Measuring Adaptation Between Dialogs

Svetlana Stoyancheva
Amanda Stent

SUNY, Stony Brook
Adaptation in Dialog

Change in the communication pattern over time
- Shortening of referential expressions
- Prosody
- Accent
- Hand-gestures
- Convergence on lexical and syntactic choices

“lexical choice variability is high between conversations while it is relatively low within a conversation”
(Brennan 1996)
Examples of Lexical Variation

- "Teacher"
- "Instructor"
- "Professor"
- "Lecturer"

- "Dog"
- "Irish Setter"
- "Red Irish Setter"
- "Creature"
Examples of Lexical Variation

- “Teacher”
- “Instructor”
- “Professor”
- “Lecturer”
Examples of Syntactic Variation

Dative/benefactive

- “He gave the book to Mary”
- “He gave Mary the book”
Evidence of Adaptation in Dialog

Evidence from controlled experiments:
- “lexical choice variability is high between conversations while it is relatively low within a conversation”
- Referring expressions
- Syntactic choices

(Bortfeld and Brennan 1997; Brennan and Clark 1996; Garrod and Anderson 1987)
Causes of Adaptation

- **Recency**

 \((\text{Brown and Dell, 1987; Pickering and Garrod, 2004; Chartrand and Bargh, 1999}). \)

- **Partner adaptation**

 \((\text{Brennan and Clark, 1996; Horton and Gerrig, 2002}) \)

These theories are competing but not necessarily contradicting.
Recency

- Words are activated during language production
- Also called: convergence, priming, alignment

output/input coordination principle
(Garrod and Anderson's 1987)
“people formulate their current utterance according to the same model and semantic rules used to interpret their partner's most recent utterance”
Partner Adaptation

- Based on the model of a partner
- Also called: entrainment, audience design

Conceptual pact *(Brennan)*
“a temporary agreement about how the referent is to be conceptualized”.

New addressee:
- new conceptual pacts
- may not be the same as with previous addressees
Corpus Studies On Recency Adaptation

- [Church 2000] measured lexical adaptation “within document” in corpora of written news
- [Dubey et.al.2006] applied this measure to study syntactic adaptation in dialogs and written text
- [Reitter et.al 2006] studies short-term priming effect in Maptask using logistic regression
- In our work we identify and compare partner-specific and recency adaptation
Setup

3 speakers: A, B, and C

1. A -> B B is primed by A
2. B -> C B may show recency effect
3. B -> A B may show partner effect

- Compare B in 2 to A in 1
- Compare B in 3 to A in 1
Maptask Corpus Structure

Dlg#	giver	follower	set1	set2
1	a1	b1	prime	
2	b2	a2	prime	
3	a2	a1	recency	
4	b1	b2	recency	
5	a2	b2		partner
6	b1	a1	partner	
7	a1	a2		
8	b2	b1		

Hypothesis:
recency adaptation happens between (1-4) and (2-3)
partner adaptation happens between (1-6) and (2-5)
Church’s measure for adaptation

\[f_{w_{p,t}} = \text{# of times } w \text{ occurs in prime set and target set} \]
\[f_{w_{\bar{p},t}} = \text{# of times } w \text{ occurs in target set but not prime set} \]
\[f_{w_{p,\bar{t}}} = \text{# of times } w \text{ occurs in prime set but not target set} \]
\[f_{w_{\bar{p},\bar{t}}} = \text{# of times } w \text{ does not occur in either target set or prime set} \]

Prior \[P_{\text{prior}}(w) = \frac{f_{w_{p,t}} + f_{w_{\bar{p},t}}}{N} \]

Positive Adaptation \[P_+(w) = \frac{f_{w_{p,t}}}{f_{w_{p,t}} + f_{w_{p,\bar{t}}}} \]
Church’s measure for adaptation

- With small datasets random fluctuation of the values. The measure is reliable only for “large” datasets
- High probability features “the”, “a”, occure in almost all documents

If $f_{w_{p},t} = N$, then Prior = Positive Adapt = 1
Proposed Adaptation Measure

1. **Adaptation ratio** - measures adaptation prevalence.

 Define: Feature is ‘adapted’ if its adaptation ratio > 1 or if a feature is more likely to occur frequently after it was ‘primed’ than without priming

 - Allows comparison of adaptation between features and between dialog pairs
 - Applicable to small datasets

2. **Distance measure**

 - Investigate how frequency in the prime affects the frequency in the target
Proposed Adaptation Measures

1. Adaptation ratio
2. Distance measure
Terminology

Document: maptask dialog

Baseline for feature f: average frequency of feature f in all documents

Feature f is primed if it occurs in prime dialog with frequency greater than the baseline

\[f \in D \] A shortcut for: Frequency of feature f in document D is greater than the baseline
Adaptation Ratio

Chance: probability that f co-occurs in prime and target by chance:

\[
P(f \in prime \cap f \in target) = P(f \in prime) \times P(f \in target)
\]

\[
\text{chance} = \left(\frac{P}{N}\right) \times \left(\frac{T}{N}\right)
\]

- N – total number of (prime, target) dialog pairs
- P – number of *prime* dialogs where freq of f > b
- T – number of *target* dialogs where freq of f > b
Adaptation Ratio

Chance probability that \(f \) co-occurs in prime and target by chance

Positive Adaptation:

\[+\text{adapt} = Pr(f \in target \mid f \in Prime) \]

\[+\text{adapt} = T \cap P/P \]

Adaptation Ratio

\[\frac{+\text{adapt}}{\text{chance}} \]

- \(N \): total number of (prime, target) dialog pairs
- \(P \): number of *prime* dialogs where freq of \(f \) > \(b \)
- \(T \): number of *target* dialogs where freq of \(f \) > \(b \)

\[\text{chance} = \frac{P}{N} \times \frac{T}{N} \]
Adaptation Ratio

Positive Adaptation:

\[+\text{adapt} = Pr(f \in \text{target} \mid f \in \text{Prime}) \]

\[+\text{adapt} = T \cap P/P \]

Adaptation Ratio = \[+\text{adapt} / \text{chance} \]

N – total number of (prime, target) dialog pairs
P – number of prime dialogs where freq of f > b
T – number of target dialogs where freq of f > b
Adaptation Ratio

measures adaptation prevalence

Define: Feature is ‘adapted’ if its adaptation ratio > 1
or if a feature is more likely to occur frequently after it
was ‘primed’ than without priming

- Allows comparison of adaptation between different features
- Applicable to features of various frequencies
Distance Measure

- Investigate how priming affects the frequency in the target:
 If a feature is primed and adapted, what is its expected frequency in the target?
Distance Measure

For a feature f in a dialog pair (Prime, Target):

$$distance = t - \frac{(p + b)}{2}$$

t – frequency of feature f in target dialog
p – frequency of feature f in prime dialog
b – average frequency of f

Feature f is “adapted” in a pair of dialogs if $distance > 0$
Strength of adaptation is proportional to the distance
Experimental Questions

1. Identify features that exhibit partner and recency adaptation. Can they be clustered?
2. Which type of adaptation is more prevalent: partner or recency?
3. Does the feature frequency in the prime dialog affect the feature frequency in the target?
Features

- Word stemmed with POS tags – to help distinguish between senses
- Bigrams stemmed with POS tags
- Syntactic (from Maptask annotations)
Word-Stems with Adaptation Ratio > 1 and significant \(\chi^2 \)

	\textbf{partner}	\textbf{recency}
ADJ	right-hand	bottom, right-hand
ADV	when, diagonal	right, well, about
CONJ	if	till, that, so
DET	you, across, on, what, that	my, i, just, that
INTJ	Sorri, err	uh
NOUN	bottom	map
PREP	across, through, along, from	from, by, to
VERB	know, got, take, pass	say

Relative direction Contains ‘you’ Contains ‘I’ or ‘my’

Only features occurring in > 30% of prime dialogs with freq > baseline
Bigrams with Adaptation Ratio > 1 and significant χ^2

Partner	Recency
your left,	no no,
come to,	okay and,
about the,	on my,
go round,	yeah i,
you got,	down to,
up toward,	i mean,
you just,	just below,
right you,	just to,
abov the	now you,
right-hand side,	my map,
you come,	you just,
when you,	down about,
and round,	you got,
if you,	have a,
a wee,	’til you,
round the,	just below,
just abov,	just to,
	no you

Relative direction Contains ‘you’ Contains ‘I’ or ‘my’

Only features occurring in > 30% of prime dialogs with freq > baseline
Comparing Partner and Recency Adaptation

Adaptation Ratio =
+adapt / chance

Distance measure ~
Adaptation strength

* Indicates significance (p<.05)

adaptation ratio and adaptation strength are averaged over all features for each feature type
"Positive adaptation for recency dialog pairs in this corpus appears significantly stronger for each feature type, however the probability of chance cooccurrence is also significantly stronger for recency."

Doesn't this imply that recency is stronger?

No, it is due to the length of the dialogs: the second time (partner) the person spoke, the conversations were a lot shorter.

Svetlana Stenchikova, 8/20/2007
Adaptation Ratio for Selected Syntactic Features

The features examined by Dubey et.al 2006 on Switchboard corpus
Found adaptation between speakers
Adaptation for Selected Syntactic Features

Adaptation Ratio = +adapt / chance

Distance measure ~ Adaptation strength

NP->NN PP rule:
adaptation ratio is stronger for recency means that if primed, speaker is more likely to use this rule in the very next conversation.

Adaptation Strength is higher for the partner scenario means that the “adapting speaker” in partner-scenario will use this rule with higher frequency than the “adapting speaker” in recency-scenario.
Dubey’s Results

Figure 8: Adaptation within documents in the Brown corpus (all items exhibit weak yet statistically significant positive adaptation)

Prior \[P_{\text{prior}}(w) = \frac{f_{w_{p,t}} + f_{w_{\tilde{p},t}}}{N} \]

Positive Adaptation \[P_+(w) = \frac{f_{w_{p,t}}}{f_{w_{p,t}} + f_{w_{p,\tilde{t}}}} \]

Figure 10: Adaptation between speakers in the Switchboard corpus
Effect of Frequency in the Prime

Compute adaptation ratio for all features
Consider the feature to be “Adapted” if Adaptation Ratio > 1

% of features adapted

Adaptation Strength

Frequency of the feature in prime
does not affect the chance of adaptation
But affects the strength of adaptation

SIGDIAL 2007, Antwerpen
Conclusions

- Identified types of features affecting adaptation, difficult to cluster them
- Found evidence for partner and for recency adaptation between dialogs
- Adaptation ratio is stronger in the recency scenario
- Adaptation ratio and adaptation strength are not always proportional
Implications

Evidence for partner adaptation suggests benefits of

- Tuning parsing models (rule and vocabulary probabilities) of a dialog system to a particular user
- Sharing information between parsing and language generation modules
Future Work

- We are open to suggestions for other measures that would help differentiate between recency and partner adaptation.
Future Work

- Do the analysis with low-frequency words only
- Consider adaptation of the ‘taker’
- Measure within-dialog adaptation
- Consider a setup with no interleaving dialog for partner scenario:
 - 1) A->B, 2) B->A partner
 - 1) A->B, 2) B->C recency
- Take into account whether the conversation partners know each other.
- Take into account the eye gaze condition
Questions?
Svetlana Stoyancheva svetastenchikova@gmail.com

Thank you