HOW DRY IS THE BROWN DWARF DESERT?: QUANTIFYING THE RELATIVE NUMBER OF PLANETS, BROWN DWARFS AND STELLAR COMPANIONS AROUND NEARBY SUN-LIKE STARS

Daniel Grether1 & Charles H. Lineweaver1,2
1 Department of Astrophysics, School of Physics, University of New South Wales, Sydney, NSW 2052, Australia
2 Planetary Science Institute, Research School of Astronomy and Astrophysics & Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia

ABSTRACT

Sun-like stars have stellar, brown dwarf and planetary companions. To help constrain their formation and migration scenarios, we analyse the close companions (orbital period < 5 years) of nearby Sun-like stars. By using the same sample to extract the relative numbers of stellar, brown dwarf and planetary companions, we verify the existence of a very dry brown dwarf desert and describe it quantitatively. With decreasing mass, the companion mass function drops by almost two orders of magnitude from $1 M_{\odot}$ stellar companions to the brown dwarf desert and then rises by more than an order of magnitude from brown dwarfs to Jupiter-mass planets. The slopes of the planetary and stellar companion mass functions are of opposite sign and are incompatible at the 3 sigma level, thus yielding a brown dwarf desert. The minimum number of companions per unit interval in log mass (the driest part of the desert) is at $M = 31^{+15}_{-8} M_{Jup}$. Approximately 16% of Sun-like stars have close ($P < 5$ years) companions more massive than Jupiter: $11\% \pm 3\%$ are stellar, $<1\%$ are brown dwarf and $5\% \pm 2\%$ are giant planets. The steep decline in the number of companions in the brown dwarf regime, compared to the initial mass function of individual stars and free-floating brown dwarfs, suggests either a different spectrum of gravitational fragmentation in the formation environment or post-formation migratory processes disinclined to leave brown dwarfs in close orbits.

\textit{Subject headings:}

1. INTRODUCTION

The formation of a binary star via molecular cloud fragmentation and collapse, and the formation of a massive planet via accretion around a core in a protoplanetary disk both involve the production of a binary system, but are usually recognized as distinct processes (e.g. Heacox 1999; Kroupa & Bouvier 2003, see however Boss 2002). The formation of companion brown dwarfs, with masses in between the stellar and planetary mass ranges, may have elements of both or some new mechanism (Bate et al. 2002). We may be able to constrain the above models and time evolution of the disk (e.g. Armitage & Bonnell 2002). Various models have been suggested for the formation of companion stars, brown dwarfs and planets (e.g. Larson 2003, Kroupa & Bouvier 2003, Bate 2000, Matzner & Levin 2004, Boss 2002, Rice et al. 2003). All models involve gravitational collapse and a mechanism for the transfer of energy and angular momentum away from the collapsing material.

Observations of giant planets in close orbits have challenged the conventional view in which giant planets form beyond the ice zone and stay there (e.g. Udry 2003). Various types of migration have been proposed to meet this challenge. The most important factors in determining the result of the migration is the time of formation and mass of the secondary and its relation to the mass and time evolution of the disk (e.g. Armitage & Bonnell 2002). We may be able to constrain the above models by quantitative analysis of the brown dwarf desert. For example, if two distinct processes are responsible for the formation of stellar and planetary secondaries, we would expect well-defined slopes of the mass function in these...
We examine the mass, and period distributions for companion brown dwarfs and compare them with those of companion stars and planets. The work most similar to our analysis has been carried out by Heacox (1999), Zucker & Mazeh (2001b) and Mazeh et al. (2003). Heacox (1999) and Zucker & Mazeh (2001b) both combined the stellar sample of Duquennoy & Mayor (1991) along with the known substellar companions and identified different mass functions for the planetary mass regime below 10 M_{Jup} but found similar flat distributions in logarithmic mass for brown dwarf and stellar companions. Heacox (1999) found that the logarithmic mass function in the planetary regime is best fit by a power-law with a slightly negative slope whereas Zucker & Mazeh (2001b) found an approximately flat distribution. Mazeh et al. (2003) looked at a sample of main sequence stars using infrared spectroscopy and combined them with the known substellar companions and found that in log mass, the stellar companions reduce in number towards the brown dwarf mass range. They identify a flat distribution for planetary mass companions. We discuss the comparison of our results to mass ranges to meet in a sharp brown dwarf valley.

Our sample selection is illustrated in Fig. 1 and detailed in Table 1 (complete list in the electronic version only) for stars closer than 25 pc and Fig. 2 for stars closer than 50 pc. The major reason the target fraction (~61%, triangles) is lower than in the 25 pc sample (~83%) is that K stars become too faint to include in many of the high precision Doppler surveys where the apparent magnitude is limited to $V < 7.5$ (Lineweaver & Grether 2003). This plot contains 6924 Hipparcos stars, of which 2501 are target stars. The grey parallelogram contains 3296 Hipparcos stars, of which 2001 are high precision Doppler target stars (61% ~ 2001/3296). The stars below the main sequence and the stars to the right of the M dwarfs are largely due to uncertainties in the Hipparcos parallax or those in Section 3.1.

2. DEFINING A LESS BIASED SAMPLE OF COMPANIONS

2.1. Host Sample Selection Effects

High precision Doppler surveys are monitoring Sun-like stars for planetary companions and are necessarily sensitive enough to detect brown dwarfs and stellar companions within the same range of orbital period. However, to compare the relative abundances of stellar, brown dwarf and planetary companions, we cannot select our potential hosts from a non-overlapping union of the FGK spectral type target stars of the longest running, high precision Doppler surveys that are being monitored for planets (Lineweaver & Grether 2003). This is because Doppler survey target selection criteria often exclude close binaries (separation < 2") from the target lists, and are not focused on detecting stellar companions. Some stars have also been left off the target lists because of high stellar chromospheric activity (Fischer et al. 1994). These surveys are biased against finding stellar mass companions. We correct for this bias by identifying the excluded targets and then including in our sample any stellar companions from other Doppler searches found in the literature. Our sample selection is illustrated in Fig. 1 and detailed in Table 1 for stars closer than 25 pc and Fig. 2 for stars closer than 50 pc.

Most Doppler survey target stars come from the Hipparcos catalogue because host stars need to be both bright and have accurate masses for the Doppler method to be useful in determining the companion’s mass. One could imagine that the Hipparcos catalogue would be biased in favor of binarity since hosts with bright close-orbiting stellar companions would be over-represented.
Section 2.2). The fraction of stars having an apparent magnitude at the absolute magnitude dependence of the frequency. We have checked for this over-representation by looking lines for \(V < 5 \) years) Doppler binaries as a function of absolute magnitude. For those that host planets (darkest grey). Only those companions in Hipparcos stars. This fraction needs to be as large as possible to understand the effect of distance on target selection and companion detection. Although less complete, with respect to the relative number of companions of different masses, the results from the 50 pc sample are similar to the results from the 25 pc sample (Section 3).

Stars in our Sun-like region are plotted as a function of distance in Fig. 4. Each histogram bin represents an equal volume spherical shell hence a sample complete in distance would produce a flat histogram. Also shown are the target stars, which are the subset of Hipparcos stars that are being monitored for planets by one of the 8 high precision Doppler surveys. The fact that the target fraction drops with increasing distance is the major reason why the target fraction drops with increasing distance. The triangles in Fig. 4 represent this number as a fraction of Hipparcos stars.

Since nearly all of the high precision Doppler surveys have apparent magnitude limited target lists (often \(V < 7.5 \)), we investigate the effect this has on the total target fraction as a function of distance. The fraction of stars having an apparent magnitude \(V \) brighter than a given value are shown by the 5 dotted lines for \(V < 7.5 \) to \(V < 9.5 \). For a survey, magnitude limited to \(V = 7.5 \), 80% of the Sun-like Hipparcos stars will be observable between 0 pc and 25 pc. This rapidly drops to only 20% for stars between 48 and 50 pc. Thus the major reason why the target fraction drops with increasing distance is that the stars become too faint for the high precision Doppler surveys to monitor.

In Fig. 4, 80\% (464 – 384) or 17\% of Hipparcos Sun-like stellar systems are not present in any of the Doppler target lists. The triangles in Fig. 4 indicate that the
TABLE 1
SUN-LIKE 25 PC SAMPLE

Hipparcos Number	B − V	M_V	Distance (pc)	Exoplanet Target	Companion (P < 5 years)
HIP 171	0.69	5.33	12.40	Yes	Star
HIP 518	0.69	4.44	20.28	No	Star
HIP 544	0.75	5.39	13.70	Yes	Planet
HIP 1031	0.78	5.68	20.33	Yes	Planet
HIP 1292	0.75	5.36	17.62	Yes	Planet

Note. — Table 1 is published in its entirety in the electronic edition of the Astrophysical Journal. A portion is shown here for guidance regarding its form and content.

The companions in Fig. 5 all have radial velocity (Doppler) solutions. Some of the companions also have additional photometric, interferometric, astrometric or visual solutions. The exoplanet Doppler orbits are taken from the Extrasolar Planets Catalog (Schneider 2002). Only the planet orbiting the star HIP 108859 (HD 209458) has an additional photometric solution.

ones left out are spread more or less evenly in B-V space spanned by the grey parallelogram. Similarly in Fig. 2, 1295 (= 3296 − 2001) or 39% are not included in any Doppler target list, but the triangles show that more K stars compared to FG stars have not been selected, again pointing out that the lower K dwarf stellar brightness is the dominant reason for the lower target fraction, not an effect strongly biased with respect to one set of companions over another.

In the Sun-like region of Fig. 1 we use the target number (384) as the mother population for planets and brown dwarfs and the Hipparcos number (464) as the mother population for stars. To achieve the same normalizations for planetary, brown dwarf and stellar companions we assume that the fraction of these 384 targets that have exoplanet or brown dwarf companions is representative of the fraction of the 464 Hipparcos stars that have exoplanet or brown dwarf companions. Thus we renormalize the planetary and brown dwarf companions which have the target sample as their mother population to the Hipparcos sample by 464/384 = 1.21 ("renormalization"). Since close-orbiting stellar companions are anti-correlated with close-orbiting sub-stellar companions and the 384 have been selected to exclude separations of < 2", the results from the sample of 384 may be a slight over-estimate of the relative frequency of substellar companions. However, this over-estimate will be less than ∼ 11% because this is the frequency of close-orbiting stellar secondaries.

A non-overlapping sample of the 8 high precision Doppler surveys (Lineweaver & Grether 2003) is used as the exoplanet target list where the ELODIE target list was kindly provided by C. Perrier (private communication) and additional information to construct the CORALIE target list from the Hipparcos catalogue was obtained from S. Udry (private communication). The Keck and Lick target lists are those of Nidever et al. (2002), since ∼ 7% of the targets in Wright et al. (2004) have not been observed over the full 5 year baseline used in this analysis. For more details about the sample sizes, observational durations, selection criteria and sensitivities of the 8 surveys see Table 4 of Lineweaver & Grether (2003).

2.2. Companion Detection and Selection Effects

The companions to the above Sun-like sample of host stars have primarily been detected using the Doppler technique (but not exclusively high precision exoplanet Doppler surveys) with some of the stellar pairs also being detected as astrometric or visual binaries. Thus we need to consider the selection effects of the Doppler method in order to define a less-biased sample of companions (Lineweaver & Grether 2003). As a consequence of the exoplanet surveys’ limited monitoring duration we only select those companions with an orbital period P < 5 years. To reduce the selection effect due to the Doppler sensitivity we also limit our less-biased sample to companions of mass M_2 > 0.001 M_☉. In Lineweaver et al. (2003) we describe a crude method for making a completeness correction for the lower right corner of the solid rectangle falling within the “Being Detected” region. The result for the d < 25 pc sample is a one planet correction to the lowest mass bin and for the d < 50 pc sample, a six planet correction to the lowest mass bin (see Table 2 - footnote b). Fig. 6 shows a projection of Fig. 5 onto the period axis. Planets are more clumped towards higher periods than are stellar companions. The Doppler planet detection method is not biased against short period planets. The Doppler stellar companion detections are not significantly biased for shorter periods or against longer periods in our samples analysis range (period < 5 years) since Doppler instruments of much lower precision than those used to detect exoplanets are able to detect any Doppler companions of stellar mass. Thus this represents a real difference in period distributions between stellar and planetary companions.

The companions in Fig. 6 all have radial velocity (Doppler) solutions. Some of the companions also have additional photometric, interferometric, astrometric or visual solutions. The exoplanet Doppler orbits are taken from the Extrasolar Planets Catalog (Schneider 2002). Only the planet orbiting the star HIP 108859 (HD 209458) has an additional photomet-
Fig. 5.— Brown Dwarf Desert in Mass and Period. Estimated companion mass M_2 versus orbital period for the companions to Sun-like stars of our two samples: companions closer than 25 pc (large symbols) and those with hosts closer than 50 pc, excluding those closer than 25 pc (small symbols). The companions in the thick solid rectangle are defined by periods $P < 5$ years, and masses $10^{-3} < M_2 \lesssim M_2$, and form our less-biased sample of companions. The stellar (open circles), brown dwarf (grey circles) and planetary (filled circles) companions are separated by dashed lines at the hydrogen and deuterium burning onset masses of $80 M_{\text{Jup}}$ and $13 M_{\text{Jup}}$ respectively. This plot clearly shows the brown dwarf desert for the $P < 5$ year companions. Planets are more frequent at larger periods than at shorter periods (see Fig. 6). The “Detected”, “Being Detected” and “Not Detected” regions of the mass-period space show the extent to which the high precision Doppler method is currently able to find companions (Lineweaver & Grether 2003), see Appendix for discussion of M_2 mass estimates.

Fig. 6.— Projection of Fig. 5 onto the period axis for the 25 pc (dark grey) and 50 pc (light grey) samples. Planets are more clumped towards higher periods than are stellar companions. This would be a selection effect with no significance if the efficiency of finding short period stellar companions with the low precision Doppler technique used to find spectroscopic binaries, was much higher than the efficiency of finding exoplanets with high precision spectroscopy. Konacki et al. (2004) and Pont et al. (2004) conclude that the fact that the transit photometry method has found planets in sub 2.5 day periods (while the Doppler method has found none) is due to higher efficiency for small periods and many more target stars and thus that these two observations do not conflict. Thus there seems to be a real difference in the period distributions of stellar and planetary companions.

As shown in Fig. 4, the inclination distribution is approximately random for the 24 companions with a minimum mass in the stellar regime whereas it is biased towards low inclinations for the 6 companions in the brown dwarf regime. All 6 of the Doppler brown dwarf candidates with an astrometric determination of their inclination have a true mass in the stellar regime. This includes all 3 of the Doppler brown dwarf candidates that are companions to stars in our close sample ($d < 25$ pc) thus leaving an empty brown dwarf regime. Also shown in Fig. 4 is the distribution of the maximum values of $\sin(i)$ that would put the true masses of the remaining 10 Doppler brown dwarf candidates with unknown inclinations in the stellar regime. This distribution is substantially less-biased than the observed $\sin(i)$ distribution, strongly suggesting that the remaining 10 Doppler brown dwarf candidates will also have masses in the stellar regime. Thus astrometric corrections leave us with no solid candidates with masses in the brown dwarf regime from the 16 Doppler brown dwarf candidates in the far sample ($d < 50$ pc), consistent with the result obtained for the close sample.

The size of the 25 pc and 50 pc samples, the extent to which they are being targeted for planets, and the number and types of companions found along with any associated corrections are summarised in Table 4. For
the stars closer than 25 pc, 59 have companions in the less-biased region (rectangle circumscribed by thick line) of Fig. 4. Of these, 19 are exoplanets, 0 are brown dwarfs and 40 are of stellar mass. Of the stellar companions, 25 are SB1s and 15 are SB2s. For the stars closer than 50 pc, 198 have companions in the less-biased region. Of these, 54 are exoplanets, 1 is a brown dwarf and 143 are stars. Of the stellar companions, 90 are SB1s and 53 are SB2s.

We find an asymmetry in the north/south declination distribution of the Sun-like stars with companions, probably due to undetected or unpublished stellar companions in the south. The number of hosts closer than 25 pc with planetary or brown dwarf companions are symmetric in north/south declination to within one sigma Poisson error bars, but because more follow up work has been done in the north, more of the hosts with stellar companions with orbital solutions are in the northern hemisphere (30) compared with the southern (10). A comparison of our northern sample of hosts with stellar companions to the similarly selected approximately complete sample of Halbwachs et al. (2002) indicates that our 25 pc northern sample of hosts with stellar companions is also approximately complete. Under this assumption, the number of stellar companions missing from the south can be estimated by making a minimal correction up to the one sigma error level below the expected number, based on the northern follow up results. Of the 464 Sun-like stars closer than 25 pc, 211 have a southern declination (Dec < 0°) and 253 have a northern declination (Dec ≥ 0°) and thus ∼25(25/211 ≈ 30/253) stars in the south should have a stellar companion when fully corrected or 20 if we make a minimal correction. Thus we estimate that we are missing at least ~10 (= 20−10) stellar companions in the south, 7 of which have been detected by Jones et al. (2002) under the plausible assumption that the orbital periods of the companions detected by Jones et al. (2002) are less than 5 years. Although these 7 SB1 stellar companions detected by Jones et al. (2002) have as yet no published orbital solutions, we assume that the SB1 stellar companions detected by Jones et al. (2002) have P < 5 years since they have been observed as part of the high Doppler precision program at the Anglo-Australian Observatory (started in 1998) for a duration of less than 5 years before being announced. The additional estimated stellar companions are assumed to have the same mass distribution as the other stellar companions.

We can similarly correct the declination asymmetry in the sample of Sun-like stars closer than 50 pc. We find that there should be, after a minimal correction, an additional 55 stars that are stellar companion hosts in the southern hemisphere. 14 of these 55 stellar companions are assumed to have been detected by Jones et al. (2002). An asymmetry found in the planetary companion fraction in the 50 pc sample due to the much larger number of stars being monitored less intensively for exoplanets in the south (∼2% = 33/1525) compared to the north (∼4% = 21/476) results in a correction of 19 planetary companions in the south. The results given in Table 3 are done both with and without the asymmetry corrections.

Unlike the 25 pc sample for which we are confident that the small corrections made to the number of companions will result in a reliable estimate of a census, correcting the 50 pc sample for the large number of missing companions is less reliable. This is so because if it were complete, the 50 pc sample would have approximately 8 times the number of companions as the 25 pc sample, since the 50 pc sample has 8 times the volume of the 25 pc sample. However, the incomplete 50 pc sample has only ∼7 (≈ 3296/464) times the number of Hipparcos stars, ∼5 (= 2001/384) times as many exoplanet targets and ∼3 times as many companions as the 25 pc sample. Thus rather than correcting both planetary and stellar companions by large amounts we show in Section 3 that the relative number and distribution of the observed planetary and stellar companions (plus a small completeness correction for the “Being Detected” region of 6 planets and an additional 14 probable stellar companions from Jones et al. (2002) - see Table 2 remains approximately unchanged when compared to the corrected companion distribution of the 25 pc sample. Analyses both with and without a correction for the north/south asymmetry produce similar results for the brown dwarf desert (Table

Sample	Hipparcos Number	Doppler Target Number	Total	Planets	BDs	SB1	SB2		
d < 25 pc	1509	627	32%	19	22	0	40	25 (9)	15 (8)
Sun-like	464	384	83%	59 (+15)	39	9	0	17 (6)	13 (7)
Dec < 0°	211	211	100%	20 (+10)	10	0	10	8 (3)	2 (1)
Dec ≥ 0°	253	173	68%	39	9	0	30	17 (6)	13 (7)
d < 50 pc	6924	2351	34%	-	58	-	-	-	-
Sun-like	3296	2001	61%	198 (+80)	54 (+67, +192)	19	143 (+144, +411)	90 (18)	53 (12)
Dec < 0°	1647	1525	93%	72 (+74)	33 (+19)	0	39 (+144, +411)	27 (7)	12 (2)
Dec ≥ 0°	1649	476	29%	126	21	1	104	63 (11)	41 (10)

a Percentage of Hipparcos stars that are Doppler targets.
b Completeness correction in the lowest mass bin for the lower right corner of our sample in Fig. 5 lying in the “Being Detected” region (see Lineweaver, Grether & Hidas (2003)).
c Renormalization for planetary target population (384) being less than stellar companion mother population (464) (see discussion in Section 2.1).
d Correction based on the most likely scenario that the southern stellar companions from Jones et al. (2002) have periods < 5 years.
e Correction for north/south declination asymmetry in companion fraction after correcting for Jones et al. (2002) detections (see Section 2.2).
f Total of corrections b through to e.
g Result from assuming < sin(i) > = 0.785 when i is unknown (see caption of Fig. 7 and Appendix).
h Number of these spectroscopic binaries with an additional astrometric or visual solution (see Appendix).
than 1M_\odot in the largest mass bin in the companion mass distributions.

Fitting straight lines using a weighted least squares method to the 3 bins on the left-hand side (LHS) and right-hand side (RHS) of the brown dwarf region of the mass histograms (Figs. \S & \mathbf{D}), gives us gradients of -15.2 ± 5.6 (LHS) and 22.0 ± 8.8 (RHS) for the 25 pc sample and -9.1 ± 2.9 (LHS) and 24.1 ± 4.7 (RHS) for the 50 pc sample. Since the slopes have opposite signs, they form a valley which is the brown dwarf desert. The presence of a valley between the negative and positive slopes is significant at more than the 3 sigma level. The ratio of the corrected number of companions in the less-biased sample on the LHS to the RHS along with their poisson error bars is $(24 \pm 9)/(50 \pm 13) = 0.48 \pm 0.22$ with no companions in the middle 2 bins for the 25 pc sample. For the larger 50 pc sample the corrected less-biased LHS/RHS ratio is $(60 \pm 14)/(157 \pm 22) = 0.38 \pm 0.10$, with 1 brown dwarf companion in the middle 2 bins. Thus the LHS and RHS slopes agree to within about 1 sigma and so do the LHS/RHS ratios, indicating that the companion mass distribution for the larger 50 pc sample is not significantly different from the more complete 25 pc sample and that the relative fraction of planetary, brown dwarf and stellar companions is approximately the same. A comparison of the relative number of companions in each bin with its corresponding bin in Fig. \S produces a best-fit of $\chi^2 = 1.9$.

To find the driest part of the desert, we fit separate straight lines to the 3 bins on either side of the brown dwarf desert (solid lines) in Figs. \S & \mathbf{D} The deepest part of the valley where the straight lines cross beneath the abscissa is at $M = 31^{+26}_{-18}M_{\text{Jup}}$ and $M = 43^{+14}_{-22}M_{\text{Jup}}$ for the 25 and 50 pc samples respectively. These results are summarized in Table \mathbf{B}. The driest part of the desert is virtually the same for both samples even though we see a bias in the stellar binarity fraction of the 50 pc sample (Fig. \mathbf{B}). We have done the analysis with and without the minimal declination asymmetry correction. The position of the brown dwarf minimum and the slopes are robust to this correction (see Table \mathbf{B}).

The smaller 25 pc Sun-like sample contains 464 stars with 16.0% ± 5.2% of these having companions in our corrected less-biased sample. Of these ~ 16% with companions, 5.2% ± 1.9% are of planetary mass and 10.8% ± 2.9% are of stellar mass. None is of brown dwarf mass. This agrees with previous estimates of stellar binarity such as that found by Halbwachs et al. (2003) of 14% for a sample of G-dwarf companions with a slightly larger period range ($P < 10$ years). The planet fraction agrees with the fraction 4% ± 1% found in Lineweaver & Grether (2003) when most of the known exoplanets are considered. The 50 pc sample has a large incompleteness due to the lower fraction of monitored stars (Fig. \mathbf{B}) but as shown above, the relative number of companion planets, brown dwarfs and stars is approximately the same as for the 25 pc sample. The 50 pc sample has a total companion fraction of 15.6% ± 2.8%, where 4.3% ± 1.0% of the companions are of planetary mass, 0.1% ± 0.2% are of brown dwarf mass and 11.2% ± 1.6% are of stellar mass. Table \mathbf{G} summarizes these companion fractions.

Surveys of the multiplicity of nearby Sun-like stars yield the relative numbers of single, double and multiple
star systems. According to Duquennoy & Mayor (1991), 51% of star systems are single stars, 40% are double star systems, 7% are triple and 2% are quadruple or more. Of the 49% (= 40 + 7 + 2) which are stellar binaries or multiple star systems, 11% have stellar companions with periods less than 5 years and thus we can infer that the remaining 38% have stellar companions with P > 5 years. Among the 51% without stellar companions, we find that ~5% have close (P < 5 years) planetary companions with 1 < M/M_Jup < 13, while <1% have close brown dwarfs companions.

The Doppler method should preferentially find planets around lower mass stars where a greater radial velocity is induced. This is the opposite of what is observed as shown in Figs. 10 and 11 where we split the 25 and 50 pc samples respectively into companions to hosts with masses above and below 1 M⊙. We scale these smaller samples to the size of the full 25 and 50 pc samples (Figs. 8 and 9 respectively). The Doppler technique is also a function of B - V color and the level of systematic errors in the radial velocity measurements, decreasing as we move from high mass to low mass (B-V = 0.5 to B-V = 1.0) through our two samples, peaking for late K spectral type stars before increasing for the lowest mass M type stars again. Hence again finding planets around the lower mass stars (early K spectral type) in our sample should be easier.

3.1. Comparison with Other Results

Although there are some similarities, the companion mass function found by Heacox (1999), Zucker & Mazeh (2001b), Mazeh et al. (2003) is different from that shown in Figs. 8 and 9. Our approach was to normalize the companion numbers to a well-defined sub-sample of Hipparcos stars whereas these authors use two different samples of stars, one to find the planetary companion mass function and another to find the stellar companion mass function, which are then normalized to each other. The different host star properties and levels of completeness of the two samples may make this method more prone than our method, to biases in the frequencies of companions.

Both Heacox (1999) and Zucker & Mazeh (2001b) combined the companions of the stellar mass sample of Duquennoy & Mayor (1991) with the known substellar companions, but identified different mass functions for the planetary mass regime below 10 M_Jup and similar flat distributions in logarithmic mass for brown dwarf and stellar mass companions. Heacox (1999) found that the logarithmic mass function in the planetary regime is
Asymmetry

RHS slope

No

39

Figure 25

Yes

11

9

6

Yes

19

Slope Minima

44

10

No

11

5

0

45

5

31

15

−

Yes

4

9

−

No

−

Yes

−

No

[−4

20

6

11

0

20

−

Yes

0). Our work here and in Lineweaver & Grether (2003)

an approximately flat distribution (power-law with index

between 0 and -1 whereas Zucker & Mazeh (2001b) find

M companions to lower mass hosts (M1 < 1M☉). The lower mass hosts have 4.2% planetary, 0.0% brown dwarf and 11.8% stellar companions. The higher mass hosts have 6.6% planetary, 0.0% brown dwarf and 9.4% stellar companions. The Doppler method should preferentially find planets around lower mass stars where a greater radial velocity is induced. This is the opposite of what we observe. To aid comparison, both samples are scaled such that they contain the same number of companions as the corrected less-biased 25 pc sample of Fig. 8.

best fit by a power-law ($dN/dlogM \propto M^{\Gamma}$) with index Γ between 0 and -1 whereas Zucker & Mazeh (2001b) find an approximately flat distribution (power-law with index 0). Our work here and in Lineweaver & Grether (2003)

values of mass where the best-fitting lines, to the LHS and RHS, intersect. The errors given are from the range between the two intersections with the abscissa.

TABLE 3

Sample	Asymmetry Correction	Figure	LHS slope	RHS slope	Slope Minima [M_{Min}]
d < 25 pc	Yes	8	-15.2 ± 5.6	22.0 ± 8.8	31 ± 28
d < 25 pc	No		-15.2 ± 5.6	20.7 ± 8.5	30 ± 17
d < 50 pc	Yes	9	-9.4 ± 3.9	24.3 ± 4.6	44 ± 14
d < 50 pc	No		-9.1 ± 2.9	24.1 ± 4.7	43 ± 13
$d < 25 \text{ pc} \& M_1 < 1M_\odot$	Yes	10	-17.5 ± 5.4	19.4 ± 10.7	18 ± 9
$d < 50 \text{ pc} \& M_1 < 1M_\odot$	No	11	-5.9 ± 5.1	25.2 ± 11.4	39 ± 9
$d < 25 \text{ pc} \& M_1 \geq 1M_\odot$	Yes	10	-12.4 ± 9.2	20.9 ± 10.9	50 ± 25
$d < 50 \text{ pc} \& M_1 \geq 1M_\odot$	No	11	-12.2 ± 8.2	21.1 ± 10.4	45 ± 21

TABLE 4

Sample	Asymmetry Correction	Figure	Total %	Planetary %	Brown Dwarf %	Stellar %
d < 25 pc	Yes	8	16.0 ± 5.2	5.2 ± 1.9	0.0 ± 0.0	10.8 ± 2.9
d < 25 pc	No		15.3 ± 5.0	5.2 ± 1.9	0.0 ± 0.0	10.1 ± 2.7
d < 50 pc	Yes	9	15.6 ± 2.8	4.4 ± 1.0	0.1 ± 0.1	11.1 ± 1.6
d < 50 pc	No		15.6 ± 2.8	4.3 ± 1.0	0.1 ± 0.2	11.2 ± 1.6
$d < 25 \text{ pc} \& M_1 < 1M_\odot$	Yes	10	16.0 ± 5.8	4.2 ± 1.9	0.0 ± 0.0	11.8 ± 1.5
$d < 50 \text{ pc} \& M_1 < 1M_\odot$	No	11	15.6 ± 6.0	2.6 ± 1.7	0.2 ± 0.4	12.8 ± 3.9
$d < 25 \text{ pc} \& M_1 \geq 1M_\odot$	Yes	10	16.0 ± 7.0	6.6 ± 3.1	0.0 ± 0.0	9.4 ± 3.5
$d < 50 \text{ pc} \& M_1 \geq 1M_\odot$	No	11	15.6 ± 6.7	6.2 ± 2.9	0.0 ± 0.0	9.4 ± 3.4

Fig. 10.— Same as Fig. 8 but for the 25 pc sample split into companions to lower mass hosts (M1 < 1M☉) and companions to higher mass hosts (M1 ≥ 1M☉). The lower mass hosts have 4.2% planetary, 0.0% brown dwarf and 11.8% stellar companions. The higher mass hosts have 6.6% planetary, 0.0% brown dwarf and 9.4% stellar companions. The Doppler method should preferentially find planets around lower mass stars where a greater radial velocity is induced. This is the opposite of what we observe. To aid comparison, both samples are scaled such that they contain the same number of companions as the corrected less-biased 25 pc sample of Fig. 8.

best fit by a power-law ($dN/dlogM \propto M^{\Gamma}$) with index Γ between 0 and -1 whereas Zucker & Mazeh (2001b) find an approximately flat distribution (power-law with index 0). Our work here and in Lineweaver & Grether (2003)

suggested that neither the stellar nor the planetary companion distributions are flat (Γ = -0.7). Rather, they both slope down towards the brown dwarf desert, more in agreement with the results of Heacox (1999).

The work most similar to ours is probably Mazeh et al. (2003) who looked at a sample of main sequence stars with primaries in the range 0.6 – 0.85 M☉ and P < 3000 days using infrared spectroscopy and
combined them with the known substellar companions of these main sequence stars and found that in logarithmic mass the stellar companions reduce in number towards the brown dwarf mass range. This agrees with our results for the shape of the stellar companion function. However, they identify a flat distribution for the planetary mass companions in contrast to our non-zero slope (see Table 3). Mazeh et al. (2003) found the frequency of stellar and planetary companions ($M_p > 1 M_{\text{Jup}}$) to be 15% (for stars below $0.7 M_\odot$) and 3% respectively. This compares with our estimates of 8% (for stars below $0.7 M_\odot$) and 5%. The larger period range used by Mazeh et al. (2003) can account for the difference in stellar companion fractions.

4. COMPARISON WITH THE INITIAL MASS FUNCTION

Brown dwarfs found as free-floating objects in the solar neighbourhood and as members of young star clusters have been used to extend the initial mass function (IMF) well into the brown dwarf regime. Comparing the mass function of our sample of close-orbiting companions of Sun-like stars to the IMF of single stars indicates how the environment of a host affects stellar and brown dwarf formation and/or migration. Here we quantify how different the companion mass function is from the IMF (Habwachs et al. 2000).

The galactic IMF appears to be remarkably universal and independent of environment and metallicity with the possible exception of the substellar mass regime. A weak empirical trend with metallicity is suggested for very low mass stars and brown dwarfs where more metal rich environments may be producing relatively more low mass objects (Kroupa 2002). This is consistent with an extrapolation up in mass from the trend found in exoplanet hosts. The IMF is often represented as a power-law, although this only appears to be accurate for stars with masses above $\sim 1 M_\odot$ (Hillenbrand 2003). The stellar IMF slope gets flatter towards lower masses and extends smoothly and continuously into the substellar mass regime where it appears to turn over.

Free floating brown dwarfs may be formed either as ejected stellar embryos or from low mass protostellar cores that have lost their accretion envelopes due to photo-evaporation from the chance proximity of a nearby massive star (Kroupa & Bouvier 2003). This hypothesis may explain their occurrence in relatively rich star clusters such as the Orion Nebula cluster and their virtual absence in pre-main sequence stellar groups such as.
In Figs. 12 & 13 we compare the mass function of companions to Sun-like stars with the IMF of cluster stars. The mass function for companions to Sun-like stars is shown by the green dots from Figs. 8 and 11 (bigger dots are the \(d < 25 \) pc sample and smaller dots are the \(d < 50 \) pc sample). The linear slopes from Fig. 8 and their one sigma confidence region are also shown. Between \(\log(M/M_\odot) \approx -1.0 \) and \(-0.5 (0.1M_\odot < M < 0.3M_\odot) \) the slopes are similar. However, above 0.3\(M_\odot \) and below 0.1\(M_\odot \) the slopes become inconsistent. Above 0.3\(M_\odot \) the slopes, while of similar magnitude are of opposite sign and below 0.1\(M_\odot \) the companion slope is much steeper than the IMF slope. The IMF for young clusters (yellow dots) is statistically indistinguishable from that of older stars (blue dots) and follows the average IMF.

5. SUMMARY AND DISCUSSION

We analyse the close-orbiting (\(P < 5 \) years) planetary, brown dwarf and stellar companions to Sun-like stars to help constrain their formation and migration scenarios. We use the same sample to extract the relative numbers of planetary, brown dwarf and stellar companions and verify the existence of a brown dwarf desert. Both planetary and stellar companions reduce in number towards the brown dwarf mass range. We fit the companion mass function over the range that we analyse (0.001 < \(M/M_\odot \) < 1.0) by two separate straight lines fit separately to the planetary and stellar data points. The straight lines intersect in the brown dwarf regime, at \(M = 31^{+25}_{-18} M_{Jup} \). This result is robust to the declination asymmetry correction (Table 3).

The period distribution of close-orbiting (\(P < 5 \) years) companion stars is different from that of the planetary companions. The close-in stellar companions are fairly evenly distributed over \(\log P \) with planets tending to be clumped towards higher periods. We compare the companion mass function to the IMF for bodies in the brown dwarf and stellar regime. We find that starting at \(1M_\odot \) and decreasing in mass, stellar companions continue to reduce in number into the brown dwarf regime, while cluster stars increase in number before reaching a maximum just before the brown dwarf regime (Fig. 13). This leads to a difference of at least 1.5 orders of magnitude between the much larger number of brown dwarfs found in clusters to those found as close-orbiting companions to Sun-like stars.

The period distribution of close-orbiting companions may be more a result of post-formation migration and gravitational jostling than representative of the relative number of companions that are formed at a specific distance from their hosts. The companion mass distribution is more fundamental than the period distribution and should provide better constraints on formation models, but our ability to sample the mass distribution is only for \(P < 5 \) years.

We show in Figs. 10 and 11 that lower mass hosts have more stellar companions and fewer giant planet companions while higher mass hosts have fewer stellar companions but more giant planet companions. The brown dwarf desert is generally thought to exist at close separations \(\leq 3 \) AU (or equivalently \(P \leq 5 \) years) but may disappear at wider separations. Gizis et al. (2001) suggests that at very large separations (>1000 AU) brown dwarf companions may be more common. However, McCarthy & Zucker (2004) in their observation of 280 GKM stars find only 1 brown dwarf between 75 and 1200 AU. Gizis et al. (2003) reports that 15% ± 5% of M/L dwarfs are brown dwarf binaries with separations in the range 1.6 – 16 AU. This falls to 5% ± 3% of M/L dwarfs with separations less than 1.6 AU and none with separations greater than 16 AU. This differs greatly from the brown dwarfs orbiting Sun-like stars but is consistent with our host/minimum-companion-mass relationship, i.e., we expect no short period brown dwarf desert around M or L type stars.

Three systems containing both a companion with a minimum mass in the planetary regime and a companion with a minimum mass in the brown dwarf regime are known - HD 168443 (Marcy et al. 2001), HD 202206 (Udry et al. 2002, Correia et al. 2004) and GJ 86 (Queloz et al. 2000, Els et al. 2001). Our analysis suggests that both the \(M_{sin}(i) \)-brown dwarfs orbiting HD 168443 and HD 202206 are probably stars (see Section 2.2 for our false positive brown dwarf correction). If the \(M_{sin}(i) \)-planetary companions in these 2 systems are coplanar with the larger companions then these “planets” may be brown dwarfs or even stars. GJ 86 contains a possible brown dwarf detected orbiting at \(~ 20\) AU (\(P > 5 \) years) and so was not part of our analysis. However this does suggest that systems containing stars, brown dwarfs and planets may be possible.

We find that approximately 16% of Sun-like stars have a close companion more massive than Jupiter. Of these 16%, 11% ± 3% are stellar, <1% are brown dwarf and 5% ± 2% are planetary companions. We found that the ratio of \(M_{sin}(i) \)-brown dwarfs orbiting HD 168443 and HD 202206 is probably stars (see Section 2.2 for our false positive brown dwarf correction). If the \(M_{sin}(i) \)-planetary companions in these 2 systems are coplanar with the larger companions then these “planets” may be brown dwarfs or even stars. Of these 2 systems, 168443 and HD 202206 are probably stars (see Section 2.2 for our false positive brown dwarf correction). If the \(M_{sin}(i) \)-planetary companions in these 2 systems are coplanar with the larger companions then these “planets” may be brown dwarfs or even stars. GJ 86 contains a possible brown dwarf detected orbiting at \(~ 20\) AU (\(P > 5 \) years) and so was not part of our analysis. However this does suggest that systems containing stars, brown dwarfs and planets may be possible.

We find that approximately 16% of Sun-like stars have a close companion more massive than Jupiter. Of these 16%, 11% ± 3% are stellar, <1% are brown dwarf and 5% ± 2% are planetary companions. However, McCarthy & Zucker (2004) in their observation of 280 GKM stars find only 1 brown dwarf between 75 and 1200 AU. Gizis et al. (2001) reports that 15% ± 5% of M/L dwarfs are brown dwarf binaries with separations in the range 1.6 – 16 AU. This falls to 5% ± 3% of M/L dwarfs with separations less than 1.6 AU and none with separations greater than 16 AU. This differs greatly from the brown dwarfs orbiting Sun-like stars but is consistent with our host/minimum-companion-mass relationship, i.e., we expect no short period brown dwarf desert around M or L type stars.
migratory mechanism may be correlated to host mass, as proposed by Armitage & Bonnell (2002).

6. ACKNOWLEDGEMENTS

We would like to thank Christian Perrier for providing us with the Elodie exoplanet target list, Stephane Udry for additional information on the construction of the Coralie exoplanet target list and Lynne Hillenbrand for sharing her data collected from the literature on the power-law IMF fits to various stellar clusters. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. This research has made use of the Washington Double Star Catalog maintained at the U.S. Naval Observatory.

7. APPENDIX: COMPANION MASS ESTIMATES

The Doppler method for companion detection cannot give us the mass of a companion without some additional astrometric or visual solution for the system or by making certain assumptions about the unknown inclination except in the case where a host star and its stellar companion have approximately equal masses and a double-lined solution is available. Thus to find the companion mass M_2 that induces a radial velocity K_1 in a host star of mass M_1 we use (see Heacox 1999)

$$K_1 = \left(\frac{2\pi G}{P} \right)^{1/3} \frac{M_2 \sin(i)}{(M_1 + M_2)^{2/3}} \frac{1}{(1 - e^2)^{1/2}}$$

This equation can be expressed in terms of the mass function $f(m)$

$$f(m) = \frac{M_2^3 \sin^3(i)}{(M_1 + M_2)^2} = \frac{PK_1^3(1 - e^2)^{3/2}}{2\pi G}$$

Eq. 3 can then be expressed in terms of a cubic equation in the mass ratio $q = M_2/M_1$, where $Y = f(m)/M_1$.

$$q^3 \sin^3(i) - Yq^2 - 2Yq - Y = 0$$

For planets ($M_1 >> M_2$) we can simplify Eq. 2 and directly solve for $M \sin(i)$ but this is not true for larger mass companions such as brown dwarfs and stars. We use Cox (2000) to relate host mass to spectral type. When a double-lined solution is available, the companion mass can be found from $q = M_2/M_1 = K_1/K_2$.

For all single-lined Doppler solutions, where the inclination i of a companion’s orbit is unknown (no astrometric or visual solution), we assume a random distribution $P(i)$ for the orientation of the inclination with respect to our line of sight,

$$P(i)di = \sin(i)di$$

From this we can find probability distributions for $\sin(i)$ and $\sin^3(i)$. Heacox (1995) and others suggest using either the Richardson-Lucy or Mazeh-Goldberg algorithms to approximate the inclination distribution. However, Hogeveen (1991) and Trimble (1994) argue that for low number statistics, the simple mean method produces similar results to the more complicated methods. We have large bin sizes and small number statistics, hence we use this method. The average values of the $\sin(i)$ and $\sin^3(i)$ distributions assuming a random inclination are $<\sin(i)> = 0.785$ and $<\sin^3(i)> = 0.589$, which are used to estimate the mass for planets and other larger single-lined spectroscopic binaries respectively. For example, in Fig. 5 of the 198 mass estimates in the 50 pc sample, 53 (27%) come from visual double-lined Doppler solutions, 6 (3%) come from infrared double-lined Doppler solutions, 10 (5%) come from knowing the inclination (astrometric or visual solution also available for system), 10 (5%) come from assuming that Doppler brown dwarf candidates have low inclinations, 55 (28%) come from assuming $<\sin(i)> = 0.785$ and 56 (28%) from assuming $<\sin^3(i)> = 0.589$.

REFERENCES

Armitage, P.J. & Bonnell, I.A., 2002, ‘The Brown Dwarf Desert as a Consequence of Orbital Migration’, MNRAS, 330:L11
Barrado y Navascues, D., Stauffer, J.R., Bouvier, J. & Martin, E.L., 2001, ‘From the Top to the Bottom of the Main Sequence: A Complete Mass Function of the Young Open Cluster M45’, ApJl, 546:1006-1018
Bate, M.R., 2000, ‘Predicting the Properties of Binary Stellar Systems: The Evolution of Accreting Protobinary Systems’, MNRAS, 314:333-33
Boss, A.P., 2002, ‘Evolution of the Solar Nebula V: Disk Instabilities with Varied Thermodynamics’, ApJ, 576:462-472
Burrows, A., Marley, M., Hubbard, W.B., Lumin, J.I., Guillot, T., Saumon, D., Freedman, R., Sudarsky, D., & Sharp, C., 1997, ‘A Nongray Theory of Extrasolar Giant Planets and Brown Dwarfs’, ApJ, 491:856
Correia, A.C.M., Udry, S., Mayor, M., Laskar, J., Naef, D., Pepe, F., Queloz, D. & Santos, N.C., 2004, ‘The CORALIE survey for southern extra-solar planets XIII. A pair of planets around HD 202206 or a circumbinary planet?’, A&A, 404, 751-758
Cox, A.N., 2000, ‘Allen’s Astrophysical Quantities’, AIP Press, 4th Edition
Ducquennoy, A. & Mayor, M., 1991, ‘Multiplicity among Solar-type Stars in the Solar Neighbourhood II’, A&A, 248:485-524
Els, S.G., Sterzik, M.F., Marchis, F., Pantin, E., Endl, M. & Krster, M., 2001, ‘A Second Substellar Companion in the Gliese 86 System. A Brown Dwarf in an Extrasolar Planetary System’, A&A, 370:L1-L4
Endl, M., Hatzes, A.P., Cochran, W.D., McArthur, B., Allende Prieto, C., Paulson, D.B., Guenther, E. & Bedalov, A., 2004, ‘HD 137510: An Oasis in the Brown Dwarf Desert’, ApJ, 611:1211-1124
ESA, The Hipparcos and Tycho Catalogues, 1997, ESA SP-1200 [http://astro.estec.esa.nl/hipparcos/]
Fischer, D.A., Marcy, G.W., Butler, P.R., Vogt, S.S. & Apps, K., 1999, ‘Planetary Companions around Two Solar-Type Stars: HD 190501 and HD 217107’, PASP, 111:50-56
Gizis, J.E., Kirkpatrick, J.D., Burgasser, A., Reid, I.N., Monet, D.G., Liebert, J. & Wilson, J.C., 2001, ‘Substellar Companions to Main-Sequence Stars: No Brown Dwarf Desert at Wide Separations’, ApJ, 551:L163-L166
Gizis, J.E., Reid, I.N., Knapp, G.R., Liebert, J., Kirkpatrick, J.D., Koerner, D.W. & Burgasser, A.J., 2003, ‘Hubble Space Telescope Observations of Very Low Mass Stars and Brown Dwarfs’, AJ, 125:3302-3310
Hartkopf, W.I. & Mason, B.D., 2004, ‘Sixth Catalog of Orbits of Visual Binary Stars’, [http://ad.usno.navy.mil/ods/orb6.html]
Halbwachs, J.L., Arenou, F., Mayor, M., Udry, & Queloz, D., 2000, ‘Exploring the Brown Dwarf Desert with Hipparcos’, A&A, 355:581-594
Halbwachs, J.L., Mayor, M., Udry, S. & Arenou, F., 2003, ‘Multiplicity among Solar-type Stars III’, A&A, 397:159-175
Heacox, W.D., 1995, ‘On the Mass Ratio Distribution of Single-Lined Spectroscopic Binaries’, AJ, 109: 2670-2679
Heacox, W.D., 1999, ‘On the Nature of Low-Mass Companions to Solar-like Stars’, ApJ, 526:928-936
