RESEARCH ARTICLE

Association of congenital Zika syndrome with dental alterations in children with microcephaly

Patrícia Nóbrega Gomes, Beatriz Aguiar do Amaral, Isabelita Duarte Azevedo, Haline Cunha de Medeiros Maia, Nívia Maria Rodrigues Arrais, Kenio Costa de Lima

1 Department of Dentistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
2 Department of Pediatrics, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil

These authors contributed equally to this work.
* patricia_ngomes@hotmail.com

Abstract

The effects of congenital Zika syndrome (CZS) on the tooth development of infected children are not well known. The aim of this study was to analyze the association of CZS with dental alterations in children with microcephaly seen at a referral hospital in Rio Grande do Norte, Brazil. The chronology and sequence of tooth eruption and the presence of dental alterations were evaluated by a single calibrated examiner (kappa > 0.80) in 62 children aged 7 to 35 months with microcephaly associated with CZS and other congenital infections. Medical data of the mother and child were collected from the records and the parents responded to a socioeconomic questionnaire. Descriptive analysis and Fisher’s exact test were used (5% significance level). The mean age of the children was 26.4 months (SD = 7.52). The mean weight and head circumference at birth were 2,593 g (SD = 0.60) and 29.6 cm (SD = 2.48), respectively. Microcephaly was associated with congenital Zika virus infection in 79% of cases and with other congenital infections in 21%. No significant association was found between CZS and alterations in the chronology (p = 1.00) or sequence of tooth eruption (p = 0.16) or changes in enamel development (p = 1.00). In conclusion, children with microcephaly exhibit a delay and alterations in the sequence of tooth eruption of primary teeth, as well as developmental defects of enamel, which are not associated with Zika virus infection.

Introduction

Zika virus is an arbovirus of the Flavivirus genus, which is transmitted by Aedes aegypti mosquitoes. The virus was first isolated in 1947 in the Zika forest located in Uganda [1]. The first known epidemic occurred in 2007 on the Yap island, Federal States of Micronesia, affecting 73% of the population [2]. The typical clinical presentation of Zika virus infection, when symptomatic, lasts 4 to 7 days. The main clinical manifestations include maculopapular rash, low fever, ocular hyperemia, arthralgia, myalgia, and headache [3–5].

In Brazil, cases with a clinical presentation compatible with Zika virus infection were reported at the end of 2014. In the beginning of 2015, the virus was isolated for the first time in
the state of Bahia and from August of the same year, the Ministry of Health had identified an increase in the number of microcephaly cases among newborns, especially in the northeastern region of Brazil [6]. Investigations into its possible association with outbreaks of Zika virus infections began to occur [6, 7]. This association was confirmed in November 2015 by the detection of Zika virus-specific immunoglobulin M in cerebrospinal fluid of newborns with brain abnormalities, indicating the occurrence of congenital infection [8, 9].

Microcephaly is defined as a condition in which the head circumference (HC) is below the normal age- and sex-specific standard curves for children. New parameters to measure HC and to identify suspicious cases of infants with microcephaly were adopted by the Brazilian Ministry of Health in 2016, with a HC ≤ 31.9 cm for boys and ≤ 31.5 cm for girls. In the case of premature infants, the parameters of the InterGrowth table are used, which considers the gestational age of the child [10].

Other congenital infections such as syphilis (S), toxoplasmosis (T), rubella (R), cytomegalovirus (C), and herpes simplex (H), referred to by the acronym STORCH, can also cause microcephaly and other brain abnormalities in affected children [11, 12]. However, in addition to microcephaly, newborns exposed to Zika virus exhibit a series of changes in the growth and development, important neurological complications such as brain calcifications, hypertonia, craniofacial disproportion, spasms, seizures, and visual and auditive alterations that, together, comprise the so-called congenital Zika syndrome (CZS) [13–16].

The process of tooth development, or odontogenesis, begins around the sixth week of intrauterine life and is triggered by cells that migrate from the neural crest, the same embryonic tissue from which the central nervous system arises. Disturbances that occur during this period may lead to changes in the physiology and morphology of dental tissues, affecting their internal and external anatomy [17]. That would include maternal viral infections, as infection by Zika virus, affecting the development of the primary dentition [18].

The hypothesis of this study is that children with microcephaly due to congenital infections exhibit alterations in tooth development. Within this context, in view of the severe neurological manifestations induced by CZS, Zika virus infection may cause these changes to be more severe and more frequent. Therefore, this study aimed to analyze the association of CZS and other congenital infections with dental alterations in children with microcephaly.

Materials and methods

This cross-sectional study was conducted in the pediatrics outpatient clinic of the Onofre Lopes University Hospital (HUOL), Federal University of Rio Grande do Norte (UFRN), Brazil, between May 2018 and March 2019. The study was approved by the Research Ethics Committee of UFRN (Approval No. 1.717.592). The written informed consent was obtained from all participants for inclusion in the study.

The sample consisted of all children with microcephaly associated with congenital Zika virus infection and other congenital infections seen by a multiprofessional project of HUOL, a referral center for these cases in Rio Grande do Norte – Brazil, totaling 62 children.

After the parents/legal representative of all participants included in the study had signed the free informed consent form, a single researcher performed the interviews and clinical examinations. The children were submitted to oral clinical examination in the knee-to-knee position. Individual and sterile flat mouth mirrors No. 3 (Golgran®), sterile gauze, and a headlamp (CREE T6 – VT-169, DP®) were used for clinical examination. Data regarding the chronology and sequence of tooth eruption, presence of dental alterations (number, size, and type), and developmental defects of enamel (DDE) were collected.
The chronology and sequence of eruption of primary teeth were evaluated using the table proposed by Logan and Kronfield [19] and modified by Lunt and Law [20]. Developmental defects of the enamel were analyzed using the modified developmental defects of enamel (DDE) index, which classifies them into opacities and hypoplasia [21]. Intraexaminer calibration was performed by reevaluating 10% of the sample with one week interval. Agreement between pairs was obtained using the kappa coefficient, which was higher than 0.80.

Demographic data and socioeconomic conditions were collected from the questionnaire completed by the parents/legal representative. Information about mother’s pregnancy and birth of the child were obtained from the hospital medical records as was the type of child’s congenital infection, the diagnosis of which followed the criteria of the Ministry of Health of Brazil for the classification of congenital infections. This classification includes the presence of two or more of the main findings related to CZS, the presence or absence of reports of fever or exanthema without a defined cause during pregnancy, and the laboratory results for Zika and other congenital infections in maternal and newborn samples [14].

Statistical analysis
The data were analyzed using the Statistical Package for the Social Sciences (SPSS®; for Windows, version 24; SPSS, Inc., Chicago, IL, USA). Descriptive analysis was used and associations were evaluated by the chi-square test and Fisher’s exact test, adopting a level of significance of 5%.

Results
The sample of this study consisted of 62 children with a mean age of 26.4 months (SD = 7.52). There were 32 (51.6%) boys and 30 (48.4%) girls. Table 1 shows the socioeconomic characteristics of the children.

Table 1. Socioeconomic characteristics of children with microcephaly.

Socioeconomic variables	n	%
Living with		
Mother and father	47	75.8
Other situations	15	24.2
Property owned		
Yes	06	12.8
No	35	76.1
Working mother		
Yes	6	9.7
No	56	90.3
Maternal education level		
Up to 9 years of schooling	31	50
> 9 years of schooling	31	50
Monthly household income		
Up to 2 minimum wages	46	74.2
> 2 minimum wages	16	25.8
Household size		
Up to 2 persons/room	42	67.7
> 2 persons/room	20	32.3

MW: minimum wage (R$ 954,00)

https://doi.org/10.1371/journal.pone.0276931.t001
Regarding the children’s birth data, the mean gestational age was 37.9 weeks (SD = 2.48). The mean weight and HC at birth were 2,593 g (SD = 0.60) (11.65 in) and 29.6 cm (SD = 2.48) (0.005 lbs), respectively. The mean Apgar score was 7.45 (SD = 1.48) in the first minute and 9.0 (SD = 1.61) in the fifth minute.

Microcephaly was associated with congenital Zika virus infection (CZS) in 79% (n = 49) of the cases and with other congenital infections in 21% (n = 13). The latter included congenital infection with STORCH in five cases (4 with cytomegalovirus and 1 with toxoplasmosis) and congenital infection without etiological identification but with negative serology for Zika virus in eight cases.

Table 2 shows the results of comparative analysis of the independent variables according to the presence and absence of alterations in the chronology and sequence of tooth eruption.

Children with microcephaly had a high frequency of alterations in the chronology and sequence of tooth eruption. However, no statistically significant association was observed between congenital Zika virus infection and these alterations.

Comparative analysis of the independent variables according to the presence and absence of DDE is shown in Table 3.

There was also no significant association between congenital Zika virus infection and the presence of DDE in the children examined. Opacity was the most common developmental defect (71%). Enamel hypoplasia was observed in only 5% (n = 3) of the sample.

Prematurity, low birthweight and socioeconomic variables were not significantly associated with any of the dental alterations evaluated. Taken together, the dental alterations of number, shape and size represented 6.2% of the sample.

Discussion

During pregnancy some infectious diseases can be transmitted to the fetus, commonly through the transplacental hematogenous route. The most common intrauterine infections are those

Table 2. Comparative analysis of independent variables according to the presence and absence of alterations in the chronology and sequence of tooth eruption.

	Altered chronology of tooth eruption	Altered sequence of tooth eruption						
	Yes n (%)	No n (%)	p-value	PR (95% CI)	Yes n (%)	No n (%)	p-value	PR (95% CI)
Prematurity								
Yes	19 (100)	0 (0.0)	0.546	------------	13 (72.2)	5 (27.8)	0.628	0.73 (0.20-2.60)
No	40 (93.0)	3 (7.0)	31 (78.0)	9 (22.0)	32 (78.0)	9 (22.0)	0.628	0.73 (0.20-2.60)
Low birthweight								
Yes	30 (96.8)	1 (3.2)	1.000	2.06 (0.17-24.07)	22 (73.3)	8 (26.7)	0.590	0.71 (0.21-2.40)
No	29 (93.5)	2 (6.5)	23 (79.3)	6 (20.7)	24 (83.3)	5 (16.7)	0.590	0.71 (0.21-2.40)
Microcephaly								
CZS	46 (93.9)	3 (6.1)	1.000	------------	33 (71.7)	13 (28.3)	0.159	0.21 (0.25-1.79)
Other congenital infections	13 (100)	0 (0.0)	12 (92.3)	1 (7.7)	12 (92.3)	1 (7.7)	0.159	0.21 (0.25-1.79)
Maternal education level								
Up to 9 years	30 (96.8)	1 (3.2)	1.000	2.06 (0.17-24.07)	20 (69.0)	9 (31.0)	0.195	0.44 (0.12-1.53)
> 9 years	29 (93.5)	2 (6.5)	25 (83.3)	5 (16.7)	24 (83.3)	5 (16.7)	0.195	0.44 (0.12-1.53)
Monthly income								
≤ 2 MW	43 (93.5)	3 (6.5)	0.562	------------	31 (70.5)	13 (29.5)	0.090	0.17 (0.20-1.43)
> 2 MW	16 (100)	0 (0.0)	14 (93.3)	1 (6.7)	14 (93.3)	1 (6.7)	0.090	0.17 (0.20-1.43)

CZS: congenital Zika syndrome; MW: minimum wage (R$ 954.00); PR: prevalence ratio; CI: confidence interval.

https://doi.org/10.1371/journal.pone.0276931.t002
grouped under the STORCH acronym – syphilis, toxoplasmosis, rubella, cytomegalovirus, and herpes simplex [11, 12]. After the Zika virus epidemic that occurred from August of 2015 and its association with an increase in the number of reported microcephaly cases in Brazil, this pathogen was added to the STORCH acronym, which became STORCH + ZIKA [14]. These infections in pregnancy can have severe consequences for the health and development of the fetus [11–13].

Regarding dental alterations, this study showed a high frequency of alterations in the chronology and sequence of eruption of primary teeth in children with microcephaly. However, no significant difference in proportions was observed between Zika virus infection and other congenital infections. Previous studies also reported a delay in the eruption of primary teeth and alterations in the sequence of eruption in children with CZS-related microcephaly [22–28]. Several factors can influence the process of tooth eruption, including prematurity, low birthweight, socioeconomic level, nutritional status, and infant eating habits [29–32]. However, there was no significant association between socioeconomic variables, prematurity or low birthweight and altered tooth eruption. This finding can probably be explained by the small size of the sample.

The high frequency of alterations in the chronology and sequence of tooth eruption observed in this study might be related to the type of food consumed by the children. Due to the presence of oropharyngeal dysphagia, a common condition in children with microcephaly [33], the foods consumed are less consistent and this can influence the pattern of dental occlusion [24].

The presence of DDE in children with congenital infections has been reported in previous studies [22, 23, 26, 28]. Furthermore, a history of infectious and congenital diseases such as congenital syphilis and rubella has been suggested as a factor predisposing to DDE in the primary and permanent dentition [34]. According to Jaskoll et al. [35], more than one-third of children with congenital cytomegalovirus infection born each year in the United States have enamel hypoplasia and opacity.

Developmental defects of enamel	Yes n (%)	No n (%)	p-value	PR (95% CI)
Prematurity				
Yes	15 (83.3)	3 (16.7)	0.516	1.83 (0.44-7.57)
No	30 (73.2)	11 (26.8)		
Low birthweight				
Yes	24 (80.0)	6 (20.0)	0.493	1.52 (0.45-5.10)
No	21 (72.4)	8 (27.6)		
Microcephaly				
CZS	35 (76.1)	11 (23.9)	1.000	0.95 (0.22-4.09)
Other congenital infections	10 (76.9)	3 (23.1)		
Maternal education level				
Up to 9 years	23 (79.3)	6 (20.7)	0.590	1.39 (0.41-4.67)
> 9 years	22 (73.3)	8 (26.7)		
Monthly income				
≤ 2 MW	34 (77.3)	10 (22.7)	0.738	1.23 (0.32-4.74)
> 2 MW	11 (73.3)	4 (26.7)		

CZS: congenital Zika syndrome; MW: minimum wage (R$ 954.00); PR: prevalence ratio; CI: confidence interval.

https://doi.org/10.1371/journal.pone.0276931.t003
A 2018 study reported a high prevalence of enamel opacities in children with microcephaly associated with CZS [22]. In both groups in the present study the frequency of DDE was high (> 70%) indicating that these children are at an increased risk of developing caries and tooth sensitivity [36, 37].

Limitations of this study included the small sample size, the small number of microcephaly cases associated with other congenital infections and the short reevaluate interval in the intraexaminer calibration.

Contrary to the initial hypothesis, this study found no significant association between the groups and the frequency of dental alterations suggesting that the presence of microcephaly and the neurological damage resulting from it may represent risk factors for these alterations and not necessarily the infection with Zika virus.

Conclusions
Children with microcephaly exhibit a delay and alterations in the sequence of tooth eruption and DDE in primary teeth. Congenital infection with Zika virus, which may result in microcephaly, was not associated with the occurrence of dental alterations.

Supporting information
S1 Data.
(XLSX)

Author Contributions
Conceptualization: Patrícia Nóbrega Gomes, Isabelita Duarte Azevedo, Kenio Costa de Lima.
Formal analysis: Patrícia Nóbrega Gomes, Beatriz Aguiar do Amaral, Kenio Costa de Lima.
Investigation: Beatriz Aguiar do Amaral, Haline Cunha de Medeiros Maia.
Methodology: Patrícia Nóbrega Gomes, Beatriz Aguiar do Amaral, Isabelita Duarte Azevedo, Nivia Maria Rodrigues Arrais.
Writing – original draft: Patrícia Nóbrega Gomes, Isabelita Duarte Azevedo, Kenio Costa de Lima.
Writing – review & editing: Patrícia Nóbrega Gomes, Kenio Costa de Lima.

References
1. Dick GW, Kitchen SF, Haddow AJ. Zika virus isolations and serological specificity. Trans R Soc Trop Med Hyg. 1952; 46 (5): 509–520.
2. Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, et al. Zika virus outbreak on Yao Islands, Federated States of Micronesia. N Engl J Med. 2009; 360 (24): 2536–2543.
3. Faluyi U, Obadare O, Sangem A, Onuegbu CA, Medavaru S. Complications associated with Zika Virus Infection: a systematic review study. Am Sci Res J Eng Technol Sci. 2016; 24 (1): 151–161.
4. Calvet GA, Santos FB, Sequeira PC. Zika virus infection: epidemiology, clinical manifestations and diagnosis. Curr Opin Infect Dis. 2016; 29 (5): 459–466. https://doi.org/10.1097/QCO.0000000000000391 PMID: 27496713
5. Mo Y, Allerez Salada BM, Tymbah PA. Zika virus: a review for clinicians. Br Med Bull. 2016; 119 (1): 25–36. https://doi.org/10.1093/bmb/ldw023 PMID: 27283145
6. BRASIL. Ministério da Saúde. Secretaria de Vigilância em Saúde. Vírus Zika no Brasil: a resposta do SUS. Brasília: Ministério da Saúde; 2017. Disponível em: http://bvsms.saude.gov.br/bvs/publicacoes/virus_zika_brasil_resposta_sus.pdf. Acesso em 14 mar. 2018.
7. Garcia LP. Epidemia do vírus Zika e microcefalia no Brasil: emergência, evolução e enfrentamento. Brasília: IPEA; 2018. (Texto para Discussão, 2368).
8. Mas Oliveira, Malinger G, Ximenes R, Szejnfeld PO, Sampaio AS, Bispo de Filippis AM. Zika virus intrauterine infection causes fetal brain abnormality and microcephaly: tip of the iceberg? Physician Alert. Ultrasound Obstet Gynecol. 2016; 47 (1): 6–7.
9. Cordeiro MT, Pena L, Brito CA, Gil LH, Marques ET. Positive IgM for Zika virus in the cerebrospinal fluid of 30 neonates with microcephaly in Brazil. Lancet. 2016; 387 (10030): 1811–1812.
10. BRASIL. Ministério da Saúde. Secretaria de Vigilância em Saúde. Protocolo de Vigilância e resposta à ocorrência de microcefalia e/ou alterações do Sistema Nervoso Central (SNC). Versão no 2.1. Brasília: Ministério da Saúde, 2016. Disponível em: https://www.ribeirapreto.sp.gov.br/files/ssaudes/pdf/zika-cartilha-protocolo-microcefalia.pdf. Acesso em 5 abr. 2017.
11. Ford-Jones EL. An approach to the diagnosis of congenital infections. Paediatr Child Health. 1999; 4 (Issue 2): 109–112.
12. Shet A. Congenital and Perinatal Infections: Throwing New Light with an Old TORCH. Indian J Pediatr. 2011; 78: 88–95. https://doi.org/10.1007/s12098-010-0254-3 PMID: 20953849
13. Costello A, Dua T, Duran P, Gülmezoglu M, Oladapo OT, Perea W, et al. Defining the syndrome associated with congenital Zika virus infection. Bull World Health Organ. 2016; 94 (6): 406–406A. https://doi.org/10.2471/BLT.16.176990 PMID: 27274588
14. BRASIL. Ministério da Saúde. Secretaria de Vigilância em Saúde. Secretaria de Atenção à Saúde. Orientações integradas de vigilância e Atenção à Saúde no âmbito da Emergência de Saúde Pública de Importância Nacional: procedimentos para o monitoramento das alterações no crescimento e desenvolvimento a partir da gestação até a primeira infância, relacionadas à infecção pelo vírus Zika e outras etiologias infecciosas dentro da capacidade operacional do SUS. Brasília: Ministério da Saúde; 2017.
15. Venancio FA, Bernal MEQ, Ramos MCVB, Chaves NR, Hendges MV, Souza MMR, et al. Congenital Zika Syndrome in a Brazil-Paraguay-Bolivia border region: clinical features of cases diagnosed between 2015 and 2018. PLoS ONE. 2019; 14 (10): e0223408. https://doi.org/10.1371/journal.pone.0223408 PMID: 31584972
16. Freitas DA, Sousa-Santos R, Carvalho LMA, Barros WB, Neves LM, Brasil P, et al. Congenital Zika and x-ray oral evaluation in patients with congenital Zika Virus. J Appl Oral Sci. 2019; 27: 29042714
17. Siqueira RMP, Santos MTBR, Cabral GMP. Alterations in the primary teeth of children with microcephaly in Northeast Brazil: a comparative study. Int J Paediatr Dent., 2018; 28:523–532. https://doi.org/10.1111/ipd.12402 PMID: 29968396
18. Vieira AR. Genetic Basis of Oral Health Conditions. Springer, 2019, pages 70–94.
19. Logan W, Kronfeld R. Development of the human jaws and surrounding structures from birth to the age of fifteen years. J Am Dent Assoc 1933; 20(3):379–427.
20. Lunt RC, Law DB. A review of the chronology of eruption of deciduous teeth. J Am Dent Assoc 1974; 89(4):872–879. https://doi.org/10.14219/jada.archive.1974.0484 PMID: 4609369
21. A review of the developmental defects of enamel index (DDE index). Commission on Oral Health Research and Epidemiology. Report of an FDI Working Group. Int Dent J 1992; 42(6):411–426.
22. Cavalcanti AL. Challenges of dental care for children with microcephaly carrying Zika congenital syndrome. Contemp Clin Dent 2017; 8(3):345–6. https://doi.org/10.4103/0976-237X.214553 PMID: 29042714
23. Siqueira RMP, Santos MTBR, Cabral GMP. Alterations in the primary teeth of children with microcephaly in Northeast Brazil: a comparative study. Int J Paediatr Dent., 2018; 28:523–532. https://doi.org/10.1111/ipd.12402 PMID: 29968396
24. Aquiáu YPC, Cavalcante AFC, Alencar CRB, Melo ASO, Cavalcantoni SDLB, Cavalcante AL. Chronology of the first deciduous tooth eruption in Brazilian children with microcephaly associated with zika virus: a longitudinal study. Pesqui Bras Odontopediatría Clin Integr 2018; 18(1):e3982.
25. Carvalho IF, Alencar PNB, Carvalho de Andrade MB, Silva PGB, Carvalho EDF, Araújo LS, et al. Clinical and x-ray oral evaluation in patients with congenital Zika Virus. J Appl Oral Sci. 2019; 27: e20180276. https://doi.org/10.1590/1678-7757-2018-0276 PMID: 31116278
26. Gusmão TPL, Faria ABS, Filho JCL, Carvalho AAT, Queiroz LAM, Leão JC. Dental changes in children with congenital Zika syndrome. Oral Dis. 2020; 26(2): 457–464. https://doi.org/10.1111/odi.13238 PMID: 31742839
27. D’Agostino ES, Chagas JRLP, Cangussu MCT, Vianna MIP. Chronology and sequence of deciduous teeth eruption in children with microcephaly associated to the Zika virus. Spec Care Dentist. 2020; 40: 3–9.
28. Silva MCPMD Arnaud MA, Lyra MCA Filho AVA, Rocha MAW Ramos RCF, et al. Dental development in children born to Zika-infected mothers: a case-based study. Arch Oral Biol. 2020; 110: 104598. https://doi.org/10.1016/j.archoralbio.2019.104598 PMID: 31775105
29. Ramos SRP, Gugisch RC, Fraiz FC. The influence of gestational age and birth weight of the newborn on tooth eruption. J Appl Oral Sci. 2006; 14(4):228–32. https://doi.org/10.1590/s1678-77572006000400003 PMID: 19089267

30. Oziegbe EO, Adenoyan-Sofowora C, Folayan MO, Esan TA, Owotade FJ. Relationship between socio-demographic and anthropometric variables and number of erupted primary teeth in suburban Nigerian children. Matern Child Nutr. 2009; 5(1):86–92. https://doi.org/10.1111/j.1740-8709.2008.00156.x PMID: 19161547

31. Alvarez JO. Nutrition, tooth development, and dental caries. Am J Clin Nutr 1995; 61(2):410–16.

32. Kohli MV, Patil GB, Kulkami NB et al. A changing trend in eruption age and pattern of first deciduous tooth: correlation to feeding pattern. J Clin Diagn Res 2014; 8: 199–201. https://doi.org/10.7860/JCDR/2014/6987.4161 PMID: 24783136

33. Oliveira DMS, Miranda-Filho DB, Ximenes RAA, Montarroyos UR, Martelli CMT, Bricley EB, et al. Comparison of oropharyngeal dysphagia in brazilian children with prenatal exposure to zika virus, with and without microcephaly. Dysphagia. 2021; 36: 583–594.

34. Seow WK. Enamel hypoplasia in the primary dentition: a review. ASDC J Dent Child. 1991; 58(6): 441–52.

35. Jaskoll T, Abichaker G, Htet K, Bringas P Jr, Morita S, Sedghizadeh PP, et al. Cytomegalovirus induces stage dependent enamel defects and misexpression of amelogenin, enamelin and dentin sialophosphoprotein in developing mouse molars. Cells Tissues Organs 2010; https://doi.org/10.1159/000314909 PMID: 20484882

36. Lunardelli SE, Peres MA. Prevalence and distribution of developmental enamel defects in the primary dentition of pre-school children. Braz Oral res. 2005; 2, p:144–9. https://doi.org/10.1590/s1806-83242005000200013 PMID: 16292449

37. Hoffmann RMS, Sousa MLR, Cipriano S. Prevalence of enamel defects and the relationship to dental caries in deciduous and permanent dentition in Indaiatuba, São Paulo, Brazil. Cad Saude Publica 2007; 23: 435–444.