The Chess conjecture

RUSTAM SADYKOV

Abstract We prove that the homotopy class of a Morin mapping $f : P^p \to Q^q$ with $p - q$ odd contains a cusp mapping. This affirmatively solves a strengthened version of the Chess conjecture [5], [3]. Also, in view of the Saeki-Sakuma theorem [10] on the Hopf invariant one problem and Morin mappings, this implies that a manifold P^p with odd Euler characteristic does not admit Morin mappings into \mathbb{R}^{2k+1} for $p \geq 2k + 1 \neq 1, 3, 7$.

AMS Classification 57R45; 58A20, 58K30

Keywords Singularities, cusps, fold mappings, jets

1 Introduction

Let P and Q be two smooth manifolds of dimensions p and q respectively and suppose that $p \geq q$. The singular points of a smooth mapping $f : P \to Q$ are the points of the manifold P at which the rank of the differential df of the mapping f is less than q. There is a natural stratification breaking the singular set into finitely many strata. We recall that the kernel rank $kr_x(f)$ of a smooth mapping f at a point x is the rank of the kernel of df at x. At the first stage of the stratification every stratum is indexed by a non-negative integer i_1 and defined as

$$\Sigma^{i_1}(f) = \{ x \in P \mid kr_x(f) = i_1 \}.$$

The further stratification proceeds by induction. Suppose that the stratum $\Sigma_{n-1}(f) = \Sigma^{i_1, \ldots, i_{n-1}}(f)$ is defined. Under assumption that $\Sigma_{n-1}(f)$ is a submanifold of P, we consider the restriction f_{n-1} of the mapping f to $\Sigma_{n-1}(f)$ and define

$$\Sigma^{i_1, \ldots, i_n}(f) = \{ x \in \Sigma_{n-1}(f) \mid kr_x(f_{n-1}) = i_n \}.$$

Boardman [4] proved that every mapping f can be approximated by a mapping for which every stratum $\Sigma_n(f)$ is a manifold.

We abbreviate the sequence (i_1, \ldots, i_n) of n non-negative integers by I. We say that a point of the manifold P is an I-singular point of a mapping f if
it belongs to a singular submanifold $\Sigma^I(f)$. There is a class of in a sense the simplest singularities, which are called Morin. Let I_1 denote the sequence $(p - q + 1, 0)$ and for every integer $k > 1$, the symbol I_k denote the sequence $(p - q + 1, 1, ..., 1, 0)$ with k non-zero entries. Then Morin singularities are singularities with symbols I_k. A Morin mapping is an I_k-mapping if it has no singularities of type I_{k+1}. For $k = 1, 2$ and 3, points with the symbols I_k are called fold, cusp and swallowtail singular points respectively. In this terminology, for example, a fold mapping is a mapping which has only fold singular points.

Given two manifolds P and Q, we are interested in finding a mapping $P \to Q$ that has as simple singularities as possible. Let $f : P \to Q$ be an arbitrary general position mapping. For every symbol I, the \mathbb{Z}_2-homology class represented by the closure $\overline{\Sigma^I(f)}$ does not change under general position homotopy. Therefore the homology class $[\Sigma^I(f)]$ gives an obstruction to elimination of I-singularities by homotopy.

In [5] Chess showed that if $p - q$ is odd and $k \geq 4$, then the homology obstruction corresponding to I_k-singularities vanishes. Chess conjectured that in this case every Morin mapping f is homotopic to a mapping without I_k-singular points.

We will show that the statement of the Chess conjecture holds. Furthermore we will prove a stronger assertion.

Theorem 1.1 Let P and Q be two orientable manifolds, $p - q$ odd. Then the homotopy class of an arbitrary Morin mapping $f : P \to Q$ contains a cusp mapping.

Remark The standard complex projective plane $\mathbb{C}P^2$ does not admit a fold mapping [9] (see also [1], [12]). This shows that the homotopy class of f may contain no mappings with only I_1-singularities.

Remark The assumption on the parity of the number $p - q$ is essential since in the case where $p - q$ is even homology obstructions may be nontrivial [5].

Remark We refer to an excellent review [11] for further comments. In particular, see Remark 4.6, where the authors indicate that Theorem 1.1 does not hold for non-orientable manifolds.

In [10] (see also [7]) Saeki and Sakuma describe a remarkable relation between the problem of the existence of certain Morin mappings and the Hopf invariant.

Algebraic & Geometric Topology, Volume 3 (2003)
one problem. Using this relation the authors show that if the Euler characteristic of \(P \) is odd, \(Q \) is almost parallelizable, and there exists a cusp mapping \(f: P \to Q \), then the dimension of \(Q \) is 1, 2, 3, 4, 7 or 8.

Note that if the Euler characteristic of \(P \) is odd, then the dimension of \(P \) is even. We obtain the following corollary.

Corollary 1.2 Suppose the Euler characteristic of \(P \) is odd and the dimension of an almost parallelizable manifold \(Q \) is odd and different from 1, 3, 7. Then there exist no Morin mappings from \(P \) into \(Q \).

2 Jet bundles and suspension bundles

Let \(P \) and \(Q \) be two smooth manifolds of dimensions \(p \) and \(q \) respectively. A germ at a point \(x \in P \) is a mapping from some neighborhood about \(x \) in \(P \) into \(Q \). Two germs are equivalent if they coincide on some neighborhood of \(x \). The class of equivalence of germs (or simply the germ) at \(x \) represented by a mapping \(f \) is denoted by \([f]_x\).

Let \(U \) be a neighborhood of \(x \) in \(P \) and \(V \) be a neighborhood of \(y = f(x) \) in \(Q \). Let

\[
\tau_U: (U, x) \to (\mathbb{R}^p, 0) \quad \text{and} \quad \tau_V: (V, y) \to (\mathbb{R}^q, 0)
\]

be coordinate systems. Two germs \([f]_x\) and \([g]_x\) are \(k \)-equivalent if the mappings \(\tau_V \circ f \circ \tau_U^{-1} \) and \(\tau_V \circ g \circ \tau_U^{-1} \), which are defined in a neighborhood of \(0 \in \mathbb{R}^p \), have the same derivatives at \(0 \in \mathbb{R}^p \) of order \(\leq k \). The notion of \(k \)-equivalence is well-defined, i.e. it does not depend on choice of representatives of germs and on choice of coordinate systems. A class of \(k \)-equivalent germs at \(x \) is called a \(k \)-jet. The set of all \(k \)-jets constitute a set \(J^k(P,Q) \). The projection \(J^k(P,Q) \to P \times Q \) that takes a germ \([f]_x\) into a point \(x \times f(x) \) turns \(J^k(P,Q) \) into a bundle (for details see [4]), which is called the \(k \)-jet bundle over \(P \times Q \).

Let \(y \) be a point of a manifold and \(V \) a neighborhood of \(y \). We say that two functions on \(V \) lead to the same local function at \(y \), if at the point \(y \) their partial derivatives agree. Thus a local function is an equivalence class of functions defined on a neighborhood of \(y \). The set of all local functions at the point \(y \) constitutes an algebra of jets \(\mathcal{F}(y) \). Every smooth mapping \(f: (U, x) \to (V, y) \) defines a homomorphism of algebras \(f^*: \mathcal{F}(y) \to \mathcal{F}(x) \). The maximal ideal \(m_y \) of \(\mathcal{F}(y) \) maps under the homomorphism \(f^* \) to the maximal ideal \(m_x \subset \mathcal{F}(x) \).
The restriction of f^* to m_y and the projection of $f^*(m_y) \subset m_x$ onto m_x/m_x^{k+1} lead to a homomorphism

$$f_{k,x} : m_y \rightarrow m_x/m_x^{k+1}.$$

It is easy to verify that k-jets of mappings $(U, x) \rightarrow (V, y)$ are in bijective correspondence with algebra homomorphisms $m_y \rightarrow m_x/m_x^{k+1}$. That is why we will identify a k-jet with the corresponding homomorphism.

The projections of $P \times Q$ onto the factors induce from the tangent bundles TP and TQ two vector bundles ξ and η over $P \times Q$. The latter bundles determine a bundle $HOM(\xi, \eta)$ over $P \times Q$. The fiber of $HOM(\xi, \eta)$ over a point $x \times y$ is the set of homomorphisms $Hom(\xi_x, \eta_y)$ between the fibers of the bundles ξ and η. The bundle ξ determines the k-th symmetric tensor product bundle $\odot^k \xi$ over $P \times Q$, which together with η leads to a bundle $HOM(\odot^k \xi, \eta)$.

Lemma 2.1 The k-jet bundle contains a vector subbundle C^k isomorphic to $HOM(\odot^k \xi, \eta)$.

Proof Define C^k as the union of those k-jets $f_{k,x}$ which take m_y to m_x^k. With each $f_{k,x} \in C^k$ we associate a homomorphism (for details, see [4, Theorem 4.1])

$$\underbrace{\xi_x \circ \ldots \circ \xi_x}_{k} \otimes m_y/m_y^2 \rightarrow \mathbb{R}$$

(1)

which sends $v_1 \circ \ldots \circ v_k \otimes \alpha$ into the value of $v_1 \circ \ldots \circ v_k$ at a function representing $f_{k,x}(\alpha)$. In view of the isomorphism $m_y/m_y^2 \cong Hom(\eta_y, \mathbb{R})$, the homomorphism (1) is an element of $Hom(\odot^k \xi_x, \eta_y)$. It is easy to verify that the obtained correspondence $C^k \rightarrow HOM(\odot^k \xi_x, \eta_y)$ is an isomorphism of vector bundles. \[\square\]

Corollary 2.2 There is an isomorphism $J^{k-1}(P, Q) \oplus C^k \approx J^k(P, Q)$.

Proof Though the sum of two algebra homomorphisms may not be an algebra homomorphism, the sum of a homomorphism $f_{k,x} \in J^k(P, Q)$ and a homomorphism $h \in C^k$ is a well defined homomorphism of algebras $(f_{k,x}+h) \in J^k(P, Q)$. This defines an action of C^k on $J^k(P, Q)$. Two k-jets α and β map under the canonical projection

$$J^k(P, Q) \longrightarrow J^k(P, Q)/C^k$$

onto one point if and only if α and β have the same $(k-1)$-jet. Therefore $J^k(P, Q)/C^k$ is canonically isomorphic to $J^{k-1}(P, Q)$. \[\square\]
Remark The isomorphism $J^{k-1}(P, Q) \oplus C^k \approx J^k(P, Q)$ constructed in Corollary 2.2 is not canonical, since there is no canonical projection of the k-jet bundle onto C^k.

In [8] Ronga introduced the bundle

$$S^k(\xi, \eta) = \mathcal{HOM}(\xi, \eta) \oplus \mathcal{HOM}(\xi \circ \xi, \eta) \oplus \ldots \oplus \mathcal{HOM}(\circ^k \xi, \eta),$$

which we will call the k-suspension bundle over $P \times Q$.

Corollary 2.3 The k-jet bundle is isomorphic to the k-suspension bundle.

3 Submanifolds of singularities

There are canonical projections $J^{k+1}(P, Q) \to J^k(P, Q)$, which lead to the infinite dimensional jet bundle $J(P, Q) := \lim J^k(P, Q)$. Let $f: P \to Q$ be a smooth mapping. Then at every point $x \times f(x)$ of the manifold $P \times Q$, the mapping f determines a k-jet. The k-jets defined by f lead to a mapping $j^k f : P \to J^k(P, Q)$, which is called the jet extension of f. We will call a subset of $J(P, Q)$ a submanifold of the jet bundle if it is the inverse image of a submanifold of some k-jet bundle. A function Φ on the jet bundle is said to be smooth if locally Φ is the composition of the projection onto some k-jet bundle and a smooth function on $J^k(P, Q)$. In particular, the composition $\Phi \circ jf$ of a smooth function Φ on $J(P, Q)$ and a jet extension jf is smooth. A tangent to the jet bundle vector is a differential operator. A tangent to $J(P, Q)$ bundle is defined as a union of all vectors tangent to the jet bundle.

Suppose that at a point $x \in P$ the mapping f determines a jet z. Then the differential of jf sends differential operators at x to differential operators at z, that is $d(jf)$ maps $T_x P$ into some space D_z tangent to the jet bundle. In fact, the space D_z and the isomorphism $T_x P \to D_z$ do not depend on representative f of the jet z. Let π denote the composition of the jet bundle projection and the projection of $P \times Q$ onto the first factor. Then the tangent bundle of the jet space contains a subbundle D, called the total tangent bundle, which can be identified with the induced bundle $\pi^* TP$ by the property: for any vector field v on an open set U of P, any jet extension jf and any smooth function Φ on $J(P, Q)$, the section V of D over $\pi^{-1}(U)$ corresponding to v satisfies the equation

$$V \Phi \circ jf = v(\Phi \circ jf).$$
We recall that the projections $P \times Q$ onto the factors induce two vector bundles ξ and η over $P \times Q$ which determine a bundle $\mathcal{HOM}(\xi, \eta)$. There is a canonical isomorphism between the 1-jet bundle and the bundle $\mathcal{HOM}(\xi, \eta)$. Consequently 1-jet component of a k-jet z at a point $x \in P$ defines a homomorphism $h: T_x P \to T_y Q$, $y = z(x)$. We denote the kernel of the homomorphism h by $K_{1,z}$. Identifying the space $T_x P$ with the fiber D_z of D, we may assume that $K_{1,z}$ is a subspace of D_z. Hence at every point $z \in J(P, Q)$ we have a space $K_{1,z}$. Boardman showed that the union $\Sigma^i = \Sigma^i(P, Q)$ of jets z with $\text{dim} \ K_{1,z} = i$ is a submanifold of $J(P, Q)$.

Suppose that we have already defined a submanifold $\Sigma_{n-1} = \Sigma^{i_1, \ldots, i_{n-1}}$ of the jet space. Suppose also that at every point $z \in \Sigma_{n-1}$ we have already defined a space $K_{n,z}$. Then the space $K_{n,z}$ is defined as $K_{n-1,z} \cap T_z \Sigma_{n-1}$ and Σ_n is defined as the set of points $z \in \Sigma_{n-1}$ such that $\text{dim} \ K_{n,z} = i_n$. Boardman proved that the sets Σ_n are submanifolds of $J(P, Q)$. In particular every submanifold Σ_n comes from a submanifold of an appropriate finite dimensional k-jet space. In fact the submanifold with symbol I_n is the inverse image of the projection of the jet space onto n-jet bundle. To simplify notation, we denote the projections of Σ_n to the k-jet bundles with $k \geq n$ by the same symbol Σ_n.

Let us now turn to the k-suspension bundle. Following the paper [4], we will define submanifolds $\tilde{\Sigma}^I$ of the k-suspension bundle.

A point of the k-suspension bundle over a point $x \times y \in P \times Q$ is the set of homomorphisms $h = (h_1, \ldots, h_k)$, where $h_i \in \text{Hom}(\sigma^i \xi_x, \eta_y)$. For every k-suspension h we will define a sequence of subspaces $T_x P = K_0 \supset K_1 \supset \ldots \supset K_k$. Then we will define the singular set $\tilde{\Sigma}^{i_1, \ldots, i_n}$ as

$$\tilde{\Sigma}^{i_1, \ldots, i_n} = \{ h \mid \text{dim} \ K_j = i_j \text{ for } j = 1, \ldots, n \}.$$

We start with definition of a space $K_1 \supset K_0$ and a projection of $P_0 = T_y Q$ onto a factor space Q_1. The h_1-component of h is a homomorphism of K_0 into P_0. We define K_1 and Q_1 as the kernel and the cokernel of h_1:

$$0 \to K_1 \to K_0 \xrightarrow{h_1} P_0 \to Q_1 \to 0.$$

The cokernel homomorphism of this exact sequence gives rise to a homomorphism $\text{Hom}(K_1, P_0) \to \text{Hom}(K_1, Q_1)$, coimage of which is denoted by P_1. The sequence of the homomorphisms

$$\text{Hom}(K_1 \circ K_1, P_0) \to \text{Hom}(K_1, \text{Hom}(K_1, P_0)) \to \text{Hom}(K_1, P_1)$$

takes the restriction of h_2 on $K_1 \circ K_1$ to a homomorphism $\sigma(h_2): K_1 \to P_1$. Again the spaces K_2 and Q_2 are respectively defined as the kernel and the cokernel of the homomorphism $\sigma(h_2)$.
The definition continues by induction. In the n-th step we are given some spaces K_i, Q_i for $i \leq n$, spaces P_i for $i \leq n - 1$ and projections

$$\text{Hom}(K_i^{n-1}, P_0) \to P_{n-1},$$

$$P_{n-1} \to Q_n,$$

where K_i^{n-1} abbreviates the product $K_{n-1} \circ \ldots \circ K_1$.

First we define P_n as the coimage of the composition

$$\text{Hom}(K_n, P_0) \to \text{Hom}(K_n, \text{Hom}(K_i^{n-1}, P_0)) \to \text{Hom}(K_n, Q_n),$$

where the latter homomorphism is determined by the two given projections. Then we transfer the restriction of the homomorphism h_{n+1} on $K_n \circ K_i^{n-1}$ to a homomorphism $\sigma(h_{n+1})$: $K_n \to P_n$ using the composition

$$\text{Hom}(K_n \circ K_i^{n}, P_0) \to \text{Hom}(K_n, \text{Hom}(K_i^{n}, P_0)) \to \text{Hom}(K_n, P_n).$$

Finally we define K_{n+1} and Q_{n+1} by the exact sequence

$$0 \to K_{n+1} \to K_n \to P_n \to Q_{n+1} \to 0.$$

In the previous section we established a homeomorphism between the fibers of the k-jet bundle and k-suspension bundle. Suppose that neighborhoods of points $x \in P$ and $y \in Q$ are equipped with coordinate systems. Then every k-jet g which takes x to y has the canonical decomposition into the sum of k-jets g_i, $i = 1, \ldots, k$, such that in the selected coordinates the partial derivatives of the jet g_i at x of order $\neq i$ and $\leq k$ are trivial. In other words the choice of local coordinates determines a homeomorphism

$$J^k(P, Q)|_{x \times y} \to C^1|_{x \times y} \oplus \ldots \oplus C^k|_{x \times y}. \quad (2)$$

Since $C^i|_{x \times y}$ is isomorphic to $\text{Hom}(\sigma^i \xi_x, \eta_y)$, we obtain a homeomorphism between the fibers of the k-jet bundle and k-suspension bundle.

Remark From [4] we deduce that this homeomorphism takes the singular submanifolds Σ^I to $\tilde{\Sigma}^I$. Suppose that a k-jet z maps onto a k-suspension $h = (h_1, \ldots, h_k)$. The homomorphisms $\{h_i\}$ depends not only on z but also on choice of coordinates in U_i. However Boardman [4] showed that the spaces K_i, Q_i, P_i and the homomorphisms $\sigma(h_i)$ defined by h are independent from the choice of coordinates.

Lemma 3.1 For every integer $k \geq 1$, there is a homeomorphism of bundles $r_k: J^k(P, Q) \to S^k(\xi, \eta)$ which takes the singular sets Σ^I to $\tilde{\Sigma}^I$.

Algebraic & Geometric Topology, Volume 3 (2003)
Choose covers of P and Q by closed discs. Let U_1, \ldots, U_t be the closed discs of the product cover of $P \times Q$. For each disc U_i, choose a coordinate system which comes from some coordinate systems of the two disc factors of U_i. We will write J^k for the k-jet bundle and $J^k|_{U_i}$ for its restriction on U_i. We adopt similar notations for the k-suspension bundle. The choice of coordinates in U_i leads to a homeomorphism

$$\beta_i: J^k|_{U_i} \to S^k|_{U_i}.$$

Let $\{\varphi_i\}$ be a partition of unity for the cover $\{U_i\}$ of $P \times Q$. We define $r_k: J^k \to S^k$ by

$$r_k = \varphi_1 \beta_1 + \varphi_2 \beta_2 + \ldots + \varphi_k \beta_k.$$

Suppose that $U_i \cap U_j$ is nonempty and z is a k-jet at a point of $U_i \cap U_j$. Suppose

$$\beta_i(z) = (h^i_1, \ldots, h^i_k) \quad \text{and} \quad \beta_j(z) = (h^j_1, \ldots, h^j_k).$$

Then by the remark preceding the lemma, the homomorphisms $\sigma(h^i_s)$ and $\sigma(h^j_s)$ coincide for all $s = 1, \ldots, k$. Consequently, r_k takes Σ^f to $\tilde{\Sigma}^f$.

The mapping r_k is continuous and open. Hence to prove that r_k is a homeomorphism it suffices to show that r_k is one-to-one.

For $k = 1$, the mapping r_k is the canonical isomorphism. Suppose that r_{k-1} is one-to-one and for some different k-jets z_1 and z_2, we have $r_k(z_1) = r_k(z_2)$. Since r_{k-1} is one-to-one, the k-jets z_1 and z_2 have the same $(k-1)$-jet components. Hence there is $v \in C^k$ for which $z_1 = z_2 + v$. Here we invoke the fact that C^k has a canonical action on J^k.

For every i, we have $\beta_i(z_1) = \beta_i(z_2) + \beta_i(v)$. Therefore

$$r_k(z_1) = r_k(z_2) + r_k(v). \quad (3)$$

The restriction of the mapping r_k to C^k is a canonical identification of C^k with $\text{HOM}(\circ^k \xi_k, \eta)$. Hence $r_k(v) \neq 0$. Then (3) implies that $r_k(z_1) \neq r_k(z_2)$.

Corollary 3.2 There is an isomorphism of bundles $r: J(P,Q) \to S(\xi, \eta)$ which takes every set Σ_n isomorphically onto $\tilde{\Sigma}_n$.

The space $J^k(P,Q)$ may be also viewed as a bundle over P with projection

$$\pi: J^k(P,Q) \to P \times Q \to P.$$

Let $f: P \to Q$ be a smooth mapping. Then at every point $p \in P$ the mapping f defines a k-jet. Consequently, every mapping $f: P \to Q$ gives rise to a section $j^k f: P \to J^k(P,Q)$, which is called the k-extension of f or the k-jet
section afforded by } f \). The sections \(\{ j^k f \}_{k} \) determined by a smooth mapping \(f \) commute with the canonical projections \(J^{k+1}(P, Q) \rightarrow J^k(P, Q) \). Therefore every smooth mapping \(f: P \rightarrow Q \) also defines a section \(j f: P \rightarrow J(P, Q) \), which is called the jet extension of \(f \).

A smooth mapping \(f \) is in general position if its jet extension is transversal to every singular submanifold \(\Sigma^I \). By the Thom Theorem every mapping has a general position approximation.

Let \(f \) be a general position mapping. Then the subsets \((jf)^{-1}(\Sigma^I) \) are submanifolds of \(P \). Every condition \(kr_x(f_{n-1}) = i_n \) in the definition of \(\Sigma^I(f) \) can be substituted by the equivalent condition \(\dim K_{n,x}(f) = i_n \), where the space \(K_{n,x}(f) \) is the intersection of the kernel of \(df \) at \(x \) and the tangent space \(T_{x_n} \Sigma_{n-1}(f) \). Hence the sets \((jf)^{-1}(\Sigma^I) \) coincide with the sets \(\Sigma^I(f) \). In particular the jet extension of a mapping \(f \) without \(I \)-singularities does not intersect the set \(\Sigma^I \).

Let \(\Omega_r = \Omega_r(P, Q) \subset J(P, Q) \) denote the union of the regular points and the Morin singular points with indexes of length at most \(r \).

Theorem 3.3 (Ando-Eliashberg, [2], [6]) *Let \(f: P^p \rightarrow Q^q, p \geq q \geq 2 \), be a continuous mapping. The homotopy class of the mapping \(f \) contains an \(I_r \)-mapping, \(r \geq 1 \), if and only if there is a section of the bundle \(\Omega_r \).*

Note that every general position mapping \(f: P^p \rightarrow Q^q, q = 1 \), is a fold mapping. That is why for \(q = 1 \), Theorem 1.1 holds and we will assume that \(q \geq 2 \).

Let \(\tilde{\Omega}_r \) denote the subset of the suspension bundle corresponding to the set \(\Omega_r(P, Q) \subset J(P, Q) \). Every mapping \(f: P \rightarrow Q \) defines a section \(j f \) of \(J(P, Q) \). The composition \(r \circ (jf) \) is a section of \(S(P, Q) \). In view of Lemma 3.1 the Ando-Eliashberg Theorem implies that to prove that the homotopy class of a mapping \(f \) contains a cusp mapping, it suffices to show that the section of the suspension bundle defined by \(f \) is homotopic to a section of the bundle \(\tilde{\Omega}_2 \subset S(\xi, \eta) \).

4 Proof of Theorem 1.1

We recall that in a neighborhood of a fold singular point \(x \), the mapping \(f \) has the form

\[
T_i = t_i, \quad i = 1, 2, ..., q - 1, \\
Z = Q(x), \quad Q(x) = \pm k_1^2 \pm ... \pm k_{2q-1}^2.
\]

Algebraic & Geometric Topology, Volume 3 (2003)
If \(x \) is an \(I_r \)-singular point of \(f \) and \(r > 1 \), then in some neighborhood about \(x \) the mapping \(f \) has the form
\[
T_i = t_i, \quad i = 1, 2, ..., q - r, \\
L_i = l_i, \quad i = 2, 3, ..., r, \\
Z = Q(x) + \sum_{t=2}^{r} l_t k^{t-1} + k^{r+1}, \quad Q(x) = \pm k_1^2 \pm ... \pm k_{p-q}^2.
\]

Let \(f: P \to Q \) be a Morin mapping, for which the set \(\Sigma_2(f) \) is nonempty. We define the section \(f_i: P \to \text{Hom}(\circ^i \xi, \eta) \) as the \(i \)-th component of the section \(r \circ (jf) \) of the suspension bundle \(S(\xi, \eta) \to P \). Over \(\Sigma_2(f) \) the components \(f_1 \) and \(f_2 \) defined by the mapping \(f \) determine the bundles \(K_i, Q_i, \ i = 1, 2 \) and the exact sequences
\[
0 \to K_1 \to TP \to TQ \to Q_1 \to 0, \\
0 \to K_2 \to K_1 \to \text{HOM}(K_1, Q_1) \to Q_2 \to 0.
\]

From the latter sequence one can deduce that the bundle \(Q_2 \) is canonically isomorphic to \(\text{HOM}(K_2, Q_1) \) and that the homomorphism
\[
K_1/K_2 \otimes K_1/K_2 \to Q_1,
\]
which is defined by the middle homomorphism of the second exact sequence, is a non-degenerate quadratic form (see Chess, [5]). Since the dimension of \(K_1/K_2 \) is odd, the quadratic form (6) determines a canonical orientation of the bundle \(Q_1 \). In particular the 1-dimensional bundle \(Q_1 \) is trivial. This observation also belongs to Chess [5].

Assume that the bundle \(K_2 \) is trivial. Then the bundle \(Q_2 \) being isomorphic to \(\text{HOM}(K_2, Q_1) \) is trivial as well. Let
\[
h: K_2 \to \text{HOM}(K_2, Q_2) \approx \text{HOM}(K_2 \otimes K_2, Q_1)
\]
be an isomorphism over \(\Sigma_2(f) \) and \(h: P \to \text{HOM}(\circ^3 \xi, \eta) \) an arbitrary section, the restriction of which on \(\circ^3 K_2 \) over \(\Sigma_2(f) \) followed by the projection given by \(\eta \to Q_1 \), induces the homomorphism \(\hat{h} \). Then the section of a suspension bundle whose first three components are \(f_1, f_2 \) and \(h \) is a section of the bundle \(\hat{\Omega}_2 \). Since for \(i > 0 \) the bundle \(\text{HOM}(\circ^i \xi, \eta) \) is a vector bundle, we have that the composition \(r \circ (jf) \) is homotopic to the section \(s \) and therefore the original mapping \(f \) is homotopic to a cusp mapping.

Now let us prove the assumption that \(K_2 \) is trivial over \(\Sigma_2(f) \).

Lemma 4.1 The submanifold \(\Sigma_2(f) \) is canonically cooriented in the submanifold \(\Sigma_1(f) \).
Proof For non-degenerate quadratic forms of order \(n \), we adopt the convention to identify the index \(\lambda \) with the index \(n - \lambda \). Then the index \(\text{ind} \, Q(x) \) of the quadratic form \(Q(x) \) in (4) and (5) does not depend on choice of coordinates.

With every \(I_k \)-singular point \(x \) by (4) and (5) we associate a quadratic mapping of the form \(Q(x) \). It is easily verified that for every cusp singular point \(y \) and a fold singular point \(x \) of a small neighborhood of \(y \), we have \(Q(x) = Q(y) \pm k^{2p-q+1} \). Moreover, if \(x_1 \) and \(x_2 \) are two fold singular points and there is a path joining \(x_1 \) with \(x_2 \) which intersects \(\Sigma_2(f) \) transversally and at exactly one point, then \(\text{ind} \, Q(x_1) - \text{ind} \, Q(x_2) = \pm 1 \). In particular, the normal bundle of \(\Sigma_2(f) \) in \(\Sigma_1(f) \) has a canonical orientation.

Lemma 4.2 Over every connected component of \(\Sigma_2(f) \) the bundle \(K_2 \) has a canonical orientation.

Proof At every point \(x \in \Sigma_2(f) \) there is an exact sequence
\[
0 \to K_{3,x} \to K_{2,x} \to \mathcal{HOM}(K_{2,x}, Q_{2,x}) \to Q_{3,x} \to 0.
\]
If the point \(x \) is in fact a cusp singular point, then the space \(K_{3,x} \) is trivial and therefore the sequence reduces to
\[
0 \to K_{2,x} \to \mathcal{HOM}(K_{2,x}, Q_{2,x}) \to 0
\]
and gives rise to a quadratic form
\[
K_{2,x} \otimes K_{2,x} \to Q_{2,x} \cong \mathcal{HOM}(K_{2,x}, Q_{1,x}).
\]
This form being non-degenerate orients the space \(\mathcal{HOM}(K_{2,x}, Q_{1,x}) \). Since \(Q_{1,x} \) has a canonical orientation, we obtain a canonical orientation of \(K_{2,x} \).

Let \(\gamma: [-1, 1] \to \Sigma_2(f) \) be a path which intersects the submanifold of non-cusp singular points transversally and at exactly one point.

Lemma 4.3 The canonical orientations of \(K_2 \) at \(\gamma(-1) \) and \(\gamma(1) \) lead to different orientations of the trivial bundle \(\gamma^*K_2 \).

Proof If necessary we slightly modify the path \(\gamma \) so that the unique intersection point of \(\gamma \) and the set \(\Sigma_3(f) \) is a swallowtail singular point. Then the statement of the lemma is easily verified using the formulas (5).

Now we are in position to prove the assumption.
Lemma 4.4 The bundle K_2 is trivial over $\Sigma_2(f)$.

Proof Assume that the statement of the lemma is wrong. Then there is a closed path $\gamma : S^1 \to \Sigma_2(f)$ which induces a non-orientable bundle γ^*K_2 over the circle S^1.

We may assume that the path γ intersects the submanifold $\Sigma_3(f)$ transversally. Let $t_1, \ldots, t_k, t_{k+1} = t_1$ be the points of the intersection $\gamma \cap \Sigma_3(f)$. Over every interval (t_i, t_{i+1}) the normal bundle of $\Sigma_2(f)$ in $\Sigma_1(f)$ has two orientations. One orientation is given by Lemma 4.1 and another is given by the canonical orientation of the bundle K_2. By Lemma 4.3 if these orientations coincide over (t_{i-1}, t_i), then they differ over (t_i, t_{i+1}). Therefore the number of the intersection points is even and the bundle γ^*K_2 is trivial. Contradiction.

Remark The statement similar to the assertion of Lemma 4.4 for the jet bundle $J(P, Q)$ is not correct. The vector bundle K_2 over $\bar{\Sigma}_2 \subset J(P, Q)$ is non-orientable. This follows for example from the study of topological properties of Σ_{1r} in [2, §4].

References

[1] P. Akhmetev, R. Sadykov, A remark on elimination of singularities for mappings of 4-manifold into 3-manifold, Top. Appl., 131 (2003), 51-55.
[2] Y. Ando, On the elimination of Morin singularities, J. Math. Soc. Japan, 37 (1985), 471-487; Erratum 39 (1987), 537.
[3] V. I. Arnol’d, V. A. Vasil’ev, V. V. Goryunov, O. V. Lyashenko, Dynamical systems VI. Singularities, local and global theory, Encyclopedia of Mathematical Sciences - Vol. 6 (Springer, Berlin, 1993).
[4] J. M. Boardman, Singularities of differentiable maps, Publ. Math., 33 (1967), 21-57.
[5] D. S. Chess, A note on the classes $[S^k_1(f)]$, Proc. Symp. Pure Math., 40 (1983), 221-224.
[6] J. M. Eliashberg, Surgery of singularities of smooth mappings, Math. USSR Izv., 6 (1972), 1302-1326.
[7] S. Kikuchi, O. Saeki, Remarks on the topology of folds, Proc. Amer. Math. Soc., 123 (1995), 905-908.
[8] F. Ronga, Le calcul des classes duales singularités de Boardman d’ordre deux, Comment. Math. Helv., 47 (1972), 15-35.
[9] O. Saeki, Notes on the topology of folds, J. Math. Soc. Japan, v.44, 3 (1992), 551-566.
[10] O. Saeki, K. Sakuma, Maps with only Morin singularities and the Hopf invariant one problem, Math. Proc. Camb. Phil. Soc., 124 (1998), 501-511.

[11] O. Saeki, K. Sakuma, Elimination of Singularities: Thom Polynomials and Beyond, London Math. Soc., Lecture Notes Ser. 263.

[12] K. Sakuma, A note on nonremovable cusp singularities, Hiroshima Math. J., 31 (2001), 461-465.

University of Florida, Department of Mathematics, 358 Little Hall, 118105, Gainesville, Fl, 32611-8105, USA

Email: sadykov@math.ufl.edu

Received: 18 February 2003 Revised: 23 July 2003