Sulphur geodynamic cycle

Takanori Kagoshima¹, Yuji Sano¹, Naoto Takahata¹, Teruyuki Maruoka², Tobias P. Fischer³ & Keiko Hattori⁴

¹Division of Ocean-Earth System Science, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba 277-8564, Japan, ²Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan, ³Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA, ⁴Department of Earth Sciences, Advanced Research Complex, University of Ottawa, Ottawa, ON K1N 6N5, Canada.

Evaluation of volcanic and hydrothermal fluxes to the surface environments is important to elucidate the geochemical cycle of sulphur and the evolution of ocean chemistry. This paper presents S/3He ratios of vesicles in mid-ocean ridge (MOR) basalt glass together with the ratios of high-temperature hydrothermal fluids to calculate the sulphur flux of 100 Gmol/y at MOR. The S/3He ratios of high-temperature volcanic gases show sulphur flux of 720 Gmol/y at arc volcanoes (ARC) with a contribution from the mantle of 2.9%, which is calculated as 21 Gmol/y. The C/S flux ratio of 12 from the mantle at MOR and ARC is comparable to the C/S ratio in the surface inventory, which suggests that these elements in the surface environments originated from the upper mantle.

Volcanic and hydrothermal activity discharge sulphur and carbon from the Earth’s mantle to the atmosphere and hydrosphere. Sulphur and carbon also dissolve in seawater and are incorporated into sediments before being recycled back into the mantle through subduction. The global flux of sulphur gas from sub-aerial arc volcanoes is well constrained based on measurements of SO2 gas from volcanoes using correlation spectrometry (COSPEC), UV spectroscopy, and satellite remote sensing. However, the main mantle flux of volatile elements is derived from MOR-type volcanism on divergent plate boundaries of the Earth. Therefore, submarine flux must be studied together with sub-aerial flux to evaluate a mass balance of sulphur and carbon on the Earth’s surface. However, the sulphur flux from submarine volcanism, which includes the amount released from the magma and that resulting from dissolution of solidified igneous rocks, is not well understood due to difficulties inherent to ocean bottom measurements.

A sulphur flux of 7.8 × 10¹⁰ mol/y was estimated from seawater–basalt sulphur exchange during hydrothermal alteration. This value is markedly lower than the estimate of 1.64 × 10¹² mol/y based on oceanic crust production and its sulphur content. ³He is a useful geochemical tracer because of its primordial origin and inert behaviour, and its mantle flux has been used for calculations of other volatile fluxes. Mantle carbon flux of 2 × 10¹² mol/y was derived from the MOR ³He flux and CO₂/³He ratio in MOR basalt glass. However, except for a very rough estimate, no report in the literature has described an estimation of mantle sulphur flux at MOR as calibrated against the mantle ³He flux because no S/³He ratios in MOR basalts glasses have yet been reported.

This report describes the sulphur flux at MOR based on crushing of basalt glass, data of high-temperature submarine vent chemistry, and recent estimates of the mantle ³He flux. Additionally, we present the amount and the origin of sulphur in arc magmas based on calculations using δ³⁴S values and S/³He ratios. The results enable us to compare the total natural flux with anthropogenic emissions of sulphur. We also verify the global mass balance of carbon to discuss the evolution of the atmosphere.

Results

Vesicles. We analyzed MORB glass samples collected at six sites on the East Pacific Rise, Mid-Atlantic Ridge, and Central Indian Ridge (Fig. 1). The ³He/⁴He ratios and ³He contents of MOR basalts glass vesicles were 7.9 Rₐ–9.4 Rₐ (where Rₐ is the atmospheric ratio of 1.382 × 10⁻₁⁰), and from 1.9 × 10⁻¹⁵ to 5.1 × 10⁻¹⁵ mol/g (Table 1), respectively. The values agree well with data presented in an earlier report. The samples show similar total sulphur contents in vesicles with an average of 1.25 × 10⁻⁷ mol/g. The average value of S/³He ratios in vesicles was (4.2 ± 1.2) × 10⁻⁷ (1σ). Evaluating δ³⁴S values of vesicle sulphur was difficult because the amount was less than the blank contribution from the filtering system used to precipitate BaSO₄.

Glass matrix. The ³He contents of MOR basalt glass matrix are listed in Supplementary Table 1. The sulphur contents of MOR basalt glass matrix measured using a secondary ion mass spectrometer (NanoSIMS; Cameca
SAS, Gennevilliers, France) listed in Supplementary Table 1 are well within the variation of sulphur contents in MOR glass obtained using a conventional method\(^1\). The average value of \(\frac{S}{^{3}He} \) ratios in the glass matrix was \((1.0^{+0.2}_{-0.3}) \times 10^{10} \) \((1\sigma)\). Observed \(\delta^{34}S \) values are consistent with those of MOR basalt and mantle values\(^{12,13}\), suggesting a typical mantle sulphur signature.

Discussion

The \(\frac{S}{^{3}He} \) ratio and \(^{3}He\) flux at MOR are needed for sulphur flux calculations. The observed \(\frac{S}{^{3}He} \) ratios of vesicles in MOR basalt glass are \(2.0^{+3}_{-1} \times 10^{7}–9.9^{+3}_{-1} \times 10^{7} \). These values are lower than those in the glass matrix (See Table 1 and Supplementary Table 1). This observation suggests higher solubility of sulphur than of helium in basaltic melt, which is also supported by recent laboratory experiments\(^{14}\). We consider the average vesicle \(\frac{S}{^{3}He} \) ratio of \(4.2^{+3}_{-1} \times 10^{7} \) as the minimum for MOR for our flux calculations. The other independent means to estimate the \(\frac{S}{^{3}He} \) ratio of MOR is using the chemistry of high-temperature submarine vents. The average \(\frac{S}{^{3}He} \) ratio is \((3.4^{+0.7}_{-0.5}) \times 10^{8} \) among 10 high-temperature \((>200^\circ C) \) hydrothermal sites worldwide (Supplementary Table 2).

The \(\delta^{34}S \) value of \(H_2S \) in hot vent fluids is variable\(^{13}\), but the original value before the incursion of seawater is similar to the MOR basalt values\(^{4,15}\). A small part of \(H_2S \) might be generated from the reduction of seawater \(SO_4 \) from the recharge zone\(^4\), although it is difficult to deconvolve the contribution quantitatively. Therefore the vent \(\frac{S}{^{3}He} \) ratio of \(3.4^{+3}_{-1} \times 10^{8} \) is expected to be the maximum estimate at MOR. We take an average of these two independent estimates \((1.9^{+1.1}_{-0.5}) \times 10^{8} \) as the upper mantle \(\frac{S}{^{3}He} \) ratio in the current study. The \(\frac{S}{^{3}He} \) ratio in MOR glass matrix is higher than this upper mantle value (Supplementary Table 1), which implies that helium has degassed from the melt before it was quenched to a glass and therefore these ratios should not be used for the sulphur flux estimate.

Based on the saturation anomaly of \(^{3}He\) in deep seawater of the eastern Pacific, a value of \(1070^{+300}_{-270} \text{ mol/y} \) was calculated for the \(^{3}He\) flux from MOR\(^{16}\). A more recent estimate of the MOR \(^{3}He\) flux is \(530^{+100}_{-30} \text{ mol/y} \) derived from an ocean circulation model which also considers radiocarbons and chlorofluorocarbons\(^{8}\). This MOR \(^{3}He\) flux, when combined with the average \(\frac{S}{^{3}He} \) ratio obtained in this study, provides the MOR sulphur flux of \((1.0^{+0.8}_{-0.6}) \times 10^{11} \text{ mol/y} \). This mantle flux is consistent with the estimate based on seawater–basalt

Table 1 He isotopic compositions, \(S \) concentrations and \(\frac{S}{^{3}He} \) ratios in MORB glass vesicles

Sample name	Number of measurements	\(^{3}He/^{4}He\) (Ra)	\(^{3}He\) concentration \((10^{-15} \text{ mol/g})\)	\(S \) concentration \((10^{-9} \text{ mol/g})\)	\(\frac{S}{^{3}He} \) \((10^6)\)
East Pacific Rise basalt					
RY380-R03b	3	\(9.4^{+0.4}_{-0.4} \)	\(2.3^{+0.1}_{-0.1} \)	\(44^{+13}_{-13} \)	\(20^{+6}_{-6} \)
CL DR01	2	\(7.9^{+0.4}_{-0.4} \)	\(3.4^{+1.1}_{-1.1} \)	\(106^{+24}_{-24} \)	\(35^{+15}_{-15} \)
(Mid-Atlantic Ridge basalt)					
418R002	3	\(8.2^{+0.3}_{-0.3} \)	\(5.1^{+0.6}_{-0.6} \)	\(182^{+34}_{-34} \)	\(36^{+8}_{-8} \)
CH31 DR12	1	\(8.1^{+0.3}_{-0.3} \)	\(1.9^{+0.1}_{-0.1} \)	\(188^{+12}_{-12} \)	\(99^{+9}_{-9} \)
(Central Indian Ridge basalt)					
KH10-6 DR15-glass	2	\(8.2^{+0.2}_{-0.2} \)	\(4.3^{+0.2}_{-0.2} \)	\(172^{+34}_{-34} \)	\(40^{+9}_{-9} \)
KH10-6 DR16-glass	3	\(7.9^{+0.2}_{-0.2} \)	\(2.7^{+0.2}_{-0.2} \)	\(58^{+6}_{-6} \)	\(22^{+2}_{-2} \)
Average					
		\(8.3^{+0.2}_{-0.2} \)	\(3.3^{+0.5}_{-0.5} \)	\(125^{+26}_{-26} \)	\(42^{+12}_{-12} \)

Uncertainty: 1\(\sigma\).
of bacterial reduction of seawater sulphate, and have a mean value of 1.0 × 10^11 mol S/y is a second-order flux 'compared to the riverine input of 3.3 × 10^11 mol S/y to the ocean and the output of 5.5 × 10^10 mol S/y as sedimentary pyrite and evaporitic sulphate17. However, the sulphur flux from the upper mantle into the ocean represents a large Earth contribution and is therefore distinct from riverine sulphur input that is continent-derived.

Sulphur and helium isotopic compositions are useful for investigating the origin of sulphur at arc volcanoes. The thermodynamic equilibrium between SO2 and H2S together with their δ34S values might provide constraints on the evolution of volcanic gases, such as an isochemo-cooling path, under the assumption that the initial δ34S value is 0%15, where δ34SS denotes the total sulphur isotopic ratio of SO2 and H2S. In addition, the δ34SS values might provide information related to the origin of sulphur in ARC volcanic gases, even though they might be affected by a gas-melt separation and related fractionation processes18-20. Available data of 3He and total sulphur contents, and δ34SS values for high-temperature volcanic gases (>200°C) in subduction zones were compiled from the literature (Table 2). Their δ3He/δHe ratios are consistent with the range of subduction-type He1-3. The δ34SS values are generally positive, except for one outlier from Galeras. This similarity suggests that the sulphur signature of an ARC magma source is due to incorporation of subducted sulphate partly derived from a seawater component18,20,21 with high δ34S values. The average value of S/3He values among these high-temperature ARC gases is (6.5 ± 1.1) × 10^9 (1σ), which is significantly higher than that of the upper mantle, suggesting enrichment of sulphur in the ARC mantle source by subduction processes.

Fig. 2 presents the relation between S/3He and δ34SS values of volcanic gases in subduction zones. The figure particularly shows end-member data for the upper mantle, sedimentary pyrite with reduced sulphur derived from slab, and subducted sulphate. The δ34S values of sedimentary pyrite vary considerably due to the result of bacterial reduction of seawater sulphate, and have a mean value of −20.9% in the Western Pacific22. Results of a recent study23 of the oceanic basin in northern Italy suggest that low-temperature serpentinization produces a negative δ34SS value with (−8.9 ± 8.0)%o. Then the δ34S value of sedimentary pyrite is defined as (−14.9 ± 6.0)%o. No source of primordial helium exists in the pyrite, and the slab may have lost the original mantle helium as well12. It is therefore possible to adopt S/3He larger than 1 × 10^12 for the sedimentary pyrite. Seawater sulphate has a δ34S value of +21.0%o25. Metasomatic fluids released from sediment, of which the sulphur is mostly in the form of sulphate, have a δ34S value of +14% when their sulphur compositions resemble the bulk sediment composition21. Using these values, the δ34S value of subducted sulphate is here defined as (+17.5 ± 3.5)%o. A defined S/3He larger than 1 × 10^12 for sedimentary sulphate is consistent with the seawater SO4/He of 1.0 × 10^12.

The distribution of volcanic gas data in the S/3He–δ34S diagram (Fig. 2) suggests that ARC samples are explained by three-component mixing. When sulphur in a sample is a mixture of the upper mantle, subducted sedimentary pyrite, and subducted sulphate having respective masses M, P, and S, the following equations can be derived:

\[\delta^{34}S_V = \delta^{34}S_{M} M + \delta^{34}S_{P} P + \delta^{34}S_S S \]
(1)

\[1/(S/\delta^{34}S)_{V} = M/(S/\delta^{34}S)_{M} + P/(S/\delta^{34}S)_{P} + S/(S/\delta^{34}S)_{S} \]
(2)

Therein, the following relation holds:

\[M + P + S = 1 \]
(3)

In those equations, subscripts V, M, P and S respectively denote the volcanic gas, the upper mantle, subducted sedimentary pyrite and subducted sulphate. Taking values of δ34S = 0%o, δ34S = −14.9%o, δ34S = +17.5%o, (S/3He)M = 1.9 × 10^13, (S/3He)P = 1.0 × 10^12 and (S/3He)S = 1.0 × 10^12, one can calculate the percentage of the three components M, P, and S quantitatively in ARC samples (Table 2). The uncertainty of estimated contributions is assessed in the Supplementary Discussion. The contribution of mantle sulphur is 1.5%–19% (2.9% average) in ARC samples, and the main contribution derives from subducted sulphate and sedimentary pyrite (See Supplementary Discussion for calculations). Volcanic gas from Satsuma-Iwojima shows the highest subducted sulphate contribution with the highest δ34S value. To explain the high δ34SS values of ARC volcanic gases, incorporation of a seawater component in the magma source has been inferred since the 1970s20. Here we first provide a quantification of the relative amount of the seawater sulphate contribution to ARC gases, which allows us to evaluate the recycling capacity of ARC volcanoes within the global sulphur cycle.

A conventional ARC 3He flux was estimated from the MOR flux, given the assumption that the magma production rate of ARC is

Volcano	Location	Temperature (°C)	δ34S (‰)	S/3He (10^9)	Lower mantle	Sedimentary pyrite	Subducted sulphate	Reference
Koryak	Kamchatka	215	5.3	8.0	2.4%	29.8%	61.7%	[34]
Avacha	Kamchatka	473	7.1	2.3	8.5%	29.3%	69.8%	[34,35]
Mutnovsky	Kamchatka	543	8.2	10.8	1.8%	29.3%	69.8%	[34,36]
Kudryavy	Kurl	912	6.8	1.6	12.0%	33.0%	55.0%	[34,37]
Uzu	Japan	750	5.4	3.4	5.7%	29.3%	65.0%	[31,38,39]
Kuju	Japan	580	7.6	7.8	2.5%	39.7%	57.9%	[40–42]
Unzen	Japan	818	7.3	2.1	9.2%			[31,43]
Satsuma-Iwojima	Japan	885	7.9	12.6	1.5%	17.1%	81.4%	[34,39]
Merapi	Indonesia	803	7.4	3.1	6.1%			[34]
Lewotolo	Indonesia	490	3.6	11.6	1.6%	37.1%	61.3%	[44,45]
White Island	New Zealand	495	6.1	4.0	2.3%	40.4%	57.3%	[46,47]
Ngauruhoe	New Zealand	640	6.7	4.4	2.3%	39.3%	58.4%	[31,47–49]
Momotombo	Nicaragua	747	7.1	5.9	4.2%	33.4%	62.4%	[34,50]
Galeras	Colombia	642	8.4	1.0	18.9%	71.3%	9.8%	[13,31,43]
Colima	Mexico	814	6.6	3.4	12.2%	42.6%	55.9%	[34,51]

Average: 6.8, 4.6, 6.5, 2.9%, 38.1%, 59.0%
about 20% of that of MOR. This percentage is consistent with the estimate of global magma emplacement and volcanic output averaged over the last 180 m.y. Recently, the MOR 3He flux was calculated to be 530 mol/y which would result in an ARC 3He flux of 110 ± 20 mol/y. This value is consistent with the value obtained by summation of 3He flux at arc volcanoes worldwide. The average S/He ratio of (6.5 ± 1.1) × 10^6 (1σ) is obtained from high-temperature volcanic gases. Therefore, the ARC sulphur flux is estimated to be (7.2 ± 1.8) × 10^11 mol/y based on the 3He flux of 110 mol/y. This value is considerably larger than MOR sulphur flux calculated in this study. However the upper mantle contribution to ARC volcanic gases is only (2.9 ± 0.5)% of total sulphur, on average. The sulphur flux from the wedge mantle at ARC then becomes (2.1 ± 0.6) × 10^11 mol/y, which is less than the mantle sulphur flux discharging into the ocean at MOR. The major contribution of the ARC sulphur flux is derived from subducted sedimentary pyrite and subducted sulphate partly derived from the seawater component.

A summary of the global sulphur flux is depicted in Fig. 3a. Present hot spot magmatism likely does not contribute substantially to the global flux of sulphur (See Supplementary Discussion). The total volcanic flux of sulphur is estimated as 8.2 × 10^11 mol/y and represents about one-third of the anthropogenic emissions due to coal burning and sulphide ore smelting. This natural flux, if it has remained constant over 4.55 billion years of geological time, engenders an accumulation of 3.7 × 10^21 mol. This value is greater than the surface inventory of 5.3 × 10^20 mol. If we take the MOR flux together only with the wedge mantle flux of 2.1 × 10^11 mol/y, then the accumulation becomes 5.6 × 10^20 mol in total, which is equivalent to the surface inventory. When steady-state recycling of sulphur is applied, the total subducting flux becomes 8.2 × 10^11 mol/y.

As new 3He flux data at MOR have been reported, we revise the carbon geodynamics along with sulphur. The CO2/3He ratio at MOR was calculated to be (2.2 ± 0.7) × 10^6 using CO2/3He data for MOR basalts and hydrothermal fluids. This ratio, combined with the new MOR 3He flux, engenders the global MOR CO2 flux of (1.2 ± 0.4) × 10^12 mol/y, which is consistent with the most recent estimate based on vesicularities of MORB worldwide.

For ARC volcanism, we selected 24 volcanic gas and steam well data with temperatures higher than 200°C (Supplementary Table 3). Their carbon source is well explained by the mixing of three components: the upper mantle (M), organic sediment (S) and limestone with a slab component (L) (Fig. 4; Ref. 30). These end-member components are described in Supplementary Table 3. Using those values, we calculate the respective percentages of the three components in the ARC samples (Supplementary Table 3). The contribution of the upper mantle carbon is 3.2%–36% (average 11%), whereas a major part is attributable to subducted carbonate and organic carbon. Because the average CO2/3He ratio of these data is (2.0 ± 0.3) × 10^6, the carbon flux from ARC is (2.2 ± 0.5) × 10^12 mol/y using the ARC 3He flux of 110 ± 20 mol/y, which is also consistent with the recent estimate using volcanic gas observations worldwide.

A summary of global carbon flux is depicted in Fig. 3b. The total volcanic flux of carbon is 3.4 × 10^12 mol/y, which is two orders of magnitude smaller than anthropogenic emission by fossil fuel combustion and cement production. The MOR flux combined with the wedge mantle flux is 1.4 × 10^12 mol/y. This value, if accumulated for 4.55 billion years, results in 6.6 × 10^21 mol of carbon, which closely approximates the surface inventory of 7.0 × 10^21 mol. If steady-state recycling of carbon is applied, then the total subduction flux becomes 3.4 × 10^12 mol/y. This estimate is consistent with the influx of carbon.

In conclusion, the best estimates of MOR sulphur and carbon flux are 1.0 × 10^11 mol/y and 1.2 × 10^12 mol/y, respectively at present,
which are less than their volcanic fluxes at ARC. Sulphur and carbon fluxes from only the mantle wedge to the surface environment at ARC are calculated as 2.1\times 10^{10} \text{mol/y} and 2.4 \times 10^{11} \text{mol/y}, respectively. These data provide a C/S flux ratio of 12 which is similar to the C/S ratio in the surface inventory of 13 (Ref. 1). Our results suggest that the main source of sulphur and carbon is the upper mantle. To balance the mass between the crust and the mantle, the sulphur subducted into the mantle and not immediately recycled to the surface is expected to be equivalent to 1.2 \times 10^{11} \text{mol/y}, which is about 17% of the recycling sulphur of 7.0 \times 10^{11} \text{mol/y}. We calculated sulphur and carbon fluxes from the mantle based on the plausible S/He and C/He ratios and the recently reported 3He flux at MOR, which constrained geochemical cycles of sulphur and carbon, and evolutionary histories of the atmosphere and hydrosphere.

Methods

Glass vesicle. It is difficult to measure the abundance of sulphur species such as H\textsubscript{2}S and SO\textsubscript{2} in vesicles of MOR basalt glass with 3He because the gases are highly reactive. They easily adhere to the inner surface of a vacuum crushing vessel. We have developed a gas-extraction method, ‘Frozen Crushing Method’, by which sulphur gases are fixed immediately in semi-frozen alkaline solution during mechanical fracturing of glass7. The abundance of helium and 3He/4He ratios were measured using a noble gas mass spectrometer (VG6400; Waters Corp.) at the Atmosphere and Ocean Research Institute (AORI). Subsequently, the vacuum was broken and the 3He gas was converted into sulphate ion by oxidation with hydrogen peroxide. The concentration was measured using an ion chromatography system (ICS-2100; Thermo Fisher Scientific Inc.) at AORI. Blank contributions of sulphur and helium were considerably smaller than the actual amounts in samples. Experimental details are presented in an earlier report1. Sulphate ion in the alkaline solution was converted into Ba\textsubscript{2}SO\textsubscript{4} precipitations by adding BaCl\textsubscript{2} solution and 34S values obtained with an elemental analyzer (vario PYRO cube; Elementar Analysensysteme, GmbH) coupled to an isotope-ratio mass spectrometer (Delta XP; Thermo Fisher Scientific Inc.) via an interface (ConFlo IV; Thermo Fisher Scientific Inc.) at the University of Ottawa.

Glass matrix. Sulphur contents in glass matrix were measured (NanosIMS; Cameca SAS, Gennevilliers, France) at AORI, whereas 34S values were obtained using an elemental analyzer isotope-ratio mass spectrometer system5 (Isoprime-EA; Isoprime Ltd.) at the University of Tsukuba.

1. Hilton, D. R., Fischer, T. P. & Marty, B. Noble gases and volatile recycling at subduction zones. In: Noble Gases in Geochemistry and Cosmochemistry. Reviews in Mineralogy and Geochemistry 47 (eds Porcelli, D., Ballentine, C. J. & Wieler, R.) 319–370 (Mineralogical Society of America, 2002).
2. Bluh, G. J. S., Schnetzler, C. C., Krueger, A. J. & Walter, L. S. The contribution of explosive volcanism to global atmospheric sulphur dioxide concentrations. Nature 366, 327–329 (1993).
3. Stoiber, R. E. & Jepsen, A. Sulfur dioxide contributions to the atmosphere by volcanoes. Science 182, 577–578 (1973).
4. Alt, J. C. Sulfur isotopic profile through the oceanic crust: Sulfur mobility and seawater-crustal sulfur exchange during hydrothermal alteration. Geology 23, 585–588 (1995).
5. Hansen, K. W. & Wallmann, K. Cretaceous and Cenozoic evolution of seawater composition, \textsubscript{2}O and \textsubscript{2}CO\textsubscript{2}: A model perspective. Am. J. Sci. 303, 94–148 (2003).
6. Marty, B. & Jambon, A. C/3He in volatile fluxes from the solid Earth: implications for carbon geodynamics. Earth Planet. Sci. Lett. 83, 16–26 (1987).
7. Kagoshima, T. et al. Estimation of sulfur, fluoroine, chlorine and bromine fluxes at Mid Ocean Ridges using a new experimental crushing and extraction method. Geochim. J. 46, e21–e26 (2012).
8. Bianchi, D. et al. Low helium flux from the mantle inferred from simulations of oceanic helium isotope data. Earth Planet. Sci. Lett. 297, 379–388 (2010).
9. Torgersen, T. F. Terrestrial helium degassing fluxes and the atmospheric helium budget: Implications with respect to the degassing processes of continental crust. Chem. Geol. 79, 1–14 (1989).
10. Sano, Y., Marty, B. & Burnard, P. Noble gases in the atmosphere. In: The Noble Gases as Geochemical Tracers. Advances in Isotope Geochemistry. (ed Burnard, P.) 17–31 (Springer-Verlag, 2013).
11. Graham, D. W. Noble gas Isotope geochemistry of mid-ocean ridge and ocean island basalts: characterization of mantle source reservoirs. In: Noble Gases in Geochemistry and Cosmochemistry. Reviews in Mineralogy and Geochemistry 47 (eds Porcelli, D., Ballentine, C. J. & Wieler, R.) 247–317 (Mineralogical Society of America, 2002).
12. Sakai, H., Des Marais, D. J., Ueda, A. & Moore, J. G. Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts. Geochim. Cosmochim. Acta 48, 2433–2441 (1984).
13. Marini, L., Moretti, R. & Accornnero, M. Sulfur isotopes in magmatic-hydrosystemic environments, melts, and magmas. In: Sulfur in magmas and melts: Its importance for natural and technical processes. Reviews in Mineralogy and Geochemistry 73 (eds Behrens, H. & Webster, J. D.) 423–492 (Mineralogical Society of America, 2011).
14. Webster, J. D. & Botcharnikov, R. E. Distribution of sulfur between melt and fluid in S–O–H–C–Cl-bearing magmatic systems at shallow crustal pressures and temperatures. In: Sulfur in magmas and melts: Its importance for natural and technical processes. Reviews in Mineralogy and Geochemistry 73 (eds Behrens, H. & Webster, J. D.) 247–283 (Mineralogical Society of America, 2011).
15. Gamo, T. Wide variation of chemical characteristics of submarine hydrothermal fluids due to secondary modification processes after high temperature water-rock interaction: a review. In: Biogeochemical processes and ocean flux in the Western Pacific (eds Sakai, H. & Nozaki, Y.) 425–451 (Terrapub, 1995).
16. Craig, H., Clarke, W. B. & Beg, M. A. Excess 3He in deep water on the East Pacific Rise. Earth Planet. Sci. Lett. 26, 125–132 (1975).
17. Holser, W. T., Schidlowski, M., Mackenzie, F. T. & Maynard, J. B. Geochemical cycles of carbon and sulfur. In: Chemical cycles in the evolution of the earth (eds Gregor, C. R., Garrels, R. M., Mackenzie, F. T. & Maynard, J. B.) 105–173 (John Wiley & Sons, 1988).
18. de Moor, J. M. et al. Sulfur degassing at Erta Ale (Ethiopia) and Masaya (Nicaragua) volcanoes: Implications for degassing processes and oxygen fugacities of basaltic systems. Geochim. Geophys. Geosyst. 14, 4076–4108 (2013).
19. Sano, Y. & Fischer, T. P. The analysis and interpretation of noble gases in modern hydrothermal systems. In: The Noble Gases as Geochemical Tracers. Advances in Isotope Geochemistry (ed Burnard, P.) 249–317 (Springer–Verlag, 2013).
20. Sakai, H. & Matsubaya, O. Stable isotopic studies of Japanese geothermal systems. Geochem. J. 46, e21–e26 (2012).
21. Alt, J. C., Shanks III, W. C. & Jackson, M. C. Cycling of sulfur in subduction zones: Implications for sediment recycling in subduction zones. In: Geochemistry of S–O–H–C–Cl-bearing magmatic systems at shallow crustal pressures and temperatures. In: Sulfur in magmas and melts: Its importance for natural and technical processes. Reviews in Mineralogy and Geochemistry 73 (eds Behrens, H. & Webster, J. D.) 247–283 (Mineralogical Society of America, 2011).
22. Alt, J. C., Shanks III, W. C. & Jackson, M. C. Cycling of sulfur in subduction zones: Implications for cycling of sediment in subduction zones. Proc. ODP, Sci. Results 129, 283–294 (1992).
23. Alt, J. C. et al. Updraft of carbon and sulfur during seafloor serpentinization and the effects of subduction metamorphism in Ligurian peridotites. Chem. Geol. 322–323, 268–277 (2012).
24. Hayagon, H. Retention of solar helium and neon in IDPs in deep sea sediment. Science 263, 1257–1259 (1994).
25. Rees, C. E., Jenkins, W. J. & Monster, J. The sulfur isotopic composition of ocean water sulphate. *Geochim. Cosmochim. Acta* **42**, 377–381 (1978).

26. Crisp, I. A. Rates of magma emplacement and volcanic output. *J. Volcanol. Geotherm. Res.* **20**, 177–211 (1984).

27. Moller, D. Estimation of the global man-made sulphur emission. *Atoms. Environ.* **18**, 19–27 (1984).

28. Marty, B. & Tolstikhin, I. N. CO₂ fluxes from mid-ocean ridges, arcs and plumes. *Chem. Geol.* **145**, 233–248 (1998).

29. Chavrit, D., Humler, E. & Grasset, O. Mapping modern CO₂ fluxes and mantle carbon content all along the mid-ocean ridge system. *Earth Planet. Sci. Lett.* **387**, 229–239 (2014).

30. Sano, Y. & Marty, B. Origin of carbon in fumarolic gas from island arcs. *Chem. Geol.* **119**, 265–274 (1995).

31. Fischer, T. P. Fluxes of volatiles (H₂O, CO₂, N₂, Cl, F) from arc volcanoes. *Geochim. J.* **42**, 21–38 (2008).

32. Ciais, P. et al. Carbon and other biogeochemical cycles. In *Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change* (eds Stocker, T. F. et al.) 465–570 (Cambridge University Press, 2014).

33. Maruoka, T., Koeberl, C., Hancox, P. J. & Reimold, W. U. Sulfur geochemistry in arc volcanism, with implications for the carbon cycle. *J. Geophys. Res.* **91**, 199–12, 214 (1986).

34. Taran, Y. A. et al. Chemistry and mineralogy of high-temperature gas discharges from Colima volcano, Mexico. Implications for magmatic gas-atmosphere interaction. *J. Volcanol. Geotherm. Res.* **108**, 245–264 (2001).

35. Varekamp, J. C., Kreulen, R., Poorter, R. P. E. & Van Bergen, M. J. Carbon sources in volcanic gases from Kudryavy volcano, Kamchatka, Russia. *Earth Planet. Sci. Lett.* **175**, 201–217 (1999).

36. Marty, B. & Giggenbach, W. F. The chemical and isotopic composition of gas discharges from New Zealand andesitic volcanoes. *Bull. Volcanol.* **45**, 253–255 (1982).

37. Giggenbach, W. F., Sano, Y. & Watanabe, H. Isotopic composition of helium, CO₂ and CH₄ contents in gases produced along the New Zealand part of a convergent plate boundary. *Geochim. Cosmochim. Acta* **57**, 3427–3456 (1993).

38. Giggenbach, W. F. Are Tokaenu chloride waters the outflow from Ketetahi or Hipaia? *Proceedings of the 18th New Zealand Geothermal Workshop, University of Auckland.* **18**, 175–182 (1996).

39. Menyailov, I. A., Nikitina, L. P., Shapar, V. N. & Pilipenko, V. P. Temperature increase and chemical change of fumarolic gases at Momotombo volcano, Nicaragua, in 1982–1985: Are these indicators of a possible eruption? *J. Geophys. Res.* **91**, 199–12, 214 (1986).

40. Taran, Y. A. et al. Sulphur geodynamic cycle. *Geochim. Cosmochim. Acta* **59**, 1749–1761 (1995).

41. Marty, B. & Jambon, A. & Sano, Y. Helium isotopes and CO₂ in volcanic gases of Japan. *Chem. Geol.* **76**, 25–40 (1989).

42. Taran, Y. A., Konnov, C. B., Shapar, V. N., Ovsyannikov, A. A. & Bilichenko, A. A. Fumarolic activity of Avachinsky and Koryaksky volcanoes, Kamchatka, from 1993 to 1994. *Bull. Volcanol.* **58**, 441–448 (1997).

43. Marty, B., Jambon, A. & Sano, Y. Helium isotopes and CO₂ in volcanic gases of Kudryavy volcano, Kamchatka, USSR. *J. Volcanol. Geotherm. Res.* **49**, 269–283 (1992).

44. Marty, B. & Hedenquist, J. W., Korzhinsky, M. A., Tkachenko, S. I. & Shimulovich, K. I. Geochemistry of magmatic gases from Kudryavy volcano, Iturup, Kuril Islands. *Geochim. Cosmochim. Acta* **59**, 1749–1761 (1995).

45. Marty, B., and Roether, J. W. & Jambon, A. & Sano, Y. Helium isotopes and CO₂ in volcanic gases of Japan. *Chem. Geol.* **76**, 25–40 (1989).

46. Taran, Y. A. & Menyailov, I. A., Nikitina, L. P., Shapar, V. N. & Pilipenko, V. P. Temperature increase and chemical change of fumarolic gases at Momotombo volcano, Nicaragua, in 1982–1985: Are these indicators of a possible eruption? *J. Geophys. Res.* **91**, 199–12, 214 (1986).

Acknowledgments

We would like to thank Dr. Paul Middleton of the University of Ottawa for cooperating in the analyses of sulphur isotopes in MOR basalt vesicles. CL DR01 and CH31 DR12 were supplied by Dr. Bernard Marty of Université de Lorraine. KH10-6 DR15-glass and KH10-6 DR16-glass were supplied by Dr. Hiroshi Sato of Senshu University. RT380-R03b and 418R02 were supplied from the sample archives of JAMSTEC, retrieved from following cruises under international projects or co-operations: MODE’98 and RidgeFlux. This work was partly supported by a Grant-in-Aid for JSPS Fellows (25–6922). T.K. is a JSPS Research Fellow.

Author contributions

T.K. was responsible for the research and the analyses of MOR basalt vesicles with Frozen Crushing Method. Y.S. supervised the research, and made important contributions in producing the manuscript: data compilation of hydrothermal vent and volcanic gas chemistry, figure and table preparation, and discussion of volcanic cycles. N.T. is a manager producing the manuscript: data compilation of hydrothermal vent and volcanic gas chemistry, figure and table preparation, and discussion of volcanic cycles. K.H. made important comments on sulphur chemistry and discussion of volatile cycles. T.K. and Y.S. wrote the manuscript.

Additional information

Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Kagoshima, T. et al. Sulphur geodynamic cycle. *Sci. Rep.* **5**, 8330; DOI:10.1038/srep08330 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/