Medium-mass nuclei from chiral nucleon-nucleon interactions

G. Hagen,1 T. Papenbrock,2,1 D.J. Dean,1 and M. Hjorth-Jensen3

1Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
2Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
3Department of Physics and Center of Mathematics for Applications, University of Oslo, N-0316 Oslo, Norway

We compute the binding energies, radii, and densities for selected medium-mass nuclei within coupled-cluster theory and employ the “bare” chiral nucleon-nucleon interaction at order N\(^3\)LO. We find rather well-converged results in model spaces consisting of 15 oscillator shells, and the doubly magic nuclei \(^{40}\)Ca, \(^{48}\)Ca, and the exotic \(^{48}\)Ni are underbound by about 1 MeV per nucleon within the CCSD approximation. The binding-energy difference between the mirror nuclei \(^{48}\)Ca and \(^{48}\)Ni is close to theoretical mass table evaluations. Our computation of the one-body density matrices and the corresponding natural orbitals and occupation numbers provides a first step to a microscopic foundation of the nuclear shell model.

PACS numbers: 21.10.Dr, 21.60.-n, 31.15.Dv, 21.30.-x

Introduction. Ab-initio nuclear structure calculations have made great progress in the past decade. Light nuclei up to carbon or so can now be described in terms of their nucleonic degrees of freedom and realistic nucleon-nucleon (NN) forces (i.e. those that include pion exchange and fit the NN phase shifts up to 350 MeV lab energy with a \(\chi^2 \approx 1\) per datum) augmented by a three-nucleon force (3NF) \([1,2,3]\). One of the major advances is due to the systematic construction of nuclear forces within chiral effective field theory (EFT) \([4,5]\). In this EFT, unknown short-ranged physics of the nuclear force is systematically parametrized in terms of contact terms and their low-energy constants, while the long-range part of the interaction stems from pion exchange. One of the hallmarks of this approach is the “power counting”, i.e. an expansion of the nuclear Lagrangian in terms of the momentum ratio \(Q/A\). Here, \(Q\) denotes the typical momentum scale at which the nucleus is probed, while \(A\) denotes the high-momentum cutoff scale that limits the applicability of the EFT. Within this approach, three-nucleon forces appear naturally at order \((Q/A)^3\), and four-nucleon forces appear at order \((Q/A)^4\) \([6,7,8]\).

The chiral interactions have been probed in light systems up to mass 13 \([9,10,11,12]\). Fujii et al. have employed chiral NN interactions for studies of \(^{16}\)O \([13]\) within the unitary-model-operator approach (UOMA). Unfortunately, virtually nothing is known about chiral interactions in heavier nuclei. In particular, a study of their saturation properties is missing, and the contributions of chiral NN interactions to nuclear binding and structure in medium-mass nuclei needs to be determined. It is the purpose of the present Letter to fill this gap.

Ab initio methods began to explore medium-mass nuclei only very recently. Gandolfi et al. \([14]\) employed the auxiliary field diffusion Monte Carlo method for a computation of the binding energy of \(^{40}\)Ca. However, this impressive calculation is not entirely realistic since the employed Argonne \(v'_{14}\) potential lacks the spin-orbit interaction. Roth and Navrátil \([15]\) employed softer renormalized NN interactions and computed the binding energy of \(^{40}\)Ca within an importance truncated no-core shell model approach. However, this calculation was criticized \([16,17]\) for its convergence properties, the violation of Goldstone’s linked cluster theorem and the corresponding lack of size extensivity. In this Letter, we employ the “bare” chiral NN interaction \([7]\) and employ the size extensive coupled-cluster method \([18,19,20,21,22,23]\) for the computation of various properties of the medium-mass nuclei \(^{40}\)Ca, \(^{48}\)Ca, and the exotic \(^{48}\)Ni. The use of the “bare” NN interaction has the advantage that it avoids the introduction of additional many-body forces that are typically generated in secondary renormalization procedures of the two-body force. While our calculation includes the chiral NN interaction \([7]\) at order \(N^3\)LO, it neglects the contributions of any 3NFs.

This Letter is organized as follows. First, we briefly introduce spherical coupled-cluster theory. Second, we compute the binding energies of the nuclei \(^4\)He, \(^{16}\)O, \(^{40}\)Ca, \(^{48}\)Ca, and \(^{48}\)Ni with the “bare” chiral NN potential.

Spherical coupled-cluster theory. Coupled-cluster theory \([18,19,20,21,22,23]\) is based on the similarity transform

\[
\mathbf{H} = e^{-\hat{T}} \tilde{\mathbf{H}} e^{\hat{T}}
\]

of the normal-ordered Hamiltonian \(\hat{\mathbf{H}}\). Here, the Hamiltonian is normal-ordered with respect to a product state \(|\phi\rangle\) which serves as a reference. Likewise, the particle-hole cluster operator

\[
\hat{T} = \hat{T}_1 + \hat{T}_2 + \ldots + \hat{T}_A
\]

is defined with respect to the reference state. The \(k\)-particle \(k\)-hole \((kp-kh)\) cluster operator is

\[
\hat{T}_k = \frac{1}{(2k)!} \sum_{i_1,\ldots,i_k; \alpha_1,\ldots,\alpha_k} t_{i_1\ldots i_k}^{\alpha_1\ldots\alpha_k} \hat{a}_{\alpha_1}^\dagger \ldots \hat{a}_{\alpha_k}^\dagger \hat{a}_{i_1} \ldots \hat{a}_{i_k}.
\]
Here and in the following, \(i, j, k, \ldots \) label occupied single-particle orbitals, while \(a, b, c, \ldots \) label unoccupied orbitals of the reference state, i.e. it should have significant overlap with the ground state. Throughout this work we will restrict ourselves to the CCSD approximation \(\hat{T} \approx \hat{T}_1 + \hat{T}_2 \). The unknown amplitudes \(t^a_{ij} \) and \(t^a_{ab} \) in Eq. (2) are determined from the solution of the coupled-cluster equations

\[
0 = \langle \phi^{a} | \hat{H} | \phi \rangle \\
0 = \langle \phi^{ab} | \hat{H} | \phi \rangle .
\]

Here \(|\phi^{a} \rangle \) is a 1p-1h excitation of the reference state, and \(|\phi^{ab} \rangle \) is a similarly defined 2p-2h excited state. The CCSD equations (4) and (5) thus demand that the reference state \(|\phi \rangle \) is an eigenstate of the similarity-transformed Hamiltonian \(\hat{H} \) in the space of all 1p-1h and 2p-2h excited states. Once the CCSD equations are solved, the correlation energy of the ground state is computed as

\[
E_{\text{corr}} = \langle \phi | \hat{H} | \phi \rangle .
\]

Coupled-cluster theory fulfills Goldstone’s linked cluster theorem and therefore yields size-extensive results. This is particularly important in applications to medium-mass nuclei. Within the CCSD approximation, the computational effort scales as \(n_v^2 n_p^4 \) where \(n_v \) and \(n_p \) denote the occupied and unoccupied orbitals of the reference state \(|\phi \rangle \), respectively. Thus, the computational effort is much smaller than within the configuration interaction for a given model space. This method has recently been employed in several \textit{ab initio} nuclear structure calculations \cite{24, 25, 26, 27, 28}. It is also able to compute lifetimes of unstable nuclei \cite{29}, to treat 3NFs \cite{30}, and it meets benchmarks \cite{17}.

For spherical reference states (i.e. nuclei with closed major shells or closed subshells), one can employ the spherical symmetry to further reduce the number of unknowns (i.e. the number of cluster amplitudes). For such nuclei, the cluster operator (2) is a scalar under rotation, and depends only on reduced amplitudes. A naive estimate shows that a model space of \(n_v \) and \(n_p \) single-particle states consists of only \((n_v + n_p)^{2/3} \) \(j \)-shells. Thus, the entire computational effort is approximately reduced by a power 2/3 within the spherical scheme compared to the \(m \)-scheme. We have derived and implemented the spherical scheme within the CCSD approximation. We tested that our \(m \)-scheme code and the spherical code give identical results for several cases.

\textbf{Results.} The single-particle basis consists of wave functions of the spherical harmonic oscillator with the spacing \(h\omega \), the radial quantum number \(n \), and angular momentum \(l \), and we include single-particle states with \(2n + l \leq N \) in our model space. The largest model space we consider \((N = 14)\) consists of 15 oscillator shells. In such a large model space, configuration interaction becomes impossible as the proton space alone consists of about \(10^{10} \) Slater determinants for \(^{40}\)Ca. We first transform the Hamiltonian to the spherical Hartree-Fock basis, and the CCSD equations are solved in this basis. Fully converged observables must be independent of the parameters \(N \) and \(h\omega \) of our single-particle basis. In practice, we cannot go to infinitely large spaces, and the dependence of our results on these parameters serve to gauge the convergence.

As a test case, Fig. 1 shows that the CCSD results for \(^4\)He are converged within a few keV with respect to increases in the size of the model space (denoted by \(N \)) and variation of the oscillator frequency. The triples corrections are not yet available within the spherical scheme, and we employ our \(m \)-scheme code for this purpose. The CCSD-T1 triples correction \cite{31} in model spaces up to \(N = 7 \) yields another 1.3 MeV of binding. Thus, the CCSD-T1 results are very close to the virtually exact Faddeev-Yakubowski result \(E = -25.41 \) MeV quoted in Ref. \cite{10} for the same chiral NN interaction. The experimental value is \(E = -28.3 \) MeV, and the additional binding is due to the missing 3NFs.

The CCSD energies for \(^{16}\)O (see Fig. 2) are converged within the order of about 100 keV and change by less than 1 MeV over a considerable variation of the oscillator frequency. This result is in reasonably good agreement with the work by Fujii \textit{et al.} who obtained -110 MeV as the binding energy from the UOMA \cite{13}. Recall that both methods are approximations and based on similarity-transformed Hamiltonians.

We turn to nuclei in the mass-40 region. The CCSD results for \(^{40}\)Ca are shown in Fig. 3. Increasing the model space from \(N = 13 \) to \(N = 14 \) yields an additional 0.9 MeV, and the \(h\omega \)-dependence is less than 2.2 MeV over the considered range of oscillator frequencies. Thus, the convergence with respect to the parameters of our model space is very satisfactory, and we are missing about 10% of the experimental binding energy of -342 MeV.
We also computed the binding energy of the mirror nuclei 48Ca and 48Ni. For 48Ca the convergence of the results is satisfactory as shown in Fig. 4 and the convergence is very similar for 48Ni. 48Ni was discovered only recently [32]. It is believed to be a two-proton emitter, and its lifetime is very large compared to a typical nuclear time scale (i.e. the “orbital period” of a nucleon inside the nucleus). Thus, we can describe 48Ni in terms of a spherical Hartree-Fock basis based on the oscillator orbitals. Recall that the chiral interaction includes charge symmetry-breaking and charge independence-breaking effects, and we also included the Coulomb interaction. The difference of our CCSD results for the mirror nuclei 48Ca and 48Ni is 1.38 MeV per nucleon and stems from these combined effects. Theoretical mass table evaluations [33] suggest that the binding energy of 48Ni is 1.43 MeV per nucleon smaller than for 48Ca. Our results are in good agreement with this estimate. The density of 48Ca is shown in Fig. 5. The results still exhibit a dependence of the oscillator spacing $\hbar \omega$, and the central density decreases with decreasing $\hbar \omega$. This observable is less well converged than the energy with respect to the size of the model space. The convergence is slow with respect to the maximum radial quantum number n employed in our model space, while the single-particle angular momentum l could be limited to $l \leq 7$.

Table I summarizes some of our results which are taken at $\hbar \omega = 28$ MeV in the largest model spaces. We computed the potential energy V via the Hellman-Feynman theorem. The fourth column shows the energy deviation $\Delta E \equiv E - E_{\text{exp}}$ from the experimental binding energy E_{exp} for the considered nuclei. This difference is mainly due to the omitted 3NFs and the missing triples correction. Note that 40Ca is particularly tightly bound when compared to the other nuclei. The isotopes 16O, 48Ca, and 48Ni all lack about $\Delta E/A \approx 1.2$ MeV of binding energy when compared to experiment, while this difference is considerably smaller for 40Ca. This result is somewhat surprising since 48Ca is thought to be a better example of a doubly magic nucleus than 40Ca. There seems to be a cancellation between triples corrections and contributions of 3NFs in 40Ca. In other words, the isospin-dependence and/or mass-dependence of the 3NF is ex-
pected to be non-trivial. The charge radii are corrected according to Ref. [34] to account for the finite charge radii of the nucleons. They are computed from the leading approximation of the center-of-mass corrected intrinsic density \[25\]. Note that the radii change about 0.1-0.25 fm as the oscillator spacing \(\hbar \omega\) is varied in the range that is shown in the previous figures, and they decrease with increasing values of \(\hbar \omega\).

Nucleus	\(E/A\)	\(V/A\)	\(\Delta E/A\)	\(R\)	\(R_{\text{exp}}\)
\(^4\)He	-5.99	-22.75	1.08	1.86	1.64
\(^{16}\)O	-6.72	-30.69	1.25	2.71	2.74
\(^{40}\)Ca	-7.72	-36.40	0.84	3.24	3.48
\(^{48}\)Ca	-7.40	-37.97	1.27	3.22	3.47
\(^{48}\)Ni	-6.02	-36.04	1.21	3.50	3.50

TABLE I: CCSD results for various nuclei from the chiral N\(^3\)LO nucleon-nucleon potential. The binding energy per nucleon, and potential energy per nucleon are denoted as \(E/A\) and \(V/A\), respectively. \(\Delta E\) denotes the difference to the experimental binding energy (difference to theoretical mass table evaluations for \(^{48}\)Ni). \(R\) and \(R_{\text{exp}}\) denote the computed and measured charge radius. Energies are in units of MeV, and lengths in units of fm.

We also compute the one-body density matrices \(\rho_{pq} = \langle \hat{a}_p^\dagger \hat{a}_q \rangle\) of the ground states within the equation-of-motion CCSD \[33\]. The diagonalization of this matrix yields natural orbitals and the corresponding occupations. These model-dependent quantities are, of course, not observables but rather tied to the specific interaction we employed. The dominant occupation probabilities are larger than 0.95, and this indicates that the considered nuclei are indeed doubly magic. This result is non-trivial. Note that the Hartree-Fock approximation does not even yield bound nuclei. Yet the CCSD correlations imprinted onto the Hartree-Fock state yield a rather simple state. To our knowledge, this is the first time the phenomenological shell-model picture of independent nucleon motion arises within an \(ab\)-\textit{initio} approach.

Summary. We have studied the saturation properties of chiral NN interactions at the order N\(^3\)LO in medium-mass nuclei within the CCSD approximation of coupled-cluster theory. Our results exhibit a very satisfactory convergence with respect to the size of the model space and are only weakly dependent on the oscillator parameter. We find that the “bare” chiral NN potential underbinds nuclei by about 1 MeV per nucleon. The comparison of \(^{40}\)Ca with \(^{48}\)Ca and \(^{48}\)Ni hints at an isospin dependence of the 3NF in medium-mass nuclei. Within the CCSD approximation, the proton-rich nucleus \(^{48}\)Ni is less tightly bound by 1.38 MeV per nucleon than its mirror nucleus \(^{48}\)Ca, and this result is in good agreement with theoretical mass table evaluations. These calculations pave the way to probing chiral interactions in even heavier nuclei and link the phenomenological shell model to \(ab\)-\textit{initio} calculations.

We thank S.K. Bogner, R. J. Furnstahl, and A. Schwenk for useful discussions. This work was supported by the U.S. Department of Energy under Contract Nos. DE-AC55-00OR22725 with UT-Battelle, LLC (Oak Ridge National Laboratory), and DE-FC02-07ER41457 (University of Washington), and under Grant No. DE-FG02-96ER40963 (University of Tennessee). This research used resources of the National Center for Computational Sciences at Oak Ridge National Laboratory.
[27] K. Kowalski et al., Phys. Rev. Lett. 92, 132501 (2004), nucl-th/0310082.
[28] M. Włoch et al., Phys. Rev. Lett. 94, 212501 (2005), nucl-th/0501067.
[29] G. Hagen et al., Phys. Lett. B 656, 169 (2007), nucl-th/0610072.
[30] G. Hagen et al., Phys. Rev. C 76, 034302 (2007), arXiv:0704.2854.
[31] Y. S. Lee, S. A. Kucharski, and R. J. Bartlett, J. Chem. Phys. 81, 5906 (1984); ibid 82, 761 (E) (1982). J. Noga, R. J. Bartlett, and M. Urban, Chem. Phys. Lett. 134, 126 (1987).
[32] B. Blank et al., Phys. Rev. Lett. 84, 1116 (2000).
[33] G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A 729, 337 (2003).
[34] J. L. Friar, J. Martorell, and D. W. L. Sprung, Phys. Rev. A 56, 4579 (1997).
[35] J. F. Stanton and R. J. Bartlett, J. Chem. Phys. 98, 7029 (1993).