Diversity of 3’ variable region of cagA gene in Helicobacter pylori strains isolated from Chinese population

Zhijing Xue
Chinese Center for Disease Control and Prevention https://orcid.org/0000-0002-9459-6663

Yuanhai You
Chinese Center for Disease Control and Prevention

Lihua He
Chinese Center for Disease Control and Prevention

Yanan Gong
Chinese Center for Disease Control and Prevention

Lu Sun
Chinese Center for Disease Control and Prevention

Xinui Han
Chinese Center for Disease Control and Prevention

Ruyue Fan
Chinese Center for Disease Control and Prevention

Kangle Zhai
Chinese Center for Disease Control and Prevention

Yameng Yang
Chinese Center for Disease Control and Prevention

Maojun Zhang
Chinese Center for Disease Control and Prevention

Xiaome Yan
Chinese Center for Disease Control and Prevention

Jianzhong Zhang (✉ zhangjianzhong@icdc.cn)
Institute for Communicable Disease Control and Prevention https://orcid.org/0000-0001-7056-8206

Research

Keywords: Helicobacter pylori, cagA, EPIYA, gastroduodenal disease, polymorphism

DOI: https://doi.org/10.21203/rs.3.rs-127429/v2

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: The cytotoxicity-associated gene A (cagA) is one of the most important virulence factors of Helicobacter pylori (H. pylori). There is a highly polymorphic Glu-Pro-Ile-Tyr-Ala (EPIYA) repeat region in the C-terminal of CagA protein. This repeat region is thought to play an important role in the pathogenesis of gastrointestinal diseases. The aim of this study was to investigate the diversity of cagA 3’ variable region and the amino acid polymorphisms in the EPIYA segments of the CagA C-terminal region of H. pylori, and their association with gastroduodenal diseases.

Methods: A total of 515 H. pylori strains from patients in 14 different geographical regions of China were collected. The genomic DNA from each strain was extracted and the cagA 3’ variable region was amplified by polymerase chain reaction (PCR). The PCR products were sequenced and analyzed using MEGA 7.0 software.

Results: A total of 503 (97.7%) H. pylori strains were cagA-positive and 1,587 EPIYA motifs were identified, including 12 types of EPIYA or EPIYA-like sequences. In addition to the four reported major segments, several rare segments (e.g., B*, B” and D`) were defined and 20 different sequence types (e.g., ABD, ABC) were found in our study. A total of 481 (95.6%) strains carried the East Asian type CagA, and the ABD subtypes were most prevalent (82.1%). Only 22 strains carried the Western type CagA, which include AC, ABC, ABCC and ABCCCC subtypes. The CagA-ABD subtype had statistical difference in different geographic regions (P = 0.006). There are seven amino acid polymorphisms in the sequences surrounding the EPIYA motifs, among which amino acid residue 893 and 894 had a statistical difference with gastric cancer (P = 0.004).

Conclusions: In this study, 503 CagA sequences was studied and analyzed in depth. In Chinese population, most H. pylori strains are of the CagA-ABD subtype and its presence was associated with gastroduodenal diseases. Amino acid polymorphisms at residue 893 and 894 flanking the EPIYA motif had a statistically significant association with gastric cancer.

Background

Helicobacter pylori (H. pylori) is a spiral, microaerophilic Gram-negative bacterium that colonizes the gastric mucosa of more than half of the world’s population (Ansari et al., 2019). H. pylori infection is not only closely related to chronic gastritis (CG) and peptic ulcer disease (PUD) but also an important risk factor for gastric adenocarcinoma and mucosal-associated lymphoid tissue (MALT) lymphoma. Therefore, the World Health Organization classified H. pylori as a group I carcinogen in 1994 (Sukri et al., 2020). Epidemiological survey shows that about 50% of adults are infected with H. pylori and chronic infection of H. pylori plays an important role in the development of gastric carcinoma (Park et al., 2018). Despite the high prevalence of H. pylori infection, more than 80% of the carriers present asymptomatic gastritis, only 10%-20% develop CG and PUD, and a minority of H. pylori carriers develop into gastric cancer (GC) (Ogorodnik et al., 2013). Variation in virulence of the strains is thought to be an important reason for the different clinical outcomes of H. pylori infection (Zhao et al., 2019). The cytotoxin-associated gene A (cagA) is one of the most important virulence genes of H. pylori, which is located at the end of cag pathogenicity island (cag PAI) and encodes the 120-145 kDa CagA protein (Cover et al., 2020). Studies have confirmed that the cagA-positive strains are more virulent than the cagA-negative strains and can cause more severe gastric inflammation (Chmiela et al., 2019). CagA protein can be transported into the gastric epithelial cells by type IV secretion system (T4SS) encoded by the cag PAI. After the CagA translocation, the tyrosine residues of EPIYA(Glu-Pro-Ile-Tyr-Ala) motif in the CagA C-terminal region can be phosphorylated by Src family kinases (SFKs) rapidly (Naito et al., 2006; Safari et al., 2011). Based on the amino acid sequences flanking the EPIYA motifs, the EPIYA motifs can be subdivided into four distinct peptide segments: EPIYA-A, EPIYA-B, EPIYA-C and EPIYA-D (Pachathundikandi et al., 2019). According to the different combinations of these four EPIYA motifs, H. pylori can be divided into two types, namely the East Asian type and the Western type (Khaledi et al., 2020).

CagA can specifically bind to the SH2 domain of Src homology 2 (SH2) - containing protein tyrosine phosphatase (SHP-2), which induces spatial configuration change of SH2- and activates it (Wang et al., 2014). SHP-2 can be involved in the downstream signal transduction of growth factor receptor, regulate cell growth, differentiation and cell adhesion, and thereby inducing morphologic transformation and abnormal proliferation of gastric epithelial cells (Coulombe et al., 2015). The binding of CagA and SHP-2 can lead to the cytoskeletal rearrangement of the host gastric epithelial cells, known as the hummingbird phenotype, which plays an important role in the development of gastric cancer (Jiang et al., 2012). Studies showed that the East Asian type CagA containing EPIYA-D segment displayed stronger binding activity to SHP-2 and more strongly damage to cells than does Western CagA. Western strains with more EPIYA-C segments show a stronger ability to bind to SHP2 and can be prone to induce the hummingbird phenotype than Western type CagA containing segments EPIYA-C (Jeris et al., 2012). The phosphorylated CagA can interacts with CagA C-terminal Src kinase (Csk) and inactive Src kinase, resulting in cytoskeleton rearrangement and cell elongation (Higashi, 2002). In addition to SHP2 and Csk, the CagA protein can interact with PI3K (phosphatidylinositol 3-kinase), Grb2 (growth factor receptor bound protein 2) and ZO-1 (zonula occludens-1) in a tyrosine phosphorylation-dependent manner (Amieva et al., 2003; Mimuro et al., 2002). The interaction of CagA with these proteins results in activation of abnormal signaling pathways that can lead to cell dysfunction. In addition, the CagA C-terminus includes a 16 amino acid stretch named CagA-multimerization (CM) sequence or conserved repeat responsible for phosphorylation-independent activity (CRP1A) motif located distal to the EPIYA-C or EPIYA-D segment (Tegtmeyer et al., 2017). The CRP1A motif can mediate the dimer formation of CagA protein and stabilize its binding to SHP-2 (Ren et al., 2006). It can also bind to polarity regulatory kinase partitioning defective 1/microtubule affinity regulating kinase (PAR1/MARK) and inhibit the activity of kinase (Saadat et al., 2007).

The incidence of H. pylori infection and gastric cancer in China is much higher than that in the Western countries (Takahashi-Kanemitsu et al., 2020). However, there are controversial reports about the relationship between the CagA type and gastroduodenal diseases (Rota et al., 2001; Zhou, 2004). This controversy may be due to regional diversity or differences in research methods. In fact, there is lack of comprehensive analysis of cagA 3’ variable region sequence characteristics. Moreover, few studies have detected the detailed amino acid polymorphisms surrounding the EPIYA motifs and their association with clinical outcomes (Argent et al., 2004). The aim of this study was to investigate the diversity of cagA 3’ variable region and the amino acid polymorphisms
surrounding the EPIYA motifs, and the relationship with gastroduodenal diseases through the sequence alignment and statistical analysis of 503 CagAs in \textit{H. pylori} strains isolated from Chinese different populations.

Results

\textit{cagA} gene status

A total of 503 (97.7\%) \textit{cagA}-positive strains out of 515 \textit{H. pylori} strains from 14 different geographical regions in China were obtained. Among those \textit{cagA}-positive strains, 82(91.1\%) were isolated from Shandong, 75 (94.9\%) from Guangxi and 100\% from other twelve regions. There was no significant difference in the distribution among different regions ($\chi^2=0.933, P >0.05$). The sequencing results showed that PCR products of the \textit{cagA} 3’ variable region ranged from 480 bp to 858 bp, most of which were approximately 630 bp. The alignment of the corresponding amino acid sequences revealed the presence of amino acid mutations, such as substitution, insertion and deletion in the CagA C-terminal region.

Characteristics of EPIYA segments flanking sequences

According to the segments flanking EPIYA motifs, we classified EPIYA segments. In addition to the four major segments, we defined several rare segments, including EPIYA-B’, EPIYA-B” and EPIYA-D’. Representative segment types obtained from 503 CagAs were listed in Table 1. Through sequence alignment, it was found that there were differences in amino acids among the same sequences. The two most frequent segments in segments A, B, C and D are shown in Table 2. There were obvious differences between segment EPIYA-C and EPIYA-D when analyzed using the WebLogo 3. As shown in Fig 2, the lengths and sequences of segments A, B and D are very similar, whereas that of segments B and B’ are quite different. The sequences variation started from the six amino acids, QVAKKV, in segments B and B’, and the sequences of segments C and D were completely different. As shown in Fig. 3, the most common CRPIA motif in Western type CagA was FPLKRHKVDDLKSKG and the most common CRPIA motif in East Asian type CagA was FPLRRSAVNDLNS. Western and East Asian CRPIA motif varied at positions 4, 6, 7, 8 and 10. Western strains with three EPIYA motifs contained two CRPIA motifs and the CRPIA motif before the EPIYA-C motif was a Western type in all 22 Western type strains.

Segment	No.	Representative sequences
A_0	483	KELNEKLFNSNNNGLKNNTEPIYAQVNKKK
B_0	478	TGQVASPEPPIAQQVAKKVSAKIDQNEATS
B’_0	56	TGQVASPEPPIAQVNKKK
B’’_0	18	AKNRKDRAKISAGKVGFGSAGASPEPPIAQQVAKKVSAKIDQNESAS
D	468	AKNRKDRAKISAGKVGFGSAGASPEPPIAATIDQNEATS
D’	12	FPLKRHKVDDLKSKGASPEPPIATIDQNEATS
A_C	22	KELNEKFNWFNNNGLKNPEPIAEPVKNNKK
B_C	22	TGQVASPEPPIAQQVAKKVNAKIDLQNASLGSNGVGAAG
C	28	FPLKRHKVDDLKSKGASPEPPIATIDDLGGS

*The subscripts C and D indicate that sequences containing segments A, B, B’ and B’ contain segments C and D, respectively.
Table 2
Two most frequent segments in EPIYA repeat region *

Segment	Sequences	Ratio
A₀	KELNEKLFGNSNNNNGLKNNTEPIYAVNKKK	145/483
A₀	KELNEKLFGNSNNNNGLKNNTEPIYAKVKK	29/483
B₀	TQ/QASPEEPIYAQVAKVS/ASKIDQLNNEATS	98/478
B₀	TQQASPEEPIYAQVAKVKSS/ASKIDQLNNEATS	89/478
D	AINR/IDRINKIA/SAGKVGFGG/SGAGSASPEPIYA/TIDFDEAN	179/468
D	AINRIDRINKIASAGKVGFGG/SGAGSASPEPIYA/TIDFDEAN	85/468
A₅	KELNFKNFN/NNNGLKNEPIYAKVNKKK	15/22
A₅	KELNK/LGNFNNNNGLKNEPIYAKVNKKK	6/22
B₅	TGQVA/SPEEPIYAVAK/VS/ASKIDQLNNEATS	5/22
B₅	TQQAVSPEEPIYAQVAKV/NS/ASKIDQLNNEATS	2/22
C	FPLKRHD/KVD/LSK/VSPEPIYATIDDLGGP	16/28
C	FPLKRHD/KVD/LSK/VSPEPIYATIDDLGGP	4/28

*Different amino acids in the two sequences are highlighted; Ratio = (Number of the segment)/(Total).

The alignment of the amino acid sequences confirmed that the EPIYA motifs in the EPIYA-C and EPIYA-D segments were highly conserved, whereas the EPIYA motifs in the EPIYA-A and EPIYA-B segments had evidence of mutations. A total of 1,587 EPIYA motifs were obtained from the 503 CagAs, including 12 types of EPIYA or EPIYA-like sequences (Table 3). The three most frequent EPIYA motifs were EPIYA (1461/1587=92.1%), EPIYT (4.7%), and ESIYA (1.4%). The EPIYA-B motif had a high degree of variation in the five amino acids (e.g., EPIYA, EPIYT and ESIYA). As shown in Table 4 and Fig. 2, the sequences, KVNK and QVAK, were the main types of segments A and D, respectively. QVAK was the main amino acid of segments B and D. In the present study, the sequences were identified as EPIYA segments C and D if they are followed by TIDD and TIDF, respectively. However, by sequence alignment, it also belongs to segment C if it is followed by TIED or TIDE.

Table 3
Distribution of EPIYA motifs in segments A, B, C and D

Type	Distribution	Total
A	502 EPIYA, 1 ESIYA, 1 EPVYA, 1 EPIYT	505
B, B', B"	450 EPIYA, 73 EPIYT, 22 ESIYA, 9 EPIYA, 7 ESIYT, 5 ELIYA, 3 EHIYA, 1 EAIIYA, 1 APIYA, 1 ELIYA, 1 DPIYA	573
D, D'	480 EPIYA	480
C	29 EPIYA	29
Total	1587	

Table 4
Distribution of the first four amino acids following EPIYA motifs

Type	EPIYA-D	EPIYA-C		
	Occurrence and short segment	Total	Occurrence and short segment	Total
A	356 QVNK, 119KVKK, 4 EVNK, 4 QVAK	483	16 KVKK, 6 EVNK	22
B	477 QVAK, 60 QVKN, 4 KVNN, 3 QIAK, 2 QVTK, 2 QVAR, 1 QLTK, 1 QITK, 1 QVAK, 1QVNG	552	22 QVAK	22
C/D	480 TIDF	480	24 TIDD, 2 TIDE, 2 TIED	28

CagA sequence type classification

A total of 20 sequence types were obtained from 503 CagAs (Table 5). CagA type was mainly East Asian type, accounting for 95.6% (481/503). The majority of the sequences were of types ABD (82.1%, 413/503) and AB'B'D (8.2%, 41/503). There were only 22 strains of Western type, including types AC, ABC, ABCC and ABCCC. There were 1-8 EPIYA motifs in CagA C-terminal region, and 87.3% (439/503) of the strain sequences had three EPIYA segments. The sequences containing 1 through 8 EPIYA segments are 1, 6, 439, 46, 6, 2, 2 and 1, respectively. For example, there was only one EPIYA segment D in the sequence of type D and eight EPIYA segment in the sequence of AB'B'B'B'B'B'B'B', including six repeats of segment B.
Correlation between CagA sequence types and geographical regions

There are some differences in CagA sequence types in different geographic regions (Table 6). In Yunnan, strains containing 4 or more EPIYA motifs accounted for 40% (29/73). There was a significant correlation between CagA-ABBD type and Yunnan isolates ($\chi^2=81.523$, $P<0.001$). However, most of the Western strains were from Neimenggu, and the association of CagA-ABC type with Neimenggu isolates was highly significant ($\chi^2=25.468$, $P<0.01$). There was a significant difference in the presence of CagA-ABD type between different geographic regions ($\chi^2=80.067$, $P<0.01$).

Table 6 The distribution of CagA sequence types in different geographic regions

CagA type	geographic areas	Total														
	FJ	SD	GX	YN	HL	HN	NM	QH	ZJ	BJ	NX	TW	SX	XZ		
East Asian type CagA	ABD	65	75	69	41	49	46	18	32	6	4	3	4	1	0	413
	AB'D'	0	3	1	24'	1	0	0	0	1	0	0	1	4	1	44
	AB'B'D	1	0	0	0	0	0	0	0	0	0	0	0	0	0	5
	AB'B'D	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	AD	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	AD'	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	A-D'	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	BD	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
	AB'B'DAB'	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	AB'B'B'B'D	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
	AB'B'B'D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	D	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Total	83	80	73	69	51	46	25	32	7	4	4	4	2	1	481	
western type CagA	ABC	2	1	2	5	0	5	1	0	0	0	0	0	0	0	16
	ABCCC	0	0	1	1	0	2	0	0	0	0	0	0	0	0	4
	ABCCCC	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
	AC	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
Total	0	2	2	4	5	0	8	1	0	0	0	0	0	0	0	22
All CagA type total	83	82	75	73	56	46	33	33	7	4	4	4	2	1	503	

Isolates were from 14 regions: Fujian (FJ), Shandong (SD), Guangxi (GX), Yunnan (YN), Heilongjiang (HL), Hunan (HN), Neimenggu (NM), Qinghai (QH), Zhejiang (ZJ), Beijing (BJ), Ningxia (NX), Taiwan (TW), Shanxi (SX) and Xizang (XZ). There was a significant difference in the presence of CagA-ABD type between different geographic regions ($P<0.01$). CagA-ABBD type was significantly associated with Neimenggu isolates ($P<0.001$). CagA-ABC type was significantly associated with Yunnan isolates ($P<0.01$).

Correlation between CagA sequence types and clinical outcomes

Clinical data were available from 131 of the 503 cagA-positive *H. pylori* strains. Based on the gastrointestinal endoscopy and pathological examination, CG was diagnosed in 85 patients, GC in 22, gastric ulcer (GU) in 10, duodenal ulcer (DU) in 10 and MALT lymphoma in 4. A total of 12 Western type strains were found, 11 of which were from patients with CG. Among all the 131 CagAs, 86 were of the type ABD, 25 of the type ABBD, 3 of the type AB'D, 2 of the type AB'B'B'B'D and 3 of the type AD. The distribution of the CagA sequence types in various clinical outcomes is shown in Table 7. We compared the types ABD and AB'D in relation to clinical outcomes. Other CagA types were excluded because the number of other types was relatively small. As shown in Table 7, the prevalence of ABD was 58.1% (50/86) in CG, whereas only 22.1% (19/86) in GC and 9.3% (8/86) in GU. The ratio of AB'D /ABD was therefore higher in CG (20/50=0.4) than GC (1/19=0.05), and the differences were statistically significant ($\chi^2=71.500/80.067$, $P<0.01$).
Amino acid polymorphisms flanking the EPIYA motifs

Sequence alignment analyses showed that there were amino acid polymorphisms flanking the EPIYA motifs of *H. pylori* CagA C-terminal region. There were seven amino acid polymorphisms, at residues 893, 894, 900, 906, 909, 910 and 963, where the substitution rate of amino acids was more than 18.6% ([5+11]/[70+5+11]). The detailed information of these amino acid polymorphisms in the sequence flanking the EPIYA motif is shown in Table 8 and Fig.4. The absence of amino acids 893 and 894 was synchronous. Strains at the absence of the 893 and 894 residues had a statistically significant association with GC compared with CG (\(\chi^2 = 21.778, P < 0.01 \)). Most patients with CG, GU, DU and MALT had a glutamic acid (Glu) at 894, while some patients with GC had Glu deletion or substituted by other amino acids, such as threonine (Thr) or asparagine (Asn). These changes at residue 894 had significant difference between GC patients and those with other diseases (\(\chi^2 = 4.908, P < 0.05 \)). In addition to the seven amino acid polymorphisms mentioned above, other amino acids were relatively conserved, except for individual amino acid absence or substitution.

Discussion

CagA is an important oncoprotein that can be translocated into the gastric epithelial cells and subsequently tyrosine-phosphorylated at residues of the EPIYA motifs (Hatakeyama, 2014). The phosphorylated CagA can activate the phosphatase SHP-2 and then cause actin cytoskeleton rearrangement, humminbird phenotype, which disturbs the normal signal transduction pathway of cells and promotes abnormal proliferation of gastric epithelial cells (Coulombe et al., 2015). A recent study showed that the CagA EPIYA segments can interact with SHP1, Grb2, Grb7, PI3K and Ras-GAP1 in addition to SHP2 and Csk (Selbach et al., 2015). The interaction between CagA and these proteins suggests that CagA plays an important role in the development of gastrointestinal diseases caused by *H. pylori*. Therefore, we used molecular epidemiological methods to study the diversity of cagA 3’ variable region and the amino acid polymorphisms in the EPIYA segments of the CagA C-terminal region, and their association with gastroduodenal diseases.

The tyrosine phosphorylation site is located on EPIYA repeat sequences at the CagA C-terminus, and the number of EPIYA repeats directly affects the binding of CagA to SHP-2 and the ability of causing morphological changes of gastric epithelial cells (Rocha et al., 2015). Therefore, the variation of EPIYA repeat sequences may be an important reason for the difference in *H. pylori* strains virulence and clinical outcome. In our study, EPIYA (92.1%) was the predominant type, followed by EPIYT (4.7%) and ESIYA (1.4%). This result differed from previous study examining 710 EPIYA motifs of 206 CagAs, found 77.8% were EPIYA. EPIYT and ESIYT were only found in 14.8% and 6.2% of strains, respectively (Matsunari et al., 2016). EPIYA motif variation had the highest frequency in type, followed by EPIYT (4.7%) and ESIYA (1.4%). This result differed from previous study examining 710 EPIYA motifs of 206 CagAs, found 77.8% were EPIYA. EPIYT and ESIYA were only found in 14.8% and 6.2% of strains, respectively (Matsunari et al., 2016).

Table 7 CagA sequence types and clinical outcomes

Disease	893	894	900	901	902	903	904	905
CG	50	20	2	1	1	6	3	1
GC	19	1	0	1	0	0	0	0
GU	8	1	0	0	1	0	0	0
DU	5	3	1	0	0	1	0	0
MALT	4	0	0	0	0	0	0	4
Total	86	25	3	2	3	1	7	1

* The prevalence of CagA-ABD was significantly higher in CG than in GC (P<0.01). † The prevalence of CagA-AB’BD was significantly higher in CG than in GC (P<0.01).

Table 8 Amino acid polymorphisms in the sequence flanking the EPIYA motif in 86 AB subtypes

Disease	893	894
CG	50	20
GC	19	1
GU	8	1
DU	5	3
MALT	4	0
Total	86	25

Abbreviations: N, asparagine; S, serine; E, glutamic acid; T, threonine; A, alanine; Q, glutamine; K, lysine; V, valine; I, isoleucine; R, arginine; L, leucine. Wavy lines indicate gap. Numbers in parentheses are percentages. * The absence of amino acids 893 and 894 residues was significantly associated with GC (P<0.01). † The Glu deletion or substituted by other amino acids at residue 894, such as threonine (Thr) or asparagine (Asn), was significantly associated with GC (P<0.05).
According to the segments flanking the EPIYA motifs, we defined several segments, including B'\textsubscript{D}, B'\textsubscript{D} and D'. The sequences of B'\textsubscript{D}, B'\textsubscript{D} and D' segments have some differences from those of B and D segments. For example, the sequences before EPIYA are similar to those of D segment in B'\textsubscript{D} segment, whereas the sequences after EPIYA are similar to those of A\textsubscript{2} segment in B'\textsubscript{D} segment. It has been reported that the distribution of CagA EPIYA segments shows great geographical differences. The EPIYA-A and EPIYA-B segments appear in almost all cagA-positive strains, whereas EPIYA-C and EPIYA-D segments are characteristic of Western and East Asian CagA strains, respectively (Yamaoka et al., 2000). As expected, 95.6% (481/503) of the CagA strains contain segment D. In contrast, 4.4% (22/503) contain segment C instead of segment D. Some studies have shown that Western type CagA are the most frequent type in Mongolian and Russia patients and all H. pylori from gastric cancer patients possessed Western type CagA (Tserentogtokh et al., 2019; Reva et al., 2012). Southeast Asian countries, such as Thailand and Myanmar, form the geographical boundaries between segment C and segment D, and the prevalence of CagA strains containing segments C and D was similar in Southeast Asian countries (Uchida et al., 2015; Myint et al., 2018). In our study, 77.3% (17/22) of the Western CagAs were from Neimenggu, Heilongjiang and Yunnan, which may be due to human migration or direct transmission. Studies have reported that there was no significant correlation between CagA-ABD and the types of gastroduodenal diseases (Zhou, 2004). However, our study confirmed that there was a significant correlation between the ABD subtype and gastroduodenal diseases (P <0.01). Studies have shown that East Asian CagA is more pathogenic than Western CagA, which may explain why the incidence of GC in Eastern countries is significantly higher than that in Western countries (Miura et al., 2009; Satomi et al., 2006). In our study, the CRPIA motif of Western CagA showed approximately 70% identity with that of East Asian CagA. This result was consistent with previous studies (L). Western CagA strains carried two CRPIA motifs, placed within each and distal to the ending of EPIYA-C, while a single CRPIA motif located after the EPIYA-D segment possessed by East Asian CagA.

CagA can be phosphorylated by the SFKs at tyrosine residues of the EPIYA motifs (Safari et al., 2011). The tyrosine phosphorylated C and D segments specifically bind to SHP2, which plays an important role in the development of gastric cancer (Coulombe et al., 2015). The tyrosine phosphorylated A and B segments can bind and activate the CagA C-terminal Src kinase (CSK) that is a SFK with negative feedback regulation. The inhibition of SFK can lead to the decrease of phosphorylated CagA protein, which to some extent explains that H. pylori can survive in gastric epithelial cells for a long time without causing extensive gastric injury (Tsutsui et al., 2003; Dodd et al., 2014). Therefore, it is thought that CagA with more A and B segments can inhibit SFK more effectively, and thereby reduce cell damage (Hatakeyama, 2011). In the present study, we found 20 CagA sequence types with different numbers of the EPIYA-A or EPIYA-B segment, such as AAABD, ABDABD and BD. The number of EPIYA-A and EPIYA-B segments may lead to the difference in the type and severity of gastrointestinal diseases. The relationship between EPIYA segments and gastrointestinal diseases needs to be further explored.

Research has shown that the pathogenicity of CagA is determined by the binding ability of SHP-2, which is also related to the number of tyrosine phosphorylation sites (Coulombe et al., 2015). Souza (Souza et al., 2002) reported that the SH2 domains bound to highly correlated sequences, and the binding motif is pY-(S/T/A/V/I)-(V/I/L)-(W/F). Interestingly, the binding ability of East Asian CagA (pY-A-T-I-D-F) to SHP-2 is higher than that of Western CagA (pY-A-T-I-D-D), which can lead to more severe gastroduodenal diseases. Higashi et al. (Higashi, 2002) demonstrated that the difference of single amino acid led to the difference of SHP-2 binding activity between East Asian and Western CagA proteins. Therefore, the research on amino acid polymorphisms and their association with gastrointestinal diseases may have an important clinical value. In our study, we obtained seven amino acid polymorphisms in the sequences surrounding the EPIYA motifs: residues 893, 894, 900, 906, 909, 910 and 963. The absence of the amino acid 893 and 894 had a statistically significant association with GC. In most patients with CG, GU, DU and MALT, the amino acids at residues 893 and 894 were asparagine (Asn) and glutamic acid (Glu), respectively, whereas 36.8% (7/19) of the isolates from GC patients lost these two amino acids. This change may affect the ability of CagA tyrosine phosphorylation and binding to SHP-2, and alter the spatial conformation of CagA protein, thereby accelerating the development of gastrointestinal diseases.

Conclusions

In this study, 503 CagA sequences were analyzed in depth and we defined several novel segment types, including B'\textsubscript{D}, B'\textsubscript{D} and D'. We demonstrated that most of H. pylori isolates from Chinese population were of the CagA-ABD subtype and it was statistically correlated with the type of gastroduodenal diseases. Strains at the absence or mutation of the 893 and 894 residues had a significant association with GC. Therefore, amino acid polymorphism in EPIYA motifs might affect the function of CagA protein, and then lead to the development of gastrointestinal diseases, especially GC.

Methods

H. pylori culture and DNA extraction

A total of 515 H. pylori strains preserved in our laboratory were obtained from the following regions: Fujian (n=83), Shangdong (n=90), Guangxi (n=79), Yunnan (n=73), Heilongjiang (n=56), Hunan (n=46), Neimenggu (n=33), Qinghai (n=33), Zhejiang (n=24), Beijing (n=22), Ningxia (n=17), Taiwan (n=10), Shaanxi (n=14), and Xizang (n=1). H. pylori was streaked onto the Karmali agar plate supplemented with Karmali Agar base (CM 0935, Oxoid) containing 5% defibrinated sheep blood, and the plate was incubated at 37°C for 3-5 days in a microaerobic atmosphere (5% O\textsubscript{2}, 10% CO\textsubscript{2} and 85% N\textsubscript{2}). Bacteria were identified as H. pylori based on its external morphology, negative Gram staining and positive for catalase, oxidase and urease. The confirmed isolates were frozen at -80°C until the genomic DNA was extracted with the QIAsym DNA Mini Kit (Qiagen, Germany) according to the manufacturer's instructions. The extracted DNA was stored at -20°C and used directly for PCR. This study was approved by Ethical Committee of National Institute for Communicable Disease Control and Prevention Chinese Center for Disease Control and Prevention (approval No. ICDC-2013001).

PCR amplification

To amplify the cagA 3′ variable region of H. pylori, the primers were: forward, 5′-TGCCTGTGGCGCTTACGGTAG-3′ and reverse, 5′-CCCTAGTGGCAAATGGGTTGTGTGTGT-3′ (Chen et al., 2013). PCR assay was performed in a volume of 25 μl containing 1 μl of each primer, 1 μl template DNA, 12.5 μl Go Taq® Green Master Mix (Promega, USA) and 9.5 μl nuclease-free water. PCR was performed using a thermocycler system (Bio-Rad, USA) under the following conditions: denaturation
at 94°C for 5 min, 35 cycles at 94°C for 30 s, at 54°C for 30 s and at 72°C for 40 s, and an extension at 72°C for 10 min. The amplified products were identified after electrophoresis on 1.5% agarose gel with GelStain in 1×TAE buffer at 110 V for 30 min. The gel documentation system (Bio-Rad, USA) was used to detect the DNA bands and obtain the images of the PCR products.

Sequencing and analysis of the diversity of the cagA 3’ variable region

Positive PCR products were sent to the Beijing Genomics Institute (BGI) for purification and sequencing. The nucleotide sequences of the cagA 3’ variable region were submitted to China National Microbiological Data Center (accession number NMDCN0000IOV to NMDCN0000J0V). EditPlus (version 5.3.0, korea) was used to collect sequence information, sort the sequences and create files in FASTA format. Bioedit was used to align and obtain amino acid sequences of the CagA protein. The EPIYA segment types and CRPIA motifs of CagA were analyzed using the program WebLogo (http://weblogo.threeplusone.com/). The Western strain 26695 cagA (GenBank No. CP003904) was used as a reference sequence. MEGA software (version 7.0.18, USA) was used for sequence alignments to analyze the diversity of the cagA 3’ variable region.

Statistics

Statistical data were analyzed using SPSS 20.0 (SPSS, Chicago, USA). The χ² test and Fisher’s exact test were used to test statistical difference among different gastroduodenal diseases in the CagA subtype and amino acid polymorphisms. A P-value < 0.05 was considered indicative of a statistically difference.

Abbreviations

H. pylori Helicobacter pylori
PCR: polymerase chain reaction
CG: chronic gastritis
PUD: peptic ulcer disease
GC: gastric cancer
MALT: mucosal-associated lymphoid tissue
GU: gastric ulcer
DU: duodenal ulcer
cagA: cytotoxin-associated gene A
cag PAI: cag pathogenicity island
T4SS: type IV secretion system
SFKs: Src family kinases
SHP-2: Src homology 2 (SH2) - containing protein tyrosine phosphatase
CSK: CagA C-terminal Src kinase
CM: CagA-multimerization
CRPIA: conserved repeat responsible for phosphorylation-independent activity
PAR1/MARK: polarity regulatory kinase partitioning defective 1/microtubule affinity regulating kinase

Declarations

Availability of data and materials

The Western strain 26695 cagA was downloaded from NCBI (https://www.ncbi.nlm.nih.gov/).

Acknowledgements

Not applicable.

Funding

This work was supported by the National Science and Technology Major Project of China (2018ZX10712-001).
Ethics approval and consent to participate

Not applicable

Consent for publication

Full consent is given for publication in Gut Pathogens.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

ZX developed the idea, designed the study, collected the samples, analyzed the data and drafted the manuscript. YY and LH performed the DNA extraction. YG, XH and RF collected the samples. MZ and XY designed the study and analyzed the results. JZ designed the study, reviewed and revised the manuscript. All authors read and approved the final manuscript.

References

Amieva MR, Vogelmann R, Covacci A, Tompkins LS, Nelson WJ, Falkow S. Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science. 2003;300(5624):1430-4.

Ansari S, Yamaoka Y. Helicobacter pylori virulence factors exploiting gastric colonization and its pathogenicity. Toxins. 2019;11(11):677-83.

Argent RH, Kidd M, Owen RJ, Thomas RJ, Limb MC, Atherton JC. Determinants and consequences of different levels of CagA phosphorylation for clinical isolates of Helicobacter pylori. Gastroenterology. 2004;127(2):514-23.

Cheniela M, Kucinskas J. Pathogenesis of Helicobacter pylori infection. Helicobacter. 2019;24(Suppl 1): e12638.

Cover TL, Lacy DB, Ohi MD. The Helicobacter pylori cag type IV secretion system. Trends Microbiol. 2020;28(8):682-95.

Dodd DA, Worth RG, Rosen MK, Grinstein S, van Oers NS, Hansen EJ. The Haemophilus ducreyi LspA1 protein inhibits phagocytosis by using a new mechanism involving activation of C-terminal Src kinase. mBio. 2014;5(3):e01178-14.

Hatakeyama M. Anthropological and clinical implications for the structural diversity of the Helicobacter pylori CagA oncoprotein. Cancer Sci. 2011;102(1):36-43.

Hatakeyama M. Helicobacter pylori CagA and gastric cancer: a paradigm for hit and run carcinogenesis. Cell Host Microbe. 2014;15(3):306-16.

Higashi H. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science. 2002;295(5555):683-6.

Higashi H, Tsutsumi R, Fujita A, Yamazaki S, Asaka M, Azuma T, et al. Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc Natl Acad Sci USA. 2002;99(22):14428-33.

Jiang J, Jia ZF, Kong F, Jin MS, Wang YP, Tian S, Suo J, Cao X. Association of polymorphism of PTPN 11 encoding SHP-2 with gastric atrophy but not gastric cancer in Helicobacter pylori seropositive Chinese population. BMC Gastroenterol. 2012;12(6):992-8.

Khaledi M, Bagheri N, Validi M, Zamanzad B, Akhhami H, Fathi J, et al. Determination of CagA EPIYA motif in Helicobacter pylori strains isolated from patients with digestive disorder. Heliyon. 2020;6(9): e04971.

Lu HS, Saito Y, Umada M, Murata-Kamiya N, Zhang HM, Higashi H, et al. Structural and functional diversity in the PAR1b/MARK2-binding region of Helicobacter pylori CagA. Cancer Sci. 2008;99(10):2004-11.

Matsunari O, Miftahussurur M, Shiota S, Suzuki R, Vilaichone RK, Uchida T, et al. Rare Helicobacter pylori virulence genotypes in Bhutan. Sci Rep. 2016;6(2):22584-8.

Mimuro H, Suzuki T, Tanaka J, Asahi M, Haas R, Sasaki C. Grb2 is a key mediator of Helicobacter pylori CagA protein activities. Mol Cell. 2002;10(4):745-55.
Mamura M, Ohnishi N, Tanaka S, Yanagita K, Hatakeyama M. Differential oncogenic potential of geographically distinct Helicobacter pylori cagA isoforms in mice. Int J Cancer. 2009;125(11):2497-504.

Myint T, Miftahussurur M, Vilaichone RK, Ni N, Aye TT, Subsomwong P, et al. Characterizing Helicobacter pylori cagA in Myanmar. Gut Liver. 2018;12(1):51-7.

Naito M, Yamazaki T, Tsutsui R, Higashi H, Onoe K, Yamazaki S, et al. Influence of EPIYA-repeat polymorphism on the phosphorylation-dependent biological activity of Helicobacter pylori CagA. Gastroenterology. 2006;130(4):1181-90.

Ogornok E, Raffaniello RD. Analysis of the 3′-variable region of the cagA gene from Helicobacter pylori strains infecting patients at New York City hospitals. Microb Pathog. 2013;56(2):29-34.

Pachathundikandi SK, Gutiérrez-Escobar AJ, Tegtmeyer N. Tailor-made detection of individual phosphorylated and non-phosphorylated EPIYA-motifs of Helicobacter pylori oncoprotein CagA. Cancers. 2019;11(8):1163-70.

Park JY, Forman D, Waskito LA, Yamaoka Y, Crabtree JE. Epidemiology of Helicobacter pylori and cagA-positive infections and global variations in gastric cancer. Toxins. 2018;10(4):163-7.

Ren S, Higashi H, Lu H, Azuma T, Hatakeyama M. Structural basis and functional consequence of Helicobacter pylori CagA multimerization in cells. J Biol Chem. 2006;281(32):32344-52.

Reva I, Takano T, Higuchi W, Iwao Y, Taneike I, Nakagawa S, et al. Virulence genotypes and drug resistance of Helicobacter pylori from Vladivostok, Russia: another feature in the Far East. Microbiol Immunol. 2012;56(3):198-202.

Rocha GA, Rocha AM, Farias AD, Lima CA, Melo FF, Batista SA, et al. STAT3 polymorphism and Helicobacter pylori CagA strains with higher number of EPIYA-C segments independently increase the risk of gastric cancer. BMC Cancer. 2015;15(2):528-34.

Rota CA, Pereira-Lima JC, Belay C, Nardi NB. Consensus and variable region PCR analysis of Helicobacter pylori 3′ region of cagA gene in isolates from individuals with or without peptic ulcer. J Clin Microbiol. 2001;39(2):606-12.

Saadat I, Higashi H, Obuse C, Umeda M, Murata-Kamiya N, Saito Y, et al. Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature. 2007;447(7472):330-3.

Safari F, Murata-Kamiya N, Saito Y, Hatakeyama M. Mammalian Pragmin regulates src family kinases via the Glu-Pro-Ile-Tyr-Ala (EPIYA) motif that is exploited by bacterial effectors. Proc Natl Acad Sci USA. 2011;108(36):14938-43.

Satomi S, Yamakawa A, Matsunaga S, Masaki R, Inagaki T, Okuda T, et al. Relationship between the diversity of the cagA gene of Helicobacter pylori and gastric cancer in Okinawa, Japan. J Gastroenterol. 2006;41(7):668-73.

Selbach M, Paul FE, Brandt S, Guye P, Daumke O, Backert S, et al. Host cell interactome of tyrosine-phosphorylated bacterial proteins. Cell Host Microbe. 2009;5(4):397-403.

Souza DD, Fabri LJ, Nash A, Hilton DJ, Baca M. SH2 domains from suppressor of cytokine signaling-3 and protein tyrosine phosphatase SHP-2 have similar binding specificities. Biochemistry. 2002;41(29):9229-36.

Sukri A, Hanaah A, Mohamad ZN, Kosai NR. Epidemiology and role of Helicobacter pylori virulence factors in gastric cancer carcinogenesis. APMIS. 2020;128(2):150-161.

Takahashi-Kanemitsu S, Knight CT, Hatakeyama M. Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis. Cell Mol Immunol. 2020;17(1):50-63.

Tegtmeyer N, Neddermann M, Asche CI, Backert S. Subversion of host kinases: a key network in cellular signaling hijacked by Helicobacter pylori CagA. Mol Microbiol. 2017;105(3):358-72.

Tserentogtokh T, Gantuya B, Subsomwong P, Oyuntsetseg K, Bolor D, Erdene-Ochir Y, et al. Western-Type Helicobacter pylori CagA are the most frequent type in Mongolian patients. Cancers. 2019;11(5):725-9.

Tsutsumi R, Higashi H, Hatakeyama M. Attenuation of Helicobacter pylori CagA SHP-2 signaling by interaction between CagA and C-terminal Src kinase. J Biol Chem. 2003;278(35):3664-70.

Uchida T, Myint T, Skinfull NJ, Wimalasiri R, Vilaichone RK, Nakanishi M, Natanachai-Ek T, et al. Helicobacter pylori infection in Thailand: A nationwide study of the CagA phenotype. PLoS One. 2015;10(9):e0136775.

Wang YC, Chen CL, Sau BS, Yang YJ, Tseng PC, Hsieh CY, et al. Helicobacter pylori infection activates src homology-2 domain-containing phosphatase 2 to suppress IFN-γ signaling. J Immunol. 2014;193(8):4149-58.

Yamaoka Y, Osato MS, Sepulveda AR, Gutierrez O, Figura N, Kim JG, et al. Molecular epidemiology of Helicobacter pylori: separation of H. pylori from East Asian and non-Asian countries. Epidemiol Infect. 2000;124(1):91-6.
