Case Letters

Hemothorax secondary to ruptured pulmonary arteriovenous malformation: A combined stitch in time saves nine

SIR,

Spontaneous hemothorax due to ruptured pulmonary arteriovenous malformation (PAVM) is uncommon. Tube thoracostomy may be delayed until a definitive procedure like embolization is performed. Embolization of PAVM in experienced hands is the definitive management. We report a case of spontaneous right-sided hemothorax secondary to rupture of subpleural PAVM that was managed with coil embolization followed by thoracoscopic-assisted removal of clots, resulting in early recovery.

A 28-year-old, previously healthy male presented to emergency with severe right-sided chest pain and breathlessness. He denied any history of trauma. He gave a history of recurrent spontaneous nose bleeds since childhood. On examination, he was tachypneic and pale with right-sided tracheal shift and generalized stony dullness over right hemithorax with decreased breath sounds. This was confirmed on a chest radiograph [Figure 1a]. Blood investigations showed hemoglobin of 7.7 g/dl with hematocrit of 25%. Other blood investigations were normal. Oxygen hemoglobin saturation on room air was 86%. Diagnostic thoracocentesis was done which revealed hemothorax.

Emergency computed tomography pulmonary angiography (CTPA) was done for further valuation. Noncontrast CT [Figure 2a] revealed large right hemothorax with collapse of entire right lung. CTPA [Figure 2b] revealed a contrast filled sac in the upper part of collapsed right lung, which was supplied by a branch of superior division of the right pulmonary artery.

Right-sided tube thoracostomy was deferred until embolization so as to prevent loss of tamponade effect of hemothorax over the AVM.

Digital subtraction angiography [Figure 3a] confirmed the presence of the arteriovenous malformation with no active extravasation. The feeding artery superselectively cannulated and embolized using interlocking microcoils of size 6 mm × 15 mm and 4 mm × 12 mm (0.018” diameter, Boston Scientific, USA) [Figure 3b]. Care was taken to do the embolization using anchoring technique in which initial few centimeters of coil is anchored into a small arterial branch with rest of the coil placed into main lumen of feeding artery.

With gradual drainage of hemothorax, dyspnea improved with decrease in oxygen requirement. Repeat chest X-ray showed partial expansion of the right lung with persistent opacification of mid and lower right hemithorax.

On 7th day of post presentation, video-assisted thoracoscopic (VATS) guided evacuation of large amount of organized clots done from pleural cavity along with decortication of pleura. Post-VATS chest drain was removed on day 8 and chest X-ray [Figure 1b] was done which revealed...

Figure 1: Chest radiographs. (a) At the time of presentation, complete opacification of right hemithorax (asterisk) with left side mediastinal shift. (b) At the time of discharge showing coil mass (black arrow) with near-complete lung expansion and mild residual pleural thickening in right costophrenic angle

Figure 2: Computed tomography pulmonary angiography: Noncontrast axial (a) image reveal fluid in right pleural space with internal hyperdensity (asterisk) suggestive of hemothorax. (b) Computed tomography angiography coronal view shows contrast filled outpouching (black arrow) suggestive of pulmonary arteriovenous malformation in collapsed right upper lobe
The embolization is not feasible. diameter >3 mm.

all radiologically visible PAVMs with not necessarily method of treatment for symptomatic PAVMs and surgery. Embolization has become the preferred Management of PAVM includes endovascular embolization space should be delayed until the PAVM has been treated.

exsanguination; hence, drainage of blood from the pleural tamponade provided by the hemothorax may prevent systemic arteries usually after embolization.

at systemic pressures by bronchial artery or nonbronchial usually seen in pregnancy and when PAVMs are perfused Rupture of PAVM leading to hemothorax is rare and is a rare complication of PAVM. 

PAVM can present with dyspnea, asymptomatic hypoxemia, chest pain, and hemoptyis. Paradoxic embolism from right-to-left shunt may lead to cerebral abscess, stroke, and rarely myocardial infarction. Spontaneous hemothorax is a rare complication of PAVM. 

Rupture of PAVM leading to hemothorax is rare and is usually seen in pregnancy and when PAVMs are perfused at systemic pressures by bronchial artery or nonbronchial systemic arteries usually after embolization. The tamponade provided by the hemothorax may prevent exsanguination; hence, drainage of blood from the pleural space should be delayed until the PAVM has been treated.

Management of PAVM includes endovascular embolization and surgery. Embolization has become the preferred method of treatment for symptomatic PAVMs and all radiologically visible PAVMs with not necessarily diameter >3 mm. Surgery is reserved for cases in whom embolization is not feasible.

Endovascular management involves selective embolization of feeding artery supplying the AVM. Embolization can be done using vascular plug or metallic coils or a combination of both.

The conventional initial management of hemothorax is tube thoracostomy. Based on the volume of initial output, the next step may be either observation or urgent thoracotomy. In our case, VATS was done to remove residual clots which prevented the occurrence of fibrothorax and empyema.

Our case highlights the fact that PAVM can present with massive spontaneous hemothorax. Tube thoracostomy may be deferred until a definitive procedure like embolization is performed. Embolization of PAVM in experienced hands is a minimally invasive method to treat it. Early VATS after embolization leads to rapid recovery with complete expansion following hemothorax.

Declaration of patient consent
The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

Pushpinder S Khera1, Nishant Chauhan2, Pawan Kumar Garg1, Ramkaran Choudhary3, Kunal Deokar2, Ram Niwas2

1Department of Diagnostic and Interventional Radiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India, 2Department of Pulmonary Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India, 3Department of General Surgery, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.

E-mail: drgargpawan@gmail.com

Submitted: 13-Jul-2019 Accepted: 09-Sep-2019 Published: 04-May-2020

REFERENCES
1. Shovlin CL. Pulmonary arteriovenous malformations. Am J Respir Crit Care Med 2014;190:1217-28.
2. Hsu CC, Kwan GN, Evans-Barns H, van Driel ML. Embolisation for pulmonary arteriovenous malformation. Cochrane Database Syst Rev 2018;1:CD008017.
3. Hsu CC, Kwan GN, Thompson SA, van Driel ML. Embolisation therapy for pulmonary arteriovenous malformations. Cochrane Database Syst Rev 2013: CD008017.
4. Shovlin CL, Condiffe R, Donaldson JW, Kiely DG, Wort S, British
Sir,

A 19-year-old woman with skeletal and connective tissue abnormalities characterized by scoliosis, joint hyperextensibility and high palate, and a previous history of recurrent respiratory and skin infections, presented with acute fever and soft subcutaneous nodules with no phlogistic sign on the chest or limbs. Computed tomography (CT) of the chest demonstrated peripheral lung abscesses, bronchiectasis, and pneumatoceles, some with air–fluid levels [Figure 1a]. Abdominal CT showed multiple hypodense collections suggesting abscesses in the pelvis, abdominal and thoracic walls, and left adrenal region [Figure 1b and c].

Staphylococcus aureus was identified in material drained from intramuscular collection in the left thigh, leading to the diagnosis of tropical pyomyositis. The patient’s total serum immunoglobulin E (IgE) level was 10,900 UI/L and the National Institutes of Health (NIH) score was >60, suggestive of autosomal dominant hyper-IgE syndrome (AD-HIES).

AD-HIES is a rare multisystemic immunodeficiency related to STAT3 mutations and characterized by eczema, high serum IgE levels (>2000 IU/mL), and recurrent skin and lung infections, caused mainly by S. aureus. It is also associated with non-immunological features composing the NIH score.

Pneumatoceles and bronchiectasis result from aberrant healing of pneumonia. AD-HIES has been associated with recurrent infections, mainly on the skin, lungs, and liver. To our knowledge, no previous report has described tropical pyomyositis in a patient with AD-HIES. This case demonstrates a rare complication of AD-HIES and...

References:
5. Shovlin CL, Jackson JE, Bamford KB, Jenkins IH, Benjamin AR, Ramadan H, et al. Primary determinants of ischaemic stroke/brain abscess risks are independent of severity of pulmonary arteriovenous malformations in hereditary haemorrhagic telangiectasia. Thorax 2008;63:259-66.
6. Khan AA, Hunt I, Hamdane K, Tambiah J, Deshpande RP, Reidy JF. Massive pulmonary arteriovenous malformation presenting with tamponading haemothorax. Thorax 2007;62:836.
7. Berg AM, Amirbekian S, Mojibian H, Trow TK, Smith SJ, White RI Jr. Hemothorax due to rupture of pulmonary arteriovenous malformation: An interventional emergency. Chest 2010;137:705-7.