Persistence of fractional Brownian motion with moving boundaries and applications

Frank Aurzada and Christoph Baumgarten

Institut für Mathematische Stochastik, Technische Universität Braunschweig, Pockelsstr 14,
D-38106 Braunschweig, Germany

E-mail: f.aurzada@tu-braunschweig.de and baumgart@math.tu-berlin.de

Received 27 December 2012, in final form 4 February 2013
Published 8 March 2013
Online at stacks.iop.org/JPhysA/46/125007

Abstract
We consider various problems related to the persistence probability of fractional Brownian motion (FBM), which is the probability that the FBM X stays below a certain level until time T. Recently, Oshanin et al (2012, arXiv:1209.3313v2) have studied a physical model, where persistence properties of FBM are shown to be related to scaling properties of a quantity J_N, called the steady-state current. It turns out that for this analysis, it is important to determine persistence probabilities of FBM with a moving boundary. We show that one can add a boundary of logarithmic order to an FBM without changing the polynomial rate of decay of the corresponding persistence probability, which proves a result needed in Oshanin et al (2013 Phys. Rev. Lett. at press (arXiv:1209.3313v2)). Moreover, we complement their findings by considering the continuous-time version of J_T. Finally, we use the results for moving boundaries in order to improve estimates by Molchan (1999 Commun. Math. Phys. 205 97–111) concerning the persistence properties of other quantities of interest, such as the time when an FBM reaches its maximum on the time interval $(0, 1)$ or the last zero in the interval $(0, 1)$.

PACS numbers: 02.50.Cw, 02.50.Ey, 05.40.—a

1. Introduction

Given a real-valued stochastic process $(Z_t)_{t \geq 0}$, consider the persistence or survival probability up to time T given by

$$ p(T) := \mathbb{P}[Z_t \leq 1, \forall t \in [0, T]], \quad T > 0. $$

For many relevant stochastic processes, it decreases polynomially (modulo terms of lower order), i.e. $p(T) \sim T^{-\theta+o(1)}$ as $T \to \infty$, and $\theta > 0$ is called the persistence or survival exponent. Persistence probabilities are related to many problems in physics and mathematics; see the surveys [Maj99] and [AS12] for a collection of results, applications and examples.
In this paper, we discuss persistence probabilities related to fractional Brownian motion (FBM). Recall that FBM with the Hurst index $H \in (0, 1)$ is a centered Gaussian process $(X_t)_{t \in \mathbb{R}}$ with covariance
\[
E[X_sX_t] = \frac{1}{2}(|s|^{2H} + |t|^{2H} - |t-s|^{2H}), \quad s, t \in \mathbb{R}.
\]
We remark that X has stationary increments and is self-similar of index H, i.e. $(X_{ct})_{t \in \mathbb{R}}$ and $(c^H X_t)_{t \in \mathbb{R}}$ have the same distribution for any $c > 0$. Let us remark that X is non-Markovian unless $H = 1/2$ (see, e.g., [MVN68]).

Since the behavior of many dynamical systems exhibits long-range correlations, one observes the so-called anomalous dynamics which are typically characterized by a nonlinear growth in time (i.e. $E[X_t^2] \propto t^{2H}$, where $H \neq 1/2$) where X models the evolution of the corresponding quantity [BG90]. In order to take such features into account, FBM was proposed in [MVN68] in 1968. For instance, FBM has been used in polymer models [ZRM09, WFCV12] and in finance to describe long-range dependence of stock prices and volatility [CR98, Øks07]. We also refer to [EK08, ES12] where the emergence of FBM in certain complex systems is investigated.

The study of persistence of this process has been motivated by the analysis of Burgers equation with random initial conditions [Sin92] and the linear Langevin equation [KKM+97]. In the latter paper, the authors show heuristically that the persistence exponent is equal to $1 - H$, where H is the Hurst parameter of the FBM. This is confirmed rigorously in [Mol99]. The estimates on the persistence probability have recently been improved in [Aur11]: there is a constant $c = c(H) > 0$ such that, for T large enough,
\[
T^{-(1-H)}(\log T)^{-c} \gtrsim \mathbb{P}[X_t \leq 1, 0 \leq t \leq T] \gtrsim T^{-(1-H)}(\log T)^c, \quad T \to \infty.
\]

The notation $f(x) \lesssim g(x)$ as $x \to x_0$ means that $\limsup_{x \to x_0} f(x)/g(x) < \infty$, whereas we write $f(x) \sim g(x)$ $(x \to x_0)$ if $f(x)/g(x) \to 1$ as $x \to x_0$. However, it is still an open problem to show that $p(T) \asymp T^{-(1-H)}$, where $p(T) \asymp g(T)$ means that the ratio $f(T)/g(T)$ is bounded away from zero and infinity for large values of T. Note that in view of the self-similarity, (1) translates into
\[
|\log \epsilon|^{-2c} \epsilon^{(1-H)/H} \gtrsim \mathbb{P}[X_t \leq \epsilon, \epsilon, t \in [0, 1]] \gtrsim |\log \epsilon|^{c} \epsilon^{(1-H)/H}, \quad \epsilon \downarrow 0.
\]

Let us remark that the persistence exponent of another non-Markovian process with similar properties, namely self-similarity and stationarity of increments, has been computed recently in [CGPPS12], confirming results in [Red97, Maj03].

The main motivation of this paper comes from a physical model involving FBM that has been studied recently in [ORS12] as an extension to the Sinai model. If $(X_n)_{n \geq 0}$ denotes an FBM with the Hurst index H, the authors are interested in the asymptotics of the kth moment $E[J_k^2]$ of the quantity J_N, called the steady-state current J_N through a finite segment of length N, given by
\[
J_N := \frac{1}{2} \left(1 + \sum_{n=1}^{N-1} \exp(X_n)\right)^{-1}.
\]

Oshanin et al find that $E[J_k^2] = N^{-(1-H)+\alpha(1)}$ as $N \to \infty$ for any $k > 0$. In particular, the exponent is independent of k. In order to prove the lower bound, the authors need the following estimate: if $Y_0, Y_1 > 0$ are some constants, then
\[
N^{-(1-H)}(\log N)^{-c} \gtrsim \mathbb{P}[X_n \leq Y_0 - Y_1 \log(1 + n), \forall n = 1, \ldots, N], \quad N \to \infty.
\]

In general, the following question arises: what kinds of functions f are admissible such that $\mathbb{P}[X_t \leq f(t), \forall t \in [0, T]] = T^{-(1-H)+\alpha(1)}$, i.e. what kinds of moving boundaries f do
not change the persistence exponent of an FBM? Given the increasing relevance of FBM for various applications, it is important to understand such questions since they convey information about the path behavior of FBM. In this paper, we take a further step in this direction. Let us now briefly summarize our main results.

- We study the persistence probability of FBM involving a moving boundary that is allowed to increase or decrease like some power of a logarithm. Our results show that the presence of such a boundary does not change the persistence exponent of FBM, and (3) will follow as a special case.

Theorem 1. Let $Y_0, Y_1 > 0$ and X denote an FBM with the Hurst index $H \in (0, 1)$.

1. For any $\gamma \geq 1$, there is a constant $c = c(H, \gamma) > 0$ such that, as $T \to \infty$,
 $$T^{-(1-H)} (\log T)^{-c} \lesssim \mathbb{P}[X_s \leq Y_0 - Y_1 (\log(1 + s))^{\gamma}, 0 \leq s \leq T] \lesssim T^{-(1-H)}.$$
2. For any $\gamma > 0$, there is a constant $c = c(H, \gamma) > 0$ such that, as $T \to \infty$,
 $$T^{-(1-H)} (\log T)^{-c} \lesssim \mathbb{P}[X_s \leq Y_0 + Y_1 (\log(1 + s))^{\gamma}, 0 \leq s \leq T] \lesssim T^{-(1-H)} (\log T)^{\gamma}.$$

- Considering the continuous-time version of J, we prove the following result.

Theorem 2. Set

$$J_T := \left(\int_0^T e^{s \lambda} \, ds \right)^{-1}, \quad T > 0.$$

For any $k > 0$, there is $c = c(H, k) > 0$ such that

$$T^{-(1-H)} (\log T)^{-c} \lesssim \mathbb{E} [J_T^k] \lesssim T^{-(1-H)} (\log T)^c, \quad T \to \infty.$$

Solving the case $k = 1$ was actually the key to the computation of the persistence exponent in [Mol99] where it is shown that $\mathbb{E} [J_T] \sim CT^{-(1-H)}$ for some constant $C > 0$. Our proof is based on estimates of the persistence probability of FBM in [Aur11], an estimate on the modulus of continuity of FBM in [Sch09] and theorem 1.

- Finally, we discuss various related quantities such as the time when an FBM reaches its maximum on the time interval $(0, 1)$, the last zero in the interval $(0, 1)$ and the Lebesgue measure of the set of points in time when X is positive on $(0, 1)$:

$$r_{\max} := \arg\max_{t \in (0, 1)} X_t,$$

$$z_- := \sup \{ t \in (0, 1) : X_t = 0 \},$$

$$z_+ := \lambda(\{ t \in (0, 1) : X_t > 0 \}),$$

where λ denotes the Lebesgue measure. If ξ denotes any of these quantities, we are interested in the probability of small values, i.e. $\mathbb{P}[\xi < \varepsilon]$ as ε tends to zero. By [Mol99, theorem 2], there is $c > 0$ such that

$$\varepsilon^{1-H} \exp(-c\sqrt{\log \varepsilon}) \lesssim \mathbb{P}[\xi < \varepsilon] \lesssim \varepsilon^{1-H} \exp(c\sqrt{\log \varepsilon}), \quad \varepsilon \downarrow 0.$$

Upon combining our results (theorem 1), the arguments used in [Mol99] and the more precise estimate for the persistence probability of FBM in [Aur11], we obtain the following improvement.

Theorem 3. If ξ denotes any of the random variables in (5), (6) or (7), there is $c > 0$ such that

$$\varepsilon^{1-H} |\log \varepsilon|^{-c} \lesssim \mathbb{P}[\xi < \varepsilon] \lesssim \varepsilon^{1-H} |\log \varepsilon|^c, \quad \varepsilon \downarrow 0.$$
These issues are addressed in sections 2–4. Before we begin to present the material, let us state Slepian’s inequality [Sle62] for the convenience of the reader. It will be an important tool throughout this work.

Lemma 4. Let \(X, Y \) denote two centered Gaussian random vectors in \(\mathbb{R}^n \) such that
\[
\mathbb{E} \left[X_k^2 \right] = \mathbb{E} \left[Y_k^2 \right], \quad \forall k \in \{1, \ldots, n\}, \quad \mathbb{E}[XY] \leq \mathbb{E}[X]Y, \quad \forall i, j \in \{1, \ldots, n\}.
\]
Then, it holds for all \(u_1, \ldots, u_n \in \mathbb{R} \) that
\[
\mathbb{P}[Y_1 \leq u_1, \ldots, Y_n \leq u_n] \leq \mathbb{P}[X_1 \leq u_1, \ldots, X_n \leq u_n].
\]
Moreover, if \(\mathbb{E} [X_iX_j] \geq 0 \) for all \(i, j \), it holds for \(1 \leq k < n \) that
\[
\mathbb{P}[X_i \leq u_1, \ldots, X_k \leq u_k] \cdot \mathbb{P}[X_{k+1} \leq u_{k+1}, \ldots, X_n \leq u_n] \leq \mathbb{P}[X_1 \leq u_1, \ldots, X_n \leq u_n]. \tag{9}
\]

The first part of the lemma can be found in [LT91, corollary 3.12], and (9) then follows if one considers the Gaussian vector \(Y \) with \((Y_1, \ldots, Y_i) = (X_1, \ldots, X_i) \) and \((Y_{i+1}, \ldots, Y_n) = (\tilde{X}_{i+1}, \ldots, \tilde{X}_n) \), where \(\tilde{X} \) is an independent copy of \(X \).

Moreover, if \((X_i)_{i \geq 0} \) is an FBM with Hurst index \(H \in (0, 1) \), we have that \(\mathbb{E} [X_iX_j] \geq 0 \) for all \(s, t \geq 0 \). For a continuous function \(f \) and \(S, T > 0 \), one concludes by a simple approximation argument from (9) that
\[
\mathbb{P}[X_i \leq f(t), \forall t \in [0, T]\} \cdot \mathbb{P}[X_i \leq f(t), \forall t \in [T, T + S]\} \leq \mathbb{P}[X_i \leq f(t), \forall t \in [0, T + S]\}.
\tag{10}
\]

We make frequent use of the last inequality throughout this paper.

2. Survival probability of FBM with moving boundaries

In this section, we prove theorem 1. We need to distinguish between increasing and decreasing boundaries. Let us begin with a simple general upper bound on the probability that an FBM stays below a function \(f \) until time \(T \) when \(f(x) \rightarrow -\infty \) as \(x \rightarrow \infty \).

Lemma 5. Let \(f \) be some measurable function such that there is a constant \(b > 0 \) such that
\[
\int_0^\infty e^{bf(s)} \, ds < \infty.
\]
Then,
\[
\mathbb{P}[X_i \leq f(b^{1/H}s), 0 \leq s \leq T] \sim T^{-(1-H)}.
\]

Proof. Recall from [Mol99, statement 1] that
\[
\lim_{T \to \infty} T^{-H} \mathbb{E}[J_T] \in (0, \infty).
\]
Therefore, there is a constant \(c > 0 \) such that, for \(T \) large enough,
\[
cT^{-(1-H)} \geq \mathbb{E} \left[\frac{1}{\int_0^T e^{bf(s)} \, ds} \right] \geq \mathbb{E} \left[\frac{1}{\int_0^T e^{bf(s)} \, ds} \mathbb{I}_{[X_i \leq b^{1/H} s, x \leq T]} \right] \\
\geq \frac{1}{\int_0^\infty e^{bf(s)} \, ds} \mathbb{P}[X_i \leq b^{1/H} s, 0 \leq s \leq T] \\
\geq \frac{1}{\int_0^\infty e^{bf(s)} \, ds} \mathbb{P}[X_i \leq f(s), 0 \leq s \leq T] \\
= C(b) \mathbb{P}[X_i \leq f(b^{1/H} s), 0 \leq s \leq b^{-1/H} T],
\]
and the lemma follows. \(\square \)

The next lemma provides a lower bound on the survival probability if the function \(f \) does not decay faster than some power of the logarithm.
Lemma 6. Let \(f \) be some measurable, locally bounded function such that \(f(x) \geq A \) for \(x \in [0, \delta] \) for some constants \(A, \delta > 0 \). Assume that there are constants \(T_0, K, \alpha > 0 \) such that \(f(T) \geq -K (\log T)^\alpha \) for all \(T \geq T_0 \). Then, there is a constant \(c > 0 \) such that

\[
P[X_t \leq f(s), 0 \leq s \leq T] \geq T^{-(1-H)} (\log T)^{-c}.
\]

Proof. Set \(g(T) := \mathbb{P}[X_t \leq f(s), 0 \leq s \leq T] \) and fix \(s_0 > 0 \) (to be chosen later). Since \(\mathbb{E}[X_t] \geq 0 \) for all \(t, s \geq 0 \), Slepian’s lemma (see (10)) yields

\[
g(T) \geq \mathbb{P}[X_t \leq f(s), 0 \leq s \leq s_0 (\log T)^{\alpha/\gamma}] \cdot \mathbb{P}[X_t \leq f(s), s_0 (\log T)^{\alpha/\gamma} \leq s \leq T].
\]

Note that

\[
\mathbb{P}[X_t \leq f(s), s_0 (\log T)^{\alpha/\gamma} \leq s \leq T]
\]

\[
= \mathbb{P}[X_t \leq f((\log T)^{\alpha/\gamma}s), s_0 \leq s \leq T/(\log T)^{\alpha/\gamma}]
\]

\[
= \mathbb{P}[(\log T)^\alpha X_t \leq f((\log T)^{\alpha/\gamma}s), s_0 \leq s \leq T/(\log T)^{\alpha/\gamma}]
\]

\[
= \mathbb{P}
\left[
X_s \leq \frac{f((\log T)^{\alpha/\gamma}s)}{(\log T)^\alpha}, s_0 \leq s \leq T/(\log T)^{\alpha/\gamma}
\right].
\]

(11)

Certainly, for all \(T \) large enough,

\[
\inf_{s \in [s_0, T/(\log T)^{\alpha/\gamma}]} \frac{f((\log T)^{\alpha/\gamma}s)}{(\log T)^\alpha} \geq -K.
\]

Thus, the term in (11) can be estimated from below by

\[
\mathbb{P}[X_t \leq -K, s_0 \leq s \leq T/(\log T)^{1/\gamma}].
\]

(12)

Let us first consider the case \(H \geq 1/2 \). Recall that the increments of FBM are positively correlated if and only if \(H \geq 1/2 \), so using Slepian’s lemma in the second inequality below, we obtain the following lower bound for the term in (12):

\[
\mathbb{P} \left[\sup_{s \in [s_0, T]} X_s \leq -K \right] \geq \mathbb{P} \left[X_{s_0} \leq -(K + 1), \sup_{s \in [s_0, T]} X_s - X_{s_0} \leq 1 \right]
\]

\[
\geq \mathbb{P}[X_{s_0} \leq -(K + 1)] \cdot \mathbb{P} \left[\sup_{s \in [s_0, T]} X_s - X_{s_0} \leq 1 \right]
\]

\[
\geq c(s_0, K) \mathbb{P}[X_s \leq 1, s \in [0, T]].
\]

For the first inequality, note that \(-K - X_{s_0} \geq 1\) given that \(X_{s_0} \leq -(K + 1) \). In the last step, we have used the stationarity of increments. Hence,

\[
g(T) \geq c(s_0, K) g(s_0 (\log T)^{\alpha/\gamma}) \mathbb{P}[X_t \leq 1, s \in [0, T]],
\]

and (1) implies that there is \(c > 0 \) such that, for all large \(T \),

\[
g(T) \geq g(s_0 (\log T)^{\alpha/\gamma}) T^{-(1-H)} (\log T)^{-c}.
\]

Let us now prove that a similar inequality also holds if \(H < 1/2 \). In this case, we cannot use Slepian’s inequality since the increments of FBM are negatively correlated. Applying [Aur11, lemma 5] (and the specific choice of \(s_0 \) there), the term in (12) is lower bounded by

\[
\mathbb{P}[X_t \leq 1, 0 \leq s \leq KT/(\log T)^{1/\gamma} (\log \log T)^{1/(4\gamma)}] (\log T)^{-\alpha(1)},
\]

where \(k \) is some constant. Finally, by (1), this term admits the lower bound \(T^{-(1-H)} (\log T)^{-c} \) with some appropriate constant \(c > 0 \) and all \(T \) large enough. Thus, we have seen that

\[
g(T) \geq g(s_0 (\log T)^{1/\gamma}) T^{-(1-H)} (\log T)^{-c}
\]

(13)

for some constants \(s_0, c > 0 \).
If we combine this result with the case $H \geq 1/2$, this shows that for any $H \in (0, 1)$, there are constants $c = c(H), \beta = \beta(H), s_0 = s_0(H) > 0$ such that
\[
g(T) \geq g(s_0(\log T)^\beta) T^{-(1-H)}(\log T)^{-c}.
\] (14)

Using this inequality iteratively, we will prove the preliminary estimate $g(T) \geq T^{-\theta_1}$ for some $\theta_1 > 1 - H$ and all T large enough. Once we have this estimate, (14) shows that
\[
g(T) \gtrsim (\log T)^{-(\theta, \beta + c)} T^{-(1-H)} , \quad T \to \infty,
\]
and the proof is complete for all $H \in (0, 1)$.

Let us now establish the preliminary lower bound. Equation (14) implies that if $\theta_1 > \beta$ and $\theta > 1 - H$, there is a constant $T_0 \geq 1$ such that
\[
g(T) \geq g((\log T)^\theta) T^{-\theta}, \quad T \geq T_0.
\] (15)

The idea is to iterate this inequality until $\log(\log(\ldots))^{\beta_1}$ is smaller than some constant. As we will see, the number of iterations that are needed is very small and merely leads to a term of logarithmic order. Since each iteration is valid only for large values of T depending on the number of iterations, and the number of iterations is itself a function of T, some care is needed to perform this step. To this end, fix $\beta_2 > \beta_1$ and set $T_0' := \max \{ \log(T_0)/\beta_2, \beta_2^{\beta_1}\}$. Define $\log^{(1)} x = \log x$ for $x > x_1 = 1$ and $\log^{(j-1)} x = \log^{(j-1)} (\log x)$ for $x > x_j := \exp(x_{j-1})$. For any $j \geq 1$ and $T > 0$, the following implication holds:
\[
\log^{(j+1)} T \geq T_0' \implies g((\log^{(j)} T)^{\beta_2}) \geq g((\log^{(j+1)} T)^{\beta_2})(\log^{(j)} T)^{-\beta_2}.
\] (16)

Indeed, note that $\log^{(j+1)} T \geq T_0'$ translates into
\[
(\log^{(j)} T)^{\beta_2} \geq T_0 \quad \text{and} \quad \beta_2^{\beta_1}(\log^{(j+1)} T)^{\beta_1} \leq (\log^{(j+1)} T)^{\beta_2}.
\]

Hence, in view of (15), we find that
\[
g((\log^{(j)} T)^{\beta_2}) \geq g((\log^{(j)} (\log^{(j)} T)^{\beta_2})) (\log^{(j)} T)^{-\beta_2}
\]
\[
= g((\log^{(j+1)} T)^{\beta_2} (\log^{(j)} T)^{-\beta_2}
\]
\[
\geq g((\log^{(j+1)} T)^{\beta_2}) (\log^{(j)} T)^{-\beta_2},
\]
so (16) follows. Denote by $a(T) := \min \{ n \in \mathbb{N} : \log^{(n)} T \leq T_0' \}$. By definition, $\log^{(a(T))} T \leq T_0' < \log^{(a(T)-1)} T$, so we can apply (16) iteratively for all $j \leq a(T) - 2$ to obtain that
\[
g((\log T)^{\beta_2}) \geq g((\log^{(2)} T)^{\beta_2}) (\log T)^{-\beta_2} \geq \ldots
\]
\[
\geq g((\log^{(a(T)-1)} T)^{\beta_2} \prod_{j=1}^{a(T)-2} (\log^{(j)} T)^{-\beta_2}.
\]
\[
g(e^{T^{\beta_2}}) \prod_{j=1}^{a(T)-2} (\log^{(j)} T)^{-\beta_2},
\] (17)

which holds for all $T \geq \exp(\exp(\exp(T_0)))$, i.e. such that $a(T) \geq 3$. Moreover, note that $g(e^{T^{\beta_2}}) > 0$ since f is bounded away from zero on $[0, \delta]$ and locally bounded. Finally, since $a(T) = 1 + a(\log T) = j + a((\log^{(j)} T),$

In view of
\[
a(T) = 1 + a(\log T) = j + a((\log^{(j)} T),
\]
which holds for any $j \in \mathbb{N}$ and T large enough and the simple observation that $a(T) \leq T$, we obtain that $a(T) = o(\log^j T)$ for any $j \in \mathbb{N}$. Hence, for all T large enough,

$$\left(\log^2 T\right)^{-\beta_2 \theta a(T)} \geq \left(\log^2 T\right)^{-\beta_2 \theta \log(\log^2 T)} = \exp(-\beta_2 \theta \left(\log^2 T\right)^2) \geq \exp(-\log^2 T) = (\log T)^{-1}. \quad (18)$$

Combining (15), (17) and (18), we conclude that $T^{-\theta_1} \lesssim g(T)$ for any $\theta_1 > \theta$. \hfill \Box

Combining lemmas 5 and 6, we obtain part 1 of theorem 1.

Proof of part 1 of theorem 1. *Lower bound.* With $f(s) := Y_0 - Y_1 (\log(1 + s))^\gamma \geq -2Y_1 (\log(1 + s))^\gamma$ for all large s, the lower bound follows directly from lemma 6.

Upper bound. If $\gamma > 1$, we can directly apply lemma 5 with $f(s) := Y_0 - Y_1 (\log(1 + s))^\gamma$ and $b = 1$ to obtain the upper bound.

If $\gamma = 1$, take $b > 0$ such that $bY_1 > 1$ and set $f(s) := Y_0 - Y_1 (\log(1 + b^{-1}H s))^\gamma$, so that

$$\int_0^\infty e^{b y(s)} \, ds < \infty \quad \text{and by lemma 5},$$

$$T^{-(1-H)} \lesssim \mathbb{P}[X_s \leq f(b^{-1}H s), 0 \leq s \leq T] = \mathbb{P}[Y_0 - Y_1 \log(1 + s), 0 \leq s \leq T]. \quad \Box$$

Remark 7.

(1) We remark that the removal of the boundary by a change of measure argument (Cameron–Martin formula) results in less precise estimates of the form

$$T^{-(1-H)} e^{-c \sqrt{\log T}} \lesssim \mathbb{P}[X_s \leq Y_0 - Y_1 (\log(1 + s))^\gamma, 0 \leq s \leq T] \lesssim T^{-(1-H)} e^{-c \sqrt{\log T}}; \quad \text{see [AD13], [Mol99] and [Mol12].}$$

(2) In view of the results for Brownian motion (i.e. $H = 1/2$, see [Uch80]), it is reasonable to expect that the upper bound in part 1 of theorem 1 has the correct order.

(3) The restriction $\gamma \geq 1$ is necessary in order to apply lemma 5. However, for any $\gamma > 0$, (1) immediately implies the following weaker bound:

$$\mathbb{P}[X_s \leq Y_0 - Y_1 (\log(1 + s))^\gamma, 0 \leq s \leq T] \lesssim T^{-(1-H)} (\log T)^c.$$

(4) Let $f(x) = Y_0 - Y_1 \log(1 + x)$. Trivially, if we consider discrete time,

$$\mathbb{P}[X_k \leq f(k), k = 1, \ldots, N] \leq \mathbb{P}[X_s \leq f(s), 0 \leq s \leq N] \lesssim N^{-(1-H)} \log(N)^{-c}.$$

This estimate is needed in [ORS12] (see equations (14) and (15) there) when proving a lower bound for $\mathbb{E}\left[X_k^d\right]$.

Clearly, lemma 6 is only applicable if the boundary f satisfies $f(x) \rightarrow -\infty$ as $x \rightarrow \infty$.

It is natural to suspect that the persistence exponent does not change if we introduce a barrier that increases like some power of a logarithm. This is part 2 of theorem 1 which follows from the next lemma:

Lemma 8. Let $f : [0, \infty) \rightarrow \mathbb{R}$ denote a measurable function such that there are $A, \delta > 0$ such that $f(x) \geq A$ for all $x \in [0, \delta]$ and $f(x) \geq -1/A$ for all $x \geq 0$. Moreover, we assume that there are $\alpha, T_0 > 0$ such that $f(x) \leq (\log x)^\alpha$ for all $x \geq T_0$. Then, there is a constant $c > 0$ such that

$$T^{-(1-H)} (\log T)^{-c} \lesssim \mathbb{P}[X_s \leq f(s), 0 \leq s \leq T] \lesssim T^{-(1-H)} (\log T)^c.$$
\textbf{Proof.} \textit{Lower bound.} Note that we can directly apply lemma 6 since \(f(s) \geq A \) on \([0, \delta]\) and \(f(s) \geq -1/A \) on \([0, \infty)\).

\textit{Upper bound.} Note that
\[
\mathbb{P}[X_s \leq f(s), 0 \leq s \leq T] \leq \mathbb{P}[X_s \leq f(s), T_0 \leq s \leq T] \\
\leq \mathbb{P}[X_s \leq (\log s)^{\alpha}, T_0 \leq s \leq T] \\
\leq \mathbb{P}[X_s \leq (\log (2 + T))^{\alpha}, T_0 \leq s \leq T] \\
\leq \mathbb{P}[X_s \leq (\log (2 + T))^{\alpha}, 0 \leq s \leq T_0] \\
\sim \mathbb{P}[X_s \leq (\log (2 + T))^{\alpha}, 0 \leq s \leq T]. \quad T \to \infty.
\]

We have used Slepian’s inequality in the last inequality. Using once more the self-similarity and (1), the upper bound follows.

\section{3. Proof of theorem 2}

We are now ready to prove theorem 2. The lower bound follows easily from our result on moving boundaries in theorem 1, whereas the proof of the upper bound is more involved.

\textbf{Proof of theorem 2.} \textit{Lower bound.} Let \(\gamma > 1 \).
\[
\mathbb{E}[J_T^k] \geq \mathbb{E} \left[\left(\int_0^T e^{X_s} \, ds \right)^{-k} ; \{X_s \leq 1 - (\log(1 + s))^{\gamma}, \forall s \in [0, T]\} \right] \\
\geq \left(\int_0^T \frac{e}{(1 + s)^{\gamma}} \, ds \right)^{-k} \mathbb{P}[X_s \leq 1 - (\log(1 + s))^{\gamma}, \forall s \in [0, T]].
\]

The lower bound now follows by part 1 of theorem 1.

\textit{Upper bound.} Let \(H/2 < \gamma < H \) and fix \(a \) such that \(a > 2/H > 1/\gamma \) and \(\gamma < H - 1/a \).

Self-similarity and stationarity of increments imply for all \(s, t \in [0, 1] \) that
\[
\mathbb{E}[|X_t - X_s|^a] = \mathbb{E}[|X_{t - |s|}|^a] = |t - s|^{aH} \mathbb{E}[|X_1|^a] = \mathbb{E}[|t - s|^{(aH-1)+1}] \mathbb{E}[|X_1|^a].
\]

Since \(aH - 1 > 0 \), it follows from [Sch09, lemma 2.1] that there is a positive random variable \(S \) such that
\[
\mathbb{E}[S^a] \leq \left(\frac{2}{1 - 2^{-\gamma}} \right)^a \frac{\mathbb{E}[|X_1|^a]}{2^{aH-1-a\gamma} - 1}, \quad (19)
\]

and for all \(\epsilon \in (0, 1) \),
\[
|X_t - X_s| \leq \epsilon S^\gamma, \quad \forall s, t \in [0, 1], |t - s| \leq \epsilon. \quad (20)
\]

Write \(X_t^* := \sup \{X_t : t \in [0, 1]\} \), and let \(a^* \) denote a point where the supremum is attained. Using the self-similarity of \(X \) and (20) in the second inequality, we obtain the following estimates:
\[
\mathbb{E}[J_T^k] = \mathbb{E} \left[\left(\int_0^T e^{X_t^*} T \, ds \right)^{-k} \right] \\
= T^{-k} \mathbb{E} \left[e^{-T^{a^*} X_t^*} \left(\int_0^1 e^{-T^{a^*} (X_t^* - X_0)} \, ds \right)^{-k} \right] \\
\leq T^{-k} \mathbb{E} \left[e^{-T^{a^*} X_t^*} \left(\int_{\max[a^* + \epsilon, 1]}^{\min[a^* - \epsilon, 0]} e^{-T^{a^*} (X_t^* - X_0)} \, ds \right)^{-k} \right].
\]
\[\gamma = E \]

\[J. \text{ Phys. A: Math. Theor.} \]

from (2) with some

Set \(\epsilon \)

Using again that

Hence, we have shown that

A large enough, it holds that

Since \(a = kp/\gamma \), this amounts to \(p = (H (\log \log T)^{-k} \log T + 2)/k \), \(a = (kp - 2)/H \) and \(\gamma = H - 2/a \). Assume for a moment that there are constants \(M, \nu \in (0, \infty) \) such that for all \(a \) large enough, it holds that

\[a := (\log \log T)^{-k} \log T, \quad \gamma = H - 2/a. \]

In particular, \(\mathbb{E} [S^a]^{1/p} \) is of \(\mathbb{E} [S^a]^{1/p} \) as \(a \to \infty \), or equivalently, \(a \to \infty \), for every \(\eta > \nu v H \). For such \(\eta \), combining (21) and (22), we find for \(T \) large enough that

\[\mathbb{E} \left[\frac{|X_t|^p}{\gamma} \right] \leq M \mathbb{E} \left[e^{-kT^2X_t^2} \right]^{1/q}. \]

By Karamata’s Tauberian theorem (see [BGT87, theorem 1.7.1]), (2) implies that (with the same \(c > 0 \) as in (2))

\[\lambda^{-(1-H)/H} (\log \lambda)^{-c} \leq \lambda^{-(1-H)/H} (\log \lambda)^{-c}, \quad \lambda \to \infty. \]

In fact, the lower bound is easy since \(\mathbb{E} [e^{-\lambda X_t^2}] \geq e^{-1} \mathbb{P} [X_t^2 \leq 1/\lambda] \). For our purposes, it is enough to note that \(\mathbb{E} [e^{-\lambda X_t^2}] \leq \mathbb{P} [X_t^2 \leq (\log \lambda)/\lambda] + e^{-k \lambda}, \) so the upper bound follows from (2) with some \(\hat{c} > c \). By (25), we conclude that

\[T^{-k/\gamma} \mathbb{E} [e^{-kT^2X_t^2}]^{1/q} \leq C T^{k/\gamma} (\log T)^{c(1-k/\gamma)}, \quad T \to \infty. \]

Using again that \(aH - a\gamma = 2 \), note that by definition of \(a \),

\[T^{-k} \mathbb{E} [e^{-kT^2X_t^2}]^{1/q} \leq C T^{k/\gamma} (\log T)^{c(1-k/\gamma)} \] \[= \exp \left((H + 1) (\log T)^{1/q} \right) \]

Hence, we have shown that

\[\mathbb{E} [J_t] \leq \mathbb{E} [\frac{|X_t|^p}{\gamma} \mathbb{E} [e^{-kT^2X_t^2}]]^{1/q} \leq M \mathbb{E} [\frac{|X_t|^p}{\gamma} \mathbb{E} [e^{-kT^2X_t^2}]]^{1/q} \]

as soon as we prove that (23) holds. Since \(X_t \) is the standard Gaussian, it is well known that \(\mathbb{E} [|X_t|^p] = 2^{p/2} \Gamma((a + 1)/2)/\sqrt{\pi} \) for every \(a > 0 \), and therefore, it is not hard to show that \(\mathbb{E} [|X_t|^p]^{1/a} \leq M \sqrt{a} \) for some \(M \) and all \(a \) large enough. This completes the proof.
Remark 9. Note that if X is a self-similar process with stationary increments (SSSI) satisfying (23), the proof above shows that (24) holds in that case as well. By (24), if we already know a lower bound on $\mathbb{E}[J_1^2]$, we obtain a lower bound on the Laplace transform of X_t^*, whereas an upper bound on the Laplace transform yields an upper bound on $\mathbb{E}[J_1^2]$. Since the behavior of the Laplace transform $\mathbb{E}[\exp(-\lambda X_t^*)]$ as $\lambda \to \infty$ is related to that of the probability $\mathbb{P}[X_t^* \leq \lambda]$ as $\lambda \to 0$ via Tauberian theorems, this approach could be useful to study the persistence of other SSSI processes.

4. Some related quantities

We now prove theorem 3 concerning the small value probability of the quantities defined in (5)–(7). These quantities are studied in [Mol99]. We remark that the definition of τ_{max} is unambiguous since an FBM attains its maximum at a unique point on $[0, 1]$ a.s. ([KP90, lemma 2.6]).

Proof of theorem 3. Let us recall the relations of the probabilities involving the quantities τ_{max}, s_+ and z_- that are used in the proof of [Mol99, theorem 2]:

The symmetry and continuity of X imply that

$$\mathbb{P}[X_t < 0, \epsilon < t < 1] = \frac{1}{2} \mathbb{P}[X_t \neq 0, \epsilon < t < 1] = \frac{1}{2} \mathbb{P}[z_- < \epsilon], \quad 0 < \epsilon < 1. \tag{26}$$

Moreover, we clearly have the following inequalities:

$$\mathbb{P}[X_t < 0, \epsilon < t < 1] \leq \mathbb{P}[s_+ < \epsilon], \quad \mathbb{P}[X_t < 0, \epsilon < t < 1] \leq \mathbb{P}[\tau_{\text{max}} < \epsilon]. \tag{27}$$

We will show that

$$\epsilon^{1-H} |\log \epsilon|^{-c} \lesssim \mathbb{P}[X_t < 0, \epsilon < t < 1] \lesssim \epsilon^{1-H} |\log \epsilon|^c. \tag{28}$$

If (28) holds, (26) proves the statement for z_-, whereas the lower bounds in (8) for $\xi = s_+$ and $\xi = \tau_{\text{max}}$ follow from (27).

Before establishing the remaining upper bounds, let us prove (28). Note that the self-similarity of X implies that $\mathbb{P}[X_t < 0, \epsilon < t < 1] = \mathbb{P}[X_t < 0, 1 < t < 1/\epsilon]$. By Slepian’s inequality, it holds that

$$\mathbb{P}[X_t < 0, 1 < t < 1/\epsilon] \leq \mathbb{P}[X_t < 1, 1 < t < 1/\epsilon] - \mathbb{P}[X_t < 1, 0 < t < 1/\epsilon]/\mathbb{P}[X_t < 1, 0 < t < 1].$$

In view of (1), this proves the upper bound of (28). The lower bound follows from part 2 of theorem 1 since

$$\mathbb{P}[X_t < 0, 1 < t < 1/\epsilon] \geq \mathbb{P}[X_t \leq 1 - \log(1 + 3\epsilon), 0 \leq t \leq 1/\epsilon].$$

Let us now turn to the upper bound for $\mathbb{P}[\tau_{\text{max}} < \epsilon]$. Note that

$$\mathbb{P}[\tau_{\text{max}} < \epsilon] \leq \mathbb{P}[X_t^* < h] + \mathbb{P}[X_t^* > h], \quad h > 0.$$

Take $h = e^{\alpha} |\log \epsilon|^{\alpha}$ where $\alpha > 1/2$. Using (2), we obtain that

$$\mathbb{P}[X_t^* < h] = \mathbb{P}[X_t^* < e^{\alpha} |\log \epsilon|^{\alpha}] \lesssim e^{1-H} |\log \epsilon|^{\alpha(1-H)/H+c+\alpha(1)},$$

whereas for some constants $A, B > 0$, an application of the Gaussian concentration inequality (or Fernique’s estimate stated in [Mol99]) yields that

$$\mathbb{P}[X_t^* > h] = \mathbb{P}[X_t^* > e^{\alpha} h] = \mathbb{P}[X_t^* > e^{1-H} h] \lesssim Ae^{-B |\log \epsilon|^{\alpha}},$$

i.e. this term decays faster than any polynomial since $2\alpha > 1$.

Finally, to establish the upper bound on $P\left[s_+ < \epsilon \right]$, it suffices to note that the arguments in the proof of theorem 2 of [Mol99] show that there is a constant c such that $P\left[s_+ < \epsilon \right] \leq 2P\left[X_{t_{1/\epsilon}} < c \log \epsilon^{1/2} \right]$ for all $\epsilon > 0$ small enough. It is now straightforward to conclude in view of the self-similarity and (2).

□

Remark 10. As already remarked in [Mol99], $1/z_− \overset{d}{=} z_+ := \inf\{s > 1 : X_s = 0\}$ since $(X_t)_{t>0}$ and $(\mathcal{H}^{2/H}X_t)_{t>0}$ have the same law. Hence, theorem 3 shows that $P\left[z_+ > T\right]$ decays like $T^{-(1-H)}$ modulo logarithmic terms as $T \to \infty$.

5. Conclusion

In this paper, we have studied the persistence probability of FBM with moving boundaries. The main result in theorem 1 states that the presence of a boundary that increases or decreases like some power of the logarithm only alters the behavior of the persistence probability of FBM up to terms of logarithmic order. In particular, the persistence exponent remains unchanged.

We then apply theorem 1 in order to derive various other results related to FBM. First of all, it follows directly that (3) holds which proves a result in [ORS12] rigorously. Moreover, we consider the asymptotic behavior of the integral functional J_T in theorem 2. The persistence of FBM with moving boundaries plays again an important role in its proof, and the techniques presented seem well suited to study the persistence of other self-similar processes having stationary increments. Finally, theorem 3 improves previous estimates in [Mol99] on the small value probability of certain important quantities related to FBM.

These results highlight the importance of persistence probabilities of FBM involving moving boundaries. For future research, it would be interesting to consider boundaries $f(x) = Y_0 \pm Y_1 x^\alpha$, where $Y_0, Y_1 > 0$ and $\alpha \in (0, H)$. For Brownian motion ($H = 1/2$), this is done in [Uch80]. Moreover, even for a constant boundary, it remains an open problem to remove the logarithmic terms in (1).

Acknowledgment

Research supported by the DFG Emmy Noether Programme.

References

[AD13] Aurzada F and Dereich S 2013 Universality of the asymptotics of the one-sided exit problem for integrated processes *Ann. Inst. H Poincaré B* 49 236–51

[AS12] Aurzada F and Simon T 2012 Persistence probabilities and exponents arXiv:1203.6554

[Aur11] Aurzada F 2011 On the one-sided exit problem for fractional Brownian motion *Electron. Commun. Probab.* 16 392–404

[BG90] Bouchaud J-P and Georges A 1990 Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications *Phys. Rep.* 195 127–293

[BGT87] Bingham N H, Goldie C M and Teugels J L 1987 Regular variation *Encyclopedia of Mathematics and Its Applications* vol 27 (Cambridge: Cambridge University Press)

[CGPPS12] Castell F, Guillotin-Plantard N, Pène F and Schapira B 2012 On the one-sided exit problem for stable processes in random scenery www.cmi.univ-mrs.fr/~castell/publis.html

[CR98] Comte F and Renault E 1998 Long memory in continuous-time stochastic volatility models *Math. Finance* 8 291–323

[EK08] Eliazar I and Klafter J 2008 Markov-breaking and the emergence of long memory in Ornstein–Uhlenbeck systems *J. Phys. A: Math. Theor.* 41 122001

[ES12] Eliazar I and Shlesinger M F 2012 Langevin unification of fractional motions *J. Phys. A: Math. Theor.* 45 162002
[KKM+97] Krug J, Kallabis H, Majumdar S N, Cornell S J, Bray A J and Sire C 1997 Persistence exponents for fluctuating interfaces Phys. Rev. E 56 2702–12

[KP90] Kim J and Pollard D 1990 Cube root asymptotics Ann. Stat. 18 191–219

[LT91] Ledoux M and Talagrand M 1991 Probability in Banach Spaces (Berlin: Springer)

[Maj99] Majumdar S N 1999 Persistence in nonequilibrium systems Curr. Sci. 77 370–5

[Maj03] Majumdar S N 2003 Persistence of a particle in the Matheron–de Marsily velocity field Phys. Rev. E 68 050501

[Mol99] Molchan G M 1999 Maximum of a fractional Brownian motion: probabilities of small values Commun. Math. Phys. 205 97–111

[Mol12] Molchan G M 2012 Survival exponents for some Gaussian processes Int. J. Stochastic Anal. 2012 137271

[MVN68] Mandelbrot B B and Van Ness J W 1968 Fractional Brownian motions, fractional noises and applications SIAM Rev. 10 422–37

[Øks07] Øksendal B 2007 Fractional Brownian motion in finance Stochastic Economic Dynamics (Frederikssberg: Copenhagen Business School Press) pp 11–56

[ORS12] Oshanin G, Rosso A and Schehr G 2013 Anomalous fluctuations of currents in Sinai-type random chains with strongly correlated disorder Phys. Rev. Lett. at press (arXiv:1209.3313v2)

[Red97] Redner S 1997 Survival probability in a random velocity field Phys. Rev. E 56 4967–72

[Sch09] Scheutzow M 2009 Chaining techniques and their application to stochastic flows Trends in Stochastic Analysis (London Mathematical Society Lecture Note Series vol 353) (Cambridge: Cambridge University Press) pp 35–63

[Sin92] Sinai Ya G 1992 Statistics of shocks in solutions of inviscid Burgers equation Commun. Math. Phys. 148 601–21

[Sle62] Slepian D 1962 The one-sided barrier problem for Gaussian noise Bell Syst. Tech. J. 41 463–501

[Uch80] Uchiyama K 1980 Brownian first exit from and sojourn over one-sided moving boundary and application Z. Wahrscheinlichkeitstheor. Verwandte Geb. 54 75–116

[WFCV12] Walter J-C, Ferrantini A, Carlon E and Vanderzande C 2012 Fractional Brownian motion and the critical dynamics of zipping polymers Phys. Rev. E 85 031120

[ZRM09] Zoia A, Rosso A and Majumdar S N 2009 Asymptotic behavior of self-affine processes in semi-infinite domains Phys. Rev. Lett. 102 120602