Host nucleotide polymorphism in hepatitis B virus-associated hepatocellular carcinoma

Shilu Mathew, Hany Abdel-Hafiz, Abbas Raza, Kaneez Fatima, Ishtiaq Qadri

Abstract

Hepatocellular carcinoma (HCC) is etiologically linked with hepatitis B virus (HBV) and is the leading cause of death amongst 80% of HBV patients. Among HBV affected patients, genetic factors are also involved in modifying the risk factors of HCC. However, the genetic factors that regulate progression to HCC still remain to be determined. In this review, we discuss several single nucleotide polymorphisms (SNPs) which were reportedly associated with increased or reduced risk of HCC occurrence in patients with chronic HBV infection such as cyclooxygenase (COX)-2 expression specifically at COX-2 -1195G/A in Chinese, Turkish and Egyptian populations, tumor necrosis factor α and the three most commonly studied SNPs: PAT-/+, Lys939Gln (A33512C, rs2228001) and Ala499Val (C21151T, rs2228000). In genome-wide association studies, strong associations have also been found at loci 1p36.22, 11q22.3, 6p21 (rs1419881, rs3997872, rs7453920 and rs7768538), 8p12 (rs22275959 and rs37821974) and 22q11.21. The genes implicated in these studies include HLA-DQB2, HLA-DQA1, TCF19, HLA-C, UBE2L3, LTL, FDX1, MICA, UBE4B and PG. The SNPs found to be associated with the above-mentioned genes still require validation in association studies in order to be considered good prognostic candidates for HCC. Screening of these polymorphisms is very beneficial in clinical experiments to stratify the higher or lower risk for HCC and may help in designing effective and efficient HCC surveillance programs for chronic HBV-infected patients if further genetic vulnerabilities are detected.

Key words: Hepatitis B virus; Hepatocellular carcinoma; Subtypes; Genetic polymorphism; Liver cirrhosis
Core tip: In this review, we discuss various common associations between hepatitis B virus (HBV) and host polymorphisms. These single nucleotide polymorphisms which have been found to be associated with various genes still require validation in association studies in order to be considered good prognostic candidates for hepatocellular carcinoma (HCC). Screening of these polymorphisms is very beneficial in clinical experiments to stratify the higher or lower risk for HCC and may help in designing effective and efficient HCC surveillance programs for chronic HBV-infected patients if further genetic vulnerabilities are detected.

Mathew S, Abdel-Hafiz H, Raza A, Fatima K, Quadri I. Host nucleotide polymorphism in hepatitis B virus-associated hepatocellular carcinoma. World J Hepatol 2016; 8(10): 485-498
Available from: URL: http://www.wjgnet.com/1948-5182/full/v8/i10/485.htm DOI: http://dx.doi.org/10.4254/wjh.v8.i10.485

HEPATITIS B VIRUS
Hepatitis B virus (HBV) infection is the third most common cause of cancer-related deaths in relation to hepatocellular carcinoma (HCC) with a high incidence in Asian countries. HCC is responsible for approximately 660,000 deaths worldwide each year and 85%-90% of these deaths are due to primary liver cancers[1]. It is recognized that these cancers are mainly due to HBV infection with 60% of HCC cases seropositive for this virus[2]. Many risk factors including viral factors (e.g., genomic mutations, genotypes, HBV-DNA levels), host factors and unhealthy lifestyles all contribute to the development of liver diseases[3].

Both epigenetic and genetic factors play a role in the malignant transformation of liver cells[4]. Multiple cellular signaling genes are enhanced by the incorporation of HBV into the host's genome which promotes transactivation of HBx protein[5]. This process activates/inactivates suppressor genes (e.g., p53), oncogenic genes (e.g., c-fos and c-myc), induces loss of heterozygosity and activates transcriptional factors (e.g., nuclear factor kappa-B (NF-κB) and AP-1)[6].

However, underlying disease and the duration of severity vary significantly between each phase. Moreover, clinical progression varies between patients. Liver injuries in patients with HBV infection are thought to be the outcome of the host’s immune responses against HBV. For example, cytotoxic T lymphocyte-mediated, an HLA-class I antigen-restricted, response to the HBV antigen expressed on hepatocytes results in necrosis and apoptosis[7].

Several genome wide association studies have identified candidate single nucleotide polymorphisms (SNPs) by comparing the SNPs present in HCC patients and those present in asymptomatic HBV carriers[8]. Therefore, to specifically evaluate genetic factors, it is vital that the controls and patients are well matched regarding these factors to identify the correct SNP. The results of many studies suggest that several SNPs are associated with HBV clearance and persistent infection. Functional analyses are necessary to confirm these results[6,7]. In this review, we discuss several SNPs which are reportedly associated with increased or reduced risk of HCC occurrence in patients with chronic HBV infection[9].

INFLAMMATORY GENETIC POLYMORPHISM
It has been reported previously that SNPs can affect disease progression after HBV infection. Cytokines, such as tumor necrosis factor-α (TNFα) and interleukin (IL)-10, have a significant role in regulating viral infection. Genetic variation of these cytokines is linked with the outcome of HBV infection[10-16].

Several studies have shown that genetic polymorphisms in multiple genes such as TP53[17, 18], IL-6[14], and DNA repair genes[19], are associated with the development of chronic HBC infection, progression of the infection and increased risk of HCC. These may serve as biomarkers in identifying HCC risk[20]; however, these studies were predominantly performed in HBV-positive populations or populations with a high infection rate.

Genetic variation in tumor suppressor genes or oncogenes is capable of altering gene function and, consequently, may contribute to the development of cancer. Significant research has been conducted to investigate the association between polymorphisms in tumor suppressor genes and oncogenes and the risk of HCC; however, the results are controversial.

ASSOCIATIONS BETWEEN HBV AND THE HOST POLYMORPHISM
Cyclooxygenase-2
Cyclooxygenase-2 (COX-2) is involved in many cellular functions, including inflammation, inhibition of apoptosis, carcinogenesis, angiogenesis, invasion and metastasis[21,22]. COX-2 is overexpressed in many cancers including HCC, indicating that there is an association between COX-2 expression and the development of cancer[23,24]. Selective COX-2 inhibitors have been shown to suppress the growth of HCC cells in vitro and in vivo[25]. A polymorphism in the promoter region of the COX-2 gene could functionally upregulate the transcriptional activity of COX-2, indicating a possible mechanism by which COX-2 may contribute to genetic susceptibility to HCC[21]. Several studies have reported that COX-2 point mutations including -1195G/A, -765G/C and +8473T/C were correlated with liver diseases and
HBV-related HCC26. COX-2-765G/C is related to the risk of skin, esophageal, colorectal, breast and gastric cancers27-29. With regard to HCC, contradictory and inconclusive results were found. Some studies have reported a correlation between COX-2-765G/C and HBV-related HCC risk30-32, but other studies reported that no such correlation exists26,33,34. It has been reported that these inconsistent results were possibly due to limited sample sizes and ethnic variation in those studies. COX-2 + 8473T/C is associated with oral and breast cancers25,35, but is not associated with HCC37. A recent meta-analysis by Chen et al26 on Chinese, Turkish and Egyptian populations, concluded that COX-2-1195G/A may be associated with HCC risk, but not COX-2-765G/C or COX-2 + 8477T/C.

IL-1alpha and 1beta

IL-1\(\alpha\) is a potent pro-inflammatory cytokine and has many different biological functions, including cell survival, proliferation, and anti-apoptosis38,39. IL-1\(\beta\) is also reported to inhibit interferon-induced antiviral activity40 and is assumed to be closely associated with the pathogenesis of chronic hepatitis C. Several polymorphisms of the IL-1\(\alpha\) gene that are thought to affect IL-1\(\beta\) production have been reported41. -31T SNPs of IL-1\(\beta\) have been shown to enhance IL-1\(\beta\) transcriptional activity42 and several studies reported that -511C/-31T is a risk factor for the development of cancer and liver diseases43-45. Wang et al41 showed that IL-1\(\beta\)-31 polymorphism was associated with HCC, after controlling for other confounding clinical parameters.

E-cadherin (CDH1)

E-cadherin is a transmembrane protein that mediates cell-cell adhesion and is expressed in most normal epithelial cells. Downregulation of E-cadherin may lead to a loss of E-cadherin-mediated adhesion, resulting in increased susceptibility to tumor development and is associated with poor prognosis in various carcinomas including HCC46-52. In addition, HBV and HCV reduce E-cadherin expression and promote tumor recurrence in HCC patients. One of the mechanisms that have been proposed for reduced E-cadherin expression is SNPs in the promoter region of the CDH1 gene. CDH1-160 C/A and -347G/GA polymorphisms result in the downregulation of E-cadherin protein and is associated with cancer susceptibility53. Several studies demonstrated that CDH1-347 SNPs are significantly associated with HCC risk52,54-57. However, the correlation between CDH1-160 SNPs showed conflicting results. Some studies58,59 have shown that CDH1-160 SNP carriers have an increased risk of prostate and bladder cancer, while others showed that it was not associated with the development of prostate, HCC, colorectal or gastric cancer60.

Peroxisome proliferator-activated receptor gamma

Peroxisome proliferator-activated receptor gamma (PPAR\(\gamma\)) is a hormone receptor, present in adipose tissue and plays a critical role in the regulation of fatty acid storage and glucose metabolism61. PPAR\(\gamma\) has been shown to be associated with type 2 diabetes mellitus (T2DM)62. PPAR\(\gamma\) contains two isoforms, PPAR\(\gamma\)1 and PPAR\(\gamma\)2 and several variants in the PPAR\(\gamma\) gene have been identified63. The A allele of PPAR\(\gamma\)2 is associated with a significant decrease in the development of T2DM64. The relationship between PPAR and HCC is not clear. Although experimental studies have shown that PPAR may have a role in HCC65,66, the implications of these findings are unclear. Koytak et al66 investigated the effect of the PPAR\(\alpha\) L162V polymorphism on clinical outcome in a patient with HCC caused by hepatitis viruses. They concluded that there was a relationship between the PPAR\(\alpha\) L162V polymorphism and HBV-induced HCC and was associated with advanced HCC. This polymorphism was shown to enhance PPAR\(\alpha\) transcriptional activity and is associated with lipid abnormalities and an increased body mass index67-70.

TNF\(\alpha\)-inducible protein 3

TNF\(\alpha\)-inducible protein 3 (TNF\(\alpha\)IP3), a cytoplasmic zinc finger protein with ubiquitin-modifying activity, has been shown to inhibit NF-\(\kappa\)B activity and TNF\(\alpha\)-mediated apoptosis71-74. TNF\(\alpha\)IP3 polymorphisms have been linked to inflammatory, autoimmune and malignant diseases. A recent study reported that there was no association between TNF\(\alpha\)IP3 rs2230926 polymorphism and susceptibility to chronic HBV infection or the progression of HBV-related diseases75.

Cytotoxic T lymphocyte-associated factor 4

Cytotoxic T lymphocyte-associated factor 4 (CTLA-4) is a protein receptor expressed in T cells and it functions as a negative regulator of the immune system. Several CTLA-4 gene polymorphisms have been identified including -318C>T, A49G and CT6076. CTLA-4 polymorphisms are associated with several autoimmune diseases, including thyroid and liver diseases77,78. It has been shown that SNPs in CTLA-4 may be associated with HBV progression and viral persistence79. CTLA-4 SNPs can be used as a marker for predicting treatment outcome in chronic HCV-infected patients80-82.

TNF\(\alpha\)

TNF\(\alpha\) is a multifunctional cytokine that regulates the inflammatory reaction and has an important role in the development and progression of a number of diseases, including liver disease83,84. It has been suggested that genetic polymorphisms of TNF\(\alpha\) may contribute to the pathogenesis of liver diseases, infectious diseases and inflammatory disorders45,85. For example, TNF\(\alpha\) SNPs affect TNF\(\alpha\) production leading to a greater risk of HCC. The polymorphism at site -1031T/C, -863C/A, -857C/T, -376, -308G/A and -238G/A of the TNF\(\alpha\) promoter is associated with the outcome of HBV infection and disease progression86-89.
IL-10

IL-10 is an important anti-inflammatory cytokine produced in macrophages. Three SNPs in the IL-10 gene promoter, at -1082, -819 and -592, are associated with IL-10 production and secretion by peripheral blood monocytes. It has been shown that IL-10-592 A/C polymorphism was associated with susceptibility to HBV infection.

Glutathione S-transferases

The glutathione S-transferases (GSTs) enzymes play an important role in maintaining the cellular defense mechanism against the effects of reactive oxygen species and various exogenous toxins, and have been shown to be overexpressed in several cancers. Deletion polymorphism of GST genes results in diminished enzyme activity leading to the insufficient defense of cells from metabolites and free radicals, elevated concentration of endogenous mutagens and a high risk of various tumors, including HCC (102-103). GSTs polymorphisms have been shown to be associated with colorectal cancer,

Epidermal growth factor

Epidermal growth factor (EGF) and its respective receptor (EGFR) signaling are important regulators of proliferation and the pathogenesis of many human carcinomas (104,105). Upon ligand binding, the two EGFR domains undergo activation of a diverse signaling network that includes the RAS/phosphatidylinositol 3-kinase pathway and the Janus homology 2 domain containing proteins.

Murine double minute 2

Murine double minute 2 (MDM2) is a ubiquitin ligase that controls the turnover rate of an important tumor suppressor, p53, which is deleted or mutated in 50% of all human tumors (106,107). P53 is also referred to as the guardian of the genome because it can activate DNA repair pathways, arrest cell cycle at the G1/S regulation checkpoint or initiate apoptosis if the damage cannot be repaired.

T cell immunoglobulin mucin-3

T cell immunoglobulin mucin-3 (TIM3) negatively regulates the autoimmune and allergic responses and has been linked to T cell dysfunction associated with HBV-related HCC (108). The 280 aa mature TIM3 is selectively expressed on CD4+ Th1 and CD8+ Tc1 cells, but not on CD4+ Th2 cells (109). It interacts with its ligand galectin-9 and drives death Th1 T cells (110). Blocking TIM3-mediated signaling restores dysfunctional CD4 and CD8+ T cell-specific adaptive immune responses (111). TIM3 is upregulated on CD4 and CD8+ T cells in chronic HBV infected individuals (112).

Numerous potential SNPs (−1541C/T, −1516G/T, −882C/T, −574G/T and +4259T/G) in TIM3 have been tested for their association with chronic HBV and HCC (113). TIM3-1516 G/T (rs10053538) polymorphism has been shown to predispose individuals to cirrhosis and/or HCC (114,115). One study reported that TIM3 SNPs do not have a functional effect (116), whereas others have reported a significant effect of these TIM3 polymorphic variants. Further studies are needed to determine the functional relevance of this polymorphism.
Xeroderma pigmentosum complementation group C

Xeroderma pigmentosum complementation group C (XPC) protein along with seven other core members (ERCC1, XPA, XPB, XPC, XPD, XPE, XPF and XPG) constitutes the nucleotide excision repair pathway (NER). This pathway is required for the repair of DNA damage including pyrimidine dimers, photo products, chemical adducts and cross-links[150,151]. XPC requires an association with HR23B in order to recognize damaged DNA[152]. The protein HR23B is a human homolog of *Saccharomyces cerevisiae* RAD23 and binding of XPC-HR23B to a DNA lesion unwinds the helix[153]. The XPA protein can then bind and the whole repair machinery of the NER can be recruited onto the damaged base.

Many studies have investigated the association between XPC sequence variants and cancer risk[154-158]. The three most commonly studied SNPs in the literature are: PAT-/+[159], Lys939Gln (A33512C, rs2228001)[155] and Ala499Val (C21151T, rs2228000)[160]. The poly (AT) insertion/deletion polymorphism (PAT) is located on intron 9 and has been shown to be linked to head and neck cancer risk[161] and to lung cancer[162], but no studies have found an association with HCC risk. The XPC codon Lys939Gln alleles, on the other hand, reported and shown to affect susceptibility to a range of cancers including colorectal, gastric and prostate cancer and nasopharyngeal carcinoma[175-178]. Data regarding HCC and IL-16 polymorphisms are scarce in the literature and only two studies were found to have included chronic hepatitis B patients who did not include HCC patients. However, this study did include chronic hepatitis B patients who showed a positive association between rs11556218T > G, a negative association between rs4778889T > C and a positive association between rs4072111C > T polymorphisms and patient susceptibility to chronic hepatitis B infection[179].

Genome-wide association studies

Numerous genome-wide association studies (GWAS) have been carried out with chronic HBV and HCC patients to identify novel susceptible loci contributing to disease[6,181-186]. Of these, strong associations were found at 1p36.22, 11q22.3, 6p21 (rs1419881, rs3997872, rs7453920 and rs7768538), 8p12 (rs2275959 and rs37821974) and 22q11.21. The genes implicated in these studies include HLA-DQB2, HLA-DQA1, transcription factor 19 (TCF19), HLA-C, ubiquitin-conjugating enzyme E2 (UBE2L3), LTL, ferrodoxin 1 (FDX1), MICA, UBE4B and PG.

HLA-DQ is an MHC class II cell surface receptor found on antigen presenting cells, whereas HLA-C is an MHC class I receptor expressed by all cells. TCF19, as the name suggests, is an important transcription factor during cell cycle G1/S transition[187]. UBE2L3 is a typical E2 ligase that accepts ubiquitin from the E1 complex and transfers it to targeted proteins[188]. Leukocyte telomere length (LTL) has been associated with the risk of developing many malignancies[189] and LTL-related SNPs are potential targets for such GWAS studies. FDX1 is a gene that codes for a small iron-sulfur protein that transfers electrons from NADPH through ferrodoxin reductase to mitochondrial cytochrome P450[190]. In addition, it is involved in steroid, vitamin D, and bile acid metabolism[191].

These SNPs found to be associated with the above-mentioned genes still require validation in association studies in order to be considered good prognostic candidates for HCC.

Tumor growth factor beta

Tumor growth factor beta (TGFβ) is a tumor suppressor gene located on chromosome 19q13.1-13.39. The protein TGFβ is involved in pleiotropic biological processes such as cell growth[192], differentiation[193], extracellular matrix synthesis[194], hematopoiesis[195], angiogenesis[196], and cellular apoptosis[197]. TGFβ1 is one of TGFβ isoforms and is upregulated in HCC tissues correlating with the carcinogenesis and prognosis of HCC[158,199]. TGFβ1 also suppresses HBV replication by reducing hepatocyte nuclear factor-4-alpha[200]. Thus, the relevance of this cytokine and its single nucleotide polymorphism in HBV-associated HCC is of paramount importance.

Seven TGFβ1 polymorphisms have been described in the literature, of which three lie in the upstream region of the gene at positions -988C > A, -800G > A, and -509C > T, one insertion in a nontranslated region at position +72C, two in exon 1 (Leu10Pro and Arg25Pro); and 1 in exon 5 (Thr263Ile)[201]. Numerous studies have investigated the association between these
SNPs and HCC\cite{206,207,208,209}. There are contrasting reports with some studies reporting a positive association between -509C > T (rs1800469) and HCC risk\cite{207}, whereas another study reported a weak or no association\cite{209}. In addition, the Arg25Pro change at +915G/C (rs1800471) was not correlated with HCC risk\cite{206}. The mutation in codon 10 (Leu > Pro) was very strongly correlated with HCC according to one study\cite{208}. There is still limited information regarding other polymorphisms of TGFβ1 and further studies are required to draw firm conclusions on their association with HCC. Table 1 lists the polymorphic genes and their contribution to HCC.

DISCUSSION

In this article, we discuss the association between the HBV genotype and its mutations in the development of liver cancer and the possibility that individuals with inherited genetic mutations have a hereditary predisposition for HBV-related HCC. Such individuals can inherit a germ-line mutation in one allele of the gene; somatic mutation of the second allele facilitates tumor progression. Although the inherited germ-line mutation may not be adequate to affect tumor development, it is likely that HBV proteins also induce many alterations in the genome. Analysis of the whole transcriptome in these individuals with genetic predisposition would be a useful indicator. It is now well understood that host genetic differences significantly influence susceptibility and resistance to HBV infection and the development of liver cancer, thus it is important to identify these genotype-phenotype associations for better treatment of the disease (Figure 1). Genome-wide sequencing studies have identified numerous germline mutations associated with liver cancer predisposition and large numbers of somatic alterations. It is difficult to assess the difference between background and HBV-related mutations as HBV infection plays an important role in the development of liver cancer, thus it is important to identify these key mutations involved in the development of HCC.

Based on these findings, we predict that advanced sequence analysis of host genome will provide us with a better understanding of the viral and host genetic factors involved in the development of HCC. Further studies are needed to evaluate and understand the role

Table 1 List of polymorphic genes and their contribution to hepatocellular carcinoma

Polymorphism	Genotype	Significance	Ref.
COX-2	-1195G > A	P < 0.001\cite{26}	He et al\cite{26}
	765G > C	P < 0.05 and 0.41\cite{26}	Chen et al\cite{26}
	+8473T > C	P = 0.83\cite{26}	Wang et al\cite{26}
IL-1α, β	-509C > T	P = 0.02\cite{26}	Li et al\cite{26}, Chen et al\cite{26}
	-1516G > T	P = 0.01\cite{26}	Koytak et al\cite{26}
	-1031T/C	P = 0.01\cite{26}	Zhang et al\cite{26}
	+61A > G	P = 0.006\cite{26}	Wei et al\cite{26}
CDH1	-147G > A	P = 0.17\cite{26} and < 0.05\cite{26}	Liu et al\cite{26}, Chen et al\cite{26}
PPARγ	L162V	P = 0.01\cite{26}	Liu et al\cite{26}
TNFAIP3	F127C	P = 0.15\cite{26}	Jiang et al\cite{26}
TNFα	-1031T/C	P = 0.06\cite{26}	Ezzikouri et al\cite{26}
	-863C/A	P = 0.09\cite{26}	Li et al\cite{26}
	-857C/T	P = 0.04\cite{26}	Long et al\cite{26}
	-208G/A	P = 0.03\cite{26}	Al-Qahtani et al\cite{26}
GST	GSTM1 + GSTT1	P = 0.01\cite{26}	Liu et al\cite{26}
EGFR	+61A > G	P < 0.01\cite{26}	Jiang et al\cite{26}
MDM2	+309G > T	P = 0.001\cite{26}	Li et al\cite{26}
TIM3	-1516G > T	P = 0.001\cite{26}	Long et al\cite{26}
XPC	K599Q	P = 0.01\cite{26} and 0.318\cite{26}	Qi et al\cite{26}
1p36.22, 11q22.3, 6p21, 8p12 22q11.21	Include genes HLA-DQB2, HLA-DQA1, TCF19, HLA-C, UBE2L3, LTL, FDX1, MICA, UBE4A8 and PG		
TGFβ1	-509C > T	P < 0.01\cite{26} and 0.318\cite{26}	Qi et al\cite{26}
	-1195G/A	P = 0.02\cite{26}	Hosseini Razavi et al\cite{26}
	-765G/C	P = 0.02\cite{26}	Kim et al\cite{26}
	+8473T/C	P = 0.02\cite{26}	Kim et al\cite{26}

COX-2: Cyclooxygenase-2; IL-1α, β: Interleukin-1α, β; CDH1: Cadherin 1; PPARγ: Peroxisome proliferator-activated receptor γ; TNFAIP3: Tumor necrosis factor alpha-induced protein 3; TNFα: Tumor necrosis factor α; GST: Glutathione S transferase; EGF: Epidermal growth factor; MDM2: Mouse double minute 2 homolog; TIM3: T-cell immunoglobulin 3; XPC: Xeroderma pigmentosum; TGFβ1: Transforming growth factor beta 1.
Figure 1 Mechanisms of selection and emergence of hepatitis B virus drug-resistant mutants. HBV: Hepatitis B virus; cccDNA: Covalently closed circular DNA.

of host-HBV interactions in HBV-related HCC to generate effective diagnostic and therapeutic treatments.

REFERENCES

1 El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. *Gastroenterology* 2012; 142: 1264-1273.e1 [PMID: 22537432 DOI: 10.1053/j.gastro.2011.12.061]

2 Lai CL, Ratziu V, Youn ES, Poyart T. Viral hepatitis B. *Lancet* 2003; 362: 2089-2094 [PMID: 14697813 DOI: 10.1016/s0140-6736(03)15108-2]

3 Yim HJ, Lok AS. Natural history of chronic hepatitis B virus infection: what we knew in 1981 and what we know in 2005. *Hepatology* 2006; 43: S173-S181 [PMID: 16447285 DOI: 10.1002/hep.20956]

4 Sherman M. Hepatocellular carcinoma: epidemiology, surveillance, and diagnosis. *Semin Liver Dis* 2010; 30: 3-16 [PMID: 20175029 DOI: 10.1055/s-0030-1247128]

5 Paterlini-Bréchot P, Saigo K, Murakami Y, Chami M, Gozuack C, Mignier C, Lagorce D, Bréchot C. Hepatitis B virus-related insertional mutagenesis occurs frequently in human liver cancers and recurrently targets human telomerase gene. *Oncogene* 2003; 22: 3911-3916 [PMID: 12813464 DOI: 10.1088/1206942]

6 Kamatani Y, Wattanapokayakit S, Ochi H, Kawaguchi T, Takahashi A, Hosono N, Kubo M, Tsunoda T, Kamatani N, Kumada H, Pasenam A, Sura T, Daigo Y, Chayama K, Chantratita W, Nakamura Y, Matsuda K. A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. *Nat Genet* 2009; 41: 591-595 [PMID: 19349983 DOI: 10.1038/ng.348]

7 Lai YF. Hepatitis flares and hepatitis B e antigen seroconversion: implication in anti-hepatitis B virus therapy. *J Gastroenterol Hepatol* 2003; 18: 246-252 [PMID: 12603523 DOI: 10.1046/j.1440-1746.2003.02976.x]

8 Sokal EM, Paganeli M, Wirth S, Socha P, Vajro P, Laecaile F, Kelly D, Miel-Vergani G. Management of chronic hepatitis B in childhood: ESPGHAN clinical practice guidelines: consensus of an expert panel on behalf of the European Society of Pediatric Gastroenterology, Hepatology and Nutrition. *J Hepatol* 2013; 59: 814-829 [PMID: 23707367 DOI: 10.1016/j.jhep.2013.05.016]

9 Cheng HR, Liu CJ, Tseng TC, Su TH, Yang HI, Chen CJ, Kao JH. Host genetic factors affecting spontaneous HBsAg seroclearance in chronic hepatitis B patients. *PLoS One* 2013; 8: e53008 [PMID: 23326374 DOI: 10.1371/journal.pone.0053008]

10 Cheong JY, Cho SW, Hwang IL, Yoon SK, Lee JH, Park CS, Lee JE, Dahm KB, Kim JH. Association between chronic hepatitis B virus infection and interleukin-10, tumor necrosis factor-alpha gene promoter polymorphisms. *J Gastroenterol Hepatol* 2006; 21: 1163-1169 [PMID: 16824070 DOI: 10.1111/j.1440-1746.2006.04304.x]

11 Miyazoe S, Hamasaki K, Nakata K, Kajiya Y, Kitajima K, Nakao K, Daikoku M, Yatsushahi H, Koga M, Yano M, Eguchi K. Influence of interleukin-10 gene promoter polymorphisms on disease progression in patients chronically infected with hepatitis B virus. *Am J Gastroenterol* 2002; 97: 2086-2092 [PMID: 12190181 DOI: 10.1111/j.1572-0241.2002.05926.x]

12 Du T, Guo XH, Zhu XL, Li JH, Lu LP, Gao JR, Gou CY, Li Z, Liu Y, Li H. Association of TNF-alpha promoter polymorphisms with the outcomes of hepatitis B virus infection in Chinese Han population. *J Viral Hepat* 2006; 13: 618-624 [PMID: 16907849 DOI: 10.1111/j.1365-2893.2006.00731.x]

13 Wu JF, Wu TC, Chen CH, Ni YH, Chen HL, Hsu HY, Chang MH. Serum levels of interleukin-10 and interleukin-12 predict early, spontaneous hepatitis B virus e antigen seroconversion. *Gastroenterology* 2010; 138: 165-172.e1-3 [PMID: 19782084 DOI: 10.1053/j.gastro.2009.09.018]

14 Wu JF, Ni YH, Lin YT, Lee TJ, Hsu SH, Chen HL, Tsuei DI, Hsu HY, Chang MH. Human interleukin-10 genotypes are associated with different precore/core gene mutation patterns in children with chronic hepatitis B virus infection. *J Pediatr* 2011; 158: 808-813 [PMID: 21168854 DOI: 10.1016/j.jpeds.2010.11.015]

15 Xia Q, Zhou L, Liu D, Chen Z, Chen F. Relationship between TNF-α/-α/-α gene promoter polymorphisms and outcomes of hepatitis B virus infections: a meta-analysis. *PLoS One* 2011; 6: e19606 [PMID: 21572952 DOI: 10.1371/journal.pone.0019606]

16 Chatzidaki V, Kouroumalis E, Galanakis E. Hepatitis B virus acquisition and pathogenesis in childhood: host genetic determinants. *J Pediatr Gastroenterol Nutr* 2011; 52: 3-8 [PMID: 21119536 DOI: 10.1097/MPG.0b013e3181b06b89]

17 Ortiz-Cuaran S, Villar S, Gouas D, Ferro G, Plymoth A, Khuhiprema T, Kalalak A, Sangrajrang S, Friesen MD, Groopman JD, Hainaut P. Association between HBX status, aflatoxin-induced R249S TP53 mutation and risk of hepatocellular carcinoma. A case-control study from Thailand. *Cancer Lett* 2013; 331: 46-51 [PMID: 23200676 DOI: 10.1016/j.canlet.2012.11.012]

18 Giannitrapi L, Soresi M, Giacalone A, Campagna ME, Marasà M, Cervello M, Marasà S, Montalto G. IL-6 -174G/C polymorphism and IL-6 serum levels in patients with liver cirrhosis and hepatocellular carcinoma. *OMICS* 2011; 15: 183-186 [PMID: 21329460 DOI: 10.1089/omi.2010.0093]

19 Galnaz A, Sayeed AH, Amin F, Khan AU, Aslam MA, Shaikh RS, Ali M. Association of XRCC1, XRCC3, and XPD genetic polymorphism with an increased risk of hepatocellular carcinoma because of the hepatitis B and C virus. *Eur J Gastroenterol Hepatol* 2013; 25: 166-179 [PMID: 23044807 DOI: 10.1097/
 associations between Cox-2 polymorphisms and the risk of hepatocellular carcinoma: a meta-analysis. *Int J Clin Exp Pathol* 2014; 7: 6898-6905 [PMID: 25400773]

21 Wu H, Wu X, Wan G, Zhang S. Associations between Cox-2 rs20417 and rs5275 polymorphisms and the risk of hepatocellular carcinoma: a meta-analysis. *Int J Clin Exp Pathol* 2014; 7: 1103-1107 [PMID: 25107636]

22 Miyashita M, Ito T, Sakaki M, Kawai A, Nozawa H, Hiroishi K, Kobayashi M, Kumada H, Inawaki M. Genetic polymorphism in cyclooxygenase-2 promoter affects hepatic inflammation and fibrosis in patients with chronic hepatitis C. *J Viral Hepat* 2012; 19: 608-614 [PMID: 22863264 DOI: 10.1111/j.1365-2893.2011.01580.x]

23 Rouzer CA, Marnett LJ. Endocannabinoid oxygenation by cyclooxygenases, lipooxygenases, and cytochromes P450: cross talk between the eicosanoid and endocannabinoid signaling pathways. *Chem Rev* 2011; 111: 5989-5992 [PMID: 21921393 DOI: 10.1021/cr2002799]

24 Pazhag Y, Ahmadian S, Javadifar N, Shafieezadeh M. COX-2 and survivin reduction may play a role in berberine-induced apoptosis in human dactyl breast epithelial tumor cell line. *Tumour Biol* 2012; 33: 207-214 [PMID: 22081376 DOI: 10.1007/s13277-011-0263-5]

25 Yin J, Liu B, Li B, Liu Z, Xie X, Lv Z, Gao S, Guan J. The cyclooxygenase-2 inhibitor celecoxib attenuates hepatocellular carcinoma growth and c-Met expression in an orthotopic mouse model. *Oncol Res* 2011; 21: 131-139 [PMID: 21473290 DOI: 10.3727/096504011X12935427587803]

26 Chen Z, Zhu J, Huang C, Lian F, Wu G, Zhao Y. The association between three cyclooxygenase-2 polymorphisms and hepatocellular carcinoma risk: a meta-analysis. *PloS One* 2015; 10: e0118251 [PMID: 25730260 DOI: 10.1371/journal.pone.0118251]

27 Aubin F, Courivaud C, Bannouild J, Loupy A, Deschamps M, Ferrand C, Le Corre D, Tiberghien P, Chalopin JM, Legendre C, Thervet E, Humbert P, Saas P, Ducoux D. Influence of cyclooxygenase-2 (COX-2) gene promoter polymorphism at position -765 on skin cancer after renal transplantation. *J Invest Dermatol* 2010; 130: 2134-2136 [PMID: 20445548 DOI: 10.1038/jid.2010.116]

28 Ben Nasr H, Chahed K, Bouaouina N, Chouchane L. PTGS2 (COX-2) -765 G>C functional promoter polymorphism and its association with risk and lymph node metastasis in nasopharyngeal carcinoma. *Jid.2010.116*

29 Sitarz R, Leguit RJ, de Leng WW, Polak M, Morsink FM, Bakker O, Maciejewski R, Offerhaus GJ, Milne AN. The COX-2 (PTGS2) 8473T>C polymorphism is associated with early-onset, conventional and stump gastric cancers. *Hepatogastroenterology* 2011; 21: 130-139 [PMID: 21429370 DOI: 10.1016/j.mrfmmm.2009.01.007]

30 Pan F, Tian J, Pan Y, Zhang Y. Lack of association of the cyclooxygenase-2 promoter polymorphism with lung cancer: evidence from 9841 subjects. *Asian Pac J Cancer Prev* 2011; 12: 1941-1945 [PMID: 22292629]

31 Tilg H, Diehl AM. Cytokines in alcoholic and nonalcoholic steatohepatitis. *N Engl J Med* 2000; 343: 1467-1476 [PMID: 11078773 DOI: 10.1056/NEJM200011163432007]

32 Roshak AK, Jackson JR, McGrath K, Chabot-Fletcher M, Mochan E, Marshall LA. Manipulation of distinct NFkappaB proteins alters interleukin-1beta-induced human rheumatoid synovial fibroblast prostaglandin E2 formation. *J Biol Chem* 1996; 271: 31496-31501 [PMID: 8940164 DOI: 10.1074/jbc.271.49.31496]

33 Tian Z, Shen X, Feng H, Gao B. IL-1 beta attenuates TNF-alpha beta-induced antiviral activity and STAT1 activation in the liver: involvement of proteasome-dependent pathway. *J Immunol* 2000; 165: 3959-3965 [PMID: 11044404 DOI: 10.4049/jimmunol.165.7.3959]

34 Wang Y, Kato N, Hoshida Y, Yoshida H, Taniguchi H, Goto T, Moriya M, Otsuka M, Shina S, Shiratori Y, Ito Y, Omata M. Interleukin-1beta gene polymorphisms associated with hepatocellular carcinoma in hepatitis C virus infection. *Hepatology* 2003; 37: 65-71 [PMID: 12500190 DOI: 10.1001/jhep.2003.50017]

35 El-Omar EM, Carrington M, Chow WH, McColl KE, Bream JH, Young HA, Herrera J, Lissowska J, Y uan CC, Rothman N, Lanyon J, Francey R, Wright C, Martin M, Fraumeni JF, Roberts D, Lissowska J, Woodhouse L, Ahmed R, Casevitz-Yip T, Moriyama M, Otsuka M, Shiina S, Shiratori Y, Ito Y, Omata M. Interleukin-1beta gene polymorphisms associated with increased risk of gastric cancer. *Nature* 2000; 404: 398-402 [PMID: 10746728 DOI: 10.1038/3506081]

36 Roy N, Mukhopadhay I, Das K, Pandit P, Majumder PP, Santra A, Datta S, Banerjee S, Chowdhury A. Genetic variants of TNFalpha, IL-10, IL-1beta, CTLA-4 and TGFB1 modulate the indices of alcohol-induced liver injury in East Indian population. *Genomics* 2002; 72: 178-188 [PMID: 12263049 DOI: 10.1016/j.ygeno.2002.12.011]

37 Takamatsu M, Yamauchi M, Maenza Y, Saito S, Maeyama S, Uchikoshi T. Genetic polymorphisms of interleukin-1beta in association with the development of alcoholic liver disease in Japanese patients. *Am J Gastroenterol* 2000; 95: 1305-1311 [PMID: 10811344 DOI: 10.1111/j.1572-0241.2000.02030.x]

38 Enko K, Ueda T, Ueyama J, Ohta T, Terada T. Immunoreactive E-cadherin, alpha-catenin, beta-catenin, and gamma-catenin proteins in hepatocellular carcinoma: relationships with tumor grade, clinicopathologic parameters, and patients’ survival. *Hum Pathol* 2000; 31: 558-565 [PMID: 10836294 DOI: 10.1016/1078-0165(89)90068-3]

39 Huang GT, Lee HS, Chen CH, Sheu JC, Chiu LL, Chen DS. Correlation of E-cadherin expression and recurrence of hepatocellular carcinoma. *Hepatogastroenterology* 1999; 46: 1923-1927 [PMID: 10430370]

40 Conacci-Sorrell M, Zhurinsky J, Ben-Zaev A. The cadherin- catenin adhesion system in signaling and cancer. *J Clin Invest* 2002; 109: 987-997 [PMID: 11956233 DOI: 10.1172/JCI0215429]

41 Valizadeh A, Karayianakis AJ, el-Hariry I, Kniott M, Pignatelli M. Expression of E-cadherin-associated molecules (alpha-, beta-, and gamma-catenins and p120) in colorectal polyps. *Am J Pathol* 1997; 150: 1977-1984 [PMID: 9176391]

42 Shiozaki H, Tahara H, Oka H, Miyata M, Kobayashi K, Yamura S, Iihara K, Koki Y, Hirano S, Takeichi M. Expression of
immunoreactive E-cadherin adhesion molecules in human cancers. Am J Pathol 1991; 139: 17-23 [PMID: 1713020]

50. Pignatelli M, Ansari TW, Gunter P, Liu D, Hirano S, Takeichi M, Klöppel G, Lemoine NR. Loss of membranous E-cadherin expression in pancreatic cancer: correlation with lymph node metastasis, high grade, and advanced stage. J Pathol 1994; 174: 243-248 [PMID: 7884585 DOI: 10.1002/path.1711740403]

51. Bringuer PP, Umbas R, Schaafsma HE, Karthaus HF, Debruyne FM, Schalken JA. Decreased E-cadherin immunoreactivity correlates with poor survival in patients with bladder tumours. Cancer Res 1993; 53: 3241-3245 [PMID: 8324734]

52. Umbas R, Schalken JA, Aalders TW, Carter BS, Karthaus HF, Schaafsma HE, Debruyne FM, Isaacs WB. Expression of the cellular adhesion molecule E-cadherin is reduced or absent in high-grade prostate cancer. Cancer Res 1992; 52: 5104-5109 [PMID: 1516667]

53. Lee HH, Uen YH, Tian YF, Sun CS, Sheu MJ, Kuo HT, Koay LB, Lin CY, Tseng CC, Cheng CJ, Tang YL, Tsai SL, Wang AH. Wnt-1 protein as a prognostic biomarker for hepatocellular carcinoma-related and hepatitis B-related hepatocellular carcinoma after surgery. Cancer Epidemiol Biomarkers Prev 2009; 18: 1562-1569 [PMID: 19423534 DOI: 10.1158/1055-9966.EPI-09-0039]

54. Carter BS, Ewing CM, Ward WS, Treiger BF, Aalders TW, Schalken JA, Epstein JP, Isaacs WB. Allastic loss of chromosomes 16q and 10q in human prostate cancer. Proc Natl Acad Sci USA 1990; 87: 8751-8755 [PMID: 1978938 DOI: 10.1073/pnas.87.22.8751]

55. Cleton-Jansen AM, Moerland EW, Kuipers-Dijkshoorn NJ, Callen DF, Sutherland GR, Hansen B, Devilee P, Cornelisse CJ. At least two different regions are involved in allelic imbalance on chromosome arm 16q in breast cancer. Genes Chromosomes Cancer 1994; 9: 101-107 [PMID: 7513539 DOI: 10.1002/gec.2700920025]

56. Ribeiro-Filho LA, Franks J, Sasaki M, Shina H, Li LC, Nojima D, Arap S, Carroll P, Enokiya H, Nakagawa M, Yonezawa S, Dahiya R. CpG hypermethylation of promoter region and inactivation of E-cadherin gene in peroxisome proliferator-activated receptor gamma in diabetes Tönjes A. Kwp450 Epidemiol Diabetes mellitus: a HuGE review and meta-analysis. Mol Cell Endocrinol 2002; 193: 71-79 [PMID: 12160104 DOI: 10.1016/S0303-7207(02)00099-9]

57. Koytak ES, Mizrak D, Bektas M, Verdi H, Arslan Ergül A, İdilman R, Cinar K, Yurdayan D, Ersöz S, Karayalçın K, Uzunalimoğlu O, Bozkaya H. PPAR-alpha L162V polymorphism in human hepatocellular carcinoma. Turk J Gastroenterol 2008; 19: 245-249 [PMID: 19119483]

58. Flavell DM, Pineda Torra I, Jamshidi Y, Evans D, Diamond JR, Elkeles RS, Bujac SR, Miller G, Talmud PJ, Stael5, B Humphries SE. Variation in the PPARalpha gene is associated with altered function in vitro and plasma lipid concentrations in Type II diabetic subjects. Diabetologia 2000; 43: 673-680 [PMID: 10855543 DOI: 10.1007/s001250051357]

59. Vohl MC, Lepage P, Gaudet D, Brewer CG, Bétaud C, Perron P, Houte G, Cellier C, Faith JM, Després JP, Morgan K, Hudson TJ. Molecular scanning of the human PPARs gene: association of the L162V mutation with hyperobesoproteinemia. J Lipid Res 2000; 41: 945-952 [PMID: 10828067]

60. Tai ES, Demissie S, Cupples LA, Corella D, Wilson PW, Schaefer EJ, Ordovas JM. Association between the PPARA L162V polymorphism and plasma lipid levels: the Framingham Offspring Study. Arterioscler Thromb Vasc Biol 2002; 22: 805-810 [PMID: 12066394 DOI: 10.1161/01.ATV.0000012302.11991.42]

61. Robitaille J, Brouillette C, Houde A, Lemeuix S, Pérusse L, Tchernof A, Gaudet D, Vohl MC. Association between the PPARalpha-L162V polymorphism and components of the metabolic syndrome. J Hum Genet 2004; 49: 482-489 [PMID: 15309680 DOI: 10.1007/s10038-004-0177-9]

62. Jäättelä M, Mauritzen H, Elling F, Bastholm L. A20 zinc finger protein inhibits TNF-α and IL-1 signaling. J Immunol 1996; 156: 1166-1173 [PMID: 8557994]

63. Lee EG, Boone DL, Choi S, Libby SL, Chien M, Lodolce JP, Ma A. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 2000; 289: 2350-2354 [PMID: 11009421 DOI: 10.1126/science.289.5488.2350]

64. Boone DL, Turer EE, Lee EG, Ahmand RC, Wheeler MT, Tsui C, Harley P, Chien M, Chai S, Hitotsumatsu O, McNally E, Pickart C, Ma A. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 2004; 5: 1052-1060 [PMID: 15334068 DOI: 10.1038/nii1110]

65. Hitotsumatsu O, Ahmad RC, Tavares R, Wang M, Philpott D, Turer EE, Lee BL, Shiffin N, Advincula R, Malynn BA, Werts C, Ma A. The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity 2008; 28: 381-390 [PMID: 18342009 DOI: 10.1016/j.immuni.2008.02.002]

66. Zhang P, Li N, Zhu Q, Li F, Yang C, Zeng X, Li Y, Zhou Z, Han Q, Liu Z. Association between TNFAIP3 non-synonymous single-nucleotide polymorphism rs2230926 and chronic hepatitis B virus infection in a Chinese Han population. Virol J 2015; 12: 33 [PMID: 25890346 DOI: 10.1186/s12985-015-0268-6]

67. Danilovic DL, Mendes-Correa MC, Lima EU, Zambirini H, Kar Barros R, Marui S. Correlations of CTLA-4 gene polymorphisms and hepatitis C chronic infection. Liver Int 2012; 32: 803-808 [PMID: 22136395 DOI: 10.1111/j.1478-3231.2011.02694.x]

68. Tomer Y, Davies TF. Searching for the autoimmune thyroid disease susceptibility genes: from gene mapping to gene function. Endocr Rev 2003; 24: 694-717 [PMID: 1210785 DOI: 10.1210/er.2002-0030]

69. Kristiansen OP, Larsen ZM, Pociot F. CTLA-4 in autoimmune diseases—a general susceptibility gene to autoimmunity? Genes Immun 2000; 1: 170-184 [PMID: 11196709 DOI: 10.1038/sj.gi.6363655]

70. Chen M, Chang Y, Tang F, Xie QH, Li J, Yang H, He X, Lin JS. Influence of cytotoxic T lymphocyte-associated antigen 4 polymorphisms on the outcomes of hepatitis B virus infection. Mol
null genotype frequencies were associated with a 1.4-fold increased risk of hepatocellular carcinoma risk compared to those with the wild-type genotype status. The observed increased risk for liver cirrhosis associated with null genotypes of GSTM1 and GSTT1 genes and hepatitis B-related hepatocellular carcinoma patients and controls. Int J Cancer 2002; 99: 14-21 DOI: 10.1002/ijc.10291

Zhong S, Tong MW, Yeo W, Liu C, Lo YM, Johnson PJ. Silencing of GSTP1 gene by CpG island DNA hypermethylation in HBV-associated hepatocellular carcinomas. Clin Cancer Res 2002; 8: 1078-1092 [PMID: 11948118]

Yu MW, Yang SY, Pan JJ, Li CL, Ciu Li, Liaw YF, Lin SM, Chen PJ, Li SD, Chen CJ. Polymorphisms in XRCC1 and glutathione S-transferase genes and hepatitis B-related hepatocellular carcinoma. J Natl Cancer Inst 2003; 95: 1485-1488 [PMID: 14519756 DOI: 10.1093/jnci/djg051]

Yu L, Wang CY, Xi B, Sun L, Wang QO, Yan YK, Zhu LY. GST polymorphisms are associated with hepatocellular carcinoma risk in Chinese population. World J Gastroenterol 2011; 17: 3248-3256 [PMID: 22191245]

Wang B, Huang G, Wang D, Li A, Xu Z, Dong R, Zhang D, Zhou W. Null genotypes of GSTM1 and GSTT1 contribute to hepatocellular carcinoma risk: evidence from an updated meta-analysis. J Hepatol 2010; 53: 508-518 [PMID: 20561699 DOI: 10.1016/j.jhep.2010.03.026]

Normanno N, Bianco C, De Luca A, Maiello MR, Salomon DS. Target-based agents against EGF receptors and their ligands: a novel approach to cancer treatment. Endocr Relat Cancer 2003; 10: 1-21 [PMID: 12653668 DOI: 10.1677/erc.0.010001]

Abd El-Rehim DM, Pinder SE, Paish CE, Bell JA, Rampaus RS, Blamey RW, Robertson JF, Nicholson RI, Ellis IO. Expression and co-expression of the members of the epidermal growth factor receptor (EGFR) family in invasive breast carcinoma. Br J Cancer 2004; 91: 1532-1542 [PMID: 15480434 DOI: 10.1038/sj.bjc.6602184]

Böni-Schnetzler M, Pilch PF. Mechanism of epidermal growth factor receptor autophosphorylation and high-affinity binding. Proc Natl Acad Sci USA 1987; 84: 7832-7836 [PMID: 3500470 DOI: 10.1073/pnas.84.22.7832]

Rotin D, Margolis M, Mohammad M, Daly RJ, Daum G, Li N, Fischer EH, Burgess WH, Ullrich A, Schlessinger J. SH2 domains prevent tyrosine dephosphorylation of the EGFR receptor: identification of Tyr992 as the high-affinity binding site for SH2 domains of phospholipase C gamma. EMBO J 1992; 11: 559-567 [PMID: 1537335]

Lowenstein EJ, Daly RJ, Batzer AG, Li W, Margolis B, Lammers R, Ullrich A, Skolnik EY, Bar-Sagi D, Schlessinger J. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 1992; 70: 431-442 [PMID: 1322798 DOI: 10.1016/0092-8674(92)90167-B]

Zhang Y, Wang L, Zhang M, Jin M, Bai C, Wang X. Potential mechanism of interleukin-8 production from lung cancer cells: an involvement of EGF-EGFR-PI3K-Akt-Erk pathway. Clin Cancer Res 2011; 17: 5494-5504 [PMID: 21712048 DOI: 10.1158/1078-0432.CCR-10-2432]

Kong CP, Meckes DG, Raab-Traub N. Epstein-Barr virus LMP1 activates EGFR, STAT3, and ERK through effects on PKCdelta. J Virol 2011; 85: 4399-4408 [PMID: 21307189 DOI: 10.1128/JVI.01703-10]
April 8, 2016 | Volume 8 | Issue 10 | 495

111 Miyaki M, Sato C, Sakai K, Konishi M, Tanaka K, Muraoka M, Kikuchi-Yanoshita R, Nadaoka Y, Kanda H, Kitagawa T. Malignant transformation and EGFR activation of immortalized mouse liver epithelial cells caused by HBV enhancer-X from a human hepatocellular carcinoma. Int J Cancer 2000; 85: 518-522 [PMID: 10699924]

112 Chen YJ, Chien PH, Chen WS, Chien YF, Hsu YY, Wang LY, Chen JY, Lin CW, Huang TC, Yu YL, Huang WC. Hepatitis B Virus-Encoded X Protein Downregulates EGFR Expression via Inducing MicroRNA-7 in Hepatocellular Carcinoma Cells. Evid Based Complement Alternat Med 2013; 2013: 682380 [PMID: 23860262 DOI: 10.1155/2013/682380]

113 Chalhishi V, Haghhighi MM, Javadi GR, Fatemi SR, Vahedi M, Zali MR. The effect of 5’ untranslated region polymorphism in EGF gene, rs4444903, on colorectal cancer. Gastroenterol Hepatol Bed Bench 2013; 6: 129-135 [PMID: 24834259]

114 Peng Q, Li S, Qin X, Lao X, Chen Z, Zhang X, Chen J. EGFR +61A/G polymorphism contributes to increased gastric cancer risk: evidence from a meta-analysis. Cancer Cell Int 2014; 14: 134 [PMID: 25729328 DOI: 10.1186/s12935-014-0134-4]

115 Li YL, Tian Z, Zhao L, Zhang CL. Association between the EGFR rs4444903 polymorphism and liver cancer susceptibility: a meta-analysis and meta-regression. Genet Mol Res 2014; 13: 8066-8079 [PMID: 25299911 DOI: 10.4238/2014.October.7.1]

116 Hu M, Shi H, Xu Z, Liu W. Association between epidermal growth factor gene rs4444903 polymorphism and risk of glioma. Tumour Biol 2013; 34: 1879-1885 [PMID: 23645212 DOI: 10.1007/s13277-013-0730-2]

117 Jiang G, Yu K, Shao L, Yu X, Hu C, Qian P, Xie H, Li J, Zheng J, Zheng S. Association between epidermal growth factor gene +61A/G polymorphism and the risk of hepatocellular carcinoma: a meta-analysis based on 16 studies. BMC Cancer 2015; 15: 314 [PMID: 25927412 DOI: 10.1186/s12885-015-1318-6]

118 Shabhazi M, Pravica V, Nasreen N, Fakhoury H, Fryer AA, Strange RC, Hutchinson PE, Osborne JE, Lear JT, Smith AG, Hutchinson IV. Association between functional polymorphism in EGFR gene and malignant melanoma. Lancet 2002; 359: 397-401 [PMID: 11844511 DOI: 10.1016/S0140-6736(02)07060-6]

119 Tanabe KK, Lemoine A, Ognjanovic S, Wang R, Van Den Berg D, Antoniono RJ, Redpath JL, Stanbridge EJ. DNA damage and p53-mediated cell cycle arrest: a reevaluation. Proc Natl Acad Sci USA 1996; 93: 15209-15214 [PMID: 8986789 DOI: 10.1073/pnas.93.26.15209]

120 Pellegrata NS, Antoniono RJ, Redpath JL, Stanbridge EJ. DNA damage and p53-mediated cell cycle arrest: a reevaluation. Proc Natl Acad Sci USA 1996; 93: DOI: 10.1073/pnas.93.26.15209]

121 Soengas MS, Alarcon RM, Yoshida H, Giaccia AJ, Hakem R, Mak TW, Lowe SW. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 1999; 284: 156-159 [PMID: 10102818 DOI: 10.1126/science.284.5411.156]

122 Moll UM, Petrenko O. The MDM2-p53 interaction. Mol Cancer Res 2003; 1: 1001-1008 [PMID: 14707283]

123 Rodriguez MS, Destermo JR, Lain S, Lane DP, Hay RT. Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Mol Cell Biol 2000; 20: 8458-8467 [PMID: 11046142 DOI: 10.1089/MB.20.22.8458-8467.2000]

124 Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature 1997; 387: 296-299 [PMID: 9153395 DOI: 10.1038/387296a0]

125 Bond GL, Hu W, Levine AJ. MDM2 is a central node in the p53 pathway: 12 years and counting. Curr Cancer Drug Targets 2005; 5: 3-8 [PMID: 15720184 DOI: 10.2174/1568009053332627]

126 Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC, Bargonetti J, Bartel F, Taubert H, Wuerl P, Onel K, Yip L, Hwang SJ, Strong LC, Lozano G, Levine AJ. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 2004; 119: 591-602 [PMID: 15550242 DOI: 10.1016/j.cell.2004.11.022]

127 Ezzikouri S, El Feydi AE, Afifi R, El Kihal L, Benazzouz M, Hassar M, Marchio A, Pianu P, Benjelloun S. MDM2 SNP309G polymorphism and risk of hepatocellular carcinoma: a case-control analysis in a Moroccan population. Cancer Detect Prev 2009; 32: 380-385 [PMID: 19223569 DOI: 10.1016/j.cdp.2009.01.003]

128 Di Vuolo V, Buonaguro L, Izzo F, Losito S, Botti G, Buonaguro FM, Tomesello ML. TP53 and MDM2 gene polymorphisms and risk of hepatocellular carcinoma among Italian patients. Infect Agent Cancer 2011; 6: 13 [PMID: 21843334 DOI: 10.1084/jic.179.8-13]

129 Dharel N, Kato N, Muroyama R, Moriayama S, Shao RX, Kawabe T, Omata M. MDM2 promoter SNP309 is associated with the risk of hepatocellular carcinoma in patients with chronic hepatitis C. Clin Cancer Res 2006; 12: 4867-4871 [PMID: 16914573]

130 Yoon YJ, Chang HY, Ahn SH, Kim JK, Park YK, Kang DR, Park PY, Myoung SM, Kim do Y, Chon CY, Hwang SJ, Chung RT, Lauwers GY, Tornesello ML, Kulu Y, Muzikansky A, Kuruppu D, Dharel N, Mathew S, Shao RX, Kawabe T, Omata M. MDM2 promoter SNP309 is associated with the risk of hepatocellular carcinoma in patients with chronic hepatitis C. Clin Cancer Res 2006; 12: 4867-4871 [PMID: 16914573]

131 Liang Z, Lu X, Lai K, Tsai H, Wang Y, Wang WC, Zhang X, Liao C, Chen JY, Lin CW, Huang TC, Yu YL, Huang WC. Hepatitis B Virus-Encoded X Protein Downregulates EGFR Expression via Inducing MicroRNA-7 in Hepatocellular Carcinoma Cells. Evid Based Complement Alternat Med 2013; 2013: 682380 [PMID: 23860262 DOI: 10.1155/2013/682380]

132 Abbas E, Shaker O, Abdel Aziz G, Ramadan H, Esmat G. Epidermal growth factor gene polymorphism 61A/G in patients with chronic liver disease for early detection of hepatocellular carcinoma: a pilot study. Eur J Gastroenterol Hepatol 2012; 24: 458-463 [PMID: 22293333 DOI: 10.1097/meg.0b013e3283580d46]

133 Zhong JH, You XM, Gong WF, Ma L, Zhang Y, Mo QQ, Wu LC, Xiao J, Li LQ. Epidermal growth factor gene polymorphism and risk of hepatocellular carcinoma: a meta-analysis. PLoS One 2012; 7: e32159 [PMID: 22403631 DOI: 10.1371/journal.pone.0032159]

134 Rivilin N, Brosh R, Omen R, Mutter V. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer 2011; 2: 466-474 [PMID: 21779514 DOI: 10.1177/1947601110408889]
negatively regulates T helper type 1 immunity. Nat Immunol 2005; 6: 1245-1252 [PMID: 16266920 DOI: 10.1038/nii271]

142 Sánchez-Fueyo A, Tian J, Picarella D, Domengic C, Zheng X, Sabatos CA, Manloutou N, Bender O, Kannardi T, Kuchroo VK, Gutiérrez-Ruiz JC, Coyle AJ, Strom TB. Tim-3 inhibits T helper type 1-mediated auto- and alloimmune responses and promotes immunological tolerance. Nat Immunol 2003; 4: 1039-1101 [PMID: 14556005 DOI: 10.1038/nii987]

143 Golden-Mason L, Palmer BE, Kassam N, Townshend-Bulson L, Livingston S, McMahon BJ, Castelblanco N, Kuchroo V, Gretch DR, Rosen HR. Negative immune regulator Tim-3 is overexpressed on T cells in hepatitis C virus infection and its blockade rescues dysfunctional CD4+ and CD8+ T cells. J Virol 2009; 83: 9122-9130 [PMID: 19587053 DOI: 10.1128/JVI.06369-09]

144 Wu W, Shi Y, Li J, Chen F, Chen Z, Zheng M. Tim-3 expression on peripheral T cell subsets correlates with disease progression in hepatitis B infection. Viral J 2011; 8: 113 [PMID: 21392402 DOI: 10.1186/1475-2820-8-113]

145 Li Z, Liu Z, Zhang G, Han Q, Li N, Zhu Q, Lv Y, Chen J, Xing F, Wang Y, Li F. TIM3 gene polymorphisms in patients with chronic hepatitis B virus infection: impact on disease susceptibility and hepatocellular carcinoma traits. Tissue Antigens 2012; 80: 151-157 [PMID: 22587604 DOI: 10.1111/j.1399-0039.2012.01898.x]

146 Li Z, Li N, Zhu Q, Zhang G, Han Q, Zhang P, Xu M, Wang Y, Xeng Z, Yang C, Liu Z. Genetic variations of PD1 and TIM3 are differentially and interactively associated with the development of cirrhosis and HCC in patients with chronic HBV infection. Infect Genet Evol 2013; 14: 240-246 [PMID: 23291409 DOI: 10.1016/j.meegid.2012.12.008]

147 Wang L, Zhao C, Peng Q, Shi J, Gu G. Expression levels of CD28, CTLA-4, PD-1 and Tim-3 as novel indicators of T-cell immune function in patients with chronic hepatitis B virus infection. Biomed Rep 2014; 2: 270-274 [PMID: 24649109]

148 Zhang J, Daley D, Akhabir L, Stefanowicz D, Chan-Yeung M, Becker AB, Laprise C, Paré PD, Sandford AJ. Lack of association of TIM3 polymorphisms and allergic phenotypes. BMC Med Genet 2009; 10: 62 [PMID: 19566956 DOI: 10.1186/1471-2350-10-62]

149 DeKruyff RH, Bu X, Ballesteros A, Santiago C, Chin YL, Lee HH, Karisola P, Pichavant M, Kaplan GG, Umetu DT, Freeman GJ, Casanasov JM. T cell/transmembrane, Ig, and mucin-3-like variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells. J Immunol 2010; 184: 1918-1930 [PMID: 20083673 DOI: 10.4049/jimmunol.0903059]

150 Sugasawa K, Ng JM, Masutani C, Iwai S, van der Spek PJ, Ng JM, Masutani C, Iwai S, van der Spek PJ, Iwai S, van der Spek PJ, Iwai S, van der Spek PJ, Iwai S, van der Spek PJ. XPC and XPA in relation to risk of lung cancer. Cancer Lett 2005; 222: 67-74 [PMID: 15837542 DOI: 10.1016/j.canlet.2004.11.016]

151 Zhu Y, Lai M, Yang H, Lin J, Huang M, Grossman HB, Dinney CP, Wu X. Genotypes, haplotypes and diplotypes of XPC and risk of bladder cancer. Int J Cancer 2005; 116: 698-703 [PMID: 17052994 DOI: 10.1002/ijc.21071]

152 Qi L, Wang Z, Shi X, Wang Z. Associations between XPC polymorphisms and risk of cancers: A meta-analysis. Eur J Cancer 2008; 44: 2241-2253 [PMID: 18771913 DOI: 10.1016/j.ejca.2008.06.024]

153 Khan SG, Mettert EJ, Tarene RE, Bohr VA, Grossman L, Hedaya M, Bale SJ, Emmert S, Kraemer KH. A new xeroderma pigmentosum group C poly(A) insertion/deletion polymorphism. Carcinogenesis 2000; 21: 1821-1825 [PMID: 11023539 DOI: 10.1093/carcin/21.10.1821]

154 Khan SG, Muzzin-Medina V, Shahlavi T, Baker CC, Imai H, Ueda T, Emmert S, Schneider TD, Kraemer KH. The human XPC DNA repair gene: arrangement, splice site information content and influence of a single nucleotide polymorphism in a splice acceptor site on alternative splicing and function. Nucleic Acids Res 2002; 30: 3624-3631 [PMID: 12177305 DOI: 10.1093/nar/gkf460]

155 Zhang D, Chen C, Fu X, Gu S, Mao Y, Xie Y, Huang Y, Li Y. A meta-analysis of DNA repair gene XPC polymorphisms and cancer risk. J Hum Genet 2008; 53: 18-33 [PMID: 18097734 DOI: 10.1007/s10038-007-0215-5]

156 Jin B, Dong Y, Zhang X, Wang H, Han B. Association of XPC polymorphisms and lung cancer risk: a meta-analysis. PLoS One 2014; 9: e93937 [PMID: 24736739 DOI: 10.1371/journal.pone.0093937]

157 Long XD, Ma Y, Zhou YF, Ma AM, Fu GH. Polymorphism in xeroderma pigmentosum complementation group C codon 939 and aflatoxin B1-related hepatocellular carcinoma in the Guangxi population. Hepatology 2010; 52: 1301-1309 [PMID: 20658464 DOI: 10.1002/hep.23807]

158 Yao JG, Huang XY, Long XD. Interaction of DNA repair gene polymorphisms and aflatoxin B1 in the risk of hepatocellular carcinoma. J Int Clin Exp Pathol 2014; 7: 6231-6244 [PMID: 25337275]

159 Cruikshank W, Center DM. Modulation of lymphocyte migration by human lymphokines. II. Purification of a lymphotactic factor (LCF). J Immunol 1982; 128: 2569-2574 [PMID: 7042841]

160 Ferland C, Flammand N, Davoine F, Chakir J, Laviolette M. IL-16 activates plasminogen-plasmin system and promotes human eosinophil migration into extracellular matrix via CCR3-chemokine-mediated signaling and by modulating CD4 eosinophil expression. J Immunol 2004; 173: 4417-4424 [PMID: 15383572 DOI: 10.4049/jimmunol.173.7.4417]

161 Bandeira-Melo C, Sugiyama K, Woods LJ, Phoofolo M, Center DM, Cruikshank WW, Weller PF. IL-16 promotes leukotriene C4 and IL-4 release from human eosinophils via CD4+ and autocrine CCR3-chemokine-mediated signaling. J Immunol 2002; 168: 4756-4763 [PMID: 11971026 DOI: 10.4049/jimmunol.168.9.4756]

162 Liu Y, Cruikshank WW, O’Loughlin T, O’Reilly P, Center DM, Kornfeld H. Identification of a CD4 domain required for interleukin-16 binding and lymphocyte activation. J Biol Chem 1999; 274: 23387-23395 [PMID: 10438516 DOI: 10.1074/jbc.274.33.23387]

163 Krautwald S. IL-16 activates the SAPK signaling pathway in CD4+ macrophages. J Immunol 1998; 160: 5874-5879 [PMID: 9637499]

164 Cruikshank WW, Greenstein JL, Theodore AC, Center DM. Lymphocyte chemotactic factor induces CD4-dependent intracytoplasmic signaling in lymphocytes. J Immunol 1991; 146: 2928-2934 [PMID: 1673145]

165 Cruikshank WW, Berman JS, Theodore AC, Bernardo J, Center DM. Lymphokine activation of T4+ T lymphocytes and monocytes. J Immunol 1987; 138: 3817-3823 [PMID: 3108375]

166 Parada NA, Cruikshank WW, Danis HL, Ryan TC, Center DM. IL-16- and other CD4 ligand-induced migration is dependent upon protein kinase C. Cell Immunol 1996; 168: 100-106 [PMID: 10.1002/hep.23807].
Hsu CL, Hsieh AR, Chien RN, Chu CM, Tai DI. A genome-wide association study on chronic HBV infection and its clinical progression in male Han-Taiwanese. PLoS One 2014; 9: e99724 [PMID: 24940741 DOI: 10.1371/journal.pone.0099724]

Pan W, Chen G, Xing H, Shi J, Lu C, Li L, Li Z, Zhou C, Yuan Q, Zhou L, Yang M. Leukocyte telomere length-related rs621559 and rs398652 genetic variants influence risk of HBV-related hepatocellular carcinoma. PLoS One 2014; 9: e110863 [PMID: 25365256 DOI: 10.1371/journal.pone.0110863]

Krautkramer KA, Limmenmann AK, Fontaine DA, Whillock AL, Harris TW, Schles GI, Trunchan NA, Marty-Montis S, Lavine JA, Cleaver O, Kimple ME, Davis DB. Tcf9 is a novel islet factor necessary for proliferation and survival in the INS-1 β-cell line. Am J Physiol Endocrinol Metab 2013; 305: E600-E610 [PMID: 23860123 DOI: 10.1152/ajpendo.00147.2013]

Hoeller D, Hecker CM, Wagner S, Rogov V, Dötsch V, Dikic I. E3-independent monoubiquitination of ubiquitin-binding proteins. Mol Cell 2007; 26: 891-898 [PMID: 17588522 DOI: 10.1016/j.molcel.2007.05.014]

Xing J, Ajani JA, Chen M, Izzo J, Lin J, Chen Z, Gu J, Wu X. Constitutive short telomere length of chromosome 17p and 12q but not 11q and 2p is associated with an increased risk for esophageal cancer. Cancer Prev Res (Phila) 2009; 2: 459-465 [PMID: 19401529 DOI: 10.1158/1940-6207.CAPR-08-0227]

Imamichi Y, Mizutani T, Ju Y, Matsumura T, Kawabe S, Kanno M, Yazawa T, Miyamoto K. Transcriptional regulation of human ferrodoxin 1 in ovarian granulosa cells. Mol Cell Endocrinol 2013; 370: 1-10 [PMID: 23435367 DOI: 10.1016/j.mce.2013.02.012]

Shefelf AD, Stehling O, Pierick AJ, Eissaer HP, Mühlenhoff U, Webert H, Hobler A, Hanningmann F, Bernhardt R, Lill R. Humans possess two mitochondrial ferrodoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc Natl Acad Sci USA 2010; 107: 11775-11780 [PMID: 20547883 DOI: 10.1073/pnas.1004250107]

Huang SS, Huang JS. TGF-beta control of cell proliferation. J Cell Biochem 2005; 96: 447-462 [PMID: 16088940 DOI: 10.1002/jcb.20558]

Massagué J, Xi Q. TGF-β control of cell division and differentiation. FEBS Lett 2012; 586: 1953-1958 [PMID: 22710171 DOI: 10.1016/j.febslet.2012.03.023]

Sethi A, Mao W, Wordinger RJ, Clark AF. Transforming growth factor-beta induces extracellular matrix protein cross-linking by sulphydryl oxidase (LOX) genes in human trabecular meshwork cells. Invest Ophtalmol Vis Sci 2011; 52: 5240-5250 [PMID: 21546528 DOI: 10.1167/iovs.11-7287]

Larsson J, Blank U, Helgadottir H, Björnsson JM, Kornfeld H, Collins TL, Center WA. TGF-β control of stem cell differentiation and regeneration ability in vivo despite increased proliferative capacity in vitro. Blood 2003; 102: 3129-3135 [PMID: 12842983 DOI: 10.1182/blood-2003-04-1300]

Ferrari G, Cook BD, Terushkin V, Pintucci G, Mignatti P. Transforming growth factor-beta 1 (TGF-beta1) induces angiogenesis with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc Natl Acad Sci USA 2011; 108: 11775-11780 [PMID: 22019522 DOI: 10.1073/pnas.1102987108]

Imamichi Y, Mizutani T, Ju Y, Matsumura T, Kawabe S, Kanno M, Yazawa T, Miyamoto K. Transcriptional regulation of human ferrodoxin 1 in ovarian granulosa cells. Mol Cell Endocrinol 2013; 370: 1-10 [PMID: 23435367 DOI: 10.1016/j.mce.2013.02.012]

Shefelf AD, Stehling O, Pierick AJ, Eissaer HP, Mühlenhoff U, Webert H, Hobler A, Hanningmann F, Bernhardt R, Lill R. Humans possess two mitochondrial ferrodoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc Natl Acad Sci USA 2010; 107: 11775-11780 [PMID: 20547883 DOI: 10.1073/pnas.1004250107]

Huang SS, Huang JS. TGF-beta control of cell proliferation. J Cell Biochem 2005; 96: 447-462 [PMID: 16088940 DOI: 10.1002/jcb.20558]

Massagué J, Xi Q. TGF-β control of cell division and differentiation. FEBS Lett 2012; 586: 1953-1958 [PMID: 22710171 DOI: 10.1016/j.febslet.2012.03.023]

Sethi A, Mao W, Wordinger RJ, Clark AF. Transforming growth factor-beta induces extracellular matrix protein cross-linking by sulphydryl oxidase (LOX) genes in human trabecular meshwork cells. Invest Ophtalmol Vis Sci 2011; 52: 5240-5250 [PMID: 21546528 DOI: 10.1167/iovs.11-7287]

Larsson J, Blank U, Helgadottir H, Björnsson JM, EHINGER M, Goumans MJ, Fan X, LEVÉEN P, KARLSSON S. TGF-beta signalling-deficient hematopoietic stem cells have normal self-renewal and regenerative ability in vivo despite increased proliferative capacity in vitro. Blood 2003; 102: 3129-3135 [PMID: 12842983 DOI: 10.1182/blood-2003-04-1300]

Ferrari G, Cook BD, Terushkin V, Pintucci G, Mignatti P. Transforming growth factor-beta 1 (TGF-beta1) induces angiogenesis with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc Natl Acad Sci USA 2011; 108: 11775-11780 [PMID: 22019522 DOI: 10.1073/pnas.1102987108]

Imamichi Y, Mizutani T, Ju Y, Matsumura T, Kawabe S, Kanno M, Yazawa T, Miyamoto K. Transcriptional regulation of human ferrodoxin 1 in ovarian granulosa cells. Mol Cell Endocrinol 2013; 370: 1-10 [PMID: 23435367 DOI: 10.1016/j.mce.2013.02.012]

Shefelf AD, Stehling O, Pierick AJ, Eissaer HP, Mühlenhoff U, Webert H, Hobler A, Hanningmann F, Bernhardt R, Lill R. Humans possess two mitochondrial ferrodoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc Natl Acad Sci USA 2010; 107: 11775-11780 [PMID: 20547883 DOI: 10.1073/pnas.1004250107]

Huang SS, Huang JS. TGF-beta control of cell proliferation. J Cell Biochem 2005; 96: 447-462 [PMID: 16088940 DOI: 10.1002/jcb.20558]
200 Hong MH, Chou YC, Wu YC, Tsai KN, Hu CP, Jeng KS, Chen ML, Chang C. Transforming growth factor-β1 suppresses hepatitis B virus replication by the reduction of hepatocyte nuclear factor-4α expression. *PLoS One* 2012; 7: e30360 [PMID: 22276183 DOI: 10.1371/journal.pone.0030360]

201 Cambien F, Ricard S, Troesch A, Mallet C, Générauz L, Evans A, Arveiler D, Luc G, Ruidavets JB, Poirier O. Polymorphisms of the transforming growth factor-beta 1 gene in relation to myocardial infarction and blood pressure. The Etude Cas-Témoin de l’Infarctus du Myocarde (ECTIM) Study. *Hypertension* 1996; 28: 881-887 [PMID: 8901839 DOI: 10.1161/01.HYP.28.5.881]

202 Ben-Ari Z, Mor E, Papo O, Kfir B, Sulkes J, Tambur AR, Tur-Kaspa R, Klein T. Cytokine gene polymorphisms in patients infected with hepatitis B virus. *Am J Gastroenterol* 2003; 98: 144-150 [PMID: 12526950 DOI: 10.1111/j.1572-0241.2003.07179.x]

203 Kwon OS, Song SH, Ju KT, Chung MG, Park DK, Kim SS, Kim YS, Koo YS, Kim YK, Choi DJ, Kim JH, Hwang YJ, Byun KS, Lee CH. [Polymorphism in codons 10 and 25 of the transforming growth factor-beta1 gene in Korean population and in patients with liver cirrhosis and hepatocellular carcinoma]. *Korean J Gastroenterol* 2003; 42: 212-219 [PMID: 14532743]

204 Migita K, Miyazoe S, Maeda Y, Daikoku M, Abiru S, Ueki T, Yano K, Nagaoka S, Matsumoto T, Nakao K, Hamasaki K, Yatsushashi H, Ishibashi H, Eguchi K. Cytokine gene polymorphisms in Japanese patients with hepatitis B virus infection--association between TGF-beta1 polymorphisms and hepatocellular carcinoma. *J Hepatol* 2005; 42: 505-510 [PMID: 15763337 DOI: 10.1016/j.jhep.2004.11.026]

205 Shi HZ, Ren P, Lu QJ, Niedrgethmnn M, Wu GY. Association between EGF, TGF-β1 and TNF-α gene polymorphisms and hepatocellular carcinoma. *Asian Pac J Cancer Prev* 2012; 13: 6217-6220 [PMID: 23464434 DOI: 10.7314/APJCP.2012.13.12.62]

206 Qi P, Chen YM, Wang H, Fang M, Ji Q, Zhao YP, Sun XJ, Liu Y, Gao CF. -509C>T polymorphism in the TGF-beta1 gene promoter, impact on the hepatocellular carcinoma risk in Chinese patients with chronic hepatitis B virus infection. *Cancer Immunol Immunother* 2009; 58: 1433-1440 [PMID: 19169878 DOI: 10.1007/s00262-009-0660-4]

207 Hosseini Razavi A, Azimzadeh P, Mohhebbi SR, Hosseini SM, Romani S, Khanyaghima M, Hatami Y, Shariﬁan A, Zali MR. Lack of Association Between Transforming Growth Factor Beta 1 -509C/T and +915G/C Polymorphisms and Chronic Hepatitis B in Iranian Patients. *Hepat Mon* 2014; 14: e13100 [PMID: 24748892]

208 Kim YJ, Lee HS, Im JP, Min BH, Kim HD, Jeong JB, Yoon JH, Kim CY, Kim MS, Kim JY, Jung JH, Kim LH, Park BL, Shin HD. Association of transforming growth factor-beta1 gene polymorphisms with a hepatocellular carcinoma risk in patients with chronic hepatitis B virus infection. *Exp Mol Med* 2003; 35: 196-202 [PMID: 12858019 DOI: 10.1038/emm.2003.27]

209 Li XD, Wu LM, Xie HY, Xu X, Zhou L, Liang TB, Wang WL, Shen Y, Zhang M, Zheng SS. No association exists between E-cadherin gene polymorphism and tumor recurrence in patients with hepatocellular carcinoma after transplantation. *Hepatobiliary Pancreat Dis Int* 2007; 6: 254-258 [PMID: 17548247]

210 Liu K, Zhang L, Lin X, Chen L, Shi H, Magay R, Zou B, Zhao J. Association of GST genetic polymorphisms with the susceptibility to hepatocellular carcinoma (HCC) in Chinese population evaluated by an updated systematic meta-analysis. *PLoS One* 2013; 8: e57043 [PMID: 23437305 DOI: 10.1371/journal.pone.0057043]

P- Reviewer: Chung YH, Vaughan G S- Editor: Wang JL L- Editor: Webster JR E- Editor: Liu SQ
