The Influence of Antibiotics Usage on Extended-spectrum β-lactamase-producing Enterobacter Colonization among Intensive Care Unit Patients

Wayan Suranadi¹, Dwi Fatmawati², Christopher Ryalino¹*, I Gusti Agung Gede Utara Hartawan¹, Ferdi Yanto¹

¹Department of Anesthesiology and Intensive Care, Faculty of Medicine, Udayana University, Bali, Indonesia; ²Department of Clinical Microbiology, Faculty of Medicine, Udayana University, Bali, Indonesia

Abstract

BACKGROUND: The prevalence of extended-spectrum beta-lactamases (ESBLs)-producing Enterobacteriaceae has increased throughout the world and is a major cause of treatment failure in intensive care unit (ICU). ESBL-producing Enterobacteriaceae exhibit resistance to cephalosporins which is one of the most commonly used and effective group of antibiotics.

AIM: The goal of this study was to identify the variables that influence the colonization of Enterobacteriaceae in patients treated at ICU.

RESULTS: Respiratory system dysfunction (p = 0.012, RR = 2.828) and antibiotic prescription before ICU admission (p < 0.001) influence ESBL-producing Enterobacteriaceae colonization on patient who was admitted to ICU. On discharged from ICU, ESBL colonization was associated to respiratory system dysfunction (p = 0.008, RR = 1.987), third-generation cephalosporin usage (p = 0.009, RR = 2.909), cefoperazone prescription (p < 0.001, RR = 8.471), ceftriaxone prescription (p = 0.007, RR = 6.316), and antibiotics usage duration ≥3 days (p < 0.001, RR = 7.071). The logistic regression results on influence of antibiotics usage and respiratory system dysfunction to ESBL colonization rate shows that both variables are independent risk factor to ESBL colonization both on admitted to and discharged from ICU.

CONCLUSION: The antibiotics usage and respiratory system dysfunction are independent risk factors to ESBL colonization in ICU patients.

Introduction

Extended-spectrum β-lactamases (ESBLs) are bacterial enzymes which are produced to confer resistance to broad range of extended-spectrum β-lactam antibiotics. The ESBLs hydrolyze extended-spectrum cephalosporins. First reports of ESBLs were in the mid-1980s and mostly Klebsiella pneumoniae and Escherichia coli [1]. In 2013, the Centers for Disease Control and Prevention reported an increasing resistance which included 26,000 ESBL-producing Enterobacteriaceae infections and 1700 deaths in the United States [2], [3].

Colonization of intensive care unit (ICU) patients with ESBL-producing Enterobacteriaceae on admission has an impact on poorer outcome and increasing mortality. A study in Egypt showed that 33% of the patients admitted to ICU were colonized with ESBL on one or more swab sites. The prevalence of ESBL-producing Enterobacteriaceae found in ICU patients rectal swabs varies throughout the world, 2.25% in the United States, 15% in France, 28.2% in South Korea, and 65% in India out of which 56% were ESBL-producing E. coli and 43% Klebsiella spp. [1], [4], [5].

Risk factors for infection with ESBL-producing organisms are prolonged antibiotic usage, prolonged treatment at ICU, recent invasive procedures, pressure ulcer, anemia, and permanent urinary catheter. Effective and rational usage of antibiotics in ICUs is important for the prevention of the development of antibiotic resistance [5], [6], [7]. The goal of this study was to identify the variables that influence the colonization of Enterobacteriaceae in patients treated at ICU. For the purpose of this study, Enterobacteriaceae are limited to K. pneumoniae and E. coli.

Patients and Methods

We conducted a prospective cohort study which was approved by the Ethical Committee of Sanglah General Hospital from October 1, 2018, until
March 31, 2019. Rectal swabs were collected from 70 randomized, adult patients who fulfilled the inclusion and exclusion criteria and willing to sign the informed consent when patients were admitted and discharged from ICU. Inclusion criteria included newly admitted ICU patients aged >18 years old who agreed to follow the study protocol after receiving consent to be included in this study. Exclusion criteria included those with known history of allergy to certain antibiotics and those who were treated at the ICU for <48 h.

Rectal swab specimens were put in transport medium and delivered to the Department of Clinical Microbiology of Sanglah General Hospital to be inoculated in MacConkey medium. After being incubated in 5% CO₂ for 18–24 h, the species were identified and susceptibility was tested using Vitek 2 Compact (BioMerieux, France).

We collected data regarding the study subject’s previous antibiotics exposures (type and duration), coexisting conditions, invasive procedures, and other hospitalization-related and demographic information. Categorical variables were presented in percentage while numeric variables were presented in mean ± deviation standard (SD).

Initial bivariate analysis was conducted using χ² (Pearson’s Chi-square) and considered significant if p < 0.05. Adjusted relative risk ratio (RR) was used to estimate the influence of the variables to ESBL colonization occurrence rate on the patient who was admitted or discharged from ICU. Statistical analysis was performed using SPSS software (IBM Corp. Released 2013. IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.).

Results

Table 1 shows the general characteristics of the patients. The mean age of the patients was 45.7 ± 17.75 years old, and 82.8% were adult (18–64 years old), with length of ICU stay for 6.35 ± 4.01 days. There were 57.1% of male patients with 61.4% of total patients aged ≥65 years old, 18–64 years old, and 82.8% were adult (18–64 years old). There were 57.1% of male patients with 61.4% of total.

Variable	n = 70	
Age (years), mean ± SD	45.7 ± 17.75	
18–64 years old, n (%)	58 (82.8)	
≥65 years old, n (%)	12 (17.2)	
Length of stay (days), mean ± SD	6.35 ± 4.01	
Sex	Male, n (%)	
	40 (57.1)	
	Female, n (%)	
	30 (42.9)	
Previously treated at	Other hospital, n (%)	27 (36.6)
	Ward, n (%)	
	43 (61.4)	

RR = 2.828) and antibiotic prescription before ICU admission (p < 0.001) influence ESBL-producing Enterobacteriaceae colonization on patient who was admitted to ICU (Table 4).

Table 2: Patient characteristic when admitted to and discharge from ICU

Variable	Time	Admitted to ICU	Discharge from ICU
Antibiotics			
Ceftriaxone, n (%)	42 (60)	38 (54.3)	
Cefoperazone, n (%)	10 (14.3)	17 (24.3)	
Cefazolin, n (%)	13 (18.6)	12 (17.1)	
Non-cephalosporin, n (%)	5 (7.1)	3 (4.3)	
Antibiotic usage duration			
≥3 days, n (%)	51 (72.9)	21 (30)	
23 days, n (%)	19 (27.1)	49 (70)	
Mortality			
Yes, n (%)	16 (22.9)	54 (77.1)	
No, n (%)	52 (74.3)	35 (50)	
ESBLs colonization			
Positive, n (%)	18 (25.7)	35 (50)	
Negative, n (%)	52 (74.3)	35 (50)	

ESBLs: Extended-spectrum beta-lactamases. ICU: Intensive care unit.

On discharged from ICU (Table 5), we found that ESBL colonization was associated to respiratory system dysfunction (p = 0.008, RR = 1.987), third-generation cephalosporin usage (p = 0.009, RR = 2.909), cefoperazone prescription (p < 0.001, RR = 8.471), ceftriaxone prescription (p = 0.007, RR = 6.316), and antibiotics usage duration ≥3 days (p < 0.001, RR = 7.071).

Table 3: Comparative analysis of ESBLs colonization on admission and discharge from ICU

Variable	p	RR 95% CI
ESBL		
Positive	0.003	1.994 (1.225–3.086)
Discharge	18 (25.7)	52 (74.3)

ESBLs: Extended-spectrum beta-lactamases. ICU: Intensive care unit. RR: Risk ratio. CI: Confidence interval.

The logistic regression results on influence of antibiotics usage and respiratory system dysfunction to ESBL colonization rate shows that both variables are independent risk factor to ESBLs colonization both on admitted to and discharged from ICU (Table 6).

Discussion

In this study, we identified and compared the ESBL-producing Enterobacteriaceae colonization on patients who were admitted and discharged from the ICU. Positive ESBL-producing Enterobacteriaceae colonization was found on 18 patients (25.7%) when
admitted to ICU. The number was increased to 35 patients (74.3%) on discharge. Thus, we found that antibiotics usage in critically ill patients was strongly associated to ESBL-producing Enterobacteriaceae colonization. The result was in line with a study by Harris et al. [8] which found 23 patients (23.7%) from a total of 97 patients became ESBL-producing Enterobacteriaceae carriers during ICUs stay. Young et al. [9] also observed similar results on his study in Singapore and concluded that ICUs stay was the risk factor of ESBL-producing Enterobacteriaceae colonization.

Table 4: Variables of ESBL colonization on ICU admission

Variable (n, %)	ESBL on admission	p value	RR (95% CI)
Sex Male	9 (22.5)	0.477	0.750
Sex Female	13 (30.1)	0.316	0.394–1.658
Age Adult	14 (24.6)	0.644	0.788
Age Geriatric	4 (30.8)	0.314	0.203–2.031
Central nervous system dysfunction Present	10 (22.2)	0.370	0.694
Central nervous system dysfunction Absent	8 (32)	0.315	1.321
Respiratory system dysfunction Present	12 (41.4)	0.012	2.828
Respiratory system dysfunction Absent	6 (14.6)	1.020	6.661
Cardiovascular system dysfunction Present	9 (26.5)	0.888	1.059
Cardiovascular system dysfunction Absent	9 (25)	0.478	2.348
Gastrointestinal system dysfunction Present	7 (38.9)	0.138	1.838
Gastrointestinal system dysfunction Absent	11 (21.2)	0.941	4.016
Urogenital system dysfunction Present	5 (31.3)	0.564	1.258
Urogenital system dysfunction Absent	13 (45)	0.545	3.091
Musculoskeletal system dysfunction Present	3 (16.7)	0.578	0.308
Musculoskeletal system dysfunction Absent	15 (28.8)	0.189	1.767
Endocrine system dysfunction Present	5 (50)	0.058	2.308
Endocrine system dysfunction Absent	13 (21.7)	1.003	5.057
Malignancy Present	5 (29.4)	0.689	1.199
Malignancy Absent	13 (43.5)	0.500	2.876
Immune system dysfunction Present	0 (0)	1.172	1.383
Immune system dysfunction Absent	18 (27.7)	1.190	1.608
Corticosteroid usage Present	4 (33.3)	0.507	1.381
Corticosteroid usage Absent	14 (24.1)	0.505	3.469
Antibiotics Cefazolin	16 (30.8)	0.100	2.769
Antibiotics Cefazolin Non-cefazolin	2 (11.1)	0.899	10.885
Antibiotics prescription before ICU admission Ceftaxzone	9 (21.4)	0.000	0.001
Antibiotics prescription before ICU admission Cefopen Azone	7 (17.8)	0.024	0.000
Antibiotics prescription before ICU admission Cefazolin	0 (0)	0.819	1.991
Antibiotics prescription before ICU admission Others	2 (60)	0.819	1.991
Antibiotics usage duration ≥3 days	10 (37.0)	0.086	1.991
Antibiotics usage duration <3 days	8 (18.6)	0.899	4.410

Some statistically significant correlations could be observed in our study as the risk factor of ESBL-producing Enterobacteriaceae colonization in ICU patients. The previous studies throughout the world also demonstrated the increment of ESBL-producing Enterobacteriaceae colonization associated to cefazolin usage [9], [10], [11]. A study in Croatia showed that ceftriaxone usage was significantly correlated with ESBL occurrence (p < 0.05) and concluded that ceftriaxone derescretion increased the occurrence of ESBLs and the utilization of carbapenems [12].

Table 6: Results of logistic regression on influence of antibiotics usage and respiratory system dysfunction to ESBL colonization rate

Variable	ESBL colonization	p-value	RR 95% CI
Sex Male	22 (55)	0.334	1.269
Sex Female	13 (33.3)	0.917	0.517
Age Adult	28 (49.1)	0.759	0.912
Age Geriatric	7 (53.8)	0.517	1.611
Central nervous system dysfunction Present	25 (53.1)	0.886	1.570
Central nervous system dysfunction Absent	10 (27.0)	0.903	2.730
Respiratory system dysfunction Present	25 (64.1)	0.008	1.987
Respiratory system dysfunction Absent	10 (32.3)	1.133	4.848
Cardiovascular system dysfunction Present	17 (54.8)	0.470	1.786
Cardiovascular system dysfunction Absent	18 (46.2)	1.158	0.893
Gastrointestinal system dysfunction Present	10 (25.6)	0.788	1.074
Gastrointestinal system dysfunction Absent	25 (49.0)	0.789	1.638
Urinary system dysfunction Present	9 (25.2)	0.124	1.518
Urinary system dysfunction Absent	26 (49.0)	0.958	2.404
Musculoskeletal system dysfunction Present	9 (69.2)	0.124	1.518
Musculoskeletal system dysfunction Absent	26 (89.7)	1.988	2.404
Antibiotics usage Cefazolin	17 (63)	0.013	3.773
Antibiotics usage Cefazolin Non-cefazolin	33 (49.3)	0.018	3.773
Antibiotics usage duration ≥3 days	33 (67.3)	0.018	3.773
Antibiotics usage duration <3 days	23 (46.1)	0.018	3.773

ESBL: Extended-spectrum beta-lactamase, ICU: Intensive care unit, RR: Risk ratio, CI: Confidence interval.

Table 5: Variables of ESBL colonization on ICU discharge

Variable	ESBL colonization	p-value	RR 95% CI
Sex Male	22 (55)	0.334	1.269
Sex Female	13 (33.3)	0.917	0.517
Age Adult	28 (49.1)	0.759	0.912
Age Geriatric	7 (53.8)	0.517	1.611
Respiratory system dysfunction Present	25 (53.1)	0.886	1.570
Respiratory system dysfunction Absent	10 (27.0)	0.903	2.730
Cardiovascular system dysfunction Present	17 (54.8)	0.470	1.786
Cardiovascular system dysfunction Absent	18 (46.2)	1.158	0.893
Gastrointestinal system dysfunction Present	10 (25.6)	0.788	1.074
Gastrointestinal system dysfunction Absent	25 (49.0)	0.789	1.638
Urinary system dysfunction Present	9 (25.2)	0.124	1.518
Urinary system dysfunction Absent	26 (49.0)	0.958	2.404
Musculoskeletal system dysfunction Present	9 (69.2)	0.124	1.518
Musculoskeletal system dysfunction Absent	26 (89.7)	1.988	2.404
Antibiotics usage Cefazolin	17 (63)	0.013	3.773
Antibiotics usage Cefazolin Non-cefazolin	33 (49.3)	0.018	3.773

ESBL: Extended-spectrum beta-lactamase, ICU: Intensive care unit, RR: Risk ratio, CI: Confidence interval.

ESBL colonization rate 7-fold higher (p < 0.001, RR = 7.071). Patients with respiratory system dysfunction are also at increasing risk to be carriers (p = 0.008, RR = 1.987). It may be associated to the third-generation cephalosporin usage such as cefoperazone and ceftriaxone as empirical antibiotic to treat pneumonia. An observational study found 23 patients (23.7%) which found 23 patients (23.7%) from a total of 97 patients became ESBL-producing Enterobacteriaceae carriers during ICUs stay.
multicenter study in France showed similar result with a significant correlation between ESBL-producing Enterobacteriaceae colonization and respiratory system dysfunction (p < 0.01), urogenital system dysfunction (p < 0.01), endocrine system dysfunction (p < 0.01), and immune system dysfunction (p < 0.01). Our study, however, reported significant correlation only on patients with respiratory system dysfunction [13].

In our study, invasive procedure variable analysis shows no significant correlation to ESBL-producing Enterobacteriaceae colonization with central venous catheter usage (p = 0.151), endotracheal intubation (p = 0.743), peripheral IV line (p = 0.164), nasogastric tube placement (p = 0.172), hemodialysis (p = 0.393), and mechanical ventilator (p = 0.179). The previous literatures showed various results in correlation with invasive procedure. Kawano et al. [14] and Repesse et al. [15] showed that mechanical ventilator (p = 0.476 and p = 0.1, respectively) had no statistically significant correlation to ESBL-producing Enterobacteriaceae colonization incidence. Another study, however, showed a different result that invasive procedure had strong correlation to ESBL-producing Enterobacteriaceae colonization with central venous catheters (p < 0.01), hemodialysis (p < 0.01), and mechanical ventilator (p < 0.01). The different result may be caused by the brief utilization of the invasive tools [13], [14], [15]. Further studies with larger sample size would help demonstrate the relationship of invasive procedure and ESBL-producing Enterobacteriaceae colonization.

Some limitations in our study included the fact that we collected no environmental sample that could cause ESBL-producing Enterobacteriaceae colonization by direct contact. The study was carried out only in ICU patients and no subsequent observations of morbidity and mortality were done after the patients were discharged from ICU.

Conclusion

The antibiotics usage and respiratory system dysfunction are independent risk factors to EBLS colonization in ICU patients.

References

1. Mulki SS, Ramamurthy K, Bhat S. Fecal carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae in intensive care unit patients. Indian J Crit Care Med. 2017;21(8):525-7. https://doi.org/10.4103/ijccm.ijccm_112_17 PMid:28904483

2. Suranadi IW, Fatmawati NN, Aryabiantara IW, Sinardja CD, Saputra DJ. Acinetobacter baumannii is an opportunistic pathogen as an MDRO in ICU. Bali J Anesthesiol. 2019;3(2):150-3. https://doi.org/10.15562/bjoa.v3i2.199

3. McDaniel J, Schweizer M, Crabb V. Incidence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella infections in the United States: A systematic literature review. Infect Control Hosp Epidemiol. 2017;38(10):1209-15. https://doi.org/10.1017/ice.2017.156 PMid:28758612

4. Fouda R, Soliman MS, ElAnany MG, Abadeer M, Soliman G. Prevalence and risk factors of MRSA, ESBL, and MDR bacterial colonization upon admission to an Egyptian medical ICU. J Infect Dev Ctries. 2016;10(4):329-36. https://doi.org/10.3855/jidc.6798 PMid:27130993

5. Drinka P, Niederman MS, El-Sohl AA, Cmich CJ. Assessment of risk factors for multi-drug resistant organisms to guide empiric antibiotic selection in long term care: A dilemma. J Am Med Dir Assoc. 2011;12(5):321-5. https://doi.org/10.1016/j.jamda.2010.06.012 PMid:21450192

6. Kalluru S, Eggers S, Barker A, Shirley D, Sethi AK, Sengupta S, et al. Risk factors for infection with multidrug-resistant organisms in Haryana, India. Am J Infect Control. 2018;46(3):341-5. https://doi.org/10.1016/j.ajic.2017.08.021 PMid:29102426

7. Singh N, Pattnaik D, Neogi DK, Jena J, Malick B. Prevalence of ESBL in Escherichia coli isolates among ICU patients in a tertiary care hospital. J Clin Diagn Res. 2016;10(9):DC19-22. https://doi.org/10.7860/jcdr/2016/21280.8544 PMid:27790433

8. Harris AD, Kotetishvili M, Shurland S, Johnson JA, Morris JG, Nemoy LL, et al. How important is patient-to-patient transmission in extended-spectrum β-lactamase Escherichia coli acquisition. Am J Infect Control. 2007;35(2):97-101. https://doi.org/10.1016/j.ajic.2006.09.011 PMid:17327188

9. Young BE, Lye DC, Krishnan P, Chan SP, Leo YS. A prospective observational study of the prevalence and risk factors for colonization by antibiotic resistant bacteria in patients at admission to hospital in Singapore. BMJ Infect Dis. 2014;14(1):298. https://doi.org/10.1186/1471-2334-14-298 PMid:24889720

10. Hamprecht A, Rohde AM, Behnke M, Feihl S, Gastmeier P, Gebhardt F, et al. Colonization with third-generation cephalosporin-resistant Enterobacteriaceae on hospital admission: Prevalence an risk factors. J Antimicrob Chemother. 2016;71(10):2957-63. https://doi.org/10.1093/jac/dkw216 PMid:27317445

11. Bilavsky E, Temkin E, Lerman Y, Rabinovich A, Salomon J, Lawrence C, et al. Risk factors for colonization with extended-spectrum beta-lactamase-producing Enterobacteriaceae on admission to rehabilitation centres. Clin Microbiol Infect. 2014;20(11):O804-10. https://doi.org/10.1111/1469-0691.12633 PMid:24674024

12. Skrfin J, Vrca VB, Marusic S, Ciric-Crnec MC, Mayer L. Impact of ceftriaxone de-restriction on the occurrence of ESBL-positive bacterial strains and antibiotic consumption. J Chemother. 2011;23(6):341-4. https://doi.org/10.1017/jac.2011.216 PMid:22238317

13. Barbier F, Pommier C, Essaied W, Garrouste-Orgeas M, Schwebel C, Ruckly S, et al. Colonization and infection with extended-spectrum β-lactamase-producing Enterobacteriaceae in ICU patients: What impact on outcomes and carbapenem exposure? J Antimicrob Chemother. 2016;71(4):1088-97. https://doi.org/10.1093/jac/dkv423
14. Kawano Y, Nishida T, Togawa A, Irie Y, Hoshino K, Matsumoto N, et al. Surveillance of extended-spectrum \(\beta \)-lactamase-producing Enterobacteriaceae carriage in a Japanese intensive care unit: A retrospective analysis. Korean J Crit Care Med. 2016;31(4):317-23. https://doi.org/10.4266/kjccm.2016.00703

15. Repesse X, Artigueneave M, Paktoris-Papine S, Espinasse F, Dinh A, Charron C, et al. Epidemiology of extended-spectrum beta-lactamase-producing Enterobacteriaceae in an intensive care unit with no single rooms. Ann Intensive Care. 2017;7(1):73. https://doi.org/10.1186/s13613-017-0295-0

PMid:26755492

PMid:28674848