1. INTRODUCTION

Over the past decade, increasingly accurate helioseismic observations from ground-based and space-based instruments have given us a reasonably good description of the dynamics of the solar interior (e.g., Schou et al. 1998; Thompson et al. 2003). Helioseismic inferences have confirmed that the differential rotation observed at the surface persists throughout the convection zone. There appears to be very little, if any, variation of the rotation rate with latitude in the outer radiative zone (0 < r/R⊙ < 0.7). In that region the rotation rate is almost constant (≈430 mHz), while at the base of the convection zone, a shear layer, known as the tachocline, separates the region of differential rotation throughout the convection zone from the region with rigid rotation in the radiative zone.

Despite the large scatter among the rotational splittings that are sensitive to the solar core (see discussion in Eff-Darwich et al. 2002), we can rule out an inward increase or decrease of the solar internal rotation rate down to r/R⊙ ≈ 0.25, by more than 20% of the surface rate at midlatitude (Chaplin et al. 1999; Eff-Darwich et al. 2002; Couston et al. 2003). This is in clear disagreement with the theoretical hydrodynamical models that predict a much faster rotation in the solar core, namely 10 to 50 times faster than the surface rate (e.g., Thompson et al. 2003).

More recently, Garcia et al. (2004) and Korzennik (2005) have independently developed new mode-fitting procedures to improve the quality and precision of the characterization of the modes that are sensitive to the rotation in the solar core. By using very long time series (spanning nearly 6 years of observations) collected with the MDI (Scherrer et al. 1995), GONG (Harvey et al. 1996), and GOLF (Gabriel et al. 1995) instruments, they have measured rotational splittings for modes with frequencies as low as 1.1 mHz.

We present here an attempt to constrain the radial and latitudinal distribution of the rotation rate in the radiative interior through the inversion of a combined MDI, GONG, and GOLF data set. We also attempt to establish the sensitivity of helioseismic data sets to the dynamics of the inner solar radiative interior, as well as the level of accuracy that helioseismic data should have to resolve the solar core.

2. THEORETICAL BACKGROUND

The starting point of all linear rotational helioseismic inversion methodologies is the functional form of the perturbation in frequency, Δf_{nlm}, induced by the rotation of the Sun, Ω(r, θ), and given by (see derivation in Hansen et al. 1977)

$$Δf_{nlm} = \frac{1}{2π} \int_0^R \int_0^π K_{nlm}(r, θ)Ω(r, θ) dr dθ \pm ε_{nlm}$$ (1)

The perturbation in frequency, Δf_{nlm}, with the observational error, ε_{nlm}, that corresponds to the rotational component of the frequency splittings, is given by the integral of the product of a sensitivity function, or kernel, K_{nlm}(r, θ), with the rotation rate, Ω(r, θ), over the radius, r, and the colatitude, θ. The kernels, K_{nlm}(r, θ), are known functions of the solar model.

Equation (1) defines a classical inverse problem for the Sun’s rotation. The inversion of this set of M integral equations (one for...
each measured $\Delta \nu_{nlm}$ allows us to infer the rotation rate profile as a function of radius and latitude from a set of observed rotational frequency splittings (hereafter referred as splittings).

The inversion method we use is based on the regularized least-squares methodology (RLS). The RLS method requires the discretization of the integral relation to be inverted. In our case, equation (1) is transformed into a matrix relation

$$D = Ax + \epsilon,$$

where D is the data vector, with elements $\Delta \nu_{nlm}$ and dimension M, x is the solution vector to be determined at N model grid points, A is the matrix with kernels of dimension $M \times N$, and ϵ is the vector containing the corresponding observational uncertainties.

The RLS solution is the one that minimizes the quadratic difference $\chi^2 = (Ax - D)^T (Ax - D)$, with a constraint given by a smoothing matrix, $H = G^T G$, introduced in order to lift the singular nature of the problem (for additional details, see Efth-Darwich & Pérez-Hernández 1997). The matrix G represents the first-order discrete differential operator, although it will be shown below that the inversion technique we have developed is to a first-order approximation independent of the choice of G. The general relation to be minimized is

$$S(x) = (Ax - D)^T (Ax - D) + \gamma x H x,$$

where γ is a scalar introduced to give a suitable weight to the constraint matrix H on the solution. Hence, the function x is approximated by

$$x_{\text{est}} = (A^T A + \gamma H)^{-1} A^T D.$$ \hspace{1cm} (4)

Replacing D from equation (2), we obtain

$$x_{\text{est}} = (A^T A + \gamma H)^{-1} A^T A x \equiv Rx,$$ \hspace{1cm} (5)

hence

$$R = (A^T A + \gamma H)^{-1} A^T A.$$ \hspace{1cm} (6)

The matrix R, which combines forward and inverse mapping, is referred to as the resolution or sensitivity matrix (Friedel 2003). Ideally, R would be the identity matrix, which corresponds to perfect resolution. However, if we try to find an inverse with a resolution matrix R close to the identity, the solution is generally dominated by the noise magnification. The individual columns of R display how anomalies in the corresponding model are imaged by the combined effect of measurement and inversion. In this sense, each element R_{ij} reveals how much of the anomaly in the ith in-version model grid point is transferred into the jth grid point. Consequently, the diagonal elements R_{ii} state how much of the information is saved in the model estimate and may be interpreted as the resolvability or sensitivity of x_i. We defined the sensitivity λ_i of the grid point x_i to the inversion process as follows:

$$\lambda_i = \frac{R_{ii}}{\sum_{j=1}^{N} R_{ij}}.$$ \hspace{1cm} (7)

With this definition, a lower value of λ_i means a lower sensitivity of x_i to the inversion of the solar rotation. We define a smoothing vector W with elements $w_i = \lambda_i^{-1}$ that is introduced in equation (4) to complement the smoothing parameter γ, namely

$$x_{\text{est}} = (A^T A + \gamma W H)^{-1} A^T D.$$ \hspace{1cm} (8)

Such substitution allows us to apply different regularizations to different model grid points x_i whose sensitivities depend on the data set used in the inversions. In this sense, the inversion is a two-step process: first R is obtained from equation (5) for a small value of the regularization parameter γ. Then, the smoothing vector W is calculated through equation (7), and the inversion estimates are obtained through equation (8). A set of results can be calculated
for different values of γ, the optimal solution being the one with the best tradeoff between error propagation and the quadratic difference $\chi^2 = |Ax - D|^2$ as introduced in Eff-Darwich & Pérez-Hernández (1997).

In this paper we show how to use the matrix R to study the sensitivity of helioseismic data sets to the rotation rate of the solar interior. Consequently, we present a theoretical analysis of the effect of adding low frequency and low degree p-modes, high frequency and low degree p-modes, and g-modes on the rotation rate of the solar core derived through numerical helioseismic inversion techniques.

3. OBSERVATIONAL MODE PARAMETERS AND INVERSION RESULTS FROM 2088 DAY MDI, GOLF, AND GONG TIME SERIES

The work presented here is based on rotational frequency splittings measured from observations by the GONG ground-based network and the MDI and GOLF experiments on board the SOHO spacecraft. All rotational splittings were computed from 2088 day time series, starting 1996 April 30 and ending 2002 January 17, as summarized in Table 1.

The three data sets KM, KG, and GG (see Table 1 for explanations) contain for the first time very low frequency rotational splittings ($\nu < 1.7$ mHz). These low-frequency modes provide data of exceptional quality, since the width of the mode peaks is much smaller than the rotational splitting. It is therefore much easier to separate the rotational splittings from the effects caused by the finite lifetime and the stochastic excitation of the modes.

The data set SM (see again Table 1) was obtained by averaging all the data sets resulting from fitting the 72 day MDI time series (Schou et al. 1998) that overlap the 1996 April 30 to 2002 January 17 period. The averaging process reduces significantly the number of $\ell < 8$ modes in that data set.

Since these data sets have been calculated from different time series and peak-fitting techniques, one can expect some differences among them. When using different time series, the mode parameters can be affected by the changing solar activity cycle. Moreover,
fitting techniques can give different results if they are applied to either individual peaks or ridges (Korzennik 2005). Differences between MDI, GOLF, and GONG can also arise from systematics introduced by the merging process used by GONG to obtain single time series from multiple stations located worldwide. Differences may also come from the different spatial filters and leakage matrices that are used to isolate the signal of an individual mode (Korzennik 2005; Chaplin et al. 2006). In any case, we combined the various data sets into a single set, following the prescription described in Table 2. Our newly developed inversion methodology was applied to the combined set to infer the rotation rate in the solar interior.

Figure 1 shows the observational frequency splitting uncertainties of the combined data set as a function of radial order and degree, whereas Figures 2 and 3 show the splittings uncertainties for sectoral modes as a function of a proxy of the inner turning point of the modes, ℓ/ν, and as a function of frequency, ν, respectively. These plots clearly illustrate the well-known and challenging fact that only a small number of modes penetrate the solar core and that the largest uncertainties are associated with these modes. Indeed, the combined data set does not include low-degree high-frequency modes (i.e., ℓ < 4 and ν > 2.2 mHz), since at higher frequencies unwanted bias appears in the estimated splittings due to the difficulty in separating the effect of rotational splitting from the limited lifetime of the modes (Appourchaux et al. 2000; Chaplin et al. 2006).

The inversion of the combined MDI-GOLF-GONG data (see Fig. 4) confirms that the well-known differential rotation observed at the surface persists throughout the convection zone. Although only ℓ < 25 modes were used in the inversion, it was possible to infer the rotation rate in the convection zone as a result of the exceptional quality of the low-frequency splittings (ν < 1.7 mHz) obtained by Korzennik (2005). The differential rotation changes abruptly at approximately 0.7 R$_\odot$ to rigid rotation throughout the radiative zone. The radial distribution of the rotation is approximately flat, at a rate of ~430 mHz, decreasing below 0.2 R$_\odot$. The tendency below 0.15 R$_\odot$ is not real and results from extrapolation of the trend seen at larger radii, as explained in the following section.

4. SENSITIVITY ANALYSIS FOR THE INVERSION OF THE SOLAR RADIATIVE INTERIOR

A theoretical analysis was carried out in order to determine the effect of different low-degree mode sets on the derivations of the solar rotation rate of the inner radiative interior. Four different artificial data sets, hereafter referred to as A_1 to A_4, were calculated using equation (1) and an artificial rotation rate $\Omega_\ell(r, \theta)$ that is shown in Figure 5. The different artificial data sets correspond to different mode sets and/or uncertainties, as explained in Table 3.

Table 3

DATA SET	$\ell = 1$ (mHz)	$\ell = 2, 3$ (mHz)	$\ell > 3$ (mHz)
A_1	$1 \leq \nu \leq 2.2$	$1 \leq \nu \leq 2.2$	$1 \leq \nu \leq 3.9$
A_2	$1 \leq \nu \leq 3.9$	$1 \leq \nu \leq 3.9$	$1 \leq \nu \leq 3.9$
A_3	$1 \leq \nu \leq 3.9$	$1 \leq \nu \leq 3.9$	$1 \leq \nu \leq 3.9$
A_4	$0.1 \leq \nu \leq 2.2$	$0.1 \leq \nu \leq 2.2$	$1 \leq \nu \leq 3.9$

a Data set A_1 differs from data set A_2 in its uncertainties; the uncertainties for $\ell < 4$ are set to be the ones for the sectoral splittings of $\ell = 25$.

b One $\ell = 1$ and one sectoral $\ell = 2$ g-mode rotational splitting were added to the A_1 data set.

Fig. 6. Sensitivities of the solar rotation at the equator for sets A_1 to A_4, represented by solid, dotted, dashed, and dot-dashed lines, respectively.

Fig. 7. Sensitivities to set A_4 of the solar rotation at different latitudes: equator (solid line), 30° (dotted lines), 60° (dashed lines), and 80° (dot-dashed lines).
The observational uncertainties (standard errors) were taken from the combined mode set used in x_3, while the noise added to the artificial data was calculated from normal distribution with the observed uncertainties. The A_1 data set contains the same mode set as the combined MDI-GOLF-GONG data set. Errors for g-modes were arbitrarily set to 6 nHz (the mean of the observational uncertainties for the acoustic mode splittings), since at present there are no reliable estimates for the uncertainties of g-mode frequency splittings. In any case, we are interested in the behavior of the inversion methodology when g-modes are added, rather than in the results of the inversion for different values of the splittings and the observational errors.

The sensitivity vector, Λ, was computed for the four artificial data sets, as illustrated in Figures 6 and 7, where the sensitivities, λ_i, for the rotation rate in the solar interior are presented as a function of the radius, for each artificial data set at the equator or for several latitudes for a given set. The data sets A_1 and A_2 are significantly less sensitive to the rotation of the solar core than the other sets. Although the A_2 set includes the same high-frequency modes as set A_1, the errors of the A_2 set are significantly larger, and hence the sensitivities do not differ from those obtained for the A_1 set. The addition of two g-modes (in set A_4) significantly increases the sensitivity to the solar core. However, it is important to note that even with the addition of g-modes, the sensitivity at the solar core varies with the latitude, as illustrated in Figure 7. For all sets, the sensitivities at the equatorial regions of the solar core are larger than the sensitivities at other latitudes.

The effect on the sensitivity vector of the choice of the smoothing matrix H is presented in Figure 8, where the equatorial sensitivities λ_i for the first, second, and third order discrete differential operators G are shown. The larger the order of the operator G, the larger the sensitivity, except near the edges, and in particular at the core. The smoothing vector W is obtained from the sensitivity vector Λ, and hence the regularization constraint will depend not only on the mode set, but also on the shape of G.

The choice of the number and spatial distribution of the model grid points, N, is an important aspect of the inversion process. In nonadaptive regularization inversions, decreasing the number of grid points is in itself a form of regularization. The inversion procedure described here will also adjust to the distribution of grid points. This is illustrated in Figure 9, where we show that the variation of the inversion sensitivities (and hence the regularization constraints) is not constant with radius and latitude when the...
number of grid points is changed. In this sense, the a priori choice of the distribution of model grid points will not constrain the inversion results.

The inversion methodology developed for the work presented here differs from standard RLS techniques by introducing a smoothing vector W. The purpose of this vector is to avoid oversmoothing the inversion solution in certain regions of the solar interior and thereby loose valuable information. This is illustrated in Figure 10, where two different inversions of the same data set are presented, namely a standard RLS inversion (no vector W is added; dotted line), and the newly developed RLS inversion (solid line). The standard RLS inversion tends to oversmooth and hence to assign unrealistically low errors to the estimated rotation in the convection zone to get a stable solution in the radiative regions. However, when W is added to the inversion procedure, the oversmoothing problem in the convection zone is mitigated, since the sensitivities k_i in the convection zone are larger, and hence the smoothing coefficients w_i are lower. The standard RLS technique would assign the same smoothing coefficients to all model grid points in the inversion.

The correspondence between the sensitivity analysis shown in Figures 6 and 7 and the information contained in the resolution matrix R is illustrated in Figures 11, 12, and 13, where we show the resolution vector corresponding to the estimate at the equator for $r_i = 0.06 R_\odot$. This corresponds to the averaging kernel defined by Backus & Gilbert (1970) for the optimal localized averages technique. In the ideal case, the resolution should be unity at the location where the solution is estimated and zero elsewhere. Only in the inversion of the A_4 set is the largest amplitude of the resolution vector centered at $r_i = 0.06 R_\odot$, and thus the result is reliable. The poor localization of the resolution at $r_i = 0.06 R_\odot$ for the inversions of the A_1 and A_3 sets could not be improved by any inversion technique. However, this lack of resolution is taken into account by the sensitivity analysis, since it evaluates low sensitivities and hence assigns large regularizations to those grid points. At larger radii both the location and the amplitude of the resolution are significantly increased, as illustrated in Figure 14, where we show the resolution corresponding to the estimate at the equator, but for $r_i = 0.20 R_\odot$.

The conclusions derived from Figures 6 and 7 can also be drawn from the inversions of the data sets, as illustrated in Figures 15–18. Figures 15 and 16 show the inverted profile and error distribution for the A_1 set at several latitudes and demonstrates that there is

Fig. 12.—Plot of the resolution vector ($R_{ij}, j = 1, N$), calculated for set A_1 corresponding to the inversion estimated, as in Fig. 11, at the equator, for $r_i = 0.06 R_\odot$.

Fig. 13.—Plot of the resolution vector ($R_{ij}, j = 1, N$), calculated for set A_3 corresponding to the inversion estimated, as in Fig. 11, at the equator, for $r_i = 0.06 R_\odot$.

Fig. 14.—Plot of the resolution vector ($R_{ij}, j = 1, N$), calculated for set A_4 corresponding to the inversion estimated at the equator, but for $r_i = 0.20 R_\odot$ (indicated by vertical dotted lines).

Fig. 15.—Inversion of set A_1 as a function of radius at different latitudes: equator (solid line), 30° (dotted line), 60° (dashed lines), and 80° (dot-dashed lines). The artificial rotation rate used to calculate the input set is shown as thin lines.
good sensitivity to the latitudinal variation in the radiative rotation rate above $r \approx 0.3 \ R_\odot$. Hence, the absence of differential rotation for the solar rotation rate in the radiative interior (Fig. 4) is real, not an artifact of the inversion procedure. The unrealistically flat rotation rate below $r \approx 0.15 \ R_\odot$ resulting from the inversions of the A_1 and A_2 sets is due to the lack of sensitivity of the mode set to that region. As a result, the inversion extrapolates the trend of the solution at larger radii. There are no significant differences in the inversions of sets A_1 and A_2, although set A_2 includes low-degree and high-frequency modes. However, the new information contained in the low-degree and high-frequency modes of set A_2 is lost due to their large observational uncertainties. In all four cases, larger differences between the artificial and the inverted rotation rates are seen at higher latitudes, especially in the radiative interior, as a result of the lack of sensitivity of the inversions to the polar regions.

Only in the cases of sets A_3 and A_4 (see Fig. 17) was it possible to infer the main trends of the rotation rate below $r \approx 0.15 \ R_\odot$. However, it was necessary to include either data with unrealistically small observational errors (set A_3), or a couple of g-modes (set A_4), modes that have yet to be unambiguously observed. The most likely way to reduce the observational uncertainties consists of increasing the length of the time series. Figure 19 compares the observational errors for the $\ell = 25$ sectoral modes for five 728 day data sets to the 2088 day data set, all estimated by Korzennik (2005). The formal observational uncertainties are proportional to the square root of the length of the time series; hence, it would be necessary to observe for decades to reduce the observational uncertainties of the very low degree modes to the current levels of the $\ell = 25$ modes, all the while assuming that we can also reduce the residual bias in our current estimates of the low-degree and high-frequency splittings (see discussions in Appourchaux et al. 2000; Chaplin et al. 2006).

5. CONCLUSIONS

We have used for the first time a combined MDI-GOLF-GONG data set of rotational frequency splittings that covers the largest possible frequency range, spanning from 1.1 to 3.9 mHz.
This mode set was determined from 2088 day time series acquired by the MDI, GOLF, and GONG instruments and analyzed independently by several authors, namely Korzennik (2005), Garcia et al. (2004), Gelly et al. (2002), Schou et al. (1998), and Jiménez-Reyes (2000). Very low frequency splittings ($\nu < 1.7$ mHz) were included to improve the precision and the resolution of the inversion in the solar interior.

In order to optimally invert this unique data set, we implemented a new inversion methodology that combines the regularized least-squares technique with an analysis of the sensitivity of the solution at all model grid point to the mode set being inverted. The inversion of the actual MDI-GOLF-GONG data set reveals that the Sun rotates as a rigid solid in most of the radiative interior and slows down below $0.2 R_\odot$.

The calculation of the sensitivity vector Λ offers a rapid and intuitive way of evaluating the sensitivity of helioseismic data to the dynamics of the solar interior, in particular in the core ($r < 0.25 R_\odot$). We conclude that with the present accuracy of the available splittings, it is not possible to derive the dynamical conditions below $r \approx 0.2 R_\odot$. This results from the relatively large observational uncertainties of the modes sensitive to the solar core, in particular the low-degree and high-frequency modes. The level of uncertainty that is needed to infer the dynamical conditions in the core when only including p-modes is unlikely to be reached in the near future, and hence sustained efforts are needed toward the detection and characterization of g-modes.

The Solar Oscillations Investigation-Michelson Doppler Imager project on SOHO is supported by NASA grant NAS5–3077 at Stanford University. SOHO is a project of international cooperation between ESA and NASA. The GONG project is funded by the National Science Foundation through the National Solar Observatory, a division of the National Optical Astronomy Observatories, which is operated under a cooperative agreement between the Association of Universities for Research in Astronomy and the NSF. This work was funded by the Spanish grant AYA2004-04462. S. G. K. was supported by NASA grants NAG5–13501 and NNG05GD58G, and by NSF grant ATM–0318390.

REFERENCES

Appourchaux, T., Chang, H. Y., Gough, D. O., & Sekii, T. 2000, MNRAS, 319, 365
Backus, G., & Gilbert, F. 1970, Phil. Trans. R. Soc. London, 266, 123
Chaplin, W. J., Christensen-Dalsgaard, J., Elsworth, Y., Howe, R., Isaak, G. R., Larsen, R. M., New, R., Schou, J., Thompson, M. J., & Tomczyk, S. 1999, MNRAS, 308, 405
Chaplin, W. J., et al. 2006, MNRAS, 369, 985
Couvidat, S., Garcia, R. A., Turck-Chièze, S., Corbard, T., Henney, C. J., & Jiménez-Reyes, S. 2003, ApJ, 597, L77
Eff-Darwich, A., Korzennik, S. G., & Jiménez-Reyes, S. J. 2002, ApJ, 573, 857
Eff-Darwich, A., Pérez-Hernández, F. 1997, A&AS, 125, 1
Friedel, S. 2003, Geophys. J. Int., 153, 305
Gabriel, A. H., et al. 1995, Sol. Phys., 162, 61
Garcia, R. A., et al. 2004, Sol. Phys., 220, 269
Gelly, B., Lazrek, M., Grec, G., Ayad, A., Schneider, F. X., Renaud, C., Salabert, D., & Fossat, E. 2002, A&A, 394, 285
Hansen, C. J., Cox, J. P. and van Horn, H. M. 1977, ApJ, 217, 151
Harvey, J. W., et al. 1996, Science, 272, 1284
Jiménez-Reyes, S. J. 2000, Thesis Dissertation, Univ. La Laguna, Tenerife
Korzennik, S. G. 2005, ApJ, 626, 585
Scherrer, P. H., et al. 1995, Sol. Phys., 162, 129
Schou, J., et al. 1998, ApJ, 505, 390
Thompson, M. J., Christensen-Dalsgaard, J., Miesch, M. S., & Toomre, J. 2003, ARA&A, 41, 599