On a Yamabe Type Problem on Three Dimensional Thin Annulus

M. Ben Ayeda, K. El Mehdib,c,*, M. Hammamia \& M. Ould Ahmedoud \^{}

a: Département de Mathématiques, Faculté des Sciences de Sfax, Route Soukra, Sfax, Tunisia.
b: Faculté des Sciences et Techniques, Université de Nouakchott, Nouakchott, Mauritanie.
c: The Abdus Salam ICTP, Mathematics Section, Strada Costiera 11, 34014 Trieste, Italy.
d: Mathematisches institut, Auf der Morgenstelle 10, D-72076 Tubingen, Germany.

\textbf{ABSTRACT.-} We consider the problem: \((P_\varepsilon)\) : \(-\Delta u_\varepsilon = u_\varepsilon^5, u_\varepsilon > 0\) in \(A_\varepsilon; u_\varepsilon = 0\) on \(\partial A_\varepsilon\), where \(\{A_\varepsilon \subset \mathbb{R}^3, \varepsilon > 0\}\) is a family of bounded annulus shaped domains such that \(A_\varepsilon\) becomes “thin” as \(\varepsilon \to 0\). We show that, for any given constant \(C > 0\), there exists \(\varepsilon_0 > 0\) such that for any \(\varepsilon < \varepsilon_0\), the problem \((P_\varepsilon)\) has no solution \(u_\varepsilon\), whose energy, \(\int_{A_\varepsilon} |\nabla u_\varepsilon|^2\), is less than \(C\). Such a result extends to dimension three a result previously known in higher dimensions. Although the strategy to prove this result is the same as in higher dimensions, we need a more careful and delicate blow up analysis of asymptotic profiles of solutions \(u_\varepsilon\) when \(\varepsilon \to 0\).

\textbf{Keywords:} Non compact variational problems, Elliptic problems with critical Sobolev exponent, blow up analysis.

\textbf{Mathematics Subject classification 2000:} 35J65, 58E05, 35B40.

1 Introduction

We consider the following nonlinear elliptic problem

\[(P_\Omega) \begin{cases} -\Delta u = u^5, & u > 0 \text{ in } \Omega \\ \frac{u}{u} = 0, & \text{on } \partial \Omega, \end{cases} \]

where \(\Omega\) is a smooth bounded domain in \(\mathbb{R}^3\).

The equation \((P_\Omega)\) arises in many mathematical and physical contexts (see [6]), but its greatest interest lies in its relation to the Yamabe problem. From this geometric point of view, we think of \(u\) as defining the conformal metric \(g_{ij} = u^{\frac{4}{n-2}} \delta_{ij}\). Equation \((P_\Omega)\) then says that the metric \(g\) has constant scalar curvature.

It is well known that if \(\Omega\) is starshaped, \((P_\Omega)\) has no solution (see Pohozaev [14]) and if \(\Omega\) has nontrivial topology, in the sense that \(H_{2k-1}(\Omega; Q) \neq 0\) or \(H_k(\Omega; Z/2Z) \neq 0\) for some \(k \in \mathbb{N}\), Bahri and Coron [3] have shown that \((P_\Omega)\) has a solution. Nevertheless, Ding [11] (see also Dancer [10]) gave the example of contractible domain on which \((P_\Omega)\) has a solution. Then, the question related to existence or nonexistence of solution of \((P_\Omega)\) remained open.

*Corresponding author. E-mails: khalil@univ-nkc.mr and elmehdi@ictp.trieste.it.

\^{}E-mails: M. Ben Ayed: Mohamed.Benayed@fss.rnu.tn, M. Hammami: Mokhless.Hammami@fss.rnu.tn, M. Ould Ahmedou: ahmedou@everest.mathematik.uni-tuebingen.de.
In this paper, we study the problem \((P_{\Omega})\) when \(\Omega = A_{\varepsilon}\) is an annulus-shaped domain in \(\mathbb{R}^3\) and \(\varepsilon\) is a small positive parameter. More precisely, let \(f\) be any smooth function:

\[
f: \mathbb{R}^2 \rightarrow [1, 2], (\theta_1, \theta_2) \rightarrow f(\theta_1, \theta_2)
\]

which is periodic of period \(\pi\) with respect to \(\theta_1\) and of period \(2\pi\) with respect to \(\theta_2\).

We set

\[
S_1(f) = \{ x \in \mathbb{R}^3 / r = f(\theta_1, \theta_2) \},
\]

where \((r, \theta_1, \theta_2)\) are the polar coordinates of \(x\).

For \(\varepsilon\) positive small enough, we introduce the following map

\[
g_\varepsilon: S_1(f) \rightarrow g_\varepsilon(S_1(f)) = S_2(f), \quad x \mapsto g_\varepsilon(x) = x + \varepsilon n_x,
\]

where \(n_x\) is the outward normal to \(S_1(f)\) at \(x\). We denote by \((A_{\varepsilon})_{\varepsilon>0}\) the family of annulus-shaped domain in \(\mathbb{R}^3\) such that \(\partial A_\varepsilon = S_1(f) \cup S_2(f)\).

We are mainly interested in the existence of finite energy solutions, our main result is the following Theorem.

Theorem 1.1 Let \(C\) be any positive constant. Then, there exists \(\varepsilon_0 > 0\) such that for any \(\varepsilon < \varepsilon_0\), the problem \((P_\varepsilon): -\Delta u_\varepsilon = u_\varepsilon^5, u_\varepsilon > 0\) in \(A_\varepsilon\), \(u_\varepsilon = 0\) on \(\partial A_\varepsilon\), has no solution such that \(\int_{A_\varepsilon} |\nabla u_\varepsilon|^2 \leq C\).

Such a nonexistence result of finite energy solutions to Yamabe type problems on nontrivial domains is a new and interesting phenomenon, and it is a subject of current investigations by the authors. It turns out that such a nonexistence result of finite energy solutions is closely related to nonexistence results of solutions of finite Morse index, and has its explanation in the behavior of the first eigenvalue of Laplace operator, or more generally of Laplace Beltrami operator on complete manifolds. We hope that such results will be useful to find necessary and sufficient conditions on the manifold for the solvability of Yamabe problem on complete manifolds. The results of such investigations will appear elsewhere. We notice that the higher dimensional analogue of our result has been recently proved by the first three authors [5].

Our strategy to prove Theorem 1.1 is the same as in higher dimensions, however as usual in elliptic equations involving critical Sobolev exponent [7], we need more refined estimates of the asymptotic profiles of solutions \(u_\varepsilon\) when \(\varepsilon \to 0\) to treat the three dimensional case. Such refined estimates, which are of self interest, are highly nontrivial and uses in a crucial way the refined properties of blowing up solutions of Yamabe type problems in the spirit of R. Schoen [17], [18], [19] and Y. Y. Li [12]. The input of such a refined blow up analysis enables us to rule out some bad configurations for which the higher dimensional estimates cannot be improved.

Another ingredient of our proof is a careful expansion of the Euler Lagrange functional associated to \((P_\varepsilon)\), and its gradient near a small neighborhood of highly concentrated functions. To perform such expansions we extensively make use of the techniques developed by A. Bahri [2] and O. Rey [15], [16] in the framework of the Theory of critical points at infinity.

The organization of the paper is as follows. The next section is devoted to set up some notation. In Section 3, we study the asymptotic behavior of bounded energy solutions of \((P_\varepsilon)\). In section 4, we prove Theorem 1.1. Lastly, we prove in Section 5 some useful facts and careful estimates needed for the previous sections.
2 Notation

We denote by G_ε the Green’s function of Laplace operator defined by

$$
\forall x \in A_\varepsilon \quad - \Delta G_\varepsilon(x,.) = c' \delta_x \text{ in } A_\varepsilon, \quad G_\varepsilon(x,.) = 0 \text{ on } \partial A_\varepsilon,
$$

(2.1)

where δ_x is the Dirac mass at x and $c' = \text{meas}(S^2)$.

We denote by H_ε the regular part of G_ε, that is,

$$
H_\varepsilon(x_1, x_2) = |x_1 - x_2|^{-1} - G_\varepsilon(x_1, x_2), \text{ for } (x_1, x_2) \in A_\varepsilon \times A_\varepsilon.
$$

(2.2)

For $p \in \mathbb{N}^*$ and $x = (x_1, ..., x_p) \in A_\varepsilon^p$, we denote by $M = M_\varepsilon(x)$ the matrix defined by

$$
M = (m_{ij})_{1 \leq i, j \leq p}, \text{ where } m_{ii} = H_\varepsilon(x_i, x_i), m_{ij} = -G_\varepsilon(x_i, x_j), i \neq j
$$

(2.3)

and define $\rho_\varepsilon(x)$ as the least eigenvalue of M ($\rho_\varepsilon(x) = -\infty$ if $x_i = x_j$ for some $i \neq j$).

For $a \in \mathbb{R}^3$ and $\lambda > 0$, $\delta(a, \lambda)$ denotes the function

$$
\delta(a, \lambda)(x) = c_0 \frac{\lambda^{1/2}}{(1 + \lambda^2 |x - a|^2)^{1/2}}.
$$

(2.4)

It is well known (see [8]) that if c_0 is suitably chosen ($c_0 = 3^{1/4}$), $\delta(a, \lambda)$ are the only solutions of

$$
-\Delta u = u^5, \ u > 0 \text{ in } \mathbb{R}^3
$$

(2.5)

and they are also the only minimizers for the Sobolev inequality

$$
S = \inf \{|\nabla u|_{L^2(\mathbb{R}^3)}^2 |u|_{L^6(\mathbb{R}^3)}^{-2}, \ s.t. \nabla u \in L^2, u \in L^6, u \neq 0\}.
$$

(2.6)

We also denote by $P_\varepsilon \delta(a, \lambda)$ the projection of $\delta(a, \lambda)$ on $H^1_0(A_\varepsilon)$, that is,

$$
\Delta P_\varepsilon \delta(a, \lambda) = \Delta \delta(a, \lambda) \text{ in } A_\varepsilon, \ P_\varepsilon \delta(a, \lambda) = 0 \text{ on } \partial A_\varepsilon,
$$

and by $\theta(a, \lambda) = \delta(a, \lambda) - P_\varepsilon \delta(a, \lambda)$. We define on $H^1_0(A_\varepsilon) \setminus \{0\}$ the functional

$$
J_\varepsilon(u) = \frac{\int_{A_\varepsilon} |\nabla u|^2}{\left(\int_{A_\varepsilon} u^6\right)^{1/3}}
$$

(2.7)

whose positive critical points, up a multiplicative constant, are solutions of (P_ε). Lastly, let

$$
\langle u, v \rangle = \int_{A_\varepsilon} \nabla u \nabla v, \ ||u|| = \left(\int_{A_\varepsilon} |\nabla u|^2\right)^{1/2}, \ u, v \in H^1_0(A_\varepsilon).
$$
3 Asymptotic behavior of bounded energy solutions

This section is devoted to the study of the asymptotic behavior of bounded energy solutions of \((P_\varepsilon)\). Such a precise description is cornerstone in the proof of our results. It says, roughly speaking, that our solutions concentrate at a finite number of points such that the distance of one of them to the other is at least comparable to \(\varepsilon\).

In the sequel of this paper we consider a solution \(u_\varepsilon\) of \((P_\varepsilon)\) which satisfies

\[
\int_{A_\varepsilon} |\nabla u_\varepsilon|^2 \leq C,
\]

where \(C\) is a positive constant independent of \(\varepsilon\). Our aim in this section is to prove the following result:

Theorem 3.1 Let \(u_\varepsilon\) be a solution of problem \((P_\varepsilon)\) which satisfies (3.1). Then, after passing to a subsequence, there exist \(p \in \mathbb{N}^*, (x_{1,\varepsilon},...,x_{p,\varepsilon}) \in A_\varepsilon^p, (\lambda_{1,\varepsilon},...,\lambda_{p,\varepsilon}) \in (\mathbb{R}_+^*)^p\), and a positive constant \(\alpha > 0\) such that:

\[
|u_\varepsilon - \sum_{i=1}^p P_\varepsilon \delta(x_{i,\varepsilon}, \lambda_{i,\varepsilon})| \to 0, \lambda_{i,\varepsilon}d_{i,\varepsilon} \to +\infty \text{ for } 1 \leq i \leq p \quad \text{as } \varepsilon \to 0,
\]

\[
|\lambda_{i,\varepsilon} - x_{i,\varepsilon} - x_{j,\varepsilon}| \to \infty \text{ as } \varepsilon \to 0, \quad |x_{i,\varepsilon} - x_{j,\varepsilon}| \geq \alpha \varepsilon \text{ for } i \neq j,
\]

where \(d_{i,\varepsilon} = d(x_{i,\varepsilon}, \partial A_\varepsilon)\) and \(\lambda_{i,\varepsilon} = 3^{-1/2}(u_\varepsilon(x_{i,\varepsilon}))^2\).

Remark 3.2 The above Theorem is true in all dimensions \(n \geq 3\), however a weaker version used in [5] was enough to derive the equivalent of our result in dimension \(n \geq 4\).

To prove Theorem 3.1, we start by establishing some useful facts. Let \(x_{1,\varepsilon} \in A_\varepsilon\) be such that

\[
u_\varepsilon(x_{1,\varepsilon}) = \max_{A_\varepsilon} u_\varepsilon := M_{1,\varepsilon}.
\]

Let \(\tilde{A}_\varepsilon = M_{1,\varepsilon}^2(A_\varepsilon - x_{1,\varepsilon})\), and denote by \(v_\varepsilon\) the function defined on \(\tilde{A}_\varepsilon\) by

\[
v_\varepsilon(y) = M_{1,\varepsilon}^{-1}u_\varepsilon(x_{1,\varepsilon} + M_{1,\varepsilon}^{-2}y).
\]

(3.2)

By Lemma 2.3 of [5], we know that:

\[
M_{1,\varepsilon}^2d(x_{1,\varepsilon}, \partial A_\varepsilon) \to +\infty \text{ as } \varepsilon \to 0.
\]

Furthermore, \(v_\varepsilon \to \delta_{(0,\alpha_0)}\) in \(C^2_{loc}(\mathbb{R}^3)\) as \(\varepsilon \to 0\), where \(\alpha_0 = 3^{-1/2}\).

Now, we prove the following crucial lemma:

Lemma 3.3 There exist positive constants \(\delta\) and \(\bar{c}\) such that

\[
\max_{|y| \leq \delta M_{1,\varepsilon}^2} |v_\varepsilon(y) - \delta_{(0,\alpha_0)}(y)| \leq \bar{c}(\varepsilon M_{1,\varepsilon}^2)^{-1}.
\]
Proof. First, it follows from Lemma 3.2 of [9], that there exist positive constants δ and \bar{c} such that
\[v_\varepsilon(y) \leq \bar{c}\delta(0,\alpha_0)(y) \quad \text{for} \quad |y| \leq \delta\varepsilon M_{1,\varepsilon}^2. \tag{3.3} \]

Now, let
\[m_\varepsilon = \max_{|y| \leq \delta\varepsilon M_{1,\varepsilon}^2} |v_\varepsilon(y) - \delta(0,\alpha_0)(y)| \equiv |v_\varepsilon(y_\varepsilon) - \delta(0,\alpha_0)(y_\varepsilon)|. \]

Arguing by contradiction, we assume that $m_\varepsilon\varepsilon M_{1,\varepsilon}^2 \to +\infty$ as $\varepsilon \to 0$.

Let $w_\varepsilon(y) = m_\varepsilon^{-1} (v_\varepsilon(y) - \delta(0,\alpha_0)(y))$, w_ε satisfies
\[\Delta w_\varepsilon + f_\varepsilon w_\varepsilon = 0 \quad \text{with} \quad f_\varepsilon = \frac{v_\varepsilon^5 - \delta^5(0,\alpha_0)}{v_\varepsilon - \delta(0,\alpha_0)}. \]

By (3.3), we have
\[|f_\varepsilon| \leq c(1 + |y|)^{-4} \quad \text{for} \quad |y| \leq \delta\varepsilon M_{1,\varepsilon}^2. \tag{3.4} \]

Applying the Green’s representation leads to
\[w_\varepsilon(y) = a \left(\int_{B_\varepsilon} G_{B_\varepsilon}(y, x) f_\varepsilon(x) w_\varepsilon(x) dx - \int_{\partial B_\varepsilon} \frac{\partial G_{B_\varepsilon}}{\partial v}(y, x) w_\varepsilon(x) d\sigma(x) \right), \]
where $a = (\text{meas}(S^2))^{-1}$, $B_\varepsilon = B(0, \delta\varepsilon M_{1,\varepsilon}^2)$, ν is the outward normal to ∂B_ε and G_{B_ε} is the Green’s function of Δ under Dirichlet boundary conditions in B_ε. Using (3.3) and (3.4) yields
\[|w_\varepsilon(y)| \leq c \left(\frac{\int_{B_\varepsilon} dx}{|y - x| (1 + |x|)^4} + \frac{c}{m_\varepsilon \delta\varepsilon M_{1,\varepsilon}^2} \right) \leq c \left((1 + |y|)^{-2} + (m_\varepsilon \delta\varepsilon M_{1,\varepsilon}^2)^{-1} \right). \tag{3.5} \]

It follows that w_ε is bounded and by elliptic standard estimates w_ε converges, up to some subsequence, in the C^2_{loc}-norm to a function w satisfying
\[\begin{cases} \Delta w + 5\delta^4(0,\alpha_0)w(y) = 0 & \text{in} \quad \mathbb{R}^3 \\ |w(y)| \leq c(1 + |y|)^{-2}. \end{cases} \tag{3.6} \]

By Lemma 2.4 of [9], every solution of (3.6) can be written as
\[w(y) = \sum_{j=1}^{3} a_j \frac{\partial \delta(0,\alpha_0)}{\partial y_j} + a_0 \left(y \cdot \nabla \delta(0,\alpha_0)(y) + \frac{1}{2} \delta(0,\alpha_0)(y) \right) \]
for some constants $a_j \geq 0$, $j = 0, \ldots, 3$. Since $w(0) = \frac{\partial w}{\partial y_j}(0) = 0$, we obtain that $a_j = 0$ for $0 \leq j \leq 3$, namely, $w \equiv 0$. Since $w_\varepsilon(y_\varepsilon) = 1$, it follows that $|y_\varepsilon| \to +\infty$ as $\varepsilon \to 0$. Applying (3.5) at $y = y_\varepsilon$ gives
\[1 = |w_\varepsilon(y_\varepsilon)| \leq c \left((1 + |y_\varepsilon|)^{-2} + (m_\varepsilon \delta\varepsilon M_{1,\varepsilon}^2)^{-1} \right). \tag{3.7} \]

Since the right hand-side of (3.7) goes to zero, as $\varepsilon \to 0$, we derive a contradiction. Thus $m_\varepsilon \delta\varepsilon M_{1,\varepsilon}^2$ must be bounded and the proof of our lemma follows. \(\square\)
Lemma 3.4 Let δ be the positive constant stated in Lemma 3.3. Then we have

$$\int_{B(x_1, \varepsilon, \delta \varepsilon)} u_\varepsilon^6 = S_3 + o(1) \quad \text{as} \quad \varepsilon \to 0,$$

where $S_3 = S^{3/2}$ and S is the Sobolev constant defined in (2.6).

Proof. We have

$$\int_{B(x_1, \varepsilon, \delta \varepsilon)} u_\varepsilon^6 = \int_{B(0, \delta \varepsilon M_{1, \varepsilon}^2)} v_\varepsilon^6$$

$$= \int_{B(0, \delta \varepsilon M_{1, \varepsilon}^2)} \delta_{0, 0}^6 + O \left(\int_{B(0, \delta \varepsilon M_{1, \varepsilon}^2)} \delta_{0, 0}^5 |v_\varepsilon - \delta_{0, 0}| + |v_\varepsilon - \delta_{0, 0}|^6 \right)$$

$$= \int_{B(0, \delta \varepsilon M_{1, \varepsilon}^2)} \delta_{0, 0}^6 + O \left(|v_\varepsilon - \delta_{0, 0}| L^6(B(0, \delta \varepsilon M_{1, \varepsilon}^2)) \right).$$

Using Lemma 3.3 and the fact that $\varepsilon M_{1, \varepsilon}^2 \to +\infty$ as $\varepsilon \to 0$, we easily derive our lemma. \square

Now, we are in the position to prove Theorem 3.1.

Proof of Theorem 3.1 We distinguish two cases:

Case 1. $\int_{A_\varepsilon} |u_\varepsilon - P_\varepsilon \delta(x_1, \varepsilon, \lambda_{1, \varepsilon})|^6 \to 0$ as $\varepsilon \to 0$, where $\lambda_{1, \varepsilon} = \alpha_0 M_{1, \varepsilon}^2$. In this case we are done, the number of blow up points in the Theorem is reduced to 1, that is, $p = 1.$

Case 2. $\int_{A_\varepsilon} |u_\varepsilon - P_\varepsilon \delta(x_1, \varepsilon, \lambda_{1, \varepsilon})|^6 \not\to 0$ as $\varepsilon \to 0$. We are going to study this case. First, let us prove that

$$\int_{A_\varepsilon \setminus B(x_1, \varepsilon, \delta \varepsilon)} u_\varepsilon^6 \not\to 0 \quad \text{as} \quad \varepsilon \to 0. \quad (3.8)$$

Observe that

$$\int_{A_\varepsilon \setminus B(x_1, \varepsilon, \delta \varepsilon)} P_\varepsilon \delta_{x_1, \varepsilon, \lambda_{1, \varepsilon}}^6 \leq \int_{A_\varepsilon \setminus B(x_1, \varepsilon, \delta \varepsilon)} \delta_{x_1, \varepsilon, \lambda_{1, \varepsilon}}^6 = \int_{A_\varepsilon \setminus B(0, \delta \varepsilon M_{1, \varepsilon}^2)} \delta_{0, 0}^6 \to 0 \quad \text{as} \quad \varepsilon \to 0. \quad (3.9)$$

where we have used the fact that $\varepsilon M_{1, \varepsilon}^2 \to \infty$ and $\delta_{0, 0} \in L^6(\mathbb{R}^3)$.

By Lemma 3.3 and the fact that $\varepsilon M_{1, \varepsilon}^2 \to \infty$, it is easy to derive

$$\int_{B_\varepsilon} |u_\varepsilon - P_\varepsilon \delta(x_1, \varepsilon, \lambda_{1, \varepsilon})|^6 \to 0 \quad \text{as} \quad \varepsilon \to 0. \quad (3.10)$$

Clearly, (3.9) and (3.10) imply (3.8). Now, we set

$$u_\varepsilon(x_{2, \varepsilon}) = \max_{A_\varepsilon \setminus B(x_1, \varepsilon, \delta \varepsilon)} u_\varepsilon := M_{2, \varepsilon}.$$

It is clear that $|x_1, \varepsilon - x_{2, \varepsilon}| \geq \delta \varepsilon$.

By (3.8), there exists $c > 0$ such that

$$c \leq \int_{A_\varepsilon \setminus B(x_1, \varepsilon, \delta \varepsilon)} u_\varepsilon^6 \leq M_{2, \varepsilon}^4 \int_{A_\varepsilon} u_\varepsilon^2(x) dx.$$
But, we have
\[\int_{A_\varepsilon} u_\varepsilon^2(x) dx = \varepsilon^3 \int_{D_\varepsilon} \tilde{u}_\varepsilon^2(X) dX \leq \varepsilon^3 c_\varepsilon \int_{D_\varepsilon} |\nabla \tilde{u}_\varepsilon(X)|^2 dX = \frac{\varepsilon^2}{c_\varepsilon} \int_{A_\varepsilon} |\nabla u_\varepsilon(x)|^2 dx \leq \frac{C\varepsilon^2}{c_\varepsilon}, \]
where \(\tilde{u}_\varepsilon(X) = u_\varepsilon(\varepsilon X), \) \(D_\varepsilon = \varphi(A_\varepsilon), \) with \(\varphi : x \mapsto \varphi(x) = \varepsilon^{-1} x, \) and \(c_\varepsilon > 0. \) By Lin [13], we have \(c_\varepsilon \to c > 0 \) as \(\varepsilon \to 0. \) We derive that \(\varepsilon M_{2,\varepsilon}^2 \not\to 0 \) as \(\varepsilon \to 0 \) and therefore as in Lemma 2.3 of [5], we have that \(M_{2,\varepsilon}^2 d(x_{2,\varepsilon}, \partial A_\varepsilon) \to +\infty \) as \(\varepsilon \to 0. \) This implies that \(M_{2,\varepsilon}^2 |x_{1,\varepsilon} - x_{2,\varepsilon}| \to +\infty \) as \(\varepsilon \to 0. \) Now, for \(y \in E_\varepsilon := M_{2,\varepsilon}^2(A_\varepsilon - x_{2,\varepsilon}), \) we introduce the following function
\[U_\varepsilon(y) = M_{2,\varepsilon}^{-1} u_\varepsilon \left(x_{2,\varepsilon} + M_{2,\varepsilon}^{-2} y \right). \]
It is easy to see that \(U_\varepsilon \) is bounded by 1 in \(B(0, (1/2)M_{2,\varepsilon}^2 |x_{2,\varepsilon} - x_{1,\varepsilon}|). \) Therefore, \(U_\varepsilon \to \delta_{(0,\alpha_0)} \) in \(C^2_{loc}(\mathbb{R}^3) \) as \(\varepsilon \to 0. \) Thus, we have obtained in Case 2 a second blow up point. It is clear that we can iterate such a process. But, since the energy of \(u_\varepsilon \) is bounded such a process stops after finitely steps, and the proof of our Theorem is thereby completed. \(\square \)

4 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. To this aim, we first study the location of blow up points that we found in Section 3. To this goal, we need a rather delicate analysis and careful estimates. First, we start by the general setting. Let, for \(p \in \mathbb{N}^* \) and \(\eta > 0 \) given
\[V_\varepsilon(p, \eta) = \left\{ u \in \Sigma^+(A_\varepsilon) \ s.t \ \exists \ y_1, \ldots, y_p \in A_\varepsilon, \ \exists \lambda_1, \ldots, \lambda_p > \frac{1}{\eta} \ with \quad \left| u - C(p) \sum_{i=1}^p P_\varepsilon \delta(y_i, \lambda_i) \right| < \eta, \ \lambda_i d(y_i, \partial A_\varepsilon) > \frac{1}{\eta} \forall i, \ \epsilon_{ij} < \eta \forall i \neq j \right\}, \]
where \(\Sigma^+(A_\varepsilon) = \{ u \in H^1_0(A_\varepsilon) / u > 0, \ |u| = 1 \} \) and \(\epsilon_{ij} = (\lambda_i/\lambda_j + \lambda_j/\lambda_i + \lambda_i \lambda_j |y_i - y_j|^2)^{-1/2}. \)
If a function \(u \) belongs to \(V_\varepsilon(p, \eta), \) then, for \(\eta > 0 \) small enough, the minimization problem
\[\min_{\alpha_i, \lambda_i > 0, \ y_i \in A_\varepsilon} \left| u - \sum_{i=1}^p \alpha_i P_\varepsilon \delta(y_i, \lambda_i) \right| \]
has a unique solution, up to permutation (see Lemma A.2 in [3]).
Therefore, for \(\varepsilon > 0 \) sufficiently small, \(u_\varepsilon \) (solution of \(P_\varepsilon \)) can be uniquely written as
\[\tilde{u}_\varepsilon := \frac{u_\varepsilon}{|u_\varepsilon|} = \sum_{i=1}^p \alpha_i P_\varepsilon \delta(x_{i,\varepsilon}, \lambda_{i,\varepsilon}) + v_\varepsilon, \quad (4.1) \]
where \(v_\varepsilon \) satisfies the following conditions:
\[(V_0) \langle v_\varepsilon, P_\varepsilon \delta(x_{i,\varepsilon}, \lambda_{i,\varepsilon}) \rangle = \langle v_\varepsilon, \frac{\partial P_\varepsilon \delta(x_{i,\varepsilon}, \lambda_{i,\varepsilon})}{\partial \lambda_{i,\varepsilon}} \rangle = \langle v_\varepsilon, \frac{\partial P_\varepsilon \delta(x_{i,\varepsilon}, \lambda_{i,\varepsilon})}{\partial (x_{i,\varepsilon})} \rangle = 0 \quad \forall i, \]
where \((x_{i,\varepsilon})_k\) is the \(k\)th component of \(x_{i,\varepsilon}\), \(k \in \{1, 2, 3\}\) and \(\alpha_{i,\varepsilon}\) satisfies:

\[
J(u_{\varepsilon})^3 \alpha_{j,\varepsilon}^4 = 1 + o(1) \ \forall j.
\]

To simplify the notations, we write \(\alpha_{i,\varepsilon}, x_{i,\varepsilon}, \lambda_{i,\varepsilon}, \delta_{(x_{i,\varepsilon}, \lambda_{i,\varepsilon})}, P \delta_{(x_{i,\varepsilon}, \lambda_{i,\varepsilon})}\) and \(\theta_{(x_{i,\varepsilon}, \lambda_{i,\varepsilon})}\) respectively and we also write \(u_{\varepsilon}\) instead of \(\tilde{u}_{\varepsilon}\).

As a consequence of Theorem 3.1, it is easy to obtain the following result

Corollary 4.1 For each \(i\), we denote by \(B_i := B(x_i, \alpha d_i/4)\). For \(i \neq j\), we have

(a) \(\varepsilon_{ij} \leq \frac{c}{(\lambda_id_i\lambda_jd_j)^{1/2}}\), (b) \(\lambda_i \frac{\partial \varepsilon_{ij}}{\partial \lambda_i} = -\frac{1}{2} \varepsilon_{ij} (1 + o(1))\), (c) \(B_i \cap B_j = \emptyset\).

Proof. The proof is immediate since \(|x_i - x_j| \geq \alpha \varepsilon\) for each \(i \neq j\) and \(d_i \leq \varepsilon\) for each \(i\).

Now, let us recall the estimate of the \(v_{\varepsilon}\)-part of \(u_{\varepsilon}\).

Proposition 4.2 [5] Let \(v_{\varepsilon}\) be defined by (4.2). Then, we have the following estimate

\[
||v_{\varepsilon}|| \leq c \sum_i \frac{1}{\lambda_id_i} + c \sum_{i \neq j} \varepsilon_{ij} \left(\frac{\log \varepsilon_{i,j}}{1/3}\right).
\]

In the next propositions, we give useful expansions of the gradient of \(J\) which allows us to characterize the concentration points given by Theorem 3.1.

Regarding the estimate of \(||v_{\varepsilon}||^2\), it is negligible with respect to the principle part of Proposition 3.2 of [5], however it is of the same order as the principle part of Proposition 3.3 of [5]. Following an idea introduced by O. Rey [16] and the fact that the balls \(B_i\) are disjoints, we are able to improve the terms which contain \(v_{\varepsilon}\) and therefore we can obtain the analogue of Proposition 3.3 of [5].

Proposition 4.3 For each \(i\), we have the following expansion

\[
\langle \nabla J(u_{\varepsilon}), \lambda_i \frac{\partial P \delta_i}{\partial x_i} \rangle = 2J(u_{\varepsilon})c_1 \left(\frac{\alpha_i H_{\varepsilon}(x_i, x_i)}{2} \right) (1 + o(1)) - \sum_{j \neq i} \alpha_j \left(\lambda_i \frac{\partial \varepsilon_{ij}}{\partial \lambda_i} + \frac{1}{2} H_{\varepsilon}(x_i, x_j) \right) (1 + o(1)) + R,
\]

where \(c_1\) is a positive constant and \(R = O \left(\sum_{k=1}^p (\lambda_k d_k)^{-2} + \sum_{k \neq r} \varepsilon_{k,r}^2 (\log \varepsilon_{k,r})^{-2/3}\right).

Proof. It follows from Lemma 5.1, Proposition 4.2 and the fact that \(v_{\varepsilon}\) satisfies \((V_0)\).

Proposition 4.4 For each \(i\), we have the following expansion

\[
\langle \nabla J(u_{\varepsilon}), \lambda_i \frac{\partial P \delta_i}{\partial x_i} \rangle = J(u_{\varepsilon})c_1 \left(-2 \sum_{j \neq i} \alpha_j \left(\frac{1}{\lambda_i} \frac{\partial \varepsilon_{ij}}{\partial x_i} - \frac{1}{\lambda_i \lambda_j} \frac{\partial H_{\varepsilon}(x_i, x_j)}{\partial x_i} \right)
ight.
\]

\[
+ \frac{\alpha_i}{\lambda_i^2} \frac{\partial H_{\varepsilon}(x_i, x_i)}{\partial x_i} + o \left(\sum_{k=1}^p \frac{1}{(\lambda_k d_k)^2}\right).
\]
Proof. It follows from Lemmas 5.2, 5.3, 5.6, 5.7, 5.8, Proposition 4.2 and the fact that \(v_\varepsilon \) satisfies (\(V_0 \)). The negligible terms which appear in those estimates can be written as \(o((\lambda_1 d_1)^{-2}) \) since \(|x_i - x_j| \geq \alpha \varepsilon \) for each \(i \neq j \) and \(d_k \leq \varepsilon \) for each \(k \).

Now, we order all the \(\lambda_0 d_i's: \lambda_1 d_1 \leq \lambda_2 d_2 \leq \ldots \leq \lambda_p d_p \).

First, we introduce the set of indices \(i \) such that \(\lambda_0 d_i \) and \(\lambda_1 d_1 \) are of the same order. Let \(C_1 \) be a large positive constant and define

\[
I = \{1\} \cup \{i/\lambda_1 d_k \leq C_1 \lambda_{k-1} d_{k-1} \text{ for each } k \leq i\} := \{1, 2, \ldots, l\}. \tag{4.3}
\]

Secondly, we define a subset of \(I \) such that the distance between the points is at most comparable to their distances to the boundary. Let \(C_0 \) be a large positive constant, we define

\[
B = \{i \in I / \exists k_1, \ldots, k_m \in I \text{ s.t. } k_1 = i, \ldots, k_m = 1; |x_{k_j} - x_{k_{j+1}}| \leq C_0 \min(d_{k_j}, d_{k_{j+1}})\}. \tag{4.4}
\]

Lemma 4.5 Let \(B \) be defined by (4.4). Then, \(\{1\} \not\subset B \).

Proof. First, we remark that Proposition 4.3 implies immediately that \(p \geq 2 \). To prove our lemma, we argue by contradiction. We assume that \(B = \{1\} \).

Using Proposition 4.3, and the fact that \(H_\varepsilon(x_i, x_i) \sim c/d_i \) (see [1]), we derive

\[
0 = \langle \nabla J(u_\varepsilon), \lambda_1 \partial P_{\delta_1} \rangle \leq -\frac{c}{(\lambda_1 d_1)} + O(\sum_{k \neq 1} \varepsilon_{1k}). \tag{4.5}
\]

Two cases may occur. If \(k > l \) where \(l \) is defined by (4.3), then by Corollary 4.1, we have

\[
\varepsilon_{1k} \leq \frac{c}{(\lambda_1 d_k)(\lambda_1 d_1)^{1/2}} \leq \frac{1}{C_1^{1/2}((\lambda_1 d_1)(\lambda_1 d_1))^{1/2}} = o\left(\frac{1}{\lambda_1 d_1}\right) \quad \text{(for } C_1 \text{ large enough)}.
\]

In the other case, we have \(|x_1 - x_k| \geq C_0 \min(d_1, d_k) \), then

\[
\varepsilon_{1k} \leq \left(\frac{1}{\lambda_1 d_1}\right)^{1/2} \leq \frac{2}{C_0^{1/2}((\lambda_1 d_1)(\lambda_1 d_1))^{1/2}} = o\left(\frac{1}{\lambda_1 d_1}\right) \quad \text{(for } C_0 \text{ large enough)}.
\]

Thus (4.5) yields a contradiction and the result follows. \hfill \Box

Next, our goal is to prove the following crucial result:

Proposition 4.6 Let \(x_{1, \varepsilon}, \ldots, x_{p, \varepsilon} \) be the points given by Theorem 3.1. Then, we have \(p \geq 2 \) and there exist \(k \in \{2, \ldots, p\} \), \(i_1, \ldots, i_k \in \{1, \ldots, p\} \) such that

\[
d\varepsilon(x_{i_1, \varepsilon}, \ldots, x_{i_k, \varepsilon}) \to 0 \quad \text{and} \quad d^2 \nabla \varepsilon(x_{i_1, \varepsilon}, \ldots, x_{i_k, \varepsilon}) \to 0, \quad \text{as } \varepsilon \to 0,
\]

where \(d = \min_{1 \leq r \leq k} d(x_{i_r, \varepsilon}, \partial A_\varepsilon) \). In addition, we have \(\forall m, r \in \{1, \ldots, k\} \) \(|x_{i_m, \varepsilon} - x_{i_r, \varepsilon}| \leq C'_0 d \), where \(C'_0 \) is a positive constant independent of \(\varepsilon \).
Proof. Let $k = \text{card } B$ that is $B = \{i_1, \ldots, i_k\}$. By Lemma 4.5, we have $k \geq 2$. Let $M_B = (m_{ij})_{i,j \in B}$ be the matrix defined by (2.3) and let $\rho_B = \rho(\epsilon x_{i_1, \ldots, x_{i_k, \epsilon}})$ be the least eigenvalue associated to M_B. We denote by e the eigenvector associated to ρ_B whose norm is 1. We know that all components of e are strictly positive (see [4]). Let $\eta > 0$ be such that for any γ belongs to a neighborhood $C(e, \eta) \subset \{y \in (R^*_+)^k \text{s.t. } |y|^{-1} y - e| < \eta\}$, we have

$$T \gamma M_B \gamma - \rho_B |\gamma|^2 \leq \frac{c_2}{d} |\gamma|^2 \quad \text{and} \quad T \gamma \frac{\partial M_B}{\partial x_i} \gamma = \left(\frac{\partial \rho_B}{\partial x_i} + o(\frac{1}{d^2}) \right) |\gamma|^2$$

(4.6)

and for $\gamma \in (R^*_+)^k \backslash C(e, \eta)$, we have

$$T \gamma M_B \gamma - \rho_B |\gamma|^2 \geq c_3 |\gamma|^2 d^{-1}.$$ (4.7)

First, we study the vector Λ defined by $\Lambda = \left(\lambda_{i_1}^{-1/2}, \ldots, \lambda_{i_k}^{-1/2} \right)$.

Claim 1. We have $\Lambda \in C(e, \eta)$.

Proof of Claim 1. We argue by contradiction. Assume that $\Lambda \in (R^*_+)^k \backslash C(e, \eta)$. Let

$$\Lambda(t) = |\Lambda| \frac{(1 - t) \Lambda + t |\Lambda| e}{(1 - t) \Lambda + t |\Lambda| e} := \rho(t)$$

From Proposition 4.3, we derive

$$\langle \nabla J(u_\epsilon), Z \rangle_{|t=0} = -c \frac{d}{dt} (T \Lambda(t) M_B \Lambda(t)) + O \left(\sum_{i \in B, j \notin B} \epsilon_{ij} \right) + o \left(\frac{1}{\lambda_1^2} \right)$$

where Z is the vector field defined on the variables λ along the flow line defined by $\Lambda(t)$. Observe that

$$\frac{d}{dt} (T \Lambda(t) M_B \Lambda(t)) = \frac{d}{dt} \left(\frac{T \Lambda(t) M_B \Lambda(t)}{|\Lambda(t)|^2} |\Lambda(0)|^2 \right)$$

$$= |\Lambda(0)|^2 \frac{d}{dt} \left(\rho_B + \frac{(1 - t)^2}{|y(t)|^2} (T \Lambda(0) M_B \Lambda(0) - \rho_B |\Lambda(0)|^2) \right)$$

$$= |\Lambda(0)|^2 \left(\frac{2(1 - t)}{|y(t)|^4} (T \Lambda(0) M_B \Lambda(0) - \rho_B |\Lambda(0)|^2)(-1 - t) |\Lambda(0)| < e, \Lambda(0) > - t |\Lambda|^2) \right).$$

Thus

$$\langle \nabla J(u_\epsilon), Z \rangle_{|t=0} = - \frac{2c}{|\Lambda|^2} (T \Lambda M_B \Lambda - \rho_B |\Lambda|^2)(- |\Lambda| < e, \Lambda(0) >)$$

$$+ o \left(\frac{1}{\lambda_1^2} \right) + O \left(\sum_{i \in B, j \notin B} \epsilon_{ij} \right).$$

Since $|e| = 1$, then there exists m such that $e_{im} \geq \frac{1}{k}$. Thus

$$< e, \Lambda(0) > = \sum_j e_{ij} \Lambda_{ij} \geq \frac{1}{k} \Lambda_{im}.$$
Using (4.7), we obtain
\[
\langle \nabla J(u_\varepsilon), Z \rangle_{t=0} \geq \frac{cc_3}{d} |\Lambda|_{L_m} + o\left(\frac{1}{\lambda_1 d_1}\right) + O\left(\sum_{i \in B, j \notin B} \varepsilon_{ij}\right)
\]
\[
\geq \frac{c}{(\lambda_1 d_1 \lambda_{i_m} d_{i_m})^{1/2}} + o\left(\frac{1}{\lambda_1 d_1}\right) + O\left(\sum_{i \in B, j \notin B} \varepsilon_{ij}\right).
\]

As in the proof of Lemma 4.5, we have
\[
\varepsilon_{ij} = o\left(\frac{1}{(\lambda_1 d_1 \lambda_{i_m} d_{i_m})^{1/2}}\right) \quad \forall i \in B, \forall j \notin B.
\]

Thus
\[
0 \geq \frac{c}{(\lambda_1 d_1 \lambda_{i_m} d_{i_m})^{1/2}} + o\left(\frac{1}{\lambda_1 d_1}\right) \geq \frac{c}{\lambda_1 d_1^{c/2}} + o(1) > 0.
\]

This yields a contradiction and our claim follows.

Now, we will prove that
\[
d\rho_B \to 0, \text{ as } \varepsilon \to 0. \quad (4.9)
\]

Using Proposition 4.3 and (4.8), we have
\[
0 = \sum_{i \in B} \langle \nabla J(u_\varepsilon), \lambda_i \frac{\partial P\delta_i}{\partial \lambda_i} \rangle
\]
\[
= \sum_{i \in B} \left[\frac{H_\varepsilon(x_i, x_i)}{\lambda_i} (1 + o(1)) - \sum_{j \neq i, j \in B} (\varepsilon_{ij} - \frac{H_\varepsilon(x_i, x_j)}{\lambda_i \lambda_j}) (1 + o(1)) + O(\sum_{j \notin B} \varepsilon_{ij}) + R \right]
\]
\[
= T \Lambda M_B \Lambda + o\left(\frac{1}{\lambda_1 d_1}\right). \quad (4.10)
\]

We assume, arguing by contradiction, that \(d\rho_B \not\to 0\), when \(\varepsilon \to 0\). Therefore, there exists \(C_4 > 0\) such that \(d|\rho_B| \geq C_4\). Now, we distinguish two cases

1st case: \(\rho_B > 0\). In this case, we derive from (4.10)
\[
0 \geq \rho_B |\Lambda|^2 + o\left(\frac{1}{\lambda_1 d_1}\right) \geq C_4 \frac{|\Lambda|^2}{d} + o\left(\frac{1}{\lambda_1 d_1}\right) > 0.
\]

This yields a contradiction.

2nd case: \(\rho_B < 0\). In this case, using Claim 1, we derive from (4.6) and (4.10),
\[
0 \leq \rho_B |\Lambda|^2 + \frac{c_2 |\Lambda|^2}{d} + o\left(\frac{1}{\lambda_1 d_1}\right) \leq \frac{|\Lambda|^2}{d} (\rho_B d + c_2) + o\left(\frac{1}{\lambda_1 d_1}\right)
\]
\[
\leq \frac{|\Lambda|^2}{d} (-C_4 + c_2) + o\left(\frac{1}{\lambda_1 d_1}\right).
\]

If we choose \(c_2 \leq \frac{1}{2} C_4\), we obtain a contradiction. Thus, (4.9) follows.
In order to complete the proof of Proposition 4.6, it remains to prove that:

\[d^2 \nabla \rho_B \to 0, \quad \text{as } \varepsilon \to 0. \tag{4.11} \]

We assume, arguing by contradiction, that \(d^2 \nabla \rho_B \not\to 0 \) when \(\varepsilon \to 0 \).

For \(i \in B \), using Proposition 4.4, we derive

\[
0 = T \Lambda \frac{\partial M_B}{\partial x_i} \Lambda + O \left(\sum_{j \notin B} \frac{\partial \varepsilon_{ij}}{\partial x_i} - \frac{1}{(\lambda_i \lambda_j)^{1/2}} \frac{\partial H_{ij}}{\partial x_i}(x_i, x_j) \right) + o \left(\frac{1}{d_i (\lambda_1 d_1)} \right).
\]

Observe that \(|\partial H/\partial x_i(x_i, x_j)| \leq c(d_i |x_i - x_j|)^{-1} \). Thus, as in the proof of Lemma 4.5, we prove that, for \(i \in B \) and \(j \notin B \),

\[
\left| \frac{\partial \varepsilon_{ij}}{\partial x_i} \right| + \frac{1}{(\lambda_i \lambda_j)^{1/2}} \left| \frac{\partial H_{ij}}{\partial x_i}(x_i, x_j) \right| = o \left(\frac{1}{d(\lambda_1 d_1)} \right).
\]

Therefore, by (4.6), we have

\[
0 = T \Lambda \frac{\partial M_B}{\partial x_i} \Lambda + o \left(\frac{1}{d(\lambda_1 d_1)} \right) = \left(\frac{\partial \rho_B}{\partial x_i} d^2 + o(1) \right) \frac{|\Lambda|^2}{d^2} + o \left(\frac{1}{d(\lambda_1 d_1)} \right), \forall i \in B.
\]

Thus

\[
0 \geq (|\nabla \rho_B| d^2 + o(1)) \frac{|\Lambda|^2}{d^2} + o \left(\frac{1}{d(\lambda_1 d_1)} \right) \geq C_6 \frac{|\Lambda|^2}{d^2} + o \left(\frac{1}{d(\lambda_1 d_1)} \right) > 0.
\]

This yields a contradiction. Hence (4.11) follows.

The proof of Proposition 4.6 is thereby completed. \(\square \)

Proof of Theorem 1.1 Arguing by contradiction, we assume that \((P_\varepsilon)\) has a solution whose energy is bounded. Using Theorem 1.5 of [5] and Proposition 4.6, we deduce Theorem 1.1. \(\square \)

5 Appendix

In this section, we collect some estimates needed to prove Propositions 4.3 and 4.4. Here we will denote by \(u_\varepsilon := \sum_{j=1}^P \alpha_j P \delta_{(x_j, \lambda_j)} + v_\varepsilon \) the function defined in Theorem 3.1. Thus, we have \(|x_i - x_j| \geq \alpha \varepsilon \) for each \(i \neq j \) and \(\lambda_i d_i \to \infty \) as \(\varepsilon \to 0 \) for each \(i \). In the sequel, we denote by \(\varphi_{i,k} = \lambda_i^{-1} \partial P \delta_i / \partial (x_i)_k \) where \((x_i)_k\) is the \(k \)th component of \(x_i \), \(k \in \{1, 2, 3\} \).

Recall that \(B_i \) denotes \(B(x_i, \alpha d_i/4) \) and we have, for each \(i \neq j \), \(B_i \cap B_j = \emptyset \).
Lemma 5.1 For \(i \neq j \), we have the following estimates

1) \(\langle P\delta_i, \lambda_i \frac{\partial P\delta_i}{\partial \lambda_i} \rangle = \frac{c_1}{2} \frac{H_\varepsilon(a_i, a_i)}{\lambda_i} + O \left(\frac{1}{(\lambda_id_i)^2} \right) \)

2) \(\langle P\delta_j, \lambda_i \frac{\partial P\delta_i}{\partial \lambda_i} \rangle = c_1 \left(\lambda_i \frac{\partial \varepsilon_{ij}}{\partial \lambda_i} + \frac{1}{2} \frac{H_\varepsilon(a_i, a_j)}{(\lambda_i \lambda_j)^{1/2}} \right) + O \left(\varepsilon_{ij}^2 \left(\log \varepsilon_{ij}^{-1} \right)^{2/3} + \sum_{k=i,j} \frac{1}{(\lambda_kd_k)^2} \right) \),

3) \(\int_{A_\varepsilon} P^{\delta_5}\lambda_i \frac{\partial P\delta_i}{\partial \lambda_i} = 2\langle P\delta_i, \lambda_i \frac{\partial P\delta_i}{\partial \lambda_i} \rangle + O \left(\frac{1}{(\lambda_id_i)^2} \right) \),

4) \(\int_{A_\varepsilon} P^{\delta_5}\lambda_i \frac{\partial P\delta_i}{\partial \lambda_i} = \langle P\delta_j, \lambda_i \frac{\partial P\delta_i}{\partial \lambda_i} \rangle + O \left(\varepsilon_{ij}^2 \left(\log \varepsilon_{ij}^{-1} \right)^{2/3} + \frac{1}{(\lambda_id_j)^2} \right) \),

5) \(5 \int_{A_\varepsilon} P\delta_j \left(\langle \delta_i \lambda_i \frac{\partial P\delta_i}{\partial \lambda_i} \rangle \right) = \langle P\delta_i, \lambda_i \frac{\partial P\delta_i}{\partial \lambda_i} \rangle + O \left(\varepsilon_{ij}^2 \left(\log \varepsilon_{ij}^{-1} \right)^{2/3} + \frac{1}{(\lambda_id_i)^2} \right) \),

6) \(\int_{\mathbb{R}^3} \delta_i^3 \delta_j^3 = O \left(\varepsilon_{ij}^3 \log \varepsilon_{ij}^{-1} \right) \),

where \(c_1 \) and \(O \) are independent of \(\varepsilon \).

Proof. For the proof, we refer the interested readers to [2], [15] and [16]. \(\square \)

Lemma 5.2 For \(i \in \{1, \ldots, p\} \) and \(j \neq i \), we have the following estimates

1) \(\langle P\delta_i, \varphi_{i,k} \rangle = -\frac{c_1}{2 \lambda_i^2} \frac{\partial H_\varepsilon}{\partial (x_i)_k} (x_i, x_i) + O \left(\frac{1}{(\lambda_id_i)^2} \right) \),

2) \(\int_{A_\varepsilon} P^{\delta_5}\varphi_{i,k} = 2\langle P\delta_i, \varphi_{i,k} \rangle + O \left(\log(\lambda_id_i)^3 \right) \),

3) \(\langle P\delta_j, \varphi_{i,k} \rangle = -\frac{c_1}{\lambda_i^{3/2} \lambda_j^{1/2}} \frac{\partial H_\varepsilon}{\partial (x_i)_k} (x_j, x_i) + c_1 \frac{\partial \varepsilon_{ij}}{\lambda_i} \varphi_{i,k} + O \left(\frac{1}{(\lambda_id_i)^3} + \lambda_j |x_i - x_j| \varepsilon_{ij}^4 \right) \),

4) \(\int_{A_\varepsilon} P^{\delta_5}\varphi_{i,k} = \langle P\delta_j, \varphi_{i,k} \rangle + O \left(\frac{1}{(\lambda_id_i)^{5/2}} \right) \),

5) \(5 \int_{A_\varepsilon} P\delta_j P^{\delta_5}\varphi_{i,k} = \langle P\delta_j, \varphi_{i,k} \rangle + O \left(\frac{1}{(\lambda_id_i)^{5/2}} \right) \).

Proof. Claims 1, 2 and 3 are proved in [2] and [15]. We will prove Claim 4. We have

\[
\int_{A_\varepsilon} P^{\delta_5}\varphi_{i,k} = \int_{A_\varepsilon} (\delta_5 + O(\delta_j \theta_j)) \varphi_{i,k} = \langle P\delta_j, \varphi_{i,k} \rangle + O \left(\int_{B_j} \delta_j^4 \theta_j |\varphi_{i,k}| + \int_{A_\varepsilon \setminus B_j} \delta_j^5 \delta_i \right).
\]

For the second integral, using Holder’s inequality, we obtain

\[
\int_{\mathbb{R}^3 \setminus B_j} \delta_j^5 \delta_i = O \left(\frac{1}{(\lambda_j d_j)^{5/2}} \right).
\] (5.1)
By Corollary 4.1, we have \(B_i \cap B_j = \emptyset \) and therefore, for any \(x \in B_j \), we get
\[
\sup_{B_j} \frac{1}{\lambda_i \partial (x_i)_k} \left| \frac{\partial \delta_i}{\partial (x_i)_k} \right| \leq C \sup_{B_j} \left(\frac{1}{\lambda_i^{3/2} |x - x_i|^2} \right) = O \left(\frac{1}{\lambda_i^{3/2} \max(d_i, d_j)} \right),
\]
(5.2)
\[
\sup_{B_j} \frac{1}{\lambda_i \partial (x_i)_k} \left| \frac{x}{\partial \theta_i} \right| \leq C \sup_{B_j} \theta_i = O \left(\frac{1}{\lambda_i^{3/2} \max(d_i, d_j)} \right).
\]
(5.3)
Thus we obtain
\[
\int_{B_j} \delta_j^4 \theta_j |\varphi_{i,k}| \leq \frac{c}{\lambda_i^{3/2} \lambda_j^{3/2} d_i d_j \max(d_i, d_j)} \leq \frac{c}{(\lambda_1 d_1)^3}.
\]
(5.4)
Combining (5.4) and (5.1), the claim follows.

It remains to prove Claim 5. We have
\[
5 \int_{A_c} P \delta_j P \delta_i^4 \varphi_{i,k} = 5 \int_{A_c} (\delta_i^4 - 4 \delta_j^3 \theta_i + O (\delta_i^2 \theta_i^2)) P \delta_j \left(\frac{1}{\lambda_i \partial (x_i)_k} \right) \left(\frac{1}{\lambda_i \partial (x_i)_k} \right)
\]
\[
= \langle P \delta_j, \varphi_{i,k} \rangle + O \left(\int_{B_i} \delta_i^4 \theta_i^2 \frac{1}{\lambda_i \partial (x_i)_k} \right)^2 - 20 \int_{B_i} P \delta_j \delta_i^3 \theta_i \frac{1}{\lambda_i \partial (x_i)_k}
\]
\[
+ O \left(\int_{B_i} \delta_i^3 \theta_i^2 \delta_j + \int_{\mathbb{R}^3 \setminus B_i} \delta_i^5 \delta_j \right).
\]

Observe that
\[
\sup_{B_i} |D\theta_i| \leq \frac{C}{d_i \lambda_i^{1/2}} \sup_{B_i} \theta_i \leq \frac{C}{\lambda_i^{1/2} d_i^2}; \quad \sup_{B_i} \delta_j \leq \frac{c}{\lambda_j^{1/2} \max(d_i, d_j)},
\]
(5.5)
\[
\sup_{B_i} |DP \delta_j| \leq \sup_{B_i} |D\delta_j| + \sup_{B_i} |D\theta_j| \leq \frac{C}{\lambda_j^{1/2} \max^2(d_i, d_j)} + \frac{C}{\lambda_j^{1/2} d_i \max(d_i, d_j)}.
\]
(5.6)
Thus we derive
\[
\int_{B_i} \delta_i^3 \theta_i^2 \delta_j \leq |\delta_j \theta_i^2|_{L^\infty} \int_{B_i} \delta_i^3 \leq \frac{c \log(\lambda_i d_i)}{\lambda_j d_j^{1/2} (\lambda_i d_i)^{5/2}},
\]
(5.7)
\[
\int_{B_i} \delta_i^3 \theta_i^2 \frac{1}{\lambda_i \partial (x_i)_k} \leq \frac{c}{(\lambda_j d_j)^{1/2} (\lambda_i d_i)^{5/2}};
\]
(5.8)
\[
\int_{B_i} P \delta_j \delta_i^3 \theta_i \frac{1}{\lambda_i \partial (x_i)_k} = O \left(\sup_{B_i} |D \theta_i P \delta_j| \int_{B_i} \delta_i^4 |x - x_i| \right) = O \left(\frac{\log(\lambda_i d_i)}{\lambda_i d_i^{5/2} (\lambda_j d_j)^{1/2}} \right).
\]
(5.9)
Using (5.1), (5.7), (5.8) and (5.9), the lemma follows. \(\Box \)

Lemma 5.3 For each \(i \), we have
\[
\int_{A_c} \left(\sum_{j=1}^p \alpha_j P \delta_j \right)^5 \varphi_{i,k} = 2 \sum_{j=1}^p \alpha_j \langle P \delta_j, \varphi_{i,k} \rangle + O \left(\frac{1}{(\lambda_1 d_1)^{9/4}} \right).
\]
Lemma 5.4

We have

\[
\left(\sum_{j=1}^{p} \alpha_j P \delta_j \right)^5 = \sum_{j=1}^{p} \left(\alpha_j P \delta_j \right)^5 + 5(\alpha_i P \delta_i)^4 \left(\sum_{j \neq i} \alpha_j P \delta_j \right) + 10(\alpha_i P \delta_i)^3 \left(\sum_{j \neq i} \alpha_j P \delta_j \right)^2
\]

+ \(O \left(\sum_{j \neq i} \delta_j^2 \delta_i^3 + \sum_{j \notin \{i,r\}} \delta_j^3 \delta_r \right) \). \tag{5.10}

Since \(B_j \cap B_i = \emptyset \) and \(B_j \cap B_r = \emptyset \), using (5.2) and (5.3), we derive

\[
\int_{B_j} \delta_j^4 \delta_r \varphi_i, k \leq \frac{c}{\lambda_r^{1/2} \max(d_r, d_j) \lambda_i^{3/2} d_i \max(d_i, d_j)} \int_{B_j} \delta_j^4 \leq \frac{c}{(\lambda_1 d_1)^3}, \tag{5.11}
\]

\[
\int_{A_{\epsilon} \setminus B_j} \delta_j^4 \delta_r^2 \leq \int_{A_{\epsilon} \setminus B_j} \delta_j^6 + \int_{A_{\epsilon} \setminus B_j} \delta_j^3 \delta_r^3 \leq \frac{c}{(\lambda_1 d_1)^{3/2}}. \tag{5.12}
\]

Now we will estimate the third term. Using (5.5) and (5.6), we obtain

\[
\int_{B_i} P \delta_j \left(\sum_{j \neq i} \alpha_j P \delta_j \right)^2 \varphi_i, k = \left(\sum_{j \neq i} \alpha_j P \delta_j \right)^2 (x_i) \int_{B_i} \left(\delta_j^3 + O(\delta_j^3 \theta_i) \right) \frac{1}{\lambda_i} \left(\frac{\partial \delta_j}{\partial (x_i)_k} - \frac{\partial \theta_i}{\partial (x_i)_k} \right)
\]

+ \(O \left(\sup_{B_i} \left| D \left(\sum_{j \neq i} \alpha_j P \delta_j \right)^2 \right| \int_{B_i} \delta_i^4 \left| x - x_i \right| \right) = O \left(\sum_{j \neq i} \frac{\text{Log}(\lambda_i d_i)}{\lambda_j \max(d_i, d_j)} \frac{1}{\lambda_i^2 d_i} \right). \tag{5.13}
\]

Combining (5.10),..., (5.13) and Lemma 5.2, the result follows. \(\square \)

To improve the estimates of the integrals involving \(v_\varepsilon \), we use an original idea due to Rey [16], namely we write

\[
v_\varepsilon = \sum_{i=1}^{p} v^\varepsilon_i + w, \tag{5.14}
\]

where \(v^\varepsilon_i \) denotes the projection of \(v_\varepsilon \) onto \(H^1_0(B_i) \), that is

\[
\Delta v^\varepsilon_i = \Delta v_\varepsilon \quad \text{in} \quad B_i; \quad v^\varepsilon_i = 0 \quad \text{on} \quad \partial B_i, \tag{5.15}
\]

where \(B_i = B(x_i, \alpha d_i/4) \) is defined in Corollary 4.1. \(v^\varepsilon_i \) can be assumed to be defined in all \(A_\varepsilon \) since it can be continued by 0 in \(A_\varepsilon \setminus B_i \). We have

\[
v_\varepsilon = v^\varepsilon_i + w \quad \text{in} \quad B_i, \quad \text{with} \quad \Delta w = 0 \quad \text{in} \quad B_i. \tag{5.16}
\]

We split \(v^\varepsilon_i \) in an even part \(v^\varepsilon_i, e \) and an odd part \(v^\varepsilon_i, o \) with respect to \((x - x_i)_k \), thus we have

\[
v_\varepsilon = v^\varepsilon_i, e + v^\varepsilon_i, o + w \quad \text{in} \quad B_i \quad \text{with} \quad \Delta w = 0 \quad \text{in} \quad B_i. \tag{5.17}
\]

Lemma 5.4 We have

\[
\int_{B_i} \delta^3 v^\varepsilon_i \frac{1}{\lambda_i} \frac{\partial \delta_i}{\partial (x_i)_k} = O \left(||v^\varepsilon_i, o|| ||v_\varepsilon|| + \frac{||v_\varepsilon||^2}{(\lambda_1 d_1)^{1/2}} \right).
\]
Proof. Using (5.17) and the fact that the even part of v_ε^2 has no contribution to the integrals, we obtain
\[
\int_{B_i} \delta_\varepsilon^3 v_\varepsilon^2 \frac{1}{\lambda_i \partial (x_i)_k} \partial \delta_i = \int_{B_i} \delta_\varepsilon^3 \frac{1}{\lambda_i \partial (x_i)_k} (2v_\varepsilon - w) \ w + O(||v_\varepsilon||^2). \tag{5.18}
\]

Let ψ be the solution of
\[
\Delta \psi = \delta_\varepsilon^3 \frac{1}{\lambda_i \partial (x_i)_k} (2v_\varepsilon - w) \ \text{in} \ B_i; \ \psi = 0 \ \text{on} \ \partial B_i.
\]

Thus we have
\[
\int_{B_i} \delta_\varepsilon^3 \frac{1}{\lambda_i \partial (x_i)_k} (2v_\varepsilon - w) \ w = \int_{B_i} \Delta \psi, w = \int_{\partial B_i} \partial \psi. \tag{5.19}
\]

Let G_i be the Green’s function for the Laplacian on B_i, that is,
\[
G_i(x, y) = \frac{1}{|x - y|} - \frac{\alpha \delta d_i}{4|x||y - (\alpha \delta d_i)^2x|}, \quad (x, y) \in B_i^2.
\]

Therefore ψ is given by
\[
\psi(y) = -\int_{B_i} G_i(x, y) \delta_\varepsilon^3 \frac{1}{\lambda_i \partial (x_i)_k} (2v_\varepsilon - w) \ dx, \quad y \in B_i \tag{5.20}
\]

and its normal derivative by
\[
\frac{\partial \psi}{\partial \nu}(y) = -\int_{B_i} \frac{\partial G_i}{\partial \nu}(x, y) \delta_\varepsilon^3 \frac{1}{\lambda_i \partial (x_i)_k} (2v_\varepsilon - w) \ dx, \quad y \in \partial B_i, \tag{5.21}
\]

Notice that:

for $x \in B_i \setminus B(y, \alpha d_i/8)$, we have $\frac{\partial G_i}{\partial \nu}(x, y) = O \left(\frac{1}{d_i^2} \right)$, \tag{5.22}

for $x \in B_i \cap B(y, \alpha d_i/8)$, we have $\frac{\partial G_i}{\partial \nu}(x, y) = O \left(\frac{1}{|x - y|^2} \right)$, \tag{5.23}

for $x \in B_i \cap B(y, \alpha d_i/8)$, we have $\delta_\varepsilon^3 \frac{1}{\lambda_i \partial (x_i)_k} = O \left(\frac{1}{\lambda_i^2 d_i^4} \right)$. \tag{5.24}

Therefore
\[
\left| \frac{\partial \psi}{\partial \nu}(y) \right| \leq C \int_{B_i \cap \{|x - y| \geq \alpha d_i/8\}} |2v_\varepsilon - w| \frac{\delta_i^4}{d_i^2} dx + C \int_{B_i \cap \{|x - y| \leq \alpha d_i/8\}} \frac{|2v_\varepsilon - w|}{\lambda_i^2 d_i^4 |x - y|^2} dx
\]
\[
\leq \frac{C}{\lambda_i^{1/2} d_i^{2}} ||v_\varepsilon||, \quad \forall y \in \partial B_i. \tag{5.25}
\]

Using (5.25), (5.19) becomes
\[
\int_{B_i} \delta_\varepsilon^3 \frac{1}{\lambda_i \partial (x_i)_k} (2v_\varepsilon - w) \ w = O \left(\frac{||v_\varepsilon||}{\lambda_i^{1/2} d_i^{2}} \int_{\partial B_i} |w| \right). \tag{5.26}
\]
To estimate the right-hand side of (5.26), we introduce the following functions

\(\tilde{w}(X) = (\alpha d_i/4)^{1/2}w(x_i + \alpha d_i X/4); \quad \tilde{v}_\varepsilon(X) = (\alpha d_i/4)^{1/2}v_\varepsilon(x_i + \alpha d_i X/4). \)

\(\tilde{w} \) satisfies

\[\Delta \tilde{w} = 0 \quad \text{in} \quad B := B(0, 1); \quad \tilde{w} = \tilde{v}_\varepsilon \quad \text{on} \quad \partial B. \] \hfill (5.27)

We deduce that

\[\int_{\partial B} |\tilde{w}| \leq C \left(\int_B |\nabla \tilde{v}_\varepsilon|^2 \right)^{1/2} = C \left(\int_{B_i} |\nabla v_\varepsilon|^2 \right)^{1/2}. \] \hfill (5.28)

But, we have

\[\int_{\partial B} |\tilde{w}| = \int_{\partial B} (\alpha d_i/4)^{1/2}|w(x_i + \alpha d_i X/4)| = \frac{1}{(\alpha d_i/4)^{3/2}} \int_{\partial B_i} |w|. \] \hfill (5.29)

Thus

\[\int_{\partial B_i} |w| \leq c d_i^{3/2} \left(\int_{B_i} |\nabla v_\varepsilon|^2 \right)^{1/2}. \] \hfill (5.30)

Using (5.18), (5.26) and (5.30), the lemma follows. \(\square \)

Lemma 5.5 For \(\varepsilon \) small, we have

\[\int_{A_\varepsilon} \delta^3 v_\varepsilon \frac{1}{\lambda_i} \frac{\partial \delta_i}{\partial (x_i)_k} = O \left(\frac{||v_\varepsilon^o||}{\lambda_i^{1/2}} + \frac{||v_\varepsilon||}{\lambda_i d_i^{1/2}} \right). \]

Proof. Lemma 5.5 can be proved in the same way as Lemma 5.4. So we omit its proof. \(\square \)

Lemma 5.6 For \(\varepsilon \) small and \(i \neq j \), we have

\[\int_{A_\varepsilon} \left(\sum_{j=1}^p \alpha_j P\delta_j \right)^4 v_\varepsilon \varphi_{i,k} = O \left(||v_\varepsilon^o|| \frac{1}{\lambda_1 d_1} + ||v_\varepsilon|| \frac{1}{(\lambda_1 d_1)^{3/2}} \right). \]

Proof. We notice that

\[\left(\sum_{j=1}^p \alpha_j P\delta_j \right)^4 = (\alpha_i P\delta_i)^4 + 4(\alpha_i P\delta_i)^3 \left(\sum_{j \neq i} \alpha_j P\delta_j \right) + O \left(\delta_i^2 \sum_{j \neq i} \delta_j^2 + \sum_{j \neq i} \delta_j^4 \right). \] \hfill (5.31)

For the last term in (5.31), we have, using (5.1) and (5.2),

\[\int_{A_\varepsilon} \delta_i^4 v_\varepsilon \varphi_{i,k} = \int_{B_i} \delta_i^4 v_\varepsilon \varphi_{i,k} + \int_{\mathbb{R}^3 \setminus B_i} \delta_i^4 v_\varepsilon \varphi_{i,k} = O \left(\frac{||v_\varepsilon||}{\lambda_i^{3/2} d_i \max(d_i, d_j) \lambda_j^{1/2}} + \frac{||v_\varepsilon||}{(\lambda_j d_j)^2} \right). \] \hfill (5.32)

For the third term in (5.31), we use Holder’s inequality and we obtain

\[\int_{A_\varepsilon} \delta_i^2 \delta_j^2 |v_\varepsilon| ||\varphi_{i,k}|| \leq c ||v_\varepsilon|| \varepsilon_{ij}^2 \left(\log \varepsilon_{ij}^{-1} \right)^{2/3} \leq c \frac{||v_\varepsilon||}{(\lambda_1 d_1)^{3/2}}. \] \hfill (5.33)
Regarding the first term in (5.31), we write
\[
\int_{A_\varepsilon} P \delta_i^4 v_\varepsilon \varphi_{i,k} = \int_{A_\varepsilon} \left(\delta_i^4 - 4\delta_i^3 \theta_i + O(\delta_i^2 \theta_i^2) \right) v_\varepsilon \left(\frac{\partial \delta_i}{\partial (x_i)_k} - \frac{\partial \theta_i}{\partial (x_i)_k} \right)
\]
\[
= -4\theta_i(x_i) \int_{B_i} \delta_i^3 v_\varepsilon \frac{1}{\lambda_i} \frac{\partial \delta_i}{\partial (x_i)_k} + O\left(\|v_\varepsilon\| \right).
\]

Using Lemma 5.5, we derive that
\[
\int_{A_\varepsilon} P \delta_i^4 v_\varepsilon \varphi_{i,k} = O\left(\frac{\|v_\varepsilon^{o}\|}{\lambda_i d_i} + \frac{\|v_\varepsilon\|}{(\lambda_i d_i)^{3/2}} \right). \tag{5.34}
\]

Finally, we deal with the second term in (5.31)
\[
\int_{B_i} P \delta_j^3 P \delta_j v_\varepsilon \varphi_{i,k} = P \delta_j(x_i) \int_{B_i} \left(\delta_j^3 + O(\delta_j^2 \theta_i) \right) v_\varepsilon \left(\frac{\partial \delta_j}{\partial (x_i)_k} - \frac{\partial \theta_i}{\partial (x_i)_k} \right)
\]
\[
+ O\left(\sup_{B_i} |DP \delta_j| \int_{B_i} \delta_i^4 |v_\varepsilon||x - x_i| \right). \tag{5.35}
\]

Observe that, by (5.5), we have
\[
P \delta_j(x_i) \int_{B_i} \delta_j^3 \left(\theta_i + \frac{1}{\lambda_i} \frac{\partial \theta_i}{\partial (x_i)_k} \right) |v_\varepsilon| = O\left(\frac{\|v_\varepsilon\|}{\lambda_i^{1/2} \max(d_i, d_j) \lambda_i^{3/2}} \right). \tag{5.36}
\]

Using (5.6), we derive that
\[
\sup_{B_i} |DP \delta_j| \int_{B_i} \delta_i^4 |v_\varepsilon||x - x_i| = O\left(\frac{\|v_\varepsilon\|}{\lambda_i^{1/2} \max(d_i, d_j) \lambda_i^{3/2}} \right). \tag{5.37}
\]

By Lemma 5.5, (5.36) and (5.37), (5.35) become
\[
\int_{B_i} P \delta_j^3 P \delta_j v_\varepsilon \frac{1}{\lambda_i} \frac{\partial P \delta_j}{\partial (x_i)_k} = O\left(\frac{\|v_\varepsilon^{o}\|}{\lambda_i d_i \lambda_i d_j}^{1/2} + \sum_{r \in \{i,j\}} \frac{\|v_\varepsilon\|}{(\lambda_r d_r)^{3/2}} \right). \tag{5.38}
\]

For the integral on \(\mathbb{R}^3 \setminus B_i \), we use Holder’s inequality and obtain
\[
\int_{\mathbb{R}^3 \setminus B_i} P \delta_j^3 P \delta_j v_\varepsilon \frac{1}{\lambda_i} \frac{\partial P \delta_i}{\partial (x_i)_k} \leq \int_{\mathbb{R}^3 \setminus B_i} \delta_i^4 \delta_j |v_\varepsilon| = O\left(\frac{\|v_\varepsilon\|}{(\lambda_i d_i)^{1/2}} \right). \tag{5.39}
\]

Using (5.32), (5.33), (5.34), (5.38) and (5.39), the lemma follows. \(\Box \)

Lemma 5.7 For \(i \neq j \) we have
\[
\int_{A_\varepsilon} \left(\sum_{j=1}^p \alpha_j P \delta_j \right)^3 v_\varepsilon^2 \varphi_{i,k} = O\left(\|v_\varepsilon^{o}\| \|v_\varepsilon\| + \frac{\|v_\varepsilon\|^2}{(\lambda_1 d_1)^{1/2}} \right).
\]
Proof. We have
\[
\left(\sum_{1}^{p} \alpha_j P \delta_j \right)^3 = \alpha_i^3 \delta_i^3 + O \left(\delta_i^2 \right) + O \left(\sum_{j \neq i} (\delta_i^2 \delta_j + \delta_j^2) \right).
\]

We now observe that
\[
\int_{A_{\varepsilon}} \left(\delta_i^3 \theta_i + \sum_{j \neq i} (\delta_j^3 \delta_j + \delta_j^3) \right) \mid v_{\varepsilon} \mid^2 = O \left(\frac{\mid v_{\varepsilon} \mid^2}{\lambda_i d_i^2} \right), \tag{5.40}
\]
\[
\int_{R^{1 \setminus B_i}} \delta_i^4 \mid v_{\varepsilon} \mid^2 = O \left(\frac{\mid v_{\varepsilon} \mid^2}{\lambda_i d_i^2} \right), \tag{5.41}
\]
\[
\int_{B_i} \delta_i^2 \varepsilon \frac{\partial \delta_i}{\partial x_k} = O \left(\frac{\mid v_{\varepsilon} \mid^2}{\lambda_i d_i^2} \right), \tag{5.42}
\]
where we have used Lemma 5.4 in the last equality. Clearly, (5.40), (5.41) and (5.42) imply our lemma. \hfill \square

Lemma 5.8 For \(\varepsilon \) small, we have
\[
||v_{\varepsilon}|| = O \left(\frac{1}{\lambda_1 d_1^{9/8}} \right).
\]

Proof. We write
\[
v_{\varepsilon} = \hat{v}_{\varepsilon} + a P \delta_i + b \lambda_i \frac{\partial P \delta_i}{\partial \lambda_i} + \sum_{r=1}^{3} C_r \frac{1}{\lambda_i d_i} \frac{\partial P \delta_i}{\partial (x_i)_r}, \tag{5.43}
\]
with
\[
\langle \hat{v}_{\varepsilon}, P \delta_i \rangle = \langle \hat{v}_{\varepsilon}, \frac{\partial P \delta_i}{\partial \lambda_i} \rangle = 0 \text{ for each } r = 1, 2, 3.
\]

Taking the scalar product in \(H^1(A_{\varepsilon}) \) of (5.43) with \(P \delta_i, \lambda_i \frac{\partial P \delta_i}{\partial \lambda_i} \frac{1}{\lambda_i d_i} \frac{\partial P \delta_i}{\partial (x_i)_r} \), \(1 \leq r \leq 3 \), provides us with the following invertible linear system in \(a, b, C_r \) (with \(1 \leq r \leq 3 \))
\[
(S) \quad \left\{ \begin{array}{l}
\langle P \delta_i, v_{\varepsilon} \rangle = a(C' + o(1)) + b \sum_{r=1}^{3} C_r \langle P \delta_i, \frac{1}{\lambda_i d_i} \frac{\partial P \delta_i}{\partial (x_i)_r} \rangle, \\
\langle \lambda_i \frac{\partial P \delta_i}{\partial \lambda_i}, v_{\varepsilon} \rangle = a(C' + o(1)) + b \sum_{r=1}^{3} C_r \langle \lambda_i \frac{\partial P \delta_i}{\partial \lambda_i}, \frac{1}{\lambda_i d_i} \frac{\partial P \delta_i}{\partial (x_i)_r} \rangle, \\
\langle \frac{1}{\lambda_i d_i} \frac{\partial P \delta_i}{\partial (x_i)_j}, v_{\varepsilon} \rangle = a(C' + o(1)) + b \sum_{r=1}^{3} C_r \langle \frac{1}{\lambda_i d_i} \frac{\partial P \delta_i}{\partial (x_i)_j}, \frac{1}{\lambda_i d_i} \frac{\partial P \delta_i}{\partial (x_i)_r} \rangle.
\end{array} \right\
\]

Observe that
\[
\langle P \delta_i, \lambda_i \frac{\partial P \delta_i}{\partial \lambda_i} \rangle = O \left(\frac{1}{\lambda_i d_i^2} \right); \quad \langle \lambda_i \frac{\partial P \delta_i}{\partial \lambda_i}, \lambda_i \frac{\partial P \delta_i}{\partial (x_i)_r} \rangle = O \left(\frac{1}{\lambda_i d_i^2} \right); \quad \langle \lambda_i \frac{\partial P \delta_i}{\partial (x_i)_j}, \lambda_i \frac{\partial P \delta_i}{\partial (x_i)_r} \rangle = (C'' + o(1)) \delta_{jr} + O \left(\frac{1}{\lambda_i d_i^2} \right).
\]
where \(\delta_{jv} \) denotes the Kronecker symbol.

Now, because of evenness of \(v^e o \) and oddness of \(v^e o \) with respect to \((x - x_i)_k \) we obtain

\[
\langle P \delta_i, v_i^{e, o} \rangle = \int_{A_x} \nabla P \delta_i \cdot \nabla v_i^{e, o} = \int_{B_i} \nabla P \delta_i \cdot \nabla v_i^{e, o} = \int_{B_i} \delta_i^0 v_i^{e, o} = 0. \tag{5.44}
\]

In the same way we have

\[
\langle \lambda_i \frac{\partial P \delta_i}{\partial \lambda_i}, v_i^{e, o} \rangle = \left(\frac{1}{\lambda_i} \frac{\partial P \delta_i}{\partial (x_i)_j}, v_i^{e, o} \right) = 0 \quad \text{for each } j \neq k.
\]

We also have

\[
\langle \varphi_{i,k}, v_i^{e, o} \rangle = \int_{B_i} \nabla \varphi_{i,k} \cdot \nabla (v_i^e - v_i^{e,v} - w) = -\int_{A_x \setminus B_i} \nabla \varphi_{i,k} \cdot \nabla v_i^e - \int_{B_i} \nabla \varphi_{i,k} \cdot \nabla w \tag{5.45}
\]

since \(v_i^e \) satisfies (5.5), \(v_i^{e,v} \) is even with respect to \((x - x_i)_k \) and \(v_i^{e,v} = 0 \) on \(\partial B_i \). On one hand

\[
\left| \int_{A_x \setminus B_i} \nabla \varphi_{i,k} \cdot \nabla v_i^e \right| \leq C ||v_i^e|| \left(\int_{A_x \setminus B_i} |\nabla \varphi_{i,k}|^2 \right)^{\frac{1}{2}} \leq C ||v_i^e|| \left(\lambda_i d_i \right)^{\frac{1}{2}}. \tag{5.46}
\]

On the other hand, let \(\psi_2 \) be such that

\[
\Delta \psi_2 = \Delta \varphi_{i,k} \text{ in } B_i; \quad \psi_2 = 0 \text{ on } \partial B_i.
\]

Writing

\[
\psi_2 = \varphi_{i,k} + \theta, \quad \text{with } \Delta \theta = 0 \text{ in } B_i, \tag{5.47}
\]

we obtain

\[
\int_{B_i} \nabla (\varphi_{i,k}) \cdot \nabla w = \int_{B_i} \nabla \psi_2 \cdot \nabla w - \int_{B_i} \nabla \theta \cdot \nabla w = -\int_{\partial B_i} \frac{\partial \theta}{\partial y} w. \tag{5.48}
\]

Using an integral representation for \(\psi_2 \), as in (5.21), we obtain for \(y \in \partial B_i \)

\[
\frac{\partial \psi_2}{\partial y}(y) = \int_{B_i} \frac{\partial G_i}{\partial y}(x, y) \left(5\delta_i^4 \varphi_{i,k} \right) dx. \tag{5.49}
\]

In \(B_i \setminus B(x_i, \alpha d_i/8) \), we argue as in (5.25), using (5.22) and (5.23), we obtain

\[
\int_{B_i \setminus B(x_i, \alpha d_i/8)} \frac{\partial G_i}{\partial y}(x, y) \left(5\delta_i^4 \varphi_{i,k} \right) dx = O \left(\frac{1}{\lambda_i^{5/2} d_i^4} \right).
\]

Furthermore, since

\[
\left| \nabla \frac{\partial G_i}{\partial y}(x, y) \right| = O \left(\frac{1}{d_i^2} \right) \quad \text{for} \quad (x, y) \in B(x_i, \alpha d_i/8) \times \partial B_i,
\]

we obtain

\[
\int_{B(x_i, \alpha d_i/8)} \frac{\partial G_i}{\partial y}(x, y) \left(5\delta_i^4 \frac{1}{\lambda_i} \frac{\partial \delta_i}{\partial (x_i)_k} \right) dx \leq \frac{C}{d_i^3} \int_{B(x_i, \alpha d_i/8)} \delta_i^0 |x - x_i| = O \left(\frac{1}{\lambda_i^{3/2} d_i^3} \right).
\]
where we have used the evenness of δ_i and the oddness of its derivative. Thus

$$\frac{\partial \psi_2}{\partial \nu}(y) = O\left(\frac{1}{\lambda_i^{3/2} d_i^3} \right)$$

(5.50)

so that on ∂B_i

$$\frac{\partial \theta}{\partial \nu} = \frac{\partial \psi_2}{\partial \nu} - \frac{\partial}{\partial \nu} \left(\frac{1}{\lambda_i} \frac{\partial \delta_i}{\partial (x_i)_k} \right) + \frac{\partial}{\partial \nu} \left(\frac{1}{\lambda_i} \frac{\partial \theta_i}{\partial (x_i)_k} \right) = O\left(\frac{1}{\lambda_i^{3/2} d_i^3} \right).$$

(5.51)

It follows from (5.45), (5.46), (5.48), (5.51) and (5.30) that

$$\left(\frac{1}{\lambda_i} \frac{\partial P\delta_i}{\partial (x_i)_k}, v_i^{\epsilon,o} \right) = O\left(\frac{||v_i||}{(\lambda_i d_i)^{3/2}} \right).$$

(5.52)

Inverting the linear system (S), we deduce from the above estimates

$$a = O\left(\frac{||v_i||}{(\lambda_i d_i)^{3/2}} \right), \quad b = O\left(\frac{||v_j||}{(\lambda_j d_j)^{3/2}} \right), \quad C_k = O\left(\frac{||v_j||}{(\lambda_j d_j)^{3/2}} \right), \quad C_r = O\left(\frac{||v_j||}{(\lambda_j d_j)^{3/2}} \right), \quad r \neq k.$$ (5.53)

This implies through (5.43)

$$||v_i^{\epsilon,o} - \tilde{v}_i^\theta|| = O\left(\frac{||v_i||}{(\lambda_i d_i)^{3/2}} \right), \quad ||v_i^{\epsilon,o}||^2 = ||\tilde{v}_i^\theta||^2 + O\left(\frac{||v_i||^2}{(\lambda_i d_i)^3} \right).$$

(5.54)

We turn now to the last step, which consists in estimating $||\tilde{v}_i^\theta||$. Since $\nabla J_\delta(u_\delta) = 0$, we obtain

$$0 = \left(\sum_{r=1}^p \alpha_r P\delta_r + v_\epsilon, v_i^{\epsilon,o} \right) - J_\delta(u_\delta)^3 \int_{A_\delta} \left(\sum_{r=1}^p \alpha_r P\delta_r + v_\epsilon \right)^5 v_i^{\epsilon,o}$$

(5.55)

$$= \sum_{r=1}^p \alpha_r \int_{B_i} \delta_r^5 v_i^{\epsilon,o} + \int_{B_i} \nabla v_\epsilon \cdot \nabla v_i^{\epsilon,o} - J_\delta(u_\delta)^3 \int_{B_i} \left(\sum_{r=1}^p \alpha_r P\delta_r + v_\epsilon \right)^5 v_i^{\epsilon,o}. $$

Concerning the first integral, it is equal to 0 if $r = i$ because of the oddness of $v_i^{\epsilon,o}$ and the evenness of δ_i. For $r \neq i$, using Holder’s inequality, we obtain

$$\int_{B_i} \delta_r^5 v_i^{\epsilon,o} = O\left(\frac{||v_i^{\epsilon,o}||}{(\lambda_i d_i)^{5/2}} \right).$$

(5.56)

Let us consider the second integral. Using (5.17), we obtain

$$\int_{B_i} \nabla v_\epsilon \cdot \nabla v_i^{\epsilon,o} = \int_{B_i} \nabla (v_i^{\epsilon,o} + v_i^{\epsilon,e} + w) \cdot \nabla v_i^{\epsilon,o} = \int_{B_i} |\nabla v_i^{\epsilon,o}|^2. $$

(5.57)

For the last integral, we write

$$\left(\sum_{r=1}^p \alpha_r P\delta_r + v_\epsilon \right)^5 = (\alpha_i P\delta_i)^5 + 5(\alpha_i P\delta_i)^4 \left(\sum_{r \neq i} \alpha_r P\delta_r + v_\epsilon \right)$$

$$+ O\left(\delta_i^5 \left(\sum_{r \neq i} \delta_r^2 + v_\epsilon^2 \right) + \sum_{r \neq i} \delta_r^5 + |v_\epsilon|^5 \right).$$

(5.58)
and we have to estimate the contribution of each term. We notice that
\[
\int_{B_i} \left(\delta_i^3 \left(\sum_{r \neq i} \delta_r^2 + v_r^2 \right) + \sum_{r \neq i} \delta_r^5 + |v_r|^5 \right) |v_i^{\varepsilon,o}| \leq C||v_i^{\varepsilon,o}|| \left(\sum_{j} \frac{1}{(\lambda_j d_j)^2} + ||v_i||^2 \right).
\]

Using (5.5), (5.6) and the oddness of \(\delta_i^4 v_i^{\varepsilon,o} \), we obtain for \(r \neq i \)
\[
\int_{B_i} P \delta_i^4 P \delta_r v_i^{\varepsilon,o} = \int_{B_i} \left(\delta_i^4 + O(\delta_i^3 \theta_i) \right) \left(P \delta_r(x_i) + O \left(\frac{|x - x_i|}{\lambda_r^{1/2} d_i \max(d_i, d_r)} \right) \right) v_i^{\varepsilon,o}
= O \left(\int_{B_i} \delta_i^3 \theta_i \delta_r |v_i^{\varepsilon,o}| + \int_{B_i} \delta_i^4 \frac{|x - x_i||v_i^{\varepsilon,o}|}{\lambda_r^{1/2} d_i \max(d_i, d_r)} \right)
= O \left(||v_i^{\varepsilon,o}|| \left(\frac{1}{\lambda_i d_i^2} + \frac{1}{\lambda_r d_r^2} \right) \right).
\]

Now, we write
\[
\int_{B_i} P \delta_i^4 v_r v_i^{\varepsilon,o} = \int_{B_i} P \delta_i^4(v_i^{\varepsilon,o} + v_i^{\varepsilon,e} + w)v_i^{\varepsilon,o} = \int_{B_i} P \delta_i^4(v_i^{\varepsilon,o} + v_i^{\varepsilon,e})v_i^{\varepsilon,o} + \int_{B_i} P \delta_i^4 w v_i^{\varepsilon,o}.
\]

For the first integral in the right side, we have
\[
\int_{B_i} P \delta_i^4(v_i^{\varepsilon,o} + v_i^{\varepsilon,e})v_i^{\varepsilon,o} = \int_{B_i} \left(\delta_i^4 + O(\delta_i^3 \theta_i) \right) (v_i^{\varepsilon,o} + v_i^{\varepsilon,e})v_i^{\varepsilon,o}
= \int_{B_i} \delta_i^4(v_i^{\varepsilon,o})^2 + O \left(\frac{||v_i^{\varepsilon,o}|| ||v_r||}{\lambda_i d_i} \right).
\]

To deal with the term \(\int_{B_i} P \delta_i^4 w v_i^{\varepsilon,o} \), we introduce the following function
\[\Delta \psi_3 = P \delta_i^4 v_i^{\varepsilon,o} \quad \text{in} \quad B_i; \quad \psi_3 = 0 \quad \text{on} \quad \partial B_i. \]

As in (5.25), we obtain
\[\frac{\partial \psi_3}{\partial \nu}(y) = O \left(\frac{||v_i^{\varepsilon,o}||}{\lambda_i^{1/2} d_i^2} \right) \quad \text{for} \quad y \in \partial B_i. \]

Using (5.30), we find
\[\int_{B_i} P \delta_i^4 w v_i^{\varepsilon,o} = \int_{B_i} \Delta \psi_3 w = \int_{\partial B_i} \frac{\partial \psi_3}{\partial \nu} w = O \left(\frac{||v_i^{\varepsilon,o}|| ||v_r||}{(\lambda_i d_i)^{1/2}} \right). \]

Lastly, we write
\[\int_{B_i} P \delta_i^5 v_i^{\varepsilon,o} = \int_{B_i} \left(\delta_i^5 - 5 \delta_i^4 \theta_i + O(\delta_i^3 \theta_i^2) \right) v_i^{\varepsilon,o}
= O \left(\sup_{\partial B_i} |D \theta_i| \int_{B_i} \delta_i^4 |x - x_i||v_i^{\varepsilon,o}| \right) + O \left(\int_{B_i} \delta_i^3 \theta_i^2 |v_i^{\varepsilon,o}| \right) = O \left(\frac{||v_i^{\varepsilon,o}||}{(\lambda_i d_i)^2} \right). \]
Using (5.56), ..., (5.63) and the estimate of $|v_\varepsilon|$, (5.55) becomes

$$0 = \int_{B_i} |\nabla v_i^{\varepsilon,o}|^2 - 5 J_\varepsilon(u_\varepsilon) \alpha_i^4 \int_{B_i} \delta_i^4 (v_i^{\varepsilon,o})^2 + O \left(\sum \frac{|v_i^{\varepsilon,o}|}{(\lambda_r d_r)^{11/8}} \right).$$

(5.64)

Since $J_\varepsilon(u_\varepsilon)^3 \alpha_i^4 = 1 + o(1)$ and the quadratic form

$$v \mapsto \int_{A_\varepsilon} |\nabla v|^2 - 5 \int_{A_\varepsilon} \delta_i^4 v^2$$

is positive definite on the subset $\left[\text{Span} \left(\frac{\partial P \delta_i}{\partial \lambda_j}, \frac{\partial P \delta_i}{\partial x_{i,j}} \right)_j \right]_1^{1,2} = H^1_0(A_\varepsilon)$, we obtain

$$\int_{A_\varepsilon} |\nabla \tilde{v}_i^o|^2 - 5 \int_{A_\varepsilon} \delta_i^4 (\tilde{v}_i^o)^2 = O \left(\sum \frac{1}{(\lambda_j d_j)^{9/4}} \right),$$

(5.65)

where we have used (5.54), (5.64) and Proposition 4.2 and therefore our lemma follows.

\[\square\]

References

[1] M. O. Ahmedou and K. El Mehdi, Computation of the difference of topology at infinity for Yamabe type problems on annuli domains, Duke Math. J. 94 (1998), 215–229.

[2] A. Bahri, Critical points at infinity in some variational problems, Pitman Res. Notes Math, Ser 182, Longman Sci. Tech. Harlow 1989.

[3] A. Bahri and J.M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of topology of the domain, Comm. Pure Appl. Math. 41 (1988), 255-294.

[4] A. Bahri, Y. Li and O. Rey, On a variational problem with lack of compactness: the topological effect of critical points at infinity, Calc. Var. 3 (1995), 67–93.

[5] M. Ben Ayed, K. El Mehdi and M. Hammami, A nonexistence result for Yamabe type problems on thin annuli, Ann. I.H. Poincaré, AN 19 (2002), 715-744.

[6] H. Brezis, Points critiques dans les problèmes variationnels sans compacité, Séminaire Bourbaki, 40ème année 698, 1987-1988.

[7] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.

[8] L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), 271-297.

[9] C.C. Chen and C.S. Lin, Estimate of the conformal scalar curvature equation via the method of moving planes. II, J. Diff. Geom. 49 (1998), 115-178.
[10] E.N. Dancer, *A note on an equation with critical exponent*, Bull. London Math. Soc. **20** (1988), 600–602.

[11] W.Y Ding, *Positive solution of $\Delta u + u^{\frac{n+2}{n-2}} = 0$ on contractible domain*, J. Part. Diff. Eq. **2** (1989), 83-88.

[12] Y.Y. Li, *Prescribing scalar curvature on S^n and related topics, Part I*, J. Differential Equations **120** (1995), 319-410.

[13] S.S. Lin, *Asymptotic behavior of positive solutions to semilinear elliptic equations on expanding annuli*, J. Diff. Equ. **120** (1995), 255–288.

[14] S. Pohozaev, *Eigenfunctions of the equation $\Delta u + \lambda fu = 0$*, Soviet Math. Dokl. **6** (1965), 1408–1411.

[15] O. Rey, *The role of the Green’s function in a nonlinear elliptic equation involving critical Sobolev exponent*, J. Funct. Anal. **89** (1990), 1–52.

[16] O. Rey, *The topological impact of critical points at infinity in a variational problem with lack of compactness: the dimension 3*, Adv. Differential Equations **4**(1999), 581-616.

[17] R. Schoen, *Variational theory for the total scalar curvature functional for Riemannian metrics and related topics*, in Topics in Calculus of Variations (Montecatini Term 1987), Lectures Notes in Math. **1365**, Springer Verlag (1989), 120-154.

[18] R. Schoen, *Courses at Stanford University* (1988) and *New York University* (1989), unpublished.

[19] R. Schoen, *On the number of solutions of constant curvature in a conformal class*, Differential Geometry: A symposium in honor of Manfredo Do Carmo (H. B, Lanwson and K. Tenenblat eds), Wiley (1991), 311-320.