}^{n} (-1)^i (k - 1)^i d^{n-i}. \) We have:

\[
\sum_{i=0}^{n} (-1)^i (k - 1)^i d^{n-i} = d^n \left[\sum_{i=0}^{n} (-1)^i (k - 1)^i d^{-i} \right]
\]

\[
= d^n \left[\sum_{i=0}^{n} \left(\frac{(-1)(k - 1)}{d} \right)^i \right].
\]

By the property

\[
\forall a \in \mathbb{Z}, \quad 1 + a + a^2 + \ldots + a^n = \frac{1 - a^{n+1}}{1 - a}
\]

we get

\[
\sum_{i=0}^{n} (-1)^i (k - 1)^i d^{n-i} = \frac{(k - 1)^{n+1} - d^{n+1}}{-k - d + 1}.
\]

Hence, this proves the equality of item (iii). \(\square \)
Lemma 6.3. Let $D \subset \mathbb{P}^n$ a smooth and irreducible hypersurface of degree k. Then, for $l = 1, \ldots, n$, we obtain

$$c_l(T_{\mathbb{P}^n}(-\log D)) = \left[\sum_{j=0}^{l-1} \binom{n+1}{l-j} (-1)^j k^j \right] c_1(\mathcal{O}_{\mathbb{P}^n}(1))^l. \tag{18}$$

Proof. The formula (18) can be obtained by considering the recursion

$$c_j(T_{\mathbb{P}^n}(-\log D)) = \left(\frac{n+1}{j+1} \right) c_1(\mathcal{O}_{\mathbb{P}^n}(1))^{j+1} - c_j(T_{\mathbb{P}^n}(-\log D))(k c_1(\mathcal{O}_{\mathbb{P}^n}(1))),$$

for $j = 0, \ldots, n-1$, which can be obtained considering the exact sequence (11):

$$0 \rightarrow T_{\mathbb{P}^n}(-\log D) \rightarrow \mathcal{O}_{\mathbb{P}^n}(1)^{n+1} \rightarrow \mathcal{O}_{\mathbb{P}^n}(k) \rightarrow 0.$$

Now, we will prove the Theorem 3:

Proof. Let $\deg(D) = k$ and $\deg(\mathcal{F}) = d$. On the one hand, we have

$$\int_{\mathbb{P}^n} c_n(T_{\mathbb{P}^n}(-\log D) - T_{\mathcal{F}}) = \sum_{i=0}^{n} \int_{\mathbb{P}^n} c_{n-i}(T_{\mathbb{P}^n}(-\log D)) c_1(T_{\mathcal{F}})^i.$$

Now, by using the formula (18) in each $c_{n-i}(T_{\mathbb{P}^n}(-\log D))$, in the summation above, we obtain

$$\int_{\mathbb{P}^n} c_n(T_{\mathbb{P}^n}(-\log D) - T_{\mathcal{F}}) = \sum_{i=0}^{n} \sum_{j=0}^{n-i} \binom{n+1}{n-i-j} (-1)^j k^j \int_{\mathbb{P}^n} c_1(\mathcal{O}_{\mathbb{P}^n}(1))^{n-i} c_1(T_{\mathcal{F}})^i.$$

On the other hand, the tangent bundle $T_{\mathcal{F}}$ of foliation on \mathbb{P}^n is such that $T_{\mathcal{F}} = \mathcal{O}_{\mathbb{P}^n}(1-d)$. Therefore, we obtain $c_1(T_{\mathcal{F}}^*_{\mathbb{P}^n}) = (d-1) c_1(\mathcal{O}_{\mathbb{P}^n}(1))$. Hence,

$$\int_{\mathbb{P}^n} c_n(T_{\mathbb{P}^n}(-\log D) - T_{\mathcal{F}}) = \sum_{i=0}^{n} \sum_{j=0}^{n-i} \binom{n+1}{n-i-j} (-1)^j k^j (d-1)^i \int_{\mathbb{P}^n} c_1(\mathcal{O}_{\mathbb{P}^n}(1))^n$$

$$= \sum_{i=0}^{n} \sum_{j=0}^{n-i} \binom{n+1}{n-i-j} (-k)^j (d-1)^i,$$

where in the last equality we have used the fact that $\int_{\mathbb{P}^n} c_1(\mathcal{O}_{\mathbb{P}^n}(1))^n = 1$.

By hypothesis, the singularities of \mathcal{F} are non-degenerates. Then, the number $\# [\operatorname{Sing}(\mathcal{F}) \cap \mathbb{P}^n \backslash D]$ corresponds to the sum of the numbers of Milnor of the singular points of \mathcal{F} in $\mathbb{P}^n \backslash D$. Moreover, for all $p \in \operatorname{Sing}(\mathcal{F}) \cap D_{\text{reg}}$ we have $\operatorname{Ind}_{\log D,p}(\mathcal{F}) = 0$, since the singularities are non-degenerates. Thus, it follows from Theorem 1 that

$$\# [\operatorname{Sing}(\mathcal{F}) \cap \mathbb{P}^n \backslash D] = \sum_{i=0}^{n} \sum_{j=0}^{n-i} \binom{n+1}{n-i-j} (-k)^j (d-1)^i.$$
Now, the conclusion of proof can readily be obtained by the signal study of $\delta(k, d, n)$ that was done in Lemma 6.2.

Particularly, the items (1b) and (2b) of Theorem 3 characterize the situations in which all the singularities of \mathcal{F} occur in the invariant hypersurface \mathcal{D}. We will present optimal examples.

Example 6.4. Let \mathcal{F} be the foliation on \mathbb{P}^3 induced by the polynomial vector field

$$v = (-z_1^{k-1} - z_2^{k-1} - z_3^{k-1}) \frac{\partial}{\partial z_0} + (z_0^{k-1} - z_2^{k-1} - z_3^{k-1}) \frac{\partial}{\partial z_1} +$$

$$+ (z_0^{k-1} + z_1^{k-1} - z_3^{k-1}) \frac{\partial}{\partial z_2} + (z_0^{k-1} + z_1^{k-1} + z_2^{k-1}) \frac{\partial}{\partial z_3}.$$

The hypersurface $\mathcal{D} = \{z_0^{k} + z_1^{k} + z_2^{k} + z_3^{k} = 0\}$ is invariant by \mathcal{F}. It is not difficult to see that $\text{Sing}(\mathcal{F}) \subset \mathcal{D}$. Note that $\deg(\mathcal{D}) = k$ and $\deg(\mathcal{F}) = k - 1$, according to item (1.b) of the Theorem 3.

Example 6.5. Consider the foliation \mathcal{F} induced by the vector field $v = \partial/\partial z_0$. For each $1 \leq i \leq n$, the hypersurface $\mathcal{D}_i = \{z_i = 0\}$ is invariant by \mathcal{F}. Moreover, that for all $i = 1, \ldots, n$, we have

$$\text{Sing}(\mathcal{F}) = \{(1 : 0 : \ldots : 0)\} \subset \mathcal{D}_i.$$

Note that we have $\deg(\mathcal{F}) = 0$ and $\deg(\mathcal{D}_i) = 1$, for all i. Therefore, if we consider n even, we are in the case of item (2b) of Theorem 3.

References

[1] A.G. Aleksandrov, *The index of vector fields and logarithmic differential forms*, Funct. Anal. Appl. 39 (4) (2005) 245-255.
[2] P. Aluffi, *Chern classes for singular hypersurfaces*, Trans. Am. Math. Soc. 351 (1999), no. 10, 3989-4026.
[3] E. Angelini, *Logarithmic bundles of hypersurface arrangements in \mathbb{P}^n*, Collectanea Mathematica, Volume 65, Issue 3, (2014), 285-302.
[4] P. Baum and R. Bott, *Singularities of Holomorphic Foliations*, J. Differential Geom, 7 (1972), 279-342.
[5] J.-P. Brasselet, J. Seade and T. Suwa, *An explicit cycle representing the Fulton-Johnson class*, Singularités Franco-Japonaises, Sémin. Congr., 10, Soc. Math. France, Paris, p. 21-38, 2005.
[6] J.-P. Brasselet, J. Seade and T. Suwa, *Vector Fields on Singular Varieties*, Lecture Notes in Mathematics, Spring, 2009.
[7] M. Brunella, *Birational Geometry of Foliations*, Publicações Matemáticas, IMPA, Rio de Janeiro, 2010.
[8] S.S. Chern, *A Simple Intrinsic Proof of the Gauss-Bonnet Formula for Closed Riemannian Manifolds*, Ann. Math.45 (4), (1944), 747-752.
[9] P. Deligne, *Equations différentielles à points singulier réguliers*, Lecture Notes in Mathematics, 163, Springer-Verlag, 1970.
[10] I. Dolgachev, *Logarithmic sheaves attached to arrangements of hyperplanes*, J. Math. Kyoto Univ. 47 (2007), n. 1, 35-64.
[11] X. Gómez-Mont, An algebraic formula for the index of a vector field on a hypersurface with an isolated singularity, J. Algebraic Geom. 7 (1998), 731-752.
[12] X. Gómez-Mont, J. Seade and A. Verjovsky, The index of a holomorphic flow with an isolated singularity, Math. Ann. 291 (1991), 737-751.
[13] S. Iitaka, Logarithmic forms of algebraic varieties, J. Fac. Sci. Univ. Tokyo Sect. IA 23 (1976), 525-544.
[14] N. M. Katz, The regularity theorem in algebraic geometry, Actes Congres Intern. Math., 1970, t.1, 437-443.
[15] D. Lehmann, M. Soares and T. Suwa, On the index of a holomorphic vector field tangent to a singular variety, Bol. Soc. Bras. Mat. 26 (1995), pp. 183-199.
[16] Xia Liao. Chern classes for logarithmic vector fields. Journal of Singularities, 5:109-114, 2012.
[17] Y. Norimatsu, Kodaira Vanishing Theorem and Chern Classes for ∂-Manifolds, Proc. Japan Acad., 54, Ser. A. (1978), 107-108.
[18] K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo, 27(2), p. 265-291, 1980.
[19] J. Seade and T. Suwa, A residue formula for the index of a holomorphic flow, Math. Ann. 304 (1996), 621-634.
[20] R. Silvotti, On a conjecture of Varchenko, Invent. Math. 126 (1996), no. 2, 235-248.
[21] M. G. Soares, The Poincaré problem for hypersurfaces invariant by one-dimensional foliations, Invent. math. v. 128, p. 495-500, 1997.
[22] T. Suwa, Indices of vector fields and residues of singular holomorphic foliations, Actualités Mathématiques, Hermann Éditeurs des Sciences et des Arts, 1998.