Homodyne measurement with a Schrödinger cat state as a local oscillator

Austin P. Lunda,b, Joshua Combesc

aDahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
bCentre for Quantum Computation and Communications Technology, School of Mathematics and Physics, The University of Queensland, St Lucia QLD, Australia
cDepartment of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Colorado 80309, USA

Homodyne measurements are a widely used quantum optical measurement. Using a large amplitude coherent state as the local oscillator (LO), it can be shown that the quantum homodyne measurement limits to a quadrature measurement. Injecting quantum states into the LO can lead to non-classical measurements. Specifically, we consider injecting a superposition of coherent states, a Schrödinger cat state, as a LO. We construct the Kraus operators and the positive operator-valued measure (POVM) and show the POVM is a reflection symmetric quadrature measurement when the coherent state amplitudes are large [1]. Our computation is an alternative approach to that of Tyc and Sanders [2, 3] with our approach being better suited to Fock basis computation and conditional output states.

The figure below shows the outcome probabilities for this measurement for a cat-state LO consisting of coherent states of amplitude ± 5 in a ’$+$’ superposition. The left plot shows the distribution measuring a coherent state of amplitude 1.6. The right plot shows the probability distribution for a 3 photon Fock state. The ’x’ variable corresponds to the subtraction signal of the photo-detectors and can be seen to exhibit the symmetry around the origin in both cases. The sum of the photo-detections is given by the ’w’ variable.

[1] J. Combes and A. P. Lund, arXiv:2207.10210 [quant-ph].
[2] T. Tyc and B. C. Sanders, Coherence and Quantum Optics VIII, Springer US, pp 453–454 (2003).
[3] T. Tyc and B. C. Sanders, J. Phys. A 29, 7341–7357 (2004).