Diabetic nephropathy (DN) is the major reason for end-stage renal disease in the Western world. Patients with DN developed more severe cardiovascular complications with worse prognosis. In spite of tight blood pressure and glucose control through applying angiotensin II receptor antagonism, angiotensin receptor inhibitors, and even direct renin inhibitors, the progression and development of DN has continued to accelerate. Nuclear receptors are, with few exceptions, ligand-dependent transcription factors, some of which modulate genes involved in the transport and metabolism of carbohydrates or lipids, and in the modulation of inflammation. Considering the diverse biological functions of nuclear receptors, efforts have been made to explore their contributions to the pathogenesis of DN and their potential in therapeutic strategies. This review is mainly focused on the association between various nuclear receptors and the pathogenesis of DN, the potential beneficial effects of targeting these receptors for treating and preventing the progress of DN, and the important role that nuclear receptors may play in future therapeutic strategies for DN.

Kidney Int Rep (2016) 1, 177–188; http://dx.doi.org/10.1016/j.ekir.2016.07.007
KEYWORDS: diabetic nephropathy; ESRD
Published by Elsevier Inc. on behalf of International Society of Nephrology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Nuclear receptors are transcription factors that play various roles in embryo development, maintenance of the differentiated cellular phenotype, and manipulation of cell metabolism and death. This review mainly discusses the association between the pathogenesis of DN and nuclear receptors, including peroxisome proliferator–activated receptors (PPARs) α (NR1C1), β/δ (NR1C2), and γ (NR1C3); farnesoid X receptor (FXR, NR1H4); liver X receptors (LXRs, NR1H2, NR1H3); vitamin D receptor (VDR, NR1I1); hepatocyte nuclear factor 4α (HNF4α, NR2A1); retinoid X receptors (RXR, NR1F1, NR1F2, NR1F3); retinoid acid receptors (NR1B1, NR1B2, NR1B3); estrogen receptor (ER, NR3A1); and mineralocorticoid receptor (MR, NR3C2). Several studies have suggested that activation or inhibition of specific receptors could prevent the progression of DN, which implies that targeting nuclear receptors may be a potential therapeutic strategy for DN.

Nuclear Receptors
PPAR

PPARs are ligand-activated transcriptional factors and include 3 related forms PPARα, PPARβ/δ, and PPARγ. Although they all have different tissue distributions, ligand selectivities, and biological effects, they play an important role in modulating lipid metabolism, adipogenesis, insulin sensitivity, inflammation, and blood pressure. Renal PPARα and PPARγ modulate energy utilization in the kidney by regulating fatty acid oxidation.14 Activated PPARγ can stimulate fatty acid β-oxidation that can reduce the lipid content of tissues and blood, prevent the accumulation of lipid, and ameliorate lipotoxicity.15 Several kinases, including protein kinase A, protein kinase C, mitogen-activated protein kinases, and adenosine monophosphate kinase, were shown to phosphorylate PPARs resulting in changes in DNA-binding activity, ligand affinity, recruitment of transcriptional cofactors, and proteasome degradation in both a ligand-dependent or -independent manner.16 Phosphorylation by adenosine monophosphate kinase leads to increased PPARα and PPARγ signaling and enhances renal function in a type 2 diabetes mouse model by removing lipid accumulation in the kidney.15 Furthermore, the activation of PPARγ suppresses the renal expression of an α(1D)-adrenergic receptor that is overexpressed in the diabetic kidney.17

Chronic inflammation and oxidative stress play a pivotal role in the pathogenesis of chronic kidney disease. Activated PPARα can prevent overexpression of proinflammatory molecules.18 It was shown that the ligand activation of PPARα will increase the expression of fibroblast growth factor-21 (FGF-21), enhance the phosphatidylinositol-3 kinase/protein kinase B (AKT)/glycogen synthase kinase 3β (GSK-3β)/Fyn-mediated nuclear factor (erythroid-derived 2)-like 2 signal, and prevent the development of DN.19 PPARα activation improves lipotoxicity by activating adenosine monophosphate kinase-peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-estrogen-related receptor-1α (ERR-1α)–forkhead box O3a (Foxo3a) signaling and ameliorating glucose-induced matrix production and mesangial cell proliferation by inhibiting extracellular signal–regulated kinase 1/2 and phosphatidylinositol-3′-kinase/AKT activation, suggesting its potential for the treatment of DN.20,21 In the absence of PPARγ, the glomerular lesions displayed enhanced type IV collagen and TGFβ levels in DN, indicating that PPARγ agonists can prevent glomerular matrix expansion together with apoptosis and the infiltration of inflammatory cells within the glomerulus.22 A recent study found that Huangkui capsule, an extract from Abelmoschus manihot (L.) medic, can ameliorate DN by increasing PPARγ/PPARα signaling leading to lowered endoplasmic reticulum (ER) stress in rats.23 It was reported that fenofibrate, a PPARα agonist, can dramatically decrease the excretion of urinary albumin and reduce mesangial matrix expansion and glomerular hypertrophy in the db/db diabetic mice model.24 Fenofibrate also improved insulin resistance and glomerular lesions in db/db mice,24 thus suggesting a renal protective role for fenofibrate in DN via the activation of PPARα in mesangial cells. A Fenofibrate Intervention and Event Lowering in Diabetes study further suggested that the early use of fenofibrate may prevent or postpone the development of DN.25

The protection provided by activated PPARγ is partially mediated by downregulating the level of renal disintegrin and metalloprotease-17 (ADAM17) and angiotensin-converting enzyme-2 (ACE2) shedding.26 Increased fibrosis in glomerular microenvironment is a remarkable characteristic of DN. Strong evidence suggests that PPARγ plays an important role during the pathogenesis of glomerulosclerosis. Treatment with PPARγ agonist ameliorated the hyperglycemia-mediated cannabinoid receptor type 1 (CB1R) signaling, inflammation, and glomerular fibrosis in diabetic animals.27,28 PPARγ could prevent protein kinase A signaling, the activation of rat intraglomerular mesangial cells, TGFβ-induced accumulation of p-cyclic-AMP-responsive element binding protein and collagen-IV.29 PPARγ also negatively regulates inflammation through binding to the MIP3A promoter and downregulating the expression of macrophage inflammatory protein-3α (MIP-3α), a pathogenic mediator playing a crucial role in inflammation of DN.30 Other studies showed that PPARγ provides renoprotective
action by negatively regulating the microsomal prostaglandin E synthase-1 (mPGES-1)/prostaglandin E2/prostaglandin E2 receptor 4 (EP4) pathway and restoring the expression of the klotho axis in a PPARγ-dependent manner.31,32 PPARγ may enhance the function of the angiotensin II receptor blocker by downregulating thioredoxin-interacting protein.33 PPARγ activated by pigment epithelium-derived factor could suppress the expression of the receptor for advanced glycation end products and decrease the reactive oxygen species (ROS), which subsequently prevents advanced glycation end product-induced apoptotic cell death in podocytes.34 Many studies were performed to separate the insulin sensitizing effects of PPARγ agonists from the transcriptional activation of genes that result in untoward side effects. This was achieved to some degree by using partial agonists that, compared with a full agonist, only partially activated the transcription of select genes.35

Among patients with type 2 diabetes, the polymorphism within PPARγ2 (Pro12Ala) provides protection against nephropathy progression and deterioration of renal function, independent of major confounders.36 However, the PPARγ2 (Pro12Ala) polymorphism may not be associated with the progression of DN in patients with type 1 diabetes.37 A meta-analysis showed that the PPARγ (Pro/Pro) genotype presented close association with DN risk in Caucasians, but the Ala/Ala genotype and Ala allele did not.38 Conversely, another meta-analysis indicated that the polymorphism in PPARγ (Pro12Ala) gene has no relationship with DN risk in Asians.39 The rs1801282 C>G variant in PPARγ was closely associated with decreased DN risk.40 However, further studies revealed that the PPARγ2 Ala12 variant provided renal protection by reducing the occurrence of albuminuria among patients with type 2 diabetes.41,42 PPARβ/δ agonist treatment inhibited glomerular mesangial expansion, albuminuria, and the accumulation of type IV collagen with no effect on blood glucose levels in streptozotocin-treated diabetic mice.43 The activation of PPARβ/δ is necessary for treating DN by preventing inflammation and activating of its downstream receptor for advanced glycation end product or nuclear factor kappa B signals.44,45 PPARβ/δ agonist could postpone diabetes-induced nephrin loss, enhance podocyte integrity, and prevent albuminuria subsequently.45

LXR

LXRs were first identified as orphan receptors when discovered, and then subsequently found to be targets of oxysterol metabolites of cholesterol.46 LXRs include LXRα and LXRβ that have different tissue distribution patterns, but have been most extensively studied in the liver. LXRs might have a role in regulating lipid metabolism and maintaining the function of proximal tubule as well as podocytes by downregulating the expression of nephrin.47 The administration of the LXR agonist T0901317 could increase cholesterol efflux via activating the ATP-binding cassette transporter A1 (ABCA1) in cultured glomerular mesangial cells, and enhance the expression of steroyl-Coa desaturation-1 through increasing the level of sterol regulatory element-binding protein 1c (SREBP-1c) within proximal tubules.48,49 LXRα/SREBP-1c signaling also has the capability of regulating the expression of many genes involved in fatty acid and triglyceride synthesis.50 Ne-(carboxymethyl) lysine, a member of the advanced glycation end product family, modulates cholesterol metabolism through stimulating LXR and SREBP-2, which resulted in a reduction in ABCA1-mediated cholesterol efflux and the accumulation of lipid in human kidney-2 (HK-2) cells.51 Bilirubin improved dyslipidemia and renal function via suppressing the expression of LXRα and SREBP-1 and decreasing ROS.52 Furthermore, the activation of LXR may prevent inflammation and the development of DN.46,51 T0901317 could prevent the development of albuminuria, glomerular mesangial expansion, and interstitial fibrosis by decreasing osteopontin level, macrophage infiltration, and expression of inflammatory genes, such as monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor α (TNFα), and TGFβ, in the diabetic kidney.53 Knockdown of LXRα expression resulted in loss of the anti-inflammatory effect of anthocyanins, and further studies demonstrated that LXRα might participate in the anthocyanin-induced action of decreasing intercellular adhesion molecule 1, MCP1, and TGFβ1 via inhibiting the nuclear translocation of nuclear factor kappa B protein.54 Expression of LXRα in macrophage of transgenic mice markedly ameliorated hyperlipidemic-hyperglycemic nephropathy by suppressing glycated or acetylated low-density lipoprotein-induced cytokines and ROS in macrophages.55 Recently, accelerated mesangial matrix expansion and glomerular lipid accumulation were observed in Lxra/Lxrb-null diabetic mice, in coupling with the enrichment of oxidative stress and inflammatory markers. Moreover, treatment with a synthetic oxysterol, N,N-dimethyl-3beta-hydroxycholenamide, an LXR agonist, dramatically ameliorated the excretion of albumin and nephrin, the levels of glomerular lipids and plasma triacylglycerol and cholesterol. In addition, the decreased level of kidney inflammatory and oxidative stress markers was observed upon N,N-dimethyl-3beta-hydroxycholenamide treatment.46 Together, these results indicate that the activity of LXR is necessary for both normal and diabetic kidney.

FXR

FXR was first thought to be an orphan receptor when discovered. However, further studies revealed that
bile acid-induced activation of FXR is important for bile-acid synthesis and transport in the liver and intestine. Endogenous ligands for FXR include the primary bile acids, taurocholic acid, Chenodeoxycholic acid, and cholic acid. FXR is expressed at highest levels in the liver and intestine, and at lower levels in adrenal gland and other tissues; it is also highly expressed in the kidney. It also plays a pivotal role in lipid, glucose, and bile acid homeostasis in the enterohepatic system. Furthermore, FXR agonists may provide protection against liver fibrosis. FXR agonists downregulate renal overexpression of SREBP-1 that could lead to lipid accumulation during the development of nephropathy and regulating renal lipid metabolism. The activation of FXR could prevent the induction of profibrotic growth factors, proinflammatory cytokines, and oxidative stress-related enzymes in the kidney, and thus improve glomerulosclerosis and proteinuria. Furthermore, the activation of FXR could suppress the development of nephropathy in type 1 diabetes via blocking diabetes-induced dysregulation of lipid metabolism, fibrosis, inflammation, and oxidative stress in the kidney. Recently, the adipocytokine visfatin was found to have a crucial role in the development of DN, at least partly, through enhancing high glucose-induced human mesangial cell inflammation, fibrosis, and proliferation in the absence of FXR.

VDR

Vitamin D is necessary for the metabolism of calcium and bone. It was reported that vitamin D deficiency was closely associated with increased risk for diabetes development, diabetes complications, and cardiovascular disease. A meta-analysis including 5 observational studies suggested that children treated with vitamin D are less likely to develop type 1 diabetes mellitus. The fact that the lack of vitamin D impairs insulin synthesis and secretion suggested its close association with the pathogenesis of type 2 diabetes, although the mechanistic link has not been well established. The protective activities of VDR may result from the inhibition of the renin-angiotensin system, reduction of proteinuria, and regulation of cell proliferation and differentiation. A recent study suggested that vitamin D and its receptor might modulate the progression of DN via regulating the TGFβ levels, the expression of angiotensinogen, and apoptosis of podocytes through the nuclear factor kappa B pathway. Activated macrophages 1 (M1) and activated macrophages 2 (M2) have opposing roles in inflammation. M1 activation was inhibited by 1,25-dihydroxyvitamin D3, a VDR agonist, while M2 was activated. Another study reported that vitamin D can switch the M1 phenotype to M2 via activating the VDR-PPARY pathway. Diabetic Vdr null mice developed more severe nephropathy than wild-type mice as renin-angiotensin system activation was enhanced, suggesting that VDR protects the kidney from hyperglycemia-induced injury through inhibiting renin-angiotensin system activity. These data indicated that the combination of renin-angiotensin system inhibitors and a VDR activator might be of value to improve DN-induced albuminuria. A randomized clinical trial revealed that daily treatment of paricalcitol, a selective VDR agonist, could ameliorate residual albuminuria in ACE inhibitor (ACEI)- or angiotensin II type 1 receptor blockade (ARB)-treated DN patients, especially in those with high dietary sodium intake. These data suggested that the combination of paricalcitol and ACEI or ARBs could effectively reduce residual albuminuria, which may be applied as a new strategy in the treatment of DN. Wnt/β-catenin signal-related epithelial-mesenchymal transition was reportedly involved in the pathogenesis of DN. A recent study documented that VDR could decrease the expression of β-catenin by replacing β-catenin complexing with transcription factor 4 (TCF-4), therefore blocking Wnt/β-catenin signaling. Podocyte injury is one of the causes of DN. VDR activation in podocytes plays an important role in preventing the kidney from diabetic damage. Calcitriol or a vitamin D analog can improve podocyte damage by inhibiting the expression of transient receptor potential cation channel. subfamily C. member 6 (TRPC6) during the early stage of DN in a rat model. 1,25-D3 treatment ameliorated proteinuria in 25-hydroxy-1α-hydroxylase conventional knockout mice coupled with increasing heparanase expression, suggesting that vitamin D mediated the emergence of proteinuria by reducing heparanase levels in podocytes. Furthermore, vitamin D analogs provide protection against lesion of renal barrier by maintaining and reactivating the expression of podocalyxin, a specialized component of podocytes.

The anti-inflammatory action of vitamin D is due to its influence on the crosstalk between signal transducer and activator of transcription 5 and VDR. A functional polymorphism of the VDR gene may result in individual susceptibility to DN, and a meta-analysis suggested the correlation of a Fok1 single-nucleotide polymorphism with DN susceptibility in Caucasians. Another study showed that a BsmI single-nucleotide polymorphism polymorphism in Han Chinese people was responsible for the type 2 diabetes-related albuminuria.

MR

MR regulates the reabsorption of sodium and water and secretion of potassium via control of the epithelial ion channel. The representative agonist and antagonist of
MR are respectively aldosterone and spironolactone. However, mineralocorticoids could not only regulate the transport of epithelial salt, extracellular volume, and blood pressure, but also inflammation and fibrosis either directly or indirectly. Emerging evidence indicates that aldosterone participates in the pathogenesis of kidney disease in a non-epithelial MR-dependent manner. Some studies also reported that aldosterone impairs insulin sensitivity through MR activation in adipocytes \textit{in vitro}, which indicates that aldosterone may play an important role in the development of diabetes. \textcite{86,87} Interestingly, leptin, which is upregulated in diabetic obese models, stimulates aldosterone production \textit{in vitro} in human adrenocortical cells and \textit{in vivo} in mice. In addition, aldosterone increases fibrosis by upregulating the production of TGF\(\beta\)1, ROS, plasminogen activator inhibitor 1 (PAI-1), and the enrichment of collagen protein, which can be blocked by MR antagonist. \textcite{88} Integrin \(\beta1\) and \(\beta3\) expression in podocytes is essential to the integrity of a glomerular structure. In a high glucose environment, the expression of integrin \(\beta1\) in cultured podocytes is markedly decreased, accompanied with an increase of integrin \(\beta3\), and a recent study suggested that spironolactone inhibited cell motility and stabilized podocytes cultured in a high glucose environment, in part by normalizing the level of integrin \(\beta1\) and \(\beta3\). \textcite{89} Treatment with spironolactone provides protection for podocytes and inhibits the development of morphological changes associated with DN, probably by the inhibition of TGF\(\beta\)1 mRNA expression. \textcite{90} Spironolactone could inhibit MR-induced ROS production and hyperglycemia-mediated podocyte lesions in diabetics. \textcite{91} Recent studies revealed a crucial role for aldosterone in the pathogenesis of DN, which has no effect on angiotensin II and blood pressure levels. \textcite{92} Another study enrolling type 2 diabetic patients also demonstrated that patients who developed aldosterone escape, an increase in aldosterone levels during long-term treatment of ACEIs, suffered more severe albuminuria than did patients without aldosterone escape. However, in combination with spironolactone treatment a further decrease in albuminuria was noted in these patients. \textcite{92} Furthermore, the incidence of severe hyperkalemia, which is the major side effect of spironolactone treatment in clinical trials, is low, probably resulting from the monitoring of dietary intake of potassium and diuretics in clinical observation. However, the liberalized usage of spironolactone is strictly forbidden for patients whose kidney function was reduced. \textcite{92} It was suggested that alterations of Na/K ATPase levels might be a new pathophysiological feature for DN. The ability of aldosterone antagonists to decrease Na/K ATPase protein levels and enzyme mislocation that are increased in diabetes may suggest a new pharmaceutical use in the treatment of DN. \textcite{93}

Other Nuclear Receptors

The sex hormone estrogen has several functions including control of bone growth, modulation of differentiation and function of the reproductive tract, and memory storage. \textcite{94,95} Estrogen exerts its biological activity through the interaction with classic estrogen receptors, ER\(\alpha\) and ER\(\beta\). \textcite{96} It is generally known that females have a lower chance of suffering from nondiabetic chronic kidney disease than males. \textcite{97–100} Although the contribution of gender to the progression of type 1 or type 2 diabetic renal disease is still uncertain, \textcite{100,101} some studies suggested that DN even progresses faster in males than females. \textcite{102–108} However, other results indicated an acceleration of disease progression in females. \textcite{109–112} whereas some studies reported no difference between men and women. \textcite{113–115} Because ER\(\beta\) can regulate cell apoptosis and cycle in tumor cells, \textcite{116} and ER\(\beta\) protein expression is increased in podocytes treated with estrogen, \textcite{117} estrogens could protect against podocytes apoptosis. \textcite{117} The fact that podocytes isolated from estrogen-treated diabetic mice showed an increase in the level of AKT phosphorylation indicates that estrogen may achieve such an effect by activating the phosphatidylinositol-3'-kinase-AKT axis. \textcite{117} The increased ER\(\beta\) protein level in podocytes could manipulate the cell cycle and increase cell survival rates, suggesting that estrogen has the capability of preventing podocyte loss during diabetes-mediated kidney disease. \textcite{117} Several lines of evidence revealed that TGF\(\beta\) promotes diabetic kidney disease, at least partly through inducing cell apoptosis and podocyte clearance. \textcite{118–121} Relevant data showed that E2 treatment provides protection for podocytes against TGF\(\beta\) or (TNF\(\alpha\))-induced apoptosis \textit{in vitro}. Other studies suggested that treatment with E\(_2\) could be helpful to prevent albuminuria, glomerulosclerosis, and tubulointerstitial fibrosis in the initial stages of diabetes. \textcite{122–124} However, some studies did not support the protective effects of estrogens for the patients with diabetic kidney. A recent study found that elevated serum concentrations of phytoestrogens are positively correlated with the severity of diabetic renal disease, suggesting the potential harmful effect of phytoestrogens. \textcite{125}

Retinoic acid is the active metabolite of vitamin A, which plays a pivotal role in many physiological processes including but not limited to energy metabolism. Retinoic acid can facilitate the formation of retinoic acid receptor/RXR heterodimers or RXR/RXR homodimers, which could bind to the retinoic acid response element upstream of retinoic acid target gene promoters and modulate their transcription in the presence of specific
ligands.126,127 PPARs or other nuclear receptors can also form heterodimers with RXR, and modulate the biological function of several hormones and drugs.128,129 For example, the RXR:RXR homodimer and RXR:PPARγ are needed to recruit their coactivators to initiate the transcription of target genes through binding to their response elements.130 Considering that PPARγ is a key target in the treatment of DN, RXR targeting may become a new treatment strategy. Furthermore, RXRs can be used as permissive heterodimers with LXR, FXR, PXR, and constitutive androstane receptor (CAR), or as nonpermissive heterodimer interacting with VDR, and as conditional heterodimers together with retinoid acid receptor or thyroid receptor (TR).132 On the other hand, because of the nature of its partners, the activation state of RXR changes in different heterodimers.133 Three RXR subtypes were identified as RXRα, RXRβ, and RXRγ.134,135 As compared with the universal distribution of RXRα and RXRβ, RXRγ is only detected in some specific tissues.136 RXRγ also showed antioxidant properties and played an important role in the pathogenesis of diabetic retinopathy.137 RXRγ encoded by RXRG gene was also involved in the pathogenesis of DN.138

Table 1. Systematic and renal effects of nuclear hormone receptor activation in the context of diabetic nephropathy

Nuclear hormone receptor	Affected genes, proteins, and processes	Agonists	Outcomes of receptor activation	Mechanism of action	
PPARγ1,2,3,13,15,16-21	(highly expressed in proximal tubule epithelium and medullary thick ascending limbs, with lower levels in glomerular mesangial cells)	Fatty acid oxidation, Nrf2, GFR21, P38AK/GSK-3β/Fyn-Stat3 signaling, AMPK-PGC-1α-Erk1/2 signaling	Fibrates	↓Mesangial expansion, ↓Matrix production, ↓Proteinuria	Systemic: ↓Insulin resistance, ↓Lipid, ↓Hypertension, Renal: Anti-inflammatory, Antilipid, Antiproliferative properties
RXRα,1,2,3,16-21 (primarily expressed in the epithelium of distal medullary collecting ducts and to a lesser extent in the glomerular mesangial cells, endothelial cells and podocytes, proximal tubular cells, endothelial cells of renal microvasculature, and interstitial fibroblast cells)	Renal disintegran, metalloproteinase-17, angiostatin-converting enzyme-2, CB1R signaling, protein kinase A, pCREB, collagen-IV, MIP-3x, mPGES-1,PGF2/EP4 pathway, klotho axis, thioredoxin-interacting protein, RAGE, ROS	Glitazones	↓Proteinuria, ↓Glomerulosclerosis, ↓Tubulointerstitial fibrosis	Systemic: ↓Insulin resistance, ↓Lipid, ↓Hypertension, Renal: Anti-inflammatory, Antilipid, Antiproliferative properties	
PPARα1,2,3,13,15,16-21 (highly expressed in medullary interstitial and stromal cells)	α(1D)-adrenergic receptor, collagen-IV, RAGE, Nrf2	GW7042	↓Proteinuria, ↓Mesangial expansion, ↓Tubulointerstitial fibrosis	Renal: Anti-inflammatory, Antiprolipid properties	
LXRα,β,2,36-48,60,53,56 (expressed in all major renal cells including mesangial cells, endothelial cells, and podocytes)	ABCA1, SREBP-1c, OPN, MCP-1, TNFα, TGFβ, ROS	T0901317	↓Proteinuria, ↓Mesangial expansion, ↓Tubulointerstitial fibrosis, ↓Macrophage infiltration in kidney	Systemic: ↓Lipid, Renal: Anti-inflammatory, Antilipid, Antiprolipid properties	
FGF21,56-58,64-66 (expressed in isolated glomeruli and proximal tubules, cultured mesangial cells, and podocytes)	SREBP-1, visfatin	Cholesterol, acyl-coA, cholic acid	↓Proteinuria, ↓Glomerulosclerosis, ↓Mesangial cell inflammation, ↓Mesangial expansion, ↓Tubulointerstitial fibrosis	Systemic: ↓Lipid, Renal: Anti-inflammatory, Antilipid, Antiprolipid properties	
VDR1,2,3,17,70,72,78,80,72-154-156 (expressed in the proximal and distal tubular epithelial cells, glomerular parietal epithelial cells, collecting duct cells and cultured podocytes, and mesangial cells)	VDR-PPARγ pathway, TIPROS, heparanase, podocalyxin, STAT5, TGFβ, angiotensinogen, NF-κB	1,25-Dihydroxyvitamin D3, calcitrol	↓Proteinuria, ↓Glomerulosclerosis, ↓Macrophage infiltration in kidney	Systemic: ↓Insulin resistance, ↓RAS, Renal: Anti-inflammatory, Antilipid, Antiprolipid properties	
MR1,2,3,5 (expressed in the cortical collecting duct cells of distal nephron)	TGFβ1, ROS, PAI-1, collagen, integrin β1, integrin β3, NKA, ROS	Aldosterone	↑Proteinuria, ↓Glomerular structural integrity	Systemic: ↑Hypertension, ↑Insulin resistance, Renal: Inflammation, ↑Fibrosis, ↑Oxidation	
Estrogen receptors α and β1,2,12-14,157-159 (expressed in glomeruli, isolated mesangial cells and podocytes)	P38AKT signaling, TGFβ, TNFα	Estrogen	↑Glomerular structural integrity, ↑Proteinuria, ↓Glomerulosclerosis, ↓Tubulointerstitial fibrosis	Renal: Anti-inflammatory, Antilipid, Antiprolipid properties	
RNRα,γ,3 (distribution unknown in kidney)	PPAR, LXR, FXR, VDR	Magnolol	NA	Renal: Antioxidative	
HNF-4α,1-144 (distribution unknown in kidney)	STIM1	NA	↓Glomerulosclerosis	Renal: Antifibrotic	

ABC1A1, ATP-binding cassette transporter A1; AKT, protein kinase B; AMPK, adenosine monophosphate kinase; CB1R, cannabinoid receptor type 1; ERK, extracellular signal–regulated kinase; ERR, estrogen-related receptor; FGF, fibroblast growth factor; Fox03, forkhead box 03; FXR, farnesoid X receptor; GSK, glycogen synthase kinase 3β; LXR, liver X receptor; MIP, macrophage inflammatory protein; NA, not available; Nrf2, nuclear factor erythroid-derived 2-like 2; NKA, Na/K ATPase; NF-κB, nuclear factor κB; OPN, osteopontin; pCREB, p-cyclic-AMP-responsive element binding protein; P38AKT, P38 mitogen-activated protein kinase; P65, NF-κB; PPAR, peroxisome proliferator-activated receptor; RAGE, receptor for advanced glycation end products; RAS, renin-angiotensin system; ROS, reactive oxygen species; SREBP-1c, sterol regulatory element-binding protein 1c; STAT5, signal transducer and activator of transcription 5; STIM1, stromal interacting molecule-1; TGFβ, transforming growth factor β; TNFα, tumor necrosis factor-α; TRPC6, transient receptor potential cation channel, subfamily C, member 6; VDR, vitamin D receptor.
Orphan Receptors
HNF4α is expressed at high levels in the liver, kidney, and intestine, and controls the expression of a large gene set including those involved in glucose and fatty acid metabolism, urea biosynthesis, cholesterol metabolism, blood coagulation, hepatitis B virus infection, and hepatocyte differentiation. Dysfunction of HNF4α can lead to metabolic disease. Notably, genetic mutations in HNF4α result in maturity-onset diabetes of the young-1. The expression of the HNF4α gene is significantly decreased in the kidney and liver in 2 diabetic rodent models. Additionally, HNF4α is decreased in kidneys of patients with DN. HNF4α negatively regulates the transcription of stromal interacting molecule-1, which is increased in a high glucose environment in mesangial cells. Blockage of HNF4α in mesangial cells might be a candidate therapeutic strategy for DN, as the stromal interacting molecule-1–gated store-operated Ca(2+) entry pathway in mesangial cells was recently found to be antifibrotic.

HNF1α is a homeodomain-containing transcription factor that plays an important role for modulating different metabolic functions in the liver, pancreatic islet, kidney, and intestine. Maturity-onset diabetes of the young-3 result from rare mutations in HNF1A. Although genetic variants in HNF1β are not a major cause of maturity-onset diabetes of the young or DN, they might lead to the manifestation of disease in Chinese.

Conclusion
The systematic and renal effects of nuclear hormone receptor activation in the context of diabetic nephropathy are shown in Table 1. Among the highlights, the fibrate class of PPARα agonists have long been prescribed to reduce triglyceride (TG), increase high-density lipoprotein–C (HDL–C), and improve cardiovascular outcomes in diabetic patients, mainly by activating the expression of genes involved in lipid homeostasis. PPARα agonists also have the ability to improve renal lesion in DN animal models; however, whether a similar efficacy is also observed in diabetic patients remains to be determined. The VDR agonist calcitriol might ameliorate albuminuria by reducing urinary angiotensinogen levels. Furthermore, a combination treatment of mineralocorticoid receptor blockers with ACEI or ARB therapy has recently emerged, but the long-term efficacy and safety of such treatment has not been established. Although only a few nuclear receptors were evaluated as potential targets for the treatment of DN, clinical trials and animal studies have put more focus into the function of nuclear hormone receptors for protection against kidney disease. Identifying the mechanism by which activation of nuclear hormone receptors modulate kidney disease and determining their roles in the pathogenesis of DN, and the ultimate application of nuclear receptor targeting as a therapeutic strategy require considerably more experimentation.

DISCLOSURE
All the authors declared no competing interests.

REFERENCES
1. van Dieren S, Beulens JW, van der Schouw YT, et al. The global burden of diabetes and its complications: an emerging pandemic. Eur J Cardiovasc Prev Rehabil. 2010;17(suppl 1):S3–S8.
2. Parving H-H, Mauer M, Ritz E. Diabetic Nephropathy. 8th ed. Philadelphia: Saunders; 2008.
3. Nephrology TDSo. Danish National Registry Annual Report 2007; 2008.
4. U.S. Renal Data System ADR. Atlas of End-Stage Renal Disease in the United States; 2008.
5. Jensen T, Borch-Johnsen K, Kofoed-Enevoldsen A, Deckert T. Coronary heart disease in young type 1 (insulin-dependent) diabetic patients with and without diabetic nephropathy: incidence and risk factors. Diabetologia. 1987;30:144–148.
6. Borch-Johnsen K, Kreiner S. Proteinuria: value as predictor of cardiovascular mortality in insulin dependent diabetes mellitus. Brit Med J. 1987;294:1651–1654.
7. Reidy K, Kang HM, Hostetter T, Susztak K. Molecular mechanisms of diabetic kidney disease. J Clin Invest. 2014;124:2333–2340.
8. National Institutes of Health NioDaDaKD. Epidemiology of Kidney Disease in the United States. United States Renal Data System, 2014 Annual Data Report 2014.
9. Sharma K, Karl B, Mathew AV, et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol. 2013;24:1901–1912.
10. Griffin TP, Martin WP, Islam N, et al. The promise of mesenchymal stem cell therapy for diabetic kidney disease. Curr Diab Rep. 2016;16:42.
11. Noh H, King GL. The role of protein kinase C activation in diabetic nephropathy. Kidney Int Suppl. 2007;206:S49–S53.
12. Dorubertis FR, Craven PA. Activation of protein kinase C in glomerular cells in diabetes. Mechanisms and potential links to the pathogenesis of diabetic glomerulopathy. Diabetes. 1994;43:1–8.
13. Yang J, Zhu T, Liu X, et al. Heat shock protein 70 protects rat peritoneal mesothelial cells from advanced glycation end-products-induced epithelial-to-mesenchymal transition through mitogen-activated protein kinases/extracellular signal-regulated kinases and transforming growth factor-beta/Smad pathways. Mol Med Rep. 2015;11:4473–4481.
14. Wu J, Chen L, Zhang D, et al. Peroxisome proliferator-activated receptors and renal diseases. Front Biosci. 2009;14:995–1009.
15. Koh ES, Lim JH, Kim MY, et al. Anthocyanin-rich Seoritate extract ameliorates renal lipotoxicity via activation of AMP-activated protein kinase in diabetic mice. J Transl Med. 2015;13:203.
16. Diradourian C, Girard J, Pegorier JP. Phosphorylation of PPARs: from molecular characterization to physiological relevance. Biochimie. 2005;87:33–38.

17. Zhao X, Zhang Y, Leander M, et al. Altered expression profile of renal alpha(1D)-adrenergic receptor in diabetes and its modulation by PPAR agonists. J Diab Res. 2014;2014:725634.

18. Ibarra-Lara ML, Sanchez-Aguilar M, Soria E, et al. Peroxisome proliferator-activated receptors (PPAR) downregulate the expression of pro-inflammatory molecules in an experimental model of myocardial infarction. Can J Physiol Pharmacol. 2016;94:634–642.

19. Cheng Y, Zhang J, Guo W, et al. Up-regulation of Nrf2 is involved in FGF21-mediated fenofibrate protection against type 1 diabetic nephropathy. Free Radiac Biol Med. 2016;93:94–109.

20. Hong YA, Lim JM, Kim MY, et al. Fenofibrate improves renal lipotoxicity through activation of AMPK-PGC-1alpha in db/db mice. PLoS One. 2014;9:e96147.

21. Zeng R, Xiong Y, Zhu F, et al. Fenofibrate attenuated glucose-induced mesangial cells proliferation and extracellular matrix synthesis via PI3K/AKT and ERK1/2. PLoS One. 2014;9:e96147.

22. Park CW, Kim HW, Ko SH, et al. Accelerated diabetic nephropathy in mice lacking the peroxisome proliferator-activated receptor alpha. Diabetes. 2006;55:885–893.

23. Ge J, Miao JJ, Sun XY, Yu JY. Huangkui capsule, an extract from Abelmoschus manihot (L.) medic, improves diabetic nephropathy via activating peroxisome proliferator-activated receptor (PPAR)-alpha/gamma and attenuating endoplasmic reticulum stress in rats. J Ethnopharmacol. 2016;189:238–249.

24. Park CW, Zhang Y, Zhang X, et al. PPARalpha agonist fenofibrate improves diabetic nephropathy in db/db mice. Kidney Int. 2006;69:1511–1517.

25. Sacks FM. After the Feno Intervention and Event Lowering in Diabetes (FIELD) study: implications for fenofibrate. Am J Cardiol. 2008;102:34L–40L.

26. Chodavarapu H, Grobe N, Somineni HK, et al. Rosiglitazone attenuated albumin and angiotensin converting enzyme 2 expression in glomerular filtration rate may not be associated with polymorphism of PPARgamma2 gene in patients with type 1 diabetes and nephropathy. PPAR Res. 2014;2014:523584.

27. Lin CL, Hsu YC, Lee PH, et al. Cannabinoid receptor 1 deletion of mesangial in type 2 diabetic nephropathy via activating peroxisome proliferator-activated receptor (PPAR)-alpha/gamma. Microvascular Res. 2016;93:1517.

28. Bottinger EP, Bitzer M. TGF-beta signaling in renal disease. Dial Transplant. 2009;40:4016–4019.

29. Zou R, Xu G, Liu XC, et al. PPARgamma agonists inhibit TNF-beta-PKA signaling in glomerulosclerosis. Acta Pharmacol Sin. 2010;31:43–50.

30. Qi W, Holian J, Tan CY, et al. The roles of Kruppel-like factor 6 and peroxisome proliferator-activated receptor-gamma in the regulation of macrophage inflammatory protein-3alpha at early onset of diabetes. Int J Biochem Cell Biol. 2011;43:383–392.

31. Sun Y, Jia Z, Liu G, et al. PPARgamma agonist rosiglitazone suppresses renal mPGE2 pathway in db/db mice. PPAR Res. 2013;2013:612971.
46. Tachibana H, Ogawa D, Matsushita Y, et al. Activation of liver X receptor inhibits osteopontin and ameliorates diabetic nephropathy. J Am Soc Nephrol. 2012;23:1835–1846.

47. Patel M, Wang XX, Magomedova L, et al. Liver X receptors preserve renal glomerular integrity under normoglycaemia and in diabetes in mice. Diabetologia. 2014;57:435–446.

48. Wu J, Zhang Y, Wang N, et al. Liver X receptor-alpha mediates cholesterol efflux in glomerular mesangial cells. Am J Physiol Renal Physiol. 2004;287:F886–F895.

49. Zhang Y, Zhang X, Chen L, et al. Liver X receptor agonist TO-901317 upregulates SCD1 expression in renal proximal straight tubule. Am J Physiol Renal Physiol. 2006;290: F1065–F1073.

50. Lee JH, Jung JY, Jang EJ, et al. Combination of honokiol and magnolol inhibits hepatic steatosis through AMPK–SREBP-1 c pathway. Exp Biol Med (Maywood). 2015;240: 508–518.

51. Sun H, Yuan Y, Sun Z. Update on mechanisms of renal tubule injury caused by advanced glycation end products. Biomed Res Int. 2016;2016:5475120.

52. Xu J, Lee ES, Baek SH, et al. Effect of bilirubin on triglyceride synthesis in streptozotocin-induced diabetic nephropathy. J Korean Med Sci. 2014;29(suppl 2):S515–S516.

53. Saraheimo M, Teppo AM, Forsblom C, et al. Diabetic nephropathy. Mol Cell Endocrinol. 2006;290: 901317 upregulates SCD1 expression in renal proximal straight tubule.

54. Tachibana H, Ogawa D, Matsushita Y, et al. Activation of liver X receptor inhibits osteopontin and ameliorates diabetic nephropathy. J Am Soc Nephrol. 2012;23:1835–1846.

55. Kiss E, Kranzlin B, Wagenblabeta K, et al. Lipid droplet accumulation is associated with low-grade inflammation in type 1 diabetic patients. Diabetologia. 2003;46:1402–1407.

56. Du C, Shi Y, Ren Y, et al. Anthocyanins inhibit high-glucose-induced cholesterol accumulation and inflammation by activating LXrAlpha pathway in HK-2 cells. Drug Des Devel Ther. 2015;9:S509–S511.

57. Wang H, Chen J, Hollister K, et al. Endogenous bile acids are ligands for an orphan nuclear receptor. Science. 1999;284: 1365–1368.

58. Wang H, Chen J, Hollister K, et al. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell. 1999;3: 543–553.

59. Bookout AL, Jeong Y, Downes M, et al. Anatomical pro

60. Tachibana H, Ogawa D, Matsushita Y, et al. Activation of liver X receptor inhibits osteopontin and ameliorates diabetic nephropathy. J Am Soc Nephrol. 2012;23:1835–1846.

61. Kalaany NY, Mangelsdorf DJ. LXrS and FXr: the yin and

62. Fiorucci S, Rizzo G, Antonelli E, et al. A farnesoid x receptor

63. Fiorucci S, Rizzo G, Antonelli E, et al. Cross-talk between farnesoid-X-receptor (FXR) and peroxisome proliferator-activated receptor gamma contributes to the antifibrotic activity of FXr ligands in rodent models of liver cirrhosis. J Pharmacol Exp Ther. 2005;315:58–68.

64. Jiang T, Wang XX, Scherzer P, et al. Farnesoid X receptor modulates renal lipid metabolism, fibrosis, and diabetic nephropathy. Diabetes. 2007;56:2485–2493.

65. Wang XXX, Jiang T, Shen Y, et al. Diabetic nephropathy is accelerated by farnesoid X receptor deficiency and inhibited by farnesoid X receptor activation in a type 1 diabetes model. Diabetes. 2010;59:2916–2927.

66. Zhou B, Feng B, Qin Z, et al. Activation of farnesoid X receptor downregulates visfatin and attenuates diabetic nephropathy. Mol Cell Endocrinol. 2016;419:72–82.

67. Alam U, Arul-Devah V, Javed S, Malik RA. Vitamin D and diabetic complications: true or false prophet? Diabetes Ther. 2016;7:11–26.

68. Zipitis CS, Akobeng AK. Vitamin D supplementation in early childhood and risk of type 1 diabetes: a systematic review and meta-analysis. Arch Dis Child. 2008;93:512–517.

69. Mathieu C, Gysemans C, Giulietti A, et al. Vitamin D and diabetes. Diabetesologia. 2005;48:1247–1257.

70. Xu L, Zhang P, Guan H, et al. Vitamin D and its receptor regulate lipopolysaccharide-induced transforming growth factor-beta, angiotensinogen expression and podocytes apoptosis through the nuclear factor-kappaB pathway [e-pub ahead of print]. J Diab Invest. Accessed June 1, 2016.

71. Zhang XL, Guo YF, Song ZX, Zhou M. Vitamin D prevents podocyte injury via regulation of macrophage M1/M2 phenotype in diabetic nephropathy rats. Endocrinology. 2014;155:4939–4950.

72. Zhang X, Zhou M, Guo Y, et al. 1,25-Dihydroxyvitamin D(3) promotes high glucose-induced M1 macrophage switching to M2 via the VDR-PPARgamma signaling pathway. Biomed Res Int. 2015;2015:157834.

73. Zhang Z, Sun L, Wang Y, et al. Renoprotective role of the vitamin D receptor in diabetic nephropathy. Kidney Int. 2008;73:163–171.

74. Tiryaki O, Ueal C, Ayner ZA. Vitamin D receptor activation with calciotriol for reducing urinary angiotensinogen in patients with type 2 diabetic chronic kidney disease. Ren Fail. 2016;38:222–227.

75. de Zeeuw D, Agarwal R, Amdahl M, et al. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): a randomised controlled trial. Lancet. 2010;376: 1543–1551.

76. Shapiro IM, Cheng AW, Flytzanis NC, et al. An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genet. 2011;7: e1002218.

77. Palmer HG, Gonzalez-Sancho JM, Espada J, et al. Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. J Cell Biol. 2001;154:369–387.

78. Zhang X, Song Z, Guo Y, Zhou M. The novel role of TRPC6 in vitamin D ameliorating podocyte injury in STZ-induced diabetic rats. Mol Cell Biochem. 2015;399:155–165.

79. Wang Y, Deb DK, Zhang Z, et al. Vitamin D receptor signaling in podocytes protects against diabetic nephropathy. J Am Soc Nephrol. 2012;23:1977–1986.
80. Garsen M, Sonneveld R, Rops AL, et al. Vitamin D attenuates proteinuria by inhibition of heparanase expression in the podocyte. J Pathol. 2015;237:472–481.

81. Verouti SN, Tsilibary EC, Fragopoulou E, et al. Vitamin D receptor activators upregulate and rescue podocalyxin expression in high glucose-treated human podocytes. Nephron Exp Nephrol. 2012;122:36–50.

82. Yang MX, Yang B, Gan H, et al. Anti-inflammatory effect of 1, 25-dihydroxyvitamin D-3 is associated with crosstalk between signal transducer and activator of transcription 5 and the vitamin D receptor in human monocytes. Exp Ther Med. 2015;9:1739–1744.

83. Liu Z, Liu L, Chen X, et al. Associations study of vitamin D receptor gene polymorphisms with diabetic microvascular complications: a meta-analysis. Gene. 2014;546:6–10.

84. Zhang H, Wang J, Yi B, et al. Bsm1 polymorphisms in vitamin D receptor gene are associated with diabetic nephropathy in type 2 diabetes in the Han Chinese population. Gene. 2012;495:183–188.

85. Lozano-Maneiro L, Puente-Garcia A. Renin-angiotensin-aldosterone system blockade in diabetic nephropathy. Present evidences. J Clin Med. 2015;4:1908–1937.

86. Wada T, Ohshima S, Fujisawa E, et al. Aldosterone inhibits insulin-induced glucose uptake by degradation of insulin receptor substrate (IRS) 1 and IRS2 via a reactive oxygen species-mediated pathway in 3T3-L1 adipocytes. Endocrinology. 2009;150:1662–1669.

87. Hirata A, Maeda N, Nakatsuji H, et al. Contribution of glucocorticoid-mineralocorticoid receptor pathway on the obesity-related adipocyte dysfunction. Biochem Biophys Res Commun. 2012;419:182–187.

88. Waanders F, Visser FW, Gans RO. Current concepts in the management of diabetic nephropathy. Neth J Med. 2013;71:448–458.

89. Li Z, Zhang L, Shi W, et al. Spironolactone inhibits podocyte motility via decreasing integrin beta1 and increasing integrin beta3 in podocytes under high-glucose conditions. Mol Med Rep. 2015;12:6849–6854.

90. Aguilar C, Rodriguez-Delfin L. Effects of spironolactone administration on the podocyte loss and progression of experimental diabetic nephropathy. Rev Peru Med Exp Salud Publica. 2012;29:490–497.

91. Toyonaga J, Tsuuya K, Ikeda H, et al. Spironolactone inhibits hyperglycemia-induced podocyte injury by attenuating ROS production. Nephrol Dial Transplant. 2011;26:2475–2484.

92. Schjoedt KJ. The renin-angiotensin-aldosterone system and its blockade in diabetic nephropathy: main focus on the role of aldosterone. Dan Med Bull. 2011;58:B4265.

93. Banki NF, Ver A, Wagner LJ, et al. Aldosterone antagonists in monotherapy are protective against streptozotocin-induced diabetic nephropathy in rats. PLoS One. 2012;7:e39938.

94. Kuiper GG, Shughrue PJ, Merchenthaler I, Gustafsson JA. The estrogen receptor beta subtype: a novel mediator of estrogen action in neuroendocrine systems. Front Neuroendocrinol. 1998;19:253–286.

95. Hultcrantz M, Simonoska R, Stenberg AE. Estrogen and hearing: a summary of recent investigations. Acta Otolaryngol. 2006;126:10–14.

96. Nilsson S, Makela S, Treuter E, et al. Mechanisms of estrogen action. Physiol Rev. 2001;81:1535–1565.

97. Iliescu R, Reckelhoff JF. Sex and the kidney. Hypertension. 2008;51:1000–1001.

98. Silbiger S, Neugarten J. Gender and human chronic renal disease. Gend Med. 2008;5(suppl A):S3–S10.

99. Yanes LL, Sartori-Valinotti JC, Reckelhoff JF. Sex steroids and renal disease: lessons from animal studies. Hypertension. 2008;51:976–981.

100. Maric C. Sex, diabetes and the kidney. Am J Physiol Renal Physiol. 2009;296:F680–F688.

101. Maric C, Sullivan S. Estrogens and the diabetic kidney. Gend Med. 2008;5(suppl A):S103–S113.

102. Hovind P, Tarnow L, Parving HH. Remission and regression of diabetic nephropathy. Curr Hypertens Rep. 2004;6:377–382.

103. Jacobsen P, Rossing K, Tarnow L, et al. Progression of diabetic nephropathy in normotensive type 1 diabetic patients. Kidney Int Suppl. 1999;71:S101–S105.

104. Jones CA, Krolewski AS, Rogus J, et al. Epidemic of end-stage renal disease in people with diabetes in the United States population: do we know the cause? Kidney Int. 2005;67:1684–1691.

105. Ruggenenti P, Gambara V, Perna A, et al. The nephropathy of non-insulin-dependent diabetes: predictors of outcome relative to diverse patterns of renal injury. J Am Soc Nephrol. 1998;9:2336–2343.

106. Sibley SD, Thomas W, de Boer I, et al. Gender and elevated albumin excretion in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) cohort: role of central obesity. Am J Kidney Dis. 2006;47:223–232.

107. Mangili R, Deferrari G, Di Mario U, et al. Arterial hypertension and microalbuminuria in IDDM: the Italian Microalbuminuria Study. Diabetologia. 1994;37:1015–1024.

108. Raile K, Galler A, Hofer S, et al. Diabetic nephropathy in 27, 805 children, adolescents, and adults with type 1 diabetes: effect of diabetes duration, A1C, hypertension, dyslipidemia, diabetes onset, and sex. Diabetes Care. 2007;30:2523–2528.

109. Holl RW, Grabert M, Thon A, et al. Urinary excretion of albumin in adolescents with type 1 diabetes: persistent versus intermittent microalbuminuria and relationship to duration of diabetes, sex, and metabolic control. Diabetes Care. 1999;22:1555–1560.

110. Laron-Kenet T, Shamis I, Weitzman S, et al. Mortality of patients with childhood onset (0-17 years) type I diabetes in Israel: a population-based study. Diabetologia. 2001;44(suppl 3):B81–B86.

111. Orchard TJ, Dorman JS, Maser RE, et al. Prevalence of complications in IDDM by sex and duration. Pittsburgh Epidemiology of Diabetes Complications Study II. Diabetes. 1990;39:1116–1124.

112. Schultz CJ, Konopelska-Bahu T, Dalton RN, et al. Microalbuminuria prevalence varies with age, sex, and puberty in children with type 1 diabetes followed from diagnosis in a longitudinal study. Oxford Regional Prospective Study Group. Diabetes Care. 1999;22:495–502.
113. Breyer JA, Bain RP, Evans JK, et al. Predictors of the progression of renal insufficiency in patients with insulin-dependent diabetes and overt diabetic nephropathy. The Collaborative Study Group. Kidney Int. 1996;50:1651–1658.

114. Monti MC, Lonsdale JT, Montomoli C, et al. Familial risk factors for microvascular complications and differential male-female risk in a large cohort of American families with type 1 diabetes. J Clin Endocrinol Metab. 2007;92:4650–4655.

115. Rossing P, Hougard P, Parving HH. Risk factors for development of incipient and overt diabetic nephropathy in type 1 diabetic patients: a 10-year prospective observational study. Diabetes Care. 2002;25:859–864.

116. Hodges-Gallagher L, Valentine CD, El Bader S, Kushner PJ. Estrogens and feeding states modulate the insulin-regulated gene expression in experimental diabetic nephropathy. Regul Integr Comp Physiol. 2007;292:F1135–F1145.

117. Doublier S, Lupia E, Catanuto P, Elliot SJ. Estrogens and metabolism. Int J Mol Sci. 2015;16:14210–14244.

118. Kastner P, Mark M, Chambon P. Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell. 1995;83:859–869.

119. Yamamoto T, Nakamura T, Noble NA, et al. Expression of 17beta-Estradiol receptor beta increases the efficacy of antiestrogens by effects on apoptosis and cell cycling in breast cancer cells. Breast Cancer Res Treat. 2008;109:241–250.

120. Yamamoto T, Noble NA, Cohen AH, et al. Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proc Natl Acad Sci USA. 1993;90:1814–1818.

121. Ziyadeh FN. Mediators of diabetic renal disease: the case for transforming growth factor-beta isoforms in human glomerular diseases. Kidney Int. 1996;49:461–469.

122. Mankhey RW, Bhatti F, Marc C. 17beta-Estradiol replacement improves renal function and pathology associated with diabetic nephropathy. Am J Physiol Renal Physiol. 2005;288:F399–F405.

123. Mankhey RW, Wells CC, Bhatti F, Marc C. 17beta-Estradiol supplementation reduces tubulointerstitial fibrosis by increasing MMP activity in the diabetic kidney. Am J Physiol Regul Integr Comp Physiol. 2007;292:R769–R777.

124. Wang Y, Chaudhari S, Ren Y, Ma R. Impairment of hepatic nuclear factor-4x binding to the Stim1 promoter contributes to high glucose-induced upregulation of Stim1 expression in glomerular mesangial cells. Am J Physiol Renal Physiol. 2015;308:F1135–F1145.

125. Liou J, Kim ML, Heo WD, et al. STIM1, an essential for Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol. 2005;15:1235–1241.

126. Roos J, DiGregorio PJ, Yeromin AV, et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol. 2005;169:435–445.

127. Mendel DB, Crabtree GR. HNF-1, a member of a novel class of dimerizing homeodomain proteins. J Biol Chem. 1991;266:677–680.

128. Yamagata K, Oda N, Kaisaki PJ, et al. Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3). Nature. 1996;384:455–458.

129. Byrne MM, Sturis J, Menzel S, et al. Altered insulin secretory responses to glucose in diabetic and nondiabetic subjects with mutations in the diabetes susceptibility gene MODY3 on chromosome 12. Diabetes. 1996;45:1503–1510.

130. Mohler ML, He Y, Wu Z, et al. Recent and emerging anti-diabetes targets. Med Res Rev. 2009;29:125–195.

131. Zhang H, Xu X, Chen L, et al. Molecular determinants of magnolol targeting both RXRz and PPARγ. PLoS One. 2011;6:e28253.

132. Bzowska J, Dvorak Z, Triorganotin compounds—ligands for “rexinoid” inducible transcription factors: biological effects. Toxicol Lett. 2015;234:50–58.

133. Blumberg B, Evans RM. Orphan nuclear receptors—new ligands and new possibilities. Genes Dev. 1998;12:3149–3155.

134. Mangelsdorf DJ, Ong ES, Dyck JA, Evans RM. Nuclear receptor that identifies a novel retinoic acid response pathway. Nature. 1990;345:224–229.

135. Mangelsdorf DJ, Borgmeyer U, Heyman RA, et al. Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev. 1992;6:329–344.

136. Dolle P, Fraulob V, Kastner P, Chambon P. Developmental expression of murine retinoid X receptor (RXR) genes. Mech Dev. 1994;45:91–104.

137. Hsieh CH, Liang KH, Hung YJ, et al. Analysis of epistasis for diabetes targets. Kidney Int. 1996;50:1651–1658.

138. Watt AJ, Garrison WD, Duncan SA. HNF4: a central regulator of hepatic differentiation and function. Hepatology. 2003;37:1249–1253.

139. Wang Y, Ren Y, Ma R. Impairment of hepatic nuclear factor-4x binding to the Stim1 promoter contributes to high glucose-induced upregulation of Stim1 expression in glomerular mesangial cells. Am J Physiol Renal Physiol. 2015;308:F1135–F1145.

140. Mohlke KL, Boehnke M. The role of HNF4A variants in the risk of type 2 diabetes. Curr Diab Rep. 2005;5:149–156.

141. Niehof M, Borlak J. HNF4 alpha and the Ca-channel TRPC1 are novel disease candidate genes in diabetic nephropathy. Diabetes. 2008;57:1069–1077.

142. Wang Y, Ren Y, Ma R. Impairment of hepatic nuclear factor-4x binding to the Stim1 promoter contributes to high glucose-induced upregulation of Stim1 expression in glomerular mesangial cells. Am J Physiol Renal Physiol. 2015;308:F1135–F1145.

143. Liou J, Kim ML, Heo WD, et al. STIM1, an essential for Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol. 2005;15:1235–1241.

144. Byrne MM, Sturis J, Menzel S, et al. Altered insulin secretory responses to glucose in diabetic and nondiabetic subjects with mutations in the diabetes susceptibility gene MODY3 on chromosome 12. Diabetes. 1996;45:1503–1510.
149. Ismail-Beigi F, Craven T, Banerji MA, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 2010;376:419–430.

150. Keech A, Simes RJ, Barter P, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366:1849–1861.

151. Polvani S, Tarocchi M, Tempesti S, et al. Peroxisome proliferator activated receptors at the crossroad of obesity, diabetes, and pancreatic cancer. World J Gastroenterol. 2016;22:2441–2459.

152. Askari B, Wietecha T, Hudkins KL, et al. Effects of CP-900691, a novel peroxisome proliferator-activated receptor alpha, agonist on diabetic nephropathy in the BTBR ob/ob mouse. Lab Invest. 2014;94:851–862.

153. Feng YH, Fu P. Dual blockade of the renin-angiotensin-aldosterone system in type 2 diabetic kidney disease. Chin Med J (Engl). 2016;129:81–87.

154. Kumar R, Schaefer J, Grande JP, Roche PC. Immunolocalization of calcitriol receptor, 24-hydroxylase cytochrome P-450, and calbindin D28k in human kidney. Am J Physiol. 1994;266:F477–F485.

155. Zhang Z, Yuan W, Sun L, et al. 1,25-Dihydroxyvitamin D3 targeting of NF-kappaB suppresses high glucose-induced MCP-1 expression in mesangial cells. Kidney Int. 2007;72:193–201.

156. Wang Y, Zhou J, Minto AW, et al. Altered vitamin D metabolism in type II diabetic mouse glomeruli may provide protection from diabetic nephropathy. Kidney Int. 2006;70:882–891.

157. Neugarten J, Acharya A, Lei J, Silbiger S. Selective estrogen receptor modulators suppress mesangial cell collagen synthesis. Am J Physiol Renal Physiol. 2000;279:F309–F318.

158. Potier M, Karl M, Zheng F, et al. Estrogen-related abnormalities in glomerulosclerosis-prone mice: reduced mesangial cell estrogen receptor expression and prosclerotic response to estrogens. Am J Pathol. 2002;160:1877–1885.

159. Bhat HK, Hacker HJ, Bannasch P, et al. Localization of estrogen receptors in interstitial cells of hamster kidney and in estradiol-induced renal tumors as evidence of the mesenchymal origin of this neoplasm. Cancer Res. 1993;53:5447–5451.