A NEW CHARACTERIZATION OF q_{ω}-COMPACT ALGEBRAS

M. SHAHRYARI

Abstract. In this note, we give a new characterization for an algebra to be q_{ω}-compact in terms of super-product operations on the lattice of congruences of the relative free algebra.

AMS Subject Classification Primary 03C99, Secondary 08A99 and 14A99.
Keywords algebraic structures; equations; algebraic set; radical ideal; q_{ω}-compactness; filter-power; geometric equivalence; relatively free algebra; quasi-identity; quasi-variety.

1. Introduction

In this article, our notations are the same as [2], [3], [4], [5] and [6]. The reader should review these references for a complete account of the universal algebraic geometry. However, a brief review of fundamental notions will be given in the next section.

Let \mathcal{L} be an algebraic language, A be an algebra of type \mathcal{L} and S be a system of equation in the language \mathcal{L}. Recall that an equation $p \approx q$ is a logical consequence of S with respect to A, if any solution of S in A is also a solution of $p \approx q$. The radical $\text{Rad}_A(S)$ is the set of all logical consequences of S with respect to A. This radical is clearly a congruence of the term algebra $T_{\mathcal{L}}(X)$ and in fact it is the largest subset of the term algebra which is equivalent to S with respect to A. Generally, this logical system of equations with respect to A does not obey the ordinary compactness of the first order logic. We say that an algebra A is q_{ω}-compact, if for any system S and any consequence $p \approx q$, there exists a finite subset $S_0 \subseteq S$ with the property that $p \approx q$ is a consequence of S_0 with respect to A. This property of being q_{ω}-compact is equivalent to

$$\text{Rad}_A(S) = \bigcup_{S_0} \text{Rad}_A(S_0),$$

where S_0 varies in the set of all finite subsets of S. If we look at the map Rad_A as a closure operator on the lattice of systems of equations in the language \mathcal{L}, then we see that A is q_{ω}-compact if and only if Rad_A...
is an algebraic. The class of \(q_\omega \)-compact algebras is very important and it contains many elements. For example, all equationally noetherian algebras belong to this class. In [4], some equivalent conditions for \(q_\omega \)-compactness are given. Another equivalent condition is obtained in [7] in terms of geometric equivalence. It is proved that (the proof is implicit in [7]) an algebra \(A \) is \(q_\omega \)-compact if and only if \(A \) is geometrically equivalent to any of its filter-powers. We will discuss geometric equivalence in the next section. We will use this fact of [7] to obtain a new characterization of \(q_\omega \)-compact algebras. Although our main result will be formulated in an arbitrary variety of algebras, in this introduction, we give a simple description of this result for the case of the variety of all algebras of type \(\mathcal{L} \).

Roughly speaking, a super-product operation is a map \(C \) which takes a set \(K \) of congruences of the term algebra and returns a new congruence \(C(K) \) such that for all \(\theta \in K \), we have \(\theta \subseteq C(K) \). For an algebra \(B \) define a map \(T_B \) which takes a system \(S \) of equations and returns

\[
T_B(S) = \{ \text{Rad}_B(S_0) : S_0 \subseteq S, |S_0| < \infty \}.
\]

Suppose for all algebra \(B \) we have \(C \circ T_B \leq \text{Rad}_B \). We prove that an algebra \(A \) is \(q_\omega \)-compact if and only if \(C \circ T_A = \text{Rad}_A \).

2. Main result

Suppose \(\mathcal{L} \) is an algebraic language. All algebras we are dealing with, are of type \(\mathcal{L} \). Let \(V \) be a variety of algebras. For any \(n \geq 1 \), we denote the relative free algebra of \(V \), generated by the finite set \(X = \{ x_1, \ldots, x_n \} \), by \(F_V(n) \). Clearly, we can assume that an arbitrary element \((p, q) \in F_V(n)^2 \) is an equation in the variety \(V \) and we can denote it by \(p \approx q \). We introduce the following list of notations:

1- \(P(F_V(n)^2) \) is the set of all systems of equations in the variety \(V \).

2- \(\text{Con}(F_V(n)) \) is the set of all congruences of \(F_V(n) \).

3- \(\Sigma(V) = \bigcup_{n=1}^{\infty} P(F_V(n)^2) \).

4- \(\text{Con}(V) = \bigcup_{n=1}^{\infty} \text{Con}(F_V(n)) \).

5- \(\text{PCon}(V) = \bigcup_{n=1}^{\infty} P(\text{Con}(F_V(n))) \).

6- \(q_\omega(V) \) is the set of all \(q_\omega \)-compact elements of \(V \).

Note that, we have \(\text{Con}(V) \subseteq \Sigma(V) \). For any algebra \(B \in V \), the
map \(\text{Rad}_B : \Sigma(\mathbf{V}) \to \Sigma(\mathbf{V}) \) is a closure operator and \(B \) is \(q_\omega \)-compact, if and only if this operator is algebraic. Define a map

\[
T_B : \Sigma(\mathbf{V}) \to \text{PCon}(\mathbf{V})
\]

by

\[
T_B(S) = \{ \text{Rad}_B(S_0) : S_0 \subseteq S, \ |S_0| < \infty \}.
\]

Definition 1. A map \(C : \text{PCon}(\mathbf{V}) \to \text{Con}(\mathbf{V}) \) is called a super-product operation, if for any \(K \in \text{PCon}(\mathbf{V}) \) and \(\theta \in K \), we have \(\theta \subseteq C(K) \).

There are many examples of such operations; the ordinary product of normal subgroups in the varieties of groups is the simplest one. For another example, we can look at the map \(C(K) = \text{Rad}_B(\bigcup_{\theta \in K} \theta) \), for a given fixed \(B \in \mathbf{V} \). We are now ready to present our main result.

Theorem 1. Let \(C \) be a super-product operation such that for any \(B \in \mathbf{V} \), we have \(C \circ T_B \leq \text{Rad}_B \). Then

\[
q_\omega(\mathbf{V}) = \{ A \in \mathbf{V} : C \circ T_A = \text{Rad}_A \}.
\]

To prove the theorem, we first give a proof for the following claim. Note that it is implicitly proved in \([7]\) for the case of groups.

An algebra is \(q_\omega \)-compact if and only if it is geometrically equivalent to any of its filter-powers.

Let \(A \in \mathbf{V} \) be a \(q_\omega \)-compact algebra and \(I \) be a set of indices. Let \(F \subseteq P(I) \) be a filter and \(B = A^I / F \) be the corresponding filter-power. We know that the quasi-varieties generated by \(A \) and \(B \) are the same. So, these algebras have the same sets of quasi-identities. Now, suppose that \(S_0 \) is a finite system of equations and \(p \approx q \) is another equation. Consider the following quasi-identity

\[
\forall \mathbf{r}(S_0(\mathbf{r}) \to p(\mathbf{r}) \approx q(\mathbf{r})).
\]

This quasi-identity is true in \(A \), if and only if it is true in \(B \). This shows that \(\text{Rad}_A(S_0) = \text{Rad}_B(S_0) \). Now, for an arbitrary system \(S \), we have

\[
\text{Rad}_A(S) = \bigcup_{S_0} \text{Rad}_A(S_0) \\
= \bigcup_{S_0} \text{Rad}_B(S_0) \\
\subseteq \text{Rad}_B(S).
\]
Note that in the above equalities, S_0 ranges in the set of finite subsets of S. Clearly, we have $\text{Rad}_B(S) \subseteq \text{Rad}_A(S)$, since $A \leq B$. This shows that A and B are geometrically equivalent. To prove the converse, we need to define some notions. Let \mathfrak{X} be a prevariety, i.e., a class of algebras closed under product and subalgebra. For any $n \geq 1$, let $F_{\mathfrak{X}}(n)$ be the free element of \mathfrak{X} generated by n elements. Note that if $V = \text{var}(\mathfrak{X})$, then $F_{\mathfrak{X}}(n) = F_V(n)$. A congruence R in $F_{\mathfrak{X}}(n)$ is called an \mathfrak{X}-radical, if $F_{\mathfrak{X}}(n)/R \in \mathfrak{X}$. For any $S \subseteq F_{\mathfrak{X}}(n)^2$, the least \mathfrak{X}-radical containing S is denoted by $\text{Rad}_\mathfrak{X}(S)$.

Lemma 1. For an algebra A and any system S, we have
\[
\text{Rad}_A(S) = \text{Rad}_{\text{pvar}(A)}(S),
\]
where $\text{pvar}(A)$ is the prevariety generated by A.

Proof. Since $F_{\mathfrak{X}}(n)/\text{Rad}_A(S)$ is a coordinate algebra over A, so it embeds in a direct power of A and hence it is an element of $\text{pvar}(A)$. This shows that
\[
\text{Rad}_{\text{pvar}(A)}(S) \subseteq \text{Rad}_A(S).
\]
Now, suppose (p, q) does not belong to $\text{Rad}_{\text{pvar}(A)}(S)$. So, there exists $B \in \text{pvar}(A)$ and a homomorphism $\varphi : F_{\mathfrak{X}}(n) \to B$ such that $S \subseteq \ker \varphi$ and $\varphi(p) \neq \varphi(q)$. But, B is separated by A, hence there is a homomorphism $\psi : B \to A$ such that $\psi(\varphi(p)) \neq \psi(\varphi(q))$. This shows that (p, q) does not belong to $\ker(\psi \circ \varphi)$. Therefore, it is not in $\text{Rad}_A(S)$.

Note that, since $\text{pvar}(A)$ is not axiomatizable in general, so we cannot give a deductive description of elements of $\text{Rad}_A(S)$. But, for $\text{Rad}_{\text{var}(A)}(S)$ and $\text{Rad}_{\text{qvar}(A)}(S)$ this is possible, because the variety and quasi-variety generated by A are axiomatizable. More precisely, we have:

1- Let $\text{Id}(A)$ be the set of all identities of A. Then $\text{Rad}_{\text{var}(A)}(S)$ is the set of all logical consequences of S and $\text{Id}(A)$.

2- Let $\text{Q}(A)$ be the set of all identities of A. Then $\text{Rad}_{\text{qvar}(A)}(S)$ is the set of all logical consequences of S and $\text{Q}(A)$.

We can now, prove the converse of the claim. Suppose A is not q_ω-compact. We show that
\[
\text{pvar}(A)_\omega \neq \text{qvar}(A)_\omega.
\]
Recall that for and arbitrary class \mathfrak{X}, the notation \mathfrak{X}_ω denotes the class of finitely generated elements of \mathfrak{X}. Suppose in contrary we have the
equality

\[pvar(A)_{\omega} = qvar(A)_{\omega}. \]

Assume that \(S \) is an arbitrary system and \((p, q) \in \text{Rad}_A(S)\). Hence, the infinite quasi-identity

\[\forall \overline{x}(S(\overline{x}) \rightarrow p(\overline{x}) \approx q(\overline{x})) \]

is true in \(A \). So, it is also true in \(pvar(A) \). As a result, every element from \(qvar(A)_{\omega} \) satisfies this infinite quasi-identity. Let \(F_{A}(n) = F_{\text{var}(A)}(n) \). We have \(F_A(n) \in qvar(A)_{\omega} \) and hence \(\text{Rad}_{qvar(A)}(S) \) depends only on \(qvar(A)_{\omega} \). In other words, \((p, q) \in \text{Rad}_{qvar(A)}(S)\), so \(p \approx q \) is a logical consequence of the set of \(S + Q(A) \). By the compactness theorem of the first order logic, there exists a finite subset \(S_0 \subseteq S \) such that \(p \approx q \) is a logical consequence of \(S_0 + Q(A) \). This shows that \((p, q) \in \text{Rad}_{qvar(A)}(S_0)\). But \(\text{Rad}_{qvar(A)}(S_0) \subseteq \text{Rad}_A(S_0) \). Hence \((p, q) \in \text{Rad}_A(S_0)\), violating our assumption of non-\(q_{\omega} \)-compactness of \(A \). We now showed that

\[pvar(A)_{\omega} \neq qvar(A)_{\omega}. \]

By the algebraic characterizations of the classes \(pvar(A) \) and \(qvar(A) \), we have

\[SP(A)_{\omega} \neq SPP_u(A)_{\omega}, \]

where \(P_u \) is the ultra-product operation. This shows that there is an ultra-power \(B \) of \(A \) such that

\[SP(A)_{\omega} \neq SP(B)_{\omega}. \]

In other words the classes \(pvar(A)_{\omega} \) and \(pvar(B)_{\omega} \) are different. We claim that \(A \) and \(B \) are not geometrically equivalent. Suppose this is not the case. Let \(A_1 \in pvar(A)_{\omega} \). Then \(A_1 \) is a coordinate algebra over \(A \), i.e. there is a system \(S \) such that

\[A_1 = \frac{F_V(n)}{\text{Rad}_A(S)}. \]

Since \(\text{Rad}_A(S) = \text{Rad}_B(S) \), so

\[A_1 = \frac{F_V(n)}{\text{Rad}_B(S)}, \]

and hence \(A_1 \) is a coordinate algebra over \(B \). This argument shows that

\[pvar(A)_{\omega} = pvar(B)_{\omega}, \]

which is a contradiction. Therefore \(A \) and \(B \) are not geometrically equivalent and this completes the proof of the claim. We can now complete the proof of the theorem. Assume that \(C \circ T_A = \text{Rad}_A \). We show that \(A \) is geometrically equivalent to any of its filter-powers. So,
let $B = A^I/F$ be a filter-power of A. Note that we already proved that for a finite system S_0, the radicals $\text{Rad}_A(S_0)$ and $\text{Rad}_B(S_0)$ are the same. Suppose that S is an arbitrary system of equations. We have

$$\text{Rad}_A(S) = C(T_A(S)) = C(\{\text{Rad}_A(S_0) : S_0 \subseteq S, |S_0| < \infty\}) \subseteq \text{Rad}_B(S).$$

So we have $\text{Rad}_A(S) = \text{Rad}_B(S)$ and hence A and B are geometrically equivalent. This shows that A is q_ω-compact. Conversely, let A be q_ω-compact. For any system S, we have

$$\text{Rad}_A(S) = \bigcup_{S_0} \text{Rad}_A(S_0) = \bigvee \{\text{Rad}_A(S_0) : S_0 \subseteq S, |S_0| < \infty\} = \bigvee T_A(S),$$

where \bigvee denotes the least upper bound. By our assumption, $C(T_A(S)) \subseteq \text{Rad}_A(S)$, so $C(T_A(S)) \subseteq \bigvee T_A(S)$. On the other hand, for any finite $S_0 \subseteq S$, we have $\text{Rad}_A(S_0) \subseteq C(T_A(S))$. This shows that

$$C(T_A(S)) = \bigvee T_A(S),$$

and hence $C \circ T_A = \text{Rad}_A$. The proof is now completed.

REFERENCES

[1] Baumslag G., Myasnikov A., Remeslennikov V. Algebraic geometry over groups, I. Algebraic sets and ideal theory. J. Algebra, 1999, 219, pp. 16-79.

[2] Daniyarova E., Myasnikov A., Remeslennikov V. Unification theorems in algebraic geometry. Algebra and Discrete Mathamatics, 2008, 1, pp. 80-112.

[3] Daniyarova E., Myasnikov A., Remeslennikov V. Algebraic geometry over algebraic structures, II: Fundations. J. Math. Sci., 2012, 185 (3), pp. 389-416.

[4] Daniyarova E., Myasnikov A., Remeslennikov V. Algebraic geometry over algebraic structures, III: Equationally noetherian property and compactness. South. Asian Bull. Math., 2011, 35 (1), pp. 35-68.

[5] Daniyarova E., Myasnikov A., Remeslennikov V. Algebraic geometry over algebraic structures, IV: Equational domains and co-domains. Algebra and Logic, 49 (6), pp. 483-508.

[6] Modabberi P., Shahryari M. Equational conditions in universal algebraic geometry. Algebra and Logic, 2015, to appear.

[7] Myasnikov A., Remeslennikov V. Algebraic geometry over groups, II. Logical Foundations. J. Algebra, 2000, 234, pp. 225-276.

[8] Plotkin B. Seven lectures in universal algebraic geometry, 2002, arXiv:math/0204245.
A NEW CHARACTERIZATION OF q_ω-COMPACT ALGEBRAS

M. Shahryari: Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran

E-mail address: mshahryari@tabrizu.ac.ir