From in vitro research to real life studies: an extensive narrative review of the effects of balneotherapy on human immune response

M. C. Maccarone1 • G. Magro1 • U. Solimene2 • A. Scanu3 • S. Masiero4

Received: 17 November 2020 / Accepted: 4 May 2021 / Published online: 20 May 2021 © The Author(s) 2021

Abstract
Purpose The biologic mechanisms by which balneotherapy (BT) alleviates symptoms of different diseases are still poorly understood. Recently, preclinical models and clinical trials have been developed to study the effects of BT on the immune system. This review summarizes the currently available evidence regarding the effects of spa therapy on the immune response, to confirm the role of BT in the enhancement of immune system and open interesting research fields.
Methods PubMed and Google Scholar were searched from 1997 up to June 2020, with search criteria including terms related to BT and immune system. We selected only in vitro research, randomized controlled trials (RCTs) or clinical trials.
Results In vitro studies on human and animal samples have demonstrated that thermal waters exert anti-inflammatory and immunomodulatory effects. In particular, H2S donors seem to counteract the inflammatory processes in psoriatic lesions, arthritic fibroblast-like synoviocytes and chondrocytes, and regulate important factors implicated in osteoarthritis pathogenesis and progression. RCTs and clinical trials revealed, after BT, a reduction in circulating levels of pro-inflammatory molecules, such as TNF-α, IL-1β, and C-reactive protein, and an increase in anti-inflammatory molecules such as the IGF-1 growth factor especially in musculoskeletal diseases.
Conclusion Further preclinical studies and RCTs could help to exploit BT in real life for preventive and therapeutic treatments.

Keywords Spa therapy • Health resort therapy • Mud therapy • Peloidotherapy • Immune system

Introduction
In the era of COVID-19 pandemic, the importance of the immune system has become central, becoming a topic of great interest in several fields of medicine. It is interesting to know whether health resort therapy, one of the most commonly used complementary therapies, especially as mud and baths applications, can affect the immune system. In recent years, there has been an increased interest in the use of preclinical models (in vitro studies on human or animal samples) to investigate the biological effects of balneotherapy (BT) on inflammation and immunity. Recently, also clinical trials and Randomized Controlled Trials (RCTs) have been developed to study the effects of BT on the human immune system.

BT includes immersion in thermal waters, balneological interventions with natural gases, mud applications and other traditional remedies [1]. The treatment in the spa setting is frequently supplemented by other interventions including health education and health promotion strategies [2]. Many mineral-rich waters have been confirmed to have effects on the immune system and recent findings suggest that BT and mud therapy may act on the immune response even if the mechanisms are still not completely understood [3, 4]. Our aim is to summarize the current available information about the effects of thermal mineral waters or of their organic and inorganic components on the immune response not only to confirm the important role of BT in the enhancement of human immune system but also to open interesting further fields of research.
Materials and methods

A scoping review was conducted with the aim of searching for the evidence of BT effects on the immune responses and the immune system from 1997. First, the research question was defined by the first author in collaboration with the other authors. Then, a bibliographic research was carried on Medline (PubMed) and Google Scholar. As keywords, we used spa therapy, health resort medicine, balneotherapy, mud therapy, immune response, immunity, immune system combined employing the Boolean operators. Studies were eligible if they were in vitro research on human or animal samples, randomized controlled trials (RCTs) or clinical trials; BT or mineral-rich water or mud applications had to be the intervention under study and had to be compared with another intervention or with no intervention. A comprehensive process of identifying and selecting appropriate studies was conducted.

Studies selected for the review needed to have the abstract available and published in English. Articles with the abstract written in languages other than English were excluded.

All original research articles published from 1997 up to June 2020 were analyzed.

Case reports, letters to the editor, and studies published before 1997 were excluded. Also repetitions and studies not related to the topic were excluded.

At the end of the selection process, 40 studies were eligible for the scoping review.

After the identification of relevant studies, the data were extracted and charted. Papers that did not meet the inclusion criteria were excluded. The first author and his assistants independently screened the papers and downloaded the full-text versions. The authors’ names, the year of publication, the journal, the pathology investigated, the study design or the experimental model, the population, the age of the participants, the kind of water/mud utilized, the presence of a comparison group, the outcomes evaluated, and the significance of the results were extracted and gathered in comprehensive tables.

Results

In vitro studies on human samples evaluating the beneficial effects of BT on immune response in skin diseases

Most of the in vitro studies on human samples evaluating the immunological effects of thermal waters in dermatology focused on psoriasis. Psoriasis is an immune-mediated, inflammatory disease, in which intracellular T lymphocytes induce keratinocytes to proliferate and perpetuate the disease process. The interleukins IL-17 and IL-22 produced by Th1/Th17 lymphocytes stimulate IL-8 secretion by keratinocytes, and this represents a key event in the psoriasis pathogenesis [5]. Sulfur is able to penetrate the skin, and sulfur-rich waters used in BT may be effective in the treatment of psoriasis. Evaluating the effects of thermal water rich in sodium hydrosulfide (NaHS) on human psoriatic keratinocytes, Gobbi et al. [6] and Mirandola et al. [7] demonstrated a reduction in psoriasis lesions through a decrease in IL-8, IL-17 and IL-22.

Since skin psoriatic manifestations are thought to be angiogenesis-dependent, effects on the expression and release of vascular endothelial growth factor (VEGF)-A were studied by Chiarini et al. [8] using Comano’s thermal water, rich in sodium, calcium and bicarbonate. They demonstrated, evaluating cultured human lesional keratinocytes exposed to thermal water, that BT interferes with VEGF-A expression and secretion. Also, a reduction in IL-6 levels and in the expression of cytokerin-16, a marker associated with keratinocyte psoriatic phenotype, was demonstrated [9]. Finally, a reduction in the intracellular and secretion levels of IL-8 and tumor necrosis factor (TNF)-α, pro-inflammatory cytokines overexpressed in psoriatic lesions, was shown using the same water [10].

Karagülle et al. in 2018 [11], evaluating human psoriasis and rosacea keratinocytes treated with Bursa and Bolu thermal mineral waters showed a reduction of inflammation and neo-angiogenic phenomena (reduced IL-1α, TNF-α, and VEGF gene expression).

Lee et al. [12] evaluated the effects of thermal water on human keratinocytes related to skin immune reactions. The treatment with thermal water decreased the expression of pro-inflammatory cytokines, such as IL-6, IL-8, IL-1α, TNF-α, and granulocyte–macrophage colony-stimulating factor (GM-CSF). In addition, the differentiation process of subsets of T helper cells, such as Th1, Th2 and Th17 cells (related to autoimmunity or to inflammatory skin diseases), was reduced. Thermal water induced also Foxp3+T_{reg} cell differentiation in vitro, implying that the immunomodulatory effect also includes T_{reg} cell-induced immune suppressive effects.

All the treatment details and the results of these studies are reported in Table 1.

In vitro studies on human samples evaluating the beneficial effects of BT on immune response in musculoskeletal diseases

Immunological effects of BT in musculoskeletal diseases have been most widely studied in rheumatic disorders. Fox et al. [13] studied the ability of human primary chondrocytes...
Authors	Journal	Pathology	Experimental model	Treatment	Mineral water or inorganic or organic components	Biochemical parameters	Results
Gobbi et al. 2009 [6]	Lab Invest	Psoriasis	Normal skin-derived immortalized human keratinocytes	30-min preincubation with MAPK/ERK inhibitors (10–30 μM) + NaHS (400 mM) dissolved in the culture medium, for 6, 12, 18, 24 h	NaHS	Cell proliferation and adhesion; MAPK/ERK signaling phosphorylation	↓ keratinocyte cell growth and adhesion; ↓ MAPK/ERK phosphorylation; ↓ inflammation
Mirandola et al. 2011 [7]	Lab Invest	Psoriasis	Normal skin-derived immortalized human keratinocytes	30-min preincubation with MAPK/ERK inhibitors (10–30 μM) + NaHS (400 mM) dissolved in the culture medium, for 6, 12, 18, 24 h	NaHS	IL-8; MAPK/ERK signaling phosphorylation	↓ basal and IL-17/IL-22-induced IL-8 expression and secretion; ↓ MAPK/ERK phosphorylation; ↓ inflammation
Chiarini et al. 2006 [8]	Int J Mol Med	Psoriasis	Human primary epidermal keratinocytes	25%, 50%, or 100% of Comano water dissolved in the culture medium, for 11 days	Comano spa’s water (Trentino, Italy), rich in sodium, calcium and bicarbonate	VEGF-A	↓ VEGF-A; ↓ VEGF-A-mediated effects
Chiarini et al. 2006 [9]	Int J Mol Med	Psoriasis	Human primary epidermal keratinocytes	25%, 50%, or 100% of Comano water dissolved in the culture medium, from 3 to 15 days	Comano spa’s water (Trentino, Italy), rich in sodium, calcium and bicarbonate	IL-6, CK-16, VEGF-A	↓ IL-6, VEGF, and CK-16 release and expression; ↓ inflammation, and neoangiogenic phenomena
Dal Pra et al. 2007 [10]	Int J Mol Med	Psoriasis	Human primary epidermal keratinocytes	25%, 50%, or 100% of Comano water dissolved in the culture medium, from 11 to 13 days	Comano spa’s water (Trentino, Italy), rich in sodium, calcium and bicarbonate	IL-8, TNF-α	↓ IL-8 and TNF-α; ↓ inflammation
Karagülle et al. 2018 [11]	Int J Biometeorol	Psoriasis and rosacea	Human keratinocyte cell lines	10% of Bursa and Boh thermal mineral waters dissolved in the culture medium, for 3 days	IL-1α, TNF-α, and VEGF	↓ IL-1α, TNF-α, and VEGF gene expression; ↓ inflammation, and neoangiogenic phenomena	
Lee et al. 2012 [12]	Ann Dermatol	Skin disease	Human keratinocyte cell lines	50% of Yong-gung oncheon thermal spring water dissolved in the culture medium, for 1, 4, 10, and 24 h + LPS (10 μL/mL.)	HaCaT Thermal spring water (Yong-gung oncheon, Ganghwa-gun, Korea), rich in sulfur, magnesium, calcium and selenium	IL-6, IL-8; CD4 + T cell differentiation	↓ IL-6 and IL-8 gene and protein expression; ↓ differentiation of CD4 + T cells in Th1, Th2 and Th17; ↓ immune skin reactions

CK cytokeatin, ERK extracellular signal-regulated kinase, IL interleukin, LPS lipopolysaccharide, MAPK mitogen-activated protein kinase, NaHS sodium hydrosulfide, Th T helper, TNF tumor necrosis factor, VEGF vascular endothelial growth factor, ↓ decrease
and mesenchymal progenitor cells to synthesize hydrogen sulfide (H$_2$S) in response to pro-inflammatory stimulation and their response to an exogenous slow-releasing H$_2$S source, the morpholin-4-ium 4 methoxyphenyl (morpholino) phosphinodithioate (GYY4137). Endogenous H$_2$S produced by the cells and the treatment with GYY4137 significantly reduced cell death and oxidant-induced mitochondrial dysfunction, caused by inflammatory cytokines.

Li et al. [14] assessed the effect of GYY4137 on lipopolysaccharide (LPS)-dependent release of inflammatory mediators from human arthritis synoviocytes and articular chondrocytes. GYY4137 demonstrated an anti-inflammatory effect decreasing the production of nitrite, prostaglandin E2 (PGE2), TNF-α, and IL-6 from both cell types, reducing the levels and the catalytic activity of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, and nuclear factor kappa B (NF-κB) activation induced by LPS. Similar results were obtained by Burguera et al. [15] Ha et al. [16] in studies on human osteoarthritis (OA) chondrocytes stimulated with IL-1β, a pro-inflammatory cytokine, to reproduce the “OA-like effect”. Burguera et al.’s study was also the first to demonstrate the anti-catabolic activity of these compounds through the downregulation of metalloproteinase (MMP)-13. Also, Fioravanti et al. [17] studying the potential beneficial effect of Vetriolo thermal water (Trentino Alto Adige, Italy), a highly mineralized water, strongly acidic sulfate, rich in calcium, magnesium, and iron, in human OA chondrocytes, showed after the treatment a significant reduction in NO levels and in the expression of iNOS.

Sieghart et al. [18] showed that the NaHS treatment in OA fibroblast-like synoviocytes reduced spontaneous and IL-1β-induced secretion of IL-6, IL-8, the expression of MMP-2 and MMP-14, and the phosphorylation of several mitogen-activated protein kinases (MAPKs). Later, a similar research was conducted on OA cartilage extracts co-cultured with IL-1β and NaHS or GYY4137 [19]. At the end of the treatment, there was a reduction of the catabolic processes (decrease in glycosaminoglycan destruction and MMP-3 and MMP-13 production) and a stimulation of the cell anabolism (increased synthesis of collagen type II alpha 1 chain and aggrecans).

Kloesch et al. [20, 21] evaluated the effects of NaHS on fibroblast-like synoviocytes derived from rheumatoid arthritis (RA) and OA patients. IL-1β-induced expression of IL-6 was transiently and partially down-regulated with low concentrations of NaHS. Long-term exposure to H$_2$S and high concentration of NaHS provided stimulatory effects, leading to the reinforced activation of p38 MAPK and extracellular signal-regulated kinases (ERK)1/2 accompanied by upregulation of IL-6 expression. In 2012, Kloesch et al. [22] demonstrated a reduction of IL-6 and IL-8 expression and the activation of p38/MAPK/ERK and NF-kB signaling in a human chondrocyte cell line treated with NaHS.

On bone-derived cells, only a limited number of in vitro studies were performed. On human osteoclasts, after an incubation period with NaHS, a significant decrease in osteoclast differentiation and intracellular reactive oxygen species (ROS) levels, and an increased transcription of antioxidant genes were observed [23].

All the treatment details and the results of these studies are reported in Table 2.

In vitro studies on animal samples evaluating the beneficial effects of BT on immune response in musculoskeletal diseases

Xu et al. [24] showed the proliferative, antioxidant, and anti-inflammatory effects of a treatment with NaHS in hydrogen peroxide-stimulated murine osteoblast-like cell line. The antioxidant effects were confirmed by Lv et al. [25], in an analogous experimental study, examining the effect of GYY4137 added at the culture medium for 4 h in the presence of hydrogen peroxide (H$_2$O$_2$).

On rat primary osteoblasts cultured with NaHS, after an incubation with high glucose concentration, NaHS significantly prevented osteoblast injury induced by glucose, blocking the glucose-induced osteoblast mineralization inhibition [26].

All the treatment details and the results of these studies are reported in Table 3.

In vitro studies on human samples evaluating the beneficial effects of BT on immune response in inflammatory diseases

The protective effects of H$_2$S and of its exogenous sources on cellular immune response were first investigated by Rinaldi et al. [27] in a study on purified human neutrophils, eosinophils, and lymphocytes of human donors treated with NaHS at different concentrations for 24 h. After the treatment, an increased short-term survival of neutrophils was found, while no changes in lymphocytes and eosinophils were observed. A similar experimental protocol was performed by Mirandola et al. [28] in peripheral blood lymphocytes purified from healthy subjects. After the incubation with NaHS, a decreased proliferation of CD8+ T and natural killer (NK) cells and reduced IL-2 production were observed. Sulen et al. [29] stimulated human peripheral blood mononuclear cells with NaHS, showing after the treatment the phosphorylation of p38, protein kinase B (Akt), and cAMP-response element-binding protein (CREB).

The proliferative activity of H$_2$S donors was also demonstrated in a study carried out on peripheral blood lymphocytes isolated from patients with systemic lupus erythematosus. H$_2$S donors inhibited the abnormal activation and
proliferation of lupus lymphocytes through the Akt/glycogen synthase kinase 3 beta (GSK3β) pathway [30].

In activated human neutrophils treated with sulfur water of Acqui Terme (Piemonte, Italy), a significant reduction of ROS and reactive nitrogen species (RNS) was observed after the treatment [31]. A similar experiment conducted treating neutrophils with different concentrations of the above mentioned sulfuric water or NaHS demonstrated the inhibition of elastase release, revealing a possible contribution in controlling the inflammatory processes of airway diseases [32].

In human primary monocytes treated with NaHS, the production of TNF-α, IL-1β, IL-6, IL-12, and C–C motif chemokine ligand 5 (CCL5) induced by LPS was blocked and ROS formation and antioxidant enzymes activity were reduced. Sirmione thermal water (Lombardia, Italy), rich in sodium chloride, bromide, and iodide, did not show the same results, and enhanced the release of IL-10, probably due to the low concentration of sulfur compounds [33].

Given the important role of Th17/Treg cell ratio in the onset and evolution of immune-mediated pathologies, in 2018, Vitale [34] investigated the effects of exogenous H2S on human CD4 T cell polarization to Th17 and/or Treg phenotype. NaHS treatment increased both Foxp3 mRNA levels in CD4 + T cells under Treg-polarizing conditions and retinoic acid-related orphan receptor gamma t (RORγT) mRNA levels in CD4 + T cells under Th17 polarizing conditions, suggesting a role of sulfur in both polarization pathways.

All the treatment details and the results of these studies are reported in Table 4.

In vitro studies on animal samples evaluating the beneficial effects of BT on immune response in inflammatory diseases

H2S can have a role also as an endogenous and exogenous immunomodulatory molecule in T cells signal in inflammatory bowel diseases. H2S donors employed to treat primary mouse T lymphocytes (CD3+) and CD4 + T cells enhanced T cell activation, IL-2 expression, and CD25 levels. Besides, activation increased the capacity of T cells to synthesize endogenous amounts of H2S through the increased expression of cystathionine γ-lyase and cystathionine β-synthase [35].

These results are reported in Table 5.

Clinical trials and RCTs evaluating the beneficial effects of BT on immune response

Most of the clinical studies and RCTs evaluating the immunological effects of thermal waters focused on musculoskeletal diseases. Bellometti et al. in 1997 [36] conducted a study enrolling a group of 22 OA patients. The patients underwent 12 mud pack treatments and after the treatment an increase in insulin growth factor 1 (IGF-1) and a decrease of TNF-α in serum were observed. After mud pack therapy also, a decrease in serum levels of PGE2 and leukotriene (LTB4), was observed [37]. In patients with primary symptomatic bilateral knee OA, randomly assigned to receive a cycle of mud-bath therapy or to continue their standard therapy alone, in the group of mud-bath therapy, a significant increase of C-terminal cross-linked telopeptide type II collagen (CTX-II), perhaps due to an increase of cartilage turnover induced by thermal stress, was observed [38]. Ortega et al. [39] in 2017 evaluated the effects of a 10-day cycle of mud therapy in a group of patients with primary knee OA. After the cycle of mud therapy, serum concentrations of IL-1β, TNF-α, IL-8, IL-6, TGF-β, and extracellular heat-shock protein 72 (eHsp72) were markedly decreased and systemic levels of cortisol significantly increased.

Galvás et al. [40] showed in patients with knee OA who underwent a cycle of BT with mud applications a reduction in the percentage of CD4 + T regulatory cells and an enhancement in CD8 + T regulatory cells, which play a key role in regulating immune reactions, controlling inflammation and maintaining immune homeostasis. In addition, an increased neutrophil functional capacity was observed.

Tärner et al. [41] analyzed the effect of mild whole-body hyperthermia in ankylosing spondylitis (AS). Serum samples were taken to measure TNF-α, IL-1β and IL-6. Hyperthermia caused a significant reduction of all cytokines by 40–50%. A significant increase in transforming growth factor (TGF)-β1 was found in AS patients treated with active exercises, hyperthermia and exposure to low doses of radon in a former mine (total and active) [42].

In fibromyalgia, female patients treated with BT five days per week for 3 weeks, mean PGE2 levels were higher compared to healthy control group and decreased after the treatment period. Also, IL-1 and LTB4 significantly decreased after the treatment. [43]

Eysteinsdóóttir et al. [44] investigated the effects of bathing in geothermal seawater in addition to the narrowband ultraviolet B (NB-UVB) therapy in patients suffering from psoriasis. Compared with healthy controls, psoriasis patients with active disease had significantly higher proportion of peripheral cutaneous lymphocyte-associated antigen (CLA) + T cells expressing C–C motif chemokine receptor 10 (CCR10) and CD103 and T cells with both Th1/Tc1 and Th17/Tc17 phenotypes. A reduction in circulating CLA+ peripheral blood T cells and a decreased Th1/Th17 and Tc1/Tc17 inflammatory response were shown after BT and NB-UVB therapy.

The radioactive and thermal effects of radon hot spring were biochemically compared under a sauna room or hot spring conditions with a similar chemical component [45]. The radon and thermal therapy enhanced the antioxidation
Authors	Journal	Pathology	Experimental model	Treatment	Mineral water or inorganic or organic components	Biochemical parameters	Results
Fox et al. 2012 [13]	J Cell Mol Med	RA	Human primary articular chondrocytes	IL-1β, IL-6 and TNF-α (5 ng/mL) for 6, 12 and 18 h + GYY4137 (50–500 mol/L) dissolved in the culture medium, for 12 h	GYY4137	Cell death; Mitochondrial membrane potential	↓ cell death and oxidant-induced mitochondrial dysfunction ↓ inflammation
Li et al. 2013 [14]	J Cell Mol Med	RA	Human primary arthritis synoviocytes and chondrocytes	(0.1–0.5 mM) dissolved in the culture medium, for 18 h + LPS (10 μg/mL)	GYY4137	↓ IL-6, TNF-α, PGE2 and NO production ↓ COX-2 and iNOS catalytic activity ↓ NF-kB activation ↓ inflammatory processes	
Authors	Journal	Pathology	Experimental model	Treatment	Mineral water or inorganic or organic components	Biochemical parameters	Results
-----------------	------------------	-----------	-------------------------------------	---	--	--	--
Burguera et al. 2014 [15]	Osteoarthr Cartil	OA	Human primary OA chondrocytes	NaHS and GYY4137 (0.05–1 mM) dissolved in the culture medium, for 24 or 48 h + IL-1β (5 ng/mL)	NaHS and GYY4137	IL-6, PGE2, PTGES, COX-2, NO, NOS2, MMP-13; NF-κB signaling activation	↓ IL-6, PGE2, and NO release and protein level ↓ IL-6, PTGES, COX-2, and NOS2 gene expression ↓ NF-κB nuclear translocation ↓ inflammatory and degrading processes
Ha et al. 2015 [16]	Int J MolMed	OA	Human primary OA chondrocytes	NaHS (0.06–1.5 mM) dissolved in the culture medium, for 24 h + IL-1β (10 ng/mL)	NaHS	COX-2, iNOS, MMP-13; ERK/IκBα/NF-κB signaling activation	↓ COX-2, iNOS, MMP-13 release and gene expression ↓ ERK/IκBα/NF-κB activation ↓ degrading processes
Authors	Journal	Pathology	Experimental model	Treatment	Mineral water or inorganic or organic components	Biochemical parameters	Results
----------------------	-----------------------	---------------	---	---	---	---	---
Sieghart et al. 2015	J Cell Mol Med	Human primary OA fibroblast-like synoviocytes	NaHS (0.06–1 mmol/L) dissolved in the culture medium, for 1 h + IL-1β (10 ng/mL)	NaHS	IL-6, IL-8; MMP-2, MMP-14; MAPK and Akt1/2/PI3K protein phosphorylation	↓ IL-6 and IL-8 secretion, MMP-2 and MMP-14 gene expression ↑ MAPK phosphorylation ↑ Akt1/2 phosphorylation ↓ inflammatory and degrading processes	
Vela-Anero et al. 2017	Nitric Oxide	OA	Human OA cartilage disks	NaHS or GYY4137 (200 or 1000 μM) dissolved in the culture medium, for 21 days + IL-1β (5 ng/mL)	NaHS and GYY4137 MMP-3, MMP-13; COL2A1, glycosaminoglycans, aggrecans	↓ MMP-3 and MMP-13 production ↑ COL2A1, glycosaminoglycans and aggrecans synthesis ↓ degrading processes	
Authors	Journal	Pathology	Experimental model	Treatment	Mineral water or inorganic or organic components	Biochemical parameters	Results
-------------------------	--------------------------	-----------	--	---	---	-----------------------	---
Fioravanti et al. 2013	J Biol Regul Homeost Agents	OA	Human primary OA chondrocytes	Vetriolo thermal water (Trentino Alto Adige Italy), strongly acidic sulfate, rich in calcium, magnesium and iron	NO, iNOS; Cell viability and apoptosis; Morphological assessment	25%, 50% of Vetriolo water↑ survival recovery rate↓ NO levels, iNOS expressions, and apoptosis↑ morphological characteristics↓ degrading processes	
Kloesch et al. 2010	Cell Biol Int RA	RA	fibroblast-like synoviocytes	NaHS (200 mM)	IL-6; activation/deactivation of MAPKs; p38 and p44/42 MAPK (ERK1/2)	IL-1β-induced expression of IL-6 with low concentrations of NaHS H$_2$S deactivates p44/42 MAPK (ERK1/2)↑ activation of p38 MAPK, ERK1/2 and IL-6 with long-term exposure to H$_2$S	
Authors	Journal	Pathology	Experimental model	Treatment	Mineral water or inorganic or organic components	Biochemical parameters	Results
------------------------	-------------	-----------	--------------------	-----------	---	------------------------	----------------------------------
Kloesch et al. 2012	Immunol Lett	RA and OA	RA and OA human fibroblast-like synoviocytes	NaHS (1.0 mM) dissolved in the culture medium, for 1, 3, 6, 12 h	NaHS	IL-6, IL-8, COX-2; MMP-2, MMP-3, MMP-14; p38/MAPK/ERK protein expression	↑ IL-6, IL-8, COX-2 and p38/MAPK/ERK expression
Kloesch et al. 2012	Rheumatol Int	RA	Human chondrocyte cell line	NaHS (0.125 and 1.0 mM) dissolved in the culture medium, for 15, 30, 45 and 60 min + MAPK inhibitors (1 and 5 μM) + IL-1β(5 ng/mL) for 1 h	NaHS	IL-6, IL-8; P38/MAPK/ERK and NF-kB signaling activation/deactivation	↓ IL-6 and IL-8, ↓ p38/MAPK/ERK, ↓ NF-kB signalling, ↓ inflammatory processes
Gambari et al. 2014	Pharmacol Res	Osteoporosis	Human differentiated osteoclasts	NaHS (50–300 μM) dissolved in the culture medium, for 72 h to 6 days	NaHS	Osteoclasts differentiation; ROS production, NRF2, KEAP1, NQO1, and PRDX1	↓ osteoclast differentiation, ↓ intracellular ROS levels, ↑ NRF2 protein expression and nuclear translocation, ↑ antioxidant gene

Akt protein-kinase B, COL2A1 collagen type II alpha 1 chain, COX cyclooxygenase, ERK extracellular signal-regulated kinase, GYY4137 morpholin-4-ium 4 methoxyphenyl (morpholino) phosphinodithioate, IkBα inhibitor of nuclear factor kappa B, IL interleukin, iNOS inducible nitric oxide synthase, KEAP1 kelch like ECH associated protein 1, LPS lipopolysaccharide, MAPK mitogen-activated protein kinase, MMP matrix metalloproteinase, NaHS sodium hydrosulphide, NF-κB nuclear factor kappa B, NO nitric oxide, NOS2 nitric oxide synthase 2, NQO1 NAD(P)H quinone dehydrogenase 1, NRF2 nuclear factor-erythroid factor 2-related factor 2, OA osteoarthritis, PGE2 prostaglandin E2, PI3K phosphoinositide 3-kinase, PRDX1 peroxiredoxin 1, PTGES prostaglandin E synthase, RA rheumatoid arthritis, ROS reactive oxygen species, TNF tumor necrosis factor, ↓ decrease, ↑ increase
Table 3 In vitro studies on animal samples evaluating the beneficial effects of BT on immune response in musculoskeletal diseases

Authors	Journal	Pathology	Experimental model	Treatment	Mineral water or inorganic or organic components	Biochemical parameters	Results
Xu et al. 2011 [24]	Free Radic Biol Med	Osteoporosis	Murine osteoblast-like cell line (MC3T3-E1)	NaHS (100 μM) dissolved in the culture medium, for 4 h + (H2O2) (400 μM)	NaHS	Viability, proliferation and apoptosis; NO, ALP, SOD, NADPH oxidase p38/ERK1/2/ MAPKs activation	↑ viability; ↑ cell proliferation; ↑ ALP and SOD activities; ↓ apoptosis; ↓ NO release; ↓ NADPH oxidase activity; ↓ p38/ ERK1/2 MAPKs activation
Lv et al. 2017 [25]	Am J Transl Res	Osteoporosis	Murine osteoblast-like cell line (MC3T3-E1)	GYY4137 (100 μM) dissolved in the culture medium, for 4 h + (H2O2) (400 μM)	GYY4137	Viability, proliferation, Runx2, and apoptosis; NO, ALP, and SOD, ERK1/2 activation	↑ viability; ↑ cell proliferation; ↑ ALP and SOD activities; ↑ Runx2 gene expression; ↓ apoptosis; ↓ NO release; ↓ ERK1/2 activation; Proliferative and antioxidant effects
Liu et al. 2017 [26]	Biochimie	Osteoporosis	Rat primary osteoblasts	NaHS (400 μmol/L) dissolved in the culture medium, for 12 h	NaHS	Osteoblast proliferation and mineralization; Apoptosis; KATP protein expression	↓ cell proliferation; ↑ apoptotic cells; ↑ osteoblast mineralization; ↑ KATP protein expression; ↓ osteoporosis damage

ALP, alkaline phosphatase; ERK, extracellular signal-regulated kinase; GYY4137, morpholin-4-ium 4 methoxyphenyl (morpholino) phosphinodithioate; H2O2, hydrogen peroxide; KATP, ATP-sensitive potassium; MAPK, mitogen-activated protein kinase; NADPH, nicotinamide adenine dinucleotide phosphate; NaHS, sodium hydrosulfide; NO, nitric oxide; Runx2, runt-related transcription factor 2; SOD, superoxide dismutase.
Table 4 In vitro studies on human samples evaluating the beneficial effects of BT on immune response in inflammatory diseases

Authors	Journal	Treatment	Experimental model	Mineral water or inorganic or organic components	Pathology	Biochemical parameters	Results
Rinaldi et al. 2006	Lab Investig	NaHS (from 0.23 to 3.66 mM dissolved in the culture medium, for 24 h + p38/MAPK inhibitors (30–60 μM))	Human purified neutrophils, eosinophils or lymphocytes	NaHS	Inflammatory processes of respiratory tract	Cell viability and apoptosis; p38/MAPK signaling activation/deactivation	↑ Short-term survival of neutrophils ↓ caspase-3 cleavage and p38/MAPK phosphorylation in neutrophils Accelerate the resolution of inflammatory processes
Mirandola et al. 2007	J Cell Physiol	NaHS (from 0.20 to 4.0 mM dissolved in the culture medium, for 24 h + caspase inhibitors (30 μM))	Human purified peripheral blood lymphocytes	NaHS	Inflammatory processes	Cell viability and apoptosis; IL-2	↓ proliferation of lymphocyte subsets ↓ D8+ T and NK cells ↓ IL-2 production Accelerate the resolution of inflammatory processes
Sulen et al. 2016	Pharmacol Res	NaHS (10, 100 or 1000 μM dissolved in the culture medium, for 10 min)	Human peripheral blood mononuclear cells (PBMCs)	NaHS	Inflammatory processes	p38/MAPK, NF-κB p65, Akt and CREB phosphorylation	↑ p38/MAPK, Akt, and CREB phosphorylation ↓ inflammatory processes
Han et al. 2013	Cell Physiol Biochem	NaHS (0.25, 0.5, 1, 2, 4 and 8 mM and GYY4137 (200, 400, 800, 1600 μM) dissolved in the culture medium, for 0.5, 1, 2, 4, 6, 12, 24, 36, 48 h	Human peripheral blood lymphocytes	NaHS and GYY4137	Inflammatory processes of systemic lupus erythematosus	Cell viability, cell cycle distribution; Akt (ser473), GSK3β (ser9), p27Kip1 and p21CIP1	↑ cell proliferation and S phase distribution of cell cycle ↓ Akt (ser473), GSK (ser9) ↑ p27Kip1 and p21CIP1 expression and phosphorylation ↓ inflammatory processes
Braga et al. 2008	Respiration	Sulfurous thermal water (different concentrations) dissolved in the culture medium, for 15 min + N-formyl-methionyl-leucyl-phenylalanine/phorbol-12-myristate-13-acetate	Human purified neutrophils	Sulfurous thermal water (Acqui Terme, Piemonte, Italy), which contains different HS groups concentrations	Inflammatory processes	ROS and RNS	↓ ROS and RNS release at 0.94 to 15.5 μg/mL of HS ↓ inflammatory-processes

ROS: reactive oxygen species; RNS: reactive nitrogen species.
Authors	Journal	Treatment	Experimental model	Mineral water or inorganic or organic components	Pathology	Biochemical parameters	Results	
Braga et al. 2010	TherAdvRespirDis	Sulfurous water or NaHS (from 4.5 to 18 mg/mL) dissolved in the culture medium, for 15 min	Human purified neutrophils	Sulfurous thermal water (AcquiTerme, Piemonte, Italy) and NaHS	Inflammatory processes of upper and lower airway diseases	Elastase release; elastolytic activity	Inhibited elastase release	
							inflammatory processes	
Prandelli et al. 2013	Int J ImmunopatholP-harmacol	Sirmione thermal water or NaHS (2.5 mM) dissolved in the culture medium, for 24 h + LPS (100 ng/mL)	Human primary monocytes	Sirmione thermal water (Lombardia, Italy), rich in sodium chloride, bromine and iodine	Chronic inflammatory and age-related illness	TNF-α, IL-1β, IL-6, IL-12, CXCL8, CCL5, ROS, antioxidant enzymes	↓ TNF-α, IL-1β, IL-6, IL-12, CXCL8, CCL5 production ↓ ROS formation and antioxidant enzymes	Sirmione water ↑ IL-10 release ↓ chronic inflammatory and age-related illness manifestations
Vitale 2018 [34]	Bol Soc Esp Hidrol Méd	Exogenous H2S on human resting CD4 T cell polarization to Th17 and/or Treg phenotype	Differentiated ex-vivo human resting CD4+ (Th0) T cells to Th17 or Treg lineages	NaHS	Immune-mediated pathologies	CD4 T cell polarization to Th17 and/or Treg phenotype	↑ Foxp3 mRNA levels in CD4 + T cells cultured under Treg-polarizing conditions ↑ RORγT mRNA levels in CD4 + T cells under Th17 polarizing conditions	

AKT protein-kinase B, CCL5 C–C motif chemokine ligand 5, CREB cAMP-response element-binding protein, CXCL8 C-X-C motif chemokine ligand 8, GSK3β glycogen synthase kinase 3 beta, HS sulfhydryl, IL interleukin, LPS lipopolysaccharide, MAPK mitogen-activated protein kinase, NaHS sodium hydrosulfide, NF-κB nuclear factor kappa B, NK natural killer, RNS reactive nitrogen species, ROS reactive oxygen species, Th T helper, TNF tumor necrosis factor, Treg regulatory T, ↓ decrease, ↑ increase
functions, such as the activities of superoxide dismutase and catalase, which inhibit lipid peroxidation and total cholesterol produced in the body, increased the percentage of CD4-positive cells (marker of helper T cells) and decreased the percentage of CD8-positive cells (marker of killer T cells and suppressor T cells). Furthermore, the therapy increased the levels of alpha atrial natriuretic polypeptide, beta endorphin, adrenocorticotropic hormone, insulin and glucose-6-phosphate dehydrogenase, and decreased the vasopression level. The results were larger in the radon group than in the thermal group, suggesting that radon therapy contributes more to the prevention of life-style-related diseases related to peroxidation reactions and immune suppression than thermal therapy.

All the treatment details and results of these studies are reported in Table 6.

Discussion

In in vitro human samples, H₂S donors (NaHS and GYY4137) were demonstrated to exert anti-inflammatory and anti-angiogenic effects, confirming the beneficial properties of mineral water sulfur components on psoriatic lesions. H₂S sources seem to counteract the inflammatory processes both in arthritic fibroblast-like synoviocytes and chondrocytes, and in OA chondrocytes. All these findings provide new information about the anti-inflammatory, antioxidant, and anti-catabolic properties of H₂S. In particular, H₂S seems to act as a chondroprotective agent by regulating important factors implicated in OA pathogenesis and progression, and counteracting IL-1β pro-inflammatory signals that lead to cartilage destruction. The capacity of H₂S donors to limit the oxidative stress damage was demonstrated also in cell lines of osteoblasts. Moreover, the sulfide compounds appear to regulate inflammation and immune response in human psoriatic keratinocytes and in purified human peripheral blood neutrophils, eosinophils and lymphocytes.

Even in the cohorts of patients suffering from OA, BT has demonstrated to have anti-inflammatory efficacy, modulating the cytokinetic response and modifying the percentage of regulatory T cells in circulation. After BT and mud therapy, a reduction in serum levels of pro-inflammatory molecules, such as TNF-α, IL-1β, PGE2, LTB4 and C-reactive protein, and an increase in anti-inflammatory molecules such as the IGF-1 growth factor have been shown. Furthermore, a decrease in the concentration of MMP, involved in cartilage degradation, has been reported after mud therapy in OA patients, maybe as a consequence of the reduction in pro-inflammatory mediators that promote MMP secretion. BT contributes also to a modification in cellular immune response: after mud therapy, OA patients presented increased neutrophils’ levels and functional capacity [46].

Table 5

In vitro studies on animal samples evaluating the beneficial effects of BT on immune response in inflammatory diseases

Authors	Journal	Treatment	Experimental model	Pathology	Biochemical parameters	Results
Miller et al. 2012 [35]	J Biol Chem	H₂S (50–500 nM) dissolved in the culture medium, for 4, 10, and 24 h	Primary mouse T lymphocytes (CD3+), OT-II CD4+ T cells	Inflammatory processes of bowel diseases	CD69, CD25; IL-2; cystathionine γ-lyase, cystathionine β-synthase	↑ T cell activation, ↑ CD69 and IL-2 expression, ↑ cystathionine γ-lyase and cystathionine β-synthase expression, ↓ inflammatory processes

H₂S: hydrogen sulfide; IL: interleukin; ↓ decrease, ↑ increase.
Table 6 RCTs and clinical trials evaluating the beneficial effects of BT on immune response

First Author	Journal	N	Pathology	Age	Intervention	Treatment	Comparison	Type of water/inorganic or organic component	Systemic inflammatory Biomarkers	Stress biomarkers	Results
Bellometti et al. 1997 [36]	Clinica Chimica Acta 22 OA 63.6 year	Mud pack treatments	12 applications of Mature thermal mud to the whole body for 20 min at 40 °C, followed by a bath for 10–12 min at 37–38°C	Yes (22 control group only hot bath)	Mud of Abano-Montegrotto Terme	Serum IGF-1 and TNF-α	Differences between mean values found before and after the mud pack statistically significant				
Bellometti et al. 1998 [37]	J Investig. Med 31 Healthy	Mud pack Therapy	2 weeks daily local mud-packs and baths	Control group (n = 50) regular care routine (exercise, symptomatic drugs, intra-articular hyaluronic acid)	Water of the Chianciano Spa Resort (Siena, Italy)	PGE2 and LTB4	j PGE2 and LTB4 in serum p p p COMP, MPO and hsCRP in serum of either group ↑ in CTX-II serum levels in the mud-bath group after the treatment				
Pascarelli et al. 2016 [38]	IMAJ 103 OA 68.49± 9.0	Mud bath therapy	2 weeks daily local mud-packs and baths	Control group (n = 50) regular care routine (exercise, symptomatic drugs, intra-articular hyaluronic acid)	Water of the Chianciano Spa Resort (Siena, Italy)	COMP, CTX-II, MPO and hsCRP in serum	↔ COMP, MPO and hsCRP in serum of either group ↑ in CTX-II serum levels in the mud-bath group after the treatment				
Ortega et al. 2017 [39]	Int J Biometeorol 21 OA knee 62–77	Whole body Peloidotherapy	1 session/day x 10	10-day cycle	No	SiO2, CaO, Al2O3 and Fe2O3	IL-8, TNF-α, IL-1β, TGF-β, eHsp72	↓ serum concentrations of IL-1β, TNF-α, IL-8, IL-6 and TGF-β ↑ systemic levels of cortisol ↓ circulating levels of eHsp72			
Galvéz et al. 2018 [40]	International journal of hyperthermia 36 Knee OA 70	Whole body mud therapy at 40–42 °C	10-day cycle	No	SiO2, CaO, Al2O3 and Fe2O3	IL-8, TGFβ, CD4, CD25, FOXP3, CD28, CD8, Neutrophils	↑ circulating concentrations of IL-8 and TGF-β ↑ CD4 CD25 FOXP3 Treg cells ↑ CD8+ CD28– Treg cell ↑ neutrophils and phagocytic activity				
Tamer et al. 2009 [41]	ClinicalRheumatology 12 AS Mean age 33.4 years	Whole-body hyperthermia full bath	9 cycles (initial water temperature of 36 °C that was increased gradually by 1 °C every 5 min to 40 °C. This temperature was maintained until the body temperature reached 38.5 °C)	Yes (12 healthy control)	nd	Serum levels of the cytokines TNF-α, IL-1β and IL-6	↑ TNF-α, IL-1β and IL-6 >> 1 h after baseline, ↓ 6 h after baseline ↓ At 24 h after the treatment				
Table 6 (continued)

First Author	Journal	N	Pathology	Age	Intervention	Treatment	Comparison	Type of water/organic or inorganic component	Systemic inflammatory Biomarkers	Stress biomarkers	Results
Shehata et al. 2006 [42]	The Middle European Journal of medicine	83	AS	30–73	Spa exercises therapy	3–4 weeks spa-exercise therapy—in addition, outdoor exercises, physiotherapy, hydrotherapy, and massage	Yes (control group with 10 patients with LBP and same treatment, second control group with 10 patients AS and no treatment)	Radon concentration up to 4.5 nCi/l; temperature 38–41 °C; relative humidity 70–98%	TGF-β1	↑ total and active TGF-β1	
Ardic F. 2007 [43]	Rheumatol Int	12	Fibromyalgia Syndrome	43	BT	Group 1 (n = 12) received bathing for 20 min a day, for 5 days per week for 3 week	Yes (9 group no treatment+ 10 control group healthy women)	HCO₃, SO₄	ESR, CRP, RF, PGE2, LTB4 and IL-1α in serum (before and at the end of general period of therapy)	↑ serum PGE2 level	
Eysteinsdóttir et al. 2013 [44]	Scand J Immunol	12	Psoriasis	36.7	Bathing in geothermal seawater	Bathing in geothermal seawater twice daily for at least 1 h combined with NB-UVB therapy 5 days per week for 2 weeks	Yes (Of the 12 patients enrolled, six received treatment and 6 were treated with NB-UVB therapy)	Chemokines, inflammatory cytokines, T cells and TLRs in the blood and skin samples were evaluated on enrollment and at 1, 3 and 8 weeks	↓ Th17 (IL-23R + CD4 + T cells)		
Yamaoka et al. 2004 [45]	J Radiat. Res	15	Healthy	20–40	A hot bathroom with a high concentration of radon	On days 1, 3, 5, 8, and 10, the inhalation of vapor from each hot spring under a condition of high humidity (about 90%)	Yes (3 groups: radon, thermal, and control)	The temperature was 36 °C, the radon concentration was 2.080 Bq/m³	C4 positive cells and CD8-positive cells	On days 5 and 10, ↓ CD8-positive cells in the radon group	

Al₂O₃ aluminum oxide, **CaO** calcium oxide, **AS** ankylosing spondylitis, **BT** balneotherapy, **COMP** cartilage oligomeric matrix protein, **CRP** C-reactive protein, **CTX-II** C-terminal cross-linked telopeptide type II collagen, **eHsp72** extracellular heat-shock protein 72, **ESR** erythrocyte sedimentation rate, **Fe₂O₃** ferric oxide, **FOXP3** forkhead box P3, **HCO₃** bicarbonate, **hsCRP** high-sensitivity C-reactive protein, **IFN-c** interferon-c, **IGF-1** insulin-like growth factor 1, **IL** interleukin, **LTB4** leukotriene B₄, **MPO** myeloperoxidase, **NB-UVB** narrow-band ultraviolet B, **OA** osteoarthritis, **PGE2** Prostaglandin E₂, **RF** rheumatoid factor, **SiO₂** silicon dioxide, **SO₄** sulfate, **TGF-β** transforming growth factor beta, **Th** T helper, **TLR** toll-like receptor, **TNF** tumor necrosis factor, ↓ decrease, ↑ increase, ↔ no change
Also in patients with fibromyalgia or AS, BT can influence the inflammatory mediators. In particular, in AS patients, whole-body hyperthermia and speleotherapy resulted in changes of the pro-inflammatory cytokine network.

Finally, BT should have also an anti-inflammatory role on healthy subjects.

Due to the heterogeneity of composition characteristics of the natural mineral water or mud used and to the different sample size and performed protocols considered in the clinical trials, it is not possible to define with certainty the BT effects on the immune system. However, the results showed some beneficial effects that can to some degree positively modify the inflammatory response.

Conclusion

In conclusion, studies on in vitro samples could open the way to the scientific progress to develop further clinical studies and RCTs evaluating the effects of BT on the immune system, to exploit BT in real life for preventive, curative and rehabilitation treatments [47].

Funding Open access funding provided by Università degli Studi di Padova within the CRUI-CARE Agreement.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval Not applicable.

Informed consent Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Gutenbrunner C, Bender T, Cantista P, Karagülle Z (2010) A proposal for a worldwide definition of health resort medicine, balneology, medical hydrology and climatology. Int J Biometeorol 54(5):495–507. https://doi.org/10.1007/s00484-010-0321-5

2. Maisero S, Litwocenko S, Agostini F (2020) On behalf section of Rehabilitation in Environmental Thermal for Italian Society of Physical Medicine and Rehabilitation. Rehabilitation in an Italian thermal setting: a new therapeutic strategy for patients with musculoskeletal disability—the results of an Italian survey. Int J Biometeorol 64(6):951–954

3. Maisero S, Maccarone MC, Magro G (2020) Balneotherapy and human immune function in the era of COVID-19. Int J Biometeorol 64:1433–1434. https://doi.org/10.1007/s00484-020-01914-z

4. Maccarone MC, Magro G, Solimene U, Maisero S (2020) The effects of balneotherapy on human immune function: should baths and mud applications have a role during Covid-19 pandemic? Bull Rehabil Med 97(3):22–24

5. Marzano AV, Derlino F, Berti EF (2018) Pathogenesis of psoriasis: focus on autoinflammation. Dermatopathology (Basel) 5(1):14–15. https://doi.org/10.1159/000486304

6. Gobbi G, Ricci F, Malinverno C, Carubbi C, Pambianco M, Gd P, Vitale M, Mirandola P (2009) Hydrogensulfide impairs keratinocyte cell growth and adhesion inhibiting mitogen-activated protein kinase signaling. Lab Invest 89(9):994–1006. https://doi.org/10.1038/labinvest.2009.61

7. Mirandola P, Gobbi G, Micheloni C, Vaccarezza M, Di Marcantonio D, Ruscitti F, de Panfilis G, Vitale M (2011) Hydrogen sulfide inhibits IL-8 expression in human keratinocytes via MAP kinasesignaling. Lab Invest 91(8):1188–1194. https://doi.org/10.1038/labinvest.2011.76

8. Chiariini A, Dal Pra I, Pacchiana R, Menapace L, Zumiani G, Zanoni M, Armato U (2006) Comano (Trentino) thermal water interferes with the expression and secretion of vascular endothelial growth factor-A protein isoforms by cultured human psoriatic keratinocytes: a potential mechanism of its anti-psoriatic action. Int J Mol Med 18(1):17–25

9. Chiariini A, Dal Pra I, Pacchiana R, Zumiani G, Zanoni M, Armato U (2006) Comano (Trentino) thermal water interferes with interleukin-6 production and secretion and with cytokerin-16 expression by cultured human psoriatic keratinocytes: further potential mechanisms of its anti-psoriatic action. Int J Mol Med 18(6):1073–1079

10. Dal Pra I, Chiariini A, Pacchiana R, Zumiani G, Zanoni M, Armato U (2007) Comano (Trentino) thermal water interferes with tumour necrosis factor-alpha expression and interleukin-8 production and secretion by cultured human psoriatic keratinocytes: yet other mechanisms of its anti-psoriatic action. Int J Mol Med 19(3):373–379

11. Karagülle MZ, Karagülle M, Kılıç S, Sevinç H, Dündar C, Türköglü M (2018) In vitro evaluation of natural thermal mineral waters in human keratinocyte cells: a preliminary study. Int J Biometeorol 62(9):1657–1661. https://doi.org/10.1007/s00484-018-1565-8

12. Lee HP, Choi YJ, Cho KA, Woo SY, Yun ST, Lee JT, Kim HJ, Lee HK, Kim JW (2012) Effect of spa spring water on cytokine expression in human keratinocyte HaCaT cells and on differentiation of CD4(+) T cells. Ann Dermatol 24(3):324–336. https://doi.org/10.5021/ad.2012.24.3.324

13. Fox B, Schantz JT, Haigh R, Wood ME, Moore PK, Viner N, Spencer JP, Winyard PG, Whiteman M (2012) Inducible hydrogen sulfide synthesis in chondrocytes and mesenchymal progenitor cells: is H2S a novel cytoprotective mediator in the inflamed joint? J Cell Mol Med 16(4):896–910. https://doi.org/10.1111/j.1582-4934.2011.01357.x

14. Li L, Fox B, Keeble J, Salto-Tellez M, Winyard PG, Wood ME, Moore PK, Whiteman M (2013) The complex effects of the slow-releasing hydrogen sulfide donor GYY4137 in a model of acute joint inflammation and in human cartilage cells. J Cell Mol Med 17(3):365–376. https://doi.org/10.1111/jcmm.12016
15. Burguera EF, Vela-Antero A, Magalhães J, Meijide-Falide R, Blanco FJ (2014) Effect of hydrogen sulfide sources on inflammation and cataleptic markers on interleukin-1β-stimulated human articular chondrocytes. OsteoarthrCartil 22(7):1026–1035. https://doi.org/10.1016/j.oarcc.2014.04.031

16. Ha C, Tian S, Sun K, Wang D, Lv J, Wang Y (2015) Hydrogen sulhide attenuates IL-1β-induced inflammatory signaling and dysfunction of osteoarthritidic chondrocytes. Int J Mol Med 35(6):1657–1666. https://doi.org/10.3892/ijmm.2015.2183

17. Fioravanti A, Lamboglia A, Pascarelli NA, Cheleschi S, Manica P, Galeazzi M, Collodel G (2013) Thermal water of Vetrilo, Trentino, inhibits the negative effect of interleukin 1|ntrinicoide production and apoptosis in human osteoarthritidic chondrocyte. J BiolRegulHomeost Agents 27(3):891–902

18. Sieghart D, Liszt M, Wanivenhaus A, Bröll H, Kiener H, Klösch B, Steiner G (2015) Hydrogen sulfide decreases IL-1β-induced activation of fibroblast-like synoviocytes from patients with osteoarthritis. J Cell Mol Med 19(1):187–197. https://doi.org/10.1111/jcmm.12405

19. Vela-Antero Á, Hermida-Gómez T, Gato-Calvo L, Vaamonde-García C, Diaz-Prado S, Meijide-Falide R, Blanco FJ, Burguera EF (2017) Long-term effects of hydrogen sulfide on the anabolic-catabolic balance of articular cartilage in vitro. Nitric Oxide 70:42–50. https://doi.org/10.1016/j.niox.2017.08.004

20. Kloesch B, Liszt M, Broell J (2010) H2S transiently blocks IL-6 expression in rheumatoid arthic fibrobast-like synoviocytes and deactivates p44/42 mitogen-activated protein kinase. Cell Biol Int 34(5):477–484. https://doi.org/10.1002/cbi.20090436

21. Kloesch B, Liszt M, Krehan D, Broell J, Kiener H, Steiner G (2012) High concentrations of hydrogen sulfide elevate the expression of a series of pro-inflammatory genes in fibroblast-like synoviocytes derived from rheumatoid and osteoarthritis patients. Immunol Lett 141(2):197–203. https://doi.org/10.1016/j.imlet.2011.10.004

22. Kloesch B, Liszt M, Steiner G, Bröll J (2012) Inhibitors of p38 and ERK1/2 MAPKinase and hydrogen sulphide block constitutive and IL-1β-induced IL-6 and IL-8 expression in the human chondrocyte cell line C-28/22. Rheumatol Int 32(3):729–736. https://doi.org/10.1007/s00296-010-1682-0

23. Gambari L, Lisignoli G, Cavallini L, Manferdini C, Facchini A, Grassi F (2014) Sodium hydrosulfide inhibits the differentiation of osteoclast progenitor cells via NRF2-dependent mechanism. Pharmacol Res 87:99–112. https://doi.org/10.1016/j.phrs.2014.06.014

24. Xu ZS, Wang XY, Xiao DM, Hu LF, Lu M, Wu ZY, Bian JS (2011) Hydrogen sulfide protects MC3T3-E1 osteoblastic cells against H2O2-induced oxidative damage-implications for the treatment of osteoporosis. Free Radic Biol Med 50(10):1314–1323. https://doi.org/10.1016/j.freeradbiomed.2011.02.016

25. Lv M, Liu Y, Xiao TH, Jiang W, Lin BW, Zhang XM, Lin YM, Xu ZS (2017) GYY4137 stimulates osteoblastic cell proliferation and differentiation via an ERK1/2-dependent antioxidant mechanism. Am J Transl Res 9(3):1183–1192

26. Liu Y, Liu J, Li X, Wang F, Xu X, Wang C (2017) Exogenous H2S prevents high glucose-induced damage to osteoblasts through regulation of KATP channels. Biochimie 137:151–157. https://doi.org/10.1016/j.biochi.2017.03.009

27. Rinaldi L, Gobbi G, Pambianco M, Micheloni C, Mirandola P, Vitale M (2006) Hydrogen sulfide prevents apoptosis of human PMN via inhibition of p38 and caspase3. Lab Invest 86(4):391–397. https://doi.org/10.1038/labinvest.3700391

28. Mirandola P, Gobbi G, Sponzilli I, Pambianco M, Malinverno C, Cacioppoli A, De Panfiliis G, Vitale M (2007) Exogenous hydrogen sulfide induces functional inhibition and cell death of cytotocyclic lymphocytes subsets. J Cell Physiol 213(3):826–833. https://doi.org/10.1002/jcp.21151

29. Sulea A, Gullakse SE, Bader L, McClymont DW, Skavland J, Gavasso S, Gjertsen BT (2016) Signaling effects of sodium hydrosulfide in healthy donor peripheral blood mononuclear cells. Pharmacol Res 113(Pt A):216–227. https://doi.org/10.1016/j.phrs.2016.08.018

30. Han Y, Zeng F, Tan G, Yang C, Tang H, Luo Y, Feng J, Xiong H, Guo Q (2013) Hydrogen sulfide inhibits abnormal proliferation of lymphocytes via AKT/GSK3β signal pathway in systemic lupus erythematosus patients. Cell Physiol Biochem 31(6):795–804. https://doi.org/10.1159/000350997

31. Braga PC, Sambataro G, Dal Sasso M, Culici M, Alfieri M, Nappi G (2008) Antioxidant effect of sulphurous thermal water on human neutrophil bursts: chemiluminescence evaluation. Respiration 75(2):193–201

32. Braga PC, Dal Sasso M, Culici M, Spallino A, Marabini L, Bianchi T, Nappi G (2010) Effects of sulphurous water on human neutrophil elastase release. Ther Adv Respir Dis 4(6):333–340. https://doi.org/10.1177/1753463103060376

33. Vitale M (2018) Sulphur balneotherapy and patient’s immunity: H2S effects on human CD4+ T cell polarization to Th1 and Th2 phenotypes. Bol Soc Esp Hidrol Med 33(1):68–69

34. Miller TW, Wang EA, Gould S, Stein EY, Kaur S, Lim L, Amarnath S, Fowler DH, Roberts DD (2012) Hydrogen sulfide is an endogenous potentiator of T cell activation. J Biol Chem 287(6):4211–4221. https://doi.org/10.1074/jbc.M111.307819

35. Bellometti S, Cecchettil M, Galizia L (1997) Mud pack therapy in osteoarthritis. Changes in serum levels of chondrocyte markers. Clin Chim Acta 268(1–2):101–106. https://doi.org/10.1016/s0009-8981(97)00171-x

36. Bellometti S, Galizia L (1998) Serum levels of a proaglandin and a leukotriene after thermal mud pack therapy. J InvestMed 46(4):140–145

37. Pascarelli NA, Cheleschi S, Bacaro G, Guidelli GM, Galeazzi M, Fioravanti A (2016) Effect of mud-bath therapy on serum biomarkers in patients with knee osteoarthritis: results from a randomized controlled trial. Isr Med Assoc J 18(3–4):232–237

38. Ortega E, Gálvez I, Hinchado MD, Guerrero J, Martín-Cordero L, Torres-Piles S (2017) Anti-inflammatory effect as a mechanism of effectiveness underlying the clinical benefits of pelotherapy in osteoarthritis patients: regulation of the altered inflammatory and stress feedback response. Int J Biometeorol 61(10):1777–1785. https://doi.org/10.1007/s10712-017-1361-x

39. Gálvez I, Torres-Piles S, Ortega E (2018) Innate/inflammatory bioregulation and clinical effectiveness of whole-body hyperthermia (balneotherapy) in elderly patients with osteoarthritis. Int J Hyperth 35(1):340–347. https://doi.org/10.1080/22286576.2018.1502896

40. Tarner IH, Müller-Ladner U, Uhlemann C, Lange U (2009) The effect of mild whole-body hyperthermia on systemic levels of TNF-alpha, IL-1beta, and IL-6 in patients with ankylosing spondylitis. Clin Rheumatol 28(4):397–402. https://doi.org/10.1007/s10067-008-1059-x

41. Shehata M, Schwarzmeier J, Hilgarth M, Demirtas D, Richter D, Hubmann R, Boeck P, Leiner G, Falkenbach A (2006) Effect of combined spa-exercise therapy on circulating TGF-β1 levels in patients with ankylosing spondylitis. Hyperth 35(1):340–347. https://doi.org/10.1080/02656736.2018.1502896

42. Ardiç F, Ozgen M, Aybek H, Rota S, Cubukçu D, Gökçöz A (2007) Effects of balneotherapy on serum IL-1, PGE2 and LTB4
levels in fibromyalgia patients. Rheumatol Int 27(5):441–446. https://doi.org/10.1007/s00296-006-0237-x

44. Eysteinsdóttir JH, Sigurgeirsson B, Ólafsson JH, Fridriksson Th, Agnarsson BA, Davíðsson S, Valdimarsson H, Lúdvíksson BR (2013) The role of Th17/Tc17 peripheral blood T cells in psoriasis and their positive therapeutic response. Scand J Immunol 78(6):529–537. https://doi.org/10.1111/sji.12114

45. Yamaoka K, Mitsunobu F, Hanamoto K, Shibuya K, Mori S, Taniyazaki Y, Sugita K (2004) Biochemical comparison between radon effects and thermal effects on humans in radon hot spring therapy. J Radiat Res 45(1):83–88. https://doi.org/10.1269/jrr.45.83

46. Gálvez I, Torres-Piles S, Ortega-Rincón E (2018) Balneotherapy, immune system, and stress response: a hormetic strategy? Int J Mol Sci 19(6):1687. https://doi.org/10.3390/ijms19061687

47. Masiero S (2008) Thermal rehabilitation and osteoarticular diseases of the elderly. Aging Clin Exp Res 20:189–194. https://doi.org/10.1007/BF03324772

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.