Risk factors predicting severe hypocalcemia after total parathyroidectomy without autotransplantation in patients with secondary hyperparathyroidism

Jun Liu1, Qinghua Huang2, Meng Yang1, Linping Huang1 and Ling Zhang3

Abstract
Objective: This study was performed to investigate the risk factors for severe hypocalcemia (SH) after total parathyroidectomy without autotransplantation (TPTX) in patients with secondary hyperparathyroidism.
Methods: We retrospectively analyzed the records of 136 patients with secondary hyperparathyroidism treated by TPTX. The patients were categorized as having SH or non-SH based on their postoperative blood calcium concentration. The risk factors for SH were identified by comparing the clinical characteristics between the two groups and by performing multiple logistic regression analyses.
Results: After surgery, 46.0% of the patients had hypocalcemia and 31.7% had SH. Evidence of renal osteodystrophy on lumbar radiographs and the serum concentrations of intact parathyroid hormone (iPTH), calcium, and alkaline phosphatase (ALP) were different between the two groups. The SH group had higher preoperative iPTH and ALP concentrations than the non-SH group. In addition, more patients with SH showed renal osteodystrophy. Logistic regression analyses indicated that preoperative hypocalcemia and a high ALP concentration were independent predictors of SH.
Conclusion: Preoperative hypocalcemia and a high ALP concentration were identified as risk factors for SH following TPTX.

1Department of General Surgery, China-Japan Friendship Hospital, Beijing, China
2Digital Plastic Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing, China
3Department of Nephrology, China-Japan Friendship Hospital, Beijing, China

Corresponding author:
Meng Yang, Department of General Surgery, China-Japan Friendship Hospital, 2 Yinghuayuan Dongjie, Beijing 100029, China.
Email: yangmeng_cjfh@sina.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Keywords
Severe hypocalcemia, parathyroidectomy, autotransplantation, secondary hyperparathyroidism, alkaline phosphatase, risk factors

Date received: 13 July 2019; accepted: 5 December 2019

Introduction
Secondary hyperparathyroidism (SHPT) is a common complication of end-stage renal disease. It is characterized by progressive parathyroid gland hyperplasia and increased synthesis and secretion of parathyroid hormone (PTH).1,2 SHPT promotes bone disease with disordered calcium transport, vascular calcium deposition, and cardiovascular disease, which are life-threatening conditions that negatively impact quality of life.3–6 Many patients with refractory SHPT depend on long-term dialysis and require surgical intervention.7 Parathyroidectomy (PTX) is required for 20% of patients with SHPT after 3 to 10 years of hemodialysis and for 40% of patients after 20 years of hemodialysis.8,9 The standard surgical treatments for SHPT are subtotal PTX and total PTX with autotransplantation. PTX with autotransplantation is performed to reduce the risk of hypoparathyroidism after total PTX and is typically recommended for younger patients.10 However, this technique leaves behind a portion of active parathyroid tissue, which may promote recurrence of SHPT.

Total PTX without autotransplantation (TPTX) is an effective treatment for SHPT, but it is associated with postoperative hypocalcemia, which limits its clinical applicability.11,12 The incidence of postoperative hypocalcemia ranges from 72% to 97%13 and severe hypocalcemia (SH) can cause convulsions, arrhythmia, and even sudden death. Thus, detection of risk factors for hypocalcemia combined with calcium supplementation may prevent hypocalcemia and avoid life-threatening consequences. The specific risk factors for low blood calcium are unclear. To elucidate the risk factors for postoperative SH, we retrospectively analyzed the records of patients with SHPT treated by TPTX at the China-Japan Friendship Hospital from October 2016 to May 2018.

Materials and methods

Study design
We retrospectively evaluated the medical records of patients with SHPT who underwent TPTX at the China-Japan Friendship Hospital from October 2016 to May 2018. The data included in the analysis were the patients’ age, sex, height, body weight, body mass index, dialysis duration, hemodialysis duration, symptoms, X-ray evidence of renal osteodystrophy, and preoperative concentrations of blood calcium, blood phosphorus, alkaline phosphatase (ALP), calcium-phosphorus product, and intact PTH (iPTH). Written informed consent was obtained from all patients. The Medical Research Ethics Committee of the China-Japan Friendship Hospital approved this study (reference number: No. 2016-011).

Surgical indications
The surgical indications for end-stage renal disease with SHPT were persistent elevation of the iPTH concentration above 800 pg/mL,
uncontrolled hypercalcemia accompanied by hyperphosphatemia or refractory hyperparathyroidism with clinical symptoms, resistance to active vitamin D, Doppler ultrasound images indicating more than one enlarged (>1 cm) parathyroid gland, and rich blood flow.\(^1\)

With the patient under general anesthesia, an experienced surgeon examined the posterior aspect of the thyroid gland. Complete surgical resection was performed for all identified parathyroid glands. If parathyroid glands were not detected, the thymus was examined and the suspected parathyroid gland was removed.

Specimen collection and patient classification

Preoperative blood samples were collected 1 day prior to surgery, and postoperative samples were collected within 48 hours of surgery. The patients were classified into either the SH or non-SH group based on their postoperative blood calcium concentrations. Postoperative SH was defined as a blood calcium concentration of \(<1.875\, \text{mmol/L} \ (7.5\, \text{mg/L})\) accompanied by symptoms of hypocalcemia.\(^2\)–\(^7\) In clinical practice, calcium concentrations below this threshold necessitate calcium supplementation. In the present study, a calcium concentration of \(<1.8\, \text{mmol/L}\) with symptoms of hypocalcemia was an indication for intravenous calcium supplementation.

Statistical analyses

Statistical analyses were performed using SPSS version 17 (SPSS Inc., Chicago, IL, USA). Group differences were detected using single-factor analysis of variance and the chi-square test. Data from single-factor analyses with a \(p\) value of \(<0.1\) were included in the multivariate logistic regression analyses. The significance level was 0.05 for all tests.

Results

We reviewed the medical records of 136 patients and identified 126 patients who had undergone total PTX (postoperative PTH concentration lower than normal [88.0 pg/L] and identification of at least four parathyroid glands in the postoperative pathologic examination). The patients’ features, clinical manifestations, preoperative laboratory test results, and imaging results are listed in Table 1. The non-SH group comprised 24 men (60%) and 16 women (40%). The SH group comprised 37 men (43%) and 49 women (57%).

Among all patients who had undergone TPTX, 46.0% had a calcium concentration of \(<2\, \text{mmol/L}\), indicative of hypocalcemia, and 31.7% were classified as having SH. Patients with SH and non-SH significantly differed with respect to X-ray evidence of renal bone disease \((p = 0.033)\) and the concentrations of iPTH \((p = 0.000)\), calcium \((p = 0.000)\), and ALP \((p = 0.000)\). The SH group had higher preoperative iPTH and ALP concentrations and lower preoperative calcium concentrations. Significantly more patients had X-ray evidence of renal osteodystrophy in the SH than non-SH group.

Factors associated with \(p\) values of \(<0.1\) were included in the logistic regression analyses (Table 2). A low preoperative calcium concentration \((p = 0.002)\) and high ALP concentration \((p = 0.023)\) were independent predictors of SH after surgery.

Discussion

The incidence of hypocalcemia in patients with SHPT after PTX ranges from 20% to 85%.\(^1\)\(^5\)–\(^1\)\(^8\) SH, or “hungry bone syndrome,” was first described by Albright and Reifenstein\(^1\)\(^9\) in 1948 and is common in patients with hyperparathyroidism. This state is triggered by a sudden postoperative decrease in PTH, which stimulates rapid migration of blood calcium to the bone.
tissue and a significant increase in bone remineralization. However, the diagnostic criteria for SH after TPTX are not clear. In the present study, postoperative SH was defined as a blood calcium concentration of <1.875 mmol/L (7.5 mg/L) in the 48 hours following surgery accompanied by symptoms of hypocalcemia. Studies performed in an attempt to predict postoperative hypocalcemia after hyperparathyroidism surgery have produced inconsistent and unclear findings.

The influence of age on the postoperative calcium concentration is uncertain. A direct relationship between age and the risk of postoperative hypocalcemia has been reported in patients with hyperparathyroidism, possibly due to vitamin D deficiency and insufficient nutritional intake. However, other studies have identified an indirect relationship between age and the risk of postoperative hypocalcemia. Bone remodeling is a complex process that includes both resorption and formation. Bone formation increases significantly after TPTX. Because younger individuals have higher osteogenic ability, they are more likely to develop SH. In the present study, the SH group included more younger patients than the non-SH group (SH group, 45.65±11.59 years vs. non-SH group, 49.28±10.13 years), but the difference was not statistically significant.

Males are more likely to develop postoperative hypocalcemia. Low rates of resorption in the male cortical bone leads to lower cortical bone loss than in females. As a result, males who undergo TPTX show greater bone formation and a greater

Table 1. Preoperative indicators of patients in the SH and non-SH groups.

	All patients	SH n = 40	Non-SH n = 86	P value
Male	61	24	37	0.087
Age (years)	48.13±10.70	45.65±11.59	49.28±10.13	0.076
Dialysis time (years)	7.80±3.17	7.48±3.57	7.95±2.98	0.433
Hemodialysis time (years)	7.67±3.12	7.26±3.33	7.88±3.02	0.312
Height (m)	1.64±0.08	1.65±0.08	1.64±0.08	0.637
Body weight (kg)	61.63±12.55	61.03±12.92	61.91±12.45	0.715
Body mass index (kg/m²)	22.74±3.69	22.32±3.40	22.93±3.82	0.387
Clinical symptoms				
Bone pain	110	33	77	0.268
Itching	102	31	71	0.626
X-ray manifestations of renal osteodystrophy	90	34	56	0.033
Laboratory test				
Preoperative iPTH (pg/mL)	1932.33±928.01	2445.56±756.55	1693.62±906.78	0.000
Postoperative iPTH (pg/mL)	10.13±10.56	12.75±11.41	8.92±9.98	0.057
Preoperative blood calcium (mg/L)	2.55±0.22	2.45±0.21	2.59±0.21	0.000
Preoperative blood phosphorus (mmol/L)	2.22±0.53	2.28±0.49	2.20±0.54	0.088
Preoperative calcium-phosphorus product	5.67±1.45	5.59±1.28	5.71±1.52	0.655
Preoperative ALP (U/L)	416.58±438.28	679.10±530.76	294.48±325.13	0.000

Data are presented as number of patients or mean±standard deviation. SH, severe hypocalcemia; iPTH, intact parathyroid hormone; ALP, alkaline phosphatase.
likelihood of hypocalcemia. In the present study, the SH group included more men than women (60.0% in the SH group vs. 43.0% in the non-SH group), but the difference was not statistically significant. The sample size may have been insufficient to detect sex-related differences in the incidence of hypocalcemia. Therefore, future studies should address this relationship with larger sample sizes.

Single-factor analyses have identified the preoperative PTH concentration as an independent risk factor for SH. Excess PTH may stimulate bone formation and resorption, however, one study showed that PTH increases bone resorption but reduces formation. The rapid decline in circulating PTH following TPTX triggers reduced bone resorption and increased bone formation, consistent with the features of hypocalcemia. In the present study, the preoperative iPTH concentration did not predict SH. The inclusion of multiple variables might have precluded the detection of a significant relationship, or the preoperative blood iPTH concentration might not be an independent risk factor for SH development after TPTX. The latter explanation is supported by observations that a uremia status is related to PTH resistance in bone cells and the inconsistent relationship between the serum iPTH concentration and the degree of bone remodeling. In addition, iPTH quantification includes smaller PTH molecules (besides iPTH), some of which have opposite effects on bone metabolism.

Both the single-factor and multiple-factor logistic regression analyses identified preoperative hypocalcemia as an independent risk factor for postoperative hypocalcemia. This finding is in accordance with previous studies, particularly results from rapid movement of blood calcium into bone and extensive bone remineralization.

The concentrations of different types of ALP (liver and bone isoenzymes) are elevated in patients who have bone diseases with high osteogenic activity. In patients with hyperparathyroidism, both osteogenic activity and bone resorption are increased. Previous studies have demonstrated that osteoclast activity is significantly diminished after hyperparathyroidism surgery, whereas osteoblast activity remains stable. Thus, disrupted bone metabolism may contribute to the development of hypocalcemia after surgery. Our single-factor and multiple-factor analyses identified the preoperative ALP concentration as a risk factor for SH after surgery, which is consistent with previous findings.

We found that 34 patients with SH and 56 patients with non-SH had X-ray results indicating renal osteodystrophy. Chronic kidney disease or renal injury impairs bone synthesis and metabolism, which reduces bone cell function and formation. In patients with end-stage renal disease, increased iPTH concentrations impair bone remodeling, leading to increased bone resorption and reduced bone formation. Therefore, for patients with renal osteodystrophy, reduced postoperative iPTH and

Table 2. Logistic regression analysis results of indicators between SH and non-SH groups.

Variable	Wald	OR	P value
Sex	1.398	1.783	0.237
Age	0.002	0.999	0.967
X-ray manifestations of renal osteodystrophy	0.013	0.923	0.910
Preoperative iPTH	1.834	0.999	0.176
Preoperative blood calcium	9.670	46.010	0.002
Preoperative blood phosphorus	1.851	0.523	0.174
Preoperative ALP	5.146	0.998	0.023

P value refers to the significance between SH and non-SH groups.

SH, severe hypocalcemia; OR, odds ratio; iPTH, intact parathyroid hormone; ALP, alkaline phosphatase.
Calcium concentrations contribute to SH development.14 Collectively, our results indicate that a low calcium concentration and high ALP concentration are risk factors for SH after TPTX. Thus, high-risk patients should receive calcium supplementation as an intervention to reduce the likelihood of postoperative SH. The use of high-concentration calcium supplements can inhibit residual PTH activity; however, these effects are temporary with intravenous calcium supplementation, and patients should gradually return to oral calcium supplementation within weeks to months after surgery.

\textbf{Declaration of conflicting interest}

The authors declare that there is no conflict of interest.

\textbf{Funding}

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

\textbf{ORCID iD}

Meng Yang id https://orcid.org/0000-0002-2061-2202

\textbf{References}

1. Cunningham J, Locatelli F, Rodriguez M, et al. Secondary hyperparathyroidism: pathogenesis, disease progression, and therapeutic options. \textit{Clin J Am Soc Nephrol} 2011; 6: 913–921.
2. Ketteler M, Martin KJ, Cozzolino M, et al. Paricalcitol versus cinacalcet plus low-dose vitamin D for the treatment of secondary hyperparathyroidism in patients receiving haemodialysis: study design and baseline characteristics of the IMPACT SHPT study. \textit{Nephrol Dial Transplant} 2012; 27: 1942–1949.
3. Ho LC, Hung SY, Wang HH, et al. Parathyroidectomy associates with reduced mortality in Taiwanese dialysis patients with hyperparathyroidism: evidence for the controversy of current guidelines. \textit{Sci Rep} 2016; 13: 19150–19151.
4. Behets GJ, SpasoVski G, Sterling LR, et al. Bone histomorphometry before and after long-term treatment with cinacalcet in dialysis patients with secondary hyperparathyroidism. \textit{Kidney Int} 2015; 87: 846–856.
5. Salgueira M, Martinez AI, Milan JA, et al. Regression of vascular calcification in a patient treated with cinacalcet: a case report. \textit{Nefrologia} 2011; 31: 602–606.
6. Block GA, Zaun D, Smits G, et al. Cinacalcet hydrochloride treatment significantly improves all-cause and cardiovascular survival in a large cohort of hemodialysis patients. \textit{Kidney Int} 2010; 78: 578–589.
7. Neagoe RM, Muresan M, Voidazan S, et al. Subtotal parathyroidectomy versus total parathyroidectomy with autotransplant in secondary hyperparathyroidism: a single-centre prospective cohort of 43 patients. \textit{Endokrynol Pol} 2016; 67: 202–209.
8. Tominaga Y, Uchida K, Haba T, et al. More than 1,000 cases of total parathyroidectomy with forearm autograft for renal hyperparathyroidism. \textit{Am J Kidney Dis} 2001; 38: S168–S171.
9. Fassbinder W, Brunner FP, Brynger H, et al. Combined report on regular dialysis and transplantation in Europe, XX1989. \textit{Nephrol Dial Transplant} 1991; 6: 30–35.
10. Polistena A, Sanguinetti A, Lucchini R, et al. Surgical treatment of secondary hyperparathyroidism in elderly patients: an institutional experience. \textit{Aging Clin Exp Res} 2017; 29: 23–28.
11. Ho LY, Wong PN, Sin HK, et al. Risk factors and clinical course of hungry bone syndrome after total parathyroidectomy in dialysis patients with secondary hyperparathyroidism. \textit{BMC Nephrol} 2017; 18: 1203–1207.
12. Moldovan D, Racasan S, Kacso IM, et al. Survival after parathyroidectomy in chronic hemodialysis patients with severe secondary hyperparathyroidism. \textit{Int Urol Nephrol} 2015; 47: 1871–1877.
13. Tsai WC, Peng YS, Chiu YL, et al. Risk factors for severe hypocalcemia after parathyroidectomy in prevalent dialysis patients with secondary hyperparathyroidism. \textit{Int Urol Nephrol} 2015; 47: 1203–1207.
14. Sun X, Zhang X, Lu Y, et al. Risk factors for severe hypocalcemia after parathyroidectomy in dialysis patients with secondary hyperparathyroidism. *Sci Rep* 2018; 8: 7743–7744.

15. Mittendorf EA, Merlino JI, McHenry CR, et al. Post-parathyroidectomy hypocalcemia: incidence, risk factors, and management. *Am Surg* 2004; 70: 114–119.

16. Stewart ZA, Blackford A, Somervell H, et al. 25-hydroxyvitamin D deficiency is a risk factor for symptoms of postoperative hypocalcemia and secondary hyperparathyroidism after minimally invasive parathyroidectomy. *Surgery* 2005; 138: 1018–1025.

17. Yang M, Zhang L, Huang L, et al. Factors predictive of critical value of hypocalcemia after total parathyroidectomy without autotransplantation in patients with secondary hyperparathyroidism. *Ren Fail* 2016; 38: 1224–1227.

18. Li JG, Xiao ZS, Hu XJ, et al. Total parathyroidectomy with forearm autotransplantation improves the quality of life and reduces the recurrence of secondary hyperparathyroidism in chronic kidney disease patients. *Medicine (Baltimore)* 2017; 96: 9050–9051.

19. Albright F and Reifenstein EC. *The parathyroid glands and metabolic bone disease: selected studies*. Baltimore: Williams & Wilkins, 1948.

20. Goldfarb M, Gondek SS, Lim SM, et al. Postoperative hunger bone syndrome in patients with secondary hyperparathyroidism of renal origin. *World J Surg* 2012; 36: 1314–1319.

21. Brasier AR and Nussbaum SR. Hungry bone syndrome: clinical and biochemical predictors of its occurrence after parathyroid surgery. *Am J Med* 1988; 84: 654–660.

22. Cruz DN and Perazella MA. Biochemical aberrations in a dialysis patient following parathyroidectomy. *Am J Kidney Dis* 1997; 29: 759–762.

23. Strickland PL and Recabaren J. Are preoperative serum calcium parathyroid hormone, and adenoma weight predictive of postoperative hypocalcemia? *Am Surg* 2002; 68: 1080–1082.

24. Torer N, Torun ND, Micozkadioglu H, et al. Predictors of early postoperative hypocalcemia in hemodialysis patients with secondary hyperparathyroidism. *Transplant Proc* 2009; 41: 3642–3646.

25. Erbil Y, Barbaros U, Temel B, et al. The impact of age, vitamin D(3) level, and incidental parathyroidectomy on postoperative hypocalcemia after total or near total thyroidectomy. *Am J Surg* 2009; 197: 439–446.

26. Farese S. The hungry bone syndrome – an update. *Ther Umsch* 2007; 64: 277–280.

27. Erbil Y, Bozbora A, Ozbey N, et al. Predictive value of age and serum parathormone and vitamin d3 levels for postoperative hypocalcemia after total thyroidectomy for nontoxic multinodular goiter. *Arch Surg* 2007; 142: 1182–1187.

28. Samelson EJ and Hannan MT. Epidemiology of osteoporosis. *Curr Rheumatol Rep* 2006; 8: 76–83.

29. Viaene L, Evenepoel P, Bammens B, et al. Calcium requirements after parathyroidectomy in patients with refractory secondary hyperparathyroidism. *Nephron Clin Pract* 2008; 110: 80–85.

30. Simonsen E, Komenda P, Lerner B, et al. Treatment of uremic pruritus: a systematic review. *Am J Kidney Dis* 2017; 70: 638–655.

31. Quarles LD, Lobaugh B, Murphy G, et al. Intact parathyroid hormone overestimates the presence and severity of parathyroid-mediated osseous abnormalities in uraemia. *J Clin Endocrinol Metab* 1992; 75: 145–150.

32. Goodman WG, Ramirez JA, Belin TR, et al. Development of adynamic bone in patients with secondary hyperparathyroidism after intermittent calcitriol therapy. *Kidney Int* 1994; 46: 1160–1166.

33. Nguyen-Yamamoto L, Rousseau L, Brossard JH, et al. Synthetic carboxyl-terminal fragments of PTH decrease ionized calcium concentration in rats by acting on a receptor different from the PTH/PTH related peptide receptor. *Endocrinology* 2001; 142: 1386–1392.

34. National Kidney Foundation. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. *Am J Kidney Dis* 2003; 42: S200–S201.
35. Guo CY, Holland PA, Jackson BF, et al. Immediate changes in biochemical markers of bone turnover and circulating interleukin-6 after parathyroidectomy for primary hyperparathyroidism. *Eur J Endocrinol* 2000; 142: 451–459.

36. Sun L, He X, Liu T, et al. Preoperative serum alkaline phosphatase: a predictive factor for early hypocalcaemia following parathyroidectomy of primary hyperparathyroidism. *Chin Med J (Engl)* 2014; 127: 3259–3264.

37. Cheng SP, Liu CL, Chen HH, et al. Prolonged hospital stay after parathyroidectomy for secondary hyperparathyroidism. *World J Surg* 2009; 33: 72–79.