Lower order eigenvalues of the poly-Laplacian with any order on spherical domains

Guangyue Huang, Bingqing Ma

Department of Mathematics, Henan Normal University, Xinxiang 453007, Henan
People’s Republic of China

Abstract. We consider the lower order eigenvalues of poly-Laplacian with any order on spherical domains. We obtain universal inequalities for them and show that our results are optimal.

Keywords: eigenvalue; poly-Laplacian.

Mathematics Subject Classification: Primary 35P15; Secondary 53C20.

1 Introduction

Let Ω be a connected bounded domain in an n-dimensional complete Riemannian manifold M. In this paper, we consider the Dirichlet eigenvalue problem of the poly-Laplacian with order p:

$$\begin{cases}
(-\Delta)^p u = \lambda u & \text{in } \Omega, \\
\frac{\partial u}{\partial \nu} = \cdots = \frac{\partial^{p-1} u}{\partial \nu^{p-1}} = 0 & \text{on } \partial \Omega,
\end{cases}$$

(1.1)

where Δ is the Laplacian in M and ν denotes the outward unit normal vector field of $\partial \Omega$. Let $0 < \lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \cdots \to +\infty$ denote the successive eigenvalues for (1.1), where each eigenvalue is repeated according to its multiplicity.

When $p = 1$, the eigenvalue problem is called a fixed membrane problem. For $M = \mathbb{R}^2$ and $p = 1$, Payne-Pólya-Weinberger [10] proved

$$\lambda_2 + \lambda_3 \leq 6\lambda_1.$$

In 1993, for general dimensions $n \geq 2$, Ashbaugh and Benguria [2] proved

$$\sum_{i=1}^{n}(\lambda_{i+1} - \lambda_1) \leq 4\lambda_1.$$

Recently, the inequalities of eigenvalues of the fixed membrane problem have been generalized to some Riemannian manifolds. For the related research and improvement

*This research is supported by Project of Henan Provincial department of Sciences and Technology (No. 092300410143), and NSF of Henan Provincial Education department (No. 2009A110010).

†The corresponding author. Email: bqma@henannu.edu.cn
in this direction, see [3, 4, 9, 11] and the references therein. In particular, Sun-Cheng-Yang [11] proved that when M is an n-dimensional unit sphere $S^n(1)$,

$$\sum_{i=1}^{n} (\lambda_{i+1} - \lambda_1) \leq 4\lambda_1 + n^2. \quad (1.2)$$

When $p = 2$, the eigenvalue problem (1.1) is called a clamped plate problem. For $M = \mathbb{R}^n$ and $p \geq 2$, Cheng-Ichikawa-Mametsuka proved in [8] that

$$\sum_{i=1}^{n} (\lambda_{i+1} - \lambda_1) \leq 4p(2p - 1)\lambda_1, \quad (1.3)$$

$$\sum_{i=1}^{n} (\lambda_{i+1}^p - \lambda_1^p)^{p-1} \leq (2p)^{p-1}\lambda_1^{p-1}. \quad (1.4)$$

Inequalities (1.3) and (1.4) include two universal inequalities of the clamped plate problem announced by Ashbauth in [1]. When M is a general complete Riemannian manifold, for $p = 2$, Cheng-Huang-Wei [6] obtained

$$\sum_{i=1}^{n} (\lambda_{i+1}^p - \lambda_1^p)^{p-1} \leq (2p)^{p-1}\lambda_1^{p-1}, \quad (1.5)$$

where H_0^2 is a nonnegative constant which depends only on M and Ω. For $M = S^n(1)$, we have $H_0^2 = 1$ such that (1.5) becomes the following inequality:

$$\sum_{i=1}^{n} (\lambda_{i+1} - \lambda_1)^{\frac{1}{2}} \leq (4\lambda_1^{\frac{1}{2}} + n^2H_0^2)^{\frac{1}{2}} \{(2n + 4)\lambda_1^{\frac{1}{2}} + n^2H_0^2\}^{\frac{1}{2}}, \quad (1.6)$$

We remark that when $\Omega = S^n(1)$, it holds that $\lambda_1 = 0$ and $\lambda_2 = \cdots = \lambda_{n+1} = n^2$. Therefore, the inequality (1.6) becomes equality. Hence, for $M = S^n(1)$, the inequality (1.6) is optimal.

In the present article, we consider the eigenvalue problem (1.1) with any p when M is a unit sphere $S^n(1)$. We obtain the following result:

Theorem. Let Ω be a bounded domain in an n-dimensional unit sphere $S^n(1)$. Let λ_i be the i-th eigenvalue of the eigenvalue problem (1.1). Then we have

$$\sum_{i=1}^{n} (\lambda_{i+1} - \lambda_1)^{\frac{1}{2}} \leq \left\{ \left(\frac{1}{\lambda_1^{\frac{1}{p}}} + n \right)^{p} - \lambda_1 + 4(2p - (p + 1))\lambda_1^{\frac{1}{p}} \left(\frac{1}{\lambda_1^{\frac{1}{p}}} + n \right)^{p-2} \right\}^{\frac{1}{2}} \times \left\{ 4\lambda_1^{\frac{1}{p}} + n^2 \right\}^{\frac{1}{2}}. \quad (1.7)$$

Remark 1. For $p = 2$, the inequality (1.7) becomes the optimal inequality (1.6).

Remark 2. For the unit sphere $S^n(1)$, by taking $\Omega = S^n(1)$, we know $\lambda_1 = 0$ and $\lambda_2 = \cdots = \lambda_{n+1} = n^p$. Hence, the inequality (1.7) becomes equality. Therefore, our result is optimal.

Acknowledgement. The authors thank Professor Qing-Ming Cheng for his helpful discussion and support.
2 Proof of Theorem

Let \(u_i \) be the orthonormal eigenfunction corresponding to eigenvalue \(\lambda_i \), that is,

\[
\begin{cases}
(-\Delta)^p u_i = \lambda_i u_i & \text{in } \Omega, \\
u_i = \frac{\partial u_i}{\partial \nu} = \cdots = \frac{\partial^{p-1} u_i}{\partial \nu^{p-1}} = 0 & \text{on } \partial \Omega, \\
\Omega \\
\int u_i u_j = \delta_{ij}.
\end{cases}
\]

Let \(x^1, x^2, \ldots, x^{n+1} \) be the standard Euclidean coordinate functions of \(\mathbb{R}^{n+1} \), then

\[
S^n(1) = \left\{ (x^1, x^2, \ldots, x^{n+1}) \in \mathbb{R}^{n+1} ; \sum_{i=1}^{n+1} (x^i)^2 = 1 \right\}.
\]

It is well known that

\[
\Delta x^i = -nx^i, \quad i = 1, 2, \ldots, n+1.
\]

Assume that \(B \) is an \((n+1) \times (n+1)\)-matrix defined by \(B = (b_{ij}) \), where

\[
b_{ij} = \int_\Omega x^i u_1 u_{j+1}.
\]

Using the orthogonalization of Gram and Schmidt, we know that there exist an upper triangle matrix \(R = (r_{ij}) \) and an orthogonal matrix \(Q = (q_{ij}) \) such that \(R = QB \), that is,

\[
r_{ij} = \sum_{k=1}^{n+1} q_{ik} b_{kj} = \sum_{k=1}^{n+1} \int_\Omega q_{ik} x^k u_1 u_j = 0, \quad 2 \leq j \leq i \leq n+1.
\]

Defining \(h_i = \sum_{k=1}^{n+1} q_{ik} x^k \), one gets

\[
\int_\Omega h_i u_1 u_j = \sum_{k=1}^{n+1} \int_\Omega q_{ik} x^k u_1 u_j = 0, \quad 2 \leq j \leq i \leq n+1.
\]

Setting

\[
\varphi_i = h_i u_1 - u_1 \int_\Omega h_i u_1^2.
\]

Then

\[
\int_\Omega \varphi_i u_j = 0, \quad \text{for any } j \leq i.
\]

It follows from Rayleigh-Ritz inequality that

\[
\lambda_{i+1} \leq \frac{\int_\Omega \varphi_i (-\Delta)^p \varphi_i}{\|\varphi_i\|^2}, \quad (2.1)
\]
where \(\| f \|^2 = \int_{\Omega} |f|^2 \). By a direct calculation, we derive at

\[
\int_{\Omega} \varphi_i (-\Delta)^p \varphi_i = \int_{\Omega} \varphi_i (-\Delta)^p (h_i u_1) \\
= \int_{\Omega} \varphi_i \{ (-\Delta)^p (h_i u_1) - h_i (-\Delta)^p u_1 \} + \lambda_1 h_i u_1 \\
= \lambda_1 \| \varphi_i \|^2 + \int_{\Omega} \varphi_i (-\Delta)^p (h_i u_1) - h_i (-\Delta)^p u_1 \\
= \lambda_1 \| \varphi_i \|^2 + \int_{\Omega} h_i u_1 (-\Delta)^p (h_i u_1) - h_i (-\Delta)^p u_1 \\
- \int_{\Omega} h_i u_1^2 \int_{\Omega} u_1 (-\Delta)^p (h_i u_1) - h_i (-\Delta)^p u_1 \\
= \lambda_1 \| \varphi_i \|^2 + \int_{\Omega} h_i u_1 (-\Delta)^p (h_i u_1) - h_i (-\Delta)^p u_1.
\]

Defining

\[
\nabla^r = \begin{cases} \Delta^{r/2} & \text{when } r \text{ is even,} \\ \nabla (\Delta^{(r-1)/2}) & \text{when } r \text{ is odd.} \end{cases}
\]

Then (2.2) can be written as

\[
\int_{\Omega} \varphi_i (-\Delta)^p \varphi_i = \lambda_1 \| \varphi_i \|^2 + \| \nabla^p (h_i u_1) \|^2 - \lambda_1 \| h_i u_1 \|^2.
\]

(2.3)

Putting (2.3) into (2.1) yields

\[
(\lambda_{i+1} - \lambda_1) \| \varphi_i \|^2 \leq \| \nabla^p (h_i u_1) \|^2 - \lambda_1 \| h_i u_1 \|^2.
\]

(2.4)

One gets from integration by parts that

\[
\int_{\Omega} u_1 h_i^2 \langle \nabla h_i, \nabla u_1 \rangle = \frac{1}{4} \int_{\Omega} \langle \nabla (h_i^2), \nabla (u_1^2) \rangle = -\frac{1}{4} \int_{\Omega} u_1^2 \Delta (h_i^2) \\
= -\frac{1}{2} \int_{\Omega} u_1^2 h_i \Delta h_i - \frac{1}{2} \int_{\Omega} u_1^2 |\nabla h_i|^2.
\]
Hence,
\[
\int_\Omega \varphi_i \left(\langle \nabla h_i, \nabla u_1 \rangle + \frac{1}{2} u_1 \Delta h_i \right)
\]
\[= \int_\Omega u_1 h_i \langle \nabla h_i, \nabla u_1 \rangle + \frac{1}{2} \int_\Omega u_1^2 \Delta h_i
+ \frac{1}{2} \int_\Omega h_i u_1^2 \left(\int_\Omega \varphi_i \left(\langle \nabla h_i, \nabla u_1 \rangle + \frac{1}{2} u_1 \Delta h_i \right) \right)
\]
\[= \int_\Omega u_1 h_i \langle \nabla h_i, \nabla u_1 \rangle + \frac{1}{2} \int_\Omega u_1^2 \Delta h_i
\]
\[= - \frac{1}{2} \int_\Omega u_1^2 |\nabla h_i|^2
\]
\[= - \frac{1}{2} \| u_1 \nabla h_i \|^2.
\] (2.5)

By virtue of (2.4) and (2.5), it is easy to see
\[
(\lambda_{i+1} - \lambda_1)^{\frac{1}{2}} \| u_1 \nabla h_i \|^2 = -2(\lambda_{i+1} - \lambda_1)^{\frac{1}{2}} \int_\Omega \varphi_i \left(\langle \nabla h_i, \nabla u_1 \rangle + \frac{1}{2} u_1 \Delta h_i \right)
\]
\[\leq \delta (\lambda_{i+1} - \lambda_1) \| \varphi_i \|^2 + \frac{1}{\delta} \left\| \langle \nabla h_i, \nabla u_1 \rangle + \frac{1}{2} u_1 \Delta h_i \right\|^2
\]
\[\leq \delta \left\{ \| \nabla^p(h_i u_1) \|^2 - \lambda_1 \| h_i u_1 \|^2 \right\} + \frac{1}{\delta} \left\| \langle \nabla h_i, \nabla u_1 \rangle + \frac{1}{2} u_1 \Delta h_i \right\|^2,
\] (2.6)

where \(\delta \) is a positive constant. Summing over \(i \) from 1 to \(n+1 \) for (2.6), one finds that
\[
\sum_{i=1}^{n+1} (\lambda_{i+1} - \lambda_1)^{\frac{1}{2}} \| u_1 \nabla h_i \|^2 \leq \delta \sum_{i=1}^{n+1} \left\{ \| \nabla^p(h_i u_1) \|^2 - \lambda_1 \| h_i u_1 \|^2 \right\}
\]
\[+ \frac{1}{\delta} \sum_{i=1}^{n+1} \left\| \langle \nabla h_i, \nabla u_1 \rangle + \frac{1}{2} u_1 \Delta h_i \right\|^2
\]
\[= \delta \sum_{i=1}^{n+1} \left\{ \| \nabla^p(x_i u_1) \|^2 - \lambda_1 \| x_i u_1 \|^2 \right\}
\]
\[+ \frac{1}{\delta} \sum_{i=1}^{n+1} \left\| \langle \nabla x_i, \nabla u_1 \rangle + \frac{1}{2} u_1 \Delta x_i \right\|^2
\] (2.7)

Making use of the same method as proof of Lemma 1 in [5], it is easy to prove
\[
\int_\Omega |\nabla u_1|^2 \leq \lambda_1^\frac{3}{2}.
\]
Thus,
\[
\sum_{i=1}^{n+1} \left\| (\nabla x_i, \nabla u_1) + \frac{1}{2} u_1 \Delta x_i \right\|^2 = \sum_{i=1}^{n+1} \int_{\Omega} \left((\nabla x_i, \nabla u_1) + \frac{1}{2} u_1 \Delta x_i \right)^2 \\
= \sum_{i=1}^{n+1} \int_{\Omega} \left(\frac{1}{4} u_1^2 (\Delta x_i)^2 + (\nabla x_i, \nabla u_1)^2 + \frac{1}{2} \Delta x_i (\nabla x_i, \nabla (u_1^2)) \right) \\
= n^2 \frac{1}{4} + \int_{\Omega} |\nabla u_1|^2 \\
\leq n^2 \frac{1}{4} + \lambda_1^\frac{1}{p}.
\]
(2.8)

It has been shown in [7] (see Proposition 2.2 of [7]) that
\[
\sum_{i=1}^{n+1} \int_{\Omega} u_1 x_i \{(-\Delta)^p(u_1 x_i) - x_i(-\Delta)^p u_1\} \\
\leq (\lambda_1^\frac{1}{p} + n)^p - \lambda_1 + 4[2^p - (p + 1)]\lambda_1^\frac{1}{p} \left(\lambda_1^\frac{1}{p} + n \right)^{p-2}.
\]
(2.9)

Inserting (2.8) and (2.9) into (2.7), we infer
\[
\sum_{i=1}^{n+1} (\lambda_{i+1} - \lambda_1)^\frac{1}{2} |u_1 \nabla h_i|^2 \leq \delta \left\{ \left(\lambda_1^\frac{1}{p} + n \right)^p - \lambda_1 + 4[2^p - (p + 1)]\lambda_1^\frac{1}{p} \left(\lambda_1^\frac{1}{p} + n \right)^{p-2} \right\} \\
+ \frac{1}{\delta} \left\{ \lambda_1^\frac{1}{p} + \frac{n^2}{4} \right\}.
\]
(2.10)

Minimizing the right hand side of (2.10) as a function of \(\delta \) by choosing
\[
\delta = \left(\frac{\lambda_1^\frac{1}{p} + \frac{n^2}{4}}{(\lambda_1^\frac{1}{p} + n)^p - \lambda_1 + 4[2^p - (p + 1)]\lambda_1^\frac{1}{p} \left(\lambda_1^\frac{1}{p} + n \right)^{p-2}} \right)^\frac{1}{2},
\]
we obtain
\[
\sum_{i=1}^{n+1} (\lambda_{i+1} - \lambda_1)^\frac{1}{2} |u_1 \nabla h_i|^2 \leq \left\{ \left(\lambda_1^\frac{1}{p} + n \right)^p - \lambda_1 + 4[2^p - (p + 1)]\lambda_1^\frac{1}{p} \left(\lambda_1^\frac{1}{p} + n \right)^{p-2} \right\} \frac{1}{2} \\
\times \left\{ 4\lambda_1^\frac{1}{p} + n^2 \right\}^\frac{1}{2}.
\]
(2.11)

By a transformation of coordinates if necessary, for any point \(q \), one gets
\[
|\nabla h_i|^2 \leq 1 \quad \text{for any } i.
\]
It follows that

\[\sum_{i=1}^{n+1} (\lambda_{i+1} - \lambda_1)^{\frac{1}{2}} |\nabla h_i|^2 = \sum_{i=1}^{n} (\lambda_{i+1} - \lambda_1)^{\frac{1}{2}} |\nabla h_i|^2 + (\lambda_{n+1} - \lambda_1)^{\frac{1}{2}} |\nabla h_{n+1}|^2 \]

\[= \sum_{i=1}^{n} (\lambda_{i+1} - \lambda_1)^{\frac{1}{2}} |\nabla h_i|^2 + (\lambda_{n+1} - \lambda_1)^{\frac{1}{2}} \left(n - \sum_{i=1}^{n} |\nabla h_i|^2 \right) \]

\[= \sum_{i=1}^{n} (\lambda_{i+1} - \lambda_1)^{\frac{1}{2}} |\nabla h_i|^2 + (\lambda_{n+1} - \lambda_1)^{\frac{1}{2}} \sum_{i=1}^{n} (1 - |\nabla h_i|^2) \]

\[\geq \sum_{i=1}^{n} (\lambda_{i+1} - \lambda_1)^{\frac{1}{2}} |\nabla h_i|^2 + \sum_{i=1}^{n} (\lambda_{i+1} - \lambda_1)^{\frac{1}{2}} (1 - |\nabla h_i|^2) \]

\[= \sum_{i=1}^{n} (\lambda_{i+1} - \lambda_1)^{\frac{1}{2}}. \]

From (2.11) and (2.12), we obtain

\[\sum_{i=1}^{n} (\lambda_{i+1} - \lambda_1)^{\frac{1}{2}} \leq \left\{ \left(\lambda_1^{\frac{1}{2p}} + n \right)^{p} - \lambda_1 + 4[2^p - (p + 1)] \lambda_1^{\frac{1}{p}} \left(\lambda_1^{\frac{1}{p}} + n \right)^{p-2} \right\}^{\frac{1}{2}} \]

\[\times \left\{ 4 \lambda_1^{\frac{1}{p}} + n^2 \right\}^{\frac{1}{2}}, \]

which concludes the proof of Theorem.

References

[1] Ashbaugh, M.S.: Isoperimetric and universal inequalities for eigenvalues. In spectral theory and geometry (Edinburgh, 1998, E. B. Davies and Yu Safarov, eds.), London Math. Soc. Lecture Notes, 273 (1999), 95-139

[2] Ashbaugh, M.S., Benguria, R.D.: More bounds on eigenvalue ratios for Dirichlet Laplacians in \(n \) dimensions. SIAM J. Math. Anal. 24, 1622-1651 (1993)

[3] Brands, J.J.A.M.: Bounds for the ratios of the first three membrane eigenvalues. Arch. Rational Mech. Anal. 16, 265-268 (1964)

[4] Chen, D.G., Cheng, Q.-M.: Extrinsic estimates for eigenvalues of the Laplace operator. J. Math. Soc. Japan 60, 325-339 (2008)

[5] Chen, Z.C., Qian, C.L.: Estimates for discrete spectrum of Laplacian operator with any order. J. China Univ. Sci. Technol. 20, 259-266 (1990)

[6] Cheng, Q.-M., Huang, G.Y., Wei, G.X.: Estimates for lower order eigenvalues of a clamped plate problem. arXiv: 0906.5192
Lower order eigenvalues of the poly-Laplacian with any order

[7] Cheng, Q.-M., Ichikawa, T., Mametsuka, S.: Estimates for eigenvalues of the poly-Laplacian with any order in a unit sphere. To appear in Calc. Var.

[8] Cheng, Q.-M., Ichikawa, T., Mametsuka, S.: Inequalities for eigenvalues of Laplacian with any order. To appear in Commun. Contemp. Math., 2009

[9] Huang, G.Y., Li, X.X., Xu, R.W.: Extrinsic estimates for the eigenvalues of Schrödinger operator. To appear in Geom. Dedicata

[10] Payne, L.E., Pólya, G., Weinberger, H.F.: On the ratio of consecutive eigenvalues. J. Math. Phys. 35, 289-298 (1956)

[11] Sun, H.J., Cheng, Q.-M., Yang, H.C.: Lower order eigenvalues of Dirichlet Laplacian. Manuscripta Math. 125, 139-156 (2008)