Dynamical noncommutative quantum mechanics

S A Alavi and S Abbaspour

Department of Physics, Hakim Sabzevari University, PO Box 397, Sabzevar, Iran
E-mail: s.alavi@hsu.ac.ir and alialavi@fastmail.us

Received 2 August 2013
Accepted for publication 8 November 2013
Published 7 January 2014

Abstract
We study some basic and interesting quantum mechanical systems in dynamical noncommutative spaces in which the space–space commutation relations are position dependent. It is observed that the fundamental objects in the dynamical noncommutative space introduced here are string-like. We show that the Stark effect can be employed to determine whether the noncommutativity of space is dynamical or non-dynamical. It appears that unlike a non-dynamical case there is a fundamental energy $\tau \hbar^2/m$ in this dynamical space.

Keywords: dynamical noncommutative spaces, quantum mechanics, strings
PACS numbers: 02.40.Gh, 03.65.Aa, 11.25.-w

1. Introduction

The idea of extension of noncommutativity to the coordinates was first suggested by Heisenberg as a possible solution for removing the infinite quantities of field theories. The renewed interest by the physics community started to grow after the paper by Seiberg and Witten [1], see also [2]. Noncommutative quantum mechanics has received wide attention in recent years and many physical problems have been studied in the framework of noncommutative quantum mechanics.

The noncommutativity of the coordinates can be described by the following commutation relation:

$$[x_\mu, x_\nu] = i \theta_{\mu\nu}$$

where $\theta_{\mu\nu}$ is an anti-symmetric tensor. The simplest case corresponds to $\theta_{\mu\nu}$ being constant, which we call non-dynamical or θ-noncommutative spaces. In [3], the authors assumed $\theta_{\mu\nu}$ to be a function of position coordinates.

Recently [4] a generalization to dynamical (position dependent) noncommutative spaces (DNCS) has been proposed in which the noncommutativity tensor is not constant but is position
dependent and the following commutation relations are introduced for a two-dimensional dynamical noncommutative space:

\[[X, Y] = i\theta (1 + \tau Y^2); \quad [X, P_x] = i\hbar (1 + \tau Y^2); \quad [X, P_y] = 2i\tau Y(\theta P_y + \hbar X) \]
\[[Y, P_x] = i\hbar (1 + \tau Y^2); \quad [Y, P_y] = 0; \quad [P_x, P_y] = 0. \]

(2)

It is worth mentioning that by taking \(\tau \to 0 \), we recover the non-dynamical (\(\theta \)-noncommutative) commutation relations:

\[[x_0, y_0] = i\theta; \quad [x_0, p_{\theta y}] = i\hbar; \quad [y_0, p_{\theta y}] = 0 \]
\[[y_0, p_{\theta x}] = i\hbar; \quad [y_0, p_{\theta x}] = 0; \quad [p_{\theta x}, p_{\theta y}] = 0. \]

(3)

The \(X \) coordinate and the momentum in \(Y \) direction, \(P_y \) are not Hermitian so the Hamiltonian involving these variables will in general also not be Hermitian. But we may look for a similarity transformation i.e. a Dyson map \(\eta \) \(O \eta^{-1} = o = o^\dagger \) which converts the non-Hermitian system into a Hermitian one. It is shown that the relevant Dyson map is \(\eta = (1 + \tau Y^2)^{-1/2} \), so the new Hermitian variables \(x, y, p_x \) and \(p_y \) can be stated in terms of \(\theta \)-noncommutative space variables as follows [4]:

\[x = \eta x \eta^{-1} = (1 + \tau y_0^2)^{-1/2}(1 + \tau y_0^2)y_0(1 + \tau y_0^2)^{1/2} \]
\[= (1 + \tau y_0^2)^{1/2}y_0(1 + \tau y_0^2)^{1/2} \]
\[y = \eta y \eta^{-1} = (1 + \tau y_0^2)^{-1/2}y_0(1 + \tau y_0^2)^{1/2} = y_0 \]
\[p_x = \eta p_x \eta^{-1} = (1 + \tau y_0^2)^{-1/2}p_{\theta x}(1 + \tau y_0^2)^{1/2} = p_{\theta x} \]
\[p_y = \eta p_y \eta^{-1} = (1 + \tau y_0^2)^{-1/2}(1 + \tau y_0^2)p_{\theta y}(1 + \tau y_0^2)^{1/2} \]
\[= (1 + \tau y_0^2)^{1/2}p_{\theta y}(1 + \tau y_0^2)^{1/2} \]

(4)

where zero index indicates the coordinates in \(\theta \)-noncommutative spaces.

These Hermitian dynamical noncommutative variables satisfy the following relations:

\[[x, y] = i\theta (1 + \tau y^2); \quad [x, p_x] = i\hbar (1 + \tau y^2); \quad [p_x, p_y] = 0 \]
\[[x, p_y] = 2i\tau x(\theta p_y + \hbar x); \quad [y, p_y] = 0; \quad [y, p_x] = i\hbar (1 + \tau x^2). \]

(5)

Using Bopp-shift one can relate the \(\theta \)-noncommutative variables to the variables of standard (conventional) commutative space:

\[x_0 = x_i - \frac{\theta_{ij}}{2\hbar} p_j, \quad p_0 = p_i, \quad i, j = x, y \]

(6)

where \(\theta_{ij} = \epsilon_{ijk}\theta_k \) and we take \(\theta_3 = \theta \) and the rest of the \(\theta \)-components to zero [7].

An interesting point is that the minimal uncertainty of the coordinate \(X \):

\[\Delta x_{\text{min}} = \theta \sqrt{\tau} \sqrt{1 + \tau (Y)^2} \]

(7)

leads to a minimal length for \(X \) in a simultaneous \(X, Y \) measurement, but there is no nonvanishing length in the \(Y \)-direction [4]. Here \(\rho = \eta^2 = (1 + \tau Y^2)^{-1/2} \) is the metric operator, and \((Y)_\rho \) is the expectation value of operator \(Y \) with respect to this metric.

This means that the fundamental objects in this type of dynamical noncommutative spaces are string-like and this is a good motivation to study physics in these spaces. In this paper we study some interesting and important quantum systems in DNCS.

2. The harmonic oscillator

The harmonic oscillator is an important model in many branches of physics. It can be used to illustrate the basic concepts and methods in quantum mechanics. It also has applications
in a variety of branches of modern physics including spectroscopy, condensed matter physics, nuclear structure, quantum optics, quantum field theory and statistical mechanics.

The Hamiltonian of a two-dimensional harmonic oscillator in DNCS is given by:

\[H(x, y, p_x, p_y) = \frac{p_x^2 + p_y^2}{2m} + \frac{1}{2} m \omega^2 (x^2 + y^2). \]

(8)

Using equation (4), we rewrite the Hamiltonian in terms of \(\theta \)-noncommutative variables:

\[h(x_0, y_0, p_{x_0}, p_{y_0}) = \frac{1}{2m} \left[\left(1 + \tau y_0^2\right)^{1/2} p_{x_0} + \left(1 + \tau y_0^2\right) p_{y_0} \left(1 + \tau y_0^2\right)^{1/2} \right] \]

\[+ \frac{1}{2} m \omega^2 \left[\left(1 + \tau y_0^2\right)^{1/2} x_0 \left(1 + \tau y_0^2\right) x_0 \left(1 + \tau y_0^2\right)^{1/2} + y_0^2 \right] \]

(9)

with the help of the Bopp-shift this Hamiltonian can be stated in terms of the standard commutative variables. To the first order in \(\theta \) and \(\tau \) we have:

\[H_{ho}(x_s, y_s, p_{x_s}, p_{y_s}) = \frac{p_{x_s}^2 + p_{y_s}^2}{2m} + \frac{1}{2} m \omega^2 (x_s^2 + y_s^2) - \frac{m \omega^2 \theta}{2 \hbar} L_{zs} \]

\[+ \frac{\tau}{m} m \omega \delta x_s x_s^2 - 2 i \frac{\hbar}{m} y_s p_{y_s} - \frac{\hbar^2}{2m} \]

\[= H_{ho} + H_{\theta, \tau} \]

(10)

where \(H_{ho} \) is the Hamiltonian of a harmonic oscillator in commutative spaces. If we set \(\tau = 0 \) we get the Hamiltonian of harmonic oscillator in a \(\theta \)-noncommutative case i.e. equation (8) of [5] (we note that in this equation to the first order in \(\theta \), the parameter \(k = 1 \)).

Since the noncommutativity parameters \(\tau \) and \(\theta \) if they are non-zero should be very small, we use perturbation theory to find the spectrum of quantum systems. The perturbation Hamiltonian can be rewritten as follows:

\[H_{\theta, \tau} = - \frac{m \omega^2 \theta}{2 \hbar} L_{zs} + \frac{\tau}{m} m \omega \delta x_s x_s^2 - 2 i \frac{\hbar}{m} y_s p_{y_s} - \frac{\hbar^2}{2m} \]

\[= v_1 + v_2 + v_3 + v_4 + v_5. \]

(11)

The contributions of the different parts of the perturbation Hamiltonian are as follows:

\[\langle n_s, n_z | v_1 | n_s', n_z' \rangle = - \frac{i}{2} m \omega^2 \theta \sqrt{(n_s' + 1) n_z' \delta_{n_s, n_z'} \delta_{n_s, n_z - 1}} \]

\[+ \frac{1}{2} m \omega^2 \theta \sqrt{(n_s' + 1) n_z' \delta_{n_s, n_z - 1} \delta_{n_s, n_z'} + 1} \]

\[\langle n_s, n_z | v_2 | n_s', n_z' \rangle = \frac{\tau \hbar^2}{4m} \left(2 n_s^2 + 2 n_z' - 1 \right) \delta_{n_s, n_s'} \delta_{n_z, n_z'} \]

\[\langle n_s, n_z | v_3 | n_s', n_z' \rangle = \frac{\tau \hbar^2}{4m} \left[\sqrt{(n_s' + 1) n_z' \delta_{n_s, n_z - 2} \delta_{n_s, n_z - 2}} + (2 n_z' + 1) \delta_{n_s, n_s'} \right] \]

\[+ \left[\sqrt{(n_s' + 1) n_z' \delta_{n_s, n_z - 2} \delta_{n_s, n_z - 2}} \right] \]

\[+ \sqrt{(n_s' + 1) \delta_{n_s, n_s'} \delta_{n_s, n_z' + 2}} + (2 n_z' + 1) \delta_{n_s, n_z'} \]

\[\langle n_s, n_z | u_4 | n_s', n_z' \rangle = \frac{\tau \hbar^2}{m} \delta_{n_s, n_s'} \delta_{n_z, n_z'} \]

\[\langle n_s, n_z | u_5 | n_s', n_z' \rangle = - \frac{\tau \hbar^2}{2m} \delta_{n_s, n_s'} \delta_{n_z, n_z'}. \]

(12)
So the elements of the perturbation Hamiltonian are given by:

\[
H_{ij}^{\theta, \tau} = \begin{cases}
\frac{\tau h^2}{4m} \sqrt{(j - 1)(j - 2)(g - j + 2)(g - j + 3)}; & i - j = -2 \\
\frac{2}{im\theta \omega^2} \sqrt{(j - 1)(g - i + 1)}; & i - j = -1 \\
\frac{\tau h^2}{4m} [-2(j - 1)^2 + 2(j - 1) + 2(2j - 1)g + 2]; & i = j \\
\frac{2}{im\theta \omega^2} \sqrt{(i - 1)(g - j + 1)}; & i - j = 1 \\
\frac{\tau h^2}{4m} \sqrt{j(j + 1)(g - j + 1)(g - j)}; & i - j = 2
\end{cases}
\]

(13)

where \(g = n_x + n_y \) and integers \(i \) and \(j \) represent the row and column indices, respectively.

The energy shift for the ground state \(n_x + n_y = 0 \) is:

\[
\Delta E = -\frac{\tau h^2}{2m}.
\]

(14)

There is an interesting point involved here, although the correction to the ground state of the harmonic oscillator due to the noncommutativity of space to the first order in noncommutativity parameter vanishes in non-dynamical spaces (\(\theta \)-noncommutative space) [5], it has the nonvanishing value \(-\frac{\tau h^2}{2m} \) in a dynamical case. The first excited state \(n_x + n_y = 1 \), has two-fold degeneracy. The perturbation matrix is given by:

\[
\begin{pmatrix}
\frac{\tau h^2}{m} & \frac{1}{2} m \omega^2 \theta \\
-\frac{1}{2} m \omega^2 \theta & \frac{\tau h^2}{m}
\end{pmatrix}
\]

(15)

and the corresponding energies are:

\[
E_{n_x+n_y=1} = \begin{cases}
2\hbar \omega + \frac{3\tau h^2}{2m} - \frac{\tau^2 h^4 + m^2 \omega^4 \theta^2}{4m^2} & \\
2\hbar \omega + \frac{3\tau h^2}{2m} + \sqrt{\frac{\tau^2 h^4 + m^2 \omega^4 \theta^2}{4m^2}} & \end{cases}
\]

(16)

3. The quantum Hall effect

The quantum Hall effect (QHE) is the remarkable observation of quantized transport in two-dimensional electron gases placed in a transverse magnetic field. Let us consider a moving particle with charge \(q \) and mass \(\mu \) in a two-dimensional \(x-y \) plane and submitted to a uniform magnetic field \(\vec{B} \) in the \(z \)-direction. The components of vector potential can be taken as follows:

\[
A_x = -\frac{1}{\ell} By, \quad A_y = \frac{1}{\ell} Bx, \quad A_z = 0.
\]

(17)

For the Hamiltonian of the system we have:

\[
H(x, y, p_x, p_y) = \frac{1}{2\mu} \left[\left(p_x + \frac{qB}{2c} y \right)^2 + \left(p_y - \frac{qB}{2c} x \right)^2 \right].
\]

(18)
In terms of the θ-noncommutative variables, the Hamiltonian takes the following form:

$$H(x_0, y_0, p_{x_0}, p_{y_0}) = \frac{1}{2\mu} \left[\left(p_{x_0} + \frac{qB}{2e} y_0 \right)^2 + \left((1 + \tau y_0^2)^{1/2} p_{x_0} (1 + \tau y_0^2)^{1/2} - \frac{qB}{2e} (1 + \tau y_0^2)^{1/2} x_0 (1 + \tau y_0^2)^{1/2} \right)^2 \right]$$

$$= \hbar^2_0 - 2\mu \omega_L \tau^2 \hbar y_0^2 + 2i \omega_L (\tau y_0 + \tau^2 y_0^3) [\hbar x_0 + \theta p_{y_0}]$$

$$- \omega_L \tau y_0^2 p_{x_0} x_0 + \tau h\omega_L \theta - \omega_L^2 c_0$$

where \hbar^2_0 is the Hamiltonian of the harmonic oscillator in θ-noncommutative space, with angular frequency $\omega_L = \frac{\hbar}{2\mu}$. In terms of the standard commutative space variables it is given by:

$$H(x_s, y_s, p_{x_s}, p_{y_s}) = \frac{1}{2\mu} \left(p_{x_s}^2 + p_{y_s}^2 \right) + \frac{1}{2} \mu \omega_L^2 \left(x_s^2 + y_s^2 \right) - \omega_L c_0$$

$$- \frac{\mu \omega_L^2 L_{c_0}}{2\mu} + \frac{\tau}{\mu} \mu \omega_L^2 \tau y_s^2 + \mu \omega_L^2 \tau^2 y_s^2 - 2i \frac{\tau \hbar}{\mu} y_s p_{x_s} - \frac{\tau}{2\mu}$$

$$+ 2i \omega_L \tau \hbar y_s x_s - \omega_L \tau \hbar y_s x_s + \frac{\omega_L \theta}{2\hbar} \left(p_s^2 + p_s^2 \right)$$

$$= H_{c_0} + H^{\theta, \tau}.$$ (19)

It is convenient to write the perturbation Hamiltonian in circular cylindrical coordinates:

$$H^{\theta, \tau} = -\frac{\tau \hbar^2}{\mu} \left\{ \rho^2 \sin^4 \phi \frac{\partial^2}{\partial \rho^2} - m^2 \sin^2 \phi \cos^2 \phi
- 2im \sin^3 \phi \cos \phi + 2im \sin^3 \phi \cos \phi \frac{\partial}{\partial \rho} \right\}$$

$$+ \mu \omega_L^2 \tau \rho^2 \sin^3 \phi \cos^2 \phi + \left\{ im \cos^2 \phi + \rho \sin \phi \cos \phi \frac{\partial}{\partial \rho} \right\}$$

$$- 2i \frac{\tau \hbar^2}{\mu} \left\{ \rho \sin \phi \frac{\partial}{\partial \rho} + im \sin \phi \cos \phi \right\} - \frac{\tau \hbar^2}{2\mu} + 2i \omega_L \tau \hbar \rho^2 \sin \phi \cos \phi$$

$$+ i \omega_L \tau \left\{ \sin^3 \phi \cos \phi \frac{\partial}{\partial \rho} + im \rho^3 \sin^2 \phi \cos^2 \phi \right\}$$

$$- \hbar \omega_L \theta \left\{ \sin^2 \phi \frac{\partial^2}{\partial \rho^2} - \frac{m^2}{\rho^2} \cos^2 \phi - 2i \frac{m}{\rho^2} \sin \phi \cos \phi \right\}$$

$$+ 2i \frac{\mu}{\rho} \sin \phi \cos \phi \frac{\partial}{\partial \rho} + \cos^2 \phi \frac{\partial}{\rho} \right\}. \right.$$ (21)

Using the wave function:

$$\Psi_{n, m}(\rho, \phi) = \sqrt{\frac{(n_\rho)! \xi^{2|m|+2}}{\pi (n_\rho + |m|)!}} \mathcal{R}^{|m|}_{n_\rho}(\xi^2 \rho^2) e^{im\phi} e^{-1/2\xi^2 \rho^2}; \quad \xi^2 = \frac{\mu \omega_L}{\hbar}$$

we calculate the energy spectrum of the ground state:

$$E_{m=0, n_\rho=0} = \hbar \omega_L + \frac{1}{4\mu \xi^4} \left[\tau \mu^2 \omega_L^2 + \tau \xi^4 \hbar^2 + 2h \mu \theta \omega_L \xi^6 \right] = 0.25 \frac{\tau \hbar^2}{\mu} + \frac{1}{2} \hbar \theta \omega_L \xi^2.$$ (22)

For the first excited state we have:
If we take \(H \) in standard commutative space we have:

\[
E_{m=0, n_1=1} = 3 \hbar \omega_L + \left\{ \frac{1}{4m \hbar^2} \left[7 \tau^2 \mu^2 \omega_L^2 + 7 \tau^4 \hbar^2 + 6 \hbar \mu \theta \omega_L \xi^2 \right] \right. + 1.5 \hbar \theta \omega_L \xi^2 \\
\left. + 0.5 \hbar \theta \omega_L \xi^2 - 0.125 \mu \theta \omega_L^2 \right\} = 0.75 \frac{\hbar^2}{\mu} + 1.5 \hbar \theta \omega_L \xi^2 + 0.5 \mu \theta \omega_L^2.
\]

(23)

By setting \(\tau = 0 \), we obtain the results of non-dynamical spaces, for instance equations (22) and (23) give the same values for the energy of the ground and first excited states of the system as equation (20) in [6].

4. Hydrogen atom

In this section we study the hydrogen atom in a two-dimensional dynamical noncommutative space. Electronic bound states around charged impurities in two-dimensional systems can be described in terms of a two-dimensional hydrogen atom.

The Hamiltonian of the system is as follows:

\[
H(x, y, p_x, p_y) = \frac{1}{2m} \left(p_x^2 + p_y^2 \right) - \frac{ze^2}{\sqrt{x^2 + y^2}}.
\]

(24)

In terms of the \(\theta \)-noncommutative variables it takes the following form:

\[
h(x_0, y_0, p_{x_0}, p_{y_0}) = \frac{1}{2m} \left[p_{x_0}^2 + (1 + \tau y_0^2)^{1/2} p_{y_0} (1 + \tau y_0^2)^{1/2} \right] \\
- \frac{ze^2}{m} \left[(1 + \tau y_0^2)^{1/2} x_0 (1 + \tau y_0^2)^{1/2} + y_0 \right]^{-1/2} \\
= \frac{1}{2m} \left[p_{x_0}^2 + (1 + \tau y_0^2)^{2} p_{y_0}^2 \right] - \frac{2i \hbar \tau}{m} y_0 (1 + \tau y_0^2) p_{y_0} \\
- \frac{\tau \hbar^2}{m} y_0 - \frac{\tau h^2}{2m} - \frac{ze^2}{m} \left[(1 + \tau y_0^2)^{2} x_0^2 + 4 i \theta \tau y_0 (1 + \tau y_0^2) x_0 \right] \\
- \tau \theta^2 - 2 \tau^2 \theta^2 y_0^2 + y_0^2 \right)^{-1/2}.
\]

(25)

In standard commutative space we have:

\[
H(x_0, y_0, p_{x_0}, p_{y_0}) = \frac{1}{2m} \left[p_{x_0}^2 + p_{y_0}^2 \right] - \frac{ze^2}{(x_0^2 + y_0^2)^{1/2}} + \frac{ze^2}{2(x_0^2 + y_0^2)^{3/2}} \\
\times \left[2 \tau x_0 y_0^2 - \frac{\theta}{\hbar} L_z \right] + \frac{\tau y_0^2}{m} p_{y_0}^2 - 2i \frac{\tau h}{m} y_0 p_{y_0} - \frac{\tau h^2}{2m} \\
= H^c + H^{\theta, \tau}.
\]

(26)

If we take \(\tau = 0 \) we obtain \(H_0 = -\frac{3e^2}{2m} \), which is in agreement with the results of the non-dynamical case presented in equation (2.5) of [7] (note that in [7], \(\theta_{ij} \) is defined through \(\theta_{ij} = \frac{1}{2} \epsilon_{ijk} \partial_k \) but we have chosen \(\theta_{ij} = \epsilon_{ijk} \partial_k \)).

Using the wave functions of two-dimensional hydrogen atom [8], the energy spectrum for the ground state and the first degenerate excited state are obtained:

\[
\Delta E = 0.125 \frac{\tau h^2}{m}
\]

(27)
and

\[
\Delta E = \begin{cases}
0.875 \frac{\tau h^2}{2m} & - m - \sqrt{\frac{\tau^2 h^4}{m^2} + 0.04 \left(\frac{ze^2 \omega^2}{\alpha_0^2} \right)} \\
0.75 \frac{\tau h^2}{m} & - m - \sqrt{\frac{\tau^2 h^4}{m^2} + 0.04 \left(\frac{ze^2 \omega^2}{\alpha_0^2} \right)} \\
0.75 \frac{\tau h^2}{m} & + \sqrt{\frac{\tau^2 h^4}{m^2} + 0.04 \left(\frac{ze^2 \omega^2}{\alpha_0^2} \right)}
\end{cases}
\tag{28}
\]

5. The Zeeman effect

The Zeeman effect is very important in applications such as nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, magnetic resonance imaging (MRI) and Mössbauer spectroscopy. To study the effects of dynamical noncommutativity on the Zeeman effect we consider the relevant Hamiltonian:

\[
H(x, y, p_x, p_y) = \frac{1}{2m} \left(p_x^2 + p_y^2 \right) - \frac{ze^2}{\sqrt{x^2 + y^2}} - \omega L_z \\
= \frac{1}{2m} \left(p_x^2 + p_y^2 \right) - \frac{ze^2}{\sqrt{x^2 + y^2}} - \omega [x p_y - y p_x]. \tag{29}
\]

In terms of the \(\theta \)-noncommutative variables it takes the following form:

\[
H(x_0, y_0, p_{x_0}, p_{y_0}) = \frac{1}{2m} \left[p_{x_0}^2 + (1 + \tau \gamma_0^2) p_{x_0}^2 \right] - \frac{2i \hbar \tau}{m} \gamma_0 (1 + \tau \gamma_0^2) p_{y_0} - \frac{\tau^2 h^2}{m} \gamma_0 - \frac{r h^2}{2m} \\
- \frac{ze^2 \gamma_0}{\sqrt{x_0^2 + y_0^2}} \int_4 + 4 i \theta \gamma_0 (1 + \tau \gamma_0^2) x_0 - \tau \omega^2 - \frac{2 \tau^2 \omega^2 \gamma_0^2 + \gamma_0^{1/2}}{2} \\
- \omega \left[(1 + \tau \gamma_0^2)^{1/2} x_0 (1 + \tau \gamma_0^2) p_{y_0} (1 + \tau \gamma_0^2)^{1/2} - y_0 p_{x_0} \right]. \tag{30}
\]

Using the Bopp-shift one can write down the Hamiltonian in standard commutative space:

\[
H(x, y, p_x, p_y) = \frac{1}{2m} \left(p_x^2 + p_y^2 \right) - \frac{ze^2}{\sqrt{x^2 + y^2}} + \frac{ze^2}{2(x^2 + y^2)^{1/2}} \\
\times \left[2 \tau x^2 y^2 - \frac{\theta}{\hbar} L_z \right] + \frac{\tau^2 h^2}{m} y p_{x_0} - \frac{r h^2}{2m} \\
- \omega [x p_y - y p_x] + \frac{\theta}{\hbar} \omega (p_{x_0}^2 + p_{y_0}^2) - 2 \tau \omega^2 p_x x_0 + \hbar \omega \tau y x_0. \tag{31}
\]

If we choose \(\tau = 0 \), equation (31) reduces to the equations (24)–(26) of the [9] for the case of non-dynamical spaces (the first order in magnetic field \(B \)). The corrections to the energy for the ground state and degenerate first excited state are given by:

\[
\Delta E = 2 \frac{\hbar \omega \theta}{\alpha_0^2} + 0.125 \frac{\tau h^2}{m} \tag{32}
\]
and

\[
\Delta E = \begin{cases}
\Delta E_1 = 0.22 \frac{\hbar \omega \theta}{a_0^2} + 0.875 \frac{\tau \hbar^2}{m} \\
\Delta E_2 = \frac{0.5}{a_0^4 \hbar m} \left[-a_0^4 \hbar m (-1.5a_0^2 \tau \hbar - 0.4m \theta \omega) - 0.5a_0^3 \left(\frac{\hbar^2}{m} \right) \left(\frac{\tau \hbar^2 (\theta \omega m^2)}{\hbar^3} + 0.64 \left(\frac{e^2 \theta^2}{a_0^6} \right) \right)^{1/2} \right] \\
\Delta E_3 = \frac{0.5}{a_0^4 \hbar m} \left[-a_0^4 \hbar m (-1.5a_0^2 \tau \hbar - 0.4m \theta \omega) + 0.5a_0^3 \left(\frac{\hbar^2}{m} \right) \left(\frac{\tau \hbar^2 (\theta \omega m^2)}{\hbar^3} + 0.64 \left(\frac{e^2 \theta^2}{a_0^6} \right) \right)^{1/2} \right] \\
\end{cases}
\]

where \(\omega = \frac{e \hbar}{2mc} \) and \(a_0 \) is the Bohr radius.

6. The Stark effect

The Stark effect has become an increasingly important part of atomic, molecular and optical physics. To study the effects of the external electric field on the spectrum of the hydrogen atom in dynamical noncommutative spaces, we consider the electric field in the \(x \)-direction. The Hamiltonian is

\[
H(x, y, p_x, p_y) = \frac{1}{2m} \left(p_x^2 + p_y^2 \right) + \frac{e^2}{\sqrt{x^2 + y^2}} + eEx.
\]

For the ground state we have:

\[
\Delta E = 0.125 \frac{\tau \hbar^2}{m}.
\]

It can be shown that for the first excited state the energy correction to the first order is also proportional to \(\tau \hbar^2/m \).

The same results are obtained if the electric field is applied in the \(y \)-direction.

It is shown in [7] that at tree level the contribution to the Stark effect is zero in a non-dynamical case but we observe that in dynamical noncommutative spaces the contribution to the Stark effect is non-zero, therefore the Stark effect can be employed to determine whether the noncommutativity of space is dynamical or non-dynamical. It is instructive to understand the mechanism intuitively. As we already mentioned the energy correction due to the external electric field on the energy spectrum of the hydrogen ground state in dynamical noncommutative space is not zero. This means that there is a permanent electric dipole for the ground state of the hydrogen atom in DNCS. To understand how this electric dipole is produced, we note that the fundamental objects in DNCS are not point-like but they are string-like. On the other hand it is shown in [10] that strings can act as electric dipoles, so the fundamental particles (strings) in dynamical noncommutative spaces for instance electrons, quarks (neutrons and protons) can have electric dipoles due to dynamical noncommutativity of space which leads to permanent electric dipole for the ground state of the hydrogen atom.
7. Conclusions

We have studied some fundamental and interesting quantum systems in dynamical noncommutative spaces. The energy shift for the ground state of the harmonic oscillator due to noncommutativity of space is zero for a non-dynamical case while it has a nonvanishing value in DNCS. We have shown that the Stark effect can be used to check whether the noncommutativity of space is dynamical or non-dynamical. It seems that in the dynamical noncommutative space introduced here, there is a fundamental energy so that the corrections due to dynamical noncommutativity on the energy of a quantum system can be stated in terms of $g \frac{\hbar^2}{m}$ in which $\frac{\hbar^2}{m}$ is fundamental energy independent of the system and the factor g depends on the kind of the system. For instance, for the ground state of the harmonic oscillator and quantum Hall effect, the values of g are -0.5 and 0.25 respectively. For a hydrogen atom, Zeeman and Stark effects the value of g is 0.125. We confirm that in the limit $\tau \to 0$, we obtain the results presented in previous works devoted to non-dynamical noncommutative spaces. Finally, one can use the energy accuracy measurement 10^{-12} eV [11] to impose some bounds on the value of the noncommutativity parameter $\tau: \frac{\hbar^2}{m} < 10^{-12}$ eV.

References

[1] Seiberg N and Witten E 1999 String theory and noncommutative geometry J. High Energy Phys. JHEP09(1999)032
[2] Ardalan F, Arfaei H and Sheikh-Jabbari M M 1999 Noncommutative geometry from strings and branes J. High Energy Phys. JHEP02(1999)016
[3] Gomes M and Kupriyanov V G 2009 Position-dependent noncommutativity in quantum mechanics Phys. Rev. D 79 125011
[4] Gomes M, Kupriyanov V G and da Silva A J 2010 Dynamical noncommutativity J. Phys. A: Math. Theor. 43 285301
[5] Fring A, Gouba L and Scholtz F G 2010 Strings from position-dependent noncommutativity J. Phys. A: Math. Theor. 43 345401
[6] Jahan A 2008 Noncommutative harmonic oscillator at finite temperature: a path integral approach Braz. J. Phys. 38 144
[7] Dulat S and Li K 2008 Landau problem in noncommutative quantum mechanics Chin. Phys. C 32 92
[8] Chaichian M, Sheikh-Jabbari M M and Tureanu A 2001 Hydrogen atom spectrum and the Lamb shift in noncommutative QED Phys. Rev. Lett. 86 2716
[9] Santos W O and Souza A M C 2012 The anomalous Zeeman effect for the hydrogen atom in noncommutative space Int. J. Theor. Phys. 51 3882
[10] Sheikh Jabbari M M 1999 Open strings in a B-field background as electric dipoles Phys. Lett. B 455 129
[11] Essen L et al 1971 Nature 229 110