Effective Photovoltaic Integration and Power Quality Improvement on Parallel Feeders using Dynamic Multi Converter Controller

K. Gunavardhan, I. Prabhakar Reddy, P. Sujatha

Abstract: Growing phase of industry and living standards in modern world brings drastic changes in modern utility structure and control. Gradually, green sources takes place of traditional sources and aids the current utility power delivery for consumer loads. Green source and more sensitive loads integration to grid demands effective controller and reliable grid structure. In this paper, an effective grid structure with dynamic multi converter controller is proposed to alleviate disturbances in current and voltage on parallel feeders simultaneously. Soft computing based controller effectively integrates the photovoltaic green source and utilizes the power generated to aid the controlling action and to provide the desired power required on lines. Dynamic multi converter controller takes care of current and voltage disturbance alleviation, green source power integration and harmonics suppression on parallel lines under distorted & balanced and distorted & unbalanced source conditions. Performance of proposed Dynamic Multi Converter Controller with traditional and soft computing techniques is studied and compared in MATLAB/SIMULINK platform.

Keywords: Renewable sources, Power Quality, FACTS, Soft Computing methods, Multi Converters.

I. INTRODUCTION

The Concerns over global warming and drastic growth in day by day power demand raises the need of clean and abundant alternates source integration to grid [1-2]. This leads to integration of renewable sources, which best fit for the current needs. These renewable and more sensitive loads have an adverse effect on the utility and consumer [3-4]. An effective grid structure and efficient controllers are needed for current complex situation of utility to supply reliable power. In this paper an effective Dynamic Multi Converter Controller (DMCC) is proposed to improve quality of supplied power.

Fig.1 shows an effective parallel grid structure along with integration of solar unit (SU) using DMCC. Here, DMCC performs real power delivery from SU to line, alleviates current and voltage disturbances on parallel lines, improves power factor and also efficiently suppresses voltage disturbances under balanced and unbalanced conditions.

II. INTRODUCTION

DMCC is fed between distributed parallel lines. Parallel lines deliver power from individual sources \(S_1 \) & \(S_2 \) to sensitive load \(L_1 \) & non linear load \(L_2 \) respectively. \(V_{S1} \) & \(V_{S2} \) considered as source voltages, \(I_{S1} \) & \(I_{S2} \) considered as source currents, and \(I_{L1} \) & \(I_{L2} \) will be load currents. Proposed DMCC designed with three voltage source converters each of 3 legs. Among these, one converter act as shunt filter and remaining two acts as series filters. \(VSC_{s1} \) & \(VSC_{s2} \) be the Series converters and \(VSC_{sh} \) is Shunt Converter fed to Line-1. 3 voltage source converters fed at common DC link. To utilize SU effectively, it is fed to common DC link. SU will deliver required power to the DMCC and to line [5-6].

Fig. 1 Proposed DMCC System,

A. Solar Unit

This renewable source is one of the abundant source available freely from nature. Here, SU delivers power needed by DMCC during current and voltage disturbance mitigation on parallel lines and remaining power will be fed to line. Among Several MPPT techniques, Perturbation & Observation (P&O) is widely preferred in existing systems due to its fewer parameters and simple process over Incremental conductance [7].
PV cell. Maximum Power Point Tracking (MPPT) unit and DC-DC converter are the parts of SU [8]. SU consist of 8X6 solar cells. Solar cell equivalent diagram is presented in Fig. 2 and P&O flowchart presented in Fig. 3. Current and Voltage from Fig. 2 given by

\[I_p = I_{sc} - I_{sat} \exp \left[\frac{q}{AKT_i} (V_p + I_p R_{se}) - 1 \right] - \frac{V_p + I_p R_{se}}{R_{sh}} \]

(1)

\[V_p = \frac{AKT_i}{q} \ln \frac{I_{sc}}{I_p} + 1 \]

(2)

Whereas, in series control strategy, final switching pulses generated using sinusoidal pulse width modulation (SPWM)[14-15].

A. Shunt Control Strategy

Modified DQ Control Strategy utilized in shunt controller is presented in Fig. 4. In this, initially running time supply currents (I_{La}, I_{Lb}, I_{Lc}) & voltages (V_{as}, V_{bs}, V_{cs}), DC link voltages V_{dc} and load currents (I_{La}, I_{Lb}, I_{Lc}) are sensed. Further load currents are transformed from abc frame to dq frame by using,

\[\begin{bmatrix} i_d \\ i_q \\ i_0 \end{bmatrix} = \begin{bmatrix} \cos \phi & -\sin \phi & 1 \\ \cos(\phi - \frac{2\pi}{3}) & -\sin(\phi - \frac{2\pi}{3}) & \frac{1}{2} \\ \cos(\phi + \frac{2\pi}{3}) & \sin(\phi + \frac{2\pi}{3}) & \frac{1}{2} \end{bmatrix} \begin{bmatrix} i_{la} \\ i_{lb} \\ i_{lc} \end{bmatrix} \]

(3)

I_d and I_q components are allowed through Low pass filter to achieve constant DC components. I_{ddc} & the loss component are combined to generated dc link error signal. This signal is used for reference current i_{ref} generation. The loss(i_{in}) and direct axis(i_{*d}) components are shown given by

\[i_{in} = i_{i(n-1)} + k_{pd} (V_{de(n)} - V_{di(n-1)} + k_{id} V_{de(n)} \]

(4)

\[i_{a} = i_{i} + i_{ddc} \]

(5)

Similarly, i_{qdc} is summed up with tuned source voltage error for generating reference current I_{qref} as shown in Eqn. (10). Both references i_{ref} and i_{qref} transformed back to abc reference frame with the help of inverse park transformation. i_{q} is generated as follows,

\[i_{qrn} = i_{qr(n-1)} + k_{pq} (V_{re(n)} - V_{ri(n-1)} + k_{id} V_{re(n)},

(6)

\[i_{q} = i_{qr} + i_{qdc} \]

(7)

III. CONTROL STRATEGY

The Control Methodology uses two control strategies to alleviate current and voltage disturbances. Shunt control strategy deals with disturbances in source currents and Series control strategy deals with voltage disturbance. Both Shunt and Series Control strategies uses ANFIS [9-10] based modified DQ control technique for reference signal generation. 5 layer ANFIS structure preferred for effective error tuning over PI controller.

In Shunt control strategy final switching pulses generated from hysteresis current controller [11-12].
B. Series Control Strategy

Series control strategy suppresses voltage disturbances like swell, sag and interruption. It also alleviates harmonics in load voltage. The series control strategy is presented in Fig. 5. Primarily, supply voltage is converted into dq0 reference frame using,

\[V_{dq0}^{s1} = T_s V_{abc}^{s1} = V_{s1p} + V_{s1n} + V_{s10} + V_{s1h} \]

(8)

In the above, \(V_{s1h}, V_{s1p}, V_{s1n}, \) and \(V_{s10} \) are harmonic, positive, negative and zero sequence components resp. Objective is to achieve sinusoidal voltages to the load, so the dq0 reference frame of load voltage uses Parks transformation \(T_s \), and is given by,

\[V_{L1}^{dq0} = T_s V_{s1}^{abc} = \begin{bmatrix} U_m \\ 0 \\ 0 \end{bmatrix} \]

(9)

The suppressing dq0 reference voltage is given by,

\[V_{dq0}^{ref} = V_{s1}^{dq0} - V_{L1}^{dq0} \]

(10)

The above suppressing voltage is again converted back to abc reference frame. Using SPWM the switching pulses are generated to alleviate load voltage disturbances.

IV. RESULTS

A. Current Profile

Harmonics injected due to non-linear loads. Performance of DMCC is presented in Fig. 6. Here Modified DQ based shunt control strategy injects opposite currents to suppress current disturbances on line. Controller deactivated till 0.1 sec after that, the supply current becomes sinusoidal. Here Load Current is the summation of Source and SU fed Shunt current.

Fig. 5. Series Control Strategy

Fig. 6 Supply Voltage & Current, Injected & Load currents and \(V_{dc} \) (b) Supply, Injected Load Voltages on Line-1

B. Voltage profile

In Supply voltage, sag of 25% between \(0.15 < t < 0.25 \) and swell of 25% between \(0.35 < t < 0.5 \) were created. Series Control Strategy injects compensating voltage into Line-1 & 2 to suppress sag and swell, so that load-1 & 2 receives sinusoidal voltage, same is presented in Fig. 7 & 8 respectively.
Effective Photovoltaic Integration and Power Quality Improvement on Parallel Feeders using Dynamic Multi Converter Controller

Fig. 7 Supply Voltage & Current, Injected & Load currents and V_{dc}

Fig. 8. Source, Injected and Load Voltages on Line-2

Fig. 9. Unbalanced and distorted voltages
Fig. 9 presents the performance of DMCC during distorted and unbalanced source voltage. Unbalanced sinusoidal voltages created from $T = 0.1$ sec to 0.2 sec and distorted unbalanced voltages created from $T = 0.2$ sec to 0.3 sec. Series control strategy injects required voltages to alleviate abnormalities. Due to this, load receives balanced sinusoidal voltages.

Fig. 10. Power Factor Line-1

4.3 Power Profile
Fig. 11, shows real power delivered from source and SU fed shunt converter along with load power. Load real power is shared by source & SU.

Fig. 11, Source, load, Shunt & Series Converters Real Power

3.4 Harmonics profile
The harmonics alleviation in current & voltage is analyzed under without DMCC, with PI-DMCC and ANFIS-DMCC cases, same is presented in Fig. 12 & Fig. 13.

Fig. 12. Current %THD without DMCC, with PI-DMCC and with ANFIS-DMCC

(a) % THD without DMCC

(b) % THD with PI-DMCC

(c) % THD with ANFIS-DMCC
Effective Photovoltaic Integration and Power Quality Improvement on Parallel Feeders using Dynamic Multi Converter Controller

![Image](image.png)

Table 1. Proposed System Specifications

S.No	Parameters	Ratings
1	Source voltage	3-Phase 380v, 50 Hz
2	Source impedance, Line impedance Zl	R = 0.1ohm, L = 0.001mH, R_p = 0.02ohms, X_p = 0.1mH
3	Load-2	R_p=10 ohms, X_p=100mH
4	Load-1	R_p=10 ohms, X_p=0.03mH
5	DC link Voltage	Vdc = 600V
6	Solar Cell	35V, 7.5A

Table 2. Comparison of Power Factor, % THD for Source current and Load voltage

Parameters	Without DMCC	With PI-DMCC	With ANFIS-DMCC
P F	0.58	0.91	0.91
%THD			
Source current(I_L)	16.48	7.77	3.87
Load Voltage(V_L)	10.94	2.58	2.26

V. CONCLUSION

In this paper, ANFIS based modified DQ control method is proposed for DMCC. Proposed methodology compensates abnormalities in source current and load voltages. Modified ANFIS-DQ controller alleviates disturbances in current under source voltage abnormalities also. ANFIS-DQ controller achieves dominant performance in alleviation of current and voltage harmonics than traditional PI controller. In addition, DMCC effectively integrates solar unit power and utilizes optimally. Proposed controller achieves Total Harmonic Distortion of source current and load voltage on parallel lines within IEEE standards. PV unit delivers real power and supported DMCC controlling strategy.

ACKNOWLEDGMENTS

Authors would like to express gratitude to JNT University Anantapur, Ananthapuramu for providing continuous support during this research work.

REFERENCES

1. Penaguluru Suresh, and T. Gowri Manohar. “Review on Renewable Source Integrated Topologies with Power Quality Enhancing Strategies.” International Journal of Renewable Energy Research, Vol. 8, No.4, 2018, Pp: 2350-2366.

2. Mukhtiar Singh, Ambirish Chandra and Rajiv K. Varma, “ Grid interconnection of renewable energy sources at the distribution level with power-quality improvement features”, IEEE transactions on power delivery, vol. 26, no. 1, 2011, pp 307-315.

3. Dusan Graovac, Vladimir A.Katic, Alfred Rufer , “Power quality problems compensation with universal power quality conditioning system,” IEEE Trans. on Power Delivery, vol. 22, no. 2, April 2007, pp. 968-97.

4. Bijan Rahmani, Guihua Liu, Weixing Li, “An Advanced Universal Power Quality Conditioning System and MPPT method for grid integration of photovoltaic Systems”, International Journal of Electrical Power & Energy Systems,Elsevier, Vol. 69, July 2015, Pp:76-84.

5. Sudheer Kasa, Sudha Ramasamy, “Photovoltaic Fed Dynamic Voltage Restorer with Voltage Disturbance Mitigation Capability Using ANFIS Controller” Int. J. Renew. Energy Research, Vol.7, No.4, 2017, Pp:2103-2110.

6. Suresh, P., & Manohar, T. G. “Effective Renewable Source Integration using Unified Power Quality Conditioner with Power Quality Enhancement in Three Phase System” In MATEC Web of Conferences EDP Sciences. Vol. 225, p. 05014 (2018).

7. Loc Nguyen Khanh,Jae-Jin Seo, Yun-Seong Kim, and Dong-Jun Won, “Power-Management Strategies for a Grid-Connected PV-FC Hybrid System”, IEEE Transactions On Power Delivery, Vol. 25, No. 3, 2010, Pp 1874-1882.

8. Sudheer Kasa,Sudha Ramasamy, “Photovoltaic Fed Dynamic Voltage Restorer with Voltage Disturbance Mitigation Capability Using ANFIS Controller” Int. Renew. Energy Research, Vol.6, No.3, 2016, Pp:825-832.

9. Kasa, P Ramanathan, S Ramasamy, DP Kothari. 'Effective Grid Interfaced Renewable Sources with Power Quality Improvement using Dynamic Active Power Filter’, Journal of Electrical Power & Energy Systems,Vol.82, 2016, Pp:150-60.

10. Sudha Ramasamy, Sudheer Kasa, “Enhancement of Power Quality in Renewable Source Integrated Three Phase System with ICC controller”, International Journal of Green Engineering, Vol. 8, No.1, 2018, Pp:71-88.

11. Karuppnan, P., and Kamala Kanta Mahapatra. “PI and fuzzy logic controllers for shunt active power filter—A report.” ISA transactions 51.1 (2012): 163-169.

12. Sudheer kasa, Sudha Ramasamy, Prabhu Ramanathan, “Hybrid fuzzy-ZN PID control based grid interfaced distribution level renewable energy source with power quality” in proc of International conference of Circuit, Power and Computing Technologies, IEEE, Mar 2015,pp.1-7.

13. Sudheer Kasa, Sudha Ramasamy “Mitigation of Current Harmonics in Renewable Source Integrated Grid Topology with Fuzzy based Dynamic Shunt Active Filter” Innovations in Power and Advanced Computing Technologies (IPACT), IEEE, Mar 2017, pp.1-6.

14. Patnaik N, Panda AK, “Performance analysis of a 3 phase 4 wire UPQC system based on PAC based SRF controller with real time digital simulation”, Int J Electr Power Energy Syst., Vol. 74,2016, Pp: 212-21.

15. Sudheer Kasa, Sudha Ramasamy “Mitigating Voltage Imperfections with Photovoltaic fed ANFIS based ZSI-DVR in Three Phase System” International Journal of Renewable Energy Research, Vol.7, No.4, pp-2103-2110, 2017.

AUTHORS PROFILE

Mr.K.Gunavardhan has Received B.Tech Degree in Electrical and Electronics Engineering from Sri Venkateswara University, Tirupati and M.Tech Degree in Power Electronics & Drives from Uttar Pradesh Technical University, Lucknow. He is currently pursuing Ph.D in JNTUA, nantapuramu. He had 13 Years of experience in Teaching. His research interest includes Power Electronics Application to Power Systems.
Dr. I. Prabhakar Reddy has received his B.Tech in Electrical and Electronics Engineering in 1998, M.Tech in Power Electronics Engineering in 2002 and PhD Degree in 2011 from JNT University, Hyderabad, India. He is dedicated to teaching field from the last 17 years. His research areas FACTS Controllers, Power Electronics Applications to Power System and Power Electronics Drives. He Published 12 International Journals and participated 3 International conferences. At present he is working as Professor of EEE, NBKRISt, Vidyaganagar, Nellore(Dt.), Andhra Pradesh, India.

Dr. P. Sujatha, presently working as a Professor in Department of Electrical Engineering, J.N.T.U. A. College of Engineering, Ananthapuramu, Andhra Pradesh, India. She completed her B. Tech degree in 1993 and M. Tech Degree with specialization in Electrical Power Systems in 2003 & Ph. D in 2012 from J.N.T.U.A, Anantapur, Andhra Pradesh, India. She has nearly 21 years of teaching experience and her areas of interest include Reliability Engineering with emphasis to Power Systems and Real time Energy Management.