Adherence to Antiretroviral Therapy and Virologic Failure

A Meta-Analysis

Woldesellassie M. Bezabhe, BPharm, MSc, Leanne Chalmers, PhD, Luke R. Bereznicki, PhD, and Gregory M. Peterson, PhD

Abstract: The often cited need to achieve ≥95% (nearly perfect) adherence to antiretroviral therapy (ART) for successful virologic outcomes in HIV may present a barrier to initiation of therapy in the early stages of HIV.

This meta-analysis synthesized 43 studies (27,905 participants) performed across >26 countries, to determine the relationship between cut-off point for optimal adherence to ART and virologic outcomes.

Meta-analysis was performed using a random-effect model to calculate pooled odds ratios with corresponding 95% confidence intervals. The mean rate of patients reporting optimal adherence was 63.4%. Compared with suboptimal adherence, optimal adherence was associated with a lower risk of virologic failure (0.34; 95% CI: 0.26–0.44). There were no significant differences in the pooled odds ratios among different optimal adherence thresholds (>98–100%, >95%, >80–99%). Study design (randomized controlled trial vs observational study) (regression coefficient 0.74, 95% CI: 0.04–1.43, P < 0.05) and study region (developing vs developed countries; regression coefficient 0.56, 95% CI: 0.01–1.12, P < 0.05) remained as independent predictors of between-study heterogeneity, with more patients with optimal adherence from developing countries or randomized controlled trials experiencing virologic failure.

The threshold for optimal adherence to achieve better virologic outcomes appears to be wider than the commonly used cut-off point (≥95% adherence). The cut-off point for optimal adherence could be redefined to a slightly lower level to encourage the prescribing ART at an early stage of HIV infection.

INTRODUCTION

HIV/AIDS has been transformed into a manageable chronic disease with the advent of combination antiretroviral therapy (ART) initiated as the standard of care. Three classes of HIV medications have been widely used in combination—nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs), nonnucleoside reverse transcriptase inhibitors (NNRTIs), and protease inhibitors (PIs). Despite the availability of effective treatment options, suboptimal adherence to treatment can result in insufficient viral suppression and promote the emergence of drug-resistant viral strains, resulting in regimen failure, progression to AIDS, and death. Paterson et al suggested that at least 95% adherence to unboosted PIs was required for virologic suppression. This 95% adherence cut-off point, based on what is now obsolete therapy, has been widely used as the level of optimal adherence needed to be met by patients taking newer agents and their combinations. The concern that patients may not achieve a near-perfect adherence presents a barrier for initiation of therapy in the early stages of HIV.

This meta-analysis integrated finding from observational studies on ART adherence with 2 objectives: (a) to critically evaluate the association between optimal adherence to ART and virologic outcomes, and (b) to use meta-regression to determine methodological, regimen, and population factors that could moderate the relationship between adherence and virologic outcomes.

METHODS

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement in conducting this meta-analysis. Studies eligible for inclusion were randomized controlled trials, retrospective analyses of data from trials, and cohort studies measuring the relationship between medication adherence to ART and virologic failure.

Search Strategy

WB carried out systematic literature searches of the electronic databases MEDLINE via PubMed, Cochrane Clinical Trials, and EMBASE from their inception date to 17 April 2015. This search used combinations of the following key words: medication adherence, patient compliance, antiretroviral therapy, antiretroviral agent, antiretroviral treatment, protease inhibitors, non-nucleoside reverse transcriptase inhibitors, virologic failure, and viral load. The reference lists of all articles included in this meta-analysis were also searched. Review articles, editorials, commentaries, government reports, and guidelines were excluded from this review. Titles and abstracts...
of potentially relevant articles were screened independently by WB and YM. Full articles of potentially appropriate citations were screened for inclusion in this review if they fulfilled the following criteria: original research, participants aged 16 years or older, having a clear definition of medication adherence measurement and clear cut-off points for optimal and suboptimal adherence, and virologic failure stratified by optimal and suboptimal medication adherence groups. Ethical approval was not required as this study was based on published data and had no direct access to patient information.

Data Collection and Outcome Measures
WB extracted data using standardized forms, with recording of authors, year of publication, country of study, study type, regimen, method of adherence measurement, cut-off points for good adherence, and virologic failure. The data were verified by a second reviewer (YM). Disagreements between reviewers were resolved through discussion until a consensus was reached. Study authors’ grouping of patients into optimal and suboptimal adherence using the most objective measure was used. When a study reported >1 adherence measurement, the most reliable adherence measurement data was used, with reliability defined in following order: medication event monitoring system (MEMS) > pill count > pharmacy refill > self-reported adherence in the past week > self-reported adherence in the past month. When the number of virologic failures within each adherence group was not reported, we calculated virologic failure from the information provided in the paper or contacted the corresponding author. Studies were excluded when it was not possible to obtain virologic failure data in each adherence group. The United Nations Human Development Index (HDI) ranking was used to categories studies into low and high human development groups.8

Statistical Analyses
The data were analyzed using Review Manager (RevMan) version 5.3 (Cochrane Collaboration, The Nordic Cochrane Centre, Copenhagen, 2014) and Comprehensive Meta-Analysis (CAM) version 3.3.070 (Biostat, Englewood, NJ). Each class of antiretroviral was considered in a separate analysis of the association between adherence and virologic failure in randomized clinical trials. Results are presented based on 9 categories, including study region, antiretroviral regimen, treatment experience, virologic failure cut-off points, adherence cut-off points, adherence measurement, study design, observation period, and year of publication. Adherence pooled odds ratios and 95% confidence intervals were calculated using a random effect model (DerSimonian and Laird)7 that accommodated the random variation within studies and between-studies.10

Heterogeneity between-studies were examined using the Q and I² statistics.9,11 The odds ratio was plotted against the inverse of standard error to identify the risk of publication bias by visually assessing the symmetry of funnel plots. Statistical significance was confirmed using Egger’s test,12 with a P value <0.05 considered suggestive of publication bias. A meta-regression was performed to examine major moderators of the between-studies heterogeneity. Results with P values <0.1 from univariate analyses were included in the multivariate meta-regression model.

RESULTS
Overall, 1796 studies were identified, of which 1449 were excluded after review of the title and abstract (Figure 1). The full text of the remaining 347 citations was screened, and 43 studies with 27,905 participants met the inclusion criteria. The included studies had wide a variation in sample sizes (range = 34–3607, mean = 649, SD = 805) and a slight majority of participants were men (57%). Twenty-five studies were prospective studies and 18 retrospective studies. Characteristics of the included studies are shown in Table 1.

With respect to location, 14 studies were conducted in sub-Saharan Africa; 9 in the US; 6 in Canada; 5 in Europe; 5 in Asia; 1 in Australia; and 3 studies in several countries. Twenty-two (49%) studies included only treatment-naive patients and the remaining 21 studies included both treatment-naive and/or treatment-experienced patients. All studies reported cut-off points for optimal adherence and virologic failure. Thirty studies (70%) defined optimal adherence as ≥95%, with the remainder using 100%, 98%, 90%, 85%, and 80% as the cut-off points. Optimal adherence rates varied greatly across studies, partially due to the use of these different cut-off points and also different methods of measurement to assess adherence. The mean rate of achieving optimal adherence in adults was 63.4% (standard deviation [SD] = 23.7, range 5% to 97%, n = 43).

Meta-analysis and Meta-regression
Of a total 27,905 participants, 22,740 participants had a viral load and adherence measurement; 7056 (31%) had virologic failure. Overall, 3464 of 15,067 participants with optimal adherence to ART (23%), and 3592 of 7673 participants with suboptimal adherence (47%) participants had virologic failure (Figure 2). The pooled odds ratio for virologic failure for optimal adherence compared to suboptimal adherence was 0.34 (95% CI: 0.26–0.44). A high degree of heterogeneity was found: Q statistic P <0.001 and I² = 90%. The funnel plot did not show asymmetry (Figure 3), and the result of Egger’s test was not statistically significant (P = 0.68). We conducted subgroup analyses to recalculate the pooled odds ratio according to study design, HDI rank, regimen, treatment experience, viral load cut-off points, adherence measurement, and adherence cut-off points (Table 2).

The results of univariate meta-regression analyses for different moderators are shown in Table 3. Based on virologic failure cut-off points, studies were classified into three sets: N <100 copies/mL, 11 studies (N = 5646); between 100 copies/mL and 400 copies/mL, 17 studies (N = 9351); and between 500 copies/mL and 1000 copies/mL, 14 studies (N = 7383). The pooled odds ratio for virologic failure for optimal adherence compared to suboptimal adherence for the studies with the lowest virologic failure cut-off was higher (0.55; 95% CI: 0.41–0.74, I² = 56%) than for the studies with an intermediate virologic failure cut-off (0.37; 95% CI: 0.26–0.54, I² = 88%). The group using a virologic failure cut-off >500 copies/mL had the lowest pooled odds ratio for virologic failure (0.25; 95% CI: 0.16–0.41, I² = 92%). Studies with the lowest virologic failure cut-off reported a significantly different pooled odds ratio compared with studies with a virologic failure cut-off >500 copies/mL (regression coefficient −0.75; 95% CI: −1.39 to −0.12, P = 0.02).

According to participants’ treatment experience, studies were grouped into 3 sets: treatment-naive patients only, 22 studies (N = 17,010); treatment-experienced patients only, 12 studies (N = 4009), and both treatment-naive and experienced patients, 9 studies (N = 1721). The pooled odds ratio for optimal
adherence compared to suboptimal adherence for virologic failure for treatment-experienced patients was the highest (Table 2); however, no statistically significant difference in pooled odds ratio was found between the 3 groups.

The relationship between adherence and virologic outcomes varied with type of adherence measurement. The pooled odds ratio for the self-report adherence measure (0.45; 95% CI: 0.37–0.55, \(\hat{I}^2 = 31\% \)) was higher than the pooled odds ratio for the pharmacy refill (0.29; 95% CI: 0.20–0.41, \(\hat{I}^2 = 94\% \)). The group using MEMS adherence measure had the lowest pooled odd ratio (0.15; 95% CI: 0.06–0.37, \(\hat{I}^2 = 35\% \)) for optimal adherence compared to suboptimal adherence for virologic failure. There was a trend toward significant difference across the odds of virologic failure between self-report and MEMS (regression coefficient \(-1.00; 95\% \) CI: \(-2.05, 0.06, P = 0.06\)), but not between self-report and pharmacy refill (regression coefficient \(-0.22; 95\% \) CI: \(-0.78, 0.34, P = 0.45\)).

The pooled odds ratios were also estimated by grouping studies using cut-off points for optimal adherence studies with a cut-off point between 98% and 100%, 7 studies (N = 3940); studies with a cut-off point of \(\geq 95\% \), 30 studies (N = 17,779); and studies with a cut-off point of 80% to 90%, 6 studies (N = 1021). The pooled odds ratios for virologic failure for optimal adherence compared to suboptimal adherence for each cut-off point were similar, with no statistically significant differences.

The pooled odds ratio for optimal adherence compared to suboptimal adherence for observational studies was significantly greater than randomized controlled studies (regression coefficient, 0.66; 95% CI: 0.10, 1.21, \(P = 0.02 \)). Studies were aggregated into three subgroups according to HIV-medication regimens: NNRTI-based, boosted PI-based, and unboosted PI-based. The pooled odds ratio for virologic failure for optimal adherence compared to suboptimal adherence for patients taking NNRTI-containing regimens was the highest, but the differences in pooled odds ratios between the regimens were not statistically significant.

Studies were subgrouped into 2 groups based on the HDI of the country in which the study was performed: very high HDI, 21 studies (N = 10,466); low HDI, 19 studies (N = 9945). The pooled odds ratio for optimal adherence compared to suboptimal adherence for countries with low HDI (0.50; 95% CI: 0.35–0.72) was significantly higher than countries with very high HDI (0.23; 95% CI: 0.15–0.33).

A multivariate meta-regression model was built-in to examine the specific moderators of the between-study heterogeneity, including the following: study region, threshold used to define virologic failure, adherence measurement, study design,
Study	Country	Study Type	Definition of Virologic Failure (Copies/mL)	Adherence Measures	Cut-off Point for Optimal Adherence %	Observation Period
Pasternak et al 2012	Netherlands	Randomized controlled trial	≥50	MEMS	100	9 months
Okonjo et al 2012	Kenya	Randomized controlled trial	≥400	Pill count	≥95	24 weeks
Murphy et al 2014	South Africa	Retrospective study	≥50	Pharmacy refill	≥95	24 months
Nolan et al 2011	Canada	Randomized controlled trial	≥500	Pharmacy refill	≥95	Median 51 months
El-Khatib et al 2011	South Africa	Prospective study	≥50	Pharmacy refill	≥95	Median 44 months
Messou et al 2011	Côte d’Ivoire	Prospective study	≥500	Pharmacy refill	≥95	12 months
Lima et al 2010	Canada	Retrospective study	>400	Pharmacy refill	≥95	Median 2 years
Ford et al 2010	South Africa	Prospective study	>5000	Self-report	≥95	5 years
Nellen et al 2009	Netherlands	Prospective study	≥400	Pharmacy refill	≥85	2 years
San et al 2008	Mozambique	Prospective study	≥1000	Pill count	>95	1 year
Nachega et al 2007	Netherlands	Prospective study	≥400	Pharmacy refill	100	Median 2.2 years
Gross et al 2006	Canada	Prospective study	≥1000	Pharmacy refill	≥95	Median 29 months
Moore et al 2005	Canada	Prospective study	≥500	Pharmacy refill	≥95	Median 44.7 months
Kirihara et al 2004	USA	Prospective study	≥500	Pharmacy refill	≥90	Median 89 weeks
Cahn et al 2004	Argentina, Brazil, Mexico, Italy, Thailand, Canada	Randomized controlled trial	≥400	Self-report	≥95	48 weeks
Arnsten et al 2001	USA	Prospective study	≥500	MEMS	>90	5.1 months
McNabb et al 2001	USA	Prospective study	≥400	MEMS	>95	3 months
Parienti et al 2010	USA	Prospective study	≥400 (400)	MEMS	>95	2 years
Bangsberg et al 2000	USA	Prospective study	≥400	MEMS	>98	Median 9.4 weeks
Paterson et al 2005	USA	Prospective study	≥400	MEMS	>95	Median 6 months
Tuldra et al 2000	Spain	Randomized controlled trial	≥400	Self-report	>95	48 weeks
Meresse et al 2013	Cameroon	Randomized controlled trial	≥40	Self-report	>80	24 months
Abah et al 2014	Nigeria	Prospective study	≥1000	Pharmacy refill	≥95	Median 12 months
Neogi et al 2013	India	Prospective study	≥400	Self-report	100	2 years
Li et al 2012	USA	Prospective study	≥200	Self-report and	>95	32 months
McMahon et al 2013	India	Prospective study	≥200	Pharmacy refill	≥95	12 months
Ekstrand et al 2011	India	Prospective study	≥1000	Self-report	≥95	2 years
Lower-Beer et al 2000	Canada	Prospective study	≥500	Pharmacy refill	>95	Median 19 months
Carr et al 2006	Australia	Randomized controlled trial	≥50	Self-report	100	52 months
Cohen et al 2013	21 countries	Randomized controlled trial	≥50	Self-report	>95	96 weeks
Haubrich et al 1999	Zambia	Randomized controlled trial	<500	Self-report	>95	6 months
Muyingo et al 2006	Uganda	Randomized controlled trial	>500 (400)	Pharmacy refill	100	48 weeks
Anude et al 2013	Nigeria	Prospective study	≥400	Pharmacy refill	≥95	12 months
Nelson et al 2010	26 countries	Randomized controlled trial	≥50	Self-report	≥95	96 weeks
Biswas et al 2014	USA	Prospective study	≥40	Self-report	≥95	3 years
Ti et al 2014	Canada	Prospective study	≥500	Pill count	≥95	Median 32 months
El-Khatib et al 2011	South Africa	Randomized controlled trial	≥400	Pill count	>95	24 weeks
Glass et al 2006	Switzerland	Prospective study	≥50 (400)	Self-report	>95	12 months
Jordan et al 2009	Vietnam	Prospective study	≥1000	Self-report	>95	16.65 months
Goldman et al 2008	Zambia	Prospective study	≥400	Pharmacy refill	≥95	744 days
Court et al 2014	South Africa	Prospective study	≥1000	Pharmacy refill	≥90	27 months
Shet et al 2014	India	Randomized controlled trial	≥400	Pill count	≥95	96 weeks
Carriere et al 2003	France	Prospective study	200, 400, and 500	Self-report	100	36 months

MEMS = medication event monitoring system.

and year of publication. Study design (observational study versus randomized controlled trials; regression coefficient 0.74, 95% CI: 0.04–1.43, \(P < 0.05 \)) and study region (developed versus developing countries; regression coefficient 0.56, 95% CI: 0.01–1.12, \(P < 0.05 \)) remained as independent predictors of between-study heterogeneity.

DISCUSSION

This meta-analysis of 43 studies, involving 27,905 participants, addresses a gap in the current HIV treatment adherence literature with a quantitative evaluation of the association between level of adherence and virologic outcomes among...
adults taking ART. This study revealed that adherence levels as low as 80% to 90% may be adequate for viral suppression in patients taking newer antiretroviral drugs. Our data also showed that pooled odds ratios for virologic failure for optimal adherence compared to suboptimal adherence were similar between NNRTI-based and boosted PI-based regimens. The effectiveness of newer antiretroviral agents at the lower level of adherence may encourage the prescribing of ART at an early stage of HIV infection.

The findings indicated that the mean proportion of patients who were reported to demonstrate optimal adherence worldwide was 63.4%, which is similar to a meta-analysis of 84 studies that reported 62% of patients take ≥90% of their prescribed ART.55 The results of this study demonstrate that adherence is robustly associated with virologic outcomes across the various types of adherence measure, ART regimen, study population, and reporting. The odds of virologic failure were almost 3 times higher for participants with suboptimal adherence compared to those with optimal adherence. This confirms that achieving long-term optimal adherence is indeed Achilles’ heel of successful virologic outcomes.56 The need for

FIGURE 2. Association between adherence to antiretroviral therapy and virologic failure.

FIGURE 3. Funnel plot for the association between adherence to antiretroviral therapy and virologic failure (P = 0.68 at Egger’s test).
clinicians to exert concerted efforts to maintain continuing optimal adherence to antiretroviral therapy is indisputable.

Classifying patients according to various optimal adherence thresholds (\(98–100\%), \(95\%), \text{and} \, 80–90\%) did not result in statistically significant differences in the odds of virologic failure. This finding is consistent with a meta-analysis of 37 studies in children that reported no significant group differences in virologic outcomes between different thresholds of good adherence.\(^5\) This suggests that patients who achieved “perfect” \((100\%)\) or “near perfect” \((95\%)\) adherence did not necessarily have better virologic outcomes than patients who had achieved “good enough” \((80–90\%)\) adherence. This finding has clinical importance and is in line with previous studies\(^5\) that indicated that although the need to maintain high levels of adherence to achieve long-term virologic suppression is clear, the level of adherence behavior capable of sustaining viral suppression is broader than previously thought.

Considerable variation in the relationship between adherence and virologic outcomes was found based on the type of adherence measurement used in the studies we reviewed. For studies using self-reported adherence, the odds of virologic failure in participants with optimal adherence was about half that of participants with suboptimal adherence. The odds of virologic failure for optimal adherence were about one-third and one-seventh that of the participants with suboptimal adherence using pharmacy refill and MEMS, respectively. Our meta-analysis undermines the validity of using self-reported adherence to distinguish virologic outcomes. A high proportion of patients with optimal self-reported adherence experienced virologic failure. Self-reported adherence is potentially confounded by social desirability and recall bias, which leads patients to overestimate their actual adherence;\(^6\) this method is inferior to MEMS in its ability to explain virologic outcomes.

Despite the findings\(^17,63\) of previous studies suggesting the need for different levels of optimal adherence between antiretroviral regimens for achieving similar virologic outcomes, classifying patients based on regimen did not result in statistically significant differences in the odds of virologic outcomes in this meta-analysis.

The pooled odds ratio for optimal adherence compared to suboptimal adherence for virologic failure for studies with virologic failure cut-offs < 100 copies/mL were significantly higher than studies with virologic failure cut-offs between 500 copies/mL and 1000 copies/mL. The rate of virologic failure detected in patients with good adherence increased when studies defined a virologic failure at a low level of HIV-1 ribonucleic acid (RNA). The relationship between adherence and viral load improved when the level of detection of HIV-1 RNA increased. The tighter the definition of virologic failure the more likely it is to unmask suboptimal adherence.

Table 2: Subgroup Analysis Adherence to Antiretroviral Therapy and Virologic Failure

Analysis Group	No of Studies	Pooled Odds Ratio (95% CI)	Tests for Heterogeneity	
			\(P\) Value (Q Statistic)	\(I^2\) (%)
Study design				
Randomized controlled trial	11	0.55 (0.33–0.92)	<0.001	85
Observational study	32	0.29 (0.22–0.38)	<0.001	90
HDI rank				
High HDI	21	0.23 (0.15–0.33)	<0.001	91
Low HDI	19	0.50 (0.35–0.72)	<0.001	87
Regimen				
NNRTI-based	17	0.54 (0.38–0.77)	<0.001	88
Boosted PI-based	4	0.31 (0.14–0.71)	0.06	59
Unboosted PI-based	5	0.25 (0.13–0.47)	0.11	47
Treatment experience				
Naive	22	0.33 (0.23–0.47)	<0.001	94
Experienced	12	0.52 (0.41–0.66)	0.36	9
Naive and experienced	9	0.28 (0.17–0.46)	0.001	69
Threshold used to define virologic failure				
\(<100 \text{ copies/mL}\)	11	0.55 (0.41–0.74)	0.01	56
\(100–400 \text{ copies/mL}\)	17	0.37 (0.26–0.54)	<0.001	88
\(\geq500 \text{ copies/mL}\)	14	0.25 (0.16–0.41)	<0.001	92
Threshold used to define optimal adherence group				
\(\geq98–100\%)	7	0.54 (0.29–1.00)	<0.001	85
\(\geq95\%)	30	0.34 (0.24–0.47)	<0.001	92
\(\geq80–90\%)	6	0.34 (0.23–0.51)	0.57	0
Measurement				
Self-report	14	0.45 (0.37–0.55)	0.13	31
Pharmacy refill	18	0.29 (0.20–0.41)	<0.001	94
MEMS	6	0.15 (0.06–0.37)	0.18	35
Pill count	4	0.80 (0.21–3.02)	<0.001	93

CI = confidence interval, HDI = United Nations human development index, MEMS = medication event monitoring system, NNRTIs = nonnucleoside reverse transcriptase inhibitors, PIs = protease inhibitors.
TABLE 3. Meta-Regression Analysis of Moderators for the Association Between Antiretroviral Adherence and Virologic Failure

Moderator	Category 1	Category 2	Regression Coefficient (95%CI)	P Value	I² Inconsistency	Q Statistic
Region	Developing countries	Developed countries	0.79 (0.25, 1.32)	0.004	89.2%	0.001
Regimen	NNRTIs	Boosted PIs	0.58 (−0.42, 1.59)	0.257	88.8%	0.001
Treatment experience	Experienced	Naive	0.38 (−0.27, 1.04)	0.250	90.1%	0.001
Threshold used to define	100–400 copies/mL ≤100 copies/mL	Virologic failure	−0.30 (−0.92, 0.33)	0.353	87.5%	0.001
	≥500 copies/mL ≥80–90% ≥98–100%		−0.75 (−1.39, −0.12)	0.020	90.7%	0.001
	≥95%	≥98–100%	−0.54 (−1.31, 0.23)	0.171	90.2%	0.001
Measurement	Pharmacy refill	Self-report	−0.22 (−0.78, 0.34)	0.446	398.75 (df 39), P < 0.001	
	MEMS	Self-report	−1.00 (−2.05, 0.06)	0.064	88.7%	0.001
	Pill count	Self-report	0.17 (−0.89, 1.24)	0.749	89.6%	0.001
Study design	RCT	Observational study	0.66 (0.10, 1.21)	0.020	364.17 (41 df), P < 0.001	
Observation period	≤1 year	>1 year	0.15 (−0.38, 0.69)	0.574	90.1%	0.001
	≥2005	<2005	0.67 (0.07, 1.28)	0.228	94.36 (41 df), P < 0.001	
Multivariate	Region					
	Developing countries	Developed countries	0.56 (0.01, 1.12)	0.048	82.6%	0.001
	Threshold used to define	Virologic failure	−0.46 (−1.23, 0.30)	0.238		
	500 copies/mL ≤100 copies/mL ≤100 copies/mL ≥500 copies/mL ≥80–90% ≥98–100% ≥95%					
	Measurement	MEMS	−0.50 (−1.58, 0.58)	0.366		
	Study design	RCT	0.74 (0.04, 1.43)	0.038		
	Year of publication	≥2005	0.43 (−0.37, 1.23)	0.291		

MEMS = medication event monitoring system, NNRTIs = non-nucleoside reverse transcriptase inhibitors, PIs = protease inhibitors.

The odds of virologic failure for optimal adherence were about half and one-third that of the patients with suboptimal adherence in countries with a low HDI and high HDI, respectively. More patients with optimal adherence experienced virologic failure in countries with low HDI than in countries with high HDI. This review indicates that patients with equal or better levels of optimal adherence in developing countries compared to developed countries does not necessarily translate into better virologic outcomes. This might be associated with the increase in pretreatment antiretroviral drug resistance and unavailability of baseline HIV drug resistance testing before initiation of ART in resource-limited settings that have a potential to contribute to the increasing rates of virologic failure in optimally adherent patients. We support moves toward the use viral load monitoring at the point of care in resource-limited settings to improve treatment outcomes.

Study design (observational study vs randomized controlled trials) was an independent predictor of between-study heterogeneity. More patients with optimal adherence experienced virologic failure in randomized controlled trials than in observational studies. Differences in estimated magnitude of treatment effect are very common between randomized controlled trials and observational studies. This difference in virologic outcomes between study designs might be related with selection bias in observational studies and higher quality and rigor of randomized controlled trials.

This meta-analysis shares the limitations intrinsic to meta-analysis in general and with studies of adherence in particular. We only included studies published in English, so we may have missed studies that were relevant to our research question during the literature search. When the included studies were stratified and analyzed based on regimen, virologic failure cut-off, adherence cut-off and type of adherence measurement, heterogeneity between-studies remained high for most of the subgroups. Because of this high degree of heterogeneity, which was not entirely described either by subgroup analysis or by meta-regression, our pooled results need to be viewed with caution.

CONCLUSION

Irrespective of the cut-off point for optimal adherence, our findings support the tenet that optimal adherence to ART is associated with positive clinical outcomes. The threshold for optimal adherence to achieve better virologic outcomes appears to be wider than the commonly used cut-off point (≥95% adherence). Though patients taking ART should be instructed to attain ≥95% adherence, apprehensions of slightly lower adherence should not deter prescribing ART regimens at an early stage of HIV infection.

ACKNOWLEDGMENTS

The authors would like to acknowledge Yihienew Mequain for his assistance in screening articles and verifying the extracted data, and all study authors who responded to inquiries about relevant papers.

This meta-analysis was conducted in partial fulfillment of a PhD in Pharmacy at School of Medicine, University of Tasmania. The authors received no specific funding for this research.

REFERENCES

1. Palella FJ Jr, Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med. 1998;338:853–860.
2. Delaugerre C, Rohban R, Simon A, et al. Resistance profile and cross-resistance of HIV-1 among patients failing a non-nucleoside reverse transcriptase inhibitor-containing regimen. *J Med Virol.* 2001;65:445–448.

3. Parienti JJ, Massari V, Descamps D, et al. Predictors of virologic failure and resistance in HIV-infected patients treated with nevirapine- or efavirenz-based antiretroviral therapy. *Clin Infect Dis.* 2004;38:1311–1316.

4. Bangsberg DR, Perry S, Charlebois ED, et al. Non-adherence to highly active antiretroviral therapy predicts progression to AIDS. *AIDS.* 2001;15:1181–1183.

5. Paterson DL, Swindells S, Mohr J, et al. Adherence to protease inhibitor therapy and outcomes in patients with HIV infection. *Ann Intern Med.* 2000;133:21–30.

6. Kurth AE, Mayer K, Beaugamp G, et al. Clinician practices and attitudes regarding early antiretroviral therapy in the United States. *J Acquir Immun Defic Syndr.* 2012;61:e65–e69.

7. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. *PLoS Med.* 2009;6:e1000100.

8. United Nations Development Programme. Human development report. New York, USA, 2014.

9. DerSimonian R, Laird N. Meta-analysis in clinical trials. *Control Clin Trials.* 1986;7:177–188.

10. Hedges LV, Vevea JL. Fixed-and random-effects models in meta-analysis. *Psychol Methods.* 1998;3:486–504.

11. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. *BMJ.* 2003;327:557–560.

12. Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. *BMJ.* 1997;315:629–634.

13. Messou E, Chaix ML, Gabin D, et al. Association between medication possession ratio, virologic failure and drug resistance in HIV-1-infected adults on antiretroviral therapy in Côte d’Ivoire. *J Acquir Immune Defic Syndr.* 2011;56:356–364.

14. Ford N, Darmer M, Spelman T, et al. Early adherence to antiretroviral medication as a predictor of long-term HIV viral suppression: five-year follow up of an observational cohort. *PLoS One.* 2010;5:e10460.

15. Nellen JF, Nieuwkerk PT, Burger DM, et al. Which method of adherence measurement is most suitable for daily use to predict virological failure among immigrant and non-immigrant HIV-1 infected patients? *AIDS Care.* 2009;21:842–850.

16. San Lio MM, Carbini R, Gemanoo P, et al. Evaluating adherence to highly active antiretroviral therapy with use of pill counts and viral load measurement in the drug resources enhancement against AIDS and malnutrition program in Mozambique. *Clin Infect Dis.* 2008;46:1609–1616.

17. Nachega JB, Hislop M, Dowdy DW, et al. Adherence to nonnucleoside reverse transcriptase inhibitor-based HIV therapy and virologic outcomes. *Ann Intern Med.* 2007;146:564–573.

18. Gross R, Yip B, Lo Re V 3rd et al. A simple, dynamic measure of antiretroviral therapy adherence predicts failure to maintain HIV-1 suppression. *J Infect Dis.* 2006;194:1108–1114.

19. Moore DM, Hogg RS, Yip B, et al. Discordant immunologic and virologic responses to highly active antiretroviral therapy are associated with increased mortality and poor adherence to therapy. *J Acquir Immune Defic Syndr.* 2005;40:288–293.

20. Aronstam JH, Demas PA, Farzadegan H, et al. Antiretroviral therapy adherence and viral suppression in HIV-infected drug users: comparison of self-report and electronic monitoring. *Clin Infect Dis.* 2001;33:1417–1423.

21. McNabb J, Ross JW, Abriola K, et al. Adherence to highly active antiretroviral therapy predicts virologic outcome at an inner-city human immunodeficiency virus clinic. *Clin Infect Dis.* 2001;33:700–705.

22. Parienti JJ, Ragland K, Lucht F, et al. Average adherence to boosted protease inhibitor therapy, rather than the pattern of missed doses, as a predictor of HIV RNA replication. *Clin Infect Dis.* 2010;50:1192–1197.

23. Bangsberg DR, Hecht FM, Charlebois ED, et al. Adherence to protease inhibitors, HIV-1 viral load, and development of drug resistance in an indigent population. *AIDS.* 2000;14:357–366.

24. Neogi U, Heylen E, Shet A, et al. Long-term efficacy of first line antiretroviral therapy in Indian HIV-1 infected patients: a longitudinal cohort study. *PLoS One.* 2013;8:e55421.

25. Li JZ, Paredes R, Ribaudo HJ, et al. Relationship between minority nonnucleoside reverse transcriptase inhibitor resistance mutations, adherence, and the risk of virologic failure. *AIDS.* 2012;26:185–192.

26. Ekstrand ML, Shet A, Chandy S, et al. Suboptimal adherence associated with virological failure and resistance mutations to first-line highly active antiretroviral therapy (HAART) in Bangalore, *India. Int Health.* 2011;3:27–34.

27. Low-Beer S, Yip B, O’Shaughnessy MV, et al. Adherence to triple therapy and viral load response. *J Acquir Immune Defic Syndr.* 2000;23:360–361.

28. Anude CJ, Eze E, Oneyebutulem HC, et al. Immuno-virologic outcomes and immuno-virologic discordance among adults alive and on anti-retroviral therapy at 12 months in Nigeria. *BMJ Infect Dis.* 2013;13:113.

29. Biswas B, Spitznagel E, Collier AC, et al. Characterizing HIV medication adherence for virologic success among individuals living with HIV/AIDS: experience with the CNS HIV Antiretroviral Therapy Effects Research (CHARTER) cohort. *J HIV AIDS Soc Serv.* 2014;13:8–25.

30. Ti L, Milloy MJ, Shannon K, et al. Suboptimal plasma HIV-1 RNA suppression and adherence among sex workers who use illicit drugs in a Canadian setting: an observational cohort study. *Sex Transm Infect.* 2014;90:418–422.

31. El-Khatib Z, Ekstrom AM, Coovadia A, et al. Adherence and virologic suppression during the first 24 weeks on antiretroviral therapy among women in Johannesburg, South Africa—a prospective cohort study. *BMJ Public Health.* 2011;11:88.

32. Glass TR, De Geest S, Weber R, et al. Correlates of self-reported nonadherence to antiretroviral therapy in HIV-infected patients: the Swiss HIV Cohort Study. *J Acquir Immune Defic Syndr.* 2006;41:385–392.

33. Jordan MR, La H, Nguyen HD, et al. Correlates of HIV-1 viral suppression in a cohort of HIV-positive drug users receiving antiretroviral therapy in Hanoi, Vietnam. *Int J STD AIDS.* 2009;20:418–422.

34. Goldman JD, Cantrell RA, Mulenga LB, et al. Simple adherence assessments to predict virologic failure among HIV-infected adults with discordant immunologic and clinical responses to antiretroviral therapy. *AIDS Res Hum Retroviruses.* 2008;24:1031–1035.

35. Court R, Leisegang R, Stewart A, et al. Short term adherence tool predicts failure on second line protease inhibitor-based antiretroviral therapy: an observational cohort study. *BMJ Infect Dis.* 2014;14:664.

36. Carriero MP, Raffi F, Lewden C, et al. Impact of early versus late adherence to highly active antiretroviral therapy on immunovirological response: a 3-year follow-up study. *Antivir Ther.* 2003;8:585–594.

37. Pasternak AO, de Bruin M, Juriiaans S, et al. Modest nonadherence to antiretroviral therapy promotes residual HIV-1 replication in the
absence of virological rebound in plasma. J Infect Dis. 2012;206:1443–1452.

38. Okongi JA, Zeh C, Weidle PJ, et al. CD4, viral load response, and adherence among antiretroviral-naive breast-feeding women receiving triple antiretroviral prophylaxis for prevention of mother-to-child transmission of HIV in Kisumu, Kenya. J Acquir Immune Defic Syndr. 2012;61:249–257.

39. Cahn P, Vihbagool A, Schechter M, et al. Predictors of adherence and virologic outcome in HIV-infected patients treated with abacavir- or indinavir-based triple combination HAART also containing lamivudine/azidothymidine. Curr Med Res Opin. 2004;20:1115–1123.

40. Tuldra A, Furaz CR, Ferrer MJ, et al. Prospective randomized two-arm controlled study to determine the efficacy of a specific intervention to improve long-term adherence to highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2000;25:221–228.

41. Meresse M, Carrieri MP, Laurent C, et al. Time patterns of adherence and long-term virological response to non-nucleoside reverse transcriptase inhibitor regimens in the Stratall ANRS 12110/ESTHER trial in Cameroon. Antivir Ther. 2013;18:29–37.

42. Carr A, Chua J, Hudson J, et al. A randomised, open-label comparison of three highly active antiretroviral therapy regimens including two nucleoside analogues and indinavir for previously untreated HIV-1 infection: the OzCombol study. AIDS. 2000;14:1171–1180.

43. Cohen CJ, Molina JM, Casseti I, et al. Week 96 efficacy and safety of rilpivirine in treatment-naive, HIV-1 patients in two Phase III randomized trials. AIDS. 2013;27:939–950.

44. Haubrich RH, Little SJ, Currier JS, et al. The value of patient-reported adherence to antiretroviral therapy in predicting virologic and immunologic response. California Collaborative Treatment Group. AIDS. 1999;13:1099–1107.

45. Muyingo SK, Walker AS, Reid A, et al. Patterns of individual and population-level adherence to antiretroviral therapy and risk factors for poor adherence in the first year of the DART trial in Uganda and Zimbabwe. J Acquir Immune Defic Syndr. 2008;48:468–475.

46. Nelson M, Girard PM, Demasi R, et al. Suboptimal adherence to darunavir/ritonavir has minimal effect on efficacy compared with lopinavir/ritonavir in treatment-naive, HIV-infected patients: 96 week ARTMIS data. J Antimicrob Chemother. 2010;65:1505–1509.

47. Shet A, De Costa A, Kumaramany N, et al. Effect of mobile telephone reminders on treatment outcome in HIV: evidence from a randomised controlled trial in India. BMJ. 2014;349:g5978.

48. Murphy RA, Sunpath H, Castilla C, et al. Second-line antiretroviral therapy: long-term outcomes in South Africa. J Acquir Immune Defic Syndr. 2012;61:158–163.

49. Nolan S, Milloy MJ, Zhang R, et al. Adherence and plasma HIV RNA response to antiretroviral therapy among HIV-seropositive injection drug users in a Canadian setting. AIDS Care. 2011;23:980–987.

50. El-Khatib Z, Katzenstein D, Marrone G, et al. Adherence to drug-refill is a useful early warning indicator of virologic and immunologic failure among HIV patients on first-line ART in South Africa. PLoS One. 2011;6:e17518.

51. Lima VD, Bangsberg DR, Harrigan PR, et al. Risk of viral failure declines with duration of suppression on highly active antiretroviral therapy irrespective of adherence level. J Acquir Immune Defic Syndr. 2010;55:460–465.

52. Kitahata MM, Reed SD, Dillingham PW, et al. Pharmacy-based assessment of adherence to HAART predicts virologic and immunologic treatment response and clinical progression to AIDS and death. Int J STD AIDS. 2004;15:803–810.

53. Abah IO, Ojeh VB, Musa J, et al. Clinical utility of pharmacy-based adherence measurement in predicting virologic outcomes in an adult HIV-infected cohort in Jos, North Central Nigeria. J Int Assoc Provid AIDS Care. 2014;15:77–83.

54. McMahon JH, Manoharan A, Wanke CA, et al. Pharmacy and self-report adherence measures to predict virological outcomes for patients on free antiretroviral therapy in Tamil Nadu, India. AIDS Behav. 2013;17:2253–2259.

55. Ortego C, Huedo-Medina TB, Llorca J, et al. Adherence to highly active antiretroviral therapy (HAART): a meta-analysis. AIDS Behav. 2011;15:1381–1396.

56. Simoni JM, Frick PA, Pantalone DW, et al. Antiretroviral adherence interventions: a review of current literature and ongoing studies. Top HIV Med. 2003;11:185–198.

57. Kahana SY, Rohan J, Allison S, et al. A meta-analysis of adherence to antiretroviral therapy and virologic responses in HIV-infected children, adolescents, and young adults. AIDS Behav. 2013;17:41–60.

58. Rosenblum M, Deeks SG, van der Laan M, et al. The risk of virologic failure decreases with duration of HIV suppression, at greater than 50% adherence to antiretroviral therapy. PLoS One. 2009;4:e27196.

59. Viswanathan S, Justice AC, Alexander GC, et al. Adherence and HIV RNA suppression in the current era of highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2015;69:493–498.

60. Wagner G, Miller LG. Is the influence of social desirability on patients’ self-reported adherence overrated? J Acquir Immune Defic Syndr. 2004;35:203–204.

61. Bangsberg DR. Less than 95% adherence to nonnucleoside reverse-transcriptase inhibitor therapy can lead to viral suppression. Clin Infect Dis. 2006;43:939–941.

62. Mills EJ, Nachega JB, Buchan I, et al. Adherence to antiretroviral therapy in sub-Saharan Africa and North America: a meta-analysis. JAMA. 2006;296:679–690.

63. Gupta RK, Jordan MR, Sultan BJ, et al. Global trends in antiretroviral resistance in treatment-naive individuals with HIV after rollout of antiretroviral treatment in resource-limited settings: a global collaborative study and meta-regression analysis. Lancet. 2012;380:1250–1258.

64. Gunthard HF, Aberg JA, Eron JJ, et al. Antiretroviral treatment of adult HIV infection: 2014 recommendations of the International Antiviral Society—USA Panel. JAMA. 2014;312:410–425.

65. Haas AD, Keiser O, Balesse E, et al. Monitoring and switching of first-line antiretroviral therapy in sub-Saharan Africa: collaborative analysis of adult treatment cohorts. Lancet HIV. 2015;2:e271–e278.

66. Ioannidis JP, Haidich A-B, Pappa M, et al. Comparison of evidence of treatment effects in randomized and nonrandomized studies. JAMA. 2001;286:821–830.

67. Glesby MJ, Hoover DR. Survivor treatment selection bias in observational studies: examples from the AIDS literature. Ann Intern Med. 1996;124:999–1005.