Strength of heavy concrete during static-dynamic deformation

Nataliya Fedorova, Michael Medyankin and Sergey Fedorov
Moscow State University of Civil Engineering, Yaroslavskoe shosse, 26, Moscow, 129337, Russia

E-mail: Fenavit@mail.ru

Abstract. Method and results of determination of strength and deformation characteristics of heavy concrete at static loading to the specified stress level, followed by high-speed loading with dynamic load, are presented. The process of testing a series of concrete samples of one strength class is described to obtain the performance characteristics of concrete at static, dynamic and static-dynamic loading. Comparative analysis of the obtained experimental data was carried out under different loading modes of prototypes. It was established that during dynamic and static-dynamic loading there is an increase in the level of relative stresses corresponding to the beginning of concrete dilatation by 20-30% relative to the results of static tests. The obtained experimental results are of interest for solving problems related to the problem of survivability of buildings and structures and their protection against progressive collapse, in particular in determining criteria of strength and deformability of concrete at a special limit state.

1. Introduction

A number of studies [1-6] are known on the determination of concrete deformation parameters under short-term, long-term and dynamic loads. Materials of similar studies describe criteria of limit states for concrete and reinforced concrete structures. Currently, in the territory of the Russian Federation and other countries there are regulatory documents containing requirements for the protection of buildings and structures from special emergency impacts [7,8]. There is a need to solve problems related to modeling and analysis of stress-strain state of concrete and reinforced concrete structures under emergency impacts. One likely scenario of a particular impact on a structural system is when high-speed dynamic loading is added to a structure already loaded with operational load, caused by hypothetical removal of one of the load-bearing structures.

At the same time, analysis of said and other scenarios of possible local destruction of structural systems [9-17] shows that dynamics of structural modification of the system and stress state of concrete and reinforcement depends on a number of factors (topology of the structural system, structural material, type of stress - deformed state, time and mode of action, etc.). At the same time, the evaluation of the modes of static-dynamic deformation of concrete, including on the basis of the new hypothesis put forward by the authors in the development of the theory of G.A. Geniev that the ultimate deformation of concrete depends not only on the type of stress state, but also on the initial level of the stress state from which dynamic loading is carried out [1], requires experimental verification. The expansion of the field of physical experiment, as a continuation of the previous experimental studies [18-24] on the assessment of the effect of dynamic effects on a two-component
material of the reinforced concrete type, in terms of experimental determination of experimental characteristics of strength and deformation of concrete at a mode high-speed single loading of concrete with dynamic load after application of static loading, seems to be an urgent task.

This article presents the author's methodology and results of experimental studies for determining parameters of static - dynamic deformation of concrete, in particular, the dynamic module of concrete deformations, dynamic strength and ultimate deformation of concrete under various modes of its loading.

2. Research methods

The purpose of the studies was to obtain new experimental data on determining the dynamic module of concrete deformations depending on the limit time of dynamic loading and the level of stress from which dynamic loading is carried out, as well as obtaining the dynamic strength of concrete and the maximum deformation of concrete under various loading modes. To implement the study, a series of samples of concrete prisms and cubes of various strength classes were made. Samples are made in accordance with the requirements of GOST 10180-2012 and GOST 24452-80.

For the production of samples, Portland cement of grade М500, washed sand of fraction 2-2.5 mm, and granite crushed stone of fraction 5-10 mm were used.

The strength of the samples took place in a normal hardening chamber at a temperature of 20 ± 2 °C, a relative humidity of 95 ± 5% for 28 days, after which the conditioning of the samples lasted at least 30 days.

For experimental studies, a combination of standard equipment in the form of a MEGA 6-3000-100 hydraulic press, a universal dynamic test machine LabTest 6.500H.5.01.1 and a specially designed mechanical device for fixing static load was used. This test equipment is equipped with an automatic control and reading recording system. The maximum test load of the press is 3000 kN, the universal test machine is 500 kN, and the maximum data recording frequency is 5 kHz. Values of longitudinal and transverse deformations of concrete prisms were fixed using strain gauges on polyester substrate PLF-30. Measuring base of sensors is 30 mm. Tensoresistor readings were recorded using NI PXIe-1082 equipment. This equipment allows recording readings with a sampling frequency of up to 10 kHz. Besides the sensor of force which is built in the test LabTest car the duplicating sensor of force DYLF-102 synchronized by means of the NI PXIe-1082 complex with tensoresists was used.

The actual strength class of concrete for samples of a particular series is determined by six control samples according to the GOST 10180-2012 method. The sample was loaded to fracture at a constant stress build-up rate (0.6 ± 0.2) MPa/s. Then concrete strength was determined as arithmetic average for four of the six samples tested, which showed the highest strength value.

After determining the actual strength class, static tests of concrete prisms were carried out to determine the prism strength, modulus of elasticity and Poisson coefficient of concrete.

Tensoresistors were placed on each side face of the sample with a cyanocrylate adhesive. To determine transverse deformations, strain gauges are located in the middle of the height of the prototype normally to sensors measuring longitudinal deformations. A spherical hinge was installed in the working space of the test equipment. The samples are then centered in the test machine. The initial squeezing force of the sample, which was subsequently taken as a conditional zero, was assigned no more than 2% of the expected destructive load. Then, the sample was loaded to a load level equal to (40 ± 5)% prism strength Rb in steps of 10% of the expected destructive load, while maintaining a loading rate of (0.6 ± 0.2) MPa/s within each step. After reaching the indicated stress level, the sample was continuously loaded until the level of constant stress growth rate (0.6 ± 0.2) MPa/s was destroyed. The use of strain gauges made it possible to obtain a complete diagram of concrete deformation with the application of short-term static load.

The preparation of samples for dynamic tests was similar to that described earlier. An additional strain gauge sensor of the strain gauge type was introduced into the test installation circuit, which is synchronized in time with the readings of strain gauges.
The initial squeezing force of the sample, which was subsequently taken as a conditional zero, was not more than 2% of the expected destructive load. High-speed (impact) load application was carried out, which allows to implement a voltage increment rate of 500-800 MPa/s in the sample. The starting criterion for comparing the test results of samples of different strength classes was to ensure the minimum possible spread in the time of destruction of samples of the same series. At these loading rates, it was possible to ensure the destruction time of samples in the range of 0.075 ± 0.015 s. Data were recorded at a frequency of 5 kHz.

The method of static-dynamic tests for uniaxial compression is a symbiosis of the two methods described above. The essence of the experience is to load the sample with a static load to a given voltage level, and then implement a high-speed load application. Three levels of initial static load of the corresponding one were adopted: 0.2 Rb, 0.4 Rb, 0.6 Rb. The samples are loaded to the specified initial stress level in steps of 0.1 prism strength Rb.

Such a series of tests allows to obtain physical and mechanical parameters of heavy concrete operation under various loading modes.

3. The results of the study and their analysis

As a result of the experiment, experimental data were obtained for a series of samples of concrete prisms of strength class В35.

Based on the results of tests during static, dynamic and static-dynamic loading of concrete prism samples, strength and deformation characteristics of concrete were obtained under the considered loading modes (Tables 1-3) and "stress-strain," "stress-volumetric deformation" diagrams of concrete were drawn under the test parameters described by your (Figures 1-4).

Table 1. Static test results.

	Rb, MPa	E0, MPa	εub, %	εub,c, %
1S	36.04	30240	0.172	0.070
2S	37.05	31560	0.184	0.063

Table 2. Dynamic test results.

	Rb, MPa	E0,din, MPa	t, c	Rb,din/Rb	εub, %	εub,c, %
1D	41.10	31090	0.067	1.12	0.224	0.153
2D	40.90	38050	0.064	1.12	0.209	0.149
Based on the analysis of the given data, the influence of the considered loading modes on the strength and deformation characteristics of concretes during uniaxial compression can be estimated.

Figure 1. Stress-longitudinal strain diagram for static and dynamic loads

Table 3. Results of static-dynamic tests.

	R_b, MPa	E_0, MPa	$E_{0,\text{din}}$, MPa	t, c	$R_{b,\text{din}}/R_b$	$E_{0,\text{din}}/E_0$	ε_{ub}, %	$\varepsilon_{ub,c}$, %
1D20	44.91	36030	34980	0.060	1.23	0.97	0.180	0.078
2D20	42.86	34070	33700	0.057	1.17	0.99	0.190	0.059
1D40	43.03	32400	33220	0.056	1.18	1.03	0.208	0.120
2D40	43.76	31990	31550	0.063	1.20	0.99	0.206	0.078
1D60	42.65	34220	35760	0.043	1.17	1.05	0.200	0.124
2D60	44.23	35600	37770	0.045	1.21	1.06	0.199	0.110

Based on the analysis of the given data, the influence of the considered loading modes on the strength and deformation characteristics of concretes during uniaxial compression can be estimated.
Figure 2. "Stress - longitudinal strain" diagram at static-dynamic loading from 0.6 Rb level

Table 4. The level of relative stresses at the start of section dilatation.

	1S	2S	1D	2D	1D20	2D20	1D40	2D40	1D60	2D60
σ/R_b	0.52	0.57	0.68	0.74	0.64	0.68	0.68	0.70	0.68	0.66

Figure 3. Stress - Volumetric Strain Diagram for Static

Figure 4. "Stress - volumetric deformation" diagram at static-dynamic loading from 0.6 Rb level
4. Conclusions
Experimental confirmation of hypothesis proposed in [1] on presence of one-parameter dependence of limit deformations on level of static load from which dynamic loading is performed is obtained. The dynamic hardening factor of concrete during static-dynamic loading turned out to be 7% more than during dynamic loading, however, the greatest ultimate deformation of concrete was realized during dynamic loading. Analyzing the data of Table 3, the dependencies of the deformation characteristics of concrete during dynamic loading on the initial level of static loading are traced. With dynamic and static-dynamic loading, there is an increase in the level of relative stresses corresponding to the beginning of concrete dilatation by 20-30% relative to the results of static tests. Further work on deeper data analysis is required to establish the parametric dependencies required in emergency impact calculations.

Acknowledgments
The reported study was funded by RFBR, project number 19-38-90060.

References
[1] Fedorova N, Medyankin M and Bushova O 2020 Determination of parameters of static and dynamic deformation of concrete Indust. and Civil Constr. 1 4-11
[2] Fedorov N, Medyankin M and Bushova O 2020 Experimental determination of the parameters of the static-dynamic deformation of concrete under loading modal Building and reconstruction 3 72-82
[3] Kolchunov V, Savin S and Androssova N 2018 Cross section structure influence to deformation of construction at accidental impacts MATEC Web of Conf. 251 02029
[4] Tamrazyan A and Popov D 2019 Stress-strain state of corrosion-damaged reinforced concrete elements under dynamic loading Indust. and Civil Constr. 2 19-26
[5] Travush V, Gordon V, Kolchunov V and Leontiev E 2019 Dynamic deformation of a beam in the event of a sudden structural change in the elastic base Eng. and Constr. Magazine 91 129-44
[6] Geniev G, Kissyuk V and Tyupin G 1974 Theory of plasticity of concrete and reinforced concrete (Moscow: Stroizdat) p 316
[7] SP 296.1325800.2017 Buildings and structures. Special effects (Moscow: Minstroy of Russia) p 23
[8] SP 385.1325800.2018 Protection of buildings and structures from progressive collapse. The rules of design. Main provisions (Moscow: Minstroy of Russia) p 33
[9] Dat P, Hai T and Yu J 2015 A simplified approach to assess progressive collapse resistance of reinforced concrete framed structures Eng. Struct. 101 45-57
[10] Kabantsev O and Tamrazyan A 2014 Accounting for changes in the design scheme when analyzing the design work Eng. and Constr. Magazine 49 15-26
[11] Kolchunov V and Savin S 2018 Criteria of survivability of reinforced concrete frame at loss of stability Eng. and Constr. Magazine 80 73-80
[12] Livingston E, Sasani M, Bazan M and Sagiroglu S 2015 Progressive collapse resistance of RC beams Eng. Struct. 95 61-70
[13] Travush V and Fedorov N 2018 Survivability of structural systems of structures under special influences Eng. and Constr. Magazine 81 73-80
[14] Brunesi E, Nascimbene R, Parisi F and Augenti N 2015 Progressive collapse fragility of reinforced concrete framed structures through incremental dynamic analysis Eng. Struct. 104 65-79
[15] Masoero E, Daro P and Chiara B 2013 Eng. Struct. 54 94-102
[16] Min Liu 2013 A new dynamic increase factor for nonlinear static alternate path analysis of building frames against progressive collapse Eng. Struct. 48 666-673
[17] GSA 2016 Alternative path analysis and design guidelines for progressive collapse resistance 2016 p 203
[18] Pham A and Tan K 2017 Experimental study on dynamic responses of reinforced concrete frames under sudden column removal applying concentrated loading *Eng. Struct.* **139** 31–45

[19] Ahmadi R, Rashidian O, Abbasnia R, Nav F and Usefi N 2016 *Shock and Vib.* **2016** 17

[20] Lew H, Yihai B, Fahim S, Main J, Pujol S and Sozen M. 2011 *Natl. Inst. Stand. Technol. Tech.* **1720** 104

[21] Yu J and Tan K 2013 Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages *Eng. Struct.* **55** 90-106

[22] Fedorova N and Vu N 2020 Deformation and failure of monolithic reinforced concrete frames under special actions *IOP J. of Phys.: Conf. Series (JPCS)* **1425** 012033

[23] Fedorova N, Korenkov P and Vu N 2018 Method of experimental research of deformation of monolithic reinforced concrete frames of buildings under emergency impacts *Constr. and Reconstruction* **78** 42-52

[24] Kodysh E, Trekin N and Chesnokov D 2016 Protection of multi-storey buildings from progressive collapse *Indust. and Civil Constr.* **6** 8-13

[25] Kodysh E 2018 Design of protection of buildings and structures from progressive collapse taking into account the occurrence of a special limit state *Indust. and Civil Constr.* **10** 95-101