Anisotropic structural predictor in glassy materials

Schwartzman-Nowik, Z.; Lerner, E.; Bouchbinder, E.

DOI
10.1103/PhysRevE.99.060601

Publication date
2019

Document Version
Final published version

Published in
Physical Review E

Citation for published version (APA):
Schwartzman-Nowik, Z., Lerner, E., & Bouchbinder, E. (2019). Anisotropic structural predictor in glassy materials. Physical Review E, 99(6), Article 060601. https://doi.org/10.1103/PhysRevE.99.060601

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Anisotropic structural predictor in glassy materials

Zohar Schwartzman-Nowik,1 Edan Lerner,1 and Eran Bouchbinder1

1Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
2Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

(Rceived 16 January 2019; published 11 June 2019)

There is growing evidence that relaxation in glassy materials, both spontaneous and externally driven, is mediated by localized soft spots. Recent progress made it possible to identify the soft spots inside glassy structures and to quantify their degree of softness. These softness measures, however, are typically scalars, not taking into account the tensorial, anisotropic nature of soft spots, which implies orientation-dependent coupling to external deformation. Here, we derive from first principles the linear response coupling between the local heat capacity of glasses, previously shown to provide a measure of glassy softness, and external deformation in different directions. We first show that this linear response quantity follows an anomalous, fat-tailed distribution related to the universal ω^4 density of states of quasilocalized, nonphononic excitations in glasses. We then construct a structural predictor as the product of the local heat capacity and its linear response to external deformation, and show that it offers an enhanced predictability of plastic rearrangements under deformation in different directions, compared to the purely scalar predictor.

DOI: 10.1103/PhysRevE.99.060601

Introduction. At the heart of resolving the glass mystery resides the need to quantify the disordered structures inherently associated with glasses and to relate them to glass properties and dynamics, most notably spontaneous and driven structural relaxation [1,2]. Numerous attempts to address and meet this grand challenge have been made [3–20], aiming at defining structural indicators with predictive powers. Achieving this goal would constitute major progress in understanding glassiness and would provide invaluable insight for developing macroscopic theories of deformation and flow of glasses.

Recently accumulated evidence suggests that spatially localized soft spots are the loci of glassy relaxation, and hence are highly relevant for glass dynamics. These localized soft spots have been related to quasilocalized, nonphononic excitations in glasses [4–6], whose universal ω^4 density of states (ω is the vibrational frequency) has been also established recently [21–24]. Among the structural predictors proposed, most relevant here is the normalized local thermal energy [6], which quantifies the interparticle interaction contribution to the zero-temperature heat capacity, termed hereafter the local heat capacity (LHC) c_α/α (α is the interaction index).

The LHC c_α/α is a general (system- and model-independent), first-principles statistical mechanical quantity that reveals soft spots in glassy materials [6]. Yet, the LHC is a scalar that quantifies the resistance to motion in some unknown direction. That is, as previously proposed structural predictors in glasses (with the exception of Refs. [15–18]), the LHC misses important tensorial, anisotropic information about the coupling to deformation in a certain direction. For example, an extremely soft spot can be completely decoupled from external forces applied in a certain direction and hence irrelevant for the glass response in this direction.

In this Rapid Communication, we develop and quantitatively test a theory that allows us to identify particularly soft glassy structures, explicitly revealing their anisotropic nature and their intrinsic coupling to the direction of externally applied forces. The theory is developed in two steps; First, the linear response coupling of c_α/α to external deformation tensors $\mathcal{H}(\gamma)$, parametrized by a strain amplitude γ, is derived. The resulting quantity $d\alpha/c_\alpha/\alpha$ is shown to follow an anomalous, fat-tailed distribution related to the universal ω^4 density of states of quasilocalized, nonphononic excitations in glasses. Second, a structural predictor in the product form $c_\alpha/\alpha d\alpha/c_\alpha/\alpha$ is physically motivated and shown to filter out soft spots that are not coupled to the external deformation of interest. Finally, a metric for quantifying the predictive power of structural predictors is proposed and extensive computer simulations are used to show that $c_\alpha/\alpha d\alpha/c_\alpha/\alpha$ offers an enhanced predictability of plastic rearrangements under deformation in different directions, compared to the LHC c_α/α alone.

Linear response coupling of the LHC to external deformation. The starting point for our development is the zero-temperature local heat capacity [6,25]

$$c_\alpha/\alpha = \left. \frac{1}{\beta k_B} \frac{\partial \langle \varphi_\alpha \rangle}{\partial T} \right|_{T=0}, \quad (1)$$

where $\langle \varphi_\alpha \rangle/\alpha = \int \varphi_\alpha(x) \exp \left(-\frac{U(x)}{k_B T} \right) dx / \int \exp \left(-\frac{U(x)}{k_B T} \right) dx$, x is a vector of the positions of all particles, φ_α is the potential energy of any pair of interacting particles, $U(x) = \sum \varphi_\alpha$, and k_B is Boltzmann’s constant. The sum over the LHC, $\sum c_\alpha = \partial \langle U \rangle / \partial T|_{T=0}$, is the thermodynamic, zero-temperature heat capacity C_V.

An analytic low-temperature expansion of $\langle \varphi_\alpha \rangle/\alpha$, allows us to explicitly calculate c_α/α [6], which takes the form $c_\alpha/\alpha = \mathcal{M}^{-1} - f_\alpha \cdot \mathcal{M}^{-1} \cdot U'' \cdot \mathcal{M}^{-1}$, where \cdot denotes a contraction over a single index of the relevant tensors and \mathcal{M} over two indices. A prime, here and hereafter, denotes a partial derivative with respect to x, $\cdot' = \varphi_\alpha'$ are frustration-induced internal forces, and $\mathcal{M} \equiv \partial^2 U/\partial x \partial x$ is the Hessian matrix whose

2470-0045/2019/99(6)/060601(5) 060601-1 ©2019 American Physical Society
The soft spots are characterized by a degree of softness determined by the typical magnitude of c_a, $|c_a|$, in its vicinity

$$ dc_a/d\gamma \simeq -\mathbf{U}'' \cdot \mathbf{M}^{-1} \cdot (\mathbf{U}'' \cdot \mathbf{M}^{-1} \cdot \mathbf{U}'' + \mathbf{M}^{-1}) \cdot (f_a \cdot \mathbf{M}^{-1}) $$
$$ - (\mathbf{U}'' \cdot \mathbf{M}^{-1} \cdot \mathbf{U}'' + \mathbf{M}^{-1}) \cdot (\mathbf{U}'' \cdot \mathbf{M}^{-1} \cdot f_a). $$

Equation (2), valid for the largest values of $dc_a/d\gamma$, shows that these emerge from a fourth power of $\mathbf{M}^{-1} \sim \omega^2$ (scalingwise), coupled to the energy anharmonicity tensor \mathbf{U}'', to the internal force vector f_a and to the mismatch force vector \mathbf{U}'. Note that similarly to c_a (see the expression above), the existence of frustration-induced internal forces f_a—an intrinsic signature of glassy disorder—is essential for the emergence of abnormally large values of $dc_a/d\gamma$. While the expression for $dc_a/d\gamma$ in Eq. (2) or its exact counterpart in Ref. [27]] is universal, the specific information regarding

The local heat capacity (LHC) c_a [cf. Eq. (1)] for a glass composed of $N = 10^4$ particles [27]. The magnitude of c_a is represented by the thickness of the lines connecting particles and black (red) correspond to positive (negative) values (see Ref. [27] for details about the thresholding procedure employed). Regions with anomalously large $|c_a|$, i.e., soft spots, are clearly observed. The right (left) triangles correspond to the first plastic events under positive (negative) simple shear QAS deformation and the up (down) ones to the first plastic events under positive (negative) pure shear QAS deformation.
the applied deformation $\mathcal{H}(\gamma)$ for which the linear response is calculated is encapsulated in the partial derivative $\partial/\partial \gamma$ [27], here through the mismatch force \mathcal{U}'. The validity of the analytic expression for $dc_{\alpha}/d\gamma$ has been directly verified using numerical simulations [27].

Universal anomalous statistics. To further establish the linear responses $dc_{\alpha}/d\gamma$ as a fundamental physical quantity that is intrinsically related to quasilocalized soft glassy modes, we consider next the large tail of its statistical distribution. The latter can be predicted based on Eq. (2) and the universal DOS of soft glassy modes, $D_G(\omega) \sim \omega^4$. Considering the eigenrepresentation of $dc_{\alpha}/d\gamma$ and invoking the same considerations as in Ref. [6], one can show that objects such as those appearing on the right-hand side of Eq. (2) are far more sensitive to quasilocalized glassy modes than to extended phonons as $\omega \rightarrow 0$ and that the ω dependence emerges only from $\mathcal{M}^{-1} \sim \omega^{-2}$. Consequently, we have $dc_{\alpha}/d\gamma \sim \omega^{-8}$ and $p(dc_{\alpha}/d\gamma)$ is predicted to satisfy $p(dc_{\alpha}/d\gamma) = D_G(\omega)d\omega/d(dc_{\alpha}/d\gamma) \sim (dc_{\alpha}/d\gamma)^{-13/8}$ in the large $dc_{\alpha}/d\gamma$ limit.

To test this prediction, we performed extensive numerical simulations of a conventional computer glass former for both simple and pure shear [27] and extracted the statistics of $dc_{\alpha}/d\gamma$. The results are presented in Fig. 2(a) and are in great quantitative agreement with the theoretical prediction. We thus conclude that $dc_{\alpha}/d\gamma$ attains anomalously large values described by universal fat-tailed statistics related to the universal DOS of soft quasilocalized glassy modes, $D_G(\omega) \sim \omega^4$. The relation between $dc_{\alpha}/d\gamma$ and quasilocalized modes suggests that the spatial distribution of the former features localized structures, which will be used next to construct a generalized structural predictor in glasses.

A structural predictor. We have at hand two quantities that appear to capture the essential physical properties of soft spots in glassy materials. First, the LHC c_{α} is a signed scalar whose magnitude $|c_{\alpha}|$ quantifies the degree of softness of soft spots, i.e., it provides a measure for how small the activation barrier for irreversible rearrangements is in some unknown direction. Second, the linear response coupling of the LHC to deformation in a certain direction $dc_{\alpha}/d\gamma$ is a signed quantity that provides a measure for the degree by which externally applied forces affect the activation barrier in the direction in which they are applied. How do the two quantities combine to form a generalized anisotropic structural predictor in glasses? As both c_{α} and $dc_{\alpha}/d\gamma$ are signed quantities and as both are predicted to attain anomalously large values at the loci of soft quasilocalized modes, we expect large positive values of the product $c_{\alpha} dc_{\alpha}/d\gamma$ to single out a subpopulation of the soft spots (previously defined by $|c_{\alpha}|$) that is most relevant for the imposed deformation in a certain direction. Consequently, we propose it as a generalized anisotropic structural predictor in glasses.

As a first test of this idea, we invoke it to predict the large tail statistics of $c_{\alpha} dc_{\alpha}/d\gamma$. As we have $c_{\alpha} \sim \omega^{-4}$ and $dc_{\alpha}/d\gamma \sim \omega^{-8}$ in the small ω limit, the spatial overlap prediction implies $c_{\alpha} dc_{\alpha}/d\gamma \sim \omega^{-12}$, which leads to $p(c_{\alpha} dc_{\alpha}/d\gamma) \sim (c_{\alpha} dc_{\alpha}/d\gamma)^{-17/12}$ in the large $dc_{\alpha}/d\gamma$ limit [using $D_G(\omega) \sim \omega^4$]. This prediction is quantitatively verified in Fig. 2(b) for both simple and pure shear, lending strong support to the idea that the product $c_{\alpha} dc_{\alpha}/d\gamma$ indeed characterizes well-defined soft spots.

We next turn to the spatial properties of $c_{\alpha} dc_{\alpha}/d\gamma$, and first consider the glass realization shown in Fig. 1, which is shown again in Fig. 3(a). The product $c_{\alpha} dc_{\alpha}/d\gamma$ under both simple and pure shear in the positive direction is shown in Figs. 3(b) and 3(c). Here, black and red correspond respectively to positive and negative values of $c_{\alpha} dc_{\alpha}/d\gamma$ (the thickness of the lines quantifies their magnitude). Two major observations can be made: (i) Soft spots that are revealed by $c_{\alpha} dc_{\alpha}/d\gamma$ indeed overlap those revealed by c_{α} alone, and in fact they are more pronounced. (ii) There exist two subspecies of soft spots, one that is positively coupled to deformation in a given direction (black) and one that is negatively coupled to it (red), and these subspecies depend on the direction of the deformation [cf. Figs. 3(b) and 3(c)]. Consequently, the product $c_{\alpha} dc_{\alpha}/d\gamma$ reveals orientation-dependent soft spots that offer enhanced predicative power compared to scalar indicators, which will be tested next.

Quantifying the predictive power of the structural predictor. We first demonstrate the predictive power of $c_{\alpha} dc_{\alpha}/d\gamma$ using the example in Fig. 3; we expect plastic events to occur at one of the softest black (red) spots in Fig. 3(b) when the glass undergoes simple shear deformation in the positive (negative) directions, and similarly for Fig. 3(c) in relation to pure shear in the positive and negative directions. This expectation is fully supported by the results of AQS deformation simulations [27] in the four different directions, as shown by the triangles in Figs. 3(b) and 3(c).

To systematically quantify the predictive power of the proposed structural predictor, we performed extensive computer simulations of a large ensemble of glass realizations deformed in the four different directions and tracked the location of the first plastic event in each one of them. To quantify the degree of predictability, we used the following metric: The system is divided into bins of linear size $\xi = 5$ particle diameters, comparable to the localization length of soft quasilocalized modes [21,23], and assigned a value obtained from the average of the structural indicator inside the bin and all of its neighboring bins (implying that the actual coarse-graining length is in fact larger than ξ). A plastic event is assigned a rank λ that corresponds to the fraction of the bins with a higher value than that of the bin in which it
actually occurred. The best prediction corresponds to \(\lambda = 0 \) (the event occurred in the highest value bin) and the worst one corresponds to \(\lambda \to 1 \) (the event occurred in the lowest value bin). When considering the cumulative distribution function \(C(\lambda) \), with \(0 \leq \lambda < 1 \), perfect predictability corresponds to \(C(\lambda) = \theta(\lambda) \) (Heaviside step function) and no predictability (random guess) corresponds to \(C(\lambda) = \lambda \). This metric depends on a single, physically motivated parameter \(\xi \) (the quantitative dependence of the results on \(\xi \) is discussed in Ref. [27]).

The results are presented in Fig. 4, where \(C(\lambda) \) for the absolute value of the LHC \(|c_a|\) serves as a reference (circles). In Fig. 4(a) we consider simple shear in the positive direction, and plot \(C(\lambda) \) (diamonds) for positive values of \(c_a dc_a/d\gamma \) (the negative ones are set to zero). It is observed that the predictive power of \(c_a dc_a/d\gamma \) is significantly larger than that of \(|c_a|\). \(C(\lambda) \) for negative values of \(c_a dc_a/d\gamma \) (the positive ones are set to zero) is also shown (squares), exhibiting essentially no predictive power, i.e., the curve is quite close to \(C(\lambda) = \lambda \). Negative values of \(c_a dc_a/d\gamma \) provide excellent predictions for plastic events once the deformation direction is reversed (that is, simple shear in the negative direction is applied), as shown in Fig. 4(b). In fact, when the deformation direction is reversed, the black and red soft spots simply reverse their roles (while \(|c_a|\) remains the same, as it is independent of the direction of the driving force), as shown in Fig. 4(b). Essentially the same results are obtained for pure shear [27], as expected from symmetry, further demonstrating the superior predictive power of \(c_a dc_a/d\gamma \).

Concluding remarks. The results presented above show that \(c_a dc_a/d\gamma \) is a promising structural predictor in glasses. It is a first-principles, model- and system-independent physical quantity that reveals and highlights the orientation dependence of soft spots inside disordered glass states. The transparent analytic structure of \(c_a dc_a/d\gamma \), and its relation to quasilocalized soft excitations [6], allows us to gain physical insight into the origin of localized soft spots in glasses and their universal statistical properties. Our structural predictor involves only snapshots of nondeformed glasses and the interparticle interactions. The emerging properties of soft spots strongly echo the original Falk-Langer concept of shear transformation zones (STZs) [32] and should help advancing the development of predictive elastoplastic models. Finally, we believe that our results offer a tool to probe the basic physics of glasses including structural relaxation, aging, memory effects, and nonlinear yielding transitions.

Acknowledgments. E.L. acknowledges support from the Netherlands Organisation for Scientific Research (NWO) (Vidi Grant No. 680-47-554/3259). E.B. acknowledges support from the Minerva Foundation with funding from the Federal German Ministry for Education and Research, the William Z. and Eda Bess Novick Young Scientist Fund, and the Harold Perlman Family. We thank J. Zylberg for his support, advice, and assistance with the numerical calculations. Z.S.-N. thanks Y. Lubomirsky for useful discussions, and in particular for the initial suggestion to consider the product form.
[1] C. P. Royall and S. R. Williams, Phys. Rep. 560, 1 (2015).
[2] T. C. Hufnagel, C. A. Schuh, and M. L. Falk, Acta Mater. 109, 375 (2016).
[3] C. Oligschleger and H. R. Schober, Phys. Rev. B 59, 811 (1999).
[4] A. Widmer-Cooper, H. Perry, P. Harrowell, and D. R. Reichman, Nat. Phys. 4, 711 (2008).
[5] M. L. Manning and A. J. Liu, Phys. Rev. Lett. 107, 108302 (2011).
[6] J. Zylberg, E. Lerner, Y. Bar-Sinai, and E. Bouchbinder, Proc. Natl. Acad. Sci. USA 114, 14052 (2017).
[7] M. Tsamados, A. Tanguy, C. Goldenberg, and J.-L. Barrat, Phys. Rev. B 59, 811 (1999).
[8] A. Widmer-Cooper, H. Perry, P. Harrowell, and D. R. Reichman, Nat. Phys. 4, 711 (2008).
[9] M. L. Manning and A. J. Liu, Phys. Rev. Lett. 107, 108302 (2011).
[10] J. Zylberg, E. Lerner, Y. Bar-Sinai, and E. Bouchbinder, Proc. Natl. Acad. Sci. USA 114, 14052 (2017).
[11] M. Tsamados, A. Tanguy, C. Goldenberg, and J.-L. Barrat, Phys. Rev. B 59, 811 (1999).
[12] A. Widmer-Cooper, H. Perry, P. Harrowell, and D. R. Reichman, Nat. Phys. 4, 711 (2008).
[13] M. L. Manning and A. J. Liu, Phys. Rev. Lett. 107, 108302 (2011).
[14] J. Zylberg, E. Lerner, Y. Bar-Sinai, and E. Bouchbinder, Proc. Natl. Acad. Sci. USA 114, 14052 (2017).
[15] M. Tsamados, A. Tanguy, C. Goldenberg, and J.-L. Barrat, Phys. Rev. B 59, 811 (1999).
[16] A. Widmer-Cooper, H. Perry, P. Harrowell, and D. R. Reichman, Nat. Phys. 4, 711 (2008).
[17] M. L. Manning and A. J. Liu, Phys. Rev. Lett. 107, 108302 (2011).
[18] J. Zylberg, E. Lerner, Y. Bar-Sinai, and E. Bouchbinder, Proc. Natl. Acad. Sci. USA 114, 14052 (2017).
[19] M. Tsamados, A. Tanguy, C. Goldenberg, and J.-L. Barrat, Phys. Rev. B 59, 811 (1999).
[20] A. Widmer-Cooper, H. Perry, P. Harrowell, and D. R. Reichman, Nat. Phys. 4, 711 (2008).
[21] M. L. Manning and A. J. Liu, Phys. Rev. Lett. 107, 108302 (2011).
[22] J. Zylberg, E. Lerner, Y. Bar-Sinai, and E. Bouchbinder, Proc. Natl. Acad. Sci. USA 114, 14052 (2017).
[23] M. Tsamados, A. Tanguy, C. Goldenberg, and J.-L. Barrat, Phys. Rev. B 59, 811 (1999).
[24] A. Widmer-Cooper, H. Perry, P. Harrowell, and D. R. Reichman, Nat. Phys. 4, 711 (2008).
[25] M. L. Manning and A. J. Liu, Phys. Rev. Lett. 107, 108302 (2011).
[26] J. Zylberg, E. Lerner, Y. Bar-Sinai, and E. Bouchbinder, Proc. Natl. Acad. Sci. USA 114, 14052 (2017).
[27] M. Tsamados, A. Tanguy, C. Goldenberg, and J.-L. Barrat, Phys. Rev. B 59, 811 (1999).
[28] A. Widmer-Cooper, H. Perry, P. Harrowell, and D. R. Reichman, Nat. Phys. 4, 711 (2008).
[29] M. L. Manning and A. J. Liu, Phys. Rev. Lett. 107, 108302 (2011).
[30] J. Zylberg, E. Lerner, Y. Bar-Sinai, and E. Bouchbinder, Proc. Natl. Acad. Sci. USA 114, 14052 (2017).
[31] M. Tsamados, A. Tanguy, C. Goldenberg, and J.-L. Barrat, Phys. Rev. B 59, 811 (1999).
[32] A. Widmer-Cooper, H. Perry, P. Harrowell, and D. R. Reichman, Nat. Phys. 4, 711 (2008).
[33] M. L. Manning and A. J. Liu, Phys. Rev. Lett. 107, 108302 (2011).
[34] J. Zylberg, E. Lerner, Y. Bar-Sinai, and E. Bouchbinder, Proc. Natl. Acad. Sci. USA 114, 14052 (2017).
[35] M. Tsamados, A. Tanguy, C. Goldenberg, and J.-L. Barrat, Phys. Rev. B 59, 811 (1999).
[36] A. Widmer-Cooper, H. Perry, P. Harrowell, and D. R. Reichman, Nat. Phys. 4, 711 (2008).
[37] M. L. Manning and A. J. Liu, Phys. Rev. Lett. 107, 108302 (2011).