Abstract. In this paper, we investigate the many-valued version of coalgebraic modal logic through predicate lifting approach. Using techniques from abstract algebraic logic, we prove soundness and completeness theorem by developing one-step logic. In the final section, we also propose some questions deserved for future works.

1. Introduction

Coalgebraic modal logic, first proposed by L. Moss [13] in 1999, provides a uniform framework to various semantics of modal logics using the theory of coalgebra [10]. This framework includes different class of models and many reasoning principles. Basically, there are two approaches toward coalgebraic modal logic—relation lifting [13] and predicate lifting [14]. The logic, often called ∇-logic, given by relation lifting approach encodes the modality in any set functor T that preserves weak pullbacks. In this logic system, there are only one modal similarity type, namely the ∇, in which the semantic is provided by the set functor T. However, this logic system has unusual syntax makes it not easy to work with. For example, in [17], the authors proposed the first axiom system for ∇-logic and use complicated techniques from coalgebra theory to prove the soundness and completeness of this system. The second approach, predicate lifting, provides coalgebraic logics with a more standard modal syntax. But this requires a second parameter—the modal similarity type which is not fixed in the logic system given by predicate lifting. Since the syntax is simpler than ∇-logic, the proof of soundness and completeness of the logical system in [14] is less difficult and it can be developed using one-step logic. Also, coalgebraic modal logic allow applications in computer science and philosophy.

Institute of Information Science, Academia Sinica, No 128, Academia Road, Section 2 Nankang, Taipei 115201, Taiwan.

E-mail address: maxcylin@iis.sinica.edu.tw, liaucj@iis.sinica.edu.tw.

Key words and phrases. Many-valued modal logic, coalgebraic logic, many-valued logic, modal logic.
For the exclusive survey of coalgebraic modal logic, we referred to the article written by two leading experts [12].

On the other hands, consider the reasoning in modal notion with vague concepts, like belief, uncertainty, knowledge, etc., the fuzzy logic over residuated lattices (like in [9]) appear as a suitable framework for developing logical systems. Thus, many-valued modal logic has been developed in response to the investigation of connection between modality and vagueness. The first systematic study of many-valued modal logic using Heyting algebra was by M. Fitting [6] [7]. Then, through abstract algebraic logic, F. Bou et.al. [3] developed minimum many-valued modal logic over a finite residuated lattice. This key paper affects the following development of many-valued modal logics.

It is then natural to combine the many-valued modal logic and coalgebraic modal logic to develop coalgebraic many-valued modal logic. This direction of research was first studied by M. Bílková and M. Dostál both in relation lifting approach [1] and predicate lifting approach [2]. They showed that one can define many-valued semantics in both approach and prove Hennessy-Milner property with some further assumptions. In both papers, however, the authors did not propose any sound and complete axiom systems for coalgebraic many-valued modal logic.

Therefore, in this paper, we adopt the semantic given in [2] and using one-step logic to show that there exists a sound and complete axiom system for coalgebraic many-valued modal logic. The syntax in this paper follows from [4] which is widely used in many-valued logic and fuzzy logic.

2. Syntax

2.1. Language. We first introduce the language we used in this paper. Let P be a set of propositional symbols and Λ be a set of predicate liftings. Our n-ary predicate lifting is defined as a natural tranformation

$$\lambda : Hom(-, \mathbb{A}^n) \Rightarrow Hom(T(-), \mathbb{A})$$

with functor $T : \text{Set} \rightarrow \text{Set}$ and commutative Full-Lambek integral algebra \mathbb{A}.

Definition 1. We say $\mathbb{A} = (A, \lor, \land, \rightarrow, \odot, 0, 1)$ is a commutative integral Full-Lambek algebra (FL-algebra) if

- $\langle A, \lor, \land, 0, 1 \rangle$ is a bounded lattice,
- $\langle A, \odot, 1 \rangle$ is a commutative monoid,
• We can define ordering \(\leq \) as \(a \leq b \) iff \(a \land b = b \) iff \(a \lor b = a \),
• \(\odot \) is residuated with \(\to \), i.e. for all \(a, b, c \in A \), \(a \odot b \leq c \) iff \(b \leq a \to c \),
• \(a \leq 1 \) for all \(a \in A \).

In many-valued modal logic, we usually generalized the classical modal logic with Boolean algebra \(\mathbb{2} \) to \(A \), which provide semantics for wide class of substructural logics.

In this paper, we use \(\lor, \land, \& \), \(\to \), \(\top \), \(\bot \), and the modal similarity types \(\odot \lambda \) as our logical symbols and \(\bar{c} \) as our constant symbols. The language \(\mathcal{ML} \) is defined inductively as follows:

\[\phi ::= p \in P | \varhexagon | \bot | \top | \varhexagon \phi_0 \lor \phi_1 | \varhexagon \phi_0 \land \phi_1 | \varhexagon \phi_0 \& \phi_1 | \varhexagon \phi_0 \to \varhexagon \phi_1 | \varhexagon \lambda(\phi_0, \ldots, \phi_{n-1}) \]

where \(\lambda \) is a \(n \)-ary predicate lifting. Then \(\varhexagon \phi_0 \leftrightarrow \phi_1 \) can be defined as \((\varhexagon \phi_0 \to \varhexagon \phi_1) \land (\varhexagon \phi_1 \to \varhexagon \phi_0) \).

We define the rank-0 language \(\mathcal{L}_0 \) and rank-1 languages \(\mathcal{L}_1 \) as follows. Let \(\Phi \) be a nonempty set. Define \(T_\Lambda(\Phi) \) to be the following set

\[\{ \varhexagon \lambda(a_1, \ldots, a_n) : \lambda \in \Lambda, a_1, \ldots, a_n \in \Phi \} \]

with \(\lambda \) being \(n \)-ary predicate lifting. Then the rank-0 language \(\mathcal{L}_0 \) is defined inductively as

\[\pi ::= p \in P | \varhexagon | \bot | \top | \varhexagon \pi_0 \lor \pi_1 | \varhexagon \pi_0 \land \pi_1 | \varhexagon \pi_0 \& \pi_1 | \varhexagon \pi_0 \to \pi_1 \]

The rank-1 language \(\mathcal{L}_1 \) is defined inductively as

\[\alpha ::= \alpha \in T_\Lambda(\mathcal{L}_0) | \top | \bot | \top | \alpha_0 \lor \alpha_1 | \alpha_0 \land \alpha_1 | \alpha_0 \& \alpha_1 | \alpha_0 \to \alpha_1 \]

Therefore, one can easily show that

\[\mathcal{ML} = \bigcup_{i=0}^{\infty} \mathcal{L}_i \]

where \(\mathcal{L}_i = T_\Lambda(\mathcal{L}_{i-1}) \).

In order to prove the existence lemma, we will then expand our language \(\mathcal{ML} \) by introducing a new symbol \(\Delta \). This expansion is widely used in \([9]\).

Definition 2. The language \(\mathcal{ML}_\Delta \) is the language \(\mathcal{ML} \) expanded by the unary connective as follows:

If \(\phi \in \mathcal{ML} \) then \(\Delta \phi \in \mathcal{ML}_\Delta \)

Note that in similar way, we can define enriched rank-0 and rank-1 language \(\mathcal{L}_{0,\Delta} \) and \(\mathcal{L}_{1,\Delta} \).
For the simplicity of notation, we will denote \mathcal{ML}_Δ as \mathcal{ML} in the remaining part of this paper.

Similarly, for any FL-algebra A, we can also enrich the algebraic structure by δ as unary operation on A in following way.

Definition 3. A Δ-algebra A_Δ is a FL-algebra A expanded by an unary operation such that $\Delta(1) = 1$ and $\Delta(a) = 0$ for any $a \in \text{dom}(A)$ and satisfies the following axioms: for any $a, b \in A$

- $\Delta a \lor (\Delta a \rightarrow \bot) = 1$
- $\Delta(a \lor b) \leq \Delta a \lor \Delta b$
- $\Delta a \leq a$
- $\Delta a \leq \Delta \Delta a$
- $\Delta a \odot (\Delta(a \rightarrow b)) \leq \Delta b$

We will denote A_Δ as A in the same manner.

Remark 1. In some literature, our language \mathcal{ML} is actually $Fm_{\mathcal{ML}}$, the set of formulas generated by logical and nonlogical symbols in \mathcal{ML} under some rules. To simplify our notation, we do not make such a difference.

In fact, we can view the construction of \mathcal{ML} as a free generating operation. Therefore, \mathcal{ML} is a absolutely free-algebra generated by $P \cup \{\bar{c}\}$ under the formal operation $\lor, \land, \&$, \rightarrow, \otimes, λ, and Δ.

2.2. Logical System

In this subsection, we will develop some logic at the level of rank-0 formulas, rank-1 formulas and \mathcal{ML}-formulas.

Definition 4. (Logical rule)

A *logical rule* in language \mathcal{ML} is a pair $\langle \Gamma, \phi \rangle$, where $\Gamma \cup \{\phi\} \subseteq \mathcal{ML}$. Clearly, each subset \mathbb{D} of the set of all logical rules can be realized as a relation between set of formulas and formulas.

Since we will use one-step logic in this paper, the definition of logical rule can be refined as one-step version.

Definition 5. (One-step logical rule) A *one-step logical rule* $\langle \Gamma, \phi \rangle$ is a logical rule where $\Gamma \subseteq \mathcal{L}_0$ and $\phi \in \mathcal{L}_1$.

Examples of one-step logical rules are the congruence rule C_λ:

\[
\begin{array}{c}
\pi_0 \leftrightarrow \pi_0' \cdots \pi_{n-1} \leftrightarrow \pi_{n-1}' \\
\odot_\lambda(\pi_0, \ldots, \pi_{n-1}) \leftrightarrow \odot_\lambda(\pi_0', \ldots, \pi_{n-1}')
\end{array}
\]
and the monotonicity rule M_{λ}

\[
\frac{\pi_0 \to \pi_0' \ldots \pi_{n-1} \to \pi_{n-1}'}{\bigcup_{\lambda}(\pi_0, \ldots, \pi_{n-1}) \to \bigcup_{\lambda}(\pi_0', \ldots, \pi_{n-1}')}
\]

that we will associate with an n-ary modality \bigcup_{λ}.

Notation 2. We denote $\langle \Gamma, \phi \rangle \in \mathcal{D}$ as $\Gamma \vdash \mathcal{D} \phi$.

If a set \mathcal{D} of logical rules satisfying some special properties, we call this set a logic. To elaborate what a logic is, we can use substitution to define instances of logical rules.

Definition 6. A *substitution* is a map $\sigma : P \to \mathcal{ML}$. We will use the notation ϕ/v for the substitution that maps the variable v to the formula ϕ which remain identical in other variables.

Definition 7. A set of logical rules in the language \mathcal{ML} is called a *logic* \mathcal{L} when it satisfies the following properties for each $\Gamma \cup \Phi \cup \{\phi\} \subseteq \mathcal{ML}$:

- If $\phi \in \Gamma$, then $\Gamma \vdash_{\mathcal{L}} \phi$.
- If $\Phi \vdash_{\mathcal{L}} \psi$ for each $\psi \in \Gamma$ and $\Gamma \vdash_{\mathcal{L}} \phi$, then $\Phi \vdash_{\mathcal{L}} \phi$.
- If $\Gamma \vdash_{\mathcal{L}} \phi$, then $\sigma[\Gamma] \vdash_{\mathcal{L}} \sigma(\phi)$ for each substitution σ.

If the logical rules are all one-step, then we call \mathcal{L} a *one-step logic*.

Now we introduce the notion of axiomatic system similar to logic.

Definition 8. An *axiomatic system* \mathcal{A} in the language \mathcal{ML} is a set of logical rules closed under arbitrary substitutions. Then elements of \mathcal{A} of the form $\langle \Gamma, \phi \rangle$ are called *axioms* if $\Gamma = \emptyset$ and we call ϕ an axiom of \mathcal{A}.

Therefore, in the same manner, we call \mathcal{A} a one-step axiomatic system if the logical rules in consideration are all one-step.

Definition 9. (Proof) A *proof* of a formula ϕ from a set of formula Γ in an axiomatic system \mathcal{A} is a well-founded tree (with no infinite branch) labeled by the formulas such that

- its root is labeled by ϕ and leaves by axioms of \mathcal{A} or elements of Γ and
- if a node is labeled by ψ and $\Phi \neq \emptyset$ is the set of labels of its preceding nodes, then $\langle \Phi, \psi \rangle \in \mathcal{A}$.

We write $\Gamma \vDash_{\mathcal{A}} \phi$ if there is a proof of ϕ from Γ in \mathcal{A}. If $\Gamma = \emptyset$, then we say that ϕ is \mathcal{A}-derivable. It is customary to identify $\vDash_{\mathcal{A}}$ as a special set of logical rules. This motivates the following definition.
Definition 10. (Logical system)
Let L be a logic in \mathcal{ML} and \mathcal{A} be an axiomatic system in \mathcal{ML}. We say that the logic L is a logical system if $L = \Vdash_\mathcal{A}$. Similarly, if L is a one-step logic and \mathcal{A} is a one-step axiomatic system then we call L a one-step logical system.

If a formula ϕ is \mathcal{A}-derivable in the logical system L, we say ϕ is L-derivable. From the generalization of Theorem 2.1.25 in [5], we know that the logical system can also defined as the definition of logic in [3] through non-modal homomorphisms.

Definition 11. We say that a mapping $h: \mathcal{ML} \rightarrow \mathcal{A}$ is a non-modal homomorphism if the following conditions hold:

- $h(\bar{c}) = c, h(\top) = 1, h(\bot) = 0$;
- $h(\phi_1 \ast \phi_2) = h(\phi_1) \ast^h h(\phi_2)$ where $\ast \in \{\lor, \land, \&\}$ and $\ast^h \in \{\lor, \land, \circ, \rightarrow\}$;
- $h(\Delta \phi) = \Delta h(\phi)$.

We denote the set of non-modal homomorphisms as $Hom(\mathcal{ML}, \mathcal{A})$.

Then given a logical system L, we say that for all sets of formulas $\Gamma \cup \{\phi\} \subseteq \mathcal{ML}$,

$\Gamma \vdash_L \phi \iff \forall h \in Hom(\mathcal{ML}, \mathcal{A})$, if $h[\Gamma] \subseteq \{1\}$ then $h(\phi) = 1$.

In this article, we will use logical systems L consist of (1) a set of logical rules $R = \Gamma_R / \gamma_R$ where $\Gamma_R \subseteq \mathcal{ML}$ and $\gamma \in \mathcal{ML}$ (2) all axioms and rules from $\Lambda(\mathcal{A})$, the non-modal logic of residuated lattice \mathcal{A}, (3) the congruence rule (C_λ) for $\lambda \in \Lambda$, (4) the following axioms for unary connective Δ: for any $\phi, \psi \in \mathcal{ML}$,

- $\Delta \phi \lor (\Delta \phi \rightarrow \bot)$,
- $\Delta(\phi \lor \psi) \rightarrow (\Delta \phi \lor \Delta \psi)$,
- $\Delta \phi \rightarrow \phi$,
- $\Delta \phi \rightarrow \Delta \Delta \phi$,
- $\Delta(\phi \rightarrow \psi) \rightarrow (\Delta \phi \rightarrow \Delta \psi)$.

The detailed axioms and logical rules for $\Lambda(\mathcal{A})$ can be found in the appendix of [3]. In the literature on abstract algebraic logic, our definition of logical system is assertional logic of the class of FL-algebra [8]. Both the definition through morphisms or trees will be used in the proof of soundness and completeness theorem in this article.
3. COALGEBRAIC SEMANTICS

3.1. COALGEBRAIC MANY-VALUED LOGIC. In this section, we introduce the model we used in this paper. There are three different models which correspond to the layer structure of \mathcal{ML}. First, we write (S, σ) as T-coalgebra where σ is a function from S to TS. Different from the definition in first section, we denote the set of functions from S to Δ-algebra A as $\text{Hom}(S, A)$. For the full language \mathcal{ML}, the semantic is defined as follows.

Definition 12. Let T be a set functor. A T-model $S = (S, \sigma, V, A)$ consists of a nonempty set S, a T-coalgebra map $\sigma: S \to TS$, a Δ-algebra A, and a valuation of propositional symbols $V: P \to \text{Hom}(S, A)$. We define the semantics $\|\phi\|_{\sigma}: S \to A$ of $\phi \in \mathcal{ML}$ inductively: for all $s \in S$

- $\|p\|_{\sigma} := V(p)$ for all $p \in P$, $\|c\|_{\sigma}(s) := c$ with $c \in A$,
- $\|T\|_{\sigma}(s) := 1$, $\|\bot\|_{\sigma}(s) := 0$,
- $\|\phi_0 \ast \phi_1\|_{\sigma}(s) := \|\phi_0\|_{\sigma}(s) \ast \|\phi_1\|_{\sigma}(s)$ for $\ast \in \{\lor, \land, \&\}$ and $\ast \in \{\lor, \land, \circ, \to\}$, the corresponding algebraic operation on the FL-algebra A,
- $\|\square_{\lambda}(\phi_0, \ldots, \phi_{n-1})\|_{\sigma}(s) := \lambda_S(\|\phi_0\|_{\sigma}, \ldots, \|\phi_{n-1}\|_{\sigma})(\sigma(s))$, where λ is a n-ary predicate lifting,
- $\|\Delta\phi\|_{\sigma}(s) := \Delta(\|\phi\|_{\sigma})$.

We then define the satisfaction relation $s \models_{\sigma} \phi$ between S and \mathcal{ML} as

$s \models_{\sigma} \phi = \|\phi\|_{\sigma}(s)$ for any $s \in S$.

Definition 13. We say a formula ϕ of \mathcal{ML} is valid in a T-model S if $s \models_{\sigma} \phi = 1$ for all $s \in S$. Then ϕ is called valid if it is valid in all T-models.

3.2. ONE STEP LOGIC. In this subsection, we localize the semantic define in the previous subsection to rank-0 language L_0 and rank-1 language L_1. We say $m: S \to \text{Hom}(P, A)$ is a P-marking if m is a mapping from S to the set $\text{Hom}(P, A)$.

Definition 14. Let T be a set endofunctor. A one-step T-frame is a pair $\langle S, \delta \rangle$ with $\delta \in TS$. A one-step T-model over a set P of propositional symbols is a triple $\langle S, \delta, m, A \rangle$ such that $\langle S, \delta \rangle$ is a one-step T-frame, Δ a and $m: S \to \text{Hom}(P, A)$ a P-marking on S.

Following the definition of coloring in classical one-step logic \[15\], we define the coloring of \(m \) as
\[m^\flat : \text{P} \rightarrow \text{Hom}(S, A) \].

Definition 15. Given a marking \(m : S \rightarrow \text{Hom}(P, A) \), we define the 0-step interpretation \([\pi]^0_m : S \rightarrow A\) of \(\pi \in \mathcal{L}_0 \) by induction: for all \(s \in S \)

- \([p]^0_m(s) := m^\flat(p)\),
- \([\top]^0_m(s) := 1\), \([\bot]^0_m(s) := 0\),
- \([\pi_0 \ast \pi_1]^0_m(s) := [\pi_0]^0_m(s) \ast^A [\pi_1]^0_m(s)\) for \(\ast \in \{\lor, \land, \& , \rightarrow\} \) and \(\ast^A \in \{\lor, \land, \circ, \rightarrow\} \), the corresponding algebraic operation on the FL-algebra \(A \),
- \([\Delta \pi]^0_m(s) := \Delta [\pi]^0_m(s)\).

We write \(S, m, s \models^0 \pi \) to be \([\pi]^0_m(s)\) with \(s \in S \) and the marking \(m \). Similarly, we can define the 1-step interpretation \([\alpha]^1_m\) of \(\alpha \in \mathcal{L}_1 : TS \rightarrow A \) in the following way.

Definition 16. Let \(m \) be a marking and \(\lambda \) is a n-ary predicate lifting. The 1-step interpretation of \(\alpha \in \mathcal{L}_1 \) is defined as

\[[\circ_\lambda(\pi_0, \ldots, \pi_{n-1})]^1_m(\delta) := \lambda_S([\pi_0]^0_m, \ldots, [\pi_{n-1}]^0_m)(\delta) \]

and standard clauses applying for \(\lor, \land, \& , \rightarrow\) and \(\Delta \) in the same manner as in \(\mathcal{L}_0 \).

Given an one-step T-model \(\langle S, \delta, m \rangle \), we write \(S, \delta, m \models^1 \alpha \) for the function \([\alpha]^1_m(\delta)\).

4. **One-step Soundness and Completeness**

In this section, we fix a one-step logical system \(\mathcal{L}_1 \) which consists of (1) a set of logical rules \(R = \langle \Gamma_R, \gamma_R \rangle \) where \(\Gamma_R \subseteq \mathcal{L}_0 \) and \(\gamma \in \mathcal{L}_1 \), (2) all axioms and logical rules from \(\Lambda(A) \), the non-modal logic of a residuated lattice \(A \), (3) the congruence rule \((C_\lambda) \) for \(\lambda \in \Lambda \) and (4) the following axioms for unary connective \(\Delta \): For any \(\phi, \psi \in \mathcal{L}_0 \),

- \(\Delta \phi \lor (\Delta \phi \rightarrow \bot) \),
- \(\Delta(\phi \lor \psi) \rightarrow (\Delta \phi \lor \Delta \psi) \),
- \(\Delta \phi \rightarrow \phi \),
- \(\Delta \phi \rightarrow \Delta \Delta \phi \),
- \(\Delta(\phi \rightarrow \psi) \rightarrow (\Delta \phi \rightarrow \Delta \psi) \).

Definition 17. A one-step logical rule \(R = \langle \Gamma, \gamma \rangle \) where \(\Gamma \subseteq \mathcal{L}_0 \) and \(\gamma \in \mathcal{L}_1 \) is called one-step sound if \([\pi]^0_m = [\top]^0_m\) for every \(\pi \in \Gamma \) implies
||\gamma||_m^1 = ||\top||_m^1. The one-step logical system \(L_1\) is one-step sound if all one-step logical rules are one-step sound.

Definition 18. We say \(\pi \in L_0\) is a true propositional fact of a marking \(m : S \to \text{Hom}(P, A)\) if \(||\pi||_m^0 = ||\top||_m^0\). We let \(TPF(m)\) to be the following set
\[\{\pi \in L_0 : ||\pi||_m^0 = ||\top||_m^0\}\]

Definition 19. A one-step derivation system \(L_1\) is one-step complete if for every marking \(m : S \to \text{Hom}(P, A)\) and every \(\alpha \in L_1\), we have
\[||\alpha||_m^1 = ||\top||_m^1\] implies \(TPF(m) \vdash_{L_1} \alpha\)

5. **Soundness and Completeness**

In this section, we are going to prove soundness and completeness theorem of coalgebraic many-valued modal logic by one-step approach. we then first give the definition of soundness and completeness.

Definition 20. Let \(L\) be the logical system satisfied the requirement in section 2. We say that \(L\) is sound if all \(L\)-derivable formulas are valid, and complete if all valid formulas are \(L\)-derivable.

As [3] indicates, \(\Lambda(A)\) is sound and strongly complete with respect to \(A\). Thus, it is also sound and complete.

Definition 21. A set of \(ML\)-formulas \(\Psi\) is called the closure of a set of \(ML\)-formulas \(\Phi\) iff
\[
\begin{align*}
& (1) \ \Phi \subseteq \Psi \\
& (2) \ \Psi \text{ is closed under subformulas} \\
& (3) \ \Psi \text{ contains } \top \text{ and } \bot
\end{align*}
\]

\(\Phi\) is said closed if the closure \(\Psi\) of \(\Phi\) equals to \(\Phi\). To prove the theorem, first let \(P_\Phi\) be the set
\[\{a_\phi : \phi \in \Phi\}\]
where \(\Phi\) is finite closed set of \(ML\)-formulas and \(a_\phi\) are new propositional symbols for every \(\phi \in \Phi\). Then we use \(L_0(P_\Phi)\) and \(L_1(P_\Phi)\) to denote the rank-0 and rank-1 language which substitutes the set \(P\) of propositional symbols with \(P_\Phi\).

Define \(Thm\) to be the set of formulas \(\phi \in ML\) such that \(\phi\) is \(L\)-derivable. Now, let \(s : ML \to A\) be a non-modal homomorphism such that \(s[Thm] = 1\). Consider the set \(\tilde{S}\) of all such homomorphisms \(s\). We define the marking \(m : \tilde{S} \to \text{Hom}(P_\Phi, A)\) which maps \(s\) to \(h_s : P_\Phi \to A\) with \(h_s(a_\phi) = s(\phi)\). Then we have the following proposition.
Proposition 1. With the definition above, we can formulate the following equality
\[\|a_\phi\|_m^0(s) = s(\phi)\] for any \(s \in \bar{S}\).

Proof. This can be shown by \(\|a_\phi\|_m^0(s) = m^\delta(a_\phi)(s) = m(s)(a_\phi) = h_s(a_\phi) = s(\phi).\) \(\square\)

Let \((\phi/a_\phi : \phi \in \Phi)\) denote the natural substitution replacing all the variable \(a_\phi\) with the original formula \(\phi\). Therefore, for any formula \(\pi \in L_0(P_\Phi)\) and \(\alpha \in L_1(P_\Phi)\), we use \(\hat{\pi}, \hat{\alpha} \in \mathcal{ML}\) respectively, to denote \(\hat{\pi} := \pi(\phi/a_\phi : \phi \in \Phi)\), and \(\hat{\alpha} := \alpha(\phi/a_\phi : \phi \in \Phi)\).

We then have the following lemma.

Lemma 1. (Stratification Lemma) Let \(L_1\) be a one-step logical system which is one-step sound and complete. Then

1. For any formula \(\pi \in L_0(P_\Phi)\), \(\vdash_{L_1} \hat{\pi} \iff \langle \bar{S}, m \rangle \vdash^0 \pi = 1\)
2. For any formula \(\alpha \in L_1(P_\Phi)\), \(\vdash_{L_1} \hat{\alpha} \iff \langle \bar{S}, m \rangle \vdash^1 \alpha = 1\)

Proof. To prove part one of this lemma, we first claim that \(\|\pi\|_m^0(s) = s(\bar{\pi})\) for any \(\pi \in L_0(P_\Phi)\) and \(s \in \bar{S}\). This can be done by induction on the complexity of formulas in \(L_0(P_\Phi)\). For the base step, \(\pi\) is of the form \(a_\phi \in P_\Phi\) and \(\bar{\pi}\) is \(\phi\) by definition. Then \(\|a_\phi\|_m^0(s) = s(\phi) = s(\bar{\pi})\) using Proposition 1. For the inductive step, let \(* \in \{\lor, \land, \&\}\) and \(\pi_1, \pi_2 \in L_0(P_\Phi)\). By the inductive hypothesis, we then have
\[\|\pi_1*\pi_2\|_m^0(s) = \|\pi_1\|_m^0(s)^*\delta \|\pi_2\|_m^0(s) = s(\bar{\pi_1})^*\delta s(\bar{\pi_2}) = s(\bar{\pi_1*\pi_2}) = s(\hat{\pi_1*\pi_2}).\]

For \(\pi \in L_0(P_\Phi)\),
\[\|\Delta\pi\|_m^0(s) = \Delta\|\pi\|_m^0(s) = \Delta s(\bar{\pi}) = s(\hat{\Delta\pi})\]
using inductive hypothesis. This proves the claim.

Now, suppose that \(\vdash_{L_1} \hat{\pi}\). From the definition of one-step provability, every non-modal homomorphism \(s : \mathcal{ML} \to A\) satisfies \(s(\bar{\pi}) = 1\). From the claim above,
\[\|\pi\|_m^0(s) = s(\bar{\pi}) = 1\]
which proves the result we want. On the other side, assume that \(\not\vdash \hat{\pi}\). Then \(\hat{\pi} \notin \text{Thm}\) which means there exists a non-modal homomorphism \(h : \mathcal{ML} \to A\) such that \(h(\bar{\pi}) \neq 1\) but \(h[\text{Thm}] \subseteq \{1\}\). By the claim again, we have \(\|\pi\|_m^0(h) = h(\bar{\pi}) \neq 1\). This implies \(\hat{\pi}\) is not valid which is absurd.
Now, suppose that $\langle \bar{S}, m \rangle \models^{\perp_1} \alpha = 1$. Then by one-step completeness, $TPF(m) \vdash_{L_1} \alpha$. We prove by induction on the complexity of proof in L_1, that this implies $\vdash_{L_1} \hat{\alpha}$.

For the base case, we are considering $\pi \in L_0(\Phi)$ which is a true propositional fact about \bar{S}. The first part of Stratification lemma implies that $\vdash_{L_1} \hat{\pi}$. □

Definition 22. Let \bar{S} be defined as above. We define a syntactical evaluation $|\phi| : \bar{S} \to A$ for every $\phi \in ML$ as $s \mapsto s(\phi)$.

This is clearly a well-defined function. Thus, we will have

$$\|a_\phi\|^0_m = |\phi|$$

since $\|a_\phi\|^0_m(s) = s(\phi) = |\phi|(s)$ for every $s \in \bar{S}$ by definition. Now, we prove the key lemma that will be used in the proof of completeness theorem.

Lemma 2. (Existence Lemma)

Let Φ be a finite closed set of ML-formulas. There is a map $\sigma : \bar{S} \to T\bar{S}$ such that for all $s \in \bar{S}$ and all formulas of the following form $\Diamond_{\lambda}(\phi_0, \ldots, \phi_{n-1}) \in \Phi$, we have

$$s(\Diamond_{\lambda}(\phi_0, \ldots, \phi_{n-1})) = \lambda_{\bar{S}}(|\phi_0|, \ldots, |\phi_{n-1}|)(\sigma(s))$$

Proof. We prove by assuming for a contradiction that for some $s \in \bar{S}$ there is no $\sigma(s)$ satisfying the equality. List all formulas of the form $\Diamond_{\lambda}(\phi_0, \ldots, \phi_{n-1})$ and denote them as $\Diamond_{\lambda}\psi_0, \ldots, \Diamond_{\lambda}\psi_k-1$ if there are k-numbers of such formula. Each ψ_i is in fact a n-vector $(\phi_0, \ldots, \phi_{n-1})_i$ if λ is a n-ary predicate lifting. Suppose that $s(\Diamond_{\lambda}(\psi_i)) = c_i$ for all $c_i \in A$ and $i = 0, \ldots, k - 1$. Define the following formula $\alpha \in L_1(\Phi)$

$$\alpha := \Delta(\bigwedge_{i=0}^{k-1}(\Diamond_{\lambda}a_{\psi_i} \leftrightarrow c_i)) \rightarrow \bot.$$

Note that the new propositional symbols a_{ψ_i} is actually n-vectors $(a_{\phi_0}, \ldots, a_{\phi_{n-1}})_i$ whenever λ is n-ary predicate lifting. We denote it as
Consider $\lambda : \bar{\mathcal{S}} \to T\bar{\mathcal{S}}$ to simplify our notation. Then for any $\delta \in T\bar{\mathcal{S}}$

$$\|\alpha\|_m^{1}(\delta) = \|\Delta(\bigwedge_{i=0}^{k-1}(\Box a_{\psi_i} \leftrightarrow \bar{c}_i)) \to \bot\|_m(\delta)$$

$$= \|\Delta(\bigwedge_{i=0}^{k-1}(\Box a_{\psi_i} \leftrightarrow \bar{c}_i))\|_m^{1}(\delta) \to \|\bot\|_m(\delta)$$

$$= \Delta(\|\bigwedge_{i=0}^{k-1}(\Box a_{\psi_i} \leftrightarrow \bar{c}_i)\|_m^{1}(\delta)) \to \|\bot\|_m(\delta)$$

$$= \Delta(\bigwedge_{i=0}^{k-1}(\lambda \bar{S}(\|a_{\psi_i}\|_m(\delta)) \leftrightarrow c_i)) \to 0$$

$$= \Delta(\bigwedge_{i=0}^{k-1}(\lambda \bar{S}(\|\psi_i\|))(\delta) \leftrightarrow c_i) \to 0$$

Since $\lambda \bar{S}(\|\psi_i\|)(\delta) \neq c_i$ by our assumption, we have

$$\bigwedge_{i=0}^{k-1}(\lambda \bar{S}(\|\psi_i\|))(\delta) \leftrightarrow c_i \neq 1.$$

That is, $\|\alpha\|_m(\delta) = 0 \to 0 = 1$. From the Stratification Lemma, we get $\vdash_{L_1} \hat{\alpha}$ which means $s(\hat{\alpha}) = 1$. However, compute $s(\hat{\alpha})$ gives us

$$s(\hat{\alpha}) = s(\Delta(\bigwedge_{i=0}^{k-1}(\Box a_{\psi_i} \leftrightarrow \bar{c}_i)) \to \bot)$$

$$= \Delta(\bigwedge_{i=0}^{k-1}s(\Box a_{\psi_i} \leftrightarrow \bar{c}_i)) \to 0$$

$$= \Delta(1) \to 0$$

$$= 0$$

This contradicts to the value of $\hat{\alpha}$ we have above. \qed

Lemma 3. *(Truth Lemma)*

Let Φ be a finite, closed set of \mathcal{ML}-formulas and $\sigma : \bar{\mathcal{S}} \to T\bar{\mathcal{S}}$ be the map satisfying the Existence Lemma. Then we have

$$s(\phi) = s \models_{\sigma} \phi$$

for all $s \in \bar{\mathcal{S}}$ and $\phi \in \Phi$.
Proof. We prove this by a straightforward formula induction. Let S be a T-model given by σ as above and a valuation $V : P \to \text{Hom}(S, A)$ defined as $V(p)(s) = s(p)$ for $s \in S$ and $p \in P$. Then $s(p) = V(p)(s) = \|p_{\sigma}\|_\sigma(s)$, $s(\top) = 1 = \|\top\|_\sigma(s)$, $s(\bot) = 0 = \|\bot\|_\sigma(s)$, and $s(\bar{c}) = c = \|\bar{c}\|_\sigma$. For the logical connectives,

$$s(\phi \ast \psi) = s(\phi) \ast_\Lambda s(\psi) = \|\phi\|_\sigma(s) \ast_\Lambda \|\psi\|_\sigma(s) = \|\phi \ast \psi\|_\sigma(s)$$

for $\ast \in \{\lor, \land, \&\}$ and $\ast_\Lambda \in \{\lor, \land, \circ, \to\}$. Given $\phi \in \mathcal{ML}$, $s(\Delta \phi) = \Delta(s(\phi)) = \Delta(\|\phi\|_\sigma(s)) = \|\Delta \phi\|_\sigma(s)$. Last, for $\lambda \in \Lambda$ which is n-ary predicate lifting,

$$s(\circ_\lambda(\phi_0, \ldots, \phi_{n-1})) = \lambda_{\bar{s}}(\|\phi_0\|, \ldots, \|\phi_{n-1}\|)(\sigma(s))$$

$$= \lambda_{\bar{s}}(\|\phi_0\|_\sigma, \ldots, \|\phi_{n-1}\|_\sigma)(\sigma(s))$$

$$= \|\circ_\lambda(\phi_0, \ldots, \phi_{n-1})\|_\sigma(s)$$

Note that the first equality is given by the Existence Lemma. Also, the second equality is by the inductive hypothesis $s(\phi) = \|\phi\|_\sigma(s)$ and the definition $\|\phi\|_\sigma(s) = s(\phi)$. \qed

Now we are ready for proving the soundness and completeness theorem.

Theorem 3. Let Λ be a modal signature for the set functor T, and let L_1 be a one-step logical system for Λ which is one-step sound and complete for T. Then L_1 is also a sound and complete logical system for the set of \mathcal{ML}-validities in T.

Proof. For the proof of soundness, it suffices to show that all four part of axioms and logical rules of L_1 are valid. By one-step soundness, we only need to check one-step valid implies validity. Given any T-model $\langle S, \sigma, V, A \rangle$ with semantic $\|\cdot\|_\sigma$. We then let the coloring m^δ to be V and the marking is defined as $m : S \to \text{Hom}(P, A)$ with $m(s)(p) := V(p)(s)$ for any $s \in S$ and $p \in P$. Also, define δ to be $\sigma(s)$. The routine induction shows that $\|\pi\|_{m^\delta}(s) = \|\pi\|_\sigma(s)$ for $\pi \in \mathcal{L}_0$ and $\|\alpha\|_{m^\delta}(\sigma(s)) = \|\alpha\|_\sigma(s)$.

For the proof of completeness, suppose that there is a \mathcal{ML}-formula ψ which is valid but not L_1-derivable. Then $\text{Thm} \nvdash_{L_1} \psi$. Then there exists a non-modal homomorphism $h : \mathcal{ML} \to A$ such that $h[\text{Thm}] \subseteq \{1\}$ but $h(\psi) \neq 1$. Take Ψ to be the closure of $\{\psi\}$. From Existence Lemma, there is a map $\sigma : S \to TS$ satisfying the equality. Let $\langle S, \sigma, V \rangle$ be the T-model as in the proof of truth lemma, then we have $h(\psi) = \|\psi\|_\sigma(h) \neq 1$ which implies that ψ is not valid. \qed
6. Concluding remarks

In this article, we prove that there could be a sound and complete logical system for many-valued modal logic under the assumption of one-step sound and complete. This gives another way to show the soundness and completeness of many-valued modal logic. However, the main difficulties is to show the logic you aim for is one-step sound and complete. In the classical case, this can be done using the equivalent concept of one-step consistency and satisfiable \[15\]. However, there is no corresponding definition of such equivalence in many-valued logic. Thus, showing one-step soundness and completeness become more difficult in many-valued case. We left find a one-step sound and complete many-valued logic as an open problem. Also, we use the Δ operator in the proof of Existence lemma. Removing the Δ both from FL-algebras and our language \mathcal{ML} would make the theory more general. The authors would like to know whether there is a proof of Existence lemma without the δ operator. Finally, from \[11\], there exists a sound and weak complete logical system for coalgebraic propositional dynamic logic. The proof was using predicate lifting and one-step approach. Besides, the soundness and weak completeness of finitely-valued propositional dynamic logic has also been proved using logical system in abstract algebraic logic \[16\]. Therefore, one can try to generalize the methods in this article to prove the soundness and completeness of coalgebraic many-valued propositional dynamic logic. We left this direction of research as future study.

References

[1] Marta Bílková and Matěj Dostál. Many-valued relation lifting and moss’ coalgebraic logic. In *International Conference on Algebra and Coalgebra in Computer Science*, pages 66–79. Springer, 2013.

[2] Marta Bílková and Matěj Dostál. Expressivity of many-valued modal logics, coalgebraically. In *International Workshop on Logic, Language, Information, and Computation*, pages 109–124. Springer, 2016.

[3] Félix Bou, Francesc Esteva, Lluís Godo, and Ricardo Oscar Rodríguez. On the minimum many-valued modal logic over a finite residuated lattice. *Journal of Logic and computation*, 21(5):739–790, 2011.

[4] Petr Cintula and Carles Noguera. Chapter ii: A general framework for mathematical fuzzy logic. *Handbook of Mathematical Fuzzy Logic-Volume 1 Studies in Logic, Mathematical Logic and Foundations*, 37, 01 2011.

[5] Petr Cintula and Carles Noguera. Two-layer modal logics: from fuzzy logics to a general framework. In *TACL*, pages 43–47. Citeseer, 2013.

[6] Melvin Fitting. Many-valued modal logics. *Fundam. Inform.*, 15(3-4):235–254, 1991.
[7] Melvin Fitting. Many-valued model logics ii. *Fundam. Inform.*, 17(1-2):55–73, 1992.

[8] J.M. Font. *Abstract Algebraic Logic: An Introductory Textbook*. Studies in logic and the foundations of mathematics. College Publications, 2016.

[9] Petr Hájek. *Metamathematics of fuzzy logic*, volume 4. Springer Science & Business Media, 2013.

[10] Bart Jacobs. *Introduction to Coalgebra*, volume 59. Cambridge University Press, 2017.

[11] C Kupke and HH Hansen. Weak completeness of coalgebraic dynamic logics. In *FICS 2015: Proceedings of the 10th International Workshop on Fixed Points in Computer Science, Berlin, Germany, 11-12 September 2015*. Cornell university Library, 2015.

[12] Clemens Kupke and Dirk Pattinson. Coalgebraic semantics of modal logics: an overview. *Theoretical Computer Science*, 412(38):5070–5094, 2011.

[13] Lawrence S Moss. Coalgebraic logic. *Annals of Pure and Applied Logic*, 96(1-3):277–317, 1999.

[14] Dirk Pattinson. Coalgebraic modal logic: Soundness, completeness and decidability of local consequence. *Theoretical Computer Science*, 309(1-3):177–193, 2003.

[15] Lutz Schröder and Dirk Pattinson. Rank-1 modal logics are coalgebraic. *Journal of Logic and Computation*, 20(5):1113–1147, 2010.

[16] Igor Sedlár. Finitely-valued propositional dynamic logics. In *Advances in Modal Logic, Volume 13*, pages 561–579. College Publications, 2020.

[17] Yde Venema, Alexander Kurz, and Clemens Kupke. Completeness for the coalgebraic cover modality. *Logical Methods in Computer Science*, 8, 2012.