Bubble towers in the ancient solution of energy-critical heat equation

Liming Sun¹ · Jun-cheng Wei² · Qidi Zhang²

Received: 23 September 2021 / Accepted: 5 July 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
We construct a radial smooth positive ancient solution for energy critical semi-linear heat equation in \(\mathbb{R}^n \), \(n \geq 7 \). It blows up at the origin with the profile of multiple Talenti bubbles in the backward time infinity.

Mathematics Subject Classification 35K58 · 35B09 · 35K55

Contents
1 Introduction ..
 1.1 Motivation ...
 1.2 Sketch of the proof
 1.3 Notations ...
2 A first approximation and the ansatz
3 The inner-outer gluing system
4 The linear equations ..
 4.1 The linear inner problem
 4.2 The linear outer problem
5 Orthogonal equations ..
6 The Schauder fixed point argument
Appendix A. Estimates for the data in the outer problem
Appendix B. Some estimates for the outer problem
 B.1 Basic estimates ..
 B.2 Proofs of three lemmas in the outer problem
References ..

Communicated by M. del Pino.

Liming Sun
lmsun@amss.ac.cn
Jun-cheng Wei
jcwei@math.ubc.ca
Qidi Zhang
qidi@math.ubc.ca

¹ Academy of Mathematics and Systems Science, The Chinese Academy of Sciences, Beijing 100190, China
² Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada

Published online: 24 August 2022
1 Introduction

1.1 Motivation

This paper deals with the analysis of ancient solutions that exhibit infinite time blow-up in the energy critical semi-linear heat equation.

$$u_t = \Delta u + |u|^{p-1}u \quad \text{in } \mathbb{R}^n \times (-\infty, 0)$$ \hspace{1cm} (1.1)

where $n \geq 3$ and p is the critical Sobolev exponent $p_S := \frac{n+2}{n-2}$. We are interested in the positive solutions $u(x, t)$ globally defined for ancient time such that

$$\lim_{t \to -\infty} \|u(\cdot, t)\|_{L^\infty(\mathbb{R}^n)} = +\infty.$$ \hspace{1cm} (1.2)

Problem (1.1) has a more popular counterpart in the forward direction, namely

$$\begin{cases}
 u_t = \Delta u + |u|^{p-1}u & \text{in } \mathbb{R}^n \times (0, T), \\
 u(x, 0) = u_0(x) & \text{in } \mathbb{R}^n.
\end{cases}$$ \hspace{1cm} (1.3)

The energy functional associated to (1.3) is

$$J(u) := \int_{\mathbb{R}^n} \frac{1}{2} |\nabla u|^2 - \frac{1}{p+1} |u|^{p+1}.$$ \hspace{1cm} (1.4)

The scaling $u(x, t) \mapsto \lambda^{2/(p-1)}u(\lambda x, \lambda^2 t)$ keeps the equation invariant and transforms $J(u)$ to $\lambda^{\frac{4}{p+1}+2-n} J(u)$. Evidently, (1.3) is energy critical when $p = p_S$.

Problem (1.3) has been extensively studied in the literature. It is well-known that for a large class of initial data, say bounded continuous, there is a unique maximal classical solution $u(x, t)$ for $t \in (0, T)$. If T is finite, then u will blow up at T. There are two types of blow-up depending on the rate

$$\text{Type I : } \limsup_{t \to T} (T-t)^{\frac{1}{p-1}} \|u(\cdot, t)\|_{L^\infty(\mathbb{R}^n)} < \infty,$$ \hspace{1cm} (1.5)

$$\text{Type II : } \limsup_{t \to T} (T-t)^{\frac{1}{p-1}} \|u(\cdot, t)\|_{L^\infty(\mathbb{R}^n)} = \infty.$$ \hspace{1cm} (1.6)

The blow-up is almost completely understood in the sub-critical range $p < p_S$, for instance, by [13, 16–18, 30, 36]. The solution always blows up in type I in this range. The existence of type II blow-up has been established in various settings, for instance by [21, 22, 27] when $p > p_{JL}$, where

$$p_{JL} = \begin{cases}
 \infty & \text{if } n \leq 10, \\
 1 + \frac{4}{n-2-4\sqrt{n-1}} & \text{if } n \geq 11.
\end{cases}$$ \hspace{1cm} (1.7)

There are active researches in the energy critical case $p = p_S$ by [5, 8–10, 14, 19, 20, 33]. These works found that u can exhibit type II blow-up in finite time in lower dimensions, while [37] precluded this fast blow-up for $n \geq 7$.

Ancient solutions play an important role in studies of singularities and long-time behavior of solutions of many evolution problems, for instance in the mean curvature flow [3], Ricci flow [2] and Yamabe flow [6]. Comparing to the forward direction, the studies to ancient solutions of semi-linear heat equation (1.1) are quite limited. In the sub-critical case, [26] first established the following result.
Theorem 1.1 ([26]) Let $1 < p < p_S$ and u be a positive solution of (1.1) satisfying

$$
\|u(\cdot, t)\|_{L^\infty(\mathbb{R}^n)} \leq C(-t)^{-1/(p-1)} \text{ for } t \in (-\infty, 0).
$$

Then there exists $T^* \geq 0$ such that $u(x, t) = (p - 1)^{-1/(p-1)} (T^* - t)^{-1/(p-1)}$.

The above result about ancient solutions has some interesting and important consequences in the study of the (forward) blow-up behavior of solutions of (1.3) when $p \leq p_S$. See [26] for details. Recently, [31] improves the above theorem by removing the decay constraint (1.8).

For the super-critical case, one knows that there exists one-parameter radial positive steady states $\{\phi_\mu\}$ for each $\alpha > 0$. Furthermore, if $p > p_{JL}$, then these solutions are ordered as $\phi_\alpha < \phi_\beta$ for $\alpha < \beta$ and $\phi_\beta \to \phi_\infty$ as $\beta \to \infty$, where (see [32, 38])

$$
\phi_\infty(x) := L|x|^{-2/(p-1)}, \quad L := \left(\frac{2}{(p-1)^2} (n-2) p - n\right)^{1/(p-1)}.
$$

The following Liouville-type results are known by Fila and Yanagida [12, Theorem 2.4] and Poláčik and Yanagida [28, Theorem 1.2].

Theorem 1.2 ([12, 28]) Let u be a non-negative radial solution of (1.1).

1. Assume $p_S \leq p < p_{JL}$ and $u(\cdot, t) \leq \phi_\infty$ for all $t \leq 0$. Then $u \equiv 0$.
2. Assume $p > p_{JL}$ and $\phi_\alpha \leq u(\cdot, t) \leq \phi_\infty$ for some $\alpha > 0$ and all $t \leq 0$. Then $u(\cdot, t) \equiv \phi_\gamma$ for some $\gamma \geq \alpha$.

Without this ϕ_∞ bound, [12] also constructed some radial positive bounded solutions which do depend on time. Poláčik and Quittner [29] classified all radial positive ancient solutions under some further conditions for the super-critical regime.

We are interested in the energy-critical case $p = p_S$. The steady states of the equation (1.3) satisfy

$$
\Delta u + |u|^{4/(n-2)} u = 0 \text{ in } \mathbb{R}^n.
$$

(1.9)

We recall that all positive entire solutions of the equation are given by the family of Aubin-Talenti solitons [1, 15, 35]

$$
U_{\mu, \xi}(x) = \mu^{-\frac{n+2}{2}} U\left(\frac{x - \xi}{\mu}\right)
$$

(1.10)

where $U(y)$ is the standard bubble soliton

$$
U(y) = \alpha_n \left(\frac{1}{1 + |y|^2}\right)^{\frac{n+2}{2}}, \quad \alpha_n = \left[n(n-2)\right]^{n+2}. \quad (1.11)
$$

This family of solitons are also called Aubin-Talenti ground state solitary wave of the energy functional J. Collot et al. [4] classified the ancient solutions near the ground states.

Theorem 1.3 ([4]) Let $n \geq 7$ and $p = p_S$. There exist two strictly positive, C^∞ radial solutions of (1.1), Q^+ and Q^- such that $\lim_{t \to -\infty} \|Q^\pm - U\|_{H^1} = 0$. Conversely, there exists $0 < \delta \ll 1$ such that if u is a solution of (1.1) with

$$
\sup_{t \leq 0} \inf_{\mu > 0, \xi \in \mathbb{R}^n} \|u(t) - U_{\mu, \xi}\|_{H^1} \leq \delta,
$$

then $u = Q^\pm$ or $u = U$ up to the symmetry of the flow.

[Springer]
They also pointed out the forward behavior: Q^+ explodes according to type I blow-up in finite time, and Q^- is global and dissipates $Q^- \to 0$ as $t \to \infty$ in $H^1(\mathbb{R}^n)$.

A natural question is whether we have multiple Aubin-Talenti solitons in the backward limit. In the forward direction, [11] constructed an initial condition u_0 such that (1.3) blows up in infinite time exactly at the origin. The solutions constructed in [11] consist of sign-changing bubbling towers in the forward limit $t \to +\infty$. In this paper, we investigate the possibility of such phenomenon in the backward direction.

Recall that for any Palais-Smale sequence $\{u(x, t_n)\}_{n=1}^\infty \geq 0$ of the energy functional J, Struwe’s profile decomposition [34] tells us that passing to a subsequence, there are positive scalars $\{\mu_j(t_0)\}_{j=1}^k$ and points $\{\xi_j(t_0)\}_{j=1}^k$ such that
\[
\frac{\mu_i(t_n)}{\mu_j(t_n)} + \frac{\mu_j(t_n)}{\mu_i(t_n)} + \frac{|\xi_i - \xi_j|^2}{\mu_i \mu_j}(t_n) \to \infty \quad \text{as} \quad n \to \infty
\]
(1.12)
and
\[
u(x, t_n) = \sum_{j=1}^k \frac{1}{\mu_j(t_n)^{n+2}} U \left(\frac{x - \xi_j(t_n)}{\mu_j(t_n)} \right) + o(1) \quad \text{as} \quad n \to \infty
\]
(1.13)
where (after some permutation) $\mu_k(t) \leq \cdots \leq \mu_1(t)$. Our main result is the following existence of bubbling-tower solution in the backward limit $t \to -\infty$:

Theorem 1.4 Let $n \geq 7$, $k \geq 2$. There exists a radial smooth positive solution of (1.1) that blows up backward in infinite time exactly at 0 with a profile of the form
\[
u(x, t) = (1 + O(|t|^{-\epsilon})) \sum_{j=1}^k \mu_j(t)^{-\frac{n+2}{2}} U \left(\frac{x}{\mu_j(t)} \right) \quad \text{for all} \quad t \leq t_0
\]
(1.14)
where $O(|t|^{-\epsilon})$ denotes some function $g(x, t)$ satisfying $\|g(\cdot, t)\|_{L^\infty(\mathbb{R}^n)} \lesssim |t|^{-\epsilon}$. Furthermore, we have
\[
\|\nu(x, t) - \sum_{j=1}^k \mu_j(t)^{-\frac{n+2}{2}} U \left(\frac{x}{\mu_j(t)} \right) \|_{H^1(\mathbb{R}^n)} \lesssim |t|^{-\epsilon} \quad \text{for all} \quad t \leq t_0.
\]
(1.15)
Here $\epsilon > 0$ is small,
\[
\mu_j(t) = \beta_j(-1)^{-\sigma_j} (1 + O(|t|^{-\sigma})) , \quad \alpha_j = \frac{1}{2} \left(\frac{n-2}{n-6} \right)^{j-1} - \frac{1}{2}, \quad j = 1, \ldots, k,
\]
where β_j, σ are certain positive constants.

One interesting question is the forward behavior of the ancient solution we construct. Either $u(x, t)$ is an eternal solution, or it will blow up in type I in some later time.

There are some other related results. Del Pino and Gkikas [7] studied the ancient solution in Allen-Cahn equation. Daskalopoulos et al. [6] constructed the ancient bubbling-tower solution for Yamabe flow. For construction of radial symmetric bubbling-towers in NLS and energy-critical wave equations, we refer to [23–25].

1.2 Sketch of the proof

The method of this paper is close in spirit to the analysis in the works [5, 11], where the inner-outer gluing method is employed. That approach consists of reducing the original problem
to solving a basically uncoupled system, which depends in subtle ways on the parameter choices (which are governed by relatively simple ODE systems).

We start with the ansatz solution \(\bar{U} = \sum_{j=1}^{k} U_j = \sum_{j=1}^{k} \mu_j(t) x^{\frac{\alpha-2}{2}} U(x/\mu_j(t)) \) and search for \(\varphi(x, t) \) such that \(\bar{U} + \varphi \) is a solution for

\[
S[u] := -u_t + \Delta u + |u|^{p-1}u = 0 \quad \text{in} \; \mathbb{R}^n \times (-\infty, t_0).
\]

(1.16)

Because of the specific form of \(\bar{U} \), we anticipate \(\varphi \approx \sum_{j=1}^{k} \mu_j x^{\frac{\alpha-2}{2}} \phi(x/\mu_j(t)) \chi_j \) with some cut-off function \(\chi_j \) supporting in the region where \(U_j \) dominates other \(\bar{U}_l, l \neq j \). Plugging in \(\bar{U} + \varphi \), we found that in the support of \(\chi_j \), the linearized operator of \(\varphi \) is \(\Delta + pU_j^{p-1} \) and the leading error is \(-\partial_t U_j + pU_j^{p-1}U_{j-1}(0) \). Making a change of variable \(y = x/\mu_j(t) \), we will choose the \(\phi \) satisfying

\[
\Delta \varphi + pU(y)^{p-1} \varphi + h_j(y, t) = 0 \quad \text{in} \; \mathbb{R}^n, \quad \phi(y) \to 0 \quad \text{as} \; |y| \to \infty
\]

(1.17)

where

\[
h_j(y, t) = \mu_j \bar{\mu}_j Z_{n+1}(y) + pU(y)^{p-1} \left(\frac{\mu_j}{\mu_{j-1}} \right)^{\frac{\alpha-2}{2}} U(0).
\]

(1.18)

One knows that (1.17) is solvable if and only if \(\int_{\mathbb{R}^n} h_j(y, t) Z_{n+1}(y) dy = 0 \). Using the above expression of \(h_j \), it implies that \(\mu_j \bar{\mu}_j c_{k_1}(\mu_j/\mu_{j-1})^{\frac{\alpha-2}{2}} \) (see (2.17)). This implies \(\mu_j(t) = \beta_j(-t)^{-\alpha j} \). We will denote it as \(\mu_{0j} \), because the above process is the first approximation.

Next we will start with \(u_* = \bar{U} + \sum_{j=1}^{k} \mu_{0j}(t)^{-\frac{\alpha-2}{2}} \phi_{0j}(x/\mu_{0j}(t)) \chi_j \) and search for \(\varphi \) with the form

\[
\varphi = \sum_{j=1}^{k} \mu_{0j} x^{\frac{\alpha-2}{2}} \phi_j \left(\frac{x}{\mu_j(t)}, t \right) \eta_j + \Psi(x, t)
\]

such that \(u_* + \varphi \) is a solution of (1.16) and \(\mu_j(t) = \mu_{0j}(t) + \mu_{1j}(t) \). Plugging in \(u_* + \varphi \) to (1.16) can deduce the following equations of \(\phi_j \) and \(\Psi \)

\[
\mu_{1j}^2 \partial_t \phi_j = \Delta_x \phi_j + pU(y)^{p-1} \phi_j + \mathcal{H}_j[\Psi, \bar{\mu}_1](y, t) \quad \text{in} \; B_{8R} \times (-\infty, t_0), \quad j = 1, \ldots, k,
\]

(1.19)

\[
\partial_t \Psi = \Delta_x \Psi + \mathcal{G}[\phi, \Psi, \bar{\mu}_1](x, t) \quad \text{in} \; \mathbb{R}^n \times (-\infty, t_0),
\]

(1.20)

where \(\mathcal{H}_j \) is defined in (3.13) and \(\mathcal{G} \) is defined in (3.14), \(\bar{\mu}_1(t) = (\mu_{11}, \ldots, \mu_{1k}) \) and \(\bar{\phi} = (\phi_1, \ldots, \phi_k) \). (1.19) is the so-called inner problem and (1.20) is the so-called outer problem. One will see that these two problems are weakly coupled in the sense that the dependence of \(\mathcal{H}_j \) on \(\Psi \) and \(\bar{\phi} \) is small in appropriate norm. The strategy to solve (1.19) and (1.20) is: for each fixed \(\bar{\phi} \) and \(\bar{\mu}_1 \), one can solve (1.20) for \(\Psi = \Psi[\bar{\phi}, \bar{\mu}_1] \). Next, inserting such \(\Psi \) to (1.19) and using fixed point theorem to find \(\bar{\phi} \) and \(\bar{\mu}_1 \).

The foundation of this process lies on a clear understanding of the linearized problem of (1.19) and (1.20) respectively. The study to linearized equation of inner problem (1.19) has been done in [5] for the forward direction. For the backward direction, one encounters new difficulty when taking subsequences. We establish a uniqueness statement to make sure that different subsequences will give the same limit function. More details are given in the proof of Lemma 4.3. The linearized equation of the outer problem (1.20) occupies the bulk of this paper. Notice (1.20) actually can be thought of nonhomogenous heat equation, we leverage the Duhamel’s formula to get a solution \(\Psi \). The main difficulty is to find a suitable topology.
for the outer problem due to bubble tower phenomenon. We spend a great deal of effort to find a good space to put G. Check Remark 4.2 and 4.4 for further explanation. Having set up the right space, we apply the Schauder fixed point theorem to prove the existence of ancient solution of (1.1).

Here is the structure of the paper. In Sect. 2, we derive first approximation from the ansatz solution. Section 3 is devoted to splitting the flow equation to a system of inner problem and outer problem. In Sect. 4, we study the linear problem of the inner one and outer one respectively. We put off some tedious computations to Appendix A and B. Section 5 is used to derive the orthogonal equations $\vec{\mu}_1$ should satisfy. In the last section, we put everything together and solve the problem by using Schauder’s fixed point theorem.

1.3 Notations

Throughout this paper, we denote $a \lesssim b$ if $a \leq Cb$ for some positive constant C. Denote $a \approx b$ if $a \lesssim b \lesssim a$. $\chi(s)$ denotes a smooth cut-off function such that $0 \leq \chi(s) \leq 1$,

$$\chi(s) = \begin{cases} 1 & \text{if } s \leq 1, \\ 0 & \text{if } s \geq 2. \end{cases}$$

For a set $\Omega \subset \mathbb{R}^n$, 1_Ω denotes the characteristic function defined as

$$1_\Omega(x) = \begin{cases} 1 & \text{if } x \in \Omega, \\ 0 & \text{if } x \in \mathbb{R}^n \setminus \Omega. \end{cases}$$

For $j = 1, \ldots, k$, μ_j, μ_{0j} are some positive functions about t. We will use the notation

$$\vec{\mu} = (\mu_1, \ldots, \mu_k), \quad \vec{U} := \sum_{j=1}^{k} U_j$$

where

$$U_j(x, t) = \mu_j(t)^{-\frac{n-2}{2}} U \left(\frac{x}{\mu_j(t)} \right)$$

and $U(y)$ is given by (1.11). We denote

$$\tilde{\mu}_j := \sqrt{\mu_j \mu_{j-1}}, \quad \tilde{\mu}_{0j} := \sqrt{\mu_{0j} \mu_{0,j-1}}, \quad j = 2, \ldots, k$$

and make the convention that

$$\tilde{\mu}_1 = \tilde{\mu}_{01} = (-t)^{\delta}, \quad \tilde{\mu}_{k+1} = \tilde{\mu}_{0,k+1} = 0.$$

where $\delta > 0$ is a small constant. We write $\langle x \rangle = \sqrt{1 + x^2}$.

2 A first approximation and the ansatz

Problem (1.1) is equivalent to

$$S[u] := -u_t + \Delta u + |u|^{p-1}u = 0 \quad \text{in } \mathbb{R}^n \times (-\infty, t_0)$$

where t_0 is a very negative constant. After some translation in time, we can assume the solution lives up to $t = 0$.

\square Springer
For any integer \(k \geq 2 \), let us consider \(k \) positive functions

\[
\mu_k(t) < \mu_{k-1}(t) < \cdots < \mu_1(t) \quad \text{in } (-\infty, t_0)
\]

which will be chosen later, such that as \(t \rightarrow -\infty \),

\[
\mu_1(t) \rightarrow 1, \quad \frac{\mu_{j+1}(t)}{\mu_j(t)} \rightarrow 0 \quad \text{for all } j = 1, \ldots, k - 1. \quad (2.2)
\]

We assume that for \(j = 1, \ldots, k \), \(\mu_0j \) is the leading order of \(\mu_j \) and has the similar property of \(\mu_j \) above. \(\mu_0j \) will be determined later. We will get an accurate first approximation to a solution of (2.1) of the form \(\bar{U} + \varphi_0 \) that reduces the part of the error \(S[\bar{U}] \) created by the interaction of the bubbles \(U_j \) and \(U_{j-1} \), \(j = 2, \cdots, k \). To get the correction \(\varphi_0 \), we will need to fix the parameters \(\mu_j \) at main order around certain explicit values.

Let us introduce the cut-off functions

\[
\chi_j(x, t) = \begin{cases}
0 & \text{if } |x| \leq \frac{1}{2} \bar{\mu}_{0,j+1}, \\
1 & \text{if } \bar{\mu}_{0,j+1} \leq |x| \leq \frac{1}{2} \bar{\mu}_{0,j}, \\
0 & \text{if } |x| \geq \bar{\mu}_{0,j}.
\end{cases} \quad (2.3)
\]

\[
\chi_j(x, t) = \begin{cases}
0 & \text{if } |x| \leq \frac{1}{2} \bar{\mu}_{0,j+1}, \\
1 & \text{if } \bar{\mu}_{0,j+1} \leq |x| \leq \frac{1}{2} \bar{\mu}_{0,j}, \\
0 & \text{if } |x| \geq \bar{\mu}_{0,j}.
\end{cases} \quad (2.4)
\]

We define our approximate solution to be given by

\[
u_* = \bar{U} + \varphi_0. \quad (2.5)
\]

The correction \(\varphi_0 \) has the form

\[
\varphi_0 = \sum_{j=2}^{k} \varphi_0j \chi_j \quad (2.6)
\]

where

\[
\varphi_0j(x, t) = \mu_j(t)^{-\frac{n+2}{2}} \phi_0j \left(\frac{x}{\mu_j(t)}, t \right) \quad (2.7)
\]

for certain functions \(\phi_0j(y, t) \) defined in entire \(y \in \mathbb{R}^n \) which we will suitably determine. Let us write

\[
S(u_*) = \bar{E}_1 + \mathcal{L}_{\bar{U}} [\varphi_0] + N_{\bar{U}} [\varphi_0] \quad (2.8)
\]

where

\[
\mathcal{L}_{\bar{U}} [\varphi_0] = -\partial_t \varphi_0 + \Delta_x \varphi_0 + p \bar{U}^{p-1} \varphi_0, \quad (2.9)
\]

\[
N_{\bar{U}} [\varphi_0] = |\bar{U} + \varphi_0|^{p-1} (\bar{U} + \varphi_0) - p \bar{U}^{p-1} \varphi_0 - \bar{U}^p, \quad (2.10)
\]

\[
\bar{E}_1 = -\sum_{j=1}^{k} \partial_t U_j + \bar{U}^p - \sum_{j=1}^{k} U_j^p. \quad (2.11)
\]
Next we write $\mathcal{L}_\tilde{\mu} [\varphi_0]$ using the form of φ_0 in (2.6) as follows

$$
\mathcal{L}_\tilde{\mu} [\varphi_0] = \sum_{j=2}^k \left(\Delta_x \varphi_0 j + p U_j^{p-1} \varphi_0 j \right) \chi_j + \sum_{j=2}^k p \left(\tilde{U}^{p-1} - U_j^{p-1} \right) \varphi_0 j \chi_j \\
+ \sum_{j=2}^k \left(2 \nabla_x \varphi_0 j \cdot \nabla_x \chi_j + \Delta_x \left(\chi_j \right) \varphi_0 j \right) - \sum_{j=2}^k \partial_t \left(\varphi_0 j \chi_j \right).
$$

In the end, we have the error expansion

$$
S(u_*) = - \partial_t U_1 + \sum_{j=2}^k \left(\Delta_x \varphi_0 j + p U_j^{p-1} \varphi_0 j - \partial_t U_j + p U_j^{p-1} U_{j-1}(0) \right) \chi_j \\
+ \tilde{E}_{11} + \sum_{j=2}^k p \left(\tilde{U}^{p-1} - U_j^{p-1} \right) \varphi_0 j \chi_j \\
+ \sum_{j=2}^k \left(2 \nabla_x \varphi_0 j \cdot \nabla_x \chi_j + \Delta_x \chi_j \varphi_0 j \right) - \sum_{j=2}^k \partial_t \left(\varphi_0 j \chi_j \right) + \mathcal{L}_\tilde{\mu} [\varphi_0]
$$

(2.12)

where

$$
\tilde{E}_{11} = \tilde{U} - \sum_{j=1}^k \frac{U_j}{p_j} - \sum_{j=2}^k p U_j^{p-1} U_{j-1}(0) \chi_j - \sum_{j=2}^k \left(1 - \chi_j \right) \partial_t U_j.
$$

(2.13)

The function $\varphi_0 j$ is chosen to eliminate at main order the terms in the first line of (2.12), after conveniently restricting the range of variation of $\tilde{\mu}$,

$$
E_j[\varphi_0 j, \tilde{\mu}] := \Delta_x \varphi_0 j + p U_j^{p-1} \varphi_0 j - \partial_t U_j + p U_j^{p-1} U_{j-1}(0) \\
= \mu_j^{-\frac{n+1}{2}} \left[\Delta_x \varphi_0 j + p U(y)^{p-1} \varphi_0 j + \mu_j \hat{\mu} j Z_{n+1}(y) + p U^{p-1}(y) \left(\frac{\mu_j}{\mu_j^{j-1}} \right)^{\frac{n-2}{2}} U(0) \right]_{y=\frac{x}{\mu_j}}
$$

(2.14)

where $Z_{n+1}(y) = \frac{n+2}{2} U(y) + y \cdot \nabla U(y)$. The elliptic equation (for a radially symmetric function $\phi(y)$)

$$
\Delta_x \phi + p U(y)^{p-1} \phi + h_j(y, t) = 0 \quad \text{in } \mathbb{R}^n
$$

(2.15)

where

$$
h_j(y, t) = \mu_j \hat{\mu} j Z_{n+1}(y) + p U(y)^{p-1} \left(\frac{\mu_j}{\mu_j^{j-1}} \right)^{\frac{n-2}{2}} U(0)
$$

(2.16)

has a solution with $\phi(y) \to 0$ as $|y| \to \infty$ if and only if h_j satisfies the solvability condition

$$
\int_{\mathbb{R}^n} h_j(y, t) Z_{n+1}(y) dy = 0.
$$

The latter conditions hold if the parameters $\mu_j(t)$ satisfy the following relations:

$$
\mu_1 = 1, \quad \mu_j \hat{\mu} j = c_s \lambda_j^{\frac{n-2}{2}}, \quad \lambda_j = \frac{\mu_j}{\mu_j^{j-1}} \quad \text{for all } j = 2, \ldots, k
$$

(2.17)
where
\[c_s = -U(0) \frac{p \int_{\mathbb{R}^n} U^p Z_{n+1}^{-1} dy}{\int_{\mathbb{R}^n} Z_{n+1}^2 dy} = U(0) \frac{n - 2}{2} \frac{\int_{\mathbb{R}^n} U^p dy}{\int_{\mathbb{R}^n} Z_{n+1}^2 dy} > 0. \] (2.18)

Let \(\tilde{\mu}_0 = (\mu_0, \ldots, \mu_0) \) be the solution of (2.17) in \((-\infty, t_0) \) given by
\[\mu_{0j}(t) = \beta_j (-t)^{-\alpha_j}, \quad t \in (-\infty, t_0) \] (2.19)
where
\[\alpha_j = \frac{1}{2} \left(\frac{n - 2}{n - 6} \right)^{j-1} - \frac{1}{2}, \quad j = 1, \ldots, k \]
and the numbers \(\beta_j \) are determined by the recursive relations
\[\beta_1 = 1, \quad \beta_j = (\alpha_j c_s^{-1})^{2-n} \beta_{j-1}^{n-6}. \] (2.20)

From (2.17), we set
\[\lambda_{0j}(t) = \frac{\mu_{0j}}{\mu_{0, j-1}}(t). \] (2.21)

We have
\[h_j(y, t) = \lambda_{0j}^{n/2} \tilde{h}(y), \quad \tilde{h}(y) = \tilde{h}(|y|) = pU(0)U(y)^{p-1} + c_s Z_{n+1}(y). \]

Since \(\int_{\mathbb{R}^n} \tilde{h} Z_{n+1} dy = 0 \), there exists a radially symmetric solution \(\tilde{\phi}(y) \) to the equation
\[\Delta \tilde{\phi} + pU(y)^{p-1} \tilde{\phi} + \tilde{h}(|y|) = 0 \quad \text{in} \quad \mathbb{R}^n \]
such that \(\tilde{\phi}(y) = O(|y|^{-2}) \) as \(|y| \to +\infty \).

Then we define \(\phi_{0j}(y, t) \) as
\[\phi_{0j}(y, t) = \lambda_{0j}^{n/2} \tilde{\phi}(y). \] (2.22)

In what follows we let the parameters \(\mu_j(t) \) in (2.2) have the form \(\tilde{\mu} = \tilde{\mu}_0 + \tilde{\mu}_1 \), namely
\[\mu_j(t) = \mu_{0j}(t) + \mu_{1j}(t), \] (2.23)
where the parameters \(\mu_{1j}(t) \) to be determined satisfy
\[\left| \mu_{1j}(t) \right| \leq \lambda_{0j}(t)(-t)^{-\sigma} \] (2.24)
for some small and fixed constant \(0 < \sigma < 1 \). We ansatz \(\frac{3}{4} \leq \frac{|y_j|}{|\mu_{0j}|} \leq \frac{4}{3} \) for \(j = 1, \ldots, k \).

We observe that for some positive number \(c_j \) we have
\[\lambda_{0j}(t) = c_j (-t)^{-\frac{2}{n-6} \left(\frac{n-2}{n-6} \right)^{j-2}}. \]

With these choices, the expression \(E_j[\phi_{0j}; \tilde{\mu}] \) in (2.14) can be decomposed as
\[
E_j[\phi_{0j}, \tilde{\mu}_0 + \tilde{\mu}_1] = \mu_j^{n/2} \left((\mu_j \mu_j - \mu_{0j} \mu_{0j}) Z_{n+1}(y_j) + \left(\lambda_j^{n/2} - \lambda_{0j}^{n/2} \right) pU^{p-1}(y_j) U(0) \right) \\
= \mu_j^{n/2} D_j[\tilde{\mu}_1](y_j, t) + \mu_j^{n/2} \Theta_j[\tilde{\mu}_1](y_j, t), \quad y_j = \frac{x}{\mu_j(t)}
\]
where $j = 2, \ldots, k$ and
\[
D_j[\tilde{\mu}_1](y_j, t) = (\tilde{\mu}_{0j} \mu_{1j} + \mu_{0j} \tilde{\mu}_{1j}) Z_{n+1}(y_j) + \frac{n-2}{2} p U^{p-1} (y_j) U(0) \lambda_{0j}^{n-2} \left(\frac{\mu_{1j}}{\mu_{0j}} - \frac{\mu_{1,j-1}}{\mu_{0,j-1}} \right).
\]
(2.25)
\[
\Theta_j[\tilde{\mu}_1](y_j, t) = \mu_{1j} \tilde{\mu}_{1j} Z_{n+1}(y_j) + p U^{p-1} (y_j) \lambda_{0j}^{n-2} O \left(\frac{\mu_{1j}}{\mu_{0j}} + \frac{\mu_{1,j-1}}{\mu_{0,j-1}} \right)^2.
\]
(2.26)

Here we have used the fact that
\[
\frac{n-2}{\lambda_{0j}} - \frac{n-2}{\lambda_{0j}^{n-2}} \left(\frac{\mu_{1j}}{\mu_{0j}} - \frac{\mu_{1,j-1}}{\mu_{0,j-1}} \right) + \frac{n-2}{\lambda_{0j}^{n-2}} O \left(\frac{\mu_{1j}}{\mu_{0j}} + \frac{\mu_{1,j-1}}{\mu_{0,j-1}} \right)^2.
\]
(2.26)

We also introduce the notation
\[
D_1[\tilde{\mu}_1](y_1, t) = (1 + \mu_{11}) \tilde{\mu}_{11} Z_{n+1}(y_1), \quad y_1 = \frac{x}{\mu_1},
\]
(2.27)

which is derived from
\[
-\partial_t U_1 = \frac{n+2}{\mu_1} D_1[\tilde{\mu}_1].
\]
(2.28)

3 The inner-outer gluing system

We consider the approximation $u_* = u_*[\tilde{\mu}_1]$ in (2.5) built in the previous section and want to find a solution of equation (2.1) in the form $u = u_* + \varphi$. By Lemma A.2, we have $u_* > 0$ when t_0 is very negative. The problem becomes
\[
S [u_* + \varphi] = -\varphi_t + \Delta \varphi + p u_*^{p-1} \varphi + N_{u_*}[\varphi] + S [u_*] = 0 \quad \text{in } \mathbb{R}^n \times (-\infty, t_0)
\]
(3.1)

where
\[
N_{u_*}[\varphi] = |u_* + \varphi|^{p-1} (u_* + \varphi) - u_*^p - p u_*^{p-1} \varphi.
\]

We consider the cut-off functions $\eta_j, \zeta_j, j = 1, \ldots, k$, defined as
\[
\eta_j(x, t) = \chi \left(\frac{|x|}{2 R \mu_{0j}(t)} \right)
\]
(3.2)

and
\[
\zeta_j(x, t) = \begin{cases}
\chi \left(\frac{|x|}{R \mu_{0j}(t)} \right) - \chi \left(\frac{R |x|}{\mu_{0j}(t)} \right) & j = 1, \ldots, k-1, \\
\chi \left(\frac{|x|}{R \mu_{0k}(t)} \right) & j = k.
\end{cases}
\]
(3.3)

We observe that $\eta_j \zeta_j = \zeta_j$, because
\[
\eta_j(x, t) = \begin{cases}
1 & \text{for } |x| \leq 2 R \mu_{0j}(t), \\
0 & \text{for } |x| \geq 4 R \mu_{0j}(t).
\end{cases}
\]

and
\[
\zeta_j(x, t) = \begin{cases}
1 & \text{for } 2 R^{-1} \mu_{0j}(t) \leq |x| \leq R \mu_{0j}(t), \\
0 & \text{for } |x| \geq 2 R \mu_{0j}(t) \text{ or } |x| \leq R^{-1} \mu_{0j}(t). \quad j = 1, \ldots, k-1.
\end{cases}
\]
(3.4)
\[\xi_k(x, t) = \begin{cases} 1 & \text{for } |x| \leq R\mu_{0k}(t), \\ 0 & \text{for } |x| \geq 2R\mu_{0k}(t). \end{cases} \]

(3.5)

Here \(R \) is a large constant to be determined later. In fact, we fix \(R \) first, then take \(t_0 \) very negative.

We consider functions \(\phi_j(y, t), j = 1, \ldots, k \) defined in \(B_{8R} \times (-\infty, t_0) \) and a function \(\Psi(x, t) \) defined in \(\mathbb{R}^n \times (-\infty, t_0) \). We look for the \(\varphi(x, t) \) in (3.1) of the form

\[\varphi(x, t) = \sum_{j=1}^{k} \varphi_j(x, t) + \Psi(x, t) \]

(3.6)

where

\[\varphi_j(x, t) = \mu_j^{-\frac{n+2}{2}} \phi_j \left(\frac{x}{\mu_j(t)}, t \right). \]

(3.7)

Let us substitute \(\varphi \) given by (3.6) into equation (3.1). We get

\[S[u_* + \varphi] = \sum_{j=1}^{k} \eta_j \mu_j^{-\frac{n+2}{2}} \left(-\mu_j^2 \partial_t \phi_j + \Delta_y \phi_j + pU(y_j)\Psi + D_j[\bar{\mu}_1] \right) \]

\[+ \mu_j^{-\frac{n-2}{2}} \Psi - \Psi + \Delta_x \Psi + V\Psi + B[\bar{\phi}] + \mathcal{N}[\bar{\phi}, \Psi, \bar{\mu}_1] + E^{\text{out}}. \]

Here we denote for \(\bar{\phi} = (\phi_1, \ldots, \phi_k), \bar{\mu} = (\mu_1, \ldots, \mu_k) \) and

\[B[\bar{\phi}] = \sum_{j=1}^{k} 2\nabla_x \eta_j \cdot \nabla_x \varphi_j + \left(-\partial_t \eta_j + \Delta_x \eta_j \right) \varphi_j + p \left(u_*^{p-1} - U_j^{p-1} \right) \varphi_j - \mu_j \frac{\partial}{\partial \mu_j} \varphi_j \eta_j, \]

(3.8)

\[\mathcal{N}[\bar{\phi}, \Psi, \bar{\mu}_1] = N_{u_*} \left(\sum_{j=1}^{k} \varphi_j \eta_j + \Psi \right), \quad V = pu_*^{p-1} - \sum_{j=1}^{k} \xi_j pU_j^{p-1}, \]

(3.9)

\[E^{\text{out}} = S[u_*] - \sum_{j=1}^{k} \mu_j^{-\frac{n+2}{2}} D_j[\bar{\mu}_1] \eta_j, \]

(3.10)

where \(D_j[\bar{\mu}_1] \) are defined in (2.25) and (2.27). We will have that \(S[u_* + \varphi] = 0 \) if the following system of \(k + 1 \) equations are satisfied.

\[\mu_j^2 \partial_t \phi_j = \Delta_y \phi_j + pU(y)\Psi + \mathcal{H}_j[\Psi, \bar{\mu}_1](y, t) \quad \text{in } B_{8R} \times (-\infty, t_0), \quad j = 1, \ldots, k, \]

(3.11)

\[\partial_t \Psi = \Delta_x \Psi + \mathcal{G}[\bar{\phi}, \Psi, \bar{\mu}_1](x, t) \quad \text{in } \mathbb{R}^n \times (-\infty, t_0), \]

(3.12)

where

\[\mathcal{H}_j[\Psi, \bar{\mu}_1](y, t) = \mu_j^{\frac{n+2}{2}} \xi_j(y) U_j^{p-1} \Psi, \quad \mathcal{G}[\bar{\phi}, \Psi, \bar{\mu}_1](x, t) = V \Psi + B[\bar{\phi}] + \mathcal{N}[\bar{\phi}, \Psi, \bar{\mu}_1] + E^{\text{out}}. \]

(3.13)

(3.14)

In the next sections we will solve this system in a well-designed topology with suitable choice of parameters \(\bar{\mu}_1 \).
4 The linear equations

In order to solve the system (3.11)-(3.12), we need to study their linear equations respectively. The linear estimates of this section are crucial to the fixed point argument.

4.1 The linear inner problem

First, we consider the linear theory of (3.11).

\[\mu_j(t)^2 \partial_t \phi = \Delta_y \phi + pU(y)^{p-1} \phi + h(y, t), \quad B_{SR} \times (-\infty, t_0). \]

(4.1)

where \(\mu_j(t) \approx (-t)^{-\alpha_j} \) and \(R \) is a sufficiently large constant. We aim to solve (4.1) by finding a linear mapping \(\phi = \phi[h] \) that keeps the spatial decay property of \(h \), provided that certain solvability condition for \(h \) is satisfied. Making change of variables

\[\tau(t) = \tau_0 + \int_{t_0}^t \mu_j(s)^{-2} ds \approx (-t)^{2\alpha_j+1}, \]

where \(\tau_0 \) is suitably chosen that \(\tau_0 \approx (-\tau_0)^{2\alpha_j+1} \), transforms (4.1) into

\[\partial_t \phi = \Delta_y \phi + pU(y)^{p-1} \phi + h(y, \tau), \quad B_{SR} \times (-\infty, \tau_0). \]

(4.2)

In order to solve this equation, we need to know the space \(h(y, \tau) \) belongs to. This amounts to examining the decay of \(H_j \) in (3.13). Inspired by the estimate of \(|H_j(y, t)| \) in Lemma 6.1, we define the following norms

\[\|h\|_{v(\tau), 2+a}^i := \sup_{s < \tau_0} \sup_{y \in B_{SR}} v^{-1}(s) v^{2+a} |h(y, s)|, \]

(4.3)

\[\|\phi\|_{v(\tau), a}^{i,n} := \sup_{s < \tau_0} \sup_{y \in B_{SR}} R^{-n+1-a} v^{-1}(s) v^{n+1} |\phi(y, s)|. \]

(4.4)

where \(0 < a < 1 \) and \(v(\tau) : (-\infty, \tau_0) \rightarrow \mathbb{R}_+ \) is a positive \(C^1 \) function satisfying

\[\lim_{\tau \rightarrow -\infty} v(\tau) = 0, \quad \text{and} \quad \partial_\tau v \approx \frac{v(\tau)}{-\tau} \quad \text{for} \quad \tau \leq \tau_0. \]

(4.5)

Lemma 4.1 Consider

\[\partial_t \phi = \Delta \phi + pU^{p-1} \phi + h(y, \tau) \quad \text{in} \quad B_{SR} \times (-\infty, \tau_0). \]

(4.6)

For all sufficiently large \(R > 0 \), if \(\tau_0 = \tau_0(R) \) is very negative, \(\|h\|_{v(\tau), 2+a}^i < +\infty \), and \(h(y, \tau) \) satisfies

\[\int_{B_{SR}} h(y, \tau) Z_j(y) dy = 0 \quad \text{for all} \quad \tau \in (-\infty, \tau_0) \]

(4.7)

for \(j = 1, \ldots, n+1 \), where \(Z_j(y) = \partial_j U(y) \) and \(Z_{n+1}(y) = \frac{n-2}{2} U(y) + y \cdot \nabla U(y) \). Then there exists a linear mapping

\[\phi = T_{v(\tau)}^i[h] \]

(4.8)

which solves (4.6) and satisfies the estimate

\[\| (y) \nabla \phi \|_{v(\tau), a}^{i,n} + \| \phi \|_{v(\tau), a}^{i,n} \leq C_{v(\tau), a} \| h \|_{v(\tau), 2+a}^i, \]

(4.9)

where \(C_{v(\tau), a} \) is a constant depending on \(v(\tau) \) and \(a \).
Remark 4.1 Since we consider radial scheme throughout this paper, \(\int_{B_{Sr}} h(y, \tau) Z_j(y) dy = 0, \ j = 1, \ldots, n \), are satisfied automatically.

The proof inherits the spirit of [5]. First, we consider the linear problem (4.6) in a finite time region \((s, \tau_0)\) and get a uniform estimate independent of the initial time \(s\). Second, we make \(s\) go to \(-\infty\) and get an ancient solution by the compaction argument, like [6]. We need to use some Liouville type theorem to guarantee the uniqueness of the ancient solution derived from this operation, which deduces the existence of the desired linear mapping.

Since the proof is very similar to the linear theory in [5], we only stress the difference due to taking subsequence. Define \(\tilde{\phi} = \phi = w\psi\) as taking subsequence as \(s \to -\infty\). We have to prove no matter what convergent subsequence we choose, the limit function is the same.

First we need the following preparation lemma.

Lemma 4.2 Given \(L(u) = \Delta u + c(x)u\) defined in a bounded domain \(\Omega\), if \(L\) has a positive supersolution \(w \in C^2(\Omega) \cap C(\bar{\Omega})\), that is \(L(w) \leq 0\) in \(\Omega\) and \(w > 0\) in \(\bar{\Omega}\), then for all \(\phi \in C^2(\Omega) \cap C(\bar{\Omega})\) with \(\phi = 0\) on \(\partial \Omega\), the corresponding energy

\[
Q(\phi, \phi) := \int_{\Omega} (|\nabla \phi|^2 - c(x)\phi^2) \, dy \geq 0.
\]

Proof Since \(w > 0\) in \(\bar{\Omega}\), \(\exists \psi \in C^2(\Omega) \cap C^0(\bar{\Omega})\) such that \(\phi = w\psi\). Then

\[
Q(\phi, \phi) = \int_{\Omega} (-w\psi^2 \Delta w - 2w\psi \nabla w \cdot \nabla \psi - w^2 \psi \Delta \psi - c(x) w^2 \psi^2) \, dy
\]

\[
= \int_{\Omega} [-(\Delta w + c(x)w) w\psi^2 - 2w\psi \nabla w \cdot \nabla \psi - w^2 \psi \Delta \psi] \, dy. \tag{4.10}
\]

Using the assumption \(Lw \leq 0\) and \(w > 0\), we have

\[
Q(\phi, \phi) \geq \int_{\Omega} (-2w\psi \nabla w \cdot \nabla \psi - w^2 \psi \Delta \psi) \, dy
\]

\[
= \int_{\Omega} [-2w\psi \nabla w \cdot \nabla \psi + \nabla \psi \cdot \nabla (w^2 \psi)] \, dy = \int_{\Omega} |\nabla \psi|^2 w^2 \, dy \geq 0.
\]

\[\square\]

We take the following typical lemma, whose counterpart is given in Lemma 7.3 in [5], to illustrate the difference with the linear theory in [5] due to taking subsequence. Define \(\chi_M(y) = \chi(|y| - M)\).

Lemma 4.3 Consider

\[
\begin{aligned}
\phi_\tau &= \Delta \phi + pU^{p-1}(1 - \chi_M)\phi + h(y, \tau) \text{ in } B_{Sr} \times (-\infty, \tau_0), \\
\phi &= 0 \text{ on } \partial B_{Sr} \times (-\infty, \tau_0),
\end{aligned} \tag{4.11}
\]

where \(\|h\|_{v,a} < +\infty, 0 \leq a < n\). If \(M\) is a large constant, there exists a very negative constant \(\tau_0\). If \(\tau_0 \leq \bar{\tau}_0\), there exists a linear map \(\phi_\tau[h]\) satisfying (4.11) and the following estimate:

\[
|\phi_\tau[h]| \lesssim_M \nu(\tau) \Theta^0_{Ra}(|y|) \|h\|_{v,a}, \tag{4.12}
\]

where

\[
\Theta^0_{Ra}(r) = \begin{cases}
(1 + r)^{2-a} & \text{if } 2 < a < n \\
\ln R & \text{if } a = 2 \\
R^{2-a} & \text{if } 0 \leq a < 2.
\end{cases}
\]
\textbf{Proof} First we consider

\[
\begin{cases}
\phi^s_t = \Delta \phi^s + pU^{p-1}(1 - \chi_M)\phi^s + h(y, \tau) \text{ in } B_{SR} \times (-\infty, \tau_0), \\
\phi^s = 0 \text{ on } \partial B_{SR} \times (-\infty, \tau_0), \\
\phi^s(\cdot, s) = 0 \text{ in } B_{SR}.
\end{cases}
\]

By the same method in Lemma 7.3 in [5], we have

\begin{equation}
|\phi^s[h]| \lesssim_M \nu(\tau) \Theta^0_{R_a(|y|)}\|\|h\|_{v,a}.
\end{equation}

Notice this estimate is independent of \(s\). By parabolic estimate, Arzelà-Ascoli theorem and diagonalization argument, taking \(s \to -\infty\), we find a weak solution \(\phi^s[h]\) to (4.11) with the following estimate

\begin{equation}
|\phi^s[h]| \lesssim_M \nu(\tau) \Theta^0_{R_a(|y|)}\|\|h\|_{v,a}.
\end{equation}

Next, we need to demonstrate this operation is really a mapping. That is, if the operation gives two functions \(\phi^1_s[h], \phi^2_s[h]\) due to the different choices of subsequences, we need to prove \(\phi^s_s[h] = \phi^2_s[h]\). In fact, set \(\Phi_s = \phi^1_s[h] - \phi^2_s[h]\). By (4.11), (4.14), \(\Phi_s\) satisfies

\[
\begin{cases}
\partial_t \Phi_s = \Delta \Phi_s + pU^{p-1}(1 - \chi_M)\Phi_s \text{ in } B_{SR} \times (-\infty, \tau_0), \\
\Phi_s = 0 \text{ on } \partial B_{SR} \times (-\infty, \tau_0), \\
|\Phi_s| \lesssim_M \nu(\tau) \Theta^0_{R_a(|y|)}\|\|h\|_{v,a}.
\end{cases}
\]

By parabolic regularity theory, \(\Phi_s\) is smooth. Multiplying \(\Phi_s\) for both sides and integrating by part, we have

\begin{equation}
\frac{1}{2} \partial_t \int_{B_{SR}} |\Phi_s|^2 \, dx = \int_{B_{SR}} [-|\nabla \Phi_s|^2 + pU^{p-1}(1 - \chi_M)\Phi^2_s] \, dx \leq 0.
\end{equation}

The inequality is due to Lemma 4.2 since \(L_M(\phi) = \Delta \phi + pU^{p-1}(1 - \chi_M)\phi\) has a positive kernel \(g_2(|y|)\) given in Lemma 7.3 of [5].

By the upper bound of \(\|\Phi_s\|_v\),

\[
\int_{B_{SR}} |\Phi_s|^2 \, dx \lesssim \|h\|_{v,a}^2 v^2(\tau) R^n \begin{cases} 1 & \text{if } 2 < a < n, \\
\ln^2(R) & \text{if } a = 2, \\
R^{4-2a} & \text{if } 0 \leq a < 2.
\end{cases}
\]

Thus

\begin{equation}
\int_{B_{SR}} |\Phi_s|^2 \, dx \to 0 \quad \text{as } \tau \to -\infty,
\end{equation}

we have \(\int_{B_{SR}} |\Phi_s|^2 \, dx = 0\), which implies \(\Phi_s \equiv 0\).

By the same argument, we can prove that \(\phi_s[h]\) is a linear mapping. That is, for all functions \(f, g\) satisfying \(\|f\|_{v,a}, \|g\|_{v,a} < \infty\), we have \(\phi_s[f + g] = \phi_s[f] + \phi_s[g]\). \(\Box\)

Since we aim to find ancient solutions. The initial value given in the linear theory of [5] will disappear as \(s \to -\infty\).

\textbf{4.2 The linear outer problem}

We consider the solution of

\[
\psi_t = \Delta_x \psi + g(x, \tau), \quad \text{in } \mathbb{R}^n \times (-\infty, t_0).
\]
It is well-known that the above equation has a solution which is given by Duhamel’s formula
\[
\psi(x, t) = T^{\text{out}}[g](x, t) := \frac{1}{(4\pi)^{\frac{n}{2}}} \int_{-\infty}^{t} \frac{ds}{(t-s)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-\frac{|x-y|^2}{4(t-s)^2}} g(y, s) dy
\] (4.19)
whenever the integral is well-defined.

In order to design a topology to solve the outer problem (3.12), we define three types of weights.

\[
w_{11}(x, t) = \frac{|t|^{-1-\sigma}}{1 + |x|^{2+\alpha}} 1_{|x| \leq \bar{\mu}_0} + |t|^{-1-\sigma} \bar{\mu}^{n-2-\alpha}_0 |x|^{-1-\alpha} 1_{|\bar{\mu}_0| \leq |x| \leq |t|^\frac{1}{2}}
\]
\[
\approx |t|^{\gamma_1} 1_{|x| \leq 1} + |t|^{\gamma_1} |x|^{-2-\alpha} 1_{1 \leq |x| \leq \bar{\mu}_0} + |t|^{\gamma_1} \bar{\mu}_0^{-2-\alpha} |x|^{-1-\alpha} 1_{|\bar{\mu}_0| \leq |x| \leq |t|^\frac{1}{2}},
\]
where \(\gamma_1 = -1 - \sigma\) and \(\gamma_j = \frac{n-2}{2} \alpha_j - 1 - \sigma\) for \(j = 2, \ldots, k\).

\[
w_{1j}(x, t) = |t|^{-\sigma} \frac{\lambda^j}{\mu_0^j} 1_{|x| \leq \bar{\mu}_0} + |t|^{\gamma_j} |x|^{-2-\alpha} 1_{|\bar{\mu}_0| \leq |x| \leq |t|^\frac{1}{2}},
\]
where \(\gamma_j = 1\) and \(\gamma_j = \frac{n-2}{2} \alpha_j - 1 - \sigma\) for \(j = 2, \ldots, k - 1\).

\[
w_{3}(x, t) = R |t|^{-1-\sigma} |x|^{2-n} 1_{|x| \geq \bar{\mu}_0},
\]

where \(\delta > 0\) is a small constant.

Remark 4.2 These ad hoc weights are used to control the behavior of \(G\) in (3.14). There are four terms in \(G\), namely \(B[\bar{\phi}]\) (the influence of inner problem), \(V \Psi\) (linear term on \(\Psi\)), \(E^{\text{out}}\) (error comes from ansatz \(U\) and mainly depends on \(\bar{\mu}_1\)), \(\mathcal{N}\) (higher order nonlinear term). Roughly speaking, \(w_{1j}\) will be used to control \(B[\bar{\phi}]\) in the support of \(\chi_j\). Specially, \(w_{11}\) is also designed to control the influence of \(w_{1j}\) in \(\{|x| \geq \bar{\mu}_0\}\). The region between the support of \(\chi_j\) of \(B[\bar{\phi}]\) is controlled by \(w_{2j}\). Also notice the support of \(B[\bar{\phi}]\) is contained in \(\{|x| \leq 4R\bar{\mu}_0\}\). \(w_3\) is designed for controlling \(E^{\text{out}}\) in \(\{|x| \geq \bar{\mu}_0\}\). See Remark 4.4 how to control the other three terms.

Lemma 4.4 For \(j = 1, \ldots, k\), we have the following estimate:

\[
T^{\text{out}}[w_{1j}] \lesssim w^*_{1j} := \begin{cases} |t|^{\gamma_j} & \text{if } |x| \leq \mu_0, \\
|t|^{\gamma_j} \mu_0^{\alpha_j} |x|^{-\alpha} & \text{if } \mu_0 \leq |x| \leq \bar{\mu}_0, \\
|t|^{\gamma_j} \mu_0^{\alpha_j} \bar{\mu}_0^{n-2-\alpha} |x|^{2-n} & \text{if } \bar{\mu}_0 \leq |x| \leq |t|^\frac{1}{2}, \\
|x|^{2\gamma_j^{*}+2-n} & \text{if } |x| \geq |t|^\frac{1}{2}. \end{cases}
\] (4.23)

where \(\gamma_j^{*} = (1 - \frac{n}{2}) \alpha_j - \frac{\alpha}{2} (\alpha_j - \alpha_{j-1}) - \sigma\) for \(j = 2, \ldots, k\) and \(\gamma_1^{*} = \gamma_1 + (n - 2 - \alpha) \delta\).

Here \(\gamma_j^{*}\) satisfies \(|t|^{\gamma_j^{*}} \mu_0^{\alpha_j} \bar{\mu}_0^{n-2-\alpha} \approx |t|^{\gamma_j}\) for simplicity. Approximately, \(w^*_{1j}\) is like a radially non-increasing function about \(|x|\) for every fixed \(t\) up to a constant multiplicity, that is

\[
w^*_{1j} \approx \min\{|t|^{\gamma_j}, |t|^{\gamma_j-\gamma_j^{(a_j)}}, |x|^{-\alpha}, |t|^{\gamma_j} |x|^{2-n}, |x|^{2\gamma_j^{*}+2-n}\}.
\] (4.24)

Similarly, we have the following fact.
Lemma 4.5 We have the following estimates:

\[
T^{\text{out}}[w_{21}] \lesssim w_{21}^* := \begin{cases}
|t|^{-2\sigma} \mu_{0j}^{-n/2} |x|^{4-n} & \text{if } |x| \leq \bar{\mu}_{0j}, \\
|t|^{-2\sigma} \mu_{0j+1}^{-n/2} |x|^{4-n} & \text{if } \bar{\mu}_{0j+1} \leq |x| \leq \bar{\mu}_{0j}, \\
|t|^{-\sigma} |x|^{2-n} & \text{if } |x| \geq |t|^{1/2}, \\
(\|x\|^2)^{-2\sigma-(\frac{\sigma}{2}-2)\alpha_j} |x|^{2-n} & \text{if } |x| \geq |t|^{1/2},
\end{cases}
\] (4.25)

and for \(j = 2, \ldots, k - 1 \),

\[
T^{\text{out}}[w_{2j}] \lesssim w_{2j}^* := \begin{cases}
|t|^{-2\sigma} \mu_{0j}^{-n/2} |x|^{4-n} & \text{if } |x| \leq \bar{\mu}_{0j+1}, \\
|t|^{-2\sigma} \mu_{0j+1}^{-n/2} |x|^{4-n} & \text{if } \bar{\mu}_{0j+1} \leq |x| \leq \bar{\mu}_{0j}, \\
|t|^{-2\sigma} \mu_{0j+1}^{-n/2} \mu_{0j}^{-n/2} |x|^{2-n} & \text{if } \bar{\mu}_{0j} \leq |x| \leq |t|^{1/2}, \\
(\|x\|^2)^{-2\sigma-(\frac{\sigma}{2}-2)\alpha_{j-1}} |x|^{2-n} & \text{if } |x| \geq |t|^{1/2}.
\end{cases}
\] (4.26)

Lemma 4.6 For \(\delta \leq \frac{1}{2} \), we have the following estimate:

\[
T^{\text{out}}[w_3] \lesssim w_3^* := R \begin{cases}
|t|^{-1-\sigma} \mu_{01}^{-n} & \text{if } |x| \leq \bar{\mu}_{01}, \\
|t|^{-1-\sigma} |x|^{4-n} & \text{if } \bar{\mu}_{01} \leq |x| \leq |t|^{1/2}, \\
|t|^{-\sigma} |x|^{2-n} & \text{if } |x| \geq |t|^{1/2}.
\end{cases}
\] (4.27)

Remark 4.3 Just like (4.24), \(w_{2j}^*, j = 1, \ldots, k - 1 \), \(w_3^* \) are approximate to some non-increasing functions about \(|x| \) for every fixed \(t \).

The proofs of Lemma 4.4, 4.5 and 4.6 are deferred to subsection B.2 in the appendix.

For a function \(h = h(x, t) \), we define the weighted \(L^\infty \) norm \(\| h \|_{a,\sigma}^{\text{out}}, \| h \|_{a,\sigma}^{\text{out},*} \) as the following form respectively.

\[
\| h \|_{a,\sigma}^{\text{out}} := \inf \left\{ K \mid \| h(x,t) \| \leq K \left(\sum_{j=1}^{k} w_{1j} + \sum_{j=1}^{k-1} w_{2j} + w_3 \right) \right. \left(x,t \right), \; \mathbb{R}^n \times (-\infty, t_0) \right\},
\] (4.28)

\[
\| h \|_{a,\sigma}^{\text{out},*} := \inf \left\{ K \mid \| h(x,t) \| \leq K \left(\sum_{j=1}^{k} w_{1j}^* + \sum_{j=1}^{k-1} w_{2j}^* + w_3^* \right) \right. \left. \left(x,t \right), \; \mathbb{R}^n \times (-\infty, t_0) \right\}.
\] (4.29)

Using Lemma 4.4, 4.5 4.6 and Lemma A.3-A.8, we get the following proposition:

Proposition 4.1 Suppose that \(\sigma, \epsilon > 0 \) is chosen small enough, \(\| \tilde{\mu}_1 \|_{a,\sigma} \leq 1 \) and \(t_0 \) is negative enough. Then there exists a constant \(C^{\text{out}} > 0 \), independent of \(R \) and \(t_0 \), such that \(\frac{\partial t}{\partial t} = \Delta_x \psi + G[\tilde{\phi}, \Psi, \tilde{\mu}_1] \) has a solution \(T^{\text{out}}[G[\tilde{\phi}, \Psi, \tilde{\mu}_1]] \) in \(\mathbb{R}^n \times (-\infty, t_0) \) satisfying

\[
\| T^{\text{out}}[G[\tilde{\phi}, \Psi, \tilde{\mu}_1]] \|_{a,\sigma}^{\text{out},*} \leq C^{\text{out}} R^{\alpha-a} \left(1 + \| \tilde{\phi} \|_{a,\sigma}^{\text{out},*} + \| \Psi \|_{a,\sigma}^{\text{out},*} + (\| \tilde{\phi} \|_{a,\sigma}^{\text{out},*})^p + (\| \Psi \|_{a,\sigma}^{\text{out},*})^p \right)
\]

where \(G \) is defined in (3.14) and \(T^{\text{out}}[g] \) is given by (4.19).

Remark 4.4 There are some subtleties to bound \(V \Psi \). Some term in \(V \Psi \) can not be much smaller than \(w_{1j} \) in the sense of \(L^\infty \) (see (A.37)). Thanks to its narrow support, we could still get the smallness when applying \(T^{\text{out}} \) to it. The estimate of \(N \) and \(E^{\text{out}} \) are straightforward.
5 Orthogonal equations

In this section, we deal with the orthogonal equations

\[
\int_{B_{SR}} \mathcal{H}_j[\Psi, \tilde{\mu}_1](y, t)Z_{n+1}(y)dy = 0, \quad \text{for } j = 1, \ldots, k. \tag{5.1}
\]

Lemma 5.1 (5.1) is equivalent to

\[
\begin{aligned}
\dot{\mu}_{11} &= M_1[\Psi, \tilde{\mu}_1](t), \\
\dot{\mu}_{1j} + \frac{n-4}{2} &\frac{\alpha_j}{t} \mu_{1j} - \frac{n-2}{2} \frac{\alpha_j}{t} \lambda_{0j} \mu_{1,j-1} = M_j[\Psi, \tilde{\mu}_1](t), \quad \text{for } j = 2, \ldots, k,
\end{aligned}
\tag{5.2}
\]

where \(M_j \) are given in (5.4) and (5.7).

Proof For \(j = 1 \), using (3.13) and (2.27), (5.1) is equivalent to

\[
\dot{\mu}_{11} = M_1[\Psi, \tilde{\mu}_1](t),
\tag{5.3}
\]

where

\[
M_1[\Psi, \tilde{\mu}_1](t) = -\frac{n-2}{2} \frac{\alpha_j}{t} \mu_{1j} \int_{B_{SR}} \frac{\xi_1(\mu_{1j})pU(y)p^{-1}Z_{n+1}(y)\Psi(\mu_{1j}, t)dy}{\int_{B_{SR}} Z_{n+1}^2(y)dy}.
\tag{5.4}
\]

For \(j = 2, \ldots, k \), by (3.13) and (2.25), (5.1) is equivalent to

\[
\dot{\mu}_{0j} \mu_{1j} + \mu_{0j} \dot{\mu}_{1j} + \frac{n-2}{2} \frac{\alpha_j}{t} \mu_{0j} \mu_{1j} \int_{B_{SR}} \frac{\xi_j(\mu_{1j})pU(y)p^{-1}Z_{n+1}(y)\Psi(\mu_{1j}, t)dy}{\int_{B_{SR}} Z_{n+1}^2(y)dy} = -\frac{n-2}{2} \dot{\mu}_{0j} \mu_{1j} \int_{B_{SR}} \frac{\xi_j(\mu_{1j})pU(y)p^{-1}Z_{n+1}(y)\Psi(\mu_{1j}, t)dy}{\int_{B_{SR}} Z_{n+1}^2(y)dy}.
\tag{5.5}
\]

Since \(|Z_{n+1}(y)| \lesssim \langle y \rangle^{2-n} \),

\[
\int_{B_{SR}} pU^{p-1}(y)Z_{n+1}(y)dy = \int_{\mathbb{R}^n} pU^{p-1}(y)Z_{n+1}(y)dy + O(R^{-2}),
\]

\[
\int_{B_{SR}} Z_{n+1}^2(y)dy = \int_{\mathbb{R}^n} Z_{n+1}^2(y)dy + O(R^{4-n}).
\]

It follows that

\[
-\frac{U(0) \int_{B_{SR}} pU^{p-1}(y)Z_{n+1}(y)dy}{\int_{B_{SR}} Z_{n+1}^2(y)dy} = c_* + O(R^{-2}),
\]

where \(c_* \) is the positive constant defined in (2.18). Notice the fact that

\[
\frac{\dot{\mu}_{0j}}{\mu_{0j}} = \frac{\alpha_j}{t}, \quad \frac{c_* \lambda_{0j}}{\mu_{0j}^2} = \frac{\dot{\mu}_{0j}}{\mu_{0j}} \quad \text{for } j = 2, \ldots, k.
\]

We can simplify (5.5) to

\[
\dot{\mu}_{1j} + \frac{n-4}{2} \frac{\alpha_j}{t} \mu_{1j} - \frac{n-2}{2} \frac{\alpha_j}{t} \lambda_{0j} \mu_{1,j-1} = M_j[\Psi, \tilde{\mu}_1](t),
\tag{5.6}
\]
where
\[
M_j[\Psi, \bar{\mu}_1](t) = -\frac{\mu_{j}^{-1}}{\mu_{0j}} \int_{B_{8R}} \xi_j(\mu_j y) pU(y)^{p-1} Z_{n+1}(y) \Psi(\mu_j y, t) \, dy
\]
\[+ \mu_{0j} \left(\frac{\mu_{1j}}{\mu_{0j}} - \frac{\mu_{1,j-1}}{\mu_{0,j-1}} \right) O(R^{-2}). \tag{5.7}
\]

In order to solve (5.2) by the fixed point theorem, we reformulate (5.2) as the following mapping. Let us define \(S[\Psi, \bar{\mu}_1] = (S_1[\Psi, \bar{\mu}_1], \ldots, S_k[\Psi, \bar{\mu}_1]) \) where
\[
S_1[\Psi, \bar{\mu}_1](t) = \int_{-\infty}^{t} M_1[\Psi, \bar{\mu}_1](s) \, ds,
\]
\[
S_j[\Psi, \bar{\mu}_1](t) = (-t)^{-\frac{n-2}{2} \alpha_j} \int_{t_0}^{t} (-s)^{-\frac{n-2}{2} \alpha_j} \left(\frac{n-2}{2} \alpha_j \lambda_0(s) S_{j-1}[\Psi, \bar{\mu}_1](s) + M_j[\Psi, \bar{\mu}_1](s) \right) \, ds.
\]
for \(j = 2, \ldots, k. \)

For a constant \(b \) and a function \(g(t) \), we define
\[
\|g\|_b^\# := \sup_{t \leq t_0} |(-t)^b g(t)|. \tag{5.9}
\]
We introduce the norm about \(\bar{\mu}_1 \):
\[
\|\bar{\mu}_1\|_\sigma := \sum_{i=1}^{k} \left(\|\bar{\mu}_{1i}\|_{1+\alpha_i, \sigma}^\# + \|\bar{\mu}_{1i}\|_{\alpha_i, \sigma}^\# \right), \tag{5.10}
\]
where \(\sigma > 0. \)

\textbf{Lemma 5.2} Suppose \(\Psi \) and \(\bar{\mu}_1 \) satisfy \(\|\Psi\|_{\alpha, \sigma}^{out, *} < \infty, \|\bar{\mu}_1\|_{\sigma} \leq 1, 0 < \sigma < 1 \) respectively, when \(t_0 \) is very negative, there exists \(C^S \) such that
\[
\|\hat{S}[\Psi, \bar{\mu}_1]\|_{\sigma} \leq C^S (\|\Psi\|_{\alpha, \sigma}^{out, *} + O(R^{-2})). \tag{5.11}
\]

\textbf{Proof} Note that the support of \(\zeta_1 \) is contained in \(\{ R^{-1} \mu_{01} \leq |x| \leq 2 R \mu_{01} \}. \) By Lemma A.5 and A.6, we have \(|\Psi| \lesssim (w_{11}^* + w_{12}^* + w_{21}^*) \|\Psi\|_{\alpha, \sigma}^{out, *} \lesssim |t|^{-1-\sigma} \|\Psi\|_{\alpha, \sigma}^{out, *}. \) Then using (5.4), we have
\[
|M_1[\Psi, \bar{\mu}_1]| \lesssim |t|^{-1-\sigma} \|\Psi\|_{\alpha, \sigma}^{out, *}. \tag{5.12}
\]
By (5.8), we have
\[
\|\hat{S}_1[\Psi, \bar{\mu}_1]\|_{\sigma}^\# + \|S_1[\Psi, \bar{\mu}_1]\|_{\sigma}^\# \lesssim \|\Psi\|_{\alpha, \sigma}^{out, *}. \tag{5.13}
\]
Similarly, for \(j = 2, \ldots, k, \) the support of \(\zeta_j \) is contained in \(\{ R^{-1} \mu_{0j} \leq |x| \leq 2 R \mu_{0j} \}. \) By Lemma A.5 and A.6, we have
\[
|\Psi| \lesssim (w_{11,j+1}^* + w_{2j}^* + w_{2,j-1}^*) \|\Psi\|_{\alpha, \sigma}^{out, *} \lesssim |t|^{-\sigma} \|\Psi\|_{\alpha, \sigma}^{out, *},
\]
where \(w_{11,j+1}^*, w_{2j}^* \) are vacuum if \(j = k. \)

Then using (5.7), we have
\[
|M_j[\Psi, \bar{\mu}_1]| \lesssim |t|^{-\sigma} \mu_{0j}^{-\frac{n-2}{2} \lambda_0} \|\Psi\|_{\alpha, \sigma}^{out, *} + |t|^{-1-\alpha_j-\sigma} O(R^{-2}) \lesssim |t|^{-\sigma} |t|^{-\alpha_j-\sigma} (\|\Psi\|_{\alpha, \sigma}^{out, *} + O(R^{-2})). \tag{5.14}
\]
where we have used that $\mu_{0j} \dot{\mu}_{0j} = c_s \lambda_{0j}^{n-2}$.

We will prove
\begin{equation}
\| \tilde{S}_j[\Psi, \tilde{\mu}_1]\|_{1+\alpha_j, \sigma}^\# + \| S_j[\Psi, \tilde{\mu}_1]\|_{1+\alpha_j, \sigma}^\# \lesssim \| \Psi \|^\alpha_{a, \sigma} + O(R^{-2}),
\end{equation}
by induction. The case $j = 1$ has been proved.

Suppose we have proved $\| \tilde{S}_{j-1}[\Psi, \tilde{\mu}_1]\|_{1+\alpha_{j-1}, \sigma}^\# + \| S_{j-1}[\Psi, \tilde{\mu}_1]\|_{1+\alpha_{j-1}, \sigma}^\# \lesssim \| \Psi \|^\alpha_{a, \sigma} + O(R^{-2})$ by induction. Consequently $\| s^{-1/2} \lambda_{0j}(s) S_{j}(s) \| \lesssim (s)^{-\alpha_j - 1 - \sigma} \| \Psi \|^\alpha_{a, \sigma} + O(R^{-2})$). Now using (5.8) and (5.14),
\begin{equation}
\| S_j[\Psi, \tilde{\mu}_1]\| \lesssim (t)^{-\frac{n-2}{n-2} \alpha_j} \int_0^t (s)^{-\frac{n-2}{n-2} \alpha_j} (s)^{-\alpha_j - 1 - \sigma} ds \| \Psi \|^\alpha_{a, \sigma} + O(R^{-2})
\end{equation}
where we have used $\sigma < 1 = \min_{2 \leq j \leq k} \left\{ \frac{n-6}{2} \alpha_j \right\}$. Similarly, we can get
\begin{equation}
\| \tilde{S}_j[\Psi, \tilde{\mu}_1]\| \lesssim (t)^{-1 - \alpha_j - \sigma} \| \Psi \|^\alpha_{a, \sigma} + O(R^{-2}).
\end{equation}
This completes the induction. \hfill \Box

6 The Schauder fixed point argument

In this section, we will solve the system (3.11)-(3.12) by fixed point argument. We need to set up appropriate topology and operators. Recall (4.4), (4.3) and (4.8) in the previous section.

When $\nu(\tau) = (t)^{\gamma_j} \mu_{0j}^\frac{n-2}{n-2}$, we write
\begin{equation}
\| (y) \nabla \phi \|^\alpha_{v(\tau), a} + \| \phi \|^\alpha_{v(\tau), a} = \| \phi \|^\alpha_{J, a, \sigma}, \quad \| h \|^\alpha_{\nu(\tau), a} = \| h \|^\alpha_{J, a, \sigma}, \quad T_{v(\tau)} = T_J
\end{equation}
for short, where $0 < a < 1$, $\gamma_1 = -1 - \sigma$ and $\gamma_j = \frac{n-2}{2} \alpha_{j-1} - \sigma$, $j = 2, \ldots, k$.

Now we state precisely the topology we are going to use. Suppose σ is small enough and $0 < \alpha < a < 1$. Define
\begin{equation}
\| \phi \|^\alpha_{a, \sigma} : = \sum_{j=1}^k \| \phi \|^\alpha_{J, a, \sigma}.
\end{equation}
We will cope with $\dot{\phi}$, Ψ, $\tilde{\mu}_1$ in the topology (6.2), (4.29) and (5.10) respectively.

The following lemma justifies why we choose $\nu(\tau) = (t)^{\gamma_j} \mu_{0j}^\frac{n-2}{n-2}$.

Lemma 6.1 For any $R > 0$ large, there exists t_0 negative enough such that for $t < t_0$ one has
\begin{equation}
|H_j(x, t)| \leq C \frac{n-2}{n-2} (t)^{\gamma_j} (y_j)^{-4} (||\tilde{\mu}_1||_\sigma + ||\Psi||^\alpha_{a, \sigma}), \quad j = 1, \cdots, k.
\end{equation}

Proof By (5.10), we have
\begin{align}
|D_1[\tilde{\mu}_1]| & \lesssim |\tilde{\mu}_1 Z_{n+1}(y_1)| \lesssim (t)^{\gamma_1} (y_1)^{2-a} \|\tilde{\mu}_1\|_\sigma, \\
|D_j[\tilde{\mu}_1]| & \lesssim \lambda_j (t)^{\frac{n-2}{n-2} - \sigma} (|Z_{n+1}(y_j)| + \langle y_j \rangle^{-4}) \|\tilde{\mu}_1\|_\sigma \lesssim \mu_{0j}^\frac{n-2}{n-2} (t)^{\gamma_j} (y_j)^{-4} \|\tilde{\mu}_1\|_\sigma,
\end{align}
(6.4)
for \(j = 2, \ldots, k \). By the same estimate in Lemma 5.2, we have
\[
|\xi_j U(y)\mu_j ν^{-\frac{n-2}{2}}| \lesssim \mu_{0j}^{-\frac{n-2}{2}} (-\nu) (y) |\Psi|_{a,a,*}^n, \quad j = 1, \ldots, k.
\] (6.5) \hfill \Box

We reformulate the inner-outer gluing system and the orthogonal equation into the mapping \(\tilde{T} \):
\[
(\tilde{\phi}, \Psi, \tilde{\mu}_1) = \tilde{T}[\tilde{\phi}, \Psi, \tilde{\mu}_1],
\] (6.6)
where \(\tilde{T} = (\tilde{T}^1, \tilde{T}^2, \tilde{T}^3) \), \(\tilde{T}^1 = (\tilde{T}_1^1, \ldots, \tilde{T}_k^1) \), \(\tilde{T}^3 = (\tilde{T}_1^3, \ldots, \tilde{T}_k^3) \), with the following expressions,
\[
\begin{align*}
\tilde{T}_j^1[\Psi, \tilde{\mu}_1] &= \mathcal{T}_j^{in}[\mathcal{H}_j[\Psi, \tilde{\mu}_1] - c_j [\Psi, \tilde{\mu}_1] Z_{n+1}], \quad j = 1, \ldots, k, \\
\tilde{T}_j^2[\tilde{\phi}, \Psi, \tilde{\mu}_1] &= \mathcal{T}_j^{out}[\mathcal{G}[\tilde{\phi}, \Psi, \tilde{\mu}_1]], \\
\tilde{T}_j^3[\Psi, \tilde{\mu}_1] &= S_j[\Psi, \tilde{\mu}_1], \quad j = 1, \ldots, k.
\end{align*}
\] (6.7) \quad (6.8) \quad (6.9)
where \(c_j [\Psi, \tilde{\mu}_1] (t) = \|Z_{n+1}\|_{L^2(B_{kR})}^{-\frac{n-2}{2}} \int_{B_{kR}} \mathcal{H}_j [\Psi, \tilde{\mu}_1] (y, t) Z_{n+1}(y) \, dy \). Here \(\mathcal{T}_j^{in} \) in (6.7) is obtained from (4.8). It is well-defined because \(\mathcal{H}_j - c_j Z_{n+1} \) satisfies (4.7). Denote
\[
\begin{align*}
\mathcal{B}_{\text{out}} &= \{ \Psi | \| \Psi \|^n_{a,a,*} \leq R^{-2\rho} \}, \\
\mathcal{B}_{\text{in}} &= \{ \tilde{\phi} | \| \tilde{\phi} \|^n_{a,a,*} \leq 1 \}, \\
\mathcal{B}_{\mu_1} &= \{ \tilde{\mu}_1 | \| \tilde{\mu}_1 \|_{a,a} \leq R^{-\rho} \}.
\end{align*}
\] (6.10)
where \(0 < 2\rho \leq \frac{a-\alpha}{2} \) is a small constant.

Proof of Theorem 1.4 • Existence part. Fix \(0 < \alpha < a < 1 \). We choose \(\sigma, \epsilon > 0 \) small enough such that Proposition 4.1 holds. Let \(\mathcal{B} = \mathcal{B}_{\text{in}} \times \mathcal{B}_{\text{out}} \times \mathcal{B}_{\mu_1} \), then we claim that \(\tilde{T} \) maps \(\mathcal{B} \) to \(\mathcal{B} \) provided taking \(R \) large enough and \(t_0 \) negative enough.

First, for any fixed \(\tilde{\phi} \in \mathcal{B}_{\text{out}}, \tilde{\mu}_1 \in \mathcal{B}_{\mu_1} \), by Proposition 4.1, there exists \(t_0 = t_0(R) \) negative enough such that
\[
\| \tilde{T}_j^1[\Psi, \tilde{\mu}_1] \|^n_{a,a,*} \leq \sum_{j=1}^{k} C_j^{\text{in}} |\mathcal{H}_j[\Psi, \tilde{\mu}_1] - c_j [\Psi, \tilde{\mu}_1] Z_{n+1}|^n \leq 1
\] (6.11)
provided taking \(R \) large enough.

Second, for any fixed \(\tilde{\phi} \in \mathcal{B}_{\text{in}}, \tilde{\mu}_1 \in \mathcal{B}_{\mu_1} \), by Proposition 4.1, there exists \(t_0 = t_0(R) \) negative enough such that
\[
\| \tilde{T}_j^2[\tilde{\phi}, \Psi, \tilde{\mu}_1] \|^n_{a,a,*} \leq C_j^{\text{out}} |\mathcal{G}[\tilde{\phi}, \Psi, \tilde{\mu}_1] - c_j [\tilde{\phi}, \Psi, \tilde{\mu}_1] Z_{n+1}|^n \leq 1
\] (6.12)
Therefore \(\tilde{T} : \mathcal{B} \to \mathcal{B} \).

Next we need to show \(\tilde{T} \) is a compact mapping. Thus for any sequence \((\tilde{\phi}_m, \Psi_m, \tilde{\mu}_1^m) \in \mathcal{B} \), where \(\tilde{\phi}_m = (\phi_1^m, \ldots, \phi_k^m), \tilde{\mu}_1^m = (\mu_1^m, \ldots, \mu_k^m) \), we have to show \(\tilde{T}[\tilde{\phi}_m, \Psi_m, \tilde{\mu}_1^m] \) has a convergent subsequence. Let us consider first the sequence \(\tilde{\phi}_j^m = \mathcal{T}_j^{in}[\mathcal{H}_j[\Psi_m, \tilde{\mu}_1^m] - c_j [\Psi_m, \tilde{\mu}_1^m] Z_{n+1}] \). It satisfies
\[
\partial_t \tilde{\phi}_j^m = \Delta \tilde{\phi}_j^m + h_j^m(y, t), \quad h_j^m = \mathcal{H}_j[\Psi_m, \tilde{\mu}_1^m] - c_j [\Psi_m, \tilde{\mu}_1^m] Z_{n+1}.
\]
Using Lemma 6.1 and interior estimate of parabolic equations, we get that in any compact set $K \subset B_{8R} \times (-\infty, t_0)$, we have $\tilde{\Phi}^m_j \in C^{1+\gamma, \frac{1}{1+\gamma}}$ in K for each fixed $\gamma \in (0, 1)$. Thus $\tilde{\Phi}^m_j$ and $\nabla_y \tilde{\Phi}^m_j$ are equi-continuous in K. By Arzelà-Ascoli theorem, going to a subsequence if necessary, $\tilde{\Phi}^m_j$ will converge uniformly in compact sets of $B_{8R} \times (-\infty, t_0)$. Since $\tilde{\Phi}^m_j \in B_{t_0}$, then the limit will also belong to B_{t_0}.

Second, consider $\tilde{\Psi}^m = T^{out}[\mathcal{G}[\tilde{\Phi}^m, \Psi^m, \tilde{\mu}_1^m]]$. Since $\mathcal{G}[\tilde{\Phi}^m, \Psi^m, \tilde{\mu}_1^m]$ are uniformly bounded, $\tilde{\Psi}^m$ have a uniform $C^{1+\gamma, \frac{1}{1+\gamma}}$ bound in compact sets of $\mathbb{R}^n \times (-\infty, t_0)$. By Arzelà-Ascoli theorem, $\tilde{\Psi}^m$ (up to a subsequence) converges uniformly to a function $\tilde{\Psi} \in B_{t_0}$.

Third, consider $\mathcal{S}[\Psi^m, \tilde{\mu}_1^m]$. Note that (5.4) and (5.7) imply $M_1[\Psi^m, \tilde{\mu}_1^m]$ and $M_J[\Psi^m, \tilde{\mu}_1^m]$ are $C^1(-\infty, t_0)$. Thus $\mathcal{S}[\Psi^m, \tilde{\mu}_1^m] \in C^2(-\infty, t_0)$. Consequently $\mathcal{S}[\Psi^m, \tilde{\mu}_1^m]$ has a convergent subsequence in $B_{\tilde{\mu}_1}$.

By Schauder’s fixed point theorem, $\tilde{T} : B \to B$ has a fixed point $\tilde{\Phi}, \tilde{\Psi}, \tilde{\mu}_1$). Then (6.9) implies $c_j[\tilde{\Psi}, \tilde{\mu}_1] = 0$ and consequently $\tilde{\Phi}, \tilde{\Psi}, \tilde{\mu}_1$ makes (3.11) and (3.12) hold.

We have constructed a bubble tower solution for (1.1). Recall that $\tilde{u} = \tilde{U} + \phi_0 + \sum_{j=1}^k \phi_j \eta_j + \tilde{\Psi}$. One can see (1.21), (2.6) and (3.6) for their respective definitions. We shall prove that \tilde{U} dominates in the sum in the sense of L^∞ and H^1 when t_0 is negative enough.

- Convergence in $L^\infty(\mathbb{R}^n)$ and positiveness. It is easy to see the first approximation and inner solutions are smaller than \tilde{U}. Namely, by Lemma A.2, we know $|\phi_0| \lesssim |t|^{-\epsilon} \tilde{U}$. For $j = 1, \ldots, k$, by (A.12) and (6.10),

$$
\left| \mu_j^{-\frac{n-2}{2}} \phi_j \left(\frac{x}{\mu_j}, t \right) \eta_j \right| \lesssim |t|^\gamma \mu_j^{\frac{n-2}{2}} \langle y_j \rangle^{\gamma n} \mu_k^{-\frac{n-2}{2}} \langle y_k \rangle^{n-2} U_k(x, t) \lesssim |t|^{-\sigma} U_k(x, t).
$$

The solution $\tilde{\Psi}$ in the outer problem is more involved to estimate. First, by (6.10), we have

$$
|\tilde{\Psi}| \lesssim \sum_{j=1}^k w^*_j + \sum_{j=1}^{k-1} w^*_j + w^*_j.
$$

We will estimate it in several regions. We will use Lemma A.5 and A.6 repeatedly in the following argument.

In $\{|x| \leq \tilde{\mu}_0 k \}$, we have

$$
|\tilde{\Psi}| \lesssim w^*_k + w^*_{2k+1} \lesssim |t|^\gamma \mu_k \left(\tilde{\mu}_0 k \right)^{\frac{n-2}{2}} \langle y_k \rangle^{n-2} U_k(x, t) \lesssim |t|^{-\sigma} U_k(x, t).
$$

In $\{\tilde{\mu}_{0,i+1} \leq |x| \leq \tilde{\mu}_0 k \}$, $i = 2, \ldots, k-1$, we have

$$
|\tilde{\Psi}| \lesssim w^*_i + w^*_{i+1} + w^*_{2i} + w^*_{2i+1} \lesssim \left(\mu_i \tilde{\mu}^{\frac{n-2}{2}} \right) \left(\tilde{\mu}_{0,i+1} \right)^{\frac{n-2}{2}} U_i(x, t) \lesssim |t|^{-\sigma} U_i(x, t).
$$

This is because

$$
w^*_i \mu_i^{-\frac{n-2}{2}} \langle y_i \rangle^{n-2} \lesssim |t|^{\gamma i} \mu_k \left(\tilde{\mu}_0 k \right)^{\frac{n-2}{2}} \langle y_k \rangle^{n-2} \lesssim |t|^{-\sigma},
$$

$$
w^*_{i+1} \mu_i^{-\frac{n-2}{2}} \langle y_{i+1} \rangle^{n-2} \lesssim |t|^{\gamma i+1} \mu_i^{-\frac{n-2}{2}} \tilde{\mu}_{i+1}^{-\frac{n-2}{2}} \langle y_{i+1} \rangle^{n-2} \lesssim |t|^{\gamma i+1} \mu_i^{-\frac{n-2}{2}} \tilde{\mu}_{i+1}^{-\frac{n-2}{2}} \lesssim |t|^{-\sigma},
$$

$$
w^*_{2i} \mu_i^{-\frac{n-2}{2}} \langle y_{2i} \rangle^{n-2} \approx |t|^{2\gamma i} \mu_i^{-\frac{n-2}{2}} \tilde{\mu}_{i+1}^{-\frac{n-2}{2}} \langle y_{2i} \rangle^{n-2} \lesssim |t|^{\gamma i} \mu_i^{-\frac{n-2}{2}} \tilde{\mu}_{i+1}^{-\frac{n-2}{2}} \langle y_{2i} \rangle^{n-2} \lesssim |t|^{-\sigma}.
$$

$\tilde{\Psi}$ Springer
when regularity theory, we improve the regularity of \(\bar{\mu}_{i+1} \mu_i^{n-2} \left(\bar{\mu}_{i+1}^2 + \bar{\mu}_i^{2-n} \right) \approx |t|^{-2\sigma}, \)

\[
w_{2,i-1}^* \mu_i^{n-2} (y_i)^{n-2} \lesssim |t|^{-2\sigma} \mu_i^{n-2} \left(\bar{\mu}_{i+1}^2 + \bar{\mu}_i^{2-n} \right) \lesssim |t|^{-2\sigma}.
\]

In \(\{ \bar{\mu}_{02} \leq |x| \leq \bar{\mu}_{01} \} \), similarly, we have

\[
|\Psi| \lesssim (w_{11}^* + w_{12}^* + w_{21}^*)(1 + |x|)^{n-2} h_1(x,t) \lesssim |t|^{-\sigma} h_1(x,t),
\]

since for \(\delta \leq (n-2-\alpha)^{-1}, \)

\[
w_{11}^*(1 + |x|)^{n-2} \lesssim |t|^\alpha (1 + |x|)^{n-2} \lesssim |t|^{\delta(n-2-\alpha)} = |t|^{-\sigma},
\]

\[
w_{12}^*(1 + |x|)^{n-2} \lesssim |t|^2 \bar{\mu}_{i-1}^{n-2} (1 + |x|)^{n-2} \lesssim |t|^{-\sigma},
\]

\[
w_{21}^*(1 + |x|)^{n-2} \lesssim |t|^{-2\sigma} \bar{\mu}_i^{n-2} |x|^{2-n} \min\{1, |x|^2\} (1 + |x|)^{n-2} \lesssim |t|^{-2\sigma}.
\]

In \(\{ \bar{\mu}_{01} \leq |x| \leq |t|^{1/2} \}, \)

|\Psi| \lesssim w_{11}^* + w_{3}^* \lesssim |t|^{-\frac{\sigma}{2}} U_1(x,t).

In \(\{|x| \geq |t|^{1/2} \}, \)

|\Psi| \lesssim w_{3}^* \lesssim |t|^{-\frac{\sigma}{2}} U_1(x,t).

Therefore \(|\Psi| \lesssim |t|^{-\frac{\sigma}{2}} \bar{U} \).

Combining the above analysis, we have \(u = \bar{U}(1 + O(|t|^{-\sigma})) > 0 \). By the parabolic regularity theory, we improve the regularity of \(u \) to be smooth.

- Convergence in \(H^1(\mathbb{R}^n) \). The solution we construct is \(u = \bar{U} + \varphi_0 + \varphi \), where \(\varphi_0 \) is from (2.6) and \(\varphi \) is from (3.6). Set \(\bar{\varphi} = \varphi_0 + \varphi \). We have already proved \(|\bar{\varphi}| \lesssim |t|^{-\sigma} \bar{U} \). Formally, we can expect \(|\nabla_x \bar{\varphi}| \lesssim |t|^{-\sigma} |\nabla_x U| \). Note that \(\bar{\varphi} \) satisfies

\[
\partial_t \bar{\varphi} = \Delta_x \bar{\varphi} + f(x,t),
\]

where \(f(x,t) = (\bar{U} + \bar{\varphi})^p - \sum_{j=1}^k U_j^p - \sum_{j=1}^k \partial_U U_j \). It follows that

\[
|f(x,t)| \lesssim \begin{cases}
|t|^{-e} \mu_0^{\frac{p}{2}} (y_0)^{n-2} + \mu_0^{\frac{n}{2}} |\mu_0^{n-2} |y_0|^{2-n} & \text{if } |x| \leq \bar{\mu}_0, \\
|t|^{-e} \mu_0^{\frac{p}{2}} (y_0)^{n-2} + \mu_0^{\frac{n}{2}} |\mu_0^{n-2} |y_0|^{2-n} & \text{if } \bar{\mu}_0 \leq |x| \leq \bar{\mu}_0, j = 2, \ldots, k - 1, \\
|t|^{-e} (x)^{n-2} + |t|^{1-\sigma} |x|^{2-n} & \text{if } x \geq \bar{\mu}_2, \\
|t|^{-e} \mu_0^{\frac{p}{2}} (y_0)^{n-2} & \text{if } |x| \leq \mu_0, \\
|t|^{-e} \mu_0^{\frac{p}{2}} & \text{if } \mu_0 \leq |x| \leq \mu_0, j = 2, \ldots, k - 1, \\
|t|^{-e} \mu_0^{\frac{n}{2}} |x|^{2-n} & \text{if } |x| \leq \mu_0, j = 2, \ldots, k, \\
|t|^{-e} (x)^{n-2} + |t|^{1-\sigma} |x|^{2-n} & \text{if } 1 \leq |x|,
\end{cases}
\]

since \(|t|^{-e} \mu_0^{\frac{n}{2}} (y_0)^{n-2} \gtrsim \mu_0^{\frac{n}{2}} |\mu_0^{n} |y_0|^{2-n} \) in \(\{ \bar{\mu}_{0,j+1} \leq |x| \leq \bar{\mu}_0 \} \), \(j = 2, \ldots, k \) when \(\epsilon \) is small.

By the similar argument about uniqueness in Corollary 4.3, we know

\[
\bar{\varphi} = T^{out}[f].
\]

Then

\[
|\nabla_x \bar{\varphi}| \lesssim T^d[|f|],
\]

\[
\square
\]

\text{Springer}
where
\[T^d[g] := \int_{-\infty}^{t} \frac{ds}{(t - s)^{\frac{n}{2} + 1}} \int_{\mathbb{R}^n} e^{-\frac{(x - y)^2}{4(t - s)}} |x - y|g(y, s) \, dy \, ds. \]

Claim:
\[|\nabla_x \tilde{\theta}| \lesssim |t|^{-\varepsilon} \sum_{j=1}^{n} \mu_{0j}^\alpha (y_0j)^{1-n}. \tag{6.15} \]

Notice \(\mu_{0j}^{-\frac{n}{2}} (y_0j)^{1-n} \) is approximate to \(|\nabla_x U_j(x, t)| \). Once we complete the proof of (6.15), it is straightforward to have \(\|u(\cdot, t) - \tilde{U}\|_{H^1(\mathbb{R}^n)} = O(|t|^{-\varepsilon}) \).

By Lemma B.6, for \(j = 2, \ldots, k - 1 \), we get
\[T^d[|t|^{-\varepsilon} \mu_{0j}^{-\frac{n}{2}} 1_{\{\mu_{0j+1} \leq |x| \leq \mu_{0j}\}}] \lesssim |t|^{-\varepsilon} \mu_{0k}^{-\frac{n}{2}} (y_0k)^{1-n}, \]
\[T^d[|t|^{-\varepsilon} \mu_{0j}^{-\frac{n}{2}} 1_{\{\mu_{0j} \leq |x| \leq \mu_{0j+1}\}}] \lesssim |t|^{-\varepsilon} \mu_{01}^{-\frac{n}{2}} (y_01)^{1-n}. \]

For \(j = 2, \ldots, k \),
\[T^d[|t|^{-\varepsilon} \mu_{0j}^{-\frac{n}{2}} |x|^{-n-2} 1_{\{\mu_{0j} \leq |x| \leq \mu_{0j+1}\}}] \lesssim \begin{cases} |t|^{-\varepsilon} \mu_{0j}^{-\frac{n}{2}} & \text{if } |x| \leq \mu_{0j}, \\ |t|^{-\varepsilon} \mu_{0j}^{-\frac{n}{2}} |x|^{1-n} & \text{if } \mu_{0j} \leq |x| \leq |t|^{\frac{1}{2}}, \\ (|x|^2)^{-\alpha_j(n/2-1)} |x|^{1-n} & \text{if } |x| \geq |t|^{\frac{1}{2}}. \end{cases} \]

Similarly,
\[T^d[|t|^{-\varepsilon} |x|^{-n-2} 1_{\{1 \leq |x| \leq |t|^{\frac{1}{2}}\}}] \lesssim |t|^{-\varepsilon} \mu_{01}^{-\frac{n}{2}} (y_01)^{1-n}. \]

The left part can be transformed into the estimate in Appendix.

\[T^d[|t|^{-\varepsilon} |x|^{-n-2} 1_{\{|t|^{\frac{1}{2}} \leq |x|\}} + |t|^{-1-\alpha} |x|^{2-n} 1_{\{1 \leq |x|\}}] \]
\[\lesssim \int_{-\infty}^{t} \frac{ds}{(t - s)^{\frac{n}{2} + 1}} \int_{\mathbb{R}^n} e^{-\frac{(x - y)^2}{4(t - s)}} \left[(-s)|y|^{-n-2} 1_{\{(-s)^{\frac{1}{2}} \leq |y|\}} + (-s)^{-1-\alpha} |y|^{1-n} 1_{\{|y|\}} \right] |y| \, dy \, ds \]
\[\lesssim (|t|^{-1-\varepsilon} + |t|^{-\alpha}) \mu_{01}^{-\frac{n}{2}} (y_01)^{1-n}, \]
whose estimate process is similar to the convolution of Gaussian kernel in \(\mathbb{R}^{n+1} \).

This completes the proof of (6.15). \(\square \)

Acknowledgements The research of L. Sun and J. Wei is partially supported by NSERC of Canada.
Appendix A. Estimates for the data in the outer problem

We will prove Proposition 4.1 in this section. Throughout this section, we assume \(\|\Psi\|_{out,\ast}^{in,\ast} + \|\tilde{\phi}\|_{\sigma,\sigma}^{in,\ast} < \infty, \|\tilde{\mu}_1\|_{\sigma} \leq 1. \)

The parameters are determined in the following order. First, we choose \(R \) as a large fixed positive constant. Second, we choose \(\sigma > 0 \) small. Third, we choose \(\delta > 0 \) small. Fourth, we choose \(\epsilon > 0 \) small. Finally, we take \(t_0 \) very negative such that \(\mu_j \approx \mu_{0j} \), for \(j = 1, \ldots, k \), \(\mu_j \approx \tilde{\mu}_{0j} \) for \(j = 2, \ldots, k \).

We introduce the notation \(y_j = x/\mu_j, \tilde{y}_j = x/\tilde{\mu}_j, y_{0j} = x/\mu_{0j}, \tilde{y}_{0j} = x/\tilde{\mu}_{0j} \) for \(j = 1, \ldots, k \). One readily sees that \(|y_j| \approx |y_{0j}|, |\tilde{y}_j| \approx |\tilde{y}_{0j}| \) for \(j = 1, \ldots, k \).

Lemma A.1 Consider the \(U_j \) defined in (1.22). For \(j = 1, \ldots, k - 1 \), one has

\[
U_j < U_{j+1} \text{ in } \{|x| < \tilde{\mu}_{j+1}\} \text{ and } U_j > U_{j+1} \text{ in } \{|x| > \tilde{\mu}_{j+1}\}, \quad (A.1)
\]

In \(\{|x| \leq \tilde{\mu}_{0k}\} \)

\[
U_k \gtrsim U_{k-1} > U_{k-2} > \cdots > U_1. \quad (A.2)
\]

In \(\{|x| \geq \tilde{\mu}_{02}\} \)

\[
U_1 \gtrsim U_2 > U_3 > \cdots > U_k. \quad (A.3)
\]

In \(\{\tilde{\mu}_{0,j+1} \leq |x| \leq \tilde{\mu}_{0j}\}, j = 2, \ldots, k - 1, \)

\[
U_j \gtrsim U_{j+1} > U_{j+2} > \cdots > U_k, \quad U_j \gtrsim U_{j-1} > U_{j-2} > \cdots > U_1. \quad (A.4)
\]

Moreover

\[
\frac{U_{j+1}}{U_j} \approx \lambda_j^{\frac{-2}{n}} (y_{j+1})^{-(n-2)} 1_{\{|x| \leq \mu_{0j}\}} + \lambda_j^{\frac{-2}{n}} (y_{j+1})^{-(n-2)} 1_{\{|x| > \mu_{0j}\}} \text{ for } j = 1, \ldots, k - 1, \quad (A.5)
\]

\[
\frac{U_{j+1}}{U_j} \approx \lambda_j^{\frac{-2}{n}} (y_{j})^{-(n-2)} 1_{\{|x| \leq \mu_{0,j-1}\}} + \lambda_j^{\frac{-2}{n}} (y_{j})^{-(n-2)} 1_{\{|x| > \mu_{0,j-1}\}} \text{ for } j = 2, \ldots, k. \quad (A.6)
\]

Proof (A.1)-(A.4) follow from that \(\frac{U_{j+1}}{U_j} \) is strictly decreasing about \(|x|\) and \(\frac{U_{j+1}}{U_j} (\tilde{\mu}_{j+1}) = 1, \) (see Fig. 1). Up to a multiplicity of the constant \(\alpha_n \), \(U_j = \mu_j^{\frac{2-n}{2}} (1 + |y_j|^2)^{\frac{2-n}{2}} \) and

\[
U_{j+1} = \frac{\mu_j^{\frac{2-n}{2}}}{(\mu_j^{\frac{2}{2}} + |x|^2)^{\frac{2-n}{2}}} = \frac{\mu_j^{\frac{2-n}{2}}}{(\lambda_j^{\frac{2}{2}} + |y_j|^2)^{\frac{2-n}{2}}}, \quad (A.7)
\]

then

\[
\frac{U_{j+1}}{U_j} = \lambda_j^{\frac{-2}{n}} \frac{(1 + |y_j|^2)^{\frac{2-n}{2}}}{(\lambda_j^{\frac{2}{2}} + |y_j|^2)^{\frac{2-n}{2}}} \approx \lambda_j^{\frac{-2}{n}} \frac{(y_{j+1})^{-(n-2)} 1_{\{|x| \leq \mu_{0j}\}} + \lambda_j^{\frac{-2}{n}} 1_{\{|x| > \mu_{0j}\}}}{(y_{j+1})^{-(n-2)} 1_{\{|x| \leq \mu_{0j-1}\}} + \lambda_j^{\frac{-2}{n}} 1_{\{|x| > \mu_{0j-1}\}}}, \quad (A.8)
\]

for \(j = 1, \ldots, k - 1 \). This finishes the proof of (A.5). Similarly,

\[
\frac{U_{j-1}}{U_j} = \lambda_j^{\frac{-2}{n}} \frac{(\lambda_j^{2} + |y_{j-1}|^2)^{\frac{2-n}{2}}}{(1 + |y_{j-1}|^2)^{\frac{2-n}{2}}} \approx \lambda_j^{\frac{-2}{n}} (y_{j-1})^{-(n-2)} 1_{\{|x| \leq \mu_{0,j-1}\}} + \lambda_j^{\frac{-2}{n}} 1_{\{|x| > \mu_{0,j-1}\}} \quad (A.9)
\]

for \(j = 2, \ldots, k \). Then (A.6) holds. \(\square \)
Lemma A.2 Consider \(\varphi_0 \) defined in (2.6). One has
\[
|\varphi_0| \lesssim \sum_{i=2}^{k} \lambda_i U_i \chi_i.
\]

Proof By (2.6) and (2.22), we have
\[
|\varphi_0| \lesssim k \sum_{i=2}^{k} \mu_{i-1}^{-\frac{n-2}{2}} \langle y_i \rangle^{-2} \chi_i.
\] (A.10)

It follows from (2.4) that the support of \(\chi_i \) are disjoint. More precisely, the support of \(\chi_i \) is contained in \(\{ \lambda_{i,i+1}^2 \leq |y_i| \leq \lambda_i^{-2} \} \). It is easy to verify that \(\mu_{i-1}^{-\frac{n-2}{2}} \langle y_i \rangle^{-2} \lesssim \lambda_i U_i \) in this set. \(\square \)

Lemma A.3 For \(0 < \alpha < a < 1 \), there exists \(R \) large enough and \(t_0 \) negative enough such that \(B[\vec{\phi}] \) defined in (3.8) satisfies
\[
\|B[\vec{\phi}]\|_{a, \sigma}^{\text{out}} \lesssim R^{\alpha-a} \|\vec{\phi}\|_{j,a, \sigma}^{i.n.*}.
\] (A.11)

Proof By the definition (6.1) and (4.4),
\[
\langle y_j \rangle |\nabla_{y_j} \phi_j(y_j, t)| + |\phi_j(y_j, t)| \lesssim |t|^{\gamma_j} \mu_{0_j}^{-\frac{n-2}{2}} R^{n+1-a} \langle y_j \rangle^{-n-1} \|\phi_j\|_{j,a, \sigma}^{i.n.*} \] (A.12)

- First, using (3.7)
\[
|\dot{\mu}_j \frac{\partial \phi_j}{\partial \mu_j} \eta_j| = |\dot{\mu}_j \mu_j^{-\frac{n}{2}} \left(\frac{n-2}{2} \right) \phi_j(y_j, t) + y_j \cdot \nabla_{y_j} \phi_j(y_j, t) \right) \eta_j |
\lesssim |\dot{\mu}_j |\mu_j^{-1} |(-t)^{\gamma_j} R^{n+1-a} \langle y_j \rangle^{-n-1} \eta_j \|\phi_j\|_{j,a, \sigma}^{i.n.*} \] (A.13)
\lesssim |t_0|^{-\varepsilon} R^{n+1-a} w_{1,j} \|\phi_j\|_{j,a, \sigma}^{i.n.*}.

Fig. 1 Relation for three bubbles
Here we choose ϵ small such that $|\hat{\mu}_j \mu_j| \lesssim |t|^{-\epsilon}$ for $j = 1, \ldots, k$. We have used (4.20) in the last step.

- Second, (A.12) implies that

$$|\varphi_j(x, t)| \lesssim |t|^{\gamma_j} R^{-a} \|\phi_j\|_{j,a,\sigma}^{in,*} \quad \text{for} \quad 2R \leq |y_j| \leq 4R. \tag{A.14}$$

Using (3.2), we obtain

$$|\Delta \eta_j \varphi_j| \lesssim (R \mu_j)^{-2} |t|^{\gamma_j} R^{-a} \|\phi_j\|_{j,a,\sigma}^{in,*} 1_{[2R \leq |y_j| \leq 4R]} \lesssim R^{a-a} w_1j \|\phi_j\|_{j,a,\sigma}^{in,*}. \tag{A.15}$$

Similarly, we have

$$|\nabla_x \eta_j \cdot \nabla_x \varphi_j| \lesssim R^{-1} \mu_j^{-1} |t|^{\gamma_j} \mu_j^{-1} R^{-1-a} \|\phi_j\|_{j,a,\sigma}^{in,*} 1_{[2R \mu_j \leq |x| \leq 4R \mu_j]} \lesssim R^{a-a} w_1j \|\phi_j\|_{j,a,\sigma}^{in,*} \tag{A.16}$$

and

$$|\partial_t \eta_j \varphi_j| \lesssim R^{-1} \mu_j^{-2} |\hat{\mu}_j| |t|^{\gamma_j} R^{-a} \|\phi_j\|_{j,a,\sigma}^{in,*} 1_{[2R \mu_j \leq |x| \leq 4R \mu_j]} \lesssim R^{1+a-a} |\hat{\mu}_j| w_1j \|\phi_j\|_{j,a,\sigma}^{in,*}, \tag{A.17}$$

when $|\hat{\mu}_j| \lesssim |t|^{-\epsilon}$ for $j = 1, \ldots, k$.

- Third, to estimate $\left| p(u_0^p - U_j^{p-1}) \varphi_j \eta_j \right|$. We only give calculation details for $j = 2, \ldots, k - 1$ since the case $j = 1$ and $j = k$ can be dealt with similarly. Consider it in $\{\hat{\mu}_{0,j+1} \leq |x| \leq 4R \mu_{0,j}\}$. By Lemma A.1 and Lemma A.2,

$$U_j^{-1} \left(\sum_{i \neq j} U_i + \varphi_0 \right) \geq 2^{-1} U_j^{-1} \left(\sum_{i \neq j} U_i \right) - \frac{1}{2},$$

when t_0 is very negative. Consequently $u_* > \frac{1}{2} U_j$. Thus by the mean value theorem and (A.5) and (A.6),

$$|u_*^{p-1} - U_j^{p-1}| \lesssim U_j^{p-1} \left(\frac{U_j^{p+1}}{U_j} + \frac{U_j^{-1}}{U_j} + \lambda_j \right) \lesssim \mu_j^{-2} (y_j)^{-\frac{n+2}{2}} \left(\lambda_j^{\frac{n-2}{2}} (y_j+1)^{2-n} 1_{[\hat{\mu}_{0,j+1} \leq |x| \leq \mu_{0,j}]} + \lambda_j^{\frac{n-2}{2}} (y_j)^{n-2} + \lambda_j \right). \tag{A.18}$$

Therefore, using $|\varphi_j| \lesssim |t|^{\gamma_j} R^{a+1-a} \|\phi_j\|_{j,a,\sigma}^{in,*}$,

$$\left| p(u_*^{p-1} - U_j^{p-1}) \varphi_j \eta_j \right| 1_{[\hat{\mu}_{0,j+1} \leq |x| \leq 4R \mu_j]} \lesssim R^{n+1-a} \mu_j^{-2} |t|^{\gamma_j} \lambda_j^{\frac{n-2}{2}} (y_j+1)^{2-n} 1_{[\hat{\mu}_{0,j+1} \leq |x| \leq \mu_{0,j}]} \|\phi_j\|_{j,a,\sigma}^{in,*} \tag{A.19}$$

$$+ R^{n+1-a} (\lambda_j^{\frac{n-2}{2}} R^{-2} + \lambda_j) w_1j \|\phi_j\|_{j,a,\sigma}^{in,*} \lesssim R^{n+1-a} |t_0|^{-\epsilon} (w_2j + w_1j) \|\phi_j\|_{j,a,\sigma}^{in,*}.$$
Here we have used the following fact.

\[R^{n+1-a} \mu_j^{-2} |t|^{\gamma_j-\frac{n-2}{2}} \langle y_j+1 \rangle^{2-n} 1_{\{\hat{\mu}_{0,j+1} \leq |x| \leq \mu_{0j}\}} \]

\[\approx R^{n+1-a} \lambda_{j+1}^{\frac{n-2}{2}} |t|^{\sigma} \mu_j^{-2} \lambda_j^{-1} |x|^{2-n} 1_{\{\hat{\mu}_{0,j+1} \leq |x| \leq \mu_{0j}\}} \]

\[\lesssim R^{n+1-a} |t_0|^{-\epsilon} w_{2,j}. \]

In \(\{\hat{\mu}_{0,m+1} \leq |x| \leq \hat{\mu}_{0m}\}, m = j + 1, \cdots, k, \) one has \(u^{p-1}_e - U^{p-1}_j \approx U^{p-1}_m \approx \mu_m^{-2} \langle y_m \rangle^{-4} \) and \(|\varphi_j| \lesssim (-t)^{\gamma_j} R^{n+1-a} \phi_j \|_{j,a,\sigma}. \)

Then it is easy to see

\[|p(u^{p-1}_e - U^{p-1}_j) \varphi_j \eta_j| \lesssim R^{n+1-a} |t|^{\gamma_j-\gamma_m} w_{1,m} \phi_j \|_{j,a,\sigma} \lesssim R^{n+1-a} |t_0|^{-\epsilon} w_{1,m} \phi_j \|_{j,a,\sigma}. \]

Taking \(t_0 \) very negative such that \(|t_0|^{-\epsilon} < R^{n-\epsilon-1} \), we obtain (A.11).

Recall \(E^{out} \) defined in (3.10). We reorganize the terms as the following.

\[E^{out} = \bar{E}_1 + \bar{E}_2 + \bar{E}_3 + \bar{E}_4 + \bar{E}_5 \quad \text{(A.20)} \]

where \(\bar{E}_1 \) is defined in (2.13), and

\[\bar{E}_2 = \mu_1^{-\frac{n+2}{2}} D_1[\hat{\mu}_1](1 - \eta_1) + \sum_{j=2}^k \mu_j^{-\frac{n+2}{2}} D_j[\hat{\mu}_1](\chi_j - \eta_j) + \sum_{j=2}^k \mu_j^{-\frac{n+2}{2}} \Theta_j[\hat{\mu}_1] \chi_j \quad \text{(A.21)} \]

\[\bar{E}_3 = \sum_{j=2}^k p(\bar{U}^{p-1} - U^{p-1}_j) \varphi_0 j \chi_j \quad \text{(A.22)} \]

\[\bar{E}_4 = \sum_{j=2}^k (2 \nabla_x \varphi_0 j \cdot \nabla_x \chi_j + \Delta_x \chi_j \varphi_0 j) - \sum_{j=2}^k \partial_t (\varphi_0 j \chi_j) \quad \text{(A.23)} \]

\[\bar{E}_5 = N_0(\varphi_0). \quad \text{(A.24)} \]

Lemma A.4 There exist \(\sigma, \epsilon > 0 \) and \(t_0 \) negative enough, such that

\[E^{out} \lesssim R^{-1} \left(\sum_{j=1}^{k} w_{1,j} + \sum_{j=1}^{k-1} w_{2,j} + w_3 \right). \]

Proof • Estimate of \(\bar{E}_2 \). Consider the first term in \(\bar{E}_2 \). The support of \(1 - \eta_1 \) is \(\{|\gamma_1| \geq 2R\} \).

Since we assume \(\|\hat{\mu}\|_\sigma < 1 \), one has \(|\hat{\mu}_1| \leq \|\hat{\mu}_1\|_\sigma |t|^{-1-\sigma} \leq |t|^{-1-\sigma} \). Then using (2.27)

\[|\mu_1^{-\frac{n+2}{2}} D_1[\hat{\mu}_1](1 - \eta_1)| \lesssim |t|^{-1-\sigma} |x|^{2-n} 1_{\{|x| \geq 2R\}} \]

\[\lesssim R^{k+\alpha-n} w_{11} + R^{-1} w_3 \lesssim R^{-1} (w_{11} + w_3). \]

For \(j \geq 2 \), the support of \(\chi_j - \eta_j \) is contained in \(\{|x| \leq \hat{\mu}_{0, j+1} \} \cup \{2R \mu_{0j} < |x| \leq \hat{\mu}_{0j}\} \).

In the first set (it is vacuum if \(j = k \)), one has \(|\chi_j - \eta_j| \leq \chi(2\hat{\gamma}_{0,j+1}) \approx 1 \). It follows from (6.4) that

\[|\mu_j^{-\frac{n+2}{2}} D_j[\hat{\mu}_1](\chi_j - \eta_j)| \lesssim \mu_j^{-2} |t|^{\gamma_j} \chi(2\hat{\gamma}_{0,j+1}) \lesssim |t|^{-\epsilon} w_{1,j+1}. \]
In the second set, since $|\gamma_0 j| \geq 2R$, then
\[
|\mu_j^{-n+2} D_j[\bar{\mu}_1](\chi_j - \eta_j)| \lesssim |\mu_j^{-2} |t|^{\gamma_j} |y_j|^{-4} \lesssim R^{-1} w_{1j}.
\]

It is straightforward to have
\[
|\mu_j^{-n+2} \Theta_j[\bar{\mu}_1] \chi_j| \lesssim |t|^{-\sigma} |\mu_j^{-2} |t|^{\gamma_j} (y_j)^{-4} \chi_j \lesssim |t|^{-\sigma} w_{1j}.
\]

- **Estimate of \tilde{E}_3.** In the support of χ_j, by Lemma (A.1), we have
\[
|\bar{U}^{p-1} - U_j^{p-1}| \lesssim U_j^{p+1} \left(\frac{U_j^{p+1}}{U_j^{p-1}} + \frac{U_j^{p-1}}{U_j^{p+1}} \right).
\]

It follows from (2.7) and (2.22) that $\varphi_{0j} \lesssim |t|^{\gamma_j + \sigma} (y_j)^{-2}$. Using (A.18), similar to (A.19), we get
\[
|\tilde{E}_3| \lesssim \sum_{j=2}^k \lambda_j^{-n-2} |t|^\sigma w_{1j} + \sum_{j=1}^{k-1} \lambda_{j+1} \lambda_j^{-n-2} |t|^{2\sigma} w_{2j} \lesssim |t_0|^{-\epsilon} \left(\sum_{j=2}^k w_{1j} + \sum_{j=1}^{k-1} w_{2j} \right).
\]

- **Estimate of \tilde{E}_4.** Notice
\[
|\nabla_x \chi_j| \lesssim \mu_j^{-1} \left[\frac{1}{\bar{\mu}_0, j < |x| < \bar{\mu}_0} \right] + \mu_j^{-1} \left[\frac{1}{\bar{\mu}_0, j+1, x < |x| < \bar{\mu}_0, j+1} \right],
\]
\[
|\Delta_x \chi_j| \lesssim \mu_j^{-2} \left[\frac{1}{\bar{\mu}_0, j < |x| < \bar{\mu}_0} \right] + \mu_j^{-2} \left[\frac{1}{\bar{\mu}_0, j+1, x < |x| < \bar{\mu}_0, j+1} \right].
\]

By (2.22), one has $|\varphi_{0j}| \lesssim |t|^{\gamma_j + \sigma} (y_j)^{-2}, \ |\nabla_x \varphi_{0j}| \lesssim \lambda_{0j}^{-n-2} \mu_j^{-\frac{n}{2}} (y_j)^{-3} \approx \mu_j^{-1} |t|^{\gamma_j + \sigma} (y_j)^{-3}$, then
\[
|\nabla_x \varphi_{0j} \cdot \nabla_x \chi_j| \lesssim |t|^\sigma \frac{\mu_j}{\mu_j} w_{1j} + |t|^{\gamma_j + \gamma_j + 1 + \sigma} \left(\frac{\mu_{j+1}}{\mu_j} \right)^{\frac{1}{2} - \frac{n}{2} \gamma_j} w_{1j+1} \lesssim |t_0|^{-\epsilon} (w_{1j} + w_{1j+1}).
\]
\[
|\varphi_{0j} \Delta_x \chi_j| \lesssim |t|^\sigma \frac{\mu_j}{\mu_j} w_{1j} + |t|^{\sigma - 2(\alpha_j - \alpha_j - \alpha_j) + \frac{\alpha_j}{2} (\alpha_j + 1 + \alpha_j)} w_{1j+1} \lesssim |t_0|^{-\epsilon} (w_{1j} + w_{1j+1}).
\]

where we have used that $\frac{n-2}{2} (\alpha_j - \alpha_j - \alpha_j) + \frac{\alpha_j}{2} (\alpha_j + 1 + \alpha_j) = \left(\frac{\alpha_j}{n - 6} - 1 \right) \left(\frac{n-2}{n-6} \right)^{j-1} \leq \frac{\alpha_j}{n - 6} - 1$.

For $\nabla_x \varphi_{0j} (\chi_j)$, we have
\[
|\partial_t (\varphi_{0j} \chi_j)| \lesssim |t|^{\gamma_j + \sigma - 1} (y_j)^{-2} (\chi_j + |\nabla_x \chi_j|) \lesssim |t|^{\sigma - 1} \frac{\mu_j^{-2} - \frac{n}{2} \gamma_j}{\mu_j} w_{1j} \lesssim |t_0|^{-\epsilon} w_{1j}.
\]

- **Estimate of \tilde{E}_5.** It follows from (2.10), (A.10) and $p \in (1, 2)$ that
\[
|N_\bar{U} [\varphi_0]| \lesssim |\varphi_0|^p \lesssim \sum_{j=2}^k |t|^{\gamma_j + 1 + \sigma p} \chi_j^p \lesssim \sum_{j=2}^k |t|^{2(\alpha_j - \alpha_j) + \sigma (y_j)^2 + \alpha p} \mu_j^{-2} |t|^{\gamma_j (y_j)^{-2 - \sigma p}} \chi_j^p.
\]

If $2p \geq 2 + \alpha$, it is easy to see $|N_\bar{U} [\varphi_0]| \lesssim |t_0|^{-\epsilon} \sum_{j=2}^k w_{1j}$.

\(\text{ Springer} \)
If $2p < 2 + \alpha$,
$$|N_{U} [\varphi_0]| \lesssim \sum_{j=2}^{k} |t|^{-\alpha + \frac{2}{p} (\alpha - \alpha_j)} + \sigma |t|^{-\alpha} |y_j|^{-\alpha} \chi_j \lesssim |t_0|^{-\epsilon} \sum_{j=2}^{k} w_{1j}. $$

• **Estimate of E_{11}.** Regrouping the terms in (2.13), one obtain

$$E_{11} = \sum_{j=2}^{k} p U_j^{p-1} \left[\sum_{l \neq j} U_l - U_{j-1}(0) \right] \chi_j + \sum_{j=2}^{k} \left[\bar{U}^p - \sum_{i=1}^{k} U_i^p - p U_j^{p-1} \sum_{l \neq j} U_l \right] \chi_j$$

$$+ \left(- \sum_{j=2}^{k} (1 - \chi_j) \partial_t U_j \right) + \left(\bar{U}^p - \sum_{j=1}^{k} U_j^p \right) \left(1 - \sum_{i=2}^{k} \chi_i \right)$$

$$:= J_1 + J_2 + J_3 + J_4. \quad \text{(A.25)}$$

Claim:

$$E_{11}(x, t) \lesssim |t_0|^{-\epsilon} \left(\sum_{j=1}^{k} w_{1j} + \sum_{j=1}^{k-1} w_{2j} + w_3 \right).$$

1. **Estimate of J_1.**

$$J_1 = \sum_{j=2}^{k} p U_j^{p-1} \left(\sum_{l \neq j, j-1} U_l \right) \chi_j + \sum_{j=2}^{k} p U_j^{p-1} (U_{j-1} - U_{j-1}(0)) \chi_j.$$

We will bound each term in the above equation. Fix $j \geq 2$. If $i \leq j - 2$,

$$|p U_j^{p-1} U_l \chi_j| \lesssim \mu_j^{-2} |y_j|^{-4} \mu_j^{-\frac{n-2}{2}} \chi_j \lesssim |t|^{-\epsilon} w_{1j}. $$

If $i \geq j + 1$, by Lemma A.1

$$|p U_j^{p-1} U_l \chi_j| \lesssim U_j^p U_{j+1} U_j \chi_j$$

$$\lesssim \mu_j^{-\frac{n+2}{2}} |y_j|^{-n-2} \left(\lambda_j^{-\frac{n-2}{2}} \langle y_j \rangle^{-2} \bar{1}_{\overline{\mu}_0, j+1 \leq |x| \leq \mu_0 j} + \lambda_j^{-\frac{n-2}{2}} \right) \chi_j \quad \text{(A.26)}$$

$$\lesssim \mu_j^{-\frac{n-2}{2}} \mu_j^{-2} |x|^{2-n} \bar{1}_{\overline{\mu}_0, j+1 \leq |x| \leq \mu_0 j} + \left(\lambda_j^{j+1} \lambda_j^{-\frac{n-2}{2}} \right) |t|^p w_{1j}$$

$$\lesssim |t|^{-\epsilon} (w_{2j} + w_{1j})$$

when we choose σ small first and then chose ϵ small enough. Using $|U_{j-1} - U_{j-1}(0)| \chi_j \lesssim \mu_j^{-\frac{n+2}{2}} \lambda_j$, we have

$$|p U_j^{p-1} (U_{j-1} - U_{j-1}(0)) \chi_j| \lesssim \mu_j^{-2} |y_j|^{-4} \mu_j^{-\frac{n-2}{2}} \lambda_j \chi_j \lesssim |t|^{-\epsilon} w_{1j}. \quad \text{(A.27)}$$

2. **Estimate of J_2.** By Lemma (A.1), we have

$$\left| \bar{U}^p - \sum_{i=1}^{k} U_i^p - p U_j^{p-1} \sum_{l \neq j} U_l \right| \chi_j \lesssim \left(U_j^{p-1} + U_{j+1}^p \right) \chi_j.$$
Therein,
\[U^p_{j-1} \chi_j \approx |t|^{\frac{n+2}{2} \alpha_j - 1} \chi_j \lesssim |t|^{\frac{n+2}{2} \alpha_j - 1} \frac{\mu_j}{\mu_j - 1} |t|^{-\gamma_j} \left(\frac{\mu_j}{\mu_j - 1} \right)^{2+\alpha_j} w_1 \chi_j \]
\[\approx \left(\frac{\mu_j}{\mu_j - 1} \right)^{2+\alpha_j} |t|^\sigma w_1 \chi_j \lesssim |t|^{-\epsilon} w_1, \]
and
\[U^p_{j+1} \chi_j \approx \mu_j^{n+2} |x|^{-\alpha_j - \gamma_j} \chi_j \lesssim |t|^{2\sigma} \mu_j^{-3} |x|^{-4} w_2 \chi_j \lesssim |t|^{-\epsilon} w_2, \]
when we take \(\sigma \) small first and then take \(\epsilon \) small enough.

(3) **Estimate of \(J_3.** For \(j = 2, \ldots, k \), notice that
\[
|\partial_t U_j| = |\hat{\mu}_j \mu_j^{-\frac{n}{2}} Z_{n+1}(y_j)| \lesssim \mu_j^{-2} \mu_j^{-\frac{n-2}{2}} (y_j)^{2-n}. \quad (A.28)
\]
The support of \(1 - \chi_j \) is contained in \(\{|x| \leq \tilde{\mu}_{0,j+1} \cup \{ \frac{1}{2} \mu_{0,j} \leq |x| < \tilde{\mu}_{0,j} \} \cup \{ \mu_{0,j} \leq |x| \}) \). In the first set, it is easy to see \(1 - \chi_j = \chi(2|x|/\tilde{\mu}_{0,j+1}) \), then
\[
|1 - \chi_j| \partial_t U_j | \lesssim \left(\frac{\mu_j + 1}{\mu_j} \right)^{2-n} \left(\frac{\mu_j}{\mu_j - 1} \right)^{n-2} |t|^\sigma w_1 \chi_j \lesssim |t|^{-\epsilon} w_{1,j+1}.
\]
In the second set,
\[
|\partial_t U_j| 1_{\frac{1}{2} \mu_{0,j} \leq |x| \leq \mu_{0,j}} \lesssim \left(\frac{\mu_j}{\mu_j - 1} \right)^{n-2} |t|^\sigma w_1 1_{\frac{1}{2} \mu_{0,j} \leq |x|} \lesssim |t|^{-\epsilon} w_{1}. \]
In the third set, we split it further to be \(\{ \mu_{0,j} \leq |x| \} = \cup_{m=2}^{j} \{ \tilde{\mu}_{0m} \leq |x| \leq \mu_{0,m-1} \} \cup \{ \mu_{01} \leq |x| \} \).

Since \(y_j \) is very large in the third set, (A.28) implies \(|\partial_t U_j| \lesssim \mu_j^{-n+4} \mu_j^{-\frac{n-2}{2}} \frac{1}{|x|^{2-n}} \). Note that \(\mu_j^{-n+4} \mu_j^{-\frac{n-2}{2}} \) decreases about \(j \) up to some constant multiplicity. Then in \(\{ \tilde{\mu}_{0m} \leq |x| \leq \mu_{0,m-1} \}, m = 2, \ldots, j \),
\[
|\partial_t U_j| \lesssim \mu_j^{-n+4} \mu_j^{-\frac{n-2}{2}} |x|^{2-n} \lesssim |t|^{-\epsilon} w_{2,m-1}.
\]
In \(\{ \mu_{01} \leq |x| \} \), we have
\[
|\partial_t U_j| \lesssim \mu_j^{-n+4} |x|^{2-n} \lesssim |t|^{-\epsilon} w_{3}. \]

(4) **Estimate of \(J_4.** Recall the definition of \(\chi_t \) in (2.4), we have the support of \(J_4 \) is contained in the set \(\cup_{m=3}^{k} \{ \frac{1}{2} \tilde{\mu}_{0m} \leq |x| \leq \mu_{0m} \} \cup \{ \frac{1}{2} \tilde{\mu}_{02} \leq |x| \} \).

In \(\{ \frac{1}{2} \tilde{\mu}_{0m} \leq |x| \leq \mu_{0m} \}, \) for \(m = 3, \ldots, k \), by Lemma A.1, one has \(U_m \approx U_{m-1} \approx \mu_m^{-1} \mu_m^{-\frac{n-2}{2}} \mu_m^{-\frac{n-2}{2}} \mu_m^{-\frac{n-2}{2}} \mu_{m-1}^{-\frac{n-2}{2}} \approx U \), for \(i \neq m, m-1 \). Therefore
\[
|J_4| 1_{\frac{1}{2} \tilde{\mu}_{0m} \leq |x| \leq \mu_{0m}} \lesssim \mu_m^{-\frac{n+2}{2}} \mu_m^{-\frac{n+2}{2}} \mu_m^{-\frac{n+2}{2}} \mu_m^{-\frac{n+2}{2}} \mu_m^{-\frac{n+2}{2}} \mu_{m-1}^{-\frac{n+2}{2}} |t|^\sigma w_{1m} \lesssim |t|^{-\epsilon} w_{1m}.
\]
In \(|\frac{1}{2}\overline{\mu}_{02} \leq |x|\)|, by Lemma A.1, when \(\sigma < (n - 6)^{-1}\),

\[
|J_4| \lesssim U_1^{p-1} U_2 \\
\approx \mu_2^{-\frac{n-2}{2}} \left(|x|^{2-n} \mathbf{1}_{\{\frac{1}{2}\overline{\mu}_{02} \leq |x| \leq \overline{\mu}_{02}\}} + |x|^{2-n} \mathbf{1}_{|x| \leq 1\overline{\mu}_{02}} \right) \\
+ |x|^{-2-n} \mathbf{1}_{|1 \leq |x| \leq 1 \overline{\mu}_{01}} + |x|^{-n} \mathbf{1}_{|1 \overline{\mu}_{01}|}
\]

\(\lesssim |t_0|^{-\epsilon} (w_{12} + w_{21} + w_{11} + w_3).\)

\[\square\]

Lemma A.5 There exist \(\sigma > 0\) small enough and \(t_0\) negative enough, such that for \(t < t_0\),

1. In \(\{|x| \leq \overline{\mu}_{0i}\}\), \(i = 1, \ldots, k\), we have \(w_{1j}^* \lesssim w_{1i}^*\) for \(j = 1, \ldots, i - 1\) (it is vacuum if \(i = 1\)).
2. In \(\{|x| \leq \overline{\mu}_{0i}\}\), \(i = 1, \ldots, k\), we have \(w_{1j}^* \lesssim w_{1i}^*\) for \(j = i + 1, \ldots, k\) (it is vacuum if \(i = k\)).
3. In \(\{|x| \leq \overline{\mu}_{0j}\}\), \(w_{3j}^* \lesssim w_{1j}^*\) for \(j = 1, \ldots, k\). In \(\{|x| \geq |t|^\frac{1}{2}\}\), \(w_{3j}^* \gtrsim w_{1j}^*\) for \(j = 1, \ldots, k\) when \(\delta \leq (n - 2 - \alpha)^{-1}\).

Consequently,

\[
\sum_{j=1}^{k} w_{1j}^* + w_{3j}^* \gtrsim \begin{cases}
 w_{1k}^* & \text{if } |x| \leq \overline{\mu}_{0k}, \\
 w_{1i}^* + w_{1,i+1}^* & \text{if } \overline{\mu}_{0i+1} \leq |x| \leq \overline{\mu}_{0i}, i = 1, \ldots, k - 1, \\
 w_{11}^* + w_{3}^* & \text{if } \overline{\mu}_{01} \leq |x| \leq |t|^\frac{1}{2}, \\
 w_{3}^* & \text{if } |x| \geq |t|^\frac{1}{2}.
\end{cases} \tag{A.29}
\]

Proof

1. For \(j = 1, \ldots, i - 1\), in \(\{|x| \leq \overline{\mu}_{0i}\}\), we have \(w_{1j}^*(x, t) = |t|^\gamma_j \leq |t|^\gamma_{j-1}\) and \(w_{1j}^* \gtrsim |t|^\gamma_j \mu_{i}^{\frac{1}{2}} \mu_i^{-\alpha}\). It is easy to verify \(|t|^\gamma_j \lesssim |t|^\gamma_{j-1} \lesssim |t|^\gamma_i \mu_i^{\frac{1}{2}} \mu_i^{-\alpha}\) if \(\alpha < n - 6\).

2. For \(j = i + 1, \ldots, k\), in \(\{|x| \leq |t|^\frac{1}{2}\}\), \(w_{1j}^*(x, t) = |t|^\gamma_j \mu_i^{\frac{1}{2}} \mu_i^{-\alpha} \lesssim |t|^\gamma_j |x|^{2-n} \approx |t|^\gamma_j |x|^{2-n} \approx w_{11}^*(x, t)\), because \(\gamma_j^*\) is strictly decreasing on \(j\), i.e.

\(\gamma_1^* > \gamma_2^* > \cdots > \gamma_k^*\).

In \(\{|x| \geq |t|^\frac{1}{2}\}\), we have \(w_{1j}^* \lesssim w_{1i}^*\) by the same reason.

3. Due to (1), we only need to check \(w_{3j}^* \lesssim w_{11}^*\) in \(\{|x| \leq \overline{\mu}_{01}\}\). It is straightforward to have \(R |t|^{-1 - \sigma + \delta(4-n)} \lesssim |t|^{-\sigma} (\overline{\mu}_{01})^{-\alpha} \gtrsim \{|x| \leq \overline{\mu}_{01}\}\). Due to (2), in \(\{|x| \geq |t|^\frac{1}{2}\}\), we only need to check \(w_{3j}^* \gtrsim w_{11}^*\), which is easy to get when \(\delta \leq (n - 2 - \alpha)^{-1}\).

\[\square\]

Lemma A.6 There exists \(t_0\) negative enough such that

1. In \(\{|\overline{\mu}_{0,i+1} \leq |x|\}\), we have \(w_{2j}^* \lesssim w_{2j}^*\) for \(j = i + 1, \ldots, k - 1\) (it is vacuum if \(i = k, k - 1\)). In \(\{|x| \leq \overline{\mu}_{0i}\}\), we have \(w_{2,i+1}^* \gtrsim w_{2j}^*\) for \(j = 1, \ldots, i - 2\) (it is vacuum if \(i = 1, 2\)).
2. In \(\{|x| \geq \overline{\mu}_{01}\}\), \(w_{2j}^* \lesssim w_{3j}^*\) for \(j = 1, \ldots, k - 1\).

Consequently

\[
\sum_{j=1}^{k-1} w_{2j}^* \lesssim \begin{cases}
 w_{2,k-1} & \text{if } |x| \leq \overline{\mu}_{0k}, \\
 w_{2i}^* + w_{2,i+1}^* & \text{if } \overline{\mu}_{0,i+1} \leq |x| \leq \overline{\mu}_{0i}, \text{ for } i = 2, \ldots, k - 1, \\
 w_{21} & \text{if } \overline{\mu}_{02} \leq |x| \leq \overline{\mu}_{01}, \\
 w_{3}^* & \text{if } |x| \geq \overline{\mu}_{01}.
\end{cases} \tag{A.30}
\]
Proof (1) In $\{\widetilde{\mu}_{0,i+1} < |x| \leq \widetilde{\mu}_{0,i}\}$, it follows from (4.26) that $w_{2j}^* = |t|^{-2\frac{2}{n-2}} \frac{\mu_{0,i+1}^{n-2} \mu_{0,i} |x|^{2-n}}{\mu_{0,i+2}}$ for $j = i + 1, \ldots, k - 1$ and $w_{2i}^* = |t|^{-2\frac{2}{n-2}} \frac{\mu_{0,i+1}^{n-2} \mu_{0,i} |x|^{4-n}}{\mu_{0,i}}$.

$$\frac{w_{2i}^*}{w_{2j}^*} \geq \left(\frac{\mu_{0,i+1}}{\mu_{0,i+2}} \right)^{\frac{2}{n-2}} \frac{\mu_{0,i+1}}{\mu_{0,i}} \approx |t| \left(\frac{2}{n-2} (\alpha_{i+2} - \alpha_{i+1}) - (\alpha_{i+1} - \alpha_i) \right) \geq 1$$

where we have used that $(\frac{n}{2} - 2)(\alpha_{i+2} - \alpha_{i+1}) - (\alpha_{i+1} - \alpha_i) = \frac{(n - 4)^2 + 4}{(n - 2)^2} - \frac{n - 2}{n - 6} i - 1$. Thus $w_{2j}^* \lesssim w_{2i}^*$. It is easy to see that $w_{2j}^* \lesssim w_{2i}^*$ also holds in $\{|x| > \widetilde{\mu}_{0,i}\}$. This deduces the first part. The second parts holds obviously by (4.26).

(2) In $\{\mu_{0i} \leq |x| \leq |t| \frac{1}{4}\}$, by the definition (4.26) and (4.27), it is easy to see that $w_{2j}^* \lesssim w_{2i}^*$ for $j = 1, \ldots, k - 1$ since w_{2j}^* have more time decay than w_{2i}^*. In $\{|x| \geq |t| \frac{1}{4}\}$, we have $w_{2j}^* \lesssim w_3^*$ by the similar reason. □

Remark A.1 Lemma A.5 and A.6 help us consider much less terms in the topology of the outer problem in some special domains.

Lemma A.7 There exist $\sigma, \epsilon > 0$ small and t_0 negative enough such that

$$\|T^{out}[V \Psi]\|_{\sigma, \sigma}^{out, *} \lesssim R^{-1} \|\Psi\|_{\sigma, \sigma}^{out, *}.$$ \hfill (A.31)

Proof Without loss of generality, we assume $\|\Psi\|_{\sigma, \sigma}^{out, *} = 1$. By (3.9), we rewrite V as

$$V = pu_{p_1}^{p_1 - 1} (1 - \sum_{j=1}^{k} \zeta_j) + \sum_{j=1}^{k} \zeta_j p(u_{p_1}^{p_1 - 1} - U_j^{p_1 - 1}).$$ \hfill (A.32)

We shall handle terms respectively.

Consider the first term in (A.32). Using (3.3), the support of $1 - \sum_{j=1}^{k} \zeta_j$ is $\cup_{i=1}^{k} \{|R \mu_{0i} \leq |x| \leq 2R^{-1} \mu_{0,i-1}\} \cup \{|R \mu_{01} \leq |x|\}$.

- In $\{|R \mu_{01} \leq |x|\}$, we have $pu_{p_1}^{p_1 - 1} \lesssim \mu_{11}^2 |x|^{-4} \leq R^{-1} |x|^{-3}$ by Lemma A.1 and A.2.

Split the region into $\{|R \mu_{01} | \leq |x| \leq \widetilde{\mu}_{01}\} \cup \{|\widetilde{\mu}_{01} \leq |x| \leq |t| \frac{1}{4}\} \cup \{|x| \geq |t| \frac{1}{4}\}$. In the first set, one has $|\Psi| \lesssim w_{11}^* + w_{31}^* + w_{21}^*$ by (A.29) and (A.30). Notice $w_{12}^* + w_{21}^* \lesssim w_{11}^*$ in $\{|R \mu_{01} \leq |x| \leq \widetilde{\mu}_{01}\}$. Therefore

$$\left| pu_{p_1}^{p_1 - 1} (1 - \sum_{j=1}^{k} \zeta_j) \right| \lesssim R^{-1} |x|^{-3} w_{11}^* \lesssim R^{-1} w_{11}.$$ \hfill (A.33)

In the second set, by (A.29) and (A.30), one has $|\Psi| \lesssim w_{11}^* + w_{31}^*$. Then

$$\left| pu_{p_1}^{p_1 - 1} (1 - \sum_{j=1}^{k} \zeta_j) \right| \lesssim R^{-1} |x|^{-3} (w_{11}^* + w_{31}^*) \lesssim R^{-1} (w_{11} + w_{3}).$$ \hfill (A.34)

In the third set, similarly we have

$$\left| pu_{p_1}^{p_1 - 1} (1 - \sum_{j=1}^{k} \zeta_j) \right| \lesssim R^{-1} |x|^{-3} w_{3}^* \lesssim R^{-1} w_{3}.$$ \hfill (A.35)

- Consider the region $\{|R \mu_{0i} \leq |x| \leq 2R^{-1} \mu_{0,i-1}\}, i = 2, \ldots, k$. We divide it further into two parts, $\{|R \mu_{0i} \leq |x| \leq \widetilde{\mu}_{0i}\} \cup \{|\widetilde{\mu}_{0i} \leq |x| \leq 2R^{-1} \mu_{0,i-1}\}$. In $\{|R \mu_{0i} \leq |x| \leq \widetilde{\mu}_{0i}\}$, we have $pu_{p_1}^{p_1 - 1} \lesssim \mu_{i1}^2 |x|^{-4}$ by Lemma A.1 and A.2. Moreover, one has $|\Psi| \leq w_{1i}^* + w_{1,i+1}^* + \ldots + w_{k-1}^*.$

Springer
$w^*_{i-1} + w^*_{2i}$ by Lemma A.5 and A.6. One readily has $w^*_{1,i+1} \preceq w^*_{1i}$ in $\{R\mu_{0i} \leq |x| \leq \bar{\mu}_{0i}\}$. Thus

$$|pu^p_\ast^{-1}(1 - \sum_{j=1}^k \xi_j)\Psi| \preceq \mu^2_i |x|^{-4} (w^*_{1i} + w^*_{1,i+1} + w^*_{2,i-1} + w^*_{2i})$$

(A.36)

where we have used the fact that in $\{R\mu_{0i} \leq |x| \leq \bar{\mu}_{0i}\}$,

$$\mu_i^2 |x|^{-4} w^*_{1i} \preceq |t|^\gamma \mu_i^{2+\alpha} |x|^{-4-\alpha} \preceq R^{-2} w_{1i},$$

$$\mu_i^2 |x|^{-4} w^*_{2,i-1} \preceq \mu_i^2 |x|^{-4}|t|^{-2\sigma} \mu_{i-1}^{-1} \preceq R^{-2} |t|^{-\sigma} w_{1i},$$

$$\mu_i^2 |x|^{-4} w^*_{2i} \preceq \mu_i^2 |x|^{-4}|t|^{-2\sigma} \mu_{i+1}^{-2} \mu_i^{-1} |x|^{4-n} \preceq R^{-2} w_{2i}.$$

In the other part $\{\bar{\mu}_{0i} \leq |x| \leq 2R^{-1}\mu_{0i-1}\}$, we have $pu^p_\ast^{-1} \preceq U^p_{1,i-1} \preceq \mu_{i-1}^{-2}$ and $w^*_{2,i-2} \preceq w^*_{1,i-1}$ (which is vacuum if $i = 2$). Then

$$|pu^p_\ast^{-1}(1 - \sum_{j=1}^k \xi_j)\Psi| \preceq \mu_{i-1}^{-2} (w^*_{1,i-1} + w^*_{1i} + w^*_{2,i-2} + w^*_{2,i-1})$$

(A.37)

where we have used the fact that in $\{\bar{\mu}_{0i} \leq |x| \leq 2R^{-1}\mu_{0i-1}\}$,

$$\mu_{i-1}^{-2} w^*_{2,i-1} \preceq \mu_{i-1}^{-2} |t|^{-2\sigma} \mu_i^{-2} \mu_{i-1}^{-1} |x|^{4-n} \preceq R^{-2} |t|^{-2\sigma} \mu_i^{-2} \mu_{i-1}^{-1} |x|^{2-n} \preceq R^{-2} w_{2,i-1},$$

$$\mu_{i-1}^{-2} w^*_{1i} \preceq \mu_{i-1}^{-2} |t|^\gamma \mu_i^{\alpha} \mu_{i-1}^{-2-\alpha} |x|^{2-n} \preceq |t|^\gamma \mu_i^{\alpha} \mu_{i-1}^{\alpha} |x|^{2-n} \preceq R^{-n} |x|^2$$

By Lemma B.2,

$$T_{out}(\mu_{i-1}^{-2} |t|^\gamma \mu_{i-1}^{-1} \mathbf{1}_{|x| \leq 2R^{-1}\mu_{i-1}})$$

(A.38)

Next we consider the second term in (A.32). Recall the support of ξ_j (3.4) is contained in $\{R^{-1}\mu_{0j} \leq |x| \leq 2R\mu_{0j}\}$, which are mutually disjoint.

- For $j = 1$, we have $|\xi_1 (u^p_\ast^{-1} - U^p_1)\Psi| \preceq U^p_{11} |t|^{-\epsilon} \preceq \mu_2^2 |x|^{-4} \mathbf{1}_{R^{-1}\mu_{01} \leq |x| \leq 2R\mu_{01}} (w^*_{11} + w^*_{12} + w^*_{21}) \preceq |t|^{-\epsilon} w_{11}$ (A.39)
\[
\mu_2^2 |x|^{-4} w_{12}^* \lesssim \mu_2^2 |x|^{-4} |t|^{\gamma} \mu_2^{n-2-\alpha} |x|^{2-n} \lesssim R^{n+2} |t|^{-2\epsilon} w_{11}.
\]

\bullet For \(j = 2, \ldots, k \), we have \(|\zeta_j (u^{p-1}_j - U_j^{p-1})| \lesssim (U_j^{p-1} + U_j^{p-1} + \varphi_{j1}^{p-1}) |\zeta_j| \lesssim \mu_j^{-2} |\zeta_j|\) where we have used the fact that \(\varphi_0 = \varphi_{0j} \chi_j \in \{R^{-1} \mu_0 \leq |x| \leq 2 R \mu_0 j \} \) and \(U_{j+1} \) is vacuum if \(j = k \). Then

\[
|\zeta_j (u^{p-1}_j - U_j^{p-1})\Psi| \lesssim \mu_{j-1}^{-2} \left(w_{1j}^* + w_{1j+1}^* + w_{2j-1}^* + w_{2j}^* \right) |\zeta_j| \lesssim |t|^{-\epsilon} (w_{1j} + w_{2j}),
\]

where we have used the fact that in \(\{R^{-1} \mu_0 \leq |x| \leq 2 R \mu_0 j \}, w_{2j-1}^* \lesssim w_{1j}^* \) and

\[
\mu_{j-1}^{-2} w_{1j}^* \lesssim \mu_{j-1}^{-2} |t|^{\gamma_j}, \quad \mu_{j-1}^{-2} w_{1j+1}^* \lesssim \mu_{j-1}^{-2} |t|^{\gamma_{j+1}}, \quad \mu_{j-1}^{-2} w_{2j-1}^* \lesssim \mu_{j-1}^{-2} |t|^{\gamma_{j-1}}, \quad \mu_{j-1}^{-2} w_{2j}^* \lesssim \mu_{j-1}^{-2} |t|^{\gamma_j}.
\]

Combining the above calculations of the two terms in (A.32), we get the conclusion. \(\square \)

Lemma A.8 There exist \(\sigma, \epsilon > 0 \) small and \(t_0 \) negative enough such that

\[
||N[\bar{\phi}, \Psi, \bar{\mu}_1]||_{out, \alpha, \sigma} \lesssim |t_0|^{-\epsilon} \left(||\bar{\phi}||_{in, \alpha, \sigma} + ||\Psi||_{out, \alpha, \sigma} \right)^p.
\]

Proof By (3.9) and some elementary inequality

\[
|N[\bar{\phi}, \Psi, \bar{\mu}_1]| \lesssim \sum_{j=1}^k \mu_j^{-\frac{n+2}{2}} |\phi_j|^{p} \eta_j + |\Psi|^{p}.
\]

For the first part on the RHS, recalling (A.12), we obtain

\[
\mu_j^{-\frac{n+2}{2}} |\phi_j|^{p} \eta_j \lesssim |t|^{\gamma_j} R^{(n+1-a)p} \left(|x| \leq 4 R \mu_0 j \right) \left(||\phi_j||_{in, \alpha, \sigma} \right)^p \lesssim R^{(n+1-a)p} |t|^{-2\epsilon} w_{1j} \left(||\phi_j||_{in, \alpha, \sigma} \right)^p.
\]

For the second part on the RHS of (A.41),

\bullet In \(\{|x| \geq \tilde{\mu}_0 j\} \), by (A.29), we have \(|\Psi| \lesssim (w_{11}^* + w_{21}^*) ||\Psi||_{out, \alpha, \sigma} \) in \(\{\tilde{\mu}_0 \leq |x| \leq |t|^{\frac{1}{2}}\} \) and \(|\Psi| \lesssim w_{3}^* ||\Psi||_{out, \alpha, \sigma} \) in \(\{|x| > |t|^{\frac{1}{2}}\} \). Notice

\[
(w_{12}^*)^p = R^{p-1} |t|^{1+(1-\sigma)p} |x|^{-4} w_3 \lesssim |t|^{-\epsilon} w_3 \quad \text{if} \quad |x| > |t|^{\frac{1}{2}},
\]

\[
(w_{21}^*)^p = R^{p-1} |t|^{-(1+\sigma)(p-1)} |x|^{-\frac{2n-12}{2}} w_3 \lesssim |t|^{-\epsilon} w_3 \quad \text{if} \quad \tilde{\mu}_0 \leq |x| \leq |t|^{\frac{1}{2}},
\]

\[
(w_{11}^*)^p = R^{-1} |t|^{-\frac{1}{2}} w_3 \lesssim |t|^{-\epsilon} w_3 \quad \text{if} \quad \tilde{\mu}_0 \leq |x| \leq |t|^{\frac{1}{2}},
\]

where we take \(\delta \leq 2 (n-2)^{-2} \) in the last formula. Thus

\[
||\Psi||^{p} \lesssim |t|^{-\epsilon} w_3 \left(||\Psi||_{out, \alpha, \sigma} \right)^p.
\]

\bullet In \(\{1 \leq |x| \leq \tilde{\mu}_0 \} \), we have \(|\Psi| \lesssim (w_{11}^* + w_{12}^* + w_{21}^*) ||\Psi||_{out, \alpha, \sigma} \leq w_{11}^* ||\Psi||_{out, \alpha, \sigma} \) since \((w_{12}^* + w_{21}^*) \) in \(\{|1 \leq |x| \leq \tilde{\mu}_0 \} \) \(\lesssim w_{11}^* \). Therefore

\[
||\Psi||^{p} \lesssim (w_{11}^*)^{p} \left(||\Psi||_{out, \alpha, \sigma} \right)^p \leq |t|^{-(1+\sigma)\frac{1}{2} + \delta} w_{11} \left(||\Psi||_{out, \alpha, \sigma} \right)^p \lesssim |t|^{-\epsilon} w_{11} \left(||\Psi||_{out, \alpha, \sigma} \right)^p.
\]
for $\delta \leq (n - 2)^{-1}$.

- In $\{\tilde{\mu}_{02} \leq |x| \leq 1\}$, we have
 \[(w_{11}^*)^p \lesssim |t|^{-(1+\sigma)p} \lesssim |t|^{-\epsilon} w_{11},\]
 \[(w_{12}^*)^p \lesssim |t|^{2\sigma p} \tilde{\mu}_2^{n+2} |x|^{-n-2} \lesssim |t|^{2\sigma p} \tilde{\mu}_2^{n-2} |x|^{2-n} \lesssim |t|^{-\epsilon} w_{21},\]
 \[(w_{21}^*)^p \lesssim |t|^{-2\sigma p} \tilde{\mu}_2^{(\frac{n}{2}-2)p} |x|^{(4-n)p} \lesssim |t|^{-2\sigma p} \tilde{\mu}_2^{\frac{n}{2}-1} |x|^{2-n} \lesssim |t|^{-\epsilon} w_{21},\]
 where we have used $n - 2 \leq (n - 4)p$ when $n \geq 6$ in the last inequality. Then
 \[|\Psi|^p \lesssim [(w_{11}^*)^p + (w_{12}^*)^p + (w_{21}^*)^p](\|\Psi\|_{\alpha,\sigma}^{out,*})^p \lesssim |t|^{-\epsilon} (w_{11} + w_{21})(\|\Psi\|_{\alpha,\sigma}^{out,*})^p.\]

- In $\{\tilde{\mu}_{0,i+1} \leq |x| \leq \tilde{\mu}_0\}$, $i = 2, \ldots, k$, we have
 \[(w_{1i+1}^*)^p \lesssim |t|^{p \gamma_i (\gamma_i (\gamma_i (4-q) - \alpha)p - 4\alpha p) w_{1i} \lesssim |t|^{-2\sigma p} \tilde{\mu}_i^{n+2} \tilde{\mu}_i^{n-2} |x|^{2-n} \lesssim |t|^{-\epsilon} w_{2i} \]
 provided $\epsilon \leq \frac{2}{n-6}$.

- In $\{\tilde{\mu}_{0,i+1} \geq |x| \geq \tilde{\mu}_0\}$, $i = 2, \ldots, k$, we have
 \[(w_{2i+1}^*)^p \lesssim |t|^{2\sigma p} \tilde{\mu}_i^{n+2} \tilde{\mu}_i^{n-2} |x|^{2-n} \lesssim |t|^{-\epsilon} w_{2i} \]
 provided $\epsilon \leq \frac{2}{n-6}$. Here we have used $(4 - n)p - (2 - n) \leq 0$ when $n \geq 6$.

Therefore, for $i = 2, \ldots, k$,
\[|\Psi|^p \lesssim [(w_{1i}^* + w_{1i+1}^* + w_{2i-1}^* + w_{2i}^*)^p (\|\Psi\|_{\alpha,\sigma}^{out,*})^p \lesssim |t|^{-\epsilon} (w_{1i} + w_{2i})(\|\Psi\|_{\alpha,\sigma}^{out,*})^p,\]
where w_{1i+1}, w_{2i+1} are vacuum if $i = k$ and $w_{1,i+1}$ are vacuum if $i = k, k - 1$. \hfill \Box

Proof of Proposition 4.1 This is a combination of results in Lemma A.3, A.4, A.7, A.8 and Lemma 4.4, 4.5 4.6. \hfill \Box

Appendix B. Some estimates for the outer problem

B.1 Basic estimates

Let $G(x, t)$ denote the standard heat kernel on \mathbb{R}^n, that is
\[G(x, t) = \frac{1}{(4\pi t)^{n/2}} e^{-\frac{|x|^2}{4t}}.\]
Recall the $T^{\text{out}}[g](x, t)$ defined by (4.19).

Lemma B.1 Suppose $n > 2$, $a \geq 0$, $d_1 \leq d_2 \leq \frac{1}{2}$ and b satisfies

\[
\begin{cases}
\frac{a}{2} - b + d_2(a - n) > 1 & \text{if } a < n, \\
\frac{a}{2} - b + d_1(a - n) > 1 & \text{if } a \geq n,
\end{cases}
\]

\[\text{(B.2)}\]

0 ≤ c_1, c_2 ≤ c_\ast. Then there exists C depending on $n, a, b, d_1, d_2, c_\ast$ such that for $t < -1$

\[
\begin{align*}
T^{\text{out}} & \left[\frac{|t|^b}{|x|^a} 1_{|c_1|t|^{d_1}| \leq |x| \leq c_2|t|^{d_2}} \right] (0, t) \leq C \left\{ \begin{array}{ll}
|t|^b (c_1 |t|^{d_1})^{2-a} & \text{if } a \in (2, \infty), \\
|t|^b \ln(c_2 |t|^{d_2}/(c_1 |t|^{d_1})) & \text{if } a = 2, \\
|t|^b (c_2 |t|^{d_2})^{2-a} & \text{if } a \in [0, 2).
\end{array} \right.
\end{align*}
\]

\[\text{Proof}\] Using (B.1), we obtain

\[
\begin{align*}
\int_{-\infty}^{t} \int_{\mathbb{R}^n} \frac{1}{(t-s)^{n/2}} e^{-\frac{|s|^2}{4(t-s)^{n/2}}} |s|^b \left[1_{|c_1|s|^{d_1}| \leq |y| \leq c_2|s|^{d_2}}\right]^2 ds dy & \\
\approx & \int_{-\infty}^{t} \int_{|c_1|s|^{d_1}|}^{c_2|s|^{d_2}} \frac{|s|^b}{(t-s)^{n/2}} e^{-\frac{|s|^2}{4(t-s)^{n/2}}} t^{n-1-a} ds \approx \int_{-\infty}^{t} \int_{\frac{c_1|s|^{d_1}}{4(t-s)^{n/2}}}^{\frac{c_2|s|^{d_2}}{4(t-s)^{n/2}}} e^{-z} \frac{z^{a-2}}{(t-s)^{a/2}} dz ds \\
= & \int_{-\infty}^{t} \frac{|s|^b}{(t-s)^{n/2}} F \left(\frac{c_1^2 |s|^{2d_1}}{4(t-s)}, \frac{c_2^2 |s|^{2d_2}}{4(t-s)} \right) ds,
\end{align*}
\]

where

\[
F(A, B) := \int_{A}^{B} e^{-z} \frac{z^{a-2}}{2} \, dz.
\]

We shall split (B.3) into four integrals J_1, J_2, J_3, J_4 according to the regions of s. First, in the region $s \in [t - c_1^2 |t|^{2d_1}, t]$, one has $|s - t| \leq c_1^2 |t|$ when $t < -1$. Therefore

\[
J_1 = \int_{t-c_1^2 |t|^{2d_1}}^{t} \frac{|s|^b}{(t-s)^{n/2}} F \left(\frac{c_1^2 |s|^{2d_1}}{4(t-s)}, \frac{c_2^2 |s|^{2d_2}}{4(t-s)} \right) ds \\
\approx & \left| t \right|^b \int_{t-c_1^2 |t|^{2d_1}}^{t} \frac{1}{(t-s)^{n/2}} e^{-\frac{c_1^2 |t|^{2d_1}}{4(t-s)^{n/2}}} (1+c_\ast)^{2d_2-\nu} ds \\
\approx & c_1^{2-a} |t|^{b+d_1(2-a)} \int_{\frac{t-c_1^2 |t|^{2d_1}}{4(t-s)^{n/2}}}^{\infty} e^{-\frac{c_1^2 |t|^{2d_1}}{4(t-s)^{n/2}}} (1+c_\ast)^{2d_2-\nu} d\tilde{s} \lesssim c_1^{2-a} |t|^{b+d_1(2-a)},
\]

where $(d_1)^- = \min\{0, d_1\}$.

\[\text{Springer}\]
Second, in the region \(s \in [t - c_2^2 |t|^{2d_2}, t - c_2^2 |t|^{2d_1}] \),

\[
J_2 = \int_{t-c_2^2 |t|^{2d_2}}^{t-c_2^2 |t|^{2d_1}} \frac{|s|^b}{(t-s)^{a/2}} F \left(\frac{c_2^2 |s|^{2d_1}}{4(t-s)}, \frac{c_2^2 |s|^{2d_2}}{4(t-s)} \right) ds
\]

\[
\lesssim \int_{t-c_2^2 |t|^{2d_2}}^{t-c_2^2 |t|^{2d_1}} \frac{|s|^b}{(t-s)^{a/2}} F \left(\frac{c_2^2 |t|^{2d_1} (1 + c_2^2)^{2(d_1)^+}}{4(t-s)}, \frac{c_2^2 |t|^{2d_2} (1 + c_2^2)^{2(d_2)^+}}{4(t-s)} \right) ds
\]

\[
\lesssim \begin{cases}
1 & \text{if } a < n, \\
\ln \left(\frac{c_1^2 |t|^{2d_1} (1 + c_2^2)^{2(d_1)^+}}{4(t-s)} \right) & \text{if } a = n, \\
\left(\frac{c_1^2 |t|^{2d_1}}{t-s} \right)^{n-a} & \text{if } a > n,
\end{cases}
\]

\[
\left\{ \begin{array}{ll}
|t|^b \log(c_2/c_1 |t|^{2(d_2-d_1)}) & \text{if } a = 2, \\
|t|^{2-a} |t|^{b+2-a} & \text{if } 0 < a < 2,
\end{array} \right.
\]

(B.4)

where \((d_2)^+ = \max \{0, d_2\}\).

Third, when \(s \in [2t - c_2^2 |t|^{2d_2}, t - c_2^2 |t|^{2d_2}] \),

\[
J_3 = \int_{2t-c_2^2 |t|^{2d_2}}^{t-c_2^2 |t|^{2d_1}} \frac{|s|^b}{(t-s)^{a/2}} F \left(\frac{c_2^2 |s|^{2d_1}}{4(t-s)}, \frac{c_2^2 |s|^{2d_2}}{4(t-s)} \right) ds
\]

\[
\lesssim \int_{2t-c_2^2 |t|^{2d_2}}^{t-c_2^2 |t|^{2d_1}} \frac{|s|^b}{(t-s)^{a/2}} F \left(\frac{c_2^2 |t|^{2d_1} (1 + c_2^2)^{2(d_1)^+}}{4(t-s)}, \frac{c_2^2 |t|^{2d_2} (1 + c_2^2)^{2(d_2)^+}}{4(t-s)} \right) ds
\]

\[
\lesssim \begin{cases}
\left(\frac{c_3^2 |t|^{2d_2}}{t-s} \right)^{n-a} & \text{if } a < n, \\
\ln \left(\frac{c_3^2 |t|^{2d_2} (2 + c_2^2)^{2(d_2)^+}}{c_1^2 |t|^{2d_1} (2 + c_2^2)^{2(d_1)^+}} \right) & \text{if } a = n, \\
\left(\frac{c_1^2 |t|^{2d_1}}{t-s} \right)^{n-a} & \text{if } a > n,
\end{cases}
\]

\[
\left\{ \begin{array}{ll}
|t|^{2-a} |t|^{b+d_2(2-a)} & \text{if } a < n, \\
|t|^{2-n} |t|^{b+d_2(2-n)} \ln \left(\frac{c_3^2 |t|^{2d_2} (2 + c_2^2)^{2(d_2)^+}}{c_1^2 |t|^{2d_1} (2 + c_2^2)^{2(d_1)^+}} \right) & \text{if } a = n, \\
|t|^b c_1^{2-n} |t|^{d_1(n-a)-1} c_2^{2-n} |t|^{d_2(2-n)} & \text{if } a > n.
\end{array} \right.
\]

(B.5)

Fourth, when \(s \in (-\infty, 2t - c_2^2 |t|^{2d_2}] \), we have \(\frac{t^2}{2} \leq t-s \leq -s \). For \(a < n \),

\[
J_4 = \int_{-\infty}^{2t-c_2^2 |t|^{2d_2}} \frac{|s|^b}{(t-s)^{a/2}} F \left(\frac{c_2^2 |s|^{2d_1}}{4(t-s)}, \frac{c_2^2 |s|^{2d_2}}{4(t-s)} \right) ds
\]

\[
\lesssim \int_{-\infty}^{2t-c_2^2 |t|^{2d_2}} \frac{|s|^b}{(t-s)^{a/2}} F \left(\frac{c_2^2 |s|^{2d_1}}{4|s|}, \frac{c_2^2 |s|^{2d_2}}{2|s|} \right) ds
\]

\[
\lesssim \int_{-\infty}^{2t-c_2^2 |t|^{2d_2}} |s|^{b-a} \left(\frac{c_2^{n-a}}{c_2^{n-a}} |s|^{(2d_2-1)\frac{n-a}{2}} \right) ds
\]

\[
\lesssim c_2^{n-a} |t|^{b+d_2(n-a)-\frac{a}{2}+1} \lesssim c_2^{-a} |t|^{b+d_2(2-a)},
\]
where (B.2) is needed to guarantee the integrability and the last step is using $d_2 \leq 1/2$, $c_2 \leq c_{ss}$ and $n > 2$. For $a \geq n$, similarly we have

$$J_4 \lesssim \begin{cases} c_1^{n-a} |t|^{b+d_1(n-a)+1-\frac{a}{2}} & \text{if } a > n, \\ |t|^{b+1-\frac{a}{2}} \ln \frac{2c_2 |t|^{d_2}}{c_1 |t|^{d_1}} & \text{if } a = n, \\ c_1^{2-a} |t|^{b+d_1(2-a)} & \text{if } a < n. \end{cases}$$

Collecting the estimates of J_1 to J_4, we get the conclusion. □

Remark A.2 After close examination of the proof, only (B.4) needs the comparison between a and 2. In fact, if $a < 2$, one can let $c_1 = 0$ to get

$$s^\text{out} \left[\frac{|t|^b}{|x|^a} 1_{|x| \leq c_2 |t|^{d_2}} \right] (0, t) \leq C c_2^{2-a} |t|^{b+d_2(2-a)}.$$

Lemma B.2 Suppose $n > 2$, $a \geq 0$, $d_1 \leq d_2 \leq \frac{1}{2}$ and b satisfies (B.2), $0 \leq c_1, c_2 \leq c_{ss}$. Denote

$$u(x, t) = s^\text{out} \left[\frac{|t|^b}{|x|^a} 1_{|c_1 |t|^{d_1} \leq |x| \leq c_2 |t|^{d_2}} \right] (x, t).$$

Then there exists C depending on n, a, b, d_1, d_2, c_{ss} such that for $t < -1$

$$u(x, t) \leq C \begin{cases} c_1^{2-a} |t|^{b+d_1(2-a)} & \text{if } a \in (2, \infty), \\ c_2^{2-a} |t|^{b+d_2(2-a)} & \text{if } a \in [0, 2). \end{cases}$$

(B.6)

Moreover, when $|x| > 2c_2 |t|^{d_2}$, $a < n$,

$$u(x, t) \leq C c_2^{n-2-n} \begin{cases} |t|^{b+d_2(n-a)} |x|^{2-n} & \text{if } 2c_2 |t|^{d_2} \leq |x| \leq |t|^\frac{1}{2}, \\ |x|^{2b+2d_2(n-a)+2-n} & \text{if } |x| \geq |t|^\frac{1}{2}. \end{cases}$$

(B.7)

When $|x| \geq 2c_1 |t|^{d_1}$, $a > n$,

$$u(x, t) \leq C c_1^{n-a} \begin{cases} |t|^{b+d_1(n-a)} |x|^{2-n} & \text{if } 2c_1 |t|^{d_1} \leq |x| \leq |t|^\frac{1}{2}, \\ |x|^{2b+2d_1(n-a)} |x|^{2-n} & \text{if } |x| \geq |t|^\frac{1}{2}. \end{cases}$$

(B.8)

Proof. Since

$$\frac{|t|^b}{|x|^a} 1_{|c_1 |t|^{d_1} \leq |x| \leq c_2 |t|^{d_2}} \leq |t|^b \min \left\{ \frac{1}{c_1^{a-1} |t|^{d_1 a}}, \frac{1}{|x|^a} \right\} 1_{|x| \leq c_2 |t|^{d_2}} = f(x, t),$$

then

$$u(x, t) \lesssim \int_{-\infty}^{t} \int_{\mathbb{R}^n} G(x - y, t - s) f(y, s) dy ds.$$

Since G and f are both decreasing functions for each time slice, using Hardy-Littlewood rearrangement inequality, then

$$u(x, t) \leq u(0, t) = J_1 + J_2,$$

where

$$J_1 = \int_{-\infty}^{t} \int_{\mathbb{R}^n} G(y, t - s) |s|^b \min \left\{ \frac{1}{c_1^{a-1} |s|^{d_1 a}}, \frac{1}{|y|^a} \right\} 1_{|y| \leq c_1 |t|^{d_1}} dy ds,$$

(B.9)
\[J_2 = \int_{-\infty}^{t} \int_{\mathbb{R}^n} G(y, t - s)|s|^b \min \left\{ \frac{1}{c_1^a |s|^d}, \frac{1}{|y|^a} \right\} 1_{\{ |s|^d \leq |y| \leq c_2 |s|^d \}} dy ds. \quad (B.10) \]

Applying Lemma B.1 and Remark A.2, we obtain

\[J_1 \lesssim c_1^{2-a} |t|^{b+d_1(2-a)}, \quad J_2 \lesssim \begin{cases} c_1^{2-a} |t|^{b+d_1(2-a)} & \text{if } a \in (2, \infty), \\ c_2^{2-a} |t|^{b+d_2(2-a)} & \text{if } a \in (0, 2). \end{cases} \]

Therefore (B.6) is established.

- Next we will establish (B.7) when \(d_2 \leq 0 \). In this case, for \(x > 2c_2 |t|^{d_2} \), one has

\[\frac{1}{2} |x| \leq |x - y| \leq 2|x| \text{ for } y \text{ with } |y| \leq |s|^{d_2} \text{ and } s \leq t. \quad (B.11) \]

Then

\[u(x, t) \lesssim \int_{-\infty}^{t} \int_{\mathbb{R}^n} \frac{1}{(t-s)^{n/2}} e^{-\frac{|x|^2}{16(t-s)}} |s|^b |y|^a 1_{\{ |s|^d \leq |y| \leq c_2 |s|^d \}} dy ds \]

\[\approx \int_{-\infty}^{t} \int_{c_1 |s|^{d_2}}^{c_2 |s|^{d_2}} \frac{1}{(t-s)^{n/2}} e^{-\frac{|x|^2}{16(t-s)}} |s|^b r^{n-1-a} dr ds \]

\[\lesssim c_1^{n-a} \int_{-\infty}^{t} \frac{1}{(t-s)^{n/2}} e^{-\frac{|x|^2}{16(t-s)}} |s|^{b+d_2(n-a)} ds \]

\[\leq c_2^{n-a} \left(\max \{|t|, |x|^2 \} \right)^{b+d_2(n-a)} |x|^{2-n}. \]

The last step follows from the following two facts

\[\int_{2t}^{t} 1_{(t-s)^{n/2}} e^{-\frac{|x|^2}{16(t-s)}} |s|^{b+d_2(n-a)} ds \approx |t|^{b+d_2(n-a)} \int_{2t}^{t} 1_{(t-s)^{n/2}} e^{-\frac{|x|^2}{16(t-s)}} ds \]

\[\approx |t|^{b+d_2(n-a)} |x|^{2-n} \int_{|x|^2/16t}^{\infty} e^{-z} z^{\frac{n}{2}-2} dz \lesssim \begin{cases} |t|^{b+d_2(n-a)} |x|^{2-n} & \text{if } |x| < |t|^{\frac{1}{2}}, \\ |t|^{b+d_2(n-a)} \int_{|x|^2/16t}^{\infty} e^{-z} z^{\frac{n}{2}-2} dz & \text{if } |x| \geq |t|^{\frac{1}{2}}. \end{cases} \]

and

\[\int_{-\infty}^{2t} 1_{(t-s)^{n/2}} e^{-\frac{|x|^2}{16(t-s)}} |s|^{b+d_2(n-a)} ds \approx \int_{-\infty}^{2t} e^{-\frac{|x|^2}{16t}} |s|^{b+d_2(n-a)-\frac{n}{2}} ds \]

\[\approx |x|^{2b+2d_2(n-a)-n+2} \int_{0}^{\infty} e^{-z} z^{-b-d_2(n-a)+\frac{n}{2}} dz \approx \begin{cases} |t|^{b+d_2(n-a)-\frac{n}{2}+1} & \text{if } |x| < |t|^{\frac{1}{2}}, \\ |x|^{2b+2d_2(n-a)-n+2} & \text{if } |x| \geq |t|^{\frac{1}{2}}, \end{cases} \]

where \(-b - d_2(n-a) + \frac{n}{2} - 2 > -1 \) is needed to guarantee the integrability. Thus (B.7) is established.

- Next we will establish (B.7) when \(d_2 > 0 \). We do not have (B.11) anymore. In this case, \(|x| \geq 2c_2 |t|^{d_2} \) is equivalent to \(-\frac{|x|}{2c_2} 1^{1/d_2} \leq 2t \). We write

\[(-\infty, t) = \left(-\frac{|x|}{2c_2} 1^{1/d_2}, t\right) \cup \left(-\frac{2|x|}{c_2} 1^{1/d_2}, \frac{|x|}{2c_2} 1^{1/d_2}\right) \cup \left(-\infty, -\frac{2|x|}{c_2} 1^{1/d_2}\right) \]

and thus

\[u \lesssim \int_{-\infty}^{t} \int_{\mathbb{R}^n} \frac{1}{(t-s)^{n/2}} e^{-\frac{|x|^2}{16t}} |s|^b |y|^a 1_{\{|y| \leq c_2 |s|^d \}} dy ds = u_1 + u_2 + u_3 \quad (B.12) \]
where \(u_1, u_2, u_3\) are the integrations according to the three intervals respectively. We shall verify that \(u_1, u_2, u_3\) all satisfy (B.7). For \(u_1\), one has \(c_2|x|^{d_2} \leq |x|/2\) for such \(s\). Then

\[
u_1 = \int_{-(|x|/2c_2)^{1/d_2}}^t \int_{\mathbb{R}^n} \frac{1}{(t-s)^{n/2}} e^{-\frac{|y|^2}{4(t-s)}} \frac{|s|^b}{|y|^a} 1_{\{|y| \leq c_2 |s|^{\mu_2}\}} dy ds
\]

\[
\lesssim \int_{-(|x|/2c_2)^{1/d_2}}^t \int_{\mathbb{R}^n} \frac{1}{(t-s)^{n/2}} e^{-\frac{|y|^2}{4(t-s)}} \frac{|s|^b}{|y|^a} 1_{\{|y| \leq c_2 |s|^{\mu_2}\}} dy ds
\]

\[
\lesssim \left(\int_{2t}^t + \int_{-(|x|/2c_2)^{1/d_2}}^t \right) \int_{\mathbb{R}^n} \frac{1}{(t-s)^{n/2}} e^{-\frac{|y|^2}{4(t-s)}} \frac{|s|^b}{|y|^a} 1_{\{|y| \leq c_2 |s|^{\mu_2}\}} dy ds
\]

\[
\lesssim c_2^{n-a} (\max(|t|, |t|^2))^{b+d_2(n-a)} |x|^{2-n}.
\]

The last step follows from some easy integration which has been done many times in this section. For \(u_2\),

\[
u_2 \lesssim \int_{-(|x|/2c_2)^{1/d_2}}^t \int_{\mathbb{R}^n} \frac{1}{(t-s)^{n/2}} e^{-\frac{|y|^2}{4(t-s)}} \frac{|s|^b}{|y|^a} 1_{\{|y| \leq c_2 |s|^{\mu_2}\}} dy ds
\]

\[
\lesssim \left(\int_{-(|x|/2c_2)^{1/d_2}}^t \int_{\mathbb{R}^n} \frac{1}{(t-s)^{n/2}} e^{-\frac{|y|^2}{4(t-s)}} \frac{|s|^b}{|y|^a} 1_{\{|y| \leq c_2 |x|^{\mu_2}\}} dy ds
\]

\[
\lesssim c_2^{-b/d_2} |x|^{b/d_2-n-a} \int_{-(|x|/2c_2^{1/d_2})}^t \frac{1}{(t-s)^{n/2}} ds \lesssim c_2^{-b+2(n-a)} (|x|/2c_2^{1/d_2})^{b+d_2(n-a)+1-\frac{n}{2}}
\]

\[
\lesssim c_2^{-n-a} \begin{cases} |t|^{b+d_2(n-a)} |x|^{2-n} & \text{if } 2c_2 |2t|^{d_2} \leq |x| < |t|^{\frac{1}{2}}, \\ |x|^{2b+2d_2(n-a)+2-n} & \text{if } |x| \geq |t|^{\frac{1}{2}}. \end{cases}
\]

The last step follows from \(0 < d_2 \leq \frac{1}{2}\) and \(b + d_2(n-a) + 1 - \frac{n}{2} < 0\). Similarly, for \(u_3\),

\[
u_3 \lesssim \int_{-\infty}^t \int_{\mathbb{R}^n} \frac{1}{(t-s)^{n/2}} e^{-\frac{|y|^2}{4(t-s)}} \frac{|s|^b}{|y|^a} 1_{\{|y| \leq c_2 |s|^{\mu_2}\}} dy ds
\]

\[
\lesssim \left(\int_{-\infty}^t \int_{\mathbb{R}^n} \frac{1}{(t-s)^{n/2}} e^{-\frac{|y|^2}{4(t-s)}} \frac{|s|^b}{|y|^a} 1_{\{|y| \leq 2|x|^{\mu_2}\}} dy ds
\]

\[
\lesssim c_2^{-b+2(n-a)} (|x|/2c_2^{1/d_2})^{b+d_2(n-a)+1-\frac{n}{2}}
\]

\[
\lesssim c_2^{-n-a} \begin{cases} |t|^{b+d_2(n-a)} |x|^{2-n} & \text{if } 2c_2 |2t|^{d_2} \leq |x| < |t|^{\frac{1}{2}}, \\ |x|^{2b+2d_2(n-a)+2-n} & \text{if } |x| \geq |t|^{\frac{1}{2}}. \end{cases}
\]

Collecting the results of \(u_1, u_2, u_3\), we can get (B.7).

- By the similar calculation like (B.7), we will get (B.8). \(\square\)

Lemma B.3 Suppose \(2 < a < n, 0 \leq d_2 \leq \frac{1}{2}, \frac{n}{2} - b > 1\) and \(0 < c_2 \leq c_{**}\). Then there exists \(C\) depending on \(n, a, b, d_2, c_{**}\) such that for \(t < -1\),

\[
T^{\text{out}} \left[\frac{|t|^b}{|x|^a} 1_{\{|x| \leq 2|t|^{d_2}\}} \right] \leq C |t|^b |x|^{2-a} \text{ for } |x| < c_2 |t|^{d_2}. \tag{B.13}
\]

Proof We divide \(u\) into three parts

\[
u(x, t) = \int_{-\infty}^t \int_{\mathbb{R}^n} G(x - y, t - s) \frac{|s|^b}{|y|^a} 1_{\{|y| \leq c_2 |s|^{\mu_2}\}} dy ds = u_1 + u_2 + u_3,
\]
where u_1 is the term with $1_{|y| \leq \frac{1}{2}|x|}$ inside the integrand, u_2 is the one with $1_{\frac{1}{2}|x| \leq |y| \leq 2|x|}$ and u_3 is the one with $2|x| \leq |y| \leq c_2 |s|^{d_2}$. Since most of the calculation are similar to the proof of the previous lemma. We omit some details here. For u_1, we proceed as

\[
u_1 \lesssim \int_{-\infty}^{t} \int_{\mathbb{R}^n} \frac{1}{(t-s)^{n/2}} e^{-\frac{|x|^2}{4(t-s)}} |s|^b |y|^a 1_{|y| \leq \frac{1}{2}|x|} \, dy \, ds
\]

\[
\approx |x|^{n-a} \int_{-\infty}^{t} \frac{1}{(t-s)^{n/2}} e^{-\frac{|x|^2}{4(t-s)}} |s|^b \, ds
\]

\[
\lesssim |t|^b |x|^{2-a} \int_{-\infty}^{t} e^{-\frac{|z|^2}{4(t-s)}} \, dz + |x|^{2b+2-a} \int_{0}^{\infty} e^{-\frac{|z|^2}{4(t-s)}} \, dz
\]

\[
\lesssim |t|^b |x|^{2-a} + |x|^{n-a} |t|^{-\frac{n}{2}+b},
\]

where we have used the fact that $\frac{n}{2} - b > 1$. For u_2, we have

\[
u_2 \lesssim \int_{-\infty}^{t} \int_{\mathbb{R}^n} \frac{1}{(t-s)^{n/2}} e^{-\frac{|y|^2}{4(t-s)}} |s|^b |x|^{3a} \, dy \, dx
\]

\[
\approx |x|^{-a} \int_{-\infty}^{t} \frac{1}{(t-s)^{n/2}} e^{-\frac{|y|^2}{4(t-s)}} |s|^b \, dy \approx |x|^{-a} \int_{-\infty}^{t} |t|^b |x|^{2-a} + |t|^{1+b-\frac{n}{2}} |x|^{n-a}.
\]

For u_3, we have

\[
u_3 \lesssim \int_{-\infty}^{t} \int_{\mathbb{R}^n} \frac{1}{(t-s)^{n/2}} e^{-\frac{|y|^2}{4(t-s)}} |s|^b |x|^{2a} \, dy \, ds
\]

\[
\lesssim \int_{-\infty}^{t} \int_{\mathbb{R}^n} \frac{1}{(t-s)^{n/2}} e^{-\frac{|y|^2}{4(t-s)}} |s|^b \, dy \approx |x|^{-a} \int_{-\infty}^{t} \int_{0}^{c_2 |s|^{d_2}} e^{-\frac{|z|^2}{4(t-s)}} |s|^b r^{-1-a} \, dr \, ds
\]

\[
\approx \int_{-\infty}^{t} \int_{0}^{c_2 |s|^{d_2}} (t-s)^{-\frac{n}{2}} |s|^b e^{-\frac{|z|^2}{4(t-s)}} \, dz \, ds \lesssim |t|^b |x|^{2-a}.
\]

Combining the estimate of u_1, u_2, u_3 and using the fact that $|x|^{n-a} |t|^{-\frac{n}{2}+b} \leq |t|^b |x|^{2-a}$ because $|x| \leq c_2 |t|^{d_2}$, we get (B.13).

\[\square\]

Corollary B.4 Suppose that $n > 2$, $d_1 \leq d_2 \leq \frac{1}{2}$, b satisfies (B.2), $0 \leq c_1, c_2 \leq c_{**}$. Denote

\[u(x, t) = T_{\text{out}} \left[|t|^b |x|^{-a} 1_{|c_1 |t|^{d_1} \leq |x| \leq c_2 |t|^{d_2}} \right].\]

Then there exists C depending on $n, a, b, d_1, d_2, c_{**}$ such that for $t < -1$, if $0 \leq a < 2$,

\[u(x, t) \leq C \begin{cases} c_2^{-a} |t|^{b+d_2(2-a)} & \text{if } |x| \leq c_2 |t|^{d_2}, \\ c_2^{-a} |t|^{b+d_2(2-n)} |x|^{2-n} & \text{if } c_2 |t|^{d_2} \leq |x| \leq |t|^{\frac{1}{2}}, \\ c_2^{-a} |x|^{2b+2d_2(n-2)} & \text{if } |x| \geq |t|^{\frac{1}{2}}. \end{cases}
\]

(14)
If $2 < a < n$,
\[
 u(x, t) \leq C \begin{cases}
 c_1^{2-a} |t|^b + d_1(2-a) & \text{if } |x| \leq c_1 |t|^d_1, \\
 |t|^b |x|^2 - a & \text{if } c_1 |t|^d_1 \leq |x| \leq c_2 |t|^d_2, \\
 c_2^{n-a} |t|^{b+d_2(n-a)} |x|^{2-n} & \text{if } c_2 |t|^d_2 \leq |x| \leq |t|^\frac{1}{2}, \\
 c_2^{n-a} |x|^{2b+2d_2(n-a)+2-n} & \text{if } |x| \geq |t|^\frac{1}{2}.
 \end{cases}
\]
(B.15)

If $a > n$,
\[
 u(x, t) \leq C \begin{cases}
 c_1^{2-a} |t|^b + d_1(2-a) & \text{if } |x| \leq c_1 |t|^d_1, \\
 c_1^{n-a} |t|^{b+d_1(n-a)} |x|^{2-n} & \text{if } c_1 |t|^d_1 \leq |x| \leq |t|^\frac{1}{2}, \\
 c_1^{n-a} |x|^{2b+2d_1(n-a)+2-n} & \text{if } |x| \geq |t|^\frac{1}{2}.
 \end{cases}
\]
(B.16)

Proof (B.14) and (B.16) follow Lemma B.2 directly. (B.15) follows from (B.7) and (B.13).

\(\Box\)

Lemma B.5 Suppose that \(\frac{a}{2} - b > 1\). Then
\[
 T^{\text{out}} \left[|t|^b |x|^{-a} 1_{|x| \geq |t|^\frac{1}{2}} \right]
\]
\[
 \lesssim |t|^{1+b-\frac{a}{2}} 1_{|x| \leq |t|^\frac{1}{2}} + 1_{|x| \geq |t|^\frac{1}{2}} |x|^{-a} \begin{cases}
 |t|^{1+b} & \text{if } b < -1, \\
 1 + \ln \left(\frac{|x|^2}{|t|} \right) & \text{if } b = -1, \\
 |x|^{2b} & \text{if } b > -1.
 \end{cases}
\]
(B.17)

Proof Denote \(u(x, t) = T^{\text{out}} \left[|t|^b |x|^{-a} 1_{|x| \geq |t|^\frac{1}{2}} \right] \).

• For \(|x| \leq \frac{1}{2} |t|^\frac{1}{2}\), we have \(|x - y| \geq \frac{1}{2} |y|\) for \(|y| \geq |x|^\frac{1}{2} \geq |t|^\frac{1}{2}\). Then
\[
 u(x, t) \lesssim \int_{-\infty}^{t} \int_{\mathbb{R}^n} \frac{1}{(t-s)^{n/2}} e^{-\frac{|y|^2}{4(t-s)}} |s|^b |y|^{-a} 1_{|y| \geq |x|^\frac{1}{2}} \, d\xi \, ds
\]
\[
 \lesssim \left(\int_{-\infty}^{2t} + \int_{2t}^{\infty} \right) |s|^b (t-s)^{-a/2} e^{-\frac{|y|^2}{4(t-s)}} \, ds \lesssim |t|^{1+b-\frac{a}{2}},
\]
(B.18)

where \(\frac{a}{2} - b > 1\) is used to guarantee the integrability in the last step.

• Consider \(|x| \geq 4 |t|^\frac{1}{2}\). We make the following decomposition.
\[
 u(x, t) = \left(\int_{-\frac{1}{4} |x|^2}^{t} + \int_{-\frac{1}{4} |x|^2}^{-\frac{1}{4} |x|^2} + \int_{-\infty}^{-4 |x|^2} \right) \int_{\mathbb{R}^n} \frac{1}{(t-s)^{n/2}} e^{-\frac{|y|^2}{4(t-s)}} |s|^b |y|^{-a} 1_{|y| \geq |x|^\frac{1}{2}} \, dy \, ds
\]
\[
 := P_1 + P_2 + P_3.
\]

For \(P_1\), we divide it further to be
\[
 P_1 = \int_{-\frac{1}{4} |x|^2}^{t} \int_{\mathbb{R}^n} \frac{1}{(t-s)^{n/2}} e^{-\frac{|y|^2}{4(t-s)}} |s|^b |y|^{-a} 1_{|y| \geq |x|^\frac{1}{2}} \, dy \, ds = P_{11} + P_{12} + P_{13}.
\]
where P_{11} is the term with $1_{\{1/2 |x| \leq |y| \leq 1/2 |x| \}}$ in the integrand, P_{12} is the one with $1_{\{1/2 |x| \leq |y| \leq 2 |x| \}}$ and P_{13} is the one with $1_{\{2 |x| \leq |y| \}}$. For P_{11}, when $a < n$,

$$
P_{11} \lesssim \int_{-\frac{1}{4} |x|^2}^{t} \int_{\mathbb{R}^n} \frac{1}{(t-s)^{n/2}} e^{-\frac{|y|^2}{4(t-s)}} |s|^b |y|^{-a} 1_{\{|y| \leq \frac{1}{2} |x| \}} dy \, ds
$$

$$
\lesssim \int_{-\frac{1}{4} |x|^2}^{t} \int_{\mathbb{R}^n} \frac{1}{(t-s)^{n/2}} e^{-\frac{|y|^2}{4(t-s)}} |s|^b |x|^{n-a} dy \, ds
$$

$$
= |x|^{n-a} \int_{-\frac{1}{4} |x|^2}^{t} \frac{1}{(t-s)^{n/2}} e^{-\frac{|y|^2}{4(t-s)}} |y|^b \, dy \lesssim |x|^{2-a+2b}.
$$

When $a \geq n$, by similar calculation, $P_{11} \lesssim |x|^{2-a+2b}$ still holds.

For P_{12},

$$
P_{12} \lesssim \int_{-\frac{1}{4} |x|^2}^{t} \int_{\mathbb{R}^n} \frac{1}{(t-s)^{n/2}} e^{-\frac{|y|^2}{4(t-s)}} |s|^b 1_{\{|y| \leq \frac{1}{2} |x| \}} dy \, ds
$$

$$
\lesssim |x|^{-a} \left(\int_{2t}^{t} + \int_{-\frac{1}{4} |x|^2}^{2t} \int_{0}^{3|x|} \frac{1}{(t-s)^{n/2}} e^{-\frac{r^2}{4(t-s)}} |s|^b r^{n-1} dr \, ds \right)
$$

$$
\lesssim |x|^{-a} |t|^{1+b} + |x|^{-a} \begin{cases} |t|^{1+b} & \text{if } b < -1, \\
1 + \ln \left(\frac{|x|^2}{t} \right) & \text{if } b = -1, \\
\left(|x|^2 \right)^{1+b} & \text{if } b > -1.
\end{cases}
$$

For P_{13},

$$
P_{13} \lesssim \int_{-\frac{1}{4} |x|^2}^{t} \int_{\mathbb{R}^n} \frac{1}{(t-s)^{n/2}} e^{-\frac{|y|^2}{4(t-s)}} |s|^b |y|^{-a} 1_{\{|y| \leq |x| \}} dy \, ds
$$

$$
\approx \int_{-\frac{1}{4} |x|^2}^{t} \int_{\mathbb{R}^n} \frac{(-s)^b}{(t-s)^{n/2}} e^{-\frac{r^2}{4(t-s)}} r^{n-1-a} dr \, ds
$$

$$
= \left(\int_{2t}^{t} + \int_{-\frac{1}{4} |x|^2}^{2t} \int_{\mathbb{R}^n} \frac{(-s)^b}{(t-s)^{n/2}} e^{-\frac{r^2}{4(16t-s)}} r^{n-1-a} dr \, ds \right).
$$

For P_2, since $-\frac{1}{4} |x|^2 \leq 4t$ in this case,

$$
P_2 \lesssim \int_{-\frac{1}{4} |x|^2}^{-\frac{1}{4} |x|^2} \int_{\mathbb{R}^n} \frac{1}{|s|^n/2} e^{-\frac{|y|^2}{4(t-s)}} |s|^b |y|^{-a} 1_{\{|y| \geq \frac{1}{2} |x| \}} dy \, ds
$$

$$
\approx |x|^{-n+2b} \int_{-\frac{1}{4} |x|^2}^{-\frac{1}{4} |x|^2} \int_{\mathbb{R}^n} e^{-\frac{|y|^2}{4(t-s)}} |y|^{-a} \left(1_{\{|y| \geq \frac{1}{2} |x| \}} + 1_{\{2 |x| \leq |y| \}} \right) dy \, ds
$$

$$
\lesssim |x|^{2+2b-a}.
$$
For P_3, in this case, $|x| \leq \frac{1}{2}|s|^{\frac{1}{2}}$,

\[
P_3 \lesssim \int_{-\infty}^{-4|x|^2} \int_{\mathbb{R}^n} \frac{1}{(t-s)^{n/2}} e^{-\frac{|y|^2}{(t-s)^{n/2}}} |s|^b |y|^{-a} 1_{\{ |y| \geq |s|^{\frac{1}{2}} \}} \, dy \, ds \tag{B.23}
\]

and

\[
P_3 \lesssim \int_{-\infty}^{-4|x|^2} \int_{\mathbb{R}^n} (-s)^{b-\frac{n}{2}} e^{-\frac{|y|^2}{(t-s)^{n/2}}} |y|^{-a} 1_{\{ |y| \geq |s|^{\frac{1}{2}} \}} \, dy \, ds \lesssim |x|^{2+2b-a},
\]

where $\frac{a}{2} - b > 1$ is required to guarantee the integrability. Combining the above estimates of P_1, P_2 and P_3, we get, when $|x| \geq 4|t|^{\frac{1}{2}}$

\[
u(x, t) \lesssim |x|^{-a} \begin{cases} |t|^{1+b} & \text{if } b < -1, \\ 1 + \ln\left(\frac{|x|^2}{|t|}\right) & \text{if } b = -1, \\ |x|^{2+2b} & \text{if } b > -1. \end{cases} \tag{B.24}
\]

• Consider the case $\frac{1}{2}|t|^{\frac{1}{2}} \leq |x| \leq 4|t|^{\frac{1}{2}}$,

\[
u(x, t) = \int_{-\infty}^{t} \int_{\mathbb{R}^n} \frac{1}{(4\pi(t-s))^{n/2}} e^{-\frac{|y|^2}{4(t-s)^{n/2}}} |s|^b |y|^{-a} 1_{\{ |y| \geq |s|^{\frac{1}{2}} \}} \, dy \, ds
\lesssim \left(\int_{64t}^{t} + \int_{-\infty}^{64t}\right) \int_{\mathbb{R}^n} \frac{1}{(t-s)^{n/2}} e^{-\frac{|y|^2}{4(t-s)^{n/2}}} |s|^b |y|^{-a} 1_{\{ |y| \geq |s|^{\frac{1}{2}} \}} \, dy \, ds \tag{B.25}
\]

\[
\lesssim |t|^{1+b-\frac{n}{2}}.
\]

\[\square\]

In order to get the gradient estimate of $\tilde{\varphi}$, we need the following lemma.

Lemma B.6 For $d_1 \leq d_2 \leq \frac{1}{2}$, $\frac{n}{2} - b - d_2n > 0$, $c_1, c_2 \approx 1$, we have

\[
T^d [\langle |t|^{b+d_1} \rangle_{|t|^{d_1} \leq |x| \leq c_2|t|^{d_2}}] \lesssim \begin{cases} |t|^{b+d_2} & \text{if } |x| \leq |t|^{d_2}, \\ |t|^{b+d_2n} |x|^{1-n} & \text{if } |t|^{d_2} \leq |x| \leq |t|^{\frac{1}{2}}, \\ (|x|^2)^{b+d_2n} |x|^{1-n} & \text{if } |x| \geq |t|^{\frac{1}{2}}. \end{cases} \tag{B.26}
\]

For $d_1 \leq d_2 \leq \frac{1}{2}$, $a > n$, $\frac{n}{2} - b - d_1(n - a) > 0$, $c_1, c_2 \approx 1$, we have

\[
T^d [\langle |t|^{b+d_1(1-a)} \rangle_{|t|^{d_1} \leq |x| \leq c_2|t|^{d_2}}] \lesssim \begin{cases} |t|^{b+d_1(1-a)} & \text{if } |x| \leq |t|^{d_1}, \\ |t|^{b+d_1(1-a)} |x|^{1-n} & \text{if } |t|^{d_1} \leq |x| \leq |t|^{\frac{1}{2}}, \\ (|x|^2)^{b+d_1(1-a)} |x|^{1-n} & \text{if } |x| \geq |t|^{\frac{1}{2}}. \end{cases} \tag{B.27}
\]

We omit the proof since it relies splitting integral domain like above.

B.2 Proofs of three lemmas in the outer problem

Proof of Lemma 4.4 For $j = 2, \ldots, k$, by Corollary B.4,

\[
\mathcal{T}^{out}[\mu_{0,j}^{-2}(t) |t|^{y_j} 1_{|x| \leq \mu_{0,j}}] \lesssim \begin{cases} |t|^y & \text{if } |x| \leq \mu_{0,j}, \\ |t|^{y_j} \mu_{0,j}^{-2} |x|^{2-n} & \text{if } \mu_{0,j} \leq |x| \leq |t|^{\frac{1}{2}}, \\ |x|^{2y_j + (4 - 2n)a_j + 2-n} & \text{if } |x| \geq |t|^{\frac{1}{2}}. \end{cases}
\]
\[T^{\text{out}}[\mu^\alpha_0 j(t)|t|^\gamma_j|x|^{-\alpha}1_{|\mu_0 j| \leq \mu_0 j}] \lesssim \begin{cases} |t|^\gamma_j & \text{if } |x| \leq \mu_0 j, \\ |t|^\gamma_j \mu_0^\alpha_j |x|^{-\alpha} & \text{if } \mu_0 j \leq |x| \leq \bar{\mu}_0 j, \\ |t|^\gamma_j \mu_0^\alpha_j \bar{\mu}_0^{-\alpha j} |x|^{2-n} & \text{if } \bar{\mu}_0 j \leq |x| \leq |t|^{\frac{1}{2}}, \\ |x|^{2\gamma_j+n-2} & \text{if } |x| \geq |t|^{\frac{1}{2}}. \end{cases} \]

Thus \(T^{\text{out}}[w_{1j}] \lesssim w_{1j}^* \).

For \(j = 1 \), the first part of \(w_{11} \) can be dealt with by the same method above. For the rest part, by Corollary B.4,

\[T^{\text{out}}[|t|^\gamma_1 \bar{\mu}_{01}^{1-n-2-\alpha} |x|^{-1-n}1_{|\bar{\mu}_{01}| \leq |t|^{\frac{1}{2}}} \] \[\lesssim w_{11}^*. \]

Proof of Lemma 4.5 This just follows from (B.15), \(b = -2\sigma - (\frac{n}{2} - 2)\alpha_{j+1} + \alpha_j, \) \(d_2 = -\frac{1}{2}(\alpha_j + \alpha_{j-1}), \) \(a = n - 2. \)

Proof of Lemma 4.6 By Corollary B.4, we have

\[T^{\text{out}}[|t|^{-\sigma} |x|^{2-n}1_{|\bar{\mu}_{01}| \leq |t|^{\frac{1}{2}}} \] \[\lesssim \begin{cases} |t|^{-\sigma} \bar{\mu}_{01}^{4-n} & \text{if } |x| \leq \bar{\mu}_{01}, \\ |t|^{-\sigma} |x|^{4-n} & \text{if } \bar{\mu}_{01} \leq |x| \leq |t|^{\frac{1}{2}}, \\ |x|^{2-2\sigma-n} & \text{if } |x| \geq |t|^{\frac{1}{2}}. \end{cases} \]

By Lemma B.5, we have

\[T^{\text{out}}[|t|^{-\sigma} |x|^{2-n}1_{|x| \geq |t|^{\frac{1}{2}}} \] \[\lesssim \begin{cases} |t|^{-\sigma-\frac{n}{2}} & \text{if } |x| \leq |t|^{\frac{1}{2}}, \\ |t|^{-\sigma} |x|^{2-n} & \text{if } |x| \geq |t|^{\frac{1}{2}}. \end{cases} \]

Then (4.27) follows when \(\delta \leq \frac{1}{2}. \)

References

1. Aubin, T.: Problèmes isopérimétriques et espaces de sobolev. Journal of differential geometry **11**(4), 573–598 (1976)
2. Brendle, S.: Ancient solutions to the Ricci flow in dimension 3. Acta Math. **225**(1), 1–102 (2020)
3. Brendle, S., Choi, K.: Uniqueness of convex ancient solutions to mean curvature flow in \(\mathbb{R}^2 \). Acta Math. **217**(1), 35–76 (2019)
4. Collot, C., Merle, F., Raphaël, P.: Dynamics near the ground state for the energy critical nonlinear heat equation in large dimensions. Commun. Math. Phys. **352**(1), 215–285 (2017)
5. Cortazar, C., del Pino, M., Musso, M.: Green’s function and infinite-time bubbling in the critical nonlinear heat equation. J. Eur. Math. Soc. **22**(1), 283–344 (2019)
6. Daskalopoulos, P., Del Pino, M., Sesum, N.: Type II ancient compact solutions to the Yamabe flow. Journal für die reine und angewandte Mathematik **2018**(738), 1–71 (2018)
7. Del Pino, M., Gkikas, K.T.: Ancient multiple-layer solutions to the Allen–Cahn equation. Proceedings of the Royal Society of Edinburgh Section A: Mathematics **148**(6), 1165–1199 (2018)
8. del Pino, M., Musso, M., Wei, J.C.: Type II blow-up in the 5-dimensional energy critical heat equation. Acta Mathematica Sinica, English Series **35**(6), 1027–1042 (2019)
9. Del Pino, M., Musso, M., Wei, J.: Infinite time blow-up for the 3-dimensional energy critical heat equation. Analysis & PDE **13**(1), 215–274 (2020)
10. del Pino, M., Musso, M., Wei, J., Zhou, Y.: Type II finite time blow-up for the energy critical heat equation in \mathbb{R}^4. Discrete & Continuous Dynamical Systems-A 40(6), 3327 (2020)
11. Del Pino, M., Musso, M., Wei, J.C.: Existence and stability of infinite time bubble towers in the energy critical heat equation. Analysis & PDE, to appear, (2021)
12. Fila, M., Yanagida, E.: Homoclinic and heteroclinic orbits for a semilinear parabolic equation. Tohoku Mathematical Journal 63(4), 561–579 (2011)
13. Filippas, S., Kohn, R.V.: Refined asymptotics for the blowup of $u_t - \Delta u = u^p$. Commun. Pure Appl. Math. 45(7), 821–869 (1992)
14. Filippas, S., Herrero, M.A., Velázquez, J.J.L.: Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 456(2004), 2957–2982 (2000)
15. Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68(3), 209–243 (1979)
16. Giga, Y., Kohn, R.V.: Asymptotically self-similar blow-up of semilinear heat equations. Commun. Pure Appl. Math. 38(3), 297–319 (1985)
17. Giga, Y., Kohn, R.V.: Characterizing blowup using similarity variables. Indiana Univ. Math. J. 36(1), 1–40 (1987)
18. Giga, Y., Matsui, S., Sasayama, S.: Blow up rate for semilinear heat equations with subcritical nonlinearity. Indiana University mathematics journal, pages 483–514, (2004)
19. Harada, J.: A higher speed type II blowup for the five dimensional energy critical heat equation. Annales de l’Institut Henri Poincaré C, Analyse non linéaire 37(2), 309–341 (2020)
20. Harada, J.: A type II blowup for the six dimensional energy critical heat equation. Annals of PDE 6(2), 1–63 (2020)
21. Herrero, M.A., Velázquez, J.J.L.: Blow-up behaviour of one-dimensional semilinear parabolic equations. Annales de l’Institut Henri Poincaré (C) Non Linear Analysis 10(2), 131–189 (1993)
22. Herrero, M.A., Velázquez, J.J.L.: Explosión de solutions d’équations paraboliques semilinéaires supercritiques. Comptes Rendus de l’Académie des Sciences . Série I. Mathématique, 319(2), 141–145 (1994)
23. Jendrej, J.: Construction of two-bubble solutions for the energy-critical NLS. Anal. PDE 10(8), 1923–1959 (2017). (ISSN 2157-5045)
24. Jendrej, J.: Construction of two-bubble solutions for energy-critical wave equations. Amer. J. Math. 141(1), 55–118 (2019). (ISSN 0002-9327)
25. Jendrej, J., Lawrie, A.: Two-bubble dynamics for threshold solutions to the wave maps equation. Invent. Math. 213(3), 1249–1325 (2018). (ISSN 0020-9910)
26. Merle, F., Zaag, H.: Optimal estimates for blowup rate and behavior for nonlinear heat equations. Commun. Pure Appl. Math. 51(2), 139–196 (1998)
27. Mizoguchi, N.: Type-II blowup for a semilinear heat equation. Adv. Differential Equations 9(11–12), 1279–1316 (2004)
28. Poláčik, P., Yanagida, E.: A liouville property and quasiconvergence for a semilinear heat equation. J. Differential Equations 208(1), 194–214 (2005)
29. Poláčik, P., Quittner, P.: Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems 41(1), 413–438 (2021)
30. Quittner, P.: A priori bounds for global solutions of a semilinear parabolic problem. Acta Math. Univ. Comenianae 68(2), 195–203 (1999)
31. Quittner, P.: Optimal liouville theorems for superlinear parabolic problems. Duke Math. J. 170(6), 1113–1136 (2021)
32. Quittner, P., Souplet, P.: Superlinear parabolic problems. Springer, Berlin (2019)
33. Schwerver, R.: Type II blow-up for the four dimensional energy critical semi linear heat equation. J. Funct. Anal. 263(12), 3922–3983 (2012)
34. Struwe, M.: A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 187(4), 511–517 (1984)
35. Talenti, G.: Best constant in sobolev inequality. Annali di Matematica 110(1), 353–372 (1976)
36. Velázquez, J.J.L.: Higher dimensional blow up for semilinear parabolic equations. Comm. Partial Differential Equations 17(9–10), 1567–1596 (1992)
37. Wang, K., Wei, J.C.: Refined blowup analysis and nonexistence of type ii blowups for an energy critical nonlinear heat equation. arXiv preprint arXiv:2101.07186 (2021)
38. Wang, X.: On the cauchy problem for reaction-diffusion equations. Trans. Am. Math. Soc. 337(2), 549–590 (1993)
