Quantum dots: synthesis, bioapplications, and toxicity

Alireza Valizadeh1, Haleh Mikaeili4, Mohammad Samiei3, Samad Mussa Farkhani1, Nosratalah Zarghami1, Mohammad kouhi2, Abolfazl Akbarzadeh1* and Soodabeh Davaran1*

Abstract
This review introduces quantum dots (QDs) and explores their properties, synthesis, applications, delivery systems in biology, and their toxicity. QDs are one of the first nanotechnologies to be integrated with the biological sciences and are widely anticipated to eventually find application in a number of commercial consumer and clinical products. They exhibit unique luminescence characteristics and electronic properties such as wide and continuous absorption spectra, narrow emission spectra, and high light stability. The application of QDs, as a new technology for biosystems, has been typically studied on mammalian cells. Due to the small structures of QDs, some physical properties such as optical and electron transport characteristics are quite different from those of the bulk materials.

Keywords: QD delivery systems, Toxicity, Emission spectra, Luminescence characteristics

Review
Introduction
In the past years, a new class of fluorescent particles emerged as a good candidate for single molecule and single particle tracking (SPT) in living cells and organisms, the semiconductor quantum dots [1]. Quantum dots (QDs), often described as ‘artificial atoms,’ exhibit discrete energy levels, and their bandgap can be precisely modulated by varying the size [2]. QDs are nanometer-scale semiconductor crystals composed of groups II to VI or III to V elements and are defined as particles with physical dimensions smaller than the exciton Bohr radius [3]. QDs exhibit unique luminescence characteristics and electronic properties such as wide and continuous absorption spectra, narrow emission spectra, and high light stability [4]. They absorb white light and then emit a specific color a few nanoseconds later depending on the bandgap of the material [5-7]. QDs are one of the first nanotechnologies to be integrated with the biological sciences [4,8] and are widely anticipated to eventually find application in a number of commercial consumer and clinical products [9]. For example, CdSe/ZnS quantum dots are presently the most common commercially available product as secondary antibody conjugates that are composed of a core of cadmium selenide ranging from about 10 to 50 atoms in diameter and about 100 to 100,000 atoms in total [10]. QD range is typically between 2 and 10 nm in diameter. QDs consist of a semiconductor core, overcoated by a shell (e.g., ZnS) to improve optical properties, and a cap enabling improved solubility in aqueous buffers [11]. The application of QDs, as a new technology for biosystems, has been mostly studied on mammalian cells. There is an increasing tendency to apply QDs as markers in plant science [12-16]. The application of QDs as markers of the cells or their cell walls for plant bioimaging would be advantageous because of their small size, brightness, independence of emission on the excitation wavelength, and stability under relatively harsh environments. They also have excellent photostability [17] and overcome the limitations associated with photobleaching. Due to the small structures of QDs, some physical properties such as optical and electron transport characteristics are quite different from those of the bulk materials [18]. The study of the impurity states in these low dimensional structures is an important aspect to which many theoretical and experimental works based [16,19-21]. This review introduces QDs and explores their properties, synthesis, applications, delivery systems in biology, and their toxicity.
Synthesis

Several routes have been used to synthesize QDs [22] but, generally, techniques for QD synthesis used top-down processing methods and bottom-up approach. Top-down processing methods include molecular beam epitaxy (MBE), ion implantation, e-beam lithography, and X-ray lithography. Using the alternative bottom-up approach, colloidal QDs are prepared by self-assembly in the solution following a chemical reduction [23-26].

In the approaches of top-down, for making the QDs, a bulk semiconductor is thinned. For the achieve QDs of diameter approximately 30 nm, electron beam lithography, reactive-ion etching, and/or wet chemical etching are commonly used. For systematic experiments on quantum confinement effect, controlled shapes and sizes are achievable with the desired packing geometries. Alternatively, focused ion or laser beams have also been used to fabricate arrays of zero-dimension dots. Incorporation of impurities into the QDs and structural imperfections by patterning are major disadvantages with these processes [22].

A number of different self-assembly techniques (bottom-up) have been used to synthesize the QDs, and they may be broadly subdivided into wet-chemical and vapor-phase methods [22]: (a) wet-chemical methods mainly follow the conventional precipitation methods with careful control of parameters for a single solution or mixture of solutions. The precipitation process invariably involves both nucleation and limited growth of nanoparticles. Nucleation may be categorized as homogeneous, heterogeneous, or secondary nucleation [27]. Homogeneous nucleation occurs when solute atoms or molecules combine and reach a critical size without the assistance of a pre-existing solid interface. Wet-chemical methods are generally microemulsion, sol–gel [28-30], competitive reaction chemistry, hot-solution decomposition [31-33], sonic waves or microwaves [34], and electrochemistry. (b) Vapor-phase methods for producing QDs begin with processes in which layers are grown in an atom-by-atom process. Consequently, self-assembly of QDs occurs on a substrate without any patterning [35-38]. Self-assembly of nanostructures in material grown by MBE, sputtering, liquid metal ion sources, or aggregation of gaseous monomers are generally categorized under vapor-phase methods [22]. MBE has been mainly used to self-assemble QDs from III-V semiconductors and II-VI semiconductors using the large lattice mismatch, e.g., InAs on GaAs has a 7% mismatch and leads to SK growth [35].

Applications

In this review, we evaluate few experiments that show the high potential of QDs in biological application, including tracking different macromolecules in the cell, tracking various cells in the tissue, labeling organelles and cells, clinical applications, and other applications [39-43].

QDs for labeling cells

Because QDs have constant and unique optical properties, they are the best candidate for cell labeling, as compared with organic dyes.

Use in plant bioimaging

There is an increasing application of QD as markers for the cells or cell walls (CWs) in plant science. A first target location for external agents in a plant cell is the CW [44]. Djikanović et al. demonstrated that CdSe QDs bind typically to cellulose and lignin in the cell wall of Picea omorika branch. Respectively, binding to lignin and cellulose are achieved by interaction with the chains of C = C and C-C alternating bonds and interaction with the OH groups [44]. Data showed that QDs are suitable for homogenous marking of the whole cell wall. This is a consequence of the structural arrangement of the cell wall polymers in the whole cell wall network as well as the extremely small size of the QDs. These characteristics enable a feasible penetration of the nanoparticles inside the polymer structures in the CW composite [44].

Use in animal bioimaging

Goldman et al. used biotinylated CTxB in conjunction with QD-avidin conjugates [45] for labeling of the live HeLa cells which Figure 1 shows an image of the lateral membrane staining for GM1 ganglioside using QDs (in red) and nuclear staining using Hoechst (in blue). Punctuate labeling of the cell surface by QD bioconjugate is typical for molecules such as GM1 that is present in membrane rafts [46].

In another study, they labeled live HeLa cells which were biotinylated using sulfo-NHS-SS biotinylating reagent and then incubated with the avidin-conjugated yellow-emitting QDs. It is shown in Figure 2 [47].

Figure 1 Live HeLa cells growing on a glass coverslip. Labeled with QD-avidin for GM1 (in red) and Hoechst 33342 for nuclear staining (in blue) [46].
For long-term live cell imaging, Hasegawa et al. used the CHPNH2-QD complexes which were uniformly internalized into the cells without being aggregated. Therefore, CHPNH2 nanogel has high potential for use in long-term live cell imaging. The interaction of QDs with cells was successfully controlled by the amino group content of the CHPNH2 nanogel [48].

Use in prokaryote bioimaging Sensitive and selective staining of bacterial mutants using QD labels was demonstrated by Smith's group. This principle of detection is based on selective targeting affinity of Zn(II)-dipicolylamine coordination complex to phospholipids on the bacterial cell surface of specific strain as shown in Figure 3 [49,50].

In another study, authors demonstrated the use of magnetic beads coated with anti-E.coli O157 antibodies and streptavidin-coated QDs for measuring the bacterial cell concentration [51]. Yang and Li, using QDs with different emission wavelengths (525 nm and 705 nm), reported the simultaneous detection of E. coli O157:H7 and Salmonella typhimurium [52].

Tracking different particles
With the application of new imaging methods and the use of brighter and more stable probes, such as QDs, single particle tracking has the potential to enter into a new era of high resolution and long timescale imaging [53-55]. SPT techniques allow scientists to follow single molecules in real time and visualize the actual molecular dynamics in their habitant environment.

For extracellular study Because QDs do not require intracellular delivery through the impermeable plasma membrane, membrane receptors or membrane-associated proteins are intuitive targets for QD imaging [53]. Howarth et al. demonstrated a method to track endogenous cell-surface proteins without cross-linking by purifying monovalent antibody-QD conjugates. They approach to make monovalent tight-binding QDs, using mSA, which could be applied to other nanoparticles that show sufficient electrophoretic mobility. They applied sQD-mSA1 to study the mobility of a mutant of low-density lipoprotein (LDL) receptor with a truncated cytosolic tail, originally found from an individual with familial hypercholesterolemia. This mutant phenotype has been extensively investigated by following LDL, but Howarth and co-workers analyzed the behavior of the receptor itself (supplementary methods). They imaged single monovalent sQDs bound to the biotinylated AP-LDL receptor, as indicated by QD fluorescence intensity and blinking. The mobility of mutant receptors labeled with sQD-mSA1 was significantly greater than that of labeled wild-type LDL receptor \((P = 1.6 \times 10^{-14}) \) [56].

In similar studies, recently, QDs used to target membrane proteins and investigate the mobility and entry(exit kinetics in several systems: (1) various transmembrane proteins, for example, integrins [57], channels [58], and aquaporines [59]; (2) receptors GABA [60], glycine [61], interferon [62], and HER [63,64]; and (3) neurological synapse [65,66].

For intracellular study In one of the study, the advantages of the broad, continuous excitation spectrum were demonstrated in a dual-emission, single-excitation labeling experiment on mouse fibroblasts. These nanocrystal probes are, thus, complementary and, in some cases, may be superior to existing fluorophores [4]. Nonspecific labeling of the nucleus by both the red and the green probes resulted in a yellow color. The red actin filaments were specifically stained. Also, the green probes penetrate into the nucleus. Both are shown in Figure 4[4].

This is shown as green color for nucleus and red color for actin filaments. Nonspecific labeling of the nucleus by both the red and the green probes resulted in a yellow color [4].

Superior stability of QD fluorophores gives the possibility to improve quantitation of FISH analysis of human chromosomal changes. Xiao and Barker have investigated coated (CdSe)ZnS QDs as fluorescence labels for FISH of biotinylated DNA to human lymphocyte metaphase chromosomes under conditions that approximate those commonly found in clinical cytogentic laboratories [67]. They have also demonstrated the application of...
QDs to FISH detection of the clinically relevant HER2 locus in breast cancer cells (Figure 5).

Pierobon et al. [68] and Nelson et al. [69] tagged myosin V molecules with QDS to establish a link between in vitro and in-cell measurements of myosin V motors. Then, the complex myosin V/QD (MyoV::QD), using the pinocytic influx, was introduced into the cells.

Yoo et al. [70] and Courty et al. [71] characterized the dynamics of other major actors of intracellular transport: the kinesin-1, the actin filaments, and the microtubules [65].

Imaging in situ

Imaging of the satellite cells in rat intact and injured soleus muscles using quantum dots. The employment of satellite cells, which are located between the basement membrane and the plasma membrane in myofibers, is required for myofiber repair after muscle injury or disease. Using QDs conjugated to anti-M-cadherin antibody, Ishido and Kasuga attempted the visualization of satellite cells in both intact and injured skeletal muscle of rat in situ. They demonstrated in situ real-time imaging of satellite cells localized within the skeletal muscle (Figure 6) [72].

Imaging morphogenesis in Xenopus with quantum dot nanocrystals. Stylianou and Skourides are the first to report the use of near-infrared QDs to image mesoderm migration in vivo with single cell resolution and provide quantitative in vivo data regarding migration rates [73].

Navarro et al. experiments revealed that Arabidopsis exposed to QDs that are dispersed in Hoagland’s solution for 1 to 7 days did not internalize intact QDs. Fluorescence microscopy showed strong evidence that the QDs were generally on the outside surfaces of the roots (Figure 7). The amount of QDs adsorbed is dependent on the stability of the QDs in suspension [74].

Using QDs in clinical applications

The development of multifunctional nanomaterials combining diagnostic and therapeutic purpose has recently attracted intensive interests [75-81]. In this paper, we have reviewed the clinical applications of QDs in the three categories that include: (1) biomarker detection in various cancers, (2) imaging and sensing of infectious diseases, and (3) other clinical therapeutic applications.

Biomarker detection in various cancers using QDs. The detection of cancer biomarkers is important for diagnosis, disease stage forecasting, and clinical management [82]. QDs with intense and stable fluorescent properties could enable the detection of tens to hundreds of cancer biomarkers in blood assays, on cancer tissue biopsies, or as contrast agents for medical imaging. Clinical outcome of cancer diagnosis is highly dependent on the stage at which the malignancy is detected, and therefore, early screening has become extremely important in any type of cancer [83].

1. Multicolor and multiplexing potentialities of QDs are used for the detection of four protein biomarkers CD15, CD30, CD45, and Pax5 of Hodgkin’s lymphoma from lymphoma tissues. Simultaneous visualization using multiplexed QD staining was advantageous for the selective identification of rare Hodgkin (Reed-Sternberg) cells, a primary diagnostic target for Hodgkin’s disease, which was not
achievable using traditional immunohistochemistry assays [84,85].

2. Yu et al. reported the use of GSH-TGA-QDs-ND-1 probes to label colorectal cancer cells CCL187. They prepared QDs, which were conjugated with monoclonal antibody ND-1 for specific reaction with antigen LEA [86].

3. In the United States, pancreatic cancer is the fourth leading cause of cancer death (about 18,770 men and 18,030 women (36,800 people) in 2010) [87]. Using semiconductor QD-antibody conjugates, Lee et al. demonstrated quantitative profiling of biomarkers for pancreatic cancer at the single-cell level. Their results show the possibility of this method for staging and forecasting, such as prostate stem cell antigen claudin-4, and mesothelin, which are expressed in different stages of progression of pancreatic cancer [82]. Anyway, realizing quantitative profiling requires stable quantum yield, monodisperse QD-Ab conjugates, and well-defined surface chemistry [88].

There are evidences showing the application of QDs in micro- and nanoarrays for the detection of cancer biomarkers [83].

Imaging and sensing of infectious diseases by QDs QDs have become one of the most hopeful and interesting materials for diagnostic applications of bioimaging, labeling, and sensing for infectious diseases such as respiratory syncytial virus (RSV) that is one of the families of Paramyxoviridae [50]. In Table 1, some of the infectious diseases and QDs used to distinguish them are shown.

1. QDs for assessing axon growth
A major health problem with injuries to the spinal cord and brain is traumatic central nervous system injury reporting of approximately 265,000 and 1.5 million new injuries each year [103-105]. QDs represent a new device of significant potential in neuroscience research, and they are useful for experiments that are limited by the restricted anatomy of neuronal and glial interactions [106]. One of the problems in treatment is estimating its effectiveness. They allow the ability to visualize and track dynamic molecular processes over long times (Figure 8) [106]. Application of surface-engineered QDs is an area of nanotechnology probing the details of cellular and molecular processes in neuronal cells [4,107-109]. QD-bioconjugates based on surface chemistry can be broadly classified as follows: (1) QDs’ surface modified by bioactive molecules and (2) QD-polymer nanocomposites [103]. This advance might be significantly important to assess axon growth pending the regeneration process [103]. Previous investigations were demonstrated in Table 2.

2. QD used as a probe in an anti-malarial drug-screening assay
Malaria is a major global health problem, threatening over 300 million people and causing nearly one million deaths annually [114,115]. Tokumasu et al. used QD-Ab to demonstrate the distinct pattern of distribution of protein and to observe erythrocyte membrane deformation occurring during the invasion of erythrocytes by Plasmodium falciparum [116]. Ku et al. showed a simple and efficient method to label P. falciparum-infected RBC using a QD-based probe and its applicability as an efficient probe for anti-malarial drug screening [115].

Other applications
QDs as pH probes for the study of enzyme reaction kinetics [117] Lately, worth advancement has been achieved in water-soluble QDs as ionic probe. Jin et al. reported the use of modified CdSe QDs for the sensitive determination of cyanide ions $[CN^-]_{117,118}$. Xie et al. reported the determination of Cu$^{2+}$ by using CdSe/ZnS QDs modified with bovine serum albumin [119]. QDs also have been reported to be sensitive to pH [120-125]. The sensitivity of QDs’ photoluminescence to pH, improve stability, and a monitoring range for the determination of proton concentration, which is maybe due to a function of surface modifications and effects on exciton trap sites, leads to applications utilizing QDs as pH probes [126]. Water-soluble QDs, ZnS, modified with mercaptoacetic acid (MAA) were sensitive to environmental factors and found to be a satisfactory pH probes that could have potential applications in chemical and biochemical sensing. Using the modified QD surface, they were applied as pH probes in monitoring the hydrolysis of glycidyl butyrate which is catalyzed by porcine pancreatic lipase (PPL) [117].

QDs use for protein micro- and nanoarrays to the detection of cancer biomarkers Protein microarrays are useful device as highthroughput screening tools in proteomics [127-129], for biosensing purpose [130], new
Table 1 Some of the infectious diseases and QDs used to distinguish them

Authors	Type of infectious diseases	In vitro/in vivo	Type of modified QDs
Tripp et al. [89]	RSV	In vitro/in vivo	Antibody anti-F protein conjugated to QDs(CdTe)
Agrawal et al. [90]	Individual molecules of genes, proteins, and virus particles	In vivo	QD-antibody color-coded NP probes and two-color co-localization imaging
Bentzen et al. [91]	RSV	In vivo	Streptavidin-coated QDs conjugated to antibody anti-F and antibody anti-G
Dwarkanath et al. [92]	S. typhimurium, E. coli, B. subtilis spores	In vivo	Antibody-QD and DNA aptamer-QD
Goldman et al. [93]	Choleratoxin, ricin, shinga-like toxin1 and staphylococcal enterotoxin B	In vitro	Antibody-QD (CdSe/Zns)
Zhao et al. [94]	Food-borne pathogenic E. coli O157:H7, S. typhimurium and S. flexneri	In vitro	QD-anti-S. flexneri antibody,anti-E. coli antibody, anti-S. typhimurium antibody
Hahn et al. [95]	Single cells of E.coli O157:H7	In vivo	Streptavidin-coated QDs conjugated to antibody
Mukhopadhyay et al. [96]	Detect E. coli at levels as low as	10⁷ bacteria/ml of sample	Mannose-conjugated QDs
Edgar et al. [97]	Mycobacterium	In vivo	Streptavidin-coated QDs conjugated to phage
Zhu et al. [98]	C. parvum	In vivo	QD-conjugated antibodies
Klostranec et al. [99]	Biomarkers of the most globally prevalent blood-borne infectious diseases (i.e., hepatitis B, hepatitis C, and HIV) with low sample volume	In vivo	QD-antibody
Gouzouli et al. [100]	Mycobacterium genus	In vivo	Specific DNA sequences combining QDs with magnetic beads [101,102]
Hahn et al. [95]	Individual pathogenic E. coli O157:H7 in phosphate buffer saline solution	In vivo	Streptavidin-coated Qdots labeled by antibody selectively targeted pathogenic E. coli O157:H7
Su and Li [51]	E. coli O157	In vivo	Streptavidin-coated QDs conjugated to anti-E. coli O157 antibody
Yang and Li [52]	E. coli O157 : H7	In vivo	QDs with different sizes conjugated to anti-E. coli O157 and anti-Salmonella antibodies
	S. typhimurium	In vivo	The bead-cell complexes reacted with QD-antibody conjugates to form bead-cell-QD complexes

Other clinical therapeutic applications.

Figure 8 Using QD conjugated with antibody for labeling of neurons and glia. (A) Labeled β-tubulin in primary cortical neurons. (B) Labeled glial fibrillary acidic protein in primary cortical astrocytes. (C) Labeled for β-tubulin in PC12 cells [106].
drug discovery [131], and enabling a quick parallel screening method for the detection of protein-protein interactions in case of large protein populations. There are various reports in which QDs have been used in microarray fabrication such as sandwich-based immunoassay type, RP protein microarray type, etc. [132-135]. Here, IgG detection was done on a glass chip using a QD-labeled secondary Abs as sandwich assay approach. In RP protein microarrays, Geho et al. used pegylated QDs conjugated with streptavidin as detection elements. In another study, Zajac et al. investigated the ability of the platform to detect different cytokines TNF-α, IL-8, IL-6, MIP-1β, IL-13, and IL-1β using two different models of quantum dot probes. Their results demonstrated high sensitivity of the investigated detection system with less than picomolar concentration [136]. Kerman et al. reported the use of QDs for detection cell lysates spiked with DNA-PK proteins with the help of mAb, in an RP protein microarray format. Kerman et al. make immunosensor based on QD for the detection of prostate specific antigen (PSA) in a sandwich assay approach for chip fabrication [134]. Gokarna et al. used pegylated QD-conjugated PSA Abs to demonstrate the fabrication of a cancer protein biochip for the detection of PSA, which is a biomarker for prostate cancer. The QD nonspecificity can show to be quite detrimental to some extent in case of multiplexed assay systems where multiple proteins are to be detected simultaneously [83].

QD delivery Due to the unique properties of QDs, they are best tools for intracellular studies such as visualizing the cellular structure, studying the dynamic cellular processes, and tracking single molecules in the cell [137,138]. To achieve this goal, translocation of functionalized QDs into the cell for labeling organelles and tracking single molecules is important. QDs have hydrophobic surface and have a little toxicity, therefore cannot be applied in vivo unless their surface is modified. Thus, by surface modification, their hydrophilicity will increase but their toxicity will decrease.

Hasegawa et al. used nanogel-QD hybrid nanoparticles for live cell imaging [48]. They also confirmed the cellular uptake of CHPNH₂(15)-QD nanoparticles using other normal cells (TIG-3 and MRC-5) and cancer cells (T24, Saos-2, T98G, A549, MCF-7, and YKG-1) (Figure 9) [48].

Table 2 Applications of QDs in labeling neurons and glia cells

Authors	Type of QD used	Application of QD
Dahan et al. [61]	QD-GlyR	Target neurons to investigate a specific neurophysiological process(QDs to track individual glycine receptors and analyze their lateral dynamics in the neuronal membrane)
Pathak et al. [106]	Antibody-conjugated quantum dots	Performed the specific labeling of neurons and glia cells
Vu et al. [110]	Tagged nerve growth factor (bNGF) to QDs	Investigate the QD nanostructure’s potential to assess the neurite outgrowth
Sundara Rajan et al. [111]	QD-anti-TrkA-TrkA receptor with transport by GFP	Immobilized QDs were conjugated with NGF, activate Trk receptors, and initiate neuronal differentiation in PC12 cells.
Howarth et al. [112]	Tagged cell surface proteins with a specific peptide (acceptor protein) that can be directly biotinylated as a target for streptavidin-conjugated quantum dots	Specifically label and track AMPA receptors on cultured hippocampal neurons
Prasad et al. [113]	Thioglycolic acid (TGA)-stabilized CdTe QDs	Performed imaging of PC12 cells

Figure 9 Confocal laser scanning fluorescence microscopy images of cells labeled with CHPNH₂(15)-QD nanoparticle. (A) TIG-3 cells, (B) MRC-5 cells, (C) MCF-7 cells, and (D) YKG-1 cells [48].
In recent years, functional peptides that transmit biomaterials into cells have been developed in biomaterial research. Because of lysosomal trapping, QD delivery into cells with conjugated cell-penetrating peptides by the endocytic pathway was challenging in biomedical applications [139]. In another study, engineered peptides for producing QDs tagging protein ligands and biosensors to their surfaces, by appropriate cysteines or histidines, have served as ligands [140]. Encapsulation of QDs in viral capsids provides a new tool which allows the design of intracellular microscopic probes and vectors [141]. More samples of QD delivery systems are shown in Table 3.

Toxicity of QDs
There are different opinions about the toxicity of QDs; therefore, we investigated their toxicity in amoeba as primary eukaryotes, in plant, and in animal.

In amoeba
It has been determined that QD labeling had no detectable effect on cell growth and had no deleterious effects on cellular signaling and motility during development of the *Dictyostelium discoideum* cells [47].

In plant
The ratio of reduced glutathione levels (GSH) relative to the oxidized glutathione (GSSG) in plants suggests that QDs caused oxidative stress on the plant at this condition [74].

In animal
Yan et al. investigated the potential vascular endothelial toxicity of mercaptosuccinic acid (2-sulfanylbutanedioic acid)-capped QDs *in vitro*. Their results suggested that QDs could not only impair mitochondria but also exert endothelial toxicity through activation of mitochondrial

Authors	Delivery system of QD	Use				
Jia et al. [142]	Multiwalled carbon nanotube (MWNT) delivery system	MWNTs are containing antisense oligodeoxynucleotides and CdTe QDs via electrostatically layer-by-layer assembling.				
Chen et al. [143], Xue et al. [144], Delehanty et al. [145], Ruan et al. [146], Wei et al.[147]	Tat peptide-mediated delivery system	QDs conjugated to the cell-penetrating peptide derived from the human immunodeficiency virus-1 transactivator protein				
Lagerholm et al. [148]	Peptide delivery system	Nine residue biotinylated l-arginine peptide is used to enhance delivery of streptavidin-conjugated QDs into mammalian cells.				
Bagalkot et al. [149]	A10 RNA aptamer	Functionalizes the surface of QD with the A10 RNA aptamer, which recognizes the extracellular domain of the prostate specific membrane antigen				
Bakalova et al. [150]	Silica-shelled quantum dots	Based on silica-shelled single QD micelles with incorporated paramagnetic substances [tris(2,2,6,6-tetramethyl-3,5-heptanedionate)/gadolinium] into the micelle and/or silica coat				
Yum et al. [151]	Nanoscale mechanochemical method	Using a membrane-penetrating nanoneedle				
Yuan et al. [152]	Chitosan (N-acetylglucosamine) tumor-targeted drug delivery	QDs encapsulated with chitosan				
Hasegawa et al. [48]	Nanogel-QD hybrid	Nanogels of CH-PNH 2 with 15 amino groups per 100 glucose units and QDs that were conjugated with protein A molecules were mixed.				
Dixit et al. [141]	Viral vectors	QDs encapsulation in viral capsids				
Zhang and Liu [153]	Nonviral vectors	Capping the surface of ZnO QD with poly(2-(dimethylamino) ethyl methacrylate)				
Jablonski et al. [154]	Cationic peptide and a hydrophobic counterion	Quantum dots have been delivered to the cytosol of living cells using a combination of a cationic peptide, polyarginine, and a hydrophobic counterion, pyrenebutyrate.				
Qi and Gau [155]	QD-ampipol nanocomplex	Advantages include cytoplasm delivery and endosome escape.				
Gao et al. [109]	Polymeric delivery system	The structural design involves encapsulating QDs with an ABC triblock copolymer and linking this amphiphilic polymer.				
Duan and Nie [77]	Polymeric delivery system	QDs were encapsulated by PEI-g-PEG.				
QD	Model	Administration	QD concentration	Exposure duration	Toxicity	Study
---------------------	------------------------------	--------------------------------	------------------	-------------------	---	--------------------------------
CdSe/ZnS-SSA	EL-4 cells	1 × 10^6 cells/well	0.1 to 0.4 mg/mL	0 to 24 h	Cytotoxic: 0.1 mg/mL altered cell growth; most cells nonviable at 0.4 mg/mL	Hoshino et al. 2004a
CdSe/ZnS-SSA	EL-4 cells	200-μL cell suspension injected (iv) into the mice	0.1 mg/mL QDs per 5 × 10^5 cells	2 h to 7 days	No toxicity in mice in vivo	Hoshino et al. 2004a (in vivo)
CdSe/ZnS conjugates: NH₂, OH, OH/COOH, H₂/OH, MUA, COOH	WTK1 cells	5 × 10⁶ cells/mL	1 to 2 μM	12 h	2-μM QD-COOH-induced DNA damage at 2 h	Hoshino et al. 2004b
CdSe/ZnS-MUA	Vero, HeLa, and primary human hepatocytes	100-μL QDs/3 × 10⁴ cells	0 to 0.4 mg/mL	24 h	Cytotoxic: 0.2 mg/mL Vero; 0.1 mg/mL, HeLa; 0.1 mg/mL, hepatocytes	Shiohara et al. 2004
CdTe	Rat pheochromocytoma cells, murine, microglial cells	1 × 10⁵ cells/cm²	0.01 to 100 μg/mL	2 to 24 h	10 μg/mL cytotoxic	Lovric et al. 2005
CdSe-MAA, TOPO QDs	Primary rat hepatocytes	62.5-1,000 μg/mL	1 to 8 h		Cytotoxic: 62.5 μg/mL cytotoxic under oxidative/photolytic conditions	Derfus 2004
QD micelles: CdSe/ZnS QDs in (PEG-PE) and phosphatidylcholine	Xenopus blastomeres	5 × 10⁶ QDs/cell (approximately 0.23 pmol/cell)	1.5 to 3 mL of 2.3-μM QDs injected, approximately 2.1 × 10⁶ to 4.2 × 10⁶ injected QDs/cell	Days	5 × 10⁶ QDs/cell: cell abnormalities, altered viability and motility	Dubertret et al. 2002
CdSe/ZnS amp-QDs and mPEG QDs [158]	Mice	200-μL tail vein injection	Injections, approximately 180-nM QD, approximately 20 pmol QD/g animal weight	15-min cell incubations, 1 to 133 days in vivo	No signs of localized necrosis at the sites of deposition	Ballou et al. 2004
CdSe/ZnS-DHLA	Dicytostelium discoideum and HeLa cells	400 to 600 nM	45 to 60 min		No effects on cell growth	Jaiswal et al. 2003
Avidin-conjugated CdSe/ZnS QDs	HeLa cells	0.5 to 1.0 μM	15 min		No effect on cell growth and development	Jaiswal et al. 2003
CdSe/ZnS-amphiphilic micelle	Mice	Tail vein injection	60-μM QD/g animal weight, 1-μM and 20-nM final QD concentration	Not given	Mice showed no noticeable ill effects after imaging	Larson et al. 2003
CdSe/ZnS-DHLA QDs	Mice, B16F10 cells	5 × 10⁴ B16F10 cells with 10-μL QDs (approximately 10 pmol), tail vein (iv) injection	100 μL of B16F10 cells used for tail vein injection, approximately 2 × 10⁴ to 4 × 10⁵ cells injected	4- to 6-h cell incubation, mice sacrificed at 1 to 6 h	No toxicity observed in cells or mice	Voura et al. 2004
CdSe/ZnS-MUA QDs; QD-SSA complexes [162]	Vero cells	0.4 mg/mL	0.24 mg/mL	2 h	0.4-mg/mL MUA/SSA-QD complexes did not affect viability of Vero cells	Hanaki et al. 2003
CdSe/ZnS	HeLa cells	1 × 10⁶ cells		10 days (cell culture)	10-nM QD had minimal impact on cell survival	Chen and Gerion 2004
Table 4 More details for toxicity of QDs (modified from [163]) (Continued)

QD Type	Cell Line	Concentration	Duration	Effect Note	Reference
CdTe aqQDs	HEK293 cells	1 x 10^5 cells	300 or 600 nM	3 days Nearly completely inhibited cell growth even from the very beginning	Nan Chen et al. 2012
CdTe-gelatinized/ nongelatinized	PC12 cells	1 x 10^5 cells/cm²	1 to 100 nM	72 h At 1 nM did not initiate any detrimental effects; at 100 nM, resulted in the death of all cells	Babu R Prasad et al. 2010
CdTe, CdTe/CdS, CdTe/CdS/ZnS	K562 and HEK293T human cell lines	1 x 10^5 cells	0.2 to 3.0 µM	0 to 48 h Cells treated with CdTe and CdTe/CdS QDs were mostly nonviable by 48 h (for all concentrations tested).	Su et al. 2009
CdSe/ZnS-PEG (EviTag T1 490 QD)	Caco-2 (human colon carcinoma) cell line	10^6 cells/ml, 0.2 ml/well	0.84 to 105 µM	0 to 24 h Commercially available QD demonstrated low cytotoxicity but induced cell detachment.	Wang et al. 2008
CdSe	Primary rat hippocampal neuron cells in culture	10^4 to 10^5 cells/ml	1, 10, and 20nM	24 h 1-nM QD for 24 h showed no decrease in cell viability; in contrast, cells treated with 10- and 20-nM QD for 24 h showed decreases in cell viability on the order of 20 and 30%.	Tang et al. 2008
death pathway and induction of endothelial apoptosis [156].

More recently, Chen et al. have studied the cytotoxicity of CdTe/CdS (core-shell) structured and also CdTe/CdS/ZnS (core-shell-shell) structured aqueous synthesized QDs, and their results suggest that the cytotoxicity of CdTe QDs not only comes from the release of Cd$^{2+}$ ions but also intracellular distribution of QDs in cells and the associated nanoscale effects [157]. Table 4 demonstrated more results for toxicity of QDs [158-162].

Conclusions
In this review, we summarize few experiments that illustrate the high potential of QDs used for/as:

1. labeling biomolecules and cells
2. tracer to follow the intracellular/extracellular dynamic of a single biomolecule/cell
3. localization of biomolecules in vitro/in vivo
4. imaging of biomolecules or cells in vitro/in vivo
5. assessing cell growth in damaged tissue
6. pH probes for the study of enzyme reaction kinetics
7. biomarker detection in various cancers
8. imaging and sensing of infectious diseases; and
9. protein micro- and nanoarrays to the detection of cancer biomarkers.

These studies have been generated using QDs because of their small size, brightness, independence of emission on the excitation wavelength, and stability under relatively harsh environments which would be advantageous. In contrast, there are different opinions about the toxicity and fate of QDs in vivo. Therefore, more experiments should be done, and much more data should be available, to be sure to do clinical trials on humans.

Future prospects
In the future, QDs will be used for identifying various categories of cancer cells, the molecular mechanisms of disease, and new drug action mechanisms, applying them in the intracellular/extracellular studies, and making new methods for biochemical assaying.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SD conceived of the study and participated in its design and coordination. AA participated in the sequence alignment and drafted the manuscript. All authors read and approved the final manuscript.

Acknowledgments
The authors are grateful to the financial support from the Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz 51664, Iran.

Received: 16 May 2012 Accepted: 26 July 2012
Published: 28 August 2012

References
1. Pierobon P, Cappello G: Quantum dots to tail single bio-molecules inside living cells. Adv Drug Deliv Rev 2012, 64(2):167–178.
2. Klimov VI: Spectral and dynamical properties of multie excitons in semiconductor nanocrystals. Annu Rev Phys Chem 2007, 58:635–673.
3. Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M: Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 2002, 13:140–146.
4. Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP: Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281(5385):2013–2016.
5. Deng P, Bhattacharyya A, Ghosh SK, Ray R, Lahin A: Excellent biocompatibility of semiconductor quantum dots encased in multifunctional poly(N-isopropylacrylamide) nanoreservoirs and nuclear specific labeling of growing neurons. Appl Phys Lett 2011, 98(10):103702–103703.
6. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R: CdSe/ZnS quantum dot – shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 1997, 101(46):9463–9475.
7. Bakalova R, Obba H, Zhelev Z: Quantum dots as photosensitizers? Nat Biotechnol 2004, 22(1):1360–1361.
8. Chan WC, Nie S: Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281(5385):2016–2018.
9. Azzazy HM, Mansour MM, Kazmierczak SC: From diagnostics to therapy: prospects of quantum dots. Clin Biochem 2007, 40(13–14):917–927.
10. Deering TJ: The application of fluorescent quantum dots to confocal, multiphoton, and electron microscopic imaging. Toxicol Pathol 2008, 36(1):112–116.
11. Ghareyem N, Peymani P, Afifi S: Quantum dot: magic nanoparticle for imaging, detection and targeting. Acta Biomater 2009, 80(2):156–165.
12. Corredo R, Testillano P, Coronado M, Gonzalez-Melendi P, Fernández-Pacheco R, Marquina C: Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 2009, 9:45.
13. Lin S, Meyer DE, Curran MA: Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 2009, 5(10):1128–1132.
14. Muller F, Houben A, Barker PE, Xiao Y, Ká J, Weibel M: Quantum dots – a versatile tool in plant science? J Nanobiotechnology 2006, 45.
15. Santos AR, Miguel AS, Tomaz L, Rui Malhó, Christopher: The impact of CdSe/ZnS quantum dots in cells of Medicago sativa in suspension culture. J Nanobiotechnology 2010, 8:24.
16. Wu YL, Lim CS, Fu S, Toh AY, Lau HM, Boey FYC: Surface modifications of ZnO quantum dots for bio-imaging. Nanotechnology 2007, 18(21):215604.
17. Wu YL, Lim CS, Fu S, Toh AY, Lau HM, Boey FYC: Water-soluble quantum dots for biomedical applications. Biochem Biophys Res Commun 2006, 348(3):761–768.
18. Arnot HEG, Watt M, Sotomayor-Torres CM, Grew R, Cosco R, Bates J, Beaumont SP: Photoluminescence of overgrown GaAs-GaAlAs quantum dots. Superlattices and Microstructures 1989, 5(3–4):459–463.
19. Li SS, Xia JB: Electronic structure and binding energy of a hydrogenic impurity in a hierarchically self-assembled GaAs/AlAs–As quantum dot. J Appl Phys 2006, 100(8):083714.
20. Li SS, Xia JB: Electronic states of a hydrogenic donor impurity in semiconductor nano-structures. Physica Letters A 2007, 366(1–2):120–123.
21. Li SS, Kong XJ: Hydrogenic impurities in GaAs-GaAlAs superlattices in an axial magnetic field. J Phys Condens Matter 1992, 4(20):4815.
22. Bera D, Qian L, Tseng T-k, Holloway PH: Quantum dots and their multimodal applications: a review. Materials 2010, 3(8):2360–2345.
23. Mattoussi H, Palui G, Na HB: Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes. Adv Drug Deliv Rev 2012, 64(2):138–166.

24. Birudavolu S, Nuntawong N, Balakrishnan G, Xin YC, Huang S, Lee SC, Brueck SR, CP: Selective area growth of InAs quantum dots formed on a patterned GaAs substrate. Appl Phys Lett 2004, 85(12):2337–2339.

25. Nakata Y, Mori T, Seki H: Molecular beam epitaxial growth of InS self-assembled quantum dots with light-emission at 1.3 μm. Journal of Crystal Growth 2000, 208(1–4):93–99.

26. Yamilov A, Herrera MR, Bertino MF: Quantum dots by ultraviolet and x-ray lithography. Nanotechnology 2007, 18(3):156103.

27. Bera D, Qian L, Sabui S, Santra S: Chemical and properties of nanocrystals of different shapes. Chem Rev 2005, 105(4):1025–1102.

28. Bang J, Fau Yang H, Holloway PH: Enhanced and stable green emission of ZnO nanoparticles by surface segregation of Mg. Nanotechnology 2006, 17(1):973.

29. Sapanelli I, Anderson MA: Semiconductor clusters in the sol–gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. Colloids Surf A 1991, 113(8):2625–2633.

30. Bena D, Qian L, Sabui S, Santra S: Photoluminescence of ZnO quantum dots produced by a sol–gel process. J Mater Chem 2008, 18(10):1233–1239.

31. Qu L, Peng X: Control of photoluminescence properties of CdSe nanocrystals in growth. J Am Chem Soc 2002, 124(10):2049–2055.

32. Murray CB, Norris DJ, Bawendi MG: Synthesis and characterization of nearly monodisperse CdSe (E = sulfur, selenium, tellurium) semiconductor nanocrystals. J Am Chem Soc 1993, 115(19):8751–8755.

33. Qu L, Peng ZA, Peng X: Alternative routes toward high quality CdSe nanocrystals. Nano Lett 2001, 1(8):333–337.

34. Li L, Qian H, Ren J: Rapid synthesis of highly luminescent CdTe nanocrystals in the aqueous phase by microwave irradiation with controllable temperature. Chem Commun (Camb) 2005, doi:10.1039/B412686F.

35. Xin SH, Yin A, Kim C, Dobrowolska M, Miez AL: Formation of self-assembling CdSe quantum dots on ZnSe by molecular beam epitaxy. Appl Phys Lett 1996, 69(25):3884–3886.

36. Leonardi K, Selke H, Heinke H, Ohlka K, Hommel D, Gindele F, Woggon U: Formation of self-assembling II–VI semiconductor nanostructures during migration enhanced epitaxy. J Crystal Growth 1998, 184–185:259–263.

37. Kurtz E, Shen J, Schmidt M, Guan M, Hong SK, Litvinov D: Formation and properties of self-organized II–VI quantum islands. Thin Solid Films 2000, 367(1):2168–74.

38. Swihart MT: Vapor-phase synthesis of nanocrystals. Curr Opin Colloid Interface Sci 2003, 8(1):127–133.

39. Zhang ZY, Schiller AEHR, Resan B, Kunsulis S, Zhou KJ, Wang Q, Mangold M, Sauderneyer T, Keller U, Weingarten KJ, Hogg RA: 1.55 μm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser. Nano Lett 2009, 10:1512–1516.

40. Yang H, Luan W, Shan-tung T, Wang ZM: Synthesis of nanocrystals via microreactor with temperature gradient: towards separation of nucleation and growth. Lab Chip 2008, 8:451–452.

41. Jiang W, Wang ZM, Dorogan VG, Mazur YI, Shilin L: Gregory, Insight into optical properties of strain-free quantum dots pair. Journal of Nanoparticle Research 2011, 13:947–962.

42. Yuechao J, Xiaoyong G, Jingxiao L, Yongsheng C, Jianpeng Z, Xinli L: Tracking of cell surface receptor. Trends Cell Biol 1992, 2(8):242–244.

43. Saxton MJ, Jacobson K: Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biophys Chem 1997, 26:373–399.

44. Howarth M: Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nano Lett 2006, 6(1):109–111.

45. Chen H: Altered membrane dynamics of quantum dot-conjugated integrins during osteogenic differentiation of human bone marrow derived progenitor cells. Biophys J 2007, 92(4):1399–1408.

46. Haggie PM: Tracking of quantum dot-labeled CFTR shows near immobilization by C-terminal PDZ interactions. Mol Biol Cell 2006, 17(12):4937–4945.

47. Came NE, Verkman AS: Long-range nonanomalous diffusion of quantum dot-labeled aquaporin-1 water channels in the cell plasma membrane. Biophys J 2008, 94(2):702–713.

48. Bouzguen C: Asymmetric redistribution of GABA receptors during GABA gradient sensing by nerve growth cones analyzed by single quantum dot imaging. Proc Natl Acad Sci 2007, 104(27):11251–11256.

49. Dahan M: Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 2003, 302(5644):442–445.

50. Roullet V: High-affinity labeling and tracking of individual histidine-tagged proteins in live cells using Ni2+ tris- nitrilotriacetic acid quantum dot conjugates. Nano Lett 2009, 9(3):1228–1234.

51. Lidke DS: Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol 2004, 22(2):198–203.

52. Watanabe TM, Hilgich J: Stepwise movements in vesicle transport of HER2 by motor proteins in living cells. Biophys J 2007, 92(11):4109–4120.

53. Groc L: Differential activity-dependent regulation of the lateral mobilities of AMAPA and NMDA receptors. Nat Neurosci 2004, 7(1):695–696.

54. Croquet D, Triller A: The role of receptor diffusion in the organization of the postsynaptic membrane. Nat Rev Neurosci 2003, 4(8):251–265.

55. Xiao Y, Barker PE: Semiconductor nanocrystal probes for human metaphase chromosomes. Nucl Acids Res 2010, 38(2):e28–e29.

56. Pierobon P: Velocity, processivity, and individual steps of single myosin V molecules in live cells. Biophys J 2009, 96(10):4268–4275.

57. Nelson SR: Random walk of processive, quantum dot-labeled myosin Va molecules within the actin cortex of COS-7 cells. Biophys J 2009, 97(2):509–518.

58. Yoo J: Intracellular imaging of targeted proteins labeled with quantum dots. Exp Cell Res 2008, 341(19):3563–3569.

59. County S: Tracking individual kinesin motors in living cells using single quantum-dot imaging. Nano Lett 2006, 6(7):1491–1495.

60. Ishitoh M, Kasuga N: In situ real-time imaging of the satellite cells in rat intact and injured soleus muscles using quantum dots. Histochem Cell Biol 2011, 135(1):21–26.

61. Sylainou P, Skourides PA: Imaging morphogenesis, in Xenopus with quantum dot nanocrystals. Mech Dev 2009, 126(10):828–841.

62. Navarro DA, Bisson MA, Aga DS: Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants. J Hazard Mater 2012, 211–212:427–435.

63. Gautrot JE, Zhu X: Macromolecular bile acids from molecular recognition to degradable biomaterial building blocks. J Mater Chem 2009, 19(22):5705–5716.

64. Lim IS: Gold and magnetic oxide/gold core/shell nanoparticles as bio-functional nanoprobes. Nanotechnology 2008, 19(30):305102.

65. Duan H, Nie S: Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. J Am Chem Soc 2007, 129(11):3333–3338.
153. Geho D. APEGylated, steptavidin-conjugated quantum dots are effective detection elements for reverse-phase protein microarrays. *Bioconjugate Chem* 2006, 16(5):559–566.

154. Altwegg R. Protein microarrays and quantum dot probes for early cancer detection. *Colloids Surf B Biointerfaces* 2007, 58(2):309–314.

155. Stephens DJ, Allan VI. Light microscopy techniques for live cell imaging. *Science* 2003, 300(5616):82–88.

156. Delehanty JB. Quantum dots and peptides: a bright future together. *Pept Sci* 2007, 88(3):325–339.

157. Chen B. Transmembrane delivery of the cell-penetrating peptide oligodeoxynucleotides by functionalized multiwalled carbon nanotubes. *Nano Lett* 2007, 7(10):2976–2980.

158. Chen E. Transmembrane delivery of the cell-penetrating peptide conjugated semiconductor quantum dots. *Langmuir* 2008, 24(20):11866–11871.

159. Xue F. Enhancement of intracellular delivery of cdte quantum dots (cdts) to living cells by tat conjugation. *J Fluoresc* 2007, 17(2):149–154.

160. Delehanty JB. Self-assembled quantum dot–peptide bioconjugates for selective intracellular delivery. *Bioconjugate Chem* 2006, 17(4):920–927.

161. Yuan Q. Imaging and tracking of Tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. *J Am Chem Soc* 2007, 129(47):14759–14766.

162. Wei Y. Surface coating directed cellular delivery of TAT-functionalized quantum dots. *Bioconjugate Chem* 2009, 20(9):1752–1758.

163. Lagerholm BC. Multicolor coding of cells with cationic peptide coated quantum dots. *Nano Lett* 2004, 4(10):2019–2022.

164. Bagalkot V. Quantum dot–aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. *Nano Lett* 2007, 7(10):3065–3070.

165. Bakalova R. Multimodal silica-shelled quantum dots: direct intracellular delivery, photosensitization, toxic, and microcirculation effects. *Bioconjugate Chem* 2008, 19(6):1135–1142.

166. Yumin K. Mechanochemical delivery and dynamic tracking of fluorescent quantum dots in the cytoplasm and nucleus of living cells. *Nano Lett* 2009, 9(5):2193–2198.

167. Yuan Q, Hein S, Misra RDK. New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: synthesis, characterization and in vitro drug delivery response. *Acta Biomater* 2010, 6(7):2732–2739.

168. Zhang P, Liu W. ZnO QD@PMAA-co-PDMAEMA nonviral vector for plasmid DNA delivery and bioimaging. *Biomaterials* 2010, 31(11):3087–3094.

169. Jablonski AE, Humphries WH, Payne CK. Quantum dot–amphipol nanocomplex for intracellular delivery and real-time imaging of siRNA. *ACS Nano* 2008, 2(7):1403–1410.

170. Yan M. An in vitro study of vascular endothelial toxicity of CdTe quantum dots. *Toxicology* 2011, 282(3):94–103.

171. Chen N. The cytotoxicity of cadmium-based quantum dots. *Biomaterials* 2012, 33(5):1238–1244.

172. Alkaradagh A, Anjari D, Zarharni N, Mohammad R, Davaran S. Preparation and in vitro evaluation of Doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible co-polymers. *Int J Nanomedicine* 2012, 7:511–526.

173. Alkaradagh A, Zarharni N, Mikaeli H, Akgani D, Goganian AM, Khbani HK, Samei M, Davaran S. Synthesis, characterization, and in vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled delivery of Doxorubicin. *Nanotechnol Sci Appl* 2012, 5(1):14–25.

174. Alkaradagh A, Samei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. *Nanoscale Res Lett* 2012, 7:144.

175. Wang ZM, Kunets VP, Xie YZ, Schmidbauer M, Dorogan VG, Mazur YI, Salamo GJ. Multi-layer self-organization of InGaAs quantum wires on GaAs surfaces. *Phys. Lett. A* 2010, 375(1):70–173.

176. Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. *Environ Health Perspect* 2006, 114(2):165–172.