Galois lines for space elliptic curve with $j = 12^3$

Mitsunori Kanazawa1,2 · Hisao Yoshihara1,2

Abstract The V_4-lines for each linearly normal space elliptic curve form the edges of a tetrahedron, in addition the elliptic curve with $j = 12^3$ has Z_4-lines. We show the arrangement of V_4 and Z_4-lines concretly for the curve. As a corollary we obtain that each irreducible quartic curve with genus one has at most two Galois points, which is a correction of the previous paper (Yoshihara, Algebra Colloq 19(no. spec 01):867–876, 2012).

Keywords Galois line · Space elliptic curve · Galois group

Mathematics Subject Classification Primary 14H50; Secondary 14H20

1 Introduction

We have been studying Galois embedding of algebraic varieties Yoshihara (2007), in particular, of elliptic curves E. In this case, by Lemma 8 in Yoshihara (2012) we can assume the embedding is associated with the complete linear system $|nP_0|$ for some $n \geq 3$, where $P_0 \in E$. Let $f_n : E \hookrightarrow \mathbb{P}^{n-1}$ be the embedding and put $C_n = f_n(E)$. Then we consider the Galois subspaces, Galois group, the arrangement of Galois subspaces and etc. for C_n in \mathbb{P}^{n-1}. In the previous papers (Duyaguit and Yoshihara 2005; Yoshihara 2012) we have treated in the case where $n = 4$ and settled almost all

1 Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
2 Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-2181, Japan
questions. However, the arrangement of V_4 and Z_4-lines has not been determined in sufficient detail for $j(E) = 12^3$, i.e., the curve with an automorphism of order four with a fixed point.

The purpose of this article is as follows:

(1) In the paper (Yoshihara 2012), Corollary 2 and (2) of Lemma 12 contain errors. We make the corrections of them.

(2) We show the arrangement of Galois lines for $j = 12^3$ concretely.

The constitution of this article is as follows: In Sect. 2 we state the main theorem and mention some other results. In Sect. 3 we make the corrections of Corollary 2 and Lemma 12 in Yoshihara (2012). In Sect. 4 we make the proof of the main theorem. In Sect. 5 we explain the method of computations in Sect. 4. Finally in Sect. 6 we mention a remark. Note that the proof of this article depends on neither Corollary 2 nor (2) of Lemma 12 of Yoshihara (2012).

The authors express sincere thanks to the referee for reading the manuscript carefully and giving valuable suggestions.

2 Statement of result

Theorem 1 The arrangement of all the Galois lines for C_4, where $j(C_4) = 12^3$, is illustrated by the union of the following two figures:
In these figures, • denotes the intersection of V_4-lines and ◦ denotes the intersection of a V_4 and a Z_4-line. Four points Q_0, Q_1, Q_2 and Q_3 are not coplanar. These points form vertexes of a tetrahedron. Let L_{ij} be the line passing through Q_i and Q_j ($0 \leq i < j \leq 3$). Then, all the V_4-lines are ℓ_{01}, ℓ_{02}, ℓ_{03}, ℓ_{12}, ℓ_{13} and ℓ_{23}. Except these lines, each line is a Z_4-line. For each vertex there exist two Z_4-lines passing through it. Two Z_4-lines which do not pass through the same vertex are disjoint. A Z_4-line meets V_4-lines at two points as is shown above. If the one is the vertex Q_i, then we let the other be R_{ij}, where (i, j) is a Z_4-line and Q_i is a Z_4-point. Let L_{ij} be the line passing through Q_i and Q_j, where (i, j) is a Z_4-line. For each vertex there exist two Z_4-lines passing though Q_i. A Z_4-point is at most two V_4-points form vertexes of a tetrahedron. Let $\pi : \mathbb{P}^3 \rightarrow \mathbb{P}^2$ be the projection with the center R_{ij}.

In Corollary 2 in Yoshihara (2012) we must assume $j(E) \neq 12^3$. So we correct the corollary as follows:

Corollary 2 Let Γ be an irreducible quartic curve in \mathbb{P}^2 and E the normalization of it. Assume the genus of E is one. If $j(E) = 12^3$ (resp. $\neq 12^3$), then the number of Galois points is at most two (resp. one).

In fact, Takahashi found the curve defined by: $s^4 + s^2 u^2 + t^4 = 0$. It is easy to see that the genus of the normalization is one and $(s : t : u) = (0 : 1 : 0)$ is a Z_4-point and $(1 : 0 : 0)$ is a V_4-point. By using Theorem 1, we can find many such examples as follows:

Example 3 Let L_{ij} and ℓ_{pq} be the Z_4 and V_4-lines passing though R_{ij}, where $0 \leq i \leq 3$, $j = 1, 2$ and if $i = 0$ or 3 (resp. 1 or 2), then $(p, q) = (1, 2)$ (resp. $(0, 3)$). Let $\pi_{ij} : \mathbb{P}^3 \rightarrow \mathbb{P}^2$ be the projection with the center R_{ij}. Then, $\pi_{ij}(C_4) = \Gamma_{ij}$ is an irreducible quartic curve and the points $\pi_{ij}(L_{ij})$ and $\pi_{ij}(\ell_{pq})$ are Z_4 and V_4-points, respectively. For example, take the point $R = (0 : 0 : 1 : 0)$ as the projection center. Then, $\pi_R(X : Y : Z : W) = (X : Y : W)$. The Z_4-line $L : X = Y = 0$ and V_4-line $\ell : X + 4Y = W = 0$ pass through R. The defining equation of $\pi_R(C_4)$ is $W^4 = XY(X - 4Y)^2$, $\pi_R(L) = (0 : 0 : 1)$ and $\pi_R(\ell) = (4 : 1 : 0)$. By the projective change of coordinates

$$X = X' - iY', \quad Y = -(X' + iY')/4$$

we get the example of Takahashi.

We have an interest in the group generated by the Galois groups belonging to Galois points (Kanazawa et al. 2001; Miura and Ohbuchi 2015). Let $\wp(z)$ be the Weierstrass \wp-function associated with the lattice \mathcal{L} such that $\wp_2(\mathcal{L}) = 1$ and $\wp_3(\mathcal{L}) = 0$. Then \mathcal{L} is given as $\mathbb{Z}c + \mathbb{Z}ci$, where c is a positive number and $i = \sqrt{-1}$. Indeed we have $c/2 = 1.8540746\ldots$ by Abramowitz and Stegun (2017), [p. 658] (in the previous
paper Yoshihara (2012) we had to use this lattice). Let G_0 (resp. G) be the group generated by the Galois group belonging to V_4-lines (resp. V_4 or Z_4-line) for C. Then we have the following.

Corollary 4 (1) In case $j \neq 12^3$, we have $G = G_0 = \langle \rho_0, \rho_1, \rho_2 \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. An example of the curve with this group is given in Kanazawa and Yoshihara (2011)

$$(4y^4 + 5xy^2 - 1)^2 = xy^2(x + 8y^2)^2.$$

(2) In case $j = 12^3$ we can show $G = \langle \sigma_0, \sigma_2, \sigma_6 \rangle$. Putting

$$\alpha(z) = z + \frac{1}{2}c, \quad \beta(z) = z + \frac{3 + i}{4}c,$$

where c is the positive number given above, we have $\langle \alpha, \beta \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_4$ and

$$G \cong \langle \alpha, \beta \rangle \rtimes \langle \sigma_0 \rangle.$$

It is easy to see that G_0 is a normal subgroup of G. In particular $|G| = 32$ and G is called an elliptic exceptional group $E(2, 2, 4)$ in Kanazawa and Yoshihara (2011). Furthermore this group appears as the group by the embedding of degree 32 of the elliptic curve $j(E) = 12^3$.

3 Correction

In this section we work on only the correction of Yoshihara (2012) and use the same notation. We had to assume $j(C) \neq 1$ in the first sentence of Corollary 2, so it should be revised as follows:

Correction 1

Corollary 2 If a plane quartic curve Γ with genus one has an outer Galois point, then the Galois group G is isomorphic to V_4 or Z_4. In the latter case $G \cong Z_4$, the j-invariant of the normalization of Γ is 12^3. Further, Γ is given as $\pi_Q(C)$, where

(1) π_Q is the projection $\mathbb{P}^3 \dashrightarrow \mathbb{P}^2$ from the point Q, and

(2) C is an elliptic curve in \mathbb{P}^3, and

(3) Q is not a vertex of the tetrahedron and $Q \in \Sigma$ (resp. $Q \in \Sigma'$) if $G \cong V_4$ (resp. Z_4).

Therefore, the number of Galois points is at most one if $j(C) \neq 12^3$. ($j(C) \neq 1$ in the notation of Yoshihara (2012)). The error comes from the assertion (2) of Lemma 12.
Correction 2
Delete the assertion (2) from Lemma 12.

The assertion (1) of Lemma 12 is left. The assertion (2) is used only in the statement “If ℓ_1 and ℓ_2 meet, then we have $\tau_1^2 = \tau_2^2$ by Lemma 12” before Claim 1. We revise the proof of the last part of Theorem 2 as follows:

Delete the sentences “If ℓ_1 and ℓ_2 meet, then...” we have $(1+i)(\alpha_1 - \alpha_2) \in \mathcal{C}$.

Then, we insert the following sentence between Claims 1 and 2.

In case $G_{ij} \cap G_{pq} \neq \{id\}$ in Claim 1, two \mathcal{Z}_4-lines $\ell(ij)$ and $\ell(pq)$ meet by (1) of Lemma 12.

After Claim 2 we complete the proof of Theorem 2 as follows. First we recall the last part of the proof of Lemma 20.

Remark The possibility of α is as follows, where $\alpha = (m+n)i/4$ is the translational part of the complex representation $\sigma(z) = iz + \alpha$.

$$(m, n) = (0, 0), (2, 2), (2, 0), (0, 2), (3, 1), (1, 3), (1, 1), (3, 3)$$

Suppose two \mathcal{Z}_4-lines ℓ and ℓ' meet except at the vertex. Then, we will get a contradiction. Let ℓ and ℓ' pass through vertexes Q and Q' respectively. Let ℓ'' be the V_4-line connecting two vertexes Q and Q', and let H the plane containing ℓ, ℓ' and ℓ''. The following three cases take place:

1. $H \cap C$ consists of one point.
2. $H \cap C$ consists of two points.
3. $H \cap C$ consists of four points.

Take a point P in $H \cap C$, which is corresponded to $a \in \mathbb{C}$, i.e., $P = \phi \bar{\phi} \pi(a)$, where the notation is given in Yoshihara (2012) below Lemma 9. Let the generators of the Galois groups associated with ℓ, ℓ' and ℓ'' be σ, σ' and $\{\tau, \tau'\}$ respectively. Then the following three sets are equal (mod \mathcal{L}).

$\{a, \sigma(a), \sigma^2(a), \sigma^3(a)\} \equiv \{a, \sigma'(a), \sigma'^2(a), \sigma'^3(a)\} \equiv \{a, \tau(a), \tau'(a), \tau \tau'(a)\}$

We conclude from this that ℓ and ℓ' meet at a vertex.

Let $\sigma(z) = iz + \alpha, \sigma'(z) = iz + \alpha'$ and $\tau(z) = z + \beta, \tau'(z) = -z + \beta'$ be the complex representations.

In the case (1) we have $\sigma(a) \equiv \sigma'(a)$, which means $\alpha \equiv \alpha'(\text{mod } \mathcal{L})$, hence $\sigma = \sigma'$ on E. By Lemma 10 we have $\ell = \ell'$. This is a contradiction.

In the case (2) we have $\{a, \sigma(a)\} \equiv \{a, \sigma'(a)\}$. Since this set consists of two points, we have also $\sigma = \sigma'$. This is a contradiction.

In the case (3), $\sigma'(a)$ is equal to (i) $\sigma(a)$, (ii) $\sigma^2(a)$ or (iii) $\sigma^3(a)$. From the case (i) we get $\alpha \equiv \alpha'(\text{mod } \mathcal{L})$. Similarly this is a contradiction. From the case (ii) we get $ia + \alpha' \equiv -a + (i+1)\alpha$ (mod \mathcal{L}), this means $(i+1)a \equiv (i+1)\alpha - \alpha'$ (mod \mathcal{L}). In addition we have another relation (ii-1) $\sigma^2(a) = \sigma(a)$ or (ii-2) $\sigma'^2(a) = \sigma^3(a)$. From the sub-case (ii-1) we get $(i+1)a \equiv (i+1)\alpha' - \alpha$ (mod \mathcal{L}). Combining the above two relations we have $5(\alpha - \alpha') \equiv (2r + s) + (-r + 2s)i$ (mod \mathcal{L}), where $r, s \in \mathbb{Z}$. Recall that α and α' can be expressed as $(m+ni)c/4$ and $(m'+n'i)c/4$, respectively. Suppose
Hereafter we treat only the case \(m \neq m' \) or \(n \neq n' \). Then we have \(c = 4(r + 2s)/5(m - m') \) or \(c = 4(-r + 2s)/5(n - n') \), respectively. Since \(c/2 \) has the value 1.8540746 . . . , it can not be expressed as above, this is a contradiction. Thus this case holds only if \(\alpha \equiv \alpha' (\text{mod} \, \mathcal{L}) \). This is a contradiction. From the sub-case (ii-2), we get two relations \(a + (i + 1)a' \equiv -ia + ia\alpha (\text{mod} \, \mathcal{L}) \) and \((i + 1)a \equiv (i + 1)\alpha - \alpha' (\text{mod} \, \mathcal{L}) \), we infer from these that \((i + 1)(\alpha - \alpha') \equiv 0 \) mod(\mathcal{L}), i.e., \(\alpha - \alpha' \) can be expressed as \(2(\alpha - \alpha') \equiv (r + s) + (-r + s)i \), where \(r, s \in \mathbb{Z} \). This implies that \(\ell \) and \(\ell' \) meet at a vertex by Claim 2. This is a contradiction. Now we treat the last case (iii). We have \(\sigma'(a) = \sigma^3\alpha = \tau(a) \) or \(\tau'(a) \). From these relations we get \(ia + \alpha' \equiv -ia + i\alpha \equiv a + \beta \) or \(-a + \beta' (\text{mod} \, \mathcal{L}) \), where \(2\beta \equiv 2\beta' \equiv 0 \) (mod \(\mathcal{L} \)). In the former case we have \(2ia \equiv i\alpha - \alpha' \) and \(2ia + 2\alpha' \equiv 2a \), since \(2\beta \equiv 0 \). Thus we get \(2a \equiv i\alpha - \alpha' + 2\alpha' = i\alpha + \alpha' \), so that \(2ai \equiv -\alpha + \alpha' \). Hence we have \((i + 1)(\alpha - \alpha') \equiv 0 \). Similarly we have \((1 - i)(\alpha + \alpha') \equiv 0 \) in the latter case. By the same reason as above, we have a contradiction. This completes the proof.

4 Proof

Hereafter we treat only the case \(j(E) = 12^3 \). We use the following notation and convention as in Yoshihara (2012). Let us recall briefly:

- \(\pi : \mathbb{C} \longrightarrow E = \mathbb{C}/\mathcal{L}, \mathcal{L} = \mathbb{Z}c + \mathbb{Z}ci \)
- \(x = \varphi(z), \, y = \varphi'(z), \varphi\)-functions with respect to \(\mathcal{L} \).
- \(\varphi : \mathbb{C} \longrightarrow \mathbb{C}/\mathcal{L} \sim \mathbb{C}, \, y^2 = 4x^3 - x \)
- \(P_\alpha := \varphi(\alpha) \in C, \, (\alpha \in \mathbb{C}) \), in particular, \(P_0 = \varphi(0) \)
- \(+ \) denotes the sum of complex numbers \(\alpha + \beta \) in \(\mathbb{C} \) and at the same time the sum of divisors \(P_\alpha + P_\beta \) on \(E \)
- \(\sim : \) linear equivalence
- \(\) Note that \(P_\alpha + P_\beta \sim P_{\alpha + \beta} + P_0 \) holds true.
- \(V_4 : \) Klein’s four group
- \(Z_n : \) cyclic group of order \(n \)
- \(\langle \cdots \rangle : \) the group generated by \(\cdots \)

Since the embedding is associated with \(|4P_0|\), we can assume it is given by

\[f = f_4 : E \longrightarrow \mathbb{P}^3, \, f(x, y) = (1 : x^2 : x : y) \]

Put \(C_4 = f(E) \). The \(V_4 \)-lines have been determined in Yoshihara (2012). Recall that the Galois group associated with \(V_4 \)-line is \(\langle \rho_i, \rho_j \rangle \) for some \(i, \, j \) where \(0 \leq i < j \leq 3 \). Let \(\sigma \) be a complex representation of a generator of the group associated with \(Z_4 \)-line. As we see in the proof of Lemma 20 in Yoshihara (2012), \(\sigma \) can be expressed as \(\sigma(z) = iz + (m + ni)e/4 \), where \((m, n) = (0, 0), \, (2, 2), \, (3, 1), \, (1, 3), \, (1, 1), \, (3, 3), \, (2, 0) \) or \((0, 2) \). So we put as follows:
(0) $\sigma_0(z) = iz$
(1) $\sigma_1(z) = iz + \frac{1 + i}{2} c$
(2) $\sigma_2(z) = iz + \frac{3 + i}{2} c$
(3) $\sigma_3(z) = iz + \frac{1 + 3i}{2} c$
(4) $\sigma_4(z) = iz + \frac{1 + 4i}{4} c$
(5) $\sigma_5(z) = iz + \frac{4 + 3i}{4} c$
(6) $\sigma_6(z) = iz + \frac{1 + c}{2}$
(7) $\sigma_7(z) = iz + \frac{c}{2}$

Furthermore we put

$\rho_0(z) = -z, \quad \rho_1(z) = -z + \frac{1}{2} c, \quad \rho_2(z) = -z + \frac{i}{2} c, \quad \rho_3(z) = -z + \frac{1 + i}{2} c. $

Note that

$\rho_0 \equiv \sigma_0^2 \equiv \sigma_1^2 (\mod \mathcal{L}), \quad \rho_1 \equiv \sigma_2^2 \equiv \sigma_3^2 (\mod \mathcal{L}),$
$\rho_2 \equiv \sigma_4^2 \equiv \sigma_5^2 (\mod \mathcal{L}), \quad \rho_3 \equiv \sigma_6^2 \equiv \sigma_7^2 (\mod \mathcal{L}).$

Let V be the vector space spanned by $\{1, x^2, x, y\}$ over \mathbb{C}. If σ is an element of the Galois group associated with a Galois line ℓ, then it induces a linear transformation $M(\sigma)$ of V. The $M(\sigma)$ defines a projective transformation, we denote it by the same letter. It has the following properties:

(1) Some eigenvalue belongs to at least two independent eigenvectors.
(2) We have $M(\sigma)(\ell) = \ell$, i.e., $M(\sigma)$ induces an automorphism of $\ell \cong \mathbb{P}^1$.

There are two characterizations for the vertexes, one is the following Lemma 17 in Yoshihara (2012):

Lemma 5 There exist exactly four irreducible quadratic surfaces S_i ($0 \leq i \leq 3$) such that each S_i has a singular point and contains C. Let Q_i be the unique singular point of S_i. Then the four points are not coplanar.

The other one is as follows:

Lemma 6 The $M(\rho_i)$ ($0 \leq i \leq 3$) has two eigenvalues λ_{i1} and λ_{i2} which belong to one and three independent eigenvectors, respectively. Let Q_i be the point in \mathbb{P}^3 defined by the eigenvector having the eigenvalue λ_{i1}. Then, these points coincide with the ones in Theorem 1. The line passing through Q_i and Q_j ($0 \leq i < j \leq 3$) is a V_4-line. Four points $\{Q_1, Q_2, Q_3, Q_4\}$ are not coplanar, so they form a vertex of a tetrahedron.

Proof These are checked by direct computations. To find the action of ρ_i on the vector space V, we can use the action on $x = \wp(z)$ and $y = \wp'(z)$. We make use of the addition formulas of \wp and \wp', see in the proof of Lemma 15 in Yoshihara (2012).

$$
\rho_0^* (1, x^2, x, y) = (1, x^2, x, -y),
$$
$$
\rho_1^* (1, x^2, x, y) = (4x^2 - 4x + 1, x^2 + x + \frac{1}{4}, 2x^2 - \frac{1}{2}, 2y),
$$
$$
\rho_2^* (1, x^2, x, y) = (4x^2 + 4x + 1, x^2 - x + \frac{1}{4}, -2x^2 + \frac{1}{2}, 2y),
$$
$$
\rho_3^* (1, x^2, x, y) = (4x^2, \frac{1}{4}, -x, -y).
$$
We obtain the following representation matrices:

\[
M(\rho_0) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad M(\rho_1) = \begin{pmatrix} 1 & 4 & -4 \\ 1/4 & 1 & 1 \\ -1/2 & 2 & 0 \end{pmatrix}, \\
M(\rho_2) = \begin{pmatrix} 1 & 4 & 4 \\ 1/4 & 1 & -1 \\ 1/2 & -2 & 0 \end{pmatrix}, \quad M(\rho_3) = \begin{pmatrix} 0 & 4 & 0 \\ 1/4 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
\]

Therefore, the eigenvalues \(\lambda\) and eigenvectors (mod constant multiplications) of \(M(\rho)\) can be computed as follows:

\[
M(\rho_0) \lambda = -1 : (0, 0, 0, 1) \quad \lambda = 1 : (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) \\
M(\rho_1) \lambda = -2 : (4, -1, 2, 0) \quad \lambda = 2 : (1, 0, -1/4, 0), (0, 1, 1, 0), (0, 0, 0, 1) \\
M(\rho_2) \lambda = -2 : (4, -1, -2, 0) \quad \lambda = 2 : (4, 0, 1, 0), (0, 1, -1, 0), (0, 0, 0, 1) \\
M(\rho_3) \lambda = 4 : (4, 1, 0, 0) \quad \lambda = -4 : (4, -1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
\]

\[\square \]

Similarly, we can find \(Z_4\)-lines by the following results. For the sake of completeness we will give the outlines of the computations in the next section.

\[
\sigma_0^* \left(1, x^2, x, y \right) = \left(1, x^2, -x, iy \right),
\]

\[
\sigma_1^* \left(1, x^2, x, y \right) = \left(4x^2, \frac{1}{4}, x, ix \right),
\]

\[
\sigma_2^* \left(1, x^2, x, y \right) = \left(-2y + \sqrt{2} \left(i - 1 \right) x^2 - \sqrt{2} \left(1 + i \right) x - \frac{\sqrt{2} \left(i - 1 \right)}{4},
\]

\[
- \frac{1}{2} y - \frac{\sqrt{2} \left(i - 1 \right)}{4} x^2 + \frac{\sqrt{2} \left(i + 1 \right)}{4} x
\]

\[
+ \frac{\sqrt{2} \left(i - 1 \right)}{16}, \quad \frac{\sqrt{2} \left(i + 1 \right)}{2} x^2
\]

\[
+ \frac{\sqrt{2} \left(i - 1 \right)}{2} x - \frac{\sqrt{2} \left(1 + i \right)}{8}, \quad 2x^2 + \frac{1}{2} \right),
\]

\[
\sigma_3^* \left(1, x^2, x, y \right) = \left(4\sqrt{2} iy - \left(1 + i \right) \left(4x^2
\right.
\]

\[
+ 4ix - 1 \right), \quad \frac{1}{4} \left(4\sqrt{2} iy + \left(1 + i \right) \left(4x^2 + 4ix - 1 \right) \right),
\]

\[
i - \frac{1}{2} \left(4x^2 - 4ix - 1 \right),
\]

\[
- \sqrt{2} i \left(4x^2 + 1 \right) \right).
\]

\[\square \]
\(\sigma_4^* (1, x^2, x, y) = \left(-2\sqrt{2}(1+i)y - 4ix^2 - 4x + i, -\frac{1-i}{\sqrt{2}}y + ix^2 + x - \frac{i}{4}, 2x^2 + 2ix - \frac{1}{2} \right), \)

\(\sigma_5^* (1, x^2, x, y) = \left(2\sqrt{2}(1+i)y - 4ix^2 - 4x + i, \frac{1+i}{\sqrt{2}} + ix^2 + x - \frac{i}{4}, 2x^2 + 2ix - \frac{1}{2} \right), \)

\(\sigma_6^* (1, x^2, x, y) = \left(4x^2 + 4x + 1, x^2 - x + \frac{1}{4}, 2x^2 - \frac{1}{2}, -2iy \right), \)

\(\sigma_7^* (1, x^2, x, y) = \left(4x^2 - 4x + 1, x^2 + x + \frac{1}{4}, -2x^2 + \frac{1}{2}, -2iy \right). \)

\[
M(\sigma_0) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & i \end{pmatrix}, \quad M(\sigma_1) = \begin{pmatrix} 0 & 4 & 0 & 0 \\ 1/4 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & i \end{pmatrix},
\]

\[
M(\sigma_2) = -\sqrt{2}i \begin{pmatrix} (i+1)/4 & i-1 & -i+1 & -\sqrt{2}i \\ -(1+i)/16 & (1+i)/4 & -(1+i)/4 & -i/2\sqrt{2} \\ (1-i)/8 & -(1+i)/2 & (1+i)/2 & 0 \\ i/2\sqrt{2} & \sqrt{2}i & 0 & 0 \end{pmatrix},
\]

\[
M(\sigma_3) = \begin{pmatrix} 1+i & -4(1+i) & 4(1-i) & -4\sqrt{2}i \\ -(1+i)/4 & 1+i & -1+i & \sqrt{2}i \\ (1-i)/2 & -2(1-i) & 2(1+i) & 0 \\ -\sqrt{2}i & -4\sqrt{2}i & 0 & 0 \end{pmatrix},
\]

\[
M(\sigma_4) = \begin{pmatrix} i & -4i & -4 -2\sqrt{2}(1+i) \\ -i/4 & i & 1 & -(1+i)\sqrt{2} \\ -1/2 & 2 & 2i & 0 \\ -(1+i)/\sqrt{2} & 2\sqrt{2}(1+i) & 0 & 0 \end{pmatrix},
\]

\[
M(\sigma_5) = \begin{pmatrix} i & -4i & -4 2\sqrt{2}(1+i) \\ -i/4 & i & 1 & (1+i)\sqrt{2} \\ -1/2 & 2 & 2i & 0 \\ (1+i)/\sqrt{2} & 2\sqrt{2}(1+i) & 0 & 0 \end{pmatrix},
\]

\[
M(\sigma_6) = \begin{pmatrix} 1 & 4 & 4 & 0 \\ 1/4 & 1 & 1 & 0 \\ -1/2 & 2 & 0 & 0 \\ 0 & 0 & 0 & -2i \end{pmatrix}, \quad M(\sigma_7) = \begin{pmatrix} 1 & 4 & -4 & 0 \\ 1/4 & 1 & 1 & 0 \\ 1/2 & 2 & 0 & 0 \\ 0 & 0 & 0 & -2i \end{pmatrix}. \]

Eigenvalues \(\lambda \) and eigenvectors (mod constant multiplications) of \(M(\sigma) \) are as follows:
\[
\begin{align*}
M(\sigma_0) & \quad \lambda = -1 : (0, 0, 1, 0) \\
& \quad \lambda = 1 : (1, 0, 0, 0), (0, 1, 0, 0) \\
& \quad \lambda = i : (0, 0, 0, 1) \\
M(\sigma_1) & \quad \lambda = -1 : (4, -1, 0, 0) \\
& \quad \lambda = 1 : (4, 1, 0, 0), (0, 1, 0, 0) \\
& \quad \lambda = i : (0, 0, 0, 1) \\
M(\sigma_2) & \quad \lambda = \sqrt{2} : (4, -1, -2, 0) \\
& \quad \lambda = -\sqrt{2}i : (4, 0, 1, \sqrt{2}i), (0, 1, -1, \sqrt{2}i) \\
& \quad \lambda = \sqrt{2}i : (4, 1, 0, -2\sqrt{2}i) \\
M(\sigma_3) & \quad \lambda = 4i : (4, -1, -2, 0) \\
& \quad \lambda = 4 : (4, 0, 1, -2\sqrt{2}i), (0, 1, -1, -\sqrt{2}i) \\
& \quad \lambda = -4 : (4, 1, 0, 2\sqrt{2}i) \\
M(\sigma_4) & \quad \lambda = -2 - 2i : (4, 1, 0, 2\sqrt{2}) \\
& \quad \lambda = 2 + 2i : (4, 0, -1, -\sqrt{2}), (0, 1, 1, \sqrt{2}) \\
& \quad \lambda = -2 + 2i : (4, -1, 2, 0) \\
M(\sigma_5) & \quad \lambda = -2 - 2i : (4, 1, 0, -2\sqrt{2}) \\
& \quad \lambda = 2 + 2i : (4, 0, -1, \sqrt{2}), (0, 1, 1, \sqrt{2}) \\
& \quad \lambda = -2 + 2i : (4, -1, 2, 0) \\
M(\sigma_6) & \quad \lambda = 2i : (4, -1, 2i, 0) \\
& \quad \lambda = -2i : (4, -1, -2i, 0), (0, 0, 0, 1) \\
& \quad \lambda = 2 : (4, 1, 0, 0) \\
M(\sigma_7) & \quad \lambda = 2i : (4, -1, -2i, 0) \\
& \quad \lambda = -2i : (4, -1, 2i, 0), (0, 0, 0, 1) \\
& \quad \lambda = 2 : (4, 1, 0, 0)
\end{align*}
\]

The proof of Corollary 2 is the same as Corollary 2 in Yoshihara (2012). It is sufficient to note the intersection points of Galois lines. In the case where \(j(E) = 12^3 \), there exist points which are not the vertexes \(Q_i \) \((0 \leq i \leq 3)\) but the intersection of \(V_4 \) and \(Z_4 \)-lines. The projection from such points yield the curve with two Galois points.

5 Computation of \(\sigma_i^* \)

In Sect. 4 we have calculated several values by using the software “maxima” step by step.

First note that both \(E = \mathbb{C}/\mathcal{L} \) and the curve \(y^2 = 4x^3 - x \) have additions. The addition on the curve is given as follows.

\[
(a, b) + (c, d) = (e, f),
\]

\[
e = \frac{(4ac - 1)(a + c) - 2bd}{4(a - c)^2},
\]

\[
f = \frac{(4a^3 + 12a^2c - 3a - c)d - (4c^3 + 12ac^2 - 3c - a)b}{4(a - c)^3}.
\]
At the double point we have

\[
2(a, b) = \left(\frac{(4a^2 + 1)^2}{16b^2}, \frac{(4a^2 + 1)(4a^2 - 4a - 1)(4a^2 + 4a - 1)}{32b^3}\right).
\]

Since the points of order two lie on \(y = 0 \), we have \((0,0), (\pm \frac{i}{2}, 0)\). The point \((0,0)\) corresponds to \(1 + \frac{i}{2}c\). Moreover the coordinates of the points of order four are \((-\frac{i}{2}, \pm \frac{1+i}{\sqrt{2}}), (\frac{i}{2}, \pm \frac{1-i}{\sqrt{2}})\). These points are corresponded to \(\frac{3+i}{4}c, \frac{1+3i}{4}c, \frac{1+i}{4}c, \frac{3+3i}{4}c\).

We decompose \(\sigma_4(z) = iz + \frac{3+i}{4}c\) into a rotation \(z \rightarrow iz\) and a translation \(z \rightarrow z + \frac{3+i}{4}c\).

The rotation on \(E\) : \(z \rightarrow iz\) is corresponded to \((x, y) \rightarrow (-x, iy)\) on \(C\). Translations are more complicated. We show the method of computation by taking the example of \(\sigma_4^*\).

First we assume that the addition of \(\frac{3+i}{4}c\) on \(E\) corresponds to the addition of the point \((\frac{i}{2}, \frac{1-i}{\sqrt{2}})\) on \(C\). Using the addition formula, we have the representation of translation \(\tau\).

\[
\tau(x, y) = (x, y) + \left(\frac{i}{2}, \frac{1-i}{\sqrt{2}}\right)
= \left(\frac{i(2x + i)^2 - 2\sqrt{2}(1-i)y}{2(2x - i)^2}, -\sqrt{2}(1 + i) \cdot \frac{2x + i}{2x - i} \cdot \frac{i(2x + i)^2 - 2\sqrt{2}(1-i)y}{2(2x - i)^2}\right),
\]

\[
\sigma_4(x, y) = \tau(-x, iy).
\]

Then we have

\[
\sigma_4^*(x) = \frac{i(2x - i)^2 - 2\sqrt{2}(1 + i)y}{2(2x + i)^2},
\]
\[
\sigma_4^*(y) = -\sqrt{2}(1 + i) \cdot \frac{2x - i}{2x + i} \cdot \frac{i(2x - i)^2 - 2\sqrt{2}(1 + i)y}{2(2x + i)^2}.
\]

Moreover we have

\[
\sigma_4^*(x^2) = \frac{(i(2x - i)^2 - 2\sqrt{2}(1 + i)y)^2}{4(2x + i)^4}.
\]

Put

\[
f(x, y) = -2\sqrt{2}(1 + i)y + i(2x - i)^2,
\]
\[
g(x, y) = -2\sqrt{2}(1 + i)y - i(2x - i)^2.
\]
Since
\[(2x + i)^4 = f(x, y) \cdot g(x, y),\]
we have
\[
\sigma_4^*(1 : x^2 : x : y) = \left(1 : \frac{f(x, y)^2}{4(2x + i)^4} : \frac{f(x, y)}{2(2x + i)^2} : -\sqrt{2}(1 + i) \cdot \frac{2x - i}{2x + i} \cdot \frac{f(x, y)}{2} \right)
\]
\[
= \left(g(x, y) : \frac{f(x, y)}{4} : \frac{(2x + i)^2}{2} : -\sqrt{2}(1 + i) \cdot \frac{(2x - i)(2x + i)}{2} \right),
\]
\[
\sigma_4^*(1) = -2\sqrt{2}(1 + i)y - 4ix^2 - 4x + i,
\]
\[
\sigma_4^*(x^2) = -\frac{1 + i}{\sqrt{2}}y + ix^2 + x - \frac{i}{4},
\]
\[
\sigma_4^*(x) = 2x^2 + 2ix - \frac{1}{2},
\]
\[
\sigma_4^*(y) = -2\sqrt{2}(1 + i)x^2 - \frac{1 + i}{\sqrt{2}}.
\]
Therefore we obtain
\[
M(\sigma_4) = \begin{pmatrix}
i & -4i & -4 & -2\sqrt{2}(1 + i) \\
-\frac{i}{4} & i & 1 & -\frac{1+i}{\sqrt{2}} \\
-\frac{1}{2} & 2 & 2i & 0 \\
-\frac{1+i}{\sqrt{2}} & -2\sqrt{2}(1 + i) & 0 & 0
\end{pmatrix}.
\]

5.1 About maxima
In the computations we have used maxima 5.37.3 latest version, and front end wnMaxima 15.08.1+git.
Choose output form “none” otherwise do not display parenthesis ().

5.2 Computation of τ by maxima
Define
\[
f(a,b,c,d):=((4ac-1)(a+c)-2bd)/(4(a-c)^2).
g(a,b,c,d):=((4a^3+12a^2c-3a-c)d-(4c^3+12ac^2-3c-a)b)/(4(a-c)^3).
ft(x,y):=f(x,y,%i/2,(1-%i)/sqrt(2)).
gt(x,y):=g(x,y,%i/2,(1-%i)/sqrt(2)).
We get
ft(x,y)=((x+%i/2)*(2*%i*x-1)-sqrt(2)*(1-%i)*y)/(4*(x-%i/2)^2).

 Springer
We have studied the group generated by the Galois group belonging to Galois points (Kanazawa et al. 2001; Miura and Ohbuchi 2015). In the case of Galois embedding of elliptic curves, we have the following.

Remark 7 For each Galois embedding let G be the group generated by the Galois groups belonging to the Galois subspaces. Then G can be realized as the Galois group for some Galois embedding of the elliptic curve.

Proof We infer readily the theorem from Theorems 7.4 and 7.7 in Kanazawa and Yoshihara (2011).

References

Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions (2017)
Duyaguit, C., Yoshihara, H.: Galois lines for normal elliptic space curves. Algebra Colloq. 12, 205–212 (2005)
Kanazawa, M., Takahashi, T., Yoshihara, H.: The group generated by automorphism belonging to Galois points of the quartic surface. Nihonkai Math. J. 12, 89–99 (2001)
Kanazawa, M., Yoshihara, H.: Galois group at Galois point for genus-one curve. Int. J. Algebra 5, 1161–1174 (2011)
Miura, K., Ohbuchi, A.: Automorphism group of plane curve computed by Galois points. Beiträge zur Algebra und Geometrie 56, 695–702 (2015)
Yoshihara, H.: Galois embedding of algebraic variety and its application to abelian surface. Rend. Sem. Mat. Univ. Padova 117, 69–86 (2007)
Yoshihara, H.: Galois lines for normal elliptic space curves, II. Algebra Colloq. 19, no.spec 01, 867–876 (2012)