Robust Identification of “Sparse Plus Low-rank” Graphical Models: An Optimization Approach

Valentina Ciccone, Augusto Ferrante, Mattia Zorzi

Abstract—Motivated by graphical models, we consider the “Sparse Plus Low-rank” decomposition of a positive definite concentration matrix— the inverse of the covariance matrix. This is a classical problem for which a rich theory and numerical algorithms have been developed. It appears, however, that the results rapidly degrade when, as it happens in practice, the covariance matrix must be estimated from the observed data and is therefore affected by a certain degree of uncertainty. We discuss this problem and propose an alternative optimization approach that appears to be suitable to deal with robustness issues in the “Sparse Plus Low-rank” decomposition problem. The variational analysis of this optimization problem is carried over and discussed.

I. INTRODUCTION

Graphical Models are used to provide a graph representation of the relations between random variables. In particular, Gaussian Graphical models can be used to describe the conditional independence relations between the m components of a zero-mean Gaussian random vector x by means of an interaction graph $G(V_m, E_m)$. This is an undirected graph where the set V_m contains m nodes and E_m is the subset of the pairs of nodes that are directly connected by an edge. In this representation, the i-th node represents the i-th component x_i of vector x; each edge represents a dependence relation: no edge between the nodes i and j indicates that x_i and x_j are conditionally independent, given all the others x_k; in more formal terms, for any pair of distinct nodes i and j, $(i,j) \notin E_m$ if and only if $x_i \perp x_j | \{x_k\}_{k \neq i,j}$. This graphical structure is very powerful to represent interdependence of the various components in a complex system with many variables, and for this reason this representation has been used and analyzed in a huge amount of papers in Statistics, Engineering, and Signal processing, to mention only the main applications.[1], [2], [3], [4], [5], [6], [7], [8], [9].

The case of graphs with a small number of edges is very interesting in applications because such a pattern highlights a simple structure where the values of most pairs of variables does not have a direct influence on each other. Moreover, this structure clarifies the paths of interdependence along which the value of each variable may affect the value of each other. In most situations, however, the graph is complete (or almost complete) as there is no pairs of variables that are conditionally independent given the others. Of course, this may reveal that we are considering a genuinely complex system where each variable has direct influence on each other, but it may also point to a different and much more interesting situation. The essence of this situation is well described by the following very simple example. Let

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} = \begin{bmatrix} y_1 + y_{m+1} \\ y_2 + y_{m+1} \\ \vdots \\ y_m + y_{m+1} \end{bmatrix},$$

where $y_i, i = 1, \ldots, m+1$ are independent Gaussian random variables. It is immediate to see that the graph associated with x is complete (i.e. each pair of nodes is connected by an edge). The interdependence pattern between the variables of the vector x, however, has a very interesting and simple structure providing a powerful interpretation. This structure can be highlighted by considering the augmented vector $\tilde{x} := [x^T (y_{m+1})^T]^T$; indeed, it is easy to see that the graph associated with \tilde{x} has only the m edges connecting y_{m+1} to each of the x_i which provides the following interpretation: the interdependence between all the manifest (observed) variables x_i is completely explained by the dependence of each x_i with a common latent (hidden) variable y_{m+1}. It is now clear why a great effort has been dedicated to uncover this hidden structure by only observing the manifest variables in x.

In this paper, we are interested in Gaussian Graphical models with a two-layer structure: our aim is to integrate the set of manifest variables — that we think to be arranged in a bottom layer — with a small number of latent variables — arranged in a top layer — in such a way that a drastic reduction in the number of edges between the manifest variables is achieved. An example of this structure is depicted in Figure 1 where it is easy to see that if we considered only the manifest variables x_1, \ldots, x_6 the corresponding graph would be complete. However, almost all of the interdependence between these variables is explained by the two latent variables x_7, x_8 so that an illuminant structure emerges when we integrate these two variables with the observed ones. It is worth noting that this idea has been exploited also for Bayesian networks, [10].

As an application of the theory developed in Dempster seminal paper [11], an identification procedure for such Gaussian Graphical models has been developed which is based on the “Sparse Plus Low-rank” decomposition of the manifest concentration matrix Σ_m^{-1} of the manifest vector x (Σ_m, being the covariance matrix of x), [9], [3]:

$$\Sigma_m^{-1} = S - L.$$ (1)

Indeed, such a decomposition, where S is symmetric and positive definite and L is symmetric and positive semidefinite, provides a two-layers graphical model with $\text{rank}(L)$
latent variables and a number of edges between the observed variables that is equal to the number of non-zero off-diagonal entries of the matrix S. Therefore, for the solution of our problem we seek for a decomposition of the form $\tilde{\Sigma} = L\Sigma L^T$ where the rank of the matrix L and the number of non-zero entries of the matrix S are minimized.

This classical approach is, however, based on a very artificial assumption: the covariance matrix Σ_m of x is assumed to be known. On the contrary Σ_m is normally estimated from the data so that only a noisy version $\hat{\Sigma}_m$ of Σ_m is usually available. On the other hand, the accuracy of this estimation may severely affect the goodness of the result — in terms of minimum rank and maximum sparsity — of the aforementioned optimization problem. More precisely, even in the case where the data are indeed produced by a mechanism in which a few non-observable variables explain most of the interdependence between the observed variables, relatively small variations of the covariance matrix Σ_m from the true value Σ_m may produce significant changes in the numerical rank of L and the numerical sparsity of S. To see this, we considered a sparse matrix S_0 of dimension 20 and a positive semidefinite matrix L_0 of dimension 20 and rank 4 such that $S_0 - L_0 \succ 0$; then we considered the matrix $\Sigma_m := (S_0 - L_0)^{-1}$. We generated a sample of $N = 1000$ independent realizations of a Gaussian random vector with zero mean and covariance matrix Σ_m and from them we estimated the sample covariance $\tilde{\Sigma}_m$. Then we computed the “Sparse plus Low-rank” decompositions $\Sigma^{-1}_m = \tilde{L}_0 - \tilde{S}_0$ and $\Sigma^{-1} = \tilde{L}_0 - \tilde{S}_0$, using the available algorithm in the literature [9], [3]. In Figure 2 the sparsity pattern of S_0, \tilde{S} and \tilde{S} and the first 10 eigenvalues of L_0, \tilde{L}_0 and L_0 are depicted providing evidence of the degradation of the solution when Σ_m is substituted to Σ_m. In fact, it is apparent that when the true covariance matrix is employed the algorithm recover a solution with the correct numbers of latent variables and of non-zero elements of the matrix S, while when the covariance is estimated (even from as many as $N = 1000$ data) the “sparse plus low-rank” structure is completely lost. Therefore, we are dealing with a very delicate problem where the solution is highly sensible to the observed data: in this work we propose a method to deal with this problem by taking the uncertainty in the estimation of Σ_m into account as it has been done in robust state estimation paradigms proposed in [12], [13]. This leads to a more complex optimization problem: given Σ_m, we propose to compute the matrix $\tilde{\Sigma}_m$ in such a way that in the decomposition $\Sigma^{-1}_m = S - L$ the rank of L is minimized while the sparsity of S is maximized under a constraint which limits the Kullback-Leibler divergence between Σ_m and the sample covariance $\tilde{\Sigma}_m$ to a prescribed tolerance depending on the precision of $\tilde{\Sigma}_m$. It is worth noting that a similar problem has been addressed with different approaches in [14], [15].

The paper is organized as follows. In Section III Gaussian Graphical models and the Sparse plus Low-rank structure for the inverse covariance matrix are introduced. Then, the main optimization problem is stated. In Section III the choice of the upper bound on the divergence between Σ_m and $\tilde{\Sigma}_m$ is discussed. Then, in Section IV we define the dual problem and in Section V we establish and existence and uniqueness result for the solution of such a dual problem and we show how to obtain the solution of the primal problem.

Notation: Given a vector space V and a subspace $W \subset V$, we denote by W^\perp the orthogonal complement of W in V. Given a matrix M, we denote its transpose by M^T; if M is a square matrix $\text{tr}(M)$ denotes its trace; moreover, $\|M\|$ denotes the determinant of M and $\sigma(M)$ denotes the spectrum of M, that is, the set of its eigenvalues. We endow the space of square real matrices with the following inner product: for $A, B \in \mathbb{R}^{n \times n}$, $\langle A, B \rangle := \text{tr}(A^T B)$. The Frobenius norm of M is denoted by $\|M\|$. The symbol Q_n denotes the vector space of real symmetric matrices of size n. If $X \in Q_n$ is positive definite or positive semidefinite we write $X \succ 0$ or $X \succeq 0$, respectively. Moreover, we denote by D_n the vector space of diagonal matrices of size n; D_n is clearly a subspace of Q_n. $M_n := D_n^+$ is the orthogonal complement of D_n in Q_n with respect to the inner product just defined. We denote by $\text{diag}(\cdot)$ both the operator mapping n real elements $d_i, i = 1, \ldots, n$ into the diagonal matrix having the d_i's as elements in its main diagonal and the operator mapping a matrix $M \in \mathbb{R}^{n \times n}$ into
an n-dimensional vector containing the diagonal elements of
\tilde{M}. Then $\text{diag}(\tilde{M})$, that we denote by $\text{diag}^2(\cdot)$, is the
(orthogonal projection) operator mapping a square matrix \tilde{M}
into a diagonal matrix of the same size having the same main diagonal of \tilde{M}. We denote by $\text{ofd}(\cdot)$ the self-
adjoint operator orthogonally projecting Q_n onto M_n, i.e. if $\tilde{M} \in \text{Q}_n$, $\text{ofd}(\tilde{M})$ is the matrix of M_n in which each off-diagonal element is equal to the corresponding element of \tilde{M} (and each diagonal element is zero). We denote by \otimes the
Kronecker product between two matrices and by $\text{vec}(X)$ the
vectorization of a matrix X formed by stacking the columns
of X into a single column vector. Finally, the cardinality of
a set \mathcal{S} is denoted by $|\mathcal{S}|$.

II. PROBLEM FORMULATION

A. Latent-Variable Gaussian Graphical Models

Let \tilde{x} be a zero-mean Gaussian random vector of
dimension $m + l$, that is $\tilde{x} := \begin{bmatrix} x^\top \ y^\top \end{bmatrix}^\top$, where $x := \begin{bmatrix} x_1 & \ldots & x_m \end{bmatrix}^\top$ plays the role of the manifest vector
and $y := \begin{bmatrix} x_{m+1} & \ldots & x_{m+l} \end{bmatrix}^\top$ plays the role of the latent vector. We partition the
covariance $\Sigma \in \text{Q}_{m+l}$ of \tilde{x} conformably with the partition of \tilde{x} as:

$$\Sigma = \begin{bmatrix} \Sigma_m & \Sigma_{ml}^\top \\ \Sigma_{ml} & \Sigma_l \end{bmatrix}. \tag{2}$$

We are interested in the Gaussian Graphical model of \tilde{x}
and hence in the conditional independence relations in \tilde{x}.
Thus we recall a fundamental result stating that two distinct
elements of a Gaussian random vector are conditionally
independent given all the others if and only if the corresponding
element in the concentration matrix (the inverse of the
covariance) is zero [11]. In our case, this reads:

$$\forall i \neq j, \quad x_i \perp x_j \iff [\Sigma^{-1}]_{ij} = 0.$$

Let us denote by K the inverse of covariance matrix Σ.
Then, K can be also partitioned as:

$$K = \Sigma^{-1} = \begin{bmatrix} K_m & K_{ml}^\top \\ K_{lm} & K_l \end{bmatrix} \tag{3}$$

and, by using the Schur complement, we can obtain the relationship

$$\Sigma^{-1} = K_m - K_{ml}^\top K_l^{-1} K_{lm} \tag{4}$$

where the sparsity pattern of K_m provides the relations of
conditional independence between the manifest variables in x
and the rank of $K_{lm}^\top K_l^{-1} K_{lm}$ provides (an upper bound for) the number l of latent variables.

Now we recall that our only data are those of the vector x
and hence we may estimate Σ_m while the rest of Σ
is a purely artificial construction. The previous argument,
evertheless, provides a procedure for identifying a model Σ
from Σ_m. In fact, if we decompose Σ^{-1} as

$$\Sigma^{-1}_m = S - L, \quad S > 0, \quad L \succeq 0,$$

where the rank l of L is as small as possible and S is as
sparse as possible (of course there is a trade off between
these two conditions) we may identify S with K_m and L
with $K_{lm}^\top K_l^{-1} K_{lm}$.

This argument naturally leads to an optimization problem
where the optimal S and L must minimize a combination
of a distance or divergence function $d(\cdot, \cdot)$ between Σ_m and $S - L$ and two penalty functions inducing sparsity and low-rankness on S and L, respectively, [9], [3]:

$$(\hat{S}, \hat{L}) = \arg\min_{S, L \in \text{Q}_m} \quad d(\Sigma_m, S - L) + \lambda (\gamma \phi_1(S) + \phi_4(L))$$

subject to $S - L \succeq 0$, $L \succeq 0$ \quad \tag{5}

where $\lambda > 0$ and the regularizer is a combination of two penalties: ϕ_1 which induces sparsity on (the off-diagonal of) S
and ϕ_4 which induces low-rankness on L; while $\gamma > 0$
plays the role of the balance term. As in [9], [3], a natural
choice for the regularizers is the following.

- The sparsity regularizer for a matrix $Y \in \text{Q}_n$ is given
by an l_1-like function:

$$\phi_1(Y) = h_1(Y) = \sum_{k > h} |Y_{kk}|.$$

- The low-rank regularizer is the nuclear norm, which for positive
semidefinite matrices can be surrogated by the trace,
so that we set:

$$\phi_4(Y) = \text{tr}(Y).$$

B. Robust Sparse plus Low Rank Identification

In practical applications, however, the matrix Σ_m is
unknown and needs to be estimated from the observed data
that we assume to be N independent realizations $x_{(i)}$ of x.
The typical choice is the sample covariance matrix $\hat{\Sigma}_m =
N^{-1} \sum_{i=1}^{N} x_{(i)} x_{(i)}^\top$. As discussed in the Introduction,
evertheless, when replacing Σ_m with $\hat{\Sigma}_m$ in (5)
the corresponding solution may rapidly degrade. To deal with a similar problem
in the context of Factor Analysis we have proposed in [16],
[17] an optimization technique that may be adapted to the
present setting as discussed below.

Let Σ_m be given. We assume that the “actual” Σ_m belongs
to a ball centred in $\hat{\Sigma}_m$:

$$B := \{\Sigma_m \in \text{Q}_m \text{ s.t. } \Sigma_m \succ 0, \quad D_{KL}(\hat{\Sigma}_m || \Sigma_m) \leq \delta/2\}$$

where $\delta/2$ is the prescribed tolerance and $D_{KL}(\Sigma_m || \Sigma_m)$ is
the Kullback-Leibler divergence defined as:

$$D_{KL}(\hat{\Sigma}_m || \Sigma_m) := \frac{\log |\Sigma_m| - \log |\hat{\Sigma}_m| + \text{tr}(\Sigma_m^{-1} \hat{\Sigma}_m) - m}{2}. \tag{6}$$

Therefore, we consider the following problem:

$$(\bar{S}, \bar{L}) = \arg\min_{S, L \in \text{Q}_m} \quad \text{tr}(L) + \gamma h_1(S)$$

subject to $L \succeq 0$ \quad $S - L \succeq 0$ \quad $\Sigma^{-1}_m = S - L$ \quad $2D_{KL}(\hat{\Sigma}_m || \Sigma_m) \leq \delta$. \tag{7}$$
To streamline the notation let us denote by X the inverse of the matrix Σ_m, that is $X := \Sigma_m^{-1} = S - L$.

Then, the minimization problem in (7) is equivalent to:

$$(\hat{S}, \hat{X}) = \arg \min_{S,X \in Q_m} \text{tr}(S - X) + \gamma h_1(S)$$

subject to

$$S - X \succeq 0$$

$$X > 0$$

$$2D_{KL}(\Sigma_m||X^{-1}) \leq \delta$$

where $2D_{KL}(\Sigma_m||X^{-1})$ is given by:

$$2D_{KL}(\Sigma_m||X^{-1}) := -\log |X| - \log |\hat{\Sigma}| + \text{tr}(X\Sigma_m) - m.$$ \hspace{1cm} (8)

C. Negative log-likelihood approach

Before entering into the study of problem (8), it is worth observing that there is a different route leading to essentially the same problem; in fact, it provides an interesting alternative interpretation of our proposed approach.

Let $X_N := (x(1), \ldots, x(N))$ be an i.i.d. sample drawn from $\mathcal{P}(\Sigma_m) := \mathcal{N}(0,\Sigma_m)$. The log-likelihood function is:

$$\log p(X_N|\Sigma_m) = - \frac{Nm}{2} \log(2\pi) - \frac{N}{2} \log |\Sigma_m| - \frac{1}{2} \sum_{k=1}^{N} x_k^{\top} \Sigma_m^{-1} x_k.$$ \hspace{1cm} (9)

By using the so-called “trace-trick” we can rewrite it as:

$$\log p(X_N|\Sigma_m) = - \frac{N}{2} [m \log(2\pi) + \log |\Sigma_m| + \text{tr}(\Sigma_m^{-1} X)].$$

Thus, the negative log-likelihood is:

$$l(X_N|\Sigma_m) = \frac{N}{2} [\log |\Sigma_m| + \text{tr}(\Sigma_m^{-1}) + m \log(2\pi)].$$ \hspace{1cm} (10)

The Kullback-Leibler divergence (6) and the negative log-likelihood (9) differ only from a term not depending on Σ_m. Accordingly, imposing an upper bound δ on the Kullback-Leibler divergence is equivalent to impose an upper bound \bar{l} on the desired negative log-likelihood. This leads to the equivalent problem:

$$(\hat{S}, \hat{X}) = \arg \min_{S,X \in Q_m} \text{tr}(S - X) + \gamma h_1(S)$$

subject to

$$S - X \succeq 0$$

$$X > 0$$

$$l(X_N|\Sigma_m) \leq \bar{l}$$

where $\bar{l} := \frac{N}{2} (\delta + \log |\hat{\Sigma}| + m + m \log(2\pi))$.

III. THE CHOICE OF δ

The first issue we have to address in the study of problem (8) is how to determine the allowed tolerance δ that must be selected by taking into account the accuracy of the estimate $\hat{\Sigma}_m$, which, in turn, depends on the numerosity of the sample size. This can be achieved by choosing a probability $\alpha \in (0,1)$ and a neighborhood of “radius” δ_α (in the Kullback-Leibler topology) centered in Σ_m which contains the “true” Σ_m with probability α. An effective approach, based on standard Monte Carlo method, to estimate such δ_α has been proposed in [17].

If the level of α that has been chosen is too large with respect to the numerosity of the available data N, the computed δ_α may turn out to be excessively large so that there exist diagonal matrices Σ_m such that $2D(\Sigma_m||\hat{\Sigma}_m) \leq \delta_\alpha$. In this case problem (8) admits the trivial solution $L = 0$ and S diagonal. From now on we assume that we are not in this trivial situation or, equivalently, that δ in (8) is strictly smaller than a certain upper bound δ_{max} that can be computed by solving the minimization problem:

$$\delta_{max} := \min_{D \in \mathcal{D}_m, D > 0} 2D_{KL}(\Sigma_m||D).$$ \hspace{1cm} (11)

The next result provides the solution to this problem.

Proposition 3.1: The optimal D solving problem (10) is given by $D_{opt} = \text{diag}^2(\Sigma_m)$, so that

$$\delta_{max} = 2D_{KL}(\Sigma_m||D_{opt}) = \log |\Sigma_m - \text{diag}^2(\Sigma_m)|.$$ \hspace{1cm} (12)

The proof is an easy computation and it is left to the reader.

IV. THE DUAL PROBLEM

We reformulate the constrained optimization problem in (8) as an unconstrained minimization problem using the duality theory. The Lagrangian of (8) is $

\mathcal{L}(X, S, U, \lambda) = \text{tr}(S) - \text{tr}(X) + \gamma h_1(S) - \text{tr}(U(S - X))$

$$+ \lambda \left(-\log |\Sigma_m| - \log |X| + \text{tr}(X\Sigma_m) - m - \delta \right)$$

$$= \langle S, I - U \rangle + \gamma h_1(S) + \langle X, U - I + \lambda \Sigma_m \rangle$$

$$+ \lambda \left(-\log |\Sigma_m| - \log |X| - m - \delta \right)$$

where $\lambda \in \mathbb{R}$, $\lambda \geq 0$, and $U \in \mathcal{Q}_m, U \succeq 0$ are the Lagrange multipliers. Then, the dual function is the infimum of \mathcal{L} over X and S.

- Partial minimization over S.

\mathcal{L} depends on S solely through the terms

$$\gamma h_1(S) - \langle S, U - I \rangle.$$ \hspace{1cm} (13)

As in [1], the nonlinear term does not depend on the main diagonal elements of S. Therefore, the minimization over the diagonal elements is unbounded below unless $\text{diag}(U - I) = 0$, i.e.

$$U_{ii} = 1, \ i = 1, \ldots, m.$$ \hspace{1cm} (14)

The minimization over the off-diagonal entries of S translates into an independent minimization of

$$- (U_{ij} S_{ij} + S_{ji} U_{ji}) + \gamma |S_{ij}|$$

for each element i,j with $j > i$, which is unbounded below unless:

$$|U_{ij}| \leq \frac{\gamma}{2}, \ i \neq j.$$ \hspace{1cm} (15)

If (13), (14) hold the infimum of (13) is equal zero. Therefore, the partial minimization of the Lagrangian over S is

$$\inf_S \mathcal{L} = \begin{cases} (X, \text{old}(U) + \lambda \Sigma_m) - \lambda (\log |\Sigma_m| + \log |X| + m + \delta) & \text{if (14), (15) hold;} \\ -\infty & \text{otherwise} \end{cases}$$

U:\mathcal{Q}_m \rightarrow \mathcal{Q}_m$.
• Partial minimization over X.
If (14) and (15) hold, L depends on X only through
\[
\langle X, \text{ofd}(U) + \lambda \hat{\Sigma}_m \rangle - \lambda \log |X|
\]
which is bounded below if and only if
\[
\text{ofd}(U) + \lambda \hat{\Sigma}_m > 0
\]
which implies
\[
\lambda > 0.
\]
If (16) holds, by taking convexity into account, the matrix X achieving the minimum is easily obtained by annihilating the first derivative which yields
\[
X = (\lambda^{-1} \text{ofd}(U) + \hat{\Sigma}_m)^{-1}
\]
and the minimum is therefore given by
\[
\lambda m + \lambda \log |\lambda^{-1} \text{ofd}(U) + \hat{\Sigma}_m|.
\]
Therefore, the result of the minimization of the Lagrangian over S and X is:
\[
\inf_{S,X} L = \begin{cases}
\lambda \log |\lambda^{-1} \text{ofd}(U) + \hat{\Sigma}_m| + \lambda(-\log |\hat{\Sigma}_m| - \delta) & \text{if (14, 15, 16, 17) hold;} \\
-\infty & \text{otherwise.}
\end{cases}
\]
Let us define the convex, closed and bounded set U as:
\[
U := \{ U : U = U^\top \succeq 0, \text{diag}^2(U) = I, |U_{hk}| \leq \frac{\gamma}{2}, k \neq h \}.
\]
Then, the dual problem is
\[
\max_{(U, \lambda) \in C} \lambda \log |\lambda^{-1} \text{ofd}(U) + \hat{\Sigma}_m| - \lambda(\log |\hat{\Sigma}_m| + \delta)
\]
where the set C is defined as:
\[
C := \{ (\lambda, U) : U \in U, \lambda > 0, (\lambda^{-1} \text{ofd}(U) + \hat{\Sigma}_m) > 0 \}.
\]

V. Existence and Uniqueness

We now address existence and uniqueness of the optimal solution of (19). We first reformulate the dual problem as the equivalent minimization problem:
\[
\min_{(U, \lambda) \in C} \tilde{J}
\]
with \tilde{J} being the opposite of the dual functional:
\[
\tilde{J} := -\lambda(\log |\lambda^{-1} \text{ofd}(U) + \hat{\Sigma}_m| - \log |\hat{\Sigma}_m| - \delta).
\]

A. Existence

To show that (20) admits a solution we are going to show that we can restrict our set C to a compact set $C_F \subset C$ over which the minimization problem is equivalent.

Lemma 5.1: Let $(\lambda_k, U_k)_{k \in \mathbb{N}}$ be a sequence of elements in C such that
\[
\lim_{k \to \infty} \lambda_k = 0.
\]
Then $(\lambda_k, U_k)_{k \in \mathbb{N}}$ is not an infimizing sequence for \tilde{J}.

The proof is omitted for brevity, see Lemma 5.1 in [17] for a similar result.

As a consequence, minimizing the dual functional over the set C is equivalent to minimize over the set:
\[
C_1 := \{ (\lambda, U) : U \in U, \lambda \geq \epsilon, (\lambda^{-1} \text{ofd}(U) + \hat{\Sigma}_m) > 0 \}
\]
for a certain $\epsilon > 0$.

The next result allows to further restrict C_1 to a set where λ is bounded.

Lemma 5.2: Let $(\lambda_k, U_k)_{k \in \mathbb{N}}$ be a sequence of elements in C_1 such that
\[
\lim_{k \to \infty} \lambda_k = \infty.
\]
Then $(\lambda_k, U_k)_{k \in \mathbb{N}}$ cannot be an infimizing sequence for \tilde{J}.

The proof is omitted for brevity, see Lemma 5.2 in [17] for a similar result.

As a consequence, we can further restrict set C_1 to the set:
\[
C_2 := \{ (\lambda, U) : U \in U, \xi \geq \lambda \geq \epsilon, (\lambda^{-1} \text{ofd}(U) + \hat{\Sigma}_m) > 0 \}
\]
for a certain $\xi > 0$.

Finally, we consider a sequence $(\lambda_k, U_k)_{k \in \mathbb{N}}$ such that as $k \to \infty$ the minimum eigenvalue of $\lambda^{-1} \text{ofd}(U) + \hat{\Sigma}_m$ tends to zero. This implies $|\lambda_k^{-1} \text{ofd}(U_k) + \hat{\Sigma}_m| \to 0$ and hence $J \to +\infty$. Therefore, such a sequence cannot be an infimizing sequence.

In conclusion, we can restrict our search for the optimal solution to the following compact set
\[
C_F := \{ (\lambda, U) : U \in U, \xi \geq \lambda \geq \epsilon, (\lambda^{-1} \text{ofd}(U) + \hat{\Sigma}_m) \geq \beta I \}
\]
for a certain $\beta > 0$.

Theorem 5.1: Problem (20) admits a solution.

Proof: Since C_F is closed and bounded and \tilde{J} is continuous over C and hence over C_F, by Weirstrass’s Theorem the minimum exists.

B. Uniqueness

It is worth noting that \tilde{J} is convex over C_F, however, as we will show, it is not strictly convex. Therefore establishing the uniqueness of the minimum is not a trivial task.

To streamline the notation, let us define $\tilde{U} := \text{ofd}(U)$. Then, the following Proposition characterizes the second variation of \tilde{J} in direction $\delta \lambda, \delta \tilde{U}$, i.e. $\delta^2 \tilde{J}(\lambda, U; \delta \lambda, \delta \tilde{U})$.

Proposition 5.1: Let $\tilde{u} = \text{vec}(U)$, $\delta \tilde{u} := \text{vec}(\delta \tilde{U})$, and $K := (\lambda^{-1} \tilde{U} + \hat{\Sigma}_m)^{-1} \otimes (\lambda^{-1} \tilde{U} + \hat{\Sigma}_m)^{-1}$. Let also
\[
H := \begin{bmatrix}
\lambda^{-3} \tilde{u}^\top K \tilde{u} & -\lambda^{-2} \tilde{u}^\top K \\
-\lambda^{-2} K \tilde{u} & \lambda^{-1} K
\end{bmatrix} \in \mathbb{R}^{(1+n^2) \times (1+n^2)}.
\]
Then, we have
\[
\delta^2 \tilde{J}(\lambda, \tilde{U}; \delta \lambda, \delta \tilde{U}) = [\delta \lambda \delta \tilde{u}^\top] H [\delta \lambda \delta \tilde{u}]^\top.
\]
The proof is an easy computation and it is left to the reader.

Corollary 5.1: The functional J is convex and for any point (λ_0, \tilde{U}_0) there is exactly one direction along which it is not strictly convex. This direction is
\[
(\delta \lambda_0, \delta \tilde{U}_0) = (h \lambda_0, h \tilde{U}_0), \quad h \neq 0.
\]
Proof: Since in C_F we have that $K \in Q_{n^2}$ is positive definite and $\lambda > 0$, the Hessian matrix H has at least rank equal to n^2. Hence there is at most one direction along which \tilde{J} is not strictly convex. By direct computation it is immediate to check that the second variation along the direction (21) is zero.

Next we show that if at a certain point the functional \tilde{J} is constant along an arbitrary direction then \tilde{J} vanishes in this point.

Lemma 5.3: Let (λ_0, \tilde{U}_0) be a given point in the feasible set C_F. If $w := (\delta \lambda, \delta \tilde{U}) \neq (0, 0)$ is any direction along which $\tilde{J}(\lambda_0, \tilde{U}_0)$ is constant, that is if there exists $\varepsilon > 0$ such that $f(\alpha) := \tilde{J}(\lambda_0 + \alpha \delta \lambda, \tilde{U}_0 + \alpha \delta \tilde{U})$ is constant for any α such that $|\alpha| < \varepsilon$, then $\tilde{J}(\lambda_0, \tilde{U}_0) = 0$.

Proof: By assumption we have that $f(\alpha)$ is constant in a neighbourhood of zero. Hence the first derivative $f'(0)$, and thus the second derivative $f''(0)$, must vanish and hence the second variation of $f(0)$ in direction 1 is zero. On the other hand this second variation is, by definition, the second variation $\delta^2 J(\lambda_0, \tilde{U}_0, \delta \lambda, \delta \tilde{U})$. Hence this second variation vanishes and, by Corollary 5.3, this implies that

$$(\delta \lambda, \delta \tilde{U}) = (h\lambda_0, h\tilde{U}_0),$$

for a certain real constant h. Hence, for $|\alpha|$ sufficiently small, we have

$$\tilde{J}(\lambda_0, \tilde{U}_0) = f(0) = f(\alpha) = \tilde{J}((1 + \alpha h)\lambda_0, (1 + \alpha h)\tilde{U}_0).$$

By direct computation we get

$$\tilde{J}((1 + \alpha h)\lambda_0, (1 + \alpha h)\tilde{U}_0) = (1 + \alpha h)\tilde{J}(\lambda_0, \tilde{U}_0)$$

which together with (22) yields the conclusion.

We are now ready to state our main result.

Theorem 5.2: The dual problem (20) admits a unique solution.

Proof: By contradiction, assume that there exist two optimal solutions $(\lambda_1^*, \tilde{U}_1^*)$ and $(\lambda_2^*, \tilde{U}_2^*)$. By the convexity of the set C_F, the whole segment S connecting $(\lambda_1^*, \tilde{U}_1^*)$ to $(\lambda_2^*, \tilde{U}_2^*)$ must belong to C_F. Then, by the convexity of $\tilde{J}(\cdot, \cdot)$ all the points in S are optimal solutions so that $\tilde{J}(\cdot, \cdot)$ is constant in S. In view of Lemma 5.3 this implies that $\tilde{J}(\cdot, \cdot)$ is zero in S and this is a contradiction since it can be proved that the optimal value of \tilde{J} is negative.

Corollary 5.2: Any optimal solution (λ^*, \tilde{U}^*) minimizing \tilde{J} over C_F lies on the boundary of C_F.

Proof: Let (λ^*, \tilde{U}^*) be an optimal solution and, by contradiction, assume that (λ^*, \tilde{U}^*) does not belong to the boundary of C_F. Then there exists $\varepsilon > 0$ such that

$$(1 + \varepsilon)\lambda^*, (1 + \varepsilon)\tilde{U}^* \in C_F.$$

Now by direct computation

$$\tilde{J}((1 + \varepsilon)\lambda^*, (1 + \varepsilon)\tilde{U}^*) = (1 + \varepsilon)\tilde{J}(\lambda^*, \tilde{U}^*) < \tilde{J}(\lambda^*, \tilde{U}^*)$$

where the last inequality follows from the fact that, as seen in the proof of Lemma 5.1, the optimal value of \tilde{J} is negative. This a contradiction since $\tilde{J}(\lambda^*, \tilde{U}^*)$ is assumed to be a minimum.

Remark 1: The zero duality gap between the primal and the dual problem can be exploited to recover the solution of the primal problem (8), for more details see e.g. [3], [17].

VI. Conclusion

In this paper the problem of robust latent-variables graphical model identification has been considered. In particular, the *Sparse plus Low Rank* decomposition problem has been reformulated for the case in which only the sample covariance is available and the difference between the sample covariance and the actual one is non-negligible. The extension of the presented work to the dynamical case will be subject for future investigation.

REFERENCES

[1] J. Songsiri and L. Vandenberghe, “Topology selection in graphical models of autoregressive processes,” Journal of Machine Learning Research, vol. 11, no. Oct, pp. 2671–2705, 2010.

[2] J. Songsiri, J. Dahl, and L. Vandenberghe, “Graphical models of autoregressive processes,” Convex optimization in signal processing and communications, pp. 89–116, 2010.

[3] M. Zorzi and R. Sepulchre, “AR identification of latent-variable graphical models,” IEEE Transactions on Automatic Control, vol. 61, no. 9, pp. 2327–2340, 2016.

[4] E. Avventi, A. Lindquist, and B. Wahlberg, “ARMA identification of graphical models;” IEEE Trans. Autom. Control, vol. 58, pp. 1167–1178, May 2013.

[5] S. Maanan, B. Dumitrescu, and C. D. Giurcăneanu, “Conditional independence graphs for multivariate autoregressive models by convex optimization: Efficient algorithms,” Signal Processing, vol. 133, pp. 122–134, 2017.

[6] R. Dahlhaus, “Graphical interaction models for multivariate time series,” Metrika, vol. 51, pp. 157–172, Feb. 2000.

[7] D. R. Brillinger, “Remarks concerning graphical models for time series and point processes,” Revista de Ecometria, vol. 16, no. 1, pp. 1–23, 1996.

[8] R. Ligeois, B. Mishra, M. Zorzi, and R. Sepulchre, “Sparse plus low-rank autoregressive identification in neuroimaging time series,” in 2015 54th IEEE Conference on Decision and Control (CDC), pp. 3965–3970, 2015.

[9] V. Chandrasekaran, P. Parrilo, and A. Willsky, “Latent variable graphical model selection via convex optimization,” Annals of Statistics (with discussion), vol. 40, pp. 1935–2013, Apr. 2010.

[10] M. Zorzi and A. Chiuso, “Sparse plus low-rank network identification: A nonparametric approach,” Automatica, vol. 76, pp. 355–366, 2017.

[11] A. Dempster, “Covariance selection,” Biometrics, vol. 28, pp. 157–175, 1972.

[12] B. C. Levy and R. Nikoukhah, “Robust least-squares estimation with a relative entropy constraint,” IEEE Transactions on Information Theory, vol. 50, no. 1, pp. 89–104, 2004.

[13] M. Zorzi, “On the robustness of the Bayes and Wiener estimators under model uncertainty,” Automatica, vol. 83, pp. 133–140, 2017.

[14] M. Tao and X. Yuan, “Recovering low-rank and sparse matrix decomposition in noisy case,” in International conference on machine learning, Omnipress, 2011.

[15] T. Zhou and D. Tao, “Godec: Randomized low-rank & sparse matrix decomposition in noisy case,” in International conference on machine learning, 2016.

[16] V. Cicone, A. Ferrante, and M. Zorzi, “Factor analysis with finite data,” in 56th IEEE Conference on Decision and Control (CDC), 2017.

[17] V. Cicone, A. Ferrante, and M. Zorzi, “Factor models with real data: a robust estimation of the number of factors,” IEEE Trans. on Automatic Control, vol. 64, 2019.