Nutritional Properties and Toxicological Assessment of High Nutrient Biscuit Developed from Blends of Some Cereals and Legume

Oluwole OB*, Elemo GN, Kosoko SB, Adeyoju A, Oyegbami F, Owalobi SO, Taiwo Latona-Tella, Olasehinde TA and Akinwale TE

Department of Food Technology, Federal Institute of Industrial Research Oshodi Lagos, Nigeria

Abstract

This study sought to evaluate the nutritional and antioxidant properties of high nutrient biscuits from some cereals and legume. Toxicological investigations were also carried out on the biscuit developed alongside a commercial biscuit using some selected parameters. Proximate, mineral and vitamin composition of the biscuit were determined. Rats were fed with the high nutrient biscuits, commercial biscuit and normal rat feed for twenty-eight (28) days and were sacrificed by cervical dislocation. The Liver, heart and kidney tissues were analysed for liver (Alanine amino transferase [ALT], Alkaline Phosphatase [ALP], Aspartate amino transferase [AST], Albumin [ALB], Bilirubin [BIL] Total protein (TP)) and kidney (creatinine [CREA] and urea) enzyme and protein levels, including glutathione (GSH), glutathione peroxidase (GPX), glutathione –S- transferase, catalase, superoxide dismutase (SOD) activities, and malondialdehyde (MDA) levels as well as lipid profiles which cover for total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL) and low density lipoprotein (LDL). Feeding on the biscuits let to the significant (P<0.05) decrease in AST, ALT, ALP, BIL, urea and creatinine levels. However, relative to the control, the high nutrient biscuit (BRB) had lower concentration of these enzymes and proteins when compared to the conventional biscuit (ARB) and the control (BRC) although there was increase in the ALB and TP content of the BRB group compared to ARB and BRC. Furthermore BRB had significant reduction in the TC, TG, LDL, and HDL concentration followed by the ARB when compared to the BRC groups. Moreover there was significant increase in the levels of the antioxidant enzymes and decrease in malondialdehyde production in the liver, heart and kidney of BRB when compared to other groups. This result indicates high nutritional properties and antioxidant potential of the biscuits. Therefore the high nutrient biscuit could be used as functional food and an adjunct dietary therapy for malnourished children.

Keywords: Biscuit; Nutrition; Anti-oxidant; Malnourish; Children

Introduction

Malnutrition is a major health problem common to underdeveloped and developing countries of the world. It is a major cause of death and accounts for fifty percent deaths in children less than five years [1]. Recent reports have shown that 43 percent of children are stunted all over the world due to poverty and inaccessibility to good food. Moreover stunting is commonly used as an index for long-term chronic nutritional deficiency [2]. Nutritional deficiency has been linked with high free radical generation [3]. Free radicals are capable of inducing oxidative stress which has been implicated in the development and progression of some diseases such as diabetes, cardiovascular and neurodegenerative diseases [4,5].

One of the Major interventions for the treatment and/or management of malnutrition is fortification of food with essential nutrients [6]. Many food products such as bread, biscuit, snacks and confectioneries are vehicles used to deliver major nutrients to the body [7]. Development of fortified biscuit is widely acceptable since it is a good vehicle of supplementation with proteins, carbohydrate, minerals and fats including phytochemicals. This major characteristic is due to the fact that biscuits are ready to eat, popular, easily accessible, cheap, has high nutrient density and long shelf life. Biscuit are usually produced with different ingredients such as flour, shortening (margarine), sweeteners (sugar) and milk. The type of cereals and other constituents present in a biscuit determines its nutritional quality and medicinal properties.

Previous reports have shown that cereals and legumes such as sorghum, maize and soybean contain appreciable levels of micro and macro nutrients including phytochemicals which can help to combat malnutrition as well as prevent oxidative stress and diseases associated with malnutrition [8,9]. This study sought to evaluate the nutritional properties of high nutrient biscuit developed from sorghum, maize and soybean flour as well as assessing its toxicological effects.

Materials and Methods

Materials

Soybean, sorghum, maize, wheatflour, sugar, salt, fat, Sodium bicarbonate (baking powder), lecithin and milk were purchased from the main market in Mushin Lagos State Nigeria.

Methods

Production of biscuit: Biscuits were produced at laboratory scale using the method of Ayo [10] with a slight modification.

Determination of nutritional composition: Nutrition composition of the biscuit was determined using established methods. Proximate and mineral composition was determined using the method of AOAC [11]. Vitamin analysis was also carried via high performance liquid chromatography (HPLC) using the method of AOAC [11].

Sensory evaluation: Sensory evaluation was conducted on the developed biscuit at laboratory scale according to the method described [12]. It was compared to readily available commercial biscuit. They were given the reference codes HNB and CB for the developed and

*Corresponding author: Oluwole Bolanle Oluwatoy, Department of Food Technology, Federal Institute of Industrial Research Oshodi Lagos, Nigeria, Tel: +2348033044961; E-mail: oluwatoyin@oluwole675@yahoo.com

Received September 30, 2015; Accepted November 25, 2015; Published December 01, 2015

Citation: Oluwole OB, Elemo GN, Kosoko SB, Adeyoju A, Oyegbami F, et al. (2015) Nutritional Properties and Toxicological Assessment of High Nutrient Biscuit Developed from Blends of Some Cereals and Legume. J Nutr Disorders Ther 5: 176. doi:10.4172/2161-0509.1000176

Copyright: © 2015 Oluwole OB, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
commercial biscuit respectively. The coded samples were presented to a 10-men panelist to evaluate for the attributes: colour/appearance, taste, after taste, mouth feel, crispiness, crunchiness texture, flavour, aroma, and overall acceptability. Scores were given to the scales: (1) extremely unacceptable (2) very unacceptable (3) moderately unacceptable (4) slightly unacceptable (5) neither acceptable nor unacceptable (6) slightly acceptable (7) moderately acceptable (8) very acceptable and (9) extremely acceptable.

Animal experiment: Male albino rats (25) with mean weight 95 ± 5.32 g and mean age 3-4 weeks were divided into three groups BRC CB and HNB and housed in rat cages. They were allowed access to water and feed ad libitum for them to acclimatize to laboratory conditions. After this period, the control animals (BRC) were continues on the commercial feed uninterrupted, while CB animals were placed on commercial biscuits and group C on the baked soy biscuit. The animals were fed for 28 days with the appropriate feeds and water ad libitum. The animals were weighed immediately before commencement of the feeding experiment and afterwards at a week intervals for the remaining days the was carried out.

Determination of hematological parameters: Hematology profile, which covers hemoglobin level (HGB), packed cell volume (PCV), red blood cell (RBC) count, white blood cell count (WBC), platelets (PLT) was determined using a Synchron CX5 autoanalyzer according to the manufacturer’s protocol.

Determination of serum biochemistry (liver and renal function enzymes, lipid profile): Blood serum was used for the evaluation of biochemical parameters, including urea, creatinine, total bilirubin, total protein, albumin, alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase, using commercial kits from Randox Laboratories, UK, according to the manufacturer’s protocol. Serum’s total cholesterol, triglyceride, and high-density lipoprotein (HDL) levels were also measured via enzymatic colorimetric method using Randox kits [13].

Determination of oxidative stress parameters: Lipid peroxidation was determined by measuring malondialdehyde (MDA) formed by thiobarbituric acid reaction (TBAR). Catalase (CAT) activity was estimated by measuring the rate of decomposition of H2O2 using the method of Aebi [14]. The level of superoxide dismutase (SOD) activity was determined [15]. While the method of Ellman [16] was adopted in estimating the activity of reduced glutathione (GSH).

Data analysis: Results were pooled and statistical significance was established using one-way analysis of variance, and data were reported as mean ± standard error. Significant difference was established at p<0.05. Statistical analyses were carried out using SPSS for Windows, version 17.0 (SPSS Inc., Chicago, IL).

Results and Discussion

There are indications that foods and nutrients contribute to normal functioning of the body. Inclusion of cereals and legumes with bioactive compounds and nutraceuticals in human nutrition has been shown to alleviate malnutrition and its associated diseases such as neurodegenerative diseases, diabetes, diverticulosis and cardiovascular diseases [17]. The proximate composition of the high nutrient density biscuit as shown in Table 1 revealed appreciable amounts of carbohydrate (59.34%), protein (17.50%) and high calories (440.7 kcal). Table 2 shows the mineral composition of the high nutrient density biscuit. Minerals such as iron (5.9 mg/g), Magnesium (39.0 mg/g), Phosphorus (145.1 mg/g), Zinc (1.2 mg/g), Selenium (4.9 mg/g) and Calcium (191.0 mg/g). Furthermore, Table 3 shows the presence of vitamin B1 (0.12 mg/g), B2 (0.10 mg/g), B6 (1.50 mg/g), B12 (0.10 mg/g), B12 (40.10mg/g) and D (1.30 mg/g). Furthermore, sensory characteristics of the laboratory scale developed biscuit and a commercial biscuit were done using parameters such as color/appearance, taste, after taste, mouthfeel, texture, crispiness, crunchiness, flavour and overall acceptability. Similar result was obtained in both biscuit samples over a period of five months as shown in Table 4. There was decrease in the sensory characteristics over the months.

The results of the haematological indices are shown in Table 5. There was no significant (P<0.05) difference in all the hematological parameters that were determined in the control, CB and HNB groups. This shows that feeding on the biscuit does not pose any risk of diseases since increase or decrease in any of these parameters indicate

Parameters	HNB
Moisture (%)	5.9 ± 0.35
Protein (%)	14.9 ± 0.25
Crude fat (%)	17.11 ± 0.23
Ash (%)	2.04 ± 0.18
CCOhydrate (%)	59.34 ± 9.7
Energy (K cal)	440.7 ± 2.25

HNB - high nutrient biscuit developed from soybean. Values represent means of triplicate readings.

Minerals	HNB
Iron	5.9 ± 0.06
Magnesium	39.0 ± 0.25
Phosphorous	145.1 ± 2.2
Zinc	1.2 ± 0.05
Selenium	4.9 ± 0.12
Calcium	191.0 ± 1.2

HNB - high nutrient biscuit. Values represent means of triplicate readings.

Vitamins	HNB
B1	0.12 ± 0.0002
B2	0.10 ± 0.0001
B3	1.50 ± 0.0003
B4	0.10 ± 0.0005
D	1.30 ± 0.0003
B12	40.10 ± 2.14

HNB - high nutrient biscuit. Values represent means of triplicate readings.

Biscuit attributes	HNB
Colour/Appearance	7.4 ± 0.67
Taste	7.2 ± 0.69
After taste	6.54 ± 0.55
Mouthfeel	6.26 ± 0.54
Texture	7.02 ± 0.78
Crispiness	6.50 ± 0.67
Crunchiness	6.44 ± 0.62
Flavour	6.96 ± 0.81
Overall acceptability	6.72

HNB - high nutrient biscuit. Note: Values = mean ± SD; n = 10.

| Table 4: Sensory attributes of developed biscuits. |
Nutritional Properties and Toxicological Assessment of High Nutrient Biscuit Developed from Blends of Some Cereals and Legume. J Nutr Disorders Ther 5: 176. doi:10.4172/2161-0509.1000176

Values represent means of triplicate readings. Values with the same letter along the rows are not significantly (P<0.05) different.

Table 1: Lipid profile of the experimental groups.

Parameters	Control (BCR)	CB	HNB
TC (mg/dL)	154.4 ± 6.9*	160.0 ± 8.0*	164.2 ± 7.5*
TG (mg/dL)	89.2 ± 2.3*	95.0 ± 2.8*	100.0 ± 2.5*
HDL (mg/dL)	37.0 ± 3.0*	38.0 ± 3.1*	39.0 ± 3.2*
LDL (mg/dL)	81.0 ± 2.5*	85.0 ± 2.7*	88.0 ± 2.9*

Values represent means of triplicate readings. Values with the same letter along the rows are not significantly different at P>0.05.

Table 2: Hematological profile of the experimental groups.

Parameters	BRC	CB	HNB
RBC (x1012/L)	7.3 ± 0.1*	7.4 ± 0.2*	7.6 ± 0.3*
Hgb (g/dL)	14.6 ± 1.2*	15.0 ± 1.3*	15.4 ± 1.4*
PCV (%)	42.1 ± 2.1*	42.5 ± 2.2*	43.0 ± 2.3*
MCHC (g/dL)	32.1 ± 1.2*	32.5 ± 1.3*	33.0 ± 1.4*

Parameters Control CB HNB

ALT (µL) 40.56 ± 13.2* 21.4 ± 8.63* 20.63 ± 10.2*
AST (µL) 210.01 ± 15.8* 224.8 ± 18.5* 232.83 ± 16.4*
ALP (µL) 42.86 ± 10.3* 66.5 ± 5.32* 65.2 ± 8.53*
ALB (g/L) 16.76 ± 4.21* 21.4 ± 3.11* 20.63 ± 2.91*
TP (g/L) 31.66 ± 10.5* 45.8 ± 10.5* 38.42 ± 9.7*
BIL (µmol/L) 0.36 ± 0.10* 1.56 ± 0.50* 0.46 ± 0.15*

Parameters Control	CB	HNB
CREA (µmol/L) 29.93 ± 6.5*	21.72 ± 3.9*	15.97 ± 2.5*
Urea (mmol/L) 1.66 ± 0.8*	0.93 ± 0.41*	1.36 ± 0.6*

Table 3: Blood chemistry parameter for kidney function.

Figure 1: Lipid profile of the experimental groups. TC= Total cholesterol, TG= Triglyceride, LDL= Low density lipoprotein, HDL= high density lipoprotein, BCR= Control group, CB= rats fed with commercial biscuit, HNB= Rats fed high nutrient biscuit.
activities than CB. Higher antioxidant enzyme activities will reduce oxidative stress which has been associated with severe malnutrition.

Malondialdehyde (MDA) is one of the products of lipid peroxidation. Its presence in tissues indicates oxidative stress. Results from this study showed that feeding on the biscuit reduced MDA levels in the heart, liver and kidney. However, MDA levels in HNB were significantly lower than CB and BRC (Figure 5). Nwozo and Oyinloye also reported decrease in MDA levels in rats’ liver which was caused by aqueous extract of *Afromomum melegueta* [28].

Conclusion

The nutritional properties, high antioxidant activity and protective effects of the high nutrient biscuit on liver and kidney suggests its potential as functional food and adjunct therapy for the management and/or treatment of malnutrition and malnutrition-induced oxidative stress.

References

1. Aly GS, Shaalan AH, Mattar MK, Ahmed HH, Zaki ME, et al. (2014) Oxidative stress status in nutritionally stunted children. Egypt. Pediatr Assoc Gazette 62: 28–33.

2. Monteiro CA, Benicio MH, Conde WL, Konno S, Lovadino AL, et al. (2010) Narrowing socioeconomic inequality in child stunting: the Brazilian experience, 1974-2007. Bull World Health Organ 88: 305-311.

3. Wilcox JK, Ash SL, Catignani GL (2004) Antioxidants and prevention of chronic disease. Review Crit Rev Food Sci Nutr 44: 275-295.

4. G Oobh, IA Akinbola, AO Ademosun, DM Sanni, OV Oduabanjo (2015) Essential Oil from Clove Bud (Eugenia aromatic Kuntize) Inhibit Key Enzymes Relevant to the Management of Type-2 Diabetes and Some Pro-oxidant Induced Lipid Peroxidation in Rats Pancreas in vitro. J Oleo Sci 64: 775-782.

5. Valko M, Leibfritz D, Moncol M, Cronin MT, Mazur V, et al. (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39: 44-84.

6. Miller DD, Welch RM (2013) Food system strategies for preventing micronutrient malnutrition. Food policy 42: 115-128.

7. Chinma CE, Gemah DI (2007) Physicochemical and sensory properties of cookies produced from cassava/soyabean/mango composite flours. J Raw Mat Res 4: 32-43.

8. Awadalkareem AM, Mustafa AI, El Tinay AH (2008) Protein, Mineral Content and Amino Acid Profile of Sorghum Flour as Influenced by Soybean Protein Concentrate Supplementation. Pakistan Journal of Nutrition 7: 475-479.

9. Rahale S, Mohammad S, Gharibzahedi T, Razavi SH, Jafari SM (2014) Recent developments on new formulations based on nutrient-dense ingredients for the production of healthy-functional bread: a review. J Food Sci and Tech 51: 2896-2906.

10. Ayo JA, Ayo VA, Nkama I, Adewori R (2007) Physicochemical, in vitro digestibility and organoleptic evaluation of “Acha” wheat biscuits supplemented with soya bean flour. Nigeria Food journal 25: 77-89.

11. AOAC (2010) Official Methods of Analysis. (20th edn), Association of Official Analytical Chemists. Washington, DC.

12. Ihekonerieke, AI, Ngoddy PO (1985) Integrated Food Science and Technology for the Tropics, Macmillan Publishers, London, UK.

13. Friedwald WT, Levy RT, Frederickson DS (1972) Estimation of the concentration of low lipoprotein cholesterol in plasma without use of preparative ultracentrifuge. Clin Chem 18: 499-502.

14. Aebi HE (1983) Methods in Enzymatic Analysis, Academic press, New York.

15. Misra H, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247: 3170.

16. Ellman GL (1959) Tissue sulphhydril groups. Arch Biochem Biophys 32: 70-77.

17. Erukainure OL, Ebuehi OA, Adeboyefo FO, Aliyu MC, Elemo GN (2013)
Hematological and biochemical changes in diabetic rats fed with fiber-enriched cake. Journal of Acute Medicine 3: 39-44.

18. Garg M, Garg C, Dhar VJ, Kalia AN (2010) Standardized Alcoholic extract of Phyllanthus fraternus exerts potential action against disturbed biochemical parameters in diabetic rats. African J Bioch Res 4:186-190.

19. Mizuno A, Uematsu T, Gotoh S, Katoh E, Nakashima M (1996) The measurement of caffeine concentration in scalp hair as an indicator of liver function. J Pharm Pharmacol 48: 660-664.

20. Rosalki SB, McIntyre N (1999) Biochemical investigations in the management of liver disease. Oxford textbook of clinical hepatology, (2nd edtn) New York, Oxford University press, 503-521.

21. Fevery J (2008) Bilirubin in clinical practice: a review. Liver Int 28: 592-605.

22. Nikkhila EA, Kekki M (1973) Plasma triacylglycerol transport kinetics in diabetes mellitus. Metabolism 22: 1-22.

23. Chaterjee MN, Shinde R (1994) Metabolism of carbohydrates Part-II, Text book of Medical Biochemistry, JayPee brothers Medical Publishers Pvt Ltd 421-430.

24. Murray RK, Granner DK, Mayes PA, Rowell VW (2000) Harpers Biochemistry, (25th edtn) Stanford CT, Appleton and Lange 610-617.

25. Saliu JK, Bawa-Allah KA (2012) Toxicological Effects of Lead and Zinc on the Antioxidant Enzyme Activities of Post Juvenile Clarias gariepinus. Resources and Environment 2: 21-26.

26. Esterbauer H, Gebicki J, Puhl H, Ju¨ gens G (1992) The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med 13: 341-90.

27. Matés JM, Pérez-Gómez C, deCastro IN (1999) Antioxidant Enzymes and Human Diseases. Clinical Biochemistry 32: 595-603.

28. Nwozo SO, Oyinloye BE (2011) Hepatoprotective effect of aqueous extract of Aframomum melegueta on ethanol-induced toxicity in rats. Acta Biochimica Polonica 58: 355-358.