Higher spin $m \neq 0$ excitations on curved backgrounds and cosmological supergravity

S. Deser1,2 and M. Henneaux3,4

1Walter Burke Institute for Theoretical Physics Caltech, Pasadena CA 91125, USA;
2Physics Department, Brandeis university, Waltham MA 02454, USA;
3Physique Théorique et Mathématique & International Solvay Institutes, Université Libre de Bruxelles, Campus Plaine C.P. 231, B-1050 Bruxelles, Belgium;
4Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France

Abstract

Some time ago, we showed that a weak (linear) massless spin 2 wave could only propagate on a Ricci-flat or Ricci-constant background: it must necessarily be a perturbation of General Relativity. This was just the continuation of the higher spin chain: massless $s = 3/2$ also required Ricci-flatness (which is the basis of supergravity) while $s > 2$ needs Riemann flatness. This note re-analyzes the problem in a perhaps more physical way: by considering massless and – only apparently – massive small excitations and showing how their parameters relate to the cosmological constant. We will thus prove, in a simple physical way, the necessity, as well as the sufficiency, of the known supergravity results.
1 Introduction

In [1], we showed that massless linear $s = 2$ excitations, of a very general a priori form, could only propagate on a Ricci $-\,$, or equivalently Einstein $-\,$, flat or constant space: they had to be effectively perturbations of the general relativity (GR) background. This result fits neatly into a well-known sequence: massive or massless $s < 3/2$ moves in any space, $s = 3/2$ only in a Ricci-flat (if massless) or “tuned” constant (if massive) one (whence supergravity (SUGRA) in the coupling to gravity), while all higher than $s = 2$ fields require a Riemann-flat background, hence no “hypergravities” with $s = 5/2$ or higher [2]. [Even if $s = 5/2$ can live on a fixed, non-dynamical, background such as AdS, that is as unsatisfactory as living in flat space, for the same reason.]

A deeper physics explanation for the above result is that spacetime in GR is not a fixed arena, flat or otherwise, but a dynamical system with its own action. When added to that of spin 2 $\sim \int D\epsilon D\epsilon$, the resulting new equations read $G_{\mu\nu}(g) = T_{\mu\nu}(h)$. Given the linear $\Box h + \ldots = 0$ equation, the now obvious result is that the total system is equivalent to pure GR, but with action $\sim \int R(g + h)$, to quadratic h-order. Without this, the spin 2 field would just be a test field, with negligible $T_{\mu\nu}$, hence of negligible interest.

A more involved, but similar, story holds for $s = 3/2$ and SUGRA rather than just GR. The combined action of the massless spin $3/2$ field plus GR is consistent because $-$ and only because $-$ the “Bianchi identities” of the $3/2$ equations, $\sim (\text{Ricci}) D\psi_\mu = 0$ hold using $\text{Ricci} \sim T_{\mu\nu}(\psi)$ and the rather involved cubic Fierz identities. Underlying this is of course the local supersymmetry of the combined system. Otherwise, the spin $3/2$ field would have to be a dull test-field, with a weak $T_{\mu\nu}$ of no effect as well! [Of course the Einstein Bianchi identities always work, since they merely express local coordinate invariance.]

In [1], we also considered the cosmological case, where identical arguments apply to prove that the background must be Ricci-constant. The purpose of this note is to provide physical insight into the derivation of [1], by emphasizing how the “mass” of the linear $s = 2$ excitations is required to connect to the cosmological constant for consistency.

2 Cosmological excitations

The basic point is that Cosmological General Relativity (CGR) involves a new, massive, parameter Λ, so consistent excitations on it must do so as well, simply by now being (apparently) massive. This lesson was learned in SUGRA, where the $s = 3/2$ excitation had to become massive to allow the more general SUGRA with cosmological term [3], the upshot being that $s = 3/2$ was actually apparently massive as a result of being in a tuned AdS space as explained in [4].
We thus let the linear \(s = 2 \) wave have an apparent \(m^2 \) of dimension \(\Lambda \). In the notations and implicitly assumed \((++++)\) signature of [1], this means adding to the Pauli-Fierz action

\[
I_2 = \int d^4x h^{\mu\nu} \theta_{\mu\nu\alpha\beta} h^{\alpha\beta}
\]

(where \(\theta \) is the second-order Hermitian operator yielding the gauge-invariant spin 2 field equation \(\Box h_{\mu\nu} + \cdots = 0 \)) the term

\[
I_C = -\frac{m^2}{4} \int d^4x \left(h_{\mu\nu} h^{\mu\nu} - \frac{1}{2} h^2 \right) (-g)^{-\frac{1}{2}}
\]

where proper background covariance is manifest, but where we do not assume a priori any relationship between \(m^2 \) and \(\Lambda \) (contrary to what was done in [1]). Note that the field \(h_{\mu\nu} \) carries density weight one, hence the factors \((-g)^{-\frac{1}{2}}\) in the action [5].

However, enforcing gauge invariance of the spin 2 field under \((-g)^{-\frac{1}{2}}\delta h_{\mu\nu} = D_{\mu} \xi_{\nu} + D_{\nu} \xi_{\mu} - g_{\mu\nu} D_{\alpha} \xi_{\alpha} \) yields, by a trivial extension of the calculation leading to Eq. (3) of [1] that the background must be Ricci-constant with \(\Lambda = -m^2 \). Indeed, the variation of the cosmological piece \(I_C \) of the action adds to the variation of \(I_2[h] \)

\[
\delta I_2[h] = \int d^4x \xi^\mu \left[R_{\mu\rho} D_{\nu} h^{\rho\nu} + \frac{1}{2} (D_{\alpha} R_{\mu\beta} + D_{\beta} R_{\mu\beta} - D_{\mu} R_{\alpha\beta}) h^{\alpha\beta} \right] (-g)^{-\frac{1}{2}}
\]

the term

\[
\delta I_C[h] = m^2 \int d^4x \xi_{\mu} D_{\nu} h^{\mu\nu} (-g)^{-\frac{1}{2}}
\]

imposing through \(\delta I_2[h] + \delta I_C[h] = 0 \) the background equation

\[
R_{\mu\nu} = -m^2 g_{\mu\nu}
\]

equivalent to

\[
G_{\mu\nu} + \Lambda g_{\mu\nu} = 0
\]

with

\[
\Lambda = -m^2
\]

(from which \(D_{\alpha} R_{\mu\nu} = 0 \) follows automatically).

We thus see that the background must be indeed Ricci-constant with \(\Lambda = -m^2 \), so that the total system is equivalent to a pure CGR one with \(g_{\mu\nu} + h_{\mu\nu} \), to quadratic \(h \) order. Anti-de Sitter space corresponds to \(m^2 > 0 \), i.e., real mass, while de Sitter space corresponds to imaginary mass.

Of course, as shown in [4], the excitation’s “mass” effectively vanishes as a result of gauge invariance. For \(s = 2 \) alone, either sign of \(m^2 \) is allowed, because while dS GR is also effectively massless, it is finite, involving a geometrical horizon. Real \(m \) requires
AdS just as in the $s = 3/2$ case where $m \sim \sqrt{-\Lambda}$ corresponds to $\Lambda < 0$, i.e., anti-deSitter (AdS) gravity in our conventions. Hence the uniqueness of AdS, vs absence of dS-SUGRA, corresponding to SO(3,2) vs SO(4,1) representations in group language, an alternate explanation. We stress, however, that the derivation of (7) given here does not require supersymmetry.

3 Conclusions

In summary then, we first rederived our original claim in [1] that massless $s=2$ excitations on Einstein-flat/constant spaces in GR are consistent if and only if they are perturbations of the latter, $g_{\mu\nu} \rightarrow g_{\mu\nu} + h_{\mu\nu}$ by a physical argument treating those excitations purely dynamically, without assuming any a priori relationship between the cosmological constant and the mass of the spin 2 excitation. More centrally, we explained in a dynamical sense, how CGR and SUGRA arise from the corresponding (apparently massive) linear $s = 2$ and $3/2$ excitations through the derived relation $\Lambda = -m^2$ in the same way as did their massless counterparts, that is, this condition is not merely sufficient but necessary.

Acknowledgments

The work of SD was supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under award number de-sc0011632. The work of MH was partially supported by FNRS-Belgium (conventions FRFC PDRT.1025.14 and IISN 4.4503.15) and by funds from the Solvay Family.

References

[1] S. Deser and M. Henneaux, “A Note on spin two fields in curved backgrounds,” Class. Quant. Grav. 24 (2007), 1683-1686 doi:10.1088/0264-9381/24/6/N01 [arXiv:gr-qc/0611157 [gr-qc]].

[2] C. Aragone and S. Deser, “Consistency Problems of Hypergravity,” Phys. Lett. B 86 (1979), 161-163 doi:10.1016/0370-2693(79)90808-6

[3] P. K. Townsend, “Cosmological Constant in Supergravity,” Phys. Rev. D 15 (1977), 2802-2804 doi:10.1103/PhysRevD.15.2802

[4] S. Deser and B. Zumino, “Broken Supersymmetry and Supergravity,” Phys. Rev. Lett. 38 (1977), 1433-1436 doi:10.1103/PhysRevLett.38.1433
[5] S. Deser, “Selfinteraction and gauge invariance,” Gen. Rel. Grav. 1 (1970), 9-18
doi:10.1007/BF00759198 [arXiv:gr-qc/0411023 [gr-qc]].