Supplementary Materials

First Stage of the Development of an Eco-Friendly Detergent Formulation for Efficient Removal of Carbonized Soil

Andreia P. M. Fernandes¹, Ana M. Ferreira², Marco Sebastião¹, Ricardo Santos¹, Catarina M. S. S. Neves²* and João A.P. Coutinho²

¹Mistolin S.A., Zona Industrial de Vagos Lt 58, 3840-385 Vagos, Portugal.
²CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.

*Corresponding author: catarinasn@ua.pt

Contents

Number of pages: 14
Number of figures: 6
Number of tables: 11
In this work, the commercial degreaser KH7, from KH Lloreda company, was used. This degreaser is composed of water, fatty ethoxylated alcohol, methoxypropanol, monoethanolamine and polycarboxylate with a pH of 11.25.

Tables

Table S1. pH of the different formulations used in the screening.

Surfactant	Solvent	PM	DPM	BDG	MMB	IPG
[N\(_{118}\)][C\(_{8}\)O\(_2\)]		10.36	7.91	8.53	8.54	10.26
[N\(_{118}\)][C\(_{10}\)O\(_2\)]		8.87	8.20	8.28	8.28	8.75
[N\(_{118}\)][C\(_{12}\)O\(_2\)]		9.02	8.48	9.06	8.84	8.97
[N\(_{1110}\)][C\(_{8}\)O\(_2\)]		10.19	8.32	9.82	7.86	10.38
[N\(_{1110}\)][C\(_{10}\)O\(_2\)]		9.21	8.45	8.83	8.83	9.06
[N\(_{1110}\)][C\(_{12}\)O\(_2\)]		9.30	8.56	8.33	8.10	9.34
[N\(_{1112}\)][C\(_{10}\)O\(_2\)]		9.35	8.39	8.75	9.15	9.25
[N\(_{1112}\)][C\(_{12}\)O\(_2\)]		9.65	8.62	9.00	9.30	9.46
C\(_{12}-C_{15}\) 7EO's		5.08	4.15	4.99	4.05	5.11
C\(_{10}\) 6EO's		4.68	4.04	4.67	3.18	4.54
C\(_{12}-C_{15}\) 9EO's		5.80	4.30	5.94	4.19	5.43
C\(_{11}-C_{13}\) 9EO's		5.07	3.95	4.99	3.90	4.71
C\(_{10}-C_{14}\) 8EO's		5.10	4.05	4.86	3.98	5.04
Table S2. *HLB* values of nonionic surfactants, given by the suppliers.

Nonionic surfactant	HLB
C₁₀ 6EO’s	12.4
C₁₁-C₁₃ 9EO’s	13.2
C₁₂-C₁₅ 7EO’s	12.3
C₁₂-C₁₅ 9EO’s	13.1
C₁₀-C₁₄ 8EO’s	13.6

Table S3. Mixture design for optimization of the solvent composition.

Run	Coded variables	Surfactant (wt%)	Solvent (wt%)	Water (wt%)
1		10.00	13.00	77.00
2		10.00	3.00	87.00
3		3.00	13.00	84.00
4		3.00	3.00	94.00
5		3.00	8.00	89.00
6		10.00	8.00	82.00
7		6.50	3.00	90.50
8		6.50	13.00	80.50
9		6.50	8.00	85.50
Table S4. pH and efficiency obtained for the formulations used in the mixture design of C11-C13 9EO’s, IPG and water.

Model for ceramic: $R^2 = 0.97$ and $R^2_{adj} = 0.91$

Model for stainless-steel: $R^2 = 0.80$ and $R^2_{adj} = 0.47$

Run	pH	Experimental Efficiency	Predicted Efficiency		
		Ceramic	Stainless-steel	Ceramic	Stainless-steel
1	4.24	0.45	0.65	0.42	0.61
2	4.09	0.76	0.87	0.79	0.80
3	4.24	1.02	0.87	0.99	0.93
4	4.18	0.60	0.90	0.62	0.92
5	4.19	0.90	0.90	0.90	0.83
6	4.15	0.70	0.51	0.70	0.61
7	4.30	0.93	0.82	0.87	0.86
8	4.20	0.82	0.80	0.87	0.78
9	4.14	0.96	0.74	0.97	0.72
Table S5. pH and efficiency obtained for the formulations used in the mixture design of [N\textsubscript{1118}][C\textsubscript{8}O\textsubscript{2}], BDG and water.

Model for ceramic: $R^2 = 0.94$ and $R^2_{\text{adj}} = 0.84$

Model for stainless-steel: $R^2 = 0.92$ and $R^2_{\text{adj}} = 0.80$

Run	pH	Experimental Efficiency	Predicted Efficiency		
		Ceramic	Stainless-steel	Ceramic	Stainless-steel
1	8.23	0.87	1.10	0.83	1.06
2	8.74	0.63	0.95	0.65	0.93
3	7.58	0.47	1.03	0.41	0.99
4	7.92	0.32	0.41	0.31	0.40
5	7.70	0.25	0.65	0.33	0.70
6	8.41	0.68	0.93	0.70	0.99
7	7.83	0.87	0.68	0.87	0.71
8	8.05	0.90	0.98	1.00	1.06
9	8.15	1.00	1.00	0.90	0.89
Table S6. ANOVA for the mixture design using formulations composed of C_{11}-C_{13} 9EOs, IPG and water applied to the ceramic surface.

	SS	df	MS	F	P
Model (Regression)	0.265929	5	0.053186	17.30503	0.020203
Total Error (Residual)	0.009220	3	0.003073		
Total Adjusted	0.275149	8	0.034394		

Table S7. ANOVA for the mixture design using formulations composed of C_{11}-C_{13} 9EOs, IPG and water applied to the stainless-steel surface.

	SS	df	MS	F	P
Model (Regression)	0.110659	5	0.022132	3.399777	0.051053
Total Error (Residual)	0.027667	3	0.009222		
Total Adjusted	0.138327	8	0.017291		
Table S8. Efficiency and pH obtained for the optimal composition of the formulation composed of C\textsubscript{11}-C\textsubscript{13} 9EO’s, IPG and water.

Surface	Optimal composition	Efficiency	Relative deviation (%)	pH			
	IPG	C\textsubscript{11}-C\textsubscript{13} 9EO’s	H\textsubscript{2}O	Experimental	Predicted		
Ceramic	10.0	5.0	85.0	1.03	1.00	3.00	4.30
Stainless-steel	13.0	3.0	84.0	0.95	0.91	4.40	4.24

Table S9. ANOVA for the mixture design using formulations composed of [N\textsubscript{1118}][C\textsubscript{8}O\textsubscript{2}], BDG and water applied to the ceramic surface.

	SS	df	MS	F	p
Model (Regression)	0.54402678	5	0.108805	9.313672	0.04783
Total Error (Residual)	0.03504698	3	0.011682		
Total Adjusted	0.57907375	8	0.072384		
Table S10. ANOVA for the mixture design using formulations composed of [N\textsubscript{1118}][C\textsubscript{8}O\textsubscript{2}], BDG and water applied to the stainless-steel surface.

	SS	df	MS	F	p
Model (Regression)	0.381089	5	0.076218	7.227412	0.047155
Total Error (Residual)	0.031637	3	0.010546		
Total Adjusted	0.412726	8	0.051591		

Table S11. Efficiency and pH obtained for the optimal composition of the formulation composed of [N\textsubscript{1118}][C\textsubscript{8}O\textsubscript{2}], BDG and water.

Surface	Optimal composition	Efficiency	Relative deviation (%)	pH			
	BDG	[N\textsubscript{1118}][C\textsubscript{8}O\textsubscript{2}]	H\textsubscript{2}O	Experimental	Predicted		
Ceramic	13.0	7.0	80.0	0.99	1.03	3.90	8.28
Stainless-steel	13.0	8.0	79.0	1.04	1.07	2.80	8.63
Figures

Figure S1. Contact angles of net and soiled surfaces: (a) ceramic and (b) stainless-steel.

Figure S2. Predict vs. observed values of IPG + C_{11}-C_{13} 9EO’s for soil’s removal from (A) ceramic and (B) stainless-steel.
Figure S3. Pareto charts for the standardized main effects in the IPG + C_{11}-C_{19} 9EO’s mixture design for (A) ceramic and (B) stainless-steel. The vertical line indicates the statistical significance of the effects (95% of confidence).

Figure S4. Predict vs. observed values of BDG + [N_{1118}][C_{8}O_{2}] for soil’s removal from (A) ceramic and (B) stainless-steel.
Figure S5. Pareto charts for the standardized main effects in the BDG + [N111][CsO2] mixture design for (A) ceramic and (B) stainless-steel. The vertical line indicates the statistical significance of the effects (95% of confidence).
Figure S6. 1H (left panel) and 13C (right panel) NMR spectra in DMSO of the ionic surfactants synthesized: (A) [N$_{11112}$][C$_{12}$O$_2$]; (B) [N$_{11112}$][C$_{10}$O$_2$]; (C) [N$_{11112}$][C$_8$O$_2$]; (D) [N$_{11110}$][C$_{12}$O$_2$]; (E) [N$_{11110}$][C$_{10}$O$_2$]; (F) [N$_{11110}$][C$_8$O$_2$]; (G) [N$_{1118}$][C$_{12}$O$_2$]; (H) [N$_{1118}$][C$_{10}$O$_2$]; (I) [N$_{1118}$][C$_8$O$_2$].