Colorectal Cancer Growth Retardation through Induction of Apoptosis, Using an Optimized Synergistic Cocktail of Axitinib, Erlotinib, and Dasatinib

BERNDSEN, Robert H, et al.

Abstract

Patients with advanced colorectal cancer (CRC) still depend on chemotherapy regimens that are associated with significant limitations, including resistance and toxicity. The contribution of tyrosine kinase inhibitors (TKIs) to the prolongation of survival in these patients is limited, hampering clinical implementation. It is suggested that an optimal combination of appropriate TKIs can outperform treatment strategies that contain chemotherapy. We have previously identified a strongly synergistic drug combination (SDC), consisting of axitinib, erlotinib, and dasatinib that is active in renal cell carcinoma cells. In this study, we investigated the activity of this SDC in different CRC cell lines (SW620, HT29, and DLD-1) in more detail. SDC treatment significantly and synergistically decreased cell metabolic activity and induced apoptosis. The translation of the in-vitro-based results to in vivo conditions revealed significant CRC tumor growth inhibition, as evaluated in the chicken chorioallantoic membrane (CAM) model. Phosphoproteomics analysis of the tested cell lines revealed expression profiles that explained the [...]
Erratum

Erratum: Berndsen, R.H., et al. Colorectal Cancer Growth Retardation through Induction of Apoptosis, Using an Optimized Synergistic Cocktail of Axitinib, Erlotinib, and Dasatinib, Cancers 2019, 11, 1878

Robert H. Berndsen 1,2, Nathalie Swier 2, Judy R. van Beijnum 2 and Patrycja Nowak-Sliwinska 1,3,*

1 Molecular Pharmacology Group, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; bobberndsen@hotmail.com
2 Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC-Location VUmc, VU University Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; nathalieswier@hotmail.com (N.S.); judy.vanbeijnum@gmail.com (J.R.v.B.)
3 Translational Research Center in Oncohaematology, Rue Michel-Servet 1, 1211 Geneva, Switzerland
* Correspondence: Patrycja.Nowak-Sliwinska@unige.ch; Tel.: +41-22-379-3352

Received: 22 April 2020; Accepted: 23 April 2020; Published: 26 April 2020

The authors wish to make the following corrections to this paper [1]:

The authors apologize for not giving sufficient credit to the involvement of Prof. C.R. Jimenez and her research group in this paper. Therefore, the following section is corrected:

Acknowledgements: The authors acknowledge Marloes Zoetemelk for the preparation of RNAseq material and Tse Wong for the expert technical support. The authors thank the iGE3 Genomics Platform (UNIGE) for preforming RNAseq experiments. The authors acknowledge Connie R. Jimenez and her team (Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands and OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands) for generating the phosphoproteomics data included in Figure 3.

The authors would like to apologize for any inconvenience caused to the readers by these changes.

Reference

1. Berndsen, R.H.; Swier, N.; van Beijnum, J.R.; Nowak-Sliwinska, P. Colorectal Cancer Growth Retardation through Induction of Apoptosis, Using an Optimized Synergistic Cocktail of Axitinib, Erlotinib, and Dasatinib. Cancers 2019, 11, 1878. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).