The effect of hemodialysis on macular thickness

Утицај хемодијализе на дебљину макуле

1University Clinical Center of Serbia, University Eye Clinic, Belgrade, Serbia;
2Zvezdara University Medical Center, Prof. dr Ivan Stanković Clinic for Eye Diseases, Belgrade, Serbia;
3University of Belgrade, Faculty of Medicine, Belgrade, Serbia;
4University Clinical Center of the Republic of Srpska, Eye Clinic, Banja Luka, Bosnia and Herzegovina

Received: October 28, 2021
Revised: February 1, 2022
Accepted: February 7, 2022
Online First: February 14, 2022
DOI: https://doi.org/10.2298/SARH211028023S

Accepted papers are articles in press that have gone through due peer review process and have been accepted for publication by the Editorial Board of the Serbian Archives of Medicine. They have not yet been copy-edited and/or formatted in the publication house style, and the text may be changed before the final publication. Although accepted papers do not yet have all the accompanying bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: the author’s last name and initial of the first name, article title, journal title, online first publication month and year, and the DOI; e.g.: Petrović P, Jovanović J. The title of the article. Srp Arh Celok Lek. Online First, February 2017.
When the final article is assigned to volumes/issues of the journal, the Article in Press version will be removed and the final version will appear in the associated published volumes/issues of the journal. The date the article was made available online first will be carried over.

*Correspondence to:
Vesna ŠOBOT
University Clinical Center of Serbia, University Eye Clinic
Pasterova 2, 11129 Belgrade, Serbia
E-mail: vesna.sobot01@gmail.com
The effect of hemodialysis on macular thickness

Утицај хемодијализе на дебљину макуле

SUMMARY

Introduction/Objective During hemodialysis (HD) treatment great fluctuations were recorded in the systemic hemodynamic parameters and in the volume and composition of ocular fluid. There are only a few studies that analyzed the effect of HD on retinal and macular thickness with conflicting results. Objective of this study was to determine macular thickness, marked as central foveal thickness, average macular thickness and macular volume, shortly before and after HD.

Methods Prospective study of 30 chronic renal failure (CRF) patients on HD treatment. Thorough ophthalmologic examinations were performed including evaluation of best corrected visual acuity, intraocular pressure and slit-lamp examination of all eye segments. Macular thickness was determined by optical coherence tomography shortly before and after HD. The next parameters were evaluated: central foveal thickness, average macular thickness and macular volume. The correlation between systemic parameters and macular thickness changes during HD was tested.

Results There were significant changes in body weight and blood pressure pre- and post-HD. Results showed macular thickness (central foveal thickness, average macular thickness and macular volume) decreased, but the change was not significant. There was no significant correlation between systemic hemodynamic parameters and macular thickness changes.

Conclusion Results of this study showed there was no statistically significant changes in macular thickness CRF patient undergoing HD. Further research on a larger group of patients and a longer follow-up time are required to confirm these findings.

Keywords: macular thickness; hemodialysis; optical coherence tomography

САЖЕТАК

Увод/Циљ У току једне сесије хемодијализе (ХД) долази до великих промена системских хемодинамских параметара, као и састава и волумена течности која се налази у оку. Постоји мали број студија који су испитивали утицај ХД на дебљину ретине и макуле са контрадикторним резултатима.

Циљ ове студије је био одређивање дебљине макуле, изказане као централна фовеална дебљина, просечна дебљина макуле и укупан волумен макуларне регије, непосредно пре и после хемодијализе.

Метод У проспективну студију укључено је 30 пацијената који су на хроничном програму ХД. Обављен је детаљан офталмологски преглед укључујући одређивање најбоље кориговане више остройте, интраокулярног притиска, преглед предњег сегмента ока и очног дна. Дебљина макуле је одређивана оптичком кохерентном томографијом непосредно пре и после хемодијализе. Параметри праћења су били централна фовеална дебљина, просечна дебљина макуле и укупан волумен макуларне регије.

Резултати Постојала је статистички значајна разлика између телесне тежине и крвног притиска пре и после хемодијализе, тј. дошло је до значајног смањења наведених параметара после ХД. Резултати овог рада су показали да је дошло до смањења дебљине макуле, изказане као централна фовеална дебљина, просечна дебљина макуле и укупан волумен макуларне регије, након ХД, међутим та разлика није била статистички значајна. Није било статистички значајне корелације између испитиваних системских параметара и промене дебљине макуле.

Закључак Резултати овог рада су показали да нема значајног смањења дебљине макуле након ХД код пацијената са хроничном бубрежном инсуфицијенцијом. Међутим, неопходна су даља истраживања са већим бројем пацијената и дужим периодом праћења која би потврдила ове резултате.

Кључне речи: дебљина макуле; хемодијализа; оптичка кохерентна томографија

INTRODUCTION

Most patients with chronic renal failure (CRF) undergo hemodialysis treatment.
Although hemodialysis is effective, in the long term it can lead to numerous changes in many patients. The most common eye problems that occur in patients treated with hemodialysis are changes in visual acuity and refraction, dry eye, calcium deposits on the conjunctiva, "band" keratopathy, corneal endothelial damage, and lens clouding [1, 2]. Furthermore, it has been shown that these patients have morphologic and physiologic changes in the retina [3, 4].

During one HD session, there are substantial changes in electrolyte concentrations and the volume and distribution of body fluids, which can affect many systemic parameters, as well as the composition and volume of fluid in the eye.

Previous studies have shown that HD has an effect on central corneal thickness (CCT) and intraocular pressure (IOP), axial length and ocular surface [5-7]. A very small number of researchers investigated retinal and macular thickness changes during HD. The results of these studies are contradictory. A few studies have shown that HD has an effect on retinal thickness [8-10], while in others this effect was not significant [11, 12]. The aim of this study was to determine macular thickness expressed as central foveal thickness, volume, and average macular thickness immediately before and after hemodialysis.

METHODS

The prospective study enrolled 30 patients who are on a chronic hemodialysis program at the Department of Nephrology of the Clinic for Internal Medicine, Zvezdara Medical Center in Belgrade. The research was conducted from December 2014 to March 2015 at the Clinic for eye diseases, Prof. Dr. Ivan Stanković “Zvezdara Medical Center. Informed consent was obtained from all patients and the Ethics Committee of the Zvezdara Medical Center approved the study. The patients were enrolled in the study according to the following criteria: patients with CRF treated with hemodialysis and visual acuity greater than 0.1. The exclusion criteria from the study were the presence of opaque optical media and refractive anomalies greater than
± 10 Dsph.

Patients underwent hemodialysis three times a week for 3 to 4 hours. It was used standardized dialysate flow rate of 500 ml / min at blood flow rate 250-300 ml / min. A thorough ophthalmological examination was performed, which consisted of the determination of the best corrected visual acuity, intraocular pressure (IOP), examination of the anterior and posterior segment of the eye. Snellen optotype was used to determine visual acuity, while IOP was measured using Goldmann's applanation tonometer. Macular thickness was determined by optical coherence tomography (Spectral Domain Optical Coherence Tomography, SD OCT; Copernicus HR, Optopol) immediately before and after hemodialysis. OCT imaging was performed after the pupils were dilated using local mydriatics (2.5% Sol. Phenylephrin and 1% Sol. Tropicamid). Retinal thickness (RT) was analyzed using data obtained by a map defined by the Early Treatment Diabetic Retinopathy Study (ETDRS) [13]. The following were analyzed: inner, intermediate and outer ring of radius 0.6 vs. 2.2 vs. 3.45 μm. The average retinal thickness corresponding to the inner ring is marked as central foveal thickness (CFT), while the average macular thickness (MEAN) is the average thickness of all three rings. Volume is the volume of the macular region radius 3.45 μm (Figure 1). Blood pressure and body weight were recorded before and after the HD session. Weight change represents the amount of fluid removed by hemodialysis. Standard monitoring parameters (serum concentrations: Ca, P, urea, creatinine, PTH, Fe, Er, ALP; eGFR and Kt / V) are taken from the patient's medical history. Based on the cause of CRF, patients were divided into three groups: HTA, DM and others.

30 eyes from 30 patients were used for statistical analysis. Which eye (right or left) will be included in the analysis was determined by randomization, except for 6 patients in whom only one eye met the inclusion criteria. Descriptive statistical methods and methods for testing statistical hypotheses were used for primary data analysis. The t-test for two dependent samples
and analysis of variance (ANOVA) were used. Pearson's correlation coefficient was used to examine the correlation of age, HD length, and system parameters with changes of macular thickness. Value p<0.05 was considered statistically significant.

RESULTS

The study included 30 patients (17 men and 13 women). The average age of all subjects in the study was 61.2 ± 11.1 years. The youngest participant had 27.0 and the oldest 77.0 years. The causes of CRF in the subjects were hypertensive nephrosclerosis (n = 17), diabetes mellitus (n = 4), while in 9 patients the causes were other (chronic pyelonephritis (n = 3), primary glomerulopathies (n = 3), obstructive uropathy (n = 2) and polycystic kidney disease (n = 1).

Changes in arterial blood pressure (systolic, diastolic and mean) before and after hemodialysis was statistically significant. Average values of differences between systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean blood pressure (MBP) before and after HD were 33.16 ± 19.09 vs. 10.53 ± 9.85 vs. 38.00 ± 36.59 mmHg (p<0.001). (Table 1).

The average value of body weight in subjects before HD was 72.1 ± 15.9 kg, while after HD 67.3 ± 20.0 kg, which is a statistically significant difference (t = 8.999; p<0.001). (Table 2). There was no statistically significant correlation between patient age and changes in body weight and blood pressure, as well as between length of HD and the above parameters (p>0.5).

The effect of hemodialysis on macular thickness

The mean value of central foveal thickness (CFT) before HD was 346.0 ± 118.4 μm, while after HD 308.3 ± 100.1 μm. Difference in central foveal thickness before and after HD was not statistically significant (t = 1.514; p > 0.05). Average value of average macular thickness (MEAN) before HD was 280.1 ± 52.1 μm, while after HD 275.1 ± 52.6 μm. The difference in average macular thickness before and after HD was not statistically significant (t
Average macular volume before HD was 13.44 ± 2.69 mm³, while after HD was 13.17 ± 2.59 mm³. The difference in macular volume before and after HD was not statistically significant (t = 1.347; p>0.05). (Table 3, Figure 2)

There was no statistically significant correlation between age and macular thickness (r = 0.079; p = 0.689), HD length and macular thickness (r = 0.180; p = 0.359), as well as between hemodynamic parameters (ΔBW, ΔBP) and macular thickness (p>0.5).

Change in macular thickness in the examined groups

Mean values of macular thickness changes after HD in groups of patients formed based on CRF causes are listed in Table 4. There were not statistically significant differences in macular thickness before and after HD between groups (p> 0.05).

Correlation of system parameters with macular thickness

The average values of serum concentrations of the examined system parameters are given in Table 5. There was no statistically significant correlation between the parameters listed in Table and macular thickness (p> 0.05).

DISCUSSION

There was a statistically significant difference between body weight and blood pressure (systolic, diastolic and mean) before and after hemodialysis. The principal goal of hemodialysis is to regulate metabolic disbalance and to remove excessively accumulated fluid. Volume overload is one of the main mechanisms of blood pressure elevation in patients undergoing HD [14]. Therefore, the change in body weight and blood pressure during HD is expected because the difference between body weight before and after HD represents the amount of removed liquids.

The results of this research showed that there was a decrease in the macular thickness, expressed as central foveal thickness and average macular thickness, after HD, however this
difference was not statistically significant. Furthermore, findings of our study showed there was no statistically significant correlation between examined systemic parameters and changes in macular thickness. Possible explanation for this result is the mechanisms responsible for maintaining the balance between plasma volume and dynamic changes in fluid volume during HD. Bauer and Brooks in their study [15] showed that, although there is a decrease in the total volume of extracellular fluid during HD, this decrease is present only in the interstitial compartment, while the plasma volume remains unchanged. One of the possible pathophysiological mechanisms that explains this effect represents an increase in colloidal osmotic pressure. Namely, during HD due to fluid loss there is an increase in colloidal osmotic pressure and the creation of a pressure gradient between plasma and interstitial fluids. The pressure gradient causes movement of interstitial fluid to plasma, which maintains the balance between plasma volume and dynamic changes in total fluid volume in patients with HD [16].

It is possible that because of these mechanisms, HD has a low effect on retinal circulation.

The results of research conducted by Sun et al. [11] and Azem et al. [12] are in accordance with the results in this paper. Namely, Sun et al. [11] examined the change in macular thickness, among other parameters, before and after one HD session on 202 patients using OCT. In their research there were no statistically significant changes in macular thickness, although there was a decrease of subfoveal choroidal thickness. Furthermore, in a study conducted by Azem et al. [12] changes in macular thickness were not statistically significant. In both of these studies methodology was very similar to ours. In contrast to the research above, there are also studies which showed statistically significant reduction in macular thickness after hemodialysis [8, 9]. Studies by Jung et al. [8] and Theodossiadis et al. [9], although methodologically very similar to ours, showed that there was a statistically significant reduction in macular thickness after HD. Based on the obtained results, Theodossiadis et al. [9] concluded that the reduction in macular thickness was more pronounced in patients with clinically significant macular
edema. In none of these studies, there was no statistically significant correlation between changes in macular thickness and changes in monitored systemic parameters (body weight and blood pressure), which is complementary to the results presented in this study.

A lot of CRF patients undergoing HD have severe ocular problems involving retina. Proper diagnosing and treating these conditions can be particularly challenging. Knowing how systemic changes influence retinal changes, could help ophthalmologists in clinical practice to correctly interpret diagnostic tests and adequately treat patients. Results of this study showed that there was no significant change of macular thickness during HD, which is valuable information for planning OCT examination which can be done independently of time interval from a HD session.

It is important to note that there were limitations in this research. Total number of 30 patients examined represent an insufficiently large sample and therefore obtained results could not be generalized to all patients with CRF who are on hemodialysis. Moreover, this study examined only the short-term effects of hemodialysis. It is possible the results would be different if patients were examined before and after multiple hemodialysis sessions. Diabetic macular edema is one of the most important causes of vision impairment and it develops mainly due to disruption of blood-retinal barrier and capillary leakage. It is possible that systemic hemodynamic changes during HD have greater influence on macular thickness in diabetic patients. Considering that our study enrolled only four DM patients, further research with more diabetic patients in the study cohort could give us more useful information.

CONCLUSION

The results of this study showed that there was no significant reduction in macular thickness after HD in CRF patients. However, further research with more patients is needed and a longer follow-up period to confirm these results.
Conflict of interest: None declared.
REFERENCES

1. Diaz-Couchoud P, Bordas FD, Garcia JR, Camps EM, Carceller A. Corneal disease in patients with chronic renal insufficiency undergoing hemodialysis. Cornea. 2001 Oct;20(7):695–702. doi: 10.1097/00003226-200110000-00005. PMID: 11588419. https://pubmed.ncbi.nlm.nih.gov/11588419/

2. Chen H, Zhang X, Shen X. Ocular changes during hemodialysis in patients with end-stage renal disease. BMC Ophthalmol. 2018 Aug 23;18(1):208. doi: 10.1186/s12886-018-0885-0. PMID: 30139333; PMCID: PMC6107936. https://pubmed.ncbi.nlm.nih.gov/30139333/

3. Shin YU, Lee DE, Kang MH, Seong M, Yi JH, Han SW, Cho H. Optical coherence tomography angiography analysis of changes in the retina and the choroid after haemodialysis. Sci Rep. 2018 Nov 21;8(1):17184. doi: 10.1038/s41598-018-35562-6. PMID: 30464196; PMCID: PMC6249329. https://pubmed.ncbi.nlm.nih.gov/30464196/

4. Hwang H, Chae JB, Kim JY, Moon BG, Kim DY. Changes in optical coherence tomography findings in patients with chronic renal failure undergoing dialysis for the first time. Retina. 2019 Dec;39(12):2360-2368. doi: 10.1097/IAE.0000000000002312. PMID: 30180144. https://pubmed.ncbi.nlm.nih.gov/30180144/

5. Caglayan M, Kosekahiya P, Takmaz T, Altunoglu A, Ayan B, Atilgan CU, Uysal BS. Effects of hemodialysis on corneal and anterior chamber morphometry and intraocular pressure in patients with end-stage renal disease. Arq Bras Oftalmol. 2017 Jun;80(3):176-180. doi: 10.5935/0004-7299.20170043. PMID: 28832743. https://pubmed.ncbi.nlm.nih.gov/28832743/

6. Kalayci M, Hassan IA, Keinan IA, Cetinkaya E, Sureen E, Tahtabasi M, Sumbul HE. The Effect of Hemodialysis on Axial Length, Ocular Surface, and Intraocular Pressure in Patients with End-Stage Renal Failure. Int J Gen Med. 2020 Nov 6;13:1035-1042. doi: 10.2147/IJGM.S251546. PMID: 33192087; PMCID: PMC7654548. https://pubmed.ncbi.nlm.nih.gov/33192087/

7. Chen SH, Lu DW, Ku WC, Chung LH, Feng SH, Chen YJ, Lu YH; Chai PY. Changes in Intraocular Pressure During Hemodialysis: A Meta-analysis. J Glaucoma. 2021 Sep 1;30(9):866-873. doi: 10.1097/JIG.0000000000001842. PMID: 33813568. https://pubmed.ncbi.nlm.nih.gov/33813568/

8. Jung JW, Yoon MH, Lee SW, Chin HS. Effect of hemodialysis (HD) on intraocular pressure, ocular surface, and macular change in patients with chronic renal failure. Effect of hemodialysis on the ophthalmologic findings. Graefes Arch Clin Exp Ophthalmol. 2018 Jan;256(1):153-162. doi: 10.1007/s00417-017-3023-2. Epub 2012 May 3. PMID: 22552572. https://pubmed.ncbi.nlm.nih.gov/22552572/

9. Theodossiadis PG, Theodoropoulou S, Neamontiou G, Grigoropoulos V, Liarakos V, Triantou E, Theodossiadis GP, Vlahakos DV. Hemodialysis-induced alterations in macular thickness measured by optical coherence tomography in diabetic patients with end-stage renal disease. Ophthalmologica. 2012;227(2):90-94. doi: 10.1159/000331321. Epub 2011 Sep 15. PMID: 21921588. https://pubmed.ncbi.nlm.nih.gov/21921588/

10. Suryakanth S, Shankar HNR, Heralgi MM, Sagar P, Kavitha V, Mahesha S, Babu NS, Tekade P. A study of effect of hemodialysis on macular thickness in patients with end-stage renal disease. Taiwan J Ophthalmol. 2021 Apr;17(11(4)):367-371. doi: 10.4103/tjo.tjo_86_20. PMID: 35070665; PMCID: PMC8757532. https://pubmed.ncbi.nlm.nih.gov/35070665/

11. Sun G, Hao R, Zhang L, Shi X, Hei K, Dong L, Wei F, Jiang A, Li B, Li X, Ke Y. The effect of hemodialysis on ocular changes in patients with the end-stage renal disease. Ren Fail. 2019 Nov;41(1):629-635. doi: 10.1080/0886022X.2019.1635494. PMID: 31269848; PMCID: PMC6609354. https://pubmed.ncbi.nlm.nih.gov/31269848/

12. Azem N, Spierer O, Shaked M, Neudorfer M. Effect of Hemodialysis on Retinal Thickness in Patients with Diabetic Retinopathy, with and without Macular Edema, Using Optical Coherence Tomography. J Ophthalmol. 2014;2014:709862. doi: 10.1155/2014/709862. Epub 2014 Sep 15. PMID: 25298889; PMCID: PMC4179943. https://pubmed.ncbi.nlm.nih.gov/25298889/

13. Early Treatment Diabetic Retinopathy Study design and baseline patient characteristics. ETDRS report number 7. Ophthalmology. 1991 May;98(5 Suppl):741-56. doi: 10.1016/s0161-6420(13)38009-9. PMID: 2062510. https://pubmed.ncbi.nlm.nih.gov/2062510/

14. Alexandrou ME, Theodorakopoulou MP, Sarafidis PA. Lung ultrasound as tool to evaluate fluid accumulation in dialysis patients. Kidney Blood Press Res. 2022 Jan 10. doi: 10.1159/000521691. Epub ahead of print. PMID: 35008093. https://pubmed.ncbi.nlm.nih.gov/35008093/

15. Bauer JH, Brooks CS. Body fluid composition in chronic renal failure. Clin Nephrol. 1981 Sep;16(3):114-8. PMID: 7296968. https://pubmed.ncbi.nlm.nih.gov/7296968/

16. Fauchald P. Transcapillary colloid osmotic gradient and body fluid volumes in renal failure. Kidney International. 1986. p. 29:895-900. doi: 10.1038/ki.1986.83. PMID: 3712972. https://pubmed.ncbi.nlm.nih.gov/3712972/
Figure 1. Optical coherence tomography scan with early treatment diabetic retinopathy study retinal thickness map
Figure 2. The effect of hemodialysis on central foveal thickness
Table 1. The effect of hemodialysis on blood pressure

Parameter	HD	x	sd	med	min	max	p
Systolic blood pressure	before HD	140	26.9	140	80	190	< 0.001
	after HD	116.8	14.9	120	80	140	
Diastolic blood pressure	before HD	74.6	13.7	80	40	110	< 0.001
	after HD	64.7	9.8	65	40	80	
Mean blood pressure	before HD	90	29.2	98.3	0	126.7	< 0.001
	after HD	52	41	78.3	0	100	

HD – hemodialysis; Mean blood pressure – \((2\times\text{DBP}+\text{SBP})/3\)
Table 2. The effect of hemodialysis on body weight

Parameters	n	\(\bar{x}\)	sd	med	min	max	P
BW before HD	22	72.1	15.9	67.9	53.5	110.0	
BW after HD	29	67.3	20.0	66.0	0.0	107.0	
\(\Delta BW\)	21	2.6	1.2	2.5	0.5	5.0	<0.001

BW – body weight; HD – hemodialysis; \(\Delta BW\) – difference in body weight before and after HD.
Table 3. The effect of hemodialysis macular thickness

Parameter	HD	sd	med	min	max	p	
CFT	before HD	346.0	118.4	329.5	175	583	0.142
	after HD	308.3	100.1	300.5	128	545	
MEAN	before HD	280.1	52.1	263.5	199	448	0.734
	after HD	275.1	52.6	269.5	185	398	
Volume	before HD	13.44	2.69	263.5	7.01	21.96	0.347
	after HD	13.17	2.59	269.5	9.06	18.96	

HD – hemodialysis; CFT – central foveal thickness; MEAN – average macular thickness; Volume – macular volume
Table 4. Changes of macular thickness after HD in groups of patients formed based on CRF causes

Parameter	Group	\(\bar{x} \)	sd	min	max	p
\(\Delta \text{CFT} \)	HTA	73.3	131.20	-46	455	0.432
	DM	-7.5	139.82	-216	80	
	Other	7.33	161.17	-272	294	
\(\Delta \text{MEAN} \)	HTA	-1	48.25	-75	88	0.862
	DM	17.25	98.02	-106	131	
	Other	5.89	62.41	-91	93	
\(\Delta \text{Volume} \)	HTA	-0.46	2.56	-5.20	4.31	0.060
	DM	3.44	2.88	0.19	6.44	
	Other	-0.15	3.17	-3.91	4.55	

\(\Delta \text{CFT} \) – difference of central foveal thickness before and after HD; \(\Delta \text{MEAN} \) – difference of average macular thickness before and after HD; \(\Delta \text{Volume} \) – difference in macular volume before and after HD
Table 5. Values of serum concentrations of the examined system parameters

Parameters	n	x̄	sd	med	min	max
Ca	30	2.3	0.2	2.2	1.9	2.9
P	30	1.3	0.5	1.4	0	2.4
Urea	30	21.4	4.9	21.5	13.4	31.7
Creatinine	30	835.4	128	809	623	1211
eGFR	30	5.2	1.1	5	3	8
PTH	30	244	265.1	153.8	15.7	1213
Fe	29	10.2	3.8	9.6	3.2	22.6
Er	27	3.2	0.5	3.4	1.8	4.4
ALP	30	83.6	57.6	64.5	28	310
Kt/V	20	1.4	0.3	1.4	0.8	2.2