Supporting Information

Rec. Nat. Prod. X:X (202X) XX-XX

Secondary Metabolites from Marine-Derived Fungus

Aspergillus carneus GXIMD00519

Chun-Ju Lu#, Zhen-Zhou Tang#, Zhi-Wei Su, Hai-Yan Li, Geng-Si Zhang,
Cheng-Hai Gao 1, Yong-Hong Liu 1* and Xin-Ya Xu 1*

Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, P.R.China

Table of Contents	Page
Figure S1: HR-ESI-MS spectrum of 1 (carneusin A)	2
Figure S2: 1H-NMR (600 MHz, DMSO-d6) spectrum of 1 (carneusin A)	3
Figure S3: 13C-NMR (150 MHz, DMSO-d6) spectrum of 1 (carneusin A)	4
Figure S4: HSQC spectrum of 1 (carneusin A)	5
Figure S5: HSQC spectrum of 1 (carneusin A) (From δc 18 ppm to δc 28 ppm)	6
Figure S6: HSQC spectrum of 1 (carneusin A) (From δc 100 ppm to δc 116 ppm)	7
Figure S7: HMBC spectrum of 1 (carneusin A)	8
Figure S8: HMBC spectrum of 1 (carneusin A) (From δc 15 ppm to δc 70 ppm)	9
Figure S9: HMBC spectrum of 1 (carneusin A) (From δc 100 ppm to δc 120 ppm)	10
Figure S10: HMBC spectrum of 1 (carneusin A) (From δc 125 ppm to δc 195 ppm)	11
Figure S11: 1H-1H COSY spectrum of 1 (carneusin A)	12
Figure S12: NOESY spectrum of 1 (carneusin A)	13
Figure S13: HR-ESI-MS spectrum of 2 (carneusin B)	14
Figure S14: 1H-NMR (600 MHz, DMSO-d6) spectrum of 2 (carneusin B)	15
Figure S15: 13C-NMR (150 MHz, CDCl3) spectrum of 2 (carneusin B)	16
Figure S16: HSQC spectrum of 2 (carneusin B)	17
Figure S17: HMBC spectrum of 2 (carneusin B)	18
Figure S18: HMBC spectrum of 2 (carneusin B) (From δc 5 ppm to 45 ppm)	19
Figure S19: HMBC spectrum of 2 (carneusin B) (From δc 120 ppm to 190 ppm)	20
Table S1: Relative free energies and equilibrium populations of conformers (1’S, 4’S, 5’S)-1c	21
Figure S20: The optimized structures (left) and the calculated CD spectra of conformers (1’S, 4’S, 5’S)-1 in MeOH at M06-2X/def2TZVP level (right). σ =0.22 eV	21
Table S2: Relative free energies and equilibrium populations of conformers for (6S)-2c	22
Figure S21: The optimized structures (left) and the calculated CD spectra of conformers (6S)-2 in MeOH at M06-2X/def2TZVP level (right). σ =0.3 eV	23
Figure S22: DP4+ probabilities (%) for conformers (6S)-2 (isomer 1) and (6R)-2 (isomer 2)	24
Figure S23: The Scifinder searching results of compound 1	25
Table S3: The structural comparison of similar compounds with 1	26
Figure S24: The Scifinder searching results of compound 2	27
Table S4: The structural comparison of similar compounds with 2	28
Table S5: The NMR data comparison of similar compounds with 1	29

© 2022 ACG Publications. All rights reserved.
Figure S1: HR-ESI-MS spectrum of 1 (carneusin A)
Figure S2: 1H-NMR (600 MHz, DMSO-d_6) spectrum of 1 (carneusin A)
Figure S3: 13C-NMR (150 MHz, DMSO-d_6) spectrum of 1 (carneusin A)
Figure S4: HSQC spectrum of 1 (carneusin A)
Figure S5: HSQC spectrum of 1 (carneusin A) (From δC 18 ppm to δC 28 ppm)
Figure S6: HSQC spectrum of 1 (carneusin A) (From δC 100 ppm to δC 116 ppm)
Figure S7: HMBC spectrum of 1 (carneusin A)
Figure S8: HMBC spectrum of 1 (carneusin A) (From δc 15 ppm to δc 70 ppm)
Figure S9: HMBC spectrum of 1 (carneusin A) (From δ_C 100 ppm to δ_C 120 ppm)
Figure S10: HMBC spectrum of 1 (carneusin A) (From δ_C 125 ppm to δ_C 195 ppm)
Figure S11: 1H-1H COSY spectrum of 1 (carneusin A)
Figure S12: NOESY spectrum of 1 (carneusin A)
Figure S13: HR-ESI-MS spectrum of 2 (carneusin B)
Figure S14: 1H-NMR (600 MHz, DMSO-d_6) spectrum of 2 (carneusin B)
Figure S15: 13C-NMR (150 MHz, CDCl$_3$) spectrum of 2 (carneusin B)
Figure S16: HSQC spectrum of 2 (carneusin B)
Figure S17: HMBC spectrum of 2 (carneusin B)
Figure S18: HMBC spectrum of 2 (carneusin B) (From δ_C 5 ppm to 45 ppm)
Figure S19: HMBC spectrum of 2 (carneusin B) (From δ_c 120 ppm to 190 ppm)
Table S1: Relative free energiesa and equilibrium populationsb of conformers for (1'S, 4'S, 5'S)-\textbf{1}\\

conformer	ΔG	P (%)
1a	0.00	100.00

a B3LYP/6-31G(d), in kcal/mol. b From ΔG values at 298.15 K. c in MeOH, no imaginary frequency.

Figure S20: The optimized structures (left) and the calculated CD spectra of conformers (1'S 4'S, 5'S)-\textbf{1} in MeOH at M06-2X/def2TZVP level (right). σ = 0.22 eV
Table S2: Relative free energiesa and equilibrium populationsb of conformers for (6S)-2c

conformer	ΔG (kcal/mol)	P (%)
2a	0.00	69.13
2b	1.03	11.98
2c	1.15	9.86
2d	1.20	9.03

a B3LYP/6-31G(d), in kcal/mol. b From G values at 298.15 K. c in MeOH, no imaginary frequency.
Figure S21: The optimized structures (left) and the calculated CD spectra of conformers (6S)-2 in MeOH at M06-2X/def2TZVP level (right). $\sigma = 0.3$ eV.
Figure S22: DP4+ probabilities (%) for conformers (6S)-2 (isomer 1) and (6R)-2 (isomer 2)
Figure S23: The SciFinder searching results of compound 1
Table S3: The structural comparison of similar compounds with 1

No.	Similarity score	Similar chemical structure and CAS number	compound 1
1	95	![Chemical structure](image1)	![Chemical structure](image2)
		CAS NO. 28458-23-3 Absolute stereochemistry	
2	95	![Chemical structure](image3)	![Chemical structure](image4)
		CAS NO. 93922-50-0 Absolute stereochemistry	
3	95	![Chemical structure](image5)	![Chemical structure](image6)
		CAS NO. 99528-66-2 Relative stereochemistry	
4	95	![Chemical structure](image7)	![Chemical structure](image8)
		CAS NO. 99528-67-3 Relative stereochemistry	
Figure S24: The Scifinder searching results of compound 2
Table S4: The structural comparison of similar compounds with 2

No.	Similarity score	Chemical structure and CAS number	Chemical structure of compound 2
1	91	![Chemical structure](image)	![Chemical structure](image)
		CAS NO. 824393-57-9	Absolute stereochemistry
2	91	![Chemical structure](image)	![Chemical structure](image)
		CAS NO. 2165716-67-4	Absolute stereochemistry
3	91	![Chemical structure](image)	![Chemical structure](image)
		CAS NO. 2307909-20-0	Absolute stereochemistry
Table S5: The NMR data comparison of similar compounds with 1

Position	Compound 1^a	nidurufin^{a,b} (CAS NO. 28458-23-3)	2'-epinidurufin^c (CAS NO. 93922-50-0)
1	-	158.1 (C)	-
2	-	116.1 (C)	159.8 (C)
3	-	158.7 (C)	115.0 (C)
4	6.85, s	107.2 (CH)	158.4 (C)
4a	-	133.0 (C)	-
5	6.94, d, J = 2.4	109.4 (CH)	134.6 (C)
6	-	166.2 (C)	-
7	6.43, d, J = 2.4	107.9 (CH)	164.2 (C)
8	-	164.4 (C)	-
8a	-	108.0 (C)	-
9	-	188.3 (C)	-
9a	-	108.4 (C)	-
10	-	180.6 (C)	-
10a	-	134.6 (C)	-
1'	5.09, d, J = 3.0	65.7 (CH)	133.1 (C)
2'	2.32, ddt, J = 17.3, 8.3, 3.8	21.9 (CH₂)	-
3'	1.64, d, J = 13.0	23.5 (CH₂)	136. (CH₂)
4'	3.55, t, J = 2.8	66.7 (CH)	1.82, m
5'	-	102.6 (C)	1.57, m
6'	1.49, s	24.0 (CH₃)	101.5 (C)

^a in DMSO-d₆.

^b reference: X. W. Luo, H. M. Lu, X. Q. Chen, X. F. Zhou, C. H. Gao and Y. H. Liu (2020). Secondary metabolites and their biological activities from the sponge derived fungus Aspergillus versicolor, Chem. Nat. Comp. 56, 716-719.

^c reference: R. A. Murphy Jr and M. P. Cava (1984). Stereochemistry of nidurufin: synthesis of 6,8-dideoxynidurufin and 6,8-dideoxyepinidurufin, J. Am. Chem. Soc. 106, 7630-7632.