Limits to Economic Growth: Why Direct Investments Are Needed to Address Child Undernutrition in India

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation	Subramanian, S V, and Malavika A Subramanyam. 2015. “Limits to Economic Growth: Why Direct Investments Are Needed to Address Child Undernutrition in India.” J Korean Med Sci 30 (Suppl 2): S131. doi:10.3346/jkms.2015.30.s2.s131.
Published Version	doi:10.3346/jkms.2015.30.S2.S131
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:26568326
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Limits to Economic Growth: Why Direct Investments Are Needed to Address Child Undernutrition in India

S V Subramanian and Malavika A Subramanyam

1Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, and Harvard Center for Population and Development Studies, Cambridge, MA, USA; 2Social Epidemiology, Indian Institute of Technology Gandhinagar, VGEC Campus, Chandkheda, Ahmedabad, Gujarat, India

India has the dubious distinction of having the highest prevalence of underweight and ranks 7th in stunting prevalence among children below five years (1). According to the 2005-2006 National Family Health Survey (NFHS) of India (2) (no national survey has reported results since then) the prevalence of childhood stunting and underweight was 48% and 42.5%, respectively. India accounts for 38% of the global burden of stunting with more than 61 million children having abnormally low height-for-age (3).

A pertinent characteristic of the levels of child undernutrition in India has been its persistence. While prevalence of underweight among children aged 0 to 35 months decreased from 49% to 40% between 1992 and 2005, the decrease in stunting was only 7 percentage points over the same period (4). This aspect of persistence is particularly borne out when we examine Kerala (Fig. 1), a state that has received considerable appreciation for remarkable accomplishments on social and health indicators (5). While Kerala compares favorably on a number of key population health indicators (Table 1) with the member countries of the Organization for Economic Cooperation and Development (OECD) (which are approximately 11 times richer in terms of per capita gross domestic product [GDP]), it fails considerably on measures of child nutritional status, as captured through anthropometric measures (6,7). Childhood underweight and stunting are virtually absent in OECD countries, however, about a quarter of children in Kerala are either underweight or stunted. In fact, prevalence of stunting remained unchanged in Kerala between 1992 and 2005, while underweight prevalence dropped by a mere 8 percentage points over that 13-yr period.

The sluggish decline in child undernutrition in India, ironically, was accompanied by a period of bullish and sustained economic growth. India experienced growth rates greater than 7% between 1994 and 1997 and about 8% or greater rate in 2004 and 2005 (8). It is not an exaggeration to state that in countries with low levels of per capita income, such as India, increasing the rate of economic growth is often justified as a key policy instrument to improving population health and nutrition (9,10).

Although increased economic growth could play a role in reducing child undernutrition, unfortunately there is no compelling evidence to support that. On the contrary, in a recent study that comprehensively examined the role of economic growth in explaining even the small decline in child undernutrition in India, the correlation was close to zero (11). The essentially null association between increases in state economic growth and reductions in child undernutrition was, by and large, true across all socioeconomic groups (11) and particularly evident among the poorest wealth group (Fig. 2) (12).

The evidence from India that macroeconomic growth at the state level did not contribute to the (slow) reduction in child undernutrition has also been corroborated at the global level. In an analysis of 121 Demographic and Health Surveys in 36 low- and middle-income countries, the association between macroeconomic growth and reductions in childhood measures

Keywords: Child Undernutrition; Economic Growth; Growth-mediated Strategy; Support- ed Strategy; India
of anthropometric failure was zero to quantitatively very weak (13,14). This finding was found to be consistent across a wide range of statistical specifications (14).

If policies to address child undernutrition are to be based on “evidence”, it is clear that a “growth-mediated” strategy is unlikely to yield desirable results, at least in the short run. Indeed, upon reflection, it is not at all surprising that macroeconomic growth over the last couple of decades has not translated into substantial improvements in children’s nutritional status in India. For instance, it is now largely agreed that the benefits of economic growth did not “trickle down” to the poor, let alone the poor being participants of such growth (15). Interestingly, the very widespread use of the phrase “trickle down” implies that even in the best case scenario one can expect only a “trickle” and not a “flood.” Thus, even if it were the case that economic growth led to increases in incomes of individuals, and especially those of the poor (where the majority of the burden of child undernutrition exists) (4), this would still impact very few of the proximal risk factors that causally affect undernutrition, such as access to sufficient food and micronutrients. Indeed, in India, where food inflation has been rampant, there is no evidence that income improvements have vastly outstripped the food inflation, especially for the poor (16). In fact, the evidence suggests a decline in calorie consumption in India (17). Importantly, reduction in child undernutrition is dependent on other risk factors that are unlikely to automatically improve as a consequence of increases in household incomes. These include access to clean water and sanitation, as well as to treatments that reduce recurring morbidities and prevention of infection through immunization. Improvements in these conditions are influenced by robust public investments, which often depend more on the policy and political priorities than on the availability of resources. And if not evaluated rigorously these public investments can present an erroneous picture of success. For example, even though India appears to have met the Millenium Development Goal on access to water, a recent analysis found alarmingly high contamination rates of water from the “improved” water sources in India (18). In addition to these proximal risk factors, it is well known that there are social and intergenerational factors that influence child undernutrition, critical ones being paternal and maternal height (19-22).

In conclusion, before advocates of growth-mediated strategy extol the role of macroeconomic growth as a policy instrument to reducing child undernutrition it is critical to first recognize
the etiology and mechanistic connections. If economic growth is actually “pro-poor” and the increased public revenue as a consequence of such growth is invested in mitigating the proximal and distal risk factors that matter for child undernutrition, such growth can have an impact on child undernutrition. Sadly, the evidence thus far appears to be the contrary.

AUTHOR CONTRIBUTION

Study conception: Subramanian SV, Subramanyam MA. Data collection, analysis, writing: Subramanian SV, Subramanyam MA. Approval of final manuscript and submission: Subramanian SV, Subramanyam MA.

ORCID

SV Subramanian http://orcid.org/0000-0003-2365-4165
Malavika A Subramanyam http://orcid.org/0000-0002-2999-5211

REFERENCES

1. UNICEF. State of the world’s children report. Available at http://www.data.unicef.org/resources/the-state-of-the-world-s-children-report-2015-statistical-tables [accessed on 15 December 2014].
2. International Institute for Population Sciences and Macro International. National family health survey, 2005-06: India, nutrition and anemia. Mumbai, 2007 Available at http://www.rchiips.org/nfhs/NFHS-3%20Data/VOL-1/Chapter%2010%20-%20Nutrition%20and%20Anaemia.pdf [accessed on 15 December 2014].
3. UNICEF. Improving child nutrition: the achievable imperative for global progress. New York: United Nations Children’s Fund, 2013.
4. Subramanyam MA, Kawachi I, Berkman LF, Subramanian SV. Socioeconomic inequalities in childhood undernutrition in India: analyzing trends between 1992 and 2005. PLoS One 2010; 5: e11392.
5. Dreze JS. Hunger and public action. Oxford: Clarenden Press, 1989.
6. Thiruvananthapuram. State planning board government of Kerala. Available at http://planningcommission.nic.in/plans/stateplan/sdr_pdf/sdr_keralat05.pdf [accessed on 15 December 2014].
7. Organization for Economic Co-operation and Development. StatExtracts: health status. Paris, France: OECD, 2014. Available at http://stats.oecd.org/Index.aspx?DataSetCode=HEALTH_STAT [accessed on 15 December 2014].
8. Basu K, Maertens A. The pattern and causes of economic growth in India. Oxford Rev Econ Pol 2007; 23: 143-67.
9. Pritchett L, Summers LH. Wealthier is healthier. J Hum Resour 1996; 31: 841-68.
10. Smith LC, Haddad L. How potent is economic growth in reducing undernutrition? What are the pathways of impact? New cross-country evidence. Econ Devel Cult Change 2002; 51: 55-76.
11. Subramanyam MA, Kawachi I, Berkman LF, Subramanian SV. Is economic growth associated with reduction in child undernutrition in India? PLoS Med 2011; 8: e1000424.
12. Subramanian SV, Subramanyam MA. Economic growth & health of poor children in India. Indian J Med Res 2011; 133: 685-6.
13. Vollmer S, Hartgen K, Subramanyam MA, Finlay J, Klasen S, Subramanian SV. Association between economic growth and early childhood undernutrition: evidence from 121 Demographic and Health Surveys from 36 low-income and middle-income countries. Lancet Glob Health 2014; 2: e225-34.
14. Vollmer S, Hartgen K, Subramanyam MA, Finlay J, Klasen S, Subramanian SV. Association between economic growth and early childhood nutrition–authors’ reply. Lancet Glob Health 2015; 3: e81.
15. Dev SM, Ravi C. Poverty and Inequality: All-India and States, 1983-2005. Econ Polit Wkly 2007; 42: 509-21.
16. Sen A. The rich get hungrier. The New York Times 2008; 28.
17. Deaton A, Drèze J. Food and nutrition in India: facts and interpretations. Econ Polit Wkly 2009; 42-65.
18. Johni M, Chandra D, Subramanian SV, Sylvestre MP, Pahwa S. MDG 7c for safe drinking water in India: an illusive achievement. Lancet 2014; 383: 1379.
19. Subramanian SV, Ackerson LK, Davey Smith G, John NA. Association of maternal height with child mortality, anthropometric failure, and anemia in India. JAMA 2009; 301: 1691-701.
20. Ozaltin E, Subramanian SV. Why we need to rethink the strategy and time frame for achieving health-related Millennium Development Goals. Int Health 2011; 3: 246-50.
21. Ozaltin E, Hill K, Subramanian SV. Association of maternal stature with offspring mortality, underweight, and stunting in low- to middle-income countries. JAMA 2010; 303: 1507-16.
22. Subramanian SV, Ozaltin E. Progress towards Millennium Development Goal 4. Lancet 2012; 379: 1193-4.