Nuclear dependence of the transverse-single-spin asymmetry for forward neutron production in polarized $p + A$ collisions at $\sqrt{s_{NN}} = 200$ GeV

C. Aidala,39 Y. Akiba,50, 51, * M. Alfred,22 V. Andrieux,39 K. Aoki,30 N. Apadula,27 H. Asano,33, 50 C. Ayuso,39 B. Azmoun,7 V. Babintsev,23 A. Bagoly,16 N.S. Bandara,38 K.N. Barish,8 S. Bathe,5, 51 A. Bazilevsky,7 M. Beaumier,8 R. Belmont,12 A. Berdnikov,53 Y. Berdnikov,53 D.S. Blau,52 M. Boer,35 J.S. Bok,44 M.L. Brooks,35 J. Brylsawksyj,5, 8 V. Bumazhnov,23 C. Butler,20 S. Campbell,13 V. Canoa Roman,56 R. Cervantes,56 C.Y. Chi,18 M. Chiu,7 I.J. Choi,34 J.B. Choi,10, 11 Z. Citron,61 M. Connors,20, 51 N. Cronin,56 M. Csanád,16 T. Csörgő,17, 62 T.W. Dunley,15 M.S. Daugherity,1 G. David,7 K. DeBlasio,43 K. Dehmelt,56 A. Denisov,23 A. Deshpande,51, 56 E.J. Desmond,7 A. Dion,6, 56 D. Dixit,56 J.H. Do,63 A. Drees,56 K.A. Drees,6 M. Dumancic,61 J.M. Durham,35 A. Durum,23 T. Elder,17, 20 A. Enokizono,50, 52 H. En’yo,56 S. Esuni,59 B. Fadem,40 W. Fan,56 N. Feige,56 D.E. Fields,43 M. Finger,9 M. Finger, Jr.,9 S.L. Fokin,32 J.E. Frantz,45 A. Franz,7 A.D. Frawley,19 Y. Fukuda,59 C. Gai,56 P. Gallus,14 P. Garg,3, 56 H. Ge,56 F. Giordano,24 Y. Goto,50, 51 N. Grau,2 S.V. Greene,60 M. Grosse Perdekamp,24 T. Gunji,11 H. Guragain,20 T. Hachiya,50, 51 J.S. Haggerty,7 K.I. Hahn,18 H. Hamagaki,11 H.F. Hamilton,1 S.Y. Han,18 J. Hanks,56 S. Hasegawa,28 T.O.S. Haseler,20 X. He,20 T.K. Hemmick,56 J.C. Hill,27 K. Hill,12 R.S. Hollis,8 K. Homma,21 B. Hong,31 T. Hoshino,21 N. Hotvedt,27 J. Huang,7 S. Huang,60 K. Inami,28 J. Imrek,15 M. Inaba,59 A. Iordanova,8 D. Isernhower,1 Y. Ito,41 D. Ivanishchev,49 B.V. Jacak,56 M. Jezghani,20 Z. Ji,56 X. Jiang,35 B.M. Johnson,7, 20 V. Jorjadze,56 D. Jouan,47 D.S. Jumper,24 J.H. Kang,69 D. Kapukchyan,8 S. Kartthas,56 D. Kawall,38 A.V. Kazantsev,32 V. Khachatryan,56 A. Khanzadeev,49 C. Kim,8, 31 D.J. Kim,29 E.-J. Kim,10 M. Kim,54 M.H. Kim,31 D. Kincses,16 E. Kistenev,7 J. Klatsky,9 P. Kline,56 T. Koblesky,12 D. Kotov,49, 53 S. Kudo,59 K. Kurita,52 Y. Kwon,63 J.G. Lajoie,27 E.O. Lallou,40 A. Lebedev,27 S. Lee,63 M.J. Leitch,35 Y.H. Leung,56 N.A. Lewis,39 X. Li,35 S.H. Lim,35, 63 L. Liu,48 M.X. Liu,35 V.R. Loggins,24 V.R. Loggins,24 S. Lokos,16 K. Lovasz,15 D. Lynch,7 T. Majurasz,15 Y.I. Makdisi,6 M. Makek,64 M. Malaeve,49 V.I. Manko,32 E. Mannel,7 H. Masuda,52 M. McEwem,35 P.L. McGaughy,35 D. McGlinchey,12 C. McKinney,24 M. Mendoza,8 W.J. Metzger,17 A.C. Mignerey,37 D.E. Mikhailik,56 A. Milov,51 D.K. Mishra,4 J.T. Mitchell,7 G. Mitsuka,51 S. Miyasaka,50, 58 S. Mizuno,50, 59 P. Montuenga,24 T. Moon,63 D.P. Morrison,7 S.I.M. Morrow,60 T. Murakami,33, 50 J. Murata,50, 52 K. Nagai,58 K. Nagashima,21 T. Nagashima,52 J.L. Nagle,12 M.I. Nagy,16 I. Nakagawa,50, 51 H. Nakagomi,50 K. Nakano,50, 59 C. Nattrass,57 T. Niida,59 R. Nouicer,7, 51 T. Novák,17, 62 N. Novitzky,56 R. Novotny,45 A.S. Nyanin,32 E. O’Brien,7 C.A. Ogilvie,27 J.D. Orjuela Koop,12 J.D. Osborn,39 A. Oskarsson,36 G.J. Ottino,43 K. Ozawa,30, 59 V. Panteluev,25 V. Papavassiliou,44 J.S. Park,54 S. Park,50, 54, 56 S.F. Pate,44 M. Patel,27 W. Peng,60 D.V. Perepelitsa,7, 12 G.D.N. Perera,14 D.Y. Persson,32 C.E. PerezLara,56 J. Perry,27 R. Petti,7 M. Phipps,7, 24 C. Pinkenburg,7 R.P. Pisani,7 A. Pum,45 M.L. Purschke,7 P.V. Radzhevich,53 K.F. Read,46, 57 D. Reynolds,55 V. Riabow,12, 49 Y. Riabow,49, 53 D. Richford,5 T. Riem,27 S.D. Rolnick,5 M. Rosati,27 Z. Rowan,9 J. Runche,27 A.S. Safonov,53 T. Sakaguchi,7 H. Sako,28 V. Samsonov,42, 49 M. Sarour,20 K. Sato,59 S. Sato,28 B. Schaefer,60 B.K. Schnell,57 K. Sedgwick,8 R. Seidl,50, 51 A. Sen,27, 57 R. Seto,8 A. Sexton,37 D. Sharma,56 I. Shein,23 T.-A. Shibata,50, 58 K. Shigaki,21 M. Shimomura,27, 41 T. Shiroya,59 P. Shukla,4 A. Sickles,24 C.L. Silva,35 D. Silvermyr,36 B.K. Singh,3 C.P. Singh,3 V. Singh,3 M. Skoby,59 M. Shneeka,59 K.L. Smith,19 M. Snowball,35 R.A. Soltz,34 W.E. Sondheim,35 S.P. Sorenson,57 I.V. Sourikova,39 P.W. Stankus,46 S.P. Stoll,7 T. Sugiyama,21 A. Sukhov,57 T. Sumita,50 J. Sun,56 S. Syed,20 J. Szilai,62 A. Takeda,41 K. Tanida,28, 54, 51 M.J. Tannenbaum,7 S. Taronfar,60, 61 G. Tarnai,15 R. Tieleut,20 A. Timilsina,27 T. Todoric,59 M. Tomášek,14 C.L. Towell,1 R.S. Towell,1 I. Tsvetik,61 Y. Ueda,21 B. Ujvari,15 H.W. van Hecke,35 S. Vazquez-Carron,12 J. Velkovska,60 M. Virius,14 V. Vlba,14, 26 N. Vukman,64 X.R. Wang,44, 51 Z. Wang,5 Y. Watanabe,50, 51 Y.S. Watanabe,31 C.P. Wong,20 C.L. Woody,7 C. Xu,64 Q. Xu,60 L. Xue,20 S. Yalcin,56 Y.L. Yamaguchi,51, 56 H. Yamamoto,50 A. Yanovich,23 P. Yin,12 J.H. Yoo,31 I. Yoon,54 H. Yu,44, 48 I.E. Yushmanov,32 W.A. Zajc,13 A. Zelenski,6 S. Zharko,53 and L. Zou8

(PHENIX Collaboration)

1 Abilene Christian University, Abilene, Texas 79699, USA
2 Department of Physics, Augusta University, Savannah, Georgia 31419, USA
3 Department of Physics, Banaras Hindu University, Varanasi 221005, India
4 Bhalla Atomic Research Centre, Bombay 400 085, India
5 Baruch College, City University of New York, New York, New York, 10010 USA
6 Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
During 2015 the Relativistic Heavy Ion Collider (RHIC) provided collisions of transversely polarized protons with Au and Al nuclei for the first time, enabling the exploration of transverse single-spin asymmetries with heavy nuclei. Large single-spin asymmetries in very forward neutron production have been previously observed in transversely polarized $p+p$ collisions at RHIC, and the existing theoretical framework that was successful in describing the single-spin asymmetry in $p+p$ collisions predicts only a moderate atomic-mass-number (A) dependence. In contrast, the asymmetries observed at RHIC in $p+A$ collisions showed a surprisingly strong A dependence in inclusive forward neutron production. The observed asymmetry in $p+Al$ collisions is much smaller, while the asymmetry in $p+Au$ collisions is a factor of three larger in absolute value and of opposite sign. The interplay of different neutron production mechanisms is discussed as a possible explanation of the observed A dependence.

Understanding forward particle production in high energy hadron collisions is of great importance, because most of the energy goes in the forward direction, and therefore informs our understanding of overall particle production. This has particular importance in studies at colliders and of ultra-high energy cosmic rays, where the interpretation, including possibly beyond the standard model, requires estimation through modeling of forward particle production [1, 2]. Mechanisms for forward particle production are not well understood, as perturbative quantum chromodynamics (pQCD) is not applicable at small momentum transfers and diffractive production mechanisms are not well modeled. To better understand production mechanisms, measurement of the single spin asymmetry A_N, describing the azimuthal asymmetry of particle production relative to the spin direction of the transversely polarized beam or target provides crucial tests and deeper insight beyond just cross-section measurements. The spin degree of freedom has served as a strong discriminator between theoretical models. For example, the origin of the large asymmetries discovered in forward meson production in $p+p$ collisions from $\sqrt{s} = 4.9$–19.4 GeV [3–10] and later confirmed at $\sqrt{s} = 62.4$–500 GeV at the Relativistic Heavy Ion Collider (RHIC) [11–16] has been under intensive discussion for three decades and still remains an open question [17]. Despite substantial theoretical attempts to reproduce data in the pQCD regime using the conventional $2 \to 2$ parton scattering processes, the latest multiplicity dependent A_N measurements from RHIC [18] indicate that a significant contribution to the asymmetry may be of a diffractive nature.

In this Letter, we report the first measurements in 2015 of A_N for very forward neutron production in collisions between polarized protons and nuclei (Al and Au) at $\sqrt{s_{NN}} = 200$ GeV with the PHENIX detector [28]. The average beam polarization in $p+p$, $p+Al$, and $p+Au$ data samples was 0.515 ± 0.002, 0.59 ± 0.02, and 0.50 ± 0.04, respectively, with additional global uncertainty of 3% from the polarization normalization [29, 30].

The experimental setup using a zero-degree calorimeter (ZDC) [31] and a position-sensitive shower-maximum detector (SMD) is similar to the one used for $p+p$ data [32]. The ZDC comprises three modules located in series at ± 18 m away from the collision point. The ZDC has an acceptance in the transverse plane of 10×10 cm2, with a total of 5.1 nuclear interaction lengths (or 149 radiation lengths), and an energy resolution of ~ 25–20% for 50–100 GeV neutrons. The SMD comprises x-y (horizontal-vertical) scintillator strip hodoscopes inserted between the first and second ZDC modules (approximately at the position of the maximum hadronic shower), and provides a position resolution of ~ 1 cm for 50–100 GeV neutrons. These detectors are located downstream of the RHIC DX beam splitting magnet, so that near beam-momentum charged particles from collisions are expected to be swept into the beam lines and out of the ZDC acceptance (see Fig. 1).

To accommodate asymmetric $p+A$ collisions of beams with different rigidity, the DX magnets were moved horizontally [33]. In this special setup for the present measurement, the proton beam was angled off axis by ~ 2 mrad relative to the nominal beam direction at the collision point, with a crossing angle with the Au (Al) beam of 2.0 mrad (1.1 mrad). Correspondingly, the ZDC was moved by 3.6 cm (2 mrad) to keep zero-degree neutrons at the ZDC center (see Fig. 1).

The data was collected with triggers employing the ZDC and beam-beam counters (BBCs) [34]. Only the north ZDC detector, facing the incoming polarized proton beam was used in this analysis. Two BBC counters are located at ± 144 cm from the nominal collision point along the beam pipe and are designed to detect charged particles in the pseudorapidity range of $\pm (3.0$–$3.9)$ with full azimuthal coverage. The ZDC inclusive trigger required the energy deposited in the ZDC to be
greater than 15 GeV. The ZDC⊗BBC-tag trigger in addition required at least one hit in each of the BBCs, and ZDC⊗BBC-veto trigger required no hits in both BBCs. The latter two sets represent mutually exclusive but not complete subsets of the ZDC inclusive triggered data.

As described in detail in Ref. [32], event selection and neutron identification cuts include: (1) a total ZDC energy cut of 40–120 GeV; (2) at least two SMD strips fired (above threshold) in both x and y directions, and a nonzero (above threshold) energy in the second ZDC module (to reject photons); and (3) an acceptance cut of 0.5 < r < 4.0 cm for the reconstructed radial distance r from the determined beam center (to reduce the impact of the position resolution and edge effects in the asymmetry measurements).

The raw asymmetry (ε_N(φ)) is calculated using the square-root formula [32] for each azimuthal angle (φ) bin. The polarization normalized A_N^fit is then extracted from the fit to a sine function

$$\epsilon_N(\phi) = P A_N^{fit} \sin(\phi - \phi_0),$$

where P is the proton beam polarization and φ_0 is the polarization direction in the transverse plane.

The contribution of charged hadron background from hard scattering processes, distributed nearly uniformly over the ZDC acceptance, was estimated using PYTHIA6 [35] with a GEANT3 [36] detector simulation. However, from previous studies where a charge veto counter was installed in front of the ZDC to measure the charged hadron background, it was found that simulation underestimates the proton background by a factor of ~2 [32]. Therefore the hard scattering background contribution from simulation was scaled by a factor of two with an uncertainty equal to the size of the increase. In p+p collisions this background fraction resulted in 6±3%, 3±1.5% and 12±6% in ZDC, ZDC⊗BBC-veto and ZDC⊗BBC-tag triggered samples, respectively. In p+A collisions due to increased neutron signal from electromagnetic (EM) processes (to be discussed later), the relative background contributions are expected to be smaller. Therefore the measured asymmetries in p+A collisions were not corrected for background, but one side systematic uncertainties (in the direction of asymmetry dilution) equal to background fraction plus 1σ uncertainty in the p+p case, i.e. 9%, 4.5% and 18% were conservatively assigned in ZDC, ZDC⊗BBC-veto and ZDC⊗BBC-tag triggered samples, respectively.

From the considerations above, only the p+p asymme-

FIG. 1. ZDC location and beam orbits of proton (blue) beam and heavy-ion (yellow) beam in the special stores used for this analysis; the z-axis shows the nominal beam direction, and the dashed line represents the zero-degree neutron trajectory. DX and D0 are the RHIC beam bending dipole magnets.

FIG. 2. A_N^{fit} fit of ZDC inclusive samples.
tries were corrected for backgrounds according to
\[A_N^S = \frac{A_N^S \cdot r_{eff} \cdot A_B^B}{1 - r_{eff}} \]
where \(A_N^S \) and \(A_B^B \) stand for signal and background asymmetries, and \(r_{eff} \) is the “effective” background fraction in the reconstructed neutron sample. The parameter \(r_{eff} \) accounts for the dilution of the background effect in \(A_N^S \) in the case when the background contributes preferably on one side of the detector (as from elastic or diffractive protons). The background asymmetry \(A_N^B \) was evaluated from the comparison of asymmetries with and without the charge veto cut from the 2008 data when the charge veto counter was available. The asymmetries \(A_N^B \) were found to be consistent with zero within statistical uncertainties. Asymmetries were corrected for backgrounds according to
\[A_N = A_N^S \cdot r_{eff} \cdot A_B^B \]
where \(A_N \) is the fully corrected transverse single spin asymmetry calculated as
\[A_N = \frac{N(\phi) - N(\phi^*)}{N(\phi) + N(\phi^*)} \]

Besides charged hadrons, the other background sources are photons and \(K^0 \) mesons. From PYTHIA6 simulation their contribution after the analysis cuts was evaluated to be below 3% in all collision systems and triggers, and was neglected in the asymmetry results.

The measured asymmetries are affected by detector resolutions and other detector systematic effects (e.g. edge effects), as well as by the uncertainty in the shape of the neutron production cross section vs \(p_T \) and \(x_F \), and the assumption for the shape of \(A_N(p_T) \) within the \(p_T \) range sampled in this analysis. These effects were studied in detail with a GEANT3 Monte Carlo simulation. The fully corrected transverse single spin asymmetry \(A_N \) was calculated as \(A_N = A_N^S / C_\phi \) where the correction factor \(C_\phi \) was calculated in the simulation as the ratio of the measured asymmetry to the average input asymmetry over the neutron sample collected with experimental cuts used in the analysis. The biggest variation in \(C_\phi \) comes from the position resolution uncertainty and the assumption for \(A_N(p_T) \). The position resolution in the simulation was varied by changing noise and thresholds in the SMD channels, as well as by introducing a cross talk effect, similar to [32]. An overall value of 3% was assigned to the \(C_\phi \) uncertainty. For the shape of \(A_N(p_T) \), it was modeled as \(A_N(p_T) = \text{const} \) (as was assumed in [32]) and \(A_N(p_T) \propto p_T \) (which is supported by theory [26]).

The difference of 3% was included in the \(C_\phi \) uncertainty. The final correction factor applied to the measured asymmetries is \(C_\phi = 0.855 \pm 0.036 \).

The analyzed data correspond to the neutron sampled \(p_T \) in the range smaller than 0.25 GeV/c peaked at about 0.1 GeV/c, which is affected by detector resolutions. Due to the varying contribution of different processes to neutron production, the sampled \(p_T \) distribution may vary in different collision systems and in different triggered data. Figure 3 shows the differences in the radial distributions, which is related to the neutron production cross section \(d\sigma/dp_T \) by \(p_T \propto r \) [32]. From a comparison with simulation assuming different slope parameter, \(b \), in the parameterization \(d\sigma/dp_T \sim e^{-b \cdot p_T} \), the data were found to be consistent with \(b = 4 \) (GeV/c)^{-1} for all collision systems in ZDC\textcircled{B}BBC-tag triggered data, and \(b = 4 \), 6 and 8 (GeV/c)^{-1} in \(p+p \), \(p+Al \) and \(p+Au \) collisions, respectively, in ZDC\textcircled{B}BBC-veto triggered sample, with uncertainty \(\sigma_b = 1 \) (GeV/c)^{-1} reflecting its sensitivity to SMD gain calibration and thresholds. These variations lead to a difference in the average \(p_T \) sampled in different collision systems and triggers by as much as 10%.

Figure 4 and Table I summarize the results for \(A_N \) in forward neutron production in \(p+p \), \(p+Al \) and \(p+Au \) collisions, for ZDC inclusive, ZDC\textcircled{B}BBC-tag and ZDC\textcircled{B}BBC-veto samples. In addition to the beam polarization, background, and smearing correction \((C_\phi) \) discussed above, the other sources of systematic uncertainties are the ZDC and SMD gain calibrations (including SMD threshold variation) and location of the beam center on the SMD plane.

From Fig. 4, the \(A \) dependence of \(A_N \) for inclusive neutrons is strong. Compared to the \(A_N \) of \(p+p \) collisions, the observed asymmetry in \(p+Al \) collisions is much smaller, while the asymmetry in \(p+Au \) collisions is a factor of three larger in absolute value and of opposite sign. This behavior is unexpected because the theoretical framework using \(\pi \) and \(a_1 \)-Reggeon interference can only predict a moderate nuclear dependence, and there is no known mechanism to flip the sign of \(A_N \) within this framework [27].

The asymmetries requiring BBC hits are remarkably different. Once BBC hits are required (ZDC\textcircled{B}BBC-tag), the drastic behavior of the inclusive \(A_N \) vanishes and its sign stays negative, approaching \(A_N = 0 \) at large \(A \). In contrast, the strong \(A \) dependence is amplified once no hits in the BBC are required (ZDC\textcircled{B}BBC-veto). While the BBCs cover a limited acceptance, the requirement (or veto) of hits in the BBC should place constraints on the activity near the detected neutron and thus the corresponding production mechanism.
TABLE I. \(A_N\) for forward neutron production in \(p+p\), \(p+Al\), and \(p+Au\) collisions, for ZDC inclusive, ZDC\&BBC-tag, and ZDC\&BBC-veto samples.

Systematic error:	Inclusive	\(p+p\)	BBC Tag	BBC Veto	Inclusive	\(p+Al\)	BBC Tag	BBC Veto	Inclusive	\(p+Au\)	BBC Tag	BBC Veto
Background	±0.0069	±0.0091	±0.0170	+0.0012	+0.0102	-0.0036	-0.0145	+0.0027	-0.0115	±0.0044	±0.0097	±0.0084
Smearing	±0.0023	±0.0027	±0.0013	+0.0005	+0.0024	+0.0031	+0.0066	+0.0036	+0.0099	±0.0042	±0.0039	±0.0084
Beam pos.	±0.0086	±0.0062	±0.0097	±0.0040	±0.0038	±0.0060	±0.0023	±0.0036	+0.0084	±0.0013	±0.0097	±0.0024
Polarization	±0.0004	±0.0005	±0.0007	±0.0005	±0.0022	±0.0028	±0.0112	±0.0012	+0.0016	±0.0019	±0.0097	±0.0024
Calibration	±0.0027	±0.0010	±0.0067	±0.0012	±0.0042	±0.0042	±0.0042	±0.0085	±0.0002	±0.0020	±0.0094	±0.0249
Total systematic	±0.0116	±0.0114	±0.0208	-0.0043	-0.0065	-0.0091	-0.0201	-0.0094	-0.0249	±0.0044	±0.0097	±0.0249

According to a Monte-Carlo study [45], the neutron and its associated \(\pi^+\) produced through this process are substantially boosted towards the proton beam direction, so that only a small fraction of pions would be detected by the BBC. Thus, a large fraction of EM processes are expected to be suppressed in the ZDC\&BBC-tag events while enhanced in the ZDC\&BBC-veto events. Here, it is noted that the importance of EM processes in \(p+A\) collisions is also hinted at in the present data: the ratio between reconstructed neutrons in ZDC\&BBC-veto and ZDC\&BBC-tag samples increases from smaller than 0.5 in \(p+p\) to \(\sim 1\) (\(\sim 5\)) in \(p+Al\) (\(p+Au\)) collisions. In addition, a faster drop of the neutron production cross section with \(p_T\) in \(p+A\) collisions in ZDC\&BBC-veto triggered data discussed in Fig. 3b is consistent with increasing role of EM processes that have softer \(p_T\) distribution than hadronic processes.

Similarly in the asymmetry measurements, contributions of different production mechanisms may be suppressed or enhanced by different event selection triggers. Hence, while the result for the ZDC\&BBC-tag sample may be explained by the conventional pion and \(a_1\)–Reggeon interference mechanism [27], that for the ZDC\&BBC-veto triggered sample could be explained by contributions from interference with EM amplitudes which are expected to be enhanced in that dataset. However, the strengths of these interference contributions are not known, and there could be other mechanisms, such as diffractive scattering, which is also expected to be enhanced by a ZDC\&BBC-veto trigger. Therefore, further studies are needed to fully understand the present results.

In summary, we observe an unexpectedly strong \(A\) dependence in \(A_N\) of inclusive forward neutron production in polarized \(p+A\) collisions at \(\sqrt{s_{NN}} = 200\) GeV. Furthermore, a distinctly different behavior of \(A_N\) was observed in two oppositely trigger-enhanced data sets. These surprising behaviors could be explained by a contribution of EM interactions, which may be sizable for heavy nuclei. Further studies of the production mechanisms including EM contributions and diffractive scattering would have an impact not only to hadron physics, but also to cosmic-ray science, where measurements of high-energy cosmic rays depend on models of forward particle production.

![FIG. 4](image-url) Forward neutron \(A_N\) in \(p+A\) collisions for \(A = 1\) (\(p\)), 27 (\(Al\)) and 197 (\(Au\)), for ZDC inclusive, ZDC\&BBC-tag and ZDC\&BBC-veto triggered samples; color bars are systematic uncertainties, statistical uncertainties are smaller than the marker size. Data points are shifted horizontally for better visibility.

One possibility to explain the present results is a contribution from EM interactions, which have been demonstrated to be important for reactions with small momentum transfer, e.g., in ultra-peripheral heavy ion collision at RHIC [37–40] and Large Hadron Collider [41–44], including forward neutron production in \(p+A\) collisions [45], and polarization observables in fixed target experiments [46, 47]. Although it was ignored in the interpretation for the \(p+p\) data [27], EM interactions become increasingly important for large atomic number (\(Z\)) nuclei, as the EM field of the nucleus is a rich source of virtual photons, increasing as \(Z^2\). Forward neutrons in the final state can be produced through nonresonant photo-\(\pi^+\) production and neutron decay channel from photo-nucleon excitation processes, such as the \(\Delta\) resonance.
production in the interactions with nuclei in the air.

We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory, especially the CA-D staff for providing beams with a special tune for these measurements, and the staff of the other PHENIX participating institutions for their vital contributions. We also thank Boris Kopeliovich and Michal Křílena for providing us with theoretical calculations of the elastic proton cross sections and for useful discussions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (U.S.A), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China (People’s Republic of China), Croatian Science Foundation and Ministry of Science and Education (Croatia), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l’Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), Hungarian National Science Fund, OTKA, Károly Róbert University College, and the Ch. Simonyi Fund (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), Basic Science Research Program through NRF of the Ministry of Education (Korea), Physics Department, Lahore University of Management Sciences (Pakistan), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the Hungarian American Enterprise Scholarship Fund, and the US-Israel Binational Science Foundation.

* PHENIX Spokesperson: akiba@rcf.rhic.bnl.gov
† Deceased

[1] D. d’Enterria, R. Engel, T. Pierog, S. Ostapchenko, and K. Werner, “Constraints from the first LHC data on hadronic event generators for ultra-high-energy cosmic-ray physics,” Astropart. Phys. 35, 98 (2011).

[2] K. H. Kampert and M. Unger, “Measurements of the cosmic ray composition with air shower experiments,” Astropart. Phys. 35, 660 (2012).

[3] R. D. Klem, J. E. Bowers, H. W. Courant, H. Kagan, M. L. Marshak, E. A. Peterson, K. Ruddick, W. H. Dragset, and J. B. Roberts, “Measurement of Asymmetries of Inclusive Pion Production in Proton Proton Interactions at 6 GeV/c and 11.8 GeV/c,” Phys. Rev. Lett. 36, 929 (1976).

[4] W. H. Dragset, J. B. Roberts, J. E. Bowers, H. W. Courant, H. Kagan, M. L. Marshak, E. A. Peterson, K. Ruddick, and R. D. Klem, “Asymmetries in Inclusive Proton-Nucleon Scattering at 11.75 GeV/c,” Phys. Rev. D 18, 3939–3954 (1978).

[5] J. Antille, L. Dick, L. Madansky, D. Perret-Gallix, M. Werlen, A. Goussiou, K. Uroda, and P. Kryder, “Spin Dependence of the Inclusive Reaction $p^+p \rightarrow π^0 X$ at 24 GeV/c for High-p_T $π^0$ Produced in the Central Region,” Phys. Lett. B 94, 523 (1980).

[6] S. Saroff et al., “Single Spin Asymmetry in Inclusive Reactions Polarized $p^+ p \rightarrow π^+ X, π^- X, and p + X$ at 13.3 and 18.5 GeV/c,” Phys. Rev. Lett. 64, 995 (1990).

[7] C. E. Allgower et al., “Measurement of analyzing powers of $π^+$ and $π^-$ produced on a hydrogen and a carbon target with a 22 GeV/c incident polarized proton beam,” Phys. Rev. D 65, 092008 (2002).

[8] D. L. Adams et al. (FNAL E704 Collaboration), “Analyzing power in inclusive $π^+$ and $π^-$ production at high $x(F)$ with a 200 GeV polarized-proton beam,” Phys. Lett. B 264, 462–466 (1991).

[9] D. L. Adams et al. (E704 and E581 Collaborations), “First results for the two spin parameter A_{LL} in $π^0$ production by 200-GeV polarized protons and anti-protons,” Phys. Lett. B 261, 197–200 (1991).

[10] D. L. Adams et al. (FNAL E704 Collaboration), “Measurement of single spin asymmetry in eta meson production in $p+p$ and anti-$p+p$ interactions in the beam fragmentation region at 200 GeV/c,” Nucl. Phys. B 510, 3 (1998).

[11] I. Arsene et al. (BRAHMS Collaboration), “Single Transverse Spin Asymmetries of Identified Charged Hadrons in Polarized $p+\bar{p}$ Collisions at $\sqrt{s_{NN}} = 62.4$ GeV,” Phys. Rev. Lett. 101, 042001 (2008).

[12] B. I. Abelev et al. (STAR Collaboration), “Forward Neutral Pion Transverse Single Spin Asymmetries in $p+p$ Collisions at $\sqrt{s} = 200$ GeV,” Phys. Rev. Lett. 101, 222001 (2008).

[13] L. Adamczyk et al. (STAR Collaboration), “Transverse-Single-Spin Asymmetry and Cross-Section for η and η Mesons at Large Feynman-x in Polarized $p+p$ Collisions at $\sqrt{s} = 200$ GeV,” Phys. Rev. D 86, 051101 (2012).

[14] A. Adare et al. (PHENIX Collaboration), “Measurement of transverse-single-spin asymmetries for midrapidity and forward-rapidity production of hadrons in polarized $p+p$ collisions at $\sqrt{s} = 200$ and 62.4 GeV,” Phys. Rev. D 90, 012006 (2014).

[15] S. Heppelmann et al. (STAR Collaboration), “Large p_T Forward Transverse Single Spin Asymmetries of $π^0$ Mesons at $\sqrt{s_{NN}} = 200$ and 500 GeV from STAR,” Proc. Sci. DIS2013, 240 (2013).

[16] A. Adare et al. (PHENIX Collaboration), “Cross section and transverse single-spin asymmetry of $η$ mesons in $p^+\bar{p}$ collisions at $\sqrt{s} = 200$ GeV at forward rapidity,” Phys. Rev. D 90, 072008 (2014).

[17] E. C. Aschenauer et al., “The RHIC Cold QCD Plan for 2017 to 2023: A Portal to the EIC,” ArXiv:1602.03922.
like Events at Forward Rapidity at STAR in $p+p$ Collisions at $\sqrt{s} = 500$ GeV," Proc. Sci. DIS2014, 216 (2014).

[19] J. Engler et al., “Measurement of inclusive neutron spectra at the ISR,” Nucl. Phys. B 84, 70 (1975).

[20] W. Flauger and F. Monnig, “Measurement of Inclusive Zero-Angle Neutron Spectra at the ISR,” Nucl. Phys. B 109, 347–356 (1976).

[21] Y. Fukao et al., “Single Transverse-Spin Asymmetry in Very Forward and Very Backward Neutral Particle Production for Polarized Proton Collisions at $\sqrt{s} = 200$ GeV,” Phys. Lett. B 650, 325–330 (2007).

[22] A. Capella, J. Tran Thanh Van, and J. Kaplan, “Elastic Scattering in Perturbative Reggeon Calculus,” Nucl. Phys. B 97, 493 (1975).

[23] B. Kopeliovich, B. Povh, and I. Potashnikova, “Deep inelastic electroproduction of neutrons in the proton fragmentation region,” Z. Phys. C 73, 125 (1996).

[24] N. N. Nikolaev, W. Schäfer, A. Szczurek, and J. Speth, “Do the ES86 Drell-Yan data change our picture of the chiral structure of the nucleon?” Phys. Rev. D 60, 014004 (1999).

[25] A. B. Kaidalov, V. A. Khoze, A. D. Martin, and M. G. Ryskin, “Leading neutron spectra,” Eur. Phys. J. C 47, 385 (2006).

[26] B. Z. Kopeliovich, I. K. Potashnikova, I. Schmidt, and J. Soffer, “Single transverse spin asymmetry of forward neutrons,” Phys. Rev. D 84, 114012 (2011).

[27] B. Z. Kopeliovich, I. K. Potashnikova, and I. Schmidt, “Leading Neutrons From Polarized Proton-Nucleus Collisions,” Proceedings, 9th International Workshop on Diffraction in High Energy Physics (Diffraction 2016): Santa Tecla di Acireale, Catania, Italy, September 2-8, 2016, AIP Conf. Proc. 1819, 050002 (2017).

[28] K. Adcox et al. (PHENIX Collaboration), “PHENIX detector overview,” Nucl. Instrum. Methods Phys. Res., Sec. A 499, 469 (2003).

[29] “RHIC polarization for Runs 9–12,” RHIC Polarimetry Group, RHIC/CAD Accelerator Physics Note 490 (2013).

[30] W. Schmidke, (private communication).

[31] C. Adler, A. Denisov, E. Garcia, M. J. Murray, H. Strobele, and S. N. White, “The RHIC zero degree calorimeter,” Nucl. Instrum. Methods Phys. Res., Sec. A 470, 488 (2001).

[32] A. Adare et al. (PHENIX Collaboration), “Inclusive cross section and single transverse spin asymmetry for very forward neutron production in polarized $p+p$ collisions at $\sqrt{s} = 200$ GeV,” Phys. Rev. D 88, 032006 (2013).

[33] C. Liu et al., “RHIC Operation with Asymmetric Collisions in 2015,” in Proceedings, 7th International Particle Accelerator Conference (IPAC 2016): Busan, Korea, May 8-13, 2016 (2016) p. TUPMW038.

[34] M. Allen et al. (PHENIX Collaboration), “PHENIX inner detectors,” Nucl. Instrum. Methods Phys. Res., Sec. A 499, 549 (2003).

[35] T. Sjöstrand et al., “High-energy-physics event generation with PYTHIA6.1,” Comp. Phys. Comm. 135, 238 (2001).

[36] R. Brun et al., “GEANT Detector Description and Simulation Tool,” CERN-W-5013, Geneva (1994).

[37] B. I. Abelev et al. (STAR Collaboration), “ρ^0 photoproduction in ultraperipheral relativistic heavy ion collisions at $\sqrt{s_{NN}} = 200$ GeV,” Phys. Rev. C 77, 034910 (2008).

[38] S. Afanasiev et al. (PHENIX Collaboration), “Photoproduction of J/ψ and of high mass $e^+e^−$ in ultra-peripheral Au+Au collisions at $\sqrt{s} = 200$ GeV,” Phys. Lett. B 679, 321 (2009).

[39] B. I. Abelev et al. (STAR Collaboration), “Observation of $\pi^+\pi^-\pi^0$ Photoproduction in Ultra-Peripheral Heavy Ion Collisions at STAR,” Phys. Rev. C 81, 044901 (2010).

[40] G. Agakishiev et al. (STAR Collaboration), “ρ^0 Photoproduction in AuAu Collisions at $\sqrt{s_{NN}}=62.4$ GeV with STAR,” Phys. Rev. C 85, 014910 (2012).

[41] B. Abelev et al. (ALICE Collaboration), “Coherent J/ψ photoproduction in ultra-peripheral Pb-Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV,” Phys. Lett. B 718, 1273 (2013).

[42] E. Abbas et al. (ALICE Collaboration), “Charmonium and $e^+e^−$ pair photoproduction at mid-rapidity in ultra-peripheral Pb-Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV,” Eur. Phys. J. C 73, 2617 (2013).

[43] B. B. Abelev et al. (ALICE Collaboration), “Exclusive J/ψ photoproduction off protons in ultra-peripheral p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV,” Phys. Rev. Lett. 113, 232504 (2014).

[44] J. Adam et al. (ALICE Collaboration), “Coherent $\psi(2S)$ photo-production in ultra-peripheral Pb Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV,” Phys. Lett. B 751, 358–370 (2015).

[45] G. Mitsuka, “Forward hadron production in ultra-peripheral proton-heavy ion collisions at the LHC and RHIC,” Eur. Phys. J. C 75, 614 (2015).

[46] I. G. Alekseev et al., “Measurements of single and double spin asymmetry in pp elastic scattering in the CNI region with a polarized atomic-hydrogen gas-jet target,” Phys. Rev. D 79, 094014 (2009).

[47] D. C. Carey et al., “Measurement of the Analyzing Power in the Primakoff Process With a High-energy Polarized Proton Beam,” Phys. Rev. Lett. 64, 357 (1990).