NUTRIENTS (N, P AND K) DYNAMICS ASSOCIATED WITH LEAF LITTER OF Albizia saman AND Leucaena leucocephala OF BANGLADESH

Mahmood Hossain 1*, Md. Mozahidur Rahman 1, Masud Hasan Shamim 1, Mohammad Raqibul Hasan Siddique 1, Sanjoy Saha 1, Md. Zaber Hossain 2 and Mirza Asadul Kibria 1

1Forestry and Wood Technology Discipline, Khulna University, Khulna 9208, Bangladesh
2Soil Science Discipline, Khulna University, Khulna 9208, Bangladesh

KUS: 09/20-010909
Manuscript received: September 01, 2009; Accepted: August 30, 2010

Abstract: Albizia saman and Leucaena leucocephala are not native to Bangladesh, but they are widely planted in agroforestry and households for their commercial value. Selection of tree species with efficient return of nutrients is a vital challenge to maintain soil fertility for sustainable crop production. Therefore, a comparative study was conducted on nutrients (N, P and K) leaching from leaf litter of A. saman and L. leucocephala in laboratory condition. The initial dry weight of leaf litter of A. saman and L. leucocephala were significantly (p<0.05) decreased to 17% and 26%, respectively at the end (after 96 hours) of the experiment. Leucaena leucocephala showed comparatively (t-test, p<0.05) higher rate of weight loss, conductivity and TDS (Total Dissolved Solid) of leaching water. Comparatively, higher amount of N and K was released from leaf litter of A. saman and higher amount of P from leaf litter of L. leucocephala. Both the species showed similar pattern (K>N>P) of nutrient release during the leaching process and nutrients (N, P and K) concentration in leaf litter of these species showed significant (p<0.05) negative curvilinear relationships with the weight loss.

Keywords: Albizia saman, Leucaena leucocephala, leaching, nutrient cycling, weight loss

Introduction
Use of chemical fertilizer for sustaining crop production is well known (Kang and Spain, 1986; McIntire, 1986) though it is expensive and has negative environmental impacts (Good et al., 2004). However, most farmers in developing countries have limited access to affordable fertilizer (McIntire, 1986; Vlek, 1993; Sanchez, 2002). Maintenance of soil productivity is a critical issue in a tropical agroecosystems. Reducing fertilizer inputs can be achieved by inclusion of N-fixing leguminous species, which can contribute biologically fixed nitrogen to the production system (Balasubramanian and Blaise, 1993; Kang et al., 1990). In Bangladesh, presently, farmers prefer Albizia saman and Leucaena leucocephala due to their multipurpose use capability within a short period of time among the leguminous tree species for agroforestry practices (NAS 1979; Nair et al., 1984; von Carlowitz 1991; Roder and Maniphone 1998; Roder et al., 1998; Roder 2001). Both the species can tolerate salinity and has disease infestation (Dutta and Iftekhar, 2004; Hossain et al., 2006).

Agroforestry, being a people oriented program, farmer’s preference should be acknowledged, but the performance of these species is needed to be scientifically assessed with due attention in terms of nutrient return efficiency for further promotion. Litter decomposition is an important

*Corresponding author: <mahmoodhossain@hotmail.com>

DOI: https://doi.org/10.53808/KUS.2010.10.1&2.0920-L
component in nutrient cycling and leaf litter is the main and quick source of organic matter and mineral elements to the soil which becomes readily available to plants and soil micro-organisms (Tukey, 1970; Wetzel and Manny, 1972; Mason, 1977; Dahm, 1981; Gray and Schlesinger, 1981; Waring and Schleswinger, 1985; Vitousek and Sanford, 1986; Regina et al., 1999; Guo and Sims, 1999; Ukonmaanaho and Starr, 2001; and Park and Hyun, 2003). However, nutrient return from a tree through leaf litter is influenced by micro- and macro-climates (Edwards, 1975), chemical composition and physical state of the leaf litter (Swift et al., 1979; Anderson, 1991; Aerts, 1999), the quantity (Knutson, 1997), diversity of leaf litter (Ball et al., 2008) and rate of leaching and decomposition of leaf litter (Senevirante et al., 1998; Kwabiah et al., 2001, Bossa et al., 2005). The present study aimed to assess the pattern of nutrients leaching (N, P and K) from the leaf litter of A. saman and L. leucocephala in laboratory condition.

Materials and Methods

Leaf litter selection and leaching Experiment: Bulk of yellowish senescent leaves of A. saman and L. leucocephala were collected during March 2008 (maximum leaf fall period). Leaves were air-dried at room temperature for one week. Air-dried leaves of each species were thoroughly mixed and weighted to two grams as an individual sample and thus a total 38 samples were prepared. Each sample was placed at room temperature into individual beaker (500 ml) and 250 ml of distilled water was poured to each beaker and few drops of HgCl$_2$ solution (50 mg l$^{-1}$) (McLachlan, 1971; Otsuki & Wetzel, 1974) were added in each beaker to prevent fungal decay. Five samples were kept into an oven at 80°C until constant weight to get the air-dry to oven-dry conversion weight.

Sample collection and measurements: Three replicates of each samples were collected at 1, 2, 3, 4, 8, 12, 24, 36, 48, 72 and 96 hours of intervals and the collected samples were ringed by distilled water and oven-dried at 80 °C to constant weight. The mass loss (%) due to the leaching process was calculated from the differences between initial and final oven-dried weights and was expressed as a percentage of initial loss. The rate of mass loss was obtained from mass loss (%) and leaching time. Conductivity (μs cm$^{-1}$), total dissolve solid (TDS) (mg l$^{-1}$) of leaching water sample were measured by a conductivity and TDS meter manufactured by Ciba-Corning Diagnostic Ltd., England.

Nutrients (N, P and K) measurements in leaf litter: The leaf samples were processed and acid digested according to Allen (1974). Nitrogen (N) and Phosphorus (P) concentration in the sample extracts were measured according to Weatherburn (1967) and Timothy et al., (1984), respectively using UV-Visible Recording Spectrophotometer (SHIMADZU, UV-160A, Japan). Potassium concentration in the sample extracts at different time intervals were measured by Atomic Absorption Spectrophotometer (PERKIN ELMER 4100, USA). The released amounts of these nutrients from leaf litters were calculated as differences between initial and final absolute amounts and also expressed as percentage of initial amounts.

Statistical analysis: The rate of mass loss and nutrients (N, P and K) concentration in leaf litter of each species at different time intervals was compared by two way analysis of variance using SAS 6.12 statistical software. Rate of mass loss, conductivity, TDS and nutrients (N, P and K) concentration in leaf litter between two species were compared by unpaired ‘t’ test using SPSS (11.5) Statistical Software. For each species relationships among the mass loss and nutrients (N, P and K) concentration with leaching time were calculated.

Results

The percent change in dry weight varied between treatment and litter type. Litter mass loss displayed characteristic decomposition patterns, which appeared to approximate a negative logarithmic relationship for the species measured. The initial dry weights of leaf litter of A. saman
and L. leucocephala were sharply decreased to 7% and 13% after 8 hours (Fig. 1). Higher rate of mass loss was observed for L. leucocephala in comparison to (t-test, p<0.05) A. saman (Fig. 2). Conductivity and TDS of leaching water of both the species were significantly (p<0.05) increased at the end of the experiment and comparatively (t-test, p<0.05) higher conductivity and TDS were observed for L. leucocephala (Fig. 3-4). Mass loss of leaf litter, conductivity and TDS of leaching water of both the species showed significant (p<0.05) positive logarithmic relationships with the leaching time (Fig. 1, 3-4).

In case of A. saman initial concentrations of N, P and K in leaf litter were significantly (p<0.05) decreased to 25.67 μgg⁻¹, 0.64 μgg⁻¹ and 1.06 μgg⁻¹ respectively after 24 hours whereas N, P, and K concentration in leaf litter of L. leucocephala were significantly (p<0.05) decreased to 3.35 μgg⁻¹, 0.52 μgg⁻¹ and 1.19 μgg⁻¹ respectively after 24 hours (Fig 5-7). At the end of the
experiment (after 96 hours) 26%, 67% and 85% of the initial amount of N, P and K was lost for *A. saman* that were 78%, 76% and 71% for *L. leucocephala* respectively (Table 1).

Table 1. Absolute amount of nutrients released from leaf litter during the leaching process (Values in the parenthesis indicate released nutrient amounts expressed as percentage of initial nutrient amount)

Species	Nitrogen (μg)	Phosphorus (μg)	Potassium (mg)
Albizia saman	34.68 (25.98)	1.91 (66.49)	7.06 (84.99)
Leucaena leucocephala	15.05 (77.74)	2.16 (75.92)	4.15 (71.33)

Comparatively (t-test, p<0.05) higher concentrations of N and K was observed in leaf litter of *A. saman* (Fig. 5 and 7) whereas *L. leucocephala* contained higher (t-test, p>0.05) concentration of P (Fig. 6). Higher amount of N and K was released from leaf litter of *A. saman* whereas higher amount of P was released from *L. leucocephala*; both the species showed similar pattern of nutrient (K>N>P) release during the leaching process (Table 1). Concentration of nutrients (N, P and K) in leaf litter of these species showed significant (p<0.05) negative exponential curvilinear relationships with the mass loss (Table 2).

Table 2. Concentration of nutrients (N, P and K) in leaf litters

Species	N	P	K
Albizia saman	$y = -5.47\ln(x) + 40.60$ $R^2 = 0.79$	$y = -0.73\ln(x) + 2.702$ $R^2 = 0.81$	$y = -2.65\ln(x) + 8.190$ $R^2 = 0.79$
Leucaena leucocephala	$y = -5.65\ln(x) + 23.14$ $R^2 = 0.91$	$y = -1.09\ln(x) + 4.17$ $R^2 = 0.96$	$y = -1.95\ln(x) + 7.225$ $R^2 = 0.88$

Fig. 5. Nitrogen concentration (μg g⁻¹) in leaf litter of *Albizia saman*, and *Leucaena leucocephala* at different time intervals

Fig. 6. Phosphorus concentration (μg g⁻¹) in leaf litter of *Albizia saman*, and *Leucaena leucocephala* at different time intervals
Hossain, M., Rahman, M.M., Shamim, M.H., Siddique, M.R.H., Saha, S., Hossain, M.Z. and Kibria, M.A. 2010. Nutrients (N, P and K) dynamics associated with leaf litter of Albizia saman and Leucaena leucocephala of Bangladesh. Khulna University Studies 10 (1&2): 137-144

Fig. 7. Potassium concentration (mg g⁻¹) in leaf litter of Albizia saman, and Leucaena eucoscephala at different time intervals

Discussion

The relationships among leaching time and mass loss, conductivity and TDS were significantly positive (Fig. 1, 3 and 4) which indicate that water-soluble organic and inorganic substances are leached from leaf litter. The rates of leaching were initially high and slower rates were observed with the increasing leaching time. Similar relationships among leaching time and mass loss of leaf litter, conductivity and TDS of leaching water were observed by Park & Hyun (2003), Kongkon et al., (2006), Hasan et al., (2006), Ibrahima et al., (2008) and Mahmood et al., (2009). The higher rate of mass loss up to eight hours (Fig. 2) may be due to initial rapid loss of soluble inorganic and organic substances (Tukey, 1970; Maclean and Wein, 1978; Ibrahima et al., 1995; Parsons et al., 1990; Prescott 2005). Comparatively higher rate of nutrient loss was occurred for L. leucocephala. The average rate of mass loss of A. saman and L. leucocephala leaf litter of the present study were 1.28% hr⁻¹ and 2% hr⁻¹, respectively which were higher than Acacia auriculiformis (0.25% hr⁻¹), Vitex madiensis (0.25% hr⁻¹), Syzygium guineese var. guineese (0.03% hr⁻¹) (Kongkon et al., 2006, Ibrahima et al., 2008), Eucalyptus camaldulensis (0.92% hr⁻¹) and Swietenia macrophylla (0.41% hr⁻¹) (Mahmood et al., 2009) and Melia azedarach (1.15% hr⁻¹) (Hasan et al., 2006). The observed differences in the mass loss rate among different species may be due to the variation in the concentration of different soluble inorganic and organic substances, the physical, chemical and morphological characteristics of leaf litter (Nykvist, 1963; Taylor & Parkinson, 1988; Saini, 1989 and Ibrahima, 1995). Moreover, the higher rate of mass loss also emphasizes the potentiality of species to provide readily available organic and inorganic compounds for microbiota (Wetzel, 1995).

Chemical differences in initial litter quality of the species reflect the combined effect of chemical content in living tissues and the efficiency of retranslocation mechanisms before abscission (Moro and Domingo, 2000). The significant variation of N and K concentration in the leaf litter of A. saman and L. leucocephala during the leaching process (Fig. 5 and 7) may depend on their initial concentration (Tukey, 1970), characteristics, mobility, and involvement in structural properties of the respective plant cell (Meyer et al., 1973). Potassium (K) is highly mobile in comparison to N and P and at the same time K is not structurally bounded (Marschner, 1995). This could be the reason for observing higher amount of K release for the leaf litter. The significant negative exponential curvilinear relationship among N, P and K concentration, leaching time and mass loss of leaf litter (Table 2, Fig. 5-7) explains that mass loss of leaf litter could be associated with the release of these elements (Bernhard-Reversat, 1993).
Acknowledgement
Authors wish to thank Forestry and Wood Technology Discipline, Khulna University for the logistic support throughout the study.

References
Aerts, R. 1999. Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks. *Journal of Experimental Botany* 50(330): 29-37

Allen, S.E. 1974. *Chemical analysis of ecological materials*. Blackwell Scientific, Oxford

Anderson, J.M. 1991. The effects of climate change on decomposition processes in grassland and coniferous forests. *Ecological Applications* 1(3): 326-347

Balasubramanian, V. and Blaise, N.K.A. 1993. Short season fallow management for sustainable production in Africa. pp 279–294. In: Ragland, J. and Lal, R. (eds) *Technology for Sustainable Agriculture in the Tropics*. Special publ. no, 56, American Society of Agronomy, WI, USA

Ball, B.A., Hunter, M.D., Kominoski, J.S., Swan, C.M. and Bradford, M.A. 2008. Consequences of non-random species loss for decomposition dynamics: experimental evidence for additive and non-additive effects. *Journal of Ecology* 96: 303–313

Bernhard-Reversat, F. 1993. Dynamics of litter and organic matter at the soil-litter interface in fast growing tree plantations on ferralitic soils (Congo). *Acta Oecologica* 14:179-95

Bossa, J.R., Adams, J.F., Shannon, D.A. and Mullins, G.L. 2005. Phosphorus and potassium release pattern from *Leucaena* leaves in three environment of Haiti. *Nutrients cycling in Agroecosystems* 73: 25-35

Dahm, C.N. 1981. Pathways and mechanisms for removal of dissolved organic carbon from leaf leachate in stream. *Canadian Journal of Fish Aquatic Science* 38: 68-76

Dutta, A.K. and Iftekhar, M.S. 2004. Tree species survival in the homestead forest of salt affected areas: A perception analysis for Bangladesh. *Journal of Biological Science* 4(3): 361-365

Edwards, N.T. 1975. Effects of temperature and moisture on carbon dioxide evolution in a mixed deciduous forest floor. Soil Science Society of America Proceedings 39: 361-365

Good, A.G., Shrawat, A.K. and Muench, D.G. 2004. Can less yield? Is reducing nutrient input into the environment compatible with maintaining crop production? *Trends Plant Science* 9: 567-605

Gray, J.T. and Schlesinger, W.H. 1981. Biomass, production and litterfall in the coastal sage scrub of southern california. *American Journal of Botany* 68(1): 24-33

Guo, L.B. and Sims, R.E.H. 1999. Litter decomposition and nutrient release via litter decomposition in New Zealand eucalypt short rotation forests. *Agriculture, Ecosystems and Environments* 75: 133-140

Hasan, N.M., Mahmood, H., Limon, M.S.H. and Islam, M.S. 2006. Nutrients (P, K and Na) leaching from leaf litter of (*Melia azederach*). *Khulna University Studies* 7(2): 59-64

Hossain, M.K., Momen, R.U., Huda, S.M.S. and Khan, B.M. 2006. Economics of the plant species used in homestead agroforestry on an offshore Sandwip Island of Chittagong District, Bangladesh. *Journal of Forestry Research* 17(4): 285-288

Ibrahim A., Biyanzi P. and Halima M. 2008. Changes in organic compounds during leaf litter leaching: laboratory experiment on eight plant species of the Sudano-guinea of Ngouandere, Cameroon. *Forest- Biogeoscience and Forestry* 1: 27-33

Ibrahim A., Joffre, R. and Gillon, D. 1995. Changes in litter during the initial leaching phase: an experiment on the leaf litter of Mediterranean species. *Soil Biology and Biochemistry* 27:237-253
Hossain, M., Rahman, M.M., Shamim, M.H., Siddique, M.R.H., Saha, S., Hossain, M.Z. and Kibria, M.A. 2010. Nutrients (N, P and K) dynamics associated with leaf litter of *Albizia saman* and *Leucaena leucocephala* of Bangladesh. *Khulna University Studies* 10 (1&2): 137-144

Kang, B.T. and Spain, J.M. 1986. Fertility management of low activity clay soils. pp 107–131. In: *Proceedings Symposium on Low Activity (LAC) Soils*. Soil Management Support Services (SMSS), Soil Conservation Service, Washington, DC, USA

Kang, B.T., Reynolds, L. and Atta-Krah, A.N. 1990. Alley farming. *Advances in Agronomy* 43: 315–359

Knutson, R.M. 1997. An 18-year study of litterfall and litter decomposition in a Northeast Iowa deciduous forest. *American Midland Naturalist* 138(1): 77-83

Kongkon, S., Mahmood, H., Limon, M.S.H. and Islam, M.S. 2006. Nutrients (P, K and Na) leaching from leaf litter of (*Acacia auriculiformis*). *Khulna University Studies* 1:79-82

Kwabiah, A.B., Stoskopf, N.C., Voroney, R.P. and Palm, C.A. 2001. Nitrogen and phosphorus release from decomposing leaves under sub-humid tropical conditions. *Biotropica* 33: 229-240

MacLean, D.A. and R.W. Wein. 1978. Weight loss and nutrient changes in decomposing litter and forest floor material in New Brunswick forest stands. Canadian Journal of Botany 56: 2730–2749.

Mahmood, H., Limon, S.H., Rahman, M.S., Azad, A.K., Islam, M.S. and Khairuzzaman, M. 2009. Nutrients (N, P and K) dynamics associated with the leaf litter of two agroforestry tree species of Bangladesh. *iforest-Biogeoscience and Forestry* 2: 183-186

Marschner, H. 1995. *Mineral Nutrition of Higher Plants*. Academic press, New York

Mason, F.C. 1977. *Decomposition*. The institute of biology’s studies no. 74. Edward Arnold Limited, London

McIntire, J. 1986. Constraints to fertilizer use in sub-Saharan Africa. pp 33–58. In: Mokwunye, A.U. and Vlek, P.L.G. (eds) *Management of Nitrogen and Phosphorus Fertilizers in Sub-Saharan Africa*. Martinus Nijhoff Publ., Dordrecht, Netherlands

McLachlan, S.M. 1971. The rate of nutrient release from grass and dung following immersion in lake water. *Hydrobiologia* 37:521-530

Meyer, B.S., Anderson, D.B., Bohning, R.H. and Fratianne, D.G. 1973. Introduction to plant physiology. D. Van Nostrand Company, New York

Moro, M.J. and Domingo, F. 2000 Litter decomposition in four woody species in a Mediterranean climate: weight loss, N and P dynamics. *Annual Botany* 86: 1065–1071

Nair, P.K.R. 1989. Agroforestry defined. In: Nair PKR (ed) *Agroforestry systems in the tropics*. Kluwer Academic Publishers, London

Nair, P.K.R., Fernandes, E.C.M. and Wambugu, P.N. 1984. Multipurpose leguminous trees and shrubs for agroforestry. *Agroforestry Systems* 2: 145–163

NAS, 1979. *Tropical legumes, resources for the future*. National Academy of Sciences, Washington, DC

Nykvist, N. 1963. Leaching and decomposition of water-soluble organic substances from different types of leaf and needle litter. *Studia Forestalia Suecica* 3: 1-31

Otsuki, A. and Wetzel, R.G. 1974. Released of dissolved organic matter by autolysis of a submersed macrophyte (*Scirpus subterminalis*). *Limnology and Oceanography* 19:842-845

Park, S. and Hyn, C.K. 2003. Nutrient leaching from leaf litter of emergent macrophyte (*Zizania latifolia*) and the effects of water temperature on the leaching process. *Korean Journal of Biological Science* 7: 289-294

Parsons, W.F.J., Taylor B.R. and Parkinson D. 1990. Decomposition of aspen (Populus tremuloides) leaf litter modified by leaching. *Canadian Journal of Forest Research* 20(7): 943-951
Prescott, C.E. 2005. Do rates of litter decomposition tell us anything we really need to know? Forest Ecology and Management 220: 66-74
Regina M., Wetington B.D. and De Vuono V.F.F. 1999. Litter and nutrient content in two Brazilian tropical Forest. *Revista brasiliense de Botânica* 22: 1999
Roder, W. and Maniphone, S. 1998. Shrubby legumes for fallow improvement in northern Laos: establishment, fallow biomass, weeds, rice yield, and soil properties. *Agroforestry Systems* 39:291–303
Roder, W. 2001. Slash-and-burn rice systems in the hills of northern Laos PDR: description, challenges, and opportunities. International Rice Research Institute, Los Banos
Roder, W., Maniphone, S. and Keoboulapha, B. 1998. Pigeon pea for fallow improvement in slash-and-burn systems in the hills of Laos. *Agroforestry Systems* 39:45–57
Saini, R.C. 1989. Mass loss and nitrogen concentration changes during the decomposition of rice residues under field conditions. *Pedobiologia* 33:229-235
Sanchez, P. 2002. Soil fertility and hunger in Africa. *Science* 295:2019-2020
Senevirante, G., Van Holm, L.H.J. and Kulasooriya, S.A. 1998. Quality of different mulch materials and their decomposition and N release under low moisture regimes. *Biologia of Fertile Soils* 26:136-140
Swift, M.J., Heal, O.W. and Anderson, J.M. 1979. *Decomposition in Terrestrial Ecosystems*. Blackwell Scientific Publications, Oxford, UK.
Taylor, B.R. and Parkinson, D. 1988. Patterns of water absorption and leaching in Pine and Aspen leaf litter. *Soil Biology and Biochemistry* 20:257-258
Timothy, R.P., Yoshiki, M. and Carol, M.L. 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, New York
Tukey, H.B.Jr. 1970. The leaching of substances from plants. *Annual Review of Plant Physiology* 21:305-321
Ukonmaanaho, L. and Starr, M. 2001. The Importance of Leaching from Litter Collected in Litterfall Traps. *Environmental Monitoring and Assessment* 66: 129-146
Villela, D.M. and Proctor J. 1999. Litterfall mass, chemistry, and nutrient retranslocation in a monodominant forest on Maraca Island, Roraima, Brazil. *Biotropica*. 31(2): 198-211
Vituosek P. and Sanfiord R. I. 1986. Nutrient cycling in moist tropical forest. *Annual Review Ecological System* 17: 1137–167
Vlek, P.L.G. 1993. Strategies for sustaining agriculture in sub-Saharan Africa: The fertilizer technology issue. pp 265–278. In: Ragland and Lal, R. (eds) *Technologies for Sustainable Agriculture in the Tropics*. Special publ. no. 56, American Society of Agronomy, WI, USA
von Carlowitz, P.G. 1991. *Multipurpose trees and shrubs –sources of seeds and innoculants*. ICRAF, Nairobi, Kenya, pp 167–168
Waring, R.H. and Schlesinger W.H. 1985. Forest ecosystems concepts and management. pp 181-210. In: *Decomposition and Forest Soil Development*. Academic Press, Inc. New York
Weatherburn, M.W. 1967. Phenol-hypochlorite reaction for determination of ammonia. *Analytic Chemistry* 39(8):971-974
Wetzel, R.G. and Manny, B.A. 1972. Decomposition of dissolved organic carbon and nitrogen compounds from leaves in an experimental hardwater stream. *Limnology and Oceanography* 17: 927-931
Wetzel, R.G. 1995. Death, detritus, and energy flow in aquatic ecosystems. *Freshwater Biology* 33:83-89