DNA read mapping is a computationally expensive bioinformatics task, required for genome assembly and consensus polishing. It finds the best-fitting location for each DNA read on a long reference sequence. A novel resistive approximate similarity search accelerator, RASSA, exploits charge distribution and parallel in-memory processing to reflect a mismatch count between DNA sequences. RASSA implementation of long read DNA mapping outperforms a state-of-art mapping solution (minimap2) by 16-77x with comparable accuracy.

Constructing human DNA sequence in real time is paramount to development of precision medicine\(^1\) and on-site pathogen detection of disease outbreaks\(^2\). Single-molecule, real-time sequencing from Pacific Biosciences\(^3\) (PacBio) and Oxford Nanopore Technologies\(^4\) (ONT) are new technologies that can produce long reads within minutes, potentially enabling real time genomic analysis. However, long read DNA sequencing poses new challenges. First, long reads contain many thousands of base pairs (bps). Second, long reads tend to exhibit about 15-20% insertion, deletion (indel) and substitution errors\(^3,4\).

To construct a complete host sequence, in case a reference sequence exists (from a previously sequenced organism), long reads are mapped to high-similarity locations of the reference sequence. Determining the optimal mapping location of every read onto the reference sequence requires a computationally intensive local alignment procedure (e.g., Smith-Waterman\(^6\)). Its computational time complexity is typically $O(nm)$ for two sequences with lengths n and m. Reference sequences vary from several millions to billions of bps. It is therefore computationally prohibitive to perform optimal alignment of every long read with the entire reference sequence.

Read mappers (e.g., minimap\(^6\), minimap2\(^7\)) find regions of high similarity (overlaps) between reads or between a read and a reference sequence. The overlap locations are then used for correction-free genome assembly or for consensus sequence polishing\(^8\). Both assembly and polishing require an alignment step to determine the exact edit distance. Once a mapping exists, the alignment can be performed on a specific region of the reference, reducing its duration and resource requirements\(^8\). Therefore, read mapping can be
viewed as a pre-alignment step that reduces the problem size for aligners by narrowing the regions to ones with potentially high-scoring alignment.

Existing pre-alignment hardware solutions9,10 target short reads (up to several hundreds bps) which contain a small number of indel and substitution errors (less than 5\%) and have a different error profile than that of PacBio or ONT long reads3,4. High edit distance threshold is required for mapping long but error-prone reads. However, current solutions9 have high false positive rates when the edit distance is high (i.e., greater than 15). Thus, the current solutions for short reads are not applicable for long reads.

Approximate computing techniques are known to trade accuracy for speed or energy efficiency. In case of long reads, multiple errors are a natural part of the sequencing output. Therefore, long read DNA mapping inherently tolerates the imprecision.

With the end of Dennard scaling and the slowdown of Moore’s law, novel hardware solutions for data intensive problems are researched. Emerging technologies such as resistive memories enable new architectures with better performance and energy efficiency. Resistive approximate Hamming distance solutions exist11. However, these do not provide the parallelism required to support a high throughput applications such as DNA read mapping.

In this work, we present RASSA, a Resistive Approximate Similarity Search Accelerator architecture for long read DNA mapping. RASSA is a massively parallel in-memory processor, facilitating simultaneous compare and mapping of a long read onto a reference sequence. The key performance breakthrough of RASSA is achieved by applying the similarity search in parallel to the entire reference. While the complexity of alignment is $O(mn)$, RASSA employs in-memory parallel computing on $O(m)$ memory cells to reduce computation time to $O(n)$.

RASSA employs resistive elements, memristors, serving at the same time as single bit storage elements and comparators. Additional evaluation transistors translate mismatch scores into voltage levels, which are converted to digital values using Analog to Digital Converters (ADC). Further processing determines the most likely overlap candidates.

This work makes the following contributions:

1. RASSA, an in-memory processing resistive approximate similarity search accelerator, is introduced. The parallel processing architecture is presented bottom-up, from the memristor-based bitcell to base pair encoding and up to a complete RASSA system;
2. RASSA based implementation of long read mapping is developed;
3. Evaluation of RASSA’s mapping accuracy and comparative analysis of its execution time is conducted.

BACKGROUND

The following two subsections provide concise background on the problem; DNA read mapping, and the memristor device technology.

DNA Read Mapping

DNA sequencers output fragmented regions of DNA called *reads*. The reads are randomly distributed and may be overlapping. If a DNA sequence from the same species exists, the DNA reads are matched to such existing (reference) sequence (Figure 1a). The main assumption behind this approach is that the reference and the reads originate from the same species, and therefore contain small number of differences (typically less than 1\%). Since the main computational effort in this process is placing the reads correctly to the reference sequence, it is called read mapping.

One common read mapping technique is individual mapping of fixed length segments (seeds) of a read6,7.
Each seed is used as a key in a pre-calculated hash table, which values are the seed locations in the reference sequence. Such locations are then extended and a precise alignment is performed. Once all reads are placed in their positions, the new sequence is constructed from the overlapping regions of the reads. A disadvantage of this approach is its long running time and complexity.

Resistive Memories

Resistive memories store information by modulating the resistance of nanoscale storage elements, called memristors. They are nonvolatile, free of leakage power, and emerge as potential alternatives to charge-based memories12, including NAND flash. Memristors are two-terminal devices, where the resistance of the device is changed by the electrical current or voltage. The resistance of the memristor is bounded by a minimum resistance R_{ON} (low resistive state) and a maximum resistance R_{OFF} (high resistive state).

RASSA: RESISTIVE APPROXIMATE SIMILARITY SEARCH ACCELERATOR

Analyzing long read alignments to a reference sequence reveal long fragments of indel-free high-similarity regions (as in Figure 1a). These regions usually contain tens of bps with few substitutions, and can sometimes reach hundreds of bps (for example, in case of high-accuracy CCS reads1). This has motivated us to use simple Hamming distance as a heuristic to find the overlap positions of long reads against a reference sequence. To overcome indels and find high-similarity sections, all possible overlap positions of a read against a reference are examined. Each bp has four values, therefore the probability of a mismatch when two random bps are compared is $\frac{1}{4}$. Comparing two random sections of equal length from DNA sequences leads, on average, to 75% mismatching bps. However, when high similarity fragments are compared, the running Hamming distance may drop significantly below the 75% average, thus indicating a possible overlap location.

RASSA is a resistive memory based massively parallel processing-in-memory accelerator. It allows storing (typically, a data element per memory row) and in-situ processing of large datasets. RASSA enables comparing a key pattern with the entire dataset in parallel. Every number of mismatches (of the key pattern vs. each data element that is in each memory row) causes a specific voltage drop, allowing quantifying the number of mismatching locations (called a mismatch score). The mismatch score is compared with a predefined threshold value to indicate the locations which have the desired degree of similarity with the compared pattern. The following sections describe RASSA functionality, encoding of DNA bp, RASSA system architecture and hardware evaluation.

DNA Base Pair Encoding and Mismatch Evaluation

Figure 1b presents the RASSA bitcell, containing two transistors and one memristor (2T1R). Each memristor serves as a single bit storage element and a single bit comparator, enabled by the selector transistor.

A compare operation consists of two phases, the precharge and the evaluation. During precharge, the Match Line is precharged to a certain voltage level. At the same time, the evaluation transistor in each bitcell is on, to discharge the evaluation point (created by the diffusion capacitances of the selector and the evaluation transistors).

During the evaluation phase, if the selector transistor is on, a low memristor resistance (R_{ON}) allows charge to pass from the match line to the evaluation point. The charge distribution causes the match line voltage to drop. Sensing the voltage of the match line compared with a reference voltage (of zero mismatch) allows quantifying the number of mismatches, producing the mismatch score.
Encoding

RASSA reserves four bitcells to store a DNA bp. There are four nucleotide bases, A, C, G and T in each DNA bp, encoded using one-hot encoding as ‘1000’, ‘0100’, ‘0010’ and ‘0001’, respectively. While it is possible to encode four nucleotide bases using two bits (for example ‘00’, ‘01’, ‘10’, and ‘11’ for A, C, G and T, respectively), such encoding would result in different number of mismatching bits depending on a specific pair (for example, two mismatching bits in the case of A-T or C-G mismatch, or one mismatching bit in the case of A-C or A-G mismatch), leading to ambiguous results. Since a mismatch is signaled by reduced match line voltage (caused by charge redistribution), a match should block charge flow. One-hot encoding assures that at most one mismatch may happen in each group of four bitcells. For instance, in 60 bitcells, at most 15 mismatches may be observed. Therefore, in this work, a memristor in high resistive state (R_{OFF}) is considered logic ‘1’ while R_{ON} is considered logic ‘0’.

Mismatch Evaluation

During a compare operation, the compared (key) pattern is applied to the gates of the selector transistors of all bitcells. If certain groups of bitcells need to be ignored (masked-out) during comparison, zero is applied to the gates of the selector transistors of such bitcells. Figure 1c shows a stored ‘A’ nucleotide symbol and a compare pattern of ‘A’. The comparison results in a match, so there is no charge redistribution path (through an R_{OFF} memristor). Figure 1d shows a mismatch, where the stored pattern is ‘G’ and the key pattern is ‘T’. The mismatch results in charge redistribution through an R_{ON} memristor, causing a match line voltage drop.

Figure 2a shows all possible match line voltage levels during the evaluation phase for mismatch scores of 0 through 15. The match line is sensed by an analog-to-digital converter (ADC, “System Architecture” Section). The timing of such sensing, in addition to the per-cell transistor capacitance variations, may lead to inaccuracies in the mismatch score. For example, for a match line shared by up to 60 bitcells, the mismatch score error could be ±1. If the number of bitcells sharing the match line is more than 120, the mismatch score error could reach ±3.

Figure 1. (a) Mapping of long DNA reads onto existing reference sequence. Red colored bps represent mismatching bps between the reference and reads. (b) Single RASSA bitcell. (c), (d) example of two DNA bps comparison. One bp matches the compared pattern, preventing match line charge loss (c). The next bp mismatches, causing match line voltage reduction (d).
System Architecture

The main component of RASSA is the 2T1R array, divided into Word Rows (Figure 2c), further divided into Sub-Words (Figure 2b). All Word Rows are connected in parallel to the Key Pattern register (Figure 2d). The ADC is the largest and most energy consuming component of a Sub-Word. Therefore, in order to use only 4-bit ADC, supporting mismatch scores of 0 through 15, the Sub-Word is limited to 60 bitcells. There are 16 Sub-Words within a Word Row, amounting to 960 bitcells per word, designed for storing and comparing up to 240 DNA bps per cycle. In each compare operation, a compare pattern is applied to all active bitcell bit lines.

The match line voltage of each Sub-Word is sampled by the ADC and converted into a 4-bit mismatch score (right side of Figure 2b). The ADC reference voltage and voltage level differences are set according to the match line values for each mismatch score, as demonstrated in Figure 2a. The 16 Sub-Word ADC outputs are summed up to produce the mismatch score for the entire Word Row (Figure 2b). All such scores are then compared with a threshold value, in parallel, to indicate the Word Rows (corresponding to sequence locations) with the desired degree of similarity.

Timing, Power and Area Breakdown

A Sub-Word circuit is designed, placed and routed using the 28nm CMOS High-k Metal Gate library from Global Foundries for transistor sizing, timing and power analysis. We perform Spectre simulations for the FF and SS corners at 70°C and nominal voltage. Timing analysis show an operational frequency of 1GHz is possible. For a single Sub-Word, the precharge energy is 1.6fJ, while the evaluation energy (ADC and control line switching) is 98.4fJ. For a single Word, containing 16 Sub-Words, adders and threshold comparator, a single compare cycle energy is 179fJ.

We have manually laid-out a RASSA bitcell. The total Word Row area in 28nm technology, including the bitcells, ADC, adders and comparator is 1598μm². Bitcell transistors occupy 4%, adders and threshold comparator occupy 28% and the ADC occupies 68% of the Word Row area, respectively. This allows placing of 131k (2¹⁶) 960-bit (240-bp) Word Rows, storing 31.5Mbps, on a single 209mm² die. Its worst case power consumption at 1GHz is 235W. Table 1 summarizes the RASSA system parameters.
Table 1. RASSA System Parameters for 28nm node process

Parameter	Value
DNA bps per row (bits)	240 (960)
Words per IC	131k \(2^{17}\)
Memory size (DNA bps)	31.5M
Frequency	1GHz
Single IC Power	235W
Single IC Area	209mm²

DNA READ MAPPING ON RASSA

A single compare operation in RASSA finds the mismatch score between the key pattern and the contents of each Word Row. When RASSA implements a long DNA read mapping, the reference sequence is stored in RASSA (continuously, 240-bp fragment per Word Row). A fixed-size chunk (e.g., 200 bps) of the read is fed in as a key pattern. The mismatch score approximates the correlation between the read chunk and the reference sequence. A long read contains multiple chunks, therefore the compare operations are performed multiple times, in all possible positions of a read chunk vis-à-vis a Word Row reference fragment, sometimes involving two neighboring Word Rows. The mapping output is deduced by combining all found locations from all chunks (on average, the output is one mapping coordinate per read). The locations identified by RASSA can be used later by alignment (e.g., Smith-Waterman algorithm⁴), assembly or error correction programs⁵.

The number of Word Rows in RASSA defines the number of overlap positions examined simultaneously. In a single cycle, \([n/240]\) (where \(n\) is the reference sequence length) distinct positions on the reference sequence are examined simultaneously. To cover all possible positions, the read chunk is shifted by one bp, and compare is repeated 240 times (resembling the concept of correlation). Figure 3 illustrates the comparison of a read chunk against a reference sequence in RASSA for several cases. In these examples, a chunk length of 200 bp is used (Figure 3a). A multi-cycle compare operation matches a 200bp chunk against all its possible locations vis-à-vis the reference sequence. In the first compare cycle (Figure 3b), the first chunk of the read (marked ‘1’ in Figure 3a) is compared with all first 200 bps of each RASSA Word Row.

Following the completion of \(41(=240-200+1)\) cycles, the 200bp chunk is compared against reference data residing in two Word Rows. Such two-Word Row compare requires two cycles. The even cycle mismatch score (Figure 3c) is added to the score of the following odd cycle (of the Word Row below, Figure 3d), and compared with the threshold (Figure 3d, right). Before every even cycle, the compare pattern is shifted by one bp to the right, shortening the even cycle compare pattern and extending the pattern in the odd cycle by one bp (Figure 3c,d, right). After \(439(=41+199+2)\) cycles, a 200 bp chunk has been compared against all reference sequence positions. The compare operation repeats for the rest of the 200bp read chunks.

Figure 3e,f show how RASSA addresses multiple edits. Figure 3e presents an example of a reference sequence and a read chunk containing a high-similarity region. All possible edit types (substitution, insertion and deletion) exist in the chunk. Figure 3f illustrates the mismatch score as a function of the compare cycle (the relative read chunk position). During most cycles, the mismatch score is within \(75\pm9\%\) (within three standard deviations of the average). When the chunk is in its true location (“min mismatch position” in Figure 3e at cycle 9 in Figure 3f) the mismatch score is significantly lower than the random \(75\%\) level. Setting the custom threshold, for instance, at \(50\%\) allows efficient overlap of read chunks with a number of edits (substitutions as well as indels).
Figure 3. Illustration of a single long read chunk examination in RASSA. (a) A long read is divided to chunks, each 200 bp long. (b, left and right) First chunk is compared against the reference sequence in multiple locations (simultaneously); (c),(d) First chunk overlaps with reference sequence bps from two Word Rows; (c, left) The first part of the chunk compared with the last bps of the Word Row. (c, right) All Sub-Word mismatch scores are summed up and stored (compare to threshold does not take place); (d, left) Second part of the chunk is compared with the first bps of the next Word row; (d, right) All Sub-Word mismatch scores, including the previous cycle result from the above Word Row, are summed up and compared with a threshold. Following this step, the chunk is shifted right by one position (relative to the reference) and steps (c) and (d) are repeated. (e) Example of a 30-bp read chunk containing insertion, deletion and substitution errors is compared against the reference sequence divided into 50-bp Word Rows; (f) Mismatch score vs. cycle number for first 21 cycles of comparison of the example in (e). Minimal mismatch score is below the threshold and achieved in the 9th cycles. The threshold is determined empirically per dataset.
EVALUATION

We compare RASSA with minimap2\(^7\), a state-of-art mapper that uses Intel AVX extensions, multithreading and special-purpose heuristic for PacBio and ONT long reads. Our evaluation focuses on accuracy and speedup. Accuracy is measured by two criteria: (1) sensitivity: correctly mapped reads, (2) false positives: percentage of incorrect mappings out of all mappings by RASSA.

We use minimap2 as a golden reference to evaluate RASSA mapping accuracy. Speedup is calculated as the ratio of minimap2 mapping time (without indexing) to RASSA execution time. The accuracy and speedup of RASSA were obtained using an in-house simulator. We assume that the reference sequence has already been loaded into RASSA prior to execution.

Methodology

Long reads have regions containing tens or hundreds bps identical to the reference located close to the mapping location. Therefore, the reads are divided into relatively short chunks (e.g., 100 or 200 bps). Each chunk is compared against the entire reference sequence to find all positions with mismatch score below a pre-defined threshold. The index of a Word Row, together with the iteration number, provide the exact coordinate of a potential mapping. A simple program on standard CPUs can convert the bit vector output of RASSA to coordinates on the reference.

To find the number of incorrect mappings which might increase total alignment time we have contrasted pre-alignment followed by alignment with alignment without pre-alignment. We have used part of the e.coli PacBio dataset, consisting of about 1000 reads. Total pre-alignment by RASSA took 20msec, and the following alignment needed to be applied to only 70kbp subset of the reference, taking minimap2 1490msec. In contrast, the same alignment applied without the pre-alignment stage took 3000msec, about twice the time. Therefore, we decided that reads with more than two mappings by RASSA will be discarded and treated as incorrectly mapped.

Datasets

We use five publicly available datasets, three from PacBio and two from ONT, taken from two organisms: E.coli K-12 NG1655 and Saccharomyces cerevisiae W303 (yeast). Both reference sequences are available at the NCBI (https://www.ncbi.nlm.nih.gov/). PacBio datasets were taken from https://github.com/Pacific-Biosciences/DevNet/wiki/Datasets.

Ecoli
- PacBio: 100k reads from one SMRT cell, 5245 bps on average.
- PacBio: 260k high-quality CCS reads from 16 SMRT cells, 940 bps on average.
- ONT (from https://lab.loman.net/2016/07/30/nanopore-r9-data-release/): 165k R9 1D reads, 9009 bps on average.

Yeast
- PacBio100k reads from one SMRT cell, 6294 bps on average.
- ONT (ERR789757 from NCBI): 30k R7.3 MinION reads, 11337 bps on average.
Table 2. Sensitivity, fraction of exact mappings and speedup of RASSA compared to minimap2

Datasets	Large Chunk (200 bps)	Small Chunk (100 bps)				
	Sensitivity	False Positives	Speedup	Sensitivity	False Positives	Speedup
e.coli PacBio	79.3%	13.4%	25x	83.2%	13.6%	16x
e.coli PacBio CCS	96.3%	8.9%	43x	96.2%	6.9%	24x
e.coli ONT	88.8%	10.5%	48x	87.6%	12.4%	31x
Yeast PacBio	69.8%	8.7%	77x	72%	11.8%	51x
Yeast ONT*	85.9%	34.9%	31x	85.1%	39.2%	49x

* minimap2 mapped only about 20% of all reads, with 50% of mappings with lower quality score than 60 (indicates a high-confidence mapping). RASSA sensitivity is percentage of mapped reads from the entire dataset. False positives is percentage of reads with two or more potential mapping locations.

Table 2 presents the accuracy results for all five datasets above. Chunk sizes of 200 and 100 bps and corresponding thresholds were determined empirically, trading off accuracy and performance. Small changes of threshold induce only marginal changes in accuracy. For most datasets, 55% threshold was used on 200bp chunks and 45% for 100bp chunks; for the Yeast PacBio case, we used 45% and 40%, respectively.

Speedup

We perform two performance comparisons of RASSA with existing solutions. First, RASSA execution time is compared with that of minimap2. minimap2 is executed on a server with 16-core 2GHz Intel Xeon E5-2650 CPU and 64GB of RAM. The minimap2 parameters used are: `-x map-pb` and `-x map-ont`, invoking the mapping with settings suitable for PacBio or ONT reads. Table 2 shows that RASSA achieves 16-77× speedup over minimap2. We note that the yeast dataset has fewer reads than e.coli, but a longer reference sequence (11.7Mbp vs. 4.6Mbp), which might cause the longer execution time on minimap2. In contrast, RASSA is insensitive to the reference sequence length and its execution time is determined by the length of a read chunk.

Second, RASSA throughput (the number of examined mapping locations per second) is compared with that of GateKeeper9, a state-of-art short read pre-alignment hardware accelerator. GateKeeper is implemented in a Virtex-7 FPGA using Xilinx VC709 board running at 250MHz. A 3.6 GHz Intel i7-3820 CPU with 8GB RAM is used as the host.

GateKeeper is designed to compare short reads with a reference sequence. Table 3 shows the throughput (in billions of examined mapping locations per second, BEML/s) of RASSA and GateKeeper on two short read datasets used in 9: (1) 100bp reads (2) 300bp reads. RASSA frequency is adjusted to that of GateKeeper. In addition, we present results on chunks of 200bp, which were used in Table 2. RASSA is

Table 3. RASSA and GateKeeper9 throughput (billions of examined mapping locations per second, BEML/s)

Read/Chunk Lengths	GateKeeper	RASSA @250MHz
100bp	1.7 BEML/s	226.8 BEML/s
200bp	-	175.2 BEML/s
300bp	0.2 BEML/s	142.8 BEML/s
found to outperform GateKeeper by more than 2 orders of magnitude.

RASSA produces outputs (on average, one mapping per read) at rate of 50,000—500,000 reads/sec, enabling multiple simultaneously executing instances of a typical alignment algorithm.

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

This paper presents RASSA, an in-memory processing parallel architecture of a Resistive Approximate Similarity Search Accelerator. We apply RASSA to the long read DNA mapping problem. The length of reads, coupled with a low read quality, poses a challenge for existing mappers, optimized for high quality short reads. The read mapping process is data and compute intensive, making it a target for acceleration. RASSA addresses the challenge by breaking long reads into short chunks and by applying full correlation. By allowing faster mapping on large datasets, we potentially make a step towards real time pathogen or genome sequence completion.

We compared RASSA accuracy and execution time with that of minimap2\(^7\), a state-of-the-art mapping solution, on five long read datasets taken from two organisms. Our evaluation shows that RASSA can outperform minimap2 by 16-77x.

This work can be extended in several ways. First, RASSA can be applied to de novo genome assembly\(^6\) (constructing the host DNA sequence without a reference sequence), a problem more computationally challenging than read mapping, which requires finding overlaps between pairs of reads. Second, a detailed design space exploration needs to be performed. For example, RASSA can be further optimized in terms of hardware cost: higher density can be achieved by sharing analog to digital converters among multiple Sub-Words and by applying analog computations. RASSA mapping and resistive CAM alignment\(^7\) may be combined into a single high performance in-memory mapper/aligner. Last, thanks to its use of short chunks, RASSA can be effectively applied to short reads.

REFERENCES

1. Jameson, J.L. and Longo, D.L. “Precision medicine—personalized, problematic, and promising.” Obstetrical & gynecological survey, vol. 70, no. 10, pp. 612-614, 2015.
2. Quick, J., Loman, N.J., Duran, S., et al, “Real-time, portable genome sequencing for Ebola surveillance.” Nature, 530(7589), pp. 228-232.
3. Rhoads, Anthony, and Kin Fai Au. "PacBio sequencing and its applications." Genomics, proteomics & bioinformatics 13.5, pp. 278-289, 2015.
4. Laver, T., Harrison, J., O’neill, P.A., Moore, K., Farbos, A., Paszkiewicz, K., & Studholme, D.J. “Assessing the performance of the oxford nanopore technologies minion.” Biomolecular detection and quantification, vol. 3, pp. 1-8, 2015.
5. Kaplan, R., Yavits, L., Ginosar, R. and Weiser, U. "A Resistive CAM Processing-in-Storage Architecture for DNA Sequence Alignment.” IEEE Micro, vol. 37, no. 4, pp. 20-28, 2017.
6. Li, Heng. "Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences." Bioinformatics 32.14, pp. 2103-2110, 2016.
7. Li, H., Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, vol. 1, p. 7, 2018.
8. Berlin, K., Koren, S., Chin, C. S., Drake, J. P., Landolin, J. M., & Phillippy, A. M. “Assembling large genomes with single-molecule sequencing and locality-sensitive hashing.” Nature biotechnology, 33(6), p. 623, 2015.
9. Alser, M., Hassan, H., Xin, H., Ergin, O., Mutlu, O. and Alkan, C. “GateKeeper: a new hardware architecture for accelerating pre-alignment in DNA short read mapping.” Bioinformatics, vol. 33, no. 21, pp. 3355-3363, 2017.
10. Khodamoradi, S. K., Chowdhury, Z., Pande, N., Razaviyayn, M., Kim, C., & Karpuzcu, U. R. “A Non-volatile Near-Memory Read Mapping Accelerator.” arXiv preprint arXiv:1709.02381.
11. Imani, M., Rahimi, A., Kong, D., Rosing, T., & Rabaey, J. M. “Exploring hyperdimensional associative memory”. In IEEE International Symposium on High Performance Computer Architecture (HPCA), pp. 445-456, 2017.
12. Akinaga, Hiroyuki, and Hisashi Shima. “Resistive random access memory (ReRAM) based on metal
ABOUT THE AUTHORS

Roman Kaplan received his BSc and MSc from the faculty of Electrical Engineering, Technion, Israel in 2009 and 2015, respectively. Between 2009-2014 he worked as a software engineer. He is a PhD candidate in the faculty of Electrical Engineering, Technion, under the supervision of Prof. Ran Ginosar. Kaplan’s research interests are parallel computer architectures, in-data accelerators for machine learning and bioinformatics.

Leonid Yavits received his MSc and PhD in Electrical Engineering from the Technion. After graduating, he co-founded VisionTech where he co-designed a single chip MPEG2 codec. VisionTech was acquired by Broadcom in 2001. Leonid is currently a postdoc fellow in Electrical Engineering in the Technion. He co-authored a number of patents and research papers on SoC and ASIC. His research interests include non-von Neumann computer architectures, accelerators and processing in memory.

Ran Ginosar (M’78) received his BSc from the Technion—Israel Institute of Technology in 1978 (summa cum laude) and his PhD from Princeton University, USA, in 1982, both in Electrical and Computer Engineering. He joined the Technion faculty in 1983 and was a visiting Associate Professor with the University of Utah in 1989-1990, and a visiting faculty with Intel Research Labs in 1997-1999. He is a Professor at the Department of Electrical Engineering and serves as Head of the VLSI Systems Research Center at the Technion. His research interests include VLSI architecture, manycore computers, asynchronous logic and synchronization, networks on chip and biologic implant chips. He has co-founded several companies in various areas of VLSI systems.