ABSTRACT: A relation is obtained between weak values of quantum observables and the consistency criterion for histories of quantum events. It is shown that “strange” weak values for projection operators (such as values less than zero) always correspond to inconsistent families of histories. It is argued that using the ABL rule to obtain probabilities for counterfactual measurements corresponding to those strange weak values gives inconsistent results. This problem is shown to be remedied by using the conditional weight, or pseudo-probability, obtained from the multiple-time application of Luders’ Rule. It is argued that an assumption of reverse causality (a form of time symmetry) implies that weak values obtain, in a restricted sense, at the time of the weak measurement as well as at the time of post-selection. Finally, it is argued that weak values are more appropriately characterised as multiple-time amplitudes than expectation values, and as such can have little to say about counterfactual questions.
1. Introduction

The “weak value” of a quantum mechanical observable, a concept first introduced by Aharonov and Vaidman (1990), is a generalized “expectation value”\(^1\) for the case of pre- and post-selection. A weak value of the operator \(O\) with respect to states \(|a⟩\) and \(|b⟩\) is defined as:

\[
⟨O⟩_w = \frac{⟨b|O|a⟩}{⟨b|a⟩}
\]

Weak values get their name from the fact that they can often only be measured through a “weakened” measurement procedure in which the interaction Hamiltonian provides only a slight coupling between apparatus and system. This results in a significant imprecision which requires the measurement of a large number of individual systems —i.e., an ensemble—in order to measure a single weak value. It should be noted, however, that the term “weak value” is perhaps something of a misnomer, since it is simply defined—independently of measurement—as the normalized inner product of two states, one of which is acted upon by a Hermitian operator. So-called “weak values” can take on “sharp” values, that is, eigenvalues of the given operator. The nature of the weak value depends crucially on the entire context of operator and the two chosen states. It is this dependence which is the primary subject of this paper.

For clarity, let us define the following terms for the various types of weak value:

1. “Sharp” weak value (SWV): a weak value that coincides with an eigenvalue of the operator.

2. “Unsharp” weak value (UWV): a weak value that lies within the range of eigenvalues of the operator but which is not equal to any eigenvalue of the

\(^1\)“Expectation values” is put in scare quotes here since weak values differ in important ways from the usual expectation value; see section 7.
3. “Strange” weak value (STWV): a weak value that lies outside the range of eigenvalues of the operator.

Weak values obey additivity, that is:

\[\langle A + B \rangle_w = \langle A \rangle_w + \langle B \rangle_w, \]

(2)

In addition, the discussion in this paper is restricted to the weak values of projection operators only, since these are the ones that occur in the context of histories of events.

2. Weak Values and the Consistency Criterion for Event Histories

As alluded to at the end of the previous section, when the operator \(O \) in (1) is a projection operator, a weak value effectively defines a “history,” i.e., a particular sequence of events. That is, in terms of a pre- and post-selection experiment, the weak value \(\langle O \rangle_w \) describes the following sequence of events: a system is prepared in state \(|a\rangle \) at time \(t_0 \), possesses the property associated with \(O = |o\rangle\langle o| \) at time \(t_1 \), and is post-selected in state \(|b\rangle \) at \(t_2 \). Therefore one way to learn more about weak values is to study them in terms of Griffiths’ formulation of consistent histories (cf. Griffiths 1996–2002). In Griffith’s terms, a “family” of histories is a set of different possible sequences of events. Such a family can be consistent or inconsistent, depending on whether one can construct a standard (“classical”) probability space accommodating all the histories. This will be described in more detail in what follows.

Consider a family of histories comprised of two possible sequences of events \(Y \) and \(Y' \), where the events occur at times \(t_0, t_1 \) and \(t_2 \) consecutively:
\[Y = \{ D \to E \to F \} \]

and

\[Y' = \{ D \to E' \to F \} \]

(3')

In the above expressions, \(D \) is the projection operator corresponding to the preselection state \(|D\rangle \), \(F \) is the projection operator corresponding to the post-selection state \(|F\rangle \), and \(E \) and \(E' \) are complementary, exhaustive projections of a complete observable \(\mathcal{E} \) possibly measured between events \(D \) and \(F \). In other words, \(E' = (1 - E) \).

If the family is consistent, that means that the probabilities of the two histories are additive, i.e.:

\[\text{Prob}(Y \lor Y') = \text{Prob}(Y) + \text{Prob}(Y'). \]

(4)

(where \(Y \lor Y' \) denotes the disjunction of the two histories).

Loosely speaking, (4) requires that the two histories do not “interfere” with each other. The two-slit experiment famously violates this condition, if we think of \(Y \) and \(Y' \) as representing the particle leaving the source, going through one slit or the other, respectively, and landing on the screen.

The consistency condition as given by Griffiths (1996) is concisely written as:\(^2\)

\[\text{Tr}[\mathcal{F} \mathcal{E} \mathcal{E'}] = 0. \]

(5)

The definition of weak value of an observable \(\mathcal{E} \) in the context of such a history is

\(^2\)Using the Schrödinger operator representation and zero Hamiltonian between the events.
\(\langle E \rangle_w = \frac{\langle F|E|D \rangle}{\langle F|D \rangle} \) \hfill (6)

The consistency condition (5) can be written in terms of weak values (6) as follows:

\[
Tr[FEDE'] = Tr[|F]\langle F|E\rangle\langle D|E'\rangle\langle E'\rangle
\]

\[
= \langle F|D \rangle \langle E \rangle_w Tr\{ |F\rangle\langle D|E'\rangle\langle E'\rangle \} \\
= \langle F|D \rangle \langle E \rangle_w \langle D|E'\rangle\langle E'|F \rangle \\
= |\langle F|D \rangle|^2 \langle E \rangle_w \langle E' \rangle_{w*} = 0 \hfill (5')
\]

Equation (5’) expresses the consistency condition in terms of the weak values for the alternative possible events occurring between D and F.

Now, suppose we are interested in the weak value of E for a pre- and post-selection experiment. The normal eigenvalues for projection operators are zero or one; what does the consistency condition (6) tell us for such normal values?

Recall first that \(\langle F|D \rangle \) is always nonzero, otherwise the weak value is undefined. If \(\langle E \rangle_w = 1 \), then \(\langle E' \rangle_w = 1 - \langle E \rangle_w = 0 \), by the additivity of weak values (see equation 23); so (5’) is satisfied. On the other hand, if \(\langle E \rangle_w = 0 \), then (5’) is also satisfied.

If, however, the weak value of E is neither zero nor 1, clearly the right side of equation (5’) will not vanish and the consistency condition will not be satisfied.
There are two different ways in which (5) can fail. The first, when the right hand side is nonzero but positive and less than 1, corresponds to the Unsharp situation (UWV) in which the weak values do not coincide with allowed eigenvalues but are still within the allowed range of eigenvalues. The second, in which the right hand side is complex or negative, corresponds to situations with “strange” weak values (STWV)—that is, values outside the range of eigenvalues.

3. Example: The Three-Box Experiment

The “strange” weak values referred to above appear in the 3-Box experiment (cf. Vaidman 1996, 1999; Griffiths 1996, 2002; Kastner 1999a,b) as well as the Hardy (1992) example of two overlapping interferometers as analyzed by Aharonov et al (2001) (see Figure 1). In the 3-Box experiment, which has been discussed extensively in the literature (see references above), an apparent paradox is obtained in which an appropriately pre- and post-selected system seems to be in “two boxes at once” with certainty. The paradox uses pre- and post-selected systems with the following pre- and post-selection states:

Particles are pre-selected in state

\[|\psi\rangle = \frac{1}{\sqrt{3}} \left(|a\rangle + |b\rangle + |c\rangle \right) \quad (7a) \]

and post-selected in the state

\[|\phi\rangle = \frac{1}{\sqrt{3}} \left(|a\rangle + |b\rangle - |c\rangle \right), \quad (7b) \]

where \(|a\rangle\), \(|b\rangle\), and \(|c\rangle\) correspond to each of the three boxes and form an orthonormal basis for the system’s Hilbert space.

Now, it turns out that when one calculates the probability of such a system
being in Box A (observable $|a\rangle\langle a|$) at a time between pre- and post-selection, one finds that the system is in Box A with certainty; but doing the same calculation for Box B (observable $|b\rangle\langle b|$) also yields a value of certainty. Thus it appears that the system is somehow in “two boxes at once.”

Vaidman (1996) also shows that the weak value of the observable corresponding to whether a particle is in the third box, for the given pre- and post-selected states, is -1, a “strange” weak value. This result can be obtained either through a direct calculation of (1) for the C observable or through additivity (2), using the fact that $C = 1 - (A + B)$, and noting that $\langle A \rangle_w = \langle B \rangle_w = 1$.

Similarly, in the Hardy example, the weak value of the observable corresponding to having an electron-positron pair in the non-overlapping arms of the interferometers for the given pre- and post-selection is -1. In what follows we analyze each of these examples. For the 3-box experiment we consider an explicit post-selection observable basis to see more clearly how the weak value manifests itself as an apparatus state, and how a time symmetry postulate affects the interpretation of that state. In the Hardy example, it is verified that the “strange” weak value corresponds to a characteristic failure of the consistency condition as discussed in section 2.

First, consider the three-box experiment for the case in which the observable corresponding to opening box C is weakly measured at time t_1 (with an associated weak value of -1).

We also define an orthonormal “post-selection” basis containing the post-selected state $|\phi\rangle$: let this be the set

3The calculation in question is done using the ABL rule, discussed in some detail in section 6.
\begin{align*}
|\phi\rangle &= \frac{1}{\sqrt{3}} (|a\rangle + |b\rangle - |c\rangle) \quad (8a) \\
|\phi\rangle &= \frac{1}{\sqrt{2}} (|a\rangle - |b\rangle) \quad (8b) \\
|\phi\rangle &= \frac{1}{\sqrt{6}} (|a\rangle + |b\rangle + 2|c\rangle) \quad (8c)
\end{align*}

The apparatus is in the initial unsharp ready state (as projected onto the pointer variable x basis):

\begin{equation}
\langle x| \chi_0 \rangle = \left(\frac{1}{\pi \frac{1}{\Delta^2}} \right) \exp \left(\frac{(x - x_0)^2}{2\Delta^2} \right) \quad (9)
\end{equation}

where the uncertainty Δ in pointer position is much larger than the difference between pointer positions corresponding to measurement results, and x_0 is the ready position.

The apparatus pointer states for measurement results (in this case for projection operators) are

\begin{equation}
\langle x| \chi_1 \rangle = \left(\frac{1}{\pi \frac{1}{\Delta^2}} \right) \exp \left(\frac{(x - 1)^2}{2\Delta^2} \right) \quad (10a)
\end{equation}

corresponding to 1 or “yes,” and

\begin{equation}
\langle x| \chi_2 \rangle = \left(\frac{1}{\pi \frac{1}{\Delta^2}} \right) \exp \left(\frac{x^2}{2\Delta^2} \right) \quad (10b)
\end{equation}

corresponding to 0 or “no.”

The sequence of events is described as follows:
At t_0 the combined state for system + apparatus is:

$$|\Psi_0\rangle = |\chi_0\rangle \otimes |\psi\rangle. \quad (11)$$

At the intermediate time t_1 the interaction Hamiltonian establishes a correlation yielding the entangled state:

$$|\Psi_1\rangle = \frac{1}{\sqrt{3}} |\chi_1\rangle \otimes |c\rangle + \frac{1}{\sqrt{3}} |\chi_2\rangle \otimes \left(|a\rangle + |b\rangle\right) \quad (12)$$

Rewriting this in the post-selection basis, we find:

$$|\Psi_1\rangle = |\chi_1\rangle \otimes \left(-\frac{1}{3}|\phi\rangle + \frac{\sqrt{2}}{3}|\phi''\rangle\right) + |\chi_2\rangle \otimes \left(\frac{2}{3}|\phi\rangle + \frac{\sqrt{2}}{3}|\phi''\rangle\right) \quad (13)$$

If we now collect terms in the system post-selection basis, an apparatus superposition becomes apparent:

$$|\Psi_1\rangle = \left(-\frac{1}{3}|\chi_1\rangle + \frac{2}{3}|\chi_2\rangle\right) \otimes |\phi\rangle + \frac{\sqrt{2}}{3}\left(|\chi_1\rangle + |\chi_2\rangle\right) \otimes |\phi''\rangle \quad (14)$$

All of the above, (12) through (14), apply to the same intervening time t_1. At time t_2, postselection of the state $|\phi\rangle$ occurs and only the first term remains; thus we obtain finally

$$|\Psi_2\rangle = \left(-\frac{1}{3}|\chi_1\rangle + \frac{2}{3}|\chi_2\rangle\right) \otimes |\phi\rangle \quad (15)$$

Before going further, it should be noted that the term “measurement” as applied to the process at t_1 is somewhat inaccurate for the following reason. At time t_1, all that has happened is that a correlation has been established between the
apparatus states and eigenstates of \(C \); no single term of the resulting superposition has yet been “projected out” in the sense of a state vector collapse or von Neumann projection postulate.\(^4\) Therefore, to avoid confusion, in what follows I will refer to the process at \(t_1 \) as a “partial measurement.” However, it should be noted that one can complete the measurement on the apparatus only (i.e., record a definite pointer result) without disturbing the system, since the collapse will only occur in the apparatus Hilbert space—i.e., the collapse will be with respect to the sharp pointer operator \(X \) on the apparatus Hilbert space only. Discussions of weak values usually assume only a partial measurement at \(t_1 \) because it is simpler to analyze.

The above steps can be considered as equally applying to the case of a sharp partial measurement of \(C \) at time \(t_1 \) (in which case the apparatus states, corresponding to the “which box” operator (in this case \(C \)), are orthogonal, or have zero spread). We see that partially measuring \(C \), either sharply or weakly, creates a superposition of apparatus states corresponding to the “normal” values of “yes” or “no” for the presence of the particle in whichever box is being opened. This indeterminacy of the apparatus state with respect to the post-selection state is characteristic of an inconsistent family of histories (in this case, the two possible outcomes of “in box \(C \)” or “not in box \(C \)”, given the pre- and post-selection states).

For the unsharp observable states \(|\chi_i\rangle \), the mean value of the pointer location \(x \) turns out to be \(-1\), which can be measured through a statistical analysis of a large number of identically pre- and post-selected systems.

4. The Hardy Experiment

As observed by Aharonov et al (2001), the Hardy experiment constitutes an-

\(^4\)Cf. von Neumann (1932), p. 553.
other example of a “strange” weak value (STWV). The Hardy experiment, shown in Figure 1, consists of two overlapping interferometers, one containing an electron, e^-, and the other a positron, e^+. The interferometers are precisely tuned in such a way that if both e^- and e^+ are in the overlapping arms, they will meet and annihilate one another. There are two detectors C and D in each interferometer, one of which (D) can only be activated if there is an object in the overlapping arm. The curious feature is that it is possible for both D’s (i.e., D- for the electron and D+ for the positron) to click and yet for the e^-, e^+ pair not to annihilate one another (i.e., not to both be in the overlapping arms). Note that this corresponds exactly to a failure of the consistency condition (5), for it contradicts the classically necessary idea that either the electron (positron) is in the overlapping arm and the detector D-(D+) can click or the electron (positron) is not in the overlapping arm and the detector D-(D+) cannot click. That is, these two histories should be mutually exclusive, but quantum mechanically they seem not to be.
Aharonov et al. (2001) show that the Hardy setup gives rise to a “strange” weak value of -1 for the observable corresponding to e^+ and e^- both being in the non-overlapping arms.

Let us confirm that this weak value indicates an inconsistent family of histories. First some terminology:

The states are $|O\rangle$ and $|NO\rangle$ for a particle in the overlapping or non-overlapping arm, respectively; a subscript of p or e denotes the positron or the electron. The two-particle states are constructed as direct products of the single-particle states.
The clicking of detectors C correspond to the states $\frac{1}{\sqrt{2}}(|O\rangle + |NO\rangle)$, and the clicking of detectors D correspond to the states $\frac{1}{\sqrt{2}}(|O\rangle - |NO\rangle)$.

After the the electron and positron pass the first beam splitter, they are in the state

$$\frac{1}{\sqrt{2}}(|O\rangle_p + |NO\rangle_p) \otimes \frac{1}{\sqrt{2}}(|O\rangle_e + |NO\rangle_e)$$ (16)

Aharonov et al want to look at the case in which the electron and positron are not annihilated and yet the detectors D+ and D- do click (which is the one which is puzzling). Thus they project out the part of state (16) corresponding to annihilation, which is $|O\rangle_p |O\rangle_e$, and use what remains as the preselection state:

$$|\psi\rangle = \frac{1}{\sqrt{3}}(|NO\rangle_p |NO\rangle_e + |NO\rangle_p |O\rangle_e + |O\rangle_p |NO\rangle_e)$$ (17)

They use the post-selection state corresponding to the clicking of the detectors D+ and D-, which is:

$$|\phi\rangle = \frac{1}{2}(|NO\rangle_p |NO\rangle_e + |O\rangle_p |O\rangle_e - |NO\rangle_p |O\rangle_e - |O\rangle_p |NO\rangle_e)$$ (18)

Now, using a convenient shorthand for the pair-occupation basis, viz.

$$|1\rangle \equiv |NO\rangle_p |NO\rangle_e$$

$$|2\rangle \equiv |O\rangle_p |O\rangle_e$$
\[|3\rangle \equiv |NO\rangle_p |O\rangle_e \]

\[|4\rangle \equiv |O\rangle_p |NO\rangle_e \] \hspace{1cm} (19a, b, c, d)

The pre- and post-selection states respectively are:

\[|\psi\rangle = \frac{1}{\sqrt{3}} (|1\rangle + |3\rangle + |4\rangle) \] \hspace{1cm} (20)

\[|\phi\rangle = \frac{1}{2} (|1\rangle + |2\rangle - |3\rangle - |4\rangle) \] \hspace{1cm} (21)

Now, the “strange” weak value of \(-1\) arises for the pair in the non-overlapping arms, state \(|1\rangle\) in this notation. It is easily verified that the consistency condition fails in the second, dramatic sense described in section 2 (where \(E = |1\rangle\langle 1|\) and \(E' = |2\rangle\langle 2| + |3\rangle\langle 3| + |4\rangle\langle 4|\)):

\[|\langle \phi | \psi \rangle|^2 \langle E \rangle_w \langle E' \rangle_{w}^* = \frac{1}{12} (-1)(0 + 1 + 1) = -\frac{1}{6} < 0 \] \hspace{1cm} (22)

To arrive at an interpretation of the STWV of \(-1\) as the answer to a counterfactual question, Aharonov et al use what they term “Rule (a)”: the fact that if an outcome of a measurement of an observable \(A\) is known with certainty to be the eigenvalue \(a\), then the weak value \(\langle A \rangle_w\) is equal to that particular eigenvalue. They claim that this allows one to combine two or more such outcomes using the additivity of the weak values (see equation (2)) to arrive at apparently equally certain counterfactual inferences about the resultant, sum observable.
Thus they argue that using the additivity of weak values, i.e., the fact that

\[\langle A + B \rangle_w = \langle A \rangle_w + \langle B \rangle_w, \]

one can combine sharp weak values (SWV) to obtain the strange weak value (STWV), in the following way:

Given that

\[|1\rangle\langle 1| + |2\rangle\langle 2| + |3\rangle\langle 3| + |4\rangle\langle 4| = 1, \]

(since equations (19) constitute a basis for the Hilbert Space) and that

\[|1\rangle\langle 1| = 1 - |2\rangle\langle 2| - |3\rangle\langle 3| - |4\rangle\langle 4|, \]

therefore the weak value of $|1\rangle\langle 1|$ is given by

\[\langle |1\rangle\langle 1| \rangle_w = 1 - \langle |2\rangle\langle 2| \rangle_w - \langle |3\rangle\langle 3| \rangle_w - \langle |4\rangle\langle 4| \rangle_w = 1 - 0 - 1 - 1 = -1. \]

They then suggest a physical (albeit counterintuitive) interpretation of this calculation in which there is “minus one electron-positron pair” in the non-overlapping arms, and relate this interpretation to counterfactual statements about the whereabouts of the particles. This possible connection of weak values to counterfactual questions is considered in detail in sections 6 and 7.

5. Time Symmetry Considerations

In this section I consider an important component of many discussions of weak values: the time symmetry of pre- and post-selection. The idea is that there is
not only a state vector $|\psi\rangle$ propagating forward in time from the pre-selection, but also a time-reversed adjoint vector $\langle \phi |$ propagating backward in time. Since physical laws are fundamentally time-symmetric,\(^5\) there is nothing \textit{a priori} wrong with this assumption. Let us see what it adds to the analysis in section 3, of the three-box experiment.

Consider equation (14) which expresses the state of the combined system at the intervening time \(t_1\). If we adopt the idea that the backward-propagating post-selection state $\langle \phi |$ has the same status as the forward propagating state $|\psi\rangle$, we have to consider that the system somehow “knows” about its future post-selection, or bears that imprint, just as much as it bears the imprint of its preselection. (For arguments in favor of this approach, cf. Aharonov and Vaidman (1990) or Price (1996).) So let us consider a given particle as “fated” to be post-selected in state $|\phi\rangle$. We might therefore conclude that the second term in (14) is not applicable (notice that this departs from standard quantum mechanics) and that therefore one can consider the combined system to be ontologically describable by (15) rather than (14) at \(t_1\). In that case the apparatus is describable by the superposition in (15) which reflects the weak value. This conclusion differs from that of Busch (1988), who assumes time asymmetry, with causality moving only from the past to the future.

However, even if we consider the total system as described by (15) at \(t_1\), rather than by (14), what this tells us is that the particle is described by its pre- and post-selection states and that the apparatus is in a superposition of pointer states, i.e., it has an indeterminate pointer value. The weak value of -1, which arises from an averaging procedure over many runs, cannot be considered as applicable

\(^5\)There are, of course, certain phenomena such as the decay of the neutral K meson which suggest some empirical deviation from strict time-reversal invariance. The time symmetry considerations in this paper are restricted to the formalism of nonrelativistic quantum theory, in which all laws are time-symmetric.
to either the particle or the apparatus in any particular run of the experiment.

6. “Strange” weak values and the ABL rule

Before considering the meaning of the strange weak value of -1, first let us compute what might seem to be the corresponding probability of finding the particle in box C: the value given by the much-discussed ABL rule (Aharonov, Bergmann, and Lebowitz [1964]). The ABL rule gives the probability of an outcome of an observable actually (sharply) measured at time t_1 given known pre- and post-selected states at t_0 and t_2 respectively.

In this case we need to use the form of the ABL rule appropriate for degenerate operators, first presented in Aharonov and Vaidman (1991). First some notation: let the projection operator on the space of eigenstates corresponding to the value x be denoted by P_x. In this case, the two possible eigenvalues are c or c' where the latter indicates “not in box C.” So the two projection operators will be $P_c = |c\rangle\langle c|$ and $P_{c'} = 1 - P_c = |a\rangle\langle a| + |b\rangle\langle b|$. Then the ABL probability for outcome “particle in box C,” given the above pre- and post-selected states, and provided C was actually opened, is:

$$P(c) = \frac{|\langle \phi | P_c | \psi \rangle|^2}{\sum_i |\langle \phi | P_i | \psi \rangle|^2} = \frac{|\langle \phi | P_c | \psi \rangle|^2}{|\langle \phi | P_c | \psi \rangle|^2 + |\langle \phi | P_{c'} | \psi \rangle|^2} = \frac{1}{5} \quad (26)$$

Therefore, it is uncontroversially correct to say of any given particle in such an ensemble that if box C was in fact opened, that particle had a probability of $\frac{1}{5}$ of being in the box. Note that this value corresponds to a non-counterfactual situation since the measurement has occurred; i.e, the particle has been disturbed, and is described at t_1 by an ignorance-type mixed state in the eigenspace of the C observable. In contrast, the weak measurement is supposed to leave the particle undisturbed, so it is still in a pure state.
The ABL rule can also be expressed in terms of the relevant weak values, \(\langle P_c \rangle_w = \frac{\langle \phi | P_c | \psi \rangle}{\langle \phi | \psi \rangle} \) and \(\langle P_c' \rangle_w = \frac{\langle \phi | P_c' | \psi \rangle}{\langle \phi | \psi \rangle} \):

\[
P(c)_{ABL} = \frac{|\langle \phi | P_c | \psi \rangle|^2}{|\langle \phi | P_c | \psi \rangle|^2 + |\langle \phi | P_c' | \psi \rangle|^2}
\]

\[
= \frac{|\langle P_c \rangle_w|^2|\langle \phi | \psi \rangle|^2}{|\langle P_c \rangle_w|^2|\langle \phi | \psi \rangle|^2 + |\langle P_c' \rangle_w|^2|\langle \phi | \psi \rangle|^2} = \frac{|\langle P_c \rangle_w|^2}{|\langle P_c \rangle_w|^2 + |\langle P_c' \rangle_w|^2}
\]

(27)

Now, using the fact that \(P_c' = 1 - P_c \) and the additivity of weak values, we find

\[
P(c)_{ABL} = \frac{|\langle P_c \rangle_w|^2}{|\langle P_c \rangle_w|^2 + |1 - \langle P_c \rangle_w|^2}
\]

(28)

Obviously, if we substitute the value \(-1\) for \(\langle P_c \rangle_w \), (28) still gives \(\frac{1}{5} \) for the probability of finding the particle in box C. This result presents a problem for claims that the ABL rule always gives valid results for counterfactual (or weak) measurements on pre- and post-selected systems regardless of whether the history in question belongs to a consistent family. For (28), which gives the ABL probability associated with the relevant weak value, tells us that the particle is in box C 20% of the time, a perfectly normal figure that would seem to have nothing whatever to do with a strange weak value of \(-1\). So there seems to be an inconsistency arising between the weak value itself and the counterfactual ABL probability associated with that weak value. (This is not a problem for the case of an actual \(C \) measurement at \(t_1 \) since the particle has been disturbed and its state projected into a classical probability space.)

There is a different expression available that gives a weight of an outcome conditional on other known outcomes, and which avoids the above inconsistency. It is obtained by extending Luders’ rule to the multiple time case, to obtain the
following weight of a history such as Y (3):

$$W(Y) = Tr[DEFE]$$

(29)

From this one can obtain the “conditional weight”

$$W(E|D,F) = \frac{Tr[DEFE]}{Tr[DF]}.$$

(30)

Note that this expression cannot in general be termed a “probability” because it does not always yield a value in the interval $(0, 1)$. This is because it is not restricted to consistent families of histories. However, we can think of it as a pseudo-probability. For a more detailed discussion of this expression, cf. Griffiths (1996), Saunders (2001).

In the particular case at hand, we would then have

$$W(C|\psi, \phi) = \frac{Tr(P_\phi P_C P_\psi P_C)}{Tr(P_\phi P_\psi)}$$

(31)

But note that (31) is just equal to the weak value squared, since

$$\frac{Tr(P_\phi P_C P_\psi P_C)}{Tr(P_\phi P_\psi)} = \frac{\langle \phi|P_C|\psi \rangle \langle \psi|P_C|\phi \rangle}{\langle \phi|\psi \rangle \langle \psi|\phi \rangle} = |\langle P_C \rangle_w|^2.$$

(32)

Thus, using (32) instead of the ABL rule, we have the result 1 for the conditional weight of the particle’s being in box C given that it has been pre- and post-selected with no (or only a weak) measurement at time t_1. This result, as bizarre as it is considering that the weights associated with box A and box B are also unity, has an appropriate relationship with the strange weak value of -1 for the number of particles in box C at time t_1, if we think of the weak value as being
an “amplitude” corresponding to the C observable conditional on the given pre- and post-selection. More will be said in section 7 on why the weak value should be thought of as an amplitude, and the relevance of this point to counterfactual questions.

Again, notice that this inconsistency between the probability given by the ABL rule and the weak value itself only arises for weak values corresponding to inconsistent histories. Weak values corresponding to consistent histories are 0 or 1, and substituting either of these into (28) gives 0 or 1 respectively (since the right hand side is equal to $\langle P_c \rangle_w$ if and only if $|\langle P_c \rangle_w|^2 = \langle P_c \rangle_w$). This is because the ABL rule (28) and the conditional weight (30) are equivalent for histories belonging to consistent families, as shown in Kastner (1999b). Indeed, for situations only involving a single consistent family, (30) does function as a legitimate probability. Thus it is simply a more general expression than (28).

7. Weak Values as Amplitudes, Not Expectation Values

Now, back to the idea of the weak value as an amplitude, and what this implies for counterfactuals. In discussions of the Three-Box and Hardy experiments, some authors have suggested that weak values can serve as answers to counterfactual questions for sets of measurements that cannot all be performed on a given system. For example, Vaidman (1996) suggests that the weak value of -1 for the particle in box C can be taken as an answer to the question: “If I had opened box C (instead of A or B), would the particle have been there?” (and that the -1 value indicates that the answer is not just “no” but that there is somehow less than zero particles in box C). Similarly, in Aharonov et al it is suggested that the weak value of -1 for the electron-positron pair in the nonoverlapping arms can serve as a (bizarre) answer to a counterfactual question about the presence of the pair in that location when they have not actually been looked for there.
In considering these claims it seems relevant to recall that the conditional weight for a series of three events given a first and last event (equation 30-32) is the absolute square of the weak value, not the weak value itself. This conditional weight functions as a standard probability when the weak value corresponds to a consistent family of histories; indeed, for these cases, (28) and (30-32) are equivalent. It has already been shown that strange weak values (STWV) correspond to inconsistent families in which the consistency condition fails in a particularly extreme way, so one should not expect the ABL rule (28) to apply in these cases. What is now applicable instead is the more general conditional weight (30-32), despite the fact that in these cases the conditional weight will not be well-behaved as a probability. For, in keeping with the “strangeness” of these weak values, one should not expect to obtain a “normal” or well-behaved probability.

The fact that we must take the absolute square of the weak value to obtain the appropriate probability or weight corresponding to that weak value, coupled with the fact that the weak value can take on negative and complex values, suggests that the weak value should be thought of as an amplitude and not an expectation value at all. In that case, it could give no physically relevant answer to any question about the property of a system. That is, claims such as “there is -1 particle in box C” based on a weak value of the observable C invokes a figure that is only an amplitude, not a proper expectation value (which always gives a real result within the range of eigenvalues).

The foregoing discussion pertains to Aharonov et al’s “rule (a),” mentioned in section 4, in the following way. This rule is derivable from the fact that the outcomes which are certain are those corresponding to weak values of either 0 or 1. Interpreting the weak value as an amplitude as in (32), one obtains a corresponding probability\(^6\) of either zero or unity since the values 0 and 1 remain

\(^6\)In these cases, (32) functions as a legitimate probability because these weak values corre-
the same when squared, hence those weak values correspond to a certain outcome and, despite being only amplitudes, can be taken as physically meaningful. But when one combines such “certain” weak values via additivity to obtain STWVs, one has combined mutually inconsistent histories. The combining of inconsistent histories is precisely what causes (32) to cease being a well-behaved probability, which means that the probability space for the possible outcomes corresponding to those STWVs is not well-defined. In turn, this means that the counterfactual status of such outcomes cannot be well-defined either (nor, as mere amplitudes, can STWVs give substantive physical information about the system).

The above argument is in accordance with arguments by Cohen (1995), Griffiths (1999, 2002, sec. 22.5), that combining outcomes belonging to inconsistent histories does not yield valid counterfactual inferences.

The puzzling feature of all this is the following: Weak values obey mathematical additivity, yet when we “add” them we get bizarre results. The puzzle is (at least partially) solved when we consider weak values as amplitudes, since quantum mechanical amplitudes are not expected to yield real properties to begin with.

8. Conclusion

The consistency criterion of Griffiths (cf. 1996, 2002) is expressed in terms of weak values of projection operators and it is shown that “strange” weak values (those which fall outside the range of eigenvalues) correspond to an inconsistent family of histories in which the consistency criterion fails in a particularly “bad” way (i.e., the right hand side is negative or complex). It is also shown that using the ABL rule to obtain probabilities corresponding to strange weak values, such as -1, gives inconsistent results for the case of weak or counterfactual measurements. Using instead an expression based on the multiple-time Luder’s rule, the results correspond to consistent families.
conditional weight, which is equal to the square of the weak value, gives more consistent results for such measurements. It is argued that weak values should be thought of as amplitudes, and as such cannot be expected to always give physically meaningful answers to counterfactual questions about the values of observables in the context of pre- and post-selection.

In addition it is argued that assuming a complete lack of disturbance of systems during weak measurement together with a reverse causality postulate results in the conclusion that the apparatus superposition reflecting the weak value can be considered applicable at the time t_1 of the measurement.

It is certainly true that STWVs raise interesting questions, and that post-selection brings with it some surprising and useful features (cf. Mermin (1997), Bub (2001)). It is my hope to have suggested a possible avenue to solving some of the puzzles posed by “strange” weak values.

Acknowledgements

The author wishes to thank J. Bub, R. B. Griffiths, J. Finkelstein, and an anonymous referee for valuable comments and suggestions.

This research is supported in part by grant no. SES-0115185 of the National Science Foundation.
References

Y. Aharonov, A. Botero, S. Popescu, B. Reznik, J. Tollaksen (2001). ‘Revisiting Hardy’s Paradox: Counterfactual Statements, Real Measurements, Entanglement and Weak Values,’ e-print, quant-ph/0104062.

Y. Aharonov and L. Vaidman (1990). ‘Properties of a quantum system during the time interval between two measurements,’ Physical Review A 41, 11-20.

Y. Aharonov and L. Vaidman (1991). ‘Complete Description of a Quantum System at a Given Time,’ Journal of Physics A 24, 2315-28.

J. Bub (2000). ‘Secure Key Distribution via Pre- and Post-Selected Quantum States, e-print quant-ph/0006086 forthcoming in Phys. Rev. A.

J. Bub (1997). Interpreting the Quantum World. Cambridge University Press.

P. Busch (1988). ‘Surprising Features of Unsharp Quantum Measurements,’ Phys. Lett. A 130, 323-329.

O. Cohen (1995). ‘Pre- and postselected quantum systems, counterfactual measurements, and consistent histories,’ Physical Review A 51, 4373-4380.

R. P. Feynman (1987). ‘Negative Probabilities,’ in Hiley and Peat, eds. (1987). Quantum Implications: Essays in Honor of David Bohm, pp.235-248, London: Routledge.

R. B. Griffiths (1996). “Consistent Histories and Quantum Reasoning,” Phys. Rev. A 54, 2759.

R. B. Griffiths (1999). “Consistent Quantum Counterfactuals,” Phys.Rev. A60, 5-8.

R. B. Griffiths (2002). Consistent Quantum Theory. Cambridge: Cambridge University Press.

L. Hardy (1992). Phys. Rev. Lett. 68, 2981.

R. E. Kastner (1999a). ‘Time-Symmetrised Quantum Theory, Counterfactuals
and Advanced Action,’ *Studies in History and Philosophy of Modern Physics* 30, 237-259.

R. E. Kastner (1999b). ‘The Three-Box Paradox and Other Reasons to Reject the Counterfactual Usage of the ABL Rule,’ *Foundations of Physics* 29, 851-863.

N. D. Mermin (1997). How to Ascertained the Values of Every Member of a Set of Observables That Cannot All Have Values, in R. S. Cohen et al. (eds), *Potentiality, Entanglement and Passion-at-a-Distance*. Kluwer Academic Publishers, 149-157.

H. Price (1996). *Time’s Arrow and Archimedes’ Point*, Oxford: Oxford University Press.

S. Saunders (2001). “Space-Time and Probability,” in *Chance in Physics*, eds. J. Bricmont et al., Springer-Verlag.

L. Vaidman (1993). pp. 406-417, ‘Elements of Reality and the Failure of the Product Rule,’ in *Symposium on the Foundations of Modern Physics*, P. J. Lahti, P. Busch, and P. Mittelstaedt (eds.), World Scientific.

L. Vaidman (1996). ‘Weak-Measurement Elements of Reality,’ *Foundations of Physics* 26, 895-906.

J. von Neumann (1932). ‘Measurement and Reversibility’, and ‘The Process of Measurement,’ in *Mathematical Foundations of Quantum Mechanics*, Princeton University Press, as reprinted in *Quantum Theory and Measurement*, 1983, J. A. Wheeler and W. H. Zurek, eds., Princeton University Press.

E. Wigner (1932). *Phys. Rev.* 40, 749.