Research on Wearable Technologies for Learning: A Systematic Review
Sharon Lynn Chu1, Brittany M. Garcia2, Neha Rani3,4,5
1,2University of Florida, Gainesville, FL, USA. 3Texas A&M University, College Station, TX, USA.
slchu@ufl.edu//brimi@tamu.edu//neharani@ufl.edu

ABSTRACT: A good amount of research has explored the use of wearables for educational or learning purposes. We have now reached a point when much literature can be found on that topic, but few attempts have been made to make sense of that literature from a holistic perspective. This paper presents a systematic review of the literature on wearables for learning. Literature was sourced from conferences and journals pertaining to technology and education, and through an ad hoc search. Our review focuses on identifying the ways that wearables have been used to support learning and provides perspectives on that issue from a historical dimension, and with regards to the types of wearables used, the populations targeted, and the settings addressed. Seven different ways of how wearables have been used to support learning were identified. We propose a framework identifying five main components that have been addressed in existing research on how wearables can support learning and present our interpretations of unaddressed research directions based on our review results.

Keywords: Wearable technologies, Wearables, Learning, Education, Review, Survey

1. Introduction

The desktop-bound paradigm of user interaction with technologies is rapidly losing its mainstream status to make way for a mode of interaction that is marked by mobility, persistence, and ubiquity. While mobile technologies kickstarted this new paradigm, wearable technologies are a class of devices where the benefits of this new mode of interaction can be truly evident. Research has explored the use of wearable devices for a variety of purposes. Some of the primary use cases have included, for example, medicine, healthcare and wellbeing, business, and military where the sensor capabilities of wearables enable useful tracking features. However, a good amount of work has also explored the potential of wearable devices in the domain of education. Although work in that area is still relatively scarce compared to wearables for health, there are now enough contributions to the literature to warrant a systematic review. Section II provides the context of such a review and make explicit the need for it.

The overarching goal of this paper is to provide the reader with a picture of the literature on educational wearables, assess its current status, and identify potential directions for future research. The results would be particularly useful for researchers who are new to the topic of wearables for learning, and practitioners (designers and educators) interested in understanding how the research community has engaged the issue thus far. The main research question that we addressed in our review is: How have wearables been used to support learning in existing research? We study this question with respect to: (a) the prevalence of research on wearables for learning over time; (b) the types of wearables used; (c) the populations targeted; and (d) the types of learning settings that the research is situated in.

2. Related Work

Work on wearable technologies for learning, or educational wearables, has advanced with few attempts at integration. Many reviews on wearables exist, but they address either wearables at a general level (i.e., aspects of wearables that are independent of application domain) (e.g., Berglund, Duvall, and Dunne (2016); Kumari, Mathew, and Syal (2017); Liew, Wah, Shuja, Daghighi, et al. (2015)), or wearables in the areas of healthcare (Baig, Gholamhosseini, and Connolly (2013); Pantelopoulos and Bourbakis (2008); Wang, Mintchev, et al. (2013)), assistive technologies (e.g., Dakopoulos and Bourbakis (2009); Tapu, Mocanu, and Tapu (2014)), or security (Blasco, Chen, Tapiador, and Peris-Lopez (2016); Sundararajan, Sarwat, and Pons (2019)). Our literature search uncovered 10 survey or review papers that can be considered as being related to wearables for learning.

The earliest review is a report published as part of the JISC Technology and Standards Watch Report in 2003 (De Freitas and Levene, 2003). It describes wearable devices, provides examples of wearables available at the time, and describes some case studies of how wearable technologies and mobile devices had been used in higher education settings. The report concludes with considerations, such as battery life, that need to be taken for the use of wearable and mobile devices in education. The next relevant survey paper authored by Petrovic (2014) in the journal of ICT Management, focuses on analyzing how some selected work have applied the use of wearables in education, and thereafter proposes two application models for how smart glasses and smartwatches can be combined in e-learning.
In 2015, there were 3 survey papers related to wearables for learning. Sapargaliyev (2015b) reviewed some work on how wearables have been used to support teaching and learning, but mainly used GoogleGlass. Sapargaliyev (2015a) published another 4-page paper reviewing work on wearables used in learning, this time with a broader scope. One conclusion from the paper is that “very little was found in the literature on the question of the use of wearables for large-scale projects”. The last 2015 survey paper is by Borthwick, Anderson, Finsness, and Foulger (2015) in the Journal of Digital Learning in Teacher Education. The focus of the paper was to review the value and potential drawbacks of using wearable technologies in education. The authors identified some key themes for both value (e.g., student engagement, universal design for learning) and drawbacks (e.g., student safety, security, and privacy), highlighting example work supporting each theme. The paper wraps up with a call to action for researchers and educators to think of the theory of change that wearable technologies bring with respect to learning, and for more resources to be allocated to this topic.

In a 2018, Attallah and Ilagure (2018) published a survey that first describes some wearables available at the time (e.g., GoogleGlass, Oculus Rift, Muse), and then focuses on discussing the challenges associated with the use of wearable computing in education. Some limitations highlighted include distraction to students, cost, usability and fear of the technology, and the requirement of most wearables to be tethered to smartphones.

Lee and Shapiro (2019) conducted a survey that perhaps comes the closest to the review presented in this paper. Based on a review of a number of wearable technology investigations and projects, they identified the forms of support that wearables can provide for learning as including: (i) the promotion of personal expression; (ii) the integration of digital information into social interactions; (iii) the support of educative role-play; (iv) the provision of just-in-time notification in a learning environment; and (v) the production of records of bodily experience for later inspection, reflection, and interpretation.

Finally, in 2020, Havard and Podsiad (2020) conducted a meta-analysis of the effect sizes found in quantitative wearables for learning research. Their analysis included 12 studies. They also coded for various aspects of these studies, including the types of wearables used, and the pedagogical strategies used. They found that the majority of the studies (7 out of 12) used head-mounted displays, followed by fitness trackers and smartwatches. They classified the types of learning outcomes as being of a cognitive, affective, psychomotor, and motivational nature, with an overall weighted mean effect size for study outcomes of .6373 (medium effect).

The survey that we present in this paper is distinct from the previous surveys related to wearables for learning in that it focuses on how wearables have been used for learning, it is systematic in nature and more comprehensive, and covers a longer time period. Figure 1 show the distinctions between our survey in this paper and previous surveys on wearables for learning.

3. Obtaining the Paper Set

We describe the steps that we took for and review relevant papers below. The process is illustrated in Figure 2.

A. Paper Search Process

Three approaches were used to search for relevant papers:

(i) a researcher went through the entire proceedings/issues of 8 selected conferences and 5 selected journals for the last 13 years (2007 to April 2020) and identified potentially relevant papers by reading the paper

Year	Focus	Activity	Authors	2013	2014	2015	2015	2015	2018	2019	2020
2013	How wearables combined with mobile devices have been used in higher education	De Fruish and Lete	De Fruish and Lete	How wearables combined with mobile devices have been used in higher education	Application models for how smart glasses and smartwatches can be combined in e-learning	Use of GoogleGlass to support teaching and learning	Predict the possible barriers and problems in using new wearables in the classroom	Review the value and potential drawbacks of using wearable technologies in e-learning	Challenges with the use of wearable computing in education	Identify the forms of support that wearables provide for learning	How wearables have been used to support learning
2014	Wearables can support learning	Sapargaliyev	Sapargaliyev	Wearables can support learning							
2015	Wearables can support learning	Borthwick et al.	Borthwick et al.	Wearables can support learning							
2015	Wearables can support learning	Attallah and Ilagure	Attallah and Ilagure	Wearables can support learning							
2019	Wearables can support learning	Lee and Shapiro	Lee and Shapiro	Wearables can support learning							
2020	Wearables can support learning	Havard and Podsiad	Havard and Podsiad	Wearables can support learning							
2020	Wearables can support learning	Our Survey	Our Survey	Wearables can support learning							

Fig. 1. Comparison of surveys on wearable for learning
titles and skimming the paper abstracts. The conferences and journals were selected because of the likelihood that they may include wearables and education. The list of selected conferences were as follows (Table I has full names of acronyms): CHI; SIGSCE; UbiComp; ISWC; MobileHCI; ACM International Conference on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT); ACM Annual Conference on Innovation and Technology in Computer Science Education (ITCSE); ACM International Conference on Advances in Mobile Computing and Multimedia (MoMM). The list of selected journals were as follows: Computers in Human Behavior; Computers and Education; IEEE Transactions on Education; IEEE Transactions on Learning Technologies; Learning, Media and Technology.

(ii) a search was performed using the Google Scholar search engine with combinations of the following search terms: ‘wearable’, ‘wearables’, ‘wearable computing’, ‘learning’, ‘education’, ‘smart glasses’, ‘e-textile’, ‘smartwatch’, ‘smartwatches’, ‘wristbands’, and ‘smart jewelry’. Thus, a search phrase was for example “wearables learning”. The search results pages for each search terms combination were reviewed until results began to appear irrelevant or repetitive. We note that searches through this approach was not limited by year of publication; and

(i) the researcher reviewed the list of references of the papers found from the first and second approaches, as well as papers that cited those papers using the Google Scholar ‘cited by’ function. As for the previous approach, searches here were not limited by publication year.

A total of 349 papers were collected through the 3 approaches described above. From reviewing selected conference and journal proceedings, 203 papers were found. From the Google Scholar search and reviewing the citations and references of papers found, 146 papers were found.

Fig. 2. Flow diagram of paper identification and selection process

B. Paper Selection
Out of the total 349 papers, 246 papers were excluded based on the following criteria: (i) non-relevance to wearables and education. A paper had to be relevant to both wearable technologies and education or learning to be included; and (ii) papers that did not include sufficient content for us to determine the overall scope of the work. These were often abstracts or poster papers. After the paper selection process, a total of 103 papers were kept for inclusion in the review.

Table I lists the venues where we found the most number of relevant papers. Other conferences include conferences where only single relevant papers were found, and similarly for other journals.

Venue Name	No. of Papers
ACM International Conference on Human Factors in Computing Systems (CHI)	12
IEEE International Symposium on Wearable Computers (ISWC)	9
ACM International Joint Conference on Pervasive and Ubiquitous computing (UbiComp)	8
International Conference on Learning Analytics and Knowledge (LAK)	6
Computers and Education	5
Conference/Session	Papers
--	--------
IEEE Transactions on Learning Technologies	5
ACM Special Interest Group on Computer Science Education Technical Symposium (SIGCSE)	4
Journal of Computer-Assisted Learning	2
ACM International Conference on Human-Computer Interaction with Mobile Devices and Services (Mobile HCI)	2
IEEE International Symposium for Design and Technology in Electronic Packaging	2
Theses	4
Other Conferences	22
Other Journals	22
Total	**103**

4. Analysis Process

Details of all the papers were extracted into a spreadsheet. These included author names, paper titles, year of publication, keywords listed, and publication venue. Basic descriptive statistics were run on the paper details, such as calculating the number of papers published per year. All papers were then analyzed to identify the following:

- Paper type (the main contributions of the paper addressed);
- Paper description (a short description of the main topic of the paper);
- Paper findings (a short description of the main findings of the paper);
- Type of wearable (the type of wearable(s) addressed in the paper);
- Relationship of wearable and learning (description of how the wearable(s) was used for learning);
- Subject of learning (the subject(s) that the learning addressed, if mentioned);
- Research type (if the paper was an empirical study, whether the paper used a qualitative, quantitative, or mixed methodology);
- Population details (details about the target population addressed - age, race, gender, sample size); and
- Study setting (if relevant, the setting or physical context in which the work was conducted).

The analysis for the above fields was first done by 2 coders, who developed an initial coding scheme for appropriate fields. All the papers were distributed among 5 coders (including the 2 initial coders) in batches of 10 papers. After each batch was analyzed, the group of 5 coders met as a team to discuss any uncertainties in interpretation and codes that were potentially problematic, and the coding schemes for relevant fields were updated. After all the papers were analyzed for the fields listed above, 2 coders performed a thematic coding process on the ‘relationship of wearable and learning’ field for all the papers. The 2 coders performed an initial coding pass independently, and then met together to discuss the codes that each obtained. A final coding scheme was settled on, and one of the 2 coders did a second coding pass on all the papers using the coding scheme.

5. Findings

We first present our analysis findings answering our research question, and then present different perspectives on the findings based some of the more interesting dimensions extracted from the data.

A. How Wearables Have Been Used for Learning

We found 7 main ways in which wearables were used or proposed for use to support learning in the papers reviewed. Figure 3 shows the numbers of papers in each of the categories. We describe each category of use below, with example papers. Table A in the Appendix provides a complete list of all papers with references that were classified in each category. We note that papers were allowed to be classified in more than one category if they addressed more than one manner of wearable use.

The most common category was the use of wearables to **guide the structure of learning**. These papers propose using wearables to create some sort of framework to guide a learning activity, or to help students through the procedures of a learning task. For example, in the work by Arroyo et al. (2017), smartwatches or smartphones strapped as armbands were used to provide instructions to students as they engaged in multiplayer embodied games aimed to help them learn Math concepts (e.g., number sense). The smartwatch instructions guided the students to keep the intended pace of the games and provided feedback and support for individual players. Lukowicz et al. (2015) developed a GoogleGlass app for step-by-step guidance of students through the process...
of a science experiment (determining the relationship between sound frequency and the amount of water in a glass). The *GoogleGlass* also assisted the students in interpreting the results of their experiment through image processing of the video stream obtained through the smart glasses.

The second category of wearable use is to help **capture data to inform learning**. In those cases, wearables are used to collect data in some form from users performing or engaging in a learning activity. The data is used either to inform the design of the learning activity in real-time, to allow for evaluation of the user performance by the users themselves or by researchers later, or to allow the users (students or teachers) to review their learning. For example, Grünerbl, Pirkl, Weal, Gobbi, and Łukowicz (2015) provided nurses with *GoogleGlasses* coupled with smartwatches and smartphones while they engaged in a simulated CPR training exercise. The smart glasses captured a variety of data such as head movement and orientation, while the smartwatch captured hand-related motions. The authors proposed that the data could be used both to answer interesting research questions about emergency training situations, as well as to provide feedback to the nurses about their performance. In the work by Scholl, Wille, and Van Laerhoven (2015), a *GoogleGlass* and a smartwatch allowed students performing biology wet lab experiments to both automatically (e.g., by recording procedures performed through motion capture) and manually take notes (e.g., triggering a video or photo capture through the *GoogleGlass*) about their experiments.

![Fig. 3. Number of papers in coded categories of how wearables have been used for learning. Note: 4 papers were classified into 2 categories](image)

The third most prevalent category was the use of wearables as a **platform to learn STEM** (Science, Technology, Engineering, Math). Many papers in this category address computer science or general engineering education, such as the learning of programming. These papers positioned wearables as a target platform or device for students to write code for. Common motivations for doing so include the proposition that students tend to express greater interest in wearables as opposed to other more typical platforms, especially in lower grades, and the fact that wearables possess many hardware limitations (e.g., processing speed, memory management) that students, especially at higher grades, should learn to handle in their computing education. For instance, Esakia, Niu, and McCrickard (2015) proposed a curriculum for a mobile development course for undergraduate students centered on programming for smartwatches. A large number of work in this category engage students in the development of e-textiles. For example, Lau, Ngai, Chan, and Cheung (2009) designed and organized a programming course that focused on wearables in fashion and design for middle school students. Students built lighted patterns on t-shirts and embedded different kinds of sensors on textiles. The authors reported that their course was partially successful at increasing the students’ interest in science and computing.

The category of **making knowledge visible** is an interesting one. Here, wearables are used to support learning by making explicit and/or visible abstract concepts or information that typically has no physical representation. For instance, Norooz, Mauriello, Jorgensen, McNally, and Froehlich (2015) created t-shirts with sewn-on designs of the human anatomy parts (liver, heart, intestine, etc.). The t-shirts were embedded with electronic LED circuits to highlight different aspects of the internal organs. Their study showed that by wearing and interacting with the t-shirts, students aged 6 to 12 learned more about the sizes, positions, and functions of different human organs. Making knowledge explicit does not necessarily need to be through visual means. Pataranapatpong, Vega Gálvez, Yoo, Chhetri, and Maes (2020) rendered one’s mentors’ collected words of wisdom explicit through vocalization delivered through smart glasses based on the user’s detected context.

The category of **guiding embodied behaviors** includes papers that make use of wearables to support learning through embodied processes such as haptic feedback. Johnson, van der Linden, and Rogers (2010), for example, developed a wearable motion capture jacket that provides vibrotactile feedback to guide users in adopting the correct position when learning to play the violin. Similarly, Huang, Do, and Starner (2008) developed gloves that provide vibrations on the users’ fingers corresponding to the notes that need to be played for a particular song on the piano.
In the category of helping teachers to learn about the class or the students, wearables are designed to support teachers in the different tasks of teaching. The two most common tasks addressed were to help in classroom management and to help teachers understand the status of their students. Papers in this category often include analytics dashboards or wearable notifications. An example of a paper in this category is Quintana et al.’s (2016) in which they presented findings from co-design sessions with teachers about possible uses of wearable technologies and implemented a prototype smartwatch application. Some examples of the smartwatch app for teachers including sending reminders about participating, scheduling and logistical arrangements for a particular lesson, and real-time notifications about students’ submitted assignments.

The category of guiding student classroom behaviors addresses the use of wearables to help students regulate their own behaviors in learning environments. For example, Zheng and Genaro Motti (2018) designed, developed, and tested a smartwatch application that provides different types of notifications to students with intellectual and developmental disabilities to help them integrate in a regular classroom setting. A notification on the smartwatch app, for instance, reminds the students to raise their hands to talk, or to moderate their voice volume when they speak.

B. Perspectives on Ways of Wearable Use for Learning

1) Historical Perspective: Figure 4 shows the distribution of all papers related to wearables for learning over the years, ranging from 2002 to 2020. Research on the use of wearables for learning purposes began to rapidly increase as from 2014, peaking in 2015 and 2016. This is probably due to the public release of the GoogleGlass in 2014 and the Apple Watch in 2015, both accompanied with much hype and bringing the idea of wearables to the forefront of public imagination. Figure 5 shows the breakdown of the papers by the 7 ways of wearable use for learning that we identified. The use of wearables to capture data to inform learning was one of the early uses of wearables that was researched, followed by using wearables as an accessible and motivating platform to help students learn programming. During the peak of research on the topic, research focused on the use of wearables to guide the structure of learning, and in recent years, we see a return to intensive research on wearable use to capture data for learning.

![Fig. 4. Number of papers on wearables for learning by year of publication](image)

2) Types of Wearables: In terms of the types of wearables that the reviewed papers involved, Figure 6 shows that much research focused on the use of smart glasses or headsets (e.g., Kawai, Mitsuhara, and Shishibori (2015); Kumar, Krishna, Pagadala, and Kumar (2018); Ponce, Menendez, Oladeji, Fryberger, and Dantuluri (2014)), with the bulk of the papers using them to guide the structure of student learning. Smart glasses are followed by smartwatches (e.g., Shadiev, Hwang, and Liu (2018); Zheng and Genaro Motti (2018)), which have been used for a diversity of purposes across the 7 ways of wearable use. Smart clothing (e.g., Norooz et al. (2015); Reichel, Schelhowe, and Grüter (2006)) is dominated by its use as a platform to learn programming, especially in the form of e-textiles. Custom wearable devices were also built in some research, such as in the work by Ryokai, Su, Kim, and Rollins (2014). Smart wristbands, which differ from smartwatches in that they do not possess a screen display, commonly consisted of fitness trackers, such as the FitBits used in Lee, Drake, and Thayne (2016). Researchers sometimes directly instrumented participants with wearable sensors (e.g., Prieto, Sharma, Dillenbourg, and Jesús (2016)), or designed gloves instrumented with sensors (e.g., Myllykoski, Tuuri, Viirret, and Louhivuori (2015)). Others only addressed wearables in general without explicitly referencing any specific types (e.g., Labus, Milutinovic, Stepanic, Stevanovic, and Milinovic (2015)). Last but not least, some papers built wearables specifically in the form of badges (e.g., Park et al. (2002); Watanabe, Matsuda, and Yano (2013)).
3) Target Populations: We analyzed the reviewed papers for target populations addressed with respect to the use of wearables for learning. We first categorized broadly the population types into students or teachers. The bulk of the papers addressed only students (82 papers or 79.6%). Eleven papers (10.7%) addressed only teachers, and 12 other papers addressed both students and teachers (11.7%). Among the papers that addressed students (including those addressing both students and teachers), we coded the age levels of the students. The following scheme was used for coding: (i) < 6 years old or < Grade 1 was coded as PreK; (ii) 6 to 12 years old or Grades 1 to 5 was coded using the term Elementary school; (iii) 14 to 15 years old or Grades 6 to 9 was coded as Middle school; (iv) 16 to 18 years old or Grades 10 to 12 was coded as High school; (v) 19 to 22 years old was coded as Undergraduates; (vi) 23 to 50 years old was coded as Adults; and (vii) > 50 years old was coded as Older adults. References to non-US school systems such as ‘primary school’ were appropriately converted. When neither the average age, age ranges or grade levels of the students were mentioned in the paper, conjectures as to
an appropriate level were made based on the complexity of the topic being addressed, if possible. For example, a paper addressing the study of gravitational physics is likely to target undergraduate students, even if the population age range was not explicitly specified. If an informed conjecture was possible, the target population was coded as Not specified.

Figure 7 shows the distribution of papers by target populations and ways of wearable use. Some trends are made evident. Most noticeably, while wearable use to capture data to inform learning and to guide learning structure have been explored across the range of age levels, research on other ways of learning are concentrated at some age levels. For example, wearables as a platform to learn programming tend to be used mostly at the elementary school-aged level, and wearables to make knowledge visible are applied mostly at the elementary and undergraduate levels.

Fig. 7. Target populations by ways of use for learning Note: Papers were classified in multiple categories if they addressed more than one population

	Capture data	Guide embodiment	Guide structure	Guide behaviors	Help teacher	Make knowledge visible	For programming	Total
PreK	2	0	2	0	1	1	2	8
Elementary	6	0	5	1	1	7	9	29
Middle	2	0	4	1	0	0	7	14
High	2	0	1	1	0	0	4	8
Undergraduate	7	3	7	1	2	5	12	31
Adults	5	9	5	1	0	2	2	24
Older adults	3	0	0	0	0	1	1	5
Not specified	4	3	3	0	0	0	2	12

Fig. 8. Learning settings by ways of wearable use. Note: Papers were classified in multiple categories if they involved more than one setting type

4) Learning Settings: Looking at the types of settings that the papers on wearables for learning addressed, we found that most papers involved formal settings, followed by lab-based settings and semi-formal settings. Informal settings, together with the conduct of workshops, were less common. No setting was specified or could be identified in 28 of the papers. In our classification, formal settings consisted of mostly school or classroom environments (e.g., Quintana et al. (2016)), and sometimes, learning centers (e.g., Teeters (2007)). Lab settings were constrained, controlled environments typically in research labs (e.g., Russell et al. (2014)). The category of semi-formal settings (e.g., Kazemitabaar et al. (2017); Leue, Jung, and tom Dieck (2015)), included afterschool programs, summer camps, museums, libraries and art galleries. Semi-formal settings were characterized by the presence of some sort of structure to guide learning, although the rigidity of that structure varied and was often flexible. The category Anywhere was when wearables could be used across a variety of settings, or anywhere desired (e.g., at home, in vehicle, etc.). Workshops entailed researcher-organized sessions where the activities are predetermined (e.g., Kuznetsov et al. (2011)). Informal settings were settings that were informal in the
context of learning, i.e., where learning is not the main goal and could happen incidentally or in an unstructured manner (e.g., surgical room (Knight, Gajendragadkar, and Bokhari (2015); Moshtaghi et al. (2015); Ponce et al. (2014)), dance hall (Hallam, Keen, Lee, McKenna, and Gupta, 2014), indoor ski resort (Spelmezan, 2012)). Figure 8 shows how these setting types are distributed across the 7 ways of wearable use. Of note, using wearables to guide embodied behaviors has mostly been studied in lab settings, and research is scarce in informal settings and unconstrained, everyday environments (anywhere).

Table II
Summary of review findings

Aspect	Findings
Ways of wearable use for learning	7 different ways can be identified of how wearables have been used to support learning. See Figure 3.
Historical view	Research on wearables for learning accelerated as from 2013, peaked in 2015-2016, and seems to be on a downward trend since then.
Wearable types	A diverse distribution across wearable types, with emphasis on smart glasses, can be seen.
Target users	Users addressed are mostly undergraduate aged or elementary school-aged students.
Learning settings	Research is predominantly conducted in formal learning settings.

Fig. 9. Design space based on the 7 identified ways of wearable use for learning

6. Discussion

We conducted a systematic survey of research that has been carried out thus far on wearables for learning or for educational purposes. Our key findings are summarized in Table II. We propose a framework that can help to make sense of the overall design space of wearable use for learning.

Our proposed framework consists of 5 main components that wearables for learning research: Learning content A (essentially, the target content to be learned - the subject area); Learning content B (other content to be learned that is not the main target content - sub-topic); Meta content (content that frames the content to be learned instructions, guides, context information, etc.); User info (data or information about the user); and Student behaviors (how students behave in the learning context either generally or with respect to specific behaviors). The 7 manners of use address different combinations of the 5 components in different ways, as illustrated in Figure 9. The framework thus also helps to make explicit what components have not been combined so far, and the unexplored design space.

The predominant use of wearables is to ‘guide the structure of a learning activity’ (I. in Figure 9) by providing Meta Content, such as instructions, prompts or frameworks, mainly using visual means (text and graphics) to assist the learning of Learning Content A. This manner of use is similar to ‘guiding embodied behaviors’ (V), but in the latter case, the guidance is provided through haptics instead of visual means. ‘Capturing data to inform learning’ (II) collects User Information, such as physiological data, through wearables, and uses that information to adjust Learning Content A, either through automatic methods or through researcher intervention. In the use of wearables as a ‘platform to learn STEM’ (III), an additional topic to be learned (Learning Content B) is added.
Students learn about wearables, and through doing so, learn about the main content (Learning Content A), which is typically a STEM subject most often programming or computer science. Using wearables to ‘make knowledge visible’ (IV) involves only one component of the framework. Wearables are directly used to make Learning Content A explicit to students. In the manner of use ‘helping teachers to learn about their classes or students’ (VI), wearables collect and provide User Information (e.g., attention level) to the teacher, who is responsible to adjust the learning content or intervene using whatever means he/she sees fit. And in the last manner of use of ‘guiding students’ classroom behaviors’ (VII), wearables collect and provide User Information (e.g., class participation level) to students themselves, who may regulate their own behaviors in the learning context.

We now discuss findings on the different ways of wearable use for learning with respect to the various dimensions analyzed. From a historical perspective, the research on wearables for learning peaked in 2015 and 2016. It is highly likely that this peak was due to the release of accessible wearables, such as the Google Glass. This shows how research can be driven by technological innovation. However, there was a rapid decrease in research after the peak in 2016. A possible explanation may be that development in terms of the capabilities of wearables flattened out after 2016. After all, the Google Glass was quickly retired from public access, and the Apple Smartwatch was immediately touted more as a general healthcare-focused device. On another note, it is also possible that no strong rationale has yet to be developed in research to justify why wearables should be used for learning. Yet, the space of educational wearables is less than fully explored, as our review results show. The use of wearables to capture data to inform learning seems currently to be opportunities to explore further across the other ways of wearable use we identified. In the discussion of our review findings below, we highlight potential open areas where future research may be needed, as summarized in Table III.

Motivations	Possible Directions
Expanding the scope of wearables use	Research exploring different combinations of learning content A, learning content B, meta content, user info, and student behaviors for how wearables can be used to support learning.
Need for more theoretical rationale	Development of theoretical arguments for the use of wearable for the purpose of learning.
Expanding research on smart glasses and smart clothing	Studies exploring the use of smart glasses/headsets in authentic real-world contexts; and the use of smart clothing for purposes other than as a platform to learn STEM.
Diversifying target users and learning settings	Research on pervasive learning across the lifespan and across a diversity of contexts.

In terms of types of wearables, the most addressed was smart glasses or headsets, particularly for the purpose of guiding learning structure. Although neither glasses nor headsets are commonly used in practice for learning currently, research on these wearable types dominate. A reason could be the exciting interaction possibilities that such form factor offers such as augmented reality (AR) and speech-based interaction. Further, the release of virtual reality hardware such as the Oculus Quest and the Valve Index, now allow easy development of AR applications, perpetuating the research emphasis on smart glasses and headsets. It would be interesting to see, whether and how to translate the research with smart glasses to authentic real-world uses. Another point of interest is with regards to smart clothing research, which primarily addresses the engagement of students in the development of e-textiles to support learning STEM subjects such as computer programming or electronics. Other exploration of smart cloths includes the use of smart clothing to guide embodied behaviors, but guiding students’ classroom behaviors and helping the teacher in instruction are unexplored uses.

In terms of target populations, research on wearables for learning has mostly targeted college-aged populations. This is not surprising since college students are the most convenient sample for many research fields. Wearables for learning research has also significantly involved students at the elementary school level, focusing on the transition phase of cognitive development in the 9 to 12 age range, especially to assist in learning programming and STEM. Less research has targeted users at the high school level surprisingly, and few projects address learning for older adults. We see thus the potential for wearables for learning research to address lifelong learning that occurs across one’s lifespan, to support general cognitive health as it applies to older people. Finally, with respect to learning settings, most of the studies are done in formal settings that provide an existing structure to the learning process and predetermined activities, especially for the purpose of capturing data.
through wearables. An under-addressed aspect of wearable explorations is pervasive learning, i.e., learning that can happen anytime and anywhere. Certainly, this comes with more challenges (both technical and pragmatic) given the uncontrolled environments that this type of learning suggests but may be possible with technological advances in areas such as machine learning and data science. Such research could be more rewarding, and perhaps lead to a stronger rationale that appears to be currently lacking to catalyze research on wearables for learning further.

7. Conclusion and Limitations

This paper presented a systematic survey of research on wearable technologies for the purpose of learning. Designing for learning results in very different requirements than designing for health management. After all, cognitive advancement is as critical as physical health. Through a systematic review, we have identified specific ways in which wearables have been used to support learning so far in the literature, and proposed a framework identifying the main components addressed, such that future research directions are more evident. Our hope is that this review will help to accelerate research on wearables for learning in terms of developing suitable theoretical foundations, new wearable designs, new implementation techniques, and more refined evaluation studies. The work in this paper has the following limitations: in terms of paper selection, papers that utilize wearables as a small part of a larger system for educational purposes may not have been included in the review. Our paper selection process only covered research where an emphasis was made on wearables. We also recognize that learning can be conceptualized in many ways. We did not identify nuances in how the various papers understood learning, but towards a view of being more inclusive, we included any conceptualization of learning, from the more ambiguous to the more specific, in our review.

8. Acknowledgments

This project was supported by NSF (National Science Foundation) grant #1566469, Lived Science Narratives: Meaningful Elementary Science through Wearable Technologies and NSF grant #1942937 Bridging Formal and Everyday Learning through Wearable Technologies: Towards a Connected Learning Paradigm.

References

Arroyo, I., Micciolo, M., Casano, J., Ottmar, E., Hulse, T., & Rodrigo, M. M. (2017). Wearable learning: multiplayer embodied games for math. In Proceedings of the annual symposium on computer-human interaction in play (pp. 205–216). https://doi.org/10.1145/3116595.3116637
Attallah, B., & Ilagure, Z. (2018). Wearable technology: Facilitating or complexing education. International Journal of Information and Education Technology, 8(6), 433–436. https://doi.org/10.18178/ijiet.2018.8.6.1077
Baig, M. M., Gholamhosseini, H., & Connolly, M. J. (2013). A comprehensive survey of wearable and wireless ecg monitoring systems for older adults. Medical & biological engineering & computing, 51(5), 485–495. https://doi.org/10.1007/s11517-012-1021-6
Berglund, M. E., Duval, J., & Dunne, L. E. (2016). A survey of the historical scope and current trends of wearable technology applications. In Proceedings of the 2016 acm international symposium on wearable computers (pp. 40–43). https://doi.org/10.1145/2971763.2971796
Blasco, J., Chen, T. M., Tapiador, J., & Peris-Lopez, P. (2016). A survey of wearable biometric recognition systems. ACM Computing Surveys (CSUR), 49(3), 1–35. http://dx.doi.org/10.1145/2968215
Borthwick, A. C., Anderson, C. L., Finsness, E. S., & Foulger, T. S. (2015). Special article personal wearable technologies in education: Value or villain? Journal of Digital Learning in Teacher Education, 31(3), 85–92. https://doi.org/10.1080/21532974.2015.1021982
Bower, M., & Sturman, D. (2015). What are the educational affordances of wearable technologies? Computers & Education, 88, 343–353. https://doi.org/10.1016/j.compedu.2015.07.013
Brady, C., Orton, K., Weintrop, D., Anton, G., Rodriguez, S., & Wilensky, U. (2016). All roads lead to computing: Making, participatory simulations, and social computing as pathways to computer science. IEEE Transactions on Education, 60(1), 59–66. https://doi.org/10.1109/TE.2016.2622680
Buchem, I., Merceron, A., Kreutel, J., Haeser, M., & Steinert, A. (2015a). Designing for user engagement in wearable-technology enhanced learning for healthy ageing. In Intelligent environments (workshops) (pp. 314–324). https://doi.org/10.3233/978-1-61499-530-2-314
Buchem, I., Merceron, A., Kreutel, J., Haeser, M., & Steinert, A. (2015b). Gamification designs in wearable enhanced learning for healthy ageing. In 2015 international conference on interactive mobile communication technologies and learning (imcl) (pp. 9–15). https://doi.org/10.1109/IMCTL.2015.7359545
Buechley, L., Eisenberg, M., & Elumeze, N. (2007). Towards a curriculum for electronic textiles in the high school classroom. In Proceedings of the 12th annual sigcse conference on innovation and technology in computer science education (pp. 28–32). https://doi.org/10.1145/1268784.1268795

Burg, J., Pauca, V. P., Turkett, W., & Santos, P. (2016). A stem incubator to engage students in hands-on, relevant learning: A report from the field. In Proceedings of the 2016 acm conference on innovation and technology in computer science education (pp. 142–147). https://doi.org/10.1145/2899415.2899461

Cheng, K.-H., & Tsai, C.-C. (2019). A case study of immersive virtual field trips in an elementary classroom: Students’ learning experience and teacher-student interaction behaviors. Computers & Education, 140, 103600. https://doi.org/10.1016/j.compedu.2019.103600

Chu, S. L., & Garcia, B. M. (2017). Toward wearable app design for children’s-in-the-world science inquiry. In Proceedings of the eleventh international conference on tangible, embedded, and embodied interaction (pp. 121–130). https://doi.org/10.1145/3024969.3025008

Ciolacu, M. I., Binder, L., & Popp, H. (2019). Enabling iot in education 4.0 with biosensors from wearables and artificial intelligence. In 2019 ieee 25th international symposium for design and technology in electronic packaging (siitme) (pp. 17–24). https://doi.org/10.1109/SIITME47687.2019.8990763

Ciolacu, M. I., Binder, L., Svasta, P., Tache, I., & Stoichescu, D. (2019). Education 4.0–jump to innovation with iot in higher education. In 2019 ieee 25th international symposium for design and technology in electronic packaging (siitme) (pp. 135–141). https://doi.org/10.1109/SIITME47687.2019.8990825

Coffman, T., & Klinger, M. B. (2015). Google glass: using wearable technologies to enhance teaching and learning. In Society for information technology & education international conference (pp. 1777–1780). https://www.learntechlib.org/prIMARY?p=150237/

Dakopoulos, D., & Bourbakis, N. G. (2009). Wearable obstacle avoidance electronic travel aids for blind: a survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(1), 25–35. https://doi.org/10.1109/TSMCC.2009.2021255

De Freitas, S., & Levene, M. (2003). Evaluating the development of wearable devices, personal data assistants and the use of other mobile devices in further and higher education institutions. JISC Technology and Standards Watch Report(TSW030), 1–21. https://eprints.bbk.ac.uk/id/eprint/176

de la Guía, E., Camacho, V. L., Orozco-Barbosa, L., Luján, V. M. B., Penichet, V. M., & Pérez, M. L. (2016). Introducing iot and wearable technologies into task-based language learning for young children. IEEE Transactions on Learning Technologies, 9(4), 366–378. https://doi.org/10.1109/TLT.2016.2557333

Di Mitrí, D., Scheffel, M., Drachsler, H., Börner, D., Ternier, S., & Specht, M. (2016). Learning pulse: using wearable biosensors and learning analytics to investigate and predict learning success in self-regulated learning. In Proceedings of ceur workshop.

Eisenberg, M., Eisenberg, A., Buechley, L., & Elumeze, N. (2006). Invisibility considered harmful: Revisiting traditional principles of ubiquitous computing in the context of education. In 2006 fourth ieee international workshop on wireless, mobile and ubiquitous technology in education (wmte’06) (pp. 103–110). https://doi.org/10.1109/WMTE.2006.261355

Engen, B. K., Giaver, T. H., & Mifsud, L. (2018). Wearable technologies in the k-12 classroom—cross-disciplinary possibilities and privacy pitfalls. Journal of Interactive Learning Research, 29(3), 323–341.

Esakia, A., Niu, S., & McCrickard, D. S. (2015). Augmenting undergraduate computer science education with programmable smartwatches. In Proceedings of the 46th acm technical symposium on computer science education (pp. 66–71). https://doi.org/10.1145/2676723.2677285

Ezenwoke, A., & Ezenwoke, O. (2016). Wearable technology: opportunities and challenges for teaching and learning in higher education in developing countries. In Inded.

Garcia, B., Chu, S. L., Nam, B., & Banigan, C. (2018). Wearables for learning: examining the smartwatch as a tool for situated science reflection. In Proceedings of the 2018 chi conference on human factors in computing systems (pp. 1–13). https://doi.org/10.1145/3173574.3173830

Giannakos, M. N., Papavasiliopoulou, S., & Sharma, K. (2020). Monitoring children’s learning through wearable eye-tracking: The case of a making-based coding activity. IEEE Pervasive Computing, 19(1), 10–21. https://doi.org/10.1109/MPRV.2019.2941929

Giannakos, M. N., Sharma, K., Papavasiliopoulou, S., Pappas, I. O., & Kostakos, V. (2020). Fitbit for learning: Towards capturing the learning experience using wearable sensing. International Journal of Human-Computer Studies, 136, 102384. https://doi.org/10.1016/j.ijhcs.2019.102384

Gregg, C., Duvall, R., & Wasynszczuk, K. (2017). A modern wearable devices course for computer science undergraduates. In Proceedings of the 2017 acm sigcse technical symposium on computer science education (pp. 255–260). https://doi.org/10.1145/3017680.3017731

Grünerbl, A., Pirkl, G., Weal, M., Gobbi, M., & Łukowicz, P. (2015). Monitoring and enhancing nurse emergency training with wearable devices. In Adjunct proceedings of the 2015 acm international joint conference on pervasive and ubiquitous computing and proceedings of the 2015 acm international symposium on wearable computers (pp. 1261–1267). https://doi.org/10.1145/2800835.2807941
Hallam, J., Keen, E., Lee, C., McKenna, A., & Gupta, M. (2014). Ballet hero: building a garment for memetic embodiment in dance learning. In Proceedings of the 2014 ACM international symposium on wearable computers: Adjunct program (pp. 49–54). https://doi.org/10.1145/2641248.2641269

Hatami, J. (2016). Smart view: A study on students attitude toward employing smart glasses as a medium for e-learning (Unpublished doctoral dissertation). Umeå University.

Havard, B., & Podsadl, M. (2020). A meta-analysis of wearables research in educational settings published 2016–2019. Educational Technology Research and Development, 1–26. https://doi.org/10.1007/s11423-020-09789-y

Holstein, K., Hong, G., Tegene, M., McLaren, B. M., & Aleave, V. (2018). The classroom as a dashboard: co-designing wearable cognitive augmentation for k-12 teachers. In Proceedings of the 8th international conference on learning analytics and knowledge (pp. 79–88). https://doi.org/10.1145/3170358.3170377

Huang, K., Do, E. Y.-L., & Starner, T. (2008). Pianotouch: A wearable haptic piano instruction system for passive learning of piano skills. In 2008 12th IEEE international symposium on wearable computers (pp. 41–44). https://doi.org/10.1109/ISWc.2008.4911582

Ishimaru, S., Bukhari, S. S., Heisel, C., Kuhn, J., & Dengel, A. (2016). Towards an intelligent textbook: eye gaze based attention extraction on materials for learning and instruction in physics. In Proceedings of the 2016 ACM international joint conference on pervasive and ubiquitous computing: Adjunct (pp. 1041–1045). https://doi.org/10.1145/2968219.2968566

Johnson, R. M., van der Linden, J., & Rogers, Y. (2010). Musicjacket: the efficacy of real-time vibrotactile feedback for learning to play the violin. In Chi’10 extended abstracts on human factors in computing systems (pp. 3475–3480). https://doi.org/10.1145/1753846.1754004

Jones, L., Nabil, S., McLeod, A., & Girouard, A. (2020). Wearable bits: scaffolding creativity with a prototyping toolkit for wearable e-textiles. In Proceedings of the fourteenth international conference on tangible, embedded, and embodied interaction (pp. 165–177). https://doi.org/10.1145/3373492.3373454

Kawai, J., Mitsuhara, H., & Shishibori, M. (2015). Tsunami evacuation drill system using smart glasses. Procedia Computer Science, 72, 329–336. https://doi.org/10.1016/j.procs.2015.12.147

Kazemitabaar, M., McPeak, J., Jiao, A., He, L., Outing, T., & Froehlich, J. E. (2017). Makerwear: A tangible approach to interactive wearable creation for children. In Proceedings of the 2017 CHI conference on human factors in computing systems (pp. 133–145). https://doi.org/10.1145/3025453.3025887

Knight, H. M., Gajendragadkar, P. R., & Bokhari, A. (2015). Wearable technology: using google glass as a teaching tool. Case Reports, 2015. http://dx.doi.org/10.1163/bcr-2014-208768

Kommner, N., Kaleem, F., & Harooni, S. M. S. (2016). Smart augmented reality glasses in cybersecurity and forensic education. In 2016 IEEE conference on intelligence and security informatics (ISI) (pp. 279–281). https://doi.org/10.1109/ISI.2016.7545489

Kuhn, J., Lukowicz, P., Hirth, M., Poxrucker, A., Weponer, J., & Younas, J. (2016). gphysics—using smart glasses for head-centered, context-aware learning in physics experiments. IEEE Transactions on Learning Technologies, 9(4), 304–317. https://doi.org/10.1109/TLT.2016.2554115

Kumar, N. M., Krishna, P. R., Pagadala, P. K., & Kumar, N. S. (2018). Use of smart glasses in education-a study. In 2018 2nd international conference on i-smac (ijot in social, mobile, analytics and cloud)(i-smac), 2018 2nd international conference on (pp. 56–59). https://doi.org/10.1109/I-SMAC.2018.8653666

Kumari, P., Mathew, L., & Syl, P. (2017). Increasing trend of wearables and multimodal interface for human activity monitoring: A review. Biosensors and Bioelectronics, 90, 298–307. https://doi.org/10.1016/j.bios.2016.12.001

Kutafina, E., Laukamp, D., & Jonas, S. M. (2015). Wearable sensors in medical education: Supporting hand hygiene training with a forearm emg. In phealth (pp. 286–291).

Kuznetsov, S., Trutou, L. C., Kute, C., Howley, I., Paulos, E., & Siewierek, D. (2011). Breaking boundaries: strategies for mentoring through textile computing workshops. In Proceedings of the sigchi conference on human factors in computing systems (pp. 2957–2966). https://doi.org/10.1145/1978942.1979380

Labus, A., Milutinovic, M., Stepanic, D., Stevanovic, M., & Milinovic, S. (2015). Wearable computing in e-education. RUO. Revija za Univerzalno Odičnost, 4(1), A39.

Lau, W. W., Ngai, G., Chan, S. C., & Cheung, J. C. (2009). Learning programming through fashion and design: a pilot summer course in wearable computing for middle school students. In Proceedings of the 40th acm technical symposium on computer science education (pp. 504–508). https://doi.org/10.1145/1508865.1509041

Lee, V. R., Drake, J. R., & Thayne, J. L. (2016). Appropriating quantified self technologies to support elementary statistical teaching and learning. IEEE Transactions on Learning Technologies, 9(4), 354–365. https://doi.org/10.1109/TLT.2016.2597142

Lee, V. R., & Shapiro, R. B. (2019). A broad view of wearables as learning technologies: current and emerging applications. In Learning in a digital world (pp. 113–133). Springer. https://doi.org/10.1007/978-981-13-8265-9_6

Leue, M. C., Jung, T., & tom Dieck, D. (2015). Google glass augmented reality: Generic learning outcomes for art galleries. In Information and communication technologies in tourism 2015 (pp. 463–476). Springer. https://doi.org/10.1007/978-3-319-14343-9_34
Liew, C. S., Wah, T. Y., Shuja, J., Daghighi, B., et al. (2015). Mining personal data using smartphones and wearable devices: A survey. Sensors, 15(2), 4430–4469. https://doi.org/10.3390/s150204430

Lindberg, R., Seo, J., & Laine, T. H. (2016). Enhancing physical education with exergames and wearable technology. *IEEE Transactions on Learning Technologies*, 9(4), 328–341. https://doi.org/10.1109/TLT.2016.2556671

Liu, C.-F., & Chiang, P.-Y. (2018). Smart glasses based intelligent trainer for factory new recruits. In *Proceedings of the 20th international conference on human-computer interaction with mobile services and devices* (pp. 395–399). https://doi.org/10.1145/3236112.3236174

Liu, Y. (2014). *Tangram race mathematical game: Combining wearable technology and traditional games for enhancing mathematics learning* (Unpublished doctoral dissertation). Worcester Polytechnic Institute. https://doi.org/10.1145/3236112.3236174

Llorente, R., & Morant, M. (2014). Wearable computers and big data: Interaction paradigms for knowledge building in higher education. In *Innovation and teaching technologies* (pp. 127–137). Springer. https://doi.org/10.1007/978-3-319-04825-3_13

Lu, Y., Zhang, J., Li, B., Chen, P., & Zhuang, Z. (2019). Harnessing commodity wearable devices to capture learner engagement. *IEEE Access*, 7, 15749–15757. https://doi.org/10.1109/ACCESS.2019.2895874

Lukowicz, P., Poxrucker, A., Weppner, J., Bischke, B., Kuhn, J., & Hirth, M. (2015). Glass-physics: using google glass to support high school physics experiments. In *Proceedings of the 2015 ACM international symposium on wearable computers* (pp. 151–154). https://doi.org/10.1145/2802083.2808407

Luzhnica, G., Veas, E., & Seim, C. (2018). Passive haptic learning for vibrotactile skin reading. In *Proceedings of the 2018 ACM international symposium on wearable computers* (pp. 40–43). https://doi.org/10.1145/3267242.3267271

Martinez-Maldonado, R., Echeverria, V., Santos, O. C., Santos, A. D. P. D., & Yacef, K. (2018). Physical learning analytics: A multimodal perspective. In *Proceedings of the 8th international conference on learning analytics and knowledge* (pp. 375–379). https://doi.org/10.1145/3170358.3170379

Martinez-Maldonado, R., Mangaroska, K., Schulte, J., Elliott, D., Axisa, C., & Shum, S. B. (2020). Teacher tracking with integrity: What indoor positioning can reveal about instructional proxemics. *Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies*, 4(1), 1–27. https://doi.org/10.1145/3381017

Matsushita, S., & Iwase, D. (2013). Detecting strumming action while playing guitar. In *Proceedings of the 2013 international symposium on wearable computers* (pp. 145–146). https://doi.org/10.1145/2493988.2494345

Merkoiris, A., & Chorianopoulos, K. (2015). Introducing computing programming to children through robotic and wearable devices. In *Proceedings of the workshop in primary and secondary computing education* (pp. 69–72). https://doi.org/10.1145/2818314.2818342

Merkoiris, A., Chorianopoulos, K., & Kameas, A. (2017). Teaching programming in secondary education through embodied computing platforms: Robotics and wearables. *ACM Transactions on Computing Education (TOCE)*, 17(2), 1–22. https://doi.org/10.1145/3025013

Meyer, O. A., Omdahl, M. K., & Makransky, G. (2019). Investigating the effect of pre-training when learning through immersive virtual reality and video: A media and methods experiment. *Computers & Education*, 140, 103603. https://doi.org/10.1016/j.compedu.2019.103603

Moshhtaghi, O., Kelley, K. S., Armstrong, W. B., Ghavami, Y., Gu, J., & Djallilian, H. R. (2015). Using google glass to solve communication and surgical education challenges in the operating room. *The Laryngoscope*, 125(10), 2295–2297. https://doi.org/10.1002/lary.25249

Mytilikoski, M., Tuuri, K., Viirret, E., & Louhiivouri, J. (2015). Prototyping hand-based wearable music education technology. In *Nime* (pp. 182–183).

Ngai, G., Chan, S. C., Cheung, J. C., & Lau, W. W. (2009a). Deploying a wearable computing platform for computing education. *IEEE Transactions on Learning Technologies*, 3(1), 45–55. https://doi.org/10.1109/TLT.2009.49

Ngai, G., Chan, S. C., Cheung, J. C., & Lau, W. W. (2009b). An education-friendly construction platform for wearable computing. In *Chi’09 extended abstracts on human factors in computing systems* (pp. 3235–3240). https://doi.org/10.1145/1520340.1520464

Ngai, G., Chan, S. C., Ng, V. T., Cheung, J. C., Choy, S. S., Lau, W. W., & Tse, J. T. (2010). *i* catch: a scalable plug-n-play wearable computing framework for novices and children. In *Proceedings of the sigchi conference on human factors in computing systems* (pp. 443–452). https://doi.org/10.1145/1753326.1753393

Norooz, L. (2014). *Bodyvis: Body learning through wearable sensing and visualization* (Unpublished doctoral dissertation). University of Maryland.

Norooz, L., Clegg, T. L., Kang, S., Plane, A. C., Oguamanam, V., & Froehlich, J. E. (2016). “that’s your heart!": Live physiological sensing & visualization tools for life-relevant & collaborative stem learning. In *International society of the learning sciences*. https://doi.org/10.22318/icsl2016.101

Norooz, L., Mauriello, M. L., Jorgensen, A., McNally, B., & Froehlich, J. E. (2015). *Bodyvis: A new approach to body learning through wearable sensing and visualization*. In *Proceedings of the 33rd annual acm conference on human factors in computing systems* (pp. 1025–1034). https://doi.org/10.1145/2702123.2702299
Pantelopoulos, A., & Bourbakis, N. (2008). A survey on wearable biosensor systems for health monitoring. In 2008 30th annual international conference of the IEEE engineering in medicine and biology society (pp. 4887–4890). https://doi.org/10.1109/EMBS.2008.4650309

Park, S., Locher, I., Savvides, A., Srivastava, M. B., Chen, A., Munzt, R., & Yuen, S. (2002). Design of a wearable sensor badge for smart kindergarten. In Proceedings. sixth international symposium on wearable computers, (pp. 231–238). https://doi.org/10.1109/ISWC.2002.1167252

Pataranataporn, P., Vega Gálvez, T., Yoo, L., Chhetri, A., & Maes, P. (2020). Wearable wisdom: An intelligent audio-based system for mediating wisdom and advice. In Extended abstracts of the 2020 chi conference on human factors in computing systems extended abstracts (pp. 1–8). https://doi.org/10.1145/3334480.3383092

Peppler, K., & Glosson, D. (2013). Learning about curriculum with e-textiles in after-school settings. Textile messages: dispatches from the world of E-textiles and education. Peter Lang Publishing, New York, NY.

Pescara, E., Polly, T., Schankin, A., & Beigl, M. (2019). Reevaluating passive haptic learning of Morse code. In Proceedings of the 23rd international symposium on wearable computers. (pp. 186–194). https://doi.org/10.1145/3341163.3347714

Petrović, B. (2014). Wearable computing in education. ICT Management, 849, 934.

Pham, X.-L., Chen, G.-D., Nguyen, T.-H., & Hwang, W.-Y. (2016). Card-based design combined with spaced repetition: A new interface for displaying learning elements and improving active recall. Computers & Education, 98, 142–156. https://doi.org/10.1016/j.compedu.2016.03.014

Pijeira-Diaz, H. J., Drachsler, H., Järväli, S., & Kirschner, P. A. (2016). Investigating collaborative learning success with physiological coupling indices based on electrodermal activity. In Proceedings of the sixth international conference on learning analytics & knowledge (pp. 64–73). https://doi.org/10.1145/2883851.2883897

Pijeira-Diaz, H. J., Drachsler, H., Järväli, S., & Kirschner, P. A. (2019). Sympathetic arousal commonalities and arousal contagion during collaborative learning: How attuned are triad members? Computers in Human Behavior, 92, 188–197. https://doi.org/10.1016/j.chb.2018.11.008

Pirkl, G., Hevesi, P., Lukowicz, P., Klein, P., Heisel, C., Gröber, S., ... Sick, B. (2016). Any problems? a wearable sensor-based platform for representational learning-analytics. In Proceedings of the 2016 acm international joint conference on pervasive and ubiquitous computing: Adjunct (pp. 353–356). https://doi.org/10.1145/2968219.2971383

Ponce, B. A., Menendez, M. E., Oladeji, L. O., Fryberger, C. T., & Danzuluri, P. K. (2014). Emerging technology in surgical education: combining real-time augmented reality and wearable computing devices. Orthopedics, 37(11), 751–757. https://doi.org/10.3928/01477447-20141023-05

Prieto, L. P., Sharma, K., Dillenbourg, P., & Jesús, M. (2016). Teaching analytics: towards automatic extraction of orchestration graphs using wearable sensors. In Proceedings of the sixth international conference on learning analytics & knowledge (pp. 148–157). https://doi.org/10.1145/2883851.2883927

Quintana, R., Quintana, C., Madeira, C., & Slotta, J. D. (2016). Keeping watch: Exploring wearable technology designs for k-12 teachers. In Proceedings of the 2016 chi conference extended abstracts on human factors in computing systems (pp. 2272–2278). https://doi.org/10.1145/2851581.2892493

Reichel, M., Osterloh, A., Katterfeldt, E., Butler, D., & Schelhowe, H. (2008). Eduwear: Designing smart textiles for playful learning. Readings in Technology in Education: Proceedings of ICITE, 8, 252–263.

Reichel, M., Schelhowe, H., & Grütter, T. (2006). Smart fashion and learning about digital culture. Current Developments in Technology-Assisted Education. Hrsg.: ASMA Méndez-Vilas, J. Mesa González, JA Mesa González. Badajoz.

Reimann, D. (2011). Shaping interactive media with the sewing machine: Smart textile as an artistic context to engage girls in technology and engineering education. International Journal of Art, Culture and Design Technologies (IJACDT), 1(1), 12–21. https://doi.org/10.4018/ijacdt.2011101012

Reimann, D., & Maday, C. (2016). Smart textile objects and conductible ink as a context for arts based teaching and learning of computational thinking at primary school. In Proceedings of the fourth international conference on technological ecosystems for enhancing multiculturality (pp. 31–35). https://doi.org/10.1145/3012430.3012493

Russell, P. M., Mallin, M., Youngquist, S. T., Coton, J., Aboul-Hosn, N., & Dawson, M. (2014). First “glass” education: Telemetered cardiac ultrasonography using google glass-a pilot study. Academic Emergency Medicine, 21(11), 1297–1299. https://doi.org/10.1111/acem.12504

Ryokai, K., Su, P., Kim, E., & Rollins, B. (2014). Energybugs: Energy harvesting wearables for children. In Proceedings of the sigchi conference on human factors in computing systems (pp. 1039–1048). https://doi.org/10.1145/2556288.2557225

Sapargaliyev, D. (2015a). Wearables in education: Expectations and disappointments. In International conference on technology in education (pp. 73–78). https://doi.org/10.1007/978-3-662-48978-9_7

Sapargaliyev, D. (2015b). Wearable technology in education: From handheld to hands-free learning. In Technology in education. transforming educational practices with technology (pp. 55–60). Springer. https://doi.org/10.1007/978-3-662-46158-7_6

Scholl, P. M., & Van Laerhoven, K. (2014). Wearable digitization of life science experiments. In Proceedings of the 2014 acm international joint conference on pervasive and ubiquitous computing: Adjunct publication (pp. 1381–1388). https://doi.org/10.1145/2638728.2641719
Scholl, P. M., Wille, M., & Van Laerhoven, K. (2015). Wearables in the wet lab: a laboratory system for capturing and guiding experiments. In Proceedings of the 2015 acm international joint conference on pervasive and ubiquitous computing (pp. 589–599). https://doi.org/10.1145/2750858.2807547

Seim, C., Chandler, J., DesPortes, K., Dingra, S., Park, M., & Starner, T. (2014). Passive haptic learning of braille typing. In Proceedings of the 2014 acm international symposium on wearable computers (pp. 111–118). https://doi.org/10.1145/2634317.2634330

Seim, C., Pontes, R., Kadivetli, S., Adamjee, Z., Cochran, A., Aveni, T., … Starner, T. (2018). Towards haptic learning on a smartwatch. In Proceedings of the 2018 acm international symposium on wearable computers (pp. 228–229). https://doi.org/10.1145/3267242.3267269

Shadiev, R., Hwang, W.-Y., & Liu, T.-Y. (2018). A study of the use of wearable devices for healthy and enjoyable english as a foreign language learning in authentic contexts. Journal of Educational Technology & Society, 21(4), 217–231. https://www.jstor.org/stable/26511550

Spann, C. A., Schaeffer, J., & Siemens, G. (2017). Expanding the scope of learning analytics data: Preliminary findings on attention and self-regulation using wearable technology. In Proceedings of the seventh international learning analytics & knowledge conference (pp. 203–207). https://doi.org/10.1145/3027385.3027427

Spelmezan, D. (2012). An investigation into the use of tactile instructions in snowboarding. In Proceedings of the 14th international conference on human-computer interaction with mobile devices and services (pp. 417–426). https://doi.org/10.1145/2371574.2371639

Spitzer, M., & Ebner, M. (2016). Use cases and architecture of an information system to integrate smart glasses in educational environments. In Edmedia + innovate learning (pp. 57–64).

Spitzer, M., & Ebner, M. (2017). Project based learning: from the idea to a finished lego R technic artifact, assembled by using smart glasses. In Edmedia + innovate learning (pp. 269–282).

Spitzer, M., Nanic, I., & Ebner, M. (2018). Distance learning and assistance using smart glasses. education sciences, 8(1), 21. https://doi.org/10.3390/educsci8010021

Steele, M. M., & Steele, J. W. (2002). Applying affective computing techniques to the field of special education. Journal of Research on Computing in Education, 35(2), 236–240. https://doi.org/10.1080/15391523.2002.10782383

Sundararajan, A., Sarwat, A. I., & Pons, A. (2019). A survey on modality characteristics, performance evaluation metrics, and security for traditional and wearable biometric systems. ACM Computing Surveys (CSUR), 52(2), 1–36. https://doi.org/10.1145/3099550

Sung, M., Gips, J., Eagle, N., Madan, A., Caneel, R., DeVaul, R., … Pentland, S. (2004). Mtt.edu: M-learning applications for classroom settings. Journal of Computer Assisted Learning (JCAL).

Sung, M., Gips, J., Eagle, N., Madan, A., Caneel, R., DeVaul, R., … Pentland, A. (2005). Mobile-it education (mit. edu): m-learning applications for classroom settings. Journal of Computer Assisted Learning, 21(3), 229–237. https://doi.org/10.1111/j.1365-2729.2005.00130.x

Tapu, R., Mocanu, B., & Tapu, E. (2014). A survey on wearable devices used to assist the visual impaired user navigation in outdoor environments. In 2014 11th international symposium on electronics and telecommunications (isect) (pp. 1–4). https://doi.org/10.1109/ISETC.2014.7010793

Teeters, A. C. (2007). Use of a wearable camera system in conversation: Toward a companion tool for social-emotional learning in autism (Unpublished doctoral dissertation). Massachusetts Institute of Technology. http://hdl.handle.net/1721.1/41564

Thees, M., Kapp, S., Strzys, M. P., Beil, F., Lukowicz, P., & Kuhn, J. (2020). Effects of augmented reality on learning and cognitive load in university physics laboratory courses. Computers in Human Behavior, 106316. https://doi.org/10.1016/j.chb.2020.106316

Tom Dieck, M. C., Jung, T. H., & Tom Dieck, D. (2018). Enhancing art gallery visitors’ learning experience using wearable augmented reality: generic learning outcomes perspective. Current Issues in Tourism, 21(17), 2014–2034. https://doi.org/10.1080/13683500.2016.1224818

Ueda, T., & Ikeda, Y. (2016). Stimulation methods for students’ studies using wearables technology. In 2016 ieee region 10 conference (tencon) (pp. 1043–1047). https://doi.org/10.1109/TENCON.2016.7848165

ValluruPalli, S., Paydak, H., Agarwal, S., Agrawal, M., & Assad-Kottner, C. (2013). Wearable technology to improve education and patient outcomes in a cardiology fellowship program—a feasibility study. Health and Technology, 3(4), 267–270. https://doi.org/10.1007/s12553-013-0065-4

Vishkaie, R. (2018). Can wearable technology improve children’s creativity? In Proceedings of the 2018 acm international joint conference and 2018 international symposium on pervasive and ubiquitous computing and wearable computers (pp.279–282). https://doi.org/10.1145/3267305.3267564

Wang, G., Mintchev, M. P., et al. (2013). Development of wearable semi-invasive blood sampling devices for continuous glucose monitoring: A survey. Engineering, 5(58), 42–46. https://doi.org/10.4236/eng.2013.588009

Watanabe, J.-J., Matsuda, S., & Yano, K. (2013). Using wearable sensor badges to improve scholastic performance. In Proceedings of the 2013 acm conference on pervasive and ubiquitous computing adjunct publication (pp. 139–142). https://doi.org/10.1145/2494091.2494137
Wearable Technologies for Learning

Weppner, J., Hirth, M., Kuhn, J., & Lukowicz, P. (2014). Physics education with google glass gphysics experiment app. In Proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous computing: Adjunct publication (pp. 279–282). https://doi.org/10.1145/2638728.2638742

Zheng, H., & Genaro Motti, V. (2018). Assisting students with intellectual and developmental disabilities in inclusive education with smartwatches. In Proceedings of the 2018 CHI conference on human factors in computing systems (pp. 1–12). https://doi.org/10.1145/3173574.3173924

Zheng, H., & Motti, V. G. (2017). Wearable life: a wrist-worn application to assist students in special education. In International conference on universal access in human-computer interaction (pp. 259–276). https://doi.org/10.1007/978-3-319-58700-4_22

APPENDIX

Table A. Papers on Wearables for Learning Classified by Manner of Use

#	Authors [ref]	Paper Title	Year	Paper Type	Wearable Types	Subject Areas	Population Type	Settings
1	Buchem et al. [52]	Designing for User Engagement in Wearable-technology Enhanced Learning for Healthy Ageing	2015	Design	Smart wristband	Health	Students	None
2	Buchem et al. [53]	Gamification Designs in Wearable Enhanced Learning for Healthy Ageing	2015	Design	Smart wristband	Health	Students	Anywhere
3	[Chu et al.] [54]	Toward Wearable App Design for Children's In-the-World Science Inquiry	2017	Study	Smartwatch	Science	Students	Lab, Anywhere
4	Ciolaev et al. [55]	Education 4.0 - Jump to Innovation with IoT in Higher Education	2019	Study	Smartwatch	Health	Students	Anywhere
5	Ciolaev et al. [56]	Enabling IoT in Education 4.0 with BioSensors from Wearables and Artificial Intelligence	2019	Study	Smartwatch	Math, General	Students	School
6	Coffman and Klinger [57]	Google Glass: Using Wearable Technologies to Enhance Teaching and Learning	2015	Study	Smart glasses	Educational psychology, Organizational behavior	Students + teachers	School
7	Ezenwoke et al. [58]	Wearable Technology: Opportunities and Challenges for Teaching and Learning in Higher Education in Developing Countries	2016	Study	Smart glasses	Accounting	Teachers	School
8	[Garcia et al.] [59]	Wearables for Learning: Examining the Smartwatch as a Tool for Situated Science Reflection	2018	Study	Smartwatch	Science	Students	Anywhere, School
9	Giannakos et al. [60]	Monitoring Children's Learning Through Wearable Eye-Tracking: The Case of a Making- Based Coding Activity	2019	Study	Smart glasses	Programming, Electronics	Students	Workshop
10	Giannakos et al. [61]	Fitbit for learning: Towards capturing the learning experience using wearable sensing	2020	Study	Smart wristband	Software engineering	Students	School
No.	Authors [Year]	Title	Date	Type	Technology	Subject	Authors	Location
-----	---------------	-------	------	------	------------	---------	---------	----------
11	Grunerbl et al. [21]	Monitoring and enhancing nurse emergency training with wearable devices	2015	Design	Smartwatch	Health	Students	None
12	Ishimaru et al. [62]	Towards an intelligent textbook: eye gaze-based attention extraction on materials for learning and instruction in physics	2016	Study	Smart glasses	Physics	Students	School
13	Lu et al. [63]	Harnessing Commodity Wearable Devices to Capture Learner Engagement	2019	System	Smart wristband	General	Students + teachers	School
14	Di Mitri et al. [64]	Learning Pulse: Using Wearable Biosensors and Learning Analytics to Investigate and Predict Learning Success in Self-regulated Learning	2016	Study	Sensors	Learning	Students	None
15	Park et al. [42]	Design of a wearable sensor badge for smart kindergarten	2002	System	Badge	General	Students	None
16	Pijeira-Diaz et al. [65]	Investigating collaborative learning success with physiological coupling indices based on electrodermal activity	2016	Study	Smart wristband	Science	Students	Lab set up as classroom
17	Pijeira-Diaz et al. [66]	Sympathetic arousal commonalities and arousal contagion during collaborative learning: How attuned are triad members?	2019	Study	Smart wristband	Physics	Students	School
18	Prieto et al. [38]	Teaching Analytics: Towards Automatic Extraction of Orchestration Graphs Using Wearable Sensors	2016	Study	Sensors, Smart glasses	Math	Teachers	Lab
19	Russell et al. [44]	First “Glass” Education: Telementored Cardiac Ultrasound Using Google Glass- A Pilot Study	2014	Study	Smart glasses	Medicine	Students	Lab
20	Scholl et al. [22]	Wearable digitization of life science experiments	2014	Design	Smart glasses	Science	Students	None
21	Spann and Schaeffer [68]	Expanding the scope of learning analytics data: preliminary findings on attention and self-regulation using wearable technology	2017	Study	Smart wristband	Cybersecurity	Students	Learning center
22	Steele and Steele [69]	Applying affective computing techniques to the field of special education	2014	Theory	General	Writing	Students	None
23	Sung et al. [70]	MIT.EDU: M-learning Applications for Classroom Settings	2004	System	Custom device	Finance, Business, Digital Anthropology	Students + teachers	School
24	Sung et al. [71]	Mobile-IT Education (MIT. EDU):m-learning applications for classroom settings	2005	System	Custom device	Finance, Business, Digital Anthropology	Students + teachers	School
25	Teeters [43]	Use of a Wearable Camera System in Conversation: Toward a Companion Tool for Social Emotional Learning	2007	Thesis	Custom device	N/A	Students	N/A
Authors	Paper Title	Year	Paper Type	Wearable Types	Subject Areas	Population Type	Settings	
---------------------	--	------	------------	----------------	---------------	------------------	--------------------	
Hallam et al. [50]	Ballet hero: building a garment for memetic embodiment in dance learning	2014	Design	Clothing	Dancing	Students + teachers	Dance hall	
Huang et al. [28]	PianoTouch: A Wearable Haptic Piano Instruction System for Passive Learning of Piano Skills	2008	Study	Gloves	Music	Students	None	
Johnson et al. [27]	MusicJacket: the efficacy of realtime vibrotactile feedback for learning to play the violin	2010	Study	Smart wristband	Music	Students	Lab	
Katafina et al. [72]	Wearable sensors in medical education: supporting hand hygiene training with a forearm EMG	2015	System	Clothing	Medicine	Students	None	
Luzhnica et al. [73]	Passive haptic learning for vibrotactile skin reading	2018	Study	Gloves	Skin reading	Students	Lab	
Matsushita and Iwase [74]	Detecting strumming action while playing guitar	2013	System	Custom device; Clothing	Music	Students	Lab	
Mylykoski et al. [39]	Prototyping hand-based wearable music education technology	2015	System	Gloves	Music	Students + teachers	None	
Pescara et al. [75]	Reevaluating passive haptic learning of morse code	2019	Study	Custom device; Clothing	Morse code; Skin reading	Students	Lab	
Ponce et al. [32]	Emerging technology in surgical education: combining real-time augmented reality and wearable computing devices	2014	Theory	Smart glasses	Medicine	Students	Surgical room	
Seim et al. [76]	Passive haptic learning of Braille typing	2014	Study	Gloves	Typing	Students	Lab	
Seim et al. [77]	Towards haptic learning on a smartwatch	2018	Study	Smartwatch	Morse code	Students	Lab	
Spelmezan [51]	An investigation into the use of tactile instructions in snowboarding	2012	Study	Custom device; Clothing	Snowboarding	Students	Indoor ski resort	

Manner of Wearable Use: Guide the structure of learning

Authors	Paper Title	Year	Paper Type	Wearable Types	Subject Areas	Population Type	Settings	
Arroyo et al. [19]	Wearable learning: Multiplayer embodied games for math	2017	Study	Smartwatch	Math	Students	School	
Bower and Sturman [78]	What are the educational affordances of wearable technologies?	2015	Study	Smart glasses	General	Teachers	None	
Cheng and Tsai [79]	A case study of immersive virtual field trips in an elementary classroom: Students’ learning experience and teacher-student interaction behaviors	2019	Study	Smart glasses	Social studies	Students	School	
ID	Authors	Title	Year	Type	Medium	Subject Areas	Study Locations	
----	---------	-------	------	------	--------	---------------	-----------------	
41	Dieck et al. [80]	Enhancing art gallery visitors' learning experience using wearable augmented reality: generic learning outcomes perspective	2018	Study	Smart glasses	Art	Students	Art gallery
42	Engen et al. [81]	Wearable Technologies in the K-12 Classroom: Cross-disciplinary Possibilities and Privacy Pitfalls	2018	Study	Smart wristband	Physical education; Social studies; Math	Students	School
43	Hatami [82]	A study on students' attitude toward employing smart glasses as a medium for e-learning	2016	Thesis	Smart glasses	Language	Students	Campus; Home; Library
44	Kawai et al. [31]	Tsunami Evacuation Drill System Using Smart Glasses	2015	Design	Smart glasses	Disaster education	Students	School
45	Kazemtabaar et al. [45]	MakerWear: A Tangible Approach to Interactive Wearable Creation for Children	2017	Study	Clothing	STEM	Students	Museum; Afterschool program
46	Komer et al. [83]	Smart Augmented Reality Glasses in Cybersecurity and Forensic Education	2016	Theory	Smart glasses	Cybersecurity; Forensics	Students	None
47	Leue et al. [46]	Google Glass Augmented Reality: Generic Learning Outcomes for Art Galleries	2015	Study	Smart glasses	Art	Students	Art gallery
48	Lindberg et al. [84]	Enhancing Physical Education with Exergames and Wearable Technology	2016	Study	Smart wristband	Physical education	Students	School
49	Liu [85]	Tangram Race Mathematical Game: Combining Wearable Technology and Traditional Games for Enhancing Mathematics Learning	2014	Thesis	Custom device	Math	Students	School
50	Liu and Chiang [86]	Smart glasses based intelligent trainer for factory new recruits	2018	System	Smart glasses	Industrial tasks	Students	Lab set up as factory
51	Lukowicz et al. [20]	Glass-physic: using google glass to support high school physics experiments	2015	Study	Smart glasses	Physics	Students	Lab
52	Moshtaghi et al. [48]	Using Google Glass to Solve Communication and Surgical Education Challenges in the Operating Room	2015	Study	Smart glasses	Medicine; Surgery	Students + teachers	Surgical room
53	Scholl et al. [22]	Wearables in the wet lab: a laboratory system for capturing and guiding experiments	2015	System	Smart glasses; Smartwatch	Science	Students	School
54	Shadiev et al. [34]	Study of the use of wearable devices for healthy and enjoyable English as a foreign language learning in authentic contexts	2018	Study	Smartwatch	Language	Students	School
55	Spitzer et al. [89]	Distance Learning and Assistance Using Smart Glasses	2018	Study	Smart glasses	Industrial tasks	Teacher	Lab
56	Spitzer et al. [88]	Project Based Learning: from the Idea to a Finished LEGO Technic Artifact, Assembled by Using Smart Glasses	2017	Study	Smart glasses	Industrial tasks	Students	Lab
Authors	Paper Title	Year	Paper Type	Wearable Types	Subject Areas	Population Type	Setting	
---------	-------------	------	------------	----------------	---------------	----------------	---------	
57 Spitzer et al. [87]	Use cases and architecture of an information system to integrate smart glasses in educational environments	2016	Theory	Smart glasses	Knitting; Students + teachers	Lab		
58 Vallurupalli et al. [90]	Wearable technology to improve education and patient outcomes in a cardiology fellowship program- a feasibility study	2013	Study	Smart glasses	Medicine; Students	None		
59 Vishkaje [91]	Can wearable technology improve children’s creativity?	2018	Study	General; General	Students; Lab			
60 Weppner et al. [92]	Physics Education with Google Glass & Physics Experiment App	2014	System	Smart glasses	Physics; Students	None		

Manner of Wearable Use: Guide students’ classroom behaviors

Authors	Paper Title	Year	Paper Type	Wearable Types	Subject Areas	Population Type	Setting
61 Watanabe and Yano [41]	Using wearable sensor badges to improve scholastic performance	2013	Study	Badge	General	Students + teachers	School
62 Zheng and Motti [30]	Assisting students with intellectual and developmental disabilities in inclusive education with smartwatches	2018	Design	Smartwatch	General	Students	School
63 Zheng and Motti [93]	Wearable Life: A Wrist-Worn Application to Assist Students in Special Education	2017	Design	Smartwatch	General	Students + teachers	Learning center

Manner of Wearable Use: Help teachers to learn about the class or the students

Authors	Paper Title	Year	Paper Type	Wearable Types	Subject Areas	Population Type	Setting
64 de la Guia et al. [94]	Introducing IoT and wearable technologies into task-based language learning for young children	2016	Study	Smartwatch	Language	Students	Lab set up as classroom
65 Holstein et al. [95]	The Classroom as a Dashboard: Co-designing Wearable Cognitive Augmentation for K-12 Teachers	2018	Study	Smart glasses	General	Teachers	Lab
66 Kumar et al. [2]	Use of smart glasses in education - a study	2018	Theory	Smart glasses	General	Teachers	None
67 Llorente and Morant [96]	Wearable Computers and Big Data: Interaction Paradigms for Knowledge Building in Higher Education	2014	Theory	Smartwatch; Smart glasses	General	Teachers	None
68 Martinez Maldonado et al. [97]	Teacher Tracking with Integrity: What Indoor Positioning Can Reveal About Instructional Proxemics	2020	Study	Badge; Custom device	Design; Healthcare; Science	Teachers	School
69 Martinez Maldonado et al. [98]	Physical Learning Analytics: A Multimodal Perspective	2018	Design	Sensors	Dancing; Healthcare	Teachers	School

Authors	Paper Title	Year	Paper Type	Wearable Types	Subject Areas	Population Type	Setting
70 Pirkl et al. [99]	Any Problems? a wearable sensorbased platform for representational learning-analytics	2016	Study	Smartwatch	Physics; Students	Lab	
71 Quintana et al. [29]	Keeping Watch: Exploring Wearable Technology Designs for K-12 Teachers	2016	Study	Smartwatch	Astronomy; Teachers	School	
Authors	Paper Title	Year	Paper Type	Wearable Types	Subject Areas	Population Type	Settings
------------------	--	-------	------------	----------------	---------------	-----------------	----------------
Ueda and Ikeda [100]	Stimulation Methods for Students' Studies using Wearable Technology	2016	System	Smartwatch; Smart wristband	General	Students + teachers	School
Knight et al. [49]	Wearable technology: using Google Glass as a teaching tool	2015	Study	Smart glasses	Medicine	Teacher s	Surgical room
Kuhn et al. [101]	gPhysics- Using Smart Glasses for Head-Centered, Context-Aware Learning in Physics Experiments	2016	Study	Smart glasses	Physics	Students	None
Labus et al. [40]	Wearable Computing in EEducation	2015	Design	General	General	Students	None
Lee et al. [37]	Appropriating Quantified Self Technologies to Support Elementary Statistical Teaching and Learning	2016	Study	Smart wristband	Statistics	Students	School
Meyer et al. [102]	Investigating the effect of pretraining when learning through immersive virtual reality and video: A media and methods experiment	2019	Study	Smart glasses	Science	Students	School
Norooz [103]	BodyVis: Body Learning Through Wearable Sensing and Visualization	2014	Thesis	Clothing	Anatomy	Students	Afterschool program
Norooz et al. [104]	BodyVis: A New Approach to Body Learning Through Wearable Sensing and Visualization	2015	Study	Clothing	Science	Students + teachers	Lab; Afterschool program
Norooz et al. [105]	"That's Your Heart!": Live Physiological Sensing and Visualization Tools for Life-Relevant and Collaborative STEM Learning	2016	Study	Clothing	Health	Students	Afterschool program
Pham and Hwang [106]	Card-based design combined with spaced repetition: A new interface for displaying learning elements and improving active recall	2016	Study	Smartwatch	Language	Students	None
Ryokai et al. [36]	EnergyBugs: energy harvesting wearables for children	2014	Study	Custom device	Energy	Students	Summer camp; School
Thees et al. [107]	Effects of augmented reality on learning and cognitive load in university physics laboratory courses	2020	Study	Smart glasses	Physics	Students	School

Manner of Wearable Use: Make knowledge visible

Manner of Wearable Use: As a platform to learn STEM
No.	Authors	Title	Year	Type	Device	Programming	Target Audience	Location
87	Buechley et al. [109]	Towards a curriculum for electronic textiles in the high school classroom	2007	Theory	Clothing	Programming	Students	School; Workshop
88	Burg [110]	A STEM Incubator to Engage Students in Hands-on, Relevant Learning: A Report from the Field	2016	Study	Custom device	Programming	Students	School
89	Eisenberg et al. [111]	Invisibility Considered Harmful: Revisiting Traditional Principles of Ubiquitous Computing in the Context of Education	2006	Theory	Clothing	Programming	Students	Lab
90	Esakia et al. [23]	Augmenting Undergraduate Computer Science Education With Programmable Smartwatches	2015	Study	Smartwatch	Programming	Students	School
91	Gregg et al. [112]	A Modern Wearable Devices Course for Computer Science Undergraduates	2017	Theory	Custom device	Electronics	Students	School
92	Jones et al. [113]	Wearable bits: Scaffolding creativity with a prototyping toolkit for wearable e-Textiles	2020	Design	Clothing	Design	Students	Workshop
93	Kuznetsov et al. [47]	Breaking boundaries: strategies for mentoring through textile and computing workshops	2011	Study	Clothing	Programming	Students	Workshop
94	Lau et al. [24]	Learning programming through fashion and design: a pilot summer course in wearable computing for middle school students	2009	Study	Clothing	Programming	Students	Workshop
95	Merkouris et al. [114]	Introducing Computer Programming to Children through Robotic and Wearable Devices	2015	Study	Smartwatch	Programming	Students	Lab
96	Merkouris et al. [115]	Teaching Programming in Secondary Education Through Embodied Computing Platforms: Robotics and Wearables	2017	Study	Custom device	Programming	Students	School
97	Ngai et al. [118]	An education-friendly construction platform for wearable computing	2009	Design	Clothing	Programming	Students	Summer camp
98	Ngai et al. [117]	i*CATch: a scalable plug-n-play wearable computing framework for novices and children	2010	Design	Clothing	Programming	Students	Workshop
99	Ngai et al. [116]	Deploying a Wearable Computing Platform for Computing Education	2009	Study	Clothing	Programming; General engineering	Students	Summer camp
100	Reichel et al. [35]	Smart Fashion and Learning about Digital Culture	2006	Study	Clothing	Programming	Students	None
101	Reichel et al. [119]	Eduwear: Designing Smart Textiles for Playful Learning	2008	Design	Clothing	Programming	Students	None
102	Reimann [120]	Shaping Interactive Media with the Sewing Machine: Smart Textile as an Artistic Context to Engage Girls in Technology and Engineering Education	2011	Design	Gloves	Programming	Students	None
103	Reimann and Maday [121]	Smart Textile objects and conductible ink as a context for arts based teaching and learning of computational thinking at primary school	2016	System	Clothing	Programming	Students	None