Supporting Information

Pyrrolidine and Oxazolidine Ring Transformations in Proline and Serine Derivatives of α-Hydroxyphosphonates Induced by Deoxyfluorinating Reagents

Patrycja Kaczmarek,[a] Magdalena Rapp,*[a] Henryk Koroniak[a]

[a]Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 60614 Poznan (Poland)

*e-mail address: magdrapp@amu.edu.pl (M. Rapp)

1H, 13C, 31P and 19F NMR Spectra of Compounds
1H NMR of 4

13C NMR of 4
31P(1H) NMR of 4

19F NMR of 4
1H-1H NOESY of 4

19F-1H HOESY of 4
31P{1H} NMR of 5

19F{1H} NMR of 5
19F NMR of 5

1H NMR of 6a,b/7a,b
13C NMR of 6a,b/7a,b

31P/1H NMR of 6a,b/7a,b
\[{\text{H}} - {\text{H}} \text{ NOESY of 6a,b/7a,b} \]

\[{\text{H}} \text{ NMR of 8} \]
$^{13}\text{C NMR of 8}$

$^{31}\text{P(}^{1}\text{H) NMR of 8}$
13C NMR of 11a

31P(1H) NMR of 11a
^{1}H NMR of 11a,b

^{13}C NMR of 11a,b
31P/1H NMR of 11a,b (3.6:1, d.r.)

1H NMR of 12a
13C NMR of 12a

31P$(^1$H$)$ NMR of 12a
1H NMR of 13a

13C NMR of 13a
NMR of 13a:13b (1:2.08 d.r.)

NOESY of 13a:13b (1:2.08 d.r.)
\[\text{Bn} \underset{\text{(EtO)}_2(\text{O})P}{\text{N}} \text{F} \]

\[\begin{align*}
13C \text{ NMR of 13a:13b (1:2.8 d.r.)} \\
\end{align*} \]

\[\begin{align*}
19F \text{ NMR of 13a:13b (1:2.8 d.r.)} \\
\end{align*} \]
19F-1H HOESY of 13a:13b (1:2.8 d.r.)

1P/1H NMR of 13a,b (1:2.8 d.r.)
1H NMR of 17

13C NMR of 17
1H-1H NOESY of 17

31P/1H NMR of 17
1H NMR of 18

13C NMR of 18
$^{31}\text{P}(/^1\text{H})\text{ NMR of 18}$

$^1\text{H}\text{ NMR of 19 (major rotamer)}$
13C NMR of 19 (major rotamer)

31P/1H NMR of 19 (major rotamer)
1H NMR of 19 (minor rotamer)
13C NMR of 19 (minor rotamer)

31P(¹H) NMR of 19 (minor rotamer)
1H NMR of 20 (1.1:1 rotamers ratio)

13C NMR of 20 (1.1:1 rotamers ratio)

31P/1H NMR of 20 (1.1:1 rotamers ratio)
31P(1H) NMR of 21
H NMR of 22a

\[(\text{EtO})_2\text{O}P_{\text{Me}}\text{O}\]

\[\text{FH}_2\text{C} \quad \text{NH} \quad \text{O} \quad \text{O}\]

\[\text{FH}_2\text{C} \quad \text{NH} \quad \text{O} \quad \text{O}\]

13C NMR of 22a
NOESY of 22a

19F NMR of 22a
HOESY of 22a

31P/1H NMR of 22a
1H NMR of 23

13C NMR of 23
31P/1H NMR of 23

1H NMR of 24
31P(1H) NMR of 26a

19F NMR of 26a
HOESY of 26a

NOESY of 26a
