Evidence Summary

Intervention for replacing missing teeth: Different types of implants - evidence summary of updated Cochrane review

Balendra Pratap Singh, Hemant Jivanani
Department of Prosthodontics, King George’s Medical University, Lucknow, Uttar Pradesh, India

INTRODUCTION

Cochrane database of systematic reviews, published by the Cochrane Library provides the gold standard evidence for intervention, diagnosis, etc., The standard of systematic review is maintained by uniform criteria of the research question, selection of studies, and data analysis including interpretation. After publishing in the database, each systematic review has to be updated every 2 years to include studies if followed the inclusion and exclusion criteria.

Although the prevalence of tooth loss is decreasing,[1,2] a large proportion of patients visiting the dentists consist of partially or completely edentulous patients. Osseointegrated dental implants have revolutionized the treatment of these...
patients. They can be used to treat a variety of patients ranging from single tooth loss to complete oral rehabilitation. Dental implants have shown promising success rate and have now become a routine treatment when dealing with the replacement of teeth. However, as the use of dental implants is increasing, so is the research. Around 1300 different types of dental implants are available worldwide, with their manufacturers claiming their implants to be more successful than others. The clinicians are put in a perplexing situation to decide the ideal body shape of the implant, the ideal platform design, the ideal surface of the implant or the ideal material of the implant.

It is important for the clinician to understand the difference between the facts and the marketing gimmicks by various implant manufacturers. This updated Cochrane review presents evidence-based guidelines regarding different types of implants and their comparison in terms of various surface preparations, different shapes, and different materials. It attends to the question “whether the different surface modifications or coatings or different shapes of implants or different implant materials lead to better clinical outcomes?”

METHODOLOGY

The Cochrane handbook for systematic reviews of interventions is used as a guide to form the methodology of this review. Randomized controlled trials (RCTs) of the parallel group and split-mouth design in participants who received osseointegrated root form dental implants with at least 1-year of follow-up were included in this review. Comparison was done between identical implants placed following the same protocol, but differing only in terms of (1) surface modification or (2) implant shape or (3) implant material or (4) any combination of these. Nonrandomized/quasi-randomized trials were excluded. The primary outcome was described in terms of biological or mechanical failure, and the occurrence of periimplantitis was the secondary outcome.

Electronic search was conducted in the Cochrane Oral Health Group’s Trial Register, the Cochrane Central Register of Controlled Trials, MEDLINE through Ovid and EMBASE via Ovid; without any language filter, until January 17, 2014. A hand search of selected journals was also conducted. The titles and abstracts of the reports identified through electronic and hand search were scanned by two independent reviewers and full report to check if they met the inclusion criteria. Any disagreement was resolved by discussion and contacting a third reviewer. Data extraction forms were modified as needed and used to collect data. The risk of bias assessment was done using the recommended approach for Cochrane reviews. Risk ratio and 95% confidence interval (CI) were used to describe the measurement of treatment effect for dichotomous data and mean difference along with 95% CI was used for continuous outcomes. Heterogeneity assessment and sensitivity analyses were performed as per the Cochrane handbook for systematic reviews of interventions.

Eighty-one trials were identified in the search; however, most of them were nonrandomized or quasi-randomized studies, and many studies had a short follow-up, or the data were presented in an unusable way. Twenty-seven RCTs with either parallel group design or split mouth design, which met the inclusion criteria, were included in the review [Tables 1 and 2].

Critical analysis of included trials

Critical analysis of the included trials revealed that most of the studies were at unclear risk of bias for allocation concealment and low-risk of bias for sequence generation while a considerable number of studies were at high-risk of bias for blinding. Meta-analysis was performed among studies of similar comparisons reporting the same outcome measures. However, a sensitivity analyses could not be performed due to the lack of a sufficient number of trials in the meta-analyses. The severity of the risk of bias on the final results could not be assessed due to the lack of sensitivity analyses.

SUMMARY OF FINDINGS

Based on the data from the included trials, this Cochrane review failed to show any superiority of a particular implant surface, shape or material over others in terms of implant failure and bone level changes. The review found 81 trials during the search but, only 27 fulfilled the inclusion criteria which clearly indicates a lack of properly designed and reported RCTs. Even after an extensive review and a meta-analysis, a definitive guideline on which implant system should be chosen by the clinician could not be established. Nonetheless, it did become clear from the review that clinical outcomes are not significantly altered by various modifications put forth by different manufacturers. However, a strong evidence to support this statement is still missing [Table 3]. The review did fulfill its secondary objective and found weak evidence that roughened dental implants are more susceptible to periimplantitis than turned implants [Tables 4 and 5].

Future implications and research

A very prominent fact that came to light in the review was that only one-third of the searched trials (27/81) met the inclusion criteria. Those that did meet the inclusion criteria were at unclear or high-risk of bias. The number of
Study	Design	Implants compared	Prosthesis	Follow-up period	Outcome	Risk ratio	Finding	
Froberg 2006	Randomized split mouth study	Brånemark Mark III implants: Turned versus oxidized surface (TiUnite)	Screw retained cross arch fixed prosthesis	1.5 years	Implant failure (1-year)	-	No implant failures	
Schincaglia 2007	Randomized split mouth study	Brånemark Mark IV implants: Turned versus oxidized surface (TiUnite)	Immediately loaded, screw retained partially fixed prosthesis	3 years	Implant failure	RR=0.33 (0.82−7.32)	Turned=0/10 Oxidized=1/10	
					Bone level	MD=0.11 (−0.38−0.60)	Turned=1.06±0.18 mm Oxidized=0.92±0.649 mm	
					Bone level	MD=−0.15 (−0.56−0.26)	-	
Heberer 2011	Randomized split-mouth design	ITI regular neck: SLA standard versus SLActive surface	Early loaded at 6 weeks in mandibles and at 10 weeks in maxillas with 16 bar-supported overdentures and 4 fixed prostheses	14 months	Implant failure (1-year)	RR=5.00 (0.26−98.00)	SLA standard=2/20 SLActive=0/20	
Esposito 2012	Randomized parallel group study	MegaGen EZ Plus implants with blasted surface: Standard versus calcium-incorporated (Xpeed) surface	Early loaded screw-retained fixed prosthesis	1-year	Implant failure (1-year)	Bone level	MD=0.04 (−0.13−0.21)	Xpeed Mean=−0.58, SD=0.31, 30 participants Standard Mean=−0.62, SD=0.36, 30 participants
					Bone level	MD=0.11 (−0.38−0.60)	P=0.66	
					Bone level	MD=−0.15 (−0.56−0.26)	P=0.48	
Esposito 2013a	Randomized split-mouth design	SPI element implants with SLA surface: Standard versus SurfLink-modified surface	Conventionally loaded cemented single implant crowns	1-year	Implant failure (1-year)	Bone level	SurfLink Mean=−1.09, SD=0.76, 21 participants Element Mean=−1.36, SD=0.86, 21 participants	MD=0.27 (−0.01−0.55) P=0.0.057
Lee 2007	Randomized split-mouth design	Astra cylindrical versus Astra conical implants	Placed adjacent to each other and restored as a 2 unit fixed prosthesis	3 years	Implant failure	-	No failures	
Song 2009	Randomized split-mouth design	Implantium microthreads at the top versus Implantium microthreads 0.5 mm below the top	Placed adjacent to each other and restored as a 2 unit fixed prosthesis	1-year	Implant failure	-	No failures	
Gatti 2002	Randomized parallel group study	Brånemark Mark II type versus Brånemark conical transmucosal implants	Overdentures supported on 4 implants connected with bar	2 years	Implant failure	-	No failures	
Lang 2007	Randomized parallel group study	ITI cylindrical versus ITI tapered implants		1-year	Implant failure	-	No failures	

Contd
Table 1: Contd...

Study	Design	Implants compared	Prosthesis	Follow-up period	Outcome	Risk ratio	Finding	
Keilbassa 2009	Randomized, multicenter, parallel group study	NobelActive external connection versus NobelActive internal connection implants	Immediate provisional single crown restorations	3 years	Implant failure	RR=1.06 (0.25-4.51)	*P*=0.94	Internal=4/63, External=3/50
					Implant failure	RR=0.66 (0.17-2.58)	*P*=0.55	Internal=3/50, External=3/41
					Bone level	MD=0.30 (-0.17-0.77)	*P*=0.21	Internal=5/45
Keilbassa 2009	Randomized, multicenter, parallel group study	NobelActive external connection versus NobelReplace implants	Immediate provisional single crown restorations	3 years	Implant failure	RR=0.67 (0.17-2.67)	*P*=0.57	External=3/56
					Implant failure	RR=1.00 (0.21-4.67)	*P*=1.00	NobelReplace=5/56, External=3/41
					Bone level	MD=0.00 (-0.41-0.41)	*P*=1.00	NobelReplace=3/41
Keilbassa 2009	Randomized, multicenter, parallel group study	NobelActive internal connection implants versus NobelReplace implants	Immediate provisional single crown restorations	3 years	Implant failure	RR=0.90 (0.25-3.15)	*P*=0.86	Internal=3/50
					Implant failure	RR=1.00 (0.21-4.67)	*P*=1.00	NobleReplace=5/56, Internal=3/41
					Bone level	MD=0.30 (-0.17-0.77)	*P*=0.21	NobleReplace=3/41
Pozzi 2014	Randomized, split mouth study	NobelActive internal connection versus Nobel Speedy Groovy external connection implants	Placed in healed sites loaded after 4 months of healing with single crowns	1-year	Bone level	MD=−0.59 (-0.74-0.44)	*P*<0.001	Mean=0.59, SD=0.98, 44 participants
Prosper 2009	Randomized split mouth study	WINSIX cylindrical versus WINSIX tapered implants	Conventionally loaded single crowns	2 years	Implant failure	RR=2.00 (0.38-10.58)	*P*=0.41	Cylindrical=4/66, Tapered=2/66

*Wennstrom 2004 was not included in the primary outcome measurement as the author did not reply when asked about the removal of the screw retained prosthesis before measuring implant stability.

SD: Standard deviation, RR: Relative risk, MD: Mean difference, SLA: Sand-blasted acid-etched
Table 2: Available evidence from trials comparing different implant materials and combination

Study	Design	Implants compared	Prosthesis	Follow-up period (years)	Outcome	Risk ratio	Finding	
Trials comparing implants with different materials	Al-nawas 2012	Randomized split-mouth study	ITA SLActive implants: Titanium grade 4 versus titanium-13zirconium (Roxolid)	Overdentures on 2 implants connected with locator attachments	1	Implant failure	RR=2.00 (0.18–21.66) P=0.57	SLActive=2/89 Roxolid=1/89
	Akoglu 2011	Randomized parallel group study	Astra TiO2 blast versus ITI SLA titanium implants	Overdentures on 2 implants connected with ball attachments	5	Implant failure	-	No failures
	Alsabeeha 2011	Randomized parallel group study	Southern regular versus turned Neoss implants	Single crowns	1	Implant failure	RR=3.25 (0.15–72.36) P=0.46	Southern regular=1/11 Neoss=0/12
	Astrand 1999	Randomized parallel group study	Astra TiO2 blast cylindrical versus turned Brånemark Mark II implants	Fixed prostheses	5	Implant failure	RR=0.25 (0.03–2.12) P=0.20	Southern wide=0/12
	Batenburg 1998	Randomized parallel group study	Brånemark MKII versus ITI TPS solid screw implants	Maxillary fixed prosthesis	3	Implant failure	RR=0.05 (0.05–5.20) P=0.56	Brånemark=1/28 ITI=2/28

Contd
Study	Design	Implants compared	Prosthesis	Follow-up period (years)	Outcome	Risk ratio	Finding
Crespi 2009	Randomized parallel group study	Ankylos Plus Dentsply versus Seven Sweden and Martina implants	Immediate postextractive and immediately loaded implants supporting single cemented crowns	1	Bone level (1-year)	MD=0.03	Internal Mean=0.20, SD=0.58, 21 participants Replace Mean=0.17, SD=0.54, 27 participants
Den Hartog 2011	Randomized parallel group study	NobelReplace Select Tapered versus NobelReplace Groovy implants	Single crowns	1.5	Implant failure	RR=3.00	Internal Mean=0.19, SD=0.57, 31 participants Branemark Mean=0.9, SD=0.57, 31 participants
Heydenrijk 2002	Randomized parallel group study	IMZ titanium TPS versus ITI TPS solid implants	Overdentures on 2 implants connected with a bar	5	Implant failure (1-year)	IMZ=1/20	RR=3.00 (0.13–69.52)
Payne 2003	Randomized parallel group study	ITI SLA versus Southern implants	Overdentures on 2 implants early loaded at 2 weeks	10	Bone change (1-year)	MD=−0.02	ITI TPS Mean=0.26, SD=0.23, 12 participants Southern Mean=0.28, SD=0.15, 12 participants
Payne 2004	Randomized parallel group study	Brånemark MKIV TiUnite versus Southern regular implants	Maxillary overdentures on 3 unsplinted implants early loaded at 12 weeks	1	Implant failure (1-year)	RR=0.57	ITI TPS Mean=0.33, SD=0.55, 9 participants Southern Mean=0.41, SD=0.58, 9 participants
Tawse smith 2001, 2002	Randomized parallel group study	Southern regular versus SteriOss implants	Mandibular overdentures on 2 implants conventionally loaded at 12 weeks	10	Implant failure (1, 3, 5 and 10 years)	-	Brånemark=4/19 Southern=7/19

SD: Standard deviation, RR: Relative risk, MD: Mean difference, TPS: Titanium plasma-sprayed, SLA: Sand-blasted acid-etched
studies included in the meta-analysis was too low to carry out sensitivity analyses which could have been significant. Moreover, the included studies were from European, Australian and, East-Asian countries; while none was an Indian study. Many of the different implant systems that formed the intervention group in these studies are not even available in India; while those that are available and commonly used in India were not presented in the review. This clearly indicates the need for properly designed RCTs with adequate sample size, a follow-up period of at least 5 years and a low-risk of bias; that are reported according to the consolidated standards of reporting trials guidelines.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.
REFERENCES

1. Müller F, Naharro M, Carlsson GE. What are the prevalence and incidence of tooth loss in the adult and elderly population in Europe? Clin Oral Implants Res 2007;18 Suppl 3:2-14.
2. Montandon A, Zuza E, Toledo BE. Prevalence and reasons for tooth loss in a sample from a dental clinic in Brazil. Int J Dent 2012;2012:719750.
3. Binon PP. Implants and components: Entering the new millennium. Int J Oral Maxillofac Implants 2000;15:76-94.
4. Esposito M, Ardebili Y, Worthington HV. Interventions for replacing missing teeth: Different types of dental implants. Cochrane Database Syst Rev 2014;7:CD003815.