Economic Impact of Sectoral Transactions in Nigeria

Mfonobong O. Effiong¹, Chukwuemeka U. Okoye², Noble Jackson Nweze²

¹Department of Agricultural Economics, University of Calabar, Calabar, Nigeria
²Department of Agricultural Economics, University of Nigeria, Nsukka, Nigeria
Email: mfonnkang@yahoo.com

How to cite this paper: Effiong, M.O., Okoye, C.U. and Nweze, N.J. (2019) Economic Impact of Sectoral Transactions in Nigeria. Modern Economy, 10, 2283-2299. https://doi.org/10.4236/me.2019.101143

Received: October 12, 2019
Accepted: November 25, 2019
Published: November 28, 2019

Copyright © 2019 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/

Abstract

Most applications of input-output (I-O) analysis to date have been to highlight inter-industry flows and to estimate the main aggregate national accounts, such as GDP, gross output and final demand categories. However, multiplier coefficients relating to output and income multipliers have hardly been explored especially in the Nigerian context. Sectors like agriculture, fishing, food & beverages as well as mining/quarrying have particularly significant roles and their economic impacts can be quantified using Nigeria’s I-O table. The study adopted a longitudinal design and utilized the 2015 I-O table comprising of twenty-six (26) sectors obtained from Eurostat database. This table was used to compile an inter-industry transaction table and Leontief matrix, which was then used to derive industry-wise Type I and Type II multipliers for the aforementioned sectors. Type I multiplier takes into account the direct and indirect effects while the Type II multiplier captured the induced effects in addition to the direct and indirect effects. Mining/quarrying as a single sector had a Type I multiplier of 1.80 and 2.17 for both output and income respectively and a Type II multiplier of 2.41 and 3.12 for both output and income respectively. Similarly, the fishing sectors were identified to have the highest contributions (2.11 and 2.89 as well as 2.22 and 3.19) in both Types I and II multipliers for both output and income respectively when compared with other sectors.

Keywords

Input-Output Analysis, Sectoral Transactions, Eurostat Database, Type I and II Multipliers, Nigeria

1. Introduction

Nigeria is one of Africa’s largest economy known for its increased fishing, min-
ing and agricultural activities. Owing to the increased population in the country, demand for products from these sectors has been increased over the years and has contributed immensely to nation’s Gross Domestic Product [1].

The agricultural sector has been known to contribute about 20.85 percent to the nation’s GDP (National Bureau of Statistics, 2018) [2]. The amount of value added measured in nominal terms was 5,288,339.21 million naira in the third quarter of 2018. Average annual growth rate of the mining industry had a GDP of about 8.71 percent increase at the end of 2018. The fishing sectors has also been known as a major contributor to Nigeria’s GDP in last five (5) years following the protectionist trade measure in fish production (import quota) introduced since the first quarter of 2014 has stimulated the country’s self-sufficiency through a 25 percent annual fish import cut [3].

Input-output analysis has been proven to be one of the most useful techniques to measure economic impacts, relating to both indirect and induced impacts, like the effect of given levels of final demand, for example, personal consumption expenditure, government expenditure, capital formation and exports. It is also possible to forecast the elements of the economy under different assumptions regarding the level of one or more of these indicators. This quantitative analysis first introduced by [4] is a top-down approach used to describe the general flow of goods and services in an economy, classified into various sectors. The total output multiplier for a sector measures the sum of the direct and indirect input requirements from all sectors needed to fulfill the final demand requirements of that sector. Multiplier effects which are associated with Keynes are defined as the change in equilibrium GDP divided by the change in investment [5]. The multiplier effect has been used as an argument for the efficacy of government expenditures to stimulate aggregate demand. One of the best-known results of input-output analysis is its ability to derive multipliers using supply and use sides of the national accounts [6].

This paper is aimed at estimating the economic impacts resulting from sectors like, mining/quarrying, fishing, food & beverages and agriculture on the Nigerian economy using the input-output multiplier analysis. This also helps to predict the consequences of any planned and potential changes in the demand for the country’s output. The study derived a Type I and Type II multipliers for the aforementioned sectors. The Type I multiplier measures the change in output in both sectors due to the change in final demand. It is the ratio between the change in gross output and the change in final demand. For example, as presented in Table 1, if $1 additional demand for agricultural inputs generates $2 additional gross industrial output then the Type I multiplier relating to the agricultural sector is equal to 2. In other words, if the Type I agricultural multiplier is 2, then for each $1 additional demand for agricultural inputs would generate $2 worth of additional gross output within the economy.

Specifically, this paper sets to describe the use of Type I and Type II multipliers to measure direct, indirect and induced effects from the fishing, min-
ing/quarrying, food/beverage and agricultural sectors in Nigeria. The paper also highlights the important steps involved in deriving Type I and Type II multipliers from the I-O table to include the calculation of inter-industry transaction table and the Leontief matrix. The most recent I-O table was obtained for 2015 at aggregated level with 26 industries [7]. The reference year of 2015 means the multiplier coefficients need to be updated when more recent I-O tables are available.

2. Review of Related/Empirical Literature

Input-output analysis has been known as a veritable tool that addresses the following: multiplier effects of an investment program; environmental restrictions impact on prices; national accounting as well as its efficiency and dynamic performance [8]. However, application of input-output analysis to measure economic impacts for fishing, mining/quarrying, food/beverage and agricultural sectors has been limited. According to [9], output, employment and income multipliers have been known to be used to describe different economic impacts thus:

1) Output Multipliers

Output multiplier for an industry is defined as the ratio of output changes to a unit increase in final demand. This is, Changes in output

Final demand

2) Employment Multipliers

The employment multiplier expresses an estimate of the total employment attributable to the stimulus per man-year of employment.

3) Income Multipliers

This measures the change in income (wages, salaries, and profits, etc.) which occurs throughout the economy as a result of a change in final demand.

Related studies have been carried out by researchers using input-output analysis and multipliers to investigate economic impacts but dearth is evident in Nigeria. [10] used input-output tables to analyze the use of energy for transport purposes in Germany. He calculated energy necessities of transport-related final demand by means that of the Leontief-inverse connected to the energy information. He found that the energy necessities of transport-related final demand have truly big quicker than the energy consumption by transport as associate business.

On the other hand, [11] in his study suggested input-output multiplier analysis as one of the recommended techniques for assessing economic impacts of transportation projects. Their output multiplier coefficients (Type I) for transport services were 2.4 and 1.8 for larger and smaller state respectively [12].

3. Methodology

3.1. Data Sources

The latest available Nigeria’s I-O table was the symmetric for year 2015 and was obtained from Eurostat database who considered all the “classical” drawbacks of
the I-O approach (static, linear production function, no substitution or scale economy effects, infinite elasticity of supply) in its estimation and interpretation. It consisted of forty-six (46) sectors aggregated into twenty-six (26) sectors of economic activity, compiled following the industry-technology assumption, product-by-product, with total flows and valued at basic values at current prices.

3.2. Model Specification

1) The Theoretical Model

The income expenditure equality is given by:

\[E = C + I + G + X - M \]

where,

\(E \) = expenditure measure of Gross Domestic Product (GDP);
\(C \) = consumption; \(I \) = Investment;
\(G \) = Government expenditure;
\(X \) = Exports;
\(M \) = Imports.

\(C + I + G + X - M \) = components of final demand;

\(C \) = Household consumption expenditure (HCE);
\(I \) = Fixed Capital Formation;
\(G, X, & M \) are as already defined.

Re-writing Equation (1), we have:

\[E = GDP = C + I + G + X - M \]

In terms of production, \(GDP \) value is given as:

\[GO - IC = GDP = C + I + G + X - M \]

where,

\(GO \) = Gross Output;
\(IC \) = intermediate consumption

Multiplying \(GO-IC \) by Gross output and simplifying we have:

\[GO \left(1 - \frac{GO}{IC} \right) = GDP \]

But, \(a = \frac{GO}{IC} \), by substitution we have:

\[GO(1-a) = GDP \]

In terms of \(GO \), we have,

\[GO = (1-a)^{-1} VA \]

where,

\[VA = GDP \]

\((1-a)^{-1} \) = Leontief Inverse proportion of

\[\frac{GO}{IC} \] = Proportion of intermediate consumption in the gross output which is
also referred to as the technical coefficient matrix in the Input-output analysis.

By inversion, the symmetric matrix, \((1 - a)\) is transformed to get the asymmetric input-output table using the supply and use table.

Equation (6) forms the basis for the multiplier analysis. The column sum of the Leontief Inverse which is also known as the total requirement matrix, shows the input requirements for a unit increase in the final demand for a given industry, called the multiplier coefficient. These input requirements commonly referred to as “backward linkages” measure the impact on the supplier industries of a unit increase in final demand [13].

However, the following steps are involved in the transformation of the asymmetric matrices (supply and use tables) to an input-output table viz:

2) The Empirical Model

Use and supply tables

Suppose an economy with “t” number of products and “I” number of industries. The relationship between the use of products by industries and end users are presented in Table 1.

where,

\[
j = 1, 2, \cdots, n, \text{ organized in rows.}
\]

Industries are denoted by \(\text{Ind}(k)\)

where,

\[
k = 1, 2, \cdots, n, \text{ organized in columns.}
\]

The columns represent the value of the intermediate consumption for the corresponding industry, which uses various products by a particular industry. Similarly, the rows represent the value-added components of each industry. The gross output of each industry is given by the sum of the total intermediate consumption.

On the other hand, Table 2 presents the supply of products to various industries.

Table 1. (a) Use of products by industries and end users (use table); (b) data used for analysis.

Product	Industry use	End users	Products gross output							
	Ind (1)	Ind (2)	Ind (n)	HC	GP	INV	Exp	Imp	go (com)	
Com (1)	i1, 1	i1, 2	..	i1, n	hc1	gp1	inv1	exp1	imp1	go (com)1
Com (2)	i2, 1	i2, 2	..	i1, n	hc2	gp2	inv2	exp2	imp2	go (com)2
用车（m）
Com (m)	im, 1	im, 2	..	im,n	hcm	gpm	invm	expm	impm	go (com)m
Compensation of employees	iw1	w2	..	wn						
GDP	ops1	ops2	..	opsn						
Taxes on products	taxp1	taxp2	..	taxpn						
Industry Gross Output	go (ind)1	go (ind)2	..	go (ind)n						

Source: Authors conceptualization. NB: Products are denoted by Com (j).
Sectors	Value
Agriculture	11,629,000,000
Fishing	407,265,1
Mining and Quarrying	70,354,510
Food & Beverages	1,309,938
Textiles and Wearing Apparel	70,354,510
Wood & Paper	50,027,600
Petroleum, Chemical and Non-Metal Mineral Products	95,806,700
Metal Products	14,332,600
Electrical and Machinery	10,491,911
Transport Equipment	3,488,743
Fishing	1,590,911
Food & Beverages	1,485,73
Metal Products	22,539,000
Textiles and Wearing Apparel	1,327,062
Mining and Quarrying	29,784
Fishing	618,761
Textiles and Wearing Apparel	16,085,43
Mining and Quarrying	25,706,6
Fishing	68,184
Wood & Paper	12,138,36
Petroleum, Chemical and Non-Metal Mineral Products	4,935,861
Electrical and Machinery	4,934,861
Transport Equipment	1,623,950
Other Manufacturing	2,145,869,000
Recycling	593,797,100
Construction	52,182,130
Maintenance and Repair	1,637,388
Wholesale Trade	1,637,388
Retail Trade	17,375,930
Hotels and Restaurants	384,469,4
Transport	493,861
Financial Intermediation and Business Activities	417,198,100
Public Administration	168,360,000
Education, Health and Other Services	553,797,100
Private Households	4,934,861
Others	263,892,7
Re-export & Re-import	262,877,8
Modern Economy	97,104,49

Sectors	Value							
Agriculture	11,629,000,000							
Fishing	407,265,1							
Mining and Quarrying	70,354,510							
Food & Beverages	1,309,938							
Textiles and Wearing Apparel	70,354,510							
Wood & Paper	50,027,600							
Petroleum, Chemical and Non-Metal Mineral Products	95,806,700							
Metal Products	14,332,600							
Electrical and Machinery	10,491,911							
Transport Equipment	3,488,743							
Fishing	1,590,911							
Food & Beverages	1,485,73							
Metal Products	22,539,000							
Textiles and Wearing Apparel	1,327,062							
Mining and Quarrying	29,784							
Fishing	618,761							
Textiles and Wearing Apparel	16,085,43							
Mining and Quarrying	25,706,6							
Fishing	68,184							
Textiles and Wearing Apparel	12,138,36							
Mining and Quarrying	25,706,6							
Fishing	12,138,36							
Wood & Paper	4,934,861							
Petroleum, Chemical and Non-Metal Mineral Products	4,935,861							
Electrical and Machinery	4,934,861							
Transport Equipment	1,623,950							
Other Manufacturing	2,145,869,000							
Recycling	593,797,100							
Construction	52,182,130							
Maintenance and Repair	1,637,388							
Wholesale Trade	1,637,388							
Retail Trade	17,375,930							
Hotels and Restaurants	384,469,4							
Transport	493,861							
Financial Intermediation and Business Activities	417,198,100							
Public Administration	168,360,000							
Education, Health and Other Services	553,797,100							
Private Households	4,934,861							
Others	263,892,7							
Re-export & Re-import	262,877,8							
Modern Economy	97,104,49							
Sub-industry	Total Employment	Production	Distribution	Wholesale trade	Retail trade	Repair	Construction	Maintenance and repair
--------------------------------------	------------------	------------	--------------	----------------	-------------	--------	--------------	------------------------
Food and beverages	2,391,000	134,431,000	9,412,000	18,521,000	11,208,000	1,458,000	9,982,000	84,721,000
Tobacco	108,000	6,432,000	2,221,000	1,112,000	568,000	560,000	1,428,000	88,921,000
Textiles and leather	212,000	14,531,000	1,912,000	3,362,000	1,208,000	1,308,000	6,092,000	78,921,000
Apparel	120,000	7,892,000	1,121,000	1,782,000	1,008,000	1,208,000	4,562,000	68,921,000
Furniture and fixtures	124,000	8,132,000	1,232,000	2,042,000	1,108,000	1,308,000	5,592,000	78,921,000
Paper and printing	1,621,000	97,431,000	6,812,000	13,122,000	7,412,000	7,412,000	19,312,000	19,312,000
Publishing	97,000	5,431,000	4,712,000	9,122,000	4,712,000	4,712,000	14,312,000	14,312,000
Printing and related industries	252,000	15,431,000	2,512,000	5,042,000	2,512,000	2,512,000	7,512,000	7,512,000
Chemicals and allied products	1,612,000	96,431,000	6,812,000	13,122,000	7,412,000	7,412,000	19,312,000	19,312,000
Petroleum and coal products	208,000	12,531,000	1,912,000	3,722,000	1,912,000	1,912,000	5,722,000	5,722,000
Rubber and plastic	93,000	5,631,000	4,712,000	9,422,000	4,712,000	4,712,000	14,422,000	14,422,000
Glass and ceramics	123,000	7,731,000	1,232,000	2,462,000	1,232,000	1,232,000	3,662,000	3,662,000
Primary metal products	1,621,000	97,431,000	6,812,000	13,122,000	7,412,000	7,412,000	19,312,000	19,312,000
Machinery and equipment	2,082,000	124,431,000	9,712,000	19,422,000	9,712,000	9,712,000	29,712,000	29,712,000
Electrical equipment and supplies	1,621,000	97,431,000	6,812,000	13,122,000	7,412,000	7,412,000	19,312,000	19,312,000
Transportation equipment	208,000	12,531,000	1,912,000	3,722,000	1,912,000	1,912,000	5,722,000	5,722,000
Electronics	93,000	5,631,000	4,712,000	9,422,000	4,712,000	4,712,000	14,422,000	14,422,000
Office machinery and supplies	123,000	7,731,000	1,232,000	2,462,000	1,232,000	1,232,000	3,662,000	3,662,000
Scientific instruments	1,621,000	97,431,000	6,812,000	13,122,000	7,412,000	7,412,000	19,312,000	19,312,000
Medical and sanitary instruments	208,000	12,531,000	1,912,000	3,722,000	1,912,000	1,912,000	5,722,000	5,722,000
Personal and household appliances	1,621,000	97,431,000	6,812,000	13,122,000	7,412,000	7,412,000	19,312,000	19,312,000
Consumer goods	2,082,000	124,431,000	9,712,000	19,422,000	9,712,000	9,712,000	29,712,000	29,712,000
Services	1,621,000	97,431,000	6,812,000	13,122,000	7,412,000	7,412,000	19,312,000	19,312,000
Wholesale trade	18,521,000	1,081,000	180,000	360,000	180,000	180,000	540,000	540,000
Retail trade	11,208,000	647,000	129,000	258,000	129,000	129,000	387,000	387,000
Repair and maintenance	1,458,000	83,000	16,600	33,200	16,600	16,600	49,800	49,800
Construction	9,982,000	558,000	111,600	223,200	111,600	111,600	334,800	334,800
Maintenance and repair	84,721,000	4,921,000	984,000	1,968,000	984,000	984,000	2,952,000	2,952,000

Note: The data represents employment figures and production values for various economic sectors. The values are in thousands. The table continues with similar entries for other sectors and industries.
Continued

Net operating surplus B.2n	6.22E+09	436,125,700	1.42E+10	8.05E+09	1.45E+09	2,924,000,000	9.31E+09	2.32E+09	8.06E+09	3.95E+09	1.65E+09
Net mixed income B.3n	65,012,030	2,703,238	144,330,600	94,373,290	23,145,350	43,516,240	117,785,500	42,285,580	143,896,400	65,572,010	28,531,300
Consumption of fixed capital K.1	50,855,150	2,446,571	102,859,000	45,572,020	10,387,320	21,089,710	82,009,970	24,456,930	91,047,120	37,129,070	12,650,460

Source: Eurostat Database.

Table 2. Supply of products to industries (supply table).

Sectors Gross Output	Sec (1)	Sec (2)	..	Sec (m)	Products gross output
	Gross (sec)_1	Gross (sec)_2	..	Gross (sec)_m	

Authors’ conceptualization.

Each row shows the value of products supplied to each industry while the columns represent the industry gross output for each sector. The total gross output of products in the use table should be equal to those in the supply table. Also, the industry gross outputs in the use tables should be equal to those in the supply table. This equality characteristic forms the basis in national income/expenditure accounting.

3) The Input-Output Table

As presented in Table 1 and Table 2, the use and supply tables are used to calculate the use and supply proportions, technical coefficients and the inter-industry or inter-product transaction tables. The inter-industry or inter-product transaction tables are important for compiling the input-output tables. A typical input-output table is presented in Table 3. An input-output table consists of an inter-product transaction table (the shaded area), the final demand matrix and the value added or GDP components (measured using production method).

The shaded area represents the inter-industry coefficients where output of an industry can be used as input in other industries while input of an industry can be used to produce a good. For example, industry A_{1,2} implies that, industry 1 supplies input to industry 2 for use its production process while industry 2 is the purchaser or user of the inputs. This table is the matrix required to calculate the Leontief matrix and the Type I & II multipliers are presented as follows:
Table 3. Input-output table.

Industry/sectors	Final users	Sectors gross output							
	Sector (1)	Sector (2)	Sector (n)	HC	Govt	Invt	Exp	Imp	Gross (sec)
Industry	A₁₁,1	A₁₂,1	…	A₁ₙ,₁					G₁,₁
	A₂₁,1	A₂₂,1	…	A₂ₙ,₁					G₂,₁
	…	…	…	…					…
	Aₙ₁,₁	Aₙ₂,₁	…	Aₙₙ,₁					Gₙ,₁
Value added	W₁	W₂	…	Wₙ					W₂ₙ
	Ops₁	Ops₂	…	Opsₙ					Opsₙ
	Taxp₁	Taxp₂	…	Taxpₙ					Taxpₙ
Sectors gross output	Gross (sec)₁	Gross (sec)₂	…	Gross (sec)ₙ					Gross (sec)ₙ

NB: HC = household consumption, Govt = government expenditure, Invt = investment, Exp = exports, Imp = imports, Sec = sectors, Taxp = taxes on products, Ops = operating surplus, W = wages.

Type I and II multipliers derivation

In line with the UN guidelines [14] [7] there are five (5) steps involved in these derivations thus:

Step 1: Calculate from use and supply tables, the use and supply proportions;

Step 2: Calculate inter-product transaction table;

Step 3: Calculate Leontief matrix;

Step 4: Derivation of the multipliers;

Step 5: Validation of the empirical model.

Step 1: The Use and Supply Proportions

Use proportions:

Industry-by-industry use proportions are obtained by dividing each cell entry in the use table by industry gross output in the final row of the use table. We denote intermediate consumption and the value added parts of the use matrix as $i(j + v, k)$, where,

$v =$ number of rows in value added part of the use table.

But, $G(1, k) =$ Industry gross output.

Then,

$$B(j + v, k) = \frac{U(j + v, k)}{G(1, k)}$$ \hspace{1cm} (7)

Equation (7) represents the use proportions matrix comprising, intermediate consumption and value-added components.

The use proportion matrix with only intermediate consumption is given by:

$$B(j, k) = \frac{U(j, k)}{G(1, k)}$$ \hspace{1cm} (8)

Each column in Equation (7) represents the proportion of use by each indus-
try, having a column sum of use proportions to be equal to 1.

Supply proportions:

Industry-by-industry supply proportions are obtained by dividing each cell entry by row sum as given below. Suppose the supply matrix is denoted by \(M(j, k) \). Gross output of products is a column vector and given by \(Q(j, 1) \).

Then the supply proportions matrix is:

\[
D(j, k) = \frac{M(j, k)}{Q(j, 1)}
\]

(9)

Notice that row sum is equal to 1, which means that each cell shows the proportion of supply of each product to a particular industry.

Step 2: Inter-industry transaction table

This is presented in two (2) different symmetric transaction tables viz:

a) Industry-by-industry transaction table;

b) Product-by-product transaction table.

The industry-by-industry transaction table is also known as inter-industry transaction table with an equal number of industries (in both rows and columns). The product-by-product transaction table is with an equal number of products (in both rows and columns). However, for this paper used the industry-by-industry transaction table to analyze the industry demand and the industry output, because of its proximity to the statistical sources and the actual market transactions [7].

The general transaction table is done using the use and supply proportions matrix.

Note: Intermediate consumption in use and supply proportions matrices have \(m \) number of rows (products) and \(n \) number of columns (industries). Hence, \(m \neq n \) represents rectangular matrices. Use and supply proportions matrices are as shown in Equations (8) and (9) and are used to calculate the technical coefficient matrix.

Using the Inter-industry transaction table, we obtained the industry-by-industry technical coefficients matrix as follows.

\[
a(m, m) = D'(m, n) B(n, m)
\]

(10)

where,

\[
D'(m, n) = \text{transpose of } D(n, m).
\]

NB: Number of columns in the first matrix, \(D'(m, n) \) equals number of rows in the second matrix, \(B(n,m) \). The resulting matrix denoted by \(a(m, m) \) is called the industry-by-industry technical coefficient matrix. Each cell in this matrix represents the proportion of transaction from one industry to another industry, while the diagonal shows the transaction within one particular industry. We obtain the inter-industry transaction table by multiplying the technical coefficients matrix by a diagonal matrix representing industry gross output denoted by \(\text{diag.} \{ Q(m, m) \} \). The resulting inter-industry transaction table is denoted by \(A(m, m) \).
where,

\[A(m, m) = a(m, m) \text{diag} \left[Q(m, m) \right] \] \tag{11}

\[A(m, m) = \text{symmetric matrix of size } m \text{ by } m. \] Each cell in this matrix represents the value of transaction in dollars from one industry to another industry.

\[D'A(k, k) s = \text{transaction within any particular industry.} \]

Step 3: Derivation of the Leontief inverse

In Equation (6), the Leontief inverse matrix is presented as:

\[L(m, m) = \left[I(m, m) - a(m, m) \right]^{-1} \] \tag{12}

where,

\[I(m, m) = \text{identity matrix of size } m \text{ by } m. \]

Leontief inverse is obtained by:

Technical coefficients matrix \(a(k, k) \) minus identity matrix \(I(k, k) \).

By inversion, we have,

\[L(k, k) \text{, which represents the Leontief matrix.} \]

Step 4: Derivation of Type I and II multipliers

For Type I multipliers

Multiplier coefficients which represent the column sum of the Leontief inverse is given by:

\[\alpha(i) = \sum_{i=1}^{n} L(i, k) \] \tag{13}

where,

\[\alpha(i) = \text{multiplier coefficient for any given industry.} \]

For Type II multipliers

By introducing the household consumption (HC) sector as the \((k + 1)\)th column and employee income (compensation of employees) as \((k + 1)\)th row of the interindustry transaction table, the product-wise household consumption is transformed into the industry-wise household consumption by:

\[HC(m, 1) = D'(m, n) HC(n, 1) \] \tag{14}

where,

\[HC(n, 1) = \text{column vector of HC (in terms of demand for products obtained from the use table);} \]

\[HC(m, 1) = \text{HC column vector (in terms of demand for industries).} \]

But, \(HC(m, 1) \) is added as the \((m + 1)\)th column of the inter-industry transaction table which is the compensation of employees expressed in terms of industries as the row vector \(COE(1, m) \).

The new inter-industry transaction table now becomes \(A(m + 1, m + 1) \).

As a follow-up, technical coefficients matrix from the new inter-industry transaction table is given thus:

\[a(m + 1, m + 1) = \frac{A(m + 1, m + 1)}{Q(1, m + 1)} \] \tag{15}
where,
\(A(m + 1, m + 1) = \) Individual columns;
\(Q(1, m + 1) = \) row vector of industry gross outputs;
\(a(m + 1, m + 1) = \) technical coefficients matrix with an additional row for compensation of employees and an additional column for \(HC \).

Step 5: Validation of the empirical model

This is done to ascertain the validity of the empirical exercise by re-estimating the gross output, intermediate consumption and value added using the model and then comparing them with the actual values. The estimated Leontief inverse is multiplied by the actual values for final demand to obtain the estimated values thus:

From Equation (6),
\[
GO = (L)(FD)
\]

where,
\(GO = \) estimated gross output;
\(L = \) estimated Leontief matrix;
\(FD = \) actual total final demand.

The results of the model validation exercise are presented in **Table 4**.

4. Results and Discussions

The components of the final demand comprising, household consumption, non-profit institution serving households, government consumption, gross fixed capital formation and changes in inventories are classified based on the individual industries. **Table 5** summarizes the two (2) sets of industries: 1) Three industries representing only the agricultural sector (agriculture, fishing, food/beverage); and 2) one industry representing only mining sector (mining/quarrying).

The components of the final demand give an indication of the significance of each component in the total final demand of each industry. For example, total final demand of agriculture in 2015 consists of 75 percent Household consumption, 25 percent non-profit institution serving households, 0.12 percent government consumption, 0.49 percent gross fixed capital formation and 0.09

Table 4. Results of the model validation exercise.

Estimated total ($ million)	Percentage (%)	
Gross output	106,619,721	52.28
Intermediate consumption	96,744,498	47.44
Value added	560,998	0.28

Note: Actual totals are sourced from 2010 Nigeria’s supply and use tables; This confirms a high level of accuracy of the empirical model.
percent related to changes in inventories. Household consumption expenditure represents the largest proportion of the final demand. On the other hand, changes in inventories in terms of exports and imports are of particular importance to the agricultural sector.

Table 6 presents components of value added with the contributions of agricultural, fishing, food/beverage and mining industries to total GDP in 2015. It is also observed that approximately 1.13 percent of total compensation of employees is paid to employees in the agricultural sector which is relatively lower compared to the food/beverage industry (having 2.69 percent). The net operating surplus (profit) was highest in the agricultural industry (having about 97.01 percent) compared to other industries. The value-added components of the industries were found to be highest in the mining/quarrying industry having about $14,649,226,208.9 million.

Table 5. Industry-wise final demand and gross output—2015. (Percentages are in parenthesis).

Industry	Household final consumption	Non-profit institutions serving households	Government final consumption	Gross fixed capital formation	Changes in inventories	Total final demand	Gross output
1 Agriculture	3,043,598,000 (74.78)	997,578,500 (24.51)	5,074,180 (0.12)	20,341,830 (0.49)	3,640,730 (0.09)	4,070,233,240 (100)	19,204,942,655.41
2 Fishing	131,415,700 (81.98)	25,103,830 (15.66)	2,514,548 (1.57)	8,644,47 (0.005)	1,243,550 (0.78)	160,286,272,47 (100)	567,250,260.9
3 Food and beverages	14,812,110,000 (68.69)	6,744,033,000 (31.28)	464,285 (0.00022)	8007,873 (0.00037)	5,934,145 (0.028)	21,562,089,797.158 (100)	322,729,713,512.514
4 Mining/quarrying	137,691,400 (85.93)	15,892,030 (9.92)	1,543,437 (0.96)	2,411,855 (1.51)	2,706,671 (1.69)	160,245,393 (100)	587,920,334.78
Total of all industries	15,111,652,900 (50.90)	7,782,607,360 (26.22)	6,753,165,165 (22.75)	22,770,337,343 (0.077)	13,525,096 (0.046)	29,683,720,858,343 (100)	43,089,826,763.604

Computation from Eurostat database.

Table 6. Components of value added—2015 ($ million) (Percentages are in parenthesis).

Industry	Compensation of employees	Taxes on production	Subsidies on production	Net operating surplus	Net mixed income	Consumption of fixed capital	Value added	Gross output
1 Agriculture	72,255,140 (1.13)	12,033,320 (0.19)	−8,330,602 (−0.13)	6,223,971,000 (97.01)	65,012,030 (1.01)	50,855,150 (0.79)	6,415,796,038 (100)	19,204,942,655.41
2 Fishing	10,557,110 (2.34)	440,335,3 (0.09)	−292,756,2 (−0.06)	436,125,700 (96.49)	2,703,238 (0.59)	2,446,571 (0.54)	4,519,801,981 (100)	567,250,260.9
3 Food/beverage	226,730,400 (2.69)	33,005,090 (0.39)	−12,248,850 (−0.15)	8,048,809,000 (95.41)	94,373,290 (1.12)	45,572,020 (0.54)	8,436,240,950 (100)	587,920,334.78
4 Mining/quarrying	177,656,300 (1.21)	40,928,560 (0.28)	−708,251,1 (−0.005)	14,184,160,000 (96.83)	144,330,600 (0.99)	102,859,000 (0.70)	14,649,226,208,9 (100)	322,729,713,512.514
Total of all industries	262,278,320 (86.407,305.3)	−21,580,459.3 23,291,491,800 306,419,158 201,732,741 24,126,748,865	40,826,763.604					

NB: Value added is calculated as the sum of compensation of employees, operating surplus, consumption of fixed capital, other taxes on products, and subsidies.
Multipliers

Multipliers are derived based on direct and indirect effects arising from associate exogenous amendment in an industry’s final demand. These multipliers which were estimated on the basis of the I-O analysis, are defined as the system of economic transactions that follow a disturbance in an economy. The Type I multipliers considers only the direct and indirect effects while the Type II multipliers consider both direct, indirect, and induced multipliers. The results of the multiplier coefficients are as presented in Table 7.

As presented in Table 7, different industry groups within the agricultural, fishing, food/beverage and mining/quarrying sectors have varying multiplier coefficients. This means their abilities to generate economic effects are different. The results explain that every $1 additional demand for agriculture generates a total of $ 1.76 and $ 1.77 output and income respectively throughout the economy in 2010.

In other words, a 1dollar investment in the fishing industry will lead to a 2.89 and 3.19 increase in output and income (which is the highest when compared to other sectors) in the economy when both intermediate and final demand sectors (Type II) are considered. Similarly, a 1dollar investment in the fishing industry will lead to a 2.11 and 2.22 increase in output and income in the economy when only the intermediate sectors (Type I) are considered. Hence, the output and income in the fishing industry make up 27.93 and 29.24 percent of total domestic production. This implies that the fishing industry does not only represents a major socio-economic sector, but also is one of the major contributors to Nigeria’s

Table 7. Multiplier coefficients.

Sector	Nigeria’s input output	INITIAL	FIRST	INDUS	TOTAL	CONS’M	TOTAL	TYPE I	TYPE II
Agric		1.000	0.383	0.376	1.758	0.653	2.411	1.758	2.411
Fishing		1.000	0.613	0.505	2.118	0.772	2.890	2.118	2.890
Food/bev.		1.000	0.399	0.326	1.726	0.910	2.635	1.726	2.635
Mining/Q		1.000	0.440	0.363	1.803	0.609	2.412	1.803	2.412

Sector	Nigeria’s input output	INITIAL	FIRST	INDUS	TOTAL	CONS’M	TOTAL	TYPE I	TYPE II
Agric		0.141	0.053	0.055	0.249	0.109	0.357	1.769	2.540
Fishing		0.133	0.087	0.074	0.294	0.128	0.423	2.222	3.190
Food/bev.		0.243	0.055	0.049	0.347	0.151	0.498	1.430	2.063
Mining/Q		0.107	0.072	0.053	0.232	0.101	0.334	2.178	3.127

Input-output analysis result from Eurostat database.
GDP in terms of output and income to Nigeria’s economy. The economic meaning of this is that salaries & wages received by employees in the fishing industry have gone through more rounds of subsequent purchases than any other industry. In general, induced effects added by employee income are more than the total direct and indirect effects indicated by the Type I multiplier. Hence, the resultant effect from the protectionist trade measures in fish production (import quota) introduced since the first quarter of 2014 has stimulated the country’s self-sufficiency through a 25 percent annual fish import cut.

Currently in Nigeria, fish production by artisanal fishers dominates fish production in Nigeria contributing about 85% of fish production, since aquaculture that could compliment the fisheries is not well developed. This sector employs over eight million fishermen, and regarding eighteen million individuals have interactions in fish process, distribution and selling that accounts for over eightieth of the entire annual domestic fish production [15]. Hence, the fishing industry represents the highest Type I and Type II multiplier coefficients when both output and income are considered.

5. Conclusions and Suggestions for Further Studies

An input-output multiplier approach was used to measure the economic impacts of mining/quarrying and agricultural related industries. The Type I and II multipliers were derived as measures of direct, indirect and induced effects emanating from a change in final demand. Mining/quarrying as a single sector had a Type I multiplier of 1.80 and 2.17 for both output and income respectively and a Type II multiplier of 2.41 and 3.12 for both output and income respectively. Similarly, the agricultural related sector (fishing) was identified to have the highest contributions (2.11 and 2.89 as well as 2.22 and 3.19) in both Types I and II multipliers for both output and income respectively. The different industries had varying multiplier coefficients, which means their abilities to generate economic activities also vary.

The findings of our research were limited by the availability of an up-to-date data and therefore the present study has given more focus on the application of the methodology and opines on the need for further studies to adopt this study using the most recent data available, then make comparison in order to understand the changes in the multiplier effects occurring over time. Further research is also needed to address the product-wise economic impacts in addition to the aspects such as employment multipliers, import leakage and changing patterns of inter-industry dependence over time as the present study focused on industry-wise economic impacts, as well as the income and output multipliers.

Availability of Data and Materials

Data for the study were obtained online from Eurostat database. These datasets used and/or analyzed in the study are available from the corresponding author on reasonable request.
Acknowledgements

Special acknowledgement goes to the Almighty God for his grace and DAAD for their financial support and encouragement.

Funding

The major funding source for this paper was obtained from Deutscher Akademischer Austauschdienst German Academic Exchange Service (DAAD) (Grant No. 91677725).

Authors’ Contributions

The corresponding author, MOE handled the research methodology, analysis and interpretation, while the co-author, CUO, conceptualized the research work, literature and validated the results, and NJN proffered suggestions for further studies. All authors read and approved the final manuscript.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Federal Republic of Nigeria (2014) Intended Nationally Determined Contributions (INDC) Second National Communication Report. 1-23.
[2] National Bureau of Statistics (2018) Nigerian Gross Domestic Product Report Q4 2018. 1-141.
[3] Annual Abstract of statistics (2015) Annual Abstract of Statistics. http://www.nigerianstat.gov.ng
[4] Leontief, W. (1953) The Structure of the American Economy. Oxford University Press, New York.
[5] Frechtling, C. and Horvath, E. (1999) Estimating the Multiplier Effects of Tourism Expenditures on a Local Economy through a Regional Input-Output Model. Journal of Travel Research, 37, 324-332. https://doi.org/10.1177/004728759903700402
[6] United Nations (1993) System of National Accounts. Statistics Division Department for Economic and Social Affairs Statistics Division, New York. http://unstats.un.org/unsd/sna1993
[7] Eurostat (2008) Manual of Supply, Use and Input-Output Tables. Tech. Rep. No. L-2920. Luxembourg.
[8] Thijs, R. (2006) The Economics of Input-Output Analysis. Cambridge University Press, Cambridge.
[9] Krumme, G. (2009) http://faculty.washington.edu/krumme/systems/ioequations.html
[10] Diekmann, A. (2002) The Use of Energy in Transport—Past and Future Trends and Implications. 14th Input-Output Conference, Montreal, 10-15 October 2002, 1-10.
[11] Weisbrod, G. and Weisbrod, B. (1997) Assessing the Economic Impact of Transportation Projects How to Choose the Appropriate Technique for Your Project [Brochure]. Economic Development Research Group Transportation Research Board,
Washington DC.

[12] Oosterhaven, J. and Stelder, D. (2000) On the Use of Gross versus Net Multipliers with a Bi-Regional Application on Dutch Transportation. 13th International Conference on Input-Output Techniques, Macerata, August 2000, 1-11.

[13] Hirschman, A.O. (1958) The Strategy of Economic Development. Yale University Press, New Haven.

[14] United Nations (1999) Handout of Input-Output Table Compilation and Analysis [Brochure]. Department for Economic and Social Affairs Statistics Division, New York, UN Publications No. E99.XVII.9.

[15] Federal Department of Fisheries (FDF) (2008) Fishery Statistics of Nigeria. 4th Edition, Federal Department of Fisheries, Abuja, 49.