NON-LEFT-COMPLETE DERIVED CATEGORIES

AMNON NEEMAN

Abstract. We give some examples of abelian categories \(\mathcal{A} \) for which the derived category \(D(\mathcal{A}) \) is not left-complete. Perhaps the most natural of these is where \(\mathcal{A} \) is the category of representations of the additive group \(\mathbb{G}_a \) over a field \(k \) of characteristic \(p > 0 \).

Contents

0. Assumed background 1
1. The counterexample 1
2. The proof 4
References 6

0. Assumed background

In this article we assume the reader is familiar with derived categories and with \(t \)-structures on them. See Verdier [5] for the theory of derived categories, and Beilinson, Bernstein and Deligne [1, Chapter 1] for an introduction to \(t \)-structures.

1. The counterexample

Suppose \(\mathcal{A} \) is an abelian category and \(D(\mathcal{A}) \) is its derived category. For any object \(x \in D(\mathcal{A}) \), we write \(x^{\geq n} \) for the truncation of \(x \) with respect to the standard \(t \)-structure. We have canonical maps \(x^{\geq n} \to x^{\geq n+1} \), and a (non-canonical) map

\[
\varphi_x : x \longrightarrow \text{Holim} \ x^{\geq n}.
\]

The category \(D(\mathcal{A}) \) is said to be left-complete if, for every object \(x \in D(\mathcal{A}) \), any map \(\varphi_x \) as above is an isomorphism. Even though the map \(\varphi_x \) is not canonical, it can be shown that, for given \(x \), if one \(\varphi_x \) is an isomorphism then they all are.

The reader can find much more about left-complete categories in Lurie [3, Section 7] or [1, Subsection 1.2.1, more precisely starting from Proposition 1.2.1.17]. See also Drinfeld and Gaitsgory [2].

2000 Mathematics Subject Classification. Primary 18E30, secondary 18G55.

Key words and phrases. Derived categories, \(t \)-structures, homotopy limits.

The research was partly supported by the Australian Research Council.
In this note we will see how to produce many \(\mathcal{A} \) for which \(\mathbf{D}(\mathcal{A}) \) is not left-complete. Our counterexamples will be of a very special form, which allows us to easily compute the homotopy inverse limit \(\text{Holim } x^{\geq n} \). Let us now sketch what we will do.

We will suppose that the abelian category \(\mathcal{A} \) satisfies the axiom [AB4], that is coproducts are exact; this makes it easy to compute coproducts in the derived category \(\mathbf{D}(\mathcal{A}) \), just form the coproduct as complexes. Suppose \(A \) is an object in our [AB4] abelian category \(\mathcal{A} \), and let

\[
x = \prod_{i=0}^{\infty} A[i].
\]

It is clear that, for \(n > 0 \), we have

\[
x^{\geq -n} = \prod_{i=0}^{n} A[i] = \prod_{i=0}^{n} A[i],
\]

where the last equality is because finite coproducts agree with finite products. Now the homotopy inverse limit of the products is a genuine inverse limit, and we have

\[
\text{Holim } x^{\geq n} = \prod_{i=0}^{\infty} A[i].
\]

Thus our problem becomes to decide whether the map

\[
\prod_{i=0}^{\infty} A[i] \xrightarrow{\varphi} \prod_{i=0}^{\infty} A[i]
\]

is an isomorphism. Note that in this case the map is canonical; our homotopy inverse limit happens to be a genuine inverse limit, removing the arbitrariness. The left hand side is easy to work with; its cohomology is \(A \) in each degree \(n \leq 0 \). What we will show is how to produce examples where the right hand side has lots more cohomology. More precisely, we have

\[
\prod_{i=0}^{\infty} A[i] = A[0] \oplus \left(\prod_{i=1}^{\infty} A[i] \right)
\]

and the expectation would be for the second term to have a vanishing \(H^0 \); what we will show is how to produce non-zero classes in

\[
H^0 \left(\prod_{i=1}^{\infty} A[i] \right).
\]

It is time to disclose what will be our choice for the category \(\mathcal{A} \) and for the object \(A \in \mathcal{A} \).

Construction 1.1. Let \(k \) be a field, let \(R_1 \) be a finitely generated \(k \) algebra, and let \(\mathfrak{m} \) be a \(k \)-point of \(\text{Spec}(R_1) \). In other words, \(\mathfrak{m} \subset R \) is a maximal ideal with \(R_1/\mathfrak{m} \cong k \). We make a string of definitions:

(i) \(R_n = \otimes_{i=1}^{n} R_1 \), where the tensor is over the field \(k \).
(ii) The inclusion $R_n \to R_{n+1}$ is the inclusion of the tensor product of the first n terms.

(iii) $R = \text{colim} R_n$.

(iv) The map $\Phi_i : R_1 \to R$ is the inclusion of the ith factor.

(v) The category A will be the category of all those R–modules, on which $\Phi_i(m)$ acts trivially for all but finitely many i.

The object $A \in A$ will be the colimit over n of the R_n–modules $k = \otimes_{i=1}^n [R_1/m]$.

The main result is

Theorem 1.2. Assume that $k = R_1/m$ is not projective over the localization $(R_1)_m$ of the ring R_1 at the maximal ideal m. With the category A and the object $A \in A$ as in Construction 1.1, there is a non-zero element in

$$H^0 \left(\prod_{i=1}^{\infty} A[i] \right).$$

Remark 1.3. The case where $R_1 = k[x]/(x^p)$ is of particular interest. If the field k is of characteristic p then the category A happens to be the category of representations of the additive group \mathbb{G}_a, and we learn that its derived category is not left-complete.

Remark 1.4. We trivially have

$$\prod_{i=1}^{\infty} A[i] = \left(\prod_{i=1}^{n} A[i] \right) \oplus \left(\prod_{i=n+1}^{\infty} A[i] \right),$$

and hence

$$H^0 \left(\prod_{i=1}^{\infty} A[i] \right) = H^0 \left(\prod_{i=1}^{n} A[i] \right) \oplus H^0 \left(\prod_{i=n+1}^{\infty} A[i] \right).$$

On the other hand, with the finite product we have no problem computing

$$H^0 \left(\prod_{i=1}^{n} A[i] \right) = H^0 \left(\prod_{i=1}^{n} A[i] \right) = 0,$$

and Theorem 1.2 now allows us to deduce that

$$H^0 \left(\prod_{i=n+1}^{\infty} A[i] \right) \neq 0.$$

Translating we have that

$$H^n \left(\prod_{i=1}^{\infty} A[i] \right) \neq 0$$

for all $n \geq 0$. The complexes $A[i]$, $i > 0$ all belong to $D(A)^{<0}$, but the product $\prod_{i=1}^{\infty} A[i]$ is not bounded above.

Acknowledgements. The author would like to thank Drinfeld and Gaitsgory for asking the question that led to these counterexamples.
2. The proof

We begin with a little lemma.

Lemma 2.1. Let k be a field, and let R and S be finitely generated k-algebras. Suppose further that we are given k-points of $\text{Spec}(R)$ and $\text{Spec}(S)$; that is $m \subset R$ and $n \subset S$ are maximal ideals, with

$$R/m \cong k \cong S/n.$$

Let E be an injective envelope of $k = R/m$ over the ring R, and F an injective envelope of $k = S/n$ over the ring S. Then $E \otimes_k F$ is an injective envelope of k over the ring $R \otimes_k S$.

Proof. We will first prove the case where R and S are polynomial rings.

Let $R' = k[x_1, x_2, \ldots, x_m]$ be a polynomial ring, and let m be the maximal ideal generated by $\{x_1, x_2, \ldots, x_m\}$. Then we know the injective envelope E' of $k = R'/m$ explicitly: it is the quotient of $S = k[x_1, x_1^{-1}, x_2, x_2^{-1}, \ldots, x_m, x_m^{-1}]$ by the R'-submodule generated by all monomials $x_1^{i_1}x_2^{i_2}\cdots x_m^{i_m}$ with at least one of the $i_j > 0$. As a k-vector space $E' = k[x_1^{-1}, x_2^{-1}, \ldots, x_m^{-1}]$, and the R'-module structure is obvious when we declare $x_1^{i_1}x_2^{i_2}\cdots x_m^{i_m} = 0$ if some $i_j > 0$. If $S' = k[y_1, y_2, \ldots, y_n]$ and $n \subset S'$ is the ideal generated by $\{y_1, y_2, \ldots, y_n\}$, then the fact that

$$E' \otimes_k F' = k[x_1^{-1}, x_2^{-1}, \ldots, x_m^{-1}] \otimes_k k[y_1^{-1}, y_2^{-1}, \ldots, y_n^{-1}]$$

is the injective hull of k over $R' \otimes S'$ is by inspection.

Now for the general case: assume $R = R'/I$ and $S = S'/J$ where R' and S' are polynomial rings, and $I \subset R'$ and $J \subset S'$ are ideals contained in the m and n above. Then the injective hull E of $k = R/m$ over the ring R is the largest R-submodule of the R'-module E', that is the R'-submodule $E \subset E'$ of all elements annihilated by the ideal I. The lemma therefore comes down to the fact that the submodule of $E' \otimes_k F'$ annihilated by the ideal $I \otimes_k S' + R' \otimes_k J$ is precisely $E \otimes_k F$.

Proof of Theorem 1.2 Let \overline{R} be the localization of R_1 at the maximal ideal m. We are assuming that k is not projective over \overline{R}, that is the projective dimension of k is at least one. Choose and fix a minimal free resolution of $k = \overline{R}/m\overline{R}$ as an \overline{R}-module. Let us write this resolution as

$$\longrightarrow P_2 \longrightarrow P_1 \longrightarrow P_0 \longrightarrow k \longrightarrow 0.$$

Then the modules P_i are all finite and free over the ring \overline{R}, the differentials are all matrices over \overline{R}, and the minimality guarantees that the entries in these matrices all belong to the ideal $\overline{m} = m\overline{R} \subset \overline{R}$. Now let E be the \overline{R}-injective envelope of the module k; applying the functor $\text{Hom}_{\overline{R}}(-, E)$ to the projective resolution above, we produce an injective resolution I^* of k, which we write out as

$$0 \longrightarrow k \longrightarrow I^0 \longrightarrow I^1 \longrightarrow I^2 \longrightarrow \cdots$$
We know that each $I^j = \text{Hom}(P_j, E)$ is a finite coproduct of copies of E, and that the differentials $I^j \to I^{j+1}$ are matrices whose entries belong to the ideal m. The fact that the projective dimension of k is at least one tells us that $P_1 \neq 0$, and therefore $I^1 \neq 0$. Note that an injective envelope E of k over the localized ring $\overline{R} = (R_1)_m$ is also an injective envelope of k over the ring R_1, hence we have produced an injective resolution of k over R_1. Next we

(i) Choose a non-zero element a in the image of the map $k \to I^0$.

(ii) Choose a non-zero element $b \in I^1$, with $mb = 0$.

If we view k as a module over the ring $R_n = \otimes_{i=1}^n R_1$, then the tensor product $J_n^* = \otimes_{i=1}^n I^*$ is certainly a resolution of k as an R_n module, and Lemma 2.1 guarantees further that

(iii) Each J_n^i is injective as a module over R_n.

(iv) Let the inclusion $J_n^* \to J_{n+1}^*$ be the map taking $x \in J_n^*$ to

$$x \otimes a \in J_n^* \otimes I^0 \subset J_n^* \otimes I^* = J_{n+1}^*,$$

where $a \in I^0$ is as in (i) above. We define J^* to be

$$J^* = \text{colim} J_n^*;$$

then J^* is an injective resolution of k in the category A.

To prove the theorem we need to find a non-zero element in $H^0(\prod_{i>0} k[i])$, and our next observation is that the product in the derived category $\prod_{i>0} k[i]$ is obtained as the ordinary product of injective resolutions. The complex $J^*[i]$ is an injective resolution of $k[i]$, and hence the derived product $\prod_{i>0} J^*[i]$ is just the usual product $\prod_{i>0} J^*[i]$. Now for every $i \geq 1$ let

$$S_i = \{i^2 + 1, \ldots, i^2 + i\},$$

and observe that the sets S_i are disjoint. In the injective R_{i^2+i}–module

$$J_{i^2+i}^j = \prod_{\sum \ell_m = i} I^{\ell_1} \otimes I^{\ell_2} \otimes \cdots \otimes I^{\ell_{i^2+i}},$$

or more specifically in the summand

$$(I^0)^{\otimes i^2} \otimes (I^1)^{\otimes i},$$

we take the term

$$\lambda_i = a^{\otimes i^2} \otimes b^{\otimes i},$$

where $a \in I^0$ and $b \in I^1$ are as in (i) and (ii) above. The embedding $J_{i^2+i}^* \to J^*$ of (iv) gives us an element which we will denote $\lambda_i \in J^i$. The elements λ_i have the properties

(v) Each λ_i is a cycle; the differential $J^i \to J^{i+1}$ kills λ_i.

(vi) $\Phi_j(m)\lambda_i = 0$ for all i and j.

We are assuming $i > 0$, so each λ_i must be a boundary because $H^i(J^*) = 0$. But if $\mu_i \in J^{i-1}$ maps to λ_i, then there must exist an integer $j \in S_i$ so that $\Phi_j(\mathfrak{m})$ does not kill μ_i. Now form the element

$$\prod_{i=1}^{\infty} \lambda_i \in \prod_{i=1}^{\infty} J^i,$$

where the product is in the category of all R–modules.

Caution 2.2. The reader is reminded that the category \mathcal{A} is a subcategory of the category of R–modules. Both categories have infinite products; the products in the category of R–modules are just the usual cartesian products, while the products in \mathcal{A} are subtler. To form the product in \mathcal{A} of a bunch of objects in \mathcal{A}, one first forms the usual cartesian product, and then consider inside it the largest object belonging to \mathcal{A}, that is the collection of all elements satisfying part (v) of Construction 1.1.

The element $\prod_{i=1}^{\infty} \lambda_i$ is a degree 0 cycle in the complex $\prod_{i \geq 1} J^i[\mathfrak{m}]$, and it is annihilated by $\Phi_j(\mathfrak{m})$ for all j. By Caution 2.2 we have that $\prod_{i=1}^{\infty} \lambda_i$ belongs to $\prod_{i=1}^{\infty} J^i$ even when the product is understood in \mathcal{A}. However, it is not a boundary in \mathcal{A}. If we try to express $\prod_{i=1}^{\infty} \lambda_i$ as the boundary of

$$\prod_{i=1}^{\infty} \mu_i \in \prod_{i=1}^{\infty} J^{i-1},$$

then we discover that each μ_i fails to be annihilated by some $\Phi_j(\mathfrak{m})$ with $j \in S_i$. As the S_i are disjoint, this produces infinitely many $\Phi_j(\mathfrak{m})$ not annihilating $\prod_{i=1}^{\infty} \mu_i$, meaning it does not belong to \mathcal{A}.

References

1. Alexander A. Beilinson, Joseph Bernstein, and Pierre Deligne, *Analyse et topologie sur les espaces singuliers*, Astérisque, vol. 100, Soc. Math. France, 1982 (French).
2. Vladimir Drinfeld and Dennis Gaitsgory, *On some finiteness questions for algebraic stacks*, in preparation.
3. Jacob Lurie, *Derived algebraic geometry I: stable ∞-categories*, arXiv:math/0608228v5.
4. , *Higher Algebra*, Prepint, available from http://www.math.harvard.edu/~lurie/.
5. Jean-Louis Verdier, *Des catégories dérivées des catégories abéliennes*, Astérisque, vol. 239, Société Mathématique de France, 1996 (French).

Centre for Mathematics and its Applications, Mathematical Sciences Institute, John Dedman Building, The Australian National University, Canberra, ACT 0200, AUSTRALIA

E-mail address: Amnon.Neeman@anu.edu.au