Key Role of Deep Orbitals in the $d_{x^2-y^2}$–$d_{3z^2-r^2}$ Gap in Tetragonal Complexes and 10Dq

J. A. Aramburu* and M. Moreno

ABSTRACT: Using first-principles calculations, we show that the origin of the intrinsic $a_{1g}(\sim 3z^2-r^2) - b_{2g}(\sim x^2-y^2)$ splitting, Δ_{int}, in tetragonal transition-metal complexes and the variations of the cubic field splitting, 10Dq, with the metal–ligand distance, R, are much more subtle than commonly thought. As a main novelty, the key role played by covalent bonding with deep valence ligand levels and thus the inadequacy of too simple models often used for the present goal is stressed. Taking as a guide the isolated fluoride complexes where the contribution to 10Dq splitting from bonding with 2s(F) orbitals despite them lying ~ 23 eV below 2p(F) orbitals. This conclusion, although surprising, is also supported by results on octahedral fluoride complexes where the contribution to 10Dq splitting from bonding with 2s(F) orbitals is behind its strong R dependence, stressing that explanations based on the crystal-field approach are simply meaningless.

1. INTRODUCTION

A great deal of research is currently focused on transition metal (TM) compounds due to their potential technological interest, witnessed in lasers2 based on Al$_2$O$_3$:Ti$^{3+}$ or BeAl$_2$O$_4$:Cr$^{3+}$ or devices using manganites.2 Among insulating TM materials, the pioneering work by Sugano and Shulman.16,17 The present properties of such compounds following the way started by particular attention is paid to those containing Cu$^{2+}$ ions. Aside application in the study of enzymes. In addition, some Cu$^{2+}$ and (2) the splitting of Δ_{int}, in tetragonal transition-metal complexes $\sim\Delta_{\text{int}}$ essentially arises from bonding with deep 2s(F) orbitals, with the metal–ligand distance, R, is much more subtle than commonly thought. As a main novelty, the key role played by covalent bonding with deep valence ligand levels and thus the inadequacy of too simple models often used for the present goal is stressed. Taking as a guide the isolated D_{4h} CuF$_6$ complex, it is proved that Δ_{int} essentially arises from bonding with deep 2s(F) orbitals, despite them lying ~ 23 eV below 2p(F) orbitals. This conclusion, although surprising, is also supported by results on octahedral fluoride complexes where the contribution to 10Dq splitting from bonding with 2s(F) orbitals is behind its strong R dependence, stressing that explanations based on the crystal-field approach are simply meaningless.

models that use fitting parameters hardly allow one to know the actual microscopic origin of phenomena.18–20 For this reason, rough approximations such as the superposition21 or the angular overlap22 models together with those based on the crystal field (CF) approach are meaningless for the present goal.

In a first step, the present work explores the influence of covalent bonding upon the splitting Δ in tetragonal MX$_6$ units. Positive Δ values mean in this work that $a_{1g}(\sim 3z^2-r^2)$ has a higher energy than $b_{2g}(\sim x^2-y^2)$. For clarifying the main ideas, the tetragonal CuF$_6^{3-}$ complex is taken as a guide throughout the present work as Δ has been determined for several compounds containing such a complex. It should be noted here that optical excitations do also depend on the internal electric field induced by the rest of the lattice ions upon the electrons confined in the complex$^{23–26}$ and thus there is a contribution to Δ not related to the chemical bonding in the complex.

It is worth noting now that the gap between 2p(F) and 2s(F) valence orbitals of free F atom$^{27–29}$ is about 23 eV. Accordingly, it could be expected that Δ is much more influenced by the covalent bonding with shallow 2p(F) than with deep 2s(F) orbitals. We prove in this work that such a guess is not correct as the reality is certainly more subtle.

Received: December 30, 2020
Revised: March 2, 2021
Published: March 16, 2021
tetragonal additional orthorhombic distortion, favored by the existence of adjacent complexes which share F sites.

Nevertheless, the Jahn–Teller effect is given in Section 2 while Section 3 describes the computational tools is given in Section 2. The values of Δ_{int} and Δ_{ext} metal–ligand distances are taken from experimental data for pure compounds and from calculations for systems where Cu^{2+} enters as an impurity.

Tetragonal complexes are observed for Cu^{2+}-doped cubic lattices as a result of the so-called static Jahn–Teller effect, a phenomenon ultimately due to the unavoidable presence of random strains in any real crystal. Tetragonal CuF_6^{4-} units are also formed in Cu^{2+}-doped $KZnF_3$ or $BaZnF_3$-layered perovskites though there is no Jahn–Teller effect as the $a_1g(\sim 3z^2 - r^2)$ and $b_1g(\sim x^2 - y^2)$ levels are not degenerate following the tetragonal symmetry of the host lattice. Accordingly, the theory describing the Jahn–Teller effect cannot, in general, be transferred to understand pure layered compounds such as the orthorhombic $KZnF_3$ or Cs_2AgF_4. Nevertheless, the Jahn–Teller framework is still surprisingly applied to d^2 ions under tetragonal or lower symmetries.

Compressed tetragonal CuF_6^{4-} units are formed in $KAlCuF_6$ or $CuFAsF_6$ pure compounds in addition to Cu^{2+}-doped crystals. By contrast, in CuF_2 or A_2CuF_4 ($A = K, Na$), the tetragonally compressed CuF_6^{4-} units undergo an additional orthorhombic distortion, favored by the existence of adjacent complexes which share F^- ligands. An orthorhombic instability also takes place in copper Tutton salts and in $NH_4Cl:CuCl_4(H_2O)_2$. The interest in the Δ gap relies on the fact that it is often the lowest optical excitation of compounds with tetragonal MX_6 units.

In a second step, the present work is devoted to clarify quantitatively the origin of the sensitivity of $10Dq$ to variations of the metal–ligand distance, R, in octahedral complexes. Experimentally, it has been found that $10Dq$ depends on R^{-n}, where the exponent n is often found to be close to 5. By this reason, it is still claimed that the exponent n mainly comes from the CF contribution, despite this approach leading to $10Dq$ values much smaller than experimental ones. Seeking to shed light on these issues, in addition to investigating the relation between covalent bonding and the splitting Δ, we have carried out first-principles calculations on tetragonal CuF_6^{4-} units at different values of axial (R_{ax}) and equatorial (R_{eq}) metal–ligand distances. In this analysis, particular attention is paid to explore how the charge on ligands is modified by varying the R_{ax} and R_{eq} distances. In a further step, we analyze in octahedral complexes how the variations of chemical bonding with the metal–ligand distance, R, are quantitatively related to the exponent n.

This work is organized as follows. A brief account of computational tools is given in Section 2 while Section 3 first deals with the two contributions to optical transitions for a TM complex in an insulating compound: the intrinsic one associated with the isolated complex and the extrinsic one due to the internal electric field created by the rest of the lattice ions. That section also deals with the relation between the splitting, Δ, and the variation of charge on ligands. The main results of this work are discussed in Section 4. Special attention is paid in that section to clarify the different influences of bonding with $2p(F)$ and $2s(F)$ orbitals upon the splitting Δ (Section 4.1) of isolated CuF_6^{4-} units and also the origin of the dependence of $10Dq$ on the metal–ligand distance for octahedral complexes (Section 4.2). For the sake of completeness, the reasons behind the similarities and differences between $2p(F)$ and $2s(F)$ orbitals are discussed in Section 4.3. Finally, the applicability of the present ideas to complexes involving Cl^-, Br^-, or O^2- as ligands is briefly dealt with in the last section.

2. Computational Methods

Ab initio density functional theory (DFT) calculations on isolated CuF_6^{4-} complexes have been performed at fixed metal–ligand distances by means of the 2017.03 version of the Amsterdam density functional code. By means of this kind of calculations, we can already explore the dependence of the intrinsic contribution Δ_{int} to the Δ gap upon metal–ligand distances. In these DFT calculations, we have used the popular B3LYP hybrid functional (including 25% of Hartree–Fock exchange) in the spin-restricted and spin-unrestricted Kohn–Sham formalism of the DFT and high-quality all-electron basis sets of triple-ζ plus polarization type. We have verified that similar results are obtained using other hybrid functionals such as the nonempirical PBE0 one.

3. Influence of Covalent Bonding Upon the Δ Splitting in Tetragonal Complexes: A General View

Although in insulating compounds containing TM cations, active electrons are localized in the MX_N complex, the optical properties cannot, in general, be explained considering only that isolated unit. Indeed, the localized electrons lying in the MX_N complex are also subject to the electric field, $E_{\text{int}}(\mathbf{r})$, created by the rest of the lattice ions, which usually has a perturbative character. By this reason, the energy, E, of an electronic transition can be divided in two contributions

$$E = E_{\text{int}} + E_{\text{ext}}$$

where E_{int} is the intrinsic contribution to the isolated MX_N complex at equilibrium geometry while the extrinsic one, E_{ext}, accounts for the effects of the internal electric field, $E_{\text{int}}(\mathbf{r})$. # Table 1. Calculated Intrinsic, Δ_{int}, and Extrinsic, Δ_{ext}, Contributions to the $a_1g(\sim 3z^2 - r^2) - b_1g(\sim x^2 - y^2)$ Gap, Δ, for Systems Displaying Tetragonal CuF_6^{4-} Units, with Cu^{2+}–F^- Distances R_{eq} and R_{ax} (in Å Units),

| System | R_{ax} | R_{eq} | Δ_{int} | Δ_{ext} | $\Delta = \Delta_{\text{int}} + \Delta_{\text{ext}}$ | $|\Delta(\text{exp})|$
|--------------|-----------------|-----------------|------------------------|------------------------|---|-------------------|
| $KAlCuF_6$ | 1.88 | 2.12 | 0.68 | 0.23 | 0.91 | 0.83 |
| $CuFAsF_6$ | 1.84 | 2.17 | 0.83 | 0.36 | 1.19 | (44) |
| $KZnF_3CuF_4$| 1.93 | 2.04 | 0.33 | 0.28 | 0.61 | ~ 0.70 |
| $BaZnF_3CuF_4$| 1.89 | 2.07 | 0.53 | 0.40 | 0.93 | 0.80 |
| $KZnF_3CuF_4$| 2.10 | 1.97 | -0.36 | ~ 0 | <0.5 | (44,47) |

"All energies are given in eV units. When $R_{\text{eq}} < R_{\text{ax}}$ the ground state has a hole in $a_1g(\sim 3z^2 - r^2)$ and the extrinsic contribution tends to enhance the value of the intrinsic one. By contrast, for Cu^{2+} doped into the cubic perovskite $KZnF_3$, displaying an elongated equilibrium geometry, the hole in the ground state lies in $b_1g(\sim x^2 - y^2)$ and thus the sign of Δ_{int} is negative. The total calculated gap, $\Delta = \Delta_{\text{int}} + \Delta_{\text{ext}}$, is compared to available experimental data. The values of R_{ax} and R_{eq} metal–ligand distances are taken from experimental data for pure compounds and from calculations for systems where Cu^{2+} enters as an impurity."
upon the confined electrons. As an example, the intrinsic contribution for 10Dq in ruby and emerald23,36 is the same (10Dq\textsubscript{int} = 2 eV), reflecting the identical Cu2+–O2− distance (1.97 Å) in both gemstones.23,57,58 Thus, the difference between the red ruby and the green emerald simply arises from the distinct shape of the extrinsic $E_n(r)$ field in the two gemstones, leading to the small corrections 10Dq\textsubscript{int} = 0.24 eV for ruby and 10Dq\textsubscript{int} = −0.05 eV for emerald.23,36 In the same vein, the color of the Egyptian blue pigment15 is just the result of a 0.90 eV shift induced by $E_n(r)$ on the highest d−d transition of the square-planar CuO\textsubscript{4} negative chromophore in CaCuSiO\textsubscript{4}6−.

An insight into the Δ gap between $a_{1g}(\sim 3z^2−r^2)$ and $b_{1g}(\sim x^2−y^2)$ levels of tetragonal complexes thus requires taking into account both the intrinsic, Δ_{int}, and extrinsic, Δ_{ext}, contributions. For the sake of clarity, the values of both contributions derived for systems with tetragonal CuF\textsubscript{6}− units are displayed in Table 1. It is worth noting that the existence of an internal electric field allows one to understand why the hole transition of the square-planar CuO\textsubscript{4}− is observed in CaO:Ni2+, a matter dealt with in refs 59 and 60.

Let us consider an isolated MX\textsubscript{6} unit with a small tetragonal distortion depicted in Figure 1. This condition just implies that, if R_{ax} and R_{eq} are the two metal–ligand distances, with a mean value $R_m = (R_{\text{ax}} + 2R_{\text{eq}})/3$, it must be verified that

$$\eta \equiv (R_{\text{ax}} − R_{\text{eq}})/R_m \ll 1 \quad (2)$$

where η reflects the tetragonal distortion from an octahedral MX\textsubscript{6} complex with a metal–ligand distance equal to the mean value R_m.

The condition given by eq 1 is well followed by all systems of Table 1 involving CuF\textsubscript{6}− units, where $\eta < 0.16$. As Δ_{int} should always be zero when $R_{\text{ax}} = R_{\text{eq}}$ then it is function of $R_{\text{ax}} − R_{\text{eq}}$ and can be written in a good first approximation as55,49,52

$$\Delta_{\text{int}} = \beta(R_m)\langle R_{\text{eq}}^3 − R_{\text{ax}}^3 \rangle \quad (3)$$

where the $\beta(R_m)$ quantity only depends on the R_m value. Previous studies on systems45,49,52 with tetragonal CuF\textsubscript{6}− units lead to a value $\beta \approx 2.7$ eV/Å when $R_m \approx 2.05$ Å. It should be remarked that eq 3 is valid for systems displaying a static Jahn–Teller effect (like KZnF\textsubscript{3}:Cu2+) as well as for those whose ground state is determined by the internal electric field,45 such as it happens for CuF\textsubscript{3}F\textsubscript{2}, K\textsubscript{2}ZnF\textsubscript{3}:Cu2+.

Therefore, the β quantity is common to all systems with tetragonal CuF\textsubscript{6}− units provided $R_m \approx 2.05$ Å.

In the rough CF approach, where ligands are treated as point charges, the electrostatic potential due to ligands, V_M, around the central cation (placed at $r = 0$) involves two contributions:61

$$V_M(r) = V_M^0 + V_M^{\text{NC}(r)} \quad (4)$$

Here, V_M^0 is independent of the electronic coordinate, r, but plays a key role for placing the energy of 3d levels of Cu2+ above that of 2p(F) ligand levels.63 Thus, within the CF framework, the non-constant contribution $V_M^{\text{NC}(r)}$ is the only one responsible for the splitting Δ_{int} when $R_m \neq R_{\text{eq}}$.

Accordingly, the gap, $\Delta_{\text{gap}(CF)}$, for an isolated CuF\textsubscript{6}− unit, derived from the simple CF approach, is given by12

$$\Delta_{\text{gap}(CF)} = |Z_L|^2\epsilon^{-1} \left\{ (8/7)\langle r_2^3 \rangle (R_{\text{eq}}^3 − R_{\text{ax}}^3) − (10/21)\langle r_4^4 \rangle (R_{\text{eq}}^3 − R_{\text{ax}}^3)\right\} \quad (5)$$

where $\langle r_2^3 \rangle = 1.044$ a.u. and $\langle r_4^4 \rangle = 2.674$ a.u. correspond to free Cu2+ ions64 and Z_L is the ligand charge. Using these values, $R_m = 2.05$ Å, and even fully neglecting covalency, assuming $Z_L = −1$, we obtain from eqs 3 and 5 that $\beta(CF) = 0.90$ eV/Å, which is three times smaller than the value $\beta \approx 2.7$ eV/Å corresponding to CuF\textsubscript{3}F\textsubscript{2} at $R_m = 2.05$ Å. This comparison strongly suggests that the intrinsic contribution, Δ_{int}, is greatly due to the covalent bonding inside the CuF\textsubscript{6}− unit. In the same way, the experimental 10Dq value of octahedral TM complexes is much higher than that calculated under the CF approach provided the right $\langle r_4^4 \rangle$ quantity is employed.34,64

For understanding the role played by chemical bonding upon Δ_{gap}, it is useful to explore how the energy levels are modified as far as we increase the size of the basis set, following an approach first proposed by Löwdin.63,64 In the present case, let us start with a basis set which includes only the two purely d-wavefunctions of the central cation that are degenerate under an octahedral symmetry $|d_{\text{ax}}⟩ = |3z^2−r^2⟩$ and $|d_{\text{eq}}⟩ = |x^2−y^2⟩$. Although in this first step there is no chemical bonding in the two $a_{1g}(\sim 3z^2−r^2)$ and $b_{1g}(\sim x^2−y^2)$ levels, their energy is

Table 2. Description of Antibonding Molecular Orbitals for Isolated Tetragonal CuF\textsubscript{6}− Units

Cu2+	F ligands	X_0	X_1
$3z^2−r^2$	equatorial	$−1/2\langle p_z(1) + p_z(2) + p_z(3) + p_z(4) \rangle$	$−1/2\langle s(2) + s(3) + s(4) \rangle$
$x^2−y^2$	axial	$(1/\sqrt{2})\langle p_z(5) + p_z(6) \rangle$	$(1/\sqrt{2})\langle s(5) + s(6) \rangle$
	equatorial	$1/2\langle p_z(1) − p_z(2) + p_z(3) − p_z(4) \rangle$	$1/2\langle s(1) − s(2) + s(3) − s(4) \rangle$

“X_0 and X_1 mean ligand wavefunctions hybridized with $3z^2−r^2$ and $x^2−y^2$ orbitals of the central cation involving linear combinations of 2p(F) and 2s(F) orbitals, respectively. The positions of six ligand ions are shown in Figure 1.”
significanty raised by the repulsive interaction of electrons with the negatively charged ligands involved in the V_{2p} term of eq 4. Also, in this step, the associated energies, E_a and E_b of $a_{1g}(-3\sigma^2 - r^2)$ and $b_{1g}(-3\sigma^2 - r^2)$ levels can be written as

$$E_a = E_d + \varepsilon_1^1; \quad E_b = E_d + \varepsilon_1^1$$

(6)

where E_d corresponds to the octahedral situation ($R_{eq} = R_{a}$), while the corrections ε_1^1 and ε_1^1 are not strictly equal due to small CF effects under tetragonal symmetry. Indeed, in this first step $\Delta_m \cong \varepsilon_1^1 - \varepsilon_1^1$ whose expression is just given by eq 5.

In a second step, the ligand 2p and 2s wavefunctions are introduced in the basis set and then there is a change of both energy and shape of wavefunctions following the allowed 3d(TM)$-2p(F)$ and 3d(TM)$-2s(F)$ admixtures and the formation of antibonding orbitals. The linear combinations of $2p_\sigma$ and $2s$ wavefunctions involving axial and equatorial ligands and transforming like a_{1g} and b_{1g} are shown on Table 2. In the case of the a_{1g} irreducible representation, there are two contributions termed as $\chi_1(a)$ while the corrections $\chi_2(a)$ can be hybridized with the linear combinations $\chi_1(b)$ (j = $p\sigma,s$) of equatorial ligands.

Accordingly, in this second step, the normalized $a_{1g}(-3\sigma^2 - r^2)$ and $b_{1g}(-3\sigma^2 - r^2)$ wavefunctions have the form

$$\begin{align*}
a_{1g}(-3\sigma^2 - r^2) &= \sum \lambda_1^{eq}(a)\chi_1^{eq}(a) - \sum \lambda_2^{eq}(a)\chi_1^{eq}(a) \quad j = p\sigma,s \\
b_{1g}(-3\sigma^2 - r^2) &= \sum \lambda_1^{eq}(b)\chi_1^{eq}(b) - \sum \lambda_2^{eq}(b)\chi_1^{eq}(b)
\end{align*}$$

(7)

Although the $\lambda_1^{eq}(a)$, $\lambda_2^{eq}(a)$, and $\lambda_1^{eq}(b)$ quantities are independent under D_{4h} symmetry ($R_{eq} \neq R_{a}$), this is no longer true in the octahedral limit as they are related by the conditions

$$\lambda_1^{eq}(a) = (1/\sqrt{3})\mu_1; \quad \lambda_2^{eq}(a) = (\sqrt{2}/\sqrt{3})\mu_1; \quad \lambda_1^{eq}(b) = \mu_1$$

(8)

It is worth noting that although wavefunctions such as $\chi_1^{eq}(a)$ and $\chi_1^{eq}(b)$ are orthogonal, the associated overlap integrals $S_{p\sigma} = \langle x^2 - y^2 \rangle$ and $S_s = \langle x^3 - y^3 \rangle$ are both only of the order of 0.1 at equilibrium for MF_{2}^{2+} complexes ($M = \text{Cu, Ni, Co, Fe}$). For this reason, the total electronic charges $q_{eq}(b)$ transferred from the central cation to $2p\sigma$ and 2s orbitals of equatorial ligands in the antibonding $b_{1g}(-3\sigma^2 - r^2)$ orbital are reasonably given by

$$q_{eq}(b) = \lambda_1^{eq}(b)^2; \quad q_{eq}(b) = \lambda_2^{eq}(b)^2$$

(9)

Similarly, the charges $q_1^{eq}(a)$ and $q_2^{eq}(a)$ transferred to axial and equatorial ligands in the antibonding $a_{1g}(-3\sigma^2 - r^2)$ orbital can be approximated by

$$q_1^{eq}(a) = \lambda_1^{eq}(a)^2; \quad q_2^{eq}(a) = \lambda_2^{eq}(a)^2$$

(10)

In the present step, the values of orbital energies and the 3d–2p and 3d–2s admixtures come from the solution of the secular equation

$$|E_{d} - E_{a}k| = 0$$

(11)

If we now work in second-order perturbations, the energy variations, ε_1^2 and ε_1^2, induced by chemical bonding on the a_{1g} and b_{1g} orbitals can be approximated by

$$\varepsilon_1^2 = \frac{(d_{11} - E_{d})^{eq}(a)}{E_{d} - E_{p}} + \frac{(d_{11} - E_{d})^{eq}(a)}{E_{d} - E_{p}}$$

and

$$\varepsilon_1^2 = \frac{(d_{11} - E_{d})^{eq}(b)}{E_{d} - E_{p}} + \frac{(d_{11} - E_{d})^{eq}(b)}{E_{d} - E_{p}}$$

(12)

Here, $E_d - E_p$ and $E_d - E_s$ stand for the separation between the 3d levels of the central cation and the 2p and 2s levels of ligands in the complex. From the present calculations for CuF_2^{2+} at $R_m = 2.05 \text{ Å}$, it is found that $E_d - E_p \cong \varepsilon_1^2$ while $E_d - E_s \cong \varepsilon_1^2$.

Thus, if Δ_m is mainly governed by the different chemical bonding in a_{1g} and b_{1g} orbitals, then

$$\Delta_m \cong \varepsilon_1^2 - \varepsilon_1^2$$

(13)

In the same vein, within the second-order perturbation approach, the covalency parameters $\lambda_1^{eq}(a)$, $\lambda_1^{eq}(a)$, and $\lambda_1^{eq}(b)$ are given by

$$\lambda_1^{eq}(a) = \frac{(d_{11} - E_{d})^{eq}(a)}{E_{d} - E_{p}}; \quad \lambda_1^{eq}(a) = \frac{(d_{11} - E_{d})^{eq}(a)}{E_{d} - E_{p}}; \quad \lambda_1^{eq}(b) = \frac{(d_{11} - E_{d})^{eq}(b)}{E_{d} - E_{p}}$$

(14)

Thus, bearing eqs. 1, 7, 8, and 10–12 in mind, Δ_m can finally be related to the charges transferred to $2p\sigma$ and 2s ligand orbitals as follows

$$\Delta_m \cong \Delta_m(p\sigma) + \Delta_m(s)$$

$$\Delta_m(p\sigma) = (E_d - E_p)[Q_{eq}(a) - Q_{eq}(b)]$$

$$\Delta_m(s) = (E_d - E_s)[Q_s(a) - Q_s(b)]$$

(15)

where

$$Q_{eq}(a) = \lambda_1^{eq}(a) + \lambda_1^{eq}(a) \quad j = p\sigma, s$$

$$Q_{eq}(b) = \lambda_1^{eq}(b) \quad j = p\sigma, s$$

(16)

Therefore, according to eq 15, there are two contributions to the gap Δ_m reflecting the bonding with 2p and 2s ligand
an octahedral situation (associated with variations of ligand charges on passing from $R \ll 1$ is better accomplished for $Ligand\ Distances$, charge transferred to the valence ns level of ligands (perturbation approach, its validity requires that in a level like complexes and di$cations$ of the electron interactions (the so-called $external\ potential$ in DFT66) and necessarily of the electronic density. This change in the electronic density is then reflected on variations of ligand charges.

As the present analysis is based on a second-order perturbation approach, its validity requires that in a level like $b_{1g}(\sim 3z^2 - r^2)$ the charges $q_{p}^{\text{fl}}(b)$ and $q_{p}^{\text{fl}}(b)$ transferred to ligands are clearly smaller that the unity. The condition $q_{p}^{\text{fl}}(b) \ll 1$ is better accomplished for fluoride than chloride or bromide complexes due to the higher electronegativity of fluoride (3.9) when compared to that of Cl (3.0) or Br (2.8).

By contrast, the condition $q_{p}^{\text{fl}}(b) \ll 1$ is much better fulfilled for all kinds of complexes due to the deep character of $2s(F)$, $3s(Cl)$, or $4s(Br)$ levels of free atoms.55 For instance, the present calculations for CuF$_6^{4-}$ units, discussed in the next section, give $q_{p}^{\text{fl}}(b) < 0.23$, while a much lower value, $q_{p}^{\text{fl}}(b) < 0.06$, is obtained for the charge transferred to 2s orbitals. This relevant fact also stresses the perturbative character of the 3d–2s admixture.

The present approach focused on the Δ_{int} gap of tetragonal units has also been employed for understanding the intrinsic and dominant component to the 10Dq value of octahedral complexes and its dependence upon the metal–ligand distance.56 Interestingly, in the case of octahedral CrX$_6^{3-}$ complexes ($X = F, Cl, Br, I$), it has been found that the charge transferred to the valence ns level of ligands ($n = 2, 3, 4$, and 5 for F, Cl, Br, I, respectively) in the antibonding $e_{g}(\sigma)$ orbital is always smaller than 0.1.

For the sake of clarity, when $\eta \neq 0$ the Cu-wavefunction of the a_{1g} orbital is not a purely $3z^2 - r^2$ orbital as it involves a small admixture ($\sim 1\%$) of $4s(Cu)$. For elongated complexes, that admixture tends to enhance the electronic density of axial ligands, a matter discussed in ref 68. For obtaining such a 3d(Cu)–4s(Cu) hybridization in the present scheme, it is however necessary to go beyond the second-order approach.

4. RESULTS AND DISCUSSION

4.1. Ligand Charges and Δ Gap for Isolated CuF$_6^{4-}$ Units: Influence of the Tetragonal Distortion.

DFT calculations on the isolated CuF$_6^{4-}$ unit have been carried out using the transition state configuration $a_{1g}^{4}b_{1g}^{1}15$, varying the equatorial and axial metal–ligand distances but maintaining the mean distance $R_{\text{eq}} = 2.05$ Å. This allows one to calculate the Δ_{int} gap simply by means of the Janak theorem,66 and to determine the charges transferred to 2σ and $2s$ ligand orbitals for both a_{1g} and b_{1g} levels. Indeed, the use of the average $a_{1g}^{4}b_{1g}^{1}15$ configuration allows one to establish a reasonable link with the analysis carried out in Section 3 based on orbitals associated with a given electronic configuration.

The main results are collected in Table 3. The calculated Δ_{int} values in Table 3 are consistent with the law embodied in eq 3 showing, in particular, that Δ_{int} just changes sign on passing from $R_{\text{eq}} - R_{\text{ax}} = 0.15$ Å to $R_{\text{eq}} - R_{\text{ax}} = -0.15$ Å. A value $\beta = 2.8$ eV/Å for $R_{\text{eq}} = 2.05$ Å is derived from the present calculations.

As it is shown in Table 3, the charges transferred to 2σ orbitals are, as expected, higher than those corresponding to $2s$ orbitals. However, when the tetragonality increases, the relative variation of $q_{p}^{\text{fl}}(b)$ or $q_{p}^{\text{fl}}(a)$ quantities is much smaller than that of $q_{p}^{\text{fl}}(b)$ or $q_{p}^{\text{fl}}(a)$ associated with $2s(F)$ orbitals. For instance, on passing from the octahedral situation ($R_{\text{eq}} = R_{\text{ax}} = 2.05$ Å) to $R_{\text{eq}} = 1.95$ Å and $R_{\text{ax}} = 2.25$ Å, $q_{p}^{\text{fl}}(b)$ changes only by 2% and thus it remains nearly constant.

The quantities $q_{p}^{\text{fl}}(b)$ and $q_{p}^{\text{fl}}(a)$ are deeply related to the isotropic (A_{0}) and anisotropic (A_{η}) superhyperfine constants, respectively, for elongated CuF$_6^{4-}$ units formed in Cu$^{1+}$-doped fluoroperovskites as a result of a static Jahn–Teller effect.30,32

Table 3. Charges Transferred to Ligands Calculated for an Isolated CuF$_6^{4-}$ Complex at Different Equatorial and Axial Metal–Ligand Distances, R_{eq} and R_{ax}. But Keeping the Same Value of the Mean Distance $R_{\text{m}} = (R_{\text{ax}} + 2R_{\text{eq}})/3 = 2.05$ Å64

R_{eq} = 2.05 Å, R_{ax} = 2.05 Å	R_{eq} = 2.00 Å, R_{ax} = 2.15 Å	R_{eq} = 1.95 Å, R_{ax} = 2.25 Å	R_{eq} = 2.10 Å, R_{ax} = 1.95 Å	
$q_{p}^{\text{fl}}(a)$	0.148	0.148	0.147	0.142
$q_{p}^{\text{fl}}(a)$	0.074	0.068	0.062	0.082
$q_{p}^{\text{fl}}(b)$	0.222	0.225	0.227	0.219
$Q_{\text{eq}}(a) - Q_{\text{eq}}(b)$	0	-0.009	-0.018	0.005
$\Delta_{\text{int}}(\sigma)$ (eV)	0	-0.06	-0.12	0.03
$q_{p}^{\text{fl}}(a)$	0.023	0.026	0.028	0.025
$q_{p}^{\text{fl}}(b)$	0.010	0.022	0.002	0.016
$Q_{\text{eq}}(a) - Q_{\text{eq}}(b)$	0	-0.003	-0.003	0.016
$\Delta_{\text{int}}(eV)$	0	-0.34	-0.86	0.42
$\Delta_{\text{int}}(eV)$	0	-0.42	-0.84	0.42

“Results are reported for both $a_{1g}(\sim 3z^2 - r^2)$ and $b_{1g}(\sim x^2 - y^2)$ orbitals. The contributions $\Delta_{\text{int}}(\sigma)$ and $\Delta_{\text{int}}(\pi)$ to the energy gap Δ_{int} derived from the $Q_{\text{eq}}(a) - Q_{\text{eq}}(b)$ and $Q_{\text{eq}}(a) - Q_{\text{eq}}(b)$ quantities, are also shown. It can be noted that the value of $\Delta_{\text{int}}(\sigma) + \Delta_{\text{int}}(\pi)$ is close to the gap, Δ_{int}, obtained in a DFT calculation for every value of R_{eq} and R_{ax}.

Low-temperature electron paramagnetic resonance data indicate that whereas for CsCdF$_3$;Cu$^{2+}$, $A_{0} = 160$ (5) MHz32, it clearly increases up to $A_{0} = 183$ (5) MHz32 for KZnF$_3$;Cu$^{2+}$. By contrast, the measured values $A_{0} = 76$ (5) MHz for CsCdF$_3$;Cu$^{2+}$ and $A_{0} = 68$ (5) MHz for KZnF$_3$;Cu$^{2+}$ are coincident within experimental uncertainties. This fact is consistent with results for elongated NiF$_6^{3-}$ species in different fluoroperovskites72,73 involving the 3d9 ion Ni$^{3+}$, where A_{0} and $q_{p}^{\text{fl}}(b)$ are highly sensitive to the actual value of R_{eq} but not A_{0} or $q_{p}^{\text{fl}}(b)$. Indeed, whereas A_{0} changes only by 3% along the series of fluoroperovskites, the variation of A_{0} is 1 order of magnitude higher (30%).
In the same vein as for octahedral NiF$_6^{4-}$, MnF$_6^{4-}$, or FeF$_6^{3-}$ units in cubic fluoroperovskites, both A_s and q_s quantities, corresponding to the $e_g(\sigma)$ orbital, are strongly dependent upon the metal–ligand distance, while A_p is much less sensitive.

These facts already suggest that, according to eq 15, the gap Δ_{int} is mainly due to the $\Delta_{\text{int}}(s)$ contribution reflecting changes in the 3d–2s admixture when the tetragonality increases. This idea is certainly reinforced looking at results of present calculations embodied in Table 3. Indeed, such results prove that the obtained $\Delta_{\text{int}}(s)$ contribution essentially accounts for the calculated gap Δ_{int} at different values of R_{eq} and R_{fl} distances. For instance, for $R_{\text{eq}} = 1.95 \ \text{Å}$ and $R_{\text{fl}} = 2.25 \ \text{Å}$, the results of Table 3 give $\Delta_{\text{int}}(s) = -0.10 \ \text{eV}$ and $\Delta_{\text{int}}(s) = \approx -0.86 \ \text{eV}$. Therefore, comparing these values with the figure $\Delta_{\text{int}} = -0.84 \ \text{eV}$ derived from DFT calculations, we can conclude that such a gap is greatly the result of variations of the 3d–2s admixture with the tetragonality. Although this conclusion may be surprising, we can note that, from results of Table 3 for $R_{\text{eq}} = 1.95 \ \text{Å}$ and $R_{\text{fl}} = 2.25 \ \text{Å}$, it is verified that

$$q_i^{eq}(b)/q_i^{2p}(b) = 0.225 > (E_d - E_{2p})^2/(E_d - E_{2s})^2 = 0.066$$

(17)

just implying that

$$(d_{ij} - E_d)\chi^{eq}(b)/q_i^{2p}(b) \approx 3.4(d_{ij} - E_d)\chi^{2p}(b)/q_i^{2p}(b)$$

(18)

Thus, the coupling of the 2s-ligand wavefunction, $\chi^{eq}(b)$, with $\chi^{2p}(b)$ is a little stronger than that for the 2p-wavefunction, $\chi^{2p}(b)$. This conclusion is qualitatively consistent with the Wolsenberg–Helmholz guess used before the arrival of ab initio calculations.\[Bearing\ \text{eq} \ 3\ \text{in mind, we have also explored the dependence of} \ \Delta_{\text{int}} \ \text{and the } \beta \ \text{quantity upon the average value of the metal–ligand distance,} \ R_{\text{fl}}. \ \text{Varying} \ R_{\text{fl}} \ \text{in the range} \ 1.95 - 2.05 \ \text{Å} \ \text{we have found that} \ \Delta_{\text{int}} \ \text{and} \ \beta \ \text{are sensitive to the value of} \ R_{\text{fl}} \ \text{according to the law}

$$\delta \Delta_{\text{int}}/\Delta_{\text{int}} = 6\beta/\beta = -4(\delta R_{\text{fl}}/R_{\text{fl}})$$

(19)

We have verified that the increase of Δ_{int} and β when R_{fl} decreases is also followed by an increase of the $Q_s(a) - Q_s(b)$ quantity while the contribution of $Q_{2p}(a) - Q_{2p}(b)$ is again much less sensitive to the change of R_{fl}. This situation is thus akin to that described in Table 3.

4.2. Variation of $10Dq$ with the Metal–Ligand Distance for Octahedral Complexes. Bearing the present results and those previously obtained on O_6 complexes in mind, we want now to explain quantitatively the origin of the dependence of $10Dq$ on the metal–ligand distance, R.

Experimental values for a variety of octahedral complexes lead to an R dependence of the intrinsic contribution to $10Dq$, $(10Dq)_{\text{int}}$, given by

$$(10Dq)_{\text{int}} = KR^{-t}$$

(20)

where the exponent t usually lies in the $4–6$ range and thus it is close to the value $t = 5$ provided by CF theory.\[According\ \text{to previous results,} \ (10Dq)_{\text{int}} \ \text{can reasonably be approximated by}

$$(10Dq)_{\text{int}} \approx (10Dq)_{\text{int}}(p) + (10Dq)_{\text{int}}(s)$$

(21)

where the ratio $\alpha = (10Dq)_{\text{int}}(s)/(10Dq)_{\text{int}}(p)$ has been found to be around 0.6524 for the series of CrX$_6^{3-}$ units ($X = F$, Cl, Br, I). Similarly to results of Section 4.1, the changes of $(10Dq)_{\text{int}}$ due to R variations are essentially driven by the $(10Dq)_{\text{int}}(s)$ contribution, reflecting the dependence of the q_s charge of 2s, 3s, 4s, or 5s ligand orbitals on the metal–ligand distance.

Thus, writing

$$q_s = CR^{-t}$$

(22)

and considering small R variations ($\delta R \ll R$), the following quantitative relation among t, t_σ, and α comes out

$$t = t_\sigma \alpha$$

(23)

Values of the exponent t_σ in the $6.5–8.5$ range have been derived for doped cubic fluorides24,67,76,79 and are responsible for the high sensitivity of the isotropic superhyperfine constant, A_n, to R variations well observed experimentally.$^{14,74–79}$

For Mn$^{3+}$-doped cubic fluoroperovskites, a value $t_\sigma = 8$ has been obtained67 while from the parallel study of optical spectra,81 $t = 4.7$ is found. These values are thus consistent with eq 23 and $\alpha \approx 0.6$.

Despite this fact and the early work by Sugano and Shulman,\[proving that (10Dq)$_{\text{int}}$ essentially reflects the different covalent bonding in $e_g(\sigma)$ and $t_{2g}(\pi)$ levels, experimental values of the exponent t close to 5 are still taken as a support to the validity of CF theory.20

The sensitivity of $10Dq$ to R variations has a useful application for changing the shape of the fluorescence band in fluorides doped with Ce$^{3+}$. Indeed, while the emission spectrum at ambient pressure of both Ce$^{3+}$-doped KZnF$_3$ and K$_2$NaGaF$_6$ lattices is a broad band arising from the $4T_2$ excited state, a sharp ruby-like spectrum coming from a $4E$ first excited state is detected for pressures smaller than 15 GPa.82,83

4.3. Key Role of Deep 2s(F) Orbitals in Chemical Bonding and the 2p(F)–2s(F) Gap: Microscopic Origin. The big separation, $\epsilon(2p) - \epsilon(2s) \approx 23 \ \text{eV}$, between 2p and 2s levels of both free fluorine atom and the negative F^- ion,$^{27–29}$ cannot be ascribed to a different extent of such orbitals. If we denote by $R_{2p}(r)$ and $R_{2s}(r)$ the radial functions of 2p and 2s orbitals and by $R_{1s}(r)$ of the inner 1s orbital, in Figure 2 are depicted the radial probability densities $P(r) = r^2R_{1s}(r)$ ($j = 1s, 2s, 2p$) corresponding to free fluorine atom calculated by means of the atomic wavefunctions of Bunge et al.29

Figure 2. Radial probability densities $P(r) = r^2R_{1s}(r)$ ($j = 1s, 2s, 2p$) corresponding to free fluorine atom calculated by means of the atomic wavefunctions of Bunge et al.29

https://doi.org/10.1021/acs.jpca.0c11609

J. Phys. Chem. A 2021, 125, 2284–2293

2289
than \(P_n(r) \). This situation is consistent with the calculated overlap integrals \(S_{np} \) and \(S_n \) for a series of octahedral MF\(_6\) complexes (M = Ni\(^{2+}\), Co\(^{2+}\), Mn\(^{2+}\), Fe\(^{3+}\), Cr\(^{3+}\), Mn\(^{4+}\)). Indeed, at equilibrium distances, \(S_{np} \) and \(S_n \) are both around 0.2 although \(S_{np} \) is a little higher than \(S_n \). Nevertheless, due to the longer tail of the 2p orbital when compared to the 2s wavefunction (Figure 2), the dependence of \(S_n \) upon the metal–ligand distance is stronger than that of \(S_{np} \).

The behavior of radial 2p and 2s wavefunctions depicted in Figure 2 is also consistent with the fact that the matrix elements \((\hbar^2/2m) (\partial^2/\partial r^2) \) and \((\hbar^2/2m) (\partial^2/\partial r^2) \) involved in eq 18 are comparable. Indeed, they just reflect that both functions look rather similar when \(r > 0.5 \) Å.

Thus, if the extent of 2p and 2s orbitals is comparable, it is now necessary to understand why \(\epsilon(2p) - \epsilon(2s) \) \(\cong \) 23 eV for fluorine, while that gap is strictly equal to zero for the hydrogen atom and hydrogenic ions such as He\(^+\) or Li\(^{2+}\).

It should first be stressed that the degeneracy between 2p and 2s orbitals in hydrogen is far from being accidental. In fact, it is the result of an invariant quantity, which appears however only when the potential energy, \(U(r) \), seen by the electron is strictly Coulombian and thus has the form

\[
U(r) = -Ze^2/r
\]

at every distance \(r \) from the nucleus.

When this condition is fulfilled, in addition to the angular momentum, \(L \), the so-called Runge–Lenz operator, \(A \), also commutes with the Hamiltonian of the problem. The expression of that operator is given by

\[
A = (1/2\mu)[(p \wedge L) - (L \wedge p)] - Ze^2(r/r)
\]

where \(\mu \) means the reduced mass of the hydrogen atom. The \(A \) operator connects the radial \(R_{2s}(r) \) and \(R_{2p}(r) \) wavefunctions and thus implies that the corresponding levels are to be degenerate. This operator was used by Pauli for solving the energy spectrum of the hydrogen atom in the framework of the matrix quantum mechanics by Heisenberg and Born.

The Runge–Lenz vector also plays a relevant role in studying the motion of planets around the sun. Its invariance implies that the position of the perihelion remains constant in time.

In an atom different from H or ions such as He\(^+\) or Li\(^{2+}\), the self-consistent potential felt by a valence electron is not described by eq 26 in the whole range of distances to the nucleus as the net charge, \(Ze \), seen by the electron depends on the \(r \) value. Therefore, for the fluorine atom, when \(r \ll r_{2s} \), \(Z \cong 9 \), whereas when \(r_{2s} < r < r_{2p} \), \(Z \) would be around 7 due to the screening by two inner electrons.

Bearing these facts in mind, the origin of the big separation between 2p and 2s levels in fluorine atom stems from the different behavior of the wavefunctions in the internal \(r < 0.1 \) Å region. As shown in Figure 2, \(P_2(r) \) has a small maximum at \(r_M = 0.04 \) Å with \(P_2(r_{2s}) = 0.4 \) Å\(^{-1}\). By contrast, \(P_2(r) \) is essentially zero in the \(0 < r < 0.1 \) Å region as a result of the \(l/(l+1)/r^2 \) term in the radial equation making that \(R_{2s}(0) = 0 \) but \(R_2(0) \neq 0 \). Thus, the 2s charge \(P_2(r_{2s}) \Delta r = 0.02e \) for \(\Delta r = 0.05 \) Å implies an energy gain for the 2s orbital with respect to the 2p one in that internal region, which can be estimated to be \(\sim 20 \) eV using the virial theorem and \(Z = 7 \). It is worth noting that, if the 2p–2s separation in F mainly arises from the distinct behavior of both wavefunctions in the internal region, it is also consistent with a \(\epsilon(2p) - \epsilon(2s) \) value for F\(^-\) that is only 5% higher than for the fluorine atom.\(^{27,61}\) In the same vein, the value of \(\epsilon(np) - \epsilon(ns) \) for Cl\(^-\) (\(n = 3 \)) and Br\(^-\) (\(n = 4 \)) ions is only 2% higher than that for the corresponding free atom.\(^{27,61}\)

These considerations thus account for the big \(\epsilon(2p) - \epsilon(2s) \) value for fluorine and explain the fact that \(q_{2s}(b) \ll q_{2p}(b) \). Moreover, due to the similar extent of the radial 2p and 2s wavefunctions when \(r > 0.5 \) Å, we can understand that the bonding with deeper 2s(F) orbitals is not negligible.

Nevertheless, it is surprising that the value of the \(\Delta_{\text{int}} \) gap essentially arises from the 3d–2s admixture rather than from the 3d–2p one despite \(q_{2s}(b) \ll q_{2p}(b) \). However, from eq 15 and the results embodied in Table 3, this surprising conclusion is fully consistent with the near independence of \(q_{2s}(b) \) charges on the \(R_{ax} - R_{eq} \) value describing the tetragonal distortion. By contrast, \(q_{2s}(b) \) increases by 55% on passing from \(R_{eq} = R_{ax} = 2.05 \) Å to the \(D_{4h} \) geometry corresponding to \(R_{eq} = 1.95 \) Å and \(R_{ax} = 2.25 \) Å (Table 3).

This situation is thus akin to that encountered for the antibonding \(e_g \) orbitals of octahedral complexes.\(^{54,79}\) Therefore, for the e\(_{g}(x^2 - y^2) \) orbital, \(q_{2s}(b) \) is again found to be higher than \(q_{2p} \) but the dependence of \(q_{2s} \) on the metal ligand distance, \(R \), is much stronger than that of \(q_{2p} \).

This important result has been explained considering \(\lambda_{2p}(e_g) \) depends on the ratio \((d(x^2 - y^2)|l = E_{2g}/E_{2p}) \). Accordingly, when \(R \) is reduced, the quantity \((d(x^2 - y^2)|l = E_{2g}/E_{2p}) \) increases roughly following the corresponding overlap integral \(S_{np} \). However, this increase is compensated by the additional rise of the charge-transfer excitation \(E_{2g} - E_{2p} \) due to the lessening of the metal–ligand distance on an isolated 3d complex.\(^{54,73,79}\) By contrast, in the case of the admixture with the deeper 2s(F) orbital, the variation of \(q_{2s} \) with the distance essentially reflects that of \(S_{np}(R) \). Examples of this behavior are shown in refs. 73,76,79.

5. Final Remarks

The present work highlights the fact that the relation between spectroscopic data of TM compounds with the chemical bonding can be very subtle.

When in an isolated CuF\(^{4-}\) complex, we move from an initial octahedral situation (\(\eta = 0 \)) to a tetragonal one with \(\eta \neq 0 \) the energy of eigenstates and thus \(\Delta_{\text{stat}} \) are modified. There are two sources of that change: (a) the dependence on \(\eta \) of the Hamiltonian and (b) the additional dependence on the distortion of the associated wavefunctions. The present analysis supports that the main contribution to \(\Delta_{\text{stat}} \) arises from the variations undergone by \(b_{1g}(\sim x^2 - y^2) \) and \(a_{1g}(\sim 3z^2 - r^2) \) wavefunctions when \(\eta \) is modified and thus the center of the gravity theorem cannot be applied. Furthermore, \(\Delta_{\text{stat}} \) is essentially associated with the variations experienced by the 2s(F) charge with \(\eta \) because the 2p(F) charge is nearly independent of the tetragonal distortion.

The present ideas can also be useful for understanding 3d complexes where fluorine is replaced by other halides or oxygen as ligand. Indeed, for these ligands, the \(\epsilon(np) - \epsilon(ns) \) gap is also significant and lies in the 14–18 eV range.\(^{61}\) Taking as a guide the case of CdCl\(_2\):Cu\(^{3+}\), the tetragonal splitting, \(\Delta_{\text{stat}} \), has been measured to be equal to \(\sim 0.79 \) eV as a result of a static Jahn–Teller effect, leading to an elongated octahedral geometry. As there are no available data on the equilibrium geometry of the CuCl\(_4^{2-}\) unit in CdCl\(_2\), we have derived it through first-principles calculations giving \(R_{eq} = 2.33 \) Å and \(R_{ax} = 2.63 \) Å. On this basis, we obtain for CuCl\(_4^{2-}\) in CdCl\(_2\) a value
\(\beta = 2.6 \text{ eV/Å} \) that is comparable to that reported in Section 4.1 for the isolated CuF\(_6\)\(^{2-}\) unit. Furthermore, using these calculated \(R_{eq} \) and \(R_{ax} \) values in the CF expression for \(\Delta_{\text{int}} \) given in eq 5, we obtain for CdCl\(_2\):Cu\(^{2+}\) a value \(\Delta_{\text{int}}(\text{CF}) = -0.12 \text{ eV} \), thus stressing the inadequacy of the CF approach.

From results of Section 4.1 the gap, \(\Delta_{\text{int}} \) increases significantly upon applied pressures. This fact can be of interest in the realm of superconductor oxocuprates where the transition temperature, \(T_c \), is related \(^5\) to the value of such a gap.

Although the ground state of MnF\(_6\)\(^{2-}\) and CrF\(_6\)\(^{3-}\) units in cubic lattices is orbitally singlet, this is no longer true for T\(_{1g}\) states as found in BaTiO\(_3\) for an isolated

Electronic levels lying far from the HOMO play also an important role in the realm of structural instabilities. \(^92\)

Therefore, due to the admixture of the ground with excited states via the electron-vibration coupling, the NH\(_3\) molecule is isomerically well seen through the progressions in luminescence spectra. \(^91\) From calculations carried out on MnF\(_6\)\(^{2-}\), \(\Delta_{\text{int}} = 0.147 \text{ eV} \) for \(R_{eq} - R_{eq} = -0.06 \text{ Å} \) was obtained, \(^90\) thus implying \(\beta = 2.46 \text{ eV/Å} \). This figure is thus similar to that derived for the ground state of tetragonal CuF\(_6\)\(^{2-}\) units that also involves a divalent cation.

The authors declare no competing financial interest.

Notes The authors declare no competing financial interest.

Table of Contents

ACKNOWLEDGMENTS

The support by the Spanish Ministerio de Ciencia, Innovación y Universidades under Project PGC2018-096955-B-C41 and the European Union and the University of Cantabria under FEDER project EQC2019-006136-P is acknowledged.

REFERENCES

(1) Powell, R. C. *Physics of Solid-State Laser Materials*; Springer-Verlag: New York, 1998.

(2) Bebenin, N. G.; Zainullina, R. I.; Ustinov, V. V. Colossal magnetoresistance manganites. *Phys. Usp.* 2018, 61, 719–738.

(3) Hord, R.; Cordier, G.; Hoffmann, K.; Buckow, A.; Pascua, G.; Luetkens, H.; Alff, L.; Albert, B. Enhanced two-dimensional behavior of metastable T'–La\(_2\)CuO\(_4\), the parent compound of electron-doped cuprate superconductors. *Phys. Rev. B: Condens. Matter Mater. Phys.* 2010, 82, No. 180508(R).

(4) García-Fernández, P.; Moreno, M.; Aramburu, J. A. Electrostatic control of orbital ordering in noncubic crystals. *J. Phys. Chem. C* 2014, 118, 7554–7561.

(5) Li, X.; Zhong, X.; Hu, Y.; Li, R.; Sheng, Y.; Zhang, Y.; Weng, C.; Feng, M.; H. Wang. J. Organic–inorganic copper(II)-based material: A low-toxic, highly stable light absorber for photovoltaic application. *J. Phys. Chem. Lett.* 2017, 8, 1804–1809.

(6) Cortecchia, D.; Dewi, H. A.; Yin, J.; Bruno, A.; Chen, S.; Babić, T.; Boix, P. P.; Grätzel, M.; Mhaisalkar, S.; Soci, C.; Mathews, N. Lead-free MA\(_2\)CuCl\(_3\)Br\(_{1.5}\) hybrid perovskites. *Inorg. Chem.* 2016, 55, 1044–1052.

(7) Jaffe, A.; Karanadasa, H. I. Lithium cycling in a self-assembled copper chloride–polyether hybrid Eetcetride. *Inorg. Chem.* 2014, 53, 6494–6496.

(8) Jaffe, A.; Lin, Y.; Mao, W. L.; Karanadasa, H. I. Pressure-induced conductivity and yellow-to-black piezochromism in a layered Cu–Cl hybrid perovskite. *J. Am. Chem. Soc.* 2015, 137, 1673–1678.

(9) Aramburu, J. A.; García-Fernández, P.; Mathiesen, N. B.; García-Lastra, J. M.; Moreno, M. Changing the usual interpretation of the structure and ground state of Cu\(^{2+}\)-layered perovskites. *J. Phys. Chem. C* 2018, 122, 5071–5082.

(10) Bosi, F.; Belardi, G.; Gallirano, P. Structural features in Tutton’s salt \(K[M^{2+}(H_2O)_6] \) (SO\(_4\)\(_2\)), with \(M^{2+} = \text{Mg, Fe, Co, Ni, Cu} \), and \(Zn \). Am. *Mineral. 2009*, 94, 74–82.

(11) Colaneri, M. J.; Teat, S. J.; Vitali, J. Electron paramagnetic resonance characteristics and crystal structure of a Tutton salt analogue: copper-doped cadmium creatininium sulfate. *J. Phys. Chem. A* 2020, 124, 2242–2252.

(12) Aramburu, J. A.; Bhowmik, A.; García-Lastra, J. M.; García-Fernández, P.; Moreno, M. Insight into compounds with Cu\(^{2+}\) units: new ideas for understanding Cu\(^{2+}\) in Tutton salts. *J. Phys. Chem. C* 2019, 123, 3088–3101.

(13) Colaneri, M. J.; Vitali, J. Probing axial water bound to copper in Tutton salt using single crystal 17O-ESEEM spectroscopy. *J. Phys. Chem. A* 2018, 122, 6214–6224.

(14) García-Fernández, P.; Moreno, M.; Aramburu, J. A. Origin of the exotic blue color of copper-containing historical pigments. *Inorg. Chem.* 2015, 54, 192–199.

(15) Capobianco, N. La couleur de vitraux au XII siècle. Etude chimique et spectroscopique. PhD Thesis, Sorbonne Université, 2019.

(16) Sugano, S.; Shulman, R. G. Covalency effects in KNIF\(_3\). III. Theoretical studies. *Phys. Rev.* 1963, 130, 517–530.

(17) Sugano, S.; Tanabe, Y.; Kamimura, H. Multiplets of Transition-Metal Ions in Crystals; Academic Press: New York, 1970.

(18) Ballhausen, C. *Molecular Electronic Structures of Transition Metal Complexes*; McGraw-Hill, 1979.

(19) Dyson, F. A meeting with Enrico Fermi. *Nature* 2004, 427, 297.

(20) Atanasov, M.; Ganyushin, D.; Sivalingam, K.; Neese, F. A modern first-principles view on ligand field theory through the eyes of correlated multistate meromagnetic functions. *Struct. Bonding* 2012, 143, 149–220.

(21) García-Lastra, J. M.; Barriuso, M. T.; Aramburu, J. A.; Moreno, M. Cr\(^{3+}\) in layered perovskites: do the electron paramagnetic resonance parameters only depend on the impurity–ligand distances? *J. Phys.: Condens. Matter Mater. Phys.* 2012, 24, 155502.

(22) Hoggard, P. E. Angular Overlap Model Parameters. *Struct. Bonding* 2004, 106, 37–57.

(23) Aramburu, J. A.; García-Fernández, P.; García-Lastra, J. M.; Barriuso, M. T.; Moreno, M. Internal electric fields and color shift in Cr\(^{3+}\)-based gemstones. *Phys. Rev. B: Condens. Matter Mater. Phys.* 2012, 85, 245118.

(24) Aramburu, J. A.; García-Fernández, P.; García-Lastra, J. M.; Moreno, M. Jahn–Teller and non-Jahn–Teller systems involving...
CuF$_2^+$ units: role of the internal electric field in Ba$_2$ZnF$_6$Cu$_2^+$ and other insulating systems. J. Phys. Chem. C 2017, 121, 5215–5224.

(25) García-Lastra, J. M.; Aramburu, J. A.; Barriuso, M. T.; Moreno, M. Impurities in non cubic crystals: stabilization mechanisms for Jahn-Teller ions in layered perovskites. Phys. Rev. Lett. 2004, 93, 226402.

(26) Hunault, M. O. J. Y.; Harada, Y.; Miyawaki, J.; Wang, J.; Meijerinck, A.; de Groot, F. M. F.; van Schooneveld, M. M. Direct observation of Cu$_{3+}$ 3d States in ruby: toward experimental mechanistic evidence of metal chemistry. J. Phys. Chem. A 2018, 122, 4399–4413.

(27) Clementi, E.; Roetti, C. Roothaan-Hartree-Fock atomic wavefunctions. At. Data Nucl. Data Tables 1974, 14, 177–478.

(28) Moore, C. E. Atomic Energy Levels; National Bureau of Standards: Washington D.C. 35, 1971.

(29) Bunge, C. F.; Barrientos, J. A.; Bunge, A. V. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions: Slater-Type Orbital Expansions and Expectation Values for Z = 2–54. Phys. Rev. B: Condens. Matter Mater. Phys. 2020, 22, 7875–7887.

(30) Boettcher, F.; Spaeth, M. J. ENDOR Investigation of Cu$^{2+}$ Centres in NH$_4$Cl. Phys. Status Solidi B 1974, 71, 465–473.

(31) García-Fernández, P.; García-Lastra, J. M.; Trueba, A.; Barriuso, M. T.; Aramburu, J. A.; Moreno, M. Insulators containing CuCl$_2$X$_2$(X = H$_2$O, NH$_3$) units: origin of the orthorhombic distortion observed only for CuCl$_2$(H$_2$O)$_2$. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 85, 046401.

(32) García-Fernández, P.; Barriuso, M. T.; García-Lastra, J. M.; Moreno, M.; Aramburu, J. A. Compounds containing tetragonal Cu$^{2+}$ complexes: is the d$_{2d}$–d$_{2g}$ gap a direct reflection of the distortion? J. Phys. Chem. Lett. 2013, 4, 2385–2390.

(33) Sakakibara, H.; Usui, H.; Kuroki, K.; Arita, R.; Aoki, H. Origin of the material dependence of Tc in the single-layered cuprates. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 85, 195101.

(34) Moreno, M.; Barriuso, M. T.; Aramburu, J. A.; García-Fernández, P.; García-Lastra, J. M. Microscopic insight into properties and electronic instabilities of impurities in cubic and lower symmetry insulators: Influence of pressure. J. Phys.: Condens. Matter 2006, 18, R315–R360.

(35) Bik, M. G. 3d ions in solids and microscopic crystal field effects: theoretical analysis and relations with experimental spectroscopic data. IOP Conf. Ser.: Mater. Sci. Eng. 2020, 835, 012032.

(36) García-Lastra, J. M.; Aramburu, M. T.; Aramburu, J. A.; Moreno, M. Origin of the different color of ruby and emerald. Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 72, 113104.

(37) Gaudry, E.; Cabaret, D.; Brouder, C.; Letard, I.; Rogalev, A.; Wallrafen, F. The optical spectrum of Ba$_2$ZnCuF$_6$. Chem. Phys. 1991, 151, 117–125.

(38) Aramburu, J. A.; Moreno, M. Understanding the structure and ground state of the prototype CuF$_2$ compound not due to the Jahn–Teller effect. Inorg. Chem. 2019, 58, 4609–4618.

(39) Sanchez-Movellan, I.; Aramburu, J. A.; Moreno, M. Local structure and excitations in systems with CuF$_6^-$ units: lack of Jahn–Teller effect in the low symmetry compound Na$_2$CuF$_6$. Phys. Chem. Chem. Phys. 2020, 22, 1938–1947.

(40) Aramburu, J. A.; Moreno, M. Understanding the structure and ground state of the prototype CuF$_2$ compound not due to the Jahn–Teller effect. Inorg. Chem. 2019, 58, 4609–4618.
Molecules Condens. Matter
Optical Study of Ni$^{2+}$ Ions in CsCaF$_3$ and CsCdF$_3$.

Phys. Rev. B: Condens. Matter Mater. Phys. 1983, 29, 3623–3631.

Barriuso, M. T.; Aramburu, J. A.; Moreno, M. Determination of the Mn$^{2+}$-F distance from the isotropic superhyperfine constant for [MnF$_6$]$^{3-}$ in ionic lattices. Phys. Rev. B: Condens. Matter Mater. Phys. 1984, 29, 3623–3631.

(77) DuVarney, R. C.; Niklas, J. R.; Spaeth, J. M. ENDOR study of Fe$^{3+}$ centres in KMGF$_6$. Phys. Status Solidi B 1981, 103, 329–336.

(78) Dance, J. M.; Gransec, J.; Tressaud, A.; Moreno, M. ESR Investigation of phase transitions in some elpasolite-type fluorides. Phys. Status Solidi B 1992, 173, 579–586.

(79) Aramburu, J. A.; Paredes, J. I.; Barriuso, M. T.; Moreno, M. Local relaxation around Fe$^{3+}$ in fluorides: influence on electronic properties. Phys. Rev. B: Condens. Matter Mater. Phys. 2000, 61, 6525–6534.

(80) Ballhausen, C. J.; Gray, H. B. Molecular Orbital Theory; Benjamin: New York, 1965.

(81) Rodriguez, F.; Moreno, M.; Tressaud, A.; Chaminade, J. P. Mn$^{2+}$ in cubic perovskites: determination of the Mn$^{2+}$–F distance from the optical-spectrum. Cryst. Lattice Defects Amorphous Mater. 1987, 16, 221–225.

(82) Freire, P. T. C.; Pilla, O.; Lemos, V. Pressure-induced level crossing in KZnF$_3$:Cr$^{3+}$. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 49, 9232–9235.

(83) Dolan, J. F.; Rinzler, A. G.; Kappers, L. A.; Bartram, R. H. Pressure and temperature dependence of chromium photoluminescence spectra in fluoride elpasolites. J. Phys. Chem. Solids 1992, 53, 905–912.

(84) Galindo, A.; Pascual, P. Quantum Mechanics I; Springer-Verlag: Berlin, 1990.

(85) Pauli, W. Über das Wasserstoffspektrum vom Standpunkt der neuen Quantenmechanik. Zeit. Physik. 1926, 36, 336–363.

(86) Rañada, A. Dinámica Clásica; Alianza Editorial: Madrid, 1990; p 302.

(87) Aramburu, J. A.; Moreno, M.; Bencini, A. Charge-transfer transitions in CuCl$_2$ and CuBr$_2$ complexes: dependence on the metal-ligand distance. Chem. Phys. Lett. 1987, 140, 462–467.