Korean Women Divers ‘Haenyeo’: Bathing Suits and Acclimatization to Cold

Joo-Young Lee and Hyo Hyun Lee

Department of Textiles, Merchandising and Fashion Design, Research Institute of Human Ecology, College of Human Ecology, Seoul National University
1 Gwanak-ro, Gwanak-gu, 151-742, Seoul, Korea
Tel: 82-2-880-8746; Fax: 82-2-875-8359
e-mail: leex3140@snu.ac.kr

(Received on February 23, 2014, accepted on August 13, 2014)

Abstract

During the 1960~80s Korean breath-hold women divers (haenyeo) received attention from environmental physiologists, especially Professor Suk-Ki Hong and colleagues, due to their unique ability to resist cold water wearing only a thin cotton bathing suit (so-jung-ee). Eventually, Haenyeos began to wear wetsuits to avoid severe cold stress instead of the cotton bathing suit from the mid 1970’s. With advancing social industrialization, the number of haenyeos rapidly decreased and a total of 4,507 haenyeos works as of 2013. The average age of haenyeos is 70 years old and the oldest haenyeos currently diving is 92 years old. Today, some senior haenyeos over fifty years old share the diving experiences of their youth by wearing the classic cotton bathing suits. At present it is predicted that the tradition of haenyeos could cease to exist in 10-15 years because of their aging. At this point in time, it is worth reviewing the history of haenyeos’ diving practices and physiology of haenyeos related to cotton bathing suits and wetsuits. Finally, we suggest interdisciplinary research on haenyeos from the viewpoint of social-environmental physiology and intangible cultural heritage.

Keywords: haenyeo, cotton bathing suits (so-jung-ee), wetsuits, cold adaptation, body temperature

1. Introduction

The world’s breath-hold women divers, used mainly to collect seafood, exist mainly in Korea (haenyeo) and Japan (ama). Haenyeos in Korea originated from the Korean provinces of Jeju. The first historical records of breath-hold male divers in Jeju were found in 503 AD. Evidence of Jeju women divers, or haenyeos, was first found in the 17th century literature (Chwa et al., 2005). Japanese women divers are called ‘ama’. Both ‘ama’ in Japanese and ‘haenyeo’ in Korean, literally mean: ‘sea women’. Until the 18th century, diving in Jeju was mostly done by men. Women took over the diving work, because of heavy taxes imposed on males, and thus became the breadwinner. As a result, during the 19th century 22% of the entire female population in Jeju was haenyeos. In 1903, a group of skilled haenyeos went over to Japan and by 1937 the number of haenyeos diving in Japan amounted to 1,601 persons (Chwa et al., 2005). In those days haenyeos were known as being more tolerant to cold water than Japanese female ama, which is related to differences in sea water temperatures and work practices between Korea and Japan. Sea water temperatures in winter were lower in Korea than in Japan: on average of 3.4°C around the middle area of Korea and 13.6°C at the Jeju island, but on average over 14.0°C around both Tokyo and Fukuoka in winter (Seatemperature.org, 2014). Furthermore, haenyeos dived even in the middle of winter wearing only thin cotton bathing suits called ‘so-jung-ee’ (literally translated as ‘something precious’).

Classic articles on haenyeos published in the 1960-80’s by professor Suk-Ki Hong and his colleagues remain as a monumental legacy in environmental physiology today. They reported that the cold adaptive properties of haenyeos disappeared as haenyeos began to wear new wetsuits instead of wearing traditional cotton bathing suits in the mid-1970s (Park et al., 1983b). Since the 1990’s, interests in the environmental adaptation of haenyeos have gradually waned. At this moment it is important to note that about 98% of haenyeos are over fifty and over 80% are in their sixties or older (Jeju province, 2014). Most who are in their
sixties or seventies share the diving experiences of wearing the cotton bathing suits from their youth. Even though they wear wetsuits, the face, hands, and feet of haenyeos are exposed to cold water for much longer work shift than those times wearing cotton suits. As most active haenyeos in Korea are in their seventies and are getting older (Table 1), it is predicted that haenyeos in Korea would cease to exist in the near future.

As the world becomes increasingly industrialized and modernized, there are only a few ethnic groups remaining who are regularly exposed to severe cold. Because of this population difference, research investigating heat acclimatization (e.g., tropical indigenes) is more common than acclimatization to cold stress. Many of the ethnic groups who live in cold climates have developed specialized clothing, shelters, and heating units that keep them well insulated against the cold. For instance, the world’s coldest city is Yakutsk, Russia, with temperatures averaging only -26.6°C from October to March. It was found that Yakutsk people wore very warm clothing and in extremely cold weather stayed indoors in warm housing (Donaldson et al., 1998). The Arctic area is the coldest region on earth habitable by man, but chronic whole body exposure to cold is almost absent in the Eskimo culture, modern polar explorers, and North Atlantic fishermen due to the use of protective clothing and heated shelters and housing. Intermittent and short exposures to cold may not be adequate to develop full acclimatization to cold (Burton and Edholm, 1955).

Senior haenyeos were exposed to severe cold stress until the 1970’s and since then they have been exposed to a more mild cold stress while wearing wetsuits. While deacclimatization to cold in metabolic and thermal responses was reported since they wore wetsuits (Park et al., 1983b), the face, hands, and feet have been continuously exposed to cold water even with the use of wetsuits. It could be modulated that the mode of cold adaptation has switched from the whole body to local body adaptation with the switch from cotton bathing suits to wetsuits. Also, while deacclimatization to cold in terms of physiological responses of haenyeos were mainly explored, whole or local body responses in terms of thermal perceptions triggering behavioral responses in cold have not been explored enough. Furthermore, an interesting topic to explore is the interactions between ageing and cold adaptation. About 70% of current-professional haenyeos in Korea are in their seventies (Table 1), which indicate that they have dived more than 50 years.

For all these reasons, haenyeos’ practices, representation, knowledge, skills, instruments, and objects are recently being re-considered as an intangible cultural heritage. In this regard, it is timely and worth revisiting the history of haenyeos from the viewpoint of social-environmental physiology. The present review introduced the work practices, cotton and wet bathing suits of haenyeos, and discussed acclimatization and deacclimatization to cold of haenyeos and other ethnic groups based on classic studies.

2. Korean breath-hold women divers

Anthropometric and physical characteristics of haenyeo

Since the 1980’s, the number of haenyeos has decreased because of changing occupational preferences with the industrialization of Jeju. The official number of Jeju haenyeos was 26,248 in 1962 but only 4,507 in 2013 (Fig. 1). According to an anthropometric report in 2012, haenyeos consisted of 78% of fishery workers in Jeju, which indicates that most fishery work was conducted by haenyeos. The age distribution of Jeju haenyeos in the 1970’s for less than 30 years old, 30-49 and over 50 were 31%, 55% and 14%, respectively (Table 1). Presently, about 98% of all haenyeos are over 50 due to the increased avoidance of young women becoming haenyeos since the 1980’s (Table 1). As of 2014, the oldest actual field haenyeos is Jung-Hyun Lee (92 years old, 71-year diving career, Jeju) (Jeju province, 2014).

According to a classic anthropometric survey with 100 haenyeos in Jeju (Kang, 1953), the hip size of 100 haenyeos was larger than those of non-diver females in 2014 (Modified from data in Jeju province (2013)).

Fig. 1 Number of fishery workers and haenyeos in Jeju, Korea from 1965 to 2012 (Modified from data in Jeju province (2014)).
Jeju, which was attributed to the heavy labor on the back imposed by carrying seafood from the shore to the gathering place and daily diving works in cold water which began in their mid-teenage years. From a physiological viewpoint, people living in colder climates generally have a noticeably wider body breadth compared to their tropical counterparts, which suggests that breadth rather than stature is the more important factor for thermoregulation (Lambert et al., 2008). There is a study reporting that menarcheal age was an average of 17.5 years for 395 haenyeos in Jeju, whereas 613 other females in the main land of Korea showed an average menarcheal age of 16.9 years (Kang, 1962). It is known that the menarcheal age varies according to ethnicity and climate, and is delayed in women who live in colder regions when compared to the women in warmer regions even in an identical ethnic group. In consideration of that the Jeju island is warmer than the main land, the delayed menarcheal age of haenyeos was ascribed to haenyeos’s cold water diving starting from their mid-teens.

Dive practices
Most haenyeos begin diving at the approximate age of 8 to 15 and continue to dive over their seventies. According to the diving skill, haenyeos are classified into three groups: [Class 1], [Class 2], and [Class 3]. Class 1 is able to dive deeper than about 16 m in depth with 2 min-breath-holding (Chaw et al., 2005), Class 2 is about 13 m in depth, and Class 3 dive shallower than 13 m. It takes about 30 years for a diver to reach Class 1 (Chun, 2010). When haenyeos want to dive as deep as 20 m, they need a heavy ballast belt and are attached to another weight of up to 30 kg, depending on their own body weight. While Korean haenyeos are all unassisted divers, Japanese ama are divided into two groups: Cachido (unassisted) and Funado (assisted). Funados generally dive deeper than Cachidos (10-20m vs. < 10m) (Shiraki et al., 2002).

Haenyeos engage in diving for periods of 1 to 5 hours daily depending on seasons and tide time. Hong et al. (1991) reported that both Korean female and Japanese male Cachido divers made 113-138 dives a day and stayed in the water a total of 170-200 min a day, of which only 52-63 min were spent diving submerged, and the remaining time at the water surface. Another study reported that Japanese ama spent 250-280 min a day on the sea at their diving locations and the actual diving time was 100-120 min (Mohri et al., 1995). In winter, a typical dive lasted about 60 s and consisted of a 30-sec dive followed by a 30-sec rest interval.

Most haenyeos dive during menstrual periods as well (Chaw et al., 2005) and dive even up to the day of delivery if pregnant (Chun, 2010). They worked an average of 28 days a month from March to August while during the winter season worked about 15 days a month when wearing the traditional cotton bathing suit from March to August. As water temperature of the sea varies by season, the total time spent submerged for divers wearing the cotton suit was about 30 min for January, February, October, November, and December, while about 40 min to 1 hour from Spring to early

![Fig. 2 Working days per month and diving times for a day when wearing the traditional cotton bathing suit, so-jung-ee (Redrawn from Chaw et al. (2005)).](image)
Autumn (Chaw et al., 2005). When wearing cotton bathing suits, even Class 1 haenyeos hardly worked over 40 min during the winter and only dived about 20 min during the winter (Chun, 2010). However, the dissemination of wetsuits in the mid-1970’s enabled them to dive much longer than before. Park et al. (1983b) found the prolongation of the diving shifts due to the wetsuits increased from 70 min to 180 min in summer and 10 to 120 min in winter compared to when wearing the cotton suits.

Cotton and wet bathing suits
Jeju haenyeos wore a bathing suit made of cotton-broadcloth in white or black (100% cotton with 30 counts, about 0.5 mm thick, and 8.5% water absorption at a dry condition) until wetsuits were supplied. Before the broad cotton cloth was imported from Japan, the bathing suit was originally made of muslin (thin cotton cloth). Haenyeos preferred the broad cotton to the muslin bathing suit because the broad cotton was relatively thicker and stronger in salty water than the muslin cloth. The traditional cotton suit consisted of ‘so-jung-ee’ (bathing suit), ‘juck-sam’ (upper), and ‘mul-su-gun’ (hood) without any goggles (Fig. 3). In winter, haenyeos wore the juck-sam over the so-jung-ee.

Jeju haenyeos who went to Japan for diving work came back to Jeju bringing their own wetsuits from Japan in the early 1970’s (Chwa et al., 2005). Figure 4 shows the wetsuits currently worn by haenyeos in Jeju. In those days, flippers were also supplied with the wetsuits. As a result of such change, haenyeos were no longer exposed to the severe cold water (Kang et al., 1983). Wetsuits certainly made the work of haenyeos more comfortable and productive than before. Before wearing the wetsuits, daily-diving hours in the winter were rarely over 1 hr, whereas the daily-work hour increased more than 1 hr, regardless of season, after the introduction of the wetsuit, and diving days per month also increased about 5 days more than before (Kim et al., 1986). Senior haenyeos put weight around the waist or the back to assist their diving power.

Symptoms and diseases related to breath-hold diving
Occupational related diseases of haenyeos are typically identified as follows: (1) headache, (2) hearing-impairment, (3) otitis media, (4) stomach disorder, (5) skin irritation, and (6) musculoskeletal symptoms. First of
all, most haenyeos take headache pills called ‘Neusun’ or antisickness pills called ‘Easylong’ or ‘Tosslong’ just before diving. Choi et al. (2008) reported that 71% of 911 haenyeos overused analgesics. Decompression sickness has been considered to be related to scuba diving than to breath-hold diving. However, several cases of decompression sickness after breath-hold diving have been reported (Stefanidou et al., 2013; Tamaki et al., 2010a). Tamaki et al. (2010b) reported on a Japanese male breath-hold diver (ama) who developed neurological disorders during repetitive dives to 22 meters of sea water. For the ama, each diving duration and surface interval was 40-80s and 20-30s, respectively. The male ama suffered from sensory numbness of the right cheek, hand and foot, and double vision. Greater depth, longer bottom time, quicker ascent rate and the short duration of surface intervals are considered to be the main factors precipitating decompression sickness after breath-hold diving (Stefanidou et al., 2013; Tamaki et al., 2010a).

Hearing-impairment is also common for haenyeos. Because of wetsuits and flippers, haenyeos began diving deeper and longer compared to the days of wearing thin cotton swim suits without flippers, which resulted in injuries of the tympanic membrane and hearing-impairment. Otitis media is related to the deeper and longer diving patterns. Because of their impaired hearing, most haenyeos have a deeper voice. Also, haenyeos have suffered from stomach disorders, which is related to long hours diving under the sea. In general haenyeos skip their meal before diving so as to prevent them from throwing up the meal during their hand-standing-diving position and from defeating in the sea while working for several hours (Kang, 2013). Also, haenyeos experience skin irritation and muscular pain. They frequently walk on slippery basalt rocks while carrying collected seafood weighing ~70 kg. While gathering seafood under the sea or carrying the seafood from the shore to the collecting place, haenyeos experience pricking by the sea urchin, decaying fingerprints swollen in the sea water, blisters on the shoulder, and muscular pains (Kang, 2013). Bae et al. (2003) reported that the prolonged habitual cold-water immersion of haenyeos may induce a decrease in fiber size and an increase in capillarity in human skeletal muscles. It has been found that, splenic contraction and increased hematocrit occur during breath-hold diving in haenyeos (Hurford et al., 1990).

3. General responses to cold
Humans, who are a homeothermic animal, have four major physiological defenses against the cold: (1) the thermal cutaneous vasomotor response which results in cutaneous vasoconstriction induced by the cold, (2) shivering, (3) nonshivering thermogenesis, and (4) piloerection.

During exposure to cold stress, the cold receptors in the skin are activated to initiate the reflexes involved in conserving heat. This is accomplished through a constriction of the subcutaneous blood vessels (vasoconstriction), which limits the flow of warm blood from the core to the outer body (shell). The fall in skin temperature on the extremities is much greater than that of the trunk. In a cold environment most of the venous return from arms and legs is through the deep venae comitantes that received heat from blood flowing through the arteries, thereby minimizing heat loss. When fingers and toes are exposed to extreme cold, their skin temperature falls at first sharply, but soon fluctuates at a certain level, rising and falling alternatively (Cold-induced vasodilation, CIVD). The reaction varies considerably among individuals and is the essential factor which determines the individual differences of local cold resistance.

The increase of heat production by metabolism as a defense against cold consists of ‘shivering’ and ‘non-shivering thermogenesis (NST)’ (Burton and Edholm, 1955). Shivering is a unique physiological function which is a coordinated movement of the voluntary skeletal musculature. All the energy in shivering is transformed into heat. The overall heat production due to shivering may amount to two or three times the resting level when measured over a period of one hour (Edholm, 1978).

An increase in metabolism without muscular movement is called NST, but it is difficult to separate experimentally nonshivering and shivering thermogenesis caused by cold since both may be active simultaneously during a cold exposure. NST is probably a more efficient mechanism than shivering for increasing heat production in the cold because the muscular tremor of shivering increases convective heat losses from the body surface. Noradrenaline and thyroxine are hormones that play significant roles in the development of NST (Frisancho, 1993). One particular mechanism for NST is that concerned with brown adipose tissue (BAT). In a number of animals, there is a distribution of BAT, mainly in the subcutaneous area between the scapulae. This fat has a rich nerve supply and when the animal is cooled there is a breakdown of the fat and the release of heat. Animals exposed to cold stress exhibit a marked increase in BAT. Fall in body temperature of animals exposed to -25°C for 3 h was inversely related to the weight of BAT (LeBlanc and Villemaire, 1970). In recent years, a group of researchers has shown that BAT is present in human adults, showing the relation to NST (Lidell and Enerback, 2010; van der Lans et al., 2013). Furthermore, a 10-day cold acclimation protocol in humans increased BAT activity along with an increase in NST (van der Lans et al., 2013).
4. Acclimatization to cold

The term used to describe the physiological responses to chronic exposure to environmental stress is acclimatization (IUPS Thermal Commission, 2001). Proof of cold acclimatization in humans requires that one or more of the following criteria be satisfied: (a) increased resting or basal metabolic rate, i.e., metabolic acclimatization, (b) reduced heat loss at a given air temperature, i.e. insulative acclimatization, (c) decreased susceptibility to pain, numbness or cold injury in the extremities, i.e. vasomotor acclimatization, or (d) decreased cutaneous sensory threshold for cold thermogenesis, perceptual habituation.

The main feature of insulative acclimatization to cold is an enhanced lowering of skin temperature by which heat loss is decreased and metabolic rise is minimized. Insulative acclimatization to cold seems to be manifested in an increased tone of peripheral vasoconstrictor. Lower skin temperatures and decreased metabolic rates were found in a group of men who stayed in Antarctica for 1 year (Wyndham et al., 1964). An insulative type of adaptation appears to develop only in individuals who experience frequent and severe cold stress conditions which result in a reduction in body heat stores. Improved vasoconstrictor responses to cold and development of enhanced avenues of counter-current heat exchange in the limbs have been suggested as mechanisms for this type of adaptation (Young, 1988).

From the 1940’s to 1970’s, many ethnic groups, such as Australian aborigines, Kalahari Bushmen, Alacaluf Indians, Andean Indians, Eskimos, Nomadic Lapps, Japanese and Korean women divers, have been explored in terms of acclimatization to cold. Among the ethnic groups, the Australian aborigines faced by the combined stress of cold and food shortage show a hypothermic-insulative response. Despite the cold stress, the aborigines were able to sleep comfortably without shivering. The aborigines compared to white subjects tolerated a greater lowering of the skin and rectal temperatures, resulting in a 30% reduction in heat conductance from core to shell even though mean skinfold thickness and percent body fat were considerably lower in the aborigines than in the whites (Hammel et al., 1959). Australian aborigines showed 30% smaller metabolism related to cold than that of the white subjects (Hammel et al., 1959; Hammel, 1964). The aborigines appear to resist cold stress by both increasing insulation of the outer body through vasoconstriction and by tolerating moderate hypothermia without metabolic compensation.

A metabolic cold acclimatization exists whereby a more pronounced increase in heat production is elicited by cold exposure. The possibility that a shift from NST accounts for this adaptation has been suggested. NST is stimulated by noradrenaline in rodents. Humans have an increased sensitivity to noradrenaline after acclimatization to cold (Kang et al., 1970). In Davis’s study (1961), 36 subjects dressed only in shorts were exposed for 4 weeks to daily 8-h periods of temperatures ranging from 5 to 11°C. In this experiment there was a decrease in shivering and an increase in NST and later initiation of shivering. The native Eskimo housing type, ‘Igloo’, is well-insulated. In most areas the Eskimo clothing consists of caribou fur in thickness of 1.5-3 inches, which provides insulation equivalent to 7 to 12 clo units (Scholander et al., 1950). There is certainly no evidence that the Eskimo has a core temperature any lower than the natives of the tropics (Burton and Edholm, 1955). Krogh and Krogh (1914) were the earliest to study metabolism in the Eskimo, and they reported a raised BMR. The Eskimo and white Europeans shiver at the same skin temperatures, but Eskimos generate 30% to 40 % more heat from NST than do Europeans not typically exposed to the cold (Gisolfi and Mora, 2000). However, this elevation in metabolism is attributed to the high-protein diet consumed by the Eskimo.

Local adaptation in fingers and toes to extreme cold is manifested in an acceleration of the hunting reaction which keeps extremities warmer. Yoshimura et al. (1960) evaluated CIVD in the toe of three groups (foot immersion to ice water daily 15 min for a month, daily 30 min immersion, and no immersion). The trained group showed significant acceleration of CIVD after a month while the changes in the control group were insignificant. Lapp shepherds from Norway have not developed formal housing and thus were continuously exposed to cold stress. The microclimate inside the clothing of the Lapps has been found to be warm (Scholander et al., 1957). Nomadic Lapps exhibited an earlier onset of CIVD and less pain than white controls when immersing their hands in ice water for 15 minutes (Krog et al., 1960; Krog et al., 1969). Also, the Inuit were better able to maintain the temperature of their extremities in response to localized cold stress, in comparison to oriental and Caucasian subjects from warmer climates (Livingston et al., 1978). Eskimos maintained higher hand temperatures and showed greater increase in blood flow, especially to the fingers, than the Europeans when their hands were immersed in 5-10°C water (Brown and Page, 1952; Gisolfi and Mora, 2000).

5. Cold acclimatization and deacclimatization of haenyeos

In the 1970’s to 80’s, professor Suk-Ki Hong and his colleagues studied extensively the thermal physiology of Korean women divers, haenyeos, who engaged in diving work in cold water 22-24°C in summer and 10°C in winter. They reported the pattern of cold
acclimatization of haenyeos, who wore thin cotton suits, in the 1970’s. After haenyeos began to wear wetsuits in the mid-1970’s to avoid severe cold water stress during diving work, Hong and his colleagues reported the time course of deacclimatization to the cold of haenyeos. In the following section, we discuss the acclimatization and deacclimatization to cold in haenyeos’ thermoregulatory responses in relation to the transition from cotton bathing suits to wetsuits.

Cotton-suit haenyeo: cold acclimatization

Studies of haenyeos provide conclusive evidence that chronic exposure to cold stress increases their metabolic rate. These findings were in marked contrast to those of Eskimo or Australian aborigines living in cold climates. The cause of these differences can be explained by the degree of cold stress experienced by each population. When sufficiently exposed to cold, all humans adapt to cold through increased metabolic rates and with an attendant increase in peripheral temperature. Kang et al. (1963) reported that haenyeos’ basal metabolic rate (BMR) during the winter months, when they were diving in very cold water, was significantly elevated above values observed during warmer months. Haenyeos increased their BMR by ~35% during the winter, while BMR of non-divers was maintained at a normal level throughout the year (Kang et al., 1963) (Fig. 5). Daily urine samples indicated that excretion of nitrogen was the same in haenyeos and in control subjects. For this reason, Hong and his colleagues suggested that the increase in BMR in haenyeos in the cold season is a manifestation of a metabolic acclimatization to cold stress and cannot be caused by differences in diet. The 35% increase in BMR could be due to an increased utilization of thyroid hormones (Hong, 1973) and to a slight increase in sensitivity to norepinephrine (Kang et al., 1970). Thyroid hormones and norepinephrine both stimulate metabolism. The total diving heat loss during a work shift of haenyeos appeared to be 320 kcal in summer (60-min shift) and 480 kcal in winter (30-min shift). Since they took three shifts a day in summer and one or two shifts in winter, the average daily diving heat loss was estimated to be 1,000 kcal (Hong, 1973; Kang et al., 1965).

Another important adaptive mechanism of the haenyeos against the cold is increasing peripheral body insulation. When compared to other ethnic groups, haenyeos’ tissue insulation is greater than those of Eskimos and Andean Indians (Webster, 1974). Haenyeos are relatively lean individuals and the amount of subcutaneous fat they possess is typically lower than that of non-divers in Korea. However, they lost less heat under the conditions of cold exposure than non-divers with the same thickness of subcutaneous fat. The answer to this relates to the control of peripheral blood flow, especially, to the limbs. Also, haenyeos shivered at a significantly lower water temperature than non-divers. They defined a critical water temperature as the lowest water temperature one can tolerate for 3 h without shivering, which is synonymous with a shivering threshold. The water temperature at which 50% of the haenyeos shivered was 28.2°C, compared with 29.9°C for non-divers, and 31.1°C for Korean adult males (Hong, 1973). The greater insulative outer body of haenyeos was attributed to the suppression of shivering. Because Hong et al. (1969) also presented evidence for an increase in blood flow to the limbs of haenyeos with no increase in heat loss, it has been concluded that the greater insulation is due to a more efficient countercurrent heat exchange system (Hong et al., 1969; Hong, 1973, Kang et al., 1970). Such responses suggest an insulative type of acclimatization and the basic pattern of the insulative acclimatization is similar to that observed in Australian aborigines regardless of the mechanism (Hammel et al., 1959).

Kang et al. (1983) reported that the rectal temperature of haenyeos in sea water declined steadily to approximately 35°C after 30 min in winter and after 60 min during the summer when wearing the cotton suit, while the rectal temperature in wetsuit divers did not change appreciably over the 2 h work period. The total reduction of rectal temperature in 2 h was only 0.4°C in summer and 0.6°C in winter. The mean skin temperature was also maintained to some extent for the wetsuit divers, while the mean skin temperature dropped quickly from about 34°C to the level of water temperature for the cotton suit divers (Kang et al., 1983). Another feature of cold acclimatization was a strong vasoconstriction in the most distal part of the extremities during cold water immersion. Finger skin
temperature and blood flow during hand immersion in 6°C in the haenyeos were lower than those in non-divers (Paik et al., 1972). Contrary to the attenuation of finger vasoconstriction observed in arctic fishermen or Eskimos, the cotton suits wearing haenyeos showed greater vasoconstriction than non-divers. This response was attributed to the whole body cold exposure of the haenyeos compared with only local cold exposure experienced by Eskimos and arctic fishermen. Skin temperatures in the hands and arms were maintained higher than in non-divers without increasing total blood flow to the arms, because a relatively larger proportion of the total circulation returned through the veins directly under the skin.

Wet-suit haenyeos: loss of cold acclimatization

Scholander and colleagues (1950) observed that birds walked around at temperatures of -40 to -50°C without frostbite, while a gull which was kept indoors at 20°C escaped into the snow at -20°C and the web of the feet froze hard within a minute with subsequent gangrene. This may be considered as an example of loss of cold acclimatization. Haenyeos began wearing wetsuits to avoid severe cold stress in the mid 1970’s. Diving in wetsuits certainly made the work of haenyeos more comfortable and productive. Years later, as a result of the reduced cold stress, there was no seasonal change in metabolic rate and basal metabolism was no different in haenyeos compared with non-divers (Gisolfi and Mora, 2000). Rectal temperature fell only 0.6°C during a diving sequence in the winter, compared with a fall of 2.2°C when haenyeos wore a cotton bathing suit (Gisolfi and Mora, 2000). In a wet suit, mean skin temperature was as much as 10°C higher, and heat loss was reduced to only 37% of what it was when the haenyeos wore a cotton bathing suit (Gisolfi and Mora, 2000). The difference in critical water temperature between the haenyeos and non-divers in the 1960s was as much as 4°C, compared with only 1°C in 1981 and no difference in 1983.

The finger skin temperature and blood flow during hand immersion in 6°C among wet suit wearing haenyeos were similar to those of non-divers. This finding suggests that the local vascular acclimatization observed among the cold stressed haenyeos studied in the 1960s disappeared in wet suit haenyeos. Park and Hong (1991) supported the notion that the latter response was associated which whole-body cold exposure rather than cooling of the hands alone. That is, those results suggested that the low finger skin temperature observed in cotton suit wearing haenyeos was a result of generalized cold body stress rather than cold stress to the hands as it occurred with the Gaspe fishermen. The type of cold acclimatization of Gaspe fisherman (LeBlanc, 1962) and British fish-filletes (Nelms and Soper, 1962) is basically different from that of whole body cold exposure of cotton suit wearing haenyeos.

The greater vasoconstriction of finger blood vessels of cotton suit wearing haenyeos during cold water immersion of a hand were sustained until year 3 of wet suit diving, but disappeared during the subsequent 3 years (Park et al., 1983b). The adoption of wetsuits by the haenyeos in the mid-1970s led to a progressive deacclimatization to cold over the next 5 years (Fig. 6). The authors discussed that the insulative acclimatization of the peripheral tissue disappeared in wetsuits wearing haenyeos faster than the mechanism of shivering attenuation, which suggests that the elevation of the maximal body insulation is distinct from the elevation of the shivering threshold. Such return of thermoregulatory function to control levels after several years of diving in a protective garment provides evidence that the cold exposure experienced by cotton suit wearing haenyeos indeed produced cold acclimatization.

6. Revisiting Korean haenyeo and further research

Cold acclimatization in daily life is a reoccurring issue in Korea because of climate change and indoor energy saving issues during the winter. Since the 1990’s, the research on the physiology of haenyeos have been fragmentary, but experimental instruments and research methodology in thermal physiology have progressed. Classic examination of human responses to prolonged exposure to cold, in a search for cold acclimatization, have included the following measurements: heat production, calorie intake, hormonal changes, body insulation, thickness of body fat, vasomotor control of superficial vasculature, subjective tolerance and performance, diminished or increased incidence of cold injury, and local acclimatization to cold. Furthermore, rare studies from psychophysiological viewpoints with
thermal sensitivity of haenyeo exist but relatively convenient methods and devices to examine cutaneous thermal thresholds of humans have been developed. During cold water immersion, haenyeo usually complained of internal chilling not external chilling, whereas non-divers complained of external chilling (Park et al., 1983a). This may imply that the sensitivity of cutaneous cold receptors may be suppressed in haenyeo.

As addressed before, the average age of haenyeo today are in the seventies. It is agreed that the tradition of haenyeo in Korea would cease within 10-15 years due to their ageing. In this regard, it would be an interesting issue to explore the interaction between ageing and cold adaptation. In addition, the relative contribution of genetic factors to prior cold-acclimatization remains unclear. Considering <20 genes in mammalian cells are affected by cold exposure (Sonnet et al., 2002), it is reasonable to assume that more physiological and morphological characteristics may be attributed to genetic origins as more data from haenyeo becomes available. In a collective sense, topics on cutaneous thermal thresholds, the interactions between ageing and cold adaptation, and genetic factors to cold adaptation of haenyeo are recommended for future research.

Acknowledgements
This work was supported by Academy of Korean Studies Grant funded by the Korean Government (MEST) (AKS-2013-ORS-1110007). We would like to thank our colleague, Eric A. Stone for his technical supports.

References
Bae, K.A., An, N.Y., Kwon, Y.W., Kim, C. Yoon, C.S., Park, S.C., Ki, C.K. (2003) Muscle fibre size and capillarity in Korean diving women. Acta Physiologica Scandinavica 179(2): 167-172.
Brown, G.G., Page, J. (1952) The effect of chronic exposure to cold on temperature and blood flow of the hand. J Appl Physiol 5(5): 221-227.
Burton, A.C., Edholm, O.G. (1955) Man in a cold environment. Adward Arnold Ltd, London.
Choi, J.C., Lee, J.S., Kang, S.Y., Kang, J.H., Bae, J.M. (2008) Chronic daily headache with analgesics overuse in professional women breath-hold divers. Headache 48(7): 1037-1043.
Chun, K.I. (2010) Manage like Haenyeo. Davinci Books Ltd, Seoul (In Korean).
Chwa H.K., Ko, C.H., Kwon, C.H., Kim, D.Y., Boon, M.B., Park, C.S., Ahn, M.J., Lee, K.J., Jung, K.J., Han, L.H. (2005) Jeju Haenyeo and Japanese ama. Minsokwon, Seoul (In Korean).
Davis T.R.A. (1961) Chamber cold acclimatization in man. J Appl Physiol 16(6): 1011-1015.
Davis, T. R. A. (1963) Acclimatization to cold in man. In: Temperature-Its measurement and control in science and industry, eds. by Herzelf C.M. Reinhold Publishing Cor., New York. p450.
Donaldson, G.C., Ermaakov, S. P., Komarov, Y. M., McDonald, C. P., Keatinge, W. R. (1998) Cold related mortalities and protection against cold in Yakutsk, eastern Siberia: observation and interview study. Br Med J. 317(7164): 978-982.
Edholm, O.G. (1978) Man-Hot and cold. Hodder, London.
Frisancho, A.R. (1993) Human adaptation and accommodation. The University of Michigan Press, Ann Arbor.
Gisolfi, C.V., Mora, T.M. (2000) The hot brain: Survival, temperature, and the human body. The MIT press, London.
Hammel, H.T., Elsner, R.W., Le Messurier, D.H., Andersen, H.T., Milan, F.A. (1959) Thermal and metabolic responses of the Australian aborigine exposed to moderate cold in summer. J Appl Physiol 14(4): 605-615.
Hammel, H.T. (1964) Terrestrial animals in cold: recent studies of primitive man. American Physiological Society, Washington DC.
Hong, S.K. (1973) Pattern of cold adaptation in women divers of Korea (ama). Fed Proc 32: 1614-1622.
Hong, S.K., Henderson, J., Olszowka, A., Hurford, W.E., Falke, K.J., Qvist, J., Radermacher, P., Shiraki, K., Mohri, M., Takeuchi, H. (1991) Daily diving pattern of Korean and Japanese breath-hold divers (ama). Undersea Biomed Res 18(5-6): 433-43.
Hong, S.K., Lee, C.K., Kim, J.K., Song, S.H., Kennie, D.W. (1969) Peripheral blood flow and heat flux of Korean women divers. Fed Proc 28: 1143-1148.
Hong, S.K. (1987). Breath-hold bradycardia in man: an overview. In: The Physiology of Breath-Hold Diving, eds. by Lundgren, C.E.G. and Ferrigno, M. Undersea and Hyperbaric Medical Society Publication, Maryland, pp158-173.
Hong, S.K., Henderson, J., Olszowka, A., Hurford, W.E., Falke, K.J., Qvist, J., Radermacher, P., Shiraki K., Mohri, M., Takeuchi, H. (1991) Daily diving pattern of Korean and Japanese breath-hold divers (ama). Daily diving pattern of Korean and Japanese breath-hold divers (ama). Undersea Biomedical Research 18(5-6): 433-443.
Hurford, W.E., Hong, S.K., Park, Y.S., Ahn, D.W., Shiraki, K., Mohri, M., Zapol, M. (1990) Splenic contraction during breath-hold diving in the Korean ama. J Appl Physiol 69(3): 932-936.
IUPS Thermal Commission (2001) Glossary of terms for thermal physiology. Jpn J Physiol 51(2): 245-280.
Jeju province (2014) Annual report on the current state
of oceans and fisheries in Jeju. Jeju Special Self-Governing Province (In Korean).
Kang, C.M. (1953) The pelvimetry of the Jejudo women (specially diving women). Master’s thesis, Seoul National University, Seoul (In Korean).
Kang, C.M. (1962) The average of menarche of sea-women in Cheju Island. Obstetrics & Gynecology Science 5(5): 271-272.
Kang, B.S., Han, D.S., Paik, K.S., Park, Y.S., Kim, J.K., Kim, C.S., Rennie, D.W., Hong, S.K. (1970) Calorigenic action of noradrenaline in the Korean women divers. J Appl Physiol 29(1): 6-9.
Kang, B. S., Song, S. H., Suh, C. S., Hong, S. K. (1963) Oral temperatures of Korean diving women (ama) were measured before and after diving work in four. J Appl Physio 18(3): 483-488.
Kang D. H., Kim P. K., Kang BS, Song S. H., Hong S. K. (1965) Energy metabolism and body temperature of the ama. J Appl Physiol 20(1): 46-50.
Kang, D.H., Park, Y.S., Park, Y.D., Lee, I.S., Yeon, D.S., Lee, S.H., Hong, S.Y., Rennie, D.W., Hong, S.K. (1983) Energetics of wet-suit diving in Korean women breath-hold divers. J Appl Physiol 54: 1702-1707.
Kang, Y.S. (2013) My wife is haenyeo. Jeong-Eun Publishing, Seoul. (In Korean)
Kim, Y.D., Kim, B.K., Seo, K.R. (1986) Research and study on haenyeo. Tamra Cunture 5. Jeju University (In Korean).
Krog, J., Folkow, B., Fox, R.H., Andersen, K.L. (1960) Hand circulation in the cold of Lapps and North Norwegian fishermen. J Appl Physiol 15(4): 654-658.
Krogh, A., Krogh, M. (1914) A study of the diet and metabolism of Eskimos undertaken in 1908 on an expedition to Greenland. Medd Gro̸nland 51: 1-2.
Krogh, J., Alvik, M., Lund-Larsen. (1969) Investigations of the circulatory effects of submersion of the hand in ice water in the Finnish Laps: the ‘Skolt’. Fed Proc 28: 1135-1137.
Lambert, M.I., Mann, T., Dugas, J.P. (2008) Ethnicity and temperature regulation. In: Thermoregulation and human performance, ed. by Marino, F.E. Basel, Karger, Bathrust. pp110-104.
LeBlanc, J. (1962) Local adaptation to cold of Gaspé fishermen. J Appl Physiol 17(6): 950-952.
LeBlanc, J., Villemaire, A. (1970) Thyroxine and noradrenaline on noradrenaline sensitivity, cold resistance, and brown fat. Am J Physiol 218: 1742-1745.
Lidell, M. E., Enerbäck, S. (2010). Brown adipose tissue—a new role in humans? Nat Rev Endocrinol 6: 319-325.
Mohri, M., Nagaya, K., Shiraki, K., Elsner, R., Takeuchi, H., Park, Y.S., Hong, S.K. (1995) Diving patterns of ama divers of Hegura Island, Japan. J of UHMS 22(2): 137-143.
Nelms, J.D., Soper, D.J.G. (1962) Cold vasodilatation and cold acclimatization in the hands of British fish filleters. J Appl Physiol 17: 444-448.
Paik, K.S., Kang, B.S., Han, D.S., Rennie, D.W., Hong, S.K. (1972) Vascular responses of Korean ama to hand immersion in cold water. J Appl Physiol 32(4): 446-450.
Park, Y.S., Hong, S.K. (1991) Physiology of cold-water diving as exemplified by Korean women divers. Undersea Biomed Res 18(3): 229-241.
Park, Y.S., Rahn, H., Lee, I.S., Lee, S.I., Kang, D.H., Hong, S.Y., Hong, S.K. (1983a) Patterns of wet suit diving in Korean women breath-hold divers. Undersea Biomed Res 10(3): 203-215.
Park, Y.S., Rennie, D.W., Lee, I.S., Park, Y.D., Paik, K.S., Kang, D.H., Suh, D.J., Lee, S.H., Hong, S.Y., Hong, S.K. (1983b) Time course of deacclimatization to cold water immersion in Korean women divers J Appl Physiol 54: 1708-1716.
Seatemperature.org (2014) http://www.seatemperature.org/
Scholander, P.F., Hock, R., Walters, V., Johnson, F., Irving, L. (1950) Heat regulation in some arctic and tropical mammals and birds. Biological Bulletin 99(2): 237-258.
Scholander, P.F., Andersen, K.L., Krog, J., Lorentzen, F., Vogt Steen, J. (1957) Critical temperature in Lapps. J Appl Physiol 10 (2): 231-234.
Shiraki, K., Elsner, R., Sagawa, S., Torii, R., Mohri, M., Yamaguchi, H. (2002) Heart rate of Japanese male ama divers during breath-hold dives: diving bradycardia or exercise tachycardia?. J of UHMA 29(1): 59-62.
Stefanidou, S., Melekos, T., Kotsiou, M. Mesimeris, T. (2013) Decompression sickness related to breath-hold diving: A case report. Aristotle University Medical Journal 40: 25-28.
Tamaki, H., Kohshi, K., Ishitake, T., Wong, R.M. (2010a) A survey of neurological decompression illness in commercial breath-hold divers (ama) of Japan. Undersea Hyperb Med 37(4): 209-217.
Tamaki, H., Kohshi, K., Sajima, S., Takeyama, J., Nakamura, T., Ando, H., Ishitake, T. (2010b) Repetitive breath-hold diving causes serious brain injury. Undersea Hyperb Med 37(1): 7-11.
Van der Lans, A.A., Hoeks, J., Brans, B., Vijgen, G.H., Visser, M.G., Vosselman, M.J., Hansen, J., Jörgensen, J.A., Wu, J., Mottaghy, F.M., Schrauwen, P., van Marken Lichtenbelt, W.D. (2013) Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest 123(8): 3395-3403.
Webster, A.J.F (1974) Adaptation to cold. In: Environmental Physiology, eds.by Robertshaw, D., D.Butterworth & Co. Ltd. p89.
Wyndham, C.H., Plotkin, R., Munro, A. (1964) Physiological reactions to cold of men in the Antarctic. J Appl Physiol 19: 593-597.
Yoshimura, H. (1960). Acclimatization to heat and cold. In: Essential problems in climate physiology, eds. By Yoshimura H, Ogata K, Itoh S. Nankodo Publishing Company, Tokyo. pp66.
Young, A.J. (1988) Human adaptation to cold. In: Human performance physiology and environmental medicine at terrestrial extremes, eds. by Pandolf, K.B., Sawka, M.N., Gonzalez, R.R. Benchmark Press, Indianapolis. p431.