The rumen microbiome of yak co-evolves with its host probably adding the adaptation to its harsh environments

Congcong Zhao
Northwest A&F University: Northwest Agriculture and Forestry University

Lamei Wang
Northwest A&F University: Northwest Agriculture and Forestry University

Shanlin Ke
Harvard Medical School

Xinhua Chen
Harvard Medical School

Ákos Kenéz
City University of Hong Kong

Wei Xu
City University of Hong Kong

Dangdang Wang
Northwest A&F University: Northwest Agriculture and Forestry University

Fan Zhang
Northwest A&F University: Northwest Agriculture and Forestry University

Yong Li
Northwest A&F University: Northwest Agriculture and Forestry University

Zhanhong Cui
Qinghai University

Yu Qiao
Yangling Vocational and Technical College

Jing Wang
Northwest A&F University: Northwest Agriculture and Forestry University

Wenjuan Sun
Shanghai Majorbio Bio-pharm Technology Co. Ltd

Jianhua Zhao
Shanghai Majorbio Bio-pharm Technology Co. Ltd

Junhu Yao
Northwest A&F University: Northwest Agriculture and Forestry University

Zhongtang Yu
The Ohio State University

Yangchun Cao (caoyangchun@126.com)
Northwest Agriculture and Forestry University https://orcid.org/0000-0003-1033-2909

Research

Keywords: High plateau ruminants, Rumen microbiome, metagenome, metabolome

Posted Date: August 3rd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-754317/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Rumen microbes play an important role in ruminant energy supply and animal performance. Previous studies showed that yak (Bos grunniens) rumen microbiome and fermentation differ from other ruminants. However, little is understood on the features of the rumen microbiome that make yak adapted to its unique environmental and dietary conditions. Here we investigated the rumen microbiome and metabolome to understand how yak adapts to the coarse forage and harsh environment in the high Qinghai-Tibetan plateau.

Result

Metataxonomic analysis of the rumen microbiota revealed that yak (Bos grunniens), domesticated cattle (Bos taurus), and dzo (a hybrid between the yak and domestic cattle) have distinct rumen microbiota. Metagenomic analysis displayed a larger gene pool encoding a richer repertoire of carbohydrate-active enzymes (CAZymes) in the rumen microbiome of yak and dzo than cattle. Some of the genes encoding glycoside hydrolases (GH) that mediate the digestion of cellulose and hemicellulose were significantly enriched in the rumen of yak than cattle, but the cattle rumen microbiome had more genes assigned to GH57 that primarily includes amylases. The rumen fermentation profile differed also, with cattle having a higher molar proportion of acetate but a lower molar proportion of propionate than dzo and yak. Metabolomic analysis showed differences in both rumen microbial metabolic pathways and metabolites, mainly amino acids, carboxylic acids, sugars, and bile acids. Notably, styrene degradation, primary bile acid biosynthesis, glyoxylate, and dicarboxylate metabolism significantly differed between cattle and dzo; streptomycin biosynthesis was significantly different between cattle and yak; and the pathways for biotin metabolism and styrene degradation significantly differed between dzo and yak. Correlation analysis revealed certain microbial species correlated with differential rumen metabolites. Nine differential metabolites showed a positive correlation with seven species belonging to Bacteroides and Alistipes but a negative correlation with ten species belonging to Prevotella and Ruminococcus.

Conclusion

The present study showed that the rumen microbiome of yak and its host had probably co-evolved aiding in the adaptation of yak to the harsh dietary environment of the Qinghai-Tibetan plateau. In particular, the yak rumen microbiome has more enzymes involved in the degradation of rough forage than that of cattle, providing sufficient energy for its host.

Background

The rumen microbiota enables the digestion of feed and production of both the energy source (about 70% of the energy required by ruminants) in the form of volatile fatty acids (VFA, mainly acetate, propionate, and butyrate) and the protein source (about 70% of the total protein reaching the small intestines) in the form of microbial protein that the ruminants can directly utilize. The rumen microbiota metabolism significantly differed between cattle and dzo; streptomycin biosynthesis was significantly different between cattle and yak; and the pathways for biotin metabolism and styrene degradation significantly differed between dzo and yak. Correlation analysis revealed certain microbial species correlated with differential rumen metabolites. Nine differential metabolites showed a positive correlation with seven species belonging to Bacteroides and Alistipes but a negative correlation with ten species belonging to Prevotella and Ruminococcus.
alteration of rumen microbiota can impact rumen function and energy utilization in the host body, rumen microbiota may also contribute to host adaptation. We hypothesized that besides the adaptative evolution of the respiratory and the circulatory systems, the digestive system, especially the rumen microbiota, of yak had probably also undergone adaptative evolution to ingest and digest the available local feed. However, it remains to be determined if and how the yak rumen microbiota helps its host to adapt to its harsh environment.

Zhang et al. [19] compared the rumen metagenome and rumen epithelial metatranscriptome of cattle and yak living at different altitudes. Their results showed that compared with cattle living at low altitudes, the rumen microbiome of the yak is enriched with VFA fermentation pathways and the yak rumen wall is more effective in absorbing VFA. That study suggests the contributions of the rumen microbiome to the adaptative evolution of ruminants living at high altitudes. However, their VFA results were obtained in vitro, and they only focused on VFA production and methanogenesis. Because diet, environment, and feeding can profoundly affect the rumen microbiome [23, 24], these confounding factors should be eliminated in comparative studies of different species or breeds of ruminants. The objective of this study was to elucidate the potential mechanism by which the rumen microbiota contributes to yak adaption. To achieve this goal, we compared the rumen microbiota (composition and structure), fermentation, and function (both the metagenome and metabolome) among yak, cattle, and dzo (designated as a species), all of which were kept at the same high altitude and fed the same diet. This study provided new knowledge of the yak rumen microbiome that might help understand its adaptation to high-altitude environments.

Results

Yak has the highest rumen propionate molar proportion and cellulase activity.

We determined the rumen fermentation characteristics and cellulase activities of fresh rumen samples to compare the feed fermentation and cellulolytic capacities among yak, Qaidam yellow cattle, and dzo. No significant difference was observed in rumen pH among the three ruminant species (Table 1), but the rumen concentration of total VFA in dzo was lower ($P < 0.05$) than in cattle. The molar proportion of propionate and butyrate in yak was higher than in cattle ($P < 0.05$), while the molar proportion of acetate and acetate : propionate (A:P) ratio showed the opposite trend. The rumen microbiome of yak had the highest ($P < 0.05$) activity of carboxymethyl cellulase and avicelase (Table 1).
Table 1

Rumen fermentation parameters and fibrolytic enzyme activities among cattle, dzo and yak.

Item	Cattle	Dzo	Yak	SEM	P value
pH	7.10	7.37	7.29	0.05	0.077
Total VFA (mM)	74.00a	58.07b	70.08ab	2.65	0.032
VFA proportion, mol/100mol					
Acetate	77.92a	76.48b	75.10c	0.26	<0.001
Propionate	13.23b	14.10a	14.38a	0.17	0.008
Butyrate	7.11b	7.61b	8.56a	0.18	0.001
Isobutyrate	0.58	0.70	0.70	0.03	0.092
Isovalerate	0.62	0.70	0.81	0.05	0.263
Valerate	0.53a	0.42b	0.45b	0.02	0.040
A:P ratio	5.90a	5.44b	5.24b	0.08	<0.001
Fibrolytic enzyme activities (mU)					
Xylanase	485.80	648.25	789.27	109.25	0.542
Carboxymethyl cellulase	158.02b	182.63ab	220.69	9.58	0.021
Avicelase	187.76b	204.60b	248.14a	6.74	<0.001
Acetylesterase	149.76	154.75	146.54	3.57	0.065

P-values were calculated using ANOVA (n = 9 per ruminant species).

The rumen microbiota structure and composition are different among the three species.

Using metataxonomic analysis, we compared the rumen microbiota among the three ruminant species. The sequencing depth coverage was >98% for bacteria and 99% for fungi for all the samples. The three species had different bacterial and fungal rumen microbiota. Yak had a lower (P<0.05) ACE richness estimate of rumen bacteria than cattle and dzo, but no significant difference was observed in Simpson diversity index among the three ruminant species. Simpson evenness was higher (P<0.05) for yak than for cattle and dzo (Additional file 1: Table S1). With respect to fungi, cattle had a lower (P<0.05) observed species richness (both ACE and Chao1 estimates) than dzo and yak, but Simpson evenness for cattle was higher (P<0.05) compared with yak and dzo (Additional file 2: Table S2). The β-diversity of the bacterial and fungal microbiotas was compared using PCoA based on Bray-Curtis dissimilarity, and ANOSIM analysis showed a difference (P=0.001) in the overall rumen microbiota of both bacteria and fungi among the three ruminant species (Fig. 1a, b). Cattle and dzo had more similar rumen bacterial microbiota compared to yak, while yak and dzo had a more similar fungal microbiota compared to cattle. Overall, the rumen microbiota of bacteria and fungi of cattle clustered separately from that of yak, while that of dzo fell in between.

We further investigated the composition and function of rumen microbiota of the three ruminant species using metagenomics. We selected six samples from each ruminant species based on the metataxonomic results to maximize depth coverage with the budget we had. We obtained a total of >1.36 billion raw reads (>75.8 million reads per sample) totaling >206 Gb of sequence data (>11.4 Gb per sample). After the removal of host DNA and quality filtering, we obtained >1.35 billion reads in total and >75.1 million reads per sample. The average length of the Open reading frames (ORFs) was about 494 bp. PCoA analysis of the metagenomic data also revealed difference (P = 0.001) in the overall bacterial microbiota among the three ruminant species (Fig. 1c). Bacteroidetes, Firmicutes, Proteobacteria, Euryarchaeota were the predominant phyla in all samples, with Bacteroidetes (53.71%) and Firmicutes (24.74%) being the most predominant. The relative abundance of Proteobacteria, Verrucomicrobia, Planctomycetes, Synergistetes, Cyanobacteria, Chloroflexi, and Acidobacteria was higher (P<0.05) in yak than in cattle, while Chlamydiae was more predominant (P<0.05) in cattle and Actinobacteria more predominant (P<0.05) in dzo (Additional file 3: Figure S1). At the genus level, Bacteroides, Alistipes, Butyrivibrio, Faecalibacterium, and Pseudobutyrivibrio were more predominant in cattle than in yak (P<0.05), while the opposite is true (P<0.05) for Ruminococcus, Selenomonas, Oscillabacter, Treponema, and Fibrobacter (Additional file 4: Figure S2). At the species level, nine species, most of which
belong to *Bacteroides* and *Alistipes*, were more predominant (*P*<0.05) in cattle than in yak or dzo; four species were more predominant (*P*<0.05) in dzo; and 18 species (most belonging to *Prevotella*) were more predominant (*P*<0.05) in yak (Fig. 2).

Because the yak rumen had a higher propionate molar proportion (Table 1), we compared the relative abundance of bacterial species that either produce or utilize succinate, a fermentation intermediate of propionate production via the succinate pathway [25]. Of the 12 succinate-producing bacterial species, *Prevotella brevis*, *P. bryantii*, *P. albensis*, *Fibrobacter succinogenes*, *Selenomonas ruminantium*, and *Mitsuokella jalaludini* were enriched (*P*<0.05) in the yak rumen compared to the rumen microbiota of cattle or dzo (Fig. 3a), so was the succinate-utilizing species identified, *Selenomonas ruminantium* (Fig. 3b). The bacterial genera likely using the acrylate pathway for propionate production did not differ (*P*>0.05) in relative abundance among the three ruminant species (Additional file 5: Figure S3). The relative abundance of *Ruminococcus flavefaciens*, *R. albus*, and *F. succinogenes*, the best-known species of cellulolytic bacteria in the rumen, were enriched (*P*<0.05) in yak compared to cattle (Additional file 6: Figure S4).

The yak rumen microbiota has a larger fibrolytic capacity but a smaller amylolytic capacity.

The CAZymes encoded by the rumen microbiome are of critical importance to feed digestion in ruminants [26, 27]. To explore the microbial potential to degrade fiber in the rumen of cattle, dzo, and yak, we sequenced and comparatively analyzed their rumen metagenomes. The cattle showed a lower (*P*<0.05) relative abundance of CAZymes than dzo or yak (Table 2). The abundance of six types of CAZymes was quite different among the three ruminant species. Dzo had the highest abundance of GHs, whereas yak owned the highest abundance of GTs (Table 2). We further compared the GH and CE families that are involved in polysaccharide degradation. Our results revealed that GH48 (primarily exoglucanases [27]) and GH45 (mostly endoglucanases [27]) were more abundant (*P*<0.05) in yak than in cattle (Table 3). Among the GHs encoding hemicellulases, GH5 and GH44 (both mostly xyloglucanases [27]), GH16 and GH17 (both mostly β-glucanases [27]), and GH11 (primarily endoxylanases [28]) were more (*P*<0.05) abundant in yak than in cattle (Table 3). Similarly, PL11 (rhamnogalacturonan endolyase or exolyase) and PL4-4 (rhamnogalacturonan endolyase) were more abundant (*P*<0.05) in yak than in cattle (Additional file 7: Table S3). On the other hand, yak had the lowest (either significantly or numerically) abundance of the GH families encoding amylases (Table 3). Of the detected carbohydrate esterases, CE12 (mostly acetyl esterase acting on xylan, pectin, or rhamnogalacturonan) was more abundant (*P*<0.05) in yak than in cattle, whereas CE13 (pectin acetyl esterase) was more abundant (*P*<0.05) in cattle than in dzo or yak (Table 3). Of the 15 most abundant GT, GT2, GT4, and GT9 were more abundant (*P*<0.05) in yak, while GT1 was more abundant (*P*<0.05) in cattle (Additional file 8: Table S4). Among the top 15 differential CBMs detected (Additional file 9: Table S5), CBM48, CBM72, CBM78, CBM12, CBM58, CBM5, and CBM41 were more abundant (*P*<0.05) in cattle, whereas CBM67, CBM61, CBM40, CBM51, CBM57, CBM77, and CBM70 were enriched in yak compared to the other two ruminant species.

Item	Cattle	Dzo	Yak	SEM	P value
Sum	44,914.81\(^b\)	48,529.87\(^a\)	48,156.05\(^a\)	528.91	0.002
GH	21,449.70\(^b\)	23,392.58\(^a\)	22,277.84\(^ab\)	290.21	0.012
GT	9,081.16\(^b\)	9,665.29\(^b\)	10,837.93\(^a\)	216.86	<0.001
CE	7,909.66	8,349.70	7,812.54	102.82	0.066
CBM	4,810.67	4,998.95	5,095.12	53.21	0.077
PL	826.66\(^b\)	1,068.62\(^a\)	1,084.87\(^a\)	32.48	<0.001
AA	836.96\(^b\)	1,054.73\(^a\)	1,047.74\(^a\)	26.26	<0.002

GH: Glycoside Hydrolases; GT: Glycosyl Transferases; CE: Carbohydrate Esterases; CBM: Carbohydrate-Binding Modules; PL: Polysaccharide Lyases; AA: Auxiliary Activities

\(P\) values were calculated using ANOVA (n = 9 per ruminant species).

Different superscripts in a row designate significant difference (*P*<0.05).
Table 3
Abundance (in TPM) of cellulase, hemicellulose, acetyesterase and amylase genes in the rumen metagenome of cattle, dzo, and yak.

CAZymes	CAZymes family	Cattle	Dzo	Yak	SEM	P-value
Cellulases						
GH48	GH48	0.75b	1.85ab	1.99a	0.22	0.030
GH6		0.00	0.16	0.00	0.04	0.137
GH5		111.47b	156.61b	212.09a	12.01	< 0.001
GH8		130.50	133.56	122.58	2.80	0.270
GH9		363.70	390.48	371.90	7.24	0.320
GH45		0.28b	0.45b	2.24a	0.33	0.016
Xylanases						
GH10	GH10	481.40b	536.92a	505.02ab	9.04	0.030
GH11		17.34b	27.13ab	35.54a	2.47	0.003
GH30		122.36	125.61	101.99	4.48	0.055
GH43		194.08	196.92	198.73	3.73	0.889
Mannase						
GH5	GH5	111.47b	156.61b	212.09a	12.01	< 0.001
GH26		268.66a	252.52a	217.97ab	7.18	0.005
Xyloglucanases						
GH5	GH5	111.47b	156.61b	212.09a	12.01	< 0.001
GH12		0.69	0.75	0.60	0.11	0.879
GH44		0.40c	1.30b	2.17a	0.20	< 0.001
GH74		84.53	98.31	107.97	4.66	0.115
β-glucanases						
GH5	GH5	111.47b	156.61b	212.09a	12.01	< 0.001
GH16		311.07	347.48a	345.92a	5.37	0.002
GH17		0.29b	0.34b	0.90a	0.10	0.011
Acetyesterase						
CE12	CE12	305.64b	391.04a	416.44a	15.53	0.003
CE13		3.98a	1.16b	0.53b	0.45	< 0.001
CE16		0.00	0.13	0.00	0.03	0.160
Amylase						
GH31	GH31	655.08ab	707.4a	643.81b	10.28	0.015
GH13		425.55	454.01	399.72	11.60	0.163
GH57		219.73a	185.77b	186.45b	4.86	0.001
GH77		270.10	270.45	263.52	3.46	0.681
GH15		3.20	3.33	1.89	0.33	0.133
GH19		4.55	1.87	4.07	0.59	0.118

P-values were calculated using ANOVA (n = 6 per ruminant species).

Different superscripts in a row designate significant difference (P< 0.05).

We further compared the functional potentials of the rumen microbiota among the three ruminant species. Annotation of the metagenomic data using the KEGG database followed with LEfSe analysis showed that replication and repair and endocrine system were enriched in cattle (P< 0.05); dzo had more (P< 0.05) metabolic pathways of other amino acids; whereas metabolism of cofactors and vitamins was represented more abundantly (P< 0.05) in yak (Fig. 4a). At level 3 (Fig. 4b), cattle, yak, and dzo had 24, 18, and 5 metabolic pathways
enriched \((P < 0.05)\), respectively, compared with the other two ruminant species. The metabolism of pyrimidine, purine, starch and sucrose, cyanoamino acid, and aminoacyl-tRNA biosynthesis were the top five for cattle; amino acids biosynthesis, pantothenate and CoA biosynthesis, biofilm formation-\textit{Vibrio cholerae}, lipopolysaccharide biosynthesis, cysteine and methionine metabolism were the top five for yak, and carbon metabolism, butanoate metabolism, citrate cycle, sulfur relay system, and selenocompound metabolism were the top five for dzo. Differential modules based on LEfSe analysis were showed in Additional file 10: Figure S5.

\textbf{Rumen metabolite profiles are different among the three ruminant species.}

We also used metabolomics to comparatively examine the metabolite profiles of the rumen microbiome among the three ruminant species. A total of 185 individual metabolites were identified. Principal component analysis (PCA) analysis of all the samples and three quality control (QC) samples showed that the analysis system was stable (Additional file 11: Figure S6a). As shown by orthogonal partial least squares discriminate analysis (OPLS-DA), cattle, dzo, and yak had distinct rumen metabolite profiles (Additional file 11: Figure S6b-d). After filtering using the student's t-test \((P < 0.05)\) and variable importance in projection \((VIP > 1)\), 27 metabolites were found to differ between two ruminant species (Table 4). Notably, 16 metabolites differed \((P < 0.05)\) between cattle and dzo: Caproic acid, benzenepropanoic acid, 2-deoxyerythritol, lithocholic acid, dehydroascorbic acid, 4-(dimethylamino) azobenzene, phenylacetamide, uridine 5’-monophosphate, and z-phthalate were higher \((P < 0.05)\) in cattle than dzo, and the most upregulated metabolites in cattle were lithocholic acid \((FC = 25.65)\) and phenylacetamide \((FC = 22.74)\). On the other hand, ethylene glycol, glycine, aminomalonate, 3-hydroxyphenylacetic acid, chenodeoxycholic acid, 2-picolinic acid, 3,6-anhydro-D-glucose were higher \((P < 0.05)\) in dzo than cattle, with glycine \((FC = 17.86)\), chenodeoxycholic acid \((FC = 12.82)\), 2-picolinic acid \((FC = 22.22)\), 3,6-anhydro-D-glucose \((FC = 15.39)\) being the most upregulated in dzo. Compared to the rumen of cattle, the rumen of yak had a higher \((P < 0.05)\) ethylene glycol, 2-hydroxyypyrazinyl-2-propenoic acid, sebacic acid, 2-picolinic acid, 1,3-dihydroxypyridine, chenodeoxycholic acid, and 3,6-anhydro-D-glucose, but a lower \((P < 0.05)\) serine, z-phthalate, 2-deoxyerythritol, undecanedioic acid, lithocholic acid, dehydroascorbic acid, glucose-6-phosphate, uridine 5’-monophosphate, and isochlorogenic acid. When compared to the rumen of dzo, the yak rumen had higher valeric acid, boric acid, 1,3-dihydroxypyridine, benzenepropanoic acid, and sebacic acid, but a lower 5'-deoxy-5'-methylthioadenosine, glycine, aminomalonate, pimelic acid, 3-hydroxyphenylacetic acid, and isochlorogenic acid.
Table 4
Rumen fluid metabolites that differed between two of the three ruminant species (n = 6 per species)

Metabolite	Cattle vs Dzo	Cattle vs Yak	Dzo vs Yak								
	RT (min)	VIP	P value	FC	VIP	P value	FC	VIP	P value	FC	
Ethylene glycol	9.45	2.549	0.002	0.353	2.193	0.014	0.502	1.435	0.110	1.422	
Phenylacetamide	9.47	2.229	0.025	22.741	1.678	0.186	2.422	1.148	0.095	0.106	
Valeric acid	9.57	1.795	0.051	1.522	0.113	0.551	0.882	2.589	0.014	0.579	
Boric acid	9.71	0.740	0.116	2.196	0.214	0.897	0.961	1.015	0.034	0.438	
5'-Deoxy-5'-Methylthioadenosine	9.99	1.935	0.100	0.278	1.461	0.258	15.17	2.829	0.015	54.566	
2-Picolinic Acid	10.5	1.736	0.001	0.045	2.415	< 0.001	0.041	0.287	0.602	0.900	
Caproic acid	11.16	1.662	0.018	2.426	1.094	0.649	1.168	1.451	0.097	0.481	
Dehydroascorbic Acid	11.59	1.096	< 0.001	3.332	1.572	< 0.001	4.656	0.389	< 0.001	1.397	
2-Deoxyerythritol	12.32	1.843	< 0.001	7.787	2.457	< 0.001	9.590	0.238	0.055	1.231	
Glucose-6-Phosphate	15.19	0.941	0.001	2.083	1.351	< 0.001	2.175	0.068	0.619	1.044	
Glycine	15.5	4.329	0.001	0.056	1.584	0.071	0.351	4.127	0.002	6.274	
Serine	16.32	0.733	< 0.001	3.044	1.035	< 0.001	4.202	0.236	0.050	1.381	
1,3-Dihydroxyphryidine	16.71	0.343	0.180	2.424	1.080	0.035	0.275	1.149	0.010	0.113	
Benzenepropanoic acid	17.34	6.440	0.030	1.666	3.032	0.739	1.065	7.269	0.003	0.639	
Aminomalonate	18.17	1.386	0.026	0.716	0.413	0.816	1.031	1.461	0.030	1.441	
3,6-Anhydro-D-Glucose	18.42	1.527	< 0.001	0.065	1.345	0.002	0.094	0.649	0.107	1.459	
Pimelic Acid	19.07	0.721	0.181	0.041	0.116	0.683	1.064	1.048	0.022	1.266	
2-Hydroxypyrazinyl-2-Propanoic Acid	19.07	1.236	0.665	0.823	6.336	0.048	0.505	3.694	0.168	0.613	
3-Hydroxyphenylacetic acid	20.25	1.452	0.004	0.515	0.132	0.799	0.948	1.396	0.007	1.839	
4-[(Dimethylamino)azobenzene	21.56	1.149	0.002	17.479	0.689	0.249	1.752	0.713	0.090	0.100	
Isochlorogenic Acid	21.97	0.506	0.124	1.396	1.881	< 0.001	16.819	1.158	0.001	12.044	
Sebacic acid	23.99	0.214	0.005	1.547	1.292	0.021	0.106	1.054	0.017	0.068	
Undecanedioic acid	25.96	0.414	0.530	1.056	1.016	0.004	1.396	0.746	< 0.001	1.322	
Lithocholic Acid	25.60	1.376	< 0.001	25.649	1.228	0.021	3.142	0.420	0.268	0.123	
Chenodeoxycholic Acid	25.96	1.434	0.019	0.078	1.747	0.023	0.099	0.397	0.629	1.268	

1RT = retention time (min);
2VIP, variable importance in projection;
3FC, fold change. Take cattle vs dzo for example, if a FC value is less than 1, it means that there is less metabolite in cattle than in dzo.
Metabolite pathway enrichment analysis based on the significantly different rumen metabolites revealed the pathways that potentially contributed to the observed difference in rumen metabolite profiles (Fig. 5). The pathways for styrene degradation, primary bile acid biosynthesis, glyoxylate and dicarboxylate metabolism, chloroalkane and chloroalkene degradation, and thiamine metabolism were different \((P < 0.05)\) between cattle and dzo (Fig. 5a). Between cattle and yak (Fig. 5b), the pathways involved in streptomycin biosynthesis, chloroalkane and chloroalkene degradation, starch and sucrose metabolism, inositol phosphate metabolism, and primary bile acid biosynthesis differed \((P < 0.05)\). The pathways for biotin metabolism, styrene degradation, thiamine metabolism, glutathione metabolism, and phosphonate and phosphinate metabolism differed \((P < 0.05)\) between dzo and yak (Fig. 5c).

Different rumen microbiota may lead to different metabolites.

We assessed the relationship between the relative abundance of bacterial species (shown in Fig. 2) and rumen metabolites (shown in Table 4) using Pearson correlation analysis. Lithocholic acid and glucose-6-phosphate were positively correlated with \textit{Bacteroides} sp. CAG.1060, \textit{Bacteroides} sp. CAG.545, \textit{Bacteroides} sp. CAG.709, \textit{Bacteroides} sp. CAG.770, \textit{Alistipes} sp. CAG.435, \textit{Alistipes} sp. CAG.514, and \textit{Lachnospiraceae bacterium} AC2028. Chenoexoxycholic acid, 3,6-Anhydro-D-glucose were positively correlated with eight \textit{Prevotella} species (\textit{P. oralis}, \textit{Prevotella} sp. CAG.487, \textit{P. buccae}, \textit{P. oryzae}, \textit{P. albensis}, \textit{P. brevis}, \textit{Prevotella} sp. CAG.732, and \textit{Prevotella} sp. CAG.1092) and two \textit{Ruminococcus} species (\textit{R. flavefaciens} and \textit{R. albus}).

Discussion

The yak is indigenous livestock on the Qinghai Tibetan Plateau, and it is raised at altitudes between 3,000 and 5,000 m [29]. The high altitude and the environmental conditions are not suitable for domestic cattle. The cattle used in this experiment are Qaidam yellow cattle, which is well adapted to an altitude of 2,800 meters, but its pulmonary artery pressure is still significantly higher than that of indigenous yak and Tibetan sheep [29]. Currently, little is known whether the rumen microbiome is co-evolved tighter with ruminants living in high-altitude environments. In this study, we integrated rumen fermentation profiles, metataxonomics, metagenomics, and metabolomics of the rumen microbiome comparatively to explore how the rumen microbiome might help yak to adapt to its living conditions, especially its poor dietary conditions unique to the Qinghai-Tibet high plateau. Compared to the rumen microbiome of cattle, the yak rumen microbiome enriched cellulase and hemicellulase, and PL families, which can help improve fiber degradation. On the other hand, yak had decreased amylase-containing GH families and CBM families, which might slow down starch degradation in the rumen and allow more starch to reach the small intestine. Additionally, the increased succinate-producing and utilizing bacterial species might promote propionate production. All the above are consistent with the ability of yak to live on the poor diet available on the high plateau.

Rumen microbiota is primarily responsible for the energy acquisition of ruminants, and many studies showed that differences in rumen microbiota might result in different energy efficiency [6, 30]. We first compared the rumen microbiota among the three ruminant species. Of the 21 phyla identified by metagenomics in this study, \textit{Bacteroidetes} and \textit{Firmicutes}, which are considered the important microbes in providing the energy required by ruminant animals [31], were the most predominant. Studies have shown that with the increase in dietary energy level and concentrate proportion, the relative abundance of \textit{Firmicutes} could increase [32, 33]. Similarly, the gut microbiota of obese people and mice caecum contained more \textit{Firmicutes} and less \textit{Bacteroidetes} [34, 35], which agrees with that the relative abundance of \textit{Firmicutes} can be positively correlated with dietary energy concentration. Compared with the study of Ahmad et al., [33] the relative abundance of \textit{Bacteroidetes} in the three ruminant species was higher, but that of \textit{Firmicute} was lower. The discrepancy might be partially attributable to the concentrate proportions (30%, day matter) in the diet of the cited study. We also detected many phyla, such as \textit{Proteobacteria} and \textit{Verrucomicrobia}, whose relative abundance was significantly higher in yak than in the other two ruminant species. Members of the phylum \textit{Proteobacteria} are metabolically flexible modifying their gene repertoire in response to changes in available substrate and energy sources [36, 37], and their relative abundance was significantly higher in the rumen of cows with high milk yield and

	Cattle vs Dzo	Cattle vs Yak	Dzo vs Yak
Uridine 5'-Monophosphate	26.75 1.746 0.017 2.455	2.833 < 0.001 5.819	0.693 0.338 2.370
Z Phthalate	31.29 2.933 < 0.001 6.861	4.010 < 0.001 8.566	0.396 0.110 1.248

\(^1\)RT = retention time (min);

\(^2\)VIP, variable importance in projection;

\(^3\)FC, fold change. Take cattle vs dzo for example, if a FC value is less than 1, it means that there is less metabolite in cattle than in dzo.
milk protein content, suggesting that *Proteobacteria* is positively correlated with feed efficiency [6]. *Verrucomicrobia* contains species that are highly specialized degraders of fucoidans and other complex polysaccharides [38], and they may play an important role in polysaccharide degradation. In a previous transcriptomic study, *Ruminococcus* and *Fibrobacter* were shown to express most of the cellulase transcripts, they, together with *Prevotella*, probably expressed most of the hemicellulose transcripts in the rumen [28]. The high abundance of *Ruminococcus*, *Fibrobacter*, and *Prevotella* and the activities of carboxymethyl cellulase and avicelase in the rumen of yak corroborate its greater ability to digest crude fiber. Xue et al. [6] compared the microbial composition between cows with high and low milk yield and milk protein content, and they found that the rumen species enriched in the high-yielding cows were mainly members of *Prevotella*, and *P. oralis*, *P. buccae*, *P. albensis*, and *R. flavefaciens* were significantly higher in the high-yielding cows. We conclude that the above four bacterial species are positively correlated with feed efficiency. Interestingly, they were also significantly more predominant in the rumen of yak than the other two ruminant species. These species, probably among others, may help enable yak to adapt to its poor diet.

In the present study, yak was found to possess more hemicellulases (e.g., GH11, GH5, GH44, GH16, GH17) and rhamnogalacturonan endolyase (e.g., PL11 and PL4-4) than cattle. Many CBMs associated with galactose binding (CBM61, CBM62, CBM51) and L-rhamnose binding (CBM67) were also enriched in yak. These results indicate that yak probably has a stronger activity in removing galactose from the main chain of hemicellulose. Rapid hemicellulose digestion can facilitate cellulose digestion in forage because the removal of hemicellulose can expose cellulose for microbial attachment and digestion. Although GH13, which contains the well-known amylases, did not differ among the three ruminant species, its subfamilies GH13-8 (starch branching enzyme) and GH13-12 and GH13-14 (pullulanase) and their associated CBM (CBM48) [39] were more abundant in cattle (Additional file 12: Table S6). Another starch binding CBM, CBM41 [40, 41], was also enriched in cattle. The yak rumen microbiome probably has increased its ability to degrade forage not only by enhancing cellulose degradation (as evidenced by enriched GHS involved in cellulose hydrolysis) but also by enhancing hemicellulose and pectin degradation. On the other hand, the rumen microbiome of cattle has more abundance of GHS and CBM involved in starch digestion and binding, respectively. Even though both the yak and cattle used in the present study were fed the same diet, the rumen microbiome of yak probably has evolved to be more adapted to the forage that yak consumes, whereas the rumen microbiome of cattle, which are domesticated and has been fed diets containing starch, likely has evolved to better utilize starch. Yak produces milk of desirable characteristics (e.g., high milk fat, milk protein, milk total solids), but its milk yield is very low (about 1 kg per day) [42, 43]. The lack of sufficient dietary energy is one limiting factor. It will be interesting to test if the rumen microbiome of yak can evolve and gradually adapt to starch-rich diets over long-term adaptation.

It is well-known that forage typically increases acetate concentration in the rumen than a diet containing starch. In the present study, acetate molar proportion reached 75.1–77.9%, significantly higher than that reported in other studies [44–46], and the acetate: propionate ratio was also much higher than that reported by others [32, 33]. Both were likely attributed to the forage-only diet used in the present study. One previous study showed that rumen fermentation to propionate could increase energy efficiency [2]. Indeed, glucose fermentation to acetate, propionate, and butyrate can provide 62%, 109%, and 78% of the energy stored in glucose, respectively [47]. The gain of energy in propionate fermentation is because it incorporates hydrogen. This in turn reduces the amount of energy wasted via methane production from hydrogen. Two fermentation pathways are mainly responsible for the propionate production in the rumen: the acrylate pathway and succinic acid pathway [25], with the former using lactate as the input substrate and acryloyl-CoA as an intermediate, while the latter using oxaloacetate as the starting substrate and succinate as an intermediate. In this study, the increased relative abundance of succinate-producing and utilizing bacterial species seen in yak might be attributable to the higher propionate proportion detected in that species. On the other hand, because lactate-producing and utilizing bacterial genera did not differ in relative abundance among the three ruminant species, the acrylate pathway of propionate production might be similar across the three ruminant species. Isobutyrate, isovalerate, and 2-methyl-butanate are considered essential growth factors for most fiber-degrading microorganisms [48–50]. The increased isobutyrate and isovalerate concentration (data was not shown) noted in the yak might facilitate the growth of some fiber-degrading bacteria, which corroborates the increased relative abundance of the three well-known cellulosolytic bacteria: *R. flavefaciens*, *R. albus*, and *F. succinogenes*, in the yak. Branched-chain volatile fatty acids are used in synthesizing branched-chain amino acids [48]. The higher branched-chain volatile fatty acids concentration in the yak rumen may increase valine, leucine, and isoleucine biosynthesis. It should be noted that although all the three ruminant species had acetate as the major VFA, yak had the highest molar proportion of propionate but the lowest molar proportion of acetate. Thus, we speculated that in the absence of high-quality forage, the yak rumen microbiome is adapted to change the rumen fermentation and enhance energy harvest.

Our metabolomic results showed that cattle enriched styrene degradation and streptomycin biosynthesis, while yak and dzo enriched primary bile acid biosynthesis. Bile acids are important components of the bile, and they play an important role in fat metabolism, mainly in the intestinal and liver circulatory systems where they play a protective role through recirculation [51]. The presence of primary and secondary bile acids in the rumen suggests that the rumen microbiome may play an important role in the conversion of primary to secondary bile acids in ruminants [52]. Further studies are needed to explore the mechanisms by which bile acids circulate in ruminants.
Uridine 5'-monophosphate consists of phosphoric acid, ribose, and uracil, the latter of which is a nucleobase for RNA biosynthesis. The enriched pyrimidine metabolism in the cattle rumen might explain the increased uridine 5'-monophosphate therein. The enhanced nucleotide metabolism pathway in the cattle rumen microbiome may provide more substrates for replication and repair, translation, and transcription. The upregulated starch and sucrose metabolism in the cattle rumen might be attributable to the higher concentration of glucose-6-phosphate therein. Taken together, metabolite alterations were consistent with the metagenome results, and they jointly corroborate the adaption of yak to the high plateau environments.

As demonstrated in the literature [23, 24, 53], many factors, including feed, age, and management, can affect the gut microbiome composition and its functions in animals. Because yak is not domesticated, and the yak animals used in the present study were not confined, we could not weigh each of the study animals for the exact bodyweight or track the specific feed each animal consumed. Differences in body weight and feed consumption might be confounding factors that could have affected the results. Apparently, the yak rumen microbiome features, as determined by metataxonomics, enzymatic assays, metagenomics, and metabolomics, can help the host to adapt to its harsh environments, especially the poor diet available to it, but it remains to be determined how the body of yak affects its rumen microbiome. Future studies are required to explore the adaption relationship between high-altitude animals and the symbiotic microbiome. Such information will be useful to understand the adaptability of high-altitude animals to various environments and their domestication.

Conclusion

Our study revealed a clear difference in the composition, functions, and metabolome of the rumen microbiome among yak, dzo, and domesticated cattle. Although the relative abundance of the genes that code for amylases and their associated CBM families were lower in yak than in cattle, the yak rumen microbiome increased the abundance of cellulolytic bacteria and the genes encoding cellulase and hemicellulase, making yak better adapted to digest its roughage-based diets. Besides, the yak rumen microbiome had more succinate-producing and -utilizing bacterial species, supporting more pyruvate fermentation to propionate. These findings can help better understand how the yak rumen microbiome aids in yak's adaption to its poor diet in high plateau environments, and provide a foundation for further studies on microbial roles in the physiology and health of agricultural animals.

Methods

Experiment design and sample collection

Ten Qaidam yellow cattle, dzo, and yak each with similar body weight (about 200 kg) and age (5-6 years old) were used in this study. Because of the difficulty to weigh each of the grazing animals, one herdsman estimated the bodyweight of each animal visually. All the study animals were raised in the Qinghai-Tibet plateau and had never received any supplementary feed. In summer, they were grazing in the mountain grassland, while they were grazing at the foot of the mountain in winter, where *Kobresia myosuroides* and *Phragmites communis* were the predominant pasture species. The sampling site was located in the central part of Qinghai Province, in the eastern part of the Qaidam Basin (36° 49' -37° 20' N, 98° 87' -99° 27' E). The annual average temperature in this area is 3.5°C, and the average altitude is 4,000 meters. Rumen uid samples were collected from each animal using an oral stomach tube and a pump, both of which were thoroughly cleaned using fresh warm water between sample collections. The first 10-15 ml of sample from each animal was discarded to avoid contamination from saliva. Approximately 200 mL ruminal uid sample was collected from each animal, and half of it was immediately frozen in liquid nitrogen and then stored at -80°C until analysis. The rest of each ruminal sample was filtered through four layers of cheesecloth, and the filtrate was used for pH measurement and then preserved at -20°C for VFA analysis and fibrolytic enzyme activity assay.

Analysis of VFA and plant cell-degrading enzyme activity

The rumen fluid samples were thawed at 4°C, and the solid particles and protein were removed according to the procedures of Li et al.[54]. The VFA concentrations were analyzed using gas chromatography (Agilent Technologies 7820A GC system, Santa Clara, CA) equipped with a 30 m × 0.25 mm × 0.33 μm fused silica column (AE-FFAP, Atech Technologies Co. Ltd., Shanghai, China).

One aliquot of each thawed rumen fluid sample was centrifuged at 1,000× g for 10 min at 4°C. The supernatant was immediately collected and analyzed for the activity of carboxymethyl cellulase (CMCase), avicelase, xylanase, and acetyl esterase using carboxymethyl cellulose, avicel, birchwood xylan, and p-nitrophenyl acetate, respectively, as the substrates. The enzyme assay reaction was incubated at 39°C and pH 7.0 for 30 min except for the xylanase assay (for 15 min). The amounts of released reducing sugars were quantified using the dinitrosalicylic acid colorimetry method [55], and the production of p-nitrophenol was determined at 415 nm [56, 57]. One unit of enzyme
activity was defined as the amount of enzyme releasing 1 µmol of reducing sugar (e.g., xylose or glucose equivalent) or p-nitrophenol per min per ml.

Metataxonomic analysis of rumen prokaryotes and fungi

Microbial DNA was extracted from each rumen sample using the E.Z.N.A.® soil DNA Kit (Omega Bio-tek, Norcross, GA, U.S.) according to the manufacturer's protocols. The final DNA concentration and purity were determined using a NanoDrop 2000 UV-vis spectrophotometer (Thermo Scientific, Wilmington, USA), followed by visual quality checking using agarose gel (1%) electrophoresis. Individual amplicon libraries were prepared for prokaryotes using PCR amplification of the V3-V4 hypervariable regions of the 16S rRNA gene with primers 338F (5'-ACTCCTACGGGAGGCAGCAG-3') and 806R (5'-GGACTACHVGGG TWTCTAACT-3'). The ITS1 region of the fungal rRNA operon was amplified with primers 1737F (5'-GGAAG TAAAA GTCGT AACAA GG-3') and 2043R (5'-GCTGC GTTCT TCATC GATGC-3') to prepare individual amplicon libraries for fungi. The PCR products were gel purified using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA) and quantified using QuantiFluor™-ST (Promega, USA) according to the manufacturer's protocol. Purified amplicons were pooled at equimolar ratio and paired-end sequenced (2 x300 bp) on an Illumina MiSeq platform (Illumina, San Diego, USA) according to the standard protocols by Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China). The raw reads have been deposited into the NCBI Sequence Read Archive (SRA) database (Accession Number: PRJNA744001, PRJNA744022).

The raw sequence reads were demultiplexed, quality-filtered using Trimmomatic, and then merged using FLASH. Operational taxonomic units (OTUs) were clustered (de novo) with a 97% similarity cutoff using UPARSE (version 7.1 http://drive5.com/uparse/) and chimeric sequences were identified and removed using UCHIME. The representative 16S rRNA gene sequences of the OTUs were taxonomically classified using the RDP Classifier algorithm (http://rdp.cme.msu.edu/) against the Silva 128 database at a confidence threshold of 70%. The ITS sequences were taxonomically assigned using the UNITE7.0 database (https://unite.ut.ee/).

Metagenomic sequencing and analysis

Each of the microbial DNA extracts was fragmented to an average size of about 300 bp using Covaris M220 (Gene Company Limited, China). Individual sequencing libraries were prepared using the TruSeqTM DNA Sample Prep Kit (Illumina, San Diego, CA, USA). Paired-end sequencing was performed on Illumina NovaSeq (Illumina Inc., San Diego, CA, USA) at Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China) using the NovaSeq Reagent Kit according to the manufacturer's instructions (www.illumina.com). The raw reads have been deposited into the NCBI Sequence Read Archive (SRA) database (Accession Number: PRJNA744415).

Adapter sequences were trimmed off from the paired-end reads using SeqPrep (https://github.com/jstjohn/SeqPrep). Low-quality reads (length < 50 bp, a quality value < 20, or having any Ns) were removed using Sickle (https://github.com/najoshi/sickle). Host DNA was identified and removed after comparing all the reads with the genomes of cattle (https://www.ncbi.nlm.nih.gov/genome/?term=cattle) and yak (https://www.ncbi.nlm.nih.gov/genome/?term=yak) using BWA (http://bio-bwa.sourceforge.net). The cleaned metagenomic sequence reads were assembled using MEGAHIT [58] (https://github.com/voutcn/megahit). Contigs with a length of ≥ 300 bp were used for further analysis.

ORFs from each contig were predicted using MetaGene [59] (http://metagene.cb.k.u-tokyo.ac.jp/). All ORFs sharing ≥ 95 % sequence identity over ≥ 90% of their length were clustered using CD-HIT [60] (http://www.bioinformatics.org/cd-hit/), and the longest sequence from each cluster was selected as its representative sequence to construct a non-redundant gene catalog. The quality-filtered sequence reads were mapped to the representative sequences with 95% identity using SOAPAligner [61] (http://soap.genomics.org.cn/), and gene abundance in each sample was calculated as transcripts per million (TPM).

Representative sequences of the non-redundant gene catalog were compared to the NCBI NR database using BLASTP (Version 2.2.28+, http://blast.ncbi.nlm.nih.gov/Blast.cgi) [62] for taxonomic assignment, while KEGG annotation was conducted also using BLASTP (Version 2.2.28+) against the KEGG database [63] (http://www.genome.jp/kegg/). Carbohydrate-active enzyme annotation was predicted using hmmscan (http://hmmer.janelia.org/search/hmmscan) against the CAZy database Version 5.0 (http://www.cazy.org/). The minimum e-value cutoff for all the annotations was set at 1e-5.

Metabolomic analysis of rumen fluid

One hundred µL of each rumen fluid sample was subjected to metabolite extraction using 500 µL methanol: water (4:1, v/v) solution containing 2% L-2 chlorophenylalanine (as internal standard). Then the mixtures were vortexed for 10 s and centrifugation at 12,000 rcf at 4°C for 20 min. The supernatant was carefully transferred to a glass-derived bottle and vacuum-dried. After 80 µL methoxy amine hydrochloride (15 mg/mL in pyridine) was added, the samples were vortex-mixed for 2 min and incubated at 37°C for 90 min to carry out
oximation reaction. Eighty µL of trifluoroacetamide reagent containing 1% trimethylchlorosilane and 20 µL n-hexane were added to each sample, and then all samples were vortex-mixed for 2 min and incubated at 70°C for 60 min. The samples were cooled to room temperature and analyzed using gas chromatography and mass spectrometry (GC-MS).

The rumen metabolome was analyzed using gas chromatography (Agilent 7890A, Agilent Technologies, Inc., Santa Clara, CA, USA) coupled to an Agilent 5975C mass selective detector (Agilent, USA) with an inert electron impact ionization (EI) source and ionization voltage at 70 eV. Briefly, metabolites were separated with an HP-5MS capillary column (30 m × 0.25 mm × 0.25 um) using helium (99.999% purity) as the carrier gas at a constant flow rate (1 mL/min). The GC column temperature was programmed to hold at 60°C for 0.5 min, rise to 310°C at a rate of 8°C/min, and then hold at 310°C for 6 min. A QC sample was prepared by pulling an equal volume of each sample, and the QC sample and rumen fluid samples were analyzed in the same manner. To assess the repeatability of the analysis, the QC sample was injected once every 10 rumen fluid samples. The GC-MS data were processed using the MassHunter workstation Quantitative Analysis package (version v10.0.707.0) to extract raw peaks, filter and calibrate data baselines, align peaks, deconvolute, identify peaks, and integrate peak areas. The resulting matrixes detected in at least 80% of the samples were retained. After filtering, the missing values of the raw data were filled up by half of the compound minimum. The peak area was normalized in the data analysis. The internal standard was used for data quality control (reproducibility), and the metabolic features whose relative standard deviation (RSD) exceeded that of the QC by >30% were discarded. Mass spectra of these metabolic features were identified using the Fiehn database (https://fiehnlab.ucdavis.edu/projects/fiehnlib).

The metabolomic data were analyzed using PCA, and OPLS-DA was used to determine the global metabolic differences among the three ruminant species. Statistical significance among species was declared at a VIP value of >1 and a P-value of <0.05. P-values were estimated using paired Student’s t-test for single-dimensional statistical analysis. A total of 27 differential metabolites among two of the three ruminant species were mapped into their biochemical pathways through metabolic enrichment and pathway analysis based on search against the KEGG database (http://www.genome.jp/kegg/) [63]. These metabolites were classified according to the pathways into which they were mapped or the functions that they could perform. Differential metabolites were cross-listed with the pathways in the KEGG database, and the top differential pathways were identified [64]. The relationship between different species and metabolites was visualized as a heat map using the “pheatmap” package in R (www.r-project.org).

Declarations

Ethics approval

Animal care and experimental procedures were approved by the Institutional Animal Care and Use Committee (protocol number: NWAFAC1008) of the College of Animal Science and Technology of the Northwest A&F University (Yangling, Shaanxi, China).

Consent for publication

No applicable.

Availability of data and material

All sequencing data are available from the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) under accession number PRJNA744001, PRJNA744022 and PRJNA744415.

Competing interests

The authors declare that they have no conflict of interests.

Funding

This study was supported by the National Key Research and Development Projects of China (2017YFD0500500 and 2018YFD0501600) and the Shaanxi Provincial Key Research and Development Program (2021NY-019).

Authors’ contributions

JY, ZY, XC and YC designed the study. CZ, YQ and ZC collected rumen samples. FZ, YL and LW analyzed the rumen samples for VFA. CZ, JW and DW performed the enzyme assays for rumen fibrolytic enzyme activities. LW did the DNA extraction, CZ, SK, YC and WS performed
the bioinformatics and statistical analysis. LW, YC, AK, XW and JZ performed rumen metabolomic analysis. CZ and ZY wrote the manuscript, and all other authors revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements

The authors are grateful to T. Wang, T. Zhang, and G.F. Liang for their assistance in the field sampling. We are grateful to J. Shen, S.R Wu, and Z.J. Li for their advice and technical assistance.

References

1. Zebeli Q, Ghareeb K, Humer E, Metzler-Zebeli B, Besenfelder U. Nutrition, rumen health and inflammation in the transition period and their role on overall health and fertility in dairy cows. Res Vet Sci. 2015;103:126–36.

2. Shabat SKB, Sasson G, Doron-Faigenboim A, Durman T, Yaacoby S, Berg Miller ME, White BA, Shterzer N, Mizrahi I. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. Isme J. 2016;10:2958–72.

3. Stewart RD, Auffret MD, Warr A, Wiser AH, Press MO, Langford KW, Liachko I, Snelling TJ, Dewhurst RJ, Walker AW, et al. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nat Commun. 2018;9:870–80.

4. Lin LM, Xei F, Sun DM, Liu JH, Zhu WY, Mao SY. Ruminal microbiome-host crosstalk stimulates the development of the ruminal epithelium in a lamb model. Microbiome. 2019;7:83–98.

5. Fan PX, Bian BL, Teng L, Nelson CD, Driver J, Elzo MA, Jeong KC. Host genetic effects upon the early gut microbiota in a bovine model with graduated spectrum of genetic variation. Isme J. 2020;14:302–17.

6. Xue MY, Sun HZ, Wu XH, Liu JX, Guan LL. Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance. Microbiome. 2020;8:64.

7. Kamke J, Kittlelmann S, Soni P, Li Y, Tavendale M, Ganesh S, Janssen PH, Shi WB, Froula J, Rubin EM, et al. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpeaenriched microbiome characterised by lactic acid formation and utilisation. Microbiome. 2016;4:56.

8. Difford GF, Plichta DR, Løvendahl P, Lassen J, Noel SJ, Hojberg O, Wright ADG, Zhu ZG, Kristensen L, Nielsen HB, et al. Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows. PLoS Genet. 2018;14:e1007580.

9. Li FY, Hitch TCA, Chen Y, Creevey CJ, Guan LL. Comparative metagenomic and metatranscriptomic analyses reveal the breed effect on the rumen microbiome and its associations with feed efficiency in beef cattle. Microbiome. 2019;7:6.

10. Spor A, Koren Q, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol. 2011;9:279–90.

11. Li FY, Li CX, Chen YH, Liu JH, Zhang CY, Irving B, Fitzsimmons C, Plastow G, Guan LL. Host genetics influence the rumen microbiota and heritable rumen microbial features with feed efficiency in cattle. Microbiome. 2019;7:92.

12. Paz HA, Anderson CL, Muller MJ, Kononoff PJ, Fernando SC. Rumen bacterial community composition in Holstein and Jersey cows is different under same dietary condition and is not affected by sampling method. Front Microbiol. 2016;7:1206.

13. Xin JW, Chai ZX, Zhang CF, Zhang Q, Zhong JC. Transcriptome profiles revealed the mechanisms underlying the adaptation of yak to high-altitude environments. Sci Rep. 2019;9:7558–65.

14. Shao B, Long R, Ding Y, Wang J, Ding L, Wang H. Morphological adaptations of yak (Bos grunniens) tongue to the foraging environment of the Qinghai-Tibetan Plateau. J Anim Sci. 2010;88:2594–603.

15. Durmowicz AG, Hofmeister S, Kadyraliev TK, Aldashev AA, Stenmark KR. Functional and structural adaptation of the Yak pulmonary circulation to residence at high altitude. J Appl Physiol. 1993;74:2276–85.

16. Guan JQ, Long KR, Ma JD, Zhang JW, He DF, Jin L, Tang QZ, Jiang AA, Wang X, Hu YD, et al. Comparative analysis of the microRNA transcriptome between yak and cattle provides insight into high-altitude adaptation. Peer J. 2017;5:e3959.

17. Weir EK, Tucker A, Reeves JT, Will DH, Grover RF. The genetic factor influencing pulmonary hypertension in cattle at high altitude. Cardiovasc Res. 1974;8:745–9.

18. Takase H, Tumennasan K, Hiratsuka K, Chandley AC, Hotta Y. Fertility investigation in F1 hybrid and backcross progeny of cattle (Bos taurus) and yak (B. grunniens) in mongolia.: II. Little variation in gene products studied in male sterile and fertile animals. Niigata J Health Welf. 2002;2:42–52.

19. Zhang ZG, Xu DM, Wang L, Hao JJ, Wang JF, Zhou X, Wang WW, Qiu Q, Huang XD, Zhou JW, et al. Convergent evolution of rumen microbiomes in high-altitude mammals. Curr Biol. 2016;26:1873–9.
20. Xin JW, Chai ZX, Zhang CF, Zhang Q, Zhu Y, Cao HW, Zhong JC, Ji QM. Comparing the microbial community in four stomach of dairy cattle, yellow cattle and three yak herds in Qinghai-Tibetan plateau. Front Microbiol. 2019;10:1547.

21. Myer PR, Wells JE, Smith TPL, Kuehn LA, Freely HC. Cecum microbial communities from steers differing in feed efficiency. J Anim Sci. 2015;93:5327–40.

22. Perea K, Perz K, Olivo SK, Williams A, Lachman M, Ishaq SL, Thomson J, Yeoman CJ. Feed efficiency phenotypes in lambs involve changes in ruminal, colonic, and small-intestine-located microbiota. J Anim Sci. 2017;95:2585–92.

23. Woff SM, Ellison MJ, Hao Y, Cockrum RR, Austin KJ, Baraboo M, Burch K, Lee HJ, Maurer T, Patil R, et al. Diet shifts provoke complex and variable changes in the metabolic networks of the ruminal microbiome. Microbiome. 2017;5:60.

24. Hugenholtz F, de Vos WM. Mouse models for human intestinal microbiota research: a critical evaluation. Cell Mol Life Sci. 2018;75:149–60.

25. Xue YF, Lin LM, Hu F, Zhu WY, Mao SY. Disruption of ruminal homeostasis by malnutrition involved in systemic ruminal microbiota-host interactions in a pregnant sheep model. Microbiome. 2020;8:138.

26. Hess M, Sczyrba A, Egan R, Kim T, Chokhawala H, Schroth G, Luo SJ, Clark DS, Chen F, Zhang T, et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Nature. 2011;331:463–7.

27. Morais S, Mizrahi I. Islands in the stream: from individual to communal fiber degradation in the rumen ecosystem. FEMS Microbiol Rev. 2019;43:362–79.

28. Dai X, Tian Y, Li JT, Su XY, Wang XW, Zhao SG, Liu L, Luo YF, Liu D, Zheng HJ, et al. Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in the cow rumen. Appl Environ Microbiol. 2015;81:1375–86.

29. Zhou JW, Liu H, Zhong CL, Degen AA, Yanga G, Zhang Y, Qian JL, Wang WW, Hao LZ, Qiu Q, et al. Apparent digestibility, rumen fermentation, digestive enzymes and urinary purine derivatives in yaks and Qaidam cattle offered forage-concentrate diets differing in nitrogen concentration. Livest Sci. 2018;208:14–21.

30. Shi WB, Moon CD, Leah SC, Kang D, Froula J, Kittelmann S, Fan C, Deutsch S, Gagic D, Seedorf H, et al. Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome. Genome Res. 2014;24:1517–25.

31. Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–9.

32. Liu C, Wu H, Liu SJ, Chai ST, Meng QX, Zhou ZM. Dynamic alterations in yak rumen bacteria community and metabolome characteristics in response to feed type. Front Microbiol. 2019;10:1116.

33. Ahmad AA, Yang C, Zhang JB, Kalwar Q, Liang ZY, Li C, Du M, Yan P, Long RJ, Han JL, et al. Effect of dietary energy levels on rumen fermentation, microbial diversity and feed efficiency of yaks (Bos grunniens). Front Microbiol. 2020;11:625.

34. Ley RE, Fredrik B, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. P Natl Acad Sci USA. 2005;102:11070–5.

35. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–3.

36. Moulin L, Munive A, Boivin-Masson C. Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature. 2001;411:948–50.

37. Zhou ZC, Tran PQ, Kieft K, Anantharaman K. Genome diversification in globally distributed novel marine Proteobacteria is linked to environmental adaptation. Isme J. 2020;14:2060–77.

38. Sichert A, Corzett CH, Schechter MS, Unfried F, Markert S, Becher D, Fernandez-Guerra A, Liebeke M, Schweder T, Polz MF, et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat Microbiol. 2020;5:1026–39.

39. Machovic M, Janecek S. Domain evolution in the GH13 pullulanase subfamily with focus on the carbohydrate-binding module family 48. Biologia. 2008;63:1057–68.

40. Janecek S, Majzlová K, Svensson B, MacGregor E. The starch-binding domain family CBM41-an in-silico analysis of evolutionary relationships. Proteins. 2017;85:1480–92.

41. Zeng Y, Xu JY, Xu XP, Tan M, Liu F, Zheng HC, Song H. Effects of different carbohydrate-binding modules on the enzymatic properties of pullulanase. Int J Biol Macromol. 2019;137:973–81.

42. Cui GX, Yuan F, Degen AA, Liu SM, Zhou JW, Shang ZH, Ding LM, Mi JD, Wei XH, Long RJ. Composition of the milk of yaks raised at different altitudes on the Qinghai-Tibetan Plateau. Int Dairy J. 2016;59:29–35.

43. Zhang J, Yang M, Cai DY, Hao YJ, Zhao X, Zhu YH, Zhu H, Yang ZN. Composition, coagulation characteristics, and cheese making capacity of yak milk. J Dairy Sci. 2020;103:1276–88.

44. Yang WZ, Beauchemin KA. Physically effective fiber: method of determination and effects on chewing, ruminal acidosis, and digestion by dairy cows. J Dairy Sci. 2006;89:2618–33.
45. Zebeli Q, Tafaj M, Steingass H, Metzler B, Drochner W. Effects of physically effective fiber on digestive processes and milk fat content in early lactating dairy cows fed total mixed rations. J Dairy Sci. 2006;89:651–68.
46. Yang CJ, Mao SY, Long LM, Zhu WY. Effect of disodium fumarate on microbial abundance, ruminal fermentation and methane emission in goats under different forage: concentrate ratios. Animal. 2012;6:1788–94.
47. Ryle M, Orskov ER. Energy Nutrition in Ruminants. Netherlands: Springer; 1990.
48. Allison MJ, Bryant MP, Katz I, Keeney M. Metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. II. Biosynthesis of higher branched-chain fatty acids and aldehydes. J Bacteriol. 1962;83:1084–93.
49. Yang CJ. Response of forage fiber degradation by ruminal microorganisms to branched-chain volatile fatty acids, amino acids, and dipeptides. J Dairy Sci. 2002;85:1183–90.
50. Zhang HL, Chen Y, Xu XL, Yang YX. Effects of branched-chain amino acids on in vitro ruminal fermentation of wheat straw. Asian Australas J Anim Sci. 2013;26:523–8.
51. Jia W, Xie GX, Jia WP. Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastro Hepat. 2018;15:111–28.
52. Braun U, Hausammann K, Forrer R. Reflux of bile acids from the duodenum into the rumen of cows with a reduced intestinal passage. Vet Rec. 1989;124:373–6.
53. Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao JZ, Abe F, Osawa R. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 2016;16:90.
54. Li F, Li ZJ, Li SX, Ferguson JD, Cao YC, Yao JH, Sun BF, Wang X, Yang T. Effect of dietary physically effective fiber on ruminal fermentation and the fatty acid profile of milk in dairy goats. J Dairy Sci. 2014;97:2281–90.
55. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Biochem. 1959;31:426–8.
56. Yue Q, Yang HJ. Feruloyl and acetylesterase production of an anaerobic rumen fungus Neocallimastix sp. YQ2 effected by glucose and soluble nitrogen supplementations and its potential in the hydrolysis of fibrous feedstuffs. Anim Feed Sci Technol. 2009;153:263–77.
57. Yang HJ, Yue Q. Effect of glucose addition and N sources in defined media on fibrolytic activity profiles of Neocallimastix sp. YQ1 grown on corn stover. J Anim Physiol An N. 2012;96:554–62.
58. Li DH, Liu CM, Luo RB, Sadakane K, Lam T. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2014;31:1674–6.
59. Noguchi H, Park J, Takagi T. MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 2006;34:5623–30.
60. Fu LM, Niu BJ, ZhuZW, Wu ST, Li WZ. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–2.
61. Li RQ, Li YR, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics. 2008;24:713–4.
62. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.
63. Xie C, Mao XZ, Huang JJ, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei LP. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39:316–22.
64. Xia JG, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0–making metabolomics more meaningful. Nucleic Acids Res. 2015;43:251–7.

Figures
Figure 1

Plots of principal coordinates analysis (PCoA) comparing the overall rumen microbiota among the three ruminant species. A (bacteria) and B (fungi) were based on Bray-Curtis dissimilarity determined by metataxonomics (n=9 per species), and C was based on Bray-Curtis dissimilarity determined by metagenomics (n=6 per species). The ellipses represent 95% of the samples belonging to each group. Statistical significance of difference was tested using ANOSIM with 999 permutations.
Microbial species (identified in the rumen metagenome) significantly differed in relative abundance among the three ruminant species. The difference was tested using the Kruskal-Wallis H test, with post hoc test done using the Tukey-Kramer test (n=6 per species). Only the microbial species each with a relative abundance > 0.1% in all samples were shown. *P < 0.05, ** P < 0.01.
Figure 3

Identified bacterial species likely involved in succinate production (A) and succinate utilization (B). The difference in relative abundance among the three ruminant species was tested using the Kruskal-Wallis H test, with post hoc test done using the Tukey-Kramer test (n=6 per species). Abbreviations: P, Prevotella; R, Ruminococcus; F, Fibrobacter; Sucm, Succinimonas; Sucv, Succinivibrio; Rumb, Ruminobacter; M, Mitsuokella; Po, Porphyromonas; A, Actinobacillus. * P < 0.05, ** P < 0.01.
Figure 4

Differential KEGG pathways at level 2 (A), level 3 (B) among the three ruminant species as determined using LEfSe. Only the pathways that differed significantly (P < 0.05) between two of the three ruminant species with an LDA >2 are shown.
Figure 5

Metabolic pathways significantly differing in rumen metabolites between cattle and dzo (A), between cattle and yak (B), and between dzo and yak (C). The X-axis and Y-axis represent the pathway impact and pathway enrichment, respectively. The darker the color indicated the smaller the P-value from enrichment analysis, and the larger abscissa indicates greater impact from the pathway topology analysis, respectively (n = 6 per species).
Figure 6

Pearson correlations between significantly different rumen microbial species and microbial metabolites. The color and the color intensity of the squares correspond to the direction and strength of the correlation based on the scale to the right.
Figure 7

A schematic depicting the microbial processes of carbohydrate utilization and VFA formation in yak vs cattle. Red upward arrows (↑) indicate increase in yak compared with cattle, while blue downward arrows (↓) indicate decrease in yak.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Supplementarymaterial.docx