Association between CA 15-3 and progression of interstitial lung disease in a case of coexisting systemic sclerosis and recurrent breast cancer: A case report

MASAHIRO OHARA1, YUMIKO KOJ1,2, TATSUNARI SASADA1, KEIKO KAJITANI1, SEISHI MIZUNO3, AI TAKATA3, ATSUKO OKAMOTO3, IKUKO NAGATA3, MIE SUMITA3, KAITA IMACHI2, MAYUMI WATANABE3, YUTAKA DAIMARU3 and YUSUKE YOSHIDA4

1Department of Breast Surgery, JA Hiroshima General Hospital, Hatsukaichi, Hiroshima 738-8503;
2Department of Breast Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka 811-1395;
3Section of Pathological Research and Laboratory, JA Hiroshima General Hospital, Hatsukaichi, Hiroshima 738-8503;
4Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima 734-8553, Japan

Received December 23, 2021; Accepted July 27, 2022

DOI: 10.3892/mco.2022.2578

Abstract. Carbohydrate antigen 15-3 (CA 15-3) is known as a specific tumor marker for breast cancer, the main use of which is monitoring therapy in patients with advanced breast cancer. Either systemic sclerosis (SSc)-interstitial lung disease (ILD) or pulmonary arterial hypertension is currently the leading cause of disease-related morbidity and mortality in patients with scleroderma. Although CA 15-3 has been investigated as a biomarker in SSc-ILD, its role remains unclear. The current report presented a case of recurrent breast cancer diagnosed with SSc-ILD during treatment. The patient, at 63 years old, experienced shortness of breath with minimal exertion after four cycles of pertuzumab, trastuzumab and weekly paclitaxel. Computed tomography (CT) revealed ground-glass opacities and linear shadows in the peripheral lower lobes of both lungs. Although the development of lung involvement associated with breast cancer, such as carcinomatous lymphangitis, was initially suspected, because of the increase in CA 15-3, skin biopsies were taken from the left index finger base and extension side of the left elbow, which demonstrated increased thickness of the dermis, leading to a diagnosis of SSc-ILD. The findings in this case suggested the importance of considering a differential diagnosis, including ILD, concurrently while screening for the progression of recurrent breast cancer when encountering patients with breast cancer and elevated levels of CA 15-3.

Introduction

Several tumor markers and biomarkers, both tissue- and serum-based, are currently used in the management of patients with breast cancer (1-4), among which, carbohydrate antigen 15-3 (CA 15-3) is considered a specific tumor marker for breast cancer. At present, the main utility of CA 15-3 is monitoring therapy in patients with advanced breast cancer, especially in women with non-evaluable disease. Most expert panels advise against the routine use of CA 15-3 in the surveillance of asymptomatic patients who have undergone surgery for breast cancer (5).

Systemic sclerosis (SSc) is a multi-system autoimmune disorder characterized by autoantibody production, endothelial damage with obliterative microvascular disease, inflammation, and fibrosis affecting the skin and internal organs (6,7). Cardiopulmonary involvement is a common manifestation in SSc, which presents as either interstitial lung disease (ILD) or pulmonary arterial hypertension (8), and is currently the leading cause of disease-related morbidity and mortality in patients with scleroderma (9). The most studied and characterized biomarker for ILD is Krebs von den Lungen 6 (KL-6) (10,11). CA 15-3 is the shed or soluble form of MUC-1 protein. MUC1 is strongly expressed by atypical and/or regenerating type II pneumocytes in tissue sections obtained from patients with ILDs (12-14). Although CA 15-3 has been investigated as a biomarker in SSc-ILD, its role remains unclear (15-17). Herein, we report a case of coexisting SSc and recurrent breast cancer who showed improvement in high CA 15-3 levels with amelioration of ILD without any systemic cancer treatment.
Case report

A 60-year-old woman underwent mastectomy with axillary lymph node dissection at JA Hiroshima General Hospital (Hatsukaichi, Japan) in October 2014 after preoperative chemotherapy (four cycles of docetaxel and trastuzumab, followed by four cycles of cyclophosphamide, epirubicin, and fluorouracil) for estrogen receptor-negative, HER2-positive right breast invasive ductal cancer, T2N1M0 stage IIB (18). Postoperative radiation therapy with 50 Gy in 25 fractions to the supraclavicular lymph nodes and chest wall was performed, followed by 14 cycles of 3-weekly trastuzumab. After cyclophosphamide (IVCY) (500 mg/4 weeks) therapy was discontinued, and the Ministry of Health, Labour and Welfare of Japan. The treatment for recurrent breast cancer was discontinued, and according to the diagnostic criteria for SSc proposed by the Ministry of Health, Labour and Welfare of Japan. The patient's SSc-ILD has not worsening and her breast cancer has not recurred despite not receiving treatment for four years.

Discussion

SSc is a devastating disease of unknown etiology that is characterized by systemic, immunological, vascular, and fibrotic abnormalities and a heterogeneous clinical course. Fibrosis, the hallmark of the disease, can affect the skin and internal organs, including lung (20). As is well known, pulmonary involvement is one of the most important features of SSc and often the leading cause of exitus. SSc-ILD is one of the most severe complications and is the main cause of SSc-related deaths (9,21); however, review of contemporary literature suggests improved survival among patients with SSc-ILD due to more aggressive monitoring and treatment (22,23). In clinical trials of SSc-ILD, change in forced vital capacity (FVC) is commonly used as a primary outcome measure, as low FVC predicts morbidity and mortality (24). Two landmark clinical trials, SLS-I (25) and SLS-II (26), established cyclophosphamide and mycophenolate mofetil as disease modifying therapies for SSc patients with active ILD.

The relationship between BC and SSc have been described previously (27-30). The standardized incidence ratio of BC in female SSc patients was found to be 1.62 (95% confidence intervals: 0.7-3.19) (31). many factors should be considered in the common pathogenesis of these two disorders (32). First of all, the female susceptibility observed for SSc suggests an influence of the same hormonal factors found to be involved in BC, such as elevated prolactin levels and decreased levels of dehydroepiandrosterone sulfate (33,34). Secondly, calcium channel blockers, a cornerstone treatment for SSc vasculopathy, have been suspected to be a risk factor for breast cancer in the general population (35-38). Lastly, several immunosuppressive drugs can be used in SSc but may contribute to hormone found to be involved in BC, such as taxanes and ionizing radiations have been associated with tissue fibrosis and/or scleroderma and may exacerbate pre-existing systemic scleroderma (41-45). Taxanes, as well as other antineoplastic agents, have many toxic effects. Therefore, whether the etiology of the present case is drug-induced remains unclear. Taxane-induced scleroderma-like skin changes were first reported in 1995, and clinical characteristics include preceding edema, absence of Raynaud's phenomenon, and negative scleroderma-specific autoantibodies (46-49). The clinical course is refractory to treatment and commonly progressive even after discontinuation of the trigger drugs (50). However, unlike the present study, previous reports showed mainly skin disorders without ILD. In addition, the positivity of anti-nuclear antibodies with a nucleolar pattern was consistent with the late stage of scleroderma (Fig. 3). From these findings, the diagnosis of SSc-ILD was made according to the diagnostic criteria for SSc proposed by the Ministry of Health, Labour and Welfare of Japan. The treatment for recurrent breast cancer was discontinued, and combination prednisone (PSL) (15 mg/day) and intravenous cyclophosphamide (IVCY) (500 mg/4 weeks) therapy was administered for induction treatment of SSc-ILD. PSL was tapered and discontinued at 1 year and IVCY was given five times in total. At 6 months after the start of treatment, her symptoms, including cough and dyspnea, had improved. CA 15-3 and KL-6 levels decreased simultaneously, reflecting the therapeutic effect (Fig. 2), and CT showed improvement in the ground-glass opacities in the peripheral lower lobes of both lungs as compared with those before treatment (Fig. 4). This patient is receiving treatment for SSc-ILD. The patient's SSc-ILD has not worsening and her breast cancer has not recurred despite not receiving treatment for four years.
ductal breast epithelial cells (52). On the other hand, MUC1 is strongly expressed by atypical and/or regenerating type II pneumocytes in tissue sections obtained from patients with ILDs (12-14). Serum levels of KL-6, an N-terminal subunit of MUC-1 protein, increases in the acute exacerbation of idiopathic pulmonary fibrosis (IPF). Serum levels of KL-6 correlate with IPF severity and prognosis (53). As both KL-6 and CA 15-3 exist in different positions of MUC1 (54), CA 15-3 may retain significant potential as an alternative biomarker for KL-6 in fibrotic lung diseases (16-18,55). In primary breast cancer, various studies have demonstrated that elevated serum CA15-3 values at diagnosis are associated with higher breast cancer stage, tumor size, positive axillary lymph nodes, and worse overall survival and disease-free survival (56-60). In metastatic breast cancer, CA15-3 was measured serially in a number of studies assessing their applications in early detection of disease progression and monitoring therapy response (61-65). On the other hand, CA15-3 was previously shown to be elevated in serum of SSc-ILD patients and was associated with severe ILD measured by fibrosis on HRCT, decreased FVC and DLCO and the presence of dyspnoea (16,66). In a study performed by Celeste et al on 221 SSc patients, among which 168 with ILD, CA15-3 serum levels were found to correlate with the extent of fibrosis detected on HRCT as well as to be predictive for progression-free survival, with progression being defined by a decline in either FVC or DLCO (17). The present study suggested that oncologists treating the patients with breast cancer should know CA15-3 is also associated with the condition of ILD. The concentration of some tumor-associated antigens (TAA) such as CA19-9 and CA125 were reported to be elevated in the sera of patients with SSc or systemic lupus erythematosus in comparison to healthy subjects (67). Because of public insurance coverage, the number of TAA for patients with breast cancer that could be measured at one time is limited. CEA could be measured for patients with breast cancer at the same time. In this patient, CEA did not show outlier or abnormal changes.

Meanwhile, KL-6 has been reported as a tumor marker not only lung cancer, but also gastrointestinal, hepatic, pancreatic, and breast cancers (68,69). Kohno, the developer of KL-6 monoclonal antibody, noted that the serum levels of KL-6 mucin were elevated in patients with pulmonary, breast, and pancreatic adenocarcinomas (12). Elevation of KL-6 mucin in serum is significantly associated with the behavior of breast cancer (70) or lung cancer (68). Immunohistochemical analyses have clarified KL-6 mucin's clinicopathological significance in digestive organ cancer tissues. As the expression profile and clinicopathological significance of KL-6 mucin differ among each organ or...
In conclusion, serum levels of CA 15-3 correlated with the condition of SSc-ILD in a patient with recurrent breast cancer. This case suggests the importance of considering a differential diagnosis including ILD concurrently while screening for the progression of recurrent breast cancer when encountering patients with breast cancer and elevated levels of CA 15-3.

Acknowledgements

The authors would like to thank Mrs. Takamoto and Mrs. Nishimoto (Nursing Department, Hiroshima General Hospital) for their special help with breast cancer nursing care.

Funding

No funding was received.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Author's contributions

MO wrote the draft and critically revised the manuscript for important intellectual content. MO performed surgical and post-operative treatment. MO, YK, TS and KK contributed to the conception of the work, and interpreted and revised the results of the CT included in this report. YY treated the patient for SSc-ILD. YD diagnosed the disease pathologically. YY, SM, AT, AO, IN, MS, KI, MW, and YD collected and analyzed both the clinical laboratory and histopathological data. MO and YY confirm the authenticity of all the raw data. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Written informed consent was obtained from the patient for publication of this case report and any accompanying images.

Competing interests

The authors declare that they have no competing interests.
References

1. Sturgeon CM, Duffy MJ, Stenman UH, Lilja H, Brünner N, Chan DW, Babaian R, Bast RC Jr, Dowell B, Esteva FJ, et al: National academy of clinical biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin Chem 54: e11-e79, 2008.

2. Duffy MJ: Biochemical markers in breast cancer: Which ones are clinically useful? Clin Biochem 34: 347-352, 2001.

3. Duffy MJ: Predictive markers in breast and other cancers: A review. Clin Chem 51: 494-503, 2005.

4. Duffy MJ, Walsh S, McDermott EW and Crown J: Biomarkers in breast cancer: Where Are we and where are we going? Adv Clin Chem 71:1-23, 2015.

5. Duffy MJ, Evooy D and McDermott EW: CA-15-3: Uses and limitation as a biomarker for breast cancer. Clin Lab Med 41: 1809-1874, 2010.

6. Silver RM: Clinical aspects of systemic sclerosis (scleroderma). 7th edition. Wiley-Blackwell, Oxford, pp181-193, 2009.

7. Varga J: Systemic sclerosis: An update. Bull NYU Hosp Jt Dis 24: 671-676, 2013.

8. Furst DE, Arriola E, Silver R, Strange C, Bolster M, et al: Cyclophosphamide versus placebo in scleroderma lung disease. N Engl J Med 354: 2655-2666, 2006.

9. Tashkin DP, Dafousi PW, Fruto DE, Arriola E, Silver L, Strange C, Bolster M, et al: Mycophenolate mofetil versus oral cyclophosphamide in scleroderma-related interstitial lung disease (SLS II): A randomised controlled, double-blind, parallel group trial. Lancet Respir Med 4: 708-719, 2016.

10. Colaci M, Giuglioti D, Vecchi L, Iachetta F, Marcheselli L, Federico M and Ferri C: Breast cancer in systemic sclerosis: Results of a cross-linkage of an Italian rheumatology center and a population-based cancer registry and review of the literature. Autoimmun Rev 13: 132-137, 2014.

11. Abu-Shakra M, Guillemin F and Lee P: Cancer in systemic sclerosis. Arthritis Rheum 36: 460-464, 1993.

12. Szekanecz E, Szamosi S, Horváth Á, Németh Á, Juhász B, Szántó J, Szűcs G and Szekanecz Z: Malignancies associated with systemic sclerosis. Autoimmun Rev 11: 852-855, 2012.

13. Scope A, Sadowitz S, Sidi Y, Barzilai A, Trau H, Kaufman B, Catane R and Ehrenfeld M: Breast cancer and scleroderma. Skinmed 5: 18-24, 2006.

14. Hill CL, Nguyen AM, Roder D and Roberts-Thomson P: Risk of cancer in patients with scleroderma: A population based cohort study. Ann Rheum Dis 62: 728-731, 2003.

15. Maria ATJ, Partouche L, Gouabochand R, Rivièrè G, Rozier P, Bourgier C, Le Quellec A, Morel J, Noël D and Guilpain P: Linking relationships between cancer and systemic sclerosis: Role of the immune system and other contributors. Front Immunol 9: 3112, 2019.

16. Straub RH, Zeuner M, Lock G, Schölerich J and Lang B: High prolactin and low dehydroepiandrosterone sulphate serum levels in patients with severe systemic sclerosis. Br J Rheumatol 36: 426-432, 1997.

17. Wang M, Wu X, Chai F, Zhang Y and Jiang J: Plasma prolactin and low dehydroepiandrosterone serum levels in patients with severe systemic sclerosis. Pathol Int 56: 35-40, 2006.

18. Okada K, Endo Y, Miyachi Y, Koike Y, Kuwatsuka Y and Utani A: Mycophenolate mofetil. J Rheumatol 36: 460-462, 2009.

19. Bernal-Bello D, García de Tena J, Simeón-Aznar C and Fonollosa-Pla V: Systemic sclerosis, breast cancer and calcium channel blockers: A new player on the scene? Autoimmun Rev 13: 880-881, 2014.

20. Brasky TM, Krok-Schoen JL, Liu J, Chlebowski RT, Freudenheim JL, Lavasani S, Margolis KL, Qi L, Reding KW, Shields PG, et al: Use of calcium channel blockers and breast cancer risk in the women's health initiative. Cancer Epidemiol Biomarkers Prev 26: 1345-1348, 2017.

21. Baltus JA, Boersma JW, Hartman AP and Vandenbroucke JP: The occurrence of malignancies in patients with rheumatoid arthritis treated with cyclophosphamide: A controlled retrospective follow-up. Ann Rheum Dis 42: 368-373, 1983.

22. Gulamhusein A and Pope JE: Squamous cell carcinomas in 2 patients with diffuse scleroderma treated with mycophenolate mofetil. J Rheumatol 36: 461-462, 2009.

23. Okada K, Endo Y, Miyachi Y, Koike Y, Kusukawa Y and Utani A: Circulating CA 15.3 levels in a subset of systemic sclerosis with severe lung involvement. Arch Dermatol 134: 645, 1998.

24. De Dominicis C, Laganà B, Paone G, Mura M, Rogliani P, Ciardiello F, Blackwell KE, One 11: e0159672, 2016.

25. Celeste S, Santantielo A, Caronni M, Franchi J, Severino A, Scarza R and Beretta L: Carbohydrate antigen 15.3 as a serum biomarker of interstitial lung disease in systemic sclerosis. Rheumatology (Oxford) 48 (Suppl 3): iii40-iii44, 2009.

26. Taitt C, Camidge DR, Iwata H and Powell CA: Incidence of pneumonitis/interstitial lung disease induced by HER2-targeting antibodies. J Rheumatol 26: 2265‑2269, 1999.

27. Darras-Joly C, Wechsler B, Blétry O and Piette JC: De novo systemic sclerosis after radiotherapy: A report of 3 cases. J Rheumatol 26: 2265-2269, 1999.

28. Abu-Shakra M, Guillemin F and Lee P: Cancer in systemic sclerosis. Arthritis Rheum 36: 460-464, 1993.

29. Varga J and Abraham D: Systemic sclerosis: A prototypic multisystem fibrotic disorder. J Clin Invest 117: 557-567, 2007.

30. Volkmann ER and Fischer A: Update on morbidity and mortality in systemic sclerosis related interstitial lung disease. J Rheumatol Relat Disord 6: 11-20, 2021.

31. Rubio-Rivas M, Royo C, Simeón CP, Corbella X and Fonollosa V: Molecular and clinical oncology 17: 145, 2022.

32. Perez-Gómez B, Lope V, Tusquets I, Alonso MH, Moreno V, Amiano P, Molina de la Torre AJ, et al: The use of antihypertensive medications and breast cancer risk: A meta-analysis. Sci Rep 6: 25998, 2016.

33. Steen VD, Conte C, Owens GR and Medsger TA Jr: Changes in causes of death in systemic sclerosis, 1972‑2002. Ann Rheum Dis 66: 940-944, 2007.

34. Prasse A and Müller-Quernheim J: Non-invasive biomarkers in pulmonary fibrosis. Respir Physiology 140: 788-795, 2009.

35. Ishikawa N, Hattori N, Yokoyama A and Kohno N: Utility of KL-6/MUC1 in the clinical management of interstitial lung diseases. Respir Investig 50: 3-13, 2012.

36. Persson 1, Eriksson 1, Stenberg M, Overholm 1, Oltén M: Pulmonary complications: One of the most challenging complications of systemic sclerosis. Rheumatology (Oxford) 48 (Suppl 3): iii40-iii44, 2009.

37. Tashkin DP, Elashoff R, Clements PJ, Goldin J, Roth MD, Furst DE, Arriola E, Silver L, Strange C, Bolster M, et al: Mycophenolate mofetil versus oral cyclophosphamide in scleroderma-related interstitial lung disease (SLS II): A randomised controlled, double-blind, parallel group trial. Lancet Respir Med 4: 708-719, 2016.

38. Colaci M, Giuglioti D, Vecchi L, Iachetta F, Marcheselli L, Federico M and Ferri C: Breast cancer in systemic sclerosis: A prototypic multi-systemic fibrotic disorder. J Clin Invest 117: 557-567, 2007.
54. Uehara M, Kinoshita T, Hojo T, Akashi-Tanaka S, Iwamoto E and Shao Y, Sun X, He Y, Liu C and Liu H: Elevated levels of serum CA15-3 and carcinoembryonic antigen (CEA) levels in breast cancer patients: A meta-analysis. Med Sci Monit 22: 3154-3162, 2016.

55. Di Gioia D, Dresse M, Mayr D, Nagel D, Heinemann V and Steieber P: Serum HER2 in combination with CA 15-3 as a parameter for prognosis in patients with early breast cancer. Clin Chim Acta 440: 16-22, 2015.

56. Kim HS, Park YH, Park MJ, Chang MH, Jun HJ, Kim KH, Ahn JS, Kang WK, Park K and Im YH: Clinical significance of a serum CA15-3 surge and the usefulness of CA15-3 kinetics in monitoring chemotherapy in metastatic breast cancer patients. Breast Cancer Res Treat 118: 89-97, 2009.

57. Ngeow S, Veyret C, Chevrier A, Leras A, Gray C and Basuyau J: Routine use of serial plasmatic CA 15-3 determinations during the follow-up of patients treated for breast cancer. Evaluation as factor of early diagnosis of recurrence. Ann Biol Clin (Paris) 66: 385-392, 2008 (In French).

58. Yang Y, Zhang H, Zhang M, Meng Q, Cai L and Zhang Q: Prognostic significance of changes in CA 15-3 serum levels during chemotherapy in metastatic breast cancer patients. Breast Cancer Res Treat 108: 89-97, 2009.

59. Nonweiler E, Pathak G, Cimasoni D, Ena G, Friesen M, Friesen C, Hehlmann R, Kuempel D, Neef A, Preusse P, Schmitt M, Senn H, Steenbergen H, Stiewe S, Weller M, Weiss G, Winding M, Zulian P, Zuluaga P, Zuber C, Aapro M, Böhm P, Chajin R, Curti C, Fayez I, Fleig S, Frass M, Ganzinger H, Gwiazda-Kubalska K, Herzig E, Huber C, Jungbluth P, Klotz U, Kompfner R, Lampe W, Linke V, Machleidt H, Marchetti M, Marubini E, Merlo CD, Neumann-Haefelin T, Niederle B, Pabst C, Pichler M, Pichlmair A, Quaegebeur M, Reiners T, Roberts S, Schmidt H, Schödel A, Schnabel F, Schnedl W, Serafini C, Seitz J, Schemhammer G, Schumacher L, Schuster T, Seitz G, Schulz R, Simon K, Spenger C, Stroobant V, Tewes M, Trumpp K, Urban S, Urbanová E, Utikal J, Valdiviezo G, Wagner M, Walzer J, Weingartner Z, Wieland E, Zamboni P, Zhang J, Mäurer M, Burmeister B, von Minckwitz G, Bartsch M, van Dishoeck S, Schmidinger M, Thüroff JW, Kuhler L, Hess K, Mansel R, Cloots G, Schöffski P, and the Investigator Team of the GeparQuiTe Study Group: GeparQuiTe: A phase III, randomized, controlled trial of nab-paclitaxel and gemcitabine versus nab-paclitaxel and nab-HER2-targeted trastuzumab in advanced and metastatic breast cancer patients: final analysis of a double-arm phase III trial. Breast Cancer Res Treat 175: 325-337, 2019.

60. Di Gioia D, Dresse M, Mayr D, Nagel D, Heinemann V and Steieber P: Serum HER2 in combination with CA 15-3 as a parameter for prognosis in patients with early breast cancer. Clin Chim Acta 440: 16-22, 2015.

61. Kim HS, Park YH, Park MJ, Chang MH, Jun HJ, Kim KH, Ahn JS, Kang WK, Park K and Im YH: Clinical significance of a serum CA15-3 surge and the usefulness of CA15-3 kinetics in monitoring chemotherapy in metastatic breast cancer patients. Breast Cancer Res Treat 118: 89-97, 2009.

62. Ngeow S, Veyret C, Chevrier A, Leras A, Gray C and Basuyau J: Routine use of serial plasmatic CA 15-3 determinations during the follow-up of patients treated for breast cancer. Evaluation as factor of early diagnosis of recurrence. Ann Biol Clin (Paris) 66: 385-392, 2008 (In French).

63. Yang Y, Zhang H, Zhang M, Meng Q, Cai L and Zhang Q: Prognostic significance of changes in CA 15-3 serum levels during chemotherapy in metastatic breast cancer patients. Breast Cancer Res Treat 108: 89-97, 2009.

64. Nonweiler E, Pathak G, Cimasoni D, Ena G, Friesen M, Friesen C, Hehlmann R, Kuempel D, Neef A, Preusse P, Schmitt M, Senn H, Steenbergen H, Stiewe S, Weller M, Weiss G, Winding M, Zulian P, Zuluaga P, Zuber C, Aapro M, Böhm P, Chajin R, Curti C, Fayez I, Fleig S, Frass M, Ganzinger H, Gwiazda-Kubalska K, Herzig E, Huber C, Jungbluth P, Klotz U, Kompfner R, Lampe W, Linke V, Machleidt H, Marchetti M, Marubini E, Merlo CD, Neumann-Haefelin T, Niederle B, Pabst C, Pichler M, Pichlmair A, Quaegebeur M, Reiners T, Roberts S, Schmidt H, Schödel A, Schnabel F, Schnedl W, Serafini C, Seitz J, Schemhammer G, Schuster T, Seitz G, Schulz R, Simon K, Spenger C, Stroobant V, Tewes M, Trumpp K, Urban S, Urbanová E, Utikal J, Valdiviezo G, Wagner M, Walzer J, Weingartner Z, Wieland E, Zamboni P, Zhang J, Mäurer M, Burmeister B, von Minckwitz G, Bartsch M, van Dishoeck S, Schmidinger M, Thüroff JW, Kuhler L, Hess K, Mansel R, Cloots G, Schöffski P, and the Investigator Team of the GeparQuiTe Study Group: GeparQuiTe: A phase III, randomized, controlled trial of nab-paclitaxel and gemcitabine versus nab-paclitaxel and nab-HER2-targeted trastuzumab in advanced and metastatic breast cancer patients: final analysis of a double-arm phase III trial. Breast Cancer Res Treat 175: 325-337, 2019.

65. Kim HS, Park YH, Park MJ, Chang MH, Jun HJ, Kim KH, Ahn JS, Kang WK, Park K and Im YH: Clinical significance of a serum CA15-3 surge and the usefulness of CA15-3 kinetics in monitoring chemotherapy in metastatic breast cancer patients. Breast Cancer Res Treat 118: 89-97, 2009.

66. Ngeow S, Veyret C, Chevrier A, Leras A, Gray C and Basuyau J: Routine use of serial plasmatic CA 15-3 determinations during the follow-up of patients treated for breast cancer. Evaluation as factor of early diagnosis of recurrence. Ann Biol Clin (Paris) 66: 385-392, 2008 (In French).

67. Yang Y, Zhang H, Zhang M, Meng Q, Cai L and Zhang Q: Prognostic significance of changes in CA 15-3 serum levels during chemotherapy in metastatic breast cancer patients. Breast Cancer Res Treat 108: 89-97, 2009.