Modulation of Multiple Signaling Pathways of the Plant-Derived Natural Products in Cancer

Li-rui Sun1†, Wei Zhou1†, Hong-mei Zhang1†, Qiu-shi Guo1, Wei Yang2, Bing-jin Li2, Zhi-hui Sun1*, Shuo-hui Gao3* and Ran-ji Cui2*

1 Department of Pharmacy, The First Hospital of Jilin University, Changchun, China, 2 Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China, 3 Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China

Natural compounds are highly effective anticancer chemotherapeutic agents, and the targets of plant-derived anticancer agents have been widely reported. In this review, we focus on the main signaling pathways of apoptosis, proliferation, invasion, and metastasis that are regulated by polyphenols, alkaloids, saponins, and polysaccharides. Alkaloids primarily affect apoptosis-related pathways, while polysaccharides primarily target pathways related to proliferation, invasion, and metastasis. Other compounds, such as flavonoids and saponins, affect all of these aspects. The association between compound structures and signaling pathways may play a critical role in drug discovery.

Keywords: natural active compounds, signaling pathway, cancer, polyphenol, alkaloid, saponin, polysaccharide

INTRODUCTION

In 2018, an estimated 9.6 million deaths were caused by cancer, and cancer is anticipated to be the leading cause of death worldwide in the twenty-first century (1). Therefore, cancer prevention remains an innovative area of anticancer research, in addition to cancer therapy. The mechanisms of aberrant signal transduction pathways in cancer and the impacts of these pathways on tumorigenesis, apoptosis, and metastasis have been increasingly revealed due to intensified study (2). Searching for targeted molecules that can regulate signal transduction has recently emerged as a globally popular research area in biomedicine.

Herbal medicines, such as Chinese medicines, are naturally exceptional at ameliorating many human diseases. Increasing numbers of new drugs with pharmacological activity have been discovered due to the modernization of herbal medicine. The anticancer agents vincristine, taxol, and vinblastine have been used for their anticancer effects in many countries (3). Moreover, other promising anticancer agents are available, including arteannuin (4), quercetin (5), and tetrandrine (6). Alkaloids and polyphenols are significantly dominant among cancer therapeutics (7, 8). Recently, the targets and mechanisms of plant-derived anticancer agents have been widely reported (9). In this review, we will focus on advances in knowledge about the signaling pathways affected by plant-derived natural products.

POLYPHENOLS

Polyphenols are particularly ubiquitous in vegetables, fruits, and other foods. Thousands of polyphenols have been identified (10), and these compounds have broad-spectrum pharmacological activities including anticancer effects. Polyphenols can be classified by their...
TABLE 1 | Classifications of polyphenols.

Carbon Units	Classifications	Components
C₆-C₃-C₆	Flavonoids	Chrysin, silibinin
C₆-C₁-C₆	Xanthones	a-mangostin
C₆-C₂-C₆	Stilbenes	Resveratrol
C₆-C₃-C₃-C₆	Lignans	Podophyllotoxin
C₆-C₃-C₁-C₃-C₆	Curcuminoïds	Curcumin

chemical structures into several classes such as flavonoids, xanthones, stilbenes, lignans, and curcuminoïds (Table 1) (11–14). Many natural polyphenols have cytostatic and apoptotic properties because of their antioxidant characteristics (11). The anticancer effects of polyphenols depend not only on their chemical structure and concentration but also on the type of cancer. Lignans considered to be phytoestrogens are bioactive compounds exhibiting various anticancer properties, such as apoptosis induction and tumor growth reduction (15). Xanthones, such as a-mangostin, mediate cytotoxicity mainly via cell cycle arrest and reactive oxygen species (ROS)-induced apoptosis (16). The anticancer effects and molecular mechanisms of polyphenols are reported to be associated with their chemical constitution which is necessary for their anticancer activities, such as the C-3 prenylation of benzoxanthen-type prenylated flavonoids, C-1 hydroxy group and isoprenyl group at C-8 of prenylated xanthones, the C-2 carbonyl group, C-4 prenyl group and pyran ring connected at the C-2 and C-3 of caged xanthones (9). Anticarcinogenic activities of polyphenols include suppressing the proliferation, differentiation, metastasis, and angiogenesis of various kinds of cancer cells through inhibiting several kinases involved in signal transduction (17–20). Polyphenols can bind and cross cell membranes easily and trigger various pathways involving microRNAs (miRNAs), caspases, B cell lymphoma 2 (Bcl-2) family proteins, nuclear factor (NF)-κB, epidermal growth factor (EGF)/epidermal growth factor receptor (EGFR), phosphatidylinositol-3-kinase (PI3K)/Akt, mitogen-activated protein kinase (MAPK) (Table 2).

MicroRNAs

MicroRNAs (miRNAs) are small non-coding RNAs (NC-RNAs) and regulate gene expression via binding to 3′ untranslated regions (UTRs) of target mRNA (44). Approximately 1,500 miRNA have been identified in the human (45). Oncogenic miRNAs have been identified in many kinds of cancers such as miR-7-1, miR-21, miR-92, miR-122, miR-125b, miR-155, miR-330 (46). It is indicated miRNAs are critical in cancer cell proliferations, differentiation, apoptosis, and invasion through the regulation of oncogenic gene expression (47, 48). It is predicted a miRNA can recognize an average of 100–200 different mRNA targets (49, 50). For example, miR-155 modulates the expression of NF-κB and MAFFK via regulation of BACH1 (BTK and CNC homology 1, basic leucine zipper transcription factor 1) and LDOC1 (leucine zipper, downregulated in cancer 1) which is critical to malignant transformation in leukemia, breast and lung cells (51–53). It is emphasized that miRNAs are novel therapeutic targets of polyphenols such as curcumin, resveratrol, genistein, EGCG and silibinin (45, 54–56).

Curcumin [(1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptane-3,5-dione) is a curcuminoid extracted from the rhizome of Curcuma longa (57). It is demonstrated that 5–40 μM of curcumin has effects on a variety of miRNAs in different cancer cell lines such as miR-192-5b (58), miRNA-98 (59), miR-21 (60–62), miR-15a (63, 64), miR-101 (65, 66) in lung cancer, colorectal cancer, leukemia, colon cancer, and breast cancer to inhibit cell viability and metastasis, induce apoptosis.

According to quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis, resveratrol (3,4′,5′-trihydroxy-trans-stilbene) with dosage of 10–150 μM induces apoptosis and depresses cell proliferation, invasion via inhibition of NF-κB activity, Akt/Bcl-2 pathway, EZH2 pathway, STAT3 and COX-2 activity through upregulation of miR-34a (67), miR-326 (68), miR-200c (69), miR-137 (70), and miR-328 (71), and downregulation of miR-19 (72), miR-21 (73), miR-196b (74), miR-1290 (74), and miR-221 (75, 76).

Genistein (4′,5,7-trihydroxyisoflavone, Figure 1), found in soy products, has effects on miRNAs in various cancer cells (77). Breast cancer cell growth is inhibited by the induction of miR-23b and inhibition of miR-155 by 25–175 μM of genistein treatment (78, 79). Genistein inhibits the expression of miR-27a (80) and miR-223 (81) and induces the expression of let-7d (82) and miR-34a (83) which play an important role in pancreatic cancer cell growth and invasion. Genistein also exerts its anticancer activity via upregulation of miR-200c (84) and downregulation of miR-151 in prostate cancer (85).

The green tea extracts (−)-epigallocatechin (EGC) and (−)-epigallocatechin-3-gallate (EGCG) also targets oncogenic miRNAs including upregulation of miR-16, let-7a, and miR-221 and downregulation of miR-18a, miR34b, miR-193, miR-222, and miR-342 in human hepatocellular carcinoma cells (86). Expression of miR-548m and miR-720 are down-regulated in human breast cancer MCF-7 cells (87). miR-210 is up-regulated by EGCG in lung cancer cells which is associated with HIF-1α (88). EGCG (40–60 μg/ml) suppresses cell growth of cervical carcinoma by regulation of miRNAs including up-regulation of miR-29, miR-29a, miR-203 and miR-210, and down-regulation of miR-125b, miR-203, miR-125b (89).

NF-κB Pathways

NF-κB can regulate the transcription of genes associated with the inflammatory response, cell death, and proliferation (90, 91). NF-κB pathways participating in the development of various cancers can be disrupted by polyphenols. The PI3K/Akt signaling pathway and MAPK signaling pathways are related to the activation of NF-κB in numerous tumor cell lines (92).

The flavonoid component chrysin (5,7-dihydroxyflavone, Figure 1) has been shown to suppress the growth of colon cancer cells via direct inhibition of NF-κB expression and activity, according to computational docking experiments (24). In addition, 30 μM chrysin activates NF-κB/p65 by inducing p38 MAPK signaling pathways in HeLa cells (33). Quercetin (Figure 1) has a potential role in inhibiting processes in...
TABLE 2 | Polyphenols and their anticancer mechanisms.

Mechanism	Components	Plant origin	Cell line	References
PKC/MAPK signalway ↓	Trichosanthin	Trichosanthes kinkiowii Maxim	K562	(21)
p3 integrin/FAK signalway ↓	Tuteolin	dragonhead	B16F10	(22)
fatty acid synthase (FAS) ↓	Epigallocatechin-3-gallate	green tea	LNCaP	(23)
STAT3 ↓	Tectochrysin	A. oxyphylla Miquel	NCI-H460	(24, 25)
MAPK/ERK signalway	silbinin	Silybum marianum	A549	(26)
	Fisetin	fruits and vegetables	PC12	(27)
	Genisten	soy	PC3	(28)
	licochalcone A	licorice root	BGC-823	(29)
	Apigenin	fruits and vegetables	Leukemia cells	(30)
	pterostilbene	grapes, blueberries	Breast cancer	(31)
Akt signalway ↓	Chrysir	celery	U87-MG	(21)
			U-251	(22)
EGFR tyrosine kinase	Luteolin	Dragonhead	A431	(22)
	Quercetin	Quercus		
EGFR/MEK/ERK signalway ↓	Arctigenin	Arctium lappa	Tissues from gallbladder cancer patients	(32)
Akt/mTOR signalay	Fisetin	Fruits and vegetables	U266	(23)
Bcl-2 ↓	Fisetin	Fruits and vegetables	U266	(33)
	Ampelopsin	Ampelopsis grossedentata	LNCaP	(34)
			PC3	
			Animal model	
X-linked inhibitor of apoptosis protein (XIAP) ↓	chrysir	celery	U937	(35)
PI3K/Akt signalway	Licochalcone A	licorice root	BGC	(35)
	Pterostilbene	grapes, blueberries	Breast cancer	(31)
	Arctigenin	Arctium lappa	LNCaP	(36)
DNA topoisomerase II	podophyllotoxin	rhizomes of Podophyllum species	Ehrlich ascites tumor cells	(37)
V-ATPase ↓	Diphillin	Cleistanthus collinus	TE-1	(38)
mTORC1/HIF-1α/VEGF signalway ↓	Resveratrol	Red wine and grapes	NSCLC	(39)
NAPDH oxidase-5/ROS ↑	α-mangostin	Garcinia mangostana Linn	SiHa and HeLa	(40)
ASK1/p38 signalway	silbinin	Silybum marianum	MDA-MB-231	(41–43)

human oral cancer cells through the NF-κB pathway (93). The results of Western blot and flow cytometric assays indicate that the flavonoid fisetin (3,3′,4′,7-tetrahydroxyflavone, Figure 1) effectively suppresses the apoptosis, metastasis, angiogenesis and invasion of cancer cells via ERK1/2- , Akt/NF-κB/mTOR- and p38 MAPK-dependent NF-κB signaling pathways (94, 95). Furthermore, fisetin is not cytotoxic to normal cells (94). Genistein has a potential role in inhibiting cell division and apoptosis via Akt and NF-κB (28). Wogonin (Figure 1), extracted from Scutellaria baicalensis Georgi, can decrease the phosphorylation levels of IkB and p65. Modulation of the NF-κB/Bcl-2 signaling pathway has been shown by Western blot analysis to play a critical role in both of the invasion and proliferation of hepatocellular carcinoma (HCC) in a dose-dependent manner (96). Wogonin is shown to decrease the protein and mRNA levels of cyclooxygenase (COX)-2 in skin fibroblast NIH/3T3 cells and in animal experiments (97). The stilbene pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene, Figure 2), the dimethylated analog of resveratrol, is a highly bioactive natural phenolic compound that is mainly found in grapes, blueberries, tomatoes, and other berries (98). According to the results of COX-2 activity assays and enzymatic immunoassays, both resveratrol (Figure 2) and pterostilbene cause COX-2 inactivation via the NF-κB signaling pathway (31, 99). **Matrix Metalloproteinase (MMP)-2 and MMP-9**

The MMPs are a group of metal-dependent proteolytic enzymes that are involved in matrix remodeling and facilitate the migration of cancer cells through degradation of the extracellular matrix (100). MMP-2 and MMP-9 can degrade type IV collagen in the basement membrane and facilitate tumor cell metastasis (101).
Various polyphenols affect MMPs. Some, such as 5 μM resveratrol (102) and 75–100 μM kaempferol, inhibit the activity of MMPs (Figure 1) (103). Others decrease the expression of MMPs. The flavone luteolin (Figure 1) inhibits colon cancer metastasis by reducing the expression of MMP-2 and MMP-9 (104). The flavonolignan silibinin (C_{25}H_{22}O_{10}, Figure 1), an active compound of Silybum marianum (L.) Gaertn, decreases the expression of MMP-2, MMP-3 and MMP-9 and increases the expression of TIMP-2 in prostate tumor tissue in transgenic adenocarcinoma of the mouse prostate (TRAMP) model mice and in vitro in various cancer cells (26, 104, 105). MMP-2 expression is downregulated in human prostate cancer cells by genistein treatment (28). In addition, treatment with 5 μM quercetin and chrysin decreases the expression of MMP-9 in A549 cells (106). Still other polyphenols affect both the activity and expression of MMPs. For example, naringin (4',5,7-trihydroxyflavanone 7-rhamnoglucoside, Figure 1) can inhibit the adhesion and invasion of human glioblastoma U87 cells and
U251 cells via dose-dependent reductions in both the activity and expression of MMP-2 and MMP-9, according to zymography and Western blotting results, this effect is associated with the p38 MAPK signaling pathway (107, 108). EGCG (20 µM) reduce the activity of MMP-2 and MMP-9 in prostate cancer cells (109) and decrease the expression of MMP-9 in bladder cancer cells (110).

Caspases

Caspases, which are activated by other caspases, are cysteinyl aspartate-specific proteases and are divided into two groups. One group comprises initiators (caspase-8, -9, and -10); the others, executioners (caspase-3, -6, and -7). Caspase-3 is considered the major downstream target of caspase-4, -8, and -9. Overexpression of caspases is a common alteration in cancer cells that can be exploited therapeutically. Activation of caspase-3 by fisetin treatment associated with induction of the proapoptotic proteins Bad, Bax, Bim, and inhibition of the antiapoptotic proteins Bcl-2 and Mcl-1(L) (35). Genistein has also been shown to increase the expression of caspase-3, -9 and Bax in vitro (28). Chrysine-induced apoptosis was associated with induction of caspase-3 and -8 and downregulation of phospholipase C-gamma-1 (PLC-gamma1) and XIAP. This finding suggests that the mechanism of apoptosis induced by chrysin is associated with Akt dephosphorylation in the PI3K signaling pathway (33). EGCG can induce apoptosis and reduce cancer cell proliferation by decreasing the mitochondrial membrane potential (ΔΨm) and stimulating caspase-3, -9 and c-Jun N-terminal kinase 1 (JNK1) expression in human glioblastoma T98G and U87MG cells but does not induce apoptosis in human normal astrocytes (111). The flavonoid baicalein (Figure 1), found in Scutellaria baicalensis Georgi, participates in apoptosis by increasing the expression of caspase-3 and -8 (112). The lignan phillygenin (Figure 3) induces apoptosis by increasing the mitochondrial membrane potential due to increased ROS levels in human esophageal cancer SH-1-V1 cells. Concurrent upregulation of Bax and cleaved caspase-3 and -9, along with dose-dependent downregulation of Bcl-2, was found by propidium iodide staining and Western blotting (15). The anticancer effects of arctigenin (Figure 3), the active component of Arctium lappa, are mainly directed toward cancer
FIGURE 5 | Chemical structures of some alkaloids.
TABLE 3 | Alkaloids and their anticancer mechanisms.

Mechanism	Components	Plant origin	Cell line	References
HIF-1α protein ↓	Dauricine	*Menispermum dauricum* DC	MCF-7	(139)
VEGF ↓	Dauricine	*Menispermum dauricum* DC	MCF-7	(139)
Ezrin ↓	Berberine	*Berberis species*	5-8F	(140)
			6-10B	
MMP-2, 9, 13 ↓	Berberine	*Berberis species*	A549	(141)
	Piperine	*Piper nigrum*	4T1	(142)
p-Smad2/3 ↓	Berberine	*Berberis species*	A549	(141)
NF-κB	Noscapine	*Opium*	KBM-5	(141)
			HL-60	
	Piperine	*Piper nigrum*	4T1	(142)
	Cryptopleurine	*Boehmeria pannosa*	MDA-MB231	(143)
			Hep3B	(143)
PI3K/Akt/GSK3β pathway ↓	Tetrandrine	*Stephania tetrandra* S. Moore	HT-29	(144)

FIGURE 6 | Chemical structures of some saponins.

Cell growth inhibition and apoptosis through the peroxisome proliferation-activated receptor α (PPARα)/gankyrin, Bax and caspase pathways (36). The xanthone α-mangostin (Figure 4) increases the activity of caspase-3 and causes late apoptosis in ovarian adenocarcinoma SKOV3 cells after 12 h and 72 h of treatment, respectively (113).
ALKALOIDS

Alkaloids are the secondary biologically active components found in many plants. Alkaloids have various biological activities that render them important sources for drug discovery. The presence of nitrogen in their molecular architecture is critical to the biological activity of this class of compounds. Many studies have shown that alkaloids inhibit the growth of human breast, liver, colon, prostate, and liver cancer cells (114).

Bcl-2 Protein Family

Bcl-2 proteins are divided into two groups. Bcl-2 and Bcl-xL are antiapoptotic proteins, while Bax and Bad are multidomain proapoptotic proteins. The balance of antiapoptotic proteins to proapoptotic proteins, for example, the ratio of Bax to Bcl-2 is crucial to the regulation of apoptotic pathways (115). The balance between Bcl-2 family proteins is a potential target of alkaloids for inducing cell death (116).

Oxymatrine (Figure 5), derived from Sophora flavescens Aiton, significantly increases p53 and Bax expression and decreases Bcl-2 expression dose-dependently, as evidenced by a Western blot assay, in osteosarcoma cancer cells via dephosphorylation of PI3K and Akt in the PI3K/Akt signaling pathway (117).

Treatment with crude alkaloid extract of Rhazya stricta (CAERS) induced apoptosis and suppressed the proliferation of HCT116 cells. Downregulation of Bcl-2, survivin, Bcl-X and XIAP expression and upregulation of Bad and Noxa expression were examined by qRT-PCR and Western blot analyses and coincided with the increase in the Bax/Bcl-2 ratio (118).

Various alkaloids induce apoptosis via an increase in the Bax/Bcl-2 ratio. Cancer cells treated with nitidine chloride (NC, Figure 5), matrine (Figure 5), berberine (Figure 5), and subtiline (Figure 5) showed upregulation of Bax expression and downregulation of Bcl-2 expression (119–123).

PI3K/Akt/mTOR Signaling Pathway

Autophagy is a critical process for maintaining intracellular homeostasis. Generally, autophagy may play a critical role in cancer prevention (124). The PI3K/Akt/mTOR pathway is critical for autophagy induction and is a latent target in cancer therapeutics and control (101).

Piperlongumine (Figure 5) (125), swainsonine (Figure 5) (126), and sinomenine (Figure 5) (127) induce apoptosis and inhibit cancer cell growth through the PI3K/Akt/mTOR pathway, with decreased levels of p-Akt and p-mTOR, as evidenced by the results of Western blot analysis and immunofluorescence. Isololiensinine (Figure 5), matrine, dauricine (Figure 5), and cepharanthine (Figure 5) induce autophagy through the AMPK-TSC2-mTOR signaling pathway, with suppression of mTOR activity (128–130).

ERK Signaling Pathway

The MAPK/ERK pathway participates in multiple processes in cancer including growth, invasion, metastasis, angiogenesis, and inhibition of apoptosis (131, 132). Because of these multiaspect effects, the MAPK/ERK pathway plays a critical role in the promotion of cancer cell growth and the inhibition of apoptosis (133, 134).

β-carboline alkaloids extracted from the seeds of Peganum harmala inhibit the proliferation and induce the apoptosis of SGC-7901 cells, possibly because β-carboline alkaloids can disrupt the balance between PTEN and ERK, inhibit the MAPK/ERK signaling pathway and induce apoptosis in cancer cells (135). Berberine can suppress the senescence of human glioblastoma cells by inhibiting the EGFR/Raf/MEK/ERK pathway (136). Sinomenine, extracted from Sinomenium acutum, is reported to inhibit various types of cancer cells. Sinomenine hydrochloride (SH) increases the phosphorylation of ERK1/2, p38 and JNK but does not affect the total levels of the abovementioned cytokines (137). The benzo phenanthridine alkaloid chelerythrine chloride (CC, Figure 5) (5 and 10 µM) significantly enhances ERK1/2 phosphorylation and dose-dependently decreases Akt phosphorylation, as detected by Western blot analysis (138).

The other anticancer targets of alkaloids are summarized in Table 3.

SAPONINS

Saponins are valuable sources with minimal toxic effects and are found in many dietary plants. Saponins are composed of a triterpenoid or steroidal aglycone attached to one or more sugar chains (145). Saponins are divided into two types: triterpenoid saponins and steroidal saponins. Both types have various biological activities, such as anticancer and immunological adjuvant activities (146).

Diosgenin (DG, Figure 6), a steroidal saponin, has been shown to be an anticancer agent in many tumors. DG acts against cancers via the following pathways and mechanisms: (1) the STAT pathway, (2) activation of caspase-3 and p53, (3) activation of the TRAIL death receptor DR5 and (4) the Wnt-β-catenin pathway (147).

The steroidal saponin of Paris polyphylla (Chinese name: Chonglou) has long been used for lung cancer treatment.
Paris saponin I (PSI, Figure 6) and Paris polyphylla steroidal saponins (PPSS) regulate the Bcl-2 family and caspase-3 and -8, inducing apoptosis (149). In addition, PSI and PPSS induce autophagy by the conversion of LC3 I to LC3 II and upregulation of Beclin 1 (150). Paris saponin VII (PS VII, Figure 6), extracted from Trillium tschonoskii Maxim, inhibits the migration and invasion of several types of cancer cells via the downregulation of MMP-2 and -9 expression and p38 MAPK phosphorylation in a dose- and time-dependent manner (151).

Saikosaponin D (SSD, Figure 6), prescribed for liver diseases, was reported to exhibit anticancer activities (152, 153). SSD effectively suppresses invasion, metastasis and angiogenesis via the downregulation of TNF-α mediated NF-κB signaling, affecting proteins such as MMP-9, VEGF, c-myc, cyclin D1, ICAM-1, and COX-2. In addition, SSD activates the Ca²⁺/calmodulin-dependent kinase/AMPK/mTOR pathway and attenuates STAT3/HIF-1 pathway signaling, which induces the apoptosis and inhibits the proliferation of cancer cells (154, 155).

Ginsenosides (ginseng saponins) derived from ginseng were reported to exhibit anticancer effects. Ginsenoside Rh2 (GRh2, Figure 7) and ginsenoside Rg1 (Figure 7) induce apoptosis via activating extrinsic apoptosis pathways by p53-Fas-caspase-8 signaling and the EpoR-mediated JAK2/STAT5 signaling pathway, respectively (156, 157). Moreover, the expression of phosphoglucose isomerase/autocrine motility factor (PGI/AMF) enhances the anticancer effects of GRh2 by attenuating Akt/mTOR signaling (158). A metabolite of ginsenoside compound K (CK, 20-O-D-glucopyranosyl-20(S)-protopanaxadiol, Figure 7) can enhance apoptosis via the ROS-mediated p38 MAPK pathway (159).

POLYSACCHARIDES

Polysaccharides which are abundant in plants, possess anticancer activities, and are being used as immunopotentiators for cancer patients, thus they are relatively ideal anticancer agents (160).

Fucoidans, a class of fucose-enriched sulfated polysaccharides, primarily affect apoptosis-related pathways, as proven both in vivo and in vitro (161, 162). Apoptotic morphological changes result from the activation of caspases. Caspase-3 and -9 are activated by fucoidan from Ascophyllum nodosum (163) mainly composed of 52.1% fucose, 21.3% glucose, 19% sulfate content, and 16.5% xylose. And caspase-7 and -8 are regulated by a sulfated polysaccharide isolated from an enzymatic digestion of Ecklonia cava (164). Cell apoptosis induced by S-fucoidan from Cladosiphon okamuranus depends on caspase-3 and -7 (165). Other targets involved in apoptotic effects include Bax and Bcl-xL, ERKs, p38, and the PI3K/Akt signaling pathway (166). Fucoidan, from Cladosiphon novae-caledoniae Kylin, which is consisted of 73% fucose, 12% xylose and mannose, inhibits invasion and tubule formation via the suppression of MMP-2 and -9 activity and downregulation of VEGF expression in tumor cells (167).

The purified polysaccharide extracted from Caulerpa lentillifera, SP1, composed mainly of sulfated xylogalatan and galactose, showed potent immunostimulatory effects by activating macrophage cells through both the NF-κB and p38 MAPK signaling pathways (168). SP1 decreased the levels of IκBα and the NF-κB p65 subunit and increased p38 MAPK phosphorylation, as determined by Western blot assay.

Polysaccharides extracted from Phellinus linteus (PL) significantly inhibit cell proliferation by decreasing β-catenin and cyclin D1 expression in vitro. In addition, PL inhibits invasion...
and motility by directly reducing the activity of MMP-2 and -9, with no effect on the gene expression or secretion of MMPs, as indicated by RT-PCR and gelatin zymography (169).

The Radix astragali active extract Astragalus polysaccharide (APS) can enhance the immune response by promoting IL-2, IL-6, and TNF-α in H22 tumor-bearing mice. The effects on the immune response are involved in the inhibition of cancer. In addition to the immune response, the anticancer mechanism involves apoptosis, cell cycle arrest, Akt phosphorylation, Bcl-2 and Bax, caspase-3 and -9, p53 and PTEN (163, 170).

The polysaccharides obtained from enzymatic digestion by Celulcast enzyme digest (CCP) suppresses the activation of NF-κB p50 and p65 and the phosphorylation of p38 MAPK in macrophages (171).

Ganoderma lucidum (G. lucidum) polysaccharides (GLPs) can inhibit growth in many types of cancer by inducing apoptosis through FOXO3a-TNF-α-NF-κB signalway (172).

CONCLUSION

Natural compounds offer a great diversity of chemical structures that are likely important in cancer therapeutics (18). Many studies have shown that phytochemicals influence targets and signaling pathways involved in oncogenesis and tumor progression such as proliferation, invasion, metastasis and angiogenesis (173). Different components have various anticancer activities. (1) Alkaloids, with low bioavailability and poor water solubility, have difficulty to reaching the intended target. Moreover, the toxicity of alkaloids cannot be ignored, primarily target apoptosis-related pathways (174). (2) Flavonoids can affect the development of colon, lung, esophageal, stomach and endometrial cancer, with minimal acute toxic effects because of their poor water solubility accompanied by their rapid digestion (17, 175). Polyphenols primarily target pathways related to proliferation, apoptosis, invasion and metastasis. (3) Polysaccharides and saponins effectively modulate the immune response rather than directly inducing cell death. Polysaccharides primarily affect apoptosis-related pathways, while saponins affect apoptosis-related and invasion- and metastasis-related pathways (176). The anticancer effects of these compounds are associated with multiple targets (Figure 8) (176). Signaling pathways are believed to be associated with specific chemical structures, and this association is critical for continuing drug development.

AUTHOR CONTRIBUTIONS

LS, WZ, and HZ wrote the article. QG, WY, BL, ZS, and SG provided critical advises of the article. ZS and RC provided final revision.

FUNDING

This study was supported by the Natural Science Foundation of China (NSFC) (81772291) and the Jilin Science and Technology Agency (20180519003JH and 20180414050GH).

REFERENCES

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. (2018) 68:394–424. doi: 10.3322/caac.21492
2. Lethinha K, Kovalchuk O, Zhavoronkov AA, Korzinkin MB, Zabotinova AA, Shegay PV, et al. Novel robust biomarkers for human bladder cancer based on activation of intracellular signaling pathways. Oncotarget. (2014) 5:9022–32. doi: 10.18632/oncotarget.2493
3. Batra P, Sharma AK. Anti-cancer potential of flavonoids: recent trends and future perspectives. J Biotech. (2013) 3:439–59. doi: 10.1007/s13205-013-0117-5
4. Li Y. Qinghaosu (artemisinin): chemistry and pharmacology. Acta Pharmacol Sin. (2012) 33:1141–6. doi: 10.1038/aps.2012.104
5. Kim GT, Lee SH, Kim JI, Kim YM. Quercetin regulates the secretin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner. Int J Mol Med. (2014) 33:863–9. doi: 10.3892/ijmm.2014.1658
6. Liu T, Men Q, Wu G, Yu C, Huang Z, Liu X, et al. Tetrandrine induces autophagy and differentiation by activating ROS and Notch1 signaling in leukemia cells. Oncotarget. (2015) 6:7992–8006. doi: 10.18632/oncotarget.3505
7. Cragg PJ, Sharma K A Pillar[5]arenes: fascinating cyclolophanes with a bright future. Chem Soc Rev. (2012) 41:597–607. doi: 10.1039/C1CS15164A
8. Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. (2016) 79:629–61. doi: 10.1021/acs.jnatprod.5b01055
9. Ren Y, de Blanco EJC, Fuchs JR, Soejarto DD, Burdette JE, Swanson SM, et al. Potential anticancer agents characterized from selected tropical plants. J Nat Prod. (2019) 82:657–79. doi: 10.1021/acs.jnatprod.9b00018
10. Kim HP, Son KH, Chang HK, Kang SS. Anti-inflammatory plant flavonoids and cellular action mechanisms. J Pharmacol Sci. (2004) 96:229–45. doi: 10.1254/jphs.CR04003X
11. Focaccetti C, Izz V, Benvenuto M, Fazi S, Ciuffa S, Giganti MG, et al. Polyphenols as immunomodulatory compounds in the tumor microenvironment: friends or foes? Int J Mol Sci. (2019) 20:E1714. doi: 10.3390/ijms20071714
12. Yi J, Li S, Wang C, Cao N, Qu H, Cheng C, et al. Potential applications of polyphenols on main ncRNAs regulations as novel therapeutic strategy for cancer. Biomed Pharmacother. (2019) 113:108703. doi: 10.1016/j.biopha.2019.108703
13. Kandaswami C, Lee LT, Lee PP, Hwang JJ, Ke FC, Huang YT, et al. The antitumor activities of flavonoids. In Vivo. (2005) 19:895–909.
14. Quideau S, Deffieux D, Douat-Casassus C, Pousység L. Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed Engl. (2011) 50:586–621. doi: 10.1002/anie.201000044
15. He J, Wei W, Yang Q, Wang Y. Phylogenin exerts in vitro and in vivo anti-tumor effects in drug-resistant human esophageal cancer cells by inducing mitochondrial-mediated apoptosis, ROS generation, and inhibition of the nuclear factor kappa B NF-kB signalling Pathway. Med Sci Monit. (2019) 25:739–45. doi: 10.12659/MSM.913138
16. Zhang C, Yu G, Shen Y. The naturally occurring xanthone α-Mangostin induces ROS-mediated cytotoxicity in non-small scale lung cancer cells. Saudi J Biol Sci. (2018) 25:1090–5. doi: 10.1016/j.sjbs.2017.03.005
17. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World J. (2013) 2013:162750. doi: 10.1155/2013/162750
18. Sak K. Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacogn Rev. (2014) 8:122–46. doi: 10.4103/0973-7847.134247
19. Kilani-Jaziri S, Frachet V, Bhouri W, Ghedira K, Chekir-Ghedira L, Ronot X. Flavones inhibit the proliferation of human tumor cancer.
Sun et al. Natural Products Modulate Cancer Signaling

cell lines by inducing apoptosis. Drug Chem Toxicol. (2012) 35:1–10. doi: 10.3109/01480455.2011.564180

20. Bulzoni P, Bolli A, Galluzzo P, Acconia F, Ascenzi P, Marino M. The naringenin-induced prosurvival effect in breast cancer cell lines holds out against a high nisophen a background. JUBMB Life. (2012) 6:49:00–5. doi: 10.1002/jubm.1049

21. Sha O, Niu I, Ng TR, Cho EY, Fu X, Jiang W. Anti-tumor action of trichosanthin, a type 1 ribosome-inactivating protein, employed in traditional Chinese medicine: a mini review. Cancer Chemother Pharmacol. (2013) 71:1387–93. doi: 10.1007/s00280-013-2096-y

22. Ruan JS, Liu YP, Zhang L, Yan LG, Fan FT, Shen CS, et al. Luteolin reduces the invasive potential of malignant melanoma cells by targeting B3 integrin and the epithelial-mesenchymal transition. Acta Pharmacol Sin. (2012) 33:1325–31. doi: 10.1038/aps.2012.93

23. Brusselmans K, de Schrijver E, Heyns W, Verhoeven G, Swinnen JV. Anti-cancer effects of silibinin in colon cancer cell lines via suppression of NF-kappaB and enhanced secretion of death receptor. Mol Chem Toxicol. (2010) 2:45–61. doi: 10.1038/sj.bjt.0702879

24. Park MH, Hong JE, Park ES, Yoon HS, Seo DW, Hyun BK, et al. Anticancer effect of tecoxacin in colon cancer cell lines via suppression of NF-kappaB activity and enhancement of death receptor expression. Mol Cancer. (2015) 14:124–36. doi: 10.1186/s12953-015-0377-2

25. Oh SB, Hwang CJ, Song SY, Jung YY, Yun HM, Sok CH, et al. Anti-cancer effect of tecoxacin in NSCLC cells through overexpression of death receptor and inactivation of STAT3. Cancer Lett. (2014) 353:95–103. doi: 10.1016/j.canlet.2014.07.007

26. Deep G, Agarwal R. Anti-metastatic efficacy of silibinin: molecular mechanisms and therapeutic potential against cancer. Cancer Metastasis Rev. (2010) 29:447–63. doi: 10.1007/s10555-010-9237-0

27. Peng Z, Hao W, Lin X, Fan D, Zhou J. Antitumor activity of total flavonoids from Tetrastigma hemsleysianum Diel et Gilg is associated with the inhibition of regulatory T cells in mice. Onco Targets Ther. (2014) 7:947–56. doi: 10.2147/OTT.S61794

28. Pavese JM, Farmer RL, Bergan RC. Inhibition of cancer cell invasion and metastasis by genistein. Cancer Metastasis Rev. (2010) 29:46:50–82. doi: 10.1007/s10555-010-9238-2

29. Hao W, Yuan X, Yu L, Gao C, Sun X, Wang D, et al. Licochalcone A-induced human gastric cancer BGC-823 cells apoptosis by regulating ROS-mediated MAPKs and PI3K/AKT signaling pathways. Sci Rep. (2015) 5:10336. doi: 10.1038/srep10336

30. Vargo MA, Voss OH, Pouستka F, Cardouen AJ, Grotevold E, Doseff AI. Apigenin-induced apoptosis is mediated by the activation of PKCδ and caspases in leukemia cells. Biochem Pharmacol. (2006) 72:681–92. doi: 10.1016/j.bcp.2006.06.010

31. Chen RJ, Kuo HC, Cheng LH, Lee YH, Chang WT, Wang BJ, et al. Apoptotic and nonapoptotic activities of pterostilbene against cancer. Int J Mol Sci. (2018) 19:E287. doi: 10.3390/ijms19010287

32. Zhang M, Cai S, Zuo B, Gong W, Tang Z, Zhou D, et al. Arctigenin induced gallbladder cancer senescence through modulation of epidermal growth factor receptor pathway. Tumour Biol. (2017) 39:100428317698359. doi: 10.1017/S1051042317698359

33. Khoo BY, Chua SL, Balaram P. Apoptotic effects of chrysin in human cancer cell lines. Int J Mol Sci. (2010) 11:2188–99. doi: 10.3390/ijms10552188

34. Huang YT, Hwang JJ, Lee PP, Ke FC, Huang IH, Huang CL, et al. Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor. Br J Pharmacol. (1999) 128:999–1010. doi: 10.1038/sj.bjp.0702879

35. Deeba NS, Adhami VM, Khan MI, Mukhtar H. Inhibition of Akt/mTOR signaling by the dietary flavonoid fisetin. Anticancer Agents Med Chem. (2013) 13:995–1001. doi: 10.1080/15680060.2013.810149

36. Sun Y, Tan YJ, Lu ZZ, Li BB, Sun CH, Li T, et al. Arctigenin inhibits liver cancer tumorigenesis by inhibiting gankyrin expression via G/EIPs and PPAR-γ. Front Pharmacol. (2018) 9:268. doi: 10.3389/fphar.2018.00268

37. Yalowich JC, Goldman ID. Analysis of the inhibitory effects of VP-16-213 (etoposide) and podophyllotoxin on thymidine transport and metabolism in Ehrlich ascites tumors in vitro. Cancer Res. (1984) 44:9894–9.
57. Liu Y, Sun H, Makabel B, Cui Q, Li J, Su C, et al. The targeting of non-coding RNAs by curcumin: facts and hopes for cancer therapy (Review). Oncol Rep. (2019) 42:20–34. doi: 10.3892/or.2019.7748
58. Jin H, Qiao F, Wang Y, Xu Y, Shang Y. Curcumin inhibits cell proliferation and induces apoptosis of human non-small cell lung cancer cells through the upregulation of miR-192-5p and suppression of PI3K/Akt signaling pathway. Oncol Rep. (2015) 34:2782–9. doi: 10.3892/or.2015.4258
59. Liu W, Chang JM, Chong IW, Hung YL, Chen YH, Huang WT, et al. Curcumin inhibits lin-28A through the activation of miRNA-98 in the lung cancer cell line A549. Molecules. (2017) 22:E929. doi: 10.3390/molecules22060929
60. Zhang W, Bai W, Zhang W. miR-21 suppresses the anticancer activities of curcumin by targeting PTEN gene in human non-small cell lung cancer A549 cells. Clin Transl Oncol. (2014) 16:708–13. doi: 10.1007/s12094-013-1135-9
61. Mudduluru G, George-William JN, Muppala S, Asangani IA, Kumarswamy R, Nelson LD, et al. Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci Rep. (2011) 31:185–97. doi: 10.1042/BSR201100065
62. Taverna S, Fontana S, Monteleone F, Pucci M, Saieva L, De Caro V, et al. Epigallocatechin gallate by targeting PTEN gene in human non-small cell lung cancer A549 cells. Clin Transl Oncol. (2016) 18:124–32. doi: 10.1007/s12094-015-1405-9
63. Gao SM, Yang J, Chen CQ, Chen JJ, Ye LP, Wang LY, et al. Pure curcumin decreases the expression of WT1 by upregulation of miR-15a and miR-16-1 in leukemic cells. J Exp Clin Cancer Res. (2012) 31: doi: 10.1186/1756-9966-31-27
64. Yang J, Cao Y, Sun J, Zhang Y. Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. Med Oncol. (2010) 27:1114–8. doi: 10.1007/s12032-009-9344-3
65. Wu GQ, Chai KQ, Zhu XM, Jiang H, Wang X, Xue Q, et al. Anti-cancer effects of curcumin on lung cancer through the inhibition of EZH2 and NOTCH1. Oncotarget. (2016) 7:26535–50. doi: 10.18632/oncotarget.8532
66. Toden S, Okugawa Y, Jascur T, Wodarz D, Komarova NL, Buhrmann C, et al. Curcumin inhibits lin-28A through the activation of miRNA-192-5p and suppression of PI3K/Akt signaling pathway. and induces apoptosis of human non-small cell lung cancer cells through the upregulation of miR-21 inhibiting of NF-kappaB pathway. Oncol Rep. (2016) 37:14025–34. doi: 10.18632/oncotarget.8532
67. Wang H, Feng H, Zhang Y. Resveratrol inhibits hypoxia-induced glioma cell migration and invasion by the pSTAT3/miR-34a axis. Neoplasma. (2016) 63:532–9. doi: 10.4149/ne_2016_046
68. Wu H, Wang Y, Yu C, Yang P, Li H, Li Z. Resveratrol induces cancer cell apoptosis through MiR-326/PK2-mediated ER stress and mitochondrial fission. J Agric Food Chem. (2016) 64:9356–67. doi: 10.1021/acs.jafc.6b04549
69. Yang S, Li W, Sun H, Wu B, Ji L, Sun T, et al. Resveratrol elicits anti-colorectal cancer effect by activating miR-34c-KITLG in vitro and in vivo. BMC Cancer. (2015) 15:969. doi: 10.1186/s12885-015-1958-6
70. Ren X, Bai X, Zhang X, Li Z, Tang L, Zhao X, et al. Quantitative nuclear proteomics identifies that miR-137-mediated EZH2 reduction regulates resveratrol-induced apoptosis of neuroblastoma cells. Mol Cell Proteom. (2015) 14:316–28. doi: 10.1074/mcp.M114.041905
71. Yang SF, Lee WJ, Tan P, Tang CH, Hsiao M, Hsieh FK, et al. Upregulation of miR-328 and inhibition of CREBDNA-binding activity are critical for resveratrol-mediated suppression of epithelial-to-mesenchymal transition in chemoresistant colorectal cancer. Carcinogenesis. (2015) 36:355–67. doi: 10.1093/carcin/bgv006
72. Wang H, Cheng L, Mei C, Ma J, Shi Y, Zeng F, et al. Genistein inhibits cell growth and induces apoptosis through up-regulation of miR-34a in pancreatic cancer cells. Cell Death Dis. (2012) 3:1735–6. doi: 10.1038/cddis.2012.118
73. Ma J, Cheng L, Liu H, Zhang J, Shi Y, Zeng F, et al. Genistein down-regulates miR-223 expression in pancreatic cancer cells. Curr Drug Targets. (2013) 14:1130–6. doi: 10.2174/13894501380454990187
74. Asama H, Suzuki R, Hikichi T, Takagi T, Masumune A, Ohira H. MicroRNA let-7d targets thrombospondin-1 and inhibits the activation of human pancreatic stellate cells. Pancreatology. (2015) 19:196–203. doi: 10.1016/j.pan.2015.08.012
75. Xia J, Duan Q, Ahmad A, Bao B, Banerjee S, Shi Y, et al. Genistein inhibits cell growth and induces apoptosis through inhibition of oncogenic microRNA-151. PLoS ONE. (2012) 7:e43812. doi: 10.1371/journal.pone.0043812
76. Tsang WP, Kwok TT. Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J Nutr Biochem. (2010) 21:140–6. doi: 10.1016/j.nutbio.2008.12.003
77. Fix LN, Shah M, Efferth T, Farwell MA, Zhang B. MicroRNA expression profile of MCF-7 human breast cancer cells and the effect of green tea polyphenon-60. Cancer Genomics Proteomics. (2010) 7:62–7.
78. Wang H, Bian S, Yang CS. Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-21 expression caused by stabilizing HIF-1α. Carcinogenesis. (2011) 32:1881–9. doi: 10.1093/carcin/bgr218
79. Zhu Y, Huang Y, Liu M, Yan Q, Zhao W, Yang P, et al. Epigallocatechin gallate inhibits cell growth and regulates miRNA expression in cervical carcinoma cell lines infected with different high-risk human papillomavirus subtypes. Exp Ther Med. (2019) 17:1742–8. doi: 10.3892/etm.2018.7131
80. Altundal EM, Kasac T, Yilmaz AM, Karademir B, Koçtürk S, Taga Y, et al. Quercetin-induced cell death in human papillary thyroid cancer (B-C PAP). Nutr Cancer. (2015) 68:154–64. doi: 10.1080/01635581.2016.1115040
81. Xia J, Cheng L, Mei C, Ma J, Shi Y, Zeng F, et al. Genistein-induced apoptosis of neuroblastoma cells. Int J Oncol. (2016) 48:2073–80. doi: 10.3892/ijo.2015.2860
82. Xia J, Cheng L, Mei C, Ma J, Shi Y, Zeng F, et al. Quercetin-mediated downregulation of miR-223 contributes to the antitumor effects of genistein. Nutr Cancer. (2016) 68:154–64. doi: 10.1080/01482919.2016.1115040
83. Xia J, Cheng L, Mei C, Ma J, Shi Y, Zeng F, et al. Genistein inhibits cell growth and induces apoptosis through up-regulation of miR-27a in pancreatic cancer cells. Curr Pharm Des. (2014) 20:5348–53. doi: 10.2174/138945012804545597
84. Wu F, Cui L. Resveratrol suppresses melanoma by inhibiting NF-kappaB/miR-221 and inducing TGF expression. Arch Dermatol Res. (2017) 309:423–31. doi: 10.1007/s00403-017-1784-6
85. Gerhäuser C, Epigenetics, Plant (Poly)phenolics, and Cancer Prevention. In A Romani, V Lattanzio, S Quideau, editors. Recent Advances in Polyphenol Research, Vol. 4. New Jersey, NJ: Wiley Blackwell Press (2014). p. 181–3.
86. Avci CB, Sulsuver SY, Caglar HO, Balci T, Aygunes D, Dodurga Y, et al. Gerhäuser C, Epigenetics, Plant (Poly)phenolics, and Cancer Prevention. In A Romani, V Lattanzio, S Quideau, editors. Recent Advances in Polyphenol Research, Vol. 4. New Jersey, NJ: Wiley Blackwell Press (2014). p. 181–3.
94. Zhang XJ, Jia SS. Fisetin inhibits laryngeal carcinoma through regulation of AKT/NF-kB/mTOR and ERK/1,2 signaling pathways. *Biomed Pharmacother.* (2016) 20:1164–74. doi: 10.1016/j.biopha.2016.08.035

95. Chou RH, Hsieh SC, Yu YL, Huang MH, Huang YC, Hsieh YH. Fisetin inhibits migration and invasion of human cervical cancer cells by down-regulation of urokinase plasminogen activator expression through suppressing the p38 MAPK-dependent NF-kB signaling pathway. *PLoS ONE.* (2013) 8:e71983. doi: 10.1371/journal.pone.0071983

96. Liu X, Tian S, Liu M, Jian L, Zhao L. Wogonin inhibits the proliferation and invasion, and induces the apoptosis of HepG2 and Bel7402 HCC cells through NF-κB/IκB-β, EGFR and EGF downstream ERK/AKT signaling. *Int J Mol Med.* (2016) 38:1250–6. doi: 10.3892/ijmm.2016.2700

97. Li-Weber M. New therapeutic aspects of flavonones: the anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalin and Baicalein. *Cancer Treat Rev.* (2009) 35:57–68. doi: 10.1016/j.ctrv.2008.09.005

98. Zhang L, Wen X, Li M, Li S, Zhao H. Targeting cancer stem cells and signaling pathways by resveratrol and pterostilbene. *BioFactors.* (2018) 44:61–8. doi: 10.1002/biof.1398

99. Cichocki M, Paluszczak J, Szaefer H, Piechowiak A, Rimando A, M, Baer-Church CH. Quercetin and apigenin induced cell cycle arrest and programmed cell death in SKOV-3 ovarian cancer cells. *Toxicol Res.* (2019) 35:167–79. doi: 10.5487/TR.2019.35.5.2.1.67

100. Luo KW, Wei Chen, Lung WY, Wei XY, Cheng BH, Cai ZM, Huang WR. Balli U, Cetinkaya BO, Keles GC, Keles ZP, Guler S, Sogut MU, et al. Naringin inhibits the invasion and migration of human skin squamous cell carcinoma A431 cells. *Genet Mol Res.* (2015) 16:2167–75. doi: 10.4238/2015.Sepember.8.17

101. Liew SY, Looi CY, Paydar M, Cheah FK, Leong KH, Wong W, et al. Subdilute, a new monoterpene indole alkaloid from bark of nauclea sublita (Korth.) steud. induces apoptosis in human prostate cancer cells. *PLoS ONE.* (2014) 9:e87286. doi: 10.1371/journal.pone.0087286

102. Xu DW, Zhang GQ, Wang ZW, Xu XY, Tong XL. Autophagy in tumorigenesis and cancer treatment. *Asian Pac J Cancer.* (2015) 16:2167–75. doi: 10.7314/APJC.2015.16.6.2167

103. Wang F, Mao Y, You Q, Hua D, Cai D. Piperlongumine induces apoptosis and autophagy in human lung cancer cells through inhibition of PI3K/Akt/mTOR pathway. *Int Immunopharmacol Pharmacol.* (2015) 28:362–70. doi: 10.1016/j.ijipmp.2015.09.008

104. Sun Z, Zheng L, Liu X, Xing W, Liu X. Sinomenine inhibits the proliferation of prostate cancer cells in vitro and in vivo via down-regulation of NF-kB and MMP-9. *J Nutr Biochem.* (2017) 41:56–64. doi: 10.1016/j.jnutbio.2016.12.004

105. Zhai H, Hu S, Liu T, Wang F, Wang X, Wu G, et al. Nitidine chloride inhibits proliferation and induces apoptosis in colorectal cancer cells by suppressing the ERK signaling pathway. *Med Mol Biol.* (2016) 37:2536–42. doi: 10.3892/mmr.2016.4827

106. Xu H, Zhao X, Liu X, Xu P, Zhang K, Lin X. Antitumor effects of traditional Chinese medicine targeting the cellular apoptotic pathway. *Drug Des Devel Ther.* (2013) 7:2735–44. doi: 10.2147/DDDT.S80902

107. Li DX, Zhang J, Zhang Y, Zhao PW, Yang LM. Inhibitory effect of berberine and inhibition of tumor cell proliferation via suppressing ERK signaling pathway in renal cancer. *Food Chem Toxicol.* (2014) 66:210–6. doi: 10.1016/j.fct.2014.01.049

108. Liu Y, Xu Y, Ji W, Li X, Sun B, Gao Q, et al. Antitumour activities of matrine and oxymatrine: literature review. *Tumour Biol.* (2014) 35:5111–9. doi: 10.1007/s13277-014-1680-z

109. Li H, Li X, Bai M, Suo Y, Zhang G, Cao X. Matrine inhibited proliferation and increased apoptosis in human breast cancer MCF-7 cells via upregulation of Bax and downregulation of Bcl-2. *Int J Exp Pathol.* (2015) 91:14793–9.

110. Li LX, Zhang J, Zhang Y, Zhao PW, Yang LM. Inhibitory effect of berberine on human skin squamous cell carcinoma A431 cells. *Genet Mol Res.* (2015) 14:53–68. doi: 10.4238/2015.September.8.17

111. Aroui S, Aouey B, Chitourou Y, Meunier AC, Fetoui H, Kenani A. Naringin suppresses cell metastasis and the expression of matrix metalloproteases (MMP-2 and MMP-9) via the inhibition of ERK/p38-NFκB signaling pathway in human glioblastoma. *Chem Biol Interact.* (2016) 244:195–203. doi: 10.1016/j.cbi.2015.12.011

112. Aroui S, Najlaoui F, Chitourou Y, Meunier AC, Laajimi A, Kenani A, et al. Naringin inhibits the invasion and migration of human glioblastoma cell via downregulation of MMP-2 and MMP-9 expression and inactivation of p38 signaling pathway. *Tumour Biol.* (2016) 37:3831–9. doi: 10.1007/s13277-015-4230-4

113. Deb G, Shankar E, Thakur VS, Ponsky LE, Bodner DR, Fu P, et al. Green tea-induced epigenetic reactivation of tissue inhibitor of matrix metalloproteinase-3 suppresses prostate cancer progression through histone-modifying enzymes. *Mol Carcinog.* (2019) 58:1194–207. doi: 10.1002/mc.23003

114. Luo KW, Wei Chen, Lung WY, Wei XY, Cheng BH, Cai ZM, Huang WR. EGCG inhibited bladder cancer SW780 cell proliferation and migration both in vitro and in vivo via down-regulation of NF-kB and MMP-9. *J Nutr Biochem.* (2017) 41:56–64. doi: 10.1016/j.jnutbio.2016.12.004

115. Das A, Banik NL, Ray SK. Flavonoids activated caspases for apoptosis in human glioblastoma T98G and U87MG cells but not in human normal astrocytes. *Cancer.* (2010) 116:164–76. doi: 10.1002/cncr.24699

116. Choi EO, Park C, Hong HJ, Kim GH, Cho EJ, et al. Baicalin induces apoptosis via ROS-dependent activation of caspases in human bladder cancer 5637 cells. *Int J Oncol.* (2016) 49:1009–18. doi: 10.3892/ijo.2016.5500

117. Ittiudomrak T, Puthong S, Roystakul S, Chanchao C. α-mangostin and apigenin induced cell cycle arrest and programmed cell death in colorectal cancer cells. *Toxicol Res.* (2019) 35:167–79. doi: 10.5487/TR.2019.35.2.1.67

118. Lu MK, Shih YW, Chang Chen TT, Fang LH, Huang HC, Chen PS. α-Solanine inhibits human melanoma cell migration and invasion by reducing matrix metalloproteinase-2/9 activities. *Biol Pharm Bull.* (2010) 33:1685–91. doi: 10.1248/bpb.33.1685

119. Choi S, Seo J, Hong SH, Park J, Jeon J, Hong S, et al. EGCG inhibited bladder cancer SW780 cell proliferation and migration both in vitro and in vivo via down-regulation of NF-kB and MMP-9. *J Nutr Biochem.* (2017) 41:56–64. doi: 10.1016/j.jnutbio.2016.12.004

120. Li-Weber M. New therapeutic aspects of flavonones: the anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalin and Baicalein. *Cancer Treat Rev.* (2009) 35:57–68. doi: 10.1016/j.ctrv.2008.09.005
144. Ma JW, Zhang Y, Ye JC, Li R, Wen YL, Huang JX, et al. Tetrandrine interferes with mTOR signalling and growth. Acta Pharmacol Sin. (2009) 30:1859–67. doi: 10.1038/aps.2009.8

145. Rajput ZI, Hu SH, Xiao CW, Arijo AG. Adjuvant effects of saponins on tumor growth and metastasis in vivo. Eur J Pharmacol. (2012) 667:16–23. doi: 10.1016/j.ejphar.2012.02.011

146. Xu XH, Li T, Fong CM, Chen X, Chen XJ, Wang YT, et al. Saponins from Angelica sinensis inhibit angiogenesis in vitro and in vivo in a 4T1 murine breast cancer model. Acta Pharmacol Sin. (2012) 33:523–30. doi: 10.1038/aps.2011.209

147. Jin HR, Jin SZ, Cai XF, Li D, Wu X, Nan JX, et al. Cryptopleurine targets multiple signaling pathways with apoptosis. Cell Death Dis. (2014) 5:e1356. doi: 10.1038/cddis.2014.321

148. You ZM, Zhao L, Xia J, Wei Q, Liu YM, Liu XY, et al. Down-regulation of phosphoglu cose isomerase/autoxamic motility factor enhances gensenoside Rh2 pharmaceutical action on leukemia KG1a cells. Asian Pac J Cancer Prev. (2014) 15:1099–1104. doi: 10.7314/APJCP.2014.15.3.1099

149. Li J, Wei Q, Zuo GW, Xia J, You ZM, Li CL, et al. Gensenoside Rh1 induces apoptosis through inhibition of the Eptor-activated JAK2/STAT3 signaling pathway in the TF-1/Epo human leukemia cell line. Asian Pac J Cancer Prev. (2014) 15:2453–9. doi: 10.7314/APJCP.2014.15.6.2453

150. Wang H, Jiang D, Liu J, Ye S, Xiao S, Wang W, et al. Compound K induces apoptosis of bladder cancer T24 cells via reactive oxygen species-mediated p38 MAPK pathway. Cancer Ther. (2013) 11:1570–6. doi: 10.4137/CPharm.16148

151. Cheng G, Gao F, Sun X, Bi H, Kim JM, Krausz KW, et al. Saikosaponin d protects against acetaminophen-induced hepatotoxicity by inhibiting NF-kB and STAT3 signaling. Chem Biol Interact. (2014) 223:80–6. doi: 10.1016/j.cbi.2014.09.012

152. Liu A, Tanaka N, Sun L, Guo B, Kim JH, Krausz KW, et al. Saikosaponin d protects against acetaminophen-induced hepatotoxicity by inhibiting NF-kB and STAT3 signaling. Chem Biol Interact. (2014) 223:80–6. doi: 10.1016/j.cbi.2014.09.012

153. Sun et al. Natural Products Modulate Cancer Signaling November 2019 | Volume 9 | Article 1153

154. Jung SH, Kim D, Seo HW, Lim SH, Yoon ES, et al. Antiproliferative activity of sulfated polysaccharide isolated from the roots of Physospermum verticillatum. J Ethnopharmacol. (2011) 133:185–90. doi: 10.1016/j.jep.2011.04.022

155. Liu H, Liu X, Zhang Y, Tang XJ, Zhang HM, et al. MAPK signaling mediates siniemonochlorohydroxyinduced human breast cancer cell death via both reactive oxygen species-dependent and -independent pathways: an in vitro and in vivo study. Cell Death Dis. (2014) 5:e1356. doi: 10.1038/cddis.2014.321

156. Guo XX, Li Y, Sun C, Jiang D, Lin YJ, Jin FX, et al. p33-dependent Fas expression is critical for Ginsenoside Rb2 triggered caspase-8 activation in HeLa cells. Protein Cell. (2014) 5:223–34. doi: 10.1007/s13238-014-0027-2

157. You ZM, Zhao L, Xia J, Wei Q, Liu YM, Liu XY, et al. Down-regulation of phosphoglu cose isomerase/autoxamic motility factor enhances gensenoside Rh2 pharmaceutical action on leukemia KG1a cells. Asian Pac J Cancer Prev. (2014) 15:1099–1104. doi: 10.7314/APJCP.2014.15.3.1099

158. Sun DL, Xie HR, Xia YZ. A study on the inhibitory effect of polysaccharides from radix ranunculus ternati on human breast cancer MCF-7 cell lines. Afr J Tradit Complement Altern Med. (2013) 10:439–43. doi: 10.4314/ajtcam.v10i6.6

159. Croci DO, Cumashi A, Ushakova NA, Preobrazhenskaya ME, Piccoli A, Totani L, et al. Fucans, but not fucamannoglycuronans, determine the biological activities of sulfated polysaccharides from laminaria saccharina brown seaweed. PLoS ONE. (2011) 6:e17283. doi: 10.1371/journal.pone.0017283

160. Jiao G, Yu G, Zhang J, Ewart HS. Chemical structures and bioactivities of fucoidan from Ascophyllum nodosum: Extraction, characterization, and apoptotic effects in vitro. J Nat Prod. (2011) 74:1851–61. doi: 10.1021/np102014n

161. Foley SA, Szegezdi E, Mulloy B, Samali A, Tuohy MG. An unfractio ned fucoidan from Ascophyllum nodosum: Extraction, characterization, and apoptotic effects in vitro. J Nat Prod. (2011) 74:1851–61. doi: 10.1021/np102014n

162. Jiao G, Yu G, Zhang J, Ewart HS. Chemical structures and bioactivities of fucoidan from Ascophyllum nodosum: Extraction, characterization, and apoptotic effects in vitro. J Nat Prod. (2011) 74:1851–61. doi: 10.1021/np102014n

163. Foley SA, Szegezdi E, Mulloy B, Samali A, Tuohy MG. An unfractio ned fucoidan from Ascophyllum nodosum: Extraction, characterization, and apoptotic effects in vitro. J Nat Prod. (2011) 74:1851–61. doi: 10.1021/np102014n

164. Liu H, Liu X, Zhang Y, Tang XJ, Zhang HM, et al. MAPK signaling mediates siniemonochlorohydroxyinduced human breast cancer cell death via both reactive oxygen species-dependent and -independent pathways: an in vitro and in vivo study. Cell Death Dis. (2014) 5:e1356. doi: 10.1038/cddis.2014.321

165. Guo XX, Li Y, Sun C, Jiang D, Lin YJ, Jin FX, et al. p33-dependent Fas expression is critical for Ginsenoside Rb2 triggered caspase-8 activation in HeLa cells. Protein Cell. (2014) 5:223–34. doi: 10.1007/s13238-014-0027-2

166. You ZM, Zhao L, Xia J, Wei Q, Liu YM, Liu XY, et al. Down-regulation of phosphoglu cose isomerase/autoxamic motility factor enhances gensenoside Rh2 pharmaceutical action on leukemia KG1a cells. Asian Pac J Cancer Prev. (2014) 15:1099–1104. doi: 10.7314/APJCP.2014.15.3.1099

167. Sun DL, Xie HR, Xia YZ. A study on the inhibitory effect of polysaccharides from radix ranunculus ternati on human breast cancer MCF-7 cell lines. Afr J Tradit Complement Altern Med. (2013) 10:439–43. doi: 10.4314/ajtcam.v10i6.6

168. Croci DO, Cumashi A, Ushakova NA, Preobrazhenskaya ME, Piccoli A, Totani L, et al. Fucans, but not fucamannoglycuronans, determine the biological activities of sulfated polysaccharides from laminaria saccharina brown seaweed. PLoS ONE. (2011) 6:e17283. doi: 10.1371/journal.pone.0017283

169. Jiao G, Yu G, Zhang J, Ewart HS. Chemical structures and bioactivities of fucoidan from Ascophyllum nodosum: Extraction, characterization, and apoptotic effects in vitro. J Nat Prod. (2011) 74:1851–61. doi: 10.1021/np102014n

170. Foley SA, Szegezdi E, Mulloy B, Samali A, Tuohy MG. An unfractio ned fucoidan from Ascophyllum nodosum: Extraction, characterization, and apoptotic effects in vitro. J Nat Prod. (2011) 74:1851–61. doi: 10.1021/np102014n
165. de Jesus Raposo MF, de Morais AM, de Morais RM. Marine polysaccharides from algae with potential biomedical applications. *Mar Drugs.* (2015) 13:2967–3028. doi: 10.3390/md13052967

166. Hyun JH, Kim SC, Kang JI, Kim MK, Boo HJ, Kwon JM, et al. Apoptosis inducing activity of fucoidan in HCT-15 colon carcinoma cells. *Biol Pharm Bull.* (2009) 32:1760–4. doi: 10.1248/bpb.32.1760

167. Ye J, Li Y, Teruya K, Katakuria Y, Ichikawa A, Eto H, et al. Enzyme-digested fucoidan extracts derived from seaweed mozuku of cladosiphon novae-caledoniae kylin inhibit invasion and angiogenesis of tumor cells. *Cytotechnology.* (2005) 47:117–26. doi: 10.1007/s10616-005-3761-8

168. Maeda R, Ida T, Inara H, Sakamoto T. Immunostimulatory activity of polysaccharides isolated from Caulerpa lentillifera on macrophage cells. *Biosci Biotechnol Biochem.* (2012) 76:501–5. doi: 10.1271/bbb.110813

169. Song KS, Li G, Kim JS, Jing K, Kim TD, Kim JP, et al. Protein-bound polysaccharide from Phellinus linteus inhibits tumor growth, invasion, and angiogenesis and alters Wnt/β-catenin in SW480 human colon cancer cells. *BMC Cancer.* (2011) 11:307. doi: 10.1186/1471-2407-11-307

170. Lai X, Xia W, Wei J, Ding X. Therapeutic effect of astragalus polysaccharides on hepatocellular carcinoma H22-bearing mice. *Dose Response.* (2017) 15:1559325816685182. doi: 10.1177/1559325816685182

171. Sanjeewa KK, Fernando IP, Kim EA, Ahn G, Jee Y, Jeon YJ. Anti-inflammatory activity of a sulfated polysaccharide isolated from an enzymatic digest of brown seaweed Sargassum horneri in RAW 264.7 cells. *Nutr Res Pract.* (2011) 7:3–10. doi: 10.4162/nrp.2011.7.1.3

172. Na K, Li K, Sang T, Wu K, Wang Y, Wang X. Anticarcinogenic effects of water extract of sporoderm-broken spores of Ganoderma lucidum on colorectal cancer in vitro and in vivo. *Int J Oncol.* (2017) 50:1541–54. doi: 10.3892/ijo.2017.3939

173. Liu J, Wang S, Zhang Y, Fan HT, Lin HS. Traditional Chinese medicine and cancer: History, present situation, and development. *Thoracic Cancer.* (2015) 6:561–9. doi: 10.1111/1759-7714.12270

174. Lu JJ, Bao JL, Chen XP, Huang M, Wang YT. Alkaloids isolated from natural herbs as the anticancer agents. *Evid-Based Complement Altern Med.* (2012) 2012:485042. doi: 10.1155/2012/485042

175. Koen B, Ruth V, Guido V, Johannes VS. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. *J Biol Chem.* (2005) 280:5636–45. doi: 10.1074/jbc.M408177200

176. Xia J, Chen J, Zhang Z, Song P, Tang W, Kokudo N. A map describing the association between effective components of traditional Chinese medicine and signaling pathways in cancer cells in vitro and in vivo. *Drug Discov Ther.* (2014) 8:139–53. doi: 10.5582/ddt.2014.01032

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Sun, Zhou, Zhang, Guo, Yang, Li, Sun, Gao and Cui. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.