Nonlinear vibrations of rotating pretwisted composite blade reinforced by functionally graded graphene platelets under combined aerodynamic load and airflow in tip clearance

X. J. Gu · W. Zhang · Y. F. Zhang

Received: 13 May 2021 / Accepted: 29 June 2021 / Published online: 13 July 2021 © The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract The primary resonance and nonlinear vibrations of the functionally graded graphene platelet (FGGP)-reinforced rotating pretwisted composite blade under combined the external and multiple parametric excitations are investigated with three different distribution patterns. The FGGP-reinforced rotating pretwisted composite blade is simplified to the rotating pretwisted composite cantilever plate reinforced by the functionally graded graphene platelet. It is novel to simplify the leakage of the airflow in the tip clearance to the non-uniform axial excitation. The rotating speed of the steady state adding a small periodic perturbation is considered. The aerodynamic load subjecting to the surface of the plate is simulated as the transverse excitation. Utilizing the first-order shear deformation theory, von Karman nonlinear geometric relationship, Lagrange equation and mode functions satisfying the boundary conditions, three-degree-of-freedom nonlinear ordinary differential equations of motion are derived for the FGGP-reinforced rotating pretwisted composite cantilever plate under combined the external and multiple parametric excitations. The primary resonance and nonlinear dynamic behaviors of the FGGP-reinforced rotating pretwisted composite cantilever plate are analyzed by Runge–Kutta method. The amplitude–frequency response curves, force–frequency response curves, bifurcation diagrams, maximum Lyapunov exponent, phase portraits, waveforms and Poincare map are obtained to investigate the nonlinear dynamic responses of the FGGP-reinforced rotating pretwisted composite cantilever plate under combined the external and multiple parametric excitations.

Keywords Rotating pretwisted composite blade · Graphene platelet · Leakage of airflow · External and multiple parametric excitations · Chaotic vibrations

1 Introduction

As a key component of the aeroengine, the blade is crucial to the flight safety. To improve the flight efficiency and to enhance the thrust–weight ratio of the aero engine, the composite materials with the lighter and better mechanical properties are applied in the airplane and are highly significant. The graphene, as an advanced carbon nanomaterial, has been widely
researched in recent years. The graphenes have the characteristics of the low mass density and excellent mechanical performance [1–3]. Therefore, the application in the blade for the graphenes is extremely meaningful. The service environment of the rotating blade is complex and changeable, which subjects to various excitations, such as the aerodynamic excitation, centrifugal force and thermal stress. During the airplane flight, the primary resonance and nonlinear vibrations of the blade often happen. The blade can be simplified to the rotating pretwisted composite cantilever plate. It is necessary for us to research the primary resonance and nonlinear vibrations of the rotating pretwisted composite cantilever plate reinforced the functionally graded graphene platelet (FGGP) under combined the external and multiple parametric excitations. The novelty of this paper is to simplify the leakage of the airflow in the tip clearance to the non-uniform axial excitation. It is found that the axial excitation and distribution of the graphene have significant influences on the primary resonance and nonlinear vibrations of the FGGP-reinforced rotating pretwisted composite cantilever plate.

Because of the excellent mechanical properties, the graphene-reinforced composites have attracted attentions for many researchers. The buckling and post-buckling properties of the FGGP-reinforced beams were investigated by Yang et al. [4]. Chen et al. [5] used Timoshenko beam theory to research the nonlinear vibrations and post-buckling on the porous nanocomposite beams reinforced by the graphene platelets. Based on the non-uniform rational B-spline formulation, Kiani [6] investigated the large amplitude free vibration of the FGGP-reinforced plate and took into account the influence of the temperature on the material properties. Mao and Zhang [7, 8] investigated on the vibration and stability of the piezoelectric composite plate reinforced by the graphene platelets. Based on the high-order shear deformation theory, Wang et al. [9] presented an investigation on the frequency and bending behaviors of the graphene platelet-reinforced doubly curved shallow shell. Zhao et al. [10] employed the finite element method to research the nonlinear bending problems of the FGGP-reinforced trapezoidal plate and discussed the influence of the bottom angle on the bending characteristics of the trapezoidal plates. Based on the substructure modal synthesis method and Galerkin method, Zhao et al. [11] studied the free vibration of a FGGP-reinforced disk–shaft system. Considering an open edge crack, Tam et al. [12] explored the nonlinear bending of the functionally graded graphene-reinforced beam.

Due to the complexity of the geometry features for the blade, many scholars simplified it as the rotating beam with the high aspect ratio, rotating plate and rotating shell with the low aspect ratio to analyze the vibration. The linear vibration characteristics of the rotating blades were studied by many researches. Gupta and Rao [13] presented an analysis of the torsional frequencies on the pretwisted cantilever plate. The frequency and critical load of the thick rotating blades with cracked were investigated by Chen et al. [14]. Sun et al. [15, 16], respectively, proposed the plate model and shell model to study the free vibration of a rotating pretwisted blade. Cao et al. [17] applied the first-order deformation theory to investigate the free vibration of a sandwich blade considering the thermal barrier coating layers. Chen and Li [18] used Rayleigh–Ritz method to study the vibration behavior of the rotating pretwisted laminated blade. In [19], a thick shell theory was employed to analyze the linear vibration of the rotating pretwisted functionally grade sandwich blade. The model considering the couple effect among the stretching, bending and torsion was proposed by Oh and Yoo [20]. The shallow shell theory was utilized in [21] to study the influence of the initial geometric imperfection on the linear frequency and mode of the rotating pretwisted panel. Using Chebyshev–Ritz method, Niu et al. [22] and Zhang et al. [23], respectively, analyzed the natural vibration of the rotating pretwisted functionally graded composite cylindrical blade and tapered blade reinforced with the graphene platelets. The free vibrations of a rotating pretwisted beam under the axial loading were studied by Ondra and Titurus [24]. Chen et al. [25] established a cantilever varying cross sections plate to investigate the free vibrations of the FGGP-reinforced composite blades. Gu et al. [26] presented a shallow shell model to investigate the dynamic stability of a rotating twisted plate considering the initial imperfection. Using the couple model, Zhao et al. [27] researched the free vibration of a rotating pretwisted blade–shaft reinforced by graphene platelets. Maji and Singh [28] investigated the free vibration of the rotating cylindrical shell by using the third-order shear deformation theory. Zhao et al. [29] proposed the free vibration of a
rotating graphene nanoplatelet-reinforced pre-twisted blade–disk system by adopting Lagrange’s equation. Based on the shallow shell theory, Li and Cheng [30] used the variable thickness model to study the free vibration of the rotating pretwisted blades. Xiang et al. [31] adopted the shell model to research the free vibration of the composite blade.

The vibration behaviors of the blade could not be solved completely by the linear vibration theory. The nonlinear vibration theory was introduced into the blade vibration analysis. Avramov et al. [32] investigated the flexural–flexural–torsional nonlinear vibrations of the rotating beam. Wang and Zhang [33] considered the geometric nonlinear model to study the stability and bifurcations of the rotating blade. Arvin et al. [34] applied the flapping nonlinear normal modes to analyze 2:1 internal resonances. Considering the influence of varying rotating speed, Yao et al. [35] explored the nonlinear vibrations of the blade. Bekhoucha et al. [36] utilized Galerkin and harmonic balance methods to research the nonlinear forced vibrations of the rotating beam. Based on Galerkin and multiple-scale methods, Arvin and Lacarbonara [37] investigated the nonlinear dynamic responses of the rotating beam. Yao et al. [38] employed a pretwisted, pre-setting and thin-walled rotating beam model to analyze 2:1 internal resonance and primary resonance of the compressor blade. Zhang and Li [39] studied the nonlinear vibrations of the rotating blade. Wang et al. [40] used a two-degree-of-freedom model to analyze 1:1 internal resonance of the turbine blade under the airflows. Roy and Meguid [41] investigated the nonlinear transient dynamic responses of a rotating blade. Bai et al. [42] developed a new method to promote the computational efficiency of the vibration characteristics and reliability analysis. Yao et al. [43] employed the cylindrical shell model to study the nonlinear dynamic responses of the rotating blade. Using the vortex lattice method, Zhang et al. [44] developed an analysis method of the nonlinear resonances for a rotating composite blade under the subsonic flow excitation. Niu et al. [45] utilized the backward differentiation formula and Runge–Kutta algorithm to analyze the nonlinear transient responses of the rotating FGM cylindrical panel. Considering the effect of varying cross section and aerodynamic force, Zhang et al. [46] researched the nonlinear vibrations and internal resonance of a rotating blade. Hao et al. [47] investigated the nonlinear transient responses of a rotating pretwisted cantilever plate. Zhang et al. [48] considered the strong gas pressure to study the super-harmonic resonances of a rotating pre-deformed blade.

The literature reviews indicate that applying the graphene composites with the superior properties to the rotating blade is highly meaningful. Studying the nonlinear vibrations and resonances of the rotating blade is very important to the blade designs and failure analysis. Few analyses can be found on the primary resonance and nonlinear vibrations of the FGGP-reinforced composite blade under the non-uniform axial excitation generated by leakage flow at the tip clearance. In this paper, the primary resonance and nonlinear dynamic responses of the FGGP-reinforced rotating pretwisted composite cantilever plate with three different distribution patterns are studied by considering the external and multiple parametric excitations. The load generated by the leakage flow at the tip clearance is simplified to the non-uniform axial excitation. There exists the rotating speed of the steady state adding a small periodic perturbation. The aerodynamic load subjecting to the surface of the blade is simplified to the transverse excitation. Utilizing the first-order shear deformation theory, von Karman nonlinear geometric relationship, Lagrange equation and mode functions satisfying the boundary conditions, three-degree-of-freedom nonlinear ordinary differential governing equations of motion are derived for the FGGP-reinforced rotating pretwisted composite cantilever plate. Runge–Kutta method is applied to analyze the primary resonance and nonlinear dynamics of the rotating pretwisted composite cantilever plate under the axial and transverse excitations. The amplitude–frequency and force–frequency response curves, bifurcation diagrams, maximum Lyapunov exponent, phase portraits, waveforms and Poincare map are obtained to investigate the nonlinear dynamic responses of the FGGP-reinforced rotating pretwisted composite cantilever plate under combined the external and multiple parametric excitations.

2 Dynamic modeling of vibration

The theoretical formulation is derived for a blade, which is simplified to a FGGP-reinforced rotating pretwisted composite cantilever plate. The aerodynamic load subjects to the surface of the rotating pretwisted composite cantilever plate. The leakage
flows generated at the tip clearance are simulated as the non-uniform axial excitation. The rotating pretwisted composite cantilever plate is subjected to the varying rotating speed. Therefore, the rotating pretwisted composite cantilever plate is subjected to the transverse and multiple parametric excitations. The length, width and thickness of the FGGP-reinforced rotating pretwisted composite cantilever plate, respectively, are a, b and h.

There are four coordinate systems to describe the model of the blade, as shown in Fig. 1a, b. The coordinate system (X_1, Y_1, Z_1) is defined on the center
of the rotating disk with the radius R and rotating speed Ω. The rotating pretwisted composite cantilever plate is fixed on the disk. The coordinate system (X, Y, Z) is defined on the center of the root for the pretwisted composite cantilever plate, in which the axes X and Y, respectively, are parallel to X_1 and Y_1, and the axis Z coincides with the axis Z_1. The coordinate system (x, y_0, z_0) is obtained by rotating the coordinate system (X, Y, Z) at angle φ around the axis Z, in which the axis y_0 coincides with the median of the cantilever plate root. The unit vector in the coordinate system (x, y_0, z_0) is denoted as (i, j, k). The coordinate system (x, y, z) is defined to describe the pretwisted of the cantilever plate. The y axis is
equal to the y_0 axis on the root of the cantilever plate. The pretwisted angle is denoted as θ at the top of the cantilever plate. The twist rate is assumed to be the linear distribution from the root to tip of the plate, which is denoted as $\kappa = \theta/a$.

As shown in Fig. 1a, the aerodynamic load subjects to the surface of the blade in transverse direction and is simplified to the transverse excitation F. Besides, the load on the top of the plate is induced by the leakage flows at the tip clearance. Based on reference [49], the sketch map of the airflow through the tip clearance of the blade is obtained, as shown in Fig. 2a. It is found that the aerodynamic load on the edge of the blade tip is small due to the presence of the separation bubble and reaches the maximum value P_{max} after the gas flow into the tip clearance. Then, the pressure on the top of the blade gradually diminishes. Therefore, the aerodynamic load on the blade tip is simplified to the non-uniform axial excitation. As shown in Fig. 2b, the axial excitation in the tip clearance of the rotating pretwisted composite cantilever plate includes the uniform distribution static excitation P_{03} and non-uniform distribution excitation P_{non}. The non-uniform part of the axial excitation increases first and then decreases along the thickness direction.

The axial excitation P_{in} of the FGGP-reinforced rotating pretwisted composite cantilever plate is expressed as

$$P_{\text{in}} = P_{\text{non}} \left(\frac{4 \zeta}{h} + 2 \right) + P_{03}, \quad \left(\frac{h}{4} \leq \zeta \leq \frac{h}{2} \right), \quad (1a)$$

$$P_{\text{in}} = P_{\text{non}} \left(\frac{4 \zeta}{3h} + \frac{2}{3} \right) + P_{03}, \quad \left(-\frac{h}{2} \leq \zeta \leq \frac{h}{4} \right) \quad (1b)$$

$$P_{\text{non}} = P_{01} + P_{02} \cdot \cos(\omega t), \quad (1c)$$

$$P_{\text{max}} = P_{01} + P_{02} \cdot \cos(\omega t) + P_{03}, \quad (1d)$$

where P_{01} is the static part of the non-uniform distribution axial excitation, P_{02} is the amplitude of the dynamic part for the non-uniform distribution axial excitation, and ω is the frequency of the dynamic part for the non-uniform distribution axial excitation.

The aerodynamic load subjects to the surface of the blade and is simulated as the transverse excitation with the harmonic form. Therefore, the transverse excitation F of the FGGP-reinforced rotating pretwisted composite cantilever plate is written as

$$F = F_t \cdot \cos(\Omega_1 t), \quad (2)$$

where F_t and Ω_1 are the amplitude and frequency of the transverse excitation, respectively.
As shown in Fig. 1b, the location vector \(\mathbf{r}_0 \) on the middle surface of the rotating pretwisted composite cantilever plate is obtained as
\[
\mathbf{r}_0 = x\mathbf{i} + y\cos(\kappa x)\mathbf{j} + y\sin(\kappa x)\mathbf{k}. \tag{3}
\]

Using the method given in Ref. [12], Lame parameters of the FGGP-reinforced rotating pretwisted composite cantilever plate are written as
\[
A = |\mathbf{r}_{0,x}| = \sqrt{1 + \kappa^2 y^2}, \tag{4a}
\]
\[
B = |\mathbf{r}_{0,y}| = 1. \tag{4b}
\]

The unit vector \(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \) in the coordinate \((x, y, z)\) is obtained as
\[
\mathbf{a}_1 = \frac{\mathbf{r}_{0,x}}{A} = \frac{1}{A}(i - y\kappa \sin(\kappa x)\mathbf{j} + y\kappa \cos(\kappa x)\mathbf{k}), \tag{5a}
\]
\[
\mathbf{a}_2 = \frac{\mathbf{r}_{0,y}}{B} = \cos(\kappa x)\mathbf{j} + \sin(\kappa x)\mathbf{k}, \tag{5b}
\]
\[
\mathbf{a}_3 = \mathbf{a}_1 \times \mathbf{a}_2 = \frac{1}{A}(-y\kappa\mathbf{i} - \sin(\kappa x)\mathbf{j} + \cos(\kappa x)\mathbf{k}). \tag{5c}
\]

To describe the pretwisted properties of the rotating composite cantilever plate, the second quadratic form \(\varphi_2 \) is derived as
\[
\varphi_2 = L dx^2 + 2Mdx dy + N dy^2, \tag{6a}
\]
\[
L = \mathbf{a}_3 \cdot \mathbf{r}_{0,xx} = 0, \tag{6b}
\]
\[
M = \mathbf{a}_3 \cdot \mathbf{r}_{0,xy} = \frac{\kappa}{\sqrt{1 + \kappa^2 y^2}}, \tag{6c}
\]
\[
N = \mathbf{a}_3 \cdot \mathbf{r}_{0,yy} = 0. \tag{6d}
\]

The radii \(R_x \) and \(R_y \), respectively, are located in the \(x \) and \(y \) directions. The radii \(R_x, R_y \) and twisted rate \(R_{xy} \) are obtained by
\[
\frac{1}{R_x} = \frac{L}{A^2} = 0, \tag{7a}
\]
\[
\frac{1}{R_y} = \frac{N}{B^2} = 0, \tag{7b}
\]
\[
\frac{1}{R_{xy}} = \frac{M}{AB} = \frac{\kappa}{1 + \kappa^2 y^2}. \tag{7c}
\]

The FGGP-reinforced rotating pretwisted composite cantilever plate is composed of \(N_L \) layers with the same thickness \(\Delta h = h/N_L \), as shown in Fig. 3. The reinforcement and matrix of the rotating pretwisted composite cantilever plate are the graphene platelets and epoxy polymer, respectively. It is seen from Fig. 3 that in each layer, the graphene platelets are uniformly dispersed in the epoxy polymer. The darker colors represent the more graphene platelets. The graphene platelets are uniformly distributed among the whole plate, calling as the U pattern, see Fig. 3a. The plate with the O pattern exhibited in Fig. 3b demonstrates that in the middle layer, the graphene platelet contents are high. From the middle layer to the upper and lower surfaces, the graphene platelets decrease gradually. The plate with the X pattern has the opposite distribution pattern with the O pattern, as shown in Fig. 3c.

Based on Ref. [22], the volume fractions \(V_G^{(k)} \) (\(k = 1, 2, \ldots, N_L \)) of the \(k \)th layer graphene platelet are written as pattern U
\[
V_G^{(k)} = V_G^U, \tag{8a}
\]
pattern O
\[
V_G^{(k)} = 2V_G^U(1 - |2k - N_L - 1|/N_L), \tag{8b}
\]
pattern X
\[
V_G^{(k)} = 2V_G^U|2k - N_L - 1|/N_L, \tag{8c}
\]
where \(V_G^U (k = 1, 2, \ldots, N_L) \) denote the total volume fractions of the graphene platelets
\[
V_G = \frac{f_G}{f_G + (1 - f_G)(\rho_G/\rho_M)}, \tag{9}
\]
and \(f_G \) is the total weight fraction of the graphene platelets; \(\rho_G \) and \(\rho_M \), respectively, denote the densities of the graphene platelets and epoxy polymer.

Based on Halpin–Tsai model [4], the effective Young modulus \(E_T^{(k)} \) of the \(k \)th layer for the FGGP-reinforced rotating pretwisted composite cantilever plate is calculated as
\[
E_T^{(k)} = \frac{3}{8} \left[1 + \frac{\zeta L}{N_L} V_G^{(k)} \right] E_M + \frac{5}{8} \left[1 + \frac{\zeta w}{N_L} V_G^{(k)} \right] E_M, \tag{10}
\]
where
\[\eta_L = \left(\frac{E_G}{E_M} \right) - 1, \quad \bar{z}_L = \frac{2l_G}{h_G}, \quad (11a) \]
\[\eta_w = \left(\frac{E_G}{E_M} \right) - 1, \quad \bar{z}_w = \frac{2w_G}{h_G}, \quad (11b) \]

where \(l_G, w_G \) and \(h_G \) are the length, width and height of the graphene platelets, and \(E_M \) and \(E_G \), respectively, denote Young’s moduli of the epoxy polymer and graphene platelets.

The \(v_c^{(k)} \) and \(\rho_c^{(k)} \) are Poisson ratios and density of the \(k \)th layer for the graphene platelets, respectively,

\[v_c^{(k)} = v_G V_G^{(k)} + v_M \left(1 - V_G^{(k)} \right), \quad \rho_c^{(k)} = \rho_G V_G^{(k)} + \rho_M \left(1 - V_G^{(k)} \right). \quad (12) \]

The blade model is assumed as the thin plate. For the thin plates, the first-order shear deformation theory is sufficient. Using the higher-order shear deformation theory will increase the amount of the calculation, but not greatly improve the accuracy. The displacement components \(u, v \) and \(w \) along the directions \(O_1x, O_1y \) and \(O_1z \) of the FGGP-reinforced rotating pretwisted composite cantilever plate are obtained by using the first-order shear deformation theory

\[u = u_0 + wz \phi_x, \quad (13a) \]
\[v = v_0 + wz \phi_y, \quad (13b) \]
\[w = w_0, \quad (13c) \]

where \(u_0, v_0 \) and \(w_0 \) are located in the middle surface along the directions \(x, y, z \), respectively, and \(\phi_x \) and \(\phi_y \) are the angles along the axes \(y \) and \(x \), respectively.

The strain displacement relations of the FGGP-reinforced rotating pretwisted composite cantilever plate are

\[\varepsilon_{xx} = \frac{\partial u}{\partial x} + \frac{w}{R_y} + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2, \quad (14a) \]
\[\varepsilon_{yy} = \frac{\partial v}{\partial y} + \frac{w}{R_y} + \frac{1}{2} \left(\frac{\partial w}{\partial y} \right)^2, \]
\[\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} + \frac{2w}{R_y}, \]
\[\gamma_{yz} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial z} - v_0 - u_0 \quad \left(R_y - R_y \right), \]
\[\gamma_{xz} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial z} - v_0 - u_0 \quad \left(R_y - R_y \right). \quad (14b) \]

Substituting Eq. (14) into Eq. (13), the strains can be written as

\[e_{xx} = e_{xx}^{(0)} + 2e_{xx}^{(1)}, \quad e_{yy} = e_{yy}^{(0)} + 2e_{yy}^{(1)}, \]
\[\gamma_{xy} = \gamma_{xy}^{(0)} + 2\gamma_{xy}^{(1)}, \quad \gamma_{xz} = \gamma_{xz}^{(0)}, \quad \gamma_{yz} = \gamma_{yz}^{(0)}, \quad (15) \]

where

\[e_{xx}^{(0)} = \frac{\partial u_0}{\partial x} + \frac{1}{2} \left(\frac{\partial w_0}{\partial x} \right)^2, \quad e_{yy}^{(0)} = \frac{\partial v_0}{\partial y} + \frac{1}{2} \left(\frac{\partial w_0}{\partial y} \right)^2, \]
\[e_{xy}^{(0)} = \frac{\partial u_0}{\partial y} + \frac{\partial v_0}{\partial x} + \frac{\partial w_0}{\partial x} + \frac{\partial w_0}{\partial y} + \frac{2w_0}{R_y}, \]
\[e_{xz}^{(0)} = \phi_x + \frac{\partial w_0}{\partial z} - v_0, \quad \gamma_{yz}^{(0)} = \phi_y + \frac{\partial w_0}{\partial y} - u_0 - \frac{u_0}{R_y}, \quad (16a) \]
\[e_{yx}^{(1)} = \frac{\partial v}{\partial y}, \quad e_{yy}^{(1)} = \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} - v_0, \quad \gamma_{xy}^{(1)} = \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} - u_0 - \frac{R_y}{R_y}, \quad (16b) \]
\[e_{xx}^{(1)} = \frac{\partial u}{\partial x}, \quad e_{yy}^{(1)} = \frac{\partial u}{\partial x} + \frac{\partial w}{\partial y}, \quad \gamma_{xy}^{(1)} = \frac{\partial u}{\partial x} + \frac{\partial w}{\partial y}, \quad (16c) \]

The relation between the stress and the strain of the \(k \)th layer FGGP-reinforced rotating pretwisted composite cantilever plate is given as

\[\begin{bmatrix} \sigma_{xx}^{(k)} \\ \sigma_{yy}^{(k)} \\ \sigma_{xy}^{(k)} \\ \tau_{xz}^{(k)} \\ \tau_{yz}^{(k)} \\ \tau_{xy}^{(k)} \end{bmatrix} = \begin{bmatrix} Q_{11}^{(k)} & Q_{12}^{(k)} & 0 & 0 & 0 & 0 \\ Q_{21}^{(k)} & Q_{22}^{(k)} & 0 & 0 & 0 & 0 \\ 0 & 0 & Q_{44}^{(k)} & 0 & 0 & 0 \\ 0 & 0 & 0 & Q_{55}^{(k)} & 0 & 0 \\ 0 & 0 & 0 & 0 & Q_{66}^{(k)} & 0 \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \\ \gamma_{xz} \\ \gamma_{yz} \\ \gamma_{xy} \end{bmatrix}, \quad (17) \]

where

\[Q_{11}^{(k)} = Q_{22}^{(k)} = \frac{E_c^{(k)}}{1 - v_c^{(k)}}, \quad Q_{12}^{(k)} = Q_{21}^{(k)} = \frac{v_c^{(k)} E_c^{(k)}}{1 - v_c^{(k)}}, \]
\[Q_{44}^{(k)} = Q_{55}^{(k)} = Q_{66}^{(k)} = \frac{E_c^{(k)}}{2(1 + v_c^{(k)})}. \quad (18) \]
The strain energy for the FGCP-reinforced rotating pretwisted composite cantilever plate is expressed as

\[U = \iint \frac{1}{2} \left(e_{x_1}^{(h)} e_{x_4} + \sigma_{y_1}^{(h)} y_{x_4} + \tau_{x_1}^{(h)} x_{x_4} + \tau_{y_1}^{(h)} y_{y_4} \right) dx \]

\[= \iint \frac{1}{2} \left(N_{x_1}^{(h)} e_{x_4} + M_{x_1}^{(h)} y_{x_4} + N_{y_1}^{(h)} y_{x_4} + \rho_{y_1}^{(h)} x_{x_4} + M_{y_1}^{(h)} y_{y_4} + N_{y_1}^{(h)} y_{y_4} + M_{y_1}^{(h)} y_{y_4} + \rho_{y_1}^{(h)} x_{x_4} \right) dx + Q_{z_1}^{(h)} + Q_{y_1}^{(h)} dx \]

where

\[\begin{bmatrix}
N_{xx} \\
N_{yy} \\
N_{xy}
\end{bmatrix} = \begin{bmatrix}
A_{11} & A_{12} & 0 \\
A_{21} & A_{22} & 0 \\
0 & 0 & A_{66}
\end{bmatrix} \begin{bmatrix}
\epsilon_{xx}^{(0)} \\
\epsilon_{yy}^{(0)} \\
\gamma_{xy}^{(0)}
\end{bmatrix}
\]

\[+ \begin{bmatrix}
B_{11} & B_{12} & 0 \\
B_{21} & B_{22} & 0 \\
0 & 0 & B_{66}
\end{bmatrix} \begin{bmatrix}
\epsilon_{xx}^{(1)} \\
\epsilon_{yy}^{(1)} \\
\gamma_{xy}^{(1)}
\end{bmatrix}, \]

(20a)

\[\begin{bmatrix}
M_{xx} \\
M_{yy} \\
M_{xy}
\end{bmatrix} = \begin{bmatrix}
B_{11} & B_{12} & 0 \\
B_{21} & B_{22} & 0 \\
0 & 0 & B_{66}
\end{bmatrix} \begin{bmatrix}
\epsilon_{xx}^{(0)} \\
\epsilon_{yy}^{(0)} \\
\gamma_{xy}^{(0)}
\end{bmatrix}
\]

\[+ \begin{bmatrix}
D_{11} & D_{12} & 0 \\
D_{21} & D_{22} & 0 \\
0 & 0 & D_{66}
\end{bmatrix} \begin{bmatrix}
\epsilon_{xx}^{(1)} \\
\epsilon_{yy}^{(1)} \\
\gamma_{xy}^{(1)}
\end{bmatrix}, \]

(20b)

\[\begin{bmatrix}
Q_x \\
Q_y
\end{bmatrix} = K \begin{bmatrix}
A_{44} & 0 \\
0 & A_{55}
\end{bmatrix} \begin{bmatrix}
\gamma_{xy}^{(0)} \\
\gamma_{yx}^{(0)}
\end{bmatrix}, \]

(20c)

where \(K \) is shear correction factor and equal to 5/6.

The combustion airflow drives the rotation of the turbine in the aircraft engine. Because of the fluctuations of driving combustion airflow, the rotating speed of the turbine is fluctuant. The turbine drives the rotation of the compressor blades. The rotating speed of the blade is also fluctuant. Therefore, we introduced a small perturbation to simulate the fluctuations of the rotating speed for the blade. Considering a small periodic perturbation, the rotating speed vector \(\Omega \) is derived as

\[\Omega = \Omega_0 + f \cos(\Omega_p t), \]

(22b)

where \(\Omega_0 \) is the steady-state rotating speed, and \(f \) and \(\Omega_p \), respectively, represent the periodic perturbation amplitude and frequency of the rotating speed.

The total speed \(\mathbf{v}_T \) about the rotating pretwisted composite cantilever plate consists of the rotating speed component \(\mathbf{v}_s \) and deformation speed component \(\mathbf{v}_d \). The rotating speed component \(\mathbf{v}_s \) is obtained as

\[\mathbf{v}_s = \Omega \times \mathbf{r} = V_x \mathbf{i} + V_y \mathbf{j} + V_z \mathbf{k}, \]

(23)

where

\[V_x = \Omega \left((y + v) \sin(\kappa x + \varphi) + \frac{1}{A}(z + yk w + w) \cos(\kappa x + \varphi) \right), \]

(24a)

\[V_y = \Omega \left(R + x - \frac{1}{A}(zy k + u - y k w) \right) \sin(\varphi), \]

(24b)

\[V_z = \Omega \left(R + x - \frac{1}{A}(zy k + u - y k w) \right) \cos(\varphi). \]

(24c)

The deformation speed component \(\mathbf{v}_d \) is given as

\[\mathbf{v}_d = \frac{d\mathbf{r}}{dt} = \frac{du}{dt} \mathbf{a}_1 + \frac{dv}{dt} \mathbf{a}_2 + \frac{dw}{dt} \mathbf{a}_3. \]

(25)

The total speed \(\mathbf{v}_T \) can be expressed as

\[\mathbf{v}_T = \mathbf{v}_d + \mathbf{v}_s. \]

(26)

Substituting Eqs. (24 and 25) to Eq. (26), the components \((V_1, V_2, V_3) \) of the total speed \(\mathbf{v}_T \) in the direction \((x, y, z)\) are derived as
V_1 = v_T \cdot a_1 \\
= \dot{u} + \frac{V_c}{A} - \frac{yq\Omega \cos(kx + \phi)}{A} \left(R + x - \frac{zy}{A} + \frac{u}{A} - \frac{ykw}{A} \right), \\
(27a)

V_2 = v_T \cdot a_2 \\
= \dot{v} - \Omega \sin(kx + \phi) \left(R + x - \frac{zy}{A} + \frac{u}{A} - \frac{ykw}{A} \right), \\
(27b)

V_3 = v_T \cdot a_3 \\
= \dot{w} - \frac{A}{A} \left(R + x - \frac{zy}{A} + \frac{u}{A} - \frac{ykw}{A} \right), \\
(27c)

where a point denotes the first-order derivative with respect to the time.

The kinetic energy T of the FGGP-reinforced rotating pretwisted composite cantilever plate is derived as

\[
T = \iint \sum_{k=1}^{N_c} \int_{z_k}^{z_{k+1}} \frac{1}{2} \rho_c(k) V_i^2 dV \\
= \iint \sum_{k=1}^{N_c} \int_{z_k}^{z_{k+1}} \frac{1}{2} \rho_c(k) \left(u^2 + v^2 + w^2 + \Omega^2 \left(y \sin(kx + \phi) + \frac{z \cos(kx + \phi)}{A} \right) \right) dV, \\
(28)
\]

The components N_c, N_c2, and N_c3 of the centrifugal force in the directions (a_1, a_2, a_3) are obtained as where displacements u_i (i = 1, 2, 3) of the centrifugal force [16, 17] are given as

where

F_c = -\Omega \times (\Omega \times r) = F_{c1} \mathbf{i} + F_{c2} \mathbf{j} + F_{c3} \mathbf{k}, \\
(30a)

F_{c1} = \rho_c(k) \Omega^2 \left(R + x + \frac{zy}{A} \right), \\
(30b)

F_{c2} = \rho_c(k) \Omega^2 \left(y \sin(kx + \phi) + \frac{z}{A} \cos(kx + \phi) \right) \sin(\phi), \\
(30c)

F_{c3} = \rho_c(k) \Omega^2 \left(y \sin(kx + \phi) + \frac{z}{A} \cos(kx + \phi) \right) \cos(\phi). \\
(30d)

The potential energy U_p of the centrifugal force is given as

\[
U_p = \iint \sum_{k=1}^{N_c} \int_{z_k}^{z_{k+1}} (N_{c1} u_1 + N_{c2} u_2 + N_{c3} u_3) dV, \\
(31)
\]
\[
\begin{align*}
\mathbf{u}_1 &= u_0 + \frac{1}{2} \left(\left(\frac{\partial w_0}{\partial x} \right)^2 + \left(\frac{\partial v_0}{\partial x} \right)^2 \right), \\
\mathbf{u}_2 &= v_0 + \frac{1}{2} \left(\left(\frac{\partial w_0}{\partial y} \right)^2 + \left(\frac{\partial u_0}{\partial y} \right)^2 \right), \\
\mathbf{u}_3 &= w_0.
\end{align*}
\]

Rayleigh dissipation function \(D_f \) on the structural damping of the rotating pretwisted composite cantilever plate is written as follows

\[
D_f = \int \gamma \dot{w}_0^2 \mathrm{d}S,
\]
where \(\gamma \) is the damping coefficient.

The potential energy \(U_{in} \) of the axial excitation \(P_{in} \) and energy \(W_F \) of the transverse excitation \(F \) are expressed as

\[
\begin{align*}
U_{in} &= \frac{1}{2} \int_{V} P_{in} \left(\frac{\partial w_0}{\partial x} \right)^2 \mathrm{d}V = \int_{x} \frac{1}{4} (P_{max} + P_{in}) \left(\frac{\partial w_0}{\partial x} \right)^2 \mathrm{d}S, \\
W_F &= \int_{S} F w_0 \mathrm{d}S.
\end{align*}
\]

The cantilever boundary of the FGGP-reinforced rotating pretwisted composite plate is clamped at the edge \(x = 0 \) and is free at the edges \(x = a, y = \pm \frac{b}{2} \), namely

\[
x = 0 : \quad w_0 = u_0 = \varphi_x = \varphi_y = 0.
\]

The first-order bending, second-order bending and first-order torsional vibration modes are considered, as shown in Fig. 4. According to Ref. [50], the expansion of the middle surface displacement \(w_0 \) for the rotating pretwisted composite cantilever plate is given as

![Fig. 4](image-url)
\[w_0(x, y, t) = w_1(t)X_1(x)Y_1(y) + w_2(t)X_1(x)Y_2(y) + w_3(t)X_2(x)Y_1(y), \]

where
\[
X_i(x) = \sin \left(\frac{\lambda_i x}{a} \right) - \sinh \left(\frac{\lambda_i x}{a} \right) + \alpha_i \left(\cosh \left(\frac{\lambda_i x}{a} \right) - \cos \left(\frac{\lambda_i x}{a} \right) \right),
\]

\[(i = 1, 2), \]

\[Y_1(y) = 1, \quad Y_2(y) = \sqrt{3} \left(\frac{2y}{b} \right), \]

where
\[
\alpha_i = \frac{\sin \lambda_i + \sin \lambda_i}{\cosh \lambda_i + \cos \lambda_i}, \quad (i = 1, 2),
\]

and \(\lambda_i \) is the solution of the equation as follows
\[\cos \lambda_i \cosh \lambda_i + 1 = 0, \quad (i = 1, 2). \]

The \(u_0, v_0, \phi_x \) and \(\phi_y \) are given as
\[
u_0(x, y, t) = u_1(t) \frac{\lambda_1 x}{a} \cos \left(\frac{\lambda_1 x}{a} \right) - \cosh \left(\frac{\lambda_1 x}{a} \right) + z_1 \left(\sin \frac{\lambda_1 x}{a} - \sinh \frac{\lambda_1 x}{a} \right) \right] + w_1(t) \frac{\lambda_1 x}{a} \cos \left(\frac{\lambda_1 x}{a} \right) - \cosh \left(\frac{\lambda_1 x}{a} \right) + z_1 \left(\sin \frac{\lambda_1 x}{a} - \sinh \frac{\lambda_1 x}{a} \right) \right] \left[\sqrt{3} \frac{2y}{b} \right],
\]

\[(40a) \]

\[
v_0(x, y, t) = v_1(t) \left[\sin \left(\frac{\lambda_1 x}{a} \right) - \sinh \left(\frac{\lambda_1 x}{a} \right) \right]
+ z_1 \left(\cosh \frac{\lambda_1 x}{a} - \cos \frac{\lambda_1 x}{a} \right) \right] \left[\sqrt{3} \frac{2y}{b} \right],
\]

\[(40b) \]

\[
\phi_x(x, y, t) = \phi_{x1}(t) \frac{\lambda_1 x}{a} \cos \left(\frac{\lambda_1 x}{a} \right) - \cosh \left(\frac{\lambda_1 x}{a} \right) + z_1 \left(\sin \frac{\lambda_1 x}{a} - \sinh \frac{\lambda_1 x}{a} \right) \right] + \phi_{x1}(t) \frac{\lambda_1 x}{a} \cos \left(\frac{\lambda_1 x}{a} \right) - \cosh \left(\frac{\lambda_1 x}{a} \right) + z_1 \left(\sin \frac{\lambda_1 x}{a} - \sinh \frac{\lambda_1 x}{a} \right) \right] \left[\sqrt{3} \frac{2y}{b} \right],
\]

\[(40c) \]

\[
\phi_y(x, y, t) = \phi_{y1}(t) \left[\sin \left(\frac{\lambda_1 x}{a} \right) - \sinh \left(\frac{\lambda_1 x}{a} \right) \right]
+ z_1 \left(\cosh \frac{\lambda_1 x}{a} - \cos \frac{\lambda_1 x}{a} \right) \right] \left[\sqrt{3} \frac{2y}{b} \right],
\]

\[(40d) \]

Based on Lagrange function, the governing equations of motion for the FGGP-reinforced rotating pretwisted composite cantilever plate are derived as

\[
d \frac{\partial T}{\partial \dot{q}_i} - \frac{\partial T}{\partial q_i} + \frac{\partial U_P}{\partial \dot{q}_i} + \frac{\partial U_P}{\partial q_i} + \frac{\partial U_{in}}{\partial \dot{q}_i} + \frac{\partial U_{in}}{\partial q_i} + \frac{\partial D_f}{\partial \dot{q}_i} + \frac{\partial D_f}{\partial q_i} = \frac{\partial W_F}{\partial \dot{q}_i},
\]

where
\[\mathbf{q}_i = [u_1(t), u_2(t), u_3(t), v_1(t), w_1(t), w_2(t), w_3(t), \phi_{x1}(t), \phi_{x2}(t), \phi_{x3}(t), \phi_{y1}(t)]^T. \]

Following the works given by Zhang et al. [51] and Hao et al. [52], the transverse nonlinear vibrations occupy the main aspect of the dynamic characteristics. Therefore, we mainly investigate the transverse nonlinear vibration of the FGGP-reinforced rotating pretwisted composite plate. The in-plane and rotatory inertia terms can be neglected since their influences are small compared to that of the transverse inertia term. Solving Eq. (41) on the in-plane displacement terms \(u_0 \) and \(v_0 \), rotatory terms \(\phi_x \) and \(\phi_y \), the in-plane displacements and rotatory terms are transformed into the transverse displacement \(w_0 \). Substituting the displacements \(u_0, v_0, \phi_x \) and \(\phi_y \) into the ordinary differential equation of the transverse displacement \(w_0 \), three-degree-of-freedom nonlinear dynamical system on the transverse vibration of the FGGP-reinforced rotating pretwisted composite cantilever plate is written as

\[
\ddot{w}_1 + \mu_{11} \dot{w}_1 + (n_{11} f^2 \cos^2(\Omega t) + n_{12} f \cos(\Omega t))\dot{w}_1 + n_{13} \dot{P}_{02} \cos(\Omega t)w_1 + (m_{11} + n_{14}(P_{01} + 2P_{03}))w_1
+ (n_{15} f^2 \cos^2(\Omega t) + n_{16} f \cos(\Omega t) + n_{17} P_{02}) \cos(\Omega t)w_3 + m_{14} w_1 w_2 + m_{14} w_2 w_3 + m_{16} w_1^2 w_3 + m_{17} w_1 w_2^2 + m_{18} w_1 w_3^2 + m_{19} w_2 w_3^2 + m_{110} w_3^3
= m_{111} F_t \cos(\Omega t),
\]

\[(42a) \]

\[
\ddot{w}_2 + \mu_{21} \dot{w}_2 + (n_{21} f^2 \cos^2(\Omega t) + n_{22} f \cos(\Omega t))\dot{w}_2 + n_{23} \dot{P}_{02} \cos(\Omega t)w_2 + (m_{21} + n_{24}(P_{01} + 2P_{03}))w_2
+ m_{22} w_1^2 + m_{23} w_1 w_3 + m_{24} w_2^2 + m_{25} w_3^2 + m_{26} w_1 w_3^2 + m_{27} w_2^2 + m_{28} w_1 w_2^2 + m_{29} w_2 w_3^2 = m_{230} F_t \cos(\Omega t),
\]

\[(42b) \]
\[\ddot{w}_3 + \mu_{31} \dot{w}_1 + \left(n_{31} f^2 \cos^2(\Omega_p t) + n_{32} f \cos(\Omega_p t) \\ + n_{33} P_{02} \cdot \cos(\omega t) \right) w_1 + \left(m_{31} + n_{34}(P_{01} + 2P_{03}) \right) w_1 \\ + \left(n_{35} f^2 \cos^2(\Omega_p t) + n_{36} f \cos(\Omega_p t) + n_{37} P_{02} \cdot \cos(\omega t) \right) w_3 \\ + m_{32} w_3 + m_{38}(P_{01} + 2P_{03}) \right) w_3 \\ + m_{33} w_1 w_2 + m_{34} w_2 w_3 + m_{35} w_1^3 + m_{36} w_1^2 w_3 \\ + m_{37} w_1 w_2^2 + m_{38} w_1 w_3^2 + m_{39} w_2^3 + m_{310} w_3^3 \\ = m_{311} F_r \cdot \cos(\Omega_1 t), \]

Fig. 5 The amplitude–frequency response curves are obtained for the graphene platelet-reinforced rotating pretwisted composite cantilever plate with three different vibration modes and three different distribution types, a amplitude–frequency response curves of X pattern graphene platelet-reinforced plate with three different vibration modes, b amplitude–frequency response curves of first-order bending vibration with three different distribution types

where \(\mu_{ij} \) \((i = 1, 2, 3, j = 1, 2, 3) \) are the damping coefficients, \(m_{ij} \) \((i = 1, 2, 3) \) \((j = 1, 2, \ldots, 11) \) are the stiffness coefficients, and \(n_{ij} \) \((i = 1, 2, 3, j = 1, 2, \ldots, 8) \) are the excitation coefficients.

In the following analyses, we will investigate the primary resonance and nonlinear dynamic behaviors of the FGGP-reinforced rotating pretwisted composite cantilever plate under the axial and transverse excitations in Eq. (42). The amplitude–frequency response
curves, bifurcation diagrams, maximum Lyapunov exponent, phase portraits, waveforms and Poincare map are obtained by using Runge–Kutta method.

3 Amplitude–frequency and force–amplitude response curves

Runge–Kutta methods are used to analyze the primary resonance of the FGGP-reinforced rotating pretwisted composite cantilever plate under combined the external and multiple parametric excitations. According to Ref. [9], the material parameters of the FGGP-reinforced rotating pretwisted composite cantilever plate are given as

\[\rho_G = 1060 \text{ kg/m}^3, \quad \rho_M = 1200 \text{ kg/m}^3, \quad E_G = 1.01 \text{ TPa}, \quad E_M = 3.0 \text{ GPa}, \quad v_G = 0.34, \quad v_M = 0.186, \quad l_G = 2.5 \mu\text{m}, \quad w_G = 1.5 \mu\text{m}, \quad h_G = 1.5 \text{nm}. \]
Unless otherwise stated, the physical dimension of the rotating pretwisted composite cantilever plate is given as follows:

\[
\begin{align*}
& a = 0.28 \text{ m}, \quad b = 0.1 \text{ m}, \quad h = 0.004 \text{ m}, \quad \varphi = 45^\circ, \quad R = 0.1 \text{ m}, \quad \theta = 18^\circ, \quad \Omega_0 = 4000 \text{ rpm}, \quad N = 20, \quad f_G = 1\%, \quad f = 1 \text{ N}, \quad \Omega_p = 191 \text{ Hz}, \quad \Omega_1 = 191 \text{ Hz}, \quad P_{01} = 1600 \text{ N}, \quad \omega = 191 \text{ Hz}, \quad P_{02} = 4000 \text{ N}, \quad P_{03} = 200 \text{ N}, \quad F_\tau = 7000 \text{ N}.
\end{align*}
\]

Figure 5a depicts the amplitude–frequency response curves of the X pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate with three different vibration modes. Ignoring...
the nonlinear and damping terms, and external load in
Eq. (42), the natural frequencies are determined from
the eigenvalue problem of Eq. (42). The
\(\omega_1 \) is the first-order natural frequency of the X pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate. The blue solid line indicates forward direction sweep frequency, and the red dotted line denotes backward direction sweep frequency. It is found that the amplitudes of three different vibration modes all increase when the primary resonance occurs and the hardening-spring characteristics of three different vibration modes exist for the X pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate. The amplitude is the highest value of the first-order bending vibration mode and is the lowest value of the first-order torsional vibration mode when the primary resonance of the first-order bending vibration mode occurs.

The amplitude–frequency response curves of the first-order bending vibration mode are demonstrated for the graphene platelet-reinforced rotating pretwisted composite cantilever plate under three different distribution types, as shown in Fig. 5b. Obviously, the hardening-spring characteristics are kept for the graphene platelet-reinforced rotating pretwisted composite cantilever plate under three different distribution types. The frequency ratio \(\omega_1/\omega_1 \) reaching the peak value of the primary resonance amplitude with the O pattern distribution has the least value and with the X pattern distribution has the highest value. The amplitude of the primary resonance peak with the O pattern distribution is the largest value in forward

Fig. 11 The bifurcation diagram and maximum Lyapunov exponent are depicted for the X distribution graphene platelet-reinforced rotating pretwisted composite cantilever plate when the axial excitations \(P_{02} \) increase from \(2.4 \times 10^5 \) N to \(4.6 \times 10^5 \) N and transverse excitation is \(F_2 = 7 \times 10^3 \) N, a bifurcation diagram of first-order bending vibration mode, b bifurcation diagram of first-order torsional vibration mode, c bifurcation diagram of second-order bending vibration mode, d maximum Lyapunov exponent diagram of first-order bending vibration mode.
direction sweep frequency. The amplitude of the primary resonance peak with the X pattern distribution is the smallest value in forward direction sweep frequency. It is because the plate reinforced with the graphene platelets in the top and bottom surfaces has better bending resistance. Therefore, comparing plate reinforced with the graphene platelets near the middle or uniform distribution, more graphene platelets near the top and bottom surfaces of the plate are better for improving the stiffness. Therefore, the stiffness of the cantilever plate with the X distribution pattern is higher than that of the plate with the U and O distribution patterns. The cantilever plate with the X distribution pattern has the larger frequency and smaller vibration amplitude than plate with the U and O distribution patterns. It is noticed that the amplitudes of the primary resonance peak for the O and U distribution patterns are close in the backward direction sweep frequency.

Figure 6a describes the amplitude–frequency response curves of the first-order bending vibration mode for the X pattern distribution graphene platelet-reinforced rotating pretwisted composite cantilever plate under three different axial loads P_{01}. The larger the axial load P_{01} is, the earlier the primary resonance occurs. The primary resonance peak is bigger under the larger axial load P_{01}. Moreover, the system remains the hardening-spring characteristic under three different axial loads P_{01}. Figure 6b gives the influence of three different transverse excitations F_s on the amplitude–frequency curves of the first-order bending vibration mode for the X pattern distribution graphene platelet-reinforced rotating pretwisted composite cantilever plate. It is observed that the hardening-spring characteristics remain for the X pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate under three different transverse excitations F_s. The larger the transverse excitation F_s...
is, the more obvious the hard spring characteristics is. The larger transverse excitation \(F_s \) of the system has the larger primary resonance peak and primary resonance region.

Figure 7a presents the influence of three different axial excitations \(P_{02} \) on the amplitude–frequency response curves of the first-order bending vibration mode for the X pattern distribution graphene platelet-reinforced rotating pretwisted composite cantilever plate. The frequency ratio \(\Omega_1/\Omega_0 \) almost is same under three different axial excitations \(P_{02} \) when the primary resonance occurs. A hardening-spring characteristic under three different axial excitations \(P_{02} \) is obtained for the system. The larger the axial excitation \(P_{02} \) is, the bigger the primary resonance peak is. Figure 7b describes the amplitude–frequency response curves of the first-order bending vibration mode for the X pattern distribution graphene platelet-reinforced rotating pretwisted composite cantilever plate under three different rotating speeds \(\Omega_0 \). The primary resonance peak is highest when \(\Omega_0 = 4000 \text{ rpm} \) and is lowest when \(\Omega_0 = 10000 \text{ rpm} \). The hardening-spring characteristics are more obvious for the lower speed. The frequency ratio \(\Omega_1/\Omega_0 \) reaching the peak value of the primary resonance is low when the low speed \(\Omega_0 \) exists. Because the increase in the rotating speed leads to that, the stiffness of the FGGP-reinforced rotating pretwisted composite cantilever plate becomes larger. Therefore, the pretwisted composite cantilever plate with the high rotating speed has the larger frequency and smaller nonlinear vibration amplitude.

Figure 8a exhibits the force–amplitude response curves of the X pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate with three different vibration modes. It is found that the amplitudes among three different vibration modes...
Nonlinear vibrations of rotating pretwisted composite blade
increase for the X pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate with the increase of the transverse excitations F_t. The increase of the transverse excitation F_t obviously affects the amplitude w_1 of the first-order bending vibration mode. The effect on the amplitude w_2 of the first-order torsional vibration mode is least. Figure 8b portrays the force–amplitude response curves of the first-order bending vibration for the graphene platelet-reinforced rotating pretwisted composite cantilever plate under three different distribution types. It is concluded that the amplitudes increase with the increase of the transverse excitations F_t. Obviously, when $F_t < 1930$ N, the X pattern cantilever plate has the largest amplitude and the O pattern cantilever plate has the least amplitude. When 1930 N $< F_t < 2440$ N, the U pattern cantilever plate has the largest amplitude and the O pattern cantilever plate has the least amplitude. When 2440 N $< F_t < 2540$ N, the U pattern cantilever plate has the largest amplitude and the X pattern cantilever plate has the least amplitude. When $F_t > 2540$ N, the O pattern cantilever plate has the largest amplitude and the X pattern cantilever plate has the least amplitude.

The force–amplitude response curves of the first-order bending vibration mode are illustrated for the X pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate under three different axial loads P_{01}, as shown in Fig. 9a. When $F_t < 1600$ N, the amplitudes with three different axial loads P_{01} nearly equal. When $F_t > 1600$ N, the amplitude of the rotating pretwisted composite cantilever plate is larger with the increase of the axial loads P_{01}. Figure 9b demonstrates the effect of the frequency ratio ($\Omega_1/\omega_1 = 0.5, 1.0, 1.5$) on the force–amplitude response curves of the first-order bending vibration mode for the X pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate. When the frequency ratio $\Omega_1/\omega_1 = 1.0$, the amplitude of the rotating pretwisted composite cantilever plate is the largest value. In this case, the nonlinear characteristic of the curve is most obvious. The rotating pretwisted composite cantilever plate with the frequency ratio $\Omega_1/\omega_1 = 0.5$ has the second lager amplitude. The rotating pretwisted composite cantilever plate with the frequency ratio $\Omega_1/\omega_1 = 1.5$ has the smallest amplitude.

Figure 10a represents the influences of three different axial excitations P_{02} on the force–amplitude response curves of the first-order bending vibration mode for the X pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate. It is found that the amplitudes are closer under three different axial excitations P_{02} when $F_t < 1300$ N. When $F_t > 1300$ N, the amplitude is larger with the increase of the axial excitation P_{02}. Figure 10b describes the force–amplitude response curves of the first-order bending vibration mode for the X pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate with three different rotating speeds Ω_0. It is noticed that the nonlinear characteristic is not obvious with the $\Omega_0 = 7000$ rpm and $\Omega_0 = 10000$ rpm. Due to the dynamic stiffness of the rotating pretwisted composite cantilever plate, the amplitude is smaller with the increase of the rotating speed Ω_0.

4 Effect of axial excitation on nonlinear vibrations

In this section, Runge–Kutta methods are used to analyze the nonlinear vibrations of the FGGP-reinforced rotating pretwisted composite cantilever plates under combined the external and multiple parametric excitations. The material parameters of the FGGP-reinforced rotating pretwisted composite cantilever plate are given by Ref. [9]

$$
\rho_G = 1060 \text{ kg/m}^3, \quad \rho_M = 1200 \text{ kg/m}^3,
$$

$$
E_G = 1.01 \text{ TPa}, \quad E_M = 3.0 \text{ GPa},
$$

$$
v_M = 0.34, \quad v_G = 0.186, \quad l_G = 2.5 \mu\text{m},
$$

$$
w_G = 1.5 \mu\text{m}, \quad h_G = 1.5 \text{ nm}.
$$

The geometric parameters of the FGGP-reinforced rotating pretwisted composite cantilever plate are

$$
a = 0.28 \text{ m}, \quad b = 0.1 \text{ m}, \quad h = 0.004 \text{ m},
$$

$$
\varphi = 45^\circ, \quad R = 0.1 \text{ m}, \quad \theta = 18^\circ, \quad \Omega = 4000 \text{ rpm},
$$

$$
N = 20, \quad f = 1 \text{ N}, \quad \Omega_p = 191 \text{ Hz}, \quad f_G = 1\%,
$$

$$
P_{01} = 1600 \text{ N}, \quad P_{03} = 200 \text{ N}.
$$
According to Eq. (42), we research the influences of the axial excitations P_{02} on the nonlinear dynamic characteristics of the FGGP-reinforced rotating pretwisted composite cantilever plate with three different distribution types.

Figures 11, 12 and 13 demonstrate the bifurcation diagrams and maximum Lyapunov exponent diagram of the graphene platelet-reinforced rotating pretwisted composite cantilever plate with the X, U and O distribution patterns when the axial excitations P_{02} increase from $2.4 \times 10^5 \text{N}$ to $4.6 \times 10^5 \text{N}$, respectively. Figure (a) denotes the bifurcation diagram of the first-order bending vibration mode, namely the relation of w_1 versus P_{02}. Figure (b) represents the bifurcation diagram on the relation of w_2 versus P_{02} for the first-order torsion vibration mode. Figure (c) shows the bifurcation diagram on the relation of w_3 versus P_{02} for the second-order bending vibration mode. Figure (d) illustrates the relation on the maximum Lyapunov exponent versus P_{02}. The transverse excitation frequency Ω_1 and axial excitation frequency ω all are 191 Hz. The transverse excitation is $F_\tau = 7 \times 10^3 \text{N}$. The initial conditions are chosen as $w_1 = -0.0014$, $\dot{w}_1 = -0.0026$, $w_2 = -0.002$, $\dot{w}_2 = -0.0011$, $w_3 = -0.006$, $\dot{w}_3 = -0.002$ and $t = 0$. It is clearly observed that the vibration laws of the FGGP-reinforced rotating pretwisted composite cantilever plates are the periodic to chaotic vibrations through twice periodic doubling bifurcations, as shown in Figs. 11, 12 and 13. For the cases of the U and O distribution patterns shown in Figs. 12 and 13, the FGGP-reinforced rotating pretwisted composite cantilever plates have a small periodic window after the chaotic vibrations. In the X distribution pattern shown in Fig. 11, the periodic window does not appear.

![Fig. 16 The bifurcation diagram and maximum Lyapunov exponent of the X pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate are obtained when the transverse excitations F_τ increase from $1.0 \times 10^5 \text{N}$ to $1.3 \times 10^5 \text{N}$ and axial excitation P_{02} is $4 \times 10^2 \text{N}$, a bifurcation diagram of the first-order bending vibration mode, b bifurcation diagram of the first-order torsional vibration mode, c bifurcation diagram of the second-order bending vibration mode, d maximum Lyapunov exponent diagram of first-order bending vibration mode](image-url)
in the FGGP-reinforced rotating pretwisted composite cantilever plate.

Figure 11 demonstrates that in the periodic region \(P_{02} \in (2.40 \times 10^5 \text{ N} \sim 4.60 \times 10^5 \text{ N}) \), twice period-doubling bifurcations occur for the X pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate when the axial excitations are \(P_{02} = 3.566 \times 10^5 \text{ N} \) and \(P_{02} = 3.876 \times 10^5 \text{ N} \). The short chaotic vibrations appear between the periodic vibrations when the axial excitation \(P_{02} \) is around \(4.0 \times 10^5 \text{ N} \). When the axial excitation increases to \(P_{02} = 4.20 \times 10^5 \text{ N} \), the chaotic vibrations happen in the X pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate.

Figure 12 exhibits that through a periodic region \(P_{02} \in (2.40 \times 10^5 \text{ N} \sim 3.76 \times 10^5 \text{ N}) \), the chaotic vibrations occur for the U pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate when the axial excitation is \(P_{02} = 3.76 \times 10^5 \text{ N} \). In addition, a short periodic window exists when \(P_{02} \in (4.34 \times 10^5 \text{ N} \sim 4.40 \times 10^5 \text{ N}) \) in the chaotic region, which is denoted by a red circle. In the periodic region \(P_{02} \in (2.40 \times 10^5 \text{ N} \sim 3.76 \times 10^5 \text{ N}) \), twice period-doubling bifurcations happen in the U pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate when the \(P_{02} = 3.22 \times 10^5 \text{ N} \) and \(P_{02} = 3.58 \times 10^5 \text{ N} \).

It is seen from Fig. 13 that the periodic regions of the O pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate are, respectively, located in \(P_{02} \in (2.40 \times 10^5 \text{ N} \sim 3.40 \times 10^5 \text{ N}) \) and \(P_{02} \in (3.94 \times 10^5 \text{ N} \sim 4.07 \times 10^5 \text{ N}) \). The chaotic regions of the O pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate are, respectively, located in \(P_{02} \in \).
(3.40 × 10^5 N ~ 3.94 × 10^5 N) and \(P_{02} \in (4.07 \times 10^5 \text{ N} ~ 4.60 \times 10^5 \text{ N}) \). The periodic region between two chaotic vibration regions in \(P_{02} \in (3.94 \times 10^5 \text{ N} ~ 4.07 \times 10^5 \text{ N}) \) is indicated by a green circle. When the axial excitations, respectively, are \(P_{02} = 2.86 \times 10^5 \text{ N} \) and \(P_{02} = 3.24 \times 10^5 \text{ N} \), there are two periodic doubling bifurcation windows in the bifurcation diagram. Lyapunov exponent shown in Fig. 13d completely corresponds to the nonlinear vibrations in the bifurcation diagrams for the O pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate.

Based on the aforementioned analyses, it is found that the stiffness of the X pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate is greater than that of the U pattern distribution thin plate. The stiffness of the U pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate is greater than that of the O pattern distribution thin plate. Therefore, it is observed from Figs. 11, 12 and 13 that the nonlinear vibrations of the O pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate have the largest amplitude. The nonlinear vibrations of the U pattern distribution graphene platelet-reinforced rotating

Fig. 18 The bifurcation diagram and maximum Lyapunov exponent of the O pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate are shown when the transverse excitations \(F_t \) increase from 1.0 × 10^5 N to 1.3 × 10^5 N and axial excitation \(P_{02} \) is 4 × 10^2 N, a bifurcation diagram of the first-order bending vibration mode, b bifurcation diagram of the first-order torsional vibration mode, c bifurcation diagram of the second-order bending vibration mode, d maximum Lyapunov exponent diagram of first-order bending vibration mode

Fig. 19 The chaotic vibrations of the U pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate are obtained when the transverse excitation is \(F_t = 1.25 \times 10^5 \text{ N} \) and axial excitation \(P_{02} = 4 \times 10^2 \text{ N} \), a, c, e phase portraits on the planes \((w_1, \dot{w}_1), (w_2, \dot{w}_2)\) and \((w_3, \dot{w}_3)\), b, d, f waveforms of first-order bending, first-order torsional and second-order bending vibration modes, g three-dimensional phase portrait in space \((w_1, w_2, w_3)\), h Poincare map of first-order bending vibration mode
pretwisted composite cantilever plate have the second larger amplitude. The nonlinear vibrations of the X pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate are of the smallest pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate have the second larger amplitude.

Figure 14 plots the chaotic vibrations of the X pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate when the axial excitation is $P_{02} = 4.40 \times 10^5 \text{N}$. Figures (a), (c) and (e), respectively, represent the phase portraits on the planes $(w_1, \dot{w}_1), (w_2, \dot{w}_2)$ and (w_3, \dot{w}_3). Figures (b), (d) and (f), respectively, give the waveforms of the first-order bending, first-order torsional and second-order bending vibration modes on the planes $(t, w_1), (t, w_2)$ and (t, w_3). Figure (g) demonstrates three-dimensional phase portrait in the space (w_1, w_2, w_3). Figure (h) denotes Poincare map of the first-order bending vibration mode. Figure 15 illustrates the chaotic vibrations of the O pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate when the axial excitation is $P_{02} = 4.40 \times 10^5 \text{N}$. We obtain a conclusion from Figs. 14 and 15 that the amplitudes w_1 and w_3 of the bending vibration modes are larger than the amplitude w_2 of the torsional vibration mode in the graphene platelet-reinforced rotating pretwisted composite cantilever plate.

5 Effect of transverse excitation on nonlinear vibrations

We investigate the effects of the transverse excitations F_t on the nonlinear dynamic characteristics of the FGGP-reinforced rotating pretwisted composite cantilever plate under three different distribution types.

Figures 16, 17 and 18, respectively, depict the bifurcation diagrams and maximum Lyapunov exponent of the FGGP-reinforced rotating pretwisted composite cantilever plates with the X, U and O distribution patterns for the FGGP-reinforced rotating pretwisted composite cantilever plate after the chaotic vibrations happen, which is indicated by a blue circle.

When the transverse excitation increases to $F_t = 1.21 \times 10^5 \text{N}$, it is found from Fig. 17 that the nonlinear vibrations change from the periodic to chaotic vibrations in the U pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate. The periodic doubling bifurcation happens when $F_t = 1.158 \times 10^5 \text{N}$. Figure 18 demonstrates that through a periodic region $F_t \in (1.00 \times 10^5 \text{N} \sim 1.23 \times 10^5 \text{N})$, the chaotic vibrations appear in the U pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate when $F_t = 1.232 \times 10^5 \text{N}$. A periodic doubling bifurcation again happens in the FGGP-reinforced rotating pretwisted composite cantilever plate when the transverse excitation is $F_t = 1.196 \times 10^5 \text{N}$.

Fig. 20 The chaotic vibrations of the O pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate are given when the transverse excitation is $F_t = 1.25 \times 10^5 \text{N}$ and axial excitation $P_{02} = 2 \times 10^2 \text{N}$.
Nonlinear vibrations of rotating pretwisted composite blade
It is seen from Figs. 19 and 20 that the amplitudes of the nonlinear vibrations have little difference for the FGGP-reinforced rotating pretwisted composite cantilever plate with the U and O distribution patterns when the transverse excitations F_t increase from 1.00×10^5 N to 1.30×10^5 N. Figure 19 illustrates the chaotic vibrations of the U pattern graphene platelet-reinforced rotating pretwisted composite cantilever thin plate when the transverse excitation is $F_t = 1.25 \times 10^5$ N. Figure (a), (c) and (e), respectively, denote the phase portraits on the planes (w_1, \dot{w}_1), (w_2, \dot{w}_2) and (w_3, \dot{w}_3). Figure (b), (d) and (f), respectively, give the waveforms of the first-order bending, first-order torsional and second-order bending vibration modes on the plane (t, w_1), (t, w_2) and (t, w_3). Figure (g) illustrates three-dimensional phase portrait in the space (w_1, w_2, w_3). Figure (h) shows Poincare map of the first-order bending vibration mode. Figure 20 demonstrates the chaotic vibrations of the O pattern graphene platelet-reinforced rotating pretwisted composite cantilever thin plates when the transverse excitations all are $F_t = 1.25 \times 10^5$ N. It is found from Figs. 19 and 20 that the relationships among the amplitudes w_1, w_2 and w_3 are similar to the results obtained in Figs. 14 and 15 for the FGGP-reinforced rotating pretwisted composite cantilever plate under combined the external and multiple parametric excitations.

6 Conclusions

The primary resonance and nonlinear vibrations are investigated for the FGGP-reinforced rotating pretwisted composite cantilever plate under combined the external and multiple parametric excitations. Utilizing von Karman nonlinear geometric relationship and Lagrange equation, three-degree-of-freedom nonlinear governing equations of motion are obtained. The primary resonance and nonlinear dynamic behaviors are analyzed by Runge–Kutta method. The hardening-spring characteristics are found for the graphene platelet-reinforced rotating pretwisted composite cantilever plate. The primary resonant amplitude of the O pattern distribution plate reaches the peak firstly and is largest. The vibration amplitude of the X pattern distribution plate reaches the peak latest. The primary resonant amplitude of the X pattern distribution plate reaches the peak earlier and is larger with the increase of the axial loads P_{01}. The larger the transverse excitation F_t is, the more obvious the hardeningspring characteristic is.

With the increase of the axial excitations P_{02}, the bigger primary resonant peak occurs. The primary resonant amplitude of the X pattern distribution plate reaches the peak later and is larger with the decrease of the rotating speed Ω_0. For the force–amplitude response curves, when $F_t > 2540$ N, the O pattern rotating pretwisted composite cantilever plate has the largest amplitude and X pattern rotating pretwisted composite cantilever plate has the least amplitude. When $F_t > 1300$ N, the amplitude is larger with the increase of the axial excitations P_{01} and P_{02}. The amplitude of the X pattern distribution plate is larger with the decrease of the rotating speed Ω_0. When the frequency ratio $\Omega_1/\Omega_0 = 1.0$ or rotating speed $\Omega_0 = 4000$ rpm, the nonlinear characteristic of the curve is obvious.

When the axial excitations P_{02} increase from 2.4×10^5 N to 4.6×10^5 N, the FGGP-reinforced rotating pretwisted composite cantilever plate under the transverse excitation has the chaotic vibrations through twice periodic doubling bifurcations. When the transverse excitations F_t increase from 1.00×10^5 N to 1.30×10^5 N, the FGGP-reinforced rotating pretwisted composite cantilever plate under the axial excitation has the chaotic vibrations through once periodic doubling bifurcation. When the transverse excitations F_t increase from 1.00×10^5 N to 1.30×10^5 N, the amplitudes of the nonlinear vibrations for the X, U and O pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate have little difference.

When the axial excitations P_{02} increase from 2.4×10^5 N to 4.6×10^5 N, the nonlinear vibrations of the O pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate have the largest amplitude. The nonlinear vibrations of the U pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate have the second larger amplitude. The nonlinear vibrations of the X pattern graphene platelet-reinforced rotating pretwisted composite cantilever plate have the smallest amplitude.
Acknowledgements The authors gratefully acknowledge the support of National Natural Science Foundation of China (NNSF) through Grant Nos. 11832002, 11672188 and 11427801 and the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (PHRILB).

Data availability All data used to support the findings of this study are available from the corresponding author upon request.

Conflict of interest The authors declare that there is no conflict of interest regarding the publication of this paper.

References

1. Lee, C., Wei, X., Kysa, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2005)
2. Bahaadini, R., Saidi, A.R.: Aeroelastic analysis of functionally graded rotating blades reinforced with graphene nanoplatelets in supersonic flow. Aerosp. Sci. Technol. 80(June), 381–391 (2018)
3. Balandin, A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Chun, L.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)
4. Yang, J., Wu, H., Kitipornchai, S.: Buckling and post-buckling of functionally graded multilayer graphene platelets-platelet-reinforced composite beams. Compos. Struct. 161, 111–118 (2016)
5. Chen, D., Yang, J., Kitipornchai, S.: Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Compos. Sci. Technol. 142, 235–245 (2017)
6. Kiani, Y.: Isogeometric large amplitude free vibration of graphene platelets reinforced laminated plates in thermal environment using NURBS formulation. Comput. Methods Appl. Mech. Eng. 332, 86–101 (2018)
7. Mao, J.J., Zhang, W.: Linear and nonlinear free and forced vibrations of graphene platelets reinforced piezoelectric composite plate under external voltage excitation. Compos. Struct. 203, 551–565 (2018)
8. Mao, J.J., Zhang, W.: Buckling and post-buckling analyses of functionally graded graphene platelets reinforced piezoelectric plate subjected to electric potential and axial forces. Compos. Struct. 216, 392–405 (2019)
9. Wang, A.W., Chen, H.Y., Hao, Y.X., Zhang, W.: Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets. Results Phys. 9, 550–559 (2018)
10. Zhao, Z., Feng, C., Dong, Y.H., Wang, Y., Yang, J.: Geometrically nonlinear bending of functionally graded nanocomposite trapezoidal plates reinforced with graphene platelets (GPLs). Int. J. Mech. Mater. Des. 15, 791–800 (2019)
11. Zhao, T.Y., Cui, Y.S., Pan, H.G., Yuan, H.Q., Yang, J.: Free vibration analysis of a functionally graded graphene nanoplatelet reinforced disk-shaft assembly with whirl motion. Int. J. Mech. Sci. 197, 106335 (2021)
12. Tam, M., Yang, Z., Zhao, S., Zhang, H., Zhang, Y., Yang, J.: Nonlinear bending of elastically restrained functionally graded graphene nanoplatelet reinforced beams with an open edge crack. Thin-Walled Struct. 156, 106972 (2020)
13. Gupta, K., Rao, J.S.: Torsional vibrations of pretwisted cantilever plates. J. Mech. Des. Trans. 100, 528–534 (1978)
14. Chen, L.W., Chen, C.L.: Vibration and stability of cracked thick rotating blades. Compos. Struct. 28, 67–74 (1988)
15. Sun, J., Kari, L., Lopez Arteaga, I.: A dynamic rotating blade model at an arbitrary stagger angle based on classical plate theory and the Hamilton’s principle. J. Sound Vib. 332, 1355–1371 (2013)
16. Sun, J., Arteaga, I.L., Kari, L.: General shell model for a rotating pretwisted blade. J. Sound Vib. 332(22), 5804–5820 (2013)
17. Cao, D.X., Liu, B.Y., Yao, M.M., Zhang, W.: Free vibration analysis of a pretwisted sandwich blade with thermal barrier coatings layers. Sci. China Technol. Sci. 60, 1747–1761 (2017)
18. Chen, J., Li, Q.S.: Vibration characteristics of a rotating pretwisted composite laminated blade. Compos. Struct. 208, 78–90 (2019)
19. Liu, L.T., Hao, Y.X., Zhang, W., Chen, J.: Free vibration analysis of rotating pretwisted functionally graded sandwich blades. Int. J. Aerosp. Eng. 2018, 1–18 (2018)
20. Oh, Y., Yoo, H.H.: Vibration analysis of a rotating pretwisted blade considering the coupling effects of stretching, bending, and torsion. J. Sound Vib. 431, 20–39 (2018)
21. Gu, X.J., Hao, Y.X., Zhang, W., Liu, L.T., Chen, J.: Free vibration of rotating cantilever pretwisted panel with initial exponential function type geometric imperfection. Appl. Math. Model. 68, 327–352 (2019)
22. Niu, Y., Zhang, W., Guo, X.Y.: Free vibration of rotating pretwisted functionally graded cylindrical panel reinforced with graphene platelets. Eur. J. Mech./A Solids 77, 103798 (2019)
23. Zhang, W., Niu, Y., Behdinan, K.: Vibration characteristics of rotating pretwisted composite tapered blade with graphene platelets coating layers. Aerosp. Sci. Technol. 98, 105644 (2019)
24. Ondra, V., Titurus, B.: Free vibration analysis of a rotating pre-twisted beam subjected to tendon-induced axial loading. J. Sound Vib. 461, 114912 (2019)
25. Chen, J., Cui, P., Li, Q.S.: Free vibrations of functionally graded graphene-reinforced composite blades with varying cross-sections. Int. J. Struct. Stab. Dyn. 20(14), 1–29 (2020)
26. Gu, X.J., Hao, Y.X., Zhang, W., Chen, J.: Dynamic stability of rotating cantilever composite thin walled twisted plate with initial geometric imperfection under in-plane load. Thin-Walled Struct. 144, 106227 (2019)
27. Zhao, T.Y., Jiang, L.P., Pan, H.G., Yang, J., Kitipornchai, S.: Coupled free vibration of a functionally graded pretwisted blade-shaft system reinforced with graphene nanoplatelets. Compos. Struct. 262, 113362 (2021)
28. Maji, P., Singh, B.N.: Free vibration responses of 3D braided rotating cylindrical shells based on third-order shear deformation. Compos. Struct. 260, 113255 (2020)
29. Zhao, T.Y., Ma, Y., Zhang, H.Y., Pan, H.G., Cai, Y.: Free vibration analysis of a rotating graphene nanoplatelet...
reinforced pre-twist blade-disk assembly with a setting angle. Appl. Math. Model. 93, 578–596 (2021)
30. Li, C., Cheng, H.: Free vibration analysis of a rotating varying-thickness-twisted blade with arbitrary boundary conditions. J. Sound Vib. 492, 115791 (2021)
31. Xiang, R., Pan, Z.Z., Ouyang, H., Zhang, L.W.: A study of the vibration and lay-up optimization of rotating cross-ply laminated nanocomposite blades. Compos. Struct. 235, 111775 (2020)
32. Avramov, K.V., Galas, O.S., Morachkovskii, O.K., Pierre, C.: Analysis of flexural-flexural-torsional nonlinear vibrations of twisted rotating beams with cross-sectional deformation. Strength Mater. 41, 200–208 (2009)
33. Wang, F.X., Zhang, W.: Stability analysis of a nonlinear rotating blade with torsional vibrations. J. Sound Vib. 331, 5755–5773 (2012)
34. Arvin, H., Lacarbonara, W., Bakhtiar-Nejad, F.: A geometrically exact approach to the overall dynamics of elastic rotating blades—part 2: flapping nonlinear normal modes. Nonlinear Dyn. 70, 2279–2301 (2012)
35. Yao, M.H., Chen, Y.P., Zhang, W.: Nonlinear vibrations of blade with varying rotating speed. Nonlinear Dyn. 68, 487–504 (2012)
36. Bekhoucha, F., Rechak, S., Duigou, L., Cadou, J.M.: Nonlinear forced vibrations of rotating anisotropic beams. Nonlinear Dyn. 74, 1281–1296 (2013)
37. Arvin, H., Lacarbonara, W.: A fully nonlinear dynamic formulation for rotating composite beams: nonlinear normal modes in flapping. Compos. Struct. 109, 93–105 (2014)
38. Yao, M.H., Zhang, W., Chen, Y.P.: Analysis on nonlinear oscillations and resonant responses of a compressor blade. Acta Mech. 225, 3483–3510 (2014)
39. Zhang, B., Li, Y.: Nonlinear vibration of rotating pre-deformed blade with thermal gradient. Nonlinear Dyn. 86, 459–478 (2016)
40. Wang, D., Chen, Y.S., Hao, Z.F., Cao, Q.J.: Bifurcation analysis for vibrations of a turbine blade excited by air flows. Sci. China Technol. Sci. 59, 1217–1231 (2016)
41. Roy, P.A., Meguid, S.A.: Nonlinear transient dynamic response of a blade subject to a pulsating load in a decaying centrifugal force field. Int. J. Mech. Mater. Des. 14, 709–728 (2018)
42. Bai, B., Li, H., Zhang, W., Cui, Y.C.: Application of extremum response surface method-based improved substructure component modal synthesis in mistuned turbine bladed disk. J. Sound Vib. 472, 1152 (2020)
43. Yao, M.H., Niu, Y., Hao, Y.X.: Nonlinear dynamic responses of rotating pretwisted cylindrical shells. Nonlinear Dyn. 95, 151–174 (2019)
44. Zhang, W., Liu, G., Siriguleng, B.: Saturation phenomena and nonlinear resonances of rotating pretwisted laminated composite blade under subsonic air flow excitation. J. Sound Vib. 478, 1153 (2020)
45. Niu, Y., Yao, M.H., Zhang, W.: Nonlinear transient responses of rotating twisted FGM cylindrical panels. Sci. China Technol. Sci. 64(2), 317–330 (2020)
46. Zhang, Y.F., Niu, Y., Zhang, W.: Nonlinear vibrations and internal resonance of pretwisted rotating cantilever rectangular plate with varying cross-section and aerodynamic force. Eng. Struct. 225, 111259 (2020)
47. Hao, Y.X., Gu, X.J., Zhang, W., Chen, J.: Transient response of high dimensional nonlinear dynamic system for a rotating cantilever twisted plate. Adv. Appl. Math. Mech. 12, 1542–1564 (2020)
48. Zhang, B., Ding, H., Chen, L.Q.: Super-harmonic resonances of a rotating pre-deformed blade subjected to gas pressure. Nonlinear Dyn. 98, 2531–2549 (2019)
49. Denton, J.D.: Loss mechanisms in turbo machines. ASME J. Turbo Mach. 115(4), 621–656 (1993)
50. Zhang, W., Zhao, M.H., Guo, X.Y.: Nonlinear responses of a symmetric cross-ply composite laminated cantilever rectangular plate under in-plane and moment excitations. Compos. Struct. 100, 554–565 (2013)
51. Zhang, W., Hao, Y.X., Yang, J.: Nonlinear dynamics of FGM circular cylindrical shell with clamped-clamped edges. Compos. Struct. 94(3), 1075–1086 (2012)
52. Hao, Y.X., Zhang, W., Yang, J.: Nonlinear oscillation of a cantilever FGM rectangular plate based on third-order plate theory and asymptotic perturbation method. Compos. B Eng. 42(3), 402–413 (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.