Heterogeneous Fenton-like degradation of methylene blue (MB) by magnetic nanoparticles Fe$_3$O$_4$@TiO$_2$ in neutral condition

Junfeng Hua and Mei Huang *

College of Chemical & Biochemical Engineering, Zhejiang University, Hangzhou, 310027, China
huangm@zju.edu.cn

Abstract. The traditional Fenton system (Fe$^{2+}$–H$_2$O$_2$) only works in an acidic environment and produces a large quantity of sludge. In this study, magnetic nanoparticles Fe$_3$O$_4$@TiO$_2$ were used as a high-performance Fenton-like catalyst for the degradation of MB. The surface morphology was characterized by Transmission Electron Microscopy (TEM). And the Fenton-like catalytic activity of Fe$_3$O$_4$@TiO$_2$ was evaluated under different pH condition and various H$_2$O$_2$ in feed concentration, respectively. The results indicated that nanoparticles Fe$_3$O$_4$@TiO$_2$ show high efficiency for methylene blue (MB) degradation under the reaction condition of H$_2$O$_2$: 40mM, Fe$_3$O$_4$@TiO$_2$: 20mM, MB: 300mg/L, pH 7 and 30°C, the mineralization of persistent MB can achieve 72% COD removal ratio.

1. Introduction

Wastewater produced by chemical industry, textile industry and leather manufacturing, often contains considerable amounts of organic pollutants, which can cause negative impacts for ecosystems and humans for their toxicity, carcinogenic or mutagenic properties. Therefore, it is significant to degrade the organics in wastewater before discharge [1]. Fenton oxidation is one of the simplest and most efficient AOPs in environment remediation. However, one disadvantage of this method is that the reaction achieves its high activity at relatively low pH range, usually at approximate pH=3, which is not beneficial for the chemical equipment and operation. In addition, the wastewater after treatment is preferred to be neutralized before discharge, so a large amount of slurry will be produced, which causes the problem of solid waste for further treatment and greatly increasing the running cost.

In recent years, heterogeneous Fenton-like catalysts, such as iron-based clays and zeolites, and iron oxide minerals [2,3], have received considerable interests due to their advantages of facile recovery and recycling as well as dramatically decreased slurry. And among these catalysts, Fe$_3$O$_4$ nanoparticles not only have unique characteristic of magnetic feature but also showed higher reactivity in neutral condition. For example, when the concentrations of Fe$_3$O$_4$ and H$_2$O$_2$ were 5g/L and 1.2M, phenol and aniline could be removed completely after 6h at 308K. However, it is found that the total organic carbon abatement efficiency for phenol and aniline were only 42.79% and 40.38%, respectively [4].

Recently, TiO$_2$ coupled with iron oxide has been reported to have a good magnetic response and displayed high photocatalytic efficiency [5-7]. In this work, we have successfully synthesized the Fe$_3$O$_4$@TiO$_2$ NPs, which were applied to the Fenton-like degradation of methylene blue (MB) as a model of recalcitrant contaminants. The effects of operational parameters as concentrations of catalyst and H$_2$O$_2$, and pH value on the degradation efficiency of TC were systematically evaluated.
Extraordinarily high and stable catalytic activity has been achieved on Fe₃O₄@TiO₂ with a wide working pH range of 5–9.

2. Materials and methods

2.1. Reagents
All reagents used in the experiments were of chemical reagent grade and used without further purification. 30% (w/w) hydrogen peroxide, ferrous sulfate (FeSO₄•7H₂O), titanium tetrachloride (TiCl₄), NH₃•H₂O (25%, w/w), H₂SO₄ and NaOH were obtained from Beijing Chemicals Corporation (Beijing, China).

2.2. Fe₃O₄@TiO₂ MNPs preparation
Fe₃O₄@TiO₂ MNPs were prepared by coprecipitation of Fe²⁺ and Ti⁴⁺ in aqueous solutions. In a typical procedure, 0.06mol/L FeCl₃ and TiCl₄ solutions were mixed uniformly, and then dilute alkaline solution was added drop wise to the solution. After 2h vigorous stirring under an Ar stream, the black particles were deposited and separated from solution by a powerful magnet, washed with de-ionized water and ethanol to neutral pH. Then Fe₃O₄@TiO₂ MNPs were dried under vacuum and stored in the desiccator for further experiments.

2.3. Experimental procedure
Fe₃O₄@TiO₂ MNPs was dispersed in 100mL MB solution. And the specific pH of MB solution was adjusted with solutions of H₂SO₄ or NaOH. Degradation of MB was initiated by adding a desired dosage of H₂O₂. Then the mixture was vibrated 250rpm at 30°C. At selected time intervals, aliquots were collected and sediment were separated by magnetic separation. The concentration of MB was determined after Na₂SO₃ was added to quench excess H₂O₂.

2.4. Characterization of Fe₃O₄@TiO₂ MNPs
TEM images were conducted with a CM200 transmission electron microscope.

3. Results and discussion

3.1. Characterization of Fe₃O₄@TiO₂ MNPs

Fig.1. TEM image of synthesized Fe₃O₄@TiO₂ MNPs

Fig. 1 displays TEM images of Fe₃O₄@TiO₂ MNPs samples. It can be seen that the obtained Fe₃O₄@TiO₂ MNPs are plane particles, which show great difference from uniform spherical of Fe₃O₄ MNPs. And the particle size is about 20nm, which has good consistency with samples’ XRD results.

3.2. Effect of Fe₃O₄@TiO₂ MNPs amounts
Fig. 2. Effect of Fe\textsubscript{3}O\textsubscript{4}@TiO\textsubscript{2} MNPs on COD removal efficiency at pH7.

Fig. 2 illustrates the effect of Fe\textsubscript{3}O\textsubscript{4}@TiO\textsubscript{2} MNPs amounts on the COD removal rate with initial MB 300mg/L and H\textsubscript{2}O\textsubscript{2} dosage 40mM at pH=7 and T=30°C. It is found that with the increased addition of Fe\textsubscript{3}O\textsubscript{4}@TiO\textsubscript{2} MNPs from 1.25mM to 80mM, COD abatement efficiency also increased from 20% to 78%. The extra catalytic activity by Fe\textsubscript{3}O\textsubscript{4} MNPs is related to the increased amount of active sites on Fe\textsubscript{3}O\textsubscript{4}@TiO\textsubscript{2} surface. Because more active sites in reaction system can accelerate more production of HO•, MB can be degraded with improved efficiency.

3.3. Effect of H\textsubscript{2}O\textsubscript{2} concentration

Fig. 3. Effect of H\textsubscript{2}O\textsubscript{2} dosage on COD removal efficiency at pH7

Fig. 3 indicates that the optimal H\textsubscript{2}O\textsubscript{2} concentration is about 40 mM for the MB degradation on Fe\textsubscript{3}O\textsubscript{4}@TiO\textsubscript{2} MNPs at pH=7 and T=30 °C. It is clear that COD removal rate changed slowly from 69% to 83% with increased H\textsubscript{2}O\textsubscript{2} concentration in the range of 40-120mM. And the existence of optimum H\textsubscript{2}O\textsubscript{2} concentration is related to the effect of excessive H\textsubscript{2}O\textsubscript{2}. Because of its scavenging effect on OH radicals, efficiency of OH radicals decreased in the solution so that H\textsubscript{2}O\textsubscript{2} oxidation efficiency also decreased.

3.4. Effect of pH
The degradation of MB under different pH values was evaluated as shown in Fig. 4. It is found that the COD abatement efficiency was less than 10% with only 40 mM H$_2$O$_2$, which is ascribed to the weak oxidation potential of H$_2$O$_2$ compared with hydroxyl radicals. In the typical Fenton reaction, the maximum 78% COD removal rate was observed with the initial parameters of pH=3. But the efficiency decreased with the increased pH, which is consistent with the usual Fenton reaction. However, the highest degradation of MB, about 72% COD removal rate, was achieved in the Fenton-like system catalyzed by Fe$_3$O$_4$@TiO$_2$ MNPs at pH=7. Therefore, it is reasonable to consider that SiO$_2$ coated on Fe$_3$O$_4$ could effectively enhance the catalytic activity of Fe$_3$O$_4$.

4. Conclusion
Highly active Fe$_3$O$_4$@TiO$_2$ MNPs were successfully synthesized by co-precipitation method, and used as heterogeneous Fenton-like catalysts that can degrade MB from aqueous solution efficiently. Unlike the traditional Fenton process, the COD removal efficiency remained relatively high at a wide pH range from 5–9 for MB.

Acknowledgements
We acknowledge financial support from Science & Technology Department of Zhejiang Province (Program no.2016F50029), China.

References
[1] A.N. Soon, B.H. Hameed, Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process, Desalination 269 (2011) 1–16
[2] R. Gonzalez-Olmos, F. Holzer, F.D. Kopinke, A. Georgi, Indications of the reactive species in a heterogeneous Fenton-like reaction using Fe-containing zeolites, Applied Catalysis A 398(2011) 44–53
[3] G.B. Ortiz de la Plata, O.M. Alfano, A.E. Cassano, Decomposition of 2-chlorophenol employing goethite as Fenton catalyst. I. Proposal of a feasible, combined reaction scheme of heterogeneous and homogeneous reactions, Applied Catalysis B: Environmental 95 (2010) 1–13
[4] S. Zhang, X. Zhao, H. Niu, Y. Shi, Y. Cai, G. Jiang, Superparamagnetic Fe$_3$O$_4$ nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds, J. Hazard. Mater. 167 (2009) 560–566.
[5] M.M. Mohameda, W.A. Bayoumya, M.E. Goherb, M.H. Abdob, T.Y. Mansour El-Ashkarb, Optimization of α-Fe$_3$O$_4$@Fe$_2$O$_3$ incorporated N-TiO$_2$ as super effective photocatalysts under visible light irradiation, Applied Surface Science 412 (2017) 668–682.
[6] M.A. Sarvin, S. Bijan, Tajoddin, N. Nosrat, Recyclable Fe$_3$O$_4$/SiO$_2$/TiO$_2$/Cu nanocomposites:
synthesis, characterization and investigation of the photocatalytic and magnetic property, Journal of Materials Science-Materials in Electronics 28 (2017) 9456-9463
[7] K.H. Choi, S.Y. Park, B.J. Park, J.S. Jung, Recyclable Ag-coated Fe3O4@TiO2 for efficient photocatalytic oxidation of chlorophenol, Surface & Coatings Technology 320 (2017) 240–245