Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery

M.O. Clarkson¹, R.A. Wood¹, S.W. Poulton², S. Richoz³, R.J. Newton², S.A. Kasemann⁴, F. Bowyer¹ & L. Krystyn⁵

The end-Permian mass extinction, ~252 million years ago, is notable for a complex recovery period of ~5 Myr. Widespread euxinic (anoxic and sulfidic) oceanic conditions have been proposed as both extinction mechanism and explanation for the protracted recovery period, yet the vertical distribution of anoxia in the water column and its temporal dynamics through this time period are poorly constrained. Here we utilize Fe–S–C systematics integrated with palaeontological observations to reconstruct a complete ocean redox history for the Late Permian to Early Triassic, using multiple sections across a shelf-to-basin transect on the Arabian Margin (Neo-Tethyan Ocean). In contrast to elsewhere, we show that anoxic non-sulfidic (ferruginous), rather than euxinic, conditions were prevalent in the Neo-Tethys. The Arabian Margin record demonstrates the repeated expansion of ferruginous conditions with the distal slope being the focus of anoxia at these times, as well as short-lived episodes of oxia that supported diverse biota.

¹School of GeoSciences, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK. ²School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK. ³Institute of Earth Sciences, NAWI Graz, University of Graz, Heinrichstraße 26, 8010 Graz, Austria. ⁴Department of Geosciences and MARUM-Center for Marine Environmental Sciences, University of Bremen, 28334 Bremen, Germany. ⁵Institute for Palaeontology, Vienna University, Althanstrasse 14, 1090 Vienna, Austria. Correspondence and requests for materials should be addressed to M.O.C. (email: matthew.clarkson@otago.ac.nz).
Panzeroid oceanic anoxic events (OAEs) represent extreme periods of Earth history that record major disturbances to the carbon cycle. OAEs typify greenhouse climate states and have played a major role in dictating evolution and extinction events. In particular, eucinic (anoxic and sulfidic) water column conditions have been implicated as a major driver for the end-Permian mass extinction, which represents the greatest mass extinction of the Phanerozoic with a uniquely protracted and complex ~5 Myr recovery period. Once described as a ‘superanoxic’ event that lasted for ~20 Myr (ref. 8), our understanding of the Permian Triassic interval has since been refined by evidence for changes in the spatial and temporal distribution, and intensity, of anoxia. These studies highlight recurrent anoxia that has an unresolved and complex relationship to both evolutionary dynamics and the global carbon cycle.

Refined techniques for identifying the precise nature of ocean redox conditions have increasingly highlighted the prevalence of anoxic non-sulfidic (ferruginous conditions) through Earth history, including during Phanerozoic periods of anoxia. However, despite suggestions of the extreme redox state of anoxia, no redox studies have yet employed methods capable of distinguishing anoxic ferruginous conditions from eucinic conditions across the full Permo-Triassic extinction and recovery interval. This is critical as the precise nature of water column chemistry during periods of anoxia has profound implications for the evolution of the biosphere and for feedbacks associated with the biogeochemical cycling of elements such as nitrogen and phosphorus in the sediment and water column. In addition, no study has yet applied redox proxies of any kind to produce a vertically resolved record of the entire water column, even though this is crucial for understanding anoxic events. Without such records, a detailed causal understanding of the relationship between anoxia, euxinia, extinction events and wider carbon cycle processes is not possible.

To address this, we have undertaken Fe-speciation, Fe/Al and pyrite S-isotope analyses of a suite of sediments covering a shelf to basin transect across the Arabian Margin (Fig. 1), in the central Neo-Tethyan Ocean. Our sites include shelf carbonates, continental slope sediments (Sumeini Group), basinal deposits (Hawasina Basin) and offshore highs (Ba’id). Detailed section descriptions are given in Supplementary Note 1. Our samples primarily span from the Late Permian (~260 Ma), across the extinction interval (EI) and the Permian Triassic Boundary (PTB), to the Late Triassic. This unique depth transect allows for a particularly well-resolved vertical and temporal record of regional redox dynamics within an established carbon isotope and biostratigraphic framework. We identify a temporally and spatially dynamic redox system that shows expansions of anoxic ferruginous conditions across the Arabian Margin. Expansions occur at the EI, the Dienerian/Smithian boundary and during the Smithian/Spathian boundary, with the distal slope, rather than the deep basin, being the focus of anoxia at these times. Our data also demonstrate short-lived interludes of oxic water column conditions, which in contrast to ferruginous episodes are characterized by a diverse fossil record, suggesting that biotic recovery in the Neo-Tethys was rapid during these oxygenation episodes.

Results

Fe systematics. Fe-speciation is a widely utilized proxy for regional water column redox conditions, being able to differentiate oxic from anoxic ferruginous and euxinic conditions. This sequential chemical extraction technique gives a measure of highly reactive Fe to total Fe (FeHR/FeT). FeHR refers to Fe minerals that are considered highly reactive towards biological and abiological reduction under anoxic conditions, and includes carbonate-associated Fe (Fecarb; for example, ankerite and siderite), ferric (oxyhydr)oxides (Femag; for example, goethite and haematite), magnetite Fe (Femag) and Fe sulfide minerals (FePS; for example, makinawite and pyrite).

Figure 1 | Geological information. (a) Late Permian palaeogeographic reconstruction with the location of the Arabian Margin marked. (b) Simplified geological map of Oman and UAE showing site localities; scale bar, 50 km; (1) Saiq Plateau; platform; (2) Wasit Block; distal platform; (3) Sumeini; middle slope; (4) Wadi Wasit South and Radio Tower; distal slope; (5) Ba’id; seamount; (6) Buday’ah; deep basin. (c) Schematic basin cross-section for the Dienerian (not to scale) showing estimated palaeo-depths (based on facies) and site numbers as in b. See Supplementary Note 1 for detailed site descriptions.
Fe$_{HR}$/Fe$_T$ ratios of <0.22 provide robust evidence for deposition from an oxic water column13,28. Anoxic water column conditions are identified when Fe$_{HR}$/Fe$_T$ ratios are >0.38, which result from the additional water column formation of either Fe sulfides under euxinic conditions, or non-sulfidized Fe minerals under ferruginous conditions29,30. Fe$_{Py}$/Fe$_{HR}$ ratios can then distinguish ferruginous ($<0.7–0.8$) from euxinic ($>0.7–0.8$) conditions13,28,31,32. Values of Fe$_{HR}$/Fe$_T$ between 0.22 and 0.38 are somewhat equivocal, and may represent either oxic or anoxic deposition28,33,34. In the latter case, diagenetic transfer of Fe$_{HR}$ minerals to Fe-rich clay minerals, or rapid sedimentation, can diminish Fe$_{HR}$ enrichments. During diagenetic transformation of Fe$_{HR}$ to unreactive Fe minerals (Fe$_{U}$), the total Fe enrichment is still preserved and hence we also utilize Fe/Al ratios to provide further information on water column redox conditions18,33, where oxic marine sediments have average ratios of 0.55 \pm 0.11 (refs 34,35). Dilution of Fe$_{HR}$ by rapid sedimentation does not appear to have affected our samples (Supplementary Note 2). Oxidative weathering of samples could potentially mask Fe$_{Py}$ enrichments but would not alter Fe/Al ratios. The high proportion of Fe$_{Alb}$ in our samples, however, argues against this process significantly affecting our results (Supplementary Note 3).

Fe$_{Py}$/Fe$_{HR}$ ratios of <0.38 provide clear evidence for deposition from an oxic water column13,28. Anoxic water column conditions are identified when Fe$_{Py}$/Fe$_{HR}$ ratios are >0.38, which result from the additional water column formation of either Fe sulfides under euxinic conditions, or non-sulfidized Fe minerals under ferruginous conditions29,30. Fe$_{Py}$/Fe$_{HR}$ ratios can then distinguish ferruginous ($<0.7–0.8$) from euxinic ($>0.7–0.8$) conditions13,28,31,32. Values of Fe$_{HR}$/Fe$_T$ between 0.22 and 0.38 are somewhat equivocal, and may represent either oxic or anoxic deposition28,33,34. In the latter case, diagenetic transfer of Fe$_{HR}$ minerals to Fe-rich clay minerals, or rapid sedimentation, can diminish Fe$_{HR}$ enrichments. During diagenetic transformation of Fe$_{HR}$ to unreactive Fe minerals (Fe$_{U}$), the total Fe enrichment is still preserved and hence we also utilize Fe/Al ratios to provide further information on water column redox conditions18,33, where oxic marine sediments have average ratios of 0.55 \pm 0.11 (refs 34,35). Dilution of Fe$_{HR}$ by rapid sedimentation does not appear to have affected our samples (Supplementary Note 2). Oxidative weathering of samples could potentially mask Fe$_{Py}$ enrichments but would not alter Fe/Al ratios. The high proportion of Fe$_{Alb}$ in our samples, however, argues against this process significantly affecting our results (Supplementary Note 3).

Fe$_{Py}$/Fe$_{HR}$ has been traditionally applied to fine-grained siliciclastic rocks, and 60% of the samples we utilize here for Fe-speciation are siliciclastics. In addition, a recent assessment has demonstrated the robust nature of the proxy in carbonate-rich sediments, providing Fe$_{T}$ is >0.5 wt% (ref. 35). When Fe$_{T}$ is <0.5 wt%, carbonate samples have greater potential to be spuriously enriched in Fe$_{HR}$ from processes other than the water column enrichments that arise under anoxic conditions. This potential effect is apparent in our samples from the distribution of Fe$_{HR}$/Fe$_T$ against Fe$_{T}$ where samples with Fe$_{T}$ <0.5 wt% almost exclusively give Fe$_{HR}$/Fe$_T$ ratios >0.38 (Fig. 2), despite independent evidence of oxygenation from bioturbation and benthi c fauna associated with some samples (Supplementary Figs 1–7). Hence, in the present study, we do not utilize Fe-speciation or Fe/Al data for samples with <0.5 wt% Fe$_{T}$. Instead, for these samples, we rely on palaeontological information to identify whether oxic water column conditions were likely prevalent. In support of our approach, interbedded carbonates and siliciclastics give consistent redox interpretations in all cases (Figs 2 and 3; Supplementary Figs 1–7).

The two indicators of anoxia generally show consistent results (Fig. 3; Supplementary Figs 1–7; Supplementary Tables 1–7); however, across some intervals, Fe/Al ratios are relatively low, which contrasts with clear Fe$_{HR}$/Fe$_T$ enrichments (starred intervals, Fig. 3). For example, this pattern is seen in the Late Permian and mid-Dienerian of the deep basin, around the anoxic episode at the EI in the mid-slope, at the end-Dienerian in the platform marls and shales, and in both slope sites from the mid-to-late Smithian in laminated carbonates. These data are unlikely to reflect an addition of Fe$_{HR}$ during deep burial dolomitization, as such samples were avoided in this study (Supplementary Note 4). It is also unlikely that these limited samples reflect deposition under suboxic conditions or Fe$_{HR}$ dilution due to high sedimentation rates, as this would affect both Fe/Al and Fe$_{HR}$/Fe$_T$ ratios in the same manner. However, Fe/Al tends to suffer from greater inherent variability due to local compositional variability in the source rocks, and therefore using a local oxic baseline is recommended where possible18,33. A major transgression during the mid-to-late Permian created extensive carbonate deposition landward of our sites20. Erosion during the Early Triassic then penetrated down to the mid-Permian deposits only20. Thus, the hinterland lithogenic source of Fe for the Arabian Margin was primarily limited to low Fe carbonate sediments. Samples with elevated Fe$_{HR}$/Fe$_T$ and relatively low (or borderline) Fe/Al ratios may then indeed reflect anoxic conditions, but Fe enrichments were either not sufficient to significantly increase Fe/Al ratios above the natural variability, or the regional oxic Fe/Al baseline was lower than the global average.

Water column redox conditions. Anoxic water column deposition is identified by elevated Fe$_{HR}$/Fe$_T$ and Fe/Al ratios at three main time intervals across the Arabian Margin transect: the Changhsingian and overlying EI, and the Dienerian–Smithian–Smithian–Spa thian boundary intervals. There is strong evidence for more persistent anoxia, from consistently elevated Fe$_{HR}$/Fe$_T$ and Fe/Al ratios, in the distal slope setting for much of the Early Triassic, while significant spatial and temporal variability is seen elsewhere in the basin. In addition, low Fe$_{HR}$/Fe$_T$ ratios throughout the succession (Fig. 3) demonstrate that anoxic intervals were ferruginous, with no evidence for the pyrite enrichments that would be prevalent under euxinic conditions.

In the Late Permian, high Fe$_{HR}$/Fe$_T$ and low Fe$_{Py}$/Fe$_{HR}$ ratios are first recorded in deep basin shales during the Late Capitanian to Early Changhsingian (site 6, Fig. 3; Supplementary Fig. 7) and persisted until the end of the EI. The lowest samples here are radiolarian shales, a lithology that has not been tested rigorously for Fe-based redox proxies and thus the possibility of anoxia in the Capitanian to Wuchiapingian cannot be confirmed. Anoxic conditions appear only intermittently in mid-slope settings in the latest Changhsingian (C. changxingensis zone), where Fe$_{HR}$-enriched shales alternate with bioturbated limestones. Anoxia was then persistent throughout the EI until at least the I. isarcica zone (site 3, Fig. 3, Supplementary Fig. 2 and 3), although the onset of extinction is not preserved due to a minor unconformity.

In the Griesbachian (within the I. isarcica zone), Fe-speciation and Fe/Al data suggest that oxygenated conditions were present in the deepest basin (Fig. 3). At this time, the middle slope sediments show intense bioturbation (75–80 m, Supplementary Fig. 3), while other Arabian platform areas (site 2) display a highly diverse assemblage of crinoids, gastropods and bivalves that are not seen outside of the Neo-Tethys until the Spathian36.

Figure 2 | Distribution of Fe-speciation data as a function of total Fe.

Samples are coloured by lithology (black = siliciclastic, blue = carbonate). Dashed lines are at 0.22 and 0.38, marking the interpretive thresholds for Fe-speciation. Carbonate samples with Fe$_{T}$<0.5 wt% (open blue circles) have Fe$_{HR}$/Fe$_T$ ratios almost exclusively >0.38, suggesting spurious enrichments of Fe$_{SR}$ similar to modern sediments35. Fe$_{T}$ and Fe-speciation data for these samples cannot be interpreted. As Fe$_{T}$ decreases there may also be a decrease in precision, leading to excessively high Fe$_{HR}$/Fe$_T$ values >1. Extreme values have therefore been removed from the data set.
Together, this suggests a period of stable water column oxygenation for the entire region, when the Arabian Margin appears to have acted as a site for rapid biotic recovery. Records from the distal slope setting (site 4) begin in the Dienerian and suggest largely persistent anoxic ferruginous conditions (Fig. 3), with high FeHR/FeT ratios and no evidence of bioturbation throughout the Early Triassic. During the Dienerian, the mid-slope sediments record a single FeHR enrichment in laminated sediments followed by a restricted interval of vermicular limestones that ended around the Dienerian/Smithian boundary. The limited degree of bioturbation preserved by vermicular limestones indicates an unstable and rapidly fluctuating environment. Together, these data suggest an environment that was predominantly anoxic on the distal slope, from at least the Dienerian, but which fluctuated between anoxic and oxic elsewhere (Fig. 3). The low FeT sediments of the platform show bioturbation until the end-Dienerian, suggesting this setting remained oxygenated. This oxygenated period ended with an increase in FeHR/FeT, with low FePy/FeHR, indicating a distinct period of ferruginous conditions in shallow waters; the only occurrence of this in the Arabian Margin record. Unfortunately, the mid-slope section contains minor
unconformities and the lower sample resolution limits correlation of this anoxic pulse across the margin.

During the Smithian, the slope records show subtle variability in redox conditions. For the mid-slope in the early to mid-Smithian there is a single FeT-enriched laminated carbonate (Fig. 3; Supplementary Figs 2 and 3) followed by low FeT samples with rare bioturbation. Corresponding distal-slope sediments also have low FeT (56–78 m; Supplementary Fig. 4), precluding Fe proxy evaluation, but nevertheless bioturbation is absent. A number of ferruginous samples (without bioturbation) are then present in the mid-slope during the mid-Smithian, followed again by low FeT samples into the late Smithian (0–210 m; Supplementary Fig. 3). These low FeT samples correspond to an increased bioturbation frequency and presence of small foraminifera. Interestingly, however, ichnodiversity remained low and was restricted to shallow tiers within the sediment (Fig. 3), suggesting only temporary periods of oxygenation. Oxidation is then recorded briefly by low FeHR/FeT and Fe/Al ratios in shales of the latest-Smithian (220–230 m; Supplementary Fig. 3). Integrating Fe-speciation data with paleontological observations across these two sites suggest rapidly fluctuating oxygenation of the mid-slope. This ceased abruptly near the Smithian/Spathian boundary, where both Fe-speciation and Fe/Al show clear enrichments, recording a return to anoxic conditions in the mid-slope, while anoxia continued in the distal slope. Conversely, platform records show low FeT values at the Smithian/Spathian boundary (Fig. 3; Supplementary Fig. 1), and breccia deposits in the mid-slope contain disarticulated crinoid ossicles, together suggesting that oxygenated conditions were present, at least locally, in shallower waters. This brief anoxic episode was followed by a return of oxygenation in the mid-slope during the Spathian, with FeHR/FeT and Fe/Al returning to lower values.

The deep basin is more difficult to interpret as age uncertainties make correlation of these events problematic, but the record suggests fluctuating conditions throughout the Dienerian to Smithian, similar to the mid-slope site. The seamount section (site 5; Fig. 3) gives unique insight into the evolution of water column anoxia by capturing the mid-depth water column signature. The unusual carbonate fabrics preserved here during the Smithian (abiotic calcite spar, for example, Frutexites and Stromatactis) are indicators of atypical ocean chemistry during the Early Triassic. It has been suggested that the presence of these fabrics at this isolated locality may be linked to its position within a fluctuating chemocline and resulting variability in calcium carbonate saturation state. Low FeT contents of these carbonate samples (Fig. 3; Supplementary Fig. 6) prevent interpretation of Fe-speciation data and thus the direct presence of water column anoxia cannot be confirmed. However, the close proximity of the seamount to a fluctuating chemocline is consistent with dynamic anoxia recorded in the adjacent slope environment.

Sulfur isotopes. Our δ34Spyrite data range from −27.3‰ to +32.5‰ for anoxic samples (Fig. 4), with the data skewed towards heavier values. Under euxinic conditions, a narrow range in δ34Spy is often found in modern and ancient environments, due to sulfide production in a well-mixed water column. In contrast, diagenetic pyrite formation generally exhibits a wider range in δ34Spy consistent with the magnitude of fractionations commonly found through bacterial sulfate reduction during early diagenesis. In comparison, isotopic records of Early Triassic seawater sulfate (from carbonate-associated sulfur; CAS) are highly positive (Fig. 4), ranging between −0.7 and +44.1‰ (refs 40,41). The considerable overlap between the seawater sulfate and pyrite sulfur isotopic records is consistent with a relatively low seawater sulfate reservoir.

Discussion

Previous studies have identified both deeper water (using framroid size distributions) and photic zone (using biomarkers) euxinia periodically through the Late Permian and Early Triassic. Euxinia appears particularly prevalent in the Palaeo-Tethys and the Panthalassic Oceans, with no conclusive reports for the Central Neo-Tethys. By contrast, all anoxic data presented here record low FeHR/FeT ratios, suggesting a predominantly ferruginous rather than euxinic water column. Fe-shuttling within a suboxic oxygen minimum zone (OMZ) could potentially create similar local enrichments in Fe-oxides, resulting in high FeHR/FeT, Fe/Al and low FePR/FeHR ratios. In this scenario, the reductive mobilization of Fe (II) under suboxic conditions may lead to depletion of Fe in the sediment underlying the OMZ itself (that is, Fe/Al below the lithogenic baseline combined with low FeHR/FeT ratios). The mobilized Fe would then be transported within the suboxic OMZ and sequestered at the lower oxycline, leading to an Feenrichment in bioturbated sediments below the OMZ. This is not seen in our Permo-Triassic Arabian Margin record where the greatest enrichments of FeHR/FeT are in the distal slope environment, where bioturbation is completely absent. Also, if the distal slope site were suboxic, we would expect depletions of FeHR, not enrichments, as these sediments would act as an Fe-II source. Our data are therefore more consistent with distal slope anoxic ferruginous conditions, which expanded and contracted through time, leading to occasional Fe enrichments in shallower and deeper settings.

Our Fe-speciation data suggest an environment characterized by low pyrite burial, and sulfur isotopes, both from the δ34Spy presented here and previously published δ34SCAS data, are consistent with low sulfate concentrations in the water column during the PTB and the Early Triassic. The increase in bedrock weathering intensity in the Early Triassic would have liberated some sulfate from the continent, implying that the low-sulfate ocean state was a result of high sulfate removal, potentially through substantial pyrite deposition under euxinic conditions that are seen elsewhere, augmented via the large-scale deposition of marine evaporites containing disproportionately large amounts of sulfate in the Late Permian and earliest Triassic. In addition to low ocean sulfate concentrations, the proximity of the Arabian Margin to the...
open ocean, and a limited flux of organic carbon, may have prevented conditions becoming sufficiently reducing for sulfide to accumulate in the water column, which is consistent with the absence of organic-rich black shales in the Arabian sites (Supplementary Figs 1–7).

The precarious balance between ferruginous and euxinic chemical states is dictated by the relative oceanic input fluxes of FeHR and sulfate13. Driven by extreme temperatures49, silicate weathering is thought to have intensified during this time46,50, likely leading to increased release of FeHR from parent silicate minerals28 and thus a disproportionate increase in the flux of FeHR relative to sulfate. In addition, under the arid climate of the Permo-Triassic, dust production, and therefore the aeolian Fe flux, would also be higher51, which may have been further exacerbated at the PTB by the loss of terrestrial vegetation that led to soil destabilization52. On a global scale, these continental sources represent the greatest potential flux of FeHR13,28; however, on a more regional scale, hydrothermal inputs could also be important. There is indeed evidence that the Arabian Margin was in close proximity to a hydrothermal source of Fe(II), both from mid-Permian basalts underlying the deep basin sediments54 and from a spreading centre in the Neo-Tethys53. Temporally limited deep basin anoxia, identified here, provides a plausible mechanism for the transport of this Fe(II) during the Late Permian and occasionally in the Early Triassic. Regardless of the Fe source, anoxic conditions would still be required to explain the observed FeHR enrichments across the shelf-to-basin transect. Thus there are numerous reasons why the FeHR-to-sulfate ratio of the oceans may have been skewed in favour of ferruginous conditions and we expect a combination of mechanisms to be important.

The presence of deep water anoxia on the Late Permian Arabian Margin (Fig. 3) suggests that the oceans were already primed for a later expansion of anoxic conditions and subsequent environmental crisis. This could represent the interplay of poor oxygenation due to sluggish circulation and high oxygen consumption during organic matter decay in a nutrient rich, highly productive Late Permian ocean54,55. Moving upwards to the EI itself, the mid-slope anoxic episode recorded here corresponds to the negative PTB carbon isotope excursion, a record that is dominated by a flux of isotopically light carbon to the atmosphere from a combination of methane, volcanism or a decrease in the removal of light carbon resulting from the terrestrial mass mortality56,57. This observation is consistent with numerous sections worldwide39,46,58,59, whereby slope and shallow water anoxia is thought to have been driven by nutrient loading from either a weathering pulse, increased soil erosion at the PTB46,58 (Fig. 5), or the upwelling of deep water anoxia/euxinia60.

During the protracted recovery period, our new data are consistent with previous suggestions for the episodic nature of anoxic events4,10,11. For the first time, however, we can also identify that the maximum extent of anoxia across the Arabian Margin is consistently associated with the globally recorded positive carbon isotope excursions (CIEs; Fig. 5) at both the Dienerian/Smithian boundary (shallow water anoxia) and the
Smithian/Spathian boundary (mid-slope anoxia). Unfortunately, our records do not extend to the positive CIE of the Early/Middle Triassic boundary, but we would predict a further redevelopment of anoxia at this point. Although some published records show this relationship, data for the Early Triassic provide mixed observations, often with no consistent pattern of anoxia or correlation with the negative CIEs. The relationship between redox evolution and the δ13C record has implications for the driving mechanisms of anoxia and the role of internal feedback versus external forcing processes. Some of the differences in redox records will reflect palaeogeography and palaeodepth variations, where only a snapshot of the complex redox structure has been seen previously, in comparison with the vertical resolution afforded by the Arabian Margin sites. We also expect the lack of global consistency to be due to limitations in the redox proxies previously used, as they have been unable to identify anoxic ferruginous conditions.

The end-Dienerian event coincides with peak Early Triassic sedimentation rates, suggesting that high weathering rates and nutrient influxes could have driven the water column anoxic. In contrast, the Smithian/Spathian boundary event occurred during an apparent decrease in global weathering rates. The event is, however, closely associated with decreasing temperatures after the Late Smithian equatorial thermal anoxic events and therefore the timing of biotic recovery after the Late Triassic oceans, as well as the local supply of Fe₃O₄ and regional sulfate drawdown. The implications of the dominance of ferruginous conditions during this complex event require further investigation, but these data establish an important link between the precise chemical state of anoxic events and both carbon cycle stability and biotic resilience.

Methods
Ferruginous and Fe/Al. Weathered surfaces were removed from rock samples using a diamond-tipped saw. Samples were then fragmented and powdered using a jaw crusher and a TEMA mill with tungsten carbide barrel. Fe-speciation extractions were performed according to the calibrated extraction procedure, whereby Fe₃O₄ was extracted with Na-acetate at pH 4.5 and 50°C for 48 h, Fe₃O₄ was extracted via Na-dithionite at pH 4.8 for 2 h, and Fe₃O₄ was extracted with ammonium oxide for 6 h. Pyrite extractions were performed on washed samples (8 h at 550°C) using HNO₃–HF–HClO₄. Boric acid was used to prevent the formation of Al complexes, allowing Fe/Al to be determined on the same extracts. All Fe concentrations were measured via atomic absorption spectrometry and replicate extractions gave a relative standard deviation (RSD) of <3% for all steps. Pyrite Fe was determined stoichiometrically by weight from precipitated Ag₂S after chromous chloride distillation. Pyrite Fe/Al ratios were measured on the total extracts using optical emission spectrometry, with replicate extractions giving a RSD of <1.7%.

Pyrite sulfur isotopes. Pyrite S-isotope compositions (δ34Spyrite) are also used to give further insight into sulfur cycling and to provide additional support for water column redox interpretations. δ34Spyrite analyses were performed on the Ag₂S precipitate produced from the chromous chloride distillation, using an Elementar Pyrocube coupled to an Isoprime stable isotope mass spectrometer.

Carbon isotopes. All measurements were carried out on a Thermo Finnigan GASBENCH II linked online to a Thermo Finnigan DELTA V 94 isotope ratio mass spectrometer at the Museum fuer Naturkunde Berlin, Germany. Isotope ratios are reported in δ notation (‰) relative to the Vienna Pee Dee Belemnite. The analytical reproducibility of δ13C and δ18O values is generally better than ±0.2‰ (2 s.d.)

Data availability. All data are provided in the Supplementary Information.

References
1. Jenkyns, H. C. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst. 11, Q03004 (2010).
2. Knoll, A. H., Barnbach, R. K., Payne, J. L., Pruss, S. & Fischer, W. W. Paleophytoplankton and end-Permian mass extinction. Earth Planet. Sci. Lett. 256, 295–313 (2007).
3. Kump, L. R., Pawlov, A. & Arthur, M. A. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxic. Geology 33, 397–400 (2005).
4. Wignall, P. B. et al. An 80 million year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino-Tamba terrane, SW Japan, and the origin of four mass extinctions. Global Planet. Change 71, 109–123 (2010).
5. Wignall, P. B. & Twitchett, R. J. Ocean anoxia and the end Permian mass extinction. Science 272, 1155–1158 (1996).
6. Grice, K. et al. Photic zone euxinia during the Permian-Triassic superoxic event. Science 307, 706–709 (2005).
7. Erwin, D. H. The Permian-Triassic Extinction. Nature 367, 231–236 (1994).
8. Czerwinski, Y. Permian-Triassic superoceanic anoxic and stratified superocean records from deep sea. Science 276, 235–238 (1997).
9. Algeo, T. J. et al. Changes in productivity and redox conditions in the Panthalassic Ocean during the latest Permian. Geology 38, 187–190 (2010).
ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12236

10. Feng, Q. & Algeo, T. Evolution of oceanic redox conditions during the Permio-Triassic: evidence from radiolarian deepwater facies. Earth Sci. Rev. 137, 245–254 (2014).
11. Grady, S. E., Beauchamp, B., Embry, A. & Snel, H. Recurrent Early Triassic ocean anoxia. Geochim. Geophys. Geosyst. 41, 175–178 (2013).
12. Poulton, S. W. & Canfield, D. E. Development of a sequential extraction procedure for iron: implications for iron partitioning in continually derived particulates. Chem. Geol. 214, 209–221 (2005).
13. Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).
14. Marz, C. et al. Redox sensitivity of Ψ cycling during marine black shale formation: dynamics of sulfidic and anoxic, non-sulfidic bottom waters. Geochim. Cosmochim. Acta 72, 3703–3717 (2008).
15. Poulton, S. W. et al. A continental-weathering control on orbitally driven redox-nutrient cycling during Cretaceous Oceanic Anoxic Event 2. Geology 43, 963–966 (2015).
16. Boyle, R. A. et al. Nitrogen cycle feedbacks as a control on euxinia in the mid-Proterozoic ocean. Nat. Commun. 4, 1533 (2013).
17. Kendall, B. et al. Pervasive oxygenation along late Archaean ocean margins. Nature Geoscience 3, 647–652 (2010).
18. Poulton, S. W., Fralick, P. W. & Canfield, D. E. Spatial variability in oceanic redox structure 1.8 billion years ago. Mem. Geol. (Lausanne) 43, 386–490 (2010).
19. Insalaco, E. et al. Upper Dalian Member and Kangan Formation between the Zagros Mountains and offshore Fars, Iran: depositional system, biostratigraphy and stratigraphic architecture. Geobabli 11, 75–176 (2006).
20. Richoz, S. et al. Permio-Triassic Sequence of the Arabian Plate (ed. M. Poppelreiter) (EAGE Special Volume, 2014).
21. Clarkson, M. O. et al. A new high-resolution delta C-13 record for the Early Triassic: insights from the Arabian platform. Gondwana Res. 24, 233–242 (2015).
22. Watts, K. F. Triassic carbonate submarine fans along the Arabian platform margin, Sumeini group, Oman. Sedimentology 35, 43–71 (1988).
23. Richoz, S. et al. IGCP 572, 2nd field workshop (eds A. Aud & M. Bernecker) 79–100 (GUtech, 2010).
24. Baud, A. et al. The Budayah Formation, Sultanate of Oman: A Middle Permian to Early Triassic oceanic record of the Neotethys and the late Indian microsphere bloom. J. Asian Earth Sci. 43, 130–144 (2012).
25. Woods, A. D. & Baud, A. Anachronistic facies from a drowned Lower Triassic carbonate platform: lower member of the Alwa Formation (Ba’d Exotic, Syria). Geol. Surv. Jeddah, 209 (2009).
26. Pillevuit, A., Marcoux, J., Stampfli, G. & Baud, A. The Oman exotico: a key to the understanding of the Neotiyan geodynamic evolution. Geol. Acta 10, 209–237 (1998).
27. Richoz, S. Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de quelques localités de la Néotéthys (Turquie, Oman et Iran). Mem. Geol. (Lausanne) 46, 275 (2006).
28. Poulton, S. W. & Raiswell, R. The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition. Am. J. Sci. 302, 774–805 (2002).
29. Canfield, D. E., Lyons, T. W. & Raiswell, R. A model for iron deposition to euxinic Black Sea sediments. Am. J. Sci. 296, 818–834 (1996).
30. Poulton, S. W., Fralick, P. W. & Canfield, D. E. The transition to a sulphidic ocean similar to 1.84 billion years ago. Nature 431, 173–177 (2004).
31. Raiswell, R. & Canfield, D. E. Sources of iron for pyrite formation in marine sediments. Am. J. Sci. 299, 219–245 (1998).
32. Raiswell, R., Newton, R. & Wignall, P. B. An indicator of water-column anoxia: the sedimentary fingerprint of an open-marine iron shuttle. Earth Planet. Sci. Lett. 306, 427–438 (2011).
33. Lyons, T. W. & Severmann, S. A critical look at iron paleoredox proxies: new insights from modern euxinic marine basins. Geochim. Cosmochim. Acta 70, 5698–5722 (2006).
34. Raiswell, R. et al. Turbidite deposition influences on the diagenesis of Becher’s Trilobite Bed and the Hunsruck Slate; Sites of soft tissue pyritization. Am. J. Sci. 308, 105–129 (2008).
35. Clarkson, M. O. et al. Permio-Triassic deposition event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 132–144 (2007).
36. Payne, J. L. & Kump, L. R. Evidence for recurrent Early Triassic massive carbon cycle perturbations inferred from new U-Pb ages and ammonoid biochronozones. Earth Planet. Sci. Lett. 258, 593–604 (2007).
37. Shuster, J. et al. Timing of the Early Triassic carbon cycle perturbations inferred from modern euxinic sediments and shales. Palaeogeogr. Palaeoclimatol. Palaeoecol. 243, 394–411 (2007).
38. Xiang, L. et al. Oceanic redox evolution across the end-Permian mass extinction at Shangi, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 448, 59–71 (2015).
39. Wright, J. R. L. Lilliput effect in the aftermath of the end-Permian mass extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 132–144 (2007).
40. Payne, J. L. & Kump, L. R. Evidence for recurrent Early Triassic massive carbon cycle perturbations inferred from quantitative interpretation of carbon isotope fluctuations. Earth Planet. Sci. Lett. 256, 264–277 (2007).
41. Van Cappellen, P. & Ingall, E. D. Benthic phosphorus regeneration, net primary productivity, and ocean anoxia - a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Geochim. Cosmochim. Acta 62, 3703–3717 (2008).
42. Bachan, A. & Payne, J. Modelling the impact of pulsed CAMP volcanism on cycles of carbon and phosphorus. Earth Planet. Sci. Lett. 111–122 (2014).
43. Lyons, T. W. & Severmann, S. A critical look at iron paleoredox proxies: new insights from modern euxinic marine basins. Geochim. Cosmochim. Acta 70, 5698–5722 (2006).
44. Raiswell, R. et al. Turbidite deposition influences on the diagenesis of Becher’s Trilobite Bed and the Hunsruck Slate; Sites of soft tissue pyritization. Am. J. Sci. 308, 105–129 (2008).
45. Clarkson, M. O. et al. Permio-Triassic deposition event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 132–144 (2007).
46. Payne, J. L. & Kump, L. R. Evidence for recurrent Early Triassic massive carbon cycle perturbations inferred from quantitative interpretation of carbon isotope fluctuations. Earth Planet. Sci. Lett. 256, 264–277 (2007).
47. Van Cappellen, P. & Ingall, E. D. Benthic phosphorus regeneration, net primary productivity, and ocean anoxia - a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Geochim. Cosmochim. Acta 62, 3703–3717 (2008).
48. Bachan, A. & Payne, J. Modelling the impact of pulsed CAMP volcanism on pCO2 and 5 13 C across the Triassic–Jurassic transition. Geological Mag. 153, 252–270 (2016).
49. Marz, C. et al. Redox sensitivity of Ψ cycling during marine black shale formation: dynamics of sulfidic and anoxic, non-sulfidic bottom waters. Geochim. Cosmochim. Acta 68, 1124–1134 (2004).
50. Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M. & Berner, R. A. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54, 149–155 (1986).
70. Richoz, S. et al. Permian-Triassic boundary interval in the Middle East (Iran and N. Oman): progressive environmental change from detailed carbonate carbon isotope marine curve and sedimentary evolution. *J. Asian Earth Sci.* **39**, 236–253 (2010).

Acknowledgements
M.O.C. acknowledges funding from the Edinburgh University Principal’s Career Development Scholarship, International Centre for Carbonate Reservoirs and the Moray Endowment Award. R.A.W. and S.W.P. acknowledge support from the Natural Environment Research Council (NERC) through the ‘Co-evolution of Life and the Planet’ scheme. This is a contribution to the International Geoscience Programme (IGCP) 572 with S.R. sponsored for fieldwork by the Austrian National Committee (Austrian Academy of Sciences) 572. We thank Romain Guilbaud, Walter Geibert and Alex Thomas for laboratory assistance, Paul Wignall for comments on an early manuscript, and four anonymous reviewers who helped make significant improvements to the paper.

Author contributions
M.O.C. undertook field and laboratory work, and led manuscript writing with significant contributions from S.W.P., R.A.W., S.R. and R.J.N. S.R. guided and supported field sampling, R.J.N. undertook sulfur isotope analyses, S.W.P. provided technical facilities and expertise, S.K. provided carbon isotope measurements, F.B. undertook Fe/Al measurements and L.K. undertook conodont analysis and provided field support.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Clarkson, M. O. et al. Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery. *Nat. Commun.* 7:12236 doi: 10.1038/ncomms12236 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/