Risk mitigation on product distribution and delay delivery: A case study in an Indonesian manufacturing company

E Kusrini 1, E Sugito 2, Z M Rahman 3, T N Setiawan 4, R P Hasibuan 5

1,2,3,4,5, Master of Industrial Engineering, Indonesian Islamic University of Yogyakarta

E-mail: elisakusrini@ui.ac.id

Abstract. In a dynamic supply chain environment, problems that arise due to delays in the delivery of raw materials and distribution of products to consumers can pose risks and threats to the company. This study aims to identify and mitigate the risk of late delivery of goods. Risk management starts with identifying sources of risk, defining risks, creating risk maps and mitigating risks. A case study conducted at a manufacturing packaging company in Batam, Indonesia. The results showed that the biggest risks were supplier production capacity, supplier product quality, forecasting from consumers, daily finished good delivery schedule to consumers and loading and unloading processes at consumers. This research proposes mitigation to minimize the impact of short-term and long-term risks.

1. Introduction

Currently, the dynamics of competition efforts bring an impact on efforts that continuous so that goods can get to consumers at the right time and place. Many industrial companies are working to optimize the supply chain system to produce products and on-time delivery. The company seeks to work harder in order to delay in transport does not occur [1]. Respond to the level of production and the ever-changing technological innovation demands a conventional manufacturing company transformed into a more modern production system [2]. If the product does not arrive at the time of delivery in accordance with the agreed (delay delivery) by both sides then consumers will pick up the pace by giving sanction or fine [3]. Delivery time refers to the time customers wait between placing an order and receiving the order. As a consequence, the concept of the delivery time can be said to relate to the performance as perceived by customers [4, 5, 6, 7, 8].

Risk management can provide input or contribution is important for most types of management decisions and control, which is widely applied in various fields. Like the economy, insurance and manufacturing [9, 10, 11, 12]. The risk management process generally consists of 4 steps [13, 14]. That is as follows:

1) The first step is to identify the risks, to help improve the understanding of the current state against uncertainty in the future (the risk that may occur) to be able to receive an effective rule.
2) The second step is to evaluate the risk of identification with the possibility to associate events and identify the consequences.
3) The third step is to apply this action management risk, such as actions that are reactive (responding to risk identification who had previously occurred) or proactive (to reduce the likelihood of occurrence or the severity of the consequences and risk mitigation).
4) The fourth step is monitoring (monitoring) of risk on an ongoing basis in order to reduce the possibility of a major again.
This research takes a case study in one of the manufacturing companies in Indonesia, called PT X. PT X engaged in the manufacture of cardboard packaging (packaging boxes) distributing its products in the area of Batam and Singapore. The distribution of the products is carried out on a daily basis based on consumer demand with the distance and the amount varies. Raw materials import process is carried out by the State of Singapore, Taiwan, Thailand, and the United States. Often the onset delay or a very late arrival hamper company production and delivery to the customer, graphics delivery delays can be seen in Figures 1 and 2. The delay caused by a late booking from the purchasing, production capacity of suppliers, transportation, delivery of materials, production process, trucking and other. This has resulted in the delivery of the product to the consumer becomes delays and raises fines or sanctions from the consumer. For it on-time delivery of badly needed in order for the company's operations are not disrupted and the lead time of the consumers can be reached, therefore companies need to conduct analysis for risk management from the perspective of a company in dealing with things that are not in want in distribution or delivery of goods heading to the consumer.

Figure 1. Finished Goods Delay Delivery Chart

Figure 2. Delivery Case Chart Table

2. Literature Review
2.1. Risk management.

The risk is the likelihood of an event occurring and the impact on the success in achieving the strategic objectives of the organization [15]. The risk is the part that is inseparable from the decision-making process of the individual or organization in many situations. The risks cannot be eliminated. Organizations have to manage the factors that influenced the increase or decline the risk so that the organization can pursue strategic superiority with minimum fees [16]. Taking the risk seems to be the strategy that is available to resolve the risk [17]. Risk management in an organization contains the most important internal processes and strengthens resilience during period’s prevention and which could not have been avoided in ensuring the security of the process [18].

Risk management is about identifying the things that are wrong, stop wrong, reduce the consequences when there are errors and recover after a few things wrong. This is important because there is always the possibility of error, which is why a Manager spends a lot of time to prevent things that are incompatible with minimize the possibility of failure and its effects [19]. Awareness about risk management in the supply chain to improve in those industries in Europe [20]. There are 4 categories of risk on corporate finance namely, hazard, operational and strategic risks. Risks of Finance comes from the strength of the market, assets or financial obligations. They occur in various forms, such as risk capital, investment risk, interest rate risk, credit risk, currency risk and market risk capital [21]. The risk of danger is called "pure risk" and its impact is always negative. They arise from natural or deliberate accidents caused by third parties. The consequences of these risks, for example, damage to property, personnel illnesses and disabilities [22, 23]. Operational risk arises from the failure that resulted from both the potential for human error and processes that can occur in the functional business units (e.g. related to product development, human resources and it) or in the management of
Risk identification can be done by doing 1) identification of sources of risk, 2) Define the risks and consequences of encouraging risk identification) 3 4) to mitigate risk [25, 26].

There is a lot of research about managing risk. [27] Conducts research on risk management in the supply chain of fresh produce in Thailand. From the results of the research, there are nine known categories of risk in the supply chain of fresh produce that is weather risk, risk of demand, Finance risk, risk information, risk operational, risk policies, risk, price risk, and regulation.

2.2. Delay Delivery
Delivery is expected by customers is timely delivery (OTD) and delivery without damage. The delivery is delayed or late have a negative impact on the satisfaction of [28]. Delivery delays harm the next customer, a customer would not consider buying again because the company did not submit a time for the products ordered. Delivery delays lead to negative results and a lack of customer satisfaction [29].

2.3. Risk Mitigation
Mitigation is the action to reduce or minimize the potential negative impact of a disaster [30]. Risk is defined on the basis of the two points of view [31], namely: 1) point of view the results (output) where results cannot be predicted with certainty because it would be counter-productive. 2) point of view the process whereby the factor-factors that may affect the achievement of the goals, so unintended consequences. Mitigation in an enterprise is required to determine whether the company's risk in it can be fixed with good and right so that it does not risk impeding the activities of the company [32]. The base model introduced serves as the base for determining the magnitude of costs and risks. So as to provide the first phase of strategic decisions and could build a model to evaluate the risk mitigation options of the supply chain [33]. According to [34] to propose the theoretical decision framework that includes relevant elements derived from the literature on supply chain risk management, by providing quantitative decision support systems of the general framework the decision to select the risk mitigation strategy for the supply chain.

The research of [35] risk mitigation is done to minimize the impact of the environmental risks posed by the use of the game theory approach. [36] Conduct mitigation against supply chain risk and uncertainty. The results of this research to identify the type of supply chain flexibility appropriate to mitigate the risk of the three major risks of supply, the risk of the manufacturing process and the risk of shipment.

3. Methodology
Stages of research methods are as follows:

3.1. Identification of the source of the risk.
 a. The identification process business
 Process business is material flow from supplier to the finished product into the hands of customers.
 b. Identification of the risk
 Do the identification over the incident or potential incident in the case will affect the achievement of the objectives of the company or would potentially harm the company.

3.2. Defining the risk.
 a. Identification of the point the number of cases of risk, using a table of researchers taking points or risk which is often the case and grouped based on areas.
 b. Risk Measurement.
 Measurement (measurement) is performed to find out the level of risk by using the probability of the occurrence of the risk requirements.

3.3. Risk Maps
 Are used to show the position of risk and determine priorities risk response. In the making of maps can be made with 2 models i.e.: inherent risk map and map of the residual risk.
3.4. Risk mitigation
Follow-up development to respond to the risk, this is a detailed and documented explanation of the strategic treatment of risk will be applied.

4. Discussion
4.1. Identification of the source of the risk
4.1.1. Identification Process business
Process business in PT. X showed in Figure 3. in the following.

![Figure 3. PT. X Business Process](image)

4.1.2. Identification of Risk.
Identification risk for delay in distributing products either from the supplier or consumer to do with the analysis of fishbone diagrams [37], fishbone diagrams identification risk can be seen in Figure 4. Cases and the frequency with which led to delivery delays from suppliers and to consumers can be seen in Table 1 and 2.

![Figure 4. Risk Indicator (Fishbone Analysis)](image)

No	Risk event
Supplier	
1	PO from purchasing
2	Communication problem
3	Supplier production capacity
4	Product quality from suppliers
5	Shipping Documents
6	Unloading and loading goods by the forwarder
7	Weather
8	Truck Settings
Customer	
9	Forecast from consumers
10	Daily FG delivery schedule to consumers
11	Planning in production
No	Risk event
----	--
12	Ordering raw materials
13	Quality checking of material
14	Company production capacity
15	Transfer of finished goods to the warehouse
16	Lorry preparation for shipping to consumers
17	The process of loading and unloading on consumers
18	Lorry queues at consumers
19	The process of receiving goods documents

Table 2. Number of Delay

Month	Where Delays occur	
	Suppliers	Consumer
Jan 19	8	9
Feb 19	-	3
March 19	10	26
April 19	10	30
May 19	21	24
Jun 19	15	10
Total	64	102

The identification of points of the number of cases the risk of eliminating the risk derived from the risk of repeat cases every month can be seen in table 3 and the identification of risk impact can be seen in table 4, so it will be easier to determine the measurement.

Table 3. Risk Identification

No	Risk Indicator	Code	Case
Supplier			
1	PO from purchasing	L1	6
2	Supplier production capacity	L2	30
3	Quality products from suppliers	L3	20
4	Truck Settings	L4	8
Customer			
5	Forecast from consumers	L5	15
6	Daily FG delivery schedule to consumers	L6	30
7	Planning in production	L7	5
8	Ordering raw materials	L8	7
9	Transfer of finished goods to the warehouse	L9	15
10	The process of loading and unloading on consumers	L10	20
11	Lorry queues at consumers	L11	10
Table 4. Risk Impact Identification

No	Impact Indicator	Value
1	Consumers stop producing	30 USD / Hrs
2	Increased production costs	23 USD / Hrs
3	High maintenance costs for Production Machines	500 USD / Month
4	The number of products damaged in the production area	300 USD / Month
5	Consumer Confidence	-

4.2. Defining Risk

4.2.1. Risk Point Identification

In measuring risk, the probability scale and risk impact scale data are needed, presented in tables 5 and 6.

Table 5. Risk Probability Scale

Scale	Criteria	Range	Explanation
(1)	Almost never happens	<20%	Max occurs 1 in 6 months
(2)	Can (might happen)	20–50%	Max occurs 5 times in 6 months
(3)	Rarely happening	50-70%	Max occurs 10 times in 6 months
(4)	Often occur	70-90%	Max occurs 15 times in 6 months
(5)	Very often happens	90-100%	Occurred more than 20 times in 6 months

Table 6. Risk Impact Scale

Scale	Impact	Indicator
(1)	Small	Easy to complete, does not cause late, does not affect the overall distribution process
(2)	Very small	Does not cause delays when arriving at the customer
(3)	Is	Cause delay to the customer
(4)	Big	Causing delays, there are many complaints to the company
(5)	Very large	The source of the problem is very difficult to identify, causing delays, many complaints to the company, termination of employment

Source: Wiryani, et al., 2013

4.2.2. Risk Measurement

Risk Measurement Step for next was done by calculating each risk by multiplying the probability scale and the scale of the resulting impact. Risk measurement results can be seen in table 7.
Table 7. Measurement of Risk Points

No	Risk Indicator	Scale	Score	
		Impact	Probability	
Supplier				
1	PO from purchasing	1	3	3
2	Supplier production capacity	4	5	20
3	Quality products from suppliers	4	5	20
4	Truck Settings	3	2	6
Customer				
5	Forecast from consumers	4	4	16
6	Daily FG shipping schedule to consumers	4	5	20
7	Planning in production	3	2	6
8	Ordering raw materials	2	2	4
9	Transfer of finished goods to the warehouse	2	4	8
10	The process of loading and unloading on consumers	4	4	16
11	Lorry queues at consumers	3	3	9

4.3. Risk Map
Risk maps are made based on the scale of impact and probability of each risk indicator. Green areas indicate a low-risk level, yellow indicates a moderate risk level, and red indicates a high-risk level. The risk map can be seen in Figure 5.

![Figure 5. Current Risk Map](image)

4.4. Risk Mitigation.
After the measurement and mapping, obtained the greatest impact from the risk of delay in distributing the products get to the consumers on a scaled score of 20 and 16. Risk indicators that are at the highest score become a priority for the company. High-risk indicators grouped into 8 tables and do a repair using the guidelines of risk control, then mapped back to an estimated decline of shifting the impact.
and probability of the risk. Expected improvement occurs so that the risk can be decreased from high risk to medium risk and continue to do repairs in order to continue to decline to low risk.

Table 8. Risk Mitigation Control Guidelines

No	Risk Indicator	Risk Level	Risk Management Guidelines	4T strategy
1	Supplier production capacity	High	Transparency	Treat
			Request planning collaboration	Treat
2	Quality products from suppliers	High	Making quality standards	Treat
			Planning a business process together	Treat
3	Forecasting from consumers	High	Integrating system information	Treat
4	Daily FG shipping schedule to consumers	High	Perform data sharing for daily shipping schedules	Treat
5	The process of loading and unloading on consumers	High	Delivery time sharing so that no stuck vehicle in the consumer	Treat

Risk mitigation strategies against the five indicators of risk that has a high level of risk are shown in table 8. The fifth indicator of risk mitigation can be done by doing some treatment. In particular, treatment is done in table 8 spelled out the company. Treatment was done in an effort to 1) information sharing both data or process lead time in finishing products; 2) conduct discussions with the buyer to discuss the problem of forecasting and daily delivery schedules, as well as the duration of the time unloading goods at the consumer's location; 3) Collaboration plan request (collaboration demand planning); 4) Monitoring the production process, specifically in the supplier due to a lot of the occurrence of defects during a process lasting; 5) Perform regular inspections for production machines and recorded for monitoring; 6) Customer service and planner team to be more active in following up on the production process and production lead time. On the research of supply chain risk and Uncertainty: a moderation role supply chain flexibility in risk mitigation risk three stated that the major risk of supply, the risk of manufacturing and delivery risk [38].

Table 9. Risk Scale after Mitigation

No	Risk Indicator	Scale	Score	
		Impact	Probability	
Supplier				
1	PO from purchasing	1	3	3
2	Supplier production capacity	3	4	12
3	Quality products from suppliers	3	4	12
4	Truck Settings	3	2	6
Customer				
5	Forecast from consumers	3	3	9
6	Daily FG shipping schedule to consumers	3	4	12
7	Planning in production	3	2	6
8	Ordering raw materials	2	2	4
9	Transfer of finished goods to the warehouse	2	4	8
10	The process of loading and unloading on consumers	3	3	9
11	Lorry queues at consumers	3	3	9
After mitigation is carried out, the impact and probability of risk decreases, shown in table 9.

The risk mitigation map shows the five risk indicators that were originally in the red quadrant move to the yellow quadrant. The risk map for mitigation results can be seen in Figure 6.

5. Conclusion
Some conclusions that can be drawn from this study are as follows:
1. The risk that has the greatest impact and has an effect on delivery delay comes from supplier production capacity, product quality, daily delivery schedules from consumers, forecasts and loading and unloading processes at consumers.
2. Risk mitigation is done by improving the system to suppliers and consumers by sharing information using an integrated system so that lead-time can be more accurate, as well as collaborating on demand plans between suppliers and manufacturing companies. This is done continuously and monitored, whether there are changes and developments that occur in the future.

References
[1] Hajej. Z, Turki. S, and Rezg. N, “Modeling and Analysis for Sequentially Optimising Production, Maintenance and Delivery Activities Taking into Account Product Returns,” International Journal of Production Research, 2015, 53 (15), pp. 4694-719.
[2] Agrawal. A, Minis. I, and Nagi. R, “Cycle time reduction by improved MRP-based production planning. International Journal of Production Research, 2000, vol. 38 (18), 4823–4841.
[3] Turki. S, and Rezg. N, “Optimization of Manufacturing Supply Chain with Stochastic Demand and Planned Delivery Time,” International Journal of traffic and transportation Engineering, 2017, vol 5. Pp. 32-43.
[4] Parasuraman. A. A, “Delivering quality service: Balancing customer perceptions and expectations,” Simon and Schuster.com, 1990.
[5] Chang. D.S, and Wang. T.H, “Consumer preferences for service recovery options after delivery delay with shopping online. Social Behavior and Personality,” Journal: An International Journal, 2012, vol 40, pp. 1033-1044.
[6] Giannakis. M, and Papadopoulos. T, “Supply chain sustainability: a risk management approach,” Int. J. Prod. Econ, 2016, 171, pp. 455-470.
[7] Harrison. A, and Van Hoek. R, “Logistics management and strategy- competing through the supply chain,” 3rd Edn., UK: F.T. Prentice Hall, 2008.
[8] Stephen. O, Jonathan. A, and Kwabena. S.S, “Evaluation of the effect of lead time on quality service delivery in the bank industry in Kumasi metropolis of Ghana,” Journal of art and humanities, 2015, Vol. 04 (07), pp. 29-44

[9] Ritchie. B, and Brindley. C, “Supply Chain Risk Management and Performance: A Guiding Framework for Future Development,” International Journal of Operations & Production Management, 2007, vol. 27, pp. 303-322.

[10] Beske. P, Seuring. S, “Putting sustainability into supply chain management,” Supply Chain Manag: Int. J. 2014, 19 (3), pp. 322-331.

[11] O’Rourke. D, “The science of sustainable supply chains,” Science 344, 2014, (6188), pp. 1124-1127.

[12] Tseng. M.L, Islam. M.S, Karia. N, Fauzi. F.A, and Afrin. S, “A literature review on green supply chain management: trends and future challenges,” Resour. Conserv. Recycle, 2019, 141, pp. 145-162.

[13] Giannakis. M, and Papadopoulos. T, “Supply chain sustainability: a risk management approach,” Int. J. Prod. Econ, 2016, 171, pp. 455-470.

[14] Chan. F. T., ”Performance measurement in a supply chain,” The International Journal of Advanced Manufacturing Technology 21, 2003, vol (7), pp. 534-548.

[15] COSO and WBCS, ”Enterprise Risk management, Applying Enterprise Risk Management to Environmental,” Social and Governance-Related Risk, 2018, p-1.

[16] Borghesi, Antonio, and Gaudenzi Barbara, ”Risk Management How to Assess, Transfer and Communicate Critical Ris,” Springer-Verlag Italia, 2013.

[17] Hora. M, and Klassen. R.D, “Learning from others’ misfortune: factors influencing knowledge acquisition to reduce operational risk,” J. Oper. Manag, 2013, 31 (1), pp. 52-61.

[18] Katarina Buganova and Jana Simickova, “Risk management in traditional and agile project management,” 13th International scientific conference on sustainable, modern and safe transport, 2019, 40, pp. 986-993.

[19] Nigel. Slack, Alistair. Brandon, and Roberth. Johnston, “Seventh edition operation management,” Myomlab, 2013, pp. 610

[20] Andre. S, Maximiliano. U, and Jan. CF, “A stochastic program to evaluate disruption mitigation investment in the supply chain”. European journal of operation research, 2018, vol. 274, pp. 516-530.

[21] Priscila. F, Maria. C, and Chiara. V, “Risk management in SMEs: a systematic literature review and future directions,” European Management Journal, 2019, pp. 0263-2373.

[22] Jorgensen. K, D Micheli. GIL, Mogre. R, and Perego A, “How to choose mitigation measures for supply chain risks,” International Journal of Production Research, 2014, Vol. 52(1), pp. 117–29.

[23] Uijm. N. J, and Troen. H, “Accident prevention in SME using ORM,” Safety Science, 2010, 48 (8), pp. 1036-1043.

[24] Chiara Verbano and Keren Venturini, “Development paths of the risk management approach, methods, and fields of application,” Taylor & Francis online journal, 2014, Vol. 14 (5), pp. 519-550.

[25] Marcelino. Sadaba, S, Perez-Ezcurdia. A, and Lazcano. A. M. E, (2014). “Villanueva. Project risk management methodology for small firms,” International Journal of Project Management, 2014, 32(2), pp. 327-340.

[26] Juttnar. U, Peck. H. and Christopher. M, “Supply chain risk management: out-lining agenda for future research,” Int. J.Logist.Manag, 2003, 6(4), pp. 197–210.

[27] Michael. D, Hugh. Medal, and Steven. A, “Proactive cost-effective identification and mitigation of supply chain delay risk in a low volume high-value supply chain using fault-tree analysis,” Int. J. Production Economics Journal, 2016, Vol. 175, pp. 153-163.

[28] Raka. Chatchai, and Liangrokapart. Jirapan, “Supply Chain Risk Management: A Case Study in Thailand. In: Innovations and Strategies for Logistics and Supply Chains,” Hamburg International Conference of Logistics, 2015.
[29] Ryan. G, and Valverde. M, “Waiting for service on the internet: defining the phenomenon and identifying the situations,” Internet Research, 2005, 15, pp. 220-240.
[30] Chan. F. T, ”Performance measurement in a supply chain,” The International Journal of Advanced Manufacturing Technology 21, 2003, vol (7), pp. 534-548.
[31] Jokowinarno. D, “Mitigasi bencana tsunami di wilayah pesisir lampung,” Jurnal Rekayasa, 2011, Vol.15 (1)
[32] Alijoyo. Antonius, “Enterprise risk management pendekatan praktis (edisi kedua)”, Jakarta: Penerbit Ray Indonesia, 2006.
[33] Mensah. Peter, Merkuryev. Yuri, Klavins. Eric, and Manak. Sukhvir, “Supply chain risks analysis of a logging company: Conceptual Model,” Journal Procedia Computer Science, 2017, vol.104 (207), pp. 313 – 320.
[34] Andre. S, Maximiliano. U, and Jan. CF, “A stochastic program to evaluate disruption mitigation investment in the supply chain”. European journal of operation research, 2018, vol. 274, pp. 516-530.
[35] Gao. Yue, “A Game Theory Approach for Corporate Environmental Risk Mitigation,” Journal Resources, Conservation & Recycling, 2018, 130, pp. 240-247.
[36] Sreedevi. R, and Saranga. Haritha, “Uncertainty and Supply Chain Risk: The Moderating Role of Supply Chain Flexibility in Risk Mitigation,” International Journal of Production Economics, 2017, vol. 193, pp. 332-342.
[37] Tongyuan. L, Chao. Wu, and Lixiang. Duan, (2017). “Fishbone diagram and risk matrix anlaysis methode and its application in safety assesment of nantural gas spherical tank,” Journal Cleaner Production, 2017, Vol. 174, pp. 296-304.
[38] Sreedevi. R, and Saranga. Haritha, “Uncertainty and Supply Chain Risk: The Moderating Role of Supply Chain Flexibility in Risk Mitigation,” International Journal of Production Economics, 2017, vol. 193, pp. 332-342.