On the utilization of Macroscopic Information for String Stability of a Vehicular Platoon

Marco Mirabilio, Alessio Iovine, Elena De Santis, Maria Domenica Di Benedetto, Giordano Pola

Abstract—The use of macroscopic information for the control of a vehicular platoon composed of autonomous vehicles is investigated. A mesoscopic control law is provided, and String Stability is proved by Lyapunov functions and Input-to-State Stability (ISS) concepts. Simulations are implemented in order to validate the controller and to show the efficacy of the proposed approach for mitigating traffic oscillations.

Keywords: String Stability, Input-to-State Stability, platoon control, mesoscopic modeling, Cooperative Adaptive Cruise Control.

I. INTRODUCTION

Nowadays, Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communication technologies are a reality in the smart transportation domain (see [1]), and their utilization in Cooperative Adaptive Cruise Control (CACC) is widely expected to improve traffic conditions (see [2], [3], [4]). Indeed, traffic jamming transition has been shown to strongly depend on the amplitude of fluctuations of the leading vehicle (see [5]), and interconnected autonomous vehicles are sensed to reduce stop-and-go waves propagation and traffic oscillations via the concept of String Stability [2], [6], [7], [8]. String Stability relies on the idea that disturbances acting on an agent of the cluster should not amplify backwards in the string. In the case of vehicular platooning, disturbances may be due to reference speed variation, external inputs acting on each vehicle, wrong modeling, etc. Several cases of information sharing have been considered for each leader-follower interaction, but a common characteristic is that some microscopic variables are always shared among the whole platoon, e.g. the acceleration of the platoon’s leading vehicle (see [6]) or its desired speed profile (see [3]). It needs a V2V communication among the whole platoon, or a V2I bidirectional exchange of information. This paper analyses the benefits of the information propagation in a String Stability framework using both microscopic and macroscopic information for control purposes. Each follower is here considered to correctly measure the distance and speed of its leading vehicles, using for example radar and LIDAR. The leader acceleration is communicated only to its follower. To improve control performance, macroscopic information is supposed to be obtained and communicated either from the road infrastructure (V2I) or from the whole platoon (V2V). Both technologies have strengths and weaknesses. For example, V2V technology requires the macroscopic information to be propagated through the vehicles, and possibly estimated in a distributed manner by each one. On the other hand, V2I technology may provide a more reliable information at the cost of allocating several sensors along the way and computing the quantities in a centralized manner, implying a high computation request to the central computer. A thorough analysis of pros and cons of the two communication typologies is out of the scope of the present paper.

We target a platoon composed by autonomous vehicles implementing CACC, but the framework we propose is suitable for including autonomous vehicles implementing simple ACC or even human-driven vehicles as part of the platoon. The framework we propose is based on sharing macroscopic quantities along the platoon. The use of those quantities aims at increasing the ability of each car-following situation to counteract the disturbances by providing an anticipatory behaviour capable to absorb traffic jam. The idea of using macroscopic quantities, mainly the density, for microscopic traffic control has already been introduced in the literature, resulting in a mesoscopic modeling. In [9], [10] and in the references therein, the focus is on simulation aspects and real data analysis. Several works are now focusing on a mesoscopic modeling for traffic control purposes (see [11], [12] [13], [14], [15]).

The controller we present in this paper considers macroscopic information and ensures Asymptotic String Stability. The adopted nonlinear spacing policy relies on the family of nonlinear spacing strategies introduced in [16] and [17]. Similarly to [3], the result is obtained through an inductive method exploiting Input-to-State Stability (ISS). The main difference is that ISS is ensured with respect to the leader-follower situation and the ahead vehicles of each predecessor. Simulations show the improvements on the whole traffic throughput producing an anticipatory behaviour and oscillations reduction, and providing a better transient harmonization while maintaining String Stability properties.

The paper is organized as follows. Section II introduces the considered framework, while Section III the needed control tools. Control laws are derived and stability analysis is performed in Section IV. Simulations are carried out in Section V. Some concluding remarks are outlined in Section VI.

Notation - \(\mathbb{R}^+ \) is the set of non-negative real numbers. For a vector \(x \in \mathbb{R}^n \), \(|x| = \sqrt{x^T x} \) is its Euclidean norm. The

Marco Mirabilio, Elena De Santis, Maria Domenica Di Benedetto, Giordano Pola are with the Department of Information Engineering, Computer Science and Mathematics, Center of Excellence DEWS, University of L’Aquila. (e-mail:marco.mirabilio@graduate.univaq.it, elena.desantis,mariadomenica.dibenedetto,giordano.pola}@univaq.it)

Alessio Iovine is with the Electrical Engineering and Computer Sciences (EECS) Department at UC Berkeley, Berkeley, USA. E-mail: alessio@berkeley.edu, alessio.iovine@ieee.org.
II. MODELING AND STRING STABILITY DEFINITIONS

A. Platoon modeling

We consider a cluster of $N + 1$ vehicles, $N \in \mathbb{N}$, proceeding in the same direction on a single lane road, as in Fig. 1. We make the following assumption:

Assumption 1: All the vehicles are equal, with the same length $l \in \mathbb{R}^+$ and have the common goal of maintaining a strictly positive distance among them, while keeping the same speed.

We denote with $i = 0$ the first vehicle of the platoon and with $\mathcal{I}_N = \{1, 2, ..., N\}$ the set of follower vehicles. The set including all the vehicles is $\mathcal{I}_{N+1} = \mathcal{I}_N \cup \{0\}$. Similarly to [3], each vehicle $i \in \mathcal{I}_{N+1}$ is assumed to satisfy the following longitudinal dynamics:

$$\dot{p}_i = f_p(\xi_i) \quad \dot{\xi}_i = f_\xi(\xi_i) + g_\xi(\xi_i)u_i$$

where $p_i \in \mathbb{R}^+$ is the position of vehicle i, $v_i = \dot{p}_i$ ($0 < v_i \leq v_{\text{max}}$, $v_{\text{max}} \in \mathbb{R}^+$) is its velocity and the acceleration u_i is the vehicle control input. Variable $\xi_i \in \mathbb{R}^{n-1}$ represents the remaining dynamics of the vehicle, such as actuators dynamics.

According to [6] and [19], the dynamics in (1) can be simplified:

$$\dot{p}_i = v_i, \quad \dot{v}_i = u_i$$

where $\xi_i = v_i$, the functions $f_p(\xi_i) = v_i$, $f_\xi(\xi_i) = 0$ and $g_\xi(\xi_i) = 1$; u_i is the acceleration of vehicle i ($|u_i| \leq a_{\text{max}}$, $a_{\text{max}} \in \mathbb{R}^+$). The introduced double integrator model is widely used in literature for string stability analysis purposes. Moreover, field experiments adopting control laws developed with respect to this model have shown satisfactory behaviors [20]. To provide a global description of the platoon, we adopt the leader-follower model that describes the inter-vehicular interaction (see [21], [22]). We define the state of each vehicle $i \in \mathcal{I}_{N+1}$ as

$$x_i = [p_i, v_i]^T$$

and the state of each car-following situation among the leading vehicle $i - 1$ and the following one i as

$$\chi_i = x_i - x_{i-1} = \begin{bmatrix} \Delta p_i \\ \Delta v_i \end{bmatrix} = \begin{bmatrix} p_i - p_{i-1} \\ v_i - v_{i-1} \end{bmatrix}.$$
The equilibrium point are totic String Stability from [6] and [3]. with the dynamical system (13) are \(u \rightarrow \delta > 0 \) exists \(\Delta_e \) exists to define a inter-vehicular spacing at steady-state (see [16] and [17]). We adopt a variable time spacing policy of the \(\Delta_e \) exists\(N \) String Stable if it is String Stable and, for all \(N \in \mathbb{N} \),

\[
\max_{i \in \mathbb{N}^N} |\hat{x}_i(0) - \hat{x}_{e,i}| < \delta \Rightarrow \max_{i \in \mathbb{N}^N} |\hat{x}_i(t) - \hat{x}_{e,i}| < \epsilon, \quad \forall \ t \geq 0.
\] (15)

Definition 2: (Asymptotic String Stability) The equilibrium \(\hat{x}_{e,i} \) of \(P_{cl} \) is said to be Asymptotically String Stable if it is String Stable and, for all \(N \in \mathbb{N} \),

\[
\lim_{t \to \infty} |\hat{x}_i(t) - \hat{x}_{e,i}| = 0, \quad \forall \ i \in \mathbb{N}_0.
\] (16)

III. CONTROL TOOLS

The goal of this paper is to design a controller (13) that adopts mesoscopic quantities and ensures asymptotic string stability of \(P_{cl} \). To this purpose, a proper spacing policy and a function describing macroscopic information are introduced.

A. Spacing policy

Several spacing policies have been introduced in the literature (see [25], [26]). We adopt a variable time spacing policy, which consists in tracking a variable inter-vehicular desired distance and allows for string stability and a low inter-vehicular spacing at steady-state (see [16] and [17]). We define a mesoscopic time varying trajectory for the distance policy \(\Delta \rho_i^a \) of the \(i \)-th vehicle with respect to its leader \(i-1 \):

\[
\Delta \rho_i^a(t) = -\Delta \rho - \rho_i^M(t), \quad t \geq 0
\] (17)

where \(\Delta \rho > 0 \) is the desired constant inter-vehicular distance and \(\rho_i^M(t) \) is a function describing macroscopic information. Our goal is to show that, by using the macroscopic information, transient harmonization when traffic conditions vary is obtained while maintaining the platoon equilibrium in (12) in steady-state.

B. Macroscopic information

Here we define proper macroscopic functions taking into account microscopic distance and speed variance, similarly to [14]. Given the generic vehicle \(i \in \mathbb{N} \), let \(\mu_{\Delta p,i} \) and \(\sigma^2_{\Delta p,i} \) be the inter-vehicular distance mean and variance computed from vehicle 0 to vehicle \(i \), respectively:

\[
\mu_{\Delta p,i} = \frac{1}{i+1} \sum_{j=0}^i \Delta p_j, \quad \sigma^2_{\Delta p,i} = \frac{1}{i+1} \sum_{j=0}^i (\Delta p_j - \mu_{\Delta p,i})^2.
\] (18)

Let \(\mu_{\Delta v,i} \) and \(\sigma^2_{\Delta v,i} \) be the velocity tracking error mean and variance computed from vehicle 0 to vehicle \(i \), respectively:

\[
\mu_{\Delta v,i} = \frac{1}{i+1} \sum_{j=0}^i \Delta v_j, \quad \sigma^2_{\Delta v,i} = \frac{1}{i+1} \sum_{j=0}^i (\Delta v_j - \mu_{\Delta v,i})^2.
\] (19)

Let \(\psi^i_{\Delta p} : \mathbb{R} \times \mathbb{R}^+ \rightarrow \mathbb{R} \) be the distance macroscopic function and \(\psi^i_{\Delta v} : \mathbb{R} \times \mathbb{R}^+ \rightarrow \mathbb{R} \) the speed tracking error macroscopic function, defined as

\[
\psi^i_{\Delta p} = \gamma_{\Delta p} \text{sign}(\Delta \rho + \mu_{\Delta p,i}) \sqrt{\sigma^2_{\Delta p,i}},
\] (20)

\[
\psi^i_{\Delta v} = \gamma_{\Delta v} \text{sign}(\mu_{\Delta v,i}) \sqrt{\sigma^2_{\Delta v,i}},
\] (21)

where \(\gamma_{\Delta p}, \gamma_{\Delta v} > 0 \) are constant parameters, \(\mu_{\Delta p,i}, \mu_{\Delta v,i}, \sigma^2_{\Delta p,i} \) and \(\sigma^2_{\Delta v,i} \) are defined in (18) and (19), and

\[
\text{sign}(y) = \begin{cases} 1, & y > 0 \\ 0, & y = 0 \\ -1, & y < 0 \end{cases}
\] (22)

Functions (20) and (21) connect the macroscopic density function with the variance of the microscopic distance and speed difference. These functions catch the distance of the system with respect to its equilibrium. Instead of considering the whole set of leader-follower situations, they allow for a complexity reduction of the considered interconnected system without reducing the level of available information.

We embed the macroscopic information given by (20) and (21) in the macroscopic function denoted by \(\rho_i = [\rho_{1,i}, \rho_{2,i}]^T \), the evolution of which is given by the controller dynamics (12), where we choose a state dimension \(r = 2 \) and an asymptotically stable dynamics:

\[
\begin{cases}
\dot{\rho}_1,i = -\lambda_1 \rho_{1,i} + \rho_{2,i} \\
\dot{\rho}_2,i = -\lambda_2 \rho_{2,i} + a \psi^i_{\Delta p} + b \psi^i_{\Delta v} \\
\rho_{1,i}(0) = \rho_{2,i}(0) = 0
\end{cases}
\] (23)

where \(a, b \geq 0 \) are chosen parameters, and \(\lambda_1, \lambda_2 > 0 \). The superscript \(i-1 \) in \(\psi^i_{\Delta p} \) and \(\psi^i_{\Delta v} \) means that we consider the macroscopic information calculated up to the preceding vehicle. Since no macroscopic information is available to vehicle 0 we define \(\psi^i_{\Delta p} = \psi^i_{\Delta v} = 0 \). Different macroscopic functions can be proposed, as in [14]. The macroscopic function \(\rho_i \) in (17) is defined as a linear combination of the components of \(\rho_i \). Its role is to incorporate the whole macroscopic information of the platoon avoiding complexity calculation explosion by the control law due to the state explosion. If the functions (18) and (19) were to be obtained through V2V communications, a demanding exchange of information could be necessary. However, those functions can be easily calculated by the road infrastructure, and then communicated to the vehicles via V2I communications. Consequently, the function \(\rho_i \) in (23) can be obtained without V2V communication.
IV. MESOSCOPIC CONTROL LAW

In this section, the control law adopting mesoscopic quantities for a single car-following situation is introduced. Then, String Stability and Asymptotic String Stability as in Definitions 1 and 2 are ensured when the control laws are implemented for each leader-follower situation along the platoon. The control law implements the variable spacing policy in (17) while considering the function \(\rho_i \) in (23). Each vehicle is modeled according to dynamics (2) and each car-following situation according to \(\chi_i \) in (5) and (8). To analyze the String Stability of the closed loop system, we consider the extended state (14) that includes the dynamics in (23).

Defining \(g_{cl,0}(\tilde{x}_i - 1) = 0 \), we can describe the closed loop dynamics of (14) as

\[
\dot{x}_0 = f_{cl}(\tilde{x}_0), \; i = 0,
\]

\[
\dot{x}_i = f_{cl}(\tilde{x}_i) + g_{cl,i}(\tilde{x}_{i-1}, \tilde{x}_{i-2}, ..., \tilde{x}_0), \; \forall \; i \in \mathcal{I}_N.
\]

where \(f_{cl} : \mathbb{R}^4 \rightarrow \mathbb{R}^4 \) is the vector field describing the evolution dynamics of each isolated subsystem, and \(g_{cl,i} : \mathbb{R}^4 \times \cdots \times \mathbb{R}^4 \rightarrow \mathbb{R}^4 \) is the interconnection term.

A. Control strategy for variable spacing policy

We present a control law obtained by backstepping, see (18), for implementing the variable spacing policy in (17) with \(\rho_i^N = \rho_{i,i} \). The controller associated to the \(i \)-th vehicle, \(\forall \; i \in \mathcal{I}_N \), is given by:

\[
u_i = u_{i-1} - (\Delta p_i + \Delta \bar{p} + \rho_{i,i}) - \lambda_1 (\lambda_1 \rho_{i,i} - \rho_{2,i}) + \lambda_2 \rho_{2,i} - K_{\Delta p} (\Delta v_i - \lambda_1 \rho_{i,i} + \rho_{2,i}) - a \psi_{\Delta p}^i - b \psi_{\Delta v}^i - K_{\Delta v} (\Delta v_i - \lambda_1 \rho_{i,i} + \rho_{2,i}) + K_{\Delta p} (\Delta p_i + \rho_{i,i})
\]

\[
u_i = u_{i-1} - (\Delta p_i - \Delta p_i^f) - K_{\Delta p} (\Delta p_i - \Delta p_i^f) + (K_{\Delta p} - \lambda_1) (\lambda_1 \rho_{i,i} - \rho_{2,i}) + \lambda_2 \rho_{2,i} - K_{\Delta p} \Delta v_i - a \psi_{\Delta p}^i - b \psi_{\Delta v}^i.
\]

(26)

with

\[
\Delta v_i^f = \lambda_1 \rho_{i,i} - \rho_{2,i} - K_{\Delta p} (\Delta p_i - \Delta p_i^f)
\]

and given constant gains \(K_{\Delta p}, K_{\Delta v} > 0 \) equal for each \(i \in \mathcal{I}_N \), \(K_{\Delta p} = -\Delta \bar{p} - \rho_{i,i}, \) and \(\rho_{i,i} - \rho_{2,i} \) as defined in (23).

Note that the controller in (26) considers both microscopic and macroscopic information, leading to a mesoscopic framework. To analyze the String Stability of the closed loop system, we consider the extended leader-follower state vector \(\tilde{x}_i \) and its corresponding equilibrium point \(\tilde{x}_{i,e} \) in (14). The closed loop dynamics for each \(i \in \mathcal{I}_N \) results to be:

\[
\dot{\tilde{x}}_i = \begin{bmatrix}
\Delta \dot{p}_i \\
\Delta \dot{v}_i \\
\dot{\rho}_{1,i} \\
\dot{\rho}_{2,i}
\end{bmatrix} = \begin{bmatrix}
\Delta v_i \\
(\ast) \\
- \lambda_1 \rho_{1,i} - \rho_{2,i} \\
- \lambda_2 \rho_{2,i} + a \psi_{\Delta p}^i - b \psi_{\Delta v}^i
\end{bmatrix}
\]

(28)

with

\[
(\ast) = -(\Delta p_i - \Delta p_i^f) - K_{\Delta v} (\Delta v_i - \Delta v_i^f) + (K_{\Delta p} - \lambda_1) (\lambda_1 \rho_{1,i} - \rho_{2,i}) + \lambda_2 \rho_{2,i} - K_{\Delta p} \Delta v_i - a \psi_{\Delta p}^i - b \psi_{\Delta v}^i.
\]

We remark that \(\psi_{\Delta p}^i = \psi_{\Delta v}^i = 0 \). Then, we can rewrite the system in (28) as (24) and (25), where \(g_{cl,i}(\tilde{x}_{i-1}, ..., \tilde{x}_0) \) is

\[
g_{cl,i}(\tilde{x}_{i-1}, \tilde{x}_{i-2}, ..., \tilde{x}_0) = \begin{bmatrix}
0 \\
- a \psi_{\Delta p}^i - b \psi_{\Delta v}^i \\
0 \\
a \psi_{\Delta p}^i - b \psi_{\Delta v}^i
\end{bmatrix}
\]

(29)

B. String Stability analysis

Set \(\tilde{x}_i = \tilde{x}_i - \tilde{x}_{i,e} \). Then, the following result holds:

Lemma 1: Consider the closed loop system described by (28). Then, there exist functions \(\beta \) of class \(KL \) and \(\gamma \) of class \(K_{\infty} \) such that, if \(K_{\Delta p}, K_{\Delta v}, \lambda_1, \lambda_2 > 0 \) then,

\[
|\tilde{x}_i(t)| \leq \beta(|\tilde{x}_i(0)|, t) + \gamma \left(\max_{j=0,\ldots,n-1} \left| \tilde{x}_j(\cdot) \right|_{\infty} \right)
\]

(30)

\(\forall t \geq 0 \), and \(\gamma(s) = \tilde{\gamma} s, \; s \geq 0, \; \tilde{\gamma} \in \mathbb{R}^+ \). Moreover, there exist \(a \) and \(b \) in (23) such that \(\tilde{\gamma} \in (0, 1) \).

Proof: See Appendix A in [27].

On the basis of Lemma 1, Asymptotic String Stability of the platoon can be obtained by an appropriate choice of the parameters in (28), as shown in the following:

Theorem 1: The closed loop system described by (28) where the parameters \(K_{\Delta p}, K_{\Delta v}, \lambda_1, \lambda_2 > 0 \) and parameters \(a, b \) are such that \(\tilde{\gamma} \in (0, 1) \), is Asymptotically String Stable.

Proof: See Appendix B in [27].

V. SIMULATIONS

The introduced control strategy is simulated in MatlabSimulink. Based on the modeling in [5], we consider a platoon of \(N + 1 = 11 \) vehicles. The initial conditions for each vehicle are randomly generated in a neighborhood of the equilibrium point. It results \(\mu_{\Delta p} \neq -\Delta \bar{p}, \mu_{\Delta v} \neq 0 \). The reference distance is \(\Delta \bar{p} = 10m \) and the desired speed of the leading vehicle is \(\bar{v} = 14m/s \). Vehicle speed is \(0 < v_i \leq 36 \) [m/s] and the acceleration is bounded by \(-4 \leq a_i \leq 4 \) [m/s²]. The control parameters are introduced in Table I with a resulting \(\tilde{\gamma} = 0.5 \). To better stress the advantages of the proposed controller, we analyze the behavior of the system when a disturbance acts on the acceleration of vehicle \(i = 0 \), and it is not communicated to vehicle \(i = 1 \).

The simulation time is 1 minute. We split it into three phases:

1) From \(t = t_0 = 0s \) to \(t = t_1 = 10s \): the vehicles start with initial conditions that are different from the

Parameter	Value	Parameter	Value	Parameter	Value
\(K_{\Delta p} \)	1	\(K_{\Delta v} \)	2	\(\lambda_1 \)	1.5
\(\lambda_2 \)	0.2	\(a \)	0.2	\(b \)	1
\(\gamma_{\Delta p} \)	0.5	\(\gamma_{\Delta v} \)	0.5	\(\gamma \)	0.5
desired speed and the desired distance. No disturbance is acting on the leader vehicle, and its desired speed is the initial one, i.e. \(\bar{v} = 14 \text{ m/s} \).

2) From \(t = t_1 = 10 \text{ s} \) to \(t = t_2 = 30 \text{ s} \): a disturbance acts on the acceleration of the first vehicle \(i = 0 \). At \(t_1 \) a positive pulse of amplitude \(4 \text{ m/s}^2 \) and length \(5 \text{ s} \) is considered, while a similar pulse with negative amplitude is considered at \(t = 15 \text{ s} \). The control input of \(i = 0 \) being saturated, \(i = 0 \) succeeds to properly counteract to it but it is not able to operate the needed corrective action to return to the desired speed. Since the disturbance is an external input, it is not communicated to the follower and can propagate along the platoon.

3) From \(t = t_2 = 30 \text{ s} \) to \(t = t_3 = 60 \text{ s} \): the leader tracks a variable speed reference. From \(t = 30 \text{ s} \) to \(t = 45 \text{ s} \) the desired speed is \(\bar{v} = 30 \text{ m/s} \), while from \(t = 45 \text{ s} \) to \(t = 60 \text{ s} \) it is \(\bar{v} = 20 \text{ m/s} \).

Figures 2, 3 and 4 show, respectively, the inter-vehicular distance, speed and acceleration profiles for each vehicle of the platoon when the control input in (26) is implemented. In the first phase, the vehicles are shown to quickly converge to the desired speed and the desired distance.

In the second phase, the controller of \(i = 1 \) does not know the correct acceleration value of \(i = 0 \). Also, the macroscopic variable is not available to it: for these reasons, it does not succeed to perfectly track the desired distance neither in case of positive disturbance between \(t = 10 \text{ s} \) to \(t = 15 \text{ s} \) nor in case of negative one between \(t = 15 \text{ s} \) to \(t = 20 \text{ s} \) (see Figure 2). However, it converges to the same speed of \(i = 0 \) after a small transient of three seconds in both cases (see Figure 3). Finally, at \(t = 20 \text{ s} \) the disturbance is not active anymore and the leader can restore its desired speed. Also, \(i = 1 \) receives correct information about its leader acceleration and is able to return to the ideal distance. The dynamical evolution of the remaining vehicles in the platoon during the generated transients after \(t = 10 \text{ s} \), \(t = 15 \text{ s} \) and \(t = 20 \text{ s} \) catches the contribution of the macroscopic information. To this purpose, let us consider the speed dynamics of the last vehicle in Figure 3. It is possible to remark an anticipatory behaviour due to the macroscopic information resulting in a higher speed between \(t = 10 \text{ s} \) and \(t = 12 \text{ s} \) with respect to the leading vehicles. Then, the decreasing of vehicles’ speed along the platoon scales with respect to their position, resulting more stressed in the last vehicles (see between \(t = 12 \text{ s} \) and \(t = 14 \text{ s} \)). The same anticipatory behaviour is shown in Figure 4 with respect to the accelerations of the leading vehicles. The acceleration profiles better show how the vehicles along the platoon scale to intensify their accelerations and speeds, both for increasing and decreasing speed phases. An anticipatory behaviour is shown, both when the leading vehicles are accelerating and converging to the same speed. The same applies for transients taking place after \(t = 15 \text{ s} \) and \(t = 20 \text{ s} \), which are generated by the fast reaction of the leading vehicle to the disturbance. An anticipatory harmonizing acceleration for each vehicle scales along the platoon with respect to their knowledge of the macroscopic quantities, as shown in Figure 3 and 4.

In the third phase, since there is no unknown perturbation acting on the platoon, the vehicles succeed to track the variable speed profile and to remain at the desired distance. No oscillations are shown by the proposed control law, even if the desired speed profile has high steps.

The proposed control laws in (26) exploit the information resulting from the macroscopic variable and safely control a platoon of vehicles. The control inputs provide transient harmonization on the whole traffic throughput while ensuring Asymptotic String Stability properties. The dynamical evolution results in a reduction of the oscillations propagation along the platoon, both in nominal case and in the presence of an active external disturbance. The utilization of the macroscopic information results to be a powerful tool.
VI. CONCLUSIONS

This paper introduces macroscopic variables for ensuring the String Stability of a platoon of CACC autonomous vehicles. As the variance of microscopic quantities is related to the macroscopic density, the proposed stability analysis opens to the possibility of properly controlling a platoon by propagating only macroscopic density information. A control law based on information obtained by V2V communication has been proposed. The improvements resulting from taking into account macroscopic information are shown by simulation results. The proposed mesoscopic control law produces an anticipatory behaviour, which provides a better transient harmonization. Future work will focus on extending the proposed framework in a mixed traffic situation with non-communicating vehicles. Also, due to the satisfactory results, the next objective is to extend our approach to more complex models including non-idealities such as actuation and communication delays.

REFERENCES

[1] E. Uhlemann, “The US and Europe Advances V2V Deployment [Connected Vehicles],” IEEE Vehicular Technology Magazine, vol. 12, pp. 18–22, June 2017.

[2] S. Feng, Y. Zhang, S. E. Li, Z. Cao, H. X. Liu, and L. Li, “String stability for vehicular platoon control: Definitions and analysis methods,” Annual Reviews in Control, vol. 47, pp. 81–97, March 2019.

[3] B. Besselink and K. H. Johansson, “String stability and a delay-based spacing policy for vehicle platoons subject to disturbances,” IEEE Transactions on Automatic Control, vol. 62, pp. 4376–4391, March 2017.

[4] A. Alam, B. Besselink, V. Turri, J. MåRtensson, and K. H. Johansson, “Heavy-duty vehicle platooning for sustainable freight transportation: A cooperative method to enhance safety and efficiency,” IEEE Control Systems Magazine, vol. 35, pp. 34–56, Dec 2015.

[5] T. Nagatani, “Traffic jams induced by fluctuation of a leading car,” Phys. Rev. E, vol. 61, pp. 3534–3540, Apr 2000.

[6] D. Swaroop and J. K. Hedrick, “String stability of interconnected systems,” IEEE Transactions on Automatic Control, vol. 41, pp. 349–357, Mar 1996.

[7] R. E. Sircel, S. Cui, M. L. Delle Monache, R. Bhadani, M. Bunting, M. Churchill, N. Hamilton, R. Hauley, H. Pohlmann, F. Wu, B. Piccoli, B. Seibold, J. Sprinkle, and D. B. Work, “Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments,” Transportation Research Part C: Emerging Technologies, vol. 89, pp. 205–221, 2018.

[8] F. Caravani, E. De Santis, F. Graziosi, and E. Panizzi, “Communication control and driving assistance to a platoon of vehicles in heavy traffic and scarce visibility,” Intelligent Transportation Systems, IEEE Transactions on, vol. 7, pp. 448–460, Dec 2006.

[9] M. Treiber and A. Kesting, Traffic flows dynamics. Springer, 2013.

[10] Z. He, L. Zheng, L. Song, and N. Zhu, “A jam-absorption driving strategy for mitigating traffic oscillations,” IEEE Transactions on Intelligent Transportation Systems, vol. 18, pp. 802–813, April 2017.

[11] G. Piacentini, M. Čičič, A. Ferrara, and K. H. Johansson, “VACS equipped vehicles for congestion dissipation in multi-class CTM framework,” in 2019 18th European Control Conference (ECC), pp. 2203–2208, June 2019.

[12] C. Pasquale, S. Sacone, S. Siri, and A. Ferrara, “A new Micro-Macro METANET model for platoon control in freeway traffic networks,” in 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 1481–1486, Nov 2018.

[13] A. Jamshidejad, I. Papamichail, M. Papageorgiou, and B. De Schutter, “A mesoscopic integrated urban traffic flow-emission model,” Transportation Research Part C: Emerging Technologies, vol. 75, pp. 45 – 83, 2017.

[14] A. Iovine, F. Valentini, E. De Santis, M. D. Di Benedetto, and M. Pratesi, “Safe human-inspired mesoscopic hybrid automaton for autonomous vehicles,” Nonlinear Analysis: Hybrid Systems, vol. 25, pp. 192 – 210, 2017.

[15] A. Iovine, F. Valentini, E. De Santis, M. D. Di Benedetto, and M. Pratesi, “Safe human-inspired mesoscopic hybrid automaton for longitudinal vehicle control,” IFAC-PapersOnLine, vol. 48, no. 27, pp. 155 – 160, 2015. Analysis and Design of Hybrid Systems, International Conference on, Atlanta, GA, USA, Oct. 14–16, 2015.

[16] D. Yanakiev and I. Kanellopoulos, “Variable time headway for string stability of automated heavy-duty vehicles,” in 34th IEEE Conference on Decision and Control, (New Orleans, LA), December 1995.

[17] J. Zhang and P. Ioannou, “Adaptive vehicle following control system with variable time headways,” in 44th IEEE Conference on Decision and Control, (Seville, Spain), December 2005.

[18] H. K. Khalil, Nonlinear systems. Prentice Hall, 2002.

[19] L. Xiao and F. Gao, “Practical string stability of platoon of adaptive cruise control vehicles,” Intelligent Transportation Systems, IEEE Transactions on, vol. 12, pp. 1184–1194, Dec 2011.

[20] V. K. Vegamoor, S. Darbha, and K. R. Rajagopal, “A review of automatic vehicle following systems,” Journal of the Indian Institute of Science, vol. 99, pp. 567–587, 2019.

[21] J. Ploeg, N. van de Wouw, and H. Nijmeijer, “L p string stability of cascaded systems application to vehicle platooning,” IEEE Transactions on Control Systems Technology, vol. 22, pp. 786–793, March 2014.

[22] M. Mirabilio, A. Iovine, E. De Santis, M. Domenica Di Benedetto, and G. Pola, “A microscopic human-inspired adaptive cruise control for eco-driving,” in 2020 European Control Conference (ECC), pp. 1808–1813, 2020.

[23] Y. Zheng, S. Ebel Li, K. Li, F. Borrelli, and J. Hedrick, “Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies,” IEEE Transactions on Control Systems Technology, vol. 25, pp. 899–910, May 2017.

[24] Y. Zheng, S. Eben Li, J. Wang, L. Wang, and K. Li, “Influence of information flow topology on closed-loop stability of vehicle platoon with rigid formation,” in 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), October 2014.

[25] D. Swaroop and J. Hedrick, “Constant spacing strategies for platooning in automated highway systems,” Journal of Dynamic Systems Measurement and Control, vol. 121, September 1999.

[26] P. Seiler, A. Pant, and K. Hedrick, “Disturbance propagation in vehicle strings,” IEEE Transactions on Automatic Control, vol. 49, pp. 1835–1842, Oct 2004.

[27] M. Mirabilio, A. Iovine, E. De Santis, M. Domenica Di Benedetto, and G. Pola, “On the utilization of macroscopic information for string stability of a vehicular platoon - extended version,” ArXiv, 2020. URL: https://arxiv.org/abs/2003.12523.
APPENDIX

A. Proof of Lemma 7

Let us consider the candidate Lyapunov function (see [18])
\[W_i = W(\tilde{\chi}_i), \]
for the i-th dynamical system \(\tilde{\chi}_i, \) for \(i \in I_N^p : \)
\[W(\tilde{\chi}_i) = \frac{1}{2}(\Delta p_i + \Delta \tilde{p}_i)^2 + \frac{1}{2}(\Delta v_i - \Delta \tilde{v}_i)^2

+ \frac{1}{2}\rho_{1,i}^2 + \frac{1}{2}\rho_{2,i}^2, \]
\[(31) \]
It can be proven that \((31) \) is bounded by two quadratic functions as follows
\[\alpha |\tilde{\chi}_i|^2 \leq W(\tilde{\chi}_i) \leq \bar{\alpha} |\tilde{\chi}_i|^2. \]
\[(32) \]
To derive the constants \(\alpha > 0 \) and \(\bar{\alpha} > 0 \) we replace the expressions of \(\Delta\tilde{\psi}^i \) defined in \((17) \) and of \(\Delta v_i^\alpha \) in \((27) \) in the definition of \(W_i \) in \((31). \)
\[W(\tilde{\chi}_i) = \frac{1}{2}(\Delta p_i + \Delta \tilde{p}_i + \rho_{1,i})^2

+ \frac{1}{2}(\Delta v_i - \lambda_1\rho_{1,i} + \rho_{2,i} + K_{\Delta p}(\Delta p_i + \Delta \tilde{p}_i + \rho_{1,i}))^2

+ \frac{1}{2}\rho_{1,i}^2 + \frac{1}{2}\rho_{2,i}^2, \]
\[= \frac{1}{2} \tilde{\chi}_i^T \begin{bmatrix} 1 + K_{\Delta p}^2 & p_1 & p_2 & p_1 \\
0 & 1 & p_3 & 2 \\
0 & 0 & 2 + (\lambda_1 - K_{\Delta p})^2 & p_3 \\
0 & 0 & 0 & 0 \end{bmatrix} \tilde{\chi}_i \]
\[(33) \]
where
\[p_1 = 2K_{\Delta p}, \quad p_2 = 2(1 + K_{\Delta p}^2 - \lambda_1K_{\Delta p}), \]
\[p_3 = 2(K_{\Delta p} - \lambda_1). \]
By defining \(\lambda_{\text{min}}(P), \lambda_{\text{max}}(P) \) respectively the minimum and maximum eigenvalues of the generic matrix \(P, \) then,
\[\frac{1}{2} \lambda_{\text{min}}(P_W)|\tilde{\chi}_i|^2 \leq W(\tilde{\chi}_i) \leq \frac{1}{2} \lambda_{\text{max}}(P_W)|\tilde{\chi}_i|^2. \]
\[(34) \]
Since \(K_{\Delta p}, \lambda_1, \lambda_2 > 0, \) then
\[\lambda_{\text{min}}(P_W) = 1, \quad \lambda_{\text{max}}(P_W) = \max \{ 1 + K_{\Delta p}^2, 2 + (\lambda_1 - K_{\Delta p})^2 \}. \]
\[(35) \]
From \((34) \) and \((35) \) it follows
\[\alpha = \frac{1}{2}, \quad \bar{\alpha} = \frac{1}{2} \max \{ 1 + K_{\Delta p}^2, 2 + (\lambda_1 - K_{\Delta p})^2 \}. \]
\[(36) \]
The time derivative of \(W_i \) in \((31) \) verifies:
\[\dot{W}_i = -\frac{1}{2}K_{\Delta p}(\Delta p_i - \Delta \tilde{p}_i)^2 - \frac{1}{2}K_{\Delta v}(\Delta v_i - \Delta \tilde{v}_i)^2

- \lambda_1\rho_{1,i}^2 - \lambda_2\rho_{2,i}^2 + \rho_{1,i}\rho_{2,i}

+ \rho_{2,i}(a\psi_{\Delta p}^{-1} + b\psi_{\Delta v}^{-1}) \]
\[= -\tilde{\chi}_i^T \begin{bmatrix} q_1 & 2K_{\Delta p}K_{\Delta v} & q_2 & 2K_{\Delta p}K_{\Delta v} \\
0 & K_{\Delta v} & q_3 & 2K_{\Delta v} \\
0 & 0 & q_4 & q_5 \\
0 & 0 & 0 & \lambda_2 + K_{\Delta v} \end{bmatrix} \tilde{\chi}_i \]
\[q_{\text{W}} \]
\[+ |\tilde{\chi}_i|(a|\psi_{\Delta p}^{-1}| + b|\psi_{\Delta v}^{-1}|) \]
\[\leq -\alpha |\tilde{\chi}_i|^2 + |\tilde{\chi}_i|(a|\psi_{\Delta p}^{-1}| + b|\psi_{\Delta v}^{-1}|) \]
\[(37) \]
where
\[\alpha = \lambda_{\text{min}}(Q_W) = \min \{ q_1, K_{\Delta v}, q_4, \lambda_2 + K_{\Delta v} \}, \]
\[(38) \]
with
\[q_1 = K_{\Delta p}(1 + K_{\Delta p}K_{\Delta v}), \]
\[q_2 = 2K_{\Delta p}(1 + K_{\Delta v}(K_{\Delta p} - \lambda_1)), \]
\[q_3 = 2K_{\Delta v}(K_{\Delta p} - \lambda_1), \]
\[q_4 = K_{\Delta p} + \lambda_1 + K_{\Delta v}(\lambda_1 - K_{\Delta p})^2, \]
\[q_5 = 1 - 2K_{\Delta v}(K_{\Delta p} - \lambda_1). \]
We proceed to prove some inequalities with respect to functions \(\psi_{\Delta p}^i \) and \(\psi_{\Delta v}^i \) by exploiting the variance property given below. Let \(l \in \{ 1, ..., m \} \) and \(y_l \in \mathbb{R} \). Then, the variance with respect to the set of values \(y_l \) satisfies the property
\[\sigma_y^2 \leq \frac{1}{4}(\max y_l - \min y_l)^2. \]
\[(39) \]
Since we consider the dynamics in \((24) \) and \((25) \) with respect to \(\chi_i = \chi_i - \chi_{e,i}, \) let us define \(\Delta \tilde{p}_i = \Delta p_i - \tilde{p}_i, \) then
\[|\psi_{\Delta p}^i| \leq \gamma_{\Delta p}\sqrt{(\Delta \tilde{p}_i)^2} \]
\[\leq \frac{1}{2}\gamma_{\Delta p}\max_{j=0,\cdots,i} |\Delta \tilde{p}_j| \]
\[\leq \gamma_{\Delta p}\max_{j=0,\cdots,i} |\tilde{\chi}_j| \]
\[(40) \]
where we have exploited the relationship
\[\max_{j=0,\cdots,i} |\Delta \tilde{p}_j| \leq \gamma_{\Delta p}|\Delta \tilde{p}_j| \]
\[\lim_{j=0,\cdots,i} |\Delta \tilde{p}_j| \leq \max_{j=0,\cdots,i} |\tilde{\chi}_j|. \]
By applying the same methodology, is proven the inequality
\[|\psi_{\Delta v}^i| \leq \gamma_{\Delta v}\max_{j=0,\cdots,i} |\tilde{\chi}_j|. \]
\[(41) \]
Then,
\[a|\psi_{\Delta p}^i| + b|\psi_{\Delta v}^i| \leq (a\gamma_{\Delta p} + b\gamma_{\Delta v}) \max_{j=0,\cdots,i} |\tilde{\chi}_j|. \]
\[(42) \]
Define
\[d = a\gamma_{\Delta p} + b\gamma_{\Delta v} > 0, \quad \Upsilon \in (0,1), \]
\[(43) \]
then for the time derivative of \(W_i \) in \((37) \) the following holds
\[\dot{W}_i \leq -\alpha |\tilde{\chi}_i|^2 + \frac{1}{2}d|\tilde{\chi}_i| + \frac{1}{2}\Upsilon|\tilde{\chi}_i|^2 \]
\[\leq -(1 - \Upsilon)a|\tilde{\chi}_i|^2, \quad \forall |\tilde{\chi}_i| \geq \frac{d}{\alpha \Upsilon} \max_{j=0,\cdots,i-1} |\tilde{\chi}_j|. \]
\[(44) \]
Since \(\alpha > 0, \) the inequality in \((44) \) satisfies the Input-to-State Stability (ISS) condition (see [18]). According to [18, Theorem 4.19], the inequality in \((30) \) is verified. Moreover,
\[\gamma(s) = \bar{\gamma}s \forall s \geq 0, \quad \bar{\gamma} = \sqrt{\frac{\alpha}{2}} \frac{d}{\alpha \Upsilon} > 0. \]
\[(45) \]
Since the parameters \(a, b \geq 0 \) in the dynamics of \(\rho_i \) in \((23) \) can be arbitrarily selected, the constant \(d \) defined in \((43) \) can be chosen such that \(\bar{\gamma} \) in \((45) \) belongs to \((0,1) \).
B. Proof of Theorem 7

The first part of the proof is based on the forward recursive application of the ISS property in Lemma 1 through an inductive method. For \(i = 0 \):
\[
|\dot{x}_0(t)| \leq \beta(|x_0(0)|, t), \quad \forall \ t \geq 0.
\]
(46)
For \(i = 1 \):
\[
|\dot{x}_1(t)| \leq \beta(|x_1(0)|, t) + \tilde{\gamma}|\dot{x}_0(t)|, \quad \forall \ t \geq 0,
\]
(47)
where \(|\dot{x}_0(\cdot)|_{[0, t]} \leq \beta(|x_0(0)|, t)|\),. Defining \(|\dot{x}_M(0)| = \max\{|\dot{x}_0(0)|, |\dot{x}_1(0)|\} \), then for both \(i = 0 \) and \(i = 1 \):
\[
|\dot{x}_0(t)| \leq \beta(|\dot{x}_M(0)|, 0), \quad \forall \ t \geq 0,
\]
(48)
\[
|\dot{x}_1(t)| \leq \beta(|\dot{x}_M(0)|, 0)(1 + \tilde{\gamma}), \quad \forall \ t \geq 0.
\]
(49)
For \(i = 2 \):
\[
|\dot{x}_2(t)| \leq \beta(|\dot{x}_2(0)|, t) + \tilde{\gamma} \max_{j=0,1,2} |\dot{x}_j(0)|, \quad \forall \ t \geq 0.
\]
(50)
Defining \(|\dot{x}_M(0)| = \max_{j=0,1,2} |\dot{x}_j(0)| \),, since \(\tilde{\gamma} > 0 \), then
\[
|\dot{x}_0(t)| \leq \beta(|\dot{x}_M(0)|, 0)(1 + \tilde{\gamma}), \quad \forall \ t \geq 0,
\]
(51)
\[
|\dot{x}_1(t)| \leq \beta(|\dot{x}_M(0)|, 0)(1 + \tilde{\gamma}), \quad \forall \ t \geq 0.
\]
(52)
and
\[
|\dot{x}_2(t)| \leq \beta(|\dot{x}_M(0)|, 0)(1 + \tilde{\gamma} + \tilde{\gamma}^2), \quad \forall \ t \geq 0.
\]
(53)
By recursively applying these steps, and since \(\tilde{\gamma} \in (0, 1) \) for hypothesis, for each \(i \in I_0^n \) we state:
\[
|\dot{x}_i(t)| \leq \beta\left(\max_{j=0,\ldots,i} |\dot{x}_j(0)|, 0\right) \sum_{j=0}^{i} \tilde{\gamma}^j
\]
\[
\leq \beta\left(\max_{j=0,\ldots,i} |\dot{x}_j(0)|, 0\right) \sum_{j=0}^{\infty} \tilde{\gamma}^j
\]
\[
\leq \frac{1}{1 - \tilde{\gamma}} \beta\left(\max_{j=0,\ldots,i} |\dot{x}_j(0)|, 0\right), \quad \forall \ t \geq 0.
\]
(54)
Then
\[
\max_{i \in I_0^n} |\dot{x}_i(t)| \leq \frac{1}{1 - \tilde{\gamma}} \beta\left(\max_{i \in I_0^n} |\dot{x}_i(0)|, 0\right), \quad \forall \ t \geq 0
\]
(55)
Define \(\omega(s) = \beta(s, 0), \ s \geq 0 \). By definition of \(KL \) functions, \(\omega \) is \(K_{\infty} \) and hence invertible. Since \(\delta \) holds for any \(t \geq 0 \), then
\[
\delta = \omega^{-1}((1 - \gamma)\epsilon), \quad \forall \ \epsilon \geq 0.
\]
(56)
The value of \(\delta \) in \(\delta e^{-1}((1 - \gamma)\epsilon) \) does not depend on the system dimension. From \(\delta \), \(\omega \), and \(\sigma \), String Stability is ensured according to Definition 1.

We focus now on the possibility to ensure Asymptotic String Stability. This second part of the proof is based on a composition of Lyapunov functions (see [18]). We consider the function \(W_i \) associated with the \(i \)-th dynamical system, for \(i \in I_0^n \), that is described in \(\delta \) and satisfies the condition in \(\delta \).

Let us consider the time derivative of \(W_i \) in \(\delta \). Since we consider the dynamics in \(\delta \) and \(\delta \) with respect to \(\hat{x}_i = \hat{x}_i - \hat{x}_c \), we define \(\Delta \hat{p}_i = \Delta \hat{p}_i - \Delta \hat{p}_c \), then for the macroscopic functions \(\psi_{\Delta p} \) and \(\psi_{\Delta v} \), the following inequalities are proved:
\[
|\psi_{\Delta p}| \leq \gamma_{\Delta p} \sqrt{\sigma_{\Delta p, i}}
\]
\[
= \gamma_{\Delta p} \left(\frac{1}{i + 1} \sum_{j=0}^{i} \Delta \hat{p}_j - \frac{1}{(i + 1)^2} \left(\sum_{j=0}^{i} \Delta \hat{p}_j \right)^2 \right)^{\frac{1}{2}}
\]
\[
\leq \gamma_{\Delta p} \frac{1}{\sqrt{i + 1}} \left(\sum_{j=0}^{i} |\Delta \hat{p}_j| \right)^{\frac{1}{2}}
\]
\[
\leq \gamma_{\Delta p} \frac{1}{\sqrt{i + 1}} \sum_{j=0}^{i} |\Delta \hat{p}_j| \]
(57)
where we have used the inequality \(|x|_2 \leq |x|_1\). In the same way we can prove that
\[
|\psi_{\Delta v}^i| \leq \gamma_{\Delta v} \frac{1}{\sqrt{i + 1}} \sum_{j=0}^{i} |\Delta v_j| \]
(58)
Then,
\[
a|\psi_{\Delta p}^i| + b|\psi_{\Delta v}^i| \leq \frac{1}{\sqrt{i + 1}} \left(a_{\Delta p} \sum_{j=0}^{i} |\Delta \hat{p}_j| + b_{\Delta v} \sum_{j=0}^{i} |\Delta v_j| \right)
\]
\[
= \frac{1}{\sqrt{i + 1}} \sum_{j=0}^{i} \left[\begin{array}{ccc} a_{\Delta p} & 0 & 0 \\ 0 & b_{\Delta v} & 0 \\ 0 & 0 & 0 \end{array} \right] \hat{x}_j \right|_1
\]
\[
\leq \frac{2}{\sqrt{i + 1}} \max_{i \in I_0^n} \left\{ a_{\Delta p}, b_{\Delta v} \right\} \sum_{j=0}^{i} |\hat{x}_j| \]
(59)
Let \(\hat{\chi} \) and \(\hat{\chi}_c \) be the extended lumped state of the platoon and the extended equilibrium point respectively, defined in a similar way as \(\delta \) and \(\delta \). Let us consider \(\hat{\chi} = \hat{\chi} - \hat{\chi}_c \) and the parameters \(d_i > 0 \) to define a composite function \(W_c(\hat{\chi}) \):
\[
W_c(\hat{\chi}) = \sum_{i=0}^{N} d_i W(\hat{\chi}_i).
\]
(60)
It clearly verifies
\[
\alpha_c |\hat{\chi}|^2 \leq W_c(\hat{\chi}) \leq \alpha_c |\hat{\chi}|^2
\]
(61)
where
\[
\alpha_c = \min_{i \in I_0^n} d_i, \quad \alpha_c = \max_{i \in I_0^n} d_i \]
(62)
The time derivative of \(W_c \) in \(\delta \) satisfies the inequality
\[
\dot{W}_c(\hat{\chi}) \leq \sum_{i=0}^{N} d_i \left[\begin{array}{ccc} -\alpha \hat{\chi}_i^2 + \sum_{j=0}^{i-1} \hat{k}_i \hat{x}_j \hat{x}_i \end{array} \right].
\]
(63)
where
\[\hat{k}_0 = 0, \quad \hat{k}_i = \frac{2}{\sqrt{i}} \max\{a\gamma_{\Delta p}, b\gamma_{\Delta v}\} > 0, \quad i \geq 1. \] (64)

Let us introduce the operator \(\phi : \mathbb{R}^{2N+1} \to \mathbb{R}^{N+1} \), defined as
\[\phi(\bar{x}) = ||\bar{x}_0|, |\bar{x}_1|, \ldots, |\bar{x}_N||^T. \] (66)

Then, equation (63) can be rewritten as
\[\dot{W}_c(\bar{x}) \leq -\frac{1}{2} \phi(\bar{x})^T(DS + S^TD)\phi(\bar{x}). \] (67)

where
\[D = \text{diag}(d_0, d_1, \ldots, d_N) \] (68)
and \(S \) is an \(N \times N \) matrix whose elements are
\[s_{ij} = \begin{cases} \alpha & i = j \\ -\hat{k}_i & i < j \\ 0 & i > j \end{cases} \] (69)

For \(\alpha > 0 \), each leading principal minor of \(S \) is positive and hence it is an \(M \)-matrix. By [18, Lemma 9.7] there exists a matrix \(D \) such that \(DS + S^TD \) is positive definite. Consequently, \(\dot{W}_c \) in (67) is negative definite. It follows that \(\dot{W}_c \) in (60) is a Lyapunov function for the overall platoon system described by (28). Therefore, there exists a \(K\mathcal{L} \) function \(\beta_c : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+ \) such that
\[|\bar{x}(t)| \leq \beta_c(|\bar{x}(0)|, t), \quad \forall \ t \geq 0. \] (70)

Condition in (70) ensures the asymptotic stability:
\[\lim_{t \to \infty} |\bar{x}_i(t)| = 0, \quad \forall \ i \in \mathcal{T}_N^0. \] (71)

The platoon system is proved to be String Stable by (55) and (56). Consequently, for each \(i \in \mathcal{T}_N^0 \), the state evolution \(|\bar{x}_i| \) is constrained by a bound that is independent from the system dimension. Furthermore, from (71) Asymptotic String Stability is ensured according to Definition 2.