Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Research Letter

The role of obesity in inflammatory markers in COVID-19 patients

ARTICLE INFO

Keywords:
Obesity
COVID-19
Inflammation
CRP
ESR
D-dimer

ABSTRACT

Obesity has emerged as a significant risk factor for severe COVID-19 worldwide. Given both COVID-19 infection and obesity have been associated with increased systemic inflammation, we evaluated inflammatory markers in obese and non-obese individuals hospitalized for COVID-19 at Massachusetts General Hospital. We hypothesized that obese patients would have a more exuberant inflammatory response as evidenced by higher initial and peak inflammatory markers along with worse clinical outcomes. Of the 781 patients, 349 were obese (45%). Obese individuals had higher initial and peak levels of CRP and ESR as well as higher peak D-dimer (P < 0.01 for all) in comparison to non-obese individuals, while IL-6 and ferritin were similar. In addition, obese individuals had a higher odds of requiring vasopressor use (OR 1.54, 95% CI 1.00–2.38, P = 0.05), developing hypoxic respiratory failure (OR 1.58, 95% CI 1.04–2.40, P = 0.03) and death (OR 2.20, 95% CI 1.31–3.70, P = 0.003) within 28 days of presentation to care. Finally, higher baseline levels of CRP and D-dimer were associated with worse clinical outcomes even after adjustment for BMI. Our findings suggest greater disease severity in obese individuals is characterized by more exuberant inflammation.

© 2020 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

Introduction

Obesity has emerged as a significant risk factor for severe COVID-19 worldwide [1–3]. Greater disease severity in obesity remains poorly understood, but may be due to reduced lung compliance, maladaptive effects on ventilation and perfusion, and a heightened state of inflammation [2,4,5]. We sought to examine differences in systemic inflammation among obese and non-obese individuals hospitalized for COVID-19. We hypothesized that obese patients would have a more exuberant inflammatory response, including higher initial and peak markers of inflammation along with worse clinical outcomes.

Methods

Seven hundred and eighty one hospitalized patients with PCR-confirmed COVID-19 admitted to Massachusetts General Hospital from February 28 to April 27, 2020 were included in the study. We excluded patients with active cancer except non-melanoma skin cancers (n = 35), current pregnancy (n = 19), age < 18 years (n = 7), and those with missing lab values or covariates (n = 22).

C-reactive Protein (CRP), erythrocyte sedimentation rate (ESR), interleukin-6 (IL-6), D-dimer, and ferritin were abstracted with initial and peak (highest value recorded) values within 14 days of hospitalization. Clinical history was abstracted using chart review. Outcomes were ascertained up to 28 days after presentation to care (defined as first encounter with the health system) until discharge or death.

We examined the association of obesity status (BMI ≥ 30 kg/m²) and BMI with natural log-transformed inflammatory markers using multivariable linear regression. Models were adjusted for age, sex, hypertension, diabetes mellitus, liver disease, kidney disease, smoking history and pulmonary disease. In addition, we examined the association of obesity and inflammatory markers with clinical outcomes using multivariable logistic regression.

Results

Of the 781 patients (mean age 61 and 42% women), 349 were obese (45%) (Table 1).

Obese individuals had higher initial levels of CRP and ESR after accounting for potential confounders in multivariable analyses (P < 0.01 for both) (Table 1). Peak CRP and ESR remained higher in the obese, in addition to peak D-dimer (Fig. 1).

Obese individuals had a higher odds of requiring vasopressor use (multivariable OR 1.54, 95% CI 1.00–2.38, P = 0.05), developing hypoxic respiratory failure (OR 1.58, 95% CI 1.04–2.40, P = 0.03) and death (OR 2.20, 95% CI 1.31–3.70, P = 0.003) within 28 days of presentation to care (Fig. 1).

Given CRP, ESR and D-dimer demonstrated an association with obesity, we examined the association of the baseline markers with

Abbreviations: COVID-19, coronavirus disease 2019; BMI, body mass index; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; IL-6, interleukin-6; ICU, intensive care unit; ARDS, Acute Respiratory Distress Syndrome.
Table 1
Baseline demographic, comorbidities, medications, inflammatory markers and outcomes in obese and non-obese with COVID-19 infection.

	Total	Obese	Non-obese	P-value*
	N = 781	N = 349	N = 432	
Baseline demographics				
Age, years	61 (17)	57 (16)	65 (17)	<0.001
Women, n (%)	328 (42%)	161 (46%)	167 (39%)	0.04
Race, n (%)				0.04
White	315 (41%)	124 (37%)	191 (45%)	
Hispanic	279 (37%)	145 (43%)	134 (32%)	
Black	87 (11%)	36 (11%)	51 (12%)	
BMI, kg/m²	30.7 (9.7)	37.0 (11.3)	25.5 (2.9)	<0.001
Comorbidities				
Cardiovascular disease, n (%)	185 (24%)	69 (20%)	116 (27%)	0.02
Diabetes mellitus, n (%)	283 (36%)	145 (42%)	138 (32%)	0.01
Hypertension, n (%)	416 (53%)	180 (52%)	236 (55%)	0.40
Pulmonary disease, n (%)	245 (31%)	124 (36%)	121 (28%)	0.02
COPD, n (%)	90 (11%)	30 (9%)	60 (14%)	0.02
Asthma, n (%)	106 (14%)	61 (18%)	45 (10%)	0.004
Obstructive sleep apnea, n (%)	51 (6%)	38 (11%)	13 (3%)	<0.001
Kidney disease, n (%)	137 (18%)	48 (14%)	89 (21%)	0.01
Liver disease, n (%)	72 (9%)	31 (9%)	41 (9%)	0.77
Current cigarette smoker, n (%)	60 (8%)	18 (5%)	42 (10%)	
Former cigarette smoker, n (%)	257 (33%)	99 (28%)	158 (37%)	<0.001
Baseline medications				
NSAIDs, n (%)	173 (22%)	76 (22%)	97 (22%)	0.82
Statins, n (%)	344 (44%)	150 (43%)	194 (45%)	0.60
Inflammatory markers, median (inter-quartile range)				
Initial CRP, mg/L (n = 770)	71 (34–142)	76 (40–145)	67 (28–137)	<0.001
Peak CRP, mg/L (n = 770)	137 (51–245)	147 (71–264)	127 (60–230)	<0.001
Initial ESR, mm/h (n = 718)	37 (22–57)	38 (26–61)	35 (21–56)	0.007
Peak ESR, mm/h (n = 718)	56 (34–103)	62 (36–110)	52 (29–91)	0.002
Initial D-dimer, ng/mL (n = 760)	987 (633–1729)	931 (613–1615)	1061 (673–1817)	0.55
Peak D-dimer, ng/mL (n = 760)	1655 (868–3663)	1785 (877–4313)	1570 (862–3186)	0.004
Initial IL-6, pg/mL (n = 271)	31 (14–73)	32 (15–70)	31 (14–74)	0.24
Peak IL-6, pg/mL (n = 271)	32 (15–79)	35 (16–104)	31 (14–76)	0.10
Initial Ferritin, ug/L (n = 773)	518 (267–990)	548 (291–952)	505 (256–1027)	0.62
Peak Ferritin, ug/L (n = 773)	775 (399–1587)	807 (426–1614)	767 (372–1555)	0.26
Outcomes				
ICU admission, n (%)	242 (31%)	129 (37%)	113 (26%)	0.11
Death, n (%)	116 (15%)	49 (14%)	67 (16%)	0.003
ARDS, n (%)	188 (24%)	99 (28%)	89 (21%)	0.15
Hypoxic respiratory failure, n (%)	207 (27%)	116 (33%)	91 (21%)	0.03
Intubated, n (%)	204 (26%)	109 (31%)	95 (22%)	0.16
Vasopressor/inotrope use, n (%)	200 (26%)	109 (31%)	91 (21%)	0.05

Values are means (standard deviations) or medians (inter-quartile ranges) unless otherwise noted. Abbreviations: BMI = body mass index, ESR = erythrocyte sedimentation rate, CRP = C-reactive protein, IL-6 = interleukin-6, ARDS = Acute Respiratory Distress Syndrome.

* P-values represent unadjusted comparison (obese vs non-obese individuals) for baseline demographic and clinical variables, and multivariable-adjusted linear or logistic regression models for inflammatory markers and outcomes. Multivariable models are adjusted for age, sex, hypertension, diabetes mellitus, liver disease, kidney disease, smoking history, and pulmonary disease.

clinical outcomes. For each 1-SD higher CRP, patients had greater than two-fold odds of ICU admission (OR 2.21, 95% CI 1.71–2.86), hypoxic respiratory failure (OR 2.49, 95% CI 1.86–3.33) and death (OR 2.23, 95% CI 1.63–3.05) and near three-fold odds of intubation (OR 2.79, 95% CI 2.03–3.82) and vasopressor use (OR 2.74, 95% CI 2.00–3.75) (P < 0.001 for all). In addition, for each 1-SD higher D-dimer, patients had nearly 1.5 greater odds for ICU admission, hypoxic respiratory failure, intubation, vasopressor use and death (P < 0.01 for all).

Discussion

Among 781 hospitalized COVID-19 PCR-confirmed positive patients at MGH, we examined the association of obesity with markers of inflammation and clinical outcomes. Our principal findings are: a) obesity is associated with greater inflammation as evidenced by higher initial and peak CRP and ESR and peak D-dimer; b) obesity is associated with greater COVID-19 disease severity, including higher likelihood of vasopressor use, hypoxic respiratory failure and death; c) higher baseline levels of CRP and D-dimer are associated with worse clinical outcomes even after adjustment for BMI. Our findings suggest that greater disease severity among obese individuals is characterized by more exuberant inflammation.

Our results demonstrate higher initial and peak levels of CRP and ESR and peak D-dimer among obese vs non-obese individuals. Similar to other studies, we also demonstrate that CRP and D-dimer in turn have been linked to disease severity and death in COVID-19 [6,7]. Although prior data have demonstrated that obesity is associated with T cell depletion and low T cell levels have been negatively correlated with IL-6 levels, we did not find an association between obesity and IL-6 levels [8]. Given recent data suggesting that CRP levels may predict response to glucocorticoid therapy, our results further highlight the role of CRP in the obese population when considering potential therapeutic options [9].

Our study has limitations. This study was an observational study and is subject to potential ascertainment bias as inflammatory markers were not obtained at set intervals, limiting causal inferences. We acknowledge that mechanistic studies are needed to better understand the role of inflammation in obesity as it pertains to COVID-19 disease severity. Finally, this is a single center study and generalizability to other samples may be limited.

In sum, among individuals hospitalized for COVID-19, obesity is associated with greater inflammation including initial and peak
ESR and CRP and peak d-dimer levels, as well as worse clinical outcomes. Specifically, obesity and inflammation were associated with higher odds of vasopressor use, hypoxemic respiratory failure and death. Further studies are needed to examine how inflammation may render obese individuals more susceptible to severe COVID-19.

Author contributions

Conception and design: J.N.M., E.S.L, S.M.P, I.V.B., A.S.F, J.E.H. Collection, analysis and interpretation of data: J.N.M., E.S.L, S.M.P, E.E., J.K.W., C.A.S., I.V.B., S.A.I, A.S.F, J.E.H. Drafting of the manuscript: J.N.M., E.S.L, S.M.P, C.A.S., I.V.B, S.A.I, E.S.L., J.E.H. Guarantor of paper: J.N.M., E.S.L., J.E.H.

Funding

This work was funded by the MGH Division of Clinical Research (A.S.F.), Weissman Family MGH Research Scholar Award (I.V.B.); NIH grants: 5T32HL094301-07 (E.S.L.), R01HL139731 (S.A.I.), K24AI141036 (I.V.B.), R01HL134893 (J.E.H.); R01 HL140224 (J.E.H.); K24 HL153669(J.E.H.) American Heart Association 185FRN342500007 (S.A.I.).

Ethical statement

The role of obesity in inflammatory markers in COVID-19 patients

There were no experiments performed as a part of this study. There were no animals involved in this study. The Partners Institute Review Board (Protocol #2020P00829) approved the study.

Disclosures

Dr. Lubitz receives sponsored research support from Bristol Myers Squibb/Pfizer, Bayer AG, Boehringer Ingelheim, and Fitbit, and has consulted for Bristol Myers Squibb/Pfizer and Bayer AG, and participates in a research collaboration with IBM. Dr. Ho has received research support from Gilead Sciences and Bayer AG, and research supplies from EcoNugenics.

Competing interests

The authors have no competing interests to report.

Acknowledgements

The authors would like to acknowledge the patients who were included in this study.

References

[1] Suleyman G, Fadel RA, Malette KM, Hammond C, Abdulla H, Entz A, et al. Clinical characteristics and morbidity associated with coronavirus disease 2019 in a series of patients in Metropolitan Detroit. JAMA Netw Open 2020;3(6):e2012270.
[2] Petrilli CM, Jones SA, Yang J, Rajagoplan H, O’Donnell I, Chernyk Y, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ 2020;369:m1966.
[3] Lighter J, Phillips M, Hochman S, Sterling S, Johnson D, Francois F, et al. Obesity in patients younger than 60 years is a risk factor for Covid-19 hospital admission. Clin Infect Dis 2020;71:896–7.
[4] Petraitis D, Margina D, Tsrouhas K, Tekos F, Stan M, Nikitovic D, et al. Obesity a risk factor for increased COVID19 prevalence, severity and lethality (Review). Mol Med Rep 2020;22:1:5–19.
[5] Herold T, Juriinovc I, Arneche C, Lipworth BJ, Hellmuth JC, Bergwelt-Baildon MV, et al. Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID–19. J Allergy Clin Immunol 2020.
[6] Luo X, Zhou W, Yan X, Guo T, Wang B, Xia H, et al. Prognostic value of C-reactive protein in patients with COVID–19. Clin Infect Dis 2020.
[7] Shah S, Shah K, Patel SB, Patel FS, Osman M, Velagapudi P, et al. Elevated D-dimer levels are associated with increased risk of mortality in COVID-19: a systematic review and meta-analysis. Cardiol Rev 2020.
[8] Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and functional exhaustion of cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol 2020;11:827.
[9] Keller MJ, Kitiss EA, Arora S, Chen JT, Agarwal S, Ross MJ, et al. Effect of systemic glucocorticoids on mortality or mechanical ventilation in patients with COVID-19. J Hosp Med 2020;15(8):489–93.
Jenna N. McNeill a,b,1
a The Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, United States
b Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, United States

Emily S. Lau a,b,1
a The Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, United States
b Division of Cardiology, Massachusetts General Hospital, Boston, MA, United States

Samantha M. Paniagua
Elizabeth E. Liu
Jessica K. Wang
The Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, United States

Ingrid V. Bassett a,b
a Division Infectious Disease, Massachusetts General Hospital, Boston, MA, United States
b Mongan Institute, Massachusetts General Hospital, Boston, MA, United States

Caitlin A. Selvaggi
The Biostatistics Center, Massachusetts General Hospital, Boston, MA, United States

Steven A. Lubitz
Division of Cardiology, Massachusetts General Hospital, Boston, MA, United States

Andrea S. Foulkes
The Biostatistics Center, Massachusetts General Hospital, Boston, MA, United States

Jennifer E. Ho a,b,∗
a The Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, United States
b Division of Cardiology, Massachusetts General Hospital, Boston, MA, United States
∗ Corresponding author at: Massachusetts General Hospital, 185 Cambridge Street, CPZN #3192, Boston, MA 02114, United States.
E-mail address: jho1@mgh.harvard.edu (J.E. Ho)

1 These authors contributed equally to the formation of letter.

8 November 2020