Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The Importance of Physical Activity to Care for Frail Older Adults During the COVID-19 Pandemic

Mylene Aubertin-Leheudre PhD a,b,*, Yves Rolland MD, PhD c,d

a Centre de recherche, Institut universitaire de gériatrie de Montréal (IUGM), CRUSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, Canada
b Département des Sciences de l'activité physique, Faculté des sciences, Université du Québec à Montréal, Montreal, Canada
c Gerontopole of Toulouse, University Hospital of Toulouse (CHU-Toulouse), Toulouse, France
d UMR INSERM 1027, University of Toulouse III, Toulouse, France

Coronavirus disease 2019 (COVID-19) is currently causing devastating impacts globally. As of March 31, 2020, a total of 857,165 COVID-19 cases have been confirmed around the world, and more than 42,100 people have died. The death rate is estimated at 5%, with older adults making up the vast majority of cases (>80%).

To address this situation and protect their populations, most countries have declared a state of emergency, and enforce or recommend physical distancing (of about 2 m), as well as voluntary quarantine. Strict guidelines for room or apartment confinement, including no unessential social or physical interaction, have been implemented for older adults, especially those who are frail and live in congregate apartments, assisted living settings, and long-term care, and those who are hospitalized. A poignant example of this was an older couple on a cruise ship with a COVID-19 outbreak on board, who, on national television, talked about their experience being confined to a 200-square-foot cabin for more than a week.

Not surprisingly, studies show a decline in the number of pedometer steps taken per week by adults owing to restrictions put in place to mitigate COVID-19. European countries showed the most dramatic decline, ranging from a 7% to 38% reduction in steps between place to mitigate COVID-19. Cultural and societal differences may also have contributed to the differences between countries. For example, Sweden has a policy allowing people to meet in groups of up to eight people, which might have contributed to a relatively smaller reduction in steps compared to the United Kingdom, where the number of pedometer steps taken per week by adults reduced by about 20%

The negative consequences of hospitalization or living in long-term care are largely due to low physical activity. Older hospitalized patients are often confined to bed for 17 hours a day (not including sleep time) and if they are able to walk independently. Long-term care residents spend 90% of their time in sedentary positions (ie, sitting or lying) and rarely or never go outdoors, which further exacerbates their frailty and reduces cardiopulmonary reserve. The vicious circle of frailty is accelerated by physical inactivity and further increases the need for health care services.

The authors declare no conflict of interest.

* Address correspondence to Mylene Aubertin-Leheudre, PhD, Département des Sciences de l’activité physique, Université du Québec à Montréal (UQAM), Pavillon des sciences biologiques (SB), 4th floor, 141 avenue President-Kennedy, SB-4615, Montreal, Quebec, Canada H3C 3P8.

E-mail address: aubertin-leheudre.mylene@uqam.ca (M. Aubertin-Leheudre).

https://doi.org/10.1016/j.jamda.2020.04.022

© 2020 AMDA — The Society for Post–Acute and Long–Term Care Medicine.
care resources are limited and made available on a priority basis. In addition, this solution must also respect the COVID-19 guidelines.

Innovative approaches using gerontechnology, such as exergames, are nowadays recognized to contribute to improving walking capacity in older adults. More specifically, previous research showed that Jintronix, an interactive exergames program, is feasible to apply, acceptable to all stakeholders, and improves functional capacities, including walking speed, in older adults in long-term care or post-hospitalization. Interestingly, Barbosa Neves et al observed that the use of technology also increased the perceived social interaction with family and friends for participants with geographically distant relatives. Thus, technology can be used to avoid physical decline as well as decrease isolation and loneliness. Overall, exergames using (1) video consoles (eg, Wii, Wii-Fit, Xbox, or PlayStation fitness games), (2) interactive rehabilitation technologies (eg, Jintronix software), (3) tablet or smartphone (eg, Vivifrail application), (4) wearable sensor based (eg, FallSensing Exergames: OTAGO), or (4) virtual reality devices (eg, Box, Rendever, Sea Hero Quest using Oculus Go, HTC Vive; Samsung Gear)) should be brought forward to alleviate some of the challenges caused by COVID-19 restrictions, namely, physical distancing and isolation. Nevertheless, many components of this technology (Internet or materials or license access) are not yet available at hospitals or long-term care facilities. Thus, other solutions need to be found.

DVD-delivered physical activity intervention (eg, FlextoBa, OTAGO) is another efficient method to improve physical performance (flexibility and strength) or functional capacities (via, eg, the Short Physical Performance Battery [SPPB; balance) in older adults because this technology can be used unsupervised and without individual Internet access. For example, Wójcicki et al concluded that physical activity programs using DVDs (ie, no need for Internet), specifically designed to target functional fitness in sedentary older adults, can produce clinically meaningful gains in physical function that are maintained beyond intervention cessation. Nevertheless, this method requires individual DVD disc and DVD reader on location. In addition, those scientifically validated have not all been adapted for the frail population, such as older adults living in long-term care or those hospitalized.

Recently, Ortiz-Alonso et al showed that simple supervised exercises (walking and rising from a chair for ~ 20 minutes/d) decreased hospitalization-associated disability in very old hospitalized patients. However, even if this study demonstrated that simple exercises can improve functional capacities, this intervention has been done with supervision and cannot be replicated during COVID-19.

Thus, to counteract physical and functional declines during COVID-19, safe, efficient, and simple exercises that can be performed unsupervised are needed. We showed that specific physical activity programs adapted for home-based unsupervised use are efficient and safe (no fall reported) to improve functional capacity in older adults posthospitalization (Figure 1). But compared with previous studies, the novelty that facilitates its implementation is that the 27 specific programs are prescribed based on a pragmatic decisional tree.

Fig. 1. Example of 3 unsupervised PATH programs according to an individual’s balance and strength profile. Each panel represents a different program; The figure represents reminder sheets that are designed to be placed on the patient’s wall or refrigerator.

1. Sitting hip flexion 2. Sitting knee extension 3. Sitting leg extension 4. Chair dips

1. Standing plantar/ dorsiflexion 2. Hip Flexion 3. Hip abduction 4. Side walk

1. Wall push ups 2. Seated to standing 3. Hip flexion without support 4. Static balance
In addition, a pilot study tested unsupervised simple exercises in hospitalized older adults and demonstrated that it was not only feasible and acceptable but also an efficient way to improve a patient's functional capacity and physical activity practice (length of stay and discharge orientation). This simple physical activity program has been recently improved and can be easily and automatically prescribed using a pragmatic decisional tree (adapted from Carvalho et al), and by adjusting simple unsupervised adapted physical activity programs (5 color levels) according to patient and clinician feedbacks. This new physical activity program (MATCH: Maintenance of Autonomy Through exercise Care during Hospitalization), available for notebook with optional and additional training video, has already been tested and implemented during this COVID-19 pandemic in geriatric hospital units and long-term care with no individual Internet access.

Regarding this program, the health care teams first need to complete the decisional tree. This decisional tree includes 3 simple tests: (1) 30-second chair test (numbers and used of arms), (2) SPPB balance (side by side and semitandem) tests (yes or no), and (3) SPPB 4-m walking speed. These 3 tests have been chosen because they are already implemented in geriatric practice, easy to perform (space and time), and do not require any specific materials. The score obtained using the first 2 tests prescribes the adapted and specific color of the physical activity program. The third test (walking speed) determined the walking time because the corridors and the common or free spaces are quite distinct in each structure.

Each physical activity color program included 2 specific and adapted exercises (eg, seated knee extension, sit to stand, step aside, chair forward bend, bipedal and unipedal static balance, and wall squat) and walking time (Figure 1). All programs have been created to improve or

Table 1

Name	Details and Source URL	Type of Resource
Specific, simple, and adapted program for older adults	[Details](https://www.livestronger.org.nz/assets/Uploads/acc1162-otago-exercise-manual.pdf)	Notebook, DVD
Vivifrail	[Details](http://vivifrail.com)	Notebook, applications
SPRINT/MATCH/PATH	[Details](https://physioimpact.files.wordpress.com/2013/12/protocole-sprint-decembre-2013.pdf)	Notebook, website video
General physical activity program for older adults	[Details](https://www.laterlifetraining.co.uk)	Notebook
LaterLifeTraining		Facebook Live daily classes
Go4Life	[Details](https://go4life.nia.nih.gov)	Free video
MovesCanada	[Details](https://www.movescanada.ca/)	Notebook, website video
Active Ageing Canada	[Details](https://www.youtube.com/c/ActiveAgingCanada)	Notebook, website video
Active Ageing Australia	[Details](https://activeageing.org.au)	Notebook, website video
Move50+	[Details](https://move50plus.ca/bougez/#tout)	Notebook, website video

![Fig. 2. The MATCH color programs. These 5 unsupervised, simple, but specific exercise programs are prescribed based on a patient's decisional tree score. The figure represents a combination of the reminder graphics for the red (lowest level), yellow, orange, green, and blue (highest level) programs. Each color graphic is designed to be fixed on the head of the patient’s bed.](https://example.com/fig2)
at least maintain balance, strength, and also mobility and cardiopulmonary function (aerobic capacities). All programs are realized unsupervised, without materials (except room equipment: chair or wall), between 2 and 3 times per day, in a seated or standing position.

Thus, depending on the hospital and long-term care resources, a huge number of simple and adapted physical activity programs without specific materials and using notebook, TV screen, video, or Internet live video can be implemented to avoid bed rest and immobilization effects during the COVID-19 pandemic (eg, SPRINT; MATCH Vivirfill; LaterLifeTraining; Go4Life, and MOVE; see Table 1). Such approaches also have the advantage of being in compliance with the currently imposed physical and social distancing. Finally, as COVID-19 restrictions vary by country for older adults, research and data collection must be encouraged around the world. A collective effort could help to monitor the changes in physical function and to determine which physical activity practice more effectively limits the number of deaths as well as iatrogenic decline during the COVID-19 pandemic. Such efforts could help provide clear public health recommendations to better prepare the health care system in the event of a future pandemic.

In conclusion, to our knowledge, these simple, adapted, specific daily physical activities that include strength, balance, and walking exercises (eg, Vivifrail; see Figures 1 and 2) can be considered as the best solution to care for frail older adults during the COVID-19 pandemic.

References

1. Fitbit staff. The impact of coronavirus on physical activity all over the world. Available at: https://blog.fitbit.com/covid-19-global-activity. Accessed April 13, 2020.

2. World Health Organization. Global Recommendations on Physical Activity for Health. Geneva: WHO; 2010, chap. 2.1.

3. Van Ancum JM, Scheerman K, Jonkman NH, et al. Change in muscle strength and muscle mass in older hospitalized patients: A systematic review and meta-analysis. Exp Gerontol 2017;52:34–41.

4. Kortebein P, Ferrando A, Lombeda J, et al. Effect of 10 days of bed rest on skeletal muscle in healthy older adults. JAMA 2007;297:1772–1774.

5. Mahoney J, Sager M, Dunham NC, Johnson J. Risk of falls after hospital discharge. J Am Geriatr Soc 1994;42:269–274.

6. Sherrington C, Lord SR, Close JC, et al. A simple tool predicted probability of falling after aged care inpatient rehabilitation. J Clin Epidemiol 2011;64:779–786.

7. Gill TM, Allore HG, Holford TR, Gao Z. Hospitalization, restricted activity, and the development of disability among older persons. JAMA 2004;292:2115–2124.

8. Bourman BM, Hoogerduijn JC, de Haan RJ, et al. Geriatric conditions in acutely hospitalized older patients: Prevalence and one-year survival and functional decline. PLoS One 2011;6:e26951.

9. Brown CJ, Redden DT, Flood KL, Allman RM. The underrecognized epidemic of low mobility during hospitalization of older adults. J Am Geriatr Soc 2009;57:1660–1665.

10. Pedersen MM, Bodilsen AC, Petersen J, et al. Twenty-four-hour mobility during acute hospitalization in older medical patients. J Gerontol 2013;68:331–337.

11. De Souvo Barreto P, Demougeot L, Vellas B, Rolland Y. How much exercise are older adults living in long-term care doing in daily life? A cross-sectional study. J Sports Sci 2015;33:116–124.

12. Martin JL, Webber AP, Alam T, et al. Daytime sleeping, sleep disturbance, and circadian rhythms in the nursing home. Am J Geriatr Psychiatry 2006;14:121–129.

13. Beard JR, Officer A, de Carvalho IA, et al. The world report on ageing and health: A policy framework for healthy ageing. Lancet 2016;387:2145–2154.

14. Izquierdo M, Morley JE, Lucia A. Exercise in people over 85: Advanced age is no barrier to the benefits of tailored exercise. BMJ 2020;368:m402.

15. Tak E, Kuiper R, Chorus A, Hopman-Rock M. Prevention of onset and progression of basic ADL disability by physical activity in community dwelling older adults: A meta-analysis. Ageing Res Rev 2013;12:329–338.

16. Scheerman K, Raaijmakers K, Otten RIJ, et al. Effect of physical interventions on physical performance and physical activity in older patients during hospitalization: A systematic review. BMC Geriatr 2018;18:288.

17. Corregidor-Sánchez AI, Segura-Fragoso A, Rodríguez-Hernández M, et al. Can exergames contribute to improving walking capacity in older adults? A systematic review and meta-analysis. Maturitas 2020;132:40–48.

18. Lauzé M, Martel D, Aubertin-Leheudre M. Feasibility and effects of a physical activity program using gerontechnology in assisted living communities for older adults. J Am Med Dir Assoc 2017;18:1069–1075.

19. Barbosa Neves B, Franz R, Judges R, et al. Can digital technology enhance social connectedness among older adults? A feasibility study. J Appl Gerontol 2019;38:49–72.

20. Wójcicki TR, Fanning J, Awick EA, et al. Maintenance effects of a DVD-delivered exercise intervention on physical function in older adults. J Gerontol A Biol Sci Med Sci 2015;70:789–789.

21. Ortiz-Alonso J, Bustamante-Ara N, Valenzuela PL, et al. Effect of a simple exercise programme on hospitalisation-associated disability in older patients: a randomised controlled trial. J Am Med Dir Assoc 2020;21:531–537.e1.

22. Carvalho LP, Kergoat MJ, Bolduc A, Aubertin-Leheudre M. A systematic approach for prescribing posthospitalization home-based physical activity for mobility in older adults: The PATH Study. J Am Med Dir Assoc 2019;20:1287–1293.

23. Juneau A, Bolduc A, Nguyen P, et al. Feasibility of implementing an exercise program in a geriatric assessment unit: The SPRINT Program. Can Geriatr J 2018;21:284–289.

24. Aubertin-Leheudre M, Peyrusquè E, Buckinx F, et al. Potential efficacy of pragmatic exercise program (SPRINT) during hospitalization in older adults on health care and physical performance: A pilot study. Paper presented at: International Conference on Frailty and Sarcopenia Research (ICFSR 2020); March 11-13, 2020; Toulouse, Occitane, France.