The complete mitochondrial genome of a gray reef shark, *Carcharhinus amblyrhynchos* (Carcharhiniformes: Carcharhinidae), from the Western Indian Ocean

Ela Patel
Andrea Bernard
Marissa Mehlrose
Sydney Harned
Kimberly A. Finnegan

See next page for additional authors

Follow this and additional works at: https://nsuworks.nova.edu/cnso_bio_facarticles

Part of the Biology Commons
The complete mitochondrial genome of a gray reef shark, *Carcharhinus amblyrhynchos* (Carcharhiniformes: Carcharhinidae), from the Western Indian Ocean

Ela Patel, Andrea M. Bernard, Marissa Mehlrose, Sydney Harned, Kimberly A. Finnegan, Cristín K. Fitzpatrick, James S. Lea & Mahmood S. Shivji

To cite this article: Ela Patel, Andrea M. Bernard, Marissa Mehlrose, Sydney Harned, Kimberly A. Finnegan, Cristín K. Fitzpatrick, James S. Lea & Mahmood S. Shivji (2020) The complete mitochondrial genome of a gray reef shark, *Carcharhinus amblyrhynchos* (Carcharhiniformes: Carcharhinidae), from the Western Indian Ocean, Mitochondrial DNA Part B, 5:3, 3498-3499, DOI: 10.1080/23802359.2020.1827064

To link to this article: https://doi.org/10.1080/23802359.2020.1827064

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Published online: 07 Oct 2020.
The complete mitochondrial genome of a gray reef shark, *Carcharhinus amblyrhynchos* (Carcharhiniformes: Carcharhinidae), from the Western Indian Ocean

Ela Patella, Andrea M. Bernarda, Marissa Mehlorse, Sydney Harneda, Kimberly A. Finnegan, Cristín K. Fitzpatricka, James S. Leae and Mahmood S. Shivji

ABSTRACT

We present the mitochondrial genome sequence of a gray reef shark, *Carcharhinus amblyrhynchos* (Bleeker 1856), a coral reef associated species. This is the first mitogenome for this species from the western Indian Ocean. The mitogenome is 16,705bp in length, has 13 protein-coding genes, 2 rRNA genes and a non-coding control region, and demonstrates a gene arrangement congruent with other shark and non-vertebrate species. This mitogenome provides a genomic resource for assisting with population, evolutionary and conservation studies for the gray reef shark, which is increasingly under threat from fisheries.
The Seychelles *C. amblyrhynchos* mitogenome sequence (gb: MT663280) is 16,705 bp in length with a gene order identical to that of other sequenced *Carcharhinus* species and typical of most vertebrates, with 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and a non-coding control region (D-loop). Nucleotide composition leaned to an A+T bias with 31.5% A, 25.2% C, 13.1% G, and 30.1% T. The ND2, ND3, ND4, COII, and CYTB genes contained incomplete stop codons. The Seychelles *C. amblyrhynchos* shark had 99.9% identity to the two Chagos *C. amblyrhynchos* individuals. The Seychelles shark contained 23 substitutions compared to Chagos individual (MT104515) sequenced by the Oxford Nanopore system, 10 substitutions compared to Chagos individual (MT093205) sequenced using the Illumina HiSeq system, and five substitutions (with two occurring in the control region) compared to both Chagos *C. amblyrhynchos* individuals. The maximum likelihood analysis is consistent with the results of Dunn et al. (2020), clustering *C. amblyrhynchos* with *C. albimarginatus* and *C. falciformis* (Figure 1).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

We thank the Save Our Seas Foundation [Grant 157] for support.

Data availability statement

Mitogenome data supporting this study are openly available in GenBank at: https://www.ncbi.nlm.nih.gov/nuccore/MT663280.

The raw Illumina sequence reads are available from the NCBI SRA database: https://www.ncbi.nlm.nih.gov/sra/SRX8934594

References

Boissin E, Thorrold SR, Braun CD, Zhou Y, Clua EE, Planes S. 2019. Contrasting global, regional and local patterns of genetic structure in gray reef shark populations from the Indo-Pacific region. Sci Rep. 9(1):15816.

Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 9(8):772.

Dunn N, Johri S, Curnick D, Carbone C, Dinsdale EA, Chapple TK, Block BA, Savolainen V. 2020. Complete mitochondrial genome of the gray reef shark, *Carcharhinus amblyrhynchos* (*Carcharhiniformes: Carcharhinidae*). Mitochondrial DNA Part B. 5(3):2080–2082.

Friedlander AM, Caselle JE, Ballesteros E, Brown EK, Turchik A, Sala E. 2014. The real bounty: marine biodiversity in the Pitcairn Islands. PLOS One. 9(6):e100142.

Heupel MR, Papastamatiou YP, Espinoza M, Green ME, Simpfendorfer CA. 2019. Reef shark science – key questions and future directions. Front Mar Sci. 6:12.

Iwasaki W, Fukunaga T, Isagozawa R, Yamada K, Maeda Y, Satoh TP, Sado T, Mabuchi K, Takeshima H, Miya M, et al. 2013. MitoFish and MitoAnnotator: a mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Mol Biol Evol. 30(11):2531–2540.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35(11):1547–1549.

Momigliano P, Harcourt R, Robbins WD, Jaiteh V, Mahardika GN, Sembiring A, Stow A. 2017. Genetic structure and signatures of selection in grey reef sharks (*Carcharhinus amblyrhynchos*). Heredity. 119(3):142–153.

Momigliano P, Harcourt R, Robbins WD, Stow A. 2015. Connectivity in grey reef sharks (*Carcharhinus amblyrhynchos*) determined using empirical and simulated genetic data. Sci Rep. 5(1):13229.

Speed CW, Rees MJ, Cure K, Vaughan B, Meekan MG. 2019. Protection from illegal fishing and shark recovery restructures mesopredatory fish communities on a coral reef. Ecol Evol. 9(18):10553–10566.

Figure 1. Maximum likelihood tree based on the GTR + I + G model of evolution and 1000 bootstraps. The tree with the highest log likelihood is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches for all nodes where the support is >75%. The Seychelles *C. amblyrhynchos* mitogenome (MT663280) placement is shown in bold.