Hutchinson-Gilford progeria syndrome: a rare premature ageing syndrome

Zespół progerii Hutchinsona-Gilforda – rzadki zespół przedwczesnego starzenia organizmu

Iti Varshney, Mohammad Adil, Syed Suhail Amin, Mohd Mohtashim, Annu Priya, Mahtab Alam

Department of Dermatology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India

ABSTRACT

Hutchinson-Gilford progeria syndrome is an extremely rare genetic disorder characterized by premature ageing involving the skin, bones, heart, and blood vessels. The incidence is 1 in several million births. It occurs sporadically and is probably an autosomal dominant syndrome. The diagnosis is essentially clinical and the manifestations become more evident from the first year of life. We report a case of a seven-month-old boy with clinical manifestations characteristic of this syndrome. He had a characteristic “plucked-bird” appearance, prominent eyes and scalp veins, senile look, loss of scalp hair, stunted growth and mottled pigmentation with sclerodermatous changes over the trunk and lower limbs. This interesting case is reported for its rarity.

Key words: premature ageing syndrome, progeria, ageing.

STRESZCZENIE

Zespół progerii Hutchinsona-Gilforda to niezwykle rzadki, uwarunkowany genetycznie zespół, który charakteryzuje się przedwczesnym procesem starzenia skóry, kości, serca i naczyń krwionośnych. Częstość występowania wynosi 1 na kilka milionów urodzeń. Zespół występuje sporadycznie i prawdopodobnie jest dziedziczony w sposób autosomalny dominujący. Rozpoznanie opiera się przede wszystkim na oce nie klinicznej, a objawy stają się bardziej widoczne od pierwszego roku życia. Poniższy artykuł przedstawia przypadek siedmiomiesięcznego chłopca z klinicznymi objawami charakterystycznymi dla tego zespołu. Chłopiec miał znamienity wygląd „oskubanego ptaka”, tj. nieprawidłowo osadzone oczy, wyraźnie widoczne żyły na skórze głowy, starczy wygląd, nie miał włosów na głowie, przebieg wzrostu był opóźniony, obecne były plamy pigmentacyjne i stwardnienie skóry na tułowiu i kończynach dolnych. Ten interesujący przypadek został opisany ze względu na swoją rzadkość.

Słowa kluczowe: zespół przedwczesnego starzenia, progeria, starzenie.
INTRODUCTION

Hutchison-Gilford progeria syndrome (HGPS) is an extremely rare genetic disorder that primarily affects the skin, bones and the cardiovascular system. It is characterized by low birth weight, short stature, loss of subcutaneous fat, sclerodermoid changes, prominent superficial veins, peculiar facies and extremities that resemble those of an old person. Patients tend to die early due to myocardial infarction or cerebrovascular accident as a result of atheroma formation [1].

Progeria has fascinated clinicians for a century because the disease has been seen as a window into the process of ageing. Less than 150 cases have been reported to date with most case reports from the Western countries [2].

OBJECTIVE

This case report is intended to document another case of HGPS with classical features in a 7-month-old boy.

CASE REPORT

A 7-month-old boy presented to us with loss of scalp hair since 3 months of age along with stunted growth as a major complaint. The mother also complained that the child slept with his eyes open. She noticed skin lesions over the abdomen since 4 months of age. There was no history of convulsion or consanguineous marriage in parents. No other family members were affected or had similar complaints. The patient was a full-term caesarean delivery and cried immediately after birth.

On examination, he was short with weight of 6.4 kg (< 3rd centile), height of 66 cm (< 3rd centile) and head circumference of 49 cm (> 2 SD) suggesting macrocephaly. He had distinctive facies with prominent eyes, diffuse hair loss, prominent scalp and facial veins, micrognathia and beaked nose (fig. 1). Hair of eyebrows and eyelashes were normal. Mottled pigmentation and sclerodermatous changes were present over the trunk and bilateral thighs (fig. 2). Reduced subcutaneous fat on the face and muscle atrophy over limbs were other important features. Mild myopia was present and the rest of the ophthalmic examination was within normal limits. Genitalia were normal with descended testes. The rest of the physical examination was normal.

Routine investigations including blood counts, liver and renal function tests, urine and stool examination and lipid profile was within normal range. Thyroid and growth hormones were normal. ECG and ultrasonography of the abdomen showed no
abnormality. Radiographs of the skull, chest and extremities were normal. The parents did not agree to the skin biopsy. The child was diagnosed with HGPS and parents were counselled regarding the prognosis and need for regular follow-up. Testing for LMNA mutation was not done due to financial constraints.

DISCUSSION

The word “progeria” comes from the Greek word progeros meaning prematurely old (pro means “before” and geras means “old age”). Hutchinson described the first patient in 1886 as a case of ‘congenital absence of hair and its appendages’, while the term progeria was introduced by Hastings Gilford.

The exact aetiology of progeria is not known, but it is believed to be an autosomal dominant disorder that occurs due to de novo point mutations in lamin A (LMNA) gene, located on chromosome 1q22. The LMNA gene encodes for prelamin A, which is cleaved to form lamin A by removal of the farnesy group and attaches to the nuclear membrane. Patients with progeria have a GGC to GGT mutation in the LMNA gene, leading to generation of a truncated splicing mutant of lamin A called progerin. It leads to failure in cleaving this farnesyl group, leading to permanent attachment of this protein to the membrane. This leads to impaired nuclear morphology, integrity, defective DNA repair and telomere instability, leading to premature cell senescence and death [3, 4].

Children appear normal at birth. The earliest feature is growth deficiency in the first year of life. These patients exhibit characteristic facies, alopecia in the first 2 years of life, short stature, sclerodermatous change, reduced subcutaneous fat on the face and limbs, “sculptured nasal tip”, easy bruising, progressive mottled hyperpigmentation, prominent scalp veins, and joint deformities [5]. The histopathologic changes in the skin include atrophy of epidermis and dermis. There is progressive hyalinization of dermal collagen and loss of subcutaneous fat [6]. Macrocephaly, decreased sweating, nail dystrophy, onych-
ogryphosis, koilonychia, hypoplastic nipples, keloids, delayed and abnormal dentition can also be seen [7].

Cutaneous manifestations are followed by skeletal and cardiovascular systems. Cardiovascular involvement occurs in the form of extensive atherosclerosis, myocardial fibrosis, lipofuscin deposition and strokes. Skeletal abnormalities include osteolysis, necrosis, dislocation, fracture, dystrophic clavicles, coxa valga, ‘horse-riding’ stance, thinning of cranial bones, delayed closure of cranial sutures and anterior fontanelle. Vascular sclerosis with multiple ischemic infarctions, cerebral atrophy, and vascular myelopathy is seen in the central nervous system but intelligence is normal [7]. It is interesting to note that although senile degeneration occurs in HGPS, many features of ageing like presbycusis, loss of hearing, cataract, arcus senilis and osteoarthritis in HGPS, many features of ageing like presbycusis, loss of hearing, cataract, arcus senilis and osteoarthritis are not seen [8]. Differential diagnosis includes progeria, Rothmund-Thomson syndrome and Cockayne syndrome.

Patients should have 6–12-monthly growth, cardiovascular, neurological, musculoskeletal, dental, ear and eye assessments. Lipids, electrocardiogram, echocardiogram, carotid duplex scanning, hip X-rays and bone densitometry scans should also form a part of annual care. Protection from trauma can prevent bone fractures. Dietary control and sometimes medical treatment in the form of low dose aspirin is recommended as prophylaxis to prevent atherosclerotic changes. The average life expectancy is 13 years, with an age range of 7–27 years.

Recent research has highlighted some potential therapeutic agents to reverse the underlying molecular defect in progeria, specifically by reducing the farnesylation of progerin which results in its nuclear displacement [9]. Drugs of interest include pravastatin, lonafarnib and zolendronate, as well as rapamycin, which has been shown to reverse the cellular phenotypic deficit in vitro and to improve survival in these patients.

CONCLUSIONS

Hutchinson Gilford progeria syndrome is a rare premature ageing disorder characterised by growth retardation and features of ageing such as loss of subcutaneous fat, atheroma formation leading to myocardial infarction and stroke. Classical cutaneous manifestations of progeria are described in this case report.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

koduje prelaminę A, która następnie tworzy lamię A poprzez usunięcie grupy farnezylowej i przyłączenie do błony jądrowej. Pacjenci z progerią mają mutację GGC do GGT w genie LMNA, co prowadzi do powstania skróconej spliceingowanej zmutowanej lamiiny A – progeryny. Powoduje to niepowodzenia w podziale tej grupy farnezylowej, co z kolei prowadzi do trwałego przyłączenia tego białka do błony. Dochodzi do upośledzenia morfologii jąder, ich integralności, upośledzonej naprawy DNA i niestabilności telomerów, co z kolei prowadzi do przedwczesnego starzenia i śmierci komórek [3, 4].

Dzieci po urodzeniu wyglądają normalnie. Najwcześniejsza pojawiająca się cecha charakterystyczną jest niedobór wzrostu w pierwszym roku życia. Pacjenci mają charakterystyczne twarze, lbeię pojawia się w pierwszych 2 latach życia, wzrost jest niski, obecne są zmiany twardzinopodobne, niedobór podskórnej tkanki tłuszczowej w obrębie twarzy i kończyn, „rzeźbiony” koniec nosa, skłonność do siniaków, przerosty obojczyków, koślawe biodra, chód na szerokiej podstawie, ścieśnienie kości czaszki, opóźnione zamknięcie szwów czaszkowych i ciemiączka.

Dochodzi do upośledzenia morfologii jąder, ich inte-

walnymi zakończeniami mózgu i mielopatia, a także opóźniony wzrost, przeprowadzać badania układu sercowo-naczyniowego, mięśniowo-szkieletowego, neu-

rologiczne, stomatologiczne, a także okulistyczne.
i laryngologiczne. Coroczna kontrola powinna obejmować profil lipidowy, EKG, echokardiogram, obrazowanie tętnic szyjnych z badaniem przepływu, badanie RTG bioder i pomiar gęstości kości. Ochrona przed urazami może zapobiec złamaniom kości. Stosowanie diety, a niekiedy leczenie małymi dawkami kwasu acetylosalicylowego są zalecane jako profilaktyka zmian miażdżycowych. Średnia oczekiwana długość życia wynosi 13 lat (7–27 lat).

Ostatnie badania zwróciły uwagę na środki terapeutyczne, które mogą odwrócić zasadnicze wady cząsteczkowe w progerii, zwłaszcza poprzez redukcję farnezylacji progeryny prowadzącej do jej gromadzenia się w jądrach [9]. Lekibrane pod uwagę to prawastatyna, lonafarnib, kwas zoledronowy i rapamyquina, w przypadku której udowodniono, że odwraca komórkowy deficyt fenotypowy in vitro i zwiększa przeżywalność pacjentów.

WNIOSKI

Zespół progerii Hutchinsona-Gilforda to rzadkie zaburzenie polegające na przedwczesnym starzeniu, które charakteryzuje się upośledzeniem wzrostu, a także cechami, takimi jak utrata podskórnej tkanki tłuszczowej i tworzenie się blaszek miażdżycowych, co prowadzi do zawału mięśnia sercowego i udaru. W artykule zostały opisane klasyczne objawy skórne progerii.

KONFLIKT INTERESÓW

Autorzy nie zgłaszają konfliktu interesów.

References

Piśmiennictwo

1. Hu Y., Xu Z.G., Xu Z., Ma L.: Hutchinson Gilford progeria syndrome caused by LMNA mutation: a case report. Pediatr Dermatol 2015, 32, 271-275.
2. Bhukya A.S., Reddy B.S.N.: Hutchinson-Gilford progeria syndrome. Indian Dermatol Online J 2015, 6, 438-440.
3. Liu G.H., Barkho B.Z., Ruiz S., Diep D., Qu J., Yang S.L., et al.: Recapitulation of premature ageing with iPSCs from Hutchinson Gilford progeria syndrome. Nature 2011, 472, 221-225.
4. Lesiak A., Bednarski I., Rogowsky-Tylman M., Sobjanek M., Woźniacka A., Daniewicz M., et al.: One week of exposure to sunlight induces progerin expression in human skin. Adv Dermatol Allergol 2017, 34, 629-631.
5. Sowmiya R., Prabhavathy D., Jaykumar S.: Progeria in siblings: a rare case report. Ind J Dermatol 2011, 56, 581-582.
6. Kashyap S., Shanker V., Sharma N.: Hutchinson-Gilford progeria syndrome: a case report. Indian Dermatol Online J 2014, 5, 478-481.
7. Merideth M.A., Gordon L.B., Clauss S., Sachdev V., Smith A.C., Perry M.B., et al.: Phenotype and course of Hutchinson-Gilford progeria syndrome. N Engl J Med 2008, 359, 592-604.
8. Agarwal U.S., Sitaraman S., Mehta S., Panse G.: Hutchinson-Gilford progeria syndrome. Indian J Dermatol Venereol Leprol 2010, 76, 591.
9. Cao K., Graziotto J.J., Blair C.D., Mazzulli J.R., Erdos M.R., Krainc D., et al.: Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. Sci Transl Med 2011, 3, 89-58.

Accepted: 15.12.2018
Received: 15.03.2020
Otrzymano: 15.12.2018 r.
Zaakceptowano: 15.03.2020 r.

How to cite this article

Varshney I., Adil M., Amin S.S., Mohtashim M., Priya A., Alam M.: Hutchinson-Gilford progeria syndrome: a rare premature ageing syndrome. Dermatol Rev/Przegl Dermatol 2020, 107, 179–183. DOI: https://doi.org/10.5114/dr.2020.96361.