Development of the protocol of the interface of data exchange with the GBTX chip

O V Shumkin, D D Normanov and P Ya Ivanov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe highway 31, Moscow, 115409, Russia

E-mail: ovshumkin@mephi.ru

Abstract. The structure of the interface of data exchange with the GBTX chip for the CBM experiment is considered. The interface generates a data package, consisting of the digital codes of signal amplitude, signal superposition in peak detector, signal arrival time and channel number, wherein the event has occurred, all these codes being generated by the readout blocks of IC. The created data package is coded according to the 8b/10b format for transferring to the GBTX chip. The packages register of controlling data (warnings on error and desynchronization) are generated for a correct exchange (correspondence) under the GBTX protocol. The adjustment of the quantity of channels, generating data packages and being connected to the GBTX chip, is possible. The interface has been designed according to the 180 nm CMOS technology of UMC.

Introduction

The paper describes the elaboration of the 32-channel system of processing the asynchronous data from the CBM muon chambers at the FAIR. The total number of channels exceeds 10^6, while the minimal inter-event time is 100 ns. For each channel the ASIC should provide the measurements of signal amplitude, its arrival time and channel number, keeping power consumption within 10 mW/channel. An 8-channel prototype of system was elaborated for debugging the functional model. It comprises the blocks, performing the following functions: load of initial data and control commands, picking up the information about input signals as well as the high-speed (320 MHz) serialization of output data.

Protocol

The structure of the interface of data exchange with the GBTX chip for the CBM experiment is considered. The interface generates a data package, consisting of the digital codes of signal amplitude, superposition signal in peak detector, signal arrival time and channel number, wherein the event has occurred, all these codes being generated by the readout blocks of IC. the interface part is shown in figure 1.

![Figure 1. The sent frame](image-url)
The created data package is coded according to the 8b/10b format for transferring to the GBTX chip. The packages register of controlling data (warnings on error and desynchronization) are generated for a correct exchange (correspondence) under the CBM MUCH protocol. The adjustment of the quantity of channels, generating data packages and being connected to the GBTX chip, is possible. The interface has been designed according to the 180 nm CMOS technology of UMC.

The discussed protocol describes the operation of the protocol of exchange with the GBTX chip for a variety of nuclear physics experimental. The entire protocol can be divided into two parts. That are synchronization and data exchange. Synchronization protocol is shown in figure 3.

Figure 2. Interface part.

The discussed protocol describes the operation of the protocol of exchange with the GBTX chip for a variety of nuclear physics experimental. The entire protocol can be divided into two parts. That are synchronization and data exchange. Synchronization protocol is shown in figure 3.

Figure 3. Regular and Quick synchronization.
The information exchange mode consists of downlink and uplink. The messages SOS and EOS are not subjected to 8b10b coding in contrast to the following types of messages. SOS – start of synchronization, EOS – end of synchronization.

Other types of messages use the 8b10b encoding. The main useful information transmitted via the HIT Frame. It consists of a 5-bit channel number, the superposition signal, an 8-bit ADC, 14-bit timestamp and 3 bits of serving bits. All serving information (such as register values) is transmitted through the Ack frame. S – superposition, CP – config parity, Res – reserve.

Table 1. Coded by the 8b10b coder.

BYTE0	BYTE1	BYTE2	BYTE3
TYPE	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0	
K28.5	1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 0	0 1 0 1 1 1 1 0 0	
K28.1	0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0		

Table 2. Downlink messages.

BYTE0	BYTE1	BYTE2	BYTE3	BYTE4	BYTE5
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0					
Comma characted	Frame ID & Chip Address	Request type/Reserve	Payload	CRC	CRC
K28.5	<7:4>chip address<3:0>,<3:0>sequence number<3:0>	<7:6>Request type, <5:0>Reserve	<7:0>Payload<7:0>	<7:0>CRC<15:8>	<7:0>CRC

5 independent communication lines send data to the output. Possible modes are 5, 2, 1 signal lines. GBTX can handle a maximum of 40 lines, therefore the maximum number of CBM_MUCH chips are 8. There is 1 type of frame, where one can configure its function: the dummy frame, writing the address, writing the data or reading them out.

To detect errors, a 16-bit CRC polynomial 0x8005 is used. An 8-bit physical address space covers not only the registers of interface chips, but also the virtual registers triggering special functions (for example, the reset of each part separately, and the like). Since the loading link channel is divided into 8 chips the addressing occurs by using a 4-bit address of the chip being used to turn on and translate commands. All special instructions are executed by accessing the registers.
Conclusion
A 32-channel system for processing asynchronous data from the GEM detectors has been developed. Elements of digital block structures have been developed and tested on the basis of the previous chip prototype. Test signals are applied to the system by built-in ADC emulators. The prototype has a pyramidal structure, consisting of several FIFO blocks and a control one. It was manufactured via Europractice in the UMC CMOS 180 nm process. The designed for lab tests board includes the input/output analog and digital interfaces for data exchange with an FPGA processing board. The tests showed the following characteristics: maximal speed for 5-bit data - 50 MHz, the readout one from the FIFO output - 320 MHz. Power consumption and chip area are 43 mW and 450x450 μm sq correspondingly. As result of testing one may conclude that in a full scaled version it is expedient to use the single-level pyramidal structure of data acquisition based on FIFO.

The interface block accomplishes a multilevel synchronisation with the GBTX chip, according to its exchange protocol. Synchronization errors are checked by CRC codes and control commands. The reference frequency is set by an external clock of 160 MHz. The control of the ASIC parameters and output data transmission is carried out at a speed up to 320 MHz. Thus, the results of laboratory tests of the prototype chip as well as development of the backend part have proved the relevance of the presented system design. The next step is expected to be the manufacture and test of the full-scaled 32-channel version.

Acknowledgments
This work was supported by the Ministry of Education and Science of the Russian Federation in the frames of the Competitiveness Program of National Research Nuclear University MEPhI and grant no.14.A12.31.0002 in accordance with the RF government resolution no. 220.

References
[1] Friman B et al. 2010 The CBM Physics Book (Berlin: Springer, New York: Heidelberg)
[2] Johann M 2013 Heuser The Compressed Baryonic Matter Experiment at FAIR Nuclear Physics A 904–905 941
[3] Geronimo G De et al. 2002 Analog Peak Detector and Derandomizer for High-Rate Spectroscopy Nucl. Instrum. Meth. A 484 533–43