Interleukin 6 Is a Permissive Factor for Monocytic Colony Formation by Human Hematopoietic Progenitor Cells

By J. H. Jansen,* J. C. Kluijn-Nelemans,* J. Van Damme,‡ G. J. H. M. Wientjens,* R. Willemze,* and W. E. Fibbe*

From the *Laboratory of Experimental Hematology, Department of Hematology, University Medical Center, 2300 RC Leiden, The Netherlands; and the ‡Laboratory of Immunobiology, Rega Institute for Medical Research, University of Leuven, B-3000 Leuven, Belgium

Summary

Since monocytes and macrophages that arise during the culture of bone marrow progenitor cells are potential sources of interleukin 6 (IL-6), we investigated whether auto- or paracrine production of this factor is involved in colony formation by normal hematopoietic progenitor cells. We added a polyclonal anti-IL-6 antiserum and a monoclonal anti-IL-6 antibody to cultures of monocyte- and T cell-depleted bone marrow cells. Colony formation was stimulated with granulocyte-monocyte-colony-stimulating factor (GM-CSF), monocyte-CSF, or IL-3. Addition of anti-IL-6 antibody resulted in decreased numbers of monocytic colonies to 40-50% of control values, whereas the numbers of granulocytic colonies were not altered. The inhibitory effect was preserved in cultures of CD34+ enriched bone marrow cells. As a second approach, we added a monoclonal antibody directed against the IL-6 receptor to cultures of monocyte- and T cell-depleted bone marrow cells. This antibody almost completely inhibited the growth of monocytic colonies, again without decreasing the number of granulocytic colonies. Finally, the importance of IL-6 in monocytogenesis was demonstrated in serum-deprived bone marrow cultures: addition of exogenous IL-6 to cultures stimulated with GM-CSF resulted in increased numbers of monocytic colonies. Our results indicate that the permissive presence of IL-6 is required for optimal monocytic colony formation by bone marrow progenitor cells.

IL-6 is involved in the development of B and T lymphocytes and is one of the major cytokines that induce the acute phase response upon infection or injury (1). In addition, IL-6 has been attributed a role in myelopoiesis. Alone, IL-6 does not induce colony formation by bone marrow progenitor cells, but it enhances IL-3-stimulated proliferation of myeloid progenitor cells (2) and the formation of monocytic colonies at suboptimal concentrations of monocyte (M)-CSF (3). Furthermore, it stimulates thrombocytopoiesis, both in vitro and in vivo (4, 5).

Colony formation assays have proved to be invaluable in the study of factors that regulate hematopoiesis. To study possible direct effects of cytokines, suspensions of purified bone marrow progenitor cells may be used. However, autocrine or paracrine production of cytokines by progenitor cells or their offspring may still influence colony formation. Since monocytic cells are potent producers of IL-6 (1, 6), and these cells originate in cultures of bone marrow progenitor cells, we investigated the role of autocrine or paracrine production of IL-6 on the development of colonies using neutralizing antibodies against IL-6 and the IL-6R. Since monocytes rapidly lose viability in serum-free conditions (7), we also tested whether addition of IL-6 resulted in enhanced monocytic colony formation in serum-deprived cultures.

Materials and Methods

Cytokines and Antibodies. Human rIL-6 was kindly provided by Dr. L. A. Aarden (CLB, Amsterdam, The Netherlands); human rGM-CSF was provided by Sandoz Pharma BV (Uden, The Netherlands); human rM-CSF was a gift from Dr. P. Ralph (Cetus Corp., Emeryville, CA); human rG-CSF was a gift from Dr. B. Altrock (Amgen, Thousand Oaks, CA); human rIL-3 was a gift from Dr. G. Wagemaker (Netherlands Organization for Applied Scientific Research, Delft, The Netherlands). Mouse anti-human IL-6 mAb (neutralizing 10 U/ml IL-6 at a dilution of 1:10^-4) and a polyclonal rabbit anti-human IL-6 (neutralizing 10 U/ml IL-6 at a dilution of 3:10^-4) were raised against purified rIL-6. Anti-IL-6R antibody, PM-1 (8), was kindly provided by Dr. T. Kishimoto (Osaka University, Japan). This antibody competes with IL-6 for binding to the IL-6R (10 µg/ml neutralizes the activity of 2 ng/ml IL-6).

Cell Preparations. Bone marrow was obtained after informed consent from donors for allogeneic bone marrow transplantation.
or from hernia nuclei pulposi patients who underwent laminectomy. Light density cells were isolated by Ficoll separation (1,000 g, 20 min, d = 1.077 g/cm³). Interphase cells were depleted of monocytes by carbonyl iron phagocytosis (9), and T cells were removed by rosetting with sheep erythrocytes and Ficoll separation (10), yielding cell suspensions with <1% monocytes (staining with α-naphthyl acetate esterase [ANAE]) and <1% T cells (staining with anti-CD3 [Becton Dickinson & Co., Mountain View, CA] and FITC-conjugated goat anti-mouse serum [GAM-FITC; Central Laboratory of the Red Cross Blood Transfusion Service, Amsterdam, The Netherlands]). From these suspensions, CD34⁺/HLA-DR⁺ cells were isolated by FACS® (Becton Dickinson & Co.). Cells were preincubated with 5% (vol/vol) rabbit serum to prevent nonspecific Fe binding and stained with anti-HLA-DR (Becton Dickinson & Co.) and GAM-FITC (CLB). After incubation with routine serum (50%; vol/vol), blocking nonspecific binding of antibodies to the GAM-FITC, cells were stained with PE-conjugated anti-CD34 (MY10; Becton Dickinson & Co.).

Bone Marrow Cultures. Monocyte- and T cell-depleted bone marrow cells (0.3 or 0.5 × 10⁶/ml) or CD34⁺/HLA-DR⁻ enriched bone marrow cells (10⁶/ml) were cultured in IMDM containing 20% FCS (Sanbio, Uden, The Netherlands), 5 × 10⁻⁵ M 2-ME (Sigma Chemical Co., St. Louis, MO), 0.5 g/liter deionized BSA, 0.47 g/liter human transferrin (Behringwerke, Hoechst, Amsterdam, The Netherlands), 10⁻³ M FeCl₃·6H₂O, and 0.98% methylcellulose. In serum-deprived cultures, the FCS was replaced by 2 × 10⁻⁴ M cholesterol (Sigma Chemical Co.) and 10 ng/ml insulin (Sigma Chemical Co.) as described (11). Colony formation was induced with G-CSF (10 ng/ml), M-CSF (1,000 U/ml), IL-3 (50 ng/ml), or GM-CSF (50 U/ml). Six replicates of 100 μl were plated in flat-bottomed microtiter plates (Greiner, Alphen a/d Rijn, The Netherlands), except for experiments with CD34⁺ cells, where two replicates of 1 ml were plated in 25-mm petri dishes (Greiner). Cultures were kept at 37°C in a fully humidified, 5% CO₂ atmosphere. CFU-G (>50 granulocytes) and CFU-M (>20 macrophages) were scored on day 14. Colonies were mass harvested or picked individually with a micropipette, and stained with ANAE or May-Grünwald Giemsa.

Results

Effect of Anti-IL-6 Antibody on Monocytic Colony Formation. We investigated the role of endogenously produced IL-6 in serum-containing cultures of monocytes- and T cell-depleted bone marrow cells. Increasing concentrations of an anti-IL-6 mAb were added to cultures that were stimulated with GM-CSF (Fig. 1). A dose-dependent reduction of the number of monocytic colonies to 40% of control values was observed, with the number of granulocytic colonies unaffected. A similar effect was observed when a polyclonal anti-IL-6 antiserum was used. In the presence of this antiserum, CFU-G growth was 110 ± 27% and CFU-M growth was 50 ± 11% of control growth (mean ± SD, n = 5).

To test whether the specific inhibition of monocytic colony formation was dependent on the growth factor used to induce colony formation, we added anti-IL-6 mAb to cultures that were stimulated with G-CSF, M-CSF, or IL-3 (Fig. 2). In these studies, a similar inhibition of monocytic colony formation was observed, with the number of granulocytic colonies again unaffected.

Inhibition of monocytic colony formation was not due to nonspecific toxicity of the antibody, since the numbers of granulocytic colonies were not affected, and the effect could be reversed by the addition of excess concentrations of exogenous IL-6 (200 ng/ml) (Fig. 2). Dose-dependent suppression of monocytic colony formation was preserved to the same degree in cultures of CD34⁺ bone marrow cells stimulated with GM-CSF (50 U/ml). Anti-IL-6 mAb at a dilution of 1:10⁵ to 1:200 suppressed CFU-M growth to 56 ± 5% (n = 5, duplicate cultures) of control values, whereas the number of granulocytic colonies was not affected. Mean control growth was 17 CFU-G and 36 CFU-M/0.5 × 10⁶ cells.

Effect of Anti-IL-6R Antibody on Monocytic Colony Formation. To further substantiate the role of IL-6 in monocytic colony formation, we tested whether blocking of the IL-6R by an anti-IL-6R antibody was able to inhibit monocytic colony formation. Almost complete inhibition (to 2% of control values, n = 4) of monocytic colony formation was observed in cultures containing the anti-IL-6R antibody. The number

![Figure 1](image1.png)

Figure 1. Effect of anti-IL-6 mAb on the formation of granulocytic and monocytic colony formation by monocyte- and T cell-depleted bone marrow cells. Data are expressed as the percentage of colony formation in control cultures without antibody added (mean ± SD, n = 5). Mean control growth was 110 ± 15 CFU-G and 87 ± 16 CFU-M/0.5 × 10⁶ cells.

![Figure 2](image2.png)

Figure 2. Effect of anti-IL-6 antibody (1:10⁵) on granulocytic and monocytic colony formation by monocyte- and T cell-depleted bone marrow cells stimulated with G-CSF (10 ng/ml), M-CSF (1,000 U/ml), IL-3 (50 ng/ml), or GM-CSF (50 U/ml). Data are expressed as the percentage of colony formation in control cultures without anti-IL-6 antibody (mean ± SD, n = 5).
Effect of anti-IL-6R antibody (10 μg/ml) on granulocytic and monocytic colony formation by monocyte- and T cell-depleted bone marrow cells stimulated with GM-CSF (50 U/ml). Mean values of four experiments ± SD are given.

Table 1. Effect of Interleukin 6 on Monocytic Colony Formation in Serum-deprived Cultures of Monocyte- and T Cell-depleted Bone Marrow Cells

Stimulus	CFU-G	CFU-M	CFU-G	CFU-M
Culture medium	0	0	0	0
GM-CSF (50 U/ml)	27	23	77	3
GM-CSF (500 U/ml)	29	21	94	3
GM-CSF (50 U/ml) + IL-6 (200 ng/ml)	28	66	84	24
GM-CSF (500 U/ml) + IL-6 (200 ng/ml)	30	77	85	24

Discussion

In this report we show by three different approaches that IL-6 plays an important role in monocytic colony formation by bone marrow progenitor cells. Inhibition of monocytic colony formation by anti-IL-6R antibody was much more pronounced (98% inhibition) than inhibition by anti-IL-6 antibodies (50-60% inhibition). This difference might be explained by the existence of high and low affinity types of receptor-ligand binding between IL-6 and its receptor (12), the anti-IL-6 antibodies being able to compete only with the low affinity binding. Alternatively, the IL-6R may bind to more than one ligand, being the anti-IL-6R antibody able to block binding of both ligands.

These data underscore that in standard bone marrow cultures, on which the concept of regulation of hematopoiesis largely has been based, intermediate production of cytokines by the progenitor cells or their offspring may play an important role.

Several hypotheses may explain our data. IL-6 may act as a competence factor, inducing sensitivity of progenitor cells to growth factors, or as a progression factor, enabling cells...
to proceed through the restriction point of the cell cycle. Alternatively, IL-6 may enhance progenitor cell survival by preventing apoptosis (programmed cell death). Recently, several authors suggested that hematopoietic growth factors prevent apoptosis in hematopoietic progenitor cells (13-15). Cells from IL-3, GM-CSF-, and G-CSF-dependent murine cell lines, died by apoptosis upon withdrawal of the relevant growth factor. Remarkably, IL-6 inhibited apoptosis that was induced by the expression of the putative tumor-suppressor protein p53 in a murine myeloid leukemia cell line (19). Serum starvation of human peripheral blood monocytes causes apo-

This work was supported by a grant from the Dutch Cancer Society. J. V. Damme is a research associate of the Belgian National Fund for Scientific Research.

Received for publication 30 October 1991 and in revised form 31 January 1992.

References
1. van Snick, J. 1990. Interleukin-6: an overview. Annu. Rev. Immunol. 8:253.
2. Ikebuchi, K., G.G. Wong, S.C. Clarck, J.N. Ihle, Y. Hirai, and M. Ogawa. 1987. Interleukin 6 enhancement of interleukin 3-dependent proliferation of multipotential hemopoietic progenitors. Proc. Natl. Acad. Sci. USA. 84:9035.
3. Bot, F.J., L. van Eijk, L. Broeders, L.A. Aarden, and B. L6wenberg. 1989. Interleukin 6 synergies with M-CSF in the formation of macrophage colonies from purified human marrow progenitor cells. Blood. 73:135.
4. Ishibashi, T., H. Kimura, T. Uchida, S. Kariyone, P. Friese, and S.A. Burstein. 1989. Human interleukin-6 is a direct promoter for maturation of megakaryocytes in vitro. Proc. Natl. Acad. Sci. USA. 86:5953.
5. Asano, S., A. Okano, K. Ozawa, T. Nakahata, T. Ishibashi, K. Koike, H. Kimura, Y. Tanoika, A. Shibuya, T. Hirano, T. Kishimoto, F. Takaku, and Y. Akita. 1990. In vivo effects of recombinant human interleukin-6 in primates: stimulated production of platelets. Blood. 75:1602.
6. Aarden, L.A., E.R. de Groot, O.L. Schaap, and P.M. Lansdorp. 1987. Production of hybridoma growth factor by monocytes. Eur. J. Immunol. 17:1411.
7. Mangan, D.F., G.R. Welch, and S.M. Wahl. 1991. Lipopolysaccharide, tumor necrosis factor-alpha and IL-1 beta prevent programmed cell death (apoptosis) in human peripheral blood monocytes. J. Immunol. 146:1541.
8. Hirata, Y., T. Taga, M. Hibi, N. Nakano, T. Hirano, and T. Kishimoto. 1989. Characterization of IL-6 receptor expression by monoclonal and polyclonal antibodies. J. Immunol. 143:2900.
9. Lundgren, G., C.F. Zukosi, and G. Möller. 1968. Differential effects of human granulocytes and lymphocytes on human fibroblasts in vitro. Clin. Exp. Immunol. 3:817.
10. Madsen, M., and H.E. Johnsen. 1979. A methodological study of E-rosette formation using AET-treated sheep red blood cells. J. Immunol. Methods. 27:61.
11. Sieff, C.A., S.C. Ekern, D.G. Nathan, and J.W. Anderson. 1989. Combinations of recombinant colony stimulating factors are required for optimal hematopoietic differentiation in serum-deprived culture. Blood. 73:688.
12. Yamasaki, K., T. Taga, Y. Hirata, H. Yawata, Y. Kawanishi, B. Seed, T. Taniguchi, T. Hirano, and T. Kishimoto. 1988. Cloning and expression of the human interleukin-6 (BSF-2/IFNβ 2) receptor. Science (Wash. DC). 241:825.
13. Rodriguez-Tarduchy, G., M. Collins, and A. Lopez-Rivas. 1990. Regulation of apoptosis in interleukin-3-dependent hemopoietic cells by interleukin-3 and calcium ionophores. EMBO (Eur. Mol. Biol. Organ.) J. 9:2997.
14. Williams, G.T., C.A. Smith, E. Spooncer, T.M. Dexter, and D.R. Taylor. 1990. Hemopoietic colony stimulating factors promote cell survival by suppressing apoptosis. Nature (Lond.). 343:76.
15. Yonish-Rouach, E., D. Resnitzky, J. Lotem, L. Sachs, A. Kimchi, and M. Oren. 1991. Wild type p53 induces apoptosis of myeloid leukemic cells that is inhibited by interleukin-6. Nature (Lond.). 353:345.