Ultra-compact hybrid stars constrained by multimessenger astrophysics

Jia Jie Li, Armen Sedrakian, and Mark Alford

1School of Physical Science and Technology, Southwest University, Chongqing 400715, China
2Frankfurt Institute for Advanced Studies, D-60438 Frankfurt am Main, Germany
3Institute of Theoretical Physics, University of Wroclaw, 50-204 Wroclaw, Poland
4Department of Physics, Washington University, St. Louis, Missouri 63130, USA

(Dated: July 21, 2022)

In this work, we consider the consequences of phase transition in dense QCD on the properties of compact stars and implications for the observational program in gravitational wave and X-ray astrophysics. The key underlying assumption of our modeling is a strong first-order phase transition past the point where the hadronic branch of compact stars reaches the two-solar mass limit. Our analysis predicts ultra-compact stars with very small radii - in the range of 6-9 km - living on compact star sequences that are entirely consistent with the current multimessenger data. We show that sequences featuring two-solar mass hadronic stars consistent with radio-pulsar observations can account naturally for the inferences of large radii for massive neutron stars by NICER X-ray observations of neutron stars and the small radii predicted by gravitational waves analysis of the binary neutron star inspiral event GW170817 if a strong QCD phase transition takes place.

1. Introduction. There has been significant progress in the search for the ultimate state of extremely dense (by an order of magnitude larger than in the ordinary nuclei) matter over the last decade due to new astrophysical observations of compact stars. These include the GW170817 event involving a merger of two compact stars which heralded the beginning of the multimessenger era of exploration of compact stars [1–3], the X-ray observation of nearby neutron stars by the NICER instrument [4–7], and measurement of massive radiopulsars in binaries with white dwarfs [8].

The description of ultra-dense matter should ultimately be based on first-principles QCD which is currently out of reach in the density-temperature range relevant for compact stars. Thus, a combination of phenomenological models with the available experimental/astrophysical data is the best option to model the properties of dense, strongly-interacting states of matter, for reviews see Refs. [9, 10]. A likely outcome of the compression of the nucleonic matter is a phase transition to liberated quark phase, as envisioned already several decades ago [11–13] and extensively studied over the past decades. It has been realized that a first-order phase transition between the hadronic and quark phase may lead to a new branch of stable hybrid stars—stars featuring a dense quark core enveloped by nucleonic matter. One interesting feature of hybrid sequences of compact stars is the existence of twin configurations: two stars with different radii but the same masses, the larger one being purely nucleonic and the more compact one being a hybrid star. These hybrid stars comprise the third family of compact stars after white dwarfs and neutron stars [14–23].

Here we address the structure of hybrid stars in the light of current astrophysical observations and show that a strongly first-order phase transition may lead to the emergence of hybrid stars with extremely small radii and a very narrow range of masses for any given parameter set. However, the masses of these objects can be varied broadly by changing the parameters of the equation of state (EoS) while keeping the resultant stellar sequences consistent with current multimessenger astrophysical data. This sheds new light on the ways the current astrophysical constraints can be interpreted. For example, our analysis below confirms that, as previously noted [25, 24], the masses and radii inferred from NICER observations can be interpreted as originating from the nucleonic branch of mass-twins, while the hybrid branch contains stars whose tidal deformabilities (hereafter TD) are consistent with the GW170817 observation. Another implication of our study is a shift in the paradigm stating that a small $R \approx 6-9$ km radius objects, if discovered, would be strange stars (for a review see Ref. [25]). As we show below, ultra-compact objects arising from a strongly first-order phase transition can have radii covering the range where so far only strange stars (objects arising within the Witten-Bodmer conjecture about the ground state of absolute stable state of matter [26, 27]) were predicted. Previously, Drago et al. [28] addressed the compatibility of large masses and small radii, in terms of two separate families of compact stars. Their scenario invokes very compact hadronic stars, whose EoS is soft, and quark stars whose EoS is stiff. As we show below, large masses and small radii are possible to accommodate within a single-family scenario, which needs to be incorporated in the analysis of the current astrophysics data.

2. Constructing the equation of state. To model the EoS of low-density hadronic matter we use the covariant density functional (CDF) approach with density-dependent nucleon-nucleon couplings within the DDME parametrization [29]. This can be mapped onto the phenomenological expansion of the energy-density of nuclear matter [30, 31],

\[
E(\chi, \delta) \approx E_{\text{sat}} + \frac{1}{21} K_{\text{sat}} \chi^2 + \frac{1}{31} Q_{\text{sat}} \chi^3 \\
+ E_{\text{sym}} \delta^2 + L_{\text{sym}} \delta^2 \chi + O(\chi^4, \chi^2 \delta^2),
\]

where $\chi \equiv (\rho - \rho_{\text{sat}})/3\rho_{\text{sat}}$, ρ_{sat} is the saturation density, and $\delta \equiv (\rho_\pi - \rho_\rho)/\rho$ is the isospin asymmetry with $\rho_\pi(\rho)$ being the neutron(proton) number densities.

The coefficients in this double expansion are referred to commonly as the incompressibility K_{sat}, skewness Q_{sat}, symmetry energy E_{sym}, and its slope L_{sym}. The mapping between the CDF and the phenomenological expansion (1) allows us to express the gross properties of compact stars in terms of...
physically transparent quantities.

In this work, we study a family of representative nucleonic EoS obtained by varying L_{sym} and Q_{sat} at fixed values of $E_{\text{sym}} = 32.31$ MeV and $K_{\text{sat}} = 251.15$ MeV. The parameter Q_{sat} controls the high-density behavior of the EoS, and thus, the maximum mass of a static nucleonic CS, whereas L_{sym} controls the intermediate-density EoS and is strongly correlated with the radius of the nucleonic stars. We consider values of the slope parameter in the range $45 \leq L_{\text{sym}} \leq 105$ MeV. The upper limit of L_{sym} is the central value of the PREX-II measurement interpretation by Refs. [32, 33]; the lower bound corresponds to the one derived from the analysis of the same experimental data in Ref. [34]. The values for skewness are less constrained and we use values $Q_{\text{sat}} = 300$ and 900 MeV which predict maximal masses of nucleonic sequences within the mass range $2.30 \leq M_{\text{max}}/M_{\odot} \leq 2.55$. This mass range allows for nucleonic CS branch to account for measured lower bound on the maximum mass $M/M_{\odot} = 2.08 \pm 0.07$ [35].

The EoS of the quark phase is modeled by a constant sound-speed (CSS) parametrization [36, 37] which offers a synthetic model motivated by microscopic computations [20], i.e.,

\[
p(\varepsilon) = \begin{cases} p_{\text{tran}}, & \varepsilon_{\text{tran}} < \varepsilon < \varepsilon_{\text{tran}} + \Delta \varepsilon, \\ p_{\text{tran}} + s [\varepsilon - (\varepsilon_{\text{tran}} + \Delta \varepsilon)], & \varepsilon_{\text{tran}} + \Delta \varepsilon < \varepsilon, \end{cases}
\]

where p_{tran} and $\varepsilon_{\text{tran}}$ are the pressure and energy density at which the transition from hadronic (hereafter H) to high-density quark phase (hereafter Q) takes place; s is the squared speed of sound (in natural units) in the quark matter phase and $\Delta \varepsilon$ is the discontinuity in energy density; note that there is no state with energy between $\varepsilon_{\text{tran}}$ and $\varepsilon_{\text{tran}} + \Delta \varepsilon$. This parametrization agrees with the predictions of computations based on the Nambu–Jona-Lasinio (NJL) model supplemented by vector repulsion [38–41]. In constructing our models we will use the Maxwell construction to match our nucleonic EoS to the quark one (2).

3. The mass-radius diagram and tidal deformabilities. The three quark matter parameters ($p_{\text{tran}}, \Delta \varepsilon, s$) fully determine the mass-radius (hereafter $M-R$) curves for hybrid stars for any given nucleonic EoS. It is convenient for further discussion to denote maximum/minimum masses for the branches by M_{max}^H, M_{max}^Q, and M_{min}^Q. See Fig. 1 for an illustration of these parameters and the features of the $M-R$ diagram, in particular the maxima and minima that may arise. Note that the branch extending up to M_{max}^Q corresponds to the third family.

Figure 1 shows the scenario under consideration here in which the phase transition occurs at a high enough density, $p_{\text{tran}}/p_{\text{sat}} \gtrsim 3.0$, so that the heaviest star on the hadronic branch has a mass of $2 M_{\odot}$. In this case, the hybrid branches lie at lower masses and are nearly flat. In the same figure, we contrast this scenario with the one studied in the light of multimessenger data in Refs. [21, 24], in which the phase transition occurs at lower density, $p_{\text{tran}}/p_{\text{sat}} \lesssim 2.0$, causing the hadronic branch to end at a lower mass, $M_{\text{min}}^H = 1.3 M_{\odot}$, and the hybrid branch extends up to $M_{\text{max}}^Q > 2 M_{\odot}$. Our sequences can be confronted with current astrophysical observational constraints shown also in Fig. 1 which include: (a) the ellipses indicating the regions of $M-R$ diagram compatible with the analysis of NICER observations of PSR J0030+0451 and J0740+6620 [4–7]; (b) the regions of $M-R$ diagram that are compatible with the parameters of the two compact stars that merged in the gravitational wave event GW170817 [3]. For both observations, the ellipses show the 90% credible intervals (CIs). Figure 1 shows, in addition, the sensitivity of results to varying the quark matter speed of sound squared s. We see that choosing the maximum value $s = 1$ yields the widest range of masses on the hybrid branch and hence for twin stars.

![FIG. 1. $M-R$ relation for hybrid EoS models with a phase transition at high density for stiff-soft nucleonic EoS with $L_{\text{sym}} = 105$, $Q_{\text{sat}} = 900$ MeV, and soft-soft one with $L_{\text{sym}} = 45$, $Q_{\text{sat}} = 300$ MeV. The sequences of stars are constructed from a nucleonic model by fixing $M_{\text{max}}^H/M_{\odot} = 2.0$ on the nucleonic branch, while varying the $M_{\text{max}}^Q/M_{\odot}$ in the range 1.0-2.0 and the speed of sound squared s. For comparison we also show the sequences in the case of low-maximum hadronic mass $M_{\text{max}}^H/M_{\odot} = 1.3$, studied previously in Refs. [21, 24], for the same speeds of sound.](image1)

![FIG. 2. $M-R$ relation for hybrid EoS models featuring high density phase transition with two example nucleonic EoS, specifically the soft-stiff one with $L_{\text{sym}} = 45$, $Q_{\text{sat}} = 900$ MeV and stiff-soft one $L_{\text{sym}} = 105$, $Q_{\text{sat}} = 300$ MeV. The value of sound speed is fixed at $s = 1.0$.](image2)
FIG. 3. Radial profiles of energy density and pressure (on logarithmic scale) for twin stars with masses $M = M_{\text{max}} = 1.40 M_\odot$. The results for purely nucleonic stars are shown by dotted, those for hybrid stars - by solid lines. Two nucleonic EoS have been used: a soft-stiff one with $L_{\text{sym}} = 45, Q_{\text{sat}} = 900$ MeV and a soft-stiff one with $L_{\text{sym}} = 105, Q_{\text{sat}} = 300$ MeV. The quark core and crust regions are shaded for clarity.

In Fig. 2 we fix the maximum mass of the nucleonic branch $M^H_{\text{max}}/M_\odot = 2.0$ and squared sound of speed $s = 1$ and then vary M^Q_{max}/M_\odot from 1.0 to 2.0 to show the range covered in the $M-R$ diagram by these type of sequences.

To assess the range of variations in the sequences arising from the uncertainties in the nucleonic sector we consider nucleonic EoS with L_{sym} taking values 45, 105 MeV and Q_{sat} taking values 300, 900 MeV. The value of L_{sym} controls the intermediate-density and Q_{sat} the high-density behavior on the nucleonic branch, see Figs. 1 and 2. So in Fig. 2 we have $(L_{\text{sym}}, Q_{\text{sat}}) = (105, 300)$ MeV corresponding to a “soft-stiff” (intermediate-density stiff and high-density soft) hadronic EoS and $(L_{\text{sym}}, Q_{\text{sat}}) = (45, 900)$ MeV for the inverse “soft-stiff” EoS. Notably, in the soft-stiff model the hadronic branch has a large radius, outside the GW170817 region, so it requires a phase transition to create a hybrid branch compatible with GW170817, whereas the soft-stiff EoS does not.

Figure 3 shows the internal structure of twin stars with masses $M = 1.40 M_\odot$ by plotting the energy density and pressure as a function of distance from the center for purely nucleonic (dotted lines) and hybrid (solid lines) stars. The highly compact hybrid configurations have an appearance that is similar to frequently studied less compact hybrid stars. As seen in Fig. 3 there is a moderate-size quark core of about 5 km, a nucleonic layer of neutron-proton-electron fluid of about 2 km, and a thin crust of several 100 m. Clearly, these objects do not resemble a strange star which is largely composed of quark matter core with a thin crust floating on top of it, due to support provided by Coulomb forces [25].

As seen from Figs. 1 and 2, all nucleonic branches are fully compatible with the masses and radii inferred by the NICER instrument for both parameters set corresponding to stiff-soft(stiff) and soft-stiff(soft) nucleonic EoS. At the same time, the phase transition to the quark phase allows for the emergence of a new Q branch that comfortably covers the region obtained from the analysis of the GW170817 event. It is then evident that the H-Q phase transition relieves the tensions between the requirement of hard EoS to account for the NICER inferences and the soft EoS needed to account for GW170817 analysis [23, 24]. In particular, the large value of L_{sym} suggested by an analysis [33] of the PREX-II experiment becomes consistent with the GW170817 event.

The range of masses of such stars can be remarkably broad when varying the EoS (not the central pressure) and cover the interval $1 \leq M/M_\odot \leq 2$. Thus, a consequence of high-density QCD phase transition is the existence of ultra-compact stars — a prediction that is consistent with the astrophysical constraints obtained to date. We note that the only other models that predict such small radii that may be consistent with the current observational data are those based on the idea of strange stars [25].

As demonstrated by multiple analyses of the GW170817 event, the TDs provide excellent diagnostics of the gross properties of neutron stars. Note that TDs provide information on the cold EoS of dense matter, as they are probes originating from the pre-merger phase of binary inspiral. Figure 4 compares our theoretical TDs for hybrid stars with the observational constraints for this quantity obtained from the analysis of the GW170817 event [2]. Our comparison adopts the chimp...
FIG. 5. Dimensionless TD for the case of EoS with the hybrid branch covering a range of masses around the average value $M/M_\odot = 1.362$ as illustrated in the upper inset showing the M-R relation. The remaining parameters are chosen as in Fig. 4. There are four types of binaries composed of hadronic (H) and/or hybrid (Q) stars. Panel (a): soft-soft and stiff-soft hadronic EoS results are shown with solid and dashed lines; (b): soft-stiff and stiff-stiff hadronic EoS are shown by solid and dashed lines.

mass as $M = 1.186 M_\odot$ and utilizes only the analysis which assumes the (more plausible) low-spin case $[2]$. The masses of the members of the binary in the GW170817 are found to be in the range 1.16-1.60 M_\odot at 90% CI. To obtain the TDs we (a) fix the values of L_{sym} and Q_{sat} which selects the nuclear EoS; (b) choose $M_{\text{max}}/M_\odot = 2.0$, $M_{\text{max}}^Q/M_\odot = 1.2$, 1.4, 1.6 and $s = 1$ which fixes three hybrid EoS each corresponding to a value of M_{max}^Q/M_\odot.

Figure 4 shows the mutual dependence of TDs Λ_1-Λ_2 of members of a binary for three choices of M_{max}^Q/M_\odot. The shaded areas correspond to the 50% and 90% CIs as indicated in the plot (we adopt the results obtained from the PhenomPNRT waveform model $[3]$). Note that the diagonal on this plot corresponds to the case of an equal-mass binary with $M_{1,2} = 1.362 M_\odot$. As seen, the case of H-H binary generates Λ_1-Λ_2 values at the boundary or outside of the 90% CI region for any choice of the stiffness of the EoS. In the case of $M_{\text{max}}^Q/M_\odot = 1.4$ and 1.6 the mass range of the hybrid branch is above the average value $M/M_\odot = 1.362$ (as indicated in the left inset showing M-R diagram). In the case $M_{\text{max}}^Q/M_\odot = 1.2$ the opposite is the case, i.e., the hybrid branch is below this value, see the right inset. As a consequence the Λ_1-Λ_2 tracks in the first case are in the upper half of the plot (Q-H binaries). In the second case they are in the lower half of the plot (H-Q binaries). These models are compatible with the range determined for GW170817 for soft-soft, stiff-soft (panel a) and soft-stiff, stiff-stiff (panel b) EoS. An exception is the case $M_{\text{max}}^Q/M_\odot = 1.6$ when the intermediate-density EoS is chosen to be stiff. From the analysis above one may conclude that the observations can be explained by appropriate choices of nuclear and quark EoS.

Figure 5 shows the same as in Fig. 4, but in this case where the quark matter EoS is chosen so that the hybrid branch covers a range of masses whose average value is 1.362 M_\odot, see the inset. Each member of the binary can be chosen from either of H or Q branches, so four combinations of stars are possible. It is seen that all the pairs lie within the allowed range except the H-H pair which are at the boundary or outside of 90% CI. Interestingly, the nucleonic EoS of hybrid stars need not be soft. Even with an EoS that is stiff at intermediate densities (stiff-stiff or stiff-soft EoS), a Q-Q binary, consisting of two ultra-compact hybrid stars with very small radii can have a combined TD as low as $\Lambda_{1,186} \approx 10$. This suggests that the multimessenger data can be accounted for if PSR J0740+6620 and J0030+0451 are purely nucleonic stars, whereas the two components of GW170817 binary are ultra-compact hybrid stars.

4. Conclusions. To summarize, we have uncovered several implications of the strongly first-order phase transitions at high density in the QCD phase diagram that are of fundamental importance for the analysis of the data from current and future gravitational-wave observatories, X-ray missions and terrestrial experiments aimed at the determination of the skin of nuclei. Firstly, we have confirmed that the nuclear EoS does not need to be soft to account for the GW170817 event, as the phase transitions allow for the emergence of hybrid stars with properties consistent with the GW170817 analysis $[23, 24]$. The NICER inferences are accounted for by invoking pure nucleonic stars that live on the hadronic (second family) branch of compact stars and consistency with an analysis of the PREX-II is achieved (which was precluded in models without phase transition). Secondly, we determine the range of the masses for which twin configurations, i.e., identical-mass stars with different radii, arise. This analysis shows that the priors in the statistical analysis of the data should be constructed consistent with the possibility of first-order phase transition with star masses in a wide range $1.0 \leq M/M_\odot \leq 2.5$ and radii covering also the range of small radii which was thought to be only achievable for strange stars, and is currently excluded by the NICER analysis at 90% CI.

The idea of having two branches of compact stars is an attractive option for reconciling disparate mass and radius measurements. In our proposal, both branches consist of stars with thick nucleonic crusts, consistent with observations of surface phenomena such as seismic vibrations after giant flares in magnetars $[42–44]$, the thermal response of the crust to accretion $[45, 46]$, the contribution of the crust to the moment of inertia and glitches $[47, 48]$, etc. This provides an alternative to scenarios such as that proposed in Ref. $[28]$ where one of the branches consists of strange/quark stars with a very thin nucleonic crust.

M. A. is partly supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-FG02-05ER41375. J. L. is supported by the “Fundamental Research Funds for the Central Universities” (Grant No. SWU-020021), the National Natural Science Foundation of China (Grant No. 12105232), and by the Venture & Innovation Support Program for Chongqing Overseas Returnees (Grant No. CX2021007). The research of A. S. was funded
[1] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 119, 161101 (2017), arXiv:1710.05832 [gr-qc].
[2] B. P. Abbott, R. Abbott, T. D. Abbott, et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 121, 161101 (2018), arXiv:1805.11581 [gr-qc].
[3] B. P. Abbott, R. Abbott, T. D. Abbott, et al. (LIGO Scientific, Virgo), Phys. Rev. X 9, 011001 (2019), arXiv:1805.11579 [gr-qc].
[4] T. E. Riley, A. L. Watts, S. Bogdanov, et al., Astrophys. J. Lett. 887, L21 (2019), arXiv:1912.05702 [astro-ph.HE].
[5] T. E. Riley, A. L. Watts, P. S. Ray, et al., Astrophys. J. Lett. 918, L27 (2021), arXiv:2105.06980 [astro-ph.HE].
[6] M. C. Miller, F. K. Lamb, A. J. Dittmann, et al., Astrophys. J. Lett. 887, L24 (2019), arXiv:1912.05705 [astro-ph.HE].
[7] M. C. Miller, F. K. Lamb, A. J. Dittmann, et al., Astrophys. J. Lett. 918, L28 (2021), arXiv:2105.06979 [astro-ph.HE].
[8] H. T. Cromartie, E. Fonseca, S. M. Ransom, et al. (NANOGrav), Nat. Astron. 4, 72 (2020), arXiv:1904.06759 [astro-ph.HE].
[9] M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schäfer, Rev. Mod. Phys. 80, 1455 (2008), arXiv:0709.4635 [hep-ph].
[10] R. Anglani, R. Casalbuoni, M. Ciminale, N. Ippolito, R. Gatto, M. Mannarelli, and M. Ruggieri, Rev. Mod. Phys. 86, 509 (2014), arXiv:1302.4264 [hep-ph].
[11] D. D. Ivanenko and D. F. Kurdgelaidze, Astrophysics 1, 251 (1965).
[12] N. Itoh, Progress of Theoretical Physics 44, 291 (1970).
[13] J. C. Collins and M. J. Perry, Phys. Rev. Lett. 34, 1353 (1975).
[14] U. H. Gerlach, Phys. Rev. 172, 1325 (1968).
[15] R. L. Bowers, A. M. Gleeson, and R. D. Pedigo, Astrophys. J. 213, 840 (1977).
[16] B. Kämpfer, J. Phys. A 14, L471 (1981).
[17] N. K. Glendenning and C. Kettner, Astro. Astrophys. Rev. 353, L9 (2000), astro-ph/9807155.
[18] K. Schertler, C. Greiner, J. Schaffner-Bielich, and M. H. Thoma, Nucl. Phys. A 677, 463 (2000), astro-ph/0001467.
[19] S. Benic, D. Blaschke, D. E. Alvarez-Castillo, T. Fischer, and S. Typel, Astron. Astrophys. 577, A40 (2015), arXiv:1411.2856 [astro-ph.HE].
[20] M. G. Alford and A. Sedrakian, Phys. Rev. Lett. 119, 161104 (2017), arXiv:1706.01592 [astro-ph.HE].
[21] D. E. Alvarez-Castillo, D. B. Blaschke, A. G. Grundfeld, and V. P. Pugura, Phys. Rev. D 99, 063010 (2019), arXiv:1805.04105 [hep-ph].
[22] K. Otto, M. Oertel, and B.-J. Schaefer, Phys. Rev. D 101, 103021 (2020), arXiv:1910.11929 [hep-ph].
[23] J.-E. Christian and J. Schaffner-Bielich, (2021), arXiv:2109.04191 [astro-ph.HE].
[24] J. J. Li, A. Sedrakian, and M. Alford, Phys. Rev. D 104, L121302 (2021), arXiv:2108.13071 [astro-ph.HE].
[25] F. Weber, Prog. Part. Nucl. Phys. 54, 193 (2005), arXiv:astro-ph/0407155 [astro-ph].
[26] E. Witten, Phys. Rev. D 30, 272 (1984).
[27] A. R. Bodmer, Phys. Rev. D 4, 1601 (1971).
[28] A. Drago, A. Lavagno, and G. Pagliara, Phys. Rev. D 89, 043014 (2014), arXiv:1309.7263 [nucl-th].
[29] G. A. Lalazissis, T. Niksic, D. Vretenar, and P. Ring, Phys. Rev. C 71, 024312 (2005).
[30] B.-A. Li, B.-J. Cai, W.-J. Xie, and N.-B. Zhang, Universe 7, 182 (2021), arXiv:2105.04629 [nucl-th].
[31] J. Margueron, R. Hoffmann Casali, and F. Gulminelli, Phys. Rev. C 97, 025806 (2018), arXiv:1708.06895 [nucl-th].
[32] D. Adhikari, H. Albataineh, D. Androic, K. Aniol, D. S. Armstrong, et al. (PREX Collaboration), Phys. Rev. Lett. 126, 172502 (2021), arXiv:2102.10767 [nucl-ex].
[33] B. T. Reed, F. J. Fattooye, C. J. Horowitz, and J. Piekarewicz, Phys. Rev. Lett. 126, 172503 (2021), arXiv:2101.03193 [nucl-th].
[34] P.-G. Reinhard, X. Roca-Maza, and W. Nazarewicz, Phys. Rev. Lett. 127, 232501 (2021), arXiv:2105.15050 [nucl-th].
[35] E. Fonseca, H. T. Cromartie, T. T. Pennucci, et al., Astrophys. J. Lett. 915, L12 (2021), arXiv:2104.00880 [astro-ph.HE].
[36] J. L. Zdunik and P. Haensel, Astron. Astrophys. 551, A61 (2013), arXiv:1211.1231 [astro-ph.SR].
[37] M. G. Alford, S. Han, and M. Prakash, Phys. Rev. D 88, 083013 (2013), arXiv:1302.4732 [astro-ph.HE].
[38] D. Blaschke, T. Klähn, R. Łastowiecki, and F. Sandin, J. Phys. G 37, 094063 (2010), arXiv:1002.1299 [nucl-th].
[39] L. Bonanno and A. Sedrakian, Astron. Astrophys. 539, A16 (2012), arXiv:1108.0559 [astro-ph.SR].
[40] T. Klähn, R. Łastowiecki, and D. Blaschke, Phys. Rev. D 88, 085001 (2013), arXiv:1307.6996 [nucl-th].
[41] A. Pfaff, H. Hansen, and F. Gulminelli, Phys. Rev. C 105, 035802 (2022), arXiv:2112.09955 [astro-ph.HE].
[42] A. L. Watts and S. Reddy, Mon. Not. Roy. Astron. Soc. 379, L63 (2007), arxiv:astro-ph/0609364.
[43] A. I. Chugunov, Mon. Not. Roy. Astron. Soc. 371, 363 (2006), arxiv:astro-ph/0603610.
[44] A. G. Suvorov, H.-J. Kuan, and K. D. Kokkotas, arxiv e-prints, arxiv:2205.11112 (2022), arxiv:2205.11112 [astro-ph.HE].
[45] E. F. Brown, Astrophys. J. 531, 988 (2000), arxiv:astro-ph/9910215.
[46] A. Y. Potekhin and G. Chabrier, Astro. Astrophys. Rev. 645, A102 (2021), arxiv:2011.10490 [astro-ph.HE].
[47] N. K. Glendenning and F. Weber, Astrophys. J. 400, 647 (1992).
[48] B. Haskell and A. Sedrakian, in Astrophysics and Space Science Library, Astrophysics and Space Science Library, Vol. 457, edited by L. Rezzolla, P. Pizzochero, D. I. Jones, N. Rea, and I. Vidaña (2018) p. 401, arxiv:1709.10340 [astro-ph.HE].