A $z = 0.9$ SUPERCLUSTER OF X-RAY LUMINOUS, OPTICALLY SELECTED, MASSIVE GALAXY CLUSTERS

David G. Gilbank,1,2 H. K. C. Yee,3 E. Ellingson,3 A. K. Hicks,4 M. D. Gladders,3,6
L. F. Barrientos,5 and B. Keenev

Received 2008 February 5; accepted 2008 March 11; published 2008 March 26

ABSTRACT

We report the discovery of a compact supercluster structure at $z = 0.9$. The structure comprises three optically selected clusters, all of which are detected in X-rays and spectroscopically confirmed to lie at the same redshift. The Chandra X-ray temperatures imply individual masses of $\sim 5 \times 10^{14} M_\odot$. The X-ray masses are consistent with those inferred from optical–X-ray scaling relations established at lower redshift. A strongly lensed $z \sim 4$ Lyman break galaxy behind one of the clusters allows a strong-lensing mass to be estimated for this cluster, which is in good agreement with the X-ray measurement. Optical spectroscopy of this cluster gives a dynamical mass in good agreement with the other independent mass estimates. The three components of the RCS 2319+00 supercluster are separated from their nearest neighbor by a mere $< 3 $ Mpc in the plane of the sky and likely < 10 Mpc along the line of sight, and we interpret this structure as the high-redshift antecedent of massive ($\sim 10^{15} M_\odot$) $z \sim 0.5$ clusters such as MS 0451.5−0305.

Subject headings: galaxies: clusters: general
galaxies: clusters: individual (RCS 231848+0030.1, RCS 231958+0038.0, RCS 232002+0033.4)

1. INTRODUCTION

The cluster RCS 231953+0038.0 was discovered in the first Red-Sequence Cluster Survey (RCS-1; Gladders & Yee 2005) and displays spectacular strong-lensing features (Gladders et al. 2003). As such, it has been the subject of extensive follow-up, including multi-object spectroscopy (MOS) (L. F. Barrientos et al. 2008, in preparation) and Chandra X-ray imaging (Hicks et al. 2008). The Chandra X-ray observations were targeted so as to include two other cluster candidates (RCS 231848+0030.1 and RCS 232002+0033.4) which the RCS catalog indicated were consistent with being at the same photometric redshift as the primary cluster target. All three systems were found to be coincident with extended X-ray emission (Hicks et al. 2008). In this Letter we present new follow-up spectroscopy of these three clusters, showing that all three are located at the same redshift and therefore likely physically associated. Hereafter we refer to these collectively as the supercluster RCS 2319+00.

Throughout, we assume a concordance cosmology with $\Omega_m = 0.3$, $\Omega_{\Lambda} = 0.7$, $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$.

1 Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada; gilbank@astro.utoronto.ca, hlyee@astro.utoronto.ca.
2 Astrophysics and Gravitation Group, Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada; dgilbank@astro.uwaterloo.ca.
3 Center for Astrophysics and Space Astronomy, 389 UCB, University of Colorado, Boulder, CO 80309; erica.ellingson@colorado.edu, keeneke@cas.colorado.edu.
4 Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904; ahicks@alum.mit.edu.
5 Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637; gladders@oddjob.uchicago.edu.
6 Visiting Associate, Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101.
7 Departamento de Astronomía y Astrofísica, Universidad Católica de Chile, Casilla 306, Santiago 22, Chile; barrientos@astro.puc.cl.
8 See http://www.oociw.edu/~oemler/COSMOS.html.
confident redshift near $z = 0.90$ (0.9008, 0.9025, and 0.9005 respectively).

2.1. Spectroscopy of the Gravitational Arc

Cluster A exhibits several strong-lensing features (Gladders et al. 2003). We obtained deep spectroscopy of the B-band dropout arc (Fig. 2c of Gladders et al. 2003) in 2003 September–October using GMOS-N on Gemini-North (program ID: GN-2003-Q-19). The target was observed in nod-and-shuffle mode for a total integration time of 9.6 hr and the data reduced as for the Gemini data described in Gilbank et al. (2007). The spectrum of the arc is shown in Figure 3 and is that of a high-redshift Lyman break galaxy (LBG). As discussed in Shapley et al. (2003) LBGs frequently display strong outflows, and so the measurement of a redshift is complicated by different spectral features tracing kinematically distinct components of the galaxy. In order to determine a systemic redshift, we use only stellar photospheric lines and plot their positions at different trial redshifts over the spectrum. We find a redshift of $z = 3.8605$. Other common lines from interstellar absorption and nebular emission, etc., are shown in Figure 3. Lyα is seen offset to higher redshift (~900 km s$^{-1}$) with respect to the systemic velocity, as is often observed (Shapley et al. 2003).

3. MASS ESTIMATES

3.1. X-Ray Masses

The X-ray observations and analysis are described in Hicks et al. (2008) and are derived from four $Chandra$ observations taken over the period 2005 September 28 to October 23, resulting in a total exposure of 74,539 s. Briefly, X-ray temperatures were measured within r_{500} and used to derive total masses by extrapolating to r_{200}. The X-ray masses for all three clusters are given in Table 1 and each is around $5 \times 10^{14} M_{\odot}$.

3.2. Dynamical Mass for Cluster A

Cluster A has sufficient spectroscopic members (by including the additional VLT data) to measure an approximate velocity dispersion. Twelve redshift class 1–4 members yield $\sigma = 990 \pm 240$ km s$^{-1}$ or nine higher confidence (class 1–3) members yield $\sigma = 790 \pm 200$ km s$^{-1}$. These velocity dispersions would correspond to virial mass estimates (Carlberg et al. 1997) of $6.1 \times 10^{14} M_{\odot}$ and $3.1 \times 10^{14} M_{\odot}$, which are in good agreement with the X-ray-derived mass of $6.4 \pm 0.6 \times 10^{14} M_{\odot}$, within the broad uncertainties of the dynamical estimate. Using the richness–dynamical mass relation established at lower redshift (Blindert et al. 2008), the $B_{0,0}$ values of clusters A–C would correspond to expected masses of $M = (9.5, 5.4, 1.3) \times 10^{14} M_{\odot}$ respectively. The 1 σ intrinsic scatter in the observed relation is ~0.7 dex (Blindert et al. 2008) and thus the inferred masses are consistent with the measured X-ray masses within this broad scatter.

Cluster	z_{pec}	$B_{0,0}$	L_X (1044 ergs s$^{-1}$)	T_X (keV)	$M_{X,tot}$ (1014 M_{\odot})
(A) RCS 231953+0038.0 ……	0.8972	1515 ± 280	7.6$^{+0.8}_{-0.4}$	6.2$^{+0.4}_{-0.8}$	6.4$^{+0.5}_{-0.9}$
(B) RCS 231948+0030.1 ……	0.9024	1150 ± 320	3.6$^{+0.6}_{-0.4}$	6.5$^{+1.1}_{-1.2}$	5.1$^{+1.7}_{-0.9}$
(C) RCS 232002+0033.4 ……	0.9045	580 ± 200	4.2$^{+0.3}_{-0.3}$	5.9$^{+0.7}_{-0.8}$	4.7$^{+0.7}_{-0.5}$

Notes.—An abbreviated name (A–C) is given in addition to each cluster’s entry in the RCS catalog; z_{pec} denotes clipped mean redshift within 1.5 Mpc of cluster center; $B_{0,0}$ is optical richness (Gladders & Yee 2005); bolometric luminosities and temperatures are determined within r_{500} and masses are extrapolated to r_{200}.

Fig. 1.—Redshift histograms for the full field (27′ diameter, 12.6 Mpc at $z = 0.9$). The open histogram shows redshifts of all quality and the filled histogram shows only those of higher quality. A bin size of 0.01 is used which corresponds to ~1500 km s$^{-1}$ at $z = 0.9$. Insets show redshifts within 1.5 Mpc of each cluster center.

Fig. 2.—Distribution of galaxies in the supercluster structure within the IMACS field. Filled circles show galaxies with IMACS spectroscopic redshifts (both higher and lower confidence) consistent with belonging to the $z = 0.9$ structure; crosses are objects inconsistent with this redshift and diamonds denote slits which failed to yield a redshift. Contours show the significance of red-sequence structures, with levels running from 2.0 σ in 0.3 σ intervals. Note the striking tendency for the major axis of each cluster, as traced by red galaxies, to point toward its nearest neighbor. Large open circles indicate X-ray centroids from Hicks et al. (2008).
3.3. Strong-lensing Mass for Cluster A

We can use the radial distance and redshift of the strongly lensed $z = 3.8605$ galaxy to make an estimate of the mass of cluster A within this radius. A simple circular fit to the position of the arc with respect to the brightest cluster galaxy (BCG) within this radius gives a mass of M_{arc} that is of an isothermal sphere would imply a central velocity dispersion of 860 km s$^{-1}$, corresponding to a surface density of 1.9×10^{-4} deg$^{-2}$. We should therefore have a probability of <2% of finding such an object in the 92 deg$^{-2}$ of RCS-1, if the Hubble Volume simulation gives an accurate description of the abundance of structure. Relaxing the maximum separation requirement slightly to 10 Mpc (which is the maximum inferred spatial separation if the LOS velocity difference is due to cosmic expansion), we find five such triple clusters, corresponding to a surface density of 9.5×10^{-4} deg$^{-2}$ or a probability of <9% of finding such an object in the RCS-1 survey area. If the clusters are in fact less massive than our mass estimates suggest, then the probability of finding such a supercluster structure increases. We repeat our analysis using different mass thresholds for the component clusters until the surface density of such structures approaches that of one system per RCS-1 survey area. To do this requires the individual clusters to have masses of only $2.3 \times 10^{14} M_\odot$; i.e., all three would have to be at least a factor of 2 less massive than our best estimates, which corresponds to a >2 σ deviation. The Hubble Volume simulation was performed with a value for the amplitude of fluctuations, σ_8, of 0.90, whereas recent measurements such as the WMAP 3 year results (Spergel et al. 2007) find a lower value ($\sigma_8 = 0.761^{+0.044}_{-0.045}$). Lowering σ_8 lowers the abundance of massive structures, particularly at higher redshift, making the chances of finding such a supercluster more unlikely in this cosmology.

5. DISCUSSION AND CONCLUSIONS

We have presented spectroscopic confirmation of three clusters, selected from a large optical survey and found to be X-ray luminous from Chandra observations. Two independent mass estimators for one cluster (including a strong-lensing estimate from a newly confirmed $z \sim 4$ Lyman break galaxy behind the cluster) support the X-ray mass estimates.

The major axes of the three components of supercluster RCS 2319+00, as traced by the red-sequence significance (Gladders & Yee 2005) contours, all point toward the nearest-neighbor cluster (Fig. 2). This alignment is also largely mirrored by the X-ray contours (Fig. 1 of Hicks et al. 2008). The tendency for neighboring clusters to point toward each other was first noticed by Binggeli (1982) and is further independent evidence that these clusters are associated. In addition, this may give some clues as to the 3D alignment of the clusters’ halos. One of the interpretations for the high incidence of strong-lensing clusters in RCS-1 is that the strongly lensing systems may have their major axes directed along the line of sight (Gladders et al. 2003). The alignment with the neighboring cluster, coupled with the small line-of-sight separation, might suggest that this is not the explanation in this case. Detailed lens modeling will be required to try to constrain halo orientation and is beyond the scope of this Letter.

The supercluster RCS 2319+00 comprises three clusters, each massive in its own right ($5 \times 10^{14} M_\odot$), which are likely to merge by low-redshift to form a system $1.5 \times 10^{15} M_\odot$. Thus, this system gives us a unique opportunity to study one
of the most massive clusters in the universe in the process of assembly. Two other groups (Lubin et al. 2000; Swinbank et al. 2007) have reported finding superclusters at similar redshifts, but these represent somewhat different systems to that presented here. The Lubin et al. (2000) supercluster (Cl 1604) comprises at least four components (Gal et al. 2005) spanning ∼10 Mpc × ∼100 Mpc (0.865 < z < 0.921). The clusters range in velocity dispersion from <500 to ∼900 km s⁻¹. However, the X-ray temperature for the main cluster of Cl 1604 is only 2.5 keV (Lubin et al. 2004), suggesting that at least this component is less massive than its velocity dispersion would imply, possibly due to the cluster being dynamically unrelaxed. The lower masses and larger separations suggest that Cl 1604 is less likely to merge into a massive cluster as RCS 2319+00. The Swinbank et al. (2007) supercluster comprises five systems with approximate velocity dispersions ≤500 km s⁻¹ (M ≤ 8 × 10¹⁵ M☉) spread across 30 Mpc. The lower masses of these systems is not surprising given the low space density of massive clusters and the 1 deg² size of their survey.

The chances of finding a structure as massive as RCS 2319+00 within the RCS-1 survey are <9% with σₖ = 0.90 and less with a lower value, using the currently favored cosmological parameters. This may indicate that refinements to the current cosmological model are still to be made, but we are, of course, cautious about using the existence of a single system to make statements about cosmology. The order-of-magnitude greater area of RCS-2 (Yee et al. 2007) will allow us to place stronger constraints on the abundance of such massive structures.

A program of detailed wide-field spectroscopy to fully explore the 2319+00 structure is underway. In conjunction with our comprehensive ongoing IMACS spectroscopy of a core sample of RCS clusters, selected to uniformly sample mass and redshift space, we will be able to probe the processes which drive galaxy evolution in clusters as a function of cluster mass. As an unusually massive cluster in the early stages of merging, and through comparison with lower redshift ∼10¹⁰ M☉ clusters, RCS 2319+00 may give us a unique opportunity to identify processes which occur in massive clusters prior to their final assembly.

This Letter includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. It is based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and SECYT (Argentina). The RCS project is supported by grants to H. K. C. Y. from the Canada Research Chair Program, the Natural Sciences and Engineering Research Council of Canada (NSERC), and the University of Toronto. E. E. acknowledges NSF grant AST 02-06154. M. D. G. acknowledges partial support for this work provided by NASA through Hubble Fellowship grant HF-01184.01 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. L. F. B. acknowledges the support of the FONDAP center for Astrophysics and CONICYT under proyecto FONDECYT 1040423.

REFERENCES

Binggeli, B. 1982, A&A, 107, 338
Blindert, K., Yee, H. K. C., Gladders, M. D., Ellingson, E., Gilbank, D. G., Barrientos, L. F., & Golding, J. 2008, ApJS, submitted
Carlberg, R. G., et al. 1997, ApJ, 485, L13
Donahue, M. 1996, ApJ, 468, 79
Ellingson, E., Yee, H. K. C., Abraham, R. G., Morris, S. L., & Carlberg, R. G. 1998, ApJS, 116, 247
Evrard, A. E., et al. 2002, ApJ, 573, 7
Gal, R. R., Lubin, L. M., & Squires, G. K. 2005, AJ, 129, 1827
Gilbank, D. G., Yee, H. K. C., Ellingson, E., Gladders, M. D., Barrientos, L. F., & Blindert, K. 2007, AJ, 134, 282
Gladders, M. D., Hoekstra, H., Yee, H. K. C., Hall, P. B., & Barrientos, L. F. 2003, ApJ, 593, 48
Gladders, M. D., & Yee, H. K. C. 2005, ApJS, 157, 1
Hicks, A. K., et al. 2008, ApJ, in press (arXiv:0710.5513)
Hoeft, M., Franx, M., Kuijken, K., Carlberg, R. G., & Yee, H. K. C. 2003, MNRAS, 340, 609
Lubin, L. M., Brunner, R., Metzger, M. R., Postman, M., & Oke, J. B. 2000, ApJ, 531, L5
Lubin, L. M., Mulchaey, J. S., & Postman, M. 2004, ApJ, 601, L9
Sarazin, C. L. 2002, in Merging Processes in Galaxy Clusters, ed. L. Feretti (Dordrecht: Kluwer), 1
Schneider, P., Ehlers, J., & Falco, E. E. 1992, Gravitational Lenses (Berlin: Springer)
Shapley, A. E., Steidel, C. C., Pettini, M., & Adelberger, K. L. 2003, ApJ, 588, 65
Spergel, D. N., et al. 2007, ApJS, 170, 377
Swinbank, A. M., et al. 2007, MNRAS, 379, 1343
Yee, H. K. C., Gladders, M. D., Gilbank, D. G., Majumdar, S., Hoekstra, H., Ellingson, E., & the RCS-2 Collaboration. 2007, in ASP Conf. Ser. 379, Cosmic Frontiers, ed. N. Metcalfe & T. Shanks (San Francisco: ASP), 103