Linear stable range for homology of congruence subgroups via FI-modules

Wee Liang Gan 1 · Liping Li 2

Published online: 27 August 2019
© Springer Nature Switzerland AG 2019

Abstract
We answer positively a question of Church, Miller, Nagpal and Reinhold on existence of a linear bound on the presentation degree of the homology of a complex of FI-modules. This implies a linear stable range for the homology of congruence subgroups of general linear groups.

Mathematics Subject Classification 16E05 · 16G99 · 18D20 · 18G35 · 57T10

Introduction

Let R be a ring. For any finite set S, let R^S be the free right R-module on S and let $\text{GL}_S(R)$ be the group of right R-module automorphisms of R^S. For any two-sided ideal I of R, the congruence subgroup $\text{GL}_S(R, I)$ is defined to be the kernel of the natural group homomorphism $\text{GL}_S(R) \to \text{GL}_S(R/I)$. When S is the finite set $[n] := \{1, \ldots, n\}$, we denote $\text{GL}_S(R, I)$ by $\text{GL}_n(R, I)$.

Suppose T is a finite set and $S \subset T$. The natural group monomorphism $\text{GL}_S(R) \to \text{GL}_T(R)$ restricts to a group monomorphism $\text{GL}_S(R, I) \to \text{GL}_T(R, I)$. Taking group homology with coefficients in an abelian group A, we get a group homomorphism $H_k(\text{GL}_S(R, I); A) \to H_k(\text{GL}_T(R, I); A)$. For each $n \geq 0$ and $N \geq 0$, there is a canonical homomorphism:

L. Li is supported by the National Natural Science Foundation of China (Grant No. 11771135) and the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 18A016). The authors thank the anonymous referee for carefully checking the manuscript and providing many valuable comments.

Liping Li
lipingli@hunnu.edu.cn

Wee Liang Gan
wlgan@ucr.edu

1 Department of Mathematics, University of California, Riverside, CA 92521, USA
2 LCSM (Ministry of Education), School of Mathematics and Statistics, Hunan Normal University, Changsha 410081, Hunan, China
colim_{S \subseteq [n], |S| \leq N} H_k(\text{GL}_S(R, I); A) \longrightarrow H_k(\text{GL}_n(R, I); A)

where the colimit is taken over the poset of all subsets S of $[n]$ such that $|S| \leq N$.

In this article, we prove the following result:

Theorem 1 Suppose that R satisfies Bass’s stable range condition SR_{d+2} for some $d \geq 0$ and I is a proper two-sided ideal of R. Then for each $k \geq 0$ and $n \geq 0$, one has a canonical isomorphism:

$$
\text{colim}_{S \subseteq [n], |S| \leq \omega(k)} H_k(\text{GL}_S(R, I); A) \sim \longrightarrow H_k(\text{GL}_n(R, I); A)
$$

(1)

where $\omega(k) = 4k + 2d + 6$.

We refer the reader to [1, (V, 3.1)] for the definition of condition SR_{d+2}. Bass proved in [1, (V, 3.5)] that any commutative Noetherian ring of Krull dimension d satisfies SR_{d+2}. For example, any field satisfies SR_2 and any Dedekind domain satisfies SR_3.

It is trivial that (1) is an isomorphism when $n \leq \omega(k)$; the range $n > \omega(k)$ is called the stable range. Qualitatively, Theorem 1 says that there is a stable range starting at a linear function of k.

An excellent account of what was known about homology of the congruence subgroups is given in [15]. Let us recall the recent developments most relevant to our present article:

(i) Putman proved Theorem 1 with stable range $n > (d + 8)2^{k-1} - 4$ under the assumption that A is a field whose characteristic is either 0 or at least $(d + 8)2^{k-1} - 3$; see [15, Theorem B].

(ii) Church–Ellenberg–Farb–Nagpal proved Theorem 1 without an explicit stable range in the special case where R is the ring of integers of a number field and under the assumption that A is a Noetherian ring; see [6, Theorems C and D].

(iii) Church–Ellenberg proved Theorem 1 with stable range $n > 2^{k-2}(2d + 9) - 1$; see [4, Theorem D’].

(iv) Church–Miller–Nagpal–Reinhold proved Theorem 1 with stable range $n > 4k^2 + (4d + 10)k + 5d + 6$; see [7, Application B].

Most importantly for us, Church–Miller–Nagpal–Reinhold reduced the proof of Theorem 1 to a question on FI-modules which may be of independent interest; see [7, Question 5.2]. We give a positive answer to their question in Theorem 5. Recently, Jeremy Miller and Jennifer Wilson applied our answer to this question to deduce a result similar to Theorem 1 for cohomology groups of ordered configuration spaces; for details, see [14].

This article is organized as follows. In Sect. 1, we recall the definitions and results on FI-modules that we need. In Sect. 2, we state and prove Theorem 5. In Sect. 3, we give the application of Theorem 5 to the proof of Theorem 1.

1 See also [2, 8, 13, 16] for recent related work.
We thank Thomas Church and Jeremy Miller for answering our questions on [7]. Jeremy Miller and Rohit Nagpal informed us that they have recently proved Theorem 1 with a stable range starting at a linear function of k in the special case where R is the ring of integers of a number field. Their method of proof is completely different from the one we give here.

1 Generalities

We refer the reader to [4] for background on FI-modules; our notations will follow that of [7].

We work over a commutative ring \mathbf{k}. Let FI be the category of finite sets and injective maps. By an FI-module (respectively, FI-group), we mean a functor from FI to the category of \mathbf{k}-modules (respectively, groups); see [5]. Let FB be the category of finite sets and bijective maps. An FB-module is a functor from FB to the category of \mathbf{k}-modules. Suppose M is an FI-module or FB-module. We write M_S for the value of M on a finite set S. We write M_n for the value of M on $[n]$. If M is nonzero, its degree $\deg M$ is defined to be $\sup\{n \mid M_n \neq 0\}$; if M is zero, we set $\deg M$ to be -1.

For any FB-module V, the induced FI-module $I(V)$ is defined by

$$I(V)_S = \bigoplus_{n \geq 0} \mathbf{k}[\text{Hom}_{\text{FI}}([n], S)] \otimes_{\mathbf{k}[S_n]} V_n,$$

where S_n denotes the symmetric group on $[n]$. If $\alpha : S \to T$ is an injective map between finite sets, then $\alpha_* : I(V)_S \to I(V)_T$ is the \mathbf{k}-linear map defined by

$$\beta \otimes v \mapsto (\alpha \circ \beta) \otimes v$$

where $\beta \in \text{Hom}_{\text{FI}}([n], S)$ and $v \in V_n$ for any integer $n \geq 0$. The functor $V \mapsto I(V)$ is a left adjoint functor to the forgetful functor from the category of FI-modules to the category of \mathbf{k}-modules. The projective FI-modules are the induced FI-modules $I(V)$ where each V_n is projective as a $\mathbf{k}[S_n]$-module.

Suppose V is an FB-module. Then each V_n can be regarded as an FB-module whose value on a finite set S is V_S if $|S| = n$, zero if $|S| \neq n$. There is a direct sum decomposition $V = \bigoplus_{n \geq 0} V_n$ in the category of FB-modules. Correspondingly, there is a direct sum decomposition

$$I(V) = \bigoplus_{n \geq 0} I(V_n)$$

in the category of FI-modules.

Suppose V and W are FB-modules. Since there are FI-module direct sum decompositions

$$I(V) = \bigoplus_{n \geq 0} I(V_n) \text{ and } I(W) = \bigoplus_{m \geq 0} I(W_m),$$
any FI-module homomorphism \(f : \mathcal{I}(V) \to \mathcal{I}(W) \) is given by a matrix \((f^{m,n}) \) of FI-module homomorphisms

\[
f^{m,n} : \mathcal{I}(V_n) \to \mathcal{I}(W_m).
\]

If \(m > n \), then \(\mathcal{I}(W_m)_n = 0 \), so there is no nonzero homomorphism from \(\mathcal{I}(V_n) \) to \(\mathcal{I}(W_m) \). Thus, the matrix \((f^{m,n}) \) is upper-triangular.

For any FI-module \(M \) and finite set \(S \), we write \(M \prec S \) for the FI-submodule of \(M \) generated by all \(M_T \) with \(|T| < |S| \). Define an FI-module \(H_{FI}^0(M) \) by

\[
H_{FI}^0(M)_S = (M/M_\prec S)_S.
\]

The functor \(H_{FI}^0 \) is right exact; let \(H_{FI}^i \) be its \(i \)-th left derived functor. For any FI-module \(M \), denote by \(t_i(M) \) the degree \(\deg H_{FI}^i(M) \). We call \(\max\{t_0(M), t_1(M)\} \) the presentation degree of \(M \).

If \(V \) is an FB-module, then it is plain that \(H_{FI}^0(\mathcal{I}(V)) = V \) and \(t_0(\mathcal{I}(V)) = \deg V \).

The following theorem is due to Church–Ellenberg [4, Theorem C]; see [10] for a very simple proof.

Theorem 2 (Church–Ellenberg) Let \(M \) be an FI-module. If the presentation degree of \(M \) is at most \(N \), then there is a canonical isomorphism

\[
\colim_{S \subset \{1, \ldots, n\}, |S| \leq N} M_S \sim \to M_n \quad \text{for every } n \geq 0.
\]

The next theorem is also due to Church–Ellenberg [4, Theorem A]; alternative proofs can be found in [3,9] and [11].

Theorem 3 (Church–Ellenberg) Let \(M \) be an FI-module. Then for each \(i \geq 2 \), one has:

\[
t_i(M) \leq t_0(M) + t_1(M) + i - 1.
\]

From Theorem 3, it is easy to deduce the following result.

Corollary 4 Let \(P \) and \(Q \) be projective FI-modules. Let \(f : P \to Q \) be a homomorphism and \(Z = \ker(f) \). Then for each \(i \geq 0 \), one has:

\[
t_i(Z) \leq 2t_0(P) + i + 1.
\]

Proof The claim is trivial if \(t_0(P) = \infty \), so suppose \(t_0(P) < \infty \). Let \(N = t_0(P) \).

There are FB-modules \(V \) and \(W \) such that \(P = \mathcal{I}(V) = \bigoplus_{n \geq 0} \mathcal{I}(V_n) \) and \(Q = \mathcal{I}(W) = \bigoplus_{m \geq 0} \mathcal{I}(W_m) \). Since the matrix \((f^{m,n}) \) is upper-triangular and \(V_n = 0 \) for every \(n > N \), the image of \(f \) is contained in \(\bigoplus_{m \leq N} \mathcal{I}(W_m) \). Therefore, replacing \(Q \) by \(\bigoplus_{m \leq N} \mathcal{I}(W_m) \), we may assume that \(t_0(Q) \leq N \).
From the short exact sequence $0 \to Z \to P \to P/Z \to 0$, we deduce that:

$$t_0(Z) \leq \max\{t_0(P), t_1(P/Z)\},$$
$$t_i(Z) = t_{i+1}(P/Z) \text{ if } i \geq 1.$$

Let C be the cokernel of f. From the short exact sequence $0 \to P/Z \to Q \to C \to 0$, we deduce that $t_{i+1}(P/Z) = t_{i+2}(C)$; moreover, $t_0(C) \leq t_0(Q)$ and $t_1(C) \leq t_0(P/Z) \leq t_0(P)$. Applying Theorem 3, we have:

$$t_{i+2}(C) \leq t_0(C) + t_1(C) + i + 1 \leq t_0(Q) + t_0(P) + i + 1 \leq 2N + i + 1.$$

Putting the above inequalities together gives the corollary. \square

We write H^{FI}_k for the k-th left hyper-derived functor of H^{FI}_0. If M_\ast is a bounded-below chain complex of FI-modules and P_\ast is a complex of projective (or induced\(^2\)) FI-modules quasi-isomorphic to M_\ast, then $H^{FI}_k(M_\ast)$ is, by definition, equal to the k-th homology of the chain complex $H^{FI}_0(P_\ast)$; denote by $t_k(M_\ast)$ the degree $\text{deg} \ H^{FI}_k(M_\ast)$.

2 Bounding presentation degree of homology

Let M_\ast be a complex of FI-modules supported on non-negative homological degrees; its k-th homology $H_k(M_\ast)$ is an FI-module. The following theorem gives a positive answer to [7, Question 5.2].

Theorem 5 For each $k \geq 0$, one has:

$$t_0(H_k(M_\ast)) \leq 2t_k(M_\ast) + 1,$$
$$t_1(H_k(M_\ast)) \leq 2 \max\{t_k(M_\ast), t_{k+1}(M_\ast)\} + 2.$$

In particular, if $a \geq 0$ and $t_k(M_\ast) \leq ak + b$ for every k, then one has:

$$t_0(H_k(M_\ast)) \leq 2ak + 2b + 1,$$
$$t_1(H_k(M_\ast)) \leq 2ak + 2a + 2b + 2.$$

To prove Theorem 5, let P_\ast be the total complex of a projective Cartan-Eilenberg resolution of M_\ast. Then P_\ast is a chain complex of projective FI-modules supported on non-negative degrees with $H_k(P_\ast) = H_k(M_\ast)$ for every k. Recall that, by definition, $t_k(M_\ast)$ is the degree of the k-th homology of the chain complex $H^{FI}_0(P_\ast)$.

For each k, there is an FB-module V_k such that

$$P_k = \mathcal{I}(V_k) = \bigoplus_{n \geq 0} \mathcal{I}((V_k)_n),$$

\(^2\) Induced FI-modules are FI-homology acyclic; see [12, Theorem 1.3] or [17, Theorem B].
where \((V_k)_n\) is the value of \(V_k\) at the object \([n]\). To avoid confusion in notation, we shall always reserve \(k\) for homological degree and \(n\) for the order of the finite set \([n]\).

We write \(d\) for the differential map of the chain complex \(P_\bullet\). Then \(d : P_k \to P_{k-1}\) is an upper-triangular matrix \((d^{m,n})\) of homomorphisms

\[
d^{m,n} : \mathcal{I}((V_k)_n) \to \mathcal{I}((V_{k-1})_m).
\]

In particular, since \((\mathcal{I}((V_k)_n))_n = (V_k)_n\) and \((\mathcal{I}((V_{k-1})_n))_n = (V_{k-1})_n\), the homomorphism \(d^{n,n}\) at \([n]\) is a map \((V_k)_n \to (V_{k-1})_n\). One has \(H^0_{\text{FI}}(P_k) = V_k\). Thus, \(H^0_{\text{FI}}(P_\bullet)\) is the chain complex \(V_\bullet\), whose differential map \(\tilde{d} : V_k \to V_{k-1}\) is defined at \([n]\) to be the map \(d^{n,n}\) at \([n]\). One has:

\[
t_k(M_\bullet) = \deg(H_k(V_\bullet)).
\]

Lemma 6 Suppose \(N > t_k(M_\bullet)\). Then the sequence

\[
\mathcal{I}((V_{k+1})_N) \xrightarrow{d^{N,N}} \mathcal{I}((V_k)_N) \xrightarrow{d^{N,N}} \mathcal{I}((V_{k-1})_N)
\]

is exact.

Proof Since \(N > t_k(M_\bullet)\), the sequence

\[
(V_{k-1})_N \xrightarrow{\tilde{d}} (V_k)_N \xrightarrow{\tilde{d}} (V_{k-1})_N
\]

is exact. Since \(\tilde{d}\) at \([N]\) is precisely \(d^{N,N}\) at \([N]\), and for every finite set \(S\), \(k[\text{Hom}_{\text{FI}}([N], S)]\) is a free right \(k[S_N]\)-module, the lemma follows. \(\square\)

Let \(Z_k\) be the kernel of \(d : P_k \to P_{k-1}\), and let \(B_k\) be the image of \(d : P_{k+1} \to P_k\). Thus, \(H_k(P_\bullet) = Z_k/B_k\). Let

\[
f : \bigoplus_{n \leq t_k(M_\bullet)} \mathcal{I}((V_k)_n) \to P_{k-1}
\]

be the restriction of \(d : P_k \to P_{k-1}\) to \(\bigoplus_{n \leq t_k(M_\bullet)} \mathcal{I}((V_k)_n)\). Let

\[
Z = \ker(f).
\]

Lemma 7 The following composition is surjective:

\[
Z \twoheadrightarrow Z_k \twoheadrightarrow H_k(P_\bullet).
\]

Proof We need to prove that for every finite set \(S\) and \(x \in (Z_k)_S\), there exists \(y \in (B_k)_S\) such that \(x - y \in Z_S\). Let \(N\) be an integer such that

\[
x \in \bigoplus_{n \leq N} \mathcal{I}((V_k)_n)_S.
\]
If $N \leq t_k(M_\bullet)$, then $x \in Z(S)$ and we are done. Suppose that $N > t_k(M_\bullet)$. We write $x = x' + x''$ where
\[
x' \in \bigoplus_{n \leq N-1} I((V_k)_n)_S, \quad x'' \in I((V_k)_N)_S.
\]

Since the matrix $(d^{m,n})$ is upper-triangular, we have:
\[
d(x') \in \bigoplus_{n \leq N-1} I((V_{k-1})_n)_S, \quad d(x'') \in \bigoplus_{n \leq N} I((V_{k-1})_n)_S.
\]

But $d(x') + d(x'') = d(x) = 0$, so we must have:
\[
d(x'') \in \bigoplus_{n \leq N-1} I((V_{k-1})_n)_S.
\]

Hence, $d^{N,N}(x'') = 0$. Since $N > t_k(M_\bullet)$, by Lemma 6, there exists $w \in I((V_{k+1})_N)_S$ such that $d^{N,N}(w) = x''$. Since we also have
\[
d(w) \in \bigoplus_{n \leq N} I((V_k)_n)_S,
\]

it follows that
\[
x - d(w) \in \bigoplus_{n \leq N-1} I((V_k)_n)_S.
\]

If $N - 1 \leq t_k(M_\bullet)$, then we are done. If not, we repeat the above argument with x replaced by $x - d(w)$.

Next, let
\[
\tilde{f} : \bigoplus_{n \leq \max\{t_k(M_\bullet), t_{k+1}(M_\bullet)\}} I((V_k)_n) \to P_{k-1}
\]

be the restriction of $d : P_k \to P_{k-1}$ to $\bigoplus_{n \leq \max\{t_k(M_\bullet), t_{k+1}(M_\bullet)\}} I((V_k)_n)$. Let
\[
\tilde{Z} = \ker(\tilde{f}).
\]

Then $Z \subset \tilde{Z}$, so by Lemma 7, the composition
\[
\tilde{Z} \hookrightarrow Z_k \twoheadrightarrow H_k(P_\bullet)
\]
is surjective. Since the kernel of $Z_k \twoheadrightarrow H_k(P_\bullet)$ is B_k, the kernel of $\tilde{Z} \twoheadrightarrow H_k(P_\bullet)$ is $\tilde{Z} \cap B_k$.

\[\square\]
Lemma 8 One has: $t_0(\widetilde{Z} \cap B_k) \leq \max\{t_k(M_\bullet), t_{k+1}(M_\bullet)\}$.

Proof Let

$$g : \bigoplus_{n \leq \max\{t_k(M_\bullet), t_{k+1}(M_\bullet)\}} \mathcal{I}(V_{k+1})_n \to P_k$$

be the restriction of $d : P_{k+1} \to P_k$ to $\bigoplus_{n \leq \max\{t_k(M_\bullet), t_{k+1}(M_\bullet)\}} \mathcal{I}(V_{k+1})_n$. Let \tilde{B} be the image of g. We claim that $\widetilde{Z} \cap B_k = \tilde{B}$, which would prove the lemma. It is clear that $\tilde{B} \subset \widetilde{Z} \cap B_k$. We need to prove that $\widetilde{Z} \cap B_k \subset \tilde{B}$.

Suppose S is a finite set and $x \in (\widetilde{Z} \cap B_k)_S$. Then there exists an integer N and $y \in \bigoplus_{n \leq N} \mathcal{I}(V_{k+1})_n$ such that $d(y) = x$.

If $N \leq \max\{t_k(M_\bullet), t_{k+1}(M_\bullet)\}$, then we are done. Suppose that $N > \max\{t_k(M_\bullet), t_{k+1}(M_\bullet)\}$. We write $y = y' + y''$ where

$$y' \in \bigoplus_{n \leq N-1} \mathcal{I}(V_{k+1})_n, \quad y'' \in \mathcal{I}(V_{k+1})_N.$$

Then

$$d(y') \in \bigoplus_{n \leq N-1} \mathcal{I}(V_k)_S, \quad d(y'') \in \bigoplus_{n \leq N} \mathcal{I}(V_k)_S.$$

But

$$d(y) = x \in \widetilde{Z}_S \subset \bigoplus_{n \leq \max\{t_k(M_\bullet), t_{k+1}(M_\bullet)\}} \mathcal{I}(V_k)_S.$$

Hence, $d^{N,N}(y'') = 0$. Since $N > t_{k+1}(M_\bullet)$, by Lemma 6, there exists $w \in \mathcal{I}(V_{k+2})_S$ such that $d^{N,N}(w) = y''$. Since we also have

$$d(w) \in \bigoplus_{n \leq N} \mathcal{I}(V_{k+1})_n,$$

it follows that

$$y - d(w) \in \bigoplus_{n \leq N-1} \mathcal{I}(V_{k+1})_n.$$

One has $d(y - d(w)) = d(y) = x$. If $N - 1 \leq \max\{t_k(M_\bullet), t_{k+1}(M_\bullet)\}$, then we are done. If not, we repeat the above argument with y replaced by $y - d(w)$.

We now prove Theorem 5.
Proof of Theorem 5 By Lemma 7, we have \(t_0(H_k(P_\bullet)) \leq t_0(Z) \). By Corollary 4, we have \(t_0(Z) \leq 2t_k(M_\bullet) + 1 \). Hence,

\[t_0(H_k(P_\bullet)) \leq 2t_k(M_\bullet) + 1. \]

Recall the short exact sequence:

\[0 \to \tilde{Z} \cap B_k \to \tilde{Z} \to H_k(P_\bullet) \to 0. \]

Lemma 8 says that \(t_0(\tilde{Z} \cap B_k) \leq \max\{t_k(M_\bullet), t_{k+1}(M_\bullet)\} \). By Corollary 4, we have

\[t_1(\tilde{Z}) \leq 2\max\{t_k(M_\bullet), t_{k+1}(M_\bullet)\} + 2. \]

Hence,

\[t_1(H_k(P_\bullet)) \leq 2\max\{t_k(M_\bullet), t_{k+1}(M_\bullet)\} + 2. \]

\[\square \]

Remark 9 For any \(\text{FI} \)-module \(L \), denote by \(\delta(L) \) the stable degree of \(L \); see [7, Definition 2.9]. It was proved in [7, Theorem 5.1] that for each \(k \geq 0 \), one has:

\[\delta(H_k(M_\bullet)) \leq t_k(M_\bullet). \]

Let us give an alternative proof of this inequality. Lemma 7 implies that \(H_k(M_\bullet) \) is a subquotient of \(\bigoplus_{n \leq t_k(M_\bullet)} \mathcal{I}((V_k)_n) \). Therefore, by [7, Proposition 2.10], one has:

\[\delta(H_k(M_\bullet)) \leq \delta(\bigoplus_{n \leq t_k(M_\bullet)} \mathcal{I}((V_k)_n)) = t_0(\bigoplus_{n \leq t_k(M_\bullet)} \mathcal{I}((V_k)_n)) \leq t_k(M_\bullet). \]

3 Homology of congruence subgroups

We now work over \(\mathbb{Z} \), so by \(\text{FI} \)-modules we mean functors from \(\text{FI} \) to the category of \(\mathbb{Z} \)-modules. Let \(R \) be a ring, let \(I \) be a two-sided ideal of \(R \), and denote by \(\text{GL}(R, I) \) the \(\text{FI} \)-group \(S \mapsto \text{GL}_S(R, I) \). Let \(A \) be an abelian group. Then \(H_k(\text{GL}(R, I); A) \) is an \(\text{FI} \)-module whose value on a finite set \(S \) is \(H_k(\text{GL}_S(R, I); A) \).

For any group \(G \), let \(E_\bullet G \) be the bar resolution of the trivial \(\mathbb{Z}G \)-module \(\mathbb{Z} \) and let \(C_\bullet(G; A) = E_\bullet G \otimes_G A \); so one has \(H_k(C_\bullet(G; A)) = H_k(G; A) \). Then \(C_\bullet(\text{GL}(R, I); A) \) is a complex of \(\text{FI} \)-modules such that

\[H_k(C_\bullet(\text{GL}(R, I); A)) = H_k(\text{GL}(R, I); A). \]

We recall [7, Proposition 5.4]:
Proposition 10 (Church–Miller–Nagpal–Reinhold) Suppose that R satisfies Bass’s stable range condition SR_{d+2} for some $d \geq 0$ and I is a proper two-sided ideal of R. Then for each $k \geq 0$, one has:

$$t_k(C_\bullet(\text{GL}(R, I); A)) \leq 2k + d.$$

We deduce that:

Theorem 11 Suppose that R satisfies Bass’s stable range condition SR_{d+2} for some $d \geq 0$ and I is a proper two-sided ideal of R. Then for each $k \geq 0$, one has:

$$t_0(H_k(\text{GL}(R, I); A)) \leq 4k + 2d + 1,$$

$$t_1(H_k(\text{GL}(R, I); A)) \leq 4k + 2d + 6.$$

In particular, the presentation degree of $H_k(\text{GL}(R, I); A)$ is at most $4k + 2d + 6$.

Proof Immediate from Proposition 10 and Theorem 5. □

Theorem 1 now follows easily:

Proof of Theorem 1 Immediate from Theorems 11 and 2. □

The following corollary strengthens [6, Theorem 1.4].

Corollary 12 Let R be the ring of integers of a number field. Let I be a proper ideal of R. For any $k \geq 0$ and any field k, there exists a polynomial $P(T) \in \mathbb{Q}[T]$ such that

$$\dim_k H_k(\text{GL}_n(R, I); k) = P(n) \quad \text{for every } n > 8k + 10.$$

Proof We work over the field k. Since R satisfies condition SR_3, by Theorem 11, we have:

$$t_0(H_k(\text{GL}(R, I); k)) \leq 4k + 3,$$

$$t_1(H_k(\text{GL}(R, I); k)) \leq 4k + 8.$$

It is known that $H_k(\text{GL}_n(R, I); k)$ is finite dimensional for every $n \geq 0$; see [6, Remark 1.6]. Hence, the FI-module $H_k(\text{GL}(R, I); k)$ is finitely generated. The corollary now follows from [11, Theorem 1.3]. □

References

1. Bass, H.: Algebraic K-Theory. W. A. Benjamin Inc., New York (1968)
2. Calegari, F.: The stable homology of congruence subgroups. Geom. Topol. 19(6), 3149–3191 (2015). arXiv:1311.5190v2

3. The forgetful functor \mathcal{U} from the category of FI-modules over k to the category of FI-modules over \mathbb{Z} is exact, sends induced modules to induced modules, and commutes with H_0. Thus, \mathcal{U} commutes with H_i for every $i \geq 0$; in particular, if M is an FI-module over k, then $t_i(M) = t_i(\mathcal{U}(M))$.
3. Church, T.: Bounding the homology of FI-modules. Preprint. arXiv:1612.07803v1
4. Church, T., Ellenberg, J.S.: Homology of FI-modules. Geom. Topol. 21(4), 2373–2418 (2017). arXiv:1506.01022v2
5. Church, T., Ellenberg, J.S., Farb, B.: FI-modules and stability for representations of symmetric groups. Duke Math. J. 164(9), 1833–1910 (2015). arXiv:1204.4533v4
6. Church, T., Miller, J., Nagpal, R., Reinhold, J.: Linear and quadratic ranges in representation stability. Adv. Math. 333, 1–40 (2018). arXiv:1706.03845v1
7. Church, T., Miller, J., Nagpal, R., Reinhold, J.: Linear and quadratic ranges in representation stability. Preprint. arXiv:1706.03845v1
8. Djament, A.: On stable homology of congruence groups. Preprint. arXiv:1707.07944v1
9. Gan, W.L.: A long exact sequence for homology of FI-modules. N. Y. J. Math. 22, 1487–1502 (2016). arXiv:1602.08873v3
10. Gan, W.L., Li, L.: On central stability. Bull. Lond. Math. Soc. 49, 449–462 (2017). arXiv:1504.07675v5
11. Li, L.: Upper bounds of homological invariants of FI_G-modules. Arch. Math. (Basel) 107(3), 201–211 (2016). arXiv:1512.05879v3
12. Li, L., Yu, N.: Filtrations and homological degrees of FI-modules. J. Algebra 472, 369–398 (2017). arXiv:1511.02977v3
13. Miller, J., Patzt, P., Wilson, J.C.H.: Central stability for the homology of congruence subgroups and the second homology of Torelli groups. Preprint. arXiv:1704.04449v1
14. Miller, J., Wilson, J.C.H.: FI-hyperhomology and ordered configuration spaces. Preprint. arXiv:1903.02722
15. Putman, A.: Stability in the homology of congruence subgroups. Invent. Math. 202(3), 987–1027 (2015)
16. Putman, A., Sam, S.V.: Representation stability and finite linear groups. Duke Math. J. 166(13), 2521–2598 (2017). arXiv:1408.3694v3
17. Ramos, E.: Homological invariants of FI-modules and FI_G-modules. J. Algebra 502, 163–195 (2018). arXiv:1511.03964v3

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.