Analysis Of The Girth For Regular Bi-partite
Graphs With Degree 3

Vivek S Nittoor and Reiji Suda

The University Of Tokyo

Abstract. The goal of this paper is to derive the detailed description of
the Enumeration Based Search Algorithm from the high level description
provided in [16], analyze the experimental results from our implementa-
tion of the Enumeration Based Search Algorithm for finding a regular
bi-partite graph of degree 3, and compare it with known results from the
available literature. We show that the values of m for a given girth g
for $(m, 3)$ BTUs are within the known mathematical bounds for regular
bi-partite graphs from the available literature.

1 Introduction

The goal of this paper is to develop the detailed description of the Enumeration
Based Search Algorithm from the high level description provided in [16] and
analyze the implementation results of the Enumeration Based Search Algorithm
for finding a regular bi-partite graph of degree 3, and compare it with known
results from the available literature. (m, r) BTU is our notation for a regular
bi-partite graph that has been introduced in [1]. The high level description of
the Enumeration Based Search Algorithm for searching a girth maximum (m, r)
BTU has been described in [16]. The theoretical background behind BTUs has
been introduced and explained in detail in [1] and [2].

2 Girth Maximization as a Extremal Graph Theory
question

We consider the problem of searching for a girth maximum (m, r) BTU as a
question in Extremal Graph Theory by raising two related questions.

1. Given girth g and $r \in \mathbb{N}$, what is the minimum value of m such that a (m, r)
 BTU has girth g.
2. Given $m, r \in \mathbb{N}; m \gg r$, what is the maximum attainable girth for a (m, r)
 BTU?

2.1 Definitions

We review definitions from [1] and [2].
Definition 1. \((m,r)\) BTU

A \((m,r)\) Balanced Tanner Unit (BTU) is a regular bi-partite graph that can be represented by a \(m \times m\) square matrix with \(r\) non-zero elements in each of its rows and columns. Every \((m,r)\) BTU has a bipartite graph representation and an equivalent matrix representation.

Definition 2. Girth maximum \((m,r)\) BTU

A labeled \((m,r)\) BTU \(A\) is girth maximum if there does not exist another labeled \((m,r)\) BTU \(B\) with girth greater than that of \(A\).

Definition 3. \(\Phi(\beta_1, \beta_2, \ldots, \beta_{r-1})\) where \(\beta_i \in P_2(m)\) for \(1 \leq i \leq r-1\)

\(\Phi(\beta_1, \beta_2, \ldots, \beta_{r-1})\) refers to the family of all labeled \((m,r)\) BTUs with compatible permutations \(p_1,p_2,\ldots,p_r \in S_m; p_i \notin C(p_1,p_2,\ldots,p_{i-1})\) for \(1 < i \leq r\) that occur in the same order on a complete \(m\) symmetric permutation tree, \(x_{1,1} < x_{2,1} < \ldots < x_{r,1}\) where \(p_j = (x_{j,1}x_{j,2}\ldots x_{j,m}); 1 \leq j \leq r\), such that \(\beta_i\) is the partition between permutations \(p_{i-1}\) and \(p_i\) for all integer values of \(i\) given by \(1 < i < r\).

Definition 4. Optimal partition parameters for girth maximum \((m,r)\) BTU.

\(\beta_1, \beta_2, \ldots, \beta_{r-1} \in P_2(b \ast k^{r-1})\) refer to optimal partitions derived in [2] such that there exists a girth maximum \((m,r)\) BTU in \(\Phi(\beta_1, \beta_2, \ldots, \beta_{r-1})\), where \(\beta_i\) refers to \(\sum_{j=1}^{r-1} b \ast k^j = b \ast k^{r-1}\) for \(1 \leq i \leq r-1\), with \(k \in \mathbb{N}\) obtained as a solution to \(b \ast k^{r-1} = m\) such that \(b \in \mathbb{N}\) is minimized. Thus, \(\beta_1, \beta_2, \ldots, \beta_{r-1} \in P_2(b \ast k^{r-1})\) are \(\sum_{j=1}^{r-2} b \ast k = b \ast k^{r-1}\), \(\sum_{j=1}^{r-3} b \ast k^2 = b \ast k^{r-1}\), \ldots, \(\sum_{j=1}^{k} b \ast k^{r-2} = b \ast k^{r-1}\), and \(\sum_{j=1}^{1} b \ast k^{r-1} = b \ast k^{r-1}\) respectively.

2.2 Search for girth maximum \((m,r)\) BTU

Search for a girth maximum \((m,r)\) BTU refers to search for an optimal labelled \((m,r)\) BTU in a family of labelled BTUs that we refer to as \(\Phi(\beta_1, \beta_2, \ldots, \beta_{r-1})\) where \(\beta_i \in P_2(m)\) for \(1 \leq i \leq r-1\).

3 Girth Maximization as a Extremal Graph Theory question

We consider the problem of searching for a girth maximum \((m,r)\) BTU as a question in Extremal Graph Theory by raising two related questions.

1. Given girth \(g\) and \(r \in \mathbb{N}\), what is the minimum value of \(m\) such that a \((m,r)\) BTU has girth \(g\)?

2. Given \(m, r \in \mathbb{N}; m \gg r\), what is the maximum attainable girth for a \((m,r)\) BTU?
4 Maximum Attainable Girth

4.1 Maximum Attainable Girth for a \((m, r)\) BTU

We denote the maximum Attainable Girth for a \((m, r)\) BTU as a function \(g_{\text{max}} : \{\mathbb{N} \cup \{0\}\}^2 \rightarrow \mathbb{N} \cup \{0\}\).

Theorem 1. The maximum attainable girth of a \((m, r)\) BTU satisfies the inequality \(g_{\text{max}}(m, r) < 2 \times k\) where \(k \in \mathbb{N}\) is obtained by minimizing \(b \in \mathbb{N}\) such that \(m = b \times k^{r-1}\) for \(r \geq 3\).

Proof. From the optimal partition result from [2] for a \((m, r)\) BTU for \(r \geq 3\), we obtain that the maximum possible length of the maximum known cycle is \(2 \times k\), where the optimal partitions are \(\beta_i\) refers to \(\sum_{j=1}^{r-1} b \times k^i = b \times k^{r-1}\) for \(1 \leq i \leq r - 1\) and \(k\) is obtained by minimizing \(b \in \mathbb{N}\) such that \(m = b \times k^{r-1}\) for \(r \geq 3\). We now need to show that \(g_{\text{max}}\) cannot equal \(2 \times k\) for \(r \geq 3\). This follows because of micro-partition cycles defined in [2] and their combinations which do not permit \(g_{\text{max}}\) to equal \(2 \times k\) for \(r \geq 3\). Hence, the result follows.

5 High Level Description Of Enumeration Based Search from [16]

5.1 Enumeration Based Search algorithm for girth maximum \((m, r)\) BTU for \(r > 3\)

We find \(b, k \in \mathbb{N}\) such that \(b\) is the smallest integer satisfying \(m = b \times k^{r-1}\); for \(i = 2; i < r; i++\) \{
\[p_i = C_j; \min(b \times k^{i-1} - j, j) > b \times k^{i-2} \text{ such that } (j, b \times k^{i-1}, b \times k^{i-1} - j) \text{ are relatively prime; } \]
if \(i == 2\)
\[p_{i-1} = I_{bk^{i-1}}; \]
else \{
Rearrange the \((b \times k^{i-1}, i)\) BTU such that \(p_{i-1} = I_{bk^{i-1}};\)
Find \(q_i = S_{bk^{i-2}}\) such that it maximizes girth of \((b \times k^{i-1}, i)\) BTU is formed by \(p_1, \ldots, p_i \in S_{bk^{i-2}}; p_x = k \times q_x; 1 \leq x \leq i - 2;\)
if \(i != r - 1\)
Scale permutations \(p_y = k \times q_y; 1 \leq y \leq i;\)
\}
\}

5.2 Enumeration Based Search algorithm for a girth maximum \((m, 3)\) BTU where \(m = b \times k^2\)

We find \(b, k \in \mathbb{N}\) such that \(b\) is the smallest integer satisfying \(m = b \times k^2\); for \(i = 2; i < 3; i++\) \{
\[p_i = C_j; \min(b \times k^{i-1} - j, j) > b \times k^{i-2} \text{ such that } (j, b \times k^{i-1}, b \times k^{i-1} - j) \text{ are relatively prime; } \]
if \(i == 2\)
\[p_{i-1} = I_{bk^{i-1}}; \]
else \{
Rearrange the \((b \times k^{i-1}, i)\) BTU such that \(p_{i-1} = I_{bk^{i-1}};\)
Find \(q_i = S_{bk^{i-2}}\) such that it maximizes girth of \((b \times k^{i-1}, i)\) BTU is formed by \(p_1, \ldots, p_i \in S_{bk^{i-1}}; p_x = k \times q_x; 1 \leq x \leq i - 2;\)
if \(i != r - 1\)
Scale permutations \(p_y = k \times q_y; 1 \leq y \leq i;\)
\}
\}
relatively prime;
if(\(i == 2 \))
\(p_{i-1} = I_{b \cdot k^{i-1}} \);
else {
Rearrange the \((b \cdot k^{i-1}, i)\) BTU such that \(p_{i-1} = I_{b \cdot k^{i-1}} \);
Find \(q_1 \in S_{b \cdot k} \) such that a girth maximum \((b \cdot k^2, 3)\) BTU is formed by \(p_1, p_2, p_3 \in S_{b \cdot k^{i-1}} ; p_1 = k \cdot q_1 \);
}

5.3 Reorganizing the \((b \cdot k^{i-1}, i)\) BTU such that \(p_{i-1} = I_{b \cdot k^{i-1}} \)

Without loss of generality, we apply suitable permutations on depth and permutations labels on the \((b \cdot k^{i-1}, i)\) BTU in order to obtain \(p_{i-1} = I_{b \cdot k^{i-1}} \). Permutations on depth and permutations labels have been explained and defined in [1] and preserve isomorphism since they correspond to row permutations and column permutations on the matrix representation of the \((b \cdot k^{i-1}, i)\) BTU.

6 Detailed Description Of Enumeration Based Search for a girth maximum \((k^2, 3)\) BTU

To find permutation a \(q_1 \in S_k \) such that a girth maximum \((k^2, 3)\) BTU is formed by \{p_1, \ldots, p_3\} {
We enumerate all permutations \(q_1 \) with node at depth 1 fixed, such that partition between \(q_1 \) and \(q_2 = I_k \) is \((k) \in P_2(k) \);
for(each enumerated permutation \(q_1 \)) {
We scale up \(q_1 \) by \(k \) and \(p_2 = I_{k^2} \);
\(p_3 = C_j \) where \((j, k^2, k^2 - j)\) are relatively prime;
We compute the girth of this \((k^2, 3)\) BTU;
}
We choose permutation \(q_1 \) that gives us the best girth;

7 Detailed Description Of Enumeration Based Search for a girth maximum \((m, r)\) BTU where \(b, k \in \mathbb{N} \) such that \(b \) is the smallest integer satisfying \(m = b \cdot k^{r-1} \)

To find permutations \(\{q_1, \ldots, q_{i-2}\} \in S_{b \cdot k^{i-2}} \) such that a girth maximum \((b \cdot k^{i-1}, i)\) BTU is formed by \(\{p_1, \ldots, p_i\} \) {
We enumerate all permutations \(q_{i-2} \) with node at depth 1 fixed, such that partition between \(q_{i-2} \) and \(q_{i-1} = I_{b \cdot k^{i-2}} \) is \((b \cdot k^{i-2}) \);
for(each enumerated permutation \(q_{i-2} \)) {
We permute \(\{q_1, \ldots, q_{i-3}\} \) such that all partitions between any two permutations in the set \(\{q_1, \ldots, q_{i-2}, q_{i-1}\} \) are preserved;
We scale up \(\{q_1, \ldots, q_{i-2}\} \) by \(k \) and \(p_{i-1} = I_{b \cdot k^{i-1}} ; p_i = C_j \) where \((j, b \cdot k^{i-1}, b \cdot k^{i-1} - j)\) are relatively prime;
We compute the girth of this \((b \ast k^{i-1}, i)\) BTU;

\}

We choose permutation \(q_{i-2}\) that gives us the best girth;

\section{Algorithm to Find Permutations Of \(\{q_1, \ldots, q_{i-2}\}\)}

We permute \(\{q_1, \ldots, q_{i-2}\}\) such that all partitions between any two permutations in the set \(\{q_1, \ldots, q_{i-2}, I_{b \ast k^{i-2}}\}\) are preserved

for(\(j = 2; j < b \ast k^{i-2}; j++\) { \}

\(d = \) Label at depth \(j\) of \(q_{i-2}\):
Permutations On Depth \((d, j)\):
Permutations On Labels \((d, j)\):
We calculate the partition between permutations \(k \ast q_{i-2}\) and \(p_i\) and girth;
We accept the change to \(\{q_1, \ldots, q_{i-2}\}\) if it improves the girth;

\(q_{i-1}\) returns to \(I_{b \ast k^{i-2}}\) after each run of the loop.

\section{Experimental Results for Implementation Of Enumeration Based Search}

Girth obtained for various values of \(m\) and for \(r = 3\) has been shown Table 1.
We find that the values of \(m\) for a given value of girth \(g\) lie between the lower bound for \(m\) and improved lower bound for \(m\) from [13]. The execution time is too long for \(k > 10\) due to the algorithm being in EXPTIME.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
\(k\) & \(m\) & \(r\) & \(g\) \\
\hline
5 & 25 & 3 & 8 \\
6 & 36 & 3 & 8 \\
7 & 49 & 3 & 10 \\
8 & 64 & 3 & 10 \\
9 & 81 & 3 & 10 \\
10 & 100 & 3 & 10 \\
\hline
\end{tabular}
\caption{Girth obtained for various of \(m\) and for \(r = 3\) from Implementation}
\end{table}

\section{Bound from [12]}

For \(q\) being a power of a prime \(k \geq 3\), Lazebnik in [12] describes explicit construction of a \(q\)-regular bipartite graph on \(v = 2 \ast q^k\) vertices with girth \(g \geq k + 5\).

If we consider this as a \((m, r)\) BTU, we get \(r\) a power of a prime and \(m = r^k; k \geq 3\), girth \(g \geq \log_r(m) + 5\). For \(g \geq 12\), we obtain \(\log_r(m) \geq 7\) which gives us \(m \geq r^7\) and we hence obtain \(m \geq 3^7 = 343 \ast 9 = 3087\).
11 Lower bounds from [9]

We quote the main theorem from [9], "Let \(G = (V_L, V_R, E) \) be a bi-partite graph of girth \(g = 2 * r \), with \(n_L = |V_L| \) and \(n_R = |V_R| \), the number of vertices on the left and right sides, and \(m = |E| \) the number of edges. Assume further that all vertex degrees in \(G \) are \(\geq 2 \). Then: \(n_L \geq \sum_{i=0}^{r-1} (A_L)^{\text{ceil}(i/2)}(A_R)^{\text{floor}(i/2)} \) and \(n_R \geq \sum_{i=0}^{r-1} (A_L)^{\text{ceil}(i/2)}(A_R)^{\text{floor}(i/2)} \). For a \((m, r)\) BTU with girth \(g \), we obtain \(m \geq \sum g^{2-1} (r-1)^{\text{ceil}(i/2)}(r-1)^{\text{floor}(i/2)} \).

Therefore, \(m \geq \sum_{i=0}^{g/2-1} (r-1)^{\text{ceil}(i/2)+\text{floor}(i/2)} \).

For even integers \(i \), \(\text{ceil}(i/2) + \text{floor}(i/2) = i \)

For odd integers \(i \), \(\text{ceil}(i/2) + \text{floor}(i/2) = (i + 1)/2 + (i - 1)/2 = i \)

Therefore, \(m \geq \sum_{i=0}^{g/2-1} (r-1)^i = (r-1)^{g/2-1} = \frac{(r-1)^{g/2-1}}{(r-2)} \)

Putting \(r = 3 \) and \(g = 12 \) we get \(m \geq \frac{(2)^{6}-1}{3-2} = 63 \). Putting \(r = 3 \) and \(g = 10 \) we get \(m \geq \frac{(2)^{5}-1}{3-2} = 31 \). Putting \(r = 3 \) and \(g = 8 \) we get \(m \geq \frac{(2)^{4}-1}{3-2} = 15 \).

11.2 From Main Theorem in [9]

Derived from the main theorem, From [9], \(n_L \geq \sum_{i=0}^{r-1} (A_R)^{\text{ceil}(i/2)}(A_L)^{\text{floor}(i/2)} \) and \(n_R \geq \sum_{i=0}^{r-1} (A_L)^{\text{ceil}(i/2)}(A_R)^{\text{floor}(i/2)} \). For a \((m, r)\) BTU with girth \(g \), we obtain, \(A_R = \{(r-1)^{r/(mr^r)}\}^m = r-1 \) and \(A_L = \{(r-1)^{r/(mr^r)}\}^m = r-1 \). Thus, \(m \geq \sum_{i=0}^{g/2-1} (r-1)^{\text{ceil}(i/2)}(r-1)^{\text{floor}(i/2)} \). Therefore, \(m \geq \sum_{i=0}^{g/2-1} (r-1)^{\text{ceil}(i/2)+\text{floor}(i/2)} \).

For even integers \(i \), \(\text{ceil}(i/2) + \text{floor}(i/2) = i \).

For odd integers \(i \), \(\text{ceil}(i/2) + \text{floor}(i/2) = (i + 1)/2 + (i - 1)/2 = i \).

Therefore, \(m \geq \sum_{i=0}^{g/2-1} (r-1)^i = (r-1)^{g/2-1} = \frac{(r-1)^{g/2-1}}{r-1} \)

Putting \(r = 3 \) and \(g = 12 \) we get \(m \geq \frac{(2)^{6}-1}{3-2} = 63 \).

Putting \(r = 3 \) and \(g = 10 \) we get \(m \geq \frac{(2)^{5}-1}{3-2} = 31 \).

Putting \(r = 3 \) and \(g = 8 \) we get \(m \geq \frac{(2)^{4}-1}{3-2} = 15 \).

12 Other Related Research

Irregular LDPC codes with girth 20 in [11] and Regular LDPC codes of girth at least 10 from [10].
13 Results from [15]

We quote Theorem from [15] for even values of g since our current interest is only in bi-partite graphs. "For $g \geq 3$ and $\delta \geq 3$ put $n_0(g, \delta) = \frac{2 \cdot (\delta - 1)^{(g/2) - 1}}{(g - 1)}$ if g is even. Then a graph G with minimal degree δ and girth g has at least $n_0(g, \delta)$ vertices." We use this result to compute $n_0(g, \delta)$ for $\delta = 3$ and various values of g in Table 2 by simplifying the equation as $n_0(g, 3) = 2 \cdot \{(2)^{g/2} - 1\}$

Table 2. Minimum value of $n_0(g, 3)$ for different girths g for $\delta = 3$ from [15]

g	$n_0(g, 3)$
4	6
6	14
8	30
10	62
12	126
14	254

14 Results from [13]

We quote theorems from [13].

1. "Given $\delta \geq 3$ and $g \geq 3$, there exists a $G^n, n \leq (2 + \delta)^g$ with minimal degree of at least δ and girth of at least g".

2. "Lower Bound $n(g, \delta) \geq \frac{1 + \delta (\delta - 1)^{(g - 1)/2} - 1}{(g - 2)}$ if g is odd. $n(g, \delta) \geq \frac{(\delta - 1)^{(g/2)} - 1}{(g - 2)}$ if g is even. Equality holds for $\delta = 3$ and $g = \{3, 4, 5, 6, 7, 8\}$ and $g = 4, \delta \geq 3$".

3. "If g is odd, $n(g + 1, \delta) \leq 2 \cdot n(g, \delta)$".

4. "Upper Bound $n(g, \delta) \leq \frac{2 \cdot (\delta - 1)^{(g - 1)/2} - 1}{(g - 2)}$ if g is odd. $n(g, \delta) \leq \frac{4 \cdot (\delta - 1)^{(g - 2)/2} - 1}{(g - 2)}$ if g is even".

5. "Let $m \geq \sum_{i=0}^{g-2} (\delta - 1)^i = \frac{(\delta - 1)^{g-1} - 1}{(\delta - 2)}$ be an integer. Then there exists a δ-regular graph of order $2 \cdot m$ and girth of at least g".

6. "Most significant improvement of the bound for $\delta = 3$, $n(g, 3) \leq 2^{g^2 - 1}$.

15 Bound derived from [13]

We derive the following bound from [13], $\frac{(\delta - 1)^{g-1} - 1}{(\delta - 2)} \leq n(g, \delta) \leq \frac{4 \cdot (\delta - 1)^{g-2} - 1}{(\delta - 2)}$ for the minimum order $n(g, \delta)$ where g is its girth and δ is its degree. By putting $\delta = 3$, we obtain a simplified form of the above equation, $(2)^{g/2} - 1 \leq n(g, 3) \leq 4 \cdot (2)^{g-2} - 1$ which could be further simplified as $2^{g/2} - 1 \leq n(g, 3) \leq 2^g - 1$. We calculate the bounds for $\delta = 3$ and the improved upper bound corresponds to $n(g, 3) \leq 2^{g-1}$ from [13] in Table 3.
Table 3. Lower Bound, Upper Bound and Improved Upper Bound for $n(g, 3)$ for different girths g for $\delta = 3$ from [13]

g	Lower Bound $n(g, 3)$	Upper Bound $n(g, 3)$	Improved upper bound $n(g, 3)$
4	3	15	8
6	7	63	32
8	15	255	128
10	31	1023	512
12	63	4095	2048
14	127	16383	8192

16 Analysis for [17] and [18]

From [17], we quote the following result, "If the degree is $D \geq 3$ and girth $g = 2 \ast r + 1; r \geq 2$, a simple lower bound for number of vertices of a regular graph is given by $n_o(g, D) = 1 + \frac{D}{D-2}((D-1)^r - 1)$." For $D = 3$ we simplify the equation as follows $n_o(g, 3) = 1 + 3((2)^{g-1}/2 - 1)$. While the exponent is similar to the lower bound in [13], we cannot apply the result as the girths take odd values and do not directly apply for bi-partite graphs.

17 Analysis for [19]

We analyze the girths obtained for various size of the matrices from [19] in Table 4. However, these matrices have irregular degrees and hence a direct comparison with our obtained results might not be possible.

Table 4. Girth obtained for various size of the matrices in [19]

Girth	Minimum N
6	5
8	9
10	39
12	97

18 Analysis for [14]

We quote from [14], "Ramanujan graphs $X^{p,q}$ are $p + 1$ regular Cayley graphs of the group $PSL(2, \mathbb{Z}/q\mathbb{Z})$ if the Legendre symbol $\left(\frac{q}{p}\right) = 1$ and of $PGL(2, \mathbb{Z}/q\mathbb{Z})$ if the Legendre symbol $\left(\frac{q}{p}\right) = -1$. $X^{p,q}$ is bi-partite of order $n = |(X^{p,q})| = \ldots"
$q \ast (q^2 - 1)$ and a bound on the girth is given by the equation, $g(X^{p,q}) \geq 4 \log_p(q) - \log_p(4)$.

Putting $p = 2$ in order to get degree $k = p + 1 = 3$, we obtain the inequality $g \geq 4 \log_2(q) - \log_2(4)$ which can be simplified as $(g + 2)/4 \geq \log_2(q)$ in order to obtain $2^{(g+2)/4} \geq q$.

For each value of girth g, we calculate the minimum value of q such that $q \geq 2^{(g+2)/4}$ and the Legendre symbol $(p/q) = -1$ and then calculate $n = q \ast (q^2 - 1)$ for $p = 2$ and degree $k = 3$ in Table 5.

Table 5. Analysis for [14]
Girth min $q, q \geq 2^{(g+2)/4}$, $(p/q) = -1$
6
8
10
12

19 Conclusion

Our implementation for the Enumeration based Search for a girth maximum (m, r) BTU finds the maximum attainable girth of a (m, r) BTU for $r = 3$ and various values of m. The values of m for a given girth g are within the known mathematical bounds for regular bi-partitite graphs from the available literature. When we compare our results with bounds for more general graphs, or graphs with irregular graphs, a direct comparison may not possible since it is well known that for a given g and average degree, a lower number of vertices can be reached for irregular graphs.

References

1. Vivek S Nittoor, Reiji Suda,: Balanced Tanner Units And Their Properties, [arXiv:1212.6882] [cs.DM].
2. Vivek S Nittoor, Reiji Suda,: Partition Parameters for Girth Maximum (m, r) BTUs, [arXiv:1212.6883] [cs.DM].
3. Vivek S Nittoor, Reiji Suda,: Parallelizing A Coarse Grain Code Search Problem Based upon LDPC Codes on a Supercomputer, Proceedings of 6th International Symposium on Parallel Computing in Electrical Engineering (PARELEC 2011), Luton, UK, April 2011.
4. R. M. Tanner,: A recursive approach to low complexity codes, IEEE Trans on Information Theory, vol. IT-27, no.5, pp. 533-547, Sep 1981.
5. C.E. Shannon,: A Mathematical Theory of Communication, Bell System Technical Journal, vol. 27, pp 379-423, 623-656, July, October, 1948.
6. D. J. C. MacKay, R. M. Neal,: Near Shannon limit performance of low density parity check codes, Electron. Lett., vol. 32, pp. 1645–1646, Aug. 1996.
7. William E. Ryan, Shu Lin,: Channel Codes Classical and Modern, Cambridge University Press, 2009.
8. F. Harary,: Graph Theory, Addison-Wesley, 1969.
9. Shlomo Hoory,: The Size Of Bipartite Graphs with a Given Girth, Journal Of Combinatorial Theory, Series B 86, 215-220 (2002).
10. Fan Zhang, et al: High Girth LDPC Code Construction Based on Combinatorial Design, Vehicular Technology, IEEE Conference - VTC -Spring , vol. 1, pp. 591-594 Vol. 1, 2005.
11. J.M.F. Moura, et al: Structured Low-Density Parity-Check Codes IEEE Signal Processing Magazine vol. 21, no. 1, pp. 42-55, 2004.
12. F. Lazebnik, V.A. Ustimenko,: Explicit Construction of Graphs with arbitrary large Girth and of Large Size, Discrete Applied Mathematics 60 (1995), 275-284.
13. Bollobas,: Extremal Graph Theory Academic Press, London, 1978.
14. A. Lubotzky, R. Phillips, P. Sarnak,: Ramanujan Graphs, Combinatorica 8(3) (1988) 261-277.
15. Bollobas,: Modern Graph Theory Springer, London, 1998.
16. Vivek S Nittoor, Reiji Suda,: Enumeration Based Search Algorithm For Finding A Regular Bi-partite Graph Of Maximum Attainable Girth For Specified Degree And Number Of Vertices, Available at cs.DM arxiv.
17. Mirka Miller, Jozef Siran,: Moore graphs and beyond: A survey of the degree/diameter problem, Electronic Journal Of Combinatorics, Dynamic Survey D, Vol. 14, 2005.
18. N.I. Biggs,: Girth, valency and excess, Linear Algebra Appl. 31 (1980) 5559.
19. Michael E. OSullivan,: Algebraic Construction of Sparse Matrices With Large Girth, IEEE Transactions on Information Theory, Vol. 52, No. 2, Feb 2006.
19. S. Ramanujan,: On certain arithmetical functions, Trans. Camb. Phil. Soc. 22(1916), 159-184.