TECHNICAL REPORT

CMV viral load in bronchoalveolar lavage for diagnosis of pneumonia in allogeneic hematopoietic stem cell transplantation

L Iglesias¹, MM Perera², L Torres-Miñana² and MJ Pena-López¹

The objective of this report is to analyze the value of CMV viral load (VL) in bronchoalveolar lavage (BAL) in recipients of allogeneic hematopoietic stem cell transplantation (AHSCT) and to analyze the concordance between CMV quantification in plasma and BAL samples. Fifty-six patients were included: in 16 (28.6%) patients with symptoms of lung disease a BAL sample was collected. 7 (43.7%) patients had a VL > 150 copies/mL (six had probable CMV pneumonia). Patients with CMV pneumonia were female (100%), of median age 53.5 years, and the median time from transplantation to onset of symptoms was 67.5 days. Pneumonia was early in three cases (incidence 5.4%). Median BAL VL was 53 250 copies/mL and plasma VL was 538 copies/mL (in one patient, the plasma VL was negative). Three (50.0%) patients had an improvement in the first week of treatment, and plasma VL became negative; the other 3 (50.0%) patients died with a CMV pneumonia refractory to treatment. Therefore, any value of CMV VL in BAL, especially if it is greater than plasma, with compatible signs or symptoms, should be considered suggestive of CMV pneumonia in recipients of AHSCT and they should receive specific treatment.

INTRODUCTION

CMV causes severe pneumonia after allogeneic hematopoietic stem cell transplantation (AHSCT), with a high mortality rate in spite of prevention strategies. The diagnosis of pneumonia traditionally includes the detection in bronchoalveolar lavage (BAL) or lung tissue samples by virus isolation, histopathologic testing, immunohistochemical analysis or in situ hybridization. The viral isolation has poor clinical utility because it has low sensitivity and reproducibility and is slow. Quantification of viral load (VL) in BAL specimens by real-time PCR to diagnose CMV pneumonia is not evaluated sufficiently. To determine the value of CMV VL in BAL in patients who have received an AHSCT with pneumonia, we performed a study of all patients with positive VL in BAL who were followed for at least 100 days after AHSCT.

SUBJECTS AND METHODS

From January 2013 to December 2015, 69 patients received an AHSCT in our hospital; 56 patients were included in the study and 13 were excluded because they died before day +100 of causes unrelated to CMV infection. In patients, who had symptoms of lung disease, a BAL specimen was collected by bronchoscopy and the following tests were done: cultures for bacteria, fungi, mycobacteria and viruses; PCR assays for respiratory syncytial virus, influenza A and B, metapneumovirus, parainfluenza 1–4, rhinovirus, adenovirus and coronavirus (PneumoVir, Genomics, Madrid, Spain); and detection of Pneumocystis jirovecii antigen by indirect immunofluorescence (Monolifo kit P. jirovecii, Bio Rad, Marnes-la-Coquette, France). Quantification of CMV DNA in BAL and plasma samples, obtained simultaneously, was performed using COBAS Ampliprep/Cobas Taqman CMV System (Roche, Mannheim, Germany) according to the manufacturer’s specifications.

We reviewed the medical records of patients in whom a VL of CMV in BAL was positive. To describe patients’ characteristics, we used percentage, median and range. The study was approved by the Ethics Committee of our hospital.

Definitions

CMV pneumonia was classified into proven and probable as defined by Ljungman et al.³

Early and late pneumonia. Pneumonia before or after 100 days of transplant, respectively.

Refractory infection to treatment. Persistence of viraemia after 2 weeks of specific antiviral treatment.

CMV-attributable mortality. Death within 6 months after onset of symptoms, with CMV disease, with no other cause directly contributing to death.

RESULTS

Out of 56 patients included, 31 (55.4%) were male and the median age was 51 years (range, 17–68). The median follow-up time was 473 days (range, 53–1231). Thirty-five (62.5%) patients had a
Table 1. Clinical, epidemiological and microbiological characteristics of 6 patients with CMV pneumonia

Pt	Age/sex	Underlying disease	Clinical manifestations	Radiological manifestations	Plasma VL (copies/mL)	BAL VL (copies/mL)	Plasma VL-neg Development	GCV Treatment (days from allo-TPH)	
1	59/F	CLL-B	NP	Bilateral interstitial infiltrates, ground glass opacities, bilateral pleural effusion	Plasma VL-neg	670 000	670	Alive	GCV (+26)
2	18/F	AML-M2	NP	Cough+crackles	Plasma VL-neg	4 100 000	4 100	Plasma VL > 1000 copies/mL	foscarnet (+23)
3	53/F	CLL	NP	Cough+crackles	Plasma VL-neg	4 100 000	4 100	Plasma VL > 1000 copies/mL	GCV (+27)
4	62/F	ALL-B	Fe+SRI+cough	Ground glass opacities, bilateral pleural effusion	Plasma VL-neg	150 000	150	-	-
5	21/F	AML	Fe+SRI+cough+roncus	Pulmonary nodule, Lobular consolidation, ground glass opacities, bilateral pleural effusion	Plasma VL-neg	230 000	230	No	-
6	56/F	ALL-B	Fe+SRI+cough	Bilateral interstitial infiltrates, ground glass opacities, bilateral pleural effusion	Plasma VL-neg	10 000 000	10 000	-	-

Plasma CMV viral load in BAL in AHSCT

Plasma VL-neg Development	Days of treatment	Treatment
Alive	25	GCV
Died	27	GCV
Alive	14	VGC
Died	23	GCV
Died	27	GCV
Alive	14	VGC
Died	27	GCV
Alive	14	VGC
Died	27	GCV

Abbreviations: AHSCT = allogeneic hematopoietic stem cell transplantation; BAL = bronchoalveolar lavage; Fe = female; SRI = severe respiratory insufficiency; VGC = valganciclovir; VGC = valganciclovir; VL = viral load.

DISCUSSION

CMV pneumonia in AHSCT remains a common complication with high mortality even with specific treatment. Diagnostic tests with high sensitivity and speed, such as BAL VL, can be useful to identify patients in the early stage of infection or patients at risk of developing pneumonia, but it has not been validated for diagnosis of disease.

As far as we know, this is the first study to evaluate the role of VL in BAL in the diagnosis of pneumonia regarding clinical data in patients who have received an AHSCT and to analyze the concordance between CMV quantitation in plasma and BAL specimens. Studies have analyzed the value of VL in BAL in other patient populations, mainly in lung-transplanted patients, in which it is considered that high VL (above 46 000 copies/mL or 500 000 copies/mL) is suggestive of CMV pneumonia. In our study, the patients with probable CMV pneumonia had a wide range (670 -> 10 000 000 copies/mL) of VL and a median above 50 000 copies/mL. However, all patients with a BAL VL less than 1000 copies/mL (including three patients with loads < 150 copies/mL) responded to treatment with ganciclovir and had a good response.
evolution, which could be related to an early stage of the disease. Moreover, 75% of patients with VL higher than 50,000 copies/mL died of refractory pneumonia. The non-response to treatment in patients with high VL could be related to an advanced clinical stage or resistance to ganciclovir. All patients’ plasma VL was lower than in BAL; one patient even had an undetectable plasma VL. This fact was described by other authors,1,13,14 which could imply that plasma VL monitoring has limitations to anticipate the development of pneumonia, and therefore low or undetectable viremia levels did not exclude CMV pneumonia. In the only patient with detectable BAL VL, without CMV pneumonia, the BAL VL was not higher than in plasma.

In this study, 10.7% of patients who received an AHSCT were diagnosed with probable CMV pneumonia with a high percentage of mortality (50%) with a specific treatment. As described in other studies,15 the factor associated with increased mortality was the persistent CMV DNAemia for more than 2 weeks in spite of antiviral therapy, which could be related to ganciclovir resistance, although we could not analyze this fact. In two patients who died, the treatment was changed to foscarnet very late (after 20 days of ganciclovir treatment, the plasma VL did not become negative).

In our study, virological culture performance was very low and only a sample of BAL with VL > 10 million copies/mL was positive. This could be because patients had already begun antiviral treatment before samples were taken, or because of the lower performance of cell culture when VL was low.

In conclusion, based on our results, any value of CMV VL in BAL, especially if it is greater than in plasma, could be considered suggestive of CMV pneumonia in patients who receive AHSCT; such patients should receive specific treatment, because without specific treatment the mortality could be very high. However, further studies assessing BAL VL in patients who receive an AHSCT are necessary. We believe that this study, in spite of the low number of patients, is important because there are no publications in which BAL CMV VL was evaluated in patients with AHSCT. It is noted that conventional diagnosis methods in BAL and the plasma VL are limited and have a low performance. Tests to quantify VL of CMV are available in many clinical microbiology laboratories and this is an advantage because they could be used to quantify the BAL VL samples. These results should not be extrapolated to other populations, such as HIV or solid organ transplant recipients.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

REFERENCES
1 Erard V, Guthrie KA, Seo S, Smith J, Huang M, Chien J et al. Reduced mortality of cytomegalovirus pneumonia after hematopoietic cell transplantation due to antiviral therapy and changes in transplantation practices. Clin Infect Dis 2015; 61: 31–39.
2 Ljungman P, Griffiths P, Paya C. Definitions of Cytomegalovirus infection and disease in transplant recipients. Clin Infect Dis 2002; 34: 1094–1097.
3 Ljungman P, Boekh M, Hirsch HH, Josephson F, Lundgren J, Nichols G et al. Definitions of CMV infection and disease in transplant patients for use in clinical trials. Clin Infect Dis 2016; 64: 87–91.
4 Travi G, Pergam SA. Cytomegalovirus pneumonia in hematopoietic stem cell recipients. J Intensive Care Med 2014; 29: 200–212.
5 Chemaly RF, Yen-Liebermann B, Castilla EA, Reilly A, Arrigain S, Farver C et al. Correlation between viral loads of cytomegalovirus in blood and bronchoalveolar lavage specimens from lung transplant recipients determined by histology and immunohistochemistry. J Clin Microbiol 2004; 42: 2168–2172.
6 Seo S, Renaud C, Kuyppers JM, Chiu CY, Huang ML, Samaya E et al. Idiopathic pneumonia syndrome after hematopoietic cell transplantation: evidence of occult infectious etiologies. Blood 2015; 125: 3789–3797.
7 Cathomas BG, Morris P, Pekle P, Cunningham I, Emanuel D. Rapid diagnosis of cytomegalovirus pneumonia in marrow transplant recipients by bronchoalveolar lavage using the polymerase chain reaction, virus culture, and the direct immunostaining of alveolar cells. Blood 1993; 81: 1909–1914.
8 Ericsson BM, Brytting M, Zweygberg-Wirgart B, Hillerdal G, Olding-Stenkvist E, Linde A. Diagnosis of cytomegalovirus in bronchoalveolar lavage by polymerase chain reaction, in comparison with virus isolation and detection of viral antigen. Scand J Infect Dis 1993; 25: 421–427.
9 Tan SK, Burgener EB, Waggoner JJ, Gajurel K, Gonzalez S, Chen SF et al. Molecular and culture-based bronchoalveolar lavage fluid testing for the diagnosis of cytomegalovirus pneumonia. Open Forum Infect Dis 2016; 3: ofv212.
10 Emery V, Zuckerman M, Jackson G, Atken C, Osman H, Pagliuca A et al. Management of cytomegalovirus pneumonia in haemopoietic stem cell transplantation. Br J Haematol 2013; 162: 25–39.
11 Chemaly RF, Yen-Liebermann B, Chapman J, Reilly A, Bekele BN, Gordon SM et al. Clinical utility of cytomegalovirus viral load in bronchoalveolar lavage in lung transplant recipients. Am J Transplant 2005; 5: 544–548.
12 Henke-Gendo C, Ganzennuebler T, Kluba J, Harste G, Raggub L, Heim A. Improved quantitative PCR protocols for adenovirus and CMV with an internal inhibition control system and automated nucleic acid isolation. J Med Virol 2012; 84: 890–896.
13 Westall GP, Michaelides A, Williams TJ, Snell GI, Kotimbos TC. Human cytomegalovirus load in plasma and bronchoalveolar lavage fluid: a longitudinal study of lung transplant recipients. J Infect Dis 2004; 190: 1076–1083.
14 Ruell J, Barnes C, Mutton K, Foulkes B, Chang J, Cavet J et al. Active CMV disease does not always correlate with viral load detection. Bone Marrow Transplant 2007; 40: 55–61.
15 Liu J, Kong J, Chang YJ, Chen H, Chen YH, Han W et al. Patients with refractory cytomegalovirus (CMV) infection following allogeneic haematopoietic stem cell transplantation are at high risk for CMV disease and non-relapse mortality. Clin Microbiol Infect 2015; 21: 1121, e9–e15.