Semi-Detail Soil Survey and Land Suitability Evaluation for Sugarcane Production at Tungan Ahmadu District, Koko-Besse LGA Kebbi State Nigeria

Yato Daniel a*, Samaila Sani Noma b, Nura Abdulkadir a and Ahmad Rabo Sanda a

a Department of Soil Science, Kebbi State University of Science and Technology, Aliero, P.M.B. 1144, Birnin Kebbi, Kebbi State, Nigeria.
b Department of Soil Science, Faculty of Agriculture, Usman Danfodiyo University P.M.B. 2346, Sokoto, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/IJPSS/2022/v34i630873

ABSTRACT

A semi-detailed soil survey and land suitability evaluation for sugarcane production was conducted at Tungan Ahmadu Koko-Besse LGA, of Kebbi State Nigeria to obtain comprehensive soil data for characterization and classification. The aim was to generate detailed information on the properties, genesis, land characteristics, and classification of soils for their suitability for sugarcane production. The study was carried out in a 4,000ha land area. An interval of 250x250m was used for augering and surface sampling of the soils at a scale of 1:25.000. In each soil mapping unit that was identified a soil profile pit was dug, described and soils sampled in each horizon from bottom-up, to minimize contamination by falling debris and was analyzed in the laboratory. Each soil profile pit was dug to a standard size (200 cm long, 100 cm wide, and a maximum depth of 200 cm or until an impenetrable layer or water table was encountered. Each pit was described regarding its full range of morphological characteristics according to International Standard these include soil depth, horizon thickness, the color of matrix and mottles, texture, structure, consistency, porosity, included

*Corresponding author: E-mail: yatolistic@gmail.com;
materials, roots, and horizon boundary. In addition, records of vegetation/land use, slope, depth to the water table, and internal drainage status was obtained for each profile. Measured variables in the data set were analyzed using descriptive statistics such as means and weighted average. Seven soil mapping units tagged TGA1, TGA2, TGA3, TGA4, TGA5, TGA6, and TGA7 were identified based on landforms and soil properties. The soils are slightly acidic (6.30) to moderately acidic (5.60) had low total nitrogen, organic carbon, and CEC hence low fertility. The soils in the study area are moderately deep, poorly drained, and generally loamy sand to sandy in texture. Based on the USDA Soil Taxonomy classification system, three soil units were identified as TGA1, TGA4, TGA5 and TGA6 (Haplustepts), TGA2 and TGA7 (Haplustalfs), and TGA3 (Terriorthents) which correlate according to the World Reference Base (WRB) as Luvisols, Arenosols, and Fluvisols respectively. Analyses on climate, topography, physical soil properties, wetness and fertility suitability at the research site returned results of TGA2, TGA3, TGA4, TGA5 and TGA6, moderately suitable (S2) while TGA1 and TGA7 are marginally suitable (S3) with limited factors of physical and chemical properties.

Keywords: Soil; survey; mapping; evaluation; suitability.

1. INTRODUCTION

Soil is one of the most important natural resources and proper understanding of its properties is necessary for judicious, beneficial, and optimal use on sustainable basis [1]. Basic information about the soils is provided by soil survey [2] which involves characterization and categorization of soils into groups at varying levels of generalization according to their morphological, physical, chemical, and mineralogical properties. Classification includes organization of knowledge, which ease in remembering properties, clearer understanding of relationships, ease of technology transfer and communication between scientist and end users [3].

Land suitability evaluation is the process of making predictions of land performance over time based on specific types of uses [4]. This assessment is always carried out separately for each category of land use [5].

Non-usage of soil survey information has resulted in plant nutrient depletion, nutrient toxicity, heaving of architectural structures, and collapse of engineering structures [6-10]. Others include compaction, flooding, poor yield, and general food insecurity. Marginal and derelict lands are erroneously converted to agricultural farmlands and pastures. Consequently, there is increased soil degradation, especially by mismanagement by the farmers in the study area. In the light of the above, Wilson [11] suggested the application of scientific information in solving sub-Saharan African food needs so long as such information are presented in customized forms [12] possibly using geographic information systems. There is an increasing demand for information on soils to produce food [13]. Agriculture is the predominant economic activity in Nigeria hence there is need for appropriate and timely scientific information about the soils of Nigeria as well as site specific soil information.

Kebbi State virtually has available arable land for agricultural purposes to sustain its rapidly increasing population. This will however require proper land use planning and management to ensure the soils are put to optimal use. To provide a sound basis for this, reliable information on various soils of the state is needed.

Soil characterization provides the information needed for understanding of the physical, chemical, mineralogical, and microbiological properties of the soils used to grow crops, sustain forests and grasslands as well as support homes and societal structures [14]. Soil classification, on the other hand, helps to organize our knowledge, facilitates the transfer of experience and technology from one place to another and helps to compare soil properties. According to Eswaran [15], some different uses of soil characterization data include to aid in the correct classification of the soil and enable other scientists place the soils in their taxonomies or classification systems and to serve as a basis for more detailed evaluation of the soil as well as gather preliminary information on nutrient, physical or other limitations needed to produce a capability class. A soil characterization study, therefore, is a major building block for
understanding the soil, classifying it and getting the best understanding of the environment [16].

2. MATERIALS AND METHODS

2.1 Study Area

The study was carried out in selected area of Tungan Ahmadu village of Koko-Besse Local Government Area Kebbi State Nigeria for sugarcane production. The research site lies on latitude 11 22° 25.4”N and longitude 4 32° 15.6”E. Tungan Ahmadu of Koko-Besse falls within the Sudan savannah zone of Nigeria. The annual rainfall is variable and ranges from 600mm to 700mm with an average of 650mm during the period 1997 to 2014 [17]. It has an average relative humidity of 51-79%. Harmattan period which is the drier and coolest period of the year has a temperature range of 17-22°C experienced between Decembers to February yearly. The climate of the area is typical of tropical climate; characterized by wet and dry seasons. The dry season is usually 7 months in most cases from November to May while the rainy season last for 4-5 months usually from June to October [17].

2.2 Field Study

Semi-detailed soil survey was conducted in Tungan Ahmadu District of Koko-Besse Local Government Area of Kebbi State at a scale of 1:25,000 covering a 4,000ha land. This was done by first establishing a baseline followed by soil augering along transects to identify soil types and plot boundaries within the area. However, Visual Soil Assessment (VSA) as well as environmental assessment was conducted [18].

Each soil profile pit was dug to standard size (200 cm long, 100 cm wide and maximum depth of 200 cm or until an impenetrable layer or water table is encountered. Each pit was described based on morphological characteristics according to established standard procedure [19]. The characteristics described include soil depth, horizon thickness, colour of matrix and mottles, texture, structure, consistency, porosity, included materials, roots and horizon boundary. In addition, records of vegetation/land use, slope, depth to water table and internal drainage status was obtained for each profile. However, following the descriptions, soil samples (disturbed and bulk) were collected from each genetic horizon for laboratory analyses.

2.3 Laboratory Methods

2.3.1 Particles size analysis

Particle size distribution was determined by the method of Gee and Or [20]. Sand, silt and clay were determined by the Bouyoucos hydrometer using sodium hexametaphosphate as dispersant. Soil pH was determined in both water (H2O) and in CaCl2 solution at 1:1 soil/water or solution ratio using a pye Unicam Model 290Mk pH meter. Electrical conductivity was determined in 1:2.5 soil/water ratio using a Wheatstone bridge at 25°C. The organic carbon was determined by Walkley-Black dichromate wet oxidation method as described by Nelson and Sommers [21]. The organic matter was determined by colorimetric method [22]. Organic matter is oxidized with the chromic acid. Total nitrogen content of the soils was determined using the micro-Kjeldahl technique as describe by Bremner and Mulvaney [23]. Available phosphorus was determined following the procedure described by IITA [24] using Bray-1 extraction method [25]. Exchangeable Bases (Ca, Mg, K and Na) were determined using NH4OAC saturation method as described by Thomas [26]. Potassium and sodium were read from the undiluted extract on a Galenkamp flame analyser. Calcium and magnesium were read on a Pye Unicam model Sp 192 atomic absorption spectrophotometer (AAS) at 423 and 285 nM wavelength respectively. Cation exchange capacity (CEC) was determined by the neutral (pH 7.0) NH4OAC saturation method [27]. CEC= \frac{\text{CECsoil} \times (3.5\%C)}{100}. Undisturbed core samples were used for bulk density determination in the laboratory by oven drying as described by Blake and Hartge [28].

Particle density was determined using this formula: \( PD = \frac{\text{Weight of oven dry soil (g)}}{\text{volume of soil particles (cm}^3)} \)

Total porosity was calculated mathematically using the formula below: \( F = 1 - \frac{(bd \times 100)}{pd} \) ; where bd=Bulk Density and pd=Particle Density.
3. RESULTS AND DISCUSSION

Table 1. Morphological Properties of the Soils

| Pedon | Horizon | Depth (cm) | Colour | Mottling | Structure | Consistence | Boundary |
|-------|---------|------------|--------|----------|-----------|-------------|----------|
| TGA 1 (Haplustepts) | | | | | | | |
| 1 | Ap | 0-22 | 10YR 4/2 | - | Platy | Friable | D |
| | ABg | 22-34 | 7.5YR 4/2 | 10YR 5/3 | Platy | Friable | G |
| | BCg₁ | 34-57 | 10YR 4/3 | 7.5YR 4/4 | ABK | Friable | D |
| | BCg₂ | 57-91 | 10YR 5/2 | 10YR 4/6 | ABK | Loose | D |
| TGA 2 (Haplustalfs) | | | | | | | |
| 2 | Ap | 0-29 | 10YR 6/2 | - | SBK | V. Hard | D |
| | Bt₁ | 29-61 | 10YR 3/3 | - | ABK | Hard | D |
| | Btg₁ | 61-112 | 10YR 4/7 | 10YR 8/8 | Platy | Hard | D |
| | Btg₂ | 112-156 | 7.5YR 5/1 | 7.5YR 5/8 | Platy | Hard | D |
| | BCg | 156-170 | 10YR 5/3 | 7.5YR 5/6 | ABK | Hard | G |
| TGA 3 (Torriorthents) | | | | | | | |
| 3 | Ap | 0-21 | 10YR 6/2 | 10YR 5/8 | SBK | Firm | D |
| | AC₁ | 21-60 | 10 YR 3/3 | - | SBK | V. Firm | D |
| | AC₂ | 60-112 | 10 YR 3/3 | - | ABK | V. Firm | D |
| TGA 4 (Haplustepts) | | | | | | | |
| 4 | Ap | 0-21 | 10YR 3/2 | - | SBK | Hard | D |
| | AB | 21-31 | 10YR 5/2 | - | ABK | Hard | G |
| | ABg | 31-77 | 10YR 6/2 | 10YR 5/6 | Platy | Hard | D |
| | BCg | 77-103 | 10YR 6/3 | 7.5YR 5/8 | Platy | Hard | D |
| | Bt | 103-137 | 10YR 5/1 | 7.5YR 5/6 | SBK | Firm | D |
| TGA 5 (Haplustepts) | | | | | | | |
| 5 | Ap | 0-20 | 10YR 4/2 | - | SAB | Sticky | D |
| | AB | 20-27 | 10YR 5/6 | - | SG | Loose | G |
| | Btg₁ | 27-69 | 10YR 2/2 | 2.5YR 7/4 | SAB | Sticky | D |
| | Btg₂ | 69-120 | 10YR 3/3 | 2.5YR 7/6 | SAB | Sticky | D |
| | BC | 120-168 | 10YR 4/3 | - | SAB | Sticky | D |
| TGA 6 (Haplustepts) | | | | | | | |
| 6 | Ap | 0-14 | 10YR 4/4 | - | SAB | Loose | G |
| | ABg₁ | 14-42 | 10YR 3/3 | 2.5YR 3/6 | SAB | Loose | D |
| | ABg₂ | 42-86 | 10YR 6/4 | 7.5YR 5/8 | SG | Loose | D |
| | BCg₁ | 86-149 | 5YR 5/8 | 2.5YR 4/8 | SG | Loose | D |
| | BCg₂ | 149-182 | 7.5YR 4/6 | - | SG | Loose | D |
| TGA 7 (Haplustalfs) | | | | | | | |
| 7 | Ap | 0-33 | 10YR 6/4 | - | SAB | Hard | D |
| | Bt₁ | 33-51 | 10YR ¾ | - | ABK | Hard | D |
| | Bt₂ | 51-76 | 10YR 4/4 | - | SAB | Hard | D |
| | Bt₃ | 76-108 | 7.5YR 2/3 | - | SAB | Hard | D |
| | BCg₁ | 108-128 | 7.5YR 4/7 | 2.5YR 5/6 | SAB | Hard | D |
| | BCg₂ | 128-167 | 10YR 5/2 | 2.5YR 5/6 | Loose | Friable | D |

SCL= Sandy clay loam, SL= silt loam, SC= silt clay, SL= sandy loam, SC= sandy clay, S= sand, LS= loamy sand
ABK=Angular blocky, SG=Single grain, SAB= Sub-Angular blocky, D=Diffuse, G=Gradual
3.1 Morphological Characteristics

The morphological properties of the soils are presented in Table 1. The soil of all the pedons are generally deep with depth of >50cm. The colour of the soil varied from dark grey (10YR 4/2) at the surface horizon changing to yellowish brown (10YR 4/4) in the subsurface horizon. The texture of the soil varied from loamy sand to sandy loam in the surface horizon changing to loamy sand in the subsurface horizon with distinctive structures ranging from platy, sub-angular blocky and angular blocky. The consistence of the soil varied from hard to very hard; firm, loose and sticky-plastic. The clay content increased with depth which indicates the presence of argillic horizon. The root of the soils varied from many roots changing to medium roots in the surface horizon and very few roots in the subsurface horizons.

3.2 Chemical Properties of the Soils

The soil chemical properties are presented in Table 2. The pH values in all the pedon fall within slightly acidic range of 6.07. The moderately acidic pH values of the soils could be attributed to downward movement of the basic cation along the slope. The EC values in all the pedons fall within moderately low the soil in the mapping unit is not saline this is in accordance limits set by Smith and Doran [29]. The OC and OM values in all the pedons fall within very low range (0.693g/kg) and (1.117g/kg) respectively. The very low organic carbon values of the soils could be attributed to continuous cultivation and frequent burning of farm residues. The means value of TN; is very low in all the pedons having a value of 0.051g/kg⁻¹. The low values of TN reflect losses through leaching and crop removal. Similar result was obtained by Sharu et al. [30] in their findings in Dingyadi Distric of Sokoto State, Nigeria. AvP; content in all the pedons was very low (0.901mgkg⁻¹) comparing it with limits set by Koralage et al. [31]. The exchangeable bases, $Ca,Mg,K$ and $Na$ were very low having average values of: 0.85 cmolkg⁻¹; 0.65 cmolkg⁻¹; 0.36 cmolkg⁻¹ and 0.59 cmolkg⁻¹ respectively. This was also observed in the findings of Sharu et al. [30] which also correspond with the findings of Noma et al. [31], and Yakubu et al. [32]. The CEC is very high with an average value of 34.29 cmolkg⁻¹ this is according to Esu rating [5].

3.3 Taxonomic Classification of the Soils

The soils were classified according to the USDA Soil Taxonomy System [6] and correlated with the FAO/UNESCO Legend of the World Reference Based (WRB) System [19]. These two systems are the most used ones in Nigeria for soil classification. The seven soils mapping units that were identified in the study area were designated TGA1; TGA2; TGA3; TGA4; TGA5; TGA6 and TGA7. The soils of TGA1; TGA4; TGA5; and TGA6 were classified as Haplustepts and corelate with WRB as Luvisols, these soils are dry for moderate periods in normal years, similar soil type was observed by Sharu et al. [30], in Runjin Abdu settlement of Dingyadi District area of Sokoto State, Nigeria. Soil mapping units TGA2; and TGA7 are classified as Haplustalfs which correlate with WRB as Arenosols, they do not have a kandic or natric horizon [7]; while Soil mapping unit TGA3 is classified to great group as Torriorthents they occur in cool to hot arid regions this also corelate with WRB as Fluvisols.
Fig. 1. Land use cover types
| Pedon     | Horizon | Depth (cm) | pH (H₂O) | EC dSm⁻¹ | OC gkg⁻¹ | TN gkg⁻¹ | OM gkg⁻¹ | AP mgkg⁻¹ | Ca cmolkg⁻¹ | Mg cmolkg⁻¹ | K cmolkg⁻¹ | Na cmolkg⁻¹ | CEC          |
|-----------|---------|------------|----------|----------|-----------|-----------|----------|-----------|-------------|-------------|-------------|-------------|--------------|
| **TGA 1 (Haplustepts)** |         |            |          |          |           |           |          |           |             |             |             |             |              |
| 1         | Ap      | 0-22       | 6.38     | 0.093    | 0.70      | 0.05      | 1.20     | 1.00      | 0.60        | 0.53        | 0.40        | 0.70        | 33           |
|           | ABg     | 22-34      | 6.36     | 0.031    | 0.80      | 0.05      | 1.43     | 1.00      | 0.60        | 0.41        | 0.33        | 0.53        | 33           |
|           | BCG₁    | 34-57      | 6.33     | 0.198    | 0.84      | 0.05      | 0.50     | 0.73      | 0.74        | 0.60        | 0.12        | 0.31        | 27           |
|           | BCG₂    | 57-71      | 6.17     | 0.021    | 1.15      | 0.05      | 1.90     | 0.84      | 0.75        | 0.72        | 0.11        | 0.34        | 27           |
|           | Mean    |            | 6.3      | 0.85     | 0.87      | 0.05      | 1.26     | 0.89      | 0.67        | 0.57        | 0.24        | 0.47        | 30           |
| **TGA 2 (Haplustalfs)** |         |            |          |          |           |           |          |           |             |             |             |             |              |
| 2         | Ap      | 0-29       | 6.14     | 0.022    | 0.51      | 0.04      | 0.90     | 1.10      | 0.84        | 0.50        | 0.15        | 0.20        | 20           |
|           | Bt₁     | 29-61      | 6.00     | 0.017    | 0.64      | 0.04      | 1.00     | 0.91      | 0.80        | 0.50        | 0.16        | 0.30        | 31           |
|           | Btg₁    | 61-112     | 6.03     | 0.015    | 0.90      | 0.04      | 1.61     | 0.90      | 0.92        | 0.52        | 0.50        | 0.30        | 27           |
|           | Btg₂    | 112-156    | 5.86     | 0.018    | 0.25      | 0.05      | 0.32     | 0.85      | 0.90        | 0.47        | 0.55        | 0.81        | 37           |
|           | BCG     | 156-170    | 5.69     | 0.0096   | 0.83      | 0.06      | 1.40     | 0.84      | 0.90        | 0.46        | 0.60        | 0.83        | 37           |
|           | Mean    |            | 5.9      | 0.016    | 0.63      | 0.046     | 1.05     | 0.92      | 0.87        | 0.49        | 0.39        | 0.49        | 30           |
| **TGA 3 (Torriorthents)** |         |            |          |          |           |           |          |           |             |             |             |             |              |
| 3         | Ap      | 0-21       | 5.5      | 0.031    | 0.50      | 0.04      | 0.90     | 1.00      | 0.62        | 0.70        | 0.70        | 0.23        | 36           |
|           | AC₁     | 21-60      | 5.6      | 0.18     | 1.25      | 0.04      | 2.00     | 1.00      | 0.64        | 0.70        | 0.70        | 0.30        | 36           |
|           | AC₂     | 60-112     | 5.7      | 0.08     | 0.81      | 0.04      | 1.47     | 1.00      | 0.53        | 0.81        | 0.81        | 0.30        | 33           |
|           | Mean    |            | 5.6      | 0.097    | 0.85      | 0.04      | 1.40     | 1.00      | 0.59        | 0.74        | 0.74        | 0.28        | 35           |
| **TGA 4 (Haplustepts)** |         |            |          |          |           |           |          |           |             |             |             |             |              |
| 4         | Ap      | 0-21       | 6.3      | 0.052    | 1.30      | 0.05      | 2.20     | 1.00      | 1.35        | 1.00        | 0.50        | 1.17        | 32           |
|           | AB      | 21-31      | 6.4      | 0.023    | 0.92      | 0.04      | 1.62     | 1.00      | 1.15        | 0.84        | 0.50        | 1.05        | 32           |
|           | ABg     | 31-77      | 6.0      | 0.014    | 0.36      | 0.04      | 0.58     | 1.00      | 1.15        | 0.72        | 0.16        | 0.48        | 31           |
|           | BCG     | 77-103     | 6.0      | 0.013    | 1.00      | 0.06      | 1.70     | 0.70      | 0.80        | 0.58        | 0.17        | 0.27        | 32           |
|           | Mean    |            | 6.2      | 0.025    | 0.89      | 0.047     | 1.53     | 0.93      | 1.11        | 0.79        | 0.33        | 0.74        | 32           |
| **TGA 5 (Haplustepts)** |         |            |          |          |           |           |          |           |             |             |             |             |              |
| 5         | Ap      | 0-20       | 6.3      | 0.012    | 0.90      | 0.06      | 1.60     | 1.05      | 1.20        | 0.82        | 0.60        | 0.72        | 20           |
|           | AB      | 20-27      | 5.9      | 0.028    | 0.85      | 0.05      | 1.41     | 1.05      | 0.95        | 0.50        | 0.60        | 0.71        | 20           |
|           | Btg₁    | 27-69      | 6.1      | 0.012    | 0.65      | 0.05      | 1.04     | 1.06      | 0.93        | 0.50        | 0.60        | 0.82        | 20           |
|           | Btg₂    | 69-120     | 6.2      | 0.014    | 0.08      | 0.4       | 0.19     | 0.80      | 0.75        | 0.50        | 0.30        | 0.40        | 22           |
|           | BC      | 120-168    | 6.1      | 0.087    | 0.48      | 0.04      | 0.70     | 0.80      | 0.60        | 0.45        | 0.32        | 0.40        | 27           |
|           | Mean    |            | 6.1      | 0.031    | 0.59      | 0.12      | 0.99     | 0.95      | 0.88        | 0.55        | 0.48        | 0.61        | 36           |
| Pedon          | Horizon | Depth (cm) | pH (H\textsubscript{2}O) | EC dSm\textsuperscript{-1} | OC gkg\textsuperscript{-1} | TN mgkg\textsuperscript{-1} | OM | AP mgkg\textsuperscript{-1} | Ca cmolkg\textsuperscript{-1} | Mg cmolkg\textsuperscript{-1} | K cmolkg\textsuperscript{-1} | Na cmolkg\textsuperscript{-1} | CEC cmolkg\textsuperscript{-1} |
|----------------|---------|------------|-------------------------|-----------------------------|----------------------------|----------------------------|-----|-----------------------------|-------------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------------------|
| **TGA 6 (Haplustepts)** |         |            |                         |                             |                           |                           |     |                             |                               |                             |                             |                             |                                 |
| 6              | Ap      | 0-14       | 6.6                     | 0.010                       | 0.28                       | 0.05                       | 0.30 | 0.80                       | 1.01                          | 1.00                        | 0.20                        | 0.32                        | 30                             |
|                | ABg\textsubscript{1}        | 14-42      | 6.4                     | 0.0082                      | 0.35                       | 0.05                       | 0.50 | 1.00                       | 1.02                          | 0.95                        | 0.22                        | 0.32                        | 36                             |
|                | ABg\textsubscript{2}        | 42-86      | 6.3                     | 0.0071                      | 0.74                       | 0.06                       | 1.20 | 0.75                       | 0.90                          | 0.70                        | 0.10                        | 0.23                        | 22                             |
|                | BCg\textsubscript{1}        | 86-149     | 5.9                     | 0.0075                      | 0.49                       | 0.06                       | 0.70 | 0.75                       | 0.90                          | 0.10                        | 0.21                        | 0.21                        | 22                             |
|                | BCg\textsubscript{2}        | 149-182    | 5.9                     | 0.0063                      | 0.50                       | 0.06                       | 0.90 | 0.75                       | 0.90                          | 0.25                        | 0.10                        | 0.20                        | 22                             |
|                | **Mean** |            | **6.2**                 | **0.0078**                  | **0.47**                   | **0.056**                  | **0.72** | **0.81**                   | **0.95**                      | **0.78**                    | **0.14**                    | **0.26**                    | **44**                        |
| **TGA 7 (Haplustalfs)** |         |            |                         |                             |                           |                           |     |                             |                               |                             |                             |                             |                                 |
| 7              | Ap      | 0-33       | 6.3                     | 0.0705                      | 0.37                       | 0.04                       | 0.50 | 0.71                       | 0.90                          | 0.75                        | 0.20                        | 0.74                        | 25                             |
|                | Bt\textsubscript{1}        | 33-51      | 6.2                     | 0.0074                      | 0.72                       | 0.04                       | 1.25 | 1.00                       | 0.90                          | 0.76                        | 0.20                        | 0.73                        | 33                             |
|                | Bt\textsubscript{2}        | 51-76      | 5.7                     | 0.0076                      | 1.00                       | 0.04                       | 1.70 | 0.90                       | 0.93                          | 0.70                        | 0.22                        | 0.70                        | 33                             |
|                | Bt\textsubscript{3}        | 76-108     | 6.2                     | 0.0075                      | 0.35                       | 0.04                       | 0.50 | 0.87                       | 0.92                          | 0.60                        | 0.22                        | 0.70                        | 39                             |
|                | BCg\textsubscript{1}        | 108-128    | 6.2                     | 0.013                       | 0.27                       | 0.05                       | 0.38 | 0.70                       | 0.80                          | 0.48                        | 0.10                        | 0.70                        | 36                             |
|                | BCg\textsubscript{2}        | 128-167    | 6.6                     | 0.0081                      | 0.56                       | 0.05                       | 0.90 | 0.65                       | 0.80                          | 0.46                        | 0.10                        | 0.70                        | 34                             |
|                | **Mean** |            | **6.2**                 | **0.0190**                  | **0.55**                   | **0.043**                  | **0.87** | **0.81**                   | **0.88**                      | **0.63**                    | **0.17**                    | **0.71**                    | **33**                        |

EC=Electrical conductivity, OC=Organic carbon, TN=Total nitrogen, OM=Organic matter, AP=Available phosphorus, Ca=Calcium, Mg=Magnesium, K=Potassium, Na=Sodium, CEC=Cation exchange capacity.
Table 3. Suitability levels of the soil mapping units

| Criteria for suitability | Mapping unit | Rainfall | Drainage | Soil texture | Soil depth | Slope | pH | Erosion hazard | Risk of flooding | Distance to road | Distance to sugar mill | Remark | Longitude | Latitude |
|--------------------------|--------------|----------|-----------|--------------|------------|-------|----|----------------|------------------|----------------|-----------------------|---------|-----------|----------|
|                          | TGA1         | N        | S3        | S2           | S3         | S1    | S1 | S2             | S3               | S3             | N                     | S3      | 4.55016    | 11.3663   |
|                          | TGA2         | N        | S2        | S3           | S1         | S1    | S1 | S1             | S2               | S3             | N                     | S2      | 4.53436    | 11.3581   |
|                          | TGA3         | N        | S3        | S1           | S1         | S1    | S1 | S1             | S2               | S3             | N                     | S2      | 4.51719    | 11.3017   |
|                          | TGA4         | N        | S1        | S3           | S1         | S1    | S1 | S1             | S2               | S3             | N                     | S2      | 4.50826    | 11.2413   |
|                          | TGA5         | N        | S2        | S2           | S1         | S1    | S1 | S1             | S2               | S3             | N                     | S2      | 4.53642    | 11.3749   |
|                          | TGA6         | N        | S2        | S2           | S1         | S1    | S1 | S1             | S2               | S3             | N                     | S2      | 4.49968    | 11.2001   |
|                          | TGA7         | N        | S2        | S3           | S1         | S1    | S3 | S3             | S3               | S3             | N                     | S3      | 4.53402    | 11.2015   |

S1=Suitable, S2=Moderately Suitable, S3= Marginally Suitable and N=Currently Not Suitable. TGA=Tungan Ahmadu
Fig. 2. Land suitability levels for sugarcane in Tungan Ahmadu District Area of Koko-Besse, Kebbi State Nigeria
3.4 Land Suitability Classes in the Study Area

Land suitability is usually evaluated using parameters, such as rainfall; texture; drainage; soil depth; slope; pH; erosion hazard; risk of flooding and accessibility. The basic land quality groups in suitability determination of soil for sugarcane production in the study area were climate; topography; soil physical and chemical properties [33]. The land suitability levels of all the pedons are presented in Table 3 for sugarcane. The factors for suitability rating were based on the physical, chemical and climatic attributes. The FAO Land suitability guidelines in which land has been classified as highly suitable (S1); moderately suitable (S2); marginally suitable (S3); currently unsuitable (N1); and permanently unsuitable (N2) has been adopted. Analyses on climate, topography, chemical and physical soil properties, wetness, and fertility suitability at the research site returned results of TGA2, TGA3, TGA4, TGA5 and TGA6, moderately suitable (S2) while TGA1 and TGA7 are marginally suitable (S3) with limited factors of physical and chemical properties.

4. CONCLUSION

The result revealed that soils in the study area are moderately deep, moderately drained, and generally loamy sand to sandy in texture structurally the soil ranges from block to sub-angular blocky in structure. From the findings, according to USDA soil taxonomy system, three soil units were identified as: TGA1, TGA4, TGA5 and TGA6 (Haplusterts), TGA2 and TGA7 (Haplustalfs) and TGA3 (Terriorthents) and correlate according to the World Reference Bases (WRB) as Luvisols, Arenosols, and Fluvisols respectively. The soils have moderately low inherent natural fertility with low basic cations (Ca, Mg, K, Na), organic carbon, cation exchange capacity, total nitrogen. It is recommended that organic manures, fertilizer, and liming be carried out to supply deficient nutrients and enhance soil pH. Thus, the soil in the study needs to be well tilled to improve its structure. From the results on chemical properties, it revealed that most of the nutrients were low in quantity and make not much suitable for sugarcane production.

ACKNOWLEDGEMENT

This work was funded by the Renewable Energy Division (RED) Nigerian National Petroleum Corporation (NNPC) for funding this research we hereby acknowledge their effort. As part of this salutation, we are also very grateful to the editorial board members of this journal (International Journal of Plant and Soil Science) and to my colleagues for their relentless efforts for the completion of this publication.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Jagdish P, Ray SK, Gajbhiye KS, Singh SR. Soil of selsura research farm in Wardha District, Maharashtra, and their suitability for crops. Agro-pedology. 2009;19:84-91.
2. Ray SK, Gajbhiye KS, Challa O, Jagdish SN, Singh SR, Anantwar G, Gaikawad MS, Padihar SK. Systematic soil survey to identify potential soil sodicity areas in parts of Tawa command, Madhya Pradesh. J. Indian Soc. Soil Sci. 2000;48:346-351.
3. Buol SW, Southard RJ, Graham RC, McDaneli PA. Soil genesis and classification. (5th ed.) State Avenue Ames, Iowa, Iowa State Press; 2003.
4. Rossiter DG. A theoretical framework for land evaluation (with discussion). Elsevier Scientific, Geoderma. 1996;72(3-4):165-202.
5. Reshmidevi TV, Eldho TI, Jana R. A GIS-integrated fuzzy rule based inference system for land suitability evaluation in agricultural watersheds. Agr. Syst. 2009; 101(1–2):101–109.
6. Esu IE. Detailed soil survey of NIHORT farm at Bunkure, Kano State, Nigeria. Institute for Agricultural Research, Ahmadu Bello University, Zaria; 1991.
7. Soil Survey Staff. Keys to soil taxonomy by soil survey staff. United States Department of Agriculture Natural Resources Conservation Service Twelfth Edition; 2014.
8. Soil Survey Staff. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys, 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook; 1999:436.
9. FAO [Food and Agriculture Organization]. Land evaluation-Towards a revised framework; 2007.
Available: http://www.fao.org/ag/agl/public.stm (Accessed on March 2012).

10. Schoeneberger PJ, Wysocki DA, Benham EC, Broderson WD. (Eds.). Field book for describing and sampling soils, version 2.0 Nat. Soil survey center. NRCS, USDA, Lincolns, NE: 2002.

11. Wilson E. Applying science to sub-saharan africa’s food needs. In: The Unfinished Agenda: Perspectives on Overcoming Hunger, Poverty and Environmental Degradation, Pinsturp-Andersen P., and R. Pandya-Lorch (Eds.). Int. Food Policy Res. Nst., Washington DC. 2001;165-169.

12. Kufoniyi O. Basic concepts in geographic information systems (GIS). In: Principles and Applications of GIS, Ezeigbo, C.U. (Ed.). Panal Press, Lagos: 2000.

13. Fasina AS, Adeyanju A. Comparison of three land evaluation systems in evaluating the predictive value of some selected soils in Ado-Ekiti, Southwest Nigeria. J. soil sci. 2007;17:113-119.

14. Ogunkunle AO. Soil survey and sustainable land management. Invited paper at the 29th annual conf. of SSSN held at University of Nigeria, Abeokuta, from 6th to 10th Dec. 2004; 2005.

15. Eswaran H. Soil analysis for soil surveys. in: soil resource inventories. A proceeding of a workshop held at Cornell University, Ithaca, USA. 1977:315-324.

16. Esu IE. Soil characterization and mapping for food security. A Keynote Address at the 29th annual conf. of SSSN held at University of Nigeria, Abeokuta, from 6th to 10th Dec. 2004; 2005.

17. Usman S, Noma SS, Kudiri AM. Dynamic surface soil components of land and vegetation types in Kebbi State Nigeria. Eurasian J Soil Sci. 2016;5(2):113–120.

18. Shepherd TG. Visual soil assessment. Field guide for cropping and pastoral grazing on flat to rolling country. horizons.mw & Landcare Research, Palmerston North. 2000;1:84.

19. FAO. Guidelines for soil descriptions 4th edition. Food and Agricultural Organization of United Nation FAO), Rome, Italy; 2006.

20. Gee GW, Or JW. Particle-size analysis. In A. Klute (ed.) Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. 2002;383–411.

21. Nelson PW, Sommers CE. Total C, organic C and organic matter. In: PAGE, A.L. (Ed.). Methods of soil analysis. Part 2. Chemical methods. Madison: SSSA. 1986;539-579.

22. Datta NP, Khera MS, Saini TR. A rapid colorimetric procedure for the determination of organic carbon in soils. J. Indian Soc. Soil Sci. 1962;10(1):67–74.

23. Bremner JM, Mulvaney CS. “Total nitrogen”, In: A.L. Page, R.H. Miller and D.R. Keeny, (Eds.). Methods of Soil Analysis, American Society of Agronomy and Soil Science Society of America, Madison. 1982;1119-1123.

24. IITA. Selected methods for soils and plant Analysis Manual series No. 1 IITA. International Institute for Tropical Agriculture; 1979.

25. Bray NC, Kurtz LT. Determination of total organic and available forms of phosphorus in soils. Soil Science Journal. 1945;59:39-45.

26. Thomas GW. Exchangeable cations. In: A.L. Page (ed.). Methods of soil analysis. Part 2: Chemical and microbiological properties (2nd ed.) Agronomy. 1982;9:159-165.

27. Rhoades JD. Cation exchange capacity. In: A.L. Page (ed.) Methods of soil analysis. Part 2: Chemical and microbiological properties (2nd ed.) Agronomy. 1982;9:149-157.

28. Blake GR, Hartge KH. Bulk density. In: Klute, A., Ed., Methods of soil analysis, part 1-physical and mineralogical methods, 2nd Edition, Agronomy Monograph 9, American Society of Agronomy Soil Science Society of America, Madison. 1986;363-382.

29. Smith JJ, Doran JW. Measurement and use of pH and electrical conductivity for soil quality analysis. In Methods for assessing soil quality. J.W. Doran and A.J Jones (editors), Soil science society of America Special Publication 49. Madison, WI. 1996;169-185.

30. Sharu MB, Yakubu M, Noma SS, Tsafe AI. Characterization and classification of soils on an agricultural landscape in Dingyadi District, Sokoto State, Nigeria. Nigerian Journal of Basic and Applied Science. 2013;21(2):137-147.

31. Koralage SA, Weerasinghe P, Silva NRN, De Silva CS. The determination of
available phosphorus in soil: A quick and simple method; 2015.

32. Noma SS, Ojanuga AG, Ibrahim SA, Iliya MA. Detailed soil survey of the Sokoto-Rima flood plains at Sokoto, Nigeria. In Salako FK, Adetunji MT, Ojanuga AG, Arowolo TA, Ojeniyi SO. (Eds). Managing Soil resources for food security and sustainable environment. Proceedings of the 29th annual conf. of SSSN/University of Agriculture, Abeokuta, Nigeria; 2004.

33. Yakubu M, Baraya S, Noma SS. Assessment of soil and water quality along river Kadarko in Sanyinna District, Sokoto State. In Hassan WA. Kiyogom UB. Tukur HM, Ipinjolu JK, Maigandi SA, Singh A, Ibrahim, ND, Dikko AU; 2011.