Desmodesmus subspicatus co-cultured with microcystin producing (PCC 7806) and the non-producing (PCC 7005) strains of Microcystis aeruginosa

Azam Omidi - Maranda Esterhuizen-Londt - Stephan Pflugmacher

Abstract

Although microcysts (MCs) are the most commonly studied cyanotoxins, their significance to the producing organisms remains unclear. MCs are known as endotoxins, but they can be found in the surrounding environment due to cell lysis, designated as extracellular MCs. In the present study, the interactions between MC producing and the non-producing strains of Microcystis aeruginosa, PCC 7806 and PCC 7005, respectively, and a green alga, Desmodesmus subspicatus, were studied to better understand the probable ecological importance of MCs at the collapse phase of cyanobacterial blooms. We applied a dialysis co-cultivation system where M. aeruginosa was grown inside dialysis tubing for one month. Then, D. subspicatus was added to the culture system on the outside of the membrane. Consequently, the growth of D. subspicatus and MC contents were measured over a 14-day co-exposure period. The results showed that Microcystis negatively affected the green alga as the growth of D. subspicatus was significantly inhibited in co-cultivation with both the MC-producing and -deficient strains. However, the inhibitory effect of the MC-producing strain was greater and observed earlier compared to the MC-deficient strain. Thus, MCs might be considered as an assistant factor that, in combination with other secondary metabolites of Microcystis, reinforce the ability to outcompete co-existing species.

Keywords Co-cultivation · D. subspicatus · M. aeruginosa · MC-LR · Interspecies interactions

Introduction

In recent decades, the increasing occurrence of cyanobacterial blooms in water bodies throughout the world has raised concerns (Buratti et al. 2017; Svirčev et al. 2017). Moreover, global warming and eutrophication have increased the occurrence of cyanobacterial blooms with a shift toward more toxic populations (Dziallas and Grossart 2011; Scholz et al. 2017). Cyanobacteria are known to produce toxic secondary metabolites designated as cyanotoxins which have undesirable effects on humans, animals, and aquatic organisms (Catherine et al. 2013; Zanchett and Oliveira-Filho 2013; Lévesque et al. 2014). Among the cyanotoxins, microcystins (MCs) are the most commonly studied. However, past studies have mainly focused on the toxicity of MCs while their importance to the producing organisms is still unknown. Recently, there has been a considerable growing interest in understanding the physiological and ecological importance of MCs to the producers beyond their toxicity.

MCs are produced by many species of cyanobacteria, however the most common bloom-forming species is Microcystis aeruginosa (Carmichael 1992). They are high-cost products which are synthesised non-ribosomally via a complex multifunctional enzyme, MC synthetase (Nishizawa et al. 2000; Welker and Von Döhren 2006). It is still uncertain why producers pay such a high energy price for
the synthesis of MCs. A study by Christiansen et al. (2008) revealed that non-toxic strains could produce other non-ribosomal peptides, but not MC variants due to the partial or total lack of the MC synthetase genes, mcy gene cluster. MC-deficient strains, therefore, can be useful tools in competitive studies with toxic strains, to clarify the importance of MCs for the producing species. Previous studies demonstrated that MC-producing strains gain advantages from MC production over non-toxic sub-populations for better environmental adaptations under low or high light irradiation (Renaud et al. 2011), C-limited conditions (Jähnichen et al. 2007; Zhang et al. 2012), and elevated water temperature (Dziallas and Grossart 2011).

Recent studies have suggested some ecological and physiological functions for MCs; varying from the interference in photosynthesis and nutrient metabolism to quorum sensing, iron uptake, recruitment, defence against grazers, and allelopathic interactions (Omidi et al. 2017). The toxin-related interspecies interactions between Microcystis and other co-existing organisms such as the members of the phytoplankton community may further elucidate the ecological importance of MCs.

Toxin production by M. aeruginosa has been suggested to be a continuous process that starts in the early logarithmic phase to the beginning of the stationary phase (Lyck 2004; Jähnichen et al. 2008). MCs can be enclosed within the cells (intracellular MCs) or released into surrounding water (extracellular MCs) (Sivonen and Jones 1999) at different growth stages and under various environmental or physiological conditions, by cell lysis or leakage of intracellular MCs (Rapala et al. 1997; Leflaive and Ten-Hage 2007). Varying levels of MCs have been detected in the water bodies ranging from <3 µg L⁻¹ across Europe to 19,500 µg L⁻¹ in water samples from Japan (Turner et al. 2018). During senescence of scums or very dense cyanobacterial blooms, high concentrations of MC reaching up to 25,000 µg L⁻¹ have been reported (Sivonen and Jones 1999; World Health Organization 2003).

When blooms collapse due to artificial (mechanical or chemical) or natural processes, the cellular material containing high concentrations of toxins are released into the environments in a short period. In nature, the toxin concentrations do not stay at these high level indefinitely due to rapid dilution in the water column and degradation of MCs by light or certain species of bacteria (Christoffersen et al. 2002; Gagala and Mankiewicz-Boczek 2012). However, before this happens, aquatic biota is constantly exposed to MCs for days (Jones and Orr 1994).

In aquatic habitats, the cyanobacterial blooms are frequently associated with green algae, another member of the phytoplankton community (Sedmak and Kosi 1998; Paerl et al. 2001). The phytoplankton community, contain other members such as diatoms, dinoflagellates, and a diverse group of algae as well (Reynolds 2006). The species composition of phytoplankton communities are dynamic and change in seasonal cycles, a phenomenon called seasonal successions where according to the seasonal pattern the species dominate the phytoplankton community in successive waves (Reynolds 1980; Sedmak and Kosi 1998; Chen et al. 2003; El Herry et al. 2008). Past studies have shown that not only the abiotic environmental conditions, but also the biological factors such as interspecies interferences, influenced the seasonal fluctuations of the algal populations in the phytoplankton community (Vardi et al. 2002; Chen et al. 2003; Legrand et al. 2003; Granéli and Hansen 2006; Leão et al. 2009; Zhang et al. 2015).

Therefore, the present study aimed to understand the influence and possible advantage of toxin production better, i.e. if it provided a competitive advantage to the MC-producing strain of M. aeruginosa. A comparative study between toxic (MC-producing) and non-toxic (MC-deficient) strains of M. aeruginosa, and Desmodesmus subspicatus, a freshwater green alga, was performed in a co-exposure system to explore the probable importance of the cyanobacterial bioactive metabolites, especially MCs, when the bloom material starts to lyse, and a high concentration of toxin is released into the surrounding environment.

Materials and methods

Organisms and culture conditions

Axenic cultures of M. aeruginosa PCC 7806 and M. aeruginosa PCC 7005 were obtained from the Pasteur Culture Collection of Cyanobacteria (PCC), Paris, France. The green alga, D. subspicatus SAG 86.81 (formerly Scene- desmus subspicatus), was provided by the SAG Culture Collection of Algae (Sammlung von Algenkulturen), University of Göttingen, Germany. The species were grown in BG-11 liquid medium (Rippka et al. 1979) at 24 ± 1 °C under an illumination intensity of 2220 lm m⁻², provided by cool white fluorescent irradiation, with a 12:12 light: dark interval. The growth phases of M. aeruginosa PCC 7806 and PCC 7005 were studied and documented prior to experimentation (Fig. 1c).

Co-cultivation experimental design

The dialysis membranes with a molecular weight cut-off of 12–14 kDa and diameter of 29 mm (Spectra/ Por®, Spectrum Laboratories, USA) were used to separate the cultures. The membranes were cut into 30 cm lengths and soaked in distilled water for 15 min. Then, they were incubated in 10 mM sodium bicarbonate (NaHCO₃) for 30 min at 80 °C and soaked in 10 mM Na₂EDTA for 30 min. The wide-open
end of a glass pasture pipette was used to hold the dialysis tube and to transfer the Microcystis inoculum into the tubing. One end of the membrane was tightly tied to the pasture pipette with a piece of string, as an open end to the latter injection of the cells into the dialysis tubing. Another end was tied closed by a knot, then fastened to the glass pipette with the string. The prepared tubings were autoclaved for 10 min at 121 °C and placed aseptically in a 250 mL glass bottle containing 180 mL sterile BG-11 medium. The dialysis tubings were filled with 15 mL fresh sterilized BG-11 medium and Microcystis inoculum in 5 mL fresh BG-11 medium was injected into the dialysis tubing using a sterile syringe.

Monocultures of M. aeruginosa in the dialysis tubing, containing 20 mL fresh, sterilised BG-11 medium, nine replicates of M. aeruginosa PCC 7806 (MC-producing strain), and three replicates of M. aeruginosa PCC 7005 (MC-deficient strain), were prepared each at the initial cell density of 1 × 10^7 cells mL^{-1}. Then, the groups of toxic and non-toxic independent replicates were grown for 1 month before commencing with the co-cultivation experiments. Every 5 days, 5 mL of fresh sterilized BG-11 medium was added out of the membrane.

After 1 month, monocultures of the toxic strain (triplicate) was harvested as ‘initial’ to measure the initial concentrations of the intracellular and extracellular MC-LR before the introduction of the green algae into the culture system.

The co-cultivation experiments then commenced, i.e. they were performed using 1-month-old monocultures of toxic and non-toxic Microcystis (six and three replicates, respectively). D. subspicatus at the initial density of 1 × 10^4 cells mL^{-1} was inoculated on the outside of the membrane into the bottle containing the 1-month-old Microcystis inside the dialysis membrane. As a control for the growth of the green alga, D. subspicatus was cultured in the bottle containing a dialysis tubing that was filled only with BG-11 medium without M. aeruginosa. The prepared cultures include 1-month-old monoculture of toxic Microcystis (control 1: C 1), co-cultures of green alga with the toxic (treatment 1: T 1) and non-toxic (treatment 2: T 2) strains of Microcystis, and monoculture of green alga (control 2: C 2),
were kept on a shaker at 75 rpm under the same conditions as described for the unialgal cultures for 14 days.

Growth measurement of *D. subspicatus* and *M. aeruginosa* PCC 7806

Every 2 or 3 days, 1 mL of sample was taken from the outside of the dialysis tubing from each replicate of monocultures (C 2) and co-cultures of the green alga with toxic and non-toxic strains of *M. aeruginosa* (T 1 and T 2, respectively). Then, cells of *D. subspicatus* were counted using bright field microscopy (Olympus CH-2, Japan) and a Neubauer counting chamber (Roth, Karlsruhe, Germany).

The cell density of *M. aeruginosa* PCC 7806 was monitored in 1-month-old monoculture (initial) and after 2 weeks co-cultivation from mono- (C 1) and co-cultures of toxic *Microcystis* with green alga (T 1). A 1 mL sample was collected from the inside of dialysis tubing from each replicate. The optical density of samples (OD$_{750}$) was measured using a spectrophotometer (UVIKON 922, France). Then, the cell numbers was calculated using the calibration curve from the OD$_{750}$ vs cells mL$^{-1}$.

Extracellular MC-LR preparation

Samples from the inside (5 mL) and outside (40 mL) of the dialysis tubing were collected from the 1-month-old monoculture of toxic *Microcystis* (initial) and after 2 weeks co-cultivation from mono- (C 1) and co-cultures of toxic *Microcystis* with green alga (T 1). *Microcystis* cells were harvested and the supernatant collected from the inner membrane after centrifugation at 4000 × g for 30 min (4 °C). The supernatant was collected from the outer side of the membrane after centrifugation (4000 × g, 15 min, 4 °C). The supernatants were filtered through a 0.22 µm Whatman filter (Millipore). Solid-phase extraction (SPE) was performed using C18 SPE cartridges (Sep-Pak tC18 6 cc Vac Cartridge, 500 mg Sorbent per Cartridge, pore size 125 Å, particle size 37–55 µm, hold up volume, Waters) which was conditioned with 10 mL of 100% methanol (MeOH) and subsequently washed with 10 mL of distilled water. The cell-free supernatants were applied to the pre-conditioned cartridge and eluted with 10 mL of 100% MeOH. The eluent was dried in a concentrator plus (Eppendorf, Germany) at 30 °C, and the residue was resuspended in 1 mL of MeOH 100% and stored at −20 °C until analysis.

Intracellular MC-LR extraction

Samples of 1-month-old monoculture of toxic *Microcystis* (initial), and 2 weeks mono- (C 1) and co-cultures of toxic *Microcystis* with green alga (T 1) were collected from the inside of the dialysis tubing and were centrifuged (4000 × g, 30 min, 4 °C). Then, the pellet was freeze-dried using an LI-5P freeze dryer (5 pascals, Italy). The lyophilised cells (25 mg) were sonicated in an ultrasonic bath (Allpax, Germany) for 15 min in 3 cycles of 5 min. After that, intracellular MC-LR was extracted by addition of 1 mL of 70% methanol (MeOH) acidified with 0.1% trifluoroacetic acid (TFA) which was continuously shaken (Intelli-mixer, neolab®) for 1 h. The resulting supernatant was collected after centrifugation (10,000 × g, 10 min, 4 °C), and the pellet was re-extracted with the same procedure. This procedure was repeated four times. Then, the combined supernatant was evaporated to dryness at 30 °C using a concentrator plus (Eppendorf, Germany) and the dried material was dissolved in 1 mL of 100% MeOH and centrifuged (20,800 × g, 15 min, 4 °C). The supernatant was stored at −20 °C until analysis by liquid chromatography-tandem mass spectroscopy (LC-MS/MS).

MC-LR analysis

An Alliance 2695 UHPLC coupled to a Micromass Quattro micro™ (Waters, Milford, MA, USA) was used for determination and quantification of MC-LR. A reversed phase column Kinetex™ C18 column (2.1 × 50 mm, 2.6 µm pore size, Phenomenex) was used for chromatography. Solution A (MS-grade water containing 0.1% trifluoroacetic acid (TFA) and 5% acetonitrile (ACN)) and solution B (ACN containing 0.1% TFA) was used as the mobile phase at a flow rate of 0.2 mL min$^{-1}$. A linear gradient elution program was applied as follows: 0 min 100% A; 3.75–7 min 35% A, and 7.8–12 min 100% A. The column oven temperature was set at 40 °C. The injection volume was 20 µL. MC-LR in the samples was identified by the retention time at 7.95 min.

The tandem mass spectrometry, using electrospray ionization (ESI), conditions were set as follows: the spray voltage was set at 3 kV, and the cone voltage at 60 V. The capillary temperature was set at 120 °C, the desolvation gas temperature and cone gas flow-rate was set at 500 °C and 1000 L h$^{-1}$, respectively. The collision energy was 65 and cone gas flow-rate of 100 L h$^{-1}$. The trigger gas and the collision gas were nitrogen and Argon, respectively. Parent compounds and its fragment ions, respectively, were analysed according to their alignment at the following mass-to-charge ratio (m/z) 995.5 → 135.1.

The detection limit of MC-LR was 1 ng mL$^{-1}$ (signal to noise S/N > 3), and the limit of quantification was set at 5 ng mL$^{-1}$ (signal to noise the S/N > 5). The toxin content was quantified by calibrating against the standard solution of purified solid MC-LR (Enzo, Germany) in MeOH 100%.
Statistical analysis

Statistical analyses were performed with SPSS (version 24). Data were tested for normality and homogeneity of variance using the Shapiro-Wilk test and Levene test, respectively. Differences between samples were determined using one-way analyses of variance (ANOVA) followed by Turkey HSD analysis and Student’s t-test for the homogenous (the growth of *D. subspicatus* and *M. aeruginosa* 7806, intracellular MC-LR, and the diffusion rate of extracellular MC-LR) and heterogeneous variables (extracellular MC-LR), respectively (*p* ≤ 0.05). Data, which did not follow a normal distribution (growth of *D. subspicatus* on the 3rd day (treatments (T1 and T2), and the 7th day (treatment with *M. aeruginosa* PCC 7806 (T1)) was analysed with non-parametric tests, such as the Kruskal Wallis and Mann–Whitney-U-test.

Results

Inhibition of growth rate

After co-cultivation with the MC-producing *Microcystis* (treatment 1, T 1), the biomass of *D. subspicatus* was significantly decreased compared to the biomass concentration achieved in monoculture (C 2) and also co-culture with the MC-deficient strain (treatment 2, T 2) (*p* < 0.05, Fig. 1a). The results indicated a long lag phase, from day 3 to 10, in the growth of green algae co-cultivated with PCC 7806. After 10 days, the density of green algae co-cultivated with PCC 7806 sharply levelled off to 29 × 10^4 cells mL^-1, 6.3 and 5.1 times less than when grown as mono- or co-culture with the MC-deficient strain, respectively (*p* < 0.001). Afterwards, the growth of the green algae slowly increased and reached 148 × 10^4 ± 12 × 10^4 cells mL^-1 on day 14, which was 3.4 times less than in monoculture and 2.16 times lower than when co-cultured with the MC-deficient strain (*p* < 0.001).

In contrast, the density of the green algae, which was co-cultivated with MC-deficient strain, *M. aeruginosa* PCC 7005, was not significantly different to the control after the first 7 days (*p* > 0.05). Afterwards, the biomass of green algae was decreased significantly and slowly fell to 320 × 10^4 ± 13 × 10^4 cells mL^-1 at the end of the co-cultivation experiments on day 14 that was 1.6 times lower than the monoculture (*p* < 0.001, Fig. 1a).

The results showed that after 14 days of co-cultivation, the cell density of *M. aeruginosa* 7806 was significantly decreased in mono- (C 1) and co-cultures (T 1), compared to the 1-month-old monoculture (initial) (*p* < 0.001, Fig. 1b). Moreover, the growth of *Microcystis* in co-culture (T 1) remained unchanged, compared to the simultaneously conducted monoculture (C 1) (*p* > 0.05, Fig. 1b).

Toxin concentration

At the inception of the experiment in 1-month-old monoculture (initial), the total concentration of extracellular MC-LR (inside plus outside the dialysis membrane) was 1050.2 ± 51.7 µg L^-1 (Fig. 2a) and the intracellular MC-LR concentration was 1214.5 ± 114.5 µg g^-1 (Fig. 2b). After 2 weeks of co-cultivation, the concentration of intracellular MC-LR in mono- (C 1) and co-cultures (T 1) remained unchanged compared to the intracellular MC-LR concentration at the start of the experiment (initial) (Fig. 2b, *p* > 0.05). In contrast, the concentration of extracellular MC-LR was significantly raised both with mono- and...
However, after 2 weeks of co-cultivation, the increased MC release in co-culture (T1) was at the same level as the simultaneous monoculture (C1) (p > 0.05, Fig. 2a). Additionally, the amount of outer membrane extracellular MC-LR that was the actual concentration at which the green alga has been exposed was not significantly different relative to the control (C1) (p > 0.05, Fig. 2).

The efficiency of employing the dialysis membrane in the co-cultivation system was assessed in terms of the diffusion rate of MC-LR. This was evaluated by measuring the concentration of extracellular MC-LR at both sides of the dialysis tubing (Fig. 3). The results showed that at the start of the co-cultivation experiment with M. aeruginosa PCC7806 monoculture (initial), as well as after 14 days of both mono- (C1) and co-culture (T1), the concentration of extracellular MC-LR inside the dialysis membrane was significantly higher than the outer of the membrane (p < 0.01, Fig. 3). However, in the 1-month-old monoculture (initial) where the lowest concentration of extracellular MC-LR was measured, the highest diffusion rate of extracellular MC-LR (0.7) was observed which was at the same level as co-culture (T1) and significantly greater than the monoculture of the co-cultivation experiment (C1) (p > 0.05 and p < 0.05, respectively, Fig. 4). As Microcystis cells were entering the death phase, the release of MC-LR increased due to the increased cell lysis (Fig. 1b) after 2 weeks of co-cultivation. Therefore, the MC was less distributed between the inner and outer side of the dialysis membrane (Figs 3 and 4).

Discussion

In the present study, a co-cultivation system was designed using a dialysis membrane as a separation technique, where *Microcystis* strains were grown inside of the dialysis tubing and the green alga was cultured outside of the tubing. The system allowed the species to influence each other through their diffusible extracellular products without any physical cell-cell contacts. Thus, the shading effects of the buoyant *Microcystis* cells which were grown to a dense culture could be restricted through confining the *Microcystis* cells inside of the dialysis membrane in the mixed culture. The results showed that over time the extracellular MC-LR diffused through the membrane. However, the diffusion rate of the released MC across the membrane was affected by a sudden large release of extracellular MC-LR, possibly delaying diffusion to achieve an equilibrium on both sides.

The results showed that during the co-cultivation experiment, coinciding with the decreased cell density of *M. aeruginosa* toxic strain in both the control and treatments, the concentration of intracellular MC-LR remained unchanged in mono- and co-cultures. However, the total extracellular MC-LR from both the inside and outside was significantly higher, which can be explained by the *Microcystis* cells entering into the stationary phase of growth (Lyck 2004; Jähnichen et al. 2008). This means that *D. subspicatus* which was growing to the exponential phase of growth was exposed to the contents of the *Microcystis* cells that passed into the collapse phase of growth. The growth of the green alga was inhibited in co-cultivation.
with both toxic and non-toxic strains of *Microcystis*. However, MC-producing strain inhibited the growth of green alga greater and in earlier days, compared to the MC-deficient strain. Then, it was assumed that the toxic strain might benefit from MC production through outcompeting of the co-existing green alga. Moreover, the green alga showed a longer lag phase in the presence of MC-producing strain compared to the control and MC-deficient *Microcystis*. The study by Mohamed (2008) indicated that the green algae, *Chlorella* and *Scenedesmus*, could absorb and biotransform MCs. The inhibitory effects of MCs on the growth and photosynthesis of the other members of phytoplankton community have been reported in other investigations as well (Singh et al. 2001; Sukenik et al. 2002; Yang et al. 2014). MCs could negatively affect the exposed species through the restriction of the carbonic anhydrase activity (Sukenik et al. 2002), the reduction of CO₂ uptake, depletion of nitrogen fixation (Singh et al. 2001), and the induction of oxidative stress that lead to programmed cell death (Pietsch et al. 2001; Pflugmacher 2004; Amado and Monserat 2010). Therefore, it might be assumed that the green alga needed more time to fix the damages which might have resulted from the presence of MC and/or the other secondary metabolites of *Microcystis*.

The results indicated that the naturally occurring non-toxic strain of *M. aeruginosa* PCC 7005 negatively influenced the growth of green alga as well. However, it took longer, and the inhibition was significantly smaller than the co-cultures with the wild-type MC-producing strain PCC 7806. Then, the inhibitory effects of *Microcystis* on the growth of green alga was not only related to MC but also the increased release of the other probable secondary metabolites over time were involved. Previous studies showed the other secondary metabolites of *Microcystis* such as micropeptin, microviridin, microgenin, as well as some unidentified compounds might interfere in the interspecies interactions (Banker and Carmeli 1999; Reshef and Carmeli 2001; Ploutno et al. 2002). However, the results of the current study showed that the presence of MC might reinforce the inhibitory effects of *Microcystis* on the growth of the co-existing green alga. More studies need to be done concerning the analysis of the secondary metabolic profile of both MC-producing and -deficient strains, for undoubted confirm or rejection of the probable involvement of the other cyanobacterial metabolites in combination with or rather than MC in the interspecies interactions.

On the other hand, the green alga did not affect the MC production and release from MC-producing strain that might be related to the population ratio and the physiological status of the co-existing species which influenced the pattern of the algal communications. The study by Bittencourt-Oliveira et al. (2015) showed that at the equal initial population ratio (1:1, 1 × 10⁵ cells mL⁻¹), *Scenedesmus acuminatus* induced MC production in *M. aeruginosa*. The study by Harel et al. (2013) showed that the interspecies interactions between *Scenedesmus huji* and *M. aeruginosa* spp. at the similar algal initial abundance of 1 × 10⁵ cells mL⁻¹ have negatively affected one another’s growth at 20–30 °C, depending on their physiological status. As temperature increased from 20 to 30 °C, the competitive advantages of the green alga was decreased where the green alga was superior for a shorter time at the initial phase of co-cultivation while towards the end of the co-cultivation period *Microcystis* resumed dominance in the mixed culture. Moreover, the results indicated that the growth of MC-producing *Microcystis* was not influenced in the presence of the co-cultured green alga. However, the growth of MC-deficient strain was not monitored. Therefore, due to the lack of enough data it cannot be possible to assume whether the MC-producing strain benefited from MC over the MC-deficient strain to improve its fitness or not.

Taken together with the current study of the interspecies interplay between toxic and non-toxic strains of *M. aeruginosa* and the green alga, the probable importance of MC for the toxic *Microcystis* is evident. The results indicated that *Microcystis*, toxic and non-toxic strains, affected the growth of co-cultured green alga negatively. However, the growth inhibition in co-cultivation with the toxic *Microcystis* was significantly greater and occurred in earlier days. Then, in cyanobacterial blooms where toxic and non-toxic strains co-existed, the MC-producing strain may gain the advantage of MC production over non-toxic subpopulations to a greater exclusion of the co-existing species. MCs might play a role in the replacement of green algae with the cyanobacterial blooms at the end of summer.

Acknowledgments This work was supported by Elsa-Neumann-Scholarship (formally known as NaFøG) from the state of Berlin in the context of the Elsa-Neumann PhD scholarship. Open access funding was provided by the University of Helsinki, including Helsinki University Central Hospital.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Amado LL, Monserrat JM (2010) Oxidative stress generation by microcystins in aquatic animals: why and how. Enviro Int 36:226–235

Banker R, Carmeli S (1999) Inhibitors of serine proteases from a waterbloom of the cyanobacterium Microcystis sp. Tetrahedron 55:10835–10844

Bittencourt-Oliveira M, Chia MA, De Oliveira HSB, Araújo MKC, Molica RJR, Dias CTS (2015) Allopathic interactions between microcystin-producting and non-microcystin-producing cyanobacteria and green microalgae: implications for microcystins production. J Appl Phycol 27:275–284

Buratti FM, Manganeli M, Vichi S, Stefanelli M, Scardala S, Testai E, Funari E (2017) Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol 91:1049–1130

Carmichael W (1992) Cyanobacteria secondary metabolites—the cyanotoxins. J Appl Bacteriol 72:445–459

Catherine Q, Susanna W, Isidora ES, Mark H, Aurelie V, Jean-François H (2013) A review of current knowledge on toxic benthic freshwater cyanobacteria—ecology, toxin production and risk management. Water Res 47:5464–5479

Chen Y, Qin B, Teubner K, Dokulil MT, Catherine Q (2003) Long-term dynamics of phytoplankton assemblages: Microcystis-dominance in Lake Taihu, a large shallow lake in China. J Plankton Res 25:445–453

Christiansen G, Molitor C, Philmus B, Kurrmayer R, Catherine Q (2008) Nontoxic strains of cyanobacteria are the result of major gene deletion events induced by a transposable element. Mol Biol Evol 25:1695–1704

Christoffersen K, Lyck S, Winding A (2002) Microbial activity and temperature select for toxic microcystins, cyanobacterial hepatotoxins, in fresh water—the relative dominance of toxigenic and nontoxigenic strains of Microcystis. Aquat Micro Ecol 27:125–136

Dziallas C, Grossart HP (2011) Increasing oxygen radicals and water temperature select for toxic Microcystis sp. PLoS ONE 6:e25569

El Herry S, Fatallah A, Rejeb AJB, Bousaâda N, Falcóner I (2008) Seasonal occurrence and toxicity of Microcystis spp. and Oscillatoria tenuis in the Lebna Dam, Tunisia. Water Res 42:1263–1273

Gagala I, Mankiewicz-Boczek J (2012) The natural degradation of microcystins (cyanobacterial hepatotoxins) in fresh water—the future of modern treatment systems and water quality improvement. Pol J Environ Stud 21:1125–1139

Granelli E, Hansen PJ (2006) Allelopathy in harmful algae: a mechanism to compete for resources? In: Graneli E, Turner JT (eds) Ecology of harmful algae. Springer-Verlag, Berlin, Heidelberg, p 189–201

Harel M et al. (2013) Interactions between Scenedesmus and Microcystis may be used to clarify the role of secondary metabolites. Environ Microbiol Rep 5:97–104

Jähnichen S, Ihle T, Petzoldt T, Benndorf J, Boynton A (2007) Impact of inorganic carbon availability on microcystin production by Microcystis aeruginosa PCC 7806. Appl Environ Microbiol 73:6994–7002

Jähnichen S, Ihle T, Petzoldt T (2008) Variability of microcystin cell quota: a small model explains dynamics and equilibria. Limnologia 38:339–349

Jones GJ, Orr PT (1994) Release and degradation of microcystin following algalic-teatment of a Microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Water Res 28:871–876

Kosai S, Kanno M, Asakura M (2013) Interactions between cyanobacterial toxins and bacteria. J Plankton Res 35:271–282

Leflaive J, Ten-Hage L (2007) Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshw Biol 52:199–214

Legrand C, Rengefors K, Fisterol GO, Granelli E, Boynton A (2003) Allelopathy in phytoplankton-biochemical, ecological and evolutionary aspects. Phycolologia 42:406–419

Lévesque B et al. (2014) Prospective study of acute health effects in relation to exposure to cyanobacteria. Sci Total Environ 466:397–403

Lyck S (2004) Simultaneous changes in cell quotas of microcystin, chlorophyll a, protein and carbohydrate during different growth phases of a butch culture experiment with Microcystis aeruginosa. J Plankton Res 26:727–736

Mohamed ZA (2008) Polysaccharides as a protective response against microcystin-induced oxidative stress in Chlorella vulgaris and Scenedesmus quadricauda and their possible significance in the aquatic ecosystem. Ecotoxicology 17:504–516

Nishizawa T, Ueda A, Asayama M, Fujii K, Harada K-i, Ochi K, Shirai M (2000) Polyketide synthase gene coupled to the peptide synthetase module involved in the biosynthesis of the cyclic heptapeptide microcystin. J Biochem 127:779–789

Omidí A, Estherhuizen-Londt M, Pfugmacher S (2017) Still challenging: the ecological function of the cyanobacterial toxin microcystin—What we know so far. Toxin Rev 37:87–105

Paerl HW, Fulton RS, Moisander PH, Dyble J, Boynton A (2001) Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci World J 1:76–113

Pfugmacher S (2004) Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin-LR. Aquat Toxicol 70:169–178

Pietesch C, Wiegand C, Amé MV, Nicklisch A, Wunderlin D, Pfugmacher S (2001) The effects of a cyanobacterial crude extract on different aquatic organisms: evidence for cyanobacterial toxin modulating factors. Environ Toxicol 16:535–542

Ploutno A, Shoshan M, Carmeli S (2002) Three novel protease inhibitors from a natural bloom of the cyanobacterium Microcystis aeruginosa. J Nat Prod 65:973–978

Rapala J, Sivonen K, Lyra C, Niemelä SI (1997) Variation of microcystin concentrations in a mixed bloom of Microcystis aeruginosa and Nostoc muscorum in an outdoor open lake. J Phycol 33:459–464

Rapala J, Sivonen K, Lyra C, Niemelä SI (1998) Variation of microcystin in different aquatic organisms: evidence for cyanobacterial toxin modulating factors. Environ Toxicol 16:535–542

Rapala J, Sivonen K, Lyra C, Niemelä SI (2000) Polyketide synthase gene coupled to the peptide synthetase module involved in the biosynthesis of the cyclic heptapeptide microcystin. J Biochem 127:779–789

Sedmak B, Kosi G (1998) The role of microcystins in heavy cyanobacterial bloom formation. J Plankton Res 20:691–708
Singh DP, Tyagi M, Kumar A, Thakur J, Kumar A (2001) Antialgal activity of a hepatotoxin-producing cyanobacterium, *Microcystis aeruginosa*. World J Microbiol Biotechnol 17:15–22

Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E & FN Spon, London, On behalf of the World Health Organization, p 41–111

Sukenik A et al. (2002) Inhibition of growth and photosynthesis of the dinoflagellate *Peridinium gatunense* by *Microcystis* sp. (cyanobacteria): a novel allelopathic mechanism. Limnol Oceanogr 47:1656–1663

Svirčev Z, Drobac D, Tokodi N, Mijović B, Codd GA, Meriluoto J (2017) Toxicology of microcystins with reference to cases of human intoxications and epidemiological investigations of exposures to cyanobacteria and cyanotoxins. Arch Toxicol 91:621–650

Turner AD, Dhanji-Rapkova M, O’Neill A, Coates L, Lewis A, Lewis K (2018) Analysis of microcystins in cyanobacterial blooms from freshwater bodies in England. Toxins 10:39

Vardi A, Schatz D, Beeri K, Motro U, Sukenik A, Levine A, Kaplan A (2002) Dinoflagellate-cyanobacterium communication may determine the composition of phytoplankton assemblage in a mesotrophic lake. Curr Biol 12:1767–1772

Welker M, Von Döhren H (2006) Cyanobacterial peptides—nature’s own combinatorial biosynthesis. FEMS Microbiol Rev 30:530–563

World Health Organization (2003) Guidelines for safe recreational water environments: coastal and fresh waters. WHO, Geneva, Switzerland

Yang J, Deng X, Xian Q, Qian X, Li A (2014) Allelopathic effect of *Microcystis aeruginosa* on *Microcystis wesenbergii*: microcystin-LR as a potential allelochemical. Hydrobiologia 727:65–73

Yang J, Tang H, Zhang X, Zhu X, Huang Y, Yang Z (2018) High temperature and pH favor *Microcystis aeruginosa* to outcompete *Scenedesmus obliquus*. Environ Sci Pollut Res 25:4794–4802

Zanchett G, Oliveira-Filho EC (2013) Cyanobacteria and cyanotoxins: from impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins 5:1896–1917

Zhang Y, Jiang HB, Liu SW, Gao KS, Qiu BS (2012) Effects of dissolved inorganic carbon on competition of the bloom-forming cyanobacterium *Microcystis aeruginosa* with the green alga *Chlamydomonas microsphaera*. Eur J Phycol 47:1–11

Zhang Y, Wang J, Tan L, Cao J, Li H (2015) Effect of allelopathy on the competition and succession of *Skeletonema costatum* and *Prorocentrum donghaiense*. Mar Biol Res 11:1093–1099