Isolates previously submitted to pubMLST under a separate isolate ID are identified by that ID within the Alternate pubMLST ID and Notes column. Isolates with an Unknown ST have their missing allele(s) identified in this column, in addition to the five isolates that originate from the USA.

Sequence Type	Alternate pubMLST ID and Notes	ID	Year	Feedlot	Anatomical Location	Health Status	Host ID
2	MJ259	MPLM0042	2016	N	joint	dead	16
2	MPLM0632	2007	K	nasopharynx	dead	83	
2	MPLM0644	2007	Q	nasopharynx	diseased	42	
14	USA Isolate	MPLM0833	2017	E	nasopharynx	healthy	31
21	MJ260	MPLM0054	2017	O	lung	dead	70
21	MJ287	MPLM0154	2017	N	lung	dead	67
21	MPLM0645	2007	Q	nasopharynx	diseased	56	
21	MPLM0648	2006	J	nasopharynx	diseased	73	
21	MPLM0662	2007	Q	nasopharynx	diseased	51	
21	MPLM0698	2007	Q	nasopharynx	healthy	59	
21	MPLM0706	2007	Q	nasopharynx	healthy	55	
24	MPLM0638	2015	I	joint	dead	88	
24	MPLM0647	2007	Q	nasopharynx	diseased	45	
24	MPLM0657	2007	Q	nasopharynx	diseased	46	
24	MPLM0660	2007	Q	nasopharynx	diseased	40	
24	MPLM0661	2007	Q	nasopharynx	diseased	44	
24	MPLM0664	2007	Q	nasopharynx	diseased	39	
24	MPLM0666	2007	Q	nasopharynx	diseased	57	
24	MPLM0669	2007	Q	nasopharynx	dead	43	
24	MPLM0684	2007	Q	nasopharynx	healthy	49	
24	MPLM0692	2007	Q	nasopharynx	healthy	58	
24	MPLM0700	2007	Q	nasopharynx	healthy	52	
24	MPLM0714	2007	Q	nasopharynx	healthy	48	
24	MPLM0715	2007	Q	nasopharynx	healthy	54	
27	MPLM0541	2018	N	lung	dead	90	
27	MPLM0555	2018	N	lung	dead	64	
27	MPLM0556	2018	N	joint	dead	64	
40	MPLM0652	2007	Q	nasopharynx	diseased	50	
ID	Code	Year	Sex	Body Part	Condition	Age	
-----	--------------	------	-----	-----------	-----------	-----	
40	MPLM0665	2007	Q	nasopharynx	diseased	41	
40	MPLM0667	2007	R	nasopharynx	healthy	78	
40	MPLM0668	2007	R	nasopharynx	healthy	79	
40	MPLM0713	2007	Q	nasopharynx	healthy	47	
42	MPLM0634	2015	M	lung	dead	65	
42	MJ292	2014	S	lung	dead	97	
42	MPLM0640	2006	G	nasopharynx	healthy	77	
42	MPLM0642	2006	U	nasopharynx	diseased	71	
42	MPLM0649	2006	P	nasopharynx	diseased	74	
42	MPLM0670	2007	R	nasopharynx	healthy	75	
42	MPLM0671	2007	R	nasopharynx	healthy	76	
43	MPLM0825	2018	C	nasopharynx	healthy	26	
44	MPLM0061	2017	O	joint	dead	69	
44	MJ267	2017	N	lung	dead	17	
44	MJ268	2017	N	joint	dead	17	
44	MJ272	2017	N	joint	dead	9	
44	MJ273	2017	N	lung	dead	35	
44	MJ274	2017	N	joint	dead	35	
44	MJ278	2017	N	lung	dead	8	
44	MJ286	2017	N	joint	dead	68	
44	MJ289	2017	N	lung	dead	12	
45	MJ280	2017	S	lung	dead	4	
45	MPLM0136	2017	A	nasopharynx	healthy	19	
45	MPLM0815	2017	D	nasopharynx	healthy	27	
45	MPLM0827	2018	D	nasopharynx	healthy	28	
45	MPLM0832	2017	E	nasopharynx	healthy	30	
48	MPLM0646	2007	R	nasopharynx	healthy	80	
52	MJ246	2016	T	joint	dead	89	
52	MJ255	2016	T	lung	dead	60	
52	MJ257	2016	T	lung	dead	98	
52	MPLM0020	2016	L	joint	dead	82	
60	MJ237	2016	T	lung	dead	10	
60	MJ238	2016	T	joint	dead	10	
60	MJ240	2016	T	joint	dead	95	
60	MJ241	2016	T	lung	dead	11	
60	MJ242	2016	T	joint	dead	11	
60	MPLM0016	2016	T	joint	dead	62	
60	MJ244	2016	T	lung	dead	61	
60	MJ245	2016	T	joint	dead	61	
60	MJ249	2016	T	lung	dead	3	
60	MJ250	2016	T	joint	dead	3	
60	MJ253	2016	T	lung	dead	2	
	Isolate	Species	Year	Tissue	Condition	Age	
---	---------	---------	------	--------	-----------	-----	
60	MJ258	MPLM0035	2016	T	lung	dead 86	
60	MPLM0041	2016	N	lung	dead 16		
60	MPLM0157	2017	N	lung	dead 87		
60	MPLM0533	2018	N	lung	dead 7		
60	MPLM0534	2018	N	joint	dead 7		
60	MPLM0538	2018	N	joint	dead 14		
60	MPLM0542	2018	N	joint	dead 90		
60	MPLM0545	2018	N	lung	dead 91		
60	MPLM0546	2018	N	joint	dead 91		
60	MPLM0559	2018	N	lung	dead 93		
60	MPLM0560	2018	N	joint	dead 93		
60	MJ291	MPLM0635	2014	H	lung	dead 96	
61	MJ243	MPLM0015	2016	T	lung	dead 62	
62	MPLM0703	2007	Q	nasopharynx	healthy	53	
65	MJ235	MPLM0007	2016	T	lung	dead 63	
65	MJ236	MPLM0008	2016	T	joint	dead 63	
65	MJ239	MPLM0011	2016	T	lung	dead 95	
65	MJ247	MPLM0021	2016	T	lung	dead 6	
65	MJ248	MPLM0022	2016	T	joint	dead 6	
65	MJ251	MPLM0029	2016	N	lung	dead 1	
65	MPLM0821	2017	B	nasopharynx	healthy	22	
66	USA	MPLM0820	2017	A	nasopharynx	healthy	21
66	Isolate	MPLM0838	2017	E	nasopharynx	healthy	34
67	MJ261	MPLM0057	2017	O	lung	dead 18	
67	MJ262	MPLM0058	2017	O	joint	dead 18	
67	MJ263	MPLM0060	2017	O	lung	dead 69	
67	MJ269	MPLM0093	2017	N	lung	dead 13	
67	MJ271	MPLM0102	2017	N	lung	dead 9	
67	MJ276	MPLM0111	2017	N	lung	dead 5	
67	MJ277	MPLM0112	2017	N	joint	dead 5	
67	MJ282	MPLM0145	2017	N	lung	dead 66	
67	MJ283	MPLM0146	2017	N	joint	dead 66	
67	MPLM0155	2017	N	joint	dead 67		
67	MPLM0158	2017	N	joint	dead 87		
67	MPLM0164	2017	N	joint	dead 36		
67	MPLM0209	2014	I	joint	dead 85		
67	MPLM0219	2014	I	lung	dead 85		
77	MJ234	MPLM0003	2016	F	lung	dead	94
77		MPLM0004	2016	F	joint	dead	94
79	MJ252	MPLM0030	2016	N	joint	dead	1
80		MPLM0132	2016	S	lung	dead	38
80		MPLM0134	2016	S	lung	dead	15
80		MPLM0135	2016	S	joint	dead	15
149		MPLM0608	2018	N	lung	dead	92
150	USA Isolate	MPLM0830	2018	D	nasopharynx	healthy	29
151		MPLM0643	2006	G	nasopharynx	healthy	72
152		MPLM0822	2017	B	nasopharynx	healthy	23
153		MPLM0823	2018	C	nasopharynx	healthy	24
153		MPLM0824	2018	C	nasopharynx	healthy	25
154	USA Isolate	MPLM0834	2017	E	nasopharynx	healthy	32
154	USA Isolate	MPLM0837	2017	E	nasopharynx	healthy	33
Unknown	dnaA, gltX, gpsA, gyrB, tdk	MPLM0019	2016	T	lung	dead	89
Unknown	MJ254, Missing gpsA	MPLM0036	2016	T	joint	dead	86
Unknown	MJ285, Missing gyrB	MPLM0148	2017	N	lung	dead	68
Unknown	Missing gpsA, Novel pta2	MPLM0817	2018	A	nasopharynx	healthy	20
Figure S1 Minimum spanning tree of 126 *Mycoplasma bovis* genomes (125 field isolates plus PG45) typed by MLST. Clonal complexes 1 and 2 are surrounded by red and blue lines, respectively. Sequence types are colour coded with the size of the circle reflecting the number of isolates, with the partitioning lines within a circle delineating isolates with an identical genotype. The number of different alleles is indicated over the line connecting the sequence types. The PG45 reference genome is identified as the singleton with ST12.
Figure S2 Minimum spanning tree of 102 *Mycoplasma bovis* isolates (101 field isolates plus PG45) created with cgMLST, based on alleles at 296 core genome loci. Clades 1 - 3 are denoted by a surrounding circle. The isolates are identified by MLST sequence type and production year (ST, Production Year). Sequence types are colour coded with the size of the circle reflecting the number of isolates, with the partitioning lines within a circle delineating isolates with an identical genotype. The number of different alleles is indicated over the line connecting the sequence types.
Figure S3 Minimum spanning tree of 102 *Mycoplasma bovis* isolates (101 field isolates plus PG45) based on 283 core genome loci, using cgSNV, based on 3,925 SNVs. The clades are
indicated by an encompassing circle. The 102 *M. bovis* isolates are identified by MLST sequence type and production year (ST, Production Year). The nodes are colour coded by the MLST sequence type. The size of the circle reflects the number of isolates represented, with the partitioning lines within a circle delineating isolates with an identical genotype. The number of different alleles is indicated over the line connecting the sequence types.
Figure S4 Maximum-likelihood tree of 130 *Mycoplasma bovis* isolates (129 field isolates plus PG45) based on 14383 SNVs in the core and accessory genomes typed by wgSNV. Clades 1 and 2 are indicated by a surrounding line in red and blue, respectively. The isolates are labelled with...
MLST sequence type and production year (ST, Production Year), and colour coded with MLST sequence type. Each individual node represents a single isolate. No two isolates had identical SNV matrices.