The existence of periodic solution for infinite dimensional Hamiltonian systems

Weibing Denga, Wunming Hana, Qi Wang a,b

a School of Mathematics and Statistics, Henan University, Kaifeng 475000, PR China
b Department of Mathematics, Shandong University, Jinan, Shandong, 250100, PR China

Abstract: In this paper, we will consider a kind of infinite dimensional Hamiltonian system (HS), by the method of saddle point reduction, topology degree and the index defined in \cite{11}, we will get the existence of periodic solution for (HS).

Keywords: infinite dimensional Hamiltonian systems; periodic solution; variational methods

1 Introduction and main results

1.1 Introduction of a kind of infinite dimensional Hamiltonian system

In this paper, we will consider the following infinite dimensional Hamiltonian system

\[
\begin{align*}
\partial_t u - \Delta_x u &= H_v(t, x, u, v), \\
-\partial_t v - \Delta_x v &= H_u(t, x, u, v),
\end{align*}
\]

\forall (t, x) \in \mathbb{R} \times \Omega, \quad (HS)

where $\Omega \subset \mathbb{R}^N$, $N \geq 1$ is a bounded domain with smooth boundary $\partial \Omega$ and $H : \mathbb{R} \times \Omega \times \mathbb{R}^{2m} \to \mathbb{R}$ is a C^1 function, $\partial_t := \frac{\partial}{\partial t}$, $\Delta_x := \sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2}$, $H_u := \frac{\partial H}{\partial u}$ and $H_v := \frac{\partial H}{\partial v}$. System like (HS) are called unbounded Hamiltonian system, cf. Barbu \cite{1}, or infinite dimensional Hamiltonian system, cf. \cite{2,4,5}. This systems arises in optimal control of systems governed by partial differential equations. See, e.g, Lions \cite{8}, where the combination of the model $\partial_t - \Delta_x$ and its adjoint $-\partial_t - \Delta_x$ acts as a system for studying the control. Brézis and Nirenberg \cite{3} considered a special case of the system (HS):

\[
\begin{align*}
\partial_t u - \Delta_x u &= -v^5 + f, \\
-\partial_t v - \Delta_x v &= u^3 + g,
\end{align*}
\]

\cite{b}Corresponding author. Supported by NNSF of China(11301148) and PSF of China(188576).
E-mail address: w_deng8120@163.com (Weibing Deng), Wunming_Han@sina.com (Wunming Han), Q.Wang@vip.henu.edu.cn. (Qi Wang).
where \(f, g \in L^\infty(\Omega) \), subject to the boundary condition \(z(t, \cdot)|_{\partial \Omega} = 0 \) on variable \(x \) and the periodicity condition \(z(0, \cdot) = z(T, \cdot) = 0 \) on variable \(t \) for a given \(T > 0 \), where \(z = (u, v) \). They obtained a solution \(z \) with \(u \in L^4 \) and \(v \in L^6 \) by using Schauder’s fixed point theorem. Clément, Felemér and Mitidieri considered in [4] and [5] the following system which is also a special case of (HS):

\[
\begin{cases}
\partial_t u - \Delta_x u = |v|^{q-2}v, \\
-\partial_t v - \Delta_x v = |u|^{p-2}u,
\end{cases}
\]

(1.2)

with \(\frac{N}{N+2} < \frac{1}{p} + \frac{1}{q} < 1 \). Using their variational setting of Mountain Pass type, they proved that there is a \(T_0 > 0 \) such that, for each \(T > T_0 \), (1.2) has at least one positive solution \(z_T = (u_T, v_T) \) satisfying the boundary condition \(z_T(t, \cdot)|_{\partial \Omega} = 0 \) for all \(t \in (-T, T) \) and the periodicity condition \(z_T(T, \cdot) = z_T(-T, \cdot) \) for all \(x \in \overline{\Omega} \). Moreover, by passing to limit as \(T \to \infty \) they obtained a positive homoclinic solution of (1.2). If the Hamiltonian function \(H \) in (HS) can be displayed in the following form

\[
H(t, x, u, v) = F(t, x, u, v) - V(x)uv,
\]

(1.3)

where \(V \in C(\Omega, \mathbb{R}) \), \(H \in C^1(\mathbb{R} \times \overline{\Omega} \times \mathbb{R}^m, \mathbb{R}) \), the system (HS) will be rewritten as

\[
\begin{cases}
\partial_t u + (-\Delta_x + V(x))u = F_u(t, x, u, v), \\
\partial_t v + (-\Delta_x + V(x))v = F_u(t, x, u, v).
\end{cases}
\]

(HS.1)

Bartsch and Ding [2] dealt with the system (HS.1). They established existence and multiplicity of homoclinic solutions of the type \(z(t, x) \to 0 \) as \(|t| + |x| \to \infty \) if \(\Omega = \mathbb{R}^N \) and the type of \(z(t, x) \to 0 \) as \(|t| \to \infty \) and \(z(t, \cdot)|_{\partial \Omega} = 0 \) if \(\Omega \) is bounded. Recently, there are several results on system (HS) and (HS.1), cf. [6, 9–11, 13–16].

1.2 Introduction of relative Morse index \((\mu_L(M), \upsilon_L(M))\)

In [11], we developed the so called relative Morse index \((\mu_L(M), \upsilon_L(M))\) for (HS). Let \(I_m \) the identity map on \(\mathbb{R}^m \) and

\[
J = \begin{pmatrix} 0 & -I_m \\ I_m & 0 \end{pmatrix}, \quad N = \begin{pmatrix} 0 & I_m \\ I_m & 0 \end{pmatrix},
\]

(1.4)

\[
L := J\partial_t - N\Delta_x,
\]

(1.5)

and denoted by \(\nabla_z \) the gradient operator on variable \(z = (u, v)^T \), then (HS) with \(T \)-periodic and Dirichlet boundary conditions can be rewritten as

\[
\begin{cases}
Lz = \nabla_z H(t, x, z), \\
z(t, x) = z(t+T, x), \quad \forall (t, x) \in \mathbb{R} \times \Omega. \\
z(t, \partial \Omega) = 0,
\end{cases}
\]

(HS)
Let \(H := L^2(S^1 \times \Omega, \mathbb{R}^{2m}) \), where \(S^1 = \mathbb{R}/T \mathbb{Z} \). Then \(L \) is a self-adjoint operator acting in \(H \) with domain \(D(L) \). The linearized system of the nonlinear system in (HS) at a solution \(z = z(t, x) \) is the following system

\[
L y = M(t, x)y
\]

with \(M(t, x) = \nabla^2_h H(t, x, z(t, x)) \) and \(\nabla^2_h H \) the Hessian of \(H \) on the variable \(z \). Denote by \(SM^{2m} \) the set of all symmetric \(2m \times 2m \) matrixes and \(M := C(S^1 \times \bar{\Omega}, SM^{2m}) \). Denote by \(L_s(H) \) the set of all bounded self-adjoint operators on \(H \). For any \(M \in M \), it is easy to see \(M \) determines a bounded self-adjoint operator on \(H \), by

\[
 z(t) \mapsto M(t, x)z(t), \quad \forall z \in H,
\]

we still denote this operator by \(M \). Thus, we have \(M \subset L_s(H) \). In [11], for any \(B \in L_s(H) \), we defined the relative Morse index pair

\[
(\mu_L(B), \nu_L(B)) \in \mathbb{Z} \times \mathbb{Z}^*, \tag{1.7}
\]

where \(\mathbb{Z} \) and \(\mathbb{Z}^* \) denote the set of all integers and non-negative integers respectively. Then, we got the relationship between the index \(\mu_L(B) \) and other indexes. Spectrally, with the relationship between the index \(\nu_L(B) \) and spectral flow, we have the following equality which will be used in this paper. For \(B_1, B_2 \in L_s(H) \), \(B_1 \leq B_2 \) means that \(B_2 - B_1 \) is semi-positive definite. Then, if \(B_1 \leq B_2 \), we have

\[
\mu_L(B_2) - \mu_L(B_1) = \sum_{s \in [0, 1)} \nu_L(sB_2 + (1 - s)B_1). \tag{1.8}
\]

By assuming some twisted conditions of the asymptotically linear Hamiltonian function, we studied the existence and multiplicity of (HS) in [11].

1.3 Main results

In this paper, we don’t need the Hamiltonian function \(H \) to be \(C^2 \) continuous and without assuming \(H \) satisfying the twisted conditions, by the method of topology degree, saddle point reduction and the index \((i_L(B), \nu_L(B)) \) defined in [11], we have the following results.

Theorem 1.1. Assume \(H \) satisfies the following conditions.

\((H_1) \) \(H \in C^1(S^1 \times \bar{\Omega} \times \mathbb{R}^{2m}, \mathbb{R}) \) and there exists \(l_H > 0 \), such that

\[
|H_z'(t, x, z + y) - H_z'(t, x, z)| \leq l_H |y|, \quad \forall (t, x) \in S^1 \times \bar{\Omega}, \quad z, y \in \mathbb{R}^{2m}.
\]
There exists $M_1, M_2, K > 0, B \in \mathcal{M}$, such that

$$H'(t, x, z) = B(t, x)z + r(t, x, z),$$

with

$$|r(t, x, z)| \leq M_1, \quad \forall (t, x, z) \in S^1 \times \bar{\Omega} \times \mathbb{R}^{2m},$$

and

$$\pm (r(t, x, z), z)_{\mathbb{R}^{2m}} \geq M_2 |z|_{\mathbb{R}^{2m}}, \quad \forall (t, x) \in S^1 \times \bar{\Omega}, \quad \|z\|_{\mathbb{R}^{2m}} > K.$$ (1.9)

Then (HS) has at least one solution.

In Theorem 1.1, we don’t need B to be non-degenerate. If we assume some non-degenerate property of B, the rest item r can be relaxed and we have the following result.

Theorem 1.2. Assume H satisfying condition (H_1) and the following condition

(H_3) There exists $B \in C(S^1 \times \bar{\Omega} \times \mathbb{R}^{2m}, SM^{2m})$ such that

$$H'(t, z) = B(t, x, z)z + r(t, x, z), \quad \forall (t, x, z) \in S^1 \times \bar{\Omega} \times \mathbb{R}^{2m},$$

with

$$r(t, x, z) = o(z), \quad \text{uniformly for} |z| \to \infty.$$

(H_4) There exist $B_1, B_2 \in \mathcal{M}$ satisfying

$$i_L(B_1) = i_L(B_2), \quad \nu_L(B_2) = 0,$$

and

$$B_1(t, x) \leq B(t, x, z) \leq B_2(t, x), \quad \forall (t, x, z) \in S^1 \times \bar{\Omega} \times \mathbb{R}^{2m}.$$ Then (HS) has at least one solution.

Preliminarys and the proof of our main results

Before the proof of Theorem 1.1 and Theorem 1.2, we need some preliminarys. Firstly, we need the following Lemma.

Lemma 2.1. [11, Lemma 2.1] For simplicity, let $T = 2\pi$ and $\sigma(-\Delta) = \{\mu_l\}_{l \geq 1}$, we have

$$\sigma(L) = \sigma_p(L) = \{\pm (k^2 + \mu_l^2)^{1/2}\}_{k \in \mathbb{Z}, l \in \mathbb{N}},$$

where $\sigma_p(L)$ denotes the eigenvalue set of L on H. That is to say L has only eigenvalues. More over every eigenvalue in $\sigma_p(L)$ has $2m$ dimensional eigenspace.
Secondly, since H satisfies condition (H_1), the map
\[z \mapsto \int_{S^1 \times \bar{\Omega}} H(t, x, z(t, x))dtdx, \forall z \in H, \]
define a functional on H, without confusion, we still denote it by H. It is easy to see $H \in C^1(H, \mathbb{R})$, with
\[(H'(z), y)_H = \int_{S^1 \times \bar{\Omega}} \left((H'_1(t, x, z(t, x)), y(t))dtdx, \forall z, y \in H, \right. \]
and H' is Lipschitz continuous with
\[\|H'(z + y) - H'(z)\| \leq l_H \|y\|_H, \forall, y, z \in H. \tag{2.1} \]
Thus (HS) can be regard as an operator equation on H.

Proof of Theorem 1.1. Now, we consider the case of (H_2^-). From Lemma 2.1, L has compact resolvent, since $B \in \mathcal{M} \subset L_s(H)$, 0 is at most an isolate point spectrum with finite dimensional eigenspace, that is to say there exists $\varepsilon_0 > 0$ and small enough, such that $(-\varepsilon_0, 0) \cap \sigma(L - B) = \emptyset$. For any $\varepsilon \in (0, \varepsilon_0)$ and $\lambda \in [0, 1]$, consider the following two-parameters equation
\[(\varepsilon \cdot I + L - B)z = \lambda r(t, x, z), \quad (HS_{\varepsilon, \lambda}) \]
with I the identity map on H. If $\varepsilon = 0$ and $\lambda = 1$, it is (HS). We divide the following proof into four steps.

Step 1. There exists a constant C independent of ε and λ, such that if $z_{\varepsilon, \lambda}$ is a solution of $(HS_{\varepsilon, \lambda})$,
\[\varepsilon \|z_{\varepsilon, \lambda}\|_H \leq C, \forall (\varepsilon, \lambda) \in (0, \frac{\varepsilon_0}{2}) \times [0, 1]. \]

Since $(-\varepsilon_0, 0) \cap \sigma(L - B) = \emptyset$, we have $(\varepsilon - \varepsilon_0, \varepsilon) \cap \sigma(\varepsilon \cdot I + L - B) = \emptyset$. Consider the orthogonal splitting
\[H = H_{\varepsilon \cdot I + L - B}^- \oplus H_{\varepsilon \cdot I + L - B}^+, \]
where $\varepsilon \cdot I + L - B$ is negative definite on $H_{\varepsilon \cdot I + L - B}^-$, and positive define on $H_{\varepsilon \cdot I + L - B}^+$. Thus, if $z \in H$, we have the splitting
\[z = x + y, \]
with $x \in H_{\varepsilon \cdot I + L - B}^-$ and $y \in H_{\varepsilon \cdot I + L - B}^+$. If $z_{\varepsilon, \lambda}$ is a solution of $(HS_{\varepsilon, \lambda})$ with its splitting $z_{\varepsilon, \lambda} = x_{\varepsilon, \lambda} + y_{\varepsilon, \lambda}$ defined above, then we have
\[((\varepsilon \cdot I + L - B)z_{\varepsilon, \lambda}, y_{\varepsilon, \lambda} - x_{\varepsilon, \lambda})_H = \lambda (r(t, z_{\varepsilon, \lambda}), y_{\varepsilon, \lambda} - x_{\varepsilon, \lambda})_H. \]
Since \((\varepsilon - \varepsilon_0, \varepsilon) \cap \sigma(\varepsilon \cdot I + L - B) = \emptyset\), we have
\[
((\varepsilon \cdot I + L - B)z_{\varepsilon, \lambda}, y_{\varepsilon, \lambda} - x_{\varepsilon, \lambda})_H \geq \min\{\varepsilon_0 - \varepsilon, \varepsilon\} \|z_{\varepsilon, \lambda}\|_H^2.
\]
Since \(r\) is bounded, for \((\varepsilon, \lambda) \in (0, \varepsilon_0^2) \times [0, 1]\), we have
\[
C \|z_{\varepsilon, \lambda}\|_H \geq \lambda(r(t, x, z_{\varepsilon, \lambda}), y_{\varepsilon, \lambda} - x_{\varepsilon, \lambda})_H \geq \varepsilon \|z_{\varepsilon, \lambda}\|_H^2.
\]
Therefore, we have
\[
\varepsilon \|z_{\varepsilon, \lambda}\|_H \leq C, \quad \forall (\varepsilon, \lambda) \in (0, \varepsilon_0^2) \times [0, 1].
\]

Step 2. For any \((\varepsilon, \lambda) \in (0, \varepsilon_0^2) \times [0, 1]\), \((HS_{\varepsilon, \lambda})\) has at least one solution. Here, we use the topology degree theory. Since \(0 \notin \sigma(\varepsilon \cdot I + L - B)\), \((HS_{\varepsilon, \lambda})\) can be rewritten as
\[
z = \lambda(\varepsilon \cdot I + L - B)^{-1}r(t, x, z).
\]
Denote by \(f(\varepsilon, \lambda, z) := \lambda(\varepsilon \cdot I + L - B)^{-1}r(t, x, z)\) for simplicity. From the compactness of \((\varepsilon \cdot I + L - B)^{-1}\) and condition \((H^-_2)\), Leray Schauder degree theory can be used to the map
\[
z \mapsto z - f(\varepsilon, \lambda, z), \quad z \in H.
\]
From the result received in Step 1, we have
\[
deg(I - f(\varepsilon, \lambda, \cdot), B(R(\varepsilon), 0), 0) \equiv deg(I - f(\varepsilon, 0, \cdot), B(R(\varepsilon), 0), 0) = deg(I, B(R(\varepsilon), 0), 0) = 1,
\]
where \(R(\varepsilon) > \frac{C}{\varepsilon}\) is a constant only depends on \(\varepsilon\), and \(B(R(\varepsilon), 0) := \{z \in H||z||_H < R(\varepsilon)\}\).

Step 3. For \(\lambda = 1, \varepsilon \in (0, \varepsilon_0/2)\), denote by \(z_\varepsilon\) one of the solutions of \((HS_{\varepsilon, 1})\). We have \(\|z_\varepsilon\|_H \leq C\). In this step, \(C\) denotes various constants independent of \(\varepsilon\).

From the boundedness received in Step 1, we have
\[
\|(L - B)z_\varepsilon\|_H = \|\varepsilon z_\varepsilon - r(t, x, z_\varepsilon)\|_H \leq C. \quad (2.2)
\]
Now, consider the orthogonal splitting
\[
L = H^0_{L-B} \oplus H^\perp_{L-B},
\]
where \(L - B\) is zero definite on \(H^0_{L-B}\), and \(H^\perp_{L-B}\) is the orthonormal complement space of \(H^0_{L-B}\). Let \(z_\varepsilon = u_\varepsilon + v_\varepsilon\) with \(u_\varepsilon \in H^0_{L-B}\) and \(v_\varepsilon \in H^\perp_{L-B}\). Since \(0\) is an isolated point in \(\sigma(L - B)\), from \((2.2)\), we have
\[
\|v_\varepsilon\|_H \leq C. \quad (2.3)
\]
Additionally, since \(r(t, x, z_e) \) and \(v_e \) are bounded in \(H \), we have

\[
(r(t, x, z_e), z_e)_{H} = (r(t, x, z_e), v_e)_{H} + (r(t, x, z_e), u_e)_{H} \\
= (r(t, x, z_e), v_e)_{H} + (z_e + (L - B)z_e, u_e)_{H} \\
= (r(t, x, z_e), v_e)_{H} + (u_e, u_e)_{H} \\
\geq C. \tag{2.4}
\]

On the other hand, from (1.9) in \((H_2^-)\), we have

\[
(r(t, x, z_e), z_e)_{H} = \int_{S^1 \times \bar{\Omega}} (r(t, x, z_e), z_e) dtdx + \int_{S^1 \times \bar{\Omega} / S^1 \times \Omega(K)} (r(t, x, z_e), z_e) dtdx \\
\leq -M_2 \int_{S^1 \times \bar{\Omega}(K)} |z_e|^2 dtdx + C \\
\leq -M_2 \|z_e\|_{H}^2 + C, \tag{2.5}
\]

where \(S^1 \times \bar{\Omega}(K) := \{(t, x) \in S^1 \times \bar{\Omega} | |z_e| > K\} \). From (2.4) and (2.5), we have proved the boundedness of \(\|z_e\|_{H} \).

Step 4. Passing to a sequence of \(\varepsilon_n \rightarrow 0 \), there exists \(z \in H \) such that

\[
\lim_{\varepsilon_n \rightarrow 0} \|z_{\varepsilon_n} - z\|_{H} = 0.
\]

Here, we will use the method of saddle point reduction. Since \(\sigma(L) \) has only isolate finite dimensional eigenvalues and from condition \((H_1)\), we can assume \(\pm l_H \notin \sigma(L) \). That is to say there exists \(\delta > 0 \) such that

\[
(-l_H - \delta, -l_H + \delta) \cap \sigma(L) = (l_H - \delta, l_H + \delta) \cap \sigma(L) = \emptyset.
\]

Denote \(E_L \) the spectrum measure of \(L \) and definite the projections on \(H \) by

\[
P_{L,l_H}^0 := \int_{-l_H}^{l_H} dE_L(z), \quad P_{L,l_H}^1 := I - P_{L,l_H}^0,
\]

where \(I \) is the identity map on \(H \). Correspondingly, consider the splitting of \(H \) by

\[
H = H_{L,l_H}^0 \oplus H_{L,l_H}^1 \tag{2.7}
\]

with \(H_{L}^* := P_{L,l_H}^* H (\star = 0, \perp) \). Without confusion, we rewrite \(P^* := P_{L,l_H}^* \) and \(H^* := H_{L,l_H}^* \) for simplicity \((\star = 0, \perp)\). Denote \(L^* = L|_{H^*} \) and \(z^* = P^* z \), for all \(z \in H \). thus we have \(L^\perp \) has bounded inverse on \(H^\perp \) and

\[
\| (L^\perp)^{-1} \| \leq \frac{1}{l_H + \delta}.
\]
Let \(\varepsilon' := \min\{\varepsilon_0, \delta\} \), for \(\varepsilon \in (0, \frac{\pi}{2}) \), denote by \(L_\varepsilon := \varepsilon + L \). Then \(L_\varepsilon \) has the same invariant subspace with \(L \), so we can also denote by \(L'_\varepsilon := L_\varepsilon|_H \) (\(\ast = 0, \perp \)), and we have

\[
\|(L'_\varepsilon)^{-1}\| \leq \frac{1}{l_H + \delta/2}.
\] (2.8)

Since \(z_\varepsilon \) satisfies \((HS_{\varepsilon,1})\), so we have

\[
L'_\varepsilon z_\varepsilon = P^\perp H'(z_\varepsilon^\perp + z_\varepsilon^0),
\]

and

\[
z_\varepsilon^\perp = (L'_\varepsilon)^{-1} P^\perp \Phi'(z_\varepsilon^\perp + z_\varepsilon^0).
\] (2.9)

Since \(H^0 \) is a finite dimensional space and \(\|z_\varepsilon\|_H \leq C \), there exists a sequence \(\varepsilon_n \to 0 \) and \(z^0 \in H^0 \), such that

\[
\lim_{n \to \infty} z^0_{\varepsilon_n} = z^0.
\]

For simplicity, we rewrite \(z_n^\ast := z_{\varepsilon_n}^\ast (\ast = \perp, 0) \), \(L_n := \varepsilon_n + L \) and \(L_n^\perp := L_{\varepsilon_n}^\perp \). So, we have

\[
\|z_n^\perp - z_m^\perp\|_H = \|(L_n^\perp)^{-1} P^\perp \Phi'(z_n^\perp) - (L_m^\perp)^{-1} P^\perp \Phi'(z_m^\perp)\|_H
\]

\[
\leq \|(L_n^\perp)^{-1} P^\perp (\Phi'(z_n^\perp) - \Phi'(z_m^\perp))\|_H + \|(L_n^\perp)^{-1} - (L_m^\perp)^{-1}\| P^\perp \Phi'(z_m^\perp)\|_H
\]

\[
\leq \frac{l_H}{l_H + \delta/2} \|z_n^\perp - z_m^\perp\|_H + \|(L_n^\perp)^{-1} - (L_m^\perp)^{-1}\| P^\perp \Phi'(z_m^\perp)\|_H.
\]

Since \((L_n^\perp)^{-1} - (L_m^\perp)^{-1} = (\varepsilon_n - \varepsilon_n)(L_n^\perp)^{-1}(L_m^\perp)^{-1} \) and \(z_n \) are bounded in \(H \), we have

\[
\|(L_n^\perp)^{-1} - (L_m^\perp)^{-1}\| = o(1), \quad n, m \to \infty.
\]

So we have

\[
\|z_n^\perp - z_m^\perp\|_H \leq \frac{2l_H}{\delta} \|z_n^0 - z_m^0\|_H + o(1), \quad n, m \to \infty,
\]

therefor, there exists \(z^\perp \in H^\perp \), such that \(\lim_{n \to \infty} \|z_n^\perp - z^\perp\|_H = 0 \). Thus, we have

\[
\lim_{n \to \infty} \|z_{\varepsilon_n}^\perp - z\|_H = 0,
\]

with \(z = z^\perp + z^0 \). Last, let \(n \to \infty \) in \((HS_{\varepsilon,1})\), we have \(z \) is a solution of \((HS)\). \(\square \)

Before the proof of Theorem 1.2, we need the following Lemma.

Lemma 2.2. Let \(B_1, B_2 \in \mathcal{L}_s(H) \) with \(B_1 \preceq B_2 \), \(\mu_L(B_1) = \mu_L(B_2) \), and \(\nu_L(B_2) = 0 \), then there exists \(\varepsilon > 0 \), such that for all \(B \in \mathcal{L}_s(H) \) with

\[
B_1 \preceq B \preceq B_2,
\]

8
we have
\[\sigma(L - B) \cap (-\varepsilon, \varepsilon) = \emptyset. \]

Proof. For the property of \(\mu_L(B) \), we have \(\nu_L(B_1) = 0 \). So there is \(\varepsilon > 0 \), such that\[\mu_L(B_{1,\varepsilon}) = \mu_L(B_1) = \mu_L(B_2) = \mu_L(B_{2,\varepsilon}), \]
with \(B_{*,\varepsilon} = B_* + \varepsilon \cdot I, (\ast = 1, 2) \). Since \(B_{1,\varepsilon} \leq B - \varepsilon I < B + \varepsilon I \leq B' \). It follows that\[\mu_L(B - \varepsilon I) = \mu_L(B + \varepsilon I). \]

Note that by (1.8)
\[\sum_{-\varepsilon < t \leq \varepsilon} \nu_L(B - t \cdot I) = \mu_L(B + \varepsilon I) - \mu_L(B - \varepsilon I) = 0. \]

We have \(0 \notin \sigma(L - B - \eta), \forall \eta \in (-\varepsilon, \varepsilon) \), thus the proof is complete. \(\square \)

Proof of Theorem 1.2. Consider the following one-parameter equation
\[Lz = (1 - \lambda)B_1 z + \lambda H'(z), \quad (HS_\lambda) \]
with \(\lambda \in [0, 1] \). Denote by
\[\Phi_\lambda(z) = \frac{1 - \lambda}{2}(B_1 z, z)_L + \lambda \Phi(z), \forall z \in L. \]
Since \(H \) satisfies condition \((H_1) \) and \(B_1 \in C(S^1 \times \bar{\Omega}, \mathbf{SM}^{2m}) \), we have \(\Phi_\lambda : H \to H \) is Lipschitz continuous, and there exists \(l' > 0 \) independent of \(\lambda \) such that \(l' \notin \sigma(L) \) and
\[\| \Phi'_\lambda(z + h) - \Phi'_\lambda(z) \|_H \leq l' \| h \|_H, \forall z, h \in L, \lambda \in [0, 1]. \]

Now, replace \(l_H \) by \(l' \) in (2.6), we have the projections \(P_{\lambda, l'}^* \) \((\ast = \perp, 0)\) and the splitting
\[H = H_{L, l'}^\perp \oplus H_{L, l'}^0, \]
with \(H_{L, l'}^\perp = P_{\lambda, l'}^* H(\ast = \perp, 0) \). Thus \(L^\perp \) has bounded inverse on \(H_{L, l'}^\perp \) with
\[\| (L^\perp)^{-1} \| < \frac{1}{l' + c}, \]
for some \(c > 0 \). Without confusion, we still use \(z^\perp \) and \(z^0 \) to represent the splitting
\[z = z^\perp + z^0, \]
with \(z^* \in H_{L, l'}^\ast \) \((\ast = \perp, 0)\). Now, we derive the following proof into three steps and \(C \) denotes various constants independent of \(\lambda \).
Step 1. If \(z \) is a solution of \((HS_\lambda)\), then we have \(\|z^+(z^0)\|_H \leq C\|z^0\|_H + C \)

Since \(Lz = \Phi'_\lambda(z) \), we have

\[
\|z^+(z)\|_H = \|(L^\pm)^{-1}P^\pm_L\Phi'_\lambda(z^+(z^0) + z^0)\|_H \\
\leq \frac{1}{\nu + c}\|\Phi'_\lambda(z^+(z^0) + z^0)\|_H \\
\leq \frac{1}{\nu + c}\|\Phi'_\lambda(z^+(z^0) + z^0) - \Phi'_\lambda(0)\|_H + \frac{1}{\nu + c}\|\Phi'_\lambda(0)\|_H \\
\leq \frac{\nu'}{\nu + c}(\|z^+(z^0)\|_H + \|z^0\|_H) + \frac{1}{\nu + c}\|\Phi'_\lambda(0)\|_H.
\]

So we have \(\|z^+(z^0)\|_H \leq \frac{\nu'}{\nu + c}\|z^0\|_H + \frac{1}{\nu + c}\|\Phi'_\lambda(0)\|_H \). Thus, we have proved this step.

Step 2. We claim that the set of all the solutions \((z, \lambda)\) of \((HS_\lambda)\) are a priori bounded.

If not, assume there exist \(\{(z_n, \lambda_n)\}\) satisfying \((HS_\lambda)\) with \(\|z_n\|_H \to \infty\). Without lose of generality, assume \(\lambda_n \to \lambda_0 \in [0,1]\). From step 1, we have \(\|z^0_n\|_L \to \infty\). Denote by

\[
y_n = \frac{z_n}{\|z_n\|_H},
\]

and \(\tilde{B}_n := (1 - \lambda_n)B_1 + \lambda_nB(t, z_n)\), we have

\[
Ay_n = \tilde{B}_ny_n + \frac{O(\|z_n\|_H)}{\|z_n\|_H}. \quad (2.10)
\]

Decompose \(y_n = y^+_n + y^-_n\) with \(y^*_n = z^*_n/\|z_n\|_H\), we have

\[
\|y^0_n\|_H = \|z^0_n\|_H/\|z_n\|_H \\
\geq \frac{\|z^0_n\|_H}{\|z^0_n\|_H + \|z^+_n\|_H} \\
\geq \frac{\|z^0_n\|_H}{C\|z^0_n\|_H + C}.
\]

That is to say

\[
\|y^0_n\|_H \geq C > 0, \quad (2.11)
\]

for \(n\) large enough. Since \(B_1(t) \leq B(t, z) \leq B_2(t)\), we have \(B_1 \leq \tilde{B}_n \leq B_2\). Let \(H = H^+_{L-B_n} \bigoplus H^-_{L-B_n}\) with \(L - \tilde{B}_n\) is positive and negative define on \(H^+_{L-B_n}\) and \(H^-_{L-B_n}\) respectively. Re-decompose \(y_n = \tilde{y}^+_n + \tilde{y}^-_n\) respect to \(H^+_{L-B_n}\) and \(H^-_{L-B_n}\). From \((H_4)\) and
(2.10), we have
\[
\|y^0_n\|_H^2 \leq \|y_n\|_H^2
\leq C((A - \bar{B}_n)y_n, \bar{y}^+_n + \bar{y}^-_n)_H
\leq \frac{o(\|z_n\|_H)}{\|z_n\|_H}\|y_n\|_H.
\]
(2.12)

Since \(\|z_n\|_H \to \infty\) and \(\|y_n\|_H = 1\), we have \(\|y^0_n\|_H \to 0\) which contradicts to (2.11), so we have \(\{z_n\}\) is bounded.

Step 3. By Leray-Schauder degree, there is a solution of (HS).
Since the solutions of \((HS_\lambda)\) are bounded, there is a number \(R > 0\) large enough, such that all of the solutions \(z_\lambda\) of \((HS_\lambda)\) are in the ball \(B(0, R) := \{ z \in L|\|z\|_H < R\}\). So we have the Leray-Schauder degree
\[
deg(I - (L - B_1)^{-1}(\Phi'(z) - B_1z), B(0, R)_\cap, 0) = deg(I, B(0, R), 0) = 1.
\]
That is to say (HS) has at least one solution.

3 Further results

In the system of (HS), Lemma 2.1 played an important role to keep the Leray-Schauder degree valid, if we change the Dirichlet boundary condition \(z(t, \partial \Omega) = 0\) in (HS) to Neumann boundary condition \(\frac{\partial z}{\partial n}(t, \partial \Omega) = 0\), we will also have Lemma 2.1, thus Theorem 1.1 and Theorem 1.2 will also be true for Neumann boundary condition.

What we want to say in this section is \(\Omega = \mathbb{R}^N\). Generally, the operator \(-\Delta_x\) on \(L^2(\mathbb{R}^N, \mathbb{R})\) doesn’t have compact inversion, then the results in Lemma 2.1 will not be true. Thus our Maslov type index theory defined in [11] will not work. But if the Hamiltonian function \(H\) can be displayed in the following form
\[
H(t, x, u, v) = F(t, x, u, v) - V(x)uv,
\]
then system (HS) will be rewritten as systems
\[
\begin{align*}
\partial_t u + (-\Delta_x + V(x))u &= F_v(t, x, u, v), \\
-\partial_t v + (-\Delta_x + V(x))v &= F_u(t, x, u, v).
\end{align*}
\]
\((HS.1)\)

We have the following result.
Lemma 3.1. [7, Lemma 6.10]. If the function $V(x)$ satisfies the following conditions:

(V$_1$) $V \in C(\mathbb{R}^N, \mathbb{R})$ and $\inf_{x \in \mathbb{R}^N} V(x) > 0$.

(V$_2$) There exists $l_0 > 0$ and $M > 0$ such that

$$\lim_{|y| \to \infty} \text{meas}\{x \in \mathbb{R}^N : |x - y| \leq l_0, V(x) \leq M\} = 0,$$

where $\text{meas}(\cdot)$ denotes the Lebesgue measure in \mathbb{R}^N. Then we have

$$\sigma_e(-\Delta x + V(x)) \subset [M, +\infty),$$

where $\sigma_e(A)$ denotes the essential spectrum of operator A.

If we redefine the operator L as

$$L := J\partial_t - N(\Delta x - V(x)).$$

We have the following result.

Lemma 3.2. If $\sigma_e(-\Delta x + V(x)) \subset [M, +\infty)$, then

$$\sigma_e(L) \cap (-M, M) = \emptyset.$$

Proof. Let $E(z)$ be the spectrum measure of $-\Delta x + V(x)$, for any $\delta > 0$ small enough, define the following projection on $L^2(\mathbb{R}^N, \mathbb{R})$,

$$P_{-\Delta x + V(x), \delta} = \int_0^{M-\delta} dE(z).$$

We have the following orthogonal splitting

$$L^2(\mathbb{R}^N, \mathbb{R}) = L^2(\delta) \oplus (L^2(\delta)),$$

where $L^2(\delta) := P_{-\Delta x + V(x), \delta} L^2(\mathbb{R}^N, \mathbb{R})$ and $(L^2(\delta))$ is its orthogonal complement. So we have

$$-\Delta x + V(x)|_{L^2(\delta)} \leq M - \delta, \quad -\Delta x + V(x)|_{(L^2(\delta))} \geq M - \delta.$$

Since

$$L^2(S^1 \times \mathbb{R}^N, \mathbb{R}^{2m}) = L^2(S^1, L^2(\mathbb{R}^N, \mathbb{R}^{2m})) = L^2(S^1, L^2(\mathbb{R}^N, \mathbb{R})^{2m}) = L^2(S^1, (L^2(\delta) \oplus L^2(\delta))^{2m}) = L^2(S^1, L^2(\delta)^{2m} \oplus L^2(\delta)^{2m}) = L^2(S^1, L^2(\delta)^{2m}) \oplus L^2(S^1, L^2(\delta)^{2m}),$$
$L^2(S^1, L^2(\delta)^{2m})$ and $L^2(S^1, L^{2,1}(\delta)^{2m})$ are invariant subspaces of L, let

$$L_1 := L|_{L^2(S^1, L^2(\delta)^{2m})}, \quad L_2 := L|_{L^2(S^1, L^{2,1}(\delta)^{2m})}.$$

Corresponding to the splitting of $L^2(S^1 \times \mathbb{R}^N, \mathbb{R}^{2m})$, we have

$$L = \begin{pmatrix} L_1 & 0 \\ 0 & L_2 \end{pmatrix}.$$

So we have

$$\sigma(L) = \sigma(L_1) \cup \sigma(L_2).$$

With the similarly method in Lemma 2.1, we can prove $\sigma_e(L_1) = \emptyset$, so

$$\sigma_e(L) = \sigma_e(L_2).$$

Now, we will prove $\sigma(L_2) \cap (-M, M) = \emptyset$. For any $\lambda \in \sigma(L_2)$, we have $z_n \in L_2$ with $\|z_n\| = 1$, such that

$$\|L_2 z_n - \lambda z_n\| \to 0.$$

So we have

$$(Lz_n - \lambda z_n, Nz_n) \to 0,$$

that is to say

$$(-J \frac{\partial}{\partial t} z_n - N(\Delta - V(x))z_n, Nz_n) - \lambda(z_n, Nz_n) \to 0.$$

Since $(-J \frac{\partial}{\partial t} z_n, Nz_n) \equiv 0$ and from $z_n \in L_2$ we have $(-N(\Delta - V(x))z_n, Nz_n) \geq M$, so we have $|\lambda| \geq M$. Thus, we have finished the proof. \hfill \Box

Acknowledgements. The author of this paper sincerely thanks the referee for his/her careful reading and valuable comments and suggestions on the first manuscript of this paper.

References

[1] V. Barbu, Periodic solutions to unbounded Hamiltonian system, Disct. Contin. Dynam. Syst. 1 (1995), 277-283.

[2] T. Bartsch, Y. Ding, Homoclinic solutions of an infinite-dimensional Hamiltonian system, Math. Z. 240 (2002), 289-310.
[3] H. Brézis and L. Nirenberg, Characterization of the ranges of some nonlinear operators and applications to boundary value problems, Ann. Scuola Norm. Sup. Pisa, Ser. IV 5 (1978), 225-326.

[4] P. Clément, P. Felemer and E. Mitidieri, Solutions homoclines d’un système hamiltonien non-borné et superquaratique, C.R. Acad. Sci. Paris. 320 (1995), 1481-1484.

[5] P. Clément, P. Felemer and E. Mitidieri, Homoclinic orbits for a class of infinite dimensional Hamiltonian systems, Ann. Scuola Norm. Sup. Pisa, Ser. IV 24 (1997), 367-393.

[6] Y. Ding, C. Lee, Periodic solutions of an infinite dimensional Hamiltonian system, Rocky Mountain Journal of Mathematics 35 (6) (2005), 1881-1908.

[7] Y. Ding, Variational Methods for Strongly Indefinite Problems, World Scientific Publishing, 2007.

[8] J.L. Lions, Optimal control of systems governed by partial differential equations, Springer-Verlag, New York, 1971.

[9] A. Mao, S. Luan, Periodic solutions of an infinite-dimensional Hamiltonian system, Applied Mathematics and Computation 201 (2008), 800-804.

[10] J. Wang, J. Xu, F. Zhang, L. Wang, Homoclinic orbits for an unbounded superquadratic Hamiltonian systems, Nonlinear Differ. Equ. Appl. 17 (2010), 411-435.

[11] Q. Wang, C. Liu, The relative Morse index theory for infinite dimensional Hamiltonian systems with applications, J. Math. Anal. Appl. 427 (2015) 17-30.

[12] Q. Wang, C. Liu, A new index theory for linear self-adjoint operator equations and its applications, J. Differential Equations 260 (2016) 3749-3784.

[13] M. Yang, Z. Shen, Y. Ding, On a Class of Infinite-Dimensional Hamiltonian Systems with Asymptotically Periodic Nonlinearities, Chin. Ann. Math. 32 B (1)(2011), 45-58.

[14] J. Zhang, D. Lv, Y. Tang, Homoclinic orbits for an infinite dimensional Hamiltonian system with periodic potential, J. Appl. Math. Comput. 41 (2013), 1-14.
[15] J. Zhang, X. Tang, W. Zhang, Ground states for diffusion system with periodic and asymptotically periodic nonlinearity, Comput. Math. Appl. 71(2016)633-641.

[16] W. Zhang, X. Tang, J. Zhang, Ground state solutions for a diffusion system, Comput. Math. Appl. 69(2015)337-346.