The association between agricultural conditions and multiple dimensions of undernutrition in children 6-23 months of age in Burkina Faso

Jessie Pinchoff 1, William Turner 2 and Kathryn Grace 3

1 Poverty, Gender and Youth Program, Population Council, New York, NY, United States of America
2 Climate Hazards Center, Department of Geography, University of California, Santa Barbara, CA, United States of America
3 Department of Geography, Environment and Society, University of Minnesota, Twin Cities, United States of America

E-mail: jpinchoff@popcouncil.org

Keywords: nutrition, dietary diversity, Sahel, crop production, remote sensing

Abstract

Background. The quality and quantity of food available to children affect their nutritional status, with implications for long-term health and development. In Burkina Faso, households rely on rainfed agriculture, but climate change is making crop production unreliable. We explore spatial patterns of growing season quality on dimensions of nutritional status and complementary feeding practices in children 6–23 months. Methods. The 2017 Performance Monitoring and Accountability 2020 (PMA2020) nutritional survey was spatially integrated with a contemporaneous remotely sensed drought indicator, the Water Requirement Satisfaction Index (WRSI), which captures local anomalous growing season conditions. Multi-level mixed-effects logistic regression models were estimated to explore the effects of WRSI on child mid-upper arm circumference (MUAC) score (indicating malnutrition), and two components of complementary feeding practices, adjusting for demographic and household characteristics. Results. The data set included 1,721 children. Higher WRSI values (better agricultural conditions and crop performance) were associated with 3% lower odds of malnutrition (Odds Ratio (OR) = 0.971; 95% confidence interval (CI): [0.942, 1.00]) and 7% higher odds of a child attaining minimum dietary diversity (OR = 1.07; 95% CI: [1.01, 1.14]). Undernourished mothers were significantly (p < 0.001) more likely to have an undernourished child. Minimum dietary diversity met for the child was protective against malnutrition; the association between WRSI and malnutrition persisted after adjustment. Conclusions. WRSI was associated with the child’s dietary diversity and malnutrition, highlighting the importance of seasonally and spatially varying local agricultural production and the relationship between growing season conditions and child nutritional status, with dietary diversity providing a potential mechanism for intervention.

Background

In 2019, an estimated 8.9% of people on the planet were undernourished [1]. Food insecurity outcomes, like undernourishment, increase the risk of morbidity and mortality and result from complex multi-dimensional factors and processes varying over space and time [2, 3]. In low-income countries dependent on rainfed agriculture, key components of food security, food availability, and accessibility can vary dramatically between and within communities in response to fine-scale variation in climate and growing season conditions (e.g., rainfall and temperature) [2, 4–6]. In these settings, adoption of healthy infant and young child feeding (IYCF) practices, including exclusive breastfeeding and introduction of solid, semi-solid, or soft foods at 6–8 months, can be critical to ensuring children attain their nutritional needs and meet growth metrics [7, 8]. It is possible, however, that individuals employ IYCF practices in different ways based on local food conditions, and, specifically, available food. The body of research exploring the relationships between local agricultural...
conditions, food availability, IYCF practices, and child health outcomes is rapidly growing [9, 10]; however, a significant gap in literature remains, especially in terms of the role of seasonal climate and weather factors as they relate to health outcomes and associated behaviors in rainfed agriculture-dependent settings [11, 12].

In this study, we investigate the ways that local agricultural conditions are associated with malnutrition in children 6–23 months in Burkina Faso by integrating newly developed and unique data sets—spatially referenced health survey data from the Performance Monitoring and Accountability (PMA) 2020 project—with an operational, remotely sensed indicator of agricultural conditions commonly used by USAID’s Famine Early Warning Systems Network (FEWS NET). Nutrition behavior survey data often do not include geographic or spatial information, making this type of integration by location impossible. Burkina Faso is an ideal setting for this study because the vast majority of households rely on rainfed agriculture for a low-cost source of calories [10, 13]. Households vary in their livelihood strategies; some (subsistence farmers) consume what they produce, while others rely on low-cost grains purchased at the market. The short growing seasons and highly spatially variable rainfall, however, result in large variations in agricultural production. A poor agricultural growing season reduces production and can result in reduced food availability.

Climate, agriculture, and nutrition are tightly linked, particularly in rainfed, subsistence agricultural regions like Burkina Faso [9]. Precipitation and evaporative demand (driven by solar radiation, air temperature, humidity, and wind) are integral components of agricultural production. FEWS NET has refined a quantitative tool—the Water Requirement Satisfaction Index (WRSI)—to combine these climatological inputs for use in agricultural monitoring [14]. If agricultural water demands are not met, crop productivity may decrease, resulting in insufficient quantities and varieties of food available to meet nutritional requirements. The WRSI was designed as a means for calculating the water stress experienced by a crop during an agricultural growing season due to plant and atmospheric demand greater than the water availability. It has been shown to be an effective means of distinguishing between water-limited and water-unlimited cropping areas in Ethiopia [15], for determining the drought risk of maize in Brazil and South Africa [16–18], and it is positively correlated with crop yield in various African settings [15, 18–20]. Quality of the agricultural season may also cause economic impacts, especially for agricultural households who have no surplus to sell [21]. These households may struggle to afford supplemental foods or healthcare services that often include nutritional interventions or guidance [9]; this economic insecurity impacts health outcomes, including malnutrition [6]. Correspondingly, the WRSI is commonly used to identify areas at greatest risk for food insecurity, particularly when other sources of data (e.g., crop yield or health data) are sparse [15, 22–24].

Poor or inconsistent agricultural conditions can contribute to food insecurity and child malnutrition because they reduce the yields that farmers can sell or consume. Human behavior related to feeding and caretaking practices may be effective in mediating these effects [6, 8, 25]. Global child health and nutrition programs aim to foster IYCF practices—including exclusive breastfeeding and safe preparation, quantity, and diversity of complementary foods—to help ensure that children grow and develop healthily [7, 26]. Two key indicators of complementary feeding are minimum dietary diversity (MDD) and minimum meal frequency (MMF). Each of these captures an aspect of IYCF practices, adjusted for age and breastfeeding; together, they comprise a minimum acceptable diet (MAD) [26]. In Burkina Faso, a significant portion of the population does not achieve these key indicators [27].

Evidence of the links between anthropometric measures of malnutrition and indicator are mixed; a recent multi-country analysis found that children 6–23 months who did not meet MAD were significantly more likely to be stunted, but found no relationship between MMF and stunting [28]. A study from Bangladesh found a strong association between dietary diversity score (a measure similar to MDD) and stunting, as consumption of a higher number of food groups was associated with improved nutritional adequacy of the diet [29]. The different associations for MDD and MMF may be attributed to the inherently subjective nature of indicators like food diversity or the challenges in recall [30, 31]. Therefore, while behavioral measures capture some potentially important aspects of food and nutrition security, anthropometric measures, including mid-upper arm circumference (MUAC), continue to provide important insight into health and well-being [32].

We explore the association between a community’s agricultural season quality (estimated via WRSI anomalies), IYCF practices (MDD and MMF), and anthropometric measures of malnutrition (measured by MUAC) in children 6–23 months of age. This research provides an approach for assessing the relationship between agricultural quality and child nutrition that considers behavioral aspects of child health-related to food security, as well as anthropometric measures. The analysis [1] can be replicated in other settings, [2] may be useful to inform the development of more targeted nutrition-sensitive interventions, and [3] highlights caretaking strategies that seem to protect children in a context of reduced seasonal agricultural yields.
Data and measures

Health and nutrition survey data
In 2017, the Performance Monitoring and Accountability 2020 (PMA2020) project conducted a rapid survey regarding nutrition indicators in Burkina Faso from June to September, coinciding with the lean season—the period of time before the current harvest when food stores from the prior year’s harvest tend to run low. The PMA2020 nutrition survey included questions regarding mother and child feeding practices, key demographic characteristics, and anthropometric measures. A two-stage cluster sampling design with urban-rural strata was implemented, comprised of 83 enumeration areas (42 rural and 41 urban areas) and 89 households randomly selected per enumeration area. Each enumeration area is spatially referenced, but to preserve confidentiality, each location is displaced up to 2km for urban and 5km for rural locations [33].

Nutritional outcome measures
In the PMA2020 survey, MUAC scores are collected in centimeters. According to the United Nations Children’s Fund (UNICEF), which has defined global measures for malnutrition, MUAC measurement under 11.5cm in children indicates severe undernutrition and under 12.5cm indicates acute undernutrition [32]. Measurements between 12.5 and 13.5cm refer to people “at risk” of acute undernutrition. Many recent papers have argued that 11.5 or 12.5cm are too low and therefore fail to properly identify undernourished children [34–36]. For the purposes of this analysis, we created a dichotomous variable using a threshold of 13.5 cm to include at-risk children that would benefit from programmatic intervention.

MDD, MMF, and MAD are indicators used by the World Health Organization (WHO) to assess multiple components of IYCF practices [26]. If a child receives foods from five or more food groups the previous day, out of eight different categories (breast milk; grains, roots and tubers; legumes and nuts; dairy products; flesh foods; eggs; vitamin A-rich fruits and vegetables; other fruits and vegetables) they have achieved MDD. For a child to achieve MMF, they must receive solid, semi-solid, or soft foods a specific number of times in the previous day—two times for breastfed infants 6–8 months, three times for breastfed children 9–23 months, and four times for non-breastfed children 6–23 months. Each of these is a dichotomous variable to denote whether the child meets each requirement. MAD is a composite indicator of MDD and MMF. We present findings for MDD and MMF only since MAD is a combination of these and yields similar results. MAD results are available from the authors. Figure 1 highlights which food groups are consumed from each category by child’s age.

Socio-demographic characteristics
In this analysis, we included a range of independent variables that capture variation in the outcome variables. We included a composite indicator of household assets, defined as household wealth tercile from the PMA survey, as well as total number of children residing in the home, and perceived food insecurity (none, moderate, or severe). We also included several variables regarding the child’s mother (the survey respondent)—such as the mother’s age and if she had completed some education (dichotomous variable). We categorized mother’s MUAC score into three levels to denote normal (>25 cm), moderate malnourished (25–22 cm), and severely malnourished (≤22cm), since studies have linked maternal nutritional status with her child’s. Child-specific variables included

Figure 1. Food groups reportedly consumed in the previous 24 h (the eight components of minimum dietary diversity [MDD] indicator) by age group for children ages 6–23 months.
child’s age and recent diarrheal illness. Recent studies have linked these variables with child malnutrition, therefore we adjusted for them in the analysis.

In addition, we also included livelihood-zone information. Livelihood zones capture the general strategies for procuring income and food in an area and are widely used in climate-health research [21, 37]. Consistent with related research, we collapsed these groups based on the similarities between them into three broad groups from the original nine detailed [38]—urban, agricultural, or agropastoral/pastoral. We included both urban and rural households because of the potential for rainfed urban agriculture to have an impact on child health.

WRSI
The Water Requirement Satisfaction Index (WRSI) is an indicator of crop performance based on the availability of water to the crop during a growing season [22, 39]. In this study, we used Climate Hazards InfraRed Precipitation with Stations (CHIRPS) [40] and the NOAA ESRL PSD Global Reference Evapotranspiration for the FEWS NET Science Community (RefET) [41] for the rainfall and atmospheric water demand inputs, respectively, to calculate the WRSI. The reference crop used for adjusting the reference evapotranspiration was millet [15, 42]. Standard WRSI calculations use a single dominant crop as the reference crop. The use of millet as the reference crop may impact the median WRSI in an area, but preliminary research suggests that the correlation between WRSI and local yields does not change when using a different reference crop. In other words, using WRSI as a comparative (over space and time) measure of seasonal yield is not sensitive to the reference crop.

The WRSI data is available at the spatial scale of 0.1 degrees (10km). While the year of interest corresponding to the sampling and nutrition survey was 2017, WRSI values were calculated for 1981 to 2019 to establish a long-term average (1981–2019 median). WRSI anomalies used in this analysis are measured by subtracting the 2017 value from this average; positive values represent better-than-typical crop performance in that year, whereas negative values suggest worse than typical. A map of WRSI anomaly values per enumeration area/cluster is presented in figure 2.

Statistical methods

We constructed two sets of multilevel mixed-effects logistic regression models. First, we explored the two IYCF practice variables, to understand factors associated with MDD and with MMF, including agricultural conditions.
as measured by WRSI anomaly. We do not present the model for MAD because the results are similar to MDD. These models also adjust for perceived household food insecurity (high, moderate, or low) if this may be associated with IYCF practices. Second, we explored the main outcome of malnutrition as measured by MUAC, adjusting for WRSI anomaly, and then also for MDD and for MMF. The MUAC models also adjust for two other variables that are highly associated with malnutrition: diarrhea in the last 2 weeks (dichotomous) and mother’s MUAC score category [43, 44]. In both models, the main outcome of interest was WRSI anomaly, to explore if agricultural conditions were associated with IYCF practices and/or malnutrition as measured by MUAC.

All of the models adjust for mother’s age, education (any versus none), child’s birth month, child’s age (6–12 months versus 12–23 months), survey month (June, July, or August), livelihood zone (3 categories), and total children in the home (1, 2, 3, 4+ children). The random component in the model is enumeration area to account for the similarities between households from the same enumeration area (e.g., the 83 enumeration areas used for sampling by PMA2020) [45].

Results

Our sample characterizes the nutritional status of 1,721 children 6–23 months of age, with descriptive statistics tabulated using a weighted proportion based on the cluster sampling design presented in table 1. Most mothers surveyed were 25–34 years old (47%), one third had some formal schooling (33%), and most had other children in the home (table 1). While most mothers had a healthy MUAC score (74%), 24% were moderately malnourished and 2% were severely malnourished; 34% of children were at risk or malnourished (<13.5cm). The proportion of malnourished children increased linearly as the mother’s malnourishment increased (figure 3).

Almost half (49%) of children met MMF guidelines, but only 15% met MDD guidelines—the combined indicator, MAD, was reached by only 10% of children. Over half (60%) did not perceive any household food insecurity at the time of the survey; however, 19% perceived moderate food insecurity, and one in five (21%) perceived severe food insecurity.

Factors associated with malnutrition (child MUAC score)

In table 2 we present the multi-level mixed-effects logistic regression model with child MUAC score as the outcome variable, capturing acute child growth conditions often used to indicate wasting. In model 1, the seasonal and place-based WRSI was significantly associated with children having a MUAC score<13.5cm indicative of experiencing acute poor growth (wasting) or considered at risk. This means that in places with a higher WRSI, relative to the mean, and with no adjustment for IYCF, the odds of a child having a low MUAC score decreased 3% (OR = 0.967; 95% CI: 0.937, 1.00) (table 2). For some children who are near the margin or threshold for intervention, seasonal variation in agricultural yield could therefore play an important role in shifting them from (or into) different risk categories. Notably, however, when including behavioral factors related to feeding and care (IYCF) in the regression models (Model 2 and 3), we observed that children who met MDD guidelines had 35% lower odds of a poor MUAC score (OR = 0.648; 95% CI 0.464, 0.906). MMF was not associated with MUAC. In other words, factors related to agricultural season and behavior are both significantly related to child health outcomes; however, the greatest impact results from feeding practices related to diversity, versus frequency, of food provided.

Factors associated with IYCF practice outcomes

The results from the multi-level model linking WRSI with the two different IYCF nutrition outcomes are presented in table 3. In Model 1, WRSI was not significantly associated with MMF, but in Model 2 WRSI was significantly associated MDD (table 3). As WRSI improved, suggesting improved crop production relative to average for the 10km² area, the odds of a child meeting MDD guidelines increased 7% (OR = 1.073; 95% Confidence intervals: 1.006, 1.145) (table 3). Both models adjust for WRSI, yet several associations persist. In these models, we include perceptions of household food insecurity. Even after adjustment for WRSI, the model results suggest that when mothers perceived their household to be severely food insecure their children had lower odds of achieving MDD (OR = 0.578; 95% CI: 0.371, 0.901) (table 3). Children of mothers who had any formal schooling were more likely to achieve MDD. Older children (12–17, or 18–23 months) were also more likely to meet MDD and MMF guidelines compared to children 6–11 months old.

Discussion

When the WRSI was lower, a likely indication of reduced agricultural yields, children were both less likely to achieve dietary diversity (MDD) guidelines and more likely to have a low MUAC score indicating they face an increased risk of undernutrition. Potentially, better local agricultural conditions improve access to, and
availability of, a greater range of food required to achieve basic childhood nutrition. Our findings highlight the association between agricultural conditions (as measured by WRSI anomaly), IYCF, and undernutrition. Previous studies have found an association between meteorological conditions or remotely sensed data consistent with drought and malnutrition [46, 47]; however, few studies have also linked such objective measures of agricultural conditions with achievement of IYCF practices. Studies on this often rely on survey data [11] or focus on the relationship between IYCF practices and social and behavior change interventions [48].

Factors associated with malnutrition (child MUAC score)
As local agricultural conditions worsened, per WRSI anomaly measure, the odds of a child being at risk of or experiencing malnutrition increased significantly. This association persisted even after adjustment for complementary feeding practices such as MDD and MMF. This result could occur because of changes in food availability and associated market food prices (e.g., more grains reduce the prices of grains and allow families to buy a range of different foods with the money they would have spent on grains). While consuming a more diverse diet was protective against malnutrition, when WRSI and MDD were included in a statistical model together, WRSI anomaly continued to be associated with lower MUAC scores, suggesting additional factors may explain the relationship between agricultural season conditions and MUAC scores outside of IYCF practices.

Table 1. Descriptive characteristics of respondents.

Characteristics	No.	Weighted %
Demographics		
Mother’s age in categories		
15–20 years	153	9%
20–24 years	429	25%
25–34 years	816	47%
35+ years	322	19%
Mother ever attended school	634	33%
Total children in household		
1	574	31%
2	631	38%
3	278	17%
4+	238	14%
Livelihood zone		
Agricultural	929	59%
Urban/Ouagadougou	284	12%
Agropastoral or pastoral	508	29%
Child’s Age Category		
6–11 months	644	38%
12–17 months	603	34%
18–23 months	474	28%
Nutrition Indicators		
Mother MUAC category		
Mother healthy (MUAC ≥ 25)	1,260	74%
Mother moderate malnourished (MUAC >22 & <25)	418	24%
Mother severe malnourished (MUAC ≤ 22)	36	2%
Child MUAC undernourished + at risk (MUAC ≤ 13.5)	573	34%
Child had diarrhea in last 2 weeks	578	33%
MMF: Minimum meal frequency among 6–23 months	828	49%
MDD: Consumed minimum diversity foods	270	15%
MAD: Minimum acceptable diet among 6–24 months	171	10%
Perceived household food insecurity		
No perceived household food insecurity	1,025	30%
Moderate perceived household food insecurity	309	19%
Severe perceived household food insecurity	387	21%
Other factors were associated with poor MUAC score after controlling for WRSI anomaly and complementary feeding practices. These include recent diarrhea, mother’s nutritional status, and education, which have all been highlighted in the literature. First, having diarrhea in the last 2 weeks was highly associated with malnutrition. Diarrheal diseases and infections have long been linked with malnutrition, creating a cycle that results in poor health and growth [49]. Diarrhea is both a cause and an effect of malnutrition; malnutrition increases the frequency and duration of diarrheal illnesses, while diarrhea leads to poor absorption of nutrients [50]. Additional factors associated with malnutrition were related to the mother’s nutrition and education. The link between a mother’s MUAC score and her child’s MUAC score has been reported previously [44]. A mother’s education has also been linked to better nutritional and health outcomes for her child [43, 51, 52]. A randomized evaluation in Burkina Faso found that a 2-year integrated agriculture and nutrition program targeted to mothers reduced the mothers’ underweight and increased her empowerment [48]. Lastly, studies suggest older children are more likely to meet IYCF practice requirements [8]. Potentially, younger children are breastfeeding more and not getting as many or as varied supplemental meals [7]. A study in Bangladesh supports this, suggesting breastfed children have a lower diversity of complementary foods [29]. Other studies also found stunting to be higher among older children, with younger children less likely to meet recommended MDD and MMF [8, 28].

Factors associated with IYCF practice outcomes
The significant association of WRSI with MDD suggests that when the agricultural year is better, there may be more types of food to eat, meaning greater diversity in diet and greater ability to purchase food [27, 53, 54]. Mothers who perceived their household food insecurity level to be severe were significantly less likely to meet MDD requirements, but this was not significant for meal frequency as measured by MMF. This suggests that the types of foods available are perceived, by the respondent, as important to a child’s nutrition [53] while practices around meal timing/occurrence are not necessarily connected to an individual’s perception of food insecurity. Meal frequency may also be more subjective and challenging to measure or less likely to vary according to changes in food availability (e.g., if the mother was not with the child at every meal, or if smaller meals are not counted, or if meal times occur consistently, regardless of the quality/quantity of food available).

Overall, our data suggests more children consumed the recommended MMF (49%), while only 15% met MDD requirements and only 10% met the combined MAD requirements. Thus, regardless of the agricultural season, MMF may not be as closely associated with local agricultural season conditions. These results are similar to recently published estimates [27]. A recent analysis from Benin found that agricultural diversity and production, as well as income allocated to food purchase, were associated with MDD, while MMF was instead associated with factors such as ethnicity, caregivers’ occupation, and household size [55]. However, more research is necessary to understand the complex dynamics of agricultural productivity, other components of food security, and how these relate to behaviors around complementary feeding practices. More research
around how these behaviors vary by livelihood zone and urban or rural location may also be informative, as even for those households (urban or rural) not directly engaged in subsistence production, local growing season conditions likely impact food prices and food availability [56].

Limitations

This study has several limitations. First, we were not able to include the sex of the child (stunting prevalence in some studies is higher among male children) [57]. A variable for employment was not collected in the PMA2020 survey. Second, the feeding indicators may not be sensitive to chronic under-nutrition because they are assessed based on 24-hour recall, which may not capture the range of conditions the child experiences in terms of dietary intake. Also, these definitions are from UNICEF and WHO, not contextually defined for Burkina Faso. Third, the data are cross-sectional limiting our ability to draw causal conclusions. As with any survey data, there may be recall bias in survey responses. Lastly, we used a threshold of 13.5cm to include both children with acute malnutrition and those at risk of it. While other studies use different cut offs, we selected this because 1) MUAC was measured early in the hunger season, so a child at risk would likely require attention by the end of the season, and 2) other studies have suggested higher cut offs are required to identify all children that require intervention.

Table 2

VARIABLES	Model 1	Model 2	Model 3
WRSI Anomaly 2017	0.967*	0.970	0.967*
minimum dietary diversity (MDD)		0.648**	
Minumum meal frequency (MMF)			1.001
Livelihood zones (Agricultural = REF)	REF	REF	REF
Urban/Ouagadougou	1.057	1.050	1.057
Agropastoral/pastoral	1.205	1.190	1.205
Mother’s age (35+ years = REF)	1.082	1.073	1.082
15–20 years	(0.692–1.693)	(0.686–1.679)	(0.691–1.694)
20–24 years	0.921	0.908	0.921
25–34 years	0.902	0.907	0.902
Mother’s MUAC score (Normal = REF)	REF	REF	REF
Undernourished	1.723**		1.723**
(1.345–2.207)	(1.354–2.223)	(1.345–2.207)	
Severely undernourished	2.670**	2.681**	2.670**
(1.311–5.435)	(1.316–5.462)	(1.311–5.435)	
Child has had diarrhea in the last 2 weeks	1.269*	1.249	1.269*
(1.010–1.596)	(0.993–1.570)	(1.010–1.596)	
Mother attended any school	0.753*	0.771*	0.753*
(0.585–0.970)	(0.598–0.993)	(0.585–0.970)	
Number of other children at home (1 child = REF)	REF	REF	REF
2 children	1.091	1.078	1.091
(0.831–1.432)	(0.821–1.416)	(0.831–1.432)	
3 children	1.087	1.077	1.087
(0.771–1.533)	(0.764–1.519)	(0.771–1.533)	
4+ children	1.030	1.030	1.030
(0.710–1.493)	(0.711–1.493)	(0.710–1.493)	
Child’s age (6–11 months = REF)	REF	REF	REF
12–17 months	0.842	0.882	0.842
(0.655–1.083)	(0.684–1.136)	(0.654–1.083)	
18–23 months	0.866	0.920	0.886
(0.677–1.160)	(0.702–1.207)	(0.675–1.161)	
EA Random Effects	1.235**	1.217**	1.235**
(1.075–1.418)	(1.064–1.591)	(1.075–1.419)	

*p < 0.05; **p < 0.001
Despite these limitations, the research expands the discussion of child nutrition by including several dimensions of food security at a fine-spatial scale — anthropometric measure of nutritional status (MUAC), behavioral practices related to child feeding, and a community-level, satellite-derived objective measure of growing season, the WRSI. Household food security is complex; while WRSI captures aspects of access and availability, it cannot capture other factors like food storage, transportation, food aid, market prices, and general childcare and feeding practices. While these other factors are important to childhood nutrition [6, 58, 59], merging the WRSI with household survey data provides a useful, fine-scale analysis of nutritional variation and agricultural productivity useful for expanding early warning nutrition systems and targeting interventions.

Table 3. Multi-level mixed-effects logistic regression models of factors associated with minimum meal frequency, minimum dietary diversity, and minimum acceptable diet.

VARIABLES	Model 1 Minimum meal frequency	Model 2 Minimum dietary diversity
WRSI Anomaly 2017	1.025 (0.979–1.075)	1.073* (1.006–1.145)
Livelihood zones (Agricultural = REF)		
Urban/Ouagadougou	1.224 (0.676–2.217)	0.874 (0.401–1.902)
Agropastoral/pastoral	1.577 (0.944–2.633)	0.845 (0.426–1.680)
Perceived food insecurity (None = REF)		
Moderate	0.897 (0.668–1.205)	0.834 (0.544–1.277)
Severe	0.920 (0.684–1.236)	0.578* (0.371–0.901)
Mother’s age (35 + years = REF)		
15–20 years	0.607** (0.387–0.951)	0.765 (0.392–1.494)
20–24 years	0.792 (0.569–1.103)	0.778 (0.479–1.262)
25–34 years	0.939 (0.705–1.253)	1.088 (0.724–1.634)
Mother attended any school	1.005 (0.780–1.295)	1.639** (1.167–2.303)
Number of other children at home (1 child = REF)		
2 children	0.885 (0.678–1.155)	0.768 (0.529–1.113)
3 children	1.200 (0.851–1.691)	0.855 (0.520–1.406)
4+ children	1.038 (0.713–1.513)	0.885 (0.508–1.544)
Child’s age (6–11 months = REF)		
12–17 months	1.432** (1.116–1.839)	3.204** (2.189–4.688)
18–23 months	1.795** (1.377–2.340)	2.903** (1.958–4.304)
EA Random Effects	1.962** (1.446–2.663)	2.938** (1.704–5.068)

* p < 0.05; ** p < 0.001.

Despite these limitations, the research expands the discussion of child nutrition by including several dimensions of food security at a fine-spatial scale — anthropometric measure of nutritional status (MUAC), behavioral practices related to child feeding, and a community-level, satellite-derived objective measure of growing season, the WRSI. Household food security is complex; while WRSI captures aspects of access and availability, it cannot capture other factors like food storage, transportation, food aid, market prices, and general childcare and feeding practices. While these other factors are important to childhood nutrition [6, 58, 59], merging the WRSI with household survey data provides a useful, fine-scale analysis of nutritional variation and agricultural productivity useful for expanding early warning nutrition systems and targeting interventions.

Conclusions & policy recommendations

To improve progress on child malnutrition in Burkina Faso, programs and policies must address the links between agricultural season quality, dietary diversity (MDD), and malnutrition (MUAC score). Agricultural productivity compared to local averages, measured here by WRSI anomaly, is associated with both the dietary diversity of children 6–23 months of age and with malnutrition. Agricultural productivity and dietary diversity
are independently associated with malnutrition, suggesting that a poor agricultural season may have diverse
effects on health and nutrition, but not only through dietary diversity pathways. Overall, addressing access to
high-quality and diverse foods is critical to reducing malnutrition, as well as taking steps to address climate
change and agricultural productivity, as most communities in Burkina Faso are subsistence farmers and highly
vulnerable to climatic and environmental shifts that impact agriculture. Maternal education and access to health
services, nutrition-sensitive programs, and distributions of food during insecure times may also improve
outcomes for both mother and child.

Remotely sensed products, such as WRSI, have the advantage of providing spatial continuous, quantitative
approaches for identifying potential areas of food insecurity, which is vital in regions where direct data retrieval
(through surveys, or other measures) are sparse. However, WRSI only captures meteorological reasons for
higher or lower agricultural yields, not the complex set of other factors that relate to food security. Agricultural
productivity is inherently necessary for food availability; however, many other factors may impact accessibility
and utilization including market prices, food storage, conflict, and human behaviors or practices around child
feeding. Studies have highlighted the infrastructural needs [6] and effectiveness of promoted IYCF practices on
child health [8, 60]. Future research that considers WRSI in combination with other dimensions of food security
could aim to further define the mechanisms through which WRSI affects malnutrition, identifying intervention
points to improve outcomes in children.

Ethics approval

This specific study did not collect primary data on human subjects therefore no ethical review committee (IRB)
was involved. The PMA2020 survey data are made publicly available following protocols from the Johns
Hopkins Bloomberg School of Public Health and local partner institution ethical review committees (https://
www.pmadata.org/data/about-data). The WRSI are satellite derived and do not contain human subject
information.

Acknowledgments

The authors thank the Climate Hazards Center’s technical editor, Juliet Way-Henthorne, for providing
professional editing. The authors would also like to thank Greg Husak, Devon Kristiansen, and Leanne
Dougherty for their technical expertise and input in the development of this analysis. Grace acknowledges
support from the Minnesota Population Center (P2CHD041023) funded through a grant from the Eunice
Kennedy Shriver National Institute for Child Health and Human Development (NICHD). Grace also
acknowledges support from the Bill & Melinda Gates Foundation. The findings and conclusions contained
within are those of the authors and do not necessarily reflect the positions or policies of the Bill & Melinda Gates
Foundation.

Data availability statement

No new data were created or analyzed in this study.

ORCID iDs

Jessie Pinchoff https://orcid.org/0000-0003-3155-595X
William Turner https://orcid.org/0000-0002-2812-3948
Kathryn Grace https://orcid.org/0000-0003-4822-6183

References

[1] FAO, IFAD, UNICEF, WFP and WHO 2020 The State of Food Security and Nutrition in the World 2020. Transforming food systems
for affordable healthy diets. Rome, FAO https://doi.org/10.4060/ca9692en
[2] Niles M T, Emery B F, Wiltshire S, Brown M E, Fisher B and Ricketts T H 2020 Climate impacts associated with reduced diet diversity in
children across nineteen countries Environ. Res. Lett. 16 015010
[3] Brown M E et al Climate Change, Global Food Security, and the U.S. Food System 146 http://www.usda.gov/oec/climate_change/
FoodSecurity2015Assessment/FinalAssessment.pdf
[4] Randell H, Gray C and Grace K 2020 Stunted from the start: early life weather conditions and child undernutrition in Ethiopia Social
Science & Medicine. 261 113234
[5] Thiede B C and Strube J 2020 Climate variability and child nutrition: findings from sub-saharan Africa Global Environ. Change 65
102192
[6] Shively G E 2017 Infrastructure mitigates the sensitivity of child growth to local agriculture and rainfall in Nepal and Uganda. https://doi.org/10.1073/pnas.1524482114

[7] Indicators for assessing infant and young child feeding practices: definitions and measurement methods. Geneva: World Health Organization and the United Nations Children’s Fund (UNICEF), 2021. Licence: CC BY-NC-SA 3.0 IGO https://creativecommons.org/licenses/by-nc-sa/3.0/igo

[8] Sarrassat S et al 2019 Suboptimal infant and young child feeding practices in rural Boucle du Mouhoun, Burkina Faso: findings from a cross-sectional population-based survey PLoS One 14 e0224769

[9] Hill R, Skoufias E and Maher B 2019 The Chronology of a Disaster: A Review and Assessment of the Value of Acting Early on Household Welfare (Washington, DC: World Bank) https://openknowledge.worldbank.org/handle/10986/31721 Licence: CC BY 3.0 IGO

[10] Belesova K, Gasparrini A, Sé A, Sauerborn R and Wilkinson P 2017 Household cereal crop harvest and children’s nutritional status in rural Burkina Faso Environmental Health. 16 65

[11] Blackmore I, Rivera C, Waters W F, Iannotti L and Lesorogol C 2021 The impact of seasonality and climate variability on livelihood security in the Ecuadorian Andes Climate Risk Management. 32 100279

[12] Christian P and Dillon B 2018 Growing and learning when consumption is seasonal: long-term evidence from Tanzania Demography. 55 1091–118

[13] FEWS NET 2017 Burkina Faso Staple Food and Livestock Market Fundamentals https://reliefweb.int/report/burkina-faso/burkina-faso-staple-food-and-livestock-market-fundamentals-september-2017

[14] Doorenbos J and Pruitt W 1977 FAO Irrigation and Drainage paper No 24 [Internet]. Rome, Italy: FAO https://pdfspro.com/view/ fao-irrigation-and-drainage-paper-24-253268.html

[15] Senay G B and Verdin J 2003 Characterization of yield reduction in Ethiopia using a GIS-based crop water balance model Can. J. Remote Sens. 29 687–92

[16] Santos P M, Pezzopane J R M, Mendonça F C, Bettiol G M, Evangelista B A and Silva FAM da 2012 Climatic risk zoning for corn and palisade grass (Brachiaria brizantha cv: Marandu) cultivated in integrated crop-livestock systems in São Paulo state, Brazil Revista Brasileira de Zootecnia. 41 36–40

[17] Moellets M and Walker S 2012 Assessment of agricultural drought using a simple water balance model in the free State Province of South Africa SpringerLink Theor Climatologist. 108 420–53

[18] Masupha T E and Moellets M E 2020 The use of water requirement satisfaction index for assessing agricultural drought on rain-fed maize in the Luvuhuvu River catchment, South Africa Agric. Water Manage. 237 106142

[19] Jayanthi H, Husak G J, Funk C, Magadzire T, Adoun A and Verdin J P 2014 A probabilistic approach to assess agricultural drought risk to maize in Southern Africa and millet in Western Sahel using satellite estimated rainfall Int. J. Disaster Risk Reduct. 10 490–502

[20] Tarnavsky E, Chavez E and Boogaard H 2018 Agro-meteorological risks to maize production in Tanzania: sensitivity of an adapted water requirements satisfaction index (WRSI) model to rainfall Int. J. Appl. Earth Obs. Geoinf. 73 57–77

[21] Brown M E, Grace K, Shively G, Johnson K, Band Carroll M 2014 Using satellite remote sensing and household survey data to assess human health and nutrition response to environmental change Popul Environ. 36 48–72

[22] McNally A et al 2015 Calculating crop water requirement satisfaction in the West Sahel with remotely sensed soil moisture Journal of Hydrometeorology 16 295–305

[23] McNally A et al 2017 A land data assimilation system for sub-Saharan Africa food and water security applications. Scientific Data 4 170012

[24] Mounkaila Y, Garba I and Moussa B 2019 Yield prediction under associated millet and cowpea crops in the Sahelian zone AJAR 14 1613–20

[25] Songho R, Franke J, Simboro S, Barteit S, Phalkey R and Sauerborn R 2017 Linking weather data, satellite imagery and field observations to household food production and child undernutrition: an exploratory study in Burkina Faso Universal Journal of Public Health 5 256–70

[26] World Health Organization (WHO) 2008 Indicators for assessing infant and young child feeding practices: conclusions of a consensus meeting held 6-8 November 2007 Indicators for assessing infant and young child feeding practices (Washington, DC)

[27] Emmet M, Oot L and Sethuraman K 2017 USAID Office of Food for Peace Food Security Desk Review for Burkina Faso (Washington, DC: FHI 360/FANTA) p 108 https://fantoproject.org/sites/default/files/resources/FFP-Burkina-Faso-Desk-Review-Oct2017.pdf

[28] Saaka M, Wemakor A, Abiizari A-R and Areey P 2015 How well do WHO complementary feeding indicators relate to nutritional status of children aged 6–23 months in rural Northern Ghana? BMC Public Health 15 1137 https://ncbi.nlm.nih.gov/pmc/articles/PMC4656186/

[29] Rah J H et al 2010 Low dietary diversity is a predictor of child stunting in rural Bangladesh Eur. J. Clin. Nutr. 64 1393–8

[30] Ruel M T and Arimond M 2003 Measuring Childcare Practices: Approaches, Indicators, and Implications for Programs (Washington, DC: FFPRI) (Food Policy Review 6)

[31] Chiva M 1997 Cultural aspects of meals and meal frequency Br. J. Nutr. 77 521–8

[32] UNICEF 2020 Mid upper arm circumference measuring tapes—technical bulletin https://www.unicef.org/supply/media/1421/file/ MId%20upper%20arm%20circumference%20measuring%20tape%20tech%20bulletin.pdf

[33] PMA2020 2020 Protocol to aggregate and displace GPS data in Performance Monitoring and Accountability 2020 Surveys https://pma2020.org/sites/default/files/ENG_PMA_GPS_displacement_Protocol_20180115_.pdf

[34] Dairo M D, Fatokun M E and Kuti M 2012 Reliability of the mid upper arm circumference for the Assessment of wasting among children aged 12-59 months in Urban Ibadan, Nigeria Int. J. Biomed. Sci. 8 140–3

[35] Hai T T, Bardsosono S, Wiradnyani L A A, Hop L T, Ngn H T D and Phuong H N 2020 The optimal mid-upper arm circumference cutoffs to screen severe acute malnutrition in Vietnamese children. AMIS Public Health. 7 188–96

[36] Obeng-Aamoako G A O et al 2020 Concurrently wasted and stunted children 6–59 months in Karamoja, Uganda: prevalence and case detection Maternal & Child Nutrition. 16 e13000

[37] Davenport E, Grace K, Funk C and Shukla S 2017 Child health outcomes in sub-Saharan Africa: A comparison of changes in climate and socio-economic factors Global Environ. Change 46 72–87

[38] Dixon S and Holt J 2010 Livelihood Zoning and Profiling Report: Burkina Faso. A Special Report by the Famine Early Warning Systems Network. (Washington, DC: The United States Agency for International Development Famine Early Warning Systems Network (FEWS NET)) https://fews.net/west-africa/burkina-faso/livelihood-profile/fbuary-2010

[39] Senay G and Verdin J 2002 Evaluating the performance of a crop water balance model in estimating regional crop production Geography

[40] Funk C et al 2015 The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes Scientific Data. 2 150066
[41] NOAA Global Reference ET. https://psl.noaa.gov/cddi/globalrefet/
[42] Allen R, Pereira L, Raes D and Smith M 2021 Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. Irrigation and Drainage Paper 56. 1998 (Rome, Italy: FAO) http://fao.org/3/x0490e/x0490e00.htm
[43] Podu G G, Hsu C-Y and Chao J C-J 2017 Factors associated with malnutrition among children <5 years old in Burkina Faso: evidence from the demographic and health surveys IV 2010. Int J Qual Health Care. 29 901–8
[44] Black R E, Victora C G, Walker S P, Bhatia Z A, Christian P, de Onis M et al 2013 Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet. 382 427–51
[45] Gelman A and Hill J 2006 Data Analysis Using Regression and Multilevel/Hierarchical Models. 1st Edn (Cambridge: Cambridge University Press) p 648
[46] Cooper M et al 2019 Mapping the effects of drought on child stunting. PNAS 116 7219–24
[47] Johnson K and Brown M E 2014 Environmental risk factors and child nutritional status and survival in a context of climate variability and change. Appl. Geogr. 54 209–21
[48] Olney D K, Bliznashka L, Pedehombga A, Dillon A, Ruel M T and Heckert J 2016 A 2-Year Integrated Agriculture and nutrition program targeted to mothers of young children in Burkina Faso reduces underweight among mothers and increases their empowerment: a cluster-randomized controlled trial. J. Nutr. 146 1109–17
[49] Schlaudecker E P, Steinhoff M C and Moore S 2011 Interactions of diarrhea, pneumonia, and malnutrition in childhood: recent evidence from developing countries. Curr Opin Infect Dis. 24 496–502
[50] Guerant R L, Schorling J B, McAuliffe J F and Souza M A D 1992 Diarrhea as a Cause and an Effect of Malnutrition: Diarrhea Prevents Catch-up Growth and Malnutrition Increases Diarrhea Frequency and Duration. The American Journal of Tropical Medicine and Hygiene. 47 (1_Suppl) 28–35
[51] Makoka D 2020 The impact of maternal education on child nutrition: evidence from Malawi, Tanzania, and Zimbabwe. DHS Working Papers Series 84. https://www.dhsprogram.com/pubs/pdf/ WP84/ WP84.pdf
[52] Abuya B A, Ciera J and Kimani-Murage E 2012 Effect of mother’s education on child’s nutritional status in the slums of Nairobi. BMC Pediatr. 12 80
[53] Fraval S et al 2020 Food security in rural Burkina Faso: the importance of consumption of own-farm sourced food versus purchased food. Agri & Food Secur. 9 1–17
[54] Thompson B and Meerman J 2013 Narrowing the Nutrition Gap: Investing in Agriculture to Improve Dietary Diversity (FAO) p 26
[55] Mitichodigini M et al 2017 Complementary feeding practices: determinants of dietary diversity and meal frequency among children aged 6–23 months in Southern Benin. Food Security: The Science, Sociology and Economics of Food Production and Access to Food. 9 1117–30
[56] Grace K, Murray A T and Wei R 2020 Improving urban and peri-urban health outcomes through early detection and aid planning. Geospatial Technologies for Urban Health ed Y Lu and E Delmelle (Cham: Springer International Publishing) 231–50 (Global Perspectives on Health Geography)
[57] Bork K A and Diallo A 2017 Boys are more stunted than girls from early infancy to 3 years of age in rural Senegal. The Journal of Nutrition. 147 940–7
[58] Sharma I K, Di Prima S, Essink D and Broerse J E W 2021 Nutrition-sensitive agriculture: a systematic review of impact pathways to nutrition outcomes. Adv Nutr. 12 251–75
[59] Abuya B A, Hirvonen K 2017 Does market access mitigate the impact of seasonality on child growth? Panel data evidence from Northern Ethiopia. The Journal of Development Studies. 53 1414–29
[60] Lassi Z S, Das J K, Zahid G, Imdad A and Bhuitta Z A 2013 Impact of education and provision of complementary feeding on growth and morbidity in children less than 2 years of age in developing countries: a systematic review. BMC Public Health. 13 513