The spatial and energy distribution of oxide trap responsible for 1/f noise in 4H-SiC MOSFETS

Hua Chen and Liang He

School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710126, People’s Republic of China

* Author to whom any correspondence should be addressed.

E-mail: hchen@xidian.edu.cn and Ihe@xidian.edu.cn

Keywords: 4H-SiC MOSFETs, 1/f noise, energy distribution of oxide traps, spatial distribution of oxide traps

Abstract

Low-frequency noise is one of the important characteristics of 4H-SiC metal-oxide-semiconductor field-effect transistors (MOSFETs) that is susceptible to oxide traps. Drain-source voltage noise models of 4H-SiC MOSFETs under low–drain–voltage and inverse condition were proposed by considering the spatial and energy non-uniform distribution of the oxide trap, based on the McWhoter model for uniform trap distribution. This study performed noise experiments on commercial 4H-SiC MOSFETs, and revealed that the non-uniform spatial and non-uniform energy distribution caused new 1/f noise phenomenon, different from that under uniform spatial and energy distribution. By combining experimental data and theoretical models, the spatial and energy distribution of oxide traps of these samples were determined.

1. Introduction

Owing to the advantages including low on-state resistance, favorable gate insulation performance and high switching speed, 4H-SiC metal-oxide-semiconductor field-effect transistors (MOSFETs) are quite promising in high-temperature, radio frequency and high-power electronic applications [1–4]. Low-frequency noise is an important property of 4H-SiC MOSFETs, which is significantly affected by the quality of the oxide layer. Low-frequency noise determines the signal lower limit of the broadband circuit and the detectivity of the optical receiver [5–13]. In fact, the low-frequency noise test offers a sensitive approach for detecting impurities and defects of the MOS structure [5–8]. In MOSFETs, NIOTs with fast interface state and/or small time constant can induce low mobility [1, 3–5], while slow traps induce low-frequency noise [5–8].

There are mainly two models to describe the origin of the carrier number dependent 1/f noise, McWhoter model and thermal activation model. Zhang et al [5, 6] used thermal activation model, the first principle simulation, and noise and threshold voltage experiments of 4H-SiC MOSFETs to conclude that low frequency noise was mainly induced by slow-speed interface traps at a temperature of below 370 K, whereas by border traps at a temperature of over 370 K, and the interface state might originated from carbon vacancy clusters and N-dopant atoms at or near the interface. However, in thermal activation model, the capture cross-section around the bottom of the conduction band of 4H-SiC MOS devices ranged from 10^{-18} to 10^{-20} cm2 using AC conductance method [4]. Since the physical area of atoms is approximately 10^{-15} cm2, these capture cross-sections are too small and make no practical sense. The McWhoter noise model now has been extensively used in BSIM model for SPICE circuit simulation [14]. As described in [3], in 4H-SiC DMOSFET, S_l, the noise of drain current I_d was measured, and the dependence of the relative spectral noise density S_{Is}/I_{Is}^2 on I_d (at constant drain voltage V_d), was qualitatively different from typical dependences for n-channel Si MOSFETs. In Si MOSFETs, in strong inversion, S_{Is}/I_{Is}^2 usually decreases as $\propto 1/I_d$ and tends to saturate in the subthreshold region, whereas in SiC MOSFETs under study, $S_{Is}/I_{Is}^2 \propto I_d^{-0.5}$ for the currents varying from the deep subthreshold regime to the strong inversion [7] reported that, in 4H-SiC MOSFET with NO post-oxidation annealing and epitaxial channel, the dependence of noise on gate voltage has a ‘classical’ Si-like form, and oxide traps responsible for 1/f noise, N_I, does not depend on $E_c - E_f$ (E_c is a position of the bottom of conductivity

© 2021 The Author(s). Published by IOP Publishing Ltd
band; E_f is a position of the Fermi level). In this paper, we will consider the details of the distribution of oxide traps. The noise characteristics reported by [3] may be explained by the non-uniform energy distribution of traps, and the noise characteristics reported by [7] may be explained by the uniform energy distribution of traps.

In this study, the McWhoter noise model was improved for examining the effect of the spatial and energy distribution of oxide traps on noise. It should be noted that this study assumed both interface traps and border traps were included in oxide traps. Spectral noise density $S_{\omega d}$ experiments were implemented on commercial 4H-SiC MOSFETs devices. The extraction method of the spatial and energy distribution of oxide traps based on the curve of low-frequency noise was explored. The spatial and energy distribution of oxide traps responsible for $1/f$ noise in 4H-SiC MOSFETs were obtained and discussed.

2. Noise model

Under moderate to strong inversion with low drain voltage, the relative spectral noise density $S_{\omega d}/I_d^2$ can be expressed as [8, 15, 16],

$$
\frac{S_{\omega d}}{I_d^2} = \left(\frac{1}{WLn_i} \right)^2 \int_0^L S_{\Delta N}(x, f) \frac{1}{\Delta x} dx,
$$

(1)

where, I_d denotes the drain current, $S_{\omega d}$ denotes the drain current noise, γ denotes the tunneling coefficient, W and L denote width and length of the channel, respectively, n_i denotes the number of carriers per unit area of channel, f denotes frequency and $S_{\Delta N}$ denotes the power spectral density of the fluctuation of the occupied-trap number in a small neighborhood Δx along the channel direction x, as shown in figure 1.

Traps are assumed to be uniformly distributed in the entire oxide layer along the channel direction and to be non-uniformly distributed in the direction perpendicular to the channel. It should be noted that this assumption is reasonable for large-size devices. Assuming that $S_{\Delta N}$ can be written as [17]:

$$
S_{\Delta N}(x, f) = 4kT W \Delta x \int_0^{T_{ox}} N_i(E_{fin}, z) \frac{\tau(z)}{1 + \omega^2 \tau^2(z)} dz,
$$

(2)

where, N_{fin} is fermi energy level, k is Boltzmann constant, T is absolute temperature, τ is time constant and T_{ox} is oxide layer thickness. In equation (2), $\omega = 2\pi f$, $\tau = \tau_0 \exp(\gamma z)$, γ denotes the tunneling coefficient, and the typical value of τ_0 is 10^{-10} s [8, 17].

The charge pumping measurements show that trap density in SiO$_2$ within a nanometer range may vary by nearly two or even more than two orders of magnitude [18]. Accordingly, the trap distribution is described in the following exponential form: $N_i(E_{fin}, z) = N_{i,0}(E_{fin}) e^{\gamma z}$, in which $z = 0$ denotes the interface position and $N_{i,0}$ denotes the density of traps at the interface. By substituting $N_i(E_{fin}, z) = N_{i,0}(E_{fin}) e^{\gamma z}$ into equation (1) and integrating, the following expression can be derived:

![Figure 1. Schematic of the structure of MOSFETs.](image-url)
\[S_{\Delta N}(x, f) = 4kT \Delta x \int_{0}^{\text{Tox}} N_{t,0}(E_{fn}) \frac{e^{\frac{\tau}{1 + \omega^2 r^2}}}{1 + \omega^2 r^2} dz \]
\[= \frac{4kT \Delta x N_{t,0}(E_{fn})}{\gamma \tau_0^{\beta / \gamma} \omega^{3 + \beta / \gamma}} \int_{\omega_0}^{\omega} \frac{(\omega \tau)^{\beta / \gamma}}{1 + \omega^2 r^2} d(\omega \tau) \]
\[= \frac{kT \Delta x N_{t,0}(E_{fn})}{\gamma (2\pi \tau_0)^{r^{-1}} \sin \frac{\pi r}{2}} f^r. \]

\[r = 1 + \frac{\beta}{\gamma} \text{ and the integral form } \int_{0}^{\infty} \frac{x^{r-1}}{1 + x^2} dx = \frac{\pi}{2} \frac{\omega_0}{2}, \quad r > 0 \text{ are used in the third equation of equation (3). By substituting equation (3) and } V_g - V_t = \frac{qN_t}{C_{ox}} \text{ (where } V_g \text{ is the gate voltage, } V_t \text{ is the threshold voltage, } q \text{ is the electron charge and } C_{ox} \text{ is the oxide capacitance per unit area) into equation (1), we can get } \]
\[S_{u_d} = \frac{V_g - V_t}{kT q N_{t,0}(E_{fn}) \sin \frac{\pi r}{2}} \frac{1}{f^r}. \]

In linear region, \[S_{u_d} / V_{d}^2 = S_{u_d} / I_d^2, \text{ in which } S_{u_d} \text{ denotes the drain-source voltage noise, } S_{u_d} \text{ can be written as: } \]
\[S_{u_d} = \frac{V_g - V_t}{kT q N_{t,0}(E_{fn}) \sin \frac{\pi r}{2}} \frac{1}{f^r}. \]

For n-channel MOSFETs, as shown in figure 2, with the increase of \(V_g - V_t \), the conduction band of the channel surface bends down, and the oxide traps which can affect \(S_{u_d} \) are closer to the bottom of the conduction. According to equation (5), when the traps have uniform energy distribution, \(S_{u_d} \) is directly proportional to \((V_g - V_t)^{-m} \). If the closer the traps are to the bottom of conduction band and the higher the density is, \(S_{u_d} \) is still directly proportional to \((V_g - V_t)^{-m} \), but \(m < 2 \).

According to DC theory of MOSFETs, when \(V_g \approx 0 \), the relationship between \(V_g \), the surface potential \(V_s \) and the electron quasi Fermi level \(E_{fn} \) of n-channel MOSFETs is determined by the following two equations [19]:
\[C_{ox}(V_g - V_t) = \sqrt{2kTN_{sub} \varepsilon_1} \left[\sqrt{\beta \varphi_t} + (n_i/N_{sub})^2 \exp(\beta \varphi_t) - \sqrt{\beta \varphi_i} \right], \]
\[E_{fn} - E_i = q(\varphi_i - \varphi_f), \]

where, \(\beta = q/kT \), \(N_{sub} \) denotes the substrate doping concentration, \(\varphi_t \) denotes the Fermi potential of the substrate and \(E_i \) denotes the mid-value of the forbidden band. With equation (5), \(N_t,0 \) can be obtained from the measured curve of \(S_{u_d} \), and with equations (6) and (7), \(E_{fn} - E_i \) also can be acquired.

3. Experimental details

Threshold voltage test and drain voltage noise test were performed on 4H-SiC MOSFETs, C2M0160120D, manufactured by CREE Corporation. Three samples of C2M0160120D were labeled as 120–1, 120–2 and 120–3, respectively. The MOSFETs are n-type channel with planar architecture and SiO2 gate dielectric.

Keithley 4200-SCS was used to measure the \(I_d \sim V_g \) curve and extract the threshold voltage \(V_t \). As shown in the noise test diagram of figure 3, an adaptive circuit for 4H-SiC MOSFET noise measurement was built, in which the sample could be in a setting bias condition, the fluctuation of \(V_g \) was transmitted to the pre-voltage amplifier by AC coupling, a data acquisition card collected the amplified signal and a computer processed.
time series into noise power spectral density S_{V_d}. The noise test was performed under room temperature. The amplifier gain was set as 5000, the measuring frequency ranged from 1 Hz \sim 10 KHz.

4. Noise data and analysis

Figure 4 shows that the I_d-V_g curves of these devices are normal and figure 5 shows the variations of S_{V_d} with frequency in low-frequency range (1 Hz \sim 1000 Hz) under linear mode. The absolute value of the spectrum slope in the log-log coordinate system reflects the frequency exponent, r. It can be observed that all curves of the same sample exhibit nearly similar slopes at different bias conditions. As shown in figure 5, the fitted values of r approximately are 0.83 and 0.84, respectively, consistent with the general range of the r of $1/f$ noise ($0.8 \leq r \leq 1.2$) [8].

When $\beta = 0$, that is $r = 1 + \beta/\gamma = 1$, the traps are uniformly distributed, and equation (5) is converted to

$$S_{V_d} = \frac{V_d^2}{(V_g - V_t)^2} \frac{kTq^2N_{t,0}}{\gamma W L f C_{ox}^2}$$

By comparing equation (5) with equation (8), the spatial non-uniformity of traps causes the deviation of r from 1. The trap spatial distribution in Sample 120–1 can be expressed as $N_t(E_{tr}) = N_{t,0}(E_{tr}) e^{\beta z}$, in which $\beta = -1.1 \times 10^7 \text{ cm}^{-1}$ for Sample 120–1. A negative value of β is indicative of decreasing oxide trap density with the distance away from SiC/SiO$_2$ interface, which is consistent with general distribution rules of traps [17].

The S_{V_d} varieties of three samples with V_d at $V_d = 0.1$, are measured and shown in figure 6. With the equations (5)–(7), the trap energy distribution of all samples are simulated and shown in figure 7. The oxide trap has a uniform energy distribution, and then $m = 2$, which has been reported by [20]. But the results in figure 6 are more relatively complex. For 120–type samples, we can observe $m < 2$ for all the samples. The difference of
Figure 5. S_{Vd} at different bias conditions for Sample 120–1.

Figure 6. S_{Vd} with $V_g - V_t$ for all samples.

Figure 7. Energy distributions of trap density for all samples.
\(m \) reflects the different trends of the trap density with energy. For Sample 120–1, the density of oxide traps decreased as the energy shifts further away from the bottom of the conduction band, and similar trend has been reported in [3]. The \(m \) value of Sample 120–2 is closest to 2, i.e. the traps in Sample 120–2 have an approximately uniform energy distribution.

With the methods described in noise model and \(N_{b,0} \) assumed as \(1 \times 10^{15} \text{cm}^{-3} \), the trends of trap energy distribution are calculated and shown in figure 7. If the structure parameters of devices such as \(C_{ox} \) and \(W/L \) can be obtained, the horizontal and vertical coordinates of the figure can be completely determined, that is to say, the change of trap density with energy can be accurately measured. Sample 120–2 is chosen as an example to compute the trap density distribution. The measurement capacitance of 120–2 is \(1.2 \times 10^{-9} \text{F} \), by assuming that oxide thickness is 50nm, then,

\[
W/LC_{ox} = 8.2836 \times 10^{-17} (\text{F cm})^2,
\]

and the average of \(N_{b,0} \) is \(5.4857 \times 10^{21} / (\text{eV cm}^3) \). By multiplying \(N_{b,0} \) with the spatial distribution \(\exp(-1.15 \times 10^2 z) \), the final distribution could be obtained, which is

\[
N_t(E, z) = 5.4857 \times 10^{23} \exp(-1.15 \times 10^2 z) = N_t(z).
\]

If the sample trap has a non-uniform energy distribution, the trap density as a linear function of energy, can be gotten to use the least square method for linear fitting.

5. Conclusions

The McWhoter model for uniform trap distribution was modified, to investigate non-uniformities in spatial and energy distributions of oxide traps in 4H-SiC MOSFETs. For two kinds of sample, the characteristics of drain voltage noise with frequency and gate voltage were examined experimentally. By combining experimental data and theoretical models, the spatial and energy distribution of oxide traps in these samples were determined. The values of the parameter \(\beta \) in the trap spatial expression \(N_t = N_{t,0} \exp(-z) \) were \(-1.1 \times 10^2 \text{cm}^{-1}\) for Sample 120–1. A negative value of \(\beta \) was suggestive of the fact that the density of traps in the oxide layer further away from the SiC/SiO\(_2\) interface was lower. The exponent of \(S_{V} \) dependence on \(V_c - V_t \) was denoted as \(m. m = 2 \) was the sign of the uniform energy distribution of oxide trap, while the \(m \) value deviating from 2 meant a non-uniform energy distribution. For three 120 samples decreased slightly as the energy shifted further away from the bottom of the conduction band, and among them, the energy distribution of sample 120–2 and sample 120–3 were the closest to an uniform distribution.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 61504099), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. JB151403, JB181409).

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

ORCID iDs

Hua Chen © https://orcid.org/0000-0002-5431-3024

References

[1] Lee K K, Lim D R, Luan H C, Agarwal A, Foresi J and Kimmerling L C 2000 Effect of size and roughness on light transmission in a Si/SiO\(_2\) waveguide: experiments and model Appl. Phys. Lett. 77 1617
[2] Lelis A J, Green R, Habersat D B and El M 2015 Basic mechanisms of threshold-voltage instability and implications for reliability testing of SiC MOSFETs IEEE Trans. Electron Devices 62 316
[3] Rumyantsev S L, Shur M S, Levinshten M E, Ivanov P A, Palmour J W, Das M K and Hull B A 2008 Low frequency noise in 4H-SiC metal oxide semiconductor field effect transistors J. Appl. Phys. 104 094505
[4] Moghadam H A, Dimitrijev S, Han J S and Daniel H 2016 Active defects in MOS devices on 4H-SiC: a critical review Microelectron. Reliab. 60 1
[5] Zhang C X, Zhang E X, Fleetwood D M, Schrimpf R D, Dhar S, Ryn S H, Shen X and Pantelides S T 2013 Origins of low-frequency noise and interface traps in 4H-SiC MOSFETs IEEE Electron Device Lett. 34 117
[6] Zhang C X, Shen X, Zhang E X, Fleetwood D M, Schrimpf R D, Francis S A, Roy T, Dhar S, Ryn S H and Pantelides S T 2013 Temperature dependence and postirradiation annealing response of the 1/f Noise of 4H-SiC MOSFETs IEEE Trans. Electron Devices 60 2361
[7] Rumyantsev S L, Shur M S, Levinshen M E, Ivanov P A, Palmour J W, Agarwal A K and Dhar S 2011 Si-like low-frequency noise characteristics of 4H-SiC MOSFETs Semicond. Sci. Tech. 26 085015
[8] Zhuang Y Q and Sun Q 1993 Noise in Semiconductor Devices and its Low Noise Technology 1st (Beijing: National Defense Industry Press)
[9] Zhao Z G 2008 NDE of power MOSFET’s resisting radiation ability Dissertation (Xian) Xidian University
[10] Fleetwood D M 2015 1/f noise and defects in microelectronic materials and devices IEEE Trans. Nucl. Sci. 62 1462
[11] da Silva M B, Both T H, Tuinhout H P, van Duijnhoven A, Wirth G I and Scholten A J 2019 A compact statistical model for the low frequency noise in halo-implanted MOSFETs: large RTN induced by halo implants IEEE Trans. Electron Devices 66 3521
[12] Wang P, Jiang R, Chen J, Zhang E X, McCurdy M W, Schrimpf R D and Fleetwood D M 2017 1/f noise in as-processed and proton-irradiated AlGaN/GaN HEMTs Due to Carrier Number Fluctuations IEEE Trans. Nucl. Sci. 64 181
[13] Levinshtein M E, Rumyantsev S L, Shur M S, Gaska R and Khan M 2002 Low frequency and 1/f noise in wide-gap semiconductors: silicon carbide and gallium nitride IEE Proc.-Circuits Devices Syst. 149 32
[14] Arai Y, Aoki H, Abe F, Todoroki S, Khatami R, Kazumi M, Totsuka T, Wang T and Kobayashi H 2015 Gate voltage dependent 1/f noise variance model based on physical noise generation mechanisms in n-channel metal-oxide-semiconductor field-effect transistors Ipn J. Appl. Phys. 54 04DC10–1
[15] Yoshioka H, Nakamura T and Kimoto T 2012 Generation of very fast states by nitridation of the SiO2/SiC interface J. Appl. Phys. 112 024520
[16] Kolarova R, Skotnicki T and Chroboczek J 2001 Low frequency noise in thin gate oxide MOSFETs Microelectron. Reliab. 41 579
[17] Devireddy S P 2007 1/f noise in hafnium based high-k gate dielectric MOSFETs and a review of modeling Ph. D. Dissertation (Arlington) University of Texas
[18] Xiong H D, Heh D, Gurfiinkel M, Li Q, Shapiro Y, Richter C, Bersukerb G, Choi R and Suelhele J S 2007 Characterization of electrically active defects in high-k gate dielectrics by using low frequency noise and charge pumping measurements Microelectron. Engineering 84 2230
[19] Sze S M and Ng K K 2006 Physics of semiconductor devices 3rd (New York: Wiley-Interscience)
[20] Bao J L, Zhuang Y Q, Du L, Li W H, Wan C X and Zhang P 2005 A unified model for 1/f noise in n-channel and p-channel MOSFETs Acta Phys. Sin. 54 2118