RETROSPECTIVE ANALYSIS

Tumor aggressiveness risk factors in the differentiated thyroid carcinoma

Lukas J1,2, Hitnausova B3, Jiskra J4, Syrucek M5

Department of Otolaryngology – Head and Neck Surgery, Na Homolce Hospital, Prague, Czech Republic.
jluk@seznam.cz

ABSTRACT

BACKGROUND: The differentiated thyroid carcinoma (DTC) is the most frequent malignancy in endocrinology (95 %). Our aim was to retrospectively compare risk factors of tumor aggressiveness and history of thyroid disease in patients with conventional DTC and differentiated thyroid microcarcinoma (DTMC).

METHODS: Retrospective analysis of 167 patients after total thyroidectomy with a histologically confirmed DTC, of which 83 patients with conventional DTC (> 1 cm) and 84 with DTMC (≤ 1 cm). The analyzed factors were tumor size, its aggressiveness (i.e. multifocal or bilateral occurrence, angioinvasion, extracapsular growth, presence of cervical lymph node metastases, distant metastases, and early local relapse) and medical history of thyroid diseases.

RESULTS: In the DTMC group, there were 80/84 (95.2 %) papillary carcinomas compared with 58/83 (69.9 %) in the conventional DTC group (p = 0.001). Patients with DTMC were significantly older than those with conventional DTC (p = 0.006). In the conventional DTC group, there was a significantly higher occurrence of angioinvasion and extracapsular growth (p = 0.001), cervical lymph node metastases (p = 0.013), relapse (p = 0.018), and distant metastases (p = 0.007), compared with the DTMC group.

CONCLUSION: In patients with DTMC, there was a significantly lower presence of risk factors of tumor aggressiveness, compared with the conventional DTC group (Tab. 2, Ref. 17). Text in PDF www.elis.sk.

KEY WORDS: differentiated thyroid cancer, microcarcinoma, thyroidectomy.

Introduction

The differentiated thyroid carcinoma (DTC) constitutes 95 % of all endocrine cancers (1). Although the disease relapse is reported in 15–27 % of cases (2), mortality reaches only 0.5 % (3). Risk factors include previous radiation exposure, long-term increased TSH levels, iodine deficiency, and positive history of the disease in the family. Furthermore, certain significance is attributed to the total environmental pollution, so-called endocrine disruptors (4). The differentiated thyroid carcinoma is derived from follicular epithelium and its most common histological form is the papillary carcinoma (80 % of cases). In the past 40 years, there has been a general increase in the newly diagnosed differentiated thyroid carcinomas with tumors sized ≤ 1 cm, so-called microcarcinomas (DTMC). Even though these are little advanced cancers with a very good prognosis, there have been reported some cases with aggressive behavior (5, 6).

The aim of this retrospective study was to determine the occurrence of DTC and percentage of DTMC in operated patients and analyze the risk factors that can have an impact on aggressive behavior of this cancer, as well as to compare the results in DTMC and conventional DTC.

Material and methods

We carried out a retrospective analysis of 167 patients with histopathological findings of a differentiated thyroid carcinoma subjected to total thyroidectomy (TTE) performed in the Department of Otolaryngology – Head and Neck Surgery, Na Homolce Hospital in Prague. According to the TNM Classification of Malignant Tumours, 7th Edition, Czech version 2011, patients were divided into two groups: differentiated carcinoma sized > 1 cm (conventional DTC) and differentiated carcinoma sized ≤ 1 cm.
(DTMC – differentiated thyroid microcarcinoma). In addition to tumor size, other risk factors were analyzed, such as tumor aggressiveness [multifocal presence of tumor lesions (unilateral/bilateral), extracapsular growth, presence of angioinvasion, finding of cervical lymph node and distant metastases and early local relapse] and history of thyroid diseases (chronic lymphocytic thyroiditis, euthyroid nodular goiter, and thyrotoxicosis) at the time of diagnosis. The early local tumor relapse and presence of regional nodular or distant metastases were determined on the basis of positive findings by US, CT and PET/CT imaging methods and positive serum concentration of thyroglobulin (Tg) > 2.0 ng/ml under postoperative hypothyroidism or after rhTSH stimulation following the total thyroidectomy 6–12 months after the surgery.

Results

During the monitored period of 2005–2014, the total thyroidectomy (TTE) was carried out in 874 patients. The differentiated thyroid carcinoma was verified in 167 patients (19.1 %); one-stage or two-stage TTE was carried out in 132 (79 %) and 35 cases, respectively. DTMC was verified in 84 operated patients (50.3 %), and conventional DTC in 83 patients (49.7 %). In DTMC, the papillary type of carcinoma was verified in 80 cases (95.2 %), compared with 58/83 (69.9 %) in conventional DTC (p=0.001). In the DTMC group, there were 62 patients older than > 45 years (73.8 %), compared with 38 patients in the conventional DTC group (p=0.001). In the DTMC group, there were 62 patients older than ≥ 45 years (73.8 %), compared with 38 patients in the conventional DTC group (p=0.001). Out of the total number of 167 D TC patients, there were 133 women (79.6 %) and the men/women ratio was 4:1. Nevertheless, in the sex representation, there was no significant difference between both groups (p=0.254). The average age of patients with DTMC was 52.6 years (range 17–76 years) as compared with 46.5 years (range 22–76 years) in conventional DTC (p=0.006). An average DTC size was 23.4±10.7 mm and DTMC size was 5.6±2.7 mm. In the conventional DTC, there were significantly higher frequencies of angioinvasion and extracapsular growth (p=0.001), cervical lymph node metastases (p=0.013), relapse (p=0.018) and distant metastases (p=0.007) compared with DTMC (Tab. 1). We did not find significant differences in the presence of multifocality (p=0.219) or bilaterality (p=0.532) and history of thyroid diseases in both groups (Tab. 2).

Discussion

The differentiated thyroid microcarcinoma (DTMC) is almost always of papillary form (7), which was also confirmed by our analysis. In most patients, these are cancers with a very good prognosis, even in the case of cervical lymph node metastases (8). The long-term prognosis for patients with DTMC is so good that it is difficult to achieve further significant prognosis improvement and the occurrence of relapse is low (about 3 %) (9). One of the explanations of such good outcomes is that the presence of risk factors is undoubtedly connected with the tumor size. Some authors consider DTMC to be of a clinically low significance and suggest

| Tab. 1. Clinicopathological and demographic data of patients in the study. |
|--------------------------|--------------------------|--------------------------|-----|
| Age | Total (n=167) | DTC (n=83) | DTMC (n=84) | p value |
| 49.6±14.3 | 46.5±14.4 | 52.6±13.6 | 0.006 |
| Sex – women – n (%) | 133 (79.6%) | 63 (75.9%) | 70 (83.3%) | 0.254 |
| Average tumor size (mm) | 14.4±11.8 | 23.4±10.7 | 5.6±2.7 | 0.001 |
| Histological type – n (%) | | | | |
| Papillary carcinoma | 138 (82.6%) | 58 (69.9%) | 80 (95.2%) | 0.001 |
| Classic papillary v. | 75 (44.9%) | 31 (37.3%) | 45 (53.4%) | |
| Follicular v. | 55 (32.9%) | 24 (28.9%) | 31 (36.9%) | |
| Oncocytic v. | 2 (1.2%) | 1 (1.2%) | 1(1.2%) | |
| Papillo-follicular v. | 6 (3.6%) | 2 (2.4%) | 4 (4.8%) | |
| Follicular carcinoma | 26 (15.6%) | 23 (27.7%) | 3 (3.6%) | 0.001 |
| Minimally invasive v. | 20 (12.0%) | 17 (20.5%) | 3 (3.6%) | |
| Highly invasive v. | 1 (0.6%) | 1 (1.2%) | 0 | |
| Oncocytic carcinoma | 5 (2.9%) | 5 (6.0%) | 0 | |
| PTC+FTC | 1 (0.6%) | 1 (1.2%) | 0 | |
| PTC+MTC | 1 (0.6%) | 0 | 1 (1.2%) | |
| Poorly differentiated | 1 (0.6%) | 1 (1.2%) | 0 | |
| Multifocality – n (%) | 43 (25.7%) | 25 (30.1%) | 18 (21.4%) | 0.219 |
| Bilaterality | 25 (58.1%) | 16 (64%) | 9 (50.0%) | 0.532 |
| Angioinvasion | 22 (13.2%) | 18 (21.7%) | 4 (4.8%) | 0.001 |
| Cervical lymph node metastases | 18 (10.8%) | 14 (16.9%) | 4 (4.8%) | 0.013 |
| Extracapsular growth | 38 (22.7%) | 32 (38.5%) | 6 (7.1%) | 0.001 |
| Relapse | 9 (5.4%) | 8 (9.6%) | 1 (1.2%) | 0.018 |
| Distant metastases | 7 (4.2%) | 7 (8.4%) | 0 | 0.007 |

| Tab. 2. Preoperative benign thyroid disease and incidence of DTC and DTMC. |
|--------------------------|--------------------------|--------------------------|-----|
| Preoperative thyroid disease | DTC | DTMC | p value |
| Chronic lymphocytic thyroiditis | 29 (34.5%) | 33 (39.3%) | 0.674 |
| Euthyroid nodular goiter uni/multi-nodular | 53 (63.9%) | 46 (54.8%) | 0.299 |
| Thyrotoxicosis, toxic adenoma | 1 (1.2%) | 5 (5.9%) | 0.218 |
renaming it to papillary thyroid microtumor (10). At present, the
radioiodine ablation is indicated in the case of presence of unfa-
vorable prognostic factors such as local extrathyroidal invasion,
angioinvasion, tumor multifocality and presence of lymph node
metastases. We did not find any significant difference between
multifocal tumors and bilaterality. However, some authors such as
Kuhn et al (11) and others (12) imply that it is the multifocal-
ity of the papillary microcarcinoma that poses the increase in the
risk of distant metastases. There can be three different forms of
the disease relapse, namely lymph node metastases, local spread,
and presence of distant metastases (13). The relapse occurs more
often in regional lymph nodes, which is usually caused by the
indolent behavior of the disease in these regional lymph nodes,
while the relapse in them is usually identified in 3–4 years. This is
most probably the disease persistence with a possible spread rather
than a true relapse (14). Local relapse and metastases in regional
lymph nodes represent a different entity, both biologically and
in connection with repeated surgery. Compared with a selective
neck dissection, a repeated surgery of the local relapse is associ-
ated with a higher risk of postoperative complications, especially
with an injury of the recurrent laryngeal nerve, parathyroid glands,
and trachea. The presence of cervical lymph node metastases,
and small-scale surgery rather than complete thyroidectomy have been
regarded as significant prognostic factors of relapse and mortality
in the papillary thyroid microcarcinoma (15).

Conclusion

Although the patients with DTMC were more often older than
45 years, they had significantly lower occurrence of angioinvasion,
extracapsular growth, cervical lymph node metastases, and early
relapse in comparison with those with conventional DTC. We did
not find any significant differences in the occurrence of multi-
focality, bilaterality and preoperative thyroid disease. Our results
comply with the recommendations stipulated in the guidelines for
the diagnosis and therapy of differentiated carcinoma which allow
less radical surgeries than total thyroidectomy, i.e. hemithyroid-
edectomy, in the absence of risk factors for tumor aggressiveness,
as well as in case of a solitary and well-differentiated thyroid mi-
icrocarcinoma (16, 17).

References

1. Sipos JA, Mazaferri EL. Thyroid cancer epidemiology and prognostic
variables. Clin Oncol 2010; 22: 395–404.
2. Ortiz S, Rodríguez JM, Parrilla P, Pérez D, Moreno-Gallego A, Ríos
A, Soria T. Recurrent papillary thyroid cancer: analysis of prognostic fac-
tors including the histological variant. Eur J Surg 2001; 167: 406–412.
3. National Cancer Institute. SEER Stat Fact Sheets: Thyroid Cancer.
Available at: 2014 http://seer.cancer.gov/Starfacts/html/thyro.html.
4. Vřešek P. Thyroid cancer—an overview of diagnostics and treatment.
Postgrad Med 2013; 1: 78–83.
5. Pacini F. Thyroid microcarcinoma. Best Pract Res Clin Endocrinol
Metab 2012; 26: 421–429.
6. Roti E, Degli Uberti EC, Bondanelli M, Braverman LE. Thyroid
microcarcinoma: a descriptive and meta-analysis study. Eur J
Endocrinol 2008; 159: 659–673.
7. García-Mayor RV. Papillary thyroid microcarcinoma: How deal
this epidemic? Endocrinol Metab Int J 1(1): 0005. DOI:10.15406/
emij.2015.01.0005.
8. Piana S, Ragazzi M, Tailini G, de Biase D, Ciarrocchi A, Frasoldati
A, Rosai J. Papillary thyroid microcarcinoma with fatal outcome: evidence
of tumor progression in lymph node metastases: report of 3 cases, with
morphological and molecular analysis. Hum Pathol 2013; 44: 556–565.
9. Hay ID, Hutchinson ME, Gonzales T-Losada T, Melver B, Reinalda
ME et al. Papillary thyroid microcarcinoma: A study of 900 cases observed
in a 60-year period. Surgery 2008; 144: 980–987.
10. Rosai J, LiVolsi VA, Sobrinho-Simoes M, Williams ED. Renaming
papillary microcarcinoma of the thyroid gland: the Porto proposal. Int J
Surg Patho, 2003; 11: 249–251.
11. Kuhn E, Teller L, Pinana S, Rosai J, Merino MJ. Different clonal
origin of bilateral papillary thyroid carcinoma, with a review of the litera-
ture. Endocrine Pathol 2012; 23: 101–107.
12. Azaitou-Panayoitou K, Capezzoni M, Pacini F. Clinical features
and therapeutic implications of papillary thyroid microcarcinoma. Thyroid
2007; 17(11): 1085–1092.
13. Grant CS. Recurrence of papillary thyroid cancer after optimized
surgery. Gland Surgery 2015; 4 (1): 52–62.
14. Onkendi EO, McKenzie TJ, Richards ML et al. Reoperative ex-
perience with papillary thyroid cancer. World J Surg 2014; 38: 645–652.
15. Yu XM, Wan Y, Sippel RS, Chen H. Should all papillary thyroid mi-
crocarcinomas be aggressively treated? An analysis of 18.445 cases. Ann
Surg 2011; 254 (4): 653–660.
16. Pacini F, Schlumberger M., Dralle H et al. European consensus for
the management of patients with differentiated thyroid carcinoma of the
follicular epithelium. Eur J Endocrinol 2006; 154 (6):787–803.
17. Hay ID, Grant CS, Bergstrahl EJ et al. Unilateral total lobectomy:
is it sufficient surgical treatment for patients with AMES low-risk papillary
thyroid carcinoma? Surgery 1998; 124 (6): 958–964.

Received May 4, 2015. Accepted August 18, 2015.