EXTENSIONS OF THE RATIONAL CHEREDNIK ALGEBRA AND GENERALIZED KZ FUNCTORS.

FALLET HENRY

ABSTRACT. Ginzburg, Guay, Opdam and Rouquier established an equivalence of categories between a quotient category of the category \mathcal{O} for the rational Cherednik algebra and the category of finite dimension modules of the Hecke algebra of a complex reflection group W. We establish two generalizations of this result. On the one hand to the extension of the Hecke algebra associated to the normaliser of a reflection subgroup and on the other hand to the extension of the Hecke algebra by a lattice.

CONTENTS

0. Introduction 1
1. The rational Cherednik algebra of the normalizer $N_W(W_0)$ and the functor KZ_0. 4
 1.1. The rational Cherednik algebra of the normalizer 4
 1.2. The functor KZ_0 6
2. The rational Cherednik algebra of the pair (\mathcal{L},W) and the functor \overline{KZ}. 10
 2.1. The rational Cherednik algebra of the pair (\mathcal{L},W) 10
 2.2. The functor \overline{KZ} 13
Acknowledgements: 14
References 14

0. INTRODUCTION

In 1967, Yokonuma [Yok67] introduce a generalization of the Hecke algebra in the context of finite reductive group. Let G be a finite Chevalley group. Let B a Borel subgroup of G. Let U be the radical unipotent of B and T the maximal torus of G. Let (W,S) be the Weyl group of G. Let k be a commutative ring. The Yokonuma-Hecke algebra is the algebra of functions from G to k bi-invariant by the action of U endow with a convolution product. A subalgebra of the Yokonuma-Hecke algebra of type A was introduced by Aicardi and Juyumaya in 2014 [AJ14] for the definition of invariants of tied knots, and was therefore named "algebra of braids and ties".

In 2016, I.Marin [Mar18a] observed that BT_n is an extension of the Hecke algebra of type A by the lattice of reflexion subgroups of the symmetric group. Furthermore, he defined for any Coxeter system (W,S) an extension C_W of the Hecke algebra $H(W)$ by the lattice of full reflection subgroups. By full reflection subgroup we mean that W_0 is a reflection subgroup of W and for any reflection in W_0, all the reflection with the same reflecting hyperplane belong to W_0.

Moreover, I.Marin generalized this construction to any finite complex reflection group. Let us first recall the construction of the Hecke algebra associated to a finite complex reflection group.

In 1998, Broue, Malle and Rouquier introduce in their seminal paper [BMR98], the Hecke algebra of a finite complex reflection group. Let V be a complex \mathbb{C}-vector space of finite
dimension. Let W be a finite complex reflection group. Let \mathcal{R} be the set of all reflections of W and let \mathcal{A} be the arrangement of reflecting hyperplanes of W. We denote by X the complement of \mathcal{A} in V. Let $(k_{H,j})_{j \in \{0, \ldots, m_H-1\}}$ be a set of complex numbers indexed by a reflecting hyperplane of W and integers j, where m_H is the order of the pointwise stabilizer of H in W, such that for all $w \in W$, $k_{w(H),j} = k_{H,j}$ for all integers j. Let $B(W) := \pi_1(X/W)$ be the braid group of W, which is generated by braided reflections σ_j.

The Hecke algebra of W is $H(W) := \mathbb{C}B(W)/I$ where I is a two-sided ideal of $\mathbb{C}B(W)$ generated by the relation $\sigma_j^{m_H} = \sum_{k=0}^{m_H-1} k_{H,j} \sigma_j^k$.

Let us now recall the construction made by I. Marin for W a complex reflection group.

The Hecke algebra of the pair (W_0, W). Let W_0 be a reflection subgroup of W. We denote by N_{W_0} the normalizer of W_0 in W. We have a bijection between the orbit $[W_0]$ of W_0 under W and the quotient $W/N_{W_0}(W_0)$.

Since $\mathbb{C}L \cong \mathbb{C} \cong \mathbb{C}L \times W \cong \bigoplus_{[W_0] \in \mathcal{L}/W} \text{Mat}_{[W_0]}(\mathbb{C}N_W(W_0))$ (Mar18b proposition 2.1), we can expect that $\mathcal{C}(\mathcal{L}, W)$ is Morita equivalent to an algebra of matrices involving the algebra $\mathcal{C}(\mathcal{N}_W(W_0))$.

Indeed, the algebra $\mathcal{C}(\mathcal{L}, W)$ is Morita equivalent to a direct sum of matrix algebras with coefficient in a new Hecke algebra. The Hecke algebra of $\mathcal{N}_W(W_0)$.

The Knizhnik–Zamolodchikov functor. In 2003, Ginzburg, Guay, Opdam and Rouquier [GGOR03] defined a category \mathcal{O} associated to a Cherednik algebra $A(W)$ of a finite complex reflection group W [LeG02]. This category of modules over $A(W)$ is endowed with finiteness conditions, based on the Bernstein-Geleshand-Gelfand category \mathcal{O} for a semisimple Lie algebra. They constructed a functor, called Knizhnik–Zamolodchikov functor KZ, from this category \mathcal{O} to the category of finite dimension modules over the Hecke algebra of W. The construction of this functor made a critical use of the Dunkl-Opdam differential operators. This functor induces an equivalence of categories between the category $\mathcal{O}/\mathcal{O}_{tor}$ of object in \mathcal{O} supported outside of X and the category of all finite dimensional representations of the Hecke algebra of a complex reflection group.

The aim of this article is to establish two results of the same kind as in [GGOR03] for the case of the algebras $H(W_0, W)$ and $\mathcal{C}(\mathcal{L}, W)$. We start by constructing a Cherednik algebra
for $CN_W(W_0)$ as a symplectic reflection algebra for $N_W(W_0) [EG02]$ depending on a parameter t. In this article, only the $t \neq 0$ case will be investigated and up to renormalization, we can consider $t = 1$. Then we introduce a family of commutative differential operators, $N_W(W_0)$-equivariant by considering the covariant derivative of a flat connection involving a 1-differential form defined in [GM21] (proposition 2.6). In order to prove the commutativity we use arguments from [LM10] theorem 2.15. This allows us to define a Dunkl embedding of $A(W_0, W)$ inside an algebra of differential operators on X, $N_W(W_0)$-equivariant $\mathcal{D}(X) \rtimes N_W(W_0)$.

Then we define an Euler element $\tilde{e}u_0$, standard objects, a highest-weight category $\mathcal{O}(W_0, W)$ and a functor KZ_0 from $\mathcal{O}(W_0, W)$ to the category of finite dimensional representation of $H(W_0, W)$. From an object $\mathcal{O}(W_0, W)$, we get a $\mathcal{D}(X)^{N_W(W_0)}$-modules by applying a localization functor, the Dunkl embedding and some classical Morita’s equivalence. We use a general result of algebraic geometry [CH94] theorem 3.7.1 to prove $\mathcal{D}(X)^{N_W(W_0)} \simeq \mathcal{D}(X/N_W(W_0))$.

We define a flat connection on standard objects of $\mathcal{O}(W_0, W)$ and prove that this connection has regular singularities on V. Afterwards, we prove that we can apply the Riemann-Hilbert-Deligne equivalence for any object of $\mathcal{O}(W_0, W)$. We get a $C\pi_1(X/N_W(W_0))$-modules. Furthermore, the [GM21] proposition 2.6 implies that the monodromy action of $C\pi_1(X/W)$ factors through an action of $H(W_0, W)$. As a result, we had built a functor

$$KZ_0 : \mathcal{O}((W_0, W) \to H(W_0, W)\text{-mod}_{f.d}$$

Since this functor is exact we can prove that this functor is representable by a projective object of $\mathcal{O}(W_0, W)$, this allows us to prove that the category image of KZ_0 is actually the category $H(W_0, W)\text{-mod}_{f.d}$. By killing all the objects of $\mathcal{O}(W_0, W)$ with support outside of X we get

Theorem 0.2. The functor

$$KZ_0 : \mathcal{O}(W_0, W) / \mathcal{O}_{tor}(W_0, W) \to H(W_0, W)\text{-mod}_{f.d}$$

is an equivalence of categories.

In the second part of this article, we develop a similar construction in the context of the lattice extension. We start by defining a Cherednik-algebra for the pair (L, W) as an algebra with a triangular decomposition [BT18] (definition 3.1) depending on a parameter t. We consider the case $t \neq 0$ and up to a renormalization $t = 1$. Then we introduce a family of commutative differential operators, W-equivariant by considering the covariant derivative of a flat connection involving a 1-differential form defined in [Mar20] proposition 2.5. In order to prove the commutativity we use arguments from [LM10] theorem 2.15. Whereas in the previous case the action of $(\mathcal{D}(X) \otimes C\mathcal{L}) \rtimes W$ on $C(V)$ is not obviously faithful. In order to prove the faithfulness, we prove a more general result:

Proposition 0.3. Let R be a simple ring with unity. Let G be a group of outer automorphisms of R. Let X be a finite set. If G acts transitively on X, then $(R \otimes C^X) \rtimes G$ is simple.

This allows us to define a Dunkl embedding of $A(W_0, W)$ inside the algebra $(\mathcal{D}(X) \otimes C\mathcal{L}) \rtimes W$. Then we define an Euler element $\tilde{e}u$, standard objects with $\text{Irr}(C\mathcal{L} \rtimes W)$, and a highest weight category $\mathcal{O}(L, W)$. We prove that we can endow an object of $\mathcal{O}(L, W)$ with flat connection over a trivial vector bundle on V with fiber $E \in \text{Irr}(C\mathcal{L} \rtimes W)$ and we prove that this connection has regular singularities on V. This allows us to apply the Riemann-Hilbert-Deligne correspondence, we then get a finitely generated $(CB(W) \otimes C\mathcal{L}) \rtimes W$-modules. Furthermore, [Mar18], the monodromy action factorizes through an action of $\mathcal{C}(L, W)$. Consequently, we have defined a functor: $KZ : \mathcal{O}(L, W) \to \mathcal{C}(L, W)\text{-mod}_{f.d}$.
Since this functor is exact we can prove that this functor is representable by a projective object of \(\mathcal{O}(\mathcal{L}, W) \), this allows us to prove that the category image of \(KZ \) is the category \(\mathcal{C}(\mathcal{L}, W)\text{-mod}_{f.d} \). Then we kill all the object of \(\mathcal{O}(\mathcal{L}, W) \) with support outside of \(X \), and we get

Theorem 0.4. The functor \(\overline{KZ} : \mathcal{O}(\mathcal{L}, W) / \mathcal{O}_{tor}(\mathcal{L}, W) \to \mathcal{C}(\mathcal{L}, W)\text{-mod}_{f.d} \) is an equivalence of categories.

1. The rational Cherednik algebra of the normalizer \(N_W(W_0) \) and the functor \(KZ_0 \).

1.1. The rational Cherednik algebra of the normalizer. Let \(\delta = \prod_{H \in A} \alpha_H \) where \(\alpha_H \in V^* \) such that \(\text{Ker}(\alpha_H) = H \). This is an element of \(\mathbb{C}[V] \) and \(\delta \) vanishes on \(\bigcup A \).

We define the rational Cherednik algebra of \(\mathbb{C}N_W(W_0) \) as the symplectic reflection algebra of \(N_W(W_0) \) \([EG02]\), it depends on a parameter \(t \),

\[
A_t(W_0, W) := \frac{T(V \oplus V^*) \rtimes N_W(W_0)}{J}
\]

where \(J \) is an ideal of \(\mathbb{C}N_W(W_0) \) generated by the relations \([x, x'] = 0\) for all \((x, x') \in V^* \times V^*, [y, y'] = 0\) for all \((y, y') \in V \times V\) and \([y, x] = x(y) + \sum_{H \in A_0} \frac{\alpha_H(y)x(v_H)}{\alpha_H(v_H)} \gamma_H\) for all \((x, y) \in V^* \times V\) and \(v_H \in V \) such that \(\mathbb{C}.v_H \oplus H = V \) and \(\mathbb{C}.v_H \) is \(\text{Fix}_W(H) \) stable. The operator

\[
\gamma_H := \sum_{j=0}^{m_H-1} m_H(k_{H,j+1} - k_{H,j})\epsilon_{H,j}
\]

is a linear combination of primitive orthogonal idempotent of \(\mathbb{C}N_W(W_0) \) where \(m_H \) is the order of \(\text{Fix}_W(H) \) and \((\epsilon_{H,j})_{j=0,\ldots,m_H-1}\) is a system of primitives and orthogonal idempotents of \(\mathbb{C}N_W(W_0) \) defined by

\[
\epsilon_{H,j} := \frac{1}{|N_W(W_0)|} \sum_{w \in N_W(W_0) \setminus \text{Id}} \det(w)^j w
\]

In this article, we focus on the case of \(t \neq 0 \). Up to renormalization, we can reduce to \(t = 1 \). Then the Cherednik algebra of the normalizer is denoted \(A(W_0, W) \).

According to the theorem 1.3 \([EG02]\), we have an isomorphism of vector spaces

\[
A(W_0, W) \simeq \mathbb{C}[V] \otimes \mathbb{C}N_W(W_0) \otimes \mathbb{C}[V^*]
\]

We denote by \(A(W_0, W)_{reg} \) the localization by the multiplicative set defined by \(\delta \),

\[
A(W_0, W)_{reg} := \mathbb{C}[X] \otimes_{\mathbb{C}[V]} A(W_0, W)
\]

1.1.1. Dunkl operator.

Proposition 1.1. \([GM21\text{ prop. 2.6}]\) The following differential 1-form is \(W \)-equivariant and integrable on \(X \),

\[
\omega_0 = \sum_{H \in A_0} a_H \frac{d\alpha_H}{\alpha_H} \in \Omega^1(X) \otimes \mathcal{C}W_0
\]

where \(a_H = \sum_{H \in A_0} m_H k_{H,j} \epsilon_{H,j} \).

Let us define a family of Dunkl-Opdam operators by considering the covariant derivative of the connection \(\nabla := \partial + \omega_0 \) on a trivial vector bundle over \(X \).

Definition 1.2. (Dunkl-Operator) The covariant derivative of \(\nabla \) along \(y \in V \) is

\[
T_y := \partial_y + \sum_{H \in A_0} \frac{\alpha_H(y)}{\alpha_H} a_H \in \mathcal{D}(X) \times N_W(W_0)
\]

where \(\mathcal{D}(X) \) stands for the algebra of differential operators of \(X \) \([Gin98]\).
Proposition 1.3. (1) For all $(y, y') \in V \times V$, $[T_y, T_{y'}] = 0$.
(2) For all $g \in \mathcal{N}_W(W_0)$ and for all $y \in V$, $gT_yg^{-1} = T_{g(y)}$.

Proof. For the commutativity, the proof is similar to that in [EG02]. □

Then we define a faithful representation of $A(W_0, W)$.

Theorem 1.4. (The Dunkl embedding) The morphism
\[
\Phi : A(W_0, W) \rightarrow \mathcal{D}(X) \rtimes \mathcal{N}_W(W_0)
\]
\[
x \in V^* \mapsto x
\]
\[
y \in V \mapsto T_y
\]
\[
w \in \mathcal{N}_W(W_0) \mapsto w
\]
is an injective morphism of algebras.

Proof. We define a filtration on $A(W_0, W)$ by putting in degree 0, V^* and $\mathcal{N}_W(W_0)$, and V in degree 1. We consider filtration by the order of differential operators on $\mathcal{D}(X) \rtimes \mathcal{N}_W(W_0)$.

The morphism Φ is a morphism of graded algebras. So it induces a morphism on associated graded algebras
\[
gr(\Phi) : gr(A(W_0, W)) \rightarrow gr(\mathcal{D}(X) \rtimes \mathcal{N}_W(W_0))
\]
We can prove that the composition
\[
\mathbb{C}[V \oplus V^*] \rtimes \mathcal{N}_W(W_0) \xrightarrow{\sim} gr(A(W_0, W)) \xrightarrow{\gr(\Phi)} gr(\mathcal{D}(X) \rtimes \mathcal{N}_W(W_0)) \xrightarrow{\sim} \mathbb{C}[X \oplus V^*] \rtimes \mathcal{N}_W(W_0)
\]
is the identity on the homogenous components. Then $gr(\Phi)$ is injective so is Φ. □

Theorem 1.5. By localizing the previous morphism Φ becomes an isomorphism of algebras
\[
\Phi_{reg} : A(W_0, W)_{reg} \simeq \mathcal{D}(X) \rtimes \mathcal{N}_W(W_0)
\]

Proof. We just have to prove the surjectivity. The operator
\[
\sum_{H \in \mathcal{A}_0} \frac{\partial a_H(y)}{a_H} a_H
\]
has no pole over X. Thus $y - \sum_{H \in \mathcal{A}_0} \frac{\partial a_H(y)}{a_H} a_H$ is an element of $A(W_0, W)_{reg}$. So the image of Φ_{reg} contains a system of generators of $\mathcal{D}(X) \rtimes \mathcal{N}_W(W_0)$. □

1.1.2. Category $\mathcal{O}(W_0, W)$. We define a category $\mathcal{O}(W_0, W)$ similar to the category \mathcal{O} in [GGOR93]. We denoted by $eu_0 := \sum_{y \in \mathcal{B}} y^* y - \sum_{H \in \mathcal{A}} a_H$ the Euler element, where \mathcal{B} is a basis of V.

The operator $\sum_{H \in \mathcal{A}_0} a_H$ lies in the center of $\mathbb{C}\mathcal{N}_W(W_0)$, so it acts by multiplication by a scalar c_E on irreducible representations E of $\mathcal{N}_W(W_0)$. We define a partial order on simple $\mathbb{C}\mathcal{N}_W(W_0)$-modules by $F < E$ if $c_E - c_F \in \mathbb{N}$.

Proposition 1.6. (1) $[eu_0, x] = x$ for all $x \in V^*$.
(2) $[eu_0, y] = y$ for all $y \in V$.
(3) $[eu, w] = 0$ for all $w \in \mathcal{N}_W(W_0)$.

The operator eu_0 induces an inner graduation on $A(W_0, W)$ defined by $A(W_0, W)^i = \{a \in A(W_0, W) | [eu_0, a] = ia\}$ for all $i \in \mathbb{Z}$. The standard objects are $\Delta(E) := Ind_{\mathbb{C}[V^*] \otimes \mathcal{N}_W(W_0)}^{A(W_0, W)} E$ where E is a simple $\mathcal{N}_W(W_0)$-module. The standard objects satisfy the same properties as standard objects in the rational case, $\Delta(E)$ admits a simple head $L(E)$ and each simple head admits a projective cover $P(E)$ and each projective cover admit a filtration by $A(W_0, W)$-submodules P_i of $P(E)$ with successive quotient P_i/P_{i-1} isomorphic to a standard object $\Delta(E_i)$ such that $E_i < E$. We denote by Λ the set of all simple objects. The category $\mathcal{O}(W_0, W)$ is the full subcategory of finitely generated $A(W_0, W)$-module satisfying the following conditions:
The action of $\mathbb{C}[V^+]$ on $M \in \mathcal{O}(W_0, W)$ is locally nilpotent.

2. M is isomorphic to the direct sum of its generalized $e\mu_0$-eigen space,

$$M \simeq \bigoplus_{\alpha \in \mathcal{C}} W_\alpha(M), \text{ with } W_\alpha(M) := \{m \in M | \exists N > 0, (e\mu_0 - \alpha)^N.m = 0\}$$

The standard objects $\Delta(E)$ are elements of $\mathcal{O}(W_0, W)$. The set Λ of all simple objects is a set of complete simple objects $\mathcal{O}(W_0, W)$. According to [GGOR03] theorem 2.19, we can assert that the triple $(\mathcal{O}(W_0, W), \Lambda, <)$ is a highest weight category in the sense of [CPSS88]. Therefore, it exists a quasi-hereditary cover, so there exists a finite dimensional \mathbb{C}-algebra R such that $\mathcal{O}(W_0, W)$ is equivalent to the category of finitely generated modules over the algebra R.

1.2. The functor KZ_0. We have a localization functor Loc from the category of $A(W_0, W)$-modules to the category of $A(W_0, W)_{\text{reg}}$-modules which sends $M \in \mathcal{O}(W_0, W)$-mod to $M_{\text{reg}} := A(W_0, W)_{\text{reg}} \otimes_{A(W_0, W)} M$.

Since $\mathbb{C}[X]$ is flat over $\mathbb{C}[V]$, this functor is exact. Let M be a $A(W_0, W)$-module, we defined M_{tor} as $\{m \in M | \exists N > 0, \delta^N.m = 0\}$. The full subcategory of $A(W_0, W)$-modules such that $M = M_{\text{tor}}$ is called the category of $A(W_0, W)$-modules with torsion with respect of δ and it is denoted $(A(W_0, W)-\text{mod})_{\text{tor}}$. Thus, for all $M \in (A(W_0, W)-\text{mod})_{\text{tor}}, Loc(M) = 0$.

Then the localization functor factorized through the quotient category $(A(W_0, W)-\text{mod})_{\text{tor}}$. It induces a faithful functor

$$\frac{A(W_0, W)-\text{mod}}{(A(W_0, W)-\text{mod})_{\text{tor}}} \rightarrow A(W_0, W)_{\text{reg}}-\text{mod}$$

We have a restriction functor $Res : A(W_0, W)_{\text{reg}}-\text{mod} \rightarrow A(W_0, W)-\text{mod}$ sending $M \rightarrow \mathbb{C}[X] \otimes_{\mathbb{C}[V]} M$ which is right adjoint to the localization functor. The functor Loc induces an equivalence of categories $\frac{A(W_0, W)_{\text{mod}}}{(A(W_0, W)-\text{mod})_{\text{tor}}} \rightarrow A(W_0, W)_{\text{reg}}-\text{mod}$ [Gab62].

Let $\mathcal{O}(W_0, W)_{\text{tor}} := \mathcal{O}(W_0, W) \cap (A(W_0, W)-\text{mod})_{\text{tor}}$. For all objects with δ-torsion i.e $M \in \mathcal{O}(W_0, W)_{\text{tor}}, Loc(M) = 0$. The functor Loc induces a fully faithful functor

$$\frac{\mathcal{O}(W_0, W)}{\mathcal{O}(W_0, W)_{\text{tor}}} \rightarrow A(W_0, W)_{\text{reg}}-\text{mod}$$

which is the composition of the functors

$$\frac{\mathcal{O}(W_0, W)}{\mathcal{O}(W_0, W)_{\text{tor}}} \rightarrow \frac{A(W_0, W)-\text{mod}}{(A(W_0, W)-\text{mod})_{\text{tor}}}$$

and

$$\frac{A(W_0, W)-\text{mod}}{(A(W_0, W)-\text{mod})_{\text{tor}}} \rightarrow A(W_0, W)_{\text{reg}}-\text{mod}$$

The first is fully faithful (lemma 3.3 [Rou10]) and the second is the previous equivalence of categories.

The Dunkl embedding induces an equivalence of categories between the category of $A(W_0, W)$-modules and the category of $\mathcal{D}(X) \rtimes N_W(W_0)$-modules.

Let $e := \frac{1}{[N_W(W_0)]} \sum_{g \in N_W(W_0)} g$, this is a central idempotent of $\mathbb{C}N_W(W_0)$. The category of $\mathcal{D}(X) \rtimes \mathbb{C}N_W(W_0)$-modules is equivalent to the category $e.(\mathcal{D}(X) \rtimes \mathbb{C}N_W(W_0)).e$-modules. Since we have $e.(\mathcal{D}(X) \rtimes \mathbb{C}N_W(W_0)).e \simeq \mathcal{D}(X)_{N_W(W_0)}$, the category of $\mathcal{D}(X) \rtimes N_W(W_0)$-modules is equivalent to the category of $\mathcal{D}(X)_{N_W(W_0)}$-modules.

However, $N_W(W_0)$ is not necessarily a complex reflection group, so we do not have an a priori an isomorphism between the algebra of differential operators invariants by the action of $N_W(W_0)$ and the algebra of differential operators on $X/N_W(W_0)$. We use a general result from algebraic geometry proved by Halland and Cannings in [CH93] theorem 3.7. Let us recall this result. Let k be an algebraically closed field. Let A be a reduced, finitely generated k-algebra. Let $X := \text{Spec}(A)$. Let G be a finite group acting on A by automorphisms,
then it acts on \(X \). The algebra \(A^G \) is also reduced and finitely generated. We denote by \(X/G := \text{Spec}(A^G) \). We denote by \(\Phi : A^G \to A \) and \(\Phi' : \text{Spec}(A) \to \text{Spec}(A^G) \), we get a morphism of sheaves \(\Phi^* : \mathcal{O}_{\text{Spec}(A^G)} \to \Phi_*\mathcal{O}_{\text{Spec}(A)} \). Let \(p \) be a point in \(X \) and \(I_p^1(p) := \{ g \in G | (f - g) \in p, \forall f \in A \} \) the inertia group of \(p \).

Let \(\tilde{V} := \{ p \in X | I(p) = 1 \} \). We said \(G \) act generically without inertia if \(G \) acts trivially and if for all generic points of \(X \), \(I(p) = 1 \). We can assume \(G \) act generically without inertia. If \(\tilde{V} = X \), we stated that \(G \) acts without fixed points.

Theorem 1.7. ([CH94] theorem 3.7)

1. If \(G \) acts without fixed points then \(\mathcal{D}(A^G) \simeq \mathcal{D}(A)^G \)

Let us apply this theorem to the case of \(G = N_W(W_0) \) and \(A = \mathbb{C}[X] \). Since \(N_W(W_0) \) acts on \(X \) without fixed points, we get the desired isomorphism \(\mathcal{D}(X)^{N_W(W_0)} \simeq \mathcal{D}(X/N_W(W_0)) \).

Let us investigate the structure of \(\mathcal{D}(X/N_W(W_0)) \)-module. Let \(E \) be a simple \(\mathbb{C}N_W(W_0) \)-modules. We have \(\Delta(E)_{\text{reg}} \simeq \mathbb{C}[X] \otimes E \), it is a free \(\mathbb{C}[X] \)-module of rank \(\text{dim}(E) \). Thus, it corresponds to a trivial vector bundle over \(X \) of fiber \(E \). The structure of \(\mathcal{D}(X) \times N_W(W_0) \)-module is given by the action of \(x \in V^* \), \(T_y \) with \(y \in V \) and \(w \in N_W(W_0) \) on \(\Delta(E)_{\text{reg}} \). The element \(w \) acts diagonally on \(\Delta(E)_{\text{reg}} \), \(x \) acts by multiplication on the left and \(T_y(P \otimes v) = \partial_y(P \otimes v) + \sum_{H \in \mathcal{A}_0} \alpha_H(y) a_H(P \otimes v) \) where \(P \in \mathbb{C}[X] \) and \(v \in E \). Since \(y.v = 0 \) for all \(y \in V \) and \(v \in E \) then \(T_y(v) = 0 \) so \(\partial_y(v) = -\sum_{H \in \mathcal{A}_0} \alpha_H(y) a_H v \). Therefore, we get

\[
\partial_y(P \otimes v) = \partial_y P \otimes v + \sum_{H \in \mathcal{A}_0} \frac{\alpha_H(y)}{\alpha_H} \sum_{j=0}^{m_H-1} m_H k_{H,j} P \otimes \epsilon_{H,j} v.
\]

This formula defines a covariant derivative \(\nabla^0 := \partial_y \). The associated connection is \(\nabla^0 := d \otimes \text{Id} + \sum_{H \in \mathcal{A}_0} \frac{d_H}{\alpha_H}(\sum_{j=0}^{m_H-1} m_H k_{H,j}(\text{Id} \otimes \epsilon_{H,j})) \).

Proposition 1.8. The algebraic connection \(\nabla^0 \) is flat, \(N_W(W_0) \)-equivariant with regular singularities on \(V \).

Proof. According to the proposition 2.1 we obtain the flatness of the connection.

Since for all \(\alpha \in V^* \) and for all \(g \in N_W(W_0), g.d\alpha = d(g.\alpha) \) and the operator \(\sum_{H \in \mathcal{A}_0} \frac{d_H}{\alpha_H} a_H^* \) is \(N_W(W_0) \)-equivariant if and only if for all \(H \in \mathcal{A}_0 \) and for all \(w \in N_W(W_0), a_H^*(H) = w a_H^*(H) \), the connection \(\nabla^0 \) is \(N_W(W_0) \)-equivariant.

Let us prove the claim about the singularities. Let us follow [Del06] and try to apply the Deligne’s regularity criterion for an integrable connection \(\nabla \) on a smooth complex algebraic variety \(X \). It states that \(\nabla \) is regular along the irreducible divisor at infinity in some fixed normal compactification of \(X \) if and only if the restriction of \(\nabla \) to every smooth curve on \(X \) is Fuchsian.

Let \(j : V \to \mathbb{P}(V \otimes \mathbb{C}) =: Y \) be a compactification \(N_W(W_0) \)-equivariant of \(V \). We consider \(M_Y := \mathcal{O}_Y \otimes \Delta(E) \) a sheaf of \(\mathcal{O}_Y \)-module.

Let \(H \in \mathcal{A}_0 \) and \(x_H \in H \). We know that there is a vector \(v_H \in V \) such that the line generated by \(v_H \) is supplementary to \(H \) and \(W_H \)-stable. Let us consider the affine line directed by \(L_H \) passing through \(x_H \) denoted \(L_H := x_H + \mathbb{C}.v_H \).

Let \(D_H^* = \{ x_H + z.v_H | 0 < |z| < 2 \} \) such that \(D_H^* \subset X \). Then \(\alpha_H(x_H + z.v_H) = \alpha_H(x_H) + z.\alpha_H(v_H) = 0 + z.\alpha_H(v_H) \). For \(H \neq H', \alpha_H(x_H + z.v_H) \neq 0 \) on \(D_H^* \). We restricted the connection to the affine line, and we got

\[
\nabla_{L_H^*} = d \otimes \text{Id} - dz \sum_{j=0}^{m_H-1} m_H k_{H,j} \text{Id} \otimes \epsilon_{H,j} - \sum_{H' \neq H} \frac{\alpha_{H'}(v_H)dz}{\alpha_{H'}(x_H + z.v_H)} \sum_{j=0}^{m_H-1} m_H k_{H,j} \text{Id} \otimes \epsilon_{H,j}
\]

It is deduced that on each \(H \) the singularities are regulars.
Now let us prove the regularity at infinity. We start by defining a change of chart. Let \(\phi : V \rightarrow \mathbb{C} \) be a linear form of \(V \). Let \(\phi \) such that \(\phi(\hat{\phi}) = 1 \). We define a chart of \(Y \), noted \(V_\phi \) by \(V_\phi = \{ v \in V | \phi(v) = 1 \} \oplus \mathbb{C} \subset V \oplus \mathbb{C} \). Let \((e_1, \ldots, e_n) \) be the canonical basis of \(V \) and \((e_1^*, \ldots, e_n^*) \) its dual basis. The elements \(V_{e_i^*} \) are the classical affine carts \([x_1: \ldots: 1: \ldots: x_{n+1}]\). We consider the pullback on \(V_\phi \) of the 1-form of connection. It is equivalent to a replacement of variables \((v, t) \rightarrow (\frac{v}{t}, 1) \). We get the formula:

\[
d \otimes \text{Id} + \sum_{H \in A} a_H \frac{-1}{t^2} \alpha_H(v) dt = B \sum_{H \in A} \frac{1}{t} \alpha_H(v) dt + \frac{1}{t^2} \alpha_H(v) dt = A
\]

Part \(A \) is regular by the previous step and does not depend on \(t \). Part \(B \) is regular in \(t = \infty \) after the change of variable \((t' = 1/t) \). Therefore, \(\nabla^0 \) is regular. \(\square \)

Every standard object is endowed with a flat, \(N_{X}^{\mathcal{O}(W_0, W)} \)-equivariant, connection with regular singularities on \(V \). So every object of the category \(\mathcal{O}(W_0, W) \) is endowed with a connection with regular singularities over \(V \). We can apply the Riemann-Hilbert-Deligne equivalence, we get a \(\mathbb{C} \pi_1(X/N_{X}^{\mathcal{O}(W_0, W)})\)-module \(f_{d,d} \).

If we compose this functor with the previous construction we get the following functor \(\mathcal{O}(W_0, W) \rightarrow \mathbb{C} \pi_1(X/N_{X}^{\mathcal{O}(W_0, W)})\)-module \(f_{d,d} \), \(M \rightarrow (((M_{\text{reg}})^{\mathcal{O}(W_0, W)})^{\mathcal{O}(W_0, W)})^{\mathcal{O}(W_0, W)} \) where \((-)^{\mathcal{O}(W_0, W)} \) is the analytisation functor and \((-)^{\mathcal{O}(W_0, W)} \) the horizontal section functor of \(\nabla^0 \).

According to [GM21] proposition 2.6 the monodromy representation factorizes through \(H(W_0, W) \). Finally, we get a functor

\[
KZ_0 : \mathcal{O}(W_0, W) \rightarrow H(W_0, W)^{-}\text{mod}_{f,d}
\]

such that \(M \rightarrow (((M_{\text{reg}})^{\mathcal{O}(W_0, W)})^{\mathcal{O}(W_0, W)})^{\mathcal{O}(W_0, W)} \) which induces a faithful functor \(KZ_0 : \mathcal{O}(W_0, W)^{-}\text{mod}_{f,d} \rightarrow H(W_0, W)^{-}\text{mod}_{f,d} \).

The quasi-hereditary cover of \(\mathcal{O}(W_0, W) \) and the exactness of \(KZ_0 \) allow us to use a kind of Watt’s theorem. The claim of the following general proposition has been communicated to us by R.Rouquier.

Proposition 1.9. Let \(A \) and \(B \) two \(k \)-algebras of finite dimensions. Let \(F \) be an exact functor from the category of finitely generated \(A \)-module to the category of finitely generated \(B \)-modules. Then \(F \) is isomorphic to the functor \(\text{Hom}_A(\text{Hom}_{A^{op}}(F(A), A), -) \).

Proof. What follows is a mere outline of the proof: firstly, based on the proposition 4.4.b [ARS97] the functor \(\text{Hom}_A(F(A), A) \otimes_A - \) is isomorphic to the functor \(\text{Hom}_A(F(A), -) \).

Secondly, based on the corollary 5.47 [Rot08] the functor \(F(A) \otimes_A - \) is isomorphic to the functor \(F(-) \). Thirdly, based on proposition 4.3.b [Ari95], \(\text{Hom}_A(\text{Hom}_{A^{op}}(F(A), A), A) \) is isomorphic to \(F(A) \). \(\square \)

Let us apply this theorem to our example, the functor \(KZ_0 \) is representable by a projective object of \(\mathcal{O}(W_0, W) \) called \(P_{KZ_0} \).

Theorem 1.10. The morphism of algebra \(\Phi : H(W_0, W) \rightarrow \text{End}_\mathcal{O}(P_{KZ_0})^{\text{op}} \) is actually an isomorphism.

Proof. Let us follow the arguments proposed in [Bel12] part 4.6.

Lemma 1.11. ([Bel12] lemma 4.6.4) Let \(A \) be an abelian category. We assume \(A \) is Artinian. Let \(B \) be an abelian full subcategory of \(A \), closed under sub-object and quotient. Then the functor \(F : B \rightarrow A \) has a left adjoint \(G : A \rightarrow B \) sending an object \(M \in \text{Obj}(A) \) on its largest quotient in \(B \) and the co-unit \(\eta : \text{Id}_A \rightarrow F \circ G \) induces a family of surjective morphisms for all objects in \(A \).
Let us apply this lemma to $\mathcal{A} = H(W_0, W)$-mod, f, d and $\mathcal{B} = Im(KZ_0)$. This proves the surjectivity of Φ.

Since

$$P_{KZ_0} = \bigoplus_{E \in Irr(N_W(W_0))} \dim(KZ_0(L(E)))P(E)$$

we can calculate explicitly $\dim(\text{End}_{\mathcal{O}_W(W_0)}(P_{KZ_0})^{op})$.

We have $\dim(\text{End}_{\mathcal{O}_W(W_0)}(P_{KZ_0})^{op}) = \dim(H(W_0, W))$. This implies that Φ is an isomorphism. □

Theorem 1.12. The functor KZ_0 is an equivalence of categories.

Proof. The only thing which remains to prove is the essential surjectivity. The category $Im(KZ_0)$ is a full subcategory of $H(W_0, W)$-mod, closed under quotients, sub-object and direct sum. Since $H(W_0, W)$ is isomorphic to $\text{End}_{\mathcal{O}_W(W_0)}(P_{KZ_0})^{op}$, $H(W_0, W)$ is an object of $Im(KZ_0)$, so $H(W_0, W)^{ns}$ is an object of $Im(KZ_0)$. Then every $H(W_0, W)$-modules finitely generated lies into $Im(KZ_0)$. Therefore, KZ_0 is essentially surjective. □

1.2.1. Forgetting the ambient group W. We can provide a related result involving only W_0, and not the ambient group W. This is done in our article [Fal22]. The general setting is as follows. Let G be a finite subgroup of $GL(V)$. Let G_0 be a normal subgroup of G generated by reflexions. Let R_0 be the set of reflexions of G_0 and \mathcal{A}_0 the arrangement of reflecting hyperplanes of G_0. The first goal is to build up a Hecke algebra for G from the Hecke algebra of G_0 generalizing $H(W_0, W)$ for $G = N_W(W_0)$.

Let X^+ be the subspace of V on which G acts freely and let X_0 be the subspace of V on which G_0 acts freely. The manifold $X_0 \setminus X^+$ is of codimension > 2 then $\pi_1(X^+) \simeq \pi_1(X_0)$ [God71] theorem 2.3. We get two short exact sequences.

$$
\begin{array}{cccccc}
1 & \rightarrow & \pi_1(X^+) & \rightarrow & \pi_1(X^+/G_0) & \rightarrow & G_0 & \rightarrow & 1 \\
\downarrow & & \uparrow \simeq & & \uparrow & & \uparrow & & \uparrow \\
1 & \rightarrow & \pi_1(X_0) & \rightarrow & \pi_1(X_0/G_0) & \rightarrow & G_0 & \rightarrow & 1
\end{array}
$$

The exactness and the commutativity of the diagram together imply

$$\pi_1(X^+/G_0) \simeq \pi_1(X_0/G_0)$$

The braid group B_0 of G_0 is a normal subgroup of $B := \pi_1(X^+/G)$, we get a short exact sequence

$$
\begin{array}{cccccc}
1 & \rightarrow & B_0 := \pi_1(X_0/G_0) & \rightarrow & \pi_1(X^+/G) & \rightarrow & G/G_0 & \rightarrow & 1
\end{array}
$$

Let I be the ideal of CB_0 generated by the relations $\sigma^m_H = \sum_{k=0}^{m-1} a_{H,k} \sigma^k_H$ for σ_H a braided reflection associated to $H \in \mathcal{A}_0$. Then the Hecke algebra of G_0 is the quotient $H_0 := \frac{CB_0}{I}$. According to the now proven BMR freeness conjecture (see the references of [GM21] or its weaker version in Characteristic 0 [Eti17]) it is an algebra finitely generated of dimension $|G_0|$. Let $I^+ = CB \otimes_{CB_0} I$ be the ideal which define the Hecke algebra of G, $H(G) := \frac{CB_0}{I^+} \simeq CB \otimes_{CB_0} H_0$ is of dimension $|G|$.

Let us make a link between this new algebra and the algebra $H(W_0, W)$. We defined $H(W_0, W)$ as a quotient of the algebra CB_0. We defined \tilde{B}_0 as the quotient of $\pi_1(X/N_W(W))$ by $K := \text{Ker}(\pi_1(X) \rightarrow \pi_1(X_0))$. Since $X_0 \setminus X^+$ has codimension > 2

$$K = \text{Ker}(\pi_1(X) \rightarrow \pi_1(X_0)) \simeq \text{Ker}(\pi_1(X/N_W(W)) \rightarrow \pi_1(X^+/N_W(W)))$$

And $\tilde{B}_0 \simeq \pi_1(X^+/N_W(W))$ is our group $\pi_1(X^+/G) =: B$. As a result, the algebra $H(W_0, W)$ is the same as $H(G)$.

Let us consider the category \mathcal{O}_{tor}, the full subcategory of \mathcal{O} of module annihilated by a power of $\delta_0 := \prod_{H \in \mathcal{A}_0} \alpha_H$. We have
Theorem 1.13. ([Fal22] theorem 5) \(KZ_0 \) is fully faithful and essentially surjective from the category \(\mathcal{O}^{\tor} \) to the category of finite dimension \(H(G) \)-modules.

A priori \(\mathcal{O}^{\tor} \) and \(\mathcal{O}_{\tor}^0 \) are different. Actually, we can prove that these two categories are the same [Fal22].

2. THE RATIONAL CHEREDNIK ALGEBRA OF THE PAIR \((\mathcal{L}, \mathcal{W})\) AND THE FUNCTOR \(\tilde{KZ}\).

2.1. The rational Cherednik algebra of the pair \((\mathcal{L}, \mathcal{W})\). Let us denote the Cherednik algebra of the pair \((\mathcal{L}, \mathcal{W})\) by \(\mathcal{A}(\mathcal{L}, \mathcal{W})\). As a vector space \(\mathcal{A}(\mathcal{L}, \mathcal{W})\) is \(\mathbb{C}[V] \otimes \mathcal{L} \otimes \mathcal{C}W \otimes \mathbb{C}[V^*]\).

Let us define a product of algebra by adding relations between generators of the sub-algebras \(\mathbb{C}[V], \mathbb{C}[V^*], \mathcal{C}L \rtimes \mathcal{W} : [x,x'] = 0\) for all \((x,x') \in V^* \times V^*\), \([y,y'] = 0\) for all \((y,y') \in V \times V\), \([\epsilon_H, \epsilon_{H'}] = 0\) for all \((H,H') \in \mathcal{L} \times \mathcal{L}\) and

\[
[y,x] = t.x(y) + \sum_{H \in A} \frac{\alpha_H(y)x(v_H)}{\alpha_H(v_H)} \gamma_H e_H
\]

where \(t \in \mathbb{C}\). Likewise to the case of \(\mathcal{A}(W_0, \mathcal{W})\), we just consider the case \(t \neq 0\). Up to renormalization, we can consider \(t = 1\).

2.1.1. Dunk operator. In [Mar18b] is introduced a differential 1-form, \(W\)-equivariant and integrable

\[
\tilde{\omega} := \sum_{H \in A} dH a_H e_H \in \Omega^1(X) \otimes \mathcal{C}L \otimes \mathcal{C}W
\]

We define the Dunkl operator as the covariant derivative associated to the connection \(\nabla := d + \tilde{\omega}\), in the direction of \(y \in V\).

Definition 2.1. (Dunkl operator of the pair \((\mathcal{L}, \mathcal{W}))\) For all \(y \in V\),

\[
\tilde{T}_y := \partial_y + \sum_{H \in A} \frac{\alpha_H(y)}{\alpha_H} a_H e_H \in (\mathcal{D}(X) \otimes \mathcal{C}L) \rtimes \mathcal{W}
\]

This family of differential operators satisfies the following properties:

Proposition 2.2. (1) For all \(y,y' \in V \times V\), \([\tilde{T}_y, \tilde{T}_{y'}] = 0\).

(2) For all \(y \in V\) and \(g \in W\), \(g.\tilde{T}_y.g^{-1} = \tilde{T}_{g(y)}\).

Proof. (1) We can follow the method of [EM10] owing to the fact that the action of \((\mathcal{D}(X) \otimes \mathcal{C}^1) \rtimes \mathcal{W}\) on \(\mathcal{C}(V)\) is faithful, with \(c \in \mathcal{L}/\mathcal{W}\). Let us prove a more general result. An outer automorphism of rings \(R\) is an automorphism of \(R\) which is not inner. If each non identity element of a group \(G\) induces an outer automorphism of \(R\), then \(G\) is called a group of outer automorphisms.

Proposition 2.3. Let \(R\) be a simple ring with unity. Let \(G\) be a group of outer automorphisms. Let \(X\) be a finite set. If \(G\) acts transitively on \(X\), then \((R \otimes \mathbb{C}^X) \rtimes G\) is simple.

Proof. Let us start by proving the reducibility of the support of an element of \((R \otimes \mathbb{C}^X) \rtimes G\). Let \(J\) be a two-sided ideal of \((R \otimes \mathbb{C}^X) \rtimes G\) not reduced to \(\{0\}\). There exists \(x \in J, x \neq 0\), of minimal support, \(x = \sum_{g \in G} r_g \cdot g = \sum_{g \in G \times X} r_{g \lambda} \cdot g \epsilon_{\lambda g}\). Since \(x\) is different from \(0\), \((r_g)_g\) are not all \(0\). There exists \(\lambda_0 \in X\) such that \(r_{\lambda_0, g \cdot \epsilon_{\lambda_0}} = 0\).

\[
g_0^{-1} x = \sum_{g \in G} g_0^{-1} r_g g = g_0^{-1} r_{g_0} g_0 + \sum_{g \in G, g \neq g_0} g_0^{-1} r_g g
\]

\[
= r_{1,1} + \sum_{g \in G, g \neq g_0} g_0^{-1} r_g g
\]
Up to multiply x by g_0^{-1}, we can assume the existence of $\lambda_0 \in X$ such that $r_{1, \lambda_0, \epsilon_{\lambda_0}} \neq 0$. The ideal $Rr_{1, \lambda_0}R$ is a two-sided ideal of R not reduced to $\{0\}$. Since R is simple $Rr_{1, \lambda_0}R = R$, so there exists $(x_j, y_j) \in R \times R$, such that $\sum_j x_j r_{1, \lambda_0} y_j = 1$. All depends on λ_0. Let us cancel this dependency.

We get $r_1 = \sum_{\lambda \in X} r_{\lambda, 1, \epsilon_{\lambda}} = r_{\lambda_0, 1, \epsilon_{\lambda_0}} + \sum_{\lambda \in X, \lambda \neq \lambda_0} r_{\lambda, 1, \epsilon_{\lambda}}$. Let us consider $x' = x \cdot \epsilon_{\lambda_0} \in J \setminus \{0\}$. Then

$$x' = r_{\lambda_0, 1, \epsilon_{\lambda_0} \cdot 1} + \sum_{g \neq 1} r'_{g, g}$$

where $r'_{g, g} = \sum_{\lambda \in X} r_{\lambda, g, \epsilon_{\lambda}} \epsilon_{\lambda_0} = r_{\lambda_0, g, \epsilon_{\lambda_0}}$.

but $\sum_j x_j x' y_j = \sum_{g \in G, j} x_j r'_{g, g} g y_j = \sum_{g \in G, j} x_j r'_{g, g} g(y_j) g$. For $g = 1$, we have

$$P'_1 := \sum_j x_j r_{1, 1} y_j = \sum_j x_j r_{1, \lambda_0, 1} \epsilon_{\lambda_0} y_j = \epsilon_{\lambda_0}$$

We can reduce P'_1 to 1. Let

$$x'' := \sum_{h \in G} hx'' h = \sum_{h \in G} h (r'_1) h g h^{-1} = \sum_{h \in G} h (r'_1) + \sum_{h \in G, g \neq 1} h g h^{-1}$$

but $\sum_{h \in G} h (r'_1) = \sum_{h \in G} h \epsilon_{\lambda_0} = \sum_{h \in G} \epsilon_{h \cdot \lambda_0} = \text{cst.} \cdot 1$. Finally, the support of $\sum_j x_j x'' y_j$ is equal to the support of x and

$$\sum_{j} x_j x'' y_j, x = \sum_{g \in G} P_{g}^" x r - r P_{g}^" g$$

$$= P_{1}^" r - r P_{1}^" + \sum_{g \in G, g \neq 1} (P_{g}^" x r - r P_{g}^" g)$$

At least, one term misses in the support of $[x, r]$, so by the minimality of the support of x, $[x, r] = 0$. So we can reduce the support of an element.

Let $\tilde{R} := R \otimes \mathbb{C}^X = \bigoplus_{\lambda \in X} R \cdot \epsilon_{\lambda}$. We have $[x, r] = \sum_{g \in G} (r_{g} g(r) - r, r_{g}) g = 0$, due to the fact that $(R \otimes \mathbb{C}^X) \times G$ is a G-module, where the elements of G form a basis, $r_{g} g(r) = r, r_{g}$ for all $g \in G$ and $r \in R \otimes \mathbb{C}^X$. So $\tilde{R} g = \tilde{g} \tilde{R}$.

Let $g \in G$ such that $r_{g} \neq 0$, we can assume the existence of $\mu_0 \in X$ such that $r_{\mu_0, g} \neq 0$. Then $r_{g} \epsilon_{g(\lambda)} = \sum_{\lambda \in X} r_{\lambda, g, \epsilon_{g(\lambda)}} = r_{g(\lambda), g, \epsilon_{g(\lambda)}}$ and

$$\epsilon_{\lambda} r_{g(\lambda)} = \sum_{\lambda \in X} \epsilon_{\lambda} r_{\mu, g, \epsilon_{g(\lambda)}} = \sum_{\mu \in X} r_{\mu, g, \epsilon_{g(\lambda)}} = r_{\lambda, g, \epsilon_{g(\lambda)}}$$

For $\lambda = \mu_0$, we get $r_{g} \epsilon_{g(\mu_0)} = r_{g(\mu_0), g, \epsilon_{g(\lambda)}} = \epsilon_{\mu_0} r_{g}$; so $g(\mu_0) = \mu_0$. As a result, for all μ_0 such that $r_{\mu_0, g} \neq 0$ then $g(\mu_0) = \mu_0$. Let r be an element of $R \epsilon_{\mu_0}$, we can write $r = \rho \epsilon_{\mu_0}$ and $r_{\mu_0, g} \neq 0$,

$$r_{g} g(r) = r_{g} (g, \rho) g \epsilon_{g, \mu_0}$$

$$= \sum_{\mu \in X} r_{\mu, g, \epsilon_{g(\mu_0)}} g \rho \epsilon_{g(\mu_0)} = \sum_{\mu \in X} r_{\mu, g, \rho} g \epsilon_{g(\mu_0)} = g \cdot \rho r_{\mu_0, g} \epsilon_{\mu_0}$$

and

$$r^{2} \mu_{0} g = \rho \epsilon_{\mu_0} \sum_{\mu \in X} r_{\mu, g, \epsilon_{\mu}} = \sum_{\mu \in X} \rho r_{\mu, g} \epsilon_{\mu} = \rho r_{\mu_0, g} \epsilon_{\mu_0} = g \cdot \rho r_{\mu_0, g} \epsilon_{\mu_0}$$

Because of $r_{\mu_0, g} \rho = r_{\mu_0, g} \cdot R = R r_{\mu_0, g}$ then $r_{\mu_0, g}$ is two-sided invertible. The action of g on ρ would be by inner automorphism, which is absurd. □
Let us apply this result to $X = c \in \mathcal{L}/W$, $G = W$ and $R = \mathcal{D}(X)$. The algebra $(\mathcal{D}(X) \otimes \mathbb{C}^n) \rtimes W$ is simple, therefore $\bigoplus_{c \in \mathcal{L}/W} (\mathcal{D}(X) \otimes \mathbb{C}^n) \rtimes W$ is simple. But this algebra is $\mathcal{D}(X) \otimes \mathcal{L} \rtimes W$. So the action of $(\mathcal{D}(X) \otimes \mathcal{L}) \rtimes W$ on $\mathbb{C}(V)$ is fully faithful. The rest of the proof is similar to the proof for the theorem 2.16 in [EM10].

\Box

2.1.2. Dunkl embedding. We consider the filtration $(F_i)_{i \in \mathbb{Z}}$ on $(\mathcal{D}(X) \otimes \mathcal{L}) \rtimes W$ by the order of the differential operator. Let us define a graduation on $(\mathcal{L}, \mathcal{L})$ of generators of $(\mathcal{D}(X) \otimes \mathcal{L}) \rtimes W$, by

$$B_i = \sum_{\alpha, \beta, \lambda, g \in \mathbb{N}^n, \beta \in \mathbb{N}^m, \lambda \in \mathcal{L}, g \in W} a_{\alpha, \beta, \lambda, g} x^\alpha y^\beta e_\lambda g$$

for all $i \in \mathbb{Z}$. We get an isomorphism of algebras $\psi : \text{grad}_F(\mathcal{D}(X) \otimes \mathcal{L}) \rtimes W) \simeq (\mathbb{C}[X \oplus V^*] \otimes \mathcal{L}) \rtimes W$. Let us define a filtration $(A_i)_{i \in \mathbb{Z}}$ on $A(\mathcal{L}, W)$ by putting in degree 0, \mathcal{L}, V^*, W and V in degree 1. Let us define a graduation on $(\mathbb{C}[V \oplus V^*] \otimes \mathcal{L}) \rtimes W$ by

$$A_i := \sum_{\alpha, \beta, \lambda, g \in \mathbb{N}^n, \beta \in \mathbb{N}^m, \lambda \in \mathcal{L}, g \in W, |\beta| = i} a_{\alpha, \beta, \lambda, g} x^\alpha y^\beta e_\lambda g$$

We get an isomorphism of algebras $\Phi : \text{grad}_F(A(\mathcal{L}, W)) \simeq (\mathbb{C}[V \oplus V^*] \otimes \mathcal{L}) \rtimes W$.

Theorem 2.4. The application

$$\Phi : A(\mathcal{L}, W) \longrightarrow (\mathcal{D}(X) \otimes \mathcal{L}) \rtimes W$$

$$x \in V^* \longmapsto x$$

$$y \in V \longmapsto T_y$$

$$g \in W \longmapsto g$$

is an injective morphism of algebras. After localization, Φ becomes an isomorphism of algebras from $A(\mathcal{L}, W)_{\text{reg}}$ to $(\mathcal{D}(X) \otimes \mathcal{L}) \rtimes W$, denoted Φ_{reg}.

Proof. We observe that Φ is a morphism of filtered algebras because of $\Phi(F_i) \subset F_i$. Therefore, Φ induces a morphism of algebras between graded algebras denoted by $\text{gr}(\Phi)$. Then we can prove that $\text{gr}(\Phi)$ is injective by considering the following composition

$$\begin{array}{ccc}
(\mathbb{C}[V \oplus V^*] \otimes \mathcal{L}) \rtimes W & \longrightarrow & \text{grad}_F(A(\mathcal{L}, W)) \\
& & \longrightarrow (\mathcal{D}(X) \otimes \mathcal{L}) \rtimes W
\end{array}$$

This is the identity. Therefore, $\text{gr}(\Phi)$ is injective, which implies that the morphism Φ is injective.

Since $\sum_{H \in \mathcal{A}} \frac{a_H(y)}{a_H} a_H e_H$ is well defined on $A(\mathcal{L}, W)_{\text{reg}}$, the image of Φ_{reg} contains a system of generators of $(\mathcal{D}(X) \otimes \mathcal{L}) \rtimes W$. \Box

2.1.3. Category $\mathcal{O}(\mathcal{L}, W)$. Let $e \in B := \sum_{y \in B} y^*y - \sum_{H \in \mathcal{A}} a_H e_H$ be the Euler element, where \mathcal{B} is a basis of V.

Proposition 2.5. $[e, x] = x$ for all $x \in V^*$, $[e, y] = -y$ for all $y \in V$, $[e, e_H] = 0$ for all $e_H \in \mathcal{L}$, $[e, w] = 0$ for all $w \in W$.

Therefore, e induces an inner graduation on $A(\mathcal{L}, W)$,

$$A(\mathcal{L}, W)^i := \{ a \in A(\mathcal{L}, W) | [e, a] = ia \}$$

for all $i \in \mathbb{Z}$.

The element $\sum_{H \in \mathcal{A}} a_H e_H$ belongs to $Z(\mathcal{L} \rtimes W)$. Thus, it acts by scalar multiplication on simple $(\mathcal{L} \rtimes W)$-modules. We denote by c_E the associated scalar where E is a simple $(\mathcal{L} \rtimes W)$-module.
Let us define a partial order on simple $\mathbb{C}L \times W$-modules by: $E' < E$ if $c_E - c_{E'} \in \mathbb{N}^*$. Let us define the standard objects associated to a simple $\mathbb{C}L \times W$-module, by $\Delta(E) := \text{Ind}_{\mathbb{C}[V^*]}^{\mathbb{C}[L \times W]} E$. This object admits a simple head $L(E)$ and each simple head admits a projective cover $P(E)$. Each projective cover $P(E)$ admits a standard filtration. We denote by Λ the set of all simple heads.

The category $\mathcal{O}(L,W)$ is the full subcategory of $A(L,W)$-module finitely generated, locally nilpotent for the action of $\mathbb{C}[V^*]$ and isomorphic to the direct sum of their generalized \mathfrak{sl}_n-eigen spaces. The triple $(\mathcal{O}(L,W), \Lambda, <)$ is a highest weight category in the sense of $[\text{CPSS}SS]$. Then $\mathcal{O}(L,W)$ admits a quasi-hereditary cover, this means that there exists a finite dimensional \mathbb{C}-algebra \tilde{R} such that $\mathcal{O}(L,W)$ is equivalent to the category of finitely generated \tilde{R}-modules.

2.2. The functor \widehat{KZ}. Let M be a $A(L,W)$-module. Let $M_{tor} := \{m \in M | \exists n > 0 \delta^n m = 0\}$ and $(A(L,W)$-module)$_{tor} = \{M \in (A(L,W)$-mod)$| M_{tor} = M\}$. This is a Serre subcategory of $A(L,W)$-module.

Let $\text{Loc}: A(L,W)$-modules $\to A(L,W)_{reg}$-modules the localization functor, $\text{Loc}(M) = M_{reg} := \mathbb{C}[X] \otimes_{\mathbb{C}[V]} M$, this is an exact functor, because $\mathbb{C}[X]$ is a flat $\mathbb{C}[V]$-module and $\text{Loc}(M) = 0$ if and only if $M \in (A(L,W)$-mod)$_{tor}$. Therefore, the functor Loc factorizes through the quotient category $\frac{A(L,W)_{mod}}{(A(L,W)$-mod)$_{tor}}$ and then the induced quotient functor $\frac{A(L,W)_{mod}}{(A(L,W)$-mod)$_{tor}} \to A(L,W)_{reg}$-mod is an equivalence of categories.

We can restrict this functor to the category $\mathcal{O}(L,W)$. Let us introduce the category $\mathcal{O}(L,W)_{tor} := \mathcal{O}(L,W) \cap (A(L,W)$-mod)$_{tor}$. This is a Serre subcategory of $\mathcal{O}(L,W)$.

The lemma 3.3 $[\text{Rou10}]$ implies that $\frac{\mathcal{O}(L,W)}{\mathcal{O}(L,W)_{tor}} \to \frac{A(L,W)_{mod}}{(A(L,W)$-mod)$_{tor}}$ is a fully faithful functor. By composing this with the previous equivalence of categories, we get a fully faithful functor $\mathcal{O}(L,W)_{tor} \to A(L,W)_{reg}$-mod. Then we apply the Dunkl embedding.

Let us figure out the structure of $(D(X) \otimes \mathbb{C}L) \times W$-module, on a standard object $\Delta(E)$, $E \in Irr(\mathbb{C}L \times W)$. The localization $\Delta(E)_{reg}$ of $\Delta(E)$ correspond to a trivial vector bundle over X of dimension $\text{dim}(E)$. We can endow this vector bundle with a connection by considering the action of \hat{T}_y on an element $P \otimes v \in \Delta(E)_{reg}$. We get the formula

$$\nabla_y (P \otimes v) := \partial_y P \otimes v + \sum_{H \in A} \frac{\alpha_H(y)}{\alpha_H} \sum_{j=0}^{m_H-1} m_H k_{H,j} P \otimes \epsilon_{H,j} v$$

Proposition 2.6. ∇_y is an algebraic, flat and W-equivariant connection with regular singularities on V.

Proof. The proof is similar to that proposed for the $A(W_0, W)$ case. \hfill \square

Since the connection ∇_y has regular singularities, we can apply the Riemann-Hilbert-Deligne correspondence and we get a $\mathbb{C} \pi_1(X/W) \times \mathbb{C}L$-mod$_{f, d}$. The category of connection with regular singularities is thick and for all simple $\mathbb{C}L \times W$-modules E we get a short exact sequence

$$\Delta(E) \to L(E) \to 0$$

So $L(E)$ is endowed with a connection with regular singularities. Every object of $\mathcal{O}(L,W)$ admits a finite Jordan-Hölder series, so all objects of $\mathcal{O}(L,W)$ can be endowed with a connection with regular singularities.

According to proposition 5.6 and 5.7 $[\text{GM21}]$ this monodromy action factorizes through $\mathcal{C}(L,W)$. We obtain an exact functor

$$\widehat{KZ}: \mathcal{O}(L,W) \to \mathcal{C}(L,W)$-mod$_{f,d}$

$$M \mapsto (((M_{reg})^W)_{an})^\nabla$$
According to [1.9] the functor \widetilde{KZ} is representable by a projective object in $\mathcal{O}(\mathcal{L}, \mathcal{W})$, denoted by $P_{\widetilde{KZ}}$. The image of the functor \widetilde{KZ} is a full abelian subcategory of the category of $\mathcal{C}(\mathcal{L}, \mathcal{W})$-modules finitely generated, closed under quotient, sub-objects and direct sum. We get the result:

Proposition 2.7. The morphism $\Phi : \mathcal{C}(\mathcal{L}, \mathcal{W}) \to \text{End}_{\mathcal{O}(\mathcal{L}, \mathcal{W})}(P_{\widetilde{KZ}})$ is an isomorphism of algebras.

Theoreme 2.8. The functor \widetilde{KZ} is essentially surjective. Hence, the induced functor $\widetilde{KZ} : \mathcal{O}(\mathcal{L}, \mathcal{W})_{\text{tor}} \to \mathcal{C}(\mathcal{L}, \mathcal{W})$-modules f.d is an equivalence of categories.

The proofs of these results are similar to those in the previous section.

Acknowledgements:

These results are part of my PhD-Thesis at University Picardie Jules Verne under the supervision of Prof. Ivan Marin. I would like to thank Cedric Bonnafe, which suggested forgetting the ambient group W.

References

[AJ14] Francesca Aicardi and Jesus Juyumaya. Markov trace on the algebra of braids and ties. *arXiv preprint arXiv:1408.5672*, 2014.

[Ari95] Susumu Ariki. Representation theory of a Hecke algebra of $g (r, p, n)$. *Journal of algebra*, 177(1):164–185, 1995.

[ARS97] Maurice Auslander, Idun Reiten, and Sverre O Smalø. *Representation theory of Artin algebras*, volume 36. Cambridge university press, 1997.

[Bel12] Gwyn Bellamy. Symplectic reflection algebras. *arXiv preprint arXiv:1210.1239*, 2012.

[BMR98] Michel Broué, Gunter Malle, and Raphaël Rouquier. Complex reflection groups, braid groups, Hecke algebras. *Journal für die reine und angewandte Mathematik*, 1998(500):127–190, 1998.

[BT18] Gwyn Bellamy and Ulrich Thiel. Highest weight theory for finite-dimensional graded algebras with triangular decomposition. *Advances in Mathematics*, 330:361–419, 2018.

[CH94] Rob C. Cannings and Martin P. Holland. Differential operators on varieties with a quotient subvariety. *Journal of Algebra*, 170(3):735–753, 1994.

[CPS88] Edward Cline, Brian Parshall, and Leonard Scott. Finite dimensional algebras and highest weight categories. *J. reine angew. Math*, 391(2):85–99, 1988.

[Del06] Pierre Deligne. *Équations différentielles à points singuliers réguliers*, volume 163. Springer, 2006.

[EG02] Pavel Etingof and Victor Ginzburg. Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism. *Inventiones mathematicae*, 147(2):243–348, 2002.

[EM10] Pavel Etingof and Xiaoguang Ma. Lecture notes on Cherednik algebras. *arXiv preprint arXiv:1001.0432*, 2010.

[Eti17] Pavel Etingof. Proof of the Broué-Malle-Rouquier conjecture in characteristic zero (after I. Losev and I. Marin—G. Pfeiffer). *Arnold Mathematical Journal*, 3(3):443–449, 2017.

[Fal22] Henry Fallet. Cherednik algebra for the normalizer. *Comptes Rendus. Mathématique*, 360(G1):47–52, 2022.

[Gab62] Pierre Gabriel. Des catégories abéliennes. *Bulletin de la Société Mathématique de France*, 90:323–448, 1962.

[GGOR03] Victor Ginzburg, Nicolas Guay, Eric Opdam, and Raphaël Rouquier. On the category \mathcal{O} for rational Cherednik algebras. *Inventiones mathematicae*, 154(3):617–651, 2003.

[Gin98] Victor Ginzburg. Lectures on \mathfrak{d}-modules. *Online lecture notes, available at Sabin Cautis’ webpage http://www.math.columbia.edu/~scautis/dmodules/dmodules/ginzburg.pdf*, With collaboration of Baranovsky, V., and Evans S, 1998.

[GM21] Thomas Gobet and Ivan Marin. Hecke algebras of normalizers of parabolic subgroups. *arXiv preprint arXiv:2006.09028*, 2021.

[God71] Claude Godbillon. *Eléments de topologie algébrique*, volume 4. Editions Hermann, 1971.

[Mar18a] Ivan Marin. Artin groups and Yokonuma–Hecke algebras. *International Mathematics Research Notices*, 2018(13):4022–4062, 2018.

[Mar18b] Ivan Marin. Lattice extensions of Hecke algebras. *Journal of Algebra*, 503:104–120, 2018.

[Mar20] Ivan Marin. Truncations and extensions of the brauer-chen algebra. *Journal of Algebra*, 561:273–294, 2020.

[Rot08] Joseph J. Rotman. *An introduction to homological algebra*. Springer Science & Business Media, 2008.
[Rou10] Raphaël Rouquier. Derived categories and algebraic geometry. *Triangulated categories*, 375:351–370, 2010.

[Sta11] Richard P Stanley. Enumerative combinatorics volume 1 second edition. *Cambridge studies in advanced mathematics*, 2011.

[Yok67] Takeo Yokonuma. Sur la structure des anneaux de hecke dun groupe de chevalley fini. *Comptes rendus hebdomadaires des séances de l'académie des sciences série A*, 264(8):344, 1967.

Université de Picardie,
Département de Mathématiques et LAMFA (UMR 7352 du CNRS),
33 rue St Leu,
F-80039 Amiens Cedex 1,
France

Email address: henry.fallet@u-picardie.fr