On the effect of asymmetrical trait inheritance on models of trait evolution

Pablo Duchen¹, Michael L. Alfaro², Jonathan Rolland¹,³, Nicolas Salamin¹,* Daniele Silvestro¹,⁴,⁵,*

1. Department of Computational Biology, University of Lausanne, Quartier Sorge, 1015 Lausanne, Switzerland.
2. University of California Los Angeles (UCLA). College Life Sciences - Ecology and Evolutionary Biology. Los Angeles, United States.
3. Department of Zoology, University of British Columbia, #4200-6270 University Blvd, Vancouver, BC, Canada.
4. Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden.
5. Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden.
* co-last authors.

Correspondence:
Name: Pablo Duchen
email: pablo.duchenbocangel@unil.ch

Running head: Trait inheritance in models of macroevolution
Abstract

Current phylogenetic comparative methods modeling quantitative trait evolution generally assume that, during speciation, phenotypes are inherited identically between the two daughter species. This, however, neglects the fact that species consist of a set of individuals, each bearing its own trait value. Indeed, because descendent populations after speciation are samples of a parent population, we can expect their mean phenotypes to randomly differ from one another potentially generating a “jump” of mean phenotypes due to asymmetrical trait inheritance at cladogenesis. Here, we aim to clarify the effect of asymmetrical trait inheritance at speciation on macroevolutionary analyses, focusing on model testing and parameter estimation using some of the most common models of quantitative trait evolution. We developed an individual-based simulation framework in which the evolution of species phenotypes is determined by trait changes at the individual level accumulating across generations and cladogenesis occurs then by separation of subsets of the individuals into new lineages. Through simulations, we assess the magnitude of phenotypic jumps at cladogenesis under different modes of trait inheritance at speciation. We show that even small jumps can strongly alter both the results of model selection and parameter estimations, potentially affecting the biological interpretation of the estimated mode of evolution of a trait. Our results call for caution interpreting analyses of trait evolution, while highlighting the importance of testing a wide range of alternative models. In the light of our findings, we propose that future methodological advances in comparative methods should more explicitly model the intra-specific variability around species mean phenotypes and how it is inherited at speciation.
Introduction

Understanding the mechanisms underlying the evolution of phenotypic traits is fundamental when addressing questions about functional diversity, ecological interactions, and the overall build-up of biodiversity (Futuyma and Agrawal 2009; Katzourakis et al. 2009; Campbell and Kessler 2013). Inferences about the processes governing phenotypic changes are facilitated by the use of macroevolutionary models, which deal with the evolution of phenotypic traits among related species (Stanley 1979; Lande 1980; Felsenstein 1985, 2004). These macroevolutionary models are able to infer the evolution of a phenotype under a variety of scenarios including neutral or adaptive evolution (Lande 1976; Beaulieu et al. 2012), as well as early and rapid phenotypic differentiation (Harmon et al. 2010; O’Meara 2012). These models have been used to address a variety of evolutionary processes, helping us understand, for instance, body size evolution in mammals (Venditti et al. 2011; Slater 2013), adaptation in Anolis lizards (Losos 2011), evolutionary processes in extinct and extant vertebrates (Wagner 2017; Silvestro et al. 2018), or changes in flower morphology and pollination syndromes (Wasserthal 1997; Futuyma and Agrawal 2009; Serrano-Serrano et al. 2017).

The simplest macroevolutionary model of trait evolution assumes that a trait X evolves following a random walk process, which is typically modeled by Brownian Motion (BM; Felsenstein 1973). Under BM, the expected change in trait X is normally distributed and depends on time t and a rate parameter σ^2, such that $dX_t \sim \mathcal{N}(0, \sigma^2 t)$, where the variance $\sigma^2 t$ increases monotonically with time. We can also assume that traits evolve toward an optimal value and that phenotypic variance is constrained around that optimum, which leads to a process that is typically modeled by the Ornstein-Uhlenbeck (OU) model (Hansen 1997). Many extensions of the BM and OU models have been developed and these include rate changes across clades (Eastman et al. 2011) or through time (Harmon et al. 2010), evolutionary
trends (Slater et al., 2012; Silvestro et al., 2018), and trait boundaries (Boucher and Démery, 2016). Other extensions of BM are designed to identify bursts or “jumps” in the rate of evolution using Lévy processes. These approaches couple BM evolution with Poisson jumps (Landis et al., 2012; Duchêne et al., 2017) to account for the presence of large changes in the rate of evolution that could capture shifts to new adaptive zones related to the dispersal into new geographic areas (as described by Simpson, 1944), key innovations, or by rapid climatic changes (Simpson, 1944; Hansen and Martins, 1996). The BM and OU models, and their extensions, all describe the anagenetic change of a trait as a continuous-time Markov chain along each branch of the tree, while the descendent nodes following a branching event inherit the last phenotypic value of the parent species (Felsenstein, 1973). In other words, at speciation, most current models of trait evolution assume that the descendent species inherit identically the phenotype of their last common ancestor (Felsenstein, 1973; O’Meara et al., 2006) leading to a symmetrical trait inheritance between the daughter lineages.

Macroevolutionary models use species as the units of evolution and aim to model the evolution of the mean phenotype of each species. This emphasis on a single trait value, which makes the commonly used models of trait evolution highly tractable, masks the fact that species are composed by sets of individuals possessing non-identical trait values.

Because daughter populations after speciation are samples of a parent population ((Fig. 1A)), we can expect their mean phenotypes to differ from one another and from the parent mean due to random demographic events and/or differential segregation of the trait values within the incipient species (Uyeda et al., 2011; Kostikova et al., 2016). If the two mean phenotypes of the descendants differ from the parent phenotype, the difference will generate “jumps” of the mean phenotype at cladogenesis and lead to asymmetrical trait inheritance. Strong asymmetrical trait inheritance is expected when the trait is itself involved or even driving the speciation
process (Fig. 1D), such as floral size and pollination syndromes in flowering plants (Wasserthal 1997; Serrano-Serrano et al. 2015), morphology in insect genitalia (Schilthuizen 2003; Ayoub et al. 2005), or color patterns in cyclids (Galis and Metz 1998) and Heliconius butterflies (Jiggins et al. 2008). Even if the trait is not directly involved in the speciation process, geographic gradients of phenotypes and allopatric or peripatric speciation events could generate cladogenetic jumps in the mean phenotypes (Fig. 1B,C). For example, current subspecies of brown bear display substantial differences in their body mass (e.g. Kingsley et al. 1983; McCarthy et al. 2009). If they were to become independent species, the mean body size of each of the new species would differ from each other, and more importantly, would not be equal to the mean body mass of all brown bears. Therefore the assumption of identical inheritance in this case would be a poor description of the speciation process.

Models accounting for phenotypic jumps at speciation have been proposed. For instance, Pagel (1999) used a transformation of the elements of the phylogenetic variance-covariance matrix, called κ, to model cladogenetic jumps in the trait value by transforming the branch lengths of a phylogeny to modulate the importance of cladogenetic events versus anagenetic evolution. An alternative model introduced a Bayesian approach to estimate rates of both anagenetic and cladogenetic phenotypic evolution (Bokma 2008). However, the empirical application of these models is limited and it remains unclear whether the models can capture the signal of asymmetrical trait inheritance at speciation.

Here, we aim to clarify the effect of different modes of asymmetrical trait inheritance at speciation on macroevolutionary analyses. We focus in particular on the fit of the models and the estimation of the specific parameters using four models of phenotypic evolution: BM, OU, Lévy, and κ. To accomplish this, we first developed an individual-based simulation framework in which the evolution of species phenotypes is determined by trait changes at the level of individuals accumulating across generations. Cladogenesis occurs by separation of two subsets of the
individuals into new lineages. The inherited phenotypes of the descendent species is thus the mean of the individuals’ trait values and might differ from one another and from the parent phenotype. Using simulations, we assess the magnitude of expected phenotypic jumps at cladogenesis under different modes of trait inheritance at speciation. We show that these jumps can strongly alter both model selection and parameter estimations in all the widely used macroevolutionary models of trait evolution.

Materials and Methods

To show the effect of asymmetrical trait inheritance on model fit and parameter estimation, we developed an individual-based forward simulator. This allows us to model the evolution of mean species phenotypes through the microevolutionary change across individuals within species and their segregation at speciation. We simulated trait values forward in time under two types of fitness landscapes: flat (where all individuals have the same fitness regardless of their trait value) and normal (where individuals with trait values closer to the optimum peak have higher fitness than other individuals). We applied for each type of landscape different modes of speciation, which determine the partitioning of individuals from a parent species into two descendent species. The forward simulations generate changes at the generational time scale (the phenotypes of the individuals within each species) that translate into macroevolutionary processes when looking at the mean phenotype of species and their phylogenetic relationships resulting from the speciation process. Our simulations thus provide a framework linking micro with macroevolutionary processes for a quantitative trait.
Figure 1: **Four different scenarios of trait inheritance at speciation.** Left panels: Evolutionary history of the mean phenotype before and after a speciation event. Right panels: Geographical distribution of individuals at the speciation event depicted in the left panel. Bubbles represent the spatial distribution of individuals splitting from a parent population into two species (gray and light blue). The size of the bubbles is proportional to each individual’s phenotype. In this example, individual phenotypes follow a geographical gradient with smaller trait values on the lower-left part of the geographic range and larger trait values on the upper-right part. Under random segregation (A) speciation is not driven by the trait displayed here nor by geography and might result from a change in an uncorrelated trait, e.g. flowering time. The mean phenotypes of the two descendants are expected to be equal with some stochasticity. Speciation occurring by geographic isolation, e.g. allopatric (B) or peripatric (C) may result in asymmetrical trait inheritance even though the trait itself is not the cause of speciation. Finally, if the trait is itself driving the speciation we can expect a full segregation of phenotypes at speciation (D). In the present study, we analysed cases A and D, which represent the extremes in terms of the size of cladogenetic jumps.

Modes of trait inheritance at speciation

We considered two modes of trait inheritance at speciation: “Random Segregation at Speciation” (RSS) and “Trait-driven Segregation at Speciation” (TSS). Under the RSS scenario, at each speciation event, the individuals of the parent population are randomly assigned to each daughter lineage (Fig. A). This corresponds to cases in which the phenotype represented by the trait of interest is completely independent of speciation. Conversely, under the TSS scenario, individuals of a parent population are split into two daughter lineages based on their phenotype and an arbitrary threshold defined a priori (Fig. D). The RSS and TSS constitute the extreme
scenarios of how traits can be segregated during the split of a parent lineage and will generate the smallest and largest jumps, respectively. Cladogenetic jumps of intermediate size can also result from spatial gradients of phenotypic traits, captured by allopatric or peripatric speciation (Fig. 1B and C).

Death probabilities

Before the full description of the forward simulations (modes of reproduction, generational changes, etc.) and to unburden the explanation of the simulation algorithm, we will detail here the factors influencing the death probabilities of the simulated individuals.

The death probability of each individual (δ) is determined by the combined effect of three factors: fitness, distance from the species-specific mean phenotype, and species-specific carrying capacity. Each of these factors contributes to the death probability of an individual by a specific quantity, such that

$$\delta = \min(d_f + d_s + d_k, 1),$$

where d_f, d_s, and d_k are the death probabilities by fitness, distance from the species-specific mean phenotype, and carrying capacity, respectively (see below).

Death probability determined by fitness We used a fitness landscape to describe the fitness of individuals as a function of their phenotypic trait value (Simpson 1944; Arnold et al. 2001; Svensson and Calsbeek 2012; Boucher et al. 2017). The shape of the fitness landscape defines the survival probability of an individual and, as explained at the beginning of the Methods, we used two types of landscapes. First, we assumed that fitness was independent of the trait value, which corresponds to a flat landscape. Because the trait does not affect fitness under a flat landscape, its evolution is expected to follow a neutral process as captured by the BM
model (Felsenstein, 1988). Second, we assumed a normally-shaped fitness landscape, where there is an optimal phenotype (the peak of the landscape) for which the fitness is highest. This landscape can represent the distribution of fitness under stabilizing selection (Beaulieu et al., 2012; O’Meara and Beaulieu, 2014), which is one of the biological processes resulting in an OU mode of evolution (Lande, 1976; Felsenstein, 1988; Hansen and Martins, 1996; Hansen, 1997).

In our simulations, the fitness landscape affects the death probability of each individual by an amount \(d_f \). Under a flat landscape, the death probability is independent of the trait value and set to a constant \(d_f = c \) (Table 1). Under a normally-distributed landscape, the death probability of an individual depends on the position of the phenotypic trait value on the fitness landscape, which is described by an optimum \(\theta \) and a variance \(\sigma_f^2 \). Thus, the fitness-based death probability of an individual with phenotype \(x \) is

\[
d_f = 1 - \left(\frac{f(x|\theta,\sigma_f^2)}{f(\theta|\theta,\sigma_f^2)}(1-c) \right),
\]

where \(f(x|\theta,\sigma_f^2) \) is the probability density function of a normal distribution with mean \(\theta \), and variance \(\sigma_f^2 \) (a complete list of the parameters used in this study is given in Table 1). Under this formulation, the death probability of an individual with optimal phenotype (i.e. \(x_1 = \theta \)) is equal to \(c \).

Death probability determined by the distance to the species mean

We added a constraint to limit the intra-specific variance under the assumption that, regardless of the fitness landscape, there is selection against outliers diverging from the species’ mean (Harvey et al., 1991; Garland et al., 1993; Futuyma, 2010). To achieve this, we set the death probability \(d_s \) of an individual with phenotype \(x \) to a function of its species mean phenotype at time \(t \) (\(m(t) \)) and of a fixed intra-specific
variance σ_s^2. Thus, this death probability is

$$d_s = 1 - \left(\frac{f(x|m(t), \sigma_s^2)}{f(m(t)|m(t), \sigma_s^2)} (1 - c) \right),$$

(3)

where $f(x|m(t), \sigma_s^2)$ is the probability density function of a normal distribution with mean $m(t)$, and variance σ_s^2 (Table 1). While the intra-specific variance is assumed to be constant over time, the species mean, $m(t)$, is not subject to any constraints but simply computed as the empirical mean of the phenotypes of the individuals.

Death determined by the carrying capacity Finally, the population growth within a species is controlled by a species-specific carrying capacity K (Etienne et al., 2011). This is achieved by changing the death probability d_k of all individuals within a species based on their current population size n and its proximity to K, such that

$$d_k = (g - 1) \frac{n}{K},$$

(4)

where g is the growth rate of that species.

Forward simulations

For all combinations of fitness landscapes and modes of trait inheritance (RSS-flat, RSS-normal, TSS-flat, and TSS-normal), we ran an individual-based forward simulator of continuous traits which works as follows:

1. **Initialization.** At generation $i = 1$, we have a starting population of $n = 200$ individuals assigned to Species 1, with trait values drawn from a normal distribution with mean μ and standard deviation σ_0 (Table 1).

2. **Change from one generation to another.** Individuals of generation $i = 1$ are replaced by a number of offspring based on a Poisson distribution with rate g, such that $n_{i+1} \sim n_i \times Pois(g)$. The trait values assigned to each individual of
Table 1: Parameter definitions. The arbitrary values used in our simulations are given for the parameters used in the forward simulations. Model parameters that are estimated from macroevolutionary models do not have any input value and are thus shown with a “-” sign.

Parameter	Definition	Default value
μ	Root state	0
σ^2_G	Parent-offspring variance	0.01
c	Per individual baseline death probability (Eqs. (3),(2))	0.00001
σ_0	Initial standard deviation	0.01
g	Growth rate	1.2
λ_s	Speciation rate per lineage	0.0001
σ^2_f	Variance of the normal fitness landscape	25
σ^2_s	Intraspecific variance	1
θ	Trait optimum	5
θ_{OU}	Trait optimum under OU	-
κ	Statistic of the κ model	-
α	Rate of mean reversion (or selective strength)	-
σ^2_{BM}	Rate of evolution under BM	-
σ^2_{OU}	Rate of evolution under OU	-
σ^2_{LE}	Rate of evolution under Lévy	-
λ	Jump rate	-

the new generation will be normally distributed with mean set to the value of the parent individual and variance σ^2_G. Individuals of the new generation die with probability δ (Eq. [1]). Based on this birth-death equilibrium, the overall population might go extinct or grow until a carrying capacity K is reached (see section Death determined by the carrying capacity). We defined K to be large enough to obtain a stable mean phenotype for each lineage. The variance of the normal landscape σ^2_f was set to 10,000 to ensure that the initial population will not start at a too-low fitness position (Table 1). This landscape yields a 1.25% increase in death rate for a phenotype = 0 (the predefined root state) compared to the death rate at phenotype = 5 (the predefined trait optimum).

3. **Speciation.** Speciation occurs with probability λ_s per generation per lineage. At speciation, a given number of individuals from the parent species are assigned a new species label. The initial number of individuals for the new
species is drawn from $\mathcal{U}(100, n - 100)$, where n is the population size of the
parent species. We note that speciation leads to a temporary reduction in
population size in the two daughter lineages, but with the growth rate set to 1.2
(Table 1), we ensure that the populations grow back rapidly until the carrying
capacity is reached again within a few generations (Fig. SI-9). The way
individuals are chosen to become a new species is described in the previous
section *Modes of trait inheritance at speciation*.

4. We repeat steps 2 and 3 for every species for a total of 100,000 generations or
until 100 species are generated. We then output the following files and
statistics: species phylogenetic tree in newick format, mean (and variance) trait
values per species at the tips of the phylogeny, mean (and variance) trait values
per species at intermediate generations along the tree, full trait values along the
entire phylogeny (optional setting), population sizes per species, and mean (and
variance) phenotypic-trajectory plots.

For each scenario (RSS-flat, RSS-normal, TSS-flat, and TSS-normal), we
simulated 100 data sets, from which we extracted the species level phylogenies and
trait values for further analyses. We summarized the sizes of jumps generated under
the different simulation scenarios by computing the absolute difference between the
phenotypes of the two daughter lineages following each speciation event.

Fitting macroevolutionary models

To quantify the effect of the different simulation settings on species-level analyses
of trait evolution, we analyzed the simulated phylogenetic trees and phenotypic
values using the function `fitContinuous` from the R library *geiger* ([Pennell et al., 2014]) under different macroevolutionary models in a maximum likelihood framework.

We fit the models BM, OU, κ (indicated as KA in the figures), and we added also a
white noise (WN) model, which indicates the absence of phylogenetic signal in the
trait values. From all these models we calculated their respective AICc’s and parameter estimates (Table 1). Additionally, we analyzed the simulated data under a Lévy (LE) jump model using the software levolution (Duchen et al., 2017) and obtained the respective AICc and model parameters σ_{LE} and jump rate λ. Since there is no implementation of the Bayesian/MCMC model by Bokma (2008), we did not include it in the current analysis. However, given that our simulations comprise complete phylogenies and complete trait data, it is expected that the κ model will capture this signal equally well (Harmon, 2018).

We then assessed the effect of the different speciation scenarios on the estimation accuracy of the following macroevolutionary parameters: the rate of evolution under BM σ_{BM}^2, OU σ_{OU}^2, and Lévy σ_{LE}^2, the jump rate λ, the κ parameter, the selective strength α, and the optimum trait value θ_{OU}. To quantify the accuracy of the estimated σ_{BM}^2 and σ_{LE}^2 we ran the simulator again for 10,000 generations and calculated the true evolutionary rate σ_{true}^2 as the average change in the trait value per generation along a lineage. We then computed the relative error of the estimates as $(\sigma_{BM}^2 - \sigma_{true}^2)/\sigma_{true}^2$. To quantify the accuracy for the estimated selective strength α we compared it to the true selective strength α_{true} using the estimator of Duchen et al. (2018), which takes as input the vector of mean phenotypes over time for each species. Finally we computed the accuracy of the optimum trait value as $(\theta_{OU} - \theta)/\theta$.

Results

We studied the effect of asymmetrical trait inheritance on the fit of macroevolutionary models of phenotypic evolution. Our individual-based simulations generated species trees reflecting a pure-birth process, as shown by the lineage-through-time (LTT) plots generated for all scenarios (Fig. SI-7).
Phenotypic trajectories The simulated phenotypic trajectories show differences between different scenarios. The first clear distinction lies between flat and normal landscapes. Flat landscapes produce neutrally evolving traits without trends and generate BM-like phenotypic trajectories (Fig. 2A, B). In contrast, with normal landscapes species mean phenotypes evolve toward the value with maximum fitness (Fig. 2C, D), generating an OU-like process (Revell 2012).

When individuals were assigned to new species independently of the trait value (RSS scenarios), the trait inheritance at speciation is nearly symmetrical, as shown by the lack of noticeable jumps in the phenotypic trajectories (Fig. 2A, C).

Conversely, if individuals were assigned to new species based on a threshold in the trait value (TSS scenarios), the trait inheritance at speciation is asymmetrical and results in visible jumps in species phenotypes (Fig. 2B, D). The jump sizes between
the daughter species under our simulation settings were on average 30 times higher in the TSS scenarios compared to the RSS scenarios (Fig. 3).

Figure 3: Absolute jump sizes for every scenario. Boxplots represent the distribution of jump sizes for all speciation events across all simulations for a given scenario. Here, the size of a jump is simply the absolute difference between the starting values of the two daughter lineages.

Effect of RSS and TSS on model fit To analyze the effect of the different modes of trait segregation at speciation and fitness landscapes on model fit, we fitted BM, OU, Lévy, κ and WN models to the simulated trees and tip trait data. Under the flat RSS scenario, BM was the most frequently selected model (68.6%), followed by κ (13.7%), OU (10.8%), and Lévy (6.9%; Fig. 4). Under the flat TSS scenario, κ was the preferred model in 97.0% of the simulations, followed by Lévy (3.0%). The normal RSS scenario shows over 98% of OU as a preferred model and almost no cases of the other models. Finally, for the normal TSS scenario, the WN model was preferred in 54.5% of the cases, OU being preferred 34.5% of the time, κ 6.2%, and Lévy 4.8% (Fig. 4).
Effect of RSS and TSS on parameter estimation Analyses of data sets simulated under a flat RSS scenario resulted in a slight overestimation of the evolutionary rates under both the BM and Lévy models (Table 2). The overestimation was 50% lower under the Lévy model (Fig. 5A). This indicates that the Lévy model was able to identify, at least to some extent, the jumps generated under asymmetrical segregation at speciation. Simulations obtained from the flat TSS scenario resulted in a 2.5-fold overestimation of the evolutionary rate under BM and a 1.7-fold overestimation under Lévy (Table 2).

In simulations with a normal landscape, the trait optimum was accurately recovered under all scenarios (Fig. 5A; Table 2), that is regardless of the segregation scenario at speciation. The strength of selection of the OU process was only slightly underestimated under the RSS scenario, while it was strongly overestimated (16-fold) under the TSS scenario (Fig. 5F; Table 2).

Although for other parameters we could not compute accuracy (as the true values could not be derived analytically or empirically from the simulations), the estimated values differed vastly between speciation modes (Fig. 5), indicating that segregation at speciation has a large effect on the macroevolutionary modeling of trait evolution. For instance, the κ parameter was lower in TSS when compared to RSS (Fig. 5C), which is expected since κ values tend to zero when most of the variation is
accumulated at speciation events (Pagel, 1999). Finally, the jump rate of the Lévy model (λ) was much higher in TSS than in RSS simulations, as expected given the increased amount of phenotypic jumps at speciation.

Discussion

We explored the effects of asymmetrical trait inheritance on macroevolutionary analyses using phylogenetic comparative methods. We model the asymmetry of trait inheritance at speciation as a result of the segregation of individuals from a parent population into two daughter lineages. We showed that even small phenotypic jumps at cladogenesis can have profound effects on both model testing and parameter estimation using widely-used macroevolutionary models, most of which implicitly assume identical trait inheritance at speciation (Felsenstein, 1988; Hansen and...
Table 2: Median relative error (MRE) of some parameter estimates.

Parameter	MRE (RSS)	MRE (TSS)
σ_{BM}^2	0.09	2.50
σ_{LE}^2	0.04	1.66
θ_{OU}	-0.004	-0.005
α	-0.33	16.11

Martins, 1996.

A simulation framework We built a simulation framework that captures some of the main evolutionary processes that affect the micro- and macroevolutionary history of a quantitative trait. By tracking the phenotype of each individual for thousands of generations and across all the branches of a phylogenetic tree, we studied the effect of asymmetrical trait inheritance at speciation on model fit and parameter estimation of traditional macroevolutionary models. The current version of our simulator is set to work with haploid taxa, two fitness landscapes: flat and normal, and two modes of trait inheritance at speciation: random segregation (RSS) and trait-driven segregation (TSS). Extensions to diploid taxa, as well as various fitness landscapes and additional speciation modes will open a vast realm of potential applications. For instance, such a simulator can help answer longstanding questions about the impact and fate of microevolutionary processes on a macroevolutionary scale (Hansen and Martins, 1996; Arnold et al., 2001; Reznick and Ricklefs, 2009; Kostikova et al., 2016; Rolland et al., 2018; Duchen et al., 2018). Currently, our community lacks an individual-based simulator of phenotypic traits, although some research in this direction has been done in the past (Neuenschwander et al., 2008; Boucher et al., 2014). For instance, Neuenschwander et al. (2008) have developed a simulator of quantitative traits but they focus more on the genetic basis and works only at the population level. Additionally, Boucher et al. (2014) have also developed a simulator of phenotypes allowing for different modes of speciation, but limited to a
small number of generations. In this sense, our simulator is unique in that it simulates populations of individuals for thousands of generations, and it allows for speciation events to happen, thus generating complete phylogenies.

Asymmetrical trait inheritance Traditional macroevolutionary models (including BM and OU), when run along phylogenetic trees, assume that the last phenotypic value of a lineage and the starting values of its two daughter lineages are identical (Felsenstein, 1973). However, we showed that when we consider species as set of individuals each bearing its own phenotype, the resulting trait inheritance at speciation will no longer be identical, and there are plenty of examples in nature where this is the case (Galis and Metz, 1998; Lachaise et al., 1988; Schilthuizen, 2003; Coyne and Orr, 2004; Ayoub et al., 2005; Jiggins et al., 2008; Givnish et al., 2009; Serrano-Serrano et al., 2015). Consequently, when the segregation of individuals between daughter species is random with respect to the trait value (our RSS scenario), the expected amount of phenotypic change is small, although greater than zero (Fig. 3). Yet, our simulations showed that even these small deviations from the assumption of identical inheritance generate a substantial bias in the parameter estimates under standard evolutionary models and alter the robustness of model selection (Figs. 4, 5). While asymmetric inheritance has been theorized and modeled explicitly for discrete traits (Goldberg and Igic, 2012), and biogeographic ranges (Ree et al., 2005; Ree and Smith, 2008; Goldberg et al., 2011), this has not been formally explored for quantitative traits.

Effects of RSS RSS generates jumps at lineage splits due to sampling effects (Fig. 3). We found that even very small deviations from the parent phenotype can alter the results of model fit (Fig. 4) and generate biased parameter estimations (Fig. 5). Traits simulated under a flat landscape and RSS generated less than 70% of simulations fitting BM (Fig. 4 flat RSS). This scenario is supposed to fulfill all the
requirements for BM (equal fitness, no boundaries, and almost symmetrical
inheritance from parent to daughter species; Felsenstein [1988] Boucher and Démery
[2016]). However, we show here how the effect of random sampling of individuals
generates small variation in the mean phenotypes, and is enough to violate model
assumptions leading to the rejection of BM in a third of the simulations. The
RSS-normal scenario is consistent with the expectations of an OU model (normal
fitness landscape and almost symmetrical inheritance from parent to daughter
species; Hansen [1997] but see Cooper et al. [2016]) and indeed OU was the model of
choice in most cases.

Effects of TSS Bigger deviations from the parent mean (as expected for TSS but
also for allopatric and peripatric speciations across phenotypic gradients; Fig. 1B-D)
have more severe effects on both model selection and parameter estimation (Figs. 4
and 5 TSS cases). For instance, we found no support for the BM model under a flat
landscape, whereas models including the possibility of cladogenetic jumps were
favored, namely the κ model and, to a lesser extent, the Lévy model. Further, under
the TSS mode of speciation with normal landscape, the phenotypic jumps at
speciation appeared to disrupt the phylogenetic signal in most data sets with model
selection providing support for the WN model, i.e. a model in which phylogenetic
relationships do not contribute to explaining the trait values across species (Pennell
et al. [2014] Silvestro et al. [2015]). This is clearly a failure of macroevolutionary
models to capture the true underlying process of evolution, which, in our simulations,
is instead entirely linked to parent-offspring inheritance and not based on a WN
underlying process.

Modeling cladogenetic jumps While explicit models of cladogenetic and
anagenetic evolution exist (Bokma [2008]), their implementation is currently
unavailable. However, the κ transformation can capture cladogenetic change equally
well as long as phylogenies are complete (Harmon, 2018), which is the case in our simulations. The limitation of the κ model is that it does not explicitly model the jumps as a process (and, as a consequence, does not estimate a corrected rate of anagenetic evolution σ^2, which is something Bokma’s model should be able to do).

The Lévy process could fix part of the issue (Fig. 5B), but is unable to fully detect jumps at all nodes, because it is designed to pick up rarer events of evolutionary jumps (Duchen et al., 2017) instead of the more frequent events of cladogenetic jumps simulated here. Additionally, under the normal landscape, there are no implementations of models allowing us to jointly infer OU with jumps (an implementation of the model of Bartoszek, 2014 would prove ideal in this case). As a result, the best fitting model is often found to be a non-phylogenetic one (WN), indicating that current comparative methods fail to detect phylogenetic signal, which is blurred by jumps at speciation. Finally, both κ and Lévy do not exactly model the process that we simulated, but are preferred because of an artifact, which is the cladogenetic jumps generated by the natural sub-sampling of populations during a lineage split. In other words, where BM and OU models should be the best fit, TSS-induced jumps are blurring this signal. The same occurs under RSS if by chance the jumps are large enough to bias the process. There is thus a clear need for the development of new models that could account for such evolutionary processes.

Punctuated equilibrium Jumps at speciation events are predicted by “punctuated equilibrium”, a theory that postulates that most of the phenotypic change happens during cladogenesis (Gould and Eldredge, 1972, 1993). Since then, a major debate argued whether phenotypic change was predominantly anagenetic or cladogenetic (Uyeda et al., 2011), and new phylogenetic models to test these two hypotheses were, thus, developed (Pagel, 1999; Bokma, 2008; Futuyma, 2010; Bartoszek, 2014). This debate relies on adaptive jumps, while we were here concerned with jumps generated by sub-sampling of individuals at speciation events, which
could be both adaptive or neutral. Consequently, while the Lévy jump model could
detect evolutionary jumps at cladogenesis, it was not specifically designed to assess
jumps at speciation events as it models the occurrence of a jump as an anagenetic
process (Duchen et al. 2017, Landis and Schraiber 2017). Additionally, the
sub-sampling effect of populations on macroevolution is not restricted to speciation
events only. Big changes in population sizes within branches of a phylogeny can also
generate jumps or “bursts” in phenotypic traits (Uyeda et al. 2011), thus making
this a more general issue.

The next generation of evolutionary models for quantitative traits

While anagenetic evolutionary changes at the macroevolutionary level can be
predicted by individual-based microevolutionary models (Rolland et al. 2018), it
remains unclear how microevolutionary models would justify identical inheritance at
speciation. These difficulties call for new models of macroevolution that account for
cladogenetic change and flexibility concerning the directionality of phenotypic
trajectories, i.e. flexibility concerning the fitness landscape of individuals in each
species (similar to the model of Boucher et al. 2017, but allowing for asymmetric trait
inheritance). Evolutionary models for discrete traits already account for non-identical
inheritance at speciation, such as the “Dispersal-Extinction-Cladogenesis” (DEC)
model (Ree et al. 2005, Ree and Smith 2008), and the “Cladogenetic Stage change
Speciation and Extinction” (ClaSSE) model (Goldberg and Igić 2012). A continuous
version of such models, that also include intra and interspecific variance (Kostikova
et al. 2016), would allow us to infer the link between micro and macroevolutionary
processes, which we formalized in the simulation framework presented here.

Conclusion We showed how different mechanisms of segregation of individuals
into species at a microevolutionary time scale, affect overall macroevolutionary
patterns across the entire phylogeny. The two modes of speciation we described here
likely represent two extremes of a spectrum, and we expect that the true processes of
inheritance of phenotypic traits will lie somewhere within that range. However, we
argue that ecologically relevant or geographically differentiated traits will be
generally subject to some level of segregation at speciation. Our results highlight the
sensitivity of comparative methods to small variations in the inheritance of trait
values between parent and daughter species, and call for caution when interpreting
model testing and parameter estimation in macroevolution. In the light of the effects
of differential trait segregation at speciation shown here, we propose the next
generation of comparative methods incorporate asymmetric inheritance as a
fundamental component of the evolutionary process.

Acknowledgements

D.S. received funding from the Swedish Research Council (2015-04748) and from
the Swedish Foundation for Strategic Research. N.S. received funding from the Swiss
National Science Foundation (31003A-163428) and from the University of Lausanne.
We thank the infrastructure of the Scientific Computing and Research Support Unit
of the University of Lausanne (Switzerland) for the computational resources.

Code and data availability

All the data and codes associated with this paper including meta-data and a
tutorial to run the simulations are available at:

https://bitbucket.org/daniele_silvestro/phylotraitsimulator/src/master/
References

Arnold, S. J., M. E. Pfrender, and A. G. Jones. 2001. The adaptive landscape as a conceptual bridge between micro-and macroevolution. Pages 9–32 in Microevolution rate, pattern, process. Springer.

Ayoub, N. A., S. E. Riechert, and R. L. Small. 2005. Speciation history of the North American funnel web spiders, Agelenopsis (Araneae: Agelenidae): Phylogenetic inferences at the population–species interface. Molecular Phylogenetics and Evolution 36:42–57.

Bartoszek, K. 2014. Quantifying the effects of anagenetic and cladogenetic evolution. Mathematical biosciences 254:42–57.

Beaulieu, J. M., D.-C. Jhwueng, C. Boettiger, and B. C. O’Meara. 2012. Modeling stabilizing selection: expanding the ornstein–uhlenbeck model of adaptive evolution. Evolution: International Journal of Organic Evolution 66:2369–2383.

Bokma, F. 2008. Detection of “punctuated equilibrium” by bayesian estimation of speciation and extinction rates, ancestral character states, and rates of anagenetic and cladogenetic evolution on a molecular phylogeny. Evolution: International Journal of Organic Evolution 62:2718–2726.

Boucher, F. C. and V. Démery. 2016. Inferring bounded evolution in phenotypic characters from phylogenetic comparative data. Systematic biology 65:651–661.

Boucher, F. C., V. Démery, E. Conti, L. J. Harmon, and J. Uyeda. 2017. A general model for estimating macroevolutionary landscapes. Systematic biology 67:304–319.

Boucher, F. C., W. Thuiller, T. J. Davies, and S. Lavergne. 2014. Neutral biogeography and the evolution of climatic niches. The American Naturalist 183:573–584.
Campbell, S. A. and A. Kessler. 2013. Plant mating system transitions drive the macroevolution of defense strategies. Proceedings of the National Academy of Sciences Page 201213867.

Cooper, N., G. H. Thomas, C. Venditti, A. Meade, and R. P. Freckleton. 2016. A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies. Biological Journal of the Linnean Society 118:64–77.

Coyne, J. and H. Orr. 2004. Speciation. Sinauer Associates Sunderland, MA.

Duchen, P., S. Hautphenne, L. Lehmann, and N. Salamin. 2018. Linking micro and macroevolution in the presence of migration. bioRxiv Page 490128.

Duchen, P., C. Leuenberger, S. M. Szilágyi, L. Harmon, J. Eastman, M. Schweizer, and D. Wegmann. 2017. Inference of evolutionary jumps in large phylogenies using Lévy processes. Systematic Biology 66:950–963.

Eastman, J. M., M. E. Alfaro, P. Joyce, A. L. Hipp, and L. J. Harmon. 2011. A novel comparative method for identifying shifts in the rate of character evolution on trees. Evolution: International Journal of Organic Evolution 65:3578–3589.

Etienne, R. S., B. Haegeman, T. Stadler, T. Aze, P. N. Pearson, A. Purvis, and A. B. Phillimore. 2011. Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record. Proceedings of the Royal Society B: Biological Sciences 279:1300–1309.

Felsenstein, J. 1973. Maximum-likelihood estimation of evolutionary trees from continuous characters. American Journal of Human Genetics 25:471.

Felsenstein, J. 1985. Phylogenies and the comparative method. The American Naturalist 125:1–15.
Felsenstein, J. 1988. Phylogenies and quantitative characters. Annual Review of Ecology and Systematics 19:445–471.

Felsenstein, J. 2004. Inferring phylogenies vol. 2. Sinauer associates Sunderland, MA.

Futuyma, D. J. 2010. Evolutionary constraint and ecological consequences. Evolution: International Journal of Organic Evolution 64:1865–1884.

Futuyma, D. J. and A. A. Agrawal. 2009. Macroevolution and the biological diversity of plants and herbivores. Proceedings of the National Academy of Sciences Pages pnas–0904106106.

Galis, F. and J. A. Metz. 1998. Why are there so many cichlid species? Trends in Ecology & Evolution 13:1–2.

Garland, T., A. W. Dickerman, C. M. Janis, and J. A. Jones. 1993. Phylogenetic analysis of covariance by computer simulation. Systematic Biology 42:265–292.

Givnish, T. J., K. C. Millam, A. R. Mast, T. B. Paterson, T. J. Theim, A. L. Hipp, J. M. Henss, J. F. Smith, K. R. Wood, and K. J. Sytsma. 2009. Origin, adaptive radiation and diversification of the hawaiian lobeliads (asterales: Campanulaceae). Proceedings of the Royal Society B: Biological Sciences 276:407–416.

Goldberg, E. E. and B. Igić. 2012. Tempo and mode in plant breeding system evolution. Evolution: International Journal of Organic Evolution 66:3701–3709.

Goldberg, E. E., L. T. Lancaster, and R. H. Ree. 2011. Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Systematic Biology 60:451–465.

Gould, S. J. and N. Eldredge. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Essential readings in evolutionary biology Pages 82–115.
Gould, S. J. and N. Eldredge. 1993. Punctuated equilibrium comes of age. Nature 366:223.

Hansen, T. F. 1997. Stabilizing selection and the comparative analysis of adaptation. Evolution 51:1341–1351.

Hansen, T. F. and E. P. Martins. 1996. Translating between microevolutionary process and macroevolutionary patterns: the correlation structure of interspecific data. Evolution 50:1404–1417.

Harmon, L. 2018. Phylogenetic comparative methods: learning from trees. EcoEvoRxiv.

Harmon, L. J., J. B. Losos, T. Jonathan Davies, R. G. Gillespie, J. L. Gittleman, W. Bryan Jennings, K. H. Kozak, M. A. McPeek, F. Moreno-Roark, T. J. Near, et al. 2010. Early bursts of body size and shape evolution are rare in comparative data. Evolution: International Journal of Organic Evolution 64:2385–2396.

Harvey, P. H., M. D. Pagel, et al. 1991. The comparative method in evolutionary biology vol. 239. Oxford university press Oxford.

Jiggins, C. D., C. Salazar, M. Linares, and J. Mavarez. 2008. Hybrid trait speciation and heliconius butterflies. Philosophical Transactions of the Royal Society B: Biological Sciences 363:3047–3054.

Katzourakis, A., R. J. Gifford, M. Tristem, M. T. P. Gilbert, and O. G. Pybus. 2009. Macroevolution of complex retroviruses. Science 325:1512–1512.

Kingsley, M., J. Nagy, and R. Russell. 1983. Patterns of weight gain and loss for grizzly bears in northern Canada. Bears: Their Biology and Management Pages 174–178.
Kostikova, A., D. Silvestro, P. B. Pearman, and N. Salamin. 2016. Bridging inter-and
intraspecific trait evolution with a hierarchical bayesian approach. Systematic
biology 65:417–431.

Lachaise, D., M.-L. Cariou, J. R. David, F. Lemeunier, L. Tsacas, and M. Ashburner.
1988. Historical biogeography of the Drosophila melanogaster species subgroup.
Pages 159–225 in Evolutionary biology. Springer.

Lande, R. 1976. Natural selection and random genetic drift in phenotypic evolution.
Evolution 30:314–334.

Lande, R. 1980. Microevolution in relation to macroevolution. Paleobiology
6:233–238.

Landis, M. J. and J. G. Schraiber. 2017. Pulsed evolution shaped modern vertebrate
body sizes. Proceedings of the National Academy of Sciences 114:13224–13229.

Landis, M. J., J. G. Schraiber, and M. Liang. 2012. Phylogenetic analysis using Lévy
processes: finding jumps in the evolution of continuous traits. Systematic biology
62:193–204.

Losos, J. B. 2011. Lizards in an evolutionary tree: ecology and adaptive radiation of
anoles vol. 10. Univ of California Press.

McCarthy, T. M., L. P. Waits, and B. Mijiddorj. 2009. Status of the Gobi bear in
Mongolia as determined by noninvasive genetic methods. Ursus 20:30–39.

Neuenschwander, S., F. Hospital, F. Guillaume, and J. Goudet. 2008. quantinemo: an
individual-based program to simulate quantitative traits with explicit genetic
architecture in a dynamic metapopulation. Bioinformatics 24:1552–1553.

O’Meara, B. C. 2012. Evolutionary inferences from phylogenies: a review of methods.
Annual Review of Ecology, Evolution, and Systematics 43:267–285.
O’Meara, B. C., C. Ané, M. J. Sanderson, and P. C. Wainwright. 2006. Testing for
different rates of continuous trait evolution using likelihood. Evolution 60:922–933.

O’Meara, B. C. and J. M. Beaulieu. 2014. Modelling stabilizing selection: the
attraction of ornstein–uhlenbeck models. Pages 381–393 in Modern phylogenetic
comparative methods and their application in evolutionary biology. Springer.

Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature
401:877.

Pennell, M. W., J. M. Eastman, G. J. Slater, J. W. Brown, J. C. Uyeda, R. G.
FitzJohn, M. E. Alfaro, and L. J. Harmon. 2014. geiger v2. 0: an expanded suite of
methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics
30:2216–2218.

Ree, R. H., B. R. Moore, C. O. Webb, and M. J. Donoghue. 2005. A likelihood
framework for inferring the evolution of geographic range on phylogenetic trees.
Evolution 59:2299–2311.

Ree, R. H. and S. A. Smith. 2008. Maximum likelihood inference of geographic range
evolution by dispersal, local extinction, and cladogenesis. Systematic biology
57:4–14.

Revell, L. J. 2012. phytools: an r package for phylogenetic comparative biology (and
other things). Methods in Ecology and Evolution 3:217–223.

Reznick, D. N. and R. E. Ricklefs. 2009. Darwin’s bridge between microevolution and
macroevolution. Nature 457:837.

Rolland, J., D. Silvestro, G. Litsios, L. Faye, and N. Salamin. 2018. Clownfishes
evolution below and above the species level. Proceedings of the Royal Society B:
Biological Sciences 285:20171796.
Schilthuizen, M. 2003. Shape matters: the evolution of insect genitalia. Pages 9–16 in Proceedings Of The Section Experimental And Applied Entomology-Netherlands Entomological Society vol. 14.

Serrano-Serrano, M. L., M. Perret, M. Guignard, A. Chautems, D. Silvestro, and N. Salamin. 2015. Decoupled evolution of floral traits and climatic preferences in a clade of neotropical gesneriaceae. BMC evolutionary biology 15:247.

Serrano-Serrano, M. L., J. Rolland, J. L. Clark, N. Salamin, and M. Perret. 2017. Hummingbird pollination and the diversification of angiosperms: an old and successful association in gesneriaceae. Proceedings of the Royal Society B: Biological Sciences 284:20162816.

Silvestro, D., A. Kostikova, G. Litsios, P. B. Pearman, and N. Salamin. 2015. Measurement errors should always be incorporated in phylogenetic comparative analysis. Methods in Ecology and Evolution 6:340–346.

Silvestro, D., M. F. Tejedor, M. L. Serrano-Serrano, O. Loiseau, V. Rossier, J. Rolland, A. Zizka, S. Hoehna, A. Antonelli, and N. Salamin. 2018. Early arrival and climatically-linked geographic expansion of New World monkeys from tiny African ancestors. Syst Biol Page doi:10.1093/sysbio/syy046.

Simpson, G. G. 1944. Tempo and mode in evolution. 15 Columbia University Press.

Slater, G. J. 2013. Phylogenetic evidence for a shift in the mode of mammalian body size evolution at the Cretaceous-Palaeogene boundary. Methods in Ecology and Evolution 4:734–744.

Slater, G. J., L. J. Harmon, D. Wegmann, P. Joyce, L. J. Revell, and M. E. Alfaro. 2012. Fitting models of continuous trait evolution to incompletely sampled comparative data using approximate Bayesian computation. Evolution: International Journal of Organic Evolution 66:752–762.
Stanley, S. M. 1979. Macroevolution, pattern and process. Johns Hopkins University Press.

Svensson, E. and R. Calsbeek. 2012. The adaptive landscape in evolutionary biology. Oxford University Press.

Uyeda, J. C., T. F. Hansen, S. J. Arnold, and J. Pienaar. 2011. The million-year wait for macroevolutionary bursts. Proceedings of the National Academy of Sciences Page 201014503.

Venditti, C., A. Meade, and M. Pagel. 2011. Multiple routes to mammalian diversity. Nature 479:393.

Wagner, P. J. 2017. Vertebrate body size jumps the Wright way. Proceedings of the National Academy of Sciences 114:13068–13070.

Wasserthal, L. 1997. The pollinators of the Malagasy star orchids *Angraecum sesquipedale*, *A. sororium* and *A. compactum* and the evolution of extremely long spurs by pollinator shift. Botanica Acta 110:343–359.
Supplementary Information

A Supplementary figures

Figure 6: Fitness landscapes. Left: Flat landscape with the initial population (red points) and the set of species at the end of the simulation run (maintaining the same initial mean trait). Right: Normal landscape, where the final set of species has moved to the top of the landscape when compared to the initial values.

Figure 7: Lineage-through-time (LTT) plots of all simulations under all four scenarios: RSS flat, TSS flat, RSS normal, and TSS normal.
Figure 8: Second best fit under all four scenarios. Bars represent the percentage of simulations that were second best fit by a given model. Abbreviations: BM = Brownian Motion, OU = Ornstein-Uhlenbeck, KA = Kappa, LE = Lévy, and WN = White Noise.

Figure 9: Change in population sizes n over time. A. RSS flat, B. TSS flat, C. RSS normal, D. TSS normal. Note how the carrying capacity $K = 1000$ is reached very quickly.