Comparison of Adjuvant Chemotherapy for Upper Tract versus Lower Tract Urothelial Carcinoma: A Systematic Review and Meta-Analysis

Seyed B. Jazayeria, Jennifer S. Liu, Brittany Weissman, Janice Lester, David B. Samadi, Michael A. Feuerstein

Department of Urology, Lenox Hill Hospital, Northwell School of Medicine, New York, NY; Health Science Library, Northwell Health, Long Island Jewish Medical Center, New Hyde Park, NY, USA

Key Words
Urothelial carcinoma • Adjuvant chemotherapy • Upper tract • Lower tract • Meta-analysis

Abstract
Introduction: Principles of management for upper tract urothelial carcinoma (UTUC) are mostly derived from knowledge of lower tract urothelial carcinoma (LTUC), however recent research indicates that these may be disparate diseases. In this review, we sought to compare the responsiveness of these tumors to similar treatment, platinum-based chemotherapy used in the adjuvant setting. Materials and Methods: PubMed, EMBASE, and Web of Science were searched using a systematic search strategy. Disease-free survival (DFS), cancer-specific survival (CSS) and overall survival (OS) in patients with LTUC and UTUC treated with adjuvant chemotherapy were compared. Review Manager V 5.3 was used for meta-analyses. Results: Adjuvant chemotherapy was associated with improved DFS (HR 0.41, 95%CI 0.31–0.54), CSS (HR 0.29, 95%CI 0.17–0.50) and OS (HR 0.51, 95%CI 0.38–0.70) rates in LTUC. The effectiveness of adjuvant chemotherapy in UTUC was less pronounced with respect to DFS (HR 0.61, 95%CI 0.1–0.93) and CSS (HR 0.70, 95%CI 0.56–0.90) rates, and there was no effect on OS (HR 0.87, 95%CI 0.69–1.10). Differences in CSS and OS were significant (p < 0.0001) in favor of adjuvant chemotherapy for LTUC versus UTUC. Conclusion: Despite similar histology, we found significant differences in responsiveness to adjuvant chemotherapy between LTUC and UTUC. This may add to the already growing knowledge that these are disparate diseases. Newer systemic treatments for urothelial carcinoma may prove more effective than platinum-based chemotherapy in the adjuvant setting for UTUC.

Introduction
Urothelial carcinoma (UC) is the second most common genitourinary cancer worldwide [1]. Lower tract urothelial carcinoma (LTUC) is the most common form of UC and accounts for more than 90% of all UC cases. On the other hand, upper tract urothelial carcinoma (UTUC) is a rare and less understood malignancy with an incidence of 2 cases per 100,000 individuals [2]. The low incidence of UTUC has led to the limited literature on the management of UTUC. While randomized clinical level I data exists for systemic treatment of advanced LTUC, our understanding of the UTUC is largely limited to retrospective analyses [3]. Therefore, in practice, management of patients with UTUC is largely guided by understanding principles of LTUC [4].

Despite similarities in age, gender, pathology and risk factors, LTUC and UTUC have been considered 2 different diseases [5]. It is important to consider that the 2 portions of the urinary tract arise from different embryological structures [6]. Although the genomic profiles of LTUC and UTUC have many similarities, there may be subtle differences that may impact response to systemic
treatment [7, 8]. In addition, the systemic treatment of UC is rapidly changing with several checkpoint inhibitors now FDA approved for treatment of metastatic disease [9]. In lieu of these recent findings, we aimed to compare the responses of LTUC and UTUC to the standard platinum-based adjuvant chemotherapy (AC). With a paucity of data for neoadjuvant chemotherapy (NAC) in UTUC, we focused this study on response to AC.

Methods

PubMed, EMBASE, and Web of Science were searched on September 12, 2016 using the keywords bladder, upper tract, calic*, pyelocalyc*, calyx, transitional, urotheli*, cancer, malignanc*, tumor* and carcinoma*. The keywords were arranged in a search strategy format which was used in the search process. Results were limited to literature published after 1985. Search results were imported into an EndNote X7 library, and 2 researchers (S.B.J., B.W.) independently reviewed titles, abstracts, and full-texts of the papers to select the literature. The inclusion criteria to select a paper was based on the following: 1. Reporting the results on at least 40 subjects; 2. The use of platinum-based chemotherapy regimens; 3. Performing partial or radical cystectomy in LTUC or nephroureterectomy in UTUC (papers which included patients treated with transurethral, intravesical, percutaneous techniques or radiation at any time were excluded) and 4. Reporting data on oncologic outcomes of treatment. Papers which included cases rather than UC, i.e. squamous cell carcinoma, were excluded. In the event of an inconsistency between the 2 investigators, a discussion with a third researcher (J.L.) would occur, and a decision to include or exclude the paper was made. Full-texts of the selected papers were then reviewed, and results were summarized. References of the selected articles were also hand searched to find additional evidence. An updated search was performed on June 30, 2017 and all new search results were reviewed. The primary outcomes of interest were disease-free survival (DFS), cancer-specific survival (CSS) and overall survival (OS). Data were then entered into Review Manager V. 5.3 [10] for meta-analysis. In papers where individual hazard ratio (HR) data was not provided, we followed the methods described by Guyot et al. [11] to derive HRs from reported Kaplan-Meier graphs.

Results

Primary search results are shown in figure 1. Overall 3,257 initial records were identified. After an abstract and full-text review, 14 articles met the inclusion criteria of the study. An updated search in PubMed resulted in the selection of 1 additional paper. After a hand-search of the references, we included 5 more articles that met our inclusion criteria. Of the total 20 papers, 14 reported outcomes comparing AC to no AC groups in UTUC or LTUC were reviewed and 4 papers were excluded for further meta-analysis. In addition to not having suitable data for meta-analysis, Dorff et al. [12] compared AC medication regimens. Park et al. [13] did not report HR data for meta-analyses in addition to not providing Kaplan–Meier curves to estimate HRs. Song et al. [14] compared AC treatment between LTUC and UTUC and Zargar-Shoshtari et al. [15] evaluated AC treatment in patients who had NAC prior to surgery, which was an exclusion criterion of several other papers included in this review. Lucca et al. [16, 17] only reported outcomes on lymph-node positive patients. Tsai et al. [18] compared NAC and AC treatments in UTUC. Youssef et al. [19] and Gallagher et al. [20] compared chemotherapy to patients without chemotherapy, but made no differentiation in their survival analyses on the type of chemotherapy treatment that was administered (NAC or AC). Table 1 provides an overview of individual study characteristics. Table 2 is an overview of all survival outcomes reported in the selected papers. The risk of bias table is presented in supplement 1.

AC in LTUC

Eight studies [13, 17, 21–26] reported survival outcomes on the role of AC for LTUC (table 1), including 4 randomized controlled trials and 4 retrospective studies with a total of 1,098 patients treated with platinum-based AC and 855 patients who received surgery alone. Che-
Table 1. Overview of study characteristics

Study	Comparison	AC regimen	Study eligibility criteria	Accrual period	Study type	Median follow-up, months	Total patients	
						AC	No-AC	
UTUC							421	
Hellenthal et al., 2009	Mix vs. no-AC	5% patients with carboplatin; 95% with cisplatin; 60% MVAC; 20% GC	pT3N0, pT4N0 and/or N+	1992–2006	retrospective multicenter	26	121	421
Kim et al., 2013	GCarbo vs. no-AC	MVAC, GC	pT3 or pT4 or pT1–2N1–3	2000–2013	retrospective single center	34	36	29
Kawashima et al., 2012	Mix vs. no-AC	2 patients with carboplatin; 38 cisplatin-based	pT3N0/x	1999–2009	retrospective multicenter	not reported	38	55
Ku et al., 2011	Mix vs. no-AC	MVAC, GC, cisplatin, cyclophosphamide, and doxorubicin (CISCA)	pT1–4	1991–2006	retrospective single center	38	48	116
Lee et al., 2015	Mix vs. no-AC	MVAC/MVEC	T2/N0 and LVI+	1986–2013	retrospective single center	54	64	280
Lucca et al., 2015	Mix vs. no-AC	MVAC, GC, MVEC	T1–4 and N+	1987–2012	retrospective multicenter	35	107	156
Total								
LTUC							1057	
Bono et al., 1997	Mix vs. no-AC	cisplatin, MTX	T2–4a and N0	1984–1987	prospective multicenter	69 (mean)	43	47
Freiha et al., 1996	MVAC vs. no-AC	cisplatin, methotrexate and vinblastine (CMV)	pT3–4; N0 or N+	1986–1993	prospective single center	62	27	28
Kanatani et al., 2015	Mix vs. no-AC	MVAC/GC	pT3–4 or pN1–3 or both	1990–2012	retrospective single center	29	39	22
Lehmann et al., 2006	MVAC/MVEC vs. no-AC	MVAC/MVEC	pT3, pT4a, and/or pN+	1987–1990	prospective multicenter	28	26	23
Lucca et al., 2015	Mix vs. no-AC	MVAC, MVEC, GC	T1–4 and N+	1979–2012	retrospective multicenter	160	874	649
Park et al., 2007	Mix vs. no-AC	MVAC or GC	T3–4N0 or N+	1989–2004	retrospective single center	34	60	200
Paz-Ares et al., 2010	Mix vs. no-AC	paclitaxel, gemcitabine, cisplatin	pT2G3 (N0–2), or pT3–4 (N0–2) any G, or pN1–2, any T, any G	2000–2007	prospective multicenter	30	68	74
Waki et al., 1990	MVAC vs. no-AC	MVAC or CAP	pT2–4	1979–1988	retrospective single center	not reported	21	12
Total							1098	

CAP = Cyclophosphamide, doxorubicin, cisplatin; GC = gemcitabine, cisplatin; MTX = methotrexate; MVAC = methotrexate, vinblastine, Adriamycin, and cisplatin; MVEC = methotrexate, vinblastine, epirubicin, and cisplatinum; Mix = patient treated with a mixed-medication AC.
Table 2: Overview of study survival outcomes

Study	Oncologic outcomes	Comment
AC in UTUC		
Hellenthau et al., 2009		
AC in UTUC	DFS	adjusted HR 0.79 (95% CI 0.58–1.08)
	CSS	median OS 24 vs. 26 months (p = ns) adjusted HR 0.94 (95% CI 0.71–1.25)
Kim et al., 2013		CSS log-rank test, p = 0.47 adjusted HR 0.52 (95% CI 0.17–1.67) estimated HR 0.66 (95% CI 0.30–1.43)
Kawashima et al., 2012		5-year CSS rate 81 vs. 64% (p = 0.09) adjusted HR 0.21 (95% CI 0.06–0.66, p = 0.01) estimated HR 0.43 (95% CI 0.18–1.02)
Ku et al., 2011		DFS log-rank test, p = 0.049 Adjusted HR 0.25 (95% CI 0.11–0.56, p < 0.01)
Lee et al., 2015		adjusted SHR 0.83 (CI not reported, p = 0.22) estimated SHR 0.54–1.06 adjusted SHR 0.59 (95% CI 0.43–0.80)
Lucca et al., 2015		adjusted SHR 0.83 (CI not reported, p = 0.22) estimated SHR 0.54–1.06 adjusted SHR 0.59 (95% CI 0.43–0.80)
AC in LTUC		
Bono et al., 1997		adjusted HR 0.75 (95% CI 0.41–1.4)
Freiha et al., 1996		adjusted HR 0.74 (95% CI 0.49–1.11)
Kanatani et al., 2015		median DFS 37 vs. 12 months (p = 0.01) Estimated HR 0.43 (95% CI 0.21–0.87, p = 0.02)
Lucca et al., 2015		median CSS 57 vs. 18 month (p = 0.01) univariate HR 0.41 (95% CI 0.21–0.81, p = 0.01) adjusted HR 0.19 (95% CI 0.08–0.43, p = 0.0001)
Lehmann et al., 2006		adjusted SHR 0.83 (95% CI 0.71–0.97, p = 0.02) estimated HR 0.84 (95% CI 0.73–0.96, p = 0.012)
Park et al., 2007		adjusted HR 0.35 (95% CI 0.18–0.69, p = 0.003)
Paz-Ares et al., 2010		adjusted HR 0.40 (95% CI 0.20–0.78, p < 0.01)
Waki et al., 1990		adjusted HR 0.38 (95% CI 0.25–0.58, p < 0.001)

GC = Gemcitabine-cisplatin; **GCcarbo** = gemcitabine-carboplatin; **MVAC** = methotrexate, vinblastine, adriamycin and cisplatin; **CI** = confidence interval; **SHR** = sub-hazard ratio (Fine-Gray competing-risk model); **ns** = not significant.

Mix Patient treated with a mixed-medication AC; **Adjusted HRs** multivariate HRs reported by the paper; **Univariate HRs** univariate HRs reported by the paper; **Estimated HRs** were calculated from estimating primary data from Kaplan-Meier curves provided by papers.

Study reported as AC compared with no AC unless noted otherwise.
motherapy regimens most commonly included methotrexate, vinblastine, adriamycin, cisplatin or gemcitabine, cisplatin. The range of median follow-up among the 8 studies was 11 to 160 months. There appeared to be a consistent benefit in median and 5-year DFS, CSS, or OS rates from patients with AC compared with those who received surgery alone (table 2).

AC in UTUC

No randomized trials investigated the role of AC in UTUC. We found 6 retrospective studies [16, 19, 27–30] with a total of 414 patients treated with platinum-based (cisplatin or non-cisplatin) AC and 1,057 patients who received surgery alone. The range of median follow-up time from the 6 studies was 26 to 54 months. There did not appear to be a benefit in median and 5-year DFS, CSS, and OS rates from patients with AC compared with those who received surgery alone (table 2).

Meta-Analyses Comparing AC Responses

In LTUC, a total of 224 patients who underwent AC and 206 patients who underwent surgery alone were included in the meta-analysis. For UTUC, a total of 307 AC patients and 901 no-AC patients were included. Figures 2 and 3 show forest plot results from the papers eligible for meta-analysis. Forest plot results from univariate survival outcomes are included in supplement 2.

DFS Five studies evaluated DFS in LTUC [21–24, 26], four of which were clinical trials, and the remaining used multivariate analyses (fig. 2a). The pooled HR among the 5 studies was 0.41, 95% CI 0.31–0.54, p < 0.0001, representing a 59% survival benefit in patients treated with AC.

For DFS in UTUC (fig. 3a), 2 studies [28, 29] had sufficient data for meta-analysis. Survival data from these 2 studies were estimated by extracting primary data from Kaplan-Meier curves. The pooled univariate HR of 0.61,

Study or Subgroup	log[Hazard Ratio]	SE	Weight	Hazard Ratio	Hazard Ratio
Bone 1997	-0.26769	0.19562	10.9%	0.75 [0.40, 1.40]	
Freiha 1996	-1.12303	0.404246	11.8%	0.33 [0.16, 0.72]	
Kanetani 2015	-1.12303	0.404246	11.8%	0.32 [0.16, 0.72]	
Lehmann 2006	-1.12303	0.404246	11.8%	0.32 [0.16, 0.72]	
Paz-Ares 2010	-0.96759	0.214686	41.0%	0.30 [0.25, 0.58]	
Total (95% CI)	1.35000	0.41 [0.31, 0.54]			

Test for overall effect: Z = 6.40 (p < 0.00001)

Study or Subgroup	log[Hazard Ratio]	SE	Weight	Hazard Ratio	Hazard Ratio
Kanetani 2015	-1.68201	0.42902	36.6%	0.19 [0.08, 0.43]	
Lehmann 2006	-0.92426	0.347086	60.4%	0.40 [0.20, 0.76]	
Total (95% CI)	1.00000	0.29 [0.17, 0.50]			

Test for overall effect: Z = 4.54 (p = 0.00001)

Study or Subgroup	log[Hazard Ratio]	SE	Weight	Hazard Ratio	Hazard Ratio
Bone 1997	-0.43078	0.32313	23.0%	0.65 [0.34, 1.25]	
Freiha 1996	-0.40034	0.37796	17.7%	0.67 [0.32, 1.44]	
Lehmann 2006	-0.56217	0.311218	36.1%	0.57 [0.31, 1.06]	
Paz-Ares 2010	-1.04982	0.278363	33.2%	0.35 [0.20, 0.66]	
Total (95% CI)	1.00000	0.51 [0.38, 0.70]			

Test for overall effect: Z = 4.18 (p = 0.00001)

FIG. 2. a Multivariate DFS outcomes. b Multivariate CSS Outcomes. c Multivariate OS outcomes. Disease-free survival (a), cancer-specific survival (b), and overall survival (c) hazard ratios of studies investigating platinum-based adjuvant chemotherapy treatments for lower tract urothelial carcinoma. Fixed-effects models were used for studies with an I2 heterogeneity value of 75% or less. Random-effects models were used for studies with an I2 value over 75%.

Adjuvant Chemotherapy in Upper and Lower Urothelial Carcinoma
95% CI 0.40–0.93, p = 0.02, suggesting a 39% DFS benefit for patients treated with platinum-based AC. The univariate HR was reported as no multivariate data was found.

CSS For CSS in LTUC (fig. 2b), only 2 studies [23, 24] had sufficient data for meta-analysis, with a pooled HR 0.29, 95% CI 0.17–0.50, p < 0.00001. Between-study heterogeneity was not significant based on the Cochran Q statistic (0.17) and I^2 = 47%, so a fixed-effects model was used in analyses.

For CSS in UTUC, there were 4 studies [27, 28, 30, 31] with sufficient data for meta-analysis (fig. 3b). The pooled HR across the 4 studies was 0.70, 95% CI 0.56–0.90, p = 0.004. Between-study heterogeneity was not significant based on the Cochran Q statistic (0.16) and I^2 = 41%, so a fixed-effects model was used in analyses.

OS Four clinical trials [21, 22, 24, 26] found a highly significant OS benefit in patients treated with AC in the lower tract (fig. 2c) with a pooled HR of 0.51, 95% CI 0.38–0.70, p < 0.0001.

Conversely, 2 studies reported OS outcomes for the upper tract [27, 30], both of which evaluated multi-agent cisplatin-based treatments (fig. 3c). No significant survival benefit was found based on the pooled multivariate HR of 0.87, 95% CI 0.69–1.10, p = 0.24.

Discussion

In this study, we reviewed the available literature to compare the responses to AC of LTUC and UTUC. The purpose of this study was to determine if clinical responses to the same systemic therapy differ between these 2 histologically similar cancers. We acknowledge that evidence supports the use of NAC for LTUC, and that evidence is weaker for AC for LTUC [32]. However, due to the paucity of data of NAC for UTUC, this study focused on AC.
Our pooled analyses showed a strong benefit for AC in terms of CSS in LTUC and UTUC, but we found that the overall effect was significantly stronger in LTUC. The pooled HR calculated in our study also suggested a higher impact of AC on OS in LTUC.

Leow et al. [33] conducted a meta-analysis, on AC for LTUC using available randomized controlled trials. In the current meta-analysis, our inclusion criteria was more stringent as we excluded papers with mixed pathology or fewer than 40 enrollees. We did not have access to patient level data, and all HRs were derived either directly from the manuscript or were computed using reported Kaplan-Meier curves. Similar to our findings, Leow et al. [34] did not find a significant benefit in favor of AC in OS of patients with UTUC.

Differences in survival between LTUC and UTUC can be partly explained by the accuracy of pre-surgery staging in treatment selection [5]. UTUC are often diagnosed at a higher stage at the time of diagnosis [35]. Transurethral resection of bladder tumor allows precise staging of the primary tumor, however accurate biopsy and staging of UTUC remains challenging. While radical cystectomy may be recommended in non-muscle invasive LTUC with certain aggressive features, nephroureterectomy is often recommended at earlier stages of disease. This might cause a lead-time bias in which UTUC is treated more aggressively at earlier stages of the disease.

Recent genomic data suggests that subtle differences in gene expression may account for different treatment approaches [8]. Sfakianos et al. [7] compared the genomic profile of high-grade UTUC and LTUC. This study showed that although UTUC and LTUC contain alterations in similar genes, the frequency of gene alterations is different. Compared to high-grade LTUC cases, patients with high-grade UTUC have more frequent alterations in the FGFR3, HRAS genes, and fewer alterations in TP53 and RB1. In a study of cell cycle markers, LTUC and UTUC were found to have similar genomic profiles across all stages of the disease. However, in the subset of lymph node positive patients, UTUC patients had a higher alteration rate in Cyclin E. Moreover, node positive UTUC patients were also reported to harbor higher number of altered mutations in cell cycle markers overall [8]. These studies suggest a biological theory for differences in efficacy for systemic treatment. Similarly, it will be important to investigate differences in expression of PDL-1 and PD-1 inhibitors between UTUC and LTUC.

One limitation of this review is the relatively poor quality of primary data from the selected studies. We did not have access to patient level data to exclude patients with UC with variant histology or patients receiving NAC. There were 4 randomized controlled trials out of the 10 studies eligible for meta-analyses, and the remaining studies were nearly all retrospective in design, which is not ideal for studying survival time. Furthermore, seven of our studies were single-institution studies that lacked well-standardized methodology, including consistency in reporting data as well as in statistical methods.

Results from Kaplan-Meier methods should be interpreted with caution as this method of evaluating survival is a crude analysis and consequently does not adjust for multiple confounders. A Cox hazard ratio is a much more statistically meaningful measure of effect to interpret primary data than outcomes estimated by Kaplan-Meier survival curves. The majority of our studies were able to conduct more rigorous multivariate Cox proportional hazard models, controlling for important variables such as lymphovascular invasion, nodal status, and stage. However, within these papers, many reported on different survival outcome types and therefore made it difficult to make uniform conclusions from our meta-analysis results. For example, some studies only measured CSS and OS, but not DFS, and in others, only DFS was reported. Additionally, DFS definition was not universal among the studies. Some studies defined DFS by the time of surgery as reference point, while others used the randomization date. These differences may cause minimal changes in time to recurrence calculation. To accommodate for this discrepancy in the reported data, we only pooled HR of randomized controlled trials or HR derived from multivariate analyses together and reported multivariate and univariate results separately. We also pooled HRs from Kaplan-Meier survival curves together with HRs from univariate analyses.

While this review showed no significant OS benefit with AC in UTUC, it is important to interpret our results while considering the several limitations associated with nonrandomized retrospective studies. Selection bias may have affected results from our selected reports in the following ways: the proportion of patients with AC in some studies were significantly smaller, sometimes by 3- or 4-fold than the proportion of patients treated with surgery alone. Furthermore, in some studies, the number of patients within gender and lymph node status was much larger or smaller than those without chemotherapy treatment. Due to the inability to adjust for certain contributing factors of selection bias, our review may not fully...
capture the efficacy of AC within the selected papers. In the study of Leow et al. [34], the authors determined that many of the studies selected were affected by negative selection bias, creating an underestimation of many of the studies’ reported outcomes.

Many retrospective studies do not specifically evaluate patients at the highest risk of disease. While the large majority of the selected studies examined patients with high-risk conditions and completed sub-analyses evaluating patients with positive lymph node status, only 2 studies specifically evaluated lymph node positive patients. Additionally, it is important to note that papers selected patients based on different patient selection criteria. All but a couple studies had selected patients with advanced cancer, or high-risk conditions, defined at pT3 or pT4, with or without lymph node involvement as their study population. While the heterogeneity of our summarized data was moderately high, one of the major strengths of this review was the robust and comprehensive selection of literature available. We opted a strict inclusion criteria and performed a comprehensive search within multiple available electronic records.

Conclusion

In this meta-analysis, we found that platinum-based AC was more effective in LTUC than UTUC. Our findings support distinct clinical and genomic differences between these cancers, and the need for more effective adjuvant treatment targeting UTUC, perhaps utilizing checkpoint inhibitors.

Acknowledgment

We would like to thank Dr. Béranger Lueza, Institut de Cancérologie Gustave Roussy for his generous help in the analyses and statistical methods of the paper.

References

1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F: Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136:E359–386.
2. Raman JD, Messer J, Siatyckyi JA, Hollenbeak CS: Incidence and survival of patients with carcinoma of the ureter and renal pelvis in the USA, 1973–2005. BJU Int 2011;107:1059–1064.
3. Campbell MT, Shah AY, Matin SF, Sieffer-Radtko AO: Optimizing management of upper tract urothelial carcinoma. Urol Oncol 2017;35:492–498.
4. Roupret M, Babjak M, Comperat E, Zigeuner R, Sylvestre RJ, Burger M, Cowan NC, Böhle A, Van Rhijn BW, Kaasinen E, Palou J, Shariat SF: European Association of Urology guidelines on upper urinary tract urothelial cell carcinoma: 2015 Update. Eur Urol 2015;68:970–977.
5. Green DA, Rink M, Xylinas E, Matin SF, Stenzl A, Roupret M, Karakiewicz PI, Scherr DS, Shariat SF: Urothelial carcinoma of the bladder and the upper tract: disparate twins. J Urol 2013;189:1214–1221.
6. Catto JW, Azzouzi AR, Amira N, Rehman I, Fleeley KM, Cross SS, Fromont G, Sibomy M, Hamdy FC, Cussenot O, Meuth M: Distinct patterns of microsatellite instability are seen in tumours of the urinary tract. Oncogene 2003;22:8699–8706.
7. Smakianos JP, Cha EK, Iyer G, Scott SN, Zabor EC, Shah RH, Ren Q, Bagrodia A, Kim PH, Hakimi AA, Ostrovnaaya I, Ramirez R, Hanrahan AJ, Desai NB, Sun A, Pincirolli P, Rosenberg JE, Dalbagni G, Schultz N, Bajorin DF, Reuter VE, Berger MF, Bochner BH, Al-Ahmadie HA, Solit DB, Coleman JA: Genomic characterization of upper tract urothelial carcinoma. Eur Urol 2015;68:970–977.
8. Krabbe LM, Lotan Y, Bagrodia A, Gayed BA, Darwish OM, Youssef RF, Bolenz C, Sagalowsky AI, Raj GV, Shariat SF, Kapur P, Margulis V: Prospective comparison of molecular signatures in urothelial cancer of the bladder and the upper urinary tract–is there evidence for discordant biology? J Urol 2014;191:926–931.
9. Donin NM, Lenis AT, Holden S, Drakaki A, Pantuck A, Belldegrun A, Chamie K: Immunotherapy for the treatment of urothelial carcinoma. J Urol 2017;197:14–22.
10. Collaboration RTC. Review Manager (RevMan). 5.3. Copenhagen, The Nordic Cochrane Centre: The Cochrane Collaboration. 2014.
11. Guyot P, Ades AE, Ouwens MJ, Welton NJ: Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan-Meier survival curves. BMC Med Res Methodol 2012;12:9.
12. Dorfl TB, Tsao-Wei D, Miranda G, Skinner DG, Stein JP, Quinn DI: Adjuvant chemotherapy for locally advanced urothelial carcinoma: an overview of the USC experience. World J Urol 2009;27:39–44.
13. Park J, Park S, Song C, Doo C, Cho YM, Ahn H, Kim CS: Effectiveness of adjuvant chemotherapy in transitional cell carcinoma of the urinary bladder with lymph node involvement and/or lymphovascular invasion treated by radical cystectomy. Urology 2007;70:257–262.
14. Song YS, Cho JS, Cho KS, Doo SH, Chung BH, Kim SJ, Yang WJ, Song KH, Kim CI, Hong SJ: Efficacy of adjuvant gemcitabine-cisplatin chemotherapy: a comparative study between locally advanced transitional cell carcinoma of the bladder and upper urinary tract. Urol Int 2010;85:47–51.
Adjuvant Chemotherapy in Upper and Lower Urothelial Carcinoma

15 Zargar-Shohistani K, Kongnyuy M, Sharma P, Fishman MN, Gilbert SM, Poch MA, Pow-Sang JM, Spiess PE, Zhang J, Sexton WJ: Clinical role of additional adjuvant chemotherapy in patients with locally advanced urothelial carcinoma following neoadjuvant chemotherapy and cystectomy. World J Urol 2016;34:1567–1573.

16 Lucca I, Kassouf W, Kapoor A, Fairey A, Rendón RA, Izawa JI, Black PC, Fajkovic H, Seitz C, Remzi M, Nyirády P, Rouprêt M, Margulis V, Lotan Y, de Martino M, Hofbauer SL, Karakiewicz PI, Briganti A, Novara G, Shariat SF, Klatte T: The role of adjuvant chemotherapy for lymph node-positive upper tract urothelial carcinoma following radical nephroureterectomy: a retrospective study. BJU Int 2015;116:72–78.

17 Lucca I, Roupret M, Kluth L, Rink M, Tilki D, Fajkovic H, Kassouf W, Hofbauer SL, de Martino M, Karakiewicz PI, Briganti A, Trinh QD, Seitz C, Fritsche HM, Burger M, Lotan Y, Kramer G, Shariat SF, Klatte T: Adjuvant cisplatin-based combined chemotherapy for lymph node (LN)-positive urothelial carcinoma of the bladder (UCB) after radical cystectomy (RC): a retrospective international study of >1500 patients. BJU Int 2015;115:722–727.

18 Tsai CC, Huang CH, Huang CN, Wu WJ, Yeh HC, Li WM, Li CC, Lee MH: Neoadjuvant chemotherapy improves survival rate in advanced urothelial carcinoma. Kaohsiung J Med Sci 2013;29:200–205.

19 Yousef RF, Lotan Y, Sagalowsky AI, Shariat SF, Wood CG, Raman JD, Kikuchi E, Montorsi F, Oya M, Weizer A, Zigeuner R, Bensalah K, Ng CK, Ku JH, Choi WS, Kwak C, Kim HH: Bladder cancer after nephroureterectomy in patients with urothelial carcinoma of the upper urinary tract. Urol Oncol 2011;29:383–387.

20 Gallagher DJ, Milowski MY, Iasonos A, Maluf FC, Russo P, Dalbagni G, Donat MS, Boyle MG, Zheng J, Riches J, Bajorin DF: Sequential adjuvant chemotherapy after surgical resection of high-risk urothelial carcinoma. Cancer 2009;115:5193–5201.

21 Bono A, Benvenuti C, Gibba A, Guazzetti S, Cosciari-Cunico S, Anselmo G, Martini E, Parma G, Ferrai P, Viggiano G: Adjuvant chemotherapy in locally advanced bladder cancer. Final analysis of a controlled multicentre study. Acta Urologica Italica 1997;11:5–8.

22 Frehla F, Reece J, Torti FM: A randomized trial of radical cystectomy versus radical cystectomy plus cisplatin, vinblastine and methotrexate chemotherapy for muscle invasive bladder cancer; J Urol 1996;155:495–499.

23 Kanatani A, Nakagawa T, Kawai T, Naito A, Sato Y, Yoshida K, Nozaki K, Nagata M, Yamada Y, Azuma T, Suzuki M, Fujimura T, Fukuhara H, Nishimatsu H, Kume H, Igawa Y, Homma Y: Adjuvant chemotherapy is possibly beneficial for locally advanced or node-positive bladder cancer. Clin Genitourin Cancer 2015;13:e107–112.

24 Lehmann J, Franzaring L, Thuroff J, Welke S, Stockle M: Complete long-term survival data from a trial of adjuvant chemotherapy vs control after radical cystectomy for locally advanced bladder cancer. BJU Int 2006;97:42–47.

25 Waki M, Fukatsu H, Nomomura H, Miyagawa Y, Hatan Y, Hiraiai S, Muramatsu T, Yamada Y, Segawa A, Hiraota N: A clinical study of total cystectomy for transitional cell carcinoma of the urinary bladder. Hinyokika Kiyo 1990;36:649–653.

26 Puz-Ares L, Solsena E, Esteban E, Saez A, Gonzalez-Larriba J, Anton A, Hevia M, de la Rosa F, Guilem V, Bellmunt J: Randomized phase III trial comparing adjuvant paclitaxel/gemcitabine/cisplatin (PGC) to observation in patients with resected invasive bladder cancer: Results of the Spanish Oncology Genitourinary Group (SOGUG) 99/01 study (abstract). J Clin Oncol 2010;28:LB4518.

27 Hellenthal NJ, Shariat SF, Margulis V, Karakiewicz PI, Roscigno M, Bolenz C, Remzi M, Weizer A, Zigeuner R, Bansalak K, Ng CK, Raman JD, Kikuchi E, Montorsi F, Oya M, Wood CG, Fernandez M, Evans CP, Koppie TM: Adjuvant chemotherapy for high risk upper tract urothelial carcinoma: results from the Upper Tract Urothelial Carcinoma Collaboration. J Urol 2009;182:900–906.

28 Kim TS, Oh JH, Rhew HY: The efficacy of adjuvant chemotherapy for locally advanced upper tract urothelial cell carcinoma. J Cancer 2013;4:686–690.

29 Ku JH, Choi WS, Kwak C, Kim HH: Bladder cancer after nephroureterectomy in patients with urothelial carcinoma of the upper urinary tract. Urol Oncol 2011;29:383–387.

30 Lee KS, Kim KH, Yoon YE, Choi KH, Yang SC, Han WK: Impact of adjuvant chemotherapy in patients with upper tract urothelial carcinoma and lymphovascular invasion after radical nephroureterectomy. Korean J Urol 2015;56:41–47.

31 Kawashima A, Nakai Y, Nakayama M, Ujike T, Tanigawa G, Ono Y, Kamoto A, Takada T, Yamaguchi Y, Takayama H, Nishimura K, Nomonura M, Tsujimura A: The result of adjuvant chemotherapy for localized pT3 upper urinary tract carcinoma in a multi-institutional study. World J Urol 2012;30:701–706.

32 Clark PE, Spiess PE, Agarwal N, Bangs R, Boorjian SA, Buyyounouski MK, Efslatiou JA, Flagg TW, Friedlander T, Greenberg RE, Guru KA, Hahn N, Herr HW, Hoimes C, Inman BA, Kader AK, Kibel AS, Kuzel TM, Lele SM, Meeks JJ, Michalski J, Montgomery JS, Pagliaro LC, Pal SK, Patterson A, Petrylak D, Plimack ER, Pohar KS, Porter MP, Sexton WJ, Siefker-Raditke AO, Songeveld G, Tward J, Wile G, Dyer MA, Smith C: NCCN guidelines insights: bladder cancer, version 2.2016. J Natl Compr Canc Netw 2016;14:1213–1224.

33 Leow JJ, Martin-Doyle W, Rajagopal PS, Patel CG, Anderson EM, Rothman AT, Cote RJ, Urun Y, Chang SL, Cheouei TK, Bellmunt J: Adjuvant chemotherapy for invasive bladder cancer: a 2013 updated systematic review and meta-analysis of randomized trials. Eur Urol 2014;66:42–54.

34 Leow JJ, Martin-Doyle W, Fry AP, Cheouei TK, Chang SL, Bellmunt J: A systematic review and meta-analysis of adjuvant and neoadjuvant chemotherapy for upper tract urothelial carcinoma. Eur Urol 2014;66:529–541.

35 Stewart GD, Bariol SV, Grigor KM, Tolley DA, McNeill SA: A comparison of the pathology of transitional cell carcinoma of the bladder and upper urinary tract. BJU Int 2005;95:791–793.
Supplement 1 Risk of bias analyses of the select studies in this review.

Study	Selection bias	Performance bias	Detection bias	Attribution bias	Reporting bias
Bonomi et al., 1997	●	●	○	●	U
Freiha et al., 1996	●	●	○	U	○
Hellenthal et al., 2009	●	●	○	–	–
Kanter et al., 2013	●	●	○	–	–
Kawashima et al., 2012	●	●	○	–	–
Kim et al., 2013	●	●	○	U	–
Ku et al., 2011	●	●	○	U	–
Lee et al., 2015	●	●	○	U	–
Lehmann et al., 2006	●	●	○	U	–
Luca et al., 2015	●	●	○	U	U
Luca et al., 2013	●	●	○	U	U
Park et al., 2007	●	●	○	U	U
Paz-Ares et al., 2010	●	●	○	–	–
Waki et al., 1990	●	●	○	U	U

Supplement 2

LTUC CSS

Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% CI	Hazard Ratio IV, Random, 95% CI
Luca 2015	-0.17435	0.06687	61.1%	0.84 [0.73, 0.96]	0.64 [0.32, 1.26]
Kanterani 2015	-0.8916	0.344369	38.9%	0.41 [0.21, 0.81]	
Total (95% CI)	100.0%				

Heterogeneity: TAU² = 0.20, Chi² = 4.17, df = 1 (P = 0.04), I² = 76%
Test for overall effect Z = 1.30 (P = 0.19)

LTUC DFS

Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Fixed, 95% CI	Hazard Ratio IV, Fixed, 95% CI
Freiha 1996	-0.84397	0.362598	45.2%	0.43 [0.21, 0.86]	
Kanterani 2015	-0.48204	0.329339	54.8%	0.83 [0.33, 1.20]	
Total (95% CI)	100.0%				

Heterogeneity: Chi² = 0.81, df = 1 (P = 0.44); I² = 0%
Test for overall effect Z = 2.58 (P = 0.009)
