Development of prefrontal cortex

Sharon M. Kolk1 and Pasko Rakic2

© The Author(s) 2021

During evolution, the cerebral cortex advances by increasing in surface and the introduction of new cytoarchitectonic areas among which the prefrontal cortex (PFC) is considered to be the substrate of highest cognitive functions. Although neurons of the PFC are generated before birth, the differentiation of its neurons and development of synaptic connections in humans extend to the 3rd decade of life. During this period, synapses as well as neurotransmitter systems including their receptors and transporters, are initially overproduced followed by selective elimination. Advanced methods applied to human and animal models, enable investigation of the cellular mechanisms and role of specific genes, non-coding regulatory elements and signaling molecules in control of prefrontal neuronal production and phenotypic fate, as well as neuronal migration to establish layering of the PFC. Likewise, various genetic approaches in combination with functional assays and immunohistochemical and imaging methods reveal roles of neurotransmitter systems during maturation of the PFC. Disruption, or even a slight slowing of the rate of neuronal production, migration and synaptogenesis by genetic or environmental factors, can induce gross as well as subtle changes that eventually can lead to cognitive impairment. An understanding of the development and evolution of the PFC provide insight into the pathogenesis and treatment of congenital neuropsychiatric diseases as well as idiopathic developmental disorders that cause intellectual disabilities.

Neuropsychopharmacology (2022) 47:41–57; https://doi.org/10.1038/s41386-021-01137-9

PFC DEFINITION

There is little disagreement that the human cerebral cortex is the organ that enabled abstract thinking and the creation of civilization, including architecture, science and all types of art. Using a wide variety of methodologies, the size and cytoarchitecture of the frontal lobe, and more specifically the PFC, has been extensively studied over the years in various species. The PFC in humans and nonhuman primates can be divided into a collection of structurally and functionally different subdomains positioned anterior to the motor cortex; the medial (mPFC), lateral prefrontal cortex (lPFC) and orbitofrontal cortex (oFC). The mPFC is mostly involved in language and executive processing, while the oFC and mPFC are known to contribute to cognitive functioning and emotional control [1–4]. The mPFC can be further subdivided into the infralimbic (IL) and prelimbic (PL) and anterior cingulate cortex (ACC). The most ventral subdomain of the mPFC is the infralimbic cortex (IL) and is involved in coping with chronic stress eventually leading to structural changes and prefrontal dysfunction [5–11]. Interestingly, the PFC of rodent models such as mice is limited in size, containing medial, orbitofrontal and cingulate areas, but probably lacking the equivalent of the primate dorsolateral PFC. In humans, the PFC can be considered to have evolved disproportionately large and it is thought to be the last region of the brain to gain full maturity [12, 13].

EVOLUTIONARY VIEW ON PFC DEVELOPMENT

During mammalian evolution, the cerebral cortex not only increased in neuronal numbers and surface area but also acquired new cell types and cytoarchitectonic areas. Species-specific adaptations of prefrontal areas, steered by the environmental demands, can explain the differences in size of frontal areas over time. Among the most recent additions are several association areas, particularly the PFC, which has expanded enormously in primates culminating in humans [14]. In humans, the PFC occupies as much as about 30% of its surface. Although still debated, the human frontal lobe seems to have evolved three times larger than that of our closest living relatives, the great apes. In fact, it has been argued that the human brain possesses prefrontal regions that are both qualitatively and functionally exclusive [15]. It is, nevertheless, remarkable that we use the rodent model for most of the cellular and molecular neuroscientific studies, despite its lissencephalic brain which is clearly much simpler in both cytoarchitecture as well as function. A valid question still remains: Do rodents have a prefrontal cortex? [16, 17]. And if we were to focus more on the evolutionary aspects of prefrontal development in terms of structural organization and function, should we not include longitudinal neurodevelopmental studies on more species [18, 19]? Although the basic principles of cortical development may be similar in all mammals, the modifications of developmental events during millennia of primate evolution produce not only quantitative but also qualitative changes of its cellular structure and synaptic circuitry [13, 20]. The origin of species-specific distinctions can be traced either to the new or phylogenetically conserved genes that act at the time of the neural stem cell’s exit from the mitotic cycle and generate a different outcome, depending on the evolutionary context by interacting with a
postmitotic neuron. Thus, the PFC as well as the Broca and Wernicke association areas in humans, which are formed in the frontal and temporal lobes, display a temporarily enriched gene expression pattern that is distinct from the mice or macaque cerebrum at the comparable prenatal stages (e.g., [21, 22]). More on evolution of the prefrontal cortex can be found in this volume, part I, chapter 1.

THE EARLY STAGES OF PFC DEVELOPMENT

Genetic determination of the PFC

Still inside the womb, the generation of neural tissue (human, third gestational week) begins with the induction of ectoderm into neuroectoderm after which the neural tube will form through a process called neurulation [23]. The detailed analysis of a series of embryonic and fetal human postmortem brain tissue, as well as the evidence from experiments on animal models that range from rodents to nonhuman primates, showed that specific genes and regulatory elements are involved in evolutionary elaboration of the cranial part of the neural tube. More specifically, it is well documented that differential gene expression and the gradients of signaling molecules across the embryonic brain generate prospective subdivisions of the neocortex [24–29]. Work of Cholfin and Rubenstein in mice provide experimental evidence that the PFC can expand differentially and independently of the growth rate of the other areas [30, 31] and that its size can be regulated at early stages by the change of expression of specific growth factors before they receive the afferent axonal input [32]. Through regional specification in which the Fgf family plays a significant role, the (prefrontal) cortical area starts to expand [32]. The formation of the cytoarchitectonic map during evolution and individual development can be explained by the Protomap Hypothesis (PMH) of cortical parcellation [33]. This hypothesis postulates that intersecting gradients of molecules are expressed across the embryonic cerebral wall that guide and attract specific afferent systems to the appropriate position in the cortex where they can interact with a responsive set of cells [34]. The prefix “proto” indicates the malleable character of this primordial map, as opposed to the concept of equipotential cortical plate consisting of the undifferentiated cells that is eventually shaped and subdivided entirely by the instructions from those afferents [35, 36]. The PMH is at present universally accepted even by its initial opponents (e.g., [29]).

Prefrontal expansion and lamination

The structural development of the various subdomains of the PFC is a meticulous process starting with a massive expansion of the most proximal part of the developing neural tube. The first step in the expansion of the cortical surface during development starts with an increase in the number of symmetrical divisions of neural stem cells in the ventricular zone (VZ) before the onset of neurogenesis and the formation of the subventricular (SVZ), intermediate (IZ) and subplate (SPZ) zones and cortical plate (CP) below the marginal zone (MZ) [33, 37–39], for review see [34]. This initial cortical expansion is also supported by experimental studies in mice [40–43] and provides an explanation for the massive increase in cortical surface area during both individual development and evolution.

By the time the apical radial glial progenitors within the prefrontal subdomains start dividing asymmetrically, the number of neurons will increase rapidly and peaks between week 13 and 16 of gestation in human (E10–E15 rodents/E43–E50 primates), specifically in the dorsal telencephalon [44–47]. The labeling of dividing cells by the DNA replication markers tritiated thymidine (Tdr) and bromodeoxyuridine (BrdU) showed that in nonhuman primate rhesus macaque, most cortical neurons, including those destined for the PFC, originate in the proliferative VZ near the cavity of the cerebral ventricle, between the 40th embryonic day (E40) and E100, during the 165-day-long gestational period in this species [48]. Genesis of neurons destined for the PFC is completed by E90, before completion of neurogenesis in the primary visual cortex at E90 (Fig. 1 and [49]). Through close interplay between cell-autonomous events and local as well as external cues, neurons generated close to the ventricle start migrating in radial columns [45, 46, 50, 51]. Gray matter continues to increase well into adolescence [52]. Astrocytes being the most abundant type of glial cells within cortical areas, are generated from the radial glial cells in the VZ and from the intermediate progenitors in the SVZ after the peak of neurogenesis [53]. The oligodendrocyte precursor cells, or OPCs, are generated within the medial ganglionic eminence and the anterior entopeduncular area and migrate toward the frontal cortical regions [54]. In the final stage of OPC production, this generation occurs in the cortical regions themselves. Microglia cells, on the other hand, are of mesodermal origin and migrate throughout the brain [55].

After the last cell division, postmitotic neurons migrate an increasingly long distance across the embryonic and fetal cerebral wall to their final positions in the cortex that develops below the pial surface [33, 56]. Although similar DNA labeling is not possible to perform in humans, examination of histological and Golgi silver impregnation methods of the embryonic and fetal human cerebrum indicate the existence of similar timing and sequence of these developmental events [37, 57, 58]. The pyramidal excitatory neurons born in the VZ and SVZ of the prefrontal subdomains, similar to other cortical areas, start to migrate radially toward the proper position in the CP under the influence of Fgfs [50, 59, 60]. Migrating neurons are guided over an increasingly long and curvilinear pathway by the elongated radial glial cell fibers that span the entire developing cerebral wall [61–63]. The radial glial processes that extend to the pial surface serve as a scaffold for the migrating neurons, which will settle themselves in an inside-out manner with the earlier-born neurons in the deeper layers and later born neurons in the more superficial ones [56, 64, 65]. Born in the ganglionic eminences, GABAergic interneurons migrate tangentially to the proper place within the prefrontal subdomains [66, 67]. Some recent findings in human and primates, such as the role of outer radial glia cells (oRGCs) and truncated glial cells, the diversity and complexity of cortical progenitors, the role of the subplate and the high specificity in axonal guidance events, again underline the complexity and evolution of cortical areas [68–75]. We now know from recent studies that it is the birth and migration of neurons derived from oRGCs that play a role in the development of the primary sulci (superior frontal, inferior frontal and precentral) in week 25–26 of gestation [23, 76]. After the process of migration is completed, RGCs retrace their apical process and generate astrocytes and oligodendrocytes. In nonhuman primates and human, glial cells seem to somewhat outnumber neurons in the PFC, albeit with regional variation which is likely to contribute to the formation of secondary and tertiary gyri [77–81].

Contrary to some initial concepts and theories [35, 36], embryonic VZ and CP are not uniform and equipotential. The enlargement and introduction of the new cytoarchitectonic areas has been explained by the Radial Unit Hypothesis (RUH). According to this hypothesis, increasing the size and proliferative capacity of the neuronal stem cells in the proliferative zone enables initial enlargement of the cortex as well as formation of the distinct anatomical and functional cytoarchitectural areas in the mammalian evolution [33]. According to the RUH, tangential (horizontal) positions of cortical neurons are determined by the positions of their precursor cells, now called stem cells in the VZ, while their radial (vertical) position in the overlying cortex is determined by the time of their origin (Fig. 2). Therefore, the addition of the number of the radial columns increases the size of the cortical surface, whereas the number of cells within the columns determines its thickness.
Differentiation and synaptogenesis

After neurons assume their final position, they begin to differentiate further and form synaptic connections. In humans, between 17 and 50 weeks of gestation (first to fourth postnatal week in rodents), the pyramidal and interneurons in the various cortical layers of the PFC will further mature and differentiate [82, 83]. The basal and apical dendritic length will increase, the spine length will further develop, specifically in layer III and V, and their axons will extend to other cortical and subcortical targets [82, 84]. This is also the case for the inhibitory network where the interneurons mature extensively with a sharp increase in the dendritic spine formation but also in terms of their intrinsic as well as their network properties as was shown in mice [85, 86]. Prefrontal synaptogenesis starts prenatally and peaks postnatally followed by a process called pruning or refinement of synaptic connections, the removal of unused synaptic contacts [87]. When neurites to and from the PFC reach their final target position, an immature synapse is generated under the influence of, among others, cell adhesion molecules and reelin [88, 89].

Prefrontal synaptogenesis starts prenatally and peaks postnatally followed by a process called pruning or refinement of synaptic connections, the removal of unused synaptic contacts [87]. When neurites to and from the PFC reach their final target position, an immature synapse is generated under the influence of, among others, cell adhesion molecules and reelin [88, 89].

Epigenetic regulatory factors such as microRNAs (miRNAs) play an important role in this process by modulating dendritic and synaptic maturation [90, 91]. The tempo and kinetics of synapse formation in the primate PFC closely resemble those described for other areas [92]. In young primate embryos, a precortical phase (E47–E78) is described when synapses are found only above and below, but not within, the CP. Following that, there is an early cortical phase, from E78 to E104, during which synapses accumulate within the cortical plate, initially exclusively on dendritic shafts. The next rapid phase of synaptogenesis begins at 2 months before birth and ends approximately at 2 months after birth, culminating with a mean density of 750 million synapses per cubic micrometer. This accumulation is largely accounted for by a selective increase in axospine synapses in the supragranular layers. Therefore, the early childhood PFC contains a 2-3 fold higher density of dendritic spines compared to the adult PFC. The period of overproduction of synapses is followed by a protracted plateau stage that lasts from 2 months to 3 years of age when synaptic density remains relatively constant. In humans, the PFC synaptic density spikes around 3.5 years of age (~4th postnatal week in rodents), which is relatively late compared to other cortical areas and almost double the net density of the adult PFC [82, 93, 94]. Examination of the course of synaptogenesis in the macaque PFC, by detailed quantitative electron microscopic analysis, showed that the number of synaptic contacts is initially grossly overproduced before declining to the normal adult level (Fig. 3 and [49]). Likewise, the axons of the corpus callosum, as well as other large axonal tracts in the macaque cortex, including PFC, are grossly overproduced before decreasing to the adult level [95–97]. A subpopulation of GABAergic neurons in the subplate zone also form transient synapses that are eventually eliminated [98, 99].

The period of synaptic decline in human PFC, which starts during childhood, is initially dramatic and continues during adolescence and extends at a slower, but statistically significant rate into the 3rd decade of life (Fig. 4 and [122]). The finding that synaptic density in the cerebral cortex is relatively stable from early adolescence through puberty (the plateau period) is indicative that in primates the final synaptic pattern is the result of selection and refinement of their higher number during the formative years when learning experiences are most intense. These discoveries led to the proposal that the Selective Elimination Hypothesis is a mechanism for tuning synaptic connections by interaction with the environment during the period of most intense learning [92]. These days, selective elimination or stabilization is commonly called “pruning”, and this refinement of the differentiating cortical network via pruning of dendritic branches, and/or efferent/afferent projections, is an important process to fine-tune the meticulous intricate prefrontal network [100, 101]. Within the rodent and primate PFC, this...
process of synaptic pruning, which is most dramatic in layer III, continues well into adolescence leading to a long-lasting decline in synaptic density across PFC subdomains [82, 102, 103]. It was furthermore discovered that major neurotransmitter receptors are also initially overproduced in all eight primate prefrontal regions examined [104, 105]. Moreover, during childhood the PFC myelination process starts (white matter volume increase) which continues into adulthood [106, 107].

Getting connected
The prolonged maturation of the PFC depends largely on the coordinated action of various external factors. Most neurotransmitter projections arrive in the prefrontal subdomains in two streams: within the marginal zone (MZ) and within the subplate zone (SPZ) which is thicker in the PFC compared to other cortical areas. A major change in development, which likely signals roots in the evolution of the cortex, is in the specificity of neurotransmitter systems alongside a boost in receptor type heterogeneity in primates and human [108–112]. In humans the thickening of the PFC subplate has evolved tremendously, suggesting playing a role in the extensive prefrontal circuitry [71, 102]. Vice versa, the multitude of pyramidal neurons in the various layers and PFC subdomains will connect to other cortical and subcortical targets by extending their axons, once they have reached their final position in the PFC (human: birth till end of first year/rodent first 2 postnatal weeks). The intricate timely integration of all these neurotransmitter systems is essential for prefrontal functioning. In this way, a unique and higher-order
functional network capable of emotional processing and complex cognitive abilities is established.

Developing PFC connections - from the neurotransmitter perspective

Serotonin: The brain matures from the brainstem to the more frontal cortical regions, and it is therefore not surprising that serotonergic projections from both the dorsal as well as the medial Raphe nuclei (DRN, MRN respectively) are among the first to emerge and are set towards cortical regions where they arrive in the PFC around E16/E17 in rodent and week postnatal 10–13 in humans [113–116]. Most of the work on molecular and cellular underpinnings of serotonin functioning and guidance during early development have been investigated in rodents, although it is clear that the specificity of serotonergic prefrontal connectivity in primates and human increase tremendously in regional specificity [109]. In mice, the serotonergic projections toward the forebrain are predominantly guided by the EphA5/ephrina5 interaction of guidance cues [117]. Of note, early in the development of serotonergic signaling, molecules such as receptors and transporters are already expressed in the forebrain and an exogenous placental source of 5-HT has been considered to direct cortical development even before raphe-derived projections have reached the forebrain [118–121]. Once the serotonergic projections have arrived within cortical areas, they are able to make contacts with Cajal Retzius cells within the MZ, thereby raising the possibility of playing a role in neuronal migration [122–124]. It has become widely accepted that serotonin exerts a significant trophic and modulatory function in neurodevelopmental processes such as proliferation, migration and differentiation in cortical areas, including the PFC [119, 123, 125–129].

Noradrenaline: The Locus Coeruleus (LC) in the brainstem sends out its noradrenergic axonal projections to the PFC as early as E16/17 (rodent) and week 10–13 in human [130–132]. It appears to be a heterogeneous set of neurons innervating all aspects of the PFC subdomains [133–135]. Noradrenergic projections arrive in cortical areas before all cortical neurons have finished migrating and have adopted their final appearance [136]. During the embryological development of prefrontal areas specifically, noradrenaline plays a role in cell division, neuronal migration, differentiation as well as synaptogenesis [137–141]. Like serotonin, noradrenergic axons make contact with the Cajal Retzius cells in the marginal zone, suggesting a role in the laminar formation of cortical regions [132, 142, 143]. In addition, noradrenaline seems to have an effect on the development of dopaminergic projections in the PFC by providing a dopamine reuptake mechanism through the noradrenaline transporter [144, 145] as well as on GABAergic signaling in the PFC [146, 147]. Recent studies of rat and primate PFC showed that the α2-adrenoceptor and muscarinic M1 receptor modulate working memory via KCNQ potassium channel [148–151]. Reciprocal direct connections from the mPFC to the LC mature over time, and this system is involved in a variety of behaviors such as memory formation, attention, arousal, vigilance and coping with stress [152–154].

Dopamine: A subset of the medial part of the ventral tegmental area (VTA) starts to project to prefrontal subdomains around E15/E16 (rodent) and week 10–13 in human [155–158]. Steering dopaminergic projections from the VTA via the medial forebrain bundle toward forebrain regions mostly depend on a coordinated action of the guidance molecules Dcc and Netrin-1 mediated by microRNA miR-218 control of Dcc expression in the VTA [159–161], while Semaphorin3F is orchestrating their fasciculation, rostral growth and targeting within the various mPFC subdomains [156]. The dopaminergic innervation of the mPFC in rodent surges during adolescence hallmarkmed by massive changes in the organization, shape and density of the dopaminergic fibers [162–164]. A similar surge in regional-specific dopaminergic connectivity to the PFC can be observed in primates, including human modulating local microcircuits [165–169]. Of note here is that some of these dopaminergic neurons projecting to the various PFC subdomains are capable of co-releasing glutamate as well and have an excitatory effect on the GABAergic interneurons in the various layers of the PFC [170–173]. Eventually, the mature mesoprefrontal system is involved in attention, behavioral flexibility, action planning, sustainability of motivational and affective states, working memory and memory consolidation which is mediated in parallel by catecholaminergic pathways [169, 174–178]. In many neurodevelopmental disorders (NDDs) the developing dopamine system is affected playing a role in the diverse symptoms of these disorders [179].

GABA: Most of the GABAergic interneurons are born in the ganglionic eminences of the ventral telencephalon and migrate tangentially to the proper cortical areas and layers to form a network with the radially migrated pyramidal neurons [180–182]. Initially being excitatory through the GABA receptors expressed on radial glia cells and migrating interneurons, GABA plays a role in proliferation, migration and synaptogenesis [183–186]. It has furthermore been shown that dopamine and GABA interactions can influence these processes [187, 188]. Around the second postnatal week in rodents (~first postnatal week in human), the depolarizing effect slowly transitions into an inhibitory net effect depending on place and time [189, 190]. A remarkable feature in GABA signaling from an evolutionary perspective is that in nonhuman primates and human there seems to be a cell-type
specific expression of the GABA transporter GAT-1 in early childhood [191, 192]. Furthermore, it appears that nonhuman primates and humans have distinct populations of GABAergic neurons which originate in proliferative zones of the dorsal telencephalon [193, 194].

Glutamate: There are various sources of glutamatergic input projections including a subset of (non-)dopaminergic VTA neurons to GABAergic interneurons in the PFC [170–173]. The most prominent monosynaptic inputs of the PFC are derived from hippocampus, mediodorsal (MD) thalamus and amygdala [195–201]. In fact, the medial pulvinar part of the medial thalamus or PM, which evolutionary expanded alongside the association cortex in nonhuman primates and human, is characterized by a distinct prefrontal glutamatergic connectivity that seems to play a significant role in NDDs [202]. A multitude of cortical and subcortical targets are progressively innervated by developing glutamatergic projections from the PFC itself such as the various thalamic regions. Recently it was found that retinoic acid (RA) plays a critical role in PFC development and specifically in this thalamus-prefrontal connectivity [203]. The PFC furthermore sends out glutamatergic afferents to the VTA as well as to the nucleus accumbens modulating dopaminergic signaling [204–206]. In addition, DRN serotonergic neurons are controlled by glutamatergic projections from the PFC [152, 207–209].

Acetylcholine: Around birth, the numerous cholinergic projections arising from the basal forebrain nuclei innervate the primary cortical regions where they influence cortical ultrastructure [210–213]. Acetylcholine modulates primarily the prelimbic subdomain of the PFC during development targeting GABAergic interneurons [210]. But even before the cholinergic projections arrive in the cortical areas, the nicotinic and muscarinic receptors are expressed on neural progenitors playing a role in proliferation/differentiation and axonal guidance events [214–217]. In the PFC of nonhuman primates, the muscarinic
M1 receptors modulate working memory via KCNQ potassium channels [151]. Alongside, a transient expression of the enzyme acetylcholinesterase seems to play a role in the thalamocortical circuit formation [218–220]. Within the PFC, the cholinergic innervation initially terminates in layers III and IV slowly losing laminar preference over time [221–223]. Key developing PFC circuitry is shaped by acetylcholine, and PFC pyramidal neurons depend on its proper signaling in terms of dendritic branching, spine formation and synaptogenesis [224–226].

Convergence of developing transmitter systems within the PFC. There is, furthermore, ample evidence now that during embryonic development there is convergence of the various neurotransmitter signaling pathways and influence each other’s development and functioning [153, 227–231]. These neurotransmitter systems can act as neurotrophic factors steering various neurodevelopmental events in their target areas. Serotonergic and dopaminergic markers are jointly present in their developmental origins, guidepost areas, as well as within the subdomains of the PFC, which is important for their intricate interaction later in life to establish higher cognitive functions [209, 232–234]. The same holds true for noradrenergic and dopaminergic projections towards forebrain regions as well as dopaminergic-glutamatergic and dopaminergic-cholinergic interactions controlling PFC maturation and functioning [227, 228, 231]. These neurotransmitter projections initially innervate prefrontal regions via two parallel paths; one via the subplate and one via the marginal zone where the Cajal Retzius cells reside [235]. Being in close proximity of the CR cells, it is likely that volume transmission is used to release the neurotransmitter. Receptors, transporters as well as synthesizing enzymes are already expressed (~E10 rodent and week 4–5 human) even when the actual axonal projections have not yet arrived in the PFC [236–240]. In fact, neurotransmitter receptors are found to be expressed by progenitor cells throughout development [231]. External neurotransmitter sources, such as the placenta, can play a role in this early shaping of cortical areas [114, 118, 241, 242]. All this is especially important in light of (anti-depressant) use of pharmacological drugs during pregnancy as they can interfere with these early signaling pathways and hamper the structural development of brain areas including the PFC.

PFC COGNITIVE DEVELOPMENT

The PFC, as the seat of our higher-order cognitive functions, continues to develop into adulthood [52, 243]. It is among the latest brain regions to fully mature in humans as well as rodents [106, 159, 244, 245]. The primary somatosensory cortex, as well as the primary motor cortex, mature earlier, however the dendritic trees and the density of spines within the subdomains of the PFC seem to be more complex [246–249]. Cognitive abilities are shaped by experience over time and seem to be in synchrony with PFC structural changes such as synaptogenesis and pruning [250]. Following the ‘use it or lose it’ principle, the developing PFC dynamically rearranges incoming and outgoing wiring depending on usage and need [12]. Specific for the PFC, the non-coding microRNAs mir-128b and mir-30a-5p have shown to be involved in prefrontal-dependent cognitive maturation by affecting epigenetic mechanisms [251, 252]. The constantly developing cognitive and executive capabilities occur parallel to the neurophysiological changes within the PFC and its connected areas and seem to reach a plateau in teenagers (around 12 years in human, around P50 in rodents) [253]. Adolescence is typically characterized by changes in social interactions and cognitive abilities in order to gain independence and adult skills and competences [245]. In nonhuman primates this is characterized by risk-taking, novelty seeking, and increased vigilance; whereas in rodents by play behavior, increased exploratory activity and impulsivity are peaking [245]. Higher order cognitive functions, in which PFC plays a prominent role, such as language and intelligence, continue to develop into adulthood [254, 255]. More on the role of the PFC in cognitive control and executive functioning can be found in this volume in the reviews by Robbins and Friedman (I.6) and Menon and D’Esposito (I.7).

PFC DEVELOPMENT AND MENTAL ILLNESS

Although stress-induced structural changes in the PFC are equally important in their contribution to the pathophysiology of neuropsychiatric conditions [256–262] (see also part III of this volume), we focus in this paragraph on particular risk factors involved in the onset of NDDs in which PFC functioning is affected. It has been speculated that, as the PFC takes so long to fully mature, it also has the largest critical window of all developing brain areas. The various risk factors, either genetic or environmental, can hamper the intricate developmental events and pose a risk in developing NDDs (Fig. 5).

From a genetic point of view

The group of patients having a NDD is enormously heterogeneous. The genetic causes underlying NDDs are diverse ranging from single gene mutations, copy number variations to whole-chromosome aberrations [263]. Even with monogenic causes, the severity and comorbidity of the symptoms can vary tremendously and neurological/neuropsychiatric symptoms are often accompanied by additional clinical features such as maldevelopment of organ systems. But there are also some clear examples of environmental risk factors that specifically hamper PFC development resulting in behavioral and cognitive deficits. Below we list specifically those NDDs where the structural development of the PFC is clearly affected.

Monogenic causes. Many of the Mendelian monogenic NDDs are characterized by intellectual disability and behavioral problems...
due to, in part, an altered prefrontal functionality. Fragile X syndrome (FX) is a NDD where the causative gene, Fragile X Mental Retardation Protein (FMRP), is completely absent causing a plethora of developmental abnormalities [264, 265]. It is clear that in FX the many behavioral and cognitive deficits can be attributed, at least in part, to prefrontal dysfunction. Some of these aspects could be rescued in an animal model where FMRP production was at least in part, to prefrontal dysfunction. Some of these aspects may be related to structural abnormalities of the prefrontal cortex [267–269]. Restoring FMRP levels within the PFC in mice via state-of-the-art techniques such as CRISPR-Cas9 or DREADDs can restore some of the endophenotypes such as social recognition deficits or long-term retrieval of auditory conditioned fear [267, 270, 271]. Other monogenic syndromes like Kleefstra, KBG, Angelman, Coffin-Siris, Rubinstein-Taybi, Phelan-McDermid, Smith–Magenis Syndrome and Kabuki syndrome also have a clear prefrontal component in their behavioral and cognitive phenotype [272–280]. For some of these syndromes it has recently been shown that deficits in the structural development of the PFC underlie these problems [281–287].

Chromosomal abnormalities. In all human chromosomal aberration syndromes, including trisomies, monosomies (e.g., Turner syndrome, monosomy 1p36), polyploidy, disomy and imprinting errors or sex chromosome anomalies, structural abnormalities of the prefrontal regions can be common [61, 288–292]. Trisomy of chromosome 21 or Down syndrome can be considered a NDD with significant developmental deficits. Cognitive abilities are affected due to a developmental delay including the maturation of brain areas such as the PFC [293]. Particular neurodevelopmental events are delayed in forebrain regions such as neurogenesis, migration and synaptogenesis eventually resulting in altered prefrontal circuitry [294–296]. Williams (WBS or WS) syndrome is a rare NDD with a deletion of approximately 25 genes on chromosome 7 and characterized by an unusual sociability and cognitive deficits [297]. The structural organization of prefrontal pyramidal, specifically their density and dendritic arborizing, is severely affected [298, 299]. Prader-Willi syndrome (PWS) is a disorder in which imprinted genes on chromosome 15 are affected and is characterized by increased volume of prefrontal subdomains important in the reward circuitry [300, 301]. In the 22q11.2 deletion syndrome (or DiGeorge/Velo-Cardio-Facial syndrome), individuals are characterized by loss of executive function and working memory alongside other cognitive problems and MRI studies showed a clear loss of volume of the various PFC subdomains [302–307].

From an environmental point of view
Food/drugs. One of the most studied risks during pregnancy is the composition of our diet. Many food-derived molecules can reach the unborn baby in one form or another, and therefore could directly or indirectly influence brain development when crossing the immature blood-brain barrier and potentially affect PFC development [308]. It is therefore important to realize that with the change of our diet through the ages, having become more processed and high-fat and high-sugar in contents, this can have a dramatic effect on the development and functioning of the PFC. Particular consumption of high-fat and/or high-sugar during pregnancy, childhood and adolescence can result in structural changes in the PFC and deficits in executive functioning [308–311]. Maternal metabolic disorders including diabetes and obesity can pose another threat to the unborn child as placental dysfunction alters the prenatal exposure to nutrients and toxins [312–314]. In the early '70s it was found that women who abused alcohol during pregnancy may deliver children with severe developmental delays, smaller brains and cognitive problems called Fetal Alcohol Syndrome (FAS) [315]. These children often have various conditions that are collectively known as Fetal Alcohol Spectrum Disorder (FASD), which includes FAS and a condition known as Alcohol-related Neurodevelopmental Disorder (ARND). There is a clear correlation of children with FAS and prefrontal executive functioning [316]. MRI studies showed reductions in brainstem as well as cerebellum volume in a primate FAS model and a sex-dependent change in functional connectivity and metabolism in prefrontal areas in a rat FAS model [317, 318]. Structurally, the prefrontal cortical thickness is affected after prenatal alcohol exposure and it matures with a smaller number of excitatory neurons and more GABAergic ones disrupting the excitatory/inhibitory balance severely [319–321]. Similar structural and behavioral defects of the PFC can be observed in kids with prenatal exposure to opioids, cocaine, amphetamines and other drugs-of-abuse [322–330]. Similarly, we can find lead and other pollutants to be damaging to the developing brain and PFC [331–334]. Another field of recent study is the perinatal exposure to pharmaceuticals given to treat the pregnant mother. Perinatal HIV infections can alter the course of brain development (see below), on the other hand perinatal exposure to antiretroviral drugs such as Efavirenz (EFV) to treat HIV leads to an altered prefrontal cytoarchitecture [335, 336]. Although maternal stress itself can be detrimental to brain development in general and the developing PFC in particular (for review see [125]), treatments against maternal depression such as SSRIs can cause substantial structural damage to prefrontal subdomains [125, 128].

Viral infections. Traditionally, pregnant women were warned for TORCH (Toxoplasmosis, Rubella, Cytomegalovirus, and Herpes simplex viruses types 1 and 2) infections especially during the first two trimesters of pregnancy as they were shown to cause severe congenital abnormalities [337]. Later, the O was referring to Other infections such as syphilis, varicella-zoster, and parvovirus. Zika viral infection during pregnancy can cause microcephaly including severe structural damage to the prefrontal areas [338–340]. The Zika virus is able to infect neuroepithelial stem cells and cortical radial glial cells and to a lesser extent postmitigatory neurons causing structural disorganization in these cells eventually leading to cell death [341–343]. Even a postnatal viral infection can lead to postnatal meningitis and neurodevelopmental problems due to structural and functional damage of frontal areas [344]. In the recent SARS-CoV-2 or COVID-19 viral outbreak, similar structural damage of frontal cortical areas could be observed, most likely due to an inflammatory response in which parenchymal cells and the choroid plexus are involved [345–347]. Little is known however on the short- and long-term effects of a COVID-19 infection during pregnancy and the possible neurodevelopmental changes it can make during corticogenesis leading to NDDs [348].

Other perinatal causes. Multiple fetuses per pregnancy, intraterine growth restriction (IUGR, due to placental failure other than by causes described above), X-ray, UV, nuclear or cosmic radiation, (ultra)sound as well as high temperature, preterm birth or hypoxia whether or not by traumatic causes can pose serious threats to proper corticogenesis as well [349–356]. Recently it has become clear that IUGR is associated with an increase in impulsive behavior due to an altered dopamine signaling in the PFC [357, 358]. Perinatal hypoxia can furthermore change the expression of cytokine and ceramide metabolism genes in the PFC and hampers cognitive functioning in later life [359, 360]. In preterm birth, changes in white and gray matter including reductions in cortical surface area and cortical thickness of the PFC are described [361–364]. Disruptions in PFC network activity often further aggravates the already compromised neurocognitive development in these children [365, 366].

The multifactorial view
It is now generally accepted that the etiology of many NDDs is considered to be multifactorial. Often, comorbidity of two or more NDDs is observed. Variable environmental exposure to risk factors...
combined with variable genetic background makes it hard to pinpoint possible causes. Yet, as the PFC takes the longest to fully mature, we can argue that it is most vulnerable to any risk factor when presented early enough. We will here review three of the ‘classical’ NDDs that are considered to be multifactorial in their onset with affected PFC development. Intellectual disability (ID) is an umbrella term and is a comorbidity of many of the described NDDs and will therefore not be discussed separately.

Autism spectrum disorder (ASD) is an example heterogeneous NDD characterized by impaired communication and social interaction accompanied with repetitive behavior and stereotyped interests. It has been described that the PFC of individuals with ASD show structural and functional changes, specifically in the ACC, oFC and IPFC [367, 368]. The number of neurons (but also their size), specifically the chandelier cells, basket cells and other parvalbumin-expressing interneurons, is decreased in the PFC [369–371]. There are also indications that serotonergic signaling is affected during PFC development [372]. In the first couple of years of life there is a prefrontal hyperconnectivity in children with ASD followed by a hypoconnectivity resulting in a ‘disconnecton’ with other cortical areas involved in higher-order associative processing [373–376]. The short- and long-range prefrontal axons, particularly those from the ACC, are affected in their guidance to subcortical targets and may underlie the network disruption characteristic for ASD [377, 378]. A new and interesting finding is that there appears to be a major change in the levels of various metabolites in the PFC of autistic individuals [379].

Attention deficit/hyperactivity disorder (ADHD) is a NDD characterized by signs of inattention, impulsivity, and hyperactivity [380, 381]. Control processes mediated by the PFC are hampered. Imaging studies have shown the PFC to be thinner [379–381]. Loss of catecholaminergic innervation underlies the prefrontal connectivity leading to attentional dysfunction in ADHD individuals, thereby hampering proper maturation and prefrontal connectivity leading to attentional dysfunction [382, 383]. Loss of catecholaminergic innervation underlies the most important ADHD symptoms [381].

Epilepsy, specifically childhood frontal lobe epilepsy (FLE) has various clinical outcomes but most often resulting in multi-cognitive symptoms [384–387]. Elevated prefrontal oscillations and hippocampal-prefrontal theta coherence could be observed after FLE [388]. And eventually the FLE seizures can cause structural and functional damage of the prefrontal areas including altered short-term plasticity [389, 390]. Important is also that the anti-epileptic drugs, given at young age or during pregnancy, can have major neurodevelopmental implications as well. These drugs act upon the major neurotransmitter and second messenger systems including ion channels, thereby affecting neurodevelopmental events [391–393].

FUTURE RESEARCH DIRECTIONS
The multidisciplinary nature of the field of neurobiology has made enormous progress in recent years. The combination of classical (immuno)histological techniques with physiological, behavioral and high power molecular approaches such as large-scale genome-wide (single-cell) transcriptome and epigenome profiling studies have brought us an enormous amount of insight and resolution into the development and evolution of developing brain areas, specifically the PFC and their role in the onset of NDDs [21, 394]. Advances in molecular labeling and imaging techniques have added to this understanding [4, 395]. But maybe the most exciting field is the rapid emergence of stem cell approaches such as the generation of brain organoids that have led to some tremendous breakthroughs. A dazzling number of studies in gyrencephalic species have led to scientific breakthroughs and the description of novel types of cortical progenitors, including the basal and outer RGCs, both of which have been linked to cortical expansion and folding. Early features of corticogenesis can be recapitulated reliably; however the later stages in development still need to be optimized.

It has become clear that most neurotransmitter systems play neurotrophic roles during neurodevelopment as well. More holistic studies into the extrasynaptic neurotrophic functions of neurotransmitters during prefrontal development might also provide more understanding of their potential roles in the etiology of NDDs and eventually will enable us to design critical developmental windows in which we may be able to intervene. In the future, more longitudinal as well as interspecies studies will be needed to corroborate our understanding of prefrontal development.

Abnormal PFC development may lead to a variety of behavioral and cognitive problems inherent to psychiatric disorders including NDDs. In order to create tailored interventions targeted to the specific genetic syndromes, there is a strong need for research into the specific developmental and behavioral aspects accompanying these syndromes. A better understanding of the underlying neurodevelopmental and biological mechanisms will open doors to investigate the possibility of therapeutic (early/preventive) interventions and subsequent improvement of care.

REFERENCES
1. Fuster JM. Frontal neurons in networks of executive memory. Brain Res Bull. 2000a:52:331–6.
2. Fuster JM. Memory networks in the prefrontal cortex. Prog brain Res. 2000b:122:309–16.
3. Goldman-Rakic PS. Circuity of the primate prefrontal cortex and the regulation of behavior by representational memory. Handbook of Physiology, The Nervous System, Higher Functions of the Brain. In: Plum F, editor. Handbook of physiology, the nervous system, higher functions of the brain. Bethesda: American Physiological Society; 1987. pp. 373–417.
4. Li H, Yan G, Luo W, Liu T, Wang Y, Liu R, et al. Mapping fetal brain development based on automated segmentation and 4D brain atlasing. Brain Struct Funct. 2021;226:1961–72.
5. Flak JN, Solomon MB, Jankord R, Krause EG, Herman JP. Identification of chronic stress-activated regions reveals a potential recruited circuit in rat brain. Eur J Neurosci. 2012;36:2547–55.
6. Izquierdo A, Wellington CL, Holmes A. Brief uncontrollable stress causes dendritic retraction in infralimbic cortex and resistance to fear extinction in mice. J Neurosci. 2006;26:5733–8.
7. Moench KM, Maroun M, Kavushansky A, Wellington C. Alterations in neuronal morphology in infralimbic cortex predict resistance to fear extinction following acute stress. Neurobiol Stress. 2016;33:23–33.
8. Dias-Ferreira E, Sousa JC, Melo L, Morgado P, Mesquita AR, Cerqueira JJ, et al. Chronic stress causes frontostriatal reorganization and affects decision-making. Science 2009;325:621–5.
9. Shansky RM, Hamo C, Hof PR, McEwen BS, Morrison JH. Stress-induced dendritic remodeling in the prefrontal cortex is circuit specific. Cereb Cortex. 2009;19:2479–84.
10. Radley JJ, Rocher AB, Miller M, Janssen WG, Liston C, Hof PR, et al. Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex. 2006;16:313–20.
11. McKloven JM, Morano RL, Fitzgerald M, Zoubovsly S, Cassella SN, Scheimann JR, et al. Chronic stress increases prefrontal inhibition: a mechanism for stress-induced prefrontal dysfunction. Biol Psychiatry. 2016;80:754–64.
12. Petanjek Z, Judas M, Simic G, Rasin MR, Uylings HB, Rakic P, et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci USA. 2011;108:13281–6.
13. Donahue CJ, Glasser MF, Preuss TM, Rilling JK, Van, Essen DC. Quantitative assessment of prefrontal cortex in humans relative to nonhuman primates. Proc Natl Acad Sci USA. 2018;115:E5183–92.
14. Povinelli DJ, Preuss TM. Theory of mind: evolutionary history of a cognitive company. Trends Neurosci. 1995;18:418–24.
15. Petanjek Z, Judas M, Simic G, Rasin MR, Uylings HB, Rakic P, et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci USA. 2011;108:13281–6.
16. Donahue CJ, Glasser MF, Preuss TM, Rilling JK, Van, Essen DC. Quantitative assessment of prefrontal cortex in humans relative to nonhuman primates. Proc Natl Acad Sci USA. 2018;115:E5183–92.
17. Preuss TM. Do rats have prefrontal cortex? The rose-woolsey-akert program reconsidered. J Cogn Neurosci. 1995;7:1–24.
18. Wise SP. Forward frontal fields: phylogeny and fundamental function. Trends Neurosci. 2008;31:599–608.
25. Rubenst"en J, Rakic P. Genetic control of cortical development. Cereb Cortex. 1999;9:521–3.
26. Elsen GE, Hodge RD, Bedogni F, Daza RA, Nelson BR, Shiba N, et al. The protopodum is propagated to cortical plate neurons through an Eomes-dependent intermediate map. Proc Natl Acad Sci USA. 2013;110:4081–6.
27. Hevner RF, Haydar TF. The (not necessarily) convoluted role of basal radial glia in neurite formation. Nat Neurosci. 2002;5:749–55.
28. Miyashita-Lin EM, Hevner R, Wassarman KM, Martinez S, Rubenstein JL. Early elimination of oligodendrocytes in the brainstem and postnatal elimination of radial glia from an embryonic lineage. Nat Neurosci. 1999;2:173–9.
29. Muffat J, Li Y, Yuan B, Mitalipova M, Omer A, Corcoran S, et al. Efficient deriva-
tion of microglia-like cells from human pluripotent stem cells. Nat Med. 2016;22:1358–67.
30. Rakic P. Mode of cell migration to the superficial layers of fetal neocortex. J Comp Neurol. 1972;145:61–83.
31. Sidman RL, Rakic P. Neuronal migration, with special reference to developing human brain: a review. Brain Res. 1973;62:31–35.
32. Paredes MF, James D, Gil-Perotin S, Kim H, Cotter JA, Ng C, et al. Sidman RLRP. Development of the human cerebral neocortex. Haymaker WARD, editor. Springer, New York; 1972.
33. Schmechel DE, Rakic P. A Golgi study of radial glial cells in developing monkey neocortex. Cereb Cortex. 1989;2:107–13.
34. Paredes MF, James D, Gil-Perotin S, Kim H, Cotter JA, Ng C, et al. Extensive migration of young neurons into the infant human frontal lobe. Science. 2016;354:6308.
35. Shiba N, Daza RA, Shaffer LG, Barkovich AJ, Dobyns WB, Hevner RF. Neuro-
pathology of brain and spinal malformations in a case of monosomy 1p36. Acta Neuropathol Commun. 2013;1:45.
36. Rakic P, Stensias LJ, Saye E, Sidman RL. Computer-aided three-dimensional reconstruction and quantitative analysis of cells from serial electron microscopic montages of foetal monkey brain. Nature. 1974;250:31–4.
37. Schmechel DE, Rakic P. A Golgi study of radial glial cells in developing monkey neocortex 3.
38. Shin Y, Shih JY, Li Y, Sun J, Luo M, et al. Functional and evolutionary insights into human brain development through analysis. Neuron. 2005;50:499–509.
39. Pletikos M, Sousa AM, Sedmak G, Meyer KA, Zhu Y, Cheng F, et al. Temporal specification and bilaterality of human neocortical topographic gene expres-
sion. Neuron. 2014;81:321–32.
40. Stiles J, Jernigan TL. The basics of brain development. Neuropsychol Rev. 2010;20:327–48.
41. Rakic P, Suner I, Williams RW. A novel cytoarchitectonic area induced experi-
mentally within the primate visual cortex. Proc Natl Acad Sci USA. 1991;88:2083–7.
42. Huang C, Liu T, Wang Q, Hou W, Zhou C, Song Z, et al. Loss of PP2A disrupts the integrity of apical progenitors and their daughter neurons in the developing mouse neocortex. Nature. 2019;573:370–71.
43. Grasby KL, Jahanshad N, Painter JN, Colodro-Conde L, Bralten J, Hibar DP, et al. Functional and evolutionary insights into human brain development through analysis. Neuron. 2012;75:465–8.
44. Shih JY, Lin J, Grasby KL, Jahanshad N, Painter JN, Colodro-Conde L, et al. The generative potential and bilaterality of human neocortical topographic gene expres-
sion. Neuron. 2014;81:321–32.
45. Oberst P, Fievre S, Baumann N, Concetti C, Bartolini G, Jabaudon D. Temporal
46. Lim L, Pakan JMP, Selten MM, Marques-Smith A, Llorca A, Bae SE, et al. Opti-
mization of interneuron function by direct coupling of cell migration and axonal targeting. Nat Neurosci. 2018;21:920–31.
47. Mi D, Li Z, Lim L, Mi, Moissids M, Yang Y, et al. Early emergence of cortical interneuron diversity in the mouse embryo. Science. 2018;360:81–5.
48. Kosik KS, Nowakowski T. Evolution of new miRNAs and cerebro-cortical develop-
ment. Annu Rev Neurosci. 2018;41:119–37.
49. Pollen AA, Nowakowski TJ, Chen J, Retallack H, Sandoval-Espinosa C, Nicholas CR, et al. Molecular identity of human outer radial glia during cortical develop-
ment and evolution. Dev Neurobiol. 2012;72:955–71.
50. Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR. Neurons derived from radial glial cells establish radial units in neocortex. Nature. 2001;409:714–20.
51. Miyata T, Kawaguchi A, Okano H, Ogawa M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron. 2001;31:727–41.
52. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA. 2004;101:3874–9.
53. Ge WP, Miyawaki A, Gage FH, Jan YN, Jan LY. Local generation of glia is a major astrocyte source in postnatal cortex. Nature. 2012;484:376–80.
54. Kessaris N, Fogarty M, Iannarelli P, Grist M, Wegner M, Richardson WD. Com-
peting waves of oligodendrocytes in the forebrain and postnatal elimination of radial glia from an embryonic lineage. Nat Neurosci. 2000;3:173–9.
55. Burgus RP, Goldman-Rakic PS, Rakic P, Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cereb Cortex. 1994;4:78–96.
80. Hilgetag CC, Barbas H. Are there ten times more glia than neurons in the brain? Brain Struct Funct. 2009;213:365–6.
81. von Bartheld CS, Banhey J, Herculano-Houzel S. The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J Comp Neurol. 2016;524:3865–95.
82. Koon T, van Hugte E, van Linge L, Mansvelder HD, Meredith RM. Early postnatal development of pyramidal neurons across layers of the mouse medial prefrontal cortex. Sci Rep. 2019;9:5037.
83. Petanjek Z, Judas M, Kostovic I, Uytings HB. Lifespan alterations of basal dendritic trees of pyramidal neurons in the human prefrontal cortex: a layer-specific pattern. Cereb Cortex. 2008;18:915–29.
84. Mrzljak L, Uytings HB, Kostovic I, van Eden CG. Prenatal development of neurons in the human pyramidal cortex. II. A quantitative Golgi study. J Comp Neurol. 1992;316:485–96.
85. Yang JM, Zhang J, Yu YQ, Duan S, Li XM. Postnatal development of 2 microcircuits involving fast-spiking interneurons in the mouse prefrontal cortex. Cereb Cortex. 2014;24:98–109.
86. Cooper MA, Koleske AJ. Ablation of ErbB4 from excitatory neurons leads to reduced dendritic spine density in mouse prefrontal cortex. J Comp Neurol. 2014;52:351–62.
87. Huttenlocher PR. Morphometric study of human cerebral cortex development. Neuropsychology. 1990;20:517–27.
88. Kiyoshido D, Berezin V, Bock E. Regulators of neurite outgrowth: role of cell adhesion molecules. Ann NY Acad Sci. 2004;1014:140–54.
89. Iafrati J, Orejarena MJ, Lassalle O, Bouamrane L, Gonzalez-Campo C, Chavis P. Synaptic drive and dendritic spine density in mouse prefrontal cortex. J Comp Neurol. 2014;622:117574.
90. Saab BJ, Mansuy IM. Neuroepigenetics of memory formation and impairment: the role of microRNAs. Neuropharmacology. 2014;80:61–9.
91. Schatt G. microRNAs at the synapse. Nat Rev Neurosci. 2009;10:842–9.
92. Rakic P, Bourgeois JP, Eckenhoff MF, Zecевич N, Goldman-Rakic PS. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science. 1986;232:232–5.
93. Mrzljak L, Uytings HB, van Eden CG. Judas M. Neuronal and glial cell numbers in the human brain: a review of 150 years of cell counting. J Comp Neurol. 1999;398:365–88.
94. Ranganathan N, Kolk SM, Schubert D. Editorial perspective of the Research Topic linking connections, plasticity, pathology, development and evolution of the cerebral cortex. Brain Struct Funct. 2019;224:985–1008.
95. Barbas H, Garcia-Cabezas MA. How the prefrontal executive got its stripes. Curr Opin Neurobiol. 2016;40:125–34.
96. Cavada C, Company T, Tejedor J, Cruz-Rizzolo RJ, Reinoso-Suarez F. The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb Cortex. 2000;10:220–42.
97. Barnea-Goraly N, Menon V, Eckert M, Tam T, Bamber R, Karchemskiy A, et al. White matter development during childhood and adolescence: a longitudinal MRI study. Cereb Cortex. 2005;15:1846–54.
Lauder JM, Bloom FE. Ontogeny of monoamine neurons in the locus coeruleus, Felten DL, Hallman H, Jonsson G. Evidence for a neurotropic role of norepinephrine, Blue ME, Parnavelas JG. The effect of neonatal 6-hydroxydopamine treatment.

Datta D, Yang ST, Galvin VC, Solder J, Luo F, Morozov YM, et al. Noradrenergic neurons in the substantia nigra of the rat. I. Cell differentiation. J Comp Neurol. 1974;155:469–81.

Duncan CP, Seidler FJ, Lappe SI, Slotkin TA. Dual control of DNA synthesis by alpha- and beta-adrenergic mechanisms in normoxic and hypoxic neonatal rat brain. Brain Res Dev Brain Res. 1990;55:29–33.

Felten DL, Hallman H, Jonsson G. Evidence for a neurotropic role of norepinephrine in the development of the prefrontal cortex. J Neurocytol. 1982;11:119–35.

Blue ME, Parnavelas JG. The effect of neonatal 6-hydroxydopamine treatment on synaptogenesis in the visual cortex of the rat. J Comp Neurol. 1982;205:199–205.

Winzer-Serhan UH, Leslie FM. Expression of alpha2A adrenoceptors during rat neocortical development. J Neurobiol. 1999;38:259–69.

Nakji SZ, Harris BS, Thamodad, Parnavelas JG. The noradrenergic system influences the fate of Cajal-Retzius cells in the developing cerebral cortex. Brain Res Dev Brain Res. 1999;113:75–82.

Bear MF, Singer W. Modulation of visual cortical plasticity by acetylcholine and noradrenaline. Nature. 1986;320:172–6.

Meron JA, Brockington A, Wise RA, Rocha BA, Hope BT. Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci. 2001;22:389–95.

Dwyer JB, Cardenas A, Franke RM, Chen Y, Bai Y, Belluzzi JD, et al. Prenatal nicotine sea-dependently alters dopamine adolescent system development. Transl Psychiatry. 2019;9:304.

Mirmiran M, Dijcks FA, Bos NP, Gorter JA, Van der Werf D. Cortical neuron sensitivity to neurotransmitters following neonatal noradrenaline depletion. Int J Dev Neurosci. 1990;8:217–21.

Bortel A, Nowak P, Brus R. Neonatal DSP-4 treatment modifies GABAergic neurotransmission in the prefrontal cortex of adult rats. Neurotox Res. 2008;13:247–52.

Datta D, Yang ST, Galvin VC. Solder J, Luo F, Morozov YM, et al. Noradrenergic alpha1-adrenoceptor actions in the primate dorsolateral prefrontal cortex. J Neurosci. 2001;19:2722–34.

Oda S, Tsuneoka Y, Yoshida S, Adachi-Akahane S, Ito M, Kuroda M, et al. Immunolocalization of muscarinic M1 receptor in the rat medial prefrontal cortex. J Comp Neurol. 1985;256:1329–50.

Vijayraghavan S, Major AJ, Everling S. Muscarinic M1 receptor overstimulation disrupts working memory activity for rules in primate prefrontal cortex. Neuron. 2018;98:1256–68.

Galvin VC, Yang ST, Paspalas CD, Yang Y, Jin LE, Datta D, et al. Muscarinic M1 receptors modulate working memory performance and activity via KCNQ potas-

Celda F, Puig MV, Casanovas JM, Guillamo G, Artigas F. Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: involvement of serotonin-1A, GABA(A), and glutamate receptors. J Neurosci. 2000;21:9917–29.

Saboory E, Ghassemi M, Mehranfard N. Norepinephrine, neurodevelopment and behavior. Neurochemistry Int. 2020;135:104706.

Engelhard B, Finkelstein J, Cox J, Fleming W, Jang HJ, Omelas S, et al. Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons. Nature. 2019;570:509–13.

Leung HC, Gore JC, Goldman-Rakic PS. Differential anterior prefrontal activation during the recognition stage of a spatial working memory task. Cereb Cortex. 2003;13:1742–9.

Noudoust B, Moore T. The role of neurotransmitters in selective attention. Trends Cogn Sci. 2011;15:855–89.

Brezoski TJ, Brown RM, Rosvold HE, Goldman-Rakic PS. Cognitive deficits caused by regional depletion of dopamine in prefrontal cortex of rhesus monkeys. Science. 1979;205:929–32.

Yamasaki M, Takeuchi T, Locus coeruleus and dopamine-dependent memory consolidation. Neural Plasticity. 2015;2015:872960.

Engelhard B, Finkelstein J, Cox J, Fleming W, Jang HJ, Omelas S, et al. Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons. Nature. 2019;570:509–13.

Leung HC, Gore JC, Goldman-Rakic PS. Differential anterior prefrontal activation during the recognition stage of a spatial working memory task. Cereb Cortex. 2003;13:1742–9.

Noudoust B, Moore T. The role of neurotransmitters in selective attention. Trends Cogn Sci. 2011;15:855–89.

Brezoski TJ, Brown RM, Rosvold HE, Goldman-Rakic PS. Cognitive deficits caused by regional depletion of dopamine in prefrontal cortex of rhesus monkeys. Science. 1979;205:929–32.

Money KM, Stanwood GD. Developmental origins of brain disorders: roles for dopamine. Front Cell Neurosci. 2013;7:260.

Kriegstein AR, Noctor SC. Patterns of neuronal migration in the embryonic cortex. Trends Neurosci. 2004;27:392–9.

Kramer LS, Goldman-Rakic PS. Prefrontal microcircuitry: membrane properties and excitatory input of local, medium, and wide arbor interneurons. J Neurosci. 2001;21:3788–96.

Anderson SA, Eisenstat DD, Shi L, Rubenstein JL. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Nature. 1997;278:474–6.

Ben-Ari Y. Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci. 2002;3:728–39.

LoTurco JJ, Owens DF, Heath MJ, Davis MB, Kriegstein AR. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neurosci. 1995;15:1287–98.

Wang DD, Kriegstein AR. Defining the role of GABA in cortical development. J Physiol. 2009;587:1873–9.

Owens DF, Boyce LH, Davis MB, Kriegstein AR. Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by granin-injected perforated patch recordings and calcium imaging. J Neurosci. 1996;16:6414–23.
187. Ohtani N, Goto T, Waeber C, Bhide PG. Dopamine modulates cell cycle in the lateral ganglionic eminence. J Neurosci. 2003;23:2840–50.

188. Crandall JE, McCarthy DM, Araki KY, Sims JR, Ren QJ, Bhide PG. Dopamine receptor activation modulates GABA neuron migration from the basal forebrain to the cerebral cortex. J Neurosci. 2007;27:3813–22.

189. Kilb W. Development of the GABAergic system from birth to adolescence. Neuroscientist. 2012;18:613–30.

190. Romeo-Parra H, Trevino M, Heinemann U, Gutierrez R. GABA actions in hippocampal area CA3 during postnatal development: differential shift from depolarizing to hyperpolarizing in somatic and dendritic compartments. J Neurophysiol. 2008;99:1523–34.

191. Erickson SL, Lewis DA. Postnatal development of parvalbumin- and GABA transporter-immunoreactive axon terminals in monkey prefrontal cortex. J Comp Neurol. 2002;448:186–202.

192. Cruz DA, Eggan SM, Lewis DA. Postnatal development of pre- and postsynaptic GABA markers at chandelier cell connections with pyramidal neurons in monkey prefrontal cortex. J Comp Neurol. 2003;465:385–400.

193. Radaic NV, Ayoub AE, Maroof A, Jakovcevski I, et al. Diversity of cortical interneurons in primates: the role of the dorsal proliferative niche. Cell Rep. 2014;9:2139–51.

194. Furtzsininos S, Krsnik Z, Kawasawa YI, Rasin MR, Kwan KY, Chen JG, et al. Fertuzinhos S, Krsnik Z, Kawasawa YI, Rasin MR, Kwan KY, Chen JG, et al. Diversity of cortical interneurons in primates: the role of the dorsal proliferative niche. Cell Rep. 2014;9:2139–51.

195. Hoover WB, Vertes RP. Anatomical analysis of afferent projections to the medial prefrontal cortex-brainstem neuronal projection that controls response to aversive stimuli. Prog Brain Res. 2014;213:120–40.

196. Bacon SJ, Headlam AJ, Gabbott PL, Smith AD. Amygdala input to medial prefrontal cortex layer VI neurons. Biol Psychiatry. 2012;71:120–6.

197. Carr DB, Sesack SR. Hippocampal afferents to the rat prefrontal cortex: synaptic targets and relation to dopamine terminals. J Comp Neurol. 1996;369:1–15.

198. Korsolaki E, Skaliora I. Premature aging phenotype in mice lacking high-affinity nicotinic receptors: region-specific changes in layer V pyramidal cell morphology. Cereb Cortex. 2015;25:138–48.

199. Ballesteros-Yanez I, Benavides-Piccione R, Bourgeois JP, Changeux JP, DeFelipe S.M. Kolk and P. Rakic

200. Tseng KY, O'Donnell P. Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J Neurosci. 2004;24:1531–9.

201. Perry BAL, Lomi E, Mitchell AS. Thalamocortical interactions in cognition and disease: the medio-dorsal and anterior thalamic nuclei. Neurosci Biobehav Rev. 2021;130:162–77.

202. Homman-Ludiye J, Bourne JA. The medial pulvinar: function, origin and association with neurodevelopmental disorders. J Anat. 2019;235:507–20.

203. Shibata M, Pattabiraman K, Lorente-Galdos B, Andrjevic D, Xing X, Sousa AMM, et al. Regulation of prefrontal patterning, connectivity and synaptogenesis by retinoic acid. bioRxiv. 2019; https://www.biorxiv.org/content/10.1101/2019.12.01.391369v1.

204. Sesack SR. Pickel VM. Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J Comp Neurol. 1992;320:145–60.

205. Christie MJ, James LB, Beart PM. An excitant amino acid projection from the amygdala to the cerebral cortex. J Neurosci. 2007;27:3813–22.

206. Meulam MM, Hersh LB, Mash DC, Geula C. Differential cholinergic innervation within functional subdivisions of the human cerebral cortex: a cholinergic axon. J Comp Neurol. 1992;318:316–28.

207. Kostovic I, Skavic J, Strinovic D. Acetylcholine in the human frontal associative cortex during the period of cognitive development: early laminar shifts and late innervation of pyramidal neurons. Neurosci Lett. 1988;90:107–12.

208. Lewis DA. Distribution of choline acetyltransferase-immunoreactive axons in monkey frontal cortex. Neurosci. 1991;40:363–74.

209. Galvin VC, Arnsten AFT, Wang M. Evolution in neuromodulation—the differential roles of acetylcholine in higher order association vs. primary visual cortices. Prog Brain Res. 2008;172:3–15.

210. Mechawar N, Descarries L. The cholinergic innervation develops early and rapidly in the rat cerebral cortex: a quantitative immunocytochemical study. Neuroscience. 2001;108:55–67.

211. Lewis DA. Distribution of choline acetyltransferase-immunoreactive axons in monkey frontal cortex. Neurosci. 1991;40:363–74.

212. Sawchenko PE, Swanson LW. Anatomy of the hypothalamic paraventricular nucleus in the rat. J Comp Neurol. 1984;228:59–84.

213. Hanganu IL, Staiger JF, Ben-Ari Y, Khazipov R. Cholinergic modulation of spindle bursts in the neonatal rat visual cortex in vivo. J Neurosci. 2007;27:5694–705.

214. Altamura C, Dell'Acqua ML, Moessner R, Murphy DL, Lesch KP, Persico AM. Altered neocortical cell density and layer thickness in serotonin transporter knockout mice: a quantitation study. Cereb Cortex. 2007;17:1394–401.
Tribollet E, Bertrand D, Marguerat A, Raggenbass M. Comparative distribution of nicotinic receptor subtypes during development, adulthood and aging: an autodiagnostic study in the rat brain. Neuroscience. 2004;124:405–20.

Gaspar P, Bloch B, Le, Moine C. D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons. Eur J Neurosci. 1995;7:1050–63.

Roenert-Felsen CJ. The placento-brain-axis. J Neurosci Res. 2021;99:271–83.

Vitalis T, Parmavelas JG. The role of serotonin in early cortical development. Dev Neurosci. 2003;25:245–56.

Fuster JM. Frontal lobe and cognitive development. J Neurocytol. 2002;31:373–85.

Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW. In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nat Neurosci. 1999;2:859–61.

Spehr L. The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev. 2000;24:417–63.

Jacobs B, Schall M, Prather M, Kapler E, Driscoll L, Baca S, et al. Regional dendritic and spine variation in human cerebral cortex: a quantitative Golgi study. Cereb Cortex. 2001;11:558–71.

Travis K, Ford K, Jacobs B. Regional dendritic variation in neonatal human cortex: a quantitative Golgi study. Dev Neurosci. 2005;27:277–87.

Oga T, Elston GN, Fujita I. Postnatal dendritic growth and spino genesis of layer-V pyramidal cells differ between visual, inferotemporal, and prefrontal cortex of the macaque monkey. Front Neurosci. 2017;11:118.

Elston GN, Benavides-Piccione R, Elston A, Manger PR, Defelipe J. Pyramidal cells in prefrontal cortex of primates: marked differences in neuronal structure among species. Front Neuroanat. 2011;5:22.

Tsujiimoto S. The prefrontal cortex: functional neural development during early childhood. Neuroscientist. 2008;14:435–48.

Lin Q, Wei W, Coelho CM, Li X, Baker-Andresen D, Dudley K, et al. The brain-specific microRNA mir-128 regulates the formation of fear-extinction memory. Nat Neurosci. 2011;14:1115–7.

Darcq E, Warnault V, Phamluong K, Besserer GM, Liu F, Ron D. MicroRNA-30a-5p regulates activity-dependent dendritic differentiation by targeting CaMKII. Nat Neurosci. 2016;19:891–900.

Oga T, Elston GN, Fujita I. Postnatal dendritic growth and spino genesis of layer-V pyramidal cells differ between visual, inferotemporal, and prefrontal cortex of the macaque monkey. Front Neurosci. 2017;11:118.

Elston GN, Benavides-Piccione R, Elston A, Manger PR, Defelipe J. Pyramidal cells in prefrontal cortex of primates: marked differences in neuronal structure among species. Front Neuroanat. 2011;5:22.

Tsujiimoto S. The prefrontal cortex: functional neural development during early childhood. Neuroscientist. 2008;14:435–48.

Lin Q, Wei W, Coelho CM, Li X, Baker-Andresen D, Dudley K, et al. The brain-specific microRNA mir-128 regulates the formation of fear-extinction memory. Nat Neurosci. 2011;14:1115–7.

Darcq E, Warnault V, Phamluong K, Besserer GM, Liu F, Ron D. MicroRNA-30a-5p regulates activity-dependent dendritic differentiation by targeting CaMKII. Nat Neurosci. 2016;19:891–900.

Oga T, Elston GN, Fujita I. Postnatal dendritic growth and spino genesis of layer-V pyramidal cells differ between visual, inferotemporal, and prefrontal cortex of the macaque monkey. Front Neurosci. 2017;11:118.

Elston GN, Benavides-Piccione R, Elston A, Manger PR, Defelipe J. Pyramidal cells in prefrontal cortex of primates: marked differences in neuronal structure among species. Front Neuroanat. 2011;5:22.

Tsujiimoto S. The prefrontal cortex: functional neural development during early childhood. Neuroscientist. 2008;14:435–48.

Lin Q, Wei W, Coelho CM, Li X, Baker-Andresen D, Dudley K, et al. The brain-specific microRNA mir-128 regulates the formation of fear-extinction memory. Nat Neurosci. 2011;14:1115–7.

Darcq E, Warnault V, Phamluong K, Besserer GM, Liu F, Ron D. MicroRNA-30a-5p regulates activity-dependent dendritic differentiation by targeting CaMKII. Nat Neurosci. 2016;19:891–900.

Oga T, Elston GN, Fujita I. Postnatal dendritic growth and spino genesis of layer-V pyramidal cells differ between visual, inferotemporal, and prefrontal cortex of the macaque monkey. Front Neurosci. 2017;11:118.

Elston GN, Benavides-Piccione R, Elston A, Manger PR, Defelipe J. Pyramidal cells in prefrontal cortex of primates: marked differences in neuronal structure among species. Front Neuroanat. 2011;5:22.

Tsujiimoto S. The prefrontal cortex: functional neural development during early childhood. Neuroscientist. 2008;14:435–48.

Lin Q, Wei W, Coelho CM, Li X, Baker-Andresen D, Dudley K, et al. The brain-specific microRNA mir-128 regulates the formation of fear-extinction memory. Nat Neurosci. 2011;14:1115–7.

Darcq E, Warnault V, Phamluong K, Besserer GM, Liu F, Ron D. MicroRNA-30a-5p regulates activity-dependent dendritic differentiation by targeting CaMKII. Nat Neurosci. 2016;19:891–900.

Oga T, Elston GN, Fujita I. Postnatal dendritic growth and spino genesis of layer-V pyramidal cells differ between visual, inferotemporal, and prefrontal cortex of the macaque monkey. Front Neurosci. 2017;11:118.

Elston GN, Benavides-Piccione R, Elston A, Manger PR, Defelipe J. Pyramidal cells in prefrontal cortex of primates: marked differences in neuronal structure among species. Front Neuroanat. 2011;5:22.

Tsujiimoto S. The prefrontal cortex: functional neural development during early childhood. Neuroscientist. 2008;14:435–48.

Lin Q, Wei W, Coelho CM, Li X, Baker-Andresen D, Dudley K, et al. The brain-specific microRNA mir-128 regulates the formation of fear-extinction memory. Nat Neurosci. 2011;14:1115–7.

Darcq E, Warnault V, Phamluong K, Besserer GM, Liu F, Ron D. MicroRNA-30a-5p regulates activity-dependent dendritic differentiation by targeting CaMKII. Nat Neurosci. 2016;19:891–900.

Oga T, Elston GN, Fujita I. Postnatal dendritic growth and spino genesis of layer-V pyramidal cells differ between visual, inferotemporal, and prefrontal cortex of the macaque monkey. Front Neurosci. 2017;11:118.

Elston GN, Benavides-Piccione R, Elston A, Manger PR, Defelipe J. Pyramidal cells in prefrontal cortex of primates: marked differences in neuronal structure among species. Front Neuroanat. 2011;5:22.

Tsujiimoto S. The prefrontal cortex: functional neural development during early childhood. Neuroscientist. 2008;14:435–48.

Lin Q, Wei W, Coelho CM, Li X, Baker-Andresen D, Dudley K, et al. The brain-specific microRNA mir-128 regulates the formation of fear-extinction memory. Nat Neurosci. 2011;14:1115–7.

Darcq E, Warnault V, Phamluong K, Besserer GM, Liu F, Ron D. MicroRNA-30a-5p regulates activity-dependent dendritic differentiation by targeting CaMKII. Nat Neurosci. 2016;19:891–900.

Oga T, Elston GN, Fujita I. Postnatal dendritic growth and spino genesis of layer-V pyramidal cells differ between visual, inferotemporal, and prefrontal cortex of the macaque monkey. Front Neurosci. 2017;11:118.

Elston GN, Benavides-Piccione R, Elston A, Manger PR, Defelipe J. Pyramidal cells in prefrontal cortex of primates: marked differences in neuronal structure among species. Front Neuroanat. 2011;5:22.

Tsujiimoto S. The prefrontal cortex: functional neural development during early childhood. Neuroscientist. 2008;14:435–48.
Marin-Padilla M. Pyramidal cell abnormalities in the motor cortex of a child with Down’s syndrome. A Golgi study. J Comp Neurol. 1976;167:63–81.

Contestabile A, Benfenati F, Gasparini L. Communication breaks-Down: from subplate and cortical plate neurons in developing trisomy 16 mouse cortex. Developmental Neurosci. 2004;26:255–65.

Chang P, Bush D, Schorge S, Good M, Canonica T, Shing N, et al. Altered hippocampal-prefrontal neural dynamics in mouse models of Down syndrome. J Neurosci. Off J Soc Neurosci. 2007;27:11483–95.

Cheng A, Haydar TF, Yarowsky PJ, Krueger BK. Concurrent generation of subplate and cortical plate neurons in developing trisomy 16 mouse cortex. Developmental Neurosci. 2004;26:255–65.

Chailangkarn T, Trujillo CA, Freitas BC, Hrvoj-Mihic B, Herai RH, Yu DX, et al. A Golgi study of the motor cortex of a child with Down syndrome. J Neurosci. 2007;27:11483–95.

Cheng A, Haydar TF, Yarowsky PJ, Krueger BK. Concurrent generation of subplate and cortical plate neurons in developing trisomy 16 mouse cortex. Developmental Neurosci. 2004;26:255–65.

Chang P, Bush D, Schorge S, Good M, Canonica T, Shing N, et al. Altered hippocampal-prefrontal neural dynamics in mouse models of Down syndrome. Cell Rep. 2020;30:1152–63.e4.

Chailangkarn T, Trujillo CA, Freitas BC, Hrvoj-Mihic B, Herai RH, Yu DX, et al. A Golgi study of the motor cortex of a child with Down syndrome. J Neurosci. 2007;27:11483–95.

Cheng A, Haydar TF, Yarowsky PJ, Krueger BK. Concurrent generation of subplate and cortical plate neurons in developing trisomy 16 mouse cortex. Developmental Neurosci. 2004;26:255–65.

Chang P, Bush D, Schorge S, Good M, Canonica T, Shing N, et al. Altered hippocampal-prefrontal neural dynamics in mouse models of Down syndrome. Cell Rep. 2020;30:1152–63.e4.

Chailangkarn T, Trujillo CA, Freitas BC, Hrvoj-Mihic B, Herai RH, Yu DX, et al. A Golgi study of the motor cortex of a child with Down syndrome. J Neurosci. 2007;27:11483–95.

Cheng A, Haydar TF, Yarowsky PJ, Krueger BK. Concurrent generation of subplate and cortical plate neurons in developing trisomy 16 mouse cortex. Developmental Neurosci. 2004;26:255–65.

Chang P, Bush D, Schorge S, Good M, Canonica T, Shing N, et al. Altered hippocampal-prefrontal neural dynamics in mouse models of Down syndrome. Cell Rep. 2020;30:1152–63.e4.

Chailangkarn T, Trujillo CA, Freitas BC, Hrvoj-Mihic B, Herai RH, Yu DX, et al. A Golgi study of the motor cortex of a child with Down syndrome. J Neurosci. 2007;27:11483–95.

Cheng A, Haydar TF, Yarowsky PJ, Krueger BK. Concurrent generation of subplate and cortical plate neurons in developing trisomy 16 mouse cortex. Developmental Neurosci. 2004;26:255–65.
Lefevre J, Germanaud D, Dubois J, Rousseau F, de Macedo Santos I, Angleys H, Wu KY, Zuo GL, Li XF, Ye Q, Deng YQ, Huang XY, et al. Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring. Cell Res. 2016;26:645–54.

Raper J, Kovacs-Balint Z, Maguire M, Gumber S, Burke MW, Habib J, et al. Long-term alterations in brain and behavior after postnatal Zika virus infection in infant macaques. Nat Commun. 2020;11:2534.

Raper J, Y. Li, X. Deng, K. Wu, P. Huang, C.C. et al. Cerebral micro-structural changes in COVID-19 patients - an MRI-based 3-month follow-up study. EClinicalMedicine. 2020;25:100484.

Egbert AR, Cankturaner S, Karpiak S. Brain abnormalities in Zika virus adult/subacute phase: a rapid systematic review. Brain Behav Immun. 2020;89:943–54.

Kas A, Soret M, Pyatigoskaya N, Habert MO, Hesters A, Le Guennec L, et al. The cerebral network of COVID-19-related encephalopathy: a longitudinal voxel-based 18F-FDG-PET study. Eur J Nucl Med Mol Imaging. 2021;1–15.

Lopez-Diaz A, Ayesa-Arriola R, Crespo-Facorro B, Ruiz-Veguilla M. COVID-19 infection during pregnancy and risk of neurodevelopmental disorders in offspring: time for collaborative research. Biol Psychiatry. 2021;89:29–30.

Abbott A. Neuroscience: the brain, interrupted. Nature. 2015;518:24–6.

Komitova M, Xenos D, Salmasso N, Tran KM, Brand T, Schwartz ML, et al. Hypoxia-induced developmental delays of inhibitory interneurons are reversed by environmental enrichment in the postnatal mouse forebrain. J Neurosci. 2013;33:13375–87.

Fagel DM, Ganat Y, Cheng E, Silbereis J, Ohkubo Y, Mert LT, et al. Fgfr1 is required for corticogenesis and repair after anterior hypothalamic injury. J Neurosci. 2009;29:1202–11.

Delcour M, Russier M, Amin M, Baud O, Paban V, Barbe MF, et al. Impact of prenatal ischemia on behavior, cognitive abilities and neuroanatomy in adult rats with white matter damage. Behav Brain Res. 2012;232:233–44.

Lefevre J, Germenaud D, Dubois J, Rousseau F, de Macedo Santos I, Angleyes H, et al. Are developmental trajectories of cortical folding comparable between cross-sectional datasets of fetuses and preterm newborns? Cereb Cortex. 2016;26:203–33.

Ang ES Jr, Glunck V, Duque A, Schafer ME, Rack P. Prenatal exposure to ultrasonic waves impacts neuronal migration in mice. Proc Natl Acad Sci USA. 2006;103:12903–10.

Selemon LD, Cerrotigli C, Ratnavanther JT, Wang L, Harris MP, Aldridge K, et al. Distinct abnormalities of the primates prefrontal cortex caused by ionizing radiation in early or midgestation. J Comp Neurol. 2013;521:1040–53.

Kovalchuk A, Kolb B. Low dose radiation effects on the brain - from mechanisms and behavioral outcomes to mitigation strategies. Cell Cycle. 2017;16:1266–70.

Alves MB, Laureano DP, Dalle Molle R, Machado TD, Salvador APA, Miguel PM, et al. Intrauterine growth restriction increases impulsive behavior and is associated with altered dopamine transmission in both medial prefrontal and orbitofrontal cortex in female rats. Physiol Behav. 2019;204:336–46.

Alves MB, Dalle Molle R, Desai M, Ross MG, Silveira PP. Increased palatable food intake and response to food cues in intrauterine growth-restricted rats are related to tyrosine hydroxylase content in the orbitofrontal cortex and nucleus accumbens. Behav Brain Res. 2015;287:73–8.

Vlaskas E, Gavilanes AW, Vles JS, Deville S, Kramer BW, Strackx E, et al. The number of cholinergic and glutamatergic neurons in the neocortex of mice. Cortex A J Devoted Study Nerv Syst Behav. 2013;49:2264–72.

Hashemi E, Ariza J, Rogers H, Bravin J, Cools R, Martinez-Cerdeno V, et al. The number of chandelier and basket cells are differentially decreased in prefrontal cortex in autism. Cereb Cortex. 2018;28:411–20.

Hashemi E, Ariza J, Rogers H, Noctor SC, Martinez-Cerdeno V. The number of parvalbumin-expressing interneurons is decreased in the prefrontal cortex in autism. Cereb Cortex. 2018;28:690.

Courchesne E, Moss MW, Calhoun ME, Semendiefer K, Arheimer-Bareue C, Hallet MJ, et al. Neuron number and size in prefrontal cortex of children with autism. JAMA. 2011;306:2001–10.

Yang CJ, Tan HP, Du YJ. The developmental disruptions of serotonin signaling may involved in autism during early brain development. Neuroscience. 2014;267:1–10.

Spreker K, Uddin LQ, Khouzam A, Phillips J, Gaillard WD, Kenworthy LE, et al. Brain hyperconnectivity in children with autism and its links to social deficits. Cell Rep. 2013;5:738–47.

Solsio S, Xu R, Proudfoot J, Hagler DJ Jr, Campbell K, Venkatraman V, et al. Diffusion tensor imaging provides evidence of possible axonal overconnectivity in frontal lobes in autism spectrum disorder toddlers. Biol Psychiatry. 2016;79:676–84.

Courchesne E, Pierce K. Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurol. 2005;18:225–30.

Petanjek Z, Sedmak D, Dzaja D, Hladnik A, Rasın MR, Jovanov-Milosevic N. The protracted maturation of associative layer I11c pyramidal neurons in the human prefrontal cortex during childhood: a major role in cognitive development and selective alteration in autism. Front Psychiatry. 2019;10:122.

Kurochkin I, Khrameeva E, Tkachev A, Stepanova V, Vanyushkina A, Sterkolschikova E, et al. Metabomolne signature of autism in the human prefrontal cortex. Commun Biol. 2019;2:234.

Ambrosio D, S. of Zeeuw P, Wierenga LM, van Dijk S, Durston S. What can cortical development in attention-deficit/hyperactivity disorder teach us about the early developmental mechanisms involved? Cereb Cortex. 2017;27:4624–34.

Holmes GL. Cognitive impairment in epilepsy: the role of network abnormalities. Epileptic Disord. 2011;13:78–81.

Neyens LG, Aldenkamp AP, Meinardi HM. Prospective follow-up of intellectual development in children with a recent onset of epilepsy. Epilepsy Res. 1999;34:85–90.

Glantz JC. Cognitive impairment in epilepsy: the role of network abnormalities. Epileptic Disord. 2015;17:101–16.

Kornman B, Krsek P, Duchowny M, Maton B, Pacheco-Jacome E, Rey G. Early seizure onset and dysplastic lesion extent independently disrupt cognitive networks. Neurology. 2013;81:745–51.

Hernan AE, Alexander A, Jenkins KR, Barry J, Lenck-Santini PP, Isaeva E, et al. Focal epileptiform activity in the prefrontal cortex is associated with long-term attention and sociability deficits. Neurobiol Dis. 2014;63:25–34.

Kleen JK, Wu EX, Holmes GL, Scott RC, Lenck-Santini PP. Enhanced oscillatory activity in the hippocampal-prefrontal network is related to short-term memory function after early-life seizures. J Neurosci. 2011;31:15397–406.

Kleen JK, Sesqua A, Wu EX, Miller FA, Hernan AE, Holmes GL, et al. Early-life seizures produce lasting alterations in the structure and function of the prefrontal cortex. Epilepsy Behav. 2012;22:214–9.

Hernan AE, Holmes GL, Isaev D, Scott RC, Isaeva E. Altered short-term plasticity in the prefrontal cortex after early life seizures. Neurobiol Dis. 2013;50:0120–6.

Kaindl AM, Asimadou S, Manthey D, Hagen M, Turski L, Ikonomidou C. Antiepileptic drugs and the developing brain. Cell Mol Life Sci. 2006;63:399–413.

Veronon AA, Cogo E, Rios P, Straus SE, Finkelstein Y, Kealey R, et al. Comparative study of antiepileptic drugs during pregnancy: a systematic review and network meta-analysis of congenital malformations and prenatal outcomes. BMC Med. 2017;15:95.

Veronon AA, Rios P, Cogo E, Straus SE, Finkelstein Y, Kealey R, et al. Comparative safety of antiepileptic drugs for neurological development in children exposed during pregnancy and breast feeding: a systematic review and network meta-analysis. BMJ Open. 2017;7:e017248.
394. Zhong S, Zhang S, Fan X, Wu Q, Yan L, Dong J, et al. A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature. 2018;555:524–8.
395. Kovacs-Balint ZA, Payne C, Steele J, Li L, Styner M, Bachevalier J, et al. Structural development of cortical lobes during the first 6 months of life in infant macaques. Developmental Cogn Neurosci. 2021;48:100906.
396. Silver DL, Rakic P, Grove EA, Haydar TF, Hensch TK, Hutner WB, et al. “Evolution and Ontogenetic Development of Cortical Structures” In Singer W, Sejnowski TJ, Rakic P. editors. The Neocortex, pp. 61–93. Strüngmann Forum Reports, vol. 27, J. R. Lupp, series editor. Cambridge, MA: MIT Press. 2019.

AUTHOR CONTRIBUTIONS
Both authors (SMK, PR) contributed equally to the writing of this manuscript.

FUNDING INFORMATION
This review was supported by a NWA-ORC grant (ProMiSe NWA.1160.18.320) of the Dutch organization of scientific research to SK, and National Institutes of Health (USA) NIDA grant DA023999 to (PR).

COMPETING INTERESTS
The authors declare no competing interests.