Quantum dot (QD) light-emitting diodes (LEDs) are emerging as one of the most promising candidates for next-generation displays. However, their intrinsic light outcoupling efficiency remains considerably lower than the organic counterpart, because it is not yet possible to control the transition-dipole-moment (TDM) orientation in QD solids at device level. Here, using the colloidal lead halide perovskite anisotropic nanocrystals (ANCs) as a model system, we report a directed self-assembly approach to form the anisotropic nanocrystal superlattices (ANSLs). Emission polarization in individual ANCs rescales the radiation from horizontal and vertical transition dipoles, effectively resulting in preferentially horizontal TDM orientation. Based on the emissive thin films comprised of ANSLs, we demonstrate an enhanced ratio of horizontal dipole up to 0.75, enhancing the theoretical light outcoupling efficiency of greater than 30%. Our optimized single-junction QD LEDs showed peak external quantum efficiency of up to 24.96%, comparable to state-of-the-art organic LEDs.

Sudhir Kumar, Tommaso Marcato, Frank Krumeich, Yen-Ting Li, Yu-Cheng Chiu & Chih-Jen Shih

Quantum dot (QD) light-emitting diodes (LEDs) are emerging as one of the most promising candidates for next-generation displays. However, their intrinsic light outcoupling efficiency remains considerably lower than the organic counterpart, because it is not yet possible to control the transition-dipole-moment (TDM) orientation in QD solids at device level. Here, using the colloidal lead halide perovskite anisotropic nanocrystals (ANCs) as a model system, we report a directed self-assembly approach to form the anisotropic nanocrystal superlattices (ANSLs). Emission polarization in individual ANCs rescales the radiation from horizontal and vertical transition dipoles, effectively resulting in preferentially horizontal TDM orientation. Based on the emissive thin films comprised of ANSLs, we demonstrate an enhanced ratio of horizontal dipole up to 0.75, enhancing the theoretical light outcoupling efficiency of greater than 30%. Our optimized single-junction QD LEDs showed peak external quantum efficiency of up to 24.96%, comparable to state-of-the-art organic LEDs.
Quantum dot (QD) light-emitting diodes (LEDs) are ideal for next-generation flat-panel displays because of their scalability, cost effectiveness, emission color purity, and tunable chromaticity\(^1\)-\(^3\). Considerable research efforts in the past two decades have demonstrated high-efficiency QD LEDs using CdSe, InP, and lead halide perovskite (LHP) nanocrystals (NCs), with external quantum efficiencies, \(\eta_{\text{ext}}\), of up to 20.5\%\(^4\), 21.4\%\(^5\), and 23.4\%\(^6\)-\(^9\), respectively. To date, the methods used to enhance device performance have mainly focused on the passivation of NC surface defects. Taking the defect-tolerant LHP QD device performance have mainly focused on the passivation of dimensional (2D) materials, such as MoS\(_2\) monolayer\(^{31}\), because control the TDM orientation for LEDs is the atomically thin two-intrinsically increase \(\eta\) the 2D electronic structure con

hindering practical applications\(^{33}\). The major challenge is that 2D monolayers are very sensitive to orders of magnitude, particularly at high exciton concentrations, \(\eta\) have completely in-plane TDM orientation\(^{34}\). The CdSe NPLs, however, \(\eta\) comes exclusively from the heavy-hole states, which accidentally coincides with the platelet plane\(^{34}\). The CdSe NPLs, however, \(\eta\) have completely in-plane TDM orientation\(^{34}\)

In thin-film LEDs, it is well-known that majority of radiation generated within the emissive layer is trapped inside the thin-film stack through the dissipating pathways of waveguide, surface plasmonic, and substrate modes, eventually converting to heat.\(^7\) Classical ray optics theory gives a plasmon, and substrate modes, eventually converting to heat.\(^7\)

Recent experimental studies have also suggested that excitons in the few-monolayer-thick colloidal CdSe nanoplatelets (NPLs) have completely in-plane TDM orientation\(^{34,36}\). In contrast, excitons in inorganic semiconductor crystals reside in extended band edge states of complex three-dimensional (3D) symmetry, which usually leads to isotropic TDM orientation. An ideal candidate to control the TDM orientation for LEDs is the atomically thin two-dimensional (2D) materials, such as MoS\(_2\) monolayer\(^{31}\), because the 2D electronic structure confines all bright excitons in-plane\(^{32}\). The major challenge is that 2D monolayers are very sensitive to surface defects that drastically quench photoluminescence (PL) by orders of magnitude, particularly at high exciton concentrations, hindering practical applications\(^{33}\).

Recent experimental studies have also suggested that excitons in the few-monolayer-thick colloidal CdSe nanoplatelets (NPLs) have completely in-plane TDM orientation\(^{34,36}\). Indeed, emission in the quantum-confined zinc-blende (ZB) crystal structure comes exclusively from the heavy-hole states, which accidentally have only mixed \(p_x\) and \(p_y\) symmetry, forming a bright plane that coincides with the platelet plane\(^{34}\). The CdSe NPLs, however, suffer from relatively low PL quantum yield, \(\eta_{\text{PL}}\), and more critically, lose the preferential TDM orientation in their stacks\(^{36}\). To our knowledge, preferentially horizontal TDM orientation in QD-assembled thin films has never been demonstrated at device level.

With the above background in mind, to intrinsically enhance light outcoupling in QD-assembled thin films for high-efficiency LEDs, a challenging list of requirements must be met, including TDM orientation control in individual NCs, controlled NC assembly without compromising \(\eta_{\text{PL}}\) and TDM orientation, and ligand engineering that balance dielectric confinement and carrier injection. In this report, we show that all these requirements can be satisfied by a scalable 2D superlattice system comprised of LHP ANCs.

Results and discussions

Emission polarization in individual ANCs. First, we would like to point out that ANCs do not necessarily possess 2D electronic structure. Unlike the ZB crystal system, the LHP is of cubic structure with octahedral symmetry, where the bandgap occurs at the \(\mathbf{R}\) point in the Brillouin zone, isomorphic to the \(\mathbf{Γ}\) point. The spin-orbit interaction leads to the splitting of the conduction band states into a fourfold \(\Gamma_\text{v}\) and a twofold \(\Gamma_\text{v}\) states, and the valence band \(\Gamma_\text{v}\) states are \(s\)-like having zero orbital angular momentum\(^{27,38}\). A proper description for spontaneous emission in LHP ANCs corresponds to the transition between the \(\Gamma_\text{v}\) and \(\Gamma_\text{v}\) states, which is of mixed \(p_x, p_y\), and \(p_z\) symmetry (Supplementary Section 1.1). We therefore deduce that, unless LHP ANCs are of atomic thickness that largely changes the band structure, the TDM orientation remains isotropic, in spite of a degree of quantum confinement.

It should be noted that controlling TDM orientation is not the only approach to induce emission directionality in individual QDs. Early findings from single-molecule spectroscopy have explored the effect of emission polarization in anisotropically dielectric-confined nanostructures\(^{29,40}\). Specifically, consider an isolated NC surrounded by low-dielectric-constant liquid medium, with the dielectric constants of \(\varepsilon_{\text{NC}}\) and \(\varepsilon_m\), respectively. The local electric field within NC, \(\mathbf{E}_{\text{loc}}\), induced by an external field, \(\mathbf{E}\), would strongly depend on the NC shape and the dielectric contrast, \(c = \varepsilon_{\text{NC}}/\varepsilon_m\) characterized by the local field factors, \(f_z = E_{\text{loc}}/E_m\), where \(E_m\) is the external field. The local field factors are associated with the shape of the NC, \(f_z\) as a function of the NC aspect ratio, \(A\), for spheroids and square cuboids, in which \(f_z = f_\text{NC}\) using the dielectric constants in our synthesized LHP NCs (\(\varepsilon_{\text{NC}} = 4.7\) and \(\varepsilon_m = 2.129\))\(^{34,41,43}\). The cubic and spherical NCs (\(A = 1\)) are characterized by their isotropic polarization response, which then departs from unity as the shape evolves towards asymptotic rod (\(A \to 0\)) and disk (\(A \to \infty\)). Specifically, the ANC has its in-plane (IP, \(x\) or \(y\) direction) local field factor increasing with \(A\), but the other way around for the out-of-plane (OP, \(z\) direction) component. When \(A \to \infty\), \(f_z = 1\) and \(f_z = 1/c\) (see Supplementary Section 1.2), giving the theoretical upper limit for \(f_zf_z = c\).

The emission radiative rate for a given dipole is proportional to \((\mathbf{p} \cdot \mathbf{m})^2\), where \(\mathbf{p}\) and \(\mathbf{m}\) are the transition dipole moment and local field factor vectors, respectively (Supplementary section 1.3). As a result, in a square ANC with \(f_z = f_\text{NC}\), the emission from an OP dipole is significantly screened and that from an IP dipole is amplified, resulting in an enhanced emission directionality toward the OP direction. Under the assumption of isotropic TDM orientation, the effective IP dipole ratio within individual NC determined by far-field measurement, \(\Theta_{\text{IP}}\), is given by

\[
\Theta_{\text{IP}} = \frac{2|f_\text{IP}|^2}{2|f_x|^2 + |f_z|^2}
\]

Accordingly, Eq. (1) and Fig. 1a reveal that a cubic NC with \(f_z = f_\text{NC}\) would give \(\Theta_{\text{IP}}\) of 0.67, corresponding to isotropic radiation, but the square LHP ANCs could yield \(\Theta_{\text{IP}}\) up to 0.91 for \(A \to \infty\) (Supplementary section 1.2), even with isotropic TDM orientation. We notice that the predicted \(\Theta_{\text{IP}}\) upper limit nicely agrees with the experimentally measured values in 3-monolayer LHP ANCs (thickness \(d = 1.8\) nm and \(A \sim 30\)) in which \(\Theta_{\text{IP}}\) is 0.81–0.85\(^{42,44}\).
The NC-shape-induced emission directionality is further illustrated in Fig. 1b, c, which compare the calculated electric fields and radiation patterns from horizontal and vertical dipoles. In these simulations, a Hertzian dipole is placed in the center of cubic NC or ANC (AR = 10) embedded in a dielectric film sitting on top of a semi-infinite glass substrate, with the NC z axis perpendicular to the substrate (x–y plane). The dielectric anisotropy of ANC rescales the oscillator strength for horizontal and vertical dipoles, which yield enhanced and reduced radiation power, respectively. As a result, more light can be directed within the critical angle (~41 degrees; the red angular regions in Fig. 1c) for the glass-air interface. In principle, this scenario would apply to any NC geometry, but overall, square ANCs would be the most effective for LEDs, because of the geometric similarity with the substrate.
Directed assembly of ANCs. The physical picture of single-dipole radiation presented in Fig. 1c is valid at device level only if individual NCs retain their radiation pattern in the assembled thin films. In practice, many undesirable effects, such as quantum resonance and energy transfer, could come into play upon NC assembly. For example, strong face-to-face interactions between CdSe NPLs in the drop-casted film yield the “edge-on” NPL orientation with respect to the substrate, resulting in isotropic radiation pattern. The emergence of LHP NCs opens an avenue to address the longstanding challenge. Indeed, the LHP dielectric response is high at low frequencies ($\varepsilon > 20$), due to the lattice softness that generates strong phonon and molecular contributions, but drops rapidly in the visible regime ($\varepsilon \sim 5$). As a result, the electrostatic interactions between neighboring NCs are significantly screened, largely alleviating the undesirable effects. This is reflected by our recent observations that an ultrathin organic spacer of ~0.67 nm is sufficient to decouple neighboring ANCs in their superlattices.

We synthesized mixed-cation perovskite ANCs with formula of FA$_{x}$MA$_{1-x}$PbBr$_3$, where FA = formamidinium, CH$_3$(NH$_2$)$_2$, and MA = methylammonium, CH$_3$NH$_3$+, using the modified ligand-assisted re-purification method at room temperature (details see Methods). The ANC aspect ratio was tuned and optimized by the ligand concentration and hydrophobicity. Specifically, the NC ARs can be increased by reducing the ligand hydrophobicity that stabilizes the small crystals, and increasing ligand concentration could access to few-monolayer-thin ANCs with high degrees of quantum confinement. In addition, device considerations, including balanced carrier conductivity and proper ANC dielectric confinement, were also taken into account. For example, excessively thin ANCs would compromise electrical stability and thin-film impedance, both the device efficiency. After extensive experimentation, mixed n-decylamine (DA) and oleic acid (OA) was chosen as the major molecular ligand unless mentioned otherwise. We notice that the decyl and oleic tails have similar degree of hydrophobicity. Figure 2a presents the transmission electron microscope (TEM) image for the synthesized square ANCs, having the average lateral length and thickness of 11 ± 2 and 4 ± 1 nm, respectively. Given the TEM-observed AR value (~2.75), we predict its Θ_{lp} value to be 0.80.

Figure 2e–j compares the synchrotron grazing-incidence wide-angle and small-angle X-ray scattering (GIWAXS and GISAXS) patterns for the representative emissive thin films (thickness $t \sim 30$ nm) studied here. Direct drop casting of colloidal solution on glass yields ANC solid with nearly random orientation (Fig. 2e), exhibiting the Debye–Schererr (DS) rings corresponding to the intracrystal perovskite structure, denoted (100), (110), and (200). Shear-induced ordering during spin coating leads to the formation of superstructure with an improved degree of alignment for the ANC OP vector (Fig. 2f). The emergence of (100) Bragg peak along the q_z axis and the vanishing (110) DS ring suggest that the majority of ANCs was horizontally oriented with the OP vector perpendicular to the substrate plane.

We hypothesized that the ANC stack ordering is highly influenced by the inter-NC interactions. In order to minimize the effect of underlying substrate, we examined the spin-coated ANC films sitting on a fluorinated hole transport material, X-F6-TAPC. Remarkably, the low-surface-energy surface was found to further enhance ANC ordering by forming anisotropic nanocrystal superlattices (ANSLs). The atomic force microscopy (AFM) height image (Fig. 2b, c and Supplementary Fig. 6) reveals the formation of ANSLs comprised of close-packed ANC arrays with the side faces linked to each other, having the thickness of 4.6 ± 0.5 nm and lateral dimension exceeding 300 nm. The extracted ANCs thickness from the AFM cross-section height profile and TEM image are in coherence with each other. The ANSL c axis coincides with the ANC OP vector. We estimate that the ~32 nm emissive layer (EML) in device contains in average 6–8 stacking layers of ANSL. The GIWAXS pattern highlights the extension of a SL Bragg rod along the q_z axis, and the SL peaks corresponding to lateral packing, denoted as (100)$_{\parallel}$ and (200)$_{\perp}$, come out on the q_x axis in the GISAXS pattern (Fig. 2g, i). Hereafter, we optimized our LED device based on the ANSL-contained EMLs.

Note that we observed an even higher SL crystallinity by replacing DA with oleylamine (OLA) in our synthetic protocol (Fig. 2h), as reflected by the emergence of SL Bragg peaks on the q_z axis, corresponding to (000)$_{\parallel}$. Here, we were not able to reach high electroluminescent (EL) efficiencies with the OLA-based ANCs, hypothetically due to the long hydrophobic tail. More discussions about photophysical properties for the emissive thin films see Supplementary Section 2.1.

Analysis of thin-film radiation patterns. The thin-film stack (air/EML/X-F6-TAPC/glass) was mounted on a hemicylindrical glass prism using a refractive index matching optical liquid, followed by performing the polarization- and angle-dependent PL spectroscopy that differentiates between the s-polarized (s-pol) emission from the transverse-electric y dipoles and the p-polarized (p-pol) emission from the transverse-magnetic x and z dipoles. The film thickness, t, and refractive index, n, for each dielectric layer was carefully characterized by ellipsometry (Supplementary Section 2.2). The generated radiation pattern resolves the PL intensity, I, on the substrate plane (x–y) projection of emission wave vector k, k_x, and k_y, which inform the effective TDM orientation in the EML within the k-space domain, $k/k_0 < n_{glass}$ where k_0 is the wave vector in air and $n_{glass} = 1.52$ is the refractive index of glass. It follows that $k/k_0 = 1$ corresponds to the critical angle of total internal reflection at the glass/air interface. Since the p-pol emission comes from both horizontal and vertical dipoles, optical simulations were carried out using the following models, to fit the p-pol profile to quantify the dipole orientation, using the thin-film horizontal dipole ratio, Θ_{lm}, as the only fitting parameter.

Figure 3a presents the experimentally measured p-pol PL intensity as a function of viewing angle, ϕ, together with the calculated profiles for Θ_{lm} values of 0.67, 0.72, and 0.91, corresponding to isotropic, best-fitted, and AR $\rightarrow \infty$ models, respectively. Indeed, as revealed in Fig. 1c, near the critical angle for the glass-air interface, $\phi \sim 45^\circ$, the emission from a horizontal dipole nearly vanishes, while a vertical dipole strongly couples into the substrate, so the emission gets intensified. As a result, a lower Θ_{lm} would lead to a shallower minimum at $\phi \sim 45^\circ$ and a higher fraction of light coupled into the substrate mode, $\phi > 45^\circ$. Figure 3b compares the experimentally measured and theory-fitted k-space radiation patterns, showing excellent agreement.

We attribute the enhanced ratio of horizontal dipole to the formation of ANSL that horizontally orient individual ANCs to a great degree. Remarkably, we have carried out more angle-dependent PL measurement considering nine different ANSL thin film samples deposited on X-F6-TAPC. The statistical analysis yields consistent values of $\Theta_{lm} = 0.73 \pm 0.016$, with the maximum of up to 0.75. Theoretical analysis taking into account the effect of NC packing disorder (Fig. S2) suggests that the orientation of ANCs in EML substantially affects Θ_{lm}. For the ANC aspect ratio value considered here, the theoretically predicted thin-film Θ_{lm} ranges from 0.80 (order parameter $S = -0.5$) to 0.60 (S = 1.0).
Accordingly, the single-dipole emitter model for individual ANC (Fig. 1) is already adequate to describe the collective thin-film radiation behavior.

From a fundamental point of view, the combined theoretical and experimental analysis presented here highlights the importance of NC shape to the light outcoupling efficiency in QD LEDs, which has long been ignored. We further compare the calculated far-field emission patterns (FEPs) generated by EMLs in our optimized LED LHP NPLs considered here (AR ~ 2.75 and 0.91 (Fig. 3c). The limit for NC solids (Supplementary Section 1.2). Regardless of NC, Fig. 3d presents the calculated FEPs exhibit similarity solutions of the Lambertian function, and as expected, the radiation power increases with Θ_{IP}, thereby enhancing η_{out} at device level. Accordingly, under the assumption that the thin-film Θ_{IP} is equal to Θ_{IP} in individual NC, Fig. 3d presents the calculated η_{out} as functions of AR and ϵ. Clearly, as illustrated in Fig. 1, increasing dielectric contrast and aspect ratio would result in stronger emission polarization, effectively enhancing emission from the IP dipoles. Given a realistic range for the dielectric contrast in most semiconductor QDs, $\epsilon < 6$, we predict that highest attainable η_{out} for QD solid-based device is ~40%, double the efficiency from an isotropic emitter. As for the LHP NPLs considered here (AR ~ 2.75 and $\epsilon \sim 2.12$), the theoretical η_{out} is ~32%.

LED fabrication and characterization. The spin-coated ANC thin films were directly employed as EMLs to examine the EL performance. We first optimized the electron transport layer (ETL) material and process based on the device architecture of ITO/PEDOT:PSS/EML/ETL/Liq/Al (for full compound names see Methods). The control set of devices that used standard TPBi as ETL exhibited relatively modest peak external quantum efficiency, η_{ext}, of 5.87% and current efficiency, η_{CE}, of 24.74 cd A$^{-1}$. By replacing TPBi with 3TPYMB, the peak η_{ext} (η_{CE}) was enhanced to 10.6% (46.6 cd A$^{-1}$), with the turn-on voltage, V_{on}, down to 2.75 V. Other ETL materials were also tested but did not give better performance (see Supplementary Table 3). We attribute the observed efficiency enhancement to its low electron injection barrier and relatively low refractive index, $n = 1.65$, which increases η_{out} by reducing the substrate-mode and surface-plasmon-polariton losses $^{31-33}$.

We next optimized the hole transport layer (HTL) material and process based on the device architecture of ITO/PEDOT:PSS/HTL/ EML/ETL/Liq/Al. Note that colloidal ANCs were directly spin-coated onto HTLs, so the choice of HTL directly influences the behavior of ANC assembly. Numerous HTL materials were examined, while here we specifically compare three cases, without HTL, poly-TPD, and X-F6-TAPC, in which the last induces the formation of ANSLs (see Fig. 2). As for the X-F6-TAPC devices, after extensive device optimization, the following
device architecture was developed: ITO (120 ± 15 nm)/PEDOT:PSS (30 ± 3 nm)/X-F6-TAPC (18 ± 2 nm)/EML (30 ± 2 nm)/3TPYMB (50 nm)/LiQ (3 nm)/Al (70 nm). The device cross-sectional TEM image and energy diagram are shown in Fig. 4a, b. Figure 4c, d presents the current density, J, and luminance, L, as a function of voltage, V, for the three systems considered here. Angle-dependent EL measurement revealed that the radiation patterns are excellently Lambertian (Supplementary Fig. 28). The full angular EL distribution allows us to calculate \(\eta_{\text{ext}} \) as a function of \(\Theta_L \) (Fig. 4e). As compared to the HTL-free devices, the insertion of thin (19 ± 2 nm)-poly-TPD layer between ETLOD and PEDOT:PSS greatly enhanced the driving current and luminance, but the efficiencies slightly dropped.

In the X-F6-TAPC devices, although the low-hole-mobility nature slightly impedes hole transport54, the peak \(\eta_{\text{ext}} \) is impressively improved up to 24.96% (Supplementary Fig. 39), which to our knowledge, represents the highest \(\eta_{\text{ext}} \) ever reported in solution-processed QD LEDs based on all semiconductor materials. Supplementary Table 4 summarizes the EL performance of perovskite LEDs having LHP emissive layers with preferentially horizontal-oriented TDMs. Note that the high-efficiency range is wide, with \(\eta_{\text{ext}} \geq 20\% \) between 30 and 1500 cd m\(^{-2}\) (Fig. 3e), nicely coinciding the brightness range of interest in commercial displays. A degree of efficiency roll-off (H.E. 1.6 cd m\(^{-2}\)) = 10.1% and \(\eta_{\text{ext}} \) (5009 cd m\(^{-2}\)) = 10.9%), nevertheless, was still observed. Moreover, the peak \(\eta_{\text{CE}} \) and power efficiency, \(\eta_{\text{PE}} \), reach 103.4 cd A\(^{-1}\) and 92.8 lm W\(^{-1}\) (Supplementary Fig. 39), respectively, comparable to the state-of-the-art OLEDs. We notice that the high efficiency values were obtained without using any post-synthetic defects passivating agents. The statistic histogram of 65 devices, exhibits an average \(\eta_{\text{ext}} \) of 17.89% with a standard deviation of 2.62 (Fig. 4f). A possible reason resulting in a broad \(\eta_{\text{ext}} \) distribution is the variation of NC concentration from different synthetic batches.

In addition to the formation of ANSL that preserves the preferentially in-plane dipole orientation in individual square ANCs, as discussed in Figs. 1–3, the following factors also contribute to the enhanced external quantum efficiency, including (i) near-unity thin-film \(\eta_{\text{PL}} \), (ii) cascade highest-occupied-molecular-orbital energy levels that facilitate hole injection53,54, (iii) high lowest-unoccupied-molecular-orbital level of X-F6-TAPC that effectively confines injected electrons within the EML53,54,62, and (iv) low refractive indices for ETL, HTL, and TAPC that effectively confine the radiation patterns to air without using any post-synthetic defects passivating agents. The statistic histogram of 65 devices, exhibits an average \(\eta_{\text{ext}} \) of 17.89% with a standard deviation of 2.62 (Fig. 4f). A possible reason resulting in a broad \(\eta_{\text{ext}} \) distribution is the variation of NC concentration from different synthetic batches.
Methods

Materials for LHP NCs synthesis. Oleic acid (OLA, 90% technical grade, Aldrich), n-decylamine (99%, Acros Organics), dodecylamine (98%, Acros Organics), oleylamine (~90%, Acros Organics), methyl ammonium bromide (MABr, 99%, Sigma-Aldrich), formamidinium bromide (FABr, 98%, Sigma-Aldrich), lead (II) bromide (PbBr₂, 98%, Acros Organics), toluene (99.8%, Fisher Chemical), N,N-dimethylformamide (DMF, >99.8%, Aldrich), Ethanol (EtOH, absolute for analysis, Merck). All chemicals listed above were used without any further treatment.

Materials for perovskite LEDs. Patterned indium tin oxide (ITO) coated glass substrates with a sheet resistance of 15 Ω□ and a size of 3 × 3 cm² were acquired from Lumtec Corp. The hole injection material poly(3,4-ethylenedioxythiophene) -poly(styrene sulfonate) (PEDOT: PSS) was procured from Heraeus (Clevios AI 4083). The electron transporting materials, 2,2′-poly(styrene sulfonate) (PEDOT: PSS) was procured from Heraeus (Clevios AI 4083). The electron transporting materials, 2,2′-poly(styrene sulfonate) (PEDOT: PSS) was procured from Heraeus (Clevios AI 4083). The electron transporting materials, 2,2′-poly(styrene sulfonate) (PEDOT: PSS) was procured from Heraeus (Clevios AI 4083). The hole injection material poly(3,4-ethylenedioxythiophene) -poly(styrene sulfonate) (PEDOT: PSS) was procured from Heraeus (Clevios AI 4083). The electron transporting materials, 2,2′-poly(styrene sulfonate) (PEDOT: PSS) was procured from Heraeus (Clevios AI 4083). The hole injection material poly(3,4-ethylenedioxythiophene) -poly(styrene sulfonate) (PEDOT: PSS) was procured from Heraeus (Clevios AI 4083). The electron transporting materials, 2,2′-poly(styrene sulfonate) (PEDOT: PSS) was procured from Heraeus (Clevios AI 4083).

Synthesis of LHP ANCs. The colloidal dispersion of ANCs of FA₂ₓMAₓBr₂₋ₓ were synthesized using modified synthetic protocol from our earlier report63. The reaction was carried out under ambient conditions with a relative humidity of 50 ± 20% and a room temperature of 25 °C. Firstly, a 12.5 ml nonpolar toluene was taken into a round bottom (RB) flask and start vigorous stirring. The 0.625 ml OLAc and 0.03 ml of DA and 0.035 ml of dodecylamine were consequently added in the RB flask. Before mixing in the RB flask, the FABr and MABr (0.6 M) precursors were distinctly dissolved in ethanol, while PbBr₂ (0.6 M) was dissolved in polar N,N-dimethylformamide (DMF) solvent. Moreover, the FABr and MABr precursor solutions were premixed in the ratio of 1:1 before mixing in the RB flask. Subsequently, the precursor solutions of PbBr₂ (0.625 ml) and a mixture of FABr and MABr (0.625 ml) were then added dropwise in the RB flask consisting of a non-polar toluene solution of long-chain organic surfactants, DA as a long-chain ligand, and OLAc as a stabilizer. An instantaneous colloidal crystallization is triggered due to poor solubility of perovskite precursors in the nonpolar toluene. Upon centrifugation at 6797 g for 10 min, the reaction mixture is separated in supernatant and precipitate. The resultant supernatant is discarded and the precipitate containing perovskite nanocrystals is redispersed in 2.0 ml fresh toluene. The final solution was centrifuged again, and filtered through a 0.2 μm pore size Teflon filter to obtain the colloidal dispersion of ANCs. The concentration of ANCs is adjusted by adding the toluene to the colloidal dispersion.

Absorption spectrum measurement. Absorption spectra of colloidal ANCs were measured using a JASCO V670 UV–VIS–NIR Spectrophotometer.

Absolute PL quantum efficiency (ηPL) and PL measurement. The absolute ηPL was determined using the Quantaurus QY (C11347-11) from Hamamatsu equipped with 150 W Xenon light source and a 3.3 inches integrating sphere, which is coated with highly reflective Spectralon. The ηPL of samples were characterized through varying the excitation wavelengths (λex) between 350 and 500 nm. The excitation power dependent ηPL of samples were measured by using the Quantaurus-QY Plus UV–NIR absolute PL quantum yield spectrometer (C13534-12) equipped with a power tunable excitation source Lightningcure LC8. The samples were excited at an excitation wavelength of 405 nm by using a short pass filter that resulted in an absolute excitation power of 12 W m⁻², which is tuned between 1 and 100%. The PL spectrum was recorded with Hamamatsu CCD PMA-12 spectrometer (wavelength resolution <2 nm).
Time resolved photoluminescence (TRPL) spectroscopy. TRPL spectra were characterized using a Hamamatsu QuantaXus-Tau (Q-Tau) fluorescence lifetime spectrophotometer (QST-31) equipped with a photoinjection measurement system. The ANCs thin film samples were excited at 470 nm pulsed emission with a repetition rate of 200 kHz and 10,000 counts. The excitation wavelength of 470 nm was chosen to avoid excitation of underneath HTL, X-F6-TAPC, and Poly-TPD. The PL decay curves of LHP ANCs on different surfaces were fitted using a biexponential decay model. The excitation power dependent PL lifetime measurements were performed using a time correlated single photon counting (TCSPC) setup, equipped with an SPC-130-EM counting module (Becker & Hickl GmbH) and an IDQ-ID-100-20-ULN avalanche photodiode (Quantique) for recording the decay traces.

The samples were excited by 350 nm pulse laser with a maximum pulse intensity of 8.5 nJ cm\(^{-2}\) triggering a TCSPC counting module through an electronic delay generator (DG535 from Stanford Research Systems). The pulse laser intensity tuned between 0.1 and 100%.

Focused ion beam/scanning electron microscopy (FIB/SEM). Cross-sectional lamellae of perovskite LED devices were fabricated using a Thermo Scientific Helios 5 UX FIB/SEM at ScopeM, the Scientific Center for Optical and Electron Microscopy at ETH Zürich. All lamellae were prepared in the cross-section to device stack. Two amorphous carbon protection capping layers were deposited to avoid the electron-beam damage during lamellae fabrication and cross-section TEM imaging. The first capping layer was deposited using the FIB at an acceleration voltage of 2 kV and a current of 6.6 nA with a nominal thickness of 500 nm. Thereafter, the automated TEM lamella preparation (AutoTEM 5) was started to deposit the second carbon capping by the FIB at 30 kV and 0.26 nA. Subsequently, the automated transfer to the TEM grid each lamella was thinned using a sequence of decreasing currents at 30 kV, followed by one polishing step at 5 kV.

High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and high-resolution transmission electron microscopy (HR-TEM). HAADF-STEM images of LHP ANCs were acquired in cryogenic conditions using a Hitachi HD 2700 CS equipped with cryo-holder (liquid nitrogen) with high beam acceleration voltage. The HAADF-STEM cross-section image of perovskite LED device was acquired from the lamellae using a FEI Talos F200X operating at 200 kV with the HAADF-STEM and HR-TEM modes. The Energy dispersive X-ray spectroscopy (EDS) mapping of various layers in the device cross-section was acquired by using quadrant EDS X-ray detector (Super-X, Thermo Fisher Scientific, the Netherlands).

Atomic force microscopy (AFM). AFM topographic images of LHP ANCs thin film was captured using the Bruker BioScope Resolve AFM using PeakForce Tapping mode in combination with ScanAsyst automatic parameter adjustment functionality. The topographic AFM images were captured using a 1 nm ultrahigh sharp probe with a peak force amplitude of 50 nm, peak force set-point of 0.1 nN, and a scan rate of 1.4 Hz.

Spectroscopic ellipsometry (SE). Colloidal solutions of ANCs and hole transporting materials, X-F6-TAPC and Poly-TPD, were spin-coated on oxygen plasma clean Si wafer having a 302 nm SiO2 layer. The thickness (ps; ϕ) and phase shift (δ; Δ) plot acquired through a micro-spot Spectroscopic Ellipsometer from SENTECH SE850 at a variable incidence angle of 60°, 65°, and 70° with an incident light wavelength ranging between 350 nm and 850 nm. The optical constants of all thin films were calculated by fitting the raw data ϕ and Δ with the SENTECH SpectraRay2 (SR2) or Fluxim Setfos 4.6 software program. Firstly, the non-absorbing region, 600–850 nm, of optical index data was fitted with the Sellmeier dispersion equation.

\[
m_{\text{ref}}^2(\lambda) = \frac{A_1}{\lambda^2} + \frac{A_2}{\lambda^2 - A_3^2}
\]

Generally, all six Sellmeier parameters (A1, A2, A3 and B1, B2, and B3) as well as film thickness (t) were determined using spin-coated film using SpectraRay2 analysis software. Furthermore, the analysis was performed using a transfer-matrix model (TM) applied in order to account for optical absorption. An accurate fit was obtained with two TL oscillators in the range of 400–850 nm. Moreover, it is important to note that SR2 uses different definition of t than Setfos 4.6, in which one had to subtract 180° from the values obtained experimentally (SR2) in order to process them in Setfos 4.6.

Orientation of PL transition dipole moment and momentum-resolved (k-space) photoluminescence. The angle dependent PL spectra of ANCs film were characterized using a commercial Phoios instrument (Fluxim Inc.) equipped with a CCD spectrometer and a polarizer with a hemisphere glass lens. This feature allows the extraction of photons with a normalized wave vector k/k0 > 1, usually lost in substrate modes. First, the colloidal solutions of perovskite samples were spin-coated on the glass substrates. Then, the substrate was placed on the top of the hemispherical glass lens using a refractive index matching liquid. The latter enables a lack of air in the substrate-lens interface. Thereafter, an LED head emitting light at 365 nm was mounted on top and a 3 × 5 mm\(^2\) spot of the sample was excited. A typical measurement procedure consisted of simultaneous sweeping both polarization (θ) and viewing angles (ϕ). The PL emission is measured at different angles by varying the viewing angle from 0° to 85°, in the steps of 5°, whereas the polarizer angle was varied between 0° to 90° with the step size of 10°, where θ = 0° corresponds to p- and θ = 90° to s-polarization. All angular PL emission patterns were converted to k-space. For each polarization angle, the relation I(ϕ) vs. ϕ, which is obtained experimentally, can be transformed into I(k/k0) vs. k/k0 using the following relations:

\[
k_x = n_x \sin \phi \cos \theta
\]

\[
k_y = n_y \sin \phi \sin \theta
\]

\[
I(k/k_0) = I(\phi, \theta) \times C \cos \phi
\]

where k/k0 and nϕ, represent the normalized wave vector and substrate refractive index (n), respectively. C equals to √ε + w + ε, with ε being the permeability of the glass substrate at the emission frequency ω. We observed a narrow PL emission in the ANC samples, which remained unchanged with varying the viewing angle as well as polarization angle. Therefore, we assumed the emission width to be a constant. Furthermore, in most of the cases shown in this work, all intensities were normalized and therefore a quantitative determination of C was not necessary. As a result, all transformed data could be plotted as 2D contour plots, thus generating k-space radiation patterns. These were then compared to theoretically predicted ones.

For the sake of comparability with the measurement, the simulated emission patterns for polarization angles 0° < θ < 90° were calculated as a superposition of I(p)(ϕ) and I(s)(ϕ).

\[
I(\theta, \phi) = I(p)(\phi) \cos \theta + I(s)(\phi) \sin \theta
\]

Finally, all computed I(θ; ϕ) were treated analogously to experimental data, using Eqs. (2)–(4).

Optical simulations for light out-coupling. The light out-coupling in the optimized perovskite LED device was computed using a commercial software program Setfos 4.6 from Fluxim Inc. The device with a stacking layer sequence of ITO (120 nm)/PEDOT:PSS (35 nm)/X-F6-TAPC (32 nm)/3TPYMB (10 nm)/LiQ (3 nm)/Al (70 nm) was utilized for computations. The x and y values were varied between 5 and 200 nm to compute the out-coupling efficiency (ηout).

The experimental characteristics, such as, refractive index (n), individual thickness of each layer, photoluminescence spectra, and orientation of emission transition dipole moment (θ) of ANCs were independently characterized to simulate the ηout by varying the thicknesses of carrier transporting layers, X-F6-TAPC and 3TPYMB. Moreover, the Gaussian distribution of recombination profile was assumed for mode analysis to obtain the various number of losses, including substrate, absorption, waveguide, and evanescent losses.

Setfos computes the propagation of electromagnetic plane waves through a stack of individual optical layers by considering the respective polarization-dependent Fresnel reflection and transmission coefficients at each of the interfaces\(^{49,60}\). Light generation inside an active layer is described as power radiated by spatially distributed electrical dipoles (dipole moment p\(^{(\phi)}\)).

Here, Setfos package was used to simulate the angle-dependent s- and p-polarized PL intensity, I(p)(ϕ) and I(s)(ϕ), from the ANCs thin film sample attached to the hemispherical glass lens, for the given input parameters t, nϕ, and the only fitting parameter, namely the emission dipole orientation

\[
R_{\text{p}} = \frac{\sum p_{\phi}^2 + p_{\psi}^2}{\sum p^2}
\]

representing the fraction of in-plane oriented dipoles, was determined by fitting of p-polarized emission I(p) as a function of ϕ. Based on the computed R\(_p\) and other input parameters, the s-polarized emission I(s) was calculated afterward and compared to experimental data.

(8) Finally, all computed I(θ; ϕ) were treated analogously to experimental data, using Eqs. (2)–(4).
Finite elements optical simulations. The electric dipole fields have been calculated using the commercial finite element software COMSOL Multiphysics (Electromagnetic Waves Frequency Domain Module). An electrical point dipole source has been placed into a NC of specified AR and dielectric constant ϵ_r. The NC is embedded in a thin layer of dielectric constant ε_m, which lies on top of a semi-infinite glass substrate plane ($n = 1.52$). The radiation pattern is calculated by evaluating the magnitude of the real part of the Poynting vector on a circle boundary enclosing the source whose radius ($r < \frac{1}{2}$) is selected to ensure the radiation patterns are probed in the farfield.

Fabrication of perovskite LED devices. Patterned ITO coated glass substrates were rinsed with Extran MA02 neutral detergent and deionized water mixture (1:3). Afterward, these substrates were sequentially sonicated in acetone and isopropanol, each for 20 min. The substrates were then exposed to oxygen plasma for 10 min. in diener plasma cleaner using 80% lamp power. Thereafter, the aqueous PEDOT: PSS solution was spin-coated on the pre-cleaned ITO glass at a spin speed of 4000 rpm for 30 s. All substrates were then transported to nitrogen atmosphere glovebox. These substrates were annealed at 120 °C for 0.5 h in the glovebox. Then successive layers were deposited through spin-casting and thermal evaporation, respectively. A hole transporting layer, Poly-TPD or X-F6-TAPC, was deposited on the substrate. The crystallinity of the X-F6-TAPC layer was then annealed at 120 °C for 0.5 h. On the other hand, the Poly-TPD layer was then annealed at 120 °C for 0.5 h. Subsequently, a ~30 ± 2 nm LHP NCs were then cross-linked at 120 °C for 40 s. On the one hand, the cross-linking reaction of X-F6-TAPC layer was initiated through exposing a 365 nm UV irradiation for 20 s then cross-linked at 120 °C for 10 min. in diener plasma cleaner using 80% lamp power. Thereafter, the aqueous aqueous solution of Cu(I) and [Ir(fod)]$_2$NCl$_2$ complexes were spin-coated on the cross-linked layer and annealed at 120 °C for 0.5 h. Subsequently, a 50 nm ETL was deposited on the EML by the thermal evaporation. Lastly, a 200 nm Al cathode layer was deposited at a rate of 200 Å/s by using a thermal evaporation system. Each substrate is patterned to realize device active area, which is 25 mm2 for the LED devices. All substrates were mounted on a substrate frame rate of 100 Hz and sub-millisecond integration time.

received: 18 February 2022; Accepted: 31 March 2022; Published online: 19 April 2022

References

1. Cao, S. et al. Metal halide perovskites for light-emitting diodes. Nature 420, 800–803 (2002).
2. Qian, L., Zheng, Y., Xue, J. & Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photon. 5, 543–548 (2011).
3. Mashford, B. S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photon. 7, 407–412 (2013).
4. Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).
5. Shirasaki, Y., Supran, G. J., Bawendi, M. G. & Bulovic, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photon. 7, 13–23 (2013).
6. Won, Y.-H. et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019).
7. Chiba, T. et al. Anion-exchange red perovskite quantum dots with ammonium iodide salts for highly efficient light-emitting diodes. Nat. Photon. 12, 681–687 (2018).
8. Dong, Y. et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15, 668–674 (2020).
9. Kim, Y.-H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photon. 15, 148–155 (2021).
10. Sutherland, B. R. & Sargent, E. H. Perovskite photonic sources. Nat. Photon. 13, 295 (2016).
11. Liu, X.-K. et al. Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021).
12. Qian, L. N. et al. Perovskites for next-generation optical sources. Chem. Rev. 119, 7444–7477 (2019).
13. Kim, Y.-H., Cho, H. & Lee, T.-W. Metal halide perovskite light emitters. Proc. Natl Acad. Sci. 113, 11686–11702 (2016).
14. Li, G. et al. Surface ligand engineering for near-unity quantum yield inorganic halide perovskite QDs and high-performance QLEDs. Chem. Mater. 30, 6099–6107 (2018).
15. Pan, J. et al. Bidentate ligand-passivated CaPbI$_2$ perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 140, 562–565 (2018).
16. Di Stasio, F., Christodoulou, S., Hsu, N. & Konstantatos, G. Near-unity photoluminescence quantum efficiency in CaPbBr$_2$ nanocrystal solid-state films via posttreatment synthesis with lead bromide. Chem. Mater. 29, 7663–7667 (2017).
17. Dutta, A., Behera, R. K., Pal, P., Baitalik, S. & Pradhan, S. Near-unity efficiency quantum-dot light-emitting devices with high performance. Nano Lett. 19, 4151–4157 (2019).
18. Yablonsivich, E. Statistical ray optics. J. Opt. Soc. Am. 72, 899–907 (1982).
19. Cho, C. et al. The role of photon recycling in perovskite light-emitting diodes. Nat. Commun. 11, 611 (2020).
20. Eaton, S. W. et al. Lasing in robust cesium lead halide perovskite nanowires. Sci. Adv. 5, 7477 (2019).
21. estudiantes de las ciencias de la materia. Phosphorescent dye-based supramolecules for high-efficiency OLEDs. Nat. Photon. 7, 7775–7782 (2019).
22. Kim, K.-H. et al. Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes. Nat. Commun. 5, 4769 (2014).
23. Kim, S.-Y. et al. Organic light-emitting diodes with 30% external quantum efficiency based on a horizontally oriented emitter. Adv. Funct. Mater. 23, 3896–3900 (2013).
24. Kim, K.-H. & Kim, J.-J. Origin and control of orientation of phosphorescent and TADF dyes for high-efficiency OLEDs. Adv. Mater. 30, 1705600 (2018).
25. Gather, M. & Reineke, S. Recent advances in light outcoupling from white organic light-emitting diodes. J. Photon. Energy 5, 057607 (2015).
26. Koo, W. H. et al. Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles. Nat. Photon. 4, 222–226 (2010).
27. Sun, Y. & Forrest, S. R. Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids. Nat. Photon. 2, 483–487 (2008).
28. Do, Y.-R., Kim, Y.-C., Song, Y.-W. & Lee, Y.-H. Enhanced light extraction efficiency from organic light-emitting diodes by insertion of a two-dimensional photonic crystal structure. J. Appl. Phys. 96, 7629–7636 (2004).
29. Gifford, D. K. & Hall, D. G. Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling. Appl. Phys. Lett. 81, 4315–4317 (2002).
30. Schaller, J. A. et al. Orientation of luminescent excitons in layered nanomaterials. Nat. Nanotechnol. 8, 271–276 (2013).
32. Echeverry, J. P., Urbaszek, B., Amand, T., Marie, X. & Gerber, I. C. Splitting between bright and dark excitons in transition metal dichalcogenide monolayers. Phys. Rev. B Condens. Matter 93, 121107 (2016).
33. Amani, M. et al. Near-unity photoluminescence quantum yield in MoS2. Science 350, 1065 (2015).
34. Scott, R. et al. Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure. Nat. Nanotechnol. 12, 1155–1160 (2017).
35. Ma, X. et al. Anisotropic photoluminescence from isotropic optical transition dipoles in semiconductor nanoplatelets. Nano Lett. 18, 4647–4652 (2018).
36. Gao, Y., Weidman, M. C. & Tisdale, W. A. CdSe Nanoplatelet semiconductors. Adv. Mater. 30, 262–263 (2017).
37. Tanaka, K. et al. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3, CH3NH3PbI3. Solid State Commun. 127, 619–623 (2003).
38. Becker, M. A. et al. Bright triplet excitons in caesium lead halide perovskites. Nature 553, 189–193 (2018).
39. Hu, J. et al. Linearly polarized emission from colloidal semiconductor quantum rods. Science 292, 2560 (2001).
40. Jurow, M. J. et al. Tunable anisotropic photon emission from self-organized CaPbBr3 perovskite nanocrystals. Nano Lett. 17, 4534–4540 (2017).
41. Gal'kovski, K. et al. Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Phys. Rev. B Condens. Matter 92, 962–970 (2016).
42. Glaser, T. et al. Infrared spectroscopic study of vibrational modes in methylammonium lead halide perovskites. J. Phys. Chem. Lett. 6, 2913–2918 (2015).
43. Sendner, M. et al. Optical phonons in methylammonium lead halide perovskites and implications for charge transport. Mater. Horiz. 3, 613–620 (2016).
44. Jurow, M. J. et al. Manipulating the transition dipole moment of CaPbBr3 perovskite nanocrystals for superior optical properties. Nano Lett. 19, 2489–2496 (2019).
45. Jagielski, J. et al. Scalable photonic sources using two-dimensional lead halide perovskite superlattices. Nat. Commun. 11, 387 (2020).
46. Lee, T. et al. Controlling the dimension of the quantum resonance in CdTe quantum dot superlattices fabricated via layer-by-layer assembly. Nat. Commun. 11, 5471 (2020).
47. Wilson, J. N., Frost, J. M., Wallace, S. K. & Walsh, A. Dielectric and ferroic properties of metal halide perovskites. APL Mater. 7, 019001 (2019).
48. Kumar, S. et al. Efficient blue electroluminescence using quantum-confined two-dimensional perovskites. ACS Nano 10, 9720–9729 (2016).
49. Kumar, S., Jagielski, J., Marcato, T., Solari, S. F. & Shih, C.-J. Understanding the ligand effects on photophysical, optical, and electroluminescent characteristics of hybrid lead halide perovskite nanocrystal solids. J. Phys. Chem. Lett. 10, 7560–7567 (2019).
50. Furuise, J., Yokoyama, D., Adachi, C. & Brütting, W. Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements. Appl. Phys. Lett. 96, 073302 (2010).
51. Salehi, A. et al. Highly efficient organic light-emitting diode using a low refractive index electron transport layer. Adv. Opt. Mater. 5, 1700197 (2017).
52. Shin, H. et al. Sky-blue phosphorescent oleds with 34.1% external quantum efficiency using a low refractive index electron transporting layer. Adv. Mater. 28, 4920–4925 (2015).
53. Jou, J.-H., Kumar, S., Agrawal, A., Li, T.-H. & Sahoo, S. Approaches for fabricating high efficiency organic light emitting diodes. J. Mater. Chem. C, 3, 2974–3002 (2015).
54. Liapitsis, G. & Meerholz, K. Crosslinkable TAPC-based hole-transport materials for solution-processed organic light-emitting diodes with reduced efficiency roll-off. Adv. Funct. Mater. 23, 359–365 (2013).
55. Yeom, J. E. et al. Good charge balanced inverted red InP/ZnSe/ZnS quantum dot light-emitting diode with high mobility and deep HOMO level hole transport layer. ACS Energy Lett. 5, 3868–3875 (2020).
56. Yan, F. et al. Highly efficient visible colloidal lead-halide perovskite nanocrystal light-emitting diodes. Nano Lett. 18, 3157–3164 (2018).
57. Kim, T. et al. Efficient and stable blue quantum dot light-emitting diode. Nature 586, 385–389 (2020).
58. Wang, L. et al. Blue quantum dot light-emitting diodes with high electroluminescence efficiency. ACS Appl. Mater. Interfaces 9, 38755–38760 (2017).
59. Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).
60. Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).
61. Hassan, Y. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591, 72–77 (2021).
62. Daisaku, T., Takashi, T., Takayuki, C., Soichi, W. & Junji, K. Novel electron-transport material containing boron atom with a high triplet excited energy level. Chem. Lett. 36, 2011–2012 (2007).
63. Kumar, S. et al. Mixing entropy-induced layered polycrystallinity enabling efficient and stable perovskite nanocrystal light-emitting diodes. ACS Energy Lett. 4, 118–125 (2019).
64. Sommerfeld, A. Über die fortzunahme des lichtes in dispergierenden medien. Ann. der Phys. 349, 177–202 (1941).
65. Yeh P. Optical Waves in Layered Media. Wiley-Interscience (2005).
66. Neyts, K. A. Simulation of light emission from thin-film microcavities. J. Opt. Soc. Am. A 15, 962–971 (1998).
67. Novotny, L. Allowed and forbidden light in near-field optics. I. A single dipolar light source. J. Opt. Soc. Am. A 14, 91–104 (1997).
68. Chance R. R., Prock A., Silbey R. Molecular Fluorescence and Energy Transfer Near Interfaces (2007).
69. R. Chance, A. Prock, R. Silbey. Molecular fluorescence and energy transfer near interfaces. In: Advances in Chemical Physics (ed. Rice IPaSA). John Wiley & Sons (1978).
70. Jeong, S.-H. et al. Characterizing the efficiency of perovskite solar cells and light-emitting diodes. Joule 4, 1206–1235 (2020).

Acknowledgements
C.J.S., S.K., and T.M. gratefully acknowledge financial support from the ETH research grant (ETH-33 18-2), Swiss National Science Foundation project grant (project number: 200011-179844), and European Research Council (ERC) starting grant (N849229-CQWLED). In addition, the technical support from the FIRST Lab in ETH Zurich is highly appreciated. The authors appreciate technical support of Dr. Reuteler Joakim and Dr. Zeng Peng from ScopeM, the Scientific Center for Optical and Electron Microscopy at ETH Zurich. We thank Dr. Sergi Yalomin for power dependent time resolved PL lifetime and PL efficiency characterization of ANCA thin films. We also cherish support from Dr. Efstratios Mitridis for infrared imaging of device surface temperature.

Author contributions
S.K., T.M., and C.J.S. conceived the idea and designed the experiments. S.K. synthesized CQWs and carried out their photophysical, optical, and morphological characterization. S.K. designed, fabricated, and characterized the perovskite LED devices. S.K. and T.M. performed optical simulations. T.M. performed most theoretical analysis. Y.T.L. performed optical simulations. T.M. and C.J.S. co-wrote the paper. All authors contributed to this work, commented on the paper, and agreed to the contents of the paper and supplementary materials.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-29812-5.

Correspondence and requests for materials should be addressed to Chih-Jen Shih.

Peer review information Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022