Source discrimination of mine water based on the random forest method

Zhenwei Yang1,2,3, Hang Lv1,2, Zhaofeng Xu1,2 & Xinyi Wang1,2*

Machine learning is one of the widely used techniques to pattern recognition. Use of the machine learning tools is becoming a more accessible approach for predictive model development in preventing engineering disaster. The objective of the research is to for estimation of water source using the machine learning tools. Random forest classification is a popular machine learning method for developing prediction models in many research settings. The type of mine water in the Pingdingshan coalfield is classified into surface water, Quaternary pore water, Carboniferous limestone karst water, Permian sandstone water, and Cambrian limestone karst water. Each type of water is encoded with the number 0–4. On the basis of hydrochemical data processing, a random forests model is designed and trained with the hydrochemical data. With respect to the predictive accuracy and robustness, fourfold cross-validation (CV) is adopted for the model training. The results show that the random forests model presented here provides significant guidance for the discrimination of mine water.

Coal is the most important energy source in China. The mine safety production is associated with the sustainable development and economic stability. The mine hydrogeological conditions are complicated. With the increasing depth of coal mining, the source of mine water inrush becomes increasingly complex. It can lead to serious disasters due to the complicated hydrogeological conditions found in parts of China, which are uncommon elsewhere in the world. Therefore, rapid and accurate discrimination of the source of water inrush is very important and necessary for both resuming production and rescuing miners.

The hydrochemical composition maintains an equilibrium, even though a series of chemical and physical reactions such as redox, precipitation and dissolution occur constantly between rock and groundwater. Consequently, the chemical characteristics of groundwater in different aquifers are distinct, and the same aquifer is consistent, which is the basis of the source discrimination of mine water derived from hydrochemical characteristics. Many mathematical models of mine water source discrimination have been well established over the past several decades. For example, cluster analysis, distance discrimination, grey analysis, bayes, fuzzy evaluation, and so on. Based on mathematical methods, hydrochemistry is widely used to identify mine water sources. With the development of machine learning, more and more research on source discrimination of mine water has been conducted by artificial intelligence, such as BP neural network, deep learning and support vector machines (SVM).

It is a beneficial attempt to apply mathematical models and artificial intelligence to source discrimination of mine water. There are some limitations to these methods. (1) Most of the mathematical models focus on two or more values, and the data distribution ranges greatly, which is difficult to process correctly. (2) Generally, the number of water samples is several dozen or even hundreds. The data is abundant for model training by BP neural network and SVM, but it is not easy to be operated by these methods. For deep learning, thousands of data samples are needed for the model training. Obviously, it is far from enough for deep learning. As a fast, flexible, and representative method for mining high dimensional data, random forest is a commonly used machine learning algorithm trademarked by Leo Breiman and Adele Cutler, which performs well even in the presence of a large number of features and a small number of observations.

The main contribution of this research is (1) to introduce random forests into source discrimination of mine water to build a discriminant model and (2) to train the model parameters and apply it to water source discrimination in the Pingdingshan coal field. The objective of the study is to develop new ideas for the discrimination of water inrush sources. The organization of the paper is as follows. The geological conditions and hydrogeological

1Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China. 2Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo 454000, China. 3State Key Laboratory of Coking Coal Exploitation and Comprehensive Utilization, China Pingmei Shenma Holding Group Co., LTD, Pingdingshan 467000, China. *email: wangxy@hpu.edu.cn
data” presents the geological and hydrogeological conditions of the study area. The source discrimination of mine water problems in the framework of the random forest is introduced in detail in “Methodology”. The implementation procedure is introduced in “Implementation procedure”. The results and discussion for the source discrimination of mine water are demonstrated in “Results and discussion”. This paper closes with some conclusions and final remarks.

Geological conditions and hydrogeological data

Outline of the coalfield. The Pingdingshan coalfield is located in the central and western parts of Henan Province, northern China (Fig. 1), which is the third largest coal producer in China. The length is about 40 km long E–W and 20 km wide N–S. There are 17 coal mines occupied a total area of about 400 km² at the coalfield. The studied area can be divided into eastern and western areas by the Guodishan fault. It is a large syncline with symmetrically gently dipping limbs14. The coal-bearing sediments are mostly Permian in age, comprised of sandstone, siltstone and carbonaceous shale. They are overlaid by Neogene, Paleogene and Quaternary deposits (Fig. 2).

Hydrogeological conditions. The study area is situated in a transitional zone from a warm temperate zone to a subtropical zone, with a long-term average precipitation of 747.4 mm/year, mainly concentrated from July to September. With a surface elevation varying from 900 to 1040 m, the topography is low in the southeast and high in the northwest. Influenced by the topographical features, the rivers, such as the Shahe, Ruhe, Zhanhe and Baiguishan Reservoir, are mainly distributed in the south and north of the mining area. There are some other seasonal rivers and man-made ditches, such as Zhanhe, Beigan Canal and Xigan Canal. The riverbed inserts into Cambrian limestone or Neogene marl, which has a certain replenishment effect on the groundwater of limestone in the No.7 mine in the southwest of the Pingdingshan coalfield15,16.

There are four main water filled aquifers in the study area. From the upper to the bottom, mainly include:(1) The Quaternary sand gravel pore aquifer, which covers the coal strata, contacts the minable seam on the outcrop. The osmotic coefficient is 0.000626 m/day. (2) Dyas sandstone aquifer, composed by medium sized and large sandstones, has poor water yield and poor supplementation conditions. (3) The Taiyuan formation of the Carboniferous system. There are seven layers of limestone in the formation. Most of them are dominated by corrosion fissures. The supplementation condition is poor. The water inflow per unit is 0.00018–0.3569 L/s m, and the permeability coefficient is 0.0076–3.047 m/day. (4) The middle and upper Cambrian limestone aquifer, which is the indirect water-filled aquifer of the upper coalbed. The thick dolomite limestone of the upper Gushan Formation and the thick oolith limestone in the upper Zhangxia Formation are predominant in this layer. The osmotic coefficient of 1.092–7.47 m/day and the unit-specific capacity is 2.27–26.62 l/s m17.

Dataset. In the study, one hundred and forty-nine mine water samples were collected. All samples were sent to the laboratory as soon as possible for further analysis. The box plots in Fig. 3 shows the characteristics of the original data distribution, which compares multiple parameters for the same aquifer. As a whole, the range of HCO- 3 content changes more greatly than other ion compositions in all the aquifers. The Mg²⁺ concentration is significantly higher than other ions.

Data standardization is about ensuring that data is internally consistent, that is, each data type has the same content and format. Standardized values are useful for tracking data that isn’t easy to compare otherwise. The raw data are normalized individually according to Eq. (1).

\[Z_{ij} = \frac{x_{ij} - \text{mean}(x_j)}{\text{std}(x_j)} \] (1)
Figure 2. Comprehensive histogram of strata in the Pingdingshan coalfield.

Geological Age	System	Formation	Columnar	Thickness (m)	Lithologic Character
Cenozoic	Quaternary			0 ~ 15	Mainly gravel, pebbles, sand, mixed with sub-sandy soil and sub-clay.
	Tertiary			200	The lower part is variegated sandstone, calcareous cementation; the middle and upper part are brownish-yellow and greyish-white sandy mudstone.
				430 ~ 2460	Dark red bedded feldspar sandstone, locally gravelly.
Mesozoic	Triassic	Ermaoying group		125 ~ 250	Purplish red medium- and fine-grained sandstone with calcareous siltstone.
		Lia Jiaogou group		125 ~ 250	It is composed of purple-red and yellow-green feldspar, quartz sandstone, and feldspar sandstone.
	Permian	Shi Qianfeng group		212 ~ 312	Mainly by purple, yellow sandstone, sandy mudstone group.
		Upper stone box group		163 ~ 390	It is composed of purple and gray sandstone, sandy mudstone, coal line or thin coal seam.
		Down stone box group		161 ~ 397	It is composed of sandstone, argillaceous sandstone, mudstone and coal seam. The coal seam of Group III (E), Group IV (D) and Group V (C) is locally recoverable.
	Carboniferous	Shanxi group		84	It is composed of sandstone, sandy mudstone and coal seam. The second (1) Group coal seam has a large thickness and is the main recoverable coal seam in the region.
		Taizhou group		30 ~ 80	Composed of limestone and sandstone, sandy mudstone and coal seam.
		Benxi group		0 ~ 20	Composed of maroon limonite and aluminum mudstone.
	Ordovician	Ma Jiaogou group		0 ~ 48	Composed of sandy mudstone, sandstone, shale, dolomite and thick bedded breccia limestone.
		Fengshan group		0 ~ 38	Composed of cryptocrystalline dolomite limestone, thin mudstone, chert clumps and bands, and calcareous dolomite.
		Chang shan group		0 ~ 66	Composed of dolomite limestone, mudstone and dolomite.
		Gushan group		25 ~ 32	Fine crystal dolomite.
		Zhangxia group		60 ~ 220	The lithology is mainly oolitic dolomite.
		Xuzhuang group		50 ~ 250	Bluish gray medium thick bedded argillaceous banded limestone.
	Cambrian	Maozhuang group		90 ~ 140	Dark purple, gray-green siltstone, the layer contains a lot of mica.
		Mantou group		220	It is mainly purple shale and limestone.
		Xinji group		55 ~ 210	It is mainly medium coarse quartz sandstone, dark gray leopard skin limestone and dolomitic limestone, which is in pseudoconformable contact with the lower strata.

Legend:
- Argillaceous sandstone
- Oolitic Dolomite
- Quartz sandstone
- Limestone
- Silstone
- Calcareous siltstone
- Mudstone
- Dolomite limestone
- Bauxite mudstone
- Arcon sandstone
- Feldspar quartzite
- Sandstone
- Coal seam
- Sandy conglomerate
where the subscript i means the row of the data matrix, the subscript j means the column of the data matrix, Z_{ij} represents the data after standardization, x_{ij} represents the source data, and the symbol std represents the standard deviation of related data.

In theory, the dataset could be split into three subsets: training set, validation set, and testing set. The training set is utilized to training the model; the validation set is used to estimate prediction error for model selection; and the testing set is adopted to assess the generalization error of the finalized model. If there is enough data at hand, the best practice is to randomly split. Because our data is generally scarce, the inability to truly reflect the generalization performance of the model is common. In order to avoid any bias in data selection, k-fold Cross-Validation (CV) was employed in the paper during the process of hyper-parameters tuning and model assessment. In k-fold CV, original samples S are randomly split into k mutually exclusive subsets of similar size, i.e. $S = S_1 \cup S_2 \cup \ldots \cup S_k$, $S_i \cap S_j = \emptyset$ ($i \neq j$). Each subset S_i maintains the consistency of the data distribution as much as possible, that is, from hierarchical sampling of S. Then, each time the union of k subsets is used as the training set, and the remaining subset is utilized as the testing set; therefore, the k group training and testing dataset can be obtained, and k training and testing cross-validation can be performed. There is no definite strict rule for determining the value of k. A value of $k = 5$ is very common in the field of random forest. In the aspect, the number of k is set to 5 and associated with the trade-off between the bias and the computation time. Thus, the manuscript adopts the method of fivefold cross-validation to train the model (Fig. 4).
Methodology

Random forests (RF). Random forests, designed for statistical learning, is one of the most famous machine learning approaches. The randomness is reflected in two aspects, one is random selection of features, the other is random sampling, so that each tree in the forest has both similarities and differences. As a supervised learning methodology, it employs a number of decision trees and generally uses the bootstrap resampling method to extract multiple samples from original samples. Each tree in the classifications takes input from samples in the original dataset, and all of features are selected randomly, which are used in growing the tree at every node. With similar distribution in the random forest, each tree is dependent on random vectors sampled independently. Trees in the forest will not be pruned until the end of the exercise when the prediction is reached decisively. Combining the predictions of multiple decision trees produces an average for the final forecast results.

The schematic of random forest model can be seen in Fig. 5. The training set should be constructed at the beginning. Each tree training in the sample uses random subsets from the initial training samples. Then, the subsets are used as the input to the classification and regression tree (CART). At each node of the random tree, m features are selected at random out of the initial features, and the optimal split is chosen from the randomly selected features of the unpruned tree nodes. Each tree grows without limits and should not be pruned whatsoever. Finally, predictions and results are weighted over trees by taking the majority vote over all trees.

Performance measures. The RMSE (root mean square error) is employed to analyze and assess the predictive results of the machine learning models (Eq. 2). The value closer to 0 indicates that the error in prediction is less.

$$\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2} \quad (2)$$

Variable importance measurement (VIM). In order to quantitatively calculate the effect of every factor on the source discrimination of mine water, the mean decrease impurity importance (MDI) method is used to measure the variable importance, which is constructed in the following way. In the study of forest, the importance of a variable V_i could be evaluated by adding up the weighted impurity decreases $q(t)\Delta j(st,t)$ for the whole trees ϕ_n ($\text{form} = 1, \ldots, N$) in the forest:

$$\text{Im}(V_i) = \frac{1}{N} \sum_{n=1}^{N} \sum_{k \in \phi_n} 1(i_k = i) q(k) \Delta j(s_k, k) \quad (3)$$

where $q(k) = \frac{m_k}{M}$ is the proportion of samples, i_k is the identifier of the variable used for splitting node k, and Δj denotes the decrease impurity, which is the value of RMSE for the prediction.
Implementation procedure

Before the model training, the data of the hydrochemical component should be normalized. Otherwise, it leads to an unstable model training procession. As shown in Fig. 6, the accuracy of the model training is higher after data normalization.

Figures 7 and 8 illustrate the RMSE curves of the training and testing data set of the RF models under fivefold CV. The RMSE value close to 0 indicates that the error in prediction is marginal. It can be observed that the RMSE of the RF model is smaller than the other two ensemble learning methods, which shows that the prediction performance of RF-based models is better than ANN and SVM in training data set. The curves are more fluctuant in Fig. 8. In addition, all models performed the same trend, which indicates that models are obviously influenced by the data set's quality. By calculating average values of the RMSE for these models, the RF-based model's RMSE average value is lower than that of comparison models, implying that the RF-based model has much better performance. Meantime, the k-fold cross-validation is also used for a better evaluation. It splits the training data set into k subsets of equal size, which are named folds. Every fold is used as a validation data set to test the model trees, whereas the right k-1 data set is used for model training. To balance the evaluation result and the training time, in the research, the four-folds is selected.
Results and discussion

In the random forest algorithm, hyper-parameters optimization has a great influence on the model’s robustness, generalization capability and performance. The step is 1 for max_depth changing from 1 to 100 as well as n_estimator changing from 1 to 100. This sub-section details the selection of optimal hyper-parameters of random forest algorithm.

The max_depth, the maximum depth of each tree, is one of the most important hyper-parameters, which stands for the depth of the tree number. The best number of max_depth has been tested for the model, as is shown in Fig. 9. The blue curve represents the trend for the increasing of max_depth with the training dataset, and the red curve represents the trend for the increasing of max_depth with the validation dataset. From the Fig. 9, we can see that the RMSE value can be the least and keep when the depth of the tree number is 7.

To decrease the possibility of over-fitting, the n_estimator is also discussed as another hyper-parameter, which is directly related to the computational cost. A stepwise searching method is used to find optimal values of the model’s n_estimator, as is shown in Fig. 10. From the Fig. 10, we can see that the RMSE value can decrease to 0.2 and 0.5 and remain unchangeable when the n_estimator is 22.

The number of random seeds is another hyper-parameter. The change of accuracy with different random seeds has been tested, as is shown in Fig. 11. We can see that the accuracy can get the highest value when the random seeds number equals 4000.

The performance of other models is also studied in the manuscript, which is shown in Figs. 12 and 13. The parameters of models are listed in Tables 1 and 2. Figure 12 demonstrates the accuracy (a, b) and the RMSE (c, d) of training and testing of the models (RF, ANN, SVM). According to Fig. 12, one hundred times’ tests have been taken, and the minimum value (0.2 for the training and 0.45 for the testing) of RMSE is calculated by the RF model. The ANN model and SVM model show almost the same performance based on the magnitudes of RMSE. Compared to the other two models, the RF model has the highest accuracy (or best performance) as it exhibits the lowest RMSE and the highest accuracy. In general, the RF model leads to a better match compared to the other two models for the training and testing phases.

Figure 8. The RMSE curves of testing patterns under fivefold CV.

Figure 9. The RMSE curve for the increasing of max_depth.
Feature importance refers to a class of techniques for assigning scores to input features to a predictive model that indicates the relative importance of each feature when making a prediction. Feature importance scores can highlight which features may be most relevant to the target. The trained random forest model can calculate feature importance automatically, which is obtained through the interface feature importance criterion. The gain is calculated by taking each feature's contribution for each tree, indicating the relative contribution of each feature to the model. Figure 13 shows the six feature variables' average of feature relative importance (%) under fivefold CV. The blue bars represent the features importance of the RF model. In the current model, Ca$^{2+}$ (33%) is the most important feature variables, followed by Cl$^{-}$ (22%), Na$^{+}$ + K$^{+}$ (15%), Mg$^{2+}$ (14%), SO$_4^{2-}$ (12%) and CO$_3^{2-}$ (9%). The result implies significant guidance for exploring the characteristics of mine water.

Twenty-three samples are also used for model prediction. The result is shown in Fig. 14. The blue curve represents the true value of the water source, and the red curve represents the predicting value. There are two error predictions in the twenty-three water samples. It also means that the accuracy of the prediction is 87% by the Random Forests model.
Conclusions and outlooks

Random forests have developed well over the past years, and are widely accepted as one machine learning approach for a wide variety of tasks. In this study, using mine water data, the random forests model is implemented to develop data-driven predictive models for the source of mine water. Based on the study outcomes, the concluding remarks are listed below:

A hydrochemical dataset was constructed by water sampling from the Pingdingshan coal field, which is divided into five sub-sets for model training and testing. The Random Forests model was trained by 5-folds CV. Compared to SVM and ANN model, the random forests model shows good performances in predicting the source of mine water. 4-folds is the best practice for model training. With the 4-folds CV, a series of

Figure 12. Accuracy and RMSE plot of RF, ANN model and SVM.

Figure 13. Means (over 10 permutations) of permutation-based variable-importance measures for the explanatory variables included in the random forest model.
The hyper-parameter have been tested for the random forests model. For the prediction, the accuracy is 87% by the Random Forests model.

The relative feature importance of source discrimination of mine water can be automatically calculated by the studied random forest model. The VIM indicates that Ca^{2+} of mine water plays the most important role in source discrimination of mine water.

It is also recommended that the random forests model is included as dataset attributes in the predictive models for estimating mine water source. The feature ranking strategy with the machine learning technique might be proper to predict other geological properties for saving geophysical exploration costs. It appears that the study strategies and feature ranking approaches can also be useful to geologists.

Data availability
The data that support the findings of this study is available from the Institute of Water Science but restrictions apply to the availability of this data, which was used under license for the current study, and so is not publicly

Number	Parameter	Value
1	Type of model	Sequential model
2	The number of neurons in the input layer	6
3	The number of hidden layer and neurons	2.5
4	The number of neurons in the output layer	5
5	Activation function of hidden layer	ReLU
7	Activation function of output layer	Softmax
8	Epoch	100
9	Learning rate	0.01
10	Optimizer function	Adam
11	Batch_size	10
12	Dropout rate	0.5
13	Error limitation	1*10^{-4}
14	Momentum coefficient	0.8

Table 1. The hyperparameters of the intelligent evaluation of the ANN model.

Number	Parameter	Value
1	Kernel function	Radial basis function (RBF)
2	Regularization parameter	50
3	Gamma	1/6
4	Cache_size	200
5	Class_weight	1
7	Tolerance	0.001

Table 2. The hyperparameters of the intelligent evaluation of the SVM model.

Figure 14. Prediction performance of random forests model.
available. Data is however available from the authors upon reasonable request and with permission of the Institute of Water Science.

Received: 20 March 2022; Accepted: 9 November 2022
Published online: 15 November 2022

References
1. Richards, B. A. et al. A deep learning framework for neuroscience. Nat. Neurosci. 22, 1761–1770 (2019).
2. Jiang, C., An, Y., Zheng, L. & Huang, W. Water Source discrimination in a multi-aquifer mine using a comprehensive stepwise discriminant method. Mine Water Environ. 40, 442–455 (2021).
3. Rahman, R., Dhruva, S. R., Ghosh, S. & Pal, R. Functional random forest with applications in dose-response predictions. Sci. Rep. 9, 1628 (2019).
4. Gu, H. Y. et al. Assessment of water sources and mixing of groundwater in a coastal mine: The Sanshandao gold mine China. Mine Water Environ. 37(2), 351–365 (2018).
5. Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. International joint conference for artificial intelligence. 14(2), 1137–1145 (1995).
6. Grob, L., Zenerl, L., Ott, E., et al. Filter-less separation technique for micronized anthropogenic polymers from artificial seawater. Environ. Sci. Wat. Res. (2021).
7. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
8. Ma, D. et al. Effect of mining on shear sidewall groundwater inrush hazard caused by seepage instability of the penetrated karst collapse pillar. Nat. Hazards 82(1), 73–93 (2016).
9. Zuo, R. G., Xiong, Y. H., Wang, J. & Emmanuel, J. M. C. Deep learning and its application in geochemical mapping. Earth-Sci. Rev. 192, 1–14 (2019).
10. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).
11. Tompson, J., Goroshin, R. R., Jain, A., LeCun, Y. Y. & Bregler, C. C. Efficient object localization using convolutional networks. In Proc. Conference on Computer Vision and Pattern Recognition, 1411-4280 (2014).
12. Zhao, J. Z. et al. Multivariate statistical analysis of water chemistry in evaluating groundwater geochemical evolution and aquifer connectivity near a large coal mine, Anhui China. Environ Earth Sci. 75(9), 1–20 (2019).
13. Qiang, Wu, et al. Source discrimination of mine water inrush using multiple methods: A case study from the Beiyangzhuan Mine Northern China. Bull. Eng. Geol. Environ. 78, 469–482 (2019).
14. Xiong, H. Y. et al. The human splicing code reveals new insights into the genetic determinants of disease. Science 347, 6218 (2015).
15. Yang, Y. Y. et al. Mining-induced geo-hazards with environmental protection measures in Yunnan, China: an overview. Bull. Eng. Geol. Environ. 74(1), 141–150 (2016).
16. Yin, S. X., Zhang, J. C. & Liu, D. M. A study of mine water inrushes by measurements of in situ stress and rock failures. Nat. Hazards 79(3), 1961–1979 (2016).
17. Zhang, W. G., Wu, C. Z., Zhong, H. Y., Li, Y. Q. & Wang, L. Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geosci. Front. 12, 469–477 (2021).
18. Zhang, W. et al. State-of-the-art review of soft computing applications in underground excavations. Geosci. Front. 11(4), 1095–1106 (2020).
19. Zhou, Z. Q., Li, S. C. & Li, L. P. An optimal classification method for risk assessment of water inrush in karst tunnels based on gray system theory. Geomech. Eng. 8(5), 631–637 (2015).
20. Zendehboudi, S., Rezaei, N. & Lohi, A. Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review. Appl. Energy 228, 2539–2566 (2018).
21. Redwan, M. & Abdel Moneim, A. A. Factors controlling groundwater hydrogeochemistry in the area west of Tahta, Sohag, upper Egypt. J. Afr. Earth Sci. 118, 328–338 (2015).
22. Chemseddine, F., Dalila, B. & Fethi, B. Characterization of the main karst aquifers of the Tezbent plateau, Tebessa region, northeast of Algeria, based on hydrogeochemical and isotopic data. Environ. Earth Sci. 74(1), 1–10 (2015).
23. Reichstein, M. et al. Prabhat, deep learning and process understanding for datadriven Earth system science. Nature 566(7743), 195–204 (2019).

Acknowledgements
The authors acknowledge funding from the National Natural Science Foundation of China [41972254], the Natural Science Foundation of Henan Province [202300410179], and the China Postdoctoral Science Foundation [2019M662494]. Supported by the Key Scientific Research Projects of Higher Education Institutions of Henan Province [19A170005] and the Fundamental Research Funds for the Universities of Henan Province [NSRF200337, NSRF200103].

Author contributions
Z.Y. and H.L. designed the model, and collected the mine water samples. X.W. performed model training and data analysis. Z.Y. and Z.X. wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to X.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
