Interaction of solitons with a qubit in an anisotropic Heisenberg spin chain with first and second-neighbor interactions

S Varbev, I Boradjiev, R Kamburova, H Chamati
Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences,
72 Tzarigradsko chaussée Blvd., BG-1784 Sofia, Bulgaria
E-mail: stanislavvarbev@issp.bas.bg

Abstract. Solitons provide a promising means to control the state of a spin-qubit in quantum information technology. In this paper, we consider the anisotropic interaction between a soliton, propagating in a ferromagnetic Heisenberg spin chain and a spin-$\frac{1}{2}$ particle (qubit). The spin chain exhibits an on-site anisotropy and spin-spin nearest-neighbor and next-nearest-neighbor interactions. The Bloch sphere picture is employed to investigate the spin-$\frac{1}{2}$ dynamics. We found that increasing the anisotropic and the second neighbor interactions leads to an increase of the deviation of the spin-$\frac{1}{2}$ particle from its initial state.

1. Introduction
The main quantum information unit is the qubit – a quantum mechanical two-level system. A thorough introduction into the physics of the two-level system can be found in R. P. Feynman’s lectures on physics [1]. Experimentally, this system can be realized in various manners, such as an electron spin [2] or a composite particle (molecular cluster) with a magnetic moment and spin [3]. Therefore, coherent control of the spin dynamics plays a crucial role in quantum information science. Formally, quantum computing and quantum communications can be viewed as a central set of techniques for coherent manipulation of spins in one and two dimensional lattices [4].

The dynamics of one- and two-dimensional spin magnetic systems, with different kinds of anisotropy and under the effect of external magnetic field, has attracted a lot of interest in recent years [5]. One-dimensional quantum systems permit the existence, and thus propagation and interaction of solitons between each other and with external systems [6]. Soliton-like spin magnetic excitations propagating along spin chains have also been proposed as a way for manipulating the spin state of a spin-$\frac{1}{2}$ localized particle (qubit) [7–9]. The idea is based on the time evolution of a specific class of quantum spin systems determined by a corresponding Hamiltonian dynamics of classical spins in the limits of large-spin and mean-field [10]. An interesting possible realization of an effective qubit is by using spin solitons pinned by the local breaking of translational symmetry in isotropic Heisenberg chains [11]. Using this scheme one should, in principle, be able to control the state of the qubit by a soliton. These considerations may pave the way for the implementation of a new type of quantum computers.

In a recent paper [12], we studied the possibility to manipulate the qubit (realized as a spin) using a soliton propagating through a Heisenberg spin chain with nearest neighbor interaction and on-site anisotropy. We showed that for large values of the interaction between the soliton and the qubit in the $x−y$ plane the creation of qubit’s state superpositions is possible. Here, we extend our investigation by...
including next-nearest-neighbor spin-spin interactions in our model to examine their potential effect on the qubit dynamics.

2. The model

The problem of interest consists of an anisotropic coupling between a qubit (quantum spin-\(1/2\)) and an arbitrary spin on a ferromagnetic Heisenberg chain with nearest- and next-nearest-neighbor exchange interactions and on-site spin anisotropy. The investigated system is described by the following Hamiltonian

\[
\hat{H} = -J_1 \sum_{n=1}^{N} \hat{S}_n \cdot \hat{S}_{n+1} - J_2 \sum_{n=1}^{N} \hat{S}_n \cdot \hat{S}_{n+2} - A \sum_{n=1}^{N} (\hat{S}_n^z)^2 \\
- \mu H_0 \sum_{n=1}^{N} \hat{S}_n^z - v H_0 \hat{S}_j^z + d_{xy}(\hat{S}_j^x \hat{S}_j^x + \hat{S}_j^y \hat{S}_j^y) + d_z \hat{S}_j^z \hat{S}_j^z,
\]

(1)

where \(\hat{S}_n\) are the spin vector operators, \(n = 1, \ldots, N\). \(N\) is the number of spins in the chain, \(A > 0\) is the on-site anisotropy, \(J_1 > 0\) and \(J_2 \geq 0\) are the exchange integrals between the nearest and the next-nearest neighbors, respectively [13]. \(\hat{S}_j\) is the spin-\(1/2\) vector operator, \(H_0\) is the external magnetic field oriented in z-direction, \(\mu\) and \(v\) are magnetic moments per spin in the chain’s sites and the qubit, respectively. \(d_{xy}, d_z\) are constants describing the anisotropic \((d_{xy} \neq d_z)\) coupling of the chain with the spin-\(1/2\) particle [12].

The equations of motion for spin vectors \(\hat{S}_n\) in our model (1) read \((h = 1)\) [12]

\[
\pm i \frac{\partial \hat{S}_n^z}{\partial t} = A (\hat{S}_n^x \hat{S}_{n+1}^x + \hat{S}_n^y \hat{S}_{n+1}^y) + d_{xy}(\hat{S}_j^x \hat{S}_j^x + \hat{S}_j^y \hat{S}_j^y) - d_z \hat{S}_j^z \hat{S}_j^z + \mu H_0 \hat{S}_j^z

- J_1 [(\hat{S}_n^x (\hat{S}_{n-1}^x + \hat{S}_{n+1}^x) - \hat{S}_n^x (\hat{S}_{n-1}^x + \hat{S}_{n+1}^x)] - J_2 [(\hat{S}_n^x (\hat{S}_{n-2}^x + \hat{S}_{n+2}^x) - \hat{S}_n^x (\hat{S}_{n-2}^x + \hat{S}_{n+2}^x)].
\]

(2)

For large magnitude \(S = |\hat{S}_n|\) of the spin, we may adopt the approximations

\[
\hat{S}_n^+ = S \alpha_n, \quad \hat{S}_n^- = S \alpha_n^*, \quad \hat{S}_n^z = S \sqrt{1 - |\alpha_n|^2},
\]

(3)

where \(\alpha_n\) is a complex function and \(\alpha_n^*\) its complex conjugate. Substituting (3) in (2), we obtain

\[
i \frac{\partial \alpha_n}{\partial t} = 2AS \sqrt{1 - |\alpha_n|^2} - J_1 S \left((\alpha_{n+1} + \alpha_{n-1}) \sqrt{1 - |\alpha_n|^2} - \alpha_n \left(\sqrt{1 - |\alpha_{n+1}|^2} + \sqrt{1 - |\alpha_{n-1}|^2}\right) \right)

- J_2 S \left((\alpha_{n+2} + \alpha_{n-2}) \sqrt{1 - |\alpha_{n+2}|^2} - \alpha_n \left(\sqrt{1 - |\alpha_{n+2}|^2} + \sqrt{1 - |\alpha_{n-2}|^2}\right) \right) + \mu H_0 \alpha_n.
\]

(4)

Further, to seek solutions in the form of amplitude-modulated waves we make use of the anzats

\[
\alpha_n(t) = \varphi_n(t)e^{i(kn\Delta x - \omega_0 t)},
\]

(5)

where the envelope functions \(\varphi_n(t)\) are slowly varying against the position and time, \(k\) and \(\omega_0\) are, respectively, the wave number and the frequency of the carrying wave and \(\Delta x = 1\) is the lattice constant, which sets the length scale. After application of (5), and in the continuum limit \(\varphi_n(t) \rightarrow \varphi(x, t)\), equations (4) transform into the modified nonlinear Schrödinger equation for \(\varphi = \varphi(x, t)\) (for details see e.g. [13,14])

\[
i \left(\frac{\partial \varphi}{\partial t} + v \frac{\partial \varphi}{\partial x}\right) = (\omega_0 - \omega)\varphi - b_k S \frac{\partial^2 \varphi}{\partial x^2} + g_k S |\varphi|^2 \varphi
\]

(6)

with \(\omega_0 = \mu H_0 - 2g_k S\) — the characteristic frequency, \(v = 2S(J_1 \sin k + J_2 \sin 2k)\) — the group velocity of the carrier wave, \(b_k = J_1 \cos k + 4J_2 \cos 2k\) — the dispersion coefficient and \(g_k = J_1 (\cos k - 1) + J_2 (\cos 2k - 1) - A\). Remark that the group velocity, the dispersion coefficient and \(g_k\) depend on \(J_1\) and \(J_2\).
The bright soliton solution, \(g_k \cos k < 0 \), of equation (6) that is fulfilled under the condition

\[\omega = \omega_0 - \frac{b_k S}{L^2} \]

reads

\[\varphi(x, t) = \varphi_0 \text{sech} \frac{x - vt}{L}, \quad (7) \]

where

\[\varphi_0^2 = -\frac{2b_k}{g_k L^2}, \]

and the parameters \(L \gg \Delta x \) and \(v \) are the width and the velocity of the soliton, respectively, where \(v \) is determined by the imaginary part of (6). Note that the soliton given by (7) satisfies the boundary conditions \(\lim_{x \to \pm \infty} |\varphi(x, t)| \to 0 \).

3. Qubit (spin \(\frac{1}{2} \)) dynamics

The equations for the evolution of the components of the Bloch vector for the spin-\(\frac{1}{2} \) particle are [12]

\[i\partial_t (a^-) = \left(d_z S \sqrt{1 - |\varphi|^2} - vH_0 \right) a^- - d_{xy} S \varphi^* e^{-i(kj - \omega t)} a^z, \quad (8a) \]

\[i\partial_t (a^+) = -\left(d_z S \sqrt{1 - |\varphi|^2} - vH_0 \right) a^+ + d_{xy} S \varphi e^{i(kj - \omega t)} a^z, \quad (8b) \]

\[i\partial_t (a^z) = \frac{d_{xy}}{2} \left(S \varphi^* e^{-i(kj - \omega t)} a^+ - S \varphi e^{i(kj - \omega t)} a^- \right). \quad (8c) \]

With the transformation

\[a^\pm(t) = a^x \pm ia^y, \quad (9) \]

the system of equations (8) takes the final form

\[i\partial_t (a^x) = -i \left(d_z S \sqrt{1 - |\varphi|^2} - vH_0 \right) a^y + id_{xy} S \varphi \sin(kj - \omega t) a^z, \quad (10a) \]

\[i\partial_t (a^y) = i \left(d_z S \sqrt{1 - |\varphi|^2} - vH_0 \right) a^x - id_{xy} S \varphi \cos(kj - \omega t) a^z, \quad (10b) \]

\[i\partial_t (a^z) = -id_{xy} S \varphi \sin(kj - \omega t) a^x + id_{xy} S \varphi \cos(kj - \omega t) a^y. \quad (10c) \]

4. Numerical results

We solve numerically (10) to gain insights into the dynamics of the Bloch vector \(\mathbf{a} \), assuming that at the initial moment \(\mathbf{a}_{t=0} = (0, 0, 1) \), i.e. the spin \(\frac{1}{2} \) is collinear to the unit vector of the z-axis. Fix the energy scale \(J_1 = A = 1 \), the spin in units of \(\hbar \), i.e. \(S = \hbar \), and the length scale in units of the lattice constant. Therefore, we may express all other quantities in dimensionless units. The interaction between the external magnetic field and a single spin in the chain is \(\mu H_0 = 0.5 \) and the one for the qubit is \(\nu H_0 = 1.5 \). These interacting terms are taken to be of the order of the exchange interaction in the spin chain and satisfy the inequality \(\mu < \nu \). The site \(j \) where the qubit-spin chain interaction takes place is arbitrary and does not affect the results in our simulations we set \(j = 10 \). The peak of the soliton is attained at \(x = vt \). For \(x = 0 \) and \(t = 0 \), the peak of the soliton is located at the site labeled by \(j \). Let us consider the situation when the qubit-soliton interaction occurs exactly at \(t = 0 \)

\[\begin{cases} d_{xy} = d_z = 0, & \text{for } t < 0, \\ d_{xy} > 0 \text{ and } d_z \geq 0, & \text{for } t \geq 0. \end{cases} \quad (11) \]
In the numerical investigations the soliton parameters are chosen to be $k = \frac{\pi}{30}$ and $L = 6$. The profile for fixed x ($t \geq 0$) is depicted in figure 1. Here, we are interested in the long-time behavior of the qubit, when the soliton peak is far away from the site j and the z coordinate of the qubit has already reached its stationary value.

![Figure 1](image1.png)

Figure 1. Soliton profile $\phi(0, t)$ for $t \geq 0$, $k = \frac{\pi}{30}$, $L = 6$, $S = 1$, $J_1 = A = 1$ and $J_2 = 0.2$.

Figure 2. Qubit dynamics for $d_{xy} = 20$, $d_z = 0$ and different values of next-nearest-neighbor interaction J_2. Panels (a) - (c): the z-component of the Bloch vector. Panels (d) - (f): the qubit’s state evolution on the Bloch sphere. $J_2 = 0$ for (a) and (d); $J_2 = 0.1$, for (b) and (e); $J_2 = 0.2$ for (c) and (f).

![Figure 2](image2.png)

To study the effect of the interaction of second neighbors on the qubit dynamics we consider a few limiting cases. Let us first consider the case of strong anisotropy in the soliton-qubit interaction ($d_{xy} = 20$, $d_z = 0$). The time evolution of the z-component of the Bloch vector and its trajectory on the surface of
the Bloch sphere are plotted in figure 2 (a) – (c) and (d) – (f), respectively. It can be seen from figure 2 (a) - (c), that when $a_z(0) = 1$, then $a_z(t)$ oscillates very fast, and for large enough time these oscillations fade away around some asymptotic value. We choose to determine the asymptotic values for the Bloch vector at $t = 200$. The path on the Bloch sphere (figure 2 (d) - (f)) covers a large area on surface of the sphere, while the asymptotic value is seen at the meridian where the intensity of the curves has the highest density. In figure 2 (a), (d), we consider only the nearest-neighbor interaction, then $a_z(t)$ has an asymptotic value of 0.20 for $t = 200$ and the soliton amplitude $q_0 = 0.23$. Switching on the interaction with second neighbors J_2 in the ferromagnetic chain increases the soliton amplitude $q_0 = 0.28$ and we find smaller asymptotic value of $a_z(200) = 0.17$, i.e. $a_z(t)$ is asymptotically closer to zero, corresponding to the state of equal superposition (figure 2 (b), (e)). Further increase of J_2 leads to a higher value of the soliton amplitude $q_0 = 0.31$ and to the decrease of $a_z(200)$ towards 0.15 as seen from figures 2 (c) and (f). All values of $a_z(200)$ and q_0 are given with an accuracy of two decimal digits and they show that the effect of the next-nearest neighbors is relatively small, with an average decrease of several percentages.

![Figure 3. Qubit dynamics for $d_{xy} = 20$, $d_z = 5$ and different values of next-nearest-neighbor interaction J_2. Panels (a) - (c): the z-component of the Bloch vector. Panels (d) - (f): the qubit's state evolution on the Bloch sphere. $J_2 = 0$ for (a) and (d); $J_2 = 0.1$, for (b) and (e); $J_2 = 0.2$ for (c) and (f). The asymptotic values for $a_z(t = 200)$ are 0.78 for (a) and (d); 0.72 for (b) and (e); and 0.67 for (c) and (f).](image)

For relatively moderate anisotropy of the qubit-soliton interaction ($d_{xy} = 20$, $d_z = 5$) (figure 3 (a)-(f)), the ferromagnetic second neighbor interaction again reduces the asymptotic value of the qubit’s spin $\frac{1}{2}$ projections on the z-axis closer to zero. The amplitudes of the soliton remain unchanged and for this reason (figure 3 is quite similar to figure 2 for strong anisotropy, except that the values for $a_z(200)$ are very close to one. This leads us to the conclusion that smaller anisotropy of the qubit-soliton interaction is associated to higher asymptotic value of a_z.

5. Conclusions
We have studied the effect of an anisotropic interaction between a propagating in a spin chain soliton and an external spin $\frac{1}{2}$ that plays the role of a qubit. The spin chain is described by a ferromagnetic Heisenberg
model Possessing an on-site spin anisotropy in conjunction with nearest- and next-nearest-neighbor spin-spin interactions. The equations governing the qubit dynamics are derived and the behavior of the z-projection of the associated Bloch vector is analyzed. It is shown that an increase of the magnitudes of the next-nearest-neighbor interaction and the anisotropy in the qubit-spin chain interaction is associated to an increasing probability for the spin $\frac{1}{2}$ flip.

Acknowledgments
S. Varbev is supported by the Bulgarian Ministry of Education and Science under the National Research Programme “Young scientists and postdoctoral researchers” approved by DCM #577/17.08.2018. I. Boradjievi, R. Kamburova and H. Chamati would like to acknowledge the financial support by the Joint Institute for Nuclear Research (JINR), Dubna, Russian Federation - THEME 01-3-1137-2019/2023.

References
[1] Feynman R P, Leighton R B and Sands M 1964 The Feynman Lectures on Physics (Reading: Addison–Wesley), vol. 3 Quantum Mechanics
[2] Engel H-A, Kouwenhoven L P, Loss D, and Marcus C M 2004 Quantum Inf. Process. 3 115
[3] Tejada J, Chudnovsky E M, Barco E del, Hernandez J M, and Spiller T P 2001 Nanotechnology 12 181
[4] Leuenberger M N and Loss D 2001 Physica E 10 452
[5] Sadek G, Xu Q, Kais S, 2014 Adv. Chem. Phys. 154 449
[6] Lai R and Sievers A J 1999 Phys. Rep. 314 147
[7] Cuccoli A, Nuzzi D, Vaia R, and Verrucchi P 2014 Int. J. Quantum Inform. 12 1461013
[8] Cuccoli A, Nuzzi D, Vaia R, and Verrucchi P 2014 J. Appl. Phys. 115 17B302
[9] Cuccoli A, Nuzzi D, Vaia R, and Verrucchi P 2015 New J. Phys. 17 083053
[10] Frohlich J, Knowles A, and Lenzmann E 2007 Lett. Math. Phys. 82 275
[11] Bertaina S, Dutoit C-E, Van Tol J, Dressel M, Barbara B, and Stepanov A 2014 Phys. Rev. B 90 060404
[12] Varbev S K, Kamburova R S, and Primatarowa M T 2019 J. Phys.: Conf. Ser. 1186 012016
[13] Kamburova R S, Varbev S K, and Primatarowa M T 2019 AIP Conf. Proc. 2075 020008
[14] Varbev S K, Primatarowa M T, Kamburova R S 2017 J. Phys.: Conf. Ser. 794 012027