Management of necrotizing pancreatitis

John Slavin¹, Paula Ghaneh¹, Robert Sutton¹, Mark Hartley¹, Peter Rowlands², Conall Garvey², Mark Hughes² and John Neoptolemos¹

Departments of Surgery¹ and Radiology², Royal Liverpool University Hospital
Correspondence to Mr. J. Slavin, Senior Lecturer, Department of Surgery, Royal Liverpool University Hospital 5th floor UCD Building, Daulby Street, Liverpool, L69 3GA, United Kingdom, UK. jpps@liverpool.ac.uk
Tel: 0044-151-706-4177, Fax: 0044-151-706-5826
Received 2001-05-15, Accepted 2001-06-15

Abstract

Infection complicating pancreatic necrosis leads to persisting sepsis, multiple organ dysfunction syndrome and accounts for about half the deaths that occur following acute pancreatitis. Severe cases due to gallstones require urgent endoscopic sphincterotomy. Patients with pancreatic necrosis should be followed with serial contrast enhanced computed tomography (CE-CT) and if infection is suspected fine needle aspiration of the necrotic area for bacteriology (FNAB) should be undertaken. Treatment of sterile necrosis should initially be non-operative. In the presence of infection necrosectomy is indicated. Although traditionally this has been by open surgery, minimally invasive procedures are a promising new alternative. There are many unresolved issues in the management of pancreatic necrosis. These include, the use of antibiotic prophylaxis, the precise indications for and frequency of repeat CE-CT and FNAB, and the role of enteral feeding.

Subject headings pancreatitis, acute necrotizing/drug therapy; pancreatitis, acute necrotizing/surgery; biopsy, needle; tomography, x-ray computered; enteral nutrition; human

Slavin J, Ghaneh P, Sutton R, Hartley M, Rowlands P, Garvey C, Hughes M, Neoptolemos J. Management of necrotizing pancreatitis. World J Gastroenterol, 2001;7(4):476-481

INTRODUCTION

Acute pancreatitis is common, the incidence in recent European studies varying between 20 and 70 cases per 100 000 population with an overall mortality of between 3% and 8%.[1-6] Most cases are secondary to gallstones or excess alcohol consumption. Activation of trypsinogen within pancreatic acinar cells is the critical initiating event[7]. This leads to autodigestion of the pancreas, with a localised and then systemic inflammatory response, which if marked leads to the development of multiple organ dysfunction syndrome (MODS) and death[8,9]. Approximately half of deaths from acute pancreatitis occur in the first week following an attack. In patients who survive the initial attack a proportion develop areas of pancreatic and peripancreatic necrosis. Secondary infection then leads to persisting sepsis, MODS, and accounts for the majority of the remaining late deaths[1,10].

IDENTIFYING PATIENTS WITH NECROSIS

Nearly all patients who suffer a mild attack of acute pancreatitis make a complete recovery[11]. About one third of patients with a severe attack, who develop organ failure during the first week, will however, subsequently develop pancreatic necrosis involving more than 30% of the gland. There are several methods that are routinely used to identify early those patients who are likely to develop organ failure and those who will be at risk of pancreatic necrosis. Specific clinico pathological scoring systems include those described by Imrie[12] and Ranson[13]. These, however, are only accurate 48 hours after hospital admission, when they correctly categorise around 80% of patients into mild and severe. An APACHE II score ≥9 on hospital admission correctly identifies around 85% patients who will suffer a severe attack[14]. Unfortunately the relative complexity of the APACHE II system limits its clinical use.

Plasma C reactive protein levels (CRP), greater than 150mg/L 48 hours after admission, are widely used to predict a severe attack of pancreatitis[15,16]. CRP levels do not however peak until seventy-two hours after onset of symptoms thus CRP levels, like the Imrie and Ranson scores are limited in predicting a severe attack during the first few hours following admission (Table 1). Plasma levels of other direct inflammatory mediators, such as interleukin-8 and interleukin-6 are elevated earlier in the course of an attack of acute pancreatitis and relate to the severity of the systemic inflammatory response[17]. Although the levels of these mediators are as accurate at the time of admission as the APACHE II score, the assay systems are not suitable for widespread clinical use. Urinary levels of trypsin activation peptide (TAP), the cleavage peptide released following the activation of trypsinogen, become significantly elevated with the onset of an attack and measuring TAP has been shown to be a valuable predictor of severe disease[18] and urinary TAP levels may ultimately form the basis of a simple bedside urine test (Table 1).

Intravenous contrast-enhanced computerised tomography (CE-CT) has also been used to predict the severity of an attack of acute pancreatitis[19]. Balthazar described a CT severity index, based on a combination of peripancreatic inflammation and degree of pancreatic necrosis as seen at initial CT study. Patients with a high CT severity index had 92% morbidity and 17% mortality; patients with a low CT severity index had 2% morbidity, and none died[20]. This type of scoring system using CT offers no advantages as compared to clinico-biochemical scoring systems for the prediction of severe disease[21]. Rather the value of CE-CT is in the detection of pancreatic necrosis and definition of its extent and distribution (Figure 1A)[22-25] as well as in helping to delineate any associated collections[26]. Serial CT scans also allow the progression of the disease to be followed and are an essential adjunct when surgical intervention is required.

• REVIEW •
Table 1 Prognostic accuracy of the APACHE II, the Imrie and Ranson scores, plasma CRP and urinary TAP levels\[18\]

Scoring System	Sensitivity %	Specificity %	PPV %	NPV %	Accuracy %
Post-symptom 24 hrs					
Urinary TAP >35nmol/L	58	73	39	86	70
Plasma CRP >150mg/L	0	90	0	75	69
or urinary TAP >35nmol/L	58	72	37	86	69
Plasma CRP >150mg/L and urinary TAP >35nmol/L	0	92	0	74	70
Post-symptom 48 hrs					
Urinary TAP >35nmol/L	81	71	42	94	73
Plasma CRP >150mg/L	65	73	37	90	72
Plasma CRP >150mg/L or urinary TAP >35nmol/L	86	60	35	94	65
Plasma CRP >150mg/L and urinary TAP >35nmol/L	60	85	50	90	80
Post-hospitalisation 24 hrs					
Urinary TAP >35nmol/L	68	74	44	89	73
Plasma CRP >150mg/L	47	82	42	84	74
Plasma CRP >150mg/L or urinary TAP >35nmol/L	74	66	38	90	68
Plasma CRP >150mg/L and urinary TAP >35nmol/L	40	91	57	83	79
APACHE II ≥8	63	73	38	88	71
Post-hospitalisation 48 hrs					
Urinary TAP >35nmol/L	83	72	44	94	74
Plasma CRP >150mg/L	86	61	37	94	66
Plasma CRP >150mg/L or urinary TAP >35nmol/L	94	49	32	97	58
Plasma CRP >150mg/L and urinary TAP >35nmol/L	74	85	58	92	83
APACHE II ≥8	56	64	30	85	63
Imrie Score ≥3	77	75	44	93	76
Ranson Score ≥3	89	64	38	96	69

PPV=positive predictive value; NPV=negative predictive value.

DETECTION OF INFECTION

In addition to the amount of pancreatic necrosis the outcome in severe pancreatitis is also determined by the presence or absence of infection within the necrotic tissue\[27\]. Clinical indicators that suggest the presence of infection include pyrexia, hypotension, continuing tachycardia, and a leukocytosis, but these features of sepsis syndrome are identical to those in patients with severe pancreatitis irrespective of the presence of pancreatic infection\[28\]. Beger et al studied 144 patients who underwent open necrosectomy. The proportion of patients who had demonstrable bacterial contamination at the time of necrosectomy increased from 24% during the first week to 36% in the second and peaked at 72% during the third week suggesting that infection is not immediate but that its frequency increases with time\[29\]. Table 2 shows organisms found within infected necrotic pancreas in their study, which was conducted prior to the routine use of prophylactic antibiotics. The profile of infecting organisms suggests origin from the gastrointestinal tract.

Table 2 Bacteria isolated from operative specimens taken at necrosectomy prior to the introduction of routine antibiotic prophylaxis, Beger et al, 1986\[29\]

Bacteria isolated	No. of patients
Gram - ve aerobic	
Escherichia coli	24
Enterobacter aerogenes	16
Pseudomonas aeruginosa	5
Proteus species	5
Klebsiella pneumonia	3
Citrobacter freundi	1
Gram - ve aerobic	
Bacteroides species	5
Gram + ve aerobic	
Streptococcus faecalis	6
Staphlococcus aureus	4
Streptococcus viridans	1
Staphlococcus epidermidis	1
Others	
Mycobacterium tuberculosis	1
Candida species	3

Several studies have shown that persistently elevated CRP is associated with infected pancreatic necrosis\[19\]. The presence of gas within an area of necrosis shown by CE-CT is highly suggestive of infection (Figure 1B), although it is desirable to detect the presence of infection before this becomes apparent. CE-CT guided fine needle aspiration, however, allows direct sampling of the necrotic tissue and subsequent microscopy and bacteriology (FNAB) will confirm the presence of infecting organisms (Figure 1C)\[31,32\].

Figure 1A Extensive retroperitoneal pancreatic necrosis.

Figure 1B Infection of pancreatic necrosis with gas forming organisms.

Figure 1C CE-CT guided fine needle aspiration for bacteriology.
The nature of the inflammatory response may also be modified by the presence of infection and recent studies have attempted to identify circulating factors that might confirm this. Serum procalcitonin is a potential marker for non-invasive prediction of infected necrosis[30]. Rai et al studied 50 patients with acute pancreatitis, 18 patients with oedematous pancreatitis, 14 patients with sterile necrosis, and 18 patients with infected necrosis. Levels of procalcitonin were measured in plasma during the first two weeks of admission. If levels reached 1.8ng/mL on at least two days during this time, sensitivity, specificity, and accuracy for the prediction of infected necrosis were 94%, 91%, and 92% respectively. This was not confirmed however in a more recent study[32].

PREVENTION OF PANCREATIC NECROSIS

Reducing the severity of the initial attack of acute pancreatitis might reduce the incidence and magnitude of pancreatic necrosis. Unfortunately at the present time, in the absence of effective intervention, management of the acute attack is predominantly supportive. One exception is the use of endoscopic retrograde cholangio-pancreatography and sphincterotomy in patients with predicted severe gallstone pancreatitis, which reduces the severity of an attack. Patients with severe acute pancreatitis due to gallstones need to undergo endoscopic sphincterotomy during ERCP, irrespective of the presence of acute cholangitis and ERCP should be undertaken within forty-eight hours of diagnosis[33-37].

ANTIBiotic PROPhylaxis

Prophylactic antibiotic use may reduce the incidence of septic complications particularly infection involving areas of pancreatic necrosis. In the 1970s three randomised placebo controlled studies assessed the role of prophylactic antibiotics in acute pancreatitis and found no effect on mortality or morbidity[38-40]. These studies, which were small, consisted almost entirely of patients with mild disease and without necrosis and thus no conclusions can be drawn. In 1993 Pederzoli et al reported a multi-centre randomised study in which 74 patients with pancreatitis from all causes and with confirmed necrosis on CT at the time of admission were randomly assigned to imipenem or to no antibiotic[41]. The incidence of pancreatic sepsis, which was determined by fine needle aspiration or culture of intra-operative specimens, decreased from 30% in those untreated with antibiotics to 12% in the antibiotic treated group. There was, however, no significant difference in the rate of surgical intervention or mortality.

In a subsequent study from Finland, 60 patients with severe alcohol-induced necrotising pancreatitis as determined by CT and CRP estimation were randomly assigned to treatment with cefuroxime or to no antibiotic. One (3%) patient in the antibiotic treated group died compared to seven (23%) patients in the untreated group, \(P<0.05\)[42]. Surprisingly given the large difference in mortality there was no significant difference in the overall incidence of sepsis or the number of patients requiring surgery. Further, given the relatively small size of the study it is probable that there was heterogeneity in the randomisation as shown by the greater number of patients with fulminant pancreatitis on admission in the control group.

More recently, 60 patients with severe acute pancreatitis and necrosis affecting at least 50% of the pancreas, were randomly allocated to receive intravenous treatment for 2 weeks with pefloxacin, (30 patients), or imipenem, (30 patients), within 120 hours of onset of symptoms. The incidence of infected necrosis and extra-pancreatic infections was 34% and 44% respectively in the pefloxacin group and 10% and 20% in the imipenem group. Although imipenem proved significantly more effective in preventing pancreatic infections \(P<0.05\), there was no significant difference in mortality nor in the number of patients requiring surgery between the two treatments[43]. A feature of this last study and of other recent series[44,45] in which prophylactic antibiotics have been used is the increasing incidence of drug resistant or unusual organisms, including fungi, cultured from pancreatic tissue removed at necrosectomy. When such organisms are present the mortality following necrosectomy may be increased[46,47]. Thus the data imply that the use of prophylactic antibiotics promotes drug-resistant organisms and the growth of fungi. In the absence of further studies routine antibiotic prophylaxis in patients with acute pancreatitis cannot be recommended at present.

TRANSLOCATION OF GUT ORGANISMS

The gastrointestinal tract is thought to be the major source of organisms infecting necrotic pancreatic tissue. Increased translocation of bacteria and toxins is known to occur in acute pancreatitis[48,49]. Anaerobic bacteria are less likely to translocate from the gut lumen. Thus selective digestive decontamination (SDD) with appropriate antibiotics may change the intestinal flora to one that is less invasive. Between 1990 and 1993, 102 patients with severe pancreatitis from 16 centres in the Netherlands were randomized to selective digestive decontamination plus standard treatment or standard treatment alone[50]. There was a significant reduction in the incidence of gram-negative pancreatic infection in treated patients. Although deaths were reduced from 35% in the control group to 22% in the treatment group this difference was not significant. A short course of systemic antibiotics (cefotaxime) was used in the SDD group so that interpretation of the data with regard to the specific effects of gut decontamination as opposed to antibiotic prophylaxis is difficult[50].

Early re-introduction of nutrition via the gastrointestinal tract may also help to restore mucosal integrity and reduce translocation. A number of studies in patients with major trauma, surgery and burns showed that enteral nutrition significantly decreased the acute phase response and incidence of septic complications when compared with total parenteral nutrition[51,52]. In acute pancreatitis therefore early reintroduction of feeding via the gastro intestinal tract might also reduce the incidence of pancreatic infection.

Two randomized studies have compared enteral and parenteral nutrition in patients with severe acute pancreatitis. In the first study, 38 patients received enteral nutrition through a nasoenteric tube with a semi-elemental diet or parenteral nutrition through a central venous catheter. Patients who received enteral feeding experienced fewer total complications \(P<0.05\) and were at lower risk of developing septic complications \(P<0.01\) than those receiving parenteral nutrition. The cost of nutritional support was three times higher in patients who received parenteral nutrition[53].

In a second study from Leeds, 34 patients with acute pancreatitis received either parenteral or enteral nutrition for seven days and were then re-evaluated. The frequency of SIRS, sepsis, organ failure and the need for ITU admission was reduced in the enterally fed patients[54].
In a third study from Edinburgh, 27 patients with predicted severe acute pancreatitis were randomised to early introduction of enteral nutrition via a nasojejunal tube or conventional therapy, i.e. nil by mouth with re-introduction of oral intake with return of gut function. There were no significant complications as a consequence of enteral nutrition. The introduction of enteral nutrition did not affect the serum concentrations of IL-6 ($P=0.28$), soluble tumour necrosis factor-α receptor ($P=0.53$) or CRP ($P=0.62$) over the first 4 days of the study. Although there were no significant differences in intestinal permeability between the two patient groups at admission, by day four abnormal intestinal permeability occurred more frequently in patients receiving enteral nutrition ($P=0.03$).

Thus it can be concluded that enteral nutrition is safe in patients with severe acute pancreatitis and there is some evidence that it may be preferable to parenteral nutrition. The power of these three studies was too low to show any differences with respect to surgical intervention, incidence of pancreatic infection or mortality and the effect of nutrition route and timing on these outcomes requires further study.

NON-OPERATIVE TREATMENT OF PANCREATIC NECROSIS

Although there are isolated case reports of patients with pancreatic infection surviving with medical treatment alone and limited success using percutaneous drainage, the presence of infection in necrotic pancreatic tissue is accepted to be an absolute indication for surgical intervention (Table 3). The situation in patients with extensive areas of sterile necrosis is less clear. Bradley et al reported on 38 patients with necrosis on CT who were initially treated medically and underwent FNAB if they remained persistently febrile. Infected pancreatic necrosis was demonstrated in 27 (71%) of the 38 patients with pancreatic necrosis who were treated by open drainage, with a mortality rate of 15%. All 11 patients with sterile pancreatic necrosis, including six with pulmonary and renal insufficiency, were successfully treated without surgery. On the basis of this and subsequent studies sterile necrosis, should initially be managed non-operatively.

Table 3 Indications for surgical intervention
Absolute
Presence of infected pancreatic necrosis shown by CE-CT or FNAB.
Relative
In a patient with >50% pancreatic necrosis, failure to improve appreciably after 2 - 3 weeks, unexplained deterioration, or a suspicion of infected pancreatic necrosis even in the absence of firm evidence on CE-CT and FNAB.
In a patient with >50% pancreatic necrosis, prolonged illness with an unacceptably slow recovery.

The optimal frequency of CE-CT imaging and FNAB has not been clearly established. In the recent study from Bern, all patients underwent contrast-enhanced CT within 24 to 48 hours of admission and this was repeated weekly in those patients whose clinical condition did not improve. Fine needle aspiration under CT guidance with subsequent microscopy and bacteriological culture was undertaken to rule out infection in patients who developed signs of metabolic disorders, those with deteriorating function of lung, kidney or the cardio circulatory systems and those with persistent leukocytosis or fever (>38.5°C).

A second issue is the treatment of patients with sterile necrosis who remain unwell. In this group surgical intervention has been suggested for patients with persisting or advancing organ complications despite intensive care therapy. In contrast in a recently published single-centre study, pancreatic infection, if confirmed by fine-needle aspiration, was considered an indication for surgery, whereas patients without signs of pancreatic infection were treated medically. Eighty-six (42%) of the patients in this study had necrotizing disease, of which two thirds had sterile necrosis. The death rate was 1.8% (1/56) in patients with sterile necrosis managed without surgery versus 24% (7/29) in patients with infected necrosis ($P<0.01$). Two patients whose infected necrosis was not diagnosed in time died whilst receiving medical treatment. Thus, an intent to treat analysis (non-surgical vs. surgical treatment) produced a death rate of 5% (3/58) with conservative management versus 21% (6/28) with surgery. The authors concluded that non-surgical management, including early antibiotic treatment, should be used in all patients with sterile pancreatic necrosis. In contrast other authors have observed a similar mortality in patients undergoing necrosectomy between those with sterile and those with infected necrosis.

TIMING OF SURGERY

Timing of surgery is critical. Necrosectomy is technically difficult during the first week but becomes progressively easier with time. One controlled trial has addressed the role of early surgery. Forty-one patients with pancreatic necrosis on CT were randomized to early necrosectomy (within 48 to 72 hours of onset) or late necrosectomy (at least 12 days after onset). Both groups continued with open packing and staged necrosectomies. Although the mortality rate (58% versus 27%) did not reach statistical significance, the odds ratio for mortality was 3.4 times higher in the early group and for this reason the study was terminated early. Thus the contemporary management of patients with extensive necrosis involves repeated imaging using contrast-enhanced CT in association with fine needle aspiration for microscopy and bacteriology with immediate surgery if infection is detected.

OPEN NECROSECTION

Necrosectomy has traditionally been undertaken by an open route. Following laparotomy the lesser sac is opened if possible, the colon is mobilised downwards and the pancreas identified. Necrotic pancreas is debrided by blunt finger dissection and wide bore suction drainage. If opening of the lesser sac is not possible, direct access from the infracolic compartment via the left transverse mesocolon (space of Riolan) is an alternative. Adequate debridement is usually achieved with a single visit to theatre. Any associated fluid collections are drained by the most direct route. Large drains and irrigating catheters are left within the retroperitoneal area and continuous irrigation is continued post surgery. The use of open packing with multiple visits to theatre prior to secondary closure over drains has been described but hospitalisation can be significantly reduced by using prolonged lavage rather than pre-planned multiple laparotomies. Mortality rates in recent series are generally between 20%-40%, but may be higher even in specialised centres.

Several developments have led to a reassessment of the role and the extent of surgery in acute pancreatitis. Percutaneous drainage has been advocated as a means of...
treatting pancreatic necrosis[9,57,68]. Unfortunately it is impossible to achieve adequate debridement of solid pancreatic debris by this route except in a minority of cases and it may lead to secondary infection in pancreatic necrosis that is initially sterile. Noninvasive percutaneous drainage has been proposed as a means of treating infected pancreatic necrosis. A major reason for failure however is the variable amounts of infected solid material that cannot be removed. Indeed Paye et al [69] found percutaneous drainage to be largely inadequate requiring surgical intervention in the majority of cases.

In an attempt to reduce the high mortality from surgical necrosectomy less traumatic approaches than open laparotomy have been advocated. Fagniez et al[70] described a retroperitoneal approach for pancreatic necrosectomy through the left flank just anterior to the 12th rib. There was an overall mortality of 33% in 40 patients with severe pancreatic necrosis and 18% in the 22 patients in whom this was the only abdominal procedure performed. Similarly good results have been reported in three other small series[69-71]. Morbidity rates, including colonic fistulae and haemorrhage were, however, high.

Another factor that has led to the re-evaluation of the extent of surgery has been the concept of the two-hit response. This hypothesis states that many patients with a severe attack of acute pancreatitis are primed to mount an inappropriate and exaggerated inflammatory response to a second traumatic challenge[43,49]. Thus a subsequent hit, for example from an open procedure to debride the infected necrotic pancreas, may lead to an overwhelming systemic inflammatory response and death. This would account in part for the continuing high mortality that follows open surgical necrosectomy. Unfortunately patients liable to have such an abnormal response cannot be identified at present although markers of genetic susceptibility are being sought.

A new technique of minimally invasive pancreatic necrosectomy via a left loin approach, analogous to the open technique of Fagniez et al[70] was recently pioneered in Glasgow[69]. The advantages of this technique are two-fold. First the peritoneal cavity is not transgressed, and second, Glasgow[74]. The advantages of this technique are two-fold. A new technique of minimally invasive pancreatic necrosectomy via a left loin approach, analogous to the open technique of Fagniez et al[70] was recently pioneered in Glasgow[69].

REFERENCES

1 McKay CJ, Evans S, Sinclair M, Carter CR, Imrie CW. High early mortality rate from acute pancreatitis in Scotland, 1984-1995. Br J Surg, 1999;86:1302-1305
2 Wilson C, Imrie CW. Changing patterns of incidence and mortality from acute pancreatitis in Scotland, 1961-1985. Br J Surg, 1990;77:731-734
3 Jaakkola M, Nordback I. Pancreatitis in Finland between 1970 and 1989. Gut, 1993;34:1255-1260
4 Halvorsen FA, Ritland C. Acute pancreatitis in Buskerud County, Norway. Incidence and etiology. Scand J Gastroenterol, 1996;31:411-414
5 Appelros S, Borgstrom A. Incidence, aetiology and mortality rate of acute pancreatitis over 10 years in a defined urban population in Sweden. Br J Surg, 1999;86:465-470
6 Eland IA, Strukkenboom MJ, Wilson JH, Stricker BH. Incidence and mortality of acute pancreatitis between 1985 and 1995. Scand J Gastroenterol, 2000;35:1110-1116
7 Ratary M, Ward J, Erdemli G, Vaillant C, Neoptolemos JP, Sutton R, Petersen OH. Calcium-dependent enzyme activation and vacuole formation in the apical granular region of pancreatic acinar cells. Proc Natl Acad Sci USA, 2000;97:13126-13131
8 Wilson PG, Manji M, Neoptolemos JP. Acute pancreatitis as a model of sepsis. J Antimicrob Chem, 1996;41:51-63
9 Bhutta M, Brady M, Shapshay F, Chis. Gut, 1999;48:62-69
10 Johnsson CD, Kingsnorth AN, Imrie CW, McMahon MJ, Neoptolemos JP, Slavin J, Inflammatory mediators in acute pancreatitis. J Pathol, 2000;190:117-125
11 Winslet M, Hall C, London NJ, Neoptolemos JP. Relation of diagnostic serum amylose levels to aetiology and severity of acute pancreatitis. Gut, 1992;33:982-986
12 Imrie CW, Benjamin IS, Ferguson JC, McKay SJ, Makenzie I, O'Neill J, Blumgart LH. A single centre double blind trial of traysolyl therapy in primary acute pancreatitis. Br J Surg, 1978;65:337-341
13 Ranson JH, Rikfnd KM, Roses DF, Fink SD, Eng K, Spencer SC. Prognostic signs and the role of operative management in acute pancreatitis. Surg Gynecol Obstet, 1974;139:69-81
14 Larvin M, McMahon M. APACHE-II score for assessment and monitoring of acute pancreatitis. Lancet, 1989;i:201-205
15 Wilson C, Heads A, Shenkin A, Imrie CW. C-reactive protein, antiproteases and complement factors as objective markers of severity in acute pancreatitis. Br J Surg, 1989;76:177-181
16 United Kingdom guidelines for the management of acute pancreatitis. British Society of Gastroenterology. Gut, 1998;42: S1-13
17 Pizzilli R, Bili P, Miniero R, Fiocchi M, Cappelletti O, Morselli-Labate AM, Barakat B, Sprovieri G, Miglioli M. Serum interleukin-6, interleukin-8, and beta 2 microglobulin in early assessment of severity of acute pancreatitis. Comparison with serum C-reactive protein. Dig Dis Sci, 1995;40:2341-2348
18 Neoptolemos JP, Kemppainen EA, Mayer JM, Fitzpatrick JM, Ratary MG, Slavin J, Beger HG, Hietaranta AJ, Puolakkanen P.A. Early prediction of severity in acute pancreatitis by urinary trypsinogen activation peptide: a multicentre study. Lancet, 2000;355:1953-1960
19 Nordestgaard AG, Wilson SE, Williams RA. Early computerized tomography as a predictor of outcome in acute pancreatitis. Am J Surg, 1986;152:127-132
20 Balthazar EJ, Robinson DL, Megibow AJ, Ranson JH. Acute pancreatitis: value of CT in establishing prognosis. Radiology, 1990;174:331-336
21 London NJ, Neoptolemos JP, Lavelle J, Bailey I, James D. Contrast-enhanced abdominal computed tomography scanning and prediction of severity of acute pancreatitis: a prospective study. Br J Surg, 1989;76:769-773
22 Kivisaari L, Somer K, Standertskjold-Nordenstram CG, Schroder T, Kivilaakso E, Lempinen M. A new method for the diagnosis of acute hemorrhagic-necrotizing pancreatitis using contrast-enhanced CT. Gastrointest Radiol, 1993;18:383-389
23 Block S, Maier W, Bittner R, Büchler M, Malfertheiner P, Beger HG. Identification of pancreas necrosis in severe acute pancreatitis: imaging procedures versus clinical staging. Gut, 1986;27:1035-1042
24 Nuußinen P, Kivisaari L, Schroder T. Contrast-enhanced computed tomography and microangiography of the pancreas in acute human hemorrhagic/necrotizing pancreatitis. Pancreas, 1988;3:53-60
25 Bradley EL, Murphy F, Ferguson C. Prediction of pancreatic necrosis by dynamic pancreaticography. Ann Surg, 1989;210:495-503
26 Rotman N, Bonnet F, Larde D, Fagniez PL. Computerized tomography in the evaluation of the late complications of acute pancreatitis. Am J Surg, 1986;152:286-289
27 Isenmann R, Rau B, Beger HG. Bacterial infection and extent of necrosis are determinants of organ failure in patients with acute necrotizing pancreatitis. Br J Surg, 1999;86:1020-1024
28 Beger HG, Bittner R, Büchler M, Hess W, Schmitz HE. Hemodynamic data pattern in patients with acute pancreatitis. Gastroenterology, 1986;90:74-79
29 Beger HG, Bittner R, Block S, Büchler M. Bacterial contamination of pancreatic necrosis - a prospective clinical study. Gastroenterology, 1986;91:433-438
30 Vesentini S, Bassi C, Talamini G, Cavallini G, Campedelli A, Pedezzoli P. Prospective comparison of C-reactive protein level, Ranson score and early computerized tomography in the prediction of septic complications of acute pancreatitis. Br J Surg, 1993;80:755-757
Enteral nutrition is superior to parenteral nutrition in severe acute pancreatitis: results of a randomized prospective trial. Br J Surg, 1997;84:1665-1669

Windsor AC, Kanwar S, Li AK. Compared with parenteral nutrition, enteral feeding attenuates the acute phase response and improves disease severity in acute pancreatitis. Gut, 1996;42:431-435

Dubiner H, Steinberg W, Chodovary J, Bank S. Injured pancreatic necrosis and peripancreatic fluid collections: serendipitous response to antibiotics and medical therapy in three patients. Pancreas, 1996;12:298-302

van Sonnenberg E, Wittich GR, Chen KS, D’Agostino HB, Casola G, Easter D, Morgan RG, Walser EM, Nealon WH, Goodacre B, Stabile BE. Percutaneous radiologic drainage of pancreatic abscesses. Am J Roentgenol, 1997;168:979-984

Freyen PC, Hauptmann E, Althaus SJ, Traverso LW, Sinanan M. Percutaneous CT-guided catheter drainage of infected acute necrotizing pancreatitis: techniques and results. Am J Surg, 1998;170:969-975

Bradley EL, Allen K. A prospective longitudinal study of observation versus surgical intervention in the management of necrotizing pancreatitis. Am J Surg, 1991;161:19-24

Rau B, Pralle U, Uhl W, Schoenher MH, Beger HG. Management of sterile necrosis in instances of severe acute pancreatitis. Ann Surg, 1993;217:688

Fernandez-del-Castillo C, Rattner DW, Makary MA, Mostafavi A, McGrath D, Warshaw AL. Debridement and closed packing for the treatment of necrotizing pancreatitis. Ann Surg, 1998;228:556-564

Mier J, Leon EL, Castillo A, Robledo F, Blanco R. Early versus late necrosectomy in severe necrotizing pancreatitis. Am J Surg, 1997;173:71-75

Beger HG, Buhler M, Bittner R, Block S, Revalainen T, Roscher R. Necrosectomy and postoperative local lavage in necrotizing pancreatitis. Br J Surg, 1988;75:207-212

Fugger R, Schulz F, Rögy M, Herbst F, Mirza D, Fritsch A. Open approach in pancreatic and infected necrotizing pancreatitis: laparotomies and preplanned revisions. World J Surg, 1991;15:516-520

Neoptolemos JP, London NJ, Carr-Loke DL. Assessment of main pancreatic duct integrity by endoscopic retrograde pancreatography in patients with acute pancreatitis. Br J Surg, 1993;80:94-99

Bradley EL. A fifteen year experience with open drainage for infected necrotizing pancreatitis. Surg Gynecol Obstet, 1993;177:215-222

Branum G, Galloway J, Hirschowitz W, Fendley M, Hunter J. Pancreatic necrosis: results of necrosectomy, packing, and ultimate closure over drains. Ann Surg, 1998;227:870-877

Tsiotos GG, Luque-de-Leon E, Soreide JA, Bannon MP, Zietlow SP, Baerga-Varela Y, Sarr MG. Management of necrotizing pancreatitis by repeated operative necrosectomy using a zipper technique. Am J Surg, 1998;176:755-761

Echenique AM, Sleenman D, Yirazary J, Scagnelli G, Guerra JR, Jr., Casillas VJ, Huson H, Russell E. Percutaneous cather-directed debridement of infected necrotic pancreas: results in five patients. Radiology, 1998;203:565-571

Paye F, Rotman N, Radier C, Nouira R, Fagniez PL. Percutaneous aspiration for bacteriologic studies in patients with necrotizing pancreatitis. Br J Surg, 1998;85:755-759

Fagniez PL, Rotman N, Krach M. Direct retroperitoneal approach to necrosis in severe acute pancreatitis. Br J Surg, 1989;76:264-267

Villazon A, Villazon O, Terrazas F, Rana R. Retroperitoneal drainage in the management of the septic phase of severe acute pancreatitis. World J Surg, 1991;15:103-107

van Vyve EL, Reynaert MS, Lengele BG, Pringot JT, Otte JB, van Sonnenberg E. Management of infected pancreatic necrosis. Pancreas, 1996;26:2010-2015

Kestens PJ. Retroperitoneal laparotomy: a surgical treatment approach to necrosis in severe acute pancreatitis. Br J Surg, 1989;76:264-267