Keywords: Carcinogenic effect; Arsenate; P. vittata; Aquaglyceroporins

Arsenic contamination in non-effected area is of great concern today and spreading via food chain. Old strategies for arsenic mitigation were not only costly, but also results in large amount of sludge production, which was difficult to detoxify in one-step. Many worker believes that comprehensive multistep approaches towards escalating problems is essential in mitigation of arsenic means both chemical as well as biotechnological approaches can work in synchronous matter. Therefore, alternative techniques may be helpful in order to prevent the entry of arsenic in the food chain. One of the most relevant strategies seems to be the application of arsenic resistance microbes equipped with both uptake and detoxification machinery for sequestration and hyper accumulator's plants have role in mobilization of arsenic. Metagenomics approaches seems to be plausible in finding potential microbes in order to enhanced bioremediation capability of arsenic on the basis of presence of clusters of genes and gene networks present.

Figure 1: Countries affected with Arsenic metal in groundwater [15].
for As sequestration and metabolism [3]. Many hyper accumulators are known to adsorb more than 95% of the arsenic from the soil as evident by the fern (P. vittata) [4]. Unfortunately, the plant P. vittata grows well only in warm, humid environments with mild winters, therefore they cannot grow everywhere in every environment. Therefore, some scientist are making efforts to increase the ability of plants to pump out arsenic from soil via creating GMO plants which have gene for arsenic V enters via phosphate transporter protein while Ars operon. Actually, these operons are linked with efflux and transporter protein, conversion to As (III) via arsenic reductase, which triggers ars operon.

Table 1: Sources and forms of arsenic.

Arsenic form	Sources	Comments	References
Sodium Arsenate	Pesticides and wood		[27]
DMA (also known as cacodylic acid)	Preservatives		[28,29]
Arsenopyrite	Rocks, Soils, Minerals, mines		[15,49]
Arsenobetaine, Arsenocholine, tetrakis(β-d-gluco-pyranosyl) arsenobetaine, arsenocholine, and S-(β-d-gluco-pyranosyl) arsenecholine	Ground water	Arsenite, arsenate	[30]
Arsenosugars	Coal-fired power generation	Organic forms (methyl and dimethyl arsenic compounds)	[31]
Fe-reducing bacteria	Plants, burning vegetation and also due to eruption of volcano		[32]
Fe-reducing bacteria	Tube-wells >1 mg L^{-1}	Bengal Delta region (encompassing Bangladesh and West Bengal)	[33]
Metal-reducing bacteria	Marine animal		[34]
[(CH₂)₂As+CH₂COOH] dimethylarsinic acid	Soil		[35]
arsenobetaine MMA, DMA, TMAO	Plants		[36]
Arsenic III, DMA, MMA, MA As-cysteine, As₃S₈, and AsO₂⁻	Plants		[37-39]
arsenate, arsenite, MMA and DMA	Soil, rice	No harm by intake	[40,41]
As(V), DMA,MMA, As(V)	Urine wine club soda		[42]
Legume–rhizobium	Sunflower		[43]
Symbiosis	(Helianthus annuus L.), jack bean (Canavalia ensiformis L.), velvet bean (Stizolobium ateninum L.), castor bean (Ricinus communis L.)		[44,47]

For arsenic detoxification arsenate and arsenite operon is present in both the gram positive as well as gram negative bacteria, arr operon is related to arsenic reductase present in many microbes such as Shewanella, bacillus some organism like E. coli, Staphylococcus, Bacillus, Acidithiobacillus, Pseudomonas, had well characterised Ars operon linked with As(V) detoxification where. In these organisms, As (V) is converted to As (III) via arsenic reductase, which triggers ars operon. Actually, these operons are linked with efflux and transporter protein, as a result arsenic V enters via phosphate transporter protein while Ars III is efflux after activation of Ars operon [16]. Endophytes are part of plant system and thus may help in mobilisation of nutrients and arsenic along with Arsenic V which is analogous to phosphate while some rhizospheric endophytes stops mobilization of arsenic metals. There is more bioavailability of arsenic or deposits of arsenic. Rather than...
single microbes to act for decontamination groups of microbes (called as Biomass) activates for maintaining balance between toxic metals. Recently, addition of SiO,

References

1. Maciaszczyk-Dziubinska E, Wawrzynca D, Wysocki R (2012) Arsenic and antimony transporters in eukaryotes. Int J Mol Sci 13: 3527-3548.
2. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51: 730-750.
3. Dhankher OP, Elizabeth AH, Pilon-Smith R, Meagher B, Sharon D (2012) Biotechnological approaches for phytoremediation. Plant biotechnology and agriculture. Academic Press, San Diego, CA, USA. pp: 309-328.
4. Brahman KD, Kazi TG, Afridi HI, Naseem S, Arain SS, et al. (2013) Evaluation of high levels of fluoride, arsenic species and other physicochemical parameters in underground water of two sub districts of Tharparkar, Pakistan: a multivariate study. Water Res 47: 1005-1020.
5. Doucelf M, Terry N (2002) Pumping out the arsenic. Nat Biotechnol 20: 1094-1095.
6. Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, et al. (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20: 1140-1145.
7. Dhankher OP, Om Parkash D, Nupur Shasti A, Barry Rosen, Mark F, et al. (2003) Increased cadmium tolerance and accumulation by plants expressing bacterial arsenate reductase. New phytologist 159: 431-441.
8. Wang J, Zhao FJ, Meharg AA, Raab A, Feldmann J, et al. (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130: 1552-1561.
9. Van KR, Richard van K, Natasa G, Roger B, Rob LJ, et al. (2005) Functional analysis of three plasmids from Lactobacillus plantarum. Applied and environmental microbiology 71: 1223-1230.
10. Wang SX, Wang ZH, Cheng XT, Li J, Sang ZP, et al. (2007) Arsenic and fluoride exposure in drinking water: children's IQ and growth in Shanxi county, Shanxi province, China. Environ Health Perspect 115: 643-647.
11. Hattunen T, Finell M, Salminen S (2007) Arsenic removal by native and chemically modified lactic acid bacteria. Int J Food Microbiol 120: 173-178.
12. Srivastava M, Ma LQ, Santos JA (2006) Three new arsenic hyperaccumulating ferns. Sci Total Environ 364: 24-31.
13. Nagaoa M, Shibata H, Kimura I, Hashimoto S, Kimura K, et al. (1995) Structural studies on a cell wall polysaccharide from Bilimbiobacterium longum YIT4028. Carbohydr Res 274: 245-249.
14. Burger S, Tatge H, Hofmann F, Genth H, Just I, et al. (2003) Expression of recombinant Clostridium difficile toxin A using the Bacillus megaterium system. Biochem Biophys Res Commun 307: 584-589.
15. Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300: 939-944.
16. Mateos LM, Ordoñez E, Letek M, Gil JA (2006) Corynebacterium glutamicum as a model bacterium for the bioremediation of arsenic. Int Microbiol 9: 207-215.
17. Richey C, Chovanec P, Hoefl SE, Oremland RS, Basu P, et al. (2009) Respiratory arsenate reductase as a bidirectional enzyme. Biochemical and biophysical research communications 382: 298-302.
18. Gadd GM (2013) Microbial Roles in Mineral Transformations and Metal Cycling in the Earth’s Critical Zone. In Molecular Environmental Soil Science. Springer: 115-165.
19. Mukhopadhyay R, Rosen BP, Phung LT, Silver S (2002) Microbial arsenic: from genotypes to genes and enzymes. FEMS Microbiol Rev 26: 311-325.
20. Hollibaugh JT, Budinoff C, Hollibaugh RA, Ransom B, Bano N (2006) Sulfide oxidation coupled to arsenate reduction by a diverse microbial community in a soda lake. Appl Environ Microbiol 72: 2043-2049.
21. Malasarn D, Sattikov CW, Campbell KM, Santini JM, Hering JG, et al. (2004) arA is a reliable marker for As(V) respiration. Science 306: 455.
22. Lear G, Song B, Gault AG, Polya DA, Lloyd JR (2007) Molecular Analysis of Arsenate-Reducing Bacteria within Cambodian Sediments following Amendment with Acetate. Applied and Environmental Microbiology 73: 1041-1046.
23. Dong G, Huang Y, Yu Q, Wang Y, Wang H, et al. (2014) Role of nanoparticles in controlling arsenic mobilization from sediments near a realgar tailing. Environ Sci Technol 48: 7469-7476.
24. Politj J, Spadavecchia J, Florentino G, Antonucci I, Casale S, et al. (2015) Interaction of Thermus thermophilus ArcS enzyme and gold nanoparticles naked-eye assay speciation between As(III) and As(V). Nanotechnology 26: 435070.
25. Brune KD, Bayer TS (2012) Engineering microbial consortia to enhance biomining and bioremediation. Front Microbiol 3: 203.
26. Xiong J, He Z, Van Nostrad JD, Luo G, Tu S, et al. (2012) Assessing the microbial community and functional genes in a vertical soil profile with long-term arsenic contamination. PLoS One 7: e05057.
27. Thangavel P, Subburaam CV (2004) Phytoextraction: role of hyperaccumulators in metal contaminated soils. Proceedings-Indian National Science Academy Part B 70: 109-130.
28. Sarkar D, Datta R (2004) Arsenic fate and bioavailability in two soils contaminated with sodium arsenate pesticide: an incubation study. Bulletin of environmental contamination and toxicology 72: 240-247.
29. Woolson EA, Axley JH, Kearney PC (1973) The chemistry and phytotoxicity of arsenic in soils: II. Effects of time and phosphorus. Soil Science Society of America Journal 37: 254-259.
30. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Applied geochemistry 17: 517-539.
31. Zhong L, Hu C, Tan Q, Liu J, Sun X (2011) Effects of sulfur application on sulfur and arsenic absorption by rapeseed in arsenic-contaminated soil. Plant Soil Environ 57: 429-434.
32. Kuehnelt D, Lentschinger J, Goessler W (2000) Arsenic compounds in terrestrial organisms. IV. Green plants and lichens from an old arsenic smelter site in Austria. Applied organometallic chemistry 14: 411-420.
33. Zhao FJ, McGrath SP, Mehar AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61: 535-559.
34. Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, et al. (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430: 68-71.
35. Huang JH, Matzner E (2006) Dynamics of organic and inorganic arsenic in the solution phase of an acidic fen in Germany. Geochimica et Cosmochimica Acta 70: 2023-2033.
36. Schoof RA, Yost LJ, Eickhoff J, Crecelius EA, Cragin DW, et al. (1999) A market basket survey of inorganic arsenic in food. Food Chem Toxicol 37: 839-846.
37. Koch I, Lixia W, William CR, Kenneth RJ (2000) The predominance of inorganic arsenic species in plants from Yellowknife, Northwest Territories, Canada. Environmental science & technology 34: 22-26.
38. Gonzalez E, Solano R, Rubio V, Leyva A, Paz-Ares J (2005) Phosphate Transporter Trafficilator is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. The Plant Cell 17: 3500-3512.
39. Rahman MM, Ng JC, Naidu R (2009) Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. Environ Geochem Health 31 Suppl 1: 189-200.
40. Ruiz-Chancho MJ, López-Sánchez JF, Schmeisser E, Goessler W, Francesconi KA, et al. (2008) Arsenic speciation in plants growing in arsenic-contaminated sites. Chemosphere 71: 1522-1530.

41. Rahman MA, Hasegawa H, Rahman MM, Rahman MA, Miah MA (2007) Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain. Chemosphere 69: 942-948.

42. Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128: 1120-1128.

43. Goessler W (1997) Arsenic compounds in a marine food chain. Fresenius’ journal of analytical chemistry 359: 434-437.

44. Greene R, Crecelius E (2006) Total and inorganic arsenic in mid-atlantic marine fish and shellfish and implications for fish advisories. Integrated environmental assessment and management 2: 344-354.

45. Sheppard BS, Caruso JA, Heitkemper DT, Wolnik KA (1992) Arsenic speciation by ion chromatography with inductively coupled plasma mass spectrometric detection. Analyst 117: 971-975.

46. Dwivedi S, Mishra A, Tripathi P, Dave R, Kumar A, et al. (2012) Arsenic affects essential and non-essential amino acids differentially in rice grains: inadequacy of amino acids in rice based diet. Environ Int 46: 16-22.

47. Reichman SM (2007) The potential use of the legume-rhizobium symbiosis for the remediation of arsenic contaminated sites. Soil Biology and Biochemistry 39: 2587-2593.

48. Trotta A, Falaschi P, Cornara L, Mingardi V, Fusconi A, et al. (2006) Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere 65: 74-81.

49. Aldrich MV, Peralta-Videa JR, Parsons JG, Gardea-Torresdey JL (2007) Examination of arsenic (III) and (V) uptake by the desert plant species mesquite (Prosopis spp.) using X-ray absorption spectroscopy. Science of the total environment 379: 249-255.

50. Huang JH, Scherr F, Matzner E (2007) Demethylation of dimethylarsinic acid and arsenobetaine in different organic soils. Water, air and soil pollution 182: 31-41.