Primary Pulmonary Myxoid Liposarcoma with Translocation t(12;16)(q13;p11) in a Young Female Patient: A Brief Case Report

Choonhee Son · Phil Jo Choi1
Mee Sook Roh2

Departments of Internal Medicine, 1Thoracic and Cardiovascular Surgery, and 2Pathology, Dong-A University College of Medicine, Busan, Korea

Received: December 7, 2011
Revised: December 16, 2011
Accepted: December 16, 2011

Corresponding Author
Mee Sook Roh, M.D.
Department of Pathology, Dong-A University College of Medicine, 32 Daesingongwon-ro, Seo-gu, Busan 602-714, Korea
Tel: +82-51-240-2833
Fax: +82-51-243-7396
E-mail: msooh@dau.ac.kr

Primary liposarcoma of the lung is an extremely rare disease. To date, only 14 cases have been reported in the literature. We experienced a case of myxoid liposarcoma of the lung treated by surgery. The tumor was well-defined, solid, lobulated mass measuring 3.5 × 2 cm, involving the bronchus of the left lower lobe. Microscopically, myxoid liposarcoma was identified. The fluorescence in situ hybridization confirmed the presence of a reciprocal translocation involving DNA damage-inducible transcript 3 (DDIT3) and fused in sarcoma (FUS) genes. The patient is still alive with no recurrence or metastasis at the time of writing this report (on 20 months postoperatively).

To our knowledge, this is the first cytogenetic case report of pulmonary myxoid liposarcoma.

Key Words: Lung; Liposarcoma; In situ hybridization, fluorescence

CASE REPORT

A 24-year-old woman was referred to Dong-A University Medical Center following the detection of a well-defined mass in the left lower lobe (LLL) of the lung on chest X-ray during a routine health check. On medical and family history, the patient had no notable findings other than a 6-month history of an intermittent dry cough. On chest computed tomography (CT) scan, the patient had a lobulated, well-enhancing mass with an endobronchial protrusion in the LLL. On positron emission tomography-CT scans, the patient had no notable findings of other organs. The patient underwent a bronchoscopy, but a diagnosis could not be made on biopsy. A left lower lobectomy with regional lymph node dissection was performed. The tumor was a well-defined, solid, lobulated mass measuring 3.5 × 2 cm, involving the bronchus of the left lower lobe. Microscopically, myxoid liposarcoma was identified. The fluorescence in situ hybridization confirmed the presence of a reciprocal translocation involving DNA damage-inducible transcript 3 (DDIT3) and fused in sarcoma (FUS) genes. The patient is still alive with no recurrence or metastasis at the time of writing this report (on 20 months postoperatively).
To date, a total of 14 cases of primary liposarcoma of the lung have been reported in the literature. But only seven articles were available when the PubMed and KoreaMed searches were conducted for English- and Korean-language articles.1-7 Clinico-pathologic features reported in the literature are summarized in Table 1. The patient in our case report is the second youngest one that has been reported and presented to have the smallest tumor mass (3.5 cm). Of note, all the tumors have been reported to involve the left lung. Our case supports the view that a wide surgical excision may be effective in treating primary liposarcoma of the lung. But no specific conclusions can be drawn due to the limited number of reported cases.

Nearly all the myxoid/round cell liposarcomas are characterized by a reciprocal translocation between the chromosomes 12 and 16, t(12;16)(q13;p11). This translocation leads to the generation of a DDIT3/FUS hybrid protein, which has the ability to cause deregulation of other target genes, to interfere with terminal differentiation of various cells and to down-regulate...
Table 1. Primary pulmonary liposarcomas: literature summary of clinicopathologic features

Case No.	Age (yr)	Gender	Location	Size (cm)	Histologic type	Outcome
1	49	Male	LLL	12	Pleo	FOD (3 yr)
2	49	Female	LLL	9	Dediff	FOD (16 mo)
3	72	Male	LLL	15	WDL	FOD (10 mo)
4	28	Female	Left	Huge	Myx	DOD (10 days)
5	49	Male	LUL	11.5	Pleo	DOD (8 mo)
6	18	Female	LUL	Not stated	Not be typed	DOD (during OP)
7	49	Female	LUL	4.5	Myx and pleo	DOD (6 mo)
Present case	24	Female	LLL	3.5	Myx	FOD (20 mo)

LLL, left lower lobe; Pleo, pleomorphic; FOD, free of disease; Dediff, dedifferentiated; WDL, well-differentiated liposarcoma; Myx, myxoid; DOD, died of disease; LUL, left upper lobe; OP, operation.

Table 1 continued:

Case No.	Age (yr)	Gender	Location	Size (cm)	Histologic type	Outcome
8	49	Female	LUL	4.5	Myx and pleo	DOD (6 mo)

Present case

programmed cell death. It appears to play a direct role in oncogenesis of myxoid liposarcoma. However, there is no correlation between DDIT3/FUS fusion type and grade or disease-specific survival. In our case, there was a reciprocal translocation involving DDIT3 and FUS. This suggests a central role of these fusion transcripts in the pathogenesis of pulmonary myxoid liposarcoma like the same tumor occurring in other sites.

To our knowledge, this is the first cytogenetic case report of pulmonary myxoid liposarcoma.

Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

Acknowledgments

This work was supported by the Dong-A University research fund. We would like to thank Mr. Sang Soo Park for his technical assistant with the fluorescence in situ hybridization (FISH) study and Ms. Boram Seo for her artwork.

REFERENCES

1. Achir A, Ouadnouni Y, Smahi M, Bouchikh M, Msougar Y, Benosman A. Primary pulmonary liposarcoma: a case report. Thorac Cardiovasc Surg 2009; 57: 119-20.
2. Loddenkemper C, Perez-Canto A, Leschber G, Stein H. Primary dedifferentiated liposarcoma of the lung. Histopathology 2005; 46: 710-2.
3. Kim SW, Shim YM, Kim J, Kim K, Choi YS, Ahn GH. Surgery for primary pulmonary liposarcoma. Korean J Thorac Cardiovasc Surg 2004; 37: 942-5.
4. Said M, Migaw H, Hafsa C, et al. Imaging features of primary pulmonary liposarcoma. Australas Radiol 2003; 47: 313-7.
5. Krygier G, Amado A, Salisbury S, Fernandez J, Maedo N, Vazquez T. Primary lung liposarcoma. Lung Cancer 1997; 17: 271-5.
6. Ruiz-Palomo F, Callieja JL, Fogue L. Primary liposarcoma of the lung in a young woman. Thorax 1990; 45: 298-9.
7. Sawamura K, Hashimoto T, Nanjo S, et al. Primary liposarcoma of the lung: report of a case. J Surg Oncol 1982; 19: 243-6.
8. Knight JC, Renwick PJ, Dal Cin P, Van den Bergh H, Fletcher CD. Translocation t(12;16)(q13;p11) in myxoid liposarcoma and round cell liposarcoma: molecular and cytogenetic analysis. Cancer Res 1995; 55: 24-7.