On large sieve inequalities involving pth powers of trigonometric polynomials

S. NORVIDAS

Vilnius University Institute of Mathematics and Informatics, Akademijos 4, Vilnius 08663, Lithuania

e-mail: norvidas@gmail.com

Abstract. In this paper, we extend the large sieve type estimates to sums involving pth powers of trigonometric polynomials. An approach to such estimates that does not rely on the usual L^2-technique is given. Our method is based on comparing the norm and the spectral radius of convolution operators on a normed space of trigonometric polynomials.

1 Introduction

We denote by T_N the set of trigonometric polynomials of degree at most N

$$s(x) = \sum_{k=-N}^{N} c_k e^{ikx}$$

with a positive integer N and $c_k \in \mathbb{C}$, $k = -N, \ldots, N$. Suppose that $x_1 < x_2 < \cdots < x_r$, $r > 1$, is any sequence in $\mathbb{T} = (-\pi, \pi]$ such that

$$\min\{x_{j+1} - x_j, j = 1, \ldots, r - 1; 2\pi - (x_r - x_1)\} = \delta > 0.$$

The usual large sieve inequality states that

$$\sum_{j=1}^{r} |s(x_j)|^2 \leq \left(\frac{N}{2\pi} + \frac{1}{\delta}\right) \int_{\mathbb{T}} |s(x)|^2 \, dx.$$

See Selberg [8] p. 221], but note the different notation. Gallagher [4] has given a simple derivation of the large sieve inequalities. It turned out that the method of [4] can be applied to $L^p(\mathbb{T})$-norm. More precisely, in [3] p. 96] was proved that if $s \in T_N$ and $2 \leq p < \infty$, then

$$\sum_{j=1}^{r} |s(x_j)|^p \leq \Delta_p p^{1/2} \max\left(\frac{4\pi}{\delta} \right) \left(\frac{1}{\delta}\right)^{p/q} \left(\sum_{k=-N}^{N} |c_k|^q\right)^{p/q},$$

where Δ_p is an absolute constant and $1/p + 1/q = 1$. Next, in [6] p. 533] the inequality (3) was extended for all $0 < p < \infty$ as follows. Let Ψ be a convex, nonnegative, and nondecreasing
function in \([0, \infty)\). Then for any \(s \in T_N\),

\[
(4) \quad \sum_{j=1}^{r} \Psi(|s(x_j)|^p) \leq \left(\frac{N}{\pi} + \frac{1}{\delta} \right) \int_{\mathbb{T}} \Psi\left(|s(x)|^p (p+1)e/2\right) dx,
\]

whenever \(-\pi < x_1 < x_2 < \cdots < x_r \leq \pi\) and \(\delta\) is defined by (1). If \(\Psi(t) = t, 0 \leq t < \infty\), then (4) implies

\[
(5) \quad \sum_{j=1}^{r} |s(x_j)|^p \leq \left(\frac{N}{\pi} + \frac{1}{\delta} \right) \frac{(p+1)e}{2} ||s||_{L^p(\mathbb{T})}^p.
\]

In [5, p. 164] the estimate (4) was extended to the case of generalized trigonometric polynomials. In particular, for usual trigonometric polynomials, the inequality (5) was improved as follows:

\[
(6) \quad \sum_{j=1}^{r} |s(x_j)|^p \leq \left(\frac{N+1}{2\pi} + \frac{1}{\delta} \right) \frac{(p+1)e}{2} ||s||_{L^p(\mathbb{T})}^p.
\]

Note that inequalities (2)-(6) are also called forward Marcinkiewicz-Zygmund inequalities (see, e.g., [2]).

In this paper, we will develop an approach to inequalities of the type (3) and (5)-(6) that not use the usual \(L^2\)-technique. Our approach is based on the spectral theory of convolution operators on \(T_N\).

The main result is given in the following theorem. Note that in the sequel, \([x]\) denotes the integer part of a positive number \(x\). Also we use the notation \(\Gamma(\cdot)\) for the standard gamma function.

THEOREM 1. Let \(\{x_j\}_{j=1}^{r}\) be a sequence in \(\mathbb{T}\) that satisfies (1). If \(s \in T_N\) and \(1 \leq p < \infty\), then

\[
(7) \quad \sum_{j=1}^{r} |s(x_j)|^p \leq \frac{pN\sigma(\delta;N)}{2\sqrt{\pi}} \cdot \frac{\Gamma\left(p/2\right)}{\Gamma\left(p/2+1/2\right)} ||s||_{L^p(\mathbb{T})}^p
\]

with

\[
(8) \quad \sigma(\delta;N) = \begin{cases} \frac{\pi}{N\delta}, & \text{if } \frac{\pi}{N\delta} \in \mathbb{Z}, \\ 1 + \left[\frac{\pi}{N\delta}\right], & \text{otherwise}. \end{cases}
\]

If \(p\) is a positive integer, then the quantity

\[
\frac{\Gamma\left(p/2\right)}{\Gamma\left(p/2+1/2\right)}
\]

can be calculated directly by using the relations between \(\Gamma\left(p/2\right)\) and \(\Gamma\left(p/2+1/2\right)\).

COROLLARY 2. Let \(l\) be a positive integer. Then under the conditions of Theorem 1 it follows that:
(1) If $p = 2l$, then

\[
\sum_{j=1}^{r} |s(x_j)|^p \leq \frac{pN\sigma(\delta; N)}{2\sqrt{\pi}} \cdot \frac{\Gamma(p/2)}{\Gamma(p/2 + 1/2)} \|s\|^p_{L_p(\mathbb{T})} = \frac{pN\sigma(\delta; N) \cdot 2^{l-1}(l-1)!}{\pi(1 \cdot 3 \cdot 5 \cdots (2l-1))} \|s\|^p_{L_p(\mathbb{T})};
\]

(ii) if $p = 2l + 1$, then

\[
\sum_{j=1}^{r} |s(x_j)|^p \leq \frac{pN\sigma(\delta; N)}{2\sqrt{\pi}} \cdot \frac{\Gamma(p/2)}{\Gamma(p/2 + 1/2)} \|s\|^p_{L_p(\mathbb{T})} = \frac{pN\sigma(\delta; N) \cdot (1 \cdot 3 \cdot 5 \cdots (2l-1))}{2^{l+1} \cdot l!} \|s\|^p_{L_p(\mathbb{T})}.
\]

COROLLARY 3. Assume that $s \in T_N$, $\|s\|_{L_p(\mathbb{T})} = 1$, $p \geq 1$, and $\{x_j\}_{j=1}^{r}$ satisfies (1).

(i) If $\frac{\pi}{N\delta} \in \mathbb{Z}$, then

\[
\sum_{j=1}^{r} |s(x_j)|^p < \frac{p+1}{\delta}.
\]

(ii) If $\frac{\pi}{N\delta} \notin \mathbb{Z}$, then

\[
\sum_{j=1}^{r} |s(x_j)|^p < (p+1)\left(\frac{N}{\pi} + \frac{1}{\delta}\right).
\]

2 Proofs

Let $M(\mathbb{T})$ be the Banach algebra of finite complex-valued regular Borel measures on \mathbb{T}. The norm in $M(\mathbb{T})$ is given by the total variation $\|\mu\|$ of $\mu \in M(\mathbb{T})$. Therefore, the usual Banach space $L^1(\mathbb{T})$ can be identified with the closed ideal in $M(\mathbb{T})$ of all measures which are absolutely continuous with respect to the Lebesgue measure dt on \mathbb{T}.

Given $\mu \in M(\mathbb{T})$ and $f \in L^1(\mathbb{T})$, we define the Fourier transform of μ and f by

\[
\hat{\mu}(x) = \int_{\mathbb{T}} e^{-ixt} \mu(t) \quad \text{and} \quad \hat{f}(x) = \int_{\mathbb{T}} e^{-ixt} f(t) \ dt,
\]

respectively. For each $u \in L^r(\mathbb{T})$, $1 \leq r \leq \infty$, on T_N is well defined the convolution operator

\[
A_{u}(s)(x) = s * u(x) = \int_{\mathbb{T}} s(x-t) u(t) \ dt = \int_{\mathbb{T}} \left(\sum_{k=-N}^{N} c_k e^{ik(\pi x)} \right) u(t) \ dt
\]

\[
= \sum_{k=-N}^{N} c_k \hat{u}(k) e^{ikx},
\]

for each $x \in \mathbb{T}$, where $s \in T_N$. Note that in this definition and also below we assume that s is a periodic function on the real line with the period equal to 2π. Below, the notation T^p_N, $1 \leq p \leq \infty$, means that T_N is equipped with the usual $L^p(\mathbb{T})$ norm.
Suppose that S_1 and S_2 are two measurable subsets of \mathbb{T}, μ_1 and μ_2 are two non-negative finite measures on \mathbb{T}, and $F : \mathbb{T}^2 \to \mathbb{R}$ is a measurable function. For $1 \leq p < \infty$, Minkowski’s integral inequality \[9, p. 37\] states that
\[
\left[\int_{S_2} \left| \int_{S_1} F(x,y) \, d\mu_1(x) \right| \right]^p \, d\mu_2(y) \right]^{1/p}
\leq \int_{S_1} \left(\int_{S_2} |F(x,y)|^p \, d\mu_2(y) \right)^{1/p} \, d\mu_1(x).
\] (14)

PROPOSITION 4. Let $u \in L^q(\mathbb{T})$, $1 \leq q \leq \infty$, $\|u\|_{L^q(\mathbb{T})} \neq 0$. Assume that u is continuous, non-negative and even on \mathbb{T}. If
\[
(15) \supp u \subset \left[-\frac{\pi}{2N}, \frac{\pi}{2N} \right],
\] then there exists a trigonometric sum
\[
(16) p_u(x) = \sum_{m=-N+1}^{N} \tau_m e^{-i\pi mx/N}
\] such that
\[
(17) (-1)^m \tau_m > 0,
\] $m = -N + 1, \ldots, N$, and
\[
(18) p_u(n) = \frac{1}{\hat{u}(n)}
\] for all $n = -N, \ldots, N$.

PROOF. We start by examining in more details the Fourier transform of u. Under the assumptions on u, we see that
\[
(19) \hat{u}(x) = \int_\mathbb{T} u(t) e^{-i xt} \, dt = 2 \int_0^{\pi/2N} u(t) \cos xt \, dt > 0
\] for all $x \in [-N, N]$. From this it follows that
\[
(20) (\hat{u})'(x) = -2 \int_0^{\pi/2N} tu(t) \sin xt \, dt < 0
\] and
\[
(21) (\hat{u})''(x) = -2 \int_0^{\pi/2N} t^2 u(t) \cos xt \, dt < 0
\] for all $x \in [0, N]$.
Let $v = 1/\hat{u}$. By (19), the function v is well defined and positive on $[-N, N]$. Moreover, we conclude from (19)-(21) that v is an even function and
\[
(22) v'(x) > 0 \quad \text{and} \quad v''(x) > 0
\]
for all $x \in [0,N]$. Therefore, v is increasing and convex on $[0,N]$, in particular v is of bounded variation on $[0,N]$. In particular, this means that v is a function of bounded variation on \mathbb{T}. The following is well known: If f is an 2π-periodic continuously differentiable even function on \mathbb{T} such that f is of bounded variation on \mathbb{T}, then the Fourier series of f converges absolutely (see, eg. [10, p. 241]). Thus,

(23)
$$v(x) = \sum_{k \in \mathbb{Z}} a_k e^{ik\pi x/N} = \sum_{k \in \mathbb{Z}} a_k \cos\left(\frac{\pi k x}{N}\right)$$

with

(24)
$$\sum_{k \in \mathbb{Z}} |a_k| < \infty,$$

where

(25)
$$a_k = \int_{-N}^{N} v(t) e^{-ik\pi/N} dt = 2 \int_{0}^{N} v(t) \cos\left(\frac{\pi k t}{N}\right) dt.$$

We claim that

(26)
$$(-1)^k a_k > 0$$

for all $k \in \mathbb{Z}$. Combining (19) with (25), we see that $a_0 > 0$. Let $k \geq 1$. Then using integration by parts, we conclude from (15) that

(27)
$$a_k = -\frac{2N}{\pi k} \int_{0}^{N} v'(t) \sin\left(\frac{\pi k t}{N}\right) dt = -\frac{2N}{\pi k} \sum_{j=0}^{k-1} I_j,$$

where

(28)
$$I_j = \int_{E_j} v'(t) \sin\left(\frac{\pi k t}{N}\right) dt$$

and $E_j = [Nj/k,N(j + 1)/k]$. Note that the length of E_j is exactly half length of period for $\sin\left(\pi k x/N\right)$. Combining this with (22), we see that

(29)
$$(-1)^j I_j > 0 \quad \text{and} \quad |I_j| < |I_{j+1}|$$

for all $j = 0, \ldots, k - 1$. From this, it is easily seen that

$$(-1)^{k-1} \sum_{j=0}^{k-1} I_j > 0.$$

In light of (27) this proving the claim (26).

For $m = -N + 1, \ldots, N$, let τ_m be defined by

(30)
$$\tau_m = \sum_{j \in \mathbb{Z}} a_{m+2jN}.$$
From (24), we see that the series in (30) converges absolutely. Next, from (26) it follows that, for each \(m \), all terms of the sequence \(\{a_{m+2jN}\}_{j \in \mathbb{Z}} \) have the same sign. In particular, (26) shows that \((-1)^m a_{m+2jN} > 0\). Therefore, the trigonometric sum (16) is well defined and satisfies (17).

Finally, for any \(n \in \{-N, \ldots, N\} \), combining (23) with (30), we get

\[
\frac{1}{\hat{u}(n)} = v(n) = \sum_{k \in \mathbb{Z}} a_k e^{ik \pi n/N} = \sum_{m=-N+1}^{N} \left(\sum_{j \in \mathbb{Z}} a_{m+2jN} e^{i(m+2jN) \pi n/N} \right)
\]

\[
= \sum_{m=-N+1}^{N} \left(\sum_{j \in \mathbb{Z}} a_{m+2jN} e^{im \pi n/N} \right) = \sum_{m=-N+1}^{N} \left(\sum_{j \in \mathbb{Z}} a_{m+2jN} e^{im \pi n/N} \right)
\]

\[
= \sum_{m=-N+1}^{N} \tau_m e^{im \pi n/N} = p_u(-n).
\]

As \(u \) and \(\hat{u} \) are even functions we have \(p_u(-n) = p(n) \) for all \(n \). Proposition 4 is proved.

We will denote by \(\delta_a \) the usual Dirac measure supported on \(a \in \mathbb{T} \).

PROPOSITION 5. Let positive numbers \(p \) and \(q \) satisfy \(1/p + 1/q = 1 \). Under the conditions of Proposition 4 on \(u \in L^q(\mathbb{T}) \) it follows that the operator (13) possesses on \(T_N^p \) a bounded inverse of the type

\[
A_u^{-1}(s)(x) = \int_{\mathbb{T}} s(x-t) d\mu(t),
\]

where

\[
\mu = \sum_{m=-N+1}^{N} \tau_m \delta_{\pi m/N}
\]

and \(\{\tau_m\}_{-N+1}^{N} \) are defined by (30), using (23) for \(v = 1/\hat{u} \). Furthermore,

\[
\|A_u^{-1}\|_{T_N^p} = \|\mu\|_{M(\mathbb{T})} = \sum_{m=-N+1}^{N} |\tau_m| = \frac{1}{\hat{u}(N)}.
\]

PROOF. Let \(s(x) = \sum_{k=-N}^{N} c_k e^{ikx} \in T_N \). From (16) it follows that

\[
s * \mu(x) = \sum_{k=-N}^{N} c_k \left(\int_{\mathbb{T}} e^{ik(x-t)} d\mu(t) \right) = \sum_{k=-N}^{N} c_k \tilde{\mu}(k) e^{ikx},
\]

where

\[
\tilde{\mu}(k) = \int_{\mathbb{T}} e^{-ikt} d\mu(t) = \sum_{m=-N+1}^{N} \tau_m e^{-i\pi km/N} = p_u(k),
\]

for all \(k = -N, \ldots, N \). Now, taking into account (18), we conclude from from (13) that (31) defines the inverse of the operator \(A_u \).

Now, according to (34), we see that the set \(\{\tilde{\mu}(k) = p_u(k) : k = -N, \ldots, N\} \) coincides with the spectrum of \(A_u^{-1} \). Therefore, if \(|A_u^{-1}|_{T_N^p} \) denotes the spectral radius of \(A_u^{-1} \), then

\[
|A_u^{-1}|_{T_N^p} = \max\{|\tilde{\mu}(k)| = |p_u(k)| : k = -N, \ldots, N\}.
\]
Let us recall that $|H|_X \leq \|H\|_X$, i.e. the spectral radius is not greater than the operator norm, for any bounded linear operator H on a normed space X. Combining this with (18), we get

$$\|A_u^{-1}\|_{T^p_N} \geq \max_{-N \leq k \leq N} |\hat{u}(k)| = \max_{-N \leq k \leq N} |p_u(k)| = \max_{-N \leq k \leq N} \left\{ \frac{1}{|\hat{u}(k)|} \right\}$$

$$= \frac{1}{\min_{-N \leq k \leq N} |\hat{u}(k)|} \geq \frac{1}{\hat{u}(N)} = p_u(N) = \sum_{M=-N+1}^{N} \tau_m e^{imN/N} = \sum_{M=-N+1}^{N} (-1)^m \tau_m = \sum_{M=-N+1}^{N} |\tau_m| = \|\mu\|.$$

(35)

Other hands, from Minkowski’s inequality (14) it is easily to see that

$$\|A_u^{-1}(s)\|_{T^p_N} = \left(\int_{|s|_{T^p_N}} \int_{|s|} \left| s(x-t) d\mu(t) \right|^p dx \right)^{1/p} \leq \left(\int_{|s|} \int_{|s|} |s(x-t)| d|\mu|(t) dx \right)^{1/p} \leq \int_{|s|} \left(\int_{|s|} |s(x-t)|^p dx \right)^{1/p} d|\mu|(t) = \|s\|_{T^p_N} |\mu|,$$

(36)

where $|\mu|$ denote the variation of μ. Thus, (35) with (36) show (33), and the Proposition 5 is proved.

PROOF OF THEOREM 1. Assume that $u \in L^q(\mathbb{T})$, $\|u\|_{L^q(\mathbb{T})} = 1$ and u satisfies the conditions of Proposition 4. If $s \in T_N$, then by Hölder’s inequality, we get

$$|s(x)|^p = \left| \int_{|s|} A_u^{-1}(s)(x-t)u(t) dt \right|^p = \left| \int_{-\pi/2N}^{\pi/2N} A_u^{-1}(s)(x-t)u(t) dt \right|^p \leq \left(\int_{-\pi/2N}^{\pi/2N} \left| A_u^{-1}(s)(x-t) \right|^p dt \right)^{p/q} \left(\int_{-\pi/2N}^{\pi/2N} |u(t)|^q dt \right)^{p/q} \leq \left(\int_{-\pi/2N}^{\pi/2N} \left| A_u^{-1}(s)(x-t) \right|^p dt \right)^{p/q}$$

for each $x \in \mathbb{T}$. Therefore,

$$\sum_{j=1}^{r} |s(x_j)|^p \leq \sum_{j=1}^{r} \int_{-\pi/2N}^{\pi/2N} \left| A_u^{-1}(s)(x_j-t) \right|^p dt = \sum_{j=1}^{r} \int_{x_j-\pi/2N}^{x_j+\pi/2N} \left| A_u^{-1}(s)(y) \right|^p dy.$$

(37)

We will denote by E_j the set

$$E_j = \left(x_j - \frac{\pi}{2N}, x_j + \frac{\pi}{2N} \right],$$

$j = 1, \ldots, r$. Using the fact that $A_u^{-1}(s)$ is a trigonometric polynomial, i.e., a continuous and periodical function on \mathbb{R}, we conclude that

$$\int_{x_j-\pi/2N}^{x_j+\pi/2N} \left| A_u^{-1}(s)(y) \right|^p dy = \int_{E_j} \left| A_u^{-1}(s)(y) \right|^p dy.$$

(38)
Let \(x \in \mathbb{R} \) and assume that \(x \in E_j \), for \(j = i, i+1, \ldots, i+k \) with some non-negative integer \(k \).
Then we claim that:

(i) if \(\pi/N\delta \in \mathbb{Z} \), then

\[
k + 1 \leq \frac{\pi}{N\delta};
\]

(ii) if \(\pi/N\delta \not\in \mathbb{Z} \), then

\[
k \leq \left\lfloor \frac{\pi}{N\delta} \right\rfloor,
\]

where \(\lfloor \cdot \rfloor \) is the usual integer part of a real number.
Indeed, since \(x \in E_i \cap E_{i+k} \), it follows that \(x_i + \pi/2N > x_{i+k} - \pi/2N \). Then

\[
x_{i+k} - x_i < \frac{\pi}{N}.
\]

Other hands, by (1) we get

\[
x_{i+k} - x_i \geq k\delta.
\]

Combining (42) with (41), we see that

\[
k < \frac{\pi}{N\delta}.
\]

Now note that \(k \) is an integer. Hence if \(\pi/N\delta \in \mathbb{Z} \), then (43) implies (39). For \(\pi/N\delta \not\in \mathbb{Z} \), we get (40), which yields our claim.
Thus, each \(x \in \mathbb{T} \) can belong to at most \(\sigma_p \) intervals \(E_j, j = 1, \ldots, p \), where \(\sigma_p \) was defined by (8).

Now combining (35), (36) with (37), (38), (31) and (8), we get

\[
\sum_{j=1}^{r} |s(x_j)|^p \leq \sum_{j=1}^{r} \int_{x_j - \pi/2N}^{x_j + \pi/2N} |A_u^{-1}(s)(y)|^p \, dy \leq \sigma(\delta; N) \int_{\mathbb{T}} |A_u^{-1}(s)(y)|^p \, dy = \sigma(\delta; N)\|A_u^{-1}(s)\|_{L^p(\mathbb{T})}^p \leq \sigma(\delta; N)\|A_u^{-1}\|_{L^p(\mathbb{T})}^p \|s\|_{L^p(\mathbb{T})}^p\|A_u^{-1}\|_{L^p(\mathbb{T})}^p \cdot \sigma_p \left(\hat{u}(N)\right)^p \|s\|_{L^p(\mathbb{T})}^p,
\]

Next, the estimate (44) can be improved to

\[
\sum_{j=1}^{r} |s(x_j)|^p \leq \frac{\sigma(\delta; N)}{\sup_u (\hat{u}(N))} \|s\|_{L^p(\mathbb{T})}^p,
\]

where the supremum extends over all admissible \(u \) as described in the statement of Proposition 4.
We claim that for such an \(u \) we have

\[
\sup_u (\hat{u}(N))^p = \|\cos Nx\|_{L^p[\pi/2, \pi/2]}^p = \frac{\|\cos t\|_{L^p[-\pi/2, \pi/2]}^p}{N}.
\]
Indeed, Hölder’s inequality implies that
\[|\hat{u}(N)|^p = \left| \int_T u(x) \cos Nx \, dx \right|^p = \left| \int_{-\pi/2N}^{\pi/2N} u(x) \cos Nx \, dx \right|^p \]
\[\leq \int_{-\pi/2N}^{\pi/2N} |\cos Nx|^p \, dx \cdot \|u\|_{L^p([-\pi/2N, \pi/2N])}^p = \int_{-\pi/2N}^{\pi/2N} |\cos Nx|^p \, dx \]
\[= \frac{1}{N} \int_{-\pi/2}^{\pi/2} |\cos t|^p \, dt = \frac{\|\cos t\|_{L^p([-\pi/2, \pi/2])}^p}{N}. \]
(47)

Moreover, since we used Hölder’s inequality, it follows that the estimate (47) is exact and the equality is attained if
\[u(x) = \theta \cos^{p-1} Nx \cdot \chi_{[-\pi/2N, \pi/2N]}(x), \]
where \(\chi_{[-\pi/2N, \pi/2N]} \) is the indicator function of the interval \([-\pi/2N, \pi/2N]\) and \(\theta \in \mathbb{C} \) is such that \(\|u\|_{L^p([-\pi/2N, \pi/2N])} = 1 \). Therefore, our claim (46) is proved.

Combining (45) with (46), we get
\[\sum_{j=1}^r |s(x_j)|^p \leq \frac{\sigma(\delta; N) \cdot N}{\|\cos t\|_{L^p([-\pi/2, \pi/2])}^p} \|s\|_{L^p(T)}^p. \]
(48)

Next,
\[\|\cos t\|_{L^p([-\pi/2, \pi/2])}^p = \int_{-\pi/2}^{\pi/2} \cos^p t \, dt = B\left(\frac{1}{2}; \frac{p+1}{2}\right), \]
(49)

(see, e.g., [7, p. 142]), where \(B \) is Euler’s beta function defined by
\[B(a; b) = 2 \int_0^{\pi/2} \sin^{2a-1} \theta \cos^{2b-1} \theta \, d\theta \]
for \(\Re a, \Re b > 0 \). Applying the following connection between the beta and the usual gamma function ([7] p. 142)
\[B(a, b) = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}, \]
we conclude from (49) that
\[\|\cos t\|_{L^p([-\pi/2, \pi/2])}^p = \frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{p+1}{2}\right)}{\Gamma\left(\frac{p}{2}+1\right)} \]
(50)

Since \(\Gamma\left(\frac{p}{2}+1\right) = \Gamma\left(\frac{p}{2}\right) \cdot \frac{p}{2} \) and \(\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \) (see, e.g., [7] p.p. 137-138), it follows from (49) and (50) that
\[\|\cos t\|_{L^p([-\pi/2, \pi/2])}^p = \frac{2 \sqrt{\pi} \cdot \Gamma\left(\frac{p}{2}+\frac{1}{2}\right)}{\Gamma\left(\frac{p}{2}\right)}. \]

Substituting this into (48), we obtain (7). Theorem 1 is proved.
POOF OF COROLLARY 2. It is known that for a nonnegative integer \(n \),
\[
\Gamma(n+1) = n! \quad \text{and} \quad \Gamma\left(n + \frac{1}{2}\right) = \sqrt{\pi} \cdot \frac{1 \cdot 3 \cdot 5 \cdots (2 - 1)}{2^n}
\]
(see [7, p. 139]). Using this, the representations (9) and (10) can be verified by straightforward calculation.

References

[1] L.C. Andrews, *Special functions of mathematics for engineers*, Second edition. McGraw-Hill, Inc. (New York, 1992).

[2] C.K. Chui and L. Zhong, On Marcinkiewicz-Zygmund inequalities and Ap-weights for L-shape arcs, *J. Geom. Anal.*, 31 (2021), 9276-9294.

[3] H. Davenport and H. Halberstam, The values of a trigonometrical polynomial at well spaced points, *Matematika*, 13 (1966), 91-95.

[4] P.X. Gallagher, The large sieve, *Matematika*, 14 (1967), 14-20.

[5] H. Joung, Large sieve for generalized trigonometric polynomials, *Bull. Korean Math. Soc.*, 36 (1) (1999), 161-169.

[6] D.S. Lubinsky, A. Máté and A.P. Nevai, Quadrature sums involving \(p \)th powers of polynomials, *Siam. J. Math. Anal.*, 18 (1987), 531-544.

[7] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, *NIST Handbook of Mathematical Functions*, Cambridge University Press (Cambridge, UK, 2010).

[8] A. Selberg, *Collected works*, vol. II, Springer (Heidelberg, 2014).

[9] E.M. Stein and R. Shakarchi, *Functional analysis. Introduction to further topics in analysis*, Princeton University Press (Princeton, New York, 2011).

[10] A. Zygmund, *Trigonometric series*, vol. I, Cambridge University Press (Cambridge, 2002).