The C^*-algebras of connected real two-step nilpotent Lie groups

Janne-Kathrin Günther and Jean Ludwig

September 22, 2014

Abstract

Using the operator valued Fourier transform, the C^*-algebras of connected real two-step nilpotent Lie groups are characterized as algebras of operator fields defined over their spectra. In particular, it is shown by explicit computations, that the Fourier transform of such C^*-algebras fulfills the norm controlled dual limit property.

1 Introduction

In this article, the structure of the C^*-algebras of two-step nilpotent Lie groups will be analyzed. In order to be able to understand these C^*-algebras, the Fourier transform is an important tool. The Fourier transform $\mathcal{F}(a) = \hat{a}$ of an element a of a C^*-algebra A is defined in the following way: One chooses for every γ in \hat{A}, the spectrum of A, a representation $(\pi_\gamma, \mathcal{H}_\gamma)$ in the equivalence class of γ and defines

$$\mathcal{F}(a)(\gamma) := \pi_\gamma(a) \in \mathcal{H}_\gamma \quad \forall \ \gamma \in \hat{A}.$$

Then $\mathcal{F}(a)$ is contained in the algebra of all bounded operator fields over \hat{A}

$$l^\infty(\hat{A}) = \{ \phi = (\phi(\pi_\gamma) \in B(\mathcal{H}_\gamma))_{\gamma \in \hat{A}} \mid \|\phi\|_\infty := \sup_{\gamma \in \hat{A}} \|\phi(\pi_\gamma)\|_{op} < \infty \}$$

and the mapping

$$\mathcal{F} : A \rightarrow l^\infty(\hat{A}), \ a \mapsto \hat{a}$$

is an isometric $*$-homomorphism.

The structure of the C^*-algebras is already known for certain classes of Lie groups: The C^*-algebras of the Heisenberg and the thread-like Lie groups have been characterized in [7] and the C^*-algebras of the $ax+b$-like groups in [6]. Furthermore, the C^*-algebras of the 5-dimensional nilpotent Lie groups have been determined in [11] and H.Regeiba analyzed the C^*-algebras of all 6-dimensional nilpotent Lie groups in his doctoral thesis (see [10]). The methods in this paper will partly be similar, but more complex, to the one used for the characterization of the C^*-algebra of the Heisenberg Lie group (see [7]), which is also two-step nilpotent and thus serves as an example.

It will be shown that the C^*-algebras of two-step nilpotent Lie groups G are characterized by the following conditions. The same conditions hold true for all 5- and 6-dimensional nilpotent Lie groups (see [11]), for the Heisenberg Lie groups and the thread-like Lie groups (see [7]).
1. Stratification of the spectrum:

(a) A finite increasing family \(S_0 \subset S_1 \subset \ldots \subset S_r = \hat{C}^*(G) \cong \hat{G} \) of closed subsets of the spectrum \(\hat{C}^*(G) \cong \hat{G} \) of \(C^*(G) \) or respectively \(G \) will be constructed in such a way that for \(i \in \{1, \ldots, r\} \) the subsets \(\Gamma_i = S_i \setminus S_{i-1} \) are Hausdorff in their relative topologies and such that \(S_0 \) consists of all the characters of \(C^*(G) \) or \(G \), respectively.

(b) For every \(i \in \{0, \ldots, r\} \) a Hilbert space \(H_i \) and for every \(\gamma \in \Gamma_i \) a concrete realization \((\pi_\gamma, H_i)\) of \(\gamma \) on the Hilbert space \(H_i \) will be defined.

2. CCR \(C^* \)-algebra:

It will be shown that \(C^*(G) \) is a separable CCR (or liminal) \(C^* \)-algebra, i.e. a separable \(C^* \)-algebra such that the image of every irreducible representation \((\pi, H)\) of \(C^*(G) \) is contained in the algebra of compact operators \(K(H) \) (which implies that the image equals \(K(H) \)).

3. Changing of layers:

Let \(a \in C^*(G) \).

(a) It will be proved that the mappings \(\gamma \mapsto \mathcal{F}(a)(\gamma) \) are norm continuous on the different sets \(\Gamma_i \).

(b) For any \(i \in \{0, \ldots, r\} \) and for any converging sequence contained in \(\Gamma_i \) with limit set outside \(\Gamma_i \) (thus in \(S_{i-1} \)), there will be constructed a properly converging subsequence \(\mathcal{Y} = (\gamma_k)_{k \in \mathbb{N}} \) (i.e. the subsequences of \(\mathcal{Y} \) have all the same limit set - see Definition 2.3), as well as a constant \(C > 0 \) and for every \(k \in \mathbb{N} \) an involutive linear mapping \(\tilde{\nu}_k = \tilde{\nu}_{\gamma,k} : CB(S_{i-1}) \to B(H_i) \), which is bounded by \(C \| \cdot \|_{S_{i-1}} \), such that

\[
\lim_{k \to \infty} \| \mathcal{F}(a)(\gamma_k) - \tilde{\nu}_k(\mathcal{F}(a)\big|_{S_{i-1}}) \|_{\text{op}} = 0.
\]

Here \(CB(S_{i-1}) \) is the \(*\)-algebra of all the uniformly bounded fields of operators \((\psi(\gamma) \in B(H_j))_{\gamma \in \Gamma_j, j=0, \ldots, i-1}\), which are operator norm continuous on the subsets \(\Gamma_j \) for every \(j \in \{0, \ldots, i-1\} \), provided with the infinity-norm

\[
\| \varphi \|_{S_{i-1}} := \sup_{\gamma \in S_{i-1}} \| \varphi(\gamma) \|_{\text{op}}.
\]

These properties characterize the structure of \(C^*(G) \) (see [11], Theorem 3.5). A \(C^* \)-algebra fulfilling these conditions is called a \(C^* \)-algebra with “norm controlled dual limits”.

The main work of this article consists in the proof of Property 3(b) and in particular in the construction of the mappings \((\tilde{\nu}_k)_k\).

2 Preliminaries

2.1 Two-step nilpotent Lie groups

Let \(\mathfrak{g} \) be a real Lie algebra which is nilpotent of step two. This means that

\[
[\mathfrak{g}, \mathfrak{g}] := \text{span}\{[X,Y] \mid X, Y \in \mathfrak{g}\}
\]

is contained in the center of \(\mathfrak{g} \).

Fix a scalar product \(\langle \cdot, \cdot \rangle \) on \(\mathfrak{g} \) and take on \(\mathfrak{g} \) the Campbell-Baker-Hausdorff multiplication

\[
u \cdot v = \nu + v + \frac{1}{2} [\nu, v] \quad \forall \, \nu, v \in \mathfrak{g}.
\]
This gives the simply connected connected Lie group \(G = (g, \cdot) \) with Lie algebra \(g \). The exponential mapping \(\exp : g \to G = (g, \cdot) \) is in this case the identity mapping.

The Haar measure of this group is a Lebesgue measure which is denoted by \(dx \).

Then, the \(C^* \)-algebra of \(G \) is defined as the completion of the convolution algebra \(L^1(G, dx) = L^1(G) \) with respect to the \(C^* \)-norm of \(L^1(G, dx) \), i.e.

\[
C^*(G) := \overline{L^1(G, dx)}^{\| \cdot \|_{C^*(G)}} \quad \text{with} \quad \| f \|_{C^*(G)} := \sup_{\pi \in \hat{G}} \| \pi(f) \|_{op}
\]

and a well-known result, that can be found in [3], states that the spectrum of \(C^*(G) \) coincides with the spectrum of \(G \):

\[
\hat{C^*(G)} = \hat{G}.
\]

Now, for a linear functional \(\ell \) of \(g \), consider the skew-bilinear form

\[
B_\ell(X, Y) := \langle \ell, [X, Y] \rangle
\]

on \(g \). Moreover, let

\[
g(\ell) := \{ X \in g | \langle \ell, [X, g] \rangle = \{0\} \}
\]

be the radical of \(B_\ell \) and the stabilizer of the linear functional \(\ell \). Then, as \(g \) is two-step nilpotent, \([g, g] \subset g(\ell) \) and thus \(g(\ell) \) is an ideal of \(g \).

Definition 2.1.
A subalgebra \(p \) of \(g \), that is subordinated to \(\ell \) (i.e. that fulfills \(\langle \ell, [p, p] \rangle = \{0\} \)) and that has the dimension

\[
\dim(p) = \frac{1}{2} (\dim(g) + \dim(g(\ell))),
\]

which means that \(p \) is maximal isotropic for \(B_\ell \), is called a polarization in \(\ell \).

Again since \(g \) is nilpotent of step two, every maximal isotropic subspace \(p \) of \(g \) for \(B_\ell \) containing \([g, g] \) is a polarization at \(\ell \).

Now, if \(p \subset g \) is any subalgebra of \(g \) which is subordinated to \(\ell \), the linear functional \(\ell \) defines a unitary character \(\chi_\ell \) of \(P := \exp(p) \):

\[
\chi_\ell(x) := e^{-2\pi i \ell(\log(x))} = e^{-2\pi i \ell(x)} \quad \forall \ x \in P.
\]

2.2 Induced representations

The induced representation \(\sigma_{\ell, p} = \text{ind}_P^G \chi_\ell \) for a polarization \(p \) in \(\ell \) and \(P := \exp(p) \) can be described in the following way:

Since \(p \) contains \([g, g] \) and even the center \(z \) of \(g \), one can write \(g = s \oplus p \) and \(p = t \oplus z \) for two subspaces \(t \) and \(s \) of \(g \). The quotient space \(G/P \) is then homeomorphic to \(s \) and the Lebesgue measure \(ds \) on \(s \) defines an invariant Borel measure \(d\dot{g} \) on \(G/P \). The group \(G \) acts by the left translation \(\sigma_{\ell, p} \) on the Hilbert space

\[
L^2(G/P, \chi_\ell) := \left\{ \xi : G \to \mathbb{C} | \xi \text{ measurable, } \xi(gp) = \chi_\ell(p)\xi(g) \forall g \in G \forall p \in P, \right\}
\]

\[
\|\xi\|_2^2 := \int_{G/P} |\xi(g)|^2 \, d\dot{g} < \infty.
\]
Now, if one uses the coordinates $G = \mathfrak{g} \cdot \mathfrak{p}$, one can identify the Hilbert spaces $L^2(G/P, \chi_\ell)$ and $L^2(\mathfrak{g}) = L^2(\mathfrak{g}, d\mathfrak{g})$:

Let $U_\ell : L^2(\mathfrak{g}, d\mathfrak{g}) \to L^2(G/P, \chi_\ell)$ be defined by

$$U_\ell(\varphi)(S \cdot Y) := \chi_\ell(-Y) \varphi(S) \quad \forall \ Y \in \mathfrak{p} \quad \forall \ S \in \mathfrak{g} \quad \forall \ \varphi \in L^2(\mathfrak{g}).$$

Then, U_ℓ is a unitary operator and one can transform the representation $\sigma_{\ell,p}$ into a representation $\pi_{\ell,p}$ on the space $L^2(\mathfrak{g})$:

$$\pi_{\ell,p} := U_\ell^* \circ \sigma_{\ell,p} \circ U_\ell.$$ \hspace{1cm} (1)

Furthermore, one can express the representation $\sigma_{\ell,p}$ in the following way:

$$\sigma_{\ell,p}(S \cdot Y) \xi(R) = \xi(Y^{-1} S^{-1} R) = \xi((R - S) \cdot \left(-Y + \frac{1}{2}[R, S] - \frac{1}{2}[R - S, Y]\right)) = e^{2\pi i (\xi(R - S) - \frac{1}{2}[R - S, Y])} \xi(R - S) \quad \forall \ R, S \in \mathfrak{g} \quad \forall \ Y \in \mathfrak{p} \quad \forall \ \xi \in L^2(G/P, \chi_\ell).$$

Hence

$$\pi_{\ell,p}(S \cdot Y) \varphi(R) = e^{2\pi i (\xi(R - S) - \frac{1}{2}[R - S, Y])} \varphi(R - S) \quad \forall \ R, S \in \mathfrak{g} \quad \forall \ Y \in \mathfrak{p} \quad \forall \ \varphi \in L^2(\mathfrak{g}).$$ \hspace{1cm} (2)

2.3 Orbit method

By the Kirillov theory (see [2], Section 2.2), for every representation class $\gamma \in \hat{G}$, there exists an element $\ell \in \mathfrak{g}^*$ and a polarization \mathfrak{p} of ℓ in \mathfrak{g} such that $\gamma = [\text{ind}^G_{\mathfrak{p}} \chi_\ell]$, where $P := \exp(\mathfrak{p})$.

Moreover, if $\ell, \ell' \in \mathfrak{g}^*$ are located in the same coadjoint orbit $O \in \mathfrak{g}^*/G$ and \mathfrak{p} and \mathfrak{p}' are polarizations in ℓ and ℓ', respectively, the induced representations $\text{ind}^G_{\mathfrak{p}} \chi_\ell$ and $\text{ind}^G_{\mathfrak{p}'} \chi_{\ell'}$ are equivalent and thus, the Kirillov map which goes from the coadjoint orbit space \mathfrak{g}^*/G to the spectrum \hat{G} of G

$$K : \mathfrak{g}^*/G \to \hat{G}, \ Ad^* G \ell \mapsto [\text{ind}^G_{\mathfrak{p}} \chi_\ell]$$

is a homeomorphism (see [1] or [5], Chapter 3). Therefore,

$$\mathfrak{g}^*/G \cong \hat{G}$$

as topological spaces.

For every $\ell \in \mathfrak{g}^*$ and $x \in G = (\mathfrak{g}, \cdot)$

$$\text{Ad}^* (x) \ell = (1_{\mathfrak{g}^*} + \text{ad}^* (x)) \ell \in \ell + \mathfrak{g}(\ell)^\perp.$$

Hence, as $\text{ad}^* (\mathfrak{g}) \ell \in \mathfrak{g}(\ell)^\perp$,

$$O_\ell := \text{Ad}^* (G) \ell = \ell + \mathfrak{g}(\ell)^\perp.$$ \hspace{1cm} (3)

Definition 2.2.

Let T be a second countable topological space and suppose that T is not Hausdorff, which means that converging sequences can have many limit points. Denote by $L((t_k)_k)$ the collection of all the limit points of a sequence $(t_k)_k$ in T. A sequence $(t_k)_k$ is called properly converging, if $(t_k)_k$ has limit points and if every subsequence of $(t_k)_k$ has the same limit set as $(t_k)_k$.

It is well known that every converging sequence in T admits a properly converging subsequence.
Now, let \((\pi_k)_k \subset \hat{G}\) be a properly converging sequence in \(\hat{G}\) with limit set \(L((\pi_k)_k)\). Let \(O \in \mathfrak{g}^*/G\) be the Kirillov orbit of some \(\pi \in L((\pi_k)_k), O_k\) the Kirillov orbit of \(\pi_k\) for every \(k\) and let \(\ell \in O\). Then there exists for every \(k\) an element \(\ell_k \in O_k\), such that \(\lim_{k \to \infty} \ell_k = \ell\) in \(\mathfrak{g}^*\) (see \([5]\)). One can assume that, passing to a subsequence if necessary, the sequence \((\mathfrak{g}(\ell_k))_k\) converges in the subspace topology to a subalgebra \(u\) of \(\mathfrak{g}(\ell)\) and that there exists a number \(d \in \mathbb{N}\), such that \(\dim(O_k) = d\) for every \(k \in \mathbb{N}\). Then it follows from \([4]\), that

\[
L((O_k)_k) = \lim_{k \to \infty} \ell_k + \mathfrak{g}(\ell_k)^\perp = \ell + u^\perp \subset \mathfrak{g}^*.
\]

(4)

Since \(\mathfrak{g}(\ell_k)\) contains \([\mathfrak{g}, \mathfrak{g}]\) for every \(k\), the subspace \(u\) also contains \([\mathfrak{g}, \mathfrak{g}]\). Hence, the limit set \(L((\pi_k)_k)\) in \(\hat{G}\) of the sequence \((\pi_k)_k\) is the “affine” subset

\[
L((\pi_k)_k) = \{ [\chi_q \otimes \text{ind}_P^G \chi_{\ell}] | q \in u^\perp \}
\]

for a polarization \(p\) in \(\ell\) and \(P := \text{exp}(p)\).

The observations above lead to the following proposition:

Proposition 2.3.

There are three different types of possible limit sets of the sequence \((O_k)_k\) of coadjoint orbits:

1. The limit set \(L((O_k)_k)\) is the singleton \(O_{\ell} = \ell + \mathfrak{g}(\ell)^\perp\), i.e. \(u = \mathfrak{g}(\ell)\).

2. The limit set \(L((O_k)_k)\) is the affine subspace \(\ell + u^\perp\) of characters of \(\mathfrak{g}\), i.e. \(\{ \ell, [\mathfrak{g}, \mathfrak{g}] \} = \{ 0 \}\).

3. The dimension of the orbit \(O_{\ell}\) is strictly greater than 0 and strictly smaller than \(d\). In this case

\[
L((O_k)_k) = \bigcup_{q \in u^\perp} q + O_{\ell}, \quad \text{i.e.} \quad L((\pi_k)_k) = \bigcup_{q \in u^\perp} [\chi_q \otimes \text{ind}_P^G \chi_{\ell}]
\]

for a polarization \(p\) in \(\ell\) and \(P := \text{exp}(p)\).

2.4 The \(C^*\)-algebra \(C^*(G/U, \chi_{\ell})\)

Let \(u \subset \mathfrak{g}\) be an ideal of \(\mathfrak{g}\) containing \([\mathfrak{g}, \mathfrak{g}]\), \(U := \text{exp}(u)\) and let \(\ell \in \mathfrak{g}^*\) such that \(\{ \ell, [\mathfrak{g}, \mathfrak{u}] \} = \{ 0 \}\) and such that \(u \subset \mathfrak{g}(\ell)\). Then the character \(\chi_{\ell}\) of the group \(U = \text{exp}(u)\) is \(G\)-invariant. One can thus define the involutive Banach algebra \(L^1(G/U, \chi_{\ell})\) as

\[
L^1(G/U, \chi_{\ell}) := \left\{ f : G \to \mathbb{C} | f \text{ measurable, } f(gu) = \chi_{\ell}(u^{-1})f(g) \forall g \in G \right. \quad \forall u \in U, \left. \|f\|_1 := \int_{G/U} |f(g)| \, d\tilde{g} < \infty \right\}.
\]

The convolution

\[
f * f'(g) := \int_{G/U} f(x)f'(x^{-1}g) \, d\tilde{x} \quad \forall g \in G
\]

and the involution

\[
f^*(g) := \overline{f(g^{-1})} \quad \forall g \in G
\]

are well-defined for \(f, f' \in L^1(G/U, \chi_{\ell})\) and

\[
\|f * f'\|_1 \leq \|f\|_1 \|f'\|_1.
\]
In order to be able to do this, one needs to construct a polarization Γ. Fix once and for all a Jordan-Hölder basis $\{H_1,\ldots, H_n\}$ of \mathfrak{g}, in such a way that $\mathfrak{g}_i := \text{span}\{H_i,\ldots, H_n\}$ for $i \in \{0,\ldots, n\}$ is an ideal in \mathfrak{g}. Since \mathfrak{g} is two-step nilpotent, one can first choose a basis $\{H_{\tilde{n}}, \ldots, H_n\}$ of $[\mathfrak{g}, \mathfrak{g}]$ and then add the vectors $H_1, \ldots, H_{\tilde{n}-1}$ to obtain a basis of \mathfrak{g}. Let

$$I^{P_{\text{uk}}} = \{i \leq n \mid \mathfrak{g}(\ell) \cap \mathfrak{g}_i = \mathfrak{g}(\ell) \cap \mathfrak{g}_{i+1}\}$$

Moreover, the linear mapping

$$p_{G/U} : \mathcal{L}^1(G) \to \mathcal{L}^1(G/U, \chi_\ell),$$

$$p_{G/U}(F)(g) := \int F(gu)\chi_\ell(u) \, du \quad \forall \, F \in \mathcal{L}^1(G) \quad \forall \, g \in G$$

is a surjective $*$-homomorphism between the algebras $\mathcal{L}^1(G)$ and $\mathcal{L}^1(G/U, \chi_\ell)$.

Let

$$\tilde{G}_{u,\ell} := \{ (\pi, \mathcal{H}_\pi) \in \tilde{G} \mid \pi_{|U} = \chi_\ell|_U I_{\mathcal{H}_\pi} \}.$$

Then $\tilde{G}_{u,\ell}$ is a closed subset of \tilde{G}, which can be identified with the spectrum of the algebra $\mathcal{L}^1(G/U, \chi_\ell)$. Indeed it is easy to see that every irreducible unitary representation $(\tilde{\pi}, \mathcal{H}_{\tilde{\pi}}) \in \tilde{G}_{u,\ell}$ defines an irreducible representation $(\tilde{\pi}, \mathcal{H}_{\tilde{\pi}})$ of the algebra $\mathcal{L}^1(G/U, \chi_\ell)$ as follows:

$$\tilde{\pi}(p_{G/U}(F)) := \pi(F) \quad \forall \, F \in \mathcal{L}^1(G).$$

Similarly, if $(\tilde{\pi}, \mathcal{H}_{\tilde{\pi}})$ is an irreducible unitary representation of $\mathcal{L}^1(G/U, \chi_\ell)$ then

$$\pi := \tilde{\pi} \circ p_{G/U}$$

defines an element of $\tilde{G}_{u,\ell}$.

Let $\mathfrak{s} \subset \mathfrak{g}$ be a subspace of \mathfrak{g} such that $\mathfrak{g} = \mathfrak{g}(\ell) \oplus \mathfrak{s}$. Since u contains $[\mathfrak{g}, \mathfrak{g}]$, it is easy to see that

$$\tilde{G}_{u,\ell} = \{ [\chi_\ell \otimes \pi_\ell] \mid q \in (u + \mathfrak{s})^+ \},$$

leaving $\pi_\ell := \text{ind}_{\mathfrak{p}}^{\tilde{G}}(\chi_\ell)$ for a polarization \mathfrak{p} in ℓ and $P := \text{exp}(\mathfrak{p})$.

Denote by $C^\ast(G/U, \chi_\ell)$ the C^\ast-algebra of $\mathcal{L}^1(G/U, \chi_\ell)$, whose spectrum can also be identified with $\tilde{G}_{u,\ell}$.

With $\pi_{\ell+q} := \text{ind}_{\mathfrak{p}}^{\tilde{G}}(\chi_{\ell+q})$, the Fourier transform \mathcal{F} defined by

$$\mathcal{F}(a)(q) := \pi_{\ell+q}(a) \quad \forall \, q \in (u + \mathfrak{s})^+$$

then maps the C^\ast-algebra $C^\ast(G/U, \chi_\ell)$ onto the algebra $C_0((u + \mathfrak{s})^+, \mathcal{K}(\mathcal{H}_{\pi_\ell}))$ of the continuous mappings $\varphi : (u + \mathfrak{s})^+ \to \mathcal{K}(\mathcal{H}_{\pi_\ell})$ vanishing at infinity with values in the algebra of compact operators on the Hilbert space of the representation π_ℓ.

If one restricts $p_{G/U}$ to the Fréchet algebra $\mathcal{S}(G) \subset \mathcal{L}^1(G)$, its image will be the Fréchet algebra

$$\mathcal{S}(G/U, \chi_\ell) = \{ f \in \mathcal{L}^1(G/U, \chi_\ell) \mid f \text{ smooth and for every subspace } \mathfrak{s} \subset \mathfrak{g} \text{ with } \mathfrak{g} = \mathfrak{s}' \oplus u \text{ and for } S' = \text{exp}(\mathfrak{s}') \text{, } f_{|_{S'}} \in \mathcal{S}(S') \}.$$

3 Conditions 1, 2 and 3(a)

Now, to start with the proof of the above listed conditions, the families of sets $(S_i)_{i \in \{0,\ldots, r\}}$ and $(\Gamma_i)_{i \in \{0,\ldots, r\}}$ are going to be defined and the Properties 1, 2 and 3(a) are going to be checked.

In order to be able to do this, one needs to construct a polarization $p_{\ell}^\mathfrak{u}$ for $\ell \in \mathfrak{g}^\ast$ as follows:

Fix once and for all a Jordan-Hölder basis $\{H_1, \ldots, H_n\}$ of \mathfrak{g}, in such a way that $\mathfrak{g}_i := \text{span}\{H_i,\ldots, H_n\}$ for $i \in \{0,\ldots, n\}$ is an ideal in \mathfrak{g}. Since \mathfrak{g} is two-step nilpotent, one can first choose a basis $\{H_{\tilde{n}}, \ldots, H_n\}$ of $[\mathfrak{g}, \mathfrak{g}]$ and then add the vectors $H_1, \ldots, H_{\tilde{n}-1}$ to obtain a basis of \mathfrak{g}. Let

$$I^{P_{\text{uk}}} := \{i \leq n \mid \mathfrak{g}(\ell) \cap \mathfrak{g}_i = \mathfrak{g}(\ell) \cap \mathfrak{g}_{i+1}\}$$
be the Pukanszky index set for \(\ell \in \mathfrak{g}^* \). The number of elements \(|I_{\ell}^{Puk}|\) of \(I_{\ell}^{Puk} \) is the dimension of the orbit \(O_\ell \) of \(\ell \).

Moreover, if one denotes by \(g_i(\ell_{[\ell]},.) \) the stabilizer of \(\ell_{[\ell]} \) in \(\mathfrak{g}_i \),

\[
p_Y^V := \sum_{i=1}^n g_i(\ell_{[\ell]})
\]

is the Vergne polarization of \(\ell \) in \(\mathfrak{g} \). Its construction will now be analyzed by a method developed in [2].

Let \(\ell \in \mathfrak{g}^* \). Then choose the greatest index \(j_1(\ell) \in \{1,...,n\} \) such that \(H_{j_1(\ell)} \not\subseteq \mathfrak{g}(\ell) \) and let \(Y_1^{V,\ell} := H_{j_1(\ell)} \). Furthermore, choose the index \(k_1(\ell) \in \{1,...,n\} \) such that \(<\ell,[H_{k_1(\ell)},H_{j_1(\ell)}]> \neq 0 \) and \(<\ell,[H_{i_1(\ell)},H_{j_1(\ell)}]> = 0 \) for all \(i > k_1(\ell) \) and let \(Y_1^{V,\ell} := H_{k_1(\ell)} \).

Next, let \(g_{1,\ell} := \{ U \in \mathfrak{g} | <\ell,[U,Y_1^{V,\ell}]> = 0 \} \). Then \(g_{1,\ell} \) is an ideal in \(\mathfrak{g} \) which does not contain \(X_1^{V,\ell} \), and \(g = \mathbb{R}X_1^{V,\ell} \oplus g_{1,\ell}. \) Now, the Jordan-Hölder basis will be changed, taking out \(H_{k_1(\ell)} \):

Consider the Jordan-Hölder basis \(\{H_1^{1,\ell},...,H_{k_1(\ell)-1,\ell},H_{k_1(\ell)+1,\ell},...,H_n^{1,\ell}\} \) of \(g_{1,\ell} \) with

\[
H_1^{1,\ell} := H_i \quad \forall \ i > k_1(\ell) \quad \text{and} \quad H_i^{1,\ell} := H_i - \frac{<\ell,[H_i,Y_1^{V,\ell}]>Y_1^{V,\ell}}{<\ell,[X_1^{V,\ell},Y_1^{V,\ell}]>} \quad \forall \ i < k_1(\ell).
\]

Then, choose the greatest index \(j_2(\ell) \in \{1,...,k_1(\ell)-1,k_1(\ell)+1,...,n\} \) such that \(H_{j_2(\ell)} \not\subseteq g_{1,\ell} \) and define \(Y_2^{V,\ell} := H_{j_2(\ell)} \). Like above, choose \(k_2(\ell) \in \{1,...,k_1(\ell)-1,k_1(\ell)+1,...,n\} \) such that \(<\ell,[H_{k_2(\ell)},H_{j_2(\ell)}]> \neq 0 \) and that \(<\ell,[H_{k_1(\ell)},H_{j_2(\ell)}]> = 0 \) for all \(i > k_2(\ell) \) and set \(X_2^{V,\ell} := H_{k_2(\ell)} \).

Iterating this procedure, one gets sets \(\{Y_1^{V,\ell},...,Y_d^{V,\ell}\} \) and \(\{X_1^{V,\ell},...,X_d^{V,\ell}\} \) for \(d \in \{0,...,\frac{[\mathfrak{g}]}{2}\} \) with the properties

\[
p_Y^V = \text{span}\{Y_1^{V,\ell},...,Y_d^{V,\ell}\} \oplus g(\ell)
\]

and

\[
<\ell,[X_i^{V,\ell},Y_i^{V,\ell}]> \neq 0, \quad <\ell,[X_i^{V,\ell},Y_j^{V,\ell}]> = 0 \quad \forall \ i \neq j \in \{1,...,d\} \quad \text{and} \quad <\ell,[Y_i^{V,\ell},Y_j^{V,\ell}]> = 0 \quad \forall \ i,j \in \{1,...,d\}.
\]

Now, let

\[
J(\ell) := \{j_1(\ell),...,j_d(\ell)\} \quad \text{and} \quad K(\ell) := \{k_1(\ell),...,k_d(\ell)\}.
\]

Then

\[
I_{\ell}^{Puk} = J(\ell) \cup K(\ell) \quad \text{and} \quad j_1(\ell) > \cdots > j_d(\ell).
\]

It is easy to see that the index sets \(I_{\ell}^{Puk}, J(\ell) \) and \(K(\ell) \) are the same on every coadjoint orbit (see [8]) and can therefore also be denoted by \(I_{O}^{Puk}, J(O) \) and \(K(O) \) if \(\ell \) is located in the coadjoint orbit \(O \).

Now, for the parametrization of \(\mathfrak{g}^*/G \) and thus of \(\hat{G} \) and for the choice of the \(\mathfrak{g} \) in Property 1(b) required concrete realization of a representation, let \(O \in \mathfrak{g}^*/G \). A theorem of L.Pukanszky (see [2]. Part II, Chapter I.3 or [2]). Corollary 1.2.5) states that there exists one unique \(\ell_0 \in O \) such that \(I_{O}(H_i) = 0 \) for every index \(i \in I_{O}^{Puk} \). So, choose this \(\ell_0 \), let \(\Pi_{\ell_0}^{V} := \exp(p_{\ell_0}^V) \) and define the irreducible unitary representation

\[
\sigma_{\ell_0}^{V} := \text{ind}_{\ell_0}^{G} \pi_{\ell_0} \chi_{\ell_0}
\]

associated to the orbit \(O \) and acting on \(L^2(G/P_{\ell_0} \chi_{\ell_0}) \cong L^2(\mathbb{R}^d) \).
Next, one has to construct the demanded sets Γ_i for $i \in \{0, \ldots, r\}$:

For this, define for a pair of sets (J, K) such that $J, K \subset \{1, \ldots, n\}$, $|J| = |K|$ and $J \cap K = \emptyset$ the subset $(g^*/G)_{(J, K)}$ of g^*/G by

$$(g^*/G)_{(J, K)} := \{ O \in g^*/G | (J, K) = (J(O), K(O)) \}.$$

Moreover, let

$$\mathcal{M} := \{ (J, K) | J, K \subset \{1, \ldots, n\}, J \cap K = \emptyset, |J| = |K|, (g^*/G)_{(J, K)} \neq \emptyset \}$$

and

$$(g^*/G)_{2d} := \{ O \in g^*/G | |I_O^{P_u k}| = 2d \}.$$

Then

$$(g^*/G)_{2d} = \bigcup_{(J, K) \in \mathcal{M}, |J| = |K| = d, J \cap K = \emptyset} (g^*/G)_{(J, K)}$$

and

$$g^*/G = \bigcup_{d \in \{0, \ldots, \lfloor \frac{n}{2} \rfloor \}} (g^*/G)_{2d} = \bigcup_{(J, K) \in \mathcal{M}} (g^*/G)_{(J, K)}.$$

Now, an order on the set \mathcal{M} shall be introduced.

First, if $|J| = |K| = d$, $|J'| = |K'| = d'$ and $d < d'$, then the pair (J, K) is defined to be smaller than the pair (J', K'): $(J, K) < (J', K')$.

If $|J| = |K| = |J'| = |K'| = d$, $J = \{j_1, \ldots, j_d\}$, $J' = \{j'_1, \ldots, j'_d\}$ and $j_1 < j'_1$, the pair (J, K) is again defined to be smaller than (J', K').

Otherwise, if $j_1 = j'_1$, one has to consider $K = \{k_1, \ldots, k_d\}$ and $K' = \{k'_1, \ldots, k'_d\}$ and here again, compare the first elements k_1 and k'_1: So, if $j_1 = j'_1$ and $k_1 < k'_1$, again $(J, K) < (J', K')$.

But if $k_1 = k'_1$, one compares j_2 and j'_2 and continues in that way.

If $r + 1 = |\mathcal{M}|$, one can identify the ordered set \mathcal{M} with the interval $\{0, \ldots, r\}$ and assign to each such pair $(J, K) \in \mathcal{M}$ a number $i_{JK} \in \{0, \ldots, r\}$.

Finally, one can therefore define the sets $\Gamma_{i_{JK}}$ and $S_{i_{JK}}$ as

$$\Gamma_{i_{JK}} := \{ [\pi_{\ell_o}^V] | O \in (g^*/G)_{(J, K)} \}$$

and

$$S_{i_{JK}} := \bigcup_{i \in \{0, \ldots, i_{JK}\}} \Gamma_i.$$

Then obviously, the family $(S_i)_{i \in \{0, \ldots, r\}}$ is an increasing family in \hat{G}.

Furthermore, the set S_i is closed for every $i \in \{0, \ldots, r\}$. This can easily be deduced from the definition of the index sets $J(\ell)$ and $K(\ell)$. The indices $j_m(\ell)$ and $k_m(\ell)$ for $m \in \{1, \ldots, d\}$ are chosen in such a way that they are the largest to fulfill a condition of the type $(\ell, [H_m^{-1} \ell, \cdot]) \neq 0$ or $(\ell, [H_m^{-1} \ell, \cdot]) = 0$, respectively.

In addition, the sets Γ_i are Hausdorff. For this, let $i = i_{JK}$ for $(J, K) \in \mathcal{M}$ and $(O_k)_k$ in $(g^*/G)_{(J, K)}$ a sequence of orbits such that the sequence $([\pi_{\ell_o}^V])_k$ converges in Γ_i, i.e. $(O_k)_k$ converges in $(g^*/G)_{(J, K)}$ and thus has a limit point O in $(g^*/G)_{(J, K)}$. If now $O_k \ni \ell_k \rightarrow \ell \in O$, then by $[4]$, it follows that the limit u of the sequence $(g(\ell_k))_k$ is equal to $g(\ell)$. Therefore, the sequence $(O_k)_k$ and thus also the sequence $([\pi_{\ell_o}^V])_k$ have unique limits and hence Γ_i is Hausdorff.

Moreover, one can still observe that for $d = 0$ the choice $J = K = \emptyset$ represents the only possibility to get $|J| = |K| = d$. So, the pair (\emptyset, \emptyset) is the first element in the above defined order and therefore corresponds to 0. Thus

$$\Gamma_0 = \{ [\pi_{\ell_o}^V] | I_O^{P_u k} = \emptyset \},$$

which is equivalent to the fact that $g(\ell_O) = 0$ which again is equivalent to the fact that every $\pi_{\ell_o}^V \in \Gamma_0$ is a character. Hence, $S_0 = \Gamma_0$ is the set of all characters on g, as demanded.
Next, let
\[g \in \text{a compact operator}. \]
\[G \]
\[L \]
\[\text{Lie group} \]
\[s_{tO} = \text{span}\{X^V_{1tO}, \ldots, X^V_{d_tO}\}, \]
\[L^2(\mathbb{R}^d) \]
\[\text{as in } [1] \]
\[\text{one can suppose that the representation } \pi^V_{tO} \text{ acts on the Hilbert space} \]
\[L^2(\mathbb{R}^d) \]
\[\text{for every } O \in (\mathfrak{g}^* / G)_{2d}. \]

Hence, the first condition is fulfilled. For the proof of the Properties 2 and 3(a), a proposition will be shown:

Proposition 3.1.

For every \(a \in C^*(G) \) and every \((J, K) \in \mathcal{M} \) with \(|J| = |K| = d \in \{0, \ldots, \lfloor \frac{n}{2} \rfloor\} \), the mapping

\[\Gamma_{J,K} \rightarrow L^2(\mathbb{R}^d), \; \gamma \mapsto F(a)(\gamma) \]

is norm continuous and the operator \(F(a)(\gamma) \) is compact for all \(\gamma \in \Gamma_{J,K} \).

Proof:

The compactness follows directly from a general theorem which can be found in [2] (Chapter 4.2) or [9] (Part II, Chapter II.5) and states that the \(C^* \)-algebra \(C^*(G) \) of every connected nilpotent Lie group \(G \) fulfills the CCR condition, i.e. the image of every irreducible representation of \(C^*(G) \) is a compact operator.

Next, let \(d \in \{0, \ldots, \lfloor \frac{n}{2} \rfloor\} \) and \((J, K) \in \mathcal{M} \) such that \(|J| = |K| = d \).

First, one has to observe that the polarization \(p^V_\ell \) is continuous in \(\ell \) on the set \(\{ \ell_O \mid O' \in (\mathfrak{g}^* / G)_{(J,K)} \} \).

Now, let \((O_k)_k \) be a sequence in \((\mathfrak{g}^* / G)_{(J,K)} \) and \(O \in (\mathfrak{g}^* / G)_{(J,K)} \) such that \(\pi^V_{tO_k} \xrightarrow{k \to \infty} \pi^V_{tO} \)

and let \(a \in C^*(G) \). Then \(\ell_{O_k} \xrightarrow{k \to \infty} \ell_O \) and by the observation above, the associated sequence of polarizations \((p^V_{\ell_{O_k}})_k \) converges to the polarization \(p^V_{\ell_O} \). By Theorem 2.3 in [11], thus \(\pi^V_{tO_k}(a) \xrightarrow{k \to \infty} \pi^V_{tO}(a) \) in the operator norm.

Since \(C^*(G) \) is obviously separable, this proposition proves the desired Properties 2 and 3(a) and hence, it remains to show Property 3(b):

4 Condition 3(b)

4.1 Introduction to the setting

For simplicity, in the following, the representations will be identified with their equivalence classes.

Let \(d \in \{0, \ldots, \lfloor \frac{n}{2} \rfloor\} \) and \((J, K) \in \mathcal{M} \) with \(|J| = |K| = d \). Furthermore, fix \(i = i_{J,K} \in \{0, \ldots, r\} \).

Let \((\pi^V_k)_k = (\pi^V_{tO_k})_k \) be a sequence in \(\Gamma \), whose limit set is located outside \(\Gamma_i \). Since every converging sequence has a properly converging subsequence, it will be assumed that \((\pi^V_k)_k \) is properly converging and the transition to a subsequence will be omitted.

The corresponding sequence of coadjoint orbits \((O_k)_k \) is contained in \((\mathfrak{g}^* / G)_{(J,K)} \) and in particular every \(O_k \) has the same dimension \(2d \). Moreover, it converges properly to a set of orbits \(L((O_k)_k) \).

In addition, since \(S_i \) is closed, the limit set \(L((\pi^V_k)_k) \) of the sequence \((\pi^V_k)_k \) is contained in \(S_{i-1} \) and therefore for every element \(O \in L((O_k)_k) \) there exists a pair \((J_O, K_O) < (J, K) \) such that \(\pi^V_{tO} \in \Gamma_{J_O,K_O} \) or equivalently, \(O \in (\mathfrak{g}^* / G)_{(J_O,K_O)} \).
4.2 Changing the Jordan-Hölder basis.

Let \(\tilde{\ell} \in \tilde{O} \subset L((O_k)_k) \). Then, there exists a sequence \((\tilde{\ell}_k)_k \) in \(O_k \) such that \(\tilde{\ell} = \lim_{k \to \infty} \tilde{\ell}_k \).

Since one is interested in the orbits \(O_k = \tilde{\ell}_k + g(\tilde{\ell}_k)^{\perp} \), one can change the sequence \((\tilde{\ell}_k)_k \) to a sequence \((\ell_k)_k \) by letting \(\ell_k(A) = 0 \) for every \(A \in g(\tilde{\ell}_k)^{\perp} = g(\ell_k)^{\perp} \).

Thus, one obtains another converging sequence \((\ell_k)_k \) in \((O_k)_k \) whose limit \(\ell \) is located in an orbit \(O \subset L((O_k)_k) \).

As above, one can suppose that the subalgebras \(g(\ell_k)_k \) converge to a subalgebra \(u \), whose corresponding Lie group \(\exp(u) \) is denoted by \(U \). These subalgebras \(g(\ell_k)_k \) can be written as

\[
g(\ell_k) = [g, g] \oplus s_k,
\]

where \(s_k \subset [g, g]^{\perp} \). In addition, let \(n_{k,0} \) be the kernel of \(\ell_k|_{[g, g]} \) and \(s_{k,0} \) the kernel of \(\ell_k|_{[g, g]} \) for all \(k \in \mathbb{N} \). One can assume that \(s_{k,0} \neq s_k \) and choose \(T_k \in s_k \) orthogonal to \(s_{k,0} \) of length 1. The case \(s_{k,0} = s_k \) for \(k \in \mathbb{N} \), being easier, will be omitted.

Similarly, choose \(Z_k \in [g, g] \) orthogonal to \(n_{k,0} \) of length 1. One sees that such a \(Z_k \) must exist: If \(\ell_k|_{[g, g]} = 0 \) for \(k \in \mathbb{N} \), then \(\pi_{T_{O_k}}^V \) is a character and thus contained in \(S_0 = \Gamma_0 \). But \(S_0 = \Gamma_0 \) is closed and thus \((\pi_{T_{O_k}}^V)_k \) cannot have a limit set outside \(\Gamma_0 \).

Furthermore, let \(r_k = g(\ell_k)^{\perp} \subset g \).

One can assume that, passing to a subsequence if necessary, \(\lim_{k \to \infty} Z_k =: Z \), \(\lim_{k \to \infty} T_k =: T \) and \(\lim_{k \to \infty} r_k =: r \) exist.

Now, new polarizations \(p_k \) in \(\ell_k \) are needed:

The restriction to \(r_k \) of the skew-form \(B_k := B_{\ell_k} \) defined in Chapter 2 is non-degenerate on \(r_k \) and there exists an invertible endomorphism \(S_k \) of \(r_k \) such that

\[
\langle x, S_k(x') \rangle = B_k(x, x') \quad \forall \ x, x' \in r_k.
\]

Then \(S_k \) is skew-symmetric, i.e. \(S_k^t = -S_k \), and with the help of Lemma 6.1 one can decompose \(r_k \) into an orthogonal direct sum

\[
r_k = \sum_{j=1}^d V_j^k
\]

of two-dimensional \(S_k \)-invariant subspaces. Choose an orthonormal basis \(\{X_j^k, Y_j^k\} \) of \(V_j^k \). Then,

\[
[X_i^k, X_j^k] \in n_{k,0} \quad \forall \ i, j \in \{1, ..., d\},
\]

\[
[Y_i^k, Y_j^k] \in n_{k,0} \quad \forall \ i, j \in \{1, ..., d\}
\]

and

\[
[X_i^k, Y_j^k] = \delta_{i,j} c_j^k Z_k \mod n_{k,0} \quad \forall \ i, j \in \{1, ..., d\},
\]

where \(0 \neq c_j^k \in \mathbb{R} \) and \(\sup_{k \in \mathbb{N}} c_j^k < \infty \) for every \(j \in \{1, ..., d\} \).

Again, by passing to a subsequence if necessary, the sequence \((c_j^k)_k \) converges for every \(j \in \{1, ..., d\} \) to some \(c_j \).

Since \(X_j^k, Y_j^k \in r_k \) and \(\ell_k(A) = 0 \) for every \(A \in r_k \), \(\ell_k(X_j^k) = \ell_k(Y_j^k) = 0 \) for all \(j \in \{1, ..., d\} \).

Furthermore, one can suppose that the sequences \((X_j^k)_k, (Y_j^k)_k \) converge in \(g \) to vectors \(X_j, Y_j \) which form a basis modulo \(u \) in \(g \).

It follows that

\[
\langle \ell_k, [X_j^k, Y_j^k] \rangle = c_j^k \lambda_k, \text{ where } \lambda_k = \langle \ell_k, Z_k \rangle \xrightarrow{k \to \infty} \langle \ell, Z \rangle =: \lambda.
\]

As \(Z_k \) was chosen orthogonal to \(n_{k,0} \), \(\lambda_k \neq 0 \) for every \(k \).
Now, let

\[p_k := \text{span}\{Y^k_1, \ldots, Y^k_d, g(\ell_k)\} \]

and \(P_k := \exp(p_k) \). Then \(p_k \) is a polaratization at \(\ell_k \). Furthermore, define the representation \(\pi_k \) as

\[\pi_k := \text{ind}_{P_k}^G \chi_{\ell_k}. \]

Then, since \(\pi_k \), as well as \(\pi_k^\ell \), are induced representations of polarizations and of the characters \(\chi_{\ell_k} \) and \(\chi_{\ell_k} \), whereat \(\ell_k \) and \(\ell_k \) lie in the same coadjoint orbit \(O_k \), the two representations are equivalent, as observed in Chapter 4.

Let \(a_k := n_{k,0} + s_{k,0} \). Then \(a_k \) is an ideal of \(g \) on which \(\ell_k \) is 0. Therefore, the normal subgroup \(\exp(a_k) \) is contained in the kernel of the representation \(\pi_k \). Moreover, let \(a := \lim_{k \to \infty} a_k \).

In addition, let \(p \in \mathbb{N}, \tilde{p} \in \{1, \ldots, p\} \) and let \(\{A^k_1, \ldots, A^k_\tilde{p}\} \) denote an orthonormal basis of \(n_{k,0} \), the part of \(a_k \) which lies inside \([g, g]\), and \(\{A^k_\tilde{p}+1, \ldots, A^k_p\} \) an orthonormal basis of \(a_{k,0} \), the part of \(a_k \) outside \([g, g]\). Then \(\{A^k_1, \ldots, A^k_p\} \) is an orthonormal basis of \(a_k \) and as above, one can assume that \(\lim_{k \to \infty} A^k_j = A_j \) exists for all \(j \in \{1, \ldots, p\} \).

Now, for every \(k \in \mathbb{N} \) one can take as an orthonormal basis for \(g \) the set of vectors

\[\{X^k_1, \ldots, X^k_d, Y^k_1, \ldots, Y^k_d, T_k, Z_k, A^k_1, \ldots, A^k_p\} \]

as well as the set

\[\{X_1, \ldots, X_d, Y_1, \ldots, Y_d, T, Z, A_1, \ldots, A_p\}. \]

This gives the following Lie brackets:

\[
\begin{align*}
[X^k_i, Y^k_j] &= \delta_{i,j} c^k_j Z_k \mod a_k, \\
[X^k_i, X^k_j] &= 0 \mod a_k \quad \text{and} \\
[Y^k_i, Y^k_j] &= 0 \mod a_k.
\end{align*}
\]

The vectors \(Z_k \) and \(T_k \) are central modulo \(a_k \).

Before starting the analysis of \((\pi_k)_{k \in \mathbb{N}} \), some notations have to be introduced:

4.3 Definitions

Choose for \(j \in \{1, \ldots, d\} \) the Schwartz functions \(\eta_j \in \mathcal{S}(\mathbb{R}) \) such that \(\|\eta_j\|_{L^2(\mathbb{R})} = 1 \) and \(\|\eta_j\|_{L^\infty(\mathbb{R})} \leq 1 \).

Furthermore, for \(x_1, \ldots, x_d, y_1, \ldots, y_d, t, z, a_1, \ldots, a_p \in \mathbb{R} \), write

\[
\begin{align*}
(x)_k := (x_1, \ldots, x_d)_k := \sum_{j=1}^d x_j X^k_j, \\
(y)_k := (y_1, \ldots, y_d)_k := \sum_{j=1}^d y_j Y^k_j, \\
(t)_k := tT_k, \\
(z)_k := zZ_k, \\
(\tilde{a})_k := (a_1, \ldots, \tilde{a})_k := \sum_{j=1}^p a_j A^k_j, \\
(\tilde{a})_k := (a_{\tilde{p}+1}, \ldots, a_p)_k := \sum_{j=\tilde{p}+1}^p a_j A^k_j \quad \text{and} \\
(a)_k := (\tilde{a}, \tilde{a})_k := (a_1, \ldots, a_p)_k = \sum_{j=1}^p a_j A^k_j,
\end{align*}
\]

whereat \((\cdot, \cdot, \ldots, \cdot)_k \) is defined to be the \(d, \tilde{p}, (p - \tilde{p}) \)- or the \(p \)-tuple with respect to the bases \(\{X^k_1, \ldots, X^k_d\}, \{Y^k_1, \ldots, Y^k_d\}, \{A^k_1, \ldots, A^k_p\}, \{A^k_{\tilde{p}+1}, \ldots, A^k_p\} \) and \(\{A^k_1, \ldots, A^k_p\} \), respectively, and let

\[
\begin{align*}
(g)_k := (x_1, \ldots, x_d, y_1, \ldots, y_d, t, z, a_1, \ldots, a_p)_k := ((x)_k, (y)_k, (t)_k, (z)_k, (\tilde{a})_k, (\tilde{a})_k) \\
&= ((x)_k, (h)_k) \\
&= \sum_{j=1}^d x_j X^k_j + \sum_{j=1}^d y_j Y^k_j + tT_k + zZ_k + \sum_{j=1}^p a_j A^k_j,
\end{align*}
\]

11
where \((h)_k\) is in the polarization \(p_k\) and the \((2d + 2 + p)\)-tuple \((\cdot, \ldots, \cdot)_k\) is regarded with respect to the basis \(\{X_1^k, \ldots, X_d^k, Y_1^k, \ldots, Y_d^k, Tk, Z_k, A_1^k, \ldots, A_\tilde{p}^k\}\).

Moreover, define the limits

\[
(x)_\infty := (x_1, \ldots, x_d)_\infty := \lim_{k \to \infty} (x)_k = \sum_{j=1}^d x_j X_j, \quad (y)_\infty := (y_1, \ldots, y_d)_\infty := \lim_{k \to \infty} (y)_k = \sum_{j=1}^d y_j Y_j,
\]

\[
(t)_\infty := \lim_{k \to \infty} (t)_k = tT, \quad (z)_\infty := \lim_{k \to \infty} (z)_k = zZ, \quad (\hat{a})_\infty := (a_1, \ldots, a_\tilde{p})_\infty := \lim_{k \to \infty} (\hat{a})_k = \sum_{j=1}^\tilde{p} a_j A_j,
\]

\[
(a)_\infty := (\hat{a}, \tilde{a})_\infty = (a_1, \ldots, a_p)_\infty := \lim_{k \to \infty} (a)_k = \sum_{j=1}^p a_j A_j \quad \text{and}
\]

\[
(g)_\infty := (x, y, t, z, \hat{a}, \tilde{a})_\infty := \lim_{k \to \infty} (g)_k = \sum_{j=1}^d x_j X_j + \sum_{j=1}^d y_j Y_j + tT + zZ + \sum_{j=1}^p a_j A_j.
\]

Now, the representations \((\pi_k)_{k \in \mathbb{N}}\) can be computed:

4.4 Formula for \(\pi_k\)

Let \(f \in L^1(G)\).

With \(p_k := \langle \ell_k, T_k \rangle\), \(c^k := (c_1^k, \ldots, c_d^k)\) and \((s)_k := (s_1, \ldots, s_d)_k = \sum_{j=1}^d s_j X_j^k\) for \(s_1, \ldots, s_d \in \mathbb{R}\), where again \((\cdot, \ldots, \cdot)_k\) is the \(d\)-tuple with respect to the basis \(\{X_1^k, \ldots, X_d^k\}\), as in (2), the representation \(\pi_k\) acts on \(L^2(G/P_k, \chi_{\ell_k})\) in the following way:

\[
\pi_k((g)_k)\xi((s)_k) = \xi((g)_k^{-1} \cdot (s)_k) = e^{2\pi i \langle (f_k, -y, -t, -z, -\hat{a}, -\tilde{a})_k + ((s)_k + \frac{1}{2}(x)_k - \frac{1}{2}((s)_k)_k)\rangle} \xi((s - x)_k) = e^{2\pi i \langle -t\rho_k - z\lambda_k + \sum_{j=1}^d \lambda_j c_j (s_j - \frac{1}{2}(x)_k)_j\rangle} \xi((s - x)_k) = e^{2\pi i \langle -t\rho_k - z\lambda_k + c^k(s) - \frac{1}{2}(x)_k(s)_k\rangle} \xi((s - x)_k),
\]

since \(\ell_k(Y_j^k) = 0\) for all \(j \in \{1, \ldots, d\}\).

Now, identify \(G\) with \(\mathbb{R}^d \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{p-\tilde{p}} \cong \mathbb{R}^{2d+2+p}\), let \(\xi \in L^2(\mathbb{R}^d)\) and \(s \in \mathbb{R}^d\). Moreover, identify \(\pi_k\) with a representation acting on \(L^2(\mathbb{R}^d)\) which will also be called \(\pi_k\). To stress the dependence on \(k\) of the above fixed function \(f \in L^1(G)\), denote by \(f_k \in L^1(\mathbb{R}^{2d+2+p})\) the function \(f\) applied to an element in the \(k\)-basis:

\[
f_k(g):= f((g)_k).
\]
Moreover, the two representations χ_π since

$$f_k(g)\pi_k(g)\xi(s)$$

$$= \int_{\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^\beta} f_k(x, y, t, z, \tilde{a}, \tilde{a}) e^{2\pi i (-t \rho_k - z \lambda_k + \lambda_k \xi(s - \frac{1}{2}x))} \xi(s - x) \, d(x, y, t, z, \tilde{a}, \tilde{a})$$

$$= \int_{\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^\beta} f_k(s - x, y, t, z, \tilde{a}, \tilde{a}) e^{2\pi i (-t \rho_k - z \lambda_k + \lambda_k \xi(s + x))} \xi(x) \, d(x, y, t, z, \tilde{a}, \tilde{a})$$

$$= \int_{\mathbb{R}^d} F^{2,3,4,5,6}_k (s - x, -\frac{\lambda_k \xi(s + x) - \rho_k}{2}, \rho_k, \lambda_k, 0, 0) \xi(x) \, dx,$$

where $F^{2,3,4,5,6}_k$ denotes the Fourier transform in the 2nd, 3rd, 4th, 5th and 6th variable.

4.5 First case

First consider the case that $L((O_k)_k)$ consists of one single limit point O. In this case, for every k,

$$2d = \dim(O_k) = \dim(O).$$

Thus, the regarded situation occurs if and only if $\lambda \neq 0$ and $c_j \neq 0$ for every $j \in \{1, \ldots, d\}$.

Consider again the above chosen sequence $(\ell_k)_k$ which converges to $\ell \in O$. As the dimensions of the orbits O_k and O are the same, there exists a subsequence of $(\ell_k)_k$ (which will also be denoted by $(\ell_k)_k$ for simplicity) such that $p := \lim_{k \to \infty} p_{\ell_k}$ is a polarization for ℓ, but not necessarily the Vergne polarization. Moreover, define $P := exp(p) = \lim_{k \to \infty} P_{\ell_k}$ and let

$$\pi := \text{ind}^{G}_{P} \chi_{\ell}.$$

Now, if one identifies the Hilbert spaces H_{π}^{π} and H_{π} of $\pi^{\pi}_{\ell_k} = \text{ind}^{G}_{F_{\ell_k}} \chi_{\ell_k}$ and π with $L^2(\mathbb{R}^d)$, from [I], Theorem 2.3, one can conclude that

$$\|\pi^{\pi}_{\ell_k}(a) - \pi(a)\|_{op} = \|\text{ind}^{G}_{F_{\ell_k}} \chi_{\ell_k}(a) - \text{ind}^{G}_{P} \chi_{\ell}(a)\|_{op} \to 0 \quad \forall \ a \in C^*(G).$$

Since π and $\pi^{\pi}_{\ell_k} = \text{ind}^{G}_{F_{\ell_k}} \chi_{\ell}$ are both induced representations of polarizations and of the same character χ_{ℓ}, they are equivalent and hence, there exists a unitary intertwining operator

$$F : \mathcal{H}_{\pi^{\pi}} \cong L^2(\mathbb{R}^d) \to \mathcal{H}_{\pi} \cong L^2(\mathbb{R}^d)$$

such that $F \circ \pi^{\pi}_{\ell_k} = \pi(a) \circ F \quad \forall \ a \in C^*(G)$.

Moreover, the two representations $\pi^{\pi}_{\ell_k} = \pi^{\pi}_{\ell_{O_k}} = \text{ind}^{G}_{F_{\ell_{O_k}}} \chi_{\ell_{O_k}}$ and $\pi^{\pi}_{\ell_k} = \text{ind}^{G}_{F_{\ell_k}} \chi_{\ell_k}$ are equivalent for every $k \in \mathbb{N}$ because ℓ_{O_k} and ℓ_k are located in the same coadjoint orbit O_k and $p_{\ell_{O_k}}^{\pi}$ and $p_{\ell_k}^{\pi}$ are polarizations. Thus there exist further unitary intertwining operators

$$F_{\ell_k} : \mathcal{H}_{\pi^{\pi}} \cong L^2(\mathbb{R}^d) \to \mathcal{H}_{\pi^{\pi}_{\ell_k}} \cong L^2(\mathbb{R}^d)$$

with $F_{\ell_k} \circ \pi^{\pi}_{\ell_k}(a) = \pi^{\pi}_{\ell_k}(a) \circ F_{\ell_k} \quad \forall \ a \in C^*(G)$.

Now, define the required operators $\tilde{\nu}_k$ as

$$\tilde{\nu}_k(\varphi) := F_{\ell_k}^{*} \circ F \circ \varphi(\pi^{\pi}_{\ell_k}) \circ F^{*} \circ F_{\ell_k} \quad \forall \ \varphi \in CB(S_{i-1}),$$

where $CB(S_{i-1})$ denotes the space of continuous bounded functions on the boundary of S_{i-1}.
which makes sense since π^Y_k is a limit point of the sequence $(\pi^Y_k)_k$ and hence contained in S_{i-1}, as seen in Chapter 4.4.

As $\varphi(\pi^Y_k) \in B(L^2(\mathbb{R}^d))$ and F and F_k are intertwining operators and thus bounded, the image of $\tilde{\nu}_k$ is contained in $B(L^2(\mathbb{R}^d))$, as requested.

Next, it needs to be shown that $\tilde{\nu}_k$ is bounded: By the definition of $\|\cdot\|_{S_{i-1}}$, one has for every $\varphi \in CB(S_{i-1})$

$$\|\tilde{\nu}_k(\varphi)\|_{op} = \|F_k^* \circ F \circ \varphi(\pi^Y_k) \circ F^* \circ F_k\|_{op} \leq \|\varphi(\pi^Y_k)\|_{op} \leq \|\varphi\|_{S_{i-1}}.$$

In addition, one can easily observe that $\tilde{\nu}_k$ is involutive: For every $\varphi \in CB(S_{i-1})$

$$\tilde{\nu}_k(\varphi)^* = (F_k^* \circ F \circ \varphi(\pi^Y_k) \circ F^* \circ F_k)^* = F_k^* \circ F \circ \varphi*(\pi^Y_k) \circ F^* \circ F_k = \tilde{\nu}_k(\varphi^*).$$

Now, the last thing to check is the required convergence of Condition 3(b): For every $a \in C^*(G)$

$$\|\pi^Y_k(a) - \tilde{\nu}_k(F(a))\|_{op} = \|\pi^Y_k(a) - F_k^* \circ F \circ \pi^Y_k(a) \circ F^* \circ F_k\|_{op} = \|F_k^* \circ \pi^Y_k(a) \circ F_k - F_k^* \circ \pi(a) \circ F_k\|_{op} = \|F_k^* \circ (\pi^Y_k -\pi)(a) \circ F_k\|_{op} \leq \|\pi^Y_k(a) - \pi(a)\|_{op} \xrightarrow{k \to \infty} 0.$$

Therefore, the representations $(\pi^Y_k)_k$ and the constructed $(\tilde{\nu}_k)_k$ fulfill Condition 3(b) and thus, in this case, the claim is shown.

4.6 Second case

In the second case the situation that $\lambda = 0$ or $c_j = 0$ for every $j \in \{1, \ldots, d\}$ must be considered.

In this case,

$$\langle \ell_k, [X_j^k, Y_j^k] \rangle = c_j^k \lambda \xrightarrow{k \to \infty} c_j \lambda = 0 \quad \forall \ j \in \{1, \ldots, d\},$$

while $c_j^k \lambda_k \neq 0$ for every k and every $j \in \{1, \ldots, d\}$.

Then $\ell|_{\{0\}} = 0$ and so every limit orbit O in the set $L((O_k)_k)$ has the dimension 0.

As in Calculation [2] in Chapter 4.3 identify G again with \mathbb{R}^{2d+2+p}. From now on, this identification will be used most of the time. Only in some cases where one applies ℓ_k or ℓ and thus it is important to know whether one is using the basis depending on k or the limit basis, the calculation will be done in the above defined bases $(\cdot)_k$ or $(\cdot)_\infty$.

Now, adapt the methods developed in [7] to this given situation.

Let $s = (s_1, \ldots, s_d)$, $\alpha = (\alpha_1, \ldots, \alpha_d)$, $\beta = (\beta_1, \ldots, \beta_d) \in \mathbb{R}^d$ and define

$$\eta_{k,\alpha,\beta}(s) = \eta_{k,\alpha,\beta}(s_1, \cdots, s_d) := \varepsilon^{2\pi i os} \prod_{j=1}^d [\lambda_k c_j^k]^{*} \eta_j \left(\left[\lambda_k c_j^k \right] \frac{1}{2} \left(s_j + \frac{\beta_j}{\lambda_k c_j^k} \right) \right).$$

Moreover, let $c_{\alpha,\beta}^k$ be the coefficient function defined by

$$c_{\alpha,\beta}^k(g) := \langle \pi_k(g) \eta_{k,\alpha,\beta}, \eta_{k,\alpha,\beta} \rangle \quad \forall \ \ g \in G \cong \mathbb{R}^{2d+2+p}$$

and $\ell_{\alpha,\beta}$ the linear functional

$$\ell_{\alpha,\beta}(g) = \ell_{\alpha,\beta}(x, y, t, z, a) := \alpha x + \beta y \quad \forall \ g = (x, y, t, z, a) \in G \cong \mathbb{R}^{2d+2+p}.$$

Then, as in [7], one can show by similar computations that the functions $c_{\alpha,\beta}^k$ converge uniformly on compacta to the character $\chi_{\ell + \ell_{\alpha,\beta}}.$
4.6.1 Definition of the \(\nu_k \)'s

For \(0 \neq \tilde{\eta} \in L^2(G/P_k, \chi_{\ell_k}) \cong L^2(\mathbb{R}^d) \) let

\[
P_{\tilde{\eta}} : L^2(\mathbb{R}^d) \to \mathbb{C} \tilde{\eta}, \quad \xi \mapsto \tilde{\eta}(\xi, \tilde{\eta}).
\]

Then \(P_{\tilde{\eta}} \) is the orthogonal projection onto the space \(\mathbb{C} \tilde{\eta} \).

Let \(h \in C^*(G/U, \chi_\ell) \). Again, identify \(G/U \) with \(\mathbb{R}^d \times \mathbb{R}^d \cong \mathbb{R}^{2d} \) and as already introduced in Chapter 4.4 in order to show the dependence on \(k \), here the utilization of the limit basis will be expressed by an index \(\infty \) if necessary:

\[
h_\infty(x, y) := h((x, y)_\infty).
\]

Now, \(\hat{h}_\infty \) can be seen as a function in \(C_0(\ell + u^2) \cong C_0(\mathbb{R}^{2d}) \) and, using this identification, define the linear operator

\[
\nu_k(h) := \int_{\mathbb{R}^{2d}} \hat{h}_\infty(\tilde{x}, \tilde{y}) P_{\eta_k, \ell, \tilde{\sigma}} \frac{d(\tilde{x}, \tilde{y})}{\prod_{j=1}^d |\lambda_k c_j^k|}.
\]

Then, the following proposition holds:

Proposition 4.1.

1. For every \(k \in \mathbb{N} \) and \(h \in S(G/U, \chi_\ell) \) the integral defining \(\nu_k(h) \) converges in the operator norm.
2. The operator \(\nu_k(h) \) is compact and \(\|\nu_k(h)\|_{op} \leq \|h\|_{C^*(G/U, \chi_\ell)} \).
3. \(\nu_k \) is involutive, i.e. \(\nu_k(h)^* = \nu_k(h^*) \) for every \(h \in C^*(G/U, \chi_\ell) \).

Proof:

1. Let \(h \in S(G/U, \chi_\ell) \cong S(\mathbb{R}^{2d}) \). Since

\[
\|P_{\eta_k, \ell, \tilde{\sigma}}\|_{op} = \|\eta_k, \ell, \tilde{\sigma}\|_{\frac{1}{2}}^2 = 1,
\]

one can estimate the operator norm of \(\nu_k(h) \) as follows:

\[
\|\nu_k(h)\|_{op} = \left\| \int_{\mathbb{R}^{2d}} \hat{h}_\infty(\tilde{x}, \tilde{y}) P_{\eta_k, \ell, \tilde{\sigma}} \frac{d(\tilde{x}, \tilde{y})}{\prod_{j=1}^d |\lambda_k c_j^k|} \right\|_{op}
\]

\[
\leq \int_{\mathbb{R}^{2d}} \left| \hat{h}_\infty(\tilde{x}, \tilde{y}) \right| \frac{d(\tilde{x}, \tilde{y})}{\prod_{j=1}^d |\lambda_k c_j^k|} = \frac{\|\hat{h}\|_{L^1(\mathbb{R}^{2d})}}{\prod_{j=1}^d |\lambda_k c_j^k|}.
\]

Therefore, the convergence of the integral \(\nu_k(h) \) in the operator norm is shown for \(h \in S(\mathbb{R}^{2d}) \cong S(G/U, \chi_\ell) \).

2. First, let \(h \in S(G/U, \chi_\ell) \cong S(\mathbb{R}^{2d}) \).

Define for \(s = (s_1, \ldots, s_d) \in \mathbb{R}^d \)

\[
\eta_{k, \beta}(s) := \prod_{j=1}^d |\lambda_k c_j^k|^{\frac{1}{2}} \eta_j \left(|\lambda_k c_j^k|^{\frac{1}{2}} (s_j + \frac{\beta_j}{\lambda_k c_j^k}) \right).
\]

Then

\[
\eta_{k, \alpha, \beta}(s) = e^{2\pi i s \cdot \eta_{k, \beta}(s)}
\]
and thus one has for \(\xi \in \mathcal{S}(\mathbb{R}^d) \) and \(s \in \mathbb{R}^d \)

\[
\nu_k(h)\xi(s)
= \int_{\mathbb{R}^d} \hat{h}_{\infty}(\tilde{x}, \tilde{y}) \frac{d(\tilde{x}, \tilde{y})}{\prod_{j=1}^{d} |\lambda_k c_j|^2} \eta_{\mathcal{R}, \tilde{x}, \tilde{y}, s}(s) \left(\int_{\mathbb{R}^d} \frac{d(\tilde{x}, \tilde{y})}{\prod_{j=1}^{d} |\lambda_k c_j|^2} \right) \eta_{\tilde{x}, \tilde{y}, s}(s) d\tilde{x} d\tilde{y}.
\]

Hence, as the kernel function

\[
h_{k}(s, r) := \int_{\mathbb{R}^d} \hat{h}_{\infty}(s-r, \tilde{y}) \eta_{\mathcal{R}, \tilde{x}, \tilde{y}, s}(s) \frac{d\tilde{y}}{\prod_{j=1}^{d} |\lambda_k c_j|^2}
\]

of \(\nu_k(h) \) is in \(\mathcal{S}(\mathbb{R}^{2d}) \), \(\nu_k(h) \) is a compact operator.

Now it will be shown that

\[
\|\nu_k(h)\|_{op} \leq \|\hat{h}\|_{\infty}.
\]

For \(\xi \in \mathcal{S}(\mathbb{R}^d) \) one has similar as in \([7]\)

\[
\|\nu_k(h)\xi\|_2^2
= \int_{\mathbb{R}^d} \left| \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \hat{h}_{\infty}^2(s-r, \tilde{y}) \eta_{\mathcal{R}, \tilde{x}, \tilde{y}, s}(s) \frac{d\tilde{y}}{\prod_{j=1}^{d} |\lambda_k c_j|^2} dr ds \right|^2 ds
= \int_{\mathbb{R}^d} \left| \int_{\mathbb{R}^d} \hat{h}_{\infty}^2(s-r, \tilde{y}) * (\xi \eta_{\mathcal{R}, \tilde{x}, \tilde{y}, s})(s) \frac{d\tilde{y}}{\prod_{j=1}^{d} |\lambda_k c_j|^2} \right|^2 ds
\]

Cauchy–Schwarz,

\[
\leq \prod_{j=1}^{d} |\lambda_k c_j|^2 \int_{\mathbb{R}^d} \left| \int_{\mathbb{R}^d} \hat{h}_{\infty}^2(s-r, \tilde{y}) * (\xi \eta_{\mathcal{R}, \tilde{x}, \tilde{y}, s})(s) \right|^2 ds \frac{d\tilde{y}}{\prod_{j=1}^{d} |\lambda_k c_j|^2} \]

Plancherel

\[
\leq \|\hat{h}\|_{\infty}^2 \prod_{j=1}^{d} \frac{1}{|\lambda_k c_j|^2} \int_{\mathbb{R}^d} \|\xi \eta_{\mathcal{R}, \tilde{x}, \tilde{y}, s}\|_2^2 d\tilde{y}
= \prod_{j=1}^{d} \frac{1}{|\lambda_k c_j|^2} \int_{\mathbb{R}^d} \|\xi\|_2^2.
\]
Thus, since $\mathcal{S}(\mathbb{R}^d)$ is dense in $L^2(\mathbb{R}^d)$,
\[
\|\nu_k(h)\|_{op} = \sup_{\xi \in L^2(\mathbb{R}^d), \|\xi\|_2 = 1} \|\nu_k(h)(\xi)\|_2 \leq \|\hat{h}\|_\infty
\]
for $h \in \mathcal{S}(\mathbb{R}^{2d}) \cong \mathcal{S}(G/U, \chi_\ell)$. Therefore, with the density of $\mathcal{S}(G/U, \chi_\ell)$ in $C^*(G/U, \chi_\ell)$, one gets the compactness of the operator $\nu_k(h)$ for $h \in C^*(G/U, \chi_\ell)$, as well as the desired inequality
\[
\|\nu_k(h)\|_{op} \leq \|\hat{h}\|_{C^*(G/U, \chi_\ell)}.
\]

3. The proof of the involutivity of ν_k is straightforward.

This proposition firstly shows that the image of the operator ν_k is located in $\mathcal{B}(L^2(\mathbb{R}^d)) = \mathcal{B}(\mathcal{H}_i)$ as required in Condition 3(b). Secondly, the proposition gives the boundedness and the involutivity of the linear mappings ν_k for every $k \in \mathbb{N}$. For the analysis of the sequence $(\pi_k)_k$, it remains to show the convergence condition.

4.6.2 Theorem - Second Case

Theorem 4.2.

Define as in Subsection 2.4
\[
p_{G/U} : L^1(G) \to L^1(G/U, \chi_\ell),
\]
\[
p_{G/U}(f)(\tilde{g}) := \int_U f(\tilde{g}u)\chi_\ell(u) \, du \quad \forall \tilde{g} \in G \quad \forall f \in L^1(G)
\]
and canonically extend $p_{G/U}$ to a mapping going from $C^*(G)$ to $C^*(G/U, \chi_\ell)$. Furthermore let $a \in C^*(G)$. Then
\[
\lim_{k \to \infty} \| \pi_k(a) - \nu_k(p_{G/U}(a)) \|_{op} = 0.
\]

Proof:

For $u = (t, z, \hat{a}, \hat{a})_\infty \in U = \text{span}\{T, Z, A_1, ..., A_{\hat{p}}, A_{\hat{p}+1}, ..., A_p\}$
\[
\chi_\ell(u) = e^{-2\pi i (t, z, \hat{a}, \hat{a})_\infty} = e^{-2\pi i (t \hat{p} + z \lambda)}
\]
and therefore, identifying U again with $\mathbb{R} \times \mathbb{R} \times \mathbb{R}^{\hat{p}} \times \mathbb{R}^{p - \hat{p}}$ and $L^1(G/U, \chi_\ell)$ with $L^1(\mathbb{R}^{2d})$, for $f \in L^1(G) \cong L^1(\mathbb{R}^{2d+2+p})$ and $\tilde{g} = (\hat{x}, \hat{y}, 0, 0, 0, 0) \in \mathbb{R}^{2d}$ one has
\[
\left(p_{G/U}(f)\right)_\infty(\tilde{g}) = \int_{\mathbb{R} \times \mathbb{R} \times \mathbb{R}^{\hat{p}} \times \mathbb{R}^{p - \hat{p}}} f_\infty(\hat{x}, \hat{y}, \tilde{\xi}, \tilde{\zeta}, \hat{\alpha}, \hat{\alpha}) e^{-2\pi i (\hat{t} \hat{p} + \hat{z} \lambda)} \, d(0, 0, \tilde{\xi}, \tilde{\zeta}, \hat{\alpha}, \hat{\alpha})
\]
\[
= \int_{\mathbb{R}^{3,4,5,6}} f_\infty(\hat{x}, \hat{y}, \rho, \lambda, 0, 0),
\]
whereat $f_\infty(\hat{x}, \hat{y}, \rho, \lambda, 0, 0) = f((\hat{x}, \hat{y}, \rho, \lambda, 0, 0)_\infty)$.

Now, let $f \in \mathcal{S}(G) \cong \mathcal{S}(\mathbb{R}^{2d+2+p})$ such that its Fourier transform in $[\mathfrak{g}, \mathfrak{g}]$ has a compact support on $G \cong \mathbb{R}^{2d+2+p}$. If one then writes the elements g of G as $g = (x, y, t, z, \hat{a}, \hat{a})$ like above, whereat
\[
x \in \text{span}\{X_1, ..., X_d\}, \quad y \in \text{span}\{Y_1, ..., Y_d\}, \quad t \in \text{span}\{T\},
\]
\[
z \in \text{span}\{Z\}, \quad \hat{a} \in \text{span}\{A_1, ..., A_{\hat{p}}\}, \quad \hat{a} \in \text{span}\{A_{\hat{p}+1}, ..., A_p\}
\]
or, respectively

\[x \in \text{span}\{X^k_1 \times \ldots \times \text{span}\{X^k_d\}, \quad y \in \text{span}\{Y^k_1 \times \ldots \times \text{span}\{Y^k_d\}, \quad t \in \text{span}\{T_k\}, \]

\[z \in \text{span}\{Z_k\}, \quad \tilde{a} \in \text{span}\{A^k_1 \times \ldots \times \text{span}\{A^k_d\}, \quad \tilde{a} \in \text{span}\{A^k_{p+1} \times \ldots \times \text{span}\{A^k_p\}, \]

this means that the partial Fourier transform \(\hat{f}_{\mathbb{J}} \) has a compact support in \(G \), since \([\mathfrak{g}, \mathfrak{g}] = \text{span}\{Z_k, A^k_1, \ldots, A^k_p\} = \text{span}\{Z, A_1, \ldots, A_p\} \).

Moreover, let \(s \in \mathbb{R}^d \) and define

\[\eta_{k,0}(s) := \prod_{j=1}^{d} |\lambda_k c_j^k| \hat{\xi}_j \left(\frac{1}{|\lambda_k c_j^k|} \xi_j(s) \right). \]

(Compare the definition of \(\eta_{k,\beta} \) in the last proof.)

If \(\xi \in \mathcal{S}(\mathbb{R}^d) \), one has

\[
\int_{\mathbb{R}^d} \hat{f}_{\mathbb{J}}(s, r, -\lambda_k c_k^k) \xi(r) \, dr
\]

\[
= \int_{\mathbb{R}^d} \frac{1}{|\lambda_k c_j^k|} \Xi_j \left(\frac{1}{|\lambda_k c_j^k|} \xi_j(s) \right) \hat{\xi}_j \hat{\eta}_{k,0}(\tilde{y}) \eta_{k,0}(\tilde{y}) \, d\tilde{y} dr,
\]

The just obtained integrals are now divided into five parts. To do so, new functions \(q_k, u_k, v_k, n_k \) and \(w_k \) are defined:

\[q_k(s, \tilde{y}) := \int_{\mathbb{R}^d} \xi(r) \hat{\eta}_{k,0}(\tilde{y} + r - s) \left(f_{\mathbb{J}}(s, r, -\lambda_k c_k^k) \right) dr,
\]

\[u_k(s, \tilde{y}) := \int_{\mathbb{R}^d} \xi(r) \hat{\eta}_{k,0}(\tilde{y} + r - s) \left(f_{\mathbb{J}}(s, r, -\lambda_k c_k^k) \right) dr,
\]

\[v_k(s, \tilde{y}) := \int_{\mathbb{R}^d} \xi(r) \hat{\eta}_{k,0}(\tilde{y} + r - s) \left(f_{\mathbb{J}}(s, r, -\lambda_k c_k^k) \right) dr,
\]

\[n_k(s, \tilde{y}) := \int_{\mathbb{R}^d} \xi(r) \hat{\eta}_{k,0}(\tilde{y} + r - s) \left(f_{\mathbb{J}}(s, r, -\lambda_k c_k^k) \right) dr,
\]

\[w_k(s, \tilde{y}) := \int_{\mathbb{R}^d} \xi(r) \hat{\eta}_{k,0}(\tilde{y} + r - s) \left(f_{\mathbb{J}}(s, r, -\lambda_k c_k^k) \right) dr,
\]
\[u_k(s, \tilde{y}) := \int_{\mathbb{R}^d} \xi(r) \overline{\pi_{k,0}(\tilde{y} + r - s)} \left(\tilde{f}_k^{2,3,4,5,6}(s - r, -\frac{\lambda_k c^k}{2}(s + r), \rho, \lambda, 0, 0) - \tilde{f}_k^{2,3,4,5,6}(s - r, \lambda_k c^k(\tilde{y} - s), \rho, \lambda, 0, 0) \right) dr, \]

\[n_k(s, \tilde{y}) := \int_{\mathbb{R}^d} \xi(r) \overline{\pi_{k,0}(\tilde{y} + r - s)} \left(\tilde{f}_k^{2,3,4,5,6}(s - r, \lambda_k c^k(\tilde{y} - s), \rho, \lambda, 0, 0) - \tilde{f}_k^{2,3,4,5,6}(s - r, \lambda_k c^k(\tilde{y} - s), \rho, \lambda, 0, 0) \right) dr \]

and

\[w_k(s) := \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \xi(r) \eta_{k,0}(\tilde{y}) \left(\overline{\eta_{k,0}(\tilde{y})} - \pi_{k,0}(\tilde{y} + r - s) \right) \tilde{f}_k^{2,3,4,5,6}(s - r, -\frac{\lambda_k c^k}{2}(s + r), \rho_k, \lambda_k, 0, 0) d\tilde{y} dr. \]

Then,

\[(\pi_k(f) - \nu_k(p_{G/U}(f))) \xi(s) = \int_{\mathbb{R}^d} q_k(s, \tilde{y}) \eta_{k,0}(\tilde{y}) \tilde{y} d\tilde{y} + \int_{\mathbb{R}^d} u_k(s, \tilde{y}) \eta_{k,0}(\tilde{y}) \tilde{y} d\tilde{y} + \int_{\mathbb{R}^d} v_k(s, \tilde{y}) \eta_{k,0}(\tilde{y}) \tilde{y} d\tilde{y} + \int_{\mathbb{R}^d} n_k(s, \tilde{y}) \eta_{k,0}(\tilde{y}) \tilde{y} d\tilde{y} + w_k(s). \]

In order to show that

\[\| \pi_k(f) - \nu_k(p_{G/U}(f)) \|_{op} \xrightarrow{k \to \infty} 0, \]

it suffices to prove that there are \(\kappa_k, \gamma_k, \delta_k, \omega_k \) and \(\epsilon_k \) which are going to 0 for \(k \to \infty \), such that

\[\|q_k\|_2 \leq \kappa_k \|\xi\|_2; \quad \|u_k\|_2 \leq \gamma_k \|\xi\|_2; \quad \|v_k\|_2 \leq \delta_k \|\xi\|_2; \quad \|n_k\|_2 \leq \omega_k \|\xi\|_2; \quad \text{and} \quad \|w_k\|_2 \leq \epsilon_k \|\xi\|_2. \]

First, regard the last factor of the function \(q_k \):

\[\tilde{f}_k^{2,3,4,5,6}(s - r, -\frac{\lambda_k c^k}{2}(s + r), \rho_k, \lambda_k, 0, 0) - \tilde{f}_k^{2,3,4,5,6}(s - r, -\frac{\lambda_k c^k}{2}(s + r), \rho, \lambda_k, 0, 0) \]

\[= (\rho_k - \rho) \int_0^1 \partial_t \tilde{f}_k^{2,3,4,5,6}(s - r, -\frac{\lambda_k c^k}{2}(s + r), \rho + t(\rho_k - \rho), \lambda_k, 0, 0) dt. \]

Thus, since \(f \) is a Schwartz function, one can find a constant \(C_1 > 0 \) (depending on \(f \)), such that

\[\left| \tilde{f}_k^{2,3,4,5,6}(s - r, -\frac{\lambda_k c^k}{2}(s + r), \rho_k, \lambda_k, 0, 0) - \tilde{f}_k^{2,3,4,5,6}(s - r, -\frac{\lambda_k c^k}{2}(s + r), \rho, \lambda_k, 0, 0) \right| \leq |\rho_k - \rho| \frac{C_1}{(1 + \|s - r\|)^{2d}}. \]
Hence, one gets the following estimation for q_k:

$$
\|q_k\|_2^2 = \int_{\mathbb{R}^d} |q_k(s, \bar{y})|^2 \, d(s, \bar{y})
$$

$$
\leq \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} |\nabla \eta_k,0(\bar{y} + r - s)||\rho_k - \rho| \frac{C_1}{(1 + \|s - r\|)^2d} \, dr \right)^2 \, d(s, \bar{y})
$$

$$
\leq C_2^2 |\rho_k - \rho|^2 \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} |\nabla \eta_k,0(\bar{y} + r - s)| \frac{\xi(r)}{(1 + \|s - r\|)^d} \, dr \right)^2 \, d(s, \bar{y})
$$

$$
= C_4' |\rho_k - \rho|^2 \int_{\mathbb{R}^d} \frac{|\xi(r)|^2}{(1 + \|s - r\|)^2d} |\eta_k,0(\bar{y} + r - s)|^2 \, d(r, s, \bar{y})
$$

$$
\|q_{k,0}\|_2 = 1 \leq C_4'' |\rho_k - \rho|^2 \|\xi\|_2^2,
$$

where $C_4' > 0$ and $C_4'' > 0$ are matching constants depending on f. Thus, for $\kappa_k := \sqrt{C_4''} |\rho_k - \rho|$, $\kappa_k \xrightarrow{k \to \infty} 0$, since $\rho_k \xrightarrow{k \to \infty} \rho$, and

$$
\|q_k\|_2 \leq \kappa_k \|\xi\|_2.
$$

As $\lambda_k \xrightarrow{k \to \infty} \lambda$, the estimation for the function u_k can be done analogously.

Now, regard v_k. Like for q_k and u_k, one has

$$
\int_0^1 \partial_t \int_{\mathbb{R}^d} |\nabla \eta_k,0(\bar{y} + r - s)| \cdot \left| c_k \cdot \frac{1}{2}(r - s) - (r - s + \bar{y}) \right| \, dt,
$$

where \cdot is the scalar product, and hence there exists again an on f depending constant C_3 such that

$$
|f_k,2,3,4,5,6(s - r, -\frac{\lambda_k c_k}{2}(s + r), \rho, \lambda, 0, 0) - f_k,2,3,4,5,6(s - r, \lambda_k c_k(\bar{y} - s), \rho, \lambda, 0, 0)|
$$

$$
\leq |\lambda_k| \left(\|c_k(r - s)\| + \|c_k(r - s + \bar{y})\| \right) \frac{C_3}{(1 + \|s - r\|)^{2d + 1}}.
$$

20
Therefore, defining $\tilde{\eta}_j(t) := \| t \| \eta_j(t)$, one gets a similar estimation for v_k:

$$\| v_k \|^2 \leq \int_{\mathbb{R}^d} |v_k(s, \tilde{y})|^2 \, d(s, \tilde{y})$$

$$\leq \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} |\xi(r)\eta_{k,0}(\tilde{y} + r - s)| |\lambda_k| \left(\| e^k(r - s) \| + \| e^k(r - s + \tilde{y}) \| \right) \right) \frac{C_3}{\left(1 + \|s - r\|\right)^{2d+1}} \, dr \, d(s, \tilde{y})$$

$$\leq 2C_3' \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} \frac{|\xi(r)|^2}{\left(1 + \|s - r\|\right)^{2d+2}} \left| \eta_{k,0}(\tilde{y} + r - s) \right|^2 |\lambda_k|^2 \| e^k(r - s + \tilde{y}) \|^2 \, d(r, s, \tilde{y}) \right)$$

$$+ 2C_3' \int_{\mathbb{R}^d} \frac{|\xi(r)|^2}{\left(1 + \|s - r\|\right)^{2d+2}} \left| \eta_{k,0}(\tilde{y} + r - s) \right|^2 |\lambda_k|^2 \| e^k(r - s) \|^2 \, d(r, s, \tilde{y})$$

$$\leq 2C_3' \| \lambda_k e^k \|^2 \int_{\mathbb{R}^d} \frac{|\xi(r)|^2}{\left(1 + \|s - r\|\right)^{2d+2}} \left| \eta_{k,0}(\tilde{y} + r - s) \right|^2 \, d(r, s, \tilde{y})$$

$$\leq 2C_3' \| \lambda_k e^k \|^2 \left(\int_{\mathbb{R}^d} \frac{|\xi(r)|^2}{\left(1 + \|s - r\|\right)^{2d+2}} \, d(r, s) \right)$$

$$\leq 2C_3' \| \lambda_k e^k \|^2 \left(\prod_{j=1}^d \| \lambda_k e_j^k \|^2 \| |\tilde{\eta}_j(r)\| \|^2 \, d(r, s, \tilde{y}) \right)$$

$$\leq 2C_3' \| \lambda_k e^k \|^2 \left(\prod_{j=1}^d \| \tilde{\eta}_j \|^2 + \| \lambda_k e^k \|^2 \| \xi \|^2 \right)$$

with constants $C_3' > 0$ and $C_5'' > 0$, again depending on f.

Now, since $\lambda_k e^k \rightharpoonup_k 0$, $\delta_k := \left(C_3' \left(\prod_{j=1}^d \| \tilde{\eta}_j \|^2 + \| \lambda_k e^k \|^2 \right)^2 \right)^{1/2}$ fulfills $\delta_k \rightharpoonup_k 0$ and

$$\| v_k \|_2 \leq \delta_k \| \xi \|_2.$$

For the estimation of η_k, the fact that the Fourier transform in $[g, \tilde{g}]$, i.e. in the 4th and 5th
variable, $\hat{f}^{4.5} =: \hat{f}$ has a compact support will be needed. Therefore, let the support of f be located in the compact set

$$K_1 \times K_2 \times K_3 \times K_4 \times K_5 \times K_6 \subset \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^p \times \mathbb{R}^{p-\rho}$$

and let $K := K_2 \times K_3 \times K_6 \subset \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^{p-\rho}$.

Furthermore, since a Fourier transform is independent of the choice of the basis $[\mathfrak{g}, \mathfrak{g}] = \text{span} \{ Z_k, A_{k, p} \}_{k=1}^4$ expressed in the k-basis and its value expressed in the limit basis are the same:

$$f(\cdot, \cdot, (z, \bar{u}), \cdot) = f(\cdot, \cdot, (z, \bar{u})_\infty, \cdot).$$

So, in the course of this proof, the limit basis will be chosen for the representation of the 4th and 5th position of an element g. Then

$$\hat{f}_k^{2,3,4,5,6}(s - r, \lambda_k e^k (\bar{y} - s), \rho, \lambda, 0, 0) - \hat{f}_\infty^{2,3,4,5,6}(s - r, \lambda_k e^k (\bar{y} - s), \rho, \lambda, 0, 0)$$

$$= \int_{\mathbb{R}^{d} \times \mathbb{R} \times \mathbb{R}^{p-\rho}} \left(\hat{f}_k(s - r, y, t, \lambda, 0, \bar{u}) - \hat{f}_\infty(s - r, y, t, \lambda, 0, \bar{u}) \right) e^{-2\pi i \rho (\bar{y} - s) y + \rho t} d(y, t, \bar{u})$$

$$= \int_{\mathbb{R}^{d} \times \mathbb{R} \times \mathbb{R}^{p-\rho}} \left(\hat{f}((s - r, y, t), (\lambda, 0)_\infty, (\bar{u})_k) - \hat{f}((s - r, y, t), (\lambda, 0)_\infty, (\bar{u})_\infty) \right) e^{-2\pi i \rho (\bar{y} - s) y + \rho t} d(y, t, \bar{u})$$

Furthermore,

$$\hat{f}((s - r, y, t), (\lambda, 0)_\infty, (\bar{u})_k) - \hat{f}((s - r, y, t), (\lambda, 0)_\infty, (\bar{u})_\infty)$$

$$= \hat{f} \left(\sum_{i=1}^d (s_i - r_i) X_i^k + \sum_{i=1}^d y_i Y_i^k + t T_k + \lambda Z + \sum_{i=p+1}^p a_i A_i^k \right)$$

$$- \hat{f} \left(\sum_{i=1}^d (s_i - r_i) X_i + \sum_{i=1}^d y_i Y_i + t T + \lambda Z + \sum_{i=p+1}^p a_i A_i \right)$$

$$= \left(\sum_{i=1}^d (s_i - r_i)(X_i^k - X_i) + \sum_{i=1}^d y_i (Y_i^k - Y_i) + t(T_k - T) + \sum_{i=p+1}^p a_i (A_i^k - A_i) \right)$$

$$\cdot \int_0^1 \partial \hat{f} \left(\sum_{i=1}^d (s_i - r_i)(X_i^k - X_i) + \sum_{i=1}^d y_i (Y_i^k - Y_i) + t(T_k - T) + \sum_{i=p+1}^p a_i (A_i^k - A_i) \right) d\bar{t}.$$
Now, with the help of the two calculations above, \(\| n_k \|_2^2 \) can be estimated:

\[
\| n_k \|_2^2 = \int_{\mathbb{R}^d} |n_k(s, \tilde{y})|^2 d(s, \tilde{y})
= \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} \xi(r) \nabla_{k,0}(\tilde{y} + r - s) \left(f_k^{2,3,4,5,6}(s - r, \lambda_k c^k(\tilde{y} - s), \rho, \lambda, 0, 0) - f_k^{2,3,4,5,6}(s - r, \lambda_k c^k(\tilde{y} - s), \rho, \lambda, 0, 0) \right) dr \right)^2 d(s, \tilde{y})
\leq \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} \left| \xi(r) \nabla_{k,0}(\tilde{y} + r - s) \right| \left(\| s - r \| \omega_k^1 + \| y \| \omega_k^2 + \| t \| \omega_k^3 + \| \tilde{y} \| \omega_k^4 \right) \right)^2 d(s, \tilde{y})
\]

The Cauchy-Schwarz inequality gives:

\[
C_4 \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} \frac{1}{(1 + \| s - r \|)^{2d+1}} \left| e^{-2\pi i (\lambda_k c^k(\tilde{y} - s) y + \rho t)} \right| d(y, t, \tilde{a}) \right)^2 d(s, \tilde{y})
\]

where \(C_4 > 0 \) and \(C_4' > 0 \) depending on \(f \) and \(\omega_k^{k-\infty} \) for \(i \in \{5, ..., 7\} \). Thus, \(\omega_k := C_4' \omega_k^5 \) fulfills \(\omega_k^{k-\infty} \) and

\[
\| n_k \|_2 \leq \omega_k \| \xi \|_2.
\]

Last, it still remains to examine \(u_k \):

\[
\nabla_{k,0}(\tilde{y}) - \nabla_{k,0}(\tilde{y} + r - s)
= \sum_{j=1}^d (r_j - s_j) \int_0^1 \partial_j \nabla_{k,0}(\tilde{y} + t(r - s)) dt
= \sum_{j=1}^d (r_j - s_j) \int_0^1 \left(\prod_{i=1}^d |\lambda_k c_i^k|^j \nabla_{j}(\nabla_{i} \nabla_{j}(\tilde{y} + t(r - s))) \right) dt.
\]

Thus, since \(f \) and the functions \(\eta_{j} \) are Schwartz functions, one can find an on
\((\eta_j)_{j \in \{1, \ldots, d\}}\) depending constant \(C_5\) such that
\[
\left| \left(\pi_{k,0}(\tilde{y}) - \pi_{k,0}(y + r - s) \right) \right| F^2 3.4.5.6 \left(s - r, -\frac{\lambda_k e^k}{2} (s + r), \rho_k, \lambda_k, 0, 0 \right) \leq \|r - s\| \left(\sum_{j=1}^{d} \prod_{l=1}^{d} |\lambda_k c_l^k| \right) \frac{C_5}{(1 + \|r - s\|)^{2d+1}}.
\]
Now, one has the following estimation for \(\|w_k\|_2\), which is again similar to the above ones:
\[
\|w_k\|_2^2 = \int_{\mathbb{R}^d} |w_k(s)|^2 ds \leq \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |\xi(r)||\eta_{k,0}(\tilde{y})| \|r - s\| \left(\sum_{j=1}^{d} \prod_{l=1}^{d} |\lambda_k c_l^k| \right) \right) \frac{C_5}{(1 + \|r - s\|)^{2d+1}} \|r - s\|^{2d+1} d(r, \tilde{y}, s)
\]
where the constants \(C_5'^{'} > 0\) and \(C_5'^{''} > 0\) depend on \((\eta_j)_{j \in \{1, \ldots, d\}}\). Therefore, for \(\epsilon_k := \left(C_5'^{'} \left(\sum_{j=1}^{d} \prod_{l=1}^{d} |\lambda_k c_l^k| \right) \right)^{1/2}\), the desired properties \(\epsilon_k \xrightarrow{\|\xi\|_2} 0\) and
\[
\|w_k\|_2 \leq \epsilon_k \|\xi\|_2
\]
are fulfilled.

Thus, for those \(f \in S(\mathbb{R}^{2d+2+p}) \cong S(G)\) whose Fourier transform in \([\mathfrak{g}, \mathfrak{g}]\) has a compact support,
\[
\|\pi_k(f) - \nu_k(p_{G/U}(f))\|_{op} = \sup_{\xi \in L^2(\mathbb{R}^d)} \|\left(\pi_k(f) - \nu_k(p_{G/U}(f)) \right)(\xi)\|_{2 \rightarrow \infty} = 0.
\]
Because of the density in \(L^1(G)\) and thus in \(C^*(G)\) of the set of Schwartz functions \(f \in S(G)\) whose partial Fourier transform has a compact support, the claim is true for general \(a \in C^*(G)\).

4.6.3 Transition to \((\pi_k^V)^k\)

As for every \(k \in \mathbb{N}\) the two representations \(\pi_k^V\) and \(\pi_k^V\) are equivalent, there exist unitary intertwining operators
\[
F_k : \mathcal{H}_{\pi_k^V} \cong L^2(\mathbb{R}^d) \rightarrow \mathcal{H}_{\pi_k} \cong L^2(\mathbb{R}^d) \quad \text{with} \quad F_k \circ \pi_k^V(a) = \pi_k(a) \circ F_k \quad \forall \ a \in C^*(G).
\]
Futhermore, since the limit set \(L((\pi_k^V)_k)\) of the sequence \((\pi_k^V)_k\) is contained in \(S_{\ell-1}\), as discussed in Section 4.1 identifying \(\tilde{G}\) with the set of coadjoint orbits \(\mathfrak{g}^*/G\), one can restrict an operator field \(\varphi \in CB(S_{\ell-1})\) to \(L((\mathcal{O}_k)_k) = \ell + u^{\dagger}\) and obtains an element in \(CB(\ell + u^{\dagger})\). Thus, as
\[
\{F(a)|L((\mathcal{O}_k)_k)| a \in C^*(G)\} = C_0(L((\mathcal{O}_k)_k)) = C_0(\ell + u^{\dagger}),
\]

one can define the *-isomorphism
\[\tau : C_0(\mathbb{R}^2) \cong C_0(\ell + u^1) \rightarrow C^*(G/U, \chi_L) \cong C^*(\mathbb{R}^2), \quad F(a)|_{L((O_k)_{k})} \mapsto p_{G/U}(a). \]

Now, define \(\tilde{\nu}_k \) as
\[\tilde{\nu}_k(\varphi) = F_k^* \circ (\nu_k \circ \tau)(\varphi|_{L((O_k)_{k})}) \circ F_k \quad \forall \varphi \in CB(S_{-1}). \]

Since the image of \(\nu_k \) is in \(B(L^2(\mathbb{R}^d)) \) and \(F_k \) is an intertwining operator and thus bounded, the image of \(\tilde{\nu}_k \) is contained in \(B(L^2(\mathbb{R}^d)) \) as well.

Moreover, the operator \(\tilde{\nu}_k \) is bounded: From the boundedness of \(\nu_k \) (Propostition 4.1) and using that \(\tau \) is an isomorphism, one gets for every \(\varphi \in CB(S_{-1}) \)
\[\| \tilde{\nu}_k(\varphi) \|_{op} = \| F_k^* \circ (\nu_k \circ \tau)(\varphi|_{L((O_k)_{k})}) \circ F_k \|_{op} \]
\[\leq \| (\nu_k \circ \tau)(\varphi|_{L((O_k)_{k})}) \|_{op} \]
\[\leq \| \tau(\varphi|_{L((O_k)_{k})}) \|_{C^*(\mathbb{R}^2)} \]
\[\leq \| (\varphi|_{L((O_k)_{k})})\|_{\infty} \leq \| \varphi \|_{S_{-1}}. \]

The involutivity of \(\tilde{\nu}_k \) follows from the involutivity of \(\tau \) and \(\nu_k \) (Proposition 4.1).

Finally, the demanded convergence of Condition 3(b) can also be shown: With the above stated equivalence of the representations \(\pi_k \) and \(\pi_k \), one gets
\[\| \pi_k^\dagger (a) - \tilde{\nu}_k(F(a)|_{S_{-1}}) \|_{op} = \| F_k^* \circ \pi_k(a) \circ F_k - F_k^* \circ (\nu_k \circ \tau)(F(a)|_{L((O_k)_{k})}) \circ F_k \|_{op} \]
\[= \| F_k^* \circ \pi_k(a) \circ F_k - F_k^* \circ \nu_k(p_{G/U}(a)) \circ F_k \|_{op} \]
\[= \| F_k^* \circ (\pi_k(a) - \nu_k(p_{G/U}(a))) \circ F_k \|_{op} \]
\[\leq \| \nu_k(p_{G/U}(a)) - \pi_k(a) \|_{op} \xrightarrow{k \rightarrow \infty} 0. \]

Therefore, the representations \((\pi_k)_{k} \) fulfill Property 3(b) and the conditions of the theorem are thus proved.

4.7 Third case

In the third and last case \(\lambda \neq 0 \) and there exists \(1 \leq m < d \) such that \(c_j \neq 0 \) for every \(j \in \{1, \ldots, m\} \) and \(c_j = 0 \) for every \(j \in \{m+1, \ldots, d\} \).

This means that
\[\langle \ell_k, [X_j^k, Y_j^k] \rangle = c_j^k \lambda_k \xrightarrow{k \rightarrow \infty} c_j \lambda = 0 \quad \Leftrightarrow \quad j \in \{m+1, \ldots, d\}. \]

In this case \(p := \text{span}\{X_{m+1}, \ldots, X_d, Y_1, \ldots, Y_d, T, Z, A_1, \ldots, A_p\} \) is a polarization for \(\ell \).

Moreover, for \(\tilde{p}_k := \text{span}\{X_{m+1}^k, \ldots, X_d^k, Y_1^k, \ldots, Y_d^k, T_k, Z_k, A_1^k, \ldots, A_p^k\} \), one has \(\tilde{p}_k \xrightarrow{k \rightarrow \infty} p \).

Let \(P := \exp(p) \) and \(\tilde{P}_k := \exp(\tilde{p}_k) \).

4.7.1 Convergence of \((\pi_k)_{k} \) in \(\tilde{G} \)

Let
\[(x)_\infty = (\tilde{x}, \tilde{x})_\infty \quad \text{with} \quad (\tilde{x})_\infty := (x_1, \ldots, x_m)_\infty \quad \text{and} \quad (\tilde{x})_\infty := (x_{m+1}, \ldots, x_d)_\infty \]
and analogously
\[(y)_\infty = (\tilde{y}, \tilde{y})_\infty \quad \text{with} \quad (\tilde{y})_\infty := (y_1, \ldots, y_m)_\infty \quad \text{and} \quad (\tilde{y})_\infty := (y_{m+1}, \ldots, y_d)_\infty. \]

25
Moreover, as in Chapter 13 above, let

\[(a)_{\infty} = (\dot{a}_1, \ldots, \dot{a}_d)_{\infty} \text{ with } (\ddot{a})_{\infty} = (a_1, \ldots, a_p)_{\infty}\]

and let

\[(g)_{\infty} = (\dot{x}, \dot{y}, \dot{y}, t, z, \dot{a})_{\infty} = (x, y, t, z, \dot{a})_{\infty} = (x, h)_{\infty}.\]

Now, let \(\vec{a} := (\alpha_{m+1}, \ldots, \alpha_d) \in \mathbb{R}^{d-m}\) and \(\vec{\beta} := (\beta_{m+1}, \ldots, \beta_d) \in \mathbb{R}^{d-m}\), consider \(\vec{a}\) and \(\vec{\beta}\) as elements of \(\mathbb{R}^d\) identifying them with \((0, \ldots, 0, \alpha_{m+1}, \ldots, \alpha_d)\) and \((0, \ldots, 0, \beta_{m+1}, \ldots, \beta_d)\), respectively and let

\[\vec{\pi} := \vec{\pi}_{\vec{a}, \vec{\beta}} := \text{ind}_{\mathbb{P}}^{\mathbb{Q}} \chi_{\ell + \ell, \vec{a}, \vec{\beta}}.\]

Then, for a function \(\dot{\xi}\) in the representation space \(\mathcal{H}_{\vec{\pi}} = L^2(G/P, \chi_{\ell, \vec{a}, \vec{\beta}})\) of \(\vec{\pi}\) and for \(\gamma_1, \ldots, \gamma_m \in \mathbb{R}\), \((\dot{\gamma})_{\infty} = (\gamma_1, \ldots, \gamma_m)_{\infty} \in \text{span}\{X_1\} \times \ldots \times \text{span}\{X_m\}\) and \(\dot{c} = (c_1, \ldots, c_m)\), letting \(\rho := (\ell, T)\) one has similarly as in [5]:

\[\vec{\pi}((g)_{\infty})\dot{\xi}((\dot{\gamma})_{\infty}) = e^{2\pi i \ell g \gamma_1 + \ell \gamma_2 + \ldots + \ell \gamma_m} e^{-2\pi i \dot{a}(\dot{\gamma})_{\infty} + \dot{\beta}(\dot{\gamma})_{\infty}} \vec{\xi}((\dot{\gamma} - \dot{\gamma})_{\infty}),\]

since \(\ell(Y_j') = \ell(X_j) = 0\) for all \(j \in \{1, \ldots, d\}\).

From now on, most of the time, \(G\) will be identified with \(\mathbb{R}^{d+2+p}\).

Define for \(\vec{s} = (s_{m+1}, \ldots, s_d) \in \text{span}\{X_{m+1}\} \times \ldots \times \text{span}\{X_d\} \cong \mathbb{R}^{d-m}\)

\[\vec{\eta}_{k, \vec{a}, \vec{\beta}}(\vec{s}) := \prod_{j=m+1}^d |\lambda_k c_j^k|^\frac{1}{2} |\pi_k c_j^k|^\frac{1}{2} (s_j + \dot{\beta}_j c_j^k)\]

and furthermore for \(\vec{\xi} \in \mathcal{H}_{\vec{\pi}} = L^2(G/P, \chi_{\ell, \vec{a}, \vec{\beta}}) \cong L^2(\mathbb{R}^m)\) and \(s = (\dot{s}, \vec{s})\) in \((\text{span}\{X_1\} \times \ldots \times \text{span}\{X_m\}) \times (\text{span}\{X_{m+1}\} \times \ldots \times \text{span}\{X_d\}) \cong \mathbb{R}^m \times \mathbb{R}^{d-m}\)

\[\xi_k(s) := \vec{\xi}(\vec{s})\vec{\eta}_{k, \vec{a}, \vec{\beta}}(\vec{s}).\]

Then, as above in the second case, the coefficient functions \(c_{k, \vec{a}, \vec{\beta}}^k\) defined by

\[c_{k, \vec{a}, \vec{\beta}}^k(g) := \langle \pi_k(g)\xi_k, \xi_k \rangle \quad \forall \ g \in G \cong \mathbb{R}^{d+2+p}\]

converge uniformly on compacta to \(\eta_{k, \vec{a}, \vec{\beta}}\) which in turn is defined by

\[c_{k, \vec{a}, \vec{\beta}}(g) := \langle \vec{\pi}_{k, \vec{a}, \vec{\beta}}(g)\check{\xi}, \check{\xi} \rangle \quad \forall \ g \in G \cong \mathbb{R}^{d+2+p}.\]

4.7.2 Definition of the \(\nu_k\)’s

For \(0 \neq \eta' \in L^2(\tilde{P}_k/P_k, \chi_{\ell, \vec{a}}) \cong L^2(\mathbb{R}^{d-m})\) let

\[P_{\eta'} : L^2(\mathbb{R}^{d-m}) \to \mathbb{C}\eta', \ \xi \mapsto \eta'(\xi, \eta').\]

Then \(P_{\eta'}\) is the orthogonal projection onto the space \(\mathbb{C}\eta'.\)

Define now for \(k \in \mathbb{N}\) and \(h \in C^\ast(G/U, \chi)\) the linear operator

\[\nu_k(h) := \int_{\mathbb{R}^{d-m}} \pi_{\ell + (\check{x}, \check{y})}(h) \otimes P_{\eta_k, \vec{x}, \vec{\beta}} \frac{d(\vec{x}, \vec{y})}{\prod_{j=m+1}^d |\lambda_k c_j^k|^\frac{1}{2}}.\]
whereat $\pi_{t+(\hat{x},\hat{y})}$ is defined as $\text{ind}f_2^{\ell}\chi_{t+(\hat{x},\hat{y})}$ for an element $\ell + (\hat{x},\hat{y})$ located in
$\ell + ((\text{span}\{X_{m+1}\} \times \ldots \times \text{span}\{X_d\}) \times (\text{span}\{Y_{m+1}\} \times \ldots \times \text{span}\{Y_d\}))^* \cong \ell + \mathbb{R}^{2(d-m)}$.

Thus, for $L^2(\mathbb{R}^d) \ni \xi = \sum_{i=1}^{\infty} \xi_i \otimes \bar{\xi}_i$ with $\xi_i \in L^2(\mathbb{R}^m)$ and $\bar{\xi}_i \in L^2(\mathbb{R}^{d-m})$ for all $i \in \mathbb{N}$, one has

$$
\nu_k(h)(\xi) := \sum_{i=1}^{\infty} \int_{\mathbb{R}^{2(d-m)}} \pi_{t+(\hat{x},\hat{y})}(h)(\xi_i) \otimes P_{\eta_{k,x,y}}(\bar{\xi}_i) \frac{d(\bar{x},\hat{y})}{\prod_{j=m+1}^{d} |\lambda_k c_j^k|}.
$$

Proposition 4.3.

1. For every $k \in \mathbb{N}$ and $h \in S(G/U, \chi_{\ell})$ the integral defining $\nu_k(h)$ converges in the operator norm.

2. The operator $\nu_k(h)$ is compact and $\|\nu_k(h)\|_{op} \leq \|h\|_{C^*(G/U, \chi_{\ell})}$.

3. ν_k is involutive.

Proof:

Let $\mathcal{K} = \mathcal{K}(L^2(\mathbb{R}^m))$ be the C^*-algebra of the compact operators on the Hilbert space $L^2(\mathbb{R}^m)$ and $C_0(\mathbb{R}^{2(d-m)}, \mathcal{K})$ the C^*-algebra of all continuous mappings from $\mathbb{R}^{2(d-m)}$ into \mathcal{K} vanishing at infinity.

Define for $\varphi \in C_0(\mathbb{R}^{2(d-m)}, \mathcal{K})$ and $k \in \mathbb{N}$ the linear operator

$$
\mu_k(\varphi) := \int_{\mathbb{R}^{2(d-m)}} \varphi(\bar{x},\hat{y}) \otimes P_{\eta_{k,x,y}} \frac{d(\bar{x},\hat{y})}{\prod_{j=m+1}^{d} |\lambda_k c_j^k|}
$$

on $L^2(\mathbb{R}^d)$. Then, as $\mathcal{F}(h) \in C_0(\mathbb{R}^{2(d-m)}, \mathcal{K})$ for $h \in C^*(G/U, \chi_{\ell})$,

$$
\nu_k(h) = \mu_k(\mathcal{F}(h)).
$$

1. Since $\mathcal{F}(h) \in S(\mathbb{R}^{2(d-m)}, \mathcal{K})$ for $h \in S(G/U, \chi_{\ell})$ and since

$$
\|\mu_k(\varphi)\|_{op} \leq \int_{\mathbb{R}^{2(d-m)}} \|\varphi(\bar{x},\hat{y})\|_{op} \frac{d(\bar{x},\hat{y})}{\prod_{j=m+1}^{d} |\lambda_k c_j^k|}
$$

for every $\varphi \in S(\mathbb{R}^{2(d-m)}, \mathcal{K})$ and $k \in \mathbb{N}$, the first assertion follows immediately.

2. As $p_{G/U}$ is surjective from the space $S(G)$ onto the space $S(G/U, \chi_{\ell})$, for every $h \in S(G/U, \chi_{\ell}) \cong S(\mathbb{R}^{2d})$ there exists a function $f \in S(G) \cong S(\mathbb{R}^{2d+2+\rho})$ such that $h = p_{G/U}(f)$ and, as shown in the second case, for $\tilde{g} = (\hat{x},\bar{x},\tilde{y},\bar{y},0,0,0,0) \in G/U \cong \mathbb{R}^{2d}$ one has

$$
h_\infty(\tilde{g}) = \int_{\mathbb{R}^{5,6,7,8}} (\hat{x},\bar{x},\tilde{y},\bar{y},\rho,\lambda,0,0),
$$

where again $h_\infty = h((\cdot)_\infty)$ and $f_\infty = f((\cdot)_\infty)$.

Now, let $s_1, \ldots, s_m \in \mathbb{R}$ and $\hat{\nu} = (s_1, \ldots, s_m)_\infty = \sum_{j=1}^{m} s_j X_j$ and moreover, let

$$
(g)_\infty = (\hat{x},\bar{x},\tilde{y},\bar{y},\hat{t},\bar{z},\tilde{a},\bar{a})_\infty = (x,y,t,z,a)_\infty \text{ with } \hat{x},\bar{x},\tilde{y},\bar{y},\hat{a},\bar{a} \text{ and } \hat{\nu} \text{ as above.}
$$

Then, one gets for $\xi_i \in L^2(\mathbb{R}^m)$

$$
\pi_{t+(\hat{x},\hat{y})}(g)_\infty \xi_i(\hat{\nu}_i)_\infty = e^{2\pi i(-tp-z\lambda+\hat{\nu}((\hat{\nu})_\infty-\frac{1}{2}(\hat{\nu})_\infty)-(\hat{\nu}(\hat{\nu})_\infty-\hat{\nu}(\hat{\nu})_\infty))} \xi_i((\hat{\nu}-\hat{x})_\infty).
$$
Using the Equality (7) and identifying G with \mathbb{R}^{2d+2+p}, one gets for a function $h = p_{G/U}(f) \in S(G/U, \chi f) \cong S(\mathbb{R}^{2d})$ with $f \in S(G) \cong S(\mathbb{R}^{2d+2+p})$

$$\pi_{\ell+\hat{x},\hat{y}}(h)\hat{\xi}_i(\hat{s}) = \int_{\mathbb{R}^{2d}} \left(p_{G/U}(f) \right)_\infty(\hat{g})\pi_{\ell+\hat{x},\hat{y}}(\hat{g})\hat{\xi}_i(\hat{s}) \, d\hat{g}$$

$$= \int_{\mathbb{R}^{2d}} \int_{\mathbb{R}^{2d+2+p-(p-p)}} f_\infty(\hat{g}u)\chi_\ell(u) \, du \, \pi_{\ell+\hat{x},\hat{y}}(\hat{g})\hat{\xi}_i(\hat{s}) \, d\hat{g}$$

$$= \int_{\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{2d+p}} f_\infty(x, \bar{x}, \bar{y}) e^{2\pi i\lambda c((s-\hat{s})y)-(\bar{x},\bar{y})} e^{-2\pi i(t+p+\lambda\hat{s})}\hat{\xi}_i(\hat{s} - \hat{x}) \, d(\hat{x}, \bar{y})$$

$$= \int_{\mathbb{R}^d} \hat{h}_\infty^{2,4,5,6,7,8}(x, \bar{x}, \bar{y}) e^{2\pi i\lambda c((s-\hat{s})y)}\hat{\xi}_i(\hat{s} - \hat{x}) \, d(\hat{x}, \bar{y})$$

$$= \int_{\mathbb{R}^m} \hat{h}_\infty^{2,4,8}(x, \bar{x}, \bar{y}) e^{2\pi i\lambda c((s-\hat{s})y)}\hat{\xi}_i(\hat{s} - \hat{x}) \, d\hat{x}.$$ \hspace{1cm} (10)

Regard now the second factor $P_{\eta_k,\zeta,\beta}$ of the tensor product:

As in the second case above, define

$$\tilde{\eta}_{k,\beta}(\hat{s}) := \prod_{j=m+1}^d \left| \lambda_k c^j \right|^{\frac{1}{2}} \eta_j \left(\left| \lambda_k c^j \right|^{\frac{1}{2}} \left(s_j + \frac{\beta_j}{\lambda_k c^j} \right) \right).$$

Then

$$\tilde{\eta}_{k,\alpha,\beta}(\hat{s}) = e^{2\pi i\hat{x}\hat{s}}\tilde{\eta}_{k,\beta}(\hat{s})$$

and therefore with $\tilde{\xi}_i \in L^2(\mathbb{R}^{d-m})$

$$P_{\eta_k,\zeta,\beta}(\tilde{\xi}_i)(\hat{s}) = \left\langle \tilde{\xi}_i, \tilde{\eta}_{k,\zeta,\beta} \right\rangle \tilde{\eta}_{k,\zeta,\beta}(\hat{s})$$

$$= \left(\int_{\mathbb{R}^{d-m}} \tilde{\xi}_i(\tilde{r})\tilde{\eta}_{k,\zeta,\beta}(\tilde{r}) \, d\tilde{r} \right) \tilde{\eta}_{k,\zeta,\beta}(\hat{s})$$

$$= \left(\int_{\mathbb{R}^{d-m}} \tilde{\xi}_i(\tilde{r}) e^{-2\pi i\hat{x}\tilde{r}} \tilde{\eta}_{k,\zeta,\beta}(\tilde{r}) \, d\tilde{r} \right) e^{2\pi i\hat{x}\hat{s}}\tilde{\eta}_{k,\zeta,\beta}(\hat{s})$$

$$= \int_{\mathbb{R}^{d-m}} \tilde{\xi}_i(\tilde{r}) e^{2\pi i\hat{x}^{-1}\tilde{r}} \tilde{\eta}_{k,\zeta,\beta}(\tilde{r}) \, d\tilde{r} \tilde{\eta}_{k,\zeta,\beta}(\hat{s}).$$

Joining together the calculation above and the one for the first factor of the tensor product (11), one gets for $S(\mathbb{R}^d)$ \exists $\xi = \sum_{i=1}^\infty \tilde{\xi}_i \otimes \tilde{\xi}_i$ with $\tilde{\xi}_i \in S(\mathbb{R}^m)$ and $\tilde{\xi}_i \in S(\mathbb{R}^{d-m})$ for all $i \in \mathbb{N},$
Therefore, the kernel function
\[h \in \mathcal{S}(\mathbb{R}^{2d}) \text{ and } s = (\tilde{s}, \bar{s}) \in \mathbb{R}^{d} \]
\[\nu_{h}(h)(\xi)(s) \]
\[= \sum_{i=1}^{\infty} \int_{\mathbb{R}^{2(d-m)}} \pi_{i+}(\tilde{x}, \bar{y})(h)(\xi_{i})(\tilde{s}) \cdot P_{\eta_{k,i},(\xi_{i})}(\bar{s}) \frac{d(\tilde{x}, \bar{y})}{\prod_{j=m+1}^{d} |\lambda_{k}c_{j}|} \]
\[= \sum_{i=1}^{\infty} \int_{\mathbb{R}^{2(d-m)}} \left(\int_{\mathbb{R}^{m}} h_{-2,3,4}^{\infty}(\tilde{x}, \bar{y}, \lambda \xi_{i}(\tilde{\tilde{s}} - \bar{s})) \frac{d(\tilde{x}, \bar{y})}{\prod_{j=m+1}^{d} |\lambda_{k}c_{j}|} \right) \]
\[\cdot \left(\int_{\mathbb{R}^{m}} \xi_{i}(\bar{r}) e^{2\pi i (\tilde{s} - \bar{s})} \eta_{k,i}(\bar{r}) \frac{d\bar{r}}{\prod_{j=m+1}^{d} |\lambda_{k}c_{j}|} \right) \]
\[= \sum_{i=1}^{\infty} \int_{\mathbb{R}^{2(d-m)}} \int_{\mathbb{R}^{2(d-m)}} \int_{\mathbb{R}^{m}} h_{-2,3,4}^{\infty}(\tilde{x}, \bar{s} - \bar{r}, \lambda \xi_{i}(\tilde{\tilde{s}} - \bar{s})) \frac{d\bar{s}}{\prod_{j=m+1}^{d} |\lambda_{k}c_{j}|} \]
\[= \sum_{i=1}^{\infty} \int_{\mathbb{R}^{2(d-m)}} \int_{\mathbb{R}^{2(d-m)}} \int_{\mathbb{R}^{m}} h_{-2,3,4}^{\infty}(\tilde{\tilde{s}} - \tilde{\tilde{\tilde{s}}}, \bar{s} - \bar{r}, \lambda \xi_{i}(\tilde{\tilde{s}} - \bar{s})) \frac{d\bar{s}}{\prod_{j=m+1}^{d} |\lambda_{k}c_{j}|} \]
\[\xi(\tilde{x}, \bar{r}) \ d(\tilde{x}, \bar{r}). \quad (11) \]

Therefore, the kernel function
\[h_{K}(\tilde{s}, \bar{s}, (\tilde{x}, \bar{r})) := \int_{\mathbb{R}^{2(d-m)}} h_{-2,3,4}^{\infty}(\tilde{s} - \tilde{x}, \bar{s} - \bar{r}, \lambda \xi_{i}(\tilde{\tilde{s}} - \bar{s})) \eta_{k,i}(\bar{r}) \frac{d\bar{s}}{\prod_{j=m+1}^{d} |\lambda_{k}c_{j}|} \]

of \(\nu_{k}(h) \) is contained in \(\mathcal{S}(\mathbb{R}^{2d}) \) and thus \(\nu_{k}(h) \) is a compact operator for \(h \in \mathcal{S}(\mathbb{R}^{2d}) \cong \mathcal{S}(G/U, \chi_{\ell}) \) and with the density of \(\mathcal{S}(G/U, \chi_{\ell}) \) in \(C^{*}(G/U, \chi_{\ell}) \), it is compact for every \(h \in C^{*}(G/U, \chi_{\ell}) \).

Now, it is shown that for every \(\varphi \in C_{0}(\mathbb{R}^{2(d-m)}, \mathcal{K}) \)
\[||\mu_{k}(\varphi)||_{\text{op}} \leq ||\varphi||_{\infty} := \sup_{(\tilde{s}, \bar{s}) \in \mathbb{R}^{2(d-m)}} ||\varphi(\tilde{x}, \bar{y})||_{\text{op}}. \]
For this, for any \(\psi \in L^2(\mathbb{R}^d) \), define

\[
 f_{\psi,k}(x,y)(s) := \int_{\mathbb{R}^{d-m}} \psi(s, \tilde{s}) \eta_{h,k,x,y}(\tilde{s}) \, d\tilde{s} \quad \forall \ (x,y) \in \mathbb{R}^{2(d-m)} \quad \forall \ s \in \mathbb{R}^m.
\]

Then, as

\[
 \|\psi\|_{L^2(\mathbb{R}^d)}^2 = \int_{\mathbb{R}^{2(d-m)}} \|f_{\psi,k}(x,y)\|_{L^2(\mathbb{R}^m)}^2 \frac{d(x,y)}{\prod_{j=m+1}^d |\lambda_k c_j^k|},
\]

one gets the identity

\[
 \|\psi\|_{L^2(\mathbb{R}^d)}^2 = \int_{\mathbb{R}^{2(d-m)}} \|f_{\psi,k}(x,y)\|_{L^2(\mathbb{R}^m)}^2 \frac{d(x,y)}{\prod_{j=m+1}^d |\lambda_k c_j^k|}.
\]

Now, for \(\xi, \psi \in L^2(\mathbb{R}^d) \)

\[
 \left| \langle \mu_k(\varphi)\xi, \psi \rangle_{L^2(\mathbb{R}^d)} \right| \leq \int_{\mathbb{R}^{2(d-m)}} \left| \langle \varphi(x,y) \otimes \eta_{h,k,x,y} \rangle_{L^2(\mathbb{R}^m)} \frac{d(x,y)}{\prod_{j=m+1}^d |\lambda_k c_j^k|} \right|
\]

\[
 \leq \left(\int_{\mathbb{R}^{2(d-m)}} \|\varphi(x,y) f_{\xi,k}(x,y)\|_{L^2(\mathbb{R}^m)}^2 \frac{d(x,y)}{\prod_{j=m+1}^d |\lambda_k c_j^k|} \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^{2(d-m)}} \|f_{\psi,k}(x,y)\|_{L^2(\mathbb{R}^m)}^2 \frac{d(x,y)}{\prod_{j=m+1}^d |\lambda_k c_j^k|} \right)^{\frac{1}{2}} \|\psi\|_{L^2(\mathbb{R}^d)}
\]

\[
 \leq \sup_{(x,y) \in \mathbb{R}^{2(d-m)}} |\varphi(x,y)|_{op} \left(\int_{\mathbb{R}^{2(d-m)}} \|f_{\xi,k}(x,y)\|_{L^2(\mathbb{R}^m)}^2 \frac{d(x,y)}{\prod_{j=m+1}^d |\lambda_k c_j^k|} \right)^{\frac{1}{2}} \|\psi\|_{L^2(\mathbb{R}^d)}
\]

\[
 \leq \|\varphi\|_{\infty} \|\xi\|_{L^2(\mathbb{R}^d)} \|\psi\|_{L^2(\mathbb{R}^d)}.
\]

Hence, for every \(h \in C^*(G/U, \chi_h) \),

\[
 \|\nu_k(h)\|_{op} = \|h_k(F(h))\|_{op} \leq \|F(h)\|_{\infty} = \|h\|_{C^*(G/U, \chi_k)}.
\]

3. To show that \(\nu_k \) is involutive is as straightforward as in the second case.
The demanded convergence of Condition 3(b) remains to be shown:

4.7.3 Theorem - Third Case

Theorem 4.4.

For \(a \in C^\infty (G) \)
\[
\lim_{k \to \infty} \| \pi_k(a) - \nu_k(p_{G/U}(a)) \|_{op} = 0.
\]

Proof:

Let \(f \in S(G) \cong S(\mathbb{R}^{2d+2+p}) \) such that its Fourier transform in \([3,9]\) has a compact support on \(G \cong \mathbb{R}^{2d+2+p} \). In the setting of this third case, this means that \(f^{6,7} \) has a compact support in \(G \) (see Theorem 4.2).

Now, identify \(G \) with \(\mathbb{R}^{2d+2+p} \) again, let \(\xi \in L^2(\mathbb{R}^d) \) and \(s = (s_1, ..., s_d) = (\dot{s}, \ddot{s}) \) be located in \(\mathbb{R}^m \times \mathbb{R}^{d-m} \cong \mathbb{R}^d \) and define
\[
\tilde{\eta}_{k,0}(\tilde{s}) := \prod_{j=m+1}^{d} \left| \lambda_k c_j^k \right|^\frac{1}{2} \eta_j \left(\left| \lambda_k c_j^k \right|^\frac{1}{2} (s_j) \right).
\]

Moreover, let \(\dot{c} = (c_1, ..., c_m), \quad \ddot{c} = (c_{m+1}, ..., c_d) = (0, ..., 0), \quad \dot{c}^k = (c_1^k, ..., c_m^k) \) and \(\ddot{c}^k = (c_{m+1}^k, ..., c_d^k) \).

As in the second case, the expression \((\pi_k(f) - \nu_k(p_{G/U}(f))) \) is now going to be regarded, composed into several parts and then estimated: For this, Equation (6) from Chapter 4.4 will be used again but its notation needs to be adapted:

\[
\pi_k(f)(s) = \int_{\mathbb{R}^d} f^{2,3,4,5,6}(s - r, \frac{\lambda_k c^k}{2} (s + r), \rho_k, \lambda_k, 0, 0) \xi(r) \, dr
\]
\[
= \int_{\mathbb{R}^d} f^{3,4,5,6,7,8}(\dddot{s} - \tilde{r}, \tilde{s} - \tilde{r}, -\frac{\lambda_k \dot{c}^k}{2} (\dot{s} + \dot{r}) - \frac{\lambda_k \ddot{c}^k}{2} (\dddot{s} + \dddot{r}), \rho_k, \lambda_k, 0, 0) \xi(\ddot{r}, \ddot{r}) \, d(\ddot{r}, \ddot{r}).
\]
Using the above equation, Π and the fact that $p_{G/U}(f) = \hat{f}^{5,6,7,8}(\cdot, \cdot, \cdot, \cdot, \rho, \lambda, 0, 0)$, one gets

\[
\left(\pi_k(f) - v_k(p_{G/U}(f)) \right) \xi(s) \]

\[
\equiv \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} 3.4.5.6.7.8 \left(s - \tilde{r}, \tilde{s} - \tilde{r}, -\frac{\lambda_k \bar{c}^k}{2} (s + \tilde{r}), -\frac{\lambda_k \bar{c}^k}{2} (\tilde{s} + \tilde{r}), \rho_k, \lambda_k, 0, 0 \right) \xi(\tilde{r}, \tilde{r}) \ d(\tilde{r}, \tilde{r})
\]

\[
- \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} p_{G/U}(f) 3.4.5.6.7.8 \left(s - \tilde{r}, \tilde{s} - \tilde{r}, \frac{\lambda}{2} \tilde{c} (-\tilde{r} - \tilde{s}), \tilde{y} \right) \tilde{\eta}_{k,0}(\tilde{r}) \tilde{\eta}_{k,0}(\tilde{s}) \ d\tilde{y} \frac{d\tilde{y}}{\prod_{j=m+1}^{d} |\lambda_k c_j^l|} \xi(\tilde{r}, \tilde{r}) \ d(\tilde{r}, \tilde{r})
\]

\[
\|\tilde{\eta}_{k,0}\|_2 = 1 \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} 3.4.5.6.7.8 \left(s - \tilde{r}, \tilde{s} - \tilde{r}, -\frac{\lambda_k \bar{c}^k}{2} (s + \tilde{r}), -\frac{\lambda_k \bar{c}^k}{2} (\tilde{s} + \tilde{r}), \rho_k, \lambda_k, 0, 0 \right) \xi(\tilde{r}, \tilde{r}) \ d(\tilde{r}, \tilde{r})
\]

\[
- \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} 3.4.5.6.7.8 \left(s - \tilde{r}, \tilde{s} - \tilde{r}, \frac{\lambda}{2} \tilde{c} (-\tilde{r} - \tilde{s}), \tilde{y}, \rho, \lambda, 0, 0 \right) \tilde{\eta}_{k,0}(\tilde{r}) \tilde{\eta}_{k,0}(\tilde{s}) \ d\tilde{y} \frac{d\tilde{y}}{\prod_{j=m+1}^{d} |\lambda_k c_j^l|} \xi(\tilde{r}, \tilde{r}) \ d(\tilde{r}, \tilde{r})
\]

\[
= \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} 3.4.5.6.7.8 \left(s - \tilde{r}, \tilde{s} - \tilde{r}, -\frac{\lambda_k \bar{c}^k}{2} (s + \tilde{r}), -\frac{\lambda_k \bar{c}^k}{2} (\tilde{s} + \tilde{r}), \rho_k, \lambda_k, 0, 0 \right) \tilde{\eta}_{k,0}(\tilde{r}) \tilde{\eta}_{k,0}(\tilde{s}) \ d\tilde{y} \frac{d\tilde{y}}{\prod_{j=m+1}^{d} |\lambda_k c_j^l|} \xi(\tilde{r}, \tilde{r}) \ d(\tilde{r}, \tilde{r})
\]

\[
- \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} 3.4.5.6.7.8 \left(s - \tilde{r}, \tilde{s} - \tilde{r}, -\frac{\lambda}{2} \tilde{c} (s + \tilde{r}), \lambda_k \bar{c}^k (\tilde{y} - \tilde{s}), \rho, \lambda, 0, 0 \right) \tilde{\eta}_{k,0}(\tilde{r} + \tilde{s}) \tilde{\eta}_{k,0}(\tilde{y}) \ d\tilde{y} \frac{d\tilde{y}}{\prod_{j=m+1}^{d} |\lambda_k c_j^l|} \xi(\tilde{r}, \tilde{r}) \ d(\tilde{r}, \tilde{r}).
\]

Similar as for the second case, functions q_k, u_k, o_k, n_k and w_k are going to be defined in order to divide the above integrals into six parts:

\[
q_k(s, \tilde{y}) := \int_{\mathbb{R}^d} \xi(\tilde{r}, \tilde{r}) \tilde{\eta}_{k,0}(\tilde{y} + \tilde{r} - \tilde{s})
\]

\[
\left(\int_{k} 3.4.5.6.7.8 \left(s - \tilde{r}, \tilde{s} - \tilde{r}, -\frac{\lambda_k \bar{c}^k}{2} (s + \tilde{r}), -\frac{\lambda_k \bar{c}^k}{2} (\tilde{s} + \tilde{r}), \rho_k, \lambda_k, 0, 0 \right) \right) d(\tilde{r}, \tilde{r})
\]

\[
= \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} 3.4.5.6.7.8 \left(s - \tilde{r}, \tilde{s} - \tilde{r}, -\frac{\lambda_k \bar{c}^k}{2} (s + \tilde{r}), -\frac{\lambda_k \bar{c}^k}{2} (\tilde{s} + \tilde{r}), \rho, \lambda, 0, 0 \right) \tilde{\eta}_{k,0}(\tilde{r}) \tilde{\eta}_{k,0}(\tilde{s}) \ d\tilde{y} \frac{d\tilde{y}}{\prod_{j=m+1}^{d} |\lambda_k c_j^l|} \xi(\tilde{r}, \tilde{r}) \ d(\tilde{r}, \tilde{r})
\]

\[
u_k(s, \tilde{y}) := \int_{\mathbb{R}^d} \xi(\tilde{r}, \tilde{r}) \tilde{\eta}_{k,0}(\tilde{y} + \tilde{r} - \tilde{s})
\]

\[
\left(\int_{k} 3.4.5.6.7.8 \left(s - \tilde{r}, \tilde{s} - \tilde{r}, -\frac{\lambda_k \bar{c}^k}{2} (s + \tilde{r}), -\frac{\lambda_k \bar{c}^k}{2} (\tilde{s} + \tilde{r}), \rho, \lambda, 0, 0 \right) \right) d(\tilde{r}, \tilde{r})
\]

\[
32
\]
\[v_k(s, \bar{y}) := \int_{\mathbb{R}^d} \xi(\hat{r}, \hat{\bar{r}}) \overline{\eta}_{k,0}(\bar{y} + \hat{\bar{r}} - \hat{s}) \]
\[\quad \times \left(\int_k^{3.4.5.6.7.8} \left(\frac{\lambda_k c_k^2}{2} (\hat{s} + \hat{r}), -\frac{\lambda_k c_k^2}{2} (\hat{s} + \hat{r}), \rho, \lambda, 0, 0 \right) \right) d(\hat{r}, \hat{\bar{r}}), \]
\[o_k(s, \bar{y}) := \int_{\mathbb{R}^d} \xi(\hat{r}, \hat{\bar{r}}) \overline{\eta}_{k,0}(\bar{y} + \hat{\bar{r}} - \hat{s}) \]
\[\quad \times \left(\int_k^{3.4.5.6.7.8} \left(\frac{\lambda_k c_k^2}{2} (\hat{s} + \hat{r}), \lambda_k c_k^2 (\bar{y} - \bar{s}), \rho, \lambda, 0, 0 \right) \right) d(\hat{r}, \hat{\bar{r}}), \]
\[n_k(s, \bar{y}) := \int_{\mathbb{R}^d} \xi(\hat{r}, \hat{\bar{r}}) \overline{\eta}_{k,0}(\bar{y} + \hat{\bar{r}} - \hat{s}) \]
\[\quad \times \left(\int_k^{3.4.5.6.7.8} \left(\frac{\lambda_k c_k^2}{2} (\hat{s} + \hat{r}), \lambda_k c_k^2 (\bar{y} - \bar{s}), \rho, \lambda, 0, 0 \right) \right) d(\hat{r}, \hat{\bar{r}}) \]
and
\[w_k(s) := \int_{\mathbb{R}^{d-m}} \int_{\mathbb{R}^d} \xi(\hat{r}, \hat{\bar{r}}) \overline{\eta}_{k,0}(\bar{y}) \left(\overline{\eta}_{k,0}(\bar{y}) - \overline{\eta}_{k,0}(\bar{y} + \hat{\bar{r}} - \hat{s}) \right) \]
\[\quad \times \int_k^{3.4.5.6.7.8} \left(\frac{\lambda_k c_k^2}{2} (\hat{s} + \hat{r}), -\frac{\lambda_k c_k^2}{2} (\hat{s} + \hat{r}), \rho, \lambda, 0, 0 \right) d(\hat{r}, \hat{\bar{r}}) d\bar{y}. \]

Then,
\[(\pi_k(f) - \nu_k(p_{CG/\mathcal{U}}(f))) \xi(s) = \int_{\mathbb{R}^{d-m}} q_k(s, \bar{y}) \overline{\eta}_{k,0}(\bar{y}) d\bar{y} + \int_{\mathbb{R}^{d-m}} w_k(s, \bar{y}) \overline{\eta}_{k,0}(\bar{y}) d\bar{y} \]
\[+ \int_{\mathbb{R}^{d-m}} v_k(s, \bar{y}) \overline{\eta}_{k,0}(\bar{y}) d\bar{y} + \int_{\mathbb{R}^{d-m}} o_k(s, \bar{y}) \overline{\eta}_{k,0}(\bar{y}) d\bar{y} \]
\[+ \int_{\mathbb{R}^{d-m}} n_k(s, \bar{y}) \overline{\eta}_{k,0}(\bar{y}) d\bar{y} + w_k(s). \]

As in the second case, to show that
\[\| \pi_k(f) - \nu_k(p_{CG/\mathcal{U}}(f)) \|_{op} \xrightarrow{k \to \infty} 0, \]
one has to prove that there are \(\kappa_k, \gamma_k, \delta_k, \tau_k, \omega_k \) and \(\epsilon_k \) which are going to 0 for \(k \to \infty \), such that
\[\| q_k \|_2 \leq \kappa_k \| \xi \|_2, \quad \| u_k \|_2 \leq \gamma_k \| \xi \|_2, \quad \| v_k \|_2 \leq \delta_k \| \xi \|_2, \quad \| o_k \|_2 \leq \tau_k \| \xi \|_2, \]
\[\| n_k \|_2 \leq \omega_k \| \xi \|_2 \quad \text{and} \quad \| w_k \|_2 \leq \epsilon_k \| \xi \|_2. \]

The estimation of the functions \(q_k, u_k, v_k, o_k \) and \(w_k \) is very similar to their estimation in the second case and will thus be skipped. So, it just remains the estimation of \(o_k \):
For this, first regard the last factor of the function o_k:

$$
\int_0^{\lambda_{\tilde{k}}^{3,4,5,6,7,8}} \left(\frac{\lambda_{\tilde{k}}^{3,4,5,6,7,8}}{2} (\dot{s} + \ddot{\bar{r}}) - \frac{\lambda_{\tilde{k}}^{3,4,5,6,7,8}}{2} (\dot{s} + \ddot{\bar{r}}), \lambda_{\tilde{k}}^{3,4,5,6,7,8} (\ddot{\bar{y}} - \ddot{\bar{s}}), \rho, \lambda, 0, 0 \right) + \frac{1}{2} (\dot{\lambda} - \lambda_{\tilde{k}}^{3,4,5,6,7,8}) (\dot{\bar{s}} + \ddot{\bar{r}})
$$

Thus, for those $x \in S$ such that $\lambda \in \mathbb{R}^{2d}$ has a compact support, we get

$$
\|o_k\|_2^n \leq C_1 \frac{C_2^n \|\dot{\lambda} - \lambda_{\tilde{k}}^{3,4,5,6,7,8}\|^2}{(1 + \|\dot{\bar{s}} + \ddot{\bar{r}}\|)^{2d+1} (1 + \|\dot{s} - \ddot{s}\|)^{2d}} d(\bar{s}, \bar{y}, \bar{\bar{y}})
$$

Hence, one gets

$$
\|o_k\|_2^n = \int_{\mathbb{R}^{2d}} |o_k(s, \bar{y})|^2 d(s, \bar{y})
$$

Cauchy-Schwarz

$$
\leq \int_{\mathbb{R}^{2d}} \xi(\bar{s}, \bar{y}) \frac{1}{(1 + \|\dot{s} + \ddot{\bar{r}}\|)^{2d+1} (1 + \|\dot{s} - \ddot{s}\|)^{2d}} d(\bar{s}, \bar{y}, \bar{\bar{y}})
$$

with matching constants $C_1 > 0$ and $C_2 > 0$, depending on f. Hence, $\tau_k := \sqrt{C_1^n} \|\dot{\lambda} - \lambda_{\tilde{k}}^{3,4,5,6,7,8}\|$ fulfills $\lim_{k \to \infty} \tau_k = 0$ and

$$
\|o_k\|_2^n = \tau_k \xi
$$

Thus, for those $f \in S(\mathbb{R}^{2d+2})$ whose Fourier transform in $[\xi, \bar{\xi}]$ has a compact support, we get

$$
\|\pi_k(f) - \nu_k(p_G(U(f)))\|_{op} = \sup_{\xi \in L^2(\mathbb{R}^n) \|\|\xi\|_2 = 1} \left\|\pi_k(f) - \nu_k(p_G(U(f))(\xi)\right\|_{1}^{k \to \infty} \to 0.
$$
As in the second case, because of the density of the set of Schwartz functions whose partial Fourier transform has a compact support, the claim follows for all \(a \in C^*(G) \).

Now, the assertions for the sequence \((\pi_k^V)_k \) can be deduced:

4.7.4 Transition to \((\pi_k^V)_k \)

Again, because of the equivalence of the representations \(\pi_k \) and \(\pi_k^V \) for every \(k \in \mathbb{N} \), there exist unitary intertwining operators

\[
F_k : \mathcal{H}_{\pi_k^V} \cong L^2(\mathbb{R}^d) \to \mathcal{H}_{\pi_k} \cong L^2(\mathbb{R}^d) \quad \text{with} \quad F_k \circ \pi_k^V(a) = \pi_k(a) \circ F_k \quad \forall \ a \in C^*(G).
\]

With the injective \(*\)-homomorphism

\[
\tau : C_0(\mathbb{R}^{2(d-m)}, K) \to C^*(G/U, \chi_\ell), \quad F(a)|_{L((O_k)_a)} \mapsto p_{G/U}(a)
\]

define

\[
\tilde{\nu}_k(\varphi) := F_k^* \circ (\nu_k \circ \tau)(\varphi|_{L((O_k)_a)}) \circ F_k \quad \forall \ \varphi \in CB(S_{i-1}).
\]

Then, like in the second case, \(\tilde{\nu}_k \) complies with the demanded requirements and thus, the original representations \((\pi_k^V)_k \) fulfill Property 3(b).

Finally, one obtains the following result:

Theorem 4.5 (Main result).

The \(C^*\)-algebra \(C^*(G) \) of a connected real two-step nilpotent Lie group is isomorphic (under the Fourier transform) to the set of all operator fields \(\varphi \) defined over \(\hat{G} \) such that

1. \(\varphi(\gamma) \in K(\mathcal{H}_i) \) for every \(i \in \{1, ..., r\} \) and every \(\gamma \in \Gamma_i \).
2. \(\varphi \in l^\infty(\hat{G}) \).
3. The mappings \(\gamma \mapsto \varphi(\gamma) \) are norm continuous on the different sets \(\Gamma_i \).
4. For any sequence \((\gamma_k)_{k \in \mathbb{N}} \subseteq \hat{G} \) going to infinity \(\lim_{k \to \infty} \| \varphi(\gamma_k) \|_{\text{op}} = 0 \).
5. For \(i \in \{1, ..., r\} \) and any properly converging sequence \(\overline{\gamma} = (\gamma_k) \subseteq \Gamma_i \) whose limit set \(L(\overline{\gamma}) \) is contained in \(S_{i-1} \) (taking a subsequence if necessary) and for the mappings \(\tilde{\nu}_k = \tilde{\nu}_{\overline{\gamma}, k} : CB(S_{i-1}) \to B(\mathcal{H}_i) \) constructed in the preceding sections, one has

\[
\lim_{k \to \infty} \| \varphi(\gamma_k) - \tilde{\nu}_k(\varphi|_{S_{i-1}}) \|_{\text{op}} = 0.
\]

5 Example: The free two-step nilpotent Lie groups of 3 and 4 generators

In the case of the free two-step nilpotent Lie groups of \(n = 3 \) and \(n = 4 \) generators, the stabilizer of a linear functional \(\ell \), the in Section 3 constructed polarization \(p_i^V \), the coadjoint orbits, as well as the sets \(S_i \) and \(\Gamma_i \) can easily be calculated.

For \(n = 3 \), there are coadjoint orbits of the dimensions 0 and 2 and for \(n = 4 \), the dimensions 0, 2 and 4 appear.

For the free two-step nilpotent Lie groups of 3 generators, the third case regarded in the proof above does not appear: For this, one has to find a sequence of orbits \((O_k)_k \) whose limit set \(L((O_k)_k) \) consists of orbits of the dimension strictly greater than 0 but strictly smaller than \(\dim(O_k) \). But as for \(n = 3 \) only orbits of the dimensions 0 and 2 appear, such a sequence \((O_k)_k \) does not exist. However, for the free two-step nilpotent Lie groups of 4 generators, this discussed third case exists.
For both $n = 3$ and $n = 4$, one can also see that the situation occurs where the polarizations $p^V_{t'}$ are discontinuous in t on the set $\{tO' \mid O' \in (g^*/G)_{(J,K)}^{2d}\}$. This shows the necessity of regarding the sets $\{tO' \mid O' \in (g^*/G)_{(J,K)}\}$ instead.

Some calculations for the example of the free two-step nilpotent Lie groups of 3 and 4 generators can be found in the doctoral thesis of R.Lahiani (see [4]).

6 Appendix

Lemma 6.1.

Let V be a finite-dimensional euclidean vector space and S an invertible, skew-symmetric endomorphism. Then V can be decomposed into an orthogonal direct sum of two-dimensional S-invariant subspaces.

Proof:

S extends to a complex endomorphism S_C on the complexification V^C of V, which has purely imaginary eigenvalues.

If $i\lambda \in i\mathbb{R}$ is an eigenvalue, then also $-i\lambda$ is a spectral element. Denote by $E_{i\lambda}$ the corresponding eigenspace. These eigenspaces are orthogonal to each other with respect to the Hilbert space structure of V^C coming from the euclidean scalar product $\langle \cdot, \cdot \rangle$ on V.

Let for $i\lambda$ in the spectrum of S_C

$$V^\lambda : = (E_{i\lambda} + E_{-i\lambda}) \cap V. $$

If $\lambda \neq 0$, $\text{dim}(V^\lambda)$ is even and V^λ is S-invariant and orthogonal to $V^{\lambda'}$, whenever $|\lambda| \neq |\lambda'|$:

Indeed, one then has for $x \in V^\lambda, x' \in V^{\lambda'}$ that

$$x + iy \in E_{i\lambda} \quad \text{and} \quad x - iy \in E_{-i\lambda} \quad \text{for some} \quad y \in V \quad \text{as well as} \quad x' + iy' \in E_{i\lambda'} \quad \text{and} \quad x' - iy' \in E_{-i\lambda'} \quad \text{for some} \quad y' \in V.$$

Therefore,

$$\langle x + iy, x' + iy' \rangle = 0 \quad \text{and} \quad \langle x - iy, x' + iy' \rangle = 0.$$

Thus, one has

$$\langle x, x' + iy' \rangle = 0 \quad \text{and hence} \quad \langle x, x' \rangle = 0.$$

Suppose that $\text{dim}(V^\lambda) > 2$, choose a vector $x \in V^\lambda$ of length 1 and let $y = S(x)$. Since $S_C^2 = -\lambda^2 \text{Id}$, both on $E_{i\lambda}$ and on $E_{-i\lambda}$,

$$S(y) = S^2(x) = -\lambda^2 x.$$

This shows that $W^\lambda_1 : = \text{span}\{x, y\}$ is an S-invariant subspace of V^λ. If V^λ_1 denotes the orthogonal complement of W^λ_1 in V^λ, then V^λ_1 is S-invariant, since $S' = -S$.

In this way one can find a decomposition of V^λ into an orthogonal direct sum of two-dimensional S-invariant subspaces W^λ_j and by summing up over the eigenvalues, one obtains the required decomposition of V.

7 Acknowledgements

This work is supported by the Fonds National de la Recherche, Luxembourg (Project Code 3964572).
References

[1] I.Brown, Dual topology of a nilpotent Lie group, Annales scientifiques de l’É.N.S. 4e série, tome 6, no. 3, pp. 407-411 (1973)

[2] L.Corwin and F.P.Greeneleaf, Representations of nilpotent Lie groups and their applications. Part I. Basic theory and examples. Cambridge Studies in Advanced Mathematics, vol. 18. Cambridge University Press, Cambridge (1990)

[3] J.Dixmier, C*-algebras. Translated from French by Francis Jellett. North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford (1977)

[4] R.Lahiani, Analyse Harmonique sur certains groupes de Lie à croissance polynomiale. Ph.D. thesis at the University of Luxembourg and the Université Paul Verlaine-Metz (2010)

[5] H.Leptin and J.Ludwig, Unitary representation theory of exponential Lie groups. De Gruyter Expositions in Mathematics 18, Berlin-New York (1994)

[6] Y.-F.Lin and J.Ludwig, The C*-algebras of $ax+b$-like groups, Journal of Functional Analysis 259, pp. 104-130 (2010)

[7] J.Ludwig and L.Turowska, The C*-algebras of the Heisenberg Group and of thread-like Lie groups, Math. Z. 268, no. 3-4, pp. 897-930 (2011)

[8] J.Ludwig and H.Zahir, On the Nilpotent *-Fourier Transform, Letters in Mathematical Physics 30, pp. 23-24 (1994)

[9] L.Pukanszky, Leçons sur les représentations des groupes. Dunod, Paris (1967)

[10] H.Rejba, Les C*-algèbres des groupes de Lie nilpotents de dimension ≤ 6, Ph.D. thesis at the Université de Lorraine (2014)

[11] H.Rejba and J.Ludwig, C*-Algebras with Norm Controlled Dual Limits and Nilpotent Lie Groups, arXiv: 1309.6941 (2013)