DecLiNe – Models for Decay of Links in Networks

Julia Preusse, Jérôme Kunegis, Matthias Thimm, Sergej Sizov
Institute for Web Science and Technologies
University of Koblenz-Landau, Germany
{jpreusse, kunegis, thimm, sizov}@uni-koblenz.de

ABSTRACT
The prediction of graph evolution is an important and challenging problem in the analysis of networks and of the Web in particular. But while the appearance of new links is part of virtually every model of Web growth, the disappearance of links has received much less attention in the literature. To fill this gap, our approach DecLiNe (an acronym for Decay of Links in Networks) aims to predict link decay in networks, based on structural analysis of corresponding graph models. In analogy to the link prediction problem, we show that analysis of graph structures can help to identify indicators for superfluous links under consideration of common network models. In doing so, we introduce novel metrics that denote the likelihood of certain links in social graphs to remain in the network, and can be applied to such diverse networks as the Web, social networks and any other structure representable as a network, and can be easily combined with case-specific content analysis and adopted for a variety of social network mining, filtering and recommendation applications. In systematic evaluations with large-scale datasets of Wikipedia we show the practical feasibility of the proposed structure-based link decay prediction algorithms.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Web graph, network evolution, link prediction, decay

1. INTRODUCTION
Analysis of link structures is traditionally an important component of Web information systems, such as search engines, recommender systems, spam filters, content summarization tools, and many others. These applications are supported by a wide range of state of the art methods for link-based authority ranking, prediction of further network evolution, and detection of structural anomalies. Well-known properties of networks such as the Web are (1) highly imbalanced distributions of node degrees (in a broader sense of several existing models, node “authoritativeness”), and (2) high clustering coefficient, indicative for existence of multiple or tightly connected sub-components (“cliques”). Among many possible use cases, this knowledge can be used for predicting/suggesting new graph edges that appear “reasonable” in an existing graph structure, e.g., by connecting two nodes that have many neighbors in common. The prediction of such “missing links” (e.g., references between Web pages, friendships in social networks, followers and citations on Twitter, cross-references between articles in Wikipedia, etc.) can be seen as an established recommendation scenario that has been intensively discussed over the last decade (cf. [23]).

In real life, the dynamics of network evolution is more complex and includes both adding and decay or removal of connections and relationships. Unlike link prediction, the issue of link removal has not yet been considered as a general and domain-independent problem of network analysis. Our approach coined DecLiNe (an acronym for Decay of Links in online Networks) aims to close this gap and to introduce generic methods for prediction of “superfluous links” in networks, based on structural analysis of corresponding graph models. As a running example, we may consider the fictional graph of a sample of Wikipedia articles from Figure 1.

Figure 1: Sample graph $G$ of interlinked Wikipedia articles. The connection between articles ‘swim’ and ‘surf’ is intuitively wrong.

$$G = \{ \text{water, swim, beach, surf, SEO, PageRank} \}.$$  

A link $(i, j)$ indicates that article $i$ links to article $j$.
The graph $G$ contains two tightly connected components

$$T_1 = \{ \text{swim, water, beach} \},$$

$$T_2 = \{ \text{surf, SEO, PageRank} \}.$$

The link (swim, surf) does not directly belong to structures of $T_1$ and $T_2$ and thus does not connect closely related resources, this can be recognized by the fact that (swim, surf) does not substantially contribute to the high clustering coefficient of $G$. Consequently, we may assume that the link (swim, surf) may demand critical reconsideration as a potential mistake and will be possibly removed in the future.

Conceptually, we discuss in our paper the hypothesis that knowledge of the structure of social networks and models allows for defining invariant indicators for “superfluous” links. More precisely, we consider different ways to solve the link decay problem as a special case of link prediction, by introducing novel graph models and edge weighting metrics, customized for prediction of low-likelihood edges.

In our sample graph introduced before, the wrong link has been set due to missing disambiguation of two meanings for ‘surf’. In general, the decision to withdraw a link may have many different reasons and cannot be fully explained without domain-dependent knowledge about the particular network and without content resp. context analysis of affected nodes (users, web pages, postings). Our contribution aims to answer the fundamental question: to what extent can structural analysis contribute to the prediction of link decay, as a dedicated source of information? The resulting domain-independent approach of DecLiNe can be easily combined with case-specific content analysis and adopted for a variety of applications, such as advanced authority ranking, detection of link spam and manipulations, recommendations for re-organization of social graphs by users and content providers, and many others.

The rest of this paper is organized as follows. In Section 2 we discuss related work in the fields of graph analysis and link prediction. Section 3 formalizes the problem of link decay and introduces novel decay indicators and prediction methods of DecLiNe. In Section 4 we present results of systematic evaluations for predictive performance of DecLiNe on large-scale real data (Wikipedia datasets in several languages). Section 5 summarizes lessons learned and shows directions of future research.

2. RELATED WORK
The problem of recognizing and predicting the decay of links in networks is related to other problems in the area of network analysis, which we describe in the following.

The evolution of networks such as the Web is subject to many models such as preferential attachment [5] or the spectral evolution model [18], most of which only model the addition of edges over time. The evolution of the Web hyperlink graph in particular has been studied too, for instance in [7].

The evolution of the Wikipedia hyperlink graph has been studied in 2006 [8]. The concrete problem consisting of predicting the appearance of new links in networks is called link prediction [21]. Unlike link prediction, the prediction of link disappearance has been investigated only very little.

| Scenario          | Method      | Features |
|-------------------|-------------|----------|
| Network evolution | Degrees     | –        | [4]      |
|                   | Sequential  | –        |          |
| Decay of social links | Unfriend | 21, 25    |          |
|                   | Unfollow    | 20       | [24]     |
| Declining participation | Groups | –        | 13       |
|                   | Churn       | –        | 15       |
| Anomaly detection | Spurious links | – | 12, 27     |
|                   | Spam        | –        | [6]      |
|                   | Disconnection | – | [9]      |
| Decay of Web links | Reverts     | 3, 20    | 3        |
|                   | Link removal | –        | DecLiNe  |

Network evolution. Several graph growth models include link disappearance in addition to link creation, for instance in a model to explain power laws [3]. Other examples can be found in [10] and [17], in which a model for growth of the Web is given in which edges are removed before others are added. While these methods succeed in predicting global characteristics of networks such as the degree distribution, they do not model the structure of the network, and thus cannot be used for predicting individual links.

Decay of social links. For social networks, most studies focus on non-structural reasons for the disappearance of links, such as interactions between people. Examples are the removal of friendships on Facebook (“unfriending”) [24], and the removal of follow links on Twitter (“unfollowing”) [19, 20]. A recent study [25] finds that the most common reason for unfriending on Facebook is over political opinions. In all these works, the only structural indicators used for predicting the disappearance of social links are the number of common neighbors in [10, 20] and [24]. All three studies find that links connecting nodes with many common neighbors are less likely to be deleted from the social graph, and that content and interaction features are more predictive for link disappearance in social networks. Since the form of content and in particular interaction is fundamentally different among people than hyperlinks between pages, these methods cannot be generalized to predict the disappearance of hyperlinks.

Declining participation. The decay of groups in social networks is studied in [13], explaining it by interaction patterns. Another related phenomenon is called churn, describing the situation in which a user quits a social community. Churn can be modeled as the deletion of an edge between the user and the service, and thus corresponds to the deletion of edges in a bipartite graph [15]. The problems of predicting churn and declining participation are fundamentally bipartite, since they act on the network connecting users with items, and are therefore not suited to solving our problem at hand.

Anomaly detection. A related problem is the identifica-
tion of spurious links, i.e., links that have been erroneously observed [12, 27]. A related area of research is the detection of link spam on the Web, in which bad links are to be detected [6]. Similarly, the disconnection of nodes has been predicted in mobile ad-hoc networks [9]. These problems are structurally similar to the problem studied in this paper, but do not use features that are typical for link prediction such as the degree of nodes or the number of common neighbors.

**Decay of Web links.** We are not aware of any previous work on the problem of predicting the disappearance of links on the Web. In the context of Wikipedia, a problem related to ours is the identification of reverts. These have been predicted in previous work by giving each word a score based on how likely it is to be reverted [26], or alternatively by measuring the quality of edits [3]. However, none of these related works considered the reversion of wikilinks.

An overview of the methods is given in Table 1. We show the methods according to three types of features that are used: (a) Content information, e.g., when the content of Facebook posts is used as an indicator for unfriending, (b) Interaction information, e.g., when the decline of wall-writing on Facebook is used as an indicator for unfriending, and (c) Link information, e.g., when a low number of common friends is used as an indicator of a likely unfriending. In summary, we can state that the DecLiNe approach is the first approach using link information for explaining the disappearance of links on the Web.

**3. THE DecLiNe APPROACH**

In the following, we investigate the problem of predicting decay of links in networks in a general and formal manner. Depending on the type of a network, removal of links may be caused by different issues. In general, the reasons for a link being removed may be content-based reasons, e.g., a hyperlink from a Wikipedia page is removed as the articles’ topics are not related, structural reasons, e.g., removing a network link in a telecommunications network, or a combination of both. For our treatment we consider only structural properties of the underlying network and we do this for two reasons. First, our objective is to find general domain-independent models, whereas content is clearly domain-dependent. Second, we hypothesize that several content-based reasons are also reflected in the network structure. Coming back to our introductory example from Figure 1, two different main topics can be found and are manifested in the two highly-connected components and only one link between. Although this hypothesis is, of course, not generally applicable we focus on structural properties in order to investigate how good we can predict decay of links without considering content.

### 3.1 Problem Formalization

A network \( N \) is defined as

\[
N = (V, E),
\]

where \( V \) is a set of nodes or items and \( E \) is a set of edges, \( E \subseteq V \times V \). In order to predict decay of links we consider a scenario of evolving networks. Let

\[
N_t = (V_t, E_t)
\]

for \( t \in \mathbb{N} \) be the network \( N_t \) at time \( t \) with \( V_t \) being the set of nodes of \( N_t \) and \( E_t \subseteq V_t \times V_t \) the set of links of \( N_t \).

Without loss of generality, we assume that \( V_t = V \) for all \( t, t' \in \mathbb{N} \), otherwise we could define \( V_t \cap V_{t'} \) to be the set of nodes for each network. We also write \( N_t = (V, E_t) \) for \( t \in \mathbb{N} \) and define \( n = |V| \).

Typically, a network \( N_t \) is represented by its adjacency matrix \( A(N_t) \), i.e., \( V \) is defined via \( V = \{1, \ldots, n\} \) and \( A(N_t) \in \{0,1\}^{n \times n} \) is defined as

\[
A(N_t)_{ij} = \begin{cases} 
1, & \text{if } (i, j) \in E_t, \\
0, & \text{otherwise}.
\end{cases}
\]

If the actual network and evolution step is of no importance we usually write \( A \) instead of \( A(N_t) \).

**Link prediction.** A link prediction function \( f_m \) is a function

\[
f_m : \{0,1\}^{n \times n} \rightarrow \mathbb{R}^{n \times n}
\]

that takes a matrix \( A(N_t) \) and assigns for each node pair \( i, j \in V \) a link creation score by computing measure \( m \) [27]. The bigger a link prediction score of an edge \( (i, j) \notin E_t \) is, the more it is expected to actually be added to the network. Thus, good link prediction functions assign larger scores to links \( (i, j) \) that will appear until time \( t + 1 \), i.e. \( (i, j) \in E_{t+1} \setminus E_t \), than to others.

For the problem of predicting link decay, our aim is to define a link decay score function \( g_m \) of the form

\[
g_m : \{0,1\}^{n \times n} \rightarrow \mathbb{R}^{n \times n}
\]

that takes a matrix \( A(N_t) \) and computes for each node pair a decay score by measure \( m \). More specifically, for edges \( (i, j) \in E_t \setminus E_{t+1} \) we expect \( g_m(N(A_t))_{ij} \) to be significantly larger than other decay scores of other edges.

### 3.2 Predictive Models

The problem of predicting whether a link decays can be viewed as the inverse problem of predicting the creation of links, which is also known as the link prediction problem. The objective of DecLiNe is to validate how far link decay can be predicted with the same structural methods as link prediction. In the following, we propose two different approaches for answering this question. These approaches complement link prediction by complementing the score (cf. Section 3.2.1) and the network (cf. Section 3.2.2), respectively.

#### 3.2.1 Model 1: Complement Score

Using a link prediction function \( f_m \) from [1] that computes a score by measure \( m \) we define its inverse link prediction function \( g_m \) via

\[ g_m(A) = -f_m(A) \, . \]

The rationale behind this complement model is that links that have a high link prediction score should not be removed, whereas links with a low score are expected to be deleted. In the literature a series of different approaches have been proposed for solving the link prediction problem [23]. In this paper we consider the following approaches as the basis for unlink prediction.
Preferential attachment. Let \( \delta(i) \) denote the degree of node \( i \) and let \( \delta(j) \) denote the degree of a node \( j \) in \( A \). Preferential attachment estimates that an edge \((i,j)\) is added with a likelihood proportional to the product of the degree of \( i \) and the degree of \( j \), i.e., we have \( f_{PA}(A)_{ij} = \delta(i) \cdot \delta(j) \). Hence, the complement score score of \((i,j)\) is
\[
g^1_{PA}(A)_{ij} = -\delta(i) \cdot \delta(j).
\] (3)
Thus according to this method, links are likelier to be removed between two nodes of a low degree.

Common neighbors. This link prediction method implements the intuition that two nodes are to be linked if they share a lot of neighbors. The function \( f_{CN} \) is defined via \( f_{CN}(A)_{ij} = (A^2)_{ij} \), where \((A^2)_{ij}\) is the number of paths of length 2 between \( i \) and \( j \), i.e., the common neighbors. \( g^1_{CN} \) is therefore defined as
\[
g^1_{CN}(A)_{ij} = -(A^2)_{ij}
\] (4)
Links in this model are expected to be removed if they have only few common neighbors.

Cosine similarity. With the cosine similarity method, an edge \((i,j)\) is estimated to be created with likelihood proportional to the angle between the degree vectors of node \( i \) and \( j \). \( f_{cos} \) and \( g^1_{cos} \) are defined as
\[
g^1_{cos}(A)_{ij} = -f_{cos}(A)_{ij} = \frac{(A^2)_{ij}}{\sqrt{\delta(i) \cdot \delta(j)}}
\] (5)
If the two nodes are connected to the same nodes, the link between them is expected to stay.

Jaccard index. Let \( N(k) \) be the set of neighbors of node \( k \in V \), i.e.,
\[
N(k) = \{ l \in V \mid A_{kl} = 1 \}
\]
With the Jaccard index, an edge is created with likelihood proportional to the number of common neighbors divided by the number of different neighbors of both nodes. The function \( f_{jacc} \) and the corresponding function \( g^1_{jacc} \) are defined via
\[
g^1_{jacc}(A)_{ij} = f_{jacc}(A)_{ij} = \frac{(A^2)_{ij}}{| N(i) \cap N(j) |}
\] (6)
If two nodes are not connected to many nodes but share only few common nodes, the link between them is expected to decay.

Adamic–Adar. The measure used by the approach of Adamic and Adar \(^2\) counts the number of neighbors of nodes \( i \) and \( j \), weighted by the inverse logarithm of each neighbor \( k \)'s degree \( \delta(k) \):
\[
g^1_{Adad}(A)_{ij} = f_{Adad}(A)_{ij} = -\sum_{k \in N(i) \cap N(j)} \frac{1}{\log \delta(k)}.
\] (7)
Thus, if two nodes share only few common neighbors with a high degree, the link between them is not expected to stay in the network.

### 3.2.2 Model 2: Complement Network

The second family of link decay functions we consider employs link prediction functions as well. But rather than inverting the prediction function we now invert the problem itself and consider predicting removal of links in a network by predicting creation of links in its complement network. Using a link prediction function \( f_m \) we define its complement link prediction function \( g^2_m \) via
\[
g^2_m(A) = f_m(\bar{A}).
\]
Given a network \( N = (V,E) \) its complement \( \bar{N} = (V,\bar{E}) \) is defined via \( \bar{E} = \{ (i,j) \mid i \neq j, (i,j) \notin E \} \), i.e., \( \bar{N} \) contains only links between different nodes that are not connected in \( N \). The complement network of the network in Figure 1 is shown in Figure 2. The rationale behind this complement model is that since it contains all non-edges, edges that are predicted in it, should not be present in the original network. Thus, we can conclude the likelihood with which they can be removed. The complement network is by far not sparse, thus we cannot represent the complement network as a matrix. Since link prediction methods compute a score of a network’s adjacency matrix, we will use the following alternative that does not need the adjacency matrix of the complement graph.
to be constructed. If $A = A(N)$ is the adjacency matrix of $N$ then $\tilde{A} = A(\tilde{N})$ can be written as

$$\tilde{A} = I - I - A$$

(8)

where $1$ is the 1-matrix (containing only 1s) and $I$ is the identity matrix (containing 1s in the diagonal).

We expect that predicting creation of links in $\tilde{A}$ also solves the problem of predicting removal of links in $A$. Considering Figure 2 again, we can see that predicting a link between nodes ‘swim’ and ‘surf’ is very likely, e.g., using $g^2_{CN}$. From the prediction of this edge in the complement network, its decay in the original network would be predicted.

In the following, we use Equation (8) to derive $g^2_{m}(A)_{ij}$ using the same link prediction measures $m$ as in the previous section.

**Preferential attachment.** An edge $(i, j)$ is removed with a likelihood proportional to the product of the degree of node $i$ and degree of node $j$ in the complement network $\tilde{N}$.

$$g^2_{PA}(A)_{ij} = f_{PA}(\tilde{A})_{ij} = (n - 1 - \delta(i)) \cdot (n - 1 - \delta(j))$$

(9)

A link is therefore likely to disappear between low-degree nodes.

**Common neighbors.** The link decay score of an edge $(i, j)$ in the original network is then translated to the link prediction score in its complement network by

$$g^2_{CN}(A)_{ij} = f_{CN}(\tilde{A})_{ij} = n - \delta(i) - \delta(j) + (A^2)_{ij}.$$  

(10)

Thus, a link is likely to stay if the degrees of its incident nodes are big and share many neighbors.

**Cosine similarity.** An edge is removed with a likelihood proportional to the angle between the complemented degree vectors.

$$g^2_{cos}(A)_{ij} = f_{cos}(\tilde{A})_{ij} = \frac{n - \delta(i) - \delta(j) + (A^2)_{ij}}{\sqrt{(n - 1 - \delta(i)) \cdot (n - 1 - \delta(j))}}$$

(11)

**Jaccard index.** The Jaccard measure computes the score of edge $(i, j)$ by the ratio of number of common neighbors and numbers of nodes that are adjacent to $i$ or $j$. Applied to the complement network, we obtain the following link decay score

$$g^2_{Jacc}(A)_{ij} = f_{Jacc}(\tilde{A})_{ij} = \frac{n - \delta(i) - \delta(j) + (A^2)_{ij}}{|N(i) \cup N(j)|}.$$  

(12)

According to this measure, an edge is expected to be removed if the degrees of its incident nodes are small and have more dissimilar neighbors.

### Table 3: List of the combinations of degrees of node $i$ and node $j$ used.

| Name     | sym | asym | in  | out  |
|----------|-----|------|-----|------|
| $\delta_1(i)$ | $\delta(i)$ | $\delta_{out}(i)$ | $\delta_{in}(i)$ | $\delta_{out}(i)$ |
| $\delta_2(i)$ | $\delta(j)$ | $\delta_{out}(j)$ | $\delta_{in}(j)$ | $\delta_{out}(j)$ |

**Adamic–Adar.** The weighted variant of the Adamic–Adar score of the complement network is as follows

$$g^2_{Adad}(A)_{ij} = f_{Adad}(\tilde{A})_{ij} = \sum_{k \in \tilde{N}} \frac{1}{\log \delta(v)} - \sum_{k \in \tilde{N}(i)} \frac{1}{\log \delta(k)} - \sum_{k \in \tilde{N}(j)} \frac{1}{\log \delta(k)} + \sum_{k \in \tilde{N}(i) \cap \tilde{N}(j)} \frac{1}{\log \delta(k)}.$$  

(13)

Under this model, if nodes $i$ and $j$ are adjacent to few and rather high-degree nodes the link $(i, j)$ is likely to decay.

A summary of the scoring methods is given in Table 3.

### 3.3 Predictions in Directed Networks

The link prediction and link decay methods in this section were aligned for undirected networks, so they used characteristics such as degree $\delta(i)$ and neighborhood $\tilde{N}(i)$ of a node $i$. For DeciLiNe we evaluate methods and models for link decay predictions on directed Wikipedia article-hyperlink networks. Instead of only one node degree for undirected networks, three different degrees of a node can be defined for directed networks: a node’s out- respectively in-degree and its degree. Consider the node shown in Figure 3. It’s out-degree $\delta_{out}$ is defined as the number of outgoing links from it and its in-degree $\delta_{in}$ is defined as the number of incoming links. For the given node $i$, $\delta_{out}(i) = 2$ and $\delta_{in}(i) = 3$. The degree $\delta$ is defined as $\delta_{out} + \delta_{in}$, so $\delta(i) = 5$. Further, the node neighborhood $\tilde{N}(i)$ of a node $i$ can now be defined for outgoing and incoming links accordingly

$$\tilde{N}_{out}(i) = \{ j \in V \mid (i, j) \in E \}$$

$$\tilde{N}_{in}(i) = \{ j \in V \mid (i, j) \in E \}.$$  

A common approach when predicting links in directed network is to use the same methods as for undirected networks but to test different degree combinations. Thus, all undirected degrees $\delta(i)$ and $\delta(j)$ are aligned with all given combinations from Table 3.

For better readability, the methods in this section were aligned with the ‘sym’ degree (column 1 in Table 3) version only. Other methods can be defined analogously and have been systematically tested in this work.
4. EVALUATION

By utilizing common link prediction methods we have defined two families of approaches to predict decay in networks. In this section we conduct an empirical evaluation on how good our approaches work on real datasets. In particular, we stipulate that, given the evolution of some network, links that are removed in a step of the evolution receive a high link decay score. Furthermore, given that we approach the problem of predicting removal of links by using link prediction methods we ask the question of how related those two problems are in real datasets and if they can be solved using the same methods. We conduct our analysis using five directed large-scale networks from Wikipedia. As general practice, we evaluate link decay methods for directed networks with different combinations of in-degree and out-degree. Thus, we will explore which effects the different degree combinations have on the prediction quality and which prediction method provides the best precision.

4.1 Datasets

To evaluate our proposed decay models, we use the directed article-hyperlink networks of five of the six largest Wikipedia, the English Wikipedia, due to its size and limited computational resources. In the directed article-hyperlink network of Wikipedia, a link between two articles i and j is present if article i links to article j. For our link decay prediction scenario we omit user pages and article discussion pages.

We use the Wikipedia dataset as it resembles the link structure of Web and is more easy to observe than the latter. The differences between the Wikipedia hyperlink structure and that of the Web is studied in where Wikipedia is found to be denser and that outlinks correlate more with page relevance.

For each of the five Wikipedias we considered all creation and deletion events for links since their installment. An overview over the datasets is given in Table 4. The French Wikipedia is the biggest dataset used with around 1.8 million articles between which overall 41.7 million links where added and 17.3 million removed. Note that the number of articles includes also articles that where removed later. For these Wikipedias, link deletions make up about 24-31% of all link operations, thus accounting for a large part of structural changes. As shown in Figure 4, the decay of links follows an exponential distribution with a half-life of about 23 months. The three edge sets are illustrated in Figure 5.

4.2 Methodology

In our evaluation we aim to compare how well we can distinguish edges that have been removed and edges that are not removed. For that we split the datasets of a Wikipedia article network \( N = (V, E) \) at time point \( t_1 = 3/4 \bar{t} \) of the whole time interval \( \bar{t} \). We define the training set as all edges that are present at time point \( t_1 \)

\[
E_{\text{training}} = E_{t_1},
\]

the test set \( T \) as all edges from the training set that are not present anymore at time \( \bar{t} \)

\[
T = \{(i, j) \in E_{t_1} \setminus E_\bar{t} \mid i, j \in V\},
\]

and the zero test set \( T_0 \) as random sample of edges from the training set that are still present at time \( \bar{t} \) with size \(|T_0| = |T|\)

\[
T_0 = \{(i, j) \in E_{t_1} \setminus E_\bar{t} \mid i, j \in V\}.
\]

The three edge sets are illustrated in Figure 5.

We compute the precision of our models with the average precision measure, which is defined as follows. Given edges from test set \( T \) and zero test set \( T_0 \) and link decay scores \( q_{ij} \) for all edges \((i, j)\) from these two sets, we produce a ranking \( R \) of all edges \((i, j)\) by sorting them in descending order. Thus, \( R(1) \) is the edge with the highest link decay score and \( R(l) \) with \( l = |T| + |T_0| \) represents the lowest scored edge.

![Figure 4: The decay of edges in the five studied Wikipedias is exponential – this means that the probability that an edge will remain for a certain time \( t \) is proportional to \( 2^{-t/t_{0.5}} \), where \( t_{0.5} \) is the half-life of about 23 months.](image)

![Table 4: The datasets used in our evaluation. The number of articles also includes articles that were removed.](table)
Then, the average precision $AP$ is defined as
\[
AP = \frac{\sum_{i=1}^{T} P(i) \cdot I(i)}{T},
\]
where $I$ is an indicator function defined as
\[
I = \begin{cases} 
1, & \text{if } i \in T, \\
0, & \text{if } i \in T_0
\end{cases}
\]
and $P(i)$, the precision at cut-off $i$, is defined as
\[
P(i) = \frac{|T \cap \{j: R(j) \leq i\}|}{i}.
\]
By construction, the precision of the random baseline – which predicts every edge to be removed with a probability of 0.5 – is thus 0.5.

We compute the average precision for all combinations of link decay scores shown in Table 2 and the four combinations of degrees from Table 3 for the five largest Wikipedias. Analysis code as well as the datasets will be made available at konect.uni-koblenz.de/research/decline.

### 4.3 Results
In the following, we provide results of our empirical evaluations.

**Precision of decay models.** In Section 3 we have defined two decay models that transform the link prediction problem to the problem of predicting link removal. Each of the two decay models computes scores of five classic link prediction methods: preferential attachment (PA), common neighbors (CN), cosine (cos), Jaccard (Jacc), and Adamic–Adar (Adad), which in turn are varied by four different out- and in-degree combinations. Figure 5(a) and Figure 6(b) show the best average precisions over all degree combinations of each method for the complement score model and the complement network model.

The complement score model performs significantly better than random, all methods have a precision above 0.5. Preferential attachment is the top-performing method, superior over the four remaining methods on all five datasets. This means that the likelihood of an edge to be removed is bigger if the two adjacent nodes have a low degree. Up to 69.7% of all edges from the test set where correctly classified as to remove. Jaccard and cosine as well as common neighbor and Adamic–Adar perform very similar to each other with precisions above the random baseline, too.

The complement link prediction model’s precision, shown in Figure 6(b) has lower precisions than the preceding approach. However, all methods, except cosine, out-perform the random baseline. PA, CN and Jaccard predict link removals with the highest precision, which leads to up to 58.4% of correct predictions for the test set. In comparison, the complement score approach does a better job in predicting link decay.

**Effect of degree combinations.** Computing link decay scores for all edges $(i,j)$ of the test set, we have tested four different degree combinations (cf. Table 3) of node $i$’s and node $j$’s in respectively out-degree.

In Figure 7 we compare the decay prediction precisions of these four degree combinations across all methods for the complement score approach and the complement network approach. The error bars indicate the standard deviation across the five datasets.

Varying the types of degrees leads to a drastic deviation within each prediction method. For the inverse link prediction method, precision values go from slightly above the random baseline – when using in-degrees – up to 0.6 or more when out-degrees are considered. The precision values in Figure 7(a) are staggered: out-degrees perform best, followed by degrees, out-degree/in-degree and in-degrees. By construction, the complement network method thus performs best when considering node in-degrees. The deviation of precision is not as big as for the inverse method and the ranking of degree combinations is more mixed.

### 4.4 Interpretation and Discussion
Our evaluations show that structural analysis makes a meaningful contribution for the prediction of link decays. Using link prediction methods we have outperformed a random predictor. In our evaluations the complement score approach combined with preferential attachment performs best. Thus, an edge between nodes with a small degree more likely disappears. Reasons for this could be because these articles are still evolving, thus their network structure changes because they are not ‘settled’ yet, or, that wrong connections were made caused by the lack of understanding of the article content. Using only out-going node characteristics, such
as a node’s out-degree and out-going neighborhood achieved the best precisions for the complement score approach. This could be interpreted as some kind of ‘you are who you link to’ rule. Two articles are more similar if they link to the same articles. For link removal this means, that two articles linking to very few common pages should be dissimilar and thus they should not be connected by a link.

To ascertain whether link decay prediction is of the same difficulty as link prediction, we have also computed link prediction precisions for the five Wikipedia datasets. Actually, link predictions with the same methods are more accurate, precisions around the 0.85 mark were achieved. Thus, the problem of predicting link removals seems to be more difficult than link prediction.

Weak ties. The best-performing decay prediction method does not use any community characteristics, such as the number of common neighbors or the union of neighbors. In the beginning, we have hypothesized that two nodes should not be connected anymore if they have a low degree or if they have a higher degree and have only very few neighbors in common. The first hypothesis is somehow verified by the good precision value of preferential attachment. On the other hand, few neighbors seem not to be a good indicator for link removal. Thus, the network data must contain not only few adjacent nodes with little common neighbors that stay connected. These links are weak links following Granovetter [11], that introduce shortcuts into the network which lead to the small-world phenomenon. Considering solely the structure, one cannot distinguish between links that should be removed and links that operate as weak ties.

5. CONCLUSIONS

In this paper we investigated the problem of predicting the decay in networks such as the Web. We proposed two approaches that utilize link prediction methods and rely on inverted problem descriptions of the link prediction problem. While our first approach simply complements the prediction scores of a link prediction method our second approach applies link prediction to the complement network. Our evaluation showed that, in general, the first approach outperforms the second. However, despite the fact that our evaluation showed that our approaches both outperform the random baseline we discovered that the problem of predicting removal of links is generally harder than the problem of link prediction. This observation also justifies the need for further research on the problem of link decay.

To our knowledge this work is the first that investigates the problem of link decay using structural methods in a general
manner and the first that investigates the duality of predicting the creation of links and the removal of links. Ongoing work consists of an even broader evaluation that also takes other network types, such as social networks, into account, and applying further link prediction criteria, such as paths of lengths three and four.

As future work, a better understanding of further factors beyond existing models and approaches is required. To especially overcome the issue of distinguishing ‘weak ties’ from ‘wrong links’, the content of the network nodes may also have to be taken into account.

Acknowledgments
The research leading to these results has received funding from the European Community’s Seventh Frame Programme under grant agreement n° 257859, ROBUST.

6. REFERENCES

[1] L. Adamic. The Small World Web. In S. Abiteboul and A.-M. Vercourest, editors, Research and Advanced Technology for Digital Libraries, volume 1696 of Lecture Notes in Computer Science, chapter 27, pages 852–852–852. Springer Berlin / Heidelberg, September 1999.

[2] L. Adamic and E. Adar. Friends and neighbors on the Web. Social Networks, 25:211–230, 2001.

[3] B. T. Adler, L. de Alfaro, and I. Pye. Detecting Wikipedia vandalism using WikiTrust. In Proc. Workshop on Uncovering Plagiarism, Authorship and Social Software Misuse, 2010.

[4] H. Akkermans. Web dynamics as a random walk: How and why power laws occur. In Proc. Web Science Conf., pages 1–10, 2012.

[5] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286(5439):509–512, 1999.

[6] A. A. Bençzúr, K. Csalogány, T. Sarlós, and M. Uher. SpamRank – fully automatic link spam detection. In Proc. Int. Workshop on Adversarial Information Retrieval on the Web, 2005.

[7] I. Bordino and D. Donato. Dynamic characterization of a large Web graph. In Proc. Web Science Conf., 2009.

[8] L. S. Buriol, C. Castillo, D. Donato, S. Leonardi, and S. Millozzi. Temporal analysis of the wikigraph. In Proc. Int. Conf. on Web Intelligence, pages 45–51, 2006.

[9] F. De Rosa, A. Malizia, and M. Mecella. Disconnection prediction in mobile ad-hoc networks for supporting cooperative work. IEEE Pervasive Computing, 4(3):62–70, July 2005.

[10] D. Eppstein and J. Wang. A steady state model for graph power laws. In Proc. Int. Workshop on Web Dynamics, 2002.

[11] M. S. Granovetter. The strength of weak ties. American Journal of Sociology, 78(6):1360–1380, 1973.

[12] R. Guimerà and M. Sales-Pardo. Missing and spurious interactions and the reconstruction of complex networks. Proc. Natl. Acad. Sci. USA, 106(52):22073–22078, 2009.

[13] S. Kairam, D. J. Wang, and J. Leskovec. The life and death of online groups: Predicting group growth and longevity. In Proc. Int. Conf. on Web Search and Data Mining, pages 673–682, 2012.

[14] J. Kamps and M. Koolen. Is Wikipedia link structure different? In Proc. Int. Conf. on Web Search and Data Mining, pages 232–241, 2009.

[15] M. Karnstedt, T. Hennessy, J. Chan, P. Basuchowdhi, C. Hayes, and T. Strufe. Churn in social networks. In Handbook of Social Network Technologies, pages 185–220. Springer, 2010.

[16] F. Kivran-Swaine, P. Govindan, and M. Naaman. The impact of network structure on breaking ties in online social networks: Unfollowing on Twitter. In Proc. Int. Conference on Weblogs and Social Media, pages 1101–1104, 2012.

[17] J. M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. S. Tomkins. The Web as a graph: Measurements, models, and methods. In Proc. Int. Conf. on Computing and Combinatorics, pages 1–17, 1999.

[18] J. Kunegis, D. Fay, and C. Bauckhage. Network growth and the spectral evolution model. In Proc. Int. Conf. on Information and Knowledge Management, pages 739–748, 2010.

[19] H. Kwak, H. Chun, and S. Moon. Fragile online relationship: A first look at unfollow dynamics in Twitter. In Proc. Conf. on Human Factors in Computing Systems, pages 1091–1100, 2011.

[20] H. Kwak, S. Moon, and W. Lee. More of a receiver than a giver: Why do people unfollow in Twitter? In Proc. Int. Conference on Weblogs and Social Media, pages 499–502, 2012.

[21] D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social networks. J. of the American Soc. for Information Science and Technology, 58(7):1019–1031, 2007.

[22] R. N. Lichtenwalter, J. T. Lussier, and N. V. Chawla. New perspectives and methods in link prediction. In Proc. Int. Conf. on Knowledge Discovery and Data Mining, pages 243–252, 2010.

[23] L. Lü and T. Zhou. Link prediction in complex networks: A survey. Physica A: Statistical Mechanics and Its Applications, 390(6):1150–1170, 2011.

[24] D. Quercia, M. Bodaghi, and J. Crowcroft. Loosing ‘friends’ on Facebook. Proc. Web Science Conf., pages 251–254, 2012.

[25] L. Rainie and A. Smith. Social networking sites and Its Applications, pages 499–502, 2012.

[26] J. M. Rzeszotarski and A. Kittur. Learning from interactions and the reconstruction of complex networks. Proc. Conf. on Computer Supported Cooperative Work, pages 437–440, 2012.

[27] A. Zeng and G. Cimini. Removing spurious interactions in complex networks. Phys. Rev. E, 85:036101, 2012.