Data Article

Survey data regarding perceived air quality in Australia, Brazil, China, Ghana, India, Iran, Italy, Norway, South Africa, United States before and during Covid-19 restrictions

Diego Maria Barbieria,*,1, Baowen Loub, Marco Passavantic, Cang Huid, Daniela Antunes Lessae, Brij Maharajf, Arunabha Banerjeeg, Fusong Wangh, Kevin Changi, Bhaven Naikj, Lei Yuk, Zhuangzhuang Liul, Gaurav Sikkam, Andrew Tuckern, Ali Foroutan Mirhosseinio, Sahra Naserip, Yaning Qiaoq, Akshay Guptar, Montasir Abbass, Kevin Fangt, Navid Ghasemiu, Prince Peprahv, Shubham Goswamiw, Amir Hessamix, Nithin Agarwaly, Louisa Lamz, Solomon AdomakoS

a Norwegian University of Science and Technology, Department of Civil and Environmental Engineering, Hågskoleringen 7A, Trondheim, 7491, Trøndelag, Norway
b Chang'an University, School of Highway, Nan Er Huan Road (Mid-section), Xi'an, 710064, Shaanxi, China
c Italian Society of Cognitive Behavioural Therapy (CBT-Italy), Guastalla St. 2, Carpi 4012, Emilia-Romagna, Italy
d Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Matieland, 7602, South Africa
e Federal University of Ouro Preto, Department of Civil Engineering, Rua Nove, Bauxita, Ouro Preto, 35400-000, Minas Gerais, Brazil
f University of KwaZulu-Natal, Department of Geography, Howard College City, Durban, 4000, KwaZulu, South Africa
g Indian Institute of Technology Guwahati, Department of Civil Engineering, IIT Guwahati, Guwahati, 781039, Assam, India
h State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Luoshi road 122, Wuhan, 430070, Hubei, China
i University of Idaho, Department of Civil and Environmental Engineering, 875 Perimeter Drive, Mailstop 1022, Moscow, 83844, Idaho, United States
j Ohio University, Department of Civil Engineering/Russ College of Engineering & Technology, 28 W. Green Drive, Athens, 45701, Ohio, United States
k Sun Yat-sen University, School of Civil Engineering, Xingang Xi Road 135, Guangzhou, 510275, Guangdong, China
l Chang'an University, School of Highway, Nan Er Huan Road (Mid-section), Xi'an, 710064, Shaanxi, China
m Lalit Narayan Mithila University, Department of Geography, Darbhanga, 846004, Bihar, India
n University of Connecticut, Connecticut Transportation Safety Research Center, 270 Middle Turnpike, Unit 5202 Longley Building, Storrs, 06269, Connecticut, United States
o Norwegian University of Science and Technology, Department of Civil and Environmental Engineering, Hågskoleringen 7A, Trondheim, 7491, Trøndelag, Norway
p Bam University of Medical Sciences, School of Medicine, Bam, 76615-336, Kerman, Iran

https://doi.org/10.1016/j.dib.2020.106169
2352-3409/© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)
The dataset deals with the air quality perceived by citizens before and during the enforcement of COVID-19 restrictions in ten countries around the world: Australia, Brazil, China, Ghana, India, Iran, Italy, Norway, South Africa and the United States. An online survey conveniently translated into Chinese, English, Italian, Norwegian, Persian, Portuguese collected information regarding the perceived quality of air pollution according to a Likert scale. The questionnaire was distributed between 11-05-2020 and 31-05-2020 and 9394 respondents took part. Both the survey and the dataset (stored in a Microsoft Excel Workbook) are available in a public repository. The collected data offer the people's subjective perspectives related to the objective improvement in air quality occurred during the COVID-19 restrictions. Furthermore, the dataset can be used for research studies involving the reduction in air pollution as experienced, to a different extent, by populations of all the ten countries.

© 2020 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY license.
(http://creativecommons.org/licenses/by/4.0/)
Specification table

Subject	Social Sciences
Specific subject area	Health psychology, Perceived air pollution
Type of data	Primary data, Table
How data were acquired	The data were collected by an online survey hosted on two platforms: Google Forms (English, Italian, Norwegian, Persian, Portuguese versions) and WenjuanXing (Chinese version). An English copy is available in the data repository. The survey was distributed by means of professional and social networks
Data format	Raw Analyzed
Parameters for data collection	The survey data were obtained from 9,394 respondents older than 18 years old having internet access
Description of data collection	The online survey was distributed using a combination of purposive and snowball techniques
Data source location	Countries: Australia, Brazil, China, Ghana, India, Iran, Italy, Norway, South Africa and the United States
Data accessibility	Dataset is uploaded on Mendeley Data
	Repository name: Perceived air pollution in Australia, Brazil, China, Ghana, India, Iran, Italy, Norway, South Africa, USA before and during COVID-19 restrictions
	Data identification number: DOI: 10.17632/fb38h4tyzn.2
	Direct URL to data: https://data.mendeley.com/datasets/fb38h4tyzn/2

Value of the data

- The data are related to the perception of air quality and air pollution during the COVID-19 restrictions as experienced by a large pool comprising 9,394 respondents located in ten countries on six continents.
- The data can be useful for researchers dealing with the environmental and tropospheric changes occurring during the COVID-19 restrictions.
- The data can be used to assess the relationship between the perceived and the quantified change in air quality and air pollution during the COVID-19 restrictions.
- The data can be of interest to both citizens and policymakers to realise the tremendous lesson learned during COVID-19, being air quality a key indicator for sustainable development.

1. **Data description**

The dataset provides information regarding the quantity of air pollution perceived before and during the restrictions enforced in ten countries around the world as a consequence of the COVID-19 pandemic: Australia, Brazil, China, Ghana, India, Iran, Italy, Norway, South Africa and the United States (also referred to as AU, BR, CH, GH, IN, IR, IT, NO, ZA and USA, respectively). The dataset is stored in a public repository as Microsoft Excel Worksheet [1]. The total amount of the respondents who joined the survey is 9,394, their geographical distribution is reported in Table 1. Information regarding gender and age are reported in Fig. 1 with box-and-whisker plots: overall, the largest portion of the surveyed population is composed of young and middle-aged individuals. Furthermore, the participants have high education (Fig. 2). The two questions of the survey are “How do you regard the amount of air pollution before the epidemic?” and “How do you regard the amount of air pollution during the restrictions?”: the respondents expressed their opinions according to a 7-point Likert scale varying from “extremely low/absent air pollution” to “extremely high air pollution”. The responses pertaining to before and during the applications of the COVID-19 restrictions are reported in Fig. 3a and Fig. 3b, respectively.
Table 1
Geographical distribution of survey respondents.

AUSTRALIA - AU (N = 387)	Victoria	New South Wales	Queensland	South Australia
40.6 %		29.2 %	16.3 %	11.9 %
Western Australia	Tasmania	Northern Territory		Australian Capital Territory
0.8 %		0.5 %	0.5 %	0.3 %
BRAZIL - BR (N = 930)				
Minas Gerais				
60.0 %				
Distrito Federal				
2.3 %				
Goiás				
1.0 %				
Rio Grande do Norte				
0.5 %				
Mato Grosso do Sul				
0.3 %				
Piauí				
0.1 %				
CHINA - CH (N = 1731)				
Guangdong				
14.9 %				
Anhui				
Shandong				
3.6 %				
Sichuan				
2.0 %				
Jiangxi				
1.6 %				
Jilin				
1.1 %				
Shanghai				
1.0 %				
Qinghai				
0.6 %				
Macau				
0.4 %				
GHANA - GH (N = 437)				
Greater Accra	Ashanti	Northern		Eastern
29.7 %			10.3 %	8.5 %
Central	Western Region	Volta Region		Bono Region
6.4 %			3.4 %	2.1 %
Upper East	Bono East Region	Upper West		Ahafo Region
2.1 %			1.6 %	1.1 %
Oti	Savannah	North East		Western North
0.5 %			0.2 %	0.2%
INDIA - IN (N = 1334)				
West Bengal	Maharashtra	NCR Delhi		Rajasthan
15.0 %			9.2 %	7.4 %
Uttar Pradesh	Tamil Nadu	Karnataka		Bihar
6.8 %			6.1 %	6.1 %
Madhya Pradesh	Haryana	Uttarakhand		Gujarat
4.9 %			3.7 %	2.8 %
Assam	Telangana	Punjab		Jammu & Kashmir
2.0 %			1.6 %	1.4 %
Andhra Pradesh	Odisha	Himachal Pradesh		Kerala
1.2 %			0.8 %	0.8 %
Goa	Jharkhand	Chhattisgarh		Meghalaya
0.7 %			0.4 %	0.3 %

(continued on next page)
Table 1 (continued)

	Chandigarh	Ladakh	Puducherry	Tripura
0.1 %	0.1 %	0.1 %	0.1 %	0.1 %
other				
0.0 %				
IRAN - IR (N = 778)				
Kerman	Tehran	Fars	Razavi Khorasan	
48.7 %	28.5 %	5.1 %	5.0 %	
Isfahan	Yazd	Mazandaran	East Azarbaijan	
3.3 %	1.5 %	1.4 %	1.2 %	
Alborz	Hormozgan	Hamedan	West Azerbaijan	
0.8 %	0.6 %	0.6 %	0.5 %	
Qazvin	Sistan Baluchestan	Kermanshah	Kohg. B.-Ahmad	
0.5 %	0.4 %	0.4 %	0.3 %	
Golestan	Ilam	Bushehr	North Khorasan	
0.3 %	0.1 %	0.1 %	0.1 %	
South Khorasan	Zanjan	Semnan	other	
0.1 %	0.1 %	0.1 %	0.0 %	
ITALY - IT (N = 604)				
Emilia-Romagna	Lombardiao	Lazio	Veneto	
32.5 %	17.7 %	12.1 %	9.8 %	
Piemonte	Toscana	Campania	Puglia	
8.8 %	3.6 %	2.5 %	2.3 %	
Friuli-Venezia Giulia	Sicilia	Marche	Calabria	
2.2 %	1.7 %	1.3 %	1.2 %	
Liguria	Sardegna	Trentino-Alto Adige	Abruzzo	
1.0 %	0.8 %	0.8 %	0.5 %	
Molise	Umbria	Valle d'Aosta	other	
0.5 %	0.5 %	0.3 %	0.0 %	
NORWAY - NO (N = 681)				
Trøndelag	Rogaland	Oslo	Viken	
54.2 %	13.4 %	9.0%	5.9 %	
Agder	Inlandet	Møre og Romsdal	Vestland	
5.4 %	5.0 %	2.8 %	1.9 %	
Troms og Finnmark	Vestfold og Telemark	other		
1.6 %	0.9 %	0.0 %		
SOUTH AFRICA - ZA (N = 582)				
KwaZulu-Natal	Gauteng	Western Cape	Eastern Cape	
61.7 %	16.0 %	10.5%	6.4 %	
North West	Mpumalanga	Free State	Limpopo	
2.4 %	1.2 %	1.0%	0.9 %	
other				
0.0 %				
UNITED STATES - USA (N = 1928)				
Connecticut	Ohio	Texas	California	
13.9 %	13.6 %	12.7 %	11.3 %	
Idaho	Florida	Virginia	Washington	
6.9 %	6.8 %	6.7 %	5.9 %	
North Carolina	Illinois	Arizona	New York	
2.7 %	2.1 %	1.3 %	1.3 %	
Colorado	Oregon	Pennsylvania	Michigan	
1.2 %	1.2 %	1.1 %	1.0 %	
Massachusetts	New Jersey	Wisconsin	Georgia	
1.0 %	1.0 %	0.6 %	0.6 %	
Maryland	Vermont	Indiana	Iowa	
0.5 %	0.5 %	0.4 %	0.4 %	
Nevada	South Carolina	Minnesota	Missouri	
0.4 %	0.4 %	0.4 %	0.4 %	
Tennessee	Kentucky	Washington D.C. Columbia	Alaska	
0.4 %	0.3 %	0.3 %	0.3 %	

(continued on next page)
Table 1 (continued)

	West Virginia	Alabama	Arkansas	Kansas
0.3 %	0.2 %	0.2 %	0.2 %	0.2 %
Louisiana	New Hampshire	Montana	Wyoming	North Dakota
0.2 %	0.2 %	0.2 %	0.1 %	0.1 %
Maine	Rhode Island	Wyoming	Hawaii	
0.1 %	0.1 %	0.1 %	0.1 %	
Nebraska	New Mexico	Oklahoma	South Dakota	
0.1 %	0.1 %	0.1 %	0.1 %	
Utah	Guam	US Virgin Islands	other	
0.1 %	0.1 %	0.1 %	0.0 %	

Fig. 1. Age and gender of the respondents for each country.

Fig. 2. Education of the respondents for each country.

2. Experimental design, materials, and methods

The online survey has assessed the air quality as subjectively perceived by citizens in ten countries: Australia, Brazil, China, Ghana, India, Iran, Italy, Norway, South Africa and the United States. The online questionnaire was hosted on two platforms: Google Forms (English, Italian,
Norwegian, Persian, Portuguese versions) and WenJuanXing (Chinese version) and promoted on professional and social networks. The survey content was the same for each language; only the question regarding the respondents’ geographical location was tailored for each country. A Likert scale was employed to collect information about subjective perceptions [2] regarding both the situation before and during the enforcement of the restrictions due to the COVID-19 pandemic [3,4]. The online survey was distributed using a combination of purposive and snowball techniques between 11-05-2020 and 31-05-2020. Previously, other opinion surveys at regional and national scale also dealt with the perception of air quality [5–7] and examined the psychological impacts on people’s subjective emotional state [8]. The created dataset can allow to explore how air quality was experienced by the populations dealing with different levels of air pollution before the COVID-19 outbreak [9–11].
Ethics statement

All the survey respondents informed their consent before joining the survey consistent with the Declaration of Helsinki.

Credit Author Statement

Diego Maria Barbieri
Conceptualization, Methodology, Formal analysis, Investigation, Resources, Data curation, Writing - Original Draft, Visualization, Project administration

Baowen Lou
Conceptualization, Methodology, Formal analysis, Investigation, Resources, Data curation, Writing - Original Draft, Visualization

Marco Passavanti
Conceptualization, Methodology, Investigation, Writing - Original Draft, Visualization

Cang Hui
Investigation, Data curation, Writing - Review & Editing, Visualization, Supervision

Daniela Antunes Lessa
Investigation, Data curation

Brij Maharaj
Investigation, Data curation

Arunabha Banerjee
Investigation, Data curation

Fusong Wang
Investigation, Data curation

Kevin Chang
Investigation, Data curation

Bhaven Naik
Investigation, Data curation

Lei Yu
Investigation, Data curation

Zhuangzhuang Liu
Investigation, Data curation

Gaurav Sikka
Investigation, Data curation

Andrew Tucker
Investigation, Data curation

Ali Foroutan Mirhosseini
Investigation, Data curation

Sahra Naseri
Investigation, Data curation

Yaning Qiao
Investigation, Data curation

Akshay Gupta
Investigation, Data curation

Montasir Abbas
Investigation, Data curation

Kevin Fang
Investigation, Data curation

Navid Ghasemi
Investigation, Data curation

Prince Peprah
Investigation, Data curation
Shubham Goswami
Investigation, Data curation
Amir Hessami
Investigation, Data curation
Nithin Agarwal
Investigation, Data curation
Louisa Lam
Investigation, Data curation
Solomon Adomako
Investigation, Data curation

Declaration of competing interest

This research has not received any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Acknowledgments

The precious support kindly provided by the following academics, researchers and professionals has been greatly appreciated: Mr. Fabio Selva (Heilongjiang International University, China), Mr. Marius Tangerås (Norwegian National Railway Administration Bane NOR, Norway), Dr. Azadeh Lak (Shahid Beheshti University, Iran), Dr. Barbara Stolte Bezerra (Universidade Estadual Paulista, Brazil), Dr. Xiaolong Sun (Guangdong University of Technology, China), Dr. Kasun Wijayaratna (University of Technology Sydney, Australia), Dr. Abdul Rahaman (Bharathidasan University, India), Dr. Dok Yen David Mbabil (Tamale Technical University, Ghana), Mr. Smit Bharat Thakkar (Queensland University of Technology, Australia), Mr. Solomon Kwadwo Achinah (University of Cape Coast, Ghana), Dr. Olaf Weyl (South African Institute for Aquatic Biodiversity, South Africa), Mr. Ayush Dhankute (Atkins Ltd., India), Mr. Mohammadreza Zare Reisabadi (University of Adelaide, Australia), Dr. Sachin Gunthe (Indian Institute of Technology Madras, India), Dr. Issam Qamhia (University of Illinois at Urbana-Champaign, United States), Dr. Parama Bannerji (West Bengal College, India), Mr. Amirhosein Mousavi (University of Southern California, United States), Mr. Anshu Banney (Rewa Engineering College, India), Dr. Yuefeng Zhu (Shijiazhuang Tiedao University, China), Dr. Jorge Ubirajara Pedreira Junior (Federal University of Bahia, Brazil), Dr. Andrea Colagrossi (Politecnico di Milano, Italy) and Dr. Akhilesh Kumar Maurya (Indian Institute of Technology Guwahati, India).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.dib.2020.106169.

References

[1] D.M. Barbieri, B. Lou, M. Passavanti et al., Data in Brief 32 (2020) 106169.

[2] D. Stockemer, Quantitative Methods for the Social Sciences, Springer, Cham, 2019 https://doi.org/10.1007/978-3-319-99118-4.
[3] T. Acter, N. Uddin, J. Das, A. Akhter, T.R. Choudhury, S. Kim, Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as coronavirus disease 2019 (COVID-19) pandemic: A global health emergency, Sci. Total Environ. 730 (2020) 138996, doi:10.1016/j.scitotenv.2020.138996.

[4] Oxford University, Coronavirus government response tracker, (2020). https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker (accessed June 30, 2020).

[5] M. Nikolopoulou, J. Kleissl, P.F. Linden, S. Lykoudis, Pedestrians’ perception of environmental stimuli through field surveys: Focus on particulate pollution, Sci. Total Environ. 409 (2011) 2493–2502, doi:10.1016/j.scitotenv.2011.02.002.

[6] T.G. Reames, M.A. Bravo, People, place and pollution: Investigating relationships between air quality perceptions, health concerns, exposure, and individual- and area-level characteristics, Environ. Int. 122 (2019) 244–255, doi:10.1016/j.envint.2018.11.013.

[7] S. Pu, Z. Shao, M. Fang, L. Yang, R. Liu, J. Bi, Z. Ma, Spatial distribution of the public’s risk perception for air pollution: a nationwide study in China, Sci. Total Environ. 655 (2019) 454–462, doi:10.1016/j.scitotenv.2018.11.232.

[8] Y. Li, D. Guan, S. Tao, X. Wang, K. He, A review of air pollution impact on subjective well-being: Survey versus visual psychophysics, J. Clean. Prod. 184 (2018) 959–968, doi:10.1016/j.jclepro.2018.02.296.

[9] P. Lal, A. Kumar, S. Kumar, S. Kumari, P. Saikia, A. Dayanandan, D. Adhikari, M.L. Khan, The dark cloud with a silver lining: Assessing the impact of the SARS COVID-19 pandemic on the global environment, Sci. Total Environ. 732 (2020) 139297, doi:10.1016/j.scitotenv.2020.139297.

[10] S. Muhammad, X. Long, M. Salman, COVID-19 pandemic and environmental pollution: A blessing in disguise? Sci. Total Environ. 728 (2020) 138820, doi:10.1016/j.scitotenv.2020.138820.

[11] A. Chauhan, R.P. Singh, Decline in PM2.5 concentrations over major cities around the world associated with COVID-19, Environ. Res. 187 (2020) 109634, doi:10.1016/j.envres.2020.109634.