Insights into the evolutionary history and widespread occurrence of antheridiogen systems in ferns

Ondrej Hornych1, Weston L. Testo2, Emily B. Sessa2, James E. Watkins Jr.3, Courtney E. Campany4, Jarmila Pittermann5 and Libor Ekrt1

1Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, CZ 370 05, Czech Republic; 2Department of Biology, University of Florida, PO Box 118525, Gainesville, FL 32611, USA; 3Department of Biology, Colgate University, 13 Oak Drive Hamilton, Hamilton, NY 13346, USA; 4Department of Biology, Shepherd University, PO Box 5000, Shepherdstown, WV 25443, USA; 5Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA

Author for correspondence: Ondrej Hornych
Tel: +420 606 931 888
Email: hornych.ondrej@gmail.com

Received: 29 May 2020
Accepted: 21 July 2020

New Phytologist (2021) 229: 607–619
doi: 10.1111/nph.16836

Key words: antheridiogen, apomixis, ferns, gametophyte, germination, mating, polyploidy, sex expression.

Summary

- Sex expression of homosporous ferns is controlled by multiple factors, one being the antheridiogen system. Antheridiogens are pheromones released by sexually mature female fern gametophytes, turning nearby asexual gametophytes precociously male. Nevertheless, not all species respond. It is still unknown how many fern species use antheridiogens, how the antheridiogen system evolved, and whether it is affected by polyploidy and/or apomixis.
- We tested the response of 68 fern species to antheridiogens in cultivation. These results were combined with a comprehensive review of literature to form the largest dataset of antheridiogen interactions to date. Analyzed species also were coded as apomictic or sexual and diploid or polyploid.
- Our final dataset contains a total of 498 interactions involving 208 species (c. 2% of all ferns). About 65% of studied species respond to antheridiogen. Multiple antheridiogen types were delimited and their evolution is discussed. Antheridiogen responsiveness was not significantly affected by apomixis or polyploidy.
- Antheridiogens are widely used by ferns to direct sex expression. The antheridiogen system likely evolved multiple times and provides homosporous ferns with the benefits often associated with heterospory, such as increased rates of outcrossing. Despite expectations, antheridiogens may be beneficial to polyploids and apomicts.

Introduction

Homospory (the production of a single spore type at meiosis) is presumed to be the ancestral state in land plants, yet the majority of extant species are heterosporous (producing two types of spores, typically male and female, at meiosis) and heterospory evolved a minimum of 11 times (Bateman & DiMichele, 1994). Heterospory promotes genetic diversity by limiting inbreeding (Qiu et al., 2012). In contrast, gametophytes of homosporous plants can be bisexual and are theoretically capable of gametophytic selfing, that is the fusion of two gametes originating from a single gametophyte via mitosis (Haufler et al., 2016). As the gametophyte grows from a spore originating via a single meiotic event, the sporophyte arising from gametophytic selfing is completely homozygous (Klekowski & Lloyd, 1968). Nevertheless, contemporary homosporous lineages maintain their genetic diversity by mechanisms that reduce the rate of gametophytic selfing. Some bryophyte gametophytes have their sex determined via sex chromosomes (Rennen et al., 2017), whereas fern gametophytes often use a dynamic system controlling sex expression via pheromones called antheridiogens (Schneller, 2008).

Walter Döpp first discovered antheridiogen (hereafter abbreviated AG) in 1950, originally named ‘A-substanz’. During his experiments with gametophyte cultivation, Döpp noted that reusing agar media previously used to cultivate Pteridium aquilinum gametophytes caused precocious formation of antheridia in young gametophytes of Dryopteris flixt-mas (Döpp, 1950). This effect was confirmed by Näf in 1956 and attributed to a pheromone exuded by older gametophytes that was later named antheridiogen (Näf et al., 1975). Since the discovery of AG, evidence of the utilization of the pheromone has been documented in some (but not all) fern species that have been tested across phylogenetically disparate lineages (Schneller, 2008).

Available evidence suggests that AG production and response varies considerably among fern taxa and that the system involves complex inter- and intraspecific interactions. This has been evident since Döpp’s initial discovery of AG as his report involved taxa belonging to two different families. Later studies revealed that AGs often have a gibberellin-like structure (Yamane, 1998) and indicated that various types of AGs occur across the fern clade (Schneller et al., 1990). Generally, AGs have been classified either by the species producing them (e.g. AAg, for AG released...
from *Anemia phyllitidis* or in broad groups/types according to the taxa that they affect. Three main types of AGs typically are recognized under the second classification scheme (Schneller et al., 1990). First, A or A_p type is used widely by many species throughout the order Polypodiales, notably by *P. aquilinum* and *Onoclea sensibilis*. Second, B or A_An type is used only within the order Schizaeales, notably by *Anemia* and *Lygodium*. Interestingly, gibberellins known from seed plants can evoke the same response as the A_An type (Voeller, 1964; Weinberg & Voeller, 1969). Finally, C or A_Cc type is used exclusively by the genus *Ceratopteris*. Several other types have been described by a limited number of studies, for example in *Asplenium ruta-muraria* by Schneller & Hess (1995).

Although several distinct types of AGs were described, the primary function of all AGs is the stimulation of precocious formation of antheridia. When a gametophyte of an AG-responsive species grows in the absence of this pheromone, it first develops archegonia (i.e. becomes female; Döpp, 1950). However, right before the gametophyte reaches the archegoniute phase, it begins exuding AGs into its environment (Näf et al., 1975). At the same time, the gametophyte loses the ability to respond to AGs (Näf, 1958). Younger or slow-growing asexual gametophytes in the immediate surroundings of the first gametophyte respond to the AGs by halting growth and forming antheridia (i.e. becoming male). The population ends up composed of a few larger female gametophytes and many smaller male gametophytes (Tryon & Vitale, 1977). As fern sperm are flagellated and need to swim through water to reach archegonia, a greater abundance of sperm due to the AG system may help overcome the limitations of dry environments (Schneller & Hess, 1995). Likewise, AG leads to a greater number of unisexual gametophytes, therefore limiting self-fertilization and facilitating outcrossing, the exchange of gametes between gametophytes, and therefore maintaining heterozygosity in fern populations (Scheldbauer & Klekowski, 1972). Through the AG system, homosporous ferns gain these advantages, which are usually afforded to heterosporous plants because of their pre-determined sexes and consequent inability to undergo the extreme form of selfing found in homosporous plants (Bateman & DiMichele, 1994). Additionally, larger gametophytes may be able to phenomonally suppress the ability of smaller gametophytes to bear sporophytes, thus reducing competition. However, smaller gametophytes may use the system to contribute to the next generation despite being unable to form archegonia or support young sporophytes owing to unfavorable conditions (Willson, 1981).

Generally, fern spores require light to germinate, but AG was found to replace the need for light in spores cultivated in complete darkness (Raghavan, 1989). In nature, spores buried under a thin layer of soil or detritus affected by AG may form tiny gametophytes and reach the surface or use their limited resources to form a small number of antheridia, skipping the archegoniute phase (Schneller, 1988). The sperm from those gametophytes then can reach female gametophytes aboveground (Haufler & Welling, 1994). Therefore, AG enables the mobilization of the genetic and sperm-producing potential of spores buried underground. The concentrations of AG needed to stimulate the precocious formation of antheridia and germination in darkness may differ (Schrauldolf, 1962; Weinberg & Voeller, 1969; Endo et al., 1972). If the two effects, germination in darkness and precocious antheridium formation, are tightly correlated, dark germination could be used to test the response to AGs in multiple species, as was done by Weinberg & Voeller (1969). However, most authors comparing the two effects of AGs within one study have only focused on a few species (Yamane et al., 1987; Chiou & Farrar, 1997; Chiou et al., 1998) and a thorough review is necessary.

In theory, some fern species may gain very little but lose a lot by responding to AGs. For example, neopolyploid species (*seniu Vida*, 1976; herein after referred to as polyplody), having more than two sets of chromosomes and therefore the potential to ‘buffer’ against the deleterious effects of gametophytic selfing, may reproduce by self-fertilization and still retain genetic variation (Klekowski & Baker, 1966; Hickok, 1978). So, polyploids should tend to self-fertilize more than diploids (Masuyama, 1979; Solitis & Solitis, 2000; Sessa et al., 2016). As the AG system limits self-fertilization, polyploid species may be more likely to stop using the pheromone, potentially allowing all polyploid gametophytes to bear sporophytes and thus avoid any negative adverse effects. However, no comparison of AG response between diploids and polyploids has been conducted until now. A more extreme case of AGs as a potential liability exists in apomictic ferns. Apomictic gametophytes form sporophytes apogamously from a somatic cell, without the need for fertilization. This renders any extra sperm present in a population as a response to AGs presumably useless. Nevertheless, the ability to suppress surrounding gametophytes may be potentially advantageous from the standpoint of reducing competition. The limited number of tested apomicts were found either to respond to AGs (*Bommeria pedata*, Haufler & Gastony, 1978; *Dryopteris affinis*, Schneller, 1981) or ignore AGs (*Cyrtomium spp.*, Yatskievych, 1993). However, a thorough study of AG response in apomictic ferns has not yet been conducted.

Despite the apparently widespread occurrence of AG systems in ferns and their potentially large evolutionary significance via their effects on population structure and mating behavior, our understanding of their evolution and distribution across the fern phylogeny remains limited. Several authors have put together lists of all ferns tested for AG response (Näf et al., 1975; Raghavan, 1989; Schneller, 2008) but we are unaware of any attempt to evaluate AG systems in a broader evolutionary context (with the exception of Greer et al., 2009) which incorporated only the handful of species responding to gibberellins). To determine how widespread the involvement of AGs is among ferns, we combined results of our cultivation experiments with a meta-analysis of all published results of similar assays available to us, including 208 species in total. Using this large dataset, we address the following questions: How many fern species have been tested for AG response and how many of those respond? How many different types of AGs appear to exist and what is their evolutionary history? How tightly are the two effects of antheridium induction and germination in darkness correlated? How are AG production and response correlated with ploidy level and reproductive mode?
Materials and Methods

Cultivation

Fro...
almost certainly false negatives and further testing is needed for a proper assessment of all five excluded taxa.

Additionally, our dataset allowed for re-evaluating previously described AG groups/types. There are two conditions for each type to be unique. First, each taxon produces and/or reacts to only one AG type. If, for instance, one species reacted to two potential types, the types were merged into one. Second, taxa do not have to react to every single AG source within a type. As they represent a wide array of different chemicals, we do not consider the ‘gibberellin’ group to be AGs for the purposes of type delimitation.

In order to examine whether precocious antheridium formation and dark germination are tightly linked, we used our dataset to find any potential correlation. Species tested for both effects were evaluated as consistent (either affected under light and dark conditions or never) or inconsistent (affected only under one condition). Species tested for only one effect or against an inappropriate AG type (usually gibberellins failing to affect members of Polypodiales) were excluded from this comparison.

The correlation of AG production and response with species attributes (e.g. apomictic-sexual, diploid/polyploid) was evaluated using chi-square tests performed in R v.3.4.3 (R Core Team, 2017). Species whose ploidy level could not be determined were excluded from the diploid/polyploid comparison.

Results

Cultivation

A total of 68 species were cultivated and tested for AG response (Table 1). Of those, 56 species were tested with a conspecific AG source, and 25 reacted. Additionally, 44 species were tested using (Table 1). Of those, 56 species were tested with a conspecific AG system similar to the Anemia type. Ceratopteris spp. were affected only by conspecific AG but failed to respond to Anemia spp., P. aquilinum and Pteris vittata. Ceratopteris AG also failed to influence Bommeria species responsive to P. aquilinum. It is uncertain whether Ceratopteris AG would be needed in higher concentrations for any effect to occur, or perhaps it is distinct or different enough to be unable to affect the few species tested but still within the Pteridium type. Outside of Polypodiales, three tree fern (Cyatheales) species (Cibotium menziesii, Cyathea microdonta, Cyathea multiflora) responded to conspecific AG but not to P. aquilinum. Related Cibotium barometz, Cyathea australis also failed to respond to gibberellins, indicating that tree ferns may utilize chemically and phylogenetically different AGs belonging to one or multiple types.

AG meta-analysis

Datasets The final dataset (Table S3) included a total of 208 species from 26 families, involved in a total of 498 pairings, either with a conspecific or another taxon (Figs 2, 3). After the exclusion of five species (see the Materials and Methods section), 64.5% of the 203 taxa responded to AGs (Fig. 4). Interestingly, three species (Cystopteris fortunei, C. macrophyllum and Polystichum lonchitis) seemed to produce AG but did not react to any tested AG source. Tested representatives of five families (Culcitaceae, Equisetaceae, Hymenophyllaceae, Lomariopsidaceae and Osmundaceae) did not appear to produce or respond to AG at all (Fig. 2).

Antheridiogen types From our dataset, we identified two main AG types, corresponding to the Pteridium and Anemia types affecting Polypodiales and Schizaeales, respectively (Fig. 3a). In total, 64.6% of the tested representatives of Polypodiales responded to AG (usually from P. aquilinum; Fig. 3b) and response to gibberellin was extremely rare (Fig. 3c). All representatives of Schizaeales responded to some form of AG (Fig. 4) and to supplemented gibberellins (Fig. 3c), if tested. Using our definition (in Methods), we also identified several different potential minor AG types, affecting only a single species or genus. Based on our definition, many species were considered as having their own type only because they have not been tested against any other species (Davallia fejeensis, Elaphoglossum latifolium, Gymnocarpium disjunctum, Oleandra articulata, Parapolytrichum excultum, Polypodium cambricum, Suderia spp., Woodwardia radicans) or were cross-tested within a small group of species (Cheilanthes spp.). These taxa all belong to the order Polypodiales. Thelypteris ovata and Hemionitis palmata only failed to respond to gibberellins and Pteris vittata, respectively, but their congener responded to P. aquilinum. Three species of Asplenium failed to react to P. aquilinum (Asplenium auritum, Asplenium serratum) and gibberellins (Asplenium ruta-muraria), but they are not phylogenetically closely related and other Asplenium species (A. cuneifolium, A. septentrionale) respond to Pteridium-type AG. Pityrogramma calomelanos successfully influenced itself and two species of Onychium but failed to react to P. aquilinum. Related Pityrogramma species also did not respond to P. vittata AG. These results indicate that a distinct AG system may be operating within Pityrogramma. Likewise, Vittaria spp. gemmae responded to exudates of long-lived congeneric gametophytes and supplemented gibberellins by forming antheridia. Pteridium aquilinum AG failed to induce the same response. This would indicate an AG system similar to the Anemia type. Ceratopteris spp. were affected only by conspecific AG but failed to respond to Anemia spp., P. aquilinum and Pteris vittata. Ceratopteris AG also failed to influence Bommeria species responsive to P. aquilinum. It is uncertain whether Ceratopteris AG would be needed in higher concentrations for any effect to occur, or perhaps it is distinct or different enough to be unable to affect the few species tested but still within the Pteridium type. Outside of Polypodiales, three tree fern (Cyatheales) species (Cibotium menziesii, Cyathea microdonta, Cyathea multiflora) responded to conspecific AG but not to P. aquilinum. Related species (Cibotium barometz, Cyathea australis) also failed to respond to gibberellins, indicating that tree ferns may utilize chemically and phylogenetically different AGs belonging to one or multiple types.

Dark germination Data on dark germination were obtained for 53 taxa. Data were sufficient (see Methods) to evaluate 32 taxa (20.4% of all taxa with determined AG response). In this subset, 26 taxa (81.3%) germinated in darkness. In three cases, the dark germination response was different than the observed antheridium induction response: Ceratopteris thalictroides and Thelypteris ovata did not germinate in darkness despite being influenced under light, and Polypodium cambricum germinated in darkness despite not responding to AG under light.

Reproductive types and polyploidy Overall, 12 (6%) of the taxa sampled were obligately apomictic. Apomictic and sexual taxa had similar (i.e. not significantly different) response rates to AGs of 66.7% and 64.4%, respectively ($\chi^2 < 10^{-6}$; df = 1; P = 1;
Table 1 Overview of the response of 68 tested species to the cultivation experiment.

Tested species	Family	Response to self	Response to Pteridium aquilinum
Adiantum radicans	Pteridaceae	Yes	Yes
Asplenium adiantum-nigrum	Aspleniaceae	No	Not tested
Asplenium auritum	Aspleniaceae	Yes	No
Asplenium cuneifolium	Aspleniaceae	No	Not tested
Asplenium ruta-muraria	Aspleniaceae	No	Not tested
Asplenium scolopendrium	Aspleniaceae	No	Not tested
Asplenium septentrionale	Aspleniaceae	No	Not tested
Asplenium serratum	Aspleniaceae	Yes	No
Blechnum occidentale	Blechnaceae	Yes	Yes
Blechnum polypodioide	Blechnaceae	Yes	No
B部委tis portoricensis	Dryopteridaceae	No	No
Campylopleurum aphanophlebox	Polypodiaceae	Yes	Not tested
Campylopleurum brevifolium	Polypodiaceae	No	Not tested
Christella dentata	Thelypteridaceae	Yes	Yes
Cibotium menziesii	Cibotiaceae	Yes	No
Ctenitis sloanei	Dryopteridaceae	No	Not tested
Cyatha microdonta	Cyathaceae	Yes	No
Cyatha multiflora	Cyathaceae	Yes	No
Davallia fejeensis	Davallaceae	No	Not tested
Diplazium striatatum	Athyriaceae	No	No
Draconopteris dracoportera	Tectariaceae	No	Not tested
Dryopteris carthusiana	Dryopteridaceae	No	Not tested
Dryopteris caucassica	Dryopteridaceae	Yes	No
Dryopteris dilata	Dryopteridaceae	No	Not tested
Dryopteris expansa	Dryopteridaceae	Yes	No
Dryopteris flex-mas	Dryopteridaceae	No	Not tested
Dryopteris oreades	Dryopteridaceae	No	Not tested
Elaphoglossum labifolium	Dryopteridaceae	Yes	No
Elaphoglossum peltatum	Dryopteridaceae	No	No
Equisetum arvense	Equisetaceae	No	No
Equisetum fluviatile	Equisetaceae	No	No
Equisetum palustre	Equisetaceae	No	Not tested
Equisetum sylvaticum	Equisetaceae	No	Not tested
Goniopteris curta	Thelypteridaceae	No	Not tested
Goniopteris nicaraguensis	Thelypteridaceae	Yes	Yes
Hypoderis brauniana	Tectariaceae	Yes	Yes
Lomariopsis japunensis	Lomariopsidaceae	No	Not tested
Lomariopsis vestita	Lomariopsidaceae	No	Not tested
Lygodium japonicum	Lygodiaceae	Yes	No
Lygodium microphyllum	Lygodiaceae	Yes	Not tested
Macrothelypteris torresiana	Thelypteridaceae	No	No
Meniscium linguatum	Thelypteridaceae	Yes	Yes
Mickelia ricobianfilla	Dryopteridaceae	No	Not tested
Microgramma	Polypodiaceae	No	Not tested
lycopodioides	Polypodiaceae	No	No
Zeaalandia pustulata	Nephrolepideace	No	No
Nephrolepis biserrata	Lindaceae	No	Yes
Otodontisia c.f. gymnogrammoids	Oledraceae	Yes	Not tested
Oleandra articulata	Oledraceae	No	Not tested
Olfersia cervina	Dryopteridaceae	No	No
Osmunda claytoniana	Osmundaceae	No	Not tested
Osmunda regalis	Osmundaceae	No	Not tested
Osmundastrum cinnamomeum	Osmundaceae	No	Not tested

Table 1 (Continued).

Tested species	Family	Response to self	Response to Pteridium aquilinum
Parapolysetrichum excultum	Dryopteridaceae	Yes	Not tested
Pecluma pectinata	Polypodiaceae	No	Not tested
Phleboodium pseudoareum	Polypodiaceae	No	Yes
Pityrogramma calomelanos	Pteridaceae	No	Yes
Pleopeltis furfuracea	Polypodiaceae	No	Not tested
Polybrya osmundacea	Dryopteridaceae	No	Not tested
Polystichum munitum	Dryopteridaceae	No	No
Polystichum setiferum	Dryopteridaceae	Not tested	Yes
Pteris propinquia	Pteridaceae	Yes	Yes
Saccoloma elegans	Saccolomataceae	Yes	Yes
Saccoloma inaequlae	Saccolomataceae	Yes	Not tested
Salpichlaena volubilis	Blechnaceae	No	No
Serpocauna triseriale	Polypodiaceae	Yes	Yes
Tectaria heracleolia	Tectariaceae	No	Not tested
Thelypteris kunthi	Thelypteridaceae	Yes	Yes
Trichomanes diversifrons	Hymenophyllaceae	No	Not tested

'Taxa that responded formed antheridia first when exposed to an archegoniate conspecific or Pteridium aquilinum gametophyte, despite forming archegonia first under control conditions.

Fig. 4). Of the 208 taxa included in the dataset, ploidy level and AG response were determined for 172 taxa. The 100 diploid and 72 polyploid taxa had nearly equal response rates of 67.0% and 68.1%, respectively ($\chi^2 = 0; df = 1; P = 1; Fig. 4$).

Discussion

Antheridiogen data synthesis and meta-analysis

Combining our results with published data from the literature, we present an updated list of 208 fern species from 26 families that have been tested for antheridiogen (AG) response or production (Table S4). Unlike previous major reviews on the topic (Näf et al., 1975; Raghavan, 1989; Schneller, 2008), we have recorded the response of each species to all tested AG sources (Table S3). A recent estimate puts the number of fern species at 10 578 (PPG 1, 2016), meaning that 2% of all known fern species have now been tested for AG activity. This is a substantial increase from the <1% tested that was estimated by Kirkpatrick & Soltis (1992). However, the vast majority of fern diversity remains unstudied. Athyriaceae and Cyathaceae deserve special attention as these are species-rich families with only three species tested each.

About two-thirds (64.5%) of all tested species responded positively to some type of AG. Additionally, three species produced AG but did not react to the pheromone. Clearly, AGs play a major role in the lives of fern gametophytes. Nevertheless, the real percentage of fern species responding may be different. Responsive species may be over-represented in our dataset, as negative results are less likely to be published. However, some species may be incorrectly labelled as nonresponsive if they failed to respond to some of the model AG sources. For example,
Pentarrhizidium orientale failed to react to gibberellins (Weinberg & Voeller, 1969). Labelling the species as nonresponsive based only on this result could be misleading (the species was excluded as a false negative) as the closely related Onoclea sensibilis reacts to AG of ≥27 other species, but not to gibberellins. Not all cases can be as clear as that of Pentarrhizidium orientale and AG systems are too complex to accurately assign species as nonresponsive based on a limited number of pairings.

Family	AG response present	AG response absent	Untested	(no. positive, no. tested, no. species in family)
Lomariopsidaceae			0	(0, 2, 69)
Nephrolepidaceae			0	(2, 3, 19)
Dryopteridaceae			0	(18, 39, 2115)
Hypodemataceae	(–, –, 22)			
Didymochlaenaceae	(–, –, 1)			
Thelypteridaceae	(6, 10, 1034)			
Athriaceae	(2, 3, 650)			
Blechnaceae	(11, 12, 265)			
Onocleaaceae	(2, 2, 5)			
Woodsiaaceae	(1, 1, 39)			
Aspleniaeae	(8, 10, 730)			
Hemidictyaceae	(–, –, 1)			
Desmophilebiaceae	(–, –, 2)			
Diplaziopsidaceae	(–, –, 4)			
Rhachidosoraceae	(–, –, 8)			
Cystopteridaceae	(4, 5, 37)			
Dennstaedtiaceae	(3, 4, 265)			
Pteridaceae	(39, 46, 1211)			
Lindsaeaceae	(1, 1, 234)			
Lonchilidae	(–, –, 2)			
Cystodidaceae	(–, –, 1)			
Saccolomataceae	(2, 2, 18)			
Cyatheaceae	(2, 2, 643)			
Dicksoniaceae	(–, –, 35)			
Metaxyaceae	(–, –, 6)			
Cibotiaceae	(1, 1, 9)			
Plagiogyriaceae	(–, –, 15)			
Culcitaceae	(0, 1, 2)			
Lonxomataceae	(–, –, 2)			
Thysopteridaceae	(–, –, 1)			
Marsileaceae	(–, –, 61)			
Salviniaeae	(–, –, 21)			
Anemiaeae	(8, 8, 115)			
Schizaeaceae	(–, –, 35)			
Lygodiaceae	(7, 7, 40)			
Gleicheniaceae	(–, –, 157)			
Matoniaeae	(–, –, 4)			
Dipteridaceae	(–, –, 11)			
Hymenophyllaceae	(0, 1, 434)			
Osmundaceae	(0, 4, 18)			
Marattiaceae	(–, –, 111)			
Psilotaceae	(–, –, 17)			
Ophioglossaceae	(–, –, 112)			
Equisetaceae	(0, 4, 15)			

Fig. 2 Fern phylogeny (with relationships based on PPG 1, 2016) indicating the families tested for antheridiogen (AG) response. The number of responsive, tested and total species in a family also is given.
Fig. 3 Overview of antheridiogen interactions (response or no response) between tested fern taxa on a family level (phylogeny tree based on PPG 1, 2016): (a) interactions between all families, excluding *Pteridium aquilinum* (Dennstaedtiaceae) as antheridiogen producer (families tested labelled blue); (b) response of taxa to *P. aquilinum* (Dennstaedtiaceae, labelled blue); and (c) response to gibberellins.
Antheridiogen types

Our dataset clearly demonstrates two major AG types, one affecting the order Polypodiales and the other affecting Schizaeales. Among the many minor types described, most would likely fall within the main Polypodiales type, if more pairings are conducted. Some of these minor types (e.g., Asplenium, Pityrogramma, Vittaria) are supported with inconclusive evidence and require further study. Ceratopteris is generally considered to have its own AG type (Schneller et al., 1990) and this is supported by the most convincing evidence, such as the lack of response to multiple other species and no germination in darkness. However, we would like to caution against an unambiguous distinction of the Ceratopteris type until more pairings are done with other Polypodiales species, especially from Pteridaceae. Some sort of AG system also operates in tree ferns (Cyatheales) that seems distinct from the two major AG types. However, we have insufficient data on the chemical nature and the extent of influence of this system. Tree ferns clearly deserve more study.

In accordance with our merger of many minor types to the larger ones, we would like to suggest the following naming convention: The types should be named after the broadest group under their influence; for example, Polypodiales-type AG (AGPo)/ Schizaeales-type AG (AGSc); others not listed, ploidy level (diploid/polyploid) and reproductive types (apomictic/sexually reproducing).

Evolution of antheridiogens

Pheromonal control of sex expression via AGs is widespread among leptosporangiate ferns and has likely evolved multiple times. To understand the evolution of AGs, phylogeny must be considered. For the purpose of this analysis, we presume that only...
three main types (one being a unified Cyatheales type) described above are distinct. All pairings involving *Equisetum* indicate that it has no AG system, suggesting that AGs evolved within the ferns after the divergence of *Equisetum*. No other eusporangiate ferns have yet been tested, but studies of sexual expression in Osmundaceae, which are sister to all other leptosporangiate ferns, indicate a potential pheromonal control different from AG (Hollingsworth et al., 2012). Phylogenetically, the three types of AG system we recognize could represent three separate origins. The first true AG system is that found in the order Schizaeales, chemically based on gibberellins (Fig. 3c). The origin of this AG type is uncertain until denser sampling of non-polypod leptosporangiates is achieved. Nevertheless, it could be either that the order represents an independent acquisition of AGs, or that AGs were present in the common ancestor of the entire group (Schizaeales through Polypodiales), and the system was later lost in water ferns and its chemical nature was changed considerably in other groups. Therefore, it seems more likely that the Schizaeales type system evolved independently within that order. The second origin, or perhaps multiple origins, appeared in Cyatheales. However, our knowledge in this group is scarce and further research is required. The third origin of AG, the Polypodiales type, could have evolved right at the origin of Polypodiales, potentially as a key innovation of this highly diverse lineage. Our results indicate the presence of AG activity in *Saccoloma* and Lindsaeaceae (Fig. 3a,b). Antheridiogens are certainly well-established within Pteridaceae, as four of its five subfamilies, including the Cryptogrammoideae, which are sister to the other four (Schuettpelz et al., 2007), have species responsive to AG, and members of other families in Polypodiales react to Pteridaceae AG (Fig. 3a). Further studies of *Saccoloma*, *Cystodion*, *Lonchitis* and Lindsaeaceae will be critical for establishing the origins of AGs within Polypodiales, and studies of non-leptosporangiates are necessary to understand the evolution of antheridiogens across all ferns.

Although we advocate for a broader AG type concept, it is important to note that AGs likely diversify considerably within each type. A considerable number of various distinct chemical entities were described within Schizaeales (Nakanishi et al., 1971; Endo et al., 1972; Nester et al., 1987; Yamane et al., 1988; Yamauchi et al., 1996; Wynne et al., 1998). In this order, all species reacted positively to congeners, if tested. However, the compatibility between the two families Anemicaeae and Lygodiaceae was limited. No chemical compound was fully described within Polypodiales, but the lack of compatibility across some families is reminiscent of what is seen in Schizaeales. For example, members of Pteridaceae are capable of inducing a response in members of Onocleaeeae and Blechnaceae, but not Aspleniaeae (Fig. 3a). This phenomenon could be caused by the lack of selective pressure to conserve the chemical structure of AG. The chemical compounds may diversify in each lineage, being less capable of affecting evolutionarily distant species. A possible result would be the evolution of new types, for example in *Ceratopteris*.

Ceratopteris is of particular interest when considering the evolution of ferns in association with AG systems. This genus is the only representative of homosporous aquatic ferns. Its species also form the largest spores of all homosporous ferns (Tryon & Langan, 1991) and it may have its own unique AG type. In theory, plants in aquatic environments benefit from propagules with higher energy reserves to speed up the life cycle and help survive in a carbon-dioxide-poor environment (Petersen & Burd, 2017). A greater abundance of male gametes also is beneficial to increase the chance of mating in water. Heterospory, in which a few large megaspores and many small microspores are produced, fits perfectly into this environment. Unsurprisingly, the known cases of heterospory in ferns involve the true water ferns (Salviniales) and *Pteris platyzomoides*, a unique species growing in seasonally water-logged habitats (Tryon, 1964). *Ceratopteris* represents an alternative solution to this problem. Large spores provide the energy reserves, and the AG system guarantees an overabundance of male gametes in populations whereas single spores can still grow into bisexuals and colonize new habitats. In *Ceratopteris*, the AG system does not just substitute the genetic variation aspect of heterospory, but also confers the benefits of heterospory in aquatic environments. It is possible that the ancestors of Salviniales developed heterospory, in part, due to a lack of AG system in their lineage. In turn, *Ceratopteris* might have become fully heterosporous were it not for AGs.

Germination of spores in darkness

In addition to stimulating precocious formation of antheridia, AGs also enable germination of spores in darkness. Of the 32 species evaluated, 80% reacted to AG, compared to the 64% overall reaction. This higher response rate is likely caused by the over-representation of Schizaeales (which all react) in the dark germination subset. Furthermore, 29 of 32 species (90.6%) were consistent in their response. The first exception was *Polypodium cambricum* germinating in darkness, but without induced antheridiogenesis but not germination in darkness. With the second exception, *Thelypteris ovata*, failed to germinate in darkness despite responding to AG in light (Nester-Hudson et al., 1997). However, germination percentages were checked only 7 d after sowing, a duration equal to the time needed for germination in light for the species. As dark germination may take longer than germination under normally illuminated conditions (Weinberg & Voeller, 1969), it is possible that AG-induced dark germination would have been observed at a later point. Finally, *Ceratopteris thalictroides* does not induce germination in darkness (Schedlauer, 1976). Spores of *Ceratopteris* generally do not germinate in darkness, although some exceptions have been reported (Scott & Hickok, 1987). From our data, this is the only clear example of AG being capable of inducing antheridiogenesis but not germination in darkness. With the notable exception in *Ceratopteris*, germination in darkness seems to be a reliable indicator of antheridiogen response in fern species. If done properly, assays of dark germination could be
Antheridiogens in apomictic ferns

Apomictic ferns, which produce sporophytes spontaneously from gametophytes without fertilization (Grusz, 2016), can produce and respond to AG. Usage of AG in apomicts presents an interesting evolutionary dilemma. On the one hand, apomictic gametophytes that respond to AGs and produce antheridia may be wasting valuable resources to do so, and any subsequent slowed growth might limit their ability to form sporophytes apomictically. On the other, an appealing possibility is that production of growth might limit their ability to form sporophytes apomictically. Response to AG in apomicts over co-occurring sexual taxa, as some apomictic gametophytes grow faster than their sexual competitors (Whittier, 1968; Hauffer & Gastony, 1978). Theoretically, a disturbance revealing a new niche for ferns could be colonized by fast-growing apomictic gametophytes that would suppress sexual gametophytes of similar age and any latecomers. Response to AG in apomicts would then be irrelevant, as older gametophytes producing AG themselves are insensitive to it (Naf, 1958). Provoking dark germination and subsequent antheridium formation in subterranean spores would have the added effect of depleting the spore bank, thus limiting potential future competition.

Like sexual species, about two thirds of apomictic species respond to AG. To date, assessment of AG responsiveness in apomict-containing lineages is too limited to draw broad conclusions, and evaluation of their responses needs to be tested in a phylogenetic context. However, we present several possible explanations for the similar response between apomictic and sexually reproducing taxa. First, apomicts arise from sexual ancestors (Grusz, 2016) and AG response is therefore inherited from them, and thus may be evolutionarily conserved within some lineages. In Cheilanthes and Cytopteris, the AG-responsiveness of an allotetraploid species was reported as the average of its diploid progenitors, suggesting a legacy of AG activity in descendants (Hauffer & Ranker, 1985; Pajarón et al., 2015). Many apomicts start as hybrids (Grusz et al., 2009; Liu et al., 2012; Ekrt & Koutecký, 2016) and likely follow a similar pattern. Yatskievych (1993) found that two apomictic Cyrtomium species retained the ability to produce AG but did not react to it, thus keeping the advantage, but losing the liability. The simple inheritance of AG systems from ancestors may be the most parsimonious explanation of the equal usage of AGs among sexual and apomictic taxa. Nevertheless, the presence of apomictic species that have lost sensitivity to AG despite being able to synthesize it indicates that adaptive pressures affect the use of the AG system in apomicts.

Second, apomicts may adapt not by losing the ability to respond to AGs, but instead by increasing the needed concentration of the pheromone. Once the species is insensitive enough that common competitors and their typical AG output cannot influence it, there would be no selective pressures to reduce sensitivity further. Schneller (1981) reported AG effects to be weaker in apomictic members of the Dryopteris affinis group compared to sexually reproducing D. filix-mas. In the same genus, sexually reproducing D. carthusiana reacts to AG of Pteridium aquilinum, but not to congeneric species that it competes with (Testo et al., 2015). Thus, in laboratory experiments, unusually high concentrations or slightly different sources of AG may result in a positive response in otherwise insensitive species.

Finally, response to AG may be adaptive for apomicts. As mentioned above, apomicts may use AGs to suppress sexual competitors. Furthermore, related apomictic and sexually reproducing ferns may hybridize to form semi-fertile hybrids, which then reproduce via apomixis (Ekrt & Koutecký, 2016). This peculiar merger likely happens via fertilization of an egg from a sexual species by an apomict’s sperm, as most apomicts do not form archegonia (Döpp, 1959; Whittier, 1968; Yatskievych, 1993, but see Hori & Murakami, 2019). This way, sporophyte-bearing apomictic gametophytes not only reduce future competition by suppressing conspecific gametophytes, but the suppressed apomictic gametophytes also flood sexual gametophytes that made it to the archegoniate phase with interspecific sperm. Likewise, a sexual archegoniate gametophyte growing on top of an apomictic spore bank may be forced to hybridize this way. In both cases, sexually reproducing gametophytes are either denied fully functioning sporophytic offspring or end up propagating the genes of the apomict. However, owing to the lack of testing in field conditions, we cannot be sure how important this competition between apomicts and sexually reproducing species really is.

Antheridiogens and polyploidy

Polyploidy plays an important role in fern evolution (Vida, 1976; Wood et al., 2009; Liu et al., 2019). Most ferns use a mixed-mating system (Hauffer et al., 2016), forming sporophytes by self-fertilization (gametophytic selfing) or by exchanging gametes with other gametophytes (sporophytic selfing or outcrossing). The use of AG promotes the latter option as unisexual gametophytes are more likely to occur. However, polyploid ferns should in theory be more tolerant of forming progeny by self-fertilization on bisexual gametophytes (Masuyama, 1979; Soltis & Soltis, 2000; Pangua et al., 2003; Flinn, 2006; Testo et al., 2015; Sessa et al., 2016). As sensitivity towards AGs limits the ability to form bisexual gametophytes, polyploids might be more likely to abandon the use of AGs. That way, each polyploid gametophyte can self-fertilize and take advantage of their inherent genetic diversity (Hickok, 1978). However, the ratio of responsive diploids and polyploids is nearly identical (Fig. 4). As in apomicts, the optimal strategy for a predominantly selfing species may be to exude AGs but not react to them. This strategy has been described in the tetraploid D. carthusiana (Testo et al., 2015). As mentioned above, removing the inherited sensitivity towards AG may be a long and difficult process, but polyploids are often evolutionarily young. Alternatively, Schneller & Hess (1995) suggest that AGs in tetraploid Asplenium ruta-muraria may be used to increase the quantity of available sperm in their environments, where water is a factor limiting fertilization (such as in the rock walls that A. ruta-muraria typically inhabits). The gametophytic
community in such a habitat might be founded by a single sporophyte, so the end goal is not increased genetic diversity but an increased chance of fertilization. Finally, polyploids may still benefit from the outcrossing supported by AGs and the positives of retaining their AG sensitivity outweigh the potential negatives of selfing with little genetic risk.

Conclusion
This comprehensive meta-analysis of 88 published papers together with new data from cultivation experiments has focused on the occurrence of antheridiogens in ferns, especially from the perspective of phylogeny, dark germination, mating modes and ploidy. The meta-analysis shows that the AG system is widespread among ferns. About two-thirds (64.5%) of all tested species responded positively to AGs. This finding demonstrates their far-reaching importance, likely related to consequences that affect many aspects of fern reproduction. This unique system of sex determination and ensuing population demographic control deserves more interest. Seventy years after the discovery of AGs by Walter Döpp (Döpp, 1950) the vast majority of fern species (98%) remains unexplored. We suggest that large, species-rich families such as Athyriaceae and Cyatheaceae, with barely any species tested, should be the subject of future inquiries, as should the non-leptosporangiate fern lineages. Several AG types are well-established by now, but others still require thorough testing to determine their scope, distinctness, and features.

Despite expectations, the majority (66.7%) of apomictic species surveyed to date respond to AG. The consequences of this may play an important role in survival and competition among fern gametophytes in nature as well as interactions between apomictic and sexually reproducing taxa. Our study also suggests that there is no difference between diploids (67.0%) and polyploids (68.1%) in response to AGs, so the pheromonal system may be advantageous even to species capable of being predominantly selfing. Finally, there is a strong correlation between germination in darkness and precocious antheridium formation in light. Testing for dark germination can be done through more expedient methods with binary results. These methods may be key to mass testing AG response in many of the yet unstudied species. We are now beginning to understand how AGs operate on the molecular level (Valledor et al., 2014; Ganger et al., 2015; Attalah et al., 2018; Chen et al., 2019) but many questions about their distribution and evolution remain unanswered. Hopefully, our comprehensive dataset can provide a starting point for fern researchers to learn whether their species of interest use this intriguing system of pheromonal control over sexual determination.

Acknowledgements
This study was supported by project no. 19-17379S from the Czech Science Foundation and by project no. 022/2019/P from the Grant Agency of University of South Bohemia. Further, EBS and WLT were supported by NSF DEB award #1541506.

Author contributions
OH, WLT, JEW and LE designed the study; OH, WLT, CEC and JP conducted the cultivation experiments; OH compiled the meta-analysis list; and OH, WLT and EBS analyzed the data. All authors contributed to the writing of the manuscript.

ORCID
Courtney E. Campany https://orcid.org/0000-0003-2986-434X
Libor Ekrt https://orcid.org/0000-0003-3947-787X
Ondřej Hornych https://orcid.org/0000-0002-5093-3103
Jarmila Pittermann https://orcid.org/0000-0003-1880-1888
Emily B. Sessa https://orcid.org/0000-0002-6496-5536
Weston L. Testo https://orcid.org/0000-0003-3194-5763
James E. Watkins Jr. https://orcid.org/0000-0002-4789-2056

References
Attalah NM, Viter O, Gaiti F, Tanurdzic M, Banks JA. 2018. Sex determination in Ceratopteris richardii is accompanied by transcriptome changes that drive epigenetic reprogramming of the young gametophyte. G3: Genes Genomes, Genetics 8: 2205–2214.
Bateman RM, DiMichele WA. 1944. Heterosporous: the most iterative key innovation in the evolutionary history of the plant kingdom. Biological Reviews 69: 345–417.
Bold HC. 1957. Morphology of plants. New York, NY, USA: Harper & Row.
Chen X, Chen Z, Huang W, Fu H, Wang Q, Wang Y, Cao J. 2019. Proteomic analysis of gametophytic sex expression in the fern Ceratopteris thalictroides. PLoS ONE 14: e0221470.
Chiou W-L, Farrar DR. 1997. Antheridiogen production and response in Polypodiaceae species. American Journal of Botany 84: 634–640.
Chiou W-L, Farrar DR, Ranker TA. 1998. Gametophyte morphology and reproductive biology in Elaphoglossum. Canadian Journal of Botany 76: 1967–1977.
Döpp W. 1950. Eine die Antheridienbildung bei Farnen fördernde Substanz bei der Pteridium aquilinum (L.) Kuhn. Berichte der Deutschen Botanischen Gesellschaft 63: 139–147.
Döpp W. 1959. Über eine hemmende und eine fördernde Substanz bei der Antheridienbildung in den Prothallien von Pteridium aquilinum (L.) Kuhn. Berichte der Deutschen Botanischen Gesellschaft 72: 11–24.
Ekrt L, Koutecký P. 2016. Between sexual and apomictic: unexpectedly variable sporogenesis and production of viable polyploids in the pentaploid fern of the Dryopteris affinis agg. (Dryopteridaceae). Annals of Botany 117: 97–106.
Endo M, Nakashiki K, Naf U, MeKeen W, Walker R. 1972. Isolation of the antheridiogen in Anemia phyllitisidis. Physiologia Plantarum 26: 183–185.
Finn KM. 2006. Reproductive biology of three fern species may contribute to differential colonization success in post-agricultural forests. American Journal of Botany 93: 1289–1294.
Ganger MT, Giouard JA, Smith HA, Bahny B, Ewing SJ. 2015. Antheridiogen and abscisic acid affect conversion and ANI1. Botany-Botanique 93: 109–116.
Gemmrich AR. 1986. Antheridogenesis in the Fern Pteris vestita II) hormonal control of antheridium formation. Journal of Plant Physiology 125: 157–166.
Greer GK, Dietrich MA, Stewart S, Devol J, Rebert A. 2009. Morphological functions of gibberellins in leptosporangiate fern gametophytes: insights into the evolution of form and gender expression. Botanical Journal of the Linnean Society 159: 599–615.
Grusz AL. 2016. A current perspective on apomixis in ferns. Journal of Systematics and Evolution 54: 656–665.
Grusz AL, Windham MD, Pryer KM. 2009. Deciphering the origins of apomictic polyploids in the Cheilanthes palmatus complex (Pteridaceae). American Journal of Botany 96: 1636–1645.

Hauber CH, Gastony GJ. 1978. Antheridiogen and the breeding system in the fern genus Botryodiploida. Canadian Journal of Botany 56: 1594–1601.

Hauber CH, Pryer KM, Schnettpele E, Sessa EB, Farrar DR, Moran R, Schnell JJ, Watkins JE Jr, Windham MD. 2016. Sex and the single gametophyte: Revising the homosporous vascular plant life cycle in light of contemporary research. BioScience 66: 928–937.

Hauber CH, Ranker TA. 1985. Differential antheridiogen response and evolutionary mechanisms in Cytopteris. American Journal of Botany 72: 659–665.

Hauber CH, Welling CB. 1994. Antheridiogen, dark spor germination, and outcrossing mechanisms in Botryodiploida (Adiantaceae). American Journal of Botany 80: 616–621.

Hickok LG. 1978. Homeologous chromosome pairing and restricted segregation in the fern Ceratopteris. American Journal of Botany 65: 516–521.

Hollingsworth SN, Andres EA, Greer GK. 2012. Phenormal interactions among gametophytes of Osmunda cinnamomea and the origins of antheridiogen systems in leptosporangiate ferns. International Journal of Plant Sciences 173: 382–390.

Hori K, Murakami N. 2019. Origin of the Diplazium bachecaense complex (Aspleniaceae). Phytotaxa 124: 57–76.

Kirkpatrick REB, Solits PS. 1992. Antheridiogen production and response in Gymnocarpium dryopteris sp. disjunctum. Plant Species Biology 7: 1–9.

Klekowski EJ, Baker HG. 1966. Evolutionary significance of polyploidy in the Pteridophyta. Science 153: 305–307.

Klekowski EJ, Lloyd RM. 1968. Reproductive biology of the Pteridophyta 1. General considerations and a study of Onoclea sensibilis. Botanical Journal of the Linnean Society 60: 315–324.

Liu H-M, Dyer RJ, Guo Z-Y, Meng Z, Li J-H, Schneider H. 2012. The physiology of antheridium formation in the Bracken Fern Pteridium aquilinum (L) Kuhn. Physiologia Plantarum 141: 705–716.

Liu H-M, Ekrt L, Koutecký P, Pellicer J, Hidalgo O, Marquardt J, Pustahija F, Schmoll C, Siljak-Yakovlev S, Gibby M, Voeller BR. 1991. Inheritance and characterization of a dark-germinating, light-inhibited mutant in the fern Ceratopteris richardii. Canadian Journal of Botany 69: 2616–2619.

Renner SS, Heinrichs J, Sousa A. 2017. The sex chromosomes of bryophytes: Recent insights, open questions, and re-investigations of Frullania dilatata and Plagiochila asplenioides. Journal of Systematics and Evolution 55: 333–339.

Schedlbauer MD. 1976. Specificity of the antheridiogen from Ceratopteris thalictroides (L) Brongn. Plant Physiology 57: 666–669.

Schedlbauer MD, Klokowski EJ. 1972. Antheridiogen activity in the fern Ceratopteris thalictroides (L.) Brongn. Botanical Journal of the Linnean Society 65: 399–413.

Schneller JJ. 1988. Spore bank, dark germination and gender determination in Athyrium and Dryopteris results and implications for population biology of Pteridophyta. Botanica Helvetica 98: 77–86.

Schneller JJ. 2008. Antheridiogen. In: Ranker TA, Hauber CH, eds. Biology and evolution of ferns and liverworts. Cambridge, UK: Cambridge University Press, 134–158.

Schneller JJ, Hauber CH, Ranker TA. 1990. Antheridiogen and natural gametophyte populations. American Fern Journal 80: 143–152.

Schneller JJ, Hess A. 1995. Antheridiogen system in the fern Asplenium ruta-muraria (Aspleniaceae: Pteridophyta). Fern Gazette 15: 64–70.

Schraudolf H. 1962. Die Wirkung von Phytohormonen auf Keimung und Entwicklung von Farneprotoballien. 1. Auslosung der Antheridienebildung mittel Dunkelkeimung bei Schizaeaceen durch Gibbereillinure. Biologisches Zeitschrift 81: 731–740.

Schedlbauer E, Schneider H, Huiet L, Windham MD, Pryer KM. 2007. A molecular phylogeny of the fern family Pteridaceae: Assessing overall relationships and the affinities of previously unsampled genera. Molecular Phylogenetics and Evolution 44: 1172–1185.

Scott RJ, Hickok LG. 1991. Inheritance and characterization of a dark-germinating, light-inhibited mutant in the fern Ceratopteris richardii. Canadian Journal of Botany 69: 2616–2619.

Sessa EB, Testo WL, Watkins JE Jr. 2016. On the widespread capacity for, and functional significance of, extreme inbreeding in ferns. New Phytologist 211: 1108–1119.

Solits PS, Solits DE. 2000. The role of genetic and genomic attributes in the success of polyploids. Proceedings of the National Academy of Sciences, USA 97: 7051–7057.

Testo WL, Watkins JE, Barrington DS. 2015. Dynamics of asymmetrical hybridization in North American wood ferns: reconciling patterns of inheritance with gametophyte reproductive biology. New Phytologist 206: 785–795.

Tryon AF. 1964. Platyzoma-A Queensland fern with incipient heterospory. American Journal of Botany 51: 939–942.

Tryon AF, Lugardon B. 1991. Spores of the Pteridophyta. New York, NY, USA: Springer.

Tryon RM, Vitale G. 1977. Evidence for antheridiogen production and its mediation of a mating system in natural populations of fern gametophytes. Botanical Journal of the Linnean Society 74: 243–249.

Valledor L, Menéndez V, Canal MJ, Revilla A, Fernández H. 2014. Proteomic approaches to sexual development mediated by antheridiogen in the fern Blechnum spicant L. Proteomics 14: 2061–2071.

Vida G. 1976. The role of polyplody in evolution. In: Novák VJÁ, Pachtovi B, eds. Evolutionary Biology, Prague, Czechoslovakia: Czechoslovak Academy of Science, 267–294.

Voeller BR. 1964. Antheridiogens in ferns. In: Regulators naturels de la croissance vegetale. Paris, France: Centre National de la Recherche Scientifique, 665–684.

Weinberg ES, Voeller BR. 1969. External factors inducing germination of fern spores. American Fern Journal 59: 153–167.

Welling CB, Hauber CH. 1993. Antheridiogen and its puzzling effects on Polypodium australis. American Journal of Botany 8: 113.
Whittier DP. 1968. Rate of gametophyte maturation in sexual and apogamous forms of Pellaea glabella. American Fern Journal 58: 12–19.

Willson MF. 1981. Sex expression in fern gametophytes: Some evolutionary possibilities. Journal of Theoretical Biology 93: 403–409.

Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH. 2009. The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences, USA 106: 13875–13879.

Wynne G, Mander LN, Goto N, Yamane H, Omori T. 1998. Gibberellic A117 methyl ester, a new antheridiogen from Lygodium circinatum. Phytochemistry 49: 1837–1840.

Yamane H. 1998. Fern antheridiogens. International Review of Cytology 184: 1–32.

Yamane H, Nohara K, Takahashi N, Schraudolf H. 1987. Identification of antheridial acid as an antheridiogen in Anemia rotundifolia and Anemia flexuosa. Plant and Cell Physiology 28: 1203–1207.

Yamane H, Satoh Y, Nohara K, Makayama M, Murofushi N, Takahashi N, Takeno K, Furuya M, Furber M, Mander LN. 1988. The methyl ester of a new gibberellin, GA73: The principal antheridiogen in Lygodium japonicum. Tetraedron Letters 29: 3959–3962.

Yamauchi T, Oyama N, Yamane H, Murofushi H, Schraudolf H, Pour M, Furber M, Mander LN. 1996. Identification of antheridiogen in Lygodium cinctum and Lygodium flexuum. Plant Physiology 111: 741–745.

Yatskievych G. 1993. Antheridiogen response in Phanerophlebia and related fern genera. American Fern Journal 83: 30–36.

Supporting Information

Additional Supporting Information may be found online in the Supporting Information section at the end of the article.

Tables S1 List of taxa cultivated in this study.

Table S2 List of literature used to compile interactions dataset.

Table S3 List of antheridiogen interactions between fern taxa (meta-analysis + cultivation results).

Table S4 List of all taxa (meta-analysis + cultivation results) determined as responsive or not to antheridiogens with additional information for each taxon.

Please note: Wiley Blackwell are not responsible for the content or functionality of any Supporting Information supplied by the authors. Any queries (other than missing material) should be directed to the New Phytologist Central Office.