Successful bail-out stenting of severe stenosis of the left main trunk coronary artery using guiding catheter exchange with the anchor balloon technique

Daizaburo Yanagi, Takeshi Serikawa, Masanori Okabe, Yusuke Yamamoto

ABSTRACT

Introduction: Trans radial intervention (TRI) is less invasive. However, percutaneous coronary intervention (PCI) operators may be concerned that trans femoral approach (TFI) is better than TRI according to the state of the patients, for example the patients with acute coronary syndrome (ACS) under the shock state, with severe winding subclavian artery and with the spasming radial artery.

Case Report: We herein report a case of an unstable angina and acute heart failure. Coronary angiography (CAG) revealed evidence of 90% ostial stenosis of the left main trunk (LMT). But we were unable to engage a 6 Fr guiding catheter (GC) because of severe tortuosity of the left subclavian artery. Therefore, we attempted intracoronary passage of a 4 Fr JL3.5 catheter exchange the 4 Fr diagnostic catheter with a 6 Fr GC using an extension wire. However, before entering the left coronary artery, the guidewire coiled around the catheter, which prolapsed; therefore, the 6 Fr GC could not be engaged. We carefully inserted a 3.0-mm semi-compliant balloon up to the LMT lesion without GC support and were able to engage the GC by the anchor balloon technique. The process took approximately 5 s and the patient’s hemodynamic state were not affected. TRI or a downsizing stenting system is essential for patients in whom the approach site is limited in size.

Conclusion: The use of an extension wire after insertion of the diagnostic catheter and the anchor balloon technique has been successful in limited cases when insertion of GC is difficult.
CASE REPORT OPEN ACCESS

Successful bail-out stenting of severe stenosis of the left main trunk coronary artery using guiding catheter exchange with the anchor balloon technique

Daizaburo Yanagi, Takeshi Serikawa, Masanori Okabe, Yusuke Yamamoto

ABSTRACT

Introduction: Trans radial intervention (TRI) is less invasive. However, percutaneous coronary intervention (PCI) operators may be concerned that trans femoral approach (TFI) is better than TRI according to the state of the patients, for example the patients with acute coronary syndrome (ACS) under the shock state, with severe winding subclavian artery and with the spasming radial artery. Case Report: We herein report a case of an unstable angina and acute heart failure. Coronary angiography (CAG) revealed evidence of 90% ostial stenosis of the left main trunk (LMT). But we were unable to engage a 6 Fr guiding catheter (GC) because of severe tortuosity of the left subclavian artery. Therefore, we attempted intracoronary passage of a 4 Fr JL3.5 catheter exchange the 4 Fr diagnostic catheter with a 6 Fr GC using an extension wire. However, before entering the left coronary artery, the guidewire coiled around the catheter, which prolapsed; therefore, the 6 Fr GC could not be engaged. We carefully inserted a 3.0-mm semi-compliant balloon up to the LMT lesion without GC support and were able to engage the GC by the anchor balloon technique. The process took approximately 5 s and the patient’s hemodynamic state were not affected. TRI or a downsizing stenting system is essential for patients in whom the approach site is limited in size. Conclusion: The use of an extension wire after insertion of the diagnostic catheter and the anchor balloon technique has been successful in limited cases when insertion of GC is difficult.

Keywords: Trans radial intervention, Acute coronary syndrome, Left main trunk, Anchor balloon technique, Guiding catheter exchange

How to cite this article

Yanagi D, Serikawa T, Okabe M, Yamamoto Y. Successful bail-out stenting of severe stenosis of the left main trunk coronary artery using guiding catheter exchange with the anchor balloon technique. Int J Case Rep Images 2015;6(6):376–380.
doi:10.5348/ijcri-201458-CI-10015

INTRODUCTION

Although the transradial intervention (TRI) is increasingly used globally for coronary angiography and interventions, performing percutaneous coronary intervention (PCI) in arteries with complex anatomy remains a clinical problem. In particular tortuosity within a subclavian artery is frequently encountered...
and can hamper delivery of guiding catheter to coronary artery. The management of these conditions remains controversial, with only a few reports in literature.

CASE REPORT

A female in her 60s complaining of severe chest pain and dyspnea was admitted to our hospital with a diagnosis of unstable angina and acute heart failure. Chest radiography revealed pulmonary congestion, echocardiography showed evidence of markedly decreased ventricular wall motion in all ventricular walls except the inferior wall, and electrocardiography demonstrated both marked ST-segment depression in precordial leads and ST elevation in the aVR lead (Figure 1). Risk factors for coronary artery disease, including diabetes mellitus and dyslipidemia, were noted. Access to the same region was not possible because the patient underwent right femoral artery bypass surgery five years earlier. After the insertion of an intra-aortic balloon pump (IABP) into the left femoral artery, we inserted a 4 French (Fr) sheath into the right radial artery. At this time, coronary angiography revealed evidence of 90% ostial stenosis of the left main trunk (LMT) (Figure 2). However, because of spasm in the right radial artery, we changed to the left radial artery. Using a long sheath, we attempted to continue percutaneous coronary intervention (PCI), but were unable to engage a 6 Fr guiding catheter (GC) because of severe tortuosity of the left subclavian artery. Therefore, we attempted intracoronary passage of a 4 Fr JL3.5 GC to exchange the 4 Fr diagnostic catheter with a 6 Fr GC using an extension wire (Figures 3-1, 3-2, and 3-3). However, before entering the left coronary artery, the guidewire coiled around the catheter, which subsequently prolapsed; therefore, the 6 Fr GC could not be engaged. We carefully inserted a 3.0-mm semi-compliant balloon up to the LMT lesion without GC support and were able to engage the GC by dilating the balloon and using the anchor balloon technique (Figures 4-1, 4-2, 4-3). The process took approximately 5 s, and hemodynamics were not affected. The procedure was concluded after placement of an XIENCE V® Everolimus Eluting Coronary stent (Abbott Laboratories, Abbott Park, IL, USA), and stent apposition was confirmed by intravascular ultrasound (IVUS; Figures 5–7).

Fluoroscopy time was 40 min, and the radiation exposure dose was 1.2 Gy. A total of 220 ml of radiocontrast medium was used and the total procedure time was 80 min. The patient was subsequently admitted to the coronary care unit, where heart function rapidly improved (Figure 8).

The patient was subsequently given an ambulatory discharge on hospitalization day 14. Her postoperative course was uneventful. An angiography performed at the 2-month follow-up showed no recurrence of stenosis (Figure 9).

DISCUSSION

The patient was admitted with post-acute coronary syndrome (ACS) with complicating cardiogenic shock and underwent right femoral artery bypass surgery five years earlier. Transradial intervention (TRI) was performed.
after insertion of an IABP because of limited vascular access. We attempted to insert a diagnostic catheter with a 0.014-inch guidewire before replacing this with a GC using an extension wire because insertion of the GC was initially difficult and insertion of a diagnostic catheter was possible. However, because of the severe tortuosity of the left subclavian artery, the guidewire prolapsed during the procedure, making insertion impossible. A balloon was inserted without the use of a GC, and the anchor balloon technique was implemented. Yoshimachi et al. [1] reported performing IVUS and inserting a balloon when performing PCI using the King’s cloth technique without the use of a GC, although a 0.035-inch guidewire or microcatheter might have been useful in this patient. We carefully inserted a semi-compliant balloon up to the LMT, even though it was fixed to a prolapsed wire. A risk of negative effects on vital signs was present; however, inflation time was maintained within approximately 5 s. The anchor balloon technique was also simultaneously used to engage the GC. The balloon was dilated for a
short time, and the GC was inserted without any negative effects on the hemodynamic state of the patient because passage of the balloon was difficult due to severe stenosis of the LMT.

Prognoses of TRI and transfemoral coronary intervention (TFI) are not very different [2, 4]. With regard to complications in ACS [5], ST segment elevation myocardial infarction [6–10] or IABP support is associated with a favorable prognosis for TRI [11]. Transradial PCI may be considered for severely obese patients [12] and women [13] who are at a higher risk of bleeding complications.

The limitations for transradial PCI were few, and this made it particularly suitable for our patient in whom the approach site was limited in size. Maneuvering of the GC might have been easier by downsizing to a 5 Fr GC [14] or inserting a 0.035-inch guidewire during the procedure.

TRI or a downsizing stenting system is essential for patients in whom the approach site is limited. The use of an extension wire after the insertion of the diagnostic catheter and the anchor balloon technique has been successful in limited cases when insertion of a GC is difficult.

CONCLUSION

The guiding catheter (GC) insertion is difficult during transradial intervention for patients with acute coronary syndrome (ACS) and stenosis of the left main trunk and in whom the approach site is limited in size. The GC insertion and percutaneous coronary intervention can be achieved when the diagnostic catheter is exchanged with a GC using a 0.014-inch wire as well as an extension wire, after which the balloon anchor technique should be used.

REFERENCES

1. Yoshimachi F, Aida Y, Miura D, Kawahara R, Abe S, Suchi T. Percutaneous coronary intervention without use of guiding catheters for extreme downsizing: the Emperor’s new clothes technique. Cardiovasc Interv Ther 2013 Apr;28(2):213–5.
2. Mamas MA, Ratib K, Routledge H, et al. Influence of arterial access site selection on outcomes in primary percutaneous coronary intervention: Are the results of randomized trials achievable in clinical practice? JACC Cardiovasc Interv 2013 Jul;6(7):698–706.
3. You W, Ye F, Chen SL, et al. Comparison of short- and long-term outcome after percutaneous transluminal interventional therapy in octogenarians with coronary artery disease from radial or femoral approach. Zhonghua Xin Xue Guan Bing Za Zhi 2013 Sep;41(9):736–9.
4. Natsuki M, Morimoto T, Furukawa Y, et al. Comparison of 3-year clinical outcomes after transradial versus transfemoral percutaneous coronary intervention. Cardiovasc Interv Ther 2012 May;27(2):84–92.
5. Jolly SS, Yusuf S, Cairns J, et al. RIVAL trial group. Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): A randomised, parallel group, multicentre trial. Lancet 2011 Apr 23;377(9775):1409–20.
6. Bernat I, Horak D, Stasek J, et al. ST-segment elevation myocardial infarction treated by radial or femoral approach in a multicenter randomized clinical trial: The STEMI-RADIAL trial. J Am Coll Cardiol 2014 Mar 18;63(10):964–72.
7. Ibebuogu UN, Cercek B, Makkar R, et al. Comparison between transradial and transfemoral percutaneous coronary intervention in acute ST-elevation myocardial infarction. Am J Cardiol 2012 Nov 1;110(9):1262–5.
8. Mehta SR, Jolly SS, Cairns J, et al. Effects of radial versus femoral artery access in patients with acute coronary syndromes with or without ST-segment elevation. J Am Coll Cardiol 2012 Dec 18;60(24):2490–9.
9. Vorobcsuk A, Könyi A, Aradi D, et al. Transradial versus transfemoral percutaneous coronary intervention in acute myocardial infarction Systematic overview and meta-analysis. Am Heart J 2009 Nov;158(5):814–21.
10. Jang JS, Jin HY, Seo JS, et al. The transradial versus the transfemoral approach for primary percutaneous
coronary intervention in patients with acute myocardial infarction: A systematic review and meta-analysis. EuroIntervention 2012 Aug;8(4):501–10.

11. Romagnoli E, De Vita M, Burzotta F, et al. Radial versus femoral approach comparison in percutaneous coronary intervention with intraaortic balloon pump support: The RADIAL PUMPUP registry. Am Heart J 2013 Dec;166(6):1019–26.

12. Hibbert B, Simard T, Wilson KR, et al. Transradial versus transfemoral artery approach for coronary angiography and percutaneous coronary intervention in the extremely obese. JACC Cardiovasc Interv 2012 Aug;5(8):819–26.

13. Ahmed B, Dauerman HL. Women, bleeding, and coronary intervention. Circulation 2013 Feb 5;127(5):641–9.

14. Matsukage T, Masuda N, Ikari Y. Successful transradial intervention by switching from 6 French to 5 French guiding catheter. J Invasive Cardiol 2011 Jun;23(6):E153–5.
Edorium Journals: An introduction

Edorium Journals Team

About Edorium Journals
Edorium Journals is a publisher of high-quality, open access, international scholarly journals covering subjects in basic sciences and clinical specialties and subspecialties.

Invitation for article submission
We sincerely invite you to submit your valuable research for publication to Edorium Journals.

But why should you publish with Edorium Journals?
In less than 10 words - we give you what no one does.

Vision of being the best
We have the vision of making our journals the best and the most authoritative journals in their respective specialties. We are working towards this goal every day of every week of every month of every year.

Exceptional services
We care for you, your work and your time. Our efficient, personalized and courteous services are a testimony to this.

Editorial Review
All manuscripts submitted to Edorium Journals undergo pre-processing review, first editorial review, peer review, second editorial review and finally third editorial review.

Peer Review
All manuscripts submitted to Edorium Journals undergo anonymous, double-blind, external peer review.

Early View version
Early View version of your manuscript will be published in the journal within 72 hours of final acceptance.

Manuscript status
From submission to publication of your article you will get regular updates (minimum six times) about status of your manuscripts directly in your email.

Our Commitment

Six weeks
You will get first decision on your manuscript within six weeks (42 days) of submission. If we fail to honor this by even one day, we will publish your manuscript free of charge.

Four weeks
After we receive page proofs, your manuscript will be published in the journal within four weeks (31 days). If we fail to honor this by even one day, we will publish your manuscript free of charge and refund you the full article publication charges you paid for your manuscript.

Mentored Review Articles (MRA)
Our academic program “Mentored Review Article” (MRA) gives you a unique opportunity to publish papers under mentorship of international faculty. These articles are published free of charges.

Favored Author program
One email is all it takes to become our favored author. You will not only get fee waivers but also get information and insights about scholarly publishing.

Institutional Membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in fees make their research accessible to all.

Our presence
We have some of the best designed publication formats. Our websites are very user friendly and enable you to do your work very easily with no hassle.

Something more...
We request you to have a look at our website to know more about us and our services.

We welcome you to interact with us, share with us, join us and of course publish with us.