Measurements of the Branching Fraction and CP-Violating Asymmetries of $B^0 \rightarrow K_S^0 \pi^0$ Decays

The BABAR Collaboration

June 11, 2018

Abstract

We present measurements of the branching fraction and time-dependent CP-violating (CPV) asymmetries in $B^0 \rightarrow K_S^0 \pi^0$ decays based on 227 million $\Upsilon(4S) \rightarrow B\bar{B}$ decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. We obtain a branching fraction $B(B^0 \rightarrow K^0 \pi^0) = (11.4 \pm 0.9 \pm 0.6) \cdot 10^{-6}$, the magnitude of the direct CPV asymmetry $C_{K_S^0 \pi^0} = 0.06 \pm 0.18 \pm 0.06$ and the magnitude of the CPV asymmetry in the interference between mixing and decay $S_{K_S^0 \pi^0} = 0.35^{+0.30}_{-0.33} \pm 0.04$, where the first error is statistical and the second systematic. All results are preliminary.

Submitted to the 32nd International Conference on High-Energy Physics, ICHEP 04, 16 August—22 August 2004, Beijing, China

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

Work supported in part by Department of Energy contract DE-AC03-76SF00515.
The BABAR Collaboration,

B. Aubert, R. Barate, D. Boutigny, F. Couderc, J.-M. Gaillard, A. Hicheur, Y. Karyotakis, J. P. Lees, V. Tisserand, A. Zghiche

Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France

A. Palano, A. Pompili

Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy

J. C. Chen, N. D. Qi, G. Rong, P. Wang, Y. S. Zhu

Institute of High Energy Physics, Beijing 100039, China

G. Eigen, I. Ofte, B. Stugu

University of Bergen, Inst. of Physics, N-5007 Bergen, Norway

G. S. Abrams, A. W. Borgland, A. B. Breon, D. N. Brown, J. Button-Shafer, R. N. Cahn, E. Charles, C. T. Day, M. S. Gill, A. V. Gritsan, Y. Groysman, R. G. Jacobsen, R. W. Kadel, J. Kadyk, L. T. Kerth, Yu. G. Kolomensky, G. Kukartsev, G. Lynch, L. M. Mir, P. J. Oddone, T. J. Orimoto, M. Pripstein, N. A. Roe, M. T. Ronan, V. G. Shelkov, W. A. Wenzel

Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA

M. Barrett, K. E. Ford, T. J. Harrison, A. J. Hart, C. M. Hawkes, S. E. Morgan, A. T. Watson

University of Birmingham, Birmingham, B15 2TT, United Kingdom

M. Fritsch, K. Goetzen, T. Held, H. Koch, B. Lewandowski, M. Pelizaeus, M. Steinke

Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany

J. T. Boyd, N. Chevalier, W. N. Cottingham, M. P. Kelly, T. E. Latham, F. F. Wilson

University of Bristol, Bristol BS8 1TL, United Kingdom

T. Cuhadar-Donszelmann, C. Hearty, N. S. Knecht, T. S. Mattison, J. A. McKenna, D. Thiessen

University of British Columbia, Vancouver, BC, Canada V6T 1Z1

A. Khan, P. Kyberd, L. Teodorescu

Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom

A. E. Blinov, V. E. Blinov, V. P. Druzhinin, V. B. Golubev, V. N. Ivanchenko, E. A. Kravchenko, A. P. Onuchin, S. I. Serednyakov, Yu. I. Skovpen, E. P. Solodov, A. N. Yushkov

Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia

D. Best, M. Bruinsma, M. Chao, I. Eschrich, D. Kirkby, A. J. Lankford, M. Mandelkern, R. K. Mommsen, W. Roethel, D. P. Stoker

University of California at Irvine, Irvine, CA 92697, USA

C. Buchanan, B. L. Hartfiel

University of California at Los Angeles, Los Angeles, CA 90024, USA
E. Treadwell
Florida A&M University, Tallahassee, FL 32307, USA

F. Anulli, R. Baldini-Ferroli, A. Calcaterra, R. de Sangro, G. Finocchiaro, P. Patteri,
I. M. Peruzzi, M. Piccolo, A. Zallo
Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy

A. Buzzo, R. Capra, R. Contri, G. Crosetti, M. Lo Vetere, M. Macri, M. R. Monge, S. Passaggio,
C. Patrignani, E. Robutti, A. Santroni, S. Tosi
Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy

S. Bailey, G. Brandenburg, K. S. Chaisanguanthum, M. Morii, E. Won
Harvard University, Cambridge, MA 02138, USA

R. S. Dubitzky, U. Langenegger
Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany

W. Bhimji, D. A. Bowerman, P. D. Dauncey, U. Egede, J. R. Gaillard, G. W. Morton, J. A. Nash,
M. B. Nikolic, G. P. Taylor
Imperial College London, London, SW7 2AZ, United Kingdom

M. J. Charles, G. J. Grenier, U. Mallik
University of Iowa, Iowa City, IA 52242, USA

J. Cochran, H. B. Crawley, J. Lamsa, W. T. Meyer, S. Prell, E. I. Rosenberg, A. E. Rubin, J. Yi
Iowa State University, Ames, IA 50011-3160, USA

M. Biasini, R. Covarelli, M. Pioppi
Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy

M. Davier, X. Giroux, G. Grosdidier, A. Höcker, S. Laplace, F. Le Diberder, V. Lepeltier,
A. M. Lutz, T. C. Petersen, S. Plaszczynski, M. H. Schune, L. Tantot, G. Wormser
Laboratoire de l’Accélérateur Linéaire, F-91898 Orsay, France

C. H. Cheng, D. J. Lange, M. C. Simani, D. M. Wright
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

A. J. Bevan, C. A. Chavez, J. P. Coleman, I. J. Forster, J. R. Fry, E. Gabathuler, R. Gamet,
D. E. Hutchcroft, R. J. Parry, D. J. Payne, R. J. Sloane, C. Touramanis
University of Liverpool, Liverpool L69 72E, United Kingdom

J. J. Back,¹ C. M. Cormack, P. F. Harrison,¹ F. Di Lodovico, G. B. Mohanty¹
Queen Mary, University of London, E1 4NS, United Kingdom

¹Now at Department of Physics, University of Warwick, Coventry, United Kingdom
C. L. Brown, G. Cowan, R. L. Flack, H. U. Flaecher, M. G. Green, P. S. Jackson,
T. R. McMahon, S. Ricciardi, F. Salvatore, M. A. Winter

University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX,
United Kingdom

D. Brown, C. L. Davis

University of Louisville, Louisville, KY 40292, USA

J. Allison, N. R. Barlow, R. J. Barlow, P. A. Hart, M. C. Hodgkinson, G. D. Lafferty, A. J. Lyon,
J. C. Williams

University of Manchester, Manchester M13 9PL, United Kingdom

A. Farbin, W. D. Hulsbergen, A. Jawahery, D. Kovalskyi, C. K. Lae, V. Lillard, D. A. Roberts

University of Maryland, College Park, MD 20742, USA

G. Blaylock, C. Dallapiccola, K. T. Flood, S. S. Hertzbach, R. Kofler, V. B. Koptchev,
T. B. Moore, S. Saremi, H. Staengle, S. Willocq

University of Massachusetts, Amherst, MA 01003, USA

R. Cowan, G. Sciolla, S. J. Sekula, F. Taylor, R. K. Yamamoto

Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, MA 02139,
USA

D. J. J. Mangeol, P. M. Patel, S. H. Robertson

McGill University, Montréal, QC, Canada H3A 2T8

A. Lazzaro, V. Lombardo, F. Palombo

Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy

J. M. Bauer, L. Cremaldi, V. Eschenburg, R. Godang, R. Kroeger, J. Reidy, D. A. Sanders,
D. J. Summers, H. W. Zhao

University of Mississippi, University, MS 38677, USA

S. Brunet, D. Côté, P. Taras

Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, QC, Canada H3C 3J7

H. Nicholson

Mount Holyoke College, South Hadley, MA 01075, USA

N. Cavallo,² F. Fabozzi,² C. Gatto, L. Lista, D. Monorchio, P. Paolucci, D. Piccolo, C. Sciacca

Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli,
Italy

²Also with Università della Basilicata, Potenza, Italy
S. Christ, G. Wagner, R. Waldi

Universität Rostock, D-18051 Rostock, Germany

T. Adye, N. De Groot, B. Franek, N. I. Geddes, G. P. Gopal, E. O. Olaiya

Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom

R. Aleksan, S. Emery, A. Gaidot, S. F. Ganzhur, P.-F. Giraud, G. Hamel de Monchenault, W. Kozanecki, M. Legendre, G. W. London, B. Mayer, G. Schott, G. Vasseur, Ch. Yèche, M. Zito

DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France

M. V. Purohit, A. W. Weidemann, J. R. Wilson, F. X. Yumiceva

University of South Carolina, Columbia, SC 29208, USA

D. Aston, R. Bartoldus, N. Berger, A. M. Boyarski, O. L. Buchmueller, R. Claus, M. R. Convery, M. Cristinziani, G. De Nardo, D. Dong, J. Dorfan, D. Dujmic, W. Dunwoodie, E. E. Elsen, S. Fan, R. C. Field, T. Glanzman, S. J. Gowdy, T. Hadig, V. Halyo, C. Hast, T. Hrynova, W. R. Innes, M. H. Kelsey, P. Kim, M. L. Kocian, D. W. G. S. Leith, J. Libby, S. Luitz, V. Luth, H. L. Lynch, H. Marsiske, R. Messner, D. R. Muller, C. P. O’Grady, V. E. Ozcan, A. Perazzo, M. Perl, S. Petrak, B. N. Ratchiff, A. Roodman, A. A. Sahnikov, R. H. Schindler, J. Schwiening, G. Simi, A. Snyder, A. Soha, J. Stelzer, D. Su, M. K. Sullivan, J. Va’vra, S. R. Wagner, M. Weaver, A. J. R. Weinstein, W. J. Wisniewski, M. Wittgen, D. H. Wright, A. K. Yarritu, C. C. Young

Stanford Linear Accelerator Center, Stanford, CA 94309, USA

P. R. Burchat, A. J. Edwards, T. I. Meyer, B. A. Petersen, C. Roat

Stanford University, Stanford, CA 94305-4060, USA

S. Ahmed, M. S. Alam, J. A. Ernst, M. A. Saeed, M. Saleem, F. R. Wappler

State University of New York, Albany, NY 12222, USA

W. Bugg, M. Krishnamurthy, S. M. Spanier

University of Tennessee, Knoxville, TN 37996, USA

R. Eckmann, H. Kim, J. L. Ritchie, A. Satpathy, R. F. Schwitters

University of Texas at Austin, Austin, TX 78712, USA

J. M. Izen, I. Kitayama, X. C. Lou, S. Ye

University of Texas at Dallas, Richardson, TX 75083, USA

F. Bianchi, M. Bona, F. Gallo, D. Gamba

Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy

L. Bosisio, C. Cartaro, F. Cossutti, G. Della Ricca, S. Dittongo, S. Grancagnolo, L. Lanceri, P. Poropat,5 L. Vitale, G. Vuagnin

Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy

5Deceased
R. S. Panvini

Vanderbilt University, Nashville, TN 37235, USA

Sw. Banerjee, C. M. Brown, D. Fortin, P. D. Jackson, R. Kowalewski, J. M. Roney, R. J. Sobie

University of Victoria, Victoria, BC, Canada V8W 3P6

H. R. Band, B. Cheng, S. Dasu, M. Datta, A. M. Eichenbaum, M. Graham, J. J. Hollar, J. R. Johnson, P. E. Kutter, H. Li, R. Liu, A. Mihalyi, A. K. Mohapatra, Y. Pan, R. Prepost, P. Tan, J. H. von Wimmersperg-Toeller, J. Wu, S. L. Wu, Z. Yu

University of Wisconsin, Madison, WI 53706, USA

M. G. Greene, H. Neal

Yale University, New Haven, CT 06511, USA
1 INTRODUCTION

In the Standard Model (SM) the time-dependent CP symmetry violation in B^0 decays via $b \to s\bar{q}q$ ($q \in \{u, d, s, c\}$) transitions is governed by the Cabibbo-Kobayashi-Maskawa (CKM) phase $\beta \equiv \arg(-V_{td}V_{tb}^*/V_{ts}V_{tb}^*)$ [1]. Measurements of $\sin^2 \beta$ in tree-level $b \to s\bar{u}u$ transitions have established the first experimental evidence for CP violation in the B meson system [2, 3]. The combined result of the latest measurements of $\sin^2 \beta$ in these transitions is in agreement with SM predictions [4].

The measurement of $\sin^2 \beta$ in decays dominated by a penguin loop-level $b \to s\bar{d}d$ transition is particularly interesting because of the sensitivity to physics beyond the Standard Model [5]. The B factory experiments have explored time-dependent CPV asymmetries in several such decays [6], namely $B^0 \to \phi K_s^0$ [7, 8], $B^0 \to \eta' K_s^0$ [7, 9], $B^0 \to K^+ K^- K_s^0$ [7, 10], $B^0 \to f^0 K_s^0$ [11] and $B^0 \to K_S^0 \pi^0$ [12].

In this paper we present an update of our previous measurement of CP violation in $B^0 \to K_S^0 \pi^0$ decays, reported in reference [12]. The CKM and color suppression of the tree-level $b \to s\bar{u}u$ transition leads to the expectation that this decay is dominated by a top-quark-mediated $b \to s\bar{d}d$ penguin amplitude, which carries a weak phase $\arg(V_{tb}V_{ts}^*)$. If other contributions, such as the $b \to s\bar{u}u$ tree amplitude, are ignored, the time-dependent CPV asymmetry is governed by $\sin^2 \beta$ [13]. The bound on the deviation from $\sin^2 \beta$ due to Standard Model contributions with a different weak phase is ~ 0.2 from SU(3) flavor symmetry [14] and ~ 0.1 in model-dependent QCD calculations [15].

In addition to the CPV parameters we also present an update of our previous measurement of the branching fraction of $B^0 \to K_S^0 \pi^0$ [16]. Existing experimental data on branching fractions for $B \to K \pi$ decays show a small discrepancy with respect to various calculations in the literature, the so-called ‘$K\pi$ puzzle’ [17, 15]. In particular, the ratio of the $B^0 \to K_S^0 \pi^0$ branching fraction to the other $B \to K \pi$ branching fractions is about 2 standard deviations larger than inferred from isospin symmetry. Further experimental input might either resolve the puzzle or provide evidence for new physics [18].

2 THE BABAR DETECTOR AND DATASET

The results are based on a sample of 226.6 ± 2.5 million $\Upsilon(4S) \to B\overline{B}$ decays collected in 1999-2004 with the BABAR detector at the PEP-II e^+e^- energy-asymmetric collider at the Stanford Linear Accelerator Center. The BABAR detector, fully described in [19], provides charged particle tracking through a combination of a five-layer double-sided silicon microstrip detector (SVT) and a 40-layer central drift chamber (DCH), both operating in a 1.5 T magnetic field. Charged kaon and pion identification is achieved through measurements of particle energy-loss (dE/dx) in the tracking system and Cherenkov angle (θ_c) in a detector of internally reflected Cherenkov light (DIRC). A segmented CsI(Tl) electromagnetic calorimeter (EMC) provides photon detection and electron identification. Finally, the instrumented flux return (IFR) of the magnet allows discrimination of muons from pions.
3 ANALYSIS METHOD

At the $\Upsilon(4S)$ resonance, time-dependent CPV asymmetries are measured by reconstructing the distribution of the difference of the proper decay times, $\Delta t \equiv t_{CP} - t_{tag}$, where the t_{CP} refers to the decay time of the signal B^0 and t_{tag} to the other B (B_{tag}). If B^0 and \bar{B}^0 decay to a common CP eigenstate f, the Δt distribution follows

$$
\mathcal{P}_{B^0}(\Delta t) = \frac{e^{-|\Delta t|/\tau}}{4\tau} \times [1 \pm (S_f \sin (\Delta m_d \Delta t) - C_f \cos (\Delta m_d \Delta t))]
$$

where the upper (lower) sign corresponds to B_{tag} decaying as B^0 (\bar{B}^0), τ is the B^0 lifetime averaged over the two mass eigenstates, Δm_d is the mixing frequency, C_f is the magnitude of direct CP violation and S the magnitude of CP violation in the interference between mixing and decay. For the case of pure penguin dominance, we expect $S_{K_S^0\pi^0} = \sin 2\beta$, and $C_{K_S^0\pi^0} = 0$.

We search for $B^0 \to K_S^0\pi^0$ decays in $B\bar{B}$ candidate events selected using charged particle multiplicity and event topology [20]. We reconstruct $K_S^0 \to \pi^+\pi^-$ candidates from pairs of oppositely charged tracks. The two-track combinations must form a vertex with a χ^2 consistency larger than 0.001, a $\pi^+\pi^-$ invariant mass within 11.2 MeV/c^2 ($\sim 3.5\sigma$) of the nominal K_S^0 mass [4] and a reconstructed decay length greater than five times its uncertainty. We form $\pi^0 \to \gamma\gamma$ candidates with an invariant mass $110 < m_{\gamma\gamma} < 160$ MeV/c^2 from pairs of photon candidates in the EMC that are isolated from any charged tracks, carry a minimum energy of 50 MeV, and have the expected lateral shower shapes. $B^0 \to K_S^0\pi^0$ candidates are reconstructed from $K_S^0\pi^0$ combinations and constrained to originate from the e^+e^--interaction point using a geometric fit. We require that the χ^2 consistency of the fit, which has one degree of freedom, be larger than 0.001.

For each B candidate we compute two independent kinematic variables, namely the invariant mass m_B and the missing mass $m_{miss} = |q_{e^+e^-} - \hat{q}_B|$, where $q_{e^+e^-}$ is the four-momentum of the initial e^+e^- system and \hat{q}_B is the four-momentum of the $B^0 \to K_S^0\pi^0$ candidate after a mass constraint on the B^0 is applied. Compared to the kinematic variables $\Delta E = E_B^* - \frac{1}{2}\sqrt{s}$ and $m_{ES} = \sqrt{\frac{1}{2}s - p_B^{*2}}$ (where $\sqrt{s} = |q_{e^+e^-}|$ and the asterisk denotes the center of momentum frame) that are traditionally used to select B decays in BABAR, the present combination of variables exhibits a smaller correlation and a better background suppression, in particular for modes with a relatively poor B energy resolution. We select candidates with m_B within 150 MeV/c^2 of the nominal B^0 mass [4] and $5.11 < m_{miss} < 5.31$ GeV/c^2, which includes a sideband region for background characterization.

To discriminate jet-like $e^+e^- \to q\bar{q}$ events (with $q \in \{u, d, s, c\}$) from the more uniformly-distributed $B\bar{B}$ events we exploit the ratio L_2/L_0 of two Legendre moments defined as $L_j \equiv \sum_i |p_i^*||\cos \theta_i^*|^j$, where p_i^* is the momentum of particle i in the e^+e^- rest frame and θ_i^* is the angle between p_i^* and the thrust axis of the B^0 candidate. We require $L_2/L_0 < 0.55$, which suppresses the background by more than a factor 3 at the cost of approximately 10% in signal efficiency. Finally, we require $|\cos \theta_B^*| < 0.9$, where θ_B^* is the angle between the B^0 candidate momentum and the e^+ momentum in the e^+e^- rest frame. For B candidates the distribution of θ_B^* follows $\mathcal{P}(\cos \theta_B^*) = 1 - \cos^2 \theta_B^*$, whereas for continuum events it is
nearly flat. After all selections the average candidate multiplicity in events with at least one candidate is ~ 1.007. We select the candidate with the smallest χ^2 on the π^0 mass as computed in the B^0 candidate vertex fit.

For each $B^0 \rightarrow K^0\pi^0$ candidate we examine the remaining tracks and neutral candidates in the event to determine the decay vertex position and the flavor of B_{tag}. Using a neural network based on kinematic and particle identification information [21] each event is assigned to one of five mutually exclusive tagging categories, designed to combine flavor tags with similar performance and Δt resolution. We parameterize the performance of this algorithm in a data sample (B_{raw}) of fully reconstructed $B^0 \rightarrow D^{(*)}\pi^+/\rho^+/a_1^+$ decays. The average effective tagging efficiency obtained from this sample is $Q = \sum_c e^c_s (1-2w^c)^2 = 0.288\pm0.005$, where e^c_s and w^c are the efficiencies and mistag probabilities, respectively, for events tagged in category $c \in \{1 \cdots 5\}$. For the background the fraction of events (e^c_B) and the asymmetry in the rate of B^0 versus \bar{B}^0 tags in each tagging category are extracted from a fit to the data.

To compute the proper time difference Δt the B_{tag} vertex is inclusively reconstructed from the remaining charged particles in the event using the trajectory derived from the reconstruction of the B_{CP} candidate as a seed [20]. The time difference Δt and its uncertainty are extracted with a global fit to the $\Upsilon(4S) \rightarrow B^0\bar{B}^0$ decay tree that takes the information on the beam energy and the position of the interaction point (IP) into account. The position and size of the interaction region are determined on a run-by-run basis from the spatial distribution of vertices from two-track events. The uncertainty in the IP position follows from the size of the interaction region (about 200\,μm horizontal and 4\,μm vertical).

Without additional constraints the single K_S^0 trajectory emerging from the $B^0 \rightarrow K_S^0\pi^0$ decay vertex provides insufficient information on the B^0 vertex position for a meaningful Δt measurement. To obtain the required resolution we constrain the sum of the two B lifetimes in the $\Upsilon(4S) \rightarrow B^0\bar{B}^0$ fit ($t_{\text{CP}} + t_{\text{tag}}$) to be equal to $2\,\tau_{B^0}$ with an uncertainty $\sqrt{2}\,\tau_{B^0}$. We have verified in a Monte Carlo simulation that this procedure leads to an unbiased estimate of Δt.

For the $\sim 40\%$ of events in which each of the two pion candidates from the K_S^0 decay does not have at least 4 SVT hits or for which $\sigma(\Delta t) > 2.5$\,ps or $\Delta t > 20$\,ps, the Δt information is not used. However, since C can also be extracted from flavor tagging information alone, these events still contribute to the measurement of C.

We extract the signal yield and CPV parameters from an unbinned maximum-likelihood fit to m_B, m_{miss}, L_2/L_0, $\cos \theta_B^*$, Δt and the flavor tag variables. Exploiting sideband regions in data for the background and Monte Carlo simulation for the signal, we have verified that with the selection presented above these observables are sufficiently independent that we can construct the likelihood from the product of one dimensional probability density functions (PDFs). The PDFs for signal events are parameterized from either more copious fully-reconstructed B decays in data or from simulated events. For background PDFs we select the functional form from data in the sideband regions of the other observables, in which backgrounds dominate. We include these regions in the fitted sample and simultaneously extract the parameters of the background PDFs along with the CPV measurements.

We obtain the PDF for the Δt of signal decays from the convolution of Eq. 1 with a resolution function $R(\delta t \equiv \Delta t - \Delta t_{\text{true}}, \sigma_{\Delta t})$. The resolution function is parameterized as
the sum of a ‘core’ and a ‘tail’ Gaussian, each with a width and mean proportional to the reconstructed $\sigma_{\Delta t}$, and a third Gaussian centered at zero with a fixed width of 8 ps [20]. We have verified in simulation that the parameters of $R(\delta t, \sigma_{\Delta t})$ for $B^0 \rightarrow K^0_S\pi^0$ decays are similar to those obtained from the B_{had} sample, even though the distributions of $\sigma_{\Delta t}$ differ considerably. We therefore extract these parameters from a fit to the B_{had} sample. We find that the Δt distribution of background candidates is well described by a delta function

$$\delta t$$

for signal candidates. The s-Plots are a statistical tool to extract the distribution of reconstructed mass and missing mass for signal $B^0 \rightarrow K^0_S\pi^0$ candidates. The s-Plots are a statistical tool to extract the distribution of a particular discriminating variable by weighting events with their signal likelihood based on other discriminating variables. For comparison, figure 2 shows the unweighted distributions for a subsample enhanced in signal purity by selecting on L_2/L_0 and m_{miss}. The dashed and solid curves

$$\delta t$$

where $I (II)$ is the subset of events with (without) Δt information. The probabilities P_S and P_B are products of PDFs for signal (S) and background (B) hypotheses evaluated for the measurements $\bar{x}_i = \{m_B, m_{\text{miss}}, L_{12}/L_{10}, \cos \theta_B^*, \text{tag}, \text{tagging category}\}$ and $\bar{y}_i = \{\Delta t, \sigma_{\Delta t}\}$. Along with the CPV asymmetries S_f and C_f, the fit extracts the yields N_S and N_B, the fractions of events with Δt information f_S and f_B, and the remaining parameters, collectively denoted by $\bar{\alpha}$. These include all parameters of background PDFs and some parameters of the signal PDFs, such as the mean values of m_B and m_{miss}.

4 RESULTS

Fitting the data sample of 9726 $B^0 \rightarrow K^0_S\pi^0$ candidates, we find $N_S = 300 \pm 23$ signal decays with

$$S_{K^0_S\pi^0} = 0.35^{+0.30}_{-0.33} \text{ (stat)} \pm 0.04 \text{ (syst)}$$

and

$$C_{K^0_S\pi^0} = 0.06 \pm 0.18 \text{ (stat)} \pm 0.06 \text{ (syst)}.$$ The total detection efficiency for $B^0 \rightarrow K^0_S\pi^0$ decays with $K^0_S \rightarrow \pi^+\pi^-$ and $\pi^0 \rightarrow \gamma\gamma$ is $0.34 \pm 0.02 \%$. With the K^0_S and π^0 branching fractions taken from [4] and assuming equal production of charged and neutral B mesons at the $T(4S)$ resonance, we obtain a branching fraction

$$B(B^0 \rightarrow K^0_0\pi^0) = (11.4 \pm 0.9 \text{ (stat)} \pm 0.6 \text{ (syst)}) \times 10^{-6}.$$ The evaluation of the systematic uncertainties is described below.

Figure 1 shows the so called s-Plot distributions [22] of the reconstructed mass and missing mass for signal $B^0 \rightarrow K^0_S\pi^0$ candidates. The s-Plots are a statistical tool to extract the distribution of a particular discriminating variable by weighting events with their signal likelihood based on other discriminating variables. For comparison, figure 2 shows the unweighted distributions for a subsample enhanced in signal purity by selecting on L_2/L_0 and m_{miss}. The dashed and solid curves
Figure 1: Signal s-Plots for reconstructed mass (left) and missing mass (right). The curve represents the PDF used for signal events in the maximum likelihood fit.

Figure 2: Distributions for the reconstructed mass of the B candidate (left) and for the missing mass (right). To enhance the sample in signal purity we required $L_2/L_0 < 0.4$ which reduces the efficiency for signal decays by $\sim 25\%$ with respect to the selection described in the text. For the m_B distribution we required in addition $m_{\text{miss}} > 5.25\text{ GeV}/c^2$. The dashed and solid curves represent the background and signal-plus-background contributions, respectively, as obtained from the maximum likelihood fit.
Figure 3: s-Plot distributions of Δt for signal events with B_{tag} tagged as B^0 (top) or \bar{B}^0 (center), and of the asymmetry $A_{K_S^0 \pi^0}(\Delta t)$ (bottom). The curves represent the PDFs for signal decays in the likelihood fit.
Figure 4: Contours for constant likelihood corresponding to a change in the likelihood with 1, 2 and 3 units with respect to the minimum likelihood. The enclosed regions correspond roughly to 39\%, 86\% and 99\% confidence levels. The star represents the Standard Model prediction. The large circle represents the boundary of the physically allowed region.

indicate background and signal-plus-background contributions, respectively, as obtained from the fit, but corrected for the selection.

Figure 3 shows the s-Plot distributions of Δt for B^0- and \bar{B}^0-tagged events, and of the asymmetry $A_{K_S^0\pi^0}(\Delta t) = \frac{N_{B^0} - N_{\bar{B}^0}}{N_{B^0} + N_{\bar{B}^0}}$ as a function of Δt. Figure 4 shows the contours for constant likelihood in the $S - C$ plane.

5 VALIDATIONS AND SYSTEMATIC UNCERTAINTIES

The extraction of Δt with the IP-constrained geometric decay tree fit has been extensively tested on large samples of simulated $B^0 \rightarrow K^0_S\pi^0$ decays with different values of C and S. To evaluate uncertainties due to the use of a resolution function extracted from the B_{flav} sample we fit the
$B^0 \rightarrow K_S^0 \pi^0$ samples with a resolution function extracted from simulated $B^0 \rightarrow J/\psi K_S^0$ events. We assign a systematic uncertainty of 0.02 on $S_{K_S^0 \pi^0}$ and 0.01 on $C_{K_S^0 \pi^0}$ due to the use of the B_{flav} resolution function and other effects related to the Δt reconstruction. We evaluate the effect of a possible misalignment of the SVT by introducing misalignments in the simulation and obtain a systematic uncertainty of 0.03 on $S_{K_S^0 \pi^0}$ and 0.01 on $C_{K_S^0 \pi^0}$. We also consider large variations of the position and size of the interaction region, which we find to have negligible impact. We include a systematic uncertainty of 0.02 on both $S_{K_S^0 \pi^0}$ and $C_{K_S^0 \pi^0}$ to account for imperfect knowledge of the PDFs used in the fit. We assign a systematic uncertainty of 0.05 to $C_{K_S^0 \pi^0}$ due to possible asymmetries in the rate of B^0 versus \bar{B}^0 tags in background events.

In order to exclude any bias in the IP constraint Δt reconstruction that would be specific to data only, we examine a sample of approximately 1900 $B^0 \rightarrow J/\psi K_S^0$ decays with $J/\psi \rightarrow \mu^+\mu^-$ and $J/\psi \rightarrow e^+e^-$. In these events we determine Δt in two ways: by fully reconstructing the B^0 decay vertex using the trajectories of charged daughters of the J/ψ and the K_S^0 mesons, or by neglecting the J/ψ contribution to the decay vertex and using the IP constraint and the K_S^0 trajectory only. This study shows that within statistical uncertainties the IP-constrained Δt measurement is unbiased with respect to the more established technique, and that the values of $S_{J/\psi K_S^0}$ and $C_{J/\psi K_S^0}$ so obtained are consistent. In addition, we examine the pull of the Δt difference, assuming that the Δt uncertainties are fully correlated. We find that the pull distribution in the data is approximately 10% wider than that in the simulation. We therefore include an additional systematic uncertainty of 0.014 in $S_{K_S^0 \pi^0}$. Finally, we measure the B^0 lifetime in $B^0 \rightarrow K_S^0 \pi^0$ decays and in IP-constrained $B^0 \rightarrow J/\psi K_S^0$ decays and find that both agree with the world average.

The detection efficiency for signal events is calculated with a Monte Carlo simulation based on the Pythia event generator [23] and GEANT4 detector simulation [24]. The efficiency of the K_S^0 selection is calibrated with a large sample of inclusive $K_S^0 \rightarrow \pi^+\pi^-$ decays. The $\pi^0 \rightarrow \gamma\gamma$ efficiency is calibrated with $e^+e^- \rightarrow \tau^+\tau^-$ events with $\tau^- \rightarrow \rho^-\nu_{\tau}$. The systematic uncertainty associated with the efficiency is 2.6% for K_S^0 and 3.0% for π^0. We assign additional systematic uncertainties of 1.2% for the L_2/L_0 cut, 2.0% for the selection on m_B and a total of 2.0% for uncertainties in the signal PDFs. Finally, we include an uncertainty of 1.4% to account for unknown contributions from other $B\bar{B}$ decays and an uncertainty of 0.6% in the total number of $Y(4S) \rightarrow B\bar{B}$ decays.

6 SUMMARY

In this paper we have reported preliminary results from a measurement of the branching fraction and time-dependent CPV asymmetries of $B^0 \rightarrow K^0_S \pi^0$ decays. The measured values of $S_{K^0_S \pi^0}$ and $C_{K^0_S \pi^0}$ are consistent with the Standard Model predictions. The measured branching fraction is consistent with measurements from other experiments [25].

7 ACKNOWLEDGMENTS

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and
National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), Institute of High Energy Physics (China), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Science and Technology of the Russian Federation, and the Particle Physics and Astronomy Research Council (United Kingdom). Individuals have received support from CONACyT (Mexico), the A. P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation.

References

[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).

[2] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 87, 091801 (2001).

[3] K. Abe et al. [Belle Collaboration], Phys. Rev. Lett. 87, 091802 (2001).

[4] S. Eidelman et al. [Particle Data Group Collaboration], Phys. Lett. B 592, 1 (2004).

[5] Y. Grossman and M. P. Worah, Phys. Lett. B 395, 241 (1997). M. Ciuchini, E. Franco, G. Martinelli, A. Masiero and L. Silvestrini, Phys. Rev. Lett. 79, 978 (1997). D. London and A. Soni, Phys. Lett. B 407, 61 (1997).

[6] Unless explicitly stated, conjugate decay modes are assumed throughout this paper.

[7] K. Abe et al. [Belle Collaboration], Phys. Rev. Lett. 91, 261602 (2003).

[8] B. Aubert et al. [BABAR Collaboration], arXiv:hep-ex/0403026.

[9] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 91, 161801 (2003).

[10] B. Aubert et al. [BABAR Collaboration], arXiv:hep-ex/0406005.

[11] B. Aubert et al. [BABAR Collaboration], arXiv:hep-ex/0406040.

[12] B. Aubert et al. [BABAR Collaboration], arXiv:hep-ex/0403001, submitted to Phys. Rev. Lett.

[13] R. Fleischer, Phys. Lett. B 365, 399 (1996).

[14] M. Gronau, Y. Grossman and J. L. Rosner, Phys. Lett. B 579, 331 (2004).

[15] A. J. Buras, R. Fleischer, S. Recksiegel and F. Schwab, arXiv:hep-ph/0402112. M. Ciuchini, E. Franco, G. Martinelli, A. Masiero, M. Pierini and L. Silvestrini, arXiv:hep-ph/0407073. J. Charles et al. [CKMfitter Group Collaboration], arXiv:hep-ph/0406184.

[16] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 92, 201802 (2004).

[17] M. Ciuchini, E. Franco, G. Martinelli, M. Pierini and L. Silvestrini, Phys. Lett. B 515 (2001) 33. Y. Y. Keum, H. N. Li and A. I. Sanda, Phys. Rev. D 63, 054008 (2001). M. Beneke and M. Neubert, Nucl. Phys. B 675 (2003) 333.
[18] A. J. Buras, R. Fleischer, S. Recksiegel and F. Schwab, Phys. Rev. Lett. 92, 101804 (2004).
[19] B. Aubert et al. [BABAR Collaboration], Nucl. Instr. Meth. A 479, 1 (2002).
[20] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 66, 032003 (2002).
[21] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 89, 201802 (2002).
[22] M. Pivk and F. R. Le Diberder, arXiv:physics/0402083.
[23] T. Sjostrand, Comput. Phys. Commun. 82, 74 (1994).
[24] S. Agostinelli et al. [GEANT4 Collaboration], Nucl. Instrum. Meth. A 506, 250 (2003).
[25] B. C. K. Casey et al. [Belle Collaboration], Phys. Rev. D 66, 092002 (2002). A. Bornheim et al. [CLEO Collaboration], Phys. Rev. D 68, 052002 (2003).