Cost-Effectiveness of Primary and Secondary Prevention Strategies for Cervical Cancer in Brazil: A Systematic Review

Allex Jardim da Fonseca1,2*, Cibelli Navarro Roldan Martin3, Rebeca Liebich Gusmão Gigante4, Luiz Carlos de Lima Ferreira5 and Giacomo Balbinotto Neto4,5

1Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Amazonas, Universidade Federal de Roraima, Brazil
2Researcher of Post Graduate Program of Health Science of Universidade Federal de Roraima, Brazil
3Professor of Tropical Medicine Post-Graduate Program, Amazonas States University, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Brazil
4Professor of post Graduate Program in Economics, Federal University of Rio Grande do Sul, Brazil
5Professor of Post-Graduate Program in Economics, Federal University of Rio Grande do Sul, Institute for Health Technology Assessment (IATS), Brazil

Abstract

Background: Although Cervical Cancer (CC) can be effectively prevented, it is still a serious public health problem, especially in developing countries. In Brazil, almost 18,000 new cases are expected in 2013, and it is the type of neoplasia that claims the most lives of young women. New secondary prevention strategies (such as the HPV-DNA test) and primary prevention strategies (vaccination against HPV) have been developed. However, applying these strategies to large populations is costly, and their use is limited in Brazil. Because financial resources are scarce in Brazilian scenario, studies about the economic implications of the new preventative technologies for CC may support rational and evidence-based decisions in public health.

Methods: A systematic search of the articles (1970 to 2013) was conducted in MEDLINE, EMBASE, Cochrane Collaboration of Systematic Reviews, and LILACS. The aim was original articles that evaluated the cost-effectiveness of primary and/or secondary prevention strategies for cervical cancer in Brazil.

Results: A total of 6 articles were included in this review. Two articles described economic analyses of population screening strategies in comparison to the current strategy in Brazil (oncotic cytology). Four articles evaluated the addition of a vaccine against the HPV (genotypes 16 and 18) for Brazil in comparison to population screening.

Conclusion: Despite raising the costs of preventing cervical cancer, new preventive technologies reveal a favorable cost-effectiveness profile for the case of Brazil. Ignoring the new preventative technologies for CC can lead to misguided and perverse consequences in a country where programs based on the Papanicolaou technique have only been partially successful.

Keywords: Cervical neoplasia; Primary prevention; Secondary prevention; Cervical cancer prevention; Cost-effectiveness analysis

Abbreviations: HPV: Human Papilloma Virus; CC: Cervical Cancer; OC: Oncotic Cytology; ICER: Incremental Cost-Effectiveness Ratio; QALY: Quality-Adjusted Life Year; ASC-US: Atypical Squamous Cell of Unknown Significance

Background

Although Cervical Cancer (CC) can be effectively prevented, almost 500,000 new cases are diagnosed each year worldwide [1]. The global reduction in the incidence and mortality from CC over the last four decades did not occur in a homogeneous manner; it was concentrated in the developed countries that were able to implement solid and effective population screening programs [2].

In Brazil, organizational and financial difficulties have compromised the quality of prevention programs based on Oncotic Cytology (OC), and they have not succeeded in controlling the disease; approximately 17,500 new cases of CC are expected in 2013 [3-5]. It is the second most common type of neoplasia in women (excluding non-melanoma skin cancer), and it is the type of neoplasia that claims the most lives of young women (15 to 44 years of age) [1].

These difficulties, which are associated with the inherent limitations of the OC technique, have led many researchers to seek alternative or supplementary techniques for OC for CC screening, such as the hybrid capture test (HPV-DNA), and, more recently, to prepare vaccines against the most carcinogenic genotypes of HPV. These new technologies exhibit better performance and/or effectiveness; however, they would result in higher costs if they were incorporated into Brazil’s prevention strategy.

Because of the universal increase in healthcare costs and the growing constraints imposed by the scarcity of resources, there is a greater need to justify the use of a new technique by considering its cost-effectiveness ratio [6]. To handle this growing demand, economic analysis tools can be applied to new healthcare technologies to support decision-making in public health that aims for rational and efficient use of available resources [7,8].

Among the methods of economic evaluation, cost-effectiveness analyses have received special attention [7]. Markov models have been widely used to evaluate new technologies and to compare healthcare strategies around the world. In comparing two strategies, the Markovian model provides the Incremental Cost-Effectiveness Ratio (ICER) as the primary result [8]. This ratio shows the additional cost required to save 1 year of life (adjusted or not by quality of life) using one strategy compared to a baseline strategy. The World Health Organization stipulates that a strategy is considered cost-effective if the

*Corresponding author: Allex Jardim da Fonseca, Avenida Pedro Teixeira, 25, Bairro Dom Pedro, Manaus, Amazonas, Brazil. Tel: + 55 95 81126172, Fax: + 55 95 36249253; E-mail: allex.jardim@bol.com.br

Received August 14, 2013; Accepted September 13, 2013; Published September 18, 2013

Citation: da Fonseca AJ, Roldan Martin CN, Gusmão Gigante RL, de Lima Ferreira LC, Neto GB (2013) Cost-Effectiveness of Primary and Secondary Prevention Strategies for Cervical Cancer in Brazil: A Systematic Review. Gynecol Obstet 3: 169. doi:10.4172/2161-0932.1000169

Copyright: © 2013 da Fonseca AJ, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
ICER is less than 1 to 3 times the per capita GDP of the country (for Brazil, approximately US$10,000 to US$30,000 in 2011) [9].

The objective of this article is to systematically review the studies that have used cost-effectiveness and cost-utility analyses to evaluate the clinical and economic implications of primary (vaccination against HPV) and secondary (population screening strategies) prevention strategies for CC in Brazil.

Methods

Search strategy

A systematic search of the articles published from 1970 to 2013 was conducted in MEDLINE (Ovid system), EMBASE, Cochrane Collaboration of Systematic Reviews, and LILACS. The search aimed to identify original articles published in indexed periodicals that evaluated the cost-effectiveness of primary and/or secondary prevention strategies for cervical cancer in Brazil. The terms used for this review search were "human papillomavirus", "HPV", "vaccine", "vaccination", "prevention", "screening", "cost", "cost-effectiveness", "cost-utility", "economic evaluation", "economic models", "pharmacoeconomics", "Brazilian" and "Brazil".

Inclusion criteria and quality assessment

Articles in Portuguese and English that evaluated the cost-effectiveness of strategies for preventing CC in Brazil using mathematical cost-effectiveness models were included.

According to the recommendations of Sonnenberg and Becker for evaluating the cost-effectiveness of healthcare, the following criteria were used to evaluate the quality of the articles: 1) to use of a Markov mathematical model or a dynamic transition model; 2) to use a clear point of view of Brazil Unified Health System as the payer; 3) to evaluate a complete and clear economic comparison between at least 2 preventive strategies; 4) to use a base case comparison that is compatible with the current environment in Brazil (OC each 3 years for every women between 25-64 years old); 5) to make appropriate measurement of clinical and economic outcomes (as $/QALY or $/Years of life saved); 6) to present analysis of the uncertainty of the variables (e.g., a sensitivity analysis of at least 3 variables); 7) to use reliable data sources to estimate variables [9].

Extracted information

The following information was extracted from each article: the model type, the timeframe of the analysis, the perspective, the baseline scenario, the estimated coverage of the preventive strategy, the need for revaccination, the number of lifetime preventative examinations, the age at which prevention begins, the efficacy of the strategy, the costs, the reduction in mortality attributable to CC, the reduction in the incidence of CC, the incremental cost-effectiveness ratio of the strategy used and the Quality-Adjusted Life Years (QALYs) gained by the strategy.

Results and Discussion

Two articles described economic analyses of population screening strategies in comparison to the current strategy in Brazil (oncotic cytology). Four articles evaluated the addition of a vaccine against the HPV genotypes 16 and 18 for Brazil in comparison to population screening. The selected articles and their sources are described in Table 1.

Caetano et al. and Vanni et al. published studies evaluating the clinical and economic implications of substituting new CC screening technologies for traditional oncotic cytology in Brazil [6,10]. Caetano et al. used a Markov model to simulate the natural history of infection with HPV [6]. Using national epidemiologic data, a hypothetical cohort of women illustrated the risk of HPV infection, spontaneous resolution or progression to CC. The model evaluated the cost-effectiveness of new population-screening technologies in comparison with the methods recommended by the Brazilian government. The health benefit was expressed as the number of detected cases of cervical cancer or precursory lesions with a high degree of malignancy. The theoretical cohort in the model included 10,000 women who were representative of the population that could participate in these programs.

The results indicate that OC has the best ICER among the screening strategies analyzed (Table 2). The negative ICER value found in this study means that screening with OC is far superior to the strategy of not screening for CC in Brazil. That is, the OC screening strategy is cheaper and more effective.

Furthermore, in the study by Caetano et al., hybrid capture strategies (HPV-DNA) and liquid media cytology alone and in combination with the HPV-DNA test are inferior to the Papanicolaou test when the latter is used as a basis for comparison [6]. The authors indicate that the low cost of OC is the main factor responsible for its favorable performance in the cost-effectiveness analysis (10 times cheaper than HPV-DNA), supplanting the negative influence of its relatively lower accuracy. For a sensitivity analysis, the authors repeated the economic analyses with a 20% increase in the cost of OC concomitant with a 20% reduction in the costs of the other tests. In this simulation, screening with HPV-DNA had the best incremental cost-effectiveness ratio, indicating that market prices influence the analysis.

Because of the high cost of administering the HPV-DNA test to a large population, some authors proposed strategies that involve selecting population groups to receive the more expensive and sophisticated techniques, with the objective of better allocating the available resources. Vanni et al. developed and satisfactorily calibrated a Markov model to simulate cervical carcinogenesis based on Brazilian or Latin American studies [10]. The model rigorously followed the Brazilian screening protocol with one exception: the procedure for Atypical Squamous Cells Of Unknown Significance (ASC-US). The authors’ objective was to evaluate the impact of other diagnostic strategies in the subgroups of women whose diagnosis and prognosis are uncertain.

When confronted with a patient with ASC-US in oncotic cytology, the model considered the possibility of repeating OC in 6 months (recommended in Brazil), performing the HPV-DNA for all of the women or only those older than 30, or immediately performing a colposcopy for all of the women or only those older than 30 (Table 3). For ASC-US, the developed model showed that the current strategy (repeat OC in 6 months) would be the cheapest and the least effective. Using the HPV-DNA for women older than 30 who showed ASC-US in the OC test was more expensive and more effective and had the greatest probability of cost-effectiveness (US$1,914 per year of life saved) compared with the current protocol. If this strategy were
expanded to all patients who showed cytology with slight alterations, the ICER would slightly exceed the per capita GDP in Brazil but would still be cost-effective according to the authors. The strategies involving immediate colposcopy were either inferior or not cost-effective in this scenario. The results were expressed in the cost per year of life saved, and the sensitivity analysis showed that the variations in the parameters did not alter the results of the base case, confirming that the conclusions are robust.

Vanni et al. concluded that although OC had the best cost-effectiveness profile for general population screening, selecting subgroups for more modern diagnostic methods could guarantee an acceptable cost-effectiveness profile in countries with intermediate income, such as Brazil [10].

In a similar manner, a Canadian study that evaluated various preventative strategies concluded that performing the HPV-DNA test for a selected group of women (i.e., women over 30 years of age with ASC-US) is less costly and more effective, costing USD16,078 to save 1 QALY [11].

The studies presented in this review provide robust evidence that organized screening with OC is still the most cost-effective option for controlling CC. Some authors have declared their support for this strategy and have suggested that it is necessary to extract all of the benefits of OC before pursuing other screening techniques [12]. However, the data indicate that more expensive and more effective techniques can be used more cost-effectively by reserving their use for specific subgroups at higher risk, depending on the reduction of prices in the health sector [13,14].
The HPV vaccination will significantly reduce the incidence of CC in future decades in countries that have pursued mass vaccination of adolescents and young women [15]. Consequently, the cost-effectiveness of secondary prevention strategies for CC would be significantly altered. That is, the success of primary prevention programs (i.e., the vaccine) might make the screening programs less cost-effective. Therefore, the future cost-effectiveness of strategies that use sophisticated (and expensive) methods for detecting HPV is somewhat uncertain and new studies will be necessary after the effects of the vaccine have been documented.

The first results on the efficacy of prophylactic vaccines were published in 2004. They refer to 2 vaccines: one bivalent vaccine (with viral particles from serotypes 16 and 18) and one tetravalent vaccine (serotypes 6, 11, 16 and 18) [16,17]. The preliminary results from the vaccine studies, combined with the evidence that the HPV vaccines induce highly effective antibodies, suggesting that the immunity is lasting [18], were sufficient for the regulatory agencies of the United States (Food and Drug Administration) to license the vaccine in June 2006; various other countries, including Brazil, followed.

Goldie et al. performed a cost-effectiveness study of the HPV vaccine specific to Brazil. A dynamic model was developed using national data for the morbidity and mortality from CC and assuming that 9-year-old pre-adolescent girls would be vaccinated [19]. The base screening strategy was two-fold: 1) screening women over 30 years old with the hybrid capture test for HPV; 2) administering colposcopic cytology 3 times over the lifespan. Both screening strategies were modeled alone or combined with the vaccination strategy (prior to sexual debut between 9 and 12 years of age). The model assumed an annual discount rate of 3% and that society was the source of funding. Because the price of the vaccine for mass vaccination in Brazil had not been established, the authors varied the price of the vaccination between US $25 and US $450 in their analyses.

Assuming 70% vaccine coverage of the target population, vaccination would result in a 42% reduction in CC risk over a lifetime (in isolation, not considering the screening strategy). If associated with the base strategy of 3 oncothic cytology exams over a lifetime, the risk would be reduced 55%; if associated with the base strategy of 3 hybrid capture exams for HPV, the risk would be reduced approximately 61%.

At US $25 for each vaccinated woman, the vaccine strategy alone would be more effective and less costly than the screening strategies and is therefore considered superior. If applied concomitantly with population screening, vaccination would be associated with an ICER of US $200 to US $700 for each year of life saved, depending on the base screening strategy. For a vaccine cost of US $50, the ICER would reach US $1,000 for each year of life saved. For a vaccine cost of US $75, the screening with hybrid capture in isolation would no longer be inferior to vaccination in isolation (with an ICER of US $500 for each year of life saved). If the vaccine cost more than US $75, the combination of vaccination and screening is superior; the ICER for the addition of the vaccine to the screening strategy with hybrid capture varies from US $1,100 to US $9,600 for each year of life saved, depending on the cost of the vaccine (Table 4).

Colantonio et al. performed a similar cost-utility study about adding the HPV vaccine to the CC screening programs in 5 Latin American countries: Brazil, Argentina, Peru, Mexico and Chile [20]. Markov models were developed to simulate the natural history of HPV until the genesis of CC for each country. The model assumed that society was the payer, adopted a discount rate of 3% per year for the clinical and economic outcomes and simulated a cohort in which pre-adolescent girls older than 11 either were or were not vaccinated. The study compared the clinical and economic outcomes of adding vaccination to the base strategy (screening) versus the base strategy in isolation.

Considering the current situation in each country, adding the vaccine would substantially reduce the risk of CC over a lifetime compared with the screening strategy alone (Table 3). For Brazil, the cost for each vaccinated woman was estimated at US $210. Vaccination would reduce the incidence of high degree intraepithelial lesions in Brazil by 62.8%, CC by 62.7% and mortality from CC by 62% in relation to the screening strategy in isolation. These figures imply that 643 cases of CC and 309 deaths from CC would be avoided and 29,460 QALYs would be gained for every 100,000 women vaccinated.

According to Colantonio, from an economic point of view, the mass vaccination of Brazilian girls would increase the annual cost of the preventative program from US $85 million (current strategy) to US $385 million (an increase of 251%). The cost-utility analysis showed that vaccination would imply an investment of approximately US $10,000/QALY saved.

Kawai et al. evaluated the cost-effectiveness of introducing the quadrivalent vaccine for preventing CC and genital sores in Brazil [21]. The model simulated a hypothetical cohort over 100 years using Brazilian data about the natural history of infection with HPV and carcinogenesis. Using a dynamic model of transmission, the strategies were the following: 1) routine vaccination of 12-year-old girls; and 2) routine vaccination of 12-year-old girls and catch-up vaccination of 12 to 26-year-old women.

Assuming 85% coverage of the target public and that the cost of vaccination (3 doses) would be US$45.45, and considering the perennial protection of the vaccine, the authors concluded that the ICER for routine vaccination compared to non-vaccination was US $219/QALY. The strategy of combined vaccination (routine and catch-up) increased the ICER to US $450/QALY.

Kawai et al. estimated that routine vaccination of 12-year-old girls would decrease the incidence of CC attributable to HPV 16/18 by 59% to 71% in year 50 and 97% to 99% in year 100 of the hypothetical cohort.

Strategies	Incremental cost-effectiveness ratio (US$/years of life saved)					
Cost of vaccination	US$25	US$50	US$75	US$100	US$450	Risk reduction (%)
Pap test (3x)	inferior	inferior	inferior	inferior	inferior	21.9
HPV-DNA test (3x)	inferior	inferior	500	500	500	30.7
Vaccine	superior	300	inferior	inferior	inferior	42.7
Vaccine + Pap test (3x)	200	inferior	inferior	inferior	inferior	55.6
Vaccine + HPV test (3x)	700	1,000	1,100	1,700	9,800	60.8

Inferior: more costly and less effective than the alternative strategy; Superior: more effective and less costly than the alternative strategy; Pap 3x: Papanicolaou test performed at 35, 40 and 45 years; HPV-DNA: hybrid capture test performed at 35, 40 and 45 years; Vaccine: vaccination of pre-adolescent girls between 9 and 12 years old.

Table 4: Cost-effectiveness of preventative methods and combinations for Brazil, strategies estimated for 70% of the population [16].
In addition, the incidence of genital sores would be reduced by 98%. An estimated 278,283 deaths from CC would be prevented by year 100.

To better understand the clinical and economic implications of mass vaccination against HPV in Brazil, attention should be paid to the cost-effectiveness profile of the vaccine in countries with social and economic characteristics that are different than those available in the literature. One study that evaluated the cost-effectiveness of the HPV vaccine for 72 underdeveloped countries with low or extremely low income showed interesting results [22]. The majority of the countries analyzed were African countries characterized by an elevated incidence of CC (>40 cases per 100,000 women/year). The ACE, which was based on epidemiological data for each country, showed that the ICER for the addition of the vaccine did not exceed US $200/QALY for 59 of the 72 countries, although there was a large reduction in the mortality and incidence of CC. The study emphasized that the cost-effectiveness profile of the vaccine is extremely favorable in regions where CC is not controlled by conventional screening programs.

On the other hand, in developed countries that have been able to control CC incidence and mortality with solid programs of gynecological screening, the HPV vaccine is not as favorable from a cost-effectiveness point of view. Ireland, Switzerland, the United Kingdom and Finland have gross CC incidence rates of less than 10 cases per 100,000 women per year [23-26]. In these countries, cost-effectiveness studies demonstrated an additional cost of more than US$20 thousand to save one QALY. In the United States, the ICER for adding the vaccine exceeded US$43,000/QALY [27]. The case of the Netherlands is worth noting. With an annual incidence rate of CC less than 6 cases per 100,000 women, the ICER for adding the HPV vaccine to the Dutch preventative program was greater than US$70,000/QALY, making the vaccine cost-ineffective, according to the authors [28].

The studies of cost-effectiveness are based on simplified representations of reality. As such, they must be interpreted in a conservative manner. However, the current evidence consistently classifies the HPV vaccine as cost-effective and beneficial for Brazil. Vaccination has the potential to create opportunities for prevention in regions and areas of the country where traditional preventative programs have failed to control CC incidence and mortality. It is important to note that vaccination does not replace population screening but rather complements it.

Being aware of gender differences, Kim et al. evaluated the cost-utility of a vaccination strategy including boys and girls versus only girls for preventing CC in Brazil [29]. The rationale for this proposition is based on the fact that HPV is sexually transmitted and immunization of boys/men would reduce the risk of infection in vaccinated women. A dynamic model was created to simulate the natural history of HPV infection in both sexes. The model assumed that both sexes would be vaccinated prior to their first sexual intercourse.

The results were compared to the base screening strategy using the Papanicolaou test. The cost of vaccination varied from US $25 to US $400. The timeframe of the cohort was the lifetime of the cohort members, and the authors estimated that the vaccine produced long-term immunity. If girls were vaccinated exclusively, the model estimated a 63% reduction in CC risk over a lifetime given 90% vaccine coverage of the target population. If boys were added to the model with the same vaccine coverage rate, an additional 4% reduction in risk was estimated (67% reduction in the risk of CC over the course of a lifetime).

![Cost-effectiveness profile of the HPV vaccine](image1.png)

The model also simulated the results assuming lower vaccine coverage. With 50% coverage, including boys in the vaccination strategy would increase the reduction in the risk of CC from 29% to 40% (Table 5).

Coverage	Reduction in the risk of CC (%)b	Cost per individual vaccinated
Girls only	Superiorc 110 30 610 3450	US$ 25 US$ 50 US$ 100 US$ 400
Both sexes	21	110 30 610 3450
Coverage	Superiorc 70 540 3210	US$ 25 US$ 50 US$ 100 US$ 400
Girls only	Superiorc 660 70 1,740 3,900	US$ 25 US$ 50 US$ 100 US$ 400
Both sexes	40	660 70 1,740 3,900
Coverage	Superiorc 2,240 130 740 3,940	US$ 25 US$ 50 US$ 100 US$ 400
Girls only	Superiorc 45 57 2,440 130	US$ 25 US$ 50 US$ 100 US$ 400
Both sexes	57	2,240 130 740 3,940
Coverage	Superiorc 9,110 170 810 4,180	US$ 25 US$ 50 US$ 100 US$ 400
Girls only	Superiorc 63 67 9,110 170	US$ 25 US$ 50 US$ 100 US$ 400
Both sexes	67	9,110 170 810 4,180

Values represent the additional cost divided by the clinical benefit in terms of years of life saved, compared to the base strategy of not vaccinating (US$/QALY)

Percent reduction in the risk of CC over a lifetime

Superior means that the vaccine strategy is more efficient and less costly than the alternative

Table 5: Clinical benefit and incremental cost-effectiveness ratio for vaccine coverage and for vaccination costc[27].
Conclusion

Every secondary data analysis has the potential to publish biases related to individual limitations of the selected studies, and therefore, the conclusions should be interpreted cautiously. However, regardless of the types of mathematical model and data sources used, all studies pointed to the similar conclusions, suggesting that they are robust and reliable. Fact is that CC continues to be a serious public health problem in Brazil that claims the lives of young women at a productive age. Ignoring the new preventative technologies for CC can lead to misguided and perverse consequences in countries where programs based on the Papanicolau technique have only been partially successful. The evidence available in the literature consistently affirms that new preventative technologies for CC, especially the HPV vaccine, are cost-effective for Brazil, leaving the decision about bearing the costs of these new technologies to healthcare managers.

Authors’ contributions

AJF participated in the study design, literature review and writing of the manuscript.
CNR contributed with literature review and writing of the manuscript.
RLGG participated in the literature review and writing of the manuscript.
LCLF participated in the review and critical analysis of the manuscript.
GBN contributed with the study design, literature review and writing of the manuscript.

References

1. World Health Organization/ Catalan Institute of Oncology Information Centre (2010) summary report on HPV and Cervical Cancer: Human papillomavirus and related cancers in Brazil.
2. Clifford GM, Smith JS, Plummer M, Muñoz N, Franceschi S (2003) Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis. Br J Cancer 88: 63-73.
3. Fonseca AJ, Ferreira LP, Benetta ACD, Roldan CN, Ferreira MLS (2010) Epidemiology and economic impact of cervical cancer in the state of Roraima, a Northern state of Brazil; the public health system perspective. Rev Bras Ginecol Obstet 32: 369-392.
4. Zeferino LC, Derchain SF (2006) Cervical cancer in the developing world. Best Pract Res Clin Obstet Gynaecol 20: 339-354.
5. Instituto Nacional do Câncer, Ministério da Saúde, Brasil: 2012 Estimate: Incidence of cancer in Brazil.
6. Caetano R, Vianna CMM, Thuler (2006) LCS: Cost-effectiveness of the early diagnosis of cervical cancer in Brazil. Rev Saúde Coletiva 16: 99-118.
7. Rascal KL (2009) Essentials of Pharmacoeconomics. Lippincott Williams & Wilkins, New York, USA.
8. Sato RC, Zouain DM (2010) Markov Models in health care. Einstein 8: 376-379.
9. Sonnenberg FA, Becker JF (1993) Markov models in medical decision making: a practical guide. Med Decis Making 13: 322-339.
10. Vanni T, Legood R, Franco EL, Villa LL, Luz PM, et al. (2011) Economic evaluation of strategies for managing women with equivocal cytological results in Brazil. Int J Cancer 129: 671-679.
11. Chuck A (2010) Cost-effectiveness of 21 alternative cervical cancer screening strategies. Value health 13: 169-179.
12. Sarian LO, Derchain SF, Bastos JF (2010) Diagnostic methods for cervical cancer screening. Rev Bras Ginecol Obstet 32: 363-367.
13. Levin CE, Selors J, Shi JF, Ma L, Qiao YL, et al. (2010) Cost-effectiveness analysis of cervical cancer prevention based on a rapid human papillomavirus screening test in a high-risk region of China. Int J Cancer 127: 1404-1411.
14. Vijayaraghavan A, Efrusy M, Lindeque G, Drever G, Santas C (2009) Cost effectiveness of high-risk HPV DNA testing for cervical cancer screening in South Africa. Gynecol Oncol 112: 377-383.
15. Huh W, Einstein MH, Herzog TJ, Franco EL (2010) What is the role of HPV typing in the United States now and in the next five years in a vaccinated population? Gynecol Oncol 117: 481-485.
16. FUTURE II Study Group (2007) Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N Engl J Med 356: 1915-1927.
17. Paavonen J, Jenkins D, Bosch FX, Naud P, Salmeron J, et al. (2007) Efficacy of a prophylactic adjuvant bivalent L1 virus-like particle vaccine against infection with human papillomavirus types 16 and 18 in young women: an interim analysis of a phase III double-blind, randomized controlled trial. Lancet 369: 2161-2170.
18. Olsson SE, Villa LL, Costa LA, Petta CA, Andrade RP (2007) Induction of immune memory following administration of a prophylactic quadrivalent human papillomavirus (HPV) types 6/11/16/18 L1 virus-like particle (VLP) vaccine. Vaccine 25: 4931-4939.
19. Goldie SJ, Kim JJ, Kobus K, Goldhaber JD, Salomon J, et al. (2007) Cost-effectiveness of HPV 16, 18 vaccination in Brazil. Vaccine 25: 6257-6270.
20. Colantonio L, Gómez JA, DeMatteau N, Standaert B, Pichon RA, et al. (2009) Cost-effectiveness analysis of a cervical cancer vaccine in five Latin American countries. Vaccine 27: 5519-5529.
21. Kawai K, Araujo GTB, Fonseca M, Pillisbury M, Singhal PK (2012) Estimated health and economic impact of quadrivalent HPV (types 6/11/16/18) vaccination in Brazil using a transmission dynamic model. BMC Infect Dis 12: 250.
22. Goldie SJ, O’Shea M, Camposa NG, Diaz M, Sweet S, et al. (2008) Health and economic outcomes of HPV 16, 18 vaccination in 72 GAVI-eligible countries. Vaccine 26: 4090-4093.
23. Dee A, Howell F (2010) A cost-utility analysis of adding a bivalent or quadrivalent HPV vaccine to the Irish cervical screening programme. Eur J Public Health 20: 213-219.
24. Szucs TD, Largeron N, Dedes KJ, Rafia R, Bénard S (2008) Cost-effectiveness analysis of adding a quadrivalent HPV vaccine to the cervical cancer screening programme in Switzerland. Curr Med Res Opin 24: 1473-1483.
25. Kulasingam SL, Benard S, Barnabas RV, Largeron N, Myers ER (2008) Adding a quadrivalent human papillomavirus vaccine to the UK cervical cancer screening programme: A cost-effectiveness analysis. Cost Eff Resour Alloc 6: 345-356.
26. Torvinen S, Nieminen P, Lehtinen M, Paavonen J, Dematteau N, et al. (2010) Cost effectiveness of prophylactic HPV 16/18 vaccination in Finland: results from a modelling exercise. J Med Econ 13: 284-294.
27. Kim JJ, Godle SJ (2008) Health and economic implications of HPV vaccination in the United States. N Engl J Med 359: 821-832.
28. Kok IM, Ballegoorjen MV, Habbema JD (2009) Cost-effectiveness analysis of human papillomavirus vaccination in the Netherlands. J Natl Cancer Inst 101: 1083-1092.
29. Kim JJ, Andres-Beck B, Goldie SJ (2007) The value of including boys in an HPV vaccination programme: a cost-effectiveness analysis in a low-resource setting. Br J Cancer 97: 1322-1328.
30. Elbashar EH, Dasbach EJ (2010) Impact of vaccinating boys and men against HPV in the United States. Vaccine 28: 6858-6867.
31. Lippman A, Melnychuk R, Shimmin C, Boscoe M (2007) Human papillomavirus, vaccines and women’s health: questions and cautions. CMAJ 177: 484-487.
32. Kane MA (2010) Global implementation of human papillomavirus (HPV) vaccine: lessons from hepatitis B vaccine. Gynecol Oncol 117: S32-S35.