Multimodal Emotion Recognition Using Deep Canonical Correlation Analysis

Wei Liu, Jie-Lin Qiu, Wei-Long Zheng, Member, IEEE, and Bao-Liang Lu, Senior Member, IEEE

Abstract—Multimodal signals are more powerful than unimodal data for emotion recognition since they can represent emotions more comprehensively. In this paper, we introduce deep canonical correlation analysis (DCCA) to multimodal emotion recognition. The basic idea behind DCCA is to transform each modality separately and coordinate different modalities into a hyperspace by using specified canonical correlation analysis constraints. We evaluate the performance of DCCA on five multimodal datasets: the SEED, SEED-IV, SEED-V, DEAP, and DREAMER datasets. Our experimental results demonstrate that DCCA achieves state-of-the-art recognition accuracy rates on all five datasets: 94.58% on the SEED dataset, 87.45% on the SEED-IV dataset, 84.33% and 85.62% for two binary classification tasks and 88.51% for a four-category classification task on the DEAP dataset, 83.08% on the SEED-V dataset, and 88.99%, 90.57%, and 90.67% for three binary classification tasks on the DREAMER dataset. We also compare the noise robustness of DCCA with that of existing methods when adding various amounts of noise to the SEED-V dataset. The experimental results indicate that DCCA has greater robustness. By visualizing feature distributions with t-SNE and calculating the mutual information between different modalities before and after using DCCA, we find that the features transformed by DCCA from different modalities are more homogeneous and discriminative across emotions.

Index Terms—Multimodal signal, Multimodal emotion recognition, Multimodal deep learning, Deep canonical correlation analysis, EEG, Eye movement.

I. INTRODUCTION

EMOTION strongly influences in our daily activities such as interactions between people, decision making, learning, and working. To endow a computer with emotion perception, understanding, and regulation abilities, Picard et al. developed the concept of affective computing, which aims to be used to study and develop systems and devices that can recognize, interpret, process, and simulate human affects [1], [2]. Human emotion recognition is a current hotspot in affective computing research. Since emotion recognition is critical for applications such as affective brain-computer interaction, emotion regulation and the diagnosis of emotion-related diseases, it is necessary to build a reliable and accurate model for recognizing human emotions.

Traditional emotion recognition systems are built with speech signals [3], facial expressions [4], and non-physiological signals [5]. However, in addition to clues from external appearances, emotions contain reactions from the central and peripheral nervous systems. Moreover, an obvious drawback of using behavioral modalities for emotion recognition is the uncertainty that arises in the case of individuals who either consciously regulate their emotional manifestations or are naturally suppressive. In contrast, EEG-based emotion recognition has been proven to be a reliable method because of its high recognition accuracy, objective evaluation and stable neural patterns [6], [7], [8], [9].

For the above reasons, researchers have tended to study emotions through physiological signals in recent years. These signals are more accurate and difficult to deliberately change by users. Lin and colleagues evaluated music-induced emotion recognition with EEG signals and attempted to use as few electrodes as possible [10]. Wang and colleagues used EEG signals to classify positive and negative emotions and compared different EEG features and classifiers [11]. Kim and Andrè showed that electromyogram, electrocardiogram, skin conductivity, and respiration changes were reliable signals for emotion recognition [12]. Võ et al. studied the relationship between emotions and eye movement features, and they found that pupil diameters were influenced by both emotion and age [13].

Emotions are complex cognitive processes that involve subjective experience, expressive behaviors, and psychophysiological changes. Due to the rich characteristics of human emotions, it is difficult for single-modality signals to describe emotions comprehensively. Therefore, recognizing emotions with multiple modalities has become a promising method for building emotion recognition systems with high accuracy [14], [15], [16], [17], [18], [19]. Multimodal data can reflect emotional changes from multiple perspectives, which is conducive to building a reliable and accurate emotion recognition model.

Multimodal fusion is one of the key aspects in taking full advantage of multimodal signals. In the past few years, researchers have utilized various methods to fuse different...
modalities. Lu and colleagues employed feature-level concatenation, MAX fusion, SUM fusion, and fuzzy integral fusion to merge EEG and eye movement features, and they found the complementary properties of EEG and eye movement features in emotion recognition tasks [20]. Koelstra and colleagues evaluated the feature-level concatenation of EEG features and peripheral physiological features, and they found that participant ratings and EEG frequencies were significantly correlated and that decision fusion achieved the best emotion recognition results [21]. Sun et al. built a hierarchical classifier by combining both feature-level and decision-level fusion for emotion recognition tasks in the wild. The method was evaluated on several datasets and made very promising achievements on the validation and test sets [22].

Currently, with the rapid development of deep learning, researchers are applying deep learning models to fuse multiple modalities. Deep-learning-based multimodal representation frameworks can be classified into two categories: multimodal joint representation and multimodal coordinated representation [23]. Briefly, the multimodal joint representation framework takes all the modalities as input, and each modality starts with several individual neural layers followed by a hidden layer that projects the modalities into a joint space. The multimodal coordinated representation framework, instead of projecting the modalities together into a joint space, learns separate representations for each modality and coordinates them into a hyperspace with constraints between different modalities. Various multimodal joint representation frameworks have been applied to emotion recognition in very recent years [24], [25], [26], [27]. However, the multimodal coordinated representation framework has not yet been fully studied.

In this paper, we introduce a coordinated representation model named Deep Canonical Correlation Analysis (DCCA) [28], [29] to multimodal emotion recognition. The basic idea behind DCCA is to learn separate but coordinated representations for each modality under canonical correlation analysis (CCA) constraints. Since the coordinated representations are of the same dimension, we denote the coordinated hyperspace by S.

Compared with our previous work [29], the main contributions of this paper on multimodal emotion recognition can be summarized as follows:

1. We introduce DCCA to multimodal emotion recognition and evaluate the effectiveness of DCCA on five benchmark datasets: the SEED, SEED-IV, SEED-V, DEAP, and DREAMER datasets. Our experimental results on these five datasets reveal that different emotions are disentangled in the coordinated hyperspace S, and the transformation process of DCCA preserves emotion-related information and discards unrelated information.

2. We examine the robustness of DCCA and the existing methods on the SEED-V dataset under different levels of noise. The experimental results show that DCCA has higher robustness than the existing methods under most noise conditions.

3. By adjusting the weights of different modalities, DCCA allows users to fuse different modalities with greater flexibility such that various modalities contribute differently to the fused features.

The remainder of this paper is organized as follows. Section II summarizes the development and current state of multimodal fusion strategies. In Section III, we introduce the algorithms for the canonical correlation analysis, DCCA, the baseline models utilized in this paper, and the mutual information neural estimation (MINE) algorithm. The experimental settings are reported in Section IV. Section V presents and analyzes the experimental results. Finally, conclusions are given in Section VI.

II. RELATED WORK

One of the key problems in multimodal deep learning is how to fuse data from different modalities. Multimodal fusion has gained increasing attention from researchers in diverse fields due to its potential for innumerable applications such as emotion recognition, event detection, image segmentation, and video classification [30], [31]. According to the level of fusion, traditional fusion strategies can be classified into the following three categories: 1) feature-level fusion (early fusion), 2) decision-level multimodal fusion (late fusion), and 3) hybrid multimodal fusion. With the rapid development of deep learning, an increasing number of researchers are employing deep learning models to facilitate multimodal fusion. In the following, we introduce these multimodal fusion types and their subtypes.

A. Feature-level fusion

Feature-level fusion is a common and straightforward method to fuse different modalities. The features extracted from the various modalities are first combined into a high-dimensional feature and then sent as a whole to the models [32], [21], [20], [33], [34].

The advantages of feature-level fusion are two-fold: 1) it can utilize the correlation between different modalities at an early stage, which better facilitates task accomplishment, and 2) the fused data contain more information than a single modality, and thus, a performance improvement is expected. The drawbacks of feature-level fusion methods mainly reside in the following: 1) it is difficult to represent the time synchronization between different modality features, 2) this type of fusion method might suffer the curse of dimensionality on small datasets, and 3) larger dimensional features might stress computational resources during model training.

B. Decision-level fusion

Decision-level fusion focuses on the usage of small classifiers and their combination. Ensemble learning is often used to assemble these classifiers. The term decision-level fusion describes a variety of methods designed to merge the outcomes and ensemble them into a single decision.

Rule-based fusion methods are most adopted in multimodal emotion recognition. Lu and colleagues utilized MAX fusion, SUM fusion, and fuzzy integral fusion for multimodal emotion recognition, and they found the complementary nature of
EEG and eye movement features by analyzing confusion matrices [20]. Although rule-based fusion methods are easy to use, the difficulty facing rule-based fusion is how to design good rules. If rules are too simple, they might not reveal the relationships between different modalities.

The advantage of decision-level fusion is that the decisions from different classifiers are easily compared and each modality can use its best suitable classifier for the task.

C. Hybrid fusion

Hybrid fusion is a combination of feature-level fusion and decision-level fusion. Sun and colleagues built a hierarchical classifier by combining both feature-level and decision-level fusion methods for emotion recognition [22]. Guo et al. built a hybrid classifier by combining fuzzy cognitive map and SVM to classify emotional states with compressed sensing representation [35].

D. Deep-learning-based fusion

For deep learning models, different types of multimodal fusion methods have been developed, and these methods can be grouped into two categories based on the modality representation: multimodal joint representation and multimodal coordinated representation [23].

The multimodal joint representation framework takes all the modalities as input, and each modality starts with several individual neural layers followed by a hidden layer that projects the modalities into a joint space. Both transformation and fusion processes are achieved automatically by black-box models and users do not know the meaning of the joint representations. The multimodal joint representation framework has been applied to emotion recognition [24], [25] and natural language processing [36].

The multimodal coordinated representation framework, instead of projecting the modalities together into a joint space, learns separate representations for each modality but coordinates them through a constraint. The most common coordinated representation models enforce similarity between modalities. Frome and colleagues proposed a deep visual semantic embedding (DeViSE) model to identify visual objects [37]. DeViSE is initialized from two pre-trained neural network models: a visual object categorization network and a skip-gram language model. DeViSE combines these two networks by the dot-product and hinge rank loss similarity metrics such that the model is trained to produce a higher dot product similarity between the visual model output and the vector representation of the correct label than that between the visual output and other randomly chosen text terms.

The deep canonical correlation analysis (DCCA) method, which is another model under the coordinated representation framework, was proposed by Andrew and colleagues [28]. In contrast to DeViSE, DCCA adopts traditional CCA as a similarity metric, which allows us to transform data into a highly correlated hyper-space.

III. METHODS

In this section, we first provide a brief description of traditional canonical correlation analysis (CCA) in Section III-A. Based on CCA, we present the building processes of DCCA in Section III-B. The baseline methods used in this paper are described in Section III-C. Finally, the mutual information neural estimation (MINE) algorithm is given in Section III-D, which is utilized to analyze the properties of transformed features implemented by DCCA in the coordinated hyperspace S.

A. Canonical Correlation Analysis

Canonical correlation analysis (CCA) was proposed by Hotelling [38]. It is a widely used technique in the statistics community to measure the linear relationship between two multidimensional variables. Hardoon and colleagues applied CCA to machine learning [39].

Let $(X_1, X_2) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$ denote random vectors with covariance matrices $(\Sigma_{11}, \Sigma_{22})$ and cross-variance matrix Σ_{12}. CCA attempts to find linear transformations of (X_1, X_2), $(w_1^1 X_1, w_2^1 X_2)$, which are maximally correlated:

$$w_1^1, w_2^1 = \arg \max_{w_1, w_2} \text{corr}(w_1^1 X_1, w_2^1 X_2) = \arg \max_{w_1, w_2} \frac{w_1^1 \Sigma_{12} w_2}{\sqrt{w_1^T \Sigma_{11} w_1} \sqrt{w_2^T \Sigma_{22} w_2}}.$$

(1)

Since Eq. (1) is invariant to the scaling of the weights w_1 and w_2, Eq. (1) can be reformulated as follows:

$$w_1^1, w_2^1 = \arg \max_{w_1, w_2} w_1^1 \Sigma_{12} w_2,$$

(2)

where we assume the projections are constrained to have unit variance.

To find multiple results of (w_1^1, w_2^1), subsequent projections are also constrained to be uncorrelated with previous projections, i.e., $w_i^1 \Sigma_{11} w_i^2 = w_i^2 \Sigma_{22} w_i^2 = 0$ for $i < j$. Combining the top k projection vectors w_1^i into a matrix $A_1 \in \mathbb{R}^{n_1 \times k}$ as column vectors and similarly placing w_2^i into $A_2 \in \mathbb{R}^{n_2 \times k}$, we then identify the top $k \leq \min(n_1, n_2)$ projections:

maximize: $tr(A_1^T \Sigma_{12} A_2)$

subject to: $A_1^T \Sigma_{11} A_1 = A_2^T \Sigma_{22} A_2 = I$.

(3)

To solve this objective function, we first define $T = \Sigma_{11}^{-1/2} \Sigma_{12} \Sigma_{22}^{-1/2}$, and we let U_k and V_k be the matrices of the first k left singular and right singular vectors of T, respectively. Then the optimal objective value is the sum of the top k singular values of T, and the optimum is obtained at $(A_1^*, A_2^*) = (\Sigma_{11}^{-1/2} U_k, \Sigma_{22}^{-1/2} V_k)$. This method requires the covariance matrices Σ_{11} and Σ_{22} to be nonsingular, which is usually satisfied in practice.

For the original CCA, the representations in the latent space are obtained by linear transformations, which limit the scope of application of CCA. To address this problem, Lai and Fyfe [40] proposed kernel CCA, in which kernel methods are introduced for nonlinear transformations. Klami and colleagues developed probabilistic canonical correlation analysis (PCCA) [41]; later, they extended PCCA to a Bayesian-based
CCA named inter-battery factor analysis [42]. There are many other extensions of CCA such as tensor CCA [43], sparse CCA [44], and cluster CCA [45].

B. Deep Canonical Correlation Analysis

In this paper, we introduce deep canonical correlation analysis (DCCA) to multimodal emotion recognition. DCCA was proposed by Andrew and colleagues [28], and it computes representations of multiple modalities by passing them through multiple stacked layers of nonlinear transformations. Figure 1 depicts the structure of DCCA used in this paper.

Let \(X_1 \in \mathbb{R}^{N \times d_1} \) be the instance matrix for the first modality and \(X_2 \in \mathbb{R}^{N \times d_2} \) be the instance matrix for the second modality. Here, \(N \) is the number of instances, and \(d_1 \) and \(d_2 \) are the dimensions of the extracted features for these two modalities, respectively. To transform the raw features of two modalities nonlinearly, we build two deep neural networks for the two modalities as follows:

\[
O_1 = f_1(X_1; W_1), \quad O_2 = f_2(X_2; W_2),
\]

where \(W_1 \) and \(W_2 \) denote all parameters for the non-linear transformations, \(O_1 \in \mathbb{R}^{N \times d} \) and \(O_2 \in \mathbb{R}^{N \times d} \) are the outputs of the neural networks, and \(d \) denotes the output dimension of DCCA. The goal of DCCA is to jointly learn the parameters \(W_1 \) and \(W_2 \) for both neural networks such that the correlation of \(O_1 \) and \(O_2 \) is as high as possible:

\[
(W_1^*, W_2^*) = \arg \max_{W_1, W_2} \text{corr}(f_1(X_1; W_1), f_2(X_2; W_2)).
\]

We use the backpropagation algorithm to update \(W_1 \) and \(W_2 \). The solution to calculating the gradients of the objective function in Eq. (6) was developed by Andrew and colleagues [28]. Let \(\hat{O}_1 = O_1^* - \frac{1}{N} O_1 \mathbf{1} \) be the centered output matrix (similar to \(\hat{O}_2 \)). We define \(\hat{\Sigma}_{12} = \frac{1}{N-1} \hat{O}_1 \hat{O}_2^T + r_1 \mathbf{I} \). Here, \(r_1 \) is a regularization constant (similar to \(\Sigma_{22} \)). The total correlation of the top \(k \) components of \(O_1 \) and \(O_2 \) is the sum of the top \(k \) singular values of matrix \(T = \hat{\Sigma}_{11}^{-1/2} \hat{\Sigma}_{12} \hat{\Sigma}_{22}^{-1/2} \). In this paper, we take \(k = d \), and the total correlation is the trace of \(T \):

\[
\text{corr}(O_1, O_2) = \left(\text{tr}(T^T) \right)^{1/2}.
\]

Finally, we calculate the gradients with the singular decomposition of \(T = UDV^T \),

\[
\frac{\partial \text{corr}(O_1, O_2)}{\partial O_1} = \frac{1}{N-1} (2 \nabla_{11} \hat{O}_1 + \nabla_{12} \hat{O}_2),
\]

where

\[
\nabla_{11} = -\frac{1}{2} \hat{\Sigma}_{11}^{-1/2} U D \hat{\Sigma}_{11}^{-1/2},
\]

\[
\nabla_{12} = \hat{\Sigma}_{11}^{-1/2} U V \hat{\Sigma}_{22}^{-1/2},
\]

and \(\frac{\partial \text{corr}(O_1, O_2)}{\partial O_2} \) has a symmetric expression.

After the training of the two neural networks, the transformed features \(O_1, O_2 \in S \) are in the coordinated hyperspace \(S \). In the original DCCA [28], the authors did not explicitly describe how to use transformed features for real-world applications via machine learning algorithms. Users need to design a strategy to take advantage of the transformed features according to their application.

In this paper, we use a weighted sum fusion method to obtain the fused features as follows:

\[
O = \alpha_1 O_1 + \alpha_2 O_2,
\]

where \(\alpha_1 \) and \(\alpha_2 \) are weights satisfying \(\alpha_1 + \alpha_2 = 1 \). The fused features \(O \) are used to train the classifiers to recognize different emotions. In this paper, an SVM classifier is adopted.

According to the construction processes mentioned above, DCCA brings the following advantages to multimodal emotion recognition:

- By transforming different modalities separately, we can explicitly extract transformed features for each modality \((O_1 \) and \(O_2) \) so that it is convenient to examine the characteristics and relationships of modality-specific transformations.
- With specified CCA constraints, we can regulate the non-linear mappings \(f_1(\cdot) \) and \(f_2(\cdot) \) and make the model preserve the emotion-related information.
- By using a weighted sum fusion (under the condition \(\alpha_1 + \alpha_2 = 1 \)), we can assign different priorities to these modalities based on our priori knowledge. A larger weight represents a larger contribution of the corresponding modality to the fusion features.

C. Baseline methods

1) Concatenation Fusion: The concatenation fusion is a type of feature-level fusion. The feature vectors from two modalities are denoted as \(X^1 = [x_1^1, \ldots, x_n^1] \in \mathbb{R}^m \) and \(X^2 = [x_1^2, \ldots, x_m^2] \in \mathbb{R}^m \), and the fused features can be calculated with the following equation:

\[
X_{fusion} = \text{Concat}([X^1, X^2]) = [x_1^1, \ldots, x_n^1, x_1^2, \ldots, x_m^2].
\]
2) **MAX Fusion**: The MAX fusion method is a type of decision-level fusion method that chooses the class of the maximum probability as the prediction result. Assuming that we have K classifiers and C categories, there is a probability distribution for each sample $P_j(Y_i|x_i), j \in \{1, \cdots , K\},$ and $i \in \{1, \cdots , C\}$, where x_i is a sample, Y_i is the predicted label, and $P_j(Y_i|x_i)$ is the probability of sample x_i belonging to class i generated by the j-th classifier. The MAX fusion rule can be expressed as follows:

$$
\hat{Y} = \arg \max_i \{ \arg \max_j P_j(Y_i|x_i) \}. \tag{13}
$$

3) **Fuzzy Integral Fusion**: The fuzzy integral fusion is also a type of decision-level fusion [46], [47]. A fuzzy measure μ on the set X is a function: $\mu : \mathcal{P}(X) \rightarrow [0, 1]$, which satisfies the two axioms: 1) $\mu(\emptyset) = 0$ and 2) $A \subset B \subset X$ implies $\mu(A) \leq \mu(B)$. In this paper, we use the discrete Choquet integral to fuse the multimodal features. The discrete Choquet integral of a function $f : X \rightarrow \mathcal{R}^+$ with respect to μ is defined by

$$
C_\mu(f) := \sum_{i=1}^n (f(x_i) - f(x_{i-1})) \mu(A_{(i)}), \tag{14}
$$

where $\cdot_{(i)}$ indicates that the indices have been permuted such that $0 \leq f(x_{(1)}) \leq \cdots \leq f(x_{(n)})$, $A_{(i)} := \{x_{(i)}, \cdots , x_{(n)}\}$, and $f(x_{(0)}) = 0$.

In this paper, we utilize the algorithm proposed by Tanaka and Sugeno [48] to calculate the fuzzy measure. The algorithm attempts to find the fuzzy measure μ, which minimizes the total squared error of the model. Tanaka and Sugeno proved that the minimization problem can be solved through a quadratic programming method.

4) **Bimodal Deep AutoEncoder (BDAE)**: BDAE was proposed by Ngiam and colleagues [33]. In our previous work, we applied BDAE to multimodal emotion recognition [24]. In this paper, we unfold the stacked RBMs to reconstruct the input features. The MAX fusion method is a type of decision-level fusion [46], [47]. A fuzzy measure μ on the set X is a function: $\mu : \mathcal{P}(X) \rightarrow [0, 1]$, which satisfies the two axioms: 1) $\mu(\emptyset) = 0$ and 2) $A \subset B \subset X$ implies $\mu(A) \leq \mu(B)$. In this paper, we use the discrete Choquet integral to fuse the multimodal features. The discrete Choquet integral of a function $f : X \rightarrow \mathcal{R}^+$ with respect to μ is defined by

$$
C_\mu(f) := \sum_{i=1}^n (f(x_i) - f(x_{i-1})) \mu(A_{(i)}), \tag{14}
$$

where $\cdot_{(i)}$ indicates that the indices have been permuted such that $0 \leq f(x_{(1)}) \leq \cdots \leq f(x_{(n)})$, $A_{(i)} := \{x_{(i)}, \cdots , x_{(n)}\}$, and $f(x_{(0)}) = 0$.

In this paper, we utilize the algorithm proposed by Tanaka and Sugeno [48] to calculate the fuzzy measure. The algorithm attempts to find the fuzzy measure μ, which minimizes the total squared error of the model. Tanaka and Sugeno proved that the minimization problem can be solved through a quadratic programming method.

The BDAE training procedure includes encoding and decoding. In the encoding phase, we train two RBMs for EEG features and eye movement features, and the hidden layers are denoted as h_{EEG} and h_{Eye}. These two hidden layers are concatenated together, and the concatenated layer is used as the visual layer of a new upper RBM. In the decoding stage, we unfold the stacked RBMs to reconstruct the input features. Finally, we use a back-propagation algorithm to minimize the reconstruction error.

D. **Mutual Information Neural Estimation**

Mutual information is a fundamental quantity for measuring the relationship between variables. The mutual information quantifies the dependence of two random variables X and Z with the following equation:

$$
I(X; Z) = \int_{X \times Z} \log \frac{dP_{XZ}}{dP_X \otimes P_Z} dP_{XZ}, \tag{19}
$$

where P_{XZ} is the joint probability distribution, and $P_X = \int_Z dP_{XZ}$ and $P_Z = \int_X dP_{XZ}$ are the marginals.

The mutual information neural estimation (MINE) was proposed by Belghazi and colleagues [50]. MINE is linearly scalable in dimensionality as well as in sample size, trainable through a back-propagation algorithm, and strongly consistent.

The idea behind MINE is to choose \mathcal{F} to be the family of functions $T_\theta : \mathcal{X} \times \mathcal{Z} \rightarrow \mathcal{R}$ parameterized by a deep neural network with parameters $\theta \in \Theta$. Then, the deep neural network is used to update the estimated mutual information,

$$
I(X; Z) \geq I_{\hat{\theta}}(X; Z), \tag{20}
$$

where $I_{\hat{\theta}}$ is defined as

$$
I_{\hat{\theta}}(X; Z) = \sup_{\theta \in \Theta} \mathbb{E}_{P_{XZ}}[T_\theta] - \log(\mathbb{E}_{P_{XZ} \otimes P_Z}[e^{T_\theta}]). \tag{21}
$$

The expectations in Eq. (21) are estimated using empirical samples from P_{XZ} and $P_X \otimes P_Z$ or by shuffling the samples from the joint distribution, and MINE is defined as

$$
\hat{I}(X; Z)_n = \sup_{\theta \in \Theta} \mathbb{E}_{P_{XZ}^{(n)}}[T_\theta] - \log(\mathbb{E}_{P_{XZ}^{(n)} \otimes P_{Z}^{(n)}}[e^{T_\theta}]), \tag{22}
$$

where \hat{P} is the empirical distribution associated with n i.i.d. samples. The details on the implementation of MINE are provided in Algorithm 1.
We modify the code of the MINE algorithm written by Masanori Yamada; the code used in this paper can be downloaded from GitHub.

IV. EXPERIMENTAL SETTINGS

A. Datasets

To evaluate the effectiveness of DCCA for multimodal emotion recognition, five multimodal emotion recognition datasets are selected for experimental study in this paper.

1) SEED dataset: The SEED dataset was developed by Zheng and Lu [6]. A total of 15 Chinese film clips of three emotions (happy, neutral and sad) were chosen from a pool of materials as stimuli used in the experiments. Before the experiments, the participants were told the procedures of the entire experiment. During the experiments, the participants were asked to watch the selected 15 movie clips, and report their emotional feelings. After watching a movie clip, the subjects were given 45 seconds to provide feedback and 15 seconds to rest. In this paper, we use the same subset of the SEED dataset as in our previous work [20], [24], [25] for the comparison study.

The SEED dataset contains EEG signals and eye movement signals. The EEG signals were collected with an ESI NeuroScan system at a sampling rate of 1000 Hz from a 62-channel electrode cap. Eye movement signals were collected with SMI eye tracking glasses.

2) SEED-IV dataset: The SEED-IV dataset was first proposed in [15]. The experimental procedure was similar to that of the SEED dataset, and 72 film clips were chosen as stimuli materials. The dataset contains emotional EEG signals and eye movement signals of four different emotions, i.e., happy, sad, neutral, and fear. A total of 15 subjects (7 male and 8 female) participated in the experiments. For each participant, three sessions were performed on different days, and each session consisted of 24 trials. In each trial, the participant watched one of the movie clips.

3) SEED-V dataset: The SEED-V dataset was proposed in [51]. The dataset contains EEG signals and eye movement signals for five emotions (happy, sad, neutral, fear, and disgust). A total of 16 subjects (6 male and 10 female) were recruited to participate in the experiment, and each of them performed the experiment three times. During the experiment, the subject were required to watch 15 movie clips (3 clips for each emotion). The same devices were used in the SEED-V dataset as in the SEED and SEED-IV datasets. The SEED-V dataset used in this paper will be freely available to the academic community as a subset of SEED.

4) DEAP dataset: The DEAP dataset was developed by Koelstra and colleagues [21] and is a multimodal dataset for the analysis of human affective states. The EEG signals and peripheral physiological signals (EOG, EMG, GSR, respiration belt, and plethysmograph) of 32 participants were recorded as each watched 40 one-minute long excerpts of music videos. Participants rated each video in terms of the levels of arousal, valence, like/dislike, dominance, and familiarity.

5) DREAMER dataset: The DREAMER dataset is a multimodal emotion dataset developed by Katsigiannis and Ramzan [52]. The DREAMER dataset consists of 14-channel EEG signals and 2-channel ECG signals of 23 subjects (14 males and 9 females). During the experiments, the participants watched 18 film clips to elicit 9 different emotions including amusement, excitement, happiness, calmness, anger, disgust, fear, sadness, and surprise. After watching a clip, the self-assessment manikins were used to acquire subjective assessments of valence, arousal, and dominance.

B. Feature extraction

1) EEG feature extraction: For EEG signals, we extract differential entropy (DE) features using short-term Fourier transforms with a 4-second Hanning window without overlapping [53], [54]. The differential entropy feature is used to measure the complexity of continuous random variables. Its calculation formula can be written as follows:

$$h(X) = -\int_X f(x) \log f(x) \, dx,$$

where X is a random variable and $f(x)$ is the probability density function of X. For the time series X, obeying the Gauss distribution $N(\mu, \sigma^2)$, its differential entropy can be calculated as follows:

$$h(X) = -\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \right) \, dx = \frac{1}{2} \log 2\pi e \sigma^2.$$ \hspace{1cm} (24)
We extract DE features from EEG signals (from the SEED, SEED-IV and SEED-V datasets) in five frequency bands for all channels: delta (1-4 Hz), theta (4-8 Hz), alpha (8-14 Hz), beta (14-31 Hz), and gamma (31-50 Hz). There are in total 62 × 5 = 310 dimensions for 62 EEG channels. Finally we adopt the linear dynamic system method to filter out noise and artifacts [55].

For the DEAP dataset, the raw EEG signals were downsampled to 128 Hz and preprocessed with a bandpass filter from 4 to 75 Hz. We extract the DE features from four frequency bands (theta, alpha, beta, and gamma). As a result, there are 128 dimensions for the DE features.

2) ECG feature extraction: In previous ECG-based emotion recognition studies, researchers extracted time-domain features, frequency-domain features, and time-frequency-domain features from ECG signals for emotion recognition [52], [56], [57]. Katsigiannis and Ramzan extracted power spectral density (PSD) features of low frequency and high frequency from ECG signals [52]. Hsu and colleagues extracted power for three frequency bands: a very-low-frequency range (0.0033 – 0.04 Hz), a low-frequency range (0.04 – 0.15 Hz), and a high-frequency range (0.15 – 0.4 Hz) [56].

However, previous studies have shown that ECG signals have a much wider frequency range. In the early stage of ECG research, Scher and Young showed that ECG signals contain frequency components as high as 100 Hz [58]. Recently, Shufni and Mashor also showed that there are high-frequency components (up to 600 Hz) in ECG signals [59]. Tereshchenko and Josephson reviewed studies on ECG frequencies and noted that “the full spectrum of frequencies producing the QRS complex has not been adequately explored” [60].

Since there are no standard frequency separation methods for ECG signals [60], we extract the logarithm of the average energy of five frequency bands (1–4 Hz, 4–8 Hz, 8–14 Hz, 14–31 Hz, and 31–50 Hz) from two ECG channels of the DREAMER dataset. As a result, we extract 10-dimensional features from the ECG signals.

3) Eye movement features: The eye movement data in the SEED dataset recorded using SMI ETG eye-tracking glasses provide various types of parameters such as pupil diameters, fixation positions and durations, saccade information, blink details, and other event statistics. Although emotional changes cause fluctuations in pupil diameter, environmental luminance is the main reason for pupil diameter changes. Consequently, we adopt a principal component analysis-based method to remove the changes caused by lighting conditions [16].

The eye movement signals acquired by SMI ETG eye-tracking glasses contain both statistical features, such as blink information, and computational features such as temporal and frequency features. Table I shows all 33 eye movement features used in this paper. Therefore, the total number of dimensions of the eye movement features is 33.

4) Peripheral physiological signal features: For peripheral physiological signals from the DEAP dataset, we calculate statistical features in the temporal domain, including the maximum value, minimum value, mean value, standard deviation, variance, and squared sum. Since there are 8 channels for the peripheral physiological signals, we extract 48 (6 × 8)-dimensional features.

C. Model training

For the SEED dataset, the DE features of the first 9 movie clips are used as training data, and those of the remaining 6 movie clips are used as test data. In this paper, we build subject-dependent models to classify three types of emotions (happy, sad, and neutral), which is the same as in our previous work [20], [24], [25].

A similar training-testing separation scheme is applied to the SEED-IV dataset. There are 24 trials for each session, and we use the data from the first 16 trials as the training data and the data from the remaining 8 trials as the test data [15]. DCCA is trained to recognize four emotions (happy, sad, fear, and neutral).

For the SEED-V dataset, the training-testing separation strategy is the same as that used by Zhao et al [61]. We adopt three-fold cross-validation to evaluate the performance of DCCA on five emotion (happy, sad, fear, neutral, and disgust) recognition tasks. Since the participant watched 15 movie clips (the first 5 clips, the middle 5 clips and the last 5 clips) and participated in three sessions, we concatenate features of the first 5 clips from three sessions (i.e., we concatenate features extracted from 15 movie clips) as the training data for fold one (with a similar operation for folds two and three).

For the DEAP dataset, we build a subject-dependent model with a 10-fold cross-validation on two binary classification tasks and a four-emotion recognition task:

- Binary classifications: arousal-level and valence-level classification with a threshold of 5.
- Four-category classification: high arousal, high valence (HAHV); high arousal, low valence (HALV); low arousal, high valence (LAHV); and low arousal, low valence (LALV).

For the DREAMER dataset, we utilize leave-one-out cross-validation (i.e., 18-fold validation) to evaluate the performance.

Table I	SUMMARY OF EXTRACTED EYE MOVEMENT FEATURES.
Eye movement parameters	**Extracted features**
Pupil diameter (X and Y)	Mean, standard deviation, DE in four bands (0-0.2Hz,0.2-0.4Hz, 0.4-0.6Hz,0.6-1Hz)
Dispersion (X and Y)	Mean, standard deviation
Fixation duration (ms)	Mean, standard deviation
Blink duration (ms)	Mean, standard deviation
Saccade	Mean and standard deviation of saccade duration (ms) and saccade amplitude(°)
Event statistics	Blink frequency, fixation frequency, fixation duration maximum, fixation dispersion total, fixation dispersion maximum, saccade frequency, saccade duration average, saccade amplitude average, saccade latency average.
of DCCA on three binary classification tasks (arousal, valence, and dominance), which is the same as that used by Song et al. [62].

For these five different datasets, DCCA uses different hidden layers, hidden units, and output dimensions. Table II summarizes the DCCA structures for these datasets. For all five datasets, the learning rate, batch size, and regulation parameter of DCCA are set to 0.001, 100, and $1e^{-8}$, respectively.

V. EXPERIMENTAL RESULTS

A. SEED, SEED-IV, and DEAP Datasets

In this section, we summarize our previous results on SEED, SEED-IV, and DEAP datasets [29]. Table III lists the results obtained by seven existing methods and DCCA on the SEED dataset. Lu and colleagues applied concatenation fusion, MAX fusion and fuzzy integral to fuse multiple modalities and demonstrated that the fuzzy integral fusion method achieved the accuracy of 87.59% [20]. Liu et al. [24] and Tang et al. [25] improved multimodal methods, obtaining accuracies of 91.01% and 94.58%, respectively. Recently, Yang and colleagues [8] build a single-layer feedforward network (SLFN) with subnetwork nodes and achieved an accuracy of 91.51%. Song and colleagues [62] proposed DGCNN and obtained a classification accuracy of 94.58%. As seen from Table III, DCCA achieves the best result of 94.58% among the eight different methods.

Datasets	#Hidden Layers	Output Dimensions
SEED	6	20
SEED-IV	7	20
DREAMER	2	5
DEAP	7	20
DEAP	2	5

Table IV gives the results of five different methods on the SEED-IV dataset. We can observe from Table IV that for the SVM classifier, the four emotion states are recognized with an 87.45% mean accuracy rate. Two classification schemes are adopted on the DEAP dataset. Table V shows the results of binary classifications. As we can observe, DCCA achieves the best results in both arousal classification (84.33%) and valence classification (85.62%) tasks.

For the four-category classification task on the DEAP dataset, Zheng and colleagues [7] adopted the GELM model and achieved an accuracy of 69.67%. Chen et al. [63] proposed a three-stage decision framework that outperformed KNN and SVM with an accuracy rate of 70.04%. The DCCA model achieved a mean accuracy rate of 88.51%, which is more than 18% higher than the existing methods.

Methods	Mean	Std
Concatenation [20]	83.70	
MAX [20]	81.71	
FuzzyIntegral [20]	87.59	19.87
BDAE [24]	91.01	8.91
DGCNN [62]	90.40	8.49
SLFN with subnetwork nodes [8]	91.51	
Bimodal-LSTM [25]	93.97	7.03
DCCA	94.58	6.16

For the four-category classification task on the DEAP dataset, Bimodal-LSTM [25] achieved an accuracy of 83.23%. DCCA achieved a mean accuracy rate of 88.51%, which is more than 18% higher than the existing methods.

Methods	Acc
BDAE [24]	80.50/3.39
MESAE [27]	84.18/-
Bimodal-LSTM [25]	83.23/2.61
DCCA	84.33/2.25

From the experimental results mentioned above, we can see that DCCA outperforms the existing methods on the SEED, SEED-IV, and DEAP datasets.

B. SEED-V Dataset

We examine the effectiveness of DCCA on the SEED-V dataset, which contains multimodal signals of five emotions (happy, sad, fear, neutral, and disgust).

We perform a series of experiments to choose the best output dimension and fusion coefficients (α_1 and α_2 in Eq. (11)) for DCCA. We adopt the grid search method with output dimensions ranging from 5 to 30 and coefficients for the EEG features ranging from 0 to 1, i.e. $\alpha_1 = [0, 0.1, 0.2, \ldots, 0.9, 1.0]$.
Since $\alpha_1 + \alpha_2 = 1$, we can calculate the weight for the other modality via $\alpha_2 = 1 - \alpha_1$. Figure 2 shows the heat map of the experimental results of the grid search. Each row in Fig. 2 gives different output dimensions, and each column is the weight of the EEG features (α_1). The numbers in blocks are the accuracy rates, which are rounded to integers for simplicity. According to Fig. 2, we set the output dimension to 12 and the weight of the EEG features to 0.7 (i.e., $\alpha_1 = 0.7$, $\alpha_2 = 0.3$).

![Table VII](image)

Methods	Mean	Std
Concatenation [61]	73.65	8.90
MAX	73.17	9.27
FuzzyIntegral	73.24	8.72
BDAE [61]	79.70	4.76
DCCA	83.08	7.11

Figure 3 depicts the confusion matrices of the DCCA model and the models adopted by Zhao and colleagues [61]. Figures. 3(a), (b) and (c) are the confusion matrices for the EEG features, eye movement features, and the BDAE model, respectively. Figure 3(d) depicts the confusion matrix for the DCCA model. From Figs. 3(a), (b), and (d), for each of the five emotions, DCCA achieves a higher accuracy, indicating that emotions are better represented and more easily classified in the coordinated hyperspace \mathcal{S} transformed by DCCA.

From Figs. 3(a) and (c), compared with the unimodal results of the EEG features, the BDAE model achieves worse classification results on the happy emotion, suggesting that the BDAE model might not take full advantage of different modalities for the happy emotion. Comparing Figs. 3(c) and (d), DCCA largely improved the classification results on disgust and happy emotion recognition tasks compared with the BDAE model, implying that DCCA is more effective in fusing multiple modalities.

To analyze the coordinated hyperspace \mathcal{S} of DCCA, we utilized the t-SNE algorithm to visualize the space of the original features and the coordinated hyperspace of the transformed features and fused features. Figure 4 presents a visualization of the features from three participants. The first row shows the original features, the second row depicts the transformed features, and the last row presents the fused features. The different colors stand for different emotions, and the different markers are different modalities. We can make the following observations:

- Different emotions are disentangled in the coordinated hyperspace \mathcal{S}. For original features, there are more overlaps among different emotions (different colors presenting substantial overlap), which lead to poorer emotional representation. After the DCCA transformation, different emotions become relatively independent, and the overlapping areas are considerably reduced. This indicates that the transformed features have improved emotional representation capabilities compared with the original features.
- Finally, after multimodal fusion, different emotions (□ of different colors in the last row) are completely separated, and there is no overlapping area, indicating that the merged features also have good emotional representation ability.
- Different modalities have homogeneous distributions in the coordinated hyperspace \mathcal{S}. To make this observation
Fig. 4. Feature distribution visualization by the t-SNE algorithm. The original features, transformed features, and fused features from the three subjects are presented. The different colors stand for different emotions, and the different markers indicate different features.

Fig. 5. Distributions of EEG and eye movement features for the sad emotion. The transformed features have more compact distributions from both inter-modality and intra-modality perspectives.

more obvious, we separate and plot the distributions of the EEG and eye movement features under the sad emotion in Fig. 5. From the perspectives of both inter-modality and intra-modality distributions, the original EEG features (‘◦’ marker) and eye movement features (‘×’ marker) are separated from each other. After the DCCA transformation, the EEG features and the eye movement features have more compact distributions, indicating that the coordinated hyperspace preserves shared emotion-related information and discards irrelevant information.

Figures 4 and 5 qualitatively show that DCCA maps original EEG and eye movement features into a coordinated hyperspace S where emotions are better represented since only emotion related information is preserved.

Furthermore, we calculated the mutual information of the original features and transformed features to support our claims quantitatively. Figure 6 presents the mutual information of three participants estimated by MINE. The green curves depict the mutual information of the original EEG and eye movement features, and the red curves are the estimated mutual information of the transformed features. The transformed features have more mutual information than the original features, indicating that EEG and eye movement features in the coordinated hyperspace provide more shared emotion-related information, which is consistent with observations from Figs. 4 and 5.
C. Robustness Analysis on the SEED-V Dataset

EEG signals have a low signal-to-noise ratio (SNR) and are easily interfered with by external environmental noise. To compare the noise robustness of DCCA with that of the existing methods, we designed two experimental schemes on noisy datasets: 1) we added Gaussian noise of different variances to both the EEG and eye movement features. To highlight the influence of noise, we added noise to the normalized features since the directly extracted features are much larger than the generated noise (which is mostly less than 1). 2) Under certain extreme conditions, EEG signals may be overwhelmed by noise. To simulate this situation, we randomly replace different proportions (10%, 30%, and 50%) of EEG features with noise with a normal distribution \(X \sim \mathcal{N}(0, 1)\), gamma distribution \(X \sim \Gamma(1, 1)\), and uniform distribution \((X \sim U[0, 1])\). Specifically, for DCCA, we also examine the effect of different weight coefficients on the robustness of the model. In this paper, we compare the performance of three different combinations of coefficients, i.e., \(\alpha_1 = 0.3\) (DCCA-0.3), \(\alpha_3 = 0.5\) (DCCA-0.5), and \(\alpha_7 = 0.7\) (DCCA-0.7).

1) Adding Gaussian noise: First, we investigate the robustness of different weight combinations in DCCA after adding Gaussian noise of different variances to both the EEG and eye movement features. Figure 7 depicts the results. Although the model achieves the highest classification accuracy when the EEG weight is set to 0.7, it is also more susceptible to noise. The robustness of the model decreases as the weight of the EEG features increases. Since a larger EEG weight leads to more EEG components in the fused features, we might conclude that EEG features are more sensitive to noise than are eye movement features.

Next, we compare the robustness of different models under Gaussian noise with different variances. Taking both classification performance and robustness into consideration, we use DCCA with an EEG weight set to 0.5. Figure 8 shows the performances of the various models. The performance decreases with increasing variances of the Gaussian noise. DCCA obtains the best performance when the noise is lower than or equal to \(\mathcal{N}(0, 1)\). The performance of the fuzzy integral fusion strategy exceeds DCCA when the noise is stronger than or equal to \(\mathcal{N}(0, 3)\). The BDAE model performs poorly under noisy conditions even when minimal noise is added to the training samples, the performance of the BDAE model is greatly reduced.

![Fig. 6. Mutual information (MI) estimation with MINE. The green curve shows the estimated MI for the original EEG features and eye movement features. The red curve depicts the MI for the transformed features. The x axis is the epoch number of the deep neural network used to estimate MI, and the y axis is the estimated MI. Moving average smoothing is used to smooth the curves.](image)

![Fig. 7. Performance of DCCA with different weight combinations when adding Gaussian noise of different variances. The robustness of DCCA decreases as the weight of the EEG features increases.](image)

![Fig. 8. Model performances after adding Gaussian noise of different variances. The accuracies drop after noise is added to the original training data. DCCA obtains the best performance when the noise is less than \(\mathcal{N}(0, 1)\). When the noise is stronger than \(\mathcal{N}(0, 3)\), the fuzzy integral fusion strategy performed best.](image)
noise distributions have limited influences on the recognition accuracies.

To better observe the changing tendency, we plot the average recognition accuracies under different noise distributions with the same noise ratio. Figure 9 shows the average accuracies for DCCA with different EEG weights. It is obvious that the performances decrease with increasing noise percentages and that the model robustness is inversely proportional to the ratio of the EEG modality. This is the expected performance. Since we only randomly replace EEG features with noise, larger EEG weights will introduce more noises to the fused features, resulting in a decrease in model robustness.

Similar to Fig. 7, we also take DCCA-0.5, as a compromise between performance and robustness to compare with other multimodal fusion methods. Figure 10 depicts the trends of the accuracies of several models. It is obvious that DCCA performs the best, the concatenation fusion achieves a slightly better performance than the fuzzy integral fusion method, and the BDAE model again presents the worst performance.

Combining Figs. 8 and 10, DCCA obtains the best performance under most noisy situations, whereas the BDAE model performed the worst under noisy conditions. This might be caused by the following:

- As already discussed in previous sections, DCCA attempts to preserve emotion-related information and discard irrelevant information. This property prevents the model performance from rapidly deteriorating by neglecting negative information introduced by noise.
- The BDAE model minimizes the mean squared error which is sensitive to outliers [64]. The noisy training features will cause the weights to deviate from the normal range, resulting in a rapid decline in model performance.

D. DREAMER Dataset

For DCCA, we choose the best output dimensions and weight combinations with a grid search. We select the output dimension from the set \([5, 10, 15, 20, 25, 30]\) and the EEG weight \(\alpha_1\) in \([0, 0.1, \ldots, 0.9, 1.0]\) for three binary classification tasks. Figures 11(a), (b), and (c) depict the heat maps of the grid search for arousal, valence, and dominance classifications, respectively. According to Fig. 11, we choose \(\alpha_1 = 0.9\) and \(\alpha_2 = 0.1\) for the arousal classification, \(\alpha_1 = 0.8\) and \(\alpha_2 = 0.2\) for the valence classification, and \(\alpha_1 = 0.9\) and \(\alpha_2 = 0.1\) for the dominance classification.

For BDAE, we select the best output dimensions from \([700, 500, 200, 170, 150, 130, 110, 90, 70, 50]\), and leave-one-out cross-validation is used to evaluate the BDAE model.

Table IX gives comparison results of the different methods. Katsigiannis and Ramzan released this dataset, and they achieved accuracy rates of 62.32%, 61.84%, and 61.84% on arousal, valence and dominance classification tasks, respectively [52]. Song and colleagues conducted a series of experiments on this dataset with SVM, graphSLDA, GSCCA, and DGCNN. DGCNN achieved accuracy rates of 85.54% for arousal classification, 86.23% for valence classification, and 85.02% for dominance classification. From Table IX, we can see that BDAE and DCCA adopted in this paper outperform DGCNN. For BDAE, the recognition results for arousal, valence, and dominance are 88.57%, 86.64%, and 89.52%, respectively; whereas the DCCA model achieved accuracy rates of 88.57%, 86.64%, and 89.52%, respectively.
respectively. DCCA achieves the best performance among all seven methods: 88.99%, 90.57%, and 90.67% for arousal, valence, and dominance level recognitions, respectively.

TABLE IX

Comparison of performances (mean/Std, %) on the DREAMER dataset. Three binary classification tasks are evaluated: Arousal-Level, Valence-Level, and Dominance-Level classifications.

Methods	Arousal	Valence	Dominance
Fusion EEG & ECG [52]	62.3/2/-	61.8/4/-	61.8/4/-
SVM [62]	68.8/42/4.92	60.14/3/3.34	75.84/20/7.6
GraphSLDA [62]	68.12/7/5.53	57.70/1/3.89	73.90/15.85
DCCA [62]	70.01/18.66	56.60/2/5.0	77.31/15.44
DGCNN [62]	84.54/10.18	86.23/12.29	85.02/10.25
BDAE	88.57/4/30	86.64/6/48	89.52/6/18
Our method	88.99/2/84	90.57/4/11	90.67/4/33

VI. CONCLUSION

In this paper, we have introduced deep canonical correlation analysis (DCCA) to multimodal emotion recognition. We have systematically evaluated the performance of DCCA on five multimodal emotion datasets (the SEED, SEED-IV, SEED-V, DEAP and DREAMER datasets) and compared DCCA with the existing emotion recognition methods. Our experimental results demonstrate that DCCA is superior to the existing methods for multimodal emotion recognition.

We have analyzed properties of the transformed features in the coordinated hyperspace S. By applying t-SNE method, we have found qualitatively that: 1) different emotions are better represented since they are disentangled in the coordinated hyperspace; and 2) different modalities have compact distributions from both inter-modality and intra-modality perspectives. We have applied mutual information neural estimation (MINE) algorithm to compare the mutual information of original features and transformed features quantitatively. The experimental results show that the features transformed by DCCA have higher mutual information, indicating that DCCA transformation processes preserve emotion-related information and discard irrelevant information.

We have investigated the robustness of DCCA on noised datasets under two schemes. By adding Gaussian noise of different variances to both EEG and eye movement features, we have demonstrated that DCCA performs best when the noise is smaller than or equal to $N(0, 1)$. After replacing 10%, 30%, and 50% of EEG features with normal distribution, gamma distribution, and uniform distribution, we have shown that DCCA has the best performance for multimodal emotion recognition.

REFERENCES

[1] R. W. Picard, *Affective computing*. MIT press, 2000.
[2] R. W. Picard, E. Vyzas, and J. Healey, “Toward machine emotional intelligence: Analysis of affective physiological state,” *IEEE Transactions on Pattern Analysis & Machine Intelligence*, vol. 10, pp. 1175–1191, 2001.
[3] M. El Ayadi, M. S. Kamel, and F. Karray, “Survey on speech emotion recognition: Features, classification schemes, and databases,” *Pattern Recognition*, vol. 44, no. 3, pp. 572–587, 2011.
[4] B. Ko, “A brief review of facial emotion recognition based on visual information,” *Sensors*, vol. 18, no. 2, p. 401, 2018.
[5] A. Yadollahi, A. G. Shahraei, and O. R. Ziaie, “Current state of text sentiment analysis from opinion to emotion mining,” *ACM Computing Surveys (CSUR)*, vol. 50, no. 2, p. 25, 2017.
[6] W.-L. Zheng and B.-L. Lu, “Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks,” *IEEE Transactions on Autonomous Mental Development*, vol. 7, no. 3, pp. 162–175, 2015.
[7] W.-L. Zheng, J.-Y. Zhu, and B.-L. Lu, “Identifying stable patterns over time for emotion recognition from EEG,” *IEEE Transactions on Affective Computing*, doi: 10.1109/TAFFC.2017.2712143.
[8] Y. Yang, Q. J. Wu, W.-L. Zheng, and B.-L. Lu, “EEG-based emotion recognition using hierarchical network with subnetwork nodes,” *IEEE Transactions on Cognitive and Developmental Systems*, vol. 10, no. 2, pp. 408–419, 2018.
[9] Z. Yin, Y. Wang, L. Liu, W. Zhang, and J. Zhang, “Cross-subject EEG feature selection for emotion recognition using transfer recursive feature elimination,” *Frontiers in Neurorobotics*, vol. 11, p. 19, 2017.
[10] Y.-P. Lin, J.-H. Chen, J.-R. Duann, C.-T. Lin, and T.-P. Jung, “Generalizations of the subject-independent feature set for music-induced emotion recognition,” in *2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society*. IEEE, 2011, pp. 6092–6095.
[11] X.-W. Wang, D. Nie, and B.-L. Lu, “Emotional state classification from eeg data using machine learning approach,” *Neurocomputing*, vol. 129, pp. 94–106, 2014.
[12] J. Kim and E. André, “Emotion recognition based on physiological changes in music listening,” *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 30, pp. 2067–2083, 2008.
[13] M. L.-H. Võ, A. M. Jacobs, L. Kuchinke, M. Hofmann, M. Conrad, A. Schacht, and F. Hutzler, “The coupling of emotion and cognition in the eye: Introducing the pupil old/new effect,” *Psychophysiology*, vol. 45, no. 1, pp. 130–140, 2008.
[14] S. Porta, E. Cambria, R. Bajpai, and A. Hussain, “A review of affective computing: from unimodal analysis to multimodal fusion,” *Information Fusion*, vol. 37, pp. 98–125, 2017.
[15] W.-L. Zheng, W. Liu, J.-Y. Liu, B.-L. Lu, and A. Cichocki, “Emotion-meter: A multimodal framework for recognizing human emotions,” *IEEE Transactions on Cybernetics*, vol. 49, no. 3, pp. 1110–1122, March 2019.
[16] M. Soleymani, M. Pantic, and T. Pun, “Multimodal emotion recognition in response to videos,” *IEEE Transactions on Affective Computing*, vol. 3, no. 2, pp. 211–223, April 2012.
[17] M. Soleymani, M. Pantic, and T. Pun, “Multimodal emotion recognition in response to videos,” *IEEE Transactions on Affective Computing*, vol. 3, no. 2, pp. 211–223, April 2012.
Wei Liu received his bachelor’s degree in Automation Science from the School of Advanced Engineering, Beihang University, Beijing, China, in 2014. He is currently pursuing his Ph.D degree in Computer Science from the Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.

His research focuses on affective computing, brain-computer interface, and machine learning.

Jie-Lin Qiu is an undergraduate student at the Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China.

His research interests lie in the general area of machine learning, particularly in deep learning and reinforcement learning, as well as their applications in affective computing, brain-machine interfaces, computer vision, and robotics.

Wei-Long Zheng (S’14–M’19) received his bachelor’s degree in Information Engineering with the Department of Electronic and Information Engineering, South China University of Technology, Guangzhou, China, in 2012. He received his Ph.D. degree in Computer Science from the Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China, in 2018. Since 2018, he has been a research fellow with the Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. He received the IEEE Transactions on Autonomous Mental Development Outstanding Paper Award from the IEEE Computational Intelligence Society in 2018. His research focuses on affective computing, brain-computer interaction, machine learning and clinical healthcare.

Bao-Liang Lu (M’94–SM’10) received his B.S. degree in Instrument and Control Engineering from the Qingdao University of Science and Technology, Qingdao, China, in 1982; his M.S. degree in Computer Science and Technology from Northwestern Polytechnical University, Xian, China, in 1989; and his Dr.Eng. degree in Electrical Engineering from Kyoto University, Kyoto, Japan, in 1994.

He was with the Qingdao University of Science and Technology from 1982 to 1986. From 1994 to 1999, he was a Frontier Researcher with the Bio-Mimetic Control Research Center, Institute of Physical and Chemical Research (RIKEN), Nagoya, Japan, and a Research Scientist with the RIKEN Brain Science Institute, Wako, Japan, from 1999 to 2002. Since 2002, he has been a Full Professor with the Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China. He received the IEEE Transactions on Autonomous Mental Development Outstanding Paper Award from the IEEE Computational Intelligence Society in 2018. His current research interests include brain-like computing, neural networks, machine learning, brain-computer interaction, and affective computing.

Prof. Lu is currently a Board Member of the Asia Pacific Neural Network Society (APNNS, previously APNNA) and a Steering Committee Member of the IEEE Transactions on Affective Computing. He was the President of the Asia Pacific Neural Network Assembly (APNNA) and the General Chair of the 18th International Conference on Neural Information Processing in 2011. He is currently the Associate Editor of the IEEE Transactions on Cognitive and Development Systems.