Czynnik podobny do czynnika wzrostu naskórka z domeną 7 (Egfl7)
nowym potencjalnym celem terapeutycznym w ginekologii onkologicznej

Epidermal growth factor-like domain-containing protein 7 (Egfl7) as a new potential target for therapy in gynecologic oncology

Karolina Król¹, Jacek Jan Sznurkowski²

Czynnik podobny do czynnika wzrostu naskórka z domeną 7 (Egfl7) to białko sekrecyjne kodowane przez gen, którego ekspresja występuje w komórkach śródbłonka naczyń; Egfl7 pełni tam funkcję kluczowego regulatora angiogenezy – zarówno w warunkach fizjologicznych, jak i w procesach patologicznych. Obecność Egfl7 potwierdzono także w komórkach centralnego układu nerwowego oraz w kilku nowotworach złośliwych. Badania in vitro wykazały, że ekspresja Egfl7 w raku piersi i płucu u myszy obniża endotelialną ekspresję cząsteczek adhezyjnych międzykomórkowych ICAM-1 i cząsteczek adhezyjnych komórkowych naczyń VCAM-1, zapobiegając przenikaniu limfocytów przez naczynia krwionośne i ich migracji do gniazd nowotworowych. Zasugerowano, że rakowe Egfl7 może promować ucieczkę nowotworu spod nadzoru immunologicznego przez tłumienie aktywacji komórek śródbłonka i hamowanie diapedezy. Ekspresja Egfl7 w nowotworach ginekologicznych nie była dotychczas analizowana. Cel pracy stanowiło przedstawienie aktualnego stanu wiedzy na temat roli tego biomarkera w onkologii ze szczególnym uwzględnieniem jego potencjału terapeutycznego. Podjęcie badań nad ekspresją Egfl7 w nowotworach ginekologicznych może w przyszłości skutkować powstaniem nowych terapii antyangiogenicznych i/lub opartych na czynnikach biologicznych.

Słowa kluczowe: Egfl7, rak, angiogeneza, immunoterapia, diapedeza

Abstract

Epidermal growth factor-like domain-containing protein 7 (Egfl7) is a secretory gene-encoded protein expressed in endothelial cells of blood vessels, where it plays an essential role in regulating angiogenesis both in physiological conditions as well as pathologic processes. Egfl7 has also been confirmed to be present in the cells of the central nervous system and several malignant tumors. In vitro studies have shown Egfl7 expression in breast and lung cancer in mice to downregulate endothelial expression of intercellular adhesion molecules (ICAM-1) and vascular cell adhesion molecules (VCAM-1), thus preventing lymphocytes from penetrating blood vessels and migrating to tumor nests. It has been suggested that cancer-associated Egfl7 may promote the escape of cancer from the immune system's control by suppressing activation of endothelial cells and inhibiting diapedesis (leukocyte extravasation). Egfl7 expression in gynecologic cancers has not yet been investigated. The aim of this study is to present and discuss the current state of knowledge as regards this biomarker's role in oncology, with particular emphasis on its therapeutic potential. Future research into Egfl7 expression in gynecologic cancers may facilitate development of new anti-angiogenic and/or biological therapies.

Key words: Egfl7, cancer, angiogenesis, immunotherapy, diapedesis
Czynnik podobny do czynnika wzrostu naskórka z domeną 7 (Egfl7) nowym potencjalem celem terapeutycznym w ginekologii onkologicznej

Egfl7 is originally described as a protein with molecular weight of 30 kDa, expressed exclusively in endothelial cells. Currently, it is known to be produced also e.g. by neurons of adult mice, suggesting its functions to span beyond the vascular system. Analysis of human Egfl7 has shown three isoforms of the protein to exist, transcribed from different promoters. In vertebrates, Egfl7 gene encodes two biologically active forms of mRNA, namely miR-126 and miR-126*, that play an important role both in development of the cardiovascular system and in some pathologic conditions, including cardiovascular diseases and malignant neoplasms.

The concentration of Egfl7 remains relatively stable throughout an organism’s life, with measurable concentrations of the protein persisting in subsets of lung, heart, kidney, liver, and uterine vessels. Increased Egfl7 expression may be related to physiologic conditions (e.g. blood vessels in the pregnant uterus) as well as pathologic ones, including damage of arterial vessels, ischemic injury, or solid cancer tumors.

Egfl7 is involved in the process of angiogenesis. There are two mechanisms that contribute to the development of blood vessels: vasculogenesis, i.e. the formation of blood vessels de novo from progenitor cells, and angiogenesis, that is the formation of new blood vessels from pre-existing ones.

Angiogenesis is a very ordered, carefully controlled, multi-staged process. The prerequisite for normal formation of functional blood vessels is the cooperation of endothelial cells of vascular walls and smooth muscles. The relationship between these two cell types is controlled indirectly by growth factors, and directly by interactions on cell-to-cell and cell-to-extracellular matrix levels. Egfl7, secreted by endothelial cells, plays an important regulatory role in recruiting smooth muscle cells and endothelial cells for tubulogenesis, or the formation of a blood vessel and its lumen. It promotes migration of endothelial cells as a stand-alone factor, or via complexes containing particles of extracellular matrix which it is closely associated with, and whose molecular composition affects the morphogenesis of blood vessels. Egfl7 is crucial in angiogenesis in normal and pathologic conditions. Increased Egfl7 expression is present in the vessels of proliferating tissues, whereas decreased – in the majority of developed vessels supplying healthy, mature tissues.

Egfl7 provides optimal microenvironment for normal migration of endothelial cells. The important role of Egfl7 in the process of angiogenesis was confirmed by a study examining the development of blood vessels in the tissue of mice with mutated Egfl7 gene. It demonstrated that
in such organisms the extent of vascularization in given tissues was decreased, or achieved later than normal, and vascular morphogenesis was defective(10). The role of Egfl7 in the process of vascular sprouting has been schematically presented in Fig. 1(6).

Egfl7 AND NEOPLASMS

In tissues of several malignant solid tumors, such as colorectal cancer, glioblastoma, breast cancer, and liver cancer, cancer endogenous expression of Egfl7 has been notified, with a trace level of the protein exhibited in the endothelium of the abnormal, cancer vessels(12). The association of Egfl7 with clinicopathological features of the disease, and patients’ prognosis is not clear. For colorectal cancer, two independent analyses have demonstrated Egfl7 expression to be deregulated. The elevated level of Egfl7 transcript was correlated with more advanced disease stage and the presence of lymph node metastases. However, no correlation with overall patient survival and progression-free survival was found(13). Egfl7 is expressed in cells of primary hepatocellular carcinoma, and high levels of this protein were associated with reduced patient survival time(14).

Proces kiełkowania komórek śródbłonka zachodzi dzięki skoordynowanej aktywności komórek wierzchołkowych (tip cells) i komórek pączkujących (stalk cells). Komórki z wypustkami (tip cells) kiełkują w kierunku źródła sygnału (VEGF) i prowadzą kiełkowanie w środowisku macierzystym pozakomórkowym. Komórki pączkujące, namnażając się, umożliwiają progresję procesu kanalizacji, tworzenia błony podstawowej i rekrutacji komórek mięśni gładkich.

The process of endothelial sprouting occurs due to the coordinated activity of tip and stalk cells. Tip cells sprout towards a VEGF signal source in the extracellular matrix. Stalk cells, proliferating, facilitate the progression of canalization process, formation of the basement membrane, and recruitment of smooth muscle cells.

Egfl7 is expressed in extracellular matrix environment, where it affects stalk cells. Other extracellular matrix components, such as miR-126 and miR-126* (both encoded in Egfl7 gene), have the ability to bind numerous mRNA particles within a cell, thus influencing the proliferation and the course of the sprouting process in angiogenesis.

Ryc. 1. Udział Egfl7 w procesie kiełkowania śródbłonka naczyń krwionośnych(6)

Fig. 1. The role of Egfl7 in the process of vascular endothelial cell sprouting(6)
Egfl7 ulega ekspresji w komórkach pierwotnego raka wątroby, a wysokie poziomy tego białka były związane ze skróceniem czasu przeżycia pacjentów(14). W grupie glejaków wysokie poziomy Egfl7 w tkance guza korelowały ze stopniem zróżnicowania nowotworu, indeksem Ki67 i gęstością naczyń mikrokrążenia, ale nie miały znaczenia prognostycznego(15).

Podsumowując wymienione powyżej nieliczne badania, można stwierdzić, że zwiększona ekspresja Egfl7 – choć koreluje z wieloma niekorzystnymi czynnikami kliniczno-patologicznymi, takimi jak zaawansowanie choroby, przeryzuty do węzłów chłonnycych czy niski stopień zróżnicowania guza – nie wykazała negatywnego znaczenia prognostycznego z wyjątkiem małej grupy chorych z pierwotnym rakiem wątrobowym(13–17).

Przeciwstawne wyniki zawiera pojedyncza publikacja dotycząca raka piersi, w której odnotowano korelację endogenniej ekspresji Egfl7 z wysokim stopniem zróżnicowania histopatologicznego nowotworu i lepszym rokowaniem pacjentów(16). Co więcej, wykazano, że w rakach piersi ekspresja Egfl7 była wyższa w przypadku mniejszych zmian oraz w przypadku raka in situ, bez towarzyszącej inwazji podścielskiej(17). W rakach z wysoką ekspresją Egfl7 odnotowano mniejszą tendencję do przerezutowania do węzłów chłonnycych. Ekspresja Egfl7 prawdopodobnie nie zapewnia przewagi wzrostu komórk raka piersi, które ją wytwarzają.

Potencjalne trzepotne działanie Egfl7 w raku piersi wymaga oczywiście weryfikacji w niezależnych badaniach, podobnie jak negatywna korelacja tego biomarkera z czasem przeżycia chorych na raka wątrobowokomórkowego(18). Większość dotychczasowych obserwacji sugeruje rolę Egfl7 w progresji raka, ale bezpośrednia rola analizowana czynnika w tym procesie nadal pozostaje niejasna. Jedynymi wspólnymi cechami odnotowanymi podczas wszystkich badań nad Egfl7 w tkance rakowej, niezależnie od jej typu, są nieoczekiwana obecność tego biomarkera w komórkach rak (rakowa endogenna deregulacja Egfl7) oraz słaba reprezentacja w komórkach śródbłonka naczyń krwiozu. Najaktywniejsze doniesienia z dziedziny nauk podstawowych sugerują, iż Egfl7 jest endogenym regulatorem aktywacji komórek śródblonka, który ulega ekspresji w komórkach nowotworowych w celu ochrony guza przed układem immunologicznym gospodarza(19). Badanie in vitro wykazało, że w komórkach raka sutka i raka płuc u myszy Egfl7 hamuje ekspresję ICAM-1 i VCAM-1, co wpływa negatywnie na proces adhezji i migracji limfocytów przez ścinącą naczynia krwiożernońsko. A zatem Egfl7 hipotetycznie może wpływać na ucieczkę raka spod nadzoru układu immunologicznego gospodarza przez hamowanie diapedesy w guzie nowotworowym(19). Pośrednim wykładnikiem takiego działania może być negatywna korelacja między ekspresją Egfl7 w komórkach raka a liczbą limfocytów naciekających jego gniazda – tumor-infiltrating lymphocytes (TILs).

In the glioblastoma group, high Egfl7 levels in cancer tissue were correlated with the tumor’s grade, Ki67 index, and intratumoral microvascular density, yet they were of no prognostic value(10). Summarizing the few available studies mentioned above, it may be concluded that increased Egfl7 expression, despite correlating with multiple adverse clinical and pathologic factors, such as disease advancement, metastases to lymph nodes, or high tumor grade, has not been demonstrated to be of negative prognostic value, except for the small group of patients suffering from primary hepatocellular carcinoma(13–17).

Contradictory results are reported in one paper on breast cancer noting the correlation of endogenous Egfl7 expression with low grade of the tumor and a better prognosis for the patients(19). Moreover, it has demonstrated Egfl7 expression in breast cancer to be higher for smaller lesions and in situ lesions without stromal response(18). In cancers with elevated Egfl7 expression, smaller tendency for metastasizing to lymph nodes was noted. Presumably, Egfl7 expression does not provide breast cancer cells growth advantage.

The potential protective effect of Egfl7 in breast cancer certainly requires verification by independent studies, similarly to the biomarker’s negative correlation with survival time in patients suffering from hepatocellular cancer(10). The majority of existing studies suggest some role of Egfl7 in the progression of cancer, yet its direct impact remains unclear. The only common features noted in all studies regarding the presence of Egfl7 in cancer tissue regardless of its type include the unexpected presence of this biomarker in cancer cells (endogenous Egfl7 deregulation in cancer) and its poor representation in endothelial cells of stromal blood vessels.

The latest reports in the field of basic research seemingly suggest Egfl7 to be an endogenous regulator of activation of endothelial cells, expressed in neoplastic cells to protect the tumor against the host’s immune response(19). In vitro research has shown that in mice cells of breast and lung cancer Egfl7 inhibits ICAM-1 and VCAM-1 expression, thereby adversely influencing the process of adhesion and lymphocyte migration through vessel wall. Hence, Egfl7 may hypothetically contribute to the cancer’s escape from the host’s immunosurveillance by inhibiting diapedesis in the tumor(19). Such mechanism’s indirect exponent may be the negative correlation existing between Egfl7 expression in cancer cells and the number of tumor-infiltrating lymphocytes (TILs).

Egfl7 AND GYNECOLOGIC CANCERS

The effect of Egfl7 on diapedesis in cancer may have huge therapeutic potential, particularly in gynecologic cancers. In ovarian, endometrial, and uterine cancer a strong correlation has been demonstrated to exist between patient survival time and the intensity of CD8+ cell infiltration.
Egfl7 A NOWOTWORY GINEKOLOGICZNE

Oddziaływanie Egfl7 na diapedezę w raku może mieć ogromne znaczenie terapeutyczne zwłaszcza w odniesieniu do nowotworów ginekologicznych. W raku jajnika, endometrium i szyjki macicy wykazano silny związek między czasem przeżycia pacjentów a intensywnością nacieków z komórek CD8+ i wskaźnikami CD8+/FOXP3+, CD8+/CD4+. Wyjątek stanowił rak sromu, w którym TILs nie miały znaczenia prognostycznego (20).

Ekspresja Egfl7 w nowotworach ginekologicznych nie była dotychczas oceniana. Wydaje się zatem, iż przedstawienie aktualnego stanu wiedzy powinno być sygnałem do podjęcia badań nad tym obiecującym biomarkerem – zwłaszcza że prowadzone są już badania przedkliniczne i kliniczne, które zakładają możliwość antyangiogennej terapii przeciwnowotworowej przy użyciu przeciwciał anty-Egfl7 (21).

Badania te są ukierunkowane na określenie wpływu terapii kombinowanej złożonej z przeciwciał anty-Egfl7 i bevacizumabu na unaczynienie guza i jego wzrost (21). Oczekuje się, że terapia anty-Egfl7 w połączeniu z terapią anty-VEGF umożliwi dodatkowe zahamowanie angiogenezy w przypadku większości typów raków. Jeżeli jeszcze udajemy się wykazać negatywny wpływ endogennjej ekspresji Egfl7 na diapedezę, terapia anty-Egfl7 byłaby drogą do zwiększenia potencjału cytolitycznego komórek immunokompetentnych w tkance rakowej i wzmocnienia nadzoru immunologicznego nad chorobą.

Ocena gęstości naczyń w guzie i jej powiązania z Egfl7, a także badania nad molekulami adhezyjnymi ICAM i VCAM pozwolą w przyszłości sprawdzić, czy „endothelial” funkcja Egfl7 dotyczy tkanki rakowej.

CONCLUSIONS

Epidermal growth factor-like domain-containing protein 7 (Egfl7) is a new, promising target for therapy in oncology. The presence of Egfl7 in gynecologic cancers has not yet been investigated. Studies of this biomarker may pave the way for the development of more effective anti-angiogenic therapies and/or immunotherapy.

Conflict of interest

The authors do not claim any financial or personal links to other persons and organizations that could adversely influence the content of this publication or claim rights thereto.

Funding/Support and role of the sponsor
The study was financed from the funds of the National Science Centre – grant No. 4410 2012/07/B/NZ5/00018.

DOI: 10.15557/CGO.2016.0019
Piśmiennictwo / References

1. Soncin F, Mattot V, Lionneton F et al.: VE-statin, an endothelial repressor of smooth muscle cell migration. EMBO J 2003; 22: 5700–5711.

2. Schmidt MHH, Bicker F, Nikolic I et al.: Epidermal growth factor-like domain 7 (EGFL7) modulates Notch signalling and affects neural stem cell renewal. Nat Cell Biol 2009; 11: 873–880.

3. Fish JE, Santoro MM, Morton SU et al.: miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 2008; 15: 272–284.

4. van Solingen C, Seghers L, Bijkerk R et al.: Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med 2009; 13: 1577–1585.

5. Campagnolo L, Leahy A, Chitnis S et al.: EGFL7 is a chemottractant for endothelial cells and is up-regulated in angiogenesis and arterial injury. Am J Pathol 2005; 167: 275–284.

6. Parker LH, Schmidt M, Jin SW et al.: The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature 2004; 428: 754–758.

7. Risau W: Mechanisms of angiogenesis. Nature 1997; 386: 671–674.

8. Papetti M, Herman JM: Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol 2002; 282: C947–C970.

9. Schmidt M, Paes K, De Mazière A et al.: EGFL7 regulates the collective migration of endothelial cells by restricting their spatial distribution. Development 2007; 134: 2913–2923.

10. Schmidt M, De Mazière A, Smyczek T et al.: The role of Egfl7 in vascular morphogenesis. Novartis Found Symp 2007; 283: 18–28; discussion 28–36, 238–241.

11. Fitch MJ, Campagnolo L, Kuhner F et al.: Egfl7, a novel epidermal growth factor-domain gene expressed in endothelial cells. Dev Dyn 2004; 230: 316–324.

12. Pawlowski M: Immunohistochemiczna ocena ekspresji Egfl7 w tkance surowiczego raka jajnika. Rozprawa doktorska GUMed, Gdańsk 2015. Available from: http://pbc.gda.pl/Content/49029/doktorat%20PAW%C5%81OWSKIK%20Mfacei.pdf.

13. Díaz R, Silva J, García JM et al.: Deregulated expression of miR-106a predicts survival in human colon cancer patients. Genes Chromosomes Cancer 2008; 47: 794–802.

14. Wu F, Yang LY, Li YF et al.: Novel role for epidermal growth factor-like domain 7 in metastasis of human hepatocellular carcinoma. Hepatology 2009; 50: 1839–1850.

15. Huang CH, Li XJ, Zhou YZ et al.: Expression and clinical significance of EGFL7 in malignant glioma. J Cancer Res Clin Oncol 2010; 136: 1737–1743.

16. Fan C, Yang LY, Wu F et al.: The expression of Egfl7 in human normal tissues and epithelial tumors. Int J Biol Markers 2013; 28: 71–83.

17. Li JJ, Yang XM, Wang SH et al.: Prognostic role of epidermal growth factor-like domain 7 protein expression in laryngeal squamous cell carcinoma. J Laryngol Otol 2011; 125: 1152–1157.

18. Fader AN, Java J, Ueda S et al.: Gynecologic Oncology Group (GOG): Survival in women with grade 1 serous ovarian carcinoma. Obstet Gynecol 2013; 122: 223–232.

19. Delfortrie S, Pinte S, Mattot V et al.: Egfl7 promotes tumor escape from immunity by repressing endothelial cell activation. Cancer Res 2011; 71: 7176–7186.

20. Sznurkowski JJ: Znaczenie progno prokomórek immuno-kompetentnych naciekających guzy nowotworowe w rakach narządu płciowego. Curr Gynecol Oncol 2012; 10: 150–156.

21. Nichol D, Stuhlmann H: EGFL7: a unique angiogenic signalling factor in vascular development and disease. Blood 2012; 119: 1345–1352.