PDMS curing inhibition on 3D printed molds: Why? And, how to avoid it?

Bastien Venzac,1* Shanliang Deng,1 Ziad Mahmoud,2 Aufrid Lenferink,3 Aurélie Costa,2 Fabrice Bray,2 Cees Otto,3 Christian Rolando,2,4 and Séverine Le Gac1,*

1. Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology & TechMed Center, University of Twente 7500AE Enschede, The Netherlands.
2. Univ. Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse l'Analyse et la Protéomique, 59000 Lille, France.
3. Medical Cell BioPhysics, TechMed Center, University of Twente, 7500AE Enschede, The Netherlands.
4. Shrieking Sixties, 59650 Villeneuve-d'Ascq, France.

Corresponding authors: Bastien Venzac (bastien.venzac@lass.fr) & Séverine Le Gac (s.legac@utwente.nl).

List of supplementary information

Numbering	Description
Table S1	Post-treatments reported in the literature to prevent PDMS curing inhibition by 3D-printed molds
Table S2	Post-treatment screenings for protocols including UV exposure and heating at 120 °C
Table S3	Post-treatment screenings for protocols including UV exposure and heating at 60 °C
Table S4	Comparison between post-treatments recommended by Formlabs and proposed in this study
Figure S1	Influence of the post-treatment on the dimensions of 3D printed structures – protocol and actual data
Table S5	Overview of the bands in the Raman spectra – comparison between spectra
Figure S2	Raman spectra of monomers and BAPO and TPO-L
Figure S3	Pictures of PDMS supplemented with various resins, condensed liquids thereof, photo-initiators and condensed liquids thereof, or monomers after casting
Figure S4	31P NMR spectra for BAPO and TPO-L
Figure S5	Identification of compounds from the MS analysis of the treated BAPO and TPO-L and possible formation mechanisms
Table S1. Post-treatments reported in the literature to prevent PDMS curing inhibition by 3D-printed molds.

Reference	Resin	Printer	Post-treatment
Comina et al.¹	Micraft proprietary resin	Miicraft Suite	UV post-curing for 10 min (dose not specified), sonication in ethanol for 2 min and airbrushing of ink (Pentel NN60)
Chan et al.²	Not specified	Miicraft	UV post-curing for 10 min (dose not specified), 4 h at 130°C, oxygen plasma treatment and silanization with trichloro(1H,1H,2H,2H)-perfluoro-octyl)silane.
Costa et al.³	PIC 100	Perfactory 3 mini-multi lens	UV post-curing using 3500 cycles in the Otolash G171 apparatus (dose not specified) then immersed in ethanol at 37°C for 7 h, changing the ethanol every 2 h.
Dinh et al.⁴	Not specified	Da Vinci Nobel 1.0A	UV post-curing (dose not specified) and heated at 80°C for 24 h
Bazaz et al.⁵	Custom resin	Miicraft	UV post-curing (dose not specified)
King et al.⁶	VeroWhitePlus, VeroGrey or VeroClear	Connex350	Heated overnight at 80°C followed by silanization with trichloro(1H,1H,2H,2H-perfluoro-octyl)silane for 1 h.
Waheed et al.⁷	BV003	Miicraft +	UV post-curing for 5 min (dose not specified), immersed in isopropanol for 6 h, then treated with air plasma corona (BD-20AC) for 1 min and then silanised using triethoxy (1 H1 H2 H2H-perfluoro-1-octyl) silane for 3 h.
Olanrewaju et al.⁸	HTM140 resin	Perfactory MicroEDU	Treatment with a silicone spray (Ease Release 200)
Ferraz et al.⁹.¹⁰	Fun-To-Do Industrial Blend resin	FlashForge Hunter	UV post-curing for 2 h at 14mW/cm², 405 nm followed by 24 h at 60°C.
Table S2. Post-treatment screening for 16 resins using a combination of UV post-curing and heating at 120°C. Values correspond to the apparent step width as defined in the main article (no value reported when PDMS curing was too inhibited) and the color to the critical aspect ratio, as defined in the main article.

UV (min)	0	1	2	4	0	1	2	4	0	1	2	4	0	1	2	4	0	1	2	4				
	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	105	110	115		
	120	135	150	165	180	195	210	225	240	255	270	285	300	315	330	345	360	375	390	405	420	435		
Heating 120°C (h)	0	1	2	4	0	1	2	4	0	1	2	4	0	1	2	4	0	1	2	4	0	1	2	4
Formlabs Clear	38	42	45	48	51	54	57	60	63	66	69	72	75	78	81	84	87	90	93	96	99	102		
Formlabs HT	182	187	192	197	202	207	212	217	222	227	232	237	242	247	252	257	262	267	272	277	282	287		
Formlabs Black	30	34	38	42	46	50	54	58	62	66	70	74	78	82	86	90	94	98	102	106	110	114		
Formlabs Flex	147	152	157	162	167	172	177	182	187	192	197	202	207	212	217	222	227	232	237	242	247	252		
Critical aspect ratio	<0.8	0.8	0.91	1.1	1.3	1.6	>2.1																	

UV (min)	0	1	2	4	0	1	2	4	0	1	2	4	0	1	2	4	0	1	2	4	0	1	2	4
	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	105	110	115		
	120	135	150	165	180	195	210	225	240	255	270	285	300	315	330	345	360	375	390	405	420	435		
Heating 120°C (h)	0	1	2	4	0	1	2	4	0	1	2	4	0	1	2	4	0	1	2	4	0	1	2	4
R11	39	43	47	51	55	59	63	67	71	75	79	83	87	91	95	99	103	107	111	115	119	123		
E-shell 300	118	122	126	130	134	138	142	146	150	154	158	162	166	170	174	178	182	186	190	194	198	202		
PIC100	143	147	151	155	159	163	167	171	175	179	183	187	191	195	199	203	207	211	215	219	223	227		
Critical aspect ratio	<0.8	0.8	0.91	1.1	1.3	1.6	>2.1																	

UV (min)	0	1	2	4	0	1	2	4	0	1	2	4	0	1	2	4	0	1	2	4	0	1	2	4
	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	105	110	115		
	120	135	150	165	180	195	210	225	240	255	270	285	300	315	330	345	360	375	390	405	420	435		
Heating 120°C (h)	0	1	2	4	0	1	2	4	0	1	2	4	0	1	2	4	0	1	2	4	0	1	2	4
DWS DL260	30	34	38	42	46	50	54	58	62	66	70	74	78	82	86	90	94	98	102	106	110	114		
DWS DS3000	111	115	119	123	127	131	135	139	143	147	151	155	159	163	167	171	175	179	183	187	191	195		
DWS GL4000	141	145	149	153	157	161	165	169	173	177	181	185	189	193	197	201	205	209	213	217	221	225		
DWS GM08	53	57	61	65	69	73	77	81	85	89	93	97	101	105	109	113	117	121	125	129	133	137		

S3
Table S3. Post-treatment screening for 16 resins using a combination of UV post-curing and heating at 120°C. Values correspond to the apparent step width as defined in the main article (no value reported when PDMS curing was too inhibited) and the color to the critical aspect ratio, as defined in the main article.
Table S4. Comparison between the recommended post-curing treatment by Formlabs and the required treatment to avoid PDMS curing inhibition, as defined in this study.

Resin	UV exposure time (Formlabs)*	Duration of a 60°C treatment (Formlabs)	UV exposure time (this study)	Duration of a 60°C treatment (this study)
Formlabs Clear	7.5 min	7.5 min	0	8 h
Formlabs Flex	7.5 min	7.5 min	2h	0
Formlabs Black	15 min	15 min	0	24 h
Formlabs HT	30 min	30 min	0	60 min

*As the Formlabs post-curing device has a dose twice lower than our custom-made UV oven, these time durations are expressed as equivalent exposure time for our custom-made UV oven. Formlabs data were obtained from https://support.formlabs.com/s/article/Form-Cure-Time-and-Temperature-Settings?language=en_US
Figure S1: Influence of the post-treatment on the dimensions of the 3D printed molds.

Left. Drawing of the square tiles used for characterizing shrinkage of the 3D-printed structures after post-treatment.

Right. Variation of the lateral dimensions of squares patterns on the tiles, expressed as % of the initial value (mean of the variation over 6 patterns on a single tile).

To evaluate the possible variation in dimensions of the 3D printed molds after treatment, square tiles (7 mm x 7 mm x 1 mm) with three extruded squares (1 mm x 1 mm x 0.5 mm) and three squared holes (1 mm x 1 mm x 0.5 mm) were casted on a PDMS counter-mould, produced from treated 3D printed molds. These molds were prepared from four resins (FTD Industrial Red, Envisiontec PIC100, Formlabs Clear and DWS GL4000) and the protocol described in the main article (Materials and Methods section). Three tiles of each resin were exposed to 405-nm UV light in a Formlabs Cure (6 mW/cm²) for 4 h, and next treated for 4 h in a 120°C oven. Similarly, the dimensions of the structures (squares and holes) on one tile per resin were measured using a Dino Lite USB camera and Image J before the treatment, after UV exposure and after the thermal treatment.
Table S5. Comparison of the bands found in the Raman spectra (expressed in rel.cm⁻¹) between the resins before polymerization, their condensed liquids, BAPO and TPO-L condensed liquids and the two monomers - methyl methacrylate (MM) and hexanediol di-methacrylate (HDM).

| Bands present on the Raman spectra of both the resins before curing and acrylate monomers, but not detected after curing and post-treatment. | Clear | Clear condensed liquid | PIC100 | PIC100 condensed liquid | Ind. Red. | Ind. Red. condensed liquid | GI4000 | BAPO condensed liquid | TPO-L condensed liquid | MM | HDM |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 3106 | 3095 | 3103 | 3101 | | | | | | 3105 | 3105 |
| 1634 | 1634 | 1634 | 1629 | | | | | | 1640 | 1640 |
| 1390 | 1401 | 1405 | | | | | | | 1402 | 1402 |

Bands present in the Raman spectra of the resin condensed liquids, and those of the condensed liquids of the BAPO and TPO-L photo-initiators.	Clear condensed liquid	PIC100 condensed liquid	Ind. Red. condensed liquid	BAPO condensed liquid	TPO-L condensed liquid	MM	HDM
3068						3062	
3025						3024	
2966						2965	
2965						2965	
2932	2937					2930	
2930						2928	
2855	2857					2856	
2732	2742					2738	
2738						2728	
1726						1711	
1634	1634					1633	
1597	1611	1602	1602			1596	
1443	1441					1443	
1385	1381					1380	
1295	1297	1296	1296			1297	
1104		1103					
972	988	988				988	
963		960	952			952	
883		882				882	
767	764	764				764	
701		705				705	
620		617				617	

Bands present in the Raman spectra of the resin condensed liquids, the resins before polymerization and the acrylate monomers, but not detected in the spectra of the BAPO and TPO-L photo-initiators.	Clear condensed liquid	PIC100 condensed liquid	Ind. Red. condensed liquid	BAPO condensed liquid	TPO-L condensed liquid	MM	HDM
3103	3103					3105	
3039	3039					3039	
1452	1452					1452	
1401	1401	1405	1405			1402	
1401	1405	1405				1402	
1110	1110					1110	
1003	1003	1003				1007	

Additional bands present in the Raman spectra of the resin condensed liquids.	Clear condensed liquid	PIC100 condensed liquid	Ind. Red. condensed liquid	BAPO condensed liquid	TPO-L condensed liquid	MM	HDM
2942		2942					
1663	1663					1663	
					1229		
					1173		
					1157		
Figure S2. Raman spectroscopy analysis of (top) methacrylate monomers, methyl methacrylate (blue) and hexanediol dimethacrylate (red), and (bottom) of the photo-initiators BAPO (Phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide, top) and TPO-L (Ethyl (2,4,6-trimethylbenzoyl) phenylphosphinate, bottom) (see inset for the structures) before (light blue), after treatments using UV for 1 h at 14 mW/cm² and 405 nm, (purple) and combined treatment (UV for 1 h at 14 mW/cm² and 405 nm followed by 2 h at 120 °C) (red) and spectra of the condensed liquid obtained after thermal treatment (green).
Figure S3. Representative microscopy pictures of PDMS after curing and release from fully treated test-molds; PDMS was supplemented with different components at 1% (w/v) as specified under the pictures, without pre-treatment or after 1 h UV exposure as defined in the article and/or 2 h at 120° C. If the replicas were too viscous or liquid, pictures were taken while moving away a scalpel blade from the PDMS drop or paste. Scale bar: 1 mm.
Figure S4. 31P NMR spectra of the BAPO (*top*) and TPO-L (*bottom*) photo-initiators before treatment (green), after treatment (UV for 1 h at 14 mW/cm² and 405 nm followed by 2 h at 120 °C) (blue) and spectra of the condensed liquid obtained after thermal treatment (red).
Figure S5. Identification of compounds from the mass spectrum of the treated BAPO (A) and TPO-L (B), and possible formation mechanisms. The formula obtained by very high resolution with a precision better than 0.1 ppm are exact, the structures and mechanisms are hypothetical.

A. BAPO

C$_8$H$_3$O$_3$P + H$^+$
m/z 159.0206

C$_{28}$H$_{19}$O$_3$P + H$^+$
m/z 419.1770

C$_{23}$H$_{17}$O$_3$P + H$^+$
m/z 407.1769

C$_{38}$H$_{19}$O$_3$P + H$^+$
m/z 583.2608

C$_{32}$H$_{16}$O$_3$P$_2$ + H$^+$
m/z 579.2060

C$_{32}$H$_{16}$O$_3$P$_2$ + H$^+$
m/z 561.1954

C$_{28}$H$_{19}$O$_3$P + H$^+$
m/z 435.1720

C$_{28}$H$_{27}$O$_3$P + H$^+$
m/z 437.1877

C$_{23}$H$_{20}$OP + H$^+$
m/z 377.2029

C$_{16}$H$_{12}$O$_3$P + H$^+$
m/z 289.0988

C$_{16}$H$_{12}$O$_3$P + H$^+$
m/z 273.1039

C$_{15}$H$_{10}$OP + H$^+$
m/z 259.1246

C$_{18}$H$_{12}$OP + H$^+$
m/z 245.1090

C$_{16}$H$_{12}$O$_3$P + H$^+$
m/z 303.1144

C$_{18}$H$_{12}$O$_3$P + H$^+$
m/z 273.1039

C$_{15}$H$_{10}$OP + H$^+$
m/z 249.1090
B. TPO-L

\[
\text{C}_{10}\text{H}_{15}\text{O}_3\text{P} + \text{H}^+ \\
\text{m/z} 215.0831
\]

\[
\text{C}_{18}\text{H}_{21}\text{O}_3\text{P} + \text{H}^+ \\
\text{m/z} 317.1300
\]

\[
\text{C}_{36}\text{H}_{32}\text{O}_5\text{P}_2 + \text{H}^+ \\
\text{m/z} 487.1796
\]

\[
\text{C}_{28}\text{H}_{31}\text{O}_3\text{P} + \text{H}^+ \\
\text{m/z} 447.2082
\]

\[
\text{C}_{38}\text{H}_{43}\text{O}_3\text{P} + \text{H}^+ \\
\text{m/z} 611.2921
\]
References

(1) Comina, G.; Suska, A.; Filippini, D.; German Comina, A. S.; Filippini, D. PDMS Lab-on-a-Chip Fabrication Using 3D Printed Templates. Lab Chip 2013, 14 (207890), 424–30.

(2) Chan, H. N.; Chen, Y.; Shu, Y.; Chen, Y.; Tian, Q.; Wu, H. Direct, One-Step Molding of 3D-Printed Structures for Convenient Fabrication of Truly 3D PDMS Microfluidic Chips. Microflu Nanoflu 2015, 19 (1), 9–18.

(3) Costa, P. F.; Albers, H. J.; Linssen, J. E. A.; Middellkamp, H. H. T.; van der Hout, L.; Passier, R.; van den Berg, A.; Malda, J.; van der Meer, A. D. Mimicking Arterial Thrombosis in a 3D-Printed Microfluidic in Vitro Vascular Model Based on Computed Tomography Angiography Data. Lab Chip 2017, 17, 2785-2792.

(4) Dinh, T.; Phan, H.-P.; Kashaninejad, N.; Nguyen, T.-K.; Dao, D. V.; Nguyen, N.-T. An On-Chip SiC MEMS Device with Integrated Heating, Sensing, and Microfluidic Cooling Systems. Adv Mater Interfaces 2018, 5 (20), 1800764.

(5) Razavi Bazaz, S.; Kashaninejad, N.; Azadi, S.; Patel, K.; Asadnia, M.; Jin, D.; Ebrahimi Warkiani, M. Rapid Soft lithography Using 3D-Printed Molds. Adv Mater Technol 2019, 4 (10), 1900425.

(6) King, P. H.; Jones, G.; Morgan, H.; de Planque, M. R. R.; Zauner, K.-P. Interdroplet Bilayer Arrays in Millifluidic Droplet Traps from 3D-Printed Moulds. Lab Chip 2014, 14 (4), 722–729.

(7) Waheed, S.; Cabot, J. M.; Macdonald, N. P.; Kalsoom, U.; Farajikhah, S.; Innis, P. C.; Nesterenko, P. N.; Lewis, T. W.; Breadmore, M. C.; Paul, B. Enhanced Physicochemical Properties of Polydimethylsiloxane Based Microfluidic Devices and Thin Films by Incorporating Synthetic Micro-Diamond. Sci Rep 2017, 7 (1), 15109.

(8) Olanrewaju, A. O.; Robillard, A.; Dagher, M.; Juncker, D. Autonomous Microfluidic Capillary Circuits Replicated from 3D-Printed Molds. Lab Chip 2016, 16 (19), 3804–3814.

(9) de Almeida Monteiro Melo Ferraz, M.; Nagashima, J. B.; Venzac, B.; Le Gac, S.; Songsasen, N. 3D Printed Mold Leachates in PDMS Microfluidic Devices. Sci Rep 2020, 10 (1), 994.

(10) de Almeida Monteiro Melo Ferraz, M.; Nagashima, J. B.; Venzac, B.; Le Gac, S.; Songsasen, N. A Dog Oviduct-on-a-Chip Model of Serous Tubal Intraepithelial Carcinoma. Sci Rep 2020, 10 (1), 1575.