\textbf{\textit{ℓ-ADIC CLASS FIELD THEORY FOR REGULAR LOCAL RINGS}}

KANETOMO SATO

\textbf{Abstract.} In this paper, we prove the ℓ-adic abelian class field theory for henselian regular local rings of equi-characteristic assuming the surjectivity of Galois symbol maps, which is a ℓ-adic variant of a result of Matsumi [13].

1. Introduction

Let p be a prime number, and let A be an excellent henselian regular local ring over \mathbb{F}_p of dimension n with finite residue field (e.g., $\mathbb{F}_p[[X_1, \ldots, X_n]]$). Let s be the closed point of $X := \text{Spec}(A)$ and let D be an effective divisor on X. By standard arguments in the higher class field theory (cf. [10], [19]), there is a localized Chern class map

\begin{equation}
(1.1) \quad c_{X,D,\ell^r} : H^n_s(X_{\text{Nis}}, K^M_n(O_X, I_D))/\ell^r \longrightarrow H^{2n}_s(X_{\text{et}}, j_! \mu^\otimes_{\ell^r})
\end{equation}

for a prime number $\ell \neq p$ and $r > 0$. Here j denotes the natural open immersion $X - \text{Supp}(D) \hookrightarrow X$, $I_D \subset O_X$ denotes the defining ideal of D and $K^M_n(O_X, I_D)$ denotes a certain Milnor K-sheaf in the Nisnevich topology (see Notation below). We will review the construction of this map in §3. The group $H^n_s(X_{\text{Nis}}, K^M_n(O_X, I_D))$ plays the role of the K^M_n-id\`ele class group of $K := \text{Frac}(A)$ with modulus D. The main result of this paper is the bijectivity of this map, which is conditional with respect to the surjectivity of Galois symbol maps:

\textbf{Theorem 1.2.} Assume $S(K, n, \ell)$ holds (see Notation below for the precise statement of this condition). Then c_{X,D,ℓ^r} is bijective.

A key to the proof of this theorem is the exactness of the cousin complex

\[0 \rightarrow H^{n+1}_{\text{et}}(\text{Spec}(K), \mu^\otimes_{\ell^r}) \rightarrow \bigoplus_{y \in X^1} H^{n+2}_{y}(X_{\text{et}}, j_! \mu^\otimes_{\ell^r}) \rightarrow \bigoplus_{y \in X^2} H^{n+3}_{y}(X_{\text{et}}, j_! \mu^\otimes_{\ell^r}) \rightarrow \cdots , \]

which we prove using a result of Panin [17], Theorem 5.2 (cf. [2], [11]). In fact, we will prove this exactness for the spectrum of an arbitrary henselian local ring which is essentially étale over A (see Lemma 4.2 below). Using this local-global principle, we will deduce the bijectivity of c_{X,D,ℓ^r} from the bijectivity of Galois symbol maps for n-dimensional local fields [9], p. 672, Lemma 14 (1) (see §5 below for details).

We explain how Theorem 1.2 is related to the class field theory of K. For $D \subset X$ as before, there is a natural pairing of \mathbb{Z}/ℓ^r-modules

\begin{equation}
(1.3) \quad H^{2n}_s(X_{\text{et}}, j_! \mu^\otimes_{\ell^r}) \times H^1(U_{\text{et}}, \mathbb{Z}/\ell^r) \longrightarrow H^{2n+1}_s(X_{\text{et}}, \mu^\otimes_{\ell^r}) \sim \mathbb{Z}/\ell^r.
\end{equation}

\textit{Date:} September 23, 2007.

\textit{2000 Mathematics Subject Classification:} 11G45 and 19F05.
Here U denotes $X - \text{Supp}(D)$, and the trace isomorphism is given by that of the closed point s and the cohomological purity [5], remark after 7.1.7 (cf. [6], XIX). This pairing together with $c_{X,D,\ell'}$ induces a map

$$\rho_{X,D,\ell'} : H^n_s(X_{\text{Nis}}, K^{M}_n(O_X, \mathcal{I}_D))/\ell' \rightarrow \pi^a_1(U)/\ell'.$$

Taking projective limits with respect to D and r, we obtain the ℓ-adic reciprocity map of the class field theory of K:

$$\rho_{K,\ell} : C_K := \varprojlim_{D \subset X} \rho_{X,D,\ell'} \rightarrow G^{(\ell)}_K,$$

where D runs through all effective divisors on X, and $G^{(\ell)}_K$ denotes the maximal pro-ℓ quotient of $\text{Gal}(K^{ab}/K)$ with K^{ab} the maximal abelian extension of K.

Corollary 1.4. Assume $S(K,n,\ell)$ holds. Then $\rho_{K,\ell}$ has dense image with respect to the Krull topology on the Galois group, and its kernel consists of elements which are divisible in C_K by any power of ℓ.

Indeed, by a theorem of Gabber [8], Théorème 5.4 (see also [20], Théorème 0.2, [7], I), the pairing $(\mathbb{L}3)$ is a non-degenerate pairing of finite groups. This fact and Theorem $(\mathbb{L}2)$ imply that the map $\rho_{X,D,\ell'}$ is bijective for any D and r. Hence $\rho_{K,\ell}$ has dense image and $\ker(\rho_{K,\ell})$ agrees with $\bigcap_{\nu > 0} \ell^\nu \cdot C_K$.

Corollary $(\mathbb{L}4)$ extends results of Saito [21] and Matsumi [12] to higher-dimensional cases, and its p-adic variant is due to Matsumi [13].

Notation

For a commutative ring R with unity and an integer $q \geq 0$, $K^M_q(R)$ denotes the Milnor K-group of degree q defined as $(R^\times)^{\otimes q}/J$, where J denotes the subgroup of $(R^\times)^{\otimes q}$ generated by elements of the form $x_1 \otimes \cdots \otimes x_q$ with $x_i + x_j = 0$ or 1 for some $1 \leq i < j \leq q$. For a local ring R, R^h denotes the henselization of R. For a field F and a positive integer m prime to $\text{ch}(F)$, let $h^q_{F,m}$ be Galois symbol map due to Tate [23]

$$h^q_{F,m} : K^M_q(F)/m \rightarrow H^q_{\text{Gal}}(F, \mu^\otimes_m),$$

where the right hand side is the Galois cohomology of degree q of the absolute Galois group of F. In [1], §5, Bloch and Kato conjectured that this map is always bijective. For a prime number $\ell \neq \text{ch}(F)$, we define the condition $S(F,q,\ell)$ as follows:

$$S(F,q,\ell) : h^q_{F,\ell} \text{ is surjective for any finite separable extension } F'/F.$$

Remark 1.5. $h^q_{F,m}$ is known to be bijective in the following cases:

1. $q = 0$, $q = 1$ (Hilbert’s theorem 90), $q = 2$ (Merkur’ev-Suslin [14]).
2. F is a finite field. Indeed, both $K^M_q(F)$ and $H^q_{\text{Gal}}(F, \mu^\otimes_m)$ are zero for $q \geq 2$.
3. $\text{ch}(F) \neq 2$ and $m = 2^\nu$ (Merkur’ev-Suslin [15], Voevodsky [24]).
4. F is a henselian discrete valuation ring of characteristic $p > 0$ and $m = p^\nu$ (Bloch-Kato [1]).
5. The case that F is a henselian discrete valuation ring with residue field k, that m is prime to $\text{ch}(k)$ and that $h^q_{k,m}$ and $h^{q-1}_{k,m}$ are bijective ([9], p. 672, Lemma 14 (1)). In particular, in view of (2) and (4), $h^q_{F,m}$ is bijective for any local field.
\[\text{For a scheme } X, \mathcal{K}_q^M(O_X) \text{ denotes the Milnor } K\text{-sheaf of degree } q \text{ in the Nisnevich topology on } X. \text{ For an ideal sheaf } \mathcal{I} \subset O_X, \text{ we define} \]

\[\mathcal{K}_q^M(O_X, \mathcal{I}) := \ker(\mathcal{K}_q^M(O_X) \to \mathcal{K}_q^M(O_X/\mathcal{I})) \]

\[\text{For } q \geq 0, X^q \text{ denotes the set of all points on } X \text{ of codimension } q. \text{ For a point } x \in X, \kappa(x) \text{ denotes the residue field of the local ring } O_{X,x}. \]

2. Preliminary on henselian discrete valuation fields

Let \(F \) be a henselian discrete valuation field and let \(O_F \) be its integer ring. Let \(\pi \) be a prime element of \(O_F \). Put \(X := \text{Spec}(O_F) \) and denote the generic point (resp. closed point) of \(X \) by \(\eta \) (resp. \(x \)). Let \(U^1_\pi = \{1 + \pi a \mid a \in O_F\} \) be the first unit group of \(O_F \), and let \(U^1 K_q^M(F) \) be the subgroup of \(K_q^M(F) \) generated by the image of \(U^1_\pi \otimes (F^\times)^{\otimes q-1} \). The following elementary facts will be useful later:

Lemma 2.1. Let \(m \) be a positive integer invertible in \(O_F \).

1. Let \(I \) be a non-zero ideal of \(O_F \) with \(I \not\subset O_F \), and let \(K_q^M(O_F, I) \) be the kernel of the natural map \(K_q^M(O_F) \to K_q^M(O_F/I) \). Then we have

\[\text{Im}(K_q^M(O_F, I) \to K_q^M(F)) \subset U^1 K_q^M(F) \subset m \cdot K_q^M(F). \]

2. The connecting map \(H^q(\eta_{\text{ét}}, \mu_{m^q}) \to H^{q+1}(X_{\text{ét}}, \mu_{m^q}) \) in the localization theory of étale cohomology is surjective for any \(q \geq 1 \).

Proof. (1) The second inclusion follows from the fact that \(U^1_\pi \subset (O_F^\times)^m \), which is a direct consequence of Hensel’s lemma. We show the first inclusion. Let \(k \) be the residue field of \(O_F \). There is a short exact sequence (cf. [9], p. 616, Lemma 6)

\[0 \to U^1_\pi K_q^M(F) \to K_q^M(F) \xrightarrow{\partial} K_q^M(k) \oplus K_{q-1}^M(k) \to 0, \]

where the arrow \(\partial \) is defined by the assignment

\[
\begin{align*}
\{\pi, a_1, \ldots, a_{q-1}\} &\mapsto (0, \{\overline{a_1}, \ldots, \overline{a_{q-1}}\}) \\
\{a_1, \ldots, a_q\} &\mapsto (\{\overline{a_1}, \ldots, \overline{a_q}\}, 0)
\end{align*}
\]

with each \(a_i \in O_F^\times \) and \(\overline{a_i} \) denotes the residue class of \(a_i \) in \(k^\times \). The assertion follows from this exact sequence and the assumption that \(I \not\subset O_F \).

(2) There is a natural map

\[H^{q-1}(x_{\text{ét}}, \mu_{m^{q-1}}) \to H^{q+1}(X_{\text{ét}}, \mu_{m^q}) \]

sending \(\alpha \in H^{q-1}(x_{\text{ét}}, \mu_{m^{q-1}}) \) to \(\text{cl}_X(x) \cup \alpha \), where \(\text{cl}_X(x) \in H^2(x_{\text{ét}}, \mu_m) \) denotes the cycle class of \(x \) ([7], Cycle, §2.1). This map is bijective by the purity for discrete valuation rings ([7], I.5). Let \(\alpha \in H^{q-1}(x_{\text{ét}}, \mu_{m^{q-1}}) \) be an arbitrary cohomology class. Since \(X \) is henselian local with closed point \(x \), there is a unique \(\alpha' \in H^{q-1}(X_{\text{ét}}, \mu_{m^q}) \) that lifts \(\alpha \). By [4], Cycle, 2.1.3, the cohomology class \(\{\pi\} \cup \alpha' \in H^q(\eta_{\text{ét}}, \mu_{m^q}) \) maps to \(\alpha \) under the composite map

\[H^q(\eta_{\text{ét}}, \mu_{m^q}) \to H^{q+1}(X_{\text{ét}}, \mu_{m^q}) \xrightarrow{\sim} H^{q-1}(x_{\text{ét}}, \mu_{m^{q-1}}), \]
up to a sign, which implies the assertion.

3. Localized Chern class maps

In this section, we construct localized Chern class maps. Our construction is essentially the same as those in [10], [19]. We work under the following setting. Let X be a noetherian integral normal scheme. Let D be an effective Weil divisor on X. Let j be the open immersion $X \to X$. Let $I_D \subset O_X$ be the defining ideal of D. Let ℓ be a prime number invertible on X, and let r be a positive integer. For $q \geq 0$ and $x \in X^a$, we define the localized Chern class map

\[
\cl_{X,D,x,\ell}^q : H^0(X_{\text{Nis}}, K^M_q(O_X, I_D))/\ell^r \to H^{q+a}(X_\et, j^s \mu^q_{\ell^r})
\]

by induction on $a \geq 0$. The map c_{X,D,ℓ^r} in (1.1) is defined as \cl_{X,D,s,ℓ^r}^n. We first recall the following general facts.

Lemma 3.2. Let Z be a scheme of dimension d, and let \mathcal{F} be an abelian sheaf on Z_{Nis}. Then:

1) We have $H^t(Z_{\text{Nis}}, \mathcal{F}) = 0$ for any $t > d$.
2) For $z \in Z$, $H^t(Z_{\text{Nis}}, \mathcal{F})$ is isomorphic to

\[
\begin{cases}
\text{Coker} (\mathcal{F}_z \to H^0(U_{\text{Nis}}, \mathcal{F})) & \text{if } t = 1 \\
H^{t-1}(U_{\text{Nis}}, \mathcal{F}) & \text{if } t \geq 2 \\
0 & \text{if } t \geq \text{codim}_Z(z) + 1,
\end{cases}
\]

where U denotes $\text{Spec}(O_{Z,z}) - \{z\}$.
3) There is an exact sequence

\[
\bigoplus_{z \in Z^{d-1}} H^{d-1}_z(Z_{\text{Nis}}, \mathcal{F}) \to \bigoplus_{z \in Z^d} H^d_z(Z_{\text{Nis}}, \mathcal{F}) \to H^d(Z_{\text{Nis}}, \mathcal{F}) \to 0.
\]

Proof. For (1), see [19], Lemma 1.22. The assertion (2) follows from (1) and a standard localization argument using the excision in the Nisnevich topology. To show (3), we compute the local-global spectral sequence

\[
E_1^{u,v} = \bigoplus_{z \in Z^u} H^{u+v}_z(Z_{\text{Nis}}, \mathcal{F}) \Longrightarrow H^{u+v}(Z_{\text{Nis}}, \mathcal{F}).
\]

We have $E_1^{u,v} = 0$ unless $0 \leq u \leq d$, and $E_1^{u,v} = 0$ for $v > 0$ by (2). Hence we have $E_2^{d,0} \simeq H^d(Z_{\text{Nis}}, \mathcal{F})$, which implies (3).}

We construct the map (3.1) in three steps. Replacing X by X^h, the henselization of X at x if necessary, we assume that X is henselian local with closed point x.

Step 0. Assume $a = 0$. Then we have $X = x$ and D is zero. We define $\cl_{X,0,x,\ell}^q$ as the Galois symbol map $h^q_{x,\ell} : K^M_q(x)/\ell^r \to H^q(x_\et, \mu^q_{\ell^r})$.

Step 1. Assume $a = 1$. Then X is the spectrum of a henselian discrete valuation ring O_F with fraction field F. Let $\eta = \text{Spec}(F)$ be the generic point of X. We have $\text{Supp}(D) = x$, or otherwise, D is zero. Put $K_D := K^M_q(O_X, I_D)$ and $\mu_D := j^s \mu^q_{\ell^r}$ for
simplicity, which mean $\mathcal{K}_q^M(O_X)$ and μ^\otimes_q, respectively, if $D = 0$ (i.e., $\mathcal{I}_D = O_X$). We define $c_{X,D,x,\ell'}^{q,loc}$ as the map induced by the commutative diagram with exact rows

$$
\begin{array}{cccccc}
H^0(X_{\text{Nis}}, \mathcal{K}_D)/\ell' & \to & K^M_q(F)/\ell' & \to & H^1_x(X_{\text{Nis}}, \mathcal{K}_D)/\ell' & \to 0 \\
\downarrow & & \downarrow & & \downarrow & \\
H^q(X_{\text{ét}}, \mu_D) & \to & H^q(\eta_{\text{ét}}, \mu_{\ell'}) & \xrightarrow{\delta} & H^{q+1}_x(X_{\text{ét}}, \mu_D) & \to 0.
\end{array}
$$

(3.3)

Here the upper row (resp. lower row) arises from a localization long exact sequence of Nisnevich (resp. étale) cohomology groups, and the upper row is exact by Lemma \[3.2\] (1). The arrow δ is surjective by Lemma \[2.1\] (2) (resp. the fact that $\mu_D|_x = 0$ if $D = 0$ (resp. $D \neq 0$). The left vertical arrow is the Galois symbol map $K^M_q(O_F)/\ell' \to H^q(\eta_{\text{ét}}, \mu_{\ell'})$ (resp. zero map) if $D = 0$ (resp. $D \neq 0$). The left square commutes obviously if $D = 0$. If $D \neq 0$, then the top left arrow is zero by Lemma \[2.1\] (1), and the left square commutes. Thus we obtain the map $c_{X,D,x,\ell'}^{q,loc}$ in the case $a = 1$.

Step 2. Assume $a \geq 2$ and that the localized Chern class maps have been defined for points of codimension $\leq a - 1$. Put $\mathcal{K}_D := \mathcal{K}_q^M(O_X, \mathcal{I}_D)$ and $\mu_D := j!\mu^\otimes_q$ as before.

We define $c_{X,D,x,\ell'}^{q,loc}$ to be the map induced by the commutative diagram

$$
\begin{array}{cccc}
\bigoplus_{y \in X^{a-2}} H_y^{a-2}(X_{\text{Nis}}, \mathcal{K}_D)/\ell' & \to & \bigoplus_{y \in X^{a-1}} H_y^{a-1}(X_{\text{Nis}}, \mathcal{K}_D)/\ell' & \to & H^a_x(X_{\text{Nis}}, \mathcal{K}_D)/\ell' & \to 0 \\
\downarrow & & \downarrow & & \downarrow & \\
\bigoplus_{y \in X^{a-2}} H_y^{q+a-2}(X_{\text{ét}}, \mu_D) & \to & \bigoplus_{y \in X^{a-1}} H_y^{q+a-1}(X_{\text{ét}}, \mu_D) & \to & H^{q+a}_x(X_{\text{ét}}, \mu_D).
\end{array}
$$

(3.4)

where the upper row is exact by Lemma \[3.2\] (3) for $X - \{x\}$ and the lower row is a complex. The left square commutes by the construction of the vertical arrows (cf. \[3.3\]). This completes the construction of the localized Chern class map \[3.1\].

Remark 3.5. One can check that the group $H^a_x(X_{\text{Nis}}, \mathcal{K}_q^M(O_X, \mathcal{I}_D))/\ell'$ depends only on $X - \text{Supp}(D)$ by repeating the arguments in this section.

4. Key results on étale cohomology

Let A be as in the introduction and let ℓ be a prime number invertible in A. In this section we prove Lemma \[4.2\] below (compare with Lemma \[3.2\]) using the following key fact due to Gabber \([8\text{, Corollaire 4.3, 16\text{, Théorème 5.1, 18\text{, Théorème 4}}]\):

Theorem 4.1 (Gabber). Let R' be an integral excellent henselian local ring of dimension d with residue field k, and let K' be the fraction field of R'. Then we have $cd_{\ell}(K') = d + cd_{\ell}(k)$ for any prime number $\ell \neq \text{ch}(k)$.

Lemma 4.2. Let R be a henselian local ring which is essentially étale over A (R may be A itself). Put $X := \text{Spec}(R)$ and $a := \text{dim}(X)$. Then:

1) For $y \in X$, we have $cd_{\ell}(y) \leq n + 1 - \text{codim}_X(y)$.

2) For an \(\ell \)-primary torsion sheaf \(\mathcal{F} \) on \(X_{\text{ét}} \) and \(y \in X^c \) (\(c \geq 0 \)), \(H^t_y(X_{\text{ét}}, \mathcal{F}) \) is isomorphic to
\[
\begin{cases}
\text{Coker} \left(H^{t-1}(\text{Spec}(\mathcal{O}^h_{X,y})_{\text{ét}}, \mathcal{F}) \to H^{t-1}(U_{\text{ét}}, \mathcal{F}) \right) & \text{if } t = n + 2 - c \\
H^{t-1}(U_{\text{ét}}, \mathcal{F}) & \text{if } t \geq n + 3 - c \\
0 & \text{if } t \geq n + 2 + c,
\end{cases}
\]
where \(U \) denotes \(\text{Spec}(\mathcal{O}^h_{X,y}) - \{y\} \).

3) Assume \(a \geq 1 \). Let \(x \) (resp. \(\eta \)) be the closed point (the generic point) of \(X \). Let \(D \) be an effective divisor on \(X \). Let \(j \) be the open immersion \(X - \text{Supp}(D) \hookrightarrow X \) and put \(\mu_D := j_!\mu_{\ell}^{\otimes n} \). Then the sequence
\[
0 \to H^{n+1}(\eta_{\text{ét}}, \mu_{\ell}^{\otimes n}) \to \bigoplus_{y \in X^1} H^{n+2}(X_{\text{ét}}, \mu_D) \to \bigoplus_{y \in X^2} H^{n+3}(X_{\text{ét}}, \mu_D) \to \cdots \to H^{n+a+1}(X_{\text{ét}}, \mu_D) \to 0
\]
is exact.

Admitting this lemma, we first prove the following two consequences, where the notation remains as in Lemma 4.2 and \(K \) denotes \(\text{Frac}(A) \).

Corollary 4.3. If \(a \geq 2 \), then the sequence
\[
\bigoplus_{y \in X^{a-2}} H^{n+a-2}(X_{\text{ét}}, \mu_D) \to \bigoplus_{y \in X^{a-1}} H^{n+a-1}(X_{\text{ét}}, \mu_D) \to H^{n+a}(X_{\text{ét}}, \mu_D) \to 0
\]
is exact.

Proof. Put \(Y := X - \{x\} \). Since \(n + 3 - a < n + a \), we have \(H^{n+a-1}(Y_{\text{ét}}, \mu_D) \simeq H_x^{n+a}(X_{\text{ét}}, \mu_D) \) by Lemma 4.2 (2). We prove the sequence
\[
(4.4) \quad \bigoplus_{y \in Y^{a-2}} H^{n+a-2}(Y_{\text{ét}}, \mu_D) \to \bigoplus_{y \in Y^{a-1}} H^{n+a-1}(Y_{\text{ét}}, \mu_D) \to H^{n+a-1}(Y_{\text{ét}}, \mu_D) \to 0
\]
is exact by computing the spectral sequence
\[
(4.5) \quad E_1^{u,v} = \bigoplus_{y \in Y^u} H^{u+v}_y(Y_{\text{ét}}, \mu_D) \implies H^{u+v}(Y_{\text{ét}}, \mu_D).
\]
Since \(\text{dim}(Y) = a - 1 \), \(E_1^{u,v} \) is zero unless \(0 \leq u \leq a - 1 \). We have \(E_1^{u,v} = 0 \) for \(v \geq n + 2 \) by Lemma 4.2 (2), and \(E_2^{u,n+1} \) is zero for \(0 \leq u \leq a - 2 \) by Lemma 4.2 (3) for \(X \). Hence we obtain \(E_2^{a-1,n} \simeq H^{n+a-1}(Y_{\text{ét}}, \mu_D) \) and the exactness in question. \(\square \)

Corollary 4.6. Assume \(S(K, n, \ell) \) holds. Then the map
\[
\text{cl}_{X,D,X,\ell}^{n,\text{loc}} : H^a_x(X_{\text{Nis}}, \mathcal{K}_n^{M}(\mathcal{O}_X, \mathcal{I}_D))/\ell^{\ell} \longrightarrow H^{n+a}_x(X_{\text{ét}}, j_!\mu_{\ell}^{\otimes n})
\]
is surjective.

Proof. If \(a \leq 1 \), then \(\text{cl}_{X,D,X,\ell}^{n,\text{loc}} \) is surjective by its construction in \(\mathbb{E} \) and the assumption \(S(K, n, \ell) \) (see also \(\mathbb{I} \), 5.13 (i)). Here we have used the surjectivity of the lower \(\delta \) in
We prove the case \(a \geq 2\) by induction on \(a\). By the induction hypothesis and the construction of \(c^{n,\text{loc}}_{X,D,x,\ell'}\) (cf. (3.4)), it is enough to show that the connecting map
\[
\bigoplus_{y \in X^{a-1}} H^{n+a-1}_y(X_{\text{et}}, \mu_D) \longrightarrow H^{n+a}_x(X_{\text{et}}, \mu_D)
\]
is surjective, which has been shown in Corollary 4.3.

In the rest of this section, we prove Lemma 4.2.

Proof of Lemma 4.2

(1) By [22], I.3.3, Proposition 14, it is enough to deal with the case \(R = A\). Then the assertion follows from Theorem 4.1 applied to \(R' = \text{Im}(A \to \kappa(y))\) and the assumption that the residue field of \(A\) is finite.

(2) follows from (1) and a standard localization argument using the excision in the étale topology. The details are straight-forward and left to the reader.

(3) By a result of Panin [17], 5.2 (cf. [2]), the sequence
\[
0 \rightarrow H^{n+1}(\eta_{\text{et}}, \mu_{\ell'}^{\otimes n}) \rightarrow \bigoplus_{y \in X^1} H^{n+2}_y(X_{\text{et}}, \mu_{\ell'}^{\otimes n}) \rightarrow \bigoplus_{y \in X^2} H^{n+3}_y(X_{\text{et}}, \mu_{\ell'}^{\otimes n}) \rightarrow \cdots
\]
(4.7)
\[
\rightarrow H^{n+a+1}_x(X_{\text{et}}, \mu_{\ell'}^{\otimes n}) \rightarrow 0
\]
is exact, where we have used the vanishing \(H^{n+1}(X_{\text{et}}, \mu_{\ell'}^{\otimes n}) = 0\). Indeed, we have
\[
H^q(X_{\text{et}}, \mu_{\ell'}^{\otimes n}) \simeq H^q(x_{\text{et}}, \mu_{\ell'}^{\otimes n}) = 0 \quad \text{for} \quad q > n+1-a
\]
by Lemma 4.2 (1), and we have \(n+1 > n+1-a\) by the assumption that \(a(= \dim(X)) \geq 1\). Thus we obtain the assertion if \(D = 0\). In particular,
\[
H^{n+1}(\eta_{\text{et}}, \mu_{\ell'}^{\otimes n}) \simeq H^{n+2}_x(X_{\text{et}}, \mu_{\ell'}^{\otimes n}), \quad \text{if} \quad a = 1.
\]
In what follows, assume \(D \neq 0\). We prove the sequence in question is isomorphic to the exact sequence (4.7). It is enough to show the natural map
\[
H^{n+a+1}_x(X_{\text{et}}, \mu_D) \longrightarrow H^{n+a+1}_x(X_{\text{et}}, \mu_{\ell'}^{\otimes n})
\]
is bijective for any \(X\) and any non-zero \(D\) on \(X\) as in Lemma 4.2, where \(x\) denotes the closed point of \(X\) and \(a\) denotes \(\dim(X)\). We prove this assertion by induction on \(a = \dim(X)\). If \(a = 1\), then the assertion follows from the isomorphisms
\[
H^{n+2}_x(X_{\text{et}}, \mu_D) \rightleftarrows H^{n+1}(\eta_{\text{et}}, \mu_{\ell'}^{\otimes n}) \rightleftarrows H^{n+2}_x(X_{\text{et}}, \mu_{\ell'}^{\otimes n}),
\]
where the left arrow is bijective by the fact that \(\mu_D|_x = 0\). Assume \(a \geq 2\). Computing the spectral sequence (4.5) using Lemma 4.2 (2), one can easily check the sequence
\[
\bigoplus_{y \in Y^{a-2}} H^{n+a-1}_y(Y_{\text{et}}, \mu_D) \rightarrow \bigoplus_{y \in Y^{a-1}} H^{n+a}_y(Y_{\text{et}}, \mu_D) \rightarrow H^{n+a}(Y_{\text{et}}, \mu_D) \rightarrow 0
\]
is exact. Since \(\mu_D|_x = 0\), we have \(H^{n+a}(Y_{\text{et}}, \mu_D) \simeq H^{n+a+1}_x(X_{\text{et}}, \mu_D)\). Thus the sequence
\[
\bigoplus_{y \in X^{a-2}} H^{n+a-1}_y(X_{\text{et}}, \mu_D) \rightarrow \bigoplus_{y \in X^{a-1}} H^{n+a}_y(X_{\text{et}}, \mu_D) \rightarrow H^{n+a+1}_x(X_{\text{et}}, \mu_D) \rightarrow 0
\]
is exact. We obtain the bijectivity of (4.3) by comparing this exact sequence with (4.7) using the induction hypothesis. This completes the proof of the lemma.

\[\square\]
5. PROOF OF THEOREM 1.2

We introduce some auxiliary terminology and notation. For $0 \leq a \leq n - 1$, we define a chain over A of length a to be a sequence

(5.1) \[(m_A, p_{n-1}^n, p_{n-2}^{n-1}, \ldots, p_{n-a+1}^{n-a})\],

where m_A is the maximal ideal of A and p_{n-1}^n is a prime ideal of A of height $n - 1$. For $2 \leq q \leq a$, p_{n-q+1}^{n-q+1} is a prime ideal of height $n - q$ of the $(n - q + 1)$-dimensional henselian local ring

\[
\left(\cdots \left(\left(A_{p_{n-2}^n}^{h} \right)^{h} p_{n-2}^{n-1} \right)^{h} \cdots \right)^{h} p_{n-a+1}^{n-a}.
\]

For a chain δ over A of length a of the form (5.1), we define the henselian local ring $A_{A_{\delta}}^h$ of dimension $n - a$ as

\[
A_{A_{\delta}}^h := \left(\cdots \left(\left(A_{p_{n-2}^n}^{h} \right)^{h} p_{n-2}^{n-1} \right)^{h} \cdots \right)^{h} p_{n-a+1}^{n-a}.
\]

For δ of length zero, $A_{A_{\delta}}^h$ means A itself. We prove

Proposition 5.2. Assume $1 \leq a \leq n$ and that $S(K, n, n)$ holds. Let δ be a chain over A of length $n - a$, and let D be an effective divisor on $X := \text{Spec}(A_{A_{\delta}}^h)$. Let j be the open immersion $X - \text{Supp}(D) \hookrightarrow X$ and let x be the closed point of X. Then the map

\[
ci^{n,\text{loc}}_{X,D,x,\ell^r} : H^0_x(X_{\text{Nis}}, \mathcal{K}_n^M(\mathcal{O}_X, \mathcal{I}_D)) / \ell^r \longrightarrow H^{n+a}_x(X, j_!\mu_{\ell^r}^{\otimes n})
\]

is bijective.

Theorem 1.2 follows from the case $a = n$ of Proposition 5.2.

Proof. Assume $a = 1$. The generic point η (resp. the closed point x) of X is the spectrum of an n-dimensional local field (resp. $(n - 1)$-dimensional local field) in the sense of [9], and the Galois symbol maps of η and x are bijective by Remark 1.5 (5). Hence $ci^{n,\text{loc}}_{X,D,x,\ell^r}$ is bijective by the diagram (3.3) and Lemma 2.1 (1). The case $a \geq 2$ follows from the induction on a using the diagram (3.3) and Corollaries 4.3 and 4.6. \hfill \Box

This completes the proof of Theorem 1.2.

Acknowledgements. The author expresses his gratitude to Professor Luc Illusie for valuable comments on the references for Gabber’s results ([8], [16], [18], [20]), and to Atsushi Shiho and Kazuya (Pierre) Matsumi for stimulating discussions.

References

[1] Bloch, S., Kato, K.: p-adic étale cohomology. Inst. Hautes Études Sci. Publ. Math. **63**, 107–152 (1986)
[2] Bloch, S., Ogus, A.: Gersten’s conjecture and the homology of schemes. Ann. Sci. École Norm. Sup. (4) **7**, 181–202 (1974)
[3] Colliot-Thelène, J.-L., Hoobler, R. T., Kahn, B.: The Bloch-Ogus-Gabber theorem. In: *Algebraic K-theory. Toronto, 1996*, (Fields Inst. Commun. 16), pp. 31–94, Providence, Amer. Math. Soc., 1997
[4] Deligne, P., with Boutot, J.-F., Grothendieck, A., Illusie, L., Verdier, J.-L.: *Cohomologie Étale*. (Lecture Notes in Math. 569), Berlin, Springer, 1977
[5] Fujiwara, K.: Theory of tubular neibourhood in etale topology. Duke Math. J. **80**, 15–56 (1995)
[6] Grothendieck, A., Artin, M., Verdier, J.-L., with Deligne, P., Saint-Donat, B.: *Théorie des Topos et Cohomologie Étale des Schémas, Tome 3*. (Lecture Notes in Math. 305), Berlin, Springer, 1973

[7] Grothendieck, A., with Bucur, I., Houzel, C., Illusie, L., Jouanolou, J.-P., Serre, J.-P.: *Cohomologie ℓ-adique et Fonctions L*. (Lecture Notes in Math. 589), Berlin, Springer, 1977

[8] Illusie, L.: Groupe de travail sur les travaux de Gabber en cohomologie étale. http://www.math.polytechnique.fr/~laszlo/gdtgabber/gabberluc.pdf

[9] Kato, K.: A generalization of local class field theory using K-groups. II. J. Fac. Sci. Univ. of Tokyo, Sec. IA 27, 602–683 (1980)

[10] Kato, K., Saito, S.: Global class field theory of arithmetic schemes. In: *Applications of algebraic K-theory to algebraic geometry and number theory, Part I*, Boulder, Colo., 1983, (Contemp. Math., 55), pp. 255–331, Providence, Amer. Math. Soc., 1986.

[11] Matsumi, K.: A Hasse principle for three-dimensional complete local rings of positive characteristic. J. Reine Angew. Math. 542, 113–121 (2002)

[12] Matsumi, P.: Class field theory for $\mathbb{F}_q[[X_1, X_2, X_3]]$. J. Math. Sci. Univ. Tokyo 9, 689–746 (2002)

[13] Matsumi, P.: Class field theory for $\mathbb{F}_q[[X_1, \ldots, X_n]]$. preprint, 2002

[14] Merkur’ev, A. S., Suslin, A. A.: K-cohomology of Severi-Brauer varieties and the norm residue homomorphism. Math. USSR Izv. 21, 307–341 (1983)

[15] Merkur’ev, A. S., Suslin, A. A.: On the norm residue homomorphism of degree 3. Math. USSR Izv. 36, 349–367 (1991)

[16] Orgogozo, F.: Le théorème d’uniformisation de Ofer Gabber et un survol de quelques conséquences: finitude, Lefschetz affine et pureté. http://www.math.polytechnique.fr/~orgogozo/articles/trame.pdf

[17] Panin, I. A.: The equi-characteristic case of the Gersten conjecture. Proc. Steklov Inst. Math. 241, 154–163 (2003)

[18] Pilloni, V., Stroh, B.: Le théorème de Lefschetz affine, d’après Gabber. preprint, 2006

[19] Raskind, W.: Abelian class field theory of arithmetic schemes. In: *K-theory and algebraic geometry: connections with quadratic forms and division algebras, Santa Barbara, 1992* (Proc. Sympos. Pure Math., 58, Part 1), pp. 85–187, Providence, Amer. Math. Soc., 1995

[20] Riou, J.: Dualité (d’après Ofer Gabber). preprint http://www.math.jussieu.fr/~riou/doc/dualite.pdf

[21] Saito, S.: Class field theory for two-dimensional local rings. In: *Galois Representations and Arithmetic Algebraic Geometry, Kyoto, 1985/Tokyo, 1986* (Adv. Stud. in Pure Math. 12), pp. 343–373, Amsterdam, North-Holland, 1987

[22] Serre, J.-P.: *Cohomologie Galoisienne*. 5th ed., (Lecture Notes in Math. 5), Berlin, Springer, 1992

[23] Tate, J.: Relations between K_2 and Galois cohomology. Invent. Math. 36, 257–274 (1976)

[24] Voevodsky, V.: Motivic cohomology with $\mathbb{Z}/2$-coefficients. Inst. Hautes Études Sci. Publ. Math. 98, 59–104 (2003)