HIF1α/PD-L1 axis mediates hypoxia-induced cell apoptosis and tumor progression in follicular thyroid carcinoma

Lingyan Zhou1,2,*
Guofen Cha3,*
Liyu Chen1,2
Chen Yang1,2
Dong Xu1,2
Minghua Ge4

1Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People’s Republic of China; 2Department of Ultrasonography, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People’s Republic of China; 3Department of Ultrasonography, People’s Hospital of Qianjiang, Hangzhou, Zhejiang 310006, People’s Republic of China; 4Department of Thyroid and Neck Surgery, People’s Hospital of Zhejiang Province, Hangzhou, Zhejiang 310006, People’s Republic of China

*These authors contributed equally to this work

Background: Hypoxia-inducible factor 1α (HIF-1α) and programmed cell death-1 ligand 1 (PD-L1) are implicated in the metastasis and progression processes of multiple cancers. Hypoxia selectively elevates PD-L1 expression via HIF1α activation in several solid tumors; however, the regulatory effect of HIF1α on PD-L1 in the pathogenesis of follicular thyroid cancer (FTC) remains unclear. This study aims to investigate the regulatory effect of HIF1α on PD-L1 and their potential roles in FTC pathogenesis.

Methods: Spearman correlation analysis was performed to clarify the relationships between HIF1α and PD-L1 expressions and the clinicopathologic characteristics. The expressions of HIF1α and PD-L1 at mRNA and protein levels were analyzed by qRT-PCR and Western blot. Hypoxia induction and cell transfection were conducted in FTC cells. TUNEL and Annexin V staining were used to detect the cell apoptosis. FTC xenograft tumor models were generated to evaluate the roles of HIF1α and PD-L1 in vivo.

Results: Here, we found that the expressions of HIF1α and PD-L1 were significantly increased in FTC tissues and were correlated with the FTC clinicopathologic features, such as the tumor size, T stage, TNM staging, and metastasis. In FTC cells, hypoxia-induced increased HIF1α and PD-L1 expression. Knockdown of HIF1α inhibits hypoxia-induced PD-L1 expression and cells apoptosis. Moreover, inhibition of HIF1α or PD-L1 significantly delays tumor growth and metastasis in vivo.

Conclusion: Hypoxia could promote FTC progression by upregulating HIF1α and PD-L1, which could serve as the molecular targets for FTC treatment.

Keywords: follicular thyroid cancer, HIF1α, PD-L1, hypoxia, apoptosis

Introduction
Thyroid carcinoma is the most common endocrine malignancy with different types including anaplastic thyroid carcinoma (ATC), well-differentiated thyroid cancer, follicular thyroid cancer (FTC) and papillary thyroid cancer (PTC).1 The pathological mechanisms underlying FTC are still not fully understood. Therefore, exploration of the molecular mechanism involved in FTC progression is vital for early diagnosis and effective prevention for FTC.

By mediating oncogene activation and loss of tumor suppressors, hypoxia plays a crucial role in tumor cell invasion, metastasis, and progression.2 In response to hypoxia situation, hypoxia-inducible factor (HIF) is upregulated to coordinate an appropriate adaptive response.3 HIF is a highly conserved transcription factor comprising a regulatory α subunit (HIF1α, HIF2α, or HIF3α) and a constitutive β
subunit (HIF-\(\beta\)). It has been reported that hypoxia-induced overexpression of HIF1\(\alpha\) promotes epithelial–mesenchymal transition in FTC. Moreover, pigment epithelium-derived factor exhibits an antiangiogenesis role in FTC by affecting the HIF1\(\alpha\)/VEGF pathway, eventually inhibits FTC metastasis and progression. These findings attach much significance to HIF1\(\alpha\) expression on FTC development, while the correlation between HIF1\(\alpha\) expression level and FTC clinicopathologic characteristics and its effect on cell apoptosis remain unclear.

Programmed cell death-1 protein 1 (PD-1) is a checkpoint molecule on T cells and is overexpressed in the tumor environment. PD-L1 is the primary ligand of PD-1. So far, immune checkpoint inhibitor therapies targeting PD-L1/PD-1 have been shown to be effective in treating various human cancers. High expression of PD-L1 in tumors is closely associated with cancer immune evasion and often regarded as a negative prognostic factor. It has been claimed that the expression of PD-L1 and PD-1 was significantly correlated with prognosis of FTC patients, suggesting an effective immunotherapy for FTC treatment FTC by targeting PD-L1/PD-1. Moreover, PD-L1 overexpression acted as a useful prognostic marker for aggressive FTC and correlated with a great risk of FTC recurrence. In melanoma cell lines, blocking PD-L1 impairs tumor sphere formation and promotes apoptosis of sphere cells. However, the influence of PD-L1 on FTC cell apoptosis has not been clarified yet.

Previous studies have confirmed that hypoxia might selectively elevate PD-L1 expression in solid tumors such as pulmonary pleomorphic carcinoma and oral squamous cell carcinoma. In consideration of the significance of HIF1\(\alpha\) and PD-L1 in FTC development, we initiated this study to investigate the relationship between HIF1\(\alpha\) and PD-L1 expression and FTC clinicopathologic characteristics and the potential functional role in mediating cell apoptosis in FTC.

Materials and methods

Clinical samples

Our study was approved by the Cancer Hospital of University of Chinese Academy of Sciences and performed in accordance with the Helsinki Declaration. All participants signed the written informed consent before the experiments. The clinicopathologic data were collected from 85 FTC patients who were admitted to the Zhejiang Cancer Hospital. Spearman correlation analysis was performed to analyze the relationships between PD-L1 and HIF1\(\alpha\) expression and the clinicopathologic characteristics including age, sex, tumor size, T stage, lymphocytic thyroiditis, TNM staging, metastasis, psammoma body, and calcification in the stoma. In addition, 85 FTC cancer tissues and the paired cancer-free tissues were taken to detect the expression levels of PD-L1 and HIF1\(\alpha\).

qRT-PCR

For PD-L1 and HIF1\(\alpha\) expression detection, total RNA was extracted from FTC cancer tissues and the paired cancer-free tissues using the Trizol reagent (Invitrogen) and then was reverse-transcribed with MMLV reverse transcriptase (Invitrogen). RT-PCR was performed in a VIIA7 real-time PCR system using the SYBR Premix Ex Taq™ II Kit (Takara, Dalian, China). Comparison \(2^{\Delta\Delta Ct}\) method was used to analyze the relative expression, GAPDH was served as an internal control.

Cell culture and cell transfection

FTC-133 and TT cell line were purchased from ATCC (CRL-1803™) and cultured in RPMI-1640 medium (Gibco, NY, USA) supplemented with 10% fetal bovine serum, 100 U/mL penicillin, 100 \(\mu\)g/mL streptomycin, and 2 \(\text{mmol/L}\) glutamine. The cells were cultured at 37°C in 5% \(\text{CO}_2\). siRNA was purchased from the GenePharma (Shanghai, China) and transfected into cells for silencing HIF1\(\alpha\) or PD-L1, respectively. The FTC cells were transfected with siHIF1\(\alpha\) or siPD-L1 at a concentration of 60 \(\text{nM}\) using Lipofectamine 2000.

Immunofluorescence

The HIF1\(\alpha\) and PD-L1 expressions in FTC cells were determined with immunofluorescence staining. Briefly, FTC cells were fixed with 4% paraformaldehyde for 20 mins at room temperature and then washed with PBS. The fixed cells were permeabilized with 0.5% Triton X-100 for 10 mins at room temperature and washed with PBS. For blocking, 5% BSA was added onto cells and maintained for about 1 h. After 5% BSA removing, the primary antibodies (1:500, Abcam, Camb, UK) against HIF1\(\alpha\) and PD-L1r were added and incubated overnight at 4°C, respectively. Subsequently, cells were incubated with the Alexa fluor 647-conjugated secondary antibody for 1 hr at room temperature, followed by nuclear staining with DAPI (Sigma-Aldrich, St. Louis, USA). Finally, visualization was completed under a fluorescent microscope (Leica, Germany).
Western blot
Total protein extracted from the FTC cells was quantified using a bicinchoninic acid protein assay kit (Beyotime, Shanghai, China), followed by Western blot analysis. A 10 µg of protein was subjected to 10% SDS-PAGE and then transferred to polyvinylidene fluoride membranes. The membranes were blocked with 5% BSA in TBS containing 0.1% Tween-20 for 1 hr at room temperature prior to incubation with primary antibodies (anti-HIF1α, anti-PD-L1, and anti-β-actin, Abcam) at 4°C overnight. After washing with PBS, the membranes were incubated with secondary antibody for 1 hr at room temperature and developed with chemiluminescence ECL reagent. Protein bands were quantified using NIH ImageJ software.

Hypoxia induction
For hypoxia induction, FTC cells were maintained in a sealed hypoxic incubator with a mixture of 1% O₂, 5% CO₂, and 94% N₂ at 37°C for 12 hrs. Cells in the normoxia group were cultured under normoxic conditions (21% O₂, 5% CO₂, and 74% N₂) at 37°C for equivalent periods.

TUNEL staining
TUNEL staining assay was performed to determine the cell apoptosis after hypoxia treatment. After hypoxia induction, the FTC cells were dehydrated with ethanol and incubated with the TUNEL reaction mixture at 37°C for 1 hr. Subsequently, cells were washed with PBS to eliminate the residual liquid. Finally, the TUNEL-positive cells were quantified by averaging five different fields under a light microscope system at 400× magnifications in a blinded manner.

Flow cytometry
Cell apoptosis was detected using Flow Cytometry with an Apoptosis Detection Kit (Beyotime, Shanghai, China). Briefly, cells were seeded into 24-well plates with 10⁴ cells/well. After 24-hr culture, cells were harvested and stained with 5 µL fluorescein isothiocyanate-conjugated Annexin V at dark for 30 mins according to the manufacturer’s instructions. The percentage of apoptotic cells was analyzed using a FACSCalibur flow cytometer.

Establishment of FTC xenograft tumor models
For establishment of FTC xenograft tumor model in mice, FTC cells transfected with the control lentiviral vector or shHIF1α or shPD-L1 were injected into the 6-week-old male nude mice through the right thyroid lobe. After 28 days, the mice were euthanized for tumor tissues collection, and the tumor volume was detected. All animal experiments were performed according to the guidelines for the care and use of laboratory animals and were approved by the Cancer Hospital of University of Chinese Academy of Sciences. The harvested tumor tissues were used for H&E staining to evaluate the tumor metastasis.

Immunohistochemistry
The expression of proliferating cell nuclear antigen (PCNA) in tumor tissues was examined by immunohistochemistry staining using the streptavidin-biotin-HRP technique. After fixation in 10% buffered formalin and embedding in paraffin, the tissues were deparaffinized in xylene and dehydrated in ethanol, and then blocked with 0.3% H₂O₂ for 15 mins. After washing in PBS and blocking with 5% BSA, the primary antibody against PCNA was added and incubated with tissues overnight at 4°C, followed by the incubation with the second goat anti-rabbit IgG for 1 hr at room temperature. After washing with the PBST, color was developed with the 3, 3-diaminobenzidine by maintaining for 20 min, and a microscope was used for counting at 200× magnifications.

Statistical analysis
Three independent experiments were performed and all data were expressed as mean ± SD. SPSS 21.0 software (SPSS Inc., Chicago, IL, USA) was used for all statistical analyses. Student’s t-test was used for comparisons between two groups and one-way ANOVA was used for more groups. A value of p<0.05 was considered significant.

Results
Correlation between PD-L1 and HIF1α expression and clinicopathologic features
First, with the clinicopathologic data of 85 enrolled FTC patients, we analyzed the relationships between PD-L1 and HIF1α expression and clinicopathologic characteristics, including age, sex, tumor size, T stage, lymphocytic thyroiditis, TNM staging, metastasis, psammoma body, and calcification in stoma. Table 1 demonstrates that PD-L1 expression is correlated with the tumor size (p=0.01), T stage (p=0.03), TNM staging (p=0.005), and metastasis (p=0.001); while HIF1α expression is correlated with TNM staging (p=0.002), metastasis (p=0.001), and PD-L1 expression (p=0.001). The results highlighted that PD-L1
and HIF1α expressions were closely correlated with the FTC clinicopathologic features, suggesting the potential role in FTC progression.

Increased expressions of HIF1α and PD-L1 in FTC tissue
In order to reveal the potential impact of HIF1α and PD-L1 on FTC progression, we analyzed their expression levels in FTC tissues and their corresponded cancer-free tissues. As is shown in Figure 1A, HIF1α was notably upregulated in FTC tissues compared with that in the cancer-free tissues. Similarly, PD-L1 expression was significantly higher in FTC tissues than that in the cancer-free tissues (Figure 1B). Spearman correlation analysis indicated that the expression level of HIF1α was positively correlated with that of PD-L1 in FTC tissues (Figure 1C), suggesting the potential interaction between them.

Variables	No.	PD-L1 Positive	PD-L1 Negative	p	HIF1α Positive	HIF1α Negative	p
Total	85	57	28		64	21	
Age (years)							
<45	48	32	16	0.885	37	11	0.856
≥45	37	25	12		27	10	
Sex							
Male	32	18	14	0.159	26	6	0.880
Female	53	39	14		41	12	
Tumor size (mm³)							
≥40	57	44	13	0.010*	47	10	0.055
<40	28	13	15		17	11	
T Stage							
T1 and T2	49	38	11	0.030*	33	16	0.084
T3	36	19	17		31	5	
Lymphocytic thyroiditis							
Yes	39	23	16	0.219	25	14	0.051
No	46	34	12		39	7	
TNM							
I + II	47	38	9	0.005**	42	5	0.002**
III + IV	38	19	19		22	16	
Metastasis							
Yes	35	15	20	0.000***	18	17	0.000***
No	50	42	8		46	4	
Psammoma body							
Yes	12	5	7	0.914	7	5	0.268
No	73	52	21		57	16	
Calcification in stoma							
Yes	43	31	12	0.442	36	7	0.116
No	42	26	16		28	14	
PD-L1							
Positive	67						
Negative	18						

Note: *p<0.05, **p<0.01, ***p<0.001.
Abbreviations: HIF-1α, hypoxia-inducible factor 1α; PD-L1, programmed cell death-1 protein ligand 1.
Upregulation of HIF1α and PD-L1 upon hypoxia induction in FTC cells

To clarify the influence of hypoxia induction on HIF1α and PD-L1 expression, the FTC cells lines TT and FTC-133 were used and cultured under normoxia or hypoxia condition, respectively. The results of immunofluorescence staining demonstrated that hypoxia induction significantly promoted the expression of

Figure 1 Increased expressions of HIF1α and PD-L1 in FTC tissue. The expression levels of HIF1α (A) and PD-L1 (B) in FTC tissue and in cancer-free tissue were analyzed using qRT-PCR. (C) Spearman correlation analysis was performed to clarify the relationships between HIF1α and PD-L1 expression. Data presented as mean ± SD, ***p<0.001. Abbreviations: HIF-1α, hypoxia-inducible factor 1α; PD-L1, programmed cell death-1 protein ligand 1.

Figure 2 Upregulation of HIF1α and PD-L1 upon hypoxia induction in FTC cells. The expressions of HIF1α (A) and PD-L1 (B) in TT cells were determined by immunofluorescence staining. (C) The expressions of HIF1α and PD-L1 mRNA in TT and FTC-133 cells were examined by qRT-PCR. (D) The levels of HIF1α and PD-L1 protein in TT and FTC-133 cells were analyzed by Western blot. Data presented as mean ± SD. ***p<0.001. Scale bar=20 μm.

Abbreviations: HIF-1α, hypoxia-inducible factor 1α; PD-L1, programmed cell death-1 protein ligand 1.
HIF1α (Figure 2A) and PD-L1 (Figure 2B) in FTC cells. Moreover, hypoxia induction treatment largely increased the expression of HIF1α and PD-L1 at mRNA (Figure 2C) and protein levels (Figure 2D) in TT and FTC-133, respectively. These data revealed that the expression of HIF1α and PD-L1 in FTC cells was augmented under hypoxia condition.

HIF1α induces PD-L1 expression in FTC cells under hypoxia condition

To investigate the impact of HIF1α on PD-L1 expression in FTC cells treated with hypoxia induction, HIF1α was silenced by transfecting with siRNA targeting HIF1α, and the siControl served as its negative control. As is shown in Figure 3A, HIF1α expression was largely downregulated after siHIF1α transfection, and the expression of PD-L1 was also suppressed in cells transfected with siHIF1α (Figure 3B). The increased expression of HIF1α and PD-L1 induced by hypoxia was significantly reduced by siHIF1α transfection, while no significant difference was noted between siControl and siHIF1α groups in FTC cells under normoxia condition. Silence of HIF1α also led to decreased protein level of HIF1α and PD-L1 in FTC cells under hypoxia condition (Figure 3C, D). It indicated that HIF1α mediated PD-L1 expression under hypoxia condition in FTC cells.

Figure 3 HIF1α induces PD-L1 expression in FTC cells under hypoxia condition. FTC cells were transfected with siHIF1α or siPD-L1 or the negative control (siControl). The expressions of HIF1α (A) and PD-L1 (B) in TT cells were determined by immunofluorescence staining. (C) The mRNA and protein expressions of HIF1α and PD-L1 in TT cells were determined by qRT-PCR and Western blot. (D) The mRNA and protein expressions of HIF1α and PD-L1 in FTC-133 cells were determined by qRT-PCR and Western blot. Data presented as mean ± SD, ***p<0.001. Scale bar=20 μm.

Abbreviations: HIF-1α, hypoxia-inducible factor 1α; PD-L1, programmed cell death-1 protein ligand 1.
HIF1α/PD-L1 signaling mediates FTC cell apoptosis

To investigate the functional role of HIF1α and PD-L1 in thyroid carcinoma, we firstly observed the apoptotic changes in siPD-L1 FTC cells or siHIF1α FTC cells under the normoxia or hypoxia condition, respectively, and detected by TUNEL and Annexin V staining assay. Knockdown of HIF1α or PD-L1 promoted hypoxia-induced cell apoptosis in TT and FTC-133 cells (Figure 4). It indicated that HIF1α and PD-L1 had a regulatory role in FTC cells survival under hypoxia condition.

Inhibition of HIF1A and PD-L1 delays tumor growth and metastasis in vivo

Next, we investigated the influence of HIF1α and PD-L1 on tumor growth in vivo, and FTC cells were transfected with shPD-L1 or shHIF1α through lentiviral vector prior to injection into mice to construct the xenograft tumor

Figure 4 HIF1α/PD-L1 signaling mediates FTC cell apoptosis. TT and FTC-133 cells were transfected with siHIF1α or siPD-L1 or the negative control (siControl). Cell apoptosis was determined by TUNEL staining in TT (A) and FTC-133 (B) or by Annexin V staining in TT (C, D) and FTC-133 (E, F). Data presented as mean ± SD, *p<0.05, **p<0.01, ***p<0.001. Scale bar=20 μm.

Abbreviations: HIF-1α, hypoxia-inducible factor 1α; PD-L1, programmed cell death-1 protein ligand 1.
models. The tumor volume was evaluated at 6, 12, 18, and 24 days following injection. It was illustrated that tumor growth was restrained after HIF1α or PD-L1 knockdown (Figure 5A). Meanwhile, the tumor metastasis was remarkably reduced after HIF1α or PD-L1 knockdown (Figure 5B), and the positive cells of PCNA staining were significantly reduced after HIF1α or PD-L1 silence (Figure 5C). Taken together, we concluded that inhibition of HIF1α/PD-L1 signaling delayed tumor growth and metastasis in vivo.

Discussion
In the current study, we demonstrated that PD-L1 expression in FTC is correlated with the clinicopathologic features, including the tumor size, T stage, TNM staging, and metastasis, while HIF1α expression is correlated with TNM staging and metastasis. Moreover, HIF1α expression in FTC is positively correlated with PD-L1 expression. It was noted that the expression of HIF1α and PD-L1 is clearly upregulated in FTC tissue and in FTC cells induced by hypoxia. In FTC cells treated with hypoxia, HIF1α upregulates PD-L1 expression, which contributes to suppressing cell apoptosis. In the FTC xenograft tumor models, we verified that downregulation of HIF1α and PD-L1 delays FTC growth and metastasis. This study identifies PD-L1 as a downstream molecular of HIF1α and explains the mechanism of antiapoptosis under hypoxia, highlighting the role of HIF1α in FTC growth, metastasis, and progression.

Due to the rapid proliferation of tumor cells and the abnormality of tumor vessels in function and structure, the hypoxic areas widely exist in solid tumors. By transcriptionally activating diverse targeting genes, HIF functions as a

Figure 5 Inhibition of HIF1α and PD-L1 delays tumor growth and metastasis in vivo. FTC cells were transfected with shPD-L1 or shHIF1α through lentiviral vector were injected into mice to construct the xenograft tumor models. (A) The tumor volume of mice was detected at different time points (0, 6, 12, 18, and 24 days) following injection. (B) The harvested tumor tissues were used for HE staining to evaluate the tumor metastasis. (C) The expression of proliferating cell nuclear antigen (PCNA) in tumor tissues was examined by immunohistochemistry staining. Data presented as mean ± SD, **p < 0.01.

Abbreviations: HIF-1α, hypoxia-inducible factor 1α; PD-L1, programmed death-1 protein ligand 1.
major adaptive mechanism in tumor growth response to a hypoxic microenvironment, occupying a pivotal position in tumorigenesis. In African breast cancer, high HIF1α expression is a significant marker of poor prognosis. Via regulating noncoding RNAs, HIF1α highly contributes to breast cancer metastasis. In this study, we firstly analyze the correlation between HIF1α and FTC clinicopathologic features and revealed that HIF1α expression is correlated with TNM staging and metastasis. We further indicated that in FTC cells induced by hypoxia, increased HIF1α upregulates PD-L1 expression to promote cell apoptosis. In addition, our study certifies that interference of HIF1α delays FTC growth and metastasis in mice model. This study identifies HIF1α as a key regulator of FTC growth, metastasis, and development, suggesting a promising therapeutic target for FTC.

The previous study has claimed that mortalin-mediated and ERK-controlled targeting HIF1α to mitochondria confers resistance to apoptosis under hypoxia, implying the antiapoptotic function of HIF1α that may act as an early protective mechanism upon oxygen limitation. By increasing expression of apoptosis-related genes, HIF1α usually exhibits a carcinogenic effect in tumor growth, such as in human salivary adenoid cystic carcinoma. The antiapoptotic effect of PD-L1, as well as its indicative function of poor prognosis, has been confirmed in tumors, offering a novel insight into developing effective targeted therapies. In the present study, we, for the first time, identified PD-L1 as a downstream target of HIF1α in repressing apoptosis of FTC in hypoxia. Upon hypoxia, the PD-L1 level was increased by HIF1α, thereby promoting cell survival. Above all, our data illustrated that interference of PD-L1 in xenograft tumor model markedly controls FTC growth and metastasis. These findings highlight a novel idea to restrain FTC growth by modulating PD-L1 expression.

In summary, our study illuminates that HIF1α and PD-L1 are increased in FTC. Inhibition of HIF1α increased PD-L1 expression promotes cell apoptosis, thereby inhibiting cell survival and tumor growth that could be specifically targeted to treat FTC.

Acknowledgment
The study was supported by Science and Technology Planning Project in Zhejiang Province (2017C37090), Youth Research Fund of Zhejiang Cancer Hospital (QN201505), and the Project of Zhejiang Medical and Health Science (WKJ-ZJ-1605).

Disclosure
The authors declare no conflicts of interest in this work.

References
1. Ke CC, Liu RS, Yang AH, et al. CD133-expressing thyroid cancer cells are undifferentiated, radioresistant and survive radioiodide therapy. Eur J Nucl Med Mol Imaging. 2013;40(1):61–71. doi:10.1007/s00259-012-2242-5
2. Marchiq I, Pouyssegur J. Hypoxia, cancer metabolism and the therapeutic benefit of targeting lactate/H(+)-symporters. J Mol Med (Berl). 2016;94(2):155–171. doi:10.1007/s00109-015-1307-x
3. Macklin PS, McAuliffe J, Pugh CW, Yamamoto A. Hypoxia and HIF pathway in cancer and the placenta. Placenta. 2017;56:8–13. doi:10.1016/j.placenta.2017.03.010
4. Miikkulainen P, Hogel H, Seyedenasollah F, Rantanen K, Elo LL, Jaakkola PM. Hypoxia-inducible factor (HIF)-prolyl hydroxylase 3 (PHD3) maintains high HIF2α mRNA levels in clear cell renal cell carcinoma. J Biol Chem. 2019. doi:10.1074/jbc.RA118.004902
5. Yang YJ, Na HJ, Suh MJ, et al. Hypoxia induces epithelial-mesenchymal transition in follicular thyroid cancer: involvement of regulation of twist by hypoxia inducible factor-1alpha. Yonsei Med J. 2015;56(6):1503–1514. doi:10.3349/ymj.2015.56.6.1503
6. Lv Y, Sun Y, Shi T, Shi C, Qin H, Li Z. Pigment epithelium-derived factor has a role in the progression of papillary thyroid carcinoma by affecting the HIF1alpha-VEGF signaling pathway. Oncol Lett. 2016;12(6):5217–5222. doi:10.3892/ol.2016.5316
7. Balar AV, Weber JS. PD-1 and PD-L1 antibodies in cancer: current status and future directions. Cancer Immunol Immunother. 2017;66(5):551–564. doi:10.1007/s00262-017-1954-6
8. Bai Y, Guo T, Huang X, et al. In papillary thyroid carcinoma, expression by immunohistochemistry of BRAF V600E, PD-L1, and PD-1 is closely related. Virchows Arch. 2018;472(5):779–787. doi:10.1007/s00428-018-2357-6
9. Jiao S, Xia W, Yamaguchi H, et al. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression. Clin Cancer Res. 2017;23(14):3711–3720. doi:10.1158/1078-0432.CCR-16-3215
10. Chowdhury S, Vehyl J, Jessa F, et al. Programmed death-ligand 1 overexpression is a prognostic marker for aggressive papillary thyroid cancer and its variants. Oncotarget. 2016;7(22):32318–32328. doi:10.18632/oncotarget.8698
11. Shi RL, Guo T, Huang X, et al. Programmed death-ligand 1 expression in papillary thyroid cancer and its correlation with clinicopathologic factors and recurrence. Thyroid. 2017;27(4):537–545. doi:10.1089/thy.2016.0228
12. Zheng F, Deng J, Zha H, Zhang B, Lin M, Cheng F. PD-L1 promotes self-renewal and tumorigenicity of malignant melanoma initiating cells. Biomed Res Int. 2017;2017:1293201. doi:10.1155/2017/1293201
13. Chang YL, Yang CY, Lin MW, Wu CT, Yang PC. High co-expression of PD-L1 and HIF-lalpha correlates with tumour necrosis in pulmonary pleomorphic carcinoma. Eur J Cancer. 2016;60:125–135. doi:10.1016/j.ejca.2016.03.012
14. Chen TC, Wu CT, Wang CP, et al. Associations among pretreatment tumor necrosis and the expression of HIF-lalpha and PD-L1 in advanced oral squamous cell carcinoma and the prognostic impact thereof. Oral Oncol. 2015;51(11):1004–1010. doi:10.1016/j.oraloncology.2015.08.011
15. Koido M, Sakurai J, Tsukahara S, Tani Y, Tomida A. PMEPA1, a TGF-beta- and hypoxia-inducible gene that participates in hypoxic gene expression networks in solid tumors. Biochem Biophys Res Commun. 2016;479(4):615–621. doi:10.1016/j.bbrc.2016.09.166
16. Parks SK, Cornerais Y, Pouyssegur J. Hypoxia and cellular metabolism in tumour pathophysiology. J Physiol. 2017;595(8):2439–2450. doi:10.1113/JP273309
17. Huang Y, Lin D, Taniguchi CM. Hypoxia inducible factor (HIF) in the tumor microenvironment: friend or foe? Sci China Life Sci. 2017;60(10):1114–1124. doi:10.1007/s11427-017-9178-y
18. Jin F, Zheng X, Yang Y, et al. Impairment of hypoxia-induced angiogenesis by LDL involves a HIF-centered signaling network linking inflammatory TNFalpha and angiogenic VEGF. Aging (Albany NY). 2019. doi:10.18632/aging.101726
19. Nalwoga H, Ahmed L, Arnes JB, Wabinga H, Akslen LA, Seagroves T. Strong expression of hypoxia-inducible factor-1alpha (HIF-1alpha) is associated with Axl expression and features of aggressive tumors in african breast cancer. PLoS One. 2016;11(1):e0146823. doi:10.1371/journal.pone.0146823
20. Liu ZJ, Semenza GL, Zhang HF. Hypoxia-inducible factor 1 and breast cancer metastasis. J Zhejiang Univ Sci B. 2015;16(1):32–43. doi:10.1631/jzus.B1400221
21. Mylonis I, Kouri M, Samiotaki M, Panayotou G, Simos G. Mortalin-mediated and ERK-controlled targeting of HIF-1alpha to mitochondria confers resistance to apoptosis under hypoxia. J Cell Sci. 2017;130(2):466–479. doi:10.1242/jcs.195339
22. Xiao C, Pan Y, Zeng X, et al. Downregulation of hypoxia-inducible factor-1alpha inhibits growth, invasion, and angiogenesis of human salivary adenoid cystic carcinoma cells under hypoxia. Oncol Rep. 2018;40(3):1675–1683. doi:10.3892/or.2018.6559
23. Chin YT, Wei PL, Ho Y, et al. Thyroxine inhibits resveratrol-caused apoptosis by PD-L1 in ovarian cancer cells. Endocr Relat Cancer. 2018;25(5):533–545. doi:10.1530/ERC-17-0376
24. Qu F, Ye J, Pan X, et al. MicroRNA-497-5p down-regulation increases PD-L1 expression in clear cell renal cell carcinoma. J Drug Target. 2019;27(1):67–74. doi:10.1080/1061186X.2018.1479755