Striatal and hypothalamic control of food intake and glucose metabolism

Koekkoek, L. L.

Publication date
2022

Citation for published version (APA):
Koekkoek, L. L. (2022). Striatal and hypothalamic control of food intake and glucose metabolism.
Chapter 2

Glucose-sensing in the reward system

Laura L. Koekkoek, Joram D. Mul, Susanne E. la Fleur

Frontiers in neuroscience, 2017, 11: 716.
Abstract

Glucose-sensing neurons are neurons that alter their activity in response to changes in extracellular glucose. These neurons, which are an important mechanism the brain uses to monitor changes in glycaemia, are present in the hypothalamus, where they have been thoroughly investigated. Recently, glucose-sensing neurons have also been identified in brain nuclei which are part of the reward system. However, little is known about the molecular mechanisms by which they function, and their role in the reward system. We therefore aim to provide an overview of molecular mechanisms that have been studied in the hypothalamic glucose-sensing neurons, and investigate which of these transporters, enzymes and channels are present in the reward system. Furthermore, we speculate about the role of glucose-sensing neurons in the reward system.
Introduction

Glucose is essential for the brain to function properly. It accounts for ~20-60% of total glucose consumption, depending on various factors such as physical activity, disease and energy status of the organism [1]. To ensure glucose availability, brain glucose levels are maintained around 2-2.5mM [2]. The brain continuously monitors circulating glucose levels and adequately responds to changes in glycaemia to keep glucose levels within this tight range. A critical brain mechanism that monitors glycaemia involves a specialized subset of neurons, which alter their activity in response to changes in extracellular glucose levels. These neurons, referred to as glucose-sensing neurons, were initially discovered in the ventromedial nucleus of the hypothalamus (VMH) [3]. The role of VMH glucose-sensing neurons, as well as glucose-sensing neurons in other hypothalamic nuclei, in the regulation of glycemia has been extensively studied (for excellent review see [4]). However, glucose-sensing neurons have recently been identified in brain areas outside the hypothalamus, including in several brain nuclei that are part of reward system. The exact role of these extra-hypothalamic glucose-sensing neurons remains to be fully elucidated. Here, we review the current literature on the identification of glucose-sensing neurons in the reward system and the potential cellular mechanisms involved.

The reward system and glucose sensing

The reward system consists of multiple nuclei that play an important role in appropriate goal-directed behaviors by integrating aspects of reward, cognition, procedural learning, and motor control [5]. A key axis of this circuit are the dopaminergic projections from the ventral tegmental area (VTA) and substantia nigra to the striatum. The ventral striatum, or nucleus accumbens (NAC), contains two primary subregions, the core and the shell. These subregions differ in their afferent and efferent connections and have partially overlapping, as well as distinct, roles in the reward-related behavior [6-8]. Interconnected functional circuits with other nuclei, including the medial prefrontal cortex, hippocampus, amygdala, thalamus, lateral habenula (LHb), and lateral hypothalamus (LH) process motivational, associative, emotional, and affective information, thereby influencing the reward response [5, 9, 10].

A vast amount of evidence supports a key role of dopamine in the reward-related behavior. Both natural and non-natural rewarding stimuli can modulate behavior through dynamic changes in dopamine signaling within the NAC [11, 12]. However, other neurotransmitters, such as opioids and endocannabinoids, have also been implicated in reward-related behavior. Both opioid receptors and endocannabinoid receptors are expressed in the NAC and amygdala [13, 14]. These different neurotransmitter systems modulate different processes in the reward system. In the response to food reward for example, a distinction can be made between ‘wanting’ and ‘liking’ of palatable food [15]. Dopamine receptor 1 and 2 antagonists are capable of altering motivation to work for food, without altering the taste reactivity (a
measure of liking) to food [16, 17]. In contrast, endocannabinoid and opioid signaling appear to play a role in the liking of food [18]. While the reward system is involved in responding to a wide variety of rewarding stimuli, this rewarding value of palatable food is of particular interest when studying glucose-sensing neurons in the reward system, as glucose is an important component of palatable food items. Food intake and the regulation of body weight is largely controlled by the hypothalamus. It integrates a variety of neuronal, hormonal, and nutrient-related signals to regulate these processes, thus serving as a homeostatic driver in the regulation of food intake and body weight [10, 19]. The reward system on the other hand, modulates the hedonic control of feeding behavior, and can potentially override the homeostatic control of body weight [20]. The reward system has therefore received much attention as a potential target for the treatment of obesity, and glucose-sensing neurons in the reward system could be an interesting component to study in this perspective.

Glucose-sensing neurons in the reward system

To date, glucose-sensing neurons have been identified in several nuclei of the reward system. These include the NAC [21], amygdala [22], LH [23], hippocampus [24], thalamus [25] and medial prefrontal cortex [26]. Although all these nuclei are part of the reward system, the NAC, amygdala and LH appear particularly important for the hedonic control of feeding behavior. We have previously hypothesized that an amygdala-VTA-NAC circuit is activated by the consumption of palatable foods containing both sugar and fat, and that this circuit is involved in the control of food intake [27]. The LH receives input from both hypothalamic areas, such as the arcuate nucleus and the paraventricular nucleus [28, 29], as well as from nuclei in the reward system, including the NAC and amygdala [6, 30]. The LH is thus perfectly situated to communicate with nuclei involved in homeostatic as well as hedonic feeding. We will therefore focus on glucose-sensing neurons in the NAC, amygdala, and the LH in this review.

Nucleus Accumbens

Glucose-sensing neurons in the NAC were initially identified using an in vitro application of glucose and subsequent measurement of changes in membrane potential. Using this procedure, two distinct types of glucose-sensing neurons were identified in the core and the shell of the NAC. In the shell, 27% of neurons that responded to changes in glucose showed increased activity upon glucose presentation, and were therefore labelled glucose-excited neurons. In contrast, 73% of the glucose-sensitive neurons in the shell of the NAC, showed decreased activity in response to glucose administration, and where thus labeled glucose-inhibited neurons. Surprisingly, an opposing pattern was found in the core of the NAC: 82% of total glucose-sensitive neurons were glucose-excited, whereas only 18% of all glucose-sensitive neurons were glucose-inhibited [21]. It has to be noted, however, that although both glucose-excited and glucose-inhibited neurons were identified in the NAC, the majority of neurons (~75%) appeared to be non-responsive to glucose. Using a functional magnetic resonance imaging approach in rats, an increased BOLD signal was observed.
upon intra-gastric infusion of glucose [31]. An increase in BOLD signal suggests an increase in neuronal activity, as BOLD contrast imaging monitors the ratio of oxyhemoglobin to deoxyhemoglobin, which is larger when oxygen-rich blood flows to brain areas that are active. Whereas glucose drinking incites a state of satiety, administration of 2-deoxyglucose, a non-metabolizable analogue of glucose, induces glucoprivation [32]. In line with the latter effect, subcutaneous injection of 2-deoxyglucose decreased BOLD signal in the NAC, suggestive of a general decrease in activity [33]. Finally, an immunohistochemical analysis in rats demonstrated increased expression of the early response gene c-Fos upon subcutaneous injection of 2-deoxyglucose, suggesting that a number of neurons in the NAC is activated in response to glucoprivation [33]. Of note, currently no clear immunohistochemical markers of neuronal inactivation are available. It thus remains possible that the majority of NAC neurons is inactivated by glucoprivation.

Amygdala

An initial study in macaque monkeys identified glucose-sensing neurons in the amygdala using single neuron activity measurement during electrophoretic application of glucose. Of the 108 tested neurons, only 13 (12%) responded to glucose, and all of these neurons were glucose-inhibited neurons [22]. However, an in vitro study in rats identified glucose-excited as well as glucose-inhibited neurons in the amygdala. In this study, out of 522 neurons measured, 32 (6%) neurons were glucose-excited, while 39 (7,5%) neurons were glucose-inhibited [34]. Similar to findings in the NAC, the amygdala showed an increased BOLD signal following intra-gastric infusion of glucose, as well as a negative BOLD signal upon subcutaneous injection of 2-deoxyglucose [31, 33].

Lateral Hypothalamus

The LH contains several neuronal populations, including two primary populations expressing the peptide melanin-concentrating hormone (MCH) or orexin, as well as smaller populations expressing GABA, glutamate, galanin or neurotensin. To date, orexin-expressing neurons and MCH-expressing neurons have been shown to have glucose-sensing properties. A study in mice revealed that LH orexin neurons are glucose-inhibited [23]. Orexin neurons in the LH are part of the reward system, as they are activated by cues associated with reward, including food and drugs of abuse [35]. Moreover, an antagonist for the orexin receptor prevented cocaine-seeking in response to contextual cues [36]. Orexin neurons are connected to the reward system through projections to the VTA, and can thereby directly influence dopamine signaling [37]. MCH-expressing neurons in the LH on the other hand, appear to be exclusively excited by glucose [38]. Moreover, in vivo analysis of these neurons revealed that glucose-sensing in these neurons plays an important role in the control of peripheral glucose homeostasis [39]. As the receptor for MCH is highly expressed in the NAC [40], it has been hypothesized that MCH signaling directly influences food reward via the NAC [41].
Taken together, there is a variety of data to support the presence of glucose-sensing neurons in different nuclei of the reward system. We do have to note, however, that the properties of these glucose-sensing neurons have been tested using different in vitro methods of applying glucose to the neurons, and concentrations of glucose are used that are not within a physiological range. Thus there is need for understanding glucose-sensing properties under physiological circumstances.

Neuronal glucose-sensing machinery

Glucose-sensing neurons are equipped with specialized molecular machinery, which allows them to accurately sense and respond to changes in extracellular glucose. These glucose-sensing mechanisms were studied extensively in VMH neurons. For example, channels that transport glucose into the cell, enzymes involved in the translation of glucose metabolism to energy status of the cell, and transmembrane channels sensitive to changes in energy status, have all been studied with regards to their role in neuronal glucose-sensing. However, little is known about their relationship to glucose-sensing in neurons in the reward system.

Glucose Transporters

Members of the SLC2a family of transporters, better known as the glucose transporters (GLUTs), are the primary transporters responsible for uptake of glucose in the body. To date, 14 members of the GLUT family have been identified, of which 7 are expressed in the brain. Of these 7 transporters, GLUT1 and GLUT3 are primarily responsible for glucose uptake in neurons and glial cells. GLUT1 is expressed on brain endothelial cells and thereby facilitates glucose transport across the blood brain barrier [42]. GLUT1 is also expressed on astrocytes [43]. In contrast, GLUT3 is predominantly expressed on neurons and is responsible for facilitating the majority of glucose transport into neurons [44]. While GLUT1 and GLUT3 provide glucose to the brain, this does not mean that they are necessarily implicated with glucose-sensing. Indeed, all neurons require glucose as an energy substrate, but only a limited number of neurons alters their activity in response to changes in glucose.

Regarding the pharmacological properties of different members of the GLUT family, GLUT2 appears to be a more suitable candidate for brain glucose-sensing. Due to its low affinity for glucose, GLUT2 transports glucose at a rate proportional to the extracellular glucose, providing direct information about the availability of extracellular glucose[45]. GLUT2 is essential for glucose-sensing in pancreatic β-cells, and a large body of evidence supports the idea that it functions similarly within the hypothalamus. Furthermore, GLUT2 is expressed in parts of the brain stem, in the paraventricular nucleus of the hypothalamus (PVN), the LH and the arcuate nucleus of the hypothalamus (ARC), but, surprisingly, not the VMH [46]. Specific blocking of GLUT2 mRNA by antisense oligonucleotides either specifically in the ARC, or following non-specific intracerebroventricular infusion, produced a blunted increase in insulin upon a glucose bolus and diminished the increase in food intake after
2-DG administration, respectively [47, 48]. These observations indicate that impaired hypothalamic GLUT2 function impairs the responses to changes in glycaemia, thus pointing towards a role for hypothalamic GLUT2 in glucose-sensing. Additional studies using several transgenic mouse models support the role of GLUT2 in the control of glycemia and food intake [49, 50]. Although neuronal GLUT2 appears to play a role in glycemia control, several studies indicate that astrocytic GLUT2 may be more important in glucose-sensing than neuronal GLUT2 [51, 52]. In the NAC of rats, GLUT2 protein is expressed in structures lining the ventricle, as shown by immunohistochemical staining [53]. However, a recent study found similar expression of GLUT2 surrounding the ventricle using a transgenic mouse model in which GLUT2 was linked to a fluorescent protein, but the authors showed that these fibers originated in the paraventricular thalamus [25]. Future investigations will unravel whether GLUT2 is really expressed in the NAC. In rats, expression of GLUT2 protein has been reported in the amygdala [46, 53]. Lastly, both mRNA [46, 54] and GLUT2 protein have been found in the LH [46, 53].

GLUT4 has also been implicated with glucose-sensing. GLUT4 is responsible for insulin-mediated glucose uptake in skeletal muscle, heart and adipose tissue, but is expressed in the brain as well. Brain GLUT4 might not function similar to peripherally expressed GLUT4, as neuronal glucose uptake is primarily mediated by GLUT3, which is more abundantly expressed than GLUT4. A role for GLUT4 in glucose-sensing is possible however, and this notion is supported by the observation that GLUT4 is expressed in 57% of glucose-excited neurons and 63% of glucose-inhibited neurons in the VMH [55]. Moreover, brain-selective knockout of GLUT4 in mice negatively affected glucose-sensing, evident from the impaired counterregulatory responses to hypoglycemia [56]. Although GLUT4 mRNA has been found in the NAC, several studies indicated the absence of GLUT4 protein in this brain region [57, 58]. Weak to moderate GLUT4 staining has been reported in the amygdala, in particular in the basolateral amygdala [57, 58], while more pronounced expression of GLUT4 was observed in the LH [57-59]. Thus, it seems unlikely that GLUT4 is involved in glucose-sensing in the NAC, but it cannot be excluded from investigations in the amygdala or the LH.

Lastly, several additional GLUTs have been identified in the brain but limited studies have investigated their function. GLUT6, formerly named GLUT9, is expressed in the brain and, like GLUT2, appears to have low affinity for glucose [60]. To date, no studies have been published showing expression patterns of GLUT6 in the brain, nor any investigations studying its function in the brain. GLUT8 is heavily expressed around the median eminence in the hypothalamus, but is also found in other areas, including the basomedial amygdala [61]. Interestingly, whole-body GLUT8 knockout mice show increased locomotor activity, as well as increased emotional reactivity to a new environment [62]. It is thus tempting to speculate that GLUT8, likely in the amygdala, is involved in this altered emotional reactivity, although this cannot be firmly concluded from a whole-body GLUT8 knockout mouse model. It is also important to note that GLUT8 is not expressed on the cell surface, but is present on intracellular vesicles. Whether GLUT8 is capable of functioning as a
glucose sensor thus remains questionable. The final glucose-sensing candidate in the SLC2a family is GLUT10. GLUT10 is expressed in the several organs, including the brain [63]. Intraperitoneal injection of fluoxetine (a serotonin reuptake inhibitor) or pergolide (a dopamine receptor agonist), increases GLUT10 expression in the brain [64]. Unfortunately, this study analyzed gene expression in whole-brain samples, making it difficult to interpret these results. However, because the NAC contains high levels of dopamine receptors and receives input from serotonergic neurons, it would be particularly interesting to investigate if GLUT10 expression is specifically increased in the NAC after administration of either compound [65]. In summary, a number of GLUTs are expressed in the brain, of which several have been implicated with glucose-sensing. Additional research will be necessary to unravel the specific role of the different members of the GLUT family in glucose-sensing in the reward system.

Sodium Glucose Cotransporters

In addition to facilitative transport by the GLUTs, sodium glucose cotransporters (SGLTs) also provide a mechanism for glucose entry into a cell. SGLTs transport glucose into the cell along a sodium gradient. To date, six SGLTs (SGLT1-6) have been identified. All of these, except for SGLT5, are expressed in the brain. However, the distribution of the brain-expressed SGLTs differs strongly and, unfortunately, not all brain SGLTs have been studied extensively. SGLT1 is the most studied of all SGLTs, and its expression in the brain has been confirmed in several studies [66-68]. Approximately 80% of SGLT-mediated glucose uptake in the midbrain is facilitated by SGLT1 [68]. In rat hypothalamic neurons, 45% of the tested glucose-excited neurons were activated by a SGLT1-specific ligand, and conversely, the activation by glucose was suppressed by an SGLT inhibitor [66]. Furthermore, reducing SGLT1 mRNA in the VMH, using short hairpin RNAs, improved the counterregulatory response to hypoglycemia, through enhanced glucose production in the liver. These findings clearly indicate that SGLT1 in the VMH is involved in glucose-sensing and the regulation of glucose homeostasis [69]. Immunohistochemical analysis of SGLT1 protein showed expression in several brain regions, including the amygdala, but not in the NAC or LH. However, this study did not find SGLT1 expression in the VMH, which clearly contradicts with other studies [69, 70]. Thus, more studies will be necessary to clarify where SGLT1 is expressed in the brain.

In addition to SGLT1, SGLT3 is also expressed in rat hypothalamic neurons in culture [66]. Human DNA contains 1 gene coding for SGLT3 (SLC5a4), whereas mice and rats possess 2 genes coding for two SGLT3 proteins: SGLT3a and SGLT3b, and both these protein variants are expressed in hypothalamic neurons [71]. Functional profiling of both SGLT3 subtypes revealed that SGLT3a, like human SGLT3, does not transport glucose across the cell membrane. However, unlike human SGLT3, binding of glucose to SGLT3a under physiological pH conditions did not lead to depolarization of neurons [72, 73]. Thus, whereas human SGLT3 has been proposed to serve as a glucose sensor, rodent SGLT3a might not be
suitable. In contrast, SGLT3b does transport glucose across the membrane and has a similar low affinity for glucose as human SGLT3, which is favorable for a glucose sensor [74]. Human SGLT3 has been identified in the brain [75], but no studies have detailed where in the brain it is expressed. Thus, whether SGLT3(b) is involved in glucose-sensing in the reward system remains to be investigated in detail.

To date, no studies have reported on the remaining SGLTs regarding their function or expression in the brain. SGLT2 has been investigated intensively as a therapeutic target for diabetic complications, as it plays an important role in the reabsorption of glucose in the kidney. In humans, SGLT2 RNA is only expressed in the cerebellum [75]. In rats, SGLT2 mRNA has been found in the hippocampus, although this is only supported by unpublished data [68]. Very low levels of SGLT4 mRNA have been detected in human brain tissue, raising the question whether SGLT4 plays a significant role in the brain [76]. SGLT6, on the other hand, is expressed throughout the human brain. Strongest SGLT6 mRNA expression was found in the substantia nigra, although the amygdala and the NAC also showed moderate mRNA expression. Unfortunately, in this study the hypothalamus was only subdivided into the anterior and posterior part, with both areas showing equal and moderate mRNA expression [77]. Furthermore, these data do not indicate whether the LH contains SGLT6 mRNA. In mice, whole-brain SGLT6 was tested, and equal levels of mRNA were found for SGLT6 compared to SGLT1 [78]. In summary, the exact role of SGLT2, SGLT4 and SGLT6 in the brain remains to be fully determined.

Finally, we would like to highlight the sweet taste receptor, which like GLUTs and SGLTs binds glucose extracellularly, as a potential mediator of glucose-sensing. The sweet taste receptor, composed of the two subunits taste type 1 receptor 2 (T1R2) and taste type 1 receptor 3 (T1R3), is expressed in several organs including the tongue, pancreas and brain [79]. A recent study has shown that the sweet taste receptor modulates glucose-sensing in glucose-excited neurons in the ARC [80]. To date, expression of this receptor has been demonstrated in the hypothalamus, hippocampus and cortex of mice [79], but we cannot rule out that future studies will reveal expression, and possible involvement, in glucose-sensing in the reward system.

Although both GLUTs and SGLTs transport glucose into a cell and are important for sensing, how they cooperate in vivo has not been studied in detail to date. It has been suggested, however, that due to the varying affinities, different transporters are important at different levels of glucose. For example, due to its high affinity for glucose, SGLT1 could serve as a glucose sensor during mild to moderate hypoglycemia [69]. Moreover, SGLTs are electrogenic because of the small inward sodium current they produce when transporting glucose into the cell. Thus, SGLTs can mediate changes in activity, without the need for metabolizing glucose, thereby providing an additional mechanism by which glucose is sensed [81]. Future research will unravel how these two systems integrate glucose-related information under physiological circumstances.
Energy Status Sensors

In addition to transporters responsible for the entry of glucose into cells, enzymes involved in glucose metabolism and energy status dynamics of the cell, have been studied for their role in neuronal glucose-sensing as well. In pancreatic β-cells, the enzyme glucokinase is responsible for metabolizing glucose. Glucokinase has an advantage over other hexokinases, because it is not inhibited by glucose-6-phosphate, the end product of the reaction it catalyzes. This indicates that the reaction rate of glucokinase depends solely on the availability of glucose, and is thus proportional to the available amount of glucose. Many studies have investigated the role of glucokinase in glucose-sensing neurons (for excellent review see [82]). Briefly, in vitro studies have demonstrated that glucokinase is involved in the majority of glucose-excited and glucose-inhibited neurons in the VMH. In vivo studies have revealed that activation of glucokinase in the VMH blunts the counterregulatory response to hypoglycemia [83]. In contrast, inhibition of glucokinase improves the counterregulatory response to hypoglycemia, both by augmenting glucagon release, as well as by promoting feeding [84]. Both in situ analyses and transgenic mice models, using a GFP protein expressed under the glucokinase promotor, have demonstrated that glucokinase is highly expressed in the amygdala and moderately expressed in the LH [85, 86]. No reports of glucokinase expression in the NAC have been published. However, glucokinase is only one of the enzymes involved in glucose metabolism that has been implicated with glucose-sensing. AMP-activated protein kinase (AMPK) which becomes activated when the AMP/ATP ratio in the cell increases, thus monitoring the energy status of the cell, has also been linked to glucose-sensing. Glucose-excited neurons isolated from the VMH require AMPK for appropriate glucose-sensing [87]. Furthermore, hypothalamic glucose-excited neurons in vitro become less responsive when AMPK is inhibited [88]. In vivo experiments showed that, opposite to the effects on glucokinase, activation of AMPK enhances the counterregulatory response to hypoglycemia, and conversely, inhibition of AMPK blunts this response [89, 90]. However, AMPK is widely expressed in many neuron populations, suggesting that it is not optimally suited as a marker of glucose-sensing. Nevertheless, evidence linking AMPK to glucose-sensing in the hypothalamus should not be ignored, and additional studies should include AMPK as a possible regulator of glucose-sensing in the reward system.

Neuronal channels and transporters

Another category of proteins that has been explored in relation to glucose-sensing are channels that are involved in changes in neural activity upon fluctuation in available glucose. Based on glucose-sensing mechanisms in the pancreas, ATP-sensitive K+ channels have been studied intensively in the hypothalamus. ATP-sensitive K+ channels close when intracellular ATP levels rise, resulting in depolarization of the cell. The ATP-sensitive K+ channel consists of two subunits, the K+ inward rectifying channel (Kir6.1 or 6.2) and the sulfonylurea receptor (SUR1 or SUR2), which form a functional heterodimer. Expression of these components varies between different tissues. In pancreatic β-cells, predominantly Kir6.2 and SUR1 form the channel, whereas Kir6.1 and Kir6.2 and SUR1 and SUR2 are
all expressed in the brain [54, 91-93]. Kir6.2 is predominantly expressed in neurons, whereas Kir6.1 is found only in a small population of neurons, and is primarily present on astrocytes[93, 94]. Specifically Kir6.2 has shown to be important for glucose-sensing in the VMH, as VMH neurons from mice lacking Kir6.2 no longer respond to increases in glucose [95]. Both Kir6.2 and Kir6.1 are expressed in the NAC, whereas SUR1 appears not to be expressed [93, 96]. No studies have currently reported on SUR2 expression in the NAC. The amygdala contains Kir6.2 and SUR1, and only very low levels of Kir6.1. In the LH, Kir6.2 has been shown to be essential for glucose-sensing in MCH-expressing neurons [39]. Kir6.2 is indeed expressed in the LH, but Kir6.1 shows greatest expression in this area [93]. SUR1 is expressed in the hypothalamus at low levels, although detailed expression levels in the LH have not been specifically studied [96].

Because Kir channels are sensitive to rises in ATP, they could play a role in glucose-excited neurons. However, different mechanisms would have to be present in glucose-inhibited neurons. One possible mechanism through which glucose-inhibited neurons function, was identified in studies investigating the orexin neurons in the LH. These neurons form an interesting population of glucose-inhibited neurons that are sensitive to extracellular fluctuations of glucose but do not depend on intracellular metabolism of glucose [97]. In orexin neurons, the inhibition by glucose appears to be mediated by tandem pore K+ channels, in particular by the Twik1-related acid-sensitive K+ channel (TASK3), although TASK1 could not be completely ruled out as a contributor [98]. In the NAC, only TASK3 mRNA has been observed, whereas the amygdala contains both TASK3 and TASK1 mRNA [99]. Surprisingly, TASK3, TASK1 or TASK1/3 double knockout mice show unaffected glucose-sensing in orexin neurons [38, 100]. Although compensation mechanisms could affect the observations in these knockout models, it remains questionable whether TASK1 or TASK3 are important for glucose-sensing.

In a recent elegant study, Chrétien and colleagues found that transient receptor potential canonical type 3 (TRPC3) channels are implicated with hypothalamic glucose-sensing. For example, unlike wild-type mice, TRPC3 knockout mice did not demonstrate inhibition of food intake in response to ICV injection of glucose. Insulin secretion in response to ICV injection of glucose was also blunted in these knockout mice. Lastly, although the number of glucose-excited neurons in the mediobasal hypothalamus did not differ between TRPC3 knockout and wild-type mice, neurons from mice lacking TRPC3 were significantly less responsive [101]. TRPC3 is expressed in striatal cholinergic interneurons, which are involved in complex processing of signaling in the striatum [102]. TRPC3 protein is also found in the amygdala in neonatal rats [103], while in adult rats TRPC3 mRNA has been reported to be present in the amygdala [104]. In conclusion, glucose-sensing neurons express a wide variety of proteins that can be part of the glucose-sensing machinery. This also highlights the possibility that extra-hypothalamic glucose-sensing neurons operate by different molecular mechanisms compared to those observed in the hypothalamus.
Conclusions and Perspective

Glucose-sensing is mediated by several glucose transporters, intracellular enzymes involved in the metabolism of glucose, and channels involved in the subsequent changes in neuronal activity. Different types of glucose-sensing neurons may function through specific combinations of these components of the glucose-sensing machinery. Alternatively, various mechanisms of glucose-sensing could operate side-by-side in one neuron. Future research will have to unravel how glucose-sensing occurs on a cellular level in the reward system, as well as the potential role for such glucose-sensing neurons in energy homeostasis.

From a clinical perspective, a full understanding of the central glucose-sensing mechanisms can be a potentially effective therapeutic target for patients with type I or type II diabetes mellitus. For example, recurrent hypoglycemia is a major side effect of insulin therapy and can lead to blunted counterregulatory responses to hypoglycemia [105]. Notably, one study showed that recurrent hypoglycemia reduces sensitivity of VMH glucose-sensing neurons, and the authors hypothesized that this could contribute to the blunted counterregulatory responses to hypoglycemia [106]. While the hypothalamus has received the most attention for its role in glycaemia control, there is now evidence that indicates that the NAC also plays a role in glycemia control. Indeed, deep brain stimulation of the NAC shell increases glycemia, and this appears to be mediated through interactions with the LH [107]. If the NAC influences glycemia under physiological circumstances, and whether NAC glucose-sensing neurons are involved in this process, remains to be investigated.

Changes in glycemia have profound effects on feeding behavior. For example, infusion of 2-DG into the lateral ventricles, which induces central glucoprivation, promoted feeding in satiated rats [108]. In addition, central infusion of glucose decreases feeding in mice [109]. As such, glucose-sensing can directly convey important information about the energy status of the organism and influence behavior accordingly. Other signals that reflect energy status, are known to influence several neurotransmitter signaling pathways in the reward system. Ghrelin, a gastric hormone that stimulates feeding, can influence both dopamine and opioid signaling [110, 111]. Leptin, a hormone which functions as a satiety signal, can affect dopamine and endocannabinoid transmission [112, 113]. Thus, it is tempting to speculate that glucose-sensing conveys information about the energy-status as well, thereby influencing neurotransmitter activity in the reward system and subsequent behavior.

Diet-induced obesity induces profound adaptations in the brain, resulting in aberrant translation of the organism’s energy status to appropriate metabolic behavior. Interestingly, glucose-sensing is also affected by obesity. For example, glucose-sensing in POMC neurons in mice fed a high fat diet for 20 weeks was impaired [114]. Similarly, glucose-excited neurons from obese Zucker rats show abnormal changes in membrane potential in response to changes in extracellular glucose [115]. This study also found that glucose-excited neurons from obese Zucker rats lack a Katp channel, necessary for glucose-sensing. Moreover, 8 weeks of a high-
lard diet impaired hypothalamic glucose-sensing in rats, and lowered GLUT2 expression in the hypothalamus [116]. To date, no reports exist on whether glucose-sensing in the reward system is altered in obese animals. However, function of the reward system itself is also affected by obesity. In humans, lower striatal dopamine 2/3 receptor binding has been found in obese subjects compared to lean individuals [117, 118]. A similar observation was made for rats on a high-energy diet [119]. In rats that received a cafeteria style diet for 15 weeks, extracellular dopamine in the NAC was lower compared to controls [120]. The opioid system is also affected during obesity. Human obese individuals showed lower mu-opioid receptor binding in striatum compared to lean controls [121]. Likewise, mice fed a high-fat diet for 15 weeks, showed decreased mu-opioid receptor expression in the NAC [122]. Similar to the response by the opioid system, a down-regulation of CB1 in the hippocampus, cortex and NAC was seen in rats fed a high-fat diet [123]. Moreover, prepro-orexin mRNA was lower in obese rats compared to wild type [124], and narcolepsy patients which have orexin-deficiency, had a higher BMI than clinically similar patients without orexin-deficiency [125]. Likewise, overexpression of orexin induces a leaner phenotype [126]. Lastly, MCH mRNA levels are increased in obese mice, and infusion of MCH in the lateral ventricle of the brain causes obesity [127, 128]. Future research will have to investigate whether glucose-sensing in the reward system is also affected by obesity, but it is tempting to speculate that observed alterations in neurotransmitter functioning in the reward system during obesity, are related to possible obesity-induced changes in glucose-sensing in the reward system.

In conclusion, brain glucose-sensing appears to be a heterogeneous process, mediated by several potential candidates, including receptors, channels and sensors. While a vast amount of studies has investigated glucose-sensing in the hypothalamus, very little is known about the role of glucose-sensing neurons in the reward system. Applying our understanding of the different cellular mediators of glucose-sensing obtained in the hypothalamus to the glucose-sensing neurons in the reward system will aid in the characterization of glucose-sensing mechanisms in neurons of the reward system. This insight may identify new targets for the development of therapeutic treatments for recurrent hypoglycemia and metabolic disorders associated with impaired brain glucose-sensing.
References

1. Erbsloh, F., A. Bernsmeier, and H. Hillesheim, [The glucose consumption of the brain & its dependence on the liver]. Arch Psychiatr Nervenkr Z Gesamte Neurol Psychiatr, 1958. 196(6): p. 611-26.
2. Silver, I.A. and M. Erecinska, Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals. J Neurosci, 1994. 14(8): p. 5068-76.
3. Oomura, Y., et al., Glucose and osmosensitive neurones of the rat hypothalamus. Nature, 1969. 222(5190): p. 282-4.
4. Steinbusch, L., G. Labouebe, and B. Thorens, Brain glucose sensing in homeostatic and hedonic regulation. Trends Endocrinol Metab, 2015. 26(9): p. 455-66.
5. Haber, S.N., The Place of Dopamine in the Cortico-Basal Ganglia Circuit. Neuroscience, 2014. 282: p. 248-257.
6. Heimer, L., et al., Specificity in the projection patterns of accumbal core and shell in the rat. Neuroscience, 1991. 41(1): p. 89-125.
7. Zahm, D.S. and L. Heimer, Specificity in the efferent projections of the nucleus accumbens in the rat: comparison of the rostral pole projection patterns with those of the core and shell. J Comp Neurol, 1993. 327(2): p. 220-32.
8. Carelli, R.M., Nucleus accumbens cell firing and rapid dopamine signaling during goal-directed behaviors in rats. Neuropharmacology, 2004. 47 Suppl 1: p. 180-9.
9. Kreitzer, A.C. and R.C. Malenka, Striatal plasticity and basal ganglia circuit function. Neuron, 2008. 60(4): p. 543-54.
10. Stuber, G.D. and R.A. Wise, Lateral hypothalamic circuits for feeding and reward. Nat Neurosci, 2016. 19(2): p. 198-205.
11. Johnson, S.W. and R.A. North, Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci, 1992. 12(2): p. 483-8.
12. Baik, J.H., Dopamine signaling in reward-related behaviors. Front Neural Circuits, 2013. 7: p. 152.
13. Mansour, A., et al., Autoradiographic differentiation of mu, delta, and kappa opioid receptors in the rat forebrain and midbrain. J Neurosci, 1987. 7(8): p. 2445-64.
14. Herkenham, M., et al., Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci, 1991. 11(2): p. 563-83.
15. Robinson, T.E. and K.C. Berridge, Addiction. Annu Rev Psychol, 2003. 54: p. 25-53.
16. Aberman, J.E., S.J. Ward, and J.D. Salamone, Effects of dopamine antagonists and accumbens dopamine depletions on time-constrained progressive-ratio performance. Pharmacol Biochem Behav, 1998. 61(4): p. 341-8.
17. Treit, D. and K.C. Berridge, A comparison of benzodiazepine, serotonin, and dopamine agents in the taste-reactivity paradigm. Pharmacol Biochem Behav, 1990. 37(3): p. 451-6.
18. Higgs, S., C.M. Williams, and T.C. Kirkham, Cannabinoid influences on palatability:
microstructural analysis of sucrose drinking after delta(9)-tetrahydrocannabinol, anandamide, 2-arachidonoyl glycerol and SR141716. Psychopharmacology (Berl), 2003. 165(4): p. 370-7.

19. Schwartz, M.W., et al., Central nervous system control of food intake. Nature, 2000. 404(6778): p. 661-71.

20. Lowe, M.R. and M.L. Butryn, Hedonic hunger: a new dimension of appetite? Physiol Behav, 2007. 91(4): p. 432-9.

21. Papp, S., et al., Glucose-monitoring neurons in the nucleus accumbens. Neuroreport, 2007. 18(15): p. 1561-5.

22. Nakano, Y., et al., Feeding-related activity of glucose- and morphine-sensitive neurons in the monkey amygdala. Brain Res, 1986. 399(1): p. 167-72.

23. Yamanaka, A., et al., Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron, 2003. 38(5): p. 701-13.

24. Izumi, Y., et al., Effects of lactate and pyruvate on glucose deprivation in rat hippocampal slices. Neuroreport, 1994. 5(5): p. 617-20.

25. Labouebe, G., et al., Glucose-responsive neurons of the paraventricular thalamus control sucrose-seeking behavior. Nat Neurosci, 2016. 19(8): p. 999-1002.

26. Mobbs, C.V., L.M. Kow, and X.J. Yang, Brain glucose-sensing mechanisms: ubiquitous silencing by aglycemia vs. hypothalamic neuroendocrine responses. Am J Physiol Endocrinol Metab, 2001. 281(4): p. E649-54.

27. Mul, J.D. and S.E. la Fleur, Nutritional and behavioral regulators of choice behavior. Current opinion in behavioral science, 2016. 9: p. 61-65.

28. Broberger, C., et al., Hypocretin/orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. J Comp Neurol, 1998. 402(4): p. 460-74.

29. Wu, Z., et al., GABAergic projections from lateral hypothalamus to paraventricular hypothalamic nucleus promote feeding. J Neurosci, 2015. 35(8): p. 3312-8.

30. Reppucci, C.J. and G.D. Petrovich, Organization of connections between the amygdala, medial prefrontal cortex, and lateral hypothalamus: a single and double retrograde tracing study in rats. Brain Struct Funct, 2016. 221(6): p. 2937-62.

31. Tsurugizawa, T., T. Kondoh, and K. Torii, Forebrain activation induced by postoral nutritive substances in rats. Neuroreport, 2008. 19(11): p. 1111-5.

32. Smith, G.P. and A.N. Epstein, Increased feeding in response to decreased glucose utilization in the rat and monkey. Am J Physiol, 1969. 217(4): p. 1083-7.

33. Dodd, G.T., S.R. Williams, and S.M. Luckman, Functional magnetic resonance imaging and c-Fos mapping in rats following a glucoprivic dose of 2-deoxy-D-glucose. J Neurochem, 2010. 113(5): p. 1123-32.

34. Zhou, L., et al., The medial amygdalar nucleus: a novel glucose-sensing region that modulates the counterregulatory response to hypoglycemia. Diabetes, 2010. 59(10): p. 2646-52.

35. Harris, G.C., M. Wimmer, and G. Aston-Jones, A role for lateral hypothalamic
orexin neurons in reward seeking. Nature, 2005. 437(7058): p. 556-9.
36. Aston-Jones, G., et al., Lateral hypothalamic orexin/hypocretin neurons: A role in reward-seeking and addiction. Brain Res, 2010. 1314: p. 74-90.
37. Aston-Jones, G., et al., Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology, 2009. 56 Suppl 1: p. 112-21.
38. Burdakov, D., O. Gerasimenko, and A. Verkhratsky, Physiological changes in glucose differentially modulate the excitability of hypothalamic melanin-concentrating hormone and orexin neurons in situ. J Neurosci, 2005. 25(9): p. 2429-33.
39. Kong, D., et al., Glucose stimulation of hypothalamic MCH neurons involves K(ATP) channels, is modulated by UCP2, and regulates peripheral glucose homeostasis. Cell Metab, 2010. 12(5): p. 545-52.
40. Saito, Y., et al., Molecular characterization of the melanin-concentrating-hormone receptor. Nature, 1999. 400(6741): p. 265-9.
41. DiLeone, R.J., D. Georgescu, and E.J. Nestler, Lateral hypothalamic neuropeptides in reward and drug addiction. Life Sci, 2003. 73(6): p. 759-68.
42. Dick, A.P., et al., Identification and characterization of the glucose transporter of the blood-brain barrier by cytochalasin B binding and immunological reactivity. Proc Natl Acad Sci U S A, 1984. 81(22): p. 7233-7.
43. Morgello, S., et al., The human blood-brain barrier glucose transporter (GLUT1) is a glucose transporter of gray matter astrocytes. Glia, 1995. 14(1): p. 43-54.
44. Leino, R.L., et al., Ultrastructural localization of GLUT 1 and GLUT 3 glucose transporters in rat brain. J Neurosci Res, 1997. 49(5): p. 617-26.
45. Orci, L., et al., Localization of the pancreatic beta cell glucose transporter to specific plasma membrane domains. Science, 1989. 245(4915): p. 295-7.
46. Leloup, C., et al., Glucose transporter 2 (GLUT 2): expression in specific brain nuclei. Brain Res, 1994. 638(1-2): p. 221-6.
47. Leloup, C., et al., Specific inhibition of GLUT2 in arcuate nucleus by antisense oligonucleotides suppresses nervous control of insulin secretion. Brain Res Mol Brain Res, 1998. 57(2): p. 275-80.
48. Wan, H.Z., M.G. Hulsey, and R.J. Martin, Intracerebroventricular administration of antisense oligodeoxynucleotide against GLUT2 glucose transporter mRNA reduces food intake, body weight change and glucoprivic feeding response in rats. J Nutr, 1998. 128(2): p. 287-91.
49. Bady, I., et al., Evidence from glut2-null mice that glucose is a critical physiological regulator of feeding. Diabetes, 2006. 55(4): p. 988-95.
50. Stolarczyk, E., et al., Detection of extracellular glucose by GLUT2 contributes to hypothalamic control of food intake. Am J Physiol Endocrinol Metab, 2010. 298(5): p. E1078-87.
51. Guillod-Maximin, E., et al., Acute intracarotid glucose injection towards the brain induces specific c-fos activation in hypothalamic nuclei: involvement of astrocytes in cerebral glucose-sensing in rats. J Neuroendocrinol, 2004. 16(5): p. 464-71.
52. Marty, N., et al., Regulation of glucagon secretion by glucose transporter type 2
Glucose sensing in the reward system

(glut2) and astrocyte-dependent glucose sensors. J Clin Invest, 2005. 115(12): p. 3545-53.

53. Arluison, M., et al., Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain--an immunohistochemical study. J Chem Neuroanat, 2004. 28(3): p. 117-36.

54. Li, B., et al., Distribution of glucokinase, glucose transporter GLUT2, sulfonlurea receptor-1, glucagon-like peptide-1 receptor and neuropeptide Y messenger RNAs in rat brain by quantitative real time RT-PCR. Brain Res Mol Brain Res, 2003. 113(1-2): p. 139-42.

55. Kang, L., et al., Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons. Diabetes, 2004. 53(3): p. 549-59.

56. Reno, C.M., et al., Brain GLUT4 Knockout Mice Have Impaired Glucose Tolerance, Decreased Insulin Sensitivity, and Impaired Hypoglycemic Counterregulation. Diabetes, 2017. 66(3): p. 587-597.

57. El Messari, S., et al., Expression of insulin-responsive glucose transporter GLUT4 mRNA in the rat brain and spinal cord: an in situ hybridization study. J Chem Neuroanat, 2002. 24(4): p. 225-42.

58. El Messari, S., et al., Immunocytochemical localization of the insulin-responsive glucose transporter 4 (Glut4) in the rat central nervous system. J Comp Neurol, 1998. 399(4): p. 492-512.

59. Leloup, C., et al., Discrete brain areas express the insulin-responsive glucose transporter GLUT4. Brain Res Mol Brain Res, 1996. 38(1): p. 45-53.

60. Doege, H., et al., Activity and genomic organization of human glucose transporter 9 (GLUT9), a novel member of the family of sugar-transport facilitators predominantly expressed in brain and leucocytes. Biochem J, 2000. 350 Pt 3: p. 771-6.

61. Ibberson, M., et al., Immunolocalization of GLUTX1 in the Testis and to Specific Brain Areas and Vasopressin- Containing Neurons. Endocrinology, 2002. 143(1): p. 276-284.

62. Schmidt, S., et al., Deletion of glucose transporter GLUT8 in mice increases locomotor activity. Behav Genet, 2008. 38(4): p. 396-406.

63. McVie-Wylie, A.J., D.R. Lamson, and Y.T. Chen, Molecular cloning of a novel member of the GLUT family of transporters, SLC2a10 (GLUT10), localized on chromosome 20q13.1: a candidate gene for NIDDM susceptibility. Genomics, 2001. 72(1): p. 113-7.

64. Nagai, K., T. Inoue, and H. Konishi, Increased gene expression of glucose transporters in the mouse brain after treatment with fluoxetine and pergolide. Drug Res (Stuttg), 2014. 64(7): p. 389-91.

65. Boyson, S.J., P. McGonigle, and P.B. Molinoff, Quantitative autoradiographic localization of the D1 and D2 subtypes of dopamine receptors in rat brain. J Neurosci, 1986. 6(11): p. 3177-88.

66. O’Malley, D., et al., Sodium-coupled glucose cotransporters contribute to hypothalamic glucose sensing. Diabetes, 2006. 55(12): p. 3381-6.

67. Poppe, R., et al., Expression of the Na+-D-glucose cotransporter SGLT1 in neurons. J Neurochem, 1997. 69(1): p. 84-94.

68. Yu, A.S., et al., Functional expression of SGLTs in rat brain. Am J Physiol Cell Physiol, 2010. 299(6): p. C1277-84.
69. Fan, X., et al., Reduction in SGLT1 mRNA Expression in the Ventromedial Hypothalamus Improves the Counterregulatory Responses to Hypoglycemia in Recurrently Hypoglycemic and Diabetic Rats. Diabetes, 2015. 64(10): p. 3564-72.
70. Yu, A.S., et al., Regional distribution of SGLT activity in rat brain in vivo. Am J Physiol Cell Physiol, 2013. 304(3): p. C240-7.
71. Fletcher, M.T., et al., Chromosome evolution: the junction of mammalian chromosomes in the formation of mouse chromosome 10. Genome Res, 2000. 10(10): p. 1463-7.
72. Barcelona, S., D. Menegaz, and A. Diez-Sampedro, Mouse SGLT3a generates proton-activated currents but does not transport sugar. Am J Physiol Cell Physiol, 2012. 302(8): p. C1073-82.
73. Diez-Sampedro, A., et al., A glucose sensor hiding in a family of transporters. Proc Natl Acad Sci U S A, 2003. 100(20): p. 11753-8.
74. Aljure, O. and A. Diez-Sampedro, Functional characterization of mouse sodium/glucose transporter type 3b. Am J Physiol Cell Physiol, 2010. 299(1): p. C58-65.
75. Wright, E.M., D.D. Loo, and B.A. Hirayama, Biology of human sodium glucose transporters. Physiol Rev, 2011. 91(2): p. 733-94.
76. Tazawa, S., et al., SLC5A9/SGLT4, a new Na+-dependent glucose transporter, is an essential transporter for mannose, 1,5-anhydro-D-glucitol, and fructose. Life Sci, 2005. 76(9): p. 1039-50.
77. Chen, J., et al., Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members. Diabetes Ther, 2010. 1(2): p. 57-92.
78. Shah, K., S. Desilva, and T. Abbruscato, The role of glucose transporters in brain disease: diabetes and Alzheimer’s Disease. Int J Mol Sci, 2012. 13(10): p. 12629-55.
79. Ren, X., et al., Sweet taste signaling functions as a hypothalamic glucose sensor. Front Integr Neurosci, 2009. 3: p. 12.
80. Kohno, D., et al., Sweet Taste Receptor Serves to Activate Glucose- and Leptin-Responsive Neurons in the Hypothalamic Arcuate Nucleus and Participates in Glucose Responsiveness. Front Neurosci, 2016. 10: p. 502.
81. Gribble, F.M., et al., A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line. Diabetes, 2003. 52(5): p. 1147-54.
82. Oggunnowo-Bada, E.O., et al., Brain glucose sensing, glucokinase and neural control of metabolism and islet function. Diabetes Obes Metab, 2014. 16 Suppl 1: p. 26-32.
83. Dunn-Meynell, A.A., et al., Glucokinase is the likely mediator of glucosensing in both glucose-excited and glucose-inhibited central neurons. Diabetes, 2002. 51(7): p. 2056-65.
84. Levin, B.E., et al., Ventromedial hypothalamic glucokinase is an important mediator of the counterregulatory response to insulin-induced hypoglycemia. Diabetes, 2008. 57(5): p. 1371-9.
85. Lynch, R.M., et al., Localization of glucokinase gene expression in the rat brain. Diabetes, 2000. 49(5): p. 693-700.
86. Stanley, S., et al., Profiling of Glucose-Sensing Neurons Reveals that GHRH
Neurons Are Activated by Hypoglycemia. Cell Metab, 2013. 18(4): p. 596-607.
87. Murphy, B.A., et al., AMP-activated protein kinase and nitric oxide regulate the glucose sensitivity of ventromedial hypothalamic glucose-inhibited neurons. Am J Physiol Cell Physiol, 2009. 297(3): p. C750-8.
88. Beall, C., et al., Mouse hypothalamic GT1-7 cells demonstrate AMPK-dependent intrinsic glucose-sensing behaviour. Diabetologia, 2012. 55(9): p. 2432-44.
89. McCrimmon, R.J., et al., Activation of AMP-activated protein kinase within the ventromedial hypothalamus amplifies counterregulatory hormone responses in rats with defective counterregulation. Diabetes, 2006. 55(6): p. 1755-60.
90. McCrimmon, R.J., et al., Key role for AMP-activated protein kinase in the ventromedial hypothalamus in regulating counterregulatory hormone responses to acute hypoglycemia. Diabetes, 2008. 57(2): p. 444-50.
91. Davis-Taber, R., et al., Molecular characterization of human SUR2-containing K(ATP) channels. Gene, 2000. 256(1-2): p. 261-70.
92. Sakura, H., et al., Cloning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel subunit expressed in pancreatic beta-cells, brain, heart and skeletal muscle. FEBS Lett, 1995. 377(3): p. 338-44.
93. Thomzig, A., et al., Pore-forming subunits of K-ATP channels, Kir6.1 and Kir6.2, display prominent differences in regional and cellular distribution in the rat brain. J Comp Neurol, 2005. 484(3): p. 313-30.
94. Thomzig, A., et al., Kir6.1 is the principal pore-forming subunit of astrocyte but not neuronal plasma membrane K-ATP channels. Mol Cell Neurosci, 2001. 18(6): p. 671-90.
95. Miki, T., et al., ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat Neurosci, 2001. 4(5): p. 507-12.
96. Karschin, C., et al., Overlapping distribution of K(ATP) channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain. FEBS Lett, 1997. 401(1): p. 59-64.
97. Gonzalez, J.A., et al., Metabolism-independent sugar sensing in central orexin neurons. Diabetes, 2008. 57(10): p. 2569-76.
98. Burdakov, D., et al., Tandem-pore K+ channels mediate inhibition of orexin neurons by glucose. Neuron, 2006. 50(5): p. 711-22.
99. Talley, E.M., et al., Cns distribution of members of the two-pore-domain (KCNK) potassium channel family. J Neurosci, 2001. 21(19): p. 7491-505.
100. Guyon, A., et al., Glucose inhibition persists in hypothalamic neurons lacking tandem-pore K+ channels. J Neurosci, 2009. 29(8): p. 2528-33.
101. Chretien, C., et al., Transient Receptor Potential Canonical 3 (TRPC3) Channels Are Required for Hypothalamic Glucose Detection and Energy Homeostasis. Diabetes, 2017. 66(2): p. 314-324.
102. Xie, Y.F. and F. Zhou, TRPC3 channel mediates excitation of striatal cholinergic interneurons. Neurol Sci, 2014. 35(11): p. 1757-61.
103. Mizuno, N., et al., Molecular cloning and characterization of rat trp homologues from brain. Brain Res Mol Brain Res, 1999. 64(1): p. 41-51.
Chapter 2

104. Li, H.S., X.Z. Xu, and C. Montell, Activation of a TRPC3-dependent cation current through the neurotrophin BDNF. Neuron, 1999. 24(1): p. 261-73.
105. Diedrich, L., D. Sandoval, and S.N. Davis, Hypoglycemia associated autonomic failure. Clin Auton Res, 2002. 12(5): p. 358-65.
106. Song, Z. and V.H. Routh, Recurrent hypoglycemia reduces the glucose sensitivity of glucose-inhibited neurons in the ventromedial hypothalamus nucleus. Am J Physiol Regul Integr Comp Physiol, 2006. 291(5): p. R1283-7.
107. Diepenbroek, C., et al., Alterations in blood glucose and plasma glucagon concentrations during deep brain stimulation in the shell region of the nucleus accumbens in rats. Front Neurosci, 2013. 7: p. 226.
108. Berthoud, H.R. and G.J. Mogenson, Ingestive behavior after intracerebral and intracerebroventricular infusions of glucose and 2-deoxy-D-glucose. Am J Physiol, 1977. 233(3): p. R127-33.
109. Cha, S.H., et al., Differential effects of central fructose and glucose on hypothalamic malonyl-CoA and food intake. Proc Natl Acad Sci U S A, 2008. 105(44): p. 16871-5.
110. Abizaid, A., et al., Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest, 2006. 116(12): p. 3229-39.
111. Skibicka, K.P., et al., Ghrelin interacts with neuropeptide Y Y1 and opioid receptors to increase food reward. Endocrinology, 2012. 153(3): p. 1194-205.
112. Fulton, S., et al., Leptin regulation of the mesoaccumbens dopamine pathway. Neuron, 2006. 51(6): p. 811-22.
113. Di Marzo, V., et al., Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature, 2001. 410(6830): p. 822-5.
114. Parton, L.E., et al., Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature, 2007. 449(7159): p. 228-32.
115. Rowe, I.C., P.R. Boden, and M.L. Ashford, Potassium channel dysfunction in hypothalamic glucose-receptive neurones of obese Zucker rats. J Physiol, 1996. 497 (Pt 2): p. 365-77.
116. de Andrade, I.S., et al., Diet-induced obesity impairs hypothalamic glucose sensing but not glucose hypothalamic extracellular levels, as measured by microdialysis. Nutr Diabetes, 2015. 5: p. e162.
117. van de Giessen, E., et al., Dopamine D2/3 receptor availability and amphetamine-induced dopamine release in obesity. J Psychopharmacol, 2014. 28(9): p. 866-73.
118. Wang, G.J., et al., Brain dopamine and obesity. Lancet, 2001. 357(9253): p. 354-7.
119. van de Giessen, E., et al., High fat/carbohydrate ratio but not total energy intake induces lower striatal dopamine D2/3 receptor availability in diet-induced obesity. Int J Obes (Lond), 2013. 37(5): p. 754-7.
120. Geiger, B.M., et al., Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience, 2009. 159(4): p. 1193-9.
121. Karlsson, H.K., et al., Obesity is associated with decreased mu-opioid but unaltered dopamine D2 receptor availability in the brain. J Neurosci, 2015. 35(9): p. 3959-65.
122. Vucetic, Z., J. Kimmel, and T.M. Reyes, Chronic high-fat diet drives postnatal epigenetic regulation of mu-opioid receptor in the brain. Neuropsychopharmacology, 2011. 36(6): p. 1199-206.

123. Harrold, J.A., et al., Down-regulation of cannabinoid-1 (CB-1) receptors in specific extrahypothalamic regions of rats with dietary obesity: a role for endogenous cannabinoids in driving appetite for palatable food? Brain Res, 2002. 952(2): p. 232-8.

124. Cai, X.J., et al., Down-regulation of orexin gene expression by severe obesity in the rats: studies in Zucker fatty and zucker diabetic fatty rats and effects of rosiglitazone. Brain Res Mol Brain Res, 2000. 77(1): p. 131-7.

125. Nishino, S., et al., Low cerebrospinal fluid hypocretin (Orexin) and altered energy homeostasis in human narcolepsy. Ann Neurol, 2001. 50(3): p. 381-8.

126. Funato, H., et al., Enhanced orexin receptor-2 signaling prevents diet-induced obesity and improves leptin sensitivity. Cell Metab, 2009. 9(1): p. 64-76.

127. Qu, D., et al., A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature, 1996. 380(6571): p. 243-7.

128. Gomori, A., et al., Chronic intracerebroventricular infusion of MCH causes obesity in mice. Melanin-concentrating hormone. Am J Physiol Endocrinol Metab, 2003. 284(3): p. E583-8.