Abstract: The interactions between the entomopathogenic fungus *Beauveria bassiana* Balsamo (Vuillemin) (Hypocreales: Cordycipitaceae) and the entomopathogenic fungus *Isaria fumosorosea* (Wize) Brown and Smith (Hypocreales: Clavicipitaceae) were examined on young adults of *Sitophilus granarius* (L.) (Coleoptera: Curculionidae) and *S. oryzae* (L.) (Coleoptera: Curculionidae). Conidial suspensions of these entomopathogenic fungi were applied both separately and in combination, at three dosages, 10^4, 10^6, and 10^8 conidia/mL. Mortality of experimental adults was recorded daily for 15 days. An overall positive interaction between the pathogenic microorganisms was observed. Mean weevil mortality caused by the separate acting fungi, *B. bassiana*, ranged from 26.7% to 53.3% and from 36.6% to 63.3% for *S. granarius* and *S. oryzae*, respectively. The respective values for *I. fumosorosea* were 20.0%–53.3% and 46.7%–66.7%. The combined treatments showed a distinct interaction between the pathogens; for *S. granarius*, the interaction between the pathogens was additive in all combinations, whereas, for *S. oryzae*, the interaction was additive in seven and competitive in two of the combinations. Applying both entomopathogenic microorganisms may offer a method for weevil control that could be more effective than using each pathogen alone.

Keywords: interaction; *Beauveria bassiana*; *Isaria fumosorosea*; *Sitophilus granarius*; *Sitophilus oryzae*

1. Introduction

Sitophilus granarius (L.) (Coleoptera: Curculionidae) and *S. oryzae* (L.) (Coleoptera: Curculionidae) are the most important storage pests of raw cereals throughout the world. To control these pests, synthetic insecticides are used during the storage of grains [1,2]. Considering the dire effects for both humans [3] and the environment [4], health authorities are wary of the use of chemical insecticides on grains [5]. The control of *S. granarius* and *S. oryzae* is currently based mainly on the use of two broad categories of insecticides: residual insecticides and fumigants. *Sitophilus* species have been reported to develop resistance to synthetic chemicals [6,7]. The development of resistance to these substances and the demands of consumers for residue-free food have led researchers to evaluate the use of alternative control methods that do not leave residues on the product and are generally safe for the environment.
Insect pathogens, such as the Hypocreales fungi, offer many advantages including high efficacy and compatibility with other IPM methods, and they are thus considered to be among the most promising alternatives to chemical-based insect control [8]. Beauveria and Isaria are important Hypocreales genera which are being used for insect management. Several valuable findings concerning the use of Hypocreales fungi as an effective control strategy have been documented by various scientists, particularly with special reference to Coleopteran insect pests [9,10].

In mixed infections, it is possible that the efficacy of one or both pathogens may be improved, enhanced, or suppressed. It is well established that the fungal efficacy can be enhanced by the simultaneous presence of other insecticidal factors with completely different modes of action [10–20]. Generally, insect infections by more than one pathogen usually lead to an increase in host mortality, particularly when infections are separated by a time interval of several days [15].

Additive and synergistic effects of entomopathogenic fungi with other insecticidal treatments have been validated in many previous studies, concerning mainly the combined use with entomopathogenic bacteria [14,18–22], viruses [23], nematodes [16,17,24–26], synthetic insecticides [27–30], and insecticidal dust [10,12]. On the contrary, there are very few studies investigating the combined action of two fungal entomopathogens [31–33].

It could be assumed that the combination of two similar fungal entomopathogens is unjustified, because they have a common mode of action. However, there are some additional facts that must also be taken into consideration. Firstly, variable insecticidal metabolites and toxins produced by fungal entomopathogens have several modes of action (some of them remain partly unknown) and, in many cases, they often constitute the direct cause of insect death [34,35]. Secondly, similar entomopathogens may act differently on insects with varying behaviors and in different environments [31,32,36,37].

The objective of the present study was to evaluate in vitro interactions between two Hypocreales entomopathogenic fungi when applied against S. granarius and S. oryzae adults. Such interactions between two fungal infections have not yet been evaluated in terms of pest control efficacy. We aim to investigate whether these two pathogens interact synergistically when applied together at various dose combinations. Our results are discussed on the basis of promoting the use of entomopathogenic fungi as biocontrol agents in storage facilities.

2. Materials and Methods

2.1. Insect Rearing

Adults of S. granarius and S. oryzae that were used in the tests were collected from rearings which had been kept for more than two years in the EMBIA Laboratory of the Pharmacy Department of the University of Patras. Weevils were reared on hard wheat and kept in a growth chamber (PHC Europe/Sanyo/Panasonic Biomedical MLR-352-PE) in controlled environmental conditions (25 ± 1 °C, 65 ± 5% r.h., complete darkness).

2.2. Entomopathogenic Fungi

We used the Hypocreales fungal strains of Beauveria bassiana (strain name: GBBSTTS) and Isaria fumosorosea (strain name: RHZ4RAS). These were first isolated from soil samples collected in the prefecture of Achaia using stored pests as baits. The isolates were kept in Petri dishes on the nutrient SDA material (Sabouraud Dextrose Agar, OXOID Ltd., Basingstoke Hampshire, UK) and were renewed every month. The Petri dishes were kept in continuous darkness, at 25 ± 1 °C and 85 ± 5% relative humidity, to enable the incubation of the fungi. The developed fungi were isolated again to avoid infestation and to achieve clear cultivation.

2.3. Conidial Suspensions

Conidia were harvested by scraping the surface of the Petri dishes with a sterilized scalpel and by flooding the dishes with a sterile liquid solution of 0.1% Tween 80 (20 mL per plate).
The conidial suspensions were stirred using a magnetic stirrer (Bande Stirrers magnetic stirrer MS300, Bante Instruments Inc., Sugar land, TX, USA) and filtered twice using a sterile cloth. Suspensions were adjusted according to Gurulingappa et al. [38] using a Neubauer hemocytometer (TIEFE 0, 100 mm 1/400 9 mm). Following Goettel and Inglis [39], the viability of conidia was determined after 24 h. The germination test was run for every stock suspension in order to ensure the constancy of the viability assessments. The average viability of conidia was for *I. fumosorosea* 98.7% and *B. bassiana*, 96.9%. Preparation of conidial suspensions and conidial germination took place in a laminar flow chamber (Equip Vertical Air Laminar Flow Cabinet Clean Bench, Mechanical Application Ltd. Athens, Greece).

2.4. Bioassays

The virulence of each fungus was investigated separately on *S. granarius* and *S. oryzae* adults which were treated with three different conidial concentrations from *I. fumosorosea* (If) and *B. bassiana* (Bb) (10⁴, 10⁶, and 10⁸ conidia/mL). Each fungus was applied separately. Ten weevil adults (3–5 days old) were collected from lab cultures and transferred in sterile Petri dishes (9-cm diameter) with a single layer of hard wheat grains. Experimental adults were sprayed with 2 mL of the desired conidial suspension using a Potter spray tower (Burkard Manufacturing Co. Ltd., Rickmansworth, Hertfordshire, UK) at 1 kgf cm⁻². Following this, Petri dishes were kept in incubators set at 25 ± 1 °C and 65% relative humidity during the entire experimental period. Adults were observed daily, and mortality was recorded for 15 days. Adults that were sprayed simply with an aqueous solution with 0.01% Tween® 80 (Sigma-Aldrich®, Munich, Germany) were used as control. Each treatment (Petri dish with 10 adults) was replicated 10 times (n = 100 adults for every treatment). The applications of pathogens within each replicate were done at the same time.

The combined effect of the two Hypocreales fungi was tested on adults exposed to all nine different combinations of the three tested conidial concentrations. Experimental adults were initially sprayed with 2 mL conidial suspension of the one pathogen and, after 2 s, they were sprayed with 2 mL conidial suspension of the other pathogen. The spraying sequence (meaning which fungus was applied first) changed from a Petri dish to the next one. This was necessary so as to exclude any variation in our results because of the time of fungus colonization. The experimental procedure (number and age of experimental adults, number of replications, recording of mortality, etc.) were the same as in the case of the separate fungus study (described above).

2.5. Microscopic Fungal Identification Method

Isolates were sub-cultured several times to ensure that purity and monosporic cultures from all isolates were obtained, and they were then morphologically identified by a microscope ZEISS Primo Star (Carl Zeiss Microscopy GmbH, Jena, Germany) at 400× magnification.

2.6. Mathematical Estimation

The interaction between the pathogens was estimated using the formula of Robertson and Preisler [40]:

\[P_E = P_0 + (1 - P_0) \times (P_1) + (1 - P_0) \times (1 - P_1) \times (P_2) \] \hspace{1cm} (1)

where \(P_E \) is the expected mortality induced by the combination of the two pathogens; \(P_0 \) is the observed mortality of the control; \(P_1 \) is the observed mortality caused by the first pathogen (separate action); \(P_2 \) is the observed mortality caused by the second pathogen (separate action). Distribution was determined by the chi-square formula:

\[x^2 = \frac{(L_0 - L_E)^2}{L_E} + \frac{(D_0 - D_E)^2}{D_E} \] \hspace{1cm} (2)

where \(L_0 \) is the number of recorded live larvae of the control, \(D_0 \) is the number of recorded dead larvae of the control, \(L_E \) is the expected number of live larvae, and \(D_E \) is the expected number of dead larvae (estimated like \(P_E \) with Equation (1)). The formula was used to test the hypothesis.
independent—simultaneous relationship (df = 1, p = 0.05). If $\chi^2 < 3.84$, the ratio is defined as additive, if $\chi^2 > 3.84$ and the observed mortality is higher than expected, the relationship is defined as synergistic. On the contrary, if $\chi^2 > 3.84$ and the observed mortality is less than expected, the relationship is defined as competitive [14].

2.7. Statistical Analysis

Prior to analysis, these mortality values were arcsine transformed. Mortality data were then analyzed by means of univariate ANOVA using the general linear model of the IBM (version 23.0, SPSS Inc., Armonk, NY, USA). In case of significant F values, means were compared using the Bonferroni test. The significance level was set at $p < 0.05$. Kaplan–Meier analysis was also selected to determine the median survival time of S. granarius and S. oryzae individuals following exposure to the pathogens which had been applied both separately and in combination. Comparison of median survival time was performed using one-way ANOVA (Treatment as Factor) (SPSS v.23.0).

3. Results

3.1. Separate and Combined Mortality

Mean weevil mortality caused by the separate action of B. bassiana and I. fumosorosea is presented in Table 1. Entomopathogenic fungi induced significantly different levels of mortality on S. oryzae compared with S. granarius (F: 4.415; df: 1.360; p: 0.012) (Table 1). Significant differences in mortality were also detected between the two different pathogens (F: 2.031; df: 5.360; p: 0.026). Mortality induced by the entomopathogenic fungi was dose-dependent only in the case of S. granarius. More specifically, 15 days after the treatment with B. bassiana, the mortality of S. granarius adults increased significantly from 27% (10^4 conidia/mL) to 53% (10^8 conidia/mL) (F: 4.128; df: 2.90; p: 0.008). Similarly, in treatments with I. fumosorosea, the weevil mortality ranged from 20% (10^4 conidia/mL) to 53% (10^8 conidia/mL) (F: 4.103; df: 2.90; p: 0.009) (Table 1). On the contrary, in the case of S. oryzae, mortalities did not differ significantly between the various doses of both pathogens (B. bassiana: F: 1.665; df: 2.90; p: 0.195, I. fumosorosea: F: 0.560; df: 2.90; p: 0.573) (Table 1).

As far as the combined action of the two entomopathogens is concerned, a total of nine combined treatments of B. bassiana and I. fumosorosea were applied against S. granarius and S. oryzae. Adult mortality of both S. granarius and S. oryzae varied significantly among the various dose combinations (S. granarius: F: 1.755; df: 8.270; p: 0.086; S. oryzae: F: 1.301; df: 8.270; p: 0.044) (Table 2). On the contrary, no significant differences in mortality were noted between the two insect species (F: 1.540; df: 1.720; p: 0.214) when they were treated with the same combination (Table 2).

The results of the combined treatments showed a distinct interaction between the pathogens. In the case of S. granarius, the interaction between the pathogens was additive in all combinations (Table 3). On the other hand, pathogens demonstrated an additive interaction when infecting S. oryzae, in seven combinations while, in two of the treatments, the interaction was characterized as competitive (Table 3). No synergistic relationship was recorded in any of the combinations.

3.2. Fungal Sporulation

The percentage of dead insects that did not show sporulation from any of the fungal pathogens varied from 3% to 70% (S. granarius) and from 2% to 68% (S. oryzae) (Figure 1). The highest fungal sporulation occurred on the cadavers of the combinations B (10^6 Bb × 10^6 If) and C (10^4 Bb × 10^8 If) in both insects. The two pathogens proved to be equivalent in sporulation, given that cadavers infected with B. bassiana were more in half of the combined treatments, with I. fumosorosea sporulating more in the other half (Figure 1). The adults that were inoculated with the single treatments of these fungal pathogens exhibited confirmed mortality with the typical fungal symptoms of I. fumosorosea and B. bassiana in 82% and 79% of the adults, respectively.
Table 1. Mean mortality and median survival time of adults of *S. granarius* and *S. oryzae* treated separately with *B. bassiana* (Bb) and *I. fumosorosea* (If) after 15 days.

Insect	Concentration (conidia/mL)	Mortality	Median Survival Time (Days)		
	Bb If (%)	Sd Estimate Sd	95% Confidence Interval		
			Lower Bound	Upper Bound	
S. granarius	0 0 0.00 0.00 15.000a	15.27	11.286	14.314	
	10⁴ 4 26.67A 5.77 12.800bc	0.772	10.341	13.393	
	10⁶ 6 53.33bA 5.77 12.000b	0.679	12.687	14.713	
	10⁸ 8 53.33bA 11.55 10.767d	0.831	9.138	12.395	
S. oryzae	0 0 3.33 0.00 14.855a	0.145	14.710	15.000	
	10⁴ 4 36.60aA 11.55 13.567c	0.466	12.654	14.479	
	10⁶ 6 43.33aA 11.55 12.100b	0.836	10.461	13.739	
	10⁸ 8 63.33aA 5.77 10.467d	0.689	8.712	12.221	
Mean values of different concentration, within the same insect and pathogen, followed by the same small letter are not significantly different; Mean values of different insect, within the same concentration and pathogen, followed by the same capital letter are not significantly different (Bonferroni test, *p* = 0.05), Estimate values of median time of the same insect followed by the same small letter are not significantly different (Kaplan–Meier, *p* = 0.05), * Median survival time (*S. granarius*: F: 4.667; df: 8; *p* < 0.001, *S. oryzae*: F: 3.589, df: 8; *p* < 0.001).					

Table 2. Mean mortality and median survival time of adults of *S. granarius* and *S. oryzae* treated with *B. bassiana* (Bb) and *I. fumosorosea* (If) in combination.

Insect	Concentration (conidia/mL)	Mortality	Median Survival Time (Days) *		
	Bb If (%)	Sd Estimate Sd	95% Confidence Interval		
			Lower Bound	Upper Bound	
S. granarius	10⁴ 10⁴ 66.67bcA 11.55 10.100a	0.712	8.704	11.496	
	10⁶ 10⁶ 56.67bA 5.77 11.367b	0.796	9.806	12.927	
	10⁴ 10⁸ 63.33bcA 11.55 10.367ab	0.802	9.710	11.939	
	10⁶ 10⁴ 70.00bcA 10.00 9.900a	0.753	8.439	12.427	
	10⁸ 10⁸ 66.67bcA 11.55 10.900a	0.918	8.900	12.600	
Mean values of different combined concentration, within the same insect, followed by the same small letter are not significantly different; Mean values of different insect, within the same combined concentration, followed by the same capital letter are not significantly different (Bonferroni test, *p* = 0.05), Estimate values of median time of the same insect followed by the same small letter are not significantly different (Kaplan–Meier, *p* = 0.05), * Median survival time (*S. granarius*: F: 1.259; df: 8; *p* = 0.032, *S. oryzae*: F: 1.181; df: 8; *p* = 0.021).					

S. oryzae	10⁴ 10⁴ 66.67bcA 11.55 10.100a	0.712	8.704	11.496	
	10⁶ 10⁶ 56.67bA 5.77 11.367b	0.796	9.806	12.927	
	10⁴ 10⁸ 63.33bcA 11.55 10.367ab	0.802	9.710	11.939	
	10⁶ 10⁴ 70.00bcA 10.00 9.900a	0.753	8.439	12.427	
	10⁸ 10⁸ 66.67bcA 11.55 10.900a	0.918	8.900	12.600	
Table 3. Observed and expected mortality of *S. granarius* and *S. oryzae* adults at the end of the experiment (15 days), treated with both *B. bassiana* (Bb) and *I. fumosorosea* (If) in several combinations, and their interaction (A = Additive, C = Competitive, S = Synergistic) (n = 100).

Combined Concentration (conidia/mL)	Mortality (%) *	χ² (1 df; p = 0.05)	Interaction		
Bb	**If**	Observed	Expected		
S. granarius					
10⁸	10⁴	67	66	-0.012	A
10⁶	10⁶	57	66	0.138	A
10⁴	10⁸	63	63	0.034	A
10⁸	10⁶	67	80	0.520	A
10⁶	10⁸	70	70	0.008	A
10⁴	10⁴	30	41	-0.161	A
10⁸	10⁸	80	78	-0.280	A
10⁴	10⁸	46	54	0.019	A
10⁶	10⁴	57	57	0.004	A
S. oryzae					
10⁸	10⁴	77	81	0.366	A
10⁶	10⁶	51	75	7.917	C
10⁴	10⁸	78	80	0.070	A
10⁸	10⁶	73	83	1.986	A
10⁶	10⁸	67	84	2.607	A
10⁴	10⁴	37	62	8.172	C
10⁸	10⁸	89	83	0.984	A
10⁴	10⁸	60	72	2.375	A
10⁶	10⁴	57	66	1.164	A

* Expected mortality is calculated according to Robertson and Preisler [40].

Figure 1. Cont.
Kaplan–Meier analysis showed that the median overall survival time for experimental adults was 11.557 ± 0.18 days for *S. granarius* and 10.692 ± 0.21 days for *S. oryzae* (Figure 2). The median survival time of *S. granarius* adults with the separate doses was between 9.13 and 12.68 days compared to *S. oryzae* adults whose median lethal time was between 7.97 and 12.65 days (Table 1). For the combined doses of the pathogens, the median survival time of *S. granarius* adults was between 8.00 and 11.8 days compared to *S. oryzae* adults whose median survival time was between 6.36 and 10.37 days in the same combinations (Table 2).

3.3. Median Survival Time

Figure 1. Percent infection attributed to each insect pathogen after the combined inoculation of Hypocreales fungi on the adults of *S. granarius* (a) and *S. oryzae* (b). If—*I. fumosorosea*; Bb—*B. bassiana*. Combined Treatment: A: 10⁸ Bb × 10⁴ If, B: 10⁶ Bb × 10⁶ If, C: 10⁴ Bb × 10⁸ If, D: 10⁸ Bb × 10⁶ If, E: 10⁶ Bb × 10⁴ If, F: 10⁴ Bb × 10⁴ If, G: 10⁸ Bb × 10⁴ If, H: 10⁴ Bb × 10⁶ If, I: 10⁶ Bb × 10⁴ If.

Figure 2. Overall survival of the infected adults of *S. granarius* and *S. oryzae* was monitored for 15 days, after being treated with *B. bassiana* (Bb) and *I. fumosorosea* (If) (chi-square: 7.630; df: 1, *p* = 0.006).
4. Discussion

Infective action of entomopathogenic fungi begins when spores are retained on the integument surface and the formation of the germinative tube initiates. Following this, the fungus produces hydrolytic enzymes i.e., proteinases, chitinases, and lipases [41], which enable infection against many Curculionidae [10,42–44].

Significant differences in mortality caused by the separate action of each entomopathogen were detected not only between the different insects but also between the two fungal entomopathogens. Generally, I. fumosorosea was more virulent for S. oryzae and B. bassiana was more virulent for S. granarius. Although mortalities between different host and pathogen species, in our study, did not always differ significantly, it has been well established that these two factors (insect and pathogen species) play an important role in the insecticidal efficacy of entomopathogenic fungi [1,2,32,43,44].

An overall positive interaction between the two pathogens was noticed in terms of adult mortality, especially for S. oryzae. Based on our results, the interaction of I. fumosorosea with B. bassiana was additive for S. granarius in all combinations. On the contrary, in two treatments, the interaction between the pathogens was negative (competitive) for S. oryzae. In our combined treatments, the insect species did not have a significant effect on host mortality.

Competitive interaction was observed in two of the treatments, in the case of S. oryzae. A competitive interaction refers to the negative relationship between pathogens. The nature of competition between entomopathogenic fungi is not well known. The competitive interaction is predominately mediated by resources in the host and the extent to which these benefit the entomopathogens. Mietkiewski and Gorski [45], for instance, report that when the two entomopathogenic fungi are used concurrently with other biological insecticides, they exhibit synergy, competitiveness, or a neutral interaction. Staves and Knell’s [46] findings suggest that if mixed infection persists, then the type of interaction (direct and/or indirect) within the host can play a major role in determining how an entomopathogen will evolve in terms of its virulence. When the combination of two entomopathogenic fungal isolates was tested, all possible effects (additive, synergistic, competitive) were recorded [31–33] depending on the host and pathogen species, temperature, and pathogen concentration.

The dead adult percentage showing pink muscardine of I. fumosorosea seemed to be higher in 9 of the 18 mixed fungal infections, while the white muscardine of B. bassiana on adult cadavers appeared at a higher percentage in the other 9 mixed infections. Our results support Staves and Knell [46] in their suggestion that the dominance outcome during a multiple entomopathogenic fungal infection is not defined solely by the virulence of the entomopathogenic fungi. Moreover, as is reported in an older study, in all the combination treatments with two fungal entomopathogens, only one of the fungi sporulated on the larval cadaver, never both [31].

It is possible to accomplish significant pest control results using a mixture of entomopathogens, either by combining systematically close microorganisms or systematically remote organisms [15]. Several studies have described interactions between different pathogens within the same species [14,18,20–23,47–50]. These interactions may affect pest mortality antagonistically (reducing the observed mortality of hosts as compared to single pathogen infections [29]), synergistically (increasing host mortality in comparison to single pathogen infections [16,22,28]), or they may vary per genotype, dose, and order of infection [47,48,51]. Infections of insects by more than one pathogen usually lead to an increase in host mortality [15] as it was proven in most cases in the present study.

It was our hypothesis that in the interaction between entomopathogenic fungal isolates, one isolate would dominate as more virulent while the less virulent would still play an auxiliary role in the infection process. Insects would thus die from a reinforced infection and the cadavers would exhibit signs of the more virulent fungus. Our results support this theory.

Our experiment demonstrates that although B. bassiana and I. fumosorosea are each on their own able to reduce the population of S. granarius and S. oryzae, the combination of the two could increase host mortality, thus providing a more effective pest control method than using each pathogen alone.
The impact of fungal epizootics on host populations can be very dramatic and many attempts have been made to harness this potential for pest-control purposes.

5. Conclusions

We tested the hypothesis that the co-application of \textit{B. bassiana} and \textit{I. fumosorosea} could be used to increase the mortality, which each fungus alone would individually incite in \textit{Sitophilus} weevils. We observed that the final mortality was greater for the combination treatments than for the separate treatments, in most cases. While this was a relatively simple simulation, it demonstrates the potential value of utilizing fungal “cocktails” as effective biological tools for pest management. As many entomopathogenic fungi will have some impact upon the host’s immune system, understanding the nature of this impact will be critical for understanding the dynamics of the interaction. Nevertheless, further studies are needed to investigate the mechanism of toxicity of such combinations against serious stored pests.

Author Contributions: Conceptualization, S.M.; methodology, S.M.; software, S.M.; validation, S.M. and P.A.E.; formal analysis, S.M.; investigation, S.M., A.Z., V.T., and I.L.; resources, S.M.; data curation, S.M.; writing—original draft preparation, S.M.; writing—review and editing, S.M. and P.A.E.; visualization, S.M.; supervision; project administration; funding acquisition.

Funding: This research received no external funding.

Acknowledgments: We would like to thank Ioanna Zampara, MA in Interpreting and Translating, for her help with the language.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rice, W.C.; Cogburn, R.R. Activity of the entomopathogenic fungus \textit{Beauveria bassiana} (Deuteromycota: \textit{Hyphomycetes}) against three coleopteran pests of stored grain. \textit{J. Econ. Entomol.} 1999, 92, 691–694. [CrossRef]
2. Padin, S.; Bello, G.D.; Fabrizio, M. Grain loss caused by \textit{Tribolium castaneum}, \textit{Sitophilus oryzae} and \textit{Acanthoscelides obtectus} in stored durum wheat and beans treated with \textit{Beauveria bassiana}. \textit{J. Stored Prod. Res.} 2002, 38, 69–74. [CrossRef]
3. Boush, G.M.; Matsumura, F.; Misato, T. \textit{Environmental Toxicology of Pesticides}; Academic Press: New York, NY, USA, 1972.
4. Matsumura, F. \textit{Toxicology of Insecticides}; Plenum Press: New York, NY, USA, 1980.
5. Thaung, N.; Collins, P.J. Joint effect of temperature and insecticides on mortality and fecundity of \textit{Sitophilus oryzae} (Coleoptera: Curculionidae) in wheat and maize. \textit{J. Econ. Entomol.} 1986, 79, 909–914. [CrossRef]
6. Moino, A., Jr; Alves, S.B.; Pereira, R.M.; Pereira, R. Efficacy of \textit{Beauveria bassiana} (Balsamo) Vuillemin isolates for control of stored-grain pests. \textit{J. Appl. Entomol.} 1998, 122, 301–305. [CrossRef]
7. Benhalima, H.; Chaudhry, M.Q.; Mills, K.A.; Price, N.R. Phosphine resistance in stored-product insects collected from various grain storage facilities in Morocco. \textit{J. Stored Prod. Res.} 2004, 40, 241–249. [CrossRef]
8. Moore, D.; Lord, J.C.; Smith, S.M. Pathogens. In \textit{Alternatives to Pesticides in Stored Product IPM}; Subramanyam, B.H., Hagstrum, D.W., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 193–227.
9. Bourassa, C.; Vincent, C.; Lomer, J.; Borgemeister, C.; Mauffette, Y. Effects of entomopathogenic \textit{Hyphomycetes} against the larger grain borer, \textit{Prostephanus truncatus} (Horn) (Coleoptera: Bostrichidae) and its predator, \textit{Teretriosoma nigrescens} Lewis (Coleoptera: Histeridae). \textit{J. Invertebr. Pathol.} 2001, 77, 75–77. [CrossRef]
10. Kavallieratos, N.G.; Athanassiou, C.G.; Michalaki, M.P.; Batta, Y.A.; Rigatos, H.A.; Pashalidou, F.G.; Balotis, G.N.; Tomanovic, Z.; Vayias, B.J. Effect of the combined use of \textit{Metarhizium anisopliae} (Metschinkoff) Sorokin and diatomaceous earth for the control of three stored-product beetle species. \textit{Crop. Prot.} 2006, 25, 1087–1094. [CrossRef]
11. Lemanceau, P.; Alabouvette, C. Suppression of Fusarium-wilts by fluorescent pseudomonads: Mechanisms and applications. \textit{Biocontrol Sci. Technol.} 1993, 3, 219–234. [CrossRef]
12. Wakil, W.; Riasat, T.; Ghazanfar, M.U.; Kwon, Y.J.; Shaheen, F.A.; Wakil, W.; Kwon, Y.J. Aptness of \textit{Beauveria bassiana} and enhanced diatomaceous earth (DEBBM) for control of \textit{Rhyzopertha dominica} F. \textit{Entomol. Res.} 2011, 41, 233–241. [CrossRef]
13. Wakil, W.; Riasat, T.; Ashfaq, M. Residual efficacy of thiamethoxam, Beauveria bassiana (Balsamo) Vuillemin, and diatomaceous earth formulation against Rhizopertha dominica F. (Coleoptera: Bostrichidae). J. Pest. Sci. 2012, 85, 341–350. [CrossRef]

14. Mantzoukas, S.; Milonas, P.; Kontodimas, D.; Angelopoulos, K. Interaction between the entomopathogenic bacterium Bacillus thuringiensis subsp. kurstaki and two entomopathogenic fungi in biocontrol of Sesamia nonagrioides (Lefebvre) (Lepidoptera: Noctuidae). Ann. Microbiol. 2013, 63, 1083–1091.

15. Jacques, R.P.; Morris, O.N. Compatibility of pathogens with other methods of pest control and with different crops. In Microbial Control of Insect and Mites; Burges, H.D., Hussey, N.W., Eds.; Academic Press: New York, NY, USA, 1981; pp. 695–715.

16. Ansari, M.A.; Shah, F.A.; Tirry, L.; Moens, M. Field trials against Hophia philanthis (Coleoptera: Scarabaeidae) with a combination of an entomopathogenic nematode and the fungus Metarhizium anisopliae CLO 53. Biol. Control 2006, 39, 453–459. [CrossRef]

17. Ansari, M.A.; Shah, F.A.; Butt, T.M. Combined use of entomopathogenic nematodes and Metarhizium anisopliae as a new approach for black vine weevil, Otiorhynchus sulcatus, control. Entomol. Exp. Appl. 2008, 129, 340–347. [CrossRef]

18. Wraight, S.P.; Ramos, M.E. Synergistic interaction between Beauveria bassiana and Bacillus thuringiensis tenebrionis-based biopesticides applied against field populations of Colorado potato beetle larvae. J. Invertebr. Pathol. 2005, 90, 139–150. [CrossRef] [PubMed]

19. Kryukov, V.V.; Khodyrev, V.P.; Yaroslavtseva, O.N.; Kamenova, A.S.; Duisembekov, B.A.; Glupov, V.V. Synergistic action of entomopathogenic Hyphomycetes and the bacteria Bacillus thuringiensis ssp. merrisoni in the infection of Colorado potato beetle Leptinotarsa decemlineata. Appl. Biochem. Microbiol. 2009, 45, 511–516.

20. Ma, X.-M.; Liu, X.-X.; Ning, X.; Zhang, B.; Han, F.; Guan, X.-M.; Tang, Y.-F.; Zhang, Q.-W. Effects of Bacillus thuringiensis toxin Cry1Ac and Beauveria bassiana on Asiatic corn borer (Lepidoptera: Crambidae). J. Invertebr. Pathol. 2008, 99, 123–128. [CrossRef] [PubMed]

21. Lewis, L.C.; Berry, E.C.; Obrycki, J.J.; Bing, L.A. Aptness of insecticides (Bacillus thuringiensis and carbofuran) with endophytic Beauveria bassiana, in suppressing larval populations of the European corn borer. Agric. Ecosyst. Environ. 1996, 57, 27–34. [CrossRef]

22. Narciso, J.; Ormskirk, M.; Jones, S.; Rolston, P.; Moran-Diez, M.E.; Hurst, M.; Brookes, J.; Glare, T. Using multiple insecticidal microbial agents against diamondback moth larvae - does it increase toxicity? N. Z. J. Agric. Res. 2019. [CrossRef]

23. Pauli, G.; Mascarin, G.M.; Eilenberg, J.; Delalibera, I., Jr. Within-Host Competition between Two Entomopathogenic Fungi and a Granulovirus in Diatraea saccharalis (Lepidoptera: Crambidae). Insects 2018, 9, 64. [CrossRef]

24. Tarasco, E.; Santiago Alvarez, C.; Triggiani, O.; Quesada Moraga, E. Laboratory studies on the competition for insect haemocoel between Beauveria bassiana and Steinernema ichnusae recovered in the same ecological niche. Biocontrol Sci. Technol. 2011, 21, 693–704. [CrossRef]

25. Shapiro-Ilan, D.I.; Jackson, M.; Reilly, C.C.; Hotchkiss, M.W. Effects of combining an entomopathogenic fungus or bacterium with entomopathogenic nematodes on mortality of Curculio caryae (Coleoptera: Curculionidae). Biol. Control 2004, 30, 119–126. [CrossRef]

26. Ansari, M.A.; Shah, F.A.; Butt, T.M. The entomopathogenic nematode Steinernema kraussei and Metarhizium anisopliae work synergistically in controlling overwintering larvae of the black vine weevil, Otiorhynchus sulcatus, in strawberry growbags. Biocontrol Sci. Technol. 2010, 20, 99–105. [CrossRef]

27. Quintela, E.D.; McCoy, C.W. Synergistic effect of imidacloprid and two entomopathogenic fungi on the behavior and survival of larvae of Diaprepes abbreviatus (Coleoptera: Curculionidae) in soil. J. Econ. Entomol. 1998, 91, 110–122. [CrossRef]

28. Purwar, J.P.; Sachan, G.C. Synergistic effect of entomogenous fungi on some insecticides against Bihar hairy caterpillar Spilarctia obliqua (Lepidoptera: Arctiidae). Microbiol. Res. 2006, 161, 38–42. [CrossRef]

29. Santos, A.V.; de Oliveira, B.L.; Samuels, R.I. Selection of entomopathogenic fungi for use in combination with sub-lethal doses of imidacloprid: Perspectives for the control of the leaf-cutting ant Atta sexdensrubropilosa Forel (Hymenoptera: Formicidae). Mycopathologia 2007, 163, 233–240. [CrossRef]

30. Farenhorst, M.; Knols, B.G.; Thomas, M.B.; Howard, A.F.; Takken, W.; Rowland, M.; N’Guessan, R. Synergy in efficacy of fungal entomopathogens and permethrin against West African insecticide-resistant Anopheles gambiae mosquitoes. PLoS ONE 2010, 5, e12081. [CrossRef]
31. Uma Maheswara Rao, C.; Uma Devi, K.; Akbar Ali Khan, P. Effect of combination treatment with entomopathogenic fungi Beauveria bassiana and Nomuraea rileyi (Hypocreales) on Spodoptera litura (Lepidoptera: Noctuidae). Biocontrol Sci. Technol. 2006, 16, 221–232. [CrossRef]

32. Inglis, G.D.; Johnson, D.L.; Cheng, K.J.; Goettel, M.S. Use of pathogen combinations to overcome the constraints of temperature on entomopathogenic hyphomycetes against grasshoppers. Biol. Control 1997, 8, 143–152. [CrossRef]

33. Dakhel, W.H.; Latchininsky, A.V.; Jaronski, S.T. Efficacy of two entomopathogenic fungi, Metarhizium brunneum, strain F52 alone and combined with Paramesna locustae against the migratory grasshopper, Melanoplus sanguinipes, under laboratory and greenhouse conditions. Insects 2019, 10, 94. [CrossRef]

34. Mora, M.A.E.; Castilho, A.M.C.; Fraga, M.E. Classification and infection mechanism of entomopathogenic fungi. Arq. Inst. Biol. 2017, 84, e0552015. [CrossRef]

35. Gillespie, A.T.; Claydon, N. The use of entomogenous fungi for pest control and the role of toxins in pathogenesis. Pestic. Sci. 1989, 27, 203–215. [CrossRef]

36. Valverde-Garcia, P.; Santiag-Alvarez, C.; Thomas, M.B.; Garrido-Jurado, I.; Quesada-Moraga, E. Comparative effects of temperature and thermoregulation on candidate strains of entomopathogenic fungi for Moroccan locust Docistaurus mauruconnus control. BioControl 2018, 63, 819–831. [CrossRef]

37. Valverde-Garcia, P.; Santiag-Alvarez, C.; Thomas, M.B.; Maranhao, E.A.; Garrido-Jurado, I.; Quesada-Moraga, E. Sublethal effects of mixed fungal infections on the Moroccan locust, Docistaurus mauruconnus. J. Invertebr. Pathol. 2019, 161, 61–69. [CrossRef] [PubMed]

38. Gurulingappa, P.; Sword, G.A.; Murdoch, G.; McGee, P.A. Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biol. Control 2010, 55, 34–41. [CrossRef]

39. Goettel, M.S.; Inglis, G.D. Fungi: Hyphomycetes. Manual of Techniques in Insect Pathology; Academic Press: San Diego, CA, USA, 1997.

40. Robertson, J.L.; Preisler, H.K. Pesticide Bioassays with Arthropods; CRC: Boca Raton, FL, USA, 1992.

41. Diaz, M.P.; Macias, A.F.; Navarro, S.R.; de la Torres, M. Mechanism of action of entomopathogenic fungi. Interciencia 2006, 31, 856–860.

42. Adane, K.; Moore, D.; Archer, S.A. Preliminary studies on the use of Beauveria bassiana to control Sitophilus zeamais (Coleoptera: Curculionidae) in the laboratory. J. Stored Prod. Res. 1996, 32, 105–113. [CrossRef]

43. Batta, Y.A. Efficacy of two species of entomopathogenic fungi against the stored-grain pest, Sitophilus granarius L. (Curculionidae: Coleoptera), via oral ingestion. Egypt. J. Biol. Pest Control 2018, 28, 44. [CrossRef]

44. Sugandi, R.; Awakanvar, J.S. The pathogenicity of entomopathogenic fungus, Metarhizium anisopliae (Metschinkoff) Sorokin against three major storage grain beetles. J. Exp. Zool. 2014, 17, 775–780.

45. Mietkiewski, R.; Gorski, R. Growth of selected entomopathogenic fungi species and isolates on media containing insecticides. Acta Mycol. 1995, 30, 27–33. [CrossRef]

46. Staves, P.A.; Knell, R.J. Virulence and Competitiveness: Testing the relationship between inter- and intraspecific mixed infections. Evolution 2009, 64, 2643–2652. [CrossRef]

47. Bauer, L.S.; Miller, D.L.; Maddox, J.V.; McManus, M.L. Interactions between a Nosema sp. (Microspora: Nosematidae) and nuclear polyhedrosis virus infecting the gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae). J. Invertebr. Pathol. 1998, 74, 147–153. [CrossRef] [PubMed]

48. Thomas, M.B.; Watson, E.L.; Valverde-Garcia, P. Mixed infections and insect pathogen interactions. Ecol. Lett. 2003, 6, 183–188. [CrossRef]

49. Cedergreen, N. Quantifying synergy: A systematic review of mixture toxicity studies within environmental toxicology. PLoS ONE 2014, 9, e96580. [CrossRef] [PubMed]

50. Roell, K.R.; Reif, D.M.; Motzinger-Reif, A.A. An introduction to terminology and methodology of chemical synergy—Perspectives from across Disciplines. Front. Pharmacol. 2017, 8, 158. [CrossRef] [PubMed]