Effects of Vertical Nonlinearity on the Superconducting Gravimeter CT #036 at Ishigakijima, Japan

Yuichi Imanishi (imanishi@eri.u-tokyo.ac.jp)
The University of Tokyo https://orcid.org/0000-0001-5172-3901

Kazunari Nawa
AIST: Kokuritsu Kenkyu Kaihatsu Hojin Sangyo Gijutsu Sogo Kenkyujo

Yoshiaki Tamura
National Astronomical Observatory of Japan

Hiroshi Ikeda
High Energy Accelerator Research Organization

Full paper

Keywords: superconducting gravimeter, Ishigakijima, VLBI, magnetic suspension, vertical nonlinearity

Posted Date: October 14th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-965039/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

One of the characteristic features of the gravity recordings produced by the superconducting gravimeter CT #036 at Ishigakijima, Japan, is that it indicates gravity increase when a typhoon (hurricane) approaches the island. Since we are trying to detect small gravity signals associated with the long-term slow slip events in this region, it is very important in the interpretation of the observed data whether such gravity changes are of natural or instrumental origin. In this paper, we investigate whether or not nonlinearity in the sensor of the superconducting gravimeter is responsible for this phenomenon. Here we take the same theoretical approach as taken by Imanishi et al. (2018) which investigated the effect of coupling between horizontal and vertical components of the gravity sensor in order to understand the noise caused by the movements of a nearby VLBI antenna. From theoretical and experimental approaches, we prove that the gravity increase observed by CT #036 at the times of high background noise level can not be explained by instrumental effects such as the nonlinearity in the vertical component or the coupling between horizontal and vertical components of the gravity sensor. This implies that the observed gravity increases are real gravity signals of natural origin.

1. Introduction

Understanding the instrumental properties of a superconducting gravimeter (SG) is essential for fully making use of the high-quality gravity data it produces. The SG (CT #036) installed at Ishigakijima (Figure 1), Japan, indicates several kinds of unusual gravity signals which are not seen at other SG sites including Matsushiro, Kamioka, and Mizusawa. One of such signals are the systematic step changes caused by the motion of a nearby VLBI antenna. For any strange behavior of the instrument, there must be a physical cause that accounts for it. Imanishi et al. (2018) investigated this phenomenon from the viewpoint of the static and dynamic properties of the gravity sensor based on magnetic suspension. In the gravity sensor of the SG, there are two main superconducting coils, and the sphere is stably levitated near the plane of the upper coil (Figure 2(a)). The levitation force is generated due to the interaction between the magnetic field and the induced currents in the superconducting sphere (Goodkind, 1999). At the same time, the sphere is constrained to the central axis by the magnetic field, but there is room for movement in the horizontal plane. As a result of detailed analysis of data from a collocated seismometer, Imanishi et al. (2018) succeeded in giving a quantitative explanation to the observed gravity steps in terms of the coupling between the horizontal and vertical components of the gravity sensor. It was also shown by theoretical analysis that the mechanical eigenfrequency for horizontal translation of the levitating sphere is approximately 3 Hz in the case of CT #036.

Another characteristic feature of the CT #036 at Ishigakijima is that it indicates gravity increase when the background noise level is extremely high in stormy weather conditions. Due to its geographical location (Figure 1), the Ishigakijima island is often attacked by a typhoon (hurricane). Figure 3 shows the gravity changes from July through September 2012, as well as atmospheric pressure and the noise level recorded by the SG. The effect of atmospheric pressure on gravity has been corrected by the usual method with a single admittance. The noise level has been calculated by integrating the power of gravity signals in the frequency range 0.15 – 0.25 Hz. Note that this is significantly underestimated because of the attenuations by the analog anti-aliasing filter (GGP1 filter) in this frequency range. The events of low atmospheric pressure seen in this interval correspond to typhoons or similar meteorological events. We can see that when the atmospheric pressure becomes very low, the noise level becomes high, certainly because of stronger winds and higher oceanic waves. In such events, the gravity (Figure 3(b)) also appears to be larger, with up to 1 µGal excursion from the long-term trend (1 µGal = 10^-8 ms^-2). This is
not a behavior expected for an ideal gravimeter. In principle, the DC output of the gravimeter should be independent of the background noise level at these frequencies. Because we are interested in detecting possible gravity signals associated with the long-term slow slip events occurring near Ishigakijima (Heki and Kataoka, 2008), whether such gravity changes are real signals or not is extremely important in interpretation of the gravity recordings. At first, we suspected that this was another phenomenon to be explained with the coupling between the horizontal and vertical components of the gravity sensor as in the case of the VLBI antenna studied by Imanishi et al. (2018). However, it has turned out that this effect solely is not sufficient to provide the reason for the observed gravity changes, as discussed later in this paper.

The purpose of this paper is to examine the effect of nonlinearity in the vertical component that may be existent in the gravity sensor of the SG in relation to the phenomenon mentioned above. Given the geometry inside the sensor and the currents in the superconducting coils, the total upward force depends on the position of the sphere as drawn in Figure 3 of Goodkind (1999). By adjusting the ratio of the currents in the two coils, the vertical force gradient slightly above the plane of the upper coil can be made very weak so that the test mass levitated there is highly sensitive to small changes of gravity. Ideally, the levitation force around the position of balance should be linearly dependent on the vertical displacement, guaranteeing linearity of the gravity sensor as an acceleration transducer. Figure 2(b) shows schematically the result of our own computation of the levitation force by a finite element method based on the actual parameters for CT #036 (Imanishi and Takamori, in preparation). The overall curve of the levitation force is found to be very well approximated by a third-order polynomial function of the vertical coordinate z. For a particular value of z, the second derivative of the force equals zero, meaning that the force gradient is ideally constant. Below (above) that point, the graph of the function is convex downward (upward), and the coefficient of the quadratic term is negative (positive), as shown by a blue (red) curve. Existence of such quadratic dependence will give rise to a finite shift in the DC component in response to sinusoidal signal input, in other words, an apparent gravity change. Although this effect will be suppressed at lower frequencies thanks to the feedback control of the gravimeter, it might show up in the higher frequency range where the feedback control is insufficient. Understanding the response of the SG to high-frequency disturbances will be necessary also for applying SG data to detection of earthquake-induced prompt gravity signals (Vallée et al, 2017; Kimura et al., 2019).

In the following sections, we will present the theory and measurement on this vertical nonlinearity. As a result of an experiment of artificial signal injection, a small but significantly positive estimate of the coefficient of the quadratic term was obtained. Based on this result and the data from a collocated seismometer, it will be shown that the effect of nonlinearity, if any, is negligibly small in the case of CT #036 at Ishigakijima. This implies that the observed gravity changes are real signals of natural origin.

2. Theory

To investigate the vertical nonlinearity of the SG, here we take the the same theoretical approach as adopted by Imanishi et al. (2018). We shall begin with a brief review of the theory on the magnetic suspension in the SG. In a Cartesian coordinate system, the potential U sensed by the superconducting sphere (mass m) can be expanded up to the third-order as

$$U(x, y, z) = U_0 + \frac{1}{2} \left[\alpha_H (x^2 + y^2) + \alpha_V z^2 \right] + \frac{1}{6} \left[3\beta_H (x^2 + y^2) z + \beta_V z^3 \right]$$ (1)
where $\alpha_H, \alpha_V, \beta_H$, and β_V are the coefficients of Taylor expansion series of the potential. The z is upward positive, and the origin of the coordinate system coincides with the mean position of the sphere. The coefficients of the second-order terms, α_H and α_V, denote the "spring constants" in the horizontal and vertical directions, respectively. The coefficients of the third-order terms, β_H and β_V, denote the deviation from a purely harmonic potential. Equations of motion for the sphere subject to external and frictional forces as well as the forces due to the magnetic field are written as

\[
\begin{align*}
mx + 2mh_H\omega_Hx + \alpha_Hx + \beta_Hxz &= F_x \\
my + 2mh_H\omega_Hy + \alpha_Hy + \beta_Hyz &= F_y \\
mz + 2mh_V\omega_Vz + \alpha_Vz + \frac{1}{2}\beta_H(x^2 + y^2) + \frac{1}{2}\beta_Vz^2 &= F_z
\end{align*}
\]

where F_x, F_y, and F_z are the components of the external force exerted on the sphere as viewed from the frame fixed to the gravimeter. ω_H and ω_V are the angular eigenfrequencies of the sphere in the horizontal and vertical directions, respectively, given by

\[
\begin{align*}
\omega_H &= \sqrt{\frac{\alpha_H}{m}} \\
\omega_V &= \sqrt{\frac{\alpha_V}{m}}
\end{align*}
\]

and $2mh_H\omega_H$ and $2mh_V\omega_V$ are the coefficients of the friction for the horizontal and vertical components, respectively. Note that in the equations of motion (2)−(4) the terms containing α_H and α_V are first-order of the coordinates, whereas the terms containing β_H and β_V are second-order. By defining

\[
\begin{align*}
\alpha'_H &= \frac{\alpha_H}{m} \\
\alpha'_V &= \frac{\alpha_V}{m} \\
\beta'_H &= \frac{\beta_H}{m} \\
\beta'_V &= \frac{\beta_V}{m}
\end{align*}
\]

and assuming

\[
\eta = h_H\omega_H = h_V\omega_V
\]

equations (2) through (4) are rewritten as
\[
\begin{align*}
x + 2\eta x + \alpha'Hx &= \frac{F_x}{m} \\
y + 2\eta y + \alpha'Hy &= \frac{F_y}{m} \\
z + 2\eta z + \alpha'Vz + \frac{1}{2}\beta'\frac{d}{dt}\left(x^2 + y^2\right) + \frac{1}{2}\beta'z^2 &= \frac{F_z}{m}
\end{align*}
\]

(12) (13) (14)

Here we have retained the terms up to the first order in the horizontal components and the terms up to the second order in the vertical component.

Equations (12)–(14) are the basic equations to be studied in our analysis of the gravity sensor. The fifth term (containing \(\beta'V\)) in the left-hand side of equation (14) comes from the third-order term of \(z\) in the potential. Imanishi et al. (2018) neglected this term in analyzing the effect of horizontal acceleration on the gravity sensor, because in the absence of input vertical acceleration \(z^2\) can be regarded as negligibly small compared with \(x^2, y^2\), and \(z\). In the present study, we are interested in the effect of large vertical acceleration applied to the instrument, and therefore possible nonlinear response of the gravimeter arising from the term containing \(\beta'V\) in equation (14) is the main subject to be studied. In the following, we derive the formulae that will be used as theoretical basis for experimentally measuring the coefficient \(\beta'V\) by injecting artificial vertical acceleration to the gravimeter.

Let us consider the case where the applied vertical acceleration is a sinusoidal function of time with a single angular frequency \(\omega\). In a complex notation, the right-hand side of equation (14), the upward acceleration exerted on the sphere, can be written as

\[
\frac{F_z}{m} = (\mu + i\nu)\exp(i\omega t)
\]

where \(\mu\) and \(\nu\) are the real constants in the unit of acceleration denoting the cosine and sine parts of the complex magnitude of the input acceleration, respectively. Taking the real part of the right-hand side of equation (15), equation (14) can be written as

\[
z + 2\eta z + \alpha'Vz + \frac{1}{2}\beta'\frac{d}{dt}\left(x^2 + y^2\right) + \frac{1}{2}\beta'z^2 = \mu\cos\omega t - \nu\sin\omega t
\]

where we have neglected the term containing \(\beta'H\). Our task here is to find a solution of the differential equation (16).

Before we seek for a general solution to equation (16), let us consider the special case where \(\beta'V = 0\). In this case, equation (16) reduces to a linear differential equation which can be solved exactly. We assume a solution of the form:

\[
z = a_1\cos\omega t - b_1\sin\omega t
\]

where \(a_1\) and \(b_1\) are real constants in the unit of displacement. Substituting equation (17) to equation (16), we obtain a set of equations:
\[
\alpha' a_0 + \frac{1}{2} \beta' \left[a_0^2 + \frac{1}{2} a_1^2 + \frac{1}{2} b_1^2 + \frac{1}{2} a_2^2 + \frac{1}{2} b_2^2 \right] = 0 \tag{23}
\]

\[
- \omega^2 a_1 - 2 \eta \omega b_1 + \alpha' a_1 + \beta' a_0 a_1 = + \mu \tag{24}
\]

\[
+ \omega^2 b_1 - 2 \eta \omega a_1 - \alpha' b_1 - \beta' a_0 b_1 = - \nu \tag{25}
\]

\[
-4 \omega^2 a_2 - 4 \eta \omega b_2 + \alpha' a_2 + \frac{1}{2} \beta' \left[\frac{1}{2} a_1^2 - \frac{1}{2} b_1^2 + 2a_0 a_2 \right] = 0 \tag{26}
\]

\[
+4 \omega^2 b_2 - 4 \eta \omega a_2 - \alpha' b_2 + \frac{1}{2} \beta' \left[-2a_0 b_2 - a_1 b_1 \right] = 0 \tag{27}
\]
Regarding μ and ν as first-order quantities, equations (24) and (25) indicate that a_1 and b_1 are first-order quantities, whereas equations (23), (26) and (27) indicate that a_0, a_2 and b_2 are second-order. Therefore, retaining up to first-order quantities, equations (24) and (25) reduce to equation (18). The solutions for a_1 and b_1 are the same as those in equation (20), which are reproduced below:

\[
\begin{bmatrix}
a_1 \\
b_1
\end{bmatrix} = \frac{1}{(a'\nu - \omega^2)^2 + 4\eta^2 \omega^2} \begin{bmatrix}
(\alpha' \nu - \omega^2) \mu + 2 \eta \omega \nu \\
-2 \eta \omega \mu + (\alpha' \nu - \omega^2) \nu
\end{bmatrix}
\] (28)

Substituting these solutions for a_1 and b_1 into equation (23), retaining up to the second-order quantities, we obtain

\[
a_0 = -\frac{\beta' \nu}{4\alpha' \nu (a'\nu - \omega^2)^2 + 4\eta^2 \omega^2} \left(\mu^2 + \nu^2 \right)
\] (29)

Similarly, equations (26) and (27) are solved, again up to the second-order, in a matrix form as

\[
\begin{bmatrix}
a' - 4\omega^2 & -4\eta \omega \\
+4\eta \omega & a' - 4\omega^2
\end{bmatrix}
\begin{bmatrix}
a_2 \\
b_2
\end{bmatrix} =
\begin{bmatrix}
-\frac{1}{4}\beta' \nu (a_1^2 - b_1^2) \\
-\frac{1}{2}\beta' \nu a_1 b_1
\end{bmatrix}
\] (30)

The solutions for a_2 and b_2 are given by

\[
\begin{bmatrix}
a_2 \\
b_2
\end{bmatrix} = -\frac{\beta' \nu}{4} \frac{1}{(a'\nu - 4\omega^2)^2 + 16\eta^2 \omega^2} \begin{bmatrix}
(\alpha' - 4\omega^2) \left(a_1^2 - b_1^2 \right) + 8\eta \omega a_1 b_1 \\
-4\eta \omega \left(a_1^2 - b_1^2 \right) + (\alpha' - 4\omega^2) 2a_1 b_1
\end{bmatrix}
\] (31)

where a_1 and b_1 are given by equation (28).

The squared sum of a_2 and b_2 is given by

\[
a_2^2 + b_2^2 = \left(\frac{\beta' \nu}{4} \right)^2 \frac{1}{(a'\nu - 4\omega^2)^2 + 16\eta^2 \omega^2} \left(a_1^2 + b_1^2 \right)^2
\] (32)

With equation (21), this reduces to

\[
a_2^2 + b_2^2
= \left(\frac{\beta' \nu}{4} \right)^2 \frac{1}{(a'\nu - 4\omega^2)^2 + 16\eta^2 \omega^2} \left(\frac{\left(\alpha' \nu - \omega^2 \right)^2 + 4\eta^2 \omega^2}{2} \right)^2 \left(\mu^2 + \nu^2 \right)^2
\] (33)
Equations (28), (29) and (31) give the approximate solutions for the coefficients a_0, a_1, b_1, a_2 and b_2 in equation (22). It is readily seen from equations (29) and (31) that a_0, a_2 and b_2 vanish when $\beta'_V = 0$. For small but finite β'_V, the response of the system slightly deviates from the purely harmonic solution, with the DC offset given by equation (29) and the second harmonics given by equation (31).

From equations (21) and (33), the amplitude ratio between the ω and 2ω terms is given by

$$\sqrt{\frac{a_2^2 + b_2^2}{a_1^2 + b_1^2}} = \frac{1}{\beta'_V} \sqrt{\left(\frac{\alpha'_V}{4\omega^2}\right)^2 + 16\eta^2\omega^2}$$ \hspace{1cm} (34)

This quantity is larger for lower frequencies. This means that the unknown parameters for the 2ω terms will be better determined using lower frequencies when we measure the response of the gravity sensor to injected artificial signals.

3. Measurements

The mechanical response of the gravimeter can be measured by applying artificial force to the superconducting sphere (Imanishi et al., 1996; GWR Instruments, 1997; Van Camp et al., 2000). The method of measurement is very simple; one applies an external signal (in voltage) V_{in} through the feedback circuit of the gravimeter with the normal feedback control disabled, and record a resultant signal V_{out} in the error output of the gravimeter (the channel called Gravity Balance) as well as the input signal V_{in}. Depending on the purpose of the measurement, the input signal V_{in} can be an arbitrary function of time, including a step or a sinusoid.

Our experiment of measuring the instrumental response of CT #036 took place on June 7, 2018. We used an Agilent 33210A function generator to generate artificial signals and a Hakusan DATAMARK LS-8800 data logger to record both input and output signals. The sampling frequency was 200 Hz. Sinusoidal functions with 0.5 V amplitude at eight discrete frequencies from 0.001 to 0.2 Hz were applied (Table 1).

Frequency (Hz)	Equation (46)	Equation (47)
0.001	2.086494 ± 0.000063	−0.207119 ± 0.000058
0.002	2.025367 ± 0.000073	−0.402342 ± 0.000074
0.005	1.691002 ± 0.000135	−0.841026 ± 0.000139
0.01	1.059860 ± 0.000178	−1.060019 ± 0.000175
0.02	0.412834 ± 0.000237	−0.856908 ± 0.000233
0.05	0.071902 ± 0.000215	−0.411178 ± 0.000215
0.1	0.006963 ± 0.000241	−0.210730 ± 0.000241
0.2	−0.003391 ± 0.000203	−0.109354 ± 0.000203
Figure 4 shows the recorded time series of the input and output signals. For each frequency, more than six cycles of oscillations were recorded. As seen in Figure 4(b), the output signal is affected by natural gravity changes, mostly the earth tides. We noticed that the power-line-cycle (60 Hz) noise became large in the output signal from the Gravity Balance when it exceeded ±3V. The cause of this noise is unknown.

We will divide the analysis of the measurement results into two stages. In the first stage, we adopt the linear model, corresponding to equations (17)–(21), to interpret the response of the gravimeter. The purpose of this treatment is to obtain an internally consistent set of parameters for CT #036, which will be needed to combine measured voltage with physical quantities. Then, in the second stage, we adopt the model in which nonlinearity is taken into account, corresponding to equations (22)–(33).

3.1 Case 1: Linear response

In this subsection, we treat the linear case ($\beta V' = 0$). In this case, the input and output time-domain signals, V_{in} and V_{out}, are linearly connected through an impulse response. In the frequency domain, this is described as

$$V_{out} = \varphi_3 \varphi_2 \varphi_1 V_{in} \tag{35}$$

where \tilde{V}_{in} and \tilde{V}_{out} are the Fourier transforms of V_{in} and V_{out} respectively. φ_1, φ_2 and φ_3 are three stages of transfer functions as explained below.

First, φ_1, in the unit of $\text{ms}^{-2} \text{V}^{-1}$, translates voltage into acceleration. A signal (in voltage) of unit magnitude input to the feedback circuit of the gravimeter generates an acceleration applied to the superconducting sphere, whose magnitude is equal to φ_1. Therefore, φ_1 stands for the DC sensitivity of the gravimeter, and often called a scale factor. Calibration of the scale factor is usually made through parallel registration with an absolute gravimeter (e.g. Imanishi et al., 2002; Crossley et al., 2018). Absolute gravity measurements at Ishigakijima was performed in January 2015 (Miyakawa et al., 2020) for the purpose of calibrating instrumental drift as well as the sensitivity of CT #036. The resultant scale factor (for the normal 100 kΩ feedback resistor) was

$$\varphi_1 = (58.0 \pm 0.1) \times 10^{-8} \text{ms}^{-2} \text{V}^{-1} \tag{36}$$

which falls within the typical range (i.e. $(50 - 100) \times 10^{-8} \text{ms}^{-2} \text{V}^{-1}$) of sensitivity for an SG. In this study, we treat φ_1 as a known quantity.

Next, φ_2 is the mechanical response of the superconducting sphere against applied acceleration of unit magnitude. Neglecting higher-order terms in equation (14), φ_2 as the linear response of a damped harmonic oscillator is derived for angular frequency ω as

$$\varphi_2 = \frac{1}{-\omega^2 + 2\eta \omega + \omega_V^2} \tag{37}$$

This transfer function translates acceleration into a displacement of the sphere. The unit of φ_2 is s^2. Note that among the three transfer functions φ_2 is the only frequency-dependent part. Note also that when $\omega = 0$, φ_2 is equal to $1 / \omega_V^2$.
Finally, φ_3 converts a displacement of the superconducting sphere of unit magnitude into voltage through the position detector. This has a unit of V m$^{-1}$. In this paper, we do not take possible nonlinearity of the position detector into account, and assume that φ_3 is invariant within the range of displacement of the sphere in our experiment. As far as we are aware, this factor has gathered much less attention than the scale factor of the gravimeter among the users of SG. One of the purpose here is to calibrate φ_3 which will be used later to convert measured voltage into displacement of the sphere.

Putting together the three stages, the total transfer function is given by

$$\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{\nu}{-\omega^2 + 2\eta \omega + \omega_V^2}$$

where

$$\nu = \varphi_3 \varphi_1$$

is a new variable in the unit of s$^{-2}$. ω_V, η and ν in the right-hand side of equation (38) are the parameters to be measured by our experiment.

For each frequency f, the input signal V_{in} is fit to the model function:

$$V_{\text{in}} = A_0^{\text{in}} + A_1^{\text{in}} \cos \omega t - B_1^{\text{in}} \sin \omega t$$

where $\omega = 2\pi f$, and $A_0^{\text{in}}, A_1^{\text{in}}$ and B_1^{in} are the free parameters (in the unit of V) to be adjusted. If multiplied by φ_1, the right-hand side of equation (40) corresponds to the right-hand side of equation (16). In other words,

$$\begin{cases}
\mu = \varphi_1 A_1^{\text{in}} \\
\nu = \varphi_1 B_1^{\text{in}}
\end{cases}$$

The term A_0^{in} in the right-hand side of equation (40) is included to account for a small offset of the DC component that may exist in actual experiments.

Similarly, the output signal V_{out} is fit to the function:

$$V_{\text{out}} = A_0^{\text{out}} + A_1^{\text{out}} \cos \omega t - B_1^{\text{out}} \sin \omega t$$

where $A_0^{\text{out}}, A_1^{\text{out}}$ and B_1^{out} are the free parameters (in the unit of V) to be adjusted. If divided by φ_3, the right-hand side of equation (42) corresponds to the right-hand side of equation (17), in other words,

$$\begin{cases}
a_1 = \frac{A_1^{\text{out}}}{\varphi_3} \\
b_1 = \frac{B_1^{\text{out}}}{\varphi_3}
\end{cases}$$
\(A_{1}^{out} \) and \(B_{1}^{out} \) must be corrected for the response of the analog lowpass filter for the Gravity Balance channel at the angular frequency \(\omega \).

In a real experiment, special care must be taken in estimating \(A_{0}^{out} \), \(A_{1}^{out} \) and \(B_{1}^{out} \), because the gravimeter is subject to the gravity changes of natural origin as well as the injected artificial signal during the experiment. Then, instead of equation (42), the formula to be used is

\[
V_{out} = A_{0}^{out} + A_{1}^{out} \cos \omega t - B_{1}^{out} \sin \omega t - \frac{1}{C} g_{calc}(t) \tag{44}
\]

where \(g_{calc}(t) \) is the known gravity signals in the unit of acceleration. Here we take into account the theoretical tides and the effect of atmospheric pressure as known natural signals, and we assume that these are long-periodic enough to be treated as DC components. We also assume that there are no other agents of natural gravity signals affecting the measurements. The parameter \(C \) in the right-hand side of equation (44) is the “scale factor” of the gravimeter operated without feedback. It is given by

\[
C = \frac{1}{\phi_{3} \phi_{2}} \bigg|_{\omega=0} = \frac{\omega_{V}^{2}}{\phi_{3}} = \frac{\omega_{V}^{2}}{\gamma} \phi_{1} \tag{45}
\]

where we have used equations (37) and (39). Because \(C \) is dependent on \(\omega_{V} \) and \(\gamma \), determination of \(C \) as well as \(\omega_{V} \), \(\eta \) and \(\gamma \) must be done in an iterative way as follows. First, a provisional value of \(C \), say \(C_{0} \), is assumed to correct for the known natural signals in equation (44). Once the unknown parameters in the right-hand sides of equations (42) and (44) are adjusted, \(\omega_{V} \), \(\eta \) and \(\gamma \) in equation (38) can be estimated. This is actually done in terms of the cosine and sine parts of the both sides of equation (38) for angular frequency \(\omega \) as

\[
\begin{align*}
\left(A_{1}^{in} \right)^{2} + \left(B_{1}^{in} \right)^{2} = & \quad Re \left\{ \frac{\gamma}{-\omega^{2} + 2 \eta i \omega + \omega_{V}^{2}} \right\} \tag{46} \\
\left(A_{1}^{in} \right)^{2} - \left(B_{1}^{in} \right)^{2} = & \quad Im \left\{ \frac{\gamma}{-\omega^{2} + 2 \eta i \omega + \omega_{V}^{2}} \right\} \tag{47}
\end{align*}
\]

Then, we can calculate \(C \) based on equation (45), which must reproduce the initial value \(C_{0} \) so that the solution is internally consistent. After some trials, we found that the estimates of \(\omega_{V} \), \(\eta \) and \(\gamma \), and therefore of \(C \), are highly invariant for a plausible range of the choice of \(C_{0} \). Figure 5 shows the estimated value of \(C \) for different initial values of \(C_{0} \). As a result, \(C = 27.65 \times 10^{-8} \text{ m s}^{-2} \text{V}^{-1} \) was found to be the most appropriate value of \(C \). Comparing this value with the usual scale factor given in equation (36), we can say that the gravimeter without feedback control is approximately twice as sensitive as that under feedback control in the case of CT #036.

Table 1 lists the left-hand sides of equations (46) and (47) calculated from the estimates of \(A_{1}^{in} \), \(B_{1}^{in} \), \(A_{1}^{out} \) and \(B_{1}^{out} \) obtained for the eight frequencies. These results are then used to estimate \(\omega_{V} \), \(\eta \) and \(\gamma \) based on equations (46) and (47). Applying a weighted least squares method, we obtain
\[\omega_V = (0.825 \pm 0.004)\text{s}^{-1} \]
(48)

\[\eta = (6.52 \pm 0.03)\text{s}^{-1} \]
(49)

\[\gamma = (1.43 \pm 0.01)\text{s}^{-2} \]
(50)

From equations (6), (8) and (48) we have

\[\alpha' = \frac{\omega^2}{V} = 0.68\text{s}^{-2} \]
(51)

Also, from equations (36), (39) and (50), we obtain

\[\varphi_3 = \frac{\gamma}{\varphi_1} = 2.5 \times 10^6\text{Vm}^{-1} \]
(52)

It will be useful now to verify the physical magnitude of the applied acceleration and the resultant displacement of the sphere. We take the case of frequency = 0.001 Hz. For the input signal, \[A_{in} = -0.0268\text{V} \text{ and } B_{in} = -0.4984\text{V} \] (Note that \(A_{in}^2 + B_{in}^2 \approx (0.5)^2 \)). Therefore, from equations (36) and (41), we have

\[\mu = -0.16 \times 10^{-7}\text{ms}^{-2} \text{ and } \nu = -2.89 \times 10^{-7}\text{ms}^{-2}. \]

For the output signal, \[A_{out} = -0.1592\text{V} \text{ and } B_{out} = -1.0344\text{V} \] (after correction for the response of the Gravity Balance lowpass filter). From equations (43) and (52), we have

\[a_1 = -0.64 \times 10^{-7}\text{m} \text{ and } b_1 = -4.19 \times 10^{-7}\text{m}. \]

On the other hand, the theoretically-derived equation (20), with the present estimates of \(\alpha', \eta, \mu \text{ and } \nu \), predicts \[a_1 = -0.73 \times 10^{-7}\text{m} \text{ and } b_1 = -4.16 \times 10^{-7}\text{m}. \]

The close agreement between the theory and the measurement indicates that the present model describes well the dynamics of the magnetic suspension of the SG.

3.2 Case 2: Nonlinear response

Now we move on to the more general case where the third-order term of the potential is treated as finite. In this case, the linear transfer function \(\varphi_2 \), and therefore the relation (38), does not apply. The purpose here is to directly estimate the magnitude of the second harmonics of the sphere excited by a sinusoidal input. Knowledge of \(\varphi_3 \) is necessary to convert observed amplitude in voltage to physical quantities in terms of displacement.

Following equation (26), the function to be fit to the output signal \(V_{out} \) is

\[V_{out} = A_0^{out} + A_1^{out} \cos \omega t - B_1^{out} \sin \omega t
\]
\[+ A_2^{out} \cos 2\omega t - B_2^{out} \sin 2\omega t - \frac{1}{C} g_{calc}(t) \]
(53)

where \(A_0^{out}, A_1^{out}, B_1^{out}, A_2^{out} \text{ and } B_2^{out} \) are the free parameters to be adjusted. The parameter \(C \) is treated as known from the analysis of the linear case. Once these parameters are estimated, they are divided by the known parameter \(\varphi_3 \) to obtain \(a_0, a_1, b_1, a_2 \text{ and } b_2 \) in the right-hand side of equation (22). In particular, the coefficients for the second harmonics are given by
The coefficients A_{2}^{out} and B_{2}^{out} must be corrected for the response of the analog lowpass filter for the Gravity Balance channel at the angular frequency 2ω.

It can be seen from equations (29) and (31) that the parameters a_{0}, a_{2} and b_{2} (in other words, A_{0}^{out}, A_{2}^{out}, and B_{2}^{out}) contain information on the desired coefficient $\beta_{V}^{'}$. However, estimating $\beta_{V}^{'}$ based on the measured value of a_{0} is not practical, because it may be seriously affected by possible DC offsets in the measurement of both input and output signals as well as contamination of tidal and other long-periodic geophysical signals. Instead, one can determine a_{2} and b_{2} in a more robust way, from which $\beta_{V}^{'}$ can be estimated.

Let $a_{2} \pm \Delta a_{2}$ and $b_{2} \pm \Delta b_{2}$ be the estimates thus obtained (Δa_{2} and Δb_{2} are the uncertainties). The theoretical predictions of a_{2} and b_{2}, given by equation (31), can be rewritten as

$$a_{2} = \beta_{V}^{'} A$$

and

$$b_{2} = \beta_{V}^{'} B$$

where

$$A = -\frac{1}{4} \left[\frac{1}{\left(\alpha^{'} - 4\omega^{2} \right)^{2} + 16\eta^{2}\omega^{2}} \left(\alpha^{'} - 4\omega^{2} \right) \left(a_{1}^{2} - b_{1}^{2} \right) + 8\eta^{2}\omega a_{1} b_{1} \right]$$

and

$$B = -\frac{1}{4} \left[\frac{1}{\left(\alpha^{'} - 4\omega^{2} \right)^{2} + 16\eta^{2}\omega^{2}} \left[-4\eta^{2}\omega a_{1} b_{1} + \left(\alpha^{'} - 4\omega^{2} \right) 2a_{1} b_{1} \right] \right]$$

Both A and B can be calculated from the parameters already obtained in the linear case. Therefore, we could estimate $\beta_{V}^{'}$ in two ways by

$$\beta_{V}^{'} = \frac{a_{2}}{A}$$

for the cosine part and

$$\beta_{V}^{'} = \frac{b_{2}}{B}$$
for the sine part. Considering that the relative estimation errors of a_2 and b_2 are much larger than those of the other parameters, the estimation error of β_V, $\Delta \beta_V$, for equations (65) and (66) may be obtained by

$$\Delta \beta_V = \frac{\Delta a_2}{A}$$

and

$$\Delta \beta_V = \frac{\Delta b_2}{B}$$

respectively. However, estimation by equations (59) and (60) can be unstable because a_2 and b_2 depends on the initial phase of the applied oscillations. So, a more robust estimate of β_V can be obtained by taking a weighted mean of the two results as

$$\beta_V = \frac{\bar{A} (\Delta a_2)^2 a_2 + \bar{B} (\Delta b_2)^2 b_2}{\left(\frac{\bar{A}}{\Delta a_2}\right)^2 + \left(\frac{\bar{B}}{\Delta b_2}\right)^2}$$

with its uncertainty given by

$$\Delta \beta_V = \sqrt{\frac{1}{\left(\frac{\bar{A}}{\Delta a_2}\right)^2 + \left(\frac{\bar{B}}{\Delta b_2}\right)^2}}$$

Table 2 summarizes the results of fitting for frequencies $f = 0.001, 0.002, 0.005$ and 0.01 Hz. Note that for each frequency the magnitude of the $2f$ terms (A_{2u}^{out} and B_{2u}^{out}) is smaller than those of the f terms (A_{1u}^{out} and B_{1u}^{out}) by three to four orders of magnitude. Here, AIC_1 and AIC_2 are the AIC (Akaike, 1972) for the models based on equations (44) and (53), respectively. For frequencies $f = 0.001$ and 0.002 Hz, AIC_2 is smaller than AIC_1, meaning that existence of the second harmonics in the measured data is statistically significant from the viewpoint of AIC. We shall exclude the frequencies $f = 0.005$ and 0.01 Hz from the following discussion, because AIC_2 is larger than AIC_1 for these frequencies.

For $f = 0.001$ and 0.002 Hz, we have obtained the estimates of β_V for the cosine and sine parts based on equations (59) and (60), as listed in Table 2. Note that all the four estimates of β_V are positive. Also, for each frequency, the estimates of β_V from the cosine and sine parts are marginally consistent with each other within the estimation error. Using equations (63) and (64), our final estimate is

$$\beta_V = 2124 \pm 386$$

for $f = 0.001$ Hz, and
\[
\beta'_{V} = 1902 \pm 526 \quad (66)
\]

Table 2
Measurement results for the four lowest frequencies.

\(f\) (Hz)	\(AIC_1\)	\(AIC_2\)	\(A_{1\text{out}}\)	\(B_{1\text{out}}\)	\(A_{2\text{out}}\)	\(B_{2\text{out}}\)	\(\beta'_{V}\)	\(\beta'_{V}\)
0.001	2862099.7	2862128.1	0.159234	1.034528	0.000325	0.000060	2473 ± 463	1327 ± 699
\(\pm 0.000060\)	\(\pm 0.000065\)	\(\pm 0.000061\)	\(\pm 0.000061\)					
0.002	2118572.1	2118581.4	0.019691	1.030543	0.000237	0.000074	2010 ± 625	1639 ± 978
\(\pm 0.000074\)	\(\pm 0.000073\)	\(\pm 0.000074\)	\(\pm 0.000074\)					
0.005	622784.2	622782.2	0.669290	0.663900	0.000166	0.000105	2010 ± 625	1639 ± 978
\(\pm 0.000135\)	\(\pm 0.000140\)	\(\pm 0.000137\)	\(\pm 0.000138\)					
0.01	357834.4	357833.6	0.529555	0.528527	0.000095	0.000300	2010 ± 625	1639 ± 978
\(\pm 0.000178\)	\(\pm 0.000175\)	\(\pm 0.000177\)	\(\pm 0.000176\)					

for \(f = 0.002\) Hz. These results from the two frequencies are also consistent with each other within the estimation error. Thus, we have obtained statistically significant results indicating that \(\beta'_{V}\) is positive and its magnitude is around \(2 \times 10^{3}\) in the case of CT #036.

4. Discussion

Based on the estimate of the coefficient \(\beta'_{V}\), we derive the expected offset in the DC component in gravity signal for general vertical acceleration input. Let \(Z\) be the vertical displacement of the ground with respect to the inertial frame. In the equation of motion (14) in the vertical component, the right-hand side is the applied acceleration, and may be identified as \(-\ddot{Z}\). Therefore, the equation of motion becomes

\[
\ddot{z} + 2\eta \dot{z} + \alpha'_{V}z + \frac{1}{2} \beta'_{V}z^2 = -\dot{Z} \quad (67)
\]

where we have neglected the term containing \(\beta'_{H}\) as before. This differential equation is nonlinear with respect to \(z\). Based on the potential given by equation (1), here we may assume that \(\beta'_{V}\) is sufficiently small, so that a condition:
\[|\alpha'_V| \gg |\beta'_V z| \]

(68)

holds for a possible range of displacement of the sphere. Under this condition, we can expand the solution for \(z \) into a power series of \(\beta'_V \) as

\[
z = \zeta_0 + \left(\beta'_V \right)^1 \zeta_1 + \left(\beta'_V \right)^2 \zeta_2 + \ldots
\]

(69)

This is substituted into equation (67). For the zeroth order of \(\beta'_V \), we have

\[
\ddot{\zeta}_0 + 2 \eta \dot{\zeta}_0 + \alpha'_V \zeta_0 = -\ddot{Z}
\]

(70)

The solution to this, \(\zeta_0 \), is the usual linear response in the vertical direction, expressed in the frequency domain as

\[
\tilde{\zeta}_0 = \frac{\omega^2}{-\omega^2 + 2i\eta \omega + \omega_v^2}
\]

(71)

where \(\tilde{\zeta}_0 \) and \(\tilde{Z} \) are the Fourier transforms of \(\zeta_0 \) and \(Z \), respectively. For the first order of \(\beta'_V \), we have

\[
\zeta_1 + 2 \eta \zeta_1 + \alpha'_V \zeta_1 + \frac{1}{2} \zeta_0^2 = 0
\]

(72)

Since we are interested in the DC component of \(\zeta_1 \), we adopt approximations \(\langle \dot{\zeta}_1 \rangle = 0 \) and \(\langle \ddot{\zeta}_1 \rangle = 0 \), where \(\langle \rangle \) denotes temporal average. Then, taking temporal averages of equation (72), we obtain

\[
\langle \zeta_1 \rangle = -\frac{1}{2\alpha'_V} \langle \zeta_0^2 \rangle
\]

(73)

This means that, to the first order of \(\beta'_V \), the apparent gravity change due to this effect is approximated as

\[
\Delta g = -\alpha'_V \beta'_V \langle \zeta_1 \rangle = \frac{1}{2} \beta'_V \langle \zeta_0^2 \rangle
\]

(74)

Equation (74) indicates that a gravity increase is predicted if \(\beta'_V > 0 \). As was done in Imanishi et al. (2018), we can estimate \(\langle \zeta_0^2 \rangle \) using the data of a 1.0-Hz velocity transducer which is collocated with the gravimeter (Ohtaki and Nawa, 2013). First, the raw data in the vertical component of the seismometer are converted to ground displacements by deconvolving the transfer function of the sensor. Second, the spectrum of vertical ground displacements is converted to that of sphere's vertical motion with the transfer function given by equation (71). Finally, the power spectrum is integrated with respect to frequency to give the total power, i.e., \(\langle \zeta_0^2 \rangle \). Here we use the data acquired when the typhoon “Neoguri” (https://en.wikipedia.org/wiki/Typhoon_Neoguri_(2014)) approached Ishigakijima on July 8th, 2014. In this event, a gravity increase of approximately 1 µGal was recorded.
Figure 6(a) shows the spectrum of vertical displacements of the sphere thus obtained. Numerical integration of this spectrum gives \(\langle z_0^2 \rangle = 1.82 \times 10^{-13} \text{m}^2 \). Then, taking the estimate of \(\beta_V \) obtained for \(f = 0.001 \) Hz, we obtain from equation (74) \(\Delta g \tilde{1.8} \times 10^{-10} \text{ms}^{-2} \), in other words, about 0.02 \(\mu \text{Gal} \). This is roughly two orders of magnitude smaller than the recorded gravity change. Therefore, we can conclude that the effect of the second-order term in the equation of motion (in other words, the third-order term in the potential) cannot account for the gravity increase observed in stormy weather.

To confirm our conclusion further, we examine additionally whether or not the coupling between horizontal and vertical components of the SG (Imanishi et al., 2018) is responsible for the observed gravity increase. In contrast to the noise from the VLBI antenna as investigated in Imanishi et al. (2018), the background noise has continuous spectra with a peak around 0.2 Hz. In order to estimate the gravity effect according to the model of Imanishi et al. (2018), we need to calculate the mean squared horizontal displacements of the sphere in the right hand side of equation (36) of Imanishi et al. (2018). To do so, we use the transfer function (34) of Imanishi et al. (2018) to convert the spectrum of ground displacements into the spectrum of sphere's displacements, and then integrate the resultant spectrum with respect to frequency to obtain the estimate of total power. Figures 6(b) and 6(c) show the spectra of the horizontal displacements of the sphere converted from the seismometer records using the parameters estimated in section 2. Because the horizontal eigenfrequency of the sphere is about 3 Hz, the spectral power at 0.2 Hz is diminished in this spectrum, compared with the power at 4–5 Hz. By integrating these spectra in the frequency range 0–20 Hz, we obtain \(\langle x^2 \rangle = 6.11 \times 10^{-15} \text{m}^2, \langle y^2 \rangle = 3.68 \times 10^{-14} \text{m}^2 \), where \(x \) and \(y \) correspond to east-west and north-south components, respectively. Substituting these values into equation (36) of Imanishi et al. (2018) and using the revised estimate of \(\beta_H \) (Additional file 1), an apparent gravity change would be

\[
\Delta g = \frac{1}{7} \beta_H \left(\langle x^2 \rangle + \langle y^2 \rangle \right) = 3.80 \times 10^{-10} \text{ms}^{-2} \tag{75}
\]

This is negligibly small compared with the observed gravity change. Note that this is of the same order of magnitude as, but larger than, the effect of the higher-order term estimated above.

As discussed in Introduction, the sign and magnitude of \(\beta_V \) depend on the exact position of the levitating sphere as well as the currents in the superconducting coils (Imanishi and Takamori, in preparation). It should be noted that our results obtained here apply only to CT #036 at Ishigakijima, and various installations of other SGs may indicate different characteristics regarding the response to a high level of background noise.

5. Conclusion

We have investigated the gravity increase which the SG CT #036 at Ishigakijima indicates at the times of high background noise level. From theoretical and experimental analyses, we have proved that this phenomenon cannot be explained by instrumental effects such as the nonlinearity in the vertical component or the coupling between horizontal and vertical components of the gravity sensor. So we have concluded that those events of gravity increase are real gravity signals of natural origin.

Now that we have reached this conclusion, the next challenge will be to investigate the geophysical cause of the observed gravity signal. At present, a hydrological origin appears to be the most probable. Detailed analysis of the
gravity recordings by CT #036 at Ishigakijima has revealed interesting features of gravity changes that suggests existence of complicated interactions between ocean, underground water, and atmosphere. Development of a hydrological model for understanding the combined geophysical system from the gravimetric viewpoint is now under way.

Abbreviations

SG superconducting gravimeter
VERA VLBI Exploration of Radio Astrometry

Declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not Applicable

Availability of data and materials

The data from gravimeter, seismometer and so on, used in this paper will not be shared, because successive works of our own using them are under way.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was financially supported by JSPS KAKENHI Grant Numbers JP23340125, JP26289350, JP26610139 and 21K18644, and by ERI JURP 2019-B-05 in Earthquake Research Institute, The University of Tokyo.

Authors' contributions

YI developed the theory, conducted the experiment and its data analysis, and interpreted the results. KN made the observations with seismometers and prepared the data. All authors collaborate in maintaining the observation with the superconducting gravimeter at Ishigakijima. All authors read and approved the final manuscript.

Acknowledgements

We are grateful to the VERA project of the National Astronomical Observatory of Japan for supporting our superconducting gravimeter observations at the VERA Ishigakijima station. T. Okuda of Nagoya University kindly allowed us to use the seismometer at Ishigakijima.

References
1. Akaike H (1972) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (ed) Proceedings of the 2nd International Symposium on Information Theory, supplement to Problems of Control and Information Theory, pp. 267–281, Akademiai Kiado, Budapest.

2. Crossley D, Calvo M, Rosat S, Hinderer J (2018) More Thoughts on AG–SG Comparisons and SG Scale Factor Determinations. Pure and Applied Geophysics, 175, 10.1007/s00024-018-1834-9.

3. Goodkind JM (1999) The superconducting gravimeter. Rev Sci Instr 70:4131–4152.

4. GWR Instruments (1985) Superconducting gravity meter model TT70 operating manual, GWR Instruments, San Diego CA USA.

5. GWR Instruments (1997) Gravity circuit card revision 2.1: users manual. GWR Instruments San Diego CA USA.

6. Heki K, Kataoka T (2008) On the biannually repeating slow slip events at the Ryukyu Trench, Southwest Japan. J Geophys Res 113, B11402, doi:10.1029/2008JB005739.

7. Hinderer J, Crossley D, Warburton RJ (2007) Gravimetric Methods – Superconducting Gravity Meters. In: Schubert G (ed) Treatise of Geophysics, 66–122.

8. Honma M et al (2000) J-Net Galactic-Plane Survey of VLBI Radio Sources for VLBI Exploration of Radio Astrometry (VERA). Publ Astron Soc Jpn 52:631–643.

9. Ikeda H, Nawa K, Imanishi Y (2013) Refurbishment and performance of the superconducting gravimeter CT-36. J Geod Soc Jpn 59:25–36.

10. Imanishi Y, Sato T, Asari K (1996) Measurement of mechanical responses of superconducting gravimeters. J Geod Soc Jpn 42:115–117.

11. Imanishi Y, Higashi T, Fukuda Y (2002) Calibration of the superconducting gravimeter T011 by parallel observation with the absolute gravimeter FG5 #210 – a Bayesian approach. Geophys J Int 151:867-878.

12. Imanishi Y (2005) On the possible cause of long period instrumental noise (parasitic mode) of a superconducting gravimeter. J Geod 78:683–690.

13. Imanishi Y (2009) High-frequency parasitic modes of superconducting gravimeters. J Geod 83:455–467.

14. Imanishi Y, Nawa K, Tamura Y, Ikeda H (2018) Effects of horizontal acceleration on the superconducting gravimeter CT #036 at Ishigakijima, Japan. Earth Planets Space, 70:9–20. doi:10.1186/s40623-018-0777-9.

15. Kimura M, Kame N, Watada S, Ohtani M, Araya A, Imanishi Y, Ando M, Kunugi T (2019) Earthquake-induced prompt gravity signals identified in dense array data in Japan. Earth Planets Space, 71, 27. https://doi.org/10.1186/s40623-019-1006-x

16. Miyakawa A, Nawa K, Yamaya Y, Ohtaki T, Sugihara M, Okuda T, Sumita T (2020) Gravity Measurement of Nagura River Basin, in the Western part of Ishigakijima Island, Japan. Bulletin of the Geological Survey of Japan, 71(2):63–76. (in Japanese)

17. Ohtaki T, Nawa K (2013) Rough estimate of P-wave velocity beneath the VERA Ishigakijima station for correcting hydrological disturbance in gravity observation data. J Geod Soc Jpn 59:147–156.

18. Prothero WA, Goodkind JM (1968) A superconducting gravimeter. Rev Sci Instrum 39:1257–1262.

19. Van Camp M, Wenzel H-G, Schott P, Vauterin P, Francis O (2000) Accurate transfer function determination for superconducting gravimeters. Geophys Res Lett 27:37–40.

20. Vallée M, Ampuero JP, Juhel K, Bernard P, Montagner J-P, Barsuglia M (2017) Observations and modeling of the elastogravity signals preceding direct seismic waves. Science 358:1164–1168.
Figures

Figure 1

Location of Ishigakijima island, Japan, where the superconducting gravimeter CT #036 is installed.
Figure 2

The gravity sensor of the superconducting gravimeter. (a) Superconducting sphere and coils. (b) Vertical force applied to the levitating sphere as a function of vertical position. The vertical force gradient is made weak for a limited interval of the vertical coordinate (z). Ideally, the force should be linearly dependent on z. In reality, there exists a small but finite quadratic term, which gives rise to nonlinear responses of the gravimeter.

\[F_z = \text{constant} - \alpha z - (1/2)\beta z^2 \]
Figure 3

Apparent correlation between noise level and gravity. (a) Atmospheric pressure. (b) Gravity residual. (c) Power of background noise in the frequency range 0.15–0.25 Hz calculated from gravimeter records. Notice that gravity changes are partly similar to the noise level, especially when the pressure is low.
Figure 4

Time series data acquired in the signal injection experiment. (a) input signal. (b) output signal.
Figure 5

Determination of the parameter C by an iterative estimation process.
Figure 6

Power spectra for the displacements of the superconducting sphere. These have been derived by convolving theoretical responses of horizontal and vertical components with the ground motions recorded by a seismometer. (a) Up-down component. (b) North-south component. (c) East-west component.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.
• Additionalfile.docx
• GraphicalAbstract.jpg