Is tau a suitable therapeutical target in tauopathies?

Elena Gomez de Barreda, Jesús Avila

Elena Gomez de Barreda, Jesús Avila, Centro de Biología Molecular Severo Ochoa, Spanish Network of Excellence on Neurodegenerative Diseases, Campus de Cantoblanco, 28049 Madrid, Spain

Author contributions: Both authors wrote the paper.

Correspondence to: Jesús Avila, Professor, Centro de Biología Molecular Severo Ochoa, Spanish Network of Excellence on Neurodegenerative Diseases, Campus de Cantoblanco, 28049 Madrid, Spain. javila@cbm.uam.es

Telephone: +34-91-1964564 Fax: +34-91-1964420
Received: May 7, 2010 Revised: May 14, 2010 Accepted: May 21, 2010
Published online: May 26, 2010

Abstract

Tau is an intracellular protein, found mainly in neurons, but it can also be found in the extracellular space in pathological situations. Here we discuss whether intracellular tau, in aggregated form or modified by phosphorylation, could be toxic inside a neuron. On the other hand, it has been proposed that extracellular tau could be toxic. In this review, we address the question if the elimination of tau would be a possible therapeutic method to avoid tauopathy disorder and we suggest ways to eliminate intracellular and extracellular tau as treatment.

© 2010 Baishideng. All rights reserved.

Key words: Tau; Tauopathy; Alzheimer disease; Therapy; Phosphorylation

Peer reviewer: Hiroshi Takahashi, MD, PhD, Director, Department of Neurology, National Hospital Organization, Tottori Medical Center, 876 Mitsu, Tottori, 689-0203, Japan

© 2010 Baishideng. All rights reserved.

Key words: Tau; Tauopathy; Alzheimer disease; Therapy; Phosphorylation

Peer reviewer: Hiroshi Takahashi, MD, PhD, Director, Department of Neurology, National Hospital Organization, Tottori Medical Center, 876 Mitsu, Tottori, 689-0203, Japan

© 2010 Baishideng. All rights reserved.

TAU TOXICITY AND TAUOPATHIES

In the tauopathies, tau can be found in an aggregated form. A clear example is the most predominant tauopathy, Alzheimer disease (AD), in which tau protein polymerizes into filaments (paired helical filaments) that are the components of neurofibrillary tangles, one of the hallmarks of AD. In paired helical filaments, tau is present in an abnormally hyperphosphorylated form.

Tau phosphorylation

Tau phosphorylation can be performed by different protein kinases, with glycogen synthase kinase-3 (GSK3) phosphorylating more phosphorylatable sites in the tau molecule. It is not clear if GSK3 dependent phosphorylation of tau could be toxic for a neuron. A GSK3β transgenic mouse model showed tau hyperphosphorylation and increased neuronal death in the hippocampus. Moreover, in double transgenic mice which overexpressed GSK3β and mutated tau (human tau with three mutations associated with frontotemporal dementia FTDP-17), neurodegeneration appeared to be accelerated. Recently, a new transgenic mouse model has been described that overexpresses GSK3β in a tau knockout background. These mice show a slower progression of the degenerative process induced
by GSK3β overexpression and attenuated learning deficits. This evidence supports the suggested toxicity of phosphorylated tau. Due to GSK3 induced neurodegeneration, this enzyme has been proposed as a therapeutic target to avoid neurodegeneration in tauopathies.[15,16]

Also, it has been suggested that tau aggregation could induce neuron death in tauopathies, like AD, although this point is under discussion.[17] In addition, it has been shown that tau overexpression could be toxic for neurons.[18] Thus, an increase in tau, or in phosphotau or aggregated tau, might have pathological consequences.

On the other hand, two different tau-deficient mice models, isolated by gene-targeting, were viable and only some slight differences (muscle weakness and behavioral deficits) were observed in the preliminary analysis.[19,20]. Taking into account all the previous observations, it can be suggested that tau depletion might be a way to prevent the development of tauopathies.

Intracellular and extracellular tau

Previously, it was indicated that tau protein is associated with microtubules mainly in the cytoplasm. This association could be decreased when tau protein was phosphorylated.[6]. Intracellular phosphotau could be toxic for a neuron and it could result in neuronal death. After neuronal death, cytoplasmic proteins are in the extracellular space. Some of these proteins could be toxic agents. Recently, it was shown that tau could be one of these toxic extracellular proteins[21-25] (Figure 1). Extracellular tau can bind to neuron receptors[26], promoting neuron degeneration and the formation of new extracellular (and toxic) tau. If this process is repeated, it could explain how tau pathology could spread through the brain, promoting the development of tauopathies such as AD.

Clinical implications

It has been proposed that tau RNA and tau protein are mainly present in the temporal and frontal lobes[26,27], which are the lobes that are close to the nose in a mammal. A possible way to deplete intracellular tau in vivo could be the delivery of interference RNA (against tau) intranasally. Previous reports have described intranasal delivery of molecules to the central nervous system in rodents, primates and humans[28-31]. As an AD treatment, it has been proposed that the intranasal administration of insulin might improve memory in AD patients[32,33]. Preliminary data with intranasal siRNA (small interfering RNA) tau treatment in mice suggests that it can reach the brain, mainly the temporal and frontal lobes (Gomez de Barreda et al, unpublished data). In the case of extracellular tau, a possible way to deplete it would be the use of a tau vaccine.[16].

CONSEQUENCES OF TAU DEPLETION

All previous observations support the notion that tau depletion could be beneficial to avoid the development of tauopathies. However, it would be important to know the consequences of the lack of tau. Depletion of tau protein would obviously affect the different functions of tau. Some of those functions could be complemented by other proteins, but it is not clear if it would occur with all tau functions.

In fact, tau protein is a sticky protein that not only binds to tubulin but also to actin[34,35], presenilin-1[36], α-synuclein[37,38], calmodulin[39], phospholipase C-γ[40,41], ferritin[42-44], hGas7b[45] or even itself[46]. Moreover, in its phosphorylated state, it can also bind other proteins such as the chaperone protein Pin-1[47,48], 14-3-3 protein[49,50], e-Jun N-terminal kinase-interacting protein 1 (JIP1)[51], and many protein phosphatases (i.e. PP1, PP2A, PP2B and PP5)[52,53].

Figure 1 A possible mechanism for tau toxicity in neuronal cells. Upon modification by extracellular signals, tau is no longer bound to microtubules (MT). Free modified tau could be toxic for a neuron and degeneration could take place. It may result in the presence of extracellular tau that could be toxic for neighboring cells promoting their death.

Figure 2 Tau could have two opposite effects on axonal transport. A: It could facilitate the presence of acetylated microtubules and, therefore, the binding of kinesin to them. It would facilitate axonal transport. B: However, tau and kinesin may compete for the same binding site in microtubules. It could decrease axonal transport. Probably, an optimal amount of tau is needed for an optimal axonal transport. HDAC: Histone deacetylase 6.

Strategy for tau depletion

If the origin of tauopathies is related to an excess of intracellular tau, phosphotau or aggregated tau, it would be of interest to know the main localizations of tau protein in the brain. It has been proposed that tau RNA and tau protein are mainly present in the temporal and frontal lobes[26,27], which are the lobes that are close to the nose in a mammal. A possible way to deplete intracellular tau in vivo could be the delivery of interference RNA (against tau) intranasally. Previous reports have described intranasal delivery of molecules to the central nervous system in rodents, primates and humans[28-31]. As an AD treatment, it has been proposed that the intranasal administration of insulin might improve memory in AD patients[32,33]. Preliminary data with intranasal siRNA (small interfering RNA) tau treatment in mice suggests that it can reach the brain, mainly the temporal and frontal lobes (Gomez de Barreda et al, unpublished data). In the case of extracellular tau, a possible way to deplete it would be the use of a tau vaccine[16].
Recently, it has been found that tau protein binds to histone deacetylase 6 (HDAC6), and the consequence of that binding is an inhibition of HDAC6\(^{[61]}\). This protein deacetylases tubulin assembled in microtubules, which favors axonal vesicle transport\(^{[62]}\). Thus, the presence of tau protein would induce microtubule acetylation and, consequently, axonal transport. On the other hand, since tau competes with microtubule motors (involved in axonal transport) for the same tubulin binding site, an excess of tau protein may impair axonal transport. Thus, it would be an optimal amount of tau, neither too much nor too little, that would favor axonal transport (Figure 2). This optimal amount of tau could be right for other tau functions.

CONCLUSION

Modification of tau protein by phosphorylation or aggregation could result in a gain of toxic function in different tauopathies. It suggests that tau depletion could be beneficial in avoiding the development of those tauopathies. However, the absence of tau could promote other dysfunctions in a neuron.

REFERENCES

1. Avila J. Microtubule dynamics. *FASEB J* 1990; 4: 3284-3290
2. Matus A. Microtubule-associated proteins: their potential role in determining neuronal morphology. *Annu Rev Neurosci* 1988; 11: 29-44
3. Panda D, Goode BL, Feinstein SC, Wilson L. Kinetic stabilization of microtubule dynamics at steady state by tau and microtubule-binding domains of tau. *Biochemistry* 1995; 34: 11117-11127
4. Cleveland DW, Hwo SY, Kirschner MW. Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. *J Mol Biol* 1977; 116: 207-225
5. Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW. A protein factor essential for microtubule assembly. *Proc Natl Acad Sci USA* 1975; 72: 1858-1862
6. Avila J, Lucas JJ, Perez M, Hernandez F. Role of tau protein in both physiological and pathological conditions. *Physiol Rev* 2004; 84: 361-384
7. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Wisniewski A, Iqbal K, Tung YC, Zaidi MS, Silverman S, Zwingman TA, Jones AR. Histone deacetylase 6 (HDAC6), and the consequence of HDAC6 inhibition on tauopathy in transgenic mouse brain. *Neurobiol Aging* 2006; 27: 1258-1268

8. Kidd M. Paired helical filaments in electron microscopy of Alzheimer's disease. *Nature* 1963; 197: 192-193
9. Alzheimer A. Über eine eigenartige erkrankung der horn- und sacknerde. *Allg Z Psychiatr* 1907; 64: 146-148
10. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. *Proc Natl Acad Sci USA* 1986; 83: 4913-4917
11. Hanger DP, Anderton BH, Noble W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. *Trends Mol Med* 2009; 15: 112-119
12. Lucas JJ, Hernandez F, Gomez-Ramos P, Moran MA, Hen R, Avila J. Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. *EMBO J* 2001; 20: 27-39
13. Engel T, Lucas JJ, Gomez-Ramos P, Moran MA, Avila J, Hernandez F. Coexpression of FTDP-17 tau and GSK-3beta in transgenic mice induce tau polymerization and neurodegeneration. *Neurobiol Aging* 2006; 27: 1258-1268

14. Gomez de Barreda E, Perez M, Gomez Ramos P, de Cristobal J, Martin-Maestro P, Morán A, Dawson HH, Vitek MP, Lucas JJ, Hernandez F, Avila J. Tau-knockout mice show reduced GSK3-induced hippocampal degeneration and learning deficits. *Neurobiol Dis* 2010; 37: 622-629
15. Noble W, Planeil E, Zehr C, Olm V, Meyerzen J, Suleman F, Gaynor K, Wang L, LaFrancois J, Feinstein B, Burns M, Krishnamurthy P, Wen Y, Bhat R, Lewis J, Dickson D, Duff K. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. *Proc Natl Acad Sci USA* 2005; 102: 6980-6985
16. Pérez M, Hernández F, Lim F, Díaz-Nido J, Avila J. Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model. *J Alzheimers Dis* 2005; 3: 301-308
17. Hernández F, Avila J. Tauopathies. *Cell Mol Life Sci* 2007; 64: 2219-2233
18. Andorfer C, Acker CM, Kress Y, Hof PR, Duff K, Davies P. Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. *J Neurosci* 2005; 25: 5454-5454
19. Dawson HH, Ferreira A, Eyster MV, Ghoshal N, Binder LI, Vitek MP. Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. *J Cell Sci* 2001; 114: 1179-1187
20. Harada A, Oguchi K, Okabe S, Kuno J, Terada S, Ohshima T, Sato-Yoshitake R, Takei Y, Noda T, Hirokawa N. Altered microtubule organization in small-calibre axons of mice lacking tau protein. *Nature* 1994; 369: 488-491
21. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Pobst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, Jucker M, Goedert M, Tolnay M. Transmission and spreading of tauopathy in transgenic mouse brain. *Nat Cell Biol* 2009; 11: 909-913
22. Frost B, Jacks RL, Diamond MI. Propagation of tau misfolding from the outside to the inside of a cell. *J Biol Chem* 2009; 284: 12845-12852
23. Gomez-Ramos A, Díaz-Hernández M, Cuadros R, Hernández F, Avila J. Extracellular tau is toxic to neuronal cells. *FEBS Lett* 2006; 580: 4842-4850
24. Gomez-Ramos A, Díaz-Hernández M, Rubio A, Diaz-Hernández J, Miras-Portugal MT, Avila J. Characteristics and consequences of muscarinic receptor activation by tau protein. *Eur Neuropsychopharmacol* 2009; 19: 708-717
25. Gomez-Ramos A, Díaz-Hernández M, Rubio A, Miras-Portugal MT, Avila J. Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells. *Mol Cell Neurosci* 2008; 37: 673-681
26. Lein ES, Hawrylczynj M, Ao N, Ayres M, Bensinger A, Bernard A, Beo AF, Boguski MS, Brockway KS, Byres J, Chen L, Chen L, Chen TM, Chin MC, Chong J, Crook BE, Czapinska A, Dang CN, Datta S, Dee NR, Desaki AL, Desta T, Diep E, Dolbeare TA, Donelan MJ, Dong HW, Dougherty JG, Duncan BJ, Ebbert AJ, Eichele G, Estin LK, Faber C, Facer BA, Fields R, Fischer SR, Fliss TP, Frenslee C, Gates SN, Glattfelder KJ, Halvorson KR, Hart MR, Hofmann JG, Howell MP, Jeung DP, Johnson RA, Karr PT, Kawal R, Kidney JM, Knupik RH, Kuan CL, Lake JH, Laramee AR, Larsen KD, Lau C, Lemon TA, Liang AJ, Liu Y, Luong LT, Michaels J, Morgan JJ, Morgan RJ, Mortrud MT, Mosqueda NF, Ng LL, Ng R, Orta GJ, Orr MC, Overly CC, Pak TH, Parry SE, Pathak SD, Pearson OC, Puchalski RB, Riley ZL, Rottert HH, Rowland SA, Royall J, Ruiz MJ, Sarno NR, Schaffnit K, Shapovalova NV, Sivisay T, Slaughterbeck CR, Smith SC, Smith KA, Smith BL, Sodt AJ, Stewart NN, Stumpf KR, Suninkin SM, Sutram M, Tam A, Teemer CD, Thaller C, Thompson CL, Varnam LR, Visel A, Whitlock RM, Wohntakoua PF, Wolkay CW, Wong VY, Wood M, Yauloglou MB, Young RC, Youngstrom BL, Yuan XF, Zbang B, Zwingman TA, Jones AR. Genom-wide atlas of gene expression in the adult mouse brain. *Nature* 2007; 445: 168-176
Phosphorylated Tau interacts with Src homology 3 domains of phosphatidylinositol 3-kinase, phosphorylated Galpha11, Grb2, and Src family kinases. J Biol Chem 2008; 283: 18177-18186

Pérez M, Valpuesta JM, de Garcini EM, Quintana C, Arrate M, López Carrascosa JL, Rabano A, Garcia de Yebenes J, Avila J. Ferritin is associated with the aberrant tau filaments present in progressive supranuclear palsy. Am J Pathol 1998; 152: 1531-1539

Akiyama H, Gotoh A, Shin RW, Koga T, Ohashi T, Sakamoto W, Harada A, Arai H, Sawa A, Uchida C, Uchida T. A novel role for hGas7b in microtubular maintenance: possible implication in tau-associated pathology in Alzheimer disease. J Biol Chem 2009; 284: 32695-32699

Montejo de Garcini E, Avila J. In vitro conditions for the self-polymerization of the microtubule-associated protein, tau protein. J Biol Chem 1987; 102: 1415-1421

Montejo de Garcini E, Carrascosa JL, Correas I, Nieto A, Avila J. Tau factor polymers are similar to paired helical filaments of Alzheimer's disease. FEBS Lett 1988; 236: 150-154

Montejo de Garcini E, Serrano L, Avila J. Self assembly of microtubule associated protein tau into filaments resembling those found in Alzheimer disease. Biochem Biophys Res Commun 1988; 161: 790-796

Lim J, Balastik M, Lee TH, Nakamura K, Liou YC, Sun A, Finn G, Pastorino L, Lee VM, Lu KP. Pin1 has opposite effects on wild-type and P301L tau stability and tauopathy. J Clin Invest 2008; 118: 1877-1889

Lu PJ, Wulf G, Zhou XZ, Davies P, Lu KP. The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 1999; 399: 784-788

Zhou XZ, Kops O, Werner A, Lu PJ, Shen M, Stoller G, Kültz G, Stark M, Fischer G, Lu KP. Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol Cell 2000; 6: 873-883

Hashiguchi M, Sobe K, Paudel HK. 14-3-3-zeta is an effector of tau protein phosphorylation. J Biol Chem 2000; 275: 25247-25254

Truong AB, Masters SC, Yang H, Fu H. Role of the 14-3-3 C-terminal loop in ligand interaction. Proteins 2002; 49: 321-325

Ittner LM, Ke YD, Götz J. Phosphorylated Tau interacts with c-Jun N-terminal kinase-interacting protein 1 (JIP1) in Alzheimer disease. J Biol Chem 2009; 284: 20909-20916

Gong CX, Grundke-Iqbal I, Damuni Z, Iqbal K. Dephosphorylation of microtubule-associated protein tau by protein phosphatase-1 and -2C and its implication in Alzheimer disease. FEBS Lett 1994; 341: 94-98

Gong CX, Grundke-Iqbal I, Iqbal K. Dephosphorylation of Alzheimer's disease abnormally phosphorylated tau protein by protein phosphatase-2A. Neurosci Lett 1994; 161: 765-772

Gong CX, Lidsky T, Wegiel J, Zuck L, Grundke-Iqbal I, Iqbal K. Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer's disease. J Biol Chem 2000; 275: 5535-5544

Gong CX, Singh TJ, Grundke-Iqbal I, Iqbal K. Alzheimer's disease abnormally phosphorylated tau is dephosphorylated by protein phosphatase-2B (calcineurin). J Neurochem 1994; 62: 803-806

Liu F, Grundke-Iqbal I, Iqbal K, Gong CX. Contributions of protein phosphatases PPI, PPI2a, PPI2b and PPI5 to the regulation of tau phosphorylation. Eur J Neurosci 2005; 22: 1942-1950

Pérez M, Santa-Maria I, Gomez de Barreda E, Zulu A, Cuadros R, Cabrero JR, Sanchez-Madrid F, Dawson HN, Vitek MP, Perry G, Smith MA, Avila J. Tau—an inhibitor of deacetylase HDAC6 function. J Neurochem 2009; 109: 1756-1766

Kazantsev AG, Thompson LM. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 2008; 7: 854-868