On the fluctuations of Internal DLA on the Sierpinski gasket graph

Nico Heizmann
Fakultät für Mathematik
Technische Universität Chemnitz, Germany
7th Cornell Conference on Analysis, Probability, and Mathematical Physics on Fractals,
Cornell University, US
June 08, 2022
Electropolishing
Internal DLA

For an infinite but locally finite connected graph G let

$$\mathcal{I}(1) := \{\circ\},$$

$$\mathcal{I}(i) := \mathcal{I}(i - 1) \cup \{X^i(\sigma^i)\},$$

where $(X^i(t))_{t \geq 0}$ is a sequence of i.i.d. simple random walks on G started in \circ and

$$\sigma^i := \inf\{t > 0 : X^i(t) \notin \mathcal{I}(i - 1)\}.$$
Internal DLA

Theorem [Lawler, Bramson, Griffeath 92]
Let $G = \mathbb{Z}^d$ and $b_n = |B_\circ(n)|$, then for any $\varepsilon > 0$ with probability 1 it holds:

$$B_\circ(n - \varepsilon n) \subseteq \mathcal{I}(b_n) \subseteq B_\circ(n + \varepsilon n)$$
for n large enough.

Theorem [Jerison, Levine, Sheffield 13], [Asselah, Gaudillière 13]
Let $G = \mathbb{Z}^d$ with $d \geq 3$ and $b_n = |B_\circ(n)|$, then there is an absolute constant $c > 0$, such that with probability 1 it holds:

$$B_\circ\left(n - c \sqrt{\log n}\right) \subseteq \mathcal{I}(b_n) \subseteq B_\circ\left(n + c \sqrt{\log n}\right)$$
for n large enough.
Sierpinski graph
Internal DLA on SG

Theorem [Chen, Huss, Sava-Huss, Teplayev 20]
Let $G = SG$ and $b_n = |B_\circ(n)|$, then for any $\varepsilon > 0$ with probability 1 it holds:

$$B_\circ(n - \varepsilon n) \subseteq \mathcal{I}(b_n) \subseteq B_\circ(n + \varepsilon n)$$
for n large enough.

Theorem (improved bounds) [H 21+]
Let $G = SG$, then there is a constant $c > 0$ such that for any $\kappa > 0$ it holds with probability 1

$$B_\circ(n - c n^{\frac{1}{2}} \ln(n)^{\frac{1+\kappa}{2\alpha}}) \subseteq \mathcal{I}(b_n) \subseteq B_\circ(n + c n^{\frac{1}{2}}+\frac{1}{2\alpha} \ln(n)^{(1-\frac{1}{\alpha})\frac{1+\kappa}{2\alpha}})$$
for n large enough and $\alpha = \frac{\ln(3)}{\ln(2)}$.

$$B_\circ(n - cn^{0.5} \ln(n)^{0.63\frac{1+\kappa}{2}}) \subseteq \mathcal{I}(b_n) \subseteq B_\circ(n + cn^{0.82} \ln(n)^{0.23\frac{1+\kappa}{2}}).$$
Divisible Sandpile

Sandpile on SG

$\text{Sandpile cluster } S := \{ x^2 | \mu(x) = 1 \}$.

Theorem [Huss, Sava-Huss 17]

For $G = SG$ the resulting sandpile distribution $\mu(x)$ from the starting distribution $\mu_0(x) = b^n(x)$ is given by $\mu(x) = \frac{1}{B^n(x)}$.

Lemma [Levine, Peres 09]

There are functions $\mu, u : V \to \mathbb{R}_{\geq 0}$ with $\mu_k \to \mu$ as well as $u_k \uparrow u$ for $(k \to \infty)$ and it holds:

$$\mu(x) = \mu_0(x) + \Delta u(x) \leq 1.$$

Abelian property [Levine, Peres 09]

The functions μ, u do not depend on the particular choice of the toppling sequence.
Divisible Sandpile

Lemma [Levine, Peres 09]
There are functions $\mu, u : V \to \mathbb{R}_{\geq 0}$ with $\mu_k \to \mu$ as well as $u_k \to u$ for $(k \to \infty)$ and it holds:

$$\mu(x) = \mu_0(x) + \Delta u(x) \leq 1.$$

Abelian property [Levine, Peres 09]
The functions μ, u do not depend on the particular choice of the toppling sequence.

Theorem [Huss, Sava-Huss 19]
For $G = SG$ the resulting sandpile distribution $\mu(x)$ from the starting distribution $\mu_0(x) = b_n \delta_\circ(x)$ is given by

$$\mu(x) = 1_{B_\circ(n)}(x).$$
Proof of inner bound

For fixed $z \in B_\circ(n)$ consider

$$M := M(z) := \#\text{RW hitting } z \text{ before exiting } B_\circ(n),$$
$$L := L(z) := \#\text{RW hitting } z \text{ before exiting } B_\circ(n) \text{ but after settlement } \sigma^i,$$

where $\sigma^i := \inf \{ t > 0 \mid X_t \notin I(i - 1) \}$. Then clearly

$$\mathbb{P}(z \notin I(b_n)) \leq \mathbb{P}(M = L) \leq \mathbb{P}(M \leq a) + \mathbb{P}(L \geq a),$$

for any $a \in \mathbb{R}$.

Large Deviation Results for M and L yield for any $\kappa > 0$

$$\mathbb{P}(M \leq \mathbb{E}(M) - \mathbb{E}(M)^{\frac{1}{2}} \ln(n)^{\frac{1+\kappa}{2}}) + \mathbb{P}(L \geq \mathbb{E}(L) + \mathbb{E}(L)^{\frac{1}{2}} \ln(n)^{\frac{1+\kappa}{2}})$$

$$\leq 4n^{-\frac{1}{4} (\ln n)^\kappa}.$$
Large Deviation Results for M and L yield for any $\kappa > 0$

$$
\mathbb{P}(M \leq \mathbb{E}(M) - \mathbb{E}(M)^{1/2} \ln(n)^{1+\kappa/2}) + \mathbb{P}(L \geq \mathbb{E}(L) + \mathbb{E}(L)^{1/2} \ln(n)^{1+\kappa/2}) \\
\leq 4n^{-1/4} (\ln n)^{\kappa}
$$

So we have to find

$$
a \in I := \left[\mathbb{E}(L) + \mathbb{E}(L)^{1/2} \ln(n)^{1+\kappa/2}, \mathbb{E}(M) - \mathbb{E}(M)^{1/2} \ln(n)^{1+\kappa/2} \right]
$$

or equivalently show that I is nonempty. And the result follows immediately by Borel-Cantelli.
\[
a \in I := [\mathbb{E}(L) + \mathbb{E}(L)^{\frac{1}{2}} \ln(n)^{\frac{1+\kappa}{2}}, \mathbb{E}(M) - \mathbb{E}(M)^{\frac{1}{2}} \ln(n)^{\frac{1+\kappa}{2}}]
\]

\[
\mathbb{E}(M) - \mathbb{E}(L) \geq \frac{1}{g_n(z, z)} \left(b_n g_n(\circ, z) - \sum_{y \in B_\circ(n)} g_n(y, z) \right),
\]

where \(g_n(x, y) = \mathbb{E}_x \sum_{t=0}^{\tau_{\partial I B_\circ(n)} - 1} \mathbb{1}_{\{X_t = y\}} \).

Now \(f(z) := \left(b_n g_n(\circ, z) - \sum_{y \in B_\circ(n)} g_n(y, z) \right) \) solves the (discrete) Dirichlet problem

\[
\begin{cases}
\Delta f(z) = \left(1 - b_n \delta_\circ(z) \right), & \text{if } z \in B_\circ(n) \setminus \partial I B_\circ(n) \\
f(z) = 0, & \text{if } z \in \partial I B_\circ(n).
\end{cases}
\]
Recall that for the odometer function u of the divisible Sandpile with starting distribution $\mu_0 = b_n \delta_\circ(z)$ it holds

$$\Delta u(z) = \mu(z) - \mu_0(z) = 1_{B_\circ(n)} - b_n \delta_\circ(z).$$

And since no mass has been distributed outside $B_\circ(n)$ we have

$$u(z) = 0 \text{ for } z \in \partial_1 B_\circ(n).$$

So u and f solve the same Dirichlet problem and by the uniqueness principle

$$u(z) = f(z) \text{ for all } z \in B_\circ(n).$$
Lemma

Let $n, \delta \in \mathbb{N}$ such that $n \gg \delta$ and $u : \text{SG} \to \mathbb{R}$ the odometer function. Then for all $z \in B_{\partial}(n - 3\delta)$ it holds

$$u(z) \geq c \, \delta^\beta$$

for some $c > 0$ and $\beta := \frac{\ln 5}{\ln 2}$.

which then gives

$$\mathbb{E}(M) - \mathbb{E}(L) \geq \frac{1}{g_n(z, z)} u(z) \geq c \frac{1}{g_n(z, z)} d(z, \partial I B_{\partial}(n))^\beta$$
\[\mathbb{E}(M) - \mathbb{E}(L) \geq \frac{1}{g_n(z, z)} u(z) \geq c \frac{1}{g_n(z, z)} d(z, \partial I B_\circ(n))^\beta \]

Furthermore one can show \(g_n(z, z) \leq c \ d(z, \partial I B_\circ(n))^{\beta - \alpha} \) and we get

\[\mathbb{E}(M) - \mathbb{E}(L) \geq c \ d(z, \partial I B_\circ(n))^{\alpha} \]

which gives that

\[I = [\mathbb{E}(L) + \mathbb{E}(L)^{\frac{1}{2}} \ln(n)^{\frac{1+\kappa}{2}}, \mathbb{E}(M) - \mathbb{E}(M)^{\frac{1}{2}} \ln(n)^{\frac{1+\kappa}{2}}] \]

is nonempty (taking \(\mathbb{E}(M) \leq cn^{\alpha} \)) if

\[d(z, \partial I B_\circ(n))^{\alpha} \geq cn^{\frac{\alpha}{2}} \ln(n)^{\frac{1+\kappa}{2}}. \]
Work in progress

Uniform IDLA: RW’s start uniformly on the existing cluster.
(joint work with Ecaterina Sava-Huss)

Convergence to a continuous model on the fractal blowup.
(joint work with Uta Freiberg, Robin Kaiser, Ecaterina Sava-Huss)

Examine other fractals?