Effect of confining pressures on the shear modulus of sand treated with enzymatically induced calcite precipitation

M Simatupang1*, A S Sukri2, Nasrul3, Sulha4 and T S Putri5

123Senior Lecture, Department of Civil Engineering, Faculty of Engineering, Halu Oleo University, Kendari 93232, Indonesia
45Lecture, Department of Civil Engineering, Faculty of Engineering, Halu Oleo University, Kendari 93232, Indonesia

*E-mail: minson.simatupang@uho.ac.id

Abstract. Enzymatically induced calcite precipitation (EICP) is a new breakthrough for liquefaction prevention. This approach uses urease enzyme directly instead of bacteria to hydrolyze urea that precipitated as calcite crystal by the availability of calcium ion. Cyclic triaxial shear test under undrained condition incorporated with bender element test were conducted conscientiously on the EICP-treated sands. The parameters study reviewed includes: size of the sand particle, confining pressure, calcite contents, and saturation degrees along curing. The effects of those factors on the shear modulus are systematically investigated and compared. It was revealed that the precipitated calcite wraps the sand particles, which supports simultaneously to the mechanical properties’ improvement. The sum of materials needed of urea and CaCl₂ to reach a target of maximum shear modulus can be diminished prominently by reducing the saturation degree along curing. It is also revealed that the formation of the precipitated calcite is more significant than its amount on the strength improvement. The maximum shear modulus (G_{max}) of the sands treated with EICP increases with increasing in the calcite content, confining pressure, and decreasing in the saturation degrees during curing but the influence of the sands grain size is insignificant.

Keywords: shear modulus, confining pressures, saturation degrees, calcite content, grain size.

1. Introduction
Enzymatically induced calcite precipitation (EICP) method is a new innovation for liquefaction countermeasure. This new approach applies directly urease enzyme to hydrolyze urea becoming carbonate ion. With the present of calcium ion, it reacts and precipitates as calcium carbonate and bind soil particles. Their bond would improve the strength of the soil and restrict not only pore pressures generation but stiffness degradation of the soil as well.

The usage development of the EICP approach as a grouting material for liquefaction mitigation requires understanding on some parameters. One of them is the shear modulus, both at very small shear strain and at the others. At very small shear strain level, shear modulus generally remains stable and maximum shear modulus is stated in this range. Maximum shear modulus can be benefitted for liquefaction prediction of soil in site by using of liquefaction approximation curve correlating liquefaction resistance and shear wave velocity prepared by researcher [1–5]. At a higher strain level,
shear modulus decreases with strain. The enormity of the strain depends mostly on the rigidity of the soil and pore pressure generation during earthquake. The variation of shear modulus with strain under undrained condition is very important for ground movement prediction. Many research dealing with shear modulus of sands treated with any kinds of grouting materials have been prepared [6–9]. However, research on the deformation characteristic of the soils improved with EICP is relatively sparse.

The quantity of material used in the EICP approach plays an important role on its mechanical behaviour. However, the more the material used, the higher the cost performed. On that reason, reduction in the amount of its forming materials is worth considering. It has been proved using scanning electron microscopy (SEM) images that in a lower saturation degree along curing, the calcite precipitation tends to conglomerate at the connection surface among soil particles which directly contribute to the strength improvement [10–12]. Research on mechanical properties of EICP treated sands show that at the same calcite content, sands treated at a lower saturation degree along curing had a bigger mechanical property than that cured at a 100% saturation condition. It reveals that the sum of substances used can be diminished for attaining a specific strength of treated soil by reducing saturation degree along curing [11, 13].

This study presents the deformation characteristic of EICP treated sands by performing a sequence of cyclic triaxial shear test under undrained condition integrated with bender element test in the laboratory. Testing parameters cover: confining pressure (CP), calcite content (CC), saturation degree along curing (S_r), and grain size of sand. Bender element test was conducted shortly before deformation characteristic test for determining shear modulus at a very small shear strain.

2. Materials and methods

The substances used in this research were: urea, CaCl$_2$, and urease enzyme which have a function as cementation materials. The expected reactions for precipitating calcite in the form of calcite crystal are as shown in equation (1) to equation (3).

$$\text{CO(NH}_2\text{)}_2 + 2\text{H}_2\text{O} \xrightarrow{\text{Urease enzyme}} 2\text{NH}_4^+ + \text{CO}_3^{2-} \quad (1)$$

$$\text{CaCl}_2 \rightarrow \text{Ca}^{2+} + 2\text{Cl}^- \quad (2)$$

$$\text{Ca}^{2+} + \text{CO}_3^{2-} \rightarrow \text{CaCO}_3 \downarrow \text{(precipitation)} \quad (3)$$

CO(NH$_2$)$_2$ and CaCl$_2$ are the chemical formula for urea and calcium chloride, respectively.

![Grain size distribution of sands used](image.png)

Figure 1. Grain size distribution of sands used [13].

Those materials would be combined with water as a solution at an own predetermined amount to achieve the expected of precipitated calcite at 100% efficiency of either 0.4% or 0.8%. This solution
was mixed with sands of either Keisha No. 4 (Kitanihon Sangyo Co. Ltd.) [14] or Toyoura sand, with the grain size distribution chart and physical properties as presented in figure 1 and table 1 respectively.

Table 1. Physical properties of sands used [13].

	Keisha No.4	Toyoura sand
Specific Gravity G_s	2.65	2.64
Maximum void ratio e_{max}	0.804	0.973
Minimum void ratio e_{min}	0.605	0.609
Mean grain size D_{50}	0.825	0.17

The predetermined amount of materials used is as presented in table 2. Dry sand was mixed with solution at Laboratory before it was tamped directly on pedestal to form a specimen with target relative density of around 50%. The time consuming at this stage was attempted to be less than 30 minutes for reducing the detriment of calcite bonding during sample preparation. After tamping, specimen was cured for around six hours, the time needed for attaining 100% calcite precipitation, and loaded isotropically to a CP of 50, 100, or 200 kPa in the the cell of the triaxial. During curing, the saturation degree of specimen was expected maintain stable of either 30% or 97%. Specimen was then saturated fully by flowing tap water from the bottom pedestal to the top until the B-value at least 0,95. In the next sequences, bender element test was performed for measuring shear modulus at the small shear strain just prior to undrained cyclic shear test. Deformation characteristic test was conducted at a condition of undrained to find out the changing on shear modulus at other shear strain levels. For that objective, cyclic stress ratio (CSR) was changed gradually step by step to a higher value on the same specimen and at the same frequency of 0.1 Hz until specimen was liquefied, as depicted in figure 2.

Table 2. The predetermined amount of materials used.

S_c (%)	Dry sand (g)	Solution volume (ml)		
	Keisha No.4	Toyoura	Keisha No.4	Toyoura
30	315	300	25	27
97	315	84		

At the end of the stages, real count of the calcite precipitated in the specimen was determined using acid leaching method. More detail information relating to this approach is available in Simatupang and Okamura (2017) [15].
3. Test circumstances and proceeds
Tests circumstances as prepared in table 3 was applied to study the influences of CP, CC, S_{rc}, and particle size of sand on the mechanical properties of sands. The test proceeds of the maximum shear modulus by utilizing bender element are also included.

| Table 3. Test circumstances and proceeds of the maximum shear modulus [13]. |
|---------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Saturation degree along curing | Effective | Concentration of reagent | Relative density | Observed | Maximum shear modulus | Relative density | Observed | Maximum shear modulus |
| S_{rc} (%) | CP | σ'_c (kPa) | CC | D_r (%) | $CC_{obs.}$ (%) | G_{max} (MPa) | D_r (%) | $CC_{obs.}$ (%) | G_{max} (kPa) |
| 30 | 50 | 50.3 | 0 | 54 | 49.5 | 0 | 53 |
| 0.5 | 53.0 | 0.38 | 154 | 49.9 | 0.39 | 161 |
| 1 | 52.9 | 0.79 | 201 | 51.9 | 0.80 | 204 |
| 100 | 0 | 50.5 | 0 | 77 | 49.7 | 0 | 72 |
| 0.5 | 51.6 | 0.39 | 195 | 51.5 | 0.41 | 210 |
| 1 | 50.1 | 0.81 | 259 | 47.7 | 0.79 | 263 |
| 200 | 0 | 51.3 | 0 | 114 | 51.6 | 0 | 104 |
| 0.5 | 52.6 | 0.41 | 231 | 48.2 | 0.39 | 230 |
| 1 | 50.1 | 0.79 | 288 | 48.6 | 0.81 | 283 |
| 97 | 50 | 50.3 | 0 | 54 | |
| 100 | 0 | 50.5 | 0 | 77 | |
| 1 | 51.5 | 0.79 | 207 | |
| 200 | 0 | 51.3 | 0 | 114 | |
| 1 | 53.0 | 0.79 | 235 | |
4. Bender element (BE) test
BE test was conducted shortly before characteristic test of deformation for determination of G_{max} based on shear wave velocity V_s measurement, according to:

$$G_{\text{max}} = \rho_{\text{sat}} V_s$$ \hspace{1cm} (4)

where, ρ_{sat} denotes mass saturated density of the soil, and V_s is expressed as the comparison of travel distance (d) to travel time (t).

$$V_s = \frac{d}{t}$$ \hspace{1cm} (5)

Travel distance, in this study $d = 9.6$ cm as shown at figure 3, is measured as the space between midpoint of the protrusions of the embedded BE in the specimen of height 4 mm [16, 17]. Input signal using sine waves with frequency of 10 kHz with an oscilloscope was applied during the test. Furthermore, stacking approach was applied for averaging in 10 times of the input and received signals.

![Figure 3. Travel distance measurement using BE.](image)

4.1. Maximum shear modulus
Equation (4) was applied for determining maximum shear modulus. The results of the test presented in table 2 and redrawn collectively in figure 4 give interesting information relating to the testing parameters. First of all, maximum shear modulus, G_{max}, increases with CP for both sands tested, Keisha No.4 and Toyoura sand, both in cases of untreated and treated sands. This information agrees with the formula

$$G_{\text{max}} \sim \left(\sigma_c'\right)^n$$ \hspace{1cm} (6)

postulated by researchers, where G_{max} is comparable to the power n of 0.5 of the effective CP especially for untreated sands [18–21]. This value of “slope n” shown in figure 4(a) however decreases sharply for treated sands and stays in a lower value in a higher CC showing strength improvement. Lin et al. (2016) [22] and Montoya et al. (2013) [23] were also reported the same trend. Montoya further said that the addition of CC, it would then reach a steady state condition where there was no change in slope “n=0” due to an increase in CP. Second, G_{max} of EICP treated sands increases sharply if compared to that of untreated sands. However, the improvement on that slowdown in a higher CC. Third, unlike with CP and CC, G_{max} decreases with S_{sc} in all cases of CP. In this case, lowering S_{sc} becomes a choice for ameliorating G_{max} as proved by researcher using SEM image [10–13]. At low S_{sc}, calcite tends to precipitate at contact point of grain directly relating to strength improvement. Fourth, figure 3(a) shows...
clearly that G_{max} of sands tested, Keisha No.4 and Toyoura sand, is almost coincided each other both untreated and treated sands. This information gives indication that grain size effect on changing G_{max} value is very small that can be avoided. Research prepared by Youn et al. (2008) [24] using Toyoura and silica sand with the same relative density Dr of 50% shown the same trend. G_{max} obtained on their study using bender element test agrees with that on this study.

The effectiveness of the EICP treated sands based on their improvement ratio of G_{max} is drawn in figure 4(b). It is clearly shown that the improvement ratio increases with CC but decreases with CP and S_{rc} irrespective grain size of the sands used. The effectiveness of the EICP treated sands is higher at lower CP as well as S_{rc}. Even though G_{max} increases with CP as aforementioned, it is slow down in a higher CP. This fact is more significant particularly for treated sands. As a consequence, their improvement ratio is lower at higher CP. The improvement ratio of G_{max} of EICP treated sands performed in this study achieves the value of around 4 particularly at low CP and S_{rc}. It means that G_{max} of EICP lightly treated sands of less than 1% is 4 times higher than that of untreated sands. This achievement agrees with the results on G_{max} test of treated sands presented by Delfosse-Ribay et al. (2004) [8]. Their value on the materials of silica, micro fine cement, and mineral grout are 3, 4, and 5 respectively.

S_{rc} (%)	10	50	90
S_c (%)	0	0	0
C_{c} (%)	0	0	0
C_{p} (%)	0	0	0
Src (%)	0	0	0
G_{max} (MPa)	50	100	150
$G_{\text{max}}/G_{\text{max}}(CP=0)$	1	2	3

Figure 4. Maximum shear modulus and improvement ratio.

5. **Deformation characteristic test**

The shear modulus evolution with strain of sands investigated for both cases of untreated and treated sands are shown at figure 5. Those graphs presented in figure 5 are clearly figuring that shear modulus depends mostly on strain. Like untreated sands, shear modulus of treated sands decreases along with increasing in shear strain and comes close to that of untreated sands at a higher shear strain [8, 22, 25, 26]. On the other hand, normalized shear modulus of sands treated with EICP approach is higher at bigger CC as a consequence of bond deterioration of the specimen due to shear strain elongation. The comparison with other test result of untreated sands prepared by Kokusho (1980) [20] has been performed and showing a good agreement. His test was conducted under the almost same condition in some cases with this study, such as: CP of 98 kN/m² and Dr around 50%.
6. Conclusions

Research prepared using bender element test and undrained cyclic triaxial shear test give some information relating to test parameter reviewed. Some of them are as follows.

Maximum shear modulus of EICP treated sands increases with increasing in CP. That is proportional to the power “n” function of effective confining pressures which is slope of the line connecting log G_{max} and log effective confining pressures. That “n” of EICP treated sands is smaller at higher CC is showing strength improvement until it reaches a steady state of “n=0”. Slope “n” of EICP treated sands decreases sharply to around 50% of that of untreated sands showing that little quantity of precipitated calcite can upgrade G_{max} prominently.

Strength improvement of EICP treated sands can also be found by decreasing S_{cc} expressing the potency of calcite position at low S_{cc} rather than its quantity. In other words, the amount of forming material of calcite those are urea and calcium chloride can be reduced for attaining specific strength by reducing S_{cc}. On the other sides, G_{max} of different sands is almost coincided each other at any cases of CP, and CC meant that grain size is insensitive for G_{max} determination.

Shear modulus of EICP treated sands is strain dependent. It decreases with strain and decreases sharply at higher strain. At higher strain level of around 10^{-2}, it comes close to that of untreated sands showing bond deterioration. Shear modulus reduction curve of EICP treated sands at strain level of more than 10^{-5} is shift below that of untreated sands. At this strain level, calcite bonding is predicted starting to deteriorate.

References

[1] Andrus R D and Stokoe K H 2000 Liquefaction Resistance of Soils from Shear Wave Velocity J. Geotech Geoenvironmental Eng ASCE 126 1015–25
[2] Andrus R D and Stokoe K H 1997 Liquefaction Resistance based on Shear Wave Velocity. Proc. NCEER Work. Eval. Liq. Resist. Soils p 89–128

[3] Kayen R, Moss R E S, Thompson E M, Seed R B, Cetin K O, Der Kiureghian A et al. 2013 Shear-Wave Velocity-Based Probabilistic and Deterministic Assessment of Seismic Soil Liquefaction Potential. J Geotech Geoenvironmental Eng ASCE 139 407–19 (doi:10.1061/(ASCE)GT.1943-5606.0000743)

[4] Tokimatsu K and Uchida A 1990 Correlation between Liquefaction Resistance and Shear Wave Velocity. Soils Found Japanese Soc Soil Mech Found Eng 30 33–42

[5] Robertson P K, Woeller D J and Finn W D L 1992 Seismic Cone Penetration Test for Evaluating Liquefaction Potential under Cyclic Loading. Can Geotech J. 29 686–95

[6] Dano C and Hicher P-Y 2003 Behaviour of Uncemented Sands and Grouted Sands before Peak Strength. Soils Found Japanese Geotech Soc 43 13–9

[7] Dano C, Hicher P Y and Tailliez S 2004 Engineering Properties of Grouted Sands. J. Geotech Geoenvironmental Eng ASCE 130(3) 328–38 (doi:10.1061/(ASCE)1090-0241(2004))

[8] Delfosse-Ribay E, Djeran-Maire I, Cabrillac R and Gouvenot D 2004 Shear Modulus and Damping Ratio of Grouted Sand. Soil Dyn Earthq Eng 24 461–71 (doi:10.1016/j.soildyn.2004.02.004)

[9] Dano C, Hicher P Y and Tailliez S 2004 Engineering Properties of Grouted Sands. J. Geotech Geoenvironmental Eng ASCE 130(3) 328–38 (doi:10.1061/(ASCE)1090-0241(2004))

[10] Cheng L, Cord-Ruwisch R, Shahin M A 2013 Cementation of Sand Soil by Microbially Induced Calcite Precipitation at Various Degrees of Saturation. Can Geotech J. 50 81–90 (doi:10.1139/cgj-2012-0023)

[11] Simatupang M and Okamura M 2017 Liquefaction Resistance of Sand Remediated with Carbonate Precipitation at Different Degrees of Saturation during Curing. Soils Found Japanese Geotech Soc 57 619–31 (doi:10.1016/j.sandf.2017.04.003)

[12] Cheng L and Cord-Ruwisch R 2012 In Situ Soil Cementation with Ureolytic Bacteria by Surface Percolation. Ecol Eng 42 64–72 (doi:10.1016/j.ecoleng.2012.01.013)

[13] Simatupang M, Okamura M, Hayashi K and Yasuhara H 2018 Small-strain Shear Modulus and Liquefaction Resistance of Sand with Carbonate Precipitation. Soil Dyn Earthq Eng 115 710–8 (doi:10.1016/j.soildyn.2018.09.027)

[14] Kitanihon Sangyo Co. Ltd.: Brochure of Tohoku Keisha, http://www.catvy.ne.jp/~ktsangyo/ tohoku.htm n.d.

[15] Simatupang M 2017 Liquefaction Resistance of Sand Lightly Treated with Enzymatically Induced Calcite Precipitation (Ehime)

[16] Lee J-S and Santamarina J C 2005 Bender Elements: Performance and Signal Interpretation. J. Geotech Geoenvironmental Eng 131 1063–70 (doi:10.1061/(ASCE)1090-0241(2005) 131:9(1063))

[17] Yamashita S, Kawaguchi T, Nakata Y, Mikami T, Fujiwara T and Shibuya S 2009 Interpretation of International Parallel Test on the Measurement of Gmax using Bender Elements. Soils Found Japanese Geotech Soc 49 631–50 (doi:10.3208/sandf.49.631)

[18] Seed H B and Idriss I M 1970 Soil Moduli and Damping Factors for Dynamic Response Analyses (College of Engineering, University of California, Berkeley, CA)

[19] El Harbi O, Drnevich V P 1972 Shear Modulus and Damping in Soil: Measurement and Parameter Effects. J. Soil Mech Found Div ASCE 98 603–24

[20] Kokusho T 1980 Cyclic Triaxial Test of Dynamic Soil Properties for Wide Strain Range. Soils Found Japanese Soc Soil Mech Found Eng 20 45–60

[21] Seed H B, Wong R T, Idriss I M and Tokimatsu K 1986 Moduli and Damping Factors for Dynamic Analyses of Cohesionless Soils. J. Geotech Eng ASCE 112 1016–32

[22] Lin H, Suleiman M T, Brown D G and Kavazanjian E 2016 Mechanical Behavior of Sands Treated by Microbially Induced Carbonate Precipitation. J. Geotech Geoenvironmental Eng 142 04015066-1–13 (doi:10.1061/(ASCE)GT.1943-5606.0001383)
[23] Montoya B M, DeJong J T and Boulanger R W 2013 Dynamic Response of Liquefiable Sand Improved by Microbial-Induced Calcite Precipitation *Géotechnique* **63** 302–12 (doi:10.1680/geot.SIP13.P.019)

[24] Youn J-U, Choo Y-W and Kim D-S 2008 Measurement of Small-Strain Shear Modulus G_{max} of Dry and Saturated Sands by Bender Element, Resonant Column, and Torsional Shear Tests *Can Geotech J.* **45** 1426–38 (doi:10.1139/T08-069)

[25] Clough G W, Sitar N and Bachus R C 1981 Cemented Sands under Static Loading *J. Geotech Eng Div* **107** 799–817

[26] Acar Y B and El-Tahir E-T A 1986 Low Strain Dynamic Properties of Artificially Cemented Sand *J. Geotech Eng* **112** 1001–15