Association between XRCC1 and XRCC3 Polymorphisms with Lung Cancer Risk: A Meta-Analysis from Case-Control Studies

Guohua Huang1, Xiaoxi Cai1, Wei Wang2,3,4, Qing Zhang5, Aihua Liu1*

1 Department of Respiration, Nanfang Hospital of Southern Medical University, Guangzhou, China, 2 Gastroenterology Department, The Second People’s Hospital of Zhuhai, Zhuhai, China, 3 Beijing Zhendong Guangming Pharmaceutical Research Institute Co. Ltd., Beijing, China, 4 Shandong Zhendong Pharmaceutical Co. Ltd., Changzh, China, 5 Department of Pharmacy, Nanfang Hospital of Southern Medical University, Guangzhou, China

Abstract

Many studies have reported the association of X-ray repair cross-complementing group 1 (XRCC1) Arg399Gln, Arg194Trp, Arg280His, −77T>C, and X-ray repair cross-complementing group 3 (XRCC3) T241M polymorphisms with lung cancer risk, but the results remained controversial. Hence, we performed a meta-analysis to investigate the association between lung cancer risk and XRCC1 Arg399Gln (14,156 cases and 16,667 controls from 41 studies), Arg194Trp (7,426 cases and 9,603 controls from 23 studies), Arg280His (6,211 cases and 6,763 controls from 16 studies), −77T>C (2,487 cases and 2,576 controls from 5 studies), and XRCC3 T241M (8,560 cases and 11,557 controls from 19 studies) in different inheritance models. We found that −77T>C polymorphism was associated with increased lung cancer risk (dominant model: odds ratio [OR] = 1.4, 95% confidence interval [CI] = 1.27–1.66, recessive model: OR = 1.73, 95% CI = 1.14–2.62, additive model: OR = 1.91, 95% CI = 1.24–1.94) when all the eligible studies were pooled into the meta-analysis. In the stratified and sensitive analyses, significantly decreased lung cancer risk was observed in overall analysis (dominant model: OR = 0.83, 95% CI = 0.78–0.89; recessive model: OR = 0.9, 95% CI = 0.81–1.00; additive model: OR = 0.82, 95% CI = 0.74–0.92), Caucasians (dominant model: OR = 0.82, 95% CI = 0.76–0.87; recessive model: OR = 0.89, 95% CI = 0.80–0.99; additive model: OR = 0.81, 95% CI = 0.73–0.91), and hospital-based controls (dominant model: OR = 0.81, 95% CI = 0.76–0.88; recessive model: OR = 0.89, 95% CI = 0.79–1.00; additive model: OR = 0.80, 95% CI = 0.71–0.90) for XRCC3 T241M. In conclusion, this meta-analysis indicates that XRCC1 −77T>C shows an increased lung cancer risk and XRCC3 T241M polymorphism is associated with decreased lung cancer risk, especially in Caucasians.

Introduction

Lung cancer is a major cause of cancer-related death in the worldwide and the overall survival rate has still an extremely poor [1]. Although cigarette smoking is the major cause of lung cancer, only a small fraction of smokers develop this disease, suggesting that other causes, including genetic susceptibility, might contribute to the variation in individual lung cancer risk [2,3]. Genetic susceptibility to environmental or occupational diseases is believed to play an important role in determining individual differences in the development of cancer. Research activities have focused on polymorphisms in DNA-repair genes as an important component of susceptibility because DNA-repair activities are critical for the protection of the genome and the prevention of cancer [4]. At the cellular level, checkpoints can be activated to arrest the cell cycle and transcription can be unregulated to compensate for the damage or the cell can apoptosis [5]. DNA repair is essential in protecting the cellular genome from environmental hazards, such as tobacco smoke [6]. Several studies have shown that a reduced DNA repair capacity is associated with increased lung cancer risk [7–9]. Many DNA repair genes carry genetic polymorphisms, with the potential to modulate gene function and alter DNA repair capacity [10].

The DNA repair pathways, including nucleotide excision repair (NER), base excision repair (BER) and double-strand break repair (DSBR) play an important role in repairing the DNA damage resulting from chemical alterations of a single base, such as methylated, oxidized, or reduced bases [11,12]. The DNA repair enzymes XRCCI play a central role in the BER pathway [13,14]. XRCCI is located on chromosome no. 19q13.2–13.3, and its gene product is implicated in single-strand break repair and base excision repair mechanisms [15]. XRCCI encodes a protein that function in the repair of single-strand breaks. Shen et al [16] identified three coding polymorphisms in the XRCCI gene at codons 194 (Arg to Trp), 280 (Arg to His), and 399 (Arg to Gln). 5’UTR−77T>C is a novel polymorphism identified in the XRCCI gene located in the 5’untranslated region. Hao et al. [50] have reported that functional SNP −77T>C decreased transcriptional
activity of C-allele containing promoter with higher affinity to Sp1 binding.

In the DSBR pathway, XRCC3 participate in DNA double-strand break/recombination repair and likely participates [17–19]. DSBs are the most common form of radiation-induced DNA damage [20] and are repaired by two pathways-homologous recombination repair (HRR) and no homologous end-joining [21–25]. The HRR pathway consists of at least 16 protein components, including XRCC3. A common polymorphism in exon 7 of the XRCC3 gene results in an amino acid substitution at codon 241 (Thr241Met) that may affect the enzyme function and/or its interaction with other proteins involved in DNA damage and repair [24].

Molecular epidemiological studies have reported the association of XRCC1 Arg399Gln, Arg194Trp, Arg280His, −77T>C, and XRCC3 T241M with lung cancer risk. However, several published studies were not included in these meta-analyses and additional original studies with larger sample sizes have been published since then. Importantly, the previously meta-analyses on XRCC1 Arg194Trp, Arg280His, and Arg399Gln with lung cancer risk have shown conflicting results. Hence, the association of these polymorphic genes remains unknown. In order to explore the association between XRCC1 Arg399Gln, Arg194Trp, Arg280His, −77T>C, and XRCC3 T241M polymorphisms with lung cancer risk, a meta-analysis was conducted to summarize the data. Meta-analysis is a powerful tool for summarizing the different studies. It can not only overcome the problem of small size and inadequate statistical power of genetic studies of complex traits, but also provide more reliable results than a single case-control study.

Materials and Methods

Identification and eligibility of relevant studies

A comprehensive literature search was performed using the PubMed, ISI, and Embase databases for relevant articles published (last search was updated on Jan 12, 2013) with the following key words “XRCC1” or “XRCC3”, “polymorphism”, and “cancer” or “carcinoma” combined with “lung”. All eligible studies were retrieved, and their bibliographies were checked for other relevant publications. We excluded data that were unpublished or published in abstract only. We also reviewed the Cochrane Library for relevant articles. Additional articles were identified by hand searching references in the eligible articles and review articles that possibly have been missed in the initial search. Authors were contacted directly regarding crucial data not reported in original articles. When the same sample was used in several publications, only the study with the largest sample size was included following careful examination.

Inclusion criteria

The included studies needed to have met the following criteria: (1) only the case–control studies were considered, (2) evaluated the XRCC1 Arg399Gln, Arg194Trp, Arg280His, −77T>C, and XRCC3 T241M polymorphisms and lung cancer risk, and (3) sufficient published data for estimating an odds ratio (OR) with 95% confidence interval (CI). Major reasons for exclusion of studies were as follows: (1) not cancer research, (2) only case population, (3) duplicate of previous publication, and (4) the distribution of genotypes among controls are not in Hardy–Weinberg equilibrium (P<0.01).

Data extraction

Information was carefully extracted from all eligible studies independently by two investigators according to the inclusion criteria listed above. The following data were collected from each study: first author’s name, year of publication, country of origin, ethnicity, source of controls, genotyping method, match, sample size, and numbers of cases and controls in the XRCC1 Arg399Gln, Arg194Trp, Arg280His, −77T>C, and XRCC3 T241M genotypes whenever possible. Ethnicity was categorized as “Caucasian”, “African”, and “Asian”. When a study did not state which ethnic groups were included or if it was impossible to separate participants according to phenotype, the sample was termed as “mixed population”. We did not define any minimum number of patients to include in this meta-analysis. Articles that reported different ethnic groups and different countries or locations, we considered them different study samples for each category cited above.

Statistical analysis

Crude odds ratios (ORs) together with their corresponding 95% confidence intervals (95% CIs) were used to assess the strength of association between the XRCC1 Arg399Gln, Arg194Trp, Arg280His, −77T>C, and XRCC3 T241M polymorphisms and lung cancer risk. The pooled ORs were performed for dominant model (Arg399Gln: Arg/Gln+Gln/Gln vs. Arg/Arg, Arg194Trp: Arg/Trp+Trp vs. Arg/Arg, Arg280His: His/His+His/His vs. Arg/Arg, −77T>C: TC+CC vs. TT, and T241M: TM+MM vs. TT); recessive model (Arg399Gln: Arg/Gln+Arg/Gln vs. Gln/Gln, Arg194Trp: Arg/Trp+Arg/Arg vs. Trp/Trp, Arg280His: Arg/His+Arg/Arg vs. His/His, −77T>C: TT+CC vs. CC, and T241M: TM+TT vs. MM); additive model (Arg399Gln: Arg/Arg vs. Gln/Gln, Arg194Trp: Arg/Trp vs. Trp/Trp, Arg280His: Arg/His vs. His/His, −77T>C: TT vs. CC, and T241M: TT vs. MM), respectively. Between-study heterogeneity was assessed by calculating Q-statistic (Heterogeneity was considered statistically significant if P<0.10) [74] and quantified using the I2 value, Venne criteria [75] for the I2 test included: *I2<25% represents no heterogeneity, I2 = 25–50% represents moderate heterogeneity, I2 = 50–75% represents large heterogeneity, and I2 > 75% represents extreme heterogeneity*. If results were not heterogeneous, the pooled ORs were calculated by the fixed-effect model (we used the Q-statistic, which represents the magnitude of heterogeneity between-studies) [76]. Otherwise, a random-effect model was used (when the heterogeneity between-studies was significant) [77]. We also performed subgroup analyses by ethnicity (Caucasian and Asian), source of controls, histological type, gender, and smoking habits. Moreover, the extent to which the combined risk estimate might be affected by individual studies was assessed by consecutively omitting every study from the meta-analysis (leave-one-out sensitivity analysis). This approach would also capture the effect of the oldest or first positive study (first study effect). Secondly, we also ranked studies according to sample size, and then repeated this meta-analysis. Sample size was classified according to a minimum of 200 participants and those with fewer than 200 participants. The cit criteria were previously described [78]. We assessed Hardy–Weinberg equilibrium (HWE) for each study using the goodness-of-fit test (χ2 or Fisher exact test) only in control groups, and deviation was considered when P<0.01. Begg’s funnel plots [79] and Egger’s linear regression test [80] were used to assess publication bias. If publication bias existed, the Duval and Tweedie non-parametric “trim and fill” method was used to adjust
for it. A meta-regression analysis was carried out to identify the major sources of between-studies variation in the results, using the log of the ORs from each study as dependent variables, and ethnicity, source of controls, and sample size as the possible sources of heterogeneity. All of the calculations were performed using STATA version 10.0 (STATA Corporation, College Station, TX).

Results

Literature Search and Meta-analysis Databases

Relevant publications were retrieved and preliminarily screened. As shown in Fig. 1, 248 publications were identified, among which 132 irrelevant papers were excluded. Thus, 116 publications were eligible. Among these publications, 67 articles were excluded because they were review articles, case reports, and other polymorphisms of XRCC1 and XRCC3. In addition, Genotype distributions in the controls of all the eligible studies were in agreement with HWE. 4 articles [32,37,46,60] were excluded because of their populations overlapped with another 2 included study [25,33,55,59]. As summarized in Table 1, 45 articles with 104 case–control studies publications were selected in the final meta-analysis, including 14156 cases and 16,667 controls for XRCC1 Arg399Gln (from 41 studies), 7,426 cases and 9,603 controls for Arg194Trp (from 23 studies), 6,211 cases and 6,763 controls for Arg280His (from 16 studies), 2,487 cases and 2,576 controls for −77T>C (from 5 studies), and 8,560 cases and 11,557 controls for XRCC3 T241M (from 19 studies). Among these studies, five studies were included in the dominant model only because they provided the genotypes of TM+MM versus TT or Arg/Gln+Gln/Gln versus Arg/Arg as a whole and one study was included in the recessive model only because it provided the genotypes of TM+TT versus MM. 45 were population-based studies and 59 were hospital-based studies. 51 were conducted in Caucasians, 46 were conducted in Asians, and 6 studies were conducted in Africans. The remained were conducted in mixed ethnicity. Tables S1–S5 in File S1 listed ethnicity, HWE, and the numbers of cases and controls for XRCC1 Arg399Gln, Arg194Trp, Arg280His, −77T>C, and XRCC3 T241M. All of the cases were pathologically confirmed.

Quantitative synthesis

Table 2 listed the main results of the meta-analysis of XRCC1 Arg399Gln polymorphism and lung cancer risk. When all the eligible studies were pooled into the meta-analysis of XRCC1 Arg399Gln polymorphism, no significant association was found in any genetic model. However, significant between-study heterogeneity was detected in any genetic model. Hence, we performed subgroup analysis by ethnicity, histological type, smoker habits, gender, and source of controls. Among the stratified analysis, significantly increased lung cancer risk was observed in non-smokers (recessive model: OR = 1.12, 95% CI = 0.96–1.21, \(P_h = 0.114, F = 32.6\% \)). For XRCC1 Arg194Trp polymorphism, when one study was excluded, the results were also changed in non-smokers (recessive model: OR = 1.12, 95% CI = 0.96–1.21, \(P_h = 0.114, F = 32.6\% \)). For XRCC1 Arg280His polymorphism, significantly increased lung cancer risk was observed in Asians (recessive model: OR = 1.16, 95% CI = 0.97–1.38, \(P_h = 0.227, F = 18.3\% \)), Asians (recessive model: OR = 1.14, 95% CI = 0.95–1.37, \(P_h = 0.295, F = 16.1\% \)), hospital-based studies (recessive model: OR = 1.17, 95% CI = 0.92–1.49, \(P_h = 0.241, F = 21.9\% \)), and smokers (dominant model: OR = 0.87, 95% CI = 0.74–1.03, \(P_h = 0.409, F = 0.0\% \)). For XRCC3 T241M polymorphism, when one study was excluded, significantly decreased lung cancer risk was observed in overall analysis (dominant model: OR = 0.83, 95% CI = 0.78–0.89, \(P_h = 0.302, F = 13.0\% \), Fig 5; recessive model: OR = 0.90, 95% CI = 0.81–1.00, \(P_h = 0.507, F = 0.0\% \)); additive model: OR = 0.82, 95% CI = 0.74–0.92, \(P_h = 0.278, F = 16.1\% \)); Caucasians (dominant model: OR = 0.82, 95% CI = 0.76–0.87, \(P_h = 0.248, F = 20.5\% \)); recessive model: OR = 0.89, 95% CI = 0.80–0.99, \(P_h = 0.427, F = 6.3\% \)); additive model: OR = 0.81, 95% CI = 0.73--
0.91, $P_0 = 0.277$, $I^2 = 18.1\%$), and hospital-based controls (dominant model: OR = 0.81, 95% CI = 0.76–0.88, $P_0 = 0.193$, $I^2 = 28.2\%$; recessive model: OR = 0.89, 95% CI = 0.79–1.00, $P_0 = 0.213$, $I^2 = 25.9\%$; additive model: OR = 0.80, 95% CI = 0.71–0.90, $P_0 = 0.108$, $I^2 = 40.6\%$).

Publication bias

Begg’s funnel plot and Egger’s test did not reveal any publication bias for XRCC1 Arg399Gln ($P = 0.546$ for dominant model, $P = 0.767$ for recessive model, and $P = 0.984$ for additive model), Arg194Trp ($P = 0.588$ for dominant model, $P = 0.416$ for recessive model, $P = 0.555$ for additive model), Arg280His ($P = 0.439$ for dominant model, $P = 0.520$ for recessive model, $P = 0.292$ for additive model), $-77 T>C$ ($P = 0.186$ for dominant model, $P = 0.162$ for recessive model, $P = 0.246$ for additive model), although possible publication bias was suggested between XRCC3 T241M polymorphism and lung cancer risk in dominant model ($P = 0.012$) and additive model ($P = 0.041$). This might be a limitation for this meta-analysis because studies with null findings, especially those with small sample size, are less likely to be published. The Duval and Tweedie non-parametric “trim and fill” method was used to adjust for publication bias. Meta-analysis with and without “trim and fill” did not draw different conclusion (Fig. 6), indicating that our results were statistically robust.
Table 1. Main characteristics of all studies included in the meta-analysis.

First author/year	Country	Ethnicity	SNPS	GM	SC	Matching
Ratnasinghe [25]	China	Asian	Arg399Gln	TaqMan	PB	Age/sex
Ratnasinghe [25]	China	Asian	Arg194Trp	TaqMan	PB	Age/sex
Ratnasinghe [25]	China	Asian	Arg280His	TaqMan	PB	Age/sex
David-Beabes [26]	USA	Caucasian	Arg399Gln	PCR-RFLP	PB	Age/sex/ethnicity
David-Beabes [26]	USA	Caucasian	Arg194Trp	PCR-RFLP	PB	Age/sex/ethnicity
David-Beabes [26]	USA	African	Arg399Gln	PCR-RFLP	PB	Age/sex/ethnicity
David-Beabes [26]	USA	African	Arg194Trp	PCR-RFLP	PB	Age/sex/ethnicity
David-Beabes [27]	USA	Caucasian	T241M	PCR-RFLP	PB	Age/sex/ethnicity
Divine [28]	USA	Caucasian	Arg399Gln	PCR-RFLP	HB	No clear
Chen [29]	China	Asian	Arg399Gln	PCR	PB	Age/sex
Chen [29]	China	Asian	Arg194Trp	PCR	PB	Age/sex
Park [30]	Korea	Asian	Arg399Gln	PCR-RFLP	HB	Age
Misra [31]	USA	Caucasian	Arg399Gln	PCR	PB	Age
Misra [31]	USA	Caucasian	Arg280His	PCR	PB	Age
Zhou [33]	USA	Caucasian	Arg399Gln	PCR-RFLP	PB	No clear
Wang [34]	USA	Mixed	T241M	PCR-RFLP	PB	Age/ethnicity/gender
Ito [35]	Japan	Asian	Arg399Gln	PCR-CTTP	HB	Age/sex
Popanda [36]	Germany	Caucasian	Arg399Gln	PCR	HB	No clear
Popanda [36]	Germany	Caucasian	T241M	PCR	HB	No clear
Harms [38]	Germany	Caucasian	Arg399Gln	PCR	PB	Age/ethnicity/gender
Harms [38]	Germany	Caucasian	T241M	PCR	PB	Age/ethnicity/gender
Jacobsen [39]	Denmark	Caucasian	T241M	PCR	PB	No clear
Zhang [40]	China	Asian	Arg399Gln	PCR-RFLP	PB	Age/sex
Hung [41]	Europe	Caucasian	Arg399Gln	PCR	HB	Age/sex/area
Hung [41]	Europe	Caucasian	Arg194Trp	PCR	HB	Age/sex/area
Hung [41]	Europe	Caucasian	Arg280His	PCR	HB	No clear
Vogel [42]	Denmark	Caucasian	Arg399Gln	PCR	PB	No clear
Vogel [42]	Denmark	Caucasian	Arg280His	PCR	PB	No clear
Schneider [43]	Germany	Caucasian	Arg399Gln	PCR	HB	No clear
Schneider [43]	Germany	Caucasian	Arg194Trp	PCR	HB	No clear
Shen [44]	China	Asian	Arg399Gln	PCR	PB	Age/sex/village
Shen [44]	China	Asian	Arg194Trp	PCR	PB	Age/sex/village
Shen [44]	China	Asian	Arg280His	PCR	PB	Age/sex/village
Chan [45]	China	Asian	Arg399Gln	PCR-RFLP	HB	Age/sex
Chan [45]	China	Asian	Arg194Trp	PCR-RFLP	HB	Age/sex
Hu [47]	China	Asian	Arg399Gln	PCR	HB	Age/sex/area
Hu [47]	China	Asian	Arg194Trp	PCR	HB	Age/sex/area
Hu [47]	China	Asian	Arg280His	PCR-RFLP	HB	Age/sex/area
Zienolddiny [48]	Norway	Caucasian	Arg399Gln	TaqMan	PB	Age/sex/smoking
Zienolddiny [48]	Norway	Caucasian	Arg194Trp	TaqMan	PB	Age/sex/smoking
Zienolddiny [48]	Norway	Caucasian	Arg280His	TaqMan	PB	Age/sex/smoking
Zienolddiny [48]	Norway	Caucasian	T241M	TaqMan	PB	Age/sex/smoking
Matullo [49]	Europe	Caucasian	Arg399Gln	TaqMan	PB	Age/sex/smoking
Matullo [49]	Europe	Caucasian	T241M	TaqMan	PB	Age/sex/smoking
Hao [50]	China	Asian	Arg399Gln	PCR-RFLP	PB	Age/sex/ethnicity
Table 1. Cont.

First author/year	Country	Ethnicity	SNPS	GM	SC	Matching
Hao [50] 2006	China	Asian	Arg194Trp	PCR-RFLP	PB	Age/sex/ethnicity
Hao [50] 2006	China	Asian	Arg280His	PCR-RFLP	PB	Age/sex/ethnicity
Hao [50] 2006	China	Asian	−77T>C	PCR-RFLP	PB	Age/sex/ethnicity
Landi [51] 2006	Europe	Caucasian	Arg399Gln	PCR-RFLP	HB	Age/sex/center/area
Landi [51] 2006	Europe	Caucasian	Arg194Trp	PCR-RFLP	HB	Age/sex/center/area
Landi [51] 2006	Europe	Caucasian	Arg280His	PCR-RFLP	HB	Age/sex/center/area
Ryk [52] 2006	Swede	Caucasian	Arg399Gln	PCR-RFLP	PB	Age/sex/smoking
Ryk [52] 2006	Swede	Caucasian	T241M	TaqMan	PB	Age/sex/smoking
De Ruyck [53] 2007	Belgium	Caucasian	Arg399Gln	PCR-RFLP	HB	Age/sex
De Ruyck [53] 2007	Belgium	Caucasian	Arg194Trp	PCR-RFLP	HB	Age/sex
De Ruyck [53] 2007	Belgium	Caucasian	Arg280His	PCR-RFLP	HB	Age/sex
De Ruyck [53] 2007	Belgium	Caucasian	−77T>C	PCR-RFLP	HB	Age/sex
Pachouri [54] 2007	India	Asian	Arg399Gln	PCR-RFLP	PB	No clear
Pachouri [54] 2007	India	Asian	Arg194Trp	PCR-RFLP	PB	No clear
Yin [55] 2007	China	Asian	Arg399Gln	PCR-RFLP	HB	Age/gender/ethnicity
Yin [55] 2007	China	Asian	Arg194Trp	PCR-RFLP	HB	Age/gender/ethnicity
Yin [55] 2007	China	Asian	Arg280His	PCR-RFLP	HB	Age/gender/ethnicity
Lopez-Cima [56] 2007	Spain	Caucasian	Arg399Gln	PCR-RFLP	HB	Age/gender/ethnicity
Lopez-Cima [56] 2007	Spain	Caucasian	T241M	PCR-RFLP	HB	Age/gender/ethnicity
Zhang [57] 2007	China	Asian	T241M	PCR-RFLP	HB	No clear
Improta [58] 2008	Italy	Caucasian	Arg399Gln	PCR-RFLP	HB	Age/sex
Improta [58] 2008	Italy	Caucasian	Arg194Trp	PCR-RFLP	HB	Age/sex
Improta [58] 2008	Italy	Caucasian	T241M	PCR-RFLP	HB	Age/sex
Li [59] 2008	China	Asian	Arg399Gln	PCR-RFLP	HB	Age
Li [59] 2008	China	Asian	Arg194Trp	PCR-RFLP	HB	Age
Li [59] 2008	China	Asian	Arg280His	PCR-RFLP	HB	Age
Li [59] 2008	China	Asian	−77T>C	PCR-RFLP	HB	Age
Hsieh [61] 2009	China	Asian	−77T>C	PCR-RFLP	HB	No clear
Cote [62] 2009	USA	Caucasian	Arg399Gln	PCR-RFLP	PB	Age/race
Cote [62] 2009	USA	African	Arg399Gln	PCR-RFLP	PB	Age/race
Qian [63] 2010	China	Asian	T241M	PCR-RFLP	HB	Age/gender
Qian [63] 2010	China	Asian	Arg399Gln	PCR-RFLP	HB	Age/gender
Tanaka [64] 2010	Japan	Asian	Arg194Trp	PCR-RFLP	HB	Age/sex/ethnicity
Kim [65] 2010	Korea	Asian	Arg399Gln	PCR-RFLP	HB	No clear
Kim [65] 2010	Korea	Asian	Arg280His	PCR-RFLP	HB	No clear
Osawa [66] 2010	Japan	Asian	T241M	PCR-RFLP	HB	No clear
Osawa [66] 2010	Japan	Asian	Arg399Gln	PCR-RFLP	HB	No clear
Huang [67] 2011	China	Asian	T241M	PCR-RFLP	HB	Age/sex
Janik [68] 2011	Poland	Caucasian	Arg399Gln	PCR-SSCP	HB	Age/sex/smoking/diet
Janik [68] 2011	Poland	Caucasian	Arg194Trp	PCR-SSCP	HB	Age/sex/smoking/diet
Janik [68] 2011	Poland	Caucasian	Arg280His	PCR-SSCP	HB	Age/sex/smoking/diet
Li [69] 2011	China	Asian	Arg399Gln	PCR-CTTP	HB	Age/sex/area
Wang [70] 2012	China	Asian	Arg194Trp	PCR-RFLP	HB	Age/sex/area
Wang [70] 2012	China	Asian	Arg280His	PCR-RFLP	HB	Age/sex/area
Wang [70] 2012	China	Asian	Arg399Gln	PCR-RFLP	HB	Age/sex/area
Chikako [71] 2012	Japan	Asian	Arg399Gln	PCR-RFLP	HB	Age/sex/area
Chikako [71] 2012	Japan	Asian	T241M	PCR-RFLP	HB	Age/sex/area
Sreeja [72] 2008	India	Asian	Arg399Gln	PCR-RFLP	HB	Age/sex
Table 1. Cont.

First author/year	Country	Ethnicity	SNPS	GM	SC	Matching
Chang [73] 2009	USA	Caucasian	Arg399Gln	PCR-RFLP	PB	Age/sex/area
Chang [73] 2009	USA	Caucasian	Arg194Trp	PCR-RFLP	PB	Age/sex/area
Chang [73] 2009	USA	Caucasian	Arg280His	PCR-RFLP	PB	Age/sex/area
Chang [73] 2009	USA	African	Arg399Gln	PCR-RFLP	PB	Age/sex/area
Chang [73] 2009	USA	African	Arg194Trp	PCR-RFLP	PB	Age/sex/area

SNPS Single-nucleotide polymorphism studied, GM Genotyping method, SC Source of controls, SSCP Single-strand conformation polymorphism, CTPP Contrasting two-pair primers, SNPS Single-nucleotide polymorphism studied, PB Population-based study, HB Hospital-based study.

doi:10.1371/journal.pone.0068457.t001

Discussion

BER and DSBR play an important role in repairing the DNA damage resulting from chemical alterations of a single base, such as methylated, oxidized, or reduced bases. BER includes two major processes (excision of damaged base residues and core BER reaction, including strand incision at the abasic site, one nucleotide gap-filling reaction, and sealing of the remaining nick). It is well-known that a number of proteins are involved in these steps, of which XRCC1 play key roles. XRCC1 acts as a facilitator or coordinator in BER, through its interaction with poly (ADP-ribose) polymerase, DNA polymerase b, and DNA ligase III [15,95]. Four coding polymorphisms were identified in the XRCC1 gene at the codons 194 (Arg to Trp), 280 (Arg to His), 399 (Arg to Gln), and −77 T>C. Whereas the functional effects of these polymorphisms in XRCC1 have not been well known, amino acid changes at evolutionary conserved regions may alter its function. In particular, the 399Gln polymorphism resulting from a guanine to adenine nucleotide occurs in the poly (ADP-ribose) polymerase binding domain and may affect complex assembly or repair efficiency. The XRCC3 gene codes for a protein involved in homologous recombination repair (HRR) for double strand breaks of DNA (DBSs) and cross-link repair in mammalian cells [20]. During HRR, the XRCC3 protein interacts with Rad51 protein and likely contributes to maintain chromosome stability. A common polymorphism in exon 7 of the XRCC3 gene results in an amino acid substitution at codon 241 (Thr241Met) that may affect the enzyme function and/or its interaction with other proteins involved in DNA damage and repair [20]. Many molecular epidemiological studies have reported the role of XRCC1 Arg399Gln, Arg194Trp, Arg280His, −77 T>C, and XRCC3 T241M in lung cancer risk [25–73], but the results remain conflicting rather than conclusive. In order to resolve this conflict, meta-analysis was performed to examine the association between XRCC1 and XRCC3 polymorphisms and lung cancer risk, by critically reviewing 41 studies on XRCC1 Arg399Gln, 23 studies on Arg194Trp, 16 studies on Arg280His, 5 studies on −77 T>C, and 19 studies on XRCC3 T241M.

Overall, our meta-analysis indicates that XRCC1 −77T>C polymorphism is associated with increased lung cancer risk when all eligible studies were pooled into the meta-analysis. In further stratified and sensitivity analyses, significantly decreased lung cancer risk was observed in Caucasians for XRCC3 T241M, but not in Asians. It should be considered that the apparent inconsistency of these results may underlie differences in ethnicity, lifestyle and disease prevalence as well as possible limitations due to the relatively small sample size. The current knowledge of carcinogenesis indicates a multi-factorial and multistep process that involves various genetic alterations and several biological pathways. Thus, it is unlikely that risk factors of cancer work in isolation from each other. And the same polymorphisms may play different roles in cancer susceptibility, because cancer is a complicated multi-genetic disease, and different genetic backgrounds may contribute to the discrepancy. And even more importantly, the low penetrance genetic effects of single polymorphism may largely depend on interaction with other polymorphisms and/or a particular environmental exposure.

Present meta-analysis results were not consistent with a previous meta-analysis [81–86] on XRCC1 and XRCC3 polymorphisms with lung cancer risk. Kiyohara et al. [81] included 18 case-control studies on XRCC1 Arg399Gln, 9 studies on Arg194Trp, and 7 studies on Arg280His. Their results suggested that XRCC1 Arg399Gln polymorphism was associated with increased lung cancer risk among Asians (OR = 1.34, 95% CI = 1.16–1.54) and Arg194Trp and Arg280His polymorphisms were not associated with lung cancer risk. However, at any case, their results about Arg399Gln and lung cancer risk essentially remains an open field in Asians, as the number of studies (n = 6) is considerably smaller than that needed for the achievement of robust conclusions [96]. Wang et al. [82] included 30 case-control studies on XRCC1 Arg399Gln and 16 studies on Arg194Trp. Their results indicated that certain XRCC1 codon 399 and 194 variant may affect the susceptibility of lung cancer. Dai et al. [83] included 39 studies on XRCC1 Arg399Gln, 22 studies on Arg194Trp, and 12 studies on Arg280His. Their meta-analysis had demonstrated that codon 194, codon 399 and −77 T>C polymorphisms of XRCC1 gene might have contributed to individual susceptibility to lung cancer. However, in further subgroup and sensitivity analyses, we found XRCC1 Arg399Gln and Arg194Trp polymorphisms were not associated with lung cancer risk when one study was excluded, hence, we thought XRCC1 Arg399Gln and Arg194Trp polymorphisms may be not associated with lung cancer risk. Sun et al. [84] in 2010 included 14 case-control studies on XRCC3 T241M, their meta-analysis found that there was no evidence showing a significant association between XRCC3 Thr241Met polymorphism and lung cancer risk. Zhan et al. [85] in 2013 included 17 case-control studies on XRCC3 T241M, their meta-analysis indicated that there was no evidence showing a significant correlation between XRCC3 Thr241Met polymorphism and lung cancer risk stratified analysis by ethnicity, histology and smoking status. Xu et al. [86] in 2013 included 17 case-control studies on XRCC3 T241M, their meta-analysis all available data did not support any appreciable association between the XRCC3 Thr241Met polymorphism and lung cancer risk in any populations. However, in further subgroup and sensitivity analyses, we found XRCC3 T241M polymorphism was associated with lung cancer risk in Caucasians. Vincis et al. [97] in 2009 only included 3 case-control studies on XRCC1 polymorphism, their found XRCC1 −77T>C
polymorphism was associated with lung cancer risk. Having analyzed an almost twofold larger number of studies than the previous meta-analysis [81–86], our results seem to confirm and establish the trend in the meta-analysis of XRCC1 Arg399Gln, Arg194Trp, Arg280His, −777>C, and T241M polymorphisms that the data by the previous meta-analysis [81–86] had indicated.
Importantly, we carefully performed sensitivity analysis according to sample size and leave-one-out analysis, conducted different conclusions with the previous meta-analysis. For XRCC1 −77 T>C polymorphism, the T to C mutation greatly enhances the affinity of nuclear protein Sp1 to the XRCC1 promoter region, which may inhibit its transcription [50]. Up to now, only five case-control studies were conducted the association between −77 T>C polymorphism and lung cancer risk [47,50,53,59,61]. The pooled OR of these five studies, comparing the combined variant genotype CT+CC to wild genotype TT, was 1.45 (95% CI 1.27–1.66). Among these five studies, four studies carried out in Asians with large sample size all showed that −77 T>C polymorphism was significantly associated with increased risk of developing lung cancer and the summary OR was 1.48 (95% CI 1.28–1.70), which suggested that the −77 T>C polymorphism may be contributed to the developing of lung cancer in Asians. Due to the relative small sample size from the selected studies, a case-control study with larger sample size or multiple center study will be needed to get conclusive results. In addition, the sample size was also too small for the XRCC3 Thr241Met polymorphism and lung cancer risk in Asians and Africans. Hence, a case-control study with larger sample size or multiple center study will be needed to get conclusive results in Asians and Africans.

DNA repair is well known as a “double-edged sword” in cancer studies. Epidemiological evidence supports that DNA repair capacity is one of the determinants of genetic susceptibility to cancer [87–89]. Liu et al. [98] found that XRCC1 −77T>C polymorphism may be a genetic determinant for developing breast cancer. However, other cancer such as gastric cancer, colorectal cancer and so on with XRCC1 −77T>C polymorphism remained unclear. Hence, some new studies are needed to get conclusive results among other cancer. On the other hand, tumors with enhanced DNA repair capacity would exhibit an intrinsic resistance to the anti-tumour activity during chemotherapy and radiotherapy [90]. Fluorouracil (5-FU)/oxaliplatin-based chemotherapy induced DNA damages and causes cell death [91]. These damages are mainly repaired by the BER pathway. A 5-fold greater incidence of failure by 5-FU/oxaliplatin therapy had been reported for metastatic colorectal cancer patients with XRCC1 R399Q (QQ or QR) substitution compared with that of the RR genotype, suggesting that the polymorphism was associated with resistance to oxaliplatin/5-FU therapy [92]. In addition, it had been found that XRCC1 codon 194 variant was having a significant protective effect on development of late radiotherapy reactions in normal tissue [93]. It had also found that interactions among XRCC1 codon 194 variant was associated with sensitivity to platinum-based chemotherapy [100]. Furthermore, Sak et al. [94] indicated that high levels of XRCC1 protein expression were associated with improved cancer-specific survival in patients following radical radiotherapy. However, Liu et al. [99] indicated that XRCC1 T-77C could not be genetic determinant for prognosis of advanced cancer.
non-small-cell lung cancer (NSCLC) patients treated with platinum-based chemotherapy. Therefore, XRCC1 Arg399Gln and Arg194Trp might play important roles in the drug sensitivity during chemotherapy and radio sensitivity during radiotherapy and XRCC1

-77 T>C may be not play important roles in the drug sensitivity during chemotherapy.

Heterogeneity is a potential problem when interpreting the results of all meta-analyses. As looked through our study carefully, we found that the study of Improta et al. [58] was noted to be a major source of heterogeneity for XRCC3 T241M and Li et al. [59] was also noted to be a major source of heterogeneity for XRCC1 Arg280His. The reason may be that the study of Improta et al. [58] and Li et al. [59] were hospital-based studies. Importantly, when Improta et al. [58] was excluded, significantly decreased lung cancer risk was observed in overall analysis, Caucasians, and hospital-based controls.

Some limitations of this meta-analysis should be addressed. First, misclassifications on disease status and genotypes may influence the results, because cases in some studies were not confirmed by pathology or other gold standard method, and the quality control of genotyping was also not well-documented in some studies. Second, in the subgroup analysis may have had insufficient statistical power to check an association. Third, our results were based on unadjusted estimates, while a more precise

Figure 4. Forest plot of XRCC1 -77T>C polymorphism and lung cancer risk (additive model).
doi:10.1371/journal.pone.0068457.g004

Figure 5. Forest plot of XRCC3 T241M polymorphism and lung cancer risk when one study was excluded (dominant model).
doi:10.1371/journal.pone.0068457.g005
analysis should be conducted if individual data were available, which would allow for the adjustment by other co-variants, including environmental factors and other lifestyle. In spite of these, our meta-analysis also had some advantages. First, it provides pooled data on a substantial number of cases and controls and increased statistical power of the analysis. Second, although possible publication bias was suggested between XRCC3 T241M polymorphism and lung cancer risk, adjusting for possible publication bias using the Duval and Tweedie nonparametric "trim and fill" method showed that the results did not change, indicating that the whole pooled results should be unbiased. Third, our meta-analysis explores and analyzes the sources of heterogeneity between studies about XRCC3 T241M and Arg280His in lung cancer risk.

In conclusion, this meta-analysis indicates that XRCC3 −77T>C shows an increased lung cancer risk and XRCC3 T241M polymorphism is associated with decreased lung cancer risk in Caucasians. However, a study with a larger sample size is needed to further evaluate gene-environment interaction on XRCC1 Arg399Gln, Arg194Trp, Arg280His, 277T>C, and XRCC3 T241M polymorphisms and lung cancer risk.

Supporting Information

Checklist S1 PRISMA 2009 checklist.

File S1 Table S1, Genotypes, p values and subset of cases of XRCC1 Arg399Gln polymorphism included in the meta-analysis. Table S2, Genotypes, p values and subset of cases of XRCC1 Arg194Trp (rs1799782) polymorphism included in the meta-analysis. Table S3, Genotypes, P values and subset of cases of XRCC1 Arg280His (rs25489) polymorphism included in the meta-analysis. Table S4, Genotypes, P values and subset of cases of XRCC1 −77T>C (rs3213245) polymorphism included in the meta-analysis. Table S5, Genotypes, P values and subset of cases of XRCC3 T241M (rs861539) polymorphism included in the meta-analysis.

Author Contributions

Conceived and designed the experiments: GH WW AL. Analyzed the data: GH WW. Wrote the paper: GH AL. Data collection: GH SC WW QZ.

References

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, et al. (2011) Global cancer statistics. CA Cancer J Clin 61:69–90.
2. Tardon A, Lee WJ, Delgado-Rodriguez M, Dosemeci M, Albanes D, et al. (2005) Leisure-time physical activity and lung cancer: a meta-analysis. Cancer Causes Control 16:389–97.
3. Rodríguez V, Tardon A, Kogevinas M, Prieto CS, Cueto A, et al. (2000) Lung cancer risk in iron and steel foundry workers: a nested case–control study in Asturias, Spain. Am J Ind Med 38:644–50.
4. Spitz MR, Wei Q, Dong Q, Amos CI, Wu X (2003) Genetic susceptibility to lung cancer: the role of DNA damage and repair. Cancer Epidemiol Biomarkers Prev 12:689–98.
5. Víupe S, Yang TM, Riichor J, Serizawa H, Satoh MS (2000) A cellular defense pathway regulating transcription through poly(ADP-ribose)ation in response to DNA damage. Proc Natl Acad Sci U S A 97:9886–91.
6. Hojnikers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:660–74.
7. Wei Q, Cheng L, Hong WK, Spitz MR (1996) Reduced DNA repair capacity in lung cancer patients. Cancer Res 56:4103–7.
8. Wei Q, Cheng L, Amos CI, Wang LE, Guo Z, et al. (2000) Repair of tobacco carcinogen-induced DNA adducts and lung cancer risk: a molecular epidemiologic study. J Natl Cancer Inst 92:1764–72.
9. Shen H, Spitz MR, Qiao Y, Guo Z, Wang LE, et al. (2003) Smoking, DNA repair capacity and risk of non-small cell lung cancer. Int J Cancer 107:84–88.
10. Xi T, Jones IM, Mohrenweiser HW (2004) Many amino acid substitution variants identified in DNA repair genes during human population screenings are predicted to impact protein function. Genomics 83:970–9.
11. Yu Z, Chen J, Ford BN, Brackley ME, Glickman BW (1999) Human DNA repair systems: an overview. Environ Mol Mutagen 33:3–20.
12. Wood RD, Mitchell M, Sguere J, Lindahl T (2001) Human DNA repair genes. Science 291:1284–9.
13. Vidal AE, Boiteux S, Hickson AD, Radicella JP (2001) XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein–protein interactions. EMBO J 20:6530–9.
14. Lu AL, Li XH, Gu YS, Wright PM, Chang DY (2001) Repair of oxidative DNA damage–mechanisms and functions, Cell Biochem. Biophys 35:141–70.
15. Kubota Y, Nash RA, Klungland A, Schar P, Barnes DE, et al. (1996) Reconstitution of DNA base excision repair with purified human proteins: Interaction between DNA polymerase beta and the XRCCI protein. EMBO J 15:6662–70.
16. Shen MR, Jones IM, Mohrenweiser H (1998) No conservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. Cancer Res 58:604–8.

Figure 6. The Duval and Tweedie nonparametric "trim and fill" method's funnel plot funnel plot of the meta-analysis of lung cancer risk and XRCC3 T241M polymorphism (dominant model and additive model).
doi:10.1371/journal.pone.0068457.g006
17. Shin A, Lee KM, Ahn B, Park CG, Noh SK, et al. (2008) Genotype-phenotype relationship between DNA repair gene polymorphisms and DNA repair capacity. Asian Pac J Cancer Prev 9:501–5.
18. Tebbo RS, Yao Z, Tucker JD, Scheerer JB, Sciliano MJ, et al. (1995) Contribution of chromosomal instability to lung cancer in Chinese, Lung Cancer 19:435–44.
19. Matullo G, Pali D, Peluso M, Guarerra S, Carturan S, et al. (2001) XRCC1, XRCC3, XPD gene polymorphisms, smoking and 32P-DNA adducts in a sample of healthy subjects. Carcinogenesis 22:1457–53.
20. Ward J (1980) DNA damage produced by ionizing radiation in mammalian cell lines: mechanisms of formation and reparability. Prog Nucleic Acids Res Mol Biol 35:95–125.
21. Mohrenweiser H, Wilson D, Jones I (2005) Challenges and complexities in exon-scale break-down DNA repair. DNA Repair (Amst) 3:1081–90.
22. Goede E, Ulrich C, Potter J (2002) Polymorphisms in DNA repair genes and associations with cancer. Cancer Epidemiol Biomarkers Prev 11:1531–30.
23. Kuschel B, Aurelian A, McBride S, Novik KL, Antouna A, et al. (2002) Variants in double-strand break repair genes and breast cancer susceptibility. Hum Mol Genet 11:1399–400.
24. Rattasringh D, Yao SX, Tangrea JA, Qiao YL, Andersson MR, et al. (2001) Polymorphisms in the DNA repair gene XRCC2 and lung cancer risk. Cancer Epidemiol Biomarkers Prev 10:119–23.
25. David-Beabes GL, London SJ (2001) Genetic polymorphism of ADPRT and XRCC1 and lung cancer risk among African-Americans and Caucasians. Lung Cancer 34:533–9.
26. David-Beabes GL, Dunn RM, London SJ (2001) No association between the XPS (LYs751Gln) polymorphism and the XRCC1 Thr214Met polymorphism and lung cancer. Cancer Epidemiol Biomarkers Prev 10:911–2.
27. Divine KK, Gilliland FD, Crockwell RE, Shillitie CA, Bocklage TJ, et al. (2001) The XRCC1 glutamine allele is a risk factor for adenocarcinoma of the lung. Mutat Res 461:273–8.
28. Chen S, Tang D, Xue K, Xu L, Ma G, et al. (2002) DNA repair gene XRCC1 and XRCC3 polymorphisms and risk of lung cancer in a Chinese population. Carcinogenesis 23:1921–5.
29. Park JW, Lee SY, Jeon HS, Bae NC, Chae SC, et al. (2002) Polymorphism of the DNA repair gene XRCC1 and risk of primary lung cancer. Cancer Epidemiol Biomarkers Prev 11:23–4.
30. Miller RR, Rickert D, Tangrea JA, Virtamo J, Andersson MR, et al. (2003) Polymorphisms in the DNA repair genes XPD, XRCC1, XRCC3, and APE1 in lung cancer of men smokers in Finland. Cancer Lett 191:171–8.
31. Rattasringh DL, Yao SX, Forman M, Qiao YL, Andersson MR, et al. (2003) Gene-environment interactions between the codon 194 polymorphism of XRCC1 and antioxidants influence lung cancer risk. Anticancer Res 23:627–32.
32. Zhou W, Liu G, Miller DP, Thurston SW, Xu LL, et al. (2004) Polymorphisms in the DNA repair genes XRCC1 and ERCC2, smoking, and lung cancer risk. Cancer Epidemiol Biomarkers Prev 12:359–65.
33. Wang Y, Liang D, Spitz MR, Zhang K, Dong Q, et al. (2003) XRCC1 and lung cancer susceptibility to lung cancer in nonsmoking women. Carcinogenesis 25:186–91.
34. Wang Y, Liang D, Lin L, Ryberg D, Skag V, et al. (2006) Polymorphisms of DNA repair genes and risk of non small cell lung cancer. Carcinogenesis 27:560–7.
35. Matullo G, Dunning AM, Guarerra S, Baynes C, Polidoro S, et al. (2006) DNA repair polymorphisms and cancer risk in non-smokers in a cohort study. Carcinogenesis 27:997–1007.
36. Hao B, Miao X, Li Y, Zhang X, Sun T, et al. (2006) A novel T–T77C polymorphism in DNA repair gene XRCC1 contributes to diminished promoter activity and increased risk of non-small cell lung cancer. Oncogene 25:913–20.
37. Lanni S, Gemignani F, Cianfan F, Gabbaro V, Barale R, et al. (2006) DNA repair and cell cycle control genes and the risk of young-onset lung cancer. Cancer Res 66:11862–9.
38. Rock C, Kumar R, Thirumaran RK, Hou SM, et al. (2006) Polymorphisms in DNA repair gene XRCC1, APEX1, XRCC3 and NBS1, and the risk for lung cancer in never- and ever-smokers. Lung Cancer 54:205–92.
39. De Ruylck K, Szunmikessel M, De Ruudler I, Dehoume I, Viral A, et al. (2007) Polymorphisms in base-excision repair and nucleotide-excision repair genes in relation to lung cancer risk. Mutat Res 631:101–10.
40. Pachouri SS, Soboti RC, Kaur P, Singh J (2007) Contrastive impact of DNA repair gene XRCC1 polymorphisms Arg399Gln and Arg191Trp on the risk of lung cancer in the north-Indian population. DNA Cell Biol 26:186–91.
41. Yin J, Vogel U, Ma Y, Qi R, Sun Z, et al. (2007) The DNA repair gene XRCC1 and genotypic susceptibility of lung cancer in a northeastern Chinese population. Lung Cancer 56:153–60.
42. Lépiz-Cuima MF, González-Arriaga P, García-Castro L, Pascual T, Marrón EG, et al. (2007) Polymorphisms in XPC, XRCC3 and XRCC1 DNA repair genes and lung cancer risk in a population of northern Spain. BMC Cancer 7:162.
43. Zhang ZL, Zhou CC, Zhang J, Tang L, Su B (2007) Relationship between polymorphisms of DNA repair gene XRCC3 and susceptibility to lung cancer. Zhonghua Jie He He Hu Xi Za Zhi 30:906–40.
44. Improma G, Spambato A, Bianchinio G, Zuza A, Grieco V, et al. (2008) Polymorphisms of the DNA repair gene XRCC1 and nucleotide-excision repair genes and lung cancer risk in the north and colorectal cancer: a case-control study in a Southern Italian population. Anticancer Res 28:2941–6.
45. Li M, Yin Z, Guan P, Li X, Cui Z, et al. (2008) XRCC1 polymorphisms, cooking oil fume and lung cancer in Chinese women nonsmokers. Lung Cancer 62:145–51.
46. Yin J, Vogel U, Ma Y, Qi R, Wang H (2013) Association of DNA repair gene XRCC1 and lung cancer susceptibility among nonsmoking Chinese women. Cancer Genet Cytogenet 192:26–31.
47. Harsh WC, Cheng YW, Lin CJ, Chou MC, Chen CY, et al. (2009) Prognostic significance of X-ray cross-complementing group 1 T–77C polymorphism in reserected non-small cell lung cancer. Jpn J Clin Oncol 39:31–5.
48. Corre ML, Yoo W, Wendel J, Park JY, Jung Y, et al. (2009) Tobacco and estrogen metabolic polymorphisms and risk of non-small cell lung cancer in women. Carcinogenesis 30:626–35.
49. Qin B, Zhang H, Zhang L, Zhou X, Yu H, et al. (2011) Association of genetic polymorphisms in DNA repair pathway genes with non-small cell lung cancer risk. Lung Cancer 73:138–46.
50. Tanaka Y, Maniwa Y, Bermudez VP, Doi T, Nishio W, et al. (2010) Relationship between XRCC1 T77C polymorphism and lung cancer risk in a Japanese population. PLoS ONE 5(8): e10093. doi:10.1371/journal.pone.0010093.
51. Kim IS, Lee GW, Kim DG, Kim SG, Kim S, et al. (2010) Polymorphisms and haplotypes in the XRCC1 gene and the risk of advanced non-small cell lung cancer. J Thorac Oncol 5:1921–2.
52. Osawa K, Miyashita U, Uchino K, Osawa Y, Inoue N, et al. (2010) APE1 ApaI G/T polymorphism is a risk factor for lung cancer in relation to smoking in Japanese. Asian Pac J Cancer Prev 11:1187–6.
53. Huang M, Chen X, Qiu L, Fan L, Chen J, et al. (2011) Relationship between XRCC3 877T/C polymorphism and lung cancer risk in China. Oncol Lett 2:167–70.
54. Janik J, Swoboda M, Janowska B, Cieslikiewicz M, et al. (2008) Intronic and Exonic polymorphisms in XRCC1 and lung cancer susceptibility. Int J Cancer 123:123–5.
55. Janik J, Swoboda M, Janowska B, Cieslikiewicz M, et al. (2008) Intronic and Exonic polymorphisms in XRCC1 and lung cancer susceptibility. Int J Cancer 123:123–5.
56. Janik J, Swoboda M, Janowska B, Cieslikiewicz M, et al. (2008) Intronic and Exonic polymorphisms in XRCC1 and lung cancer susceptibility. Int J Cancer 123:123–5.
57. Zhang Z, Dong Q, Zhang K, Liang D, Spitz MR, et al. (2003) Relationship of X-ray cross-complementing group 1 T–77C polymorphism in non-small cell lung cancer. Am J Hum Genet 73:1943–44.
58. Janik J, Swoboda M, Janowska B, Cieslikiewicz M, et al. (2008) Intronic and Exonic polymorphisms in XRCC1 and lung cancer susceptibility. Int J Cancer 123:123–5.
Arg399Gln and XPD Lys751Gln in lung cancer patients from India. J Cancer Res Clin Oncol 134(6):645–52.

73. Chang JS, Wrenich MR, Hansen HM, Sison JD, Aldrich MC, et al. (2009) Base excision repair gene and risk of lung cancer among San Francisco Bay Area Latinos and African-Americans Carcinogenesis 30(1):78–87.

74. Davey SG, Egger M (1997) Meta-analyses of randomized controlled trials. Lancet 330:1182.

75. Ioannidis JP, Boffetta P, Little J, O'Brien TR, Uitterlinden AG, et al. (2008) Assessment of cumulative evidence on genetic associations: interim guidelines. Int J Epidemiol 37:120–32.

76. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. Natl Cancer Inst; 22:719–78.

77. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–88.

78. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320.

79. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50:1088–101.

80. Egger M, Smith DG, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–34.

81. Kiyohara K, Takayama K, Nakanishi Y (2006) Association of genetic polymorphisms in the base excision repair pathway with lung cancer risk: a meta-analysis, Lung Cancer 54:267–83.

82. Wang Y, Yang H, Li H, Li L, Wang H, et al. (2009) Association between X-ray repair cross complementing group 1 codon 399 and 194 polymorphisms and lung cancer risk: a meta-analysis. Lung Cancer 54:267–83.

83. Dai L, Duan F, Wang P, Song C, Wang K, et al. (2012) XRCC1 gene polymorphisms and lung cancer susceptibility: a meta-analysis of 44 case-control studies. Mol Biol Rep 39:95–34.

84. Sun H, Qiao Y, Zhang X, Xu L, Jia X, et al. (2010) XRCC3 Thr241Met polymorphism with lung cancer and bladder cancer: a meta-analysis. Cancer Sci 101:1140–1149.

85. Caldecott KW, McKeeown CK, Tucker JD, Ljungquist S, Thompson LH (1994) An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III. Mol Cell Biol 14(1):60–76.

86. Higgins JPT, Green S (2008) Cochrane handbook for systematic reviews of interventions version 5.1.0. The Cochrane Collaboration, Oxford.

87. Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–649.

88. Sia EA, Kekoska RJ, Dominski M, Greensell P, Peters TD (1997) Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes. Mol Cell Biol 17:2851–2858.

89. Aquilina G, Bagamini M (2001) Mismatch repair in correction of replication errors and processing of DNA damage. J Cell Physiol 187:145–154.

90. Tomescu D, Kavanagh G, Ha T, Campbell H, Melton DW (2001) Nucleotide excision repair gene XPD polymorphisms and genetic predisposition to melanoma. Carcinogenesis 22:603–608.

91. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320.

92. Stoehlmacher J, Ghaderi Y, Ibal S, Goshen S, Tsao-Wei D, et al. (2001) A polymorphism of the XRCC1 gene predicts for response to platinum based treatment in advanced colorectal cancer. Anticancer Res 21:3073–3079.

93. Heo J, Van Eijkeren M, Claes K, Morthier R, De Pafte A, et al. (2005) Radiation-induced damage to normal tissues after radiotherapy in patients treated for gynecologic tumors: association with single nucleotide polymorphisms in XRCC1, XRCC3, and OGG1 genes and in vitro chromosomal radiosensitivity in lymphocytes. Int J Radiat Oncol Biol Phys 62:1140–1149.

94. Sak SC, Harfden P, Johnston CF, Paul AB, Kitlee AE (2005) APE1 and XRCC3 protein expression levels predict cancer-specific survival following radical radiotherapy in bladder cancer. Clin Cancer Res 11:6203–6211.

95. Vineis P, Manuguerra M, Kavvoura FK, Guarrera S, Allione A, et al. (2005) A field synopsis on low-penetrance variants in DNA repair genes and cancer susceptibility. J Natl Cancer Inst 101(1):24–36.

96. Liu L, Yuan P, Liu L, Wu C, Zhang X, et al. (2011) A functional −77G>C polymorphism in XRCC1 is associated with risk of breast cancer. Breast Cancer Res Treat 125:2:479–87.

97. Liu L, Yuan P, Wu C, Zhang X, Wang F, et al. (2011) Assessment of XPD Lys751Gln and XRCC1 T-77C polymorphisms in advanced non-small-cell lung cancer patients treated with platinum-based chemotherapy. Lung Cancer 73(1):110–5.

98. Liu L, Wu J, Zhong R, Wu C, Zou L, et al. (2012) Multi-loci analysis reveals the importance of genetic variations in sensitivity of platinum-based chemotherapy in non-small-cell lung cancer. Mol Carcinog. doi: 10.1002/ mc.21942.