Dengue fever is an important mosquito-borne viral disease that mostly occurs in tropical and subtropical areas of the world. According to epidemiological data from the Center for Disease Control of Taiwan, more than 98.62% of outbreaks of indigenous total dengue cases were reported in the southern part of Taiwan. Southern Taiwan is an aggregate area encompassing Tainan, Kaohsiung, and Pingtung, all of which are located below the Tropic of Cancer (23°35'N). With a few exceptions, dengue outbreaks mainly occur in southern Taiwan which is highly associated or overlaps with the prevalence of *Aedes aegypti*. *A. aegypti* is presumed to be absent from the northern part of Taiwan, while *Aedes albopictus* breeds in areas throughout the island. According a collection of 20 years of epidemiological data from Taiwan, the inability of *A. aegypti* to survive the winter weather in northern Taiwan may account for its restricted geographical distribution and that of dengue outbreaks it transmits. *A. aegypti*, unlike temperate strains of *A. albopictus*, lacks embryonic diapause signaled by a short photoperiod which thus reduces its cold-hardiness. Therefore it is intolerant of low temperatures that frequently accompany rains and unable to survive during winter in the northern part of Taiwan.
symptoms may be seen in some cases [5,6]. Currently, dengue fever is endemic to more than 125 countries [7], especially tropical and subtropical regions, such as Southeast Asia and Latin Americas [8,9].

The dengue virus is maintained in nature via a cycle transmitted by Aedes mosquitoes between humans or monkeys for the jungle cycle [10] [Fig. 1]. Transovarial or vertical transmission in mosquitoes themselves has also occasionally been observed [11,12]. This reflects that the dengue virus is sustained by alternate replication in mosquitoes and humans [13]. Most important vectors involved in the transmission of the dengue virus include A. aegypti and A. albopictus, both of which are members of the subgenera Stegomyia [14], because of susceptibility to the virus and a high efficiency of transmission to humans [4,15,16]. Of these, A. aegypti originated from Africa, but is now prevalent in most tropical and subtropical regions of the world [17]. A. albopictus is a species endemic to Southeast Asia [14]; nowadays, it has expanded to a broad range of the world including Europe and Africa since it was first introduced into North America via the trade in used tires [18–22].

Dengue fever has become endemic in Taiwan; however, most outbreaks were reported from the southern part of the island, in particular, Tainan City, Kaohsiung City, and Pingtung County. This review provides information elucidating this fascinating feature. In addition to describing a brief history of dengue outbreaks in Taiwan, evidence of a skewed prevalence of dengue cases and a compatible distribution of A. aegypti with dengue outbreaks in Taiwan are also addressed. Features including overwintering of A. albopictus and a lack of embryonic diapause which may determine the overwintering ability of A. aegypti are also discussed; these thus contribute to the distribution of dengue vectors and the outbreaks they transmit in Taiwan.

A brief history of dengue outbreaks in Taiwan

Dengue fever has been recognized in the world for perhaps hundreds of years [23]. During the first half of the 20th century, most outbreaks in the world were reported from East Asia and Western Pacific countries [24]. Meanwhile, two large-scale dengue outbreaks, recorded in 1915 and 1942, spread throughout the island of Taiwan [25,26]. It is estimated that the former caused 1.7 million infections out of a total population of 3.5 million (approximately 50%), while the latter resulted in 5 million infections among 6 million residents (>80%). However, severe dengue epidemics were absent from Taiwan after World War II (WWII), as seen in many other countries of the world. This is also believed to have been the result of worldwide programs for malaria control in areas in which both malaria and dengue were simultaneously endemic [27,28].

The reemergence of dengue fever after WWII in Taiwan first occurred in 1981, as an outbreak mainly caused by the dengue 2 virus, and which resulted in an infection rate of >80% (13,000 reported cases/15,000 residents) on Liu-Chiu Islet, Pingtung [29,30]. Following this outbreak, a larger outbreak (mainly caused by the dengue 1 virus) appeared in 1987 through 1988 [31], causing approximate 5000 indigenous cases in Kaohsiung which is a city neighboring Pingtung [32]. Thereafter, dengue outbreaks accompanied by occasional severe forms of the disease appeared more frequently and
actually became one of the endemic infectious diseases in Taiwan [33].

The time gap of the reemergence of dengue outbreaks for almost four decades in Taiwan is attributed to: (1) a fading of herd immunity created by previous outbreaks before 1946; (2) termination of residual spraying programs with dichlorodiphenyltrichloroethane (DDT) for malaria control in early 1973 [34]; (3) the rapid increase in international traffic by jet airplanes [35]; (4) canceling of a ban on traveling abroad in 1987; and (5) initiation of recruitment of allied laborers mainly from Southeast Asian countries in 1989 [36].

Skewed prevalence of dengue cases in Taiwan

According to a database covering the period from 1998 to 2017 based on information from the Taiwanese Center for Disease Control (CDC) (website: https://nidss.cdc.gov.tw/ch/NIDSS_DiseaseMap.aspx?dc=1&dt=2&disease=061), a relatively few indigenous dengue cases were found in northern and central parts of the island despite annual imported cases in the same regions being obviously greater than those recorded in the southern part including Tainan, Kaohsiung, and Pingtung [Fig. 2]. Statistically, 73,896 of 74,959 (98.62%) confirmed indigenous cases were reported from the southern part of Taiwan, while only 622 of 2703 nationally imported cases (23.01%) were reported for the same region [Table 1]. Major dengue outbreaks reported in the past three decades mostly appeared in locations south of the Tropic of Cancer (23°35’N) which geographically divides the island into two climatic regions, i.e., tropical and subtropical. Apparently, only the environment with a tropical climate is suitable for dengue virus transmission by the mosquito vector and establishment of dengue outbreaks [37].

Compatible distribution of A. aegypti and dengue outbreaks

In many part of the world, dengue outbreaks mostly occur in places with an abundance of A. aegypti, while they are also only occasionally reported from places where A. albopictus is distributed [38,39]. In surveillance conducted for the 1987–1988 dengue outbreak in Kaohsiung and Pingtung, the

Fig. 2 By focusing on statistics of dengue cases accumulated from 1998 to 2017 in Taiwan, it was determined that most (98.62%) confirmed indigenous cases were reported from southern Taiwan, especially Tainan, Kaohsiung, and Pingtung. All of these areas are located south of the Tropic of Cancer (23°35’N), i.e., a region with a tropical climate (Data from the Center for Disease Control, Taiwan).
in dengue transmission in Taiwan were eventually able to be identified because it is the species that possesses an anthropophilic behavior. This, in turn, reveals that the roles of the two dengue vectors differ in their preference for human hosts.

A study carried out in Singapore further showed that A. aegypti appeared much earlier, compared to A. albopictus, in areas with aggregated cases\[43\]. This study highlighted the importance of early detection in areas where both species of mosquitoes are found.

Table 1

Region	Imported Cases	Indigenous Cases
Taipei City	500	182
Taichung City	303	115
Tainan City	184	26,539
Kaohsiung City	343	45,319
Keelung City	27	9
Hsinchu City	29	25
Chiayi City	16	31
New Taipei City	443	170
Taoyuan City	330	83
Hsinchu County	73	29
Yilan County	31	11
Miaoli County	51	12
Changhua County	102	65
Nantou County	46	17
Yunlin County	49	36
Chiayi County	34	50
Pingtung County	95	2,038
Penghu County	3	144
Hualien County	25	14
Taitung County	13	38
Kinmen County	6	3
Lienchiang County	0	2
Nation-wide	**2,073 (23.01%)**	**74,932 (98.62%)**

Based on information from the Center for Disease Control (CDC), Taiwan.

A study carried out in Singapore further showed that infected A. aegypti appeared much earlier, compared to A. albopictus, approximately as early as 6 weeks before the occurrence of an outbreak\[44\]. We assume that A. aegypti may initiate an early outbreak, while A. albopictus participates in the latter phase of the outbreak, resulting in establishment and subsequent expansion of the outbreak\[37\].

In Taiwan, A. albopictus breeds throughout the island in areas below 1,000 (occasionally 1,500) m in elevation\[46\]. In contrast, the distribution of A. aegypti is limited to south of the Tropic of Cancer, generally along the southwestern coastal belt\[43\] [Fig. 3]. Looking at the geographical distribution of A. aegypti, it is fully compatible with the occurrence of dengue cases, mostly around the southern part of the island\[47–49\].

Overwintering of A. albopictus

A. albopictus is an endemic species of mosquito in Southeast Asia; however, it also breeds in various parts of temperate areas of Asia, including China, Japan, and South Korea\[50\]. This reveals that A. albopictus, at least some strains, is more cold-hardy, leading to its ability to preserve and thus maintain a sustainable population in the field\[51\]. Diapause (a state of developmental arrest), an important character seen in many other insects, helps organisms pass a harsh weather\[52,53\]. The mosquito A. atropalpus was demonstrated to survive the cold weather by means of diapause-enhanced cold-hardiness\[54\]. In fact, diapause was also shown to exist in certain strains of A. albopictus, serving as one factor favoring its overwintering, particularly in temperate areas\[55\].

Diapause in mosquito overwintering was observed to occur in different developmental stages, i.e., adults, larvae, eggs, or a combination, depending on the species of mosquito\[56\]. Of these, egg or embryonic diapause seems to be more common as shown in temperate strains of A. albopictus\[57\]. The embryo during diapause is confined inside the chorion of the egg, resulting in insensitivity of a response to any climatic stimuli for hatching\[52\]. Nearly 50% of diapausing eggs deposited by engorged females are able to survive the winter in temperate China, and its population density declines during the winter\[58\]. Apparently, fluctuations of A. albopictus populations are highly associated with seasonal embryonic diapause of strains in temperate regions and possibly also in subtropical regions\[59\].

In addition to temperature, photoperiod is also a critical climatic factor involved in diapause induction\[60\]. It was noted that most diapausing eggs of A. atropalpus are deposited in fall\[54\], suggesting that shorter daylight serves as a signal of seasonal change and subsequently drives induction of mosquito diapause. In the mosquito Aedes triseriatus, there was a significant interaction between temperature and photoperiod on induction of egg diapause\[60\]. It is presumed to work by influencing the prediapause stage of developing mosquitoes\[61\]. A study of A. albopictus in Japan also showed that egg diapause begins in late fall, which is the transition period between favorable and unfavorable seasons for
mosquito survival [62]. Physiologically, the short photoperiod beginning in fall seems to be an essential signal required for induction of egg diapause, which enhances the mosquito’s ability to survive lower temperatures in winter. Taken together, effective induction of diapause in eggs laid by A. albopictus provides a sufficient period of time to complete development of one mosquito generation, leading to seasonal synchronization of eggs hatching the following year [63].

Laboratory observations revealed that A. albopictus in Taiwan is unable to develop at a temperature below 15 °C [64]. However, A. albopictus can maintain population breeding in the north, at which time temperatures lower than 10 °C occur much longer than in the south (website: https://www.cwb.gov.tw/V7/climate/monthlyMean/Taiwan_txminle10day.htm). It seems that A. albopictus in Taiwan may be more similar to strains breeding in temperate regions, e.g., Japan, that present cold hardiness via egg diapause. Diapause may be induced by the signal of a shorter photoperiod in fall, which occurs in October each year (https://www.cwb.gov.tw/V7/climate/monthlyMean/Taiwan_sunshine.htm). Moreover, mosquitoes such as A. albopictus in tropical regions may have a character of quiescence which is non-seasonal dormancy, helping them survive high temperatures [65]. It seems that A. albopictus is evolutionarily successful, as it can sustainably distribute throughout the island of Taiwan in both summer and winter [66,67].

According to a recent study in Taiwan, a land surface temperature of 13.8 °C is the critical limit for breeding of A. aegypti larvae in the field [68]. Although the annual average temperature in Taiwan is 22 °C with a range of 12–30 °C (website: https://www.chinahighlights.com/taiwan/weather.htm), it can approach 8 °C or lower in winter in northern Taiwan. Obviously, this weather is unsuitable for the sustained development of mosquitoes. Although A. albopictus may have strains that possess egg diapause to enhance their cold hardiness, a lack of this character in A. aegypti eggs may cause an intolerance for low temperatures in winter. Although quiescence characterized by slowed metabolism was also addressed in A. aegypti in unfavorable environments, it seems to work specifically in conditions of low humidity and high temperature in summertime [69].

More significantly, mosquito larvae that emerge following a rainfall are much less tolerant of temperatures below 10 °C [70]. A. albopictus in the French Riviera is highly dependent on egg diapause driven by temperature and rainfall to maintain its population dynamics [71]. This implies that mosquito overwintering could succeed depending on the combined effects of multiple climatic factors. A temperature of <13 °C is frequently accompanied by a consecutive rainy period in winter in northern Taiwan (website: www.timeanddate.com/}

Lack of embryonic diapause in A. aegypti

Fig. 3 Estimated distributions of dengue vectors, i.e., *Aedes aegypti* and *A. albopictus* in Taiwan. The former species breeds in abundance south of the Tropic of Cancer (23°35′N), while the latter is extensively distributed in areas of less than 1,000 m (occasionally 1,500 m) in elevation throughout the island (Data from the Center for Disease Control, Taiwan).
weather/taiwan/kaohsiung/climate). It is obvious that the weather in northern Taiwan is unfavorable for A. aegypti larvae to develop sustainably. Warm and dry climates eventually favor A. aegypti maintaining higher survival rates [69]. Undoubtedly, development-regulating dormancy, such as egg diapause, determines the status of A. aegypti being abundant only in southern, not in northern, Taiwan.

Conclusions

During the past three decades in Taiwan, most dengue outbreaks were reported from the south, i.e., Tainan, Kaohsiung, and Pingtung, regions with a tropical climate on the island. The distribution of dengue cases is extremely compatible with breeding areas of A. aegypti, rather than those of A. albopictus. This suggests that A. aegypti is critically important as a vector that contributes to most outbreaks in Taiwan. The absence of A. aegypti from northern Taiwan is suggested to result from an intolerance of cold and rainy conditions during the winter. Unlike temperate strains of A. albopictus, A. aegypti lacks photoperiod-triggered embryonic diapause, resulting in reduced cold-hardiness and a consequent failure to survive the winter in northern Taiwan.

Conflicts of interest

The author declares no conflicts of interest.

Acknowledgments

The author would like to thank Mrs. I-Chuan Chen for assistance with figure-sketching. This work was supported by grants from the Ministry of Science and Technology, Taiwan (MOST103-2320-B-182-029-MY3) and Chang Gung Memorial Hospital (CMRPD1F0321-3).

REFERENCES

[1] WHO. Global strategy for dengue prevention and control, 2012–2020. Geneva, Switzerland: WHO Press; 2012. p. 43.
[2] Chambers TJ, Hahn CS, Galler R, Rice CM. Flavivirus gene organization, expression, and replication. Annu Rev Microbiol 1990;44:649–88.
[3] Bäck AT, Lundkvist A. Dengue viruses – an overview. Infect Ecol Epidemiol 2013;3:19839.
[4] Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature 2013;496:504–7.
[5] Chen WJ, Wei HL, Huo EL, Chen ER. Vector competence of Aedes albopictus and Ae. aegypti (Diptera: Culicidae) to dengue 1 virus in Taiwan: development of the virus in the orally and parenterally infected mosquitoes. J Med Entomol 1993;30:524–30.
[6] Madi D, Achappa B, Ramapuram JT, Chowta N, Laxman M, Mahalingam S. Dengue Encephalitis–A rare manifestation of dengue fever. Asian Pac J Trop Biomed 2014;4(suppl 1):S70–2.
[7] Ferreira GL. Global dengue epidemiology trends. Rev Inst Med Trop Sao Paulo 2012;54(Suppl 18):S5–6.
[8] Goh KT, Ng SK, Chan YC, Lim SJ, Chua EC. Epidemiological aspects of an outbreak of dengue fever/dengue hemorrhagic fever in Singapore. Southeast Asian J Trop Med Public Health 1987;18:295–302.
[9] Pinheiro FP, Corber SJ. Global situation of dengue and dengue hemorrhagic fever, and its emergence in the Americas. World Health Stat Q 1997;50:161–9.
[10] Carrington LB, Simmons CP. Human to mosquito transmission of dengue viruses. Front Immunol 2014;5:290.
[11] Khin MM, Than KA. Transovarial transmission of dengue 2 virus by Aedes aegypti in nature. Am J Trop Med Hyg 1983;32:590–4.
[12] Lee HL, Rohani A. Transovarial transmission of dengue virus in Aedes aegypti and Aedes albopictus in relation to dengue outbreak in an urban area in Malaysia. Dengue Bull 2005;29:106–11.
[13] Sessions OM, Barrows NJ, Souza-Neto JA, Robinson TJ, Hershey CL, Rodgers MA, et al. Discovery of insect and human dengue virus host factors. Nature 2009;458:1047–50.
[14] Mousson L, Dauga C, Garrigues T, Schaffner F, Vazeille M, Faillous AB. Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations. Genet Res 2005;86:1–11.
[15] Chan YC, Ho BC, Chan KL. Aedes aegypti (L) and Aedes albopictus (Skuse) in Singapore City. 5. Observations in relation to dengue haemorrhagic fever. Bull WHO 1971;44:651–8.
[16] Ibáñez-Bernal S, Briseno B, Mutebi JP, Argot E, Rodríguez G, Martínez-Campos C, et al. First record in America of A. aegypti in nature. Am J Trop Med Hyg 1997;56:1374–8.
[17] Tabachnick WJ. Evolutionary genetics and arthropod-borne disease: the yellow fever mosquito. Am Entomol 1991;37:14–26.
[18] Hawley WA, Reiter P, Copeland RS, Pum pun CB, Craig Jr GB. Aedes albopictus in North America: probable introduction in used tires from northern Asia. Science 1987;236:1114–6.
[19] Gubler DJ. Aedes albopictus in Africa. Lancet Infect Dis 2003;3:751–2.
[20] Gatt F, Deeming JC, Schaffner F. First record of Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) in Malta. Eur Mosq Bull 2009;27:56–64.
[21] Caminade C, Medlock JM, Ducheyne E, McIntyre KM, Leach S, Baylis M, et al. Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J R Soc Interface 2012;9:2708–17.
[22] Bonizzoni M, Gasperi G, Chen X, James AA. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol 2013;29:460–8.
[23] Mood BS, Mardani M. Dengue: a re-emerging disease. Arch Clin Infect Dis 2017;12:e27970.
[24] Kuno G. Research on dengue and dengue-like illness in East Asia and the Western Pacific during the first half of the 20th century. Rev Med Virol 2007;17:27–41.
[25] Koizumi T, Yamaguchi K, Tonomura K. An epidemiological study of dengue fever. Rev Trop Dis Bull 1918;12:77.
[26] Lumley GF, Taylor FH. Dengue. Sydney, Australia: Australasian Medical Publishing Company, Ltd.; 1943. p. 171.
[27] Dugas WJ, Skuse AT, Lundkvist A. Aedes aegypti, Aedes albopictus, and Aedes aegypti (Skuse) (Diptera: Culicidae) – current knowledge and future perspectives. Trends Parasitol 2012;28:95.
[28] Rasheed SB, Butlin RK, Boots M. A review of dengue as an emerging disease in Pakistan. Public Health 2013;127:11–7.
[29] Hsieh WC, Chen MF, Lin KT, Hsu ST, Ma CI, Wu SS. Outbreaks of dengue fever in 1981 in Liouchyou Shiang, Pingtung County. J Formos Med Assoc 1982;81:1388–95.
[30] Wu YC. Epidemic dengue 2 on Liu Chiu Hsiang, Pingtung County in 1981. Chin J Microbiol Immunol 1986;19:203–11.

[31] Ko YC. Epidemiology of dengue fever in Taiwan. Kaohsiung J Med Sci 1989;5:1–11.

[32] King CC, Wu YC, Chao DY, Lin TH, Chow L, Wang HT, et al. Major epidemics of dengue in Taiwan in 1981–2000: related to intensive virus activities in Asia. Dengue Bull 2000;24:1–10.

[33] Chang SF, Huang JH, Shu PY. Characteristics of dengue epidemics in Taiwan. J Formos Med Assoc 2012;111:297–9.

[34] Miller HI. Life, death and DDT. Source: Far Eastern Economic Review. 2009. http://www.mcsstw.org/web/FocusIn.php?fd=118 [Accessed 6 November 2018].

[35] Kuno G. Emergence of the severe syndrome and mortality associated with dengue and dengue-like illness: Historical records (1890 to 1950) and their compatibility with current hypotheses on the shift of disease manifestation. Clin Microbiol Rev 2009;22:186–201.

[36] Chen WJ. A broad view on dengue outbreaks in Taiwan. Ecol Taiwan 2016;50:47–53.

[37] Yang CF, Hou JN, Chen TH, Chen WJ. Discriminable roles of *Aedes aegypti* and *Aedes albopictus* in establishment of dengue outbreaks in Taiwan. Acta Trop 2014;130:17–25.

[38] Slosek J. *Aedes aegypti* mosquitoes in the Americas: a review of their interactions with the human population. Soc Sci Med 1986;23:249–57.

[39] Sun J, Lu L, Wu H, Yang J, Xu L, Sang S, et al. Epidemiological trends of dengue in mainland China, 2005–2015. Int J Infect Dis 2017;57:86–91.

[40] Lien JC, Lin TH, Huang HM. Dengue vector surveillance and control in Taiwan. Trop Med 1994;35:269–76.

[41] Lien JC, Hwang JS, Lin YN, Chung CL. Surveillance of dengue vectors mosquitoes. Proceedings of the 2nd seminar on the control of vectors and pests; 1989 Feb 25; Taipei, Taiwan; 1989. p. 1–27.

[42] Vazeille M, Rosen L, Mousson L, Failloux A. Low oral receptivity for dengue type 2 virus of *Aedes albopictus* from Southeast Asia compared with that of *Aedes aegypti*. Am J Trop Med Hyg 1998;58:578–8.

[43] Lin TH. Surveillance and control of *Aedes aegypti* in epidemic areas of Taiwan. Kaohsiung J Med Sci 1994;10(Suppl):S88–93.

[44] Chow VTK, Chan YC, Rong R, Lee KM, Chung YK, Lam Phua SG, et al. Monitoring of dengue viruses in field-caught *Aedes aegypti* and *Aedes albopictus* mosquitoes by a type-specific polymerase chain reaction and cycle sequencing. Am J Trop Med Hyg 1998;58:578–86.

[45] Paupy C, Ollomo B, Kamgang B, Moutailler S, Rouset D, Demanou M, et al. Comparative role of *Aedes albopictus* and *Aedes aegypti* in the emergence of dengue and Chikungunya in central Africa. Vector Borne Zoonotic Dis 2010;10:259–66.

[46] Lien JC. Entomological surveillance on the vectors of dengue fever in Taiwan. Program and abstract of the symposium on dengue fever; 1989 Feb 25–26; Taipei, Taiwan; 1989. p. 8.

[47] Huang JS. Ecology of *Aedes* mosquitoes and their relationships with dengue epedemics in Taiwan area. Chin J Entomol 1991;36:105–27.

[48] Ho CM, Feng CC, Yang CT. Surveillance for dengue fever vectors using ovitraps at Kaohsiung and Tainan in Taiwan. Formos Entomol 2005;25:159–74.

[49] Liao CM, Huang TL, Cheng YH, Chen WY, Hsieh NH, Chen SC, et al. Assessing dengue infection risk in the southern region of Taiwan: implications for control. Epidemiol Infect 2015;143:1059–72.

[50] Nawrocki SJ, Hawley WA. Estimation of the northern limits of distribution of *Aedes albopictus* in North America. J Am Mosq Contr Assoc 1987;3:314–7.

[51] Hanson SM, Craig Jr GB. Cold acclimation, diapause, and geographic origin affect cold hardness in eggs of *Aedes albopictus* (Diptera: Culicidae). J Med Entomol 1994;31:192–201.

[52] Denlinger DL, Armbruster PA. Mosquito diapause. Annu Rev Entomol 2014;59:73–93.

[53] Sinclair BJ. Linking energetics and overwintering in temperate insects. J Therm Biol 2015;54:5–11.

[54] Anderson JF. Influence of photoperiod and temperature on the induction of diapause in *Aedes atropalpus* (Diptera: Culicidae). Entomol Exp Appl 1968;11:321–30.

[55] Mori A, Oda T, Wada Y. Studies on the egg diapause and overwintering of *Aedes albopictus* in Nagasaki. Trop Med 1981;23:79–90.

[56] Mogi M. Overwintering strategies of mosquitoes (Diptera:Culicidae) on warmer islands may predict impact of global warming on Kyushu, Japan. J Med Entomol 1996;33:438–44.

[57] Hanson SM, Craig Jr GB. *Aedes albopictus* (Diptera: Culicidae): eggs: field survivorship during northern Indiana winters. J Med Entomol 1995;32:599–604.

[58] Guo X, Zhao T, Dong Y, Li B. Survival and replication of dengue-2 virus in diapausing eggs of *Aedes albopictus* (Diptera: Culicidae). J Med Entomol 2007;44:492–7.

[59] Lin P, Lu L, Chen X, Chen J, Guo L, Yu X, et al. A climate-driven metachronal population model of *Aedes albopictus* with diapause. Parasites Vectors 2016;9:175.

[60] Kappus, Venard CE. The effects of photoperiod and temperature on the induction of diapause in *Aedes triseriatus* (Say). J Insect Physiol 1967;13:1007–19.

[61] Bradshaw WE, Louinops I. Evolution of dormancy and its photoperiodic control in pitcher-plant mosquitoes. Evolution 1977;31:546–67.

[62] Kobayashi M, Nihei N, Kurishara T. Analysis of northern distribution of *Aedes albopictus* (Diptera: Culicidae) in Japan by geographical information system. J Med Entomol 2002;39:4–11.

[63] Lacour G, Chanaud L, L’Ambert G, Hance T. Seasonal synchronization of diapause phases in *Aedes albopictus* (Diptera: Culicidae). PLoS One 2015;10:e0145311.

[64] Yang YS. The risk and related factors of dengue outbreak. Master thesis. Ping-Tung, Taiwan: National Ping-Tung University of Technology and Science; 2008.

[65] Diniz DFA, de Albuquerque CMR, Oliva LO, de Melo Santos MAV, Ayres GF. Diapause and quiescence: dormancy mechanisms that contribute to the geographical expansion of mosquitoes and their evolutionary success. Parasites Vectors 2017;10:310.

[66] Chang LH, Hsu EL, Teng HJ, Ho CM. Differential survival of *Aedes aegypti* and *Aedes albopictus* (Diptera: Culicidae) larvae exposed to low temperatures in Taiwan. J Med Entomol 2007;44:205–10.

[67] Wu HH, Wang CY, Teng HJ, Lin C, Lu LC, Jian SW, et al. A dengue vector surveillance by human population-stratified ovitrap survey for *Aedes* (Diptera: Culicidae) adult and egg collections in high dengue-risk areas of Taiwan. J Med Entomol 2013;50:261–9.

[68] Tsai PJ, Lin TH, Teng HJ, Yeh HC. Critical low temperature for the survival of *Aedes aegypti* in Taiwan. Parasites Vectors 2018;11:22.

[69] Juliano S, O’Meara G, Morrill J, Cutwa M. Desiccation and thermal tolerance of eggs and the coexistence of competing mosquitoes. Oecologia 2002;130:458–69.

[70] Valdez LD, Sibona GJ, Condat CA. Impact of rainfall on *Aedes aegypti* populations. Cornell University Library; 2017. arXiv:1711.07164 [q-bio.PE].

[71] Tran A, L’Ambert G, Lacour G, Benzóit R, Demarchi M, Crot M, et al. A rainfall- and temperature-driven abundance model for *Aedes albopictus* populations. Int J Environ Res Public Health 2013;10:1698–719.