Screening in a two-band model for superconducting infinite-layer nickelate

Tharathep Plienbumrung,1,2 Maria Daghofer,1,2 Michael Schmid,3 and Andrzej M. Oleś4,5,*

1Institute for Functional Matter and Quantum Technologies, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
2Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
3Waseda Research Institute for Science and Engineering, Waseda University, Okubo, Shinjuku, Tokyo, 169-8555, Japan
4Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
5Institute of Theoretical Physics, Jagiellonian University, Profesora Stanisława Łojasiewicza 11, PL-30348 Kraków, Poland

(Dated: August 8, 2022)

Starting from an effective two-dimensional two-band model for infinite layered nickelates, consisting of bands obtained from d and s-like orbitals, we investigate to which extent it can be mapped onto a single-band Hubbard model. We identify screening of the more itinerant s-like band as an important driver. In absence of screening one strongly-correlated band gives an antiferromagnetic ground state. For weak screening, the strong correlations push electrons out of the s-band so that the undoped nickelate remains a Mott insulator with half filled d orbitals. This regime markedly differs from the observations in high-T_c cuprates and pairing with s-wave symmetry would rather be expected in the superconducting state. In contrast, for strong screening, the s and $d_{x^2−y^2}$ bands are both partly filled and couple only weakly, so that one approximately finds a self-doped d band as well as tendencies towards d-wave pairing. Particularly in the regime of strong screening mapping to a one-band model gives interesting spectral weight transfers when a second s band is also partly filled. We thus find that both one-band physics and a Kondo-lattice–like regime emerge from the same two-orbital model, depending on the strength of electronic correlations and the size of the s-band pocket.

I. INTRODUCTION

The recent discovery of superconductivity in infinite-layer NdNiO$_2$ thin films with Sr doping [1] has rekindled interest in Ni-based superconductivity. The interest arises mostly because they can be assumed to be strongly correlated and thus in some respect similar to cuprate superconductors. The two families of compounds also have similar lattices, with either CuO$_2$ or NiO$_2$ planes that give them a predominantly two-dimensional (2D) character. Analyzing the NiO$_2$ layer in analogy to a CuO$_2$ layer, one expects Ni$^{1+}$ with a d^9 electronic configuration, and in both cases expects antiferromagnetic (AF) superexchange interactions [2–4]. Indeed, magnetic excitations in undoped nickelates reveal such AF correlations [5, 6].

However, the parent compound $RNiO_2$ ($R=$La, Nd) does not show any signs of magnetic ordering [7, 8] at low temperatures down to 1.5 K. Moreover, both the insulating NiO$_2$ layer [2, 3, 9, 10] and band-structure calculations [11–18] suggest that other orbitals or bands might be relevant.

Several approaches suggest that a two-band model should be a realistic starting model for doped infinite-layer nickelates [19–23]. It faithfully represents the strongly-correlated $x^2−y^2$ orbital at Ni ions and s orbital which collects all remaining contributions from other orbitals. Indeed, two bands cross the Fermi energy as shown in Fig. 1. Accordingly, a large variety of potential pairing symmetries has been presented [9], with exotic $s + id$ [24] states proposed in addition to s and d-wave pairings [10, 13]. However, the majority of models, originating from one [25] to three [13] bands, identify d-wave pairing [26] as in cuprates. Experimentally, d-wave symmetry was reported, as was s-wave [27].

![FIG. 1. Non-interacting band structure of NdNiO$_2$: (a) Density-functional theory (DFT) bands crossing the Fermi surface (black) and two 2D tight-binding models obtained by projecting a Wannier fit onto the plane along 2D path (red dashed and green dotted). The Fermi energy $E = \mu$ corresponds to the DFT electronic structure. Inset shows the DFT band structure along three-dimensional path $\Gamma−Z−R−A$. Wannier orbitals are also shown: (b) The $'d_{x^2−y^2}'$ orbital making up the lower band of model 1; the corresponding orbital of model 2 looks the same. The $'s$-like' orbitals of models 1 and 2 are shown in (c) and (d).](https://example.com/figure1)

Microscopically, two main differences between Cu- and Ni-based superconductors are: (i) larger Ni-O charge-transfer energy compared to Cu-O, and (ii) the presence of highly...
dispersive rare-earth bands in the layered nickelates [4, 28]. In cuprates, doped holes go mostly into oxygen sites, where they form Zhang-Rice singlets with the half-filled Cu($d_{x^2−y^2}$) states [29]. Due to the larger charge-transfer energy raising the energy of the oxygen orbitals, Ni–O hybridization is less important and doped holes likely reside on Ni sites in doped Nd$_{1−x}$Sr$_x$NiO$_2$ [2, 3, 30–32]. While oxygen states can thus be assumed to play less of a role [25], the question of the orbital character of doped holes remains and is affected by the rare-earth band. This band hybridizes with Ni apical states, thus obtaining some Ni($d_{x^2−y^2}$) and Ni(d_{xy}) character, and forms a hybrid ‘axial’ s orbital [19], see Fig. 1. Depending on where doped holes go, one can expect either that almost only the $d_{x^2−y^2}$ states are relevant [25], or that half-filled more localized $d_{x^2−y^2}$ states together with itinerant s-like carriers form a Kondo-lattice–like two-band system [4, 16, 24, 31], or that both scenarios have their point [33].

The purpose of this paper is to investigate how similar cuprate and nickelate superconductivity are, i.e., whether and where multi-band effects come into play. We find that screening is a crucial variable and that the two bands (Fig. 1) can mix considerably at intermediate screening, where pairing with s-wave symmetry would be expected. Both for very weak and for strong screening, however, the bands mostly decouple and the effective physics becomes similar to a single Hubbard band [25]. We then find Mott insulator (doped band with potential d-wave pairing) for strong (weak) correlations.

The remaining of this paper is organized as follows. The two-band model arises from the electronic structure calculations as described in Sec. II A. Electronic interactions are given by two Kanamori parameters \{U_α, J_H\} and we discuss their screening in Sec. II B. In Sec. III the results of exact diagonalization are presented for the density distribution and spin correlations (Sec. III A) and for the spectral density (Sec. III B). We search for superconducting (SC) phases both in hole doped and electron-doped systems in Sec. IV A. Next we present phase diagrams of infinite-layer nickelates in (\$U_{\text{id}, \alpha}$) planes in Sec. IV B. Two SC compounds, NdNiO$_2$ and LaNiO$_2$ are compared in Sec. IV C. The paper is concluded in Sec. V.

II. TWO-BAND MODEL AND METHODS

A. Kinetic energy

We start from the kinetic energy in the electronic structure. The DFT band structure, see Fig. 1, is calculated with QUANTUM ESPRESSO code [34–36] using a plain-wave pseudopotential method; similar calculations were performed previously [19, 28, 30]. In Fig. 1(a), one finds that two bands cross the Fermi level. Wannier-orbital models were obtained to reproduce the two bands crossing the Fermi level In both cases, the Wannier orbital corresponding to the lower band contains substantial Ni $d_{x^2−y^2}$ contributions, with some weight on the surrounding O atoms, see Fig. 1(b). The upper band is formed by a rather extended illustrated, where Nd(5d) orbitals hybridize with Ni(s) as well as Ni(d_{xy}) and Ni($d_{x^2−y^2}$) states. Both are compromises to some extend: one of the fits (model 2) has a smaller imaginary part, but the orbitals of the other (model 1) more closely respect the expected symmetries, see Fig. 1(c) and 1(d). Hoppings are, however, very similar.

The feature of the band structure that most distinguishes nickelates from cuprates, are the electron pockets formed by the upper s-like band around the Γ and Δ points in the Brillouin zone. In the DFT band structure, they contain $\approx 7\%$ of the occupied states [28], which in turn implies that there are hole carriers [31] in the $x^2−y^2$ band even without Sr-doping. While 7% self doping may not seem much, it is in line with the 5% of Sr doping needed to destroy antiferromagnetism in a cuprate superconductor La$_2$CuO$_4$ [37]. The Γ-pocket lying about $−0.4$ eV below the Fermi level appears thus to be an important feature when constructing an effective model.

The Wannier90 interface [38] gives the parametrization

$$H_{\text{kin}} = \sum_{i\alpha\sigma} \epsilon_\alpha d_{i\alpha\sigma}^\dagger d_{i\alpha\sigma} + \sum_{ij\alpha\beta\sigma} t_{ij\alpha\beta} d_{i\alpha\sigma}^\dagger d_{j\beta\sigma},$$

(1)

of these two bands, where $d_{i\alpha\sigma}$ ($d_{i\alpha\sigma}^\dagger$) is an electronic annihilation (creation) operator at site i for orbital α and spin σ.

$$\alpha = d$$

denotes the Ni-$x^2−y^2$ dominated state of Fig. 1(b) and $\alpha = s$ stands for the extended s-like state of Fig. 1(c).

Hopping parameters $t_{ij\alpha\beta}$ and on-site energies ϵ_α are given in the Supplemental Material (SM) [39] for two slightly different Wannier projections.

With exact diagonalization and the Lanczos algorithm [40], we can address an eight-site cluster, e.g. the $2 \times 2 \times 2$ cluster that was used to investigate magnetic order [41]. We are here mostly interested in electronic correlations, which predominantly affect the d band (see discussion below). As this band has nearly no dispersion along the z-direction, see inset of Fig. 1(a), we use instead a $\sqrt{8} \times \sqrt{8}$ cluster in the (x, y) plane. We thus need a 2D projection of the band structure, which we obtained by a fit that can in turn be motivated by twisted boundary conditions (TBC) [42–44]. The resulting 2D bands are shown in Fig. 1(a), hoppings parameters and details of the procedure are given in the SM [39]. This was done for both Wannier projections, leading to two similar effective two-dimensional two-band models, whose main differences concern the upper band. As can be seen in the SM [39], results of both models are very similar, so that we focus the main part of the paper on the model 1.

B. Interactions and screening effect

Electronic interactions are taken to be onsite, i.e.,

$$H_{\text{int}} = \sum_{i\alpha} U_\alpha n_{i\alpha\uparrow} n_{i\alpha\downarrow} + \left(U' - \frac{J_H}{2} \right) \sum_i n_{id} n_{is},$$

(2)

$$-2J_H \sum_i \vec{S}_i \cdot \vec{S}_i + J_H \sum_i \left(d_{i\alpha\sigma}^\dagger d_{i\beta\sigma}^\dagger + \text{H.c.} \right).$$

$n_{i\alpha\sigma}$ is the electron number operator at site i, orbital α and spin σ and $\{\vec{S}_i\}$ is the corresponding spin operator. Introrbital Coulomb repulsion $U_{\alpha=s/d}$ depends on the band α,
Hund’s exchange J_H and interorbital repulsion U' couple the bands.

Upper limits for the ‘bare’ U_d and J_0 are given by their atomic values $U_d \approx 8$ eV and $J_0 \approx 1.2$ eV, which would be applicable to in a NiO$_2$ model for an insulating layer [2, 3]. However, even though Ni–O hybridization is expected to be weaker than in cuprates (due to larger Ni–O crystal-field splitting), it is still present, see the orbital wave function in Fig. 1(b), and expected to substantially reduce effective values [3, 29]. Note that U_s cannot be related to atomic values for Ni, as the s-orbital is not even centered on an Ni site [19]. Coulomb interactions are thus expected to be weaker in the s-like band because the wave function is far more extended and largely of Nd $5d$ character, see Fig. 1(c). While the Coulomb repulsion U_d is almost unscreened in the correlated $x^2−y^2$ orbitals, considerable screening occurs for s orbitals. One thus expects $U_d > U_s$ and we introduce here parameter $\alpha \in [0, 1]$ so that

$$U_s = \alpha U_d, \quad J_H = \alpha J_0, \quad U' = U_s − 2J_H. \quad (3)$$

Approaches like the constrained random-phase approximation might provide estimates for the screened interaction parameters, however, this is not straightforward. Even though, as shown above, the two Wannier-projection schemes used above lead to very similar band structures, and thus hopping integrals, the orbital wave function of the upper band differs substantially. This would in turn affect effective interactions, so that we opt here for a model approach, where we investigate which physics can be expected for various screening scenarios. The parametrization of Eq. (3) is used here as the simplest approach capturing the essential features of the electronic structure, i.e., the interplay of a more and a less correlated band.

The full Hamiltonian $H = H_{\text{kin}} + H_{\text{int}}$ thus describes a correlated 2D band, which is strongly reminiscent of cuprates, but that moreover interacts with a more itinerant rare-earth band. By accepting some electrons, the itinerant s band not only dope the correlated d band, but also contains itinerant carriers [19, 30, 31]. We are next going to investigate the impact of these carriers and their remaining correlations.

III. NUMERICAL RESULTS

A. Density of states and spin correlations

First we look at orbital densities,

$$n_\alpha = \frac{1}{N_s} \sum_{i\sigma} \langle d_{i\alpha\sigma}^d d_{i\alpha\sigma} \rangle, \quad (4)$$

where $N_s = 8$ is the number of lattice sites, $\alpha = s, d$, and the average is obtained for the ground state with 8 (6) electrons. In the two-band model the undoped compound corresponds to quarter-filling, i.e., eight electrons. For very strong interactions, band dispersion is suppressed and onsite energies dominate, so that the $x^2−y^2$ orbital becomes half-filled. This is indeed observed for strong $U_d = 8$ eV and $J_0 = 1.2$ eV, see Fig. 2(a). The spin-structure factor is here strongly peaked at (π, π), see Fig. 3(a), so that we recover the familiar picture of a half-filled AF Mott insulator [45]. However, we are in the metallic regime and finite electron density is found in the s-orbital for the uncorrelated band structure of Fig. 1(a).

Figure 2 shows the orbital-resolved density versus screening parameter α. Here we interpolate between the strongly correlated and uncorrelated regimes, while keeping a physically plausible hierarchy of interactions: $U_s = \alpha U_d < U_d \lesssim 8$ eV. (For the moment, we keep the ratio $J_0/U_d = 0.15$ constant.) In Fig. 2(a), U_d is at its upper limit 8 eV, and for weak to moderate screening, we find a half-filled $x^2−y^2$ orbital with AF order. However, as soon as U_s is screened by about 40%, self-doping occurs and some electrons enter the s-band. The same happens for—presumably more realistic—$U_d = 4$ eV, even without additional screening. The presence of the second band thus causes the loss of long-range magnetic order even for parameter regimes where the $x^2−y^2$ orbital by itself would lead to an insulator.

The next question to ask is where holes doped into the quarter-filled system go. Three regimes emerge, see Fig. 2. First, in the weakly screened Mott insulator and for large U_d, the state is AF and holes naturally enter only the $x^2−y^2$ or-

![Fig. 2](image)

![Fig. 3](image)
 orbital. In contrast, the second regime is found at intermediate screening \([\alpha \approx 0.5, \text{see Fig. 2(a)}]\), or for interactions that are reduced from the outset, see Fig. 2(b). Finally, in the third regime of strong screening \((\alpha < 0.5)\), hole doping happens again into the \(x^2 - y^2\) orbital, with the \(s\) electrons remaining unaffected.

Figure 3 shows the spin-structure factor of undoped nickelate at four momenta \(k\) accessible to the \(\sqrt{8} \times \sqrt{8}\)-site cluster. In the unscreened limit, see Fig. 3(a), the AF wave vector \((\pi, \pi)\) dominates for \(\alpha > 0.6\), highlighting AF Mott insulator in the strongly interacting limit. Upon decreasing \(\alpha < 0.6\), the strongest signal is found at \((\frac{\pi}{2}, \frac{\pi}{2})\), but its dominance is far less pronounced. Similarly, in Fig. 3(b), the strongest signal at \((\pi, \pi)\) is suppressed once interactions in the \(x^2 - y^2\) orbital are weaker.

B. One-particle spectral density

To understand the occurrence of possible SC phase in infinite-layer nickelates we consider first the one-particle spectra in the normal phase. When interactions are unscreened \((\alpha = 1)\), the undoped system is a Mott insulator for \(U_d \geq 4\) eV, see Fig. 4. For \(U_d = 8\) eV one finds that the correlated \(d\) band is half-filled and a broad gap \(\sim 3.5\) eV separates occupied from empty states, with the Fermi energy within the gap, see Fig. 4(a). The gap in the correlated band consisting of \(x^2 - y^2\) orbitals is close to 6 eV and unoccupied states above the Fermi level are the \(s\) band states. This electronic structure corresponds to an AF Mott insulator.

When \(U_d = 4\) eV, the gap in the correlated band decreases to \(\sim 1.0\) eV but the tail of the \(s\) band falls below the Fermi energy which still separates the occupied and unoccupied states, see Fig. 4(b). However, for this value of \(U_d\), we cannot exclude a metallic phase, with a small fraction of electrons occupying the \(s\) states in the thermodynamic limit.

The different behavior in the three regimes mentioned in Sec. III A is also reflected in the single-particle spectra shown in Fig. 5. Filling corresponds to doping with two holes and TBC is used to resolve more momenta \([42–44]\). Both for very strong \(U_d = 8\) eV [panels (a&b)] and for moderate interactions \(U_d = 4\) eV [panels (c&d)] (including also weaker screening with \(\alpha = 0.5\)) the correlations induce a gap in the \(x^2 - y^2\) band \([46]\). The lowest states for electrons are then in the \(s\) band, so that going towards the undoped regime involves doping the \(s\) band. Spectra taken at quarter filling lead to analogous interpretations. This can be seen in Fig. 4, where we show the density of states for eight electrons (i.e., quarter filling). Data were obtained by means of TBC, integrating over five sets of boundary conditions.

At strong screening (i.e., for weak \(s\)-orbital interactions), both \(x^2 - y^2\) and \(s\) states are occupied and can appear quite close to the Fermi energy regardless of the value of \(U_d\), see Figs. 5(a) and 5(c). Surprisingly, the spectra shown in Figs. 5 depend little on \(U_d\) and stronger on the screening. At strong screening when \(\alpha = 0.2\), the occupied states in the \(x^2 - y^2\) band are rather similar for \(U_d = 8\) eV and \(U_d = 4\) eV, except that the curvature of the occupied states changes along the \((\pi, 0) - (0, \pi)\) line. Since this implies that interactions \(U'\) and \(J_H\) between \(d\) and \(s\) states do here not play a significant role, it supports the notion of a correlated (and doped) \(d\) band that is only affected by a metallic \(s\) band via self-doping.

In contrast, for stronger correlations, i.e., weaker screening \(\alpha = 0.5\), spectra shown in Figs. 5(b) and 5(d) are affected by \(U_d\). All electrons are here in the correlated \(x^2 - y^2\) states. It is remarkable that the occupied states fall almost at the same energies, independently of whether \(U_d = 8\) eV or \(U_d = 4\) eV [cf. Figs. 6(a&b) and 6(c&d)]. However, splitting between \(d\) and \(s\) states is clearly affected by \(U_d\) (via \(U'\) and \(J_H\)), which indicates that the \(s\) and \(d\)-bands are in this regime directly coupled, not only via self-doping.

Analogous conclusions can be drawn from the undoped density of states shown in Fig. 6, where Figs. 6(a&c) are extremely similar: In the regime of strong screening, both bands are partially filled and results hardly depend on \(U_d\) at all. As already discussed for Figs. 5(a&c) above, this suggests that correlations between the two bands do here not play a significant role. In the intermediate regime on the other hand, both bands are likewise partially filled. The compari-
Energy increases by ∼ the UHB reduced by the kinetic processes in a doped system. In this regime the s band is typical for a doped Mott insulator, with the weight of only weakly correlated and Hubbard subbands are not visible. According to the LHB by finite doping. In this regime the LHB, what would also be the weight transferred from the up- per to the LHB by finite doping. In this regime the s band is only weakly correlated and Hubbard subbands are not visible.

Interestingly, the screening increases the density of s electrons and simultaneously \(n_d \) decreases as in the undoped case \(n_d + n_s = 1 \). This makes the lower Hubbard band (LHB) less than half-filled and considerable spectral weight is transferred from the upper Hubbard band (UHB) to the unoccupied part of the LHB (i.e., above the Fermi level \(\mu \) and below the gap). The mechanism of such a spectral weight transfer is well known in the partly filled Hubbard model [47, 48] and it explains why the weight of the LHB exceeds 0.500 per spin. Here doping in the Mott insulator is mimicked by the partial filling of the s band. The largest transfer of spectral weight is found at \(U_d = 4 \) eV and \(\alpha = 0.5 \), see Table I. The UHB forms only in the correlated \(x^2 - y^2 \) band and no Hubbard subbands form within the s band even at \(U_d = 8 \) eV.

Altogether, the densities of states \(D(\omega) \) give a metallic regime for intermediate \((\alpha = 0.5) \) and strong \((\alpha = 0.2) \) screening of strongly correlated \(x^2 - y^2 \) states, see Fig. 6. A large gap between the Hubbard subbands opens when \(U_d = 8 \) eV; this gap is reduced to ∼ 0.5 eV when \(U_d = 4 \) eV. Nevertheless the system has still a gap which separates separating the Hubbard subbands. The electronic structure for the \(x^2 - y^2 \) band is typical for a doped Mott insulator, with the weight of the UHB reduced by the kinetic processes in a doped system [47, 48]. Indeed, the weight in the LHB above the Fermi energy increases by ∼ 2\(\delta \) where \(\delta \) stands for the doping in the LHB, what would also be the weight transferred from the upper to the LHB by finite doping. In this regime the s band is only weakly correlated and Hubbard subbands are not visible.

IV. Pairing Symmetry

A. Search for Superconducting Correlations

To investigate pairing symmetries we calculate ground overlaps [49, 50] between the undoped ground state \((N = 8) \) and the one with two holes \((N = 6) \), i.e., \(\langle \Phi(N = 8) | \Delta_n | \Phi(N = 6) \rangle \), where \(| \Phi(N) \rangle \) is the ground state for \(N \) electrons. Pairing operator \(\Delta_{s/d} \) corresponds to \(s- \) and \(d- \) wave symmetry,

\[
\Delta_{s/d} = \sum_{i, \mu, \sigma \neq \sigma'} d_{i\mu, \sigma}^\dagger d_{i+\lambda \hat{\mu}, \mu', \sigma'} \pm d_{i+\lambda \hat{\mu}, \mu, \sigma'}^\dagger d_{i\mu, \sigma'},
\]

where \(\mu \) labels \(x^2 - y^2 \) and s orbitals and the + (-) sign refers to \(s- \) (d- wave) pairing. \(\hat{x} \) (y) point to nearest neighbors in \(x \) (y) direction. We consider here only intra-orbital pairs, as we found inter-orbital weight to be negligible.

For strong interactions \(U_d = 8 \) eV and \(\alpha > 0.6 \), where the undoped ground state is an AF insulator, neither pairing can be found; the doped holes here prefer to be further apart. In the intermediate regime, where doped holes were found to prefer the \(s \)-like orbital, \(s- \) wave pairing is found, see Fig. 7. The \(x^2 - y^2 \) orbital does here not participate in the pairing. The regime would thus be best described with a Kondo-lattice like model, where the \(x^2 - y^2 \) orbital provides spins and the \(s \)-like band itinerant carriers [4, 16, 24, 31].

TABLE I. Electron densities \(n_d \) and \(n_s \) per spin obtained in the undoped nickelate for screened interactions \((\alpha < 1) \). The weight of the LHB \(w_{\text{LHB}} \) in increased by the kinetic weight transfer from the UHB [47, 48].

\(U_d \) (eV)	\(\alpha \)	\(n_d \)	\(n_s \)	\(w_{\text{LHB}}^{>\alpha} \)	\(w_{\text{LHB}} \)
8.0	0.20	0.328	0.172	0.373	0.701
	0.50	0.451	0.036	0.063	0.514
4.0	0.20	0.316	0.182	0.400	0.716
	0.50	0.353	0.148	0.337	0.690

FIG. 6. Density of states \(D(\omega) \) of undoped nickelate for weak and moderate screening with \(\alpha = 0.2 \) and \(\alpha = 0.5 \): (a)&(b) \(U_d = 8 \) eV, and (c)&(d) \(U_d = 4 \) eV. The conventions are the same as in Fig. 4.

FIG. 7. Ground state overlap \(\langle \Phi(N) | \Delta_n | \Phi(N) \rangle \) as a function of screening parameter \(\alpha \) for: (a) \(U_d = 8 \) eV, \(J_0 = 1.2 \) eV; (b) \(U_d = 4 \) eV, \(J_0 = 0.6 \) eV. Solid lines indicate \(s- \) and \(d- \) wave symmetries; dashed (dotted) line for \(x^2 - y^2 \) \((s)\) orbital. The shaded region indicates the region with some triplet tendencies (see text).
On the other hand, for strong screening, the pairing is of d-wave symmetry and the involved holes are in the $x^2 - y^2$ states. Both the doped and undoped ground states contain here finite electron density in the s-like band, but their contribution to the pairing is small, see the open squares in Fig. 7. Most of the weight is found in pairs made up of d-$x^2 - y^2$ holes. In this regime, the s-like band does not play an important role [25], its main effect is to increase hole concentration in the $x^2 - y^2$ states via self-doping.

In addition to hole-doped NdNiO$_2$, electron-doped NdNiO$_2$ is discussed in Fig. 8, which shows the overlaps involving the states with 10 and 8 electrons. In the strongly correlated regime $\alpha > 0.5$, where the undoped system is an AF with half-filled $x^2 - y^2$ orbital, we find a tendency towards s-wave pairs formed by s-band electrons. We find no pairing for stronger screening $\alpha < 0.5$ or for $U_d = 4$ eV, in stark contrast to hole doping. The reason is that the $x^2 - y^2$ orbital of the undoped system is here only partially filled: extra electrons then enter the $x^2 - y^2$ band, see also the unoccupied states in Figs. 6(a&b) and 6(c&d). This moves the $x^2 - y^2$ orbital towards half filling and favors AF order [51–54] rather than superconductivity.

B. Phase diagram

We now turn to the influence of Hund’s exchange coupling and collect information on pairing symmetries, displayed in the phase diagrams presented in Fig. 9. For strong and unscreened Coulomb repulsion and not too strong Hund’s exchange coupling, the undoped system shows AF order and no sign of pairing. In this regime, the s-like band is empty and the $x^2 - y^2$ bands are half-filled and Mott insulating, see Figs. 2(a) and 4. For weaker correlations (intermediate screening), AF order is replaced by s-wave pairing (practically only involving s-band holes), while d-wave pairing arises at strong screening.

In this last regime, some electrons are found in the s-like band, but the doped holes enter the $x^2 - y^2$ band, see Fig. 2, and pairing involves mostly the $x^2 - y^2$ orbital. Figure 9 illustrates that stronger Hund’s-exchange pairing reduces effective correlations, suppresses AF order, and promotes d-wave pairing.

In addition to AF phase and s-wave or d-wave pairings, we find some indications of triplet pairing, especially at stronger Hund’s exchange coupling, see Figs. 9(c) and 9(d), but also for very strong bare onsite interaction $U_d = 8$ eV, see Fig. 9(a). Energies obtained for doping with one \uparrow and one \downarrow hole are here degenerate with the energies obtained with two \uparrow holes, indicating that the doped pair is a triplet. In order to check the stability of this result, we also used TBC. The degeneracy is then lifted and the $S^z = 0$ state has lower energy, suggesting that triplet pairing might be a finite-size effect. Moreover, the needed Hund’s exchange would be rather large ($J_0/U_1 \gtrsim 0.25$).

C. LaNiO$_2$ versus NdNiO$_2$

Furthermore, the electronic properties of LaNiO$_2$ compound are obtained starting from the electronic structure [11–18, 55–57]. The model parameters are provided by Ref. [19]. Surprisingly, the hole-doped phase diagram shows largely s-wave pairing as well as an AF phase (see Fig. 10). Some d-wave pairing is also found, however, it requires strong screening strength $\alpha \approx 0.1$ to develop. AF order is robust and remains stable even at $U_d = 4$ eV, highlighting the impor-
tance of rare-earth screening required for superconductivity in LaNiO$_2$. The smaller Γ-pocket [19] implies pairing toward s-wave, but its robustness against U_d is not expected and this type of order is more subtle. Compared to NdNiO$_2$, the parameter range for d-wave pairing is strongly reduced in LaNiO$_2$, and s-wave pairing dominates the phase diagram. In addition to d- and s-wave SC phases, we observe non-vanishing of $(d + s)$-wave at the crossover between the two above symmetries. Although this exotic type of pairing is interesting, with the small cluster size used here we cannot argue that it is stable in the thermodynamic limit.

Figure 11 shows pairing overlaps and spin-structure factor for electron-doped LaNiO$_2$. As for electron-doped NdNiO$_2$ (see Fig. 8), strong correlations enhance AF order in the $x^2 - y^2$ orbital and allow coexisting s-wave pairing in the s-like band. At weak correlations, however, we now find d-wave superconductivity in the regime without AF order, in contrast to electron-doped NdNiO$_2$. However, in stark contrast to the hole-doped scenarios, the d-wave pairs are composed almost exclusively of s electrons rather than $x^2 - y^2$. This result suggests that superconductivity in electron-doped LaNiO$_2$ would be possible.

V. SUMMARY AND CONCLUSIONS

We have used exact diagonalization to investigate an effective two-band model for infinite-layer nickelates, where the band with a strong Ni($d_{x^2−y^2}$) character can be expected to be more correlated than the one with a rather extended s-like wave function of mostly rare-earth character. We focus here on the interactions in both bands, especially their relative strength, which also tunes the highly relevant [19] interorbital interactions between the two orbitals. The latter give interband interactions and are responsible for the pairing.

On both ends, the very strongly correlated and the strongly screened regimes, the two-band model can be mapped onto a single Hubbard-like band. For (unrealistically) strong interactions, we find an AF Mott insulator without tendencies to superconductivity. In the more realistic screened regime, the s-like band takes up some of the charge carriers, which can easily be accounted for effectively by adjusting the doping level of the correlated $x^2 - y^2$ band [25].

For intermediate screening, in contrast, the s-band hosts the doped holes forming s-wave pairs, so that it cannot be neglected. The situation broadly corresponds to a Kondo-lattice–like scenario, with the caveat that the ‘localized’ $d_{x^2−y^2}$ spins can also move [4, 24, 31]. Hund’s exchange coupling naturally yields ferromagnetic interaction between itinerant s carriers and $d_{x^2−y^2}$ spins, but it is interesting to note that s-wave pairing at stronger coupling was also obtained in a similar effective model with AF spin-spin coupling [24].

Hopping parameters used were modeled on NdNiO$_2$, and we find that a self-doped $x^2 - y^2$ band can likely capture some regimes of a model for hole-doped NdNiO$_2$, while the s-like band would be expected to play a stronger role at electron doping. We also used a slight modification of the model in order to arrive at a model more appropriate to LaNiO$_2$ and conclude that the s-like band can be similarly expected to play a stronger role. Electron doping enhances antiferromagnetism, and s-wave pairing due to the orbital might then arise, while d-wave pairing is only found for LaNiO$_2$, but not for NdNiO$_2$. We find that the overall phase diagrams are similar for model parameters aiming at NdNiO$_2$ and LaNiO$_2$. However, a mapping onto a single Hubbard band is here applicable to a significantly reduced part of the parameter space in the case of LaNiO$_2$, with a much broader regime falling into the Kondo-lattice—like two-band regime. We thus conclude that many, but not necessarily all, aspects of Ni-based superconductors can be discussed in an effective one-band scenario, in agreement with Ref. [33].

Experimental evidence is on pairing symmetry is at the moment not completely clear. Recent observation on both Nd- and La-based compounds suggests isotropic nodeless pairing in Nd-nickelate while it is anisotropic nodeless or nodal + nodeless pairing in La-nickelate [58]. Tunneling spectra in Nd$_1$−Sr$_x$NiO$_2$ thin films have revealed d- as well as s-wave gaps [27]. Different surface termination has been conjectured to underlie this observation and our results might provide a rationalization: if termination reduces screening locally, it can push the system into the s-wave regime.

Note added.—After this work was completed, we became
aware of a recent two-band model study of nickelates by the Stanford group [59]. Common feature is the coexistence of a strongly correlated $x^2−y^2$ orbital and a weakly correlated s-like orbital which supports the relevance of such a two-band model for the superconducting infinite-layer nickelates.

ACKNOWLEDGMENTS

We thank Wojtek Brzezicki, Andres Greco, and George A. Sawatzky for very insightful discussions. T. Pleniumbursing acknowledges Development and Promotion of Science and Technology Talents Project (DPST). A. M. Oleś acknowledges Narodowe Centrum Nauki (NCN, Poland) Project No. 2016/23/B/ST3/00839 and is grateful for support via the Alexander von Humboldt Foundation Fellowships (Humboldt-Forschungspreis).

[1] D. Li, K. Lee, B. Y. Wang, M. Osada, S. Crossley, H. R. Lee, Y. Cui, Y. Hikita, and H. Y. Hwang, Superconductivity in an infinite-layer nickelate, Nature (London) 572, 624 (2019).
[2] M. Jiang, M. Bersu, and G. A. Sawatzky, Critical nature of the Ni spin state in doped NdNiO$_2$, Phys. Rev. Lett. 124, 207004 (2020).
[3] T. Pleniumbursing, M. Daghofer, and A. M. Oleś, Interplay between Zhang-Rice singlets and high-spin states in a model for doped NiO$_2$ planes, Phys. Rev. B 103, 104513 (2021).
[4] M. Hepting, D. Li, C. J. Jia, H. Lu, E. Paris, Y. Tseng, X. Feng, M. Osada, E. Been, Y. Hikita, Y.-D. Chuang, Z. Hussain, K. J. Zhou, A. Nag, M. Garcia-Fernandez, M. Rossi, H. Y. Huang, D. J. Huang, Z. X. Shen, T. Schmitt, H. Y. Hwang, B. Moritz, J. Zaanen, T. P. Devereaux, and W. S. Lee, Electronic structure of the parent compound of superconducting infinite-layer nickelates, Nature Materials 19, 381 (2020).
[5] H. Lu, M. Rossi, A. Nag, M. Osada, D. F. Li, K. Lee, B. Y. Wang, M. Garcia-Fernandez, S. Agrestini, Z. X. Shen, E. M. Been, B. Moritz, T. P. Devereaux, J. Zaanen, H. Y. Hwang, K.-J. Zhou, and W. S. Lee, Magnetic excitations in infinite-layer nickelates, Science 373, 213 (2021).
[6] J. Q. Lin, P. Villar Arribi, G. Fabbris, A. S. Botana, D. Meyers, H. Miao, Y. Shen, D. G. Mazzone, J. Feng, S. G. Chiuzbăian, A. Nag, A. C. Walters, M. Garcia-Fernandez, K.-J. Zhou, J. Pelliciari, I. Jarrige, J. W. Freeland, J. Zhang, J. F. Mitchell, V. Bisogni, X. Liu, M. R. Norman, and M. P. M. Dean, Strong superexchange in a d^{9}_{xy} nickelate revealed by resonant inelastic x-ray scattering, Phys. Rev. Lett. 126, 087001 (2021).
[7] M. A. Hayward, M. A. Green, M. J. Rosseinsky, and J. Sloan, Sodium hydride as a powerful reducing agent for topotactic oxide deinteration: Synthesis and characterization of the Nickel(I) Oxide LaNiO$_2$, J. Am. Chem. Soc. 121, 8843 (1999).
[8] M. A. Hayward and M. J. Rosseinsky, Synthesis of the infinite layer Ni(I) phase NdNiO$_{2+δ}$ by low temperature reduction of NdNiO$_3$ with sodium hydride, Solid State Sciences 5, 839 (2003).
[9] L.-H. Hu and C. Wu, Two-band model for magnetism and superconductivity in nickelates, Phys. Rev. Research 1, 032046 (2019).
[10] Y.-H. Zhang and A. Vishwanath, Type-II t-J model in superconducting nickelate Nd$_{1-x}$Sr$_x$NiO$_2$, Phys. Rev. Research 2, 023112 (2020).
[11] P. Jiang, L. Si, Z. Liao, and Z. Zhong, Electronic structure of rare-earth infinite-layer RNiO$_2$ (R=La,Nd), Phys. Rev. B 100, 201106 (2019).
[12] L. Si, W. Xiao, J. Kaufmann, J. M. Tomczak, Y. Lu, Z. Zhong, and K. Held, Topotactic hydrogen in nickelate superconductors and akin infinite-layer oxides ABO$_2$, Phys. Rev. Lett. 124, 166402 (2020).
[13] X. Wu, D. Di Sante, T. Schwemmer, W. Hanke, H. Y. Hwang, S. Raghu, and R. Thomale, Robust $d_{x^2−y^2}$-wave superconductivity of infinite-layer nickelates, Phys. Rev. B 101, 060504 (2020).
[14] M. Klett, T. Schwemmer, S. Wolf, X. Wu, D. Rieger, A. Dittmaier, D. Di Sante, G. Li, W. Hanke, S. Rachel, and R. Thomale, From high T_c to low T_c: Multiorbital effects in transition metal oxides, Phys. Rev. B 104, L100502 (2021).
[15] R. Zhang, C. Lane, B. Singh, J. Nokelainen, B. Barbiellini, R. S. Markiewicz, A. Bansil, and J. Sun, Magnetic and f-electron effects in LaNiO$_2$ and NdNiO$_2$ nickelates with cuprate-like $3d_{x^2−y^2}$ band, Communications Phys. 4, 118 (2021).
[16] E. Been, W.-S. Lee, H. Y. Hwang, Y. Cui, J. Zaanen, T. Devereaux, B. Moritz, and C. Jia, Electronic structure trends across the rare-earth series in superconducting infinite-layer nickelates, Phys. Rev. X 11, 011050 (2021).
[17] K. Higashi, M. Winder, J. Kuneš, and A. Hariki, Core-level x-ray spectroscopy of infinite-layer nickelate: LDA + DMFT study, Phys. Rev. X 11, 041009 (2021).
[18] A. S. Botana, K.-W. Lee, M. R. Norman, V. Pardo, and W. E. Pickett, Low valence nickelates: Launching the nickel age of superconductivity, Front. Phys. 9, 813532 (2021).
[19] P. Adhikary, S. Bandypadhyay, T. Das, I. Dasgupta, and T. Saha-Dasgupta, Orbital-selective superconductivity in a two-band model of infinite-layer nickelates, Phys. Rev. B 102, 100501 (2020).
[20] Y. Nomura, M. Hiyama, T. Tanado, Y. Yoshimoto, K. Nakamura, and R. Arita, Formation of a two-dimensional single-component correlated electron system and band engineering in the nickelate superconductor NdNiO$_2$, Phys. Rev. B 100, 205138 (2019).
[21] Y. Gu, S. Zhu, X. Wang, J. Hu, and H. Chen, A substantial hybridization between correlated Ni-d orbital and itinerant electrons in infinite-layer nickelates, Communications Physics 3, 84 (2020).
[22] F. Lechermann, Multiorbital processes rule the Nd$_{1−x}$Sr$_x$NiO$_2$ normal state, Phys. Rev. X 10, 041002 (2020).
[23] T. Y. Xie, Z. Liu, C. Cao, Z. F. Wang, J. L. Yang, and W. Zhu, Microscopic theory of superconducting phase diagram in infinite-layer nickelates, arXiv: (2021), 2112.01677 [cond-mat.str-el].
[24] Z. Wang, G.-M. Zhang, Y.-F. Yang, and F.-C. Zhang, Distinct pairing symmetries of superconductivity in infinite-layer nickelates, Phys. Rev. B 102, 220501 (2020).
[25] M. Kitatani, L. Si, R. Arita, Z. Zhong, and K. Held, Nickelate superconductors—a renaissance of the one-band Hubbard model, npj Quantum Mat. 5, 59 (2020).
[26] Y. Nomura and R. Arita, Superconductivity in infinite-layer nickelates, arXiv: (2021), 2107.12923 [cond-mat.str-el].
[27] Q. Gu, Y. Li, S. Wan, H. Li, W. Guo, H. Yang, Q. Li, X. Zhu, X. Pan, Y. Nie, and H.-H. Wen, Single particle tunneling spectrum of superconducting Nd$_{1-x}$Sr$_x$NiO$_2$ thin films, Nature Communications 11, 134502 (2020).
[28] A. S. Botana and M. R. Norman, Similarities and differences between LaNiO$_2$ and CaCuO$_2$ implications for superconductivity, Phys. Rev. X 10, 011024 (2020).
[29] F. C. Zhang and T. M. Rice, Effective Hamiltonian for the superconducting Cu oxides, Phys. Rev. B 37, 3759 (1988).
[30] H. Sakakibara, H. Usui, K. Suzuki, T. Kotani, H. Aoki, and K. Kuroki, Model construction and a possibility of cuprate-like pairing in a new d^0 nickelate superconductor (Nd,Sr)NiO$_2$, Phys. Rev. Lett. 125, 077003 (2020).
[31] G.-M. Zhang, Y.-f. Yang, and F.-C. Zhang, Self-doped Mott insulator for parent compounds of nickelate superconductors, Phys. Rev. B 101, 020501 (2020).
[32] M. Rossi, H. Lu, A. Nag, D. Li, M. Osada, K. Lee, B. Y. Wang, S. Agrestini, M. Garcia-Fernandez, J. J. Kas, Y.-D. Chuang, Z. X. Shen, H. Y. Hwang, B. Moritz, K.-J. Zhou, T. P. Devereaux, and W. S. Lee, Orbital and spin character of doped carriers in infinite-layer nickelates, Phys. Rev. B 104, L220505 (2021).
[33] F. Lechermann, Doping-dependent character and possible magnetic ordering of NdNiO$_2$, Phys. Rev. Materials 5, 044803 (2021).
[34] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter 21, 395502 (2009).
[35] P. Giannozzi, P. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carmineo, A. D. Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fuggle, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kavamura, H. Y. Ko, A. Kokalj, E. Kucikbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. O. de-la Roza, L. Paulatto, S. Poncet, D. Rocca, R. Sabatini, B. Santra, M. Schlupf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni, Advanced capabilities for materials modelling with QUANTUM ESPRESSO, Journal of Physics: Condensed Matter 29, 465901 (2017).
[36] P. Giannozzi, O. Baseggio, P. Bonfà, D. Brunato, R. Car, I. Carmineo, C. Cavazzoni, S. de Gironcoli, P. Delugas, F. Ferrari Ruffino, A. Ferretti, N. Marzari, I. Timrov, A. Urru, and S. Baroni, QUANTUM ESPRESSO toward the exascale, The Journal of Chemical Physics 152, 154105 (2020).
[37] J. I. Budnick, B. Chamberland, D. P. Yang, C. Niedermayer, A. Golnik, E. Recknagel, M. Rossmanith, and A. Weidinger, Dependence of the Néel-temperatures of La$_2$CuO$_4$ on Sr-doping studied by muon spin rotation, EPL (Europhysics Letters) 5, 651 (1988).
[38] G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géranton, M. Gibertini, D. Gresch, C. Johnson, T. Koretsune, J. Ibañez-Azpiroz, H. Lee, J.-M. Limh, D. Marchand, A. Marrazzo, Y. Mokrousov, J. I. Mustafa, Y. Nohara, Y. Nomura, L. Paulatto, S. Poncé, T. Ponweiser, J. Qiao, F. Thöle, S. S. Tsirkin, M. Wierzbowska, N. Marzari, D. Vanderbilt, I. Souza, A. A. Mostofi, and J. R. Yates, Wannier90 as a community code: new features and applications, Journal of Physics: Condensed Matter 32, 165902 (2020).
[39] See Supplemental Material at ... for more details.
[40] E. Koch, The Lanczos Method, in: The LDA+DMFT approach to strongly correlated materials, edited by E. Pavarini, E. Koch, D. Vollhardt, and A. Lichtenstein (Forschungszentrum Jülich, Jülich, 2011).
[41] T. Plienbunmung, M. Schmid, M. Daghofer, and A. M. Oleś, Character of doped holes in Nd$_{1-x}$Sr$_x$NiO$_2$, Condensed Matter 6, 33 (2021).
[42] M. Shiroishi and M. Wadati, Integrable boundary conditions for the one-dimensional Hubbard model, Jpn. Phys. Soc. 66 (1997).
[43] D. Poilblanc, Twisted boundary conditions in cluster calculations of the optical conductivity in two-dimensional lattice models, Phys. Rev. B 44, 9562 (1991).
[44] W.-G. Yin and W. Ku, Flavor-twisted boundary condition for simulations of quantum many-body systems, Phys. Rev. B 80, 180402 (2009).
[45] Y. Nomura, T. Nomoto, M. Hirayama, and R. Arita, Magnetic exchange coupling in cuprate-analog d^0 nickelates, Phys. Rev. Research 2, 043144 (2020).
[46] F. Lechermann, Late transition metal oxides with infinite-layer structure: Nickelates versus cuprates, Phys. Rev. B 101, 081110 (2020).
[47] H. Eskes and A. M. Oleś, Two Hubbard Bands: Weight Transfer in Optical and One-Particle Spectra, Phys. Rev. Lett. 73, 1279 (1994).
[48] H. Eskes, A. M. Oleś, M. B. J. Meinders, and W. Stephan, Spectral properties of the Hubbard bands, Phys. Rev. B 50, 17980 (1994).
[49] A. Moreo, M. Daghofer, J. A. Riera, and E. Dagotto, Properties of a two-orbital model for oxypnictide superconductors: Magnetic order, B_{2g} spin-singlet pairing channel, and its nodal structure, Phys. Rev. B 79, 134502 (2009).
[50] A. Nicholson, W. Ge, X. Zhang, J. Riera, M. Daghofer, A. M. Oleś, G. B. Martins, A. Moreo, and E. Dagotto, Competing pairing symmetries in a generalized two-orbital model for the pnictide superconductors, Phys. Rev. Lett. 106, 217002 (2011).
[51] S. Ryee, H. Yoon, T. J. Kim, M. Y. Jeong, and M. J. Han, Induced magnetic two-dimensionality by hole doping in the superconducting infinite-layer nickelate Nd$_{1-x}$Sr$_x$NiO$_2$, Phys. Rev. B 101, 064513 (2020).
[52] H.-S. Jin, W. E. Pickett, and K.-W. Lee, Proposed ordering of textured spin singlets in a bulk infinite-layer nickelate, Phys. Rev. Research 2, 033197 (2020).
[53] N. Kitamine, M. Ochi, and K. Kuroki, Designing nickelate superconductors with d^0 configuration exploiting mixed-anion strategy, Phys. Rev. Research 2, 042032 (2020).
[54] E. M. Nica, J. Krishna, R. Yu, Q. Si, A. S. Botana, and O. Ertin, Theoretical investigation of superconductivity in trilayer square-planar nickelates, Phys. Rev. B 102, 020504 (2020).
[55] D. Zhao, Y. B. Zhou, Y. Fu, L. Wang, X. F. Zhou, H. Cheng, J. Li, D. W. Song, S. J. Li, B. L. Kang, L. X. Zheng, L. P. Nie, Z. M. Wu, M. Shan, F. H. Yu, J. J. Ying, S. M. Wang, J. W. Mei, T. Wu, and X. H. Chen, Intrinsic spin susceptibility and pseudo-gaplike behavior in infinite-layer LaNiO$_2$, Phys. Rev. Lett. 126, 207003 (2021).
[56] M. Islam, S. Koley, and S. Basu, Transport properties of the parent LaNiO$_2$, Eur. Phys. J. B 94, 187 (2021).

[57] S. W. Zeng, C. J. Li, L. E. Chow, Y. Cao, Z. Zhang, C. S. Tang, X. Yin, Z. S. Lim, J. Hu, P. Yang, and A. Ariando, Superconductivity in infinite-layer lanthanide nickelates, Science Advances 8, eabl9927 (2022).

[58] L. E. Chow, S. K. Sudheesh, P. Nandi, S. W. Zeng, Z. T. Zhang, X. M. Du, Z. S. Lim, E. E. M. Chia, and A. Ariando, Pairing symmetry in infinite-layer nickelate superconductor, arXiv: (2022), 2201.10038 [cond-mat.supr-con].

[59] C. Peng, H. C. Jiang, B. Moritz, T. P. Devereaux, and C. Jia, Superconductivity in a minimal two-band model for infinite-layer nickelates, arXiv: (2021), 2110.07593 [cond-mat.str-el].