How bacteria utilize sialic acid during interactions with the host: snip, snatch, dispatch, match and attach

Michael P. Jennings1, Christopher J. Day1 and John M. Atack1,2,*

Abstract

N-glycoly neuraminic acid (Neu5Gc), and its precursor N-acetyl neuraminic acid (Neu5Ac), commonly referred to as sialic acids, are two of the most common glycans found in mammals. Humans carry a mutation in the enzyme that converts Neu5Ac into Neu5Gc, and as such, expression of Neu5Ac can be thought of as a ‘human specific’ trait. Bacteria can utilize sialic acids as a carbon and energy source and have evolved multiple ways to take up sialic acids. In order to generate free sialic acid, many bacteria produce sialidases that cleave sialic acid residues from complex glycan structures. In addition, sialidases allow escape from innate immune mechanisms, and can synergize with other virulence factors such as toxins. Human-adapted pathogens have evolved a preference for Neu5Ac, with many bacterial adhesins, and major classes of toxin, specifically recognizing Neu5Ac containing glycans as receptors. The preference of human-adapted pathogens for Neu5Ac also occurs during biosynthesis of surface structures such as lipo-oligosaccharide (LOS), lipo-polysaccharide (LPS) and polysaccharide capsules, subverting the human host immune system by mimicking the host. This review aims to provide an update on the advances made in understanding the role of sialic acid in bacteria-host interactions made in the last 5–10 years, and put these findings into context by highlighting key historical discoveries. We provide a particular focus on ‘molecular mimicry’ and incorporation of sialic acid onto the bacterial outer-surface, and the role of sialic acid as a receptor for bacterial adhesins and toxins.

INTRODUCTION

Sialic acids are members of the nonosolonic acids, nine-carbon sugars found in both eukaryotes and prokaryotes [1, 2]. N-glycoly neuraminic acid (Neu5Gc), and its precursor N-acetyl neuraminic acid (Neu5Ac), are the two most abundant sialic acids found in mammals (Fig. 1). Although Neu5Gc is present in most mammals, humans have a mutation in the enzyme CMP-Neu5Ac hydroxylase (CMAH) [3–6], which converts Neu5Ac to Neu5Gc. Consequently, humans are only able to produce Neu5Ac de novo, although several studies have demonstrated that trace levels of Neu5Gc is present in human tissues [7–10]. It is thought that the Neu5Gc present in normal human tissue may come from dietary sources such as red meat and dairy products [10, 11], although novel pathways have been proposed that may reactivate the defective CMAH protein under certain conditions [12]. Neu5Ac is present in every human cell type, and it is involved in cell-cell adhesion, signalling and immunity, discriminating ‘self from ‘non-self’ [13]. Additionally, Neu5Ac plays a key role in mucus, where the high abundance of negative charges provides protection against bacterial adhesion and colonization [14].

A number of bacterial species are able to directly synthesize Neu5Ac, including Escherichia coli [15–17], Campylobacter jejuni [18], Neisseria meningitidis [19], Streptococcus agalactiae [20] and Fusobacterium nucleatum [21]. In E. coli, two genes, neuB and neuC, are required for Neu5Ac biosynthesis [22–24]. NeuB catalyses the formation of Neu5Ac from N-acetyl-d-mannosamine and phosphoenolpyruvate [25], with NeuC responsible for the biosynthesis of the precursor of Neu5Ac, N-acetyl-d-mannosamine.

Bacteria are also able to synthesize additional nonosolonic acids (NulOs) that are structurally similar to sialic acid. Bacterial NulOs include Legionaminic acid, Pseudaminic acid, Fusaminic acid and Acinetaminic acid, with naming conventions

Received 24 November 2021; Accepted 08 February 2022; Published 22 March 2022

Author affiliations: 1Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia; 2School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia.

*Correspondence: John M. Atack, j. atack@griffith.edu.au

Keywords: sialic acid; N-acetyleneuraminic acid; Neu5Ac; N-glycolyneuraminic acid; Neu5Gc; adherence; adhesin; molecular mimicry; bacterial pathogen.

Abbreviations: CDC, cholesterol dependent cytolysin; CMAH, CMP-Neu5Ac hydroxylase; LOS, lipo-oligosaccharide; LPS, lipopolysaccharide; Neu5Ac, N-acetyleneuraminic acid; Neu5Gc, N-glycolyneuraminic acid; Nul0, nonosolonic acid.

001157 © 2022 The Authors

This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
typically following from the species they were first observed in; for example, Legionaminic acid was first observed in *Legionella pneumophila* [26], responsible for the respiratory infection Legionnaires disease, and Acinetaminic acid in the multi-drug-resistant pathogen *Acinetobacter baumannii* [27]. The structure, biosynthesis, and role of these NulOs were thoroughly reviewed recently [2], and as such, this review will focus on the role of Neu5Ac (‘sialic acid’) in bacterial–host interactions.

**A quick trim isn’t good for the host: sialidases enhance bacterial virulence**

Sialidases, also called neuraminidases, are enzymes that cleave sialic acid residues from complex glycan structures. This released sialic acid can then be acquired by bacteria to serve as a nutrient source, allow evasion of the immune response and the exposed underlying glycan structures may serve as points of adherence for bacterial cells. Action of viral sialidases, for example from Influenza A virus, can also serve to increase bacterial virulence; this may have been the case for the 1918 ‘Spanish flu’ pandemic, with many fatalities a result of secondary bacterial infections [28], mainly *Streptococcus pneumoniae*. The viral neuraminidase cleaves sialic acid from host glycan structures, increasing sialic acid and sialylated mucin availability. This promotes pneumococcal growth, proliferation and migration to the lungs [29]. *S. pneumoniae* itself expresses multiple neuraminidases, NanA, NanB and NanC, with diverse roles in pathobiology. NanA removal of terminal sialic acid from human glycan structures results in the exposure of galactose, which promotes pneumococcal biofilm formation [30]. NanA cleavage of sialic acid from the T-antigen [31], can lead to pneumococcal haemolytic uraemic syndrome (HUS). NanA activity also modifies the immune response. For example, NanA desialylation of platelets can lead to platelet hyper-reactivity [32], leading to increased interaction with leukocytes, and increased inflammation; NanA cleavage of sialic acid activates TGF-β signalling leading to increased permeability of blood-brain-barrier and promoting meningitis [33]. A similar immune system modification effect is seen in the pig pathogen *Glaesserella parasuis* where desialylation leads to negative regulation of the lectin (glycan-binding protein) siglec-5 [34].

Synergy between multiple sialidases, and sialidases and other virulence factors, also potentiates virulence. For example, concerted action of the pneumococcal sialidases NanA and NanB leads to mucus escape – secreted NanB results in increased expression of NanA due to Neu5Ac stimulation of *nana* transcription [35]. Expression of NanA results in increased cleavage of mucus, allowing *S. pneumoniae* to escape mucus binding and mucociliary clearance [35]. In *Vibrio cholerae*, the neuraminidase VcN hydrolyses sialic acids from complex gangliosides in the human gut, resulting in high amounts of the underlying GM1 structure. GM1 is the receptor for cholera toxin, Ctx [36, 37]. Thus, VcN-mediated cleavage of sialic acids from gangliosides potentiates the virulence of Ctx in the induction of diarrhoea.
**Gardnerella vaginalis**, a causative agent of bacterial vaginosis, employs multiple sialidases during pathogenesis [38, 39], with the activity of sialidases contributing to cellular invasion [40]. Similarly, the sialidase of the periodontal pathogen *Porphyromonas gingivalis* is required for attachment and invasion of oral epithelial cells by both *P. gingivalis* and other periodontal pathogens [41].

The sialidase NanI is important in *Clostridium perfringens* intestinal colonization [42] and supports survival in the presence of mucin [43], with NanI showing preference for glycan structures terminating in Neu5Ac [44]. Sialidases also allow the use of Neu5Ac as carbon sources in multiple *Mycoplasma* species [45, 46], potentiating colonization and persistence.

**TO SNATCH AND DISPATCH: ACQUISITION OF SIALIC ACID FROM THE HOST, AND CONSUMPTION AS A CARBON SOURCE**

Excellent reviews have been written recently describing bacterial sialic acid uptake [47], and how sialic acid is used as a carbon source [48]. Often, sialic acid released by sialidases/neuraminidases is used as a carbon source.

Multiple mechanisms exist in the bacterial domain to take up sialic acid from the environment. The first sialic acid transporter to be described was NanT in *E. coli*, a proton-coupled secondary transporter [49]. NanT protein homologues have been observed in multiple bacterial organisms, including *Versinia pestis*, *Tannerella forsythia* and *Bacteroides fragilis* [47]. A further secondary transporter, named SiaT [47], a sodium solute symporter, exists in bacterial pathogens such as *Clostridium perfringens* [50] and *Staphylococcus aureus* [51]. Bacterial TRAP (tripartite ATP-independent periplasmic) transporters, made up of periplasmic substrate binding proteins and a cognate inner-membrane transporter complex [52] are also able to transport sialic acid. TRAP transporters are classed as secondary transporters as they use ion-electrochemical gradients to transport substrates [52]. The SiaPT TRAP transporter from *Haemophilus influenzae* was the first sialic acid TRAP transporter to be discovered [53, 54], is regulated by SiaR [55] and is essential for *H. influenzae* virulence [56]. Homologues of this system have been described in a diverse range of bacterial pathogens, including *Vibrio cholerae* [57] and *Pasteurella multocida* [58]. Like TRAP transporters, ABC (ATP-binding cassette) transporters also consist of periplasmic solute binding proteins and a cognate inner-membrane transporter complex. However, unlike TRAP transporters, ABC systems use ATP to directly transport solutes, and are classed as primary transporters [52]. Both Gram-negative and Gram-positive bacterial pathogens encode sialic acid ABC transporters, including *Haemophilus ducreyi*, and multiple *Clostridial and Streptococcal* species [59].

Following uptake, bacteria use sialic acid in multiple ways. In addition to using sialic acid as a building-block for surface structures (reviewed in detail later in this review) a number of bacteria, both pathogens and commensals, use sialic acid directly as a carbon source. Catabolism of sialic acids, both Neu5Ac and Neu5Gc, results in formation of fructose-6-phosphate, which can then feed into glycolysis. The diversity of the systems for sialic acid catabolism and their roles are great and varied, and have been reviewed previously [48, 60]. However, a number of new examples have been described recently. *V. cholerae* motility is triggered by the presence of free Neu5Ac, and the sugar N-acetylglucosamine, which has a NHCOCH₃ modification of the second carbon of the glucose ring. Catabolism of both these sugars into glucosamine-6-phosphate is the essential step in inducing motility [61]. The gut commensal *Ruminococcus gnavus* utilizes mucin as a nutrient source, with expression of multiple sialidases key to this utilization [62]. This illustrates that in addition to the pathogens described in the sialidase section above, members of the normal gut flora also utilise sialidases to release sialic acid as a nutrient source. Transcription of sialic acid catabolic genes is repressed by the NanR transcription factor in *Corynebacterium glutamicum* [63]. NanR is almost ubiquitously found in bacterial species that are able to catabolize sialic acid, indicating a possible common origin of the ability to break down sialic acids.

**A WOLF IN SHEEP’S CLOTHING: IMMUNE EVASION AND MOLECULAR MIMICRY**

In addition to being able to cleave sialic acid to enhance virulence and to use free sialic acids as carbon and energy sources, many bacterial pathogens use sialic acids as a cell-surface decoration, and as a structural building block.

The key role for sialic acid in bacterial pathogenesis was first described in the sexually transmitted pathogen *Neisseria gonorrhoeae*, when it was discovered that CMP-Neu5Ac was the mystery substance that was acquired from the host, by a still as yet unknown mechanism, to render *N. gonorrhoeae* serum resistant [64, 65]. Addition of Neu5Ac in *N. gonorrhoeae* occurs at the terminus of lipo-oligosaccharide, LOS, a truncated version of LPS that lacks the extended O-antigen, with addition catalysed by the sialyltransferase Lst. Whether Lst is located in the cytoplasm or extracellularly is still not clear (Fig. 2). Neu5Ac addition to the LOS of *N. gonorrhoeae* prevents killing by complement [66]. Interestingly, addition of non-sialic acid NulOs to *N. gonorrhoeae* LOS by Lst resulted in an increased sensitivity to serum [67], illustrating the exquisite requirement of sialic acid for mediating this resistance and providing some insights into the mechanism of serum resistance. The increased Neu5Ac addition to the bacterial surface, which results in recruitment of more Factor H, inhibits the alternative complement pathway and decreases activation of the classical complement pathway [67]. *N. gonorrhoeae* LOS can also be sialylated on inner heptose residues, with loss of Neu5Ac on these residues attenuating virulence in a mouse model [68, 69].
A second aspect of sialic on the bacterial surface is the 'cloaking' effect of expressing molecules identical to host glycans. Such 'molecular mimicry' [70] of host structures allows bacterial pathogens to subvert the host immune response and survive.

The human-adapted pathogen non-typeable *Haemophilus influenzae* (NTHi), like *N. gonorrhoeae*, is a human-specific pathogen where the role of sialic acid in LOS has been extensively studied. Addition of sialic acid to the terminal position of LOS in NTHi promotes survival *in vivo* [71], and can occur via multiple enzymatic activities, including SiaA, LsgB, Lic3A and Lic3B. Growth in the presence of sialic acids also results in a decrease of complement-mediated killing; in this instance, increased sialic acid addition to LOS prevents binding of IgM antibodies, which results in decreased activation of the classical complement pathway [72]. In addition to using Neu5Ac as a substrate, LsgB can add the sugar ketodeoxyoctanoate (KDO) as a terminal structure of LOS [73], which occurs when the concentration of free Neu5Ac is low, for example in certain *in vivo* nutrient-restricted niches and growth in a biofilm [73], and highlights the complex nature of NTHi LOS in immune-evasion. The underlying glycan structures of sialylated NTHi LOS also serve to protect the bacterium from serum IgM and complement [74]. By selectively inhibiting LOS sialylation, it is possible to increase serum sensitivity of NTHi, indicating a possible future treatment strategy for a major human pathogen [75]. Further, in an example of exquisite host-adaptation, NTHi has evolved preferential use of Neu5Ac over Neu5Gc [76] in decorating its LOS. Both Neu5Gc and Neu5Ac are taken up and used as sole carbon sources equally well, but Neu5Gc is incorporated much less efficiently into NTHi LOS. This bias occurs in the enzyme SiaB, a CMP-Neu5Ac synthetase, which activates Neu5Ac by addition of a CMP group. SiaB in NTHi has ~4000-fold higher catalytic efficiency for Neu5Ac than for Neu5Gc [76] (Fig. 2).
In addition to *N. gonorrhoeae* and NTHi, a number of other major human pathogens also decorate their LOS with Neu5Ac. For example, sialic acid found in the LOS of the gastric pathogens *V. cholerae* and *Campylobacter jejuni* [18, 57]. In *C. jejuni*, this molecular mimicry of host epitopes leads to the autoimmune disease Guillain–Barre syndrome, where anti-Neu5Ac antibodies, elicited by *C. jejuni* sialylated-LOS, attack the hosts own gangliosides containing these structures [77]. In the related organism *Campylobacter coli*, loss of LOS biosynthetic enzyme function means only a small fraction of strains (1%) are able to sialylate their LOS, meaning infection with *C. coli* is much less likely to lead to autoimmune disorders [78]. This is another nice example of niche adaptation: the ‘molecular mimicry’ benefits of LOS sialylation of a human pathogen (*C. jejuni*) results in severe disease sequelae for the host, whereas an organism that rarely infects humans (*C. coli*) does not need to sialylate its LOS in order to survive.

Several bacterial organisms express LOS, lipo-poly saccharide, instead of LOS. LPS contains the core LOS structure plus an extended polysaccharide, the O-antigen [79]. O-antigens typically contain Neu5Ac, and are critical virulence factors in many organisms such as *Pseudomonas aeruginosa* [80] and *Salmonella enterica* serovar Typhimurium [81]. The LPS of *Vibrio vulnificus* is decorated with sialic acid [82], with the inability to synthesize this molecule leading to a 300-fold lower chance of survival compared with a wild-type strain. In addition, sialic acid plays a critical role in *V. vulnificus* biofilm formation, motility, and protects the bacterium from the host immune response [83]. *Fusobacterium nucleatum*, a potential cancer-causing bacterium that inhabits the human oral cavity, incorporates sialic acid into its LPS [84], and sialylation of the LPS of *P. gingivalis* LPS reduces inflammation [85], allowing long-term periodontal colonization.

Many bacterial pathogens also express a capsule. Capsules are extracellular structures that are almost entirely glycans based, and serve to mask bacteria from the immune system. Serogroup B *Neisseria meningitidis*, in addition to decorating its LOS with sialic acid like the closely related organism *N. gonorrhoeae* [86], produces a capsule containing multiple Neu5Ac residues, as does *E. coli* K1. In both instances, these polysialic acid capsules confer resistance to complement mediated killing and phagocytosis [86–89]. Nearly all Streptococci express a polysaccharide capsule, but only *Streptococcus agalactiae* (Group B Strep, GBS), responsible for neonatal meningitis and urinary tract infections, and *Streptococcus suis*, a major pig and zoonotic pathogen, are known to contain sialic acid [90]. Sialylation of the GBS capsule is key to immune evasion [91, 92], likely through sialic acid on the GBS capsule binding to host Sia-recognizing Ig superfamily lectins (Siglecs). This blocks neutrophil and macrophage activation, and suppress platelet activation [93]. In *S. suis*, the role of capsular sialic acid is less clear. Not all *S. suis* capsular serotypes contain sialic acid (e.g. serotypes 2 and 14 contain sialic acid, serotype 9 does not) [94] but the interactions between strains expressing all three capsular types and host cells are similar and serotype 9 capsule is critical for bacterial survival in blood and development of clinical disease [94]. Confoundingly, sialic acid has been shown to be crucial for *S. suis* capsule synthesis, whereas for GBS, capsule synthesis may occur in the absence of a sialic acid moiety [95]. The linkage of sialic acid in the *S. suis* capsule occurs via an α,2,6-linkage. These types of linkage are recognized by the haemagglutinins of both human and swine influenza viruses (demonstrating the zoonotic nature of *S. suis* infections). Because of this interaction, adherence to and invasion of airway epithelial cells is enhanced when *S. suis* encounters influenza virus-infected cells [96]. Adherence and invasion efficiency of GBS is also enhanced when cells were pre-infected by influenza A virus with α2–3 linked neuraminidase specificity [97]. These recent findings indicate understanding synergy between viral and bacterial pathogens is key to combatting disease.

**ATTACHING TO THE HOST: SIALIC ACID AS A CELLULAR RECEPTOR FOR BACTERIAL ADHESINS**

As one of the most abundant and wide-spread host surface molecules, sialic acid or glycan structures containing a sialic acid moiety, are ideal receptors for bacteria to bind to during colonization and disease.

NTHi, in addition to evading the host via addition of Neu5Ac onto LOS, expresses multiple adhesins that have high specificity for sialic acid (Fig. 2). NTHi express the adhesins HMW (HMW1 and HMW2) and Hia, but individual strains only encode genes for HMW1/2 (75% of strains) [98], or Hia (25% of strains) [99], with this discrete strain distribution likely the result of an ancient strain divergence event. HMW1 binds to α2,3-sialyllactosamine (2–3 SLN) [100] that contains terminal Neu5Ac or Neu5Gc via an α2,3 linkage [101]. HMW2, which is ~65% identical to HMW1, binds the related glycan α2,6-sialyllactosamine (2–6 SLN), with high specificity for 2–6 SLN containing Neu5Ac [101]. Hia binds 2–6 SLN with a ~10-fold preference for Neu5Ac over Neu5Gc [102], with preference for these structures located in Hia binding domain 1 (BD1), the high-affinity substrate binding region of Hia [102]. Hia will also bind 2–3 SLN containing either a Neu5Ac or Neu5Gc with equal affinity, but this binding is not mediated by BD1. Intriguingly, 2–3 SLN is found mainly in the lower human respiratory tract, whereas 2–6 SLN is found throughout the entire respiratory tract, but predominates in the upper airway [103]. Thus, NTHi strains are able to colonize the entire human airway as strains have independently evolved the ability to bind human-airway-specific glycans via either the HMW1/2 proteins or the Hia protein. *Moraxella catarrhalis* is a respiratory tract pathogen often found in co-infections with NTHi. Binding of *M. catarrhalis* to mucus occurs via bacterial binding to Neu5Ac and Neu5Ac-linked glycan structures (e.g. α2–6 sialylactose; Neu5Ac linked to lactose) within mucus, with this binding correlating with increased inflammation [104]. The human gastric pathogen *Helicobacter pylori*, responsible for stomach ulcers and gastric cancer, expresses multiple adhesins...
recognizing glycan structures containing terminal Neu5Ac residues. The SabA adhesin has specificity for terminal α2,3-linked Neu5Ac, including the sialyl Lewis’antigen [105] and gangliosides in the human stomach [106]. The H. pylori adhesin HP0721 specifically recognizes sialyllactose residues [107, 108] with a preference for Neu5Ac over Neu5Gc. Flagella and pili are also involved in binding to host sialic acid. For example, P. aeruginosa pili and flagellum interact with GM1 and GM2 gangliosides containing α2,3-linked Neu5Ac residues [109]. In an interesting example of sialylation not increasing adherence to the underlying glycans, the Ata adhesin of the multi-drug-resistant pathogen A. baumannii interacts with high-affinity to N-Acetyllactosamine, which consists of a galactose and GlcNAc joined by a β1–4 linkage [110]. Sialylation of the GlcNAc with Neu5Ac to form sialyllactosamine did not change the affinity of the interaction [110]. This suggests that Neu5Ac may not be ‘seen’ by Ata, with the underlying structure of N-acetyllactosamine, or the individual components of this structure, more important to binding, and that not all human pathogens have an affinity for sialic acids.

Many pathogenic Streptococci specifically recognize sialic acid-linked structures on multiple human cells and tissues. Streptococcus pyogenes (Group A Strep, GAS), a major human pathogen responsible for a throat and skin infections, and a number of severe invasive infections, interacts with sialic acid during colonization. This interaction occurs via the outer-surface M-protein [111], a major virulence factor in this bacterium, and which displays extreme variability between GAS strains. The M1 protein variant has varying affinity for ABO(H) blood group antigen structures [112]. Colonization of human oral epithelial cells by GAS expressing the M3 and M12 variants is also mediated by blood group antigens, as well as the sialic acid containing Lewis (Le) antigen. Removal of linkage-specific fucose, galactose, N-acetyllactosamine and sialic acid, modulated GAS colonization [113] indicating a dependence on sialic acid, but that the sialic acid can be contained in multiple arrangements and structures. S. suis also adheres to sialic acid containing glycans via the adhesin SssP1, a fimbria-like structure, which promotes adherence to host cells [114]. Multiple Streptococcal species are able to cause endocarditis, an infection of the heart tissue that can be life threatening. Adherence to sialic acid containing structures via their Sialic acid-binding serine-rich repeat adhesins, which contain SLBRs (Siglec-like binding regions), is key to this interaction in Streptococcus gordonii and Streptococcus sanguinis [115]. Both species show a preference for α2–3 sialglycan structures, with these structures present on multiple plasma proteins that have been cited as biomarkers for vascular disease [115]. The structure of these SLBRs is very similar to mammalian siglecgs, but the glycan ligand they interact with quite different [116], suggesting it will be possible to target inhibitors to the bacterial proteins to treat infections. S. gordonii expresses a second adhesin that interacts with sialic acid, Hsa, with this protein having a role in biofilm formation in this species [117]. Streptococcus oralis, a human oral bacterium that can also cause meningitis, binds platelets via recognition of a terminal sialic acid by the adhesin Fap1 [118]. S. oralis also produces a neuraminidase, NanA, which cleaves this terminal sialic acid with the exposed underlying β1,4-linked galactose also bound by the Fap1 adhesin [118]. AsaA, a second sialic-acid binding adhesin characterized in S. oralis, helps bacteria bind to platelets and contributes to the development of endocarditis [119]. S. oralis subsp. dentisani produces a serine-rich repeat protein fibril, FapC, which binds sialic acid in saliva, and which aids oral colonization [120].

Mycoplasmas are host-adapted, reduced genome pathogens. Each vertebrate has its own specific Mycoplasma pathogens, where they cause a range of diseases. Mycoplasma genitalium, a human sexually transmitted pathogen, binds sialic acid containing receptors via the adhesin P110 [121], which together with protein P140 forms the Nap adhesion complex [122]. P110 binds α2–3- or α2–6-sialyllactose, with this interaction critical to initiating attachment to human cells [121]. Mycoplasma pneumoniae is a common cause of human respiratory tract infections, including bronchitis and atypical pneumonia. M. pneumoniae binds glycoprotein receptors having terminal sialic acid residues via the P1 adhesin protein [123], with no preference for either α2,3- or α2,6-sialyllactose. Mycoplasmas are also able to traverse surfaces via a characteristic ‘gliding’ motility, with M. pneumoniae specifically gliding via adherence to α2,6-sialyllactose [123]. Mycoplasma mobile, a fish pathogen, also uses sialylated glycans as a binding partner for gliding motility [124] via the adhesin Gli349 [125].

**A SUGAR COATING CAN KILL YOU: SIALIC ACID AS RECEPTORS FOR BACTERIAL TOXINS**

Multiple bacterial species produce toxins, secreted protein effectors that damage host cells and tissues, releasing nutrients and potentiating virulence. Just like adhesins, bacterial toxins have evolved to recognise sialic acid residues as receptors to mediate host cell binding.

The CDCs, cholesterol-dependent cytolsins, are a major class of pore-forming toxin produced by Gram-positive bacterial pathogens [126]. In a recent study, all major bacterial CDCs were shown to bind host cell glycan structures as high-affinity receptors, and that some CDCs have no measurable binding affinity for cholesterol [127]. CDCs from *C. perfringens* (PFO), *G. vaginalis* (VGO), *Listeria monocytogenes* (LLO), *Streptococcus pneumoniae* (PLY), *Streptococcus mitis* (ILY) and *Streptococcus intermedius* (ILY) all have high affinity (in the nM-µM range) for glycan structures containing terminal Neu5Ac sialic acid residues [127] (Fig. 3), with the activity of these toxins blocked via addition of their corresponding glycan receptor.

Gram-negative bacteria produce a class of toxins known as the AB5 toxins, consisting of a multiprotein complex of A and B subunits [128]. The A subunits are the toxin effector, whereas the B subunits contain the cognate ligand binding function
The subtilase AB5 toxin, SubAB, of Shiga toxin-producing E. coli (STEC) and damage the internal organs, with STEC infection frequently resulting in acute kidney failure and haemolytic anaemia. The highest affinity receptors for SubAB are sialylated glycolipids with terminal α2,3-Neu5Gc, to which the affinity is 20 times higher than to α2,3-Neu5Ac, and 30 times higher than to α2,6-Neu5Gc. Although this toxin receptor preference indicates adaptation to non-human Neu5Gc expressing hosts, the lack of Neu5Gc-containing body fluid receptor competitors in humans may confer susceptibility to the gastrointestinal and systemic toxicities of SubAB. In recent years, cellular receptors for other AB5 toxins have been demonstrated to be host glycan structures (Fig. 3).

Cholera toxin, Ctx, the AB5 toxin produced by Vibrio cholerae, also recognizes sialylated glycan structures, with specificity for GM1 polysialyated gangliosides. However, as described in the sialidase section above, the action of the VcN sialidase is required for Ctx to bind to the underlying glycan structures, rather than sialic acid itself (Fig. 3). In a humanized mouse model of cholera using a CMAS deficient mouse that can only produce Neu5Ac, the action of Ctx is enhanced, indicating that VcN prefers Neu5Ac over Neu5Gc, and that Neu5Gc impedes VcN-mediated generation of the underlying glycans in gangliosides. Human epithelial cells artificially expressing Neu5Gc were also less susceptible to Ctx binding and CtxA intoxication following VcN treatment. Therefore, it appears that V. cholerae evolved into a human-specific pathogen by adapting to the loss of Neu5Gc in humans.

Multiple additional types of bacterial toxin have evolved to specifically recognise and bind human sialic acid (Neu5Ac) containing glycan structures. For example, the Clostridium botulinum neurotoxin BoNT/DC specifically recognizes sialic acid moieties on the Sialyl-T antigen, but not to other moieties in gangliosides. The E. coli heat-labile enterotoxin LT-Iib shows high-affinity for gangliosides with a neo-lacto core, that can contain either Neu5Gc or Neu5Ac residues.
CONCLUDING REMARKS

Bacteria are able to utilize sialic acids in multiple ways. The advantage of being able to use an abundant carbon and energy source present in all mammalian hosts is clear. The concomitant ability to acquire sialic acids, and develop an ability to release this molecule from complex glycan structures – sialidases – goes hand in hand with the ability to use sialic acids in metabolism and biosynthesis. Using a highly prevalent molecule to bind to host cells and tissues makes a lot of evolutionary sense, and many bacterial pathogens have evolved multiple adhesins that specifically recognize host sialic acids. Co-evolution of specificity for Neu5Ac is evident in several human-adapted pathogens, and has likely occurred during loss of the ability of humans to make Neu5Gc, marking Neu5Ac as the ‘human specific’ sialic acid. The close interplay of multiple factors occurs during bacterial pathogenesis, with the synergy of *Vibrio cholerae* VcN sialidase and Ctx toxin a clear demonstration of human–bacterial co-evolution. The most pernicious way bacterial pathogens utilize sialic acid is as a means to evade and subvert the immune system, starkly illustrated by the incorporation of Neu5Ac in multiple outer-surface structures such as LOS, LPS and the polysaccharide capsule. This ‘molecular mimicry’ is perhaps best studied in NTHi and the pathogenic *Neisseria*. The bias for Neu5Ac over Neu5Gc in NTHi LOS incorporation occurs at a single point, the activation of sialic acid by the enzyme SiaB into the nucleotide sugar Neu5Ac-CMP for incorporation into LOS, in another stark illustration of co-evolution of bacteria and host.

An abundance of research is uncovering further roles for sialic acid in bacterial pathogenesis and host–bacterial interactions, building on initial characterisation of these systems in multiple bacterial pathogens. The advantage gained by the use of sialic acid in immune evasion and host binding means that it is a clear target for development of new antimicrobials; block the interactions required to colonize, or those needed for toxins to bind, and disease is prevented, or at the very least decreased. Many toxins and adhesins that recognize host sialic acids are key virulence factors, and highly expressed during pathogenesis. Therefore, in addition to being targets for novel antimicrobials, these proteins are also ideal vaccine candidates, and understanding their role is key to the development of rationally designed subunit vaccines against several major human pathogens.
14. Lewis AL, Lewis WG. Host sialoglycans and bacterial sialidases: a mucosal perspective. Cell Microbiol 2012;14:1174–1182.
15. Barry GT, Goebel WF. Colominic acid, a substance of bacterial origin related to sialic acid. Nature 1957;179:206.
16. Rohr TE, Troy FA. Structure and biosynthesis of surface polymers containing polysialic acid in Escherichia coli. J Biol Chem 1980;255:2332–2342.
17. Troy FA, McCloskey MA. Role of a membranous sialyltransferase complex in the assembly of surface polymers containing polysialic acid in Escherichia coli. Temperature-induced alteration in the assembly process. J Biol Chem 1979;254:7377–7387.
18. Linton D, Karlyshev AV, Hitchen PG, Morris HR, Dell A, et al. Multiple N-acetyl neuraminic acid synthetase (neuB) genes in Campylobacter jejuni: identification and characterization of the gene involved in sialylation of lipopolysaccharide. Mol Microbiol 2000;35:1120–1134.
19. Gunawan J, Simard D, Gilbert M, Lovering AL, Wackarchuk WW, et al. Structural and mechanistic analysis of sialic acid synthase NeuB from Neisseria meningitidis in complex with Mn2+, phosphoenolpyruvate, and N-acetylmannosaminol. J Biol Chem 2005;280:3555–3563.
20. Wessels MR, Pozsgay V, Kasper DL, Jennings HJ, et al. Structure and immunochemistry of an oligosaccharide repeating unit of the capsular polysaccharide of type III group B Streptococcus. A revised structure for the type III group B streptococcal polysaccharide antigen. J Biol Chem 1987;262:8262–8267.
21. Lewis AL, Robinson LS, Agarwal K, Lewis WG, et al. Discovery and characterization of de novo sialic acid biosynthesis in the phylum Fusobacterium. Glycobiology 2016;26:1107–1119.
22. Zapata G, Crowley JM, Vann WF, et al. Sequence and expression of the Escherichia coli K1 neuC gene product. J Bacteriol 1992;174:315–319.
23. Vimr ER, Aaronson W, Silver RP, et al. Genetic analysis of chromosomal mutations in the polysialic acid gene cluster of Escherichia coli K1. J Bacteriol 1989;171:1106–1117.
24. Silver RP, Vann WF, Aaronson W, et al. Genetic and molecular analyses of Escherichia coli K1 antigen genes. J Bacteriol 1994;176:588–597.
25. Vann WF, Taveraz JJ, Crowley J, Vimr E, Silver RP, et al. Puriﬁcation and characterization of the Escherichia coli K1 neuB gene product N-acetylneuraminic acid synthetase. Glycobiology 1999;7:697–701.
26. Knirel YA, Rietschel ET, Marre R, Zähringer U, et al. The structure of the O-specific chain of Legionella pneumophila serogroup 1 lipopolysaccharide. Eur J Biochem 1994;221:239–245.
27. Kenyon JJ, Marzaoli AM, De Castro C, Hall RM, et al. 5,7-di-N-acetylacetylmuramic acid: A novel non-2-ulosonic acid found in the capsule of an Acinetobacter baumannii isolate. Glycobiology 2015;25:644–654.
28. Lorenz D, DuBose LF, Alcalay R, Fauci AS, et al. Predominant role of bacterial pneumonia as a cause of death in pandemic inﬂuenza: implications for pandemic inﬂuenza preparedness. J Infect Dis 2008;198:962–970.
29. Siegel SJ, Roche AM, Weiser JN, et al. Inﬂuenza promotes pneumococcal growth during coinfection by providing host sialylated substrates as a nutrient source. Cell Host Microbe 2014;16:55–67.
30. Blanchette KA, Shenoy AT, Milner J 2nd, Gillespy RL, McClure E, et al. Neuraminidase a-exposed galactose promotes Streptococcus pneumoniae biofilm formation during colonization. Infect Immun 2016;84:2922–2932.
31. Coats MT, Murphy T, Paton JC, Gray B, Briles DE, et al. Exposure of Thomsen-Friedenreich antigen in Streptococcus pneumoniae infection is dependent on pneumococcal neuraminidase A. Microbial Pathogenesis 2011;50:343–349.
32. Kullaya V de Jonge MI, Langereis JD, van der Gaast-de Jonghe CE, Bull C, et al. Desialylation of platelets by pneumococcal neuraminidase A induces ADP-dependent platelet hyperreactivity. Infect Immun 2018;86:10.
33. Gratn L, Noh LN, Mann B, Gao G, Carter R, et al. Pneumococcal neuraminidase activates TGF-β signalling. Microbiology (Reading) 2017;163:1198–1207.
34. Song Y, Pan Q, Xiao J, Li W, Ma H, et al. Sialidase of Glaessnerella parasuis augments inflammatory response via desialylation and abrogation of negative regulation of siglec-5. Infect Immun 2021;89.
35. Hammond AJ, Binsker U, Aggarwal SD, Ortigoza MB, Loomis C, et al. Neuraminidase B controls neuraminidase A-dependent mucus production and evasion. PLoS Pathog 2021;17:e1009158.
36. King CA, Van Heyningen WE. Deactivation of cholera toxin by a sialidase-resistant monosialosylganglioside. J Infect Dis 1973;127:639–647.
37. Holmgren J, Lönnroth I, Månsson J, Svennerholm L, et al. Interaction of cholera toxin and membrane GMI ganglioside of small intestine. Proc Natl Acad Sci U S A 1975;72:2520–2524.
38. Robinson LS, Schwabe J, Lewis WG, Lewis AL, et al. Identification and characterization of NanH2 and NanH3, enzymes responsible for sialidase activity in the vaginal bacterium Gardnerella vaginalis. J Biol Chem 2019;294:5230–5245.
39. Hardy L, Jespers V, Van den Bulck M, Buyeze J, Mwambaramwe L, et al. The presence of the putative Gardnerella vaginalis sialidase A gene in vaginal specimens is associated with bacterial vaginosis biofilm. PLoS One 2017;12:e0172522.
40. Govinden G, Parker JL, Naylor KL, Frey AM, Anumba DOC, et al. Inhibition of sialidase activity and cellular invasion by the bacterial vaginosis pathogen Gardnerella vaginalis. Arch Microbiol 2018;200:1129–1133.
41. Frey AM, Satur MJ, Phansopa C, Honma K, Urbanowicz PA, et al. Characterization of Porphyromonas gingivalis sialidase and disruption of its role in host-pathogen interactions. Microbiology 2019;165:1181–1197.
42. Navarro MA, Li J, McClane BA, Morrell E, Beingsesser J, et al. NanH sialidase is an important contributor to Clostridium perfringens type F strain F4969 intestinal colonization in mice. Infect Immun 2018;86:12.
43. Li J, McClane BA, Young VB. NanH sialidase can support the growth and survival of Clostridium perfringens strain F4969 in the presence of sialylated host macromolecules (Mucin) or Caco-2 cells. Infect Immun 2018;86.
44. MacMillan JL, Vicaretti SD, Novovitz B, Xing X, Low KE, et al. Structural analysis of broiler chicken small intestinal mucin O-glycan modification by Clostridium perfringens. Poul Sci 2019;98:5074–5088.
45. Michaels DL, Moneypenny CG, Shama SM, Leibowitz JA, May MA, et al. Sialidase and N-acetylneuraminate catabolism in nutrition of Mycoplasma alligatoris. Microbiology 2019;165:662–667.
46. May M, Brown DR. Genetic variation in sialidase and linkage to N-acetylneuraminate catabolism in Mycoplasma synoviae. Microb Pathog 2008;45:38–44.
47. Thomas GH. Sialic acid acquisition in bacteria-one substrate, many transporters. Biochem Soc Trans 2016;44:760–765.
48. Haines-Menges BL, Whitaker WB, Lubin JB, Boyd EF, et al. Host sialic acids: a delicacy for the pathogen with discerning taste. Microbiot Spectr 2015;3.
49. Martinez J, Steenberg B, Shirm E, et al. Derived structure of the putative sialic acid transporter from Escherichia coli predicts a novel sugar permease domain. J Bacteriol 1995;177:6005–6010.
50. Walters DM, Stirewalt VL, Melville SB, et al. Cloning, sequencing, and transcriptional regulation of the oporin encoding a putative N-acetylmannosamine-6-phosphate epimerase (nanE) and sialic acid lyase (nanA) in Clostridium perfringens. J Bacteriol 1999;181:4526–4532.
51. Olson ME, King JM, Yahr TL, Horswill AR. Sialic acid catabolism in Staphylococcus aureus. J Bacteriol 2013;195:1779–1788.
52. Rosa LT, Bianconi ME, Thomas GH, Kelly DJ, et al. Tripartite ATP-Independent Periplasmic (TRAP) Transporters and Tripartite
Tricarboxylate Transporters (TTT): from uptake to pathogenicity. Front Cell Infect Microbiol 2018;8:33.

53. Severi E, Randle G, Kivilin P, Whitfield K, Young R, et al. Sialic acid transport in Haemophilus influenzae is essential for lipopolysaccharide sialylation and serum resistance and is dependent on a novel tripartite ATP-independent periplasmic transporter. Mol Microbiol 2005;58:1173–1185.

54. Allen S, Zaleski A, Johnston JW, Gibson BW, Apicella MA, et al. Novel sialic acid transporter of Haemophilus influenzae. Infect Immun 2005;73:5291–5300.

55. Johnston JW, Zaleski A, Allen S, Mootz JM, Armbruster D, et al. Regulation of sialic acid transport and EsbA catalysis in Haemophilus influenzae. Mol Microbiol 2007;66:26–39.

56. Jenkins GA, Figueira M, Kumar GA, Sweetman WA, Makepeke K, et al. Sialic acid mediated transcriptional modulation of a highly conserved sialometabolism gene cluster in Haemophilus influenzae and its effect on virulence. BMC Microbiol 2010;10:48.

57. Gangi Setty T, Cho C, Govindappa S, Apicella MA, Ramaswamy S, et al. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site. Acta Crystallogr D Biol Crystallogr 2014;70:1801–1101.

58. Tatum FM, Tabatabai LB, Briggs RE. Sialic acid uptake is necessary for virulence of Pasteurella multocida in turkeys. Microb Pathog 2009;46:337–344.

59. North RA, Horne CR, Davies JS, Remus DM, Muscroft-Taylor AC, et al. “Just a spoonful of sugar”: import of sialic acid across bacterial cell membranes. Biophys Rev 2018;10:219–227.

60. Vimr ER, Kalivoda KA, Deszo EL, Steenberg SM, et al. Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev 2004;68:132–153.

61. Reddi G, Pruss K, Cottingham KL, Taylor RK, Almagro-Moreno S, et al. Catabolism of mucus components influences motility of Vibrio cholerae in the presence of environmental reservoirs. PLoS ONE 2018;13:e0201383.

62. Crost EH, Tailford LE, Monestier M, Swarbreck D, Henrissat B, et al. The mucin-degradation strategy of Ruminococcus gravis: The importance of intramembrane trans-sialidases. Gut Microbes 2016;7:302–312.

63. Uhde A, Brühl N, Goldbeck O, Matano C, Gurow O, et al. Transcription of sialic acid catabolism genes in Corynebacterium glutamicum is subject to catabolite repression and control by the transcriptional repressor NanR. J Bacteriol 2016;198:2204–2218.

64. Ward ME, Watt PJ, Glynn AA. Gonococci in urethral exudates possess a virulence factor lost on subculture. Nature 1970;227:382–384.

65. Nairn CA, Cole JA, Patel PV, Parsons NJ, Fox JE, et al. Cytidine 5’-monophospho-N-acetylneuraminic acid or a related compound is the low Mr factor from human red blood cells which induces gonococcal resistance to killing by human serum. Microbiology 1998;144:3295–3306.

66. Wetzler LM, Barry K, Blake MS, Gotschlich EC. Gonococcal lipooligosaccharide sialylation prevents complement-dependent killing by immune sera. Infect Immun 1992;60:39–43.

67. Gullet S, Schoenhofen IC, Whitfield DM, Cox AD, Li J, et al. Utilizing CMP-sialic acid analogs to unravel Neisseria gonor- rheae lipooligosaccharide-mediated complement resistance and design novel therapeutics. PLoS Pathog 2015;11:e1005290.

68. Ram S, Gullet S, Lewis LA, Chakrabarti S, Zheng B, et al. A novel sialylation site on Neisseria gonor- rheae lipooligosaccharide links heptose II lactose expression with pathogenicity. Infect Immun 2018;86.

69. Lewis LA, Gullet S, Burrowes E, Zheng B, Ram S, et al. t2-3, sialyltransferase expression level impacts the kinetics of lipooligosaccharide sialylation, complement resistance, and the ability of Neisseria gonor- rheae to colonize the murine genital tract. mBio 2015;6:e02465-14.

70. Apicella MA, Mandrell RE. Molecular mimicry as a factor in the pathogenesis of human nesserial infections: in vitro and in vivo modification of the lipooligosaccharide of Neisseria gonor- rheae by N-acetylneuraminic acid. Pediatr Infect Dis J 1989;8:901–902.

71. Jackson MD, Wong SM, Akerley BJ, et al. Sialic Acid Protects Nontypeable Haemophilus influenzae from Natural IgM and Promotes Survival in Murine Respiratory Tract. Infect Immun 2021;89:e00676-20.

72. Oerlemans MMP, Moons SJ, Heming JJA, Bolte TJ, de Jonge MI, et al. Uptake of sialic acid by nontypeable Haemophilus influ- enzae increases complement resistance through decreasing IgM-dependent complement activation. Infect Immun 2019;87:e00077-19.

73. Apicella MA, Coffin J, Ketterer M, Post DMB, Day CJ, et al. Nontypeable Haemophilus influenzae Lipooligosaccharide Expresses a Terminal Ketodeoxyoctanoate In Vivo. Which Can Be Used as a Target for Bactericidal Antibody. mBio 2018;9:e01401-18.

74. Jackson MD, Wong SM, Akerley BJ, Roy CR, et al. Underlying glycans determine the ability of sialylated lipooligosaccharide to protect nontypeable Haemophilus influenzae from serum IgM and complement. Infect Immun 2019;87:11.

75. Heise T, Langereis JD, Rossing E, de Jonge MI, Adema GJ, et al. Selective inhibition of sialic acid-based molecular mimicry in Haemophilus influenzae abrogates serum resistance. Cell Chem Biol 2018;25:1279-1285.

76. Ng PSK, Day CJ, Atack JM, Hartley-Tassell LE, Winter LE, et al. Nontypeable Haemophilus influenzae has evolved preferential use of N-acetylneuraminic acid as a host adaptation. mBio 2019;10:e00422-19.

77. Lopes GV, Ramires T, Kleinubing NR, Scheik LK, Fiorentini ÂM, et al. Virulence factors of foodborne pathogen Campylobacter jejuni. Microb Pathog 2021;161:105265.

78. Culebro A, Machado MP, Carrico JA, Rossi M, et al. Origin, evolution, and distribution of the molecular machinery for biosynthesis of sialylated lipooligosaccharide structures in Campylobacter coli. Sci Rep 2018;8:3028.

79. Sihavy TJ, Kahe D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol 2010;2:a000414.

80. Pier GB. Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. Int J Med Microbiol 2007;297:277–295.

81. Slauch JM, Lee AA, Mahan MJ, Mekalanos JJJ, et al. Molecular characterization of the oafA locus responsible for acetyla- tion of Salmonella typhimurium O-antigen: oafA is a member of a family of integral membrane trans-acylases. J Bacteriol 1996;178:5904–5909.

82. Lewis AL, Lubin J-B, Argade S, Naidu N, Choudhury B, et al. Genomic and metabolic profiling of nonulosonic acids in Vibrio- aceae reveal biochemical phenotypes of allelic divergence in Vibrio vulnificus. Appl Environ Microbiol 2011;77:5782-5793.

83. Lubin J-B, Lewis WJ, Gilbert NM, Weimer CM, Almagro-Moreno S, et al. Host-like carbohydrates promote bloodstream survival of Vibrio vulnificus in vivo. Infect Immun 2015;83:3126–3136.

84. Vinogradov E, St Michael F, Homma K, Sharma A, Cox AD, et al. Structure of the LPS O-chain from Fusobacterium nucle- atum strain 10953, containing sialic acid. Carbohydr Res 2017;440–441:38–42.

85. Zaric SS, Lappin MJ, Fulton CR, Lundy FT, Coultar WA, et al. Sialylation of Porphyromonas gingivalis LPS and its effect on bacterial-host interactions. Innate Immun 2017;23:319–326.

86. Vogel U, Weinberger A, Frank R, Müller A, Köhl J, et al. Complement factor C3 deposition and serum resistance in isogenic capsule and lipooligosaccharide sialic acid mutants of serogroup B Neisseria meningitidis. Infect Immun 1997;65:4022–4029.

87. Maxon ER, Kroll JS. The role of bacterial polysaccharide capsules as virulence factors. Curr Top Microbiol Immunol 1990;150:65–85.

88. Silver R, Vmir E. The Bacteria, vol. 11: Molecular Basis of Bacterial Pathogenesis. New York, NY: Academic Press, Inc; 1990.
89. Hammerschmidt S, Birkholz C, Zähringer U, Robertson BD, van Putten J, et al. Contribution of genes from the capsule gene complex (cps) to lipooligosaccharide biosynthesis and serum resistance in Neisseria meningitidis. Mol Microbiol 1994;11:885–896.

90. Segura M. Fisher scientific award lecture – the capsular polysaccharides of Group B Streptococcus and Streptococcus suis differently modulate bacterial interactions with dendritic cells. Can J Microbiol 2012;58:249–260.

91. Weiman S, Dahesh S, Carlin AF, Varki A, Nizet V, et al. Genetic and biochemical modulation of sialic acid O-acetylation on group B Streptococcus: phenotypic and functional impact. Glycobiology 2009;19:1204–1213.

92. Weiman S, Uchiyama S, Lin F- YC, Chaffin D, Varki A, et al. O-Acetylation of sialic acid on Group B Streptococcus inhibits neutrophil suppression and virulence. Biochem J 2010;428:163–168.

93. Uchiyama S, Sun J, Fukuhori K, Ando N, Wu M, et al. Dual actions of group B Streptococcus capsular sialic acid provide resistance to platelet-mediated antimicrobial killing. Proc Natl Acad Sci U S A 2019;116:7465–7470.

94. Auger J- P, Payen S, Roy D, Dumesnil A, Segura M, et al. Interactions of Streptococcus suis serotype 9 with host cells and role of the capsular polysaccharide: Comparison with serotypes 2 and 14. PLoS One 2019;14:e0223864.

95. Roy D, Takamatsu D, Okura M, Coyette-Desjardins G, Van Calsteren M-R, et al. Capsular sialyltransferase specificity mediates different phenotypes in Streptococcus suis and group B Streptococcus. Front Microbiol 2018;9:645.

96. Meng F, Wu NH, Nerlich A, Herrer G, Valentine-Weigand P, et al. Dynamic virus-bacterium interactions in a porcine precision-cut lung slice coinfection model: swine influenza virus paves the way for Streptococcus suis infection in a two-step process. Infect Immun 2015;83:2806–2815.

97. Tong J, Fu Y, Wu N- H, Rohde M, Meng F, et al. Sialic acid-dependent interaction of group B streptococci with influenza virus-infected cells reveals a novel adherence and invasion mechanism. Cell Microbiol 2018;20:2.

98. St Gome JW, Kumar VV, Cutter D, Barenkamp SJ. Prevalence and distribution of the hmw and hia genes and the HMW and Hia adhesins among genetically diverse strains of nontypable Haemophilus influenzae. Infect Immun 1998;66:364–368.

99. Barenkamp SJ, St Gome JW. Identification of a second family of high-molecular-weight adhesion proteins expressed by nontypable Haemophilus influenzae. Mol Microbiol 1996;19:1215–1223.

100. St Gome JW. The HMW1 adhesin of nontypable Haemophilus influenzae recognizes sialylated glycoprotein receptors on cultured human epithelial cells. Infect Immun 1994;62:3881–3889.

101. Attack JM, Day CJ, Poole J, Brockman KL, Bakalezto LS, et al. The HMW2 adhesin of nontypeable Haemophilus influenzae is a human-adapted lectin that mediates high-affinity binding to 2-6 linked N-acetylgalactosaminic acid glycans. Biomed Biophys Res Commun 2018;503:1103–1107.

102. Attack JM, Day CJ, Poole J, Brockman KL, Timms JRL, et al. The Nontypable Haemophilus influenzae major adhesin hia is a dual-function lectin that binds to human-specific respiratory tract sialic acid glycan receptors. mBio 2020;11:e02714-20.

103. Shinya K, Ebina M, Yamada S, Ono M, Kasai N, et al. Avian flu: influenza virus receptors in the human airway. Nature 2006;440:435–436.

104. Padra M, Benkander J, Padra JT, Andersson A, Brundin B, et al. Mucin binding to Moraxella catarrhalis during airway inflammation is dependent on sialic acid. Am J Respir Cell Mol Biol 2021;65:593–602.

105. Mahdavi J, Sondén B, Hurtig M, Olftat FO, Forsberg L, et al. Helicobacter pylori Saba adhesin in persistent infection and chronic inflammation. Science 2002;297:573–578.

106. Benkander J, Barone A, Johansson MM, Teneberg S, et al. Helicobacter pylori Saba binding gangliosides of human stomach. Virulence 2018;9:738–751.

107. Voland P, Weeks DL, Vaira D, Prinz C, Sachs G, et al. Specific identification of three low molecular weight membrane-associated antigens of Helicobacter pylori. Aliment Pharmacol Ther 2002;16:533–544.

108. Bennett HJ, Roberts IS. Identification of a new sialic acid-binding protein in Helicobacter pylori. FEMS Immunol Med Microbiol 2005;44:163–169.

109. Xia B, Sachdev GP, Cummings RD. Pseudomonas aeruginosa mucoid strain 8830 binds glycans containing the sialyl-Lewis x epitope. Glycoconj J 2007;24:87–95.

110. Tram G, Poole J, Adams FG, Jennings MP, Eijkelkamp BA, et al. The Acinetobacter baumannii autotransporter adhesin Ata recognizes host glycans as high-affinity receptors. ACS Infect Dis 2021;7:2352–2361.

111. Ryan PA, Pancholi V, Fischetti VA, et al. Group A streptococci bind to mucin and human pharyngeal cells through sialic acid-containing receptors. Infect Immun 2001;69:7402–7412.

112. De Oliveira DMP, Hartley-Tassell L, Everest-Dass A, Day CJ, Dabbas RA, et al. Blood group antigen recognition via the group A streptococcal M protein mediates host colonization. mBio 2017;8:e02237-16.

113. De Oliveira DMP, Everest-Dass A, Hartley-Tassell L, Day CJ, Indraratna A, et al. Human glycan expression patterns influence Group A streptococcal colonization of epithelial cells. FASEB J 2019;33:10808–10818.

114. Zhang Y, Lu P, Pan Z, Zhu Y, Ma J, et al. SsSP1, a Streptococcus suis fimbria-like protein transported by the SecY2/A2 system, contributes to bacterial virulence. Appl Environ Microbiol 2018;84:e01385-18.

115. Bensing BA, Li Q, Park D, Lebrilla CB, Sullam PM, et al. Streptococcal Siglec-like adhesins recognize different subsets of human plasma glycoproteins: implications for infective endocarditis. Glycobiology 2018;28:601–611.

116. Di Carluccio C, Forgione RE, Bosso A, Yokoyama S, Manabe Y, et al. Molecular recognition of sialoglycans by streptococcal Siglec- like adhesins: toward the shape of specific inhibitors. RSC Chem Biol 2021;2:1618–1630.

117. Oguchi R, Takahashi Y, Shimazu K, Urano-Tashiro Y, Kawarai T, et al. Contribution of Streptococcus gordonii Hsa adhesin to biofilm formation. Jpn J Infect Dis 2017;70:399–404.

118. Singh AK, Woodiga SA, Grau MA, King SJ, Pirofski L, et al. Streptococcus oralis neuraminidase modulates adhesion to multiple carbohydrates on platelets. Infect Immun 2017;85.

119. Gaytán MO, Singh AK, Woodiga SA, Patel SA, An S-S, et al. A novel sialic acid-binding adhesin present in multiple species contributes to the pathogenesis of Infective endocarditis. PLoS Pathog 2021;17:e1009222.

120. Ronis A, Brockman K, Singh AK, Gaytán MO, Wong A, et al. Streptococcus oralis subsp. dentisani produces monolateral serine-rich repeat protein fibrils, one of which contributes to saliva binding via sialic acid. Infect Immun 2019;87:10.

121. Aparicio D, Torres-Puig S, Ratera M, Querol E, Piñol J, et al. Mycoplasma genitalium adhesin P110 binds sialic-acid human receptors. Nat Commun 2018;9:4471.

122. Aparicio D, Scheffer MP, Marcos-Silva M, Vizarraga D, Sprankel L, et al. Structure and mechanism of the Nap adhesion complex from the human pathogen Mycoplasma genitalium. Nat Commun 2020;11:2877.

123. Williams CR, Chen L, Driver AD, Arnold EA, Sheppard ES, et al. Sialylated receptor setting influences Mycoplasma pneumoniae attachment and gliding motility. Mol Microbiol 2018;109:735–744.

124. Morio H, Kasai T, Miyata M, et al. Gliding direction of Mycoplasma mobile. J Bacteriol 2016;198:283–290.

125. Hamaguchi T, Kawakami M, Furukawa H, Miyata M, et al. Identification of novel protein domain for sialyloligosaccharide binding essential to Mycoplasma mobile gliding. FEMS Microbiol Lett 2019;396:fnz236. 
Five reasons to publish your next article with a Microbiology Society journal

1. The Microbiology Society is a not-for-profit organization.
2. We offer fast and rigorous peer review – average time to first decision is 4–6 weeks.
3. Our journals have a global readership with subscriptions held in research institutions around the world.
4. 80% of our authors rate our submission process as ‘excellent’ or ‘very good’.
5. Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.