Introduction

Animal husbandry and dairying has been an integral part of Indian culture since time immemorial. The majority of the vegetarian population of the country depends mainly on the milk and milk products to meet their requirement of animal protein of high biological value and trace nutrients. It forms an important livelihood activity for most of...
the farmers, supporting agriculture in the form of critical inputs, contribute into the health and nutrition of the household, supplementing income, offering employment opportunities, and finally being a dependable “bank on hooves” in times of need. Milk production and reproductive performance are the two major factors with respect to overall efficiency and profitability of the dairy animals. Nonetheless, for many years dairy cattle breeding programmes are mainly oriented towards improving the production traits and have not given due weightage to the reproduction traits. However, the rise in milk production has been shadowed by a decline in reproduction over the years.

The overall productivity of a dairy animal depends on its lifetime performance rather than on a single lactation performance. A number of factors, viz., total period of stay of a cow in a herd, number of calves dropped during entire lifetime determine the economic productivity of a cow. Once the genetic constitution of a cow is established, genetic and other non-genetic factors come into play over her lifetime performance.

Moreover, the animal breeder is also interested in improvement of lifetime production and reproduction of dairy cows for overall profitability. Further, decline in reproduction performance is likely to have a negative effect on herd life or stayability of the animals, as productivity of the animals in terms of lifetime milk production will be lowered (Togashi and Lin, 2004). Therefore, the present study was conducted to study the influence of genetic and non-genetic factors on various lifetime performance traits of HF x Gir half bred.

Materials and Methods

The performance records of 421 daughter of 48 sires maintained at Research Cum Development Project on Cattle of Mahatma Phule Krishi Vidyapeeth, Rahuri, Dist. Ahmednagar of Maharashtra(India) during 1974 to 2015 were analyzed. Cows with abnormal and incomplete records were excluded from the study. Animals were managed under uniform managerial conditions and standard feeding practices. All the animals were reared in loose housing and adequate prevention measures were taken against diseases. The traits considered for evaluation of lifetime performance of HF x Gir halfbred cows were LTMY3(Life time milk yield upto 3rd lactation), LTMY4(Life time milk yield upto 4th lactation), actual life time milk yield(ALTMY): Sum of milk yield for all the lactation. Productive life(PL): Date of first calving to date of last lactation dry period, herd life(HL): Date of birth to date of disposal and breeding efficiency(BE) by BE(%) = [365(N-1) 100/D] Wicox(1957) formula.

To examine the influence of various non-genetic factors the data was classified into 7 period of birth viz., P1(1974-80), P2(1981-87), P3(1988-94), P4(1995-2000), P5(2001-2008) and P6(2009-2015). Season of birth viz., rainy, winter and summer and 3 different age at first calving groups. The mixed model analysis using least squares minimum likelihood(LSML) programme Harvey(1990) was used for determining the influence of genetic and non-genetic factors on life time performance traits and estimation of genetic parameters simultaneously in which period of birth, season of birth and age at first calving group as fixed effects and sires as random effect.

Results and Discussion

The overall least squares mean for LTMY3, LTMY4 and ALTMY were estimated as 8770.95 ± 149 kg, 12127.85 ± 233 and 14920.46 ± 525.16 kg, respectively.
Dash (2014) reported higher estimates for LTMY3 and LTMY4 (12715 ± 227 kg and 17720 ± 339 kg) in Karan Fries cattle at NDRI farm than the present study. Rathee (2015) reported similar estimates for LTMY3 and LTMY4 (9100.81 ± 187.85 and 1869.91 ± 375.09) in Frieswal cattle. Katore (2004) reported similar ALTMY as 13880.41 ± 1180.20 kg in Gir halfbreds. Whereas Raheja (1994) and Joshi (2009) reported higher ALTMY as 20833 ± 227 kg in HF Sahiwal crosses and 25819.07 ± 887.4 kg in FG crossbred, respectively.

The ANOVA revealed that the effect due to season of birth on all the lifetime performance trait except BE were non-significant the findings were in agreement with Ambhore et al., (2017) in Phule Trivendi cattle. However, Raheja (1994) and Khan and Kachwaha (2008) reported significant effect of season of birth in HF x S crossbred and in Rathi cattle, respectively. The period of birth had significant effect on all life time traits. Similar findings were observed by Dash (2014) in Karan Fries cows Ambhore et al., (2017) in Phule Trivendi cattle. However, Kharat et al., (2008) reported non-significant effect in HF crossbred cattle.

The DMRT showed that lifetime total milk yield in cows born during period P3 (14744.46 ± 1210 kg), P4 (14204.72 ± 1215 kg) and P6 (11850.68 ± 15.57 kg) was significantly higher than cows born in P1 and P2 and at par with P3 period. Whereas highest LTMY3 and LTMY4 was observed in period P1 and lowest in period P3 indicating that differential management practices over the period as well as the set of sires used.

The overall least squares means for HL, PL and BE were 2771.78 ± 52.26 days, 1688.59 ± 52.05 days and 82.62 ± 0.83 %, respectively (Table 1). Dash (2014) and Rathee (2015) reported herd life 2571.25 ± 27.31 and 2928.29 ± 145.43 days in Karan fries and Frieswal cattle, respectively. Rathee (2015) reported higher productive life than the present study (2008.81 ± 107.82 days).

The higher estimates of BE than the present study were reported by Zol et al., (2009) and Kolhe (2011) in Phule Triveni and 5/8 Gir crossbred as 92.71 ± 0.66 % and 83.47 ± 0.81 %, respectively. Period of birth had significant effect on all trait. However, season of birth had significant on BE and non-significant on PL and HL. Effect of age at first calving group had significant effect on PL and non-significant on HL and BE and effect of sire had significant on HL and PL and non-significant on BE.

(Figures along the diagonal are the heritability estimates. The value above and below the diagonal are genetic and phenotypic correlations).

The heritability estimates for milk yield traits viz., LTMY3, LTMY4 and ALTMY were found to be 0.23 ± 0.13, 0.29 ± 0.10 and 0.11 ± 0.12, respectively indicating low to medium. Whereas, the heritability estimates for HL, PL and BE were 0.23 ± 0.14, 0.14 ± 0.13 and 0.06 ± 0.11, respectively indicating that these traits were influenced to a greater extent by non-genetic causes and can be improved through better management.

The genetic correlations of lifetime milk yield upto 3 lactation (LTMY3) with actual lifetime milk yield (ALTMY), herd life (HL) and productive life (PL) ranged between 0.13 ± 0.46 to 0.36 and phenotypic correct were 0.09 ± 0.32 to 0.39 ± 0.04. Genetic and phenotypic correlation LTMY4 with other traits viz., ALTMY, HL, PL and BE ranged between -0.15 ± 0.10 to 0.89 ± 0.50 and 0.14 ± 0.64 to 0.48 ± 0.61, respectively. The high positive and strong genetic correlations with in these traits indicated that these traits are near
identical traits and performing selection on one measure will increase the genetic values of other measures.

Dubey and Singh (2005), Ambhore et al., (2017) also reported highly positive genetic correlations among different lifetime traits in Karan Swiss and Phule Triveni cattle, respectively. Breeding efficiency had negative genetic and phenotypic correlation with LTMY3, LTMY4, ALTMY and HL whereas positive with PL.

Herdlife and productive life had high positive genetic (0.78 ± 0.02) and phenotypic (0.59 ± 0.34) correlation. Phenotypic correlation between actual lifetime milk yield (ALTMY) and Herd life (HL), Productive life (PL) were (0.67 ± 0.60) and (0.19 ± 0.75) respectively.

However genetic correlation between ALTMY with HL and PL were high and significant (0.89 ± 0.50) and (0.59 ± 0.34). The genetic and phenotypic correlations between important lifetime performance traits were quite high this would help in culling the unproductive and remunerative animals at any stage of life (Table 3–4).

Table.1 Least squares analysis of variance of lifetime traits(LTMY3 and LTMY4)

Source of variation	Mean			
	LTMY3	LTMY4	MSS	MSS
Period of birth	109835566.09**	156254013.11**		
Season of birth	1600145.91	2502075.24		
Age at first calving group	4805304.04	73715.84		
Sire	5876144.67	9248550.58		
Error	6757344.73	11831268.31		

** P < 0.01

Table.2 Least squares analysis of variance of lifetime production and reproduction traits

Source of variation	Mean sum of squares			
	ALTMY	Productive life	Herd life	BE(%)
Period of birth	299196320.6**	1817796.89**	2394986.37**	642.10**
Season of birth	7394621.90	16172.67	17458.24	658.77*
Age at first calving group	95676973.09	1776241.07*	353591.50	73.01
Sire	75985700.54	1243623.41**	1429699.48**	179.69
Error	59296003.77	520080.66	522161.46	208.22

* P < 0.05 and ** P < 0.01
Table.3 Least squares means of lifetime milk production and reproduction traits as affected by various factors

Source of variation	N	LTMY3 (kg) Mean ± S.E.	N	LTMY4 (kg) Mean ± S.E.	N	ALTMY (kg) Mean ± S.E.	Herd life(HL) Mean ± S.E.	Productive life(PL) Mean ± S.E.	BE (%) Mean ± S.E
Overall mean(µ)	314	8770.95 ± 149	233	12127.85 ± 233	421	14920.46 ± 525.16	2771.78 ± 52.26	1688.59 ± 52.05	82.62 ± 0.83
Periods of birth									
P1(1974-1980)	114	11499.96 ± 290b	93	15424.14 ± 426a	157	19356.63 ± 1016a	2563.91 ± 102a	1551.93 ± 102	86.89 ± 1.63
P2(1981-1987)	37	9181.60 ± 371b	21	13499.98 ± 658b	61	12828.93 ± 1301bc	2212.65 ± 117d	1214.11 ± 116b	87.00 ± 1.86
P3(1988-1994)	44	7757.69 ± 345.7c	33	10431.58 ± 528c	54	14744.46 ± 1210bc	3011.48 ± 125ab	1910.75 ± 125ab	80.49 ± 2.00
P4(1995-2000)	46	7927.2 ± 347.0c	35	11318.66 ± 516c	70	14204.72 ± 1215bc	2732.85 ± 113bc	1596.08 ± 113bc	82.40 ± 1.81abc
P5(2002-2008)	37	8458.2 ± 379.0bc	30	11871.88 ± 555bc	50	16537.32 ± 1327ab	3203.28 ± 1.33a	2022.98 ± 132a	80.90 ± 2.12bc
P6(2009-2015)	26	7800.9 ± 444.6c	21	10220.8 ± 653.2c	29	11850.68 ± 1557c	2906.50 ± 1.69abc	1835.69 ± 169abc	78.05 ± 2.70
Season of birth									
S1: Rainy	110	8906.27 ± 242.7	82	12282.95 ± 354	137	15778.86 ± 849	2813.48 ± 84j	1731.05 ± 84	85.12 ± 1.34
S2: Winter	119	8769.43 ± 226.3	96	12201.83 ± 336	157	15040.47 ± 792	2827.66 ± 78.82	1757.91 ± 78	81.01 ± 1.25
S3: Summer	85	8637.20 ± 250.7	55	11898.78 ± 412	127	13941.53 ± 878	2674.20 ± 83.63	1576.82 ± 83	81.73 ± 1.33abc
Age group									
A1: < 905 days	171	8587.13 ± 237.62	136	12124.13 ± 353.9	232	15935.32 ± 832	2806.20 ± 85	1831.91 ± 84	81.61 ± 1.35
A2: 950-1050 days	53	8637.75 ± 313.28	41	12088.9 ± 469.2	75	15275.23 ± 1097	2826.63 ± 101	1753.87 ± 106a	82.87 ± 170
A3: 1051 days and Above	80	9087.96 ± 270.08	56	12170.4 ± 426.9	114	13550.81 ± 945	2682.51 ± 93.30	1479.99 ± 93	83.39 ± 1.48

Means under each class in the same column with different super scripts differ significantly.
Table 4 Estimates of heritability, genetic and phenotypic correlations among different lifetime performance traits

Trait	LTMY3	LTMY4	ALTMY	HL	PL	BE
LTMY3	0.23 ± 0.13	0.48 ± 0.61**	0.23 ± 0.08**	0.13 ± 0.05	0.74 ± 0.36**	-0.14 ± 0.10*
LTMY4	0.38 ± 0.44	0.29 ± 0.10	0.52 ± 0.14**	0.89 ± 0.50**	0.59 ± 0.34**	-0.15 ± 0.10*
ALTMY	0.30 ± 0.15	0.37 ± 0.28**	0.11 ± 0.12	0.41 ± 0.04	0.40 ± 0.04	-0.24 ± 0.05
HL	0.10 ± 0.46	0.31 ± 0.47	0.67 ± 0.60	0.23 ± 0.14	0.78 ± 0.02	-0.39 ± 0.04
PL	0.09 ± 0.32	0.14 ± 0.64	0.19 ± 0.75	0.59 ± 0.34	0.14 ± 0.13	-0.22 ± 0.04
BE	-0.39 ± 0.04	-0.47 ± 0.04**	-0.19 ± 0.89	-0.49 ± 0.68	0.03 ± 0.88	0.06 ± 0.11

*P < 0.05 and **P < 0.01

Impact

The season of birth had non-significant effects on almost all life time performance traits of study. The period of birth were significant indicating fluctuations in management over the periods under study. Effect of age at first calving group on PL were significant in HF x Gir cattle. The heritability estimate of LTMY-3, LTMY-4 and ALTMY were 0.23 ± 0.13, 0.29 ± 0.10 and 0.11 ± 0.12, respectively which were higher than PL and BE. However, the genetic and phenotypic correlations of LTMY4 with herd life and productive life were higher than those of other traits. The higher heritability and correlations indicated that(lTMY4) lactation milk yield upto four lactation was better representative trait among all life time performance traits under study. These results suggested that selection of relatives on the basis of lactation milk yield upto four lactation may be more appropriate.

Acknowledgment

The authors wish to express their gratitude to the Vice-Chancellor, MPKV, Rahuri for providing necessary facilities for conducting the investigation.

References

Ambhore, G.S., Singh, A., Deokar, D.K., Singh, M. and Sahoo, S.K. 2017. Life time performance of Phule Triveni synthetic cows at an organized farm. *Indian J. Anim. Sci.* 87(11): 1406-1409.

Dash, S.K., 2014 Genetic evaluation of Karan Fries cattle for fertility and production traits. Ph. D. Thesis, National Dairy Research Institute, Karnal, India.

Dubey, P.P. and Singh, C.V. 2005. Estimates of genetic and phenotypic parameters considering first lactation and lifetime performance traits in Sahiwal and crossbreed cattle. *Indian J. Anim. Sci.*, 75(2): 1289-1294.

Harvey, W.R. 1990. Guide for LSMLMW, PC-1 Version, mixed model least squares and maximum likelihood computer programme, January 1990. Mimeograph Ohio State Univ., USA.

Katore, S.B. 2004. Studies on lifetime milk production performance of Holstein
Friesian x Gir halfbreds. Unpublished thesis of M.Sc.(Agri.) submitted to MPKV, Rahuri.
Khan, H.M. and Kachwaha, R.N. 2008. Lifetime performance of Rathi cattle at an organized farm. *Indian J. Anim. Res.* 42(3): 186-190.
Kramer, C.V. 1957. Extension of multiple range test to group correlated adjusted mean. *Biometric.*, 13: 13-20.
Raheja, K.L. 1994. Genetic parameters for first lactation and lifetime production traits in Friesian x Hariana and Friesian x Sahiwal halfbreds estimated by multiple traits maximum likelihood procedure. *Indian J. Anim. Sci.* 64(6): 616-621.
Rathi, S. 2015. Genetic evaluation of Frieswal cattle for lifetime traits. Ph.D. Thesis submitted to ICAR National Dairy Research Institute, Deemed University, Karnal(Haryana), India.
Togashi, K., and Lin, R.L. 2004. Efficiency of different selection criteria for persistency and lactation milk yield. *J. Dairy. Sci.* 87:1528-1535.
Willcox, C.J., Pfau, K.O. and Bartlett, J.W. 1957. An investigation of the inheritance of female reproductive performance and longevity and their inter-relationship within a Holstein Friesian herd. *J. Dairy Sci.* 40: 924-47.
Zol, S.R., Bhoite, U.Y., Pachpute, S.T. and Deokar, D.K. 2009. Reproduction and production performance and breeding efficiency of Phule Triveni crossbred cows. *J. Maha. Agric. Univ.*, 2009, Vol. 34 No. 2pp. 208-210.

How to cite this article:

Jadhav, S.S., D.K. Deokar, Y.G. Fulpagare, U.Y. Bhoite, S.D. Mandkmale and Nimbalker, C.V. 2019. Lifetime Performance of HF x GIR Half breed Cows in Intensive Management Conditions. *Int.J.Curr.Microbiol.App.Sci.* 8(06): 3275-3281.
doi: https://doi.org/10.20546/ijcmas.2019.806.390