LIMON MEVASI TARKIBIDAGI BIOLOGIK FAOL MODDALARNING ANTIOKSIDANTLIK FAOLLIGINI ANIQLASH
OPREDelenie antioxidantnykh aktivnostey aktivnykh veshchestv v plodakh limona
DETERMINATION OF ANTIOXIDANTIC ACTIVITY OF BIOLOGICALLY ACTIVE SUBSTANCES IN LEMON FRUIT

Sharifa Akramovna Matamirova, Toshkent tibbiyot akademiyasi assistent
Nargiza Baxtiyorjon qizi Atakulova, Andijon davlat universiteti
Kimyo kafedrasi o'qituvchisi
Ibrohimjon Rahmonovich Asqarov, Andijon davlat universiteti
Kimyo kafedrasi professori, O'zbekiston TABOBAT Akademiyasi raisi

DOI: https://doi.org/10.55475/jcgtm/vol1.iss3.2022.68

Anotatsiya: Ushbu maqolada O'zbekistonda ekiladigan limonning Meyer navini mevasining ichki qismi va uning po'stlog'ning tarkibidagi biologik faol moddalarning kimyoviy tarkiblari, shifobaxshlik xususiyatlari, xamda xalq tabobatida qo'llanilishi va biologik faolligini aniqlash maqsadida adrenalining in vitro sharoitida autooksidlanish metodi yordamida limonning antioksidantlik faolligini aniqlandi.

Annotation: In this article, the antioxidant activity of lemon was determined using the method of autooxidation of adrenaline in vitro in order to determine the chemical composition, medicinal properties, as well as its use in folk medicine and biological activity of biologically active substances in the fruit of Meyer variety of lemon grown in Uzbekistan.

Kalit so'zlar: Limon po'stlog'i, biologik faol modda, efir moyi, kaliy, magniy, linolen.
Keywords: Lemon peel, biologically active substance, essential oil, potassium, magnesium, linolen.

Kirish. Limon po'stlog'ining foydali xususiyatlari qadim zamonlardan beri ma'lum bo'lib, ko'p yillar davomida yurak va ichak faoliyatini yaxshilashga yordam beradigan davolovchi vosita sifatida xalq tabobatida ishlatilmoqda. Limon po'stlog'i yurak faoliyati yaxshilishi mumkin.

Limon po'stlog'ning 80% suvdir. Qolgan 20% tarkibida ko'p miqdorda foydali minerallar, yog'lar va vitaminlar mavjud. Limon po'stlog'i tarkibida kaliy, kalsiy, magniy, fosfor, temir, mis, selen, natriy, rux kabi mikro-va makroelementlari, palmitin, olein, linol, linolen kabi yuqori yog' kislotalari va E, C, B-guruhi vitaminlari mavjudligi aniqlangan [1].
Limon mevasida 5,96 % va po’stlog’ida 18,43 % gacha askorbin kislotasi, shuningdek 9% gacha piridoksin bo’lishi aniqlangan. Limonning sersuv mevasida pektin miqdori juda yuqori bo’lsa, po’stlog’ida u 4 baravar yuqori.

Limon tarkibida kraxmal yo‘q, sersuv mevani 100 g maxsulotida - 0,4 g saxaroza mavjud. 100 g sersuv meva tarkibida purin asoslari miqdori kunlik normaning 6,7 % ini tashkil qiladi. Oksalat kislotasining miqdori 83 mg ni tashkil qiladi, bu uning iste’mol qilinadigan kunlik maksimal normasinini 20,8% ni tashkil qiladi [2].

Limon po’stlog’i organizm uchun vazn yo‘qotish, yurak-qon tomir tizimi va oshqozon-ichak tizimini yaxshilash, immuniteti mustahkamlash kabi foydali xususiyatlarga ega [1,2].

Limon po’stlog’i iste’mol qilinganda inson tanasi toksinlar va shlaklardan tozalanadi. Oshqozon va ichaklarda oziq-ovqat mahsulotlarini hazmat bo’lishi va so’rilishini tezlash tirmagan fermentlarni ishlab chiqarishini taminlaydi. Uning tarkibida tola miqdori yuqori bo’lgan uchun ich qotishini oldini oladi. Antiseptik ta’siriga ega bo’lib, osishtagonini bezovat qiladigan va yallig’lanishini keltirib chiqaradigan zararlari mikroblarni nobud qiladi. Bundan tashqari limon po’stlog’i tarkibida juda ko’p miqdorda S-vitamini mavjud, bu uning iste’mol qilinadigan kunlik tashkil qiladi. Kuzda va bahorda immunitet tizimini mustahkamlaydi. Limon po’stlog’idan tez-tez foydalanish organizmni shamollashdan saqlaydi [1].

Shuningdek limon tarkibida gesperedin rang beruvchi moddasi ham mavjud. Bu tabiiy flavanoid limon po’stlog’ida mavjud bo’lib juda ham shifobaxsh xususiyatga ega. Gesperedin diosmin bilan birgalikda kompleks ko’qilangan organizmga qon aylanishi yaxshilanadi. Bu kompleks ko’qilangan surunkali varikoz va surunkali gemorroy kasalliklarini davolashda yaxshi samara beradi.

Limon po’stlog’idagi efir moylari tarkibida limonen, sitral, β-pinene, sabinen, sitronellal va sitronellol kabi moddalar mavjud [1,3].
Yuqorida keltirilgan moddalar limonning shifobaxshlik xususiyatlarini belgilaydi. Limon qondagi xolesterin miqdorini kamaytirib, soch to‘kilishini oldini oladi. Jigar va o‘t qopini yaxshi ishlashiga yordam beradi. Virusli va yuqumli kasalliklarga qarshi kurashda to’laqonli leykotsitlarni shakllanishiga ko‘moklashadi.

Limonning hushta’mligi insonlarga zavq berishi bilan birga shifobahshlik ko‘pchilikka ma’lumdir. Xalq tabobatida limon qon bosimi ko’tarilganda, oshqozon-ichak kasalliklarida, podagra, ateroskleroz, o’pka sili, nafas yo’llarida shamollaganda, gepatit, bavosir, siydik yo’llaridagi toshlarni eritishda, tana haroratini tushirishda, bod kasalliklarini davolashda ishlatiladi [2,4].

Limon po’stolg’idagi kalsiy miqdorini askorbin kislotasi bilan deyarlari bir xil bo’lib, ular suyaklar va tishlarini mustahkamlashga yordam beradi. Limon po’stolg’i bilan tishlar artilsa ular oppoq tusga kiradi. Limon po’stolg’i osteoporoz, artroz va boshqa suyak kasalliklarni oldini olishda ishtirok etadi. Og’iz gigienasini yaxshilaydi, tish kasalliklarini profilaktika chorasi safetadi limon po’stolg’idan foydalaniladi [5,6].

Limon po’stolg’i tarkibida ayrim kimyoviy elementlarning mavjudligi qonda qand miqdorini kamayishiga olib keladi. 1-toifa va 2-toifa diabet bilan kasallangan odamlar uchun limon po’stolg’idan foydalanishga ruxsat beriladi. Bunday bemorlarga nonushdan keyin bir osh qoshiq miqdorida kuniga bir marta limon po’stolg’ini iste’mol qilish tavsiya etiladi [7].

Limon po’stolg’i tarkibidagi S-vitamini organizmdagi metabolik jarayonlarni tezlashtiradi. U organizmda saqlanadigan yog’larning parchalanishiga tezlashtiradi va zararli toksinlarni organizmdan olib qolishda xususiyatli vaqt davomida faoliyatini tashkil qiladi. Vazn yo‘qotish uchun tayyorlanadigan ko’plab ichimliklarda limon po’stolg’idan ajratib olinan mahsulotlar ishlatiladi [6,7].

Tajriba. Limonning L1 (Meyer mevasi), L2 (Meyer meva po’sti), L3 (O’zbekcha hosildor mevasi) va L4 (O’zbekcha hosildor mevasining po’sti) va ularning 70% li spirt xamda 96%li spirtlardagi namunalarini fitokimyoviy tekshiruv orqali antioksidantlik faolligini aniqlandi. Limonning antioksidantlik faolligi adrenalinning in vitro sharoitida toshlansin hisobga o‘tqinlanishi bilan aniqlandi. Limonning antioksidantlik faolligi adrenalinning in vitro sharoitida toshlansin hisobga o‘tqinlanishi bilan aniqlandi. Limonning antioksidantlik faolligi adrenalinning in vitro sharoitida toshlansin hisobga o‘tqinlanishi bilan aniqlandi.

Ishning bajarilishi: 0,2 M natriy-karbonat (Na₂CO₃-NaHCO₃) pH=10,65li buferidan 2,0 ml, adrenalin (epinefrin) gidroxloridning 0,18% eritmasidan 30 mkl olindi. 30 mkl antioksidant preparat (limon) solindi va 30 soniyadan 10 daqiqa oraligida 347 nm to‘lqin uzunligida spektrofotometrdagi (Cary 60 UV-Vis Agilet Technologies) tekshirildi. Tekshirilayotgan (eritmaning 1 ml dagi konsentratsiyasi 1 mg) miqdori standartsifatida ishlatiladi. Nazorat sifatida 0,2 M li 2,0 ml bufer va 0,18% 56 mkl (5,46 mM) adrenalin ishlatiladi.

Journal of Chemistry of Goods and Traditional Medicine, Vol. 1, Iss. 3
Antioksidant faolligini adrenalinning autooksidlanishini ingibrlanishiga ko’ra quyidagi formula bilan hisoblandi.

\[\text{AA}\% = \frac{D_1 - D_2 \times 100}{D_1} \]

Bunda,
- \(D_1\)-buferga qo’shilgan adrenalin gidrokslorid eritmasining optik zichligi;
- \(D_2\)-buferga qo’shilgan tadqiq qilinayotgan ekstraktning va adrenalin gidroksloridning optik zichligi.

1-jadval

Tekshirilayotgan preparatlar

№	Preparat	Tarkibi	Eruvchanligi	In vitro mkg/ml
1	L1	Meyer mevasi	Suv	100/250/500/750/1000
2	L2	Meyer meva po’sti	Suv	100/250/500/750/1000
3	L3	Meyer mevasi	Spirt 96%	100/250/500/750/1000
4	L4	Meyer meva po’sti	Spirt 96%	100/250/500/750/1000

2-jadval

Limon namunalarini antioksidantlik hususiyatlarini natijalar

№	Modda	Nazorat	Tajriba	AA%
1	L1 (10%) 100 mg/ml	0,23611	0,1970	16,56
2	L1 (25%) 250 mg/ml	0,27326	0,2247	17,77
3	L1 (50%) 500 mg/ml	0,29455	0,2384	19,06
4	L1 (75%) 750 mg/ml	0,36258	0,2918	19,52
5	L1 (100%) 1000 mg/ml	0,36806	0,2927	20,47
1	L2 (10%) 100 mg/ml	0,19179	0,1642	14,38
2	L2 (25%) 250 mg/ml	0,29216	0,2389	18,23
3	L2 (50%) 500 mg/ml	0,24811	0,2024	18,42
4	L2 (75%) 750 mg/ml	0,30005	0,2369	21,04
5	L2 (100%) 1000 mg/ml	0,40394	0,3012	25,43
1	L3 (10%) 100 mg/ml	0,25611	0,1970	23,08
2	L3 (25%) 250 mg/ml	0,28326	0,20801	26,56
3	L3 (50%) 500 mg/ml	0,29455	0,20841	29,24
4	L3 (75%) 750 mg/ml	0,32258	0,20818	35,46
5	L3 (100%) 1000 mg/ml	0,36258	0,21818	39,82
1	L4 (10%) 100 mg/ml	0,40394	0,3012	25,43
2	L4 (25%) 250 mg/ml	0,38251	0,3294	27,5
3	L4 (50%) 500 mg/ml	0,32258	0,20818	35,46
4	L4 (75%) 750 mg/ml	0,36258	0,21818	39,82
5	L4 (100%) 1000 mg/ml	0,40394	0,23212	40,54
1	Gliklazid -(10%) 100 mg/ml	0,02782	0,0235	2,0
2	Gliklazid -(25%) 250 mg/ml	0,03895	0,0329	2,8
	Drug	Concentration	Antioxidant Activity	
---	---------------------	---------------	----------------------	
3	Glitazone (50%) 500 mg/ml	0.06955	5.0	
4	Glitazone (75%) 750 mg/ml	0.11823	8.5	
5	Glitazone (100%) 1000 mg/ml	0.13909	10.0	
1	Kversetin (10%) 100 mg/ml	0.11128	8.0	
2	Kversetin (25%) 250 mg/ml	0.18778	13.5	
3	Kversetin (50%) 500 mg/ml	0.27819	20.0	
4	Kversetin (75%) 750 mg/ml	0.38251	27.5	
5	Kversetin (100%) 1000 mg/ml	0.67247	34.7	

Adrenalining *in vitro* sharoitida autooksidlanish metodi bilan preparatlarning antioksidantlik faolligini aniqlandi. Tadqiq qilinadigan preparatlarning fitokimyoviy tekshiruvlari orqali antioksidantlik faolligi baholandi.

Preparatlarning antioksidantlik faolligi adrenalining *in vitro* sharoitida autooksidlanish reaksiyasining ingibitirlanishi bilan aniqlanganda namunalar kislorodning erkin shaklini hosil bo’lishiga to’sqinlik qildi. Barcha olingan namunalarni standart antioksidant kversetin hamda gliklazid antioksidantlari bilan solishitirdi. Olingan natijalarda preparatlarning antioksidantlik hususiyatlari mavjudligini ko’rsatdi.

1-rasm. Namunalarning antioksidantlik hususiyatlarining konsentratsiyaga bog‘liqligi

Xulosalar

Limoning O’zbekistonda ekiladigan meyer navini mevasining ichki qismi va po’stloq qismlari tarkibidagi biologik faol moddalar adabiyotlardan taxliil qilindi va buni aniqlash maqsadida adrenalining *in vitro* sharoitida autooksidlanish metodi yordamida limoning antioksidantlik faolligini aniqlandi. Bunda limoning meva ichki qismidan ko’ra uning po’st qismida antioksidantlik xususiyatlari yuqoriroq ekanlari aniqlandi. Bundan tashqari limoning meva ichki qismidan ko’ra uning po’st qismini suvdagi ekstraktliridan ko’ra 70% li va 96% spirtdagiy eritmasida antioksidantlik xossalari yuqori ekanlari aniqlandi.

Limoning kimyoviy tarkibi va tabiiy dorivor xususiyatlari, limoning biologik va ozuqaviy xususiyatlari, limondan olinadigan ozuqaviy mahsulotlar va kimyoviy tarkibi, limoning o’ziga xos komponentlari va xalq tabobatida qo’llanilish bo’yicha ilmiy adabiyotlar keng taxliil qilindi. Natijada limon po’stloq’i asosida oziq-ovqat qo’shilmasi yaratish borasida izlanishlar olib borish maqsadga muvofiq ekanlari aniqlandi.
Введение. Полезные свойства цедры лимона известны с древних времен и уже много лет используются в народной медицине как целебное средство, способствующее улучшению работы сердца и кишечника. Цедра лимона может улучшить работу сердца.

Лимонная цедра на 80% состоит из воды. Остальные 20% содержат большое количество полезных минералов, жиров и витаминов. Цедра лимона содержит микро- и макроэлементы, такие как калий, кальций, магний, фосфор, железо, медь, селен, натрий, цинк, высшие жирные кислоты, такие как пальмитиновая, олеиновая, линолевая, линоленовая и витамины E, C, группы В [1].

В плодах лимона обнаружено 5,96 % аскорбиновой кислоты и 18,43 % кожуры, а также до 9 % пиридоксина. Хотя количество пектина в сочных плодах лимона очень велико, в кожуре его в 4 раза больше.

Лимон не содержит крахмала, в 100 г сочного плода содержится 0,4 г сахара. Содержание пуриновых оснований в 100 г сочных плодов составляет 6,7% от суточной нормы. Количество щавелевой кислоты составляет 83 мг, что составляет 20,8% от ее максимальной суточной нормы [2].

Лимонная цедра обладает полезными свойствами для организма, такими как похудение, оздоровление сердечно-сосудистой системы и желудочно-кишечного тракта, укрепление иммунитета [1,2].

При употреблении цедры лимона организм человека очищается от шлаков и токсинов. Обеспечивает выработку ферментов, ускоряющих переваривание и всасывание пищи в желудке и кишечнике. Предотвращает запоры благодаря высокому содержанию клетчатки. Обладает антисептическим действием и убивает вредные микрообы, раздражающие желудок и вызывающие воспаление. Кроме того, высокое содержание витамина С в цедре лимона помогает избавиться от простуды. Укрепляет иммунитет осенью и весной. Частое употребление цедры лимона защищает организм от простудных заболеваний [1].

Лимон также содержит красящее вещество гесперидин. Этот природный флаваноид присутствует в кожуре лимона и обладает очень целями свойствами. При применении гесперидина в сочетании с диосмином улучшается кровообращение в организме. Использование этого комплекса хорошо эффективно при лечении хронического вариоза и хронического геморроя.

Эфирные масла в кожуре лимона содержат такие вещества, как лимон, цитраль, β-пинен, сабин, цитронеллаль и цитронеллол [1,3].

Гесперидин

Диосмин
Цедра лимона

Вышеуказанные вещества определяют целебные свойства лимона. Лимон снижает уровень холестерина в крови и предотвращает выпадение волос. Помогает печени и желчному пузырю хорошо работать. Способствует образованию полноценных лейкоцитов в борьбе с вирусными и инфекционными заболеваниями.

Общеизвестно, что аромат лимона не только радует людей, но и исцеляет. В народной медицине лимон применяют при повышенном артериальном давлении, заболеваниях желудочно-кишечного тракта, подагре, атеросклерозе, туберкулезе легких, респираторных инфекциях, гепатите, геморрое, камнях мочевыводящих путей, понижении температуры тела, лечении телесных заболеваний [2,4].

Количество кальция в кожуре лимона почти такое же, как и аскорбиновой кислоты, которая способствует укреплению костей и зубов. Когда зубы чистят цедрой лимона, они становятся белыми. Цедра лимона участвует в профилактике остеопороза, артрита, остеоартрита и других заболеваний костей. Улучшает гигиену полости рта, убивает вредоносные бактерии, вызывающие заболевания зубов. Лечит механические повреждения, такие как трещины, царапины, мелкие ранки на слизистой оболочке полости рта. Цедру лимона применяют в качестве профилактического средства при развитии стоматита, гингивита, пародонтита и других заболеваний [5,6].

Наличие некоторых химических элементов в составе цедры лимона приводит к снижению уровня сахара в крови. Цедру лимона разрешено употреблять людям с сахарным диабетом 1 и 2 типа. Таким пациентам рекомендуется употреблять по одной столовой ложке цедры лимона один раз в день после завтрака [7].

Витамин С в цедре лимона ускоряет обменные процессы в организме. Ускоряет расщепление накопленных в организме жиров и обеспечивает выведение вредных токсинов из организма. Во многих напитках, используемых для похудения, используются продукты, извлеченные из цедры лимона [6,7].

Часть опыта. По фитохимической активности определяли антиоксидантную активность лимонов L1 (плод Мейера), L2 (кожа плода Мейера), L3 (кожа узбекского плода) и L4 (кожура узбекского плода) и их образцов в 70% спирте и 96% спирте. Антиоксидантная активность лимона определяется ингибированием реакции автоокисления адреналина in vitro и препятствует образованию свободной формы кислорода. Метод основан на ингибировании реакции автоокисления адреналина, выраженной в процентах (%), за счет образования и автоокисления адреналина в активной форме кислорода во времени in vitro.
Выполнение работы: получено 2,0 мл 0,2 М карбонатно-натриевого (Na₂CO₃-NaHCO₃) буфера с pH = 10,65, 56 мл 0,18% раствора адреналина (эпинефрина) гидрохлорида. Добавляли 30 мл антиоксидантного препарата (лимон) и тестировали на спектрофотометре с длиной волны 347 нм (Cary 60 UV-Vis Agilet Technologies) с интервалами от 30 секунд до 10 минут. Тестируемое количество (концентрация 1 мл раствора в 1 мл) использовали в качестве стандарта. В качестве контроля использовали 2,0 мл 0,2 М буфера и 0,18% 56 мл (5,46 мМ) адреналина.

Антиоксидантную активность рассчитывали по следующей формуле ингибитирования автоокисления адреналина.

$$AA\% = \frac{D1 - D2 \times 100}{D1}$$

В таком случае,

Оптическая плотность раствора адреналина гидрохлорида, добавленного к D1-буферу;

Оптическая плотность исследуемого экстракта и адреналина гидрохлорида, добавленного к D2-буферу.

Наркотики проходят испытания

№	Подготовка	Сочинение	Растворимость	In vitro мкг/мл
1	L1	Плод Мейера	Вода	100/250/500/750/1000
2	L2	Кожура фруктов Мейера	Вода	100/250/500/750/1000
3	L3	Плод Мейера	Алкоголь 96%	100/250/500/750/1000
4	L4	Кожура фруктов Мейера	Алкоголь 96%	100/250/500/750/1000

Результаты антиоксидантных свойств образцов лимона

№	Статья	Контроль	Опыт	AA %
1	L1 (10%) 100 мг/мл	0,23611	0,1970	16,56
2	L1 (25%) 250 мг/мл	0,27326	0,2247	17,77
3	L1 (50%) 500 мг/мл	0,29455	0,2384	19,06
4	L1 (75%) 750 мг/мл	0,36258	0,2918	19,52
5	L1 (100%) 1000 мг/мл	0,36806	0,2927	20,47
1	L2 (10%) 100 мг/мл	0,19179	0,1642	14,38
2	L2 (25%) 250 мг/мл	0,29216	0,2389	18,23
3	L2 (50%) 500 мг/мл	0,24811	0,2024	18,42
4	L2 (75%) 750 мг/мл	0,30005	0,2369	21,04
5	L2 (100%) 1000 мг/мл	0,40394	0,3012	25,43
1	L3 (10%) 100 мг/мл	0,25611	0,1970	23,08
2	L3 (25%) 250 мг/мл	0,28326	0,20801	26,56
3	L3 (50%) 500 мг/мл	0,29455	0,20841	29,24
4	L3 (75%) 750 мг/мл	0,32258	0,20818	35,46
5	L3 (100%) 1000 мг/мл	0,36258	0,21818	39,82
1	L4 (10%) 100 мг/мл	0,40394	0,3012	25,43
2	L4 (25%) 250 мг/мл	0,38251	0,3294	27,5
Антиоксидантную активность препаратов определяли методом аутоокисления адреналина in vitro. Антиоксидантную активность оценивали с помощью фитохимических исследований исследуемых препаратов.

Когда антиоксидантную активность препаратов определяли по ингибированию реакции аутоокисления адреналина in vitro, образцы ингибировали образование свободной формы кислорода. Все образцы сравнивали со стандартными антиоксидантами кверцетином и гликлазидными антиоксидантами. Результаты показали, что препараты обладают антиоксидантными свойствами.

Фигура 1. Концентрационная зависимость антиоксидантных свойств образцов

Выводы

Биологически активные вещества во внутренней части и кожуре лимона сорта Мейер, выращенного в Узбекистане, были проанализированы по литературным данным, и для определения этого была определена антиоксидантная активность лимона с использованием метода аутоокисления адреналина in vitro. Было обнаружено, что лимоны обладают более высокими антиоксидантными свойствами в кожуре, чем в плодах. Также установлено, что лимон обладает более высокими антиоксидантными свойствами в растворе 70% и 96% спирта, чем водные экстракты его кожуры изнутри плода.

Химический состав и природные лечебные свойства лимонов, биологические и пищевые свойства лимонов, питательные вещества и химический состав лимонов,
Introduction. The beneficial properties of lemon peel have been known since ancient times and have been used in folk medicine for many years as a healing tool to help improve heart and intestinal function. Lemon peel can improve heart function.

80% of lemon peel is water. The remaining 20% contains large amounts of beneficial minerals, fats and vitamins. Lemon peel contains micro- and macronutrients such as potassium, calcium, magnesium, phosphorus, iron, copper, selenium, sodium, zinc, high fatty acids such as palmitic, oleic, linoleic, linolenic and vitamins E, C, B group [1].

Lemon fruit was found to contain 5.96% ascorbic acid and 18.43% peel, as well as up to 9% pyridoxine. Although the amount of pectin in the juicy fruit of the lemon is very high, in the peel it is 4 times higher.

Lemon does not contain starch, 100 g of juicy fruit contains 0.4 g of sucrose. The content of purine bases in 100 g of juicy fruit is 6.7% of the daily norm. The amount of oxalic acid is 83 mg, which is 20.8% of its maximum daily intake [2].

Lemon peel has beneficial properties for the body, such as weight loss, improvement of the cardiovascular system and gastrointestinal tract, strengthening the immune system [1,2].

When lemon peel is consumed, the human body is cleansed of toxins. It provides the production of enzymes that accelerate the digestion and absorption of food in the stomach and intestines. It prevents constipation due to its high fiber content. It has an antiseptic effect and kills harmful microbes that irritate the stomach and cause inflammation. In addition, the high content of vitamin C in lemon peel helps to get rid of colds. It strengthens the immune system in autumn and spring. Frequent use of lemon peel protects the body from colds [1].

Lemon also contains the coloring substance gesperedine. This natural flavanoid is present in lemon peel and has very healing properties. When gesperidine is used in combination with diosmin, blood circulation in the body is improved. The use of this complex is well effective in the treatment of chronic varicose veins and chronic hemorrhoids.

Essential oils in lemon peels contain substances such as lemon, citral, β-pinene, sabine, citronellal and citronellol [1,3].
The above substances determine the healing properties of lemon. Lemon lowers blood cholesterol levels and prevents hair loss. Helps the liver and gallbladder work well. Promotes the formation of complete leukocytes in the fight against viral and infectious diseases.

It is well known that the aroma of lemon is not only pleasing to people but also healing. In folk medicine, lemon is used in high blood pressure, gastrointestinal diseases, gout, atherosclerosis, pulmonary tuberculosis, respiratory infections, hepatitis, hemorrhoids, urinary tract stones, lowering body temperature, treatment of bodily diseases [2,4].

The amount of calcium in lemon peel is almost the same as ascorbic acid, which helps strengthen bones and teeth. When teeth are brushed with lemon peel, they turn white. Lemon peel is involved in the prevention of osteoporosis, arthritis, osteoarthritis and other bone diseases. Improves oral hygiene, kills harmful bacteria that cause dental disease. Treats mechanical injuries such as cracks, scratches, small wounds in the mucous membrane of the oral cavity. Lemon peel is used as a prophylactic measure in the development of stomatitis, gingivitis, periodontitis and other diseases [5,6].

The presence of certain chemical elements in the composition of lemon peel leads to a decrease in blood sugar. Lemon peel is allowed to be used for people with type 1 and type 2 diabetes. Such patients are recommended to consume one tablespoon of lemon peel once a day after breakfast [7].

Vitamin C in lemon peel accelerates metabolic processes in the body. It accelerates the breakdown of stored fats in the body and ensures the elimination of harmful toxins from the body. Many beverages used for weight loss use products extracted from lemon peel [6,7].

Part of the experience. Antioxidant activity of lemons L1 (Meyer’s fruit), L2 (Meyer’s fruit peel), L3 (Uzbek fruit peel) and L4 (Uzbek fruit peel) and their samples in 70% alcohol and 96% alcohol was determined by phytochemical activity. The antioxidant activity of lemon is determined by the inhibition of the autooxidation reaction of adrenaline in vitro and prevents the formation of the free form of oxygen. The method is based on the inhibition of the autoxidation reaction of adrenaline, expressed in percent (%) due to the formation and autooxidation of adrenaline in the active form of oxygen over time in vitro.

Execution of work: 2.0 ml of 0.2 M sodium carbonate (Na₂CO₃-NaHCO₃) buffer with pH = 10.65, 56 μl of 0.18% solution of adrenaline (epinephrine) hydrochloride were obtained. 30 μl of antioxidant preparation (lemon) was added and tested on a 347 nm wavelength spectrophotometer (Cary 60 UV-Vis Agilet Technologies) at intervals of 30 seconds to 10 minutes. The amount tested
(concentration 1 ml of solution in 1 ml) was used as standard. 2.0 ml of 0.2 M buffer and 0.18% 56 μl (5.46 mM) of adrenaline were used as controls.

Antioxidant activity was calculated by the following formula for inhibiting the autooxidation of adrenaline.

\[AA\% = \frac{D_1 - D_2 \times 100}{D_1} \]

In this case,

- Optical density of adrenaline hydrochloride solution added to D1 buffer;
- Optical density of the test extract and epinephrine hydrochloride added to D2 buffer.

Table 1

№	Preparation	Composition	Solubility	In vitro mg/kg/ml
1	L1	Meyer’s fruit	Water	100/250/500/750/1000
2	L2	Meyer fruit peel	Water	100/250/500/750/1000
3	L3	Meyer’s fruit	Alcohol 96%	100/250/500/750/1000
4	L4	Meyer fruit peel	Alcohol 96%	100/250/500/750/1000

№	Article	Control	Experience	AA%
1	L1 (10%) 100 mg/ml	0.23611	0.1970	16.56
2	L1 (25%) 250 mg/ml	0.27326	0.2247	17.77
3	L1 (50%) 500 mg/ml	0.29455	0.2384	19.06
4	L1 (75%) 750 mg/ml	0.36258	0.2918	19.52
5	L1 (100%) 1000 mg/ml	0.36806	0.2927	20.47

№	Article	Control	Experience	AA%
1	L2 (10%) 100 mg/ml	0.19179	0.1642	14.38
2	L2 (25%) 250 mg/ml	0.29216	0.2389	18.23
3	L2 (50%) 500 mg/ml	0.24811	0.2024	18.42
4	L2 (75%) 750 mg/ml	0.30005	0.2369	21.04
5	L2 (100%) 1000 mg/ml	0.40394	0.3012	25.43

№	Article	Control	Experience	AA%
1	L3 (10%) 100 mg/ml	0.25611	0.1970	23.08
2	L3 (25%) 250 mg/ml	0.28326	0.20801	26.56
3	L3 (50%) 500 mg/ml	0.29455	0.20841	29.24
4	L3 (75%) 750 mg/ml	0.32258	0.20818	35.46
5	L3 (100%) 1000 mg/ml	0.36258	0.21818	39.82

№	Article	Control	Experience	AA%
1	L4 (10%) 100 mg/ml	0.40394	0.3012	25.43
2	L4 (25%) 250 mg/ml	0.38251	0.3294	27.5
3	L4 (50%) 500 mg/ml	0.32258	0.20818	35.46
4	L4 (75%) 750 mg/ml	0.36258	0.21818	39.82
5	L4 (100%) 1000 mg/ml	0.40394	0.23212	40.54

№	Article	Control	Experience	AA%
1	Gliclazide -(10%) 100 mg/ml	0.02782	0.0235	2.0
2	Gliclazide -(25%) 250 mg/ml	0.03895	0.0329	2.8
The antioxidant activity of drugs was determined by the method of autooxidation of adrenaline in vitro. Antioxidant activity was evaluated by phytochemical studies of the studied drugs.

When the antioxidant activity of the drugs was determined by the inhibition of the autooxidation reaction of adrenaline in vitro, the samples inhibited the formation of the free form of oxygen. All samples were compared with standard antioxidant quercetin and glyclazide antioxidants. The results showed that the drugs have antioxidant properties.

The biologically active substances in the inner part and peel of the Meyer variety of lemon grown in Uzbekistan were analyzed from the literature and the antioxidant activity of lemon was determined using the method of autooxidation of adrenaline in vitro. It was found that lemons have higher antioxidant properties in the skin than in the fruit. It was also found that lemon has a higher antioxidant properties in a solution of 70% and 96% alcohol than aqueous extracts of its peel from the inside of the fruit.

The chemical composition and natural medicinal properties of lemons, biological and nutritional properties of lemons, nutrients and chemical composition of lemons, specific components of lemons and their use in folk medicine have been extensively analyzed in the scientific literature. As a result, it was found appropriate to conduct research on the creation of food additives based on lemon peel.

Conclusions

The concentration dependence of the antioxidant properties of the samples is shown in Figure 1.

References

1. Аскаров И.Р. “Табобат комуси”. – Ташкент “Мумтоз сўз”. – 2019 й. – 595 б.
2. Аскаров И.Р. “Сирли табобат”. – Тошкент “Фан ва технологиялар нашриёт-матбаа уйи”. – 2021. – 1084 б.
3. Савельева Ю. Лечение лимоном. – Москва. – Изд-во. «Рипол классик», 2006. – С. 64. 40.
4. Садыкова Ф.В. Опыт выращивания лимонов в Республике Башкортостан. Уфа: Изд-во. «Дизайн – Полиграф – Сервис», – 2009. – С. 62.
5. Сулейманова В.Н. Эколого-биологическая характеристика ценопопуляций maianthemum bifolium (L.) F.W.Schmidt в условиях Южной тайги и подзоны хвойно-широколиственных лесов (на примере кировской области и республики Марий Эл) // Автореферат дисс. … к.б.н. – Пермь, 2007. – С. 2-14.
6. Султонова М.М. Вариацион статистика // «Ўқитувчи» нашриёти. – Тошкент, 1977. – 216 б. 46. Тахтаджян А.Л. Жизнь растений. Т.5. – Москва. – Изд-во. «Просвещение», 1981. – С.
7. Усмонов И. Лимон: «Шарқ табобати» хазинасидан / «AL-FABA SERVIS» МЧЖ босмахонаси. – Тошкент, 2009. 3-56 б.

Author Biographies
Sharifa A. Matamirova, Tashkent Medical Academy assistant
Nargiza B. Atakulova, Andijan State University
Teacher of the Department of Chemistry
Ibragim R. Askarov, Andijan State University
Professor of the Department of Chemistry, Honored Inventor of Uzbekistan, Chairman of the TABOBAT Academy of Uzbekistan