Abstract

ZigBee mesh network is very important research field in computer networks. However, the location of ZigBee coordinator plays a significant role in design and routing performance. In this paper, an extensive study on the factors that influence the performance of AODV routing protocol had been performed through the study of battery voltage decaying of nodes, neighboring tables, time delay and network topology structure. Simulation results reveal that the location of the coordinator within approximate equal distances to all nodes is more appropriate for lifelong batteries and AODV routing performance.

References

1. Yahaya, F. H, Yussoff, Y.M; Rahman RA, and Abidin N.H.2009.Performance Analysis of Wireless Sensor Network. Signal Processing and its Applications IEEE; March 400-405; Kuala Lumpur, Malaysia.
2. Daintree.2015.Getting Started with ZigBee and IEEE
Coordinator Location Effects in AODV Routing Protocol in ZigBee Mesh Network

802.15.4.http://www.daintree.net/downloads/whitepapers/ZigBee_primer.pdf, Accessed March.
3. William C. 2008. Wireless Control That Simply Works. White paper, ZMD America Inc.
4. Liang NC, Chen PC, Sun T, Yang G, Chen LJ, Gerla M. 2006. Impact of node heterogeneity in ZigBee mesh network routing. IEEE International Conference on Systems Man and Cybernetics; pp.187-191; Taipei.
5. Kinney P. 2003. ZigBee Technology: Wireless Control that Simply Works. Communications Design Conference; pp.1-20; Calif, USA.
6. Luo J, Panchard J, Piorkowski M, Grossglauser M, Hubaux JP. 2006. Mobiroute: Routing Towards a Mobile Sink for Improving Lifetime in Sensor Networks. 5th IEEE International Conference In Distributed Computing in Sensor Systems Springer; pp. 480-497; USA.
7. Shakya. M, Zhang. J, Zhang. P, Lampe. M. 2007. Design and optimization of wireless sensor network with mobile gateway. IEEE 21st International Conference in Advanced Information Networking and Applications Workshops; pp.415-420; Niagara Falls, Canada.
8. Bi. Y, Sun. L, Ma. J, Li N, Khan. I, Chen. C. 2007. HUMS: an autonomous moving strategy for mobile sinks in data-gathering sensor networks. EURASIP Journal on Wireless Communications and Networking, vol. 1, pp. 064574.
9. Dhaka. H, Jain. A, Verma. K., 2010. Impact of Coordinator Mobility on the Throughput in a ZigBee Mesh networks. IEEE Conference in Advance Computing Conference, pp. 279-284, Patiala.
10. Aziz. A, Qureshi. M. A, Soorage M.U, Kashif. M.N, Hafeez MA., 2012. Evaluation of ZigBee Based Wireless Sensor Network with Static Sink and Random Sink Mobility. International Journal of Computer and Electrical Engineering.; Vol.4, no.4, pp.562-566.
11. Parneet D, Sadawarti H. 2014. Impact Analysis on the Performance of ZigBee Protocol under Various Mobility Models, International Journal of Engineering Trends and Technology (IJETT).vol. 9, No. 11, pp.550-562.
12. Mu .J, Liu. K. 2010. Effect of node mobility and network dimension to the Zigbee Routing Method. 6th International Conference on. IEEE in Wireless Communications Networking and Mobile Computing (WiCOM). pp.1-5; Chengdu.
13. Hussein. A, Samara. G. 2015. Mathematical Modeling and Analysis of ZigBee Node Battery Characteristics and Operation, MAGNT Research Report.; vol.3, No.6, pp. 99-106.

Index Terms

Computer Science Wireless

Keywords

ZigBee Mesh network, AODV Routing Protocol, Neighboring Table, Battery Power Consumption
