Western Flower Thrips, *Frankliniella occidentalis* (Thysanoptera: Thripidae): Evaluation of Potential Attraction to Vanilla Extract under Laboratory and Greenhouse Conditions

Nathan J. Herrick and Raymond A. Cloyd1
Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS 66506

Additional index words: plant essential oils, plant volatiles, insect trapping, plant protection, monitoring

Abstract. Plant-derived essential oils or extracts and their associated volatiles can serve as insect attractants to enhance adult captures when used as whole plants or extracts that are incorporated onto colored sticky traps. In our study, we initially assessed the attractiveness of western flower thrips (WFT) (*Frankliniella occidentalis*) adults to vanilla extract in the laboratory using choice and no-choice experiments by comparing one (0.05 mL) and two (0.10 mL) drops of vanilla extract (0.029% and 0.059%, respectively). In the choice experiments, a drop of water and drop of vanilla extract were placed on opposite sides of a petri dish. One WFT was placed in the center of the petri dish, and observations were made on whether there was preferential movement to the water or vanilla extract. For the no-choice experiments, one petri dish only contained a drop of water, whereas another petri dish only contained a drop of vanilla extract. One WFT was placed into each petri dish and movement was observed to assess whether the WFT moved toward the water or to the vanilla extract. We then determined if yellow sticky cards containing vanilla extract were more attractive to WFT adults than those with water, by using the number of adults captured on yellow sticky cards as an estimate under greenhouse conditions. Western flower thrips adults were not attracted to vanilla extract based on the results associated with the choice and no-choice tests conducted under laboratory conditions with no differences in selection between vanilla extract and water. In addition, there was no evidence that inoculating yellow sticky cards with vanilla extract enhanced the number of adults captured on yellow sticky cards. Overall, the use of vanilla extract in attracting WFT adults to yellow sticky cards is not justifiable under the parameters of our study.

Keywords:
- Plant essential oils
- Plant volatiles
- Insect trapping
- Plant protection
- Monitoring

Received for publication 2 Feb. 2016. Accepted for publication 29 Feb. 2016.

We thank Mary Beth Kirkham of the Department of Agronomy at Kansas State University (Manhattan, KS) and Kun Yan Zhu of the Department of Entomology at Kansas State University for reviewing initial drafts of the manuscript.

Nathan J. Herrick and Raymond A. Cloyd1

1Corresponding author. E-mail: relloyd@ksu.edu.

Abstract. Plant-derived essential oils or extracts and their associated volatiles can serve as insect attractants to enhance adult captures when used as whole plants or extracts that are incorporated onto colored sticky traps. In our study, we initially assessed the attractiveness of western flower thrips (WFT) (*Frankliniella occidentalis*) adults to vanilla extract in the laboratory using choice and no-choice experiments by comparing one (0.05 mL) and two (0.10 mL) drops of vanilla extract (0.029% and 0.059%, respectively). In the choice experiments, a drop of water and drop of vanilla extract were placed on opposite sides of a petri dish. One WFT was placed in the center of the petri dish, and observations were made on whether there was preferential movement to the water or vanilla extract. For the no-choice experiments, one petri dish only contained a drop of water, whereas another petri dish only contained a drop of vanilla extract. One WFT was placed into each petri dish and movement was observed to assess whether the WFT moved toward the water or to the vanilla extract. We then determined if yellow sticky cards containing vanilla extract were more attractive to WFT adults than those with water, by using the number of adults captured on yellow sticky cards as an estimate under greenhouse conditions. Western flower thrips adults were not attracted to vanilla extract based on the results associated with the choice and no-choice tests conducted under laboratory conditions with no differences in selection between vanilla extract and water. In addition, there was no evidence that inoculating yellow sticky cards with vanilla extract enhanced the number of adults captured on yellow sticky cards. Overall, the use of vanilla extract in attracting WFT adults to yellow sticky cards is not justifiable under the parameters of our study.
Materials and Methods

WFT colony. A laboratory colony of WFT, *F. occidentalis* (Pergande) (Thysanoptera: Thripidae) was maintained on green beans *[Phaseolus vulgaris* (L.)] and a 10% honey solution under 25 ± 5 °C, 50 to 60% relative humidity, and a photoperiod of 24:00 (only light) hours in the Department of Entomology at Kansas State University (Manhattan, KS). Specimens used in this research are deposited as voucher number 237 in the Kansas State University Museum of Entomological and Prairie Arthropod Research (Manhattan, KS).

Laboratory experiments. Choice and no-choice experiments were designed to determine whether 1) same-aged adult WFT are attracted to vanilla extract (59% vanilla bean extract and 41% alcohol; McCormick®; McCormick & Co., Inc., Hunt Valley, MD) and 2) adult WFT age (young or mature) influences attraction to vanilla extract.

Thirty glass petri dishes (100 × 15 mm) were lined with a 9-cm-diameter piece of P8 filter paper (Fisherbrand® filter paper (Fisher Scientific, Pittsburgh, PA)). Ten petri dishes were used for the choice experiment and 20 were used for the no-choice experiment. Each experiment was replicated 10 times. For the choice experiment, one drop (0.05 mL) of vanilla extract (0.029%), using a sterile 1 mL plastic syringe (BD®; Becton, Dickinson and Comp., Franklin Lakes, NJ), was applied to the edge of the filter paper in the petri dish. Care was taken to insure that the drop made a circle, and did not disperse along the edge of the petri dish and filter paper, allowing us to determine (based on observation) if WFT adults were making a selection. An equal volume of water was added to the opposite edge of the filter paper in the same petri dish. The water served as a control. One adult WFT (10 ± 1 d post-emergence) was removed from the colony and subsequently placed into the center of the petri dish using a fine-tipped paintbrush, and then the petri dish lid was immediately replaced. Using a stopwatch, the amount of time (seconds) required for each WFT adult to select either vanilla extract or water was recorded. A selection was defined as any WFT adult that entered into ≥1 mm drop of liquid absorbed into the filter paper and passed for at least 1 s. If a WFT adult did not make a selection after 300 s, then a “no selection” was recorded. A similar method was used for the no-choice experiment although two petri dishes were used and contained one drop (0.05 mL) of either vanilla extract (0.029%) or water. The same method was performed again using two drops (0.10 mL) of vanilla extract (0.059%). The quantity of vanilla extract used was chosen because preliminary experiments demonstrated no difference in adult WFT attraction to one, two, four, five, and eight drops of vanilla extract (N.J. Derrick and R.A. Clardy, unpublished data).

Another series of choice and no-choice experiments was conducted similar to that described above using one drop (0.05 mL) of vanilla extract (0.029%) or water to determine whether WFT adult age influences attraction to vanilla extract or water. Adult WFT used were either young adults (1 ± 1 d post-emergence) or mature adults (20 ± 1 d post-emergence).

Greenhouse experiments. Caged, choice experiments were conducted in a glass-covered greenhouse at the Throckmorton Plant Sciences Center, Kansas State University (Manhattan, KS) to determine whether 1) same-aged adult WFT exhibit similar responses in the greenhouse as in the laboratory associated with attraction to vanilla extract and 2) adult WFT (young or mature) exhibit similar responses in the greenhouse as in the laboratory in terms of attraction to vanilla extract or water.

Twenty, clear plastic cages [45.7 × 45.7 × 60.9 cm (L × W × H)] were arranged in rows and placed on top of two wire mesh greenhouse benches (4.3 × 1.1 m). Each cage had a lid with a hole on top and two additional holes on opposite sides (12.7 cm diameter) covered with thrips screening (Green-Tek, Inc., Edgerton, WI). The screened holes allowed for ventilation and prevented movement of WFT adults among cages. Yellow sticky cards [12.7 × 7.6 cm (L × W)] were creased (before removing the protective coverings) 7.0 mm from the base, creating a fold that retained the vanilla extract or water drop (s). One yellow sticky card was attached to a bamboo stake (30.5 cm in length) using a wooden clothes pin, which kept the base of the sticky card 8.9 cm above the cage bottom. The bamboo stake was placed into a circular plastic container (250 mL) filled with sand, which held the stake upright. One experiment was conducted using one drop (0.05 mL) of vanilla extract (0.029%) or water and subsequently repeated using two drops (0.10 mL) of vanilla extract (0.059%) or water. Two yellow sticky cards, attached to bamboo stakes, were randomly placed in opposite corners of the cages. One yellow sticky card contained vanilla extract and the other yellow sticky card contained water. A 9 dram (33.27 mL) plastic vial containing ≥50 adult WFT (10 ± 1 d post-emergence) was placed in the center of each cage (26.7 cm from both sticky cards), and the number of adults captured was counted after 7 d. There were 10 replications (cages) for each experiment.

A series of choice experiments was conducted similar to that described above using two drops (0.10 mL) of vanilla extract (0.059%) or water to determine whether age (young or mature) of adult WFT respond similarly in the greenhouse as in the laboratory. Adult WFT were either young (1 ± 1 d post-emergence) or mature (20 ± 1 d post-emergence). Two drops were used because preliminary experiments revealed a higher number of adult WFT captured with than one drop (N.J. Derrick and R.A. Clardy, unpublished data).

Statistical analysis. All experiments were conducted in a completely randomized design, and data were subjected to analysis of variance (ANOVA) (SAS Institute, 2002) at α = 0.05. In the laboratory experiments, the amount of time required to make a selection was used as the response variable and treatment (e.g., vanilla extract or water) and WFT adult age (young or mature) were the main effects.

Results

Laboratory experiments. In the choice tests, using same-aged adult WFT, no selection was made within 300 s in the experiment with one drop (0.05 mL) of vanilla extract (0.029%) and water. However, in the no-choice tests, water was selected 60% of the time compared with 10% for vanilla extract, and selection occurred in 139 ± 25.3 s (mean ± se) and 259 s, respectively. Similar results were observed in the experiments using two drops (0.10 mL) of vanilla extract (0.059%) or water; however, in the choice tests, water was selected 40% of the time and vanilla extract only once, or 10% of the time. Selection of water occurred in 149 ± 30.3 s and in 98 s for vanilla extract. In the no-choice tests, water was selected 30% of the time compared with 10% of the time for vanilla extract, and selection occurred in 191 ± 29.7 s and in 48 s, respectively. Data were not analyzed using ANOVA because vanilla extract or water was never selected in the choice tests and the vanilla extract was only selected once in the no-choice tests with one drop (0.05 mL; 0.029%). Similarly, vanilla extract was selected only once in the choice tests and once in the no-choice tests using two drops (0.10 mL; 0.059%).

Experiments designed to determine if age (young or mature) of adult WFT influences the amount of time in selecting vanilla extract or water did not reveal any significant differences in the amount of time associated with 300 s of exposure to vanilla extract and water among young or mature adult WFT in the choice tests (F = 0.93, df = 1, 12; P = 0.3422) or within 300 s of exposure to vanilla extract and water within young and mature adult WFT (F = 0.84, df = 1, 12; P = 0.3661) (Fig. 1). However, in the no-choice tests, mature WFT adults made a selection in significantly less time than young WFT adults (F = 8.67, df = 1, 12; P = 0.0066) although the amount of time in selecting either vanilla extract or water was not significant within adult age (young or mature) (F = 1.55, df = 1, 12; P = 0.2243) (Fig. 2).

Greenhouse experiments. There were significantly more same-aged adult WFT captured on yellow sticky cards with two drops (0.10 mL) of vanilla extract (0.059%) or water than with one drop (0.05 mL) (F = 7.05, df = 1, 12; P = 0.0132) (Fig. 3). However, captures of WFT adults were not significantly different between yellow sticky cards treated with vanilla extract or water (F = 0.05, df = 1, 12;
Furthermore, captures of young or mature adult WFT on yellow sticky cards treated with vanilla extract or water were not significantly different ($F = 0.07$, df = 1, 12; $P = 0.7919$) (Fig. 4). The cumulative percent of WFT adults captured on the yellow sticky cards was consistent ($\approx 30\%$ to 40%) after day 2.

Discussion

This is the first study to evaluate quantitatively anecdotal claims regarding the potential attraction of WFT adults to vanilla extract. We found no evidence that WFT adults were attracted to vanilla extract. Similarly, Katerinopoulos et al. (2005) found that WFT adults were not attracted to extracts of rosemary ($Rosmarinus officinalis$). In the laboratory experiments, when WFT adults were exposed to one drop (0.05 mL) of vanilla extract (0.029%), no selection was made, and, in the no-choice tests, water was selected nearly 60% of the time by same-aged WFT adults. Temporal dynamics associated with life stage and adult age may influence insect motivation for resource acquisition (Boggs, 2009). For example, larvae and even younger adult insects often search initially for nutrients to survive, whereas older adults are more oriented toward mating, reproduction, or searching for oviposition sites (Pearsall and Myers, 2000). Therefore, if WFT adults were attracted to vanilla extract as a nutrient source, a potential mating cue, or oviposition site then they would be expected to be attracted to vanilla extract whether young or mature. However, the lack of attraction to vanilla extract was apparent in the laboratory tests when exposing young and mature adult WFT to vanilla extract indicating no evidence of attraction under our study parameters or during the exposure period. We did find, however, that mature WFT adults took less time, overall, to make a selection in the no-choice tests, which may be due to their inherent learned ability to orient toward plant volatiles, whereas young WFT adults may not have developed learned orientation behaviors (Terry, 1997).

Field experiments, such as those conducted in the greenhouse, are often more practical (realistic) in assessing insect behavior than laboratory experiments because the laboratory is an artificial environment (Brodsgaard, 1994; Stark et al., 2007). In addition, yellow sticky cards are commonly used in greenhouses to monitor insect pests and, more specifically, act as a visual attractant to WFT (Blumthal et al., 2005). However, there may be issues associated with trap distance where volatiles on baited traps may influence captures on nearby unbaited traps (Teulon et al., 1993), although in our study, the greenhouse experiments verified the laboratory experiments in that WFT were not attracted to vanilla extract. Teulon et al. (1999) also found no differences in adult WFT captured on yellow sticky cards with or without p-anisaldehyde in a greenhouse experiment. However, Frey et al. (1994) was not able to duplicate the results obtained in the laboratory under greenhouse conditions. We do not know why two drops (0.10 mL) of vanilla extract (0.059%) or water yielded higher adult trap catches than one drop (0.05 mL) although attractiveness of plant volatiles or extracts is dependent on concentration (Koschier et al., 2000; van Tol et al., 2006) and the distance that volatiles are emitted (Terry, 1997). In fact, concentrations of volatiles that act as attractants can exert repellent effects at higher concentrations (Visser, 1986). However, the attractiveness of WFT to plant volatiles may not be consistent (Koschier et al., 2000).

Western flower thrips are weak fliers (Hollister et al., 1995), which may impact the number of adults captured. Furthermore, the distance between traps may influence variation in WFT adult numbers captured (Teulon et al., 1993). However, we were successful in recapturing between 40% and 50% of the WFT adults released into our caged experiments; consequently, we were able to determine that the yellow sticky cards treated with vanilla extract were not more attractive to adults than those treated with water.

![Fig. 1. Mean (±SE) amount of time (seconds) for young (1 ± 1 d postemergence) and mature (20 ± 1 d postemergence) western flower thrips (WFT), *Frankliniella occidentalis* (Pergande) adults to select either vanilla extract or water in laboratory choice tests. Vertical bars represent the standard error of the mean (SE).](image1)

![Fig. 2. Mean (±SE) amount of time (seconds) for young (1 ± 1 d postemergence) and mature (20 ± 1 d postemergence) western flower thrips (WFT), *Frankliniella occidentalis* (Pergande) adults to select either vanilla extract or water in laboratory no-choice tests. Vertical bars represent the standard error of the mean (SE).](image2)
Fig. 3. Mean percent (± SE) of same-aged western flower thrips (WFT), Frankliniella occidentalis (Pergande) adults (10 ± 1 d postemergence) captured on yellow sticky cards treated with one drop (0.05 mL) of vanilla extract (0.0295%) and water, or two drops (0.10 mL) of vanilla extract (0.059%) or water in the greenhouse. There were 10 replications per treatment. Vertical bars represent the standard error of the mean (SE).

Fig. 4. Mean percent (±SE) of young (1 ± 1 d postemergence) and mature (20 ± 1 d postemergence) adult western flower thrips, Frankliniella occidentalis (Pergande) captured on yellow sticky cards treated with two drops (0.10 mL) of vanilla extract (0.059%) or water in the greenhouse. There were 10 replications per treatment. Vertical bars represent the standard error of the mean (SE).

Although plant-derived essential oils or extracts and their associated volatiles can be important in managing insect pests, based on the parameters and results of our study, vanilla extract does not appear to be useful in increasing monitoring efforts or detection of WFT adult populations in greenhouse crop production systems. Similar investigations, under greenhouse conditions using other plant extracts or volatiles may be useful in determining potential attraction or even deterrence, which could contribute to better management of WFT populations.

Literature Cited

Allen, W.R. and A. Broadbent. 1986. Transmission of tomato spotted wilt virus in Ontario greenhouses by Frankliniella occidentalis. Can. J. Plant Pathol. 8:33–38.

Binnis, M.R. and J.P. Nyrop. 1992. Sampling insect populations for the purpose of IPM decision making. Annu. Rev. Entomol. 37:427–453.

Blumthal, M.R., R.A. Cloyd, L.A. Spomer, and D.F. Warnock. 2005. Flower color preferences of western flower thrips. HortTechnology 15:846–853.

Boggs, C.L. 2009. Understanding insect life histories and senescence through a resource allocation lens. Funct. Ecol. 23:27–37.

Brodskaard, H.F. 1994. Insecticide resistance in European and African strains of western flower thrips (Thysanoptera: Thripidae) tested in a new residue-on-glass test. J. Econ. Entomol. 87:1141–1146.

Chermenskaya, T.D., E.M. Pow, C.M. Woodcock, S.P. Maniar, I.V. Shamshev, O.G. Selyskaya, V.N. Burov, N. Roditakis, and L.J. Wadhams. 2001. Behavioural responses of western flower thrips Frankliniella occidentalis (Pergande) to volatiles from three aromatic plants. Insect Sci. Appl. 21:67–72.

Childers, C.C. 1997. Feeding and oviposition injuries to plants, p. 505–537. In: T. Lewis (ed.). Thrips as Crop Pests. CAB International, New York, NY.

Chisholm, I. and T. Lewis. 1984. A new look at thrips (Thysanoptera) mouthparts, their action and effects of feeding on plant tissue. Bul. Entomol. Res. 74:663–675.

Cloyd, R.A. 2009. Western flower thrips (Frankliniella occidentalis) management on ornamental crops grown in greenhouses: Have we reached an impasse? Pest Technol. 3:1–9.

Cloyd, R.A. and C.S. Sadof. 2003. Seasonal abundance and use of action threshold for western flower thrips, in a cut carnation greenhouse. HortTechnology 13:497–500.

Frey, J.E., R.V. Cortada, and H. Helbling. 1994. The potential of flower odours for use in population monitoring of western flower thrips Frankliniella occidentalis Perg. (Thysanoptera: Thripidae). Biocontrol Sci. Technol. 4:177–186.

Gibbs, D.R. and R.S. Vernon. 1990. Trap catch of western flower thrips (Thysanoptera: Thripidae) as affected by color and height of sticky traps in mature greenhouse cucumber crops. J. Econ. Entomol. 83:971–975.

Harrewijn, P., W.F. Tjallingii, and C. Mollema. 1996. Electrical recording of plant penetration by western flower thrips. Entomol. Exp. Appl. 79:345–352.

Heinz, K.M., M.P. Parrella, and J.P. Newman. 1992. Time-efficient use of yellow sticky traps in monitoring insect populations. J. Econ. Entomol. 85:2263–2269.

Heyer, N.L. and P.J. Brobyn. 1992. Chemical control of western flower thrips (Frankliniella occidentalis Pergande). Ann. Appl. Biol. 121:219–231.

Hollister, B., E.A. Cameron, and D.A.J. Teulon. 2005. Flower color on behavior and capture of western flower thrips (Thysanoptera: Thripidae) to yellow-anisaldehyde and a yellow color on behavior and capture of western flower thrips, p. 571–574. In: B.L. Parker, M. Skinner, and T. Lewis (eds.). Thrips Biology and Management: Proc. 1993 Inter. Conf. Thysanoptera, Plenum Press, New York, NY.

Jensen, S.E. 2000. Insecticide resistance in the western flower thrips, Frankliniella occidentalis. Integ. Pest Mgt. Rev. 5:131–146.

Katerinopoulos, H.E., G. Pagona, A. Afanatis, N. Stratigakis, and N. Roditakis. 2005. Composition and insect attracting activity of the essential oil of Rosmarinus officinalis. J. Chem. Ecol. 31:111–122.

Kirk, W.D.J. 1985. Effect of some floral scents on host finding by thrips (Insecta: Thysanoptera). J. Chem. Ecol. 11:35–43.

Kirk, W.D.J. 2002. The pest from the west: Frankliniella occidentalis. Thrips and Tospoviruses: Proc. 7th Int. Symp. Thysanoptera 2:33–42.
Kirk, W.D.J. and L.I. Terry. 2003. The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agr. For. Entomol. 5:301–310.

Koschier, E.H., W.J. de Kogel, and J. Hans Visser. 2000. Assessing the attractiveness of volatile plant compounds to western flower thrips Frankliniella occidentalis. J. Chem. Ecol. 26:2643–2655.

Koul, O., S. Walia, and G.S. Dhaliwal. 2008. Essential oils as green pesticides: Potential and constraints. Biopestic. Intl. 4:63–84.

Loughner, R.L., D.F. Warnock, and R.A. Cloyd. 2005. Resistance of greenhouse, laboratory, and native populations of western flower thrips to spinosad. HortScience 40:146–149.

Manjunatha, M., J.A. Pickett, L.J. Wadhams, and F. Nazzi. 1998. Response of western flower thrips, Frankliniella occidentalis and its predator Amblyseius cucumeris to chrysanthemum volatiles in olfactometer and greenhouse trials. Intl. J. Trop. Insect Sci. 18:139–144.

Pappu, H., R.A.C. Jones, and R.K. Jain. 2009. Global status of tospovirus epidemics in diverse cropping systems: Successes achieved and challenges ahead. Virus Res. 141:219–236.

Parrella, M. P. and B. Murphy. 1996. Western flower thrips: Identification, biology, and research on the development of control strategies. Bull. IOBC/WPRS (OILB/SROP) 19:115–118.

Pearsall, I.A. and J.H. Myers. 2000. Population dynamics of western flower thrips (Thysanoptera: Thripidae) in nectarine orchards in British Columbia. J. Econ. Entomol. 93:264–275.

Picard, I., R.G. Hollingsworth, S. Salmieri, and M. Lacroix. 2012. Repellency of essential oils to Frankliniella occidentalis (Thysanoptera: Thripidae) as affected by type of oil and polymer release. J. Econ. Entomol. 105:1238–1247.

Pizzol, J., D. Nammour, J.P. Hervouet, A. Bout, N. Desneux, and L. Mailleret. 2010. Comparison of two methods of monitoring thrips populations in a greenhouse rose crop. J. Pest Sci. 83:191–196.

SAS Institute. 2002. SAS/STAT user’s guide, Version 9.4. SAS Institute, Cary, NC.

Schmidt, M.E. and J.E. Frey. 1995. Monitoring of the western flower thrips Frankliniella occidentalis in greenhouses. Med. Fac. Landbouww. Univ. Gent 60:84–87.

Stark, J.D., R. Vargas, and J.E. Banks. 2007. Incorporating ecologically relevant measures of pesticide effect for estimating the compatibility of pesticides and biocontrol agents. J. Econ. Entomol. 100:1027–1032.

Terry, L.I. 1997. Host selection, communication and reproductive behavior, p. 65–118. In: T. Lewis (ed.). Thrips as Crop Pests. CAB International, Oxon, UK.

Teulon, D.A.J., B. Hollister, R.C. Butler, and E.A. Cameron. 1999. Colour and odour responses of flying western flower thrips: Wind tunnel and greenhouse experiments. Entomol. Exp. Appl. 93:9–19.

Tommasini, M.G. and S. Maini. 1995. Frankliniella occidentalis and thrips harmful to vegetable and ornamental crops in Europe, p. 1–42. In: A.J.M. Loomans, J.C. van Lenteren, S. Tommasini, S. Maini, and J. Rudiavets (eds.). Biological Control of Thrips Pests. Wageningen Agricultural University Papers, Wageningen, Netherlands.

Teulon, D.A.J., D.R. Penman, and P.M.J. Ramakers. 1993. Volatile chemicals for thrips (Thysanoptera: Thripidae) host-finding and application for thrips pest management. J. Econ. Entomol. 86:1405–1415.

Wijkamp, I., N. Alarza, R. Goldbach, and D. Peters. 1995. Distinct levels of specificity in thrips transmission of tospoviruses. Phytopathology 85:1069–1074.