Conventional recycling techniques generate hazardous residue that usually requires disposal at a high cost. Aluminium slags contain MgAl\(_2\)O\(_4\), Al\(_2\)O\(_3\)-FeO, calcium oxides, AlN, quartz (SiO\(_2\)), α-Al\(_2\)O\(_3\), periclase (MgO), spinel (Mg, Si)Al\(_2\)O\(_4\), chlorides (AlCl\(_3\), NaCl, KCl), fluorides (CaF\(_2\), NaF, AlF\(_3\), Na\(_3\)AlF\(_6\), etc.), carbides (Al\(_4\)C\(_3\)), sulphides (AlS\(_2\), FeSO\(_4\)), phosphors, impurities, apart from metallic aluminium (between 80% and 20%). By washing them with hot water the AlN compound can be transformed into Al(OH)\(_3\), which, in reaction with Na and K leads to the possibility of using aluminium white slag to obtain a refractory material - High-alumina refractory (HAR), with the main crystalline phase Al\(_2\)O\(_3\), and traces of MgAl\(_2\)O\(_4\), CaAl\(_2\)O\(_4\), by replacing the materials currently used. They can be used in the production of ceramics, cement, in the construction of furnaces used in the metallurgy of non-ferrous metals, the machine building industry and the defence industry, extending also in space and nuclear engineering [5, 6, 11].

The production of α-alumina has also been studied to avoid environmental pollution and to obtain a material with special properties. The main advantages of this new material are corrosion resistance, thermal shock resistance, thermal stability and good refractory properties. Another great advantage is the lack of the need to store it, thus avoiding the pollution of the groundwater [7].

Experimental part

The raw material used in the experiments is aluminium chips, unprocessed, in accordance with national and international standards. This material is classified as conforming SR EN 13920-12 or 13, equivalent to ISRI TEENS (fig. 1) or TELIC (fig. 2) notations and consists of aluminium borings and turnings of one or two or more alloys (TELIC - the material must be clean, uncorroded aluminium borings and turnings of two or more alloys and subject to deductions for fines in excess of 3% through a 20 mesh screen and dirt, free iron, oil, moisture and all other non-metallic elements), or derived from two or more alloys (TELIC - the material must be clean, uncorroded aluminium borings and turnings of two or more alloys and subject to deductions for fines in excess of 3% through a 20 mesh screen and dirt, free iron, oil, moisture and all other non-metallic elements) [18].

This type of material does not always meet moisture or impurity requirements. This paper proposes a high humidity aluminium metallic scraps processing technology, with low values in terms of combustion losses-taking into account the dimensions of the particles.

In this study, it is intended to reintroduce into the industrial circuit small metallic waste (scraps) with high humidity in order to obtain a secondary standardized alloy. The removal of impurities from the melt will be done through fluxing treatment.
The aluminium scraps used in the experiments were analysed by diffraction (fig. 3, 4) to highlight its composition. Since the humidity in the material is very high, the results obtained (in percent) are not conclusive.

By combustion of methane gas in room-type furnaces, the flue gases come in direct contact with the raw material for preheating, heating and melting. Following the reactions that take place [16] mainly, the following reaction products are produced: CO, CO₂, H₂ and H₂O. These gases, together with combustion oxygen, interact with the materials that form the charge, leading to the formation of a significant amount of slag, i.e. significant losses through oxidation.

In this article, the authors propose the processing of aluminium alloy castings to obtain low-temperature secondary alloy EN AB 46100 to reduce batch/load oxidation.

The choice of temperature was made based on the data from speciality literature (table 1) [17] but also of its own experiments.

Table 1

Alloy	Si	Cu	Fe	Mg	Zn	Rest. total	Al	T Eutectic, °C
AA 319.0	5.5 – 6.5%	3.0 – 4.0%	<= 1.0%	<= 0.1%	<= 1.0%	<= 1.60%	85.8 – 89.9%	562.3 (±2.3)
AA 332.0	8.8 – 10.5%	2.0 – 4.0%	<= 1.2%	<= 0.50%	<= 1.0%	<= 0.50%	80.1 – 81.8%	577.4 (±6)
AA 333.0	8.0 – 10%	3.0 – 4.0%	<= 1.0%	<= 0.05%	<= 1.0%	<= 0.50%	81.8 – 89%	560.5 (±4)
AA 383.0	9.3 – 11.5%	3.0 – 4.0%	<= 1.3%	<= 0.10%	<= 3.0%	<= 0.50%	79.7 – 58.5%	566.5 (±2.2)
AA 384.0	10.8 – 12%	3.0 – 4.5%	<= 1.3%	<= 0.10%	<= 3.0%	<= 0.50%	77.3 – 56.5%	561.3 (±2.2)
Based on the data in table 1 but also on our own experiments (EN AB 46100, 10.75% Si, 1.81% Cu, 1.34% Zn, 0.93% Fe, Teut = 568°C) it has been chosen that the working temperature, the temperature of the semisolid/pasty metal material in the furnace, should fall within the limits of 580 ÷ 620°C.

The experiment took place at SC AS Metal SRL, on a 16-tonne furnace equipped with the oxy-fuel system. Flue gas samples were taken at different points in the process with DELTA 2000-IV apparatus, as can be seen from table 2.

Low-temperature processing reduces losses of oxidation for both aluminium and other metallic elements in the scraps composition by incorporating it into the semi-solid/pasty melt. The subsequent overheating of the melt leads to an advanced assimilation of the scraps into the molten metal mass.

After the loading of each batch, the volatiles and the moisture in the chips/scraps evaporated after the contact with the hot bath and the remainder of the material was homogenized with the melt resulting in a viscous bath having a temperature of about 620°C.

T-Gas	783.1	574.2	483.2	680.4	580.1	690.7	760.3	787.2	770	821.6°C
T-Amb	38	32.4	37.6	39.1	37.9	31.4	37.4	38.1	30.9	31.7°C
O2	5.7	16.4	20.4	15.1	19.4	18.1	15.1	10.1	21	4.7%
CO2	8.9	2.7	0.3	3.4	0.9	1.7	3.4	6.3	0	9.5%
Losses	37.7	70.1	99.9	75.5	99.9	98.9	85.2	50.7	-	37.3%
Effic	62.3	20.9	0.1	24.5	0.1	0.1	14.8	49.3	-	62.2%

CO/m³	2	1255	286	687	923	586	299	656	210	839mg
NO/m³	9	3	0	4	0	0	4	5	7	8mg
NOx/m³	14	4	0	6	0	0	6	8	10	12mg
SO2/m³	0	2257	206	1396	1973	549	189	569	149	194mg
Stage	1	2	3	4	5	6	7	8	9	10

Remarks:
1. Burners on + closed door before loading;
2. Burners on + open door + loading;
3. Burners off + closed door after loading;
4. Burners on + open door + mixing;
5. Burners off + closed door after loading;
6. Burners on + open door + mixing;
7. Burners on + closed door after loading.
8. Burners on + closed door after loading;
9. Burners on + additional oxygen + closed door;
10. Burners on + closed door.

Table 2
THE CHEMICAL COMPOSITION OF THE FLUE GASES DURING THE EXPERIMENTS

Result and discussions
From the thermodynamic studies of the reactions that can occur between the metal bath/chips and the reaction products between methane gas and oxygen, given the chemical composition of the secondary alloy studied, we have selected the following reactions as very probable.

\[
\begin{align*}
2\text{Al} + 3\text{H}_2\text{O}(g) &= \text{Al}_2\text{O}_3 + 3\text{H}_2(g) \quad (1) \\
2\text{Al} + 3\text{CO}_2(g) &= \text{Al}_2\text{O}_3 + 3\text{CO}(g) \quad (2) \\
2\text{Al} + 1.5\text{O}_2(g) &= \text{Al}_2\text{O}_3 \\n2\text{Mg} + \text{O}_2(g) &= 2\text{MgO} \quad (3) \\
2\text{Mn} + \text{O}_2(g) &= 2\text{MnO} \quad (4) \\
2\text{Mg} + \text{O}_2(g) &= 2\text{MgO} \\
2\text{Al} + 1.5\text{O}_2(g) &= \text{Al}_2\text{O}_3
\end{align*}
\]

Another category of reactions that may occur are those with the formation of complex compounds, between the aluminum oxides and the metal oxides in groups 1 and 2 of the Mendeleev Table (spinel), as can be deduced from the electron microscopy analysis and the EDS analysis presented in figure 5.

Fig. 5. Electron microscopy analysis (a) and EDS analysis with the chemical composition of the filiform compounds (b) and fragmented gray compounds (c)
2Al₂O₃ + 2Mg + O₂(g) = 2MgAl₂O₄(ia) (6)
Ca + 2Al + 2O₂(g) = CaAl₂O₄(ia) (7)
Ca + 2Al + 4CO₂(g) = CaAl₂O₄(ia) + 4CO(g) (8)
Mg + 2Al + 4CO₂(g) = MgAl₂O₄(ia) + 4CO(g) (9)

Activation energies of the reactions

The dependencies of the speed constants of the temperature reactions (1) ÷ (5) are represented in figures 6-10 and can be calculated with Arrhenius’s equation:

\[K = A \exp\left(-\frac{Q}{RT}\right) \] (10)

where:
- \(A \) represents the frequency factor;
- \(Q \) is the activation energy of the reaction, kJ/mol;
- \(R \) is the universal gas constant;
- \(T \) is the absolute temperature, K.

By logarithm, it results:

\[\ln K = \ln A + \left(\frac{1}{T}\right)(-Q/R) \] (11)

The variation of the speed constant parameters in relation to temperature for each reaction is shown in tables (3-7).

Table 3

T, K	ΔG, kJ	k	ln k	1/T, K⁻¹	1/T*10⁴, K⁻¹
823.15K	-110.404	2.692E+051	118.422	0.00121485	1.21485
843.15K	-107.409	1.054E+050	115.186	0.00115603	1.18603
863.15K	-104.428	4.843E+048	112.102	0.00113585	1.15855
883.15K	-101.401	2.535E+047	109.159	0.00111531	1.13231
903.15K	-98.505	1.535E+046	106.348	0.00110724	1.10724
923.15K	-795.561	1.045E+045	103.690	0.00108325	1.08325
943.15K	-792.402	7.752E+043	101.059	0.00106028	1.06028
963.15K	-789.203	6.234E+042	98.539	0.00103826	1.03826
983.15K	-786.535	5.562E+041	96.122	0.00101714	1.01714

Table 4

T, K	ΔG, kJ	k	ln k	1/T, K⁻¹	1/T*10⁴, K⁻¹
823.15K	-823.859	6.023E+049	114.622	0.00121485	1.21485
843.15K	-823.864	3.464E+048	111.767	0.00115603	1.18603
863.15K	-823.948	2.274E+047	109.043	0.00113585	1.15855
883.15K	-824.181	1.688E+046	106.443	0.00111531	1.13231
903.15K	-824.105	1.406E+045	103.957	0.00110724	1.10724
923.15K	-824.212	1.304E+044	101.759	0.00108325	1.08325
943.15K	-845.717	1.299E+043	99.273	0.00106028	1.06028
963.15K	-845.760	1.383E+042	97.033	0.00103826	1.03826
983.15K	-845.803	1.613E+041	94.884	0.00101714	1.01714

![Fig. 6. Dependence of the speed constants of the temperature reaction 1 for the two intervals: a) 823.15 - 903.15 K; b) 903.15 - 983.15 K](image_a)

![Fig. 7. Dependence of the speed constants of the temperature reaction 2 for the two intervals: a) 823.15 - 903.15 K; b) 903.15 - 983.15 K](image_b)
Table 5

VARIATION OF THERMODYNAMIC PARAMETERS BY TEMPERATURE FOR REACTION 3

T, K	ΔG, kJ	k	ln k	1/T, K⁻¹	1/T×10⁵, K⁻¹
823.150	-1417.438	8.99E+089	207.126	0.00121485	1.21485
843.150	-1411.220	2.72E+087	201.326	0.0018803	1.18603
863.150	-1405.006	1.07E+085	195.795	0.0015855	1.15855
883.150	-1398.794	3.49E+082	190.315	0.0013231	1.13231
903.150	-1392.585	5.55E+080	185.469	0.0010724	1.10724
923.150	-1386.378	2.82E+078	180.642	0.0010628	1.06628
943.150	-1379.947	2.70E+076	175.992	0.0010628	1.06628
963.150	-1373.286	3.04E+074	171.505	0.0010826	1.03826
983.150	-1366.629	4.12E+072	167.202	0.0010714	1.01714

Table 6

VARIATION OF THERMODYNAMIC PARAMETERS BY TEMPERATURE FOR REACTION 4

T, K	ΔG, kJ	k	ln k	1/T, K⁻¹	1/T×10⁵, K⁻¹
823.150	-1025.971	1.290E+065	149.922	0.00121485	1.21485
843.150	-1021.719	2.007E+063	145.760	0.0018803	1.18603
863.150	-1017.469	3.790E+061	141.790	0.0015855	1.15855
883.150	-1013.220	5.56E+059	138.000	0.0013231	1.13231
903.150	-1008.873	2.290E+058	134.279	0.0010724	1.10724
923.150	-1004.723	7.102E+056	130.914	0.0010826	1.08326
943.150	-1000.109	2.476E+055	127.549	0.0010628	1.06628
963.150	-995.493	9.845E+053	124.324	0.0010826	1.03826
983.150	-990.877	4.462E+052	121.230	0.0010714	1.01714

Fig. 8. Dependence of the speed constants of the temperature reaction 3 for the two intervals: a) 823.15 - 903.15 K; b) 903.15 - 983.15 K

Fig. 9. Dependence of the speed constants of the temperature reaction 4 for the two intervals: a) 823.15 - 903.15 K; b) 903.15 - 983.15 K
For reactions (1) ÷ (5), for temperature ranges, 823.15 - 903.15 K (550 - 630°C) and 903.15 - 983.15 K (630 - 710°C), result in the following values for the frequency factors (A) and activation energies (Q) (table 8).

Table 7
VARIATION OF THERMODYNAMIC PARAMETERS BY TEMPERATURE FOR REACTION 5

T, K	ΔG, kJ	k	ln k	1/T, K⁻¹	1/T×10⁸, K⁻¹
823.15	-548.504	1.452E+04	94.779	0.00121485	1.21485
843.15	-545.702	1.013E+04	92.117	0.00118603	1.18603
863.15	-542.800	8.001E+03	89.578	0.00115855	1.15855
883.15	-539.393	7.088E+03	87.154	0.00113331	1.13331
903.15	-536.998	6.991E+03	84.838	0.00110724	1.10724
923.15	-534.097	7.624E+03	82.622	0.00108125	1.08125
943.15	-531.197	8.125E+03	80.500	0.00106028	1.06028
963.15	-528.296	1.159E+03	78.466	0.00103826	1.03826
983.15	-525.375	1.609E+03	76.513	0.00101714	1.01714

For reactions (1) ÷ (5), for temperature ranges, 823.15 - 903.15 K (550 - 630°C) and 903.15 - 983.15 K (630 - 710°C), result in the following values for the frequency factors (A) and activation energies (Q) (table 8).

Table 8
VARIATION OF ACTIVATION ENERGIES (Q) FOR THE REACTIONS (1) ÷ (5)

Reaction	Temperature, K	ln A	A	Q/R	Q, kJ/mol
1	823.15 - 903.15	112.2	4.720283	-17.89	0.148746
2	903.15 - 983.15	113.3	4.731002	-19.35	0.160958
3	823.15 - 903.15	99.1	4.798129	-5.779	0.045094
4	903.15 - 983.15	100.7	4.812145	-7.581	0.073032
5	823.15 - 903.15	201.2	5.204399	-37.26	0.316030
6	903.15 - 983.15	202.8	5.212220	-39.08	0.327764
7	823.15 - 903.15	144.4	4.972587	-25.55	0.212435
8	903.15 - 983.15	146.0	4.983596	-27.29	0.226302

For reactions (1) ÷ (5), values of free enthalpy (Gibbs energy) have very high values in absolute value, which means that all these reactions take place from left to right (for example, at a temperature of 610°C / 883.15 K: ΔG₁ = - 801.461 kJ, ΔG₂ = - 824.018 kJ and ΔG₃ = - 1398.794 kJ). The reaction activation energy (Q) exhibits higher values for the 630 ÷ 710°C / 903.15 - 983.15 K temperature range, than the 550 ÷ 630°C / 823.15 - 903.15 K interval. The phenomenon that occurs and leads to an increase in activation energy is oxidation of the scrap surface, a phenomenon which subsequently leads to an increase in the amount of slag resulting in the production of secondary alloys with aluminium base, using small waste.

Conclusions
The processing of small metallic waste at high temperatures leads to significant losses of both aluminum as well as the metals that are part of the secondary alloys. The losses are even higher as the quality of the materials used is lower.

The proposed technology consists of processing the small waste at low temperatures (580 ÷ 620°C / 853.15 - 893.15 K for the EN AB 46100 alloy), temperatures near the eutectic temperature of the said alloy.

Using an intermediate step in the technological process -oxygen only feeds, stage after loading the furnace with a new amount of waste, leads to the reduction of natural gas consumption by burning volatile substances from pre-heating waste composition.

References
1. M.C. SHINZATO, R. HYPOLITO, Solid waste from aluminum recycling process: characterization and reuse of its economically valuable constituents, Waste Management 25 (2005) p. 37-46.
2. P.E. TSAKIRIDIS, P. OUSTADAKIS, S. AGATZINI-LEONARDOU, Aluminium recovery during black dross hydrothermal treatment, Journal of Environmental Chemical Engineering 1 (2013) p. 23-32.

3. E. DAVID, J. KOPAC, Aluminum recovery as a product with high added value using aluminum hazardous waste, Journal of Hazardous Materials 261 (2013) p. 316-324.

4. ABDURAHIM ABDULKADIR, ADESOLA AJAYI, MOHAMED I. HASSAN, Evaluating the Chemical Composition and the Molar Heat Capacities of a white Aluminum Dross, Energy Procedia 75 (2015) p. 2099-2105.

5. H.N. YOSHIMURA, A.P. ABREU, A.L. MOLISANI, A.C. DE CAMARGO, J.C.S. PORTELA, N.E. NARITA, Evaluation of aluminum dross waste as raw material for refractories, Ceramics International 34 (2008) p. 581-591.

6. APENG LI, HAIJUN ZHANG, HUAMING YANG, Evaluation of aluminum dross as raw material for high-alumina refractory, Ceramics International 40 (2014), p. 12585-12590.

7. E. BLONDEEL, M. CHYS, V. DEPUYDT, K. FOLENS, G. DULAING, A. VERLIEFDE, S.W.H. VAN HULLE, Leaching behaviour of different scrap materials at recovery and recycling companies: Full-pilot- and lab-scale investigation, Waste Management 34 (2014) p. 2674-2686.

8. HONG JIAN-PING, WANG JUN, CHEN HAI-YAN, SUN BAO-DE, LI JIA-JING, CHEN CHONG, Process of aluminum dross recycling and life cycle assessment for Al-Si alloys and brown fused alumina, Trans. Nonferrous Met. Soc. China 20 (2010) p. 2155-2161.

9. B.R. DAS, B. DASH, B.C. TRIPATHY, I.N. BHATTACHARYA, S.C. DAS, Production of α-alumina from waste aluminium dross, Minerals Engineering 20 (2007) p. 252-258.

10. NORIHIRO MURAYAMA, IKUO MAEKAWA, HIROYUKI USHIRO, TAKAYUKI MIYOSHI, JUNJI SHIBATA, MARJORIE VALIX, Synthesis of various layered double hydroxides using aluminum dross generated in aluminum recycling process, International Journal of Mineral Processing 110-111 (2012) p. 46-52.

11. E.M.M. EWAI, N.M. KHALIL, M.S. AMIN, Y.M.Z. AHMED, M.A. BARAKAT, Utilization of aluminum sludge and aluminum slag (dross) for the manufacture of calcium aluminate cement, Ceramics International 35 (2009) p. 3381-3388.

12. B. DASH, B.R. DAS, B.C. TRIPATHY, I.N. BHATTACHARYA, S.C. DAS, Acid dissolution of alumina from waste aluminium dross, Hydrometallurgy 92 (2008) p. 48-53.

13. P.E. TSAKIRIDIS, Aluminium salt slag characterization and utilization – A review, Journal of Hazardous Materials 217-218 (2012) p. 1-10.

14. XIAO-LAN HUANG, AMRO EL BADAWY, MAHENDRANATH ARAMBEWELA, ROBERT FORD, MORTON BARLAZ, THABET TOLAYMAT, Characterization of salt cake from secondary aluminum production, Journal of Hazardous Materials 273 (2014) p. 192-199.

15. D. BAJARE, A. KORJAKINS, J. KAJZONOV, I. ROZENSTRAUHA, Pore structure of lightweight clay aggregate incorporated with non-metallic products coming from aluminium scrap recycling industry, Journal of the European Ceramic Society 32 (2012) p. 141-148.

16. M. BUTU, C. APOSTOL, M. SCRIPCARIU, I.M. BUTU, R. PORUMB, I. BITIR ISTRATE, I. UNGUREANU, C.D. STANCAL, Thermodynamic investigation of oxygen/natural gas combustion in secondary aluminum technology, U.P.B. Sci. Bull. Series B, Vol. 80, Iss.,2, 2018, p. 213-226.

17. ***Sidermes, General ALU-DELTA operating instructions.

18. ***https://www.tms.org/Scrap_Specifications_Circular.pdf.

Manuscript received: 6.02.2018