Original research

Balloon-mounted stenting for ICAS in a multicenter registry study in China: a comparison with the WEAVE/WOVEN trial

Kaijiang Kang,1,2,3 Yong Zhang,4 Jie Shuai,5 Changchun Jiang,6 Qiyi Zhu,7 Kangning Chen,8 Li Liu,9 Baomin Li,10 Xiangyun Shi,11 Lianbo Gao,12 Yajie Liu,13 Feng Wang,14 Yongli Li,15 Tieyan Liu,16 Hongbo Zheng,17 Dapeng Mo,2,3,18 Feng Gao, 2,3,18 Lei Feng,19 Yilong Wang,1,2,3 YongJun Wang,1,2,3 Zhongrong Miao,2,3,18 Ning Ma, 2,3,18 The Study Group of Registry Study of Stenting for Symptomatic Intracranial Artery Stenosis in China

ABSTRACT

Background The outcome of deploying balloon-mounted stents for symptomatic intracranial atherosclerotic stenosis (ICAS) has not been fully investigated. In this study we evaluate the safety and long-term outcome of using balloon-mounted stents to treat symptomatic ICAS in comparison with the WEAVE/ WOVEN study.

Methods In a multicenter registry study of stenting for symptomatic intracranial artery stenosis in China, 159 patients treated with an intracranial balloon-mounted stent approved by the China Food and Drug Administration were evaluated. The morphological features of the lesions were categorized by Mori classification. The endpoints, including periprocedural and long-term clinical and radiological outcomes, were the same as those in the WEAVE/WOVEN study.

Results In the present study the mean percent stenosis before and after stenting was 84.0% and 6.1%, respectively. The proportions of Mori A, Mori B, and Mori C lesions were 33.3%, 52.2%, and 14.5%, respectively. The 72-hour rates of stroke and mortality after the procedure were 0%. The 1-year rates of any stroke, ischemic stroke, hemorrhagic stroke, and death were 6.3% (10/159), 5.7% (9/159), 0.6% (1/159), and 0.6% (1/159), respectively. The 1-year rate of in-stent restenosis (ISR) was 23.4% (15/64). The rate of ISR in Mori C lesions (53.8%, 7/13) was significantly higher than that in Mori A (15.8%, 3/19) or Mori B lesions (15.6%, 5/32) (p=0.024).

Conclusions The short-term and long-term outcomes of using a balloon-mounted stent for symptomatic ICAS with focal and non-angular lesions (Mori A and B type) and smooth arterial access were comparable to the results of the WEAVE/WOVEN trial.

INTRODUCTION

Stroke is a common and disabling disease worldwide, and intracranial atherosclerotic stenosis (ICAS) is one of the leading causes of ischemic stroke in Asian populations.1-5 Intracranial stenting has been evaluated for the treatment of patients with symptomatic ICAS unresponsive to aggressive medical management, to improve the cerebral perfusion irrigated by the culprit arteries and thereby reduce the risk of recurrent stroke and improving neurological outcome.6 Even though registry studies demonstrated low rates of perioperative complications (4.5–6.9%) for ICAS stenting using the self-expanding Wingspan stent system,7-10 high perioperative complication rates in the stenting group were reported by the SAMMPRIS (Stenting and Aggressive Medical Management for Preventing Recurrent Stroke in Intracranial Stenosis) study (14.7%) and by the VISSIT (Vitesse Intracranial Stent Study for Ischemic Stroke Therapy) study (24.1%).7,11 The WEAVE (Wingspan Stent System Post Market Surveillance) and WOVEN (Wingspan One-year Vascular Events and Neurologic outcomes) study also demonstrated low rates of perioperative complications (2.6%) and long-term recurrent stroke (8.5%) for ICAS stenting using the self-expanding Wingspan stent system with experienced interventionalists and proper patient selection.12,13

Compared with the self-expanding Wingspan stent, balloon-mounted stents are placed at the same time as angioplasty, avoiding the time and risk of over-the-wire exchange. In addition, balloon-mounted stents have shorter cone tips and are easier to navigate through small and tortuous vessels distal to the target lesions, reducing the risks of vascular injury. Since the failed VISSIT study, studies on the feasibility and long-term efficacy of balloon-mounted stenting for symptomatic ICAS have been scarce.11 The Apollo stent (MicroPort Neuro Tech, Shanghai, China) is a balloon-mounted stent with a metallic surface area of about 14.0%, approved by the Chinese Food and Drug Administration for use in patients with symptomatic ICAS. Although several case series have supported its safety and efficacy since 2003,14-18 a prospective multicenter registry study has not been carried out.

We have previously reported the short-term and long-term outcomes of a prospective multicenter registry on intracranial angioplasty and stenting for symptomatic stenosis, which included both self-expanding and balloon-mounted stents.
Many balloon-mounted stents were deployed for focal and non-angulard lesions (Mori A and B type) with smooth arterial access. We therefore performed this study to re-evaluate the safety and long-term outcome of balloon-mounted stenting for symptomatic ICAS by using the same endpoints as the WEAVE/WOVEN study.

**MATERIALS AND METHODS**

**Study design and population**

This study is a retrospective review of a subgroup of patients from a prospective single-arm registry study with 20 participating sites. Details of the registry have been published elsewhere. Approval by each site’s institutional review board or ethics committee was obtained. Written informed consent was obtained from the patients or their legally authorized representatives. All reported endpoints were evaluated and confirmed by a central adjudication committee consisting of neurologists, neurosurgeons, and radiologists who were blinded to the treatment choices. An independent data and safety monitoring board oversaw the conduct, safety, and efficacy of the study.

In this subgroup analysis we focused on the clinical and radiological outcomes of the balloon-mounted stenting group in comparison with the WEAVE/WOVEN study. We used the same primary endpoints as in the WEAVE/WOVEN study, including any stroke, ischemic stroke, hemorrhagic stroke, and death within 72 hours and at 1 year after the procedure and restenosis at 1 year.

**Enrollment of patients**

Inclusion and exclusion criteria were established by the executive committee. Patients were aged 18–85 years and had a symptomatic ICAS of 70–99% with a lesion length of ≤15 mm and target vessel diameter of ≥2.0 mm in the intracranial internal carotid artery (ICA), middle cerebral artery (MCA), intracranial vertebral artery (VA), or basilar artery (BA) (table 1). The measurements were made on digital subtraction angiography (DSA) using the WASID (warfarin–aspirin symptomatic intracranial disease) method with normal distal vessels as the reference. The symptoms included transient ischemic attacks (TIA) or ischemic stroke within the past 90 days that were attributable to hypoperfusion in the territory of the target lesion. Ischemic stroke referred to ischemic symptoms within the past 90 days attributable to hypoperfusion in the territory of the target lesion. Ischemic symptoms within the past 90 days attributable to hypoperfusion in the territory of the target lesion. Ischemic stroke referred to ischemic symptoms within the past 90 days attributable to hypoperfusion in the territory of the target lesion. Ischemic stroke referred to ischemic symptoms within the past 90 days attributable to hypoperfusion in the territory of the target lesion.

**Materials and methods**

**Study design and population**

This study is a retrospective review of a subgroup of patients from a prospective single-arm registry study with 20 participating sites. Details of the registry have been published elsewhere. Approval by each site’s institutional review board or ethics committee was obtained. Written informed consent was obtained from the patients or their legally authorized representatives. All reported endpoints were evaluated and confirmed by a central adjudication committee consisting of neurologists, neurosurgeons, and radiologists who were blinded to the treatment choices. An independent data and safety monitoring board oversaw the conduct, safety, and efficacy of the study.

In this subgroup analysis we focused on the clinical and radiological outcomes of the balloon-mounted stenting group in comparison with the WEAVE/WOVEN study. We used the same primary endpoints as in the WEAVE/WOVEN study, including any stroke, ischemic stroke, hemorrhagic stroke, and death within 72 hours and at 1 year after the procedure and restenosis at 1 year.

**Enrollment of patients**

Inclusion and exclusion criteria were established by the executive committee. Patients were aged 18–85 years and had a symptomatic ICAS of 70–99% with a lesion length of ≤15 mm and target vessel diameter of ≥2.0 mm in the intracranial internal carotid artery (ICA), middle cerebral artery (MCA), intracranial vertebral artery (VA), or basilar artery (BA) (table 1). The measurements were made on digital subtraction angiography (DSA) using the WASID (warfarin–aspirin symptomatic intracranial disease) method with normal distal vessels as the reference. The symptoms included transient ischemic attacks (TIA) or ischemic stroke within the past 90 days that were attributable to hypoperfusion in the territory of the target lesion. Ischemic stroke referred to ischemic symptoms within the past 90 days attributable to hypoperfusion in the territory of the target lesion. Ischemic stroke referred to ischemic symptoms within the past 90 days attributable to hypoperfusion in the territory of the target lesion. Ischemic stroke referred to ischemic symptoms within the past 90 days attributable to hypoperfusion in the territory of the target lesion. Ischemic stroke referred to ischemic symptoms within the past 90 days attributable to hypoperfusion in the territory of the target lesion.

Patients were aged 18–85 years and had a symptomatic ICAS of 70–99% with a lesion length of ≤15 mm and target vessel diameter of ≥2.0 mm in the intracranial internal carotid artery (ICA), middle cerebral artery (MCA), intracranial vertebral artery (VA), or basilar artery (BA) (table 1). The measurements were made on digital subtraction angiography (DSA) using the WASID (warfarin–aspirin symptomatic intracranial disease) method with normal distal vessels as the reference. The symptoms included transient ischemic attacks (TIA) or ischemic stroke within the past 90 days that were attributable to hypoperfusion in the territory of the target lesion. Ischemic stroke referred to ischemic symptoms within the past 90 days attributable to hypoperfusion in the territory of the target lesion. Ischemic stroke referred to ischemic symptoms within the past 90 days attributable to hypoperfusion in the territory of the target lesion. Ischemic stroke referred to ischemic symptoms within the past 90 days attributable to hypoperfusion in the territory of the target lesion. Ischemic stroke referred to ischemic symptoms within the past 90 days attributable to hypoperfusion in the territory of the target lesion.

**Materials and methods**

**Study design and population**

This study is a retrospective review of a subgroup of patients from a prospective single-arm registry study with 20 participating sites. Details of the registry have been published elsewhere. Approval by each site’s institutional review board or ethics committee was obtained. Written informed consent was obtained from the patients or their legally authorized representatives. All reported endpoints were evaluated and confirmed by a central adjudication committee consisting of neurologists, neurosurgeons, and radiologists who were blinded to the treatment choices. An independent data and safety monitoring board oversaw the conduct, safety, and efficacy of the study.

In this subgroup analysis we focused on the clinical and radiological outcomes of the balloon-mounted stenting group in comparison with the WEAVE/WOVEN study. We used the same primary endpoints as in the WEAVE/WOVEN study, including any stroke, ischemic stroke, hemorrhagic stroke, and death within 72 hours and at 1 year after the procedure and restenosis at 1 year.

**Enrollment of patients**

Inclusion and exclusion criteria were established by the executive committee. Patients were aged 18–85 years and had a symptomatic ICAS of 70–99% with a lesion length of ≤15 mm and target vessel diameter of ≥2.0 mm in the intracranial internal carotid artery (ICA), middle cerebral artery (MCA), intracranial vertebral artery (VA), or basilar artery (BA) (table 1). The measurements were made on digital subtraction angiography (DSA) using the WASID (warfarin–aspirin symptomatic intracranial disease) method with normal distal vessels as the reference. The symptoms included transient ischemic attacks (TIA) or ischemic stroke within the past 90 days that were attributable to hypoperfusion in the territory of the target lesion. Ischemic stroke referred to ischemic symptoms within the past 90 days attributable to hypoperfusion in the territory of the target lesion. Ischemic stroke referred to ischemic symptoms within the past 90 days attributable to hypoperfusion in the territory of the target lesion. Ischemic stroke referred to ischemic symptoms within the past 90 days attributable to hypoperfusion in the territory of the target lesion. Ischemic stroke referred to ischemic symptoms within the past 90 days attributable to hypoperfusion in the territory of the target lesion.

**Materials and methods**

**Study design and population**

This study is a retrospective review of a subgroup of patients from a prospective single-arm registry study with 20 participating sites. Details of the registry have been published elsewhere. Approval by each site’s institutional review board or ethics committee was obtained. Written informed consent was obtained from the patients or their legally authorized representatives. All reported endpoints were evaluated and confirmed by a central adjudication committee consisting of neurologists, neurosurgeons, and radiologists who were blinded to the treatment choices. An independent data and safety monitoring board oversaw the conduct, safety, and efficacy of the study.

In this subgroup analysis we focused on the clinical and radiological outcomes of the balloon-mounted stenting group in comparison with the WEAVE/WOVEN study. We used the same primary endpoints as in the WEAVE/WOVEN study, including any stroke, ischemic stroke, hemorrhagic stroke, and death within 72 hours and at 1 year after the procedure and restenosis at 1 year.

**Enrollment of patients**

Inclusion and exclusion criteria were established by the executive committee. Patients were aged 18–85 years and had a symptomatic ICAS of 70–99% with a lesion length of ≤15 mm and target vessel diameter of ≥2.0 mm in the intracranial internal carotid artery (ICA), middle cerebral artery (MCA), intracranial vertebral artery (VA), or basilar artery (BA) (table 1). The measurements were made on digital subtraction angiography (DSA) using the WASID (warfarin–aspirin symptomatic intracranial disease) method with normal distal vessels as the reference. The symptoms included transient ischemic attacks (TIA) or ischemic stroke within the past 90 days that were attributable to hypoperfusion in the territory of the target lesion. Ischemic stroke referred to ischemic symptoms within the past 90 days attributable to hypoperfusion in the territory of the target lesion. Ischemic stroke referred to ischemic symptoms within the past 90 days attributable to hypoperfusion in the territory of the target lesion. Ischemic stroke referred to ischemic symptoms within the past 90 days attributable to hypoperfusion in the territory of the target lesion. Ischemic stroke referred to ischemic symptoms within the past 90 days attributable to hypoperfusion in the territory of the target lesion.
be long and angular, requiring relatively longer stents. However, the longer the stent length, the more difficult it is to put the system in place. In cases with tortuous arterial access we used a double-microwire technique at the early stage and an intermediate catheter at the late stage to facilitate the delivery system over the lesion.

**Periprocedural management**

Perioperative systolic blood pressure was kept between 100 and 120 mmHg during the procedure and for 3 days after the procedure. Non-contrast head CT was obtained to exclude hemorrhage after the procedure. All patients were given a weight-based dose of 0.4–0.6 mL nadroparin (Fraxiparine; Sanofi Winthrop Industry) every 12 hours subcutaneously for 3 days and monitored closely until discharge.

**Medical treatment**

All patients received aspirin (100 mg/day) and clopidogrel (75 mg/day) for more than 5 days before the procedure. Resistance testing for antiplatelet drugs was not performed. Other aggressive medical therapy was implemented to achieve the following goals: systolic blood pressure <140 mmHg (or <130 mm Hg in patients with diabetes mellitus), low-density lipoprotein <70 mg/dL (1.81 mmol/L) or a decrease by 50%, smoking cessation, lifestyle modification for obesity and sedentary state.

**Clinical and radiological outcomes**

Follow-up information on clinical outcomes was collected and reviewed by trained personnel who were blinded to treatment assignment at study entry, the day of discharge, 30-day follow-up, and face-to-face interview every 3 months. All follow-up visits were in person unless the patient could not return for a visit, in which case telephone follow-up was completed. If necessary, brain imaging studies including MR angiography (MRA) and CT angiography (CTA) were obtained in patients who developed neurological symptoms. DSA was recommended to patients at 12 months follow-up.

In this subgroup analysis we focused on the short-term outcomes including any stroke, ischemic stroke, hemorrhagic stroke, and death within 72 hours after stenting, and long-term outcomes including any stroke, ischemic stroke, hemorrhagic stroke, and death within 1 year. The definitions of ischemic stroke, hemorrhagic stroke, and TIA were the same as in the previous studies.19 20 27 For patients evaluated with DSA, in-stent restenosis (ISR) was defined as >70% stenosis within or immediately adjacent (within 5 mm) to the implanted stent (figure 2). For patients evaluated with CTA, the stents were considered as ISR if the stented segment or the proximal and distal parent vessel could not be well visualized or showed an apparent filling defect on CTA (figure 1).8

**Statistical analysis**

Continuous variables were presented as mean±SD (normal distribution data) or median with interquartile range (skewed distribution data), as appropriate. Categorical variables were presented as number and percentage. The χ² test was used to analyze differences between the present study and the WEAVE/ WOVEN study and differences in ISR rates among patients with different Mori types of lesion and between patients with anterior and posterior circulation lesions. The statistical analysis was performed using a commercial statistical software package (SPSS for Windows, Version 25.0, IBM-SPSS, Chicago, Illinois, USA).

**RESULTS**

**Patient baseline characteristics**

From September 2013 to January 2015 a total of 300 patients were recruited in 15 sites in China, including 159 patients treated with balloon-mounted stenting and 141 patients treated with balloon dilatation plus self-expanding stenting. In this study the 159 patients (aged 59.4±9.5 years) treated with balloon-mounted stenting (recruited in 14 sites) were analyzed, including 120 (75.5%) men and 39 (24.5%) women. Of the 159 patients, 110 (69.2%) had hypertension, 53 (33.3%) had diabetes...
Ischemic stroke

Baseline mRS, n (%) $<0.001$

Baseline NIHSS, median (IQR) 0 (0–2) – –

Baseline mRS, n (%) $<0.001$

0 96 (60.4%) 20 (13.2%)
1 48 (30.2%) 37 (24.3%)
2 15 (9.4%) 52 (34.2%)
3 0 (0.0%) 43 (28.3%)

Table 2 Demographic and clinical characteristics

| Variable                  | Present study (n=159) | WEAVE/WOVEN (n=152) | P value |
|---------------------------|-----------------------|---------------------|---------|
| Age, mean±SD              | 59±9.5                | 61±10.5             | –       |
| Female, n (%)             | 39 (25.5%)            | 71 (46.7%)          | $<0.001$|
| Hypertension, n (%)       | 110 (69.2%)           | 140 (92.1%)         | $<0.001$|
| Diabetes mellitus, n (%)  | 53 (33.3%)            | 91 (59.9%)          | $<0.001$|
| Hyperlipidemia, n (%)     | 60 (37.3%)            | 131 (86.2%)         | $<0.001$|
| Smoking, n (%)            |                       |                     | 0.004   |
| Current smoker            | 45 (28.3%)            | 21 (13.8%)          |         |
| Previous smoker           | 43 (27.0%)            | 59 (38.8%)          |         |
| Never smoked              | 71 (44.7%)            | 72 (47.4%)          |         |
| BMI, mean±SD              | 25.6±3.14             | 30.9±7.03           | –       |
| Lesion distribution       |                       |                     | $<0.001$|
| Anterior circulation      | 63 (39.6%)            | 102 (65.0%)         |         |
| Posterior circulation     | 96 (60.4%)            | 55 (35.0%)          |         |
| Type of anesthesia, n (%) |                       |                     | $<0.001$|
| General anesthesia        | 88 (55.3%)            | 148 (97.4%)         |         |
| Local anesthesia          | 71 (44.7%)            | 4 (2.6%)            |         |
| Mori types, n (%)         |                       |                     | –       |
| Mori A                    | 53 (33.3%)            | –                   |         |
| Mori B                    | 83 (52.2%)            | –                   |         |
| Mori C                    | 23 (14.5%)            | –                   |         |
| Percent (%) stenosis baseline |               |                     | –       |
| Means±SD                  | 84±7.4                | 83.2±8.3            |         |
| Median (IQR)              | 85.0 (80.0–90.0)      | 82.0 (77.0–91.0)    |         |
| Range (min, max)          | (70.0, 99.0)          | (40.0, 97.0)        |         |
| Percent (%) stenosis after stenting |           |                     | –       |
| Means±SD                  | 61±7.0                | 28.3±16.9           |         |
| Median (IQR)              | 5.0 (0.0–10.0)        | 27.5 (14.0–41.0)    |         |
| Range (min, max)          | (0.0, 40.0)           | (0.0, 84.0)         |         |
| Percent (%) stenosis after stenting |           |                     | –       |
| Means±SD                  | 2.8±0.4               | –                   |         |
| Median (IQR)              | 2.5 (2.5–3.0)         | –                   |         |
| Range (min, max)          | (2.5, 4.0)            | –                   |         |
| Percent (%) stenosis after stenting |           |                     | –       |
| Means±SD                  | 10±2.9                | –                   |         |
| Median (IQR)              | 8.0 (8.0–13.0)        | –                   |         |
| Range (min, max)          | (8.0, 20.0)           | –                   |         |

Table 3 Periprocedural and technical characteristics

| Variable                  | Present study | WEAVE/WOVEN | P value |
|---------------------------|---------------|-------------|---------|
| Median (IQR)              | 20 (9–34)     | 22          | –       |
| Qualifying ischemic events|              |             | $<0.001$|
| TIA                       | 75 (47.2%)    | 0 (0.0%)    |         |
| Ischemic stroke           | 84 (52.8%)    | 152 (100.0%)|         |
| Time to stent from qualifying event (days), median (IQR) | 0 (0–2) | – | – |
| Baseline NIHSS, median (IQR) |        |             |         |
| Baseline mRS, n (%)       |              |             | $<0.001$|
| 0                         | 96 (60.4%)    | 20 (13.2%)  |         |
| 1                         | 48 (30.2%)    | 37 (24.3%)  |         |
| 2                         | 15 (9.4%)     | 52 (34.2%)  |         |
| 3                         | 0 (0.0%)      | 43 (28.3%)  |         |

BA, basilar artery; BMI, body mass index; ICA, internal carotid artery; MCA, middle cerebral artery; mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; PCA, posterior cerebral artery; TIA, transient ischemic attack; VA, vertebral artery.

were 2.5 mm and 8.0 mm, respectively. The technical procedural characteristics are shown in table 3.

Clinical and radiological outcomes

In the present study the stroke rates at 72 hours, 30 days, and 1 year after the procedure were 0% (0/159), 2.5% (4/159), and 6.3% (10/159), respectively; the rates of ischemic stroke at 72 hours, 30 days, and 1 year after the procedure were 0% (0/159), 2.5% (4/159), and 5.7% (9/159), respectively; the rates of hemorrhagic stroke at 72 hours, 30 days, and 1 year after the procedure were 0% (0/159), 0% (0/159), and 0.6% (1/159), respectively; and the mortality rates at 72 hours, 30 days, and 1 year after the procedure were 0% (0/159), 2.5% (4/159), and 6.3% (10/159), respectively; the rates of ischemic stroke

DiSCUSSION

The VISSIT study reported high rates of perioperative complications (24.1%) and 1-year recurrent stroke or hard TIA (36.2%) for ICAS stenting using a balloon-mounted stent.11 We found that the short-term and long-term outcomes of balloon-mounted stenting for symptomatic ICAS with focal and non-angular lesions (Mori A and B type) and smooth arterial access were comparable to the results of the WEAVE/WOVEN trial.

mellitus, 60 (37.7%) had hyperlipidemia, and 45 (28.3%) were current smokers. The treated lesions were located in the ICA in 25 cases (15.7%), MCA in 38 cases (23.9%), VA in 48 cases (30.2%), and BA in 48 cases (30.2%). The main qualifying event included stroke in 52.8% and TIA in 47.2% of the patients. The baseline characteristics are shown in table 2.

Periprocedural characteristics

Of the 159 patients, 88 (55.3%) were operated under general anesthesia and 71 (44.7%) under local anesthesia. The proportions of Mori A, Mori B, and Mori C lesions were 33.3% (53/159), 52.2% (83/159), and 14.5% (23/159), respectively. The mean percent stenosis before and after stenting was 84.0% and 6.1%, respectively, and the median percent stenosis before and after stenting was 85.0% and 5.0%, respectively. The mean stent diameter and stent length were 2.8±0.4 mm and 10.2±2.9 mm, respectively, and the median stent diameter and stent length
Balloon-mounted stents have been used in symptomatic ICAS treatment since 2001. Initially, off-label coronary balloon-mounted stents (including bare stents and drug-eluting stents) were used, but the rigidity of the delivery system impeded their clinical application.14 15 16 The Apollo balloon-mounted stent was designed for treating ICAS lesions and has been approved for use in China since 2004. The Apollo stent system offers 40 different stents of various combinations of six different lengths (8, 10, 13, 15, 18, and 23 mm) and seven different diameters (2.5, 2.75, 3.0, 3.5, 4.0, 4.5, and 5.0 mm). Other parameters of the Apollo stent system are as follows: the metallic surface area is about 14.0%; the nominal expansion pressure is 6 atm; the length of the delivery system is 1450 mm; the maximum guide wire diameter is 0.014 inch; and the minimum guide catheter is 6 French. The delivery system has a longer distance from the tip change outlet (300 mm) than that of the coronary balloon systems (usually about 250 mm). Moreover, the Apollo balloon material (Pebax 70D) is softer than that of typical coronary balloons (usually Pebax 72D or 74 D). These two features of the Apollo stents could have contributed to the low safety and efficacy for patients with ICAS.14–18 24 These improved features of the Apollo stents could have contributed to the low complication rate compared with the Virtesse stents.

In this study the inclusion criteria in the degree of symptomatic stenosis (ranging from 70% to 99%), patient age (18–85 years vs 22–80 years), baseline mRS score (≤3), and time to stenting from last stroke (≥3 weeks vs ≥8 days) were similar to the WEAVE/WOVEN study. The median time to stenting from the qualifying event was comparable in the present study and the WEAVE/WOVEN study (20 days vs 22 days). However, there were several differences between the present study and the WEAVE/WOVEN study. First, in the WEAVE/WOVEN study all of the qualifying ischemic events were ischemic stroke, while in this study the qualifying ischemic events also included TIA (47.2%). The present study enrolled the patients with ischemic symptoms within the past 90 days due to hypoperfusion in the territory of the target lesion, while the WEAVE/WOVEN study enrolled the patients with a recurrent stroke in the territory of the same lesion after receiving medical therapy. Second, regarding atherosclerotic risk factors of the enrolled patients, in the WEAVE/WOVEN study there was a higher prevalence of hypertension, hyperlipidemia, and diabetes mellitus (p<0.001) but a lower proportion of smokers (p=0.004). Third, compared with the WEAVE/WOVEN study, the proportion of anterior circulation stenting (39.6% vs 55.0%, p<0.001) and baseline mRS ≥2 (9.4% vs 62.5%, p<0.001) were lower.

In this study, technical success was achieved in 100% (159/159) of the patients. The preprocedural mean percent stenosis was comparable to that in the WEAVE/WOVEN study (84.0% vs 83.2%) but the postprocedural mean percent stenosis was relatively lower than that in the WEAVE/WOVEN study (6.1% vs 28.3%), which indicated that the technical success achieved using the balloon-mounted stent was not inferior to the self-expanding Wingspan stent system.12 Jiang et al performed a multicenter analysis of stenting in symptomatic ICAS which suggested that the 30-day periprocedural stroke rate was 6.0% in patients treated with balloon-mounted stents.30 The proportion of Mori A type was 32.0% (147/454) in the balloon-mounted group, which is similar to that in the present study (33.3%, 53/159). It should be noted that their study also included patients in the acute phase of stroke, which may increase the risk of perioperative complications. In the present study, both the stroke rate and mortality rate within 72 hours after the procedure were 0% while, in the WEAVE study, both the stroke rate and mortality rate within 72 hours after the procedure were 1.3%. Compared with the results of the WEAVE study, the safety of balloon-mounted stenting for symptomatic ICAS was acceptable.

It should be noted that, in this study, the proportion of Mori A or Mori B lesions was relatively high (85.5%) whereas Mori C lesions accounted for only 14.5%. However, in the WEAVE/WOVEN study, the proportion of anterior circulation stenting (39.6% vs 55.0%, p<0.001) and baseline mRS ≥2 (9.4% vs 62.5%, p<0.001) were lower.

| Table 4 Clinical and radiological outcomes |
|-------------------------------------------|
| Present study | WEAVE/WOVEN | P value |
| N | 159 | 152/129 | – |
| 72-hour any stroke | 0.0% (0/159) | 1.3% (2/152) | 0.458 |
| 72-hour ischemic stroke | 0.0% (0/159) | 1.3% (2/152) | 0.458 |
| 72-hour hemorrhagic stroke | 0.0% (0/159) | 0.0% (0/152) | – |
| 72-hour death | 0.0% (0/159) | 1.3% (2/152) | 0.458 |
| 30-day any stroke | 2.5% (4/159) | 1.3% (2/152) | 0.721 |
| 30-day ischemic stroke | 2.5% (4/159) | 1.3% (2/152) | 0.721 |
| 30-day hemorrhagic stroke | 0.0% (0/159) | 0.0% (0/152) | – |
| 30-day death | 0.0% (0/159) | 1.3% (2/152) | 0.458 |
| 1-year any stroke | 6.3% (10/159) | 8.5% (11/129) | 0.468 |
| 1-year ischemic stroke | 5.7% (9/159) | 8.5% (11/129) | 0.341 |
| 1-year hemorrhagic stroke | 0.6% (1/159) | 0.0% (0/152) | >0.999 |
| 1-year death | 0.6% (1/159) | 1.6% (2/129) | 0.855 |
| 1-year ISR | 23.4% (15/64) | 17.6% (18/102) | 0.363 |
| ISR in Mori A lesions | 15.8% (3/19) | – | – |
| ISR in Mori B lesions | 15.6% (5/32) | – | – |
| ISR in Mori C lesions | 53.8% (7/13) | – | – |
| ISR in anterior circulation | 26.7% (4/15) | 18.8% (13/69) | 0.742 |
| ISR in posterior circulation | 22.4% (11/49) | 15.2% (5/33) | 0.414 |
| 1-year symptomatic ISR | 3.1% (2/64) | 6.9% (7/102) | 0.495 |
| 1-year asymptomatic ISR | 20.3% (13/64) | 10.8% (11/102) | 0.089 |

ISR, in-stent restenosis.
Ischemic stroke

B lesions (15.6%, 5/32), which has not been described in the VISST or WOVEN studies. The 1-year rate of symptomatic ISR was 3.1% (2/64) in this study, which might have been underestimated because only near half of the patients with recurrent stroke had available follow-up images (44.4%, 4/9). This study indicated that the long-term efficacy of endovascular treatment using balloon-mounted stents for symptomatic ICAS with focal and non-angular lesions (Mori A and B type) and smooth arterial access were comparable to the results of the WEAVE/WOVEN trial. Previous studies have indicated that the long length of ICAS lesions or stents was associated with an increased risk of ISR.33–36 In this study, the higher rate of ISR in Mori C lesions may also be related to the longer length of the ICAS lesions and the placed stents. Recently, balloon-mounted stents (including the Apollo stent) and self-expanding stents have been reported to be used for acute intracranial large vessel occlusion due to presumed atherosclerotic disease.37–39 These studies suggest that intracranial stent implantation may be one of the rescue treatments for acute ischemic stroke due to ICAS, but its safety and efficacy require confirmation in future studies.

This study has several potential limitations. First, the defining criteria for hemodynamic impairment were heterogeneous. Four different imaging modalities were allowed to evaluate patients, which made a homogenous evaluation of subgroups of patients difficult. Second, as a 1-year angiogram was performed in only 40% of the recruited patients on a voluntary basis, potential selection bias may be inevitable, especially for evaluation of ISR. Third, the patients were all Chinese, so the results cannot be generalized to other ethnicities. Whether the results of this registry would stand examination by a randomized trial remains to be seen.

CONCLUSIONS

The short and long-term outcomes of balloon-mounted stenting for symptomatic ICAS with focal and non-angular lesions (Mori A and B type) and smooth arterial access were comparable to the results of the WEAVE/WOVEN trial.

ACKNOWLEDGEMENTS

We thank all of the patients and healthcare providers who participated in this study.

COLLABORATORS

The list of Study Group of Registry of Stenting for Symptomatic Intracranial Artery Stenosis in China: Ligang Song, Xuan Sun, Liu Song, Xiaotong Xu, Xiaoqing Li, Xingquan Zhao, Liping Liu, Kehui Dong, Peiji Gao, Jiong Zhan, Shaohe Li, Xianjuan Zhang, Zhirong Zhang, Xiaojun Ji, Xiaohua Pan, Tianyou Zhang, Xia Li, Shugui Shi, Zhenghua Zhou, Yi An, Zhijun Dong, Xiaomei Gao, Jun Wang, Zhiquang Zhang, Guozhen Zhang, Shaoju Xue, Xionghe Li, Kaifeng Li, Liang Zhang, Yongsheng Liu, Ke Li, Ruiyan Li, Minghui Chen, Yan Feng, Muke Zhou, Fuyun Hu

Contributors

NM and ZM had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: YL, YW, KK, NM, and ZM. Acquisition of clinical data: KK, NM, YZ, JS, CJ, OZ, KC, LL, BL, XS, LG, YL, FW, WL, TL, HZ, DM, FG, and the Study Group of Registry Study of Stenting for Symptomatic Intracranial Artery Stenosis in China. Analysis and interpretation of data: KK, LF, NM, and ZM. Drafting of the manuscript: KK. Critical revision of the KK. Critical revision of the KK. Reviewing of the manuscript: NM and ZM. Statistical analysis: KK and NM.

Funding

This work was supported by the National Natural Science Foundation of China (81371290), Beijing High-level Personnel Funds (2013-2-019). This study is also funded by the National Science and Technology Support Program of ‘The 12th Five-Year Plan’ of the Ministry of Science and Technology (2011BAI08B02).

Competing interests

None declared.

Patient consent for publication

Not required.

Data availability statement

Data are available upon reasonable request. The data that support the findings of this study are available from the corresponding author upon reasonable request.

Open access

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs

Feng Gao http://orcid.org/0000-0003-0397-7493
Ning Ma http://orcid.org/0000-0002-4909-7048

REFERENCES

1 Liu L, Wang D, Wong KSL, et al. Stroke and stroke care in China: huge burden, significant workload, and a national priority. Stroke 2011;42:3651–4.
2 Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: a systematic analysis for the Global Burden of Disease study 2017. Lancet 2019;394:1145–58.
3 Redon J, Olsen MH, Cooper RS, et al. Stroke mortality and trends from 1990 to 2006 in 39 countries from Europe and central Asia: implications for control of high blood pressure. Eur Heart J 2011;32:1424–31.
4 Wong KS, Li H, LWMW, et al. Progression of middle cerebral artery occlusive disease and its relationship with further vascular events after stroke. Stroke 2002;33:532–6.
5 Sai-Yan-Kai G, Nasr N, Faury A, et al. Intracranial artery stenosis or occlusion predicts ischemic recurrence after transient ischemic attack. AJNR Am J Neuroradiol 2015;34:185–90.
6 Holmstedt CA, Turan TN, Chimowitz MI. Atherosclerotic intracranial arterial stenosis: risk factors, diagnosis, and treatment. Lancet Neurol 2013;12:1106–14.
7 Chimowitz MI, Lynn MJ, Derdeyn CP, et al. Stenting versus aggressive medical therapy for intracranial arterial stenosis. N Engl J Med 2011;365:993–1003.
8 Zaidat OO, Klucznik R, Alexander MJ, et al. The NIH registry on use of the Wingspan stent for symptomatic 70–99% intracranial arterial stenosis. Neurology 2006;70:1518–24.
9 Fiorella DJ, Turk AS, Levy EI, et al. U.S. Wingspan registry: 12-month follow-up results. Stroke 2011;42:1976–81.
10 Bose A, Hartmann M, Henkes H, et al. A novel, self-expanding, nitinol stent in medically refractory intracranial atherosclerotic stenoses: the Wingspan study. Stroke 2007;38:1531–7.
11 Zaidat OO, Fitzsimmons B-F, Woodward BK, et al. Effect of a balloon-expandable intracranial stent vs medical therapy on risk of stroke in patients with symptomatic intracranial stenosis: the VISSIT randomized clinical trial. Jama 2015;313:1240–8.
12 Alexander MJ, Zauner A, Chaloupka JC, et al. WEAVE trial: final results in 152 on-label patients. Stroke 2019;50:889–94.

6 of 7
Kang K, et al. J NeuroIntervent Surg 2021;13:894–899. doi:10.1136/neurintsurg-2020-016658

Downloaded from http://jnis.bmj.com/ on October 22, 2023 by guest. Protected by copyright.
