Research Article

On Eternal Domination of Generalized $J_{s,m}$

Ramy Shaheen, Mohammad Assaad, and Ali Kassem

Department of Mathematics, Faculty of Science, Tishreen University, Lattakia, Syria

Correspondence should be addressed to Mohammad Assaad; mohammadassaad1@gmail.com

Received 3 September 2020; Accepted 5 January 2021; Published 18 March 2021

Academic Editor: Frank Werner

1. Introduction

The term graph protection refers to the process of placing guards or mobile agents in order to defend against a sequence of attacks on a network. Go to [1–5] for more background of the graph protection problem. In 2004, Burger et al. [2] introduced the concept of eternal domination. Goddard et al. [3] introduced the "all guards move model" and determined general bounds of $\gamma(G) \leq \gamma_m^\infty(G) \leq \alpha(G)$, where $\alpha(G)$ denotes the independence number of G and $\gamma(G)$ denotes the domination number of G. The m-eternal domination numbers for G is a set of guards distributed on the vertices of a dominating set so that each vertex can be occupied by one guard only. These guards can defend any infinite series of attacks, an attack is defended by moving one guard along an edge from its position to the attacked vertex. We consider the "all guards move" of the eternal dominating set problem, in which one guard has to move to the attacked vertex, and all the remaining guards are allowed to move to an adjacent vertex or stay in their current positions after each attack in order to form a dominating set on the graph and at each step can be moved after each attack. The "all guards move model" is called the m-eternal domination model. The size of the smallest m-eternal dominating set is called the m-eternal domination number and is denoted by $\gamma_m^\infty(G)$. In this paper, we find the domination number of Jahangir graph $J_{s,m}$ for $s \equiv 1, 2 \pmod{3}$, and the m-eternal domination numbers of $J_{s,m}$ for s, m are arbitraries.

A generalized Jahangir graph $J_{s,m}$ for $m \geq 2$ is a graph on $sm + 1$ vertices, i.e., a graph consisting of a cycle C_{sm} with one additional vertex which is adjacent to m vertices of C_{sm} at the distance s from each other on C_{sm}, see [7] for more information on the Jahangir graph. Let v_{im+1} be the label of the central vertex and v_1, v_2, \ldots, v_{sm} be the labels of the vertices that incident clockwise on cycle C_{sm} so that $\deg(v_1) = 3$. We will use this labeling for the rest of the paper. The vertices that are adjacent to v_{im+1} have the labels $v_1, v_1+1, v_1+2, \ldots, v_{1+(m-1)}$. We denote the set $\{v_1, v_1+1, v_1+2, \ldots, v_{1+(m-1)}\}$ by R. So, $R = \{v_{1+is} : i = 0, 1, \ldots, m-1\}$.

Mtarneh, Hasni, Akhbari, and Movahedi claim to have found the domination number of $J_{s,m}$ in [8] as follows:

Theorem 1 [8]. For $s, m \geq 2$, $\gamma(J_{s,m}) = [sm/3]$.

However, in this paper, we will prove that this theorem does not hold when $s \equiv 1, 2 \pmod{3}$.

Theorem 2 [3].

$$\gamma_m^\infty(C_n) = \left\lceil \frac{m}{3} \right\rceil.$$

(1)

In a previous paper, we found that
Theorem 3 [9].

\[
y_m^{\text{sm}}(J_{2,m}) = \begin{cases}
3m = 3, \\
y(J_{2,m}): m \in \{2, 4, 5, 6, 7, 9\}, \\
\left\lceil m \right\rceil + 2 & \text{for } m \geq 8 \text{ and } m \neq 9.
\end{cases}
\]

(2)

Theorem 4 [9]. For \(m \geq 2 \), \(y_m^{\text{sm}}(J_{3,m}) = m + 1 \).

2. Main Results

In this section, we prove that Theorem 1 does not hold if \(s \equiv 1, 2(\text{mod } 3) \), and we find \(y(J_{s,m}) \) in these cases; then, we find \(y_m^{\text{sm}}(J_{s,m}) \) for \(s \equiv 0, 1(\text{mod } 3) \) and arbitrary \(m \). We also give an upper and a lower bound for the \(m \)-eternal domination number of \(I_{s,m} \) for \(s \equiv 2(\text{mod } 3) \) and arbitrary \(m \).

Proposition 5. The \(\text{sm}/3 \)-dominating set of \(I_{s,m} \) is unique for \(s \equiv 0 \pmod{3} \).

Proof. Let \(D_0 \) be a dominating set of \(I_{s,m} \) with cardinality \(\text{sm}/3 \). Since \(s \equiv 0 \pmod{3} \), then \(sm \equiv 0 \pmod{3} \); therefore, \([\text{sm}/3] = \text{sm}/3 \). We imply that the vertices of \(R \) that are dominated by \(v_{\text{sm}+1} \) separate the cycle \(C_{\text{sm}} \) into \(m \) paths each of which has \(s-1 \) vertices and needs \([s-1/3] \) vertices to dominate its vertices. If \(v_{\text{sm}+1} \in D_0 \), then we need at least \(m[s-1/3] = \text{sm}/3 \) vertices to dominate the \(m \) non-dominated paths of \(C_{\text{sm}} \), which means we will be needing \([\text{sm}/3] + 1 \) vertices, and that is a contradiction. This means \(D_0 \not\subseteq V(C_{\text{sm}}) \). We have three sets of cardinality \(\text{sm}/3 \) that can dominate the cycle \(C_{\text{sm}} \) when \(sm \equiv 0 \pmod{3} \). They are

\[
S_1 = \{v_1, v_4, \ldots, v_{\text{sm} - 2}\} \text{ for } i = 0, 1, \ldots, \frac{\text{sm}}{3} - 1,
\]

\[
S_2 = \{v_2, v_5, \ldots, v_{\text{sm} - 1}\} \text{ for } i = 0, 1, \ldots, \frac{\text{sm}}{3} - 1,
\]

\[
S_3 = \{v_3, v_6, \ldots, v_{\text{sm}}\} \text{ for } i = 0, 1, \ldots, \frac{\text{sm}}{3} - 1.
\]

(3)

However, \(D_0 \) must contain at least one vertex adjacent to vertex \(v_{\text{sm}+1} \) to dominate it. Since \(s \equiv 0 \pmod{3} \), then \(s = 3k : k = 1, 2, \ldots, (s/3) \). Since \(s = 3k \), then we can obviously see that \(R = \{v_{1,3k} : i = 0, 1, \ldots, m - 1 \text{ and } k = 1, 2, \ldots, m - 1\} \). However, considering \(ik > k \) for \(k > 1 \), then it is obvious that the set \(R \subseteq S_1 \), therefore \(S_1 \cap R = S_2 \cap R = R_1 \), and \(S_2 \cap R = \emptyset \). Which means only \(S_1 \) dominates both the cycle \(C_{\text{sm}} \), and the vertex \(v_{\text{sm}+1} \) at the same time. Therefore, \(D_0 = S_1 \), and this set is unique.

Theorem 6. \(y(J_{s,m}) = m[s/3] + 1 \) if \(s \equiv 1 \pmod{3} \).

Proof. Let \(S \) be a set of cardinality \(m(s - 1/3) + 1 \). Let \(v_{\text{sm}+1} \in S \). We imply that the vertices of \(R \) that are dominated by \(v_{\text{sm}+1} \) separate the cycle \(C_{\text{sm}} \) into \(m \) paths each of which has \(s-1 \) vertices and needs \([s-1/3] \) vertices to dominate its vertices. We denote these paths by \(T_j : i = 1, \ldots, m \). Since \(s \equiv 1 \pmod{3} \), then \(s - 1 \equiv 0 \pmod{3} \); therefore, \(m(s - 1/3) = m(s - 1/3) \) and \(\{T_i\} \equiv 0 \pmod{3} \). Let \(S_j : i = 1, \ldots, m \) be the family of dominating sets of paths \(T_j : i = 1, \ldots, m \), respectively. We know that for an arbitrary path \(T_k \), the dominating set is defined as \(S_k = \{v_{(k-1)+3v} : v_{(k-1)+3v} \in \{v_{k,2}\}\} \), which means \(S = \bigcup_{k=1}^m \{v_{\text{sm}+1}\} \) is a dominating set of \(I_{s,m} \) with cardinality \(m(s - 1/3) + 1 \). It is known that the \(k/3 \)-dominating set of a path \(P_k : k \equiv 0 \pmod{3} \) is unique; therefore, \(S \) is unique because each of \(S_j : i = 1, \ldots, m \) is unique. Let us prove that whatever set \(B \) which with cardinality \(m(s - 1/3) \) is not enough to dominate \(I_{s,m} \). We consider the following cases, as illustrated in Figure 1 for \(J_{7,4} \).

Case 1. \(v_{\text{sm}+1} \in B \).

In this case, we only have \(m(s - 1/3) - 1 \) vertices to dominate \(T_i : i = 1, \ldots, m \) which is impossible because it leaves one path \(T_k \) with \((s - 1/3) - 1 \) dominating vertices, which means three vertices of \(T_k \) will not be dominated, and that is a contradiction.

Case 2. \(v_{\text{sm}+1} \notin B \).

In this case, \(C \subseteq V(C_{\text{sm}}) \). We know that \(y(C_{\text{sm}}) = [\text{sm}/3] \). However, \([\text{sm}/3] \) is one of the following:

\[
\frac{[\text{sm}/3]}{3} = \begin{cases}
\left\lfloor \frac{sm}{3} \right\rfloor ; & sm \equiv 0 \pmod{3}, \\
\left\lfloor \frac{sm + 2}{3} \right\rfloor ; & sm \equiv 1 \pmod{3}, \\
\left\lfloor \frac{sm + 1}{3} \right\rfloor ; & sm \equiv 2 \pmod{3}.
\end{cases}
\]

(4)

It is obvious that \([\text{sm}/3] > m(s - 1/3)\) for all cases of \(sm \), which means \(B \) cannot dominate all the vertices of \(C_{\text{sm}} \). Therefore, \(B \) cannot dominate \(I_{s,m} \) entirely. From Case 1 and Case 2, we imply that \(y(J_{s,m}) > m(s - 1/3) \) for \(s \equiv 1 \pmod{3} \). Hence, \(m(s - 1/3) < y(J_{s,m}) \leq m(s - 1/3) + 1 \), which means \(y(J_{s,m}) = m(s - 1/3) + 1 \). However, \((s - 1/3) = [s/3] \) for \(s \equiv 1 \pmod{3} \); therefore, \(y(J_{s,m}) = [s/3] + 1 \) for \(s \equiv 1 \pmod{3} \).

Theorem 7. \(y(J_{s,m}) = [\text{sm} - [m/2]/3] + 1 \) if \(s \equiv 2 \pmod{3} \).

Proof. We know that a set \(D_0 \) of \([\text{sm}/3]\) vertices can dominate \(C_{\text{sm}} \). Let us identify \(D_0 \) as \(D_0 = A \cup \{v_{\text{sm}+1}\} \), where \(v_{\text{sm}+1} \in D_0 \). Since \(v_{\text{sm}+1} \), \(D_0 \) dominates \(v_{\text{sm}+1} \), which means it dominates \(I_{s,m} \) entirely. However, let us consider another dominating set \(D_1 \) of cardinality \([\text{sm}/3] + 1\), where \(D_1 = D_0 \cup \{v_{\text{sm}+1}\} \). We consider the two following cases:

Case 1. \(m \) is even.

Let us prove that we can derive a dominating set \(D_2 \) of cardinality \([\text{sm} - [m/2]/3] + 1\) from \(D_1 \). Since \(v_{\text{sm}+1} \in D_1 \), it is obvious that \(v_{\text{sm}+1} \) dominates all the vertices of \(R \); therefore, \(v_{\text{sm}+1} \) dominates \(v_1, v_4, v_7, v_{10}, \ldots \). Let us consider the first two paths \(T_1, T_2 \) identified in Theorem 6. We notice that \(D_1 \cap \)}
Let X be a set of cardinality $\lfloor sm - \lfloor m/2 \rfloor /3 \rfloor$, and we consider the following cases:

Case 1. $v_{sm+1} \in X$.

In this case, there will be at least two nondominated vertices of C_{sm} even after applying the strategy we showed earlier.

Case 2. $v_{sm+1} \notin X$.

In this case, $X \cap C_{sm} = X$, and since $|X| = \lfloor sm - \lfloor m/2 \rfloor /3 \rfloor$ and $\gamma(C_{sm}) = \lfloor sm/3 \rfloor$, we have a contradiction.

We conclude from both Case 1 and Case 2 that

$$\gamma(J_{s,m}) \geq \left\lfloor \frac{sm - \lfloor m/2 \rfloor}{3} \right\rfloor + 1 \text{ if } s \equiv 2 \pmod{3}. \quad (6)$$

From (5) and (6), we conclude that $\gamma(J_{s,m}) = \left\lfloor sm - \lfloor m/2 \rfloor/3 \right\rfloor + 1$ if $s \equiv 2 \pmod{3}$.

Theorem 8. $\gamma_m^N(J_{s,m}) \leq \lfloor sm/3 \rfloor + 1$ if $s \geq 3, m \geq 2$. \quad (7)

Proof. From Theorem 2, we have $\gamma_m^N(C_{sm}) = \lfloor sm/3 \rfloor$. With the right distribution of the required $\lfloor sm/3 \rfloor$ guards on the vertices of the outer cycle C_{sm} and placing one additional
Let v_{sm+1} be the unique dominating set of cardinality $m\lfloor s/3 \rfloor + 1$ for $J_{s,m}$ that was identified in Theorem 9. We position a guard on each vertex of S. Since S is unique, then it will fail at defending $J_{s,m}$ against the first attack. We study a series of arbitrary attacks on $J_{s,m}$ denoted by $(A_1, A_2, \cdots, A_i, \cdots)$, and we assume that A_1 occurs on $v_1 \in R$; then, the only guard capable of defending the attack is located on v_{sm+1} but moving this guard to v_1 would leave the remaining vertices of R unprotected. And since we cannot bring any other guard to v_{sm+1} to protect them which means $\gamma^\infty_m(J_{s,m}) \neq m\lfloor s/3 \rfloor + 1$, but from the definition of Jahangir graph and also from Theorem 8, we can easily find that $\gamma^\infty_m(J_{s,m}) \geq m\lfloor s/3 \rfloor + 1$ which means

$$\gamma^\infty_m(J_{s,m}) > m\left\lfloor \frac{s}{3} \right\rfloor + 1. \quad (8)$$

We add a guard on an arbitrary vertex $y \in R$ so the new set of guards consisting of $m\lfloor s/3 \rfloor + 2$ guards is $S \cup \{y\}$. We will denote this distribution of guards by M_y.

We notice that the vertices of R partition $J_{s,m}$ are into m subgraph of $s + 2$ vertices so that v_{sm+1} belongs to every subgraph. We denote these subgraphs by $SJ_i : i = 1, \ldots, m$. We have

$$SJ_1 = \{v_1, \ldots, v_{s+1}, v_{sm+1}\},$$
$$SJ_2 = \{v_{s+2}, \ldots, v_{2s+1}, v_{sm+1}\},$$
$$SJ_m = \{v_{(m-1)s+2}, \ldots, v_{sm}, v_{sm+1}\}.$$

We assume A_1 occurs on a vertex $v_i \in SJ_i$, and that $y \notin SJ_i$; then, the guard set on SJ_i is $\{v_j, v_{j+1}, \ldots, v_{s+1}\}$, and we consider the following cases:

Case 1. v_{i-1} is occupied.

In this case, the only guard capable of moving to v_i is located on v_{i-1} which leaves v_{i-2} unprotected and in order to protect it, the guard on v_{i-1} moves to v_{i-2}, as in Lemma 10 which all the guards located on vertices of T_1 move one step towards the higher index which leaves the end vertex with the lowest index v_2 unprotected, and the guard on v_{sm+1} is the only one capable of moving directly to v_1 to protect v_2. This is possible because of $v_1 \in R$, and this movement will make $R - \{v_1, y\}$ unprotected. To avoid that, we move the guard on y to v_{sm+1} to protect all the vertices of R. So, the new set of guards located on SJ_i is

$$W_1 = \{v_1, v_4, v_7, \ldots, v_{s-3}, v_s, v_{sm+1}\}. \quad (10)$$

We notice the attacks A_2, A_3, \cdots occur on SJ_1 as well. We have the previous distribution W_1 with the following distributions:

$$W_2 = \{v_2, v_5, v_8, \ldots, v_{s-2}, v_{s+1}, v_{sm+1}\},$$
$$W_3 = \{v_3, v_6, v_9, \ldots, v_{s-1}, v_{s+1}, v_{sm+1}\}. \quad (11)$$

Form an eternal dominating family on SJ_i for the following reasons:
(i) Each two sets of \(\{ W_1 , W_2 , W_3 \} \) are reachable from
each other in one step, see Figure 4.

\[
V(W_1) \cup V(W_2) \cup V(W_3) = V(S_{J_1}).
\]

(12)

It is obvious that \(W_3 \) is a special case of \(M_0 \), because
\(y \in \{ v_1 , v_{s+1} \} \) in \(W_3 \), while \(y \in R \) in \(M_0 \).

After a series of attacks on \(S_{J_1} \), we assume an attack \(A_i \)
occurs on \(v_k \in S_{J_k} : k \neq 1 \), because each one of \(W_1 , W_2 , W_3 \)
contains \(v_{sm+1} \) and a vertex of \(R (v_1 \) or \(v_{s+1}) \); then, it is possible
to repeat the same previous strategy to defend the attack \(A_i \)
and apply it to \(S_{J_k} \). When trying to defend \(A_i \), the guard
of \(R \) that moves to \(v_{1+rs(k-1)} \) to protect \(v_{2+rs(k-1)} \) is the vertex
\(y \in \{ v_1 , v_{s+1} \} \) taking into consideration that the distribu-
tions \(W_1 - y, W_2 - y \) can move back to \(M_0 \) in one step
while \(W_3 \) is already a special case of \(M_0 \). Without loss
of generality, this strategy applies to every subgraph \(S_{J_k} \),
and any series of attacks taking into consideration that
the proof does not change if \(y \in S_{J_1} \) when \(A_1 \) occurs (in
this case, we start at \(W_3 \) instead of \(M_0 \)).

Case 2. \(v_{s+1} \) is occupied.

By following the same process in Case 1 with one differ-
ence which is moving the guards of \(T_k \) towards the lower
index when defending \(A_1, v_s \) becomes unprotected, as in Case
1, and the guard on \(v_{sm+1} \) moves to \(v_{s+1} \) to protect \(v_s \), and \(y \)
moves to \(v_{sm+1} \) forming \(W_2 \), in a similar way to Case 1. \(W_1 \),
W_2, W_3 form an eternal dominating family on S_{I_1}, and the same argument about A_2 can be followed here.

Case 3. $v_i \in R$.

When A_1 occurs, we consider the following subcases:

Case 3(a). The current distribution is M_0, and then the guard set is $\{y\}. The guard on v_{sm+1} moves to v_i, the guard on y moves to v_{sm+1}, and the new set of guards is $S \cup \{v_i\}$; therefore, we remain in M_0.

Case 3(b). The current distribution is W_1 in the previously attacked subgraph, and let us assume this subgraph is S_{I_1} while the remaining subgraphs fall under M_0; then, the guard on v_{sm+1} moves to v_i, the guard on v_1 moves to v_{sm+1} to defend the attack, and the guards $W_1 - y$ move back to M_0 so the new set of guards is $S \cup \{v_i\}$; therefore, we remain in M_0. Without loss of generality, this strategy applies no matter which subgraph was attacked in the previous attack.

Case 3(c). The current distribution is W_2 in the previously attacked subgraph, and we use the same argument in Case 3(b).

From all the previous cases, we can see that $m \lfloor s/3 \rfloor + 2$ guards can eternally dominate $J_{s,m}$. Therefore,

$$y_m^c(J_{s,m}) \leq m \left\lfloor \frac{s}{3} \right\rfloor + 2. \quad (13)$$

From (8) and (13), we conclude that $y_m^c(J_{s,m}) = m \lfloor s/3 \rfloor + 2$ for $s \equiv 1 \pmod{3}$. Figure 4 also demonstrates how 10 guards can move directly from any guard distribution of S_{I_1} to the distribution W_1 of S_{I_1}, and this direct transportation can occur from every guard distribution of any subgraph S_{I_k} to all other distributions of every subgraph $S_{I_k} : 2 \leq k \leq m$.

Corollary 12.

$$y_m^c(J_{s,m}) = \begin{cases} \left\lfloor \frac{sm}{3} \right\rfloor + 1 & \text{for } s \equiv 0 \pmod{3}, \\ m \left\lfloor \frac{s}{3} \right\rfloor + 2 & \text{for } s \equiv 1 \pmod{3}, \end{cases} \quad (14)$$

$$\left\lfloor \frac{sm - \lfloor m/2 \rfloor}{3} \right\rfloor + 1 \leq y_m^c(J_{s,m}) \leq \left\lfloor \frac{sm}{3} \right\rfloor + 1.$$

Proof. We conclude 1 by combining Theorems 9 and 11. We know that $y_m^c(J_{s,m}) \geq y(J_{s,m})$; therefore, from Theorems 7 and 8, we conclude 2.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Faculty of Science, Tishreen University, Syria.
References

[1] W. F. Klostermeyer and C. M. Mynhardt, "Protecting a graph with mobile guards," *Applicable Analysis and Discrete Mathematics*, vol. 10, no. 1, pp. 1–29, 2016.

[2] A. P. Burger, E. J. Cockayne, W. R. Grundlingh, C. M. Mynhardt, J. H. van Vuuren, and W. Winterbach, “Infinite order domination in graphs,” *Journal of Combinatorial Mathematics and Combinatorial Computing*, vol. 50, pp. 179–194, 2004.

[3] W. Goddard, S. M. Hedetniemi, and S. T. Hedetniemi, “Eternal security in graphs,” *Journal of Combinatorial Mathematics and Combinatorial Computing*, vol. 52, pp. 169–180, 2005.

[4] S. Finbow, M. E. Messinger, and M. F. Van Bommel, “Eternal domination in $3 \times n$ grids,” *The Australasian Journal of Combinatorics*, vol. 61, pp. 156–174, 2015.

[5] M. E. Messinger and A. Z. Delaney, “CLOSING THE GAP: eternal domination on $3 \times n$ Grids,” *Contributions to Discrete Mathematics*, vol. 12, no. 1, pp. 47–61, 2017.

[6] J. Goldwasser, W. Klostermeyer, and C. M. Mynhardt, “Eternal protection in grid graphs,” *Utilitas Mathematica*, vol. 91, pp. 47–64, 2013.

[7] D. A. Mojdeh and A. N. Ghameshlou, “Domination in Jahangir Graph $J_{2,n}$,” *International Journal of Contemporary Mathematical Sciences*, vol. 2, no. 24, pp. 1193–1199, 2007.

[8] S. Mtarneh, R. Hasni, M. H. Akhbari, and F. Movahedi, “Some domination parameters in generalized Jahangir graph $J_{n,m}$-Malaysian,” *Journal of Mathematical Sciences*, vol. 13, pp. 113–121, 2019.

[9] R. Shaheen, M. Assaad, and A. Kassem, “Domination and eternal domination of Jahangir graph,” *Open Journal of Discrete Mathematics*, vol. 9, no. 3, pp. 68–81, 2019.