FGF signalling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency

Gabriella Ficz1, Timothy A Hore1, Fatima Santos1, Heather J Lee1, Wendy Dean1, Julia Arand2, Felix Krueger3, David Oxley4, Yu-Lee Paul1, Jörn Walter2, Simon J Cook5, Simon Andrews3, Miguel R Branco1,6, Wolf Reik1,6,7*

From Birmingham Cancer Epigenetics Conference; Translational Opportunities
Birmingham, UK. 16 May 2013

Genome-wide erasure of DNA methylation takes place in primordial germ cells (PGCs) and early embryos and is linked with pluripotency. Inhibition of Erk1/2 and Gsk3β signalling in mouse embryonic stem cells (ESCs) by small molecule inhibitors (called 2i) has recently been shown to induce hypomethylation. We show by whole-genome bisulphite sequencing that 2i induces rapid and genome-wide demethylation on a scale and pattern similar to that in migratory PGCs and early embryos. Major satellites, intracisternal A particles (IAPs) and imprinted genes remain relatively resistant to erasure. Demethylation involves oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), impaired maintenance of 5mC and 5hmC and repression of the de novo methyltransferases (Dnmt3a, Dnmt3b) and Dnmt3L. We identify a Prdm14 and Nanog binding cis-acting regulatory region in Dnmt3b that is highly responsive to signalling. These insights provide a novel framework for understanding how signalling pathways regulate reprogramming to an epigenetic ground state of pluripotency.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

*Correspondence: wolf.reik@babraham.ac.uk
1Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
2Department of Biological Sciences, Institute of Genetics/Epigenetics, University of Saarland, Saarbrücken, Germany
3Bioinformatics Group, Babraham Institute, Cambridge CB22 3AT, UK
4Proteomics Research Group, Babraham Institute, Cambridge CB22 3AT, UK
5Signalling Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
6Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
7Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK

Published: 19 August 2013