Constraints on dark photons from π^0 decays

S.N. Gninenko

Institute for Nuclear Research, Moscow 117312

(Dated: February 21, 2013)

Several models of dark matter suggest the existence of hidden sectors consisting of $SU(3)_C \times SU(2)_L \times U(1)_Y$ singlet fields. The interaction between the ordinary and hidden sectors could be transmitted by new Abelian $U(1)$ gauge bosons A' (dark or hidden photons) mixing with ordinary photons. If such A's have masses below the π^0 meson mass, they would be produced through $\gamma - A'$ mixing in the $\pi^0 \to \gamma \gamma$ decays and be observed via decays $A' \to e^+ e^-$. Using bounds from the SINDRUM experiment at the Paul Scherrer Institute that searched for an excess of $e^+ e^-$ pairs in $\pi^- p$ interactions at rest, the area excluding the $\gamma - A'$ mixing $\epsilon \gtrsim 10^{-3}$ for the A' mass region $25 \lesssim M_{A'} \lesssim 120$ MeV is derived.

PACS numbers: 14.80.-j, 12.60.-i, 13.20.Cz, 13.35.Hb

The origin of dark matter is still a great puzzle in particle physics and cosmology. Several models dealing with this problem suggest the existence of ‘hidden’ sectors consisting of $SU(3)_C \times SU(2)_L \times U(1)_Y$ singlet fields. These sectors do not interact with our world directly and couple to it by gravity. It is also possible that there exist new very-weak forces between the ordinary and dark worlds transmitted by new Abelian $U(1)$ gauge bosons A' (dark or hidden photons for short) with our photons 1, as discussed first by Okun in his model of paraphotons 2. In a class of recent interesting models the $\gamma - A'$ mixing strength may be large enough to be experimentally tested. This makes searches for A's very attractive; for a recent review see 3 and references therein.

It should be noted, that many models of physics beyond the Standard Model (SM) such as GUTs 4, superstring models 3 (see also Ref.$[5]$), supersymmetric 7, and models including the fifth force 8 also predict an extra $U(1)$ factor and the corresponding new gauge X boson. The X's could interact directly with quarks and/or leptons. If the X mass is below the pion mass, the X could be effectively searched for in the decays $P \to \gamma X$, where $P = \pi^0, \eta, \text{or } \eta'$. This is due to the fact that the decay rate of $P \to \gamma + \text{any new particles with spin } 0 \text{ or } \frac{1}{2}$ is proved to be negligibly small 9. Hence, an observation of these decay modes could unambiguously signal the discovery of a new spin-1 boson, in contrast with other searches for new light particles in rare $K, \pi \text{ or } \mu$ decays $6,10$.

The allowed $\gamma - A'$ interaction is given by the kinetic mixing

$$L_{\text{int}} = -\frac{1}{2} \epsilon F_{\mu\nu} A'^{\mu\nu}$$

where $F^{\mu\nu}$, $A'^{\mu\nu}$ are the ordinary and the dark photon fields, respectively, and ϵ is their mixing strength. In some recent dark matter models the dark photon could be massless; see, e.g. Refs.$14,15$. If the A' has a mass, the kinetic mixing of Eq. 1 can be diagonalized resulting in a nondiagonal mass term and $\gamma - A'$ mixing. Hence, any γ-source could produce a kinematically allowed massive A' boson according to the appropriate mixings. Then, if the mass difference is small, ordinary photons may oscillate into dark photons-similarly to neutrino oscillations- or, if the mass difference is large, dark photons could decay, e.g. into $e^+ e^-$ pairs.

Experimental constraints on dark photons in the meV-keV mass range can be derived from searches for the fifth force $2,14,17$, from experiments based on the photon regeneration technique $18,22$, and from astrophysical considerations $23,24$. For example, the results of experiments searching for solar axions $25,26$ can be used to set limits on the $\gamma - A'$ mixing in the keV part of the solar spectrum of dark photons $27,28$. Stringent bounds on the low mass A's could be obtained from astrophysical considerations $31-33$. There are plans to test the existence of sub-eV dark photons at new facilities, such as, for example, SHIPS 34 and IAXO 35.

The A's with the masses in the sub-GeV range, see e.g. $36,38,39$, can be searched for through their $A' \to e^+ e^-$ decays in beam-dump experiments $39,44$, or in particle decays $47,48$. Recently, stringent bounds on the mixing ϵ have been obtained from searches for decay modes $\pi^0, \eta, \eta' \to \gamma A'(X)$, $A'(X) \to e^+ e^-$ with existing data of neutrino experiments $49,50$. These limits are valid for the relatively long-lived A's with a mixing strength in the range $10^{-4} \lesssim \epsilon \lesssim 10^{-7}$. The goal of this note is to show that new bounds on the decay $\pi^0 \to \gamma A'$ of neutral pions into a photon and a short-lived A' followed by the rapid decay $A' \to e^+ e^-$ due to the relatively large $\gamma - A'$ mixing can be obtained from the results of sensitive searches for an excess of single isolated $e^+ e^-$ pairs from decays of the weakly interacting neutral boson X by the SINDRUM Collaboration at the Paul Scherrer Institute (PSI, Switzerland) 51.

The SINDRUM experiment- specifically designed to search for rare particle decays in the SINDRUM magnetic spectrometer- was performed by using the $\pi^- p$ interactions at rest as the source of π^0's. The π^0's were produced in the charge exchange reaction $\pi^- p \to \pi^0 n$ of 95 MeV/c π^-'s stopped in a small liquid hydrogen target in the center of the SINDRUM magnetic spectrometer. The magnetic field was 0.33 T, resulting in a transverse-momentum threshold of roughly 17 MeV/c for
particles reaching the scintillator hodoscope surrounding the target. The trigger required an e^+e^- pair with an opening angle in the plane perpendicular to the beam axis of at least 35°; this corresponds to a lower threshold in the invariant mass of 25 MeV/c [51]. A total of 98 $\pi^0 \to \gamma_{e^+e^-}$ decays were observed. The signature of the $X \to e^+e^-$ decay would be seen as a peak in the continuous e^+e^- invariant mass distribution.

No such peak events were found and upper limits on the branching ratio $Br(\pi^0 \to \gamma_{X}, X \to e^+e^-) = f(\pi^0 \to \gamma_{X}, X \to e^+e^-)$ in the range $10^{-6} - 10^{-5}$ have been placed for the X-mass region $25 \lesssim M_X \lesssim 120$ MeV. The corresponding 90% C.L. exclusion area in the $(M_X; Br(\pi^0 \to \gamma_{X}, X \to e^+e^-))$ plane shown in Fig. 1. The limits were obtained assuming the X lifetimes to be in the range

$$10^{-23} \lesssim \tau_X \lesssim 10^{-11} \text{ s.} \quad (2)$$

For lower values of τ_X in Eq. (2) the e^+e^- mass peak would be smeared out beyond recognition; for larger values most X's would decay outside the target region and thus the detector would not be triggered [51].

If the A' exists and is a short-lived particle, it would decay in the SINDRUM target and be observed in the detector via the $A' \to e^+e^-$ decay similar to the decays of X's. The occurrence of $A' \to e^+e^-$ decays would appear as an excess of e^+e^- pairs in the SINDRUM spectrometer above those expected from standard decays of π^0 produced in π^-p interactions. As the final states of the decays $\pi^0 \to \gamma_{X}, X \to e^+e^-$ and $\pi^0 \to \gamma_{A'}, A' \to e^+e^-$ are identical, the results of the searches for the former can be used to constrain the latter for the same e^+e^- invariant mass regions.

For a given number N_{π^0} of π^0's produced in the target the expected number of $A' \to e^+e^-$ (or $X \to e^+e^-$) decays occurring within the fiducial volume of the SINDRUM detector is given by

$$N_{A' \to e^+e^-}(M_{A'}) = \int f \left[1 - \exp \left(-\frac{rM_{A'}}{P\tau_{A'}} \right) \right] A dr d\Omega$$

$$= N_{\pi^0} Br(\pi^0 \to \gamma_{A'}) Br(A' \to e^+e^-) \zeta A \quad (3)$$

where $M_{A'}$, P, f, r, $\tau_{A'}$ are the A' mass, momentum, flux, the distance between the A' decay vertex and the target, and the lifetime at rest, respectively and ζ and A are the e^+e^- pair reconstruction efficiency and the acceptance of the SINDRUM spectrometer, respectively [51]. Here it is assumed that the A' is a short-lived particle with $rM_{A'} / \tau_{A'} \gg 1$ for r values larger than the effective size of the target, in accordance with Eq. (2). Taking Eq. (3) into account and using the relation $N_{A' \to e^+e^-}(M_{A'}) <
$N^{90\%}_{\epsilon \pi^0}(M_A)$, where $N^{90\%}_{e^+ e^-}(M_A)$ is the 90\% C.L. upper limit for the number of signal events from the decays of the A' with a given mass M_A, results in the 90\% C.L. exclusion area in the $(M_A; Br(\pi^0 \to \gamma A', A' \to e^+ e^-))$ plane obtained by the SINDRUM experiment and shown in Fig.1. The upper limit $N^{90\%}_{e^+ e^-}$ as a function of M_A was obtained from the fit of the measured $e^+ e^-$ mass distribution in the vicinity of each selected value of M_A, to a sum of the signal peak from the $A' \to e^+ e^-$ decays and a flat background distribution.

The obtained results can be used to impose bounds on the $\gamma - A'$ mixing strength as a function of the dark photon mass. For A' masses smaller than the mass M_{π^0} of the π^0 meson, the branching fraction of the decay $\pi^0 \to \gamma A'$ is given by [33]:

$$Br(\pi^0 \to \gamma A') = 2e^2 Br(\pi^0 \to \gamma \gamma) \left(1 - \frac{M_A^2}{M_{\pi^0}^2} \right)^3.$$ (4)

Assuming that the dominant A'-decay is into an $e^+ e^-$ pair, the corresponding decay rate is given by:

$$\Gamma(A' \to e^+ e^-) = \frac{\alpha}{3} 2e^2 M_{A'} \sqrt{1 - \frac{4m_e^2}{M_{A'}^2}(1 + \frac{2m_e^2}{M_{A'}^2})}.$$ (5)

Taking into account Eq. (3), one can determine the 90\% C.L. exclusion area in the $(M_{A'\epsilon})$ plane from the results of the SINDRUM experiment. This area is shown in Fig. 2 together with regions excluded by the results of the electron beam-dump experiments E137, E141, E774, 39, 41, 43, by recent measurements from APEX [44], KLOE [45], BaBar [46], and MAMI [48], and from the data of the neutrino experiments NOMAD [49] and CHARM [50]. For a recent, more detailed review of existing and planned limits, see Refs. [52-54]. The shape of the exclusion contour from the SINDRUM experiment corresponding to the A' masses $M_{A'} \gtrsim 100$ MeV is defined mainly by the phase-space factor in Eq. (4). The A' lifetime values calculated by using Eq. (5) for the mass range $25 \lesssim M_X \lesssim 120$ MeV are found to be within the allowed range of Eq. (2). Note, that since the A' is a short-lived particle, the sensitivity of the search is $\propto \epsilon^2$, differently from the case of a long-lived A', where the number of signal events is $\propto \epsilon^4$; see, e.g. Refs. [49, 50].

In summary, using results from the SINDRUM experiments on the search for weakly interacting X bosons produced in $\pi^- p$ interactions at rest and decaying into $e^+ e^-$ pairs, new bounds on a hidden-sector gauge A' boson produced in the decay $\pi^0 \to \gamma A'$ were derived. The obtained exclusion area covers the A' mass region $25 \lesssim M_{A'} \lesssim 120$ MeV and the $\gamma - A'$ mixing strength $\epsilon \gtrsim 10^{-3}$.

The help of D. Sillou in calculations is greatly appreciated.

[1] M. Pospelov, A. Ritz and M. B. Voloshin, Phys. Lett. B 662, 53 (2008); E. J. Chun, J. C. Park and S. Scopel, JHEP 1102, 100 (2011); Y. Mambrini, JCAP 1107, 009 (2011); D. Hooper, N. Weiner and W. Xue, Phys. Rev. D 86, 056009 (2012).
[2] L.B. Okun, Sov. Phys. JETP 56, 502 (1982) [Zh. Eksp. Teor. Fiz. 83, 892 (1982)].
[3] J. Jaeckel and A. Ringwald, Ann. Rev. Nucl. Part. Sci. 60, 405 (2010).
[4] P. Langacker, Phys. Rep. 72 C, 185 (1981).
[5] J. Ellis et al., Nucl. Phys. B 276, 14 (1986).
[6] M. Yu. Khlopov and K. I. Shibaev, Grav. Cosm. Suppl. 8, 45 (2002).
[7] S. Weinberg, Phys. Rev. D 26, 287 (1982); P. Fayet, Nucl.Phys. B 187, 184 (1981).
[8] E.D. Carlson, Nucl. Phys. B 286, 378 (1987).
[9] M.I. Dobroliubov and A.Yu. Ignatiev, Nucl. Phys. B 309, 655 (1988); Phys. Lett. B 206, 346 (1988).
[10] M.I. Dobroliubov, Yad. Fiz. 52, 551 (1990); Sov. J. Nucl. Phys. 52, 352 (1990); Z. Phys. C 49, 151 (1991).
[11] S.N. Gninenko and N.V. Krasnikov, Phys. Lett. B 513, 119 (2001).
[12] B. Holdom, Phys. Lett. B 166, 196 (1986).
[13] R. Foot and X.G. He, Phys. Lett. B 267, 509 (1991).
[14] J. M. Cline, Z. Liu, and W. Xue, Phys. Rev. D 85, 101302 (2012) arXiv:1201.4858 [hep-ph].
[15] J. M. Cline, Z. Liu, and W. Xue, Phys. Rev. D 87, 015001 (2013) arXiv:1207.3039 [hep-ph].
[16] E.R. Williams, J.E. Faller, and H.A. Hill, Phys. Rev. Lett. 26, 721 (1971).
[17] D.F. Bartlett and S. Loegl, Phys. Rev. Lett. 61, 2285 (1988).
[18] A.A. Anselm, Yad. Fiz. 42,1480 (1985); Sov. Journ. Nucl. Phys. 42, 936 (1985).
[19] K. Van Bibber et al., Phys. Rev. Lett. 59, 759 (1987).
[20] P. Siikivie, Phys. Rev. Lett. 51, 1415 (1983); idem 52, 695 (1984).
[21] G. Raffelt and L. Stodolsky, Phys. Rev. D 37, 1237 (1988).
[22] K. Van Bibber et al., Phys. Rev. D 39, 2089 (1989).
[23] V.Popov and O.Vasil’ev, Europhys. Lett. 15, 7 (1991).
[24] V. Popov, Turkish Journal of Physics 23, 943 (1999).
[25] K. Zioutas et al.(CAST Collaboration), Phys. Rev. Lett. 94, 121301 (2005).
[26] S. Andrianomenie et al.(CAST Collaboration), JCAP 0704, 010 (2007).
[27] J. Redondo, JCAP 0207, 008 (2008).
[28] J. Redondo, arXiv:1202.4322.
[29] S.N. Gninenko and J. Redondo, Phys. Lett. B 664, 180 (2008).
[30] S.V. Troitsky, arXiv:1112.5276.
[31] S.I. Blinnikov and M.I. Visotsky, Yad. Fiz. 52, 544 (1990); Sov. J. Nucl. Phys. 52, 348 (1990).
[32] S. Davidson and M. Peskin, Phys. Rev. D 49, 2114 (1994).
[33] S. Davidson, S. Hannestad, and G. Raffelt, JHEP 0005, 003 (2000).
[34] M. Schwarz, A. Lindner, J. Redondo, A. Ringwald, and
4

G. Wiedemann, arXiv:1111.5797.
[35] I.G. Irastorza et al. (IAXO Collaboration), arXiv:1201.3849.
[36] B. Batell, M. Pospelov, and A. Ritz, Phys. Rev. D 80, 095024 (2009).
[37] M. Reece and L.-T. Wang, JHEP 0907, 051 (2009).
[38] M. Williams, C.P. Burgess, A. Maharana, and F. Quevedo, JHEP 1108, 106 (2011).
[39] J.D. Bjorken et al. Phys. Rev. D 80, 075018 (2009).
[40] J. Blümlein and J. Brunner, Phys. Lett. B 701, 155 (2011).
[41] J.D. Bjorken et al., Phys. Rev. D 38, 3375 (1988).
[42] E. M. Riordan et al., Phys. Rev. Lett. 59, 755 (1987).
[43] A. Bross, M. Crisler, S. H. Pordes, J. Volk, S. Errede and J. Wrbanek, Phys. Rev. Lett. 67, 2942 (1991).
[44] S. Abrahamyan et al., Phys. Rev. Lett. 107, 191804 (2011).
[45] H.-B. Li and T. Luo, Phys. Lett. B 686, 249 (2010).
[46] F. Archilli et al., Phys. Lett. B 706, 251 (2012).
[47] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 103, 081803 (2009).
[48] H. Merkel et al., Phys. Rev. Lett. 106, 251802 (2011).
[49] S.N. Gninenko, Phys. Rev. D 85, 055027 (2012).
[50] S.N. Gninenko, Phys. Lett. B 713, 244 (2012).
[51] R. Meijer Drees et al. (SINDRUM Collaboration), Phys. Rev. Lett. 68, 3845 (1992).
[52] J.L. Hewett et al., arXiv:1205.2671.
[53] S. Andreas, C. Niebuhr, and A. Ringwald, Phys. Rev. D 86, 095019 (2012).
[54] S. Andreas, arXiv:1211.5160 [hep-ph].