An epidemiological investigation of leukemia incidence between 2003 and 2007 in Nanjing, China

Bao-An Chen*1,14, Zhi-Hu Huang1,14, Xiao-Ping Zhang1,14, Jian Ou-Yang2,14, Jian-Yong Li3,14, Yong-Ping Zhai4,14, Xue-Mei Sun5,14, Yan-Li Xu6,14, Qin Lu7,14, Jian-Min Wang8,14, Dong Li9,14, Hui Liao10,14, Zhi-Xiang Shen11, Yan-Yan Wang11, Xiao-Jing Yu12, Hui Ye13 and Li-Ying Zhuang13

Abstract

Background: There has been little literature about leukemia epidemiology in Nanjing in recent years. We aimed to explore the incidence rate, gender and age distribution of leukemia in Nanjing using the leukemia database of the city.

Results: The average yearly incidence rate of leukemia was 3.68/10^5 during 2003 - 2007 in Nanjing. There were no significant difference in gender (x^2 = 3.266, p > 0.05) or seasons (x^2 = 11.36, p > 0.05). The incidence rate was the highest in group aged 80+ years (18.64/10^5). AML accounted for approximately 36.8% of all leukemias.

Conclusions: The incidence rate of leukemia, especially in the aged population, was relatively high in Nanjing. Leukemia is the major malignant tumor in children. Therefore, more attention should be paid to leukemia in children and the aged people.

To the Editor

Nanjing, an ancient capital and the second largest city in southeast China, enjoys a worldwide reputation for its long history and splendid culture. Little has been reported regarding leukemia epidemiology of the city in recent years. The present study was to investigate the leukemia incidence rate in Nanjing during 2003-2007, which may be of help to further leukemia etiology research.

The leukemia data were collected from all hospitals which are capable of making a definite diagnosis of leukemia. We diagnosed leukemia by blood test, bone marrow puncture, histochemical staining and typing and classified by the "French American British" classification. The population data were provided by Nanjing Public Security Bureau and Nanjing Statistical Yearbook in 2007. There were 1,095 cases of various types of leukemia, while the total population in Nanjing during 2003-2007 was 29.7603 million, so the overall average annual incidence rate of leukemia was 3.68/10^5 and the age-standardized incidence rate was 3.47/10^5. The result was higher than that of the entire nation (2.76/10^5) [1], but lower than that in some other cities in China, such as: Shenyang(4.83/10^5) [2] and Tianjin during 1981-2000(4.71/10^5) [3]. Moreover, compared with the whites’ leukemia incidence rate (12.8/10^5), it was lower.

Table 1 shows incidence rates of all types of leukemia in every age group in Nanjing during 2003 to 2007. The leukemia incidence rate in old age groups was generally high, and reached to the peak in group aged 80+ years (18.64/10^5), AML accounted for approximately 36.8% of all leukemias.

* Correspondence: cba8888@hotmail.com
1 Department of Hematology, Zhongda Hospital Affiliated to Southeast University, Nanjing, PR China
Full list of author information is available at the end of the article
Interestingly, AML accounted for approximately 25% of all leukemias in adults and 15%-20% in patients age ≤ 15 years in the Western world[7], which were both much lower than 36.8% in our research. The incidence rates of all types of leukemia especially non-AML types were lower in Nanjing.

The composition ratio of different subtypes of AML were: M2(36.17%), M3(26.60%), M5(11.35%), M4(10.28%), M1(6.74%), M6(4.96%), M7(2.13%), M0(1.77%), respectively. These were similar to the reports in the literature [8,9].

By chi-square test, no significant difference was found between genders (χ² = 3.266, p > 0.05) or among seasons (χ² = 11.36, p > 0.05). And the 5-year incidence rate is relatively stable.

Current study has provided detailed information of the leukemia epidemiology in Nanjing during the period 2003-2007. Long-term follow-up investigations are needed for better understanding of characteristics of leukemia in Nanjing, including etiology, survival and risk indicators, which may lend support to the corresponding protocols for prevention and intervention.

Abbreviations

FAB: French-American-British Cooperation Group; ALL: acute lymphocytic leukaemia; AML: acute myeloid/myelogenous leukemia; CLL: chronic lymphocytic leukemia; CML: chronic myelocytic leukemia; AUL: acute unclassificatied leukemia.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Bao-An Chen, Zhi-Hu Huang and Xiao-Ping Zhang collected the data and contributed to analysis and writing. Jian Ou-Yang, Jian-Yong Li, Yong-Ping Zhai, Xue-Mei Sun, Yan-Li Xu, Qin Lu, Jian-Min Wang, Dong Li, Hui Liao, Zhi-Xiang Shen, Yan-Yan Wang collected the data. Xiao-Jing Yu, Hui Ye, Li-Ying Zhuang did the statistical analyses.

Acknowledgements

We thank Nanjing Public Security Bureau for providing the population figures. This work was also supported by grants from Nanjing Medical Science and Technology Development Fundation(No. ZKX08015).

Table 1: Leukemia subtype incidence between 2003 to 2007 for different age groups in Nanjing, China

Age (year)	Rate(1/105)	AML	ALL	AUL	CLL	CML	Other	Total
0~ 0.49	0.49	2.95	0.49	0.46	0	0.12	0	3.93
1~ 0.23	0.23	3.60	0.46	0	0.12	0	4.41	
5~ 0.48	0.48	1.51	0.14	0.07	0.14	0	2.34	
10~ 0.77	0.77	0.68	0.14	0.1	0	0.05	1.74	
15~ 0.43	0.43	1.06	0.09	0	0.26	0.04	1.87	
20~ 1.15	1.15	0.92	0.15	0.04	0.42	0.15	2.85	
25~ 0.75	0.75	0.37	0	0.04	0.45	0	1.61	
30~ 0.56	0.56	0.41	0.09	0.03	0.38	0.03	1.50	
35~ 0.98	0.98	0.26	0.2	0.1	0.85	0.07	2.46	
40~ 1.42	1.42	0.49	0.49	0.31	1.29	0.04	4.03	
45~ 1.50	1.50	0.63	0.17	0.17	0.75	0.04	3.25	
50~ 2.06	2.06	0.89	0.33	0.67	1.17	0.17	5.29	
55~ 1.53	1.53	1.05	0.32	0.97	1.53	0.32	5.73	
60~ 3.18	3.18	0.73	0.64	0.54	1.54	0.09	6.72	
65~ 3.25	3.25	1.12	0.91	2.23	0.91	0.30	8.73	
70~ 4.83	4.83	0.94	0.54	1.61	1.61	0.67	10.20	
75~ 4.68	4.68	1.49	1.28	4.68	2.34	0.43	14.88	
80~ 7.99	7.99	0	0.44	6.21	3.11	0.88	18.64	
85~ 2.55	2.55	1.27	2.55	3.82	3.82	1.27	15.29	
Total	1.35	0.81	0.27	0.41	0.73	0.11	3.68	
composition ratio(%)	36.8	22.1	7.3	19.7	11.2	2.9		
Author Details

1Department of Hematology, Zhongda Hospital Affiliated to Southeast University, Nanjing, PR China, 2Department of Hematology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China, 3Department of Hematology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, PR China, 4Department of Hematology, Nanjing General Hospital of Nanjing Military Command, Nanjing, PR China, 5Department of Hematology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, PR China, 6Department of Hematology, Nanjing First Hospital, Nanjing, PR China, 7Department of Hematology, Nanjing Children’s Hospital, Nanjing, PR China, 8Department of Hematology, The Second Hospital Affiliated to Nanjing Medical University, Nanjing, PR China, 9Department of Hematology, People’s Hospital, Nanjing, PR China, 10Department of Hematology, (GHN) School of Clinical Medicine, Southeast University, Nanjing, PR China, 11Department of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, school of medicine, Shanghai, PR China, 12Public Health school, Southeast University, Nanjing, PR China, 13Group of Hematology in Nanjing (GHN)

Received: 14 March 2010 Accepted: 2 June 2010
Published: 2 June 2010

References

1. Cooperation of entire country leukemia and aplastic anemia epidemiology investigation: Leukemia epidemiology investigation of the entire country. Journal of Chinese Academy of Medical Science 1992, 14:1-17.

2. Wang HW, Pan XD: An Epidemiology analysis of leukemia incidence in Shenyang. Chinese Journal of Prevention and Control Chronic Non-communicable Disease 2005, 13:163-164.

3. Chen KX, He M, Dong SF: Study on descriptive epidemiology of leukemia from 1981 to 2000 in Tianjin. Chinese Journal of Oncology 2004, 31:424-426.

4. Coebergh JW, Reedijk AM, de Vries E, Martos C, Jakab Z, Stelianova-Foucher E, Kamps WA: Leukemia incidence and survival in children and adolescents in Europe during 1978-1997. Report from the Automated Childhood Cancer Information System project. European Journal of Cancer 2006, 42:2019-2036.

5. Meinert R, Kaatsch P, Kaletsch U, Krummenauer F, Miesner A, Michaelis J: Childhood Leukemia and Exposure to Pesticides: Results of a Case-control Study in Northern Germany. European Journal of Cancer 1996, 32A:1943-1948.

6. Petridou E, Dalamaga M, Mentiis A: Evidence supporting the infectious aetiology of childhood leukemia: the role of low herd immunity. Cancer Causes Control 2001, 12:645-652.

7. Smith MA, Ries LAG, Gurney JG: Cancer incidence and survival among children and adolescents: United States SEER Program 1975-1995. In Leukemia Edited by: Ries LAG, Smith MA, Gurney JG. NIH Pub. No. 99-4649. Bethesda (MD): National Cancer Institute, SEER Program; 1999:17-34.

8. Xiang D, Shen JX, Huang YZ: Analysis on data of acute leukemia epidemiology in our hospital during 22 years. Journal of Navel General Hospital of PLA 2005, 18:99-100.

9. The cooperation group of National leukemia and aplastic anemia epidemiological investigation: The investigation of National leukemia incidence. Acta Academiae Medicine Sinicae 1992, 14:12-19.