ABSTRACT – Introduction: The wide net of physiological issues involved in metabolic surgery is extremely complex. Nonetheless, compared anatomy and physiology can provide good clues of how digestive tracts are shaped for more or less caloric food, for more or less fiber, for abundance and for scarcity. Objective: To review data from Compared Anatomy and Physiology, and in the Evolutionary Sciences that could help in the better comprehension of the metabolic surgery. Method: A focused review of the literature selecting information from these three fields of knowledge in databases: Cochrane Library, Medline and SciELO, articles and book chapters in English and Portuguese, between 1955 and 2019, using the headings “GIP, GLP-1, PYY, type 2 diabetes, vertebrates digestive system, horminid evolution, obesity, bariatric surgery “. Results: The digestive tract of superior animals shows highly specialized organs to digest and absorb specific diets. In spite of the wide variations of digestive systems, some general rules are observed. The proximal part of the digestive tract, facing the scarcity of sugars, is basically dedicated to generate sugar from different substrates (gluconeogenesis). Basic proximal gut tasks are to proportionally input free sugars, insulin, other fuels and to generate anabolic elements to the blood, some of them obesogenic. Limiting the ingestion by satiety, by gastric emptying diminution and to limit the excessive elevation of major fuels (sugar and fat) in the blood are mostly the metabolic asks of the distal gut. A rapid and profound change in human diet composition added large amounts of high glyceric index foods. They seem to have caused an enhancement in the endocrine and metabolic activities of the proximal gut and a reduction in these activities of the distal gut. The most efficient models of metabolic surgery indeed make adjustments in this proximal/distal balance in the gut metabolic activities. Conclusion: Metabolic surgery works basically by making adjustments to the proximal and distal gut metabolic activities that resemble the action of natural selection in the development the digestive systems of superior animals.

HEADINGS: Obesity. Metabolic syndrome. Gastric bypass. Glucagon-like peptide 1. Gastric inhibitory polypeptide.

Perspectiva
Há evidência de que dietas refinadas promovam não só aumento da absorção proximal mas também da atividade endócrina do intestino proximal e prejuízo da atividade ileal: um desequilíbrio proximal-distal. Tratamentos que corrijam este desequilíbrio são eficazes na obesidade e na síndrome metabólica, independentemente de malabsorção calórica. Há vários modelos de cirurgias digestivas com efeitos metabônicos, sendo que as que promovem a pronta estimulação nutritiva ileal são as mais potentes.
INTRODUÇÃO

S

e for desejado construir uma asa eficiente, pode se
aprofundar na engenharia aeronáutica e na física
ou copiá-la de um pássaro. A ampla e profunda rede
de questões fisiológicas envolvidas na cirurgia metabólica é
extremamente complexa. No entanto, a anatomia comparada
pode nos dar boas pistas sobre como os tratos digestivos são
moldados para alimentos mais ou menos calóricos, com mais
menos fibras e para abundância ou escassez.

Em um ambulatório especializado para síndrome do intestino
curto, algumas observações fisiológicas inesperadas foram feitas
anos 90.

Era sabido que aqueles que perdiam toda a parte distal
do intestino delgado sofriam mais e dependiam mais do apoio
médico em comparação com as extensas perdas proximais. No
entanto, em alguns casos raras, algo novo apareceu, ou seja, por
algum motivo desconhecido, alguns indivíduos que perderam
grandes quantidades de uma parte proximal anteriormente
normal do intestino delgado se recuperaram melhor, como
previsto, mas paradoxalmente, se tornaram melhores do que
eram antes da perda.

Como alguém pode perder uma parte normal do corpo
e, em vez de ficar doente e ter problemas de saúde, tornar-se
mais saudável e melhor? Essa observação ocorreu algumas
vezes, sempre trazendo de volta essa questão intrigante.
Havia um pequeno grupo de pacientes que, antes da condição
(ou acidente) que os levara a ressecção extensa do intestino
proximal, eram obesos apresentando pressão arterial alta, lipídios
sanguíneos elevados e resistência à insulina. Após a adaptação
que se segue à extensa ressecção do intestino proximal (quase
todo o jejuno, nesses poucos casos), não houve má absorção
significativa; os indivíduos eram saudáveis e, surpreendentemente,
não obesos, não hipertensos e com açúcar no sangue e lipídios
normais. Como isso aconteceu sem haver nenhuma alteração
adequada nas circunstâncias atuais?

Foi demonstrado que a ressecção intestinal proximal, mas não
a distal, pode ter impacto positivo na síndrome metabólica e
na resistência à insulina23, e muitas hipóteses e mecanismos fisiológicos
interessantes são candidatos para explicar esse fenômeno. As
ciências evolucionárias podem fornecer um caminho potencial
para resolver esse quebra-cabeça. A ocorrência de mudanças
aleatórias nos seres vivos pode, em certas circunstâncias, ser
benéfica. Esta é a pedra angular das ciências evolucionárias. Em
condições normais, mutações no código genético são os motivos
das alterações que podem causar uma seleção positiva das gêneros evoluídos. No entanto, com o
desenvolvimento “recente” da cirurgia, podemos modificar corpos
sem nenhuma alteração genética: uma modificações cirúrgica. Na
maioria das situações, a cirurgia é realizada para remover
ou tratar um órgão doente. A adaptação após a operação pode
levar à sequelas ou a recuperação completa, com o paciente tão
bem quanto antes. No entanto, tão rara quanto uma mutação
genética benéfica, a cirurgia pode produzir um ser melhor, mais
adaptado às circunstâncias atuais.

Com base na Anatomia e Fisiologia Comparadas e nas
Ciências Evolucionárias, o objetivo desta revisão foi encontrar
vínculos com esses problemas e a cirurgia metabólica.

MÉTODO

Uma revisão focada da literatura, selecionando as informações
da Biblioteca Cochrane, Medline e SciELO, artigos e capítulos de
livros em inglês e português, entre 1955 e 2019, utilizando os títulos
“GIP, GLP-1, PYY, diabetes tipo 2, sistema digestivo de vertebrados,
evolução de hormônios, obesidade, cirurgia bariátrica”.

RESULTADOS

Respostas metabólicas

Licoes de carnivores exclusivos: o gato

Carnívoros exclusivos, como o gato, em período de escassez
fome mantém a glicose no sangue em níveis normais devido à
produção endógena contínua de glicose, tanto pela glicogenólise
(consumindo reservas de glicogênio) quanto pela gliconeogênese,
usando outros possíveis precursores da glicose, principalmente
aminoácidos glicogénicos, piruvato, lactato e glicerol (de triglicerídeos).
A secreção do hormônio pancreático glucagon é a principal
responsible por essa produção endógena de glicose22.

Simultaneamente, quantidades muito baixas de insulina
 estão em circulação. Os baixos níveis desse hormônio impedem o
consumo de glicose pelos tecidos do corpo. Como alguns tecidos
têm a capacidade de consumir glicose mesmo na ausência de
insulina, a produção endógena de glicose é basicamente dedicada
tos tecidos dependentes da insulinna, principalmente o sistema
nervoso central.

Nesse período de fome, os músculos e outros tecidos do corpo
que não têm acesso à glicose (devido aos baixos níveis
de insulina) consomem principalmente gordura. Insulina baixa
no sangue induz triglicéridos a serem quebrados em glicerol e
ácidos graxos livres (AGL). O glicerol pode ser um substrato para
a gliconeogênese, gerando glicose, como mencionado acima,
mas os AGL não podem e irão gerar corpos cetônicos que servem
como combustível para as células durante a fome.

A gordura é armazenada em tempos de abundância, sob
níveis mais altos de insulina. Os tecidos adiposos sob níveis muito
baixos de insulina fazem o processo oposto, a lipólise, para liberar
os AGL no sangue.

Os tecidos animais, que compõem a dieta do carnívoros, são
quase todas proteínas e gorduras, com quantidades insignificantes
nem de açúcar. Após uma refeição, resposta à insulina será acionada
e, mesmo sem ingestão de açúcar, não ocorrerá hipoglicemia.

O principal responsável pelo fenômeno é um hormônio
intestinal, polipeptídeo insulinoimparado da glicose ou
simplesmente GIP. Ele é secretado após as refeições. Os nutrientes
estimulam as células K no intestino proximal e provocam a secreção
de GIP. Se a glicemia não for alta, o GIP induz a secreção de insulina
uma poderosa secreção de glucagon (que já era alta devido ao
período de jejum). Portanto, tanto mais glicose endógena é produzida
- agora sob insulina alta - e todos os tecidos dependentes de
insulina terão acesso à glicose precisando.

Essa situação é um banquete de glicose para as células, mas
observe que essa glicose não foi ingerida, mas sim produzida. O
entero-hormônio GIP tem grande responsabilidade nesse aspecto.
Portanto, não é surpresa que o GIP seja produzido em todo o
intestino delgado e seja uma principal inibição de carnívoros exclusivos,
come felinos. A glicose encontrada no sangue de um carnívoros
é um produto da gliconeogênese. Os gatos também têm células L no
leão, como outros mamíferos. Os nutrientes no intestino delgado
distal são um sinal de que a refeição foi significativa e a produção de
GLP-1 ajuda a criar saciedade, bloquear o esvaziamento gástrico e,
en um determinado momento, bloquear a secreção de glucagon
para evitar hiperiglicemia após a produção de muita glicose
(mesmo nenhuma houve sido consumida). Esses elementos
juntos induzirão o final de uma refeição. É importante destacar
que, embora comam em grande parte proteínas e gorduras, os
gatos podem apresentar diabete melito tipo 2 (T2DM)23 e que
análogos do GLP-1 como o exenatida podem ser usados para
tratá-los, como em humanos. A mensagem importante é que
a maioria da glicose é um produto da gliconeogênese e que
o intestino proximal é o principal ator no processo.
proteínas. A estratégia de vida de um ruminante é bastante excêntrica: eles comem comida pobre, fácil de encontrar e que não é muito disputada por outros animais, para que os ruminantes não gastem muita energia para lutar por ele; no entanto, eles têm a difícil tarefa de extrair nutrientes desse alimento.

Mamíferos não possuem célula, a enzima que permite a digestão da celulose. Os ruminantes comem grandes volumes e enviam seus alimentos para o rúmen (os alimentos podem retornar à boca para serem mastigados novamente - é isso que significa “ruminar”). No rúmen, bactérias e leveduras fermentam a celulose, gerando ácidos graxos voláteis, como ácido acetico, ácido propiónico e outras substâncias que podem ser transformadas em glicerol por meio da gliconeogênese.

Curiosamente, as bactérias retêm grande parte da energia e das proteínas dos alimentos que digerem. No entanto, essas bactérias são também digeridas no abomaso. Portanto, é correto dizer que os ruminantes vivem dos nutrientes que extraem da forragem com a ajuda de outros organismos e dos nutrientes que eles obtêm digerindo os organismos que os ajudaram.

O aspecto importante para o espírito deste artigo é que, mesmo em herbívoros ruminantes, a glicose no sangue provém principalmente da gliconeogênese e a geração de glicose é importante. Os ruminantes não comem uma quantidade significativa de açúcares livres. O intestino proximal está profundamente envolvido na produção de glicose.

Lições de herbívoros não ruminantes: o cavalo
Os cavalos gastam mais energia se movendo por longas distâncias e procurando comida um pouco mais rica; além de grama e feno, sementes, maçãs e cenouras podem ser uma refeição. Os cavalos, portanto, comem comida um pouco mais rica em comparação com uma vaca. Provavelmente, essa é a razão pela qual o estômago do cavalo é menor que o da vaca e possui apenas uma câmara que produz ácido e pepsina. O ácido interrompe a fermentação, que é desfavorável ao crescimento de bactérias. A digestão enzimática e hidrolítica ocorre antes da fermentação da fibra.

Alimentos mais ricos custam mais esforços para serem obtidos; não serão compartilhados precocemente com as bactérias intestinais. O estômago inicia a digestão e, no intestino delgado, proteínas e açúcares são digeridos e absorvidos antes do “compartilhamento”. Uma grande quantidade de fibra com celulose permanece. O cavalo tem um ceço muito grande e são capazes de extrair a maioria de seus nutrientes das folhas, enquanto os macacos-aranha são menos eficientes na extração de energia da fibra em sua dieta.

Primatas não são exceções. Entre os primatas, existem estudos detalhados das relações entre a dieta e a morfologia intestinal. Dois macacos externamente muito semelhantes, os bugsio e os aranhas, têm tamanhos e formas muito diferentes do trato digestivo. Os macacos bugsio têm maior trato digestivo e são capazes de extrair a maior parte de seus nutrientes das folhas, enquanto os macacos-aranha são menos eficientes na extração de energia da fibra em sua dieta. Estes últimos precisam buscar frutas maduras, altamente digestíveis e ricas em energia, sem tanta fibra.

Uma dieta muito pobre, como forragem bruta, não é disputada; é abundante, podendo o animal dos esforços para obtê-la. No entanto, essa dieta exige refeições muito volumosas, trabalho duro e boas estratégias para digerir: estamos de volta à vaca. É necessário um tubo digestivo grande e longo. Esse é um fato indiscutível.

Essa idéia explica por que os maiores dinossauros eram herbívoros. Um morcego com um abdome grande é herbívoro. Os morcegos com um abdome muito pequeno são vampiros (comida rica, sem fibra). Os pássaros raramente vivem com dietas vegetarianas, porque estômagos e intestinos grandes os impedem de voar. De fato, quanto mais rica a dieta, menor o trato digestivo ideal. De peixes a mamíferos, essa é uma regra válida.

Pequenos roedores são pequenos demais para comer dietas ruins, que seriam cheias de fibras que seu pequeno aparelho digestivo não consegue processar. Natureza e evolução selecionaram as melhores respostas. Pequenos roedores podem evacuar o que é digerido de maneira incompleta com algumas enzimas (cecotrofia) e depois comer suas próprias fezes mais uma vez (coprofagia). Solução para um pequeno aparelho digestivo pode ser comer a mesma refeição duas vezes para permitir a extração do máximo de glicose.

Natureza e evolução selecionaram as melhores respostas. Pequenos roedores podem evacuar o que é digerido de maneira incompleta com algumas enzimas (cecotrofia) e depois comer suas próprias fezes mais uma vez (coprofagia) (10-11). Solução para um pequeno aparelho digestivo pode ser comer a mesma refeição duas vezes para permitir a extração do máximo de energia. A cavidade abdominal humana tornou-se menor (esquerda), quando comparada ao Australopithecus afarensis primitivo (direita, reconstruída por Schmid, 1983 apud ref. 1).

É reconhecido que esta modificação na dieta tornou a resistência insulínica um traço vantajoso. De fato, aumento na proteína das dietas induz resistência insulínica (12). Populações que foram submetidas às pressões seletivas de dietas muito pobres.
em carboidratos poderiam, portanto, facilmente desenvolver hiperiglicemia quando expostas a alimentos com alto índice glicêmico.

Escassez e tamanho do estômago

Obviamente, a taxa de esvaziamento gástrico deve ser limitada pela capacidade do intestino de processar e absorver alimentos. De fato, os entero-hormônios (principalmente GLP-1) produzidos pelo intestino distal reduzem o esvaziamento gástrico com muita eficiência. Dessa forma, o processo de alimentação é bifásico: inicialmente, há fome e o alimento é rapidamente enviado ao intestino, onde é absorvido principalmente. Depois que uma certa quantidade é ingerida, os sinais intestinais distais bloqueiam o esvaziamento gástrico e geram a sensação de saciedade (uma “saciedade intestinal”), mas os animais não param de comer imediatamente. Eles têm outro instinto: a gula. Se houver espaço no estômago, eles continuam a comer, mesmo que esses nutrientes não possam ser enviados para o intestino imediatamente. Essas quantidades retidas no estômago representam um estoque que será enviado posteriormente ao intestino. Quanto mais intensa a escassez, mais valiosa é uma grande câmara gástrica.

É interessante que esse bloqueio no esvaziamento gástrico provoque restrição. No entanto, essa restrição funcional não aparece apenas no final da refeição. As restrições mecânicas (como bandas e anéis gástricos) previstas para cirurgia bariátrica são permanentes e presentes desde o início das refeições. A restrição mecânica é um obstáculo à ingestão e, obviamente, não é fisiológico. Essas restrições representam uma estenose. Portanto, existe diferença fundamental entre restrição funcional e mecânica. A última limita a ingestão, o que é profundamente indesejável; a primeira limita o estoque.

Uma boa capacidade de armazenamento é valiosa em escassez. No entanto, restrição funcional precoce pode ser desejável na circunstância (inesperada) da abundância. Câmara gástrica muito reduzida, como a bolsa de 30 ml resultante do bypass gástrico, pode esvaziar-se facilmente e por muito tempo, possibilitando grande refeição. Às vezes, essa situação é vista após a operação de bypass gástrico e pode estar associada à recuperação do peso total, principalmente após grande hipertrofia da parte proximal do intestino, adaptar o intestino a esse trabalho extra.

Portanto, o tamanho das câmaras gástricas não está linearmente relacionado ao tamanho das refeições. Está relacionado à quantidade de alimentos que podem ser armazenados quando o esvaziamento gástrico é bloqueado pela “saciedade intestinal”. Se a capacidade intestinal de absorção for grande, os nutrientes serão rapidamente absorvidos, os sinais intestinais distais aparecerão tarde; assim, é possível comer grandes quantidades, independentemente do tamanho do estômago.

Há outra reflexão interessante sobre a gula. A fome é sensação que faz você se mover, gastar energia e correr riscos em busca de comida. Após a saciedade intestinal, a capacidade de comer mais é limitada e, acima de tudo, não há urgência. Portanto, os animais comem por gula os alimentos que são facilmente alcançáveis, sem risco ou gasto de energia. Em condições selvagens, é oportunidade preciosa que justifica a existência desse instinto. Um leão que acabou de comer não corre atrás de outra presa, e sua capacidade de digestão de alimentos é baixa por algum tempo. No entanto, se a carne fresca estiver disponível sem esforço, o leão comerá um pouco mais.

Os seres humanos que ficam junto à mesa depois do jantar parecem fazer exatamente o mesmo. Eles não vão para a cozinha em busca de mais, mas os alimentos que estão ao seu alcance podem ser consumidos lentamente. Fome e gula são termos usados pelos leigos, mas esses termos podem ser definidos fisiologicamente.

Em circunstâncias excepcionais de abundância extrema, com exposição contínua a refeições altamente calóricas e baratas, gula e estômagos grandes podem facilmente causar supersupernutrição, uma condição perigosa.

A gastrectomia vertical: um procedimento cirúrgico evolutivo?

Nos tempos modernos, forma proporcional de redução do estômago foi proposta, transformando a bolsa grande em um tubo simples: a gastrectomia vertical. Não causa nenhuma dificuldade na passagem de alimentos. De fato, o estômago nessa forma tubular tem capacidade menor de distender e aumentar seu volume com pressões semelhantes (baixa complacência); esvazia-se mais rapidamente e, quando o esvaziamento gástrico é bloqueado pela ação dos sinais intestinais, possui capacidade de armazenamento muito pequena.

A civilização, em algumas áreas, trouxe circunstância muito incomum para um animal: abundância em longo prazo de alimentos ricos em calorias. Nessa situação, o instinto da gula se torna muito inadequado, pois o excesso crônico induz obesidade, resistência à insulina e excesso de lípidios e açúcar no sangue. A síndrome metabólica tornou-se um problema maior do que a desnutrição nessas áreas.

FIGURA 2 - A gastrectomia vertical

A observação de passos evolutivos em direção a alimentos mais ricos mostra que a adaptação a essa situação envolve estômagos menores e intestinos mais curtos.

Como esperado, a gastrectomia vertical mostra resultados maravilhosos na redução de excessos, resistência à insulina, diabetes, hipertensão arterial, etc. em resumo, a síndrome metabólica. O estômago não estava doente ou anormal antes, mas a gastrectomia vertical representa uma modificação vantajosa na anatomia e fisiologia: é evolução.

No entanto, essa modificação não ocorreu por mutação genética casual como uma forma comum de evolução. É uma evolução fenotípica induzida cirurgicamente. Obviamente, essa nova característica não será transmitida, mas agrega benefícios à vida de um indivíduo e pode ser aplicada a muitas pessoas suscetíveis a comer demais, o que é uma conquista notável.

A “cirurgia evolutiva” do intestino delgado

Hoje, temos acesso pleno ao açúcar em quantidade e concentrações que não são encontradas na natureza. Esta foi uma mudança repentina. Nossa anatomia não foi desenvolvida para isso. Nosso intestino proximal ainda é muito dedicado à gliconeogênese. Não é surpresa que um medicamento (metformina) que bloqueia a gliconeogênese se torne tão popular. Seguindo essa lógica, em um ambiente civilizado de abundância de alimentos altamente calóricos e altamente absorvíveis (gerando alto índice glicêmico), os sinais distais do intestino são atenuados proporcionalmente a diminuição de açúcares e lipídios no sangue, saciedade e bloqueio do esvaziamento gástrico e podem evitar excessos. Além disso, a hiperplasia produzida no intestino proximal por excesso de comida aumenta ainda mais a capacidade de absorção, como mencionado anteriormente. Sinais intestinais distais menos intensos implicam comer mais, em um círculo
vicioso26. Não é de surpreender que todos os procedimentos cirúrgicos intestinais que funcionam metabolicamente envolvam diminuição da exposição de nutrientes ao intestino proximal e/ou um contato precoce com o intestino distal. Além disso, as ações nesse equilíbrio proximal-distal são muito independentes. Há benefício metabólico pela diminuição da atividade intestinal proximal, como o uso de sleeves com desvios duodenojejunal, que criam barreira impermeável entre os nutrientes que saem do estômago e a mucosa do duodeno e do jejuno muito proximal13.

Por outro lado, nas operações de bypass jejunoileal realizadas no passado, o quimo era enviado do jejuno proximal diretamente para o íleo distal (Figura 3), sem nenhum procedimento que afetasse o estômago ou o duodeno. Também existem resultados metabólicos positivos imediatos. As necessidades de insulina foram drasticamente reduzidas após o procedimento, e isso ocorreu imediatamente no início do período pós-cirúrgico, antes de qualquer redução significativa de peso51. Tanto a diminuição da exposição proximal do intestino aos nutrientes quanto o aumento da exposição do intestino distal funcionam bem para melhorar os resultados metabólicos.

FIGURA 3 - O bypass jejunoileal

A observação de diferentes espécies mostra que a seleção natural induz redução no intestino delgado como resposta a dietas progressivamente mais ricas e com menos fibras. O íleo se aproxima50. Entre todos esses procedimentos intestinais, o único que poderia ser chamado de “procedimento evolutivo”, como a redução gástrica da gastrectomia vertical seriam uma redução intestinal proximal - enterectomia, pois de fato reduz o intestino e o mantém alinhado (menor, mas com o mesmo desenho geral, a mesma sequência de epitélios sem exclusões). É o que se observa na natureza como resposta a dietas maiores ricas52. Existem animais com diferentes comprimentos de intestino delgado, mas não existem animais com desvios, interposições ou bipartição. No entanto, a gastrectomia vertical e jejunoileal podem apresentar painéis altamente alternativos, apesar de apoio de observações naturais. É necessária análise crítica dos procedimentos para determinar o que é mais simples e o que oferece a melhor adaptação ao novo ambiente com menos complicações. No entanto, é claro que as melhores soluções devem reduzir a atividade intestinal proximal e aumentar a atividade intestinal distal.

DISCUSSÃO

Breves análises críticas dos métodos de procedimento metabólico intestinal

Quatro métodos diferentes de interferir na anatomia intestinal podem ser usados com propósitos metabólicos: exclusão, transposição, bipartição e ressecção.

As exclusões de um segmento tornaram-se populares nas derivações gástricas – bypass gástrico (exclusões curtas) e derivações bilopancreáticas (DBPs, exclusões longas). Eles trouxeram resultados positivos após equilíbrio final entre prós e contras, e são amplamente utilizados. O bypass gástrico se tornou procedimento muito popular.

No entanto, as exclusões não foram projetadas por cirurgiões que pensavam nos papéis metabólicos complexos do intestino proximal ou na história evolutiva do intestino delgado. Esses procedimentos foram projetados para obter má absorção calórica; no entanto, esta é difícil de obter. Se o procedimento é tão agressivo que esta é realmente alcançada (como as DBPs), a desnutrição resultante é pronunciada e difícil de superar.

Segmentos curtos de exclusão causam má absorção calórica mínima ou nula. O bypass gástrico com exclusões intestinais de aproximadamente 0,5 a 1 m funciona devido à interferência complexa e positiva nos sinais intestinais metabólicos, desativando parcialmente o intestino proximal e melhorando acelerando os sinais distais do intestino, que é o que chamamos genericamente de desequilíbrio proximal-distal53.

Os finos mecanismos por trás da correção desse desequilíbrio estão sendo gradualmente descobertos e envolvem hormônios intestinais, metabolismo do sal biliar, alterações na microbiota, padrões de esvaziamento gástrico, preferências alimentares, gasto energético, excréscia trans-intestinal e outras formas de gasto de energia, que criam barreira impermeável entre os nutrientes que saem do trato gastrointestinal. A ressecção do intestino delgado é muito eficaz, mas altamente complexo, com muitas brechas no mesentério e muitas possibilidades de complicações e distúrbios. A adição de ressecção intestinal proximal à gastrectomia vertical50 imita as etapas da evolução: uma miniaturização proporcional do trato gastrointestinal. A ressecção do intestino delgado é simples e ainda mais segura que a própria gastrectomia vertical: a anastomose é segura; o intestino delgado apresenta grande variação na normalidade e capacidade de adaptação (hipertrofia compensatória), aumentando os sinais distais do intestino (um dos objetivos). Em teoria, esse procedimento removeria partes “atualmente excessivas”. O intestino restante pode ser tão longo quanto o limite inferior da normalidade, aproveitando assim a imensa variação anatômica entre os seres humanos. O resultado é um trato digestivo alinhado com todas as suas porções funcionando bem. Entretanto, por esse método (Figura 4), todos os alimentos com alto índice glicêmico ainda passam pelo duodeno, o principal local de absorção de açúcar simples, que o íleo ainda não está tão próximo quanto em uma DBP e há o inconveniente da ressecção (a perda de reserva).

Nesse cenário, a bipartição de trânsito leva o íleo até o antro, criando estímulo ileal rápido como em uma DBP. Todo o intestino proximal é parcialmente desativado pela troca de alimentos pela anastomose gastroileal. Como a má absorção não é o objetivo, mas sim um novo equilíbrio nas atividades intestinais proximal e distal, a exclusão é trocada pela bipartição. O acesso endoscópico é mantido. O procedimento intestinal ajuda a diminuir a alta pressão intragástrica da gastrectomia vertical e, de fato, utiliza...
Houve duas mudanças bruscas e importantes na dieta humana: a abundância e o refinamento dos alimentos (uma forma de enriquecimento e pré-digestão). Elementos não naturais, como açúcar refinado, farinha refinada e outros nutrientes pré-digeridos foram adicionados em grandes quantidades. Alterações na qualidade e quantidade de alimentos requerem modificações no trato digestivo. A evolução natural é lenta e não pode ajudar a reverter a obesidade. De fato, fornecer glicose e insulina juntos é a atividade principal e representa falta de adaptação e não órgãos doentes. De fato, os modelos atuais de cirurgia metabólica eficazes parecem ser superiores às gastrectomias verticais semelhante aos resultados publicados para as DBPs e, portanto, essas abordagens parecem ser superiores às gastrectomias verticais e bypass gástricos.

Apesar da ampla variedade de alternativas cirúrgicas eficazes, a biologia evolutiva ajuda a entender a cirurgia metabólica em geral. De fato, fornecer glicose e insulina juntos é a atividade principal do intestino proximal. Em excesso, essa situação pode resultar em resistência à insulina e obesidade. O intestino distal, por outro lado, é responsável pela redução da glicose no sangue (potencialização da secreção de insulina com bloqueio da secreção de glucagon), diminuindo o esvaziamento gástrico e a saciedade gástrica. A deficiência nessas atividades pode resultar nas mesmas condições. Todos os procedimentos eficazes de cirurgia metabólica terminam por reduzir as atividades intestinais proximais e melhorar as atividades intestinais distais.

CONCLUSÃO

1. Aiello L C and Wheeler P. The expensive tissue hypothesis: The brain and the digestive system in human and primate evolution. Cur Anthropol 1995; 36: 199-221.
2. Aschenbach JR, Kristensen NB, Donkin SS, Hammon HM, Penner GB. Gluconeogenesis in dairy cows: the secret of making sweet milk from sour dough. IUBMB Life. 2010; 62(12):869–77.
3. Azevedo FR, Santoro S, Correa-Gianella M Letal. A prospective randomized controlled trial comparing 2 versions of metabolic effects of sleeve gastrectomy with transit bipartition. ObesSurg 2018; doi.org/10.1007/s11695-018-3239-3
4. Burkitt DP, Eaton SB. Putting the wrong fuel in the tank. Nutrition 1989;5:189-91.
5. Cavin JB, Voeteller E, Cluzeaud F, Kapel N, Marmuse JP, Chevallier JM et al. Malabsorption and intestinal adaptation after one anastomosis gastric bypass compared with Roux-en-Y gastric bypass in rats. Am J PhysiolGastrointest Liver Physiol. 2016; 311(3):G492-500.
6. Christensen M, Vedtofte L, Holst JJ, Vilsbøll T, Knop FK. Glucose-dependent insulino-tropic polypeptide: a bifunctional glucose-dependent regulator of glucagon and insulin secretion in humans. Diabetes 2011;60:3103–3109.
7. Coppack SW, Jensen MD, Miles JM. In vivo regulation of lipolysis in humans. J Lipid Res. 1994; 35(2):177-93.
8. Daly K, Al-Rammahi M, Arora DK, Moran AW, Proudmann CJ, Ninomiya Y et al. Expression of sweet receptor components in equine small intestine: relevance to intestinal glucose transport. Am J PhysiolRegulIntegr Comp Physiol. 2012; 303(2):R199-208.
9. Demigné C, Yacoub C, Morand C, Rémy C. Findings on intermediate transit bipartition. ObesSurg 2018; doi.org/10.1007/s11695-018-3239-3
10. De Paula AL. Laparoscopic Sleeve gastrectomy with ileal interposition ("neuroendocrine brake")—pilot study of a new operation. SurgObesRelatDis. 2006;2(4):464-7.
11. De Paula AL, Stival AR, Macedo A, Ribamar J, Mancini M, Halpern A et al. Prospective randomized controlled trial comparing 2 versions of laparoscopic ileal interposition associated with sleeve gastrectomy for patients with type 2 diabetes with BMI 21-34 kg/m (2). SurgObesRelatDis. 2010; 6(3):296-304.
12. Durham AE, Hughes KJ, Cottle HJ, Rendle DI, Boston RC. Type 2 diabetes mellitus with pancreatic beta cell dysfunction in 3 horses confirmed with minimal model analysis. Equine Vet J. 2009; 41(9):924-9.

13. Forner PM, Ramacciotti T, Farey JE, Lord RV. Safety and Effectiveness of an Endoscopically Placed Duodenal-Jejunal Bypass Device (EndoBarrier®): Outcomes in 114 Patients. ObesSurg. 2017 Oct 11.

14. Kirkil, Cüneyt et al. Quality of life after laparoscopic sleeve gastrectomy using BAROS system. ABCD, arq. bras. cir. dig., 2018, vol.31, no.3. ISSN 0102-6720

15. Lasnibat, Juan Pablo et al. Sleeve gastrectomy and fundoplication as a single procedure in patients with obesity and gastroesophageal reflux. ABCD, arq. bras. cir. dig., Sept. 2017, vol.30, no.3, p.216-221. ISSN 0102-6720

16. Madiraju AK, Qiu Y, Perry RJ, Rahimi Y, Zhang XM, Zhang D et al. Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo. Nat Med. 2018; 24:1384-1394.

17. Mason EE. Ileal transposition and enteroglucagon/GLP-1 in obesity (and diabetic?) surgery. ObesSurg. 1999 Jun; 9(3):223-8.

18. Milton K. Diet and primate evolution. Sci Am. 1993; 269(2):86-93.

19. Nauck MA, Niedereichholz U, Ettler R, Holst JJ, Orskov C, Ritzel R et al. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol. 1997; 273(5 Pt 1):E981-8.

20. Nguyen NQ, Debreceni TL, Bambrick JE, Chia B, Wishart J, Deane AM et al. Accelerated intestinal glucose absorption in morbidly obese humans: relationship to glucose transporters, incretin hormones, and glycemia. J ClinEndocrinolMetab. 2015; 100(2):968-76.

21. Organ CH Jr, Cegielski MM, Grabner BJ, Keig HE, Saporta JA. Jejunooilealbypass. Long-termresults. Ann Surg. 1980; 192(1):38-43.

22. Pilkis SJ, el-Maghribi MR, Claus TH. Hormonal regulation of hepatic gluconeogenesis and glycolysis. Annu Rev Biochem. 1988;57:755-83.

23. Salinari S, leRoux CW, Bertuzzi A, Rubino F, Mingrone G. Duodenal-jejunal bypass and jejunectomy improve insulin sensitivity in Goto-Kakizaki diabetic rats without changes in incretins or insulin secretion. Diabetes. 2014 Mar; 63(3):1069-78.

24. Santoro S, Castro LC, Velhote MCP, et al. Sleeve Gastrectomy with Transit Bipartition. A Potent Intervention for Metabolic Syndrome and Obesity. Ann Surg. 2012; 256(1):104-10.

25. Santoro S. From bariatric to pure metabolic surgery: new concepts on the rise. Ann Surg 2015; 262:79-80.

26. Santoro S. Hipertrofia intestinal induzida por alimento e obesidade. Einstein 2005; 3(4):310.

27. Santoro S. Is the Metabolic Syndrome a Disease of the Foregut? Yes, Excessive Foregut. Ann Surg. 2008; 247(6):1074-75.

28. Santoro S, Milleo FQ, Malzoni CE, et al. Enteroendocrine changes after digestive adaptation: five-year results of a surgical proposal to treat obesity and associated diseases. Obes Surg. 2008;18(1):17-26.

29. Santoro S. Stomachs: does the size matter? Aspects of intestinal satiety, gastric satiety, hunger and gluttony. CLINICS 2012; 67(4):301-303.

30. Stevens CE, Humel D. Comparative Physiology of the Vertebrate Digestive System. 2nd ed. Cambridge, UK: Cambridge University Press; 1995.

31. Weickert MO, Roden M, Isken F, et al. Effects of supplemented isoenergetic diets differing in cereal fiber and protein content on insulin sensitivity in overweight humans. Am J ClinNutr. 2011; 94(2):459-71.

32. Zini E, Lunardi F, Zanetti R, Heller RS, Coppola LM, Ferro S et al. Endocrine Pancreas in Cats With Diabetes Mellitus. VetPathol. 2016Jan;53(1):136-44.