Optical transitions in highly-charged californium ions with high sensitivity to variation of the fine-structure constant

J. C. Berengut, V. A. Dzuba, V. V. Flambaum, and A. Ong
School of Physics, University of New South Wales, Sydney, NSW 2052, Australia
(Dated: April 3, 2012)

We study electronic transitions in highly-charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, α. The transitions are in the optical despite the large ionisation energies because they lie on the level-crossing of the 5f and 6p valence orbitals in the thallium isoelectronic sequence. Cf16+ is a particularly rich ion, having several narrow lines with properties that minimize certain systematic effects. Cf16+ has very large nuclear charge and large ionisation energy, resulting in the largest α-sensitivity seen in atomic systems. The lines include positive and negative shifters.

I. INTRODUCTION

In this work we present calculations of transitions in highly-charged californium that could form the reference for an optical atomic clock with very strong sensitivity to variation of the fine-structure constant, α. The transitions are in the optical despite the large ionisation energies because they lie on the level-crossing of the 5f and 6p valence orbitals in the thallium isoelectronic sequence. Cf16+ is a particularly rich ion, having several narrow lines with properties that minimize certain systematic effects. Cf16+ has very large nuclear charge and large ionisation energy, resulting in the largest α-sensitivity seen in atomic systems. The lines include positive and negative shifters.

The cosmological dipole in α might be confirmed by terrestrial studies, since the solar system is moving with respect to the cosmic microwave background (the presumed frame for the α-dipole), and therefore should be moving from a region of the Universe with smaller values of α to one with larger values \[\delta_0 = 0.0001\text{yr}^{-1}\]. In particular, the expected rate of change in α today would be of order \(\delta_0 / \alpha \sim 10^{-18}\text{yr}^{-1}\). This is significantly smaller than the best current terrestrial limits, \(\delta_0 / \alpha = (1.6 \pm 2.3) \times 10^{-17}\text{yr}^{-1}\), which comes from comparison of Al13+ and Hg1+ atomic clocks \[\delta_0\]. If measured at the same level of accuracy, the transitions proposed in this work would allow an improvement on this limit by a factor of 23. Because the transitions have narrow natural line widths and reduced systematics, the improvement could be even larger.

We parametrize the sensitivity of an atomic transition to potential variation in α by the quantity \(q\) defined by

\[
q = \left. \frac{d\omega}{dx} \right|_{x=0}
\]

where \(x = \alpha^2 / \alpha_0^2 - 1\) is the fractional change in \(\alpha^2\) from its current value \(\alpha_0^2\), and \(q\) and \(\omega\) are measured in atomic units of energy. In the Al13+ and Hg1+ comparison, the Al13+ clock is an “anchor” (relatively insensitive to α-variation) while the mercury clock has a strong sensitivity of \(q = -52\,200\text{ cm}^{-1}\). An approximate formula for the \(q\) value of a single energy level \(E_n = -I_n\) where \(I_n\) is the ionisation energy of the level) with effective principal quantum number \(\nu\) and angular momentum \(j\) is \[\delta_0 / \alpha \sim 10^{-18}\text{yr}^{-1}\].

\[
q_n \approx -I_n \frac{(Z\alpha)^2}{\nu(j + 1/2)},
\]

where \(Z\) is the nuclear charge. The transition will have a sensitivity to \(\alpha\)-variation that is the difference between the \(q\) values of the levels involved. Therefore the best transitions will maximise the difference of \(\nu\) and \(j\) between the levels and will come from heavy ions.

Equation \[\delta_0 / \alpha \sim 10^{-18}\text{yr}^{-1}\] shows that transitions in highly charged ions (HCIs) can have much larger \(q\) values since they have much larger ionisation energies. Unfortunately they generally also have much larger transition energies, putting them outside the range of optical lasers and making them unsuitable for use in high-precision clocks. However, due to configuration crossing, some HCIs can have optical transitions between levels with different principal quantum numbers, and these could become reference transitions for optical clocks with the highest \(q\) values seen in atomic systems \[\delta_0 / \alpha \sim 10^{-18}\text{yr}^{-1}\].

In this paper we present calculations for the 5f - 6p\textsubscript{3/2} crossing that occurs in the thallium and lead isoelectronic sequences (with one valence electron and two valence electrons, respectively). The crossing occurs at \(Z = 98\) — californium — which also happens to be one of the last relatively stable ions in the periodic table, having isotopes with half-lives of several hundred years. The five isotopes shown in Table I allow for choice in exper-

Isotope	\(J^\pi\)	Half-life (yr)
258Cf	0+	0.914
249Cf	9/2-	351
250Cf	0+	13.08
251Cf	1/2+	900
252Cf	0+	2.645
We find that Cf17+ has several transitions that may be suitable for studies of α-variation, including those with the largest q values yet found.

II. METHOD

To find the 6p–5f crossing, we start with neutral thallium. In thallium, the 5f orbital energies lie above the 6p orbitals, whereas in the large Z limit the 5f levels should be more tightly bound than 6p levels (\(E_{5f} \approx E_{5p}\) for hydrogen-like ions). Therefore we expect a level crossing at some \(Z > 81\), where an ion may have optical transitions between these two orbitals. Fig. 1 shows the Dirac-Fock energies of the 6p\textsubscript{1/2}, 6p\textsubscript{3/2}, 5f\textsubscript{5/2} and 5f\textsubscript{7/2} orbitals as a function of nuclear charge \(Z\). Due to the large fine-structure splitting of the 6p\textsubscript{1/2} and 6p\textsubscript{3/2} subshells, there are two possible crossing points we can explore here, one for 6p\textsubscript{3/2} near \(Z = 93\) and one for 6p\textsubscript{1/2} near \(Z = 98\). The crossing near \(Z = 98\) is more attractive for studying α-variation for two reasons. Firstly, the nuclear charge and ionization energy are larger. Second, since α-sensitivity is due to relativistic effects that occur near the origin, the 6p\textsubscript{1/2} orbital has larger q than the 6p\textsubscript{3/2} orbital since the former has a lower Dirac-spinor component of \(s_{1/2}\) symmetry, which is large near the origin. This is seen in [2] by the factor \(1/(j + 1/2)\): the difference in q due to this factor is larger for p\textsubscript{1/2} and f\textsubscript{5/2}. Because the 6p\textsubscript{1/2} level is highly sensitive to α-variation while the 5f levels are not, we expect a large q value for a transition between these levels.

We have performed full-scale \textit{ab initio} calculations for Cf17+ (at the crossing point of Fig. 1) and the two-valence-electron equivalent, Cf16+. We use the combined configuration interaction and many-body perturbation theory method (CI + MBPT), presented in detail in [14] (see also [13]). We begin with Dirac-Fock for closed shells of Hg; this corresponds to \(V^{N-1}\) for the single-valence-electron case, Cf17+, and \(V^{N-2}\) for the Cf16+ ion. From the frozen-core potential we generate a set of around 40 B-splines in each wave up to \(l = 6\). These form a “complete” set of virtual orbitals with which we calculate MBPT corrections, \(\Sigma\), to second-order in the residual Coulomb interaction. For Cf16+ we perform a CI calculation including all two-electron excitations to the virtual orbitals 16spdf. The addition of g-wave orbitals to the CI were found to make little difference to energy levels and q values. The q values were obtained by varying \(x\) (Eq. 1) in steps of 0.01 and taking the gradient of transition frequency with respect to \(x\).

We have also calculated some important transition rates (reduced matrix elements and Einstein A-coefficients) using a relativistic formalism (see, e.g. [13]). Random phase approximation corrections to the matrix elements were not included in this work since the uncertainty in the rates is dominated by uncertainty in the transition energies, which have not been measured.

III. RESULTS AND DISCUSSION

Our calculated energy levels and q values for Cf17+ are presented in Table II. For the purposes of measuring α-variation using atomic clocks, the most interesting transition is from the 5f\textsubscript{5/2} ground state to 6p\textsubscript{1/2}, with an energy interval of \(\omega = 17889\) cm\(^{-1}\). For this transition is over 8 times larger than the Hg17+ clock transition used in [7].

In Cf16+, presented in Table III there are more states in optical range, arising from the greater number of angular momentum combinations available. Note that the levels marked \(A, A^*\) in Table III are heavily mixed in the CI calculation, resulting in a dominant contribution from 5f2 (63\% and 51\% respectively) in both, while in the CI + \(\Sigma\) calculation the first state is 96\% 5f2 and the second state is 63\% 5f 6p. For simplicity we have simply labelled the level with the largest 5f 6p contribution as the 5f 6p state.

TABLE II. Low-lying levels of Cf17+ (all have odd parity). Energy calculations are presented relative to the 5f\textsubscript{5/2} ground-state using only Dirac-Fock (DF) and including MBPT (DF + \(\Sigma\)). The q values were calculated using DF + \(\Sigma\).

Configuration	\(J\)	Energy (cm\(^{-1}\))	q (cm\(^{-1}\))	Energy (cm\(^{-1}\))	q (cm\(^{-1}\))
5f	5/2	0	0	0	0
6p	1/2	8447	17889	-49750	
5f	7/2	20447	21755	17900	
6p	3/2	235154	231970	-115650	

FIG. 1. Dirac-Fock energies of the 6p\textsubscript{1/2} (diamonds, dashed line), 6p\textsubscript{3/2} (crosses, dot-dashed line), and 5f (circles, solid line) levels in the thallium isoelectronic sequence with increasing nuclear charge. The inset shows an enlarged view of the crossing region.
Our CI-only calculations showed the $6p^2$ ($J = 0$) level to be the ground state, but adding MBPT corrections changes the level ordering such that $5f\ 6p$ ($J = 3$) is the ground state. Actually, Cf$^{16+}$ can be considered to have two ground states, since the decay from the metastable $6p^2$ ($J = 0$) (G2 in Table V) to the ground state (G1) has a lifetime greater than that of the nucleus itself. Table IV lists calculated matrix elements and strengths for some transitions of interest.

The two electron transitions between the G2 metastable state and the $5f^2$ states give maximal values of q: up to around $\sim 830\ 000 \text{cm}^{-1}$. Among these is the transition to $5f^2$ ($J = 1$) (C in Table III) with energy $\omega = 58\ 132 - 5267 = 52\ 865 \text{cm}^{-1}$, which has a very high branching-ratio back to the G2 “ground” state. This level therefore potentially provides a method to “recycle” from G1 back to G2, although it should be noted that the G1→ C transition is rather weak.

Another very interesting potential reference transition is the G2 ($J = 0$) → B ($J = 0$) transition at $\omega = 46\ 158 \text{cm}^{-1}$, which is strongly forbidden but could be opened using Stark amplitude or hyperfine mixing of state B ($J = 0$) with C ($J = 1$). Such a transition would be very narrow and have strongly reduced systematic shifts, e.g. electric quadrupole, AC Stark, Zeeman shifts. It may, however, be too weak to excite by usual optical lasers.

All of the transitions discussed so far are positive shifters: the transition frequency increases with increasing α. It is also possible to find negative shifters in Cf$^{16+}$, for example the transition between G1 and G2 is a strong negative shifter (assuming that the ordering of levels has been calculated correctly). However, this transition is extremely weak, and in practice may only occur via level mixing using a strong laser. A negative shifter which may be more useful is from the $5f^2$ ($J = 4$) metastable state (A in Table III) lifetime $\sim 10^{-1} \text{s}$ via M1 transition to one of the $5f\ 6p$ states above it. The larger of these has $q = -355\ 000 \text{cm}^{-1}$.

Our CI-only calculations showed the $6p^2$ ($J = 0$) level to be the ground state, but adding MBPT corrections changes the level ordering such that $5f\ 6p$ ($J = 3$) is the ground state. Actually, Cf$^{16+}$ can be considered to have two ground states, since the decay from the metastable $6p^2$ ($J = 0$) (G2 in Table III) to the ground state (G1) has a lifetime greater than that of the nucleus itself. Table IV lists calculated matrix elements and strengths for some transitions of interest.

The two electron transitions between the G2 metastable state and the $5f^2$ states give maximal values of q: up to around $\sim 830\ 000 \text{cm}^{-1}$. Among these is the transition to $5f^2$ ($J = 1$) (C in Table III) with energy $\omega = 58\ 132 - 5267 = 52\ 865 \text{cm}^{-1}$, which has a very high branching-ratio back to the G2 “ground” state. This level therefore potentially provides a method to “recycle” from G1 back to G2, although it should be noted that the G1→ C transition is rather weak.

Another very interesting potential reference transition is the G2 ($J = 0$) → B ($J = 0$) transition at $\omega = 46\ 158 \text{cm}^{-1}$, which is strongly forbidden but could be opened using Stark amplitude or hyperfine mixing of state B ($J = 0$) with C ($J = 1$). Such a transition would be very narrow and have strongly reduced systematic shifts, e.g. electric quadrupole, AC Stark, Zeeman shifts. It may, however, be too weak to excite by usual optical lasers.

All of the transitions discussed so far are positive shifters: the transition frequency increases with increasing α. It is also possible to find negative shifters in Cf$^{16+}$, for example the transition between G1 and G2 is a strong negative shifter (assuming that the ordering of levels has been calculated correctly). However, this transition is extremely weak, and in practice may only occur via level mixing using a strong laser. A negative shifter which may be more useful is from the $5f^2$ ($J = 4$) metastable state (A in Table III) lifetime $\sim 10^{-1} \text{s}$ via M1 transition to one of the $5f\ 6p$ states above it. The larger of these has $q = -355\ 000 \text{cm}^{-1}$.

IV. SYSTEMATICS AND OPPORTUNITIES

HCIs have some interesting features that are worth mentioning here. Firstly, electric dipole matrix elements are much smaller for HCIs than in neutral atoms since the E1 matrix element $\sim (r) \sim (a_0/Z_{eff})$ where a_0 is the Bohr radius and $Z_{eff} \approx Z_{ion} + 1$ is the effective nuclear charge: the charge that the valence electron sees. Since the spacing between E1 levels in HCIs is larger by a factor $\sim Z_{eff}^2$, the static polarizability — and hence black-body radiation shift — of HCIs is reduced compared to near-neutral ions by a factor $\sim 1/Z_{eff}^2$.

The hyperfine structure in heavy HCIs is much larger than in neutral atoms, scaling as $\omega_{hfs} \sim Z_{eff}^2$. The rate of M1 transitions within each hyperfine multiplet will scale as ω_{hfs}^2, which means that the lowest hyperfine state will be produced in reasonable time (order of a second). In californium, the hyperfine splitting of an s-wave or p$_{1/2}$-wave valence electron will be very sensitive to α-variation because of the large Z. We define the fractional (relative) sensitivity K_{rel} by $\delta \omega_{hfs}/\omega_{hfs} = K_{rel} \delta \alpha/\alpha$. Using formulas presented in Refs. [16, 17] we obtain $K_{rel} = 5.33$. Therefore, the hyperfine transitions form another positive shifting transition that can be used to place limits on α-variation.

V. CONCLUSION

In this paper, we used the CI + MBPT method to calculate the energy levels for Cf$^{16+}$ and Cf$^{17+}$ highly charged ions. These ions were chosen because they lie at the $5f - 6p_{1/2}$ crossing point on the thallium isoelectronic sequence, which allows for optical transitions between different configurations from the ground state. Our calculations have identified several transitions in Cf$^{16+}$ that have the largest q values ever seen in such atomic systems, and include several positive shifters (with q up to $\sim 830\ 000 \text{cm}^{-1}$) and negative shifters (e.g. $5f^2$ ($J = 4$) → $5f\ 6p$ ($J = 3$) with $q = -355\ 000 \text{cm}^{-1}$). A comparison of clocks using these reference transitions would have a total sensitivity $\Delta q = q_+ - q_- \approx 1\ 200\ 000 \text{cm}^{-1}$, around 23 times more sensitive than the Hg$^+$ clock and Al$^+$ clock comparison used to obtain the best current laboratory limit on α-variation.
Table IV. q values, squared reduced transition matrix elements, S, and corresponding Einstein A-coefficients for transitions between selected states i and f in \text{Cf}^{14+}. The included $6p^2$ has longer lifetime than the nucleus.

Config.	J_i	E_i (cm$^{-1}$)	Config.	J_f	E_f (cm$^{-1}$)	q_{if} (cm$^{-1}$)	S	$g_f A_{if}$ (s$^{-1}$)
5f 6p	3	0	6p2	0	5267	-370928	0.92401M$_{E2}$	4.3519x10$^{-18}$
5f 6p	2	6104	4	9711	414876	1.6768E$_{E2}$	0.00033798	
5f2	4	24481	4	24483	354444	0.0041938M$_{E2}$	1.6601	
5f 6p	2	25025	3	59395	0.071521M$_{E2}$	30.235		
5f2	5	29588	3	37467	451455	0.0011599M$_{E2}$	0.000249414	
5f2	3	37467	4	42122	319216	0.16895M$_{E1}$	4.1731	
5f2	2	51471	4	58035	461543	1.6768E$_{E2}$	2.344.7	
5f2	1	58132	2	51471	820905	0.13984M$_{E1}$	0.00028702E$_{E2}$	2.1162
5f2	2	75041	1	58132	499977	0.1195M$_{M1}$	0.17249	
6p2	0	5267	5	51471	465293	0.036215M$_{M1}$	41.278	
5f 6p	2	6104	5	5267	477052	0.05123E$_{E2}$	2.4845x10$^{-8}$	
5f2	4	9711	5	6104	785804	0.24444E$_{E4}$	8.5359x10$^{-24}$	
5f2	2	24483	5	9711	725372	0.01955E$_{E2}$	0.0057377	
5f2	2	51471	5	24483	816973	0.02083E$_{M2}$	0.49127	
5f2	1	58132	5	51471	820905	0.1195M$_{M1}$	476.2	
5f2	2	75041	5	58132	836221	0.00071052E$_{E2}$	0.13159	
5f 6p	2	6104	5	58132	308752	0.1839E$_{E2}$	1.2569x10$^{-5}$	
5f2	4	9711	5	6104	56002	0.03839E$_{E2}$	0.0066653	
5f2	2	24483	5	9711	-46729	3.14285E$_{M1}$	574.24	
5f2	1	58132	5	24483	343853	0.0082881M$_{M1}$	31.485	
5f2	1	58132	5	58132	820905	0.043495E$_{E2}$	1.8571	
5f2	4	9711	5	58132	308752	1.605M$_{M1}$	139.5	
5f2	2	24483	5	9711	-60432	1.5203E$_{E2}$	0.11978	
5f2	3	25025	5	24483	-355481	0.096413M$_{M1}$	9.3407	
5f2	5	29588	5	25025	36579	8.3595M$_{M1}$	1771.0	
5f2	3	37467	5	29588	-21121	0.023016E$_{E2}$	0.0079994	
5f2	4	42122	5	37467	-95660	0.023016E$_{E2}$	0.0079994	
5f2	6	44107	5	42122	44471	0.00026242E$_{E2}$	0.0014151	
5f2	2	51471	5	44107	31169	0.035908E$_{E2}$	0.51073	
5f2	4	58035	5	51471	46667	0.0011045M$_{M1}$	3.362	
5f2	6	63175	5	58035	45540	5.15x10$^{-6}$E$_{E2}$	0.00025212	
5f2	2	75041	5	63175	50417	0.015122E$_{E2}$	0.0043219	
5f 6p	4	24483	5	75041	-102731	0.995021M$_{M1}$	2.0155	
5f2	2	24483	5	24483	59533	0.024099M$_{M1}$	24.766	
5f 6p	3	25025	5	24483	390582	0.084098E$_{E2}$	0.37462	
5f2	3	37467	5	25025	56222	1.076E$_{E2}$	0.46748	
5f2	0	51425	5	37467	68991	1.6793M$_{M1}$	13.671	
5f2	2	51471	5	51425	3932	1.0698M$_{M1}$	8.5301	
Trapping and cooling of HCIs remains a difficult experiment, however electron-beam ion trap technology continues to improve \cite{18-21}, and we hope that the potential benefits of HCI clocks will continue to motivate further studies. Using californium certainly adds another layer of complexity to the experiment since it doesn’t occur naturally and must be produced, for example, at accelerators such as GSI and LBNL.

ACKNOWLEDGMENTS

This work was supported by the Australian Research Council. Supercomputer time was provided by an award under the Merit Allocation Scheme on the NCI National Facility at the Australian National University.

Appendix A: Transition matrix elements

The CI+MBPT method produces wavefunctions $|I\rangle$ which are linear combinations of Slater determinants of orbitals (we use atomic units $\hbar = e = m = 1$)

$$\psi_{n\kappa m} = \frac{1}{r} \left(\frac{f_{n\kappa} \Omega_{n \kappa m}}{ig_{n\kappa} \Omega_{-n \kappa m}} \right).$$

To calculate the relativistic electric (EJ) and magnetic (MJ) multipole reduced matrix elements between two wavefunctions ψ_i and ψ_f we use the following formulae (see, e.g. \cite{15}):

$$S_{MJ} = 4e^2 \left| \langle n_i \kappa_i | q_j^{(M)} | n_f \kappa_f \rangle \right|^2$$

$$S_{EJ} = \left| \langle n_i \kappa_i | q_j^{(E)} | n_f \kappa_f \rangle \right|^2$$

where

$$\langle n_i \kappa_i | q_j^{(M)} | n_f \kappa_f \rangle = \frac{(2J + 1)!!}{k^J} (-\kappa_i | C^J | \kappa_f) \int_0^\infty \frac{\kappa_i + \kappa_f}{J + 1} j_J(kr) \left[f_i(r) g_f(r) + g_i(r) f_f(r) \right] \, dr$$

$$\langle n_i \kappa_i | q_j^{(E)} | n_f \kappa_f \rangle = \frac{(2J + 1)!!}{k^J} \langle \kappa_i | C^J | \kappa_f \rangle \int_0^\infty j_J(kr) \left[f_i(r) f_f(r) + g_i(r) g_f(r) \right] + j_{J+1}(kr) \left[f_i(r) g_f(r) + g_i(r) f_f(r) \right] \, dr.$$

In these equations,

$$\langle \kappa_i | C^J | \kappa_f \rangle = (-1)^{j_i + 1/2} \sqrt{2j_i + 1} (2j_f + 1) \times$$

$$\begin{pmatrix} j_i & j_f & J \\ -1/2 & 1/2 & 0 \end{pmatrix} \xi(i_l + f_J + J)$$

where

$$\xi(x) = \begin{cases} 1, & \text{for } x \text{ even} \\ 0, & \text{for } x \text{ odd} \end{cases}$$

and $j_J(kr)$ is the spherical Bessel function of order J with argument $kr = k|e^{-1/2}r$. We also calculate Einstein A-

\footnotesize

[1] J. K. Webb, J. A. King, M. T. Murphy, V. V. Flambaum, R. F. Carswell, and M. B. Bainbridge, Phys. Rev. Lett. \textbf{107}, 191101 (2011).

[2] J. A. King, J. K. Webb, M. T. Murphy, V. V. Flambaum, R. F. Carswell, M. B. Bainbridge, M. R. Wilczynska, and F. E. Koch, Accepted to Mon. Not. R. Astron. Soc. (2012).

[3] J. K. Webb, V. V. Flambaum, C. W. Churchill, M. J. Drinkwater, and J. D. Barrow, Phys. Rev. Lett. \textbf{82}, 884 (1999).

[4] M. T. Murphy, J. K. Webb, and V. V. Flambaum, Mon. Not. R. Astron. Soc. \textbf{345}, 609 (2003).

[5] M. T. Murphy, V. V. Flambaum, J. K. Webb, V. A. Dzuba, J. X. Prochaska, and A. M. Wolfe, Lect. Notes Phys. \textbf{648}, 131 (2004).

[6] J. C. Berengut and V. V. Flambaum, Europhys. Lett. \textbf{97}, 20006 (2012).

\normalsize
[7] T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, Science 319, 1808 (2008).

[8] V. A. Dzuba and V. V. Flambaum, Phys. Rev. A 77, 012515 (2008).

[9] V. A. Dzuba, V. V. Flambaum, and J. K. Webb, Phys. Rev. A 59, 230 (1999).

[10] J. C. Berengut, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. Lett. 105, 120801 (2010).

[11] J. C. Berengut, V. A. Dzuba, V. V. Flambaum, and A. Ong, Phys. Rev. Lett. 106, 210802 (2011).

[12] G. Audi, O. Bersillon, J. Blachot, and A. H. Wapstra, Nucl. Phys. A 729, 3 (2003).

[13] V. A. Dzuba, V. V. Flambaum, and M. G. Kozlov, Phys. Rev. A 54, 3948 (1996).

[14] J. C. Berengut, V. V. Flambaum, and M. G. Kozlov, Phys. Rev. A 73, 012504 (2006).

[15] W. R. Johnson, Atomic Structure Theory (Springer, Berlin Heidelberg New York, 2007).

[16] J. D. Prestage, R. L. Tjoelker, and L. Maleki, Phys. Rev. Lett. 74, 3511 (1995).

[17] V. V. Flambaum and A. F. Tedesco, Phys. Rev. C 73, 012504 (2006).

[18] I. Draganić, J. R. Crespo López-Urrutia, R. DuBois, S. Fritzche, V. M. Shabaev, R. S. Orts, I. I. Tupitsyn, Y. Zou, and J. Ullrich, Phys. Rev. Lett. 91, 183001 (2003).

[19] J. R. C. López-Urrutia, Can. J. Phys. 86, 111 (2008).

[20] M. Hobein, A. Solders, M. Suhonen, Y. Liu, and R. Schuch, Phys. Rev. Lett. 106, 013002 (2011).

[21] P. Beiersdorfer, Phys. Scr. T134, 014010 (2009).