Association of the rs2430561 polymorphism of the interferon-γ gene with cervical cancer susceptibility and prognosis in Han Chinese women

Heng Wei1,1, Yang Zhang2,1, Qiao Zhang1, Yanming Lu1, Yunlong Huo1, Ning Wang†,9

1 Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 110004 Shenyang, Liaoning, China
2 Department of Breast Surgical Department, Shengjing Hospital of China Medical University, 110004 Shenyang, Liaoning, China
3 Department of Second Gynecological Department, the Second Hospital of Dalian Medical University, 116000 Dalian, Liaoning, China

*Correspondence: ningwang2018@163.com (Ning Wang)
† These authors contributed equally.

DOI: 10.31083/j.ejgo4204119
This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).
Submitted: 25 November 2020 Revised: 4 February 2021 Accepted: 8 February 2021 Published: 15 August 2021

Objectives: To investigate IFN-γ rs2430561 polymorphisms in Han women in northeast China and the relationship between the rs2430561 polymorphisms and the risk of cervical cancer. Methods: PCR-ASP was used for genotyping. IFN-γ rs2430561 polymorphism was detected in 173 cases of cervical invasive carcinoma and 422 healthy controls in Han women in northeast China. Results: The allele and genotype distributions of the IFN-γ rs2430561 polymorphism were not significantly different between each of the groups (P > 0.05). There was no significant relationship between rs2430561 polymorphism and invasive cervical cancer (TT vs AA, OR = 1.321, 95% CI: 0.05). The polymorphism had no significant effect on overall survival (P = 0.071) or progression free survival (P = 0.632). The rs2430561 genotype was not associated with major clinicopathological features of invasive cervical cancer and 422 healthy controls in Han women in northeast China. Results: The allele and genotype distributions of the IFN-γ rs2430561 polymorphism were not significantly different between each of the groups (P > 0.05). The polymorphism had no significant effect on overall survival (P = 0.071) or progression free survival (P = 0.632) of invasive cervical carcinoma. Conclusions: Rs2430561 polymorphism had no effect on invasive cervical cancer susceptibility in Han females in northeastern China, and was not associated with the prognosis of invasive cervical carcinoma.

Keywords
Cervical cancer, Single nucleotide polymorphism, Genetic susceptibility, IFN-γ

1. Background
Cervical cancer is one of the most common malignancies in women, and its incidence is still increasing in developing countries [1]. Infection with the human papillomavirus (HPV) is an important risk factor for developing cervical cancer [2]. The malignant transformation mechanism after HPV infection is complex; it has been shown that the immune response induced by HPV infection plays an important role in the development of cervical cancer [3]. Many of the cytokines associated with immune modulation have been proven to be involved in the oncogenesis and progression of cervical cancer [4].

Interferon (IFN)-γ is a T helper (Th)1 cell pro-inflammatory cytokine that has important regulatory functions in almost all immune responses, such as differentiation and proliferation of T cells, antitumor, and antiviral activity [5, 6]. IFN-γ is mainly produced by activated lymphocytes and natural killer (NK) cells. IFN-γ is an important cytokine affecting the differentiation of T cells to Th1 and Th2 cells [7]. IFN-γ promotes T cells to differentiate into Th1 cells to activate cellular immunity. There is some evidence that IFN-γ has anti-proliferative and anti-angiogenic effects on a variety of tumor cells [8, 9]. Additionally, it has been found that cellular immunity can control HPV infection, and modulate cervical intraepithelial neoplasia (CIN) associated with HPV infection [10].

Previous studies suggest that IFN-γ expression is affected by the rs2430561 polymorphism (also known as the +874 locus) of the IFN-γ gene [11]. Given the role of IFN-γ in antitumor processes, it has been speculated that the rs2430561 polymorphism may be associated with genetic susceptibility to cervical cancer. Several studies have tried to answer this question; however, the relationship between the rs2430561 polymorphism and cervical cancer risk has not been confirmed [12–15]. The purpose of this study was to investigate the effect of the rs2430561 polymorphism on cervical cancer susceptibility and prognosis in females of Han descent.

2. Materials and methods
2.1 Study subjects
Patients in the case group were randomly selected from patients diagnosed with invasive cervical carcinoma by pathology in the Department of Obstetrics and Gynecology of Shengjing Hospital of China Medical University from August 2011 to April 2014. There were 173 cases of invasive cervical carcinoma enrolled in the study. Healthy women (n = 422) who took physical examinations in our hospital were selected to constitute the control group. Control group requirements included no history of CIN or other tumors, and no abnormalities detected by cervical cytology examination. All participants were Han women from Northeastern China. HPV
infection status was tested according to previously described methods [16]. The case group was followed from the first to the 60th month after definitive diagnosis. Endpoint events included death and disease progression; overall survival and progression-free survival were recorded. This study was reviewed and approved by the Ethics Committee of Shengjing Hospital.

2.2 Sample collection

For each participant, 5 mL of peripheral venous blood was collected using an EDTA anticoagulation blood tube (BD Biosciences, San Jose, CA, USA), aliquoted, and stored in a 1.5 mL centrifuge tube.

2.3 Genotyping

Genomic DNA was extracted using the Tiangen Blood Genome Kit (China) according to the manufacturers’ instructions. The PCR-ASP method [17] was used for rs2430561 genotyping. Primers used in the study are listed in Table 1. A 10 µL reaction was prepared according to manufacturers’ instructions. The annealing temperature was 55 °C–57 °C. Reactions were run on a Takara (Japan) TP600 PCR machine, and amplified products were analyzed by electrophoresis on a 2.5% agarose gel. The T allele and A allele were amplified using specific primers to obtain a 264 bp product. Control primers generated a 476 bp product that was used as an internal reference (Fig. 1).

Table 1. Primers used in the study.

Primer	Sequence	Fragment length
Sense primer		
Control primer	5′-GGAACTCTCGTTGCTCACT-3′	476 bp
A allele primer	5′-TTCTTACAAACACAAATCAATCA-3′	264 bp
T allele primer	5′-TTCTTACAAACACAAATCAATCCT-3′	264 bp
Antisense primer		
Common primer	5′-TCAACAAAGCTGATACTCCA-3′	

2.4 Statistical analyses

Multivariate logistic regression was used to analyze the association of genotype with cervical cancer risk. The odds ratio (OR) was calculated using a multivariate logistic regression model and adjusted for age, smoking history, pregnancy history, and HPV infection status. A chi-square test was used to test for Hardy–Weinberg equilibrium. The frequency of basic patient characteristics was tested using the Fisher exact test. A P-value < 0.05 was considered statistically significant. The Kaplan–Meier method was used to compare survival differences, and the log-rank method was used for significance testing. Multivariate survival analysis was performed using the Cox model. SPSS (version 13.0; SPSS, Inc., Chicago, IL, USA) was used for all analyses.

3. Results

3.1 Patient characteristics

The basic characteristics of the participants are shown in Table 2. There were no significant differences in age distribution, smoking history, and pregnancy history (P = 0.117, 0.106 and 0.106 respectively). Therefore, these factors were not associated with cervical cancer susceptibility.

PCR-ASP genotyping results are shown in Table 3. The genotype frequencies of the included subjects met Hardy–Weinberg equilibrium (P > 0.05). The frequencies of the A allele of the rs2430561 locus was 0.54 in the case group and 0.613 in the control group. The corresponding frequencies of the T allele in the case and control groups were 0.46 and 0.387, respectively. Compared with the A allele, the T allele was associated with a slight increase in cervical cancer susceptibility risk (OR = 1.232, 95% CI: 1.032–1.470). Although this increase was statistically significant (P = 0.023), it may not have practical or clinical significance. Multivariate logistic regression adjusted for age, smoking history, pregnancy history, and HPV infection status indicated that the various genotypes of rs2430561 did not significantly affect cervical
Fig. 2. Overall survival (OS).

Fig. 3. Progression-free survival (PFS). Kaplan-Meier survival curves of patients with cervical cancer according to rs2430561 genotype.

cancer susceptibility. The ORs of the TT genotype and TA genotype relative to the AA genotype were 1.321 (95% CI: 0.423–4.121, \(P = 0.632\)) and 0.439 (95% CI: 0.145–1.324, \(P = 0.144\)), respectively. Thus, the rs2430561 polymorphism of the IFN-\(\gamma\) gene had no significant effect on susceptibility to cervical invasive carcinoma or cervical cancer more generally.

3.2 Association of the rs2430561 genotype with clinicopathological features of cervical cancer

The distribution data of rs2430561 genotypes and clinicopathological features are shown in Table 4. For the 173 cases of cervical invasive carcinoma tested, the rs2430561 genotype was not associated with differentiation grade (\(P = 0.675\)), lymph node metastasis (\(P = 0.149\)), vascular cancerous embolus (\(P = 0.772\)), tumor size (\(P = 0.685\)), or infiltration depth (\(P\))
V olume 42, Number 4, 2021 791

not significantly different from one another (\(P = 0.457 \)). Kaplan–Meier analysis showed that the cumulative progression rates (\(\text{P}cure \) = 0.470). Overall, rs2430561 genotype did not show a significant association with any major clinicopathological feature of cervical cancer.

3.3 Association of rs2430561 genotype with patient prognosis

We followed 173 patients in the case group for 60 months. There were 59 patients who died during the follow up period (34.1% mortality). Disease progression occurred in 100 patients (57.8%). Kaplan–Meier analysis showed that the cumulative survival rates of the AA, TA and TT genotypes were not significantly different from one another (\(P = 0.457 \)), nor were the cumulative progression rates (\(P = 0.374 \)). Multivariate analyses of OS (Overall Survival) and PFS (Progression Free Survival) in relation to clinical parameters and genotype are shown in Table 5. The Cox model was used to analyze the effect of multiple factors on patient prognosis including age, smoking history, pregnancy history, HPV infection status, clinical stage, differentiation grade, lymph node metastasis, tumor size, tissue, and lymphatic vessel infiltration. The rs2430561 polymorphism was not associated with both OS (Fig. 2) and PFS (Fig. 3) (\(P = 0.071 \) and 0.067). However, HPV status, lymph node metastasis, and tumor size significantly affected OS and PFS (\(P < 0.05 \) for all).

4. Discussion

IFN-\(\gamma \) has important functions in both innate and adaptive immunity. Our previous study suggests that the rs2430561 polymorphism of the IFN-\(\gamma \) gene is associated with the risk of cervical HPV infection in Han women in Northeastern China [17]. The A allele and AA genotype both increase the HPV infection risk, and AA genotype carriers are prone to persistent and recurrent HPV infection. Taking into account the critical role of HPV infection in cervical cancer, we hypothesized that the polymorphism at this locus may be associated with cervical cancer susceptibility. In this study we did not identify a significant association between rs2430561 polymorphism and cervical cancer susceptibility.

The IFN-\(\gamma \) gene, located at 12q24, is \(-5.4 \text{ kb} \) in length and contains four exons. Like other cytokines, IFN-\(\gamma \) coding regions tend to be conserved [18]. Currently, there are no reported single nucleotide polymorphisms in the coding regions of the IFN-\(\gamma \) gene. Some studies have found an association between the rs2430561 polymorphism and IFN-\(\gamma \) expression levels [11, 17]. The transcription factor NF-\(\kappa B \) tends to bind to the the protein variant expressed by the T allele, which accounts for the effect of the rs2430561 polymorphism on IFN-\(\gamma \) expression [19]. The high expression of IFN-\(\gamma \) induced by the binding of NF-\(\kappa B \) to the T allele has also been demonstrated by an in vitro study [11]. Meanwhile, the A allele of rs2430561 and the AA genotype are associated with relatively low expression of IFN-\(\gamma \). It has been reported that the A allele is associated with an increased risk for infectious diseases such as tuberculosis, hepatitis B, and parvovirus infections [20–22]. Thus, the low expression of IFN-\(\gamma \) associated with the A allele may attenuate the body’s antiviral capabilities, and thus facilitate tumor transformation. A study suggests that AA homozygosity at the rs2430561 locus may increase cervical cancer risk in Chinese women [23]. However, a study in South Africa obtained the opposite result [14]. Our study selected Han females in Northeastern China as study subjects, and used a larger sample size than previous studies. However, we did not find a significant association between the rs2430561 polymorphism and cervical cancer susceptibility.

Based on our previous findings, we hypothesized that IFN-\(\gamma \) has a dual protective effect on HPV-associated CIN and cervical cancer [17]. However, studies in Brazilian women failed to show that the polymorphism at this locus affects susceptibility to HPV-associated CIN [15]. We did not

Table 2. Clinical characteristics of cases and controls.

	Patients (n = 173)	Control (n = 422)	\(p \)
Age			
≤35	34 (19.7)	103 (24.4)	0.117
36–50	92 (53.2)	235 (55.7)	
>50	47 (27.2)	84 (19.9)	
Smoking			
Never	162 (93.6)	409 (96.9)	0.106
Ever	11 (6.4)	13 (3.1)	
Pregnancy			
Never	3 (1.8)	30 (7.1)	0.106
1–2	158 (91.3)	362 (85.8)	
>2	12 (6.9)	30 (7.1)	
HPV status			
HPV+	153 (88.4)	0 [0]	0.000
HPV-	20 (11.6)	422 [100]	
Clinical stage\(b \)			
Stage I	132 (76.3)		
Stage II	33 (19.1)		
Stage III	7 (4.0)		
Stage IV	1 (0.6)		
Differentiation			
Well	56 (33.0)		
Moderate	67 (39.4)		
Poorly	50 (27.7)		
Lymphatic metastasis			
No	134 (77.5)		
Yes	39 (22.5)		
Tumor size			
≤4 cm	119 (68.8)		
>4 cm	54 (31.2)		
Invasive interstitial depth			
<1/2	109 (63.0)		
≥1/2	64 (37.0)		
Vascular invasion			
No	127 (73.4)		
Yes	46 (26.6)		

\(a \) Two-sided Fisher’s Exact test.

\(b \) According to the International Federation of Gynecology and Obstetrics (FIGO) classification.
Table 3. Genotype frequencies of IFN rs2430561 among patients and controls and their association with SCCUC.

Genotype	Patients (n = 173)	Controls (n = 422)	OR (95% CI)	P
	No. (%)	No. (%)		
Allele frequency (n=346) (n=844)				
T allele	159 (46.0)	327 (38.7)	1.232 (1.032–1.470)	0.023
A allele	187 (54.0)	517 (61.3)	reference	
TT	38 (22.0)	67 (15.9)	1.321 (0.423–4.121)	0.632
TA	83 (48.0)	193 (45.7)	0.439 (0.145–1.324)	0.144
AA	52 (30.1)	162 (38.4)	reference	

a Data were calculated by multivariate regression analysis, adjusting for age, HPV status, pregnancy and smoking history.

Table 4. Genotypes distribution of differentiation.

Genotype	Differentiation (n = 173)	P		
	Well No. (%)	Moderate No. (%)	Low No. (%)	
TT	12 (21.4)	17 (25.4)	9 (22.0)	0.675
TA	30 (53.6)	28 (41.8)	25 (48.0)	
AA	14 (25.0)	22 (32.8)	16 (30.1)	

Lymphatic metastasis

	No No. (%)	Yes No. (%)	P
TT	25 (18.7)	13 (33.3)	0.149
TA	68 (50.7)	15 (38.5)	
AA	41 (30.6)	11 (28.2)	

Tumor size

	≤4 cm No. (%)	>4 cm No. (%)	P
TT	24 (20.2)	14 (25.9)	0.685
TA	58 (48.7)	25 (46.3)	
AA	37 (31.1)	11 (28.2)	

Invasive interstitial depth

	≤1/2 No. (%)	≥1/2 No. (%)	P
TT	23 (21.1)	15 (23.4)	0.470
TA	56 (51.4)	27 (42.2)	
AA	30 (27.5)	22 (34.4)	

Vascular invasion

	No No. (%)	Yes No. (%)	P
TT	27 (21.3)	19 (23.9)	0.772
TA	63 (49.6)	13 (43.5)	
AA	37 (29.1)	9 (32.6)	

a Two-sided Fisher’s Exact test.

include CIN patients in this study, and the association of the rs2430561 polymorphism with CIN susceptibility will be investigated in future studies.

The ethnic background of the population is an important factor that should not be overlooked in genetic susceptibility studies. In a meta-analysis, Sun et al. systematically reviewed the association of rs2430561 with cervical cancer risk. They found that rs2430561 was significantly associated with cervical cancer susceptibility in the Asian population; however, this association was not observed in other races. This is may be due to differences in the genotype frequency of rs2430561 between different races [24, 25]. Our study did not correspond with results from other studies in Han women [23]. One reason for this discrepancy may be that while all study subjects were selected from the Han population, the study subjects were from different regions. The participants in our study came from northeastern China, while participants in former studies came mainly from northwestern China, in which more racial diversity was characterized. Thus, the genetic background may be different in our study. Secondly, our study included a larger sample than previous studies, and this variation in sample size may cause different results. Thirdly, the etiology of cervical cancer is complex, and gene-gene and gene-environment interactions can both affect the oncogenesis of cervical cancer, complicating study design and increasing the uncertainty of results.

We have found that AA genotype carriers were more likely to have persistent and relapsing HPV infections [17], and we speculated that the AA genotype may be associated with cervical cancer prognosis. In this study, we investigated whether the rs2430561 polymorphism of the IFN-γ gene was associated with the recurrence of invasive cervical cancer. We found that rs2430561 genotype of was not a factor affecting the prognosis of invasive cervical cancer. There was no significant difference in either OS or PFS among the various genotypes. Gangwar et al. [12] reported that the rs2430561 polymorphism was associated with cervical cancer prognosis in Indian women, and that this effect may be caused by low expression of IFN-γ associated with the AA genotype. However, our study did not indicate any such association. Treatment approach may also influence the prognosis, in our study all patients were treated following cervical cancer guideline. We will balance the treatment factor in different genotype group with larger sample in the future. Future studies using larger sample sizes may be helpful for clarifying this issue.

5. Conclusions

In conclusion, the rs2430561 polymorphism of the IFN-γ gene had no effect on cervical cancer susceptibility in Han females in Northeastern China, and was not associated with the prognosis of invasive cervical carcinoma.
Table 5. Multivariate analyses of OS and PFS in relation to clinical parameters and Genotype.

	\(p \)	RR	95% CI	\(p \)	RR	95% CI
Genotype	0.071	1.397	0.972–2.010	0.067	1.326	0.981–1.792
Age	0.53	1.132	0.769–1.667	0.588	0.917	0.669–1.256
Smoking	0.148	0.386	0.107–1.399	0.634	0.813	0.347–1.904
Pregnancy	0.51	1.399	0.515–3.800	0.863	0.938	0.454–1.939
HPV status	0.651	1.24	0.488–3.148	0.461	1.319	0.632–2.755
Clinical stage	<0.001	4.223	2.784–6.404	<0.001	4.055	2.812–5.848
Differentiation	0.103	1.347	0.941–1.928	0.068	1.289	0.981–1.693
Lymphatic metastasis	<0.001	3.314	1.892–5.807	<0.001	4.188	2.615–6.708
Tumor size	0.001	2.372	1.392–4.041	0.001	2.114	1.372–3.746
Invasive interstitial depth	0.591	1.269	0.737–2.186	0.136	1.372	0.905–2.080
Vascular invasion	0.952	1.018	0.572–1.810	0.41	1.209	0.770–1.896

*Genotype 0.071 1.397 0.972–2.010 0.067 1.326 0.981–1.792
Age 0.53 1.132 0.769–1.667 0.588 0.917 0.669–1.256
Smoking 0.148 0.386 0.107–1.399 0.634 0.813 0.347–1.904
Pregnancy 0.51 1.399 0.515–3.800 0.863 0.938 0.454–1.939
HPV status 0.651 1.24 0.488–3.148 0.461 1.319 0.632–2.755
Clinical stage <0.001 4.223 2.784–6.404 <0.001 4.055 2.812–5.848
Differentiation 0.103 1.347 0.941–1.928 0.068 1.289 0.981–1.693
Lymphatic metastasis <0.001 3.314 1.892–5.807 <0.001 4.188 2.615–6.708
Tumor size 0.001 2.372 1.392–4.041 0.001 2.114 1.372–3.746
Invasive interstitial depth 0.591 1.269 0.737–2.186 0.136 1.372 0.905–2.080
Vascular invasion 0.952 1.018 0.572–1.810 0.41 1.209 0.770–1.896

Abbreviations
HPV, human papillomavirus; IFN, interferon; Th, T helper; NK, natural killer; CIN, cervical intraepithelial neo-plasia; OR, odds ratio; PCR-ASP, polymerase chain reaction-allele specific primer; OS, Overall Survival; PFS, Progress Free Survival.

Author contributions
HW and YZ Conceptualization, methodology, investigation, data curation, formal analysis, writing—original draft, writing review and editing, project administration. QZ was involved in conceptualization and formal analysis. YML was involved in resources and data curation. YLH was involved in resources and data curation. NW was involved in conceptualization, funding acquisition, investigation, methodology, project administration and review & editing. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Ethical approval for human subjects was obtained from the research ethics committee of ShengJing Hospital (approved No.2012PS45K). Written informed consent was obtained by all patients.

Acknowledgment
We would like to express my gratitude to all those who helped me during the writing of this manuscript.

Funding
This study was supported by grants from the National Nature Science Foundation of China (No. 81202047), the Program for Liaoning Excellent Talents in University (No. LJQ2013083). The funding parties have no influence on study design, data collection, analysis, or interpretation.

Conflict of interest
The authors declare no conflict of interest.

References
[1] Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA: A Cancer Journal for Clinicians. 2011; 61: 69–90.
[2] Bosch FX, Lorincz A, Munoz N, Meijer CJLM, Shah KV. The causal relation between human papillomavirus and cervical cancer. Journal of Clinical Pathology. 2002; 55: 244–265.
[3] Deivendran S, Marzook KH, Radhakrishna Pillai M. The role of inflammation in cervical cancer. Advances in Experimental Medicine and Biology. 2014; 853: 377–399.
[4] Dranoff G. Cytokines in cancer pathogenesis and cancer therapy. Nature Reviews Cancer. 2004; 4: 11–22.
[5] Song SH, Lee JK, Lee NW, Saw HS, Kang JS, Lee KW. Interferon-gamma (IFN-gamma): a possible prognostic marker for clearance of high-risk human papillomavirus (HPV). Gynecologic Oncology. 2008; 108: 543–548.
[6] Kammertoens T, Friese C, Arina A, Idel C, Briesemeister D, Rothe M, et al. Tumour ischaemia by interferon-γ resembles physiological blood vessel regression. Nature. 2017; 545: 98–102.
[7] Mandalapur R, Ajumee RA, Venkatesan V, Prakhya BM. Proliferation and TH1/TH2 cytokine production in human peripheral blood mononuclear cells after treatment with cypermethrin and mancozeb in vitro. Journal of Toxicology. 2014; 2014: 1–8.
[8] Park G, Kim SU, Choi K. Anti-proliferative effect of engineered neural stem cells expressing cytokine deaminase and interferon-β against lymph node-derived metastatic colorectal adenocarcinoma in cellular and xenograft mouse models. Cancer Research and Treatment. 2017; 49: 79–91.
[9] Haep L, Britzen-Laurent N, Weber TG, Naschberger E, Kremmer E, et al. Interferon-gamma counteracts the angiogenic switch and induces vascular permeability in dextran sulfate sodium colitis in mice. Inflammatory Bowel Diseases. 2015; 21: 2360–2371.
[10] Ma W, Melief CJ, van der Burg SH. Control of immune escaped human papilloma virus is regained after therapeutic vaccination. Current Opinion in Virology. 2017; 23: 16–22.
[11] Schena FP, Cerullo G, Torres DD, Scolari F, Foramitti M, Amoroso A, et al. Role of interferon-gamma gene polymorphisms in susceptibility to IgA nephropathy: a family-based association study. European Journal of Human Genetics. 2006; 14: 488–496.
[12] Gangwar R, Pandey S, Mittal RD. Association of interferon-gamma +874A polymorphism with the risk of developing cervical cancer in North-Indian population. BJOG: An International Journal of Obstetrics & Gynaecology. 2009; 116: 1671–1677.
Kim JW, Roh JW, Park NH, Song YS, Kang SB, Lee HP. Interferon, alpha 17 (IFNA17) Ile184Arg polymorphism and cervical cancer risk. Cancer Letters. 2003; 189: 183–188.

Govan VA, Carrara HR, Sachs JA, Hoffman M, Stanczuk GA, Williamson A. Ethnic differences in allelic distribution of IFN-g in South African women but no link with cervical cancer. Journal of Carcinogenesis. 2003; 2: 3.

von Linsingen R, Bompeixe EP, Maestri CA, Carvalho NS, Bicalho MDG. IFNG (+874 T/a) polymorphism and cervical intraepithelial neoplasia in Brazilian women. Journal of Interferon & Cytokine Research. 2009; 29: 285–288.

Liu X, Zhang S, Ruan Q, Ji Y, Ma L, Zhang Y. Prevalence and type distribution of human papillomavirus in women with cervical lesions in Liaoning Province, China. International Journal of Gynecological Cancer. 2010; 20: 147–153.

Wang N, Lu YM, Wang SZ, Zhang Q, Xiao Q, Li W, et al. Association of interferon-γ gene polymorphism and risk of cervical HPV infection. Zhonghua Fu Chan Ke Za Zhi. 2012; 47: 738–741. (In Chinese)

Muramatsu MK, Brothwell JA, Stein BD, Putman TE, Rockey DD, Nelson DE. Beyond Tryptophan synthase: identification of genes that contribute to chlamydia trachomatis survival during gamma interferon-induced persistence and reactivation. Infection and Immunity. 2016; 84: 2791–2801.

Pravica V, Perrey C, Stevens A, Lee JH, Hutchinson IV. A single nucleotide polymorphism in the first intron of the human IFN-gamma gene: absolute correlation with a polymorphic CA microsatellite marker of high IFN-gamma production. Human Immunology. 2000; 61: 863–866.

Tso HW, Ip WK, Chong WP, Tam CM, Chiang AKS, Lau YL. Association of interferon gamma and interleukin 10 genes with tuberculosis in Hong Kong Chinese. Genes and Immunity. 2005; 6: 358–363.

Ben-Ari Z, Mor E, Papo O, Kfir B, Sulkes J, Tambur AR, et al. Cytokine gene polymorphisms in patients infected with hepatitis B virus. The American Journal of Gastroenterology. 2003; 98: 144–150.

Kerr JR, McCoy M, Burke B, Mattey DL, Pravica V, Hutchinson IV. Cytokine gene polymorphisms associated with symptomatic parovirus B19 infection. Journal of Clinical Pathology. 2003; 56: 725–727.

Wang Q, Zhang C, Walayat S, Chen HW, Wang Y. Association between cytokine gene polymorphisms and cervical cancer in a Chinese population. European Journal of Obstetrics, Gynecology, and Reproductive Biology. 2011; 158: 330–333.

Delaney NL, Esquenazi V, Lucas DP, Zachary AA, Leffell MS, TNF-alpha, TGF-beta, IL-10, IL-6, and INF-gamma alleles among African Americans and Cuban Americans. Report of the ASHI Minority Workshops: Part IV. Human Immunology. 2004; 65: 1413–1419.

Poli F, Nocco A, Berra S, Scalamogna M, Taioli E, Longhi E, et al. Allele frequencies of polymorphisms of TNFA, IL-6, IL-10 and IFNG in an Italian Caucasian population. European Journal of Immunogenetics. 2002; 29: 237–240.