BARYONIC DARK MATTER

Joseph Silk
Departments of Astronomy and Physics, and Center for Particle Astrophysics
University of California, Berkeley, CA 94720

“La théorie c’est bien, mais ça n’empêche pas d’exister.”
Emile Charcot

Abstract

In the first two of these lectures, I present the evidence for baryonic dark matter and describe possible forms that it may take. The final lecture discusses formation of baryonic dark matter, and sets the cosmological context.

1. INTRODUCTION

The nature of the dark matter represents one of the major unsolved problems in astrophysics. In fact, there are really two dark matter problems: the dark matter in the halo and the dark matter that is the predominant contributor to Ω. Baryonic dark matter is a plausible candidate for halo dark matter, but whether it is responsible for Ω is controversial. If $\Omega = 1$, it is most unlikely that baryons predominate, but if $\Omega \sim 0.1$, the situation is less clear.

The uncertainty in the masses of baryonic and non–baryonic dark matter candidates is huge, and should give any experimentalist serious grounds for hesitation before embarking on a finely tuned search for dark matter. This uncertainty has never deterred theorists: on the contrary, it has inspired them to come up with a plethora of candidates. A convenient categorization of dark matter candidates divides the contenders into two regimes, that of particle physics and that of astrophysics. The particle physics–motivated non-baryonic candidates are weakly interacting particles, generally but not invariably massive that are generically classified as WIMPs, for weakly interacting massive particles. The astrophysically motivated baryonic candidates are generally massive and are referred to as MACHOS, for massive astrophysical compact halo objects. MACHOs may of course exist beyond galactic halos, but the evidence is less persuasive.

Generally, one can compute the cosmological abundance of WIMPs but there is no proof of their existence. The most compelling WIMP is the lightest supersymmetrical particle, and provides the best candidate for the dark matter that contributes to $\Omega = 1$, if indeed Ω is unity (or even larger). By contrast, MACHO candidates are known to exist, and these lectures will describe the evidence for MACHOs as the dark halo matter. Arguments will be reviewed that both support MACHOs as halo dark matter, and go the additional step of asserting that all dark matter may be baryonic (Lecture 1).

These lectures were particularly timely. Shortly after they were given, and before being written up, evidence for MACHO candidate detections was reported in two independent experiments. While these results support the idea that halo dark matter is baryonic, they leave wide open, at present, any inferences about the nature of the MACHOs. Thus in Lecture 2, I describe the possible forms of baryonic halo dark matter that span the range of compact stellar remnants, brown dwarfs and even cold gas clouds. The third lecture sets the cosmological context, and describes how a viable cosmological model may be constructed that consists exclusively of baryonic dark matter.

2. THE EVIDENCE FOR BARYONIC DARK MATTER

2.1. Primordial Nucleosynthesis

The strongest argument that there is a substantial amount of baryonic dark matter, exceeding luminous baryonic matter, comes from primordial nucleosynthesis. The concordance of the predictions of 4He, 3He, 2H and 7Li abundances, together with the removal of uncertainty in the numbers of neutrino species by the

† To be published in the proceedings of the 1993 Les Houches Summer School on Theoretical Physics on Cosmology and Large–Scale Structure
Since luminous baryons contribute Ω_{lum}, cosmic chemical evolution studies of population II abundance suggest that lithium may have undergone convective burning at an early stage of stellar remnants, one may have to reevaluate these limits. Indeed, there are already indications from lower bound from B arising from the adopted Hubble constant. The upper limit on Ω_B of halo dark matter means that helium abundance, and therefore also Ω_B stars, there would also be some helium production that would also lower the inferred primordial helium abundance. Studies indicate a value of Ω_B that is at least as large as that allowed by the conventional bound. Indeed halo MACHOs, if stellar remnants, favour a value of Ω_B that could substantially exceed the canonical bound, by virtue of the lock-up of what may be a high primordial helium abundance.

2.2. Evidence from Rotation Curves

Rotation curves of spiral galaxies show that halos constitutes some 90 percent of the mass of a galaxy and are dark. The local mass–to–luminosity ratio is $\gtrsim 2000$ in the V-band, and $\gtrsim 64$ at K, for edge-on spirals [6]. This precludes ordinary stars from being more than a few percent of the dark halo mass. Even a finely tuned mass function rising below $0.1M_\odot$ would produce too much light, if the stars were hydrogen-burning $(M > 0.08M_\odot)$. Specific alternative baryonic candidates are discussed below. However, a simple argument derived from HI observations of at least some rotation curves suggests that baryonic dark matter is a serious contender for explaining halo dark matter.

Consider the curious case of the dwarf galaxy DDO 154. This dwarf spiral has a flat rotation curve that extends to 15 disk scale lengths. The measured HI column density has the same radial profile ($N \propto r^{-1}$) as the inferred projected dark matter surface density over this range [7]. The HI contributes about 10 percent of the total surface density, and accounts for about 30 percent of the measured rotational velocity. The logical contender for the dark matter is a component that is associated with the halo HI. This points towards baryonic dark matter and possibly even cold gas clouds, as a dominant form of dark matter. To what extent cold gas can exist in substantial amounts in the halo will be discussed below.

Another characteristic of DDO 154 and other dwarf spirals is that the rotation curve observations provide unambiguous evidence that the extended dark matter halos have cores of finite extent, typically several kiloparsecs. However halo formation by hierarchical clustering of collisionless dark matter particles in high resolution numerical simulations demonstrates that the density increases to below the resolution limit [8, 9]. Any core radius is less than the resolution scale of ~ 1 kpc. While one can imagine extreme mass loss via supernova–driven winds imprinting a scale on the dark matter halo, a more plausible alternative is simply a dissipative BDM halo [10]. This is the simplest way to generate a halo with a finite core.

2.3. Dark Halos May Be Flattened

One signature of baryonic dissipation is an oblately flattened halo. Collisionless collapse in hierarchical clustering tends to form prolate halos. There are indications that dark halos may be flattened. Studies of polar ring galaxies probe the halo potential along the minor axis and provide evidence of flattening comparable to an E6 galaxy (or 4:10) [11]. Since polar ring galaxies form from mergers, one might expect that isolated galaxies could be more flattened.
HI disk warps provide indirect evidence of flattening. The argument here is one of persistence of the non-axisymmetric instability. An oblate spheroidal halo damps out the warp modes over a time-scale $\sim \epsilon^{-1} t_p$ where ϵ is the flattening (ratio of semiminor to semimajor axes) and t_p is the precession time-scale [12]. Survival over the age of the galaxy requires $\epsilon \lesssim 0.3$.

Lopsided HI disks with circular velocity fields [13, 14, 15] also provide evidence for dark baryonic matter. These are not easily understood even if the gas has recently arrived: the simplest explanation for lopsidedness in outer HI disks is that the disk is dark-matter dominated. This matter must be baryonic in order to be in the disk.

Stellar kinematics also favor a flattened population II [16, 17]. Presumably a gaseous halo that formed contemporaneously with population II would be even more flattened.

Simulations of hierarchical clustering in a cold dark matter–dominated universe preferentially form prolate halos [8]. This result is not in agreement with evidence on the distribution of shapes for elliptical galaxies. This may suggest that the simulations are not providing the correct picture since one would expect stars to have formed early in the collapse. A prolonged episode of star formation would result in dissipation and disk formation. The stars should therefore dynamically track the dark matter.

2.4. Continuity With Population II

There are two observationally motivated arguments for believing that dark halos are baryonic. The disk-halo “conspiracy” is the apparent dependence of both the amplitude and shape of the galaxy rotation curve at large galactocentric radii (that is, in the halo-dominated regime) on the luminous content of the galaxy (that is, the disk). Flat rotation curves are formed for normal, spiral galaxies, with disk scale lengths of 3-4 kpc and maximum rotational velocities of 100–200 km s$^{-1}$. However, luminous galaxies, with large rotational velocities, generally have declining rotation curves, and dwarf galaxies have rising rotation curves [18]. In the galaxies with flat rotation curves, the disk, which dominates at small radii, and the halo, which dominates at large radii, contribute an approximately equal rotational velocity. Evidently the outer rotation curve, which samples the galaxy halo, is closely coupled to the inner, baryon-dominated galaxy. This situation might naturally arise if the halo is baryonic and formed shortly before the disk formed.

Stellar populations in the halo also show a continuity within population II. The stars at large radii and of extremely low metallicity are drawn from a similar narrow range of stellar masses and show similar abundance patterns to population II stars in the inner galaxy. The best nearby laboratories for studying the oldest stars in the halo are globular star clusters. These systems are inferred to contain a substantial fraction of mass in the form of white dwarfs and neutron stars. Perhaps 30 percent of a globular cluster may be in white dwarfs, as determined by dynamical modelling, and at least 1 percent in neutron stars is required to account for the millisecond pulsar population of spun–up neutron stars in binaries. The mass–to–luminosity ratio of an elliptical galaxy ($\sim 10 h$) is several times larger than that of a globular star cluster, and this may be in part due to a larger fraction of white dwarfs. If the initial stellar mass function is sufficiently steep, globular clusters which have short central relaxation times would be depleted in low mass stars relative to an elliptical. However there is little indication that globular clusters with the longest core relaxation times have steeper initial mass functions. While this effect could conceivably account for the higher mass–to–luminosity ratio in ellipticals, if these are low mass star–dominated, the mass–to–light ratio falls far short of that required in dark halos. It is an intriguing coincidence that saturating the lower limit on halo stellar dark matter, where locally $\rho \sim 2000$, could provide a critical density in the same material, if it were uniformly distributed relative to the luminous density of galaxies.

Baryonic dark matter may amount to $\Omega_B \sim 0.1 (h = 0.4)$ or be as low as $\Omega_B = 0.01 (h = 1)$. It certainly exceeds the stellar contribution, $\Omega_* \approx 0.007$. Galaxy halos coincidentally span the range where this dark matter could be entirely baryonic. The continuity argument suggests that halos are the natural site for the baryonic dark matter. Even galaxy clusters, where gas and stars may dominate the mass, contribute no more than $\Omega_B \approx 0.1$. Globally, only 90 percent of the mass of a spiral galaxy, halo included, is dark. By dark, I mean that this material is not in any identifiable form. Of course, there are white dwarfs and other stellar remnants that cumulatively are dark and add up to a dominant fraction, 80 percent or more, of ann old stellar population. There is dark matter over and above this near the luminous peripheries of spiral galaxies.
The unknown dark fraction is not a huge extrapolation from the ~ 20 percent in globular clusters and ~ 50 percent in ellipticals that such population synthesis modelling requires. Thus somewhat more extreme pregalactic star formation could have produced the requisite dark matter fraction. Precisely what form the stellar dark matter may take is the subject of section 3.

2.5. Gravitational Microlensing Experiments

Results from two experiments that find strong evidence for the existence of MACHOs were reported in October, 1993 [19, 20]. The technique used is gravitational microlensing. If a MACHO passes very close to the line-of-sight from Earth to a distant star, the gravity of the otherwise invisible MACHO causes bending of the starlight and acts as a lens. For halo MACHOs, the star splits into multiple images that are separated by a milliarcsecond, far too small to observe. However, the background star temporarily brightens as the MACHO moves across the line-of-sight in the course of its orbit around the Milky Way halo. The brightening may be by a magnitude or more, which should easily be detectable.

The microlensing event has some unique signatures that distinguish it from a variable star. It should be symmetrical in time, achromatic, and should occur only once for a given star. There are two major difficulties with this experiment. First, the microlensing events are very rare. Only about one background star in two million will be microlensed at a given time. Secondly, many stars are intrinsically variable. Studying such rare events may uncover new types of hitherto unknown variable stars.

To overcome the low probability of a microlensing event towards the LMC, about 5×10^{-7}, the experiments were designed to monitor some ten million stars in the Large Magellanic Cloud. One group, the EROS collaboration of French astrophysicists, utilized a total of more than 300 ESO Schmidt plates taken of the LMC over a 3 year period with red or blue filters. The second group is a US–Australian collaboration that utilizes the 50 inch telescope at Mt. Stromlo, dedicated to the MACHO search, in conjunction with the largest CCD camera in the world built for astronomical use.

An analysis of about seven million stars revealed a total of four events that displayed the characteristic microlensing signatures, with event durations of between 20 and 40 days. The duration of the microlensing event directly measures the mass of the MACHO, with some uncertainty because of the unknown transverse velocity of the MACHO across the line-of-sight. The duration of the event is simply the time for the MACHO to cross the Einstein ring radius. The Einstein ring radius is approximately equal to the geometric mean of the Schwarzschild radius of the MACHO and the distance to the MACHO. The MACHO is typically at a halo core radius, which is a sizeable fraction of the distance (55 kpc) to the LMC.

Much more data remains to be analyzed by the two groups. The MACHO interpretation, if correct, should result in more events that are distributed according to the expected distribution both of amplifications and of the properties of the background stars. In the meantime, one can speculate about the implications. The four events correspond to MACHO masses of 0.1 to 0.4 M_\odot with a factor of 3 or so uncertainty. The EROS experimenters are also performing a CCD search that is sensitive to timescales between 30m and 24 h, and therefore to mass scales between 10^{-7} to $10^{-3} M_\odot$. As yet, no events have been found in this mass range.

A third experiment, the OGLE collaboration of Polish and U.S. astronomers [21], has studied 0.7 million stars in the galactic bulge, where there is a higher microlensing probability of detecting disk stars than halo MACHOs towards the LMC. They reported detection of a microlensing event corresponding to a mass of about $0.3 M_\odot$. This approach will eventually provide confirmation of the microlensing technique, since one can predict a minimal expected rate of events from the known disk stellar population. By contrast, the halo would generate no MACHO events if it does not consist of baryonic dark matter.

The rate detected appears to be low, perhaps by a factor of three, relative to what the MACHO model of dark halo matter predicts. These conclusions are extremely tentative, and are sensitive to the uncertain experimental efficiency and adopted halo model. The possibility that the detections refer to a thick disk cannot be ruled out if the thick disk contributes about as much as the stellar component of the thin disk. However conventional thick disk observations require at most a six percent contribution in terms of stellar surface density near the sun. These experiments certainly present the strongest evidence to date of dark matter detection. Unless there are perverse types of rare variable stars, MACHOS are likely to constitute a significant fraction of the dark halo.
3. THE POSSIBLE FORMS OF BARYONIC DARK MATTER

3.1 A Star Formation Primer

Star formation is a phenomenological theory. We would like to be able to apply this theory to the formation of BDM. In this section, we review the current status of the theory of star formation. There are three critical ingredients that are essential for understanding how stars form. These are the initial mass function of newly formed stars (IMF), the rate of star formation (SFR), and the star formation efficiency (SFE).

3.1.1 Initial Mass Function

Most of our knowledge of the initial mass function comes from studies of stars in the vicinity of the sun. The IMF is defined as the total number of stars per unit mass ever formed. It is measured per square parsec perpendicular to the galactic plane by counting field and open cluster stars of known distance. Historically, the IMF is approximated by a Salpeter law over 0.1M_\odot to 80M_\odot,

$$\frac{dn}{dm} \propto M^{-1-x}; \quad x = 1.35.$$

Modern data shows that the IMF peaks at 0.3M_\odot, and declines towards lower masses. At higher masses, the IMF gradually steepens. It has been more accurately approximated as a log normal distribution by Miller and Scalo [22].

The mass range over which one can observe the IMF outside the solar vicinity is limited. In regions of star formation, near infrared imaging has shown that low mass stars are present in numbers consistent with the Miller-Scalo IMF. This of course is essential for the question of how much mass is locked up in stars, and in particular in low luminosity stars. Studies of globular clusters do not find evidence for a turn-over, and the numbers of stars continue to rise to the observational limit of about 0.15M_\odot. In nearby galaxies, where star formation occurs relatively quiescently, there are also no indications of deviations from the Miller-Scalo IMF at masses down to about $\sim 1 \text{M}_\odot$.

In the Milky Way, observations of the number of Wolf-Rayet stars suggest that the IMF steepens as a function of increasing galactic radius [23]. The budget of ionizing photons, as measured by observations of radio HII regions, has been used to favour a top-heavy IMF in the inner spiral arms [24].

However, in starbursts, regions of intense star formation activity, both modelling and observational indicators suggest that the IMF may vary with time and/or location. Arguments for a top-heavy IMF, weighted towards massive stars, have been summarized by Scalo [25]. The high luminosity per unit of gas mass available to form stars suggests that the IMF is truncated at the low mass end. The best observational evidence is for M82, where spectroscopy of the CO bands near 2μ [26], the high supernova rate and luminosity per unit gas mass [27], and the enhanced ratio of K-band luminosity to mass relative to that in the nucleus [28] all favor a supergiant-dominated starburst in the disk, driven by a top-heavy IMF.

A further argument in favour of a top-heavy IMF during galaxy formation comes from the excessive enrichment that is generated, relative to the nucleosynthetic yield in the solar neighbourhood. In galaxy clusters, the high abundance of iron in the intracluster medium, about one-third of the solar iron abundance, has been interpreted as possibly requiring a top-heavy IMF during the formation phase of the observed ellipticals [29, 30]. A Miller–Scalo IMF fails by a factor of 10 in providing enough iron.

There is also some evidence of a deficiency in very massive stars in at least some starbursts. The absence of massive stars is inferred from the paucity of ionizing photons as measured by the strength of hydrogen recombination lines. The primary theoretical argument for explaining this is due to Wolfire and Cassinelli [31], who note that in metal–rich galactic nuclei, enhanced radiation pressure due to small dust grains is more likely to limit accretion onto massive protostars than in lower metal abundance regions. This would be a primary factor in limiting the upper limit on the IMF to a mass as low as $\sim 30 \text{M}_\odot$.

There is no compelling theory that predicts stellar masses, let alone the IMF. The characteristic stellar mass can be derived by simple dimensional arguments that balance pressure and gravity to have a baryon number of $(\frac{\text{KE}}{\text{Gm}_\odot^2})^{\frac{3}{2}}$, equivalent to 10^{57} protons, or to a solar mass. This number is uncertain by at least two
orders of magnitude. Indeed, essentially the same argument has been used to derive the brown dwarf mass (0.08M⊙), the Chandrasekhar mass (1.4M⊙), and the maximum mass of a stable star (∼100M⊙).

A cold, collapsing cloud will realistically form a transient sheet or filament rather than collapse to a point [32]. It radiates freely during the initial collapse, and is unstable to fluctuation growth according to the Jeans criterion. The minimum fragment mass in a cloud at temperature T and surface density μ is

$$M_{\text{Jeans}} \approx \frac{c_s^4}{G^2 \mu} = \frac{1.6 (T/10K)^2}{(\mu/150 M_\odot \text{pc}^{-2})} M_\odot.$$

A typical value for the surface density of molecular clouds on scales from 0.1 to 30pc is $\mu = 150 M_\odot \text{pc}^{-2}$. The temperature is in the range 10K – 50K. The resulting Jeans mass spans the range observed for molecular cloud cores.

Exactly how stars form depends on the continuing evolution and subfragmentation of these cores. Considerable amounts of magnetic flux and specific angular momentum must be lost by the cores on the way to forming stars. Within the more massive cores, large numbers of stars form. Numerical hydrodynamical simulations cannot cope with the dynamical range in density required to study star formation. One has to resort to semi-analytical arguments.

The resolution must depend on the initial conditions in the parent cloud. How does the cloud divide itself into stellar mass fragments? The physics of cloud collapse and evolution is complex. It involves fragmentation, coalescence of fragments, accretion by fragments, and binary captures. It is not surprising that the IMF may depend on environment, being different in the nuclei of galaxies, for example, from the IMF in lower density regions. There are indications of gradients of α–nuclei abundances to iron in elliptical galaxies [33], and in the disk of our galaxy [34]. These can be interpreted in terms of IMF variations. However, this invariably is not a unique explanation, as both supernova–driven mass loss from galaxies and accretion of primordial gas into galaxies can modify the abundance gradients.

The top–heavy IMF may arise as follows [35]. Interstellar clouds grow by coalescence and then orbit the galaxy. Initially, magnetic support was adequate to provide support against gravitational collapse, with ambipolar diffusion of the field allowing some modest degree of star formation to proceed even in the low mass cores. Because of the limited gas reservoir, one might imagine that predominantly low mass stars are formed in these cores. Spiral density waves provide a non–circular component to the motion that progressively stimulates the aggregation process. After about an orbital time, 10^8yr or so, many clouds have grown to the point at which they are both Jeans unstable, and magnetically Jeans unstable. The massive clouds now collapse on a free–fall time and form stars of all masses. Evidently, one has two modes of star formation. During the prolonged, quiescent star–forming mode, low mass star formation predominates. Once cloud collapse begins in earnest, both massive and low mass stars form, in the vigorous star–forming mode.

Now consider what may happen in the merger of a pair of gas–rich galaxies. The greatly enhanced non–circular cloud motions should drive cloud growth by aggregation on an unprecedented scale [36]. In this situation, the vigorous star–forming model dominates, as the clouds are rapidly driven to the edge of collapse. Hence a top–heavy IMF may arise naturally in regions of intense turbulent motions of clouds as expected in a galaxy merger, and possibly also during the process of galaxy spheroid formation.

3.1.2 Star Formation Efficiency

Stars form in dense molecular cores that permeate the giant molecular cloud complexes (GMC) [37]. The galactic molecular hydrogen, amounting to about $2 \times 10^9 M_\odot$ and comparable in mass to the atomic hydrogen, is distributed in ∼ 1000 of these cloud complexes. The overall SFE within the GMCs is a few percent [38], but within the most massive cores the SFE is 30 percent or more [39]. The cores represents a few percent of the mass in the cloud complexes. The overall SFE is about 1 percent in the Milky Way disk.

One can understand the low SFE in terms of energy feedback once stars form. Low mass as well as massive protostars are observed to have vigorous bipolar outflows. In addition, low mass protostars are strong x–ray emitters. The enhanced ionization recouples the magnetic field that is undergoing ambipolar diffusion as slow contraction of the cloud cores occurs and low mass stars form. The increased friction between ions and
the molecular gas thereby provides an additional magnetic pressure source that resists collapse. The bipolar outflows that are invariably associated with the formation of stars inject a significant amount of momentum and energy into the cold molecular gas, the bulk of which has not yet condensed.

A crude measure of efficiency for supra–Jeans mass clouds is obtained as follows [40]. Let typical bipolar outflows be at velocity $v_{\text{out}} \sim 100 – 200 \text{ km s}^{-1}$ in molecular clouds of linewidth $\Delta v \sim 1 – 3 \text{ km s}^{-1}$, where characteristic values are used. If momentum is approximately conserved, one would expect that the SFE is $\sim \Delta v / v_{\text{out}}$, or of order one or two percent, over the time–scale over which the flows persist. This might apply over a cloud collapse time–scale, since this is of the same order ($\sim 10^6–10^7 \text{ yr}$ at a density $n = 10–1000 \text{ cm}^{-3}$) as the duration times estimated for many bipolar outflows. Hence feedback from protostellar flows could account for the SFE during the vigorous star–forming phase of a molecular cloud, when gravitational collapse is underway.

3.1.3 Star Formation Rate

The star formation rate in galaxy disks comparable to the Milky Way is typically in the range $5 – 10 \, M_\odot \text{ yr}^{-1}$. Non–axisymmetric instabilities, such as spiral density waves, are the underlying trigger of star formation, most of which occurs in the spiral arms. These may be driven by a central bar, by the tidal interaction with a companion galaxy, or could even erupt spontaneously as a consequence of the amplification of stochastic noise.

Much higher star formation rates are associated with starburst galaxies. Here the SFR may be one or even two orders of magnitude higher, per unit mass in stars. Compelling observational evidence suggests that many starbursts, and all of the extreme starbursts, are driven by galaxy mergers.

The early history of star formation in the Milky Way is inferred to have been relatively quiescent, not differing by more than a factor of 2–3 from the present day SFR [41, 42, 43.] This applies to our galactic disk. One can infer star formation rate histories for nearby spiral galaxies, and similar results are found. The SFR in the late–type spirals (Sd) actually increases slowly with time, whereas the SFR in Sa’s and Sb’s decreases [44].

A much higher star formation rate per unit mass is inferred for spheroidal stellar populations. The lack of young stars requires all star formation to have terminated at least 6Gyr ago. Population synthesis modelling requires the bulk of the star formation to have occurred in 1Gyr or less. Therefore in spheroids, the SFR was an order of magnitude or more higher than in disks.

3.2. The Primordial IMF

One might expect the IMF to be different for extremely metal–poor stars, if only because many of the processes involved in fragmentation and star formation are sensitive to metallicity. Our best indicator of the primordial IMF comes from examining heavy element abundance ratios in metal–poor stars. From these studies, one can make crude inferences about the IMF of the precursor stars that synthesized the metals [45]. The odd–even pattern of abundances seen in extreme metal–poor stars is identical to that in star formation at the present epoch. The r and s process sites are believed to be massive stars. Hence massive stars $(10 – 100 \, M_\odot)$ were present in the first stellar population. Low mass stars were also present. Stars of $\sim 1 \, M_\odot$ are found with $[\text{Fe/H}] < -4$. These stars are sufficiently metal–poor that the observed enrichment should have occurred during the first generation of star formation.

Theoretical considerations of the fragmentation of primordial clouds result in predictions of minimum fragment masses that differ little from similar predictions for clouds of solar abundance. Opacity–limited fragmentation proceeds as follows. A collapsing cloud is initially transparent to radiation, and cooling regulates the collapse to be approximately isothermal at temperature T. The Jeans mass, proportional to $T^2 \rho^{-\frac{1}{2}}$, therefore decreases until the density ρ is sufficiently high that the optical depth across a fragment is appreciable. The ensuing collapse is nearly adiabatic, so that the Jeans mass is proportional to $\rho^{2(\gamma - \frac{1}{2})}$, with $\gamma \approx \frac{4}{3}$. The minimum Jeans scale is about $10^{-3} \, M_\odot$, and is only weakly dependent on metallicity. For a cloud of solar abundance, grain cooling is dominant, whereas for a primordial cloud, molecular hydrogen formation and dissociation control the cooling and fragment mass evolution. In both situations, the effects of finite size of the parent cloud increase the minimum fragment mass scales as fragments can shadow one another and thereby enhance the effective opacity.
Other physical effects that are difficult to model but that nevertheless are important include fragment collisions, fragment mergers and accretion of diffuse gas by fragments. The turbulent velocity field induced by asymmetric collapse and by feedback from forming stars will help drive fragment interactions. The general sense of these modifications of the naive, spherically symmetric treatment of opacity–limited fragmentation is to drive the minimum fragment mass up to at least 0.01M⊙, and perhaps to 0.1M⊙. This could therefore account for the paucity of brown dwarfs in conventional star formation. With regard to primordial star formation, the prospects for BDM being mostly in the form of brown dwarfs are evidently dim. There is no compelling reason that primordial conditions would systematically favor domination by fragments of mass below 0.1M⊙.

Accretion onto protostellar cores is parametrized, in a simple spherically symmetric situation, by the accretion rate \(\sim \Delta V^3/G \), where \(\Delta V \) represents an effective throttle velocity at which inflow occurs. This might be the sound velocity in a quiescent cloud, the turbulent velocity, or the Alfvén velocity if magnetic pressure dominates the thermal pressure. If one could imagine an unusually quiescent environment, with an accretion rate as low as \(\sim 10^{-9}M_\odot \text{yr}^{-1} \), it is possible to delay hydrogen ignition and construct brown dwarfs of mass 0.1 or even 0.2M⊙ [46]. More normal accretion rates are in the range \(10^{-5} – 10^{-3}M_\odot \text{yr}^{-1} \). These lead, for low mass cores, to conventional brown dwarfs, of mass below 0.08M⊙ for solar and 0.09M⊙ for primordial composition. It is possible that in a turbulent cloud, where \(\Delta V \) is enhanced, as well as in a primordial cloud, where inefficient cooling guarantees a high sound speed, the protostellar accretion rates are large. This would provide a possible theoretical justification for a top–heavy IMF in these environments.

Halo BDM could conceivably consist of stellar relics if the primordial IMF had very few solar mass stars. Indeed that the primordial IMF was top–heavy is at least as likely as the bottom–heavy option. Several arguments may be adduced to support this possibility [47]. The low dispersion found in the alpha–nuclei relative to iron [34], compared to the large dispersion in [Fe/H] for disk stars, suggests that both the α–nuclei and Fe were mostly produced by massive stars, in contrast to the current epoch IMF that generates Fe from low mass Type I supernovae and α–nuclei from massive stars. The conventional interpretation that only at [Fe/H] < −1 is one dominated by massive star–synthesized alpha–nuclei is probably not tenable in view of recent data [48], which reveals a gradual trend of decreasing α–nuclei with increasing iron abundance. The enhancement with decreasing galactic radius [34] of the alpha-nuclei abundance relative to Fe/H suggests that the primordial IMF in the inner galaxy was systematically top–heavy relative to the solar neighborhood.

This latter possibility is also suggested by the analogy between galaxy formation and starbursts. The elevated star formation rate inferred when the old disk and spheroid formed is similar to that encountered in starburst galaxies. The physical mechanism, involving satellite mergers, is common to models of both starbursts and galaxy formation. Modelling of starbursts suggests that a top–heavy IMF is required to account for the observed luminosity, given the available gas supply and a plausible star formation efficiency.

One might expect the same situation to have applied when the inner galaxy formed and the bulk of the heavy elements seen in the disk were synthesized. Stellar remnants provide an attractive source of mass to account for the rotation curve in terms of a boosted contribution from the inner disk [49]. It has also been suggested [50] that without a top–heavy IMF at early epochs one would have exhausted the supply of interstellar gas by the present epoch. A top–heavy IMF in the inner galaxy may be required at the present epoch to account for the observed ionizing photon flux [24]. Overproduction of 3He is avoided with an early IMF that has fewer, by a factor of 2–3, low mass stars than the present–day IMF. One cannot overdo this, otherwise there would be excessive ejection of 2H.

If a primordial top–heavy IMF is held responsible for disk and spheroid formation, it is evidently possible to flatten the IMF still further, or even truncate it below \(2M_\odot \), in order to account for halo BDM. The dominant component is most likely to be white dwarfs, since their stellar precursors (< 10M⊙) produce relatively little light or nucleosynthetic contamination compared to more massive stars. This requires fine–tuning of the IMF. For example, with an IMF only spanning a range of \(2–8M_\odot \), one can avoid excessive CN production, since primordial stars with very low abundance (\(Z < 10^{-4}Z_\odot \)) do not undergo helium flashes and ensuing dredge–up of CN–cycle processed material [51, 52]. \(^4He \) production and \(^2H \) destruction cause potential difficulties. Both uncertainties in the primordial abundances and the likelihood of considerable gas recycling offer considerable leeway. It is quite possible that the gas may reside in the halo or outer disk in
the form of cold clouds, or else be ejected into the intergalactic medium when the outer BDM halo forms [53].

3.3 What Could the (Dark) Matter Be?

If the dark matter is baryonic, it makes sense to consider the most reasonable forms that it could take. These are, in order, of decreasing plausibility:

a. Stellar mass objects, from $10^{-3}M_\odot$ to 10^3M_\odot. These could be brown dwarfs (10^{-3} to $\sim 0.08M_\odot$), white dwarfs ($0.4 - 1.4M_\odot$), neutron stars ($0.4 - 2M_\odot$), stellar relic black holes from ordinary massive stars ($\sim 2 - 10M_\odot$), or black holes that formed from supermassive stars ($\sim 100 - 10^4M_\odot$).

b. Diffuse dense clouds of cold hydrogen,

c. Exotica, including primordial black holes and nuggets of strange matter.

Unfortunately, as we have seen, theory is a poor guide. The physical conditions in primordial clouds undoubtedly differ from present–day star–forming clouds. There were no heavy elements, no dust, and, most likely, no significant magnetic fields. However we have so sparse an understanding of how the present–day IMF arises that it is not even possible to infer the sign of any deviation in the primordial IMF from that observed locally. We cannot predict whether the primordial IMF should be biased towards massive or low mass stars. Biased it must be, however, in order to produce sufficiently dark matter.

Black holes of mass larger than 10^4M_\odot have been recently excluded as a halo dark matter candidate, since otherwise globular clusters [54] and nearby dwarf spheroidal galaxies [55] would be disrupted. Stellar mass objects are preferred, as doing the least injustice to our expectations of what halo dark matter might be. One can distinguish between the various options for stellar mass objects on astrophysical grounds.

3.3.2 Brown Dwarfs

Not a single brown dwarf is known to exist. Intensive searches for low mass stellar companions of nearby stars by spectroscopy (to detect motions of ~ 20 m s$^{-1}$) and photometry (to measure shifts of ~ 0.001 arc-sec/yr) have failed to reveal any candidates below $0.08M_\odot$ [56, 57]. Searches of binaries have failed to find companions of later spectral types than M6. Spectroscopy of candidate brown dwarfs that are in the Pleiades, chosen from their location in the H–R diagram, failed to find lithium absorption lines [58]. These stars cannot therefore be brown dwarfs. These failures to find brown dwarfs have not dissuaded theorists from proposing brown dwarfs as BDM candidates.

The population II IMF appears to be steep, rising to the detection limit of about $0.15M_\odot$. However the density profile follows that of a de Vaucouleurs law [59]. A halo of brown dwarfs is directly detectable if the IMF of the halo is an extrapolation of the IMF observed in Population II stars. This is because even though one would need to extrapolate the IMF to very low masses, $0.01 - 0.001M_\odot$, given any reasonable slopes, the brown dwarfs just below the main sequence limit are still sufficiently luminous after a Hubble time has elapsed to be detectable via deep star counts in the near-infrared. Recent surveys at 2.2μm suggest that a brown dwarf halo could not be a simple extrapolation of the IMF of Population II stars [60]. However, a strong upturn in the IMF below the main sequence limit of $0.09M_\odot$ for primordial brown dwarfs or $\sim 0.08M_\odot$ for metal-rich brown dwarfs would not be detectable in the deep counts. Only the gravitational microlensing surveys provide an unambiguous means of searching for these low mass halo objects.

The pro–brown dwarf arguments are the following. Brown dwarfs presumably form in considerable numbers, since a fragmenting interstellar cloud is unaware of the minimum mass for hydrogen burning. Cooling flows in galaxy clusters are inferred to undergo mass deposition at a rate of up to $\sim 300M_\odot$ yr$^{-1}$, and this mass flux cannot end up in stars with a solar neighborhood initial mass function (IMF). Some evidence of star formation is seen, however, for example in the galaxy NGC 1275 at the centre of the Perseus cluster cooling flow [61]. This suggests that the IMF formed in cooling flows may be bottom–heavy, or steeper than the local IMF.

Evidence [62] of $\sim 10^{11} - 10^{12}M_\odot$ in cold gas in the cores of cooling flow clusters, based on modelling the x-ray spectrum below 1 keV, may, if confirmed, remove much of the motivation for invoking predominantly low mass star formation in cooling flows. Tentative support for a bottom–heavy IMF comes from a study of
several globular cluster luminosity functions. In the mass range \(\sim \frac{0.2}{1 \text{M}_\odot} \), despite large incompleteness corrections, a significantly steeper IMF is found for a few globular clusters, several of which have long core relaxation time-scales \([63]\). However, the metal abundance in these systems is an order of magnitude lower than that in cooling flows, \([Fe/H] \approx -0.5\).

3.3.3 Halo White Dwarfs

White dwarf mergers are believed to result in Type I supernovae. These are luminous and catastrophic events that are powered by the ejection of about \(0.6 \text{M}_\odot\) of radioactive nickel that decays into iron. A dark halo would be detectable were it to generate Type I supernovae at a rate expected for the corresponding number of white dwarfs. However there is some reason to believe that Type I supernovae are subluminous in old stellar populations \([64]\).

A white dwarf halo requires extreme fine-tuning of the primordial IMF. One has to obtain a mass-to-light ratio of \(\sim 2000\) in the V-band, as inferred from observations along the minor axes of edge-on spirals \([6]\). One has also to avoid contamination by ejecta from supernovae. The allowed mass range of the precursor population is \(4 - 6 \text{M}_\odot\) if the stars form in a burst that lasts 2 Gyr, and \(2 - 8 \text{M}_\odot\) if the burst lasts 1 Gyr \([53]\).

If one removes the assumption that the massive star ejecta are recycled in the disk, the constraints on the upper end of the IMF can be relaxed. For example, the gaseous ejecta from the halo could be ejected into the intergalactic medium by supernova-driven winds, which would then give a source for the intracluster iron detected in x-ray observations of rich clusters. The abundances of other elements in the intracluster gas, especially oxygen, will soon be available from ASCA observations, and should help clarify the nature of the parent star population that must have contaminated the intracluster medium early in galactic history.

A massive-star origin would result in enhanced oxygen to iron by a factor of 3 or so, as seen for old Population II stars. This would be true for an IMF truncated at the lower end \([65]\). However a precisely fine-tuned IMF, greatly but not necessarily completely suppressed at both lower and upper ends in order to produce white dwarf halos, would result in a more normal abundance of oxygen relative to iron. Alternatively, the halo gas left over from forming the stellar relic BDM, amounting to as much as 70 percent for a typical return fraction appropriate to a top-heavy IMF, could have condensed into cold gas clouds that remain in the halo, as discussed in the next section.

A halo of white dwarfs, with minor components of neutron stars, black holes, and even solar mass stars, as predicted by a top-heavy IMF, is potentially observable via several experiments. If the halo formed less than \(\sim 15\) Gyr ago, the white dwarfs are sufficiently luminous \((L > 10^{-6} \text{L}_\odot)\) that the nearest ones are observable: for example, a frequency of \(\sim 1/\text{sq deg to } m_I < 22\) is predicted \([66]\).

Perhaps the most dramatic consequence of a white dwarf halo stems from binary mergers. Mergers of close white dwarf pairs formed by tidal capture in the protoclusters where they were formed could produce neutron stars. The required production mechanism must form a substantial number of high galactic latitude pulsars, seen at a distance above the galactic plane \(\sim 1\) kpc, and generates pulsar velocities of \(\sim 1000\) km s\(^{-1}\). Neutron stars formed via mergers are plausible candidates for gamma-ray bursters \([67]\). The existence of high velocity pulsars in the halo is suggested by the observational data. The possibility of their being gamma-ray burst progenitors is to a large degree independent of the theoretical model.

3.3.4 Diffuse Gas Clouds

The most conservative of assumptions for the nature of dark matter is that it is in the form of diffuse gas. In galaxy halos, this at first sight seems to be completely untenable. Gas at the virial temperature of the Milky Way, \(\sim 2 \times 10^6\)K, would prolifically emit soft x-rays. The diffuse x-ray background allows an x-ray emission measure of at most \(0.01 \text{cm}^{-6} \text{pc}\), corresponding to a halo density at \(\sim 10\) kpc (the dark halo core radius) of \(\sim 10^{-3} \text{cm}^{-3}\), and therefore to a mass of \(\sim 10^8 \text{M}_\odot\). With a density profile \(\rho \propto r^{-2}\), the diffuse gas mass is only \(10^{-3}\) of that required for the dark halo.

However several observations suggest that one ought to reexamine the diffuse gas constraints more carefully. The deepest x-ray observations of galaxy clusters indicate that considerable amounts of hot gas may be outside the cluster core. In several clusters, the gas mass amounts to more than 50 percent of the total
mass at 3 or 4 Abell radii [68, 69, 70]. Moreover in the inner cores, where cooling flows are inferred from the x-ray surface brightness profiles, there are indications of x-ray self absorption intrinsic to the cluster. These are best interpreted in terms of $\gtrsim 10^{11} M_{\odot}$ of cold gas, inferred to be in clouds with a covering factor of order unity across the cluster core [71]. High redshift observations of damped Lyman alpha clouds indicate that if the trend observed at $z \gtrsim 3$, where one measures a mass fraction in hydrogen that is roughly equal to that seen in stars at $z = 0$ [72], continues to $z \sim 5$ one may be seeing more cold gas in the form of HI than is in stars at low redshift.

With regard to our own galaxy, there may be several times more molecular gas than atomic gas in the disk at a galactocentric distance of ~ 10 kpc [73]. Indeed, molecular gas complexes, excited by HII regions, have been discovered as far out as ~ 28 kpc [74]. There may well be far more colder H_2 present in the outer disk, without accompanying HII regions, than has hitherto been undetected. If this trend were to continue to the outermost disk, at $\gtrsim 30$ kpc, one might need to revise the consensus view that the mass in cold gas does not contribute significantly to the rotation velocity.

The remarkable case of DDO 154 provides strong testimony for the view that dark matter normally associated with halos may exist at least in part in the form of hitherto undetected cold gas clouds. This dwarf galaxy has one of the best-studied rotation curves, that extends to at least 15 disk scale-lengths. Outside 2 scale-lengths the observed star distribution provides a negligible contribution to the rotation velocity. The HI column density scales as $N_H \propto r^{-1}$ to the limit where the rotation curve can be traced. It exactly parallels the dark matter surface density inferred from the rotation curve, and contributes about 10 percent to the required total surface density.

Hiding a population of cold clouds from detection is possible if the clouds are sufficiently compact so as to only rarely collide. This same condition also guarantees that the cloud surface covering factor is low. It would then be difficult to observe the clouds, either in absorption towards quasars or in emission. There are two difficulties. Clouds passing through the disk would be exposed to the local ionizing radiation field within HII regions and possibly be visible. The overriding question is why such clouds avoid forming stars during a Hubble time. Stabilizing the clouds is possible if pressure support can be maintained. One would need warm cloud cores. It might be possible to achieve this with a modest amount of star formation. Primordial abundances in the cores would also result in higher temperatures.

3.3.5 Exotica

Baryon dark matter could consist of massive black holes. As noted above, the upper limit on black hole mass is about $10^4 M_{\odot}$. Precursor supermassive stars in the mass range $100 - 1000 M_{\odot}$ implode to form black holes without injecting substantial amounts of enriched material. However, during the precollapse helium-burning phase, there is extensive radiatively-driven mass loss, and considerable amounts of helium are shed. To avoid a discrepancy with primordial nucleosynthesis, one would have to store the ejecta in cold dense clouds that remain in the halo or outer disk. These clouds cannot participate in spheroid and disk star formation, and are not otherwise strongly constrained, as described in the previous section.

Nuggets of strange matter, relics of the quark–hadron phase transition, have been proposed as a possible form for dark matter. Such objects may be stable, in certain quark models. However, quark nuggets are likely to have evaporated prior to the nucleosynthesis epoch.

The smallest stable objects that might be BDM candidates have masses that can be estimated as follows [75]. These would be made of hydrogen. For a density of solid H_2 of about 0.1 g cm$^{-3}$, such “snowballs” are gravitationally bound at a temperature of say 30K, corresponding to the CMB temperature at $z = 10$, if the typical mass exceeds

$$M \gtrsim 10^{-8} \left(\frac{T}{30 \text{K}} \right) \left(\frac{0.1 \text{ g cm}^{-3}}{\rho} \right)^{1/2} M_{\odot}$$

Thus the mass range $10^{-8} M_{\odot}$ to $10^{-3} M_{\odot}$ is the possible range spanned by dark matter snowballs. The central pressure is sufficiently high that if the mass exceeds $\sim 10^{-3} M_{\odot}$, degeneracy is important. More
massive objects have higher central density and are smaller. They continue to contract, although at a small rate, and are referred to as brown dwarfs.

In summary, I conclude that star formation is a messy problem in nonlinear physics with depressingly many degrees of freedom. These include cloud ionization, metallicity, magnetic field strength, angular momentum, dust grain properties, and possible feedback from forming stars. At least, we can predict the mass of a star, to within an order of magnitude! I have argued that phenomenological arguments provide a useful guide. Unfortunately, a mastery of star formation is critical for understanding the nature of baryonic dark matter. One needs either to prevent star formation from occurring, as is the case if BDM consists of cold clouds or brown dwarfs, or else to fine-tune it, as must be done if BDM is in the form of white dwarfs or black holes.

4. COSMOGONIC IMPLICATIONS

4.1 Galaxy Morphology

The primordial star formation rate is the key to understanding galaxy morphology. The high specific star formation rate inferred during formation of the spheroidal component of a galaxy guarantees that some massive dense stellar subsystems form early in the collapse. These sink deep into the potential well via dynamical friction against the lower density stellar systems that are the prevalent component. The dense star clouds efficiently transfer angular momentum as they spiral into the central regions of the galaxy. In this way, an elliptical galaxy develops that is supported by random stellar motions rather than by systematic rotation. The star formation is completed within 1 or 2 Gyr.

In contrast, a disk forms slowly, over several Gyr. The low star formation rate means that the system stays gas-rich. Dissipative cooling controls the rate at which the angular momentum-conserving contraction occurs. Eventually, rotational support halts the collapse process, when the disk has formed. The role of a dark halo is to provide an additional source of mass-collapsing matter against which the gaseous, star-forming component exerts a torque and thereby transfers angular momentum.

Evidently, star formation plays a crucial role in determining the various types of galaxies. Galaxy halos are likely to have some BDM, and perhaps to be predominantly BDM. The formation of baryonic dark matter, since it is closely coupled to early star formation, is evidently inseparable from the galaxy morphology issue. An explanation for why spirals predominate in low density regions and ellipticals in dense cluster cores is likely to be related to the problem of BDM.

4.2 Large-Scale Structure

I have hitherto assumed that halo dark matter consists of BDM. This is equivalent to asserting that $\Omega_{BDM} = 0.03 - 0.07$, in accordance with the nucleosynthesis prediction $\Omega_B = 0.015(\pm0.005)h^{-2}$. However, there is reason to doubt the error bounds on the nucleosynthesis limit. If these are sufficiently relaxed, one is then drawn to consider the case of an open cosmology with $\Omega = 0.1 - 0.2$, in which all of the dark matter is BDM.

Could one go the additional step and consider $\Omega_{BDM} \approx 1$? This would grossly violate the nucleosynthesis limits even in non-standard models of inhomogeneous light element production. Such a model almost certainly produces excessive cosmic microwave background fluctuations. Certainly with inflationary initial conditions, a primary motivation for adopting $\Omega = 1$, one has approximately scale-invariant, adiabatic primordial density fluctuations. These are a disaster for $\delta T/T$; nor is $\delta T/T$ suppressed by reionization on the largest angular scales.

However, the $\Omega = 0.1 - 0.2$ cosmology is phenomenologically attractive. It makes the simplest of assumptions: “what you see is what you get.” We see baryons, and on scales < 20Mpc, where the observations are most reliable, we measure $\Omega \sim 0.1$. There is a heavy price to pay for the simplicity. One has to drop inflation, at least in its generic incarnation, and one has to abandon the hypothesis of primordial scale–invariant curvature fluctuations.

The result is a model that is ugly but simple. A low Ω universe, containing only baryons, must be seeded by primordial isocurvature fluctuations. These are equivalent to primordial spatial variations in the specific entropy or in the baryon number. There is no accepted theory for the origin of such fluctuations. However,
one might anticipate that some models of baryogenesis, for which there is not a universally accepted theory, and which provide \(\frac{n_B}{n_e} \) are also capable of producing \(\Delta \left(\frac{n_B}{n_e} \right) \). Indeed, there are such models in the literature [76, 77]. However there are essentially no predictions for the fluctuation spectrum, which accordingly is treated phenomenologically, as a power-law of arbitrary slope and normalization.

Primordial entropy perturbations \(\delta s \) are defined as perturbations in the number of photons per baryon, so that

\[
\delta s = \delta \left(\frac{T^3}{n} \right), \quad \text{where} \quad \frac{\delta s}{s} = \frac{3}{4} \frac{\delta \rho_{\gamma}}{\rho} - \frac{\delta \rho_B}{\rho}.
\]

Here, \(\delta \rho_{\gamma} \) is the perturbation in radiation density and \(\delta \rho_B \) is the perturbation in baryon density. Requiring that there be no net curvature perturbation, the isocurvature mode being orthogonal to the adiabatic or curvature mode, then leads one to write

\[
\delta \rho_{\gamma} + \delta \rho_B = 0.
\]

In the late time, matter-dominated limit, one obtains \(\frac{\delta T}{T} = \frac{1}{3} \delta s \). This is valid on scales larger than the horizon at last scattering, and shows that one can map out the intrinsic entropy fluctuations on sufficiently large angular scales (greater than a few degrees).

In the absence of a predicted spectrum, one adopts a power-law form for the primordial entropy fluctuations, with power spectrum \(P(k) \equiv |\delta_k|^2 \propto k^n \), where \(\delta_k \) is the Fourier amplitude,

\[
\frac{\delta \rho}{\rho} = \int \delta_k \exp(ik \cdot x) d^3k.
\]

The rms fluctuations \(\langle (\delta \rho/\rho)^2 \rangle \) are equal to \(|\delta_k|^2 \). An empirical fit to the COBE DMR data over spherical harmonics \((l = 2 \rightarrow 10) \) finds \(n \approx 1.1 \) but with large uncertainty, \(\Delta n \approx \pm 0.5 \). Comparison with the Tenerife data \((l \approx 18) \) suggests that \(n \approx 1.5 \), as does analysis of the second year DMR data. If confirmed, this would favour a non–inflationary primordial fluctuation spectrum as expected in a low \(\Omega \) universe.

4.3 Primordial Density Fluctuation Power Spectrum

An empirical fit to the matter fluctuations can be performed using the power spectrum derived from various redshift surveys. Over scales of \(10 - 50 \) Mpc, the linear regime of power is effectively probed, albeit with uncertainties that depend on the inevitable distortions involved in transforming from redshift to three-dimensional space. An empirical fit requires \(n \approx -1 \), with an uncertainty of about \(\Delta n \approx \pm 0.5 \). The more negative values of \(n \) result in excessive CMB temperature fluctuations on scales of order 10 degrees, where reionization is ineffective. A compromise value is \(n \approx -0.5 \) for the primordial power law index. In terms of the invariant mass \(M \) associated with comoving wavenumber \(k \), the corresponding mass spectrum is \(\delta \rho/\rho \propto M^{-\frac{n+3}{2}} \propto M^{-0.4} \) for \(n = -0.5 \). Hence in contrast to the scale-invariant inflationary spectrum \((n \approx 1) \), which is only logarithmically divergent, with \(n_{eff} \approx n - 4 \), on scales smaller than that of the horizon at matter-radiation equality, roughly a galactic mass, the isocurvature spectrum is strongly divergent towards high redshift.

Early formation of small galaxies is inevitable in this model. Star formation, and the associated supernovae, must result in production of an ionizing photon flux that is capable of at least partially reionizing the intergalactic medium. Even with a small efficiency of ionizing photon production, recoupling of the CMB is likely to be almost inevitable at \(z \gtrsim 100 \). This has two notable effects. Radiation drag inhibits growth of matter fluctuations on sub-horizon scales. Rescattering of the CMB smooths out the associated temperature fluctuations.

To produce the large-scale structure, as characterized by the correlation amplitude on 10 Mpc, the suppressed growth implies that one needs a larger initial amplitude for the primordial fluctuations than would be the case were early reionization \((z > 100) \) not to have occurred. This has interesting consequences for the generation of large-scale peculiar velocity fields. The baryonic dark matter power spectrum has a generic large-scale peak that corresponds to the maximum Jeans mass scale. This is approximately equal to \(110 (0.1/\Omega h^2) \) Mpc.
The sound speed prior to recombination is

\[
c_s = \left(\frac{dp}{d\rho} \right)^{\frac{1}{2}} = \left(\frac{dp_r}{d(\rho_m + \rho_r)} \right)^{\frac{1}{2}} = \frac{c}{\sqrt{3}} \left(1 + \frac{3 \rho_m}{4 \rho_r} \right)^{-\frac{1}{2}} \propto (1 + z)^{\frac{3}{2}}
\]

at \(\rho_m > \rho_r \). The Jeans length \(l_J \sim c_s t \propto (1 + z)^{-1} \), and therefore the comoving Jeans length is constant. After recombination, the temperature abruptly drops to 3000 K and the sound speed correspondingly declines. The Jeans mass prior to recombination was \(2 \times 10^{18} \left(\frac{0.1}{m_\odot} \right)^{\frac{3}{2}} \) M\(_\odot\); after recombination, it drops to \(5 \times 10^5 \left(\frac{0.1}{m_\odot} \right)^{\frac{3}{2}} \) M\(_\odot\). Since the sound speed prior to recombination is about \(10^4 \) times larger than that after recombination, any pressure fluctuations propagating as sound waves are greatly amplified over scales much larger than the post-recombination Jeans length.

One consequence is the occurrence of dramatic oscillations in the matter transfer function (Figure 1) that are eventually quenched by radiation drag, in a universe where reionization occurs at \(z \lesssim 1000 \). It is unclear whether the corresponding oscillations in the galaxy correlation function, the amplitude of which depends sensitively on the model for small–scale nonlinearity, would be observable. A large–scale coherent velocity field is another consequence of this model [78]. Large–scale bulk flows are more directly computable, being insensitive to any non–linear corrections for the range of \(n \) of interest, and measurable. The velocity correlation function is shown in Figure 2. The large–scale matter distribution is normalized to give unit variance in mass fluctuations averaged over a sphere of radius \(8h^{-1} \) Mpc, where the luminous galaxy counts have unit variance.

4.4 \(\delta T / T \) on Intermediate and Small Angular Scales

The initial expectation for \(\delta T / T \) in a low \(\Omega \) universe is that the Jeans mass peak would have a substantial effect. On scales below the horizon at recombination, corresponding to several hundred Mpc, gravity would amplify the primordial entropy fluctuations. Associated adiabatic fluctuations are generated by gravity–induced velocity fields. This should lead to \(\delta T / T \sim \rho / \rho_r \sim \frac{\delta T}{T} \). However the first-order Doppler fluctuations are erased by rescattering of the CMB photons. The probability of rescattering is

\[
\int_{t}^{t_0} n_e \sigma_T c dt = 0.04 h \Omega_B \Omega_0^{-\frac{5}{2}} (1 + z)^{\frac{5}{2}}.
\]

With \(\Omega_B \sim \Omega_0 \sim 0.1 \), primary fluctuations are erased if reionization occurs at \(z \gtrsim 50 \), over angular scales of up to \(\sim 10 \) degrees.

However, temperature fluctuations are regenerated on the last scattering surface. Only in second order, \(\frac{\Delta T}{T} \sim \left(\frac{\delta}{\rho} \right) \frac{\delta T}{T} \), do the fluctuations add in quadrature, the first-order fluctuations (\(\sim \frac{\delta}{\rho} \)) self–cancelling. While any surviving first-order fluctuations would be on degree scales, and correspond to the primary Doppler peaks, the second order, regenerated fluctuations are on arc-minute scales. These are a unique signature of BDM on these scales, since the primary last scattering surface has a thickness of about 5 arc-minutes, and in the canonical CDM model, one expects no primary fluctuations on smaller scales.

The best current limit on \(\Delta T / T \) over small angular scales is that from the Australia Telescope Compact Array. Over a beam of 0'9, the rms temperature fluctuations are less than \(9 \times 10^{-6} \). This allows a small area of BDM parameter space, with \(\Omega_B \sim 0.1 \), \(n \sim -0.5 \), and \(h \sim 0.8 \) [79]. With the Hubble constant as low as \(h = 0.5 \), excessive fluctuations are generated on arcminute scales.

4.5 The Compton y Constraint

A significant spectral distortion of the CMB blackbody arises if reionization occurs very early. Compton scattering not only erases angular fluctuations, but transfers energy from the hotter electrons to the CMB photons, \(\Delta \delta_T \sim \frac{kT_{\gamma}}{m_e c^2} \). The resulting distortion is a simple function of the Compton y parameter, defined by

\[
y = \int_{t_{\text{reion}}}^{t_0} n_e \sigma_T c dt \left(\frac{kT_{\gamma}}{m_e c^2} \right) \approx 6.4 \times 10^{-8} h \Omega_B T_4 z_{\text{reion}}^{\frac{5}{2}}.
\]
where \(T_4 \equiv \frac{T}{10^4} \) K is the temperature of the intergalactic gas. The COBE FIRAS experiment sets an upper limit,

\[y < 2.5 \times 10^{-5}. \]

This is sufficient to exclude models in which reionization occurred at \(z \gg 800 \), with \(h \sim 0.8, \Omega_B \sim \Omega_0 \sim 0.1 \) [80].

4.6 A BDM Scenario

Consider the following model for a cosmology dominated by BDM. Take \(\Omega \sim 0.1 \sim \Omega_B \). This alone requires early structure formation, even clusters of galaxies forming at \(z \gtrsim 10 \). Galaxies form much earlier. With primordial entropy fluctuations allowed as possible seeds, adiabatic fluctuations being observationally excluded, one infers a linear fluctuation distribution described by

\[\frac{\delta \rho}{\rho} \propto M^{-\frac{1}{2}} t^{-\frac{1}{2}}, \quad z \gtrsim \Omega^{-1} - 1, \quad 0 \gtrsim n \gtrsim -0.5. \]

Nonlinearity occurs on the Jeans mass scale, \(\sim 10^6 M_\odot \), as early as \(z \sim 1100 \).

What happens next is pure speculation. One scenario is the following. The primordial clouds, of mass comparable to globular star clusters, collapse, and fragment into stars by \(z \sim 500 \). Ionizing photons from the first massive stars ensure that Compton drag forces will initially inhibit further gas collapse and star formation. However once \(z \gtrsim 200 \), the cloud contraction is sufficiently shorter than the Hubble time that star formation resumes. Supernovae drive gas outflows that will soon disrupt star formation in the low mass clouds. Only later, by \(z \sim 30 \), when sufficiently massive potential wells have developed that can efficiently retain the ejection from supernova-driven winds, will galaxy formation begin in earnest. The baryonic dark matter consists in part of the compact remnants of early massive star formation, and also, at least in the intergalactic medium, of diffuse gas.

5. CONCLUSIONS

The BDM hypothesis provides a reasonably complete description both of dark halos and of dark matter that is more broadly distributed. It leads to five unique predictions. Three of these are related to CMB temperature fluctuations.

a. Secondary fluctuations at a level \(\delta T / T \sim 10^{-5} \) are predicted on arc-minute scales because of the early reionization that the BDM model requires in order to erase the primary Doppler peaks.

b. Secondary Doppler peaks \(\delta T / T \sim 10^{-5} \) are generated on degree scales. Their location depends on \(\Omega \).

c. On large angular scales, \(\gtrsim 10 \) degrees, curvature effects dominate the predicted temperature anisotropies. In addition to the usual Sachs-Wolfe anisotropies, \(\delta T = \frac{1}{2} \phi_{LS} \) from the last scattering surface, there is the integrated effect of time-varying potentials along the line-of-sight, \(\delta T = \int \frac{\partial \phi}{\Omega_c} dt \). The curvature scale \((\frac{\delta T}{T})(1 - \Omega_0)^{-\frac{1}{2}} \) becomes less than the particle horizon scale, \(\frac{\Omega_c}{H} \Omega_0 \) at \(\Omega_0 < 0.85 \). Hence one expects a suppression of the low-order multipoles relative to the higher order multipoles, over scales \(l \gtrsim \Omega^{-1} \). The detailed shape of the predicted low multipole power spectrum is dominated by the primordial entropy fluctuations and the details of how the fluctuation spectrum is defined.

d. Compton \(y \)-distortions of the CMB spectrum are inevitable in a BDM universe at a level \(y \sim 10^{-5} \) because of the early reionization.

e. A peak in the matter power spectrum is inevitable at \(100-300 \) Mpc, corresponding to the maximum Jeans mass in the early universe. This could manifest itself as a source of a systematic, coherent large-scale flow that is discrepant in direction with the CMB dipole, and possibly is aligned with the CMB quadrupole (if such a quadrupole is indeed measured). Perhaps the very large-scale flow (\(\sim 800 \) km s\(^{-1} \)) inferred from the dipole moment of a sample of Abell clusters at a distance of \(\sim 150 \) h\(^{-1} \) Mpc [81], if confirmed, would be best explained in such a model.

The major weakness in the BDM model arises from our poor understanding of star formation in extreme environments, such as that of protogalaxies. This applies equally whether we wish to account for a level
\(\Omega_B \approx 0.02 \) that suffices to account for dark halos and to satisfy the primordial nucleosynthesis constraint, or aim for the grander goal of \(\Omega_B \approx 0.1 \) in the cosmological setting. The luminous regions of galaxies provide \(\Omega_* \approx 0.007 \) in the form of known types of stars and gas. There is not a unique prescription for arriving at this value of \(\Omega_* \). This is true regardless of whether the universal \(\Omega \) is 0.1 or 1. Thus it seems eminently plausible that BDM both does exist and should exist, and dominate the known luminous matter content of the universe.

Whether BDM accounts for all of the matter in the universe is more problematical and controversial. Certainly, the trend towards a high \(H_0 \) pushes one towards a low \(\Omega \) universe, as does the most reliable and systematic-free, that is to say, the most local, of the large-scale structure data. Should BDM provide the resolution to both the large-scale and the small-scale dark matter problems, it is encouraging to note that we must be on the verge of detecting its elusive signature. BDM is (barely) alive and well.

ACKNOWLEDGEMENTS

I thank my students and colleagues for many discussions of topics covered in these lectures. Wayne Hu provided the figures. This research has also been supported in part by a grant from the N.S.F.

REFERENCES

1. T. P. Walker, G. A. Steigman, D. N. Schramm, K. A. Olive and H. S. Kang, Ap. J. 376 (1991) 51.
2. M. H. Pinsonneault, C. P. Deliyannis and P. Demarque, Ap. J. Suppl. 78 (1992) 181.
3. V. V. Smith, D. L. Lambart and P. E. Nissen, Ap. J. 408 (1993) 262.
4. G. A. Steigman et al., Ap. J. 415 (1993) L35.
5. T. P. Walker et al., Ap. J. 413 (1993) 562.
6. M. F. Skrutskie, M. A. Shure and S. Beckwith, Ap. J. 299 (1985) 303.
7. C. Carigman and K. C. Freeman, Ap. J. Letters 332 (1988) L33.
8. J. Dubinski and R. Carlberg, Ap. J. 378 (1991) 496.
9. M. S. Warren, P. J. Quinn, J. K. Salmon and W. H. Zurek, Ap. J. 399 (1992) 405.
10. B. Moore, preprint (1994).
11. P. Sackett and L. S. Sparke, Ap. J. 361 (1990) 408.
12. R. Nelson and S. Tremaine, private communication (1993).
13. K. G. Begeman, Astr. Ap 223 (1989) 47.
14. R. Sancisi and R. J. Allen, Astr. Ap 74 (1979) 73.
15. M. P. Rupen, A. J. 102 (1991) 48.
16. S. D. M. White, Ap. J. Lett. 294 (1985) L99.
17. J. Binney and A. May, Mon. Not. Roy. astr. Soc. 218 (1986) 743.
18. S. Casertano and J. van Gorkom, A. J. 101 (1991) 1231.
19. C. Alcock et al., Nature 365 (1993) 621.
20. E. Aubourg et al., Nature 365 (1993) 623.
21. A. Udalski et al., Acta Astr. 418 (1993) 289.
22. G. E. Miller and J. M. Scalo, Ap. J. Suppl. 41 (1979) 513.
23. P. S. Conti and Vacca, W. D., A. J. 100 (1990) 431.
24. G. Worthey, S. M. Faber and J. J. Gonzalez, Ap. J. 398 (1992) 69.
25. J. Scalo, in Windows on Galaxies, ed. G. Fabbiano et al. (Kluwer) (1990) 125.
26. H. Rieke et al., Ap. J. 412 (1993) 99.
27. J. S. Doane and W. G. Mathews, Ap. J. 419 (1993) 573.
28. N. I. Gaffney, D. F. Lester and C. M. Telesco, Ap. J. Lett. 407 (1993) L57.
29. M. Arnaud et al., Astr. Ap. 254 (1992) 49.
30. A. Renzini, L. Ciotti, A. Dercole and S. Pellegrini, Ap. J. 419 (1993) 52.
31. R. Güsten and P. G. Mezger, Vistas in Astr. 26 (1983) 159.
32. J. Scalo, in The Feedback of Chemical Evolution on the Stellar Content of Galaxies, ed. D. Alloin and G. Stasinska (Observatoire de Paris: Meudon) (1992), 299.
36. J. E. Barnes and L. Hernquist, Ann. Revs. Astr. Ap. 30 (1992) 705.
37. E. A. Lada, Ap. J. Lett 393 (1992) L25.
38. P. C. Myers et al., Ap. J. 301 (1986) 398.
39. E. A. Lada and C. J. Lada, in The Formation and Evolution of Star Clusters, ed. K. Janes, A. S. P. Conference Series, 13 (1991) 3.
40. J. Silk, Austr. J. Phys. 45 (1992) 437.
41. B. A. Twarog, Ap. J. 242 (1980) 242.
42. D. C. Barry, Ap. J. 334 (1988) 436.
43. H. R. Noh and J. Scalo, Ap. J. 352 (1990) 605.
44. J. S. Gallagher, D. A. Hunter and A. V. Tutukov, Ap. J. 284 (1984) 544.
45. J. Silk, in The Stellar Populations of Galaxies, IAU 149, ed. B. Barbuy and A. Renzini (Dordrecht: Kluwer) (1992) 367.
46. E. E. Salpeter, Phys. Rep. 227 (1993) 309.
47. J. Silk, Science, 251 (1991) 537.
48. M. S. Bessel, R. S. Sutherland and K. Ruan, Ap. J. Lett. 383 (1991) L71.
49. R. B. Larson, Mon. Not. Roy. astr. Soc 218 (1986) 409.
50. A. Sandage, Astr. Ap. 161 (1986) 409.
51. A. Chieffi and A. Tornambe, Ap. J. 287 (1984) 745.
52. M. Y. Fujimoto, I. Iben, A. Chieffi and A. Tornambe, Ap. J. 287 (1984) 749.
53. D. Ryu, K. A. Olive, and J. Silk, Ap. J. 353 (1990) 81.
54. B. Moore, Ap. J. Lett. 413 (1993) L93.
55. H.-W. Rix and G. Lake, Ap. J. Lett. 417 (1993) L1.
56. A.S. Burrows and J. Liebert, Rev. Mod. Phys 65 (1993) 301.
57. M. S. Bessel and G. Stringfellow, Ann. Revs. Astr. Ap. 31 (1993) 433.
58. G. W. Marcy, G. Basri and J. R. Graham, Ap. J. Lett., in press (1993).
59. H.B Richer, and G.G. Fahlman, Nature 358 (1992) 383
60. E. M. Hu, J.–S. Huang, G. Gilmore and L. L. Cowie, Nature, submitted (1993).
61. H. B. Richer, D. R. Crabtree, A. C. Fabian and D. N. C. Lin, A. J. 105 (1993) 877.
62. D. A. White et al., Mon. Not. Roy. astr. Soc. 252 (1991) 72.
63. H. B. Richer et al., Ap. J. 381 (1991) 147.
64. A. Filippenko et al., A. J. 104 (1992) 1543.
65. B. Wang and J. Silk, Ap. J. 406 (1993) 580.
66. F. Tamanaha et al., Ap. J. 358 (1990) 164.
67. D. Eichler and J. Silk, Science, 257 (1992) 937.
68. U. Briël, J. P. Henry and H. Böhringer, Astr. Ap. 259 (1992) L31.
69. M. P. Watt et al., Mon. Not. Roy. astr.Soc. 258 (1992) 738.
70. C. J. Eyles et al., Ap. J. 376 (1991) 23.
71. D. A. White et al., Mon. Not. Roy. astr.Soc. 25 (1991) 72.
72. A. M. Wolfe in Relativistic Astrophysics and Cosmology, ed. C. W. Akerlof and M. A. Srednicki, Ann. N. Y. Acad. Sci 688 (1993) 281.
73. J. Lequeux, R. Allen and S. Guilloteau, Astr. Ap. 280 (1993) L23.
74. E. J. de Geus et al., Ap. J. Lett 413 (1993) L97.
75. A. Derujula, Jetzer, P. and Masso, E., Astr. Ap. 254 (1992) 99.
76. A. Dolgov and J. Silk, Phys. Rev. D 47 (1993) 4244.
77. J. Yokoyama and Y. Suto, Ap. J. 379 (1991) 427.
78. P. J. E. Peebles, Nature 327 (1987) 210.
79. W. Hu, D. Scott and J. Silk, Phys. Rev. D in press (1994).
80. M. Tegmark and J. Silk, Ap. J. in press (1994).
81. W. Hu and N. Sugiyama, in preparation (1994).
82. T. R. Lauer and M. Postman, preprint (1994).
Figure 1. The matter transfer function for baryonic dark matter–dominated cosmological models [82]. For each combination of Ω and h, results are shown for several epochs of reionization.
Figure 2. The velocity correlation function for baryonic dark matter–dominated cosmological models [82]. For $\Omega = 0.2$ and $h = 1$, results are shown with normalization $\sigma_8 = 1$ for reionization at $z = 1000$ compared to no reionization, and for $n = -1$ and $n = 0$. For comparison, also shown is the velocity correlation function for unbiased CDM.
This figure "fig1-1.png" is available in "png" format from:

http://arxiv.org/ps/astro-ph/9407024v1
This figure "fig1-2.png" is available in "png" format from:

http://arxiv.org/ps/astro-ph/9407024v1