Insufficient Tuberculosis Treatment Leads to Earlier and Higher Mortality in Individuals Who Co-Infected with HIV in Southern China: A Cohort Study

CURRENT STATUS: UNDER REVIEW

BMC Infectious Diseases

Zhigang Zheng
Guangxi Medical University
ORCiD: https://orcid.org/0000-0001-8627-1263

Eric J. Nehl
Emory University

Chongxing Zhou
Guangxi Center for Disease Control and Prevention

Jianjun Li
Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention

Zhouhua Xie
The Fourth People's Hospital of Nanning City

Zijun Zhou
The Fourth people's hospital of Nanning City

Hao Liang
lianghao@gxmu.edu.cn Corresponding Author

10.21203/rs.3.rs-26357/v1

SUBJECT AREAS
Infectious Diseases

KEYWORDS
Abstract

Background: Tuberculosis (TB) and Acquired Immune Deficiency Syndrome (AIDS) are the leading causes of death globally. However, little is known about the long-term mortality risk and timeline of death in those co-infected with human immunodeficiency virus (HIV) and mycobacterium tuberculosis (MTB). This study sought to understand the long-term mortality risk, factors, timeline of death in those with HIV-mycobacterium tuberculosis (MTB) coinfection, particularly in those TB treatment are insufficient.

Methods: TB-cause specific deaths, classified using a modified ‘Coding of Cause of Death in HIV’ protocol. A longitudinal cross-registration-system checking approach was used to confirm HIV/MTB co-infection between two observational cohorts. The changes of mortality from the end of TB treatment (6 months) to post-treatment year (PTY) 5 (60 months) was investigated by different TB treatment outcomes. General linear model was used to estimate the mean mortality at each time-point and change between time-points. Cox’s proportional hazard regression measured the mortality hazard risk (HR) at each time-point. The Mantel-Haenszel stratification was used to identify mortality risk factors. Mortality density was calculated by person year of followed-up.

Results: At the end point, mortality among HIV/MTB coinfection was 34.7%. From the end of TB treatment to PTY5, mortality of percentage and of person year in individuals with TBFMA were significant higher than those with TBC and TBCR. Compared to individuals with TBC and with TBCR, individuals with TBFMA were tend to die earlier, mortality was significantly higher (HR TBFMA-TBC = 3.0, 95% confidence interval: 2.5-3.6, HR TBFMA-TBCR = 2.9, 95% CI: 2.5-3.4, P < 0.0001). Those who were naïve to antiretroviral therapy, were farmers, had lower CD4 counts (≤200 cells/μL) and were ≥50 years of age were at the highest risk of mortality. Mortality risk for participants with TBFMA was significant higher across all stratifications except those with a CD4 count of ≤200 cells/μL.

Conclusions: Earlier and long-term mortality of HIV/MTB co-infection is a significant problem when TB treatment fails or is inadequate.

Background

Tuberculosis (TB) and Acquired Immune Deficiency Syndrome (AIDS) are the leading causes of death
globally. The World Health Organization (WHO) estimates that there were 10.4 million new cases of TB in 2016, among which 10% were co-infected with the human immunodeficiency virus (HIV). On its own, in the same year, it was estimated that there were 1.3 million TB deaths among HIV-negative people, with an additional 374,000 TB deaths among those HIV-positive. Additionally, among the 36.7 million people estimated to have been living with HIV worldwide [1], and 1 million who died from HIV-related causes, a full 40% were caused by TB in 2016 [2].

HIV infection increases the progression of latent TB infection to active TB disease [3] and accelerates TB disease [4]. Mycobacterium tuberculosis (MTB) infection promotes the risk of progression from HIV to AIDS and death in HIV patients [5,6]. Improving treatment outcomes for antiretroviral therapy (ART) and anti-tubercular therapy are crucial for decreasing TB-related mortality among those with HIV/MTB co-infection. In 2010, WHO updated ART guidelines for HIV infection adults and adolescents, recommending that ART should start in all HIV-infected individuals with active TB, irrespective of their CD4 + T cell (CD4) count and that TB treatment should start first, followed by ART as quickly as possible afterward [7]. Following these guidelines, ART coverage improved rapidly worldwide; with 85% now on ART [1]. However, despite initiating ART and anti-tubercular therapy among patients presenting with TB and HIV, mortality associated with both diseases remains substantial [8] and the goal of halving TB-related deaths from 1990 levels by 2015 in high HIV/MTB co-infection prevalence countries did not meet.

China ranks in the top two of 22 high HIV/TB burden countries [1], and the overall prevalence of TB infection among HIV positive individuals is estimated to be 7.2% (range: 4.2–12.3%) and is even higher (22.8%) among AIDS patients. Guangxi, a province of Southern China, bears the highest HIV/MTB burden in China, with 11% TB prevalence among those with HIV and 3.3% HIV prevalence among TB patients [9]. Furthermore, the results of other research have shown that TB prevalence among HIV/AIDS was 17.7% [10]. Although the latest treatment outcome data showed TB treatment success rates of 84% and ART initiation of 88% for those with HIV/TB coinfection in a 2015 cohort in China[1], the challenge of high mortality among those with HIV/MTB co-infection remains, with recent studies showing that most AIDS-related deaths were due to TB infection [10]. Specifically, over 19% of
AIDS-related deaths of individuals who were diagnosed and died in the same calendar year in Guangxi were attributed to TB [11]. Little is known of the effects of TB treatment outcomes on long-term mortality of HIV/MTB co-infection globally, the reason mortality in HIV/MTB individuals who have initiated ART and anti-TB therapy remains high has still not well described. Insufficient TB treatment likely relates to ineffective TB infection control which leads to increases in mortality. Therefore, the goal of this study was to evaluate the impact of TB treatment outcomes and timeline on the long-term mortality of HIV/MTB co-infection, particularly in those who are with insufficient TB treatment.

Materials And Methods
Study setting
The number of HIV/MTB co-infection in Guangxi province constitutes more than 30% of the cases in China. Following international guidelines, in 2010 coordinated registration and care systems were initiated between the previously uncoordinated HIV and TB programs, specifically, following WHO policies, those diagnosed with TB have tested for HIV and those initially diagnosed with HIV/AIDS are screened for TB annually. Additionally, care services such as ART, anti-tubercular treatments, isoniazid preventive therapy, and infection control now coordinate across national HIV and TB programs.

Study design and participants
The goal of this study was to evaluate the impact of TB treatment outcomes on the long-term mortality of those co-infected with HIV/MTB through a 60-months longitudinal cohort observation. Patient were considered for this study if they were diagnosed with both HIV and MTB (including pulmonary TB and extra pulmonary TB), and their followed-up records were reviewed every 6 months to confirmed mortality if they were aged 18 years or older and whether from HIV/AIDS or TB registration systems in 2011. Records were excluded when HIV or TB status was missing across registration systems and when patients were from overseas, Hong Kong, Macao, or Taiwan.

Patient diagnosis and data collection
Sequential screening strategies were used to prevent false positives for both MTB and HIV. For MTB, clinic doctors first took a chest X-ray (CXR), then three sputum samples or chest washing fluid samples were collected for smearing, Ziehl-Neelsen staining, and then microscopy was used to screen
for MTB; samples were cultured for MTB if the smear was negative. MTB infection was diagnosed if acid-fast staining positive or positive isolation of culture was detected. For HIV, blood samples were collected and ELISA tests were used to test for HIV antibodies, followed by the western blot method confirmed HIV infection.

Data collection: 14,293 unique patients were diagnosed and registered as being HIV/AIDS positive in 2011. We launched a cross-registration-systems check across the HIV treatment database, follow-up database, and registration database for MTB/HIV co-infection first, and a patient was classified as being co-infected with MTB/HIV in the other database if his TB infection status was confirmed in any of the three databases. We imputed the total MTB/HIV co-infection cases from HIV databases to the TB registration database, which included 42,205 TB cases, and obtained 2,351 co-infection cases for analysis.

The 60-month (PTY5) follow-up period was calculated from the date of registration; for patients who died or were missing, the date of death or the date the patient was reported missing was the end-point of the follow-up. Standard follow-up information was recorded by the program staff and reported via an Internet-based system, including patient ID, time of follow-up, CD4 count, WHO clinical disease stage, and adverse events. After recommended treatment duration (6 months for cases of drug-susceptible TB, and one and a half year or longer for drug resistant and extra pulmonary TB) clinical doctors evaluated treatment outcomes using sputum smear microscopy, CXR, and assessment of clinical symptoms. Patients were classified for this study according to these TB treatment outcomes including: TB cure (TBC) if they had completely recovered;, TB complete regimen (TBCR) if they took their pills for the duration of the treatment period but did not recover completely, and TB treatment failure, missing, and adverse events (TBFMA) if they did not exhibit any improvement with their smear, had missing data, or reported experiencing adverse events. If a patient was lost to follow-up (3 months’ absence from a clinic since last visit), a site visit of the participant’s address was conducted by clinic staff to confirm their absence or death. Information collected at the site visits included the date of the last visit to the clinic or date of death, et al.

Statistical analyses
Data Source: Data were stratified for analysis based upon literature related to the topic and preliminary bivariate analysis. Age, gender, ART status, CD4 count, occupation, ethnicity, and route of infection were use as stratification factors. To identify potential confounding factors, bivariate Mantel-Haenszel hierarchical analysis was used to calculate the odds risk (OR) for each stratification factor. Mortality was not statistically different between TBC and TBCR groups, so TBC and TBCR groups were combined to compare to those with TBFMA when performed Mantel-Haenszel hierarchical analysis. We then compared the OR values for stratification variables between TBFMA and TBC/TBCR group to identify confounding factors. Confounding factors was confirmed if the difference in OR values was found to be statistically significant between TBFMA and the TBC/TBCR groups.

Analysis indices: A general linear model for mortality measurements was used for each clinical time-point [6 months (end of TB treatment), 12 months (PTY1), 24 months (PTY2), 36 months (PTY3), 48 months (PTY4), and 60 months (PTY5)] to generate restricted maximum likelihood estimates. Mortality and mortality hazard risk were over the 60 month period were compared using the Cox models; a descriptive epidemiologic method was used to describe the characteristics; a chi-square test was used to compare the differences in demographic characteristics of TBC, TBRC, and TBFMA; and a hierarchical analysis method was used to identify confounding factors, as described above. Adjusted HR value was calculated by removing those who died within the initial six months of therapy; adjusted OR values were calculated across the selected subgroups (adjusted for age, gender, ART, CD4 count). Data were analyzed with R (version 3.2.2, R Foundation for statistical Computing, Vienna, Austria) and SPSS 22.0, the significance level was set at 0.05, and all hypothesis tests were two-sided.

Ethics
Cohort data were extracted from the China National HIV and TB Program registration databases and analyzed retrospectively and anonymously. Informed consent forms were also signed by patients before they were tested for HIV or screened for TB. Written data use consent forms were signed by patients from the beginning of confirmation of HIV positive status.

Results
Personal characteristics
2,351 MTB/HIV co-infections were confirmed among 42,205 TB registered cases in 2011, and thus HIV
prevalence among those with TB was 5.6% (2,351/42,205); a total of 2,579.7 years was provided for TBC group at the follow-up assessment, 4,872.8 years for the TBCR group, and 913.5 years for the TBFMA group over the 60-month follow-up period. The median (M) time participants were tracked at follow-up for the TBC group was 5.0 person-years (PYs), and the inter-quartile range (IQR) was 2.2-5.0; the M (IQR) for TBCR and TBFMA groups was 5.0 PYs (2.1-5.0) and 1.1 (0.3-5.0), respectively (Supplemental Fig. 1).

Mortality trend, hazard risk of mortality
The male-to-female ratio among participants was 1.88:1; those who reported that they were farmers (75.1%) and were of Han ethnicity (58.2%) were in the majority. In the TBC, TBCR, and TCFMA groups, the CD4 count (IQR) was 223 cells/µL (53.0–417.0), 184 cells/µL (56.0–367.0), and 105 cells/µL (25.50–268.50), respectively. The percentages of patients by group on ART were 53.2%, 53.5%, and 33.3%; and the M (IQR) of age was 45.0 (31.0–58.0), 48.0 (32.5–62.0), and 53.0 (9.0–67.0), respectively. Finally, differences in the distributions of age, gender, ART initiation, and CD4 count were statistically significant among TBC, TBCR, and TCFMA groups (Table 1).
Table 1
Demography characteristics of HIV/MTB co-infection patients by treatment outcomes in Guangxi, Southern China

At the end point of the 60-month follow-up, a total of 859 HIV/MTB co-infected individuals had died, for a mortality of 36.5%; crude mortality in TBFMA, TBRC, and TBC groups was 60.0% (229/382), 32.0% (413/1,289), and 31.9% (217/680). Compared to the TBC group ($\chi^2 = 78.9, P < 0.0001$) and TBCR group ($\chi^2 = 97.0, P < 0.0001$), the crude mortality in the TBFMA group was significantly higher (see Table 2). In the initial 6 months of anti-tubercular treatment, mortality in the TBFMA group was 41.1% (157/382), while mortality in TBC and TBCR groups was 12.5% (85/680) and 11.6% (150/1,289). There was no statistically significant difference between mortality in TBC and TBCR groups, whether at the 6-month or 60-month observation ($\chi^2_{6m} = 0.60, P = 0.44; \chi^2_{60m} = 0.003, P = 0.95$) (Table 2). However, the initial 6-month mortality in the TBFMA group was significantly higher.

Characteristics	TB cure n (%)	TB complete treatment n (%)	TB treatment failure, patient missing, adverse events n (%)	P value
Age (year)	45.00	48.00	53.00	0.0001
Sex	31.00-58.00	32.50-62.00	39.00-67.00	0.0001
Gender				0.30
Han	403(59.26)	734(56.95)	231(60.47)	
Zhuang	253(37.22)	523(40.57)	136(35.60)	
Yao	12(1.76)	21(1.63)	10(2.62)	
Others	12(1.76)	11(0.85)	5(1.31)	
Occupation				0.0001
Farmer	538(79.12)	929(72.07)	306(80.10)	
Government employee	19(2.79)	91(7.05)	16(4.19)	
Worker	15(2.21)	38(2.95)	9(2.36)	
House nursing	44(6.47)	74(5.74)	29(7.59)	
Farmer worker	21(3.09)	25(1.94)	4(1.05)	
Student	12(1.76)	31(2.40)	0(0.00)	
Others	31(4.56)	101(7.85)	18(4.71)	
Infectious route				0.73
Heterosexual	547(80.44)	1004(77.89)	282(73.82)	
Homosexual	11(1.62)	22(1.71)	3(0.79)	
IDU	35(5.15)	61(4.73)	14(3.66)	
Blood transfusion	13(1.91)	17(1.32)	3(0.79)	
Others	74(10.88)	185(134.35)	80(20.94)	
ART				0.0001
Initiated ART	362(53.24)	689(53.45)	127(33.25)	
ART naive	255(37.50)	450(34.91)	182(47.64)	
Unknown	63(9.26)	150(11.64)	73(19.11)	
CD4 Count	223	184	105	0.002
Abbreviation: IRQ, Interquartile Range; IDU, Injection drugs users; ART, antiretroviral therapy.				
than in TBC and TBCR groups ($\chi^2 = 118.9, P < 0.0001$). As mortality was calculated by PYs, declined trend was observed among all groups from 6-month to 60-month, mortality in those with TBFMA was significant higher than it was with TBC and TBCR in all time-point (Fig. 1) (Supplemental Fig. 2).

Treatment outcomes	Case number (%):	Mortality in 6 months (%)	Mortality in 12 months (%)	Mortality in 24 months (%)	Mortality in 36 months (%)	Mortality in 48 months (%)	Mortality in 60 months (%)	\(\chi^2\)	\(P\) value
Adverse events, failure, missing	382 (16.25)	157 (41.10)	187 (48.95)	212 (55.50)	222 (58.12)	227 (59.42)	229 (59.95)	107.8	0.0001
Complete treatment	1289 (54.83)	150 (11.64)	242 (18.77)	315 (24.44)	379 (29.4)	404 (31.34)	413 (32.04)	--	--
Cure	680 (28.92)	85 (12.50)	126 (18.53)	164 (24.12)	192 (28.24)	206 (30.29)	217 (31.91)	--	--

Abbreviation: IRQ, Interquartile Range; IDU, Injection drugs users; ART, antiretroviral therapy.

Table 2

Crude mortality of HIV/MTB co-infection within 60 months by treatment outcomes

Mortality density analysis showed that the majority of mortality in the TBFMA group has died during the half of the first year; mortality density was higher than those in TBC and TBCR group during the same period. On the contrary, the majority of mortality in both TBC and TBCR groups has died in the last year of followed-up (Fig. 2).

The HR value of mortality was calculated for TBC, TBCR, and TBFMA groups using Cox regression models. At the 60-month follow-up, the crude HR of mortality in the TBFMA group was 2.5 (95% CI: 2.1–3.1) times that of the TBC group, and 2.6 (95% CI: 2.2–3.0) times that of the TBCR group. A Wald chi-square test showed that the HR for mortality in the TBFMA group was significantly higher than those in the TBC and TBCR groups ($\chi^2_{\text{cure}} = 95.4, P < 0.0001; \chi^2_{\text{comp}} = 131.8, P < 0.0001$).

HR adjusted by different stratification

We adjusted the HR by deleting those who died within the initial 6 months of the study. The adjusted HR of mortality in the TBFMA group was 1.6 (95% CI: 1.2-2.0) times that higher than the TBC group and 1.3 (95% CI: 1.0-1.7) times higher than the TBCR group, while the adjusted HR of the TBFMA group was significantly higher than the HR of TBC and TBCR groups ($\chi^2_{\text{cure}} = 9.95, P = 0.0002; \chi^2_{\text{comp}} = 5.1, P = 0.024$) (Figs. 3 – 1, 3 – 2).

Based upon preliminary analyses (see Table 1), ART, gender, age, occupation, and CD4 count were selected to compare the OR values in subgroups between TBFMA and the combination of TBC and
Results indicated that these selected factors were the independent and unique factors that caused significant mortality across all groups except CD4 count ≤ 200 µL (OR = 1.5, 95% CI:0.8–3.1,χ² = 1.36, P = 0.24). Mantel-Haenszel stratified analysis results showed that TBFMA among males (OR = 3.9, 95% CI:3.0-5.1), those ≥50 years old (OR = 3.5, 95% CI:2.5–4.9), and with CD4 count ≥200 µL (OR = 3.4, 95% CI:2.6–4.6) were the top three hazard risks for death, compared to the HR of these subgroups in the control group (Table 3, Fig.3 – 3, 3 – 4).

Table 3

Stratification	TB Treatmen t outcome	β	SE	Wald	df	P value	Exp (β)	1-Exp (β) (%)	95.0% Exp(β) Confidential Interval lower limit	Upper limit
ART and ART naive	Adverse events, failure, missing Complete treatment	−.548	0.12	26.19	2.00	0.0001	0.58	42.18	0.45	0.74
	Cure	−.665	0.14	23.75	1.00	0.0001	0.51	48.55	0.39	0.67
Gender	Adverse events, failure, missing Complete treatment	−.521	0.12	21.38	2.00	0.0001	0.59	40.63	0.47	0.75
	Cure	−.575	0.14	17.83	1.00	0.0001	0.56	43.70	0.43	0.74
Age group	Adverse events, failure, missing Complete treatment	−.449	0.12	14.49	2.00	0.0007	0.64	36.17	0.50	0.81
	Cure	−.458	0.14	13.23	1.00	0.0003	0.63	36.75	0.48	0.83
CD4 group	Adverse events, failure, missing Complete treatment	−.486	0.13	17.87	2.00	0.0001	0.62	38.47	0.48	0.79
	Cure	−.567	0.14	14.35	1.00	0.0002	0.57	43.28	0.43	0.75

Discussion

We found that the HIV prevalence among those first diagnosed with TB in Guangxi, China in 2011 was 5.6% with a cross-registration-system check and imputation method. This rate was higher than in previous studies based on surveys in hospitalization and routine TB surveillance [9,12], There were 24,849 (58.8%) TB cases that had a documented HIV test in 2011 and the proportion of TB patients testing HIV-positive was 9.5% (2,351/24,849), the percentage of those co-infected with HIV and TB in this study is consistent with testing results globally in 2017, but the proportion of TB patients testing HIV-positive in this study was less than the WHO estimate of 15% positive in 2017 [1].
Over 850 patients in this study died over the 5 year follow-up period. The survival of HIV/MTB patients might govern by the degree and timing of appropriate ART and anti-tubercular therapy. As previous studies showed that ART improves the survival rate by at least 50% in individuals with HIV/MTB [13,14], in 2012 the WHO endorsed a strategy recommending that ART should initiate as early as possible with HIV-positive TB patients. Insufficient anti-tubercular therapy in HIV/MTB caused the inability to control mycobacterial infection and led to high mortality [15]. Our study found that inadequate TB therapy (TBFMA) has led to a 2.97 (95% CI: 2.45–3.61) times higher mortality than those who cured and a 2.91 (95% CI: 2.46–3.43) times higher than those who completed their TB regimen during the 60-month follow-up, HIV and TB coinfected individuals with insufficient TB treatment were likely to die in an earlier stage of followed-up. Even after removing the deaths during the 6-month duration of anti-tubercular therapy, a significant difference in mortality remained. After adjusting with ART, the OR was still 2.84 (95% CI: 1.99–4.05) times higher among those who TB treatment failed, missing, or experienced adverse events than in those who cured or completed TB treatment. This result demonstrates that inadequate anti-tubercular therapy plays an important role in death for those with HIV/MTB coinfection. Similar results have observed in South Africa and Cote d’Ivoire [16,17]. The reasons for high mortality in those whose TB treatment failed, missing, or experienced adverse events may due to MTB dissemination, overwhelming infections, or failure to achieve rapid immunological recovery [18,19], but we did not get access to such details in this study. Future research should focus on the relationship between immune recovery and treatment outcomes concerning HIV/MTB co-infection.

Risk factors for mortality among those HIV/MTB co-infected in China have addressed elsewhere [20,21]. The majority of factors identified by hierarchical analysis in our study are consistent with the findings of previous studies. Adjusted by these risk factors, the HR for those whose treatment failed was still significantly higher than those who completed treatment and those who cured. These results underline that uncontrolled TB with insufficient treatment should consider as a leading cause of mortality among those with HIV/MTB coinfection. According to the WHO TB treatment guidelines [22], the standard treatment duration for cases of drug-susceptible TB is six months, and treatment for
drug-resistant TB is longer, however, longer treatment duration may lead to low adherence to therapy and poor compliance has been associated with failure and drug-resistant TB [23–25], and lead to a high risk of medium to long term mortality. Methods to improve adherence such as shorten treatment duration, monitoring, and treatment of adverse events, and improving treatment success rates should be considered as a priority in clinical practice to reduce mortality risk of HIV/TB coinfection.

In our study, the median CD4 count found in the TBFMA group was 105 cells/μL (IQR: 25.5–268.5). This more advanced HIV/MTB stage leads to high mortality due to the effects of immune reconstitution inflammatory syndrome (IRIS). The enhanced immune function associated with ART initiation to treat HIV/MTB can lead to worsened clinical outcomes due to the increased severity of IRIS. TB-IRIS can categorize as “paradoxical” or “unmasking” in the mechanism. In paradoxical TB-IRIS, ART initiated in a patient with known TB, and clinical TB symptoms worsen after ART initiation. In unmasking TB-IRIS, patients with previously undiagnosed and untreated TB, such as latent TB, present with inflammatory features of TB after ART initiation [26]. Studies have shown that those with an advanced stage of HIV/MTB at the time of ART initiation, and the initiation of ART closer to the time of TB treatment initiated were consistent risk factors for TB IRIS [27,28]; other research has found that the development of TB IRIS is associated with the rapid expansion of pathogen-specific CD4 cells following ART initiation [29,30]. However, the results of other research are not consistent [31]. Our study cannot provide more details on TB IRIS because of the manner of data collection; thus, more research on pathophysiology and immunology are needed to define more precisely the mechanisms of TB-IRIS.

A strength of our study is that our results provide direct evidence for policymakers and stakeholders to highlight practical therapeutic developments and to review clinical outcomes of TB treatment for HIV/MTB co-infection. However, there were limitations to this study. First, we could not stratify data into pulmonary and extra-pulmonary TB to determine more precisely the impact of different TB types. Second, we could not analyze the role of TB IRIS on the mortality of HIV/MTB co-infection because of the method of data collection.

Conclusions
HIV prevalence in TB registrations was 5.57% in Southern China; insufficient TB treatment increased long-term mortality nearly three times higher than those who cured of TB and those who completed their TB regimen, the majority of the individuals who had inadequate TB treatment were likely to die at the first half year of the followed-up period. The findings emphasize that sufficient TB treatment should provide, the treatment success rates of TB treatment should scale up, the capability of early TB case-finding among people living with HIV should intensify.

Abbreviations
IRQ: Interquartile Range; IDU: Injection drugs users; ART: antiretroviral therapy; M: Median.

Declarations
Supplementary information
Supplementary information accompanies this paper at
Additional file 1: Figures 1, and 2.

Acknowledgements
The authors would like to thank the staff who works in the Division of HIV/TB Coinfection Treatment, the Fourth People Hospital of Nanning City to extract the data from a local HIV/TB treatment cohort.

Authors’ contributions
ZX and ZZ conducted sample collections. HL made substantial contributions to the conception and design of the work. JL and CZ contribute to the analysis of the data and literature review as well. ZZ and EN make major contributions to the interpretation and manuscript preparation. EN substantively revised the work/manuscript. All authors have approved the submitted version.

Availability of data and materials
All data generated or analysed during this study are included in this published article (and its supplementary information files).

Ethics approval and consent to participate
Yes.

Consent for publication
Not applicable.

Funding
This work was supported by: 1. The National Nature Science Foundation of China (No. 81760618); 2. Expanded and Applied Project of Appropriate Technology of Medicine and Health in Guangxi (No.
Competing interests

The authors declare that they have no competing interests.

References

1. World Health Organization. Global tuberculosis report 2017. Geneva: World Health Organization; 2017(DB/OL). License: CC BY-NCSA 3.0 IGO. (http://www.who.int/tb/publications/global_report/en/)

2. World Health Organization. Global tuberculosis report 2015. Geneva: World Health Organization; 2015(DB/OL).

3. Selwyn PA, Hartel D, Lewis VA, Schoenbaum EE, Vermund SH, Klein RS, et al. A prospective study of the risk of tuberculosis among intravenous drug users with human immunodeficiency virus infection. N Engl J Med. 1989;320:545. Doi: 10.1056/NEJM198903023200901

4. Corbett EL, Charalambous S, Moloi VM, Fielding K, Grant AD, Dye C, et al. Human immunodeficiency virus and the prevalence of undiagnosed tuberculosis in African gold miners. Am J Respir Crit Care Med. 2004;170:673. Doi: 10.1164/rccm.200405-590OC

5. López-Gatell H, Cole SR, Hessol NA, French AL, Greenblatt RM, Landesman S, et al. Effect of tuberculosis on the survival of women infected with human immunodeficiency virus. Am J Epidemiol. 2007;165:1134. Doi: 10.1093/aje/kwk116

6. Badri M, Ehrlich R, Wood R, Pulerwitz T, Maartens G. Association between tuberculosis and HIV disease progression in a high tuberculosis prevalence area. Int J Tuberc Lung Dis. 2001;5:225. PMID: 11326821

7. WHO HIV/AIDS Programme. Antiretroviral therapy for HIV infection adults and adolescents: recommendations for a public health approach (2010 revision) [R]. 2010.21-24.
8. Ravimohan S, Tamuhla N, Steenhoff AP, Letlhogile R, Makutu DK, Nfanyana K, et al. Early immunologic failure is associated with early mortality among advanced HIV-infected adults initiating antiretroviral therapy with active tuberculosis. J Infect Dis. 2013;208:1784-1793.

9. Gao L, Zhou F, Li X, Jin Q. HIV/TB co-infection in mainland China: a meta-analysis. PLoS ONE 2010;5(5): e10736. https://doi.org/10.1371/journal.pone.0010736. Doi: 10.1371/journal.pone.0064915.

10. Ji Y, Wang Z, Shen J, Chen J, Yang J, Qi T, et al. Trends and characteristics of all-cause mortality among HIV-infected inpatients during the HAART era (2006–2015) in Shanghai, China. Biosci Trends. 2017;11(1):62-8. https://doi.org/10.5582/bst.2016.01195

11. Zheng ZG, Geng WK, Lu ZZ, Li JJ, Zhou CX, Yang WM. Impact on mortality of human immunodeficiency virus and mycobacterium tuberculosis co-infection, Guangxi Zhuang Autonomous Region, 2011. Chin J Epidemiol, 2018;39(2):124-127. https://doi.org/10.5582/bst.2016.01195

12. Lawn SD, Kranzer K, Edwards DJ, McNally M, Bekker LG, Wood R. Tuberculosis during the first year of antiretroviral therapy in a South African cohort using an intensive pretreatment screening strategy[j]. AIDS. 2010;24(9):1323–1328.

13. Zheng ZG, Cui ZZ, Huang MY, Pan DX. Effect of antiretroviral therapy in reducing deaths among patients co-infected with Mycobacterium tuberculosis and human immunodeficiency virus in Guangxi. Chin J Epidemiol. 2015;36(2):124-127. https://DOI:10.3760/cma.j.issn.0254-6450.2015.02.005

14. Jouanguy E, Lamhamedi-Cherradi S, Altare F, Fondaneche MC, Tuerlinckx D, Blanche S, et al. Partial interferon gamma receptor 1 deficiency in a child with tuberculoid bacillus Calmette-Guerin infection and a sibling with clinical tuberculosis. J Clin
Invest. 1997;100:2658–2664. [PubMed: 9389728].

15. Wong EB, Omar T, Setlhako GJ, Osih R, Feldman C, Murdoch DM, et al. Causes of death on antiretroviral therapy: a post-mortem study from South Africa. PLoS One. 2012;7:e47542.

16. Greenberg AE, Lucas S, Tossou O, Coulibaly IM, Coulibaly D, Kassim S, Ackah A, et al. Autopsy-proven causes of death in HIV-infected patients treated for tuberculosis in Abidjan, Cote d’Ivoire. AIDS. 1995;9:1251–1254. [PubMed: 8561978].

17. Holmes CB, Wood R, Badri M, Zilber S, Wang B, Maartens G, et al. CD4 decline and incidence of opportunistic infections in Cape Town, South Africa: implications for prophylaxis and treatment. J Acquir Immune Defic Syndr. 2006;42:464–469. [PubMed: 16810113].

18. Day CL, Abrahams DA, Lerumo L, Janse van Rensburg E, Stone L, O’Rie T, et al. Functional capacity of Mycobacterium tuberculosis-specific T cell responses in humans is associated with mycobacterial load. J Immunol. 2011;187:2222–2232. [PubMed: 21775682].

19. Zheng ZG, Tang ZZ, Lu QL, Wei H, Geng WK. Influential factors analysis on the survival time of patients infected with tuberculosis and HIV. Chin J Prev Med. 2015;49(10):907–913, https://DOI3760/cma.j.issn.0253-9624.2015.10.014.

20. Ji YJ, Liang PP, Shen JY, Sun JJ, Yang JY, Chen, et al. Risk factors affecting the mortality of HIV infected patients with pulmonary tuberculosis in the cART era: a retrospective cohort study in China. INFECT DIS POVERTY. 2018;7:25. https://doi.org/10.1186/ s40249-018- 0405-8.

21. Meintjes G, Lawn SD, Scano F, Maartens G, French MA, Worodria W, et al. Tuberculosis-associated immune reconstitution inflammatory syndrome: case definitions for use in resource-limited settings. Lancet Infect Dis. 2008;8:516– doi:
22. Treatment of Tuberculosis: Guidelines, Fourth Edition. 4th ed. 2010.

23. Sharma SK, Turaga KK, Balamurugan A, Saha PK, Pandey RM, Jain NK, et al. Clinical and genetic risk factors for the development of multi-drug resistant tuberculosis in non-HIV infected patients at a tertiary care center in India: A case-control study. Infect Genet Evol. 2003; 3: 183–188. doi: 10.1016/S1567-1348(03)00086-8 PMID: 14522182

24. Gelmanova IY, Keshavjee S, Golubchikova VT, Berezina VI, Strelis AK, Yanova G V, et al. Barriers to successful tuberculosis treatment in Tomsk, Russian Federation: non-adherence, default and the acquisition of multidrug resistance. Bull World Heal Organ. 2007; 85: 703–711. doi: 10.2471/BLT.06. 038331

25. Saunders NJ, Trivedi UH, Thomson ML, Doig C, Laurenson IF, Blaxter ML. Deep resequencing of serial sputum isolates of Mycobacterium tuberculosis during therapeutic failure due to poor compliance reveals stepwise mutation of key resistance genes on an otherwise stable genetic background. J Infect. Elsevier Ltd; 2011; 62: 212–217. doi: 10.1016/j.jinf. 2011.01.003

26. Naidoo K, Yende-Zuma N, Padayatchi N, Jithoo N, Nair G, Bamber S, Gengiah S, et al. The immune reconstitution inflammatory syndrome after antiretroviral therapy initiation in patients with tuberculosis: findings from the SAPiT trial. Ann Intern Med. 2012;157:313–324. [PubMed: 22944873]

27. Laureillard D, Marcy O, Madec Y, Chea S, Chan S, Borand L, et al. Paradoxical tuberculosis associated immune reconstitution inflammatory syndrome after early initiation of antiretroviral therapy in a randomized clinical trial. AIDS. 2013;27:2577-2586. [PubMed: 24096631]

28. Luetkemeyer AF, Kendall MA, Nyirenda M, Wu X, Ive P, Benson CA, et al. Tuberculosis
Immune Reconstitution Inflammatory Syndrome in A5221 STRIDE: timing, severity and implications for HIV-TB programs. J Acquir Immune Defic Syndr. 2014 Apr 1;65(4):423-8. doi: 10.1097/QAI.0000000000000030.

29. Bourgarit A, Carcelain G, Martinez V, Lascoux C, Delcey V, Gicquel B, et al. Explosion of tuberculin-specific Th1-responses induces immune restoration syndrome in tuberculosis and HIV co-infected patients. AIDS. 2006;20:F1–7. [PubMed:16511406].

30. Bourgarit A, Carcelain G, Samri A, Parizot C, Lafaurie M, Abgrall S, et al. Tuberculosis-associated immune restoration syndrome in HIV-1-infected patients involves tuberculin-specific CD4 Th1 cells and KIR-negative gamma delta T cells. J Immunol. 2009;183:3915–3923. [PubMed: 19726768].

31. Meintjes G, Wilkinson KA, Rangaka MX, Skolimowska K, van Veen K, Abrahams M, et al. Type 1 helper T cells and FoxP3-positive T cells in HIV-tuberculosis-associated immune reconstitution inflammatory syndrome. Am J Respir Crit Care Med. 2008;178:1083–1089. [PubMed: 18755923].

Figures
Mean mortality with ± 95% confidence interval (CI) for person years of followed-up at the end of TB treatment (6M), post-treatment year 1 (12M), post-treatment year 2 (24M), post-treatment year 3 (36M), post-treatment year 4 (48M), and post-treatment year 5 (60M) among HIV/MTB coinfection patients treated with tuberculosis cure (TBC) (n=680), tuberculosis complete regimen (TBCR) (n=1289), and tuberculosis treatment failure, patients missing, adverse events (TBFMA) (n=382) in Southern China.
Density of mortality at the end of TB treatment (0.5 PYs), post-treatment year 1 (1 PYs), post-treatment year 2 (2 PYs), post-treatment year 3 (3 PYs), post-treatment year 4 (4 PYs), and post-treatment year 5 (5 PYs) among HIV/MTB coinfection patients treated with tuberculosis cure (TBC) (n=680), tuberculosis complete regimen (TBCR) (n=1289), and tuberculosis treatment failure, patients missing, adverse events (TBFMA) (n=382) in Southern China.
Figure 3
Crude (3-1) and adjusted (3-2) accumulative Survival Function for mortality hazard risk at the end of TB treatment (6 months), post-treatment year 1 (12M), post-treatment year 2 (24M), post-treatment year 3 (36M), post-treatment year 4 (48M), and post-treatment year 5 (60M) among HIV/MTB coinfection patients treated with tuberculosis cure (TBC) (n=680), tuberculosis complete regimen (TBCR) (n=1289), and tuberculosis treatment failure, patients missing, adverse events (TBFMA) (n=382) in Southern China.
Figure 4

Adjusted accumulative Survival Function for mortality hazard risk at the end of TB treatment (6 months), post-treatment year 1 (12M), post-treatment year 2 (24M), post-treatment year 3 (36M), post-treatment year 4 (48M), and post-treatment year 5 (60M) between stratifications of antiretroviral therapy (n=362) and of antiretroviral therapy naïve (255) HIV/MTB coinfection patients treated with tuberculosis cure (TBC) (n=680), tuberculosis complete regimen (TBCR) (n=1289), and tuberculosis treatment failure, patients missing, adverse events (TBFMA) (n=382) in Southern China.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.
SupplementalFigurepage.docx