Complete genome sequence of CG-0018a-01 establishes HIV-1 subtype L

Julie Yamaguchi, BS¹, Carole McArthur, MD², Ana Vallari, MS¹, Larry Streshley, PhD³, Gavin A. Cloherty, PhD¹, Michael G. Berg, PhD¹, Mary A. Rodgers, PhD¹

¹Infectious Disease Research, Abbott Diagnostics, Abbott Park, Illinois, USA
²School of Dentistry, University of Missouri — Kansas City, Kansas City, Missouri, USA
³Presbyterian Church (USA), Kinshasa, Democratic Republic of the Congo

Corresponding author: Mary A Rodgers, 100 Abbott Park Rd, Abbott Park, IL 60064 Phone: 224-668-8936 Fax: 224-668-3271 e-mail: mary.rogers@abbott.com

Conflicts of Interest and Sources of Funding: JY, AV, GAC, MGB, and MAR are employees and shareholders of Abbott Laboratories. The study was funded by Abbott Laboratories.

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
Abstract

Background: The full spectrum of HIV-1 diversity can be found in central Africa, including two divergent HIV-1 strains collected in 1983 and 1990 in Democratic Republic of Congo (DRC) that were preliminarily classified as group M subtype L. However, a third epidemiologically distinct subtype L genome must be identified to designate L as a true subtype.

Methods: Specimen CG-0018a-01 was collected in 2001 in DRC as part of an HIV prevention of mother to child transmission (PMTCT) study. Prior sub-genomic HIV-1 sequences from this specimen branched closely with proposed subtype L references. Metagenomic (mNGS) and HIV-specific target enriched (HIV-xGen) libraries were combined for next generation sequencing (NGS) to extend genome coverage. mNGS reads were analyzed for the presence of other co-infections with the SURPI bioinformatics pipeline.

Results: A complete HIV-1 genome was generated with an average coverage depth of 47,783x. After bioinformatic analysis also identified Hepatitis B virus (HBV) reads, a complete HBV genotype A genome was assembled with an average coverage depth of 73,830x. The CG-0018a-01 HIV-1 genome branched basal to the two previous putative subtype L strains with strong bootstrap support of 100. With no evidence of recombination present, the strain was classified as subtype L.
Conclusions: The CG-0018a-01 HIV-1 genome establishes subtype L and confirms ongoing transmission in DRC as recently as 2001. Since CG-0018a-01 is more closely related to an ancestral strain than to isolates from 1983 or 1990, additional strains are likely circulating in DRC and possibly elsewhere.

KEY WORDS: full-length genome, HIV-1 surveillance, subtype L, next-generation sequencing, xGen target enrichment, HIV diversity, phylogenetic analysis

INTRODUCTION

The origins of the human immunodeficiency virus (HIV) pandemic have been traced to the Democratic Republic of Congo (DRC), where estimates place the emergence of HIV in the 1920s. Consistent with an early expansion of HIV in this region, strains from DRC exhibit broad genetic diversity and include all of the recognized subtypes, many circulating recombinant forms (CRFs), and an abundance of unique recombinant forms (URFs) and unclassifiable sequences. Current HIV nomenclature guidelines specify that complete genome sequences from at least three non-transmission linked cases are required to establish a new subtype or CRF classification for HIV. Two unclassifiable complete genome sequences, 83CD003 (AF286236) and 90CD121E12 (AF457101), form a distinct branch from other subtypes and CRFs that is nearly equidistant from neighboring subtypes H and J, which led to a proposal that these sequences are members of a new subtype, L. The proposal was further supported by 13.2-14.5% nucleotide divergence of each genome from all other Group M subtypes. These strains were collected in 1983 and 1990 in DRC and have not been identified elsewhere. Since subtype L is not an official classification, these isolates are not typically included in reference sequence
alignments used to classify HIV sequences. Therefore, it remains possible that other subtype L strains might be circulating, yet unclassified.

Specimen CG-0018a-01 was collected in 2001 at the Good Shepard Hospital, located 12 kilometers from Kananga, Kasai-Occidental Province in the DRC, and was previously classified as a putative subtype L based on the sequences of sub-genomic PCR fragments amplified from the gag, polymerase (pol) integrase and envelope immunodominant (env IDR) regions. Prior efforts to obtain a full genome at that time were hampered by low viral load (<4 log_{10} copies/ml) and limited sample volume, which have now been overcome. Here, we describe the assembly and classification of the complete CG-0018a-01 genomic sequence obtained by application of the HIV-xGen method of target enrichment.

METHODS

Specimen. Plasma specimen CG-0018a-01 was collected as previously described and approved by the University of Missouri – Kansas City Research Board with informed consent. The sample was identified as HIV reactive with the ARCHITECT HIV Combo Ag/Ab test (Abbott Diagnostics, Wiesbaden, Germany) with a signal to cutoff (S/CO) of 118.9. A viral load of 3.89 log_{10} copies/ml was determined by the HIV RealTime test (Abbott Molecular Diagnostics, Des Plaines, IL, USA).

Metagenomic library preparation and target enrichment. The previously described methods for nucleic acids extraction, library preparation and HIV-xGen target-enrichment were followed with modifications to accommodate enrichment of a single library. One-half (v/v) of the metagenomic next generation sequencing (mNGS) Nextera library (~250μg) was subjected to HIV-xGen hybridization. Hybridized targets were bound to streptavidin beads, washed to
remove unbound DNA, and then amplified by 20 cycles of PCR. Post-capture DNA fragments were purified off the streptavidin beads and amplified by 37 cycles of PCR until a library was visible on the 2200 TapeStation (Agilent, Santa Clara, CA). PCR amplification after removing the library fragments from the streptavidin beads is essential to generating sufficient DNA for NGS. Both the mNGS and HIV-xGen target-enriched libraries were loaded onto the same MiSeq run.

Genome assembly and phylogenetic analysis. The NGS raw data processing and sequence analysis workflow to build a complete viral genome has been described previously\(^8,10\). After the two putative subtype L references and the CG-0018a-01 HIV genome were merged into a subset of the 2016 Los Alamos HIV Database full genome alignment (www.hiv.lanl.gov) containing HIV-1 subtypes A-K and at least one each of CRFs 1-88, Neighbor-joining phylogenetic and recombinant analyses were completed as previously described\(^10\). A simplified Maximum Likelihood tree was prepared for Figure 2A after removal of uninformative CRF references from the alignment using MEGA v6.06 and the GTR+G+I nucleotide substitution model with 500 bootstrap replicates\(^12\). The trees were rooted to outgroup strain SIVcpz (X52154). Hepatitis B virus (HBV) phylogenetic analysis was completed with reference strains A-I as previously described\(^13\) and HBV escape and resistance mutations were evaluated using Geno2Pheno hbv (2.0)\(^14\). Raw NGS data also was uploaded to the SURPI (“sequence-based ultrarapid pathogen identification”) pipeline\(^15\) for analysis and identification of any other human pathogens that might be present in the sample. The HIV and HBV genomes have been deposited in Genbank under accession numbers MN271384 and MN544634, respectively.
RESULTS

To obtain a complete genome from sample CG-0018a-01, a target enrichment (HIV-xGen) method was applied to a cDNA library (mNGS) followed by sequencing of both metagenomic and HIV-xGen target-enriched libraries with a single barcode. Iterative refinement of the consensus sequence identified 4,363,031 of 11,046,542 total reads (39.5%) which mapped to the final 9681 bp complete genome sequence of CG-0018a-01 at an average coverage depth of 47,783x (Figure 1).

A basic local alignment search tool (BLASTn) query of the CG-0018a-01 sequence to the NCBI nt database retrieved 90CD121E12, a putative subtype L sequence, as the top hit (92% identity, e-value 0.0). Phylogenetic analysis indicates CG-0018a-01 branches with L-83CD003 and L-90CD121E12 with a bootstrap value of 100 (Figure 2A). Consistent with our previous evaluation of sub-genomic sequences, full-length CG-0018a-01 branched basal to L-83CD003 and L-90CD121E12, suggesting it may be ancestral to these strains or that it represents a recombinant sequence. Simplot analysis shows percent identity remains highest to the putative subtype L sequences across the entire genome, except in the well-conserved pol region where percent identity is 90-95% among all group M subtypes (Figure 2B). Bootscanning confirmed the absence of a recombination event (Figure 2B), and an individual tree of the pol region (positions 3500-4600 in the gap-stripped alignment) demonstrates that CG-0018a-01 still branches with the putative subtype L isolates with a bootstrap of 97 (Figure 2C). Therefore, we classify the sequence of CG-0018a-01 as the third non-transmission linked genome of HIV-1 Group M subtype L.

To identify any additional viruses present in the CG-0018a-01 specimen, all NGS reads were processed by the SURPI bioinformatics tool. Unexpectedly, Hepatitis B virus (HBV) reads were also present, comprising 23.4% (N=2,588,714) of the NGS reads and indicating that patient
CG-0018a-01 was co-infected with HIV and HBV. A complete HBV genotype A sequence was assembled with an average coverage depth of 73,830x. There are no HBV probes in the HIV-xGen probe set, and only 96 reads were mapped from our positive control library spiked with 4 log_{10} HBV copies/ml, suggesting the HBV viral load in CG-0018a-01 is high (>5 log_{10}), although quantitation could not be performed due to limited specimen volume. The HBV surface antigen (HBsAg) “a” determinant region did not encode any known escape mutations, and resistance mutations were absent from the reverse transcriptase region of the pol gene.

DISCUSSION

The complete genome sequence of CG-0018a-01 from the Democratic Republic of Congo has been assembled from NGS of metagenomic and HIV-xGen target-enriched libraries. The HIV-xGen method has been described previously for target enrichment of a pool of barcoded libraries, but the work described here also shows the method can be successful for a single library if additional post-capture amplification is done. By loading both the mNGS and the HIV-xGen target enriched libraries on one MiSeq run, we were able to obtain complete genome coverage despite divergent viral sequences which may have posed a challenge to probe capture. The mNGS approach also enabled identification of an HBV co-infection and the assembly of a complete HBV genome with comparable deep read coverage.

We conclude that the epidemiologically unlinked isolates CG-0018a-01, 83CD003, and 90CD121E12 may now be classified as HIV-1 group M, subtype L. This is the first new subtype classification identified since the nomenclature guidelines were established in 2000. Despite being the most recently sequenced subtype L strain, CG-0018a-01 branched basal to the two older strains from 1990 and 1983 (Figure 2A), consistent with CG-0018a-01 being more closely...
related to the ancestral subtype L strain than the other two isolates. Therefore, the CG-0018a-01 sequence will be important for determining the origins and age of subtype L. Furthermore, our identification of CG-0018a-01 decades after the first subtype L strain was collected also suggests that ongoing transmission of subtype L is likely, albeit poorly sampled. Although CG-0018a-01 was one of 172 specimens sequenced in this study\(^8\), we expect the prevalence of subtype L is much lower than was found in this small cohort. While subtype L is currently restricted to the DRC, it remains possible that future sequence analyses that include this clade as a reference may identify more subtype L infections in DRC or elsewhere. Continued molecular surveillance will be essential to determining the true prevalence of subtype L and other rare or emerging strains of HIV.

References

1. Worobey M, Gemmel M, Teuwen DE, et al. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. *Nature*. 2008;455(7213):661-664.

2. Faria NR, Rambaut A, Suchard MA, et al. HIV epidemiology. The early spread and epidemic ignition of HIV-1 in human populations. *Science*. 2014;346(6205):56-61.

3. Gao F, Trask SA, Hui H, et al. Molecular characterization of a highly divergent HIV type 1 isolate obtained early in the AIDS epidemic from the Democratic Republic of Congo. *AIDS research and human retroviruses*. 2001;17(12):1217-1222.

4. Mokili JL, Wade CM, Burns SM, et al. Genetic heterogeneity of HIV type 1 subtypes in Kimpese, rural Democratic Republic of Congo. *AIDS research and human retroviruses*. 1999;15(7):655-664.
5. Vidal N, Peeters M, Mulanga-Kabeya C, et al. Unprecedented degree of human immunodeficiency virus type 1 (HIV-1) group M genetic diversity in the Democratic Republic of Congo suggests that the HIV-1 pandemic originated in Central Africa. *Journal of virology*. 2000;74(22):10498-10507.

6. Tongo M, Dorfman JR, Martin DP. High Degree of HIV-1 Group M (HIV-1M) Genetic Diversity within Circulating Recombinant Forms: Insight into the Early Events of HIV-1M Evolution. *Journal of virology*. 2015;90(5):2221-2229.

7. Mokili JL, Rogers M, Carr JK, et al. Identification of a novel clade of human immunodeficiency virus type 1 in Democratic Republic of Congo. *AIDS research and human retroviruses*. 2002;18(11):817-823.

8. Rodgers MA, Wilkinson E, Vallari A, et al. Sensitive Next-Generation Sequencing Method Reveals Deep Genetic Diversity of HIV-1 in the Democratic Republic of the Congo. *Journal of virology*. 2017;91(6).

9. Robertson DL, Anderson JP, Bradac JA, et al. HIV-1 nomenclature proposal. *Science*. 2000;288(5463):55-56.

10. Berg MG, Yamaguchi J, Alessandri-Gradt E, Tell RW, Plantier JC, Brennan CA. A Pan-Hiv Strategy for Complete Genome Sequencing. *Journal of clinical microbiology*. 2015.

11. Yamaguchi J, Olivo A, Laeyendecker O, et al. Universal Target Capture of HIV Sequences From NGS Libraries. *Frontiers in microbiology*. 2018;9:2150.

12. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. *Mol Biol Evol*. 2013;30(12):2725-2729.

13. Rodgers MA, Vallari AS, Harris B, et al. Identification of rare HIV-1 Group N, HBV AE, and HTLV-3 strains in rural South Cameroon. *Virology*. 2017;504:141-151.
14. Informatik MPI. Geno2pheno (hbv) v2.0. http://hbv.geno2pheno.org. Available at: http://hbv.geno2pheno.org. Accessed June, 2016.

15. Naccache SN, Federman S, Veeraraghavan N, et al. A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples. *Genome research.* 2014;24(7):1180-1192.

Figure 1. Coverage plot of NGS data for the CG-0018a-01 HIV-xGen library illustrates the average coverage depth of 47,783 across the length of the genome.

Figure 2. Sequence analysis of the CG-0018a-01 complete genome. A. HIV-1 group M maximum likelihood phylogenetic tree (7578 bp) shows the sequence of CG-0018a-01 groups with the two putative subtype L sequences with a bootstrap of 100. B. SimPlot (Window: 500 bp, Step: 50 bp) and BootScan (Window: 500bp, Step 100 bp) show % identity is highest to the putative subtype L reference sequences except in the well-conserved pol region (approximate positions 3500-4600). C. Results of Neighbor-Joining phylogenetic analysis of positions 3500-4600 show that the sequence of CG-0018a-01 continues to group with the putative subtype L sequences with a bootstrap of 97.
Figure 1. Coverage plot of NGS data for the CG-0018a-01 HIV-xGen library illustrates the average coverage depth of 47,783 across the length of the genome.
Figure 2. Sequence analysis of the CG-0018a-01 complete genome. A. HIV-1 group M maximum likelihood phylogenetic tree (7578 bp) shows the sequence of CG-0018a-01 groups with the two putative subtype L sequences with a bootstrap of 100.

B. SimPlot (Window: 500 bp, Step: 50 bp) and BootScan (Window: 500 bp, Step: 100 bp) show % identity is highest to the putative subtype L reference sequences except in the well-conserved pol region (approximate positions 3500-4600). C. Results of Neighbor-Joining phylogenetic analysis of positions 3500-4600 show that the sequence of CG-0018a-01 continues to group with the putative subtype L sequences with a bootstrap of 97.