Tutorial

Modeling and Simulation Workbench for NONMEM: Tutorial on Pirana, PsN, and Xpose

RJ Keizer¹, MO Karlsson¹ and A Hooker¹

Several software tools are available that facilitate the use of the NONMEM software and extend its functionality. This tutorial shows how three commonly used and freely available tools, Pirana, PsN, and Xpose, form a tightly integrated workbench for modeling and simulation with NONMEM. During the tutorial, we provide some guidance on what diagnostics we consider most useful in pharmacokinetic model development and how to construct them using these tools.

CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e50; doi:10.1038/psp.2013.24; advance online publication 26 June 2013

Background

Started in the early 1980s with the development of the NONMEM (acronym based on “NON-linear Mixed-Effects Modeling”) software,¹ “population analysis” has proven to be extremely useful within pharmacometrics, both in the development of new drugs² and the improvement of therapy with approved drugs.³ Development of the NONMEM software continues, and although over time several other modeling software tools have become available, NONMEM is still regarded as the gold standard within the pharmacometric community: a recent survey identified NONMEM (together with PsN)⁴ as the most frequently used software tool by far.⁵ Modeling and simulation (M&S) in clinical pharmacology, and the use of NONMEM in particular, however, has a steep learning curve for most starting researchers. This is partially because of the fact that NONMEM is invoked from the command line, and models are implemented using a Fortran-derived syntax (NM-TRAN). In addition, at its core, NONMEM performs only model estimation (or simulation), and the implementation of essential diagnostic tools such as bootstrap analyses and the creation of goodness-of-fit plots are left to the modeler. Therefore, alongside the development of NONMEM, many third-party tools have been developed that facilitate the use of NONMEM by providing tools for organization and automation. In this tutorial, we will demonstrate the use of some of the most widely used auxiliary software tools: PsN, Xpose,⁶ and Pirana.⁷ All three tools are released under an open-source license and are freely available (except for the commercial use of Pirana, for which a commercial license is required). Separately, each tool offers useful functionalities, but there is a synergistic benefit as well when used together.

The aim of this tutorial is to show how these three tools provide a comprehensive workbench for M&S. This will be performed by showing examples of the most often encountered steps in pharmacokinetic (PK) model development, i.e., a covariate modeling procedure and model evaluation using residual- and simulation-based diagnostics. However, the aim of the tutorial is not to provide guidance on how to perform a population PK analysis but strictly on these software tools. A detailed overview of important aspects in population PK analyses has recently been presented in this journal, and we refer the reader to that article for guidance.⁸ The current tutorial is structured in three parts: first, a brief introduction to these software tools is given explaining their basic purpose. In the main part of the tutorial, we show how a typical PK model-building analysis is performed with these tools and NONMEM. At the end of the tutorial, several interesting additional features are highlighted for each specific tool. We will assume the reader is already somewhat familiar with NONMEM, although we have made efforts to present and discuss the tools in a general manner wherever possible. All of the presented models, data sets, output, and diagnostic plots are available in the Supplementary Table S1 online.

Software

In this tutorial, we will use NONMEM 7.2, Pirana 2.7.0, PsN 3.5.3, and Xpose 4.3.5. It is likely that the future versions will behave similarly, but in earlier versions, not all functions presented here may be available. We will show screenshots taken from Windows, but all programs discussed here function similarly on all major operating systems.

NONMEM

NONMEM⁹ is a modeling software that allows the user to estimate parameters in mixed-effects models (“population approach”) on the basis of maximum-likelihood or Bayesian techniques that use either gradient or stochastic estimation methods. NONMEM translates model code written in a unique Fortran-based syntax (NM-TRAN) into pure Fortran code, which is then compiled and executed. NONMEM is currently developed by ICON Development Solutions (http://www.iconplc.com/technology/products/nonmem/) under a proprietary software license.

¹Department of Pharmaceutical Biosciences, Pharmacometrics research Group, Uppsala University, Uppsala, Sweden. Correspondence: RJ Keizer (ron@pirana-software.com)

Received 1 November 2012; accepted 29 March 2013; advance online publication 26 June 2013. doi:10.1038/psp.2013.24
PsN
PsN\(^{4}\) is a combination of tools for performing advanced M&S with NONMEM. It allows the implementation of bootstraps, visual predictive checks (VPCs), and many other useful functionalities. PsN is written in Perl (and needs Perl installed, freely available for all major operating systems) and is operated from the command line. Development started in 2000, and updates have been released with regular intervals.

Xpose
Xpose\(^{5}\) is a tool for plotting and analyzing NONMEM output, developed as a module for the R software (http://cran.r-project.org/, open-source, S-based statistical software). The tools in Xpose can be used from the R command line or from a text-based menu system in R. Xpose was first released in 1998 and was initially developed for S-Plus. The current version (main version number 4) is, however, released exclusively for R and builds on the \texttt{lattice} module for plotting. Both PsN and Xpose are developed at the Uppsala University and are released under an open-source license (GNU v2).

Pirana
Pirana\(^{7}\) is a graphical user interface for NONMEM, PsN, and Xpose/R. It has functionality for model management, model execution, output generation, interpretation of results, and includes many other tools. Development of Pirana started in 2007 at the Netherlands Cancer Institute/Slotervaart Hospital (Amsterdam, The Netherlands) and is currently continued by Pirana Software & Consulting BV (http://www.pirana-software.com). Pirana is released under an open-source license (Creative Commons) for academic users as well as a commercial license.

TUTORIAL

In this tutorial, file and folder names are shown in \textit{italic}, Pirana actions are shown \textit{red-italic}, while commands, arguments, NONMEM syntax, and screen output are shown in \texttt{fixed-width font}. We will step through an example model-building exercise, with the intent of showing how to create, manage, and evaluate PK models for a given data set. The PK data set used in this tutorial (\texttt{pktab1}) is available in the \textit{Supplementary Table S1} online and contains plasma concentration data obtained from a simulated clinical trial of a novel i.v. drug, performed in 50 patients, measured at 8 time points. All model files that are mentioned in this article are also available online and can be used as reference. Make sure that all software is installed correctly, and NONMEM runs can be started from both PsN and Pirana (visit the respective websites for installation instructions) and that the Xpose4 package is installed in R. Create a folder for this analysis somewhere on your hard-drive, and put \texttt{pktab1} in this folder. Browse to this folder in Pirana and save it as the project “TutorialPSP” (button 4 in Figure 1). As a starting point for NONMEM models, it is often easiest to use the PK model wizard in Pirana or start from one of the models available in the model library. Start the wizard dialog window in Pirana (\textit{Tools} \textrightarrow{} \textit{Wizards}), choose the PK model wizard, and explore the options. However, for this tutorial, we have already provided the first model (\texttt{run1.mod}): copy the model \texttt{run1.mod} from the \textit{Supplementary Table S1} online to the folder you created. This model should now be visible in the Pirana main model list when you direct Pirana to the right folder (if not, refresh Pirana; button 5 in Figure 1). If you run from a model created by the wizard, make sure that the columns in the data set match up exactly with the records specified in the \texttt{INPUT}
record in the model file. For the provided run1.mod, this has already been done.

First runs
If we would invoke the native NONMEM run script, we would run, e.g., nmfe72 run1.mod run1.lst, but Pirana automates this in a dialog window: (select model → right click → NONMEM → nmfe). Several options are available to configure how and where (local or on a cluster) to run the model, or whether to submit it to a job scheduler. If you choose to run your models in Pirana through nmfe, you need to configure a NONMEM installation in Pirana (Settings → NONMEM). Select the quick-find option to scan your hard-drive for common installation locations for NONMEM. If NONMEM is not found there yet, specify the location yourself.

In this tutorial, we will, however, not use nmfe, but only PsN to run models. There are multiple benefits of using PsN's execute over the regular nmfe command, the main ones being that models are run in separate folders, runs can be restarted automatically upon crashes and unsuccessful minimizations, and initial estimates can be tweaked. Select the model and right click → PsN → execute. Pirana will show a similar dialog window as shown for nmfe, but now the command line for PsN's execute tool is shown (Figure 2). For our first run, we will use the default command: execute run1.mod. After clicking the run button, if PsN and Pirana are set up correctly, a console window will open with the following message:

Starting 1 NONMEM executions. 1 in parallel. S:1 . . ,

which indicates that one model estimation has been started. The actual NONMEM process will run in a subfolder created by PsN. By default, this will be /modelfit_dir1, but a custom folder name can be specified using the -dir argument. If the argument -model_dir_name is specified, PsN will automatically choose an informative folder name, in this case /run1.mod.dir.1. Check that inside the folder created by PsN, a subfolder is created in which the NONMEM process actually runs (/NM_run1). In Pirana, PsN folders are hidden by default, as they may quickly clutter the model overview. To unhide them again, select either “PsN folders” or “All folders” from the folder selector (button 7 in Figure 1). Many additional arguments can be supplied to PsN commands to customize how PsN runs the NONMEM model, e.g.:

execute run1.mod -dir=test1 -retries=3 -parafile=mpi6.pnm -nm_version=nm72,

which will run model run1.mod in the folder /test1. PsN is also instructed now to run using NONMEM version 7.2, parallelized using MPI (specified in configuration file mpi6.pnm) and to retry three times if the model does not converge in the initial run, each time changing the initial estimates of the parameters. A list of all available arguments including help information is available from the PsN dialog window in Pirana (Figure 2), which is similar to using the --h and --help arguments on the command line. In the PsN configuration file (psn.conf), a list of default arguments can be supplied as well, so commonly used arguments do not have to be repeated on the command line.

Results evaluation
After estimation has been completed, refresh the Pirana main overview again. Basic results are now shown for the run, such as the objective function value (OFV), whether

![Figure 2 PsN dialog window.](www.nature.com/psp)
minimization was successful (S), and whether the covariance step was successful (C). If the run was successful, PsN will automatically copy back the results file (run1.ISF) and the produced output tables (sdtab1, patab1) to the parent folder, which are then parsed by Pirana upon refreshing. Select the model again, and now select the Estimates tab from the right section of the Pirana window (11 in Figure 1). The right section will then show the parameter estimates for this run. A more detailed overview that will, e.g., show full random effect blocks can be opened from here. Create a run summary in Word format (alternatives are HTML, plain text, or LaTeX), from the menu → Results → Run Reports → Word.

Diagnostic plots are a main decision tool in pharmacometric model development, in which a distinction can be made between residual-based diagnostics (goodness-of-fit plots based on residuals plotted vs. time or model predictions) and simulation-based diagnostics (e.g., VPC). Obviously, no strict rule should be applied here, but in our experience, residual-based diagnostics are more useful in the first stages of model development, whereas simulation-based diagnostics are more useful in the latter stages of model development. Depending on what part of the model is diagnosed, different diagnostic plots will be useful, and most likely, no single plot will suffice to evaluate model fit. Suggestions for diagnostic plots for specific model parts are shown in Table 1. Note that this list is not exhaustive, and in addition, more specific plots may be required for appropriate diagnosis.

For the current analysis, we will first have a look at some basic, residual-based goodness-of-fit plots. A general model diagnostic is the plot of weighted residuals vs. time, or vs. model predictions. For models run with the conditional estimation method (FOCE), it is most appropriate to use conditional weighted residuals (CWRES). Use the Xpose graphical user interface (GUI) within Pirana to create these plots (Figure 3): select model → right click → Xpose → Xpose GUI. Add the plot cwres.vs.pred and cwres.vs.idv to the list of plots, and possibly some additional goodness-of-fit plots (a list of useful Xpose plots is given in Table 2). In these plots, you should observe an obvious pattern in the residuals. It may not be obvious immediately what is the cause of the misspecification, but a look at the individual plots (ind.plots) probably gives more insight: the model seems to be missing the bi-phasic nature of the observed data. Therefore, in the next step, we will add distribution of drug into a peripheral compartment to our PK model, but first, we will briefly discuss how to keep track of model development.

Besides the Xpose GUI, there are several alternative ways of creating diagnostic plots from Pirana:

1. **Datainspector**: a quick and flexible method for creating diagnostic plots based on NONMEM output, or checking input data sets. Select the Datainspector for run1.mod (right click → Model → Open Datainspector). Pirana will ask you now which input- or output file to open, choose the file sdtab1. In the Datainspector window, the variables on the x and y axes can be easily changed to any variable in the data set, and filters can be applied on patient ID, or on any other variable. From this window, R-code can be generated that will recreate the same graph in R.

2. **R-script library**: Pirana comes bundled with a library of diagnostic R scripts, which can be run automatically from Pirana. Select a model and select one of the R scripts from the Scripts Tab, e.g., Basic GOF → DV vs IPRED, and then select Run script from the buttons above the list. The requested plot will be created and opened in a pdf document. Created plots will be listed in the “Reports” tab (10 in Figure 1). The standard scripts bundled with Pirana can be extended and customized easily, but that is beyond the scope of this tutorial. Please refer to the manual and default scripts for guidance.

3. **Xpose menu system in R**: The Xpose menu system can be started from Pirana (right click → Xpose → Start Xpose menu in R), or manually from an R session by invoking:

   ```r
   library(xpose4)
xpose4()
   ```

Xpose will then ask for the run number, which is used to determine which tables to import. Note that to use Xpose, NONMEM needs to be instructed to output tables that adhere to a specific naming and structure (Supplementary Table S1 online, or the Xpose Web site). If you did not use the Pirana model wizard to create the tables, add them manually in the NONMEM model file, using:

```r
$TABLE ID TIME IPRED IWRES EVID MDV NOPRINT ONEHEADER FILE=sdtab1
```

Table 1	Suggested diagnostic plots for PK model development
Residual error model	Individual weighted residuals vs. individual predictions (absval.iwres.vs.ipred)
Distribution/qq-plot of IWRES (iwres.dist.hist/qq)	
In case of shrinkage: CWRES (cwres.dist.hist/qq) or IWRES (iwres)	
Autocorrelation in residuals (autocorr.iwres)	
Between subject variability model	Distribution/qq-plot of EBE’s (parm.hist.hist/qq)
In case of shrinkage: distribution of EBE (ind.plots)	
Correlation between parameters (parm.splom)	
Intercocassion variability model	EBE parameter values vs. occasions (parm.dist.hist/qq)
Distribution/qq-plot of EBE (parm.dist.hist/qq)	
In case of shrinkage: distribution of EBE (ind.plots)	
Absorption model	Individual profiles (ind.plots)
CWRES vs. time after dose (cwres.vs.tad)	
Individual g.o.f. plots (dv.vs.pred.ipred.by.idv)	
Distribution of absorption parameters (k, MTT, F) (parm.hist)	
Disposition model	Residuals vs. time (cwres.vs.idv)
Individual profiles (ind.plots)	
VPC (xpose.VPC)	
Covariates	Parameter (EBE) vs. covariate (parm.vs.cov)
In case of shrinkage: EBE vs. covariate (parm.vs.cov)	
G.o.f. plots by covariate (dv.vs.pred.idv.by.cov)	
Correlations between covariates (cov.splom)	
Influential individuals (dOFV.vs.id)	
VPC stratified by covariate (xpose.VPC)	
VPC with covariate as IDV (xpose.VPC)	

CWRES, conditional weighted residuals; g.o.f., goodness-of-ff; IDV, independent variable; IWRES, individual-weighted residuals; PK, pharmacokinetics; VPC, visual predictive check.
From the Xpose menu system, goodness-of-fit plots can be created, e.g., browse to “4: Goodness-of-fit plots” and then “2: Basic goodness-of-fit plots.”

Model management in Pirana

In M&S projects in both academia and industry, it is essential to keep track of the model development history. Pirana and PsN offer a tool to aid the modeler with this through the run record. The run record entails a standardized way of keeping track of model meta-information such as the “parent” model, a description, and/or a label for the model, and other information about the model components. We consider it good modeling practice to create a new model file for every change that is made to a model.

Duplicate the first model in Pirana (right click on run1.mod actions → File actions → duplicate). In the dialog that will open up, run2.mod is suggested as new model file name, and we can select which model is the reference model for this model (run1.mod), and optionally update the initial estimates with the parameter estimates from the reference model. The model description and other meta-information are stored in the model file itself using the run record syntax (also see http://psn.sourceforge.net/pdfdocs/runrecord_userguide.pdf). Pirana can show the main model overview as a list or as a tree (button 6 in Figure 1) and can export a copy of the run record to various formats including comma separated (csv) files, HTML files, and Word documents (Results → Run records), or create an interactive visualization of the model.

Table 2 Most commonly used Xpose functions and arguments

Xpose4 function	Description	Commonly used arguments
basic.gof	Compound plot of basic goodness-of-fit plots	use.log, force.wres
<y-var>.vs.<x-var>	General diagnostics functions: <y-var> can be one of dv, pred, ipred, iwres, cwres, wres. <x-var> can be any of pred, ipred, idv. Add “.by.cov” or “.by.idv” to the command to split the plot by covariate or by individual	
ind.plots	Plots of dv, pred, and ipred vs. time, split by individual	y.vals, layout
xpose.VPC	Visual predictive check (uses PsN output folder)	VPC.info, VPCtab, PI.cl, PI.real, type
xpose.VPC.categorical	Visual predictive check for categorical data	level.to.plot, max.plots.
autocorr.cwres	Plot cwres vs. cwres to check for autocorrelation in residuals	See above, type, smooth, ids
parm.hist / parm.qq	Plot distributions/qq-plots of model parameters	onlyfirst, abline, smooth
parm.vs.cov	Plot parameters and eta's vs. covariates to check for correlation	onlyfirst, smooth
xpose.VPC.both	Visual predictive check for continuous and categorical data (e.g., BLOQ data)	level.to.plot, max.plots.
xpose.gam	Generalized additive models (covariate model building tool)	parm, covnams, start.mod
basic.model.comp	Compare basic goodness-of-fit plots between two models	object.ref
kaplan.plot	Visualizes data and VPC from survival models	x, y, id, data, by

For most functions listed above, the following general arguments are useful: object (which Xpose database to use), main (plot title), inclZeroWRES (include values where WRES is zero). In R, help information for functions can be obtained by giving the command?<function>, where <function> is the desired R/Xpose function.

dv, dependent variable; idv, independent variable; ipred, individual predictions; pred, population predictions; (c/i)wres, (conditionally/individual) weighted residuals.
development tree or “visual run record” such as that shown in Figure 4 (Results → Run records → Visual run record).

After duplication, the model run2.mod will be shown in the model overview and opened in the editor, where we will now add a peripheral compartment to the model error model: change $SUBROUTINE to use ADVAN3 and TRANS4, change the parameter V into V1, and add to $PK:

\[Q = THETA(3) \]
\[V2 = THETA(4) \]

Of course, initial estimates for the intercompartmental distribution (Q) and peripheral compartment (V2) have to be specified as well in $THETA. For now, we chose to run this model without IVV on these parameters. Run this model using execute, evaluate the drop in objective function, and compare the diagnostic plots for run2 to those made for run1. You should encounter a considerable drop in the OFV and find that the diagnostic residual plots show much improved model fit.

Furthermore, we will diagnose the residual error model, for which an important diagnostic plot is that of absolute individual weighted residuals ($IWRES$) vs. individual predictions ($IPRED$). For a true model, the distribution of absolute residuals should be similar over the whole range of the x-axis variable. If a homoscedastic error structure (additive error) was implemented in run1.mod and run2.mod, the plot will show larger residuals at higher individual predictions. This should therefore lead you to conclude that a heteroscedastic (combined proportional and additive) error model should provide a better description of the data. Therefore, create a new model (run3.mod) based on run2.mod and implement a combined error model using e.g.:

\[
\begin{align*}
Y &= IPRED \times (1 + EPS(1)) + EPS(2) \\
W &= SQRT(IPRED**2 * SIGMA(1,1)**2 + SIGMA(2,2)**2) \\
IWRES &= (DV - IPRED) / W
\end{align*}
\]

It must be noted that the plot mentioned above is only informative at low ε-shrinkage (as a rule of thumb, at ε-shrinkage greater than ~5%, this plot loses informativeness). In cases of higher shrinkage, plots of CWRES vs. individual predictions ($IPRED$), or $IWRES_{npde}$ vs. $IPRED$ are more informative. The diagnostic plots as well as the significant drop in OFV indicate that the combined error model provides better fit.

Covariate model

The data set pktab1 contains three continuous covariates: weight (WT), creatinine clearance (CRCL), AGE, and two binary covariates: SEX and study center (CENT). Because the number of covariates is low (5), one might choose to test these covariates manually. However, in the next step of this tutorial, we will perform stepwise covariate modeling (scm) in PsN, to demonstrate this automated method. In the first phase of the scm, covariates are added to the base model in a stepwise manner based on statistical significance (decrease in OFV). In a second “backward elimination” phase, covariates are then removed from the final model obtained in the first phase, if removal of the covariate does not result in significantly worse fit. The backward step is typically done at a higher significance level. Like all PsN tools, the scm tool requires that a configuration file is created first. Several examples of configuration files are available on the PsN Web site, but here we will create one using the wizard in Pirana (Tools → Wizards → scm configuration file). Create a configuration file, with the filename psp.scm, in which all covariates are tested on both CL and $V1$, at a significance level of 0.1 (forward step) and 0.05 (backward step) and restrict the analysis to linear relationships (set the relationships argument to “1,2”). Check that the correct covariates are included; the ones shown in the wizard are only placeholders. If you are not sure on the correct syntax of the scm file, please have a look at the provided
annotated configuration file (psp.scm in the Supplementary Data online). Before starting the scm, duplicate run3.mod to run4.mod, and remove any $TABLE records that are present.

Start the scm from the PsN dialog window using this command:

```
scm psp.scm -model=run4.mod
```

After the scm has completed, PsN will compile an output file called smclog.txt in the scm folder. Open this file and interpret the information; it holds the results for all tests performed in the scm and shows how the final covariate model was constructed. You should find that four covariate relationships are significant: CRCL on CL, WT on CL, WT on V, and SEX on V. This will be our “final model” from the covariate model-building step. If you did not find these results, compare your results with those provided in the Supplementary Data online.

More elaborate covariate model-building techniques based on the scm are available in PsN as well, such as the cross-validated scm (xy_scm), and the bootstrap of the scm (boot_scm). These tools provide more details on the predictable ability of the model, and on selection bias and expected covariate model size, respectively. They can also be run on linearized versions of the model, to reduce the computational workload. Other covariate modeling tools that are available in PsN include the lasso and the fixed random effects model (FREM), whereas in Xpose, the gam and bootstrap of the gam (bootgam) are implemented. All of these methods have certain advantages and drawbacks, which are however beyond the scope of this article.

Final model
If the scm completed successfully, you will find a folder called final_models inside the scm folder created by PsN. Inside that folder, locate the final model with included covariate relations and copy that to the main model folder, renaming it to run5.mod. We will use this model to perform some more elaborate diagnostic evaluation, i.e., we will get bootstrap estimates for our parameters and create a VPC. Therefore, first open the PsN bootstrap dialog window (Right click → PsN → Model diagnostic → bootstrap). A required argument to the bootstrap command is the -samples argument, which specifies how many bootstrap samples should be drawn. More samples will make the bootstrap estimates and percentile estimates more precise; however, at the expense of increased computation times. The recommended number of samples for an analysis will depend on what statistic is desired by the modeler. For obtaining bootstrap means of the parameter estimates, 100 samples may be enough, but to obtain accurate 5th and 95th percentiles, 1,000 or more are required to obtain precise estimates. After the bootstrap is finished (on a single core, a bootstrap of 200 samples may easily take an hour for this model), the results from the bootstrap are available in the bootstrap folder, in the files raw_results_run5.csv and bootstrap_results.csv. Open these files and interpret the output: are the parameters estimated with adequate precision? In Pirana, select the bootstrap folder created by PsN and run the R script to create plots of parameter distributions (Scripts tab → PsN → Bootstrap results), which facilitates evaluation and interpretation of these bootstrap results.

Earlier in this tutorial, we presented how basic goodness-of-fit plots can be created in Pirana and Xpose. Now, we will use all three tools to create a VPC of the final model (run5.mod). A VPC is an internal validation tool, i.e., it shows how well the model predicts the data on which the model was conditioned. It visualizes the median model prediction, the variability between patients and within patients (5th and 95th percentiles), and the uncertainty around the predicted percentiles. Before creating a VPC, we would like to stress a few points. First, in VPCs, it is important to show the uncertainty around the model-predicted percentiles, instead of presenting only lines indicating the point estimates of the percentiles. Signs of model improvement are when the confidence areas of the simulated percentiles encompass more of the observation percentiles, but also when the confidence intervals themselves are shrinking (while still encompassing the observation percentiles). Furthermore, because the VPC shows summary statistics (percentiles) of observations and predictions for binned data, the binning method is an important consideration. To avoid inflation of the uncertainty around the summary statistics, each bin should contain an adequate amount of observations. A quick rule of thumb is that there should not be more bins than the number of observations per individual. PsN currently incorporates several binning approaches: manual bin specification (-bin_array=x,y,z,etc), binning into an equal number of data points per bin (-bin_by_count=1-no_of_bins=), or spacing the bins equally over the x-axis (-bin_by_count=0, -no_of_bins=). Of note, binning across a large variability in dose and/or influential covariates can diminish the diagnostic value of a VPC. One approach to overcome this is to stratify the VPC by the covariate, but this is not always possible, e.g., due to limited data per stratum. Moreover, when data arises from studies with adaptive designs (e.g., dose adjustments), VPCs are misleading unless the adaptation protocol is included in the model. The prediction-corrected VPC offers a solution to these problems while retaining the visual interpretation of the traditional VPC. Prediction-corrected VPCs can be constructed by adding the argument-pred_corr to the PsN VPC command.

VPCs can be made in Pirana using the PsN dialog window (right click → PsN → model evaluation → VPC), or from the command line. As discussed above, essential arguments to pass to the VPC are the number of samples and the binning method. Increasing the number of samples will increase the accuracy of the summary statistics for the simulation and their uncertainty interval (but it will not decrease the uncertainty interval itself). Start the VPC tool using

```
vpc -samples=500 -no_of_bins=8 -bin_by_count=1 run5.mod
```

The first of the two NONMEM runs that are started will only output a table with the necessary (observation) data for the VPC; it does not perform parameter estimation. The other model runs repeated Monte Carlo simulations of the model, using the same data set design as the original. After the two NONMEM runs have finished, PsN will process the output, bin the simulated and observed data, calculate the percentiles and confidence intervals for each bin, and export a csv file with the summary statistics. This csv-file can then be processed by Xpose and turned into a VPC-plot, which can be automated from Pirana using the Xpose GUI as described before.
using the R scripts library. Both the approaches will create and open a pdf file with the VPC (see example in Figure 5). Using the latter approach, this is done as follows: select the VPC-folder created by PsN, and open the Scripts tab on the right. In the list of R scripts, choose Xpose → VPC → Basic_log_y.R. A pdf file with the VPC will be generated and opened from Pirana. As an exercise, try to create the same plot using the Xpose GUI in Pirana as well: select the model in the main overview and Right click → Xpose → Xpose GUI.

Because only limited space is available for this tutorial, we will not demonstrate other diagnostics. We will however create a run record of the model development: in the menu bar, click Results → Run records → Detailed run record (csv). This will create and open a csv file containing run numbers, descriptions, other meta-information, and run results. If the file does not open automatically, please look it up in the “Files” tab on the right and double click it. As a final step in our PK model development, select the final model again and bundle that model file, the associated result files and output files and the VPC folder into a zip file (Right click → File actions → Compress to zip-file). Moreover, create a bundled report of the goodness-of-fit plots for the final model (in the Reports tab, select the desired pdf’s and click Bundle into… → <output format>.)

Additional features

For all three software tools presented here, we have only scratched the surface of possibilities. The reader is encouraged to explore more advanced functionality using the documentation available on the respective websites. We will highlight a few examples of more advanced features for the three programs below.

PsN. The simulation and re-estimation (sse) tool can be used to evaluate trial designs, e.g., to evaluate whether model parameters can be estimated with adequate precision under the intended or alternative experimental designs or with alternative models. It is also useful for evaluating fundamental modeling aspects, e.g., to evaluate how model diagnostics perform under given designs. Another interesting tool for design evaluation, specifically for the calculation of study power and number of study subjects required, is Monte Carlo Mapped Power (mcmp).21 In this tool, which is also based on

Table 3 Overview of commonly used PsN tools

Tool command	Description	Commonly used arguments
execute	Run a model in NONMEM	-retries -picky -model_dir_name
VPC	Visual predictive check	-samples -bin_by_count -no_of_bins
bootstrap	Run a bootstrap	-bin_array -dv -idv
cdd	Case deletion diagnostics	-samples -stratify_on
sse	Simulation and (re-)estimation	-samples -case columna
mcmp	Monte Carlo mapped power	-samples -alternative_models
scm	Stepwise covariate modeling	-no-estimate_simulation
xv_scm	Cross-validated stepwise covariate modeling	-config_file -model
boot_scm	Bootstrap of stepwise covariate modeling	-config_file -max_steps -splits
l1p	Log-likelihood profiling and maximum-likelihood parameter estimates	-config_file -samples -dummy_covariates
pen_options	Shows all general PsN options	-run_final_models
update_inits	Updates initial estimates based on a NONMEM output file from a previous run	-ofv_increase -thetas -omegas -max_iterations
lasso	the Lasso (covariate modeling)	-nm_version -verbose
nimp	Multiple imputation (missing data method)	-from_model -output_model

General options* Applies to every PsN tool

The general syntax of a PsN command is: <command> <arguments...> <run#.mod>. For each tool, the arguments -h and -help show a list of arguments and a detailed description of the arguments, respectively.

*Note that arguments can also be set in the psn.conf file. In that case, they do not have to be specified again on the command line.

Figure 5 Visual predictive check. A visual predictive check for run3.mod. The solid line connects the observed median values per bin, whereas the dashed lines represent the observed 95th and 95th percentile of the observations. Blue areas indicate the 95% CIs of the 5th and 95th percentile of the predicted (simulated) value, whereas the red area indicates the CI of the median. The logarithmic y-axis makes it easier to judge correspondence between observed and predicted, especially in the terminal part of the plot. For this problem, it would be advisable to make a separate plot for the initial part of the VPC (0–4 h), because it is difficult to see the accordance between observed and predicted in that area. The VPC would also be clearer in the initial part if it would have been plotted without the observations (observed percentiles only).
simulation and re-estimation, the individual OFVs calculated in NONMEM are exploited to evaluate designs in a more rapid way than using sse. Case deletion diagnostics (cdd) is a tool that can be used in the final stages of model development to investigate whether model fit depends more heavily on particular strata of the data set. The most important PsN functions are listed in Table 3.

Xpose. In this tutorial, we showed how to create goodness-of-fit plots from the Xpose menu system, and from the Xpose interface in Pirana (VPC). However, the most efficient way to use Xpose, especially when doing repetitive jobs, is to use scripts to create the desired goodness-of-fit plots. A list of useful Xpose functions is given in Table 2, whereas a more complete overview of functions and example scripts (“bestiary”) is available on the Xpose website. The default plots in Xpose can be extended and modified in various ways. First, most Xpose functions take arguments that alter the implementation of the plot. The looks of the plots can also be changed by directly passing lattice arguments to the Xpose function. Second, the input variables can be altered easily to allow creation of nondefault plots. For example, to create a plot of a covariate METAB vs. IDV instead of DV vs. IDV, we can “trick” Xpose into using METAB as DV while maintaining the plot characteristics:

```r
> change.xvardef(xpdb, "dv") <- c("METAB")
> xplot <- dv.vs.idv(xpdb)
> print(xplot)
```

Finally, since Xpose is an open-source R module, it is possible to modify the Xpose functions directly, if further modifications are required.

Pirana. A model translator is included that can translate any NONMEM model (written in an NM-TRAN ADVAN subroutine) to differential equation code for R (using deSolve library), Berkeley Madonna (software dedicated to ODE simulations), or Matlab/PopED.22 Note that many functions in Pirana can be extended and customized by the user, such as the R-scripts library and the wizards. Pirana can also be used for modeling on remote clusters (through ssh-connections) and has native support for SGE, Torque, and Condor job submissions.

CONCLUSION

In this tutorial, we presented a modeling workbench that incorporates three tools, which in our view make M&S with NONMEM more powerful, more efficient, and easier to perform. It is our intention to implement all new modeling techniques and diagnostics developed within our group into PsN, Xpose, and/or Pirana, so new versions are expected to be released on a regular basis.

Acknowledgments. The researchers in the Pharmacometrics Research Group are acknowledged for their input on the use of diagnostics in model development.

Conflict of Interest. R.J.K. is owner of Pirana Software & Consulting BV, which provides commercial licensing of Pirana. The other authors declared no conflict of interest.

1. Sheiner, L.B. & Baal, S.L. Evaluation of methods for estimating population pharmacokinetic parameters. 1. Michaelis-Menten model: routine clinical pharmacokinetic data. J. Pharmacokinet. Biopharm. 8 (6):553–571 (1980). <http://www.ncbi.nlm.nih.gov/pubmed/7229388>.
2. Stone, J.A. et al Model-based drug development survey finds pharmacometrics impacting decision making in the pharmaceutical industry. J. Clin. Pharmacol. 50 (supplement 9):203–305 (2010). <http://www.ncbi.nlm.nih.gov/pubmed/20881214>.
3. Zandvliet, A.S., Schellens, J.H.M., Beijnen, J.H. & Hulstema, A.D.R. Population pharmacokinetics and pharmacodynamics for treatment optimization in clinical oncology. Clin. Pharmacokinet. 47 (8):487–513 (2008). <http://www.ncbi.nlm.nih.gov/pubmed/18611060>.
4. Lindbom, L., Pilgrim, P. & Jonsson, E.N. Pan-Toolkit—a collection of computer-intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput. Methods. Programs. Biomed. 79 (3):241–257 (2005). <http://www.ncbi.nlm.nih.gov/pubmed/1623794>.
5. Vonesh, E.S. & White, J.R. A white paper on technical and conceptual requirements and competence framework in drug/disease modeling & simulation. CPT:PS (in press).
6. Jonsson, E.N. & Karlsson, M.O. Xpose—an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput. Methods. Programs. Biomed. 61:51–64 (1999). <http://www.ncbi.nlm.nih.gov/pubmed/10195646>.
7. Keizer, R.J., Van Benten, M., Beijnen, J.H., Schellens, J.H.M. & Hulstema, A.D.R Pirana and PCluster: a modeling environment and cluster infrastructure for NONMEM. Comput. Methods. Programs. Biomed. 101 (1):72–79 (2011). <http://www.ncbi.nlm.nih.gov/pubmed/20627442>.
8. Byon, W. et al Establishing best practices and guidance in population modeling: an industry experience with a population pharmacokinetic analysis guideline. CPT:PS (in press).
9. Beal, S., Sheiner, L.B., Boekmann, A. & Bauer, R.J. NONMEM’S User’s Guide (ICON Development Solutions, Ellicott City, MD, USA, 2009).
10. Hooker, A.C., Staatz, C.E. & Karlsson, M.O. Conditional weighted residuals (CWRES): a model diagnostic for the FOCE method. Pharm. Res. 24 (12):2187–2197 (2007). <http://www.ncbi.nlm.nih.gov/pubmed/17612795>.
11. Keizer, R.J. The visual run record: visualization of the model development history. In Abstracts of the World Conference on Pharmacometrics (Seoul, South Korea, 2012).
12. Karlsson, M.O. & Savic, R.M. Diagnosing model diagnostics. Clin. Pharmacol. Ther. 82 (1):17–20 (2007). <http://www.ncbi.nlm.nih.gov/pubmed/17571070>.
13. Keizer, R.J., Harling, K. & Karlsson, M.O. Extended NPDE diagnostics for the between-subject variability and residual error model. PAGE. Abstracts of the Annual Meeting of the Population Approach Group in Europe 21:Absrpt 2538 (2012).
14. Katsube, T., Khandelwal, A., Harling, K., Hooker, A.C. & Karlsson, M.O. Evaluation of stepwise covariate model building combined with cross-validation. In PAGE. Abstracts of the Annual Meeting of the Population Approach Group in Europe 21:Absrpt 2111 (2011). <http://www.page-meeting.org/abstract/2111>.
15. Keizer, R.J., Khandelwal, A., Hooker, A.C. & Karlsson, M.O. The bootstrap of stepwise covariate model building. In PAGE. Abstracts of the Annual Meeting of the Population Approach Group in Europe 21:Absrpt 2191 (Athens, Greece, 2011).
16. Khandelwal, A., Harling, K., Jonsson, E.N., Hooker, A.C. & Karlsson, M.O.A fast method for testing covariates in population PK/PD models. AAPS J. 13 (3):464–472 (2011). <http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3161068&tool=pmcentrez&rendertype=abstract>.
17. Ribbing, J., Nyberg, J., Caster, O. & Jonsson, E.N. The lasso—a novel method for predictive covariate model building in nonlinear mixed effects models. J. Pharmacokinet. Pharmacodyn. 34 (4):485–517 (2007). <http://www.ncbi.nlm.nih.gov/pubmed/17516152>.
18. Karlsson, M.O. A full model approach based on the covariance matrix of parameters and covariates. PAGE. Abstracts of the Annual Meeting of the Population Approach Group in Europe 21:Absrpt 2455 (2012).
19. A tutorial on visual predictive checks. <http://www.page-meeting.org/default.asp?abstrapt=1434>. Accessed 3 August 2012.
20. Bergstrand, M., Hooker, A.C., Wallin, J.E. & Karlsson, M.O. Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J. 13 (2):143–151 (2011). <http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3085712&tool=pmcentrez&rendertype=abstract>.
21. Vong, C., Bergstrand, M., Nyberg, J. & Karlsson, M.O. Rapid sample size calculations for a defined likelihood ratio test-based power in mixed-effects models. AAPS J. 14 (2):179–186 (2012). <http://www.ncbi.nlm.nih.gov/pubmed/223250826>.
22. Nyberg, J., Ueckert, S., Strömberg, E.A., Hennig, S., Karlsson, M.O. & Hooker, A.C. PopED: an extended, parallelized, nonlinear mixed effects models optimal design tool. Comput. Methods. Programs. Biomed. 108 (6):789–805 (2012). <http://www.ncbi.nlm.nih.gov/pubmed/22640817>.

CPT: Pharmacometrics & Systems Pharmacology is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivative Works 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/