How weak is weak extent?

M. V. Matveev

Department of mathematics, University of California at Davis,
Davis, CA 95616, USA (address valid till June 30, 2000)
misha_matveev@hotmail.com

Abstract. We show that the extent of a Tychonoff space of countable weak extent can be arbitrary big. The extent of X is $e(X) = \sup\{|F| : F \subset X \text{ is closed and discrete}\}$ while $we(X) = \min\{\tau : \text{ for every open cover } \mathcal{U} \text{ of } X \text{ there is } A \subset X \text{ such that } |A| \leq \tau \text{ and } St(A, \mathcal{U}) = X\}$ is the weak extent of X (also called the star-Lindelöf number of X). Also we show that the extent of a normal space with countable weak extent is not greater than \mathfrak{c}.

Keywords: extent, weak extent, star-Lindelöf number, linked-Lindelöf number, normal space.

AMS Subject Classification: 54A25, 54D20

Recall that the extent of a topological space X is the cardinal $e(X) = \sup\{|F| : F \subset X \text{ is closed and discrete}\}$. The weak extent of X is the cardinal $we(X) = \min\{\tau : \text{ for every open cover } \mathcal{U} \text{ of } X \text{ there is } A \subset X \text{ such that } |A| \leq \tau \text{ and } St(A, \mathcal{U}) = X\}$. The reason for this name is that for any $X \in T_1$, $we(X) \leq e(X)$; indeed, supposing $we(X) > \kappa$, there is an open cover such that for every $A \subset X$ with $|A| \leq \kappa$ one has $St(A, \mathcal{U}) \neq X$; then one can inductively choose points $x_\alpha, \alpha < \kappa$, so that $x_\alpha \notin St(\{x_\beta : \beta < \alpha\}, \mathcal{U})$ for each α; once the points have been choosen the set $\{x_\alpha : \alpha < \kappa\}$ is closed, discrete and of cardinality κ, so $e(X) \geq \kappa$. Note also that $we(X) \leq d(X)$ obviously holds for every X. Some cardinal inequalities involving extent can be improved by replacing extent by weak extent. Thus for $X \in T_1$, $|K(X)| \leq we(X)^{psw(X)}$. A natural question was stated in [1], [9]: how big can the difference between the extent and the weak extent of a T_i space be? First, we give the answer for the Tychonoff case.
Theorem 1 For every cardinal τ there is a Tychonoff space X such that $e(X) \geq \tau$ and $we(X) = \omega$.

Before the paper [5] the cardinal function $we(X)$ was called the star-Lindelöf number [10], [8], [11]. In particular, a space X such that $we(X) = \omega$ is called star-Lindelöf or *Lindelöf, see e.g. [9], [1], [2] [3].

Note that $e(X) \leq 2^{we(X)}$ for every regular space X [1].

To prove Theorem 1, we use a set-theoretic fact in Theorem 2 below. Let S be a set and λ a cardinal. A set mapping of order λ on S is a mapping that assigns to each $s \in S$ a subset $f(s) \subset S$ so that $|f(s)| < \lambda$ and $s \not\in f(s)$. A subset $T \subset S$ is called f-free if $f(t) \cap T = \emptyset$ for every $t \in T$. Answering a question of Erdös, Fodor proved in 1952 ([4], see also [2], Theorem 3.1.5) a general theorem a partial case of which is the following

Theorem 2 (Fodor) Let S be a set of cardinality τ and let f be a set mapping on S of order ω. Then there is a countable family \mathcal{H} of f-free subsets of S such that $\cup \mathcal{H} = S$.

Proof of Theorem 1: Let τ be an infinite cardinal. For each $\alpha < \tau$, z_α denotes the point in D^τ with only the α-th coordinate equal to 1. Put $Z = \{z_\alpha : \alpha < \tau\}$. Then Z is a discrete subspace of D^τ. Further, let κ be a cardinal such that $\text{cf}(\kappa) > \tau$. Put

$$X = (D^\tau \times (k + 1)) \setminus ((D^\tau \setminus Z) \times \{\kappa\}).$$

Also we denote $X_0 = D^\tau \times \kappa$ and $X_1 = Z \times \{\kappa\} = \{(z_\alpha, \kappa) : \alpha < \tau\}$. Then $X = X_0 \cup X_1$.

It is clear that X_1 is closed in X and discrete, so $e(X) \geq \tau$.

It remains to prove that $we(X) = \omega$. First, note that X_0 is countably compact, hence star-Lindelöf. So it remains to prove that X_1 is relatively star-Lindelöf in X, i.e. for every open cover \mathcal{U} of X there is a countable $A \subset X$ such that $St(A, \mathcal{U}) \supset X_1$.

Let \mathcal{U} be an open cover of X. For every $\alpha < \tau$ choose an $U_\alpha \in \mathcal{U}$ so that $(z_\alpha, \kappa) \in U_\alpha$. Further, for every $\alpha < \tau$ choose $\xi_\alpha < \kappa$ and B_α, an element of the standard base of D^τ, so that $(z_\alpha, \kappa) \in (B_\alpha \times (\xi_\alpha, \kappa]) \cap X \subset U_\alpha$. It remains to check that

$(+)$ there is a countable $C \subset D^\tau$ such that $B_\alpha \cap C \neq \emptyset$ for every $\alpha < \tau$.

2
Indeed, since \(\text{cf}(\kappa) > \tau \), there is a \(\gamma < \kappa \) such that \(\gamma > \xi_\alpha \) for all \(\alpha < \tau \). Put \(A = C \times \{ \gamma \} \). Then \(U_\alpha \cap A \neq \emptyset \) for all \(\alpha < \tau \), so \(X_1 \subset \text{St}(A, \mathcal{U}) \).

Now we check (+). The set \(B_\alpha \) has the form

\[
B_\alpha = \{ x \in D^\tau : x(\alpha) = 1 \text{ and } x(\alpha') = 0 \text{ for all } \alpha' \in A_\alpha \}
\]

where \(A_\alpha \) is some finite subset of \(\tau \setminus \{ \alpha \} \). Consider the set mapping \(f \) that assigns \(A_\alpha \) to \(\alpha \) for each \(\alpha < \tau \). By Fodor’s theorem, there is a countable, \(f \)-free family \(H = \{ H_n : n \in \omega \} \) of subsets of \(\tau \) such that \(\bigcup H = \tau \). For each \(n \in \omega \), denote by \(c_n \) the indicator function of \(H_n \), i.e. \(c_n(\alpha) = 1 \) iff \(\alpha \in H_n \).

Since \(H_n \) is \(f \)-free, \(B_\alpha \ni c_n \) for all \(\alpha \in H_n \). Put \(C = \{ c_n : n \in \omega \} \). Then \(B_\alpha \cap C \neq \emptyset \) for every \(\alpha < \tau \), i.e. (+) holds.

Pseudocompactness of \(X \) follows from the fact that \(X \) contains a dense countably compact subspace \(X_0 \). \(\blacksquare \)

Now we are going to show that in the normal case the extent of a space of countable weak extent is not greater than \(c \). In fact, we will prove a slightly more general statement. Recall that a family of sets is linked if every two elements have nonempty intersection. The linked-Lindelöf number of \(X \) is the cardinal \(\text{ll}(X) = \min \{ \tau : \text{every open cover of } X \text{ has a subcover representable as the union of at most } \tau \text{ many linked subfamilies} \} \). A space \(X \) with \(\text{ll}(X) = \omega \) is called linked-Lindelöf. It is easy to see that \(\text{ll}(X) \leq \text{we}(X) \) for every \(X \).

Theorem 3 For every normal space \(X \), \(e(X) \leq 2^{\text{ll}(X)} \).

Proof: Let \(\tau \) be an infinite cardinal, \(K \) a closed discrete subspace of a normal space \(X \) and \(|K| = k > 2^\tau \). We have to show that \(\text{ll}(X) > \tau \). It is easy to construct a family \(\mathcal{A} \) of subsets of \(K \) such that \(|\mathcal{A}| = k \) and for every nonempty finite subfamily of \(\mathcal{A} \), say \(A_1, \ldots, A_n, A_{n+1}, \ldots, A_{n+m} \),

\[
(\ast) \quad |A_1 \cap \ldots \cap A_n \cap (K \setminus A_{n+1}) \cap \ldots \cap (K \setminus A_{n+m})| = k.
\]

For every \(A \in \mathcal{A} \) pick a continuous function \(f_A : X \to I \) such that \(f(A) = \{ 1 \} \) and \(f(K \setminus A) = \{ 0 \} \). Denote \(\mathcal{F} = \{ f_A : A \in \mathcal{A} \} \) and \(F = \Delta \mathcal{F} : X \to I^{\mathcal{F}} \). Then \(|\mathcal{F}| = k \). Note that \(F(K) \subset D^\mathcal{F} \). It follows from (\(\ast \)) that \(F(K) \) is dense in \(D^\mathcal{F} \), moreover, every open set in \(D^\mathcal{F} \) contains \(k \) elements of \(F(K) \). There is therefore a bijection \(\varphi : K \to \mathcal{B} \), where \(\mathcal{B} \) is the standard base of
\(D^F\), such that \(\varphi(z) \ni F(z)\) for every \(z \in K\). Every element \(B \in \mathcal{B}\) has the form

\[
B = B_{f_1 \ldots f_n}^{i_1 \ldots i_n} = \{x \in D^F : x(f_1) = i_1, \ldots, x(f_n) = i_n\}
\]

where \(n \in \mathbb{N}, f_1, \ldots, f_n \in \mathcal{F}\) and \(i_1, \ldots, i_n \in D\). Denote

\[
U(B) = \left\{ x \in I^F : \forall j \in \{1, \ldots, n\} \left(x(f_j) > \frac{1}{2} \text{ if } i_j = 1 \right) \text{ or } \left(x(f_j) < \frac{1}{2} \text{ if } i_j = 0 \right) \right\}.
\]

Further, for every \(z \in K\) put \(\tilde{\varphi}(z) = U(\varphi^{-1}(z))\). Then \(\tilde{\varphi}(z)\) is a neighbourhood of \(F(z)\) in \(I^F\). Note that

\[
(**) \quad \tilde{\varphi}(z) \cap \tilde{\varphi}(z') \neq \emptyset \quad \text{iff} \quad \varphi(z) \cap \varphi(z') \neq \emptyset.
\]

Let \(G\) denote the family of all continuous functions form \(X\) to \(I\), \(G = \Delta G : X \rightarrow I^\varnothing, \pi : I^\varnothing \rightarrow I^F\) is the natural projection. For each \(z \in K\) denote \(\tilde{\varphi}(z) = \pi^{-1}(\varphi(z))\). Then \(\tilde{\varphi}(z)\) is a neighbourhood of \(G(z)\) in \(I^\varnothing\) and

\[
(***) \quad \tilde{\varphi}(z) \cap \tilde{\varphi}(z') \neq \emptyset \quad \text{iff} \quad \varphi(z) \cap \varphi(z') \neq \emptyset.
\]

Last, for every \(z \in K\) put \(\tilde{\varphi}(z) = (\tilde{\varphi}(z) \setminus G(K \setminus \{z\})) \cap G(X)\). Then \(\tilde{\varphi}(z)\) is a neighbourhood of \(G(z)\) in \(G(X)\) and

\[
(*)v) \quad \tilde{\varphi}(z) \cap \tilde{\varphi}(z') \neq \emptyset \quad \text{iff} \quad \varphi(z) \cap \varphi(z') \neq \emptyset.
\]

Put \(U_0 = \{\tilde{\varphi}(z) : z \in K\}\). Since \(G\) is a homeomorphic embedding, \(G(K)\) is closed in \(G(X)\), so \(O = G(X) \setminus G(K)\) is open and hence \(U = U_0 \cup \{O\}\) is an open cover of \(G(X)\).

Since \(w(D^F) > 2^n\), \(\mathcal{B}\), a base of \(D^F\), is not representable as the union of at most \(\tau\) many linked subfamilies (see e.g. [4]). By (**), (***) and (*) the same can be said about the family \(U_0\). Note that for every \(z \in K\), \(\tilde{\varphi}(z)\) is the only element of \(U\) that contains \(z\). So \(U\) does not have a subcover representable as the union of at most \(\tau\) many linked subfamilies and thus \(ll(X) = ll(G(X)) > \tau\). \(\square\)

It is not clear whether the inequality in the previous theorem can be made strict, even with star-Lindelöf number instead of linked-Lindelöf.

Acknowledgement. The author expresses his gratitude to Angelo Bella and to Marion Scheepers for useful discussions, in particular, Angelo Bella.
has drawn authors attention to the paper [5] and Marion Scheepers has drawn author’s attention to the book [12].

The paper was written while the author was visiting the University of California, Davis. The author expresses his gratitude to colleagues from UC Davis for their kind hospitality.

References

[1] M. Bonanzinga, Star-Lindelöf and absolutely star-Lindelöf spaces, Q&A in General Topology, 16 (1998) 79-104.

[2] M. Bonanzinga and M. V. Matveev, Star-Lindelöfness versus centered-Lindelöfness, to appear in Comment. Math. Univ. Carol.

[3] M. Bonanzinga and M. V. Matveev, Products of star-Lindelöf and related spaces, to appear in Houston J. of Math.

[4] G. Fodor, Proof of a conjecture of P. Erdös, Acta Sci. Math. Szeged 14 (1952) 219-227.

[5] R. E. Hodel, Combinatorial set theory and cardinal function inequalities, Proc. Amer. Math. Soc. 111 (1991) 567-575.

[6] S. Ikenaga, A class which contains Lindelöf spaces, separable spaces and countably compact spaces, Memoires of Numazu College of Technology 18 (1983) 105-108.

[7] R. Levy and M.V. Matveev, Spaces with σ-n-linked topologies as special subspaces of separable spaces, Comment. Math. Univ. Carol. 40 (1999) 561-570.

[8] M. V. Matveev, Pseudocompact and Related Spaces, thesis, Moscow State University, Moscow, 1984.

[9] M. V. Matveev, A survey on star covering properties, Topological Atlas, Preprint No 330, http://www.unipissing.ca/topology/v/a/a/a/19.htm
[10] Dai MuMing, *A topological space cardinality inequality involving the *Lindelöf number*, Acta Math. Sinica, 26 (1983) 731-735.

[11] S. H. Sun and Y. M. Wang, *A strengthened topological cardinal inequality*, Bull. Austral. Math. Soc. 32 (1985) 375-378.

[12] N.H. Williams *Combinatorial Set Theory*, North-Holland 1977.