A Rap1 binding site and lipid-dependent helix in talin F1 domain cooperate in integrin activation

Condensed title .
Talin F1 Rap1-binding in integrin activation

Authors
Alexandre R. Gingras, Frederic Lagarrigue, Monica N. Cuevas, Marcus Zorovich, Andrew J. Valadez, Wilma McLaughlin, Miguel Alejandro Lopez-Ramirez, Nicolas Seban, and Mark H. Ginsberg

Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.

A.R. Gingras and F. Lagarrigue contributed equally to this paper.

Correspondence to Alexandre R. Gingras: aqinras@ucsd.edu or Mark H. Ginsberg: mhginsberg@ucsd.edu
Summary

This work reveals that Rap1 GTPases bind directly to talin1 F1 domain and by cooperating with a unique lipid-dependent amphipathic helix in the F1 domain effects talin1-mediated integrin activation.

Abstract (not exceed 160 words)

Rap1 GTPases bind effectors, such as RIAM, to enable talin1 to induce integrin activation. In addition, Rap1 binds directly to the talin1 F0 domain (F0); however, this interaction makes a negligible contribution to integrin activation in CHO cells or platelets. Here, we show that talin1 F1 domain contains a previously undetected Rap1 binding site of similar affinity to that in F0. A structure-guided point mutant (R118E) in F1, which blocks Rap1 binding, abolishes the capacity of Rap1 to potentiate talin1-induced integrin activation. The capacity of F1 to mediate Rap1-dependent integrin activation depends on a unique loop in F1 that transforms into an amphipathic helix upon binding to membrane lipids. Basic membrane-facing residues of this helix are critical as charge reversal mutations led to dramatic suppression of talin1-dependent activation. Thus, a novel Rap1 binding site and a lipid-dependent amphipathic helix in talin1 F1 cooperate to enable a direct Rap1-talin1 interaction to cause integrin activation.
Introduction

Integrin receptors are critical mediators of cellular adhesion, migration and assembly of the extracellular matrix, thereby playing an indispensable role in development and in many pathological processes (Hynes, 2002). Regulation of the affinity of integrins for their ligands is central to their function. In particular, integrins in blood cells are usually expressed in a low-affinity form until intracellular signals initiated by agonists acting via distinct excitatory receptors induces a high-affinity state, a process operationally defined as integrin activation. Binding of talin1 to the cytoplasmic tail of integrin β1 (Shattil et al., 2010; Tadokoro et al., 2003), β2 (Simonson et al., 2006), β3 (Haling et al., 2011; Nieswandt et al., 2007; Petrich et al., 2007a; Petrich et al., 2007b), and β7 (Sun et al., 2018) is a critical final common step in integrin activation.

Talin1 is a large (270 kDa) multi-domain protein that links integrins to the actin cytoskeleton via its N-terminal head domain that binds to the β-integrin cytoplasmic tail and its C-terminal flexible rod domain that binds F-actin (Critchley and Gingras, 2008). The talin1 head domain (THD) comprises an atypical FERM domain because it contains an additional F0 domain to the characteristic FERM F1, F2 and F3 domains, and because it adopts a linear arrangement rather than the cloverleaf structure typically observed in other FERM domains (Calderwood et al., 2013). Talin1 is auto-inhibited in the cytosol due to the interaction of the talin1 head domain (THD) with the rod domain, which prevents the interaction of THD with the integrin β cytoplasmic tail (Song et al., 2012). Our understanding of the signaling events that regulate talin1 recruitment to the plasma membrane and its association with integrin is incomplete.

Rap1 GTPases are perhaps the most completely studied relays of signals from cell surface receptors to integrin activation. Combined deficiency of both Rap1A and Rap1B isoforms in the megakaryocyte lineage evidenced an essential role for Rap1 signaling in platelet integrin activation and function (Stefanini et al., 2018). Although the Rap1 effector RIAM plays a major role in recruiting talin1 in leukocytes (Klapproth et al., 2015; Lagarrigue et al., 2017; Su et al., 2015), its implication in talin1-dependent activation of
platelet integrins have been unequivocally ruled out (Klapproth et al., 2015; Stritt et al., 2015; Su et al., 2015).

Studies using recombinant αIIbβ3-expressing CHO A5 cells revealed that talin1 head domain (THD) induces integrin αIIbβ3 activation in a Rap1-dependent manner (Lagarrigue et al., 2018), whilst activation by the F2F3 subdomain is Rap1-independent (Han et al., 2006). This result suggests that a direct interaction between Rap1 and the F0F1 subdomain domain facilitates integrin activation. Structural studies showed that Rap1b binds directly to talin1 F0 domain with low affinity (Goult et al., 2010). Furthermore, in Dictyostelium Rap1 directly interacts with the RA domain of talinB (Plak et al., 2016) to enable adhesion during Dictyostelium morphogenesis. Zhu et al. confirmed the direct Rap1-talin1 F0 interaction in mammals and showed that membrane-anchored Rap1b in vesicles has enhanced binding to THD, suggesting a mechanism of talin1 recruitment to integrins by Rap1 (Zhu et al., 2017). Quantitative proteomic analyses of murine platelets revealed the high abundance of Rap1b and talin1 (Zeiler et al., 2014). The abundance of the proteins at equal molar ratios and the lack of a known Rap1 effector with such a high abundance in platelets suggest that talin1 F0 domain may act as a direct effector of Rap1 to activate integrins in platelets. However, we recently reported a talin1 point mutation (R35E) in F0 domain that reduces Rap1 affinity by greater than 25 fold does not impair the capacity of THD to activate integrins in A5 cells nor does it abolish effects of Rap1 activity on THD-induced activation. In accord with this result, Tln1R35E/R35E mice exhibited similar extent and kinetics of αIIbβ3 activation (Lagarrigue et al., 2018). Thus, the low affinity Rap1-talin1 F0 interaction does not make a major contribution to integrin activation and cannot account for the profound effects on activation in RIAM-deficient cells of i) loss of Rap1 activity (Stefanini et al., 2018); ii) deletion of talin1 (Nieswandt et al., 2007; Petrich et al., 2007b); iii) mutations of integrin β3 that block talin1 binding (Petrich et al., 2007a); and iv) mutations of talin1 that prevents binding to integrin β3 (Haling et al., 2011).

Here, we show that talin1 F1 domain contains a previously undiscovered Rap1 binding site of similar affinity to that in F0. A structure-guided mutant in F1, which blocks Rap1
binding, abolishes the capacity of Rap1 to potentiate talin1-induced integrin activation. Talin1 F1’s ability to mediate Rap1-dependent integrin activation requires a unique unstructured loop that transforms into an amphipathic helix upon binding to membrane lipids. Charge-reversal mutations of basic membrane-facing residues of this helix profoundly suppressed talin1-dependent activation. Thus, a novel Rap1 binding site and a lipid-dependent amphipathic helix in talin1 F1 cooperate to enable a direct Rap1-talin1 interaction to cause integrin activation.
Results and Discussion

THD contains a second Rap1 binding site
Since integrin activation induced by THD(R35E) was still Rap1-dependent (Lagarrigue et al., 2018), we hypothesized that THD could have a second Rap1-binding site. We used NMR spectroscopy to examine the interaction of 15N-labelled Rap1b with unlabeled THD. The 2D-HSQC of Rap1b showed dispersed resonances characteristic of a well-folded protein (Fig. 1A, green). Addition of THD caused extensive broadening of Rap1b resonances (Fig. 1A, red), due to its interaction with the larger THD. We previously showed that the F0 domain of talin1(R35E) does not detectably bind Rap1b (Lagarrigue et al., 2018); however, THD(R35E) caused intermediate broadening of the Rap1b resonances (Fig. 1B, blue) relative to free Rap1b (Fig. 1A, green), whereas, wild-type THD (Fig. 1B, red) caused a more profound effect. The partial effect of THD(R35E) combined with the lack of Rap1-dependence of F2F3 mediated integrin activation (Han et al., 2006), raised the possibility that THD has a second Rap1 binding site.

To assess which THD domain plays a role in the interaction with Rap1 on integrin activation, we generated THD truncations removing either the F0, F1, or F0F1 domains (Fig. 1C) and tested effects on integrin activation in A5 cells. Expression of all three THD mutants induced activation (Fig. 1D, black bars), with a markedly lower activation index for THD(ΔF1) and THD(ΔF0F1), both lacking the F1 domain. Expression of the constitutively activated Rap1b(E63) mutant increased THD(ΔF0)-mediated αIIbβ3 activation, but did not affect the activation with THD mutants lacking the F1 domain (Fig. 1D, red bars). Similarly, inhibition of endogenous Rap1 activity by co-expression of Rap1GAP1 lead to a decrease in THD(ΔF0)-mediated activation; thus, the effect of Rap1 activity on integrin activation by THD(ΔF0) resembles that observed with THD(wt) (Lagarrigue et al., 2018). Immunoblotting confirmed similar level of expression for all THD mutants (Fig. 1E). These data implicated talin1 F1 as a second Rap1-binding site important in integrin activation; a surprising conclusion in light of a previous report that the F1 domain does not to bind Rap1b (Zhu et al., 2017).
Talin1 F1 domain contains a Rap1 binding site

Since both the talin1 F0 and F1 domains have a ubiquitin fold (Goult et al., 2010), we aligned their amino-acid sequence and noticed that the key positively charged residues for Rap1 binding are conserved: K15 and R35 in F0, and R98 and R118 in F1 (Fig. 2A). Moreover, superimposition of the NMR structures of the talin1 F0 domain with the F1 domain showed that the position of these residues is conserved. We therefore generated a model of the talin1 F1-Rap1 complex by superimposing the talin1 F1 domain with the F0 domain in complex with Rap1b (Zhu et al., 2017). We found that the F1 interface with Rap1b to be very similar to that of F0 and to be compatible with R98 and R118 to form salt bridges with the negatively charged groups on Rap1 surface (Fig. 2B). Importantly, using the NMR structure of the talin1 F1 domain alone (Goult et al., 2010) we found the inserted F1 loop to be positioned far away from the binding interface where it would not sterically hinder Rap1b binding.

To test the presence of a Rap1 binding site, we prepared 15N-labelled talin1 F1 domain for NMR studies. The 2D-sfHMQC of the talin1 F1 domain showed a stable folded protein, with most resonances being highly dispersed. The presence of sharp intense signals located in the center of the spectra is consistent with a large 35-residue loop that is unstructured and highly dynamic, as shown by (Fig. 2C, blue). Addition of Rap1b caused residue-specific chemical shift changes of talin1 F1 (Fig. 2A, red), in contrast to the studies of Zhu et al., 2017 using the F1F2 double-domain. As predicted, the non-dispersed resonances from the loop were not affected by Rap1b. Furthermore, we mapped specific chemical shifts to amino acids located in the predicted RA binding interface including Arg98 and Arg118. NMR titrations showed a weak affinity of talin1 F1 for Rap1 with $K_d = 129\pm33 \ \mu M$ (Fig. 2D, blue lines) based on several amino acids located at the binding interface as highlighted in Fig. 2E. Thus the talin1 F1 domain contains an RA domain that can bind Rap1b with similar affinity to the talin1 F0 domain (Goult et al., 2010; Lagarrigue et al., 2018; Zhu et al., 2017).

Reduced affinity of talin1(R118E) F1 domain binding to Rap1
Our molecular modeling suggested that talin1 Arg98 and Arg118 formed crucial salt bridges with Rap1b (Fig. 2B) and the NMR data showed they are located at the binding interface. We used the acidic Glu mutations because of the predicted stronger effects of charge repulsions between talin1 F1 and the acidic patch on the surface of Rap1b that mediates their interaction. We therefore purified recombinant 15N-labelled talin1 F1(R118E) mutant. Comparison of the NMR 2D-sfHMQC of the F1(wt) and F1(R118E) mutant (Fig. 2F) showed only very subtle chemical shift changes; thus, the mutant protein adopts a similar fold to F1(wt). Addition of GMP.PNP Rap1b to F1(R118E) produced no specific chemical shift changes (Fig. 2G), suggesting that it does not bind to Rap1b. The minimal chemical shift perturbations detected at 7-fold excess of Rap1b with F0(R118E) indicated a substantial reduction in Rap1b affinity (Fig. 2D, red lines). Thus talin1 F1(R118E) is well folded and has a greatly reduced affinity for Rap1.

Talin1 F1-Rap1b interaction is important for THD-mediated αIIbβ3 activation in CHO cells

To assess the contribution of the talin1 F0 and F1 interactions with Rap1 on integrin activation, we introduced the mutations R35E, R118E and a double mutant R35E,R118E into the THD (Fig. 3A) and tested effects on integrin activation in CHO A5 cells. Expression of all THDs induced integrin activation with THD(wt) and THD(R35E) in F0 producing comparable levels of activation. In sharp contrast, both the F1 mutants, THD(R118E) and THD(R35E,R118E), exhibited a dramatically reduced activation (Fig. 3B, black bars). Furthermore, we carefully monitored expression of THD-EGFP and its mutants by flow cytometry and observed a strong effect of the F1 mutants at equivalent levels of THD expression on a per cell basis (Fig. 3C). Immunoblotting confirmed similar level of global expression for all THD mutants (Fig. 3D). More importantly, co-expression of both Rap1(E63) and Rap1GAP1 had no effect on integrin activation when the R118E mutation was introduced in the F1 domain (Fig. 3B, red and blue bars). Also, comparison of the THD(wt) activation in the presence of Rap1GAP1 was very similar to the activation index in the presence of THD(R118E) mutant, further supporting the conclusion that the Rap1-F1 interaction is required for talin1 to act as a direct Rap1
effector. Thus, our data showed that the talin1 F1 Rap1-binding site is critical for the capacity of Rap1 to potentiate THD-mediated αIIbβ3 integrin activation in CHO cells.

Talin1 F1-loop is important for THD-mediated αIIbβ3 activation in CHO cells

Since both the talin1 F0 and F1 domains contain a Rap1-binding site with similar affinity for Rap1b *in vitro*, and that only the THD(R118E) mutant in F1 had an effect on THD-mediated αIIbβ3 activation, we examined differences between the two domains. First, the F1 domain is located adjacent to the F2 domain which contains a critical membrane orientation patch required for activation (Anthis et al., 2009); however, in THD(ΔF1), F0 is adjacent to F2 yet THD(ΔF1) exhibits little Rap1-dependence (Fig. 1D). Secondly, the F1 domain contains an unstructured loop implicated in integrin activation. This loop forms an amphipathic helix upon interacting with lipids. In this helix, basic residues are predicted to reside on the surface of the helix that binds to acidic phospholipids (Goult et al., 2010).

To assess the contribution of both the talin1 F1 loop and the interaction with Rap1 on integrin activation, we tested integrin activation by THD wherein the loop was removed, THD(ΔL) (Fig. 4A). As previously observed (Goult et al., 2010), THD(ΔL) reduced integrin activation (Fig. 4B, black bars). Importantly, co-expression of both Rap1(E63) and Rap1GAP1 had a negligible effect on integrin activation by THD(ΔL) (Fig. 4B, red and blue bars). Furthermore, the double mutant THD(ΔL,R118E) resembled THD(ΔL). Immunoblotting confirmed similar level of expression for all THD mutants (Fig. 4C). 2D-sfHMQC NMR spectra of 15N-labelled talin1 F1(ΔL) exhibited highly dispersed resonances consistent with a stable folded protein (Fig. 4D, blue). Addition of Rap1b to caused residues specific chemical shift changes of talin1 F1(ΔL) (Fig. 4D, red) that mapped to amino acids located in the predicted RA binding interface including Thr96 and Thr99 (Fig. 4E). Thus the talin1 F1 loop is important for Rap1-dependence of THD-mediated integrin activation but not for Rap1b binding.

Basic residues on the amphipathic helix formed by talin1 F1-loop are important for integrin activation
To further validate the proposed amphipathic helix mechanism whereby the talin1 F1 loop plays a role in integrin activation, we introduced three charge reversal mutations in basic residues of the amphipathic helix (R146E, R153E, K156E (3EL)) to create a charge repulsion with the negatively charged PI(4,5)P₂ of the plasma membrane (Fig. 5A). THD(3EL) was even less active than THD(ΔL) in activating αIIbβ3 (Fig. 5B). Immunoblotting confirmed similar level of expression for all THD mutants (Fig. 5C). Furthermore, both THD(ΔL) and the THD(R118E) showed intermediate levels of reduced activation. Taken together, these data show i) the Rap1-dependence talin1-induced activation depends on the loop in F1 and explains why F1 and not F0 are important in this function; ii) inhibition of Rap1 binding to F1 produces a similar defect to deletion of the loop; and iii) the predicted basic face of a lipid-dependent amphipathic helix formed by the loop is critical for integrin activation.

The studies reported here provide new insight into how talin1 activates integrins, a process central to mammalian development and numerous physiological functions. Studies in A5 cells led to the conclusion that talin1 is required for integrin activation, established the importance of specific structural elements in the integrin and in THD, and identified the importance of lipid binding residues (Anthis et al., 2009; Goult et al., 2010; Tadokoro et al., 2003; Wegener et al., 2007). The cells were also instrumental in studies that showed how Rap1, by engaging RIAM enabled RIAM to recruit talin1 to integrins (Han et al., 2006; Lee et al., 2009); a key pathway in leukocyte trafficking and formation of the immune synapse (Lagarrigue et al., 2017). Nevertheless, Rap1 can activate integrins in the absence of RIAM or of obvious candidate effectors. Goult’s pioneering studies suggested that talin1 F0 could enable talin1 to itself be an effector (Goult et al., 2010), an idea further advanced by Zhu et al. 2017; however we found that the F0 domain made a minor (if any) contribution. We now find that the F1 domain contains a second Rap1 binding site and that this site functions in conjunction with a unique inserted loop to enable Rap1 to regulate activation. The proximity of the putative membrane binding helix of the loop to the geranyl-geranyl moiety of Rap1 bound to F1 provides a cogent model to explain the cooperative behavior of these two membrane binding sites in integrin activation (Fig. 5D). Indeed, the now more complete picture of
how THD interacts with the membrane shows that an extended series of membrane binding sites serve to stabilize the weak interaction of talin1 F3 with the integrin β cytoplasmic domain to explain the membrane dependence of talin1-induced activation (Ye et al., 2010). Our studies show how Rap can add to those membrane-binding sites to enable activation in the absence of effectors such as RIAM. We note that Rap1 binding to both F0 and F1 could also serve to stabilize the talin1-membrane interaction to help talin1 resist cell detachment forces. Thus, our findings will enable future studies to characterize the role of each of these Rap1 binding sites in activation in cells in which talin1 and Rap1 are in varying abundance and to assess their roles in stability of integrin-mediated adhesions and resulting mechanotransduction.
Materials and methods

Integrin activation in CHO cells
Cells were cultured in DMEM (Corning) supplemented with 10% fetal bovine serum (Sigma-Aldrich), and 100 U/ml penicillin and 100 μg/ml streptomycin (Gibco). The sequence encoding murine talin1 head domain (THD, aa 1-433) was cloned into pEGFP-N1 (Clontech). The sequences encoding human Rap1b(Q63E) and Rap1GAP1 were cloned into p3xFlag7.1(-) (Clontech). Transient transfection was performed using TransIT-LT1 Reagent (Mirus) according to the manufacturer's protocol. PAC-1 binding assay was conducted as previously described (Frojmovic et al., 1991). Briefly, cells were harvested by using trypsin one day after transfection and washed once in HBSS buffer (containing calcium and magnesium, Gibco) supplemented with 1% (w:v) bovine serum albumin (Sigma-Aldrich). PAC-1 IgM (ascites, 1:200) was incubated with cells for 30 min at room temperature prior to staining with the appropriate Alexa Fluor 647 secondary antibody (Life Technologies) for 30 min on ice. Cells were analyzed by flow cytometry using a FACS Accuri C6 Plus (BD Biosciences) and gated on EGFP-positive events. Integrin activation was defined as αIIbβ3 specific ligand binding corrected for αIIbβ3 expression, and was calculated as 100 × (MFIi-MFI0)/ΔMFI_{D57} (where MFIi = mean fluorescence intensity of bound PAC-1; MFI0 = mean fluorescence intensity of bound PAC-1 in the presence of 10 μM Eptifibatide; and ΔMFI_{D57} = specific fluorescence intensity of anti-αIIbβ3 D57 antibody). PAC1 (Shattil et al., 1985) and D57 (O'Toole et al., 1994) antibodies have been previously described.

Protein expression and purification
The murine talin1 residues 1-400 (THD), 84-196 (F1), and 84-196 Δ141-170 (F1 Δloop) were cloned into the expression vector pETM-11 (His-tagged, EMBL) and expressed in Escherichia coli BL21 Star (DE3) cultured in minimal medium for 15N-labeled samples for NMR or LB for unlabeled protein. Briefly, recombinant His-tagged proteins was purified by nickel-affinity chromatography, the His-tag removed by cleavage with Tobacco Etch Virus protease overnight, and the protein further purified by size exclusion chromatography using a Superdex-75 (26/600) column (GE Healthcare). The column
was pre-equilibrated and run with (NMR-buffer) 20 mM Sodium Phosphate, 50 mM NaCl, 3 mM MgCl₂, 2 mM DTT, pH 6.5. Human Rap1 isoform Rap1b (residues 1–167) cloned into pTAC vector in the *E. coli* strain CK600K was the generous gift of Professor Alfred Wittinghofer (Max Planck Institute of Molecular Physiology, Dortmund, Germany). Untagged Rap1b was purified by ion exchange, followed by Superdex-75 (26/600) gel filtration as previously described (Gingras et al., 2016). The column was pre-equilibrated and run with NMR-buffer.

NMR spectroscopy

NMR samples of all the protein constructs were prepared in NMR-buffer containing 0.1 mM GMP.PNP and 5% (v/v) of ²H₂O. All 2D [¹H,¹⁵N]-sfHMQC spectra were recorded at 298K. To test THD binding to Rap1b, 100 μM ¹⁵N-labelled GMP.PNP-bound Rap1b was incubated with 250 μM unlabelled THD. Titration curves for the interaction of talin1 F1 with GMP.PNP-bound Rap1b were determined using 100 μM ¹⁵N-labelled F1 in NMR-buffer. Chemical shift changes (Δδ_{obs} (HN,N)) were calculated using CcpNmr Analysis, “follow shift changes” function and analyzed with the one site binding model to determine the Kd value in Prism 5.0 (GraphPad Software) (Vranken et al., 2005).

Western blotting

Cells were lysed in Laemmli sample buffer. Lysates were subjected to a 4-20% gradient SDS-PAGE. Polyclonal serum directed against EGFP was raised in rabbit (Abgent). Antibody against β-actin (AC-15) was from Sigma-Aldrich. The appropriate IRDye/Alexa Fluor-coupled secondary antibodies were from LI-COR. Nitrocellulose membranes were scanned using an Odyssey CLx infrared imaging system (LI-COR) and blots were processed using Image Studio Lite software (LI-COR).

Reagents

GMP.PNP was purchased from Sigma.

Statistical analysis
Statistical significance was assayed by a two-tailed t-test for single comparisons or ANOVA for multiple comparisons with a Bonferroni post hoc test. A p value <0.05 was considered significant.
Acknowledgments
This work was supported by the American Heart Association Career Development Award 18CDA34110228 (F.L.) and Grant-In-Aid 16GRNT29650005 (A.R.G.); and National Institutes of Health - National Heart, Lung and Blood Institute grants K01HL 133530-01 (M.A.L.R), HL 078784 and HL 139947 (M.H.G.). The authors declare no competing financial interests.

Author contributions
Contribution: A.R. Gingras, F. Lagarrigue and M.H. Ginsberg conceived the study, designed experiments, interpreted data, and wrote the manuscript. Alexandre R. Gingras, Frederic Lagarrigue, Monica N. Cuevas, Marcus Zorovich, Andrew J. Valadez, Wilma McLaughlin and Nicolas Seban performed and analyzed experiments. Miguel Alejandro Lopez-Ramirez provided vital reagents and critical expertise.
References

Anthis, N.J., K.L. Wegener, F. Ye, C. Kim, B.T. Goult, E.D. Lowe, I. Vakonakis, N. Bate, D.R. Critchley, M.H. Ginsberg, and I.D. Campbell. 2009. The structure of an integrin/talin complex reveals the basis of inside-out signal transduction. *EMBO J.* 28:3623-32.

Calderwood, D.A., I.D. Campbell, and D.R. Critchley. 2013. Talins and kindlins: partners in integrin-mediated adhesion. *Nat Rev Mol Cell Biol.* 14:503-17.

Critchley, D.R., and A.R. Gingras. 2008. Talin at a glance. *J Cell Sci.* 121:1345-7.

Frojmovic, M.M., T.E. O'Toole, E.F. Plow, J.C. Loftus, and M.H. Ginsberg. 1991. Platelet glycoprotein IIb-IIIa (alpha IIb beta 3 integrin) confers fibrinogen- and activation-dependent aggregation on heterologous cells. *Blood.* 78:369-76.

Gingras, A.R., W. Puzon-McLaughlin, A.A. Bobkov, and M.H. Ginsberg. 2016. Structural Basis of Dimeric Rasip1 RA Domain Recognition of the Ras Subfamily of GTP-Binding Proteins. *Structure.* 24:2152-2162.

Goult, B.T., M. Bouaouina, P.R. Elliott, N. Bate, B. Patel, A.R. Gingras, J.G. Grossmann, G.C. Roberts, D.A. Calderwood, D.R. Critchley, and I.L. Barsukov. 2010. Structure of a double ubiquitin-like domain in the talin head: a role in integrin activation. *EMBO J.* 29:1069-80.

Haling, J.R., S.J. Monkley, D.R. Critchley, and B.G. Petrich. 2011. Talin-dependent integrin activation is required for fibrin clot retraction by platelets. *Blood.* 117:1719-22.

Han, J., C.J. Lim, N. Watanabe, A. Soriani, B. Ratnikov, D.A. Calderwood, W. Puzon-McLaughlin, E.M. Lafuente, V.A. Boussiotis, S.J. Shattil, and M.H. Ginsberg. 2006. Reconstructing and deconstructing agonist-induced activation of integrin alphaIIbbeta3. *Curr Biol.* 16:1796-806.

Hynes, R.O. 2002. Integrins: bidirectional, allosteric signaling machines. *Cell.* 110:673-87.

Klapproth, S., M. Sperandio, E.M. Pinheiro, M. Prunster, O. Soehnlein, F.B. Gertler, R. Fassler, and M. Moser. 2015. Loss of the Rap-1 effector RIAM results in leukocyte adhesion deficiency due to impaired beta2 integrin function in mice. *Blood.*

Lagarrigue, F., F.B. Gertler, M.H. Ginsberg, and J.M. Cantor. 2017. Cutting Edge: Loss of T Cell RIAM Precludes Conjugate Formation with APC and Prevents Immune-Mediated Diabetes. *J Immunol.* 198:3410-3415.

Lagarrigue, F., A.R. Gingras, D.S. Paul, A.J. Valadez, M.N. Cuevas, H. Sun, M.A. Lopez-Ramirez, B.T. Goult, S.J. Shattil, W. Bergmeier, and M.H. Ginsberg. 2018. Rap1 binding to the talin 1 F0 domain makes a minimal contribution to murine platelet GPIIb-IIIa activation. *Blood Adv.* 2:2358-2368.

Lee, H.S., C.J. Lim, W. Puzon-McLaughlin, S.J. Shattil, and M.H. Ginsberg. 2009. RIAM activates integrins by linking talin to ras GTPase membrane-targeting sequences. *J Biol Chem.* 284:5119-27.

Nieswandt, B., M. Moser, I. Pleines, D. Varga-Szabo, S. Monkley, D. Critchley, and R. Fassler. 2007. Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. *J Exp Med.* 204:3113-8.
O'Toole, T.E., Y. Katagiri, R.J. Faull, K. Peter, R. Tamura, V. Quaranta, J.C. Loftus, S.J. Shattil, and M.H. Ginsberg. 1994. Integrin cytoplasmic domains mediate inside-out signal transduction. *J Cell Biol.* 124:1047-59.

Petrich, B.G., P. Fogelstrand, A.W. Partridge, N. Yousefi, A.J. Ablooglu, S.J. Shattil, and M.H. Ginsberg. 2007a. The antithrombotic potential of selective blockade of talin-dependent integrin alpha IIb beta 3 (platelet GPIIb-IIIa) activation. *J Clin Invest.* 117:2250-9.

Petrich, B.G., P. Marchese, Z.M. Ruggeri, S. Spiess, R.A. Weichert, F. Ye, R. Tiedt, R.C. Skoda, S.J. Monkley, D.R. Critchley, and M.H. Ginsberg. 2007b. Talin is required for integrin-mediated platelet function in hemostasis and thrombosis. *J Exp Med.* 204:3103-11.

Plak, K., H. Pots, P.J. Van Haastert, and A. Kortholt. 2016. Direct Interaction between TalinB and Rap1 is necessary for adhesion of Dictyostelium cells. *BMC Cell Biol.* 17:1.

Shattil, S.J., J.A. Hoxie, M. Cunningham, and L.F. Brass. 1985. Changes in the platelet membrane glycoprotein IIb.IIIa complex during platelet activation. *J Biol Chem.* 260:11107-14.

Shattil, S.J., C. Kim, and M.H. Ginsberg. 2010. The final steps of integrin activation: the end game. *Nat Rev Mol Cell Biol.* 11:288-300.

Simonson, W.T., S.J. Franco, and A. Huttenlocher. 2006. Talin1 regulates TCR-mediated LFA-1 function. *J Immunol.* 177:7707-14.

Song, X., J. Yang, J. Hibrawi, S. Ye, H.D. Perera, E. Goksoy, P. Dwivedi, E.F. Plow, R. Zhang, and J. Qin. 2012. A novel membrane-dependent on/off switch mechanism of talin FERM domain at sites of cell adhesion. *Cell Res.* 22:1533-45.

Stefanini, L., R.H. Lee, D.S. Paul, E.C. O'Shaughnessy, D. Ghalloussi, C.I. Jones, Y. Boulaftali, K.O. Poe, R. Piatt, D.O. Kechele, K.M. Caron, K.M. Hahn, J.M. Gibbins, and W. Bergmeier. 2018. Functional redundancy between RAP1 isoforms in murine platelet production and function. *Blood*.

Stritt, S., K. Wolf, V. Lorenz, T. Vogtle, S. Gupta, M.R. Bosl, and B. Nieswandt. 2015. Rap1-GTP-interacting adaptor molecule (RIAM) is dispensable for platelet integrin activation and function in mice. *Blood.* 125:219-22.

Su, W., J. Wynne, E.M. Pinheiro, M. Strazza, A. Mor, E. Montenont, J. Berger, D.S. Paul, W. Bergmeier, F.B. Gertler, and M.R. Philips. 2015. Rap1 and its effector riam are required for lymphocyte trafficking. *Blood*.

Sun, H., F. Lagarrigue, A.R. Gingras, Z. Fan, K. Ley, and M.H. Ginsberg. 2018. Transmission of integrin beta7 transmembrane domain topology enables gut lymphoid tissue development. *J Cell Biol.* 217:1453-1465.

Tadokoro, S., S.J. Shattil, K. Eto, V. Tai, R.C. Liddington, J.M. de Pereda, M.H. Ginsberg, and D.A. Calderwood. 2003. Talin binding to integrin beta tails: a final common step in integrin activation. *Science.* 302:103-6.

Vranken, W.F., W. Boucher, T.J. Stevens, R.H. Fogh, A. Pajon, M. Llinas, E.L. Ulrich, J.L. Markley, J. Ionides, and E.D. Laue. 2005. The CCPN data model for NMR spectroscopy: development of a software pipeline. *Proteins.* 59:687-96.

Wegener, K.L., A.W. Partridge, J. Han, A.R. Pickford, R.C. Liddington, M.H. Ginsberg, and I.D. Campbell. 2007. Structural basis of integrin activation by talin. *Cell.* 128:171-82.
Ye, F., G. Hu, D. Taylor, B. Ratnikov, A.A. Bobkov, M.A. McLean, S.G. Sligar, K.A. Taylor, and M.H. Ginsberg. 2010. Recreation of the terminal events in physiological integrin activation. *J Cell Biol*. 188:157-73.

Zeiler, M., M. Moser, and M. Mann. 2014. Copy number analysis of the murine platelet proteome spanning the complete abundance range. *Mol Cell Proteomics*. 13:3435-45.

Zhu, L., J. Yang, T. Bromberger, A. Holly, F. Lu, H. Liu, K. Sun, S. Klapproth, J. Hirbawi, T.V. Byzova, E.F. Plow, M. Moser, and J. Qin. 2017. Structure of Rap1b bound to talin reveals a pathway for triggering integrin activation. *Nat Commun*. 8:1744.
Abbreviations
Abbreviations used in this paper: THD, talin1 head domain; CHO cells, Chinese hamster ovary;
Figures

Figure 1. THD contains a second Rap1 binding site. (A-B) 2D 1H,15N-sfHMQC spectra of 100 μM 15N-labeled Rap1b. (A) Free Rap1b (green) and with 250 μM THD wild-type (red). The broadening of Rap1 resonances in the presence of THD indicates binding. (B) Rap1b with 250 μM THD wild-type (red) and 250 μM THD(R35E) (blue). The intermediate broadening of Rap1 resonances in the presence of THD(R35E) indicates the presence of a second Rap1 binding site. (C) Talin1 head domain (THD) constructs used in panels D and E. (D) CHO-A5 cells stably expressing αIIbβ3 integrin were transfected with cDNA encoding THD-EGFP in combination with Rap1b(Q63E) or Rap1GAP1. Integrin activation was assayed by binding of PAC1 to EGFP positive cells. Transfection of EGFP alone was used as control. Bar graphs represent Mean ± SEM of 4 independent experiments, and normalized to THD(ΔF0)-EGFP + Mock. Two-way ANOVA with Bonferroni post-test. Each condition was compared to the respective Mock control. ns, not significant; ***, p<0.001. (E) Western blot of THD-EGFP expression. Actin was used as a loading control.

Figure 2. Talin1 F1 subdomain also contains a Rap1b-binding site and the R118E mutation blocks binding to Rap1. (A) Amino-acid sequence alignment of the F0 and F1 domains. Invariant residues indicated with "*", conserved residues with "::", and semi-conserved residues with ".". Rap1 binding residues (blue) are >25% buried by formation of the complex. (B) Surface electrostatic potential of talin1 F1 (right) and Rap1b (left) binding interface as open book view. The dotted black lines highlight the charge complementarity between the two proteins binding interface. The location of the F1 loop is also shown by a grey dotted line. (C) 2D 1H,15N-sfHMQC spectra of 100 μM 15N-labeled talin1 F1 wild-type (blue) and in the presence of 700 μM GMP.PNP Rap1b (red). Specific chemical shift changes are observed indicating binding. (D) Titration curves for the interaction of talin1 F1 with Rap1b. Dissociation constants were measured for multiple residues and two binding curves are shown here. (E) Close up view of the 10-step Rap1b titration for residues K89, D94 and T96. (F-G) 2D 1H,15N-sfHMQC spectra of 100 μM 15N-labeled talin1 F1. (F) Wild-type (blue) and R118E (red). Almost all peaks are
in the same position, suggesting that THD(R118E) is well folded and has a similar fold to wild-type protein. (G) Free talin1 F1(R118E) in the absence (blue) and presence of GMP.PNP Rap1b (red) at 1:7 molar ratio. No chemical shift changes are observed at 7-fold excess Rap1b, suggesting that F1(R118E) drastically reduced the affinity of the interaction.

Figure 3. The talin1 F1 domain is responsible for THD Rap1-dependent integrin activation. (A) Talin1 head domain (THD) constructs used in panels B-D. (B-C) CHO-A5 cells stably expressing αIIbβ3 integrin were transfected with cDNA encoding THD-EGFP in combination with Rap1b(Q63E) or Rap1GAP1. Integrin activation was assayed by binding of PAC1 to EGFP positive cells. Transfection of EGFP alone was used as control. (B) Bar graphs represent Mean ± SEM of 4 independent experiments, and normalized to THD(wt)-EGFP + Mock. Two-way ANOVA with Bonferroni post-test. Each condition was compared to the respective Mock control. ns, not significant; *, p<0.05; **, p<0.01. (C) Activation indices were normalized to the maximum value of THD(wt)-EGFP and plotted as a function of EGFP MFI. Graphs represent Mean ± SEM of 4 independent experiments. Curve fitting was performed using the total one site-binding model in Prism 5.0 (GraphPad Software). (D) Western blot of THD-EGFP expression. Actin was used as a loading control.

Figure 4. The talin1 F1 domain inserted loop plays a synergistic role with the F1 Rap1 binding site for integrin activation. (A) THD constructs used in panels B and C. (B) CHO-A5 cells stably expressing αIIbβ3 integrin were transfected with cDNA encoding THD-EGFP in combination with Rap1b(Q63E) or Rap1GAP1. Integrin activation was assayed by binding of PAC1 to EGFP positive cells. Transfection of EGFP alone was used as control. Bar graphs represent Mean ± SEM of 4 independent experiments, and normalized to THD(wt)-EGFP + Mock. Two-way ANOVA with Bonferroni post-test. Each condition was compared to the respective Mock control. ns, not significant; *, p<0.05; ***, p<0.001. (C) Western blot of THD-EGFP expression. Actin was used as a loading control. (D) 2D 1H,15N-sfHMQC spectra of 100 μM 15N-labeled talin1 F1 ∆L (blue) and in the presence of 225 μM GMP.PNP Rap1b (red). Specific
chemical shift changes are observed indicating binding. (E) Close up view of the chemical shift changes for residues T96 and T99.

Figure 5. The role of talin1 F1 domain in integrin activation: recruitment by Rap1 and phospholipids. (A) THD constructs used in panels B and C. (B) CHO-A5 cells stably expressing αIbβ3 integrin were transfected with cDNA encoding THD-EGFP. Integrin activation was assayed by binding of PAC1 to EGFP positive cells. Transfection of EGFP alone was used as control. Activation indices were normalized to the maximum value of THD(wt)-EGFP and plotted as a function of EGFP MFI. Graphs represent Mean ± SEM of 3 independent experiments. Curve fitting was performed using the total one site-binding model in Prism 5.0 (GraphPad Software). (C) Western blot of THD-EGFP expression. Actin was used as a loading control. (D) A model of talin1 F1 domain in the cytosol with a positively charged unstructured loop (green) and membrane-associated Rap1b-GTP by its C-terminal geranyl-geranyl (G-G) moiety (orange). Negatively charged phospholipids PI(4,5)P2 are colored in red. On proximity of the plasma membrane, the low-affinity talin1 F1 Ras-associating (RA) domain probes for Rap1 and the F1 loop seeks negatively charged phospholipids. On contact with Rap1 and negatively charged phospholipids, the F1 RA domain interacts with Rap1 and the F1 loop helical state is favored resulting in cluster of positive charges on one side of the helix. (E-F) View of THD (green) as seen from the membrane (E) or seen from the side (F). The views highlight the position of the THD F0, F1, F2 and F3 subdomains and the Rap1b (orange) bound to the F0 and F1 subdomains. Both Rap1b C-terminal geranyl-geranyl (G-G) moieties are pointing towards the membrane, as for the F1 loop, the F2 membrane orientation patch (MOP), the F3 association patch (FAP), and the position of the F3 β-integrin. The regions known to interact with the negatively charged phospholipids are shown in blue; the F1 fly-casting loop is shown as a helix, the F2 membrane orientation patch (MOP), and the F3 association patch (FAP). The β-integrin transmembrane and cytoplasmic tail is shown in red bound to the F3 subdomain. Two Rap1b (orange) molecules are shown with their C-terminal geranyl-geranyl (G-G) moiety inserted in the membrane. One Rap1b is bound to the F0 and one to the F1 subdomain.
This model summarize the multiple known interactions of THD at the plasma membrane; the negatively charged PI(4,5)P₂, Rap1 and integrin β-tails.
Figure 1

A.

B.

C.

D.

E.

Figure 1
Figure 2

- **A**
 - **Consensus** sequence alignments for F0 and F1 domains of talin1 F1 loop.
 - Key residues highlighted: K98, R118.
 - Phospholipid binding residues indicated.
 - Rap1b binding residues.

- **B**
 - Rap1b (μM) versus Δδobs (HN,N) (ppm), showing Kd = 129 ± 33 μM.

- **C**
 - 15N-labelled talin1 F1 NMR spectrum.
 - HN vs. N ppm for F1 and F1 + Rap1b.

- **D**
 - Rap1b binding affinity for WT, R118E, D94, and K89 variants.

- **E**
 - NMR spectra for talin1 F1 K89, D94, and T96 variants.

- **F**
 - 15N-labelled talin1 F1 F1(R118E) and F1(R118E) + Rap1b NMR spectra.

- **G**
 - 15N-labelled talin1 F1 F1(R118E) and F1(R118E) + Rap1b NMR spectra.
Figure 3

A

B

C

D

ns ns ns ns

Figure 3
Figure 4

A

F0 F1 F2 F3
THD(ΔL)

F0 F1 F2 F3
THD(wt)

F0 F1 F2 F3
THD(R118E)

F0 F1 F2 F3
THD(ΔL,R118E)

B

Activation Index

Mock Rap1(E63) Rap1GAP1

THD(ΔL)-EGFP THD(wt)-EGFP THD(R118E)-EGFP THD(ΔL,R118E)-EGFP

C

WB: EGFP

WB: Actin

D

^15N-labelled talin1 F1

N (ppm)

F1 F1 + Rap1b

E

talin1 F1 ΔL T96

N (ppm)

talin1 F1 ΔL T99

HN (ppm)
