Natural Occurrence and Distribution of Entomopathogenic Fungi from Chhattisgarh

Vinod Kumar Nirmalkar*, N. Lakplae* and R.K.S. Tiwari

Biocontrol Laboratory, BTC College of Agriculture & Research Station, Sarkanda, Bilaspur, 495001 (I.G.K.V.) (C.G.)* Department of Plant Pathology, College of Agriculture, Raipur (I.G.K.V.) (C.G.), India

*Corresponding author

ABSTRACT

Extensive survey was conducted for collection of insects cadavers from agriculture fields and forest area and isolated different entomopathogenic fungi viz., B. bassiana, M. anisopliae, Nomurea rileyi from different crops i.e. Soybean, groundnut, Pigeonpea crop insects. The infected insects cadavers was covered partially or fully with powdery white to green spores. Presence of powdery spores on insects revealed B. bassiana infection, green spores depicts infection of M. anisopliae or Nomuraea rileyi. N. rileyi infected larvae attached to the leaves with posterior portion and anterior portion of the body hanging in air and presence of yellowish spores on larval body indicating Aspergillus infection. Entomopathogenic fungi infected cadavers were found maximum between 1st week of September to 2nd week of January while maximum in September followed by October month.

Keywords
Entomopathogenic fungi, Beauveria bassiana, Metarhizium anisopliae, insect pathogen

Introduction
Fungi which control the insect pest population are associated with agricultural crops are called as entomopathogenic fungi. There are naturally occurring organisms, such as bacteria, viruses and fungi for the control of crop pests, which can act as a parasite of insects and kills or seriously disables them. In recent years, microbial pathogens like viruses, bacteria, fungi and protozoa have been recognized for the biological suppression of many insect pests.

About 1.5 million species of fungi alone are known to occur worldwide out of which nearly half of the species have been identified. Amongst these, several asexual stages of fungi are associated with insect
infection. Entomopathogenic fungi are naturally occurring organisms which perceived as less damaging to the environment (Tahira, et al., 2014). Among biopesticides, entomopathogenic fungi played a significant role in insect pathology and especially in microbial control.

Most of the entomopathogenic fungi belong to either entomopthorales (Zygomycotina) or hyphomycetes (Deuteromycotina). Prominent genera that have been exploited for the pathogenic properties include Nomuraea, Beauveria, Metarhizium, Verticillium, Hirsutella, Aspergillus, Coelomomyces, Lagenidium, Paecilomyces and Tolypocladium of which the first five are the best known cosmopolitan insect pathogens.

Occurrence and distribution of entomopathogenic fungi (EPF) in diverse habitats are divided in to main two ecosystem; manmade agriculture and natural habitat (aquatic, forest and non forest). EPF of aquatic habitats belongs to Mastigomycota and Zygomycota and these have ability to produce motile spore, presence of thick wall spore, has capacity in absence of water and adapted to semi permanent habitats. Tropical humid forests are rich in various entomopathogen and agriculture ecosystems have diverse entomopathogenic fungal species. Environmental factors i.e. temperature, humidity and light, play major role in field persistence of entomopathogenic fungi. One of the critical factors in the effective use of microbial agents is their relatively short persistence on leaf surfaces (Khachatourians, 1996).

Agro ecological condition of Chhattisgarh favored the local isolates of entomopathogenic fungi which play a vital role in suppressing pest population because their degree of virulence, survival, adoption, commercialization and successful are most importance that’s why need to identify novel new indigenous isolates, shelf life, development of formulation, evaluate the efficacy of entomopathogenic fungi for cost economic, safe production, physicals factors, nutritional requirements. Very limited studies on these aspects in the state and to identified alternate biological insect management measures under organic farming in the state.

Materials and Methods

Extensive surveys were conducted during Kharif and Rabi seasons of 2017-18, 2018-19 and Kharif 2019-20 for collection of entomopathogenic fungi from different localities of Chhattisgarh state i.e. Bilaspur, Raipur, Bhatapara, Mungeli, Kawardha, Bemetara, Jangir-champa, Jagdalpur and Korba districts from farmers fields and forests of Chhattisagrh.

Thirty insect cadavers infected with fungus were collected and placed in separate sterilized glass vessels. After collection, these insect cadavers were brought to laboratory, made fairly dry to avoid further deterioration and stored in refrigerator. The collected insect cadavers were coded. During the survey different information was gathered i.e. Latitude and Longitude, crops, insects, location, seasons etc.

Results and Discussion

The extensive surveys was conducted for collection of insect cadavers from agriculture fields and forest area during Kharif and Rabi season of 2017-18, 2018-19 and Kharif of 2019 to know the occurrence, distribution and biodiversity study of indigenous fungi prevalent in Chhattisgarh. The study was conducted in different districts of Chhattisgarh state i.e. Bilaspur, Jangir champa, Mungeli, Kawardha, Bemetara, Raipur, Korba, Ambikapur and Jagdalpur.
between August and February of every year. During twenty-eight surveys, thirty insects cadavers was collected from different crops i.e. Soybean, Groundnut, Sugarcane, Paddy, Pigeonpea and Mustard of various cropping systems. Out of thirty cadavers collect 23 were from *Spodoptera litura* of different crops (Soybean 15; Groundnut 7 and Potato (1). *Helicoverpa armigera* from Pigeonpea (2), *Pyrilla perpusilla* from Sugarcane (1), *Lipaphis erysimi* from Mustard (3) and *Scirpophaga incertulas* from Paddy (1).

Different instars of insects were found infected with fungi showing various symptoms/colours. The infected insect’s cadaver was covered partially or fully with powdery white to green spores. Powdery spores suspected with *B. bassiana* infection and infected larvae generally found in upper leaf surface. Green spores infection was mostly with *M. anisopliae* or *Nomuraea rileyi*. *N. rileyi* infected larvae attached to the leaves with posterior portion and anterior portion of the body hanging in air and presence of yellowish spores on larval body indicating *Aspergillus* infection. Entomopathogenic fungi (EPF) infected insects were generally hardened (Table 1, plate 1.1, 1.2 and 1.3).

Entomopathogenic fungi infected cadavers were found maximum between 1st week of September to 2nd week of January while maximum in September followed by October month. During 1st week of September to 2nd week of October the environmental conditions were found favourable for occurrence of insects cadavers infected with EPF in soybean and Groundnut crops. whereas 2nd week of September to last week of December, environmental conditions favours Sugarcane crop insect infection by EPF. November to December was ideal months for infecting *H. armigera* of Pigeonpea crop. No insect cadaver was found from forest area, all were collected from agriculture habitats. It was observed that population of EPF was higher in unmanaged field.

Table 1. Details of survey for collection of entomopathogenic fungi

S.N.	Season /Months of Survey	Location of Survey	Latitude and longitude	Districts	Crop	Insect Cadavers	Sample Code
1	Kharif-17/Sept	Bilaspur-BTCCARS farm	22°06'19.2"N 82°08'17.2"E	Bilaspur	Groundnut	Spodoptera litura	EPF-01
2	Kharif-17/Sept	Bilaspur-BTCCARS farm	22°06'19.4"N 82°08'16.9"E	Bilaspur	Groundnut	Spodoptera litura	EPF-02
3	Kharif-17/Sept	Bilaspur-Farmers field/Ranigaon	22°14'40.5"N 82°08'23.2"E	Bilaspur	Sugarcane	Pyrilla perpusilla	EPF-03
4	Kharif-17/Sept	Bilaspur-BTCCARS farm	22°06'21.1"N 82°08'32.9"E	Bilaspur	Soybean	Spodoptera litura	EPF-04
5	Kharif-17/Sept	Mungeli-Farmers	22°03'37.4"N	Mungeli	Soybean	Spodoptera	EPF-05
No.	Season	Date	Location	Latitude/Longitude	Crop	Pests	EPF Code
-----	--------	------	----------	--------------------	-------	-------	----------
6	Kharif-17/Sept	17/Sept	Mungeli-Farmers field /Damapur	22°03'35.5"N 81°38'23.1"E	Mungeli Soybean	Spodoptera litura	EPF-06
7	Kharif-17/Sept	17/Sept	Mungeli-Farmers field /Chalan	22°03'54.3"N 81°38'30.1"E	Mungeli Soybean	Spodoptera litura	EPF-07
8	Kharif-17/Sept	17/Sept	Raipur IGKV farm	21°13'50.8"N 81°43'03.6"E	Raipur Soybean	Spodoptera litura	EPF-08
9	Kharif-17/Sept	17/Sept	Raipur IGKV farm	21°13'47.7"N 81°43'01.1"E	Raipur Soybean	Spodoptera litura	EPF-09
10	Kharif-17/Sept	17/Sept	Bilaspur/farmers field/ Pendarwa	22°13'47.1"N 82°08'39.3"E	Bilaspur Paddy	Scirpophaga incertulas	EPF-10
11	Kharif-17/Sept	17/Sept	Bhatapara/Khaparadih farm (DKCARS)	21°44'15.4"N 81°58'16.2"E	Bhatapara Soybean	Spodoptera litura	EPF-11
12	Kharif-17/Sept	17/Sept	Bhatapara/Alesure farm (DKCARS)	21°43'46.3"N 81°59'14.4"E	Bhatapara Soybean	Spodoptera litura	EPF-12
13	Kharif-17/Sept	17/Sept	Bhatapara/Khaparadih farm (DKCARS)	21°44'15.7"N 81°58'16.7"E	Bhatapara Soybean	Spodoptera litura	EPF-13
14	Kharif-17/Oct	17/Oct	Kawardha/KVK farm	22°01'37.1"N 81°15'13.1"E	Kawadha Soybean	Spodoptera litura	EPF-14
15	Kharif-17/Oct	17/Oct	Kawardha CARS farm	21°59'14.6"N 81°14'17.9"E	Kawardha Soybean	Spodoptera litura	EPF-15
16	Kharif-17/Oct	17/Oct	Kawardha/ Farmer field /Newari	22°01'26.5"N 81°15'25.8"E	Kawardha Soybean	Spodoptera litura	EPF-16
17	Kharif-17/Dec	17/Dec	Bilaspur/ Farmer field /Amane	22°16'23.1"N 82°00'40.1"E	Bilaspur Piegonpea	Helicoverpa armigera	EPF-17
18	Rabi-17-18/Jan	17-18/Jan	Bilaspur/Farmers field /Amane	22°16'22.9"N 82°00'38.8"E	Bilaspur Mustard	Lipaphis erysimi	EPF-18
19	Rabi-17/-	17/-	Bilaspur/Farmers	22°16'25.2"N	Bilaspur Mustard	Lipaphis	EPF-19
Date	Crop	Location	Coordinates	Pest	EPF Code		
------------	----------	---------------------------	------------------------------	---------------	----------		
18/Jan	Kharif	Raipur/IGKV farm	21°13'47.0"N 81°42'57.6"E	Soybean	EPF-20		
18/August	Kharif	Mungeli/Chatarkh	22°04'05.1"N 81°38'31.5"E	Groundnut	EPF-21		
18/Sept	Kharif	Mungeli/Chatarkh	22°04'05.3"N 81°38'30.7"E	Groundnut	EPF-22		
18/Sept	Kharif	Bilaspur/Takhatpur	22°07'42.4"N 82°05'10.9"E	Groundnut	EPF-23		
18/Sept	Kharif	Bhatapara/Endri	21°44'16.4"N 81°58'15.4"E	Soybean	EPF-24		
18/Sept	Kharif	Bemetara/farmers	21°26'28.5"N 81°27'32.6"E	Soybean	EPF-25		
18/Sept	Kharif	Bilaspur/BTCCAR S farm	22°06'19.2"N 82°08'16.8"E	Groundnut	EPF-26		
19/Jan	Rabi	Bilaspur/BTCCAR S farm	22°06'28.0"N 82°21.7"E	Mustard	EPF-19		
18/Sept	Kharif	Bilaspur farmer field /	22°12'37.1"N 82°07'05.7"E	Groundnut	EPF-28		
19/Sept	Kharif	Ambikapur/Mainpat	22°46'05.5"N 83°15'53.3"E	Potato	EPF-29		
19/Nov	Kharif	Bilaspur KVK Farm	22°06'18.4"N 82°08'41.5"E	Pigeonpea	EPF-30		
Collection of insect cadavers from Groundnut fields

Insect cadavers from Soybean fields

Plate 1.1 Collection of insect cadavers from different location showing varying symptoms of infection of *B. bassiana*
Plate 1.2 Typical symptoms of larvae infected by Nomuraea rileyi (1-6)

Collection of insect cadavers from different farmers field in soybean crop
Plate 1.3 Different instars of larvae of Spodoptera litura (1-6)
Survey findings indicated that for the infection of EPF on insects, moderate to low temperature along with moisture required. Proper moisture and moderate temperature were maintained naturally during the months of September to October and goes slow down. Similarly in December to January temperature goes low and proper moisture was maintained.

Various researchers were also doing such types of survey from agricultural fields, conserved and reserved forest and finding agreed to our results as they concluded that mostly EPF were collected from September to January from various orthopodos, Hemiptera, Homoptera insects. Gupta (2003) suggested rainy days and amount of rainfall also play a role for infection of EPF, Thakur and Sandhu (2010); Prasad et al., (2011); Omoloye et al., (2015); Moorthi et al., (2018); Clifton et al., (2018) also reported that mostly cadavers were collected from soybean crop and maximum from dense crops.

References

Clifton, E.H., Jaronski, S.T., Coates, B.S., Hodgson, E.W and Gassmann, A.J. 2018. Effects of endophytic entomopathogenic fungi on soybean aphid and identification of Metarhizium isolates from agricultural fields. 13(3): 194-198.

Gupta, V. P. 2003. Natural occurrence of the entomopathogenic fungus Nomuraea rileyi in the soybean green semilooper, Chrysodeixis acuta, in India. Online. Plant Health Progress doi:10.1094/PHP-2003-0113-01-HN.

Khachatourians, G.G. 1996. Biochemistry and molecular biology of entomopathogenic fungi, In: Human and animal relationships Mycota VI (DH Howard and JD Miller, eds.). Springer, Heidelberg. 331-363.

Moorthi, V., Balasubramanian, J., Ramar, C., Murugan, K. 2015. Biocontrol Potential of Entomopathogenic Fungi against Spodoptera Litura. Scientia Agriculturae, 12 (1), 23-27.

Nidhi, K., Gaur, N and Pandey, R. 2018. A survey of the local isolates of entomopathogenic fungi in Uttarakhand region. Journal of Entomology and Zoology Studies. 6(1): 1725-1730

Omoloye, A.A., Ajifolokun, A. O. and Tobih, F.O.2015. Sources and abundance of fungi with entomopathogenic potential for control of the cowpea pod borer, Maruca vitrata Fab. in Ibadan, Nigeria. Journal of Entomology and Nematology. 7(3):18-25.

Prasad, R., Prabhu, S.T. and Balikai, R. A. 2011, Status of insect pest and their natural enemies on rice under rainfed ecosystems. Int. J. Agricult. Stat. Sci., 7(2): 473-482.

Tahira, G., Shafqat, S. and Khan, A. 2014. Entomopathogenic fungi as effective insect pest management tactic: a review. Applied Sci. and Business . I (1): 10-18.

Thakur, R. and Sandhu, S. 2010.Distribution, occurrence and natural invertebrate hosts of indigenous entomopathogenic fungi of Central India. Indian J. Microbiol. 50(1): 89–96.
Vinod Kumar Nirmalkar, N. Lakplae and Tiwari. R.K.S. 2020. Natural Occurrence and Distribution of Entomopathogenic Fungi from Chhattisgarh. Int.J.Curr.Microbiol.App.Sci. 9(01): 1990-1998. doi: https://doi.org/10.20546/ijcmas.2020.901.225