Simulation of edge localized modes using BOUT++

B D Dudson¹, X Q Xu², M V Umansky², H R Wilson¹ and P B Snyder³

¹ York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD, UK
² Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
³ General Atomics, San Diego, CA 92186, USA

E-mail: benjamin.dudson@york.ac.uk

Received 7 September 2010, in final form 6 December 2010
Published 7 April 2011
Online at stacks.iop.org/PPCF/53/054005

Abstract

The BOUT++ code is used to simulate edge localized modes (ELMs) in a shifted circle equilibrium. Reduced ideal MHD simulations are first benchmarked against the linear ideal MHD code ELITE, showing good agreement. Diamagnetic drift effects are included finding the expected suppression of high toroidal mode-number modes. Nonlinear simulations are performed, making the assumption that the anomalous kinematic electron viscosity is comparable to the anomalous electron thermal diffusivity. This allows simulations with realistically high Lundquist numbers ($\mathcal{S} = 10^8$), finding ELM sizes of 5–10% of the pedestal stored thermal energy. Scans show a strong dependence of the ELM size on resistivity at low Lundquist numbers, with higher resistivity leading to more violent eruptions. At high Lundquist numbers relevant to high-performance discharges, ELM size is independent of resistivity as hyper-resistivity becomes the dominant dissipative effect.

1. Introduction

Future tokamak devices such as ITER and DEMO require high-performance plasma operation in order to demonstrate economical fusion performance. For this reason, discharges with a transport barrier close to the plasma edge (H-mode [1]) are the current baseline operating scenario for ITER [2]. Whilst transport barriers at the plasma edge result in improved performance, the steep pressure gradients and associated bootstrap current can destabilize peeling–ballooning modes [3]. These ideal MHD instabilities are thought to be responsible for triggering the observed eruptions of filamentary structures from the plasma edge known as edge localized modes (ELMs). The particles and energy released during ELMs are deposited on material surfaces and are potentially damaging in future devices. There is therefore interest in understanding and controlling these events.

Understanding of the linear onset and structure of peeling–ballooning modes is now quite well developed, with codes such as ELITE [3, 4], GATO [5] and MISHKA [6, 7] able to predict
experimental operating limits [3, 8, 9]. Study of the nonlinear evolution of these instabilities is more challenging, and although there are analytic theories [10–12] for the early nonlinear evolution, it is not yet fully understood how this develops into the filamentary structures observed, and ultimately how particles and energy are lost.

Several 3D nonlinear codes have been used to simulate ELMs, including NIMROD [13–16], BOUT [17, 18], JOREK [19–21], GEM [22, 23], M3D [24–26] and M3D-C1 [27]. These codes incorporate a wide range of physics including (in the case of BOUT and some NIMROD simulations) 2-fluid effects. In this paper, simulations of ELMs using the BOUT++ code [28] based on modified reduced MHD in a shifted circle equilibrium are presented, expanding on and extending results presented in [29]. By introducing a hyper-resistive term into Ohm’s law, realistic resistivities have been simulated, and the effect of varying resistivity on ELM sizes has been investigated. In this paper a constant resistivity profile is used, which reduces the number of variable parameters and simplifies interpretation of the results. Extending this to realistic resistivity profiles is the subject of ongoing work.

Section 2 describes the starting set of equations used for comparison with linear ideal MHD, and the equilibrium simulated is described in section 3. A novel means to handle the vacuum region which has been found to work well in ideal or resistive MHD simulations is described in section 2.1. Linear simulations are benchmarked against linear ideal MHD codes in section 4, and nonlinear simulations of ideal reduced MHD and the issues encountered are discussed in section 5. By incorporating diamagnetic drift and either high resistivity or a hyper-resistivity, simulations of nonlinear eruptions are performed and discussed in sections 6 and 7, respectively. The effect of varying resistivity on ELM crash size is then discussed in more detail in section 8. Details of the magnetic field structure are presented in section 9, indicating a reconnection of flux surfaces at the leading edges of the erupting filaments.

2. Model equations

In this paper, the starting equations are those of high-\(\beta\) reduced MHD [30], evolving pressure \(P\), vorticity \(U\) and magnetic potential \(\psi = A_{||}/B_0\):

\[
\rho \frac{dU}{dt} = B^2 b \cdot \nabla \left(\frac{J_{||}}{B} \right) + 2b_0 \times \kappa_0 \cdot \nabla P \tag{1}
\]

\[
\frac{\partial \psi}{\partial t} = -\frac{1}{B_0} \nabla_{||} \phi \tag{2}
\]

\[
\frac{\partial P}{\partial t} = -\frac{1}{B_0} b_0 \times \nabla \phi \cdot \nabla P \tag{3}
\]

\[
U = \frac{1}{B_0} \nabla^2 \phi \tag{4}
\]

\[
J_{||} = J_{||0} - \frac{1}{\mu_0} B_0 \nabla^2 \psi \tag{5}
\]

where \(\nabla_{||} F = B \partial_{||}(F/B)\) for any \(F\), \(\partial_{||} = (b_0 + b_1) \cdot \nabla\). \(b = B/B_0\). The plasma density is constant in space and time, fixed at \(10^{19} \text{ m}^{-3}\). The perturbed magnetic field is given by \(B_1 = \nabla \psi \times B_0\) where \(B_0\) is the unperturbed field. \(\kappa_0 = b_0 \cdot \nabla b_0\) is the field curvature and all quantities are in SI units. The vorticity equation (1) includes the kink/peeling term through the perturbed magnetic field:

\[
b \cdot \nabla \left(\frac{J_{||}}{B_0} \right) = (b_0 \cdot \nabla - b_0 \cdot \nabla \psi \times \nabla) \left(\frac{J_{||}}{B_0} \right).
\]
This minimal set of equations contains the basic physics needed to describe peeling–ballooning modes, including pressure/curvature and parallel current (kink/peeling) instability drives, and field-line bending stabilization. The model is a useful starting point because it allows benchmarking against linear ideal MHD codes such as ELITE, providing a valuable means of checking the results of these simulations.

In the pedestal with steep pressure gradients diamagnetic effects are expected to be significant, and damp high toroidal mode number, \(n \), instabilities which can lead to problems in ideal MHD simulations (see section 5). Therefore, the set of equations (1)–(5) is modified in section 6 to include the diamagnetic drift.

Dirichlet (zero value) boundary conditions are used for the perturbed pressure, vorticity and parallel current. To be consistent, the boundary conditions for \(\psi \) and \(\phi \) must satisfy \(\nabla_{\perp}^2 \psi = 0 \) and \(\nabla_{\perp}^2 \phi = 0 \). This is done by solving for each toroidal mode-number which have solutions

\[
\hat{\phi}_n \approx C_+ \exp\left(\sqrt{\frac{g_{\xi\xi}}{g_{\psi\psi}} k_\xi x}\right) + C_- \exp\left(-\sqrt{\frac{g_{\xi\xi}}{g_{\psi\psi}} k_\xi x}\right)
\]

where \(\xi \) is the toroidal angle, \(k_\xi = n/R \) and \(x \) is the radial (\(\psi \)) coordinate. Only solutions which decay going out of the domain are allowed, so \(C_+ = 0 \) on the outer boundary, and \(C_- = 0 \) on the inner boundary.

2.1. Vacuum region

A complication of simulating the plasma edge region is the handling of the vacuum region, and the plasma–vacuum interface. In linear codes such as ELITE an analytical approach can be used; nonlinear codes must also handle motion of the vacuum interface. The usual approach has been to treat the vacuum as a resistive plasma, with a jump in resistivity between plasma and vacuum [16]. Here a different approach is used: in the vacuum we evolve \(\psi \) towards a self-consistent solution determined by currents in the core only. The procedure is as follows.

First define a smoothed step function \(\Theta \), which switches between 0 in the core to 1 in the vacuum:

\[
\Theta = \frac{1}{2} \left[1 - \tanh \left(\frac{P - P_{\text{int}}}{\Delta P_{\text{int}}} \right) \right]
\]

where \(P_{\text{int}} > P_{\text{vac}} \) is the pressure at the plasma–vacuum interface, and \(\Delta P_{\text{int}} < P_{\text{int}} \) is the transition width. At any given time, the solution \(\psi(x, t) \) gives a current \(J_{\|}^{\text{sol}} \) which may or may not include currents in the vacuum region. From this, a ‘target’ current \(J_{\|}^{\text{target}} \) is calculated by setting all vacuum currents to zero

\[
J_{\|}^{\text{target}} = J_{\|}^{\text{sol}} (1 - \Theta).
\]

This is the closest physically acceptable solution to the current result. From this, a target \(\psi \) can be calculated

\[
\psi_{\text{target}} = \nabla^{-2} (\mu_0 J_{\|}^{\text{target}} / B_0).
\]

In the vacuum region, this is the solution which would give zero current, but simply setting \(\psi \) to this value in the vacuum would result in an inconsistency because \(\psi \) in the core is affected by currents in the vacuum. Instead, equation (2) is modified to

\[
\frac{\partial \psi}{\partial t} = -(1 - \Theta) \frac{1}{B_0} \nabla_{\|} \phi + \Theta (\psi_{\text{target}} - \psi) / \tau_{j\text{vac}}.
\]

and so \(\psi \) converges on the target value with a small time-constant \(\tau_{j\text{vac}} \). \(\psi \) therefore evolves to a self-consistent state with zero current in the vacuum region.
This method has been found to work well for ideal and resistive simulations, even in the nonlinear regime. It is useful because this method uses the same code already used for solving the reduced MHD model with minimal modifications. At this point this method does not work once diamagnetic effects are included and so is not used in the nonlinear results presented in sections 6 and 7.

3. Equilibrium

Simulation of ELMs in full x-point geometry is necessary in order to predict the behaviour of ELMs in future devices. As a starting point, however, it is useful to use equilibria which remove many of the complications of real magnetic geometry: this simplifies study of the basic physics of ELMs, but more importantly enables accurate benchmarking of the results against linear theory and other codes.

A test case which is becoming standard in this field is the cbm18 series, created by Snyder using the TOQ equilibrium code. The case used here cbm18_dens8 has now been used by NIMROD [16] and M3D-c1 [27] to benchmark linear growth rates against the ELITE [3, 4] and GATO [5] linear MHD stability codes. The pressure and current profiles are shown in figure 1(a) over the range of normalized ψ simulated using BOUT++ ($0.4 < \psi_n < 1.2$). The definition of the plasma edge is somewhat arbitrary since here there are no separatrices, and so $\psi_n = 1$ is defined as the point where the equilibrium plasma pressure gradient falls to zero. For this equilibrium, the normalized beta is $\beta_N = 1.51$, edge $q_a = 3.03$, pedestal toroidal pressure $\beta_0 = 1.9 \times 10^{-2}$ and normalized pedestal width is $L_{ped}/a = 0.049$.

The mesh used for the simulations in this paper is shown in figure 1(b). This has a resolution of 512 points in radial coordinate ψ and 64 in poloidal coordinate θ. In the toroidal direction 64 points are usually used, with the results checked by doubling this to 128. Note that despite this relatively low resolution in θ, high m numbers can be simulated. This is because the field-aligned coordinate system

$$ x = \psi - \psi_0 \quad y = \theta \quad z = \phi - \int_{\theta_0}^{\theta} v(\psi, \theta) \, d\theta $$

(where $v(\psi, \theta)$ is the field-line pitch) means that the θ direction is aligned with the magnetic field and so $n_0 = 64$ is therefore the number of points along a field-line per poloidal turn.
The effective poloidal resolution depends on the toroidal resolution (number of field-lines simulated \(\times \) number of repetitions in a full torus) and the local safety factor \(q \sim q_a = 3.03 \), and so is \(\geq 3 \times 64 \times 5 = 960 \) for the simulations shown here.

In order to avoid problems associated with magnetic shear and deformation of grid cells associated with field-aligned coordinate systems, shifted local coordinate systems [31, 32] are used so that the radial derivative is always taken in \(\psi \). Further details of this coordinate system and its implementation in BOUT++ can be found in [28].

4. Linear benchmarking

In order to benchmark BOUT++, linear simulations have been performed and comparison made to the ELITE [3, 4] and GATO [5] linear ideal MHD codes. Figure 2 shows the linear growth rate from BOUT++ for this equilibrium (star symbols), along with the results from ELITE (open circles) and GATO (filled squares). All growth rates are normalized to an Alfvén frequency \(\omega_A = V_A/R \), with \(V_A \) the Alfvén velocity and \(R \) the major radius. For all the simulations presented in this paper, a reference density of \(10^{19} \) m\(^{-3} \) was used, so that time is normalized to \(\tau_A = 0.37 \mu\)s.

At high \(n \), the BOUT++ result begins to deviate from the ELITE result, whereas it might be expected that finite-\(n \) corrections would lead to the greatest differences being at low \(n \). The reason for this is that as the mode number \(n \) is increased the radial width of the mode becomes narrower: since these simulations all used the same radial resolution, at high \(n \) small-scale structures can no longer be resolved properly. The mode structure of the radial displacement \(\xi_0 \) from ELITE and BOUT++ has also been compared [28], finding good agreement. Individual \((m, n)\) modes are found to peak close to their resonant magnetic surfaces, as is expected from analytic theory. This test is a proof-of-principle which demonstrates that BOUT++ is capable of simulating the ideal ballooning mode correctly using ideal reduced MHD. Linear benchmarks are a necessary but not sufficient condition for nonlinear results: comparisons against other nonlinear codes and ultimately experimental results are needed to verify the fidelity of nonlinear results.

5. Nonlinear ideal MHD

In ideal MHD linear simulations, peaks in the parallel current form at rational \(q \) surfaces. The width of these current sheets is of the order of the distance between rational surfaces \(\Delta_q \sim r/nqs \approx 6 \) mm, which can be resolved in the linear regime since when using 512 radial points across the pedestal the grid spacing is \(\sim 1.1 \) mm. Linear codes such as ELITE and MARS [33] typically pack mesh-points around rational surfaces to handle these features, but this becomes much more challenging in the nonlinear regime: flux surfaces move over time, current sheets can be compressed so reducing scale lengths, and any adaptive scheme will struggle to handle highly nonlinear regimes where flux surfaces may be destroyed.

Nonlinear simulations of ideal MHD have been attempted using BOUT++, but as yet without success: as flux surfaces are distorted, small-scale structures are generated in the binormal direction which corresponds to the generation of high toroidal mode numbers. The size of the structures formed in the toroidal direction is approximately given by rotating the radial scales in the perpendicular plane, and projecting in the toroidal direction which gives \(L_\zeta \approx \Delta B_\zeta/B_\theta \sim 5 \) cm and so a maximum toroidal mode number of \(n_{\text{max}} \sim 600 \).
Figure 2. Linear growth rate of a strongly ballooning test case, as calculated by BOUT++ and the linear ideal MHD codes ELITE and GATO.

A second source of high-\(k\) structures and hence numerical problems is that the modes with the highest growth rate are those with the highest \(n\) (i.e. those at the grid scale). Any perturbation at high \(n\) will therefore rapidly grow and eventually dominate the solution.

Handling small-scale structures is a problem in many nonlinear simulations, and if possible then these should be resolved. In practice, however, it is often necessary to add some sort of numerical dissipation to remove structures at the grid scales. Several approaches are commonly used to achieve this. For example the solution can be filtered in Fourier space (so only the low-\(n\) modes are simulated) or a hyper-diffusion like term can be added. Whichever method is used, it should be chosen to minimize the impact on the large-scale structures of interest.

Tokamak simulations have the advantage that Larmor radius effects should naturally damp high-\(k\) structures. Adding \(\rho_i\) effects such as diamagnetic drifts both make the simulation more realistic and also aid numerical stability by damping high-\(k\) structures. In this paper, nonlinear simulations are performed by first adding diamagnetic drift and following the common practice of incorporating a high resistivity in section 6, before introducing a hyper-resistive term in section 7.

6. Diamagnetic and resistive simulations

For these initial nonlinear simulations, the basic effects of diamagnetic stabilization are incorporated into the model by modifying the vorticity (4) so that the total plasma velocity is now given by the sum of \(E \times B\) and diamagnetic drifts.

\[V \approx V_E + V_D = \frac{1}{B^2} B \times \nabla \phi + \frac{1}{enB^2} B \times \nabla P. \]

Hence assuming constant mass density \(n\), this gives

\[U = \frac{1}{B} \nabla^2 \left(\phi + \frac{P}{en} \right). \]

(7)

In this simplified model, both equilibrium and turbulent zonal \((m = n = 0)\) flows have been set to zero: \(V_{E0} + V_{D0} = 0\) and toroidally averaged \(\delta V_E + \delta V_D = 0\). The equilibrium radial electric field is therefore given by \(E_{r0} = (1/n_0 Z_i e) \nabla_r P_{i0}\) (with \(P_{i0} = P_0/2\) and
perturbed radial electric field \(\langle E_r \rangle = (1/n_0 Z_i e) \nabla \langle P_i \rangle \). Recent work \cite{20, 21, 34} indicates that the nonlinear formation of zonal flows results in multiple filaments breaking off from the plasma, but investigation of this effect is beyond the scope of this paper and the subject of future work.

At realistic resistivities of \(S \sim 10^8 \), the scale of the current sheets is limited by resistivity to approximately \(\Delta R \simeq R \sqrt{(\omega_A/\gamma)/S} \sim 10–100 \mu m \), of the same order as the electron gyro-radius. The radial grid spacing in these simulations \(\Delta \psi \simeq 1 \text{ mm} \), and so to limit the smallest scales to these sizes a highly increased resistivity of \(S = 10^4 \) is used, constant in space.

Diamagnetic drift and high resistivity produce the linear growth rates shown in figure 3. High resistivity results in an increase in growth rate above the ideal MHD case (open circles), whilst high-\(n \) modes are suppressed by diamagnetic drift effects in line with theoretical expectations. The peak growth rate now occurs at \(n = 15 \), and so this toroidal mode number is used as a starting point for the nonlinear results shown in figure 4. Figure 4(a) shows the plasma displacement, measured by finding where the pressure crosses a threshold. Outward displacement is shown as a solid line, and inward displacement as a dashed line: these are approximately equal in the linear regime (as expected since mode goes like \(\exp(i n \zeta) \)), but begin to diverge once the displacement exceeds \(\sim 1–2 \text{ cm} \) with the outgoing filament growth rate reducing whilst the ingoing hole continues to grow at the linear rate.

Figure 4(b) shows the pressure profiles averaged over (equilibrium) flux surfaces at the times indicated by vertical lines in figure 4(a). This shows that this eruption propagates far into the plasma beyond the steep pressure-gradient region (shown in the \(t = 0 \) equilibrium profile in figure 4(b)), and in figure 1(a)).

To quantify the size of the ELM eruption, and provide a measure which can be compared against typical experimentally measured ELM sizes, the thermal energy from the inner edge of the domain \((R = 4.2 \text{ m} \) at the outboard mid-plane) to \(R = 4.6 \text{ m} \) (vertical line in figure 4(b)) \(W_{ped} = \int 3P/2dV \) is used. The fraction of this energy lost during the ELM crash \(\Delta W_{ped}/W_{ped} \) is shown in figure 4(c). For this highly resistive case, approximately 30% of the thermal energy in the pedestal is lost, limited by the radial size of the computational domain.
Diamagnetic and hyper-resistive simulations

Using high resistivities to damp small-scale structures and maintain numerical stability in the nonlinear regime results in highly increased growth rates, modified stability thresholds and large eruptions which propagate far into the plasma.

An alternative effect which damps high-k structures whilst minimizing the effect on large-scale structures is hyper-resistivity \([29, 35, 36]\): the parallel electric field equation for \(\psi = A_0 / B_0\) is modified to

\[
\frac{\partial \psi}{\partial t} = -\frac{1}{B_0} \nabla || \phi + \frac{1}{\mu_0} \nabla_\perp \psi + \frac{\eta_{\text{H}}}{\mu_0} \nabla_\perp^4 \psi
\]

where \(\eta_{\text{H}}\) is a hyper-resistivity. The hyper-Lundquist number is then defined analogously to the Lundquist number as the dimensionless ratio of an Alfvén wave crossing time to a hyper-diffusion timescale. \(S_{\text{H}} = \alpha_{\text{H}} R_0^4 v_A / \eta_{\text{H}} = S / \alpha_{\text{H}}\). The hyper-Lundquist parameter \(\alpha_{\text{H}} = \eta_{\text{H}} / R^2 v_{\text{ei}}\) can be estimated from electron collisional viscosity \([29]\) as \(\alpha_{\text{H}} \approx \mu_e / R^2 v_{\text{ei}}\) if it is assumed that the electron viscosity \(\mu_e\) is comparable to the anomalous electron thermal diffusivity \(\chi_e \approx 1 \text{ m}^2 \text{s}^{-1}\). Taking a value of \(v_{\text{ei}} \approx 10^5 \text{s}^{-1}\) gives \(\alpha_{\text{H}} \approx 10^{-4} - 10^{-6}\) for \(R \approx 3 \text{ m}\).

Taking \(S = 10^8\) and \(S_{\text{H}} = 10^{12}\), the perpendicular scale length of the parallel current can be estimated this time by balancing \(\partial \psi / \partial t\) against the hyper-resistive term. This gives
\[\Delta_H \simeq R \omega_A / \gamma S_H^{1/4} \simeq 2 \text{ mm}, \] which is of the order of the radial grid spacing \(\Delta \psi \simeq 1.1 \text{ mm}, \) and an order of magnitude larger than was the case with only resistivity included. By including this hyper-resistive effect, realistic resistivities of \(S \sim 10^8 \) can be simulated.

Linear growth rates are shown in figure 5, with the ideal MHD and resistive (figure 3) results for comparison. Growth rates are below the ideal MHD case, stabilized at high \(n \) by diamagnetic drifts as expected, and recover the low-\(n \) ideal MHD growth rates. This is encouraging and an improvement on the resistive case where enhanced growth rates were found.

Nonlinear simulation results are shown in figure 6 using \(S = 10^8 \) and \(S_H = 10^{12} \), with the same plots as in figure 4. As with the resistive case, figure 6(a) shows that the growth rate approximately follows the linear growth rate until a displacement of approximately 1–2 cm (up to \(t \simeq 75 \tau_A \)) at which point the growth rate of the plasma displacement slows and the profiles relax.

A striking difference between this low-resistivity case and the resistive case presented in section 6 is that the eruption no longer penetrates far into the core. Instead, after a fast initial stage the profiles relax on timescales of tens of \(\tau_A \) as shown in figure 6(b) where the surface-averaged pressure profiles are plotted for the times indicated as vertical lines in figure 6(a).

High resolution Thomson scattering (HRTS) measurements, e.g. [37, 38], provide a good means to test the results of ELM simulations. Simulated plasma profiles, either local measurements or the surface averages shown in figure 6(b), can be qualitatively compared with those from experiment. Direct quantitative comparison requires simulation of experimental scenarios and will be the subject of future publications.

The ELM loss \(\Delta W_{\text{ped}} / W_{\text{ped}} \) is plotted as a function of time in figure 6(c) which shows a loss of \(\sim 6\% \) of the pedestal thermal energy (with a continuing slow relaxation of the profiles). Most of this is due to convective losses in the initial fast stage of the eruption as filaments are ejected from the plasma. After \(t \sim 70 \tau_A \), filaments begin to break up so that some material briefly moves back into the pedestal region (defined by vertical line in figure 4(b)) and the measured plasma loss falls before rising again.

Note that the simplified model used here does not include parallel heat conduction, and so only convective losses are captured. Convective losses are thought to be important in \(x \)-point simulations where open field-lines can quickly transport away heat, but will probably not play such a key role in these circular ‘limiter’ plasmas without open field-lines.
Figure 6. Nonlinear simulation results with diamagnetic drift, $S = 10^8$ and $S_H = 10^{12}$.

8. Effect of resistivity on ELM size

The size of the ELM eruption varies dramatically between the high- and low-resistivity cases (figures 4 and 6, respectively). The transition between these cases is shown in figure 7 which plots the ELM loss fraction $\Delta W_{ped}/W_{ped}$ as a function of the Lundquist number for a fixed $S_H = 10^{12}$. As the Lundquist number is increased, the loss of thermal energy during the ELM (open circles in figure 7) is seen to drop from $\sim 30\%$ to $\sim 6\%$ over a range of $S = 10^5$–10^7. One explanation for the more violent eruptions at high resistivity is the increased linear growth rate: also plotted in figure 7 (crosses) is the linear growth rate of the $n = 15$ mode, which also shows an increase over a similar range of Lundquist number.

Since there is little change in the linear growth rate between $S = 10^6$ and $S = 10^7$, whilst ELM size changes by a factor of ~ 2, the process which determines ELM loss may be a nonlinear phenomenon related to dissipation at the smallest scales. The point at which the resistivity starts to dominate over the hyper-resistivity ($\Delta_R = \Delta_H$) is given by $S = \sqrt{S_H \omega_A / \gamma} \sim 2 \times 10^6$. Increasing the Lundquist number above 10^6 therefore has little effect on the ELM size $\Delta W_{ped}/W_{ped}$ because hyper-resistivity is the dominant dissipative effect. This may then imply that in high Lundquist number regimes relevant to high-performance discharges, the (convective) ELM loss is determined by the hyper-resistive dissipation rather than the resistivity.
9. Magnetic field structure

In order to understand the ELM eruption in the low-resistivity case (figure 6), Poincaré (puncture) plots of the magnetic field structure have been produced and compared against the pressure contours. Figure 8 shows the (normalized) pressure $2\mu_0 p/B^2$ at the outboard mid-plane as a function of ψ and toroidal angle ξ for $t = 60\tau_A$ and $t = 70\tau_A$. On top of these are plotted a puncture plot of the magnetic field showing the field structure at these two times. Up to $t \sim 60 - 65\tau_A$, the magnetic field surfaces follow pressure isosurfaces (frozen-in condition), and the growth rate remains approximately the same as the linear mode (figure 6(a)). During this period, the leading edge of the erupting filaments steepens. This forces flux surfaces closer together at the tips of the filaments, reducing perpendicular scale lengths and increasing the importance of (hyper-)resistivity. Eventually, the flux surfaces break and the magnetic field becomes disordered. After this time ($t \simeq 65\tau_A$), the eruption growth rate falls and the profiles begin to relax on a slower timescale.

10. Conclusions

Simulations of edge localized modes (ELMs) have been performed using the BOUT++ simulation code [28] for a shifted circle equilibrium (cbm18dens8). The linear structure and growth rates of the unstable ballooning modes have been benchmarked without diamagnetic effects against the linear ideal MHD codes ELITE and GATO showing good agreement. By incorporating diamagnetic drift and hyper-resistivity, the scale length of $J_{||}$ structures can be resolved, allowing nonlinear simulations with resistivities relevant to high-performance H-mode tokamak edge plasmas. These show reasonable ELM losses of $\sim 6\%$ of the pedestal thermal energy, with a limited radial extent, in contrast to simulations with enhanced resistivities.

Results at high Lundquist number indicate that eruptions consist of two stages: a fast emergence of plasma ‘fingers’ at approximately the linear growth rate (figure 6(a)), during which time the frozen-in condition is obeyed (figure 8(a)). This eruption results in a steepening of the pressure profile at the tips of the plasma fingers, forcing flux surfaces closer together and
steepening local pressure gradients. Once the fingers have emerged \(\sim 1\text{–}2 \text{ cm} \), reconnection occurs at these high-gradient regions, the growth rate is reduced and filaments begin to break up as the plasma profiles relax (figure 6(b)). Figure 8(b) suggests some degree of stochasticity caused by the ELM. Note, however, that these simulations do not include the thermoelectric currents which have been postulated [39] to cause stochasticity during the ELM crash. Definitive identification of stochasticity requires very careful testing and benchmarking as it is highly sensitive to numerical error and noise. Further study will aim to shed more light on this issue.

Experimentally, it is found that the ELM size \(\Delta W_{\text{ped}}/W_{\text{ped}} \) decreases as collisionality \(\nu^* \) is increased [2, 40]. The results presented in figure 7 indicate the opposite trend at low Lundquist numbers, with the size of ELM eruptions increasing with collisionality given the same starting pressure and \(J_b \) profiles. At high Lundquist numbers (i.e. low \(\nu^* \)) relevant to H-mode pedestals, ELM size has been found to be quite insensitive to Lundquist number, with dissipation dominated by hyper-resistivity. The variation of hyper-resistivity with collisionality is, however, not well known. Assuming a constant electron viscosity \(\mu_e \approx 1 \text{ m}^2 \text{s}^{-1} \) gives \(\alpha_H \propto 1/\nu^* \), and so \(S_H \sim \text{const} \) (since \(S \propto 1/\nu^* \)). This may imply that convective ELM losses are approximately constant with collisionality, and that the observed variation of ELM loss with \(\nu^* \) is due to another process such as increasing parallel conductive losses at low collisionality.

A important consideration when interpreting the results presented here is that in these simulations, variation in H-mode pedestal characteristics or bootstrap current with collisionality has not been included, though in practice all these things would vary and change the point at which an ELM is triggered. Predictions of ELM size in future devices depend on a model of the H-mode pedestal from which to start a nonlinear ELM simulation, either coupling kinetic and fluid models such as work coupling XGC0 to M3D [41]. Other possibilities include using a semi-heuristic model such as EPED1 [42] to provide input to a starting equilibrium.

Further work includes the incorporation of parallel heat conduction effects in order to study the conductive losses in conjunction with the convective losses studied here. As mentioned in section 6, nonlinear generation of poloidal flows has been found to be important in breaking off ELM filaments [20, 21] and so incorporation of these effects into BOUT++ simulations is a priority.
Acknowledgments

This work was supported by the UK Engineering and Physical Sciences Research Council under grant EP/H012605/1, the US DOE by LLNL under Contract DE-AC52-07NA27344, grant DE-FG03-95ER54309 at General Atomics, EFDA Activity WP09-MHD-04/01, and computing time through EFDA-DEISA. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The authors wish to thank P H Diamond for pointing out the role of hyper-resistivity in Ohm’s law.

References

[1] Keilhacker M et al 1984 Plasma Phys. Control. Fusion 26 49
[2] Doyle E J et al 2008 22nd IAEA Fusion Energy Conf. (Geneva, Switzerland)
[3] Snyder P B et al 2002 Phys. Plasmas 9 2037
[4] Wilson H R et al 2002 Phys. Plasmas 9 1277
[5] Bernard L C, Helton F J and Moore R W 1981 Comput. Phys. Commun. 24 377–80
[6] Mikhailovskii A B et al 1997 Plasma Phys. Rep. 23 844
[7] Chapman I T et al 2006 Phys. Plasmas 13 062511
[8] Hegna C C, Connor J W, Hastie R J and Wilson H R 1996 Phys. Plasmas 3 584
[9] Connor J W, Hastie R J, Wilson H R and Miller R L 1998 Phys. Plasmas 5 2687
[10] Wilson H R and Cowley S C 2004 Phys. Rev. Lett. 92 175006
[11] Zhu P, Hegna C C and Sovinec C R 2006 Phys. Plasmas 13 062511
[12] Zhu P et al 2007 Phys. Plasmas 14 055903
[13] Sovinec C R et al 2004 J. Comput. Phys. 195 355–86
[14] Brennan D P et al 2006 J. Phys.: Conf. Ser. 46 63–72
[15] Pankin A Y et al 2007 Plasma Phys. Control. Fusion 49 S63–S75
[16] Burke B J et al 2010 Phys. Plasmas 17 032103
[17] Snyder P B, Wilson H R and Xu X Q 2006 Phys. Plasmas 12 056115
[18] Snyder P B, Wilson H R and Xu X Q 2006 Nonlinear 3D simulations of ELMs with the BOUT code Fluid Modelling of ELMs Workshop (Boulder, CO, USA, 25 January 2006)
[19] Huysmans G T A and Czarny O 2007 Nucl. Fusion 47 659–66
[20] Huysmans G T A et al 2009 Plasma Phys. Control. Fusion 51 124012
[21] Pamela S, Huysmans G and Benkadda S 2010 Plasma Phys. Control. Fusion 52 075006
[22] Scott B 2005 Phys. Plasmas 12 102307
[23] Scott B 2006 Plasma Phys. Control. Fusion 48 A387
[24] Park W et al 1999 Phys. Plasmas 6 1796
[25] Sugiyama L E et al 2006 APS Meeting (Philadelphia, PA, USA, October 2006)
[26] Sugiyama L E and the M3D team 2009 J. Phys.: Conf. Ser. 180 012060
[27] Ferraro N M et al 2009 51st APS Meeting (Atlanta, GA, USA, November 2009)
[28] Dudson B D et al 2009 Comput. Phys. Commun. 180 1467–80
[29] Xu Q et al 2010 Phys. Rev. Lett. 105 175005
[30] Hazeltine R D and Meiss J D 2003 Plasma Confinement (New York: Dover)
[31] Dimits A M 1993 Phys. Rev. E 48 4070–9
[32] Scott B D 2002 New J. Phys. 4 52.1–52.30
[33] Bondeson A, Vlad G and Lutjens H 1992 Phys. Fluids B 4 1889
[34] Strauss H R et al 1995 Phys. Plasmas 2 1229
[35] Kaw P K et al 1979 Phys. Rev. Lett. 43 1398
[36] Caunt S E and Korpi M J 2001 Astron. Astrophys. 369 706–28 arXiv:astro-ph/0102068
[37] Scammell R et al 2007 Plasma Phys. Control. Fusion 49 1431
[38] Kirk A et al 2005 Plasma Phys. Control. Fusion 47 315–33
[39] Evans T E et al 2009 J. Nucl. Mater. 390-391 789–92
[40] Loarte A et al 2003 Plasma Phys. Control. Fusion 45 154969
[41] Park G et al 2007 J. Phys.: Conf. Ser. 78 012087
[42] Snyder P B et al 2009 Nucl. Fusion 49 085035