Net Gain: Seeking better outcomes for local people when mitigating biodiversity loss from development
Jones, Julia P.G.; Bull, Joseph W.; Roe, Dilys; Baker, Julia; Griffiths, Victoria F.; Starkey, Malcolm; Sonter, Laura J.; Milner-Gulland, EJ
One Earth

DOI: 10.1016/j.oneear.2019.09.007

Published: 25/10/2019

Publisher's PDF, also known as Version of record

Dyfniad o’r fersiwn a gyhoeddwyd / Citation for published version (APA):
Jones, J. P. G., Bull, J. W., Roe, D., Baker, J., Griffiths, V. F., Starkey, M., ... Milner-Gulland, EJ. (2019). Net Gain: Seeking better outcomes for local people when mitigating biodiversity loss from development. One Earth, 1(2), 195-201. https://doi.org/10.1016/j.oneear.2019.09.007

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Net Gain: Seeking Better Outcomes for Local People when Mitigating Biodiversity Loss from Development

Julia Patricia Gordon Jones,1,4 Joseph William Bull,2 Dilys Roe,3 Julia Baker,4 Victoria Frances Griffiths,5,8 Malcolm Starkey,6 Laura Jane Sonter,7 and E.J. Milner-Gulland8

1College of Environmental Sciences and Engineering, Bangor University, Bangor, Gwynedd, UK
2Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK
3International Institute for Environment and Development, London, UK
4Balfour Beatty, London, UK
5Synergy Global Consulting Ltd, Oxford, UK
6The Biodiversity Consultancy, Cambridge, UK
7School of Earth and Environmental Sciences & Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, Australia
8Department of Zoology, University of Oxford, Oxford, UK
*Correspondence: julia.jones@bangor.ac.uk
https://doi.org/10.1016/j.oneear.2019.09.007

Economic development projects are increasingly applying the mitigation hierarchy to achieve No Net Loss, or even a Net Gain, of biodiversity. Because people value biodiversity and ecosystem services, this can affect the well-being of local people; however, these types of social impacts from development receive limited consideration. We present ethical, practical, and regulatory reasons why development projects applying the mitigation hierarchy should consider related social impacts. We highlight risks to local well-being where projects restrict access to biodiversity and ecosystem services in biodiversity offsets. We then present a framework laying out challenges and associated opportunities for delivering better biodiversity and local well-being outcomes. Greater coordination between social and biodiversity experts, and early and effective integration of local people in the process, will ensure that efforts to reduce the negative impacts of development on biodiversity can contribute to, rather than detract from, local people’s well-being.

Introduction

New and upgraded roads, railways or ports, energy generation and transmission, and extractive industries all bring economic benefits but are also major drivers of global biodiversity loss.1 In response, countries, companies, and financial institutions are increasingly requiring that such development projects achieve “No Net Loss,” or even “Net Gain,” in biodiversity throughout their operations.2 Ultimately much of the justification for mitigation of biodiversity impacts comes from the recognition that nature provides ecosystem services to society (from globally valued services such as carbon sequestration, to services with local value including provisioning of wild-sourced foods or recreational opportunities3). Therefore, it is perhaps ironic that the impacts on people from such efforts have, until recently, received relatively little attention.4 The mitigation of biodiversity loss can and does affect people,5–9

No Net Loss or Net Gain policies (hereafter Net Gain) require that, following the mitigation hierarchy10 (Figure 1), biodiversity losses are avoided and minimized as far as possible during the project design. Residual impacts are then remediated (e.g., by restoring habitat temporarily cleared), and any remaining biodiversity losses are “offset” by equivalent and measurable biodiversity gains elsewhere. There are ongoing debates about the extent to which the mitigation hierarchy can indeed deliver Net Gain,11,12 and the ethical implications of the underlying commodification of nature.13,14 However the approach is spreading rapidly. A 2018 survey identified approximately 13,000 biodiversity offset projects in operation worldwide,5 the UK government has recently announced legislation requiring a Net Gain in biodiversity from future developments,15 and a Net Gain is required in Critical Habitats for major development projects with International Finance Corporation (IFC) funding.16

It is good practice for economic development projects to account for both their environmental and social impacts, and to do so early in the planning process.18–20 However, there has been a strong tendency for these two categories of impacts to be dealt with separately.21 Furthermore, the impacts are dealt with in the context of the impact of the development project, not of its knockon effects. This means that, where biodiversity loss, or associated mitigation efforts, results in negative social impacts, these can easily be overlooked because they are considered by neither the environmental nor social impact assessment teams.9 Failing to consider local people’s values for nature might also result in missed opportunities to benefit people while achieving a Net Gain in biodiversity, or for local people to play a role in delivering effective conservation.22

The idea that application of the mitigation hierarchy should consider both biodiversity and associated ecosystem services (the benefits society gets from natural ecosystems) is increasingly recognized.4,23 In this paper, we focus on local people (those living close to the development or its associated biodiversity offsets) and highlight how their well-being can be affected by loss and gain in biodiversity and ecosystem services caused by a development project and associated mitigation activities. We
present ethical, practical, and regulatory reasons why development projects should consider this issue when implementing the mitigation hierarchy. We highlight the particular risks to local well-being associated with the most controversial part of the mitigation hierarchy (biodiversity offsetting). Finally, we present a framework that identifies challenges and possible opportunities for delivering better biodiversity and local well-being outcomes from application of the mitigation hierarchy.

Local Well-Being and the Mitigation Hierarchy

The biodiversity of, and ecosystem services provided by, an area can impact the constituents of human well-being24 in a variety of ways (Figure 2). For example, biodiversity underpins provisioning of basic necessities such as food, fuel, and shelter for millions of people, especially in lower-income countries,25 while functioning ecosystems can offer natural pest control26 or flood protection27 benefits. In these ways both provisioning and regulating ecosystem services contribute to material well-being. Spending time in nature can positively impact both physical and mental health28 and social cohesion,29 and for some indigenous communities is inextricable from cultural identity.30,31 Cultural ecosystem services can therefore contribute to material, subjective, and relational well-being. A development project, and the activities undertaken to avoid, minimize, remediate, and offset the consequent loss of biodiversity, can affect all components of local people’s well-being, by either changing the supply of ecosystem services or local people’s access to them (Figure 2). Taking account of the values to people deriving from the biodiversity and ecosystem services in their local area, through participatory processes, could therefore result in better outcomes for people when applying the mitigation hierarchy.

The final stage of the mitigation hierarchy (biodiversity offsetting) compensates for unavoidable residual biodiversity losses. This happens either through ecological restoration (“restoration offsets”) or by making a contribution to preventing biodiversity losses (“avoided loss offsets”). For both these types of offset, the offset may be some distance away from the development (potentially meaning different components of biodiversity are restored/conserved compared with those that were lost). This has implications for well-being, because those who benefit from biodiversity and ecosystem services in the proposed offset area may be different from those who lose out in the proposed development site. Such changes in distributional equity are particularly concerning where pre-existing inequalities are exacerbated.31 For example, wetland mitigation banks in the United States have tended to result in relocation of wetlands away from urban areas, resulting in the loss of ecosystem services previously used by poor and marginalized communities.32

Particularly significant well-being impacts are likely to arise from offsets that require local people to lose, or have restricted access to, biodiversity and ecosystem services on which they depend for their livelihoods (Figure 3, quadrant a). Avoided loss offsets have prevented small-scale farmers in Madagascar,33 and Sami reindeer herders in Sweden,34 from carrying out their traditional agricultural practices. However, the risk that avoided loss offsets pose to well-being depends very much on local context (Figure 3). If local people do not depend on the biodiversity and associated ecosystem services at the offset site, or the creation of the offset does not restrict people’s access to them, there is unlikely to be a strongly negative impact of offsetting on local well-being.

Reasons to Consider Potential Well-Being Impacts

Ethical Reasons

Many businesses have made explicit commitments to act ethically.35 Policy makers also face a moral obligation to consider the indirect impacts of their environmental policies on people, and to consider justice or equity impacts of these policies.36 The application of the mitigation hierarchy has implications for distributional equity (by affecting who gains and who loses access to biodiversity and ecosystem services) and procedural equity (those most affected by the changes may have least influence). As always, pre-existing inequalities among stakeholders in assets and power can exacerbate the impacts of changes while simultaneously preventing those most affected from having a real voice in the process.31 For this reason, the values for biodiversity and ecosystem services held by poor or marginalized local people deserve particular consideration in the design of efforts to mitigate the impact on biodiversity loss from development.

Practical Reasons

Dealing transparently and effectively with issues of local concern contributes to building the trust essential for companies to obtain a social license to operate.37 This is well recognized with respect to many of the impacts from development which affect local people (such as traffic and noise); however, lack of attention to local biodiversity and ecosystem services values may also pose a risk
to business. For example, a planned housing development at Lodge Hill in Kent (UK) stalled for many years due to the likely impact on one of Britain’s most significant populations of nightingales (*Luscinia megarhynchos*). A plan to offset these impacts by creating new nightingale habitat patches up to 50 km away was criticized on grounds of feasibility, but local people also argued that they would not be able to hear the nightingales calling from the new sites, representing a significant and real loss. The amenity value of the nightingales to local communities was not adequately considered in the initial offset plan and their objections have been important in preventing the development going ahead so far.

Secondly, where offsets involve slowing biodiversity loss caused by local people’s livelihood activities, biodiversity outcomes simply cannot be achieved without involving local people. A major mine in Madagascar’s eastern rainforests aimed to offset their forest loss through a project that tried to slow the deforestation that was being driven by small-scale farming outside the mine’s footprint. The mine provided agricultural support to local farmers to facilitate a move away from shifting agriculture toward more settled and lower-impact forms of agriculture. However, research shows that the people most involved in clearing forest were those who were least likely to benefit from agricultural support activities; potentially undermining the effectiveness of the offset.

Finally, by demonstrating alignment with best practice, developments may obtain permits or funding more efficiently. Although local values for biodiversity and ecosystem services are currently often not fully considered, best practice guidelines do suggest they need to be addressed. For example, the prominent Business and Biodiversity Offset Program Standard explicitly states that biodiversity offsets should achieve No Net Loss of biodiversity with respect to “species composition, habitat structure, ecosystem function and people’s use and cultural values associated with biodiversity.”

### Addressing Well-Being in the Mitigation Hierarchy

Griffiths and colleagues suggest that the desired social outcome from Net Gain activities is that “Project-affected people (appropriately aggregated) should perceive the component of their well-being associated with biodiversity losses and gains to be at least as good as a result of the development project and associated biodiversity offset, throughout the project life cycle, than if the development had not been implemented.” There are well-recognized challenges to achieving biodiversity Net Gain, and many have analogs in efforts to deliver positive social outcomes. Below we present a framework highlighting eight key challenges for efforts to deliver good outcomes for people as well as biodiversity from the mitigation hierarchy, and potential ways forward (Table 1). We hope that by laying out these issues side-by-side, we will help those tasked with designing and delivering Net Gain initiatives to address both together.

One well-recognized challenge in the biodiversity Net Gain approach is that there is no one metric that captures the richness and complexity of biodiversity and can be used to compare biodiversity losses and gains. Similarly, human well-being
cannot be measured using narrow economic measures, such as gross domestic product or personal income. To assess the impacts of an intervention on well-being, a combination of objective indicators (demonstrating tangible changes), and subjective indicators (which provide insight into how people are feeling about any changes), is required. Therefore, we suggest that such multidimensional indicators of well-being should be used when considering the impacts of the application of the mitigation hierarchy on well-being.

Another important critique of biodiversity offsetting has been the concern that irreplaceable elements of biodiversity will be destroyed, which, by definition, cannot truly be compensated for by investment in conservation elsewhere. There are likely to be elements of biodiversity and ecosystem services that local people consider irreplaceable, even if they are not of particular conservation concern to a wider set of stakeholders. For example, this would apply to aspects of the natural environment that underpin identity and sense of place for indigenous communities, but may equally apply to areas of particular recreation importance. Such components of biodiversity and ecosystem services therefore cannot be offset without negative impact on local well-being. These impacts should be avoided at the first stage of the mitigation hierarchy wherever possible. If this is not possible, the trade-offs need to be acknowledged (that if the project goes ahead there will be an inevitable loss of local well-being). A requirement for transparency on such points should generate pressure to avoid such situations; ideally pushing developers back up the mitigation hierarchy to focus more on avoidance and reduce reliance on offsetting.

In calculating biodiversity outcomes, a dynamic reference scenario is often used. This can mean that if biodiversity is declining anyway, the losses and gains due to development and its mitigation efforts are calculated relative to that declining baseline. Under this sort of reference scenario, “Net Gain” can be achieved even if biodiversity in the landscape continues to decline against some historical baseline as long as it is declining more slowly than would otherwise have been the case (an understandably controversial result). In contrast, a “static” baseline requires that biodiversity is kept at (or improved on) the level measured at the start of the development regardless of ongoing decline expected in the absence of development. In the case of well-being impacts, we suggest that the use of a dynamic baseline may not be appropriate if human well-being in the area would have been expected to decline in the absence of the project. It is not sufficient for the project to simply achieve a slowing of that decline—it should demonstrate an improvement compared with the pre-project situation. This places an additional burden on developers, but we believe that it is appropriate because local people are unlikely to be convinced by counterfactual arguments; if they see their local well-being declining in the context of investments for national economic development and biodiversity conservation, this will be perceived as a real-terms loss (even if in counterfactual terms it is a gain). In areas where well-being is declining, therefore, an aspiration of static or improving absolute well-being should be adhered to. However, if well-being is expected to be static or improving without the project, then it is necessary to demonstrate a Net Gain relative to the increasing trend. This asymmetry of baselines means that the presumption concerning which baseline to use is tipped in favor of maximizing the benefit to local people.

In the biodiversity Net Gain literature there is extensive discussion about the extent to which “out-of-kind” offsets should be allowed (when losses in one species or habitat type are compensated with gains in another). Many argue that out-of-kind offsets are acceptable as long as they result in “trading up” (where gains are made for species or habitats that are more threatened than those lost due to development). For well-being impacts, out-of-kind compensation could relate to different and more highly valued biodiversity and ecosystem services than those which are lost. Or it could relate to different components of well-being, for example, the affected groups could prefer investment in their local school or even cash transfers rather than replacement of biodiversity elements. The critical element in deciding what can be considered equivalent is effective participation of stakeholders in decision making. This does not mean that biodiversity loss can trade off against gains in well-being; biodiversity Net Gain still needs to happen regardless of how local well-being losses due to loss of access to biodiversity and ecosystem services are compensated.

We suggest that well-being should be maintained (or improved) for at least as long as the negative impacts that are being mitigated are likely to persist. In practice, one-off compensation is likely to be used—which may not compensate for the time horizons over which losses of access to natural resources may be felt. A mining company operating in Sami reindeer herder territory, signed a legally binding document committing to continued dialogue to ensure interference from the mine on local livelihoods was minimized.
The uncertainty in delivering biodiversity gains from restoration or avoided loss offsets is often accounted for by requiring a larger area of offset than the area lost by development.47 Similarly, uncertainties in measuring impacts on well-being could be accounted for by taking a precautionary approach and aiming above the target. Another critique of biodiversity Net Gain has been the issue of time lags; biodiversity losses due to development may occur immediately, but gains generated through biodiversity offsets may take time to materialize.48 From the perspective of human well-being, similar time lags may occur with people’s access to biodiversity and ecosystem services being prevented immediately, but livelihood compensation activities taking time to implement.33 This needs to be considered, and interim compensation may be required to ensure that no one is left worse off at any stage in the project implementation process.

Finally, another important critique of biodiversity offsetting has been the risk that the conservation investments may not be additional. This is a particular risk where biodiversity losses due to development are offset by investment in strengthening protected areas, which would likely have been conserved anyway.48 Similarly, when considering the local well-being outcomes from biodiversity Net Gain, any measures to improve well-being to counteract losses in well-being (owing to loss of biodiversity or restricted access to ecosystem services) should be over and above existing commitments.

Although many of these points are very familiar to anyone involved in implementing social safeguards around development projects, the social issues are often not well considered by those designing and implementing strategies to mitigate biodiversity loss.25 Because conservation is essentially a social process, failure to fully involve local people means the conservation is unlikely to be a success,25 as well as bringing risks that the

Table 1. Framework Highlighting the Key Challenges Associated with the Application of the Mitigation Hierarchy with Suggested Ways Forward for Ensuring Biodiversity Outcomes and Parallel Approaches to Promote Positive Well-Being Outcomes

| Challenge | Ways to Promote Good Outcomes for Biodiversity | Ways to Promote Good Outcomes for Human Well-Being |
|-----------|-----------------------------------------------|--------------------------------------------------|
| How should outcomes be measured? | Biodiversity cannot be measured with a single, simple metric. Multiple indicators (ideally also incorporating ecological function) are therefore needed to generate proxies for biodiversity value. | The impacts of losses and gains in biodiversity (and associated measures to mitigate biodiversity loss) on people’s well-being needs to be measured as a multidimensional concept using locally derived indicators. Simple indicators, such as household income, are not sufficient. |
| What impacts are unacceptable? | Where development impacts irreplaceable biodiversity, or where impacts would be irreversible, Net Gain cannot be achieved through offsetting (e.g., loss of ancient woodland or species extinction). | Certain well-being impacts cannot be compensated for to achieve sustainable and equitable social outcomes from biodiversity Net Gain (e.g., loss of irreplaceable cultural sites). |
| What reference scenario should be used? | Biodiversity losses and gains need to be calculated relative to a defensible reference scenario. This may be a static scenario (the status of biodiversity when the policy was introduced), but dynamic reference scenarios (where losses and gains are measured relative to what would have occurred in the absence of the development) are often also used. | It will not be appropriate to measure losses in well-being due to a development project and its application of the mitigation hierarchy relative to pre-existing declines in well-being. Therefore, use a static baseline unless local well-being is expected to increase, in which case the well-being of affected people should continue to improve at least as fast as if the development had not occurred. |
| What is considered equivalent? | In some cases, out-of-kind compensatory actions (i.e., offsetting losses in one habitat with gains in another) can be appropriate provided they “trade up” (i.e., loss in less-threatened habitat is replaced with gain in more-threatened habitat). | If local people are to be compensated for losses, the form of compensation may differ as long as affected groups consider that their well-being is at least as good as if the development project and biodiversity Net Gain activities had not occurred. This assessment should be based on a participatory process. |
| How long should the Net Gain activities last? | Biodiversity Net Gain should be achieved for at least as long as the negative impacts on biodiversity being mitigated. | Well-being should be maintained (or improved) for at least as long as the negative impacts that are being mitigated. |
| How should uncertainty be dealt with? | Uncertainties (e.g., due to measurement of biodiversity loss or gains, or the effectiveness of planned restoration) should be incorporated into the plan. | Uncertainties (e.g., in measuring impacts on subjective well-being and background trends in well-being) should be incorporated into the plan. |
| How should time lags be dealt with? | If mitigation activities run alongside a development project, there are likely to be time lags between losses of biodiversity due to developments and any compensation. Mitigation banks are often used to avoid such time lags. | Time lags in local well-being should be avoided. Transitional activities might be required to compensate for immediate costs if mitigation activities involve activities that will take some time to deliver gains. |
| How can “additionality” be ensured? | Offsets must result in conservation that would not have occurred in the absence of the development project and its commitment to Net Gain. | Effort to compensate for losses to well-being should be over and above existing obligations to be genuinely additional. |

*Adapted from Bull et al.*41

---

The uncertainty in delivering biodiversity gains from restoration or avoided loss offsets is often accounted for by requiring a larger area of offset than the area lost by development.47 Similarly, uncertainties in measuring impacts on well-being could be accounted for by taking a precautionary approach and aiming above the target. Another critique of biodiversity Net Gain has been the issue of time lags; biodiversity losses due to development may occur immediately, but gains generated through biodiversity offsets may take time to materialize.48 From the perspective of human well-being, similar time lags may occur with people’s access to biodiversity and ecosystem services being prevented immediately, but livelihood compensation activities taking time to implement.33 This needs to be considered, and interim compensation may be required to ensure that no one is left worse off at any stage in the project implementation process.

Finally, another important critique of biodiversity offsetting has been the risk that the conservation investments may not be additional. This is a particular risk where biodiversity losses due to development are offset by investment in strengthening protected areas, which would likely have been conserved anyway.48 Similarly, when considering the local well-being outcomes from biodiversity Net Gain, any measures to improve well-being to counteract losses in well-being (owing to loss of biodiversity or restricted access to ecosystem services) should be over and above existing commitments.

Although many of these points are very familiar to anyone involved in implementing social safeguards around development projects, the social issues are often not well considered by those designing and implementing strategies to mitigate biodiversity loss.25 Because conservation is essentially a social process, failure to fully involve local people means the conservation is unlikely to be a success,25 as well as bringing risks that the
conservation directly harms local people. This framework cannot be applied without close involvement of local people themselves, which is why early and effective stakeholder engagement is so vital.

Conclusions
Global investment in infrastructure has increased substantially over the last decade, and is predicted to continue to rise; probably reaching US$3.8 trillion a year by 2040. A range of policy drivers are increasingly pushing economic development projects to aim for a No Net Loss and ideally a Net Gain in biodiversity. The impetus for strong biodiversity policies tends to originate from the understanding that biodiversity ultimately underpins human well-being through ecosystem services. However, the common separation of environmental and social expertise (among policymakers, regulatory bodies, or in companies implementing development projects), means that the social impacts of biodiversity losses, and efforts to mitigate these losses, are often overlooked. Given the significance of biodiversity and ecosystem services to the well-being of local communities, local values therefore need to be better incorporated into the design and implementation of any efforts to mitigate biodiversity losses. This will require effective participatory processes which fully engage local stakeholders early in the project planning process. There will inevitably be situations where there are challenging trade-offs, and the best mitigation measures for global biodiversity values may conflict with ensuring local ecosystem services are retained. However, application of our framework to the mitigation hierarchy will help ensure that efforts to reduce the negative impacts of development on biodiversity contribute to, rather than potentially harm, local people’s well-being.

ACKNOWLEDGMENTS
We acknowledge funding from an ESRC Impact Accelerator Award to Bangor University and the United Kingdom Government’s Darwin Initiative’s funding to project 23-019. We benefited from valuable input from the SNAPPE (Science for Nature and People Partnership) working group on compensatory conservation, the COMBO Project: COConservation, impact Mitigation and Biodiversity Offsets in Africa, IUCN’s business and biodiversity team, the Social Practice Forum, and the Business and Biodiversity Offset Partnership.

AUTHOR CONTRIBUTIONS
Conceptualization, all authors; Writing – Original Draft, J.P.G.J.; Writing – Review & Editing, all authors.

REFERENCES
1. Johnson, C.N., Balmford, A., Brook, B.W., Buettel, J.C., Galetti, M., Guangchun, L., and Wilmhurst, J.M. (2017). Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275.
2. Bull, J.W., and Strange, N. (2018). The global extent of biodiversity offset implementation under no net loss policies. Nat. Sustain. 1, 790–798.
3. Millennium Ecosystem Assessment (2005). Millennium Ecosystem Assessment Synthesis Report (Island Press),
4. Tallis, H., Kennedy, C.M., Ruckelshaus, M., Goldstein, J., and Kiesecker, J.M. (2015). Mitigation for one and all: an integrated framework for mitigation of development impacts on biodiversity and ecosystem services. Environ. Impact Assess. Rev. 55, 21–34.
5. Griffiths, V.F., Bull, J.W., Baker, J., and Milner-Gulland, E.J. (2019). No net loss for people and biodiversity. Conserv. Biol. 33, 76–87.
6. Mandle, L., Tallis, H., Sotomayor, L., and Vogl, A.L. (2015). Who loses? Tracking ecosystem service redistribution from road development and mitigation in the Peruvian Amazon. Front. Ecol. Environ. 13, 309–315.
7. Mandle, L., Bryant, B.P., Ruckelshaus, M., Geneletti, D., Kiesecker, J.M., and Pfaff, A. (2016). Entry points for considering ecosystem services within infrastructure planning: how to integrate conservation with development in order to aid them both. Conserv. Lett. 9, 221–227.
8. Sorter, L.J., Goureivitch, J., Koh, I., Nicholson, C.C., Richardson, L.L., Schwartz, A.J., Singh, N.K., Watson, K.B., Maron, M., and Ricketts, T.H. (2018). Biodiversity offsets may miss opportunities to mitigate impacts on ecosystem services. Front. Ecol. Environ. 16, 143–148.
9. Bidaud, C., Schreckenberg, K., and Jones, J.P.G. (2018). The local costs of biodiversity offsets: comparing standards, policy and practice. Land Use Policy 77, 43–56.
10. BBOP (2012). Standard on Biodiversity Offsets (Buiness and Biodiversity Offsets Partnership).
11. Maron, M., Brownlie, S., Bull, J.W., Evans, M.C., von Hase, A., Quétier, F., Watson, J.E.M., and Gordon, A. (2018). The many meanings of no net loss in environmental policy. Nat. Sustain. 1, 19–27.
12. Gardner, T.A., Von Hase, A., Brownlie, S., Ekstrom, J.M.M., Pilgrim, J.D., Savy, C.E., Stephens, R.T.T., Treweek, J., Ussher, G.T., Ward, G., et al. (2013). Biodiversity offsets and the challenge of achieving no net loss. Conserv. Biol. 27, 1254–1264.
13. Ives, C.D., and Bekessy, S.A. (2015). The ethics of offsetting nature. Front. Ecol. Environ. 13, 88–96.
14. Apostolopoulos, E., and Adams, W.M. (2017). Biodiversity offsetting and conservation: reframing nature to save it. Oryx 51, 23–31.
15. DEFRA (2019). Biodiversity net gain: updating planning requirements. GOV.UK.
16. IFC (2012). Performance Standards on Environmental and Social Sustainability (International Finance Corporation). http://goo.gl/1JWhtrm.
17. Rio Tinto (2008). Rio Tinto and biodiversity: Achieving results on the ground (Rio Tinto).
18. Equator Principles Association (2013). The Equator Principles: A Financial Industry Benchmark for Determining, Assessing and Managing Environmental and Social Risk in Projects (Equator Principles).
19. Dendena, B., and Corsi, S. (2015). The Environmental and Social Impact Assessment: a further step towards an integrated assessment process. J. Clean. Prod. 108, 965–977.
20. de Witt, M., Pope, J., Retief, F., Bond, A., Morrison-Saunders, A., and Steenkamp, C. (2019). Biodiversity offsets in EIA: getting the timing right. Environ. Impact Assess. Rev. 75, 1–12.
21. Morgan, R.K. (2012). Environmental impact assessment: the state of the art. Impact Assess. Prog. Apprais. 30, 5–14.
22. Heiner, M., Hincheley, D., Fitzsimons, J., Weisenberger, F., Bergmann, W., McMahon, T., Miligin, J., Nardea, L., Oakleaf, J., Parriman, D., et al. (2019). Moving from reactive to proactive development planning to conserve indigenous community and biodiversity values. Environ. Impact Assess. Rev. 74, 1–13.
23. Jacob, C., Vaissiere, A.-C., Bas, A., and Calvet, C. (2016). Investigating the inclusion of ecosystem services in biodiversity offsetting. Ecosyst. Serv. 21, 92–102.
24. Couthard, S., McGregor, J.A., and White, C. (2018).Multiple dimensions of wellbeing in practice. In Ecosystem Services and Poverty Alleviation: Trade-Offs and Governance, K. Shreckenberg, G. Mace, and M. Poudyal, eds. (Routledge), pp. 234–256.
25. Hickey, G.M., Pouliot, M., Smith-Hall, C., Wunder, S., and Nielsen, M.R. (2016). Quantifying the economic contribution of wild food harvests to rural livelihoods: a global-comparative analysis. Food Policy 62, 122–132.
26. Kemp, J., López-Baucells, A., Rocha, R., Wangensteen, O.S., Andriata, Z. Nair, A., and Cabeza, M. (2019). Bats as potential suppressors of multiple agricultural pests: a case study from Madagascar. Agric. Ecosyst. Environ. 269, 88–96.
27. Beck, M.W., Losada, I.J., Menéndez, P., Reguero, B.G., Díaz-Simao, P., and Fernández, F. (2016). The global flood protection savings provided by coral reefs. Nat. Commun. 7, 12186.
28. Engemann, K., Pedersen, C.B., Arge, L., Tsirogiannis, C., Mortensen, P.B., and Svenning, J.-C. (2019). Residential green space in childhood is associated with lower risk of psychiatric disorders from adolescence into adulthood. Proc. Natl. Acad. Sci. U S A 116, 5188–5193.
29. Sugiyama, T., Leslie, E., Giles-Corti, B., and Owen, N. (2008). Associations of neighbourhood greenness with physical and mental health: do walking, social coherence and local social interaction explain the relationships? J. Epidemiol. Commun. Health 62, 69.
30. Country, B., Wright, S., Suchet-Pearson, S., Lloyd, K., Burawanga, L., Ganambarr, R., Ganambarr-Stubbis, M., Ganambarr, B., Maymurru, D., and Sweeney, J. (2016). Co-becoming Bawaka: towards a relational understanding of place/space. Prog. Hum. Geogr. 40, 455–475.
31. McDermott, M., Mahanty, S., and Schreckenberg, K. (2013). Examining equity: a multidimensional framework for assessing equity in payments for ecosystem services. Environ. Sci. Policy 33, 416–427.

32. BenDor, T., Brozović, N., and Pallathucheril, V.G. (2007). Assessing the socioeconomic impacts of wetland mitigation in the Chicago region. J. Am. Plan. Assoc. 73, 263–282.

33. Bidaud, C., Schreckenberg, K., Rabeharison, M., Ranjatson, P., Gibbons, J., and Jones, J.P.G. (2017). The sweet and the bitter: intertwined positive and negative social impacts of a biodiversity offset. Conserv. Soc. 15, 1.

34. Koh, N.S., Hahn, T., and Ituarte-Lima, C. (2017). Safeguards for enhancing ecological compensation in Sweden. Land Use Policy 64, 186–199.

35. Bowie, N.E. (2013). Business Ethics in the 21st Century (Springer).

36. Schroeder, D., and Pisupati, B. (2010). Ethics, Justice and the Convention on Biological Diversity. https://wedocs.unep.org/bitstream/handle/20.500.11822/8046/-Ethics, Justice and the Convention on Biological Diversity-20101053.pdf?sequence=3&isAllowed=y.

37. Franks, D.M., Davis, R., Bebbington, A.J., Ali, S.H., Kemp, D., and Scurrah, M. (2014). Conflict translates environmental and social risk into business costs. Proc. Natl. Acad. Sci. U S A 111, 7576–7581.

38. Pearce, F. (2013). Does habitat replacement let developers off the hook? New Sci. https://www.newscientist.com/article/mg21829220-200-does-habitat-replacement-let-developers-off-the-hook/.

39. Convention on Biological Diversity (2018). Decision Adopted by the Conference of the Parties to the Convention on Biological Diversity: Safeguards in biodiversity financing mechanisms.

40. Jonas, H., Roe, D., and Makagon, J. (2014). Human Rights Standards for Conservation: An Analysis of Responsibilities, Rights and Redress for Just Conservation (IIED). http://pubs.iied.org/14644IIED/.

41. Bull, J.W., Suttle, K., Gordon, A., Singh, N., and Milner-Gulland, E. (2013). Biodiversity offsets in theory and practice. Oryx 47, 369–380.

42. Quétier, F., and Lavorel, S. (2011). Assessing ecological equivalence in biodiversity offset schemes: key issues and solutions. Biol. Conserv. 144, 2991–2999.

43. Gough, I., and McGregor, J. (2007). Wellbeing in Developing Countries: From Theory to Research - Google Books (Cambridge University Press).

44. Beauchamp, E., Woodhouse, E., Clements, T., and Milner-Gulland, E.J. (2018). Living a good life: conceptualizations of well-being in a conservation context in Cambodia. Ecol. Soc. 23, art28.

45. Virah-Sawmy, M., Ebeling, J., and Taplin, R. (2014). Mining and biodiversity offsets: a transparent and science-based approach to measure “no-net-loss.”. J. Environ. Manage. 143, 61–70.

46. Poudyal, M., Jones, J.P.G., Rakotonarivo, O.S., Hockley, N., Gibbons, J.M., Mandimbiniaima, R., Rasoamanana, A., Andrianantenaina, N.S., and Ramamorjisooa, B.S. (2018). Who bears the cost of forest conservation? PeerJ 6, e5106.

47. Molanen, A., and Kotiaho, J.S. (2018). Fifteen operationally important decisions in the planning of biodiversity offsets. Biol. Conserv. 227, 112–120.

48. Bekessy, S.A., Wintle, B.A., Lindenmayer, D.B., Mccarthy, M.A., Colyvan, M., Burgman, M.A., and Possingham, H.P. (2010). The biodiversity bank cannot be a lending bank. Conserv. Lett. 3, 151–158.

49. Maron, M., Gordon, A., Mackey, B.G., Possingham, H.P., and Watson, J.E.M. (2016). Interactions between biodiversity offsets and protected area commitments: avoiding perverse outcomes. Conserv. Lett. 9, 384–389.

50. Oxford Economics (2017). Global Infrastructure Outlook (Global Infrastructure Hub).