Z$_3$-graded differential geometry of quantum plane

Salih Celik

Yildiz Technical University, Department of Mathematics,
34210 DAVUTPASA-Esenler, Istanbul, TURKEY.

Abstract

In this work, the Z$_3$-graded differential geometry of the quantum plane is constructed. The corresponding quantum Lie algebra and its Hopf algebra structure are obtained. The dual algebra, i.e. universal enveloping algebra of the quantum plane is explicitly constructed and an isomorphism between the quantum Lie algebra and the dual algebra is given.
1. Introduction

After the discovery of the quantum plane by Manin [1], Wess and Zumino [2] developed a differential calculus on the quantum (hyper)plane covariant with respect to the action of the quantum group. In their method, the R-matrix is obtained using the consistency conditions. This leads to a consistent exterior derivative. The purely algebraic properties of these recently discovered spaces have been deeply discussed. The \(q \)-differential algebras have become the object of excellent works [3,4].

The \(Z_3 \)-graded algebraic structures have been introduced and studied [5]. The de Rham complex with differential operator \(d \) satisfying the \(Q \)-Leibniz rule and the condition \(d^3 = 0 \) on an associative unital algebra has been constructed by Bazunova et al [6] using the methods of Ref. 2. This paper consider an alternative approach where, instead of adopting an R-matrix, consistency conditions on natural commutation relations are used.

The cyclic group \(Z_3 \) can be represented in the complex plane by means of the cubic roots of 1: let \(j = e^{\frac{2\pi i}{3}} \) \((i^2 = -1)\). Then one has

\[
 j^3 = 1 \quad \text{and} \quad j^2 + j + 1 = 0 \quad \text{or} \quad (j + 1)^2 = j. \tag{1}
\]

One can define the \(Z_3 \)-graded commutator \([A, B]_3\) as [3]

\[
 [A, B]_{Z_3} = AB - j^{\text{deg}(A)\text{deg}(B)} BA \tag{2}
\]

where \(\text{deg}(X) \) denotes the grade of \(X \). If \(A \) and \(B \) are \(j \)-commutative, then we have

\[
 AB = j^{\text{deg}(A)\text{deg}(B)} BA. \tag{3}
\]

2. Review of Hopf algebra \(\mathcal{A} \)

Elementary properties of the extended quantum plane are described in Ref. 7. We state briefly the properties we are going to need in this work.

2.1 The algebra of polynomials on the \(q \)-plane

The quantum plane [1] is defined as an associative algebra generated by two noncommuting coordinates \(x \) and \(y \) with the relation

\[
 xy - qyx = 0 \quad q \in \mathbb{C} - \{0\}. \tag{4}
\]

This associative algebra over the complex numbers \(\mathbb{C} \), is known as the algebra of polynomials over the quantum plane and is often denoted by \(\mathbb{C}_q[x, y] \). In the
limit $q \to 1$, this algebra is commutative and can be considered as the algebra of polynomials $C[x, y]$ over the usual plane, where x and y are the two coordinate functions. In below, we show that there cannot exits a \mathbb{Z}_3-graded *commutative* differential calculus as in the \mathbb{Z}_2-grade case. We denote the unital extension of C_q by \mathcal{A}.

2.2 Hopf algebra structure on \mathcal{A}

The definitions of a coproduct, a counit and a coinverse on the algebra \mathcal{A} are as follows [7,8]:

1. The coproduct $\Delta_\mathcal{A} : \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ is defined by

 $\Delta_\mathcal{A}(x) = x \otimes x \quad \Delta_\mathcal{A}(y) = y \otimes 1 + x \otimes y$ \hspace{1cm} (5)

 is coassociative:

 \[(\Delta_\mathcal{A} \otimes \text{id}) \circ \Delta_\mathcal{A} = (\text{id} \otimes \Delta_\mathcal{A}) \circ \Delta_\mathcal{A} \] \hspace{1cm} (6)

 where id denotes the identity map on \mathcal{A}.

2. The counit $\epsilon_\mathcal{A} : \mathcal{A} \to \mathbb{C}$ is given by

 $\epsilon_\mathcal{A}(x) = 1 \quad \epsilon_\mathcal{A}(y) = 0$. \hspace{1cm} (7)

 The counit $\epsilon_\mathcal{A}$ has the property

 \[m_\mathcal{A} \circ (\epsilon_\mathcal{A} \otimes \text{id}) \circ \Delta_\mathcal{A} = m_\mathcal{A} \circ (\text{id} \otimes \epsilon_\mathcal{A}) \circ \Delta_\mathcal{A} \] \hspace{1cm} (8)

 where $m_\mathcal{A}$ stands for the algebra product $\mathcal{A} \otimes \mathcal{A} \to \mathcal{A}$.

3. If we extend the algebra \mathcal{A} by adding the inverse of x then the algebra \mathcal{A} admits a \mathbb{C}-algebra antihomomorphism (coinverse) $\kappa_\mathcal{A} : \mathcal{A} \to \mathcal{A}$ defined by

 $\kappa_\mathcal{A}(x) = x^{-1} \quad \kappa_\mathcal{A}(y) = -x^{-1}y$. \hspace{1cm} (9)

 The coinverse $\kappa_\mathcal{A}$ satisfies

 \[m_\mathcal{A} \circ (\kappa_\mathcal{A} \otimes \text{id}) \circ \Delta_\mathcal{A} = \epsilon_\mathcal{A} = m_\mathcal{A} \circ (\text{id} \otimes \kappa_\mathcal{A}) \circ \Delta_\mathcal{A}. \] \hspace{1cm} (10)

3. Construction of bicovariant \mathbb{Z}_3-graded differential calculus on \mathcal{A}

The Woronowicz theory [9] is based on the idea that the differential and algebraic structures of \mathcal{A} can coact covariantly on the algebra of its differential calculus over \mathcal{A}. We first recall some basic notions about differential calculus on the extended q-plane.
3.1 Differential algebra

To begin with, we note the properties of the exterior differential d. The exterior differential d is an operator which gives the mapping from the generators of A to the differentials:

$$d : a \rightarrow da \quad a \in \{x, y\}.$$

We demand that the exterior differential d has to satisfy two properties:

$$d^3 = 0$$ \hfill (11)

and the Z_3-graded Leibniz rule

$$d(fg) = (df)g + j^{deg(f)}(dg).$$ \hfill (12)

In order to establish a noncommutative differential calculus including second order differentials of the generators of A on the q-plane, we assume that the commutation relations between the coordinates and their first order differentials are of the following form:

$$x \, dx = A \, dx \, x$$

$$x \, dy = C_{11} \, dy \, x + C_{12} \, dx \, y$$

$$y \, dx = C_{21} \, dx \, y + C_{22} \, dy \, x$$

$$y \, dy = B \, dy \, y.$$ \hfill (13)

The coefficients A, B and C_{ik} will be determined in terms of the complex deformation parameter q and j. To find them we shall use the covariance of the noncommutative differential calculus.

Since we assume that $d^3 = 0$ and $d^2 \neq 0$, in order to construct a self-consistent theory of differential forms it is necessary to add to the first order differentials of coordinates dx, dy a set of second order differentials d^2x, d^2y. Let us begin by assuming that

$$dx \, dy = F \, dy \, dx \quad (dx)^3 = 0 = (dy)^3$$ \hfill (14)

where F is a parameter that shall described later.

The first differentiation of (13) gives rise to the relations between the generators x, y and second order differentials d^2x, d^2y including first order differentials:

$$x \, d^2x = A \, d^2x \, x + (Aj - 1)(dx)^2$$
\[\begin{align*}
 x \, d^2y &= C_{11} d^2y \, x + C_{12} d^2x \, y + K_1 d\! y \, dx \\
 y \, d^2x &= C_{21} d^2x \, y + C_{22} d^2y \, x + K_2 dx \\
 y \, d^2y &= B d^2y \, y + (Bj - 1)(dy)^2.
\end{align*} \] \tag{15}

where
\[K_1 = jC_{11} + jC_{12} F - F \quad K_2 = jC_{21} F + jC_{22} - 1. \] \tag{16}

The relations (15) are not homogeneous in the sense that the commutation relations between the generators and second order differentials include first order differentials as well. In the following subsection, we shall see that the commutation relations between the coordinates and their second order differentials can be made homogeneous. They will not include first order differentials by removing them using the covariance of the noncommutative differential calculus.

Applying the exterior differential \(d \) to the relations (15), we get
\[\begin{align*}
 dx \, d^2x &= j^{-2} d^2x \, dx \\
 dx \, d^2y &= j^2 C_{11} Q^{-1}_1 d^2y \, dx + (j^2 C_{12} + F^{-1} K_1) Q^{-1}_1 d^2x \, dy \\
 dy \, d^2x &= j^2 C_{21} Q^{-1}_2 d^2x \, dy + (j^2 C_{22} + K_2) Q^{-1}_2 d^2y \, dx \\
 dy \, d^2y &= j^{-2} d^2y \, dy
\end{align*} \] \tag{17}

where
\[Q_1 = -j^2(C_{12} + C_{11} F^{-1} + 1) \quad Q_2 = -j^2(C_{22} + C_{21} F + 1). \] \tag{18}

The differentiation of second or third relations of (17) gives rise to the relations between the second order differentials:
\[d^2x \, d^2y = F d^2y d^2x. \] \tag{19}

3.2 Covariance

In order to homogenize the relations (15), we shall consider the covariance of the noncommutative differential calculus. Let \(\Gamma \) be a bimodule over the algebra \(\mathcal{A} \) generated by the elements of the set \(\{x, y, dx, dy, d^2x, d^2y\} \). One says that \((\Gamma, d) \) is a first-order differential calculus over the Hopf algebra \((\mathcal{A}, \Delta_{\mathcal{A}}, \epsilon_{\mathcal{A}}, \kappa_{\mathcal{A}}) \). We begin with the definitions of a left- and right-covariant bimodule.
(1) Let Γ be a bimodule over \mathcal{A} and $\Delta^R : \Gamma \rightarrow \Gamma \otimes \mathcal{A}$ be a linear homomorphism. We say that (Γ, Δ^R) is a right-covariant bimodule if
\[\Delta^R(a\rho + \rho' a') = \Delta^R_a(a)\Delta^R(\rho) + \Delta^R(\rho')\Delta^R_a(a')\] (20)
for all $a, a' \in \mathcal{A}$ and $\rho, \rho' \in \Gamma$, and
\[(\Delta^R \otimes \text{id}) \circ \Delta^R = (\text{id} \otimes \Delta^A) \circ \Delta^R \quad \text{(id} \otimes \epsilon) \circ \Delta^R = \text{id}.\] (21)
The action of Δ^R on the first order differentials is
\[\Delta^R(dx) = dx \otimes x \quad \Delta^R(dy) = dy \otimes 1 + dx \otimes y\] (22)
since
\[\Delta^R(da) = (d \otimes \text{id})\Delta^A_a(a) \quad \forall a \in \mathcal{A}.\] (23)
We now apply the linear map Δ^R to relations (13):
\[\Delta^R(x \ dx) = \Delta^A_a(x)\Delta^R(dx) = A\Delta^R(dx \ x),\]
\[\Delta^R(x \ dy) = C_{11}\Delta^R(dy \ x) + C_{12}\Delta^R(dx \ y) + (qA - C_{11} - qC_{12})dx \ x \otimes xy,\]
\[\Delta^R(y \ dx) = C_{21}\Delta^R(dx \ y) + C_{22}\Delta^R(dy \ x) + (A - qC_{21} - C_{22})dx \ x \otimes yy,\]
\[\Delta^R(y \ dy) = B\Delta^R(dy \ y) + (C_{12} + C_{21} - B)dx \ y \otimes y + (A - B)dx \ x \otimes y^2\]
\[+ (C_{11} + C_{22} - B)dy \ x \otimes y,\]
and to relations (14)
\[\Delta^R(dx \ dy) = F\Delta^R(dy \ dx) + (q - F)(dx)^2 \otimes yx.\]
So we must have
\[C_{11} + qC_{12} = qA \quad C_{11} + C_{22} = B \quad A = B\]
\[qC_{21} + C_{22} = A \quad C_{12} + C_{21} = B \quad F = q.\] (24)

(2) Let Γ be a bimodule over \mathcal{A} and $\Delta^L : \Gamma \rightarrow \mathcal{A} \otimes \Gamma$ be a linear homomorphism. We say that (Γ, Δ^L) is a left-covariant bimodule if
\[\Delta^L(a\rho + \rho' a') = \Delta^L_a(a)\Delta^L(\rho) + \Delta^L(\rho')\Delta^L_a(a')\] (25)
for all \(a, a' \in A \) and \(\rho, \rho' \in \Gamma \), and
\[
(\Delta_A \otimes \text{id}) \circ \Delta^L = (\text{id} \otimes \Delta^L) \circ \Delta^L \quad (\epsilon \otimes \text{id}) \circ \Delta^L = \text{id}.
\] (26)

Since
\[
\Delta^L(da) = (\text{id} \otimes d)\Delta_A(a) \quad \forall a \in A
\] (27)
the action of \(\Delta^L \) on the first order differentials gives rise to the relations
\[
\Delta^L(dx) = x \otimes dx \quad \Delta^L(dy) = x \otimes dy.
\] (28)

Applying \(\Delta^L \) to relations (13), we get
\[
C_{12} = 0 \quad C_{21} = q^{-1} \quad B = q^{-1}.
\] (29)

With the relations (24), we then obtain
\[
A = q^{-1} \quad C_{11} = 1 \quad C_{21} = q^{-1}
\]
\[
B = q^{-1} \quad C_{12} = 0 \quad C_{22} = q^{-1} - 1.
\] (30)

So
\[
K_1 = j - q \quad K_2 = q^{-1}(j - q) \quad Q_1 = -j^2(q^{-1} + 1) = Q_2.
\]

On the other hand, since the differential of a function \(f \) of the coordinates \(x \) and \(y \) is of the form
\[
df = (dx\partial_x + dy\partial_y)f
\] (31)
and
\[
d^2f = \left(d^2x\partial_x + d^2y\partial_y + j(dx)^2\partial_x^2 + j(dy)^2\partial_y^2 + dx\partial_x(dy\partial_y + q\partial_y\partial_x)\right)f,
\]
\[
d^3f = \left(d^2x\partial_x(dy\partial_y - \partial_y\partial_x) + \frac{1}{q+1}\partial_x\partial_y + \frac{1}{q+1}\partial_y\partial_x\right)f + \cdots
\]
\[
= \frac{j^2}{q+1}d^2x\partial_x(dy\partial_y) + \frac{1}{q+1}d^2ydx(qj^2\partial_x\partial_y - \partial_y\partial_x) + \cdots
\]
\[
\equiv 0
\]
we have
\[
\partial_x\partial_y = \partial_y\partial_x
\] (32)
if \(q \) satisfies the identities

\[
qj^2 = 1 \quad q^2 + q + 1 = 0.
\]
(33)

One can then chose

\[
q = j^{-2} = j.
\]
(34)

Consequently, the relations (13)-(15), (17) and (19) are explicitly as follows: the commutation relations of the coordinates and their first order differentials are [10]

\[
x \, dx = q^{-1} dx \quad x \, dy = dy
x \, dy = q^{-1} dy \quad y \, dx = q^{-1} dx \quad y \, dy = q^{-1} dy
\]
\[
(35)
\]

and among those first order differentials are

\[
dx \, dy = q \, dy \, dx \quad (dx)^3 = 0 = (dy)^3.
\]
(36)

The commutation relations between variables and second order differentials are

\[
x \, d^2x = q^{-1} d^2x \quad x \, d^2y = d^2y
y \, d^2y = q^{-1} d^2y \quad y \, d^2x = q^{-1} d^2x \, y + (q^{-1} - 1) d^2y \, x.
\]
(37)

The commutation relations between first order and second order differentials are

\[
dx \, d^2x = q^{-2} d^2x \, dx \quad dx \, d^2y = q^2 d^2y \, dx
\]
\[
dy \, d^2y = q^{-2} d^2y \, dy \quad dy \, d^2x = q^{-2} d^2x \, dy + (q - q^{-1}) d^2y \, dx
\]
(38)

and those among the second order differentials are

\[
d^2x \, d^2y = q \, d^2y \, d^2x.
\]
(39)

Now, it can be checked that the linear maps \(\Delta^R \) and \(\Delta^L \) leave invariant the relations (35)-(39). One can also check that the identities (21), (26) and also the following identities are satisfied:

\[
(id \otimes d)\Delta_A(a) = \Delta^L(da) \quad (d \otimes id)\Delta_A(a) = \Delta^R(da)
\]
(40)

and

\[
(\Delta^L \otimes id) \circ \Delta^R = (id \otimes \Delta^R) \circ \Delta^L.
\]
(41)

4. Cartan-Maurer one-forms on \(A \)
In analogy with the left-invariant one-forms on a Lie group in classical differential geometry, one can construct two one-forms using the generators of \mathcal{A} as follows [7]:

$$\theta = dx \ x^{-1} \quad \varphi = dy - dx \ x^{-1}y. \quad (42)$$

The commutation relations between the generators of \mathcal{A} and one-forms are [7]

$$x\theta = q^{-1}\theta x \quad y\theta = q^{-1}\theta y + (q^{-1} - 1)\varphi$$

$$x\varphi = \varphi x \quad y\varphi = \varphi y. \quad (43)$$

The first order differentials with one-forms satisfy the following relations

$$\theta \ dx = q \ dx \ \theta \quad \varphi \ dx = dx \ \varphi$$

$$\theta \ dy = q \ dy \ \theta \quad \varphi \ dy = dy \ \varphi \quad (44)$$

and with second order differentials

$$\theta \ d^2x = q^2 \ d^2x \ \theta \quad \theta \ d^2x = q^2 \ d^2x \ \theta$$

$$\varphi \ d^2x = q^{-2} \ d^2x \ \varphi \quad \varphi \ d^2y = q^{-2} \ d^2y \ \varphi. \quad (45)$$

The commutation rules of the elements θ and φ are

$$\theta^3 = 0 \quad \theta \varphi = \varphi \theta \quad (46a)$$

and

$$\varphi^3 = 0 \quad (46b)$$

provided that $q^2 + q + 1 = 0$.

We denote the algebra of the forms generated by the two elements θ and φ by Ω. We make the algebra Ω into a \mathbb{Z}_3-graded Hopf algebra with the following co-structures [7]: the coproduct $\Delta_\Omega : \Omega \longrightarrow \Omega \otimes \Omega$ is defined by

$$\Delta_\Omega(\theta) = \theta \otimes 1 + 1 \otimes \theta \quad \Delta_\Omega(\varphi) = \varphi \otimes 1 + x \otimes \varphi - y \otimes \theta. \quad (47)$$

The counit $\epsilon_\Omega : \Omega \longrightarrow \mathbb{C}$ is given by

$$\epsilon_\Omega(\theta) = 0 \quad \epsilon_\Omega(\varphi) = 0 \quad (48)$$

and the coinverse $\kappa_\Omega : \Omega \longrightarrow \Omega$ is defined by

$$\kappa_\Omega(\theta) = -\theta \quad \kappa_\Omega(\varphi) = -q^{-1}\varphi x^{-1} - \theta x^{-1}y. \quad (49)$$

One can easily check that (6), (8) and (10) are satisfied. Note that the commutation relations (43)-(46) are compatible with Δ_Ω, ϵ_Ω and κ_Ω, in the sense that $\Delta_\Omega(x\theta) = q^{-1}\Delta_\Omega(\theta x)$, and so on.
5. Quantum Lie algebra

The commutation relations of Cartan-Maurer forms allow us to construct the algebra of the generators. In order to obtain the quantum Lie algebra of the algebra generators we first write the Cartan-Maurer forms as

\[dx = \theta x \quad dy = \varphi + \theta y. \]

(50)

The differential \(d \) can then the expressed in the form

\[d = \theta H + \varphi X. \]

(51)

Here \(H \) and \(X \) are the quantum Lie algebra generators. We now shall obtain the commutation relations of these generators. Considering an arbitrary function \(f \) of the coordinates of the quantum plane and using that \(d^3 = 0 \) one has

\[d^2 f = \theta H f + \varphi X f + j\theta \ dH f + j\varphi \ dX f, \]

and

\[d^3 f = d^2 \theta \ H f + d^2 \varphi \ X f + j^2 \ d\theta \ dH f + j^2 \ d\varphi \ dX f + j^2 \ d^2 \ H f + j^2 \varphi \ d^2 X f. \]

So we need the two-forms. Applying the exterior differential \(d \) to the relations (42) one has

\[d\theta = d^2 x \ x^{-1} - j\theta^2 \]

\[d\varphi = d^2 y - d^2 x \ x^{-1} y - j\theta \varphi. \]

(52)

Also, since

\[\theta \ d\theta = q^{-2} d\theta \ \theta \]

\[\theta \ d\varphi = q^{2} d\varphi \ \theta + (q - q^{-1}) d\theta \ \varphi + (q^{-1} - q) \theta^2 \varphi \]

\[\varphi \ d\theta = q^{2} d\theta \ \varphi + (q^{-1} - q) \theta \varphi + (q^{-1} - q) \theta^2 \varphi \]

\[\varphi \ d\varphi = q^{-2} d\varphi \ \varphi + (q^{-1} - q) \theta \varphi^2 \]

(53)

we have

\[d^2 \theta = 0 \quad d^2 \varphi = j d\theta \ \varphi - j d\varphi \ \theta - j \theta^2 \varphi. \]

(54)

Using the Cartan-Maurer equations we find the following commutation relations for the quantum Lie algebra:

\[X H = q^{-1} H X + X. \]

(55)
The commutation relation (55) of the algebra generators should be consistent with monomials of the coordinates of the quantum plane. To do this, we evaluate the commutation relations between the generators of algebra and the coordinates. The commutation relations of the generators with the coordinates can be extracted from the Z_3-graded Leibniz rule:

\[
\begin{align*}
\text{d}(xf) &= (dx)f + x(df) \\
&= \theta(x + q^{-1}xH)f + \varphi(xX)f \\
&= (\theta H + \varphi X)xf
\end{align*}
\]

and

\[
\begin{align*}
\text{d}(yf) &= (dy)f + y(df) \\
&= \theta(y + q^{-1}yH)f + \varphi(1 + yX + (q^{-1} - 1)H)f \\
&= (\theta H + \varphi X)yf.
\end{align*}
\]

This yields

\[
\begin{align*}
Hx &= x + q^{-1}xH \\
Hy &= y + q^{-1}yH \\
Xx &= xX \\
Xy &= 1 + yX + (q^{-1} - 1)H.
\end{align*}
\]

We know that the differential operator d satisfies the Z_3-graded Leibniz rule. Therefore, the generators H and X are endowed with a natural coproduct. To find them, we need to the following commutation relation

\[
Hx^m = \frac{1 - q^{-m}}{1 - q^{-1}}x^m + q^{-m}x^m H
\]

and

\[
Hy^n = \frac{1 - q^{-n}}{1 - q^{-1}}y^n + q^{-n}y^n H
\]

where use was made of (58). The relation (59a) is understood as an operator equation. This implies that when H acts on arbitrary monomials $x^m y^n$,

\[
H(x^m y^n) = \frac{1 - q^{-(m+n)}}{1 - q^{-1}}(x^m y^n) + q^{-(m+n)}(x^m y^n)H
\]

from which we obtain

\[
H = \frac{1 - q^{-N}}{1 - q^{-1}}
\]

where N is a number operator acting on a monomial as

\[
N(x^m y^n) = (m + n)x^m y^n.
\]
We also have
\[X(x^m y^n) = (x^m y^n)X + \frac{1 - q^{-n}}{1 - q^{-1}} x^m y^{n-1} (1 + (q^{-1} - 1)H). \] (63)

So, applying the \(\mathbb{Z}_3 \)-graded Leibniz rule to the product of functions \(f \) and \(g \), we write
\[d(fg) = [(\theta H + \varphi X)f]g + f(\theta H + \varphi X)g \] (64)
with help of (51). From the commutation relations of the Cartan-Maurer forms with the coordinates of the quantum plane, we can compute the corresponding relations of \(\theta \) and \(\varphi \) with functions of the coordinates. From (43) we have
\[(x^m y^n)\theta = q^{-(m+n)}\theta(x^m y^n) + (q^{-n} - 1)\varphi x^m y^{n-1} \]
\[(x^m y^n)\varphi = \varphi(x^m y^n). \] (65)

Inserting (65) in (64) and equating coefficients of the Cartan-Maurer forms, we get, for example,
\[H(fg) = (Hf)g + q^{-N} f(Hg). \] (66)

Consequently, we have the coproduct
\[\Delta(H) = H \otimes 1 + q^{-N} \otimes H \]
\[\Delta(X) = X \otimes 1 + 1 \otimes X + (q^{-1} - 1)X \otimes H. \] (67)

The counit and coinverse may be calculated by using the axioms of Hopf algebra:
\[m(\epsilon \otimes \text{id})\Delta(u) = u \quad m(\text{id} \otimes \kappa)\Delta(u) = \epsilon(u). \] (68)

So we have
\[\epsilon(H) = 0 = \epsilon(X) \] (69)
\[\kappa(H) = -q^N H \quad \kappa(X) = -X q^N. \] (70)

6. The dual of the Hopf algebra \(\mathcal{A} \)

In this section, in order to obtain the dual of the Hopf algebra \(\mathcal{A} \) defined in section 2, we shall use the method of Ref. 12.

A pairing between two vector spaces \(\mathcal{U} \) and \(\mathcal{A} \) is a bilinear mapping \(\langle , \rangle \): \(\mathcal{U} \times \mathcal{A} \rightarrow \mathbb{C} \), \((u, a) \mapsto \langle u, a \rangle \). We say that the pairing is non-degenerate if
\[\langle u, a \rangle = 0 (\forall a \in \mathcal{A}) \implies u = 0 \]
and $$< u, a > = 0 \forall u \in \mathcal{U} \implies a = 0.$$ Such a pairing can be extended to a pairing of $$\mathcal{U} \otimes \mathcal{U}$$ and $$\mathcal{A} \otimes \mathcal{A}$$ by

$$< u \otimes v, a \otimes b > = < u, a > < v, b > .$$

Given bialgebras $$\mathcal{U}$$ and $$\mathcal{A}$$ and a non-degenerate pairing

$$<, > : \mathcal{U} \times \mathcal{A} \rightarrow \mathbb{C} \quad (u, a) \mapsto < u, a > \quad \forall u \in \mathcal{U} \quad \forall a \in \mathcal{A}$$ \hspace{1cm} (71)

we say that the bilinear form realizes a duality between $$\mathcal{U}$$ and $$\mathcal{A}$$, or that the bialgebras $$\mathcal{U}$$ and $$\mathcal{A}$$ are in duality, if we have

$$< uv, a > = < u \otimes v, \Delta_{\mathcal{A}} >$$

$$< u, ab > = < \Delta_{\mathcal{U}}(u), a \otimes b >$$

$$< 1_{\mathcal{U}}, a > = \epsilon_{\mathcal{A}}(a)$$ \hspace{1cm} (72)

and

$$< u, 1_{\mathcal{A}} > = \epsilon_{\mathcal{U}}(u)$$

for all $$u, v \in \mathcal{U}$$ and $$a, b \in \mathcal{A}$$.

If, in addition, $$\mathcal{U}$$ and $$\mathcal{A}$$ are Hopf algebras with coinverse $$\kappa$$, then they are said to be in duality if the underlying bialgebras are in duality and if, moreover, we have

$$< \kappa_{\mathcal{U}}(u), a > = < u, \kappa_{\mathcal{A}}(a) > \quad \forall u \in \mathcal{U} \quad a \in \mathcal{A}. \hspace{1cm} (73)$$

It is enough to define the pairing (71) between the generating elements of the two algebras. Pairing for any other elements of $$\mathcal{U}$$ and $$\mathcal{A}$$ follows from relations (72) and the bilinear form inherited by the tensor product. For example, for

$$\Delta_{\mathcal{U}}(u) = \sum_{k} u'_{k} \otimes u''_{k},$$

we have

$$< u, ab > = < \Delta_{\mathcal{U}}(u), a \otimes b > = \sum_{k} < u'_{k}, a > < u''_{k}, b >$$

As a Hopf algebra $$\mathcal{A}$$ is generated by the elements $$x, y$$ and a basis is given by all monomials of the form

$$f = x^{m} y^{n}$$
where \(m, n \in \mathbb{Z}_+ \). Let us denote the dual algebra by \(\mathcal{U}_q \) and its generating elements by \(A \) and \(B \).

The pairing is defined through the tangent vectors as follows

\[
< A, f > = m \delta_{n,0} \\
< B, f > = \delta_{n,1}.
\]

We also have

\[
< 1_\mathcal{U}, f > = \epsilon_A(f) = \delta_{n,0}.
\]

(74)

Using the defining relations one gets

\[
< AB, f > = (m + 1) \delta_{n,1}
\]

(75a)

and

\[
< BA, f > = m \delta_{n,1}
\]

(75b)

where differentiation is from the right as this is most suitable for differentiation in this basis. Thus one obtains the commutation relation in the algebra \(\mathcal{U}_q \) dual to \(\mathcal{A} \) as:

\[
AB = BA + B.
\]

(76)

The Hopf algebra structure of this algebra can be deduced by using the duality. The coproduct of the elements of the dual algebra is given by

\[
\Delta_\mathcal{U}(A) = A \otimes 1_\mathcal{U} + 1_\mathcal{U} \otimes A \\
\Delta_\mathcal{U}(B) = B \otimes q^A + 1_\mathcal{U} \otimes B.
\]

(77)

The counity is given by

\[
\epsilon_\mathcal{U}(A) = 0 \quad \epsilon_\mathcal{U}(B) = 0.
\]

(78)

The coinverse is given as

\[
\kappa_\mathcal{U}(A) = -A \quad \kappa_\mathcal{U}(B) = -Bq^{-A}.
\]

(79)

We can now transform this algebra to the form obtained in section 5 by making the following definitions:

\[
H = \frac{1_\mathcal{U} - q^A}{1 - q^{-1}} \quad X = B
\]

(80)

which are consistent with the commutation relation and the Hopf structures.
7. Conclusion

To conclude, we introduce here the commutation relations between the coordinates of the quantum plane and their partial derivatives and thus illustrate the connection between the relations in section 5, and the relations which will be now obtained.

To proceed, let us obtain the relations of the coordinates with their partial derivatives. We know that the exterior differential d can be expressed in the form

$$df = (dx \partial_x + dy \partial_y) f.$$ \hspace{1cm} (81)

Then, for example,

$$d(xf) = dx f + x df = dx (1 + q^{-1}x\partial_x) f + dy x\partial_y f = (dx \partial_x x + dy \partial_y x)f$$

so that

$$\partial_x x = 1 + q^{-1}x\partial_x \quad \partial_x y = q^{-1}y\partial_x$$

$$\partial_y x = x\partial_y \quad \partial_y y = 1 + q^{-1}y\partial_y + (q^{-1} - 1)x\partial_x.$$ \hspace{1cm} (82)

The Hopf algebra structure for ∂ is given by

$$\Delta(\partial_x) = \partial_x \otimes \partial_x \quad \Delta(\partial_y) = \partial_y \otimes 1 + \partial_x \otimes \partial_y$$

$$\epsilon(\partial_x) = 1, \quad \epsilon(\partial_y) = 0$$ \hspace{1cm} (83)

$$\kappa(\partial_x) = \partial_x^{-1} \quad \kappa(\partial_y) = -\partial_x^{-1}\partial_y$$

provided that the formal inverse ∂_x^{-1} exists.

We know, from section 5, that the exterior differential d can be expressed in the form (51), which we repeat here,

$$df = (\theta H + \varphi X)f.$$ \hspace{1cm} (84)

Considering (81) together (84) and using (50) one has

$$H \equiv x\partial_x + y\partial_y \quad X \equiv \partial_y.$$ \hspace{1cm} (85)

Using the relations (82) and (32) one can check that the relation of the generators in (85) coincide with (55). It can also be verified that, the action of the generators in (85) on the coordinates coincide with (58).
We finally introduce complex notation with a single variable $z = x + iy$ where x and y are the generators of the q-plane and $i^2 = -1$. Then the elements
\[
\begin{align*}
 z &= x - iy \\
 \bar{z} &= x + iy \\
 dz &= dx + idy \\
 d\bar{z} &= dx - idy
\end{align*}
\]
form the basis in the algebra Γ. These elements obey the following commutation relations:
\[
\begin{align*}
 z \, dz &= q^{-1}dz \, z \\
 z \, d^2z &= q^{-1}d^2z \, z \\
 dz \, d^2z &= q^{-2}d^2z \, dz \\
 d\bar{z} \, dz &= q^{-1}d\bar{z} \, dz \\
 (dz)^3 &= 0 = (d\bar{z})^3.
\end{align*}
\]
Note that these relations are the same with those of Ref. 11 except that in our case z^3 need not be zero.

The Z_3-graded noncommutative differential geometry we have constructed satisfies all expectations for such a structure. In particular all Hopf algebra axioms are satisfied without any modification.

Acknowledgment

This work was supported in part by T. B. T. A. K. the Turkish Scientific and Technical Research Council.
References

[1] Yu I. Manin, (Montreal Univ. Preprint, 1988).
[2] J. Wess and B. Zumino, *Nucl. Phys.* (Proc. Suppl.) 18 B (1990), 302.
[3] R. Kerner, *Lett. Math. Phys.* 36 (1996), 441.
[4] B. Cerchiai, R. Henterding, J. Madore, J. Wess, *Euro. Phys. J.* 8 (1998), 547.
[5] R. Kerner, [math-ph/0011023](http://arxiv.org/abs/math-ph/0011023).
[6] N. Bazunova, A. Borowiec and R. Kerner, [math-ph/0110007](http://arxiv.org/abs/math-ph/0110007).
[7] S. A. Celik and S. Celik, *Int. J. Mod. Phys. A* 15 (2000), 3237.
[8] T. Brzezinski, *Lett. Math. Phys.* 27 (1993), 287; T. Brzezinski and S. Majid, *Lett. Math. Phys.* 26 (1992), 67.
[9] S. L. Woronowicz, *Commun. Math. Phys.* 122 (1989), 125.
[10] T. Brzezinski, H. Dabrowski and J. Rembielinski, *J. Math. Phys.* 33 (1992), 19.
[11] V. Abramov and N. Bazunova, "Algebra of differential forms with exterior differential $d^3 = 0$ in dimension one", [math-ph/0001041](http://arxiv.org/abs/math-ph/0001041), 2000.
[12] A. Sudbery, *Proc. Workshop on Quantum Groups*, Argonne (1990) eds. T. Curtright, D. Fairlie and C. Zachos, pp. 33-51; V. K. Dobrev, *J. Math. Phys.* 33 (1992), 3419.