Technical Advances in Endoscopic Ultrasound (EUS)-Guided Tissue Acquisition for Pancreatic Cancers: How Can We Get the Best Results with EUS-Guided Fine Needle Aspiration?

Prashant Kedia, Monica Gaidhane and Michel Kahaleh
Division of Gastroenterology and Hepatology, New York Presbyterian Hospital, Weill Cornell Medical College, New York, NY, USA

Endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) is one of the least invasive and most effective modality in diagnosing pancreatic adenocarcinoma in solid pancreatic lesions, with a higher diagnostic accuracy than cystic tumors. EUS-FNA has been shown to detect tumors less than 3 mm, due to high spatial resolution allowing the detection of very small lesions and vascular invasion, particularly in the pancreatic head and neck, which may not be detected on transverse computed tomography. Furthermore, this minimally invasive procedure is often ideal in the endoscopic procurement of tissue in patients with unresectable tumors. While EUS-FNA has been increasingly used as a diagnostic tool, most studies have collectively looked at all primary pancreatic solid lesions, including lymphomas and pancreatic neuroendocrine neoplasms, whereas very few studies have examined the diagnostic utility of EUS-FNA of pancreatic ductal carcinoma only. As with any novel and advanced endoscopic procedure that may incorporate several practices and approaches, endoscopists have adopted diverse techniques to improve the tissue procurement practice and increase diagnostic accuracy. In this article, we present a review of literature to date and discuss currently practiced EUS-FNA technique, including indications, technical details, equipment, patient selection, and diagnostic accuracy.

Key Words: Endosonography; Biopsy, fine-needle; Pancreatic cyst; Lesions; Pancreatic neoplasms

INTRODUCTION

Despite advancements in medical and surgical therapy in the past few decades, pancreatic cancer continues to be a devastating disease with a dismal prognosis. Unfortunately, the incidence of pancreatic adenocarcinoma is rising and it remains one of the leading causes of cancer-related deaths worldwide.1,2 Multiple epidemiologic studies have shown the 5-year survival rate to be less than 5%.3 This is in part due to the delayed diagnosis of this cancer in individuals often because of the late onset of symptoms. At initial imaging evaluation, about 80% of patients will already have locally advanced disease or advanced metastasis, thus precluding the possibility of a curative surgical resection.4 Of the 20% of patients that appear resectable and index evaluation, less than half end up undergoing curative surgical resection because of regional tumor spreading at the time of surgery.5 Therefore, early and accurate diagnosis is crucial to provide patients with the necessary time and information to make appropriate treatment decisions and improve their prognosis.

Endoscopic ultrasound (EUS) has been shown to be a valuable imaging tool for the detection of pancreatic lesions. However, it is the capability to perform fine needle aspiration (FNA) and provide a concurrent tissue diagnosis at the time of EUS that has made it an essential tool in the diagnostic algorithm for various visceral malignancies, especially solid pancreatic lesions. Since the first report of EUS-FNA of the pancreas by Vilmann et al.6 in 1992, EUS-FNA has become the standard of care for tissue diagnosis in the pancreas because it is a safe, effective, and accurate procedure.5 Various decisions and facets go into performing successful EUS-FNA such as selection of needle size and type, location of the targeted lesion, availability of onsite cytopathology, use of acces-
sories such as stylets and suction, endoscopic technique, and utilization of novel imaging enhancing techniques like elastography and contrast-harmonic EUS. This review will summarize the current literature regarding these various aspects of EUS-FNA and how to optimize tissue acquisition in the pancreas.

DIAGNOSTIC EUS

The four main objectives of EUS in managing pancreatic lesions include detection, staging, determining surgical resectability, and making a confirmatory tissue diagnosis. The first three goals do not require tissue acquisition. The proximity of the echoendoscope to the pancreas allows for exceptional imaging of the head, neck, and uncinate process from the duodenum and the body and tail from the stomach. Multiple studies have shown EUS to be both sensitive and accurate in staging pancreatic lesions. Also the high negative-predictive value of EUS when evaluating pancreatic lesions makes it a reasonable rule out test for malignancy, which can be helpful to clinicians in situations of unclear cross-sectional imaging. Although some of the superiority that EUS enjoyed for many years over standard computerized axial tomography (computed tomography, CT) has diminished due to improved cross-sectional imaging technology (i.e., helical CT), many experts still consider it to be the single best test for evaluation of pancreatic lesions.

In terms of pancreatic tumor detection, EUS has been shown in prior to studies to be superior to cross-sectional imaging (Table 1). Especially for smaller lesions (<3 cm), EUS holds the advantage over CT and transabdominal ultrasound. Although some authors question whether the dominance of EUS over cross-sectional imaging given modern advances in radiographic imaging, a recent systemic review reinforced the conventional data and popular consensus.

Once a lesion has been discovered, staging that lesion and determining whether it is surgically resectable is of utmost importance to establish a prognosis and means of treatment. As with EUS sensitivity, earlier studies of comparing EUS to standard CT showed a clear advantage of EUS in staging tumors and determining resectability (Tables 2, 3). Generally EUS consistently performed better than standard CT for staging and determining tumor extension, however the results are less consistent when compared to helical or multidetector CT. In one study, EUS was most accurate at assessing tumor size and lymph node involvement, while helical CT was more precise regarding overall staging, resectability, vascular invasion, distant metastasis, and locoregional exten-

Table 1. Sensitivity of Endoscopic Ultrasound Compared to Cross-Sectional Imaging for Detecting Pancreatic Lesions

Author	Number	EUS (t)	CT Helical/multidetector CT
Rösch et al., 1992	60	98	85
Palazzo et al., 1993	49	91	66
Müller et al., 1994	33	94	69
Marty et al., 1995	37	92	63
Melzer et al., 1996	12	100	83
Sugiyama et al., 1997	73	96	86
Legmann et al., 1998	30	100	-
Gress et al., 1999	81	100	74
Mertz et al., 2000	31	93	-
Rivadeneira et al., 2003	44	100	-
Agarwal et al., 2004	81	100	-
Dewitt et al., 2004	80	98	-

EUS, endoscopic ultrasound; CT, computed tomography.

Table 2. Accuracy of Endoscopic Ultrasound Staging Pancreatic Cancer (T and N) Compared to Cross-Sectional Imaging

Author	Number	EUS (t)	EUS (n)	Standard CT (t)	Standard CT (n)	MD/H CT (t)	MD/H CT (n)
Mukai et al., 1991	26	-	65	-	-	-	-
Rösch et al., 1992	40	-	72	-	-	-	-
Palazzo et al., 1993	64	82	64	45	50	-	-
Müller et al., 1994	16	82	50	56	38	-	-
Legmann et al., 1998	22	90	86	-	86	77	
Midwinter et al., 1999	23	-	74	-	-	-	65
Gress et al., 1999	81	85	72	30	55	-	-
Rivadeneira et al., 2003	44	-	84	-	-	-	68
Soriano et al., 2004	62	63	67	-	73	56	
Ramsay et al., 2004	27	63	69	-	76	63	
Dewitt et al., 2004	53	67	44	-	-	41	47

EUS, endoscopic ultrasound; CT, computed tomography; MD/H, multidetector/helical.
Effective EUS-FNA for Pancreatic Cancer

EUS-FNA

Although EUS has clearly been established as the most sensitive modality for pancreatic lesions, distinguishing malignant from benign etiologies can be difficult in certain clinical scenarios such as chronic pancreatitis. For this reason, establishing a tissue diagnosis using the cytopathology and histology obtained from EUS-FNA has become both paramount and essential to this technique. EUS-FNA has become widely accepted as a safe, effective, and consistent method of diagnosing pancreatic cancer. A recent meta-analysis evaluated 41 studies with a total of 4,766 patients having undergone EUS-FNA for pancreatic lesions and reported the pooled accuracy to be 86.8% and specificity 95.8% (Table 4). This study also found that the accuracy of EUS-FNA is improving over time; in subgroup analysis, EUS-FNA accuracy was higher during 2001 to 2009 than between 1995 to 2000. Another systemic review including studies from the past 10 years confirmed this notion as they reported pooled sensitivity and specificity rates of 92 and 96%. The etiology of this trend is likely multifactorial due to the natural learning curve of this procedure in the endoscopic community, better instruments, and the increased availability of specialized training for EUS-providers.

EUS-FNA VERSUS OTHER TISSUE SAMPLING MODALITIES

Compared to alternate tissue-acquisition techniques such as

Table 3. Accuracy of Endoscopic Ultrasound Determination of Surgical Resectability of Pancreatic Lesions Compared to Cross-Sectional Imaging

Author	Number	Modality	Accuracy
Legmann et al., 1998	27	EUS	92
		Helical CT	93
Gress et al., 1999	75	EUS	93
		Standard CT	60
Tierney et al., 2001	24	EUS	83
		Helical CT	75
Soriano et al., 2004	62	EUS	67
		Helical CT	83
Dewitt et al., 2004	53	EUS	77
		Multidetector CT	77

EUS, endoscopic ultrasound; CT, computed tomography.

Table 4. Endoscopic Ultrasound-Guided Fine Needle Aspiration Diagnostics Sensitivity and Accuracy for Pancreatic Lesions

Author	Sensitivity	Specificity	Accuracy
Wegener et al., 1995	44	100	-
Giovannini et al., 1995	75	100	-
Cahn et al., 1996	87	100	-
Chang et al., 1997	92	100	95
Bhutani et al., 1997	64	100	-
Baron et al., 1997	95	88	-
Faigel et al., 1997	94	100	-
Wiersema et al., 1997	91	97	-
Binmoeller et al., 1998	68	100	-
Hunerbein et al., 1998	67	100	-
Williams et al., 1999	82	100	85
Suits et al., 1999	96	100	96
Erickson et al., 2000	95	100	-
Voss et al., 2000	68	88	74
Brandwein et al., 2001	79	100	85
Gress et al., 2001	93	100	-
Mallery et al., 2002	74	100	76
Ylagan et al., 2002	78	100	-
Fritscher-Ravens et al., 2002	88	100	-
Harewood et al., 2002	94	71	84
Levy et al., 2003	67	100	60
Ahif et al., 2003	80	82	-
Raut et al., 2003	91	100	92
Larghi et al., 2004	86	100	-
Ho et al., 2004	99	100	-
Itoi et al., 2005	100	100	-
DeWitt et al., 2005	100	100	-
Gines et al., 2005	64	100	-
Ryozawa et al., 2005	82	100	84
Varadarajulu et al., 2005	91	94	91
Mitsuhashi et al., 2006	95	100	82
Wittmann et al., 2006	60	80	77
Horwhat et al., 2006	88	35	-
Storch et al., 2006	60	100	76
Aithal et al., 2007	94	100	82
Rocca et al., 2007	90	78	82
Ardengh et al., 2007	78	99	87
Eloubeidi et al., 2007	95	92	94
Agarwal et al., 2008	89	100	-
Holt et al., 2008	69	93	-
Jindal et al., 2008	98	100	-
Pooled values	87	96	87
as percutaneous CT-guided biopsy and endoscopic retrograde cholangiopancreatography (ERCP) brush cytology, EUS-FNA holds an advantage of being more sensitive and less invasive. It is well established that the sensitivity of ERCP brush cytology is quite low and ranges anywhere between 30% to 85%. Therefore, EUS-FNA has supplanted ERCP brush cytology as the primary method of pancreatic tissue acquisition especially in patients without obstructive jaundice. When compared to CT-guided biopsy, EUS-FNA has both the logistical and economic advantage being able to image and obtain tissue during a single-session as opposed to two separate occurrences. Head to head trials have also supported the increased sensitivity of EUS-FNA compared to CT-guided biopsy. Also there is a concern that CT-guided biopsy may confer a higher risk of peritoneal tumor seeding compared to EUS-FNA, which has been shown in retrospective studies to be as high as 16.3% compared to 2.2%. EUS-FNA has also been shown to be more sensitive for detecting and sampling malignant ascites compared to CT, therefore furthering its diagnostic advantage over percutaneous sampling techniques.

EUS-FNA has also proved to be a safe and effective salvage biopsy maneuver in cases of nondiagnostic ERCP brush cytology and CT-guided biopsy. In the study by Harewood and Wiersma, 185 patients with pancreatic masses were assessed by CT-guided biopsy or ERCP brush cytology prior to going to EUS-FNA. Of the 58 patients with negative CT-guided biopsies and 36 patients with negative ERCP brush cytology, subsequent EUS-FNA detected malignancy in 90% and 94% of patients. The high sensitivity and accuracy of EUS-FNA after previously negative tissue sampling procedures has been confirmed in other studies as well, which boost sensitivity and accuracy rates of 93% and 88%.

EUS-FNA SAMPLING: TECHNIQUES AND ACCESSORIES

Positioning and technique

In general, EUS-FNA is performed best when the echoendoscope is in a stable position with a straight tip, thus allowing for easy passage of the FNA needle. This is usually achieved more often in the transesophageal and transgastric position as opposed to the transduodenal. When targeting the uncinate process or pancreatic neck from the duodenal bulb, the tip of the echoendoscope is flexed, thus making needle passage more difficult. Troubleshooting this issue by maneuvering the echoendoscope into the long position may solve the problem, however at the expense of a more precarious scope position. The other option to deal with difficult passage of the needle in torqued or flexed positions is to choose a smaller gauge (G) such as the 25 G needles to allow for easier passage.

It is important during EUS-FNA for the endoscopist to actively attempt to sample multiple sections of a pancreatic lesion rather than mechanically penetrate only one tissue tract. Because neoplastic lesions can be heterogenous in nature, with necrotic, acellular centers, it is important to target multiple areas of the lesion especially the periphery to improve cellular yield. A recently described fanning-technique has become accepted amongst endosonographers as one study has shown it to improve first pass diagnostic rates by almost 30%. The idea is to repurpose the needle angle using the dials and elevator intermittently to successively sample from multiple areas of the lesion rather than one singular angle. It is thought that the fanning technique works not only by successively sampling new tracts of tissue, but limiting the amount of blood and artifact from previous tract sites.

One recurrent question endosonographers face is the least number of passes that is adequate to sample a pancreatic lesion. In cases where onsite cytopathology is available, this question becomes much easier to answer because there is real-time feedback on FNA yield. However, in cases without that luxury, the risk of causing more cellular injury and possible complications must be weighed against the benefit of improving diagnostic accuracy. As of now, there is no generalized consensus about the optimal number of passes or sampling techniques for EUS-FNA of pancreatic lesions. Various studies have estimated the ideal number of needle passes in the pancreas without onsite cytopathology to be between 3 and 7. Wallace et al. recommended 3 needle passes each with back and forth motions of about 30 seconds each to adequately detect pancreatic malignancy. Pellisé Urquiza et al. found that the diagnostic plateau for EUS-FNA is reached after the fourth pass. Leblanc et al. found that the diagnostic sensitivity of 7 and 5 needle passes in the pancreas and lymph nodes to be about 83% and 77%. While there is no consensus, based on the available data, if no onsite cytopathology is available some authors recommend at least 5 to 6 passes in the pancreas and 2 to 3 passes in lymph nodes for adequate EUS-FNA sensitivity.

Choosing the needle

Unfortunately, there is no single EUS-FNA needle available that is perfect for every pancreatic lesion. Therefore, the endoscopist must use their experience and clinical judgment to decide on the appropriate needle type. Generally when making this decision, they should consider which needle will optimize cellular yield, minimize complications, and specimen contamination, and the need for needle flexibility based on the lesion’s location in the pancreas. As stated before, transduodenal puncture to sample pancreatic head, neck, and uncinate lesions may demand more pliable needles due to the
As of now, there are three needle G (19, 22, 25 G) available for EUS-FNA. Multiple prospective studies, including four randomized-controlled trials (RCTs) have been performed to compare the diagnostic yield and accuracy of these needles (Table 5).80-84 Three of the RCTs compare 22 and 25 G needles without any statistically significant differences in diagnostic accuracy, although there was a trend towards significance when using 25 G needles in pancreatic head/uncinate lesions.81,82 One prospective study by Sakamoto et al.84 showed a clear benefit of the 25 G over the 22 G for uncinate processes with reported diagnostic accuracies of 100% versus 33%. These studies also revealed that while the 19 G needle may improve cellular yield compared to the smaller needles, it comes at the expense of decreased efficacy for transduodenal lesions.

A recent meta-analysis on the issue found that 25 G needles may have a slight benefit over 22 G in terms of specimen adequacy, however this did not translate into significantly higher diagnostic accuracy or fewer complications.85 Therefore, the choice between 25 and 22 G needle may be left up to the endoscopist's preference with the caveat that 25 G is probably superior for pancreatic head lesions. On the other hand, 19 G needles may provide higher cellular yields and potentially provide histologic sample, but are not generally effective in pancreatic head lesions.

Histology: EUS-fine needle biopsy

Despite the impressive outcomes achieved with EUS-FNA, there are some limitations of obtaining tissue via aspiration for cytology. As mentioned earlier, one limitation is the unclear number of passes required to achieve an adequate sample in the absence of an onsite cytopathologist. This issue is amplified in settings of pancreatic tissue fibrosis and distortion such as chronic pancreatitis when the cellular yield from EUS-FNA is diminished.86 Also, while usually 100 cells or less is the minimum number to obtain a pathologic diagnosis, some tests may require additional cells such as RNA extraction.8 Finally, cytology is devoid of tissue architecture, which may be necessary in certain situations to clarify a diagnosis such as lymphoma, autoimmune pancreatitis, and gastrointestinal stromal tumors.

To address these concerns, various EUS-compatible core biopsy needles have been developed including the 19 G Trucut (Wilson Cook, Winston-Salem, NC, USA) and 19/22 G ProCore (Cook Endoscopy, Winston-Salem, NC, USA). These needles have various design mechanisms that allow for cutting and procurement of a solid core of architecture-preserved tissue. The actual benefit of EUS-guided fine needle biopsy (FNB) for pancreatic lesions is unclear. Various reports have quoted the accuracy rates of EUS-FNB in the pancreas to be between 61% and 89.4% (Table 6).53,55,61,86-88 The rigidity of 19 G Trucut needle proved to be a limitation for transduodenal sampling as Itoi et al.86 reported zero percent sensitivity for uncinate lesions. This limitation has been somewhat overcome with the development of more flexible core biopsy needles. One RCT comparing 22 G EUS-FNA and FNB needles for pancreatic lesions found no significant difference in diagnostic yield/adequacy, technical success, and complications.88 Some authors have shown that the combination of both modalities may improve both sensitivity and accuracy in assessing pancreatic lesions.61 Thus, as of now, there is no clear indication that EUS-FNB is preferred over EUS-FNA for pancreatic lesions unless histologic analysis is required.

Using suction

Conventionally, the use of suction on the FNA needle system had been standard in the endoscopic world because of the intuitive notion that it would increase cellular yield. However, the need for suction is now being questioned by some investigators who reported no significant increase in diagnostic accuracy when suction was used.89 This suggests that suction may not be necessary for EUS-FNA.

Table 5. Trials Comparing Different Needle Gauges for Endoscopic Ultrasound-Guided Fine Needle Aspiration of Solid Mass Lesions

Author	Study design	Number	Location	Needles, G	Diagnostic accuracy, %	Comments
Siddiqui et al.	RCT	131	All lesions	22 vs. 25	87.5 vs. 9; p=NS	
	RCT	127	All lesions	22 vs. 25	77.8 vs. 78.1; p=NS	
Camellini et al.	RCT	50	Pancreas	22 vs. 25	86 vs. 94; p=NS	
Fabbri et al.	RCT	117	Pancreas/peripancreas	19 vs. 22	94.5 vs. 78.9; p=0.01	
Song et al.	RCT	24	Pancreas	25 vs. 22 vs. 19 (Trucut)	91.7 vs. 79.7 vs. 54.1; p=NS (25 G vs. 22 G)	A 25 G significantly better than others for uncinate masses
Sakamoto et al.	Prospective case series	24	Pancreas	25 vs. 22 vs. 19 (Trucut)	91.7 vs. 79.7 vs. 54.1; p=NS (25 G vs. 22 G)	A 25 G significantly better than others for uncinate masses

G, gauge; RCT, randomized-controlled trial; NS, not significant.
ever, although this has shown to be true in various studies, it comes at a price of decreasing the quality of the specimen due to increased bloodiness. This has been shown in two of the three RCTs performed on this topic (Table 7). Thus, while there is no consensus on the topic, many authors conclude that suction is of limited value during EUS-FNA pancreas because it reduces the quality of the specimen. However, in cases where cellular yield is low such as fibrotic lesions in chronic pancreatitis, use of suction may be appropriate to improve cellularity and diagnostic yield. In softer lesions, which may contain necrosis and blood, the use of suction is discouraged to minimize distortion of the cellular sample.

Using the stylet

In every EUS-FNA system, there is a stylet preloaded to the tip of the needle. The stylet is a rigid metal wire that runs through the length of the FNA needle to theoretically prevent any tissue plugs that might prevent adequate sample procurement of the target lesion as the FNA needle traverses visceral organs. Many endoscopists find the use of the stylet tedious and risky as it increases the chance for needle-stick injuries. Three RCTs have been performed looking at the diagnostic yield of performing EUS-FNA in the pancreas with or without and stylet. All three of these well-designed studies have shown consistent results in that the use of the stylet offers no advantage in terms of diagnostic yield, but does significantly increase the bloodiness of specimens. Therefore, there is no advantage to using the stylet when performing EUS-FNA of the pancreas.

Onsite cytopathology

Unfortunately, up to 32% of EUS-FNA specimens may be non-diagnostic for a variety of reasons including acellularity and specimen distortion from blood and artifact. Therefore, having a trained onsite cytopathologist to actively assess the adequacy of samples during the procedure is very valuable, and unfortunately is a luxury that not all endoscopists can enjoy. Multiple studies have revealed that real-time onsite cytopathology increases the diagnostic yield and reduces the number of indeterminate or unsatisfactory samples from EUS-FNA (Table 8).

Alsohaibani et al. showed increased diagnostic yield of 22% even if a trained cytotechnician is preparing slides as opposed to an endoscopy nurse or technician. Other studies have also shown that onsite cytopathology can increase diagnostic yield by 15% to 29% along with reducing the number of re-

Table 6. Endoscopic Ultrasound-Guided Fine Needle Biopsy Diagnostic Sensitivity and Accuracy for Pancreatic Solid Lesions

Author	Number	Location	Needle, G	Sensitivity	NPV	Accuracy
Larghi et al., 2004	23	Pancreas	19 Trucut	74	-	61
Itoi et al., 2005	16	Pancreas	19 Trucut	69	-	-
Wittmann et al., 2006	83	Pancreas	19 Trucut	81	-	56
Thomas et al., 2009	113	Pancreas	19 Trucut	62.4	25	67.5
Iglesias-Garcia et al., 2011	47	Pancreas	19 Procore	95.7	-	89.4
Bang et al., 2012	28	Pancreat	19 Procore	-	-	89.3

G. gauge; NPV, negative predictive value.

Table 7. Trials Evaluating the Role of Suction in Performing Endoscopic Ultrasound-Guided Fine Needle Aspiration

Author	Number	Measure	Suction	No suction	p-value
Mair et al., 1989	100	Diagnostic yield	Increased	Baseline	NS
		Bloodiness	-	-	NS
		Cellularity	-	-	NS
Wallace et al., 2001	43	Diagnostic yield	Unchanged	Unchanged	0.73
		Bloodiness	Uncreased	Baseline	0.0004
		Cellularity	Better	Baseline	0.01
Puri et al., 2009	52	Diagnostic yield	92.3	80	0.1
		Bloodiness	76.9	88.5	0.14
		Cellularity	100	100	1
Kundu et al., 2009	100	Diagnostic yield	78	81	0.61
		Bloodiness	72	50	0.002
		Cellularity	50	59	0.59

NS, not significant.
quired needles passes and possible complications associated with the procedure.99-101 The combination of increased diagnostic yield and fewer nondiagnostic specimens can translate into fewer needles used, shorter procedure times, fewer repeat procedures, and significant cost reduction. Indeed, the cost-benefit of onsite cytopathology has been evaluated and estimated to be over $400,000 annually for a single institution in one study.78,85

SLIDE PREPARATION AND FIXATIVE SOLUTIONS

EUS-FNA specimens are prepared in two methods to create smear. For immediate interpretation, the specimens can be air-dried and stained with Diff-Quik (Dade Diagnostics, Miami, FL, USA). Otherwise specimens can be fixed in an alcohol solution, which allows for nuclear preservation and eventually stained with Papanicolaou or H&E stains.75 If special stains are required, then the sample can be stored in liquid media and prepared for cell block, which involves centrifuge, fixation, sectioning, and staining with H&E. A newer liquid-based cytology (Thin prep; Cytoc Inc., Marlborough, MA, USA and SurePath; TriPath Inc., Burlington, NC, USA) is now available. The benefits of this technique are that it may mitigate human error during preparation, better preserve the cellular integrity, and display cells in a uniform monolayer dispersion.75 However, the liquid-based technology is costly and its accuracy has not been validated. Multiple studies have shown that traditional smear preparation exhibits a higher diagnostic accuracy (84% to 98% vs. 64% to 67%) when compared directly to liquid-based cytology. More studies are needed to evaluate the efficacy and usefulness of this preparation.

IMPROVING EUS-FNA: ELASTOGRAPHY, CONTRAST HARMONIC EUS, AND FLUORESCENCE IN SITU HYBRIDIZATION

Although EUS-FNA is a good test for evaluating pancreatic lesions, it is not perfect as evidenced by the pooled diagnostic accuracy of about 87% in a recent meta-analysis.29 Because making the diagnosis of pancreatic malignancy is so crucial to overall prognosis, various complementary imaging and analytic technologies have been developed to try and improve this limitation.

Two novel imaging technologies now available for EUS include elastography and contrast harmonic echo. Elastography capitalizes on the fact that diseased tissue such as malignancy can lead to altered mechanical properties of the tissue through remodeling, inflammation, and fibrosis.102 Thus, elastography can measure tissue stiffness and help differentiate benign versus malignant tissue without having to actually physically sample the lesion. Using the hue-histogram produced by the technology, which correlates with tissue elasticity, some studies have been able to show accuracy rates up to 89% to distinguish benign versus malignant pancreatic lesions and lymph nodes.103,104 A variable known as the strain ratio, which is a calculated quotient of the lesion’s relative stiffness, has been shown to have a sensitivity and specificity of 100% and 92.9% in diagnosing pancreatic malignancies.105 Contrast-harmonic echo (CHE) is an imaging modality that enhances vascular imaging during EUS. Intravenous contrast agents containing gas-filled microbubbles are injected into peripheral veins thus allowing improved EUS visualization of the microvasculature, which may help diagnose malignant lesions. By evaluating the echogenicity and enhancement of pancreatic lesions during CHE, Fusaroli et al.106 were able to show improved detection (96%) and accuracy (82%) for pancreatic adenocarcinomas. While elastography and CHE are promising technologies, they are still relatively new and require further research to establish their role in evaluating pancreatic masses. As of now, they should be used as complementary tools to EUS-FNA in specialized centers that have experts trained in their usage.

Another enhancement on the interpretation side of EUS-FNA has been the development of fluorescence in situ hybridization (FISH). FISH is a technique that can detect various chromosomal abnormalities by using specific, fluorescently-labeled DNA probes. Polysomy and trisomy FISH (aside from trisomy 7) have been shown to be independent predictors of malignancy with high specificities.107 Multiple studies have shown that in cases of indeterminate cytology, FISH can provide a diagnosis up to 79% of cases without compromising specificity.108,109 Further cost-effectiveness and efficacy studies are required to determine which in application of

Author	Number	Diagnostic yield with vs. without OCP, %	Unsatisfactory, %	Indeterminate, %
Klapman et al.,96, 2003	198	78 vs. 32, p=0.001	10 vs. 12, p=0.9	9 vs. 20, p=0.003
Alsohaibani et al.,97, 2009	104	77 vs. 53, p=0.01	23 vs. 47, p=0.001	0 vs. 17, p=NS
Iglesias-Garcia et al.,98, 2011	182	97 vs. 86, p=0.01	2.1 vs. 10.3, p=0.02	1 vs. 13, p=0.002

OCP, on-site cytopathologist; NS, not significant.
FISH is reasonable.

PITFALS OF EUS-FNA: NONDIAGNOSTIC SAMPLING

Unfortunately, even the most experienced endoscopists cannot perform EUS-FNA with 100% sensitivity due to the inherent limitations of this technology. Lower diagnostic yields are inevitable in certain clinical diagnoses like chronic pancreatitis, which complicates sampling due to increased parenchymal lobularity and calcification. Also, transduodenal EUS-FNA can be challenging due to the position of the endoscope, passage of the needle, and visualization of the target lesion. Cytology samples, although adequate, may not be definitive in many cases. And finally, the lack of an onsite cytopathologist, often in the community setting, puts endosonographers at an immediate disadvantage in terms of procuring a diagnostic sample.

There is no universally accepted guideline on how to manage patients with suspected pancreatic cancer, but negative FNA sampling. The management options include repeating the EUS-FNA, attempting CT-guided biopsy, or proceeding to surgical exploration. In healthy, surgically-resectable patients, the decision to go to surgery is relatively straightforward. However, in less healthy/older patients with an unclear clinical picture or margin of tumor, that may be poor surgical candidates, the situation becomes more challenging. Generally, performing CT-guided biopsy is avoided because of the risk of peritoneal tumor seeding. Therefore, in these cases, repeating the EUS-FNA may be the most prudent approach, with reported diagnostic rates of 61% to 84%.

For newly trained endosonographers practicing in settings without onsite cytopathology, and thus are susceptible to lower EUS-FNA diagnostic yields, consideration should be given to learning how to self-interpret cytopathology specimens. In these cases, EUS-FNA method should be optimized including performing the appropriate number of passes (at least six to seven in the pancreas and three in lymph nodes) along with the fanning technique to minimize insufficient specimens. Use of the 19 G core biopsy needle may also improve cellular yield. It is important for proceduralists performing EUS-FNA to understand the indications and relevant literature behind the tools they are using to ensure the best outcomes of the procedure and minimize nondiagnostic sampling.

CONCLUSIONS

EUS-FNA has become a necessary tool for the complete and accurate evaluation of pancreatic lesions. Although it may be the single best test, starting with cross-sectional imaging to initially evaluate a pancreatic lesion will complement further EUS-FNA assessment. EUS-FNA has established itself as the least invasive, safest, and most effective tool for tissue acquisition in the pancreas. It should be performed by trained endosonographers using the proper tools and techniques. Generally, the use of suction, stylets, and core biopsy needles has not proven to improve diagnostic accuracy. However, utilization of onsite cytopathology, the fanning technique, and appropriate needle gauge depending on the lesion’s location improves outcomes. Research is ongoing on how to improve EUS-FNA in terms of novel imaging (elastography, CHE) and sample interpretation (FISH). EUS-FNA has established itself as the first-line procedure for tissue acquisition in the pancreas and will continue to improve as further research is performed to improve its outcomes.

Conflicts of Interest

Dr. Michel Kahaleh has received grant support from Boston Scientific, Fujinon, ECMison, Xlumena Inc., MaunaKea, W.L. Gore, Cook Endoscopy, Aspire Bariatrics, GI Dynamics, and MI Tech. He is a consultant for Xlumena Inc. and Boston Scientific.

REFERENCES

1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin 2009;59:225-249.
2. Helmstaedter L, Riemann JE. Pancreatic cancer: EUS and early diagnosis. Langenbecks Arch Surg 2008:393:923-927.
3. Gudjonsson B. Cancer of the pancreas. 50 years of surgery. Cancer 1987:60:2284-2303.
4. National Cancer Institute. SEER Cancer Statistics Review 1975-2010 [Internet]. Bethesda: National Cancer Institute; 2013 [updated 2013 Jun 14], Available from: http://seer.cancer.gov/csr/1975_2010/
5. Vilmann P, Jacobsen GK, Henriksen FW, Henrikson FW, Hancke S. Endoscopic ultrasound with guided fine needle aspiration biopsy in pancreatic disease. Gastrointest Endosc 1992;38:172-173.
6. Chen J, Yang R, Lu Y, Xia Y, Zhou H. Diagnostic accuracy of endoscopic ultrasound-guided fine-needle aspiration for solid pancreatic lesion: a systematic review. J Cancer Res Clin Oncol 2012;138:1433-1441.
7. Klapman JB, Chang KJ, Lee JG, Nguyen P. Negative predictive value of endoscopic ultrasound in a large series of patients with a clinical suspicion of pancreatic cancer. Am J Gastroenterol 2005;100:2658-2661.
8. Hasan MK, Hawes RH. EUS-guided FNA of solid pancreas tumors. Gastrointest Endosc Clin N Am 2012;22:155-167.
9. Hunt GC, Faigl DO. Assessment of EUS for diagnosing, staging, and determining resectability of pancreatic cancer: a review. Gastrointest Endosc 2002;55:232-237.
10. Rösch T, Braig C, Gain T, et al. Staging of pancreatic and ampullary carcinoma by endoscopic ultrasonography: comparison with conventional sonography, computed tomography, and angiography. Gastroenterology 1992;102:188-199.
11. Palazzo L, Roseau G, Gayet R, et al. Endoscopic ultrasonography in the diagnosis and staging of pancreatic adenocarcinoma: results of a prospective study with comparison to ultrasonography and CT scan. Endoscopy 1993;25:142-150.
12. Müller MF, Meyenberger C, Bertschinger P, Schauer R, Marineck B. Pancreatic tumors: evaluation with endoscopic US, CT, and MR imaging. Radiology 1994;190:745-751.
Effective EUS-FNA for Pancreatic Cancer

spective comparison of ultrasound endoscopy and computed tomogra-
phy in the assessment of locoregional invasiveness of malignant ampul-
lar and pancreatic tumors verified surgically. Gastroenterol Clin Biol
1995;19:197–203.
14. Melzer E, Avidan B, Heyman Z, Goret A, Bar-Mir S. Preoperative as-
essment of blood vessel involvement in patients with pancreatic can-
cer. Isr J Med Sci 1996;32:1086–1088.
15. Sugiyaama M, Hagi H, Atomi Y, Saito M. Diagnosis of portal venous in-
vasion by pancreatobiliary carcinoma: value of endoscopic ultrasonog-
raphy. Abdom Imaging 1997;22:434–438.
16. Legmann F, Vignaux D, Dossuet B, et al. Pancreatic tumors: compari-
son of dual-phase helical CT and endoscopic sonography. AJR Am J
Roentgenol 1998;170:1315–1322.
17. Greiss FG, Hawes RH, Saridès TJ, et al. Role of EUS in the preoperative
staging of pancreatic cancer: a large single-center experience. Gastroin-
test Endosc 1999;50:786–791.
18. Mertz HR, Scheckoules P, Delbeke D, Leach SD. EUS, PET, and CT
scanning for evaluation of pancreatic adenocarcinoma. Gastroenterol
Endosc 2000;52:367–371.
19. Riva-Ricenia DE, Pochapin M, Grobmyer SR, et al. Comparison of lin-
ear array endoscopic ultrasound and helical computed tomography for
the SR of periampullary malignancies. Ann Surg Oncol 2003;10:
890–897.
20. Agarwal B, Abu-Hamda E, Moloke KL, Durbin TE, Katz KD. Endoscopic
ultrasound-guided fine needle aspiration and multidetector spiral CT
in the diagnosis of pancreatic cancer. Am J Gastroenterol 2004;99:
844–850.
21. DeWitt J, Deweeraux BM, Chriswell M, et al. Comparison of endoscopic
ultrasonography and multidetector computed tomography for detect-
ing and staging pancreatic cancer. Ann Intern Med 2004;141:753–763.
22. Volmar KE, Vollmer RT, Jowell PS, Nelson RC, Xie HB. Pancreatic
FNA in 1000 cases: a comparison of imaging modalities. Gastroenterol
Endosc 2005;61:854–861.
23. Dworetzki J, Deweeraux BM, Lehman GA, Sherman S, Imperiale TF.
Comparision of endoscopic ultrasound and computed tomography for
the preoperative evaluation of pancreatic cancer: a systematic review. Clin
Gastroenterol Hepatol 2006;4:717–725.
24. Mukai H, Nakajima M, Yada K, et al. Preoperative diagnosis and stage-
ing of pancreatic cancer by endoscopic ultrasonography (EUS): a com-
parative study with other diagnostic tools. Nihon Shokakibyo Gak-
shi 1991;88:2132–2142.
25. Midwinter MJ, Beveridge CJ, Wilson JB, Bennett MK, Baudouin CJ,
Charnley RM. Correlation between spiral computed tomography, en-
doscopic ultrasonography and findings at operation in pancreatic and
ampullary tumours. Br J Surg 1999;86:189–193.
26. Soriano A, Castells A, Ayuso C, et al. Preoperative staging and tumor
resectability assessment of pancreatic cancer: prospective study com-
paring endoscopic ultrasonography, helical computed tomography,
magnetic resonance imaging, and angiography. Am J Gastroenterol
2004;99:492–501.
27. Ramsay D, Marshall M, Song S, et al. Identification and staging of pan-
creatic tumours using computed tomography, endoscopic ultrasonog-
raphy and magnetoflip trisodium-enhanced magnetic resonance imaging.
Australas Radiol 2004;48:154–161.
28. Tierney WM, Francis IR, Eckhauser E, Ella G, Nostrant TT, Scheiman
JM. The accuracy of EUS and helical CT in the assessment of vascular
invasion by peripancreatic malignancy. Gastroenterol Endosc 2001;53:
182–188.
29. Pali SR, Rechtold ML, Buxbaum JL, Euleubdi MA. How good is en-
doscopic ultrasound-guided fine needle aspiration in diagnosing the cor-
rect etiology for a solid pancreatic mass?: a meta-analysis and systemat-
ic review. Pancreas 2013;42:20–26.
30. Wegener M, Pfaffenbach B, Adamek RJ. Endosonographically guided
transduodenal and transgastric fine-needle aspiration puncture of focal
pancreatic lesions. Bildgebung 1995;62:110–115.
with an EUS-guided trucut biopsy needle compared with EUS-guided FNA. Gastrointest Endosc 2003;57:101-108x.
51. Afify AM, al-Khaafaj FM, Kim B, Scherian JM. Endoscopic ultra-
sonound-guided fine needle aspiration of the pancreas: diagnostic utility and accuracy. Acta Cytol 2003;47:341-348.
52. Raut CP, Grau AM, Stakerel GA, et al. Diagnostic accuracy of endo-
scopic ultrasound-guided fine needle aspiration in patients with pre-
sumed pancreatic cancer. J Gastrointest Surg 2003;7:118-126.
53. Langhi A, Verna FC, Savropoulou SN, Rotterndam H, Lightdale CJ, Ste-
vens PD. EUS-guided trucut needle biopsies in patients with solid pan-
creatic masses: a prospective study. Gastrointest Endosc 2004;59:185-
190.
54. Ho S, Bonasaer R, Michael H, et al. The accuracy of endoscopic ultra-
sound (EUS)-guided fine needle aspiration (FNA) for diagnosing solid pancreatic lesions using a new 25-gauge needle system. Gastrointest Endosc 2004;59:2222.
55. Ito T, Tokiwa F, Sofani A, et al. Puncture of solid pancreatic tumors
guided by endoscopic ultrasonography: a pilot study series comparing
Trucut and 19-gauge and 22-gauge aspiration needles. Endoscopy 2005;37:362-366.
56. DeWitt J, Jowell P, Leblanc J, et al. EUS-guided FNA of pancreatic me-
tastases: a multicenter experience. Gastrointest Endosc 2005;61:689-
696.
57. Giniès A, Wiersema MJ, Clair JE, Pochron NL, Rajan E, Levy MJ. Pro-
spective study of a Trucut needle for performing EUS-guided biopsy
with EUS-guided FNA rescue. Gastrointest Endosc 2005;62:597-601.
58. Ryoza Y, Kato H, Gondo T, et al. Usefulness of endoscopic ultra-
sound-guided fine-needle aspiration biopsy for the diagnosis of pan-
creatic cancer. J Gastroenterol 2005;40:907-911.
59. Varadarajulu S, Tamhane A, Eloubeidi MA. Yield of EUS-guided FNA
of pancreatic masses in the presence or the absence of chronic pancre-
atitis. Gastrointest Endosc 2005;62:728-736.
60. Mitsuhashi T, Ghafari S, Chang CY, Gu M. Endoscopic ultrasound-
guided tissue sampling by combined fine needle aspiration and trucut needle biopsy: a prospective study. Cytopathology 2006;17:
34-41.
61. Wittmann J, Kocjan G, Sguerson SN, Deheragoda M, Pereira SP. Endo-
scopic ultrasound-guided tissue sampling by combined fine needle as-
piration and trucut needle biopsy: a prospective study. Cytopathology 2006;17:27-33.
62. Horwath JD, Paulson EK, McGrath K, et al. A randomized compar-
ison of EUS-guided FNA versus CT or US-guided FNA for the evalua-
tion of pancreatic masses. Gastrointest Endosc 2006;63:966-975.
63. Storch I, Jorda M, Thurer R, et al. Advantage of EUS Trucut biopsy
combined with fine-needle aspiration without immediate on-site cyto-
pathologic examination. Gastrointest Endosc 2006;64:505-511.
64. Aithal GP, Anagnostopoulos GK, Tam W, et al. EUS-guided tissue sam-
pling: comparison of “dual sampling” (Trucut biopsy plus FNA) with
“sequential sampling” (Trucut biopsy and then FNA as required). Endoscopy 2007;39:725-730.
65. Rocca R, De Angelis C, Daperno M, et al. Endoscopic ultrasound-
guided fine needle aspiration (EUS-FNA) for pancreatic lesions: effectiveness in clinical practice. Dig Liver Dis 2007;39:768-774.
66. Ardengh JC, Lopes CV, de Lima LF, et al. Diagnosis of pancreatic tu-
mors by endoscopic ultrasound-guided fine-needle aspiration. World J Gastroenterol 2007;13:3112-3116.
67. Eloubeidi MA, Varadarajulu S, Desai S, et al. A prospective evaluation
of an algorithm incorporating routine postprocedural endoscopic ultra-
sonound-guided fine needle aspiration in suspected pancreatic cancer. J Gastrointest Surg 2007;11:813-819.
68. Agarwal B, Krishna NB, Labundly JL, Salidar R, Akduman EJ. EUS
and/or EUS-guided FNA in patients with CT and/or magnetic reso-
nance imaging findings of enlarged pancreatic head or dilated pan-
cratic duct with or without a dilated common bile duct. Gastrointest En-
dosc 2008;68:237-242.
69. Holt FW, Macklin EA, Brugge WR. Variables affecting the accuracy of
EUS-guided FNA in the diagnosis of focal pancreatic masses. Gastro-
intest Endosc 2008;67:AB218-AB219.
70. Jindal R, Goodman AJ, Yusuf TE, Pavey DA, Michael H, Gress FG.
Clinical utility of endoscopic ultrasound-guided fine needle aspiration
in pancreatic masses using a 25-gauge needle system: a multicenter ex-
perience. Gastrointest Endosc 2008;67:AB218.
71. Athanassiadou P, Grapsa D. Value of endoscopic retrograde cholangi-
opancreatography-guided brushings in preoperative assessment of
pancreaticobiliary strictures: what’s new? Acta Cytol 2008;52:24-34.
72. Micames C, Jowell PS, White R, et al. Lower frequency of peritoneal
carcinomatosis in patients with pancreatic cancer diagnosed by EUS-
guided FNA vs. percutaneous FNA. Gastrointest Endosc 2003;58:690-
695.
73. DeWitt J, LeBlanc J, McHenry L, McGreevy K, Sherman S. Endoscopic ultrasound-guided fine-needle aspiration of ascites. Clin Gastroenterol Hepatol 2007;5:609-615.
74. Mejer OL, Weersma RK, van der Jagt EJ, van Dullumen HM. Endo-
scopic ultrasonography in suspected pancreatic malignancy and inde-
cisive CT. Neuh J Med 2010;368:360-364.
75. Varadarajulu S, Fockens P, Hawes RH. Best practices in endoscopic ul-
trasonound-guided fine-needle aspiration. Clin Gastroenterol Hepatol 2012;10:697-703.
76. Bang JY, Magee SH, Ramesh J, Trevino JM, Varadarajulu S. Random-
ized trial comparing fanning with standard technique for endoscopic ultrasound-guided fine-needle aspiration of solid pancreatic mass le-
sions. Endoscopy 2013;45:445-450.
77. Wallace MB, Kennedy T, Durkański V, et al. Randomized controlled
trial of EUS-guided fine needle aspiration techniques for the detection
of malignant lymphadenopathy. Gastrointest Endosc 2001;54:441-447.
78. Pellise Urquiza M, Fernández-Esparregà C, Solé M, et al. Endoscopic ultrasound-guided fine needle aspiration: predictive factors of accurate diagnosis and cost-minimization analysis of on-site pathologist. Gas-
troenterol Hepatol 2007;30:319-324.
79. LeBlanc JK, Giaccia D, Al-Assi MT, et al. Optimal number of EUS-gui-
ded fine needle passes needed to obtain a correct diagnosis. Gastro-
intest Endosc 2003;59:475-481.
80. Siddiqui UD, Rossi F, Rosenthal LS, Padua MS, Murali-Dhavan V, As-
lanian HR. EUS-guided FNA of solid pancreatic masses: a prospective, randomized trial comparing 22-gauge and 25-gauge needles. Gastro-
intest Endosc 2009;70:1093-1097.
81. Camellini L, Carlinfante G, Azzolini F, et al. A randomized clinical tri-
al comparing 22G and 25G needles in endoscopic ultrasound-guided fine-
neddle aspiration of solid lesions. Endoscopy 2011;43:709-715.
82. Fabbri C, Polermo AM, Luigiano C, et al. Endoscopic ultrasound-
guided fine-needle aspiration with 22- and 25-gauge needles in solid pancreatic masses: a prospective comparative study with randomisa-
tion of needle sequence. Dig Liver Dis 2011;43:647-652.
83. Song TJ, Kim JH, Lee SS, et al. The prospective randomized, controlled
trial of endoscopic ultrasound-guided fine-needle aspiration using 22G and 19G aspiration needles for solid pancreatic or peripancreatic masses. Am J Gastroenterol 2010;105:1739-1745.
84. Sakamoto H, Kitano M, Komaki T, et al. Prospective comparative study of the EUS guided 25-gauge FNA needle with the 19-gauge Truc-
cut needle and 22-gauge needle FNA needle in patients with solid pancreatic masses. J Gastroenterol Hepatol 2009;24:384-390.
85. Affolder KE, Schmidt RL, Matyna AP, Adler DG, Factor RE. Needle
size has only a limited effect on outcomes in EUS-guided fine needle as-
piration: a systematic review and meta-analysis. Dig Dis Sci 2013;58:
1026-1034.
86. Thomas T, Kaye PV, Ragunath K, Aithal G. Efficacy, safety, and predi-
tive factors for a positive yield of EUS-guided Trucut biopsy: a large
tertiary referral center experience. Am J Gastroenterol 2009;104:580-
591.
Effective EUS-FNA for Pancreatic Cancer

87. Iglesias-Garcia J, Polew JW, Larghi A, et al. Feasibility and yield of a new EUS histology needle: results from a multicenter, pooled, cohort study. Gastrointest Endosc 2011;73:1189-1196.

88. Bang JY, Hebert-Magee S, Trevino J, Ramesh J, Varadarajulu S. Randomized trial comparing the 22-gauge aspiration and 22-gauge biopsy needles for EUS-guided sampling of solid pancreatic mass lesions. Gastrointest Endosc 2012;76:321-327.

89. Mair S, Dunbar J, Becker PJ, Du Plessis W. Fine needle cytology: is aspiration suction necessary? A study of 100 masses in various sites. Acta Cytol 1989;33:809-813.

90. Purri R, Vilmann P, Săftoiu A, et al. Randomized controlled trial of endoscopic ultrasound-guided fine-needle sampling with or without suction for better cytological diagnosis. Scand J Gastroenterol 2009;44:499-504.

91. Kandu S, Conway J, Evans JA, Perkins LA, Geisinger K, Mishra G. A prospective, blinded, randomized trial assessing the yield of endoscopic ultrasound-guided fine needle sampling (EUS-FNS) of solid lesions with suction versus no suction. Gastrointest Endosc 2009;69:AB323-AB324.

92. Sahai AV, Paquin SC, Gariety G. A prospective comparison of endoscopic ultrasound-guided fine needle aspiration results obtained in the same lesion, with and without the needle stylet. Endoscopy 2010;42:900-903.

93. Rastogi A, Wani S, Gupta N, et al. A prospective, single-blind, randomized, controlled trial of EUS-guided FNA with and without a stylet. Gastrointest Endosc 2011;74:58-64.

94. Wani S, Gupta N, Gaddam S, et al. A comparative study of endoscopic ultrasound guided fine needle aspiration with and without a stylet. Dig Dis Sci 2011;56:2409-2414.

95. Nasuti J, Gupta PK, BalochZW. Diagnostic value and cost-effectiveness of on-site evaluation of fine-needle aspiration specimens: review of 5,688 cases. Diagn Cytopathol 2002;27:1-4.

96. Klappman JB, Lograsso R, Dye CE, Wixman J. Clinical impact of on-site cytopathology interpretation on endoscopic ultrasound-guided fine needle aspiration. Am J Gastroenterol 2003;98:1289-1294.

97. Alshohaban B, Girgin S, Sandha GS. Does on-site cyto technology evaluation improve the accuracy of endoscopic ultrasound-guided fine-needle aspiration biopsy? Can J Gastroenterol 2009;23:26-30.

98. Iglesias-Garcia J, Dominguez-Munoz JE, Abdulkader I, et al. Influence of on-site cytopathology evaluation on the diagnostic accuracy of endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) of solid pancreatic masses. Am J Gastroenterol 2011;106:1705-1710.

99. Chang KJ, Katz KD, Durbin TE, et al. Endoscopic ultrasound-guided fine-needle aspiration. Gastrointest Endosc 1994;40:694-699.

100. Erickson RA, Savage-Rabie L, Beissner RS. Factors predicting the number of EUS-guided fine-needle passes for diagnosis of pancreatic malignancies. Gastrointest Endosc 2000;51:184-190.

101. LeBlanc JK, Emerson RE, Dewitt J, et al. A prospective study comparing rapid assessment of smears and ThinPrep for endoscopic ultrasound-guided fine-needle aspirates. Endoscopy 2010;42:389-394.

102. Iglesias-Garcia J, Dominguez-Munoz JE. Endoscopic ultrasound image enhancement elastography. Gastrointest Endosc Clin N Am 2012;22:333-348.

103. Giovannini M, Thomas B, Erwan B, et al. Endoscopic ultrasound elastography for evaluation of lymph nodes and pancreatic masses: a multicenter study. World J Gastroenterol 2009;15:1587-1593.

104. Săftoiu A, Vilmann P, Ciurea T, et al. Dynamic analysis of EUS used for the differentiation of benign and malignant lymph nodes. Gastrointest Endosc 2007;66:291-300.

105. Iglesias-Garcia J, Larino-Noia J, Abdulkader I, Forteza J, Dominguez-Munoz JE. Quantitative endoscopic ultrasound elastography: an accurate method for the differentiation of solid pancreatic masses. Gastroenterology 2010;139:1172-1180.

106. Fusetani P, Spada A, Mancino MG, Caletti G. Contrast harmonic endoscopic ultrasound improves accuracy in diagnosis of solid pancreatic masses. Clin Gastroenterol Hepatol 2010;8:629-634.

107. Fritcher EG, Kipp BR, Halling KC, et al. A multivariable model using advanced cytologic methods for the evaluation of indeterminate pancreatic strictures. Gastroenterology 2009;136:2180-2186.

108. Reicher S, Boyar FZ, Albitar M, et al. Fluorescence in situ hybridization for the diagnosis of pancreatic carcinoma. J Gastroenterol Hepatol 2008;23:333-348.

109. Kubilu N, Ribeiro A, Fun YS, et al. EUS-FNA with rescue fluorescence in situ hybridization for the diagnosis of pancreatic carcinoma in patients with inconclusive on-site cytology results. Gastrointest Endosc 2011;74:541-547.

110. Elhoubeiti MA, Varadarajulu S, Desai S, Wilcox CM. Value of repeat endoscopic ultrasound-guided fine needle aspiration for suspected pancreatic cancer. J Gastroenterol Hepatol 2008;23:567-570.

111. DeWitt J, McGreavy K, Sherman S, LeBlanc J. Utility of a repeated EUS at a tertiary-referral center. Gastrointest Endosc 2008;67:610-619.

112. Nicaud M, Hou W, Collins D, Wagh MS, Chauhan S, Draganov PV. The utility of repeat endoscopic ultrasound-guided fine needle aspiration for suspected pancreatic cancer. Gastroenterol Res Pract 2010;2010:268290.