ON LUSTERNIK-SCHNIRELMANN CATEGORY OF SO(10)

N. IWASE, K. KIKUCHI AND T. MIYAUCHI

Abstract. Let G be a compact connected Lie group and $p : E \to \Sigma A(A = \Sigma A_0)$ a principal G-bundle with a characteristic map $\alpha : A \to G$. We assume that there is a cone-decomposition $\{K_i \to F_{i-1} \to F_i \mid 1 \leq i \leq n, F_0 = \{\ast\} \text{ and } F_n \simeq X\}$ of G of length m. Our main theorem is as follows: we have $\text{cat}(X) \leq m + 1$, if the characteristic map α is compressible into F_1 and the Berstein-Hilton Hopf invariant $H_1(\alpha) = 0 \in [A, \Omega F_1 \ast \Omega F_1]$. We also apply it to the principal bundle $\text{SO}(9) \hookrightarrow \text{SO}(10) \to S^9$ to determine the L-S category of SO(10).

1. Introduction

In this paper, we work in the category of pointed CW-complex and don’t distinguish a map from its homotopy class to make the arguments simpler. The Lusternik-Schnirelmann category of a space X is the least integer n such that there exists an open covering $U_0, \ldots U_n$ of X with each U_i contractible in the space X. We denote this by $\text{cat}(X) = n$ and if no such integer exists, we write $\text{cat}(X) = \infty$.

Theorem 1.1 (Ganea [3]). Let X be a connected space. Then there is a sequence of fibrations $F_n X \to G_n X \to X$, natural with respect to X so that $\text{cat}(X) \leq n$ if and only if the fibration $G_n X \to X$ has a cross-section.

Here, $F_n X$ has the homotopy type of $E^{n+1} \Omega X = \Omega X^\ast(n+1)$ the $(n+1)$-fold join of ΩX and $G_n X$ has the homotopy type of the ΩX-projective n-space $P^n \Omega X$ in the sense of Stasheff [12] equipped with the composition $e^X_n : P^n \Omega X \hookrightarrow P^\infty \Omega X \simeq X$, where e^X_1 is given by the evaluation map (see also [4]).

Let R be a commutative ring and X a connected space. The cup-length of X with coefficients in R is the least non-negative integer k (or ∞) such that all $(k + 1)$-fold cup products vanish in the reduced cohomology $\tilde{H}^*(X; R)$. We denote this integer k by $\text{cup}(X; R)$ following Iwase [6].

In 1967, Ganea introduced in [3] a homotopy invariant $\text{Cat}(X)$ for a space X, modifying Fox’s strong category. In the same paper, he gave the following characterization using the notion of a cone-decomposition.

Definition 1.2 (Ganea [3]). The strong category $\text{Cat}(X)$ of a connected space X is 0 if X is contractible and, otherwise, is equal to the least positive integer n.
such that there are cofibration sequences (called a cone-decomposition of length m)
$$\{K_i \to F_{i-1} \to F_i \mid 1 \leq i \leq n, \ F_0 = \{\ast\} \text{ and } F_n \simeq X\},$$
which is often called the cone-length of X.

The following inequalities among these invariants are well-known
$$\cup(X; R) \leq \text{cat}(X) \leq \text{Cat}(X).$$

Let $f : \Sigma X \to \Sigma Y$ be a map. We denote $H_1(f) \in [\Sigma X, \Omega \Sigma Y \ast \Omega \Sigma Y]$ by the Berstein-Hilton Hopf invariant (see Berstein and Hilton [1]).

The purpose of this paper is to prove the following theorem. Let G be a connected compact Lie group with a cone-decomposition of length m, that is, there are cofibration sequences
$$\{K_i \to F_{i-1} \to F_i \mid 1 \leq i \leq m\}$$
with $F_0 = \ast$ and $F_m \simeq G$. Let $G \hookrightarrow E \to \Sigma A (A = \Sigma A_0)$ be a principal bundle with a characteristic map $\alpha : A \to G$. The following is our main result.

Theorem 1.3. If α is compressible into F_1, $H_1(\alpha) = 0 \in [A, \Omega F_1 \ast \Omega F_1]$ and K_m is a sphere, then we obtain $\text{cat}(E) \leq m + 1$.

In some application, we need to weaken the hypothesis slightly: suppose that there exists a space $F'_1 = \Sigma K'_1$ with $K'_1 \subset K_1$. Under the condition, the above theorem is extended as the following form.

Theorem 1.4. If α is compressible into F'_1, $H_1(\alpha) = 0$ and K_m is a sphere, then we obtain $\text{cat}(E) \leq m + 1$.

This yields, we obtain the following result.

Theorem 6.1. $\text{cat}(\text{SO}(10)) = 21$.

In Section 2 and 3, we construct a structure map and a cone-decomposition of some spaces which play the vital role in the proof of the main theorems. In Section 4, we show the important relation between a structure map and a cone-decomposition which are constructed in Section 2 and 3. In Section 5, we prove Theorem 1.4. In Section 6, we show some applications of Theorem 1.4.

2. Structure map associated with a filtration

Definition 2.1. The filtered space X is the space X equipped with a sequence of subspaces,
$$X \supset \cdots \supset X_n \supset X_{n-1} \supset \cdots \supset \{\ast\}.$$We denote $i^X_{m,n} : X_m \to X_n$ by the inclusion map for $m < n$.

Definition 2.2. Suppose that the space X and Y are filtered by $\{X_n\}$ and $\{Y_n\}$, respectively. A filtered map $f : X \to Y$ is a filtration-preserving map, that is, $f(X_n) \subset Y_n$ for all n.

We denote $p^\Omega X_m$ by the map $E^m \Omega X \to P^{m-1} \Omega X$ in Theorem 1.1 and $i^{\Omega X}_{m,n} : P^m \Omega X \to P^n \Omega X$ by the inclusion map for $m < n$.
Proposition 2.3. Let X and Y be filtered by $\{X_n\}$ and $\{Y_n\}$, respectively and a map $f : X \to Y$ be a filtered map. If the filtration of X is a cone-decomposition of X, say $\{L_i \xrightarrow{h_i} X_{i-1} \xrightarrow{i_{i-1,i}^Y} X_i \mid 1 \leq i \leq n\}$, then there exist families of maps $\{f_i : X_i \to P^i\Omega Y_i \mid 0 \leq i \leq n\}$ and $\{g_i : L_i \to E^i\Omega Y_i \mid 1 \leq i \leq m\}$ such that $\{f_i\}$ and $\{g_i\}$ satisfy the following conditions.

1. The following diagram is commutative.

\[
\begin{array}{ccc}
L_i & \xrightarrow{h_i} & X_{i-1} \\
| & | & | \\
g_i & \downarrow f_{i-1} & \downarrow f_i \\
| & | & | \\
E^i\Omega Y_i & \xrightarrow{P^i\Omega Y_i} & P^i\Omega Y_i
\end{array}
\]

2. $e_i^Y \circ f_i = f \mid X_i$

Proof. We prove the proposition by induction on i. In the case of $i = 1$, we put $g_1 = \text{ad}(f \mid X_1)$, $f_0 = \ast$, and $f_1 = \Sigma \text{ad}(f \mid X_1)$, respectively. Then the following diagram commutes.

\[
\begin{array}{ccc}
L_1 & \xrightarrow{\ast} & \Sigma L_1 \\
| & | & | \\
g_1 & \downarrow f_0 & \downarrow f_1 \\
| & | & | \\
\Omega Y_1 & \xrightarrow{\ast} & \Sigma \Omega Y_1
\end{array}
\]

Therefore, the condition (1) is satisfied when $i = 1$. Also the condition (2) holds from the following equation. For $t \wedge x \in \Sigma L_1$,

\[
e_i^Y \circ f_1(t \wedge x) = \text{ev} \circ \Sigma \text{ad}(f \mid X_1)(t \wedge x)
= \text{ev}(t \wedge \Sigma \text{ad}(f \mid X_1)(x))
= \text{ad}(f \mid X_1)(x)(t)
= (f \mid X_1)(t \wedge x).
\]

Suppose (1) and (2) hold when $i = k - 1$. First, we construct $g_k : L_k \to E^k\Omega Y_k$ from the exact sequence:

\[
[L_k, E^k\Omega Y_k] \xrightarrow{P^k\Omega Y_k} [L_k, P^{k-1}\Omega Y_k] \xrightarrow{e_{k-1}} [L_k, Y_k].
\]

We use the equation

\[
e_{k-1}^Y \circ P^{k-1}\Omega Y_{k-1,k} \circ f_{k-1} = i_{k-1,k}^Y \circ e_{k-1}^Y \circ f_{k-1}
= i_{k-1,k}^Y \circ f \mid X_k \circ i_{k-1,k}^X
\]

and $i_{k-1,k}^X \circ h_{k-1} = 0$ by $L_k \xrightarrow{h_{k-1}} X_{k-1} \xrightarrow{i_{k-1,k}^X} X_k$ is the cofibre sequence. So, we have $e_{k-1}^Y(P^{k-1}\Omega Y_{k-1,k} \circ f_{k-1} \circ h_{k-1}) = 0 \in [L_k, Y_k]$ and there exists a map
$g_k : L_k \to E^k\Omega Y_k$ such that $\frac{\partial}{\partial Y_k}(g_k) = P^{k-1}\Omega_{i_{k-1,k}} \circ f_{k-1} \circ h_{k-1}$. Second, we construct a map $f'_k : X_k \to P^k\Omega Y_k$. We define $f'_k : X_k \to P^k\Omega Y_k$ as follows:

$$f'_k = P^{k-1}\Omega_{i_{k-1,k}} \circ f_{k-1} \cup C(g_k)$$

which makes the right square of the following diagram commutative:

By definition, f'_k satisfies the equation,

$$(f'_k \cup \Sigma g_k) \circ \nu_k = \bar{\nu}_k \circ f'_k,$$

where $\nu_k : X_k \to X_k \cup \Sigma L_k$ and $\bar{\nu}_k : P^k\Omega Y_k \to P^k\Omega Y_k \cup \Sigma E^k\Omega Y_k$ are the canonical copairings. In the exact sequence $[X_{k-1}, Y_k] \xleftarrow{i_{k-1,k}^X} [X_k, Y_k] \xrightarrow{\varphi} [\Sigma L_k, Y_k]$, we have the equation,

$$i_{k-1,k}^X (e_k^Y \circ f'_k) = e_k^Y \circ f'_k \circ i_{k-1,k}^X$$

$$= e_k^Y \circ (i_{k-1,k}^Y \circ P^{k-1}\Omega_{i_{k-1,k}} \circ f_{k-1})$$

$$= e_k^Y \circ P^{k-1}\Omega_{i_{k-1,k}} \circ f_{k-1}$$

$$= i_{k-1,k}^Y \circ f|_{X_{k-1}}$$

$$= f|_{X_k} \circ i_{k-1,k}^X$$

$$= i_{k-1,k}^X (f|_{X_k}).$$

By Theorem B. 10 of [2], there exists a map $\delta'_k : \Sigma L_k \to Y_k$ such that

$$f|_{X_k} = \nabla Y_k \circ (e_k^Y \circ f'_k \cup \delta'_k) \circ \nu_k.$$

Let us consider the following exact sequence,

$$[L_k, \Omega P^{k-1}\Omega Y_k] \xrightarrow{\Omega e_{k-1,k}^Y} [L_k, \Omega Y_k] \xrightarrow{\Delta} [L_k, E^k\Omega Y_k] \xrightarrow{\text{ad}} [\Sigma L_k, P^{k-1}\Omega Y_k] \xrightarrow{\nu_k_{i_{k-1,k}}} [\Sigma L_k, Y_k].$$
Since Ωe^Y_{k-1} has a section, there exists a map $\delta_k : \Sigma L_k \to P^{k-1}Y_k$ such that $\delta'_k = e^Y_{k-1} \circ \delta_k$. Therefore we have the following equation:

$$f|_{X_k} = \nabla_{Y_k} \circ (e^Y_k \circ f'_k \lor e^Y_{k-1} \circ \delta_k) \circ \nu_k$$

$$= \nabla_{Y_k} \circ (e^Y_k \circ f'_k \lor e^Y_k \circ f \circ i^X_{k-1,k} \circ \delta_k) \circ \nu_k$$

$$= \nabla_{Y_k} \circ (e^Y_k \lor e^Y_k) \circ (f'_k \lor f \circ i^X_{k-1,k} \circ \delta_k) \circ \nu_k$$

$$= e^Y_k \circ \nabla_{P^k\Omega Y_k} \circ (f'_k \lor f \circ i^X_{k-1,k} \circ \delta_k) \circ \nu_k.$$

We define a map f_k by a map $\nabla_{P^k\Omega Y_k} \circ (f'_k \lor f \circ i^X_{k-1,k} \circ \delta_k) \circ \nu_k$, then f_k satisfies the condition of (2). Since ν_k is the copairing, we have the equations

$$pr_1 \circ \nu_k \circ i^X_{k-1,k} = id_{X_k} \circ i^X_{k-1,k} = i^X_{k-1,k}$$

and $pr_2 \circ \nu_k \circ i^X_{k-1,k} = q \circ i^X_{k-1,k} = 0,$

where $pr_1 : X_k \lor \Sigma L_k \to X_k$ and $pr_2 : X_k \lor \Sigma L_k \to \Sigma L_k$ are the first and second projections, respectively. Hence we obtain the equation

$$f_k \circ i^X_{k-1,k} = \nabla_{P^k\Omega Y_k} \circ (f'_k \lor f \circ i^X_{k-1,k} \circ \delta_k) \circ \nu_k \circ i^X_{k-1,k}$$

$$= f'_k \circ i^X_{k-1,k}$$

$$= i^X_{k-1,k} \circ P^{k-1}\Omega i^X_{k-1,k} \circ f_{k-1}.$$

It follows that f_k satisfies the condition of (1), too. \hfill \Box

Let $\{f_i : X_i \to P^i\Omega Y_i | 0 \leq i \leq n\}$ and $\{g_i : L_i \to E^i\Omega Y_i | 1 \leq i \leq m\}$ be the map obtained from the filtered map $f : X \to Y$ by Proposition 2.3. We denote $\nu_i : X_i \to X_k \lor \Sigma L_i$ and $\bar{\nu}_i : P^i\Omega Y_i \to P^k\Omega Y_i \lor \Sigma E^i\Omega Y_i$ by the canonical copairings.

Proposition 2.4. If the complex L_i be a co-H-space, then the following diagram is commutative.

$$\begin{array}{ccc}
X_i & \xrightarrow{\nu_i} & X_k \lor \Sigma L_i \\
\downarrow f_i & & \downarrow f_i \lor \Sigma g_i \\
P^i\Omega Y_i & \xrightarrow{\bar{\nu}_i} & P^k\Omega Y_i \lor \Sigma E^i\Omega Y_i.
\end{array}$$

Proof. By the definition of $f_i,$ and by the relation between the composition and the wedge of maps, we have

$$(f_i \lor \Sigma g_i) \circ \nu_i = ((\nabla_P \circ (f'_i \lor i^Y_{i,i} \circ \delta_i) \circ \nu_i) \lor \Sigma g_i) \circ \nu_i$$

$$= (\nabla_P \circ (f'_i \lor \delta_i \circ \nu_i) \lor \Sigma g_i) \circ \nu_i$$

$$= (\nabla_P \lor \Sigma g_i) \circ (f'_i \lor \delta_i \circ \nu_i) \lor \Sigma g_i) \circ \nu_i.$$
where \(\nu_i : \Sigma L_i \to \Sigma L_i \lor \Sigma L_i \) is the co-multiplication and \(T : \Sigma L_i \lor \Sigma L_i \to \Sigma L_i \lor \Sigma L_i \) is the commutative map. So we can proceed as follows:

\[
(f_i \lor \Sigma g_i) \circ \nu_i = (\nabla_P \lor \text{id}_E) \circ (f_i' \lor \iota_{i-1}^{\Omega i} \circ \delta_i \lor \Sigma g_i) \circ (\text{id}_X \lor \nu_i) \circ \nu_i = (\nabla_P \lor \text{id}_E) \circ (f_i' \lor \iota_{i-1}^{\Omega i} \circ \delta_i \lor \Sigma g_i) \circ (\text{id}_X \lor T \circ \nu_i) \circ \nu_i = (\nabla_P \lor \text{id}_E) \circ (f'_i \lor T' \circ (\Sigma g_i \lor \iota_{i-1}^{\Omega i} \circ \delta_i)) \circ (\text{id}_X \lor \nu_i) \circ \nu_i = (\nabla_P \lor \text{id}_E) \circ (f'_i \lor T') \circ \{ (f'_i \lor \Sigma g_i) \circ \nu_i \lor \iota_{i-1}^{\Omega i} \circ \delta_i \} \circ \nu_i,
\]

where \(T' : \Sigma E^i \Omega Y_i \lor P^i \Omega Y_i \to P^i \Omega Y_i \lor \Sigma E^i \Omega Y_i \) is the commutative map and \(\text{id}_P = \text{id}_{P^i \Omega Y_i} \). By the equation (2.1), we proceed further as follows:

\[
(f_i \lor \Sigma g_i) \circ \nu_i = (\nabla_P \lor \text{id}_E) \circ (\text{id}_P \lor T') \circ \{ (\nu_i \lor f'_i \lor \iota_{i-1}^{\Omega i} \circ \delta_i) \} \circ \nu_i = (\nabla_P \lor \text{id}_E) \circ (\nu_i \lor f'_i \lor \iota_{i-1}^{\Omega i} \circ \delta_i) \circ \nu_i = (\nabla_P \lor \nabla_{E^i \Omega Y_i}) \circ (\text{id}_P \lor T' \lor \text{id}_E) \circ \nu_i \circ \nu_i \circ \iota_{i-1}^{\Omega i} \circ \delta_i \circ \nu_i = \nu_i \circ \nabla_P \circ (f'_i \lor \iota_{i-1}^{\Omega i} \circ \delta_i) \circ \nu_i = \nu_i \circ f'_i.
\]

\[\Box\]

3. Cone-Decomposition associated with projective spaces

We denote the \(k \)-skeleton of a space \(X \) by \((X)^{(k)}\) and the restriction of \(f : X \to Y \) on \((X)^{(k)}\) by \((f)^{(k)}\). By the fact that \((f)^{(k)}\) is compressible into \((Y)^{(k)}\), we use the same symbol \((f)^{(k)} : (X)^{(k)} \to (Y)^{(k)}\). And if the dimension of \(X \) is less than or equal to \(n \), then we use the same symbol \(f : X \to (Y)^{(n)} \), too.

Let \(G \) be a compact Lie group with a cone-decomposition of length \(m \), that is, there are cofibration sequences

\[
\{ K_i \xrightarrow{h_i} F_{i-1} \xrightarrow{i_{i-1,m}^F} F_i \mid 1 \leq i \leq m \},
\]

with \(F_0 = * \) and \(F_m \simeq G \). Let \(l \) be the dimension of Lie group \(G \).

Lemma 3.1. Suppose that the complex \(K_m \) is the sphere \(S^\ell \) and \(\ell \geq 3, m \geq 3 \). Then there is a cofibre sequence as follows:

\[
(E^m \Omega F_{m-1})^{(\ell-1)} \lor K_m \xrightarrow{\nu} (P^{m-1} \Omega F_{m-1})^{(\ell)} \to (P^m \Omega F_m)^{(\ell)}.
\]

Proof. First, we determine the homotopy type of the \((\ell-1)\)-skeleton of the homotopy fibre of the map \(P^{m-1} \Omega i_{m-1,m}^F : P^{m-1} \Omega F_{m-1} \to P^{m-1} \Omega F_m \). Let \(\mathcal{F} \) be
the homotopy fibre of \(P^{m-1} \Omega i_{m-1,m}^F \), we consider the following commutative diagram with rows and columns as fibrations:

\[
\begin{array}{ccc}
\Omega(E^m \Omega F_m, E^m \Omega F_{m-1}) & \xrightarrow{\Omega} & \Omega(F_m, F_{m-1}) \\
E^m \Omega F_m & \xrightarrow{p_m} & P^{m-1} \Omega F_{m-1} & \xrightarrow{e_{m-1}} & F_m \\
E^m \Omega F_{m-1} & \xrightarrow{p_m} & P^{m-1} \Omega F_{m-1} & \xrightarrow{e_{m-1}} & F_m \\
\end{array}
\]

Since \((F_m, F_{m-1})\) is \((\ell - 1)\)-connected, \((\Omega F_m, \Omega F_{m-1})\) is \((\ell - 2)\)-connected and \((E^m \Omega F_m, E^m \Omega F_{m-1})\) is \((\ell + m - 3)\)-connected. Hence \(\Omega(E^m \Omega F_m, E^m \Omega F_{m-1})\) is \((\ell + m - 4)\)-connected. By the Serre exact sequence

\[
H_{2\ell + m - 5}(\Omega(E^m \Omega F_m, E^m \Omega F_{m-1})) \rightarrow \cdots \rightarrow H_k(\Omega(E^m \Omega F_m, E^m \Omega F_{m-1})) \rightarrow H_k(\mathfrak{F}) \rightarrow H_{k-1}(\Omega(E^m \Omega F_m, E^m \Omega F_{m-1})) \rightarrow \cdots,
\]

we obtain that \(H_k(\mathfrak{F})\) is isomorphic to \(H_k(\Omega(F_m, F_{m-1}))\) for \(k \leq \ell \leq \ell + m - 3\), and hence that \(\mathfrak{F}\) is \((\ell - 2)\)-connected, \(\ell \geq 3\). On the other hand, by the Blakers-Massey’s theorem, we have \(\pi_l(F_m, F_{m-1}) \cong \pi_l(S^l)\), and hence we obtain

\[
\pi_{\ell-1}(\Omega(F_m, F_{m-1})) \cong \pi_l(F_m, F_{m-1}) \cong \pi_l(S^l) \cong \mathbb{Z}.
\]

Then by Hurewicz Isomorphism Theorem, we obtain

\[
H_{\ell-1}(\mathfrak{F}) \cong H_{\ell-1}(\Omega(F_m, F_{m-1})) \cong \pi_{\ell-1}(\Omega(F_m, F_{m-1})) \cong \mathbb{Z}.
\]

Thus \(\mathfrak{F}\) has the homology decomposition as

\[
\mathfrak{F} \cong S^{\ell-1} \cup \text{(Moore cells in dimensions } \geq \ell)\text{.}
\]

By Ganea’s fibre-cofibre construction (see Ganea [3]), we obtain a map

\[
\phi_0 : P^{m-1} \Omega F_{m-1} \cup C\mathfrak{F} \rightarrow P^{m-1} \Omega F_m,
\]

as the homotopy pushout

\[
\begin{array}{ccc}
\{\ast\} & \xrightarrow{\phi_0} & P^{m-1} \Omega F_{m-1} \\
\downarrow & & \downarrow \\
\ast & \rightarrow & P^{m-1} \Omega F_{m-1} \cup C\mathfrak{F},
\end{array}
\]

which has the homotopy type of the homotopy pullback of the diagonal

\[
\Delta : P^{m-1} \Omega F_m \rightarrow P^{m-1} \Omega F_m \times P^{m-1} \Omega F_m
\]

and the inclusion

\[
P^{m-1} \Omega F_{m-1} \times P^{m-1} \Omega F_{m} \cup P^{m-1} \Omega F_{m} \times \{\ast\} \hookrightarrow P^{m-1} \Omega F_m \times P^{m-1} \Omega F_m,
\]
(see, for example, [4, Lemma 2.1] with \((X, A) = (P^{m-1}\Omega F_m, P^{m-1}\Omega F_{m-1}), (Y, B) = (P^{m-1}\Omega F_m, \{\ast\})\) and \(Z = P^{m-1}\Omega F_m\)). Hence \(\mathcal{F}_0\) is given by the pullback of the trivial map
\[
\{\ast\} \to P^{m-1}\Omega F_m \times P^{m-1}\Omega F_m
\]
and the inclusion
\[
P^{m-1}\Omega F_{m-1} \times P^{m-1}\Omega F_m \cup P^{m-1}\Omega F_m \times \{\ast\} \hookrightarrow P^{m-1}\Omega F_m \times P^{m-1}\Omega F_m
\]
which has the homotopy type of the pushout
\[
\mathcal{F} \times \Omega P^{m-1}\Omega F_m \to P^{m-1}\Omega F_{m-1}
\]
(see, for example, [4, Lemma 2.1] with \((X, A) = (P^{m-1}\Omega F_m, P^{m-1}\Omega F_{m-1}), (Y, B) = (P^{m-1}\Omega F_m, \{\ast\})\) and \(Z = \{\ast\}\)). Thus the homotopy fibre \(\mathcal{F}_0\) of \(\phi_0\) has the homotopy type of the join \(\mathcal{F} \ast \Omega P^{m-1}\Omega F_m\) and is \((\ell - 1)\)-connected, and hence \(\phi_0\) is \(\ell\)-connected. Thus we have that
\[
(P^{m-1}\Omega F_{m-1})^{(\ell)} \cup CS^{\ell-1} \simeq (P^{m-1}\Omega F_m)^{(\ell)}.
\]
We are now ready to show that \((P^m\Omega F_{m-1})^{(\ell)} \cup CS^{\ell-1} \simeq (P^m\Omega F_m)^{(\ell)}\). Since \((E^m\Omega F_m, E^m\Omega F_{m-1})\) is \((\ell + m - 3)\)-connected and \(m \geq 3\), \((E^m\Omega F_{m-1})^{(\ell - 1)} \simeq (E^m\Omega F_m)^{(\ell - 1)}\) and hence
\[
(P^m\Omega F_{m-1})^{(\ell)} \cup CS^{\ell-1} \simeq (P^m\Omega F_{m-1})^{(\ell)} \cup C(S^{\ell-1} \vee (E^m\Omega F_{m-1})^{(\ell - 1)})
\]
\[
\simeq (P^m\Omega F_m)^{(\ell)} \cup C(E^m\Omega F_{m-1})^{(\ell - 1)} \simeq (P^m\Omega F_m)^{(\ell)}.
\]
This completes the proof of Lemma 3.1.

Using Lemma 3.1, we construct cone-decompositions of \(F_m \times F_1\), \((P^m\Omega F_m)^{(\ell)}\) and \((P^m\Omega F_m)^{(\ell)} \times (\Sigma \Omega F_1)^{(\ell)}\).
First, we construct a cone-decomposition of $F_m \times F_1$: Let $K^{m,1}_i$ and $F^{m,1}_i$ be as follows.

$$K^{m,1}_i = \{K_i \times \{\ast\}\} \cup \{K_{i-1} \ast K_1\} \quad \text{for } 1 \leq i \leq m,$$

$$F^{m,1}_i = F_i \times \{\ast\} \cup F_{i-1} \times F_1 \quad \text{for } 0 \leq i \leq m,$$

$$K^{m,1}_{m+1} = K_m \ast K_1 \quad \text{and} \quad F^{m,1}_{m+1} = F_m \times F_1,$$

where K_0 and F_{-1} are empty sets. We denote a map $\chi_i : (CK_i, K_i) \to (F_i, F_{i-1})$ by the characteristic map. We introduce the relative Whitehead product $[\chi_{i-1}, \chi_1]^r : K_{i-1} \ast K_1 \to F^{m,1}_{i-1}$ defined as follows:

$$K_{i-1} \ast K_1 = (CK_{i-1} \times K_1) \cup (K_{i-1} \times CK_1) \xrightarrow{(\chi_{i-1} \times \chi_1) \cup (\chi_{i-1} \times \chi_1)} F_{i-1} \times \{\ast\} \cup F_{i-2} \times F_1 = F^{m,1}_{i-1}.$$

Let $w^{m,1}_i : K^{m,1}_i \to F^{m,1}_i$ be the wedge of maps $(incl) \circ (h_i \times \{\ast\}) : K_i \times \{\ast\} \to F_{i-1} \times \{\ast\} \leftarrow F^{m,1}_i$ and $[\chi_{i-1}, \chi_1]^r$ for $1 \leq i \leq m$, and $w^{m,1}_{m+1} : K^{m,1}_{m+1} \to F^{m,1}_{m+1}$ be $[\chi_m, \text{id}_{CK_1}]^r$. Let $i^{m,1}_i : F^{m,1}_i \to F^{m,1}_{i+1}$ be the canonical inclusion for $0 \leq i \leq m$. Then the set of cofibration sequences

$$(3.2) \quad \{K^{m,1}_i \xrightarrow{w^{m,1}_i} F^{m,1}_{i-1} \xrightarrow{i^{m,1}_i} F^{m,1}_i \mid 1 \leq i \leq m+1\}$$

is a cone-decomposition of $F_m \times F_1$ of length $m + 1$.

Second, we construct a cone-decomposition of $(P^m\Omega F_m)^{(\ell)}$. By lemma 3.1, we obtain a cone-decomposition of $(P^m\Omega F_m)^{(\ell)}$ of length m:

$$\begin{align*}
(\Omega F_{m-1})^{(\ell-1)} \to \{\ast\} \leftarrow (\Sigma \Omega F_{m-1})^{(\ell)} \\
(E^2\Omega F_{m-1})^{(\ell-1)} \to (\Sigma \Omega F_{m-1})^{(\ell)} \leftarrow (P^2\Omega F_{m-1})^{(\ell)} \\
\vdots \\
(E^{m-1}\Omega F_{m-1})^{(\ell-1)} \to (P^{m-2}\Omega F_{m-1})^{(\ell)} \leftarrow (P^{m-1}\Omega F_{m-1})^{(\ell)} \\
(E^m\Omega F_{m-1})^{(\ell-1)} \cup K_m \to (P^{m-1}\Omega F_{m-1})^{(\ell)} \leftarrow (P^m\Omega F_m)^{(\ell)}.
\end{align*}$$

Third, we construct a cone-decomposition of $(P^m\Omega F_m)^{(\ell)} \times (\Sigma \Omega F_1)^{(\ell)}$. Let \hat{E}_i and \hat{F}_i be as follows.

$$\hat{E}_i = \{(E^i \Omega F_{m-1})^{(\ell-1)} \times \{\ast\}\} \cup \{(E^{i-1} \Omega F_{m-1})^{(\ell-1)} \ast (\Omega F_1)^{(\ell-1)}\}$$

for $1 \leq i \leq m - 1$,

$$\hat{E}_m = \{(E^m \Omega F_{m-1})^{(\ell-1)} \cup K_m \times \{\ast\}\} \cup \{(E^{m-1} \Omega F_{m-1})^{(\ell-1)} \ast (\Omega F_1)^{(\ell-1)}\},$$

$$\hat{E}_{m+1} = \{(E^m \Omega F_{m-1})^{(\ell-1)} \cup K_m \ast (\Omega F_1)^{(\ell-1)}\},$$

$$\hat{F}_i = (P^i \Omega F_{m-1})^{(\ell)} \times \{\ast\} \cup (P^{i-1} \Omega F_{m-1})^{(\ell)} \times (\Sigma \Omega F_1)^{(\ell)}$$

for $0 \leq i \leq m - 1$,

$$\hat{F}_m = (P^m \Omega F_m)^{(\ell)} \times \{\ast\} \cup (P^{m-1} \Omega F_{m-1})^{(\ell)} \times (\Sigma \Omega F_1)^{(\ell)}$$
and
\[\hat{F}_{m+1} = (P^m\Omega F_m)^{(\ell_1)} \times (\Sigma \Omega F_1)^{(\ell_1)}. \]

Here \(E^{-1}\Omega F_{m-1} \) and \(P^{-1}\Omega F_{m-1} \) are empty sets. We denote maps
\[\chi' : (C((\Omega F_1)^{(\ell_1)}), (\Omega F_1)^{(\ell_1)}) \to (\Sigma(\Omega F_1)^{(\ell_1)}, \{\ast\}), \]
\[\chi'_1 : (C(E'\Omega F_{m-1})^{(\ell_1)}, (E'\Omega F_{m-1})^{(\ell_1)}) \to ((P^i\Omega F_{m-1})^{(\ell_1)}, (P^i{-1}\Omega F_{m-1})^{(\ell_1)}) \]
for \(0 \leq i \leq m - 1 \) and
\[\chi'_m : (CE', E') \to ((P^m\Omega F_{m-1})^{(\ell_1)}, (P^{m-1}\Omega F_{m-1})^{(\ell_1)}) \]
by the characteristic maps, where \(E' = (E^m\Omega F_{m-1})^{(\ell_1)} \lor K_m \). Let \(\hat{w}_i : \hat{E}_i \to \hat{F}_{i-1} \) be the wedge of maps
\[(incl) \circ ((p_1^{\Omega F_{m-1}(\ell_1)} \times \{\ast\}) : (E^i\Omega F_{m-1})^{(\ell_1)} \times \{\ast\}) \to (P^{i-1}\Omega F_{m-1})^{(\ell_1)} \times \{\ast\} \]
\[\hookrightarrow \hat{F}_{i-1} \]
and
\[[\chi'_{i-1}, \chi']^r : (E^{i-1}\Omega F_{m-1})^{(\ell_1)} \lor (\Omega F_1)^{(\ell_1)} \to \hat{F}_{i-1} \]
for \(1 \leq i \leq m - 1 \), \(\hat{w}_m : \hat{E}_m \to \hat{F}_{m-1} \) be the wedge of maps
\[(incl) \circ (p' \times \{\ast\}) : \{(E^m\Omega F_{m-1})^{(\ell_1)} \lor K_m\} \times \{\ast\} \to (P^{m-1}\Omega F_{m-1})^{(\ell_1)} \times \{\ast\} \]
\[\hookrightarrow \hat{F}_{m-1} \]
and \([\chi'_{m-1}, \chi']^r\), and \(\hat{w}_{m+1} : \hat{E}_{m+1} \to \hat{F}_m \) be \([\chi'_{m-1}, \chi']^r\), where \(p' : (E^m\Omega F_{m-1})^{(\ell_1)} \lor K_m \to (P^{m-1}\Omega F_{m-1})^{(\ell_1)} \) is the map \(p' \) in Lemma \(3.1 \). We denote \(\hat{i}_i : \hat{F}_i \to \hat{F}_{i+1} \) by the canonical inclusion for \(0 \leq i \leq m \). Then the set of cofibration sequences
\[\{ \hat{E}_i \xrightarrow{\hat{w}_i} \hat{F}_{i-1} \xrightarrow{\hat{i}_{i-1}} \hat{F}_i | 1 \leq i \leq m + 1 \} \]
is a cone-decomposition of \((P^m\Omega F_m)^{(\ell_1)} \times (\Sigma \Omega F_1)^{(\ell_1)} \) of length \(m + 1 \).

4. Structure map and cone-decomposition

Let a cone-decomposition of \(F_m \) be \([3.1]\) and a \(k \)-filter of \(F_m \) be \(F_k \), we apply this Proposition \(2.3 \) to the identity map \(\text{id}_{F_m} : F_m \to F_m \). From this procedure, we obtain the structure maps \(\sigma_i : F_i \to P^i\Omega F_i \) for \(1 \leq i \leq m \) and the maps \(g'_j : K_j \to E^j\Omega F_j \) for \(1 \leq j \leq m \). We set \(g_j = g'_j : K_j \to (E^j\Omega F_j)^{(\ell_1)} \)
for \(1 \leq j \leq m - 1 \) and \(g_m : K_j \to (E^m\Omega F_m)^{(\ell_1)} \sim (E^m\Omega F_{m-1})^{(\ell_1)} \hookrightarrow (E^m\Omega F_{m-1})^{(\ell_1)} \lor K_m \) the composition \(g'_m \) and the inclusion map.

Let \(\nu^{m,1}_k : F^{m,1}_k \to F^{m,1}_k \lor \Sigma K^{m,1}_k \) and \(\hat{\nu}_k : \hat{F}_k \to \hat{F}_k \lor \Sigma \hat{K}_k \) be the canonical copairings for \(1 \leq k \leq m + 1 \). Then,
Lemma 4.1. the following diagram is commutative:

\[
\begin{array}{cccccc}
F_{m+1} & \overset{\nu_{m+1}}{\longrightarrow} & F_m & \overset{\nu_m}{\longrightarrow} & F_{m+1} & \overset{\nu_{m+1}}{\longrightarrow} \\
\downarrow g_m \ast g_1 & \quad & \downarrow \sigma_m & \quad & \downarrow \sigma_m \times \sigma_1 & \quad & \downarrow \sigma_m \times \sigma_1 \ast g_m \ast g_1 \\
\hat{E}_{m+1} & \overset{\hat{\nu}_{m+1}}{\longrightarrow} & \hat{F}_m & \overset{\hat{\nu}_m}{\longrightarrow} & \hat{F}_{m+1} & \overset{\hat{\nu}_{m+1}}{\longrightarrow} \hat{F}_{m+1} \ast \Sigma \hat{E}_{m+1}.
\end{array}
\]

Here the map \(\hat{\sigma}_m = \sigma_m \times \{ * \} \cup \sigma_m \times \sigma_1 \).

To prove this Lemma, it is necessary to show the following equation:

\[
T_1 \circ ((\nu_m \times \text{id}_{F_1}) \lor \text{id}_{\Sigma K^m_{m+1}}) \circ \nu_{m+1} = (\nu_{m+1} \cup \text{id}_{\Sigma K_m \times F_1}) \circ (\nu_m \times \text{id}_{F_1}).
\]

Here \(\nu_m : F_m \to F_m \lor \Sigma K_m \) is the canonical copairing and \(T_1 : F_{m+1}^m \cup_{F_1} (\Sigma K_m \times F_1) \lor \Sigma K^m_{m+1} \to (F_{m+1}^m \lor \Sigma K^m_{m+1}) \cup_{F_1} (\Sigma K_m \times F_1) \) is the canonical homeomorphism.

Proof. First, we show that the following diagram is commutative:

\[
\begin{array}{cccccc}
F_{m+1} & \overset{\nu_m \times \text{id}_{F_1}}{\longrightarrow} & F_{m+1} \lor \Sigma K_m \times F_1 & \overset{p_1}{\longrightarrow} & F_{m+1} \lor \Sigma K_m \times F_1 \\
\downarrow \nu_{m+1} & \quad & \downarrow \text{id}_{F_{m+1} \lor \nu'} & \quad & \downarrow \text{id}_{F_{m+1} \lor \nu'} \\
F_{m+1} \lor \Sigma K_m \times F_1 & \overset{\nu'}{\longrightarrow} & F_{m+1} \lor \Sigma K_m \times F_1 & \overset{p_1}{\longrightarrow} & F_{m+1} \lor \Sigma K_m \times F_1.
\end{array}
\]

where \(\nu' : \Sigma K_m \times F_1 = \Sigma K_m \times \Sigma K_1 = \Sigma K_m \times \Sigma F_1 \lor \Sigma K_m \times F_1 \lor \Sigma K_m \ast K_1 \) is the canonical copairing and \(p_1 \) is the map pinching \(\Sigma K_m \times F_1 \) to one point. This follow from Figure \[4\]

Therefore we have

\[
T_1 \circ ((\nu_m \times \text{id}_{F_1}) \lor \text{id}_{\Sigma K^m_{m+1}}) \circ \nu_{m+1} = T_1 \circ ((\nu_m \times \text{id}_{F_1}) \lor \text{id}_{\Sigma K^m_{m+1}}) \circ p_1 \circ (\text{id}_{F_{m+1}^m} \lor \nu') \circ (\nu_m \times \text{id}_{F_1}).
\]

Let us denote \(p_2 : F_{m+1}^m \lor_{F_1} (\Sigma K_m \times F_1) \lor_{F_1} (\Sigma K_m \times F_1) \lor \Sigma K^m_{m+1} \to F_{m+1}^m \lor_{F_1} \Sigma K^m_{m+1} \lor_{F_1} (\Sigma K_m \times F_1) \lor \Sigma K^m_{m+1} \) by the map pinching the second \(\Sigma K_m \times F_1 \) to one point, \(p_3 : F_{m+1}^m \lor_{F_1} (\Sigma K_m \times F_1) \lor \Sigma K^m_{m+1} \lor_{F_1} (\Sigma K_m \times F_1) \to (F_{m+1}^m \lor \Sigma K^m_{m+1}) \lor_{F_1} \Sigma K^m_{m+1} \) by the map pinching the first \(\Sigma K_m \times F_1 \) to one point, \(\nu_0 : \Sigma K_m \to \Sigma K_m \lor \Sigma K_m \) by the canonical co-multiplication and \(T_0 : \Sigma K_m \lor \Sigma K_m \to \Sigma K_m \lor \Sigma K_m \) by the
commutative map. It is easy to check the following:

\[
T_1 \circ ((\nu_m \times \text{id}_{F_1}) \lor \text{id}_{\Sigma K_{m+1}}) \circ \nu_{m+1}^{m,1} \\
= T_1 \circ p_2 \circ ((\nu_m \times \text{id}_{F_1}) \lor \text{id}_{\Sigma K_{m} \times F_1} \lor \text{id}_{\Sigma K_{m} \times K_1}) \\
\circ ((\text{id}_{F_{m+1}} \lor \nu') \circ (\nu_m \times \text{id}_{F_1})) \\
= T_1 \circ p_2 \circ ((\text{id}_{F_{m+1}} \lor \nu') \circ (\nu_m \times \text{id}_{F_1})) \\
\circ ((\nu_m \times \text{id}_{F_1}) \lor \text{id}_{\Sigma K_{m} \times F_1} \lor \nu') \\
\circ (\text{id}_{F_{m+1}} \lor (T_0 \times \text{id}_{F_1})) \\
\circ ((\nu_m \times \text{id}_{F_1}) \lor \text{id}_{\Sigma K_{m} \times F_1} \lor (\nu_m \times \text{id}_{F_1})).
\]
Using the equations \((\text{id}_{F_m} \times \nu_0) \circ \nu_m = (\nu_m \times \text{id}_{F_m}) \circ \nu_m\) and \(T_0 \circ \nu_0 = \nu_0\) from the assumption that \(K_m\) is a co-H-space, we have

\[
T_1 \circ ((\nu_m \times \text{id}_{F_1}) \vee \text{id}_{\Sigma K_{m+1}}) \circ \nu_{m+1}^1 \\
= p_3 \circ (\text{id}_{F_{m+1}} \cup \nu' \cup \text{id}_{\Sigma K \times F_1}) \circ (\text{id}_{F_{m+1}} \cup (T_0 \times \text{id}_{F_1})) \\
\circ (\text{id}_{F_{m+1}} \cup (\nu_0 \times \text{id}_{F_1})) \circ (\nu_m \times \text{id}_{F_1}) \\
= p_3 \circ (\text{id}_{F_{m+1}} \cup \nu' \cup \text{id}_{\Sigma K \times F_1}) \\
\circ (\text{id}_{F_{m+1}} \cup (\nu_0 \times \text{id}_{F_1})) \circ (\nu_m \times \text{id}_{F_1}) \\
= p_3 \circ (\text{id}_{F_{m+1}} \cup \nu' \cup \text{id}_{\Sigma K \times F_1}) \\
\circ ((\nu_m \times \text{id}_{F_1}) \cup \text{id}_{\Sigma K \times F_1}) \circ (\nu_m \times \text{id}_{F_1}).
\]

Using the diagram (4.1), we proceed further as follows:

\[
T_1 \circ ((\nu_m \times \text{id}_{F_1}) \vee \text{id}_{\Sigma K_{m+1}}) \circ \nu_{m+1}^1 = (\nu_{m+1} \cup \text{id}_{\Sigma K \times F_1}) \circ (\nu_m \times \text{id}_{F_1}).
\]

This completes the proof of Lemma 4.2. \(\square\)

Proof of Lemma 4.1. The commutativity of the left square follows from Proposition 2.9 of [11]. It is obvious that the middle square is commutative. We show the equation \((\sigma_m \times \sigma_1 \vee \Sigma g_{m} \ast q_1) \circ \nu_{m+1}^1 = \check{\nu}_{m+1} \circ (\sigma_m \times \sigma_1)\). Recall that the construction of the structure map \(\sigma_m : F_m \to P^m \Omega F_m\), we can see that \(\sigma_m = \nabla P^m \Omega F_m \circ (\sigma'_m \vee \iota_{m-1,m} \circ \delta_m) \circ \nu_m\). Here \(\sigma'_m\) is the induced map from the following diagram:

\[
\begin{array}{cccccc}
K_m & \xrightarrow{h_m} & F_{m-1} & \xrightarrow{\iota_{m-1,m}} & F_m \\
\downarrow{g'_m} & & \downarrow{p_{m-1}^m \Omega F_m} & \downarrow{\iota_{m-1,m}^m \Omega F_m} & \downarrow{\sigma'_m} \\
E^m \Omega F_m & \xrightarrow{P_{m}^m \Omega F_m} & P^{m-1} \Omega F_m & \xrightarrow{P^{m-1} \Omega F_m} & P^m \Omega F_m,
\end{array}
\]

and \(\delta_m : \Sigma K_m \to P^{m-1} \Omega F_m\) is the map pulled back the difference map \(\delta'_m : \Sigma K_m \to F_m\) which is the difference between the identity map of \(F_m\) and \(e_{m}^m \circ \sigma'_m\).
So we have the equation:

\[(\sigma_m \times \sigma_1 \vee \Sigma g_m \ast g_1) \circ \nu_{m+1}^{m,1}\]

\[= \{(\nabla^{p}_m \Omega^{m}_F \circ (\sigma'_m \vee (\iota^{m}_F \circ \delta_m) \circ \nu_m) \times \sigma_1 \vee \Sigma g_m \ast g_1) \circ \nu_{m+1}^{m,1}\}
\]

\[= \{(\nabla^{p}_m \Omega^{m}_F \times \text{id} \Omega^{1}_F) \circ (\iota^{1}_m \circ \delta_m) \times \sigma_1) \vee \Sigma g_m \ast g_1\}
\]

\[= (\nabla^{p}_m \Omega^{m}_F \times \text{id} \Omega^{1}_F \circ \iota^{1}_m \circ \delta_m) \times \sigma_1) \vee \Sigma g_m \ast g_1\]

\[= (\nu_m \times \text{id} \Omega^{1}_F) \circ \iota^{1}_m \circ \delta_m) \times \sigma_1\}
\]

\[T_2 \circ \{(\sigma'_m \times \sigma_1 \vee \Sigma g_m \ast g_1) \cup ((\iota^{m}_F \circ \delta_m) \times \sigma_1)\}
\]

\[= (\nu_{m+1} \cup \text{id} \Sigma K \times \Omega^{1}_F) \circ (\nu_m \times \text{id} \Omega^{1}_F)\]

\[= (\nabla^{p}_m \Omega^{m}_F \times \text{id} \Omega^{1}_F \circ \iota^{1}_m \circ \delta_m) \times \sigma_1\}
\]

where \(T_2 : (\hat{F}_{m+1}^{1} \cup \Sigma \hat{E}_{m+1}^{1} \cup \Omega^{1}_F \hat{F}_{m+1}^{1} \cup \Sigma \hat{E}_{m+1}^{1} \times \Sigma \hat{E}_{m+1}^{1}) \) is the canonical homeomorphism. By Lemma 4.2, we can proceed as follows:

\[(\sigma_m \times \sigma_1 \vee \Sigma g_m \ast g_1) \circ \nu_{m+1}^{m,1}\]

\[= (\nabla^{p}_m \Omega^{m}_F \times \text{id} \Omega^{1}_F \circ \iota^{1}_m \circ \delta_m) \times \sigma_1) \vee \Sigma g_m \ast g_1\]

\[= (\nu_{m+1} \cup \text{id} \Sigma K \times \Omega^{1}_F) \circ (\nu_m \times \text{id} \Omega^{1}_F)\]

\[= (\nabla^{p}_m \Omega^{m}_F \times \text{id} \Omega^{1}_F \circ \iota^{1}_m \circ \delta_m) \times \sigma_1\}
\]

By the definitions of \(\sigma'_m\) and \(\sigma_1\), we have

\[(\sigma_m \times \sigma_1 \vee \Sigma g_m \ast g_1) \circ \nu_{m+1}^{m,1}\]

\[= (\nabla^{p}_m \Omega^{m}_F \times \text{id} \Omega^{1}_F \circ \iota^{1}_m \circ \delta_m) \times \sigma_1) \vee \Sigma g_m \ast g_1\]

\[= (\nu_{m+1} \cup \text{id} \Sigma K \times \Omega^{1}_F) \circ (\nu_m \times \text{id} \Omega^{1}_F)\]

\[= (\nabla^{p}_m \Omega^{m}_F \times \text{id} \Omega^{1}_F \circ \iota^{1}_m \circ \delta_m) \times \sigma_1\}
\]

\[= (\nu_{m+1} \cup \text{id} \Sigma K \times \Omega^{1}_F) \circ (\nu_m \times \text{id} \Omega^{1}_F)\]
Here \(i_1 : \hat{T}_{m+1} \to \hat{T}_{m+1} \cup \Sigma \hat{E}_{m+1} \) is the inclusion map and \(T_3 : (\hat{T}_{m+1} \cup \Sigma \hat{E}_{m+1}) \cup_{\Sigma F_1} (\hat{T}_{m+1} \cup \hat{E}_{m+1}) \to (\hat{T}_{m+1} \cup_{\Sigma F_1} F_{m+1}) \cup \Sigma \hat{E}_{m+1} \cup \Sigma \hat{E}_{m+1} \) is the canonical homeomorphism.

\[
(\sigma_m \times \sigma_1 \vee \Sigma g_m \ast g_1) \circ \nu_{m+1}^{\ast}
= (\nabla_{Pm \Omega F_m} \times \text{id}_{\Sigma F_1} \vee \nabla_{\Sigma \hat{E}_{m+1}}) \circ T_3 \circ (\tilde{\nu}_{m+1} \cup \tilde{\nu}_{m+1})
\circ \{(\sigma'_m \times \sigma_1) \cup (l_{m-1,m} \ast \delta_m) \times \sigma_1\} \circ (\nu_m \times \text{id}_{F_1})
= \tilde{\nu}_{m+1} \circ (\nabla_{Pm \Omega F_m} \times \text{id}_{\Sigma F_1})
\circ \{(\sigma'_m \vee l_{m-1,m} \ast \delta_m) \times \sigma_1\} \circ (\nu_m \times \text{id}_{F_1})
= \tilde{\nu}_{m+1} \circ \{(\sigma'_m \times \sigma_1) \cup (l_{m-1,m} \ast \delta_m) \times \nu_m \times \sigma_1\}
= \tilde{\nu}_{m+1} \circ (\sigma_m \times \sigma_1).
\]

This completes the proof. \(\square\)

5. Proof of Theorem [1.4]

In the fibre sequence \(G \hookrightarrow E \to \Sigma A \), by the James-Whitehead decomposition (see Theorem VII.(1.15) of Whitehead [14]), the total space \(E \) has the homotopy type of the space \(G \cup_{\psi} G \times CA \). Here \(\psi \) is the following composition:

\[
\psi : G \times A \xrightarrow{\text{id}_G \times \alpha} G \times G \xrightarrow{\mu} G.
\]

Since \(G \simeq F_m \) and \(\alpha \) is compressible into \(F_1' \), we can see that

\[
\psi : G \times A \simeq F_m \times A \xrightarrow{\text{id}_{F_m} \times \alpha} F_m \times F'_1 \subset F_m \times F_1 \subset F_m \times F_m \simeq G \times G \xrightarrow{\mu} G \simeq F_m
\]

and \(E \) is the homotopy push out of the following sequence:

\[
\begin{array}{c}
F_m \\
pr_1 \\
F_m \times A \\
\text{id}_{F_m \times \alpha} \\
F_m \times F_1 \\
\mu|_{F_m \times F_1} \\
F_m.
\end{array}
\]

We construct spaces and maps such that the homotopy push out of these maps dominates \(E \).

The condition of \(H_1(\alpha) = 0 \) implies that

\[
(5.1) \quad \Sigma \text{ad}(\alpha) = \sigma_1|_{F_1'} \circ \alpha : A \to F'_1 \to \Sigma F'_1.
\]

We denote \(\mu_{i,j} : F_i \times F_j \to F_m \) by the restriction of \(\mu : G \times G \to G \) to \(F_i \times F_j \subset F_m \times F_m \simeq G \times G \) for \(i, j \leq m \). Then
Lemma 5.1. the following diagram is commutative:

Here the map \(\phi \) and \(\chi \) are \((i_{m,m+1}^\Omega F_\ast) (l) \circ pr_1 \) and \(\text{id}_{(p_{m+1} \Omega F_m)} \times (\Sigma \Omega \alpha)((l)) \), respectively.

Proof. It is obvious that the top left square is commutative. By the equation \(e_{F_{m+1}} F_m = e_{\Omega F_{m+1}} F_m \), the bottom left square is commutative. The commutativity of the bottom middle square follows from the equation \(\alpha \circ e_1^{F_1} = e_1^{F_1} \circ P_1 \Omega \alpha = e_1^{F_1} \circ \Sigma \alpha \). By the equation (5.1), we have the commutative diagram:

\[
\begin{array}{cccccc}
F_m \times A & \xrightarrow{\text{id}_{F_m} \times \alpha} & F_m \times F_1 & \xrightarrow{\text{id}_{F_m} \times \sigma} & F_m \times F_1 & \xrightarrow{\mu_{m,1}} F_m \\
\sigma_m \times \sigma_A & \downarrow & \sigma_m \times \sigma_A & \downarrow & \sigma_m \times \sigma_A & \downarrow \\
P_{m+1} \Omega F_m \times \Sigma \Omega A & \xrightarrow{\text{id}_{p_{m+1} \Omega F_m} \times \Sigma \alpha} & P_{m+1} \Omega F_m \times \Sigma \Omega F_1 & \xrightarrow{\text{id}_{p_{m+1} \Omega F_m} \times \Sigma \alpha'} & \hat{F}_{m+1},
\end{array}
\]

where \(\sigma_A \) is the evaluation map and \(\iota' \) is the inclusion map. Thus, the top middle square is commutative. Since \(\sigma_m \) and \(\sigma_1 \) satisfy the condition (2) of Proposition 2.3, we have \(e_{F_{m+1}} \circ \sigma_m = \text{id}_{F_m} \lor e_1^{F_1} \circ \sigma_1 = \text{id}_{F_1} \) and \(e_{F_{m+1}} \circ \sigma_m = e_{F_m} \circ \sigma_m = \text{id}_{F_m} \). Therefore the right rectangular is commutative, too. \(\square \)

Lemma 5.2. In the diagram of Lemma 5.1 there is a map \(\hat{\mu} : \hat{F}_{m+1} \rightarrow P_{m+1} \Omega F_m \) such that the right rectangular diagram is commutative.

Proof. First, we construct a map \(\hat{\mu}_k : \hat{F}_k \rightarrow P^k \Omega F_m \). Let a cone-decomposition of \(F_m \times F_1 \) be (3.2), a cone-decomposition of \(\hat{F}_{m+1} \) be (3.3) and a \(k \)-filter of \(F_m \) be \(F_m \) for all \(k \). Let us consider that the restriction of \((e_{F_m}^{F_{m-1}}(l)) \times (e_1^{F_1}(l)) \) on \(\hat{F}_k \) is

\[
(e_{F_{m-1}}^{F_{m-1}}(l)) \times \{\ast\} \cup (e_{F_{m-1}}^{F_{m-1}}(l)) \times (e_1^{F_1}(l)) : \hat{F}_k \rightarrow F_m \times F_1,
\]

then the map \(\mu_{m,1} \circ \{\} (e_{F_{m-1}}^{F_{m-1}}(l)) \times (e_1^{F_1}(l)) : \hat{F}_{m+1} \rightarrow F_m \times F_1 \rightarrow F_m \) is a filtered map. Applying this filtered map to Proposition 2.3, we obtain the map

\[
\hat{\mu}_k : \hat{F}_k \rightarrow P^k \Omega F_m
\]

for \(0 \leq k \leq m+1 \).

Second, for \(0 \leq k \leq m \), we assert that the equation of maps

\[
(5.2) \quad i_{m,m+1}^{\Omega F_m} \circ \sigma_m \circ \mu_{m,1}^k = i_{k,m+1}^{\Omega F_m} \circ \hat{\mu}_k \circ j_k \circ \sigma_k : F_m \rightarrow P_{m+1} \Omega F_m,
\]

where \(\mu_{m,1}^k \) = \(\mu_{k,0} \cup \mu_{k-1,1} : F_{F_k} \times \{\ast\} \cup F_{k-1} \times F_1 \rightarrow F_m \),

\[
\sigma_k = \sigma_k \times \{\ast\} \cup \sigma_{k-1} \times \sigma_1 : F_{F_k} \rightarrow \{\} \times (P^k \Omega F_m) (l) \times (P^k \Omega F_{m-1}) (l) \times (\Sigma \Omega F_1) (l)
\]
and $j_t = (P^t\Omega_{i,m-1}^F(t) \times \{*\}) \cup (P^{t-1}\Omega_{i-1,m-1}^F(t) \times \text{id}_{\Sigma(F_1)}^{(t)})$ for $1 \leq t \leq m - 1$ and $j_m = \text{id}_{F_m}$. Note that this condition is natural to cone-decompositions. This is proved by induction on k. The case $k = 0$ is clear, since both maps are constant maps. Assume the kth of (5.2). Let us consider the cofibre sequence $K^{m+1}_{k+1} \longrightarrow F^m_k \longrightarrow F_{k+1}^m$. Since σ_i satisfy the condition (1) of Proposition [2.3] the following diagram is commutative

$$
\begin{array}{cccccc}
F_i & \xrightarrow{\sigma_i} & P^i\Omega F_i & \xrightarrow{P^i\Omega F_{i+1}} & P^i\Omega F_{i+1,m-1} & \xrightarrow{P^i\Omega F_{i+1,m-1}} & P^i\Omega F_{m-1} \\
\downarrow{i_{i+1}} & & \downarrow{\sigma_{i+1}} & & \downarrow{\sigma_{i+1}} & & \\
F_{i+1} & \xrightarrow{\sigma_{i+1}} & P^{i+1}\Omega F_{i+1} & \xrightarrow{P^{i+1}\Omega F_{i+1,m-1}} & P^{i+1}\Omega F_{i+1,m-1} & \xrightarrow{P^{i+1}\Omega F_{i+1,m-1}} & P^{i+1}\Omega F_{m-1}
\end{array}
$$

for $1 \leq i \leq m - 1$. So we have $j_{k+1} \circ \tilde{\sigma}_k \circ i_{k+1}^{m,1} = \tilde{i}_k \circ j_k \circ \tilde{\sigma}_k$. By the condition (1) of Proposition [2.3] of $\tilde{\mu}_{k+1}$, we obtain $\tilde{\mu}_{k+1} \circ i_k = i_k^{m,1} \circ \tilde{\mu}_k$.

By the induction hypothesis, we proceed further as follows:

$$
\begin{align*}
i_k^{m,1} (i_{k+1,m} \circ \tilde{\mu}_{k+1} \circ j_{k+1} \circ \tilde{\sigma}_{k+1}) &= \sigma_m \circ i_k^{m,1} \circ \tilde{\sigma}_k \\
&= i_k^{m,1} (\sigma_m \circ \tilde{\mu}_k).
\end{align*}
$$

By Theorem B. 10 of [2], there exists a map $\delta_{k+1} : \Sigma K^{m,1}_{k+1} \rightarrow P^{m,1}\Omega F_m$ such that

$$
\sigma_m \circ \mu_{k+1}^{m,1} = \nabla P^{m,1}\Omega F_m \circ (i_{k+1,m} \circ \tilde{\mu}_{k+1} \circ j_{k+1} \circ \tilde{\sigma}_{k+1} \vee \delta_{k+1}) \circ \nu_{k+1}^{m,1}.
$$

By the condition (2) of Proposition [2.3] of $\tilde{\mu}_{k+1}$, we have the equation

$$
e_{m}^{F} \circ i_{k+1,m} \circ \tilde{\mu}_{k+1} = e_{k+1}^{F} \circ \tilde{\mu}_{k+1} = \mu_{m,1} \circ \{(e_{k+1}^{F-1})^{(t)} \times \{*\} \cup (e_{k+1}^{F-1})^{(t)} \times (e_{1}^{F-1})^{(t)}\}.
$$

By the commutative diagram

$$
\begin{array}{ccc}
F_i & \xrightarrow{\sigma_i} & (P^i\Omega F_i)^{(t)} \\
\downarrow{i_{i+1}} & & \downarrow{(e_{i+1}^{F-1})^{(t)}} \\
F_i & \xrightarrow{(e_{i+1}^{F-1})^{(t)}} & F_{m-1}
\end{array}
$$

for $i = k, k + 1 \leq m - 1$ and by the maps $\sigma_m \circ (e_{m}^{F})^{(t)}$ and j_m are equal to identity maps up to homotopy, we have the equation

$$
\{(e_{k+1}^{F-1})^{(t)} \times \{*\} \cup (e_{k+1}^{F-1})^{(t)} \times (e_{1}^{F-1})^{(t)}\} \circ j_{k+1} \circ \tilde{\sigma}_{k+1} = i_{k+1}^{m,1}.
$$
Thus we obtain
\[e_m^{F_m} \circ (\tilde{\Omega F}_{m+1} \circ \tilde{\mu}_{k+1} \circ \tilde{j}_{k+1} \circ \tilde{\sigma}_{k+1}) = \mu_{m,1} \circ \tilde{i}_{k+1}^{m,1} = \mu_{k+1} \]
and
\[e_m^{F_m} \circ \sigma_m \circ \mu_{k+1}^{m,1} = e_m^{F_m} \circ \nabla P^m \Omega F_m \circ (\tilde{i}_{k+1}^{m,1} \circ \tilde{\mu}_{k+1} \circ \tilde{j}_{k+1} \circ \tilde{\sigma}_{k+1} \cup \delta_{k+1}) \circ \nu_{k+1}^{m,1} \]

\[= \nabla F_m \circ (e_m^{F_m} \circ \tilde{\Omega F}_{m+1} \circ \tilde{\mu}_{k+1} \circ \tilde{j}_{k+1} \circ \tilde{\sigma}_{k+1} \cup e_m^{F_m} \circ \delta_{k+1}) \circ \nu_{k+1}^{m,1} \]
\[= \nabla F_m \circ (e_m^{F_m} \circ \sigma_m \circ \mu_{k+1} \cup e_m^{F_m} \circ \delta_{k+1}) \circ \nu_{k+1}^{m,1}. \]

Using Theorem 2.7 (1) of [9] and the multiplication \(\mu \) on \(G \simeq F_m \), the map \(e_m^{F_m} \circ \delta_{k+1} : \Sigma K_{m+1} \rightarrow F_m \) is null-homotopic. Using the following exact sequence,

\[\cdots \rightarrow [\Sigma F_{k+1}^{m,1}, E^{m+1} \Omega F_m] \xrightarrow{\iota_{\Omega F_{m+1}}} [\Sigma K_{k+1}^{m,1}, P^m \Omega F_m] \xrightarrow{e_m^{F_m}} [\Sigma K_{k+1}^{m,1}, F_m]. \]

By the equation \(e_m^{F_m} \circ \delta_{k+1} = 0 \), there exists a map \(\delta'_{k+1} : \Sigma K_{k+1}^{m,1} \rightarrow E^{m+1} \Omega F_m \) such that \(\delta_{k+1} = \tilde{\mu}_{m+1} \circ \delta'_{k+1} \). Since \(E^{m+1} \Omega F_m \xrightarrow{\tilde{\Omega F}_{m+1}} P^m \Omega F_m \xrightarrow{\tilde{\Omega F}_{m+1}} P^{m+1} \Omega F_m \) is the cofibre sequence, we have \(\tilde{\Omega F}_{m+1} \circ \delta_{k+1} = 0 \) and

\[\Omega F_m \circ \tilde{\Omega F}_{m+1} \circ \nabla P^m \Omega F_m \circ (\tilde{i}_{k+1}^{m,1} \circ \tilde{\mu}_{k+1} \circ \tilde{j}_{k+1} \circ \tilde{\sigma}_{k+1} \cup \delta_{k+1}) \circ \nu_{k+1}^{m,1} \]
\[= \nabla P^{m+1} \Omega F_m \circ (\tilde{i}_{k+1}^{m,1} \circ \tilde{\mu}_{k+1} \circ \tilde{j}_{k+1} \circ \tilde{\sigma}_{k+1} \cup \delta_{k+1}) \circ \nu_{k+1}^{m,1} \]
\[= \nabla P^{m+1} \Omega F_m \circ (\tilde{i}_{k+1}^{m,1} \circ \tilde{\mu}_{k+1} \circ \tilde{j}_{k+1} \circ \tilde{\sigma}_{k+1} \cup 0) \circ \nu_{k+1}^{m,1} \]
\[= \tilde{i}_{k+1}^{m,1} \circ \tilde{\mu}_{k+1} \circ \tilde{j}_{k+1} \circ \tilde{\sigma}_{k+1}. \]

From the equation (5.3), we obtain
\[\iota_{\Omega F_{m+1}} \circ \sigma_m \circ \mu_{m+1}^{m,1} = \iota_{\Omega F_{m+1}} \circ \tilde{\mu}_{k+1} \circ \tilde{j}_{k+1} \circ \tilde{\sigma}_{k+1}. \]

Therefore we hold the statement by induction.

Finally, we construct a map \(\tilde{\mu} : \hat{F}_{m+1} \rightarrow P^{m+1} \Omega F_m \). Let us consider the exact sequence:

\[[F_{m+1}^{m,1}, P^{m+1} \Omega F_m] \xrightarrow{e_{m+1}^{F_m}} [F_{m+1}^{m,1}, P^{m+1} \Omega F_m] \xrightarrow{q^*} [\Sigma K_{m+1}^{m,1}, P^{m+1} \Omega F_m]. \]

By the fact that the following diagrams are commutative:

\[F_{m-1} \xrightarrow{i_{m-1}^{F_m}} F_m \xrightarrow{\sigma_m} P^m \Omega F_m \quad \hat{F}_m \xrightarrow{i_m} \hat{F}_{m+1} \]
\[P^{m-1} \Omega F_{m-1} \xrightarrow{\tilde{\Omega F}_{m-1}} P^{m-1} \Omega F_m \quad \text{and} \quad \hat{F}_m \xrightarrow{\mu_m} \hat{F}_{m+1} \]

we have
\[\mu_{m+1} \circ (\sigma_m \times \sigma_1) \circ i_{m+1}^{m,1} \circ \tilde{\mu}_{m+1} \circ \tilde{i}_m \circ \sigma_m \]
\[= i_{m+1}^{F_m} \circ \mu_m \circ \sigma_m \].
and by previous inductive argument \((k = m \text{ of (5.2)})\),

\[
\begin{align*}
&= i_{m,m+1} \circ \sigma_m \circ \mu_m. \\
&= i_{m,m+1} \circ \sigma_m \circ \mu_m \circ \imath_{m+1}.
\end{align*}
\]

Hence there is a map \(\delta_{m+1} : \Sigma K_{m+1} \rightarrow P_{m+1} \Omega F_m\) such that

\[
(5.4) \quad i_{m,m+1} \circ \sigma_m \circ \mu_m = \nabla_{P_{m+1}} \Omega F_m \circ (\hat{\mu}_{m+1} \circ (\sigma_m \times \sigma_1) \lor \delta_{m+1}) \circ \nu_{m+1}.
\]

To continue calculating, we consider the map \(e : \hat{E}_{m+1} \rightarrow \Sigma K_{m+1}^{m+1}\) induced from the bottom left square of the following commutative diagram:

\[
\begin{array}{ccc}
F_{m+1} & \xrightarrow{i_{m+1}} & F_{m+1} \\
\sigma_m \downarrow & & \sigma_m \times \sigma_1 \\
F_m & \xrightarrow{i_m} & F_m \\
\hat{e}_m \downarrow & & \hat{e}_m \\
F_{m+1} & \xrightarrow{\nu_{m+1}} & \hat{E}_{m+1} \\
\end{array}
\]

where the map \(\hat{e}_m : \hat{F}_m \rightarrow F_{m+1}\) is \((e^F_m)^{(\ell)} \times \{e\} \cup (e^{F_{m-1}}_m)^{(\ell)} \times (e^{F_1}_m)^{(\ell)}\). Since \(\hat{e}_m \circ \hat{\sigma}_m\) and \((e^F_m)^{(\ell)} \times (e^{F_1}_m)^{(\ell)} \circ \sigma_m \times \sigma_1\) are homotopic to the identity maps, \(\hat{e} \circ \Sigma g_m \circ g_1\) is homotopic to the identity map of \(\Sigma K_{m+1}^{m+1}\). Then the equation \((5.4)\) is as follows:

\[
\begin{align*}
&= \nabla_{P_{m+1}} \Omega F_m \circ (\hat{\mu}_{m+1} \circ (\sigma_m \times \sigma_1) \lor \delta_{m+1}) \circ \nu_{m+1} \\
&= \nabla_{P_{m+1}} \Omega F_m \circ (\hat{\mu}_{m+1} \lor \hat{\sigma}_m \lor \hat{e}) \circ (\Sigma g_m \circ g_1) \circ \nu_{m+1} \\
&= \nabla_{P_{m+1}} \Omega F_m \circ (\hat{\mu}_{m+1} \lor \hat{\delta}_{m+1} \lor \hat{e}) \circ (\Sigma g_m \circ g_1) \circ \nu_{m+1}.
\end{align*}
\]

By Lemma \(4.1\) we proceed further:

\[
(5.4) = \nabla_{P_{m+1}} \Omega F_m \circ (\hat{\mu}_{m+1} \lor \hat{\delta}_{m+1} \lor \hat{e}) \circ \nu_{m+1} \circ (\sigma_m \times \sigma_1).
\]

Therefore we adopt \(\nabla_{P_{m+1}} \Omega F_m \circ (\hat{\mu}_{m+1} \lor \hat{\delta}_{m+1} \lor \hat{e}) \circ \nu_{m+1}\) as \(\hat{\mu}\). Then we obtain the top square is commutative. And we prove that the bottom square is commutative as follows. By the same argument of the proof of \(e_{m+1} \circ \delta_k = 0\) for \(1 \leq k \leq m\), we have the equation \(e_{m+1} \circ \delta_{m+1} = 0\). Thus we obtain

\[
\begin{align*}
e_{m+1} \circ \hat{\mu} &= e_{m+1} \circ (e_{m+1} \circ \nabla_{P_{m+1}} \Omega F_m \circ (\hat{\mu}_{m+1} \lor \hat{\delta}_{m+1} \lor \hat{e}) \circ \nu_{m+1}) \\
&= \nabla_{F_m} \circ (e_{m+1} \circ \hat{\mu}_{m+1} \lor e_{m+1} \circ \hat{\delta}_{m+1} \lor \hat{e}) \circ \nu_{m+1} \\
&= \nabla_{F_m} \circ (e_{m+1} \circ \hat{\mu}_{m+1} \lor 0) \circ \nu_{m+1} \\
&= e_{m+1} \circ \hat{\mu}_{m+1}
\end{align*}
\]

and by the condition (2) of Proposition \(2.3\) of \(\hat{\mu}_{m+1}\), we obtain

\[
e_{m+1} \circ \hat{\mu} = \mu_{m+1} \circ \{(e_{m+1}^{(\ell)}) \times (e_{m+1}^{(F_1)})\}.
\]

\[\Box\]
Thus we have the following commutative diagram:

\[
\begin{array}{cccccccccc}
F_m & \xrightarrow{pr_1} & F_m \times A & \xrightarrow{1 \times \alpha} & F_m \times F_1 & \xrightarrow{\mu_{m,1}} & F_m \\
\downarrow{\Omega F_m} & & \downarrow{\sigma \times \sigma A} & & \downarrow{\sigma \times \sigma_1} & & \downarrow{\Omega F_m} \\
\ & \ & \end{array}
\]

\[
P^{m+1}\Omega F_m \xrightarrow{\phi} (P^m\Omega F_m)^{(\ell)} \times (\Sigma \Omega A)^{(\ell)} \xrightarrow{\chi} \hat{F}_{m+1} \xrightarrow{\hat{\mu}} P^{m+1}\Omega F_m
\]

\[
\begin{array}{cccccccccc}
P_m & \xrightarrow{pr_1} & F_m \times A & \xrightarrow{1 \times \alpha} & F_m \times F_1 & \xrightarrow{\mu_{m,1}} & F_m \\
\end{array}
\]

We construct a cone-decomposition of \((P^m\Omega F_m)^{(\ell)} \times (\Sigma \Omega A)^{(\ell)}\) of length \(m + 1\):

\[
\{ \hat{E}_k' \xrightarrow{\hat{w}_k'} \hat{F}_{k-1} \xrightarrow{\hat{\gamma}_k'} \hat{F}_k \mid 1 \leq k \leq m + 1 \},
\]

by replacing \(F_1\) with \(A\) in the construction of the cone-decomposition of \((P^m\Omega F_m)^{(\ell)} \times (\Sigma \Omega F_1)^{(\ell)}\). We adopt cofibration sequences

\[
\{ E^k\Omega F_m \xrightarrow{p^k\Omega F_m} P^{k-1}\Omega F_m \xrightarrow{\ell^k_{m+1}} P^k\Omega F_m \mid 1 \leq k \leq m + 1 \}
\]
as a cone-decomposition of \(P^{m+1}\Omega F_m\) of length \(m + 1\). Let \(D\) be a homotopy pushout of \((\ell^m_{m+1})^{(\ell)} \circ pr_1\) and \(\hat{\mu} \circ (i_{P^m\Omega F_m}^{(\ell)}) \times (\Sigma \Omega A)^{(\ell)}\):

\[
(P^m\Omega F_m)^{(\ell)} \times (\Sigma \Omega A)^{(\ell)} \xrightarrow{f^-} P^{m+1}\Omega F_m
\]

Here \(f^- = \hat{\mu} \circ (i_{P^m\Omega F_m}^{(\ell)}) \times (\Sigma \Omega A)^{(\ell)}\) and \(f^- = (\ell^m_{m+1})^{(\ell)} \circ pr_1\). We construct a cone-decomposition of \(D\) as follows. By the equation \(\hat{\mu} \circ \hat{i}_m = \nabla^m_{m+1}\Omega F_m \circ (\hat{\mu}_{m+1} \cup \delta_{m+1} \cup \ell) \circ \hat{\nu}_{m+1} \cup \hat{\gamma}_m = \hat{\mu}_{m+1} \circ \hat{\nu}_m\), we can consider that the restriction of \(\hat{\mu}\) on \(\hat{F}_k\) is \(\mu_k\) and \(f^-\) is a filtered map. Since \(\hat{E}_k' \xrightarrow{\hat{w}_k'} \hat{F}_{k-1} \xrightarrow{\hat{\gamma}_k'} \hat{F}_k\) is the cofibre sequence, we have

\[
e^k_{m+1} \circ (f^-|_{\hat{F}_{k-1}} \circ \hat{w}_k') = e^k_{m+1} \circ \ell^m_{m+1} \circ f^-|_{\hat{F}_{k-1}} \circ \hat{w}_k' = e^k_{m+1} \circ f^-|_{\hat{F}_k} \circ \hat{\gamma}_k' \circ \hat{\nu}_{k-1} \circ \hat{w}_k' \]

\[
e^k_{m+1} \circ f^-|_{\hat{F}_k} \circ \hat{\nu}_k' \circ \hat{w}_k = 0.
\]

Using the fibre sequence \(E^k\Omega F_m \xrightarrow{p^k\Omega F_m} P^{k-1}\Omega F_m \xrightarrow{e^k_{m+1}} F_m\), there exists a map \(g^-_k : \hat{E}_k' \to E^k\Omega F_m\) such that the commutativity of the following diagram:

\[
\begin{array}{cccccccccc}
E^k\Omega F_m & \xrightarrow{p^k\Omega F_m} & P^{k-1}\Omega F_m & \xrightarrow{e^k_{m+1}} & F_m \\
\end{array}
\]
Therefore we have the inequalities
\[
\text{cat}(D) \leq \text{Cat}(D) \leq m + 1.
\]

Recall the horizontal top and bottom lines of the diagram (5.5). The homotopy pushout of these lines are \(G \cup \psi G \times CA \). Since dimensions of \(F_m \), \(F_1 \) and \(A \) are less than or equal to \(l \), all composition of columns in the diagram (5.5) are homotopic to identity maps. By the universal property of the homotopy pushout, we obtain a composite map \(D \to G \cup \psi G \times CA \simeq E \to D \) which is homotopic to the identity map. Thus \(D \) dominates \(E \) and we have
\[
\text{cat}(E) \leq \text{cat}(D) \leq \text{Cat}(D) \leq m + 1.
\]
6. Application of Theorem 1.4

We want to determine the L-S category of SO(10) by applying the principal bundle \(p : SO(10) \rightarrow S^9 \) to Theorem 1.4. First, we estimate the lower bound of \(\text{cat}(SO(10)) \). For the field \(k \) of characteristic 2, the ring structure of the cohomology of SO(10) is

\[
H^*(SO(10); k) \cong P_k[x_1, x_3, x_5, x_7, x_9]/(x_1^{16}, x_3^4, x_5^2, x_7^2, x_9^2),
\]

where \(\deg x_i = 1 \). Hence, we have

\[21 \leq \text{cup}(SO(10); k) \leq \text{cat}(SO(10)). \]

Next, we estimate the upper bound by using Theorem 1.4. We consider the cone-decomposition of SO(9). The cone-decomposition of Spin(7) is given by Iwase, Mimura and Nishimoto [7]. We denote this cone-decomposition by the following:

\[\ast \subset F_1' \subset \Sigma \mathbb{C}P^3 \subset F_3' \subset F_4' \subset F_5' \cong \text{Spin}(7). \]

By Iwase, Mimura and Nishimoto [8], we can write the cone-decomposition of length 20

\[\{ K_i \rightarrow F_{i-1} \rightarrow F_i \mid 1 \leq i \leq 20, F_0 = \{ \ast \} \text{ and } F_{20} = SO(9) \} \]

by using the filtration \(F_i' \) and principal bundle \(\text{Spin}(7) \hookrightarrow SO(9) \hookrightarrow \mathbb{R}P^{15} \). We find that the first filter \(F_1 \) is the space \(\Sigma \mathbb{C}P^3 \vee S^1 \). We consider the bundle \(p : SO(10) \rightarrow S^9 \) and \(p' : SU(5) \rightarrow S^9 \), and the following diagram:

\[
\begin{array}{ccc}
\Sigma \mathbb{C}P^3 & \xrightarrow{\Sigma} & SU(4) \\
\downarrow & & \downarrow \\
SU(5) & \xrightarrow{\alpha} & SO(9) \\
\downarrow & & \downarrow \\
S^8 & \xrightarrow{\alpha'} & SO(10) \\
\downarrow & p & \downarrow \\
S^9 & \xrightarrow{p'} & S^9.
\end{array}
\]

Here \(\alpha : S^8 \rightarrow SO(9) \) is a characteristic map of the bundle \(p : SO(10) \rightarrow S^9 \). By Steenrod [13], is homotopic to the characteristic map \(\alpha' : S^8 \rightarrow SU(4) \) in SO(9). Also, by Yokota [15], the suspension of the covering map \(\Sigma \gamma_3 : S^8 \rightarrow \Sigma \mathbb{C}P^3 \) which provide a cellular decomposition of the complex projective space correspond with the characteristic map \(\alpha' \). Therefore the characteristic map \(\alpha \) is compressible into \(\Sigma \mathbb{C}P^3 \subset F_1 \) and \(H_1(\alpha) = 0 \in \pi_8(\Omega \Sigma \mathbb{C}P^3 \ast \Omega \Sigma \mathbb{C}P^3) \). Hence we obtain

Theorem 6.1. \(\text{cat}(SO(10)) = 21 \).

References

[1] I. Berstein and P. J. Hilton, *Category and generalised Hopf invariants*, Illinois. J. Math. 12 (1968), 421–432.

[2] O. Cornea, G. Lupton, J. Oprea and D. Tanrég, “Lusternik-Schnirelmann Category”, Mathematical Surveys and Monographs 103, Amer. Math. Soc., Providence, 2003.

[3] T. Ganea, *Lusternik-Schnirelmann category and strong category*, Illinois. J. Math., 11 (1967), 417–427.
[4] N. Iwase, *Ganea’s conjecture on LS-category*, Bull. Lon. Math. Soc., 30 (1998), 623–634.

[5] N. Iwase, *A_∞-method in Lusternik-Schnirelmann category*, Topology 41 (2002), 695–723.

[6] N. Iwase, *The Ganea conjecture and recent developments on the Lusternik-Schnirelmann category* (Japanese), Sūgaku 56 (2004), 281–296.

[7] N. Iwase, M. Mimura and T. Nishimoto, *On the cellular decomposition and the Lusternik-Schnirelmann category of Spin(7)*, Topology Appl., 133 (2003), 1–14.

[8] N. Iwase, M. Mimura and T. Nishimoto, *Lusternik-Schnirelmann category of non-simply connected compact simple Lie groups*, Topology Appl., 150 (2005), 111–123.

[9] N. Oda, *Pairings and copairings in the category of topological spaces*, Publ. Res. Inst. Math. Sci., 28 (1992), 83–97.

[10] E. Spanier, “*Algebraic Topology*”, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966.

[11] D. Stanley, *On the Lusternik-Schnirelmann Category of Maps*, Canad. J. Math., 54, (2002) 608–633.

[12] J. D. Stasheff, *Homotopy associativity of H-spaces, I & II*, Trans. Amer. Math. Soc., 108 (1963), 275–292; 293–312.

[13] N. E. Steenrod, “*The Topology of Fibre Bundles*”, Princeton Mathematical Series 14, Princeton University Press, Princeton, 1951.

[14] G. W. Whitehead, “*Elements of Homotopy Theory*”, Graduate Texts in Mathematics 61, Springer Verlag, Berlin, 1978.

[15] I. Yokota, “*Groups and Topology*” (in Japanese), Shokabo, Tokyo, 1971.