Molecular mechanism for preQ₁-II riboswitch function revealed by molecular dynamics

ASAMINEW H. AYTENFISU,1 JOSEPH A. LIBERMAN,1 JOSEPH E. WEDEKIND,1 and DAVID H. MATHEWS1,2
1Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, New York 14642, USA
2Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York 14642, USA

ABSTRACT
Riboswitches are RNA molecules that regulate gene expression using conformational change, affected by binding of small molecule ligands. A crystal structure of a ligand-bound class II preQ₁ riboswitch has been determined in a previous structural study. To gain insight into the dynamics of this riboswitch in solution, eight total molecular dynamic simulations, four with and four without ligand, were performed using the Amber force field. In the presence of ligand, all four of the simulations demonstrated rearranged base pairs at the 3′ end, consistent with expected base-pairing from comparative sequence analysis in a prior bioinformatic analysis; this suggests the pairing in this region was altered by crystallization. Additionally, in the absence of ligand, three of the simulations demonstrated similar changes in base-pairing at the ligand binding site. Significantly, although most of the riboswitch architecture remained intact in the respective trajectories, the P3 stem was destabilized in the ligand-free simulations in a way that exposed the Shine–Dalgarno sequence. This work illustrates how destabilization of two major groove base triples can influence a nearby H-type pseudoknot and provides a mechanism for control of gene expression by a fold that is frequently found in bacterial riboswitches.

INTRODUCTION
Riboswitches are RNA structures that regulate gene expression in response to the binding of a cognate ligand (Serganov and Nudler 2013). While the thymine pyrophosphate riboswitch is found in all domains of life, most known riboswitches are bacterial, where they typically are located in the 5′ leader sequences of mRNA. Riboswitches consist of two functional domains, the aptamer and the expression platform. The aptamer comprises the portion of the riboswitch that is necessary and sufficient for ligand binding, whereas the expression platform contains the gene regulatory sequence. Ligand binding to the aptamer results in a conformational change in both the aptamer and expression platforms, affecting gene regulation. Most commonly, riboswitches regulate transcription or translation. For translational control, which is utilized by the preQ₁-II (class II) riboswitch described herein, ligand binding controls the accessibility of the Shine–Dalgarno (SD) sequence (Serganov and Patel 2007; Peselis and Serganov 2014). PreQ₁ is an intermediate on the biosynthetic pathway of queuosine (Q), a hypermodified nucleotide in bacteria (Noguchi et al. 1982). Q is found in the wobble position of certain tRNAs (Kimura-Harada et al. 1972), where it confers translational fidelity (Bienz et al. 1981; Meier et al. 1985; Urbona- vičius et al. 2001). The expression of genes responsible for the biosynthesis of Q or the import of Q precursors is frequently controlled by riboswitches. To date, descriptions of three phylogenetically distinct classes of preQ₁-binding riboswitches, known as the class I (preQ₁-I), class II (preQ₁-II), or class III (preQ₁-III) have been published (Roth et al. 2007; Meyer et al. 2008; McCown et al. 2014). The class II riboswitch is located in the 5′ leader sequence of the COG4708 (also known as queT) gene, which is hypothesized to be a transporter of Q precursors (Meyer et al. 2008). Upon ligand binding, this riboswitch buries the SD sequence in an H-type (Hi-Out) pseudoknot, and this conformation is hypothesized to attenuate translation by preventing binding by the ribosome. High-resolution structures have been determined for the preQ₁-I, preQ₁-II, and preQ₁-III translational riboswitches in the ligand–bound state (Spitale et al. 2009; Jenkins et al. 2011; Liberman et al. 2013, 2015; Kang et al. 2014). The structures of the apo state, however, have only been determined for the preQ₁-I riboswitch (Jenkins et al. 2011), leaving open the question of how the preQ₁-II riboswitch changes its conformation in the absence of the preQ₁ ligand.
Molecular dynamics (MD) has proven valuable in providing insights into many aspects of riboswitch structure and function. More specifically, MD has elucidated chemical features that stabilize ligand binding, the interactions that stabilize conformational endpoints, and features that facilitate conformational switching. Studies have been conducted on the SAM-I riboswitch (Huang et al. 2009; Stoddard et al. 2010; Doshi et al. 2012; Hayes et al. 2012; Huang et al. 2013; Xue et al. 2015), the SAM-II riboswitch (Kelley and Hamelberg 2010; Doshi et al. 2012), the guanine riboswitch (Villa et al. 2009; Sund et al. 2014), the adenine riboswitch (Sharma et al. 2009; Priyakumar and MacKerell 2010; Nozinovic et al. 2014; Sund et al. 2014), the GlmS riboswitch (Banáš et al. 2010; Xin and Hamelberg 2010), and the preQ1-I and preQ1-III riboswitches (Petrone et al. 2011; Banáš et al. 2012; Eichhorn et al. 2012; Gong et al. 2014; Liberman et al. 2015). Overall, these studies show the feasibility of using MD to understand riboswitch function and provide an opportunity to look for common themes in ligand binding and conformational dynamics. A review of MD and other computational approaches applied to understanding riboswitch structure and function is available (Sanbonmatsu 2014).

This paper reports an investigation of the conformations adopted by the preQ1-II riboswitch in the apo and bound states using MD, with a starting model derived from the crystal structure of the ligand-bound preQ1-II riboswitch determined by Liberman et al. (2013). This analysis was performed to gain a deeper understanding of how this riboswitch behaves in solution, free of the crystal lattice. It is notoriously difficult to obtain crystal structures of riboswitches in the ligand-free state, and this is likely because the apo state is more conformationally heterogeneous and dynamic (Stoddard et al. 2010; Liberman and Wedekind 2012). Therefore, MD simulations provide a tractable method for generating atomic-resolution models of these large RNA molecules. Four MD simulations of 1.3 μsec each were conducted for both the ligand-bound and apo states, providing a cumulative sampling time of 10.4 μsec. The ligand-bound simulations underwent a rearrangement of the structure to one predicted by comparative sequence analysis (Meyer et al. 2008), suggesting crystal packing-induced distortions were present in the crystal structure. The apo simulations provided insight into the pathway for rearrangement of the ligand binding regions and the exposure of the SD sequence, although the SD sequence was not fully exposed on the time scale of these simulations. The results support the hypothesis that ligand binding enhances the stability of the pseudoknot, sequestering the SD sequence from interaction with the ribosome.

RESULTS

Starting configuration of the preQ1-II riboswitch crystal structure

The starting model for the simulations was the crystal structure of the ligand-bound Lactobacillus rhamnosus preQ1-II riboswitch (Liberman et al. 2013). It contains 77 nt in four stems (P1, P2, P3, and P4), two hairpin loops (L1 and L2), and three junctions (J2,3, J2,4, J3,4) (Fig. 1). The SD sequence is base paired (pseudoknotted) in stem P3. The ligand binding pocket of the preQ1-II riboswitch lies within a three-way helical junction composed of helices P2, P3, and P4 (Liberman et al. 2013). Within the ligand binding pocket are two major groove base triple interactions, A71-U40-U31 and A72-U39-U32, which form a “floor” under the ligand. The ligand itself participates in another triple interaction, C30-preQ1-U41. At the “bottom” of P3, the crystal structure demonstrated unpaired nucleotides, U34 and A77 (with A77 unstacked from the helical apex), adjacent to a single hydrogen bond pair of U35 and G76. Here, MD analysis was used to interrogate whether these nucleotides form standard base pairs in the absence of crystal packing (Supplemental Fig. S1; Liberman et al. 2013).

Comparative analysis of global and local stability pinpoints ligand-bound and apo structure flexibility

Four apo and four ligand-bound molecular dynamics simulations were performed for 1.3 μsec of simulation time each. The stability of the simulations was tested by following RMSD of atomic coordinates compared to the crystal structure as a function of time. For the ligand-bound structure, all helices present in the crystal structure were preserved during the simulation, although some details in the pairing changed (see below). The RMSD for each of the stems in the structure remained below 2 Å for nearly the entire simulation time. Supplemental Table S1 has a summary of stem heavy-atom RMSDs (as minimum, maximum, average, and standard deviation from the mean) compared to the crystal structure for each stem, and the RMSDs are plotted in Supplemental Figures S2–S5.

The binding pocket, comprising C30, U31, U32, U41, and A70 was stable in the ligand-bound simulations, as demonstrated by the mass-weighted, heavy-atom RMSD values, which remained under 2 Å during the simulations (left column of Fig. 2). In contrast, the apo simulations indicated a more flexible binding pocket, with a mass-weighted, heavy-atom RMSD as high as 6.4 Å (right column of Fig. 2).

Atomic fluctuation across the entire production run was calculated and averaged over each nucleotide. The most dynamic nucleotides are in the loop regions, which correlated well with the crystallographic B-factors (Fig. 3). For both the ligand-bound and apo simulations, the nucleotides that constitute the ligand binding pocket were found to be the most rigid part of the riboswitch. Figure 4 shows the atomic fluctuation plotted on the structure for both ligand-bound and apo states as an average over all four simulations. For comparison, the root mean square fluctuation (RMSF) (Henzler-Wildman and Kern 2007) estimated from the crystallographic B-factors was also plotted. The RMSFs from the simulation differ somewhat from the RMSFs estimated...
from the B-factors because of crystal contacts (Figs. 3, 4). In particular, L1 has strong contacts with J2–4/P4 from an adjacent structure in the crystal lattice (Liberman et al. 2013). As such, L1 has a lower crystallographic B-factors than would be predicted by the significant atomic fluctuations of both ligand-bound and apo simulations. Notably, a difference was observed between ligand-bound and apo simulations in terms of the atomic fluctuations of nucleotides in the binding pocket, or close to the binding pocket. These nucleotides have lower atomic fluctuation for all ligand-bound simulations compared to apo simulations (Fig. 3).

MD supports the formation of an additional, expected pair in the P3 terminal stem

The mode of gene regulation for translational riboswitches entails complete or partial sequestration of the SD sequence upon ligand binding (Breaker 2012). Although the entire SD sequence is observed to participate in P3 formation (Fig. 1), the crystal structure lacked an adjacent base pair between A77 and U34 at the terminus of P3, which had been predicted by comparative analysis (Meyer et al. 2008). Additionally, there is significant disorder seen in the G76–U35 base pair.
This discrepancy was likely the result of crystal packing, which prompted further analysis by MD. All four ligand-bound simulations consistently showed the emergence of Watson–Crick pairing for A77-U34 and wobble pairing for G76-U35. In contrast, the crystal structure showed a trans-Hoogsteen/sugar-edge U35-G76 pair (Figs. 1, 5). The switch to a wobble interaction of G76-U35 occurred in <400 nsec from the start in all four ligand-bound simulations, and the wobble interaction remained for the rest of the simulation time. In contrast, the formation of the pair between A77 and U34 was nearly immediate (in the first few nanoseconds of simulations 1–3 and by 200 nsec in simulation 4). In all ligand-bound simulations, there was subsequent transient opening of the A77-U34 pair. The emergence of these pairs can be followed by the atomic distances between N3 of U34 and N1 of A77 (average distance of 5.42 Å in the pair) and the distances between N3 of U35 and O6 of G76 (average distance of 5.10 Å in the wobble pair; Fig. 6).

Conformational change of the ligand binding pocket in apo simulations

Removal of the ligand for apo simulations led to altered pairing in the binding pocket. The triple interactions that were found in the crystal structure (A71-U40+U31 and A72-U39+U32) rearranged to form three new base pairs. The first change was the formation of an A29-A43-U28 triple interaction with an A43-U28 Watson–Crick base pair and a trans-Hoogsteen/sugar-edge A29-A43 interaction (Fig. 7). Stacked on this triplex was a new Watson–Crick C30-G42 base pair. This pair was followed by a Watson–Crick/Watson–Crick noncanonical pair of U31-U41. The resulting changes closed the preQ1 pocket to ligand binding, and all three of the new pairings were present in three of the four apo simulations.

These rearrangements occurred within the initial 300–500 nsec of the simulation (right side of Figs. 2, 8).

Conformational changes during the simulation were monitored by distance and solvent accessible surface area (SASA) (Figs. 8, 9). The distance between N6 of A29 and N3 of A43 was measured to show the emergence of the trans-Hoogsteen/sugar-edge A29•A43 interaction during the simulations. The distance between N6 of A29 and N3 of A43 of ~6 Å corresponded to a Watson–Crick G42•A29 noncanonical interaction, as observed in the crystal structure in the binding pocket ceiling; the distance of ~2.8 Å corresponded to the trans-Hoogsteen/sugar-edge A29•A43 interaction that emerged in the apo simulations. The distance stayed close to the starting conformation at 6 Å in the ligand-bound simulations. The distances between N3 of C30 and N1 of G42 and between N3 of U31 and N3 of U41 were also measured (Fig. 8) to detect the emergence of the G-C (Watson–Crick; at 2.9 Å) and U•U base-pairing (at 3.4 Å), respectively, in the apo simulations. These distances also remained stable, i.e., at roughly the distances observed in the crystal structure, for the ligand-bound simulations, where these base pairs were not observed.

Monitoring disruption of the pairing of the Shine–Dalgarno sequence in the apo simulations

While the simulation of the ligand-bound riboswitch revealed additional base pairs forming in P3, the apo simulation showed the dissolution of base pairs in P3. To measure the extent to which pairs were disrupted in apo and ligand-bound simulations, distances were monitored for four base pairs in P3. The four distances were between N3 of U34

![FIGURE 2. PreQ1-II riboswitch binding pocket mass-weighted, heavy-atom RMSD to starting structure as function of time. The left column shows four ligand-bound simulations and the right column shows four apo simulations. The binding pocket is defined as nucleotides C30, U31, U32, U41, and A70.](image)

![FIGURE 3. RMSF averaged over each nucleotide. Apo simulations are plotted with blue lines and ligand-bound simulations are plotted in red lines. The fluctuation data (black line) estimated from the temperature factors of the crystal structure using Equation 1 is also included for comparison. Ligand binding regions are boxed in green rectangles. The x-axis is color-coded according to the secondary structure regions shown in Figure 1.](image)
and N1 of A77, between N3 of U35 and O6 of G76, between N3 of U36 and N1 of A75, and between N3 of U39 and N1 of A72 (Fig. 6). These four distances showed how the absence of ligand destabilized the P3 terminal base pair within a region that includes the SD sequence (summarized in Fig. 1). In all apo simulations, pairs U34-A77 and U35-G76 are not observed. Simulations 1 and 4 demonstrated a loss of the pair U36-A75. In simulation 4, the U39-A72 pair, which is Watson–Crick in the crystal structure, rearranges to a cis-Watson–Crick/sugar-edge pair.

DISCUSSION

Molecular dynamics simulations were performed for the preQ1-II riboswitch from *L. rhamnosus* in ligand-bound and apo states. The goal of this investigation was to provide insight into how the ligand-bound riboswitch behaves in solution, without the confines of a crystal lattice. An additional goal was to understand the conformation adopted by the apo riboswitch, which is expected to have an exposed SD sequence that is competent to base pair with the 3′ end of the 16S rRNA within the small ribosomal subunit as a preface to translation initiation. Such pairing is only possible in the “gene on” conformational state of the *queT* mRNA transcript.

First, the crystal structure did not show pairing between U34 and A77, and the observed U35-G76 pairing was not a canonical wobble interaction (Liberman et al. 2013), despite the fact that the secondary structure derived from comparative analysis suggested such pairing would occur (Meyer et al. 2008). Additionally, the NMR structure of the *Streptococcus pneumoniae* preQ1-II riboswitch reveals canonical C-G Watson–Crick base-pairing at the location equivalent to U35-G76 in accord with these MD results; in contrast, the U34-A77 position is replaced by a buckled A-G pair that is not oriented properly for hydrogen bonding in the lowest energy NMR structures (Kang et al. 2014). In all four of the ligand-bound MD simulations described here, a rearrangement of U35-G76 to a canonical wobble pair followed by an A77-U34 canonical Watson–Crick pairing occurred by 400 nsec (Fig. 6). As a result, the SD sequence becomes more sequestered with canonical pairs. These observations are consistent with the mode of translational attenuation reported for comparable translational riboswitches containing an H-type pseudoknot that sequesters the SD sequence (Serganov and Patel 2007), such as SAM-II (Gilbert et al. 2008) in which the entire ribosome-binding site is buried, and the preQ1-I riboswitch in which the first two or three bases of the SD sequence are buried in helices equivalent to P3 (Jenkins et al. 2011). The SAH riboswitch, an LL-type pseudoknot, also sequesters its entire SD sequence for translational control (Batey 2011).

The differences in the four apo simulations (Fig. 1) clearly indicate that the simulations are not long enough for the structures to equilibrate. This is not surprising, as dinucleotide stacking and unstacking both have rate constants on the order of 10^7 s^{-1} (Turner 2000). A number of these types of events need to occur for the rearrangement of the structure to the apo form.

FIGURE 4. RMSF of the ligand-bound simulations (top) and apo simulations (middle) from MD trajectories. Each RMSF was plotted on a common structure (from 830 nsec in ligand-bound simulation 3) to facilitate comparison. The fluctuation data (bottom) estimated from the temperature factor of the crystal structure using Equation 1 is also included for comparison. The scaling is the same as Figure 3, the RMSF 1D plot.

FIGURE 5. Representative structures of the P3 terminus. (A) The crystal structure. (B) The consensus structure of the ligand-bound simulations, selected from simulation number 3 at 730 nsec.
Although the simulation time is insufficient to observe the complete relaxation of the structure to a final conformation, insights can be obtained from the simulations from the ligand binding pocket changes in the apo structure. Consistent trends were observed that suggest the expression platform is more solvent accessible in the apo state. The two major groove base triples, U32A72-U39 and U31A71-U40, that stack directly on the ligand were lost, thus opening a pocket close to the SD sequence. Additionally, loss of the ligand in the preQ1-II riboswitch is expected to have the immediate effect of disrupting the coaxial helical stack of P2 and P3, further destabilizing the pseudoknot that controls SD accessibility as suggested (Jenkins et al. 2011; Liberman et al. 2013). The simulations reported here confirmed this hypothesis, while also showing this pocket region rearranges to a similar conformation in three of four simulations that is different from the ligand-bound structure. This conformation included a new Watson–Crick pair (G42 to C30), a Watson–Crick/Watson–Crick noncanonical pair between U31 and U41, and a triple interaction between A29, A43, and U28 at the ligand binding pocket. The SASA was plotted for the binding pocket with the ligand-bound simulations as a control to show the conformational switch (Fig. 9). Lower SASA corresponded to nucleotides that were buried in interactions, and SASA above the ligand-bound control indicated exposure to solvent (Petrone et al. 2011). The nucleotides from the base pairs, U31-U41 and C30-G42, were less accessible to solvent in apo simulations than ligand-bound simulation, whereas nucleotide A29 showed more exposure to solvent. These nucleotides are parts of the binding pocket and, overall for apo simulation, the binding pocket became less solvent accessible. This indicated the binding pocket closed in the apo simulations. The unique apo simulation (simulation 1) exhibited a cross-strand stack between A77 and U36 at the 3′ terminus that formed at 350 nsec and persisted for nearly 1 µsec of the simulation (Fig. 7). A distance of 4.36 Å average between the center of mass of the pyrimidine ring of A77 and U36 was observed in apo simulation 1. This distance indicated that the structure entered a local free energy minimum that MD cannot escape during a simulation of this duration. The observation of at least one “open pocket” conformation during MD is consistent with the notion that some fraction of apo preQ1-II riboswitches must be receptive to ligand binding for gene regulation. Conversely, the “closed” pockets observed here would need to change conformation for effector recognition (Liberman and Wedekind 2012).

Aside from the ligand binding regions, the apo simulations also demonstrated differences compared to the ligand-bound simulations in terms of the 3′ stem nucleotides. In the 1.3 µsec simulations, two base pairs (U34-A77 and G76-U35) were disrupted for all apo simulations, although the final disposition of the nucleotides was variable. According to NMR experiments (Kang et al. 2014), the SD sequence is not fully exposed in the apo state, and the simulation results here were consistent with this. In the presence of preQ1, the SD sequence is fully sequestered in the NMR model structure. Evidence about the apo structure is provided by the intensity of hydrogen bonding in the P3 regions, which is shown to be reduced in the absence of preQ1 (Kang et al. 2014). All ligand-bound simulations here demonstrated the SD sequence was fully sequestered, whereas all apo simulations here
demonstrated a partially exposed SD sequence. In-line probing, SHAPE and single molecule FRET experiments also show that P3 is more exposed to solvent in the absence of preQ₁ (Meyer et al. 2008; Liberman et al. 2013; Soulière et al. 2013).

Although the SD sequence does not become fully unpaired in the simulations here, it is conceivable that full exposure of the SD sequence is not required for ribosome binding and translation. Studies on hybridization kinetics found that lengthening of toeholds (nucleotides in a target sequence that are available for pairing) up to 5 nt can dramatically accelerate the kinetics of hybridization (Srinivas et al. 2013; Sulc et al. 2015). For each unpaired nucleotide of additional toehold up to 5 nt, the hybridization rate increases by approximately an order of magnitude (Sulc et al. 2015). The changes in apo structure observed in these simulations would explain one to two orders of magnitude of faster ribosome-binding kinetics. Further equilibration of the apo structure might reveal even faster kinetics for expression of the COG4708 gene in the absence of preQ₁.

Overall, this work demonstrates that simulation can complement structural studies to provide novel insights into RNA structure. The simulations provided additional information about the solution structure and dynamics that are not available in the crystal structure because of crystal contacts. The simulations, starting from the crystal structure, also provide information not provided by the solution structure, which is limited by the number of spatial restraints. Therefore, the integration of crystallography, NMR, single molecule techniques, chemical mapping data, and simulation provides a more complete understanding of the preQ₁-II riboswitch. The observations and method utilized here should be broadly applicable to other RNA regulatory motifs.

MATERIALS AND METHODS

The preQ₁-II riboswitch atomic coordinates were taken from the X-ray structure at an advanced stage of crystallographic refinement (subsequently PDB accession number 4F2) (Liberman et al. 2013). The atomic model was used as the starting structure for both apo and ligand-bound simulations. For all simulations, the Amber 11 or Amber 12 software packages were used with the amber ff10 force field, which is unchanged for nucleic acids in ff12SB (Cornell et al. 1995; Cheatham et al. 1999; Pérez et al. 2007; Joung and Cheatham 2008; Zgarbová et al. 2011). In the undeposited structure, five Mg²⁺ ions were modeled, but one of the Mg²⁺ ions was changed to solvent prior to the final PDB deposition because of its high B-factors and lack of a complete coordination sphere. Nonetheless, the assigned waters and all five original Mg²⁺ ions were preserved in the model for simulation. Fifteen Ca²⁺ ions were replaced with Na⁺. The parameters for monovalent salts were those by Joung and Cheatham (2008) and the parameters for Mg²⁺ were Amber-adapted Åqvist parameters (Åqvist 1990).

The ligand was removed to obtain an initial apo structure. The apo structure was solvated with the TIP3P water model (Jorgensen et al. 1983) in an isometric box with a 10 Å margin in all directions. It was necessary to add an additional 51 Na⁺ ions to neutralize the system. Finally, 65 Na⁺ and 65 Cl⁻ ions were added in order to include 0.1 M NaCl salt, based on the number of waters. The whole system consisted of 122,958 atoms in a box of dimensions 113 Å × 113 Å × 113 Å.

To generate the ligand-bound system, ligand charge and force field parameters were prepared. First hydrogens were added to the ligand with the “reduce” program found in AmberTools (Supplemental Fig. S7; Case et al. 2012). Then geometry was optimized with the RED RESP server (Bayly et al. 1993; Dupradeau et al.

FIGURE 8. Distances between base atoms in the binding pocket. The distance between N6 of A29 and N3 of A43 (red dots) of ~6 Å corresponds to a Watson–Crick G42:A29 noncanonical interaction, as observed in the crystal structure in the binding pocket ceiling; the distance of ~2.8 Å corresponded to a trans-Hoogsteen/sugar-edge A29:A43 interaction that emerged in the apo simulations. Simulations 2, 3, and 4 of the apo structure showed similar trends, but larger fluctuations were observed in simulation 1. Three distances are color-coded as shown in Figure 6 legend. These distances were selected to monitor new base pairs that were observed in the apo simulations.

FIGURE 9. Solvent accessible surface area (SASA) per nucleotide, averaged over the last 1.2 μs of production simulation time. For this analysis, the ligand-bound simulations were controls in order to identify conformational switching in the apo simulations. Nucleotide A29 became more exposed and nucleotides C30, G42, U31, and U41 formed new base pairs, as shown by the lower SASA compared to the ligand-bound simulations. The error bars indicate the standard error of the mean for the four simulations. The results of the individual simulations are provided as Supplemental Figure S6.

1904 RNA, Vol. 21, No. 11
of 10 kcal/(mol × Å²). Finally, 100 psec of NPT ensemble simulation
ing the RNA in space with a positional restraint with force constant
minimization. The final minimized systems were subjected to
of steepest descent, followed by 2500 steps of conjugate gradient
5000 steps. In the second stage, both solvent and RNA were ener-
Calvin et al. 2010; Vanquelef et al. 2011) with an HF/6-31G* quantum calcula-
tion. Atomic point charges were also obtained from the RED
RESP server with the same level of quantum theory as the geometry
optimization (Supplemental Table S2). Other force field parameters
were obtained using the “antechamber” program in Amber (Supplemental Table S3; Case et al. 2005). The ligand-bound system was also solvated in an isometric box with a 10 Å margin. Fifty Na⁺ ions were added to neutralize the system, and then 65 Na⁺ and 65 Cl⁻ were added to include 0.1 M NaCl (Joung and Cheatham 2008, 2009). The whole system comprises 121,145 atoms in a 112 Å × 112 Å × 112 Å box.

Simulations
Initially the systems were subjected to a two-stage energy minimiza-
trajectories were fitted to the average structure. Atomic fluctuation for
 residue basis using RMSF (Henzler-Wildman and Kern 2007) of the

Analyses
Analyses of trajectories were performed by Ptraj and Ccptraj from
AmberTools (Case et al. 2012). The VMD (Humphrey et al. 1996) and PyMOL (DeLano 2002) programs were used for visualization and image preparation. Solvent accessible surface area (SASA) was calculated using the program “surf” implemented in AmberTools under Ccptraj (Case et al. 2012) with the default settings. Using Ptraj (Case et al. 2012), the RNA flexibility was calculated on a resi-
due basis using RMSF (Henzler-Wildman and Kern 2007) of the position of heavy atoms. The RMSF calculation was done after tra-
jectories were fitted to the average structure. Atomic fluctuation for

\[\text{RMSF} = \sqrt{ \frac{3B}{8\pi^2} } \]
where \(\beta \) is the temperature factor or B-factor of the crystal and RMSF (Henzler-Wildman and Kern 2007) is the root mean of iso-
tropic atomic fluctuations.

SUPPLEMENTAL MATERIAL
Supplemental material is available for this article.

ACKNOWLEDGMENTS
This work was supported by National Institutes of Health grants R01 GM076485 to D.H.M. and R01 GM063162 to J.L.W. Computer
time was provided by the University of Rochester Center for Integrated Research Computing.

Received February 10, 2015; accepted July 2, 2015.

REFERENCES
Äqvist J. 1990. Ion-water interaction potentials derived from free energy perturbation simulations. J Phys Chem 94: 8021–8024.
Banáš P, Walter NG, Šponer J, Otyepka M. 2010. Protonation states of the key active site residues and structural dynamics of the glmS
riboswitch as revealed by molecular dynamics. J Phys Chem B 114: 8701–8712.
Banáš P, Sklenovsky P, Wedekind JE, Šponer J, Otyepka M. 2012. Molecular mechanism of preQ1, riboswitch action: a molecular dy-
namics study. J Phys Chem B 116: 12721–12734.
Batey RT. 2011. Recognition of S-adenosylmethionine by riboswitches. Wiley Interdiscip Rev RNA 2: 299–311.
Bayly CI, Cieplak P, Cornell W, Kollman PA. 1993. A well-behaved electrostatic potential based method using charge restraints for de-
cribing atomic charges: the RESP model. J Phys Chem 97: 10269–10280.
Bienz M, Kubli E. 1981. Wild-type transfer-RNA GTrs reads the TMV RNA stop codon, but Q-base modified transfer-RNA GTrT does not. Nature 294: 188–190.
Breaker RR. 2012. Riboswitches and the RNA world. Cold Spring Harb Perspect Biol 4: a003566.
Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ. 2005. The Amber biomolecular simulation programs. J Comput Chem 26: 1668–1688.
Case DA, Darden TA, Cheatham TE III, Simmerling CI, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, et al. 2012. AmberTools 1.3. http://ambermd.org/.
Cheatham TE III, Cieplak P, Kollman PA. 1999. A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat. J Biomol Struct Dyn 16: 845–862.
Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. 1995. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117: 5179–5197.
DeLano WL. 2002. The PyMOL molecular graphics system. DeLano Scientific, San Carlos, CA. http://www.pymol.org.
Doshi U, Kelley JM, Hamelberg D. 2012. Atomic-level insights into metabolite recognition and specificity of the SAM-II riboswitch. RNA 18: 300–307.
Dupradeau FY, Pigache A, Zaffran T, Savineau C, Lelong R, Grivel N, Lelong D, Rosanski W, Cieplak P. 2010. The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building. Phys Chem Chem Phys 12: 7821–7839.
Eichhorn CD, Feng J, Sudalla KC, Walter NG, Brooks CL III, Al-Hashimi HM. 2012. Unraveling the structural complexity in a sin-
gle-stranded RNA tail: implications for efficient ligand binding in the prequeuosine riboswitch. Nucleic Acids Res 40: 1345–1355.
Gilbert SD, Rambo RP, Van Tyne D, Batey RT. 2008. Structure of the SAM-II riboswitch bound to S-adenosylmethionine. Nat Struct Mol Biol 15: 177–182.
Gong Z, Zhao Y, Chen C, Duan Y, Xiao Y. 2014. Insights into ligand binding to preQ1, riboswitch aptamer from molecular dynamics simu-
lations. PLoS ONE 9: e92247.
Goetz AW, Williamson MJ, Xu D, Poole D, Le Grand S, Walker RC. 2012. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized Born. J Chem Theory Comput 8: 1542–1555.

www.rnajournal.org 1905
Turner DH. 2000. Conformational changes. In Nucleic acids (ed. Bloomfield V, Crothers D, Tinoco 1), pp. 259–334. University Science Books, Sausalito, CA.

Urbonavičius J, Qian Q, Durand JM, Hagervall TG, Björk GR. 2001. Improvement of reading frame maintenance is a common function for several tRNA modifications. EMBO J 20: 4863–4873.

Vanquelef E, Simon S, Marquant G, Garcia E, Klimerak G, Delepine JC, Cieplak P, Dupradeau FY. 2011. R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res 39: W511–W517.

Villa A, Wöhnert J, Stock G. 2009. Molecular dynamics simulation study of the binding of purine bases to the aptamer domain of the guanine sensing riboswitch. Nucleic Acids Res 37: 4774–4786.

Xin Y, Hamelberg D. 2010. Deciphering the role of glucosamine-6-phosphate in the riboswitch action of glmS ribozyme. RNA 16: 2455–2463.

Xue X, Yongjun W, Zhihong L. 2015. Folding of SAM-II riboswitch explored by replica-exchange molecular dynamics simulation. J Theor Biol 365: 265–269.

Zgarbová M, Otyepka M, Šponer J, Mládek A, Banáš P, Cheatham TE III, Jurečka P. 2011. Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J Chem Theory Comput 7: 2886–2902.

Zirbel CL, Šponer JE, Šponer J, Stombaugh J, Leontis NB. 2009. Classification and energetics of the base-phosphate interactions in RNA. Nucleic Acids Res 37: 4898–4918.

Mechanism for preQ1-II riboswitch function

www.rnajournal.org 1907