THE LARGEST SIZE OF CONJUGACY CLASS AND THE p-PARTS OF FINITE GROUPS

GUOHUA QIAN AND YONG YANG

Abstract. Let p be a prime and let P be a Sylow p-subgroup of a finite nonabelian group G. Let $bcl(G)$ be the size of the largest conjugacy class of the group G. We show that $|P/O_p(G)| < bcl(G)$ if G is not abelian.

1. Introduction

Throughout this paper, G is a finite group. Let P be a Sylow p-subgroup of a finite nonabelian group G, let $b(G)$ denote the largest irreducible character degree of G, and let $bcl(G)$ denote the size of the largest conjugacy classes of a finite group G.

It is known for finite groups that $b(G)$ is connected with the structure of G. In [2] Gluck proved that in all finite groups the index of the Fitting subgroup $F(G)$ in G is bounded by a polynomial function of $b(G)$. For solvable groups, Gluck further shows that $|G:F(G)| \leq b(G)^{13/2}$ and conjectured that $|G:F(G)| \leq b(G)^2$. In [8], this bound was improved to $|G:F(G)| \leq (b(G)^p/p)^{1/p}$.

When we focus on a single prime, a stronger bound can be found. In [10], Qian and Shi showed that if G is any finite group, then $|P/O_p(G)| < b(G)^2$ and $|P/O_p(G)| \leq b(G)$ if P is abelian. Recently, the authors [11] improved the previous result, and showed that for a finite nonabelian group G, $|P/O_p(G)| \leq (b(G)^p/p)^{1/p}.$

Since there is some analogy between conjugacy class sizes and character degrees of a finite group, one may ask: do there exist some similar results for conjugacy class sizes?

Inspired by the results in [10], He and Shi [3 Theorem A] showed that for any finite group $|P/O_p(G)| < bcl(G)^2$ and $|P/O_p(G)| \leq bcl(G)$ if P is abelian. In [7], Liu and Song improved the previous bound by showing that $|P/O_p(G)| \leq (bcl(G)^p/p)^{1/p}$ for a finite nonabelian group G. Yang [14] recently strengthened the bound to $|P/O_p(G)| \leq bcl(G)$ when p is an odd prime but not a Mersenne prime. In this paper we remove the extra conditions and show that as long as G is nonabelian, then we will always have $|P/O_p(G)| < bcl(G)$. This strengthened all the previously mentioned results in this paragraph. We also show that the bound is the best possible.

2. Main Theorem

While the proofs in [5,7,14] mainly use the consequences of some orbit theorems of linear group actions, it seems one has to get a weaker bound or to exclude some important cases due to the limit of those orbit theorems. However, by using the consequence of the $k(GV)$ problem, we are able to achieve the best possible bound.

The p-solvable case of the famous Brauer’s $k(B)$ conjecture was discovered to be equivalent to the $k(GV)$ problem (Fong [1], Nagao [9]). Namely, when a finite group acts coprimely on a
finite vector space V, the number of conjugacy classes of the group $G \times V$ is less than or equal to $|V|$, the number of elements in the vector space. Thompson, Robinson, Maggard, Gluck, Schmid [12, 3, 13] and many others have contributed to this well-known problem, and the key to the solution is to study the orbit structure of the linear group actions. The following could be viewed as a generalization of a special case of the $k(GV)$ problem by Guralnick and Robinson. [4]. The proof does not use the full strengthen of the $k(GV)$ problem, only the special case Knörr [6] proved a while back where the acting group is nilpotent.

Lemma 2.1. Let G be a finite solvable group such that $G/F(G)$ is nilpotent, then we have $k(G) \leq |F(G)|$.

Proof. This is [4 Lemma 3].

Lemma 2.2. Let G be a finite nilpotent group that acts faithfully and coprimely on an abelian group V, and we consider the semidirect product $G \times V$, then the largest conjugacy class size in $G \times V$ is of size greater than $|G|$.

Proof. By Lemma 2.1 we know that the number of conjugacy classes in $G \times V$ is less than or equal to $|V|$. Also the identity is a conjugacy class of size 1, and the result follows.

Lemma 2.3. Let G be a Sylow p-subgroup of a permutation group of degree n. Then $|G| \leq 2^{n-1}$.

Proof. This result is well known (cf. [7 Lemma 5]).

Proposition 2.4. Let G be one of the nonabelian simple groups and $P \in \text{Syl}_p(\text{Aut}(G))$ for some prime p. Then $\text{bcl}(G) > 2|P|$.

Proof. It was stated in [14 Proposition 2.6] that $\text{bcl}(G) \geq 2|P|$ but a close examination of the proof indeed shows that $\text{bcl}(G) > 2|P|$.

We now prove the main result.

Theorem 2.5. Let p be a prime and let P be a Sylow p-subgroup of a finite nonabelian group G. Let $\text{bcl}(G)$ be the size of the largest conjugacy class of the group G. Then $|P/O_p(G)| < \text{bcl}(G)$.

Proof. We will work by induction on $|G|$. Note that for any subgroup or quotient group L of G, $\text{bcl}(G) \geq \text{bcl}(L)$.

Clearly we may assume that $O_p(G) = 1$. Assume that $\Phi(G) > 1$. Since $O_p(G) = 1$, we see that $\Phi(G)$ is a p'-group since $\Phi(G)$ is nilpotent. Let T be the pre-image of $O_p(G/\Phi(G))$ in G. It is clear that $T = \Phi(G)Q$ where Q is a Sylow p-subgroup of T. By the Frattini’s argument, we have that $G = N_G(Q)T = N_G(Q)\Phi(G)Q = N_G(Q)$, and thus Q is a normal subgroup of G. Thus we know that $Q = 1$ and $O_p(G/\Phi(G)) = 1$. Hence we may assume that $\Phi(G) = 1$.

Assume that all minimal normal subgroups of G are solvable. Let F be the Fitting subgroup of G. Since $\Phi(G) = O_p(G) = 1$, $G = F \rtimes A$ is a semidirect product of an abelian p'-group F and a group A.

Clearly, $C_G(F) = C_A(F) \times F$ and $C_A(F) \leq G$. Since F contains all the minimal normal subgroups of G, we conclude that $C_A(F) = 1$, and hence, $C_G(F) = F$. Let us investigate the subgroup $K = PF$. Since $O_p(K)$ centralizes F and hence $O_p(K) \leq C_G(F) = F$, it follows that $O_p(K) = 1$.

By induction, we may assume that $G = K = PF$. Observe that $G = PF$ is solvable and P acts faithfully on the abelian p'-group F. By Lemma 2.2, we know the result follows.

Now we assume that G has a nonsolvable minimal normal subgroup V. Let $V = V_1 \times \cdots \times V_k$, where V_1, \ldots, V_k are isomorphic nonabelian simple groups. Let us investigate the subgroup $K = P(V \times C_G(V))$.

Since V is a direct product of nonabelian simple groups, $O_p(V) = 1$. This implies that $V \cap O_p(K) = 1$. Since V and $O_p(K)$ are both normal in K, $O_p(K)$ centralizes V, so $O_p(K) \leq C_G(V)$, and hence $O_p(K) \leq O_p(C_G(V))$. Since $C_G(V)$ is normal in G, we see that $O_p(C_G(V)) \leq O_p(G) = 1$. Thus, we conclude that $O_p(K) = 1$. Therefore we may assume by induction that $G = P(V \times C_G(V))$.

Set $|C_G(V)|_p = p^n$, $|G/C_G(V)|_p = p^v$.

Clearly $O_p(C_G(V)) = 1$. If $C_G(V)$ is not abelian, then by induction there exists $t \in C_G(V)$ such that $|t^{C_G(V)}| \geq |C_G(V)|_p = p^n$. If $C_G(V)$ is abelian, then clearly and $p^n = 1$. Thus in all cases, we can find and $t \in C_G(V)$ such that $|t^{C_G(V)}| \geq |C_G(V)|_p = p^n$.

Let $x_i \in V_i$ such that $|x_i^{V_i}| = bcl(V_i)$ and set $x = x_1 \cdots x_k$. Clearly $x \in V$ and $|x^V| = bcl(V_1)^k = bcl(V)$. Note that $G/(V \times C_G(V)) \leq Out(V) \cong Out(V_1) \wr S_k$, $G/C_G(V) \leq Aut(V) \cong Aut(V_1)^k$. By Lemma 2.3 we have $p^v = |G/C_G(V)|_p \leq 2^{k-1}(|Out(V_1)|_p)^k$.

By Proposition 2.4, we have

$$bcl(V_1) > 2|Aut(V_1)|_p,$$

thus

$$bcl(V) > (2|Aut(V_1)|_p)^k \geq |S_k|_p |Aut(V_1)|_p^k \geq |G/C_G(V)|_p = p^v,$$

and then

$$bcl(G) \geq bcl(V \times C_G(V)) \geq bcl(V) \cdot bcl(C_G(V)) > |G|_p,$$

and we are done. \hfill \Box

Remark: We provide a family of examples to show that our result is the best possible. Let $G = K \times V$ where $|V|$ is a Fermat prime, $|K| = |V| - 1 = 2^n$ and K acts fixed point freely on V. Note that $bcl(G) = |V|$ and $|G/O_2(G)|_2 = 2^n = |V| - 1$.

3. Acknowledgement

The project is partially supported by the NSFC (Nos: 11671063 and 11471054), the NSF of Jiangsu Province (No.BK20161265), and the Simons Collaboration Grants (No 499532).

References

[1] P. Fong, ‘On the characters of p-solvable groups’, Trans. Amer. Math. Soc. 98 (1961), 263-284.
[2] D. Gluck, ‘The largest irreducible character degree of a finite group’, Canad. J. Math. 37 (3) (1985), 442-451.
[3] D. Gluck, K. Magaard, U. Riese, and P. Schmid, ‘The solution of the $k(GV)$-problem’, J. Algebra 279 (2004), 694-719.
[4] R.M. Guralnick and G.R. Robinson, ‘On the commuting probability in finite groups’. J. Algebra 300 (2006), no. 2, 509-528.
[5] L. He and W. Shi, ‘The largest lengths of conjugacy classes and the Sylow subgroups of finite groups’, Arch. Math. 86 (2006), 1-6.
[6] R. Knörr, ‘On the number of characters in a p-block of a p-solvable group’, Illinois J. Math. 28 (1984) 181-210.
[7] Y. Liu and X. Song, ‘On the largest conjugacy class length of a finite group’. Monatsh. Math. 174 (2014), no. 2, 259-264.
[8] A. Moretò and T.R. Wolf, ‘Orbit sizes, character degrees and Sylow subgroups’, Adv. in Math., 184 (2004), 18-36.
[9] H. Nagao, ‘On a conjecture of Brauer for p-solvable groups’, J. Math. Osaka City Univ. 13 (1962), 35-38.
[10] G. Qian and W. Shi, ‘The largest character degree and the Sylow subgroups of finite groups’, J. Algebra 277 (2004), 165-171.
[11] G. Qian and Y. Yang, ‘The largest character degree and the Sylow subgroups of finite groups’, J. Algebra Appl. (2016), 1650066.
[12] G.R. Robinson and J.G. Thompson, ‘On Brauer’s $k(B)$-problem’, J. Algebra 184 (1996), 1143-1160.
[13] P. Schmid, The Solution of the $k(GV)$ Problem, Imperial College Press, 2008.
[14] Y. Yang, ‘The largest size of conjugacy class and the Sylow p-subgroups of finite groups’, Arch. Math. (2017), no.1, 9-16.

DEPARTMENT OF MATHEMATICS, CHANGSHU INSTITUTE OF TECHNOLOGY, CHANGSHU, JIANGSU 215500, PEOPLES REPUBLIC OF CHINA

DEPARTMENT OF MATHEMATICS, TEXAS STATE UNIVERSITY, 601 UNIVERSITY DRIVE, SAN MARCOS, TX 78666, USA

E-mail address: ghqian2000@163.com, yang@txstate.edu