NOTE ON WEIGHTED BOHR’S INEQUALITY

RAMAKRISHNAN VIJAYAKUMAR

ABSTRACT. In this paper, first we give a new generalization of the Bohr’s inequality for the class of bounded analytic functions \(B' \) and for the class of sense-preserving \(K \)-quasiconformal harmonic mappings of the form \(f = h + g \), where \(h \in B' \). Finally we give a new generalization of the Bohr’s inequality for the class of analytic functions subordinate to univalent functions and for the class of sense-preserving \(K \)-quasiconformal harmonic mappings of the form \(f = h + g \), where \(h \) is subordinated to some analytic function.

1. Introduction and Preliminaries

Throughout we let \(B \) denote the class of all analytic functions \(\omega \) in the open unit disk \(D = \{ z \in \mathbb{C} : |z| < 1 \} \) such that \(|\omega(z)| \leq 1 \) for all \(z \in D \). Bohr’s inequality says that if \(f \in B \) and \(f(z) = \sum_{n=0}^{\infty} a_n z^n \), then we have

\[
\sum_{n=0}^{\infty} |a_n| r^n \leq 1
\]

for all \(z \in D \) with \(|z| = r \leq \frac{1}{3} \). This inequality was discovered by Bohr in 1914 [8]. Bohr actually obtained the inequality for \(|z| \leq \frac{1}{6} \). Later M. Riesz, I. Schur and F. W. Wiener independently, established the inequality for \(|z| \leq \frac{1}{3} \) and showed that \(\frac{1}{3} \) is sharp. The number \(\frac{1}{3} \) is called Bohr radius for the family \(B \). A space of analytic or harmonic functions \(f \) in \(D \) is said to have Bohr’s phenomenon if an inequality of this type holds in some disk of radius \(\rho > 0 \) and for all such functions in unit ball of the space. In [6], it is shown that not every space of functions has Bohr’s phenomenon. On the other hand, Abu-Muhanna [1] proved the existence of Bohr phenomenon in the case of subordination and bounded harmonic classes. Many mathematicians have contributed towards the understanding of this problem in several settings [9][10]. Extensions of Bohr’s inequality to more general domains or higher dimensional spaces were investigated by many. See for instance, [7][11][15]. We refer to the recent survey on this topic by Abu-Muhanna et al. [2] and Garcia et al. [13], for the importance and the several other results. For certain recent results, see [5][17][19].

More generally, a harmonic version of Bohr’s inequality was discussed by Kayumov et al. [20]. For certain other results on harmonic Bohr’s inequality, we refer to [13][20]. Recently, a new generalization of Bohr’s ideas was introduced and investigated by Kayumov et
Let \(F \) denote the set of all sequences \(\{ \varphi_n(r) \}_{n=0}^{\infty} \) of nonnegative continuous functions in \([0, 1]\) such that the series \(\sum_{n=0}^{\infty} \varphi_n(r) \) converges locally uniformly with respect to \(r \in [0, 1] \). Let \(F_{\text{dec}} \subset F \) consist of decreasing sequences of functions from \(F \), and for convenience, we let \(\Phi_1(r) = \sum_{n=1}^{\infty} \varphi_n(r) \) so that \(\Phi_1'(r) = \sum_{n=1}^{\infty} \varphi_n'(r) \) whenever each \(\varphi_n \) \((n \geq 1)\) is differentiable on \([0, 1]\).

Theorem A. ([16]) Let \(f \in B, f(z) = \sum_{k=0}^{\infty} a_k z^k \), and \(p \in (0, 2) \). If \(\varphi_0(r) > (2/p) \Phi_1(r) \), then the following sharp inequality holds:

\[
B_f(\varphi, p, r) := |a_0|^p \varphi_0(r) + \sum_{k=1}^{\infty} |a_k| \varphi_k(r) \leq \varphi_0(r) \text{ for all } r \leq R,
\]

where \(R \) is the minimal positive root of the equation \(\varphi_0(x) = (2/p) \Phi_1(x) \). In the case when \(\varphi_0(x) < (2/p) \Phi_1(x) \) in some interval \((R, R+\varepsilon)\), the number \(R \) cannot be improved. If the functions \(\varphi_k(x) \) \((k \geq 0)\) are smooth functions, then the last condition is equivalent to the inequality \(\varphi_0(R) < (2/p) \Phi_1'(R) \).

Further investigation and refinements of several earlier known results on Bohr-type inequality, we refer to [22].

For two analytic functions \(f \) and \(g \) in \(\mathbb{D} \), we say that \(g \) is subordinate to \(f \) (denoted simply by \(g \sim f \)) if there exists a function \(\omega \), analytic in \(\mathbb{D} \) with \(\omega(0) = 0 \) and \(|\omega(z)| < 1 \), satisfying \(g = f \circ \omega \). We denote the class of all analytic functions \(g \) in \(\mathbb{D} \) that are subordinate to a fixed function \(f \) by \(S(f) \), and \(f(\mathbb{D}) = \Omega \). We say that \(S(f) \) has Bohr’s phenomenon if for any \(g(z) = \sum_{n=0}^{\infty} b_n z^n \in S(f) \) and \(f(z) = \sum_{n=0}^{\infty} a_n z^n \), there is a \(\rho_0 \), \(0 < \rho_0 \leq 1 \), so that

\[
\sum_{n=1}^{\infty} |b_n z^n| \leq \text{dist}(f(0), \partial \Omega),
\]

for \(|z| < \rho_0 \). We remark that the class \(S(f) \) has Bohr’s phenomenon when \(f \) is univalent (see [11, Theorem 1]). For each \(f(z) = \sum_{k=0}^{\infty} a_k z^k \) belonging to \(B \), it is well-known that \(|a_n| \leq 1 - |a_0|^2 \) for all \(n \geq 1 \). Besides the fact that \(1 - |a_0| \leq 1 - |a_0|^2 \) for \(|a_0| \leq 1 \), as demonstrated by Aizenberg and Vïdras (see [3, p. 736]), there exists a nice subclass of functions \(f \in B \) for which \(|a_n| \leq 1 - |a_0| \) all \(n \geq 1 \). We now recall this result.

Theorem B. ([3]) Let \(f \in B \), such that the Taylor coefficients \(a_{mn} = 0 \) for a given \(m > 1 \) and all \(n \geq 1 \). Then \(|a_n| \leq 1 - |a_0| \) for all \(n \geq 1 \).

Thus, it is natural to consider

\[
B' = \left\{ f(z) = \sum_{k=0}^{\infty} a_k z^k \in B : |a_n| \leq 1 - |a_0| \text{ for all } n \geq 1 \right\}.
\]

In [4, Theorem 1], it was shown that the Bohr radius for functions in \(B' \) is \(\frac{1}{2} \), and the constant \(1/2 \) cannot be improved.

In this article, we first investigate the Bohr radius for the family \(B' \) in a general setting which is indeed an analog of Theorem A for the family \(B' \) (See Theorem [14]). Our second
result (Theorem 3) extends Theorem A to the case of sense-preserving K-quasiconformal harmonic mappings of the form $f = h + \overline{g}$, where $h \in \mathcal{B}'$. In Section 4, we establish that the family $\mathcal{S}(f)$ has Bohr’s phenomenon in our new setting (see Theorems 4 and 5), especially when f is either univalent or convex (univalent) in D. Finally, we extend this result (Theorem 5) for sense-preserving K-quasiconformal harmonic mappings.

2. Bohr radius for a special family of analytic functions

The following theorem displays the sharp Bohr radius for \mathcal{B}'.

Theorem 1. Let $f \in \mathcal{B}'$, $f(z) = \sum_{n=0}^{\infty} a_n z^n$, and $p \in (0, 1]$. If $\{\varphi_n(r)\}_{n=0}^{\infty} \in \mathcal{F}$ such that $\Phi_1(r) = \sum_{n=1}^{\infty} \varphi_n(r)$, and satisfies the inequality

\[
\varphi_0(r) \geq \frac{1}{p} \Phi_1(r).
\]

Then the following sharp inequality holds:

\[
B_f(\varphi, p, r) := |a_0|^p \varphi_0(r) + \sum_{n=1}^{\infty} |a_n| \varphi_n(r) \leq \varphi_0(r) \text{ for all } r \leq R,
\]

where R is the minimal positive root of the equation

\[
\varphi_0(x) = \frac{1}{p} \Phi_1(x).
\]

In the case when $\varphi_0(x) < \frac{1}{p} \Phi_1(x)$ in some interval $(R, R + \epsilon)$, the number R cannot be improved.

Proof. Let $f \in \mathcal{B}'$. Then $|a_n| \leq 1 - |a_0|$ for all $n \geq 1$ and thus, we get that

\[
|a_0|^p \varphi_0(r) + \sum_{n=1}^{\infty} |a_n| \varphi_n(r) \leq |a_0|^p \varphi_0(r) + (1 - |a_0|) \Phi_1(r)
\]

\[
= \varphi_0(r) + (1 - |a_0|) \left[\Phi_1(r) - \left(\frac{1 - |a_0|^p}{1 - |a_0|} \right) \varphi_0(r) \right]
\]

\[
\leq \varphi_0(r) + (1 - |a_0|) \left[\Phi_1(r) - p \varphi_0(r) \right]
\]

\[
\leq \varphi_0(r), \text{ by Eqn. (1)},
\]

for all $r \leq R$, by the definition of R. In the third inequality above, we have used the fact that the function

\[
B(x) = \frac{1 - x^p}{1 - x}, \quad x \in [0, 1),
\]

is decreasing on $[0, 1)$ for $0 < p \leq 1$ so that

\[
B(x) \geq \lim_{x \to 1^{-}} \frac{1 - x^p}{1 - x} = p.
\]

This proves the desired inequality (2). Now let us prove that R is an optimal number. For $a \in [0, 1)$, we consider the function

\[
f(z) = \frac{a - (1 - a + a^2) z}{1 - az} = a - (1 - a) \sum_{n=1}^{\infty} a^{n-1} z^n, \quad z \in \mathbb{D}.
\]
A simple exercise shows that \(f \in \mathcal{B}' \). For this function, we have
\[
|a_0|^p \varphi_0(r) + \sum_{n=1}^{\infty} |a_n| \varphi_n(r) = a^p \varphi_0(r) + (1 - a) \sum_{n=1}^{\infty} a^{n-1} \varphi_n(r)
= \varphi_0(r) + p(1 - a) \left[\frac{1}{p} \sum_{n=1}^{\infty} a^{n-1} \varphi_n(r) - \varphi_0(r) \right]
+ (1 - a) \left[(p - \frac{1 - a^p}{1 - a}) \varphi_0(r) \right].
\]
Now it is easy to see that number is \(> \varphi_0(r) \) when \(a \) is close to 1. The proof of the theorem is complete.

Remark 1. Note that the function \(B(x) \) in the above proof is increasing on \([0, 1]\) for \(p \geq 1 \) so that \(B(x) \geq B(0) = 1 \). This means that the inequality (2) holds for \(r \leq \frac{1}{2} \) in the case when \(\varphi_n(r) = r^n (n \geq 1) \).

Corollary 1. Suppose that \(f \in \mathcal{B}' \), \(f(z) = \sum_{n=0}^{\infty} a_n z^n \), and \(p \in (0, 1] \). Then
\[
|a_0|^p + \sum_{n=1}^{\infty} |a_n| r^n \leq 1 \text{ for } r \leq R(p) = \frac{p}{1 + p},
\]
and the constant \(R(p) \) cannot be improved.

The case \(p = 1 \) of Corollary \(\Box \) is the Bohr inequality for special family of bounded analytic functions \(\mathcal{B}' \), obtained in \([3, \text{ Theorem 1}]\).

3. **Bohr radius for harmonic mappings as an extension of Theorem \(\Box \)**

We recall that a sense-preserving harmonic mappings \(f \) of the form \(f = h + \overline{g} \), is said to be \(K \)-quasiconformal if \(|g'(z)| \leq k |h'(z)| \) in the unit disk, for \(k = \frac{K - 1}{K + 1} \in [0, 1] \). See \([20] \) for discussion on Bohr radius for quasiconformal mappings.

Lemma C. \([23] \) Let \(\{\psi_n(r)\}_{n=1}^{\infty} \) be a decreasing sequence of nonnegative functions in \([0, r_\psi]\), and \(g, h \) be analytic functions in the unit disk \(\mathbb{D} \) such that \(|g'(z)| \leq k |h'(z)| \) in \(\mathbb{D} \) and for some \(k \in [0, 1] \), where \(h(z) = \sum_{n=0}^{\infty} a_n z^n \) and \(g(z) = \sum_{n=0}^{\infty} b_n z^n \). Then
\[
\sum_{n=1}^{\infty} |b_n|^2 \psi_n(r) \leq k^2 \sum_{n=1}^{\infty} |a_n|^2 \psi_n(r) \quad \text{for } r \in [0, r_\psi].
\]

Next, we find Bohr radius for the family of sense-preserving \(K \)-quasiconformal harmonic mappings of the form \(f = h + \overline{g} \), where \(h \in \mathcal{B}' \) and show the sharpness of it.

Theorem 2. Suppose that \(f(z) = h(z) + \overline{g(z)} = \sum_{n=0}^{\infty} a_n z^n + \sum_{n=1}^{\infty} b_n z^n \) is harmonic mapping of the disk \(\mathbb{D} \) such that \(|g'(z)| \leq k |h'(z)| \) in \(\mathbb{D} \) and for some \(k \in [0, 1] \), where \(h \in \mathcal{B}' \). Assume that \(\varphi_0(r) = 1 \) and \(\{\varphi_n(r)\}_{n=0}^{\infty} \) belongs to \(\mathcal{F}_{\text{dec}} \) with \(\Phi_1(r) = \sum_{n=1}^{\infty} \varphi_n(r) \), and \(p \in (0, 1] \). If
\[
p \geq (1 + k) \Phi_1(r),
\]
then the following sharp inequality holds:

\[
|a_0|^p + \sum_{n=1}^{\infty} |a_n| \varphi_n(r) + \sum_{n=1}^{\infty} |b_n| \varphi_n(r) \leq \|h\|_\infty \text{ for all } r \leq R,
\]

where \(R \) is the minimal positive root of the equation

\[
p = (1 + k) \Phi_1(x).
\]

In the case when \(p < (1 + k) \Phi_1(x) \) in some interval \((R, R + \epsilon)\), the number \(R \) cannot be improved.

Proof. For simplicity, we suppose that \(\|h\|_\infty = 1 \). For \(h \in \mathcal{B}' \), gives the inequality \(|a_n| \leq 1 - |a_0| \) for all \(n \geq 1 \). By assumption \(|g'(z)| \leq k|h'(z)| \) in \(\mathbb{D} \), where \(k \in [0, 1] \) and so, by Lemma C it follows that

\[
\sum_{n=1}^{\infty} |b_n|^2 \varphi_n(r) \leq k^2 \sum_{n=1}^{\infty} |a_n|^2 \varphi_n(r) \leq k^2 (1 - |a_0|)^2 \sum_{n=1}^{\infty} \varphi_n(r) = k^2 (1 - |a_0|)^2 \Phi_1(r).
\]

Consequently, it follows from the classical Schwarz inequality that

\[
\sum_{n=1}^{\infty} |b_n| \varphi_n(r) \leq \sqrt{\sum_{n=1}^{\infty} |b_n|^2 \varphi_n(r)} \sqrt{\sum_{n=1}^{\infty} \varphi_n(r)} \leq k(1 - |a_0|) \Phi_1(r)
\]

and thus, as in the proof of Theorem 1 [1] we get that

\[
|a_0|^p + \sum_{n=1}^{\infty} |a_n| \varphi_n(r) + \sum_{n=1}^{\infty} |b_n| \varphi_n(r) \leq |a_0|^p + (1 - |a_0|)(1 + k) \Phi_1(r)
\]

\[
= 1 + (1 - |a_0|) \left((1 + k) \Phi_1(r) - \left(\frac{1 - |a_0|^p}{1 - |a_0|} \right) \right)
\]

\[
\leq 1 + (1 - |a_0|) \left[(1 + k) \Phi_1(r) - p \right]
\]

\[
\leq 1, \text{ by Eqn. 3},
\]

for all \(r \leq R \), by the definition of \(R \). This proves the desired inequality [3]. Now let us prove that \(R \) is an optimal number. We consider the function

\[
h(z) = \frac{a - (1 - a + a^2)z}{1 - az} = a - (1 - a) \sum_{n=1}^{\infty} a^{n-1} z^n, a \in [0, 1), z \in \mathbb{D}
\]

and \(g(z) = \lambda kh(z) \), where \(|\lambda| = 1 \). Then it is a simple exercise to see that

\[
|a_0|^p + \sum_{n=1}^{\infty} |a_n| \varphi_n(r) + \sum_{n=1}^{\infty} |b_n| \varphi_n(r)
\]

\[
= a^p + (1 - a) \sum_{n=1}^{\infty} a^{n-1} \varphi_n(r) + k(1 - a) \sum_{n=1}^{\infty} a^{n-1} \varphi_n(r)
\]

\[
= 1 + p(1 - a) \left[\frac{1}{p} (1 + k) \sum_{n=1}^{\infty} a^{n-1} \varphi_n(r) - 1 \right] + (1 - a) \left(p - \frac{1 - a^p}{1 - a} \right).
\]
Now it is easy to see that number is > 1 when a is close to 1. The proof of the theorem is complete.

Corollary 2. Suppose that \(f(z) = h(z) + g(z) = \sum_{n=0}^{\infty} a_n z^n + \sum_{n=1}^{\infty} b_n z^n \) is a sense-preserving \(K \)-quasiconformal harmonic mapping of the disk \(\mathbb{D} \), i.e., \(|g'(z)| \leq k|h'(z)| \) in \(\mathbb{D} \) for some \(k = \frac{K-1}{K+1} \in [0,1] \), where \(h \in \mathcal{B}' \). Then we have the sharp inequality

\[
|a_0|^p + \sum_{n=1}^{\infty} |a_n|r^n + \sum_{n=1}^{\infty} |b_n|r^n \leq 1 \text{ for } r \leq R_k(p)
\]

where \(p \in (0,1] \), and

\[
R_k(p) = \frac{p}{k+1+p} = \frac{p(K+1)}{(p+2)K+p}
\]

and the constant \(R_k(p) \) cannot be improved.

In particular, the case \(p = 1 \) in (5) yields the recently obtained result [4, Theorem 2].

4. Bohr Phenomenon in Subordination

The following lemma will be used to prove that the family \(\mathcal{S}(f) \) has Bohr’s phenomenon in our new setting (see Theorem 3).

Lemma D. [12, p. 195-196] Let \(f \) be an analytic univalent map from \(\mathbb{D} \) onto a simply connected domain \(\Omega := f(\mathbb{D}) \) and \(g(z) = \sum_{n=0}^{\infty} b_n z^n \prec f(z) \). Then

\[
\frac{1}{4} |f'(0)| \leq \text{dist}(f(0), \partial \Omega) \leq |f'(0)|, \text{ and } |b_n| \leq n |f'(0)| \leq 4n \text{ dist}(f(0), \partial \Omega).
\]

Theorem 3. Suppose that \(g(z) = \sum_{n=0}^{\infty} b_n z^n \in \mathcal{S}(f) \) and \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) is univalent in \(\mathbb{D} \). If \(\{\varphi_n(r)\}_{n=1}^{\infty} \in \mathcal{F} \) satisfies the inequality

\[
1 \geq 4\Psi_1(r),
\]

where \(\Psi_1(r) = \sum_{n=1}^{\infty} n \varphi_n(r) \), then the following sharp inequality holds:

\[
\sum_{n=1}^{\infty} |b_n| \varphi_n(r) \leq \text{dist}(f(0), \partial \Omega) \text{ for all } r \leq R,
\]

where \(R \) is the minimal positive root of the equation \(1 = 4\Psi_1(x) \). In the case when \(1 < 4\Psi_1(x) \) in some interval \((R, R + \epsilon) \), the number \(R \) cannot be improved.

Proof. By assumption \(g \prec f \) and \(f \) is univalent in \(\mathbb{D} \). Then, by Lemma D, we have

\[
|b_n| \leq 4n \text{ dist}(f(0), \partial \Omega).
\]

Thus, we have

\[
\sum_{n=1}^{\infty} |b_n| \varphi_n(r) \leq 4\text{dist}(f(0), \partial \Omega) \sum_{n=1}^{\infty} n \varphi_n(r) = 4\text{dist}(f(0), \partial \Omega) \Psi_1(r)
\]

\[
\leq \text{dist}(f(0), \partial \Omega), \text{ by Eqn.(6)},
\]
Weighted Bohr’s Inequality

for all $r \leq R$, by the definition of R. This proves the desired inequality (7). Now let us prove that R is an optimal number. We consider the function

$$g(z) = f(z) = \frac{z}{(1-z)^2} = \sum_{n=1}^{\infty} nz^n, \quad z \in \mathbb{D}.$$

Then it is easy to show that

$$\text{dist}(f(0), \partial \Omega) = \frac{1}{4} \quad \text{and} \quad \sum_{n=1}^{\infty} |b_n| \varphi_n(r) = \sum_{n=1}^{\infty} n \varphi_n(r).$$

Now it is easy to see that number is $> \frac{1}{4}$ when $r > R$. The proof of the theorem is complete. \qed

Remark 2. It is a simple exercise to see that if $\varphi_n(r) = r^n (n \geq 1)$, then Theorem 3 yields the result of Abu-Muhanna [1, Theorem 1] with $R = 3 - \sqrt{8}$.

The next lemma will be used to prove Theorems 4 and 5.

Lemma E. [12, p. 195-196] Let ψ be an analytic univalent map from \mathbb{D} onto a convex domain $\Omega := \psi(\mathbb{D})$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n \prec \psi(z)$. Then

$$\frac{1}{2} |\psi'(0)| \leq \text{dist}(\psi(0), \partial \Omega) \leq |\psi'(0)|, \quad \text{and} \quad |b_n| \leq |\psi'(0)| \leq 2 \text{ dist}(\psi(0), \partial \Omega).$$

Theorem 4. Suppose that $g(z) = \sum_{n=0}^{\infty} b_n z^n \in \mathcal{S}(f)$ and $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is univalent and convex in \mathbb{D}. If $\{\varphi_n(r)\}_{n=0}^{\infty} \in F$ satisfies the inequality

$$1 \geq 2 \Phi_1(r),$$

where $\Phi_1(r) = \sum_{n=1}^{\infty} \varphi_n(r)$, then the following sharp inequality holds:

$$\sum_{n=1}^{\infty} |b_n| \varphi_n(r) \leq \text{dist}(f(0), \partial \Omega) \quad \text{for all} \quad r \leq R,$$

where R is the minimal positive root of the equation $1 = 2 \Phi_1(x)$. In the case when $1 < 2 \Phi_1(x)$ in some interval $(R, R + \epsilon)$, the number R cannot be improved.

Proof. The proof follows if we use the method of proof of Theorem 3 and use Lemma E in place of by Lemma D. Sharpness follows by considering the following function

$$g(z) = f(z) = \frac{1}{1-z} = \sum_{n=0}^{\infty} z^n \text{ for } z \in \mathbb{D},$$

so that

$$\text{dist}(f(0), \partial \Omega) = \frac{1}{2} \quad \text{and} \quad \sum_{n=1}^{\infty} |b_n| \varphi_n(r) = \sum_{n=1}^{\infty} \varphi_n(r).$$

Now it is easy to see that number is $> \frac{1}{2}$ when $r > R$. The proof of the theorem is complete. \qed
Remark 3. It is a simple exercise to see that if $\varphi_n(r) = r^n \ (n \geq 1)$, then Theorem 4 yields the remark of Abu-Muhanna [1, Remark 1] with $R = 1/3$.

Theorem 5. Suppose that $f(z) = h(z) + g(z) = \sum_{n=0}^{\infty} a_n z^n + \sum_{n=1}^{\infty} b_n z^n$ is harmonic mapping of the disk \mathbb{D} such that $|g'(z)| \leq k|h'(z)|$ in \mathbb{D} and for some $k \in [0, 1]$ and $h \prec \psi$, where ψ is univalent and convex in \mathbb{D}. Assume that $\{\varphi_n(r)\}_{n=0}^{\infty}$ belongs to \mathcal{F}_{dec} and $\Phi_1(r) = \sum_{n=1}^{\infty} \varphi_n(r)$. If

$$1 > 2(1 + k)\Phi_1(r),$$

then the following sharp inequality holds:

$$\sum_{n=1}^{\infty} |a_n| \varphi_n(r) + \sum_{n=1}^{\infty} |b_n| \varphi_n(r) \leq \text{dist}(\psi(0), \partial \psi(\mathbb{D})) \Phi_1(r) \leq \text{dist}(\psi(0), \partial \psi(\mathbb{D})), \text{ by Eqn. (8)},$$

where R is the minimal positive root of the equation $1 = 2(1 + k)\Phi_1(x)$. In the case when $1 < 2(1 + k)\Phi_1(x)$ in some interval $(R, R + \epsilon)$, the number R cannot be improved.

Proof. By assumption $h \prec \psi$ and $\psi(\mathbb{D})$ is a convex domain. Then, by Lemma E, we have $|a_n| \leq 2 \text{dist}(\psi(0), \partial \psi(\mathbb{D}))$.

Consequently,

$$\sum_{n=1}^{\infty} |a_n| \varphi_n(r) \leq 2 \text{dist}(\psi(0), \partial \psi(\mathbb{D})) \Phi_1(r).$$

By assumption $|g'(z)| \leq k|h'(z)|$ in \mathbb{D}, where $k \in [0, 1]$ and so, by Lemma C and the classical Schwarz inequality, it follows that

$$\sum_{n=1}^{\infty} |b_n| \varphi_n(r) \leq k \left(\sum_{n=1}^{\infty} |a_n|^2 \varphi_n(r) \right)^{1/2} \left(\sum_{n=1}^{\infty} \varphi_n(r) \right)^{1/2} \leq 2k \text{dist}(\psi(0), \partial \psi(\mathbb{D})) \Phi_1(r).$$

Thus, we have

$$\sum_{n=1}^{\infty} |a_n| \varphi_n(r) + \sum_{n=1}^{\infty} |b_n| \varphi_n(r) \leq 2(1 + k)\text{dist}(\psi(0), \partial \psi(\mathbb{D})) \Phi_1(r) \leq \text{dist}(\psi(0), \partial \psi(\mathbb{D})), \text{ by Eqn. (8)},$$

for all $r \leq R$, by the definition of R. This proves the desired inequality (9). Now let us prove that R is an optimal number. We consider the function

$$\psi(z) = h(z) = \frac{1}{1 - z} = \sum_{n=0}^{\infty} z^n, \quad z \in \mathbb{D}$$
and \(g'(z) = \lambda kh'(z)\), where \(|\lambda| = 1\). Then it is easy to see that

\[
\text{dist}(\psi(0), \partial \psi(D)) = \frac{1}{2} \quad \text{and} \quad g(z) = k\lambda \sum_{n=1}^{\infty} z^n,
\]

so that

\[
\sum_{n=1}^{\infty} |a_n|\varphi_n(r) + \sum_{n=1}^{\infty} |b_n|\varphi_n(r) = (1 + k) \sum_{n=1}^{\infty} \varphi_n(r).
\]

Now it is easy to see that this number is \(> \frac{1}{2}\) when \(r > R\). The proof of the theorem is complete.

Example 1. Theorem 5 for the case of \(\varphi_n(r) = r^n (n \geq 1)\), gives the following result which was originally obtained at first in [21, Theorem 1]:

\[
\sum_{n=1}^{\infty} |a_n|r^n + \sum_{n=1}^{\infty} |b_n|r^n \leq \text{dist}(\psi(0), \partial \psi(D)) \quad \text{for} \quad r \leq \frac{1}{3 + 2k}.
\]

The constant \(\frac{1}{3+2k}\) is sharp.

Acknowledgment. I would like to thank my supervisor Prof. S. Ponnusamy for his support during the course of this work, fruitful discussions and valuable comments on this manuscript.

References

1. Y. Abu-Muhanna, Bohr phenomenon in subordination and bounded harmonic classes, *Complex Var. Elliptic Equ.* 55 (11)(2010), 1071–1078. https://doi.org/10.1080/17476931003628190
2. Y. Abu-Muhanna, R. M. Ali and S. Ponnusamy, On the Bohr inequality, In “Progress in Approximation Theory and Applicable Complex Analysis” (Edited by N.K. Govil et al.), Springer Optimization and Its Applications 117 (2016), 265–295.
3. L. Aizenberg and A. Vidras, On the Bohr radius for two classes of holomorphic functions, *Sibirsk. Mat. Zh.*, 45(4) (2004), 734–746 (In Russian). (English version: *Sib. Math. J.*, 45(4) (2004), 606–617). https://doi.org/10.1023/B:SIMJ.0000035827.35563.b6.
4. S. A. Alkhaleefah, Bohr phenomenon for special family of analytic functions and harmonic mappings, *Probl. Anal. Issues Anal.* 9(27)(3) (2020), 3–13. DOI: 10.15393/j3.art.2020.7990
5. S.A. Alkhaleefah, I. R. Kayumov and S. Ponnusamy, On the Bohr inequality with a fixed zero coefficient, *Proc. Amer. Math. Soc.* 147(12) (2019), 5263–5274. https://doi.org/10.1090/proc/14634
6. C. Bénéteau, A. Dahlner and D. Khavinson, Remarks on the Bohr phenomenon, *Comput. Methods Funct. Theory* 4(1) (2004), 1–19. https://doi.org/10.1007/BF03321051
7. H. P. Boas and D. Khavinson, Bohr’s power series theorem in several variables, *Proc. Amer. Math. Soc.* 125(10) (1997), 2975–2979. https://doi.org/10.1090/S0002-9939-97-04270-6
8. H. Bohr, A theorem concerning power series, *Proc. London Math. Soc.* 13(2) (1914), 1–5. https://doi.org/10.1112/plms/s2-13.1.1
9. E. Bombieri, Sopra un teorema di H. Bohr e G. Ricci sulle funzioni maggioranti delle serie di potenze, *Boll. Unione Mat. Ital.* 17 (1992), 276–282.
10. E. Bombieri and J. Bourgain, A remark on Bohr’s inequality, *IMRN International Mathematics Research Notices*, 80 (2004), 4307–4330. https://doi.org/10.1155/S1073792804143444
11. P. B. Djakov and M. S. Ramanujan, A remark on Bohr’s theorems and its generalizations, *J. Analysis* 8 (2000), 65–77.
12. P. Duren, Univalent functions, Springer-Verlag, New York, 1983.
13. S. Evdoridis, S. Ponnusamy and A. Rasila, Improved Bohr’s inequality for locally univalent harmonic mappings, *Indag. Math. (N.S.)*, 30 (2019), 201–213. https://doi.org/10.1016/j.indag.2018.09.008

14. S. R. Garcia, J. Mashreghi and W. T. Ross, *Finite Blaschke products and their connections*, Springer, Cham, 2018.

15. H. Hamada, T. Honda, and G. Kohr, Bohr’s theorem for holomorphic mappings with values in homogeneous balls, *Israel J. Math.* 173 (2009), 177–187. https://doi.org/10.1007/s11856-009-0087-9

16. I. R. Kayumov, D. M. Khammatova and S. Ponnusamy, Bohr inequality for the generalized Cesàro averaging operators, Preprint.

17. I. R. Kayumov and S. Ponnusamy, Bohr inequality for odd analytic functions, *Comput. Methods Funct. Theory* 17 (2017), 679–688. https://doi.org/10.1007/s40315-017-0206-2

18. I. R. Kayumov and S. Ponnusamy, Improved version of Bohr’s inequality, *C. R. Math. Acad. Sci. Paris* 356(3) (2018), 272–277. https://doi.org/10.1016/j.crma.2018.01.010

19. I. R. Kayumov and S. Ponnusamy, Bohr’s inequalities for the analytic functions with lacunary series and harmonic functions, *J. Math. Anal. and Appl.*, 465 (2018), 857–871. https://doi.org/10.1016/j.jmaa.2018.05.038

20. I. R. Kayumov, S. Ponnusamy and N. Shakirov, Bohr radius for locally univalent harmonic mappings, *Math. Nachr.* 291 (2018), 1757–1768. https://doi.org/10.1002/mana.201700068

21. Z. H. Liu, and S. Ponnusamy, Bohr radius for subordination and K-quasiconformal harmonic mappings, *Bull. Malays. Math. Sci. Soc.* 42 (2019), 2151–2168. https://doi.org/10.1007/s40840-019-00795-9

22. S. Ponnusamy, R. Vijayakumar and K.-J. Wirths, Modifications of Bohr’s inequality in various settings, Preprint.