Association between *H. pylori* infection and health Outcomes: an umbrella review of systematic reviews and meta-analyses

Liqun Li,1 Jinjing Tan,2,3 Lijian Liu,4 Jianfeng Li,1 Guangwen Chen,1 Mingbing Chen,1 Jieru Xie,5 Qingzeng Song,1 Xiaoyan Huang,4 Sheng Xie

ABSTRACT

Objective Systematic reviews and meta-analyses have revealed the associations between *H. pylori* infection and various health outcomes. We aimed to evaluate the strength and breadth of evidence on the associations.

Design Umbrella review of systematic reviews and meta-analyses.

Setting No settings.

Participants No patients involved.

Data sources Embase, PubMed, Web of Science, Cochrane Library Databases, CNKI, VIP database and Wangfang database from inception to February 1, 2019.

Outcomes measures Diverse diseases (such as cancer and ischaemic heart disease).

Results Sixty articles reporting 88 unique outcomes met the eligibility criteria. 74 unique outcomes had nominal significance (p<0.05). Of the outcomes with significance, 61 had harmful associations and 13 had beneficial associations. Furthermore, 73% (64) of the outcomes exhibited significant heterogeneity. Of the these meta-analyses, 32 had moderate to high heterogeneity (I²=50%–75%) and 24 had high heterogeneity (I²>75%). Moreover, 20% exhibited publication bias (p<0.1). In addition, 97% of the methodological qualities were rated ‘critically low’. 36% of the evidence qualities of outcomes were rated ‘low’, 56% of the evidence qualities were rated ‘very low’ and 8% of the evidence qualities were rated ‘moderate’. *H. pylori* infection may be associated with an increased risk of five diseases and a decreased risk of irritable bowel syndrome.

Conclusion Although 60 meta-analyses explored 88 unique outcomes, moderate quality evidence only existed for six outcomes with statistical significance. *H. pylori* infection may be associated with a decreased risk of irritable bowel syndrome and an increased risk of hypertiglyceridemia, chronic cholecystitis and cholelithiasis, gestational diabetes mellitus, gastric cancer and systemic sclerosis.

Trial registration CRD42019124680.

INTRODUCTION

H. pylori is a Gram-negative bacterium that affects human health worldwide, and its prevalence ranges from 50.8% to 84%.1–4 Earlier studies demonstrated that *H. pylori* infection contributes to the development of several digestive diseases (e.g. gastric cancer,5, 6 peptic ulcer disease (PUD)7 and dyspepsia).8 These conclusions were supported by recent studies.9–12 Over the last 20 years, the associations between *H. pylori* infection and a sequence of non-digestive disorders have been investigated extensively. Multiple studies and meta-analyses have revealed that *H. pylori* infection is harmful to human health by increasing the risk of diverse diseases, including cancers, cardiovascular and cerebrovascular diseases, respiratory disorders, endocrine diseases and neurocognitive disorders. Meta-analyses have further reported that *H. pylori* infection increases the risk of acquiring hepatocellular carcinoma (HCC) by more than 16-fold,13 cholangiocarcinoma by approximately 9-fold and myocardial infarction (MI) nearly 2-fold.15 Subsequently, with further research on *H. pylori* infection, it may be beneficial to health

Strengths and limitations of this study

- This umbrella review is the first synthesis of systematic reviews and meta-analyses to consider the associations between *H. pylori* infection and various health outcomes.
- These results provide recommendations about the relationships between *H. pylori* infection and various health outcomes.
- The associations observed in the meta-analyses included in this umbrella review may reflect the uncertainty of most diseases related to *H. pylori* infection.
- Only evidence derived from systematic reviews and meta-analyses was included in our umbrella review. Evidence from original observational studies and/or randomised controlled trials that were not included in the meta-analyses was beyond our scope of discussion. This condition might result in conclusion bias of association between *H. pylori* infection and human health.
in some conditions by decreasing the risk of diseases (e.g., asthma, inflammatory bowel disease and oesophageal cancer). Therefore, the causal role of *H. pylori* infection in these diseases has been widely queried.

The observed associations between *H. pylori* infection and health outcomes can be causal, indicating that *H. pylori* infection elicits adverse effects on human health. However, the publication bias, scheme design defects or inconsistencies of studies can lead to a decrease in the strength and validity of evidence. Furthermore, confounding factors, such as age, sex, smoking or drinking status, can affect causality. The lack of adequate controls for confounders may cause reverse causality. Therefore, evidence from meta-analyses may also have uncertainty. If causal, the association of *H. pylori* infection and public health should be reconsidered, and the role of *H. pylori* infection in human health must be reanalyzed.

Once strong associations between *H. pylori* infection and diseases are confirmed, findings provide an important guidance both for conducting disease diagnosis and treatment. Therefore, the associations of *H. pylori* infection and health outcomes must be further evaluated.

To provide an overview of the length, validity and credibility of the evidence on the associations between *H. pylori* infection and human health outcomes, we systematically and comprehensively re-evaluated these pieces of evidence to make them concise for decision-makers and guideline developers. We conducted an umbrella review to estimate the findings and content of meta-analyses that investigated these associations and to estimate the evidence of potential bias and consistency of findings.

METHODS

Literature search

Computerised searches on Embase, PubMed, Web of Science, Cochrane Database of Systematic Reviews, CNKI, VIP database and Wangfang database were independently and comprehensively performed by two researchers (Guangwen Chen and Mingbing Chen) to identify the systematic reviews and meta-analyses of epidemiological studies investigating the associations between *H. pylori* infection and diverse health outcomes. Studies published from inception to February 1, 2019 were collected using a comprehensive search strategy, and the language was limited to English and Chinese. Medical subject heading (MeSH) terms and free-text words were used: meta-analysis, meta analysis, meta-analyses, meta analyses, systematic review, *Helicobacter pylori*, *Campylobacter pylori*, Pylorus spirillum and *H. pylori*. The search strategies are described in online supplementary appendix 1. References from eligible systematic reviews were also manually reviewed. All identified publications were managed with EndNote X7. Two reviewers (Qingzeng Song and Jieru Xie) independently screened the titles, abstracts and full texts for eligible articles based on the inclusion and exclusion criteria. Any discrepancy was resolved by discussion, and all discrepancies that could not be resolved through a discussion were arbitrated by Sheng Xie.

Eligibility criteria and exclusion criteria

Only systematic reviews and meta-analyses of epidemiological studies investigating the associations between *H. pylori* and multiple diseases were included in this umbrella review. The included systematic reviews and meta-analyses should present the data of pooled summary effects (i.e. relative risks (RRs), odds ratios (ORs), mean difference (MD), standard mean difference (SMD) and their 95% confidence intervals (CIs)), number of included studies, number of cases and participants, publication bias and heterogeneity. Table data (2×2) should be presented if pooled summary effects were unavailable. The population included was not limited to age, sex, ethnicity or country of origin. Articles were not limited to clinical setting, study region or research institution. When more than one meta-analyses were performed for the same review question, the concordance of the main conclusions was checked. If conclusions were inconsistent, the meta-analysis with the largest sample size and the latest date of publication was selected. The meta-analyses of interventional trials and diagnostic trials were unavailable for our research question. Conference abstracts on review questions were also excluded.

Patient and public involvement

Our study is a review of literature, so no patient was involved.

Data extraction

Data from each eligible systematic review and meta-analysis were independently extracted by two investigators (Liqun Li and Jinjing Tan). All of the results were carefully checked by a third investigator (Xiaoyan Huang). Any discrepancy was resolved by discussion, and all discrepancies were arbitrated by a fourth reviewer (Sheng Xie). The name of the first author, the year of publication, outcomes examined, the number of included studies, the total numbers of participants and cases, study design, study region and detection method of *H. pylori* were extracted by using a predesigned data extraction form. For each eligible systematic review and meta-analysis, the reported relative summary risk estimates (RRs, ORs, SMD or MD) and their 95% CIs were extracted. The *p* values of the overall pooled effects, Egger’s test and Cochran Q test were extracted. The results of I² were also extracted. However, if the eligible systematic reviews or meta-analyses did not assess the quality of the included studies, assessing the quality was beyond our task in this umbrella review. If systematic reviews or meta-analyses examined more than one health outcome of interest, each outcome was recorded separately. If the included meta-analyses did not present the results of pooled meta-analysis (RRs, ORs, SMD or MD), I², Egger’s test or publication bias, the 2×2 table data from studies included in those meta-analyses were extracted for reanalysis.
Assessment of methodological quality

The methodological quality of the included studies was independently assessed by two investigators (Liqun Li and Jianfeng Li) using AMSTAR 2 (A Measurement Tool to Assess systematic Reviews), and the results were checked by a third investigator (Xiaoyan Huang). Inconsistencies were resolved through a discussion or consultation with a fourth reviewer (Sheng Xie). AMSTAR 2 is a reliable, valid and critical assessment tool developed from AMSTAR in 2017. It contains 16 checklists (7 critical checklists and 9 non-critical checklists) for assessing systematic reviews and meta-analyses, including randomised controlled trial (RCT) studies, observational studies on exposures or both. The rating criteria of AMSTAR 2 were as follows: zero or one non-critical weakness was defined as high quality; more than one non-critical weakness was defined as moderate quality; one critical flaw with or without non-critical weaknesses was defined as low quality; and more than one critical flaw with or without non-critical weaknesses was defined as critically low quality.

Assessment of the quality of evidence

In this umbrella review, we used the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) system to evaluate the quality of evidence for each outcome. The GRADE system includes five factors for downgrading and three factors for upgrading the quality of evidence. The baseline quality of evidence of health outcomes depends on the design of the primary studies. The summary estimate result of the random-effect model was used if potential heterogeneity was observed. Otherwise, the result of the fixed-effect model was used. When a serious or very serious defect could occur because of downgrading factors, the evidence quality was downgraded by one or two levels, respectively. If the effect was large (RR/OR either >2.0 or <0.5) or very large (RR/OR either >5.0 or <0.2), the evidence quality was upgraded by one level or two levels, respectively. If there was evidence that the influence of all plausible confounding would reduce a demonstrated effect or suggest a apurious effect when results show no effect, the evidence quality was upgraded by one level. The rating criteria of GRADE22 23 were as follows: the primary evidence quality of an observational study was considered ‘low’; the evidence quality was downgraded to ‘very low quality’ by downgrading one level, upgraded to ‘moderate quality’ by increasing one level and upgraded to ‘high quality’ by increasing two levels. The GRADE system approach classifies the evidence quality of outcomes from eligible articles as high, moderate, low and very low. GRADE classification was independently performed by two investigators (Liqun Li and Jinjing Tan), and the results were checked by a third researcher (Xiaoyan Huang). Any discrepancy was resolved via a discussion, and all discrepancies that could not be resolved through a discussion were arbitrated by Sheng Xie.

Data analysis

If the included meta-analyses did not present results of pooled meta-analysis, they were reanalysed. For example, a study was reanalysed if it did not present the results of pooled meta-analysis (RRs, ORs, SMD or MD), Egger’s test, publication bias or I^2. The heterogeneity between different studies was assessed using the I^2 metric of inconsistency and the p value of χ^2 based on the Cochran Q test. If heterogeneity was observed, a random-effect model was used to calculate the relative summary risk estimates. Otherwise, a fixed-effect model was used. Publication bias was estimated by using Egger’s test. The overall effects of pooled meta-analysis, heterogeneity was considered significant at p value <0.1. Publication bias was considered significant at p<0.1. Statistical analyses were conducted using Stata V.15.

RESULTS

Description of the meta-analyses

Overall, 3036 articles that met our search criteria were first identified from the seven databases. Sixty articles9–18 27–76 of observational studies were finally selected, covering 88 unique outcomes (figure 1). Fifty-four meta-analyses10–17 28–34 38–40 42–44 47–50 54–60 64–70 72–75 were reanalysed because they did not present all of the results of estimates (i.e. OR, RR), Egger’s test, I^2 or publication bias. These 60 eligible non-overlapping meta-analyses are summarised in table 1. A total of 1239 individual study estimates were included in the included meta-analyses. Various measurement methods, including serology, histology, rapid urease test and 18 other detection methods were included.
Included meta-analyses	Outcomes	HP detection method	Number of studies	Number of participants	Number of cases	Type of metric	Relative risk (95% CI)	P value	P value	I² (%)	P value	Whether exist publication bias
Cancer outcomes												
Xuan et al¹³	Hepatocellular carcinoma	HP DNA	9 CCS; 1 CSS	522	129	OR	16.52 (6.63 to 41.12)	0.00	0.07	44	0	Yes
Mounika⁴⁴	Lung cancer	ELISA	5 CCS; 1 PNCCS; 1 PCS	17 951	16244	OR	2.29 (1.34 to 3.91)	0.032	<0.01	83.9	NA	No⁵
Xie et al¹⁸	ESCC in Eastern populations	S; H; R; His⁺; HpSe⁺	16 OS	7665	1961	OR	0.66 (0.43 to 0.98)	NA	<0.01	74.5	0.42	No
Xie et al¹⁸	EAC in the overall population	S; H; U; His⁺; HpSe⁺	15 OS	6035	1330	OR	0.59 (0.51 to 0.68)	NA	0.13	29.9	0.37	No
Wang et al⁴⁰	Colorectal adenomatous polyp	S; H; several	12 CS	2678	1783	OR	1.89 (1.59 to 2.25)	0	0.10	35.9	0.61	No
Xiao et al¹⁴	Cholangiocarcinoma	PCR; ELISA; WB	10 CCS	489	220	OR	8.88 (3.67 to 21.49)	0	0.02	56	0.01	Yes
Dong and Hao⁷⁵	Colorectal cancer	IgG; UBT; CagA	21 CCS; 2 CSS	182561	24295	OR	1.42 (1.38 to 1.46)	0	0.00	71	0.74	No
Zhou et al⁷⁶	Laryngeal carcinoma	ELISA; H; PCR	11 CCS	1030	418	OR	2.87 (1.7 to 4.88)	0	0.00	67.1	0.62	No
Liu²⁸	Colon neoplasia	IgG; IgA; UBT; CagA	24 CCS; 7 CSS; 2 NCCS	25 897	12145	OR	1.63 (1.39 to 1.90)	0	<0.01	80	0.14	No
Li et al¹²	Gastric cancer	WB; Chip; ELISA; neutralisation assay; ElA	10 CCS	1094	664	OR	2.78 (1.98 to 3.88)	0	0.23	22.8	0.1	No
Ma et al⁴²	Oesophagogastric junction adenocarcinoma	NA	9 CCS; 4 PCS	5547	2893	OR	0.95 (0.06 to 1.36)	0.769	0.00	78	0.61	No
Liu et al¹¹	Pancreatic cancer	ELISA	6 NCCS; 2 PCS	44 193	NA	OR	1.09 (0.81 to 1.47)	0.58	<0.01	76	0.59	No
Cardiovascular and cerebrovascular diseases												
Pasceri et al⁴⁷	Ischaemic heart disease	CagA	3 PCS	2140	966	OR	1.26 (1.05 to 1.51)	<0.00001	0.01	53	NA	No⁵
Pasceri et al⁴⁷	Cerebral ischaemia	CagA	4 RCCS	1103	446	OR	2.43 (1.89 to 3.13)	<0.00001	0.43	0	NA	No⁵
Wang et al⁶⁵	Diabetic IHD	S; H	5 CS	1805	469	RR	1.12 (0.95 to 1.32)	0.172	0.14	42.30	0.21	No
Liu et al⁶	Myocardial infarction	NA	19 CCS; 7 PCS	21 960	11156	OR	1.73 (1.37 to 2.17)	0	0.00	87.9	0.71	No
Chen et al⁴⁸	Coronary heart disease	NA	12 CS; 5 PCS; 1 NA	17 514	9165	OR	1.64 (1.22 to 2.23)	0.001	<0.01	90	0.58	No
Saburi et al⁴³	Atherosclerosis	PCR	4 CCS	222	102	OR	5.98 (0.69 to 51.99)	0.105	0.03	67.6	0.04	Yes
Yan et al⁴⁷	Arrhythmia	IgG; 13C-UBT; UBT	7 CCS	2014	1032	OR	1.81 (1.08 to 2.99)	0.024	<0.001	80	0.28	No
Dong et al⁷⁶	Carotid intima thickness	NA	9 CCS	1370	694	SMD	0.80 (0.69 to 0.92)	<0.01	0.00	89.7	NA	No⁵
Respiratory disorders												
Wang et al⁶⁷	COPD	S; 13C-UBT	9 CCS	9465	3192	OR	2.25 (1.73 to 2.92)	0	0.00	75.5	0.27	No
Wang et al⁶⁷	Chronic bronchitis	S; 13C-UBT	5 CCS	5674	1824	OR	1.57 (1.33 to 1.86)	0	0.04	58.2	0.51	No

Continued
Included meta-analyses	Outcomes	HP detection method	Number of studies	Number of participants	Number of cases	Type of metric	Relative risk (95% CI)	P value	P value†	I² (%)	P value‡	Whether exist publication bias	
Chen et al 16	Asthma	SA; ELISA; IgG; ¹³C-UBT	5 CCS; 16 CSS	53 947	5648	OR	0.83 (0.74 to 0.94)	0.002	0.00	53.4	0.67	No	
Endocrine disease													
Upala et al 54	Metabolic syndrome	S; R; H; SA; UBT; biopsy	5 CSS; 1 CS	19 771	NA	OR	1.34 (1.17 to 1.53)	NA	<0.01	39	0.92	No	
Upala et al 54	Fasting blood glucose	S; R; H; SA	11 CSS; 3 CS	79 05	NA	MD	2.37 (0.98 to 3.77)	NA	0.04	55	0.92	No	
Upala et al 54	HDL-C	UBT; biopsy	9 CSS; 3 CS	7701	NA	MD	-2.43 (-3.75 to -1.12)	NA	<0.01	92	0.92	No	
Upala et al 54	Triglyceride level	S; R; H; SA	8 CSS; 3 CS	75 96	NA	MD	8.12 (0.05 to 13.2)	NA	0.04	71	0.92	No	
Upala et al 54	Systolic blood pressure	UBT; biopsy; culture	5 CSS; 1 CS	7 172	NA	MD	2.88 (0.20 to 5.57)	NA	0.01	89	0.92	No	
Upala et al 54	Body mass index	S; R; H; SA	8 CSS; 2 CS	10 707	NA	MD	0.30 (0.01 to 0.59)	NA	<0.01	57	0.92	No	
Upala et al 54	HOMA-IR	UBT; biopsy	7 CSS; 3 CS	7 935	NA	MD	0.38 (0.03 to 0.73)	NA	0.03	85	0.92	No	
Li et al 39	DM	¹³C-UBT; R; ¹⁴C-UBT; SA; biopsy; culture; H	8 CSS; 68 CCS; 3 PCS	57 397	28 542	OR	1.69 (1.47 to 1.96)	0	<0.00001	86	0	Yes	
Li et al 39	T2 DM	¹³C-UBT; R; ¹⁴C-UBT; SA; biopsy; culture; H	8 CSS; 57 CCS; 2 PCS	41 684	21 286	OR	2.05 (1.67 to 2.52)	0	<0.00001	89	0	Yes	
Li et al 39	T1 DM	¹³C-UBT; R; ¹⁴C-UBT; biopsy; H	1 PCS; 11 CCS	3 175	9 69	OR	1.23 (0.77 to 1.96)	0.499	<0.00001	82	0.46	No	
Urinary disease													
Wang et al 56	Diabetic nephropathy	¹³C-UBT; ELISA; H	6 CCS	636	211	OR	1.6 (1.1 to 2.33)	0.018	0.44	0.98	No	No	
Wijamprecha et al 56	ESRD in adult	A; H; R; UBT; SA; culture	33 CCS	NA	NA	RR	0.71 (0.55 to 0.94)	NA	<0.00001	79	NA	No§	
Digestive disorders													
Eriss et al 32	Barrett’s oesophagus	S; H; UBT; PCR; R; SA	70 CCS	91 656	12 134	OR	0.68 (0.58 to 0.79)	0	0.00	84	<0.001	Yes	
Li et al 54	Gastric ulcer	WB; Chip; ELISA; neutralisation assay; EIA	8 CCS	517	260	OR	1.64 (1.02 to 2.62)	0.042	0.26	20.8	0.96	No	
Li et al 52	Duodenal ulcer	WB; Chip; ELISA; neutralisation assay; EIA	17 CCS	2 359	1 333	OR	2.06 (1.50 to 2.84)	0	0.01	51.3	0.63	No	
Cremonini et al 53	GERD in population with HP-negative status	R; S; biopsy; H; UBT; Gram stain; culture; H&E; Giemsa stain	14 CCS	2 010	1 683	OR	1.34 (1.15 to 1.55)	0	<0.001	NA	NA	No§	
Weck and Brenner 13	Chronic atrophic gastritis	NA	34 OS	7 726	5 048	OR	6.37 (4.01 to 10.11)	0	0.00	91.2	0.01	Yes	
Zhou et al 73	Biliary lithiasis	ELISA; PCR; culture	13 CCS	1 333	432	OR	2.59 (1.21 to 5.55)	0.014	<0.0001	69.5	0.18	No	
Shioota et al 59	Peptic ulcer disease	PCR	42 CCS	4 601	2 524	OR	1.25 (1.09 to 1.44)	0.002	0.39	4.6	0.78	No	
Jiang et al 57	Ammonia levels in cirrhotic patients	¹⁴C-UBT; R; H; culture; IgG	6 OS	396	6 32	SMD	0.34 (0.21 to 0.47)	NA	0.12	42.1	0.11	No	
Ford et al 68	Dyspepsia	NA	13 CSS	2 305	9 010	OR	1.18 (1.04 to 1.33)	NA	<0.001	63	0.3	No	
Feng et al 50	Alcoholic cirrhosis in all population	R; UBT; H; ELISA	8 CCS	14 226	10 053	OR	0.82 (0.35 to 1.91)	0.648	0.00	84.5	0.67	No	
Included meta-analyses	Outcomes	HP detection method	Number of studies	Number of participants	Number of cases	Type of metric	Relative risk (95% CI)	P value	P value	I² (%)	P value	Whether exist publication bias	
------------------------	----------	---------------------	-------------------	-----------------------	----------------	----------------	------------------------	---------	---------	---------	---------	-------------------------------	
Feng et al\(^{23}\)	Alcoholic cirrhosis in European	R; H; ELISA	3 CCS	1171	516	OR	2.14 (1.19 to 3.86)	0.011	0.31	15.5	0.74	No	
Wu et al\(^{17}\)	Inflammatory bowel disease	IgG; UBT; H; culture	10 OS	3116	1202	RR	0.48 (0.43 to 0.54)	0	0.25	21	0.2	No	
Wang et al\(^{60}\)	Chronic hepatitis C	PCR; S	12 CCS	3826	2185	OR	2.93 (2.30 to 3.75)	0	0.05	45	0.31	No	
Wang et al\(^{69}\)	Chronic hepatitis B	S	15 CCS	5129	2845	OR	3.17 (2.38 to 4.22)	0	0.00	77.9	0.02	Yes	
Wijiannecha et al\(^{66}\)	NAFLD	EIA; IgG; \(^{13}\)C-UBT; H; S	5 CCS; 1 CCS	38 594	NA	OR	1.21 (1.07 to 1.37)	0.002	0.08	49	NA	No	
Cen et al\(^{11}\)	Chonic cholecystitis and cholelithiasis	H; PCR; culture	18 CCS	1544	NA	OR	2.02 (1.90 to 4.82)	NA	0.21	20.1	0.43	No	
Shah et al\(^{69}\)	Eosinophilic oesophagitis	Biopsy; R; H; IgG; ELISA; EIA; H&E; SA; \(^{13}\)C-UBT	5 CCS; 3 CS or CCS	371274	26442	OR	0.63 (0.51 to 0.78)	0.00	0.02	57.9	0.77	No	
Shah et al\(^{69}\)	Oesophageal eosinophilia	Biopsy; R; H; IgG; ELISA; EIA; H&E; SA; \(^{13}\)C-UBT	5 CCS; 6 CS or CCS	377976	28007	OR	0.64 (0.52 to 0.78)	0.00	0.00	69.4	0.7	No	
Neurocognitive disorders	Wang et al\(^{55}\)	Diabetic neuropathy	S; H	5 CS	1607	530	RR	1.20 (1.03 to 1.40)	0.018	0.29	19.1	0.99	No
Wang et al\(^{61}\)	Ischaemic stroke	IgG; CagA; C-UBT	13 CCS	4041	NA	OR	1.60 (1.21 to 2.11)	NA	0.00	65.2	0.01	Yes	
Yu et al\(^{50}\)	Stroke	S	6 CS; 4 CCS	166041	1769	OR	0.96 (0.74 to 1.24)	NA	0.03	48	0.68	No	
Shindler-Itskovitch et al\(^{61}\)	Dementia	Biopsy; IgG; IgA; R; H; CagA	1 CS; 6 CCS	86 606	NA	OR	1.71 (1.17 to 2.48)	0.01	<0.001	76.1	0.33	No	
Shen et al\(^{60}\)	Parkinson’s disease	ELISA; PCR; \(^{13}\)C-UBT; H; prescriptions for HP eradication drug	6 CCS; 2 CSS	28 201	1101	OR	1.59 (1.37 to 1.85)	0	0.55	0	0.02	Yes	
Pregnancy-related disorders	Ng et al\(^{65}\)	Hyperemesis gravidarum	Biopsy; H; ELISA; IgG; CagA; EIA; \(^{13}\)C-UBT; SA	33 CCS; 4 CSS; 1 CS	10 289	NA	OR	1.35 (1.16 to 1.54)	<0.01	0.06	28	0.76	No
Zhan et al\(^{72}\)	Pre-eclampsia	ELISA; CUA; Heli-Blot assay; SA; UBT; WB	3 CS; 12 CCS; 1 CSS	10 402	1077	OR	2.51 (1.18 to 3.34)	0	0.00	63	0.02	Yes	
Zhan et al\(^{72}\)	Fetal growth restriction	Heli-Blot assay; ELISA; SA	3 CCS; 2 CS	6099	202	OR	2.28 (1.21 to 4.32)	0.011	0.02	66	0.17	No	
Zhan et al\(^{72}\)	Gestational DM	ELISA; SA; WB; UBT	2 CCS; 3 CS	3697	270	OR	2.03 (1.56 to 2.64)	0	0.81	0	0.77	No	
Zhan et al\(^{72}\)	Spontaneous abortion	ELISA; SA	2 CS; 3 CCS; 1 CSS	5909	226	OR	1.5 (1.05 to 2.14)	0.024	0.23	27	0.76	No	
Zhan et al\(^{72}\)	Birth defect	ELISA; CUA	1 CS; 2 CCS	737	132	OR	1.63 (1.05 to 2.54)	0.031	0.48	0	0.14	No	
Zhan et al\(^{72}\)	Stillbirth	SA; ELISA	1 CS; 1 CCS	3008	28	OR	2.53 (0.79 to 8.13)	0.118	0.61	0	0.79	No	
Zhan et al\(^{72}\)	Low birth weight	NA	7 CS or CCS	10 121	NA	OR	1.35 (0.88 to 2.08)	NA	0.16	72	NA	Unclear	
Zhan et al\(^{72}\)	Premature delivery	NA	8 CS or CCS	12 356	NA	OR	1.35 (0.86 to 2.12)	NA	0.18	70	NA	Unclear	
Ophthalmic diseases	Wang et al\(^{65}\)	Diabetic retinopathy	S; H	7 CS	1815	406	RR	1.32 (0.97 to 1.80)	0.058	0.04	55	0.27	No
Zeng et al\(^{11}\)	Open-angle glaucoma	H; IgG; \(^{13}\)C-UBT	19 CCS	1580	695	RR	2.08 (1.42 to 3.04)	NA	<0.001	63.6	0.36	No	

Continued
Table 1 Continued

Included meta-analyses	Outcomes	HP detection method	Number of studies	Number of participants	Number of cases	Type of metric	Relative risk (95% CI)	P value \(^a\)	P value \(^b\)	\(I^2\) (%)	P value \(^c\)	Whether exist publication bias
Thyroid disease												
Hou et al\(^d\)	Autoimmune thyroid diseases	ELISA; WB; UBT; SA	15 CCS	3046	2408	OR	2.25 (1.72 to 2.93)	0	0.00	61.6	0.68	No
Hou et al\(^d\)	Grave's disease	ELISA; SA; UBT	5 CCS	917	498	OR	2.78 (1.68 to 4.61)	0	0.07	53.4	1.51	No
Hou et al\(^d\)	Hashimoto's thyroiditis	ELISA; SA; UBT; NR	8 CCS	1594	872	OR	2.16 (1.44 to 3.23)	0	0.00	68.2	0.51	No
Haematological disorders												
Hudak et al\(^d\)	Iron deficiency anaemia	R; H; \(^14\)C-UBT; \(^13\)C-UBT; IgG; SA; IgA; gastroscopy	11 CSS; 3 CCS	15 905	NA	OR	1.72 (1.23 to 2.42)	NA	0.00	61.5	0.38	No
Hudak et al\(^d\)	Iron deficiency	30 CSS	23 921	NA	OR	1.33 (1.15 to 1.54)	NA	0.01	41.1	0.49	No	
Hudak et al\(^d\)	Anaemia	23 CSS	11 622	NA	OR	1.15 (1.00 to 1.32)	NA	0.01	NA	0.81	No	
Other outcomes												
Nweneke and Prentice\(^d\)	Circulating ghrelin levels	UBT; ELISA; S; H; culture; R; PCR	7 CS; 11 CSS	956	1288	SMD	−0.42 (−0.57 to −0.27)	<0.00001	0.00	59	0.12	No
Xiong et al\(^d\)	Henoch-Schonlein purpura	R; UBT; IgG; H. pylori antigen	10 CCS	1309	500	OR	3.46 (2.68 to 4.47)	0	0.06	46	0.03	Yes
Su et al\(^d\)	Migraine	\(^13\)C-UBT; ELISA; biopsy	5 CCS or CSS	903	355	OR	1.92 (1.05 to 3.51)	0.033	0.00	77.4	0.08	Yes
Li et al\(^d\)	Recurrent aphthous stomatitis	PCR; UBT	7 CCS	510	154	OR	1.85 (1.24 to 2.74)	0.002	0.21	28.5	0.49	No
Taye et al\(^d\)	Atopy	H; IgG; ELISA; UBT; SA; IgA	2 CS; 3 CCS; 11 CCS	10 968	NA	OR	0.82 (0.73 to 0.91)	<0.01	0.66	0	0.85	No
Hwang et al\(^d\)	Chronic tonsilsitis	R; PCR; culture; CLO	6 OS	436	NA	OR	1.99 (0.91 to 4.37)	0.09	0.06	53.6	0.42	No
Gu et al\(^d\)	Chonic ucaria	ELISA; UBT; S; H; IgG	16 CCS	2200	984	OR	1.66 (1.12 to 2.45)	0.022	<0.0001	66	0.01	Yes
Yao et al\(^d\)	Multiple sclerosis	ELISA; WB; CIA	9 CCS	2806	782	OR	0.73 (0.56 to 0.96)	0	0.05	48	0.07	Yes
Dou et al\(^d\)	Hailosis	H; BUT; culture; PCR; Gram stain; ELISA; SA; endoscopy; CLO	6 CCS;1 CSS	2312	467	OR	4.03 (1.41 to 11.5)	0.009	<0.0001	89	0.05	Yes
Jørgensen et al\(^d\)	Rosacea	NA	14 OS	2455	1268	OR	1.74 (1.03 to 2.93)	0.039	0.00	85.6	0.09	Yes
Chen et al\(^d\)	Sipgren's syndrome	Biopsy; ELISA; IgG	9 CCS	2018	1054	OR	1.19 (1.01 to 1.41)	0.033	0.86	0	0.77	No
Yong et al\(^d\)	Psoriasis	IgG; ELISA; UBT; SA	4 CCS; 3 PCS; 2 CCS	15 46	728	OR	1.58 (1.02 to 2.46)	0.041	0.00	64	0.03	Yes
Yong et al\(^d\)	Systemic sclerosis	IgG; ELISA; IgM; \(^14\)C-UBT; R	7 CSS; 1 PCS	14 46	749	OR	2.11 (1.62 to 2.76)	0.00	0.33	13	0.84	No

\(^a\) p value of significance level.
\(^b\) p value of Q test.
\(^c\) The publication bias was assessed using funnel plot.
\(^d\) prevalence or incidence unless otherwise specified.
methods, were used to determine *H. pylori* positivity. A range of 2–79 study estimates were pooled per meta-analysis, and the median of the study estimate was 10. Among the 1239 individual studies, 274 (22%) were cross-sectional studies, 748 (60%) were case–control studies, 124 (10%) were cohort studies and 93 (8%) were mentioned as observational studies. Furthermore, 1 meta-analysis did not present the number of participants, and 12 meta-analyses did not present the number of cases. Among the meta-analyses that indicated the number of cases or participants, the median number of cases was 1032 (28–96 753) and the median number of participants was 3826 (222–377 976). A total of 76 meta-analyses included more than 1000 participants, 34 meta-analyses included more than 1000 cases and 11 meta-analyses included less than 300 cases. The 60 included articles were published from 2003 to 2019, 77% were published between 2014 and 2019, and the number of publication increased yearly before 2016 (figure 2). Various health outcomes associated with *H. pylori* infection included cancer outcomes (n=12), cardiovascular and cerebrovascular diseases (n=8), respiratory disorders (n=3), endocrine disease (n=10), urological disease (n=2), digestive disorders (n=18), neurocognitive disorders (n=5), pregnancy-related disorders (n=9), ophthalmic diseases (n=2), thyroid disease (n=3), haematological disorders (n=3) and other outcomes (n=13) (figure 3). A total of 23 articles conducted subgroup meta-analysis based on different study region (table 2). *H. pylori* infection was most harmful to Asians, followed by Europeans.

Summary effect size

Table 1 shows the summary effects of the included meta-analysis. Of the 88 outcomes, 74 (84%) had nominal significance (p<0.05). Of these outcomes, 61 (82%) were harmful associations enumerated as follows: 8 (67%) meta-analyses in cancer outcomes, 6 (75%) in cardiovascular and cerebrovascular diseases, 2 (67%) in respiratory disorders, 6 (60%) in endocrine diseases, 1 (50%) in urological diseases, 12 (67%) in digestive disorders, 4 (80%) in neurocognitive disorders, 6 (67%) in pregnancy-related disorders, 2 (17%) in ophthalmic diseases, 3 (100%) in thyroid diseases, 3 (100%) in haematological disorders and 9 (69%) in other outcomes. These associations had significant pooled estimates (p<0.05). Thus, *H. pylori* infection was associated with an increased risk of disease and harmful to human health (table 3). By contrast, 13 (15%) evidence from meta-analyses were beneficial associations enumerated as follows: 1 (33%) meta-analyses in respiratory disorders, 2 (15%) in cancer outcomes, 1 (10%) endocrine disease, 1 (50%) urological disease, 5 (28%) digestive disorders and 3 (23%) in other outcomes. These associations had significant pooled estimates (p<0.05), indicating that *H. pylori* infection was related to a decreased risk of some diseases. These findings could be beneficial to human health in some situations (table 3).

Heterogeneity and publication bias of the included studies

All of the included meta-analyses presented the results of heterogeneity between studies (table 1). In particular, 24 (27%) outcomes of meta-analyses showed no heterogeneity between studies (p≥0.1 of Q test), whereas 64 (73%) exhibited significant heterogeneity (p<0.1 of Q test). Moreover, 32 (57%) of 64 meta-analyses showed moderate to high heterogeneity (I²=50%–75%), and 24 (43%) showed high heterogeneity (I²>75%). Among 88 meta-analyses, 68 (77%) demonstrated no statistical evidence on publication bias according to Egger’s, whereas 20% of the meta-analyses presented publication bias (p<0.1 of Egger’s test). Only 2 (2%) meta-analyses did not report publication bias.

Summary of the methodological quality of the included meta-analyses

The methodological qualities of the 60 included articles were assessed using AMSTAR 2, and the results are shown in table 4. A total of 52 (87%) meta-analyses did not report a predefined explicit statement or protocol; only 8 (13%) meta-analyses were conducted using a comprehensive literature search strategy, and 24 (40%) meta-analyses did not report publication bias.
Study region	Increase risk of	Decrease risk of	No association with
Europe	Cholangiocarcinoma, colorectal cancer, diabetes mellitus, diabetic nephropathy, alcoholic cirrhosis, Parkinson's disease	Barrett's oesophagus	Arrhythmia, asthma, biliary lithiasis, migraine, recurrent aphthous stomatitis, chronic urticaria
America	Colorectal cancer, biliary lithiasis, chronic urticaria	Barrett's oesophagus, asthma	Arrhythmia, diabetes mellitus, alcoholic cirrhosis, recurrent aphthous stomatitis
East (Asia, China)	Cholangiocarcinoma, colorectal cancer, colon neoplasia, arrhythmia, diabetes mellitus, diabetic nephropathy, biliary lithiasis, ammonia levels in cirrhotic patients, chronic cholecystitis and cholelithiasis, Parkinson's disease, open-angle glaucoma, Henoch-Schonlein purpura, migraine, chronic urticaria	Oesophageal squamous cell carcinoma, Barrett's oesophagus, asthma	Myocardial infarction, COPD, biliary lithiasis, peptic ulcer disease, alcoholic cirrhosis, recurrent aphthous stomatitis, multiple sclerosis
West	Colon neoplasia, myocardial infarction, COPD, peptic ulcer disease, open-angle glaucoma	Oesophageal adenocarcinoma, asthma, multiple sclerosis	Oesophageal squamous cell carcinoma, ammonia levels in cirrhotic patients
Africa	Arrhythmia		Barrett's oesophagus, diabetes mellitus, peptic ulcer disease
Australia		Barrett's oesophagus	
Oceania			Biliary lithiasis

COPD, chronic obstructive pulmonary disease.

not perform a duplicate selection. Twelve (20%) meta-analyses did not conduct a duplicate data extraction, 53 (88%) meta-analyses provided a list of excluded studies but did not justify the exclusions, 6 (10%) meta-analyses did not provide a list of excluded studies, 50 (83%) meta-analyses partially described the included studies and 22 (37%) meta-analyses did not assess the risk of bias in the included studies. Furthermore, none of the meta-analyses reported the details of funding sources for the included studies, and 28 (47%) meta-analyses did not report potential sources of conflicts of interest. Overall, 85 (97%) methodological qualities of the included meta-analyses were categorised as ‘critically low’, and only 3 (3%) methodological qualities of the included meta-analyses were assessed as low quality (figure 4).

Evidence classification of the outcomes

The evidence quality of every outcome was assessed using the GRADE system (table 5). None of the evidence quality for any outcome was rated ‘high’. Most of the qualities of evidence were downgraded by the potential risk of bias and serious heterogeneity. A total of 32 (36%) evidence qualities of outcomes were rated ‘low’, 49 (56%) evidence were rated ‘very low’ and only 7 (8%) evidence were rated ‘moderate’ (figure 5). Table 5 shows the results of evidence quality from 88 outcomes.

Harmful outcomes associated with *H. pylori infection*

Our confidence level in the following was moderate: *H. pylori* infection is associated with an increased risk of chronic cholecystitis and cholelithiasis, gestational diabetes mellitus, systemic sclerosis and gastric cancer, and increased serum triglyceride level. Our confidence level in the following was low: *H. pylori* infection is associated with an increased risk of HCC, biliary lithiasis, PUD, duodenal ulcer, chronic hepatitis C, non-alcoholic fatty liver disease, diabetic neuropathy, Parkinson’s disease, hyperemesis gravidarum, fetal growth restriction, spontaneous abortion, birth defect, open-angle glaucoma, autoimmune thyroid diseases, Grave’s disease, Hashimoto’s thyroiditis, Henoch-Schonlein purpura, diabetic nephropathy, gastric ulcer, alcoholic cirrhosis Europeans, and Sjogren’s syndrome; ammonia levels decrease in patients with cirrhosis. Our confidence level in the following was very low: *H. pylori* infection is associated with an increased risk of lung cancer, cholangiocarcinoma, colorectal cancer, colon neoplasia, chronic tonsillitis, ischaemic heart disease, MI, coronary heart disease, arrhythmia, chronic bronchitis, metabolic syndrome, diabetes mellitus, type 2 diabetes mellitus, chronic atrophic gastritis, dyspepsia, chronic hepatitis

Table 2	Association between *H. pylori* infection and diverse diseases based on study region		
Study region	Increase risk of	Decrease risk of	No association with
Europe	Cholangiocarcinoma, colorectal cancer, diabetes mellitus, diabetic nephropathy, alcoholic cirrhosis, Parkinson's disease	Barrett's oesophagus	Arrhythmia, asthma, biliary lithiasis, migraine, recurrent aphthous stomatitis, chronic urticaria
America	Colorectal cancer, biliary lithiasis, chronic urticaria	Barrett's oesophagus, asthma	Arrhythmia, diabetes mellitus, alcoholic cirrhosis, recurrent aphthous stomatitis
East (Asia, China)	Cholangiocarcinoma, colorectal cancer, colon neoplasia, arrhythmia, diabetes mellitus, diabetic nephropathy, biliary lithiasis, ammonia levels in cirrhotic patients, chronic cholecystitis and cholelithiasis, Parkinson's disease, open-angle glaucoma, Henoch-Schonlein purpura, migraine, chronic urticaria	Oesophageal squamous cell carcinoma, Barrett's oesophagus, asthma	Myocardial infarction, COPD, biliary lithiasis, peptic ulcer disease, alcoholic cirrhosis, recurrent aphthous stomatitis, multiple sclerosis
West	Colon neoplasia, myocardial infarction, COPD, peptic ulcer disease, open-angle glaucoma	Oesophageal adenocarcinoma, asthma, multiple sclerosis	Oesophageal squamous cell carcinoma, ammonia levels in cirrhotic patients
Africa	Arrhythmia		Barrett's oesophagus, diabetes mellitus, peptic ulcer disease
Australia		Barrett's oesophagus	
Oceania		Biliary lithiasis	

COPD, chronic obstructive pulmonary disease.
Table 3 Results of evidence quality for all outcomes classified by GRADE

Level of evidence	Outcomes	Increased risk of	Increase	Decreased risk of	Reduce	No association with
High	Chronic cholecystitis and cholelithiasis, gestational diabetes mellitus, gastric cancer, and systemic sclerosis	Triglyceride level		Infammatoty bowel disease		Stillbirth
Moderate	Hepatocellular carcinoma, biliary lithiasis, peptic ulcer disease, chronic hepatitis C, non-alcoholic fatty liver disease, diabetic neuropathy, Parkinson’s disease, hyperemesis gravidarum, fetal growth restriction, spontaneous abortion, birth defect, open-angle glaucoma, autoimmune thyroid diseases, Grave’s disease, Hashimoto’s thyroiditis, Henoch-Schonlein purpura, colorectal adenomatous polyp, Sjogren’s syndrome, duodenal ulcer, laryngeal carcinoma, chronic obstructive pulmonary disease, diabetic nephropathy, stillbirth	Ammonia levels in patients with cirrhosis		Oesophageal adenocarcinoma in the overall population, eosinophilic oesophagitis, oesophageal eosinophilia, atopy		Diabetic ischemic heart disease, fasting blood glucose and diabetic ischaemic heart disease
Low	Hepatocellular carcinoma, biliary lithiasis, peptic ulcer disease, chronic hepatitis C, non-alcoholic fatty liver disease, diabetic neuropathy, Parkinson’s disease, hyperemesis gravidarum, fetal growth restriction, spontaneous abortion, birth defect, open-angle glaucoma, autoimmune thyroid diseases, Grave’s disease, Hashimoto’s thyroiditis, Henoch-Schonlein purpura, colorectal adenomatous polyp, Sjogren’s syndrome, duodenal ulcer, laryngeal carcinoma, chronic obstructive pulmonary disease, diabetic nephropathy, stillbirth, gastric ulcer, alcoholic cirrhosis in European, cerebral ischaemia	Ammonia levels in patients with cirrhosis		Oesophageal adenocarcinoma in the overall population, eosinophilic oesophagitis, oesophageal eosinophilia, atopy		Diabetic ischemic heart disease, fasting blood glucose and diabetic ischaemic heart disease
Very low	Lung cancer, cholangiocarcinoma, chronic tonsillitis, colorectal cancer, colon neoplasia, ischaemic heart disease, myocardial infarction, coronary heart disease, atrial fibrillation, chronic bronchitis, metabolic syndrome, diabetes mellitus, type 2 diabetes mellitus, chronic atrophic gastritis, dyspepsia, chronic hepatitis B, ischaemic stroke, dementia, pre-eclampsia, iron deficiency anaemia, body mass index, hematostatic model assessment of insulin resistance, oesophageal squamous cell carcinoma in Eastern populations, Barrett’s esophagus, asthma, end-stage renal disease in adult, multiple sclerosis and gastro-oesophageal reflux disease	Carotid intima thickness, body mass index, hematostatic model assessment of insulin resistance, oesophageal squamous cell carcinoma in Eastern populations, Barrett’s esophagus, asthma, end-stage renal disease in adult, multiple sclerosis and gastro-oesophageal reflux disease		High-density lipoprotein cholesterol, circulating ghrelin levels, Oesophagogastric adenocarcinoma, pancreatic cancer, systolic blood pressure, atherosclerosis, type 1 diabetes mellitus, alcoholic cirrhosis in all populations, low birth weight, premature delivery, and diabetic retinopathy		

B, ischaemic stroke, dementia, pre-eclampsia, iron deficiency anaemia, iron deficiency, anaemia, migraine, recurrent aphthous stomatitis, chronic urticaria, halitosis, rosacea, and psoriasis; an increase in the following parameters is observed: carotid intima thickness, body mass index, and hematostatic model assessment of insulin resistance.

Beneficial outcomes associated with *H. pylori* infection

Our confidence level in the following was moderate: *H. pylori* infection is associated with a decreased risk of irritable bowel syndrome. Our confidence level in the following was low: *H. pylori* infection is associated with a decreased risk of oesophageal adenocarcinoma in the overall population, colorectal adenomatous polyp, eosinophilic oesophagitis, oesophageal eosinophilia and atopy. Our confidence level in the following was very low: *H. pylori* infection is associated with a decreased risk of oesophageal squamous cell carcinoma in Eastern populations, Barrett’s oesophagus, asthma, end-stage renal disease in adults, multiple sclerosis and gastro-oesophageal reflux disease; decreasing high-density lipoprotein cholesterol and circulating ghrelin levels are also observed.

DISCUSSION

Principal findings and possible explanations

This umbrella review summarised the current existing evidence from meta-analyses on the associations between *H. pylori* infection and diverse health outcomes. In this umbrella review, 60 publications of interest were systematically reviewed. The role of *H. pylori* infection was explored in relation to a wide range of diseases (74 in
AMSTAR 2 checklist	Overall assessment quality																	
Included meta-analyses	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	No. 11	No. 12	No. 13	No. 14	No. 15	No. 16		
Xuan et al	Yes	No	Yes	Yes	Yes	No	Partial yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Critically low	
Mounika	Yes	No	Yes	Partial yes	No	No	Partial yes	Partial yes	Yes	No	Yes	Yes	Yes	Yes	No	No	No	Critically low
Xie et al	Yes	No	Yes	No	Yes	Yes	Partial yes	Partial yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Critically low
Wang et al	Yes	No	Yes	Partial yes	Yes	Yes	Partial yes	Partial yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Critically low
Xiao et al	Yes	No	Yes	Partial yes	Yes	Yes	Partial yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Critically low
Dong and Hao	Yes	No	Yes	Partial yes	No	No	Partial yes	Partial yes	Yes	No	No	No	Yes	Yes	No	Yes	No	Critically low
Zhou et al	Yes	No	Yes	Partial yes	No	Yes	Partial yes	Partial yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Critically low
Liu	Yes	No	Yes	Partial yes	Yes	No	Partial yes	Partial yes	No	Yes	No	Yes	Yes	Yes	Yes	Yes	No	Critically low
Li et al	Yes	No	Yes	Partial yes	No	Yes	Partial yes	Partial yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Critically low
Ma et al	Yes	No	Yes	Partial yes	No	No	Partial yes	Partial yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Critically low
Liu et al	Yes	No	Yes	No	Yes	Yes	Partial yes	Partial yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Critically low
Eröss et al	Yes	Yes	Yes	Partial yes	Yes	Yes	Partial yes	Partial yes	Yes	No	Yes	Low						
Pasceri et al	Yes	No	Yes	Partial yes	Yes	Yes	Partial yes	Partial yes	No	Yes	No	Critically low						
Liu et al	Yes	No	Yes	Partial yes	Yes	Yes	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Critically low
Chen et al	Yes	No	Yes	Partial yes	No	No	Partial yes	Yes	No	Yes	No	Critically low						
Saburi et al	Yes	No	Yes	Partial yes	No	No	Partial yes	Partial yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Critically low
Yan et al	Yes	No	Yes	Yes	Yes	Yes	Partial yes	Partial yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Critically low
Dong et al	Yes	No	No	Yes	No	Yes	Partial yes	Partial yes	No	Yes	No	Critically low						
Wang et al	Yes	No	Yes	Partial yes	No	No	Partial yes	Yes	No	Yes	No	Critically low						
Chen et al	Yes	No	Yes	No	Yes	Yes	Partial yes	Partial yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Critically low
Upala et al	Yes	Yes	Yes	Partial yes	No	Yes	No	Partial yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Critically low
Li et al	Yes	No	Yes	No	No	Partial yes	Partial yes	No	No	Yes	No	Critically low						
Wang et al	Yes	No	Yes	Partial yes	Yes	No	Partial yes	Partial yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Critically low
Wijarnpreecha et al	Yes	No	Yes	Partial yes	Yes	Yes	Partial yes	Partial yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Critically low
Cremonini et al	Yes	No	Yes	Partial yes	Yes	Yes	Partial yes	Partial yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Critically low
Weck and Brenner	Yes	No	No	No	No	Partial yes	No	Yes	No	Yes	No	Critically low						
Zhou et al	Yes	No	Yes	Yes	Yes	Yes	Partial yes	Yes	No	Yes	No	Critically low						
Shiota et al	Yes	No	Yes	Partial yes	No	No	Partial yes	Partial yes	Yes	No	Yes	Critically low						
Jiang et al	Yes	No	Yes	Partial yes	Yes	Yes	Partial yes	Partial yes	Yes	No	Yes	Critically low						
Ford et al	Yes	No	Yes	Partial yes	No	Yes	Partial yes	Partial yes	Yes	No	Yes	Critically low						
Feng et al	Yes	No	Yes	Partial yes	No	No	Partial yes	Partial yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Critically low
Wu et al	Yes	No	Yes	Partial yes	No	Yes	Partial yes	Partial yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Critically low
Wang et al	Yes	No	Yes	Yes	Yes	Partial yes	Yes	No	Yes	Critically low								
Included meta-analyses	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	No. 11	No. 12	No. 13	No. 14	No. 15	No. 16	Overall assessment quality	
-----------------------------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	---------------------------		
Wang et al*	Yes	No	Yes	Yes	Yes	No	Partial yes	Partial yes	Yes	No	Yes	Critically low						
Wijarnpreecha et al*	Yes	No	Yes	Yes	Yes	Yes	Partial yes	Yes	No	Yes	No	Critically low						
Cen et al	Yes	No	Yes	Partial yes	Yes	Yes	Partial yes	Partial yes	Yes	No	Yes	Critically low						
Shah et al	Yes	No	Yes	No	Yes	Yes	Partial yes	Partial yes	Yes	No	Yes	Critically low						
Wang et al	Yes	No	No	Partial yes	Yes	Yes	No	Partial yes	Yes	No	Yes	Critically low						
Wang et al	Yes	No	Yes	No	Partial yes	Yes	Yes	Yes	No	Yes	Critically low							
Yu et al	Yes	No	Yes	No	Yes	Yes	Partial yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Critically low
Shindler-Itskovitch et al*	Yes	No	Yes	Partial yes	No	Yes	Partial yes	Yes	No	Yes	Critically low							
Shen et al	Yes	No	Yes	Partial yes	Yes	Yes	Partial yes	Partial yes	Yes	No	Yes	Critically low						
Ng et al	Yes	No	Yes	Partial yes	Yes	Yes	Yes	Partial yes	No	No	Yes	Critically low						
Zhan et al	Yes	No	Yes	Partial yes	Yes	Yes	Partial yes	Partial yes	Yes	No	Yes	Critically low						
Zeng et al	Yes	No	Yes	No	Yes	Partial yes	No	Yes	Partial yes	No	Yes	No	Critically low					
Nweneke and Prentice*	Yes	No	Yes	Partial yes	No	No	Yes	Partial yes	No	Yes	Critically low							
Xiong et al	Yes	Yes	Yes	Partial yes	Yes	Yes	Partial yes	Partial yes	Yes	No	Yes	Critically low						
Su et al	Yes	No	Yes	Partial yes	Yes	Yes	Yes	Partial yes	Yes	No	Yes	Critically low						
Li et al	Yes	No	No	Yes	No	No	Partial yes	Yes	No	Yes	Critically low							
Taye et al	Yes	No	Yes	Partial yes	Yes	Yes	Partial yes	Yes	No	Yes	Low							
Hwang et al	Yes	No	No	Partial yes	Yes	No	Partial yes	Partial yes	No	No	Yes	Critically low						
Gu et al	Yes	No	Yes	Partial yes	Yes	Yes	Partial yes	Partial yes	Yes	No	Yes	Critically low						
Yao et al	Yes	No	Yes	Partial yes	Yes	Yes	Partial yes	Partial yes	No	No	Yes	Critically low						
Dou et al	Yes	No	Yes	Partial yes	Yes	Yes	Partial yes	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Critically low
Jørgensen et al	Yes	No	No	Partial yes	Yes	No	Partial yes	Partial yes	No	No	Yes	Critically low						
Hou et al	Yes	No	Yes	Partial yes	No	No	Partial yes	Partial yes	No	No	Yes	Critically low						
Hudaik et al	Yes	Yes	Yes	Partial yes	No	Yes	Partial yes	Partial yes	Yes	No	Yes	No	Critically low					
Chen et al	Yes	Yes	Yes	Partial yes	Yes	Yes	Partial yes	Partial yes	No	Yes	No	Critically low						
Yong et al	Yes	Yes	Yes	Partial yes	Yes	No	Yes	Partial yes	No	No	Yes	Yes	No	Yes	No	Yes	Yes	Critically low
Yong et al	Yes	Yes	Yes	Partial yes	Yes	Yes	Partial yes	No	No	No	Yes	No	Yes	No	Yes	No	No	Critically low

AMSTAR 2 checklists: No. 1: Did the research questions and inclusion criteria for the review include the components of PIO? No. 2: Did the report of the review contain an explicit statement that the review methods were established prior to the conduct of the review and did the report justify any significant deviations from the protocol? No. 3: Did the review authors explain their selection of the study designs for inclusion in the review? No. 4: If the review authors use a comprehensive literature search strategy? No. 5: Did the review authors perform study selection in duplicate? No. 6: Did the review authors perform data extraction in duplicate? No. 7: Did the review authors provide a list of excluded studies and justify the exclusions? No. 8: Did the review authors list the included studies in adequate detail? No. 9: Did the review authors use a satisfactory technique for assessing the risk of bias (RoB) in individual studies that were included in the review? No. 10: Did the review authors report on the sources of funding for the studies included in the review? No. 11: Did the meta-analyses performed, did the review authors use appropriate methods for statistical combination of results? No. 12: If meta-analysis was performed, did the review authors assess the potential impact of RoB in individual studies on the results of the meta-analysis or other evidence synthesis? No. 13: Did the review authors account for RoB in primary studies when interpreting/discussing the results of the review? No. 14: Did the review authors provide a satisfactory explanation for, and discussion of, any heterogeneity observed in the results of the review? No. 15: If they performed quantitative synthesis, did the review authors carry out an adequate investigation of publication bias (small study bias) and discuss its likely impact on the results of the review? No. 16: Did the review authors report any potential sources of conflict of interest, including any funding they received for conducting the review?
under pressure to comply with the hypothesis during H. pylori infection. Researchers believed in the association between infection and diseases might not be even published. If researchers strongly were probably more easily published than negative results. A smaller fraction was finally published. Positive results proportion of associations were recorded, and an even smaller fraction was found in thousands of individuals. However, only a small number of associations between H. pylori infection and diverse health outcomes were recorded. Inflated or false positives. Some of them had serious heterogeneity between studies. H. pylori infection could not be obtained because all of the meta-analyses did not present this aspect.

A large proportion (84%) of the health outcomes was associated with H. pylori infection. However, most of them (64%) had serious heterogeneity between studies. The potential heterogeneity might be due to possible confounding factors (e.g. different H. pylori measurement methods, alcohol consumption, smoking, sex, study region, different nationalities and time of follow-up). Substantial heterogeneity affected the results of meta-analyses, indicating that some associations between H. pylori infection and diverse health outcomes might be inflated or false positives. In addition, some of them (20%) had a notable publication bias, revealing that some negative results were not reported. In practice, associations between H. pylori infection and diseases might be found in thousands of individuals. However, only a small proportion of associations were recorded, and an even smaller fraction was finally published. Positive results were probably more easily published than negative results that might not be even published. If researchers strongly believed in the association between H. pylori infection and the risk of developing diseases, their work might be under pressure to comply with the hypothesis during publication. These requirements could cause publication biases in the results. Our result showed that 97% of the meta-analyses had ‘critically low’ methodological quality (figure 4). Evidence was downgraded by serious heterogeneity, potential bias and low method quality. Hence, none of the outcomes had high-quality evidence after evaluation based on the evidence classification criteria. Based on this metric, moderate-quality evidence only existed in six health outcomes, suggesting that H. pylori infection was probably associated with an increased risk of hypertriglyceridemia, chronic cholecystitis and cholelithiasis, gestational diabetes mellitus, gastric cancer and systemic sclerosis and a decreased risk of irritable bowel syndrome. Among these risks, the outcome of triglyceride level exhibited moderate heterogeneity ($I^2=71\%$), demonstrating that this association should be cautiously interpreted. This umbrella review shows there is no association between H. pylori infection and risk of stillbirth.

Strengths and limitations of the umbrella review

Our umbrella review has several great strengths. An umbrella review systematically searches, collects and assesses the strength and credibility of the evidence derived from various systematic reviews and meta-analyses on any clinical health outcomes related to a particular exposure. Studies have also revealed the strengths and significance of umbrella reviews in detail. Considering that the associations between H. pylori infection and diverse health outcomes have not been systematically and comprehensively assessed, this umbrella review comprehensively evaluated the methodological quality of meta-analyses and assessed the evidence quality of outcomes from the published meta-analyses of observational studies. The quality of the included studies in meta-analyses affects the quality of the meta-analyses. When possible, we reanalysed the summary estimates and explored the heterogeneity and publication bias of the included meta-analyses by using a standardised method. In this umbrella review, seven databases were comprehensively and systematically searched using a standard search strategy to identify eligibility. An uptrend of studies on associations between H. pylori infection and various health outcomes was found, indicating that the associations of H. pylori infection and diseases were widely explored. However, meta-analyses investigated on associations between H. pylori infection and musculoskeletal disorders, and mucosa associated lymphoid tissue (MALT) lymphoma were not found in our scope.

We used AMSTAR 2, which is a standard methodological quality assessment approach, to assess the quality of the method used for meta-analyses. Since AMSTAR 2 was developed from AMSTAR in 2017, it has been considered a valid and reliable methodological quality assessment tool. The lengths of AMSTAR 2 have been described in other studies. This tool helped us identify the highest methodological quality of the meta-analyses of RCTs and also the meta-analyses of observational studies. Therefore, AMSTAR 2 is more practical and applicable
Table 5 Details of evidence quality for outcomes classified by GRADE

Included meta-analyses	Association between H. pylori and*	Downgrade factors	Upgrade factors	GRADE class				
Cancer outcomes								
Xuan et al[13]	Hepatocellular carcinoma	−1	0	−1	2	1	Low	
Mounika[44]	Lung cancer	−1	−2	0	0	1	1	Very low
Xie et al[18]	ESCC in Eastern populations	−1	−1	0	0	0	0	Very low
Xie et al[18]	EAC in the overall population	−1	0	0	0	0	0	Very low
Wang et al[64]	Colorectal adenomatous polyp	−1	0	0	0	0	0	Low
Xiao et al[14]	Cholangiocarcinoma	−1	−1	0	−1	−1	2	Very low
Dong and Hao[15]	Colorectal cancer	−1	−1	0	0	0	0	Very low
Zhou et al[24]	Laryngeal carcinoma	−1	−1	0	0	0	1	Very low
Liu[28]	Colon neoplasia	−1	−2	0	0	0	0	Very low
Li et al[23]	Gastric cancer	−1	0	0	0	0	1	Moderate
Ma et al[82]	Oesophagogastric junction adenocarcinoma	−1	−2	0	0	0	0	Very low
Liu et al[61]	Pancreatic cancer	−1	−2	0	0	0	0	Very low
Cardiovascular and cerebrovascular diseases								
Pasceri et al[47]	Ischaemic heart disease	−2	−1	0	0	0	0	Very low
Pasceri et al[47]	Cerebral ischaemia	−2	0	0	0	0	1	Low
Wang et al[49]	Diabetic IHD	−1	0	0	0	0	0	Low
Liu et al[54]	Myocardial infarction	−1	−2	0	0	0	0	Very low
Chen et al[58]	Coronary heart disease	−2	−2	0	0	0	0	Very low
Ramezani-Binabaj et al[43]	Atherosclerosis	−2	−1	0	−1	−1	0	Very low
Yan et al[64]	Arrhythmia	−1	−2	0	0	0	0	Very low
Dong et al[76]	Carotid intima thickness	−1	−2	0	0	0	0	Very low
Respiratory disorders								
Wang et al[47]	COPD	−1	−1	0	0	0	1	Very low
Wang et al[47]	Chronic bronchitis	−1	−1	0	0	0	0	Very low
Chen et al[46]	Asthma	−1	−1	0	0	0	0	Very low
Endocrine disease								
Upala et al[54]	Metabolic syndrome	−1	−1	0	0	0	0	Very low
Upala et al[54]	Fasting blood glucose	−1	−1	0	0	0	1	Very low
Upala et al[54]	HDL-C	−1	−2	0	0	0	1	Very low
Upala et al[54]	Triglyceride level	−1	−1	0	0	0	2	Moderate

Continued
Included meta-analyses	Association between H. pylori and*	Downgrade factors	Upgrade factors	Plausible confounding would change the effect	GRADE class				
		Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Large effect		
Upala et al*	Systolic blood pressure	−1	−2	0	0	0	1	1	Very low
Upala et al*	Body mass index	−1	−1	0	0	0	0	1	Very low
Upala et al*	HOMA-IR	−1	−2	0	0	0	0	0	Very low
Li et al*	DM	−1	−2	0	0	−1	0	1	Very low
Li et al*	T2DM	−1	−2	0	0	−1	1	1	Very low
Li et al*	T1DM	−1	−2	0	0	0	0	1	Very low
Urological disease									
Wang*	Diabetic nephropathy	−1	0	0	0	0	0	1	Low
Wijarnpreecha et al*	ESRD in adult	−1	−2	0	0	0	0	0	Very low
Digestive disorders									
Eriss et al*	Barrett’s oesophagus	−1	−2	0	0	−1	0	1	Very low
Li et al*	Gastric ulcer	−1	0	0	0	0	0	1	Low
Li et al*	Duodenal ulcer	−1	−1	0	0	0	0	1	Low
Cremonini et al*	GERD in population with HP- negative status	−1	−1	0	0	0	0	1	Very low
Weck and Brenner*	Chronic atrophic gastritis	−1	−2	0	0	−1	2	1	Very low
Zhou et al*	Biliary lithiasis	−1	−1	0	0	0	1	1	Low
Shiota et al*	Peptic ulcer disease	−1	0	0	0	0	0	1	Low
Jiang et al*	Ammonia levels in cirrhotic patients	−1	0	0	0	0	0	1	Low
Ford et al*	Dyspepsia	−1	−1	0	0	0	0	1	Very low
Feng et al*	Alcoholic cirrhosis in all population	−1	−2	0	0	0	0	1	Very low
Feng et al*	Alcoholic cirrhosis in European	−1	0	0	−1	0	1	1	Low
Wu et al*	Inflammatory bowel disease	−1	0	0	0	0	1	1	Moderate
Wang et al*	Chronic hepatitis C	−1	−1	0	0	0	1	1	Low
Wang et al*	Chronic hepatitis B	−1	−2	0	0	−1	1	1	Very low
Wijarnpreecha et al*	NAFLD	−1	0	0	0	0	0	1	Low
Cen et al*	Chronic cholecystitis and cholelithiasis	−1	0	0	0	0	1	1	Moderate
Shah et al*	Eosinophilic oesophagitis	0	−1	0	0	0	0	1	Low
Shah et al*	Oesophageal eosinophilia	0	−1	0	0	0	0	1	Low
Table 5 Continued

Included meta-analyses	Association between H. pylori and*	Downgrade factors	Upgrade factors	Plausible confounding would change the effect	GRADE class				
Neurocognitive disorders									
Wang et al\(^{55}\)	Diabetic neuropathy	−1	0	0	0	0	0	1	Low
Wang et al\(^{51}\)	Ischaemic stroke	−1	−1	0	0	−1	0	1	Very low
Yu et al\(^{50}\)	Stroke	−1	−1	0	0	0	0	1	Very low
Shinder-Itskovitch et al\(^{61}\)	Dementia	−1	−2	0	0	0	0	1	Very low
Shen et al\(^{59}\)	Parkinson’s disease	0	0	0	0	−1	0	1	Low
Pregnancy-related disorders									
Ng et al\(^{45}\)	Hyperemesis gravidarum	−1	0	0	0	0	0	1	Low
Zhan et al\(^{72}\)	Pre-eclampsia	−1	−1	0	0	−1	0	1	Very low
Zhan et al\(^{73}\)	Fetal growth restriction	−1	−1	0	0	0	0	1	Low
Zhan et al\(^{72}\)	Gestational DM	−1	0	0	0	0	0	1	Moderate
Zhan et al\(^{72}\)	Spontaneous abortion	−1	0	0	0	0	0	1	Low
Zhan et al\(^{72}\)	Birth defect	−1	0	0	0	0	0	1	Low
Zhan et al\(^{72}\)	Stillbirth	−1	0	0	0	0	0	1	Moderate
Zhan et al\(^{72}\)	Low birth weight	−1	−1	0	0	0	0	1	Very low
Zhan et al\(^{72}\)	Premature delivery	−1	−1	0	0	0	0	1	Very low
Ophthalmic diseases									
Wang et al\(^{55}\)	Diabetic retinopathy	−1	−1	0	0	0	0	1	Very low
Zeng et al\(^{71}\)	Open-angle glaucoma	−1	−1	0	0	0	0	1	Low
Thyroid disease									
Hou et al\(^{67}\)	Autoimmune thyroid diseases	−1	−1	0	0	0	0	1	Low
Hou et al\(^{67}\)	Graves’s disease	−1	−1	0	0	0	0	1	Low
Hou et al\(^{67}\)	Hashimoto’s thyroiditis	−1	−1	0	0	0	0	1	Low
Homeopathy disorders									
Hudak et al\(^{76}\)	Iron deficiency anaemia	−1	−1	0	0	0	0	1	Very low
Hudak et al\(^{76}\)	Iron deficiency	−1	−1	0	0	0	0	1	Very low
Hudak et al\(^{76}\)	Anaemia	−1	−1	0	0	0	0	1	Very low
Other outcomes									
Nweneka and Prentice\(^{48}\)	Circulating ghrelin levels	−1	−1	0	0	0	0	1	Very low
Xiong et al\(^{64}\)	Henoch-Schonlein purpura	−1	0	0	0	−1	1	1	Low
Su et al\(^{52}\)	Migraine	−1	−1	0	0	−1	0	1	Very low
Included meta-analyses & Association between H. pylori and* & Risk of bias & Inconsistency & Indirectness & Imprecision & Publication bias & Large effect & Plausible confounding would change the effect & GRADE class

Reference	Disease	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Large effect	Plausible confounding would change the effect	GRADE class
Li et al	Recurrent aphthous stomatitis	-1	0	0	-1	0	0	1	Very low
Taye et al	Atopy	-1	0	0	0	0	0	1	Low
Hwang et al	Chronic tonsillitis	-1	-1	0	0	0	0	1	Very low
Gu et al	Chronic urticaria	-1	-1	0	0	-1	0	1	Very low
Yao et al	Multiple sclerosis	-1	0	0	0	-1	0	1	Very low
Dou et al	Halitosis	-1	-2	0	0	-1	0	1	Very low
Jørgensen et al	Rosacea	-1	-2	0	0	0	0	1	Very low
Chen et al	Sjogren’s syndrome	-1	0	0	0	0	0	1	Low
Yong et al	Psoriasis	-1	-1	0	0	-1	0	1	Very low
Yong et al	Systemic sclerosis	-1	0	0	0	0	1	1	Moderate

Reference: -1 means downgrade one level; -2 means downgrade two levels; 1 means upgrade one level.

* prevalence or incidence unless otherwise specified.

COPD, chronic obstructive pulmonary disease; DM, diabetes mellitus; DM, diabetes mellitus; EAC, oesophageal adenocarcinoma; ESCC, oesophageal squamous cell carcinoma; ESRD, end-stage renal disease; GERD, gastro-oesophageal reflux disease; HDL-C, high-density lipoprotein cholesterol; HOMA-IR, homeostatic model assessment of insulin resistance; HP, H. pylori; IHD, ischemic heart disease; NAFLD, non-alcoholic fatty liver disease; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus.
than AMSTAR. In this umbrella review, 95% of the methodological qualities of existing meta-analyses studying the associations between *H. pylori* infection and diverse health outcomes were critically low, suggesting that the results of the meta-analyses might be inconclusive, and further meta-analyses with high methodological quality should be conducted to verify such conclusions.

We also adopted the GRADE system criteria, which are credibility-assessment criteria, to assess the evidence quality of outcomes from meta-analyses. The certainty of evidence is important for the recommendation of guidelines, affecting a patient’s outcomes. GRADE re-evaluates the quality of evidence and rates the certainty evidence for clinical decision-makers and guideline developers. This system is also used worldwide. We downgraded the evidence level because all of the meta-analyses exhibited a potential risk of bias, but we upgraded the evidence level because the result of the included meta-analyses might be affected by various potential confounders, such as age, sex or smoking. Although conducting AMSTAR 2 and GRADE classification was relatively subjective, they were performed by two investigators independently, and the results were checked by another investigator. The inconsistencies were resolved via a discussion, and all discrepancies were arbitrated by another researcher, thereby greatly reducing the subjectivity.

In terms of the study weakness, this umbrella review focused on the existing and published systematic review and meta-analyses and only included publications in Chinese and English. Thus, we might have missed some studies on the associations between *H. pylori* infection and diverse health outcomes. The potential missing data in other languages might affect the evaluation results. In this umbrella review, only systematic reviews and meta-analyses were included. Evidence from individual observational studies involving undeveloped a meta-analysis was not in the scope of our discussion, such as MALT lymphoma. This situation might result in conclusion bias of association between *H. pylori* infection and human health. In addition, we could not obtain a clear exposure time because most of the meta-analyses did not present the length of time of *H. pylori* infection. Most of the meta-analyses had heterogeneity, but we did not re-explore the factors causing heterogeneity, such as population characteristics (eg, age, sex and nationality), study design and study region. Common flaws are evident among meta-analyses. The evidence quality of meta-analyses depends on the quality of original individual studies included in meta-analyses. However, this umbrella review did not assess the quality of the original individual studies included in the meta-analyses. We extracted the data for calculation from the included meta-analyses but not from the original individual studies, possibly affecting the conclusion of this umbrella review.

Clinical implications and future research

Clinicians have considered whether individuals should be tested for *H. pylori* or offered eradication therapy for *H. pylori* infection since multiple unfavourable influences on human health related to *H. pylori* infection have been found. Different suggestions on addressing *H. pylori* infection have been provided in different guidelines because of objective factors (eg, local drug resistance, economic level, and medical and health conditions). Several guidelines, including Asian guidelines, recommend screening in every individual, whereas other guidelines recommend no screening. The different recommendations regarding *H. pylori* detection and eradication in different guidelines may cause confusion among clinicians. The significance of our study mostly included the summary of the diseases associated with *H. pylori* and the clarification of evidence quality to guide clinical practice.

Our umbrella review found that 69% of outcomes were unfavourable influences on human health which should be paid attention to by clinicians, even though most of them were low-quality evidence. In terms of eradication therapy for *H. pylori* infection, the beneficial influence (*H. pylori* infection as a protect factor) on human health might be considered by clinicians. This umbrella review found that a decreased risk of 13 types of conditions (eg, inflammatory bowel disease, laryngeal and oesophageal carcinoma) was also found, even though *H. pylori* was associated with an increased risk of a large proportion of diseases. *H. pylori*–eradicating drugs have adverse effects, such as increased resistance of *H. pylori*. Therefore, for an individual who tests positive, whether *H. pylori* infection is a risk factor or a protective factor should be distinguished before he/she receives eradication therapy. Before deciding on administering eradication therapy, clinicians should weigh the advantages and disadvantages of eradicating *H. pylori* based on an individual's situation.

Future prospective studies on *H. pylori* infection and health outcomes should use time-varying exposure (*H. pylori* infection duration) and confounder information to better model the association between *H. pylori* infection and health outcomes. Data remain scarce, and a large heterogeneity exists in some associations of *H. pylori* infection.
Helicobacter pylori infection and diseases. Prospective studies should be carried out to better characterise these associations. In the absence of data from RCTs for *H. pylori* infection and risk of developing diseases, Mendelian randomisation analyses may be useful in determining whether an observed association is likely to be causal. Meta-analyses investigating associations between *H. pylori* infection and some diseases, such as autoimmune liver disease, have not been found in our scope. A meta-analysis may be conducted to confirm these conclusions in the future because of the possible inconsistent results in different individual studies.

CONCLUSION

This umbrella review systematically and comprehensively collected a large amount of existing evidence on the associations between *H. pylori* infection and diverse health outcomes from published meta-analyses to help clinical decision-makers, guideline developers and investigators evaluate these associations. Although 60 meta-analyses explored 88 unique outcomes, moderate evidence only existed in six outcomes with statistical significance. *H. pylori* infection may be associated with a decreased risk of irritable bowel syndrome and an increased risk of hypertriglyceridemia, chronic cholecystitis and cholelithiasis, gestational diabetes mellitus, gastric cancer and systemic sclerosis. Further prospective studies and large RCTs with a good assessment of associations between *H. pylori* infection and health outcomes should be conducted to draw a firm conclusion.

REFERENCES

1. Hooi JKY, Lai WY, Ng WK, et al. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. *Gastroenterology* 2017;153:420–9.
2. Melese A, Genet C, Zeleke B, et al. Helicobacter pylori infections in Ethiopia: prevalence and associated factors: a systematic review and meta-analysis. *BMJ Gastroenterol* 2019;19:8.
3. Venneman K, Huybrechts I, Gunter MJ, et al. The epidemiology of Helicobacter pylori infection in Europe and the impact of lifestyle on its natural evolution toward stomach cancer after infection: a systematic review. *Helicobacter* 2018;23:e12483.
4. Zaman M, Ebrahimbtabar F, Zaman V, et al. Systematic review with meta-analysis: the worldwide prevalence of *Helicobacter pylori* infection. *Aliment Pharmacol Ther* 2018;47:868–76.
5. Eslick GD, Lim LL, BYles JE, et al. Association of *Helicobacter pylori* infection with gastric carcinoma: a meta-analysis. *Am J Gastroenterol* 1999;94:2373–9.
6. Huang JQ, Shridhar S, Chen Y, et al. Meta-analysis of the relationship between *Helicobacter pylori* seropositivity and gastric cancer. *Gastroenterology* 1998;114:1169–79.
7. Vengara M, Calvet X, Roquè M. *Helicobacter pylori* is a risk factor for peptic ulcer disease in cirrhotic patients. A meta-analysis. *Eur J Gastroenterol Hepatol* 2002;14:717–22.
8. Jaakkimainen RL, Boyle E, Tůdver F. Is *Helicobacter pylori* infection associated with non-ulcer dyspepsia and will eradication improve symptoms? A meta-analysis. *BMJ* 1999;319:3194–5.
9. Ford AC, Marwaha A, Sood R, et al. Global prevalence of, and risk factors for, uninvestigated dyspepsia: a meta-analysis. *Gut* 2015;64:1049–57.
10. Shiota S, Watada M, Matsunari O, et al. *Helicobacter pylori* infection and clinical outcomes, and correlation with cagA: a meta-analysis. *PLoS One* 2012;7:e30354.
11. Weck MN, Brenner H. *Helicobacter pylori* infection with chronic atrophic gastritis: meta-analyses according to type of disease definition. *Int J Cancer* 2009;123:874–81.
12. Li Q, Liu J, Gong Y, et al. *Helicobacter pylori* infection is a risk factor for peptic ulcer and gastric cancer: a meta-analysis. *Microb Pathog* 2016;99:220–8.
13. Xuan S-Y, Xin Y-N, Chen A-J, et al. Association between the presence of *H pylori* in the liver and hepatocellular carcinoma: a meta-analysis. *World J Gastroenterol* 2008;14.
14. Xiao M, Gao Y, Wang Y. *Helicobacter pylori* species infection may be associated with cholangiocarcinoma: a meta-analysis. *Int J Clin Pract* 2014;68:262–70.
15. Li Q, Wang F, Shi S. *Helicobacter pylori* infection increase the risk of myocardial infarction: a meta-analysis of 26 studies involving more than 20,000 participants. *Helicobacter* 2015;20:176–83.
16. Chen C, Xun P, Tsinovoi C, et al. Accumulated evidence on *Helicobacter pylori* infection and the risk of asthma. *Ann Allerg Immunol* 2017;119:137–45, e132.
17. Wu X-W, Ji H-Z, Yang M-F, et al. *Helicobacter pylori* infection and inflammatory bowel disease in Asians: a meta-analysis. *World J Gastroenterol* 2015;21:4750–6.
18. Xie F-J, Zhang Y-P, Zheng Q-Q, et al. *Helicobacter pylori* infection and esophageal cancer risk: an updated meta-analysis. *World J Gastroenterol* 2013;19:6098–107.
19. Shea BJ, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. *BMJ* 2017;358.
20. Shea BJ, Harel C, Wells GA, et al. AMSTAR is a reliable and valid measurement tool to assess the methodological quality of systematic reviews. *J Clin Epidemiol* 2009;62:1013–20.
21. Jung JH, Dahm P. Reaching for the stars—rating the quality of systematic reviews with the Assessment of Multiple Systematic Reviews (AMSTAR) 2. *BJU Int* 2018;122:717–8.
22. Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of findings tables. *J Clin Epidemiol* 2011;64:383–94.
23. Balschew H, Helfand M, Schünemann HJ, et al. GRADE guidelines: 3. Rating the quality of evidence. *J Clin Epidemiol* 2011;64:401–6.
24. DerSimonian R, Laird N. Meta-analysis in clinical trials revisited. *Contemp Clin Trials* 2015;45:139–45.
25. Lau J, Ioannidis JP, Schmid CH. Quantitative synthesis in systematic reviews, *Ann Intern Med* 1997;127:820–6.
26. Sterne JA, Gavaghan D, Egger M. Publication and related biases in meta-analysis: power of statistical tests and prevalence in the literature. *J Clin Epidemiol* 2000;53:1119–29.
27. Cen L, Pan J, Zhou B, et al. *Helicobacter pylori* infection of the gallbladder and the risk of chronic cholecystitis and cholelithiasis: a systematic review and meta-analysis. *Helicobacter* 2018;23:e12457.
Chao Liu PZ. The relationship of Helicobacter pylori infection and the risk of colon neoplasia based on meta-analysis. Int J Exp Med 2016;9:2933–300.

Chen Q, Zhou X, Tan W, et al. Association between Helicobacter pylori infection and Sjögren syndrome: a meta-analysis. Medicine 2018;97:e13528.

Cremonini F, Di Caro S, Delgado-Aros S, et al. Meta-analysis: the relationship between Helicobacter pylori infection and gastro-esophageal reflux disease. Aliment Pharmacol Ther 2003;18:279–89.

Dou W, Li J, Xu L, et al. Halitosis and Helicobacter pylori infection: a meta-analysis. Medicine 2016;95:e4223.

Eriss B, Farkas N, Vincze Aron, et al. Helicobacter pylori infection reduces the risk of Barrett’s esophagus: a meta-analysis and systematic review. Helicobacter 2018;23:e12504.

Feng H, Zhou X, Zhang G, et al. Association between cirrhosis and Helicobacter pylori infection. Eur J Gastroenterol Hepatol 2016;24:1–19.

Hu G, Li L, Gu M, et al. Association between Helicobacter pylori infection and chronic urticaria: a meta-analysis. Gastroenterol Res Pract 2015;2015:486974.

Hudak L, Jaraisy A, Haj S, et al. An updated systematic review and meta-analysis on the association between Helicobacter pylori infection and iron deficiency anemia. Helicobacter 2017;22:e12330.

Hwang MS, Forman SN, Kanter, JA, et al. Tonsillar Helicobacter pylori colonization in chronic tonsillitis: systematic review and meta-analysis. JAMA Otolaryngol Head Neck Surg 2015;141:245–9.

Jiang H-X, Qin S-Y, Min Z-gang, et al. Association of Helicobacter pylori with elevated blood ammonia levels in cirrhotic patients: a meta-analysis. Yonsei Med J 2013;54:832–8.

Jorgensen A-HR, Egberg A, Gideonsson R, et al. Association between Helicobacter pylori infection and open-angle glaucoma: a meta-analysis. Ophthalmol Vis Sci 2015;56:5238–45.

Jensen L, LX, TF, et al. Helicobacter pylori infection is associated with type 2 diabetes, not type 1 diabetes: an updated meta-analysis. Gastroenterol Res Pract 2017;2017.

Li L, Gu H, Zhang G. Association between recurrent aphthous stomatitis and Helicobacter pylori infection: a meta-analysis. Clin Oral Investig 2017;21:553–60.

Liu H, Chen Y-T, Wang R, et al. Helicobacter pylori infection, atrophic gastritis, and pancreatic cancer risk: a meta-analysis of prospective epidemiologic studies. Medicine 2017;96:e7811.

Ma S, Ma Q, Li J, Sr M, JB L, et al. [Meta-analysis on relationship between Helicobacter pylori infection and esophagogastric [junction adenocarcinoma], Zhonghua Liu Xing Bing Xue Za Zhi 2016;37:418–24.

Saburi A, Ramezani-Binabaj M, Jannat AM, et al. The relationship between Helicobacter pylori infection and attherosclerosis: a meta-analysis. Erciyes Med J 2016;2015:486974.

Mouinka P. Helicobacter pylori infection and risk of lung cancer: a meta-analysis. Lung Cancer Int 2013;2013:1–6.

QX N, Venkatanarayanan N, De Deyn M, et al. Meta-analysis of the relationship between Helicobacter pylori infection and end-stage renal disease: a meta-analysis. World J Gastroenterol 2017;23:1497–506.

Wang LZ, Jiang C, Zhang Y, et al. Association between cirrhosis and Helicobacter pylori infection and risk of nonalcoholic fatty liver disease: a systematic review and meta-analysis. J Clin Gastroenterol 2019;53:320–8.

Xiong L-J, Tong Y, Wang Z-L, et al. Is Helicobacter pylori infection associated with Henoch-Schonlein purpura in Chinese children? A meta-analysis. World Pediatr 2012;8:301–8.

Yan J, She G, Zhang Y, et al. The association between arrhythmia and Helicobacter pylori infection: a meta-analysis of case–control studies. Int J Environ Res Public Health 2016;13:1139.

Yao G, Wang P, Luo X-D, et al. Meta-analysis of association between Helicobacter pylori infection and multiple sclerosis. Neurosci Lett 2016;620:1–7.

Hou Y, Sun W, Zhang C, et al. Meta-analysis of the correlation between Helicobacter pylori infection and autoimmune thyroid diseases. Oncotarget 2017;8;115691–700.

Erciyes Med J 2015;2015:486974.

Yong WC, Upala S, Sanguankee A. Association between psoriasis and Helicobacter pylori infection: a systematic review and meta-analysis. Indian J Dermatol 2018;63:193–200.

Yong WC, Upala S, Sanguankee A, et al. Helicobacter pylori infection in systemic sclerosis: a systematic review and meta-analysis of observational studies. Clin Exp Rheumatol 2018;36 Suppl 11:168–74.

Yi M, Zhang Y, Yang Z, et al. Association between Helicobacter pylori infection and stroke: a meta-analysis of prospective observational studies. J Stroke Cerebrovasc Dis 2014;23:2233–9.

Jeng, J, Liu, H, Liu X, et al. The relationship between Helicobacter pylori infection and open-angle glaucoma: a meta-analysis. Invest Ophthalmol Vis Sci 2015;56:5238–45.

Zhan Y, Si M, Li M, et al. The risk of Helicobacter pylori infection for adverse pregnancy outcomes: a systematic review and meta-analysis. Helicobacter 2019;24:e12562.

Zhou D, Zhai Y, Gong W, et al. Are Helicobacter pylori and other Helicobacter species infection associated with human biliary lithiasis? A meta-analysis. PLoS One 2011;6:e27390.

Zhou J, Zhang D, Yang Y, et al. Association between Helicobacter pylori infection and carcinoma of the larynx or pharynx. Head Neck 2015;38.

Hong-Xia D, Hao L. Correlation between colorectal cancer and Helicobacter pylori infection in different countries: a meta-analysis. Med J Chin PLA 2015;40:236–41.

Dong XS, Chen ZL, Fan WX, et al. Relationship between Helicobacter pylori infection and carotid intima thickness by meta-analysis. Chin Cir J 2018;33:366–70.

Inal M, Aksoy S, Aksoy M, et al. Systemic fungal infection in patients with chronic kidney disease: a meta-analysis. PLoS Negl Trop Dis 2015;9:e0003528.

Shrestha GS, Lamichhane MP, et al. Association between Helicobacter pylori infection and multiple sclerosis. Clin Exp Immunol 2017;188:147–51.

Zhang Y, Tan W, et al. Association between Helicobacter pylori infection and esophagogastric junction adenocarcinoma. Zhonghua Liu Xing Bing Xue Za Zhi 2015;36:115691–700.

Hong, Xia D, Hao L. Correlation between colorectal cancer and Helicobacter pylori infection in different countries: a meta-analysis. Med J Chin PLA 2015;40:236–41.
analyses of observational and intervention studies. *Eur J Nutr* 2019;99.

79 Hong X-Y, Lin J, Gu W-W. Risk factors and therapies in vascular diseases: an umbrella review of updated systematic reviews and meta-analyses. *J Cell Physiol* 2019;234:8221–32.

80 Siegfried N, Parry C, NA-Oooh S. Do alcohol control policies work? An umbrella review and quality assessment of systematic reviews of alcohol control interventions (2006–2017). *PLoS One* 2019;14:e0214865.

81 Gates A, Gates M, Duarte G, et al. Evaluation of the reliability, usability, and applicability of AMSTAR, AMSTAR 2, and ROBIS: protocol for a descriptive analytic study. *Syst Rev* 2018;7:85.

82 Kallmayer MA, Salvermoser M, Knappich C, et al. Quality appraisal of systematic reviews, and meta-analysis of the hospital/surgeon-linked volume–outcome relationship of carotid revascularization procedures. *J Cardiovasc Surg* 2019;60.

83 Sanabria A, Kowalski LP, Nixon I, et al. Methodological quality of systematic reviews of intraoperative neuromonitoring in thyroidectomy: a systematic review. *JAMA Otolaryngol Head Neck Surg* 2019;145.

84 Schünemann HJ, Mustafa RA, Brozek J, et al. GRADE guidelines: 22. The GRADE approach for tests and strategies—from test accuracy to patient-important outcomes and recommendations. *J Clin Epidemiol* 2019;111:69–82.

85 Ishikura N, Usui Y, Ito H, et al. Helicobacter pylori (HP) infection alone, but not HP-induced atrophic gastritis, increases the risk of gastric lymphoma: a case–control study in Japan. *Ann Hematol* 2019;98:1981–7.

86 Ioannidis JPA. The mass production of redundant, misleading, and conflicted systematic reviews and meta-analyses. *Milbank Q* 2016;94:485–514.

87 Xie S, Li J, JF L, et al. Quality assessment of guidelines for the management of Helicobacter pylori infection. *J Tradit Chin Med* 2019;37:263–9.

88 Almeida N, Româozinho JM, Donato MM, et al. Helicobacter pylori antimicrobial resistance rates in the central region of Portugal. *Clin Microbiol Infect* 2014;20:1127–33.

89 Nilsson I, Kornilovs’ka I, Lindgren S, et al. Increased prevalence of seropositivity for non-gastric Helicobacter species in patients with autoimmune liver disease. *J Med Microbiol* 2003;52:949–53.

90 Durazzo M, Pellicano R, Premoli A, et al. Helicobacter pylori seroprevalence in patients with autoimmune hepatitis. *Dig Dis Sci* 2002;47:380–3.