Elastic properties of the degenerate f.c.c. crystal of polydisperse soft dimers at zero temperature

J. W. Narojczyk\textsuperscript{1} and K. W. Wojciechowski\textsuperscript{2}

\textit{Institute of Molecular Physics, Polish Academy of Science, Smoluchowskiego 17, PL-60-179 Poznań, Poland}

Abstract

Elastic properties of soft, three-dimensional dimers, interacting through site-site $n$-inverse-power potential, are determined by computer simulations at zero temperature. The degenerate crystal of dimers exhibiting (Gaussian) size distribution of atomic diameters - i.e. size polydispersity - is studied at the molecular number density $1/\sqrt{2}$; the distance between centers of atoms forming dimers is considered as a length unit. It is shown that, at the fixed number density of the dimers, increasing polydispersity causes, typically, an increase of pressure, elastic constants and Poisson’s ratio; the latter is positive in most direction. A direction is found, however, in which the size polydispersity causes substantial decrease of Poisson’s ratio, down to negative values for large $n$. Thus, the system is partially auxetic for large polydispersity and large $n$.

Keywords: auxetic materials, elastic constants, polydispersity, modeling and simulation, mechanical properties, negative Poisson’s ratio

PACS: 07.05.Tp, 61.43.-j, 62.20.de, 62.20.dj

1 Introduction

Among the characteristics of real materials, elastic properties are the ones that are crucial from the point of view of various applications. Recently, increasing interest is observed in the area of materials with unusual elastic properties - an example are materials with negative Poisson’s ratio \cite{1,2}. When stretched (or resp. compressed) such materials increase (resp. decrease) their size not

\textsuperscript{\textdegree} jwn@ifmpan.poznan.pl
\textsuperscript{\textdegree} kww@man.poznan.pl
only in the direction of the stretch (resp. compression) but also in one or more directions transverse to it \cite{7}. Materials exhibiting such counterintuitive behavior are known as anti-rubber \cite{8}, dilational materials \cite{9} or auxetics \cite{2}. In this paper, the last name will be used for its brevity.

As for isotropic systems the Poisson’s ratio is direction independent, any isotropic material can be either auxetic or not. For anisotropic systems, which are the subject of the present paper, the situation is more complex. Apart from the alternative that the Poisson’s ratio is in all directions negative or not, a third possibility exists: in some directions it is negative and in other - it is not. In the literature related to the field, various names have been proposed to describe different situations \cite{4,10,12}. Here we will adopt the scheme introduced in Ref. \cite{12}, in which - as in the isotropic case - the names auxetics and nonauxetics correspond, respectively, to negative or nonnegative Poisson’s ratio in all directions. Materials with Poisson’s ratios negative in some directions and nonnegative in the other ones will be referred to as partially auxetic materials or just partial auxetics.

The very existence of auxetics and partial auxetics encourages one to study influence of various micro-level mechanisms on the elastic properties of condensed matter \cite{13,14}. An important problem in this context is the influence of disorder on the Poisson’s ratio. For some two-dimensional (2D) models which are elastically isotropic (at least for small deformations) and for some anisotropic 2D models, it has been found that various kinds of disorder (such as vacancies, interstitials, aperiodicity or polydispersity) introduced in crystalline structures, increase Poisson’s ratio \cite{45,48,49,50}. Studies of some three-dimensional (3D) molecular models \cite{51} revealed similar effect caused by vacancies, what might suggest a general conclusion that (at least in simple molecular systems) disorder weakens or eliminates auxeticity.

Recently, however, it has been found that in one of the simplest 3D systems - soft spheres, forming the f.c.c. phase, there exists a direction in which one of the form of disorder (polydispersity) decreases Poisson’s ratio, which reaches negative values down to -1 \cite{52}. This observation might find practical applications, e.g. in production of partial auxetics of latex meso- or macroscopic spheres for which size polydispersity is easy to control. Unfortunately, the mentioned lowest Poisson’s ratios were observed only for the softest spheres with \(n = 6\), i.e. when the f.c.c. structure may be unstable with respect to the b.c.c. structure \cite{53}.

Taking into account that elastic properties of many-body systems strongly depend on details of the intermolecular interaction potential and, in particular, on the molecular shape, it is interesting to study other 3D systems searching for stable structures for which increasing polydispersity can lead to more negative Poisson’s ratios in some directions. As it is meaningful to start with the
simplest molecular shapes, the natural candidate for a first 3D molecule to investigate is a polydisperse dimer.

The aim of this study is to determine the influence of disorder introduced to a solid of soft dimers by the size dispersion of their atoms, on the elastic properties of the model. The study concerns the zero temperature, \( T = 0 \), and the number density \( N/V = 1/\sqrt{2} \), where \( V \) is the volume and \( N \) is the number of dimers. At this density atoms of dimers can be arranged in a perfect f.c.c. lattice of lattice constant equal to the distance of atomic centers in the dimer. The dimers form a degenerate crystalline (DC) phase - an analogue of that observed in 2D \([54]\). The phase is characterized by non-periodic positions and orientations of molecules, whereas the atoms forming molecules are arranged in a perfect f.c.c. lattice (when the atoms are identical) or (for slightly different sizes of atoms) in a lattice close to the f.c.c. one. The DC phase is known to be thermodynamically stable and effectively cubic from the point of view of elastic constants for hard dimers \([55]\) and is expected to preserve those properties for soft dimers with short ranged interactions which are studied in the present paper.

The soft dimer system can be seen as a rough model of some man-made nano-, meso- or macro-particle systems, e.g. systems of latex particles \([56, 57]\). Recently, an increasing interest is observed in systems of soft particles \([58]\), especially in the context of physics of colloids. This is due to the fact that the latter have a broad range of possible applications. Systems of soft polydisperse particles seem to be more realistic models of colloids than those built of identical particles. Polydispersity is also important for nanoparticle crystals \([59–61]\), where the speed of crystallization and resulting crystal quality is strongly related to size dispersion of particles.

Studies of elastic properties of models of polydisperse systems can be thought of as a first step on a path to better understanding mechanisms and phenomena that govern the elastic properties of real systems. Such a knowledge is not only important from the point of view of fundamental research but also useful from the material engineering point of view - it can help to engineer materials with desired elastic properties.

2 Description of the studied model

The model studied in this work consists of \( N \) diatomic molecules (dimers) in periodic boundary conditions. The dimers are rigid i.e. the distance between centers of the atoms forming each one is constant and equal to \( \sigma \) (which constitutes a unit of length) for each dimer. Initially the atoms form the perfect f.c.c. lattice and the molecules form a degenerate crystalline (DC) phase. The
atoms interact via purely repulsive potential of the form:

\[ u_{ij}(d_{ij}, r_{ij}) = u_0 \left( \frac{d_{ij}}{r_{ij}} \right)^n, \]  

where \( d_{ij} = (d_i + d_j)/2 \), \( d_i \), \( d_j \) are the diameters of the interacting spheres (atoms), \( r_{ij} \) is the distance between their centers and \( u_0 \) is the energy unit. The exponent \( n \) is further referred to as the hardness parameter and its inverse, \( 1/n \), as the softness parameter. (These names come from the observation that when \( n \to \infty \) the interaction potential described by Eq. (1) tends to the hard-body potential, which is widely used in computer simulations and condensed matter theory [34].) Atomic interactions are assumed to be short-range ones, i.e. only the nearest neighbors (shearing a face of their Voronoi polyhedra) interact. Since the molecules are considered as rigid, interactions between atoms forming a molecule are neglected.

2.1 Atomic size polydispersity

In the studied system, atomic diameters were generated randomly according to the Gauss distribution function with a given standard deviation \( \delta \)

\[ \delta = \frac{1}{\sigma} \sqrt{\langle d^2 \rangle - \langle d \rangle^2}. \]  

In above equation, \( d \) is the atomic diameter and \( \sigma = \langle d \rangle \). Further, in this work, \( \delta \) is treated as the measure of disorder in the system and is referred to as the polydispersity parameter. Generated values of atomic diameters were

Fig. 1. Example of studied structures with atomic size polydispersity. The structure shown consists of 432 molecules and has the polydispersity parameter \( \delta \) equal to 3%. In (a) the atoms are drawn in the shades of gray, indicating their relative to other atoms. The ones drawn in white are the smallest and those drawn in black are the largest. The gray cube indicates the periodic box. In (b) connections between atoms in the same structure as in (a) are shown.
randomly distributed among atoms in the structure. In the Fig. examples of studied structures are presented. It can be seen that even in the presence of atomic size polydispersity atoms form nearly perfect f.c.c. lattice.

3 Basic formulae

In the following, it will be assumed that the studied system of soft dimers exhibits effective regular symmetry. For the latter symmetry, when the external pressure $p$ is zero, elastic properties can be described by just three elastic constants $C_{xxx}$, $C_{xyy}$ and $C_{xyz}$ \[62\]. However, when $p \neq 0$, it is more convenient \[22, 45\] to use other elastic constants, $B_{ijkl}$, obtained by expanding the free enthalpy (Gibbs free energy), $G$, with respect to the components of the Lagrange strain tensor, $\varepsilon$:

\[
\frac{\Delta G}{V_{\text{ref}}} = \frac{\Delta (F + pV)}{V_{\text{ref}}} = \frac{1}{2} \sum_{ijkl} B_{ijkl} \varepsilon_{ij} \varepsilon_{kl}.
\]  

(3)

$F$ in the above equation is the (Helmholtz) free energy and $V_{\text{ref}}$ is the volume of the deformation-free (reference) system. The elastic constants $B_{ijkl}$ are simply related with the constants $C_{ijkl}$ \[63, 64\]:

\[
B_{ijkl} = C_{ijkl} - p (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} - \delta_{ij} \delta_{kl}),
\]  

(4)

where $\delta_{ij}$ is the Kronecker delta, equal to 1 for $i = j$ and zero otherwise.

In the case of cubic symmetry, considered in this work, only the following elastic constants are of interest (the Voigt notation is used below \[63\]):

\[
B_{11} = C_{11} - p, \\
B_{12} = C_{12} + p, \\
B_{66} = C_{66} - p,
\]  

(5), (6), (7)

and the free enthalpy expansion \[6\] takes the form:

\[
\frac{\Delta G}{V_{\text{ref}}} = \frac{1}{2} B_{11} \left( \varepsilon_{xx}^2 + \varepsilon_{yy}^2 + \varepsilon_{zz}^2 \right) + B_{12} \left( \varepsilon_{xx} \varepsilon_{yy} + \varepsilon_{yy} \varepsilon_{zz} + \varepsilon_{zz} \varepsilon_{xx} \right) + 2 B_{66} \left( \varepsilon_{xy}^2 + \varepsilon_{yz}^2 + \varepsilon_{zx}^2 \right).
\]  

(8)

For cubic systems, instead of constants defined by Eq. \[5\]-\[7\], the below elastic moduli are also often used:
\[ B = \frac{1}{3} (B_{11} + 2B_{12}) , \quad (9) \]
\[ \mu_1 = B_{66} , \quad (10) \]
\[ \mu_2 = \frac{1}{2} (B_{11} - B_{12}) , \quad (11) \]

where \( B \) is the bulk modulus, and the \( \mu_i \) are the shear moduli. In the following, both sets of the quantities will be used while presenting and discussing the results.

The Poisson’s ratio is defined as the negative ratio of transverse to longitudinal strain when only the longitudinal component of the stress tensor is infinitesimally changed. For anisotropic systems it depends, in general, on both the longitudinal and the transverse direction. For cubic symmetry, the Poisson’s ratio along two high-symmetry longitudinal directions ([100] and [111]) does not depend on the choice of the transverse direction [10] and can be expressed by the elastic constants, \( B_{ij} \), in the form [65]:

\[ \nu_{[100]} = \frac{B_{12}}{B_{11} + B_{12}} = \frac{13B - 2\mu_2}{2 \cdot 3B + \mu_2} , \quad (12) \]
\[ \nu_{[111]} = \frac{B_{11} + 2B_{12} - 2B_{66}}{2 (B_{11} + 2B_{12} + B_{66})} = \frac{13B - 2\mu_1}{2 \cdot 3B + \mu_1} . \quad (13) \]

In this paper, the Poisson’s ratio along the longitudinal direction [110] and two transverse directions [110] and [001] was also computed:

\[ \nu_{[110][110]} = \frac{B_{11}^2 + B_{11}B_{12} - 2B_{12}^2 - 2B_{11}B_{66}}{B_{11}^2 + B_{11}B_{12} - 2B_{12}^2 + 2B_{11}B_{66}} = \frac{3B(3\mu_2 - \mu_1) - 4\mu_1\mu_2}{3B (3\mu_2 + \mu_1) + 4\mu_1\mu_2} , \quad (14) \]
\[ \nu_{[110][001]} = \frac{4B_{12}B_{66}}{B_{11}^2 + B_{11}B_{12} - 2B_{12}^2 + 2B_{11}B_{66}} = \frac{6B\mu_1 - 4\mu_1\mu_2}{3B (3\mu_2 + \mu_1) + 4\mu_1\mu_2} . \quad (15) \]

4 Numerical determination of the elastic properties

In order to obtain the elastic constants, a sample was considered which, at equilibrium, is described by three vectors \( \mathbf{a}_0, \mathbf{b}_0 \) and \( \mathbf{c}_0 \) parallel to the unit cell edges of the f.c.c. lattice. Components of those vectors form columns of a reference box matrix [66, 67] \( \mathbf{H} \). Applying a uniform deformation that transforms the sample into a parallelepiped described by the box matrix \( \mathbf{h} \) one can
write the Lagrange strain tensor as \([66, 67]\):

\[
\varepsilon = \left( H^{-1} h' h H^{-1} - I \right) / 2 ,
\]

(16)

where \(h'\) is the transposed matrix \(h\) and \(I\) is the unit matrix. Differentiating the free energy \(F\) with respect to the strain tensor components, one obtains all the elastic constants and pressure. It is worth to note, that in the case of zero temperature \((T = 0^\circ K)\), the free energy is just equal to the potential energy of the system.

After determining equilibrium positions and orientations of all the molecules in the reference state for a given \(\delta\), the following deformations were applied:

\[
h_{\alpha\beta} = (1 + \xi_\alpha) H_{\alpha\beta} \delta_{\alpha\beta} ,
\]

(17)

for which new equilibrium positions and orientations were determined. In \(17\) \(\alpha, \beta\) indicate directions, and \(\xi_\alpha\) is a small real number. The relations below define the elastic constants and pressure:

\[
\left. \frac{\partial F}{\partial \xi_\alpha} \right|_{\xi_\alpha=0} = -p ,
\]

(18)

\[
\left. \frac{\partial^2 F}{\partial \xi_\alpha^2} \right|_{\xi_\alpha=0} = B_{11} ,
\]

(19)

\[
\left. \frac{\partial^2 F}{\partial \xi_\alpha \partial \xi_\beta} \right|_{\xi_\alpha=\xi_\beta=0, \alpha \neq \beta} = B_{12} - p .
\]

(20)

The \(B_{66}\) constant was obtained by applying the deformation of the form:

\[
h_{\alpha\alpha} = H_{\alpha\alpha} ,
\]

\[
h_{\alpha\beta} = H_{\alpha\beta} + \zeta_{\alpha\beta} H_{\alpha\alpha} ,
\]

(21)

for which new equilibrium positions and orientations were determined. In \(21\) \(\zeta_{\alpha\beta} = \zeta_{\beta\alpha}\) is a small real number. For \(H_{xx} = H_{yy} = H_{zz}\) this leads to:

\[
\left. \frac{\partial^2 F}{\partial \zeta_{\alpha\beta}^2} \right|_{\zeta_{\alpha\beta}=0} = 6 (2B_{66} + p) .
\]

(22)

5 Results

In the Figs. 2 (a) and 2 (b) values of the pressure and the bulk modulus are shown, respectively. It is clearly visible that increasing polydispersity and
increasing $n$ leads to increase of those quantities as it was earlier observed in other systems \cite{47,50,52}.

The observed behavior can be qualitatively understood by noticing that dense packing of identical molecules in the hard body limit requires less space than dense packing of polydisperse molecules of the same average size \cite{46}. As all the considered systems are studied at the same volume, their densities relative to close packing grow with increasing polydispersity. Increase of the relative density implies an increase of the pressure and the bulk modulus. Obviously, the latter quantities show the largest increase for the largest $n$, when the interaction potential is the steepest one.

In Fig. 3, the elastic constants $B_{ij}$ are shown. It can be seen that all elastic constants also increase with increasing polydispersity and increasing value of $n$. Presented behavior of elastic constants is also similar to that observed for other 2D and 3D systems \cite{47,50,52} and can be qualitatively explained by the close packing argument used above.

Fig. 3. The values of elastic constants (a) $B_{11}$, (b) $B_{12}$ and (c) $B_{66}$, plotted against the softness parameter $(1/n)$. The thick solid line represents values for the system with $\delta = 0$. 

\cite{8}
In Fig. 4 plots of $\mu_i/B$ ratios are presented. As in the case of earlier studies [47–50, 52] for both 2D and 3D, this ratios seem to tend to 0 for any nonzero polydispersity, in the hard interactions limit ($n \to \infty$).

![Graphs showing $\mu_1/B$ and $\mu_2/B$ ratios vs. $(1/n)$ for different values of $\delta$.](image)

Fig. 4. The values of $\mu/B$ ratio for (a) $\mu_1$ and (b) $\mu_2$, plotted against the softness parameter $(1/n)$. Thick solid line represents values measured for the system with $\delta = 0$.

According to the formulae (12) and (13) the mentioned above asymptotics of $\mu_i/B$ implies that the system behaves like rubber ($\nu_{rubber} = 0.5$) when a small stress is applied along the directions [100] and [111] in the limit $n \to \infty$. This is shown in Fig. 5 where the plots of Poisson’s ratio are presented. It can be seen there that, typically, presence of any nonzero polydispersity causes an increase of the Poisson’s ratio in most of directions corresponding to the high symmetry axes. It is worth to notice that in the cubic system studied, the Poisson’s ratio $\nu_{[110][001]}$ exceeds the maximum value $1/2$ allowed for isotropic materials. One should also stress that a pair of exceptional directions (see Fig. 5(d)) exists in the system for which the Poisson’s ratio decreases with increasing polydispersity. This occurs when the direction of the deformation is [110] and the response of the system is measured in the direction [110]. For this pair of directions, the Poisson’s ratio reaches negative values both for small and large $n$ limits! The decrease for large $n$ is, however, much more significant. This new behavior of Poisson’s ratio is opposite to what was discovered in the soft polydisperse spheres system [52], where the most negative values of Poisson’s ratio were observed for small $n$ only.

The observed dependence of $\nu_{[110][110]}$, surprising in the context of results obtained for various 2D isotropic systems including the DC phase of 2D dimers [49], is of interest from the point of view of production of partial auxetics. As shown in Fig. 5(d), solid structure of dimers obtained by ‘gluing’ together pairs of polydisperse soft spheres arranged in the f.c.c. lattice will show the Poisson’s ratio as low as $\nu_{[110][110]} = -0.8$. 
Fig. 5. Poisson’s ratio plotted against the softness parameter \((1/n)\). Plots (a), (b) show the Poisson’s ratio measured perpendicularly to the direction of the high-symmetry axis (a) [100] and (b) [111]. Plots (c), (d) show Poisson’s ratio perpendicularly to the direction [110] in the direction (c) [001] and (d) [1\bar{1}0], respectively.

6 Conclusions

The elastic properties of polydisperse soft dimer system in three dimensions were studied by computer simulations in the static (zero temperature) case. Disorder was introduced to the DC f.c.c. structure in the form of atomic size dispersion with polydispersity parameter \(\delta\). The influence of polydispersity on elastic properties of 3D DC dimers system was determined. It was found that increasing polydispersity and hardness of the interaction potential causes a significant increase of elastic constants and pressure.

The simulations have shown that Poisson’s ratio of the dimer system measured in [100] and [111] directions increases to its maximum positive value, 1/2, in the presence of any nonzero polydispersity and sufficiently hard interaction.
potential. An increase of Poisson’s ratio was observed also in other directions. Such a behavior was earlier observed in the case of 2D \[47–50\] and 3D \[52\] systems and seems to be a typical result.

It is worth to stress, however, that for the longitudinal direction [110] and transverse direction [1¯20] the Poisson’s ratio decreases reaching negative values along with increasing polydispersity value both for large and small \(n\). This unusual phenomenon is of interest from the point of view of manufacturing stable auxetics of cubic symmetry.

The questions whether the effect of auxeticity enhancement by polydispersity is characteristic for the f.c.c. lattice only or if it can be observed for elastic symmetries other than the f.c.c. one, e.g. for packing of spheres in the h.c.p. lattice or stacking fault lattices, will be a subject of a separate paper. Studies of elastic properties of other molecular shapes are in progress.

Acknowledgements

This work was partially supported by the grants NN202 070 32/1512 and NN202 261438 MNiSzW. We are grateful to Dr. Miiko/suppressa laj Kowalik for preparing the samples of the DC phase of the dimers, used in the simulations. Most of the simulations were carried out at the Poznań Supercomputing and Networking Center (PCSS).

References

[1] R. S. Lakes. Foam structures with a negative Poisson’s ratio. *Science*, 235:1038–1040, 1987.
[2] K. E. Evans. Auxetic polymers: a new range of materials. *Endeavour*, 15:170–174, 1991.
[3] R. S. Lakes. Advances in negative Poisson’s ratio materials. *Advanced Materials*, 5:293–296, 1993.
[4] R. H. Baughman, J. M. Shacklette, A. A. Zakhidov, and S. Stafs trom. Negative Poisson’s ratios as a common feature of cubic metals. *Nature*, 392:362–365, 1998.
[5] K. E. Evans and K. L. Alderson. Auxetic materials: the positive side of being negative. *Engineering Science and Education Journal*, 9:148–154, 2000.
[6] R. H. Baughman. Avoiding the shrink. *Nature*, 425:667, 2003.
[7] C. Remillat, F. Scarpa, and K. W. Wojciechowski. Preface. *Physica Status Solidi (b)*, 246:2007–2009, 2009. See also references therein and other papers in that issue.
[8] R. S. Lakes, web page: http://silver.neep.wisc.edu/~lakes/Poisson.html.
[9] G. Milton. Composite materials with Poisson’s ratios close to -1. J. Mech. Phys. Solids, 40:1105–1137, 1992.
[10] K. W. Wojciechowski. Poisson’s ratio of anisotropic systems. Comp. Meth. Sci. Technol., 11:73–79, 2005.
[11] T. C. T. Ting and D. M. Barnett. Negative Poisson’s ratios in anisotropic linear elastic media. Journal of Applied Mechanics - Transactions of the ASME, 72:929–931, 2005.
[12] A. C. Branka, D. M. Heyes, and K. W. Wojciechowski. Auxeticity of cubic materials. Physica Status Solidi (b), 246:2063–2071, 2009.
[13] R. F. Almgren. An isotropic three-dimensional structure with Poisson’s ratio =-1. Journal of Elasticity, 15:427–430, 1985.
[14] K. W. Wojciechowski. Constant thermodynamic tension Monte Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers. Molecular Physics, 61:1247–1258, 1987.
[15] R. J. Bathurst and L. Rothenburg. Note on a random isotropic granular material with negative Poisson’s ratio. International Journal of Engineering Science, 26:373–383, 1988.
[16] K. W. Wojciechowski. Two-dimensional isotropic model with a negative Poisson ratio. Physics Letters A, 137:60–64, 1989.
[17] K. W. Wojciechowski and A. C. Brańka. Negative Poisson ratio in a two-dimensional isotropic solid. Phys. Rev. A, 40:7222–7225, 1989.
[18] K. E. Evans, M. A. Nkansah, I. J. Hutchinson, and S. C. Rogers. Molecular network design. Nature, 353:124, 1991.
[19] L. Rothenburg, A. A. Berlin, and R. J. Bathurst. Microstructure of isotropic materials with negative Poisson’s ratio. Nature, 354:470–472, 1991.
[20] G. Wei. J. Chem. Phys., 96:3226, 1992.
[21] D. H. Boal, U. Seifert, and J. C. Shillcock. Negative Poisson ratio in two-dimensional networks under tension. Phys. Rev. E, 48:4274–4283, 1993.
[22] K. W. Wojciechowski. Negative Poisson ratios at negative pressures. Molecular Physics Reports, 10:129–136, 1995.
[23] D. Prall and R. S. Lakes. Properties of a chiral honeycomb with a Poisson’s ratio of -1. Int. J. Mech. Sci., 39:305, 1997.
[24] G. Y. Wei and S. F. Edwards. Phys. Rev. E, 58:6173, 1998.
[25] R. H. Baughman, S. O. Dantas, S. Stafstrom, A. A. Zakhidov, T. B. Mitchell, and D. H. E. Dubin. Negative Poisson’s ratios for extreme states of matter. Science, 288:2018–2022, 2000.
[26] J. N. Grima and K. E. Evans. Auxetic behavior from rotating squares. J. Mater. Sci. Lett., 19:1563–1565, 2000.
[27] Y. Ishibashi and M. Iwata. A microscopic model of a negative Poisson’s ratio in some crystals. J. Phys. Soc. Japan, 69:2702–2703, 2000.
[28] H. Kimizuka, H. Kaburaki, and Y. Kogure. Mechanism for negative Poisson ratios over the a-b transition of cristobalite, SiO2: A molecular-
dynamics study. *Phys. Rev. Lett.*, 84:5548–5551, 2000.

[29] C. W. Smith, J. N. Grima, and K. E. Evans. A novel mechanism for generating auxetic behaviour in reticulated foams: Missing rib foam model. *Acta Materialia*, 48:4349–4356, 2000.

[30] M. Bowick, A. Cacciuto, G. Thorleifsson, and Travesset. Universal negative Poisson ratio of self-avoiding fixed-connectivity membranes. *Phys. Rev. Lett.*, 87:148103, 2001.

[31] A. A. Vasiliev, S. V. Dmitriev, Y. Ishibashi, and T. Shigenari. Elastic properties of a two-dimensional model of crystals containing particles with rotational degrees of freedom. *Phys. Rev. E*, 65:094101, 2002.

[32] K. W. Wojciechowski. Non-chiral, molecular model of negative Poisson’s ratio in two dimensions. *Journal of Physics A: Math Gen.*, 36:11765–11778, 2003.

[33] X. Xing and L. Radzihovsky. Universal elasticity and fluctuations of nematic gels. *Phys. Rev. Lett.*, 90:168301, 2003.

[34] K. W. Wojciechowski, K. V. Tretiakov, and M. Kowalik. Elastic properties of dense solid phases of hard cyclic pentamers and heptamers in two dimensions. *Physical Review E*, 67:036121, 2003.

[35] P. V. Pikhitsa. Regular network of contacting cylinders with implications for materials with negative Poisson ratios. *Phys. Rev. Lett.*, 93:155595, 2004.

[36] J. N. Grima, V. Zammit, R. Gatt, A. Alderson, and K. E. Evans. Auxetic behaviour from rotating semi-rigid units. *Physica Status Solidi (b)*, 244:866–882, 2007.

[37] D. Attard and J. N. Grima. Auxetic behaviour from rotating rhombi. *Physica Status Solidi (b)*, 245:2395–2404, 2008.

[38] J. N. Grima, R. Gatt, and P. S. Farrugia. On the properties of auxetic meta-tetrachiral structures. *Physica Status Solidi (b)*, 245:511–520, 2008.

[39] L. J. Hall, V. R. Coluci, D. S. Galvao, M. E. Koslov, M. Zhang, S. O. Dantas, and R. H. Baughman. Sign change of Poisson’s ratio for carbon nanotube sheets. *Science*, 320:504–507, 2008.

[40] M. C. Rechtsman, F. H. Stillinger, and S. Torquato. Negative Poisson’s ratio materials via isotropic interactions. *Phys. Rev. Lett.*, 101:085501, 2008.

[41] R. Lakes and K. W. Wojciechowski. Negative compressibility, negative Poisson’s ratio, and stability. *Physica Status Solidi b*, 245:545–551, 2008.

[42] D. Attard, E. Manicaro, and J. N. Grima. On rotating rigid parallelograms and their potential for exhibiting auxetic behaviour. *Physica Status Solidi (b)*, 246:2033–2044, 2009.

[43] D. Attard, E. Manicaro, R. Gatt, and J. N. Grima. On the properties of auxetic rotating stretching squares. *Physica Status Solidi (b)*, 246:2045–2054, 2009.

[44] P. V. Pikhitsa, M. Choi, H. J. Kim, and S. H. Ahn. Auxetic lattice of multipods. *Physica Status Solidi (b)*, 246:2098–2101, 2009.

[45] K. W. Wojciechowski and K. V. Tretiakov. Computer simulation of elastic
properties of solids under pressure. Computer Physics Communications, 121–122:528–530, 1999.

[46] K. V. Tretiakov and K. W. Wojciechowski. Monte Carlo simulations of two-dimensional hard body systems with extreme values of the Poisson’s ratio. Physica Status Solidi (b), 242:730–741, 2005.

[47] J. W. Narojczyk and K. W. Wojciechowski. Elastic properties of two-dimensional soft polydisperse trimers at zero temperature. Physica Status Solidi (b), 244:943–954, 2007.

[48] J. W. Narojczyk and K. W. Wojciechowski. Elastic properties of two-dimensional soft discs of various diameters at zero temperature. Journal of Non-Crystalline Solids, 352:4292–4298, 2006.

[49] J. W. Narojczyk and K. W. Wojciechowski. Elasticity of periodic and aperiodic structures of polydisperse dimers in two dimensions at zero temperature. Physica Status Solidi (b), 245:2463–2468, 2008.

[50] J. W. Narojczyk, A. Alderson, A.R. Imre, F. Scarpa, and K. W. Wojciechowski. Negative Poisson’s ratio behavior in the planar model of asymmetric trimers at zero temperature. Journal of Non-Crystalline Solids, 354:4242–4248, 2008.

[51] M. Kowalik and K. W. Wojciechowski. Poisson’s ratio of degenerate crystalline phases of three-dimensional hard dimers and hard cyclic trimers. Physica Status Solidi (b), 242:626–631, 2005.

[52] J. W. Narojczyk and K. W. Wojciechowski. Elastic properties of the fcc crystals of soft spheres with size dispersion at zero temperature. Physica Status Solidi (b), 245:606–613, 2008.

[53] W. G. Hoover, D. A. Young, and R. Groover. Statistical mechanics of phase diagrams. I. Inverse power potentials and the close-packed to body-centered cubic transition. J. Chem. Phys., 56:2207–2210, 1971.

[54] K. W. Wojciechowski, D. Frenkel, and A. C. Branka. Nonperiodic solid phase in a two-dimensional hard-dimer system. Phys. Rev. Let, 67:3168–3171, 1991.

[55] M. Kowalik. Computer simulations of the Poisson’s ratio for selected hard core models. 2005. PhD Thesis (in Polish); see also references therein.

[56] J. P. Hoogenboom, A. K. van Langen-Suurling, J. Romijn, and A. van Blaaderen. Epitaxial growth of a colloidal hard-sphere hcp crystal and the effects of epitaxial mismatch on crystal structure. Physical Review E, 69:051602, 2004.

[57] V. N. Manoharan and D. J. Pine. Building materials by packing spheres. MRS Bulletin, 29:91–95, 2004.

[58] D. M. Heyes and A. C. Branka. Physical properties of soft repulsive particle fluids. Physical Chemistry and Chemical Physics, 9:5570–5575, 2007.

[59] A. M. Kalsin, M. Fialkowski, M. Paszewski, S. K. Smoukov, K. J. M. Bishop, and B. A. Grzybowski. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science, 312:420–424, 2006.
[60] A. M. Kalsin and B. A. Grzybowski. Controlling the growth of ionic nanoparticle supracrystals. *Nano Letters*, 7:1018–1021, 2007.
[61] A. O. Pinchuk, A. M. Kalsin, B. Kowalczyk, G. C. Schatz, and B. A. Grzybowski. Modeling of electrodynamic interactions between metal nanoparticles aggregated by electrostatic interactions into closely-packed clusters. *Journal of Physical Chemistry C*, 111:11816–11822, 2007.
[62] L. D. Landau and E. M. Lifshitz. *Theory of Elasticity*. Pergamon Press, London, 1986.
[63] D. C. Wallace. *Thermodynamics of Crystals*. Wiley, New York, 1972.
[64] K. V. Tretiakov and K. W. Wojciechowski. Poisson’s ratio of the fcc hard sphere crystal at high densities. *J. Chem. Phys.*, 123:74509, 2005.
[65] M. Kowalik and K. W. Wojciechowski. Poisson’s ratio of orientationally disordered hard dumbbell crystal in three dimensions. *Journal of Non-Crystalline Solids*, 352:4269–4278, 2006.
[66] M. Parrinello and A. Rahman. Polymorphic transitions in single crystals: A new molecular dynamics method. *J. Appl. Phys.*, 52:7182–7190, 1981.
[67] M. Parrinello and A. Rahman. Strain fluctuations and elastic constants. *Journal of Chemical Physics.*, 76:2662–2666, 1982.