Distributed Bandits with Heterogeneous Agents

Lin Yang∗ Yu-zhen Janice Chen † Mohammad Hajiesmaili ‡ John CS Lui § Don Towsley ¶

February 18, 2022

Abstract

This paper tackles a multi-agent bandit setting where M agents cooperate together to solve the same instance of a K-armed stochastic bandit problem. The agents are heterogeneous: each agent has limited access to a local subset of arms and the agents are asynchronous with different gaps between decision-making rounds. The goal for each agent is to find its optimal local arm, and agents can cooperate by sharing their observations with others. While cooperation between agents improves the performance of learning, it comes with an additional complexity of communication between agents. For this heterogeneous multi-agent setting, we propose two learning algorithms, CO-UCB and CO-AAE. We prove that both algorithms achieve order-optimal regret, which is $O\left(\sum_{i: \tilde{\Delta}_i > 0} \log T/\tilde{\Delta}_i \right)$, where $\tilde{\Delta}_i$ is the minimum suboptimality gap between the reward mean of arm i and any local optimal arm. In addition, a careful selection of the valuable information for cooperation, CO-AAE achieves a low communication complexity of $O(\log T)$. Last, numerical experiments verify the efficiency of both algorithms.

1 Introduction

Multi-armed bandits (MABs) [12, 35] fall into a well-established framework for learning under uncertainty that has been studied extensively since the 1950s after the seminal work of [33]. MABs have a broad range of applications including online shortest path routing, online advertisement, channel allocation, and recommender systems [11, 18, 25, 35]. In the basic MAB problem, a learner repeatedly pulls an arm in each round, and observes the reward/loss associated with the selected arm, but not those associated with others. The goal of the learner is to minimize regret, which compares the rewards/loss received by the learner to those accumulated by the best arm in hindsight.

Distributed MABs, which are extensions of basic MABs, have been studied extensively recently in different settings [4, 7, 16, 20, 21, 28–31, 34, 36, 39, 42]. Distributed bandits is well motivated by a broad range of application scenarios such as (1) large-scale learning systems [11], in domains such as...
online advertising and recommendation systems; (2) cooperative search by multiple robots [19, 26]; (3) applications in wireless cognitive radio [6, 13, 27, 28]; and distributed learning in geographically distributed communication systems, such as a set of IoT devices learning about the underlying environments [3, 8, 15, 22, 40]. Most prior work on multi-agent MABs assume that agents are homogeneous: all agents have full access to the set of all arms, and hence they solve the same instance of a MAB problem, with the aim to minimize the aggregate regret of the agents either in a competition setting [2, 6, 7, 9, 10, 13, 27, 28, 39], i.e., degraded or no-reward when multiple agents pull the same arm, or in a collaboration/cooperation setting [21, 23, 24, 31, 34, 39], where agents pulling the same arm observe independent rewards, and agents can communicate their observations to each other in order to improve their learning performance.

1.1 Distributed Bandits with Heterogeneous Agents

In this paper, we study a heterogeneous version of the cooperative multi-agent MAB problem in which the agents only have partial access to the set of arms. More formally, we study a multi-agent system with a set \(A = \{1, \ldots, M\} \) of agents and a set \(K = \{1, \ldots, K\} \) of arms. Agent \(j \in A \) has access to a subset \(K_j \subseteq K \) of arms. We refer to arms in \(K_j \) as local arms for agent \(j \). The heterogeneity of agent also appears in their learning capabilities that lead to different action rates; agent \(j \in A \) can pull an arm every \(1/\theta_j \) rounds, \(0 < \theta_j \leq 1 \). Here \(\theta_j \) is the action rate of agent \(j \). The goal of each agent is to learn the best local arm within its local set, and agents can share information on overlapping arms in their local sets to accelerate the learning process. In this model, we assume agents are fully connected and can truthfully broadcast their observed rewards to each other. We call this setup \textit{Action-constrained Cooperative Multi-agent MAB} (AC-CMA2B) and formally define it in Section 2.

1.2 Motivating Application

Cooperative multi-agent bandits have been well-motivated in the literature, and in the following, we motivate the heterogeneous-agent setting. Online advertisement is a classic application that is tackled using the bandit framework. In the online advertisement, the goal is to select an ad (arm) for a product or a search query, and the reward is the revenue obtained from ads. In the context of AC-CMA2B, consider a scenario that for a set of related products, a separate agent runs a bandit algorithm to select a high-reward ad for each product in the set. However, the set of available ads might have partial overlaps among multiple related products, i.e., different agents might have some overlapping arms. Hence, by leveraging the AC-CMA2B model, agents running different bandit algorithms can cooperate by sharing their observations to improve their performance. One may imagine similar cooperative scenarios for recommendation systems in social networks [34] where multiple learning agents in different social networks, e.g., Facebook, Instagram, cooperate to recommend posts from overlapping sets of actions. Even more broadly, the multi-agent version of classical bandit applications is a natural extension [41]. For example, in online shortest path routing problem [37, 43], as another classic example of bandit applications, multi-agent setting could capture the case in which the underlying network is large and each agent is responsible for routing within a sub-graph in the network. Last, it is also plausible that the to have asynchronous learning among different agents in the sense that each agent has its own action rate for decision making.
1.3 Contributions

The goal of this paper is to design cooperative algorithms with sublinear regret and low communication complexity. This is challenging since these two goals can be in conflict. Intuitively, with more information exchange, the agents can benefit from empirical observations made by others, resulting in an improved regret. However, this comes at the expense of additional communication complexity due to information exchange among agents. In this paper, we tackle AC-CMA2B by developing two cooperative bandit algorithms and analyze their regret and communication complexities. The contribution is summarized as follows.

First, to characterize the regret of our algorithms, we introduce \(\tilde{\Delta}_i \) as a customized notion of the suboptimality gap, which is unique to AC-CMA2B. Specifically, the parameter \(\tilde{\Delta}_i \), \(i \in K \) (see Equation (2) for the formal definition), measures the minimum gap between the mean reward of arm \(i \) and local optimal arms of agents including \(i \) in their local sets. Intuitively, \(\{\tilde{\Delta}_i\}_{i \in K} \) determine the “difficulty” of the bandit problem in a distributed and heterogeneous setting and appear in the regret bounds.

Second, we present two learning algorithms, CO-UCB and CO-AAE, which extend the Upper Confidence Bound algorithm and the Active Arm Elimination algorithm [17] to the cooperative setting, respectively. We use the notion of local suboptimality gap \(\tilde{\Delta}_i \) and characterize the regrets of CO-UCB and CO-AAE and show that both algorithms achieve a regrets of \(O \left(\sum_{i: \tilde{\Delta}_i > 0} \log T/\tilde{\Delta}_i^2 \right) \). By establishing a regret lower bound for AC-CMA2B, we show that the above regret is optimal. To the best of our knowledge, this is the first optimality result for distributed bandits in a heterogeneous setting. Even though both algorithms are order-optimal, the regret of CO-UCB is smaller than CO-AAE by a constant factor (see Theorems 2 and 4). This is also validated by our simulations in Section 5 with real data traces.

Last, we investigate the communication complexity of both algorithms, which measures the communication overhead incurred by the agents for cooperation to accelerate the learning process. In our work, communication complexity is defined to be the total number of messages, i.e., arm indices and observed rewards, exchanged by the agents. Our analysis shows that CO-UCB generally needs to send as much as \(O(M\Theta T) \) amount of messages, where \(\Theta \) is the aggregate action rate of all agents. Apparently, the communication complexity of CO-UCB is higher than that of CO-AAE, which is \(O \left(\sum_{i: \tilde{\Delta}_i > 0} \log T/\tilde{\Delta}_i^2 \right) \).

We note that the authors in [41] also tackle a cooperative bandit problem with multiple heterogeneous agents with partial access to a subset of arms and different action rates. However, in [41], the goal of each agent is to find the global optimal arm, while in this work, the goal of each agent is to find its local optimal arm. This difference leads to substantially different challenges in the algorithm design and analysis. More specifically, in [41], a foundational challenge is to find an effective cooperative strategy to resolve a dilemma between pulling local vs. external arms. This is not the case in AC-CMA2B since the goal is to find the best local action. In addition, in [41], the communication complexity of algorithms is not analyzed. Our paper, instead, focuses on designing cooperative strategies with low communication complexities.
2 Model and Preliminaries

2.1 System Model

We consider a cooperative multi-agent MAB (CMA2B) setting, where there is a set $\mathcal{A} = \{1, \ldots, M\}$ of independent agents, each of which has partial access to a global set $\mathcal{K} = \{1, \ldots, K\}$ of arms. Let $\mathcal{K}_j \subseteq \mathcal{K}, \mathcal{K}_j = |\mathcal{K}_j|$, be the set of arms available to agent $j \in \mathcal{A}$. Associated with arms are mutually independent sequences of i.i.d. rewards, taken to be Bernoulli with mean $0 \leq \mu(i) \leq 1, i \in \mathcal{K}$. We assume that the local sets of some agents overlap so that cooperation among agents makes sense.

In addition to differences in their access to arms, agents also differ in their decision making capabilities. Specifically, considering decision rounds $\{1, \ldots, T\}$, agent j can pull an arm every $\omega_j \in \mathbb{N}^+$ rounds, i.e., decision rounds for agent j are $t = \omega_j, 2\omega_j, \ldots, N_j\omega_j$, where $N_j = \lfloor T/\omega_j \rfloor$. Parameter ω_j represents the inter-round gap of agent j. For simplicity of analysis, we define $\theta_j := 1/\omega_j$ as the action rate of agent j. Intuitively, the larger θ_j, the faster agent j can pull arms.

We assume that all agents can communicate with all other agents. Hence every time an agent pulls an arm, it can broadcast the arm index and the reward received to any other agent. However, there is a deterministic communication delay, d_{j_1,j_2}, between any two agents, j_1 and j_2, measured in units of decision rounds.

2.2 Performance Metrics

At each decision round, agent j can pull an arm from \mathcal{K}_j. The goal of each agent is to learn the best local arm. The regret of agent j is defined as

$$
R_j^T := \mu(i_j^*)N_j - \sum_{t \in \{k\omega_j : k = 0, 1, \ldots, N_j\}} x_t(I_t^j),
$$

where i_j^* is the local optimal arm in \mathcal{K}_j, $I_t^j \in \mathcal{K}_j$ is the action taken by agent j at round t, and $x_t(I_t^j)$ is the realized reward.

Without loss of generality, we assume that the local sets of at least two agents overlap, i.e., $\exists j, j' \in \mathcal{A} : \mathcal{K}_j \cap \mathcal{K}_{j'} \neq \emptyset$ and the overall goal is to minimize aggregate regret of all agents, i.e., $R_T = \sum_{j \in \mathcal{A}} R_j^T$.

In addition, it is costly to transmit messages in some practical networks. To measure the communication overhead of an algorithm in AC-CMA2B, we simply assume that each message contains enough bits to transmit the index of an arm or an observation on the reward, and similar to [38, 39], the communication complexity, denoted as C_T, is defined to be the total number of messages sent by all agents in $[1, T]$.

2.3 Additional Notations and Terminologies

To facilitate our algorithm design and analysis, we introduce the following notations. By \mathcal{A}_i, we denote set of agents that can access arm i, i.e., $\mathcal{A}_i := \{j \in \mathcal{A} : i \in \mathcal{K}_j\}$. By \mathcal{A}_i^*, we denote the set of agents whose optimal local arm is i, i.e., $\mathcal{A}_i^* := \{j \in \mathcal{A}_i : \mu_i \geq \mu_{i'}, \text{ for } i' \in \mathcal{K}_j\}$. Note that \mathcal{A}_i^* may be empty. Moreover, let $\mathcal{A}_{-i}^* = \mathcal{A}_i^*/\mathcal{A}_i^*$ be the set of agents including i as a suboptimal arm. Finally, let M_i, M_{i^*}, and M_{-i} be the sizes of \mathcal{A}_i, \mathcal{A}_{i^*}, and \mathcal{A}_{-i} respectively.
By $\Delta(i, i')$, we denote the difference in the mean rewards of arms i and i', i.e., $\Delta(i, i') := \mu(i) - \mu(i')$. Specifically, $\Delta(i^*, i)$ written as $\tilde{\Delta}_i$, which is known as the sumpoptimality gap in the basic bandit problem. In additional to this standard definition, we introduce a CMA2B-specific version of the suboptimality gap, denoted by $\tilde{\Theta}_i$ as follows

$$\tilde{\Theta}_i := \sum_{j \in A} \theta_j,$$

Last, we define Θ and Θ_i, $i \in K$, as follows.

$$\Theta := \sum_{j \in A} \theta_j, \quad \text{and} \quad \Theta_i := \sum_{j \in A_i} \theta_j.$$

Remark 1 Both $\tilde{\Delta}_i$ and Θ_i play key roles in characterizing the regret bounds of an algorithm in AC-CMA2B. Specifically, $\tilde{\Delta}_i$ measures the minimum gap of the reward mean between the local optimal arm of agents in A_{-i} and arm i, and Θ_i measures the aggregate action rate of agents in A_i, and roughly the larger the Θ_i, the higher the rate at which arm i could be pulled by the set of agents that belongs to, i.e., A_i.

3 Algorithms

In AC-CMA2B, each agent has to identify the optimal local optimal arm and the learning process can be improved by communicating with the other agents with common arms. The traditional challenge for MAB comes from the exploration-exploitation dilemma. In AC-CMA2B, the agents have to resolve this by designing learning algorithms with low regret and low communication complexity. The heterogeneity in action rates and access to the decision set exacerbates the design and analysis of cooperative learning algorithms for AC-CMA2B. In this section, we present two algorithms: CO-UCB and CO-AAE. CO-UCB generalizes the classic Upper Confidence Bound algorithm that achieves good regret but incurs high communication complexity. CO-AAE borrows the idea of the arm elimination strategy but incorporates a novel communication strategy tailored to reduce communication complexity. In Section 4, we derive a regret lower bound for AC-CMA2B, analyze regrets and communication complexities for both algorithms, show the optimality of the regrets for both algorithms, and show that CO-AAE achieves low communication complexity.

3.1 Confidence Interval

Both CO-UCB and CO-AAE use confidence of the mean rewards to make decisions. A simple introduction on the confidence interval is provided below. In AC-CMA2B, each agent can compute empirical mean rewards of the arms. For arm $i \in K$ with n observations, the mean reward is denoted as $\hat{\mu}(i, n)$, which is the average of the n observations on arm i. With these observations, we can compute a confidence interval for the true mean reward. Specifically, the confidence interval for arm i and agent j at time t centers its estimated mean value, $\hat{\mu}(i, n)$, and its width is defined as

$$\text{CI}(i, j, t) := \sqrt{\frac{1}{2n_i^j(t)}},$$

In the algorithm pseudocode, we drop t and j from the notations $n_i^j(t)$ and $\hat{\mu}(i, n_i^j(t))$ for brevity, and simplify them as \hat{n}_i^j and $\hat{\mu}(i)$, respectively. The precise notation, however, is used in analysis.
Algorithm 1 The CO-UCB Algorithm for Agent j

1: **Initialization:** $n(i) = 0$, $\hat{\mu}(i)$, $i \in K_j$; $\alpha > 2$, δ_t.
2: **for** each decision round $t = l/\theta_j$ ($l \in \{1, \ldots, N_j\}$) **do**
3: Pull arm I_j^t with the highest upper confidence bound
4: Increase $\hat{n}(I_j^t)$ by 1
5: Update the empirical mean value of $\hat{\mu}(I_j^t)$
6: Broadcast $x_t(I_j^t)$ to other agents which contains arm I_j^t
7: **end for**
8: **for** each newly received $x_t(i)$, $i \in K_j$ from the past decision round **do**
9: Execute Lines (4)-(5)
10: **end for**

where $\hat{n}_t^j(i)$ is the total number of observations (including both local observations and those received from other agents) of arm i available to agent j by time t (observations made in time slots from 1 to $t - 1$). Here $\delta_t > 0$ and $\alpha > 2$ are parameters of the confidence interval. Consequently, we build the following confidence interval for arm $i \in K$:

$$\mu(i) \in \left[\hat{\mu}(i, \hat{n}_t^j(i)) - CI(i, j, t), \hat{\mu}(i, \hat{n}_t^j(i)) + CI(i, j, t)\right],$$

where $\mu(i)$ satisfies the upper (or lower) bound with probability at least $1 - \delta^\alpha_t$ ($0 < \delta_t \leq 1$ is a specified parameter at time slot t). One can refer to [12] for a detailed analysis of the above confidence interval.

3.2 CO-UCB: Cooperative Upper Confidence Bound Algorithm

In this subsection, we present CO-UCB, a cooperative bandit algorithm for the AC-CMA2B model. According to CO-UCB, each agent selects the arm with the largest upper confidence bound. For agent j, there is

$$I_j^t = \max_{i \in K} \hat{\mu}(i, \hat{n}_t^j(i)) + CI(i, j, t).$$

With each observation received from the selected arm or other agents, CO-UCB updates the mean reward estimate and the upper confidence bound. In the meantime, each observation received from local arms are broadcast to other agents that contain the corresponding arm in their local sets. Details of CO-UCB are summarized in Algorithm [1].

3.3 CO-AAE: Cooperative Active Arm Elimination Algorithm

CO-AAE is independently executed by each agent and is summarized as Algorithm [2]. By maintaining the confidence intervals of local arms, CO-AAE maintains a candidate set to track the arms likely to be the optimal local arm. The candidate set is initially the entire local set, and when the confidence interval of an arm comes to lie below that of another arm, the arm is removed from the candidate set. During execution, CO-AAE selects the arm with the fewest observations from the candidate set. With the introduction of the candidate set, CO-AAE avoids sending messages regarding low-reward arms resulting in a lower communication complexity than CO-UCB. Details are introduced below.

Selection Policy for Local Arms Now we present details on constructing the candidate set for agent j. The candidate set of j originally contains all arms in K_j. Then, CO-AAE eliminates those
Algorithm 2 The C0–AAE Algorithm for Agent j

1: Initialization: $\hat{n}(i) = 0, \hat{\mu}(i), i \in \mathcal{K}_j; \alpha > 2, \delta_t.$
2: for each received $x_{\tau}(i), \tau < t, i \in \mathcal{K}_j$ for past rounds do
3: Execute Lines (7)-(11)
4: end for
5: for each decision round $t = l/\theta_j (l \in \{1, \ldots, N_j\})$ do
6: Pull arm I^j_t from the candidate set as constructed in Equation (4) with the least observations
7: Increase $\hat{n}(I^j_t)$ by 1 and update the empirical mean value, $\hat{\mu}(I^j_t)$
8: Reconstruct the candidate set based on the updated values of $\hat{n}(I^j_t)$ and $\hat{\mu}(I^j_t)$ by using Equation (4)
9: if one arm is eliminated then
10: Broadcast the indices of eliminated arms to other agents
11: end if
12: if the candidate set contains more than 1 arms then
13: Broadcast $x_{t}(I^j_t)$ to other agents whose candidate set contains arm I^j_t and has more than one arms
14: end if
15: end for

arms whose confidence intervals lie below those of other arms without further consideration, and keeps the rest in a dynamic candidate set of arms. Specifically, the candidate set $C_{j,t}$ is defined in (4).

$$C_{j,t} := \left\{ i \in \mathcal{K}_j : \hat{\mu}(i, \hat{n}^j_t(i)) + \text{cint}(i, j, t) \geq \hat{\mu}(i', \hat{n}^j_t(i)) - \text{cint}(i, j, t), \text{ for any } i' \in \mathcal{K}_j \right\}. \quad (4)$$

The agent updates the candidate set after pulling an arm and each time it receives an observation from another agent. Note that communication delays and agent action rates are heterogeneous. Hence, the recorded number of observations and empirical mean rewards vary among agents. To balance the number of observations among different local arms, the agent at each time slot pulls the arm within its local candidate set with the least number of observations.

Communication Policy In order to reduce the communication complexity, it is also crucial for C0–AAE to decide how to share information among different agents. During the execution of C0–AAE, each agent updates its candidate set with its received observations. When an arm is eliminated from an agent’s candidate set, the agent will broadcast the index of the eliminated arm, such that all agents can track the candidate sets in others. In the following, we will introduce a novel communication policy tailored for the C0–AAE algorithm. The communication policy of C0–AAE generally follows the following two rules.

1. An agent only broadcasts observations to the agents whose candidate set has more than one arms and contains the corresponding arms.
2. When there is only one arm in the candidate set, the agent will also broadcast any observations to other agents.

By the first rule, the communication policy can avoid transmitting redundant observations to the agents which have finished the learning task or have only one arm in their candidate sets. In addition, the second rule can prevent the “fast” agents which quickly eliminated suboptimal arms from sending too many observations to the “slow” agents containing the arms whose means are close to the local optimal arm. Otherwise, sending too many observations on those arms to “slow” agents may incur $O(T)$ communication complexity in the extreme case.
Remark 2 The above communication policy can be easily implemented in practical systems and
work efficiently in a fully distributed environment without knowing the parameters of other agents,
such as action rates. Previous communication policies in distributed bandits, such as those in
[31, 39] etc., require a centralized coordinator, which is difficult to implement in our heterogeneous
setting. We also note that, the above communication policy is not applicable to CO-UCB, since each
agent fails to send out explicit signals on suboptimal arms.

4 Theoretical Results

In this section, we present our results for CO-UCB and CO-AAE, respectively. For AC-CMA2B, a
theoretical challenge is to characterize the regret bounds with respect to the constraint that agents
can only pull arms from predetermined and possibly overlapping sets of arms. This challenge can
be tackled by incorporating the agent-specific suboptimality gaps introduced in [2] into the regret
analysis. In this section, we provide upper and lower bounds for the regrets in the AC-CMA2B setting,
which all depend on the agent-specific suboptimality gaps $\tilde{\Delta}_i$. Also, in this section, by policy, we
mean the way that each agent determines which arm should be selected in each decision round. Proofs are given in Section A.

4.1 An Overview of Our Results

Let $KL(u, v)$ be the Kullback-Leibler divergence between a Bernoulli distribution with parameters
of u and v, i.e., $KL(u, v) = u \log(u/v) + (1 - u) \log((1 - u)/(1 - v))$.

Theorem 1 (Regret Lower Bound for AC-CMA2B) Consider a case where $\theta_j = O(1)$ for $j \in \mathcal{A}$ and
a policy that satisfies $E[n_T(i)] = o(T^a)$ for any set of Bernoulli reward distributions, any arm i
with $\tilde{\Delta}_i > 0$, and any $a > 0$. Then, for any set of Bernoulli reward distributions, the expected
regret for any algorithm satisfies

$$\liminf_{T \to \infty} \frac{E[R_T]}{\log T} \geq \sum_{i: \tilde{\Delta}_i > 0} \frac{\tilde{\Delta}_i}{KL(\mu_i, \mu_i + \tilde{\Delta}_i)}.$$

The proof leverages the similar techniques of the classical result for the basic stochastic bandits [22]
and is given in Subsection A.1. We proceed to introduce the following notations to facilitate the
presentation of the regret bounds for both algorithms. We define

$$q_1 := 2 \sum_{j \in \mathcal{A}} \sum_{l=1}^{N_j} \sum_{i \in \mathcal{K}_j} \frac{l\Theta_i}{\theta_j} \delta_{l/\theta_j},$$

$$f_i(\delta) := \sum_{j \in \mathcal{A}_i} \min \left\{ d_j \theta_j, \frac{2\alpha \log \delta^{-1}}{\Delta^2(i^*_j, i)} \right\},$$

where $\alpha > 2$, δ_{l/θ_j} are parameters specified by the proposed algorithms, and $\delta := \max_i \delta_{l/\theta_j}$.

Theorem 2 (Expected regret of CO-UCB) With $\alpha > 2$, the expected regret of the CO-AAE algorithm
satisfies

$$E[R_T] \leq \sum_{i: \tilde{\Delta}_i > 0} \left(\frac{6\alpha \log \delta^{-1}}{\tilde{\Delta}_i} + q_1 + f_i(\delta) \right).$$
By setting $\delta_t = 1/t$, we have
\[
2 \sum_{j \in A} \sum_{l=1}^{N_j} \sum_{i \in K_j} \frac{l \Theta_i}{\theta_j} \delta_l^{\alpha} \theta_j = 2 \sum_{j \in A} \sum_{l=1}^{N_j} \sum_{i \in K_j} \Theta_i \left(\frac{1}{l \theta_j} \right)^{\alpha - 1}
\]
\[
\leq 2 \sum_{j \in A} \sum_{l=1}^{N_j} \Theta_j \left(\frac{1}{l \theta_j} \right)^{\alpha - 1} \leq \frac{2}{\alpha - 2} \sum_{j \in A} \Theta_j^{\alpha - 1}.
\]

We define
\[
q_2 := \frac{2}{\alpha - 2} \sum_{j \in A} \Theta_j^{\alpha - 1}.
\]

Applying the above results and definitions to Theorem 2 yields the following corollary.

Corollary 1 With $\delta_t = 1/t$ and $\alpha > 2$, the CO-UCB algorithm attains the following expected regret
\[
\mathbb{E}[R_T] \leq \sum_{i : \tilde{\Delta}_i > 0} \left(\frac{6 \alpha \log T}{\Delta_i} + f_i \left(\frac{1}{T} \right) + 1 \right) + q_2.
\]

In addition to regret, we are also interested in the communication complexity of CO-UCB. For simplicity, we assume that one message is needed to send an observation from an agent to another one. The total number observations made by all agents is ΘT. Then, broadcasting an observation on arm i to all other agents incurs at most M communications complexity. Hence, the total communication complexity of CO-UCB is $O(M \Theta T)$, which is formally summarized in the following theorem.

Theorem 3 (Communication complexity of CO-UCB) The communication complexity of CO-UCB is $O(M \Theta T)$.

Now, we proceed to present the regret and communication complexity of CO-AAE. Similarly, we define
\[
g_i(\delta) := \sum_{j \in A_i} \min \left\{ d_j \theta_j, \frac{8 \alpha \log \delta^{-1}}{\Delta^2(i^*, i)} \right\}.
\]

We have the following theorem and corollary showing the expected regret of CO-AAE.

Theorem 4 (Expected regret for CO-AAE) With $\alpha > 2$, the expected regret of the CO-AAE algorithm satisfies
\[
\mathbb{E}[R_T] \leq \sum_{i : \tilde{\Delta}_i > 0} \left(\frac{24 \alpha \log \delta^{-1}}{\Delta_i} + q_1 + g_i(\delta) + 1 \right).
\]

Corollary 2 With $\alpha > 2$ and $\delta_t = 1/t$, the CO-AAE algorithm attains the following expected regret
\[
\mathbb{E}[R_T] \leq \sum_{i : \tilde{\Delta}_i > 0} \left(\frac{24 \alpha \log T}{\Delta_i} + g_i \left(\frac{1}{T} \right) + 1 \right) + q_2.
\]
Theorem 5 (Communication complexity of CO-AAE) Let $\delta_t = 1/t$ and $\alpha > 2$. The communication complexity of CO-AAE satisfies

$$C_T \leq \sum_{i \in K} \left(\frac{8 \log T}{\Delta_i^2} + \sum_{j \in A^*_i} d_j \theta_j + q_2 + 1 \right) (M + M_i).$$

4.2 Discussions

Regret Optimality of Proposed Algorithms The first observation regarding Corollary 1 and 2 is that the regrets linearly depend on the delay when it is not too large. Generally, $f_i(1/T)$ and $g_i(1/T)$ relate to the number of outstanding observations that have not yet arrived. Considering the fact that $\theta_j \leq 1$, and $\text{KL}(\mu_i, \mu_i + \tilde{\Delta}_i)$ satisfies

$$2 \tilde{\Delta}_i^2 \leq \text{KL}(\mu_i, \mu_i + \tilde{\Delta}_i) \leq \tilde{\Delta}_i^2 (\mu(i) + \tilde{\Delta}_i)(1 - \mu(i) - \tilde{\Delta}_i),$$

one can easily observe that both regrets match the regret lower bound when delays are bounded by a constant.

Comparison with Policies without Cooperation Without cooperation, we can build up a lower bound for the regret of each agent j by Theorem 2.2 in [12], that is

$$\liminf_{T \to \infty} \frac{E \left[R_j^T \right]}{\log T} \geq \sum_{i \in K : \Delta(i^*_j, i) > 0} \frac{\Delta(i^*_j, i)}{\text{KL}(\mu_i, \mu_i + \Delta(i^*_j, i))}.$$

Combined with Equation (5), the best regret that any non-cooperative algorithm can achieve for the integrated system is not better than

$$\sum_{j \in A^*_i} \sum_{i \in K : \Delta(i^*_j, i) > 0} \frac{\log T}{\Delta(i^*_j, i)} = \sum_{i \in K} \sum_{j \in A^*_i} \frac{\log T}{\Delta(i^*_j, i)}.$$

Note that, with bounded delays, the regret upper bound of either CO-UCB or CO-AAE is $O \left(\sum_{i : \Delta_i > 0} \log T / \tilde{\Delta}_i \right)$. By the definition of $\tilde{\Delta}_i$ in Equation (2), we have

$$O \left(\sum_{i \in K} \sum_{j \in A^*_i} \frac{\log T}{\Delta(i^*_j, i)} \right) \geq O \left(\sum_{i : \Delta_i > 0} \frac{\log T}{\tilde{\Delta}_i} \right).$$

To conclude, a non-cooperative strategy will have a much larger regret than CO-UCB and CO-AAE, especially when the number of agents is large.

Comparison in a Special Case without Action Constraints Theorem 2 and 4 show that the regret upper bounds depend on the new suboptimality parameter $\tilde{\Delta}_i$, which measures the minimum gap between arm i and the local optimal arm. Intuitively, the closer the expected reward of the local optimal arm to that of the global optimal arm, the smaller the regret will be. Specifically, in
the special case where each agent can access the global arm set and delays are bounded, we have \(\tilde{\Delta}_i = \Delta_i \) and thus the expected regret of either CO-UCB or CO-AAE becomes \(O \left(\sum_{i \in K} (\alpha \log T) / \Delta_i \right) \). In the basic bandit model, a learning algorithm suffers a similar regret lower bound that depends on \(\Delta_i \), i.e.,

\[
\liminf_{T \to \infty} \frac{\mathbb{E}[R_T]}{\log T} \geq \sum_{i: \Delta_i > 0} \frac{\Delta_i}{\kappa i}.
\]

Thus, by assuming a constant delay and \(\Theta \), the regret matches the lower bound in the special case.

Performance with Large Delays We take CO-AAE as an example. In the extreme case where the maximum delay is arbitrarily large, the regret bound given in Corollary 1 becomes

\[
\mathbb{E}[R_T] \leq \sum_{i: \tilde{\Delta}_i > 0} \left(\frac{16\alpha \log T}{\Delta_i} + \sum_{j' \in A_i} \frac{8\alpha \log T}{\Delta(i_{j'}, i)} \right) + q_2 + K
\]

\[
= \sum_{i: \Delta_i > 0} \frac{16\alpha \log T}{\Delta_i} + \sum_{j \in A_i} \sum_{i \in K} \frac{8\alpha \log T}{\Delta(i_{j}, i)} + q_2 + K,
\]

where the second term dominates and the above regret matches that of non-cooperative learning algorithms.

Communication Complexity The regrets of CO-UCB and CO-AAE both drop the heavy dependency on the number of agents, but they incur much different communication overheads. By our results, CO-AAE possesses much lower communication complexity than CO-UCB, which is \(O \left(\sum_{i \in K} (M \alpha \log T) / \tilde{\Delta}_i^2 \right) \). We leave it as an open problem to design the algorithm which simultaneously attains the lowest communication complexity and the regret independent of the number of agents.

5 Numerical Experiments

In this section, we illustrate the performance of our proposed algorithms for the AC-CMA2B settings through numerical experiments. For AC-CMA2B, our goal is to evaluate the performance of CO-UCB and CO-AAE, including regret and communication complexity, and compare them to that of non-cooperative algorithms where each agent uses only its local observations to find the best arm. Then, we investigate the impact of communication delay on the performance of proposed algorithms in AC-CMA2B.

5.1 Overview of Setup

We assume there are \(K = 100 \) arms with Bernoulli rewards with average rewards uniformly randomly taken from Ad-Clicks \[1\]. In experiments, we report the cumulative regret after 30,000 rounds, which corresponds to the number of decision rounds of the fastest agent. All reported values are averaged over 10 independent trials and standard deviations are plotted as shaded areas. The allocation of arms to agents and number of agents differ in each experiment as explained in the corresponding sections.
Figure 1: Simulation results for AC-CMA2B with different number of agents in the system.

5.2 Experimental Results

Experiment 1 In the first experiment, we fix the total number of arms to \(K = 20 \), and fix the number of arms per agent to \(|K_j| = 6, j \in \mathcal{A} \). We further vary the number of agents from \(M = 5 \) (light overlap) to \(M = 105 \) (heavy overlap), with step size of 20.

The results are shown in Figure 1. We see the observation of better performance of CO-UCB and CO-AAE as compared to IND-UCB and IND-AAE. Figure 1(a) shows a rapid increase in the cumulative regret of non-cooperative algorithms, while that of the cooperative algorithms remains the same despite the increase in the number of agents when the number of agents is larger than 65. Figure 1(b) depicts almost no change in the average per-agent regret of IND-UCB and IND-AAE, and a significant decrease for that of CO-UCB and CO-AAE, that is due to greater overlap in the local arm sets.

Figure 1(c) shows an increase of communication overheads for both CO-UCB and CO-AAE. Specifically, the CO-AAE algorithm incurs much lower communication overhead than CO-UCB in all experiments, validating our results in Theorem 3 and 5. In addition, another important observation is that, with more agents, the communication overheads for both algorithms increase more and more quickly. That is because, when there are more agents, there will be more possibility for agents to cooperate, with more observations exchanged on common arms.
Experiment 2 In the second experiment, we set $K = 100$ arms, and $M = 10$ agents, and vary the number of arms in each agent j from $|K_j| = 10$ with no overlap, to four partially overlapped cases, i.e., $|K_j| = \{30, 50, 70, 90\}$, to $|K_j| = 100$ which represents the complete overlap. The cumulative regret at 30000 rounds for five cases are reported in Figure 2(a). Figure 2(a) shows that cooperative algorithms significantly outperform non-cooperative algorithms in general cases. One can see the gap between the performance of cooperative and non-cooperative algorithms increases as the overlap increases. This observation depicts that CO-UCB and CO-AAE benefits from cooperation.

Experiment 3 Last, we investigate the performance of the cooperative algorithm with different delays and take CO-AAE as an example. Toward this, we consider three additional scenarios with average delays of 1000, 3000 and 5000 slots. At each time slot, the exact delay is taken uniformly randomly in a given region. In Figure 2(b), we report the evolution of cumulative regret of CO-AAE. The results show that the regret of CO-AAE for AC-CMA2B increases and approaches the regret of IND-AAE as the delay increases.

6 Conclusion

In this paper, we study the cooperative stochastic bandit problem with heterogeneous agents, with two algorithms, CO-UCB and CO-AAE proposed. Both algorithms attain the optimal regret, which is independent of the number of agents. However, CO-AAE outperforms CO-UCB in communication complexity: CO-AAE needs to send $O\left(\sum_{i \in K}(Ma \log T)/(\hat{\Delta}_i^2)\right)$ amount of messages, while the communication complexity of CO-UCB is $O(M\Theta T)$. This paper also motivates several open questions. A promising and practically relevant work is to design the algorithm which simultaneously attains the lowest communication complexity and the regret independent of the number of agents.

References

[1] Kaggle avito context ad clicks 2015. [https://www.kaggle.com/c/avito-context-ad-clicks].

[2] A. Anandkumar, N. Michael, A. K. Tang, and A. Swami. Distributed algorithms for learning and cognitive medium access with logarithmic regret. IEEE Journal on Selected Areas in Communications, 29(4):731–745, 2011.

[3] O. Avner and S. Mannor. Multi-user lax communications: a multi-armed bandit approach. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, pages 1–9. IEEE, 2016.

[4] M. Bande, A. Magesh, and V. V. Veeravalli. Dynamic spectrum access using stochastic multi-user bandits. IEEE Wireless Communications Letters, 10(5):953–956, 2021.

[5] D. Basu, C. Dimitrakakis, and A. Y. Tossou. Privacy in multi-armed bandits: Fundamental definitions and lower bounds. arXiv:1905.12298v2, 2019.

[6] L. Besson and E. Kaufmann. Multi-player bandits revisited. In Algorithmic Learning Theory, pages 56–92. PMLR, 2018.

[7] I. Bistritz and A. Leshem. Distributed multi-player bandits-a game of thrones approach. In Advances in Neural Information Processing Systems, pages 7222–7232, 2018.
[8] R. Bonnefoi, L. Besson, C. Moy, E. Kaufmann, and J. Palicot. Multi-armed bandit learning in iot networks: Learning helps even in non-stationary settings. In International Conference on Cognitive Radio Oriented Wireless Networks, pages 173–185. Springer, 2017.

[9] E. Boursier, E. Kaufmann, A. Mehrabian, and V. Perchet. A practical algorithm for multiplayer bandits when arm means vary among players. In AISTATS 2020, 2020.

[10] E. Boursier and V. Perchet. Sic-mmab: synchronisation involves communication in multiplayer multi-armed bandits. In Advances in Neural Information Processing Systems, pages 12071–12080, 2019.

[11] G. Bresler, D. Shah, and L. F. Voloch. Collaborative filtering with low regret. In Proceedings of the 2016 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Science, pages 207–220, 2016.

[12] S. Bubeck, N. Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Foundations and Trends® in Machine Learning, 5(1):1–122, 2012.

[13] S. Bubeck, Y. Li, Y. Peres, and M. Sellke. Non-stochastic multi-player multi-armed bandits: Optimal rate with collision information, sublinear without. In Conference on Learning Theory, pages 961–987, 2020.

[14] N. Cesa-Bianchi, T. Cesari, and C. Monteleoni. Cooperative online learning: Keeping your neighbors updated. In Algorithmic Learning Theory, pages 234–250. PMLR, 2020.

[15] S. J. Darak and M. K. Hanawal. Multi-player multi-armed bandits for stable allocation in heterogeneous ad-hoc networks. IEEE Journal on Selected Areas in Communications, 37(10):2350–2363, 2019.

[16] A. Dubey and A. Pentland. Cooperative multi-agent bandits with heavy tails. In Proc. of ICML, 2020.

[17] E. Even-Dar, S. Mannor, and Y. Mansour. Action elimination and stopping conditions for the multi-armed bandit and reinforcement learning problems. Journal of machine learning research, 7(Jun):1079–1105, 2006.

[18] J. Jiang, R. Das, G. Ananthanarayanan, P. A. Chou, V. Padmanabhan, V. Sekar, E. Dominique, M. Goliszewski, D. Kukoleca, R. Vafin, et al. Via: Improving internet telephony call quality using predictive relay selection. In Proceedings of the 2016 ACM SIGCOMM Conference, pages 286–299, 2016.

[19] L. Jin, S. Li, L. Xiao, R. Lu, and B. Liao. Cooperative motion generation in a distributed network of redundant robot manipulators with noises. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(10):1715–1724, 2017.

[20] D. Kalathil, N. Nayyar, and R. Jain. Decentralized learning for multiplayer multiarmed bandits. IEEE Transactions on Information Theory, 60(4):2331–2345, 2014.

[21] R. K. Kolla, K. Jagannathan, and A. Gopalan. Collaborative learning of stochastic bandits over a social network. IEEE/ACM Transactions on Networking, 26(4):1782–1795, 2018.

[22] T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in applied mathematics, 6(1):4–22, 1985.

[23] P. Landgren, V. Srivastava, and N. E. Leonard. Distributed cooperative decision-making in multiarmed bandits: Frequentist and bayesian algorithms. In 2016 IEEE 55th Conference on Decision and Control (CDC), pages 167–172. IEEE, 2016.

[24] P. Landgren, V. Srivastava, and N. E. Leonard. Social imitation in cooperative multiarmed bandits: partition-based algorithms with strictly local information. In 2018 IEEE Conference on Decision and Control (CDC), pages 5239–5244. IEEE, 2018.
[25] J. Langford and T. Zhang. The epoch-greedy algorithm for contextual multi-armed bandits. In Proceedings of the 20th International Conference on Neural Information Processing Systems, pages 817–824. Citeseer, 2007.

[26] S. Li, R. Kong, and Y. Guo. Cooperative distributed source seeking by multiple robots: Algorithms and experiments. IEEE/ASME Transactions on mechatronics, 19(6):1810–1820, 2014.

[27] K. Liu and Q. Zhao. Decentralized multi-armed bandit with multiple distributed players. In 2010 Information Theory and Applications Workshop (ITA), pages 1–10. IEEE, 2010.

[28] K. Liu and Q. Zhao. Distributed learning in multi-armed bandit with multiple players. IEEE Transactions on Signal Processing, 58(11):5667–5681, 2010.

[29] A. Magesh and V. V. Veeravalli. Multi-user mabs with user dependent rewards for uncoordinated spectrum access. In 2019 53rd Asilomar Conference on Signals, Systems, and Computers, pages 969–972. IEEE, 2019.

[30] A. Magesh and V. V. Veeravalli. Decentralized heterogeneous multi-player multi-armed bandits with non-zero rewards on collisions. IEEE Transactions on Information Theory, 2021.

[31] D. Martínez-Rubio, V. Kanade, and P. Rebeschini. Decentralized cooperative stochastic bandits. In Advances in Neural Information Processing Systems, pages 4529–4540, 2019.

[32] S. McQuade and C. Monteleoni. Global climate model tracking using geospatial neighborhoods. In Proc. of AAAI, 2012.

[33] H. Robbins. Some aspects of the sequential design of experiments. Bulletin of the American Mathematical Society, 58(5):527–535, 1952.

[34] A. Sankararaman, A. Ganesh, and S. Shakkottai. Social learning in multi agent multi armed bandits. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 3(3):1–35, 2019.

[35] A. Slivkins. Introduction to multi-armed bandits. arXiv preprint arXiv:1904.07272, 2019.

[36] B. Szorenyi, R. Busa-Fekete, I. Hegedus, R. Ormándi, M. Jelasity, and B. Kégl. Gossip-based distributed stochastic bandit algorithms. In International Conference on Machine Learning, pages 19–27, 2013.

[37] M. S. Talebi, Z. Zou, R. Combes, A. Proutiere, and M. Johansson. Stochastic online shortest path routing: The value of feedback. IEEE Transactions on Automatic Control, 63(4):915–930, 2017.

[38] Y. Wan, W.-W. Tu, and L. Zhang. Projection-free distributed online convex optimization with $o(\sqrt{T})$ communication complexity. In International Conference on Machine Learning, pages 9818–9828. PMLR, 2020.

[39] P.-A. Wang, A. Proutiere, K. Ariu, Y. Jedra, and A. Russo. Optimal algorithms for multiplayer multi-armed bandits. In International Conference on Artificial Intelligence and Statistics, pages 4120–4129, 2020.

[40] W. Xia, T. Q. Quek, K. Guo, W. Wen, H. H. Yang, and H. Zhu. Multi-armed bandit based client scheduling for federated learning. IEEE Transactions on Wireless Communications, 2020.

[41] L. Yang, Y.-Z. J. Chen, S. Pasteris, M. Hajiesmaili, J. Lui, D. Towsley, et al. Cooperative stochastic bandits with asynchronous agents and constrained feedback. Advances in Neural Information Processing Systems, 34, 2021.

[42] M.-J. Youssef, V. V. Veeravalli, J. Farah, C. A. Nour, and C. Douillard. Resource allocation in noma-based self-organizing networks using stochastic multi-armed bandits. IEEE Transactions on Communications, 69(9):6003–6017, 2021.

[43] Z. Zou, A. Proutiere, and M. Johansson. Online shortest path routing: The value of information. In 2014 American Control Conference, pages 2142–2147. IEEE, 2014.
A Proofs

To facilitate our analysis, we define \(n^j_t(i) \) as the number of times agent \(j \) observes arm \(i, i \in \mathcal{A}_j \), up to time slot \(t \), and \(n_t(i) \) is the total number of observations on arm \(i \) by pulling it locally. Indeed, we have \(n_t(i) = \sum_j n^j_t(i) \). Note that in the algorithm design, we also define \(\hat{n}^j_t(i) \) as the total number of observations of arm \(i \) for agent \(j \) either by pulling locally, or by receiving the information from other agents.

A.1 A Proof of Theorem 1

The techniques for the proof of the lower bound in the basic setting have been investigated extensively and can be applied to AC-CMA2B by slight modification. For the completion of analysis, we provide the details as follows. Let us define \(\mathcal{E}_K \) as the class of \(K \)-armed AC-CMA2B where each arm has a Bernoulli reward distribution. Assume that policy \(\pi \) is consistent over \(\mathcal{E}_K \), i.e., for any bandit problem \(\nu \in \mathcal{E}_K \) and any \(\sigma > 0 \), whose regret satisfies

\[
R_T(\pi, \nu) = O((T \Theta)^\sigma), \quad T \to +\infty.
\]

Let \(\nu = [P_1, P_2, \ldots, P_K] \) and \(\nu' = [P'_1, P'_2, \ldots, P'_K] \) be two reward distributions such that \(P_k = P'_k \) except for \(k = i \), where \(i \) is a sub-optimal arm for all agents. Specifically, we choose \(P'_i = N(\mu_i + \lambda) \) and \(\lambda > \Delta_i \). For stochastic bandits, we have the following divergence decomposition equation (one can refer to \([5]\) for more details).

\[
\text{KL}(\mathbb{P}_{\nu, \pi}, \mathbb{P}_{\nu', \pi}) = \mathbb{E}_{\nu, \pi}[n_T(i)] \text{KL}(P_i, P'_i),
\]

where \(\mathbb{P}_{\nu, \pi} \) is the distribution of \(T \)-round action-reward histories induced by the interconnection between policy \(\pi \) and the environment \(\nu \), and \(\text{KL}(\mathbb{P}_{\nu, \pi}, \mathbb{P}_{\nu', \pi}) \) measures the relative entropy between \(\mathbb{P}_{\nu, \pi} \) and \(\mathbb{P}_{\nu', \pi} \).

In addition, from the high-probability Pinsker inequality, we have

\[
\text{KL}(\mathbb{P}_{\nu, \pi}, \mathbb{P}_{\nu', \pi}) \geq \log \frac{1}{2(\mathbb{P}_{\nu, \pi}(A) + \mathbb{P}_{\nu', \pi}(A^c))},
\]

where \(A \) is any event defined over \(\mathbb{P}_{\nu, \pi} \) and \(\mathbb{P}_{\nu', \pi} \). By definition, the regret of policy \(\pi \) over \(\nu \) and \(\nu' \) satisfies

\[
R_T(\nu, \pi) \geq \frac{T \Delta_i}{2} \mathbb{P}_{\nu, \pi}(n_T(i) \geq \frac{T \Theta}{2}),
\]

\[
R_T(\nu', \pi) \geq \frac{T(\lambda - \Delta_i)}{2} \mathbb{P}_{\nu', \pi}(n_T(i) < \frac{T \Theta}{2}).
\]

The above equation bases on the fact that the suboptimality gaps in \(\nu' \) is larger than \(\lambda - \Delta_i \).

Concluding the above two equations and lower bounding \(\Delta_i \) and \((\lambda - \Delta_i)/2 \) by \(\kappa(\Delta_i, \lambda) := \min\{\Delta_i, \lambda - \Delta_i\}/2 \) yields

\[
\mathbb{P}_{\nu, \pi}(n_T(i) \geq \frac{T \Theta}{2}) + \mathbb{P}_{\nu', \pi}(n_T(i) < \frac{T \Theta}{2}) \leq \frac{R_T(\nu, \pi) + R_T(\nu', \pi)}{\kappa(\Delta_i, \lambda) T}.
\]

We have

\[
\text{KL}(P_i, P'_i) \mathbb{E}_{\nu, \pi}[n_T(i)] \geq \log \left(\frac{\kappa(\Delta_i, \lambda)}{2} \frac{T \Theta}{R_T(\nu, \pi) + R_T(\nu', \pi)} \right) = \log(\frac{\kappa(\Delta_i, \lambda)}{2}) + \log(T \Theta) - \log(R_T(\nu, \pi) + R_T(\nu', \pi)) \geq \log(\frac{\kappa(\Delta_i, \lambda)}{2}) + (1 - \sigma) \log(T \Theta) + C,
\]
where C is a constant. The last inequality is based on the assumption that the algorithm is consistent. Taking $\lambda = \Delta_i$, for large T, we can lower bound the regret of any consistent policy π as follows:

$$\liminf_{T \to \infty} \frac{R_T}{\log(T \Theta)} \geq \liminf_{T \to \infty} \frac{\sum \mathbb{E}_{\nu, \pi} [n_T(i)] \Delta_i}{\log(T \Theta)} = O \left(\sum_i \frac{\Delta_i}{\text{KL}(P_i, P'_i)} \right).$$

This completes the proof.

A.2 A Proof of Theorem 2

In this subsection, we provide a proof for the regret of CO-UCB as stated in Theorem 2. In our analysis, we categorize decisions made by the agents into Type-I and Type-II decisions. Type-I corresponds to the decisions of an agent when the mean values of local arms lie in the confidence intervals calculated by the agent, otherwise, Type-II decision happens, i.e., the actual mean value of some local arm is not within the calculated confidence interval. Specifically, when agent j makes a Type-I decision at time t, the following equation holds for any i in K_j.

$$\mu(i) \in \left[\hat{\mu}(i, \hat{n}_j^i(i)) - CI(i, j, t), \hat{\mu}(i, \hat{n}_j^i(i)) + CI(i, j, t) \right].$$

The following Lemma provides the probability that a Type-I decision happens at a particular decision round.

Lemma 1 At any time slot t when an agent makes its l-the decision, it makes a Type-I decision with a probability at least $1 - 2 \sum_{i \in K_j} \frac{l \Theta_i}{\theta_j} \delta_i^{1/\theta_j}$.

Proof 1 Note that for any arm i with n observations, there is

$$\Pr \left(\mu(i) > \hat{\mu}(i, n) + \sqrt{\frac{\alpha \log \delta^{-1}}{2n}} \right) \leq \delta^\alpha.$$

Thus, the probability that the true mean value of arm i is above the upper confidence bound in agent j at some time slot $t = l/\theta_j$ is not larger than $\frac{l \Theta_i}{\theta_j} \delta_i^{1/\theta_j}$, which is shown in the following equation.

$$\Pr \left(\mu(i) > \hat{\mu}(i, s) + \sqrt{\frac{\alpha \log \delta^{-1}}{2s}} \right) \leq \frac{l \Theta_i}{\theta_j} \delta_i^{1/\theta_j}.$$

Similarly, we have

$$\Pr \left(\mu(i) < \hat{\mu}(i, \hat{n}_j^i(i)) - \sqrt{\frac{\alpha \log \delta^{-1}}{2\hat{n}_j^i(i)}} \right) \leq \frac{l \Theta_i}{\theta_j} \delta_i^{1/\theta_j}.$$

Thus, the probability that the mean value of any arm in K_j at time t lies in the its confidence interval is lower bounded by $1 - 2 \sum_{i \in K_j} \left(\frac{l \Theta_i}{\theta_j} \delta_i^{1/\theta_j} \right) /\theta_j$. This completes the proof.

Lemma 2 If at any time $t \leq T$ agent $j \in A^-_i$ makes a Type-I decision and pulls arm i, i.e., $I_j^t = i$, we have

$$\hat{n}_j^i(i) \leq 2\alpha \log \delta^{-1} \frac{\Delta^2(i^*_j, i)}{\Delta^2(i^*_j, i)}.$$
Proof 2 Consider that agent j, $j \in A^*_i$, makes a Type-I decision at time slot t and $I^*_t = i$. We have that the following equation holds.

$$CI(i,j,t) \geq \Delta(i^*_j,i).$$

(6)

Otherwise, we have

$$\hat{\mu}(i^*_j, n_i^t(j^*_j)) + CI(i^*_j,j,t) \geq \mu(i^*_j) = \mu(i) + \Delta(i^*_j,i)$$

$$\geq \mu(i) + CI(i,j,t),$$

contradicting the fact that $I^*_t = i$. Combining Equation (6) and the definition of $CI(i,j,t)$, we have

$$n_i^t(i) \leq \frac{2\alpha \log \delta^{-1}}{\Delta^2(i^*_j,i)}.$$

This completes the proof.

Based on lemmas 1 and 3, we proceed to prove Theorem 2. Recall that $A^*_i = \{j_m : m = 1, 2, \ldots, M_i\}$ is the set of agents including arm i as a suboptimal arm with $M_i = |A^*_i|$ as the number of such agents. Further and without loss of generality, we assume $\mu(i^*_j) \geq \mu(i^*_j) \geq \cdots \geq \mu(i^*_j_{M_i})$.

We assume an agent makes a Type-I decision. From Lemma 3 when i is selected by an agent in A^*_i, the total number of selection times by agents in A^*_i for suboptimal arm i is upper bounded by

$$\frac{2\alpha \log \delta^{-1}}{\Delta^2(i^*_j_{M_i},i)} + \sum_{j \in A^*_i} \min \left\{d_j \theta_j, n_j^t(i)\right\},$$

(7)

where the second term in the above equation serves as an upper bound of the number of outstanding observations by agents in A^*_i on arm i due to delays. By applying the result for the basic AAE algorithm, we have

$$E \left[n_j^t(i)\right] \leq \frac{2\alpha \log \delta^{-1}}{\Delta^2(i^*_j,i)}, \ j \in A^*_i.$$

(8)

Let Q_1 be the number of Type-II decisions for all agents. As a result of Lemma 1 we have

$$E [Q_1] \leq 2 \sum_{j \in A} \sum_{l=1}^{N_i} \sum_{i \in \mathcal{K}_j} l\theta_j^l \theta_j^l = q_1.$$

(9)

Combining Equations (7), (8) and (9), we can build up an upper bound for the total expected number of selection arm i by agents in A^*_i as

$$E \left[\sum_{m=1}^{M_i} n_{j_m^m}^t(i)\right] \leq E [Q_1] + \frac{2\alpha \log \delta^{-1}}{\Delta^2(i^*_j_{M_i},i)} + \sum_{j \in A^*_i} \min \left\{d_j \theta_j, \frac{2\alpha \log \delta^{-1}}{\Delta^2(i^*_j,i)}\right\}.$$

By similar reasoning, we upper bound the expected number of selection times by the first m agents, i.e., agents j_1, j_2, \ldots, j_m, by

$$E [Q_1] + \frac{2\alpha \log \delta^{-1}}{\Delta^2(i^*_j_{M_i},i)} + \sum_{k=1}^{m} \min \left\{d_{jk} \theta_{jk}, \frac{2\alpha \log \delta^{-1}}{\Delta^2(i^*_j_{M_i},i)}\right\}.$$
\[
\mathbb{E} \left[\sum_{j \in A^*_t} n^j_T(i) \Delta(i^*_j, i) \right] = \mathbb{E} \left[\sum_{m=1}^{M_{-1}} n^j_{m} (i) \Delta(i^*_j, i) \right]
\]

\[
\leq (\mathbb{E} [Q_1] + A_1 + B_1 + 1) \Delta(i^*_j, i) + \sum_{m=1}^{M_{-1}} (A_{m+1} + B_{m+1} - A_m - B_m) \Delta(i^*_j, i)
\]

\[
= (\mathbb{E} [Q_1] + A_1) \Delta(i^*_j, i) + \sum_{m=1}^{M_{-1}} (A_{m+1} - A_m) \Delta(i^*_j, i) + \sum_{m=1}^{M_{-1}} \min \left\{ d_{jm} \theta_{jm}, 2 \alpha \log \delta^{-1} \right\} \]

\[
\leq (\mathbb{E} [Q_1] + A_1) \Delta(i^*_j, i) + \sum_{m=1}^{M_{-1}} A_m (\Delta(i^*_j, i) - \Delta(i^*_j, i)) + A_{M_{-1}} \Delta(i^*_j, i) + f_i(\delta)
\]

\[
= (\mathbb{E} [Q_1] + A_1) \Delta(i^*_j, i) + \frac{2 \alpha \log \delta^{-1}}{\Delta(i^*_j, i)} + \frac{2 \alpha \log \delta^{-1}}{\Delta(i^*_j, i)} - \frac{2 \alpha \log \delta^{-1}}{\Delta(i^*_j, i)} + f_i(\delta)
\]

\[
= (\mathbb{E} [Q_1] + A_1) \Delta(i^*_j, i) + \frac{2 \alpha \log \delta^{-1}}{\Delta(i^*_j, i)} + f_i(\delta) \leq \mathbb{E} [Q_1] + \frac{6 \alpha \log \delta^{-1}}{\Delta(i^*_j, i)} + f_i(\delta).
\]

For simplicity of analysis, we define \(A_m \) and \(B_m \) as

\[
A_m := \frac{2 \alpha \log \delta^{-1}}{\Delta^2(i^*_m, i)},
\]

\[
B_m := \sum_{k=1}^{m} \min \left\{ d_{jk} \theta_{jk}, 2 \alpha \log \delta^{-1} \right\}.
\]

With the above facts, we can upper bound the regret spent on arm \(i \) as in Equation (10). In the derivation, we use an Abel transformation in the second equality. According to Equation (2), we have \(\Delta_i = \Delta(i_{M_{-1}}, i) \). Thus, we have

\[
\mathbb{E} [R_T] \leq \sum_{i: \Delta_i > 0} \mathbb{E} \left[\sum_{j \in A^*_i} n^j_T(i) \Delta(i^*_j, i) \right]
\]

\[
\leq \sum_{i: \Delta_i > 0} \left(\frac{6 \alpha \log \delta^{-1}}{\Delta_i} + \mathbb{E} [Q_1] + f_i(\delta) \right)
\]

\[
\leq \sum_{i: \Delta_i > 0} \left(\frac{6 \alpha \log \delta^{-1}}{\Delta_i} + q_1 + f_i(\delta) \right).
\]

This completes the proof of Theorem 2

A.3 A Proof of Theorem 4

The proof of Theorem 4 also leverages the notions of Type-I/Type-II decisions. Specifically, with Type-I decisions, an agent is able to keep the local optimal arm in its candidate set and eventually converges its
Lemma 3 If at any time \(t \leq T \) agent \(j \in A_{-i}^t \) by CO-AAE makes a Type-I decision and pulls arm \(i \), i.e., \(I_i^j = i \), we have
\[
\hat{n}_t^j(i) \leq \frac{8\alpha \log \delta^{-1}}{\Delta^2(i_i^j, i)} + 1.
\]

Proof 3 We consider agent \(j \in A_{-i}^t \) running CO-AAE makes a Type-I decision at time \(t \) and \(I_i^j = i \). First, we claim that the following holds.
\[
2CI(i_j^*, j, t) + 2CI(i, j, t) \geq \Delta(i_j^*, i).
\]

Otherwise, we have
\[
\hat{\mu}(i_j^*, \hat{n}_i^j(i_j^*)) - CI(i_j^*, j, t)
= \hat{\mu}(i_j^*, \hat{n}_i^j(i_j^*)) + CI(i_j^*, j, t) - 2CI(i_j^*, j, t)
\geq \mu(i_j^*) - 2CI(i_j^*, j, t) = \mu(i) + \Delta(i_j^*, i) - 2CI(i_j^*, j, t)
> \mu(i) + 2CI(i, j, t) \geq \hat{\mu}(i, \hat{n}_i^j(i)) + CI(i, t).
\]

It shows the fact that the lower bound of arm \(i_j^* \) is larger than the upper bound of arm \(i \), contradicting the fact that \(I_i^j = i \).

We continue the rest proof by considering the following two cases.

(1) We consider the case where \(\hat{n}_i^j(i) < \hat{n}_i^j(i_j^*) \) and \(I_i^j = i \). It follows from Equation (11) that
\[
4CI(i_j^*, j, t) \geq \Delta(i_j^*, i).
\]
Thus, in this case, the number of observations of \(i \) received by agent \(j \) is upper bounded by
\[
\hat{n}_t^j(i) \leq \sup_t \frac{8\alpha \log \delta^{-1}}{\Delta^2(i_j^*, i)}.
\]

(2) We proceed to consider the case where \(\hat{n}_i^j(i) \geq \hat{n}_i^j(i_j^*) \) and \(I_i^j = i \). We have
\[
4CI(i_j^*, j, t) \geq \Delta(i_j^*, i).
\]
Thus, the number of observations on \(i_j^* \) by agent \(j \) is upper bounded as below.
\[
\hat{n}_t^j(i_j^*) \leq \sup_t \frac{8\alpha \log \delta^{-1}}{\Delta^2(i_j^*, i)}.
\]

Note that, if \(\hat{n}_i^j(i) > \hat{n}_i^j(i_j^*) + 1 \), the agent \(j \) will not select \(i \), since in CO-AAE, the agent selects the arm with the least observations. Hence, the number of selection for \(i \) by agent \(j \) is not larger than \(\hat{n}_i^j(i_j^*) + 1 \), and we have
\[
\hat{n}_t^j(i) \leq \sup_t \frac{8\alpha \log \delta^{-1}}{\Delta^2(i_j^*, i)} + 1 \leq \frac{8\alpha \log \delta^{-1}}{\Delta^2(i_j^*, i)} + 1.
\]

Concluding case (1) and (2) completes the proof.

We skip the rest of the proof for Theorem 4 since it follows similar lines to that of Theorem 2.

A.4 A proof of Theorem 5

Generally, the proof contains two steps. The first one is to upper bound the number of sent messages on sup-optimal arms, and the second one is to upper bound that on the local optimal arms.
(1) We assume at time t, an agent in A^*_i makes a Type-I decision to select arm i. From Lemma 3, we can upper bound the total number of selection times by agents in A_i for suboptimal arm i up to t by

$$\frac{8\alpha \log \delta^{-1}}{\Delta^2(i^*_jM,i)} + \sum_{j \in A^*_i} d_j \theta_j + 1,$$

where the second term corresponds to an upper bound for the number of outstanding observations on arm i. Combined with the fact that the expected number of Type-II decisions for all agents is upper bounded by q, we can upper bound the expected number of observations on arm i by agents in A^*_i as follows.

$$\frac{8\alpha \log \delta^{-1}}{\Delta^2(i^*_jM,i)} + \sum_{j \in A^*_i} d_j \theta_j + \frac{2}{\alpha - 2} \sum_{j \in A_i} \Theta \theta_j - 1 + 1
= \frac{8\alpha \log \delta^{-1}}{\Delta^2(i^*_jM,i)} + \sum_{j \in A^*_i} d_j \theta_j + q_2 + 1.$$

Accordingly, the expected number of messages sent by A^*_i to broadcast those observations on arm i is upper bounded by

$$\left(\frac{8\alpha \log \delta^{-1}}{\Delta^2(i^*_jM,i)} + \sum_{j \in A^*_i} d_j \theta_j + q_2 + 1\right) M_i.$$

Then we can further upper bound the total number of messages sent by agents for broadcasting the observations of their suboptimal arms by

$$\sum_{i \in K} \left(\frac{8\alpha \log \delta^{-1}}{\Delta^2(i^*_jM,i)} + \sum_{j \in A^*_i} d_j \theta_j + q_2 + 1\right) M_i.$$

(2) By the rules of the CO-AAE algorithm, we have that an agent broadcasts its observations only when its candidate set has more than one arms. That is, the number of rounds where an agent broadcasts observations on the optimal arm is not larger than the number of pulling a suboptimal arm. Then, we have the following upper bound for the number of rounds where an agent broadcasts observations on the optimal arm.

$$\sum_{i \in K} \left(\frac{8\alpha \log \delta^{-1}}{\Delta^2(i^*_jM,i)} + \sum_{j \in A^*_i} d_j \theta_j + q_2 + 1\right).$$

Hence, the number of messages on the local optimal arms is upper bounded by

$$\sum_{i \in K} \left(\frac{8\alpha \log \delta^{-1}}{\Delta^2(i^*_jM,i)} + \sum_{j \in A^*_i} d_j \theta_j + q_2 + 1\right) M.$$
agents, which is

\[
\sum_{i \in \mathcal{K}} \left(\frac{8\alpha \log \delta^{-1}}{\Delta^2(i_{j_{M_{-i}}}, i)} + \sum_{j \in \mathcal{A}_{-i}} d_j \theta_j + q_2 + 1 \right) (M + M_i)
\]

\[
= \sum_{i \in \mathcal{K}} \left(\frac{8\alpha \log \delta^{-1}}{\Delta^2_i} + \sum_{j \in \mathcal{A}_{-i}} d_j \theta_j + q_2 + 1 \right) (M + M_i)
\]

\[
= \sum_{i \in \mathcal{K}} \left(\frac{8\alpha \log T}{\Delta^2_i} + \sum_{j \in \mathcal{A}_{-i}} d_j \theta_j + q_2 + 1 \right) (M + M_i).
\]

This completes the proof.