Reanalysis of the gene expression profile in chronic pancreatitis via bioinformatics methods

Hang Yuan, Bin Wu, Senlin Ma, Xiaoyu Yang, Lei Yin and Aijun Li

Abstract

Background: Diagnosis at an early stage of chronic pancreatitis (CP) is challenging. It has been reported that microRNAs (miRNAs) are increasingly found and applied as targets for the diagnosis and treatment of various cancers. However, to the best of our knowledge, few published papers have described the role of miRNAs in the diagnosis of CP.

Method: We downloaded gene expression profile data from the Gene Expression Omnibus and identified differentially expressed genes (DEGs) between CP and normal samples of Harlan mice and Jackson Laboratory mice. Common DEGs were filtered out, and the semantic similarities of gene classes were calculated using the GOSemSim software package. The gene class with the highest functional consistency was selected, and then the Lists2Networks web-based system was used to analyse regulatory relationships between miRNAs and gene classes. The functional enrichment of the gene classes was assessed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway annotation terms.

Results: A total of 405 common upregulated DEGs and 7 common downregulated DEGs were extracted from the two kinds of mice. Gene cluster D was selected from the common upregulated DEGs because it had the highest semantic similarity. miRNA 124a (miR-124a) was found to have a significant regulatory relationship with cluster D, and DEGs such as CHSY1 and ABCC4 were found to be regulated by miR-124a. The GO term of response to DNA damage stimulus and the pathway of Escherichia coli infection were significantly enriched in cluster D.

Conclusion: DNA damage and E. coli infection might play important roles in CP pathogenesis. In addition, miR-124a might be a potential target for the diagnosis and treatment of CP.

Keywords: Chronic pancreatitis, Differentially expressed genes, Gene cluster, miRNA

Background

Chronic pancreatitis (CP) is characterized by pancreatic inflammation and fibrosis, and it arises when pancreatic injury is followed by a sustained immune activation in which fibrosis dominates [1]. Environmental triggers of pancreatic inflammation and disease susceptibility (such as alcohol use, smoking, pancreatic duct obstruction and drugs) or modifying genes (including PRSS1, SPINK1 and CFTR) act synergistically to cause CP [1,2]. It has also been indicated that CP is often an underlying cause of pancreatic cancer [3]. Meanwhile, in recent years, researchers in a growing number of studies have suggested that microRNAs (miRNAs) play an important role in the diagnosis and prognosis of pancreatic cancers [3-6].

miRNAs inhibit the transcription levels of mRNA, induce degradation of the regulation of gene expression [7] and have been proved to be involved in many disease processes. Therefore, the identification of miRNA changes might explain the pathology of CP in another way and provide a new method for diagnosing CP.

A number of miRNAs that have been studied have a role in pancreatic diseases. By comparing pancreatic cancer tissue to CP tissue and normal pancreas, Bloomston and colleagues identified 21 miRNAs with increased expression and 4 with decreased expression, which suggests that the miRNAs likely play an important regulatory role in pancreatic cancer [3]. It has also been demonstrated that the expression of miRNA-196a (miR-196a) is high in pancreatic ductal adenocarcinoma (PDAC) but low in CP and normal tissues, whereas miR-217 exhibits...
the opposite expression pattern [8]. The ratio of miR-196a to miR-217 has been found to indicate whether tissue samples contain PDAC [9]. More and more miRNAs have been found to be related to pancreatic cancers, and CP specimens are often used as a second control [3,9]. However, few published papers have specifically described the relationship between CP and its miRNAs.

In the present study, we analysed the gene expression profile of CP and normal mice to screen for differentially expressed genes (DEGs). We identified the related miRNAs, which might provide further insights into the molecular mechanisms of CP. Understanding the molecular mechanisms of CP might aid in diagnosing and treating CP patients.

Methods

Data sources
We downloaded a gene data set [GEO:GSE41418] [10] from the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/). Gene expression analysis was performed on a GeneChip Mouse Genome 430 Plus 2.0 Array platform (Affymetrix, Santa Clara, CA, USA). The data set contains two different kinds of mice: Harlan mice (C57BL/6/NHsd; Harlan Laboratories, Indianapolis, IN, USA) and Jackson Laboratory mice (C56BL/6 J; The Jackson Laboratory, Bar Harbor, ME, USA). A frequently used experimental model of CP recapitulating human disease is repeated injections of cerulein into mice. We found that two common substrains of C57BL/6 mice (C56BL/6 J and C57BL/6/NHsd) exhibit different degrees of CP, with C57BL/6 J mice being more susceptible to repetitive cerulein-induced CP. The goal of this study was to identify genes associated with CP and to identify differentially regulated genes between two substrains as candidates for the CP progression. We included six mice of each type, including three CP samples and three normal samples [10].

Identification of differentially expressed genes
Expression profile data were normalized with GeneChip robust multiarray analysis [11]. Next, we preprocessed the data derived from 12 samples for subsequent analysis. We annotated expression profiling probes to gene symbols. If there were multiple probe sets that corresponded to one gene, the expression values of those probe sets were averaged. Using this method, we obtained an expression data set comprising 21,389 genes. Afterward, Significance Analysis of Microarrays 4.0 software [12] was used to screen the DEGs between the CP samples and normal controls of the two kinds of mice, respectively. The overlapping DEGs were denoted as common DEGs and were used for further analysis. A fold discovery rate (FDR) ≤0.05 was selected as the threshold for screening DEGs.

Gene cluster analysis of common differentially expressed genes
Gene cluster analysis can be used to divide genes into several classes based on certain similarity criteria, such as the Pearson correlation coefficient or Euclidean distance [13,14]. It has been proved that genes in the same cluster have a high degree of homogeneity. In our present study, we used the second-order tolerance analysis (SOTA) method [15], a toolset of gene expression profile analysis [16], to perform cluster analysis on the common DEGs based on the gene expression values. The Euclidean distance was employed as the clustering indicator. Next, we calculated the semantic similarity of gene classes using the GOsemSim software package [17], and the class of genes with the highest functional consistency was selected as the optimal gene cluster for further study.

Related microRNAs of optimal gene cluster and GO and KEGG pathway analysis
In organisms, highly coexpressed genes are likely to share common regulatory patterns and to participate in the same or similar biological processes and pathways [18]. In order to study the regulatory mechanisms of the optimal gene cluster, we used the Lists2Networks web-based system [19] to analyse the possible relationship between the miRNAs and the optimal gene cluster. The functional enrichment of the target genes of two regulators (transcription factors and miRNAs) was assessed based on the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation terms. GO and KEGG signalling pathway analyses were performed using the GOSemSim R package software package (http://www.r-project.org/), with which we carried out the standard hypergeometric test. We was also performed GO and KEGG enrichment analysis on the gene cluster, with P-values less than 0.05 considered statistically significant.

Results

Identification of differentially expressed genes
According to the predetermined FDR threshold ≤0.05, 962 DEGs of Harlan mice, including 911 upregulated genes and 51 downregulated genes, were screened out. In Jackson mice, a total of 1,545 genes were differentially expressed, and these DEGs comprised 1,423 upregulated genes and 122 downregulated genes. Next, we extracted overlapping DEGs in both mice, which consisted of 405 upregulated genes and 7 downregulated genes (Figure 1). We clearly observed that the number of upregulated genes was significantly greater than that of downregulated genes. We speculate that these upregulated genes might play a major role in CP disease. In the experimental work following this observation, we analysed only the upregulated common DEGs.
Gene clustering of upregulated common differentially expressed genes

Using the Euclidean distances as the clustering indicators in SOTA, we obtained four clearly separated gene classes (Figure 2) of the upregulated common DEGs. Next, we calculated the semantic similarity scores of gene classes (Table 1). As a result, gene cluster D was found to have the highest average semantic similarity score (0.2868) and was selected for further analysis.

Related microRNAs and functional analysis of the optimal gene cluster

According to the enrichment analysis of Lists2Networks, miR-124a was found to have a significant regulation relationship with cluster D (Table 2). And genes such as ChSy (chondroitin sulphate synthase 1) and ABCC4 (ATP-binding cassette, subfamily C (CFTR/MRP), member 4) were enriched and in correlation with miR-124a. According to GO and KEGG pathway enrichment on gene cluster D, we found that the most significant biological process was response to DNA damage stimulus (Table 3), and PAPR3 was one of the significant DEGs enriched in the GO term. The observed significant pathways were associated with the cell cycle and Escherichia coli infection (Table 4).

Discussion

In the present study, we screened out 405 common upregulated DEGs of the two kinds of mice used, and GOSemSim was used to calculate the semantic similarity of the gene clusters of the DEGs. Cluster D was selected as the optimal gene class for further investigation because of it had the highest average semantic similarity. Using the Lists2Networks, we found that cluster D could be significantly regulated by miR-124a, which might play an important role in the development of CP. miR-124a was first identified by cloning studies in mice [20]. Studies have shown that miR-124a plays an important role in the control of cell survival, proliferation, differentiation and metabolism and whose dysfunction is a potential cause of disease [21-23]. In addition, published data have demonstrated that miR-124a expression level was increased in the mouse pancreas at the embryonic stage and have indicated its important role in pancreas development [23]. Therefore, we hypothesized miR-124a might play an important pathogenic role in CP.

CHSY1 encodes a member of the chondroitin N-acetylgalactosaminyltransferase family, possesses dual glucuronyltransferase and galactosaminyltransferase activity and plays critical roles in the biosynthesis of chondroitin sulphate, a glycosaminoglycan involved in many biological processes, including cell proliferation and morphogenesis [24-26]. CHSY1 was one of the significant genes in cluster D and was enriched and regulated by miR-124a. Researchers in a previous study demonstrated that CHSY1 regulated its downstream target CASP1 (caspase 1, also known as interleukin 1β-converting enzyme), which could cleave interleukin 1β precursors into mature cytokines and contribute to inflammation [27]. Surprisingly, increased expression of CASP1 has been reported to be a frequent event in CP [28]. Thus, miR-124a might participate in CP manifestation and development by regulating expression levels of CHSY1 or CASP1.

ABCC4 is another significant gene regulated by miR-124a. It is a member of the ATP-binding cassette
transporter superfamily, which has been shown to comprise key mediators of drug efflux and multidrug resistance in many types of tumours and inflammatory diseases [29-31]. A previous study also implicated ABCC4 as an efflux pump of proinflammatory mediators such as LTB4 and LTC4, and ABCC4 may represent a novel target for anti-inflammatory therapies [32]. Therefore, miR-124a might regulate the inflammatory disease of CP by changing the levels of proinflammatory mediators by ABCC4.

On the basis of the results of GO enrichment analysis of gene cluster D, the most significant biological processes we observed was the response to DNA damage stimulus. This suggested that DNA damage might play an important role in the pathogenesis of CP. The results of our analysis are in line with those of a previous study [33]. PARP3 is one significant gene that is enriched in the biological process of response to DNA damage stimulus. It belongs to the poly(ADP-ribose) polymerase (PARP) family [34]. PARP3 catalyses the reaction of ADP ribosylation, a key posttranslational modification of proteins involved in different signalling pathways from DNA damage to energy metabolism and organismal memory [35]. In addition, recent studies have clearly demonstrated the role of PARP activation in various forms of local inflammation [36-38]. Information about the role of PARP3 in CP is sparse; however, it has been shown that other members of the PARP family, such as PARP1, coactivate the transcription factor nuclear factor κB (NF-κB) and is required for NF-κB-mediated inflammatory responses [39]. CP is characterized by pancreatic inflammation, thus PARP3 might potentially play a role in its inflammatory processes.

In KEGG pathway analysis, it has been shown that E. coli infection might play an important role in CP. Karmali and colleagues reported that infection with E. coli produced postdiarrhoeal haemolytic uraemia syndrome and that many patients who recovered from it had long-term sequelae, including CP and cholelithiasis [40,41].

Furthermore, E. coli might also lead to pancreatic abscess, which is defined as an acute inflammatory process of the pancreas [42]. It has been proved that E. coli organisms can induce polymorphonuclear leucocyte infiltration during clinical infection [43]. Therefore, we suggest that E. coli infection might be involved in the occurrence of CP.

This study has some limitations. First is the small sample size obtained from the GEO database. Second, validation of the results in other data sets or samples is lacking. Therefore, further genetic studies with larger sample sizes and different kinds of CP samples are needed to confirm our observations.

Table 1 Semantic similarity scores of the gene clusters

Cluster	Gene number	Semantic similarity score
Cluster A	51	0.2145412
Cluster B	91	0.2525834
Cluster C	121	0.272545
Cluster D	110	0.2867982

Table 2 Regulatory microRNAs predicted for cluster D

Term	Genes	Combined score	P-value
TGCCCTA, miR-124a	CHSY1, ABCC4, CASC4	8.818	0.00828
TCTAGAG, miR-517	SLC39A10, RND3	7.065	0.03707
TAGAACC, miR-182	FAM107B, RBM12	6.138	0.02771

Table 3 Gene Ontology database enrichment analysis of cluster D

Gene Ontology term	Genes	P-value
Response to DNA damage stimulus	PARP3, TOP2A, RAD51	0.0025
DNA metabolic process	PRIM1, RFC1, PARP3	0.0041
Chromosome organisation	CDC48, H2AFX, RFC1	0.0047
Chromosome condensation	NCAPH, TOP2A	0.0065
Chromosome segregation	MIR12, TOP2A	0.0073
Cellular response to DNA damage stimulus	TOPBP1, PARP3, TOP2A	0.0080
mRNA export from nucleus	AGFG1, RAE1	0.0089
DNA packaging	NCAPH, TOP2A	0.0106
Response to ionizing radiation	TOPBP1, H2AFX	0.0115
RNA export from nucleus	AGFG1, RAE1	0.0124
Endocytosis	SNX4, SFTPD, CD14	0.0150
Regulation of ubiquitin-protein ligase activity	BUB3, CDC23, CCNB1	0.0155
RNA transport	AGFG1, RAE1	0.0166
DNA repair	TOPBP1, PARP3, TOP2A	0.0170
Nuclear export	AGFG1, RAE1	0.0290
DNA replication	RFC1, TOP2A, MCM5	0.0324
Organelle organisation	CDC48, BUB3, H2AFX	0.0357
Response to stress	PARP3, PHLD3A, LSP1	0.0359
Cellular response to stimulus	PARP3, TOP2A, RAD51	0.0375
Innate immune response	TUBB2C, SFTPD	0.0441

Table 4 KEGG enrichment analysis of cluster D

KEGG_PATHWAY	Genes	P-value
hs04110 cell cycle	RBL1, CDC23, MCM5	1.80E-04
hs05131 enteropathogenic E. coli infection	TUBB2A, TUBB2C, CD14	0.007263
hs05130 enteropathogenic E. coli infection	TUBB2A, TUBB2C, CD14	0.007263
hs04115 p53 signalling pathway	CCNB1, CCNB2, APAF1	0.013926
hs04640 hematopoietic cell lineage	CD38, IL1R1, CD14	0.026877
hs06000 sphingolipid metabolism	SGMS1, BAGALT6	0.034673

E. coli, Escherichia coli, KEGG, Kyoto Encyclopedia of Genes and Genomes.
Conclusions

miR-124a provides some guidance for the mechanism of CP pathogenesis and is a potential target for the diagnosis of CP. miR-124a might participate in CP occurrence and development by regulating expression levels of CHSY1 or CASP1. Also, miR-124a might regulate the inflammatory disease of CP by changing the level of proinflammatory mediators by ABCCC4. In addition, DNA damage and E. coli infection might play important roles in CP pathogenesis.

Abbreviations

CASP1: Caspase 1, also known as interleukin-1β-converting enzyme; CP: Chronic pancreatitis; DEG: Differentially expressed gene; GEO: Gene Expression Omnibus; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; PARP: Poly(ADP-ribose) polymerase; PDAC: Pancreatic ductal adenocarcinoma; SAM4.0: Significance Analysis of Microarrays 4.0 software; SOTA: Second-order tolerance analysis.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

YH and BW should be regarded as co-first authors.

Received: 17 October 2013 Accepted: 21 March 2014

References

1. Lindley KJ. Chronic pancreatitis. Indian J Pediatr 2006, 73:507–512.
2. Coté GA, Yadav D, Silvia A, Hawes RH, Anderson MA, Burcott FR, Brand RE, Banks PA, Lewis MD, Disario JA, Gardner HB, Gehud A, Ammarian ST, Baillie J, Money ME, O’Connell M, Whitcomb DC, Sherman S, North American Pancreatitis Study Group: Alcohol and smoking as risk factors in an epidemiology study of patients with chronic pancreatitis. Clin Gastroenterol Hepatol 2011, 9:266–273.
3. Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, Liu CG, Bhatt D, Taccoli C, Croce CM: MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. J Hepatol 2007, 297:1901–1908.
4. Lee EJ, Gasev Y, Jiang J, Nuqio GJ, Lerner MR, Frankel WL, Morgan DL, Postier HS, Brackett DJ, Schmittgen TD: Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 2007, 120:1046–1054.
5. Luz E, D’Asta F, Brand ML: MicroRNAs and pancreatic-endocrine system. Noncoding RNA Endocrinol 2013, 19:1–15, doi:10.24278/microandrna-2013-0003.
6. Nair-Srikan S, Fabbris M, Croce CM: MicroRNAs in cancer: personalizing diagnosis and therapy. Ann N Y Acad Sci 2010, 1210:26–33.
7. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A: Enright AJ: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006, 34(Database issue):D140–D144.
8. Szafarska AE, Doleish M, Edmunds HS, Gordon S, Luttges J, Munding JB, Barth RJ, Guttmann EJ, Suriawinata AA, Papis JM, Tanuwidjaja A, Kore M, Hahn SA, Labourier E, Tsongalis GI: Analysis of microRNA expression in pancreatic fine-needle aspirates can classify benign and malignant tissues. Clin Chim Acta 2008, 384:176–1724.
9. Szafarska A, Davison TS, John J, Cannon T, Sivos B, Maghnouj A, Labourier E, Hahn SA: MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 2007, 26:4412–4452.
10. Ulmasov B, Oshima K, Rodriguez MG, Cox RD, Neuschwitz-Tetti BA: Differences in the degree of cerulein-induced chronic pancreatitis in C57BL/6 mouse substrains lead to new insights in identification of potential risk factors in the development of chronic pancreatitis. Am J Pathol 2013, 183:692–708.
11. Gharibez HD, Fodor AA, Gibas C3: Background correction using dinucleotide affinities improves the performance of GCRMA. BMC Bioinformatics 2008, 9:452.
12. Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001, 98:5116–5121. A published erratum appears in Proc Natl Acad Sci U S A 2001, 98:10515.
13. Benesty J, Chen J, Huang Y, Cohen I: Pearson correlation coefficient. In Noise Reduction in Speech Processing, Springer Topics in Signal Processing Volume 2. Edited by Cohen I, Huang Y, Chen J. Berlin: Springer; 2009:1–4.
14. Ramoni MF, Sebastiani P, Kohane IS: Cluster analysis of gene expression dynamics. Proc Natl Acad Sci U S A 2002, 99:10121–10126.
15. Henero J, Valencia A, Dopazo J: A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 2001, 17:216–236.
16. Tárraga J, Medina L, Cabotell J, Huitera-Cepas J, Minguez P, Alloza E, Al-Shahour F, Vegas-Azarate S, Gómez P, Escobar P, García-García F, Conesa A, Montaner D, Dopazo J: GEPS, a web-based tool for microarray data analysis and interpretation. Nucleic Acids Res 2008, 36(Web Server issue):W636–W641.
17. Yu G, Li F, Qin Y, Bo X, Wu Y, Wang S: G05SemSim: an R package for measuring semantic similarity among GO terms and gene products. Bioinformatics 2010, 26:976–978.
18. Allocco DJ, Kohane IS, Butte AJ: Quantifying the relationship between co-expression, co-regulation and gene function. BMC Bioinformatics 2004, 5:18.
19. Ladommatto A, McEwen A: ListsNetworks: integrated analysis of gene/protein lists. BMC Bioinformatics 2010, 11:87.
20. Grivas TG, Samaras M, Voyiatzis DK, Tsagarakis M: Significance analysis of microarrays (SAM) in cancer: the Dual Strategy. World J Gastroenterol 2012, 18:5620–5627.
21. Nakamoto Y, Kawanet S, Tenerokoochi M, Nishimura K, Sakai Y, Chint T, Saura K, Kimura S: MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum 2009, 60:1294–1304.
22. Sanuki R, Onishi A, Koike C, Muramatsu R, Watanabe S, Munisithy Y, Irie S, Uneo S, Koyasu T, Matsu T, Chén Y, Uraye T, Watanabe D, Kondo M, Yamashita T, Furukawa T: miR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression. Neuron 2011, 71:1253–1262.
23. Staunton J,MERCIER: MicroRNAs in cancer: personalizing diagnosis and therapy. Ann N Y Acad Sci 2010, 1210:26–33.
24. Wilson DG, Phamluong K, Lin WY, Bank K, Carano RA, Dehl L, Peterson AS, Martin F, Solloway MJ: Chordroitin synthases I, II, III and chondroitin sulfate glucuronyltransferase expression in colorectal cancer. Mol Med Rep 2011, 4:363–368.
25. Ramsdani M, Yang Y, Gansauge F, Gansauge B, Schmittgen T: Overexpression of caspase-1 (interleukin-1β converting enzyme) in chronic pancreatitis and its participation in apoptosis and proliferation. Pancreas 2001, 22:383–387.
29. Gottesman MM, Ambudkar SV: Overview: ABC transporters and human disease. J Bioenerg Biomembr 2001, 33:453–458.

30. Lage H: An overview of cancer multidrug resistance: a still unsolved problem. Cell Mol Life Sci 2008, 65:3145–3167.

31. El-Sheikh AAK, van den Heuvel JMWM, Koenderink JB, Russel FG: Interaction of nonsteroidal anti-inflammatory drugs with multidrug resistance protein (MRP) 2/ABCC2- and MRP4/ABCC4-mediated methotrexate transport. J Pharmacol Exp Ther 2007, 320:229–235.

32. Rius M, Hummel-Eisenbeiss J, Keppler D: ATP-dependent transport of leukotrienes B4 and C4 by the multidrug resistance protein ABC4 (MRP4). J Pharmacol Exp Ther 2008, 324:86–94.

33. Bartsch H, Nair J: Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch Surg 2006, 391:499–510.

34. Sodhi RK, Singh N, Jaggi AS: Poly(ADP-ribose) polymerase-1 (PARP-1) and its therapeutic implications. Vascul Pharmacol 2010, 53:77–87.

35. Boehler C, Gauthier LR, Mortusewicz O, Bresson A, Sanglier-Cianferani S, Smith S, Schreiber V, Bousin F, Danzer F: Poly(ADP-ribose) polymerase 3 (PARP3), a newcomer in cellular response to DNA damage and mitotic progression. Proc Natl Acad Sci U S A 2011, 108:2783–2788.

36. Hamby AM, Suh SW, Kauppinen TM, Swanson RA: Use of a poly(ADP-ribose) polymerase inhibitor to suppress inflammation and neuronal death after cerebral ischemia-reperfusion. Stroke 2007, 38(2 Suppl):632–636.

37. de la Lastra CA, Villegas I, Sánchez-Fidalgo S: Poly(ADP-ribose) polymerase inhibitors: new pharmacological functions and potential clinical implications. Curr Pharm Des 2007, 13:933–962.

38. Jagtap P, Szabó C: Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov 2005, 4:421–440.

39. Kauppinen TM, Suh SW, Berman AE, Hamby AM, Swanson RA: Inhibition of poly(ADP-ribose) polymerase suppresses inflammation and promotes recovery after ischemic injury. J Cereb Blood Flow Metab 2009, 29:820–829.

40. Karmali MA, Steele BT, Petric M, Lim C: Sporadic cases of haemolytic-uraemic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet 1983, 1:619–620.

41. Mead PS, Griffin PM: Escherichia coli O157:H7. Lancet 1998, 352:1207–1212.

42. Baradkar VP, Mathur M, Kumar S: Pancreatic abscess secondary to gall stones caused by Escherichia coli. Indian J Pathol Microbiol 2009, 52:59–574.

43. Issekutz AC, Bhimji S: Role for endotoxin in the leukocyte infiltration accompanying Escherichia coli inflammation. Infect Immun 1982, 36:558–566.