J/Ψ at high temperatures in anisotropic lattice QCD

Hideaki Iida and Noriyoshi Ishii

Department of Physics, H-27, Tokyo Institute of Technology,
Oh-okayama 2-12-1, Meguro, Tokyo 152-8551, Japan
E-mail: iida@th.phys.titech.ac.jp, ishii@th.phys.titech.ac.jp

Takumi Doi

RIKEN BNL Research Center, Brookhaven National Laboratory,
Upton, New York 11973, USA
E-mail: doi@quark.phys.bnl.gov

Hideo Suganuma

Department of Physics, Kyoto University,
Kitashirakawaouike, Sakyo, Kyoto 606-8502, Japan
E-mail: suganuma@scphys.kyoto-u.ac.jp

J/Ψ and η_c above the QCD critical temperature T_c are studied in anisotropic quenched lattice QCD, considering whether the $c\bar{c}$ systems above T_c are compact quasi-bound states or scattering states. We adopt the standard Wilson gauge action and $O(a)$-improved Wilson quark action with renormalized anisotropy $a_s/a_t = 4$ at $\beta = 6.10$ on $16^3 \times (14 - 26)$ lattices, which correspond to the spatial lattice volume $V \equiv L^3 \simeq (1.55\text{fm})^3$ and temperatures $T \simeq (1.11 - 2.07)T_c$. To clarify whether compact charmonia survive in the deconfinement phase, we investigate spatial boundary-condition dependence of the energy of the $c\bar{c}$ systems above T_c. In fact, for low-lying $c\bar{c}$ scattering states, there appears a significant energy difference $\Delta E \equiv E(\text{APBC}) - E(\text{PBC})$ between periodic and anti-periodic boundary conditions as $\Delta E \simeq 2\sqrt{m_c^2 + 3\pi^2/L^2} - 2m_c$ (m_c: charm quark mass) on the finite-volume lattice. In contrast, for compact charmonia, there is no significant energy difference between periodic and anti-periodic boundary conditions. As a lattice QCD result, we find almost no spatial boundary-condition dependence for the energy of the $c\bar{c}$ system in J/Ψ and η_c channels for $T \simeq (1.11 - 2.07)T_c$, which indicates that J/Ψ and η_c would survive as compact $c\bar{c}$ quasi-bound states below $2T_c$.

XXIIIrd International Symposium on Lattice Field Theory
25-30 July 2005
Trinity College, Dublin, Ireland

*Speaker.
1. Introduction

Since QCD is established, the quark-gluon-plasma (QGP) phase has been studied with much attention as a “new phase of matter” at high temperatures both in theoretical and experimental sides \([1, 2, 3, 4]\). In recent years, QGP creation experiments are actually performed at SPS [3] and RHIC [4] in high-energy heavy-ion collisions. As an important signal of the QGP creation, \(J/\Psi\) suppression \([1, 2]\) was theoretically proposed and has been tested in the SPS/RHIC experiments. The basic assumption of \(J/\Psi\) suppression is that \(J/\Psi\) disappears above \(T_c\) due to vanishing of the confinement potential and the Debye screening effect [2].

Very recently, some lattice QCD calculations indicate an interesting possibility that \(J/\Psi\) and \(\eta_c\) seem to survive even above \(T_c\) \([5, 6, 7]\), which may lead a serious modification for the \(J/\Psi\) suppression scenario in QGP physics. However, as a possible problem, the observed \(c\bar{c}\) state on lattices may not be a nontrivial charmonium but a trivial \(c\bar{c}\) scattering state, because it is difficult to distinguish these two states in lattice QCD.

In this paper, we aim to clarify whether the \(c\bar{c}\) system above \(T_c\) is a compact quasi-bound state or a scattering state, which is spatially spread. To distinguish these two states, we investigate spatial boundary-condition dependence of the energy of the \(c\bar{c}\) system by comparing results in periodic and anti-periodic boundary conditions. If the \(c\bar{c}\) system is a scattering state, there appears an energy difference \(\Delta E\) between the two boundary conditions as \(\Delta E \approx 2\sqrt{m_c^2 + 3\pi^2/L^2} - 2m_c\) with the charm quark mass \(m_c\) on a finite-volume lattice with \(L^3\). If the \(c\bar{c}\) system is a compact quasi-bound state, the boundary-condition dependence is small even in finite volume. In Ref. [8], this method is actually applied for distinction between a scattering state and a compact resonance.

2. Method to distinguish a compact state from a scattering state

To begin with, we briefly explain the method to distinguish a compact state from a scattering state in term of its spatial extension. For this purpose, we investigate the \(c\bar{c}\) system in the periodic boundary condition (PBC) and in the anti-periodic boundary condition (APBC), respectively, and examine spatial boundary-condition dependence for the \(c\bar{c}\) system. Here, in the PBC/APBC case, we impose periodic/anti-periodic boundary condition for \(c\) and \(\bar{c}\) on a finite-volume lattice.

Table 1:	Periodic boundary condition (PBC) and anti-periodic boundary condition (APBC): the relation between spatial boundary condition and the minimum momentum \(\vec{p}_{\text{min}}	\) of \(c\), \(\bar{c}\) and compact charmonia \(c\bar{c}\).				
PBC							
particle	spatial BC	\(\vec{p}_{\text{min}}	\)			
\(c\)	periodic	0					
\(\bar{c}\)	periodic	0					
charmonia \((c\bar{c})\)	periodic	0					
APBC							
particle	spatial BC	\(\vec{p}_{\text{min}}	\)			
\(c\)	anti-periodic	\(\sqrt{3\pi}/L\)					
\(\bar{c}\)	anti-periodic	\(\sqrt{3\pi}/L\)					
charmonia \((c\bar{c})\)	periodic	0					

For a compact \(c\bar{c}\) quasi-bound state, the wave function of each quark is spatially localized and insensitive to spatial boundary conditions in lattice QCD, so that the charmonium behaves as a compact boson and its energy in APBC is almost the same as that in PBC [8]. For a \(c\bar{c}\) scattering state, both \(c\) and \(\bar{c}\) have non-zero relative momentum \(\vec{p}_{\text{min}} = (\pm \frac{\pi}{L}, \pm \frac{\pi}{L}, \pm \frac{\pi}{L})\), i.e., \(|\vec{p}_{\text{min}}| = \sqrt{3\pi}/L\).
in APBC, while they can take zero relative momentum \(\vec{p}_{\text{min}} = 0 \) in PBC. In fact, if the \(c\bar{c} \) system is a scattering state, there appears a significant energy difference \(\Delta E \) between PBC and APBC due to the finite lattice volume of \(L^3 \), and it is estimated as \(\Delta E \simeq 2\sqrt{m_c^2 + 3\pi^2/L^2} - 2m_c \). In our lattice QCD calculation, \(|\vec{p}_{\text{min}}| \) and \(\Delta E \) for the \(c\bar{c} \) scattering state are estimated as \(|\vec{p}_{\text{min}}| = \sqrt{3}\pi/L \simeq 0.69 \text{GeV} \) and \(\Delta E \simeq 2\sqrt{m_c^2 + 3\pi^2/L^2} - 2m_c \simeq 0.35 \text{GeV} \) for \(L \simeq 1.55 \text{fm} \) and \(m_c \simeq 1.3 \text{GeV} \).

3. Anisotropic lattice QCD

In this paper, we adopt anisotropic lattice QCD for the study of high-temperature QCD. In lattice QCD at temperature \(T \), (anti)periodicity is imposed in the temporal direction with the period \(1/T \), and hence it is technically difficult to measure temporal correlators at high temperatures. To overcome this problem, we use the anisotropic lattice with anisotropy \(a_s/a_t = 4 \). Owing to the finer temporal mesh, we can obtain detailed information for temporal correlators.

For the gauge field, we adopt the standard plaquette action on an anisotropic lattice as \([8,9]\)

\[
S_G = \frac{\beta}{N_c} \sum_{s,i,j} \text{ReTr}\{1 - P_{ij}(s)\} + \frac{\beta}{N_c} \gamma_c \sum_{s,i,j} \text{ReTr}\{1 - P_{4}(s)\},
\]

where \(P_{ij} \) denotes the plaquette operator. In the simulation, we take \(\beta \equiv 2N_c/g^2 = 6.10 \) and the bare anisotropy \(\gamma_c = 3.2103 \), which lead to renormalized anisotropy as \(a_s/a_t = 4.0 \). The scale is set by the Sommer scale \(r_0^{-1} = 395 \text{MeV} \). Then, the spatial and temporal lattice spacing are estimated as \(a_s^{-1} \simeq 2.03 \text{GeV} \) (i.e., \(a_s \simeq 0.979 \text{fm} \)), and \(a_t^{-1} \simeq 8.12 \text{GeV} \) (i.e., \(a_t \simeq 0.024 \text{fm} \)), respectively. The adopted lattice size is \(16^3 \times (14 - 26) \), which corresponds to the spatial lattice size as \(L \simeq 1.55 \text{fm} \) and the temperature as \(T = (1.11 - 2.07)T_c \). We use 999 gauge configurations, which are picked up every 500 sweeps after the thermalization of 20,000 sweeps.

For quarks, we use \(O(a) \)-improved Wilson (clover) action on the anisotropic lattice as \([8,9]\).

\[
S_F \equiv \sum_{x,y} \bar{\psi}(x)K(x,y)\psi(y),
\]

\[
K(x,y) \equiv \delta_{x,y} - \kappa_t \{(1 - \gamma_5)U_4(x)\delta_{x+4,y} + (1 + \gamma_5)U_4^\dagger(x-4)\delta_{x-4,y}\}
- \kappa_s \sum_i \{(r - \gamma_5)U_i(x)\delta_{x+1,y} + (r + \gamma_5)U_i^\dagger(x-1)\delta_{x-1,y}\}
- \kappa_s c_E \sum_i \sigma_{i4} F_{i4} \delta_{x,y} - r \kappa_c c_B \sum_{i<j} \sigma_{ij} F_{ij} \delta_{x,y},
\]

which is anisotropic version of the Fermilab action \([10]\). \(\kappa_t \) and \(\kappa_s \) denote the spatial and temporal hopping parameters, respectively, and \(r \) the Wilson parameter. \(c_E \) and \(c_B \) are the clover coefficients. The tadpole improvement is done by the replacement of \(U_i(x) \rightarrow U_i(x)/u_s \), \(U_4(x) \rightarrow U_4(x)/u_t \), where \(u_s \) and \(u_t \) are the mean-field values of the spatial and the temporal link variables, respectively. The parameters \(\kappa_t, \kappa_s, r, c_E, c_B \) are to be tuned so as to keep the Lorentz symmetry up to \(O(a^2) \). At the tadpole-improved tree-level, this requirement leads to \(r = a_t/a_s \), \(c_E = 1/(u_s u_t^2) \), \(c_B = 1/u_t^2 \) and the tuned fermionic anisotropy \(\gamma_F \equiv (u_s \kappa_t)/(u_t \kappa_s) = a_t/a_s \). For the charm quark, we take \(\kappa = 0.112 \) with \(1/\kappa \equiv 1/(u_s \kappa_t) - 2(\gamma_F + 3r - 4) \), which corresponds to the hopping parameter in the isotropic lattice. The bare quark mass \(m_0 \) in spatial lattice unit is expressed as \(m_0 = \frac{1}{4}(\frac{1}{\kappa} - 8) \). We summarize the lattice parameters and related quantities in Table 2. In the present lattice QCD, the masses of \(J/\Psi \) and \(\eta_c \) are found to be \(m_{J/\Psi} \simeq 3.07 \text{GeV} \) and \(m_{\eta_c} \simeq 2.99 \text{GeV} \) at zero temperature.
4. Temporal correlators of $c \bar{c}$ systems at finite temperature on anisotropic lattice

To investigate the low-lying state at high temperatures from the temporal correlator, it is practically desired to use a “good” operator with a large ground-state overlap, due to limitation of the temporal lattice size. To this end, we use a spatially-extended operator of the Gaussian type as

$$O(t, \bar{x}) = N \sum_{\bar{y}} \exp \left\{ -\frac{1}{2 \rho^2} \bar{y}^2 \right\} \bar{c}(t, \bar{x} + \bar{y}) \Gamma c(t, \bar{x})$$

in the Coulomb gauge [8,9]. N is a normalization. The size parameter ρ is optimally chosen in terms of the ground-state overlap. $\Gamma = \gamma_k (k = 1 - 3)$ and $\Gamma = \gamma_5$ correspond to $1^- (J/\Psi)$ and $0^- (\eta_c)$ channels, respectively. The energy of the low-lying state is calculated from the temporal correlator,

$$G(t) \equiv \frac{1}{V} \sum_{\bar{x}} \langle O(t, \bar{x}) O^\dagger(0, 0) \rangle,$$

where the total momentum of the $c \bar{c}$ system is projected to be zero.

In accordance with the temporal periodicity at finite temperature, we define the effective mass $m_{\text{eff}}(t)$ from the correlator $G(t)$ by the cosh-type function as [11]

$$\frac{G(t)}{G(t + 1)} = \frac{\cosh[m_{\text{eff}}(t - N_t/2)]}{\cosh[m_{\text{eff}}(t + 1 - N_t/2)]}$$

with the temporal lattice size N_t. In the plateau region of $m_{\text{eff}}(t)$, $m_{\text{eff}}(t)$ corresponds to the energy of the low-lying $c \bar{c}$ state. To find the optimal value of ρ, we calculate the correlator $G(t)$ for $\rho = 0.2, 0.3, 0.4$ and 0.5fm at each temperature, and examine the ground-state overlap by comparing $G(t)/G(0)$ with the fit function of $g_{\text{fit}}(t) = A \cosh[m(t - N_t/2)]$. As a result, the optimal size seems to be $\rho \simeq 0.2$fm for $c \bar{c}$ systems. Hereafter, we only show the numerical results for $\rho = 0.2$fm.

5. Lattice QCD results for the $c \bar{c}$ system above T_c

We investigate the $c \bar{c}$ systems above T_c both in $J/\Psi(J^P = 1^-)$ and $\eta_c(J^P = 0^-)$ channels. For each channel, we calculate the temporal correlator $G(t)$ and the effective mass $m_{\text{eff}}(t)$ defined by Eq.(4.3) both in PBC and APBC, and examine their spatial boundary-condition (b.c.) dependence.

Figures 1-4 show the effective-mass plot $m_{\text{eff}}(t)$ of the $c \bar{c}$ system in the J/Ψ channel for $\rho = 0.2$fm. From the cosh-type fit for the correlator $G(t)$ in the plateau region of $m_{\text{eff}}(t)$, we extract the energies, $E(\text{PBC})$ and $E(\text{APBC})$, of the low-lying $c \bar{c}$ system in PBC and APBC, respectively. Table 3 summarizes the $c \bar{c}$ system in the J/Ψ channel in PBC and APBC at each temperature.

As a remarkable fact, almost no spatial b.c. dependence is found for the low-lying energy of the $c \bar{c}$ system, i.e., $\Delta E \equiv E(\text{APBC}) - E(\text{PBC}) \simeq 0$, which is contrast to the $c \bar{c}$ scattering case of
ΔE ≃ 2√m_c^2 + 3π^2/L^2 − 2m_c ≃ 0.35GeV for L ≃ 1.55fm and m_c ≃ 1.3GeV as was discussed in Sect.2. This result indicates that J/Ψ survives for T = (1.11 − 2.07)T_c.

Table 4 summarizes the c\bar{c} system in the \eta_c channel in PBC and APBC at each temperature. Again, almost no spatial b.c. dependence is found as ΔE ≡ E(APBC) − E(PBC) ≃ 0, and this result indicates that \eta_c also survives for T = (1.11 − 2.07)T_c as well as J/Ψ.

In contrast to J/Ψ and \eta_c, our preliminary lattice results show a large spatial b.c. dependence for the c\bar{c} system in the \chi_{c1} (J^P = 1^+) channel even near T_c, which seems consistent with Ref.[7].

6. Summary and conclusions

We have investigated J/Ψ and \eta_c above T_c with anisotropic quenched lattice QCD to clarify whether the c\bar{c} systems above T_c are compact quasi-bound states or scattering states. We have adopted O(a)-improved Wilson quark action with renormalized anisotropy a_s/a_t = 4. Anisotropic lattice is technically important for the measurement of temporal correlators at high temperatures.

We have use β = 6.10 on 16^3 × (14 − 26) lattices, which correspond to T = (1.11 − 2.07)T_c.
Table 3: The energy of the $c\bar{c}$ system in the J/Ψ channel ($J^P = 1^-$) in PBC and APBC at $\beta = 6.10$ and $\rho = 0.2fm$ at each temperature. The statistical errors are smaller than 0.01GeV. We list also uncorrelated $\chi^2/\text{N}_{\text{DF}}$ and $\Delta E \equiv E(\text{APBC}) - E(\text{PBC})$.

temperature T_c	fit range	$E(\text{PBC})$ [GeV] [error]	$E(\text{APBC})$ [GeV] [error]	ΔE [GeV]
1.11T_c	7–11	3.05GeV [0.14]	3.09GeV [0.61]	0.04GeV
1.32T_c	8–11	2.95GeV [0.34]	2.98GeV [0.33]	0.03GeV
1.61T_c	6–9	2.94GeV [0.10]	2.98GeV [0.22]	0.04GeV
2.07T_c	5–7	2.91GeV [0.03]	2.93GeV [0.04]	0.02GeV

Table 4: The energy of the $c\bar{c}$ system in the η_c channel ($J^P = 0^-$) in PBC and APBC at $\beta = 6.10$ and $\rho = 0.2fm$ at each temperature. The statistical errors are smaller than 0.01GeV. We list also uncorrelated $\chi^2/\text{N}_{\text{DF}}$ and $\Delta E \equiv E(\text{APBC}) - E(\text{PBC})$.

temperature T_c	fit range	$E(\text{PBC})$ [GeV] [error]	$E(\text{APBC})$ [GeV] [error]	ΔE [GeV]
1.11T_c	7–11	3.03GeV [0.04]	3.02GeV [0.17]	-0.01GeV
1.32T_c	7–11	2.99GeV [0.78]	2.98GeV [0.82]	-0.01GeV
1.61T_c	6–9	3.00GeV [0.31]	2.97GeV [0.38]	-0.03GeV
2.07T_c	5–7	3.01GeV [0.03]	3.00GeV [0.07]	-0.01GeV

To conclude, we have found almost no spatial boundary-condition dependence of the energy of the low-lying $c\bar{c}$ system both in J/Ψ and η_c channels even on the finite-volume lattice. These results indicate that J/Ψ and η_c survive as compact $c\bar{c}$ quasi-bound states for $T = (1.11 - 2.07)T_c$.

References

[1] T. Hashimoto, O. Miyamura, K. Hirose and T. Kanki, Phys. Rev. Lett. 57, 2123 (1986).
[2] T. Matsui and H. Satz, Phys. Lett. B178, 416 (1986).
[3] M.C. Abreu et al. (NA50 Collaboration), Phys. Lett. B477, 28 (2000).
[4] D. Kim (PHENIX Collaboration), J. Phys. G31, S309 (2005).
[5] T. Umeda, K. Katayama, O. Miyamura and H. Matsufuru, Int. J. Mod. Phys. A16, 2215 (2001); H. Matsufuru, O. Miyamura, H. Suganuma and T. Umeda, AIP Conf. Proc. CP594, 258 (2001).
[6] M. Asakawa and T. Hatsuda, Phys. Rev. Lett. 92, 012001 (2004).
[7] S. Datta, F. Karsch, P. Petreczky, I. Wetzorke, Phys. Rev. D69, 094507 (2004); J. Phys. G31, S351 (2005).
[8] N. Ishii, T. Doi, H. Iida, M. Oka, F. Okiharu and H. Suganuma, Phys. Rev. D71, 034001 (2005); N. Ishii, T. Doi, Y. Nemoto, M. Oka and H. Suganuma, hep-lat/0506022, Phys. Rev. D72 (2005).
[9] H. Matsufuru, T. Onogi and T. Umeda, Phys. Rev. D64, 114503 (2001); T.R. Klassen, Nucl. Phys. B553, 557 (1998).
[10] A.X. El-Khadra, A.S. Kronfeld and P.B. Mackenzie, Phys. Rev. D55, 3933 (1997).
[11] N. Ishii, H. Suganuma and H. Matsufuru, Phys. Rev. D66, 094506 (2002); D66, 014507 (2002).