Warped QCD without the Strong CP Problem

Akito Fukunaga and Izawa K.-I.

Department of Physics, University of Tokyo,
Tokyo 113-0033, Japan

Abstract

QCD in a five-dimensional sliced AdS bulk with chiral extra-quarks on the boundaries is generically free from the strong CP problem. Accidental axial symmetry is naturally present except for suppressed breaking interactions, which plays a role of the Peccei-Quinn symmetry to make the strong CP phase sufficiently small. Breaking suppression and enhancement due to AdS warping are considered in addition to naive boundary separation effects.
1 Introduction

The standard model of elementary particles as an effective theory including gravity has two apparent fine-tuning problems which are hard to be undertaken directly by additional (gauge) symmetries: the cosmological constant and the strong CP problems. The presence of extra dimensions might serve as an alternative to symmetry which naturally affects such fine-tuned parameters.

In this paper, following a previous one, we proceed to consider QCD in a five-dimensional sliced AdS bulk with chiral extra-quarks on the boundaries and confirm that it is generically free from the strong CP problem. We have adopted the AdS bulk as a natural curved spacetime background without the restriction to bulk flatness.

For definiteness, let us suppose that there is a pair of extra-quarks in addition to the standard-model quarks: a left-handed colored fermion ψ_L and a right-handed one ψ_R. We assume an extra-dimensional space which separates them from each other along the extra dimension. If the distance between them is sufficiently large, the theory possesses an axial $U(1)_A$ symmetry

$$\psi_L \rightarrow e^{i\alpha} \psi_L, \quad \psi_R \rightarrow e^{-i\alpha} \psi_R$$

approximately, whose breaking is suppressed at a fundamental scale. This accidental global symmetry, which is actually broken by a QCD anomaly, naturally plays a role of the Peccei-Quinn symmetry, making the effective strong CP phase to be sufficiently small.

The point is that the presence of such an approximate symmetry is not an artificial requirement, but a natural result stemming from the higher-dimensional geometry, which might well be stable even against possible quantum gravitational corrections.

2 Bulk color gauge theory

Let us consider the four-dimensional Minkowski spacetime M_4 along with one-dimensional extra-space S^1, whose coordinate y extends from $-l$ to l (that is, two points at $y = l$ and $y = -l$).
\(y = -l \) are identified. The SU(3)_C gauge field is assumed to propagate on the whole spacetime \(M_4 \times S^1 \) equipped with the AdS-slice metric

\[
ds^2 = e^{-2\sigma} \eta_{\mu\nu} dx^\mu dx^\nu - dy^2; \quad \sigma = k|y|,
\]

where \(\mu, \nu = 0, \ldots, 3 \) and \(k \) denotes a positive or negative constant which determines the AdS curvature.

The action of the five-dimensional gauge field is given by

\[
S_A = \int d^4x \int_{-l}^{l} dy e^{-4\sigma} \frac{M_*}{4g^2(y)} \text{tr}(F_{MN}F^{MN}) + \int h(y) \text{tr}(AF^2 - \frac{1}{2} A^3 F + \frac{1}{10} A^5) \tag{3}
\]

where \(F_{MN} = \partial_M A_N - \partial_N A_M + [A_M, A_N] \) \((M, N = 0, \ldots, 4; x^4 = y)\), \(A = A_M dx^M \), and \(F = dA + A^2 = (1/2) F_{MN} dx^M dx^N \). Here, \(M_* \) is supposed to be a cutoff scale in the higher-dimensional theory and \(g(y) \) and \(h(y) \) are gauge and Chern-Simons coupling functions, respectively.

Kaluza-Klein reduction to the four-dimensional spacetime, however, yields a massless color-octet scalar which is undesirable in the low-energy spectrum. Hence we consider an \(S^1/Z_2 \) orbifold instead of the \(S^1 \). The five-dimensional gauge field \(A_M(x, y) \) is now under a constraint

\[
A_\mu(x, y) = A_\mu(x, -y), \quad A_4(x, y) = -A_4(x, -y), \tag{4}
\]

which eliminates the scalar zero mode and only yields a vector field at low energies.

In order to define the theory on the orbifold consistently, the action Eq.(3) on the \(S^1 \) should be invariant under the \(Z_2 \) transformation. This invariance is achieved as long as \(g(y) = g(-y) \) and \(h(y) = -h(-y) \). Note that the background metric Eq.(2) itself has been chosen to be invariant under the \(Z_2 \) transformation. We take the \(g(y) \) to be \(y \)-independent and the \(h(y) \) as

\[
h(y) = c \frac{y}{|y|}, \tag{5}
\]

where \(c \) is a constant to be determined in the next section.\(^3\) The gauge symmetries are

\(^3\)From a five-dimensional perspective, eigenstates corresponding to massive Kaluza-Klein modes have energies larger than \(l^{-1} \), which are to be integrated out in the reduction process. Note that their four-dimensional apparent masses depend on the location of each mode in the extra dimension and could appear as a modified CFT on a boundary \([6]\). We assume that the effects of the modified CFT to the four-dimensional QCD be phenomenologically viable, though they are not fully understood due to their nonperturbative nature (see also the localization arguments cited in the Discussion).
left unbroken in the bulk: the infinitesimal $\text{SU}(3)_C$ gauge transformation parameter is restricted to satisfy $\varepsilon(x, y) = \varepsilon(x, -y)$.

3 Boundary extra-quarks

There are two fixed points in the S^1/Z_2 orbifold: $y = 0$ and $y = l$. Let us put chiral extra-quarks on the fixed-point boundaries: a left-handed extra-quark ψ_L at $y = 0$ and a right-handed one ψ_R at $y = l$. The action of the split extra-quarks contains

$$S_\psi = \int_{y=0} d^4x \bar{\psi}_L i\not{D} \psi_L + \int_{y=l} d^4x e^{-3\sigma} \bar{\psi}_R i\not{D} \psi_R$$

$$= \int_{y=0} d^4x \bar{\psi}_L i\not{D} \psi_L + \int_{y=l} d^4x \bar{\tilde{\psi}}_R i\not{D} \tilde{\psi}_R,$$

where we have defined the canonically normalized field

$$\tilde{\psi}_R = e^{-\frac{3}{2}k} \psi_R.$$ (7)

Under an infinitesimal gauge transformation, this fermionic sector provides a gauge anomaly

$$\delta S_{\text{eff}} = \frac{i}{24\pi^2} \int_{y=0} \text{tr} \left(\varepsilon d(AdA + \frac{1}{2} A^3) \right) - \frac{i}{24\pi^2} \int_{y=l} \text{tr} \left(\varepsilon d(AdA + \frac{1}{2} A^3) \right)$$

due to its chirality, though the fermion content is vector-like from a four-dimensional perspective.

On the other hand, the bulk action yields

$$\delta S_A = \int h(y) \text{tr} \left((d\varepsilon) d(AdA + \frac{1}{2} A^3) \right)$$

$$= - \int (dh(y)) \text{tr} \left(\varepsilon d(AdA + \frac{1}{2} A^3) \right)$$

under the gauge transformation. Gauge anomaly cancellation with the fermionic sector implies

$$c = \frac{i}{48\pi^2}.$$ (10)

4 The standard-model quarks (and leptons) are assumed to be on the fixed-point boundary at $y = 0$. We also include QCD θ and (possibly dominant) Yang-Mills terms implicitly on the boundary 3-brane.

5 In fact, the extra-quarks may be directly connected through superheavy modes (besides gauge interactions) with masses of order $m (\sim M_\ast)$ in the higher dimensions. This effect is exponentially suppressed when ml is large enough, which we estimate in the Appendix.
4 Anomalous quasi-symmetry

The gauge-invariant theory is given by the total action $S = S_A + S_\psi$. Then, there is an approximate axial $U(1)_A$ symmetry given by Eq.(1).

4.1 Spontaneous breaking

The extra-quarks should be decoupled from the low-energy spectrum to escape from detection. Thus, we introduce hypercolor gauge interactions in the bulk to confine the extra-quarks at high energies. Such new gauge interactions would simultaneously induce a chiral condensate $\langle \psi_L \bar{\psi}_R \rangle$ to break down the axial $U(1)_A$ symmetry and provide a corresponding Nambu-Goldstone (NG) boson called an axion [7]. Nonvanishing anomaly $U(1)_A[SU(3)_C]^2$ induces a potential of the axion field.

We adopt $SU(3)_H$ as the hypercolor gauge group and assume that the chiral fermions on each boundary transform as $\psi_L(3, 3^*)$ and $\psi_R(3, 3^*)$ under the $SU(3)_C \times SU(3)_H$ gauge group. The $SU(3)_H$ interaction is supposed to be confining at an intermediate scale $F_a (< M_*)$ and develop a chiral condensate $\langle \psi_L \bar{\psi}_R \rangle \simeq F_a^3$. Note that the gauge anomalies due to the fermionic sector can be canceled by bulk Chern-Simons terms in a similar way as in the previous section.

$SU(3)_H$-charged particles are confined and only massless NG bosons are left at low energies. If one switches off the $SU(3)_C$ gauge interaction, there is the $U(3)_L \times U(3)_R$ flavor symmetry that acts on ψ_L and ψ_R^\dagger. The flavor symmetry $U(3)_L \times U(3)_R$ is spontaneously broken down to a diagonal $U(3)$ symmetry. However, there is not the $U(3)_L \times U(3)_R$ symmetry actually, since a diagonal SU(3) is gauged as the $SU(3)_C$ gauge group. Thus, the NG bosons due to such chiral symmetry breaking transform as $3 \times 3^* = \text{adj.} + 1$ under the $SU(3)_C$. Moreover, the adjoint-part of the NG bosons acquire masses due to the $SU(3)_C$ radiative corrections. What remains massless is only the color-singlet NG boson, which corresponds to the axial $U(1)_A$ symmetry in Eq.(1).

The axial symmetry discussed above, however, also has $U(1)_A[SU(3)_H]^2$ anomaly. Therefore, the color-singlet NG boson obtains a large mass and it cannot play a role.

6Extensions to larger gauge groups and fermion representations are straightforward, which are touched upon at the end of this section.
of the axion for the color SU(3)$_C$. Hence we further introduce an additional pair of chiral fermions on each boundary: $\chi_L(1, 3^*)$ at $y = 0$ and $\chi_R(1, 3^*)$ at $y = l$. The global symmetry is now U(4)$_L \times$ U(4)$_R$ if the SU(3)$_C$ gauge interaction is neglected. The strong dynamics of the SU(3)$_H$ gauge group lead to chiral symmetry breakdown

$$\langle \psi_L \bar{\psi}^R \rangle \simeq F_3^3$$

and

$$\langle \chi_L \bar{\chi}^R \rangle \simeq F_3^3.$$ Two color-singlets would remain massless if it were not for anomalies. In this case, one of them does play a role of the axion that makes the effective strong CP phase to be sufficiently small.

4.2 Explicit breaking

The accidental chiral symmetry discussed above is broken by effective operators of the chiral fermions. When the condensation

$$\langle \psi_L \psi^R \rangle \simeq e^{2kl} F_3^3$$

is less than M_3^3, dominant breaking is expected to come from the lowest dimension operators, which we concentrate on in this subsection.

The operators involving both ψ_L or χ_L and ψ_R or χ_R may be highly suppressed. In view of an example of the mediator interactions investigated in the Appendix, the breaking term is estimated as

$$\frac{e^{-2kl}}{e^{ml} - e^{-ml}} M_s (\psi_L \bar{\psi}^R + \psi_R \bar{\psi}^L),$$

where m denotes the mediator mass. This results in an axion potential term

$$V_{\text{bulk}}(a) \simeq \frac{e^{-\frac{1}{2}kl} M_s F_3^3}{e^{ml} - e^{-ml}} f_{\text{bulk}}(a/F_a),$$

where $f_{\text{bulk}}(a/F_a)$ is a function of order unity, whose minimum is generically different from that of the potential induced exclusively by the QCD effects. This finally yields an effective QCD θ parameter of order

$$\theta_{\text{bulk}} \simeq \frac{e^{-\frac{1}{2}kl} M_s F_3^3}{(e^{ml} - e^{-ml}) \Lambda_{QCD}^4},$$

in the case with sufficient suppression.

On the other hand, the operators involving either ψ_L and χ_L or ψ_R and χ_R are expected to be suppressed only by powers of $1/M_s$. Such operators also induce an additional potential of the axion, though this correction does not necessarily spoil the Peccei-Quinn
mechanism: Axial symmetry breaking operators on each boundary may have coupling coefficients of order one. Such operators with the lowest mass dimension are given by
\[
\int_{y=0} d^4x \frac{1}{M_*^5}(\psi_L)^3(\psi_L)^3 + \int_{y=l} d^4x e^{-4\phi} \frac{1}{M_*^5}(\psi_R^\dagger)^3(\psi_R^\dagger)^3 + \text{h.c.} \quad (14)
\]
Integration of heavy particles with masses of order \(F_a \) due to the SU(3)\(_H\) interaction induces an additional potential of the axion field \(a \) as
\[
V_\partial(a) \simeq \frac{F_a^{14}}{(e^{-\frac{1}{2}kl}M_*)10^4} f_\partial(a/F_a). \quad (15)
\]
The resulting shift in the QCD \(\theta \) parameter is expected to be of order
\[
\theta_\partial \simeq \frac{F_a^{14}}{(e^{-\frac{1}{2}kl}M_*)10^4 \Lambda_{\text{QCD}}^4} \quad (16)
\]
again in the case with sufficient suppression. We note that the axial symmetry breaking operators on each boundary can be made to have higher mass dimensions if we adopt a larger hypercolor gauge group instead of the SU(3)\(_H\).

Combining with the expression for the gravitational scale \(M_G \simeq 10^{18}\text{GeV} \) in four dimensions
\[
M_G^2 = \frac{M^3}{k} (1 - e^{-2kl}) \quad (17)
\]
given by the one \(M \ (\sim M_*) \) in five dimensions \(\text{[4]} \), the above results restrict possible values of the parameters to circumvent the strong CP problem. For example, \(\theta_\partial < 10^{-9} \) is realized for \(|kl| \lesssim 15 \) when \(F_a \simeq 10^{10}\text{GeV} \) and \(M_*^2 \simeq 2lM^3 \).

5 Discussion

When \(F_a \) is larger than \(e^{-\frac{1}{2}kl}M_* \), the analysis based on an operator power expansion (as in the previous section) does not seem reliable. However, even in such a case, the framework of effective theory implies that the potential energy coupled to the original five-dimensional metric (based on the proper time) be less than the cutoff scale. Hence, instead of Eq.(13), we obtain
\[
\theta_{\text{bulk}} \simeq \frac{(e^{-\frac{1}{2}kl}M_*)^4}{\Lambda_{\text{QCD}}^4} \quad (18)
\]
as a conservative estimate. We also obtain
\[
\theta_\partial \simeq \left(e^{-\frac{1}{2} kl M_*} \right)^8 \simeq \left(e^{-\frac{1}{2} kl M_*} \right)^4 \frac{\theta_{\text{bulk}}}{F_a^4 \Lambda^4_{\text{QCD}}} \theta_{\text{bulk}} < \theta_{\text{bulk}}
\] (19)

instead of Eq.(16).

For example, \(\theta_{\text{bulk}} < 10^{-9} \) with \(M_* \simeq 10^{18} \text{GeV} \) is realized for \(kl \gtrsim 100 \). This result might suggest a possible dual role played by a common bulk with spacetime inflationary background which simultaneously achieves a tiny cosmological constant in four dimensions for \(kl \gtrsim 140 \) [8]. Then, the quantum dynamics of gluons should be localized (due to the Yang-Mills term [9]) at the \(y = 0 \) boundary, so that they would be only partly affected by the background curvature.

Acknowledgments

We would like to thank K. Fujikawa, J. Hisano, T. Watari, and T. Yanagida for valuable comments and discussions.

A Appendix

This appendix deals with five-dimensional bulk mediator fermions and their solvable mixing with boundary fermions.

The kinetic term for a bulk fermion \(\Psi \) on the AdS-slice orbifold is given by [12]
\[
S_\Psi = \int d^4x \int_{-l}^l dy \ e^{-4x} \bar{\Psi} D\Psi; \quad D = ie^\sigma \partial - 2 \gamma_5 \sigma' + \gamma_5 \partial_y
\] (20)

with the restriction either \(\Psi(x,-y) = +\gamma_5 \Psi(x,y) \) or \(\Psi(x,-y) = -\gamma_5 \Psi(x,y) \). Here, the spin connection including \(\sigma' \) has been taken into account and the prime denotes differentiation with respect to \(y \).

Let us introduce two fermions with opposite chiralities
\[
\Psi_1(x,-y) = \gamma_5 \Psi_1(x,y),
\]
\[
\Psi_2(x,-y) = -\gamma_5 \Psi_2(x,y)
\] (21)

\[\text{7Alternatively, yet higher-dimensional}\] [10] analogues or an \(y \)-dependent [11] gauge coupling \(g(y) \) may be considered.
along with a mass term:

\[S_\Psi = \int d^4x \int_{-l}^l dy \ e^{-4\sigma} \bar{\Psi} \left(\begin{array}{c} D \\
\frac{m}{D}
\end{array} \right) \Psi; \quad \Psi = \left(\begin{array}{c} \Psi_1 \\
\Psi_2 \end{array} \right). \quad (22) \]

Natural mixing with the boundary fermions \(\psi_L \) and \(\psi_R \) is expected through such terms of order one coefficients as

\[\int_{y=0} d^4x M^\frac{1}{2} (\bar{\Psi}_2 \psi_L + \bar{\psi}_L \Psi_2) + \int_{y=l} d^4x e^{-4\sigma} M^\frac{1}{2} (\bar{\Psi}_1 \psi_R + \bar{\psi}_R \Psi_1), \quad (23) \]

when \(\Psi \) is properly charged. Integrating out the bulk fermions \(\Psi \), we obtain, among others, U(1)\(_A \)-breaking nonderivative terms of the form

\[\int d^4x \frac{1}{2} \left(\frac{e^{(2k+m)|y|}}{e^{2ml} - 1} - \frac{e^{(2k-m)|y|}}{e^{-2ml} - 1} \right) y \ e^{-4kl} M_s (\bar{\psi}_R \psi_L + \bar{\psi}_L \psi_R) \]

\[= \int d^4x \frac{e^{-2kl}}{e^{ml} - e^{-ml}} M_s (\bar{\psi}_R \psi_L + \bar{\psi}_L \psi_R) = \int d^4x \frac{e^{-\frac{1}{2}kl}}{e^{ml} - e^{-ml}} (\bar{\psi}_R \psi_L + \bar{\psi}_L \psi_R), \quad (24) \]

which are exponentially suppressed for large values of \(ml \).

References

[1] J.E. Kim, Phys. Rep. 150 (1987) 1; H.-Y. Cheng, Phys. Rep. 158 (1988) 1.

[2] H.-C. Cheng and D.E. Kaplan, [arXiv:hep-ph/0103346]; M. Chaichian and A.B. Kobakhidze, [arXiv:hep-ph/0104158]; G. Hiller and M. Schmaltz, [arXiv:hep-ph/0105254, arXiv:hep-ph/0201251]; K.S. Babu, B. Dutta, and R.N. Mohapatra, [arXiv:hep-ph/0107100]; S.L. Glashow, [arXiv:hep-ph/0110178]; C.T. Hill and A.K. Leibovich, [arXiv:hep-ph/0205237]; G. Aldazabal, L.E. Ibáñez, and A.M. Uranga, [arXiv:hep-ph/0205250]; H. Collins and R. Holman, [arXiv:hep-ph/0210110]; A.G. Dias, V. Pleitez, and M.D. Tonasse, [arXiv:hep-ph/0210172, arXiv:hep-ph/0211107]; K.S. Babu, I. Gogoladze, and K. Wang, [arXiv:hep-ph/0212339].
[3] Izawa K.-I., T. Watari, and T. Yanagida, arXiv:hep-ph/0202171.

[4] L. Randall and R. Sundrum, arXiv:hep-ph/9905221.

[5] R.D. Peccei and H.R. Quinn, Phys. Rev. Lett. 38 (1977) 1440; Phys. Rev. D16 (1977) 1791.

[6] Z. Chacko and E. Pontón, arXiv:hep-ph/0301171 and references therein.

[7] S. Weinberg, Phys. Rev. Lett. 40 (1978) 223; F. Wilczek, Phys. Rev. Lett. 40 (1978) 279.

[8] Izawa K.-I., arXiv:hep-ph/0007079; T. Shiromizu and D. Ida, arXiv:hep-th/0102035.

[9] G. Dvali, G. Gabadadze, and M. Shifman, arXiv:hep-th/0010071; E.Kh. Akhmedov, arXiv:hep-th/0107223.

[10] I. Oda, arXiv:hep-th/0006203; S.L. Dubovsky, V.A. Rubakov, and P.G. Tinyakov, arXiv:hep-ph/0007179.

[11] A. Kehagias and K. Tamvakis, arXiv:hep-th/0010112.

[12] Y. Grossman and M. Neubert, arXiv:hep-ph/9912408; S. Chang, J. Hisano, H. Nakano, N. Okada, and M. Yamaguchi, arXiv:hep-ph/9912498; B. Bajc and G. Gabadadze, arXiv:hep-th/9912232.