Original Research Article

Comparative Morphometric Analysis for Differentiation of Three Demodex Mite Species causing Canine Demodicosis

Alok Kumar Chaudhary*, Umesh Dimri, Y. Ajith, E. Madesh, Supriya Yadav, K. Kavitha and Stanzin Angmo

Division of Veterinary Medicine Indian Veterinary Research Institute, Izatnagar, Bareilly, India (UP)

*Corresponding author

A B S T R A C T

In the present study, Demodex mite species of dog were differentiated based on their morphometric analysis. For mite’s micrometry, skin scarping materials were collected from 40 demodicosis clinically infected dogs, presented with different clinical manifestations. Out of 150 dog mite’s species D. canis (n=50), D. cornei (n=50) and D. injai (n=50) were randomly selected for ocular micrometry of mites, body size and its segments. Correlation between body size and its body segments of all three Demodex species were estimated by descriptive statistical data analysis. There was a significant correlation between total body length and length of the podosoma and opisthosoma (p<0.05) of D. injai as compared to D. canis and D. cornei species of dog mites.

Keywords
Demodex canis, D. cornei and D. injai, micrometry, Canine demodicosis

Introduction

Demodex canis specie was first discovered demodex mite specie of dog by Simon in 1844. Morphological description and name was given by Leydig in 1859. Demodex injai was first reported by Desch and Hillier in 2003 and Demodex cornei, was firstly discovered by Mason in the 20th century. Based on mitochondrial marker 16S rDNA and Cytochrome Oxidase- I, study of Rojas et al., (2012) concluded that, remaining two forms of reported dog mite Demodex injai and Demodex cornei are polymorphs of the Demodex canis species. Remarkable study of Sastre et al., (2012) who analysed phylogenetic trait of these three species based on partial sequence of mitochondrial 16rDNA and proposed that, Demodex injai is the separate species of dog mite and latter on Milosevic et al., (2013) confirmed that, Demodex injai are the valid separate species of dogs mites. Family Demodicidae, have a small, thin, usually elongated body, with four pairs of legs. Their bodies are divided into three distinct part called as gnathosoma (mouth and head part), podosoma consists of four pairs of legs and opisthosoma part of
A long tail. All three demodex mites species have been reported in India as well as abroad Veena et al., 2017 and Fathima et al., 2017. The present investigation was aimed to study the morphometry of three Demodex mites, i.e. D. canis, D. injai and D. cornei in dogs with demodicosis. It might be helpful in the identification of mite species based on their morphology and its measurements.

Materials and Methods

Identification and morphometric measurements were performed in clinical laboratory of Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India. The exact size of a microorganism was determined by using calibrated ocular lens and stage micrometer (Erma objective micrometer, Japan) under compound light microscope (Olympus microscope Model CH-20i.) as per method described by Gonzale and Bendall, (1995) and mites were identified on the basis of morphological characteristics as described by Soulsby, (1996). All the ratios were calculated by using simple arithmetic formulas.

Results and Discussion

Micrometry of 150 mites revealed that, mean length of total body of Demodex injai species was 263.610 ± 2.83 μm. It was significantly larger as compared to D. canis and D. cornei species of mites (p<0.05). It was more or less similar to study of Swathi et al., 2016 who reported the mean body length for Demodex injai was 264 ± 6.89μ. Maximum mean length for Demodex injai has been measured by Desch et al., 2003 it was found that, 361.3 ± 43.9 μm of mean length of total body. Among three demodex species, Demodex cornei was shorter in mean length of total body (156.887 ± 1.35 μm). Recently, some researchers was also reported shorter mean length of same mites species, Sakulpoy and Sangvananond 2010 found to be very closely with finding of the present study (156.92μm) and other were also agreed with similar findings Fathima et al.,2017 and Swathi, et al., 2016. The mean length of total body of Demodex canis was 223.822 ± 1.69 a μm. It was larger as compared to Demodex cornei body length but shorter to Demodex injai. It was matched with the findings of [11], who had reported mean body lengths of Demodex canis as, 211.81 ± 14.86 and 214.32 ± 13.81μm, respectively.

Body segments of all three mite species were also showed significant difference. The mean length/width of first segments of body (gnathosoma) of D. canis, D. injai and D. cornei were 21.76 ± 0.29 a / 20.49 ± 0.32 b, 18.85 ± 0.64 b μm /16.83±0.88 b μm and 22.42 ± 0.60 a μm / 24.04 ± 0.70 c μm respectively. Mean length and width of gnathosoma in Demodex cornei was significantly shorter and wider as compared to D. canis and of Demodex injai gnathosoma. It agrees with findings of Fathima et al., 2017 and Swathi, et al., 2016.

Mean length/width of second segments of body (podosoma) of D. canis, D. injai and D. cornei were 70.38±1.05 a /39.02±0.42 a, 74.94±0.77 c/43.03±0.63 c and 56.89±0.90 b/23.91±0.90 b respectively. Among these larger length of podosoma was measured in Demodex injai. In contrast to, shorter length and comparatively broader width of podosoma were measured in D. cornei. It was agreed with Desch and Nutting 1998.

Significant variation was noticed in length and width of opisthosoma (third body segment) in all three reported species of demodex. Larger opisthosoma was observed in D. injai with mean length 166.246±2.55 c μm and width 37.552 ± 4.39a μm; Blunt and shorter opisthosoma was noticed in D. cornei species as 81.137 ± 1.03b μm and width was
24.24 ± 0.9 \(\mu m \) and in \textit{D. canis} species, it was medium in length 131.674 ± 1.20 \(\mu m \) and width 34.8 ± 0.52 \(\mu m \). It was similar to those findings of Desch and Nutting 1998 (Fig. 1–4).

Table 1. Micrometric analysis of mite’s species of dog causing demodicosis

Part of body	Statistics	\textit{D. canis}	\textit{D. cornai}	\textit{D. injai}	\textbf{P value}
	N=110	N=30	N=50		
Gnathosoma (\(\mu m\))					
L	Mean	21.76±0.29a	18.85±0.64b	22.42±0.60a	<0.05
Range		27.27-10.10	20.20-10.10	30.30-20.20	
G.mean		21.51	18.42	22.08	
W	Mean	20.49±0.32a	16.83±0.88b	24.04±0.70c	<0.05
Range		28.00-12.00	20.20-10.10	30.30-20.20	
G.mean		20.19	16.03	23.56	
Podosoma (\(\mu m\))					
L	Mean	70.38±1.05a	56.89±0.90b	74.94±0.77c	<0.05
Range		90.90-50.50	60.60-50.50	90.90-70.70	
G.mean		69.51	56.68	74.75	
W	Mean	39.02±0.42a	23.91±0.90b	43.03±0.63c	<0.05
Range		40.40-20.20	30.3-02.20	50.50-40.40	
G.mean		38.68	23.44	42.81	
Opisthosoma (\(\mu m\))					
L	Mean	131.674±1.20a	81.137±1.03b	166.246±2.55c	<0.05
Range		161.60-101.00	90.90-70.70	212.10-141.40	
G.mean		131.08	80.95	165.32	
W	Mean	34.8±0.52a	24.24±0.92a	37.55±4.39a	>0.05
Range		50.50-30.30	30.30-20.20	43.43-19.19	
G.mean		34.49	23.76	26.61	
Total body length (\(\mu m\))					
L	Mean	223.82±1.69a	156.88±1.35b	263.61±2.83c	<0.05
Range		266.64-175.74	171.70-141.40	313.10-232.30	
G.mean		223.12	156.72	262.88	

Differences in divisions, fraction and ratios of mites species body segments

Ratio of G: TB	Division	0.097	0.120	0.085
	Fraction	7/72	3/25	4/47
	Ratio	07:72	03:25	04:47
Ratio of P:TB	Division	0.314	0.363	0.284
	Fraction	11/35	33/91	27/95
	Ratio	11:35	33:91	27:95
Ratio of O: TB	Division	0.588	0.517	0.631
	Fraction	10/17	15/29	41/65
	Ratio	10:17	15:29	41:65
Ratio of G:P	Division	0.309	0.331	0.299
	Fraction	17/55	1/3	3/10
	Ratio	17:55	01:03	03:10
Ratio of P: O	Division	0.535	0.701	0.451
	Fraction	31/58	61/87	32/71
	Ratio	31:58	61:87	32:71
Calculated ratios of Gnathosoma length mean and total body length mean of *Demodex canis* it was 07: 72, in *Demodex cornei* was 03:25 and in *Demodex injai* was 04:47. Ratios of Podosoma length mean and total body length mean (P: TB) of *D. canis* was 11:35 in *D. cornei* was 33:91 and in *Demodex injai* was 27:95.

Ratios of opisthosoma length mean and total body length mean (O: TB) of *D. canis* was 10:17 in *D. cornei* was 15:29 and in *Demodex injai* was 41:65. The ratio between gnathosoma and opisthosoma (G: O) length in of *D. canis* was 17:55 in *D. cornei* was 1:3 and in *Demodex injai* was 3:10. The ratio between podosoma and opisthosoma (P: O) length in *D. canis* was 31:58, in *D. cornei* was 61:87 and in *Demodex injai* was 32:7. Calculated ratios were similar to findings of Swathi, *et al.*, 2016.

In conclusion three species of demodex mite were observed in the study viz., *Demodex injai, D. canis* and *D. cornei*. The morphometry of mites revealed that mean total body length of *Demodex cornei* was much less than that of *Demodex canis* and *Demodex injai*. *D. cornei* had short opisthosoma and blunted posterior end as compared to other remaining species of dog’s demodex mite. *Demodex injai* had tall and thinner opisthosoma with pointed end. Calculated ratios indicate that approximated relationship within or between species of body segments of Demodex mites of dog.

Acknowledgements

Authors are thankful to Clinical lab of Medicine Division, IVRI, and India for providing facilities.

References

Chen C: A short-tailed demodectic mite and demodex infestation in a Chihuahua dog. Vet Dermatol 1995, (6): 227-229.

Desch, C., and Nutting W: *Demodex canis* redescription and reevaluation. Cornell Vet: 1978; (68): 139 Ð149.

Fathima L, Sreenivasamurthy GS and Udayakumar M: Morphometry of demodex species of canines in Hyderabad region of Telangana state: Journal of Entomology and Zoology Studies 2017; 5(6): 1776-1779.

González- A., and Bendall, R. P. Size matters: the use of the ocular micrometer in diagnostic parasitology. Parasitology
Today: 1995; J1(2), 83-85.
Hillier A, Desch CE: Large-bodied Demodex mite infestation in 4 dogs. J Am Vet Med Assoc: 2002; (220): 623-627
Leydig F: About hair follicle mites and itch mite. Arch Natur Berli: 1859; (1): 338. 8.
Mason KV: A new species of Demodex mite with D. canis causing canine demodicosis: a case report. Vet Dermatol: 1993; (4): 37. 12.
Milosevic MA, Frank LA, Brahmbhatt RA, Kania SA. PCR amplification and DNA sequencing of Demodex injai from otic secretions of a dog. Vet Dermatol. 2013; (24):286–e66.
Rojas D, Riazzo M, Callejón C, Guevara. and Cutillas, C.:Molecular study on three morphotypes of Demodex mites (Acarina: Demodicidae) from dogs. Parasitology research: 2012; 111(5), 2165-2172.
Sastre N, Ravera I, Villanueva S, Altet L, Bardagit M, Sánchez A, et al. Phylogenetic relationships in three species of canine Demodex mite based on partial sequences of mitochondrial 16 s rDNA. Vet Dermatol: 2012; (23): 509–e101.
Sivajothi S, Reddy BS, Kumari KN, Rayulu VC. Morphometry of Demodex canis and Demodex cornei in dogs with demodicosis in India. International Journal of Veterinary Health Science and Research. 2013; (1):301.
Soulsby, A., and Clark, E.: The emergence of post-communist management in the Czech Republic. Organization studies.;1996; 17(2), 227-247
Swathi, S. Ayodhya and K. Satishkumar: Micrometry for differentiation of demodex mite species causing canine demodicosis in India. 2016: Int. J. Adv. Res. 4(11), 726-731
Veena M, Dhanalakshmi H, Kavitha K, Placid ED’ Souza and GC Puttalaksmamma: Morphological characterization of demodex mites and its therapeutic management with neem leaves in canine demodicosis: Journal of Entomology and Zoology Studies 2017; 5(5): 661-664.

How to cite this article:
Alok Kumar Chaudhary, Umesh Dimri, Y. Ajith, E. Madesh, Supriya Yadav, K. Kavitha and Stanzin Angmo. 2020. Comparative Morphometric Analysis for Differentiation of Three Demodex Mite Species causing Canine Demodicosis. Int.J.Curr.Microbiol.App.Sci. 9(12): 2151-2155. doi: https://doi.org/10.20546/ijcmas.2020.912.253