Simulation and reaction parameter estimation in subsurface flow constructed wetland for greywater treatment

Y. M. Patil1 · G. R. Munavalli2

Received: 10 February 2020 / Accepted: 23 February 2022 / Published online: 8 April 2022
© The Author(s) 2022

Abstract
Subsurface flow constructed wetland (SSFCW) is widely adopted for the removal of BOD5 and TKN from greywater. The design of SSFCW is normally based on thumb rules or using a first-order reaction kinetic model. However, the applicability of this model is system/environment-specific which necessitates the assessment of the potential applicability of other reaction kinetic models. In the present study, experiments were planned on SSFCW during initial and established phases to collect the data on BOD and TKN for assessing the system-specific application of plug flow, K-S* and CSTRs in series models. The reaction rate parameters along the length of SSFCW and overall for the system were estimated. There was no variation in values of rate parameter along the length in an initial phase, but the values increased along the length of SSFCW in established phase. Further, the applicability of these models was assessed for predicting BOD5 in SSFCW based on error analysis. And overall reaction rate parameters were estimated. Based on the average absolute error and RMS error it is concluded that plug flow and K-S* reaction kinetic models are more applicable for BOD5. The volumetric reaction rate parameter is recommended to be 0.612/day (plug flow) and 0.742/day (K-S*) for the design of SSFCW in tropical climate for BOD5 removal. The volumetric reaction rate parameter for TKN removal by plug flow model is recommended to be 0.389/day.

Keywords BOD5 · Canna indica · Constructed wetland · CSTRs in series · Greywater · Plug flow · K-S* model · TKN

Introduction
Subsurface flow constructed wetland (SSFCW) has been widely used to treat domestic wastewater for the removal of BOD5 and TKN. It also offers a reliable and appropriate treatment system in developing countries. The removal mechanisms for BOD5 and TKN are complex due to the contribution of interrelated processes occurring within the SSFCW environment consisting of medium and vegetation. The dominating processes of BOD5 and TKN removal include adsorption, straining, ammonification, nitrification, denitrification, decomposition, and plant uptake. The simplified design approach adopted in general for SSFCW is based on either thumb rules or first-order reaction kinetic model.

The increasing use of SSFCW for the treatment of wastewater under different environmental conditions is a stimulant for assessing the applicability of other potential reaction kinetic models. At present, the models adopted for design of SSFCW include rules of thumb (Wood 1995), regression models (Rousseau et al. 2004), first-order kinetics (Kadlec and Knight 1996; Kadlec 1997; Kallner and Wittgren 2001), retardation model (Shepherd et al. 2001), Monod kinetics (Mitchell and McNevin 2001; Kemp and George 1997) and dynamic compartmental models (Wynn and Liehr 2001). Mrasili-libelii and Checchi (2005) studied combinations of series/parallel CSTRs of unequal volumes in series with a plug-flow reactor for SSFCW. Sonavane and Munavalli (2009) developed lumped distribution model for nitrogen removal from septic tank effluent. Sun and Saeed (2011) studied kinetic modeling of nitrogen and organics removal in vertical and horizontal flow constructed wetland. Abdolmajid et al. (2015) studied efficiency and kinetic modelling of removal of nutrients and organic matter from a full-scale
constructed wetland. Cui et al. (2016) studied nitrogen removal in a SSFCWs and the reaction parameter was estimated using the first-order kinetic model.

A review of literature reaction kinetic/design models for SSFCW shows that the estimated values of reaction rate parameters involved in different kinetic models vary widely. The reported factors affecting variability include a scale of the study, type of wastewater, climatic conditions, a medium used, and type of vegetation. The models based on first-order reaction rate kinetics are popular and most widely used for a variety of field and pilot-scale studies. The reaction rate parameters reported in these studies exhibited wide variability in their values. The use of a proper set of reaction rate parameters for a given SSFCW is required to decide/set design criteria for a given environment. The design criteria developed were based on thumb rules, first-order models and Monod type kinetics. But none of these models is universally applicable. Thus it would be important to test other reaction kinetic models to assess their usefulness and applicability.

The literature cited shows that the studies carried out for tropical climate regions like India are little. The studies on modelling and reaction kinetics of greywater treatment systems have not been reported. Thus, there is a scope to assess the potential of other reaction kinetics models for their usefulness and applicability for greywater treatment. The studies carried out in the present work which contribute to existing knowledge are summarized below:

1. Field-scale experimentation work on SSFCW for BOD$_3$ and TKN removal.
2. Assessment of the applicability of plug-flow, K-S* and CSTRs in series models for BOD and TKN removal using data obtained from SSFCW.
3. Estimation of reaction rate parameters involved in the above models and assessing the variability of these parameters along the length of SSFCW for initial and established phases.
4. Determination of the best performing reaction kinetic model for BOD$_3$ and TKN removal in SSFCW.

Materials and methods

Field-scale experimentation

The field-scale study was conducted on a working Integrated Onsite Greywater Treatment System (IOGTS) constructed for the hostel of Rajarambapu Institute of Technology at Rajaramnagar (MS) India. Figure 1 shows a schematic sketch of IOGTS. SSFCW which is a part of IOGTS is divided into three compartments by vertical baffles to induce channelized (horizontal) flow. It can be described as around the end vegetated bed baffled reactor. The total length of channelized flow is 30 m (which is divided into three stretches of 10 m each for modelling purposes) with a width of 0.75 m. The channelized flow ensures maintenance of the plug flow conditions within SSFCW as length to width ratio is more than 10. The flow regulation valves are provided at both inlet and outlet structures. Four sampling ports made up of 150-mm perforated PVC pipes are provided in SSFCW for sample collection.

Fig. 1 IOGTS with sampling ports
collection and are shown in Fig. 1. The distance between the two sampling ports is 9.0 m. This modification is made to collect samples along with the flow and to assess spatial/temporal variation of BOD$_3$ and TKN. The area of perforations is more and will not affect the hydraulics of the system at sampling points. Hence the entry/exit effects are not considered in the present study. SSFCW was vegetated with Canna indica in 0.60 m depth gravel medium of size 6–10 mm in month of the January 2015.

The settled greywater was used as a feed to SSFCW and was distributed uniformly by inlet chamber provided with perforated pipe arrangement. The system was operated in continuous mode with an organic loading rate (OLR) of 110 kg/ha day, hydraulic loading rate (HLR) of 110 mm/day and detention time of 1.5 day for a year. The data collected during the operation were used for modelling studies. The experimental study was divided into two phases viz. initial phase (January–April 2015) and established phase (May–December 2015). The initial phase refers to the period required for the proper growth of plants and the development of roots. A fully developed SSFCW referred is as the established phase. The photographic view of SSFCW during these phases is shown in Fig. 2. All the procedures of analysis were referred to APHA (2005) for BOD$_3$ and TKN. The samples of greywater were collected from four ports every hour on each sampling day once a week throughout the year. The composite sample was prepared and used for the analysis of BOD$_3$ and TKN.

Models used in the study

In the present study, it is proposed to apply the different reaction kinetic models viz. plug flow, K-S* and CSTRs in series for simulating BOD$_3$ and TKN removal. The models used in the present study are discussed in the following sections:

Plug-flow model

The principle of design for SSFCW is based on an assumption of plug flow conditions within SSFCW with biological degradation by first-order reaction kinetics. The basic relationship which is used to describe simultaneously the two components viz. biological degradation and system hydraulics are given as:

$$\frac{dS}{dt} = -k_{app}S$$

where S, effluent BOD$_3$ concentration; S_o, influent BOD$_3$ concentration; k_{app}, apparent reaction rate constant (/day); θ, residence time (day).

K-S* model

The modification to Kickuth model to reflect treatment wetland performance data was developed by Kadlec and Knight (1996). The model commonly referred to as K-S* model differs from the original Kickuth equation in two ways: firstly, it is a reversible first-order reaction equation rather than the irreversible equation and secondly, it includes a non-zero background concentration. It is believed that an irreversible first-order model does not satisfactorily describe the removal of pollutants from treatment wetlands because pollutants in the treated water cannot be reduced to zero due to the subsequent release of pollutants from the wetland into the treated water (Kadlec and Knight 1996). Thus the non-zero background concentration represents a release of pollutants resulting from transformation processes within the sediments and sediment–water interactions. These processes are mainly attributed to the production of organics from the decomposition of plant litter and other organic materials as well as endogenous autotrophic processes (IWA 2000; Bavor et al. 1988). Background concentrations of BOD lie in the range of 1–10 mg/L (IWA 2000). K-S* model is written as:

$$\ln \left(\frac{S - S^*}{S_o - S^*} \right) = -\frac{kH_\eta A}{Q} = -\frac{kV}{Q} = -k\theta$$

Fig. 2 Photographic view of SSFCW
k, reaction rate parameter (/day) and S^*, non-zero background BOD$_5$ (mg/L).

The values of k and S^* vary from one wetland to another and depend on site-specific factors such as vegetation type and density, the strength of influent wastewater, temperature and hydraulic variable (Kadlec 2000; Kadlec and Knight 1996).

The value of $S^* = 10$ mg/L (IWA 2000) is used in the present study.

CSTRs in series

In this model, actual SSFCW is assumed to be replaced by four CSTRs in series and is shown in Fig. 3.

$$\frac{S_4}{S_0} = \frac{1}{1 + \frac{k_{CSTR}}{4} \frac{V}{Q}}$$

$$k_{CSTR} = \left[\sqrt[4]{\frac{S_0}{S_4}} - 1 \right] \times \frac{4}{\theta}$$

Table 1 BOD$_5$ and TKN in SSFCW for initial phase

Month of year 2015	BOD$_5$(mg/L)	TKN (mg/L)						
	S_0	S_1	S_2	S	N_0	N_1	N_2	N
January	100	90	80	70	14.4	12.6	11	9.6
January	120	105	85	75	11.1	10	9	8.0
January	100	90	80	70	12	10.5	9.2	8.1
February	110	95	85	75	10	8.9	7.8	6.8
February	110	95	80	70	8	7	6.2	5.45
February	100	90	80	70	11	9.7	8.5	7.50
February	120	105	90	80	14	12.3	10.8	9.5
February	100	90	80	70	11.1	10	9.0	8.0
February	120	105	90	80	14	12.3	10	8.8
February	120	105	90	80	12.5	10.8	9.4	8.2
February	100	85	75	65	14	12.3	10	8.8
February	100	90	75	65	11.1	10	9	8.0
March	110	95	80	70	12	10.4	9	7.8
March	100	88	78	66	12	10.5	9.2	8.1
March	120	100	85	75	10.5	9	7.7	6.8
March	100	85	70	60	11.5	9.9	8.5	7.3
March	120	100	85	70	10	8.9	7.8	6.8
April	110	95	80	70	10.6	9.30	8	7.0
April	100	85	70	60	8.8	7.6	6.5	5.6
April	120	100	80	60	11	9.4	8	6.8
April	110	90	70	50	13.6	11.5	9.8	8.3
where S_0, influent BOD$_5$ (mg/L); S_4, effluent BOD$_5$ from system (mg/L); and k_{CSTR}, first order reaction rate parameter (/day).

Results and discussion

Results of experimental work used for modelling study

BOD$_5$ and TKN of greywater collected from various ports in SSFCW for initial and established phases are given in Tables 1 and 2, respectively. These values are used for the estimation of reaction rate parameters.

Estimation of reaction rate parameters for BOD$_5$

The computed values of the reaction rate parameter of plug flow and K-S* models for three stretches of SSFCW for the initial phase, established phase and total study period are given in Table 3. Typical computations of k_{app} and k for the month of January are given in Table 4. The results show that the values of k_{app} and k do not vary significantly in the initial phase along the length of SSFCW, but vary significantly in the established phase. The trend of variation for k_{app} and k is the same. The values of parameters increase with length and time in established phase. The reaction rate parameter in the initial phase is less than that for the established phase for all the stretches of SSFCW. This is because of the development of roots and growth of biofilm on roots requires time.

Table 2 BOD$_5$ and TKN in SSFCW for established phase

Month of year 2015	BOD$_5$ (mg/L)	TKN (mg/L)						
	S_0	S_1	S_2	S	N_0	N_1	N_2	N
May	120	100	75	55	10	8.2	6.7	5.5
May	100	80	60	45	13.6	11.3	9.1	6.8
May	120	90	70	50	11	9	7.1	5.6
May	110	85	65	45	13.5	11.2	8.9	6.7
June	120	95	70	50	12	10	8	6.0
June	110	85	60	40	13.4	10.9	8.4	6.0
July	110	95	80	65	11.6	9.5	7.8	6.2
July	110	90	75	60	10	8.2	6.7	5.5
July	110	95	80	60	11.0	9.4	8	6.8
July	110	95	80	60	11	9.4	8	6.8
July	110	90	70	55	12	10.5	9	8.1
August	120	100	80	60	11	9.4	8	6.8
August	110	90	70	50	13.6	11.5	9.8	8.2
August	110	90	70	50	13.6	11.5	9.8	8.3
August	120	100	75	55	10	8.2	6.7	5.5
September	100	80	60	45	13.6	11.30	9.1	6.8
September	100	80	60	45	13.6	11.3	9.1	6.8
September	120	90	70	50	11	9	7.1	5.6
September	110	85	65	45	13.5	11.2	8.9	6.7
October	120	95	70	50	12	10	8.0	6
October	100	85	60	40	13.4	10.9	8.4	6
October	100	75	60	30	13.4	10.9	8.4	6
October	110	80	60	40	14	12.3	10.8	9.5
October	110	85	65	45	13.5	11.2	8.9	6.7
November	100	80	60	40	13.5	11.2	8.90	6.7
November	110	90	65	40	12	10	8	6
November	100	80	60	35	11.1	10	8	6
November	90	70	65	30	11	9.0	7	5
December	120	95	70	50	12	10	8	6
December	110	85	60	40	13.4	10.90	8.4	6
December	120	95	70	50	10	8	6	4
December	100	80	60	45	13.6	11.3	9.1	6.8
December	120	100	75	55	10	8.2	6.7	5.5
Table 3 Computed values of reaction rate parameters (k_{app} and k) for three stretches

Month of year 2015	Computed values of reaction rate parameter (/day) for Stretch					
	k_{app}	k	k_{app}	k	k_{app}	k
January	0.229	0.254	0.265	0.300	0.261	0.299
February	0.260	0.289	0.274	0.309	0.258	0.297
March	0.320	0.355	0.324	0.367	0.288	0.334
April	0.346	0.384	0.420	0.478	0.455	0.539
Average reaction rate parameter for initial phase	0.288	0.320	0.320	0.363	0.315	0.367
May	0.475	0.529	0.547	0.629	0.651	0.790
June	0.491	0.545	0.653	0.753	0.741	0.916
July	0.336	0.336	0.379	0.379	0.498	0.498
August	0.382	0.423	0.506	0.576	0.635	0.757
September	0.495	0.554	0.547	0.635	0.639	0.785
October	0.504	0.563	0.573	0.665	0.883	1.18
November	0.449	0.506	0.618	0.726	0.970	1.25
December	0.452	0.503	0.613	0.705	0.670	0.818
Average reaction rate parameter for established phase	0.448	0.494	0.554	0.633	0.710	0.874
Average reaction rate parameter for total study period	0.394	0.436	0.476	0.543	0.759	0.705

Table 4 Typical computations of k_{app} and k for the month of January

Plug flow model

Month	Stretch 1	Stretch 2	Stretch 3									
	S_0	S_1	HRT	S_1	S_2	HRT	S_2	S	HRT	k_{app}		
Jan	100	90	0.5	0.211	90	80	0.5	0.236	80	70	0.5	0.267
	120	105	0.5	0.267	100	85	0.5	0.325	85	75	0.5	0.250
Avg	100	90	0.5	0.211	90	80	0.5	0.236	80	70	0.5	0.267
				0.230				0.265				0.261

K-S* Model

Month	Stretch 1	Stretch 2	Stretch 3												
	S_0	S_1	S^*	HRT	S_1	S_2	S^*	HRT	S_2	S	HRT	k			
Jan	100	90	10	0.5	0.236	90	80	10	0.5	0.308	80	70	10	0.5	0.267
	120	105	10	0.5	0.293	105	85	10	0.5	0.286	85	75	10	0.5	0.365
Avg	100	90	10	0.5	0.236	90	80	10	0.5	0.308	80	70	10	0.5	0.267
				0.255				0.301				0.300			

Table 5 Computed values of overall reaction rate parameter for all models

Month of year 2015	k_{app} (/day)	k (/day)	k_{CSTR} (/day)	Month of year 2015	k_{app} (/day)	k (/day)	k_{CSTR} (/day)
January	0.263	0.297	0.276	July	0.405	0.463	0.437
February	0.269	0.303	0.282	August	0.508	0.586	0.560
March	0.318	0.361	0.338	September	0.561	0.658	0.624
April	0.407	0.467	0.441	October	0.653	0.782	0.742
May	0.558	0.650	0.621	November	0.679	0.828	0.774
June	0.629	0.739	0.709	December	0.579	0.675	0.647
Initial phase	0.314	0.357	0.334	Established phase	0.571	0.672	0.639
Total study period	0.485	0.567	0.537				
The biological degradation is supported only by the medium and partially by roots. This is evident in increasing values of parameters with time in the initial phase. Further season/month of the year seems to affect the value of the reaction rate parameter.

The lower values of reaction rate parameters in the starting stretch indicate lesser BOD$_5$ removal. This may be attributed to anaerobic condition existing because of relatively more BOD$_5$ and lower oxygen supply by vegetation. The higher removal rates observed in the latter stretch are due to better oxygen rate leading to the aerobic process. Further, the lower rate parameters are observed due to lesser vegetation growth which is evident in Fig. 2a. The higher values were observed because of the better growth of vegetation (Fig. 2b). The stretch-wise evaluation of parameters is useful in modelling existing SSFCW into step-feed modifications to enhance the performance of the system as removal rate are higher in the latter stages.

The computed values of the overall reaction rate parameter (using influent and effluent BOD$_5$ from SSFCW) applicable for the whole SSFCW for all the three models are given in Table 5. The values of parameters for the initial

Table 6 Performance of reaction kinetic models and estimated reaction parameters

Model	Average absolute error (mg/L)	RMS error (mg/L)
Initial phase		
Plug flow model	5.95	33.05
K-S* model	4.60	31.46
CSTRs model	27.95	240.00
Established phase		
Plug flow model	6.62	48.63
K-S* model	5.53	40.62
CSTRs model	41.26	240.00
Total study period		
Plug flow model	11.10	98.00
K-S* model	11.07	100.00
CSTRs model	35.28	276

Fig. 4 Computation of overall K_{app} in plug flow model for TKN removal

Fig. 5 Comparison of observed and simulated BOD$_5$ concentration for plug flow model

The lower values of reaction rate parameters in the starting stretch indicate lesser BOD$_5$ removal. This may be attributed to anaerobic condition existing because of relatively more BOD$_5$ and lower oxygen supply by vegetation. The higher removal rates observed in the latter stretch are due to better oxygen rate leading to the aerobic process. Further, the lower rate parameters are observed due to lesser vegetation growth which is evident in Fig. 2a. The higher values were observed because of the better growth of vegetation (Fig. 2b). The stretch-wise evaluation of parameters is useful in modelling existing SSFCW into step-feed modifications to enhance the performance of the system as removal rate are higher in the latter stages.

The computed values of the overall reaction rate parameter (using influent and effluent BOD$_5$ from SSFCW) applicable for the whole SSFCW for all the three models are given in Table 5. The values of parameters for the initial
phase are less compared to the established phase for the reasons discussed previously.

Estimation of overall reaction rate parameter for TKN

Plug flow

The reaction rate parameter for TKN removal is calculated by first-order reaction kinetics for initial phase, established phase and the total study period. Figure 4 shows the computation through linearized plots. The overall reaction rate parameter K_{app} for TKN removal for the initial phase, established phase and total study period are 0.459/day, 0.389/day and 0.389/day, respectively.

Performance of reaction kinetic models for SSFCW

In this section, an attempt is made to identify the appropriate reaction kinetic model for SSFCW using observed and simulated BOD$_5$ values. The observed values included the data collected from four sampling ports of SSFCW. An appropriate reaction kinetics model is identified based on the goodness of fit between the observed concentrations at the outlet port and the concentration to be computed by various models at the same port. The goodness of fit between two observations is interpreted in terms of average absolute error and root mean square (RMS) of absolute error at each observation. Three reaction kinetics models considered are plug flow, K-S* and CSTRs in series for predicting BOD$_5$. The average absolute error and RMS error are given in Table 6. The applicable models are plug flow and K-S* as the average absolute error and RMS error are minimum. The reaction rate parameters are 0.612/day and 0.742/day for the plug flow and K-S* models respectively to predict BOD$_5$ in the established phase. These values can be used for the design of SSFCW for tropical climate for greywater treatment. The concentration computed by plug flow and K-S* model for this best fit with observed data is shown in Figs. 5 and 6, respectively.

Comparison of reaction rate parameter reported in the literature and current study

The comparison of literature reported values and those obtained in the current study for reaction rate parameter is given in Table 7. The comparison is done for parameters (volumetric and area-based) for BOD$_5$ and TKN removal. It shows that the values varied widely and are study specific. In this context, the parameter values of the present study are applicable for greywater treatment in a tropical climate.

Conclusions

Experiments were planned and conducted to assess the performance of SSFCW to remove BOD and TKN. The data on performance evaluation were used for estimating reaction rate parameters applicable to tropical climate. Plug flow, K-S* and CSTRs in series models were identified from the literature and applied on data collected. It
was found that the estimated reaction rate parameters by all the models varied spatially and temporally. There was no variation in values rate parameter along the length in an initial phase, but the values increased along the length of SSFCW. The values of these parameters increased in the direction of flow in SSFCW. It is suggestive of anaerobic activity prevailing in the initial stretches and followed by aerobic action in the latter stretches. Based on the average

Table 7 Volumetric and area reaction rate parameter (/day) for BOD$_5$ and TKN removal

Literature reported values	Present study	Reaction rate parameter (k) (/day)	Present study	Reaction rate parameter (k) (/day)
Author	**Reaction rate parameter (k) (/day)**	**Present study**	**Reaction rate parameter (k) (/day)**	
(i) Volumetric based reaction rate parameter for BOD$_5$ removal				
Crites (1994)	0.8–1.1	$k_{app} = 0.612$		
Reed and Brown (1995)	1.104			
Tanner et al. (1995)	0.17			
Tanner et al. (1995)	0.22			
Wood (1995)	1.84			
Wood (1995)	1.35			
Wood (1995)	0.86			
Kadlec and Knight (1996)	0.3–6.1			
Liu et al. (2000)	0.86			
Trang et al. (2010)	0.10–0.24			
K-S*	Not Reported	$k = 0.742$		
(ii) Area based reaction rate parameter for BOD$_5$ removal				
IWA (2000)	0.068	$k_{app} = 0.208$		
Vymazal (1998)	0.13			
Cooper et al. (1996)	0.06			
Cooper et al. (1996)	0.31			
IWA (2000)	0.17			
Arceivala (2005)	0.17			
K-S*	Kadlec (1997)	0.49	$k = 0.252$	
Brix (1994)	0.06–0.16			
Cooper (1996)	0.06–0.31			
Kadlec (2000)	0.17			

Volumetric reaction rate parameter (/day) for TKN Removal

Literature reported values	Present study	Reaction rate parameter (k) (/day)	Present study	Reaction rate parameter (k) (/day)
Author	**Reaction rate parameter (k) (/day)**	**Present study**	**Reaction rate parameter (k) (/day)**	
Tanner et al. (1995)	0.16	$k_{app} = 0.389$		
Wittgren and Maehlum (1997)	0.06			
Wong et al. (2006)	4.11			
Sonavane and Munavalli (2009)	0.1834			
Sonavane and Munavalli (2009)	0.355			
Trang et al. (2010)	0.03–0.07			
absolute error and RMS error it is concluded that plug flow and K-S* reaction kinetic models are more applicable for predicting BOD removal. The volumetric reaction rate parameter for BOD removal by plug flow and K-S* model is recommended to be 0.612/day and 0.742/day respectively for design of SSFCW for tropical climate. The volumetric reaction rate parameter for TKN removal by plug flow model is 0.389/day. The corresponding area-based reaction rate parameter for BOD removal for plug flow and K-S* model is 0.208 m/day and 0.252 m/day.

Acknowledgements The authors would like to thanks the Governing Council and Director, RIT Rajaramnagar and Director, Walchand College of Engineering, Sangli for their financial support for the research project.

Funding The authors would like to thank the Governing Council and Director, RIT Rajaramnagar for their financial support for the research project.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abdolmajid G, Gholami M, Davoudi R, Rastegar A, Miri M (2015) Efficiency and kinetic modeling of removal of nutrients and organic matter from a full-scale constructed wetland in Qasr-e-Shirin, Iran. Environ Health Eng Manag J 2(3):107–116
American Public Health Association (2005) American Water Works Association Standard methods for the examination of water and wastewater, 21st edition. Washington, DC
Bavor HL, Roser DJ, Mckersie SA, Breen P (1988) Joint study on sewage treatment lagoon-aquatic plant system. In: Hawkesbury Agricultural college/CSIRO/Sydney Water Board, Sydney
Cooper PF, Job JD, Green MB, Shutes RBE (1996) Reed beds and Constructed wetlands for wastewater treatment, WRc, Swindon Wilts, UK, p 184
Cui L, Wei L, Yaqiong Z, Jiaming W, Yinru L, Manyin Z, Xu P, Xingsheng Z, Kai L, Wu M (2016) Nitrogen removal in a horizontal subsurface flow constructed wetland estimated using the first-order kinetic model. Water 8:514
IWA (2000) Constructed wetland for pollution control: processes, performance, design and operation. In: Scientific and technical report No. 8. IWA publishing, London, UK
Kadlec RH (1997) Deterministic and stochastic aspects of constructed wetland performance and design. Water Sci Technol 35(5):149–156
Kadlec RH (2000) The inadequacy of first-order treatment wetland models. Ecol Eng 15:105–109
Kadlec RH, Knight RL (1996) Treatment wetlands. Lewis Publishers, CRC Press, Boca Raton, p 893
Kallner S, Wittgren H (2001) Modelling nitrogen transformations in surface flow wastewater treatment wetlands in Sweden. Water Sci Technol 44(11–12):237–244
Kemp M, George D (1997) Subsurface flow constructed wetlands treating municipal wastewater for nitrogen transformation and removal. Water Environ Res 69(7):1254–1262
Marsili-Libelli S, Checchi N (2005) Identification of dynamic model for horizontal subsurface flow constructed wetland. Ecol Model 187:201–218
Mitchell C, McNevin D (2001) Alternative analysis of BOD removal in subsurface flow constructed wetlands employing Monod kinetics. Water Res 35(5):1295–1303
Rousseau Diederik PA, Vanrolleghem PA, De Pauw N (2004) Model based design of horizontal subsurface flow constructed treatment wetland: a review. Water Res 38:1484–1493
Shepherd H, Tchobanoglous G, Grismer M (2001) Time dependent retardation model for chemical oxygen demand removal in a subsurface flow constructed wetland for winery wastewater treatment. Water Environ Res 73(5):597–606
Sonavane PG, Munavalli GR (2009) Modeling nitrogen removal in a constructed wetland treatment system. Water Sci Technol 60(2):301–309
Sun G, Saeed T (2011) Kinetic modeling of nitrogen and organics removal in vertical and horizontal flow wetland. Water Res 43:3137–3152
Wood A (1995) Constructed Wetland in water pollution control fundamentals to their understanding. Water Sci Technol 32(3):21–29
Wynn T, Liehr S (2001) Development of a constructed subsurface flow wetland simulation model. Ecol Eng 16:519–536

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.