Existence and convergence of solutions for nonlinear elliptic systems on graphs

Jinyan Xu\(^1\) Liang Zhao\(^1\)

\(^1\) School of Mathematical Sciences, Key Laboratory of Mathematics and Complex Systems of MOE, Beijing Normal University, Beijing 100875, China

2021.11.20

Abstract

We consider a kind of nonlinear systems on a locally finite graphs \(G = (V,E)\). We prove via the mountain pass theorem that this kind of systems has a nontrivial ground state solution which depends on the parameter \(\lambda\) with some suitable assumptions on the potentials. Moreover, we pay attention to the concentration behavior of these solutions and prove that, as \(\lambda \to \infty\), these solutions converge to a ground state solution of a corresponding Dirichlet problem. Finally, we also provide some numerical experiments to illustrate our results.

Keywords: nonlinear elliptic system, locally finite graph, ground state solution

1 Introduction

Recently, the analytic aspect of different partial differential equations on graphs has attracted much attention. For example, a variety of fundamental problems of heat equations on graphs, such as the heat kernel \(18\), the existence, uniqueness \(19\) \(22\) and blow-up behavior \(23\) of solutions are considered by different authors. There is also research about the Fokker-Planck and Schrödinger equations on graphs \(7\) \(8\), which are related to the discrete optimal transport theory. Grigoryan, Lin and Yang \(14\) \(15\) \(16\) studied several nonlinear elliptic equations on graphs and they pointed out that the required Sobolev spaces on a finite graph is pre-compact, which makes it possible to use the variational method to obtain the existence of solutions. The second author cooperates with others \(31\) \(17\) by using the Nehari manifold to prove that on a locally finite graph, the nonlinear Schrödinger equation has a nontrivial ground state solution under suitable conditions, and the limit of the solution is limited to a potential well.

A single nonlinear partial differential equation defined on Euclidean space as

\[-\Delta u + b(x) u = f(x,u),\]

it has been extensively studied. For example, Rabinowitz\(28\) proposed and studied the standing wave solution of the Schrödinger equation. Li\(21\) and Bartsch and Willem\(6\) also studied the existence of solutions under different assumptions. In particular, Bartsch and Wang\(4\)\(5\) considered the potential \(b(x) = \lambda a(x) + 1\) where \(a(x)\) satisfies certain assumptions and they proved that the equation has a ground state solution that depends on the parameter \(\lambda\), which will converge to a ground state solution of a Dirichlet problem when \(\lambda \to \infty\). For different assumptions on the potential \(a(x)\), we refer to\(12\)\(3\) and the references therein.

On the other hand, systems of nonlinear partial differential equations, which are obviously generalizations of a single equation, is used to describe many phenomena in nature, such as nerve conduction and electromagnetic fields et al. Kinds of nonlinear systems defined on Euclidean space have been extensively studied. For the general gradient systems

\[\begin{align*}
-\Delta u + a(x) &= F_u(x,u,v) \\
-\Delta u + b(x) &= F_v(x,u,v) \\
u, v &\in W^{1,2}(\mathbb{R}^N)
\end{align*}\]

when \(a(x) = b(x) \equiv 1\), the existence of weak solutions is proved in\(20\). In\(9\), Costa required the potentials to be continuous and coercive to overcome the lack of compactness and proved the existence of weak solutions. For the nonlinear gradient systems, we can also refer to\(11\)\(10\)\(24\)\(27\)\(30\).
In [2], Alves considered the following system with a parameter ϵ

\[
\begin{align*}
-\epsilon^2 \Delta u + a(x) &= F_u(x, u, v) \quad \text{in } \mathbb{R}^N, \\
-\epsilon^2 \Delta u + b(x) &= F_v(x, u, v) \quad \text{in } \mathbb{R}^N, \\
u(x), v(x) &\to 0 \quad \text{as } |x| \to \infty \\
u, v > 0
\end{align*}
\]

Using the mountain pass theorem, the author showed the existence results and the concentration behavior of these solution as $\epsilon \to 0$. There has been a great deal of interest in studying the convergence of solutions for nonlinear systems with different assumptions, we refer [11, 25, 27] and the references therein.

We are concerned in this article with the following nonlinear system on a locally finite and connected graph $G = (V, E)$.

\[
\begin{align*}
-\Delta u + (\lambda a(x) + 1) u &= \frac{\alpha}{\alpha + \beta} |u|^{\alpha - 2} u |v|^\beta \quad \text{in } V \\
-\Delta v + (\lambda b(x) + 1) v &= \frac{\beta}{\alpha + \beta} |u|^\alpha |v|^\beta - 2 v \quad \text{in } V
\end{align*}
\]

where α and β are positive constants such that $\alpha, \beta > 1$, $\lambda > 0$ is a parameter, and $a(x), b(x) : V \to \mathbb{R}$ are given functions satisfying the following two conditions:

(A1) $a(x) \geq 0, b(x) \geq 0$ for all $x \in V$, $\Omega_a := \{x \in V : a(x) = 0\}$, $\Omega_b := \{x \in V : b(x) = 0\}$ and $\Omega_a \cap \Omega_b$ are all non-empty bounded domains in V.

(A2) There exists a vertex $x_0 \in V$ such that $a(x) \to +\infty$ and $b(x) \to +\infty$ as $d(x, x_0) \to +\infty$.

Motivated by [17] [31], we aim to study the existence of a nontrivial ground state solution of (1) with a fixed positive parameter λ. Here a ground state solution means it has the least energy among all nontrivial solutions. Moreover, we also study the convergence behavior of the solutions as $\lambda \to \infty$.

To describe this problem in details, we first introduce some concepts and assumptions. Let $G = (V, E)$ be a graph, where V denotes the set of vertices and E denotes the set of edges, and we write $x \sim y$ if x is connected to y, i.e. $xy \in E$. A graph G is called \textit{locally finite} if each vertex has a finite number of edges. A graph is called \textit{connected} if any two vertices x and y can be connected via finite edges. The \textit{graph distance} $d(x, y)$ between any two distinct vertices x, y is the minimal number of edges which connect these two vertices. We use $w_{xy} > 0$ to denote the weight of an edge $xy \in E$ and we call it a \textit{symmetric weight} on G, if $w_{xy} = w_{yx}$ for any $(x, y) \in E$. The \textit{measure} $\mu : V \to \mathbb{R}^+$ on the graph is a finite positive function on G. We call it a uniformly positive measure if there exists a constants $\mu_{\text{min}} > 0$ such that $\mu(x) \geq \mu_{\text{min}}$ for all $x \in V$. If the distance $d(x, y)$ is uniformly bounded from above for any $x, y \in \Omega$, we call Ω a bounded domain in V. The boundary of Ω is defined as

$$\partial \Omega := \{ y \not\in \Omega : \exists x \in \Omega \text{ such that } xy \in E \}$$

and the interior of Ω is denoted by Ω°. Moreover, we denote $\overline{\Omega} = \Omega \cup \partial \Omega$.

For any function $u : V \to \mathbb{R}$, the μ-Laplacian of u at x is defined by:

$$\Delta u(x) := \frac{1}{\mu(x)} \sum_{y \sim x} w_{xy}(u(y) - u(x)).$$

The gradient form of two functions u and v on the graph is defined by:

$$\Gamma(u, v)(x) := \frac{1}{2\mu(x)} \sum_{y \sim x} w_{xy}(u(y) - u(x))(v(y) - v(x)).$$

In particular, we use $\Gamma(u)$ to denote $\Gamma(u, u)$ and the length of the gradient for u at x is

$$|\nabla u(x) := \sqrt{\Gamma(u)(x)} = \left(\frac{1}{2\mu(x)} \sum_{y \sim x} w_{xy}(u(y) - u(x))^2 \right)^{1/2}.$$

The integral of u over V is defined by:

$$\int_V u d\mu = \sum_{x \in V} u(x) u(x).$$
The set of functions with compact support is $C_c (V) := \{ u : V \to \mathbb{R} \mid \{ x \in V : u (x) \neq 0 \} \text{ is of finite cardinality} \}$. In [17], they have proved that $W^{1,2} (V)$ under the norm
\[
\| u \|_{W^{1,2} (V)} = \left(\int_V (|\nabla u|^2 + u^2) \, d\mu \right)^{1/2}
\]
is the completion of $C_c (V)$. Let us consider the space $H = W^{1,2} (V) \times W^{1,2} (V) = \{ (u, v) \mid u, v \in W^{1,2} (V) \}$. It is easy to prove that H is a Hilbert space with the inner product
\[
\langle (u, v), (\xi, \eta) \rangle_H = \int_V \left(\Gamma (u, \xi) + u \xi + \Gamma (v, \eta) + v \eta \right) \, d\mu
\]
for any $(u, v), (\xi, \eta) \in H$, and it is the completion of $C_c (V) \times C_c (V)$ under the norm
\[
\|(u, v)\|_H^2 = \int_V \left(|\nabla u|^2 + |\nabla v|^2 + u^2 + v^2 \right) \, d\mu
\]
Next, in order to apply the variational setting, for any fixed $\lambda > 0$, we introduce the following subspace H_λ of H:
\[
H_\lambda = \left\{ (u, v) \in H \mid \int_V (\lambda a (x) u^2 + \lambda b (x) v^2) \, d\mu < \infty \right\}
\]
where $a (x)$ and $b (x)$ satisfy (A1) and (A2). Obviously, H_λ is also a Hilbert space with its inner product and norm given by
\[
\langle (u, v), (\xi, \eta) \rangle_{H_\lambda} = \int_V \left(\Gamma (u, \xi) + (\lambda a (x) + 1) u \xi + \Gamma (v, \eta) + (\lambda b (x) + 1) v \eta \right) \, d\mu
\]
\[
\|(u, v)\|_{H_\lambda}^2 = \int_V \left(|\nabla u|^2 + |\nabla v|^2 + (\lambda a (x) + 1) u^2 + (\lambda b (x) + 1) v^2 \right) \, d\mu
\]
for any $(u, v), (\xi, \eta) \in H_\lambda$.
The energy functional $J_\lambda : H_\lambda \to \mathbb{R}$ associated with the system (1) is defined by:
\[
J_\lambda (u, v) := \frac{1}{2} \int_V \left(|\nabla u|^2 + |\nabla v|^2 + (\lambda a (x) + 1) u^2 + (\lambda b (x) + 1) v^2 \right) \, d\mu - \frac{1}{\alpha + \beta} \int_V |u|^\alpha |v|^\beta \, d\mu
\]
\[
= \frac{1}{2} \|(u, v)\|_{H_\lambda}^2 - \frac{1}{\alpha + \beta} \int_V |u|^\alpha |v|^\beta \, d\mu
\]
In view of the hypotheses (A1) and (A2), the functional J_λ is well defined and of class C^1. In order to obtain the critical points of J_λ which are weak solutions of (1), we will verify the Palais-Smale condition and apply the Mountain Pass Theorem to guarantee critical points of the functional. Our main results can be formulated as follows.

Theorem 1.1. Let $G = (V, E)$ be a locally finite and connected graph with symmetric weight and uniformly positive measure. Assume $a (x), b (x)$ are functions satisfying (A1) and (A2). Then for any positive constant $\lambda > 0$, there exists a ground state solution (u_λ, v_λ) of the system (1).

To study the behavior of u_λ as $\lambda \to \infty$, we introduce the Dirichlet problem:
\[
\begin{cases}
-\Delta u + u = \frac{\alpha}{\alpha + \beta} |u|^\alpha - 2 u |v|^{\beta - 2} v & \text{in } \Omega_a \\
-\Delta v + v = \frac{\beta}{\alpha + \beta} |u|^\alpha u |v|^{\beta - 2} v & \text{in } \Omega_b \\
u = 0 & \text{on } \partial \Omega_a \\
v = 0 & \text{on } \partial \Omega_b
\end{cases}
\]
It is suitable to study (2) in the space $H_\Omega := W^{1,2}_0 (\Omega_a) \times W^{1,2}_0 (\Omega_b)$ where $W^{1,2}_0 (\Omega)$ is the completion of $C_c (\Omega)$ under the norm
\[
\| u \|_{W^{1,2}_0 (\Omega)} = \left(\int_{\Omega \cup \partial \Omega} |\nabla u|^2 + \int_{\Omega} u^2 \, d\mu \right)^{1/2}
\]
where $C_c(\Omega)$ denotes the set of all functions $u : \Omega \to \mathbb{R}$ satisfying $\text{supp} \ u \subset \Omega$ and $u = 0$ on $\partial \Omega$. The space H_Ω endowed with the inner product

$$\langle (u, v), (\xi, \eta) \rangle_{H_\Omega} = \int_{\Omega_a \cup \Omega_b} \left(\Gamma (u, \xi) + \Gamma (v, \eta) \right) \, d\mu + \int_{\Omega_a \cap \Omega_b} (u \xi + v \eta) \, d\mu$$

is a Hilbert space. The functional related to (2) is $J_\Omega (u, v, \xi, \eta) = J_\Omega (u, v, \xi, \eta)$

$$J_\Omega (u, v) = \frac{1}{2} \int_{\Omega_a \cup \Omega_b} \left(|\nabla u|^2 + |\nabla v|^2 \right) \, d\mu + \frac{1}{2} \int_{\Omega_a \cup \Omega_b} (u^2 + v^2) \, d\mu - \frac{1}{\alpha + \beta} \int_{\Omega_a \cup \Omega_b} |u|^\alpha |v|^\beta \, d\mu.$$

Similar to Theorem 1.1, the system (2) also has a ground state solution. Precisely, we have the following theorem.

Theorem 1.2. Let $G = (V, E)$ to be a locally finite and connected group with symmetric weight and uniform positive measure. Suppose that Ω_a, Ω_b and $\Omega_a \cap \Omega_b$ are non-empty and bounded domains in V. Then the system (2) has a ground state solution $(u_{\lambda_n}, v_{\lambda_n}) \in H_\Omega$.

Finally, as in the scale case [27], the next result show that the semilinear elliptic system (2) may be seen as a limit problem for (1) when λ goes to infinity, where Ω_a and Ω_b are the potential wells of the system (1). More precisely, we have the following theorem.

Theorem 1.3. Under the same assumptions as in Theorem 1.1 and 1.2, we have that, for any sequence $\lambda_n \to \infty$, up to a subsequence, the corresponding ground state solutions $(u_{\lambda_n}, v_{\lambda_n})$ of (2) converge in H to a ground state solution of (1).

The paper is organized in the following way. In section 2 we present some basic properties and known results which will be used throughout our work. We prove Theorem 1.1 and 1.2 in section 3 and section 4 is devoted to the proof of Theorem 1.3. In the final section, we give a numerical experiment on a finite graph with 22 vertices to illustrate our conclusions.

2 Preliminaries

2.1 Weak solution

We say that (u, v) is a solution of the system (1) if the two equations hold for all $x \in V$. To define the weak solution, we need formulas of integration by parts on graphs, which are also fundamental when we use methods from calculus of variations. The proofs of the next two lemmas can be found in [17] and we omit them here.

Lemma 2.1. Suppose that $u \in W^{1,2} (V)$. Then for any $\xi \in C_c (V)$ we have

$$\int_V \nabla u \nabla \xi \, d\mu = \int_V \Gamma (u, \xi) \, d\mu = - \int_V (\Delta u) \xi \, d\mu.$$

Lemma 2.2. Suppose that $u \in W^{1,2}_0 (\Omega)$. Then for any $\xi \in C_c (\Omega)$ we have

$$\int_{\Omega_a \cup \Omega_b} \nabla u \nabla \xi \, d\mu = \int_{\Omega_a \cup \Omega_b} \Gamma (u, \xi) \, d\mu = - \int_{\Omega_a \cup \Omega_b} (\Delta u) \xi \, d\mu.$$

Now we can define the weak solution of the system (1).

Definition 2.3. Suppose $(u, v) \in H_\Lambda$. If for any $(\xi, \eta) \in H_\Lambda$, there holds

$$\int_V \left(\nabla u \nabla \xi + \nabla v \nabla \eta + (\lambda a (x) + 1) u \xi + (\lambda b (x) + 1) v \eta \right) \, d\mu = \int_V \left(\frac{\alpha}{\alpha + \beta} |u|^\alpha - 2 u |v|^{\beta - 2} v + \frac{\beta}{\alpha + \beta} |u|^\alpha |v|^\beta - v \eta \right) \, d\mu,$$

then (u, v) is called a weak solution of (1).

Similarly, the weak solution of the system (2) is defined as

Definition 2.4. Suppose $(u, v) \in H_\Lambda$. If for any $(\xi, \eta) \in H_\Lambda$, there holds

$$\int_{\Omega_a \cup \Omega_b} (\nabla u \nabla \xi + \nabla v \nabla \eta) \, d\mu + \int_{\Omega_a \cup \Omega_b} (u \xi + v \eta) \, d\mu = \int_{\Omega_a \cup \Omega_b} \left(\frac{\alpha}{\alpha + \beta} |u|^\alpha - 2 u |v|^{\beta - 2} v \xi + \frac{\beta}{\alpha + \beta} |u|^\alpha |v|^\beta - v \eta \right) \, d\mu,$$

then (u, v) is called a weak solution of (2).
2.2 Sobolev embedding

Next, we present some results about the compactness of the function spaces H_λ and H_0.

Lemma 2.5. Assume that $\alpha, \beta > 1$, $\lambda > 0$ and $a(x), b(x)$ satisfies (A_1) and (A_2). Then H_λ is embedded continuously into H and $L^q (V, \mathbb{R}^2)$ for all $q \in [2, \infty]$, which are independent of λ. Namely, there exists a constants C depending only on q such that for any $(u, v) \in H_\lambda$,

$$
\|(u, v)\|_H \leq C \|(u, v)\|_{H_\lambda}, \|(u, v)\|_{L^q (V, \mathbb{R}^2)} \leq C \|(u, v)\|_{H_\lambda}.
$$

Moreover, the embedding of H_λ into $L^q (V, \mathbb{R}^2)$ is compact for all $q \in [2, \infty]$. That is, for any bounded sequence $\{(u_k, v_k)\} \subset H_\lambda$, there exists $\{(u, v)\} \subset H_\lambda$ such that, up to a subsequence,

$$
\begin{cases}
(u_k, v_k) \to (u, v) & \text{in } H_\lambda \\
(u_k, v_k) \to (u, v) & \forall x \in V \\
(u_k, v_k) \to (u, v) & \text{in } L^q (V, \mathbb{R}^2)
\end{cases}
$$

(3)

Proof. Suppose that $(u, v) \in H_\lambda$, from (A_1) one deduces immediately that H_λ is embedded continuously into H.

For any vertex $x_0 \in V$, we have

$$
\|(u, v)\|_{H_\lambda}^2 = \int_V \left(|\nabla u|^2 + |\nabla v|^2 + (\lambda a(x) + 1) u^2 + (\lambda b(x) + 1) v^2 \right) d\mu

\geq \int_V \left(|\nabla u|^2 + |\nabla v|^2 + u^2 + v^2 \right) d\mu

\geq \int_V u^2 d\mu

= \sum_{x \in V} \mu(x) u^2 (x)

\geq \mu_{\min} u^2 (x_0)
$$

which gives $u(x_0) \leq \sqrt{\frac{1}{\mu_{\min}}} \|(u, v)\|_{H_\lambda}$ for any $x_0 \in V$. Similarly, we have $v(x_0) \leq \sqrt{\frac{1}{\mu_{\min}}} \|(u, v)\|_{H_\lambda}$. Thus we have

$$
\|(u, v)\|_{L^\infty} = \sup_{x \in V} |u(x)| + \sup_{x \in V} |v(x)| \leq 2 \sqrt{\frac{1}{\mu_{\min}}} \|(u, v)\|_{H_\lambda},
$$

which implies that $H_\lambda \hookrightarrow L^\infty (V, \mathbb{R}^2)$ continuously and the embedding is independent of λ. Obviously, we also have $H_\lambda \hookrightarrow L^2 (V, \mathbb{R}^2)$ continuously. Then the interpolation gives the continuous embedding $H_\lambda \hookrightarrow L^q (V, \mathbb{R}^2)$ for any $2 \leq q \leq \infty$.

Since H_λ is Hilbert space, for a bounded sequence $\{(u_k, v_k)\}$ in H_λ, there exists $(u, v) \in H_\lambda$ and a subsequence that we still call $\{(u_k, v_k)\}$, such that

$$(u_k, v_k) \to (u, v) \text{ in } H_\lambda$$

$$(u_k, v_k) \to (u, v) \text{ in } L^2 (V, \mathbb{R}^2).$$

Then we get that, for any $(\xi, \eta) \in L^2 (V, \mathbb{R}^2)$,

$$
\int_V \left((u_k - u) \xi + (v_k - v) \eta \right) d\mu

= \lim_{k \to \infty} \sum_{x \in V} \left(\mu(x) (u_k - u)(x) \xi(x) + \mu(x) (v_k - v)(x) \eta(x) \right)

= 0
$$

(4)

Take any $x_0 \in V$ and let

$$
(\xi_1, \eta_1) = \begin{cases}
(1, 0) & x = x_0 \\
(0, 0) & x \neq x_0
\end{cases}
$$

(5)

$$
(\xi_2, \eta_2) = \begin{cases}
(0, 1) & x = x_0 \\
(0, 0) & x \neq x_0
\end{cases}
$$

(6)
Obviously, they both belong to $L^2(V, \mathbb{R}^2)$. By substituting \([5]\) and \([6]\) into \([4]\), we get
\[
\lim_{k \to \infty} \mu(x_0)(u_k - u)(x_0) = 0
\]
\[
\lim_{k \to \infty} \mu(x_0)(v_k - v)(x_0) = 0
\]
which implies that $(u_k, v_k) \to (u, v)$ for all $x \in V$ while $k \to \infty$.

Next, we prove that $(u_k, v_k) \to (u, v)$ in $L^q(V, \mathbb{R}^2)$. It is sufficient to prove that $(u_k, v_k) \to (0, 0)$ strongly in $L^q(V, \mathbb{R}^2)$ when $(u_k, v_k) \to (0, 0)$ weakly in H_λ.

Indeed, the boundedness of $\{u_k, v_k\}$ in H_λ gives $\|(u_k, v_k)\|_{H_\lambda}^2 \leq C_0$ for some constant C_0. Since $a(x)$ and $b(x)$ satisfy (A_2), for any $\epsilon > 0$, we can pick $R > 0$ such that $a(x) \geq \frac{2C_0}{\epsilon^2}$ and $b(x) \geq \frac{2C_0}{\epsilon^2}$ if $\text{dist}(x, x_0) > R$. Then we have
\[
\int_{\text{dist}(x, x_0) > R} (|u_k|^2 + |v_k|^2) \, d\mu \\
\leq \frac{\epsilon}{2C_0} \int_{\text{dist}(x, x_0) > R} \left(a(x) |u_k|^2 + b(x) |v_k|^2 \right) \, d\mu \\
\leq \frac{\epsilon}{2C_0} \|u_k, v_k\|_{H_\lambda}^2 \\
\leq \frac{\epsilon}{2}
\]
(7)

On the other hand, since $\{x \in V : \text{dist}(x, x_0) \leq R\}$ is a finite set and $u_k(x) \to 0, v_k(x) \to 0$ for any $x \in V$ as $k \to \infty$, there exists k_0 such that $\int_{\text{dist}(x, x_0) \leq R} (|u_k|^2 + |v_k|^2) \, d\mu \leq \epsilon/2$ when $k > k_0$. This together with \([7]\) gives that $\int_V (|u_k|^2 + |v_k|^2) \, d\mu \leq \epsilon$ when k is large enough. Therefore, $\lim_{k \to \infty} \|(u_k, v_k)\|_{L^2}^2 = 0$.

Since for $(u_k, v_k) \in H_\lambda$ and any $x \in V$, we have $\|(u_k, v_k)\|_{L^\infty}^2 \geq \mu_{\min} u_k^2(x), \|(u_k, v_k)\|_{L^2}^2 \geq \mu_{\min} v_k^2(x)$.

Hence,
\[
\|(u_k, v_k)\|_{L^\infty}^2 = \sup_{x \in V} |u_k(x)| + \sup_{x \in V} |v_k(x)| \\
\leq 2 \sqrt{\frac{1}{\mu_{\min}}} \|(u_k, v_k)\|_{L^2} \\
\to 0 \text{ as } k \to \infty
\]

Finally, for any $2 < q < \infty$, one can get that
\[
\|(u_k, v_k)\|_{L^q}^q = \int_V (|u_k|^q + |v_k|^q) \, d\mu \\
\leq \left[\sup_{x \in V} |u_k(x)| \right]^{q-2} \int_V u_k^2(x) \, d\mu + \left[\sup_{x \in V} |v_k(x)| \right]^{q-2} \int_V v_k^2(x) \, d\mu \\
\leq \|(u_k, v_k)\|_{L^2}^{q-2} \int_V \left(u_k^2(x) + v_k^2(x) \right) \, d\mu \\
\to 0 \text{ as } k \to \infty
\]

This completes the proof.

For the function space H_Ω, we also have a similar lemma.

Lemma 2.6. Assume that Ω_a and Ω_b are bounded domains in V. Then H_Ω is continuously embedded into $L^{q_1}(\Omega_a) \times L^{q_2}(\Omega_b)$ for any $q_1, q_2 \in [1, \infty)$. Namely, there exists a constant C depending only on Ω_a, Ω_b, and q_1, q_2 such that for any $(u, v) \in H_\Omega$, $\|(u, v)\|_{L^{q_1}(\Omega_a) \times L^{q_2}(\Omega_b)} \leq C \|(u, v)\|_{H_\Omega}$. Moreover, for any bounded sequence $\{(u_k, v_k)\} \subset H_\Omega$, there exists $(u, v) \in H_\Omega$ such that, up to a subsequence,

\[
\begin{align*}
(u_k, v_k) &\to (u, v) \quad \text{in } H_\Omega \\
u_k(x) &\to u(x) \quad \forall x \in \Omega_a \\
v_k(x) &\to v(x) \quad \forall x \in \Omega_b \\
(u_k, v_k) &\to (u, v) \quad \text{in } L^{q_1}(\Omega_a) \times L^{q_2}(\Omega_b)
\end{align*}
\]
Proof. For $q_1, q_2 \in [2, \infty]$, the proof is almost the same as that of Lemma 2.5.
When $q_1 = q_2 = 1$, since Ω_a and Ω_b are finite set, it is easy to prove that
\[
\|(u, v)\|_{L^1(\Omega_a) \times L^1(\Omega_b)} = \sum_{x \in \Omega_a} \alpha (x) |u(x)| + \sum_{x \in \Omega_b} \beta (x) |v(x)| \leq C \|(u, v)\|_{H}\n
\]
where C is a constant depending on Ω_a and Ω_b. Moreover, noting that $u_k (x) \to u(x)$ in Ω_a and $v_k (x) \to v(x)$ in Ω_b, for any given $\epsilon > 0$, we have $|u_k (x) - u(x)| < \epsilon$ and $|v_k (x) - v(x)| < \epsilon$, where k is large enough and independent of x. Thus,
\[
\|(u_k - u, v_k - v)\|_{L^1(\Omega_a) \times L^1(\Omega_b)} = \sum_{x \in \Omega_a} \alpha (x) |u_k (x) - u(x)| + \sum_{x \in \Omega_b} \beta (x) |v_k (x) - v(x)| \leq \epsilon (|\Omega_a| + |\Omega_b|) \to 0
\]
where $|\Omega_a| = \sum_{x \in \Omega_a} \alpha (x)$ and $|\Omega_b| = \sum_{x \in \Omega_b} \beta (x)$ are bounded.
Therefore, we can verify that the embedding of H_Ω into $L^{q_1} (\Omega_a) \times L^{q_2} (\Omega_b)$ is compact for any $q_1, q_2 \in [1, \infty]$.

3 Existence of solutions

In this section, we first verify a compactness condition of the functional J_λ.

Lemma 3.1. The functional J_λ satisfies the $(PS)_c$ condition for every $c \in \mathbb{R}$. Namely, for any sequence $\{(u_k, v_k)\} \subset H_\lambda$ such that $J_\lambda (u_k, v_k) \to c$ and $J'_\lambda (u_k, v_k) \to 0$, there is a convergent subsequence in H_λ.

Proof. First, we claim that $\{(u_k, v_k)\}$ is bounded in H_λ.

In fact, assume that $\{(u_k, v_k)\}$ is a Palais-Smale sequence at level c. Obviously, $J_\lambda (u_k, v_k) \to c$ is equivalent to
\[
\frac{1}{2} \|(u_k, v_k)\|^2_{H_\lambda} - \frac{1}{\alpha + \beta} \int_V |u_k|^{\alpha} |v_k|^\beta \, d\mu = c + o_k (1). \tag{9}
\]

Here and in the sequel, $o_k (1) \to 0$ as $k \to +\infty$. Since $J'_\lambda (u_k, v_k) \to 0$, we get
\[
\langle J'_\lambda (u_k, v_k), (u_k, v_k) \rangle = \langle (u_k, v_k), (u_k, v_k) \rangle_{H_\lambda} = \int_V \left(\frac{\alpha}{\alpha + \beta} |u_k|^{\alpha-2} u_k |v_k|^\beta u_k + \frac{\beta}{\alpha + \beta} |u_k|^{\alpha} |v_k|^{\beta-2} v_k v_k \right) \, d\mu
\]
which is equivalent to
\[
\|(u_k, v_k)\|_{H_\lambda}^2 = \int_V |u_k|^{\alpha} |v_k|^\beta \, d\mu + o_k (1) \|(u_k, v_k)\|_{H_\lambda}, \tag{10}
\]
Then combining (9) and (10), we conclude that
\[
\left(\frac{1}{2} - \frac{1}{\alpha + \beta} \right) \|(u_k, v_k)\|^2_{H_\lambda} = c + o_k (1) + o_k (1) \|(u_k, v_k)\|_{H_\lambda}. \tag{11}
\]

Since $\alpha > 1$ and $\beta > 1$, we obtain that $\{(u_k, v_k)\}$ is bounded. By Lemma 2.5, there exists $(u, v) \in H_\lambda$ and a subsequence, still denoted by $\{(u_k, v_k)\}$, such that satisfying (3).

We now show that the convergence of (u_k, v_k) to (u, v) is strong in H_λ which implies the $(PS)_c$ condition. First, we have
\[
\int_V |u_k|^{\alpha-2} u_k |v_k|^\beta (u_k - u) \, d\mu \leq \left[\sup_{x \in V} |u_k| \right]^{\alpha-1} \left(\int_V |v_k|^{2\beta} \, d\mu \right)^{\frac{1}{2}} \left(\int_V |u_k - u|^2 \, d\mu \right)^{\frac{1}{2}} \to 0 \quad \text{as} \quad k \to \infty
\]
Similarly, we also have $\int_V |u_k|^\alpha |v_k|^{\beta - 2} v_k (v_k - v) \, d\mu \to 0$ as $k \to \infty$.

Since $(u_k, v_k) \to 0$ leads to $(J'_\lambda (u_k, v_k), (u_k - u, v_k - v)) \to 0$, which is equivalent to

$$\langle (u_k, v_k), (u_k - u, v_k - v) \rangle_{H_\lambda}$$

$$= \int_V \left(\frac{\alpha}{\alpha + \beta} |u_k|^{\alpha - 2} u_k |v_k|^{\beta} (u_k - u) + \frac{\beta}{\alpha + \beta} |u_k|^\alpha |v_k|^{\beta - 2} v_k (v_k - v) \right) \, d\mu$$

$$+ o_k (1) \|(u_k - u, v_k - v)\|_{H_\lambda} \to 0 \text{ as } k \to \infty$$

(12)

Moreover, as $(u_k, v_k) \to (u, v)$ weakly in H_λ, there holds

$$\langle (u, v), (u_k - u, v_k - v) \rangle_{H_\lambda} \to 0 \text{ as } k \to \infty$$

(13)

Combining (12) and (13), we get that $(u_k, v_k) \to (u, v)$ strongly in H_λ and the lemma is proved.

To prove the existence results, we need to check the geometric conditions of mountain pass theorem, which are presented in the following lemma.

Lemma 3.2. The function J_λ satisfies the mountain pass geometry. Namely,

(i) there exist positive constants r and ρ, such that $J_\lambda (u, v) > r$ for $\|(u, v)\|_{H_\lambda} = \rho$

(ii) there exists $(u_0, v_0) \in H_\lambda \setminus \{(0, 0)\}$ such that $\|(u_0, v_0)\|_{H_\lambda} > \rho$ and $J_\lambda (u_0, v_0) < 0$.

Proof. First, for any $(u, v) \in H_\lambda$, we have

$$J_\lambda (u, v) = \frac{1}{2} \|(u, v)\|_{H_\lambda}^2 - \frac{1}{\alpha + \beta} \int_V |u|^\alpha |v|^{\beta} \, d\mu$$

$$\geq \frac{1}{2} \|(u, v)\|_{H_\lambda}^2 - \frac{1}{\alpha + \beta} \int_V \left(|u|^{\alpha + \beta} + |v|^{\alpha + \beta} \right) \, d\mu$$

$$= \frac{1}{2} \|(u, v)\|_{H_\lambda}^2 - \frac{1}{\alpha + \beta} \|(u, v)\|_{L^{\alpha + \beta}}^{\alpha + \beta}$$

$$\geq \frac{1}{2} \|(u, v)\|_{H_\lambda}^2 - C \|(u, v)\|_{H_\lambda}^{\alpha + \beta}$$

Since $\alpha + \beta > 2$, we can choose an enough small constant ρ, such that for any (u, v) with its H_λ norm equals to ρ, there holds $J_\lambda (u, v) \geq \frac{1}{2} \rho^2 - C \rho^{\alpha + \beta} > 0$. Part (i) is proved.

On the other hand, for any $(u, v) \in H_\lambda \setminus \{(0, 0)\}$ and $t > 0$ we have

$$J_\lambda ((tu, tv)) = \frac{t^2}{2} \|(u, v)\|_{H_\lambda}^2 - \frac{t^{\alpha + \beta}}{\alpha + \beta} \int_V |u|^\alpha |v|^{\beta} \, d\mu$$

Therefore $J_\lambda ((tu, tv)) \to -\infty$ as $t \to +\infty$, and we can certainly find $(u_0, v_0) \in H_\lambda$ such that $\|(u_0, v_0)\|_{H_\lambda} \geq \rho$ and $J_\lambda (u_0, v_0) < 0$.

Lemma 3.3. The functional J_λ has a nontrivial critical point.

Proof. For each $\lambda > 0$, by Lemma 3.2, J_λ satisfies all the hypotheses of the mountain-pass geometry. Let (u_0, v_0) and r be given by the lemma. We may define the mountain pass level c_λ of J_λ as

$$c_\lambda := \inf_{\gamma \in \Gamma} \sup_{t \in [0, 1]} J_\lambda (\gamma (t)) \geq r > 0$$

where

$$\Gamma := \{ \gamma \in C ([0, 1], H_\lambda) : \gamma (0) = (0, 0), \gamma (1) = (u_0, v_0) \}$$

Then the mountain pass theorem gives that there exists $\{(u_k, v_k)\} \subseteq H_\lambda$ such that $J_\lambda (u_k, v_k) \to c_\lambda$ and $J'_\lambda (u_k, v_k) \to 0$. Moreover, by Lemma B.1, J_λ satisfies the Palais-Smale condition. Namely, $\{(u_k, v_k)\}$ is bounded in H_λ and, up to a subsequence, we may assume that (u_k, v_k) converge to some (u_λ, v_λ) strongly in H_λ.

Then it is easy to conclude that, for any \((\xi, \eta) \in C_c(V) \times C_c(V)\), we have
\[
\langle J_\lambda'(u_\lambda, v_\lambda), (\xi, \eta) \rangle = \lim_{k \to +\infty} \langle J_\lambda'(u_k, v_k), (\xi, \eta) \rangle = 0,
\]
which implies that \((u_\lambda, v_\lambda)\) is a weak solution of the system \((1)\). In addition, \(c_\lambda\) is a critical level of the functional \(J_\lambda\), which is achieved at \((u_\lambda, v_\lambda)\). Since \(c_\lambda = J_\lambda(u_\lambda, v_\lambda) > 0\), we conclude that \((u_\lambda, v_\lambda)\) is a nontrivial critical point of \(J_\lambda\).

In fact, the critical point \((u_\lambda, v_\lambda)\) given by the above lemma is a ground state solution. To prove this fact, we introduce the Nehari manifold associated to system \((1)\), which is defined by
\[
N_\lambda := \{(u, v) \in H_\lambda \setminus \{(0, 0)\} : \langle J_\lambda'(u, v), (u, v) \rangle = 0\}
\]
The least energy level of the functional among the Nehari manifold is
\[
c_{N_\lambda} = \inf_{(u, v) \in N_\lambda} J_\lambda(u, v)
\]
The following lemma tells us that the least energy level and the mountain pass level are the same.

Lemma 3.4. The two levels \(c_\lambda\) and \(c_{N_\lambda}\) satisfy \(c_\lambda = c_{N_\lambda}\).

Proof. For the nontrivial critical point \((u_\lambda, v_\lambda)\) of \(J_\lambda\) given by Lemma \(3.3\), we have that \((u_\lambda, v_\lambda) \neq (0, 0)\) and \(\langle J_\lambda'(u_\lambda, v_\lambda), (u_\lambda, v_\lambda) \rangle = 0\). It is obviously that \((u_\lambda, v_\lambda) \in N_\lambda\), which implies that \(c_{N_\lambda} \leq c_\lambda = J_\lambda(u_\lambda, v_\lambda)\).

Now it is sufficient to show that \(c_\lambda \leq c_{N_\lambda}\). Fix any \((u, v) \in N_\lambda\), in view of the proof of Lemma \(3.2\), there exists some \(t_0 > 0\) large enough such that \(J_\lambda(t_0u, t_0v) < 0\). Therefore, by taking \((u_0, v_0) = (t_0u, t_0v)\), we can define \(\gamma_0 : [0, 1] \to H_\lambda\) as \(\gamma_0(t) = (tu_0, tv_0)\), which satisfies \(\gamma_0 \in \Gamma\). Recalling the definition of \(c_\lambda\), we can conclude that
\[
c_\lambda \leq \sup_{t \in [0, 1]} J_\lambda(\gamma_0(t)) = \sup_{t \in [0, 1]} J_\lambda(tt_0u, tt_0v) \leq \sup_{t \geq 0} J_\lambda(tu, tv).
\]
Differentiating \(J_\lambda(tu, tv)\) with respect to \(t\) and noticing that \(\langle J_\lambda'(u, v), (u, v) \rangle = 0\), we get
\[
\frac{dJ_\lambda(tu, tv)}{dt} = (t^{-\alpha-\beta-1}) \| (u, v) \|^2_{H_\lambda}.
\]
It is not hard to check that \(J_\lambda(tu, tv)\) arrives its maximum value when \(t = 1\), which implies that \(\sup_{t \geq 0} J_\lambda(tu, tv) = J_\lambda(u, v)\). According to the arbitrariness of \((u, v) \in N_\lambda\), we can obtain that \(c_\lambda \leq \inf_{(u, v) \in N_\lambda} J_\lambda(u, v) = c_{N_\lambda}\).

Similarly, the Nehari manifold associated to system \((2)\) is defined by
\[
N_\Omega := \{(u, v) \in H_\Omega \setminus \{(0, 0)\} : \langle J_\lambda'(u, v), (u, v) \rangle = 0\}
\]
The least energy level of the functional \(J_\Omega\) among the Nehari manifold \(N_\Omega\) is
\[
c_{N_\Omega} = \inf_{(u, v) \in N_\Omega} J_\Omega(u, v).
\]
Now we are ready to prove Theorem \(1.1\) and \(1.2\).

Proof. From the above arguments, we can conclude that for any fixed \(\lambda > 0\), \(J_\lambda\) has a nontrivial critical point \((u_\lambda, v_\lambda)\) at level \(c_\lambda\). Moreover, \(c_\lambda\) is a ground state of system \((1)\). This completes the proof of Theorem \(1.1\).

Since finite graphs are a specialization of locally finite graphs, the proofs of the previous results can be easily applied to the system \((2)\) with minor modifications. The corresponding results are still valid and we can get a ground state solution \((u_\Omega, v_\Omega) \in N_\Omega\) of the system \((2)\) at level \(c_{N_\Omega}\). We omit the details of the proofs here.

Remark 3.5. From \((17)\) and the weak lower semi-continuity of the norm \(\| \cdot \|_{H_\lambda}\), we can deduce that
\[
\| (u_\lambda, v_\lambda) \|^2_{H_\lambda} \leq \frac{2(\alpha + \beta)c_{N_\lambda}}{\alpha + \beta - 2}.
\]
Therefore, \(\| (u_\lambda, v_\lambda) \|^2_{H_\lambda}\) is uniformly bounded by the constant \(\frac{2(\alpha + \beta)c_{N_\Omega}}{\alpha + \beta - 2}\), which is independent of \(\lambda\).
4 The asymptotic behavior

We devote this section to the proof of Theorem 1.3. Suppose that \((u_{\lambda_n}, v_{\lambda_n})\) is the nontrivial solution of the system (1) obtained according to Theorem 1.1, where \(\lambda_n\) tends to \(\infty\) as \(n \to \infty\). For simplicity, from now on we use \(u_n\) and \(v_n\) to denote \(u_{\lambda_n}\) and \(v_{\lambda_n}\), respectively. Since \(\| (u_n, v_n) \|_H \leq \| (u_{\lambda_n}, v_{\lambda_n}) \|_{H_\lambda}\), Remark 3.5 tells us that \((u_n, v_n)\) is uniformly bounded both in \(H\) and \(H_\lambda\). Up to a subsequence, there exists some \((u, v) \in H\) such that

\[
\begin{align*}
(u_n, v_n) &\to (u, v) \quad \text{in } H \\
(u_n(x), v_n(x)) &\to (u(x), v(x)) \quad \forall x \in V \\
(u_n, v_n) &\to (u, v) \quad \text{in } L^3(\{0,1\}, \mathbb{R}^2)
\end{align*}
\]

Firstly, we claim that \(u \equiv 0\) in \(\Omega_0^c\). If not, we can find some vertex \(x_0 \in \Omega_0^c\) such that \(u(x_0) \neq 0\) and get

\[
\frac{1}{\lambda_n} \| (u_n, v_n) \|^2_{H_{\lambda_n}} \geq \frac{1}{\lambda_n} \int_{\Omega_n} \lambda_n a(x) u_n^2 d\mu = u_n^2(x_0) a(x_0) \mu(x_0) > 0.
\]

Recall that \((u_n, v_n)\) is bounded by a constant independent of \(\lambda\), so we have that \(\frac{1}{\lambda_n} \| (u_n, v_n) \|^2_{H_{\lambda_n}} \to 0\). On the other hand, we have \(u_n^2(x_0) a(x_0) \mu(x_0) \to u^2(x_0) a(x_0) \mu(x_0) > 0\) as \(n \to \infty\), which is a contradiction. Then the claim is proved and we can conclude that \(u \in W^{1,2}_0(\Omega_n)\). Analogously, we also have \(v \in W^{1,2}_0(\Omega_n)\).

Next, we prove that \((u, v)\) is a solution of the system (2). For any given \(\varphi \in C_c(\Omega_0)\), using \((\varphi, 0)\) as a test function, we have \(\langle J'_\lambda(u_n, v_n), (\varphi, 0) \rangle = 0\). Namely,

\[
\int_V (\nabla u_n \nabla \varphi + (\lambda \alpha - 1) u_n \varphi) d\mu = \int_V \frac{\alpha}{\alpha + \beta} |u_n|^{\alpha-2} u_n |v|^\beta \varphi d\mu
\]

Since \(\varphi = 0\) on \(\Omega_0^c\) and \(a(x) = 0\) on \(\Omega_\alpha\), we obtain

\[
\int_{\partial \Omega_n \cup \Omega_\alpha} \nabla u_n \nabla \varphi d\mu + \int_{\Omega_n} u_n \varphi d\mu = \int_{\Omega_n} \frac{\alpha}{\alpha + \beta} |u_n|^{\alpha-2} u_n |v|^\beta \varphi d\mu \tag{14}
\]

The weakly convergence of \(u_n\) to \(u\) in \(H\) gives \(\langle u_n, \varphi \rangle_H \to \langle u, \varphi \rangle_H\). And the pointwise convergence of \((u_n(x), v_n(x))\) to \((u(x), v(x))\) in \(V\) gives

\[
\int_{\Omega_n} |u_n|^{\alpha-2} u_n |v|^\beta \varphi d\mu \to \int_{\Omega_n} |u|^{\alpha-2} u |v|^\beta \varphi d\mu
\]

Therefore, as \(n \to \infty\), the equation (14) turns to

\[
\int_{\partial \Omega_n \cup \Omega_\alpha} \nabla u \nabla \varphi d\mu + \int_{\Omega_n} u \varphi d\mu = \int_{\Omega_n} \frac{\alpha}{\alpha + \beta} |u|^{\alpha-2} u |v|^\beta \varphi d\mu
\]

Since \(\nabla \varphi = 0\) on \((\Omega_\alpha)^c\), the above equation is equivalent to

\[
\int_{\Omega_n \cup \Omega_\alpha} \nabla u \nabla \varphi d\mu + \int_{\Omega_n \cup \Omega_\alpha} u \varphi d\mu = \int_{\Omega_n \cup \Omega_\alpha} \frac{\alpha}{\alpha + \beta} |u|^{\alpha-2} u |v|^\beta \varphi d\mu \tag{15}
\]

Analogously, for any given \(\psi \in C_c(\Omega_0)\) and using \((0, \psi)\) as a test function, we have

\[
\int_{\Omega_0 \cup \Omega_\alpha} \nabla v_n \nabla \psi d\mu + \int_{\Omega_0 \cup \Omega_\alpha} v_n \psi d\mu = \int_{\Omega_0 \cup \Omega_\alpha} \frac{\beta}{\alpha + \beta} |v|^\beta |v|^{\beta-2} \psi d\mu \tag{16}
\]

Combining (15) and (16), we conclude that for any \((\varphi, \psi) \in C_c(\Omega_0) \times C_c(\Omega_0)\), \(\langle J'_\lambda(u_n, v_n), (\varphi, \psi) \rangle = 0\), which tells us that \((u, v)\) is a critical point of the functional \(J_\lambda\).

We now prove that \((u, v)\) is a nontrivial solution of the system (2). Since \((u_n, v_n)\) is a nontrivial critical point of \(J_\lambda\), we have

\[
0 = \langle J'_\lambda(u_n, v_n), (u_n, v_n) \rangle = \| (u_n, v_n) \|^2_{H_\lambda} - \int_V |u_n|^{\alpha} |v_n|^{\beta} d\mu \\
\geq \| (u_n, v_n) \|^2_{H_\lambda} - \int_V (|u_n|^{\alpha+\beta} + |v_n|^{\alpha+\beta}) d\mu \\
= \| (u_n, v_n) \|^2_{H_\lambda} - \| (u_n, v_n) \|^\alpha_{L_\lambda^{\alpha+\beta}} \\
\geq \| (u_n, v_n) \|^2_{H_\lambda} - C \| (u_n, v_n) \|^{\alpha+\beta}_{H_\lambda^{\alpha+\beta}}
\]

10
Then from \(\| (u_n, v_n) \|_{H_\lambda} \geq \sigma > 0 \). Since \((u_n, v_n) \in \mathcal{N}_\lambda\), we have
\[
\sigma^2 \leq \| (u_n, v_n) \|_{H_\lambda}^2 = \int_V |u_n|^\alpha |v_n|^{\beta} \, d\mu \leq \int_V (|u_n|^{\alpha + \beta} + |v_n|^{\alpha + \beta}) \, d\mu.
\]
Then from \((u_n, v_n) \to (u, v)\) in \(L^q (V, \mathbb{R}^2)\), we can conclude that \((u, v) \neq (0, 0)\) and consequently we have \((u, v) \in \mathcal{N}_\Omega\).

To prove Theorem 1.3, we also need to verify that \((u, v)\) achieves the infimum of \(J_\Omega \) in \(\mathcal{N}_\Omega \). Noticing that \(\mathcal{N}_\Omega \) is a subset of \(\mathcal{N}_\lambda \), we have that \(c_{\mathcal{N}_\lambda} \leq c_{\mathcal{N}_\Omega} \) for any \(\lambda > 0 \). Therefore, for any \(\lambda_n \), we have
\[
c_\Omega \geq c_{\lambda_n} = J_{\lambda_n} (u_n, v_n) = J_{\lambda_n} (u_n, v_n) - \frac{1}{2} \langle J'_{\lambda_n} (u_n, v_n), (u_n, v_n) \rangle
\]
\[
= \left(\frac{1}{2} - \frac{1}{\alpha + \beta} \right) \int_V |u_n|^{\alpha} |v_n|^{\beta} \, d\mu,
\]
which implies that
\[
c_\Omega \geq \limsup_{\lambda_n \to \infty} c_{\lambda_n} = \limsup_{\lambda_n \to \infty} \left(\frac{1}{2} - \frac{1}{\alpha + \beta} \right) \int_{\Omega_{\lambda_n} \cup \Omega_{\lambda}} |u|^\alpha |v|^{\beta} \, d\mu
\]
\[
\geq \left(\frac{1}{2} - \frac{1}{\alpha + \beta} \right) \int_{\Omega_{\lambda_n} \cup \Omega_{\lambda}} |u|^\alpha |v|^{\beta} \, d\mu
\]
\[
= J_\Omega (u, v) - \frac{1}{2} \langle J'_\Omega (u, v), (u, v) \rangle
\]
\[
= J_\Omega (u, v) \geq c_\Omega.
\]
(17)

Hence, we have \(J_\Omega (u, v) = c_\Omega \).

Finally, we show the strong convergence of \((u_n, v_n)\) to \((u, v)\) in \(H \) to finish the proof of the theorem. First, noticing that \(H_\lambda \) is a Hilbert space, the weak convergence of \((u_n, v_n)\) to \((u, v)\) in \(H_\lambda \) gives
\[
\|(u_n, v_n) - (u, v)\|_{H_\lambda}^2 = \|(u_n, v_n)\|_{H_\lambda}^2 - \langle (u_n, v_n), (u, v) \rangle_{H_\lambda} = \|(u_n, v_n)\|_{H_\lambda}^2 - \|(u, v)\|_{H_\lambda}^2 + o_n(1).
\]
(18)

Since \((u_n, v_n) \in \mathcal{N}_\lambda\) and \((u, v) \in \mathcal{N}_\Omega\), we have
\[
\|(u_n, v_n)\|_{H_\lambda}^2 = \int_V |u_n|^\alpha |v_n|^{\beta} \, d\mu
\]
(19)
and
\[
\|(u, v)\|_{H_\lambda}^2 = \|(u, v)\|_{H_\lambda}^2 = \int_{\Omega_{\lambda_n} \cup \Omega_{\lambda}} |u|^\alpha |v|^{\beta} \, d\mu.
\]
(20)

Combining (18), (19) and (20), we get
\[
\|(u_n, v_n) - (u, v)\|_{H_\lambda}^2 \leq \|(u_n, v_n) - (u, v)\|_{H_\lambda}^2 = \int_V |u_n|^\alpha |v_n|^{\beta} \, d\mu - \int_{\Omega_{\lambda_n} \cup \Omega_{\lambda}} |u|^\alpha |v|^{\beta} \, d\mu + o_n(1),
\]
(21)

Since (17) implies that
\[
\int_V |u_n|^\alpha |v_n|^{\beta} \, d\mu - \int_{\Omega_{\lambda_n} \cup \Omega_{\lambda}} |u|^\alpha |v|^{\beta} \, d\mu = o_n(1),
\]
consequently, (21) gives
\[
\|(u_n, v_n) - (u, v)\|_{H_\lambda}^2 = o_n(1)
\]
and the proof is finished.
5 Numerical results

In order to better illustrate our conclusions, we design a finite connected graph $G_{22} = (V,E)$ who has 22 vertices. For simplicity, the positive measure on a vertex in V and the symmetric weight of an edge in E are all set to equal 1. The structure of G_{22} is shown in Figure 1. Obviously, the graph G_{22} satisfies all the assumptions in the previous theorems. Furthermore, for the systems (1) and (2), we let $\alpha = \beta = 2$ and the potential functions are defined as follows.

$$a(x_i) = \begin{cases} 0, & i = 1, 2, 3, 4, 5, 6, 7, 8, 9 \\ 1, & i \neq 1, 2, 3, 4, 5, 6, 7, 8, 9 \end{cases}$$

$$b(x_i) = \begin{cases} 0, & i = 1, 2, 3, 4, 5, 6, 10, 11, 12 \\ 1, & i \neq 1, 2, 3, 4, 5, 6, 10, 11, 12 \end{cases}$$

With the definitions of the potential functions, we have

$$\Omega_a = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9\}$$

$$\Omega_b = \{x_1, x_2, x_3, x_4, x_5, x_6, x_{10}, x_{11}, x_{12}\}$$

$$\Omega_a \cap \Omega_b = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$

Their boundaries are

$$\partial \Omega_a = \{x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{16}, x_{17}, x_{18}, x_{22}\}$$

$$\partial \Omega_b = \{x_7, x_8, x_9, x_{13}, x_{17}, x_{18}, x_{19}, x_{21}, x_{22}\}$$

We compute the numerical solutions of the systems (1) and (2) by MATLAB. The numerical solution of the limit system (2) is shown in Table 1 and the values not listed in the table are equal to zero. Henceforth, we use u_i and v_i to denote the value of the functions $u(x)$ and $v(x)$ at vertex x_i, where $i = 1, 2, \cdots, 22$.

u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8	u_9
3.5308	2.0210	2.0210	3.5308	2.1900	2.1900	1.2943	0.7708	1.2943

v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9
3.5308	2.1900	2.1900	3.5308	2.0210	2.0210	1.2943	0.7708	1.2943

For the system (1), we take its parameter λ to increase from 1 to 10^7 and get the corresponding numerical solutions (u_λ, v_λ). We find that with the increase of this parameter, u_λ tends to 0 at vertices in Ω_a and v_λ tends to 0 at vertices in Ω_b, which are shown in Figure 2(a) and 2(b). In order to show the broken lines of the function values more clearly, we only select the values of several representative points to draw in the figure. Furthermore, the values of u_λ in Ω_a and v_λ in Ω_b just converge to those corresponding values in Table 1, which are shown in Figure 2(c) and 2(d).

These above numerical results are completely consistent with our theorems proved in the previous sections.
References

[1] C.O. Alves, D.C. de Morais Filho, M.A.S. Souto, On systems of elliptic equations involving subcritical or critical sobolev exponents, Nonlinear Anal., 2000, 42 (5): 771-87.

[2] C.O. Alves, Local mountain pass for a class of elliptic system, J. Math. Anal. Appl., 2007, 335(1): 135-150.

[3] T. Bartsch, Z.W. Tang, Multi-bump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential, Discrete Contin. Dyn. Syst., 2012, 33(1): 7-26.

[4] T. Bartsch, Z.Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on \mathbb{R}^N, Commun. Partial Differ. Equ., 1995, 20: 1725-1741.

[5] T. Bartsch, Z.Q. Wang, Multiple positive solutions for a nonlinear Schrödinger equation, Z. Angew. Math. Phys., 2000, 51(3): 366-384.

[6] T. Bartsch, M. Willem, Infinitely many nonradial solutions of a Euclidean scalar field equation, J. Funct. Anal., 1993, 117(2): 447-460.

[7] S-N. Chow, W.C. Li, H.M. Zhou, Entropy dissipation of Fokker-Planck equations on graphs, Discrete Contin. Dyn. Syst., 2018(38): 4929-4950.

[8] S-N. Chow, W.C. Li, H.M. Zhou, A discrete Schrödinger equation via optimal transport on graphs, J. Funct. Anal., 2019, 276: 2440-2469.

[9] D.G. Costa, On a class of elliptic systems in \mathbb{R}^N, Electron. J. Differ. Eq., 1994, 7: 1-14.

[10] D.G.D. Figueiredo, Nonlinear elliptic systems, An. Acad. Bras. Cienc., 2000, 72(4): 453-469.

[11] G.M. Figueiredo, M.F. Furtado, Multiple positive solutions for a quasilinear system of Schrödinger equations, Nonlinear Differ. Equ. Appl., 2008, 15: 309-333.

[12] M.F. Furtado, L.A. Maia, E.A.B. Silva, Solutions for a resonant elliptic system with coupling in \mathbb{R}^N, Commun. Partial Differ. Equ., 2002, 27: 1515-1536.
[13] M.F. Furtado, E.A.B. Silva, M.S. Xavier, Multiplicity and concentration of solutions for elliptic systems with vanishing potentials, J. Differ. Equ., 2010, 249(10): 2377-2396.

[14] A. Grigoryan, Y. Lin, Y.Y. Yang, Kazdan-Warner equation on graph, Calc. Var. Partial Differ. Equ., 2016, 55(4): 13 pp.

[15] A. Grigor’yan, Y. Lin, Y.Y. Yang, Yamabe type equations on graphs, J. Differ. Equ., 2016, 261(9): 4924-4943.

[16] A. Grigor’yan, Y. Lin, Y.Y. Yang, Existence of positive solutions to some nonlinear equations on locally finite graphs, Sci. China Math., 2017, 60(7): 1311-1324.

[17] X.L. Han, M.Q. Shao, L. Zhao, Existence and convergence of solutions for nonlinear biharmonic equations on graphs, J. Differ. Equ., 2020, 268(7): 3936-3961.

[18] P. Horn, Y. Lin, S. Liu, S.T. Yau, Volume doubling, Poincaré inequality and Gaussian heat kernel estimate for non-negatively curved graphs, J. Reine Angew. Math., 2019, 757: 89-130.

[19] X.P. Huang, On uniqueness class for a heat equation on graphs, J. Math. Anal. Appl., 2012, 393: 377-388.

[20] A. Kristály, Existence of nonzero weak solutions for a class of elliptic variational inclusions systems in \mathbb{R}^N, Nonlinear Anal., 2006, 65(8): 1578-1594.

[21] Y.Li, Remarks on a semilinear elliptic equation on \mathbb{R}^N, J. Differ. Equ., 1988, 74(1): 34-49.

[22] Y. Lin, Y.T. Wu, The existence and nonexistence of global solutions for a semilinear heat equation on graphs, Calc. Var. Partial Differ. Equ., 2017, 56(4): 22pp.

[23] Y. Lin, Y.T. Wu, Blow-up problems for nonlinear parabolic equations on locally finite graphs, Acta Math. Scientia, 2018, 38B(3): 843-856.

[24] H.D. Liu, Z.L. Liu, Ground states of a nonlinear Schrödinger system with nonconstant potentials, Sci. China Math., 2015, 58(2): 257-278.

[25] D.F. Lü, Q. Liu, Multiplicity of solutions for a class of quasilinear Schrödinger Systems in \mathbb{R}^N, Comput. Math. Appl., 2014, 66(12): 2532-2544.

[26] S. Man, On a class of nonlinear Schrödinger equation on finite graphs, B. Aust. Math. Soc., 2020, 101(3): 1-11.

[27] Z.Q. Ou, C.L. Tang, Existence and multiplicity results for some elliptic systems at resonance, Nonlinear Anal., 2009, 71: 2660-2666.

[28] P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 1992, 43(2): 270-291.

[29] Y. Sato, K. Tanaka, Sign-Changing multi-bump solutions for nonlinear Schrödinger equations with steep potential wells, Trans. Amer. Math. Soc., 2009, 361(12): 6205-6253.

[30] J. Zhang, Z. Zhang, Existence results for some nonlinear elliptic systems, Nonlinear Anal., 2009, 71: 2840-2846.

[31] N. Zhang, L. Zhao, Convergence of ground state solutions for nonlinear Schrödinger equations on graphs, Sci. China Math., 2018, 61(8): 1481-1494.