High-susceptibility of photosynthesis to photoinhibition in the tropical plant *Ficus microcarpa* L. f. cv. Golden Leaves
Shunichi Takahashi¹, Ayumu Tamashiro¹, Yasuko Sakihama¹, Yasusi Yamamoto², Yoshinobu Kawamitsu³ and Hideo Yamasaki*¹,4

Address: ¹Laboratory of Cell and Functional Biology, Faculty of Science, University of the Ryukyus, Okinawa, Japan, ²Department of Biology, Faculty of Science, Okayama University, Okayama, Japan, ³Laboratory of Crop Science, Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan and ⁴Division of Functional Genomics, Center of Molecular Biosciences (COMB), University of the Ryukyus, Okinawa, Japan

E-mail: Shunichi Takahashi - takahashishunichi@hotmail.com; Ayumu Tamashiro - ayumu@ii-okinawa.ne.jp; Yasuko Sakihama - yasuko@ii-okinawa.ne.jp; Yasusi Yamamoto - yasusiyay@cc.okyama-u.ac.jp; Yoshinobu Kawamitsu - kawamitu@agr.u-ryukyu.ac.jp; Hideo Yamasaki* - yamasaki@comb.u-ryukyu.ac.jp

*Corresponding author

Abstract

Background: The tropical plant *Ficus microcarpa* L. f. cv. Golden Leaves (GL) is a high-light sensitive tropical fig tree in which sun-leaves are yellow and shade-leaves are green. We compared the response of photosynthetic activities to strong light between GL and its wild-type (WT, *Ficus microcarpa* L. f.).

Results: Field measurements of maximum photosystem II (PSII) efficiency (F_v/F_m) of intact sun-leaves in GL showed that photosynthetic activity was severely photoinhibited during the daytime ($F_v/F_m = 0.46$) and subsequently recovered in the evening ($F_v/F_m = 0.76$). In contrast, WT did not show any substantial changes of F_v/F_m values throughout the day (between 0.82 and 0.78). Light dependency of the CO2 assimilation rate in detached shade-leaves of GL showed a response similar to that in WT, suggesting no substantial difference in photosynthetic performance between them. Several indicators of photoinhibition, including declines in PSII reaction center protein (D1) content, F_v/F_m value, and O2 evolution and CO2 assimilation rates, all indicated that GL is much more susceptible to photoinhibition than WT. Kinetics of PAM chlorophyll a fluorescence revealed that nonphotochemical quenching (NPQ) capacity of GL was lower than that of WT.

Conclusion: We conclude that the photosynthetic apparatus of GL is more highly susceptible to photoinhibition than that of WT.

Background
Exposure of leaves to strong light sometimes causes the reduction of photosynthetic efficiency, a phenomenon referred to as photoinhibition [1–3]. The susceptibility of plants to photoinhibition depends on the species and growth light-environments [4]. In general, shade plants or low-light grown plants are more susceptible to photoinhibition than sun plants or high-light grown plants [4]. Since photoinhibition has a potential to lower productivity and plant growth, avoidance of photoinhibition is critical for the fitness and survival of plants in natural habitats [2,5,6].
It is now widely accepted that harmful Reactive Oxygen Species (ROS) produced upon illumination are involved in the mechanism of photoinhibition [7]. Singlet-excited oxygen (1O2) can be generated by the interaction of O2 with triplet-excited chlorophyll (3Chl) formed in the PSII reaction center [8]. Superoxide radical (O2-) is unavoidably produced by the Mehler reaction via electron transfer to O2 at photosystem I. Dismutation of O2- results in the formation of hydrogen peroxide (H2O2) and the reaction between H2O2 and transition metal ions generates hydroxyl radical (•OH) which is the most reactive radical among ROS [7]. These ROS can oxidize molecules in chloroplasts including D1 protein in the PSII reaction center [9] and thiol enzymes in the Calvin-Benson cycle [10,11] to inhibit partial reactions of photosynthesis eventually leading to photoinhibition. Recently, ROS have been shown to also bring about photoinhibition through the inhibition of de novo synthesis of D1 protein of PSII that is essential to recover from photoinhibition [12].

To protect photosynthetic machinery from ROS-mediated photoinhibition, chloroplasts contain a high amount of ascorbate in stroma at 20 to 300 mM [13]. In the stroma, ascorbate contributes to suppress the accumulation of photoproduced-H2O2 by acting as the electron donor for ascorbate peroxidase (APX) which detoxifies H2O2 to H2O [14]. Ascorbate can be also involved in the detoxification of 1O2, O2- and •OH via nonenzymatic reduction [13]. In these reactions, ascorbate is univalently oxidized to monodehydroascorbate (MDA). To maintain ascorbate concentration in the chloroplasts, MDA should be promptly regenerated to ascorbate during illumination. MDA can be reduced to ascorbate by NAD(P)H in a reaction catalyzed by monodehydroascorbate reductase (MDAR) [15] or directly by reduced ferredoxin [16]. MDA, an organic radical, can undergo spontaneous dismutation to produce ascorbate and dehydroascorbate (DHA) in the absence of MDAR reduction. DHA can be reduced by glutathione either through nonenzymatic reaction at a slow rate or enzymatic reaction at a much higher rate [17]. Dehydroascorbate reductase (DHAR, EC 1.8.5.1) is considered to be involved in enzymatic DHA reduction in the chloroplasts [17]. Until now, however, direct in vivo evidence showing the physiological significance of DHAR has been yet not available.

We previously reported that leaves of Ficus microcarpa L. f. cv. Golden Leaves (GL), a tropical fig tree, lack heat-stable DHAR activity [18]. In GL, the canopy sun-leaves, which are always exposed to direct sunlight, show characteristic yellow whereas those in wild-type (WT, Ficus microcarpa L. f.) exhibit normal green even when exposed to direct sunlight. The mechanism for yellow leaves production in GL is unknown. In barley, it has been reported that leaves incubated with CO2-enriched air show yellow color due to photoinhibition of photosynthesis [19,20], a phenomenon apparently similar to that observed in GL. We hypothesized that GL possess an incomplete machinery of photosynthesis which is susceptible to photoinhibition. The aim of this study was to directly examine the hypothesis. The side-by-side comparisons shown in this study demonstrate that GL is much more susceptible to photoinhibition of photosynthesis than WT.

Results

Photoinhibition in the field

GL is a cultivar of the tropical fig tree Ficus microcarpa L. f. (WT) that is natively distributed in subtropical/tropical regions of Asia and Oceania. A significant characteristic of GL is the presence of yellow leaves that contain high amounts of flavonoids and negligible amounts of chlorophyll and carotenoids [21]. The reduced content of photosynthetic pigments in the yellow leaves can be increased by shading them from high-light. In shade conditions, therefore, GL exhibits normal green leaves which cannot be morphologically distinguished from WT leaves (Fig. 1). We have suggested that high susceptibility of GL to photoinhibition could explain the phenomenon [21]. However, there was no direct evidence available to show the susceptibility of GL to photoinhibition.

Figure 2 shows diurnal change of maximum PSH efficiency (Fv/Fm) in field grown attached sun-leaves collected from the canopy. Chlorophyll content of sun-leaves in GL (yellow) was 0.05 g m-2 and that in WT (green) was 0.44 g m-2. There was no significant difference between GL and WT in Fv/Fm values measured early in the morning (6 a.m.). The value of Fv/Fm in GL decreased from 0.77 (6
a.m.) to 0.46 (2 p.m.) and subsequently recovered to 0.74 in the evening (6 p.m.). In contrast to GL, \(F_{v}/F_{m} \) values in WT were almost constant throughout a day. Shade-leaves of GL (green), collected from the inside of tree, did not show any decrease in the \(F_{v}/F_{m} \) value (data not shown). These data obtained in the field conditions suggest that GL is highly susceptible to high-light.

Photosynthetic performance

We compared photosynthetic performance between GL and WT to confirm that the fundamental photosynthetic machinery of GL is normal. Shade-leaves of GL and WT, both of which are green, were used for this purpose. Figure 3 shows the light response curves of CO\(_2\) assimilation rate (based on surface area) in detached shade-leaves. The chlorophyll content of shade-leaves in GL (green) was 0.58 g Chl m\(^{-2}\) and that in WT (green) was 0.70 g Chl m\(^{-2}\). GL showed a very similar light-response curve to WT and there was no substantial difference in the maximum activity of CO\(_2\) assimilation between them. These results clearly demonstrate that the photosynthetic capacity of GL is almost identical to that of WT, suggesting that photosynthetic machinery of GL is functionally not defective.

Photoinhibition in shade-leaves of Golden Leaves

Figure 4 shows effects of high-light on several indicators of photoinhibition: D1 protein content, \(F_{v}/F_{m} \) value, O\(_2\) evolution rate and CO\(_2\) assimilation rate. Before high-light exposure, there was no substantial difference between WT and GL shade-leaves in D1 protein content on protein basis (Fig. 4A) and \(F_{v}/F_{m} \) value (Fig. 4C). GL showed a significant decrease in the D1 protein content and \(F_{v}/F_{m} \) value upon high-light illumination (Fig. 4A, 4B, 4C). Similar to the indicators specific for PSII activity, those for net photosynthetic activity (i.e. O\(_2\) evolution and CO\(_2\) assimilation rates) also decreased upon high-light illumination (Fig. 4D, 4E). In contrast to these responses observed in GL, WT showed only a small decrease in D1 protein content and \(F_{v}/F_{m} \) value (Fig. 4A, 4B, 4C). The O\(_2\) evolution and CO\(_2\) assimilation rates in WT did not change even under high-light condition (Fig. 4D, 4E).

Reduced NPQ capacity in Golden Leaves

When plants are exposed to high-light that exceeds the capacity of photosynthesis, excess absorbed light energy can be safely dissipated as heat [22]. This energy dissipation can be measured as the NPQ of PAM chlorophyll a fluorescence analysis. NPQ includes the quantum yield of PSII as an index of heat energy dissipation, photoactivation of PSII and distribution of photon acceptance between PSII and PSI due to the state transition. It is known that the state transition can be controlled by the redox state of QA [23], which can be measured as 1-qP. Figure 5 shows that there is no significant difference between GL and WT in yield and 1-qP values. Furthermore, measurements of
the electron transport rate (ETR) showed essentially no difference in the sensitivity of PSII photoinactivation between GL and WT (data not shown). However, GL showed a much lower level of NPQ compared to WT (Fig. 5C,5F). These results suggest that low NPQ in GL can be attributed to dysfunction of the heat dissipation mechanism.

Discussion
This study has demonstrated that photosynthetic activities of GL are highly susceptible to photoinhibition under high-light conditions (Figs. 2, 4). There was essentially no difference in photosynthetic efficiency between GL and WT at least up to 700 μmol m⁻² s⁻¹ for a short time (Fig. 3), but NPQ in GL was lower than that in WT at 2300 μmol m⁻² s⁻¹ (Fig. 5C,5F). It has been reported that a npq1 mutant of Arabidopsis thaliana shows increased susceptibility to photoinhibition, but is unaffected in short-term photosynthetic O₂ evolution and CO₂ assimilation [24,25]. For the operation of NPQ, special xanthophyll pigments in the light-harvesting complexes of PSII are known to have critical roles [26]. The extent of NPQ in plants is strongly correlated with the levels of zeaxanthin and antheraxanthin that are formed from violaxanthin by the enzyme violaxanthin deepoxidase (VDE) located on the luminal side of thylakoid membranes [22]. In excessive light conditions, VDE is activated and converts violaxanthin to zeaxanthin via antheraxanthin when acidification in thylakoid lumen reaches a critical threshold [27]. The activity of VDE is also regulated by the concentration of ascorbate in the lumen because VDE can utilize only ascorbate as a reductant [28]. It has been shown that decreases in ascorbate availability severely affect VDE activity in vivo[28]. Because thylakoid membranes do not have any active transport mechanisms for ascorbate, the concentration of ascorbate in the stroma determines that in the lumen by a passive diffusion mechanism [29]. In Arabidopsis, it has been clearly demonstrated that NPQ performance in vivo is reduced by a mutation that causes ascorbate deficiency [13]. We previously reported that the ascorbate content of GL is severally de-
increased in daytime under field conditions [30]. Thus, it is reasonable to assume that decrease of ascorbate content would be a cause of dysfunction of NPQ in GL.

Among antioxidant enzymes, we have shown that GL lacks heat-stable DHAR activity [18]. Plant cells possess several kinds of enzymes that exhibit DHAR activity: thioredoxin [31], glutaredoxin [32] and disulfide isomerase [33]. Recently, two distinct chloroplast proteins that exhibit DHAR activity have been isolated from spinach; one is Kunitz-type trypsin inhibitor [31] and the other is specific DHAR [34]. Because both chloroplastic DHARs show higher heat-stable activity than non-chloroplastic DHAR [31,34], GL may lack chloroplastic DHAR(s) though molecular information is not available. In fact, heat-stable activity cannot be detected in nonphotosynthetic organs such as fruits, that do not include chloroplasts [18]. Although chloroplastic DHAR(s) have been presumed to function in the ascorbate regeneration system for maintaining the ascorbate concentration in the chloroplasts [7], the physiological significance of DHAR in chloroplasts is still controversial [35–38]. Since the activity of stromal MDAR is high, the spontaneous disproportionation from MDA to DHA and ascorbate may not occur under in vivo situations. Therefore, there is an argument that DHAR might be dispensable for the ascorbate-glutathione cycle to protect chloroplasts from high-light stress [36]. However, there is another location in chloroplasts where the stromal enzymes cannot directly regenerate ascorbate, namely, the lumen space.

In the lumen, oxidation of ascorbate by xanthophylls, α-tocopherol and PSII result in the production of DHA and all of these reactions could be promoted under high-light conditions [13,35]. Therefore, stromal DHAR would be essential to reduce DHA produced in the lumen side. In this context, chloroplastic DHAR must be physiologically indispensable for photoprotection mechanisms particularly when leaves are exposed to high-light stress conditions. This is consistent with previous reports that DHAR activity in leaves of A. thaliana is increased by high-light conditions [39]. Thus, we consider that ascorbate availability of GL is decreased by high-light due to a lack of DHAR activity which eventually results in lowered performance of NPQ (Fig. 5C,5F). Ascorbate is involved in photoprotection not only through NPQ but also primarily through ROS scavenging [7]. It should be noted that high susceptibility of GL to photoinhibition could be also explained by a low ROS scavenging capacity which may result in photodamage of target molecules in chloroplast [7] and the inhibition of D1 de novo synthesis [12].

The mechanism for yellow leaf production is still unknown. Sun-leaves of GL contain low amounts of chlorophyll and carotenoids but shade-leaves show comparable amount of those to WT, implying that exhibition of yellow leaves in GL is associated with a long-termed irradiation of high-light [21]. When leaves of GL were exposed to high-light, they showed significant symptoms of photoinhibition (Figs. 2, 4). It has been suggested that long-termed photoinhibition (or chronic photoinhibition) can lead photobleaching of photo synthetic pigments such as chlorophyll and carotenoids [3]. The npq1 Arabidopsis mutant which is partially defective in NPQ has been reported to show the photobleaching of chlorophyll in high-light conditions [40], a phenomenon apparently very similar to that observed in GL. It is plausible that photoinhibition is involved in an early stage of the yellow leaf-producing mechanism. Unlike herbaceous plants, the leaf-yellowing phenomenon does not cause senescence or cell death [21]. It has been shown that flavonoids accumulated in leaves could protect tissues from oxidative damage by
complementing the ascorbate-glutathione cycle [15,41,42]. In addition to the ROS scavenging function, flavonoids have long been known to be effective sunscreen pigments particularly against UV radiation [43]. Increased flavonoid pigments in GL may play roles including ROS scavenging function, UV-protection and light-attenuation for shadeleaves. The mechanisms of photoinhibition susceptibility and, in particular of high-light tolerance in GL leaves remain to be fully clarified. Although it is difficult to apply molecular biology techniques to GL, we consider that the tropical tree could provide a unique opportunity for examining the important determinants of survival in high-light environments.

Materials and Methods

Plant materials

Plant materials were *Ficus microcarpa* L. f. cv. Golden Leaves (GL) and *Ficus microcarpa* L. f. (WT) grown in the campus of the University of the Ryukyus on Okinawa island (26°15′N, 127°45′E) in Japan. The study period was from March to June in 1999–2000. The photo synthetic photon flux density (PPFD) on the plant canopy was c.a. 2500 µmol m² s⁻¹ in full sunlight conditions during the period. There was no significant difference in growth conditions of PPFD between WT and GL. Green leaves, grown under light conditions of about 100 µmol m⁻² s⁻¹ as the maximum, were harvested and used for laboratory experiments as shade-leaves. To avoid the drought of leaves, leaf petioles were continuously kept in distilled water throughout the measurements. To activate the photosynthetic activity, detached leaves were exposed to an illumination of 1000 µmol m⁻² s⁻¹ for 30 min before experiments.

Illumination of leaves

Leaves were illuminated with white light from three halogen lumps (400 W). Leaf temperature was maintained at 30°C with an electric fan or a thermostatically controlled water bath during illumination. Various light intensities were obtained by placing wire screens in front of the light source.

Measurements of chlorophyll fluorescence

Chlorophyll fluorescence was measured with a PAM-2000 chlorophyll fluorometer system under atmospheric conditions (Heinz Walz, Effeltrich, Germany). After a dark adaptation period of 15 min, minimum fluorescence (F₀) was determined by a weak red light. Maximum fluorescence of dark-adapted leaf (Fₘ₀) was measured during a subsequent saturating light pulse of white light (8000 µmol m⁻² s⁻¹ for 0.4 s). Maximum fluorescence (Fₘₙ) and steady-state fluorescence (Fₛ) of illuminated leaf were measured upon a subsequent saturating light pulse of white light (8000 µmol m⁻² s⁻¹, for 0.4 s) to determine NPQ ([Fₘₙ-Fₘ₀]/Fₘₙ), yield of PSII ([Fₘₙ-Fₛ]/Fₘₙ) and qP (Fₘₙ-Fₛ)/Fₘₙ) [44,45]. A 650 nm light-emitting-diode (LED) equipped with PAM-2000 was used for the illumination of leaf as actinic light.

Measurements of gas exchange

CO₂ assimilation was determined by the difference in CO₂ concentration between inlet and outlet of the assimilation chamber with a CO₂ gas analyzer (LI-6251; LiCor, Inc., Lincoln, Nebraska) in 0.036% CO₂ and 21% O₂[46]. Measurements of CO₂ assimilation rates were carried out under an illumination of 2300 µmol m⁻² s⁻¹, except for light response curve measurements. Approximately 25 cm² of leaf were employed for an experiment. The air in the chamber was stirred rapidly to maintain a high boundary layer conductance for CO₂ diffusion. O₂ evolution was determined using a gas-phase Walker-type oxygen electrode system (Model LD-1; Hansatech, Norfolk, U.K.) in 5% CO₂ and 21% O₂[47]. Measurements of O₂ evolution were carried out on 4 cm² of leaf disc under an illumination of 600 µmol m⁻² s⁻¹.

Measurements of D1 protein content

Leaf (0.5 g) was homogenized for 30 s at 0°C in a grinding medium containing 50 mM potassium phosphate (pH 7.0), 5 mM phenylmethylsulfonyl fluoride and 5% (w/v) polyvinylpyrrolidone. The homogenate (4 ml) was mixed with 4 ml of 125 mM Tris (pH 6.8) containing 5% (w/v) SDS, and then incubated at 80°C for 3 min to solubilize proteins. After cooling down the sample to room temperature, aggregates were removed by the centrifugation at 1,500 × g for 30 s. The supernatant (800 µl) was mixed with the same amount of a solution that contained 0.4 M sucrose, 8 M urea, 5 mM EDTA and 5% (w/v) 2-mercaptoethanol.

SDS-PAGE was carried out according to a previously reported method [48]. Polyacrylamide gels containing 6.0 M urea were used for the stacking gel (4.5 %) and separation gel (13 %). Samples that contained 8 µg protein were loaded in each lane. Immunoblot analysis was performed using specific polyclonal antibodies raised against the D1 protein [48]. The intensities of the protein bands were determined with NIH image system version 1.61 (NIH, USA).

List of abbreviations used

APX, ascorbate peroxidase; 1Chl, singlet excited chlorophyll; 3Chl, triplet excited chlorophyll; DHA, dehydroascorbate; DHAR, dehydroascorbate reductase; D1, the reaction center-forming protein of photosystem I; F₀/Fₘₙ, ratio of variable to maximum chlorophyll a fluorescence; GL, Golden Leaves; MDA, monodehydroascorbate; MDAR, monodehydroascorbate reductase; NPQ, non-photochemical quenching; •OH, hydroxyl radical; 1O₂, singlet excited O₂; O₂⁺, superoxide radical; PPFD, photo-
synthetic photon flux density; ROS, reactive oxygen species; WT, wild-type.

Acknowledgements

We are grateful to Dr. M. F. Cohen of University of the Ryukus for critical reading of the manuscript. This work was supported by a Grant-in-Aid for Scientific Research (B) and (C) from Japan Society for the Promotion of Science to HY.

References

1. Demming-Adams B, Adams WWV: Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 1992, 43:599-626.

2. Osmond CB, Long SP, Humphries S, Falkowski PG: Photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 1994, 45:63-66.

3. Powles SB: Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 1984, 35:15-44.

4. Osmond CB: What is photoinhibition? Some insights from comparisons of shade and sun plants. In: Photoinhibition of photosynthesis: free radicals and mechanisms to the field. 1994, 365-376.

5. Ball MC: The role of photoinhibition during tree seedling establishment at low temperatures. In: Photoinhibition of photosynthesis: from molecular mechanisms to the field 1994.

6. Kitao M, Lei TT, Tobita H, Maruyama Y, Matsumoto Y, Ang LKH: Temporal responses and photoinhibition investigated by chlorophyll fluorescence measurements for four distinct species of dipterocarp trees. Plant Physiol 2000, 190:284-290.

7. Asada K: The water-water cycle in chloroplasts: Scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 1999, 50:601-639.

8. Macpherson AN, Telfer A, Barber J, Truscott TG: Direct detection of singlet oxygen from isolated photosystem II reaction centers. Biochim Biophys Acta 1993, 1143:301-309.

9. Yamamoto Y: Quality control of photosystem II. Plant Cell Physiol 2001, 42:121-128.

10. Kaiser VM: Reversible inhibition of the Calvin cycle and activation of oxidative pentose phosphate cycle in isolated intact chloroplasts by hydrogen peroxide. Planta 1979, 145:377-382.

11. Tanaka K, Otsubo T, Kondo N: Participation of hydrogen peroxide in the inactivation of Calvin-cycle SH enzymes in SO2-fumigated spinach leaves. Plant Physiol 1992, 100:1009-1018.

12. Nishiyama Y, Yamamoto H, Allakhverdiev SI, Inaba M, Yokota A, Murata N: Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J 2001, 20:557-564.

13. Smirnoff N: Ascorbate biosynthesis and function in photoprotection. Phil Trans R Soc Lond B 2000, 355:1455-1464.

14. Asada K: Ascorbate peroxidase – a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant 1992, 85:235-241.

15. Saitoh S, Aono M, Nakajima N, Saiji H, Tanaka K, Kondo N: Differential responses of activity of antioxidant enzymes to different concentrations. J Plant Physiol 1997, 57:587-594.

16. Miyake C, Asada K: Dehydroascorbate reduction. Biochim Biophys Acta 2000, 1475:309-349.

17. Hossain MA, Asada K: Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. Plant Cell Physiol 1984, 25:85-92.

18. Yamashita H, Takahashi S, Heshiki R: The tropical fig Ficus microcarpa L.f.: Golden Leaves lacks heat-stable dehydroascorbate reductase activity. Plant Cell Physiol 1999, 40:640-646.

19. Sicher RC: Yellowing and photosynthetic decline of barley primary leaves in response to atmospheric CO2 enrichment. Physiol Plant 1998, 103:193-200.

20. Sicher RC: Photosynthetic activity is decreased by yellowing of barley primary leaves during growth in elevated carbon dioxide. Int J Plant Sci 1999, 160:849-854.

21. Yamashita H, Heshiki R, Ikehara N: Leaf-goldenhood induced by high light in Ficus microcarpa L.f., a tropical fig. J Plant Res 1995, 108:171-180.

22. Gilmore AM: Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Plant Physiol 1997, 99:197-209.

23. Krause GH, Weis E: Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 1991, 42:313-349.

24. Niyogi KK, Grossman AR, Bjorkman O: Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 1998, 10:1121-1134.

25. Havaux M, Niyogi KK: The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci USA 1999, 96:8762-8767.

26. Gilmore AM: Xanthophyll cycle-dependent nonphotochemical quenching in Photosystem II: Mechanistic insights gained from Arabidopsis thaliana L. mutants that lack violaxanthin de-epoxidase activity and/or lutein. Photosynth Res 2001, 67:89-101.

27. Gilmore AM, Yamashita H: 9-aminoacridine and dibucaine exhibit competitive interactions and complicated inhibitory effects that interfere with measurements of ΔF and xanthophyll cycle/Photosystem II energy dissipation. Photosynth Res 1998, 57:159-174.

28. Bratt CE, Arvidsson P-O, Carlsson M, Akerlund H-E: Regulation of violaxanthin de-epoxidase activity by pH and ascorbate concentration. Photosynth Res 1995, 45:169-175.

29. Foyer CH, Leistadis M: Regulation of the relative rates of transport of ascorbate and glucose across the thylakoid, chloroplast and plasmalemma membranes of pea leaf mesophyll cell. J Plant Physiol 1996, 148:391-398.

30. Yamasaki H, Heshiki R, Yamashita K, Ikehara N: Physiological significance of the ascorbate regenerating system for the high-light tolerance of chloroplasts. In: Photosynthesis: from light to biosphere 1995, 291-294.

31. Trumper S, Follmann H, Haberlein I: A novel dehydroascorbate reductase from spinach chloroplasts homologous to plant tryptophan synthase inhibitor. FEBS Lett 1994, 352:153-158.

32. Sa S, Minakuchi K, Higaki N, Sato K, Ohtsuki K, Kurata A, Yoshikawa H, Koturi M, Masumura T, Ichihara K, Tanaka K: Purification and characterization of glutaredoxin (thioltransferase) from rice (Oryza sativa L.). Biochem J 1997, 121:842-848.

33. Wells WW, Xu DP: Dehydroascorbate reduction, J Bioenerg Biomembr 1994, 26:367-379.

34. Shimaoka T, Yokota A, Miyake C: Purification and characterization of chloroplast dehydroascorbate reductase from spinach leaves. Plant Cell Physiol 2000, 41:1110-1118.

35. Foyer CH, Leiandais M: The presence of dehydroascorbate and dehydroascorbate reductase in plant tissue. FEBS Lett 1998, 425:528-529.
45. Genty B, Briantais J-M, Baker NR: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 1989, 990:87-92

46. Agata W, Kawamitsu Y, Hakoyama S, Shima S: A system for measuring leaf gas exchange based on regulating vapour pressure difference. Photosynth Res 1986, 9:345-357

47. Kawamitsu Y, Boyer JS: Photosynthesis and carbon storage between tides in a brown alga, Fucus vesiculosus L. Marine Biol 1999, 133:361-369

48. Yamamoto Y, Akasaka T: Degradation of antenna chlorophyll-binding protein CP43 during photoinhibition of photosystem II. Biochemistry 1995, 34:9038-9045