Non-destructive mercury exposure assessment in the Brandt’s hedgehog (*Paraechinus hypomelas*): spines as indicators of endogenous concentrations

Reza Dahmardeh Behrooz1 · Giulia Poma2 · Mandana Barghi3

Received: 27 August 2021 / Accepted: 22 March 2022 / Published online: 26 March 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Due to its persistence, bioaccumulation characteristics, and toxicity, environmental contamination with mercury (Hg) is of high concern for human health, living organisms, and ecosystems, and its biological monitoring is highly relevant. In this study, the levels of total Hg were measured in organs, tissues, and spines of 50 individuals of Brandt’s hedgehog collected in Iran in 2019. The Hg median levels in kidneys, liver, muscle, and spines were 156, 47, 47, and 20 ng/g dry weight, respectively. The results showed a significant positive correlation between the levels of Hg in kidneys and liver ($r = 0.519; p < 0.01$) and in spines and muscle ($r = 0.337, p < 0.01$) and kidneys ($r = 0.309, p < 0.05$). Significant differences ($p < 0.05$) in Hg levels in organs and tissues were also observed depending on the sex, weight, length, and age of the individuals. In addition, the median levels of total Hg in kidneys of Brandt’s hedgehogs from an agricultural ecotype (median 190 ± 65) were significantly higher ($p < 0.05$) than those collected from a forest ecotype (median 126 ± 50), suggesting that the habitat could have a significant impact on animal contamination.

Keywords Mercury · Iran · Habitat ecotype · Tissues

Introduction
Mercury (Hg) is an non-essential element which can cause toxic effects in humans and biota when it enters the body, mostly through ingestion, inhalation, and dermal absorption, and reaches concentrations above a certain threshold (Pastorinho and Sousa 2020). Natural sources of Hg are responsible for about half of atmospheric emissions worldwide, while the remaining half derives mostly from anthropogenic sources, such as chemical industry emissions, smelting and melting of other metals (e.g., gold), wastewater treatment, improper disposal of certain products, and the use of pesticides and fertilizers (Smart and Hill 1968; Mortvedt 1995; Navarro et al. 1996; Wagner-Döhler 2003; Yasuda et al. 2004; Zheng et al. 2007; Zhong et al. 2018; Tang et al. 2018, 2020; Sun et al. 2019b; Wang et al. 2019). Due to its known toxicity, bioavailability, and bioaccumulation potential, Hg environmental pollution has caused a growing worldwide concern (Gutiérrez-Mosquera et al. 2021). When reaching aquatic ecosystems, inorganic Hg can be methylated to methylmercury (MeHg) by the action of microorganisms and bioaccumulate into the food chain, where it can cause severe damage to the biota and eventually to humans, including developmental and neurological health issues (Nogara et al. 2019; Gutiérrez-Mosquera et al. 2021).

Assessing Hg environmental contamination through appropriate monitoring programs is thus paramount to preserve the value and biodiversity of ecosystems and evaluate the need for potential remediation actions. Such monitoring programs often include the analysis of various tissues or organs of animals, including fish, birds, and mammals, considered suitable bioindicators of environmental Hg pollution (Singh et al. 2017; Sun et al. 2019a; Dahmardeh Behrooz...
and Poma 2020; Poma et al. 2020). While several studies have focused on measuring Hg levels in animal organs, such as liver and kidneys (Dip et al. 2001; Gamberg et al. 2005; Horai et al. 2006), fewer studies are currently available on investigating Hg levels in mammalian hair, although this matrix has been praised for its ethical and practical advantages (May Junior et al. 2018; Becker et al. 2018; Crowley and Hodder 2019; Martinková et al. 2019; Dahmardeh Behrooz and Poma 2020; Kosik-Bogacka et al. 2020). In particular, hair (i) can be easily collected, stored, and transported; (ii) can be sampled in a non-invasive manner, allowing the monitoring of threatened and/or endangered species; (iii) can incorporate and retain chemicals through the hair follicle; (iv) allows the elimination of toxic elements from the body when it grows; and (v) can be a good indicator of the amount of Hg in the body, showing high correlation between the metal concentrations in hair and in other organs (Crowe et al. 2017; Rendón-Lugo et al. 2017; de Castro and de Oliveira Lima 2018; Yamanashi 2018; Eyrikh et al. 2020).

Among other animals, hedgehogs are considered suitable bioindicators of (local) Hg environmental pollution because they have a small home range, limited migration rate, long life span, and they are often found living near human residential areas and agricultural lands (D’Havé et al. 2005, 2006a, b). In addition, hedgehogs are a mammalian insectivorous species, feeding mostly on beetles, caterpillars, earthworms, and slugs, organisms at the bottom of the food chain and in close contact with the soil (Hendriks et al. 1995; Reinecke et al. 2000). Finally, positive relationships have been previously found between metal concentrations in hair, spines, and organs of hedgehogs (D’Havé et al. 2005). The spines, modified hairs with a thick, hard, outer tube of keratin which mostly serve as defense from predators, may thus have the same potential as hair in assessing the metal body burden of the organism.

The aim of this study was to assess the concentrations and correlations of total Hg in the organs (liver, kidneys), tissues (muscle), and spines of 50 Brandt’s hedgehogs (Paraechinus hypomelas) collected from the Sistan region of Iran. The potential of spines as a non-invasive biological matrix to assess Hg pollution in terrestrial ecosystems and the potential differences in contamination related to the habitat of the selected species were also investigated.

Materials and methods

Collection of samples

Hedgehog samples were collected during summer 2019 from roads passing through forested and agricultural areas in the Sistan region of Iran (Fig. 1). For 30 days, researchers and local volunteers visited each morning selected locations

![Fig. 1 Sampling location roads and ecotypes: 1, forest and 2, agricultural](image-url)
along the road screening for hedgehogs killed in car accidents during the previous night. The least damaged individuals (meaning with bodies left relatively intact) were collected for the study. Length and weight of each individual was recorded; samples were then labeled, placed into zip-lock plastic bags, and stored at −20 °C for transportation. Once at the laboratory, sex and age were determined following available protocols (Reeve and Lindsay 1994; Rautio et al. 2010). Each individual was then dissected, the liver, kidneys, and muscle tissues were removed and stored at −20 °C pending analysis, while the spines were carefully cut from the body using metal scissors (pre-cleaned with deionized water and acetone) and kept at room temperature pending analyses (Dahmardeh Behrooz et al. 2020). Due to the limited, but still present, damage of the individuals following car accidents, hair samples were not considered suitable for collection and analysis.

Sample preparation and analysis

Spine samples were first washed with tap water and soft detergent, followed by three rounds of distilled water to remove any detergent residue, dirt particles, and other superficial impurities, and finally with acetone, following the same protocol in use for the determination of Hg in hair samples (Solgi and Ghasempouri 2015). The spine samples were then dried at room temperature in a dust-free atmosphere and fine-cut with pre-cleaned scissors to resemble powder. Liver, kidney, and muscle samples were dried at 60 °C for 92 h and each powdered in a Chinese mortar to obtain a homogeneous matrix.

Spines (~25 mg) and dried organ and tissue samples (~50 mg) were weighed and immediately analyzed using an AMA 254 mercury analyzer (Leco Corporation Agilent Tech, CA, USA), for which no previous chemical digestion step is requested. Ultrapure oxygen was used as a carrier gas with an inlet pressure of 250 kPa and a flow rate of 200 mL/min. Each sample was analyzed in triplicate.

Quality assurance and quality control

Instrument calibration was performed with a NIST-traceable Hg std solution (AccuTrace Single Element Standard; AccuStandard Inc., New Haven, CT, USA). Seven replicate analyses of standard reference materials SRM 1633b (Constituent Elements in coal fly ash), SRM 2709 (San Joaquin Soil Baseline Trace Element Concentrations), and SRM 2711 (Montana II soil) were used for checking the reliability of the analysis. Accuracy of SRM measurements ranged between 86 and 111%, with a relative standard deviation (RSD) < 15% (Table 1). To prevent carry-over effect, at least one procedural blank was analyzed after three replicates of the same sample. The method detection limit (LOD) was estimated at 0.3 ng/g dry weight (dw) for all considered matrices. The limit of quantification (LOQ) of the proposed method was measured in blank samples and calculated by considering as 3× average blank concentrations and assessed at 1 ng/g dry weight (dw). Due to the low concentration of mercury in the tissues, the device was set to low calibration curve after a few repetitions.

Statistical analysis

Statistical analysis was carried out with the SPSS software (version 16.5). Data were tested for normality using a Kolmogorov-Smirnov test and found normally distributed after log-transformation (log 10). After normal distribution and homogeneity of variance of mercury levels in the samples, parametric statistics were employed. During statistical analysis, non-detects were substituted with zero (<LOQ = 0, i.e., lower bound, LB). An independent t-test was used to assess possible differences in hedgehog tissue concentrations depending on gender and ecotype. Pearson’s rank correlation coefficients were used to test for correlations among various Hg levels in the different tissues. Significant differences were assumed at p < 0.05.

Results and discussion

Mercury concentrations in Brandt’s hedgehogs

Mercury levels of Brandt’s hedgehogs [median; mean ± SD] ranged from 6 to 270 ng/g dw [156; 150 ± 65 ng/g dw] in kidneys, from 2 to 264 ng/g dw [47; 66 ± 61 ng/g dw] in liver, from 3 to 108 ng/g dw [47; 44 ± 26 ng/g dw] in muscles, and from 1 to 94 ng/g dw [20; 27 ± 20 ng/g dw] in spines (Table 2).

A previous study has shown that mercury concentrations in bear hair samples above 6,000 ng/g dw would likely cause observed subclinical neurological effects in the animals (Dietz et al. 2011). Even more so, such neurological effects have been noticed also in mink, when the concentrations of mercury in the hair of this animal were measured up to 30,000 ng/g dw (Basu et al. 2007). According to previous studies, a mercury concentration of 1100 ng/g in liver and kidneys is considered a threshold level for serious health

Table 1 Results of quality assurance procedure for mercury analysis (μg/g). NIST, National Institute of Standard and Technology

SRM	Certified value	Our results	Accuracy
NIST-1633	0.141	0.142	100.7
NIST-2709	1.400	1.558	111.2
NIST-2711	6.250	5.411	86.57
effects in wild mammals (Eisler 1987), while it would appear that liver and kidney residues exceeding approximately 25–30 mg/kg in both organs may be associated with lethality in carnivorous mammals, and perhaps other mammal groups (Beyer and Meador 2011). In addition, 30 mg/g Hg in mammalian liver and kidney tissues is considered as an intoxication threshold, with levels up to 69 mg/g reported in the kidneys of wild and laboratory mammals whose deaths was attributed to mercury poisoning (Wren 1986; Lord et al. 2002; Rezayi et al. 2011). Finally, the US EPA set the lowest guideline value for mercury in human hair at 1000 ng/g dw (Dietz et al. 2011). The concentrations of Hg measured in the organs and spines of the Brandt’s hedgehogs analyzed in this study were considerably lower than all above-mentioned values, suggesting the absence of toxic effects for the considered wildlife.

The mean Hg levels in the liver of Brandt’s hedgehogs (66 ng/g dw) or 198 ng/g ww (considering the dry weight one-third of the wet weight; Rezayi et al. 2011) were generally higher than the average mercury levels measured in liver tissues from the European hedgehog (Erinaceus europaeus), fox (Vulpes vulpes), porcupine (Hystrix cristata), stone marten (Martes foina), and badger (Meles meles) collected from the Italian Province of Pesaro and Urbino (Alleva et al. 2006), and higher than the multi-organ and hair Hg concentrations in Russian wild boars (Sus scrofa) (Eltsova and Ivanova 2021) (Table 3). Average Hg concentrations in the organs and spines of the Brandt’s hedgehogs were instead comparable to or lower than those measured in tissues and hair of bank voles (Clethrionomys glareolus) and wood mice (Apodemus sylvaticus) collected in the UK (Bull et al. 1977), and golden jackal (Canis aureus) from the region of Mazandaran, Iran (Malvandi et al. 2010) (Table 3). Finally, average Hg levels in the tissues and spines of the Brandt’s hedgehogs were lower than those measured in raccoons (Procyon lotor) in the Polish Warta Mouth National Park (Lanocha et al. 2014), Arctic foxes (Vulpes lagopus) from inland and coastal regions of Iceland (Treu et al. 2018), American martens (Martes americana) and northern short-tailed shrew (Blarina brevicauda) from USA (Witt et al. 2020; Talmage and Walton 1993) (Table 3). The overall mercury contamination of the Brandt’s hedgehogs collected from the Sistan region of Iran resulted generally lower than of animals collected near known contamination sources, but nonetheless higher than levels in animals collected where no sources of Hg contamination have been reported (Table 3). This suggests that the habitat of the Iranian hedgehogs is affected by mercury presence, likely deriving from the application of chemical fertilizers and pesticides.

Table 2

Physiological parameters and descriptive statistics of total Hg (ng/g dw) in organs and spines from hedgehog individuals. *p < 0.05

	Weight (g)	Length (cm)	Age (year)	Kidney	Liver	Muscle	Spines
Total (n = 50)							
Mean ± SD	448 ± 89	22 ± 2	2.4 ± 2	150 ± 65*	66 ± 61	44 ± 26	27 ± 20
Median	468	23	2	156	47	47	20
Minimum	102	11	<1	6	2	3	2
Maximum	551	26	6	270	264	108	94
Sex							
Male (n = 30)							
Mean ± SD	465 ± 42	23 ± 1		159 ± 51*	70 ± 70	49 ± 22*	29 ± 19
Median	466	23		156	47	49	25
Minimum	386	20		60	4	10	5
Maximum	551	26		270	264	108	76
Female (n = 20)							
Mean ± SD	421 ± 129	22 ± 3		138 ± 81*	60 ± 46	37 ± 30*	23 ± 22
Median	470	22		159	47	38	18
Minimum	102	11		6	2	3	1.5
Maximum	550	26		253	180	100	94
Ecotype							
Forest (n = 25							
(15 male/10 female)							
Mean ± SD	436 ± 89	22 ± 3		122 ± 50*	59 ± 60	43 ± 26	23 ± 17
Median	453	22		126	47	48	19
Minimum	102	11		6	2	3	1
Maximum	534	25		197	256	100	64
Agriculture (n = 25							
(14 male/11 female)							
Mean ± SD	460 ± 89	23 ± 2		179 ± 65*	74 ± 63	45 ± 26	31 ± 23
Median	481	23		190	49	46	26
Minimum	150	17		13	7	6	2
Maximum	551	26		270	264	108	94
Several research studies showed that mercury levels in animal tissues and organs are potentially influenced by physiological and ecological factors, such as sex, age, size, feeding strategy, and habitat (Malvandi et al. 2010; Bilandžić et al. 2010; Zarrintab and Mirzaei 2017; Treu et al. 2018; Eyrikh et al. 2020).

In this study, the females presented significant lower Hg concentrations than males \((p < 0.05)\) in the analyzed kidneys and muscle tissues (Table 2), suggesting that the mercury burden in the body of female hedgehogs might be reduced by transfer to the fetus through the placenta and to offspring during lactation, as widely described for other mammals (Yoshida et al. 1994; Frodello et al. 2000). Previous research also indicated that the levels of Hg in an organism are expected to increase with age and size, mostly due to the slower removal of this metal from the body and/or the longer time of exposure in older individuals (Braune et al. 2015). Also, in this study, the levels of Hg in selected

Table 3 Average Hg concentration (ng/g dw) in different tissues of Brandt’s hedgehog and other mammals from previous studies

English name	Scientific name	Location	Year	Liver	Kidney	Muscle	Hair	Ref.
Wood mice \((n = 6)\)	*Apodemus sylvaticus* L.	UK. Around a chlor-alkali industrial area	1974	230a	520a	980a	780a	Bull et al. (1977)
Bank vole \((n = 7)\)	*Clethrionomys glareolus*	Oak Ridge, USA. Recorded Hg polluted region	1986–1987	150a	350a	280a	910a	Talmage and Walton (1993)
Short-tailed shrew \((n = 8)\)	*Blarina brevicauda*	Urbino–Pesaro province, Italy. No reported source of Hg contamination	1994–1995	38800b \((12933a)\)	60b \((20a)\)			Alleva et al. (2006)
European hedgehog \((n > 5)\)	*Erinaceus europaeus*							
Fox \((n > 5)\)	*Vulpes vulpes*	Mazandaran, Iran. No reported source of Hg contamination	2007–2008	53a		178a		Malvandi et al. (2010)
Porcupine \((n > 5)\)	*Hystrix cristata*							
Stone marten \((n > 5)\)	*Martes foina*							
Badger \((n > 5)\)	*Meles meles*							
Golden jackal \((n = 21)\)	*Canis aureus*							
Raccoon \((n = 24)\)	*Procyon lotor*	Warta Mouth National Park, Poland. Presence of coal mining and metallurgic industries	2009–2011	2990a	2070a	500a		Lanocha et al. (2014)
Fox	*Vulpes lagopus*	Iceland	2011–2012	8240b \((2747a)\)	6330b \((2110a)\)	7940b \((2647a)\)		Treu et al. (2018)
American marten \((n = 40)\)	*Martes americana*	Michigan, USA. Recorded Hg polluted region	2013–2014	344a	922a	1228a		Witt et al. (2020)
Wild boar \((n = 25)\)	*Sus scrofa*	Russky Sever National Park (Russia). No reported source of Hg contamination	2014–2019	7b \((2.3a)\)	79b \((26.3a)\)	4b \((1.3a)\)	42	Eltsova and Ivanova (2021)
Brandt’s hedgehog	*Paraechinus hypomelas*	Sistan region, Iran	2019	66a	150a	44a	27a \((spines)\)	This study

*Concentration in ng/g dw
^Concentration in ng/g ww

Ecological factors affecting mercury levels

Several research studies showed that mercury levels in animal tissues and organs are potentially influenced by physiological and ecological factors, such as sex, age, size, feeding strategy, and habitat (Malvandi et al. 2010; Bilandžić et al. 2010; Zarrintab and Mirzaei 2017; Treu et al. 2018; Eyrikh et al. 2020).

In this study, the females presented significant lower Hg concentrations than males \((p < 0.05)\) in the analyzed kidneys and muscle tissues (Table 2), suggesting that the mercury burden in the body of female hedgehogs might be reduced by transfer to the fetus through the placenta and to offspring during lactation, as widely described for other mammals (Yoshida et al. 1994; Frodello et al. 2000). Previous research also indicated that the levels of Hg in an organism are expected to increase with age and size, mostly due to the slower removal of this metal from the body and/or the longer time of exposure in older individuals (Braune et al. 2015). Also, in this study, the levels of Hg in selected
hedgehog organs correlated with weight, length, and age. A significant positive correlation was observed between the levels of mercury in liver and kidney tissues and weight \((r = 0.460, p < 0.05, r = 0.295, p < 0.05,\) respectively), between the levels of mercury in kidneys, muscle, and spines with length \((r = 0.471, p < 0.01; r = 0.291, p < 0.05; r = 0.342,\) \(p < 0.05,\) respectively), and between the levels of mercury in kidneys, liver, and spines with age of the animals \((r = 0.530, p < 0.01; r = 0.334, p < 0.05; r = 0.362, p < 0.01,\) respectively) (Table 4). As expected, the age of the animals positively correlated with their weight and length \((p < 0.01),\) highlighting the positive relation between age and mercury accumulation in the animal tissues (Ben-David et al. 2001; Gerstenberger et al. 2006). The average age of hedgehogs analyzed in this study was 2.4 years, about one third of this species life expectancy, likely implying that mercury had enough time to accumulate in the individuals’ internal tissues.

To investigate if the habitat of the animals could also have influenced their contamination, the levels of mercury in organs and spines of Brandt’s hedgehog specimens collected from an agricultural ecotype \((n = 25)\) were compared with those from a forestry ecotype \((n = 25).\) Median Hg levels in kidneys of hedgehogs from the agricultural ecotype \((190 \text{ ng/g dw})\) were significantly higher \((p < 0.05)\) than those from the forestry ecotype \((126 \text{ ng/g dw})\) (Table 2), while no significant differences were observed comparing the Hg concentrations in the other tissues. The overall higher mercury levels of Brandt’s hedgehogs collected from the agricultural ecotype could be likely associated with human presence in this area and the use of mercury in chemical fertilizers and pesticides (Benhaiem et al. 2008; Demesko et al. 2019). To date, urbanization and human-related land alteration (e.g., intensive agricultural activities) have been often associated with increasing metal contamination levels, including As, Cd, Cu, Pb, and Hg, in a wide variety of wildlife (Orlowski et al. 2008; Bilandžić et al. 2010; Flache et al. 2015). In this study, the higher mercury concentrations in Brandt’s hedgehogs collected from the agricultural ecotype could be due to the direct absorption of contaminants from the soil, given that this species has a small habitat surface and that farmers in this area use pesticides that might contain. Research has shown that, among small mammals, insectivores are more exposed to environmental toxins than herbivores, which may be due to the direct absorption of contaminants from the soil and their placement in the middle of the food chain (D’Havé et al. 2006b).

Our results strengthen the hypothesis that a higher bioaccumulation of harmful substances of anthropogenic origin in wild animal populations can be driven by the proximity of human settlements (Demesko et al. 2019; Dahmardeh Behrooz et al. 2020).

Correlations between mercury levels in different tissues

Significant correlations were observed between Hg concentrations in the analyzed hedgehog tissues (Fig. 2 and Table 4). Hg levels in liver tissues were significantly correlated with those in kidneys \((r = 0.519, p < 0.01),\) followed by spines with kidneys \((r = 0.337, p < 0.01)\) and muscles \((r = 0.309, p < 0.05),\) respectively. This outcome agrees with the results of other studies in mammals, suggesting that the levels of mercury measured in hair and spines reflect those in organs and soft tissues (Ikemoto et al. 2004; Dainowski et al. 2015; Treu et al. 2018), and supports the use of non-destructive tissues for the monitoring of mercury environmental pollution (Dahmardeh Behrooz and Poma 2020; Dahmardeh Behrooz et al. 2020).

The stronger correlation found between the levels of mercury in liver and kidney, rather than between spines and organs/tissues, could be mostly attributed to the active Hg metabolism in these two organs which are directly connected through the bloodstream (Treu et al., 2018; Boening, 2000). The reabsorption of Hg via enterohepatic recirculation in the animal body, as mentioned by Boening (2000), can thus explain the strong correlation observed between mercury levels in liver and kidney of the Brandt’s hedgehog. On the other hand, the absence of a significant correlation between spine and liver Hg levels could be due to the role played by factors such as age, sex, sampling location, and the species-specific detoxification capacity of the Brandt’s hedgehog. Finally, a possible residual external contamination with Hg on animal hair and spines, even after washing steps, has been

Table 4: Spearman’s rank correlation between total mercury concentrations (ng/g dw) in organs, tissues, and spines from the Brandt’s hedgehogs \((n = 50),\) \(* p < 0.05,\) **\(p < 0.001\)

	Kidney	Liver	Muscle	Spines	Weight	Length	Age
Kidney	1						
Liver	0.519**	1					
Muscle	0.24	0.074	1				
Spines	0.377**	0.274	0.309*	1			
Weight	0.460**	0.295*	−0.077	0.193	1		
Length	0.471**	0.2	0.291*	0.342*	0.487**	1	
Age	0.530**	0.334*	0.255	0.362**	0.421**	0.847**	1
suggested as a possible additional source of contamination variability, potentially affecting the body-burden relationships (Morton et al. 2002; Li et al. 2008).

Since the specific kinetics of mercury accumulation and detoxification in organs and hair in different animal species are not fully understood yet, there is the need to further investigate Hg complex metabolic transformation processes, especially in terrestrial mammals. On the other hand, the strong correlation between the levels of mercury in the liver and kidneys and between hedgehog spines and kidney and muscle tissues suggests that Brandt’s hedgehog spines can be a valuable non-invasive tool for environmental measurement and monitoring of Hg environmental pollution, but caution is advised when translating the outcomes deriving from this study to other species.

Conclusions

In this study, the levels of mercury were measured in Brandt’s hedgehog organs, muscle tissues, and spines. The results showed a significant positive correlation between the levels of mercury in Brandt’s hedgehog spines and muscle and kidney tissues, suggesting that hedgehog spines can be used as a non-destructive tissue in the monitoring of mercury environmental pollution. Also, living near human residential areas and agricultural lands could have caused a significant increase in levels of mercury in hedgehog tissues. The results of this study showed that also physiological parameters, like sex, size, and age, can significantly affect the Hg pollution burden of the animals. These outcomes set scientific basis for the introduction of the Brandt’s hedgehog and its spines as an environmental indicator for measuring metal pollution in terrestrial ecosystems.

Author contribution RDB—conceptualization, formal analysis, data curation, investigation, writing—original draft preparation; GP and MB—methodology, writing—review and editing. All authors have read and agreed to the current version of the manuscript.

Funding This work was funded by the University of Zabol, Project code PR-UOZ 1400-2.

Data availability The data and materials for this work are available upon request.

Declarations

Ethics approval and consent to participate All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee University of Zabol with reference number 004.1399.REC.UOZ.IR.

Consent for publication I understand that the text and any pictures published in the article will be freely available on the internet and may be seen by the general public. The pictures, and text may also appear on other websites or in print, may be translated into other languages or used for commercial purposes.

Conflict of interest The authors declare no competing interests.

References

Alleva E, Francia N, Pandolfi M et al (2006) Organochlorine and heavy-metal contaminants in wild mammals and birds of Urbino-Pesaro Province, Italy: an analytic overview for
potential bioindicators. Arch Environ Contam Toxicol 51:123–134. https://doi.org/10.1007/s00244-005-0218-1
Basu N, Scheuhammer AM, Rouvainen-Watt K et al (2007) Decreased N-methyl-D-aspartic acid (NMDA) receptor levels are associated with mercury exposure in wild and captive mink. Neurotoxicology 28:587–593
Becker DJ, Chumchal MM, Broders HG et al (2018) Mercury bioaccumulation in bats reflects dietary connectivity to aquatic food webs. Environ Pollut 233:1076–1085. https://doi.org/10.1016/j.envpol.2017.10.010
Ben-David M, Duffy LK, Blundell GM, Bowyer RT (2001) Natural exposure of coastal river otters to mercury: relation to age, diet, and survival. Environ Toxicol Chem An Int J 20:1986–1992
Benhaim S, Delon M, Lourtet B et al (2008) Hunting increases vigilance levels in roe deer and modifies feeding site selection. Anim Behav 76:611–618. https://doi.org/10.1016/j.anbehav.2008.03.012
Beyer WN, Meador JP (2011) Environmental contaminants in biota: interpreting tissue concentrations. CRC Press
Bilandzic N, Dezdek D, Sedak M et al (2010) Concentrations of trace elements in tissues of red fox (Vulpes vulpes) and stone marten (Martes foina) from suburban and rural areas in Croatia. Bull Environ Contam Toxicol 85:486–491. https://doi.org/10.1007/s00128-010-0416-2
Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351
Braune B, Chételat J, Amyot M et al (2015) Mercury in the marine environment of the Canadian Arctic: review of recent findings. Sci Total Environ 509:67–90
Bull KR, Roberts RD, Inskip MJ, Goodman GT (1977) Mercury concentrations in soil, grass, earthworms and small mammals near an industrial emission source. Environ Pollut 12:135–140. https://doi.org/10.1016/0013-9377(77)90016-7
Crowe W, Allsopp PJ, Watson GE et al (2017) Mercury as an environmental stimulus in the development of autoimmunity—a systematic review. Autoimmun Rev 16:72–90
Crowley SM, Hodder DP (2019) Factors influencing exposure of North American river otter (Lontra canadensis) and American mink (Neovison vison) to mercury relative to a large-scale reservoir in northern British Columbia, Canada. Ecotoxicology 28:343–353. https://doi.org/10.1007/s10646-019-02027-z
D’Havé H, Scheirs J, Mubiana VK et al (2005) Nondestructive pollution exposure assessment in the European hedgehog (Erinaceus europaeus): I. Relationships between concentrations of metals and arsenic in hair, spines and soil. Environ Toxicol Chem 24(2356). https://doi.org/10.1897/04-597R.1
D’Havé H, Scheirs J, Covaci A et al (2006a) Nondestructive pollution exposure assessment in the European hedgehog (Erinaceus europaeus): III. Hair as an indicator of endogenous organochlorine compound concentrations. Environ Toxicol Chem 25:158. https://doi.org/10.1897/05-208R.1
D’Havé H, Scheirs J, Mubiana VK et al (2006b) Non-destructive pollution exposure assessment in the European hedgehog (Erinaceus europaeus): II. Hair and spines as indicators of endogenous metal and As concentrations. Environ Pollut 142:438–448. https://doi.org/10.1016/j.envpol.2005.10.021
Dahmardeh Behrooz R, Poma G (2020) Evaluation of mercury contamination in Iranian wild cats through hair analysis. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02148-1
Dahmardeh Behrooz R, Poma G, Covaci A (2020) Assessment of persistent organic pollutants in hair samples collected from several Iranian wild cat species. Environ Res 183:109198. https://doi.org/10.1016/j.envres.2020.109198
Dainowski BH, Duffy LK, McIntyre J, Jones P (2015) Hair and bone as predictors of tessular mercury concentration in the Western Alaska red fox, Vulpes vulpes. Sci Total Environ 518:526–533
de Castro N, de Oliveira LM (2018) Hair as a biomarker of long term mercury exposure in Brazilian Amazon: a systematic review. Int J Environ Res Public Health 15:500
Delpheke B, Joris C, Decadt G (1984) Mercury contamination of the Belgian avifauna sampling two-hundred-and-one birds found dead in Belgium between 1970 and analytical procedure six different procedures to determine the total mercury concentrations in. 7: Demesko J, Markowski J, Demesko E et al (2019) Ecotype variation in trace element content of hard tissues in the European roe deer (Capreolus capreolus). Arch Environ Contam Toxicol 76:76–86. https://doi.org/10.1007/s00244-018-0580-4
Dietz R, Born EW, Riget F et al (2011) Temporal trends and future predictions of mercury concentrations in Northwest Greenland polar bear (Ursus maritimus) hair. Environ Sci Technol 45:1458–1465
Dip R, Stieger C, Deplazes P et al (2001) Comparison of heavy metal concentrations in tissues of red foxes from adjacent urban, suburban, and rural areas. Arch Environ Contam Toxicol 40:551–556
Eisler R (1987) Mercury hazards to fish, wildlife, and invertebrates: a synoptic review. Fish and Wildlife Service, US Department of the Interior
Eltsova L, Ivanova E (2021) Total mercury level in tissues of commercial mammalian species (wild boar, moose) of the Russky Sever National Park (north-west of Russia). EJS Web Conf 265:05009. https://doi.org/10.1051/e3conf/202126505009
Eyrikh S, Boeskorov G, Serykh T et al (2020) Mercury in hair of mammoth and other prehistorical mammals as a proxy of Hg level in the environment associated with climate changes. Appl Sci 10:8664
Flache L, Czarnecki S, Diüring R-A et al (2015) Trace metal concentrations in hairs of three bat species from an urbanized area in Germany. J Environ Sci 31:184–193. https://doi.org/10.1016/j.jes.2014.12.010
Frodello JP, Romeo M, Viale D (2000) Distribution of mercury in the organs and tissues of five toothed-whale species of the Mediterranean. Environ Pollut 108:447–452
Gamberg M, Boila G, Stern G, Roach P (2005) Cadmium, mercury and selenium concentrations in mink (Mustela vison) from Yukon, Canada. Sci Total Environ 351:523–529
Gerstenberger SL, Cross CL, Divine DD et al (2006) Assessment of mercury concentrations in small mammals collected near Las Vegas, Nevada, USA. Environ Toxicol An Int J 21:583–589
Gutiérrez-Mosquera H, Marrugo-Negrete J, D’ieez S et al (2021) Mercury distribution in different environmental matrices in aquatic systems of abandoned gold mines, Western Colombia: focus on human health. J Hazard Mater 404:124080
Hendriks AJ, Ma W-C, de Bruns J et al (1995) Modelling and monitoring organochlorine and heavy metal accumulation in soils, earthworms, and shrews in rhine-delta floodplains. Arch Environ Contam Toxicol 29:115–127
Horai S, Minagawa M, Ozaki H et al (2006) Accumulation of Hg and other heavy metals in the Javan mongoose (Herpestes javanicus) captured on Amamioshima Island, Japan. Chemosphere 65:657–665
Ikemoto T, Kunito T, Watanabe I et al (2004) Comparison of trace element accumulation in Baikal seals (Pusa sibirica), Caspian seals (Pusa caspica) and northern fur seals (Callorhinus ursinus). Environ Pollut 127:83–97
Kosik-Bogacka D, Osten-Sacken N, Łanocha-Arendarczyk N et al (2021) Mercury distribution in different environmental matrices in aquatic systems of abandoned gold mines, Western Colombia: focus on human health. J Hazard Mater 404:124080
Kosik-Bogacka D, Osten-Sacken N, Łanocha-Arendarczyk N et al (2021) Mercury distribution in different environmental matrices in aquatic systems of abandoned gold mines, Western Colombia: focus on human health. J Hazard Mater 404:124080
Kosik-Bogacka D, Šenkarevic P, Osten-Sacken N et al (2021) Mercury in hair of foxes (Vulpes vulpes) from the Western and Eastern Carpathian mountains. Environ Sci Technol 55:11356–11365
Li Y-F, Chen C, Li B et al (2008) Scalp hair as a biomarker in environmental and occupational mercury exposed populations: suitable or not? Environ Res 107:39–44

Lord CG, Gaines KF, Boring CS et al (2002) Raccoon (Procyon lotor) as a bioindicator of mercury contamination at the US Department of Energy’s Savannah River Site. Arch Environ Contam Toxicol 43:356–363

Malvandi H, Ghasempouri SM, Esmaili-Sari A, Bahramifar N (2010) Evaluation of the suitability of application of golden jackal (Canis aureus) hair as a noninvasive technique for determination of body burden mercury. Ecotoxicology 19:997–1002. https://doi.org/10.1007/s10646-010-0504-1

Martinková B, Janiga M, Pogányová A (2019) Mercury contamination of the snow voles (Chionomys nivalis) in the West Carpathians. Environ Sci Pollut Res 26:35988–35995. https://doi.org/10.1007/s11356-019-06714-6

May Junior JA, Quigley H, Hoogestijn R et al (2018) Mercury content in the fur of jaguars (Panthera onca) from two areas under different levels of gold mining impact in the Brazilian Pantanal. An Acad Bras Cienc 90:2129–2139

Morton J, Carolan VA, Gardiner PHE (2002) Removal of exogenously bound elements from human hair by various washing procedures and determination by inductively coupled plasma mass spectrometry. Anal Chim Acta 455:23–34

Mortvedt JJ (1995) Heavy metal contaminants in inorganic and organic fertilizers: nutrient cycling in agroecosystems

Navarro RR, Sumi K, Fujii N, Matsumura M (1996) Mercury removal from wastewater using porous cellulose carrier modified with polyethyleneimine. Water Res 30:2488–2494

Nogara PA, Oliveira CS, Schmitz GL et al (2019) Methylmercury’s chemistry: from the environment to the mammalian brain. Biochim Biophys Acta - Gen Subj 1863:129284. https://doi.org/10.1016/j.bbagbn.2019.01.006

Orlowski G, Polechonski R, Dobicki W, Zawada Z (2008) Heavy metal concentrations in the tissues of the black-headed gull Larus ridibundus L. nesting in the dam reservoir in south-western Poland. Polish J Ecol 55:783–793

Pastorinho MR, Sousa ACA (2020) Pets as sentinels of human exposure to neurotoxic metals. In: Pets as sentinels, forecasters and promoters of human health. Springer International Publishing, Cham, pp 83–100

Poma G, Malarvannan G, Covaci A (2020) Pets as sentinels of indoor contamination. In: Pets as sentinels, forecasters and promoters of human health. Springer, pp 3–20

Rautio A, Kunnasranta M, Valtonen A et al (2010) Sex, age, and tissue specific accumulation of eight metals, arsenic, and selenium in the European hedgehog (Erinaceus europaeus). Arch Environ Contam Toxicol 59:642–651

Reeve N, Lindsay R (1994) Hedgehogs: T. & AD Poyser London

Reinecke AJ, Reinecke SA, Musilbooneo DE, Chapman A (2000) The transfer of lead (Pb) from earthworms to shrews (Myosorex varius). Arch Environ Contam Toxicol 39:392–397

Rendón-Lugo AN, Santiago P, Puente-Lee I, León-Paniagua L (2017) Permeability of hair to cadmium, copper and lead in five species of terrestrial mammals and implications in biomonitoring. Environ Monit Assess 189:640

Rezayi M, Esmaeli AS, Valinasab T (2011) Mercury and selenium content in Otolithes ruber and Paetodes crumei from Khuzestan Shore, Iran. Bull Environ Contam Toxicol 86:511–514

Singh N, Gupta VK, Kumar A, Sharma B (2017) Synergistic effects of heavy metals and pesticides in living systems. Front Chem 5:70

Smart NA, Hill ARC (1968) Pesticides residues in foodstuffs in Great Britain. VI.—mercury residues in rice. J Sci Food Agric 19:315–316

Solgi E, Ghasempouri SM (2015) Application of brown bear (Ursus arctos) records for retrospective assessment of mercury. J Toxicol Environ Heal Part A 78:342–351. https://doi.org/10.1080/15287 394.2014.968816

Sun J, Bustnes JO, Helander B et al (2019a) Temporal trends of mercury differ across three northern white-tailed eagle (Haliaeetus albicilla) subpopulations. Sci Total Environ 687:77–86. https://doi.org/10.1016/j.scitotenv.2019.06.027

Sun R, Jisrka M, Amos HM et al (2019b) Modelling the mercury stable isotope distribution of Earth surface reservoirs: implications for global Hg cycling. Geochim Cosmochim Acta 246:156–173

Talmage SS, Walton BT (1993) Food chain transfer and potential renal toxicity of mercury to small mammals at a contaminated terrestrial field site. Ecotoxicology 2:243–256. https://doi.org/10.1007/ BF00368533

Tang Z, Fan F, Wang X et al (2018) Mercury in rice (Oryza sativa L.) and rice-paddy soils under long-term fertilizer and organic amendment. Ecotoxicol Environ Saf 150:116–122

Tang Z, Fan F, Deng S, Wang D (2020) Mercury in rice paddy fields and how does some agricultural activities affect the translocation and transformation of mercury - a critical review. Ecotoxicol Environ Saf 202:110950. https://doi.org/10.1016/j.ecosafe.2020.110950

Treu G, Krone O, Unnsteinsdottir ER et al (2018) Correlations between hair and tissue mercury concentrations in Icelandic arctic foxes (Vulpes lagopus). Sci Total Environ 619–620:1589–1598. https://doi.org/10.1016/j.scitotenv.2017.10.143

Wagner-Döbler I (2003) Pilot plant for bioremediation of mercury-containing industrial wastewater. Appl Microbiol Biotechnol 62:124–133

Wang X, Yuan W, Lin C-J et al (2019) Climate and vegetation as primary drivers for global mercury storage in surface soil. Environ Sci Technol 53:10665–10675

Witt JC, Spriggs MC, Veverica T et al (2020) Bioaccumulation of mercury in terrestrial carivor American marten (Martes americana). J Wild Dis 56:388. https://doi.org/10.7589/2019-05-138

Wren CD (1986) A review of metal accumulation and toxicity in wild mammals. Environ Res 40:210–244. https://doi.org/10.1016/S0013-9351(86)80098-6

Yamanashi Y (2018) Is hair cortisol useful for animal welfare assessment? review of studies in captive chimpanzees. Aquat Mamm 43:1–5

Yasuda Y, Matsuyama A, Yasutake A et al (2004) Mercury distribution in farmlands downstream from an acetaldehyde producing chemical company in Qingzhen City, Guizhou, People’s Republic of China. Bull Environ Contam Toxicol 72:445–451

Yoshida M, Watanabe C, Satoh H et al (1994) Milk transfer and tissue distribution of soil mercury in the area suffering combined pollution by zinc smelting and chlor-alkai production. Chinese J Soil Sci 38:361–364

Zarrintab M, Mirzaei R (2017) Evaluation of some factors influencing on variability in bioaccumulation of heavy metals in rodents species: Rombomys opimus and Rattus norvegicus from central Iran. Chemosphere 169:194–203. https://doi.org/10.1016/j.chemosphere.2016.11.056

Zheng DM, Wang QC, Zheng N, Zhang SQ (2007) The spatial distribution of soil mercury in the area suffering combined pollution by zinc smelting and chlorine-alkali production. Chinese J Soil Sci 38:578–585

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.