Energy and Laplacian on Hanoi-type fractal quantum graphs

Patricia Alonso-Ruiz1,4, Daniel J Kelleher2,5 and Alexander Teplyaev3,6,7

1 Institute of Stochastics, Ulm University, Ulm, Germany
2 Department of Mathematics, Purdue University 150 N. University Street, West Lafayette, IN 47907-2067, USA
3 Department of Mathematics, University of Connecticut, Storrs, CT 06269-3009, USA

E-mail: patricia.alonso@uni-ulm.de, dkellehe@purdue.edu and teplyaev@uconn.edu

Received 31 July 2015, revised 6 December 2015
Accepted for publication 8 January 2016
Published 14 March 2016

Abstract
This article studies potential theory and spectral analysis on compact metric spaces, which we refer to as fractal quantum graphs. These spaces can be represented as a (possibly infinite) union of one-dimensional intervals and a totally disconnected (possibly uncountable) compact set, which roughly speaking represents the set of junction points. Classical quantum graphs and fractal spaces such as the Hanoi attractor are included among them. We begin with proving the existence of a resistance form on the Hanoi attractor, and go on to establish heat kernel estimates and upper and lower bounds on the eigenvalue counting function of Laplacians corresponding to weakly self-similar measures on the Hanoi attractor. These estimates and bounds rely heavily on the relation between the length and volume scaling factors of the fractal. We then state and prove a necessary and sufficient condition for the existence of a resistance form on a general fractal quantum graph. Finally, we extend our spectral results to a large class of weakly self-similar fractal quantum graphs.

Keywords: quantum graph, fractal, spectral asymptotics

1. Introduction

The quantum graphs provide important examples in mathematical physics literature, see [BK13] and references therein. However the notion of fractal quantum graphs has eluded the

http://www.uni-ulm.de/en/mawi/institute-of-stochastics/mitarbeiter/patricia-alonso-ruiz.html
http://web.ics.purdue.edu/~dkellehe/
http://homepages.uconn.edu/teplyaev/

Author to whom any correspondence should be addressed.
researches in mathematics and physics for long time. This paper presents new results on the existence of a well defined energy (resistance/Dirichlet) form on fractal quantum graphs. In order to show our construction in detail, we begin with a concrete example embedded in \mathbb{R}^2, and also present a general theory. In addition, we show how to obtain the spectral asymptotics, i.e. asymptotic estimates of the eigenvalue counting function and the spectral dimension in particular, for a class of weakly self-similar examples. Our interest in fractal quantum graphs spectral problems is motivated by recent physics applications, see [Akk13, DGV12, Dun12].

By introducing the concept of fractal quantum graphs we would like to connect physics literature on fractals (see e.g. [ABD12, ADT10, BCD08]) with quantum graphs. The modern theory of quantum graphs and its connection to quantum chaos was started in [KS97] and has been discussed in [KS02, KS03, Kuc04], see also [BK13, GS06] for an exhaustive review on this field. Fractal networks in particular have been of interest in the study of superconductivity [AH83, Ale83]. Our work in a sense partially generalizes the dendrite fractals considered in [Kig95], see also [Cro12] and references therein. There have been recent topological results on very similar spaces in [Geo14] as well as construction of Brownian motion on them in [GK]. Note that, for most of their results, [GK] requires the space to have finite one-dimensional Hausdorff measure, which we do not require for the existence, uniqueness, and spectral asymptotics results (although we require finite one-dimensional Hausdorff measure for heat kernel estimates). The spectral properties of spaces related to metric graphs, but constructed of two-dimensional sheets are studied in [BSCSW11].

In our work we attempt to appeal to two different communities that in present have small intersection: the fractal analysis community and the quantum graph community, hopefully generating a bidirectional flow of ideas from both fields.

Resistance forms, see definition 5.1, have been very useful in the study of analysis on fractals from an intrinsic point of view, in particular with Jun Kigami’s work on post-critically finite self-similar fractals in [Kig93] and [Kig01, chapter 2]. Resistance forms are bilinear forms which induce an effective resistance between points, analogous to that of electrical networks, and this resistance defines a metric on the space. With an appropriate measure, a resistance form is a Dirichlet form on the L^2 space associated with that measure. In this way a choice of measure also induces a self-adjoint operator and a symmetric Markov process. The behavior of the eigenvalue counting function determines the spectral dimension of these fractals while the heat kernel estimates indicate the behavior of the stochastic process. These objects also determine physical aspects of the space [ADT, bAH00]. Heat kernel estimates for resistance forms and other related questions are discussed in [Kig12]. In [HT13, IRT12] a general theory of intrinsic geometric analysis is developed for Dirichlet spaces in general, in [HKT15] this is applied to resistance forms and length structures, and to differential equations on these spaces.

Many examples of resistance forms come from finitely ramified, mostly self-similar, cases [BCF07, FST, HMT06, MST04, Pei08, Tep08]. By important technical reasons, these results are not directly applicable to fractal quantum graphs, mainly because it is more natural to approximate these spaces by quantum graphs rather than discrete networks. However, we are able to prove the existence of a resistance form on some large class of spaces which have no a priori self-similarity, and give a concrete description of its domain.

We start by analyzing a particular quantum graph, the Hanoi attractor of parameter α that we denote by K_α, (see figure 1). This is a nonself-similar (i.e. weakly self-similar or graph-directed self-similar) fractal, where the parameter α can be understood as a length scaling parameter as it is the length of the three longest segments joining copies of K_α. This parameter substantially affects the properties of K_α: when $\alpha = 0$, K_α coincides with the
Sierpiński gasket and the quantum graph part is empty; if $\alpha \in (0, 1/3)$, then K_α has fractional Hausdorff dimension $\ln 3/\ln 2 - \ln(1 - \alpha)$; if $\alpha \in [1/3, 1)$ we obtain a one-dimensional object; and if $\alpha = 1$, then K_α is an equilateral triangle (and simply a finite quantum graph of three segments). The geometric properties of K_α were studied in [ARF12].

To study spectral asymptotics, it is necessary to consider spaces which are self-similar in a weak sense, such as the Hanoi attractors and their higher dimensional generalizations. For the Hanoi attractor with parameter $\alpha \in (1/3, 1)$, the choice of measure is naturally the one-dimensional Hausdorff measure, i.e. length measure. If $\alpha \in (0, 1/3)$, having Hausdorff dimension strictly greater than 1 complicates the analysis, although every point has a neighborhood isometric to an interval with the exception of a totally disconnected (i.e. topologically zero-dimensional) set. To deal with these issues we introduce finite self-similar measures on K_α. The main technique that we use to obtain the spectral asymptotics is the standard Dirichlet–Neumann bracketing, see [Kaj10, KL93]. These arguments, informally speaking, use the fact that small-scale metric properties correspond to larger eigenvalues. Weak self-similarity is therefore critical in achieving spectral asymptotics, as it allows us to infer properties of the fractal at arbitrarily small scales.

2. Main results

After recalling some basics of the theory of metric and quantum graphs in section 3, section 4 is devoted to the approximation of any Hanoi attractor $X = K_\alpha$ by metric graphs.

Let $l_1, l_2, l_3 \subset X$ denote the line segments of length $\alpha \in (0, 1]$, and let $F_1(X), F_2(X), F_3(X)$ denote the first-level copies of X. The scaling length of these copies is

$$r := \frac{1 - \alpha}{2} \quad (2.1)$$

see figure 2(a). We are interested in the resistance form, in the sense of Kigami [Kig01], that satisfies the natural scaling relation, see also lemma 6.1,
where contractions F_i are defined in section 4. Here, dm represents the usual one-dimensional integral along three straight line segments of length α in X, and u' represents the usual derivatives along these straight line segments (this is further explained in sections 3 and 4).

Combining the standard theory of electrical networks, including the so-called Delta-Y and Y-Delta transforms in figure 4, with the abstract theory of Kigami’s resistance forms [Kig01], one can obtain the following standard proposition.

Proposition 1. For any $\alpha \in (0, 1]$ and r given by the relation (2.1) there is a unique resistance form \mathcal{E} on K_α that satisfies (2.2).

In sections 4–6 of our paper we obtain much more information about this resistance form. For instance, the effective resistance between the corner points of the triangle is given by (5.1).

Remark 2.1. We would like to emphasize that the relation (2.1) is dictated by the Euclidean geometry of \mathbb{R}^2. If one considers K_α as an abstract topological space, then for any $\alpha > 0$, $R > 0$ one can build a unique resistance form satisfying the relation

$$\mathcal{E}(u, u) = 3r^{-1}\mathcal{E}(u \circ F_i, u \circ F_i) + \sum_{i=4}^6\int_{F_i(K)}(u')^2\,dm$$

if and only if $r \in [0, \frac{2}{\alpha})$, which is a larger range than that dictated by (2.1). Such questions are discussed in [Kig15b] and will be subject of future work. In sections 4 and 5 we focus on the relation of \mathcal{E} and the Euclidean geometry, and in section 8 we explain how to generalize it to a wider class of examples that do not need to be self-similar in any sense.

We relate the resistance form \mathcal{E} with the energy on X that comes from the expression

$$\mathcal{E}(u, v) := \int_X u'v'\,dm$$

(2.3)

for continuous functions that are differentiable when restricted to line segments. Again, here dm represents the usual one-dimensional integral along the countably many straight line segments in X, and u', v' represent the usual derivatives along these straight line segments (see sections 3 and 4). Note that although the energy in (2.3) looks different from (2.1), eventually we will prove that they are the same, and so we can denote them by the same symbol $\mathcal{E}(u, v)$.

Definition 2.2. We say that $u \in H^1(X)$ if and only if $u \in C(X)$, the restriction of u to any straight line segment is an H^1 function on that segment, and formula (2.3) gives $\mathcal{E}(u, u) < \infty$.

Theorem 2.1. $(\mathcal{E}, H^1(X))$ is the resistance form on X that satisfies (2.2).

This theorem is proven in section 5.2. The properties of the domain $H^1(X)$ of \mathcal{E} are very delicate. For instance, if $\alpha \in (1/3, 1)$, then the restriction of any $C^1(\mathbb{R}^2)$ function to X is in $H^1(X)$. This situation is discussed in detail in [GK]. However, this is not the case when
\(\alpha \in (0, 1/3) \) because the total length of \(X \) is infinite (see remark 4.2), and so a generic \(u \in C^\alpha(\mathbb{R}^2) \) will have infinite energy.

Section 6 deals with the behavior of the eigenvalue counting function of the Laplacian associated to the Dirichlet form induced by the resistance form \((\delta, H^1(X))\) on \(L^2(X, \mu) \), where \(\mu \) is the unique weakly self-similar regular probability measure on \(X \) defined with measure scaling weights \(\beta \)'s satisfying
\[
1 = \mu(X) = 3\beta + 3x,
\]
where \(\beta = \mu(\ell_i) \) and \(s = \mu(F_i(X)) \), \(i = 1, 2, 3 \); \(\mu \) is a scaled version of Lebesgue measure on \(\ell_i \) and a scaled copy of itself on \(F_i(X) \). In this way, \(s^n = \mu(F_n(X)) \) for any \(n \)-level copy of \(X, F_n(X) \). From (2.4) we obtain that
\[
s = \frac{1 - 3\beta}{3}
\]
and hence \(\beta \in (0, 1/3) \). Note that if \(\beta = 1/3 \), then \(\mu(F_i(X)) = 0 \), and thus the support of \(\mu \) would not be all of \(X \). If \(\beta = 0 \), then \(\mu \) is the restriction of the \(-\log 3/\log r \)-dimensional Hausdorff measure on \(\mathbb{R}^2 \) to \(X \). In this situation, the measure of any line segment is 0, which is also undesirable. For these results, \(\beta \) is taken as an arbitrary quantity independent of \(\alpha \), and the existence and uniqueness of the measure \(\mu \) is a standard fact. These assumptions will be briefly recalled at the beginning of section 6.

Among our main results are constructive polynomial estimates of the eigenvalue counting function \(N_\mu \), respectively \(N_\nu \), of the Laplacian associated to the Dirichlet form induced by \((\delta, H^1(X)) \) under Dirichlet—respectively Neumann—boundary conditions (see (6.2) respectively (6.1) for a precise definition of these functions). As boundary of \(X \) we consider the set \(V_0 \) which consists of the three vertices of the equilateral triangle where \(X \) is embedded.

Theorem 2.2. Let \(rs = \frac{1}{6} (1 - \alpha)(1 - 3\beta), \) where \(\alpha \) is the length scaling factor of \(X \), and \(\beta \) is the volume scaling factor of \(\mu \). There exist constants \(C_1, C_2 > 0 \) and \(x_0 > 0 \) such that

(i) if \(0 < rs < \frac{1}{9} \), then
\[
C_1 x^2 \leq N_D(x) \leq N_N(x) \leq C_1 x^2,
\]

(ii) if \(rs = \frac{1}{9} \), then
\[
C_1 x^2 \log x \leq N_D(x) \leq N_N(x) \leq C_2 x^2 \log x,
\]

(iii) if \(\frac{1}{9} < rs < \frac{1}{6} \), then
\[
C_1 x^{\frac{\log 9}{-\log 3}} \leq N_D(x) \leq N_N(x) \leq C_2 x^{\frac{\log 3}{-\log 3}}\log x
\]

for all \(x > x_0 \).

In particular, the spectral dimension of \(X \) equals
\[
d_X = \begin{cases} 1, & 0 < rs \leq \frac{1}{9}, \\ \frac{\log 9}{-\log (rs)}, & \frac{1}{9} < rs \leq \frac{1}{6}. \end{cases}
\]
This result shows us that both the metric and the measure parameter strongly affect the spectral properties of the operator. One possible physical interpretation of the different spectral dimensions in Weyl’s law, depending on the parameters, is that \(1/\ell_s\) is the effective scaling of the Laplacian on the Hanoi fractal quantum graph. In a sense this means that the quantity \(\ell_s\) has a geometrical meaning (in the sense of spectral geometry).

Another way of understanding \(X\) is as a graph-directed fractal, introduced in [MW88] and treated analytically in [HN03]. Limiting spectral asymptotics, and in particular the spectral dimension, for \(X\) can be deduced from [HN03]. However, the above theorem provides estimates for \(N_d\), which is a stronger result.

The approach here is different than in [AF], where the resistance form was based on a totally disconnected fractal subset of \(X\) (a kind of ‘fractal dust’) connected by inserting one-dimensional conductances. In [AF], the main term in the spectrum was that of the ‘fractal dust’ and in a sense equivalent to the usual Sierpiński gasket. In our current analysis we do not consider energy supported on any zero-dimensional fractal part but just quantum graph edges, providing anything else with measure and resistance zero. Thus, a fractal quantum graph can be understood as a quantum graph with infinitely many edges (and the lower bound on the edge lengths being 0) connected by a zero energy ‘fractal dust’ between the edges.

Section 7 discusses the behavior of the heat kernel with respect to various measures. If \(\Delta\) is the generator of a Dirichlet form \(\mathcal{E}\), then the heat kernel is the integral kernel of the heat semi-group. More explicitly, the function \(p : \mathbb{R}^+ \times X \times X \to \mathbb{R}\) is the heat kernel of \(\Delta\) if the heat equation

\[
\begin{cases}
\Delta u(t, x) = \frac{du}{dt}(t, x) \\
u(x, 0) = f(x)
\end{cases}
\]

is solved by \(u(t, x) = \int_X p(t, x, y)f(y) \, dy\).

When \(1/3 < \alpha < 1\), \(X\) has finite length and thus \((\mathcal{E}, H^\ell(X))\) is a Dirichlet form with respect to the Hausdorff one-measure \(\mathcal{H}^\ell\). If \(p\) is the heat kernel for this Dirichlet form, \(p\) satisfies Gaussian estimates

\[
c_1 t^{-1/2} \exp\left(-\frac{c_2 |x - y|^2}{t}\right) \leq p(t, x, y) \leq c_3 t^{-1/2} \exp\left(-\frac{c_4 |x - y|^2}{t}\right)
\]

for some \(c_1, c_2, c_3,\) and \(c_4\). Note that theorem 2.2 (i) is applicable here. This is contrasted with the sub-Gaussian estimates associated with many fractal spaces, see [BN, Kig12]. Note that the case \(1/3 < \alpha < 1\), when we have finite one-dimensional Hausdorff measure, is discussed in detail in [GK]. In our case sub-Gaussian estimates are difficult to obtain for \(\alpha \leq 1/3\), and most likely have a much more complicated form (see, for instance, [Kig12, Kig15a] and references therein), because the measure is not volume doubling. For these parameters, the total length (Hausdorff one-content) of the fractal is finite, and both the heat kernel estimates and spectral asymptotics reinforce the notion that the fractal is a one-dimensional object.

Section 8 answers the question about existence of resistance forms in a more general framework. Here, a fractal quantum graph consists of a separable compact connected locally connected metric space \((X, d)\) together with a sequence of lengths \(\{\ell_k\}_{k=1}^{\infty} \subset (0, \infty)\) and isometries \(\Phi_k : [0, \ell_k] \to X\) such that
is totally disconnected. Conditions are given that ensure the existence of a resistance form on X that behaves like the one-dimensional Dirichlet energy on each sub-interval. Hanoi attractors and generalized Hanoi-type quantum graphs satisfy these assumptions. Quantum graphs satisfy these assumptions if the sequence of lengths is finite.

Last section presents the so-called generalized Hanoi-type quantum graphs $X_{N_0, \alpha}$. In this case, N_0 can be understood as a ’dimension parameter’ because $\dim_X X_{N_0, \alpha} \leq N_0 - 1$, while α is again the length of the longest segments in $X_{N_0, \alpha}$. This parameter will be chosen to lie in the interval $\left(0, \frac{N_0 - 2}{N_0} \right)$ so that we deal with a fractal object.

The construction of the resistance form $(\mathcal{E}, \text{Dom } \mathcal{E})$ in this case is carried out in the same way as in section 5. In order to get a Dirichlet form out of it, we introduce a measure on $X_{N_0, \alpha}$ depending again on a parameter β that measures the masses of segments of length α. By analogous arguments as in sections 5–7, we obtain the following spectral asymptotics of the Laplacian associated to the Dirichlet form induced by $(\mathcal{E}, \text{Dom } \mathcal{E})$.

Theorem 2.3. Let $r = \frac{1 - \alpha}{2}$ and $s = \frac{2 - N_0(N_0 - 1)\beta}{2N_0}$. There exist constants $C_1, C_2 > 0$ and $x_0 > 0$ such that

(i) if $0 < rs < \frac{1}{N_0}$, then

\[C_1 x^\gamma \leq N_D(x) \leq N_N(x) \leq C_1 x^\gamma, \]

(ii) if $rs = \frac{1}{N_0}$, then

\[C_1 x^\gamma \log x \leq N_D(x) \leq N_N(x) \leq C_2 x^\gamma \log x, \]

(iii) if $\frac{1}{N_0} < rs < \frac{1}{2N_0}$, then

\[C_1 x^{\log \frac{N_0}{\log(rs)}} \leq N_D(x) \leq N_N(x) \leq C_2 x^{\log \frac{N_0}{\log(rs)}} \]

for all $x > x_0$. In particular

\[d_X = \begin{cases}
1, & 0 < rs \leq \frac{1}{N_0}, \\
\log \frac{N_0^2}{-\log(rs)}, & \frac{1}{N_0^2} < rs < \frac{1}{2N_0}.
\end{cases} \]

3. **Abstract quantum graph basics**

A graph $\mathcal{G} = (V, E, \partial)$ is a finite set of vertices V with a finite set of edges E and a map $\partial : E \to V \times V$ given by $\partial e = (\partial e, \partial e, e)$. In the current work, graphs are taken to be simple, that is all edges are undirected and there are no multiple edges or loops (in fact this is essentially not a restriction because any loops or multiple edges can be subdivided). However ∂ provides an orientation for each edge; this will be convenient when defining a metric structure and derivatives of functions.
A weighted graph has the additional structure of \(r : E \to (0, \infty) \). The weight, or conductance, of an edge \(e \) is the quantity \(1/r(e) \), thus \(r(e) \) is the resistance of the edge \(e \). A metric graph \(G^{\text{met}} \) is the CW one-complex with set of zero-cells \(V \) and the set of one-cells indexed by the edges with endpoints given by \(\partial \pm \). \(G^{\text{met}} \) is covered by the maps \(\Phi_e : L_e \to G^{\text{met}}, L_e = [0, r(e)], e \in E, \) such that

\[
\Phi_e|_{(0, r(e))} : (0, r(e)) \to \Phi_e((0, r(e)))
\]

is a homeomorphism onto its image, and \(\Phi_e(L_e) \) is the one-cell associated to the edge \(e \). \(G^{\text{met}} \) is given a geodesic metric and a measure \(m \) which is induced by \(F \). The space of \(L^p \) functions on \(G^{\text{met}} \) is defined by

\[
H^p(G^{\text{met}}) := \bigoplus_{e \in E} L^p(L_e),
\]

where \(L^p(L_e) \) is the classical \(L^p \) space on \(L_e \) with respect to the Lebesgue measure. We identify \(L^p(G^{\text{met}}, m) = L^p(G^{\text{met}}) \) because \(m \) is the only measure we consider.

The Sobolev space of order \(n \geq 1 \) on \(G^{\text{met}} \) is defined by

\[
H^p(G^{\text{met}}) := C(G^{\text{met}}) \bigcap \bigoplus_{e \in E} H^n(L_e),
\]

where \(H^n(L_e) \) is the classical Sobolev space \(H^n \) on the interval \(L_e \), i.e. \(f \in H^n(G^{\text{met}}) \) if and only if \(f \in C(G^{\text{met}}) \) and \(f \circ \Phi_e \in H^n(L_e) \) for all \(e \in E \). In particular, \(H^1(G^{\text{met}}) \) is the domain of the Dirichlet energy with standard boundary conditions

\[
\delta^\text{met}_G(f, g) = \sum_{e \in E} \int_0^{r(e)} (f \circ \Phi_e)'(g \circ \Phi_e)' \, dt = \sum_{e \in E} \int_{r(e)} f' g' \, dm.
\]

A quantum graph is a metric graph with the above energy form, and the associated self-adjoint (Laplacian) operator on \(G^{\text{met}} \). Further details on metric and quantum graphs can be found in the book [BK13]. Note that in our paper we, for the sake of convenience, mostly consider quantum graphs embedded in an Euclidean space. However in section 8 we study a more abstract setup.

4. Definitions of Hanoi attractors

In this section we briefly recall the definition of Hanoi attractors and approximate them by quantum graphs. Let \(p_1 = (0, 0), p_2 = (1/2, \sqrt{3}/2), p_3 = (1, 0) \) be the vertices of a triangle of side length one and set \(p_i = \frac{p_i}{2}, \; p_4 = \frac{p_1 + p_5}{2}, \; p_5 = \frac{p_2 + p_4}{2}, \; p_3 = \frac{p_3 + p_6}{2} \). For each \(\alpha \in (0, 1/3), p_1, \ldots, p_6 \in \mathbb{R}^2 \) are the fixed points of the mappings

\[
F_{\alpha,i} : \mathbb{R}^2 \to \mathbb{R}^2, \quad x \mapsto A_i (x - p_i) + p_i, \quad i = 1, \ldots, 6,
\]

where

\[
A_1 = A_2 = A_3 = \frac{1 - \alpha}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad A_4 = \frac{\alpha}{4} \begin{pmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 4 \end{pmatrix}, \quad A_5 = \frac{\alpha}{4} \begin{pmatrix} 1 & \sqrt{3} \\ 0 & 4 \end{pmatrix}, \quad A_6 = \alpha \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.
\]
Since the contraction ratios \(r_i \) of each \(F_{\alpha,i} \) satisfy \(r_i \in (0, 1) \), \(\{ F_{\alpha,i} \}_{i=1}^6 \) is a family of contractions and for the iterated function system \(\{ \mathbb{R}^2; F_{\alpha,1}, \ldots F_{\alpha,6} \} \) there exists a unique nonempty compact set \(K_\alpha \subset \mathbb{R}^2 \) such that

\[
K_\alpha = \bigcup_{i=1}^6 F_{\alpha,i}(K_\alpha).
\]

This set is called the Hanoi attractor of parameter \(\alpha \). The parameter \(\alpha \) will be arbitrary but fixed, thus to simplify notation we will write \(X = K_\alpha \) and \(F_i = F_{\alpha,i} \) for each \(i = 1, \ldots, 6 \). \(X \) is not strictly self-similar because the contractions \(F_2, F_3 \) and \(F_6 \) are not similitudes. However, this fractal still has some weak self-similarity due to the similitudes \(F_1, F_2 \) and \(F_3 \).

Let us denote by \(A \) the alphabet on the symbols \(1, 2, 3 \). For each word \(w = w_1 \cdots w_n \in \mathcal{A}^n, n \in \mathbb{N} \), we define

\[
F_w(x) := F_{w_1} \circ F_{w_2} \circ \cdots \circ F_{w_n}(x), \quad x \in \mathbb{R}^2,
\]

and \(F_{\emptyset} := \text{id}_{\mathbb{R}^2} \) for the empty word \(\emptyset \). For any \(w \in \mathcal{A}^n \), \(F_w(X) \) is homeomorphic to \(X \).

In a natural sense, we approximate \(X \) by the metric graphs \(G_n \) determined by \(V_n, E_n, \partial, r \) and defined below.

Definition 4.1. For any \(n \in \mathbb{N}_0 \), we define the vertex set

\[
V_n := \bigcup_{w \in \mathcal{A}^n} F_w(\{p_1, p_2, p_3\})
\]

and the edge set \(E_n := T_n \cup J_n \), where

\[
T_n := \{ \{x, y\} \mid \exists w \in \mathcal{A}^n \text{ s.t. } y \in F_w(V_0) \},
\]

\[
J_n := \{ \{x, y\} \mid \exists 0 < k < n, w \in \mathcal{A}^{k-1} \text{ s.t. } x = F_{w_{i-1}}(p_k), y = F_{w_{i-1}}(p_i), i, j \in A \text{ i.e } j = i \}.
\]

Moreover, let \(r : E_n \to (0, \infty) \) be the weight function given by the edge length, i.e.

\[
r(e) := \begin{cases}
\left(\frac{1-\alpha}{2}\right)^\alpha, & \text{for } e \in T_n, \\
\alpha \left(\frac{1-\alpha}{2}\right)^{k-1}, & \text{for } e \in J_n \setminus J_{k-1}, \ 1 \leq k \leq n.
\end{cases}
\]

\(G_n := (V_n, E_n, \partial, r) \) is a weighted graph with any orientation \(\partial \) and we define the metric graph \(G_n^\text{met} \) associated to \(G_n \) as a subset of \(X \) where \(\Phi : L \to \mathbb{R}^2 \) is given by

\[
\Phi_e(t) = t\partial_e e - (r(e) - t)\partial_e e.
\]

Notice that \(G_n^\text{met} \) is a subset of \(G_{n+1}^\text{met} \) and \(V_n \subset V_{n+1} \), however \(E_n \) is not a subset of \(E_{n+1} \) and thus \(G_n \) is not a subgraph of \(G_{n+1} \).

In the set \(E_n \) we distinguish two different types of edges: on one hand, \(T_n \) contains ‘triangle-type’ edges, i.e. edges building a triangle. On the other hand, \(J_n \) denotes the set of ‘joining-type’ edges, which join the triangles built by the edges in \(T_n \).

We equip these graphs with the measure \(m \) introduced in section 3, which coincides with the one-dimensional Hausdorff measure. Hence, \((G_n^\text{met})_{n \in \mathbb{N}_0} \) is a sequence of metric graphs that approximates \(X \) as figure 3 suggests in the sense that

\[
X = \overline{\bigcup_{n \in \mathbb{N}_0} G_n^\text{met}} = \overline{\bigcup_{n \in \mathbb{N}_0} \Phi_e(L_e)}
\]

where \(\overline{\cdot} \) means closure with respect to the Euclidean metric. Later on we will show in theorem 5.2 that on \(X \), the Euclidean and the effective resistance topology coincide.
Remark 4.2. The space \((X, m)\) is not finite if \(\alpha \in (0, 1/3]\) because

\[
m(X) = \lim_{n \to \infty} \sum_{e \in E_n} m(I_e) = \lim_{n \to \infty} \sum_{e \in E_n} m(I_e) = 3\alpha \sum_{n=1}^{\infty} \left(\frac{1 - \alpha}{2}\right)^n = +\infty.
\]

Recall that \(I_e = [0, r(e)]\) is the interval associated with the edge \(e\).

In order to get a quantum graph out of the metric graph \(G_n^\text{met}\), we consider next a metric graph energy which we denote \(E_{G_n^\text{met}}\). It is crucial to choose domains \(\mathcal{F}_n\), whose functions are everywhere constant except in finitely many ‘joining-type’ edges. Note that

\[
X \setminus (\bigcup_{e \in \Delta} \Phi_e(I_e^w)) = \bigcup_{w \in \mathcal{A}^n} F_w(X),
\]

where \(I_e^w := (0, r(e))\) is the interior of \(I_e\).

Definition 4.3. We define the domain of functions

\[
\mathcal{F}_n := \{ u : X \to \mathbb{R} \mid u|_{\Omega_n^w} \in H^1(G_n^\text{met}) \text{ and } u|_{\partial} \equiv c_w \text{ for any } \Delta = F_w(X) \},
\]

where \(c_w\) are constants that only depend on \(\Delta = F_w(X)\), an arbitrary triangular cell indexed by \(w \in \mathcal{A}^n\). Note that the non-negative symmetric bilinear form \(\langle u, \nu \rangle\) given by (2.3) is well defined for \(u, \nu \in \mathcal{F}_n \rightleftharpoons \bigcup_{w \in \mathcal{A}^n} F_w(X) \subset \text{Dom}\mathcal{E} = H^1(X)\). We also define the non-negative symmetric bilinear form

\[
\mathcal{E}_{G_n^\text{met}} : H^1(G_n^\text{met}) \times H^1(G_n^\text{met}) \to \mathbb{R}, \quad \mathcal{E}_{G_n^\text{met}}(u, \nu) := \int_{G_n^\text{met}} u\nu \, dm,
\]

called it the standard energy form on \(G_n^\text{met}\).

Remark 4.4. The formulas for \(\mathcal{E}\) and \(\mathcal{E}_{G_n^\text{met}}\) are very similar, but differ in their domains of definition. This will be crucial in the following analysis. We shall use the suggestive notation \(\mathcal{E}_n\) for the following expressions

\[
\mathcal{E}_n(u, \nu) := \mathcal{E} \left(u, \nu \right) = \mathcal{E}_{G_n^\text{met}}(u|_{\Omega_n^w}, \nu|_{\Omega_n^w}), \quad u, \nu \in \mathcal{F}_n,
\]

which are well defined and equal for all \(n \in \mathbb{N}_0\). Again, notice that the only difference between \((\mathcal{E}_{n}, \mathcal{F}_n \times \mathcal{F}_n), (\mathcal{E}, \mathcal{F}_n \times \mathcal{F}_n)\) and \((\mathcal{E}_{G_n^\text{met}}, H^1(G_n^\text{met}) \times H^1(G_n^\text{met}))\) is the domain.

5. Energy on Hanoi attractor is a resistance form

In this section we prove that \((\mathcal{E}, H^1(X))\) is a resistance form on \(X\) in the sense of [Kig12]:

Definition 5.1. Let \(X\) be a set. A pair \((\mathcal{E}, \text{Dom } \mathcal{E})\) is called a resistance form if
(RF 1) E is a non-negative symmetric bilinear form on $\text{Dom} E$, a linear subspace of $\ell(X) = \{u : X \to \mathbb{R}\}$ that contains constants, and $E(u, u) = 0$ if and only if u is constant on X.

(RF 2) If \sim is the equivalence relation in $\text{Dom} E$ where $u \sim v$ if and only if $u - v$ is constant, then $(\text{Dom } E, \sim)$ is a Hilbert space.

(RF 3) For any two points $p \neq q$ in X, there exists $u \in \text{Dom } E$ such that $u(p) \neq u(q)$.

(RF 4) For any $p, q \in X$,
$$\sup \left\{ \frac{(u(p) - u(q))^2}{E(u, u)} : u \in \text{Dom } E, E(u, u) \neq 0 \right\} < \infty.$$
We denote this supremum by $R_{E}(p, q)$ and call it the effective resistance between p and q.

(RF 5) (Markov property) For any $u \in \text{Dom } E$, $E(u, u) = 0 \iff u$ is constant on X.

Note that $\sigma_{G^{\text{met}}}$ is a resistance form on G^{met}_n. We would also like to point out that if the condition (RF 3) is not satisfied, then $R_{E}(p, q)$ may equal 0 even if $p \neq q$. In such a situation the effective resistance is defined but it is not necessarily a metric, yet it can be a pseudo-metric. This fact is important because when restricted to the functions $u \in F_n$, σ_{π} satisfies all the conditions except (RF3). Thus, we can define effective resistances $R_{\pi}(p, q)$ with respect to σ_{π} using the same definition from (RF4) despite not being metrics they form a non-decreasing sequence of pseudometrics on X. In a certain sense, σ_{π} is equivalent to a resistance form on a quotient space of G^{met}_n or of X, by identifying all points in a cell $F_n(X)$ in a single point.

Definition 5.2. Let $(E, \text{Dom } E)$ be a resistance form on X and let S be a finite subset of X. The resistance form $T_{E}(S) : \ell(S) \times \ell(S) \to \mathbb{R}$ is given by
$$T_{E}(S)(u, v) = \inf \{ E(v, v) : v \in \text{Dom } E, v|_{S} = u \}.$$
For any $u, v \in \ell(S)$, $T_{E}(u, v)$ is defined by applying the polarization identity.

5.1. Metric observations

This section establishes the metric properties of σ_{π}, $\sigma_{G^{\text{met}}}$ and σ, starting with the following simple but important technical observation concerning the resistance form $\sigma_{G^{\text{met}}}$ on G^{met}_n.

Lemma 5.1. For any points $p, q \in G^{\text{met}}$ and for any function $u \in H^1(G^{\text{met}}_n)$,
$$|u(p) - u(q)|^2 \leq d_n(p, q)\sigma_{G^{\text{met}}}(u, u),$$
where d_n is the intrinsic geodesic distance in G^{met}_n and $\sigma_{G^{\text{met}}}$ is defined in (4.3). Furthermore, for all $v \in F_n$ and $p, q \in G^{\text{met}}$,
$$|v(p) - v(q)|^2 \leq d_n(p, q)\sigma_n(v, v).$$

Proof. The second inequality follows from the first and the fact that $\sigma_n(v, v) = \sigma_{G^{\text{met}}}(v|_{F_n}, v|_{F_n})$.

If p, q are both on the same edge, which is a one-dimensional straight line segment in G^{met}_n, then
\|u(p) - u(q)\|^2 = \left(\int_p^q |u'(x)|^2 \, dx \right)^2 \leq \int_p^q |u'(x)|^2 \, dx \left| p - q \right| \leq \varepsilon_{G_n^{\text{met}}} (u, u) \left| p - q \right|.

Here, \(dx\) represents the usual one-dimensional integral along the straight line segments in \(X\) (technically speaking \(dx = dm(x)\), but the notation \(\int_p^q ... dx\) is more intuitive) and \(u'\) and \(v'\) represent the usual derivatives along these straight line segments. If \(p\) and \(q\) are not on the same edge, then there are \(x_0, \ldots, x_m \in G_n^{\text{met}}\) such that \(p = x_0, q = x_m\), and \(x_i\) and \(x_{i+1}\) belong to the same edge (these are the vertices which a path from \(p\) to \(q\) would pass through). Then it is easy to see that

\[\|u(p) - u(q)\|^2 \leq \varepsilon_{G_n^{\text{met}}} (u, u) \left(\sum_{i=0}^{m-1} |x_i - x_{i+1}| \right)\]

by the Cauchy–Schwarz inequality. If we assume that \(x_i\) are the vertices traversed by the length minimizing path from \(p\) to \(q\), then we get the inequality in the lemma. \(\square\)

Theorem 5.2.

1. For any \(n \in \mathbb{N}\) and any \(p, q \in X\) it holds that \(R_{n+1}(p, q) \geq R_n(p, q)\). Moreover, we have the nondecreasing limit

\[0 < R(p, q) = \lim_{n \to \infty} R_n(p, q) = \sup_n R_n(p, q) < \infty\]

for any distinct \(p, q \in X\). Thus \(R\) is a metric on \(X\).

2. For any \(n \in \mathbb{N}\) and \(p, q \in G_n^{\text{met}}\), \(R_{G_n^{\text{met}}}(p, q) \leq R_{G_n^{\text{met}}}(p, q)\). Here we formally define \(R_{G_n^{\text{met}}}\) to be infinite for points not in \(G_n^{\text{met}}\). Furthermore, we have a nonincreasing limit

\[0 < R(p, q) = \lim_{n \to \infty} R_{G_n^{\text{met}}}(p, q) = \inf_n R_{G_n^{\text{met}}}(p, q) < \infty\]

for any distinct \(p, q \in \bigcup_n G_n^{\text{met}}\). In particular \((G_n^{\text{met}}, R_{G_n^{\text{met}}})\) converges to \((X, R)\) in the Gromov–Hausdorff sense.

3. There exists a constant \(c > 1\) such that

\[\frac{1}{c} |p - q| \leq R(p, q) \leq c |p - q|\]

for any \(p, q \in X\).

Proof. (1) Since \(F_n \subseteq F_{n+1}\) and \(\varepsilon_n(u, u) = \varepsilon_{n+1}(u, u)\) for all \(u \in F_n\) we have that

\[R_n(p, q) = \sup \left\{ \frac{|u(p) - u(q)|^2}{\varepsilon_{n+1}(u, u)} : u \in F_n, \varepsilon_n(u, u) = 0 \right\} \]

\[\leq \sup \left\{ \frac{|u(p) - u(q)|^2}{\varepsilon_{n+1}(u, u)} : u \in F_{n+1}, \varepsilon_{n+1}(u, u) = 0 \right\} = R_{n+1}(p, q).\]

The fact that \(0 < R(p, q)\) follows from lemma 5.1 and the fact that \(\bigcup_{n=1}^{\infty} F_n\) separates points of \(X\). \(R(p, q) < \infty\) because

\[\frac{1}{c} |p - q| \leq R(p, q) \leq c |p - q|\]
where \(p' \) is chosen to be \(p \) if \(p \in G^\text{net}_n \) or any point in \(F_w(X) \cap G^\text{net}_n \) for \(w \) being the word of length \(n \) such that \(p \in F_w(X) \) and \(q' \) defined in a similar manner.

(2) Recall that
\[
R^\text{net}_{G_n}(p, q) = \sup \left\{ \frac{|u(p) - u(q)|^2}{\mathcal{E}^G_n(u|_{G_n^\text{net}}, u|_{G_n^\text{net}})} : u \in \mathcal{F}_n, \mathcal{E}_n(u, u) \neq 0 \right\}
\]
\[\leq R^\text{net}_{G_n}(p', q'),\]

where \(p' \) is chosen to be \(p \) if \(p \in G^\text{net}_n \) or any point in \(F_w(X) \cap G^\text{net}_n \) for \(w \) being the word of length \(n \) such that \(p \in F_w(X) \) and \(q' \) defined in a similar manner.

Given any function \(u \in H^1(G^\text{net}_{n+1}), u|_{G^\text{net}_n} \in H^1(G^\text{net}_n) \) and \(\mathcal{E}^G_n(u, u) \geq \mathcal{E}^G_n(u|_{G^\text{net}_n}, u|_{G^\text{net}_n}) \).

Hence
\[
\frac{|u(p) - u(q)|^2}{\mathcal{E}^G_n(u, u)} \leq \frac{|u(p) - u(q)|^2}{\mathcal{E}^G_n(u|_{G^\text{net}_n}, u|_{G^\text{net}_n})} \quad \forall u \in H^1(G^\text{net}_{n+1}).
\]

Moreover, since any function in \(H^1(G^\text{net}_n) \) can be extended to a function in \(H^1(G^\text{net}_{n+1}) \) by interpolating on new ‘interior’ edges, any function in \(H^1(G^\text{net}_n) \) can be obtained as a restriction of a function in \(H^1(G^\text{net}_{n+1}) \) and thus
\[
R^\text{net}_{G^\text{net}_{n+1}}(p, q) = \sup \left\{ \mathcal{E}^G_n(u, u) : u \in H^1(G^\text{net}_{n+1}), \mathcal{E}^G_n(u, u) \neq 0 \right\}
\]
\[\leq \sup \left\{ \mathcal{E}^G_n(u|_{G^\text{net}_n}, u|_{G^\text{net}_n}) : u \in H^1(G^\text{net}_n), \mathcal{E}^G_n(u, u) \neq 0 \right\}
\]
\[= R^\text{net}_{G^\text{net}_n}(p, q).
\]

for any \(p, q \in X \), and the limit exists.

It remains to be proved that in fact \(R(p, q) = \lim_{n \to \infty} R^\text{net}_{G^\text{net}_n}(p, q) \) for any \(p, q \in \bigcup_n G^\text{net}_n \). Let \(\mathcal{R}_n \) be the resistance of a wire in a triangle network such that the resistance between the corners is either \(R_n(p_i, p_j) \) or \(R^\text{net}_{G^\text{net}_n}(p_i, p_j) \), with \(i, j \in \{1, 2, 3\}, i \neq j \), and \(p_1, p_2, p_3 \) being the corners of \(X \). In either case, the sequence \([\mathcal{R}_n]_{n=1}^\infty \) satisfies the recurrence relation
\[
\frac{5}{4} \mathcal{R}_n + \alpha = \mathcal{R}_{n+1}.
\]

This can be seen by means of the Delta-Y transform as illustrated in figure 4 (this transform is classical and is extensively used in analysis on fractals literature such as [BCF07, IKM15, MST04, Str06]). The limit must be 2/3 times the fixed point of the function
\[
f(z) = \frac{5z}{4} + \alpha \quad \text{which is} \quad z_0 = 6\alpha/(1 + 5\alpha) \quad \text{and is thus independent of our choice of sequence. Therefore, the limits coincide and}
\]
\[
R(p_i, p_j) = 2z_0/3 = \frac{4\alpha}{1 + 5\alpha}.
\]

After that we can obtain a similar limit result for corners of each sub-triangle \(F_w(X) \) for some fixed \(n = |w| \). This implies that the effective resistance between any two points in \(\bigcup_{L \in \mathcal{L}} \Phi(L) \) for any \(n \) can be computed using the usual Kirchhoff’s laws because the computation of such a resistance is done in terms of a finite electrical network. Since \(\bigcup_{L \in \mathcal{L}} \Phi(L) \) becomes uniformly dense in \((G^\text{net}_n, R^\text{net}_n)\), these metric spaces converge to \((X, R)\) in the Gromov–Hausdorff sense, see for example [BBI01, proposition 7.4.12].
First, assume that \(eJ_n \), where \(eJ_n \) is the smallest such integer. Then, \(e \) is adjacent to \(F_w(X) \) for some \(w \in \mathcal{A}^n \) and we may assume without loss of generality that \(q \) is closer to \(F_w(X) \) than \(p \) is. Because \(n \) is the smallest such that \(eJ_n \), \(e \) is the shortest such edge. This allows us to construct a function \(u \) with \(u(\cdot) = 0 \), interpolating linearly between \(p \) and \(q \) and staying constant outside. Moreover, \(u_{|F_w(X)} = 1 \), and it linearly decays from 1 to 0 on the other (at most two) edges adjacent to \(F_w(X) \). Finally, set \(u \) to be constant zero everywhere else. Then, \(uu(p, q) \), which implies that \(R(p, q) \), and thus \(R(p, q) \), where the upper bound comes from lemma 5.1.

Now suppose that \(p, q \) do not belong to such an edge for any \(n \in \mathbb{N} \) and let \(n_0 \in \mathbb{N} \) be the smallest integer such that \(p \) and \(q \) belong to different \(n_0 \)-cells. Formally, there exist \(w_1, w_2 \in \mathcal{A}^{n_0} \) with \(p \in F_{w_1}(X) \) and \(q \in F_{w_2}(X) \) and \(F_{w_1}(X) \cap F_{w_2}(X) = \emptyset \). Take \(p' \in F_{w_1}(X) \) and \(q' \in F_{w_2}(X) \) to be the endpoints of the line segment connecting \(F_{w_1}(X) \) and \(F_{w_2}(X) \) (see figure 5). Such points exist because \(F_{w_1}(X) \) and \(F_{w_2}(X) \) are the largest cells for which \(p, q \) are in different cells. Then, \(|p - q| \geq |p' - q'| = \alpha \left(\frac{1 - 2\alpha}{2} \right)^{n_0} \) because \(p' \) and \(q' \) attain the minimum of the (Euclidean) distance between elements in \(F_{w_1}(X) \) and \(F_{w_2}(X) \). By the triangular inequality

\[
R(p, q) \leq R(p, p') + R(p', q') + R(q', q).
\]

Since \(p', q' \) belong to an edge \(eJ_{n_0} \), it follows from lemma 5.1 that \(R(p', q') \leq |p' - q'| \). Applying Delta-Y transform we have that

\[
\text{Figure 4. Reduction of the first level approximation network of the Hanoi attractor.}
\]
where the second inequality holds because otherwise p and q would have belonged to the same n_0-cell. The same holds for R_{pq}, (α). Since $15 < a + a$, we deduce that $R_{pp} = R_{qq} = 0$.

On the other hand, $|p - q| < \left(\frac{1 - \alpha}{2}\right)^{n_0 - 1}$ because otherwise p and q could have been separated by $(n_0 - 1)$-cells and n_0 was chosen to be minimal with this property. Note additionally that $R_{pp}(p, p') = R_{pp}(q, q') = 0$. Using the bounds from (1) and the lower bound for points which share an edge from above we get

$$R(p, q) \geq R_{n_0}(p, q) = R_{n_0}(p', q') > \frac{1}{3} |p' - q'| = \frac{1}{3} \alpha \left(\frac{1 - \alpha}{2}\right)^{n_0 - 1} > \frac{\alpha}{3} |p - q|.$$

Choosing $c = \frac{3}{\alpha} > 1$ the chain of inequalities is proved.

\[\Box \]

Remark 5.3. Theorem 5.2 (3) proves that R and the Euclidean distance are bi-Lipschitz equivalent, and this implies that the induced topologies on X are the same. In addition, we may define for any $p, q \in X$ the geodesic distance

$$d_G(p, q) := \lim_{n \to \infty} d_n(p, q) = \inf_{n} d_n(p, q),$$

with d_n as in Lemma 5.1. Note that

$$d_n(p, q) \geq d_{n+1}(p, q) \geq d_G(p, q) \geq |p - q|$$

for all $p, q \in X$, considering d_n to be infinite if p, q are not in G_n^{met}. Moreover, one can prove purely geometrically the sharp bi-Lipschitz estimates

$$d_G(p, q) \geq |p - q| \geq \frac{1}{2} d_G(p, q),$$

which also imply that $d_G(p, q)$ is bi-Lipschitz equivalent to $R(p, q)$: Suppose that $n_0 \geq 0$ is such that $p, q \in G_n^{\text{met}}$. If p, q belong to the same equilateral triangle, we know from plain geometry that $2|p - q| \geq d_n(p, q)$ for all $n \geq n_0$. If p, q belong to the same hexagon with angles $2\pi/3$ we obtain from this property of equilateral triangles that $2|p - q| \geq d_n(p, q)$ for all $n \geq n_0$ (see Figure 6). If $p, q \in G_n^{\text{met}}$ are not as in the previous cases, consider the straight line segment connecting p and q. It crosses convex sets that are hexagons with angles $2\pi/3$ or equilateral triangles at points x_1, \ldots, x_m. If the segment connecting x_i and x_{i+1} lies...
inside an hexagon, replace it by the piecewise-geodesic going around it (see figure 7). By this procedure we obtain a path inside $G_{n_0}^{\text{met}}$ whose length is at most twice $|p - q|$ in view of the previous step. Thus we have $2|p - q| \leq d_n(p, q)$ for all $n \geq n_0$ and, conversely, $|p - q| \leq d_G(p, q)$ by definition of geodesic distance.

Remark 5.4. Let Ω_{d_G} be defined as the completion of $\bigcup_{n \in \mathbb{N}_0} G_n^{\text{met}}$ with respect to d_G. Then Ω_{d_G} can be naturally and homeomorphically identified with X in such a way that it is bi-Lipschitz equivalent to both R and the Euclidean metric.

Remark 5.5. The metric d_G is partially self-similar on X in that

$$d_G(F_n(x), F_n(y)) = \left(1 - \frac{\alpha}{2}\right)^n d_G(x, y)$$

for any $w \in A^n$. To see this, note that for any $k > 0$ there is a bijection between paths in G_k^{met} from x to y, and paths in $F_n(G_k^{\text{met}}) \subset G_0^{\text{met}}$. It is easy to see that a minimizing path will not
leave $F_n(G^n_{\text{meta}})$, and so this implies that $d_{n+k}(F_n(x), F_n(y)) = \left(\frac{1-\alpha}{2}\right)^n d_k(x,y)$. Self-similarity follows by passing to the limit. In addition, from the following picture one can conclude that the geodesic diameter of X is the distance from p_1 to p_4. Here p_4 is the fixed point of F_4, i.e. the midpoint of the line segment connecting p_2 and p_3.

Remark 5.6. Since the Euclidean metric, d_G and R are all equivalent metrics, the Hausdorff dimension of X with respect to any of these metrics is the same value, in particular

$$\dim(X) = \max\left\{1, \frac{\ln 3}{\ln 2 - \ln(1-\alpha)}\right\}. $$

5.2. Proof of theorem 2.1

This subsection proves theorem 2.1 using the results of section 5.1. The sections 5.2.1 and 5.2.2 establish that δ can be extended to a resistance form on X using techniques from [Kig12]. In section 5.2.3 it is shown that the domain of this resistance form is $H^1(X)$.

5.2.1. Finite dimensional resistance forms on X

The first part of the proof relies on theorem 5.2 (1). Here we do not provide the domain $\text{dom}\; \delta$ of δ explicitly but instead use an abstract result of Kigami concerning compatible sequences of resistance forms [Kig12, theorem 3.13]. For any nonempty finite subset $S \subset X$ and any function $u \in \ell(S)$ we define

$$\delta_S(u, u) = \inf \inf \{\delta(v, v) : v|_S = u, v \in F_u\}.$$

As a consequence of theorem 5.2 (1), we have the following facts: Each biliniarized form $\delta_S(u, v)$ is a resistance form on the finite set S, and in particular δ_S vanishes only on constants.

(RF1) Clearly $\ell(S)$ is a linear subspace of itself and if $u \equiv \text{const}$ then $\delta_S(u, u) = 0$. Conversely, if $\delta_S(u, u) = 0$ then also u is constant because if u were nonconstant, there would be $x \neq y \in S$ with $u(x) \neq u(y)$ and thus $\delta_S(v, v) \geq \frac{|u(x) - u(y)|^2}{d_S(x,y)} > 0$ for all $v \in F_u$ with $v|_S \equiv u$ by lemma 5.1, implying $\delta_S(u, u) > 0$.

(RF2) $(\ell(S)\delta_S^{1/2})$ is Hilbert because $\ell(S)$ is finite dimensional, and thus (RF1) implies δ_S is an inner product on the quotient space.

(RF3) $\ell(S)$ separates points.
can be extended to a resistance form. To do this, we show that the family of resistance forms E coincide on $\ell(S)$. This choice is important because $d_S(p, q)$ was defined in theorem 5.2 (1). Interchanging of suprema is possible because

$$\inf \{ e_n(v, v) : v \in F_n, \|v\|_S = u \} \leq \inf \{ e_n(v, v) : v \in F_n, \|v\|_S = u \} = e_S(u, u).$$

On the other hand, for all $n \geq 1$, $\{ \tau : v \in F_n, \|v\|_S = u \} \subseteq \{ v : v \in F_n, \|v\|_S = \tau \}$ and thus

$$e_S(\tau, u) = \inf \{ e_n(v, v) : v \in F_n, \|v\|_S = \tau \} \leq \inf \{ e_n(\tau, \tau) : v \in F_n, \|v\|_S = u \}.$$
For any $u \in \mathcal{F}_n$ and $n \in \mathbb{N}$, $u \in \text{Dom } \mathcal{E}$ because $\mathcal{E}_n(u|_{S_k}, u|_{S_k}) \leq \mathcal{E}_n(u, u)$ for all k, hence $\mathcal{E}(u, u) \leq \mathcal{E}_n(u, u) = \mathcal{E}_n(u, u)$. On the other hand, $\mathcal{E}(v, v)$ with $v|_{S_k} = u|_{S_k}$ is minimized by a function u_k such that $u_k \circ \Phi_k : I_n \to \mathbb{R}$ is a piecewise linear function that interpolates between values of u on points in $\Phi_k^{-1}(S_k)$. Further, since S_k includes the endpoints of I_n, the function which extends these values of v_k to \mathcal{F}_n by constants is well defined and it will be the minimizer. In particular, $v_k \in \mathcal{F}_n$ and it is constant on all edges where u is constant. Thus

$$\mathcal{E}^e(u, u) = \lim_{k \to \infty} \mathcal{E}_n(u|_{S_k}, u|_{S_k}) = \lim_{k \to \infty} \mathcal{E}_k(v_k, v_k) = \mathcal{E}(u, u)$$

because the points in S_k become uniformly dense in $\Phi_k(I_n)$ and hence

$$\lim_{k \to \infty} \int_0^t ((v_k \circ \Phi_k)'(t))^2 \, dt = \int_0^t (u \circ \Phi_k)'(t))^2 \, dt.$$

This implies that $\mathcal{E}(u, u) = \mathcal{E}^e(u, u)$ for any $u \in \bigcup_n \mathcal{F}_n$, so that the resistance form \mathcal{E} is an extension of \mathcal{E}, and from now on we shall refer to $(\mathcal{E}, \text{Dom } \mathcal{E})$ as $(\mathcal{E}^e, \text{Dom } \mathcal{E})$. Note that $\bigcup_{n=1}^\infty \mathcal{F}_n \subset \text{Dom } \mathcal{E}$. This also implies that the construction is in fact independent on which dense countable subset is chosen.

Moreover, it was shown above that for any $v \in \ell(S_k)$ and any k, there is some n and $u \in \mathcal{F}_n$ such that $\mathcal{E}_n(v, v) = \mathcal{E}_n(u, u)$ and $u(x) = v(x)$ for all $x \in S_k$. Thus, by [Kig12, theorem 3.13] and property (RF4) of resistance forms, a function $u \in \ell(X)$ is in Dom \mathcal{E} if and only if there exists a sequence $(u_n)_n$, $u_n \in \mathcal{F}_n$ such that

$$\|u_n - u\|_\infty \to 0 \quad \text{and} \quad (u_n)_n \text{ is } \mathcal{E}\text{-Cauchy}.$$

5.2.3. Characterization of Dom \mathcal{E}. After having established that \mathcal{E} can be extended to a resistance form, the final step in proving theorem 2.1 is showing that Dom $\mathcal{E} = H^1(X)$. This requires the full strength of theorem 5.2 and approximation by quantum graphs. In particular, we get that $u \in H^1(X)$ if and only if there is a sequence $u_n \in \mathcal{F}_n$ such that

$$u_n \to u \text{ uniformly on } X$$

and

$$(u_n)_n \text{ is an } \mathcal{E}\text{-Cauchy sequence}.$$

Then we have

$$\mathcal{E}(u, u) = \lim \mathcal{E}(u_n, u_n) < \infty,$$

where \mathcal{E} is defined in (2.3). To see that $H^1(X)$ is closed under the above type of convergence, consider a sequence $(u_n)_n \subset H^1(X) \subset C(X)$ is given. Its pointwise limit u belongs to $H^1(X)$ because on any interval I contained in X, u_n restricted to that interval will be in the classical Sobolev space $H^1(I)$, which is closed under the above limits.

It is easy to see that $\mathcal{F}_n \subset H^1(X)$ for all n, and because Dom \mathcal{E} is the closure of $\bigcup_n \mathcal{F}_n$ under the above kind of limit, this implies that Dom $\mathcal{E} \subset H^1(X)$.

Given a function $u \in H^1(X)$, we construct and \mathcal{E}-Cauchy sequence $(u_n)_n$ with $u_n \in \mathcal{F}_n$ and $u_n \to u$ uniformly. Without loss of generality, we can assume that u is linear on all straight line segments $\Phi_k(I_n)$. This is because any function $u \in H^1(X)$ we can write as $u = \bar{u} + \bar{u}$ where \bar{u} is linear on all straight line segments $\Phi_k(I_n)$, and \bar{u} vanishes at all the endpoints of all $\Phi_k(I_n)$. Then \bar{u} can be easily approximated, and so we only have to deal with \bar{u}. Note that one has $\mathcal{E}(u, u) = \mathcal{E}(\bar{u}, \bar{u}) + \mathcal{E}(\bar{u}, \bar{u})$. Now, if u is linear on each straight line segment in $\Phi_k(I_n)$, $e \in J_n$. It is elementary to prove that
such as sequence \((u_n)\) is an \(\mathcal{R}\)-Cauchy sequence. The key observation is that, according to theorem 5.2, the effective resistance diameter of the cells \(F_w(X)\) is controlled by the resistance of the segments \(\Phi_e(I_e)\) for \(e \in J_n\), and so the energy of the difference between \(u \) and \(u_{n+1}\) is controlled by the energy of \(u\) contained inside the cells \(F_w(X)\), which vanishes as \(n \to \infty\).

This concludes the proof of theorem 2.1.

5.3. Approximation by quantum graphs \(G_n^{\text{met}}\)

Having proved theorem 2.1 we end this section with another useful characterization of \(\text{Dom} \mathcal{R} = H^1(X)\).

Proposition 5.3. A function \(u \in C(X)\) belongs to \(H^1(X)\) if and only if the restriction of \(u\) to any \(G_n^{\text{met}}\) is a finite energy function and

\[
\sup_n \mathcal{E}_{G_n^{\text{met}}} (u |_{G_n^{\text{met}}}, u|_{G_n^{\text{met}}}) < \infty.
\]

In this case, the sequence \(\mathcal{E}_{G_n^{\text{met}}} (u |_{G_n^{\text{met}}}, u|_{G_n^{\text{met}}})\) is nondecreasing and

\[
\mathcal{E}(u, u) = \lim_{n \to \infty} \mathcal{E}_{G_n^{\text{met}}} (u |_{G_n^{\text{met}}}, u|_{G_n^{\text{met}}}) = \sup_n \mathcal{E}_{G_n^{\text{met}}} (u |_{G_n^{\text{met}}}, u|_{G_n^{\text{met}}}).
\]

Proof. On one hand, if \(u \in H^1(X)\), then \(|u(p) - u(q)| \leq \mathcal{E}(u, u) R(p, q)\) by (RF4) and remark 5.3. Therefore, \(u\) is continuous with respect to the effective resistance and hence continuous with respect to the Euclidean metric by theorem 5.2 (3), i.e. \(H^1(X) \subseteq C(X)\). Furthermore, it is easy to see that \(\mathcal{E}_{G_n^{\text{met}}} (u |_{G_n^{\text{met}}}, u|_{G_n^{\text{met}}}) \leq \mathcal{E}(u, u)\), as the latter is the sum over a set of positive terms and the former is the sum over a subset of these terms.

On the other hand, if \(u \in C(X)\) with \(\sup_n \mathcal{E}_{G_n^{\text{met}}} (u |_{G_n^{\text{met}}}, u|_{G_n^{\text{met}}}) < \infty\), it can be seen that \(\lim_n \mathcal{E}_{G_n^{\text{met}}} (u |_{G_n^{\text{met}}}, u|_{G_n^{\text{met}}}) = \mathcal{E}(u, u)\) by observing that for every edge \(e\) of \(X\) there is \(n_0 \in \mathbb{N}\) such that \(e\) is a subset of a \(G_n^{\text{met}}\) for all \(n > n_0\) and thus the limit of \(\mathcal{E}_{G_n^{\text{met}}} (u |_{G_n^{\text{met}}}, u|_{G_n^{\text{met}}})\) is a rearrangement of the sum \(\mathcal{E}(u, u)\). \(\square\)

6. Spectral asymptotics

We know from [Kig12, chapter 9] that a resistance form together with a locally finite regular measure induces a Dirichlet form on the corresponding \(L^2\)-space. By introducing an appropriate measure \(\mu\) on \(X\), we can therefore obtain a Dirichlet form and a Laplacian on \(L^2(X, \mu)\). The spectral properties of this operator strongly depend on the measure, that we choose in a weakly self-similar manner in view of the geometric properties of \(X\).

Recall from the introduction the parameters \(\beta \in (0, 1/3)\) and \(s = \frac{1-1/3}{2}\). For any \(w \in A^m, n \in \mathbb{N}\), we define

\[
\mu(F_w(U)) := s^{|w|} \mu(U), \quad U \subseteq X,
\]

where \(\mu\) is Lebesgue measure on \(I_e\) for \(e \in J_n\) with \(\mu(I_e) = \beta\). Notice that \(\beta\) and \(s\) are related in such a way that \(\mu(X) = 1\).

As a direct consequence of theorem 5.2, \(X\) is compact with respect to the resistance metric and it follows from [Kig12, corollary 6.4] that the induced Dirichlet form coincides with \((\mathcal{E}, \text{Dom} \mathcal{E})\). Next definition is a well-known fact from the theory of Dirichlet forms that can be found in [FOT11, corollary 1.3.1].
Definition 6.1. The Laplacian associated with $(\mathcal{E}, \text{Dom } \mathcal{E})$ is the unique non-negative self-adjoint operator $\Delta_\mu : \text{Dom} \Delta_\mu \to L^2(X, \mu)$ such that $\text{Dom} \Delta_\mu$ is dense in $L^2(X, \mu)$ and
\[
\mathcal{E}(u, v) = -\int_X \Delta_\mu u \cdot v \, d\mu \quad \forall \, v \in \text{Dom } \mathcal{E}.
\]

Recall that $r = \frac{1 - \alpha}{2}$ denotes the scaling factor of the similitudes F_i, F_2, F_3 and write $I_\varepsilon = [0, r^n\alpha] \text{ for any } e \in J_{n+1}\setminus J_n, \, n \in \mathbb{N}_0.$

Lemma 6.1. For any $u \in \text{Dom } \mathcal{E},$
\[
\mathcal{E}(u, u) = \sum_{i=1}^3 \int_0^r \int_0^{r^{-1} \alpha} |u'|^2 \, dx
\]

Proof. Let $u \in H^1(X)$.
\[
\mathcal{E}(u, u) = \sum_{k=\ell \in J} \int_0^{r^{-k} \alpha} |u'|^2 \, dx
\]

Applying the transformation of variables $x = F_i(y)$ we get that
\[
\mathcal{E}(u, u) = \sum_{i=1}^3 \sum_{k=\ell \in J} \int_0^{r^{-k} \alpha} |(u \circ F_i)'|^2 \, dy + \sum_{\ell \in J} \int_0^{r^{1-k} \alpha} |u'|^2 \, dx.
\]

By iterating we get the following generalization of this Lemma.

Corollary 6.2. For any $u \in \text{Dom } \mathcal{E}$ and $m \in \mathbb{N},$
\[
\mathcal{E}(u, u) = \sum_{l \in J} \int_0^{r^{-m} \alpha} |(u \circ F_l)'|^2 \, dy + \sum_{\ell \in J} \int_0^{r^{-k} \alpha} |u'|^2 \, dx.
\]
This function can also be defined for Dirichlet forms by considering that \(\lambda \in \mathbb{R} \) is an eigenvalue of \(\mathcal{E} \) if and only if there exists \(u \in \text{Dom} \mathcal{E} \) such that
\[
\mathcal{E}(u, v) = \lambda \int_X uv \, d\mu \quad \forall \, v \in \text{Dom} \mathcal{E}.
\]
In this case the eigenvalue counting function
\[
N(x; \mathcal{E}, \text{Dom} \mathcal{E}) := \# \{ \lambda \text{ eigenvalue of } \mathcal{E} : \lambda \leq x \}
\]
cointides with \(N_N(x) \) (see [Lap91, proposition 4.1]). Analogously it holds that
\[
N_D(x) = N(x; \mathcal{E}^0, \text{Dom} \mathcal{E}^0),
\]
where \(\text{Dom} \mathcal{E}^0 := \{ u \in \text{Dom} \mathcal{E} : u|_{\partial\mathcal{D}} \equiv 0 \} \) and \(\mathcal{E}^0 := \mathcal{E}|_{\text{Dom} \mathcal{E}^0} \).

The asymptotic behavior of the eigenvalue counting function is described by the so-called spectral dimension of \(\mathcal{X} \), that is the non-negative number \(d_S \) such that
\[
\lim_{x \to \infty} N_{N/D}(x)x^{-d_S/2} = C < \infty.
\]

The expression \(N_{N/D}(x) \) means that a property holds for both \(N_N(x) \) and \(N_D(x) \) and we will use it in the following to simplify notation.

The main result of this section is theorem 2.2, which indicates the value of the spectral dimension of \(\mathcal{X} \). The proof of this theorem is divided into several lemmas that estimate the eigenvalue counting functions \(N_N(x) \) and \(N_D(x) \) and it mainly follows ideas of [Kaj10], that can be applied due to the choice of the measure \(\mu \).

We introduce the norm on \(\text{Dom} \mathcal{E} \) given by
\[
\|u\|_{(\mathcal{E})} := (\mathcal{E}(u, u) + \|u\|^2_{L^2(\mathcal{X}, \mu)})^{1/2}.
\]

Upper bound

Let us write \(X_w := F_w(X) \) for each \(w \in \mathcal{A}^n, \, n \in \mathbb{N} \), and define \(X_m := \bigcup_{w \in \mathcal{A}^m} X_w \) and \(I_m := X \setminus X_m \) for each \(m \in \mathbb{N} \).

On the one hand, we consider the pair \((\mathcal{E}_{I_m}, \text{Dom} \mathcal{E}_{I_m}) \) given by
\[
\begin{align*}
\text{Dom} \mathcal{E}_{I_m} & := \bigoplus_{e \in \mathcal{L}_m} H^1(I_e, \mu|_{I_e}), \\
\mathcal{E}_{I_m}(u) & := \sum_{e \in \mathcal{L}_m} \int_{I_e} ((u \circ \phi_e)^2) \, dx,
\end{align*}
\]
which is a Dirichlet form on an \(L^2 \) space that can be identified with \(\bigoplus_{e \in \mathcal{L}_m} L^2(I_e, \mu|_{I_e}) \).

On the other hand, we consider the Dirichlet form \((\mathcal{E}_{X_m}, \text{Dom} \mathcal{E}_{X_m}) \) in \(L^2(X_m, \mu|_{X_m}) \) constructed following sections 4 and 5, substituting \(X \) by \(X_m \). For the ease of notation and when no confusion may occur, we will not refer explicitly to the measure of the corresponding \(L^2 \)-space and write e.g. \(L^2(X_m, \mu|_{X_m}) \) instead of \(L^2(X_m, \mu|_{X_m}) \).

Lemma 6.3. For each \(m \in \mathbb{N} \)
\[
N_N(x) \leq N(x; \mathcal{E}_{X_m}, \text{Dom} \mathcal{E}_{X_m}) + N(x; \mathcal{E}_{I_m}, \text{Dom} \mathcal{E}_{I_m}) \quad \forall \, x \geq 0.
\]

Proof. Since \(\text{Dom} \mathcal{E} \subseteq \text{Dom} \mathcal{E}_{X_m} \oplus \text{Dom} \mathcal{E}_{I_m} \), the minimax principle yields
\[
N_N(x) = N(x; \mathcal{E}, \text{Dom} \mathcal{E}) \leq N(x; \mathcal{E}, \text{Dom} \mathcal{E}_{X_m} \oplus \text{Dom} \mathcal{E}_{I_m}).
\]
The assertion now follows from [Lap91, proposition 4.2] and [Lap91, lemma 4.2]. Note that in this proof we first consider δ_{X_m} and δ_{L_m} as bilinear forms in $L^2(X, \mu)$ and afterwards each of them is considered on $L^2(X_m, \mu_{|X_m})$ and $L^2(I_m, \mu_{|I_m})$ respectively.

Lemma 6.4. For each $m \in \mathbb{N}$ and each subspace L of $\text{Dom } \delta_{X_m}$, define

$$\lambda(L) := \sup \{ \delta_{X_m}(u, u) : u \in L, \|u\|_{L^2(X_m)} = 1 \},$$

$$\lambda_m := \inf \{ \lambda(L) : L \subseteq \text{Dom } \delta_{X_m}, \dim L = n \}.$$

Then, it holds that

$$\lambda_{3^m+1} \geq C_P (rs)^{-m},$$

where $C_P > 0$ is the constant of the Poincaré inequality.

Proof. By corollary 6.2 and the definition of δ_{X_m} we have that

$$\delta_{X_m}(u, u) = \sum_{w \in A^m} r^{-m} \delta(u \circ F_w, u \circ F_w)$$

for all $u \in \text{Dom } \delta_{X_m}$. Note that all of the components of the above sum are positive.

We follow a similar argument as in [Kaj10, lemma 4.5], which is included for completeness; consider $L_0 := \{ \sum_{w \in A^m} a_w 1_{X_w} : a_w \in \mathbb{R} \}$. This is a 3^m-dimensional subspace of $\text{Dom } \delta_{X_m}$ such that $\delta_{X_m}|_{L_0} \equiv 0$. For a (3^m+1)-dimensional subspace $L \subseteq \text{Dom } \delta_{X_m}$, we consider the finite-dimensional subspace of $\text{Dom } \delta_{X_m}$ given by $\bar{L} := L_0 + L$. The non-negative self-adjoint operator associated with $\delta|_{\bar{L}}$ may be expressed by a matrix A whose 3^m+1–th smallest eigenvalue is given by

$$\lambda_{3^m+1} := \inf \{ \lambda(L') : L' \subseteq \bar{L}, \dim L' = 3^m + 1 \}.$$

Call u_A the corresponding eigenfunction, renormalized so that $\int_{X_m} u_A^2 \, d\mu = 1$. Since $(\delta, H^1(X))$ is a resistance form on X, the associated resistance metric \bar{R} is compatible with the original topology of X by theorem 5.2, and u_A is orthogonal to L_0, a uniform Poincaré inequality (see [Kaj10, definition 4.2] for the self-similar case) holds for u_A. This together with equality (6.4) leads to

$$\lambda_A = \lambda_{3^m+1} \geq \delta_{X_m}(u_A, u_A) = \sum_{w \in A^m} r^{-m} \delta(u_A \circ F_w, u_A \circ F_w) \geq C_P \sum_{w \in A^m} r^{-m} \int_{X_w} |u_A|^2 \, d\mu = C_P \int_{X_m} |u_A|^2 \, d\mu = \frac{C_P}{(rs)^m},$$

where

$$C_P \geq \frac{1}{\text{Diam}_R(X)}$$

is the constant of the Poincaré inequality. Note that here u_A is a function orthogonal to all locally constant functions on X_m.

Lemma 6.5. There exist a constant $\tilde{C} > 0$ and $x_0 > 0$ such that

(i) if $0 < rs < \frac{1}{s}$, then

$$N_N(x) \leq \tilde{C} x^{1/2} + o(x^{1/2}),$$

where...
(iii) if $rs = \frac{1}{9}$, then

$$N_{N}(x) \leq C x^{1/2} \log x,$$

(iii) if $\frac{1}{9} < rs < \frac{1}{6}$ then

$$N_{N}(x) \leq C x^{\log \frac{1}{\log rs}} + o\left(x^{\log \frac{1}{\log rs}}\right),$$

for all $x \geq x_{0}$.

Proof. Let $x_{0} = 4\pi^{2}x^{3}r^{3}$. For any $x > x_{0}$ we can find $m \geq 1$ such that

$$\frac{4\pi^{2}}{\alpha \beta (sr)^{m-3}} \leq x < \frac{4\pi^{2}}{\alpha \beta (sr)^{m-3}}.$$

(6.5)

By lemma 6.4 we know that

$$\lambda_{3n+1} \geq \frac{C_{0}}{(sr)^{m}} \geq x$$

and hence

$$N(x; \delta_{X_{n}}, \operatorname{Dom} \delta_{X_{n}}) \leq 3^{m} \leq C x^{\frac{\log 3}{\log rs}}$$

(6.6)

for $C_{1} = 3\left(\frac{\alpha \beta}{2\pi}\right)\frac{m}{\log 3}$.

On the other hand, since I_{m} is the disjoint union of one-dimensional intervals

$$N(x; \delta_{L_{n}}, \operatorname{Dom} \delta_{L_{n}}) = \sum_{e \in I_{n}} N_{e}(x),$$

where $N_{e}(x)$ denotes the eigenvalue counting function of the Laplacian on $L^{2}(I_{e})$, that we denote by Δ_{e}.

Without loss of generality, let us consider $I_{e} = [0, r^{2}x]$ and suppose that λ is an eigenvalue of the Laplacian Δ_{e} with eigenfunction $f \in H^{1}(I_{e})$. Then

$$\int_{0}^{r^{2}x} f' g' \, dx = \lambda \int_{0}^{r^{2}x} fg \, dx = \int_{0}^{r^{2}x} f g \, d\mu = \lambda \mu(I_{e}) \int_{0}^{r^{2}x} fg \, dx$$

for all $g \in H^{1}(I_{e})$, where $m(I_{e})$ denotes the Lebesgue measure of I_{e}. This means, $\lambda \mu(I_{e})$ is an eigenvalue of the classical Laplacian Δ on $L^{2}(I_{e}, dx)$ subject to Neumann boundary conditions. The converse holds by the same calculation, so we can say that $N_{e}(x) = N_{N}^{n} \left(\frac{\mu(I_{e})}{m(I_{e})}\right)$ for all $x \geq 0$. Here $N_{N}^{n}(\cdot)$ denotes the eigenvalue counting function of the classical Laplacian on $L^{2}(I_{e}, dx)$ subject to Neumann boundary conditions.

From Weyl’s theorem for the asymptotics of the eigenvalue counting function for the classical Laplacian on bounded sets of \mathbb{R} (see [Wey12]), we know that

$$N_{e}(x) = \frac{\mu(I_{e})m(I_{e})^{1/2}}{2\pi}(x^{1/2} + O(1)) = \frac{(\alpha \beta)^{1/2}(rs)^{m/2}}{2\pi}(x^{1/2} + O(1)),$$

hence

$$N(x; \delta_{L_{n}}, \operatorname{Dom} \delta_{L_{n}}) = \sum_{n=1}^{m} \frac{(\alpha \beta)^{1/2}(9rs)^{m/2}}{2\pi}(x^{1/2} + O(1)),$$

(6.7)
which is the counting function of the set
\[\bigcup_{n=0}^{m} \left\{ \frac{(2\pi k)^2}{\alpha \beta (rs)^n} \mid k = 1, 2, \ldots \right\}. \]

If \(0 < rs < 1/9 \), this expression is a convergent geometric series bounded by a constant so we get from (6.7) that
\[N(x; \delta_L, \text{Dom } \delta_L) = O(x^{1/2}). \]

Since \(\frac{\ln x}{\ln (rs)} < \frac{1}{2} \), lemma 6.3 leads to (i). Now, note that (6.5) is equivalent to
\[m \leq \frac{\log x}{-\log (rs)} + C < m + 1, \]
where \(C = \log (x/\beta) - 2 \log (9rs) - \log (rs) \) and so we have that
\[\sum_{n=1}^{m} (9rs)^{n/2} \leq \int_{0}^{\log x} C (9rs)^{1/2} dy. \]

If \(rs = \frac{1}{9} \), then \(9rs = 1 \) and the integral becomes \(\frac{\ln x}{-\ln (rs)} + C. \) Moreover, \(\frac{\ln x}{-\ln (rs)} = \frac{1}{2} \), hence (6.6) and (6.7) lead to (ii). Finally, if \(\frac{1}{9} < rs < \frac{1}{6} \), we have that
\[\sum_{n=1}^{m} (9rs)^{n/2} = \sum_{n=0}^{m-4} (9rs)^{n/2} - 1 = \frac{1 - (9rs)^{m+1}}{1 - 9rs} - 1 = \frac{9rs - (9rs)^{m+1}}{1 - 9rs} \]
\[= \frac{3(rs)^{1/2}}{9rs - 1} \left(\frac{9rs}{9rs - 1} - 3(rs)^{1/2} \right) \]
\[\leq \frac{3(rs)^{1/2}}{9rs - 1} \left(x^{\frac{\ln x}{2\ln (rs)}} \cdot \frac{\alpha \beta}{4\pi^2} - 3(rs)^{1/2} \right) \]
and hence
\[N(x; \delta_L, \text{Dom } \delta_L) \leq \left(\frac{4\pi^2 rs}{\alpha \beta} \right)^{1/2} C x^{\frac{\ln x}{-\ln (rs)}} + O(x^{1/2}). \]

Lemma 6.3 finally leads to
\[N(x, \delta, \text{Dom } \delta) \leq \widetilde{C} x^{\frac{\ln x}{-\ln (rs)}} + o \left(x^{\frac{\ln x}{-\ln (rs)}} \right), \]
with \(\widetilde{C} = 2 \max \left\{ 1, \left(\frac{4\pi^2 rs}{\alpha \beta} \right)^{1/2}, \frac{1}{9rs - 1} \right\} C_1. \]

\[\square \]

Lower bound

Recall that \((\delta^0, \text{Dom } \delta^0) \) is the Dirichlet form whose associated non-negative self-adjoint operator is the Laplacian \(\Delta_n \) subject to Dirichlet boundary conditions. Let us now write for each \(w \in A^n, n \in \mathbb{N} \), \(X_0^0 = E_w (X \setminus V_0) \), and \(X_m^0 = \bigcup_{w \in A^n} X_m^0 \) for each \(m \in \mathbb{N} \). Since \(X_0^0 \) is open, we know from [FOT11, theorem 4.4.3] that the pair \((\delta_{X_m^0}, \text{Dom } \delta_{X_m^0}) \) given by
\[
\begin{aligned}
\text{Dom } \delta_{X_m^0} &:= \{ u \in \text{Dom } \delta | \supp(u) \subseteq X_m^0 \}, \\
\delta_{X_m^0} &:= \delta_{\text{Dom } \delta_{X_m^0} \times \text{Dom } \delta_{X_m^0}},
\end{aligned}
\]

where the closure is taken with respect to \(\| \cdot \|_{L^2} \), is a Dirichlet form on \(L^2(X_m^0) \). Analogously, we define for each \(w \in A^n \), \(n \in \mathbb{N} \), the Dirichlet form \((\delta_{X_m^0, w}, \text{Dom } \delta_{X_m^0, w}) \) on \(L^2(X_m^0) \). Moreover, we consider \((\delta_{I_m}, \text{Dom } \delta_{I_m}^0) \) where \(\delta_{I_m} \) is defined as in (6.3) and \(\text{Dom } \delta_{I_m}^0 := \bigoplus_{k \in I_m} H^0_0(I_k) \).

Lemma 6.6. For each \(m \in \mathbb{N} \) and \(x \geq 0 \),

\[
N_D(x) \geq \sum_{w \in A^n} N(x; \delta_{X_m^0, w}, \text{Dom } \delta_{X_m^0, w}) + N(x; \delta_{I_m}, \text{Dom } \delta_{I_m}^0).
\]

Proof. See [Kaj10, lemma 4.8].

Lemma 6.7. For any \(m \in \mathbb{N} \) there exists \(C_D > 0 \) such that for all \(w \in A^n \)

\[
\lambda_1(X_m^0) := \inf_{u \in \text{Dom } \delta_{X_m^0} \| u \|_{L^2(X_m^0)}} \delta_{X_m^0}(u, u) \leq \frac{C_D}{(sr)^m}.
\]

Proof. Consider \(\nu \in A^n, n \in \mathbb{N} \), such that \(X_\nu \subseteq X^0 \). Since \(X^0 \) is open and \(X_\nu \) compact, we know that there exists a function \(u \in \text{Dom } \delta_{X_\nu} \) such that \(u_{X_\nu} \equiv 1, u \geq 0 \) and \(\supp(u) \subseteq X^0 \). Define

\[
u^u(x) := \begin{cases} u \circ F^{-1}_w(x), & x \in X^0_w, \\ 0, & x \in X^0_m \setminus X^0_w. \end{cases}
\]

Clearly \(\nu^u \in \text{Dom } \delta_{X_m^0} \) and analogously to the proof of lemma 6.4 we have by corollary 6.2 that

\[
\delta_{X_m^0}(\nu^u, \nu^u) = \sum_{w \in A^n} r^{-m} \delta(\nu^u \circ F_w, \nu^u \circ F_w) + \sum_{k=0}^{m-1} r^{-k} \sum_{w \in A^n} \int_{X^0} |(\nu^u \circ F_w)'|^2 \, dx.
\]

Since \(\supp(\nu^u) \subseteq X_m^0 \), the last term of this sum equals zero and the definition of \(\nu^u \) leads to

\[
\delta_{X_m^0}(\nu^u, \nu^u) = r^{-m} \delta(\nu^u \circ F_w, \nu^u \circ F_w) = r^{-m} \delta(u, u). \tag{6.8}
\]

On the other hand, by definition of \(\mu \) we have that

\[
\int_{X^0_w} |\nu^u|^2 \, d\mu(x) = \int_{X^0_w} |u|^2 \, d\mu(F_w(y)) \geq \int_{X^0_w} |u|^2 \, d\mu(F_w(y)) = \mu(F_w(X^0_w)) \geq s^{(w)} \mu(X^0_w). \tag{6.9}
\]

Applying (6.8) and (6.9) we finally obtain

\[
\lambda_1(X_m^0) \leq \frac{\delta_{X_m^0}(\nu^u, \nu^u)}{\| \nu^u \|_{L^2(X_m^0)}} \leq \frac{r^{-m} \delta(u, u)}{s^{(w)} \mu(X^0_w)} = \frac{C_D}{(rs)^m},
\]

where \(C_D := \frac{\delta(u, u)}{s^{(w)}} \) is independent of \(w \).
Lemma 6.8. There exists a constant $C' > 0$ and $x_0 > 0$ such that

(i) if $0 < rs < \frac{1}{9}$, then

$$C' x^2 \leq N_D(x),$$

with C' of lemma 6.5,

(ii) if $rs = \frac{1}{9}$, then

$$C' x^2 \log x \leq N_D(x),$$

(iii) if $\frac{1}{9} < rs < \frac{1}{6}$, then

$$C' x^2 \log x \leq N_D(x),$$

for all $x \geq x_0$.

Proof. Analogously to the proof of lemma 6.5, let $x_0 := \pi^2 \nu^2 \tau^2$ and consider $x \geq x_0$. There exists $m \geq 1$ such that

$$\frac{4\pi^2}{\alpha \beta (sr)^m} \leq x < \frac{4\pi^2}{\alpha \beta (sr)^{m-3}}.$$

By lemma 6.7, we have that

$$\lambda_1 (x_0^m) \leq \frac{C_D}{(sr)^m} \leq x$$

and hence $N(x; \mathcal{E}_{x_0}^m, \text{Dom } \mathcal{E}_{x_0}^m) \geq 1$ for all $w \in A^m$. It follows from lemma 6.6 that

$$N_D(x) \geq C_2 x^{\frac{a_1}{a_2}}$$

with $C_2 = 3^{3/2} (\frac{a_1}{a_2})^{1/2}$. By lemma 6.6 together with lemma 6.7 complete the proof. In the case when $1/9 < rs < 1/6$, the estimation of the geometric series leads to

$$N(x; \mathcal{E}_{x_0}^m, \text{Dom } \mathcal{E}_{x_0}^m) \geq \frac{3^{-3/2} (\frac{a_1}{a_2})^{-1/2}}{9rs - 1} C_2 x^{\frac{a_1}{a_2}} + O(x^{1/2})$$

and finally

$$N(x, \mathcal{E}, \text{Dom } \mathcal{E}) \geq C' x^{\frac{a_1}{a_2}} + O(x^{1/2})$$

with $C' = 2 \min \left\{ 1, \left(\frac{4\pi^2}{\tau^2} \right)^{1/2}, \frac{1}{9rs - 1} \right\} C_2$. \hfill \square

Proof of theorem 2.2. Since $\text{Dom } \mathcal{E}^0 \subseteq \text{Dom } \mathcal{E}$ and $\mathcal{E}^0 = \mathcal{E}|_{\text{Dom } \mathcal{E}^0}$, the minimax principle yields $N_{\mathcal{E}^0}(x) \leq N_{\mathcal{E}}(x)$ for all $x > 0$. The statement follows directly from lemma 6.5 and lemma 6.8. \hfill \square

7. Heat kernel estimates

In this section we shall assume that $1/3 < \alpha < 1$ and that H^α is the restriction of the Hausdorff one-measure to X. Under these assumptions, the heat kernel with respect to the Hausdorff one-measure satisfies Gaussian heat kernel estimates. Note that the measure of a set
with respect to \mathcal{H}^d is the sum of the lengths of the line segments contained in that set. Thus
\[\mathcal{H}^d(X) = \sum_{k=1}^{\infty} 3^k \left(\frac{1 - \alpha}{2} \right)^k = \frac{3(1 - \alpha)}{3\alpha - 1}. \]

Proposition 7.1. There is a positive constant C such that for any $x \in X$ and $t \leq \operatorname{diam} X$
\[\frac{1}{C} t \leq \mathcal{H}^d(B_t(x)) \leq Ct, \]
where $\operatorname{diam} X$ is the diameter of X and $B_f(x)$ is the metric ball around x with respect to R, d_G or the Euclidean distance.

Proof. By theorem 5.2 (3), all three metrics are equivalent, so proving the inequality for any of them proves it for all of them. Take $B = B_t(x)$ to be the ball with respect to d_G—the geodesic metric. $\mathcal{H}^d(B) \geq 2t$ for $t < \operatorname{diam} X$ because \mathcal{H}^d measures lengths.

Assuming $n \in \mathbb{N}$ is such that $r^n \leq t \leq r^{n-1}$, $B_t(x)$ intersects at most three cells of scale r^n, i.e.
\[\# \{ w \mid F_n(X) \cap B_t(x) = \varnothing, |w|=n \} \leq 3, \]
and it intersects at most four line segments not contained in these cells. Thus
\[\mathcal{H}^d(B_t(x))) \leq 3r^n\mu(X) + 4t \leq (4\mu(X) + 3)t. \]

\[\square \]

Theorem 7.2. If $1/3 < \alpha < 1$, then $(\mathcal{E}, \operatorname{Dom} \mathcal{E})$ is a Dirichlet form on $L^2(X, \mathcal{H}^d)$, where \mathcal{H}^d is the Hausdorff one-measure, and this Dirichlet form has a jointly continuous heat kernel $p(t, x, y)$. If d is either d_G or the Euclidean distance, there are c_1, c_2, c_3, and c_4 depending only on the choice of the metric so that p satisfies the following Gaussian estimates
\[c_1 t^{-1/2} \exp \left(-\frac{c_2 d(x, y)^2}{t} \right) \leq p(t, x, y) \leq c_3 t^{-1/2} \exp \left(-\frac{c_4 d(x, y)^2}{t} \right). \]

Proof. For $d = d_G$ this is a result of theorem 5.2, proposition 7.1, the fact that d_G is a geodesic metric and [Kig12, theorem 15.10]. Note that by [Kig12, proposition 7.6] the (ACC) condition is satisfied for a local resistance form like \mathcal{E} on a compact space. Since d_G and Euclidean distance are equivalent metrics, this implies the result for Euclidean distance as well. \[\square \]

8. Fractal quantum graphs

In this section we present an abstract construction that resembles many topological, metric, resistance and energy properties of the Hanoi fractal quantum graph.

Definition 8.1. A compact metric space (X, d) is called a fractal quantum graph with length system (Φ_k, ℓ_k) if there are positive lengths \(\{ \ell_k \}_{k=1}^{\infty} \) and a set of embeddings $\Phi_k : I_k = [0, \ell_k] \to X$ such that $\Phi_k|_{(0, \ell_k)}$ are local isometries with disjoint images, i.e. $\Phi_j((0, \ell_j)) \cap \Phi_k((0, \ell_k)) = \varnothing$ for $j \neq k$. I_k is thus homeomorphic to $\Phi_k([0, \ell_k])$ with the
subspace topology induced by X, and for any $x \in (0, \ell_k)$ there is $\varepsilon > 0$ such that if $|y - x| < \varepsilon$, then $d(\Phi_k(x), \Phi_k(y)) = |x - y|$.

Further, we define

$$J_n := \bigcup_{k=1}^n \Phi_k ((0, \ell_k))$$

to be the union of the image of the interiors of I_k for $k \leq n$ and assume that $\bigcap_{n=1}^\infty J_n^c$ is a totally disconnected compact set. Here, J_n^c denotes the complement of J_n in X.

If (X, d) is a fractal quantum graph with length system (Φ_k, ℓ_k), we define the space of functions F_n to be the functions $f : X \to \mathbb{R}$ such that $f \circ \Phi_k \in H^1([0, \ell_k])$ for all $k \leq n$, and f is locally constant on J_n. Here, locally constant means that any $x \in J_n^c$ has a neighborhood $U_x \subset J_n^c$ which is relatively open in J_n and $f|_{U_x}$ is constant.

It is elementary to show that F_n is a linear space and that $F_n \subset F_m$ for $m \leq n$. Denoting $F_n := \bigcup_{n=1}^\infty F_n$, we define the bilinear form $\langle \delta_n, \delta_n \rangle : F_n \times F_n \to \mathbb{R}$ for $f, g \in F_n$ by

$$\delta_n(f, g) = \sum_{k=1}^\infty \int_0^{\ell_k} (f \circ \Phi_k)'(t) (g \circ \Phi_k)'(t) \, dt.$$

It is straightforward to see that δ_n is non-negative definite and satisfies the Markov property as in (RF5). Also, $\delta_n(f, f) = 0$ if and only if f is a constant function because if $f \in F_n$ is not constant it must be nonconstant on some $\Phi_k(\ell_k)$.

The form δ_n, which is the restriction of δ_n to F_n, induces the following pseudo-metrics on X

$$R_n(x, y) = \sup \left\{ \frac{|f(x) - f(y)|^2}{\delta_n(f, f)} \middle| f \in F_n, \ \delta(f, f) \neq 0 \right\}.$$

It follows from the literature on resistance forms that R_n satisfies the triangle inequality although $R_n(x, y)$ may vanish for $x = y$. In fact, if x and y are in the same connected component of J_n^c, then $R_n(x, y) = 0$, but it follows from an argument similar to that in theorem 5.2 (3) that if $x, y \in J_n$, $x \neq y$, then $R_n(x, y) > 0$.

Theorem 8.1. Suppose that a compact metric space (X, d) is a fractal quantum graph with length system (Φ_k, ℓ_k). Then the following statements are equivalent:

1. $R_n(x, y)$ converges to a metric R on X with the same topology as d;
2. there is a resistance form δ on X with resistance metric $R = \lim_{n \to \infty} R_n(x, y)$. This metric induces the same topology as d, $F_n \subset \text{Dom } \delta$, $\delta(f, f) = \delta_n(f, f)$ for all $f \in F_n$, and F_n is dense in $\text{Dom } \delta$ in the sense that for all $g \in \text{Dom } \delta$ there is $\{f_n\}_{n=1}^\infty \subset F_n$ such that $\lim_{n \to \infty} \delta(f_n - g) = 0$.

Note that, since X is compact with respect to the effective resistance metric, if $\{f_n\}_{n=1}^\infty$ converges to g in energy, this implies that there exists $\{f_n\}_{n=1}^\infty \subset \text{Dom } \delta$ such that $f_n - f_\text{res}$ is constant and f_n converges to g in energy, uniformly, and even in $\frac{1}{2}$-Hölder convergence with respect to the effective resistance metric.

Proof of (2) ⇒ (1). Assume there is δ on X with resistance metric R such that $\delta(f, f) = \delta_n(f, f)$ for $f \in F_n$. Then
\[R(x, y) = \sup \left\{ \frac{|f(x) - f(y)|^2}{\delta(f, f)} \mid \delta(f, f) \neq 0, \ f \in \mathcal{F}_n \right\} \\
= \sup \sup_n \left\{ \frac{|f(x) - f(y)|^2}{\delta(f, f)} \mid \delta(f, f) \neq 0, \ f \in \mathcal{F}_n \right\} \\
= \lim_{n \to \infty} R_n(x, y). \]

The first equality above holds because \(\mathcal{F}_n \) is dense in \(\text{Dom} \ \delta \), and the last equality because \(\mathcal{F}_m \subset \mathcal{F}_n \) for \(m \leq n \), hence \(R_n \) is increasing in \(n \). \(\square \)

Proof of (1) \(\Rightarrow \) (2). Assume that \(R(x, y) = \lim_{n \to \infty} R_n(x, y) \) is a metric on \(X \) that induces the same topology on \(X \) as the metric \(d \). In this case

\[|f(x) - f(y)|^2 \leq \delta_n(f, f) R_n(x, y) \leq \delta_n(f, f) R(x, y) \]

(8.1)

for any \(f \in \mathcal{F}_n \), and thus \(\mathcal{F}_n \subset C(X) \), where \(C(X) \) is the set of continuous functions on \(X \) (note there is no ambiguity in \(C(X) \) because \(d \) and \(R \) are assumed to induce the same topologies).

This implies that \(\Phi_k((0, l_k)) \) is an open set in \(X \) for any \(k \) because \(\Phi_k((0, l_k)) = f^{-1}(0, \infty) \), where \(f \) is the function in \(\mathcal{F}_n \), \(n \geq k \), defined to be 0 on the complement of \(\Phi_k((0, l_k)) \) and satisfying \(f \circ \Phi_k(t) = t(l_k - t) \) for \(t \in [0, l_k] \).

For any finite subset \(S \subset X \), define

\[\delta_S(f, f) := \inf \left\{ \delta(u, u) \mid u \in \mathcal{F}_S, \ u|_S = f \right\}. \]

We establish that \(\delta_S \) is a resistance form on \(\ell(S) \) proving first that \(\delta_S(f, f) \) is well defined for all \(f \in \ell(S) \). Note that the notation and argument here is analogous to that from section 5.2.1. Let us consider \(x, y \in S \). Since \(R(x, y) > 0 \), there is \(n \in \mathbb{N} \) such that \(R_n(x, y) > 0 \) and therefore \(u \in \mathcal{F}_n \) such that \(u(x) = u(y) \), so that \(\mathcal{F}_n \) separates points in \(S \). Since \(u + c \in \mathcal{F}_n \) for any \(c \in \mathbb{R} \), \(\mathcal{F}_n \) vanishes nowhere on \(S \). This implies that \(\delta_S \) has domain \(\ell(S) \).

(RF1) \(\delta_S \) is symmetric and non-negative definite, so \(\delta_S \) must be as well. If \(f \equiv c \) is a constant function, then \(u \equiv c \in \mathcal{F}_n \) and \(\delta(u, u) = 0 \), hence \(\delta_S(f, f) = 0 \). On the other hand, if \(f \in \ell(S) \) is nonconstant, then there are \(x, y \in S \) with \(x \neq y \) and \(f(x) \neq f(y) \) so that

\[\delta_S(u, u) \geq \frac{|f(x) - f(y)|^2}{R(x, y)} > 0. \]

(RF2) This follows from (RF1) because \(\ell(S) \) is finite-dimensional.

(RF3) Since the domain of \(\delta_S \) is \(\ell(S) \), there is clearly \(f \in \ell(S) \) such that \(f(x) \neq f(y) \).

(RF4) This follows from the bound in (8.1) and a similar argument to that in (RF4) in section 5.2.2.

(RF5) \(\delta_S \) has the Markov property, which implies that \(\delta_S \) has the Markov property as well.

Next, we select a sequence of finite sets \(\{S_n\}_{n=1}^\infty \) with \(S_m \subset S_n \) for \(m \leq n \) and such that \(S_n := \bigcup_{m=1}^n S_n \) is dense in \(X \). It follows from the argument in section 5.2.2 of the proof of theorem 2.1 that \(\delta_{S_n} \) is a compatible sequence. Thus we may apply [Kig12, theorem 3.13] to obtain a resistance form

\[\delta(f, f) = \lim_{n \to \infty} \delta_{S_n}(f|_{S_n}, f|_{S_n}), \quad \text{Dom} \ \delta = \{ f \in \ell(S_n) \mid \lim_{n \to \infty} \delta_{S_n}(f|_{S_n}, f|_{S_n}) < \infty \}. \]

If \(R_\delta \) and \(R_{\delta_{S_n}} \) are the resistance metrics associated to \(\delta \) and \(\delta_{S_n} \) respectively, then we have that \(R_\delta(x, y) = R_{\delta_{S_n}}(x, y) \) for all \(x, y \in S_n \). From the calculation in (RF4) of section 5.2.2 we
have that $R_{x,y}(x, y) = R(x, y)$ for all $x, y \in S_n$. Thus $R_{x,y}(x, y) = R(x, y)$ for all $x, y \in S_n$ and since X is compact (and hence complete), (X, R) is isometric to the completion S_n with respect to $R_{x,y}$. In view of [Kig12, theorem 3.14], we get
\[
\text{Dom } \delta = \{ f \in C(X) \mid \lim_{n \to \infty} \delta_{S_n}(f|_{S_n^k}, f|_{S_n^k}) < \infty \}. \tag{8.2}
\]

To see that $\mathcal{F}_n \subset \text{Dom } \delta$, notice that $\delta_{S_n}(f|_{S_n^k}, f|_{S_n^k}) \leq \delta_n(f, f)$ for any m and $f \in \mathcal{F}_n$, and hence $\delta(f, f) \leq \delta_{S_n}(f, f)$.

To see that $\delta(f, f) = \delta_{S_n}(f|_{S_n^k}, f|_{S_n^k})$ for any $f \in \mathcal{F}_n$, we assume without loss of generality that for any $x, y \in S_n$ is a $1/n$-net, i.e. for any $x \in X$ there is $y \in S_n$ with $R(x, y) \leq 1/n$, and $\Phi_{x,y}(0), \Phi_{x,y}(\ell_{x,y}) \in S_n$ for all $k \leq n$. In this situation, for $n \geq n_0$, the minimum of $\delta_{S_n}(u, u)$ with $u|_{S_n} = f|_{S_n}$ is attained by the function u_n such that $u_n \circ \Phi_{x,y}(t) = f - \Phi_{x,y}(t)$ for $t \in [0, \ell_{x,y}]$, and is linear everywhere else on $\Phi_{x,y}((0, \ell_{x,y}))$, as this minimizes energy on I_k for all $k \leq n$. Finally, set $u_n(x) = f(x)$ for $x \in J_{x,y}$, i.e. extend to the rest of $J_{x,y}$ by constants. Notice that for this u_n to be well defined, it is important that we assumed that $\Phi_{x,y}(0)$ and $\Phi_{x,y}(\ell_{x,y}) \in S_n$ if $k \leq n_0$, because $\Phi_{x,y}(0)$ and $\Phi_{x,y}(\ell_{x,y})$ are in both $\Phi_{x,y}(I_k)$ and $J_{x,y}$. In particular, $u \in \mathcal{F}_n$. We have established that
\[
\delta(f, f) = \lim_{n \to \infty} \delta_{S_n}(f|_{S_n^k}, f|_{S_n^k}) = \lim_{n \to \infty} \delta_{S_n}(u_n, u_n) = \delta_{S_n}(f, f),
\]
where the last inequality holds because $\Phi_{x,y}^{-1}(S_n)$ becomes uniformly dense in I_k and thus
\[
\lim_{n \to \infty} \int_0^{\ell_{x,y}} ((u_n \circ \Phi_{x,y})'(t))^2 \, dt = \int_0^{\ell_{x,y}} ((f \circ \Phi_{x,y})'(t))^2 \, dt
\]
for all $k \leq n_0$.

To see that \mathcal{F}_n is dense in $\text{Dom } \delta$, we know from the definition of the domain in (8.2) that for any $f \in \text{Dom } \delta$ there is $f_n \in \text{Dom } \delta$ such that $\delta(f_n, f_n) = \delta_{S_n}(f_n|_{S_n^k}, f_n|_{S_n^k})$ and $f_n(x) = f(x)$ for all $x \in S_n$. In particular $\lim_{n \to \infty} \delta(f_n, f_n) = \delta(f, f)$. Since $\delta_{S_n}(f_n|_{S_n^k}, f_n|_{S_n^k}) = \inf \{ \delta_{S_n}(u, u) \mid u \in \mathcal{F}_n, \ u|_{S_n^k} = f_n|_{S_n^k} \}$, there is $(u_{n,k})_{k \in \mathbb{N}} \subset \mathcal{F}_n$ with $\lim_{n \to \infty} \delta_{S_n}(u_{n,k}, u_{n,k}) = \lim_{n \to \infty} \delta(u_{n,k}, u_{n,k}) = \delta_{S_n}(f_n|_{S_n^k}, f_n|_{S_n^k})$ and $u_{n,k}(x) = f_n(x) = f(x)$ for all $x \in S_n$. By diagonalizing and passing to a subsequence if required, $\lim_{n \to \infty} \delta(u_{n,k}, u_{n,k}) = \delta(f, f)$. Since $u_{n,k}(x) = f(x)$ on the $1/n$-net S_n, for any $y \in X$ and arbitrary $x \in S_n$, we have
\[
|u_{n,k}(y) - f(y)| = |(u_{n,k}(y) - f(y)) - (u_{n,k}(x) - f(x))| \leq R(x, y) \delta(u_{n,k}, u_{n,k} - f, u_{n,k} - f).
\]
This quantity vanishes as $n \to \infty$, which establishes that \mathcal{F}_n is dense in the prescribed manner.

\[\square\]

Definition 8.2. A fractal quantum graph (X, d) is called a **proper fractal quantum graph** if the maps $\Phi_{x,y} : (0, \ell_{x,y}) \to X$ are open.

A compact geodesic metric space (X, d) which is a proper fractal quantum graph is called a **proper geodesic fractal quantum graph**.

This definition means that I_k is homeomorphic to $\Phi_{x,y}((0, \ell_{x,y}))$ with the subspace topology induced by X, and for any $x \in (0, \ell_{x,y})$, there is $\varepsilon > 0$ such that the ε-neighborhood of x is mapped isometrically onto the ε-neighborhood of $\Phi_{x,y}(x)$. In particular, $|y - x| < \varepsilon$ if and only if $d(\Phi_{x,y}(x), \Phi_{x,y}(y)) = |x - y| < \varepsilon$.

Note that the assumption of the existence of the geodesic metric for a local resistance form is natural because of the results in [HKT15]. With this assumption, we have the following theorem.
Theorem 8.2. Any proper geodesic fractal quantum graph satisfies conditions of theorem 8.1(1) and so \mathcal{E}_n extends to the resistance form \mathcal{E} on X with resistance metric $R(x, y) = \lim_{n \to \infty} R_n(x, y)$, which induces the same topology as d.

Proof. It is easy to show that $R_n(x, y) \leq d(x, y)$ by the same method as in lemma 5.1. Thus, since $R_0(x, y)$ is an increasing and bounded sequence, it must converge to $R(x, y) \leq d(x, y)$. Since R_n satisfies the triangle inequality, so must R, and all that is left to establish that R is a metric is to show that $R(x, y) > 0$ when $x \neq y$. In fact, I_n are compact subsets with totally disconnected intersection, and so any distinct $x, y \in X$ can be separated by two disjoint compact subsets by removing finitely many open edges. Thus there is $n \in \mathbb{N}$ such that $R_n(x, y) > 0$. This settles all topological questions. For instance, the common base of open sets, both for d and R, can be defined as follows: all open subsets of the open edges $\Phi_k((0, \xi_k))$; for ε_n small enough, connected components of ε_n-neighborhoods of I_n with respect to the metric d. The notion of small enough ε_n is understood in the sense that all these connected components of ε_n-neighborhoods of I_n should have either no intersection, or be contained one in another.

Remark 8.3. Note that the closed edges $\Phi_k(I_k)$ together with the complements J_n will define a finitely ramified cell structure, in the sense of [Tep08].

Remark 8.4. Note that we do not claim in theorems 8.1 and 8.2 that the domain of \mathcal{E} can be identified with an analogue of $H^1(X)$. This was one of the main results for the Hanoi fractal quantum graph, which may require extra assumptions in a more general situation.

Example 8.5. Since the Hanoi quantum graph provides a good example of a proper geodesic fractal quantum graph, we also would like to present as standard counterexample the infinite broom (see, for instance, [SS95]): Let $X := \bigcup_{k=0}^{\infty} \Phi_k([0, \xi_k])$, where $\Phi_k : [0, \xi_k] \to \mathbb{R}^2$ are defined by $\xi_0 = 1, \Phi_0(t) = (t, 0), \xi_k = \sqrt{1 + k^{-2}}$ and

$$\Phi_k(t) = \frac{t}{\sqrt{1 + k^{-2}}}(1, k^{-1}).$$

If we equip X with the Euclidean distance, X along with the maps $\{\Phi_k\}_k$ form a compact fractal quantum graph that is not proper. In particular, the functions in J_n are not necessarily continuous, for example the function such that $f \circ \Phi_k(t) = t$ and $f(x) = 0$ for $x \not\in \Phi_k(0, 1)$. Thus R_n cannot converge to a metric which induces the same topology. However, R_n does converge to a geodesic metric R on X. With this metric, X is isometric to the space $\bigcup_{k=1}^{\infty} I_k/\sim$ where \sim is the equivalence relation that identifies the 0 element in each I, and R is the length metric induced by Euclidean distance. Thus \mathcal{E}_n induces a resistance form on this metric space. However this space is not compact in the effective resistance topology, and not even locally compact. Many related questions are discussed in [Kig12, Kig95].

9. Generalized Hanoi-type quantum graphs

In this section we briefly present a multidimensional version of the Hanoi quantum graphs. Let $N_0 > 2$ be a natural number and let $\alpha > 0$ be fixed. Further, consider the alphabet $A_{N_0} = \{1, \ldots, N_0\}$ and the contractions $F_i : \mathbb{R}^{N_0-1} \to \mathbb{R}^{N_0-1}, i \in A_{N_0}$. Each mapping F_i has contraction ratio $r_i = \frac{1-\alpha}{2}(<1)$ and fixed point p_i. We also set $V_{N_0} := \{p_1, \ldots, p_{N_0}\}$.

32
The generalized Hanoi attractor of parameters \(N_0 \) and \(\alpha \) is the unique nonempty compact subset of \(\mathbb{R}^{N_0-1} \) such that
\[
K_{\alpha,N_0} = \bigcup_{i=1}^{N_0} F_i(K_{\alpha,N_0}) \bigcup_{i<j \in A_{N_0}} [i,j],
\]
where \([i,j]\) denotes the straight line joining the points \(F_i(p_i) \) and \(F_j(p_j) \) (note that \(i \neq j \)). It is easy to see that the Hausdorff dimension of this set is given by
\[
\max \left\{ 1, \frac{\ln N_0}{\ln 2 - \ln(1 - \alpha)} \right\}.
\]
If we choose \(\alpha \) in the interval \((0, \frac{N_0-2}{N_0}) \), then \(\dim K_{\alpha,N_0} > 1 \) and we obtain a fractal. In the following, we will only consider \(\alpha \) belonging to this interval.

Remark 9.1. The case \(N_0 = 3 \) corresponds to the Hanoi attractor treated in sections 3–5. In the case \(N_0 = 4 \), \(K_{\alpha,N_0} \) fits into a tetrahedron of side length 1.

Let us now consider the generalized Hanoi attractor of parameter \(N_0 \) for a fixed \(\alpha \) and denote it by \(X_{N_0} \). This set may be approximated by the sequence of metric graphs \(X_{N_0}^{n} \), where \(X_{N_0}^{n} \) is defined analogously to definition 4.1 just substituting \(\mathcal{F} \) by \(A_{N_0} \).

By doing the obvious substitutions in definition 4.3, we define the energy of the \(n \)th approximation of \(X_{N_0} \), \(\delta_{N_0,n} : \mathcal{F}_{N_0,n} \times \mathcal{F}_{N_0,n} \to \mathbb{R} \) by
\[
\delta_{N_0,n}(u, v) = \int_{X_{N_0}} u' v' \, dm
\]
for all \(u, v \in \mathcal{F}_{N_0,n} \), i.e. functions everywhere constant out of finitely many segments corresponding to ‘joining-type’ edges of \(X_{N_0,n} \). By the same arguments as in section 5 we get a suitable domain \(\text{Dom} \, \delta_{N_0} \) on \(X_{N_0} \) such that the following holds.

Proposition 9.1. \((\delta_{N_0}, \mathcal{F}_{N_0}) \) is a resistance form.

From this resistance form, we obtain a Dirichlet form \((\delta_{N_0}, \text{Dom} \, \delta_{N_0}) \) by considering a measure \(\mu_{N_0} \) on \(X_{N_0} \) following the construction of \(\mu \) in section 6. We thus introduce the parameter \(\beta > 0 \) that measures the lines of length \(\alpha \). This parameter needs to belong to the interval \((0, \frac{2}{N_0(N_0-1)}) \) because otherwise, since
\[
s := \mu_{N_0}(X'_{N_0}) = \frac{2 - N_0(N_0 - 1)\beta}{2N_0},
\]
where \(X'_{N_0} \) denotes any first-level copy of \(X_{N_0} \), would be zero or negative.

The definition of \(s \) comes from the fact that we want the measure \(\mu_{N_0} \) to satisfy
\[
1 = \mu(X) = \frac{N_0(N_0 - 1)\beta + N_0 \mu_{N_0}(X'_{N_0})}{2},
\]
where \(\frac{N_0(N_0 - 1)}{2} \) is the number of straight lines joining the different copies \(X'_{N_0} \).

Following the proofs of section 6 just replacing \(X \) by \(X_{N_0} \) and \((\delta, \text{Dom} \, \delta) \) by \((\delta_{N_0}, \text{Dom} \, \delta_{N_0}) \), one obtains theorem 2.3 on the spectral asymptotics of the corresponding eigenvalue counting function of the associated Laplacian, leading to the spectral dimension of \(X_{N_0} \). In this more general case, it follows directly from the choice of \(\alpha \) and \(\beta \) that
\[r \gamma = (1 - \alpha)[2 - \beta N_0 (N_0 - 1)]/2N_0 < 1/2N_0. \]

Finally, using the techniques from section 7, if \(\alpha \in \left(\frac{N_0 - 2}{N_0}, 1 \right) \), then the Dirichlet form with respect to the one-Hausdorff measure has a jointly continuous heat kernel which satisfies Gaussian estimates of the form given in theorem 7.2 with respect to either the geodesic metric or the Euclidean metric.

Conclusion

The content of this section may not be surprising, and it is given as an illustration that the theory of section 5 can be extended to many examples. For many classical self-similar sets one may construct ‘mixtures’ with line segments, and thus obtain ‘Hanoi-type fractal quantum graphs’. Perhaps these considerations may be combined with such facts that, for instance, for the value \(\alpha = 1/3 \), the set of vertices of the Hanoi fractal quantum graph accumulate to a metric Cantor set that is metric equivalent to the ring of three-adic integers when endowed with the usual valuation. Therefore we may look for algebraically inspired situations where fractal quantum graphs may appear (see [BGP12, KSW12, BR10, NT08] and references therein). Another possible applications of fractal quantum graphs can be to model the transportation network in a city or a country. Indeed, one can imagine a finite number of long roads connected to an ‘infinite’ network of shorter and shorter roads. Our ‘fractal dust’ would be the collection of houses and other endpoints of this network. Further natural ways to extend our results would be to consider fractals built by gluing together other resistance spaces, rather than intervals. Fractal quantum graphs also appear in relation to fractal AC circuits and propagating waves on fractals, see [ACD15].

Acknowledgments

The authors thank Pavel Kurasov and David Croydon for helpful input concerning quantum graphs. DJK thanks Leonard Wilkins for useful conversations. The authors are very grateful to Jun Kigami and anonymous referees for many important remarks and suggestions that led to improvements in the paper and correcting inaccuracies in an early version of this article. Research supported in part by NSF grant DMS 1106982.

References

[ABD12] Akkermans E, Benichou O, Dunne G V, Teplyaev A and Voituriez R 2012 Spatial log-periodic oscillations of first-passage observables in fractals Phys. Rev. E 86 061125

[ACD15] Akkermans E, Chen J P, Dunne G, Rogers L G and Teplyaev A 2015 Fractal ac circuits and propagating waves on fractals (arXiv:1507.05682)

[ADT] Akkermans E, Dunne G V and Teplyaev A 2009 Physical consequences of complex dimensions of fractals Europhys. Lett. 88 40007

[ADT10] Akkermans E, Dunne G V and Teplyaev A 2010 Thermodynamics of photons on fractals Phys. Rev. Lett. 105 230407

[AF] Alonso-Ruiz P and Freiberg U Weyl asymptotics for Hanoi attractors (arXiv:1307.6819)

[AH83] Alexander S and Halevi E 1983 Superconductivity on networks: II. The London approach J. Phys. A: Math. Theor. 49 (2016) 165206

[AP13] Akkermans E 2013 Statistical mechanics and quantum fields on fractals Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics: II. Fractals in Applied Mathematics (Contemporary Mathematics vol 601) (Providence, RI: American Mathematical Society) pp 1–21

[Ale83] Alexander S 1983 Superconductivity of networks. A percolation approach to the effects of disorder Phys. Rev. B 27 1541–57
[ARF12] Alonso-Ruiz P and Freiberg U R 2012 Hanoi attractors and the Sierpiński gasket *Int. J. Math. Model. Numer. Optim.* 3 251–65 Special Issue on Fractals, Fractal-based Methods and Applications

[bAH00] ben Avraham D and Havlin S 2000 *Diffusion and Reactions in Fractals and Disordered Systems* (Cambridge: Cambridge University Press)

[BB01] Burago D, Burago Y and Ivanov S 2001 *A Course in Metric Geometry* (Graduate Studies in Mathematics vol 33) (Providence, RI: American Mathematical Society)

[BCD08] Bajorin N, Chen T, Dagan A, Emmons C, Hasseim M, Khalil M, Mody P, Steinhurst B and Teplyaev A 2008 Vibration modes of 3 n -gaskets and other fractals *J. Phys. A: Math. Theor.* 41 015101

[BCF07] Boyle B, Cekala K, Ferrone D, Rifkin N and Teplyaev A 2007 Electrical resistance of N-gasket fractal networks *Pac. J. Math.* 233 15–40

[BGP12] Bendikov A, Grigor’yan A and Pittet C 2012 On a class of Markov semigroups on discrete ultra-metric spaces *Potential Anal.* 37 125–69

[BK13] Berkošalo G and Kuchment P 2013 *Introduction to Quantum Graphs* (Mathematical Surveys and Monographs vol 186) (Providence, RI: American Mathematical Society)

[BN] Barlow M T and Nualart D 1998 *Lectures on Probability Theory and Statistics* (Lecture Notes in Mathematics vol 1690) (Berlin: Springer)

[BRE10] Baker M and Rumely R 2010 *Potential Theory and Dynamics on the Berkovich Projective Line* (Mathematical Surveys and Monographs vol 159) (Providence, RI: American Mathematical Society)

[BSCSW11] Bendikov A, Saloff-Coste L, Salvatori M and Woess W 2011 The heat semigroup and Brownian motion on strip complexes *Adv. Math.* 226 992–1055

[Cro12] Croydon D A 2012 Scaling limit for the random walk on the largest connected component of the critical random graph *Publ. Res. Inst. Math. Sci.* 48 279–338

[DGV12] Derfel G, Grabner P J and Vogl F 2012 Laplace operators on fractals and related functional equations *J. Phys. A: Math. Theor.* 45 463001

[Dun12] Dunne G V 2012 Heat kernels and zeta functions on fractals *J. Phys. A: Math. Theor.* 45 374016

[FO11] Fukushima M, Oshima Y and Takeda M 2011 *Dirichlet Forms and Symmetric Markov Processes* (de Gruyter Studies in Mathematics vol 19) (Berlin: Walter de Gruyter & Co)

[FST] Fontaine D, Smith T and Teplyaev A 2006 Resistance of random sierpinski gaskets *Quantum Graphs and Their Applications* (Contemporary Mathematics vol 415) (Providence, RI: American Mathematical Society) pp 121–136

[Geo14] Georgakopoulos A 2014 On graph-like continua of finite length *Topology Appl.* 173 188–208

[GG] Georgakopoulos A and Kolesko K 2014 Brownian motion of graph-like spaces (arXiv:1405.6580v1)

[GS06] Gnutzmann S and Smilanký U 2006 Quantum graphs: applications to quantum chaos and universal spectral statistics *Adv. Phys.* 55 527–625

[HKT15] Hinz M, Kelleher D and Teplyaev A 2015 Metric and spectral triples for Dirichlet and resistance forms *J. Noncommut. Geom.* 9 359–90

[HMT06] Hambly B M, Metz V and Teplyaev A 2006 Self-similar energies on post-critically finite self-similar fractals *J. London Math. Soc.* 74 93–112

[HN03] Hambly B M and Nyberg S O G 2003 Finitely ramified graph-directed fractals, spectral asymptotics and the multidimensional renewal theorem *Proc. Edinb. Math. Soc.* 46 1–34

[HT13] Hinz M and Teplyaev A 2013 Vector analysis on fractals and applications *Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics: II. Fractals in Applied Mathematics* (Contemporary Mathematics vol 601) (Providence, RI: American Mathematical Society) pp 147–163

[IKM15] Ignatovich M J, Kelleher D J, Maloney C E, Miller D J and Serhiyenko K 2015 Resistance scaling factor of the pillow and fractalina fractals *Fractals* 23 1550018

[IRT12] Ionescu M, Rogers L G and Teplyaev A 2012 Derivations and Dirichlet forms on fractals *J. Funct. Anal.* 263 2141–69

[Kaj10] Kajino N 2010 Spectral asymptotics for Laplacians on self-similar sets *J. Funct. Anal.* 258 1310–60

[Kig93] Kigami J 1993 Harmonic calculus on p.c.f. self-similar sets *Trans. Am. Math. Soc.* 335 721–55

[Kig95] Kigami J 1995 Harmonic calculus on limits of networks and its application to dendrites *J. Funct. Anal.* 128 48–86

[Kig01] Kigami J 2001 *Analysis on Fractals* (Cambridge Tracts in Mathematics vol 143) (Cambridge: Cambridge University Press)
[Kig12] Kigami J 2012 Resistance forms, quasisymmetric maps and heat kernel estimates Mem. Am. Math. Soc. 216 vi+132

[Kig15a] Kigami J 2015 Harmonic analysis for resistance forms J. Func. Anal. 204 339–444

[Kig15b] Kigami J 2015 unpublished note

[KL93] Kigami J and Lapidus M L 1993 Weyl’s problem for the spectral distribution of laplacians on p.c.f. self-similar fractals Commun. Math. Phys. 158 93–125

[KS97] Kottos T and Smilansky U 1997 Quantum chaos on graphs Phys. Rev. Lett. 79 4794–7

[KS02] Kurasov P and Stenberg F 2002 On the inverse scattering problem on branching graphs J. Phys. A: Math. Theor. 35 101–21

[KS03] Kottos T and Smilansky U 2003 Quantum graphs: a simple model for chaotic scattering J. Phys. A: Math. Theor. 36 3501–24

[KSW12] Kelleher D J, Steinhurst B A and Wong C-M M 2012 From self-similar structures to self-similar groups Int. J. Algebra Comput. 22 1250056

[Kuc04] Kuchment P 2004 Quantum graphs: I. Some basic structures Waves Random Media 14 S107–28

[Lap91] Lapidus M L 1991 Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl–Berry conjecture Trans. Am. Math. Soc. 325 465–529

[MST04] Meyers R, Strichartz R S and Teplyaev A 2004 Dirichlet forms on the Sierpiński gasket Pac. J. Math. 217 149–74

[MW88] Mauldin R D and Williams S C 1988 Hausdorff dimension in graph directed constructions Trans. Am. Math. Soc. 309 811–29

[NT08] Nekrashevych V and Teplyaev A 2008 Groups and analysis on fractals Analysis on Graphs and its Applications (Proc. Symp. Pure Math. vol 77) (Providence, RI: American Mathematical Society) pp 143–180

[Pei08] Peirone R 2008 Existence of eigenforms on nicely separated fractals Analysis on Graphs and its Applications (Proc. Symp. Pure Math. vol 77) (Providence, RI: American Mathematical Society) pp 231–241

[SS95] Steen L A and Seebach J A Jr 1995 Counterexamples in Topology (Mineola, NY: Dover Publications, Inc.) Reprint of the second (1978) edition

[Str06] Strichartz R S 2006 Differential Equations on Fractals (Princeton, NJ: Princeton University Press) A tutorial

[Tep08] Teplyaev A 2008 Harmonic coordinates on fractals with finitely ramified cell structure Can. J. Math. 60 457–80

[Wey12] Weyl H 1912 Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichungen (mit einer anwendung auf die theorie der hohlraumstrahlung) Math. Ann. 71 441–79