Novel β-Lactamase \textit{bla}_{ARL} in \textit{Staphylococcus arlettae}

Sabrina N. Andreis, Vincent Perreten, Sybille Schwendener

Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland

ABSTRACT Whole-genome sequencing of penicillin-resistant \textit{Staphylococcus arlettae} strain SAN1670 from bovine mastitis milk revealed a novel β-lactamase operon consisting of the β-lactamase-encoding gene \textit{bla}_{ARL}, the antirepressor-encoding gene \textit{blaR1}_{ARL}, and the repressor-encoding gene \textit{blaI}_{ARL}. The functionality of \textit{bla}_{ARL} was demonstrated by gene expression in \textit{Staphylococcus aureus}. The \textit{bla}_{ARL} operon was chromosomally located in SAN1670 and present in 10 additional unrelated strains, suggesting intrinsic penicillin resistance in \textit{S. arlettae}. Furthermore, a GenBank search revealed more unique potential β-lactamases in \textit{Staphylococcus} species.

IMPORTANCE Penicillins are an important group of antibiotics used to treat various types of infections caused by Gram-positive bacteria. So far, the \textit{blaZ} gene was the only known β-lactamase gene in staphylococci. However, other putative β-lactamases were identified, and one of them was shown to be a novel functional β-lactamase encoded by \textit{bla}_{ARL} in \textit{Staphylococcus arlettae}, further limiting treatment options.

KEYWORDS antibiotic resistance, beta-lactamases, coagulase-negative staphylococci, penicillinase

\textit{Staphylococcus arlettae} is a ubiquitous coagulase-negative staphylococcus first isolated from the skin and nares of poultry and goats, respectively (1). Later, it was also found in the environment of tobacco fermentation (Culture Collection, University of Göteborg [CCUG], Göteborg, Sweden), the skin of horses (2), and bovine teat skin (3). In some cases, it was associated with bovine mastitis (4). Today, the intramammary application of penicillin alone or in combination with other antibiotics is the mastitis treatment method most frequently used in dairy cows (5). However, penicillin can be hydrolyzed by β-lactamase-producing staphylococci that have acquired the \textit{blaZ} gene, so far the only known β-lactamase gene in staphylococci (6). This gene is organized in an operon with the antirepressor-encoding gene \textit{blaR1} and the repressor-encoding gene \textit{blaI}. \textit{BlaR1} and \textit{BlaI} form a regulatory two-component system responsible for inducible \textit{blaZ} expression in the presence of β-lactam antibiotics (7, 8). The \textit{blaZ} gene is widespread in several \textit{Staphylococcus} species, including \textit{Staphylococcus aureus} (6, 9), and has been found on different mobile genetic elements like transposon Tn552 and conjugative plasmids (10–12).

In 2010, penicillinase-producing \textit{S. arlettae} strain SAN1670 was isolated from a bovine mastitis milk sample at our institute in Switzerland. PCR failed to identify the \textit{blaZ} gene, prompting us to determine the nature of this β-lactamase phenotype by whole-genome sequencing. This allowed us to identify a novel functional β-lactamase in \textit{S. arlettae}. Searching for further \textit{bla} homologs in the gene pool of \textit{Staphylococcus} revealed several uncharacterized potential β-lactamase sequences.

Novel β-lactamase \textit{bla}_{ARL} on the chromosome of \textit{S. arlettae} SAN1670. The whole-genome sequence of \textit{S. arlettae} SAN1670 was obtained by using Illumina MiSeq technology and reagent kit v 2 (Illumina, Inc., San Diego, CA) at the Labormedizinisches Zentrum Risch, Liebefeld-Bern, Switzerland. Reads were assembled into contigs with Geneious version R9.1.5 (13). TBLASTX analysis (http://www.ncbi.nlm.nih.gov/blast/) of
the contigs generated revealed a distantly related blaz homolog on a 145-kb contig (GenBank accession number KY363215). This blaz homolog was named blaARL, where bla defines the gene and ARL is the enzyme, in accordance with the nomenclature used for other β-lactamases (14). The 849-bp blaARL gene encodes a 282-amino-acid protein containing the consensus pattern for the β-lactamase class A active site (PS00146) defined in the Prosite database (15). The active-site serine present in all class A, C, and D β-lactamases was identified at position 63 of the ARL enzyme. The blaARL gene was preceded by two regulatory genes, blaARL and blaR1ARL, transcribed in the opposite direction, forming a β-lactamase operon similar to blaI-blaR1-blaZ. This operon had 55% overall nucleotide sequence identity with Tn552 (GenBank accession number X52734) (11) and is expected to be responsible for inducible blaARL expression in S. arlettae SAN1670. Analysis of a 50-kb region on each side of the blaARL gene identified genes belonging to the core genome of staphylococci such as xprl, pbuX, guaA, and guaB, which are involved in purine metabolism, as well as rpsR, rpsF, and ssb, which encode ribosomal proteins and a single-strand DNA-binding protein. The absence of transposases or recombinases within this region indicates that blaARL is stably integrated into the chromosome.

Identification of bla homologs in staphylococci. A search for ARL enzyme homology in all of the available staphylococcal sequences in the NCBI GenBank database showed that the blaARL gene was also present in shotgun genomes of S. arlettae strains CVD059 (GenBank accession number ALWK01000016) (16) and EGD-HP3 (GenBank accession number AVO0Q1000023). These blaARL genes were 99.5% identical and had 94% nucleotide sequence identity and 97% amino acid sequence identity with blaARL of SAN1670. Alignment of blaARL with blaZ of S. aureus NCTC 9789 (GenBank accession number X52734) (11) resulted in only 59% nucleotide sequence identity between the genes and 48% amino acid sequence identity between the β-lactamases ARL and PC1 encoded by blaZ. The PC1 enzyme is widespread in staphylococci and was identified in 27 different species (Fig. 1). Additional putative β-lactamases containing the class A consensus pattern (PS00146) were also detected. Four of these β-lactamases were found in the class E mec gene complex and clustered into a group with 67 to 71% amino acid sequence identity with PC1 and 46 to 49% amino acid sequence identity with ARL (Fig. 1). The other eight uncharacterized β-lactamases were unrelated and had 47 to 67% amino acid sequence identity with PC1 and 47 to 56% amino acid sequence identity with ARL (Fig. 1). These putative β-lactamases were unique to the species they belonged to, and none of them were preceded by the regulatory genes blaI and blaR1, such as in blaZ and blaARL operon.

Expression of blaARL in S. aureus. To prove the functionality of the novel β-lactamase of S. arlettae, the blaARL gene was cloned with and without the regulator genes blaIARL and blaR1ARL from SAN1670 and expressed in S. aureus RN4220. The entire blaIARL-blaR1ARL-blaARL operon was amplified with primers blaR1_M1670-XhoI-F and bla-M1670-PstI-R (see Table S1 in the supplemental material for the primers and PCR conditions used). The resulting fragment was cloned into the XhoI and PstI restriction restriction sites of the S. aureus-Enterobacteriaceae coli shuttle vector pTSSCm (17) to generate plasmid pSAN01. The blaARL gene alone was amplified with primers bla_M1670-NdeI-F and bla_M1670-Spel-R (see Table S1) and inserted downstream of the type 1 capsule gene 1A promoter (Pcap) of pBUS1-Pcap-HC (17) to generate plasmid pSAN02. Plasmids pSAN01 and pSAN02 were transformed into E. coli DH5α and selected for tetracycline resistance (10 μg/ml) encoded on the vectors. Sanger sequencing confirmed the correct blaARL operon sequence in pSAN01; therefore, the plasmid was electroporated into RN4220 (18). However, nonsense mutations were observed at the 5′ end of the blaARL gene in all of the pSAN02 plasmids sequenced, indicating that constitutive β-lactamase expression could be deleterious to E. coli. To reverse the mutation in blaARL from pSAN02, QuikChange site-directed mutagenesis was performed directly in S. aureus RN4220. A missing thymidine (T) in the T stretch at gene positions 10 to 15 in a faulty plasmid was introduced by PCR (Phusion Hot Start II High-Fidelity DNA Polymer-
ase; Thermo Fisher Scientific, Waltham, MA) with overlapping primers mut_M1670-F (5'-GGTTTATCATATGAAAAAGTTTTTACTATCTTGGTCTTTACTCTG) and mut_M1670-R (5'-CTTTTTCATGATAACCTCCTATTTTCTTTTCTTTTCTT) (the T stretch is italic, and the start codon of blaARL is bold) (19). The reaction product was treated with the DpnI

Identity in %	aa	nt	Species	Strain	NCBH Acc. No.	Group
48 59			S. aureus	NCTC 9789	CAA36953	I
48 59			S. equorum	341_10	OEK76417	I
48 59			S. caprae	M2864_W1	EES06466	I
48 59			S. chromogenes	MU 970	KDP11883	I
48 59			S. hominis	LRRNS031	OAW33800	I
48 59			S. haemolyticus	JCSC1435	BAE50573	I
48 59			S. rostrum	RST 671	CBA13541	I
50 60			S. intermedius	CS32	ABK96850	I
48 59			S. simulans	NRRL B-2628	YP_00305728	I
48 59			S. laghadensis	HKU09-01	ADC87062	I
48 59			S. pseudintermedius	HKU10-03	ADV06389	I
48 59			S. auricularis	DN24	ABK96849	I
47 59			S. warneri	SG1	AGC91704	I
47 59			S. argenteus	MSHR1132	CCE60386	I
47 58			S. capitis	H65	OAN21866	I
47 58			S. pettenkofleri	VCU012	EH71456	I
47 58			S. schleiferi	2317-03	AKS72675	I
50 60			S. fleurettii	M31	AKH49425	I
50 60			S. delphi	M33	AKH49431	I
50 60			S. vitulinus	M38	AKH49434	I
50 60			S. saprophyticus	M21	AKH49420	I
50 60			S. succinac	M27	AKH49421	I
49 60			S. epidermidis	ATCC 12228	NP_365163	I
49 60			S. simulans	FHAARGOS 124	AMG95706	I
49 60			S. agnetis	908	ALN76001	I
49 60			S. cohnii	532	KKD21639	I
49 60			S. gallinarum	DSM 20610	KIR11093	I
47 57			S. lentus	MF1862	OAC27058	IV
46 55			S. zonatus	S04009	CCM44120	III
46 55			S. steganovici	IMT28705	ALB00614	III
45 55			S. aureus	M100061	CBZ41399	III
49 57			S. scavi	GVGS2	CDH98052	III
47 56			S. equorum	KS1039	ALM56112	IV
54 61			S. saprophyticus	ATCC 15305	BAE19313	IV
48 59			S. zonatus	HKU01P8	AID00593	IV
51 60			S. gallinarum	DSM 20610	KIR12902	IV
50 59			S. cohnii	532	KKD26661	IV
54 60			S. succinac	DSM 14617	LCSH10000017	IV

FIG 1 Phylogenetic tree of β-lactamases encoded by staphylococci. Evolutionary analysis was performed for amino acid sequences by the unweighted pair group method using average linkages in MEGA7. Evolutionary distances were computed by the Poisson correction method and were measured as the number of amino acid substitutions per site. The percentages of amino acid and nucleotide sequence identity between blaARL and other β-lactamases were determined by sequence alignment with Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/). Roman numerals indicate β-lactamase groups as follows: I, blaZ; II, blaARL; III, β-lactamases of the class E _mec_ gene complex; IV, group of diverse uncharacterized β-lactamases.
restriction enzyme and directly electroporated into RN4220 cells to obtain plasmid pSAN02mut. Sequencing of the mutagenized plasmid in RN4220 clones confirmed the correct sequence of blaARL. Furthermore, pSAN02mut isolated from RN4220 could not be transformed into E. coli, confirming that the constitutive expression of blaARL from Pcap is not compatible with E. coli.

The production of a functional /H9252-lactamase by S. aureus RN4220 containing pSAN01 and pSAN02mut was demonstrated by a positive nitrocefin test on BBL DrySlide nitrocefin (Becton, Dickinson and Company, Franklin Lakes, NJ) and by increased resistance to penicillin (Table 1) but not to other /H9252-lactams, including ceftriaxone, cefaclor, cefepime, cefixime, cefuroxime, ertapenem, cefepime, cefotaxime, imipenem, ceftazidime, and temocillin. MICs were determined by microdilution in cation-adjusted BBL Mueller-Hinton II Broth (Becton, Dickinson and Company) with EUST, HPB1, and EUVSEC2 Sensititre Plates (Thermo Fisher Scientific) in accordance with CLSI guidelines (20).

The MICs of both penicillin and ampicillin were higher for RN4220/pSAN02mut expressing blaARL constitutively than for RN4220/pSAN01 containing blaARL regulated by blaIARL and blaR1ARL (Table 1). Higher MICs of the cephalosporin cefoxitin and the carbapenem meropenem, with a 2-fold increase, were also observed with pSAN02mut. This is likely to be a side effect of overproduction of ARL, a protein that can bind /H9252-lactams. It is unlikely that ARL can hydrolyze these /H9252-lactam rings since class A /H9252-lactamases like PC1 are primarily penicillinases and are not expected to have any cephalosporinase or carbapenemase activity (21). Absence of carbapenemase activity was confirmed with the Blue-Carba test (22).

TABLE 1 Staphylococcus strain characteristics and origins and MICs of β-lactam antibiotics

Strain/plasmid	Origin and characteristics	Reference or source	MIC (µg/ml)	Nitrocefin test result			
S. aureus			Reference or source	MIC (µg/ml)	Nitrocefin test result		
RN4220	Plasmid-free recipient	25	≤0.125	≤0.125	0.06	Negative	
RN4220/pBUS1-Pcap- HC	RN4220 containing expression vector pBUS1-Pcap- HC	17	≤0.125	≤0.125	0.06	Negative	
RN4220/pTSSCm	RN4220 containing cloning vector pTSSCm	17	≤0.125	≤0.125	0.06	Negative	
RN4220/pSAN01	RN4220 containing pTSSCm with blaARL-blaR1ARL-blaARL operon	This study	0.25	≤0.125	0.06	Positive	
RN4220/pSAN02mut	RN4220 harboring pBUS1-Pcap- HC with blaARL gene under control of Pcap promoter	This study	2	0.5	4	0.12	Positive
S. arlettae			Reference or source	MIC (µg/ml)	Nitrocefin test result		
SAN1670	Bovine mastitis milk, Switzerland, 2010	This study	0.5	0.5	4	0.5	Positive
SAN2677	Bovine mastitis milk, Switzerland, 2015	This study	0.25	0.5	4	0.25	Positive
SAN2690	Bovine mastitis milk, Switzerland, 2015	This study	0.25	0.5	4	0.25	Positive
SAN1988	Bovine mastitis milk, Switzerland, 2016	This study	0.5	0.25	2	0.25	Positive
SAN2420	Bovine mastitis milk, Switzerland, 2016	This study	0.5	0.5	2	0.5	Negative
BM242	Bovine mastitis milk, Switzerland, 2016	This study	0.25	0.5	4	0.5	Positive
CSKR33	Equine skin, Switzerland, 2004	2	0.5	1	2	0.25	Positive
CCUG 33610	Tobacco fermentation process, Sweden, 1994	CCUG, 1994	0.25	0.25	4	0.25	Positive
CCUG 50677	Tobacco, Sweden, 2005	CCUG, 2005	0.25	0.5	2	0.25	Positive
CCUG 32416 T	Poultry skin, Belgium, 1984	1	0.25	0.25	2	0.25	Positive
ILR1338	Camel nasal cavity, Kenya, 2014	This study/ILRI	0.25	0.25	4	0.25	Positive
sequencing revealed an intact bla\textsubscript{ARL}-bla\textsubscript{R1}\textsubscript{ARL}-bla\textsubscript{ARL} operon. The operon was located between open reading frames encoding a MaoC-like domain-containing protein and a peptide ABC transporter permease, the same as in the sequenced strains SAN1670, CVD059, and EGD-HP3 (see Table S1). The bla\textsubscript{ARL}-bla\textsubscript{R1}\textsubscript{ARL}-bla\textsubscript{ARL} operon sequences of the 10 \textit{S. arlettae} strains have 88 to 100% nucleotide sequence identity with that of SAN1670.

The universal presence of bla\textsubscript{ARL} in all of the tested \textit{S. arlettae} strains from different sources suggests intrinsic penicillin resistance in this species. The bla\textsubscript{ARL}-bla\textsubscript{R1}\textsubscript{ARL}-bla\textsubscript{ARL} operon seems to be a stable part of the core genome and not to be associated with any recombinase. However, the location between \textit{guaA} and \textit{rpsR}, integration hot spots for genomic islands (23, 24), suggests a potential for bla\textsubscript{ARL} mobilization. In addition, diverse proteins containing typical \(\beta\)-lactamase motifs appear to be present in many different \textit{Staphylococcus} species. They lack the antirepressor bla\textsubscript{R1} and repressor bla\textsubscript{L}, and their role in \(\beta\)-lactam resistance is unclear. Our data propose a broader genetic analysis of penicillin-resistant \textit{staphylococci} that do not contain \textit{blaZ}. They also show that the presence of a functional \(\beta\)-lactamase in \textit{S. arlettae} is presumable and jeopardizing penicillin treatment. The identification of the pathogen, as well as antimicrobial susceptibility testing, is therefore necessary for correct and effective therapy.

Accession number(s). The sequence of the bla\textsubscript{ARL}-containing contig of \textit{S. arlettae} SAN1670 has been deposited in the GenBank database under accession number KY363215. The sequence of the bla\textsubscript{ARL}-bla\textsubscript{R1}\textsubscript{ARL}-bla\textsubscript{ARL} operon of \textit{S. arlettae} strain ILRI338 has been deposited under accession number KY464892, and those of strains CCUG 50677, BM242, CCUG 32416, CSKR33, SAN1988, SAN2420, SAN2677, SAN2690, and CCUG 33610 have been deposited under accession numbers KY363206 to KY363214, respectively.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/mSphere.00117-17.

TABLE S1, PDF file, 0.3 MB.

ACKNOWLEDGMENTS

This study was financed by research grant 35-539 from the Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland, and by grant 1.15.07 from the Federal Food Safety and Veterinary Office within the framework of the Animal Health and Welfare ERA-Net project.

We thank the Center for Zoonoses, Animal Bacterial Diseases and Antimicrobial Resistance (ZOBA), Institute of Veterinary Bacteriology, University of Bern, for providing mastitis isolates; Carlotta Sartori and Hans U. Graber, Agroscope, Liebefeld-Bern, for strain BM242; Anne Liljander, International Livestock Research Institute, Nairobi, Kenya, for strain ILRI338; Nadia Wohlwend, Labormedizinisches Zentrum Risch, Liebefeld-Bern, for sequencing strain SAN1670; and Alexandra Collaud, Institute of Veterinary Bacteriology, Bern, Switzerland, for technical assistance.

REFERENCES

1. Schleifer KH, Kilpper-Bälz R, Devriese LA. 1984. \textit{Staphylococcus arlettae} sp. nov., \textit{S. equorum} sp. nov. and \textit{S. kloosii} sp. nov.: three new coagulase-negative, novobioxin-resistant species from animals. Syst Appl Microbiol 5:501–509. https://doi.org/10.1016/S0723-2020(84)80007-7.
2. Schnellmann C, Gerber V, Rossano A, Jaquier V, Panchaud Y, Doheir MG, Thomann A, Straub R, Perreten V. 2006. Presence of new \textit{mecA} and \textit{mph}(C) variants conferring antibiotic resistance in \textit{Staphylococcus} spp. isolated from the skin of horses before and after clinic admission. J Clin Microbiol 44:4444–4454. https://doi.org/10.1128/JCM.00868-06.
3. Verdier-Metz I, Lagne G, Bornes S, Monsallier F, Veisseire P, Delbés-Paus C, Montel MC. 2012. Cow teat skin, a potential source of diverse microbial populations for cheese production. Appl Environ Microbiol 78: 326–333. https://doi.org/10.1128/AEM.06229-11.
4. dos Santos Nascimento J, Fagundes PC, de Paiva Brito MA, dos Santos KR, do Carmo de Freire Bastos M. 2005. Production of bacteriocins by coagulase-negative \textit{staphylococci} involved in bovine mastitis. Vet Microbiol 106:61–71. https://doi.org/10.1016/j.vetmic.2004.10.014.
5. De Briyne N, Atkinson J, Pokludová L, Borriello SP. 2014. Antibiotics used most commonly to treat animals in Europe. Vet Rec 175:325. https://doi.org/10.1136/vr.102462.
6. Lowy FD. 2003. Antimicrobial resistance: the example of \textit{Staphylococcus aureus}. J Clin Invest 111:1265–1273. https://doi.org/10.1172/JCI18535.
7. Hackbarth CJ, Chambers HF. 1993. \textit{blaI} and \textit{blaR1} regulate \(\beta\)-lactamase and PBP 2a production in methicillin-resistant \textit{Staphylococcus aureus}. Antimicrob Agents Chemother 37:1144–1149. https://doi.org/10.1128/AAC.37.5.1144.
8. Zhang HZ, Hackbarth CJ, Chansky KM, Chambers HF. 2001. A proteolytic transmembrane signaling pathway and resistance to β-lactams in staphylococci. Science 291:1962–1965. https://doi.org/10.1126/science.1055144.

9. Klimiene I, Virgailis M, Pavilonis A, Slugzdiniene R, Mockeliunas R, Ruzauskas M. 2016. Phenotypical and genotypical antimicrobial resistance of coagulase-negative staphylococci isolated from cow mastitis. Pol J Vet Sci 19:639–646. https://doi.org/10.1515/pjvs-2016-0080.

10. Olsen JE, Christensen H, Aarestrup FM. 2006. Diversity and evolution of blaZ from Staphylococcus aureus and coagulase-negative staphylococci. J Antimicrob Chemother 57:450–460. https://doi.org/10.1093/jac/dki492.

11. Rowland SJ, Dyke KG. 1990. Tn552, a novel transposable element from Staphylococcus aureus. Mol Microbiol 4:961–975. https://doi.org/10.1111/j.1365-2958.1990.tb00669.x.

12. Shearer JE, Wireman J, Hostetler J, Forberger H, Borman J, Gill J, Sanchez S, Mankin A, Lamarre J, Lindsay JA, Bayles K, Nicholson A, O’Brien F, Jensen SO, Firth N, Skurray RA, Summers AO. 2011. Major families of multiresistant plasmids from geographically and epidemiologically diverse staphylococci. G3 (Bethesda) 1:581–591. https://doi.org/10.1534/g3.111.000760.

13. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199.

14. Jacoby GA. 2006. β-Lactamase nomenclature. Antimicrob Agents Chemother 50:1123–1129. https://doi.org/10.1128/AAC.50.4.1123-1129.2006.

15. Sigrist CJ, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, Bougueleret L, Xenarios I. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199.

16. Dinakaran V, Shankar M, Jayashree S, Rathinavel A, Gunasekaran P, Rajendhran J. 2012. Genome sequence of Staphylococcus arlettae strain CVD059, isolated from the blood of a cardiovascular disease patient. J Bacteriol 194:6615–6616. https://doi.org/10.1128/JB.01732-12.

17. Schwendener S, Perreten V. 2015. New shuttle vector-based expression system to generate polyhistidine-tagged fusion proteins in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 81:3243–3254. https://doi.org/10.1128/AEM.03803-14.

18. Schenk S, Laddaga RA. 1992. Improved method for electroporation of Staphylococcus aureus. FEMS Microbiol Lett 73:133–138.

19. Zheng L, Baumann U, Reymond JL. 2004. An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res 32:e115. https://doi.org/10.1093/nar/gnh110.

20. CLSI. 2016. Performance standards for antimicrobial susceptibility testing; twenty-sixth informational supplement M100-S26. Clinical and Laboratory Standards Institute, Wayne, PA.

21. Bush K. 2013. The ABCD’s of β-lactamase nomenclature. J Infect Chemother 19:549–559. https://doi.org/10.1007/s10156-013-0640-7.

22. Pires J, Novais A, Peixe L. 2013. Blue-carba, an easy biochemical test for detection of diverse carbapenemase producers directly from bacterial cultures. J Clin Microbiol 51:4281–4283. https://doi.org/10.1128/JCM.01634-13.

23. Fitzgerald JR, Monday SR, Foster TJ, Bohach GA, Hartigan PJ, Meaney WJ, Smyth CJ. 2001. Characterization of a putative pathogenicity island from bovine Staphylococcus aureus encoding multiple superantigens. J Bacteriol 183:63–70. https://doi.org/10.1128/JB.183.1.63-70.2001.

24. Chen HJ, Tsai JC, Hung WC, Tseng SP, Hsueh PR, Teng LJ. 2011. Identification of fusB-mediated fusidic acid resistance islands in Staphylococcus epidermidis isolates. Antimicrob Agents Chemother 55:5842–5849. https://doi.org/10.1128/AAC.00592-11.

25. Kreiswirth BN, Löfdahl S, Betley MJ, O’Reilly M, Schlievert PM, Bergdoll MS, Novick RP. 1983. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305:709–712. https://doi.org/10.1038/305709a0.