Daily Mortality and Air Pollution in Santa Clara County, California: 1989–1996

David Fairley
Bay Area Air Quality Management District, San Francisco, California, USA

The past decade has seen asurgeon of epidemiologic research investigating the relationship between air pollution and health effects. Dozens of these studies have analyzed the relationship of daily mortality to various air pollutants, especially particulates. The U.S. EPA analyzed many of these studies in Chapter 12 of Air Quality Criteria for Particulate Matter (1). This criteria document and the later staff report (2) concluded that the preponderance of evidence supports a causal connection between fine particulate levels and various health effects, including mortality. This led to the establishment of national standards for particulate matter ≤ 2.5 μm in aerodynamic diameter (PM$_{2.5}$).

A previous study (3) showed that an association existed between particulates [measured as coefficient of haze (COH)] and mortality in Santa Clara County (SCC), California, during the years 1980–1986. Since that time, the Bay Area Air Quality Management District (BAAQMD) has monitored particulate matter ≤ 10 μm in aerodynamic diameter (PM$_{10}$), and since 1990, the California Air Resources Board has operated PM$_{2.5}$ monitors, including one in SCC. An analysis of SCC PM$_{2.5}$ data shows that SCC would have met the PM$_{2.5}$ standard between 1991 and 1996. The present study is motivated by the concern that, although SCC may attain the new PM$_{2.5}$ standard, particulates there may still cause substantial health effects.

Air quality in SCC. Most of the studies of mortality and air quality have been based on eastern or midwestern U.S. cities, whose air quality dynamics differ markedly from those of the San Francisco Bay Area. Among the gaseous pollutants, ozone and carbon monoxide levels are similar, but Bay Area sulfur dioxide levels are an order of magnitude lower than in the eastern United States. In fact, sulfur dioxide is so low that it is no longer measured in SCC, but nearby San Francisco’s 24-hr design value is < 0.01 ppm, compared with typical design values of approximately 0.05 ppm in many eastern cities (4).

SCC’s particulate composition, dynamics, and sources also differ markedly from those of eastern cities. In eastern cities, ammonium sulfate represents approximately 45% of PM$_{2.5}$ (1), whereas in SCC it represents 5%. For many eastern and midwestern cities, particulate levels peak in the summer months (1). For SCC, however, particulates (especially fine particulates) are higher in winter. Specifically, mean San Jose, California, PM$_{2.5}$ levels in November, December, and January averaged 25 μg/m3 in 1990–1996, but < 10 μg/m3 during the rest of the year.

Wood-burning and ammonium nitrate each contribute approximately 40% of SCC’s wintertime PM$_{2.5}$ (5). These sources, combined with wintertime stagnation periods, are the main causes of SCC’s elevated wintertime particulate levels. As a result of this seasonality, the new SCC 15 μg/m3 annual standard appears no more stringent than the 65 μg/m3 24-hr standard (6). This is in spite of the EPA’s stated intention to make the annual average the more stringent controlling standard (7).

Particle size also varies by season. During the winter, SCC PM$_{2.5}$ averages approximately 70% of PM$_{10}$ compared with 50% for the year as a whole. Wintertime PM$_{10}$ is dominated by combustion sources, with approximately 10% coming from geological dust. During the rest of the year, geological dust makes up a larger fraction, marine sea salt becomes significant, and the amount of ammonium nitrate decreases by half.

For several years during the early 1990s, SCC and, in fact, the entire Bay Area, had air quality that complied with air quality standards for all criteria pollutants. Moreover, the Bay Area would have attained the new 8-hr ozone standard and, based on research monitoring results, would have attained the new PM$_{2.5}$ standard, had those standards been in effect. In contrast, in the early 1980s, when the previous study was done, SCC violated the 8-hr CO standard, the 1-hr ozone standard, and would have violated the 8-hr ozone standard had that been in effect. Although PM$_{10}$ and PM$_{2.5}$ were not measured in the 1980s, SCC violated the 150 μg/m3 total suspended particulate (TSP) standard almost every year.

Methodology
This study attempts to draw on the extensive experience of previous studies to determine a modeling approach. The sensitivity of conclusions to model choice, meteorological adjustment, and covariates has been extensively investigated [e.g., (1, 8–10)]. These studies have reached similar conclusions, namely that the choices of (reasonable) model and (reasonable) meteorological adjustment do not appear to greatly affect conclusions on the relationship between mortality and particulates, but the inclusion of other air contaminants often causes a substantial increase in the standard error of the particulate regression coefficient and sometimes a drop in the level of the coefficient. In other words, there can be substantial confounding of these variables.

Based on these considerations, various models were tried, including Poisson regression with either linear predictors or generalized additive models (GAMs) for temporal and weather variables, and models with an overdispersion fit using quasi likelihood.

Address correspondence to D. Fairley, Bay Area Air Quality Management District, 939 Ellis Street, San Francisco, CA 94109 USA. Telephone: (415) 749-4656. Fax: (415) 749-4741. E-mail: dfairley@baaqmd.gov

The author wishes to thank J. Mann and T. Porco from the San Francisco Department of Public Health for their help and suggestions on the use of generalized additive models and modeling building simulations.

The opinions expressed here are those of the author, and not necessarily those of the Board of Directors or staff of the Bay Area Air Quality Management District.

Received 19 January 1999; accepted 31 March 1999.
The disadvantage of the GAM approach is that it does not provide simple coefficients. Because the focus is on pollutant variables, however, this lack is not of great concern. The advantage is that the GAM approach is less likely to induce lack of fit. Thus, we will use the GAM approach. Models with an overdispersion parameter are useful for certain deviations from the Poisson model. However, if the Poisson model appeared adequate, it would be used.

The modeling strategy follows that of Samet et al. (10), first fitting terms for season and trend, then adding terms for meteorology, and finally adding pollutant terms, with the number of seasonal, trend, and meteorology terms determined by optimizing Akaike’s information criterion (AIC).

Tests of goodness of fit. A goodness of fit test of the Poisson model was performed based on deviance. Under the null hypothesis that the data derive from this model, the deviance has an approximately \(\chi^2 \) distribution with the residual degrees of freedom. Specifically, the \(\chi^2 \) test is a likelihood ratio test versus a saturated model, where each day is fitted with a different mean. Serious lack of fit would result in unusually large values of the deviance.

Residuals were checked for extreme values. The GAM approach minimizes problems with any nonlinearity between the response and the temporal and weather variables.

To test the sensitivity of the results to the use of GAM, a parallel modeling approach was performed using sine and cosine terms for time and day of year and polynomials in minimum and maximum temperature.

A simulation of the model-fitting process. The statistical significance level for testing a parameter in a model is based on the assumption that the selection of the model was made before the data were gathered. In practice, this is rarely the case, so the \textit{de facto} assumption is that the process of model-building has a minimal effect on the significance level.

An approach to finding more realistic significance levels is to simulate the model-building process itself. To that end, an S-Plus function was developed to simulate the following approximation of model-building. The idea was to simulate data from a true model that contains no pollutant term, then simulate the building up of the model and the fitting of a pollutant variable. The set of pollutant variable coefficients thus obtained should form a more realistic distribution than the simple one where model-building is ignored.

The steps of the simulation were as follows. Initially, a vector of Poisson means was generated by fitting daily mortality data to the seasonal, trend, and weather variables using the GAM approach. An S-Plus function was then invoked repeatedly with different random seeds that performed the following steps:

1. The function simulates a vector of Poisson variates from the initial mean vector.
2. It fits this simulated variate vector to GAM terms for time and day of year in a Poisson regression, increasing the degrees of freedom until there is no improvement in AIC from the addition of another degree of freedom in either GAM term.
3. It uses the optimal number of degrees of freedom for time and day of year from step 2, and adds GAM terms for minimum and maximum temperature, again adding terms until there is no improvement in AIC.
4. It fits the simulated variates to PM\(_{2.5}\) in addition to the optimal number of time, day of year, and minimum and maximum temperature GAM terms found in steps 2 and 3, with the fitted PM\(_{2.5}\) coefficient output.

The coefficient found from the actual data is then compared to the resulting distribution of simulated coefficients, providing what may be a more realistic \(p \)-value.

The data. California mortality data were obtained from the California Department of Health Services (Sacramento, CA) for the years 1989–1996. Counts of daily total nonaccidental mortality (henceforth described as mortality), respiratory mortality, and cardiovascular mortality were extracted for SCC residents who died in-county, using the same International Classification of Diseases, Ninth Revision (11) codes as in the previous study (3).

Pollutant data were obtained from the BAAQMD pollutant database. Long-term PM\(_{10}\) data were available for only one SCC site—San Jose 4th Street. These data cover the full period on an every-6-day schedule, with an every-other-day schedule during the first 3 years. This site also provided PM\(_{10}\) constituents nitrate and sulfate on the 6-day schedule and daily COH values. PM\(_{2.5}\) and PM\(_{10-2.5}\) were also available from a research model dichotomous sampler that operated at this site from 1990 through 1996 on the same 6-day schedule.

Ozone, carbon monoxide, and nitrogen dioxide data were also obtained for the 4th Street site. Although data for ozone were available from some other SCC sites, these were not included in the interests of simplicity. Because national standards are health-based it seemed reasonable to include variables with averaging times as defined in the standards, namely maximum 8-hr ozone, maximum 8-hr CO, and 24-hr NO\(_x\). Nevertheless, 24-hr CO and ozone were also considered.

Comparisons of 4th Street ozone with other SCC sites consistently show correlations above 0.8 in seasonally adjusted ozone concentrations. Thus, 4th Street ozone concentrations represent a reasonably good surrogate for outdoor ozone exposure in SCC. Based on data from the late 1970s when the district operated a number of COH monitors in SCC, correlations with the 4th Street site were quite high. The correlation between season- and trend-adjusted PM\(_{2.5}\) for Fremont and 4th Street was 0.86.

Weather data were obtained from the BAAQMD meteorological database for San Jose Airport. Previous studies have found nonlinear relationships between mortality and weather variables. Because mortality can be affected by both hot and cold weather, it seemed reasonable to consider both minimum and maximum temperature as variables. Therefore, both daily maximum and minimum temperature as well as 24-hr average relative humidity data (rh) were obtained. Missing values were filled in by regressing against temperature and rh values at other nearby BAAQMD meteorological sites—Alviso and Union City.

Comparison with previous results. To compare the results for 1989–1996 with the previous 1980–1986 results it was necessary to reanalyze the earlier results paralleling the new analysis as closely as possible.

For the 1980–1986 reanalysis, PM\(_{10}\) and PM\(_{10}\) and its species were not available. COH was used along with NO\(_x\) from the TSP filter. The other pollutants—NO\(_x\), O\(_3\), and CO—were measured, although the results were read from strip charts and recorded with one less significant digit. San Jose Airport data were not available for this time period; therefore, San Jose city temperatures were used.

Results

Table 1 provides summary statistics for PM\(_{2.5}\) related to the new PM\(_{2.5}\) standards. Note that from 1993 through 1996 the 4th Street site would have met the new PM\(_{2.5}\) standards, based on results from the dichotomous sampler. Although the new PM\(_{2.5}\) network will include many sites, the 4th Street site has historically had the highest particulate (PM\(_{10}\)) levels in the Bay Area.

Table 1. PM\(_{2.5}\) design values (\(\mu g/m^3\)): San Jose, CA, 4th Street, 1990–1996.

	1990	1991	1992	1993	1994	1995	1996
98th percentile	88	51	48	50.0	44	32	25
3-Year average	62.4	62.4	62.4	62.4	62.4	62.4	62.4
Annual mean	18.4	15.9	13.8	12.9	12.6	10.3	9.5

PM\(_{2.5}\), particulate matter ≤ 2.5 \(\mu m\) in aerodynamic diameter.
Thus, there is a good chance that the Bay Area (including SCC) would have met the standards had PM_{2.5} and PM_{10-2.5} not been monitored. Table 2 presents summary statistics for all the variables considered. Note that PM_{2.5} and PM_{10-2.5} do not sum to PM_{10}, that the number of observations for the PM_{10} fractions was 408 compared with 823 for PM_{10}. This is because the fractions were measured with a dichotomous sampler whereas the PM_{10} was measured with the district high-volume sampler. Although the dichotomous sampler averages lower than the district sampler, the two PM_{10} measurements have a correlation of 0.94.

Season and trend fits. Rather than predicting mortality from a single temporal GAM term, separate GAM terms in time and day of year were fit because a good-fitting model could be obtained using many fewer degrees of freedom. Terms were added sequentially until there was no further improvement in AIC.

The best model contained a GAM term for time with 7 degrees of freedom (df) and a day of year term with 12 df. The resulting deviance was 3,038.5, with AIC 3,078.5.

Meteorological variables. GAM terms were fit for minimum and maximum temperature in addition to a 7-degree term for time and a 12-degree term for day of year, yielding an optimum AIC with 3 df for minimum temperature and 2 df for maximum. (Subsequently, this set of GAM terms will be referred to as the optimal GAM terms.) The model had a deviance of 2,998.1 on 2,897 df and an AIC of 2,897 df.

To test for lack of fit, a quasi likelihood model was fit. The overdispersion parameter of 1.02 is barely larger than 1, the value for the Poisson. The p-value for a χ² of 2,998.1 with 2,897 df is 0.09, so that the Poisson model cannot be rejected at the 0.05 level.

Pollutant variables. Table 3 presents partial correlations between mortality and the pollutant variables. Specifically, mortality and each pollutant variable were regressed against the optimal GAM terms, and the residuals saved. Several of the Poisson regressions did not converge, so least squares regressions were used. The table presents the correlations among these residuals.

Of the pollutant measures, PM_{2.5} and NO\textsubscript{3} have the highest partial correlations with mortality. There are also reasonably high correlations with PM_{10} and SO\textsubscript{4}. Interestingly, in contrast to other studies, there are actually negative correlations between mortality and the lags (previous day) of these variables. Another change is that CO\textsubscript{H} is only weakly correlated with mortality, although there is a statistically significant correlation with lagged CO\textsubscript{H}. The relationship with 24-hr CO is similar to that of CO\textsubscript{H}. NO\textsubscript{2} is also highly correlated with CO\textsubscript{H}, but lag NO\textsubscript{2} has a lower partial correlation with mortality than unlagged NO\textsubscript{2}.

The correlation between ozone and mortality is weak, although the correlation with 8-hr ozone is borderline significant.

Except for ozone, there are positive correlations between the other pollutant variables, with high correlations between some of the particulate measurements (PM_{2.5} and PM_{10}, PM_{10} and CO\textsubscript{H}, and PM_{2.5} and NO\textsubscript{3}). There are also high correlations between NO\textsubscript{2} and PM_{10} and NO\textsubscript{3} and CO\textsubscript{H}.

Various combinations of pollutants were tried in Poisson regressions that also included the optimal GAM terms. The results are shown in Table 4. As with the partial correlations, both NO\textsubscript{3} and PM_{2.5} were highly significant. PM_{2.5}, SO\textsubscript{4} and 8-hr ozone were also marginally statistically significant. Among lagged variables, CO\textsubscript{H} and CO were highly significant and NO\textsubscript{2} was marginally so. PM_{10-2.5} was not significant, nor was its lag.

Because NO\textsubscript{3} and PM_{2.5} had the highest partial correlations with mortality, these were included in regressions with other pollutants.
NO$_3$ was statistically significant paired with every other pollutant except PM$_{2.5}$. PM$_{2.5}$ was statistically significant paired with every pollutant except NO$_3$ and PM$_{10}$. No other pollutant was statistically significant in regressions with either of these pollutants. Two runs of all four categories of pollutants were made (particulate, NO$_2$, CO, and ozone), using either PM$_{2.5}$ or NO$_3$ as the particulate variable. In these regressions, the particulate variable was highly statistically significant and the others were not.

Goodness of fit. In the fitted models in Table 4 that included PM$_{2.5}$, the deviance is actually 364.7—less than its degrees of freedom (382). This implies p-values of 0.5 or higher, i.e., there is no indication of lack of fit. Similarly, for the model with NO$_3$, the deviance is 503.4, with 497 df; the p-value is 0.31.

There are no large y-outliers, the largest daily mortality value being 40, approximately 4 standard deviations (SDs) above the mean. Several of the pollutant variables are right-skewed—PM$_{2.5}$ and NO$_3$ in particular. However, taking the log of PM$_{2.5}$ (after first adding 5 precautionary mg/m3 to reduce undue influence of small PM$_{2.5}$ values) eliminates much of the skewness, and the transformed variable is still statistically significant in a Poisson regression with the trend, seasonal, and meteorological terms.

The raw mortality values have an autocorrelation of 0.18, but the residuals from the multiple regression of mortality on trend, season, and weather terms has an autocorrelation of only 0.04. Thus, autocorrelation of residuals is not a significant issue.

The fact that the deviance is approximately equal to the value expected under the null hypothesis suggests that it would be difficult to improve the fit substantially. The lack of y-outliers, the lack of influential x-values, and the lack of autocorrelation suggest that the Poisson model fits reasonably well.

Analysis using a parametric approach. To check the adequacy of the GAM approach, a parallel analysis was performed using sine/cosine functions for season and trend, and polynomials for weather variables. The results were similar both qualitatively and quantitatively to those found in Table 4.

A simulation of the model-fitting process. The simulation described in “A Simulation of the Model-Fitting Process” in “Methodology” was repeated 1,000 times. It yielded four fitted coefficients greater than that observed so that, based on the simulation, the p-value is approximately 0.004. This p-value is, if anything, smaller than that found using statistical theory, where the p-value was 0.012.

Comparison with 1980–1986 results. Table 5 presents a reanalysis of the 1980–1986 data using methods paralleling those of Table 4. In particular, the same variables for season, trend, and weather were used (although they were refitted with 1980–1986 data). To make coefficients comparable, the same darts are used; that is, 50 \times SD(p)/SD(PM$_{10}$), where the SDs are from the 1980–1996 data.

Generally, the results for the 1980–1986 period are similar to those of 1989–1996. In particular, with the exception of ozone, the coefficient for every pollutant or the lagged pollutant is statistically significant. In pairwise models with lagged COH, the other pollutants are no longer statistically significant. Lagged COH remains highly significant in combination with NO$_3$, and ozone; with CO, it is not statistically significant, but its regression coefficient is little changed. NO$_3$ is borderline significant ($p = 0.06$) with the ozone, but not significant with CO or NO$_2$. Oddly, in combination with NO$_3$, NO$_2$ was significant. Note that the sample size for NO$_3$ is only 354, compared with over 2,000 for the other pollutants. The small sample size makes it more difficult to design an effect. When both lag COH and NO$_3$ are in the model, the COH coefficient is smaller and no longer statistically significant, whereas the NO$_3$ coefficient changes only slightly and is borderline significant ($p = 0.09$).

On all differences with the 1989–1996 results is that the 1980–1986 COH coefficient is highly significant, with a relative risk of 1.06, compared with 1.03 for 1989–1996. A comparison of the two coefficients—taking their difference and dividing by the square root of the sum of their sample variances—yields a value of $z = 1.36$, not statistically significant. Pooling the two periods, fitting the same coefficient for season, trend, and weather, but with different COH slopes and intercepts did not result in a statistically significant difference in COH coefficients.

One possible reason that the COH coefficient might have changed is that COH has diminished from the early 1980s to the 1990s. Thus, if the effect of COH is not linear, this could result in different coefficients. However, neither a quadratic nor a hockey-stick function of COH was significant in the pooled regressions for either period.

Respiratory and cardiovascular regressions. Table 6 shows relative risks from Poisson regressions using each pollutant or their lags (depending on which had the greater risk based on Table 4). SO$_2$ and CO were significantly associated with respiratory mortality.

Table 4. Pollutant relative risks for models with pollutant alone, lagged, and with other pollutants, Santa Clara County, CA, 1989–1996.

Pollutant	PM$_{10}$	PM$_{2.5}$	PM$_{10-25}$	COH	NO$_3$	SO$_3$	NO$_3$	CO	8-hr O$_3$
Alone	1.08**	1.09*	1.02	1.03	1.07**	1.05*	1.03	1.02*	1.03*
Lagged	0.99	0.96	0.98	1.05**	0.98	0.98	1.03	1.04**	0.99
With									
PM$_{10}$									
PM$_{2.5}$	0.96	0.97	0.99	1.09	1.00	0.96	1.04		
PM$_{10-25}$									
COH	1.13*								
NO$_3$	1.11**								
NO$_3$	1.11**								
SO$_3$	1.02	1.00	0.96	1.01	1.01	0.99	1.01		1.05
Lag NO$_3$	1.12**								
Lag CO$_2$	1.11**								
8-hr O$_3$	1.10**								
Four-pollutant	1.13**								
Four-pollutant	1.09**								

Abbreviations: SD, standard deviation; COH, coefficient of haze; poll, pollutant; PM$_{10}$, particulate matter $\leq 10 \mu m$ in aerodynamic diameter; PM$_{2.5}$, particulate matter $\leq 2.5 \mu m$ in aerodynamic diameter; PM$_{10-25}$, particulate matter $\leq 10 \mu m$ in aerodynamic diameter.

*Relative risks calculated by $\exp(x - \lambda) - 1$, where λ is the pollutant coefficient from the Poisson regression, and $x = 50$ for PM$_{10}$, corresponding to the increment used in the criteria document f. For other pollutants, λ, the increment was $50 \times SD(p)/SD(PM_{10})$, e.g., SD(PM$_{10}$) = 13, SD(PM$_{10}$) = 25, so for PM$_{10}$, $x = 50 \times 13/25 = 28$. All models include 7 generalized additive model terms for trend, 12 for season, 3 for minimum temperature, and 2 for maximum temperature. Lagged variables were used if they appeared to fit better lagged than unlagged. Thus, lagged CO and lagged COH were used when fitting jointly with other pollutants. Pollutants are lagged CO, lagged NO$_3$, 8-hr ozone, and either PM$_{10}$ or NO$_3$.

*Statistical significance at the 0.05 level. **Statistical significance at the 0.01 level.*
Table 6. Respiratory and cardiovascular mortality relative risksa for modelsb with pollutanc alone, Santa Clara County, CA, 1989–1996.

	PM10	PM2.5	PM10-2.5	Lag COH	NO2	SO4	Lag NO2	Lag CO	8-hr O3
Respiratory	1.11	1.13	1.16	1.07	1.10	1.15*	1.07	1.08*	0.96
Cardiac	1.09*	1.07	1.03	1.03	1.09*	1.04	1.02	1.04*	1.02

Abbreviations: COH, coefficient of haze; PM10, particulate matter ≤ 10 μm in aerodynamic diameter; PM2.5, particulate matter ≤ 2.5 μm in aerodynamic diameter.

aRelative risks calculated by exp(β × Δp) – 1, where β is the pollutant coefficient from the Poisson regression and Δp = 50 for PM10 and 50 × SD(p/SD(PM10)) for other pollutants, p, e.g., SD(PM10) = 13, SD(PM2.5) = 23, for so for PM2.5, Δp = 50 × 13/23 = 28. All models include 7 generalized additive model terms for trend, 12 for season, 3 for minimum temperature, and 2 for maximum temperature. Lagged variables were used if they appeared to fit better lagged than unlagged. Thus, lagged CO and lagged COH were used when fitting jointly with other pollutants.

bStatistical significance at the 0.05 level.

dPM2.5, NO2, and CO were associated with cardiovascular mortality. For PM10, PM10-2.5, NO2, and CO the point estimates for risk were higher than those in Table 4.

Analyses by season. Analyses were performed by season for pollutants with the highest partial correlations with mortality (Table 7). In most cases, the change in relative risk is not statistically significant. Based on Tukey's studentized range distribution, the risks differ significantly from season to season for NO2. For the other pollutants, the differences in risk between seasons are not statistically significant.

Discussion

One striking result of the analysis is that although the Bay Area met every air quality standard in the early 1990s (and would have met the new 8-hr ozone and PM2.5 standards had they been in effect), there is a statistically significant correlation between each pollutant considered (except coarse fraction PM10) and mortality. Second, the regression coefficients of other pollutants that are correlated with particulates—CO and NO2—drop to nonsignificance in a regression that also includes some measure of fine particulates (either PM10 or NO2), whereas there is little change in the fine particulate coefficients. This suggests that fine particulates (or what fine particulates may be a surrogate for) may be the real culprits. The result that NO2 has the strongest association with mortality is clearly of practical importance and worth investigating for other areas.

The level of PM10 effect found—a relative risk of 1.08 for an increase of 50 μg/m3 PM10—is larger than that found in many other studies (see the EPA's Table 12-37 and Figure 12-43 (1)). This may reflect a better correlation between monitored values and exposure in SCC. Part of the explanation may be that buildings in SCC are not as tight because of its mild climate, which could lead to a higher correlation of indoor and outdoor particulate levels. A second point is that the correlation between particulate values measured at the San Jose 4th Street monitor and other SCC monitors is high. Particulate levels at the 4th Street monitor exceed those of other SCC monitors (12); therefore, the relative risk as a function of SCC average levels could be higher than 1.08.

No evidence for a threshold was found. Although the COH coefficient was substantial lower for the 1989–1996 period than for 1980–1986, the result did not appear to be due to the lower particulate levels in the later period. One point that is important to keep in mind is the role of chance in these comparisons; because there is marginal power to detect effects of this magnitude, some data sets may yield nonsignificant results whereas others yield highly significant results.

Although the results for respiratory and cardiovascular mortality showed fewer significant results than for mortality as a whole, the level of effects appeared somewhat higher. The number of cardiovascular and respiratory deaths is considerably smaller than all deaths (Table 2), so the power to detect an effect is less unless the effect is much larger.

The results by season were ambiguous. The lack of statistical significance of most of the coefficients can be attributed to lack of power. The criteria document (1) found that a minimum sample size of 400 was necessary to achieve reasonable power in epidemiologic studies such as this. For PM10, NO2, and SO4, there were approximately 100 observations per season, far below the 400 observations necessary to achieve reasonable statistical power. Nevertheless, a statistically significant difference in effect was found for NO2, with positive effects for winter, spring, and summer, and a negative effect for fall; although only the winter coefficient was statistically significant, the range of coefficients was larger than expected by chance.

This analysis has found associations between air pollution variables and mortality—especially with fine particulate variables—similar to the levels of associations found in the studies that were used to justify the new PM2.5 standards. Yet the Bay Area probably meets these new standards. The new PM2.5 standards may be protective in other areas where seasonal PM variations are not as great. In the Bay Area, however, the seasonal variation in PM2.5 is large, with winter concentrations averaging more than double that of summer concentrations. The results of this analysis suggest that current national air quality standards, specifically those for particulates, may not be protective of public health for the Bay Area.

REFERENCES AND NOTES

1. U.S. EPA. Air Quality Criteria for Particulate Matter. EPA/NIEP-96/001a. Washington, DC:U.S. Environmental Protection Agency, 1996.
2. U.S. EPA. Review of the National Ambient Air Quality Standards for Particulate Matter: Policy Assessment of Scientific and Technical Information. OADPS Staff Paper EPA-452/R-96-013. Washington, DC:U.S. Environmental Protection Agency, 1996.
3. Fairley D. The relationship of daily mortality to suspended particulates in Santa Clara County, 1980-86. Environ Health Perspect 98:159–168 (1993).
4. ARIIS database. ARIISWEB query—annual summary (http://www.epa.gov/irispub/annual_summary.html) (cited 11 May 1998).
5. Fairley D. Source Apportionment of Bay Area Particulates. BAAAGMD Draft Technical Report. San Francisco, CA:Bay Area Air Quality Management District, 1996.
6. BAAAGMD. Comments on New Proposed National Air Quality Standards. Attachment 4: Stringency of Proposed Standards: Particulates. San Francisco, CA:Bay Area Air Quality Management District, 1997.
7. U.S. EPA. 40 CFR 50, National Ambient Air Quality Standards for Particulate Matter; final rule. Fed Reg 62(51):29651–29701 (1997).
8. Kinney PL, Ito K, Thurston GD. A sensitivity analysis of mortality/PM2.5 associations in Los Angeles, Inhl Toxicol 7:59–65 (1995).
9. Samet JM, Zeger SL, Burge KA. The association of mortality and particulate air pollution. In: Particulate Air Pollution and Daily Mortality: Replication and Validation of Selected Studies. Cambridge, MA:Health Effects Institute, 1995.
10. Samet JM, Zeger SL, Kelsall JE, Xu J, Kalkstein, LS. Analysis of the effects of weather and multiple air pollutants. In: Particulate Air Pollution and Daily Mortality: Replication and Validation of Selected Studies. Cambridge, MA:Health Effects Institute, 1997.
11. World Health Organization International Classification of Diseases, 9th revision, Clinical Modification, 2nd ed. Bethesda, MD:U.S. Department of Health and Human Services, 1980.
12. Fairley D. Unpublished data, 1994.