The mitochondrial Na\(^+\)/Ca\(^{2+}\) exchanger may reduce high glucose-induced oxidative stress and nucleotide-binding oligomerization domain receptor 3 inflammasome activation in endothelial cells

Yuan ZU\(^1\), Li-Juan WAN\(^1\), Shao-Yuan CUI\(^2\), Yan-Ping GONG\(^1\), Chun-Lin LI\(^1\)

\(^1\)Department of Geriatric Endocrinology, Chinese PLA General Hospital, Beijing, China
\(^2\)Department of Nephrology, State Key Laboratory of Kidney Disease, Chinese PLA General Hospital, Beijing, China

Abstract

Background The mitochondrial Na\(^+\)/Ca\(^{2+}\) exchanger, NCLX, plays an important role in the balance between Ca\(^{2+}\) influx and efflux across the mitochondrial inner membrane in endothelial cells. Mitochondrial metabolism is likely to be affected by the activity of NCLX because Ca\(^{2+}\) activates several enzymes of the Krebs cycle. It is currently believed that mitochondria are not only centers of energy production but are also important sites of reactive oxygen species (ROS) generation and nucleotide-binding oligomerization domain receptor 3 (NLRP3) inflammasome activation.

Methods & Results This study focused on NCLX function, in rat aortic endothelial cells (RAECs), induced by glucose. First, we detected an increase in NCLX expression in the endothelia of rats with diabetes mellitus, which was induced by an injection of streptozotocin. Next, colocalization of NCLX expression and mitochondria was detected using confocal analysis. Suppression of NCLX expression, using an siRNA construct (siNCLX), enhanced mitochondrial Ca\(^{2+}\) influx and blocked efflux induced by glucose. Unexpectedly, silencing of NCLX expression induced increased ROS generation and NLRP3 inflammasome activation.

Conclusions These findings suggest that NCLX affects glucose-dependent mitochondrial Ca\(^{2+}\) signaling, thereby regulating ROS generation and NLRP3 inflammasome activation in high glucose conditions. In the early stages of high glucose stimulation, NCLX expression increases to compensate in order to self-protect mitochondrial maintenance, stability, and function in endothelial cells.

J Geriatr Cardiol 2015; 12: 270−278. doi:10.11909/j.issn.1671-5411.2015.03.003

Keywords: Calcium ion; NCLX; Mitochondria; NLRP3 inflammasome; Reactive oxygen species

1 Introduction

Diabetes mellitus is a leading cause of death globally and a chronic disability, resulting in enormous social and economic burden. Angiopathy is a major contributor to the progression of diabetes and its associated complications.\(^[1]\) While the pathophysiology of diabetic endothelial dysfunction is incompletely characterized, it seems to be multifactorial. In the past few decades, hyperglycemia-induced oxidative stress has been increasingly identified as a trait of diabetic vasculature.\(^[2,3]\) Mitochondria are well known as storehouses for intracellular calcium, a source of reactive oxygen species (ROS), and a sensor of oxidative stress.\(^[4,5]\)

Furthermore, mitochondrial Ca\(^{2+}\)\((\text{[Ca}^{2+}\text{]}_{\text{mito}})\) can be dynamically changed upon stimulation by various ligands, for example, during high glucose (HG) conditions, [Ca\(^{2+}\)]\(\text{[Ca}^{2+}\text{]}_{\text{mito}}\) plays an important role in regulating mitochondrial as well as cellular functions, such as oxidative stress,\(^[6]\) inflammasome activation\(^[7,8]\) and apoptosis.\(^[9]\) Recent findings suggest that many stimuli engage Ca\(^{2+}\) signaling as an intermediate step to trigger mitochondrial instability, and result in generating mitochondrion-associated ligands to activate the NLRP3 inflammasome.\(^[10]\) Thus, it is essential to fully understand how glucose-dependent [Ca\(^{2+}\)]\(\text{[Ca}^{2+}\text{]}_{\text{mito}}\) is regulated and how it affects mitochondrial and cellular functions in endothelial cells.

Ca\(^{2+}\) enters the mitochondria mainly via a Ca\(^{2+}\) selective channel and the Ca\(^{2+}\) uniporter, and this is driven by a large negative membrane potential.\(^[11-13]\) [Ca\(^{2+}\)]\(\text{[Ca}^{2+}\text{]}_{\text{mito}}\) is extruded by the Na\(^+\)-Ca\(^{2+}\) exchanger and/or H\(^+\)-Ca\(^{2+}\) exchanger.\(^[14,15]\) Although the activity of the mitochondrial Na\(^+\)/Ca\(^{2+}\) exchanger was discovered more than 40 years ago, its molecular identity and mechanisms had remained unclear, until 2009 researchers found that NCLX protein (previously known as
NCKX6) is a long-searched-for mitochondrial Na⁺/Ca²⁺ exchanger, which appears to be a gene product of mammalian SLC8B1.[16, 17]

The amplitude and duration of [Ca²⁺]_{mito} elevations reflect the balance between uptake and release mechanisms.[19] Prolonged accumulation of [Ca²⁺]_{mito} in the matrix space can lead to mitochondrial [Ca²⁺]_{mito} overload, resulting in the outbreak of oxidative stress and the activation of cell death signals.[5, 19]

To avoid this, mitochondria possess two membrane systems to extrude Ca²⁺: the Na⁺-Ca²⁺ exchanger and the H⁺-Ca²⁺ exchanger. However, De Marchi, et al.[20] found that NCLX protein, but not the H⁺-Ca²⁺ exchanger, mainly mediated [Ca²⁺]_{mito} extrusion. These new findings present novel opportunities to study the contributions of [Ca²⁺]_{mito}, to cellular and systemic activity in health and disease.

In this study, we found an increase in the amount of the mitochondrial Na⁺/Ca²⁺ exchanger, NCLX, in rats with endothelial diabetes mellitus, which is induced by injection of streptozotocin. Next, we examined whether NCLX expression modulates oxidative stress in HG conditions. Suppression of NCLX expression, using a siRNA construct (siNCLX), enhanced [Ca²⁺]_{mito} influx and blocked efflux induced by glucose. Unexpectedly, silencing of NCLX expression induced ROS generation and increased activation of the NLRP3 inflammasome.

2 Methods

2.1 Reagents

Cell culture media, supplements, MitoTracker® and Lipofectamine™ RNAiMAX were obtained from Invitrogen. Primary antibodies were obtained from Sigma-Aldrich [anti-actin mouse monoclonal antibody (mAb)], Proteintech [anti-NCLX rabbit polyclonal antibody (pAb)], Abcam [anti-Caspase-1 rabbit pAb, anti-NLRP3 rabbit pAb] and Santa Cruz [anti-PECAM-1 (CD31) mouse mAb]. Secondary antibodies were obtained from Jackson ImmunoResearch Laboratories. Fluorescein isothiocyanate (FITC) and cyanine 3 (CY3) immunofluorescence secondary antibodies were obtained from Beyotime Institute of Biotechnology. SiGENOME SMARTpool Rat SLC24a6 (Lot#130809) was obtained from Thermo Scientific Dharmacon.

2.2 Animals

Male Wistar rats were anesthetized with an injection of sodium pentobarbital (40 mg/kg, i.p.), and all efforts were made to minimize the suffering. After maintaining the DM rat for one month. The descending thoracic aorta was isolated and cleaned from the surrounding adipose and connective tissues. The 0.3 to 0.5 cm long aorta was trapped using Tissue-Tek O.C.T Compound (Sakura, CA, USA) in liquid nitrogen. The tissue sample was then cryo-sectioned.

2.3 Isolation, culture, and transfection of rat aortic endothelial cells

Male Wistar rats were anesthetized with an injection of sodium pentobarbital (40 mg/kg, i.p.), and all efforts were made to minimize the suffering. Briefly, the aorta was isolated from the abdominal cavity of the rat. The aorta was cleaned, opened longitudinally, cut into 0.2 to 0.3 cm sections, and placed with the intimal side down onto Matrigel-coated plates, in growth medium RPMI-1640 containing 15% fetal bovine serum (FBS), 0.5 ng/mL of vascular endothelial growth factor (VEGF) (PeproTech Lot#1107436) and 100 U/mL of penicillin-streptomycin. Rat aortic endothelial cells (RAECs) were incubated in a humidified atmosphere containing 5% CO₂ at 37°C. The growth medium RPMI-1640 was added every second day to prevent drying out. After 50–60 h, the pieces were removed and the cells were harvested. The cells were passaged when they reached 90% confluence. The identity of RAECs was confirmed by a positive immunofluorescence staining of platelet endothelial cell adhesion molecule (PECAM-1). RAECs were grown in RPMI-1640 medium supplemented with 10% FBS after a large number of RAECs were harvested. RAECs were transfected for 48 h with siNCLX or siControl using Lipofectamine™ RNAiMAX, according to the manufacturer’s reverse transfection protocol. Transfection efficiency was determined using western blot analyses.

2.4 Western blotting analysis

The RAECs were lysed in radioimmunoprecipitation assay (RIPA) buffer [50 mmol/L Tris–HCl (pH 7.6), 5 mmol/L EDTA, 150 mmol/L NaCl, 0.5% NP-40, 0.5% Triton-X-100] containing 1 g/mL leupeptin, 1 g/mL aprotinin, and 1 g/mL antipain, and 0.5 mmol/L phenylmethanesulfonylfluoride (PMSF). Sample protein concentrations were measured using the BCA Protein assay. Next, 50 g of total protein was separated using 8% or 10% SDS–PAGE and then transferred onto a membrane. The membrane was blocked with 5% skimmed milk, probed with a primary antibody overnight at 4°C, and incubated with a horseradish peroxidase-conjugated secondary antibody. Proteins were detected by chemiluminescence using the enhanced chemilumines-
cence (ECL) reagent (Pierce, Rockford, IL, USA). Densitometry was performed using Quantity One (BIO-RED) analysis software. β-actin was used as the normalization control.

2.5 Measurement of interleukin-1β (IL-1β) concentration

The IL-1β concentration of the medium was measured using a colorimetric sandwich ELISA kit (IL-1β Quantikines ELISA kit) from R&D systems according to the manufacturer’s instructions. The absorbance was measured at 490 nm using a microplate reader.

2.6 Measurement of [Ca^{2+}]_{mito} using laser confocal microscopy

Changes in [Ca^{2+}]_{mito} were detected through incubation for 30 min, at 37°C in the dark, with the Ca^{2+} probe Rhod-2 AM (Invitrogen) at a final concentration of 4 μmol/L. After incubation, the cells were washed twice with Hanks’ Balanced Salt Solution (with Ca^{2+} & Mg^{2+}) (Beyotime Institute of Biotechnology) to remove the probes, and were analyzed using laser confocal microscopy. Fluorescence images were captured using a laser confocal system mounted on an inverted microscope equipped with an argon-krypton laser. Rhod-2 AM fluorescence (excitation at 559 nm) was detected at a wavelength of 577 nm.[21] In this glucose dependent experiment, the cells were pre-washed for 30 min with low glucose (5.56 mmol/L) containing HBSS, followed by HG (35 mmol/L) containing HBSS. The specific [Ca^{2+}]_{mito} line-scanning method was performed over a single horizontal position consisting of 160 lines at 5 s intervals. Changes in [Ca^{2+}]_{mito} were expressed as a pseudo-ratio value (F/F₀) of the actual fluorescence intensity (F) divided by the basal intensity of the [Ca^{2+}]_{mito} at rest (F₀). F₀ was calculated as the average value obtained during the 50–60 s prior to stimulus application.[22]

2.7 Measurement of total intracellular ROS levels

Changes in intracellular ROS levels were detected using the oxidant-sensing fluorescent probe: dichlorofluorescin diacetate (DCFDA), in the DCFDA Cellular ROS Detection Assay Kit (ab113851). This probe was loaded into previously subcultured RAECs, at a final concentration of 25 μmol/L, and the cells were then cultured for 45 min at 37°C, in the dark. After incubation, the culture medium was washed twice with a 1× buffer solution to remove the dyes, and analyzed using laser confocal microscopy. An excitation wavelength of 488 nm (argon laser) and an emission wavelength of 519 nm were used. The ROS line-scanning method was performed over a single horizontal position consisting of 50 lines at 10 s intervals. Changes in ROS levels were expressed as a pseudo-ratio value (F/F₀) of the actual fluorescence intensity (F) divided by the basal intensity of the ROS at rest (F₀). F₀ was calculated as the average value obtained during the 50–60 s prior to stimulus application.[23,24]

2.8 Statistical analysis

Traces from all the fluorescent imaging experiments were plotted using Olympus Fluoview (ver.2.1b FV1000). Influx of Ca^{2+} into mitochondria consistently began after stimulation of RAECs with HG. Similarly, Ca^{2+} efflux out of the mitochondria followed the influx phase, as previously described. Hence, the fluorescent ratio signals were normalized to the average signal obtained at the beginning of the measurements. The influx and efflux rates were calculated as the slope of the linear fit of the fluorescence change during the 30 s following the administered HG.[16]

Data were expressed as mean ± SD of at least three independent experiments, using 15–30 cells in each experiment. The statistical significance for all experiments was determined using one-way ANOVA test followed by Bonferroni post-hoc analysis. P < 0.05 was considered statistically significant.

3 Results

3.1 Increased NCLX expression in RAECs by high glucose stimulation

Recently, NCLX was identified as the mitochondrial Na^{+}/Ca^{2+} exchanger in several cell types.[16,25] We first investigated whether NCLX was expressed in rat aortic endothelia, using double immunofluorescence labeling. Confocal microscopy analysis was performed on aorta cryosections. PECAM-1(CD31) was used to mark the endothelial level (red) (Figure 1A). Next, we found that NCLX expression was significantly increased in DM RAECs. This was consistent with the in vitro results for the RAECs, which were induced by HG (HG, 35 mmol/L) stimulation. Western blotting analysis (P < 0.05, Figure 1B) detected a major band of 100 kDa and a weaker band at 50 kDa, which correlated to the SDS-stable NCLX. Next, immunofluorescence double staining was performed using MitoTracker® Green FM, which indicated that NCLX was expressed in the mitochondria of RAECs[26] (Figure 1C, Pearson’s colocalization coefficient = 0.68 ± 0.06, n = 15), a result consistent with previous studies.[27]

3.2 The role of NCLX in high glucose-induced [Ca^{2+}]_{mito} transport and ROS formation

NCLX knockdown using siRNA caused a 47% ± 13.61%
ZU Y, et al. NCLX may reduce oxidative stress and inflammasome activity.

Figure 1. The expression and location of NCLX. (A): NCLX is expressed in rat aortic endothelial and is further increased in DM rats; (B): Western blot analysis of NCLX expression in confluent RAECs which were cultured in medium containing normal glucose (5.5 mmol/L) or high glucose (35 mmol/L) levels; and (C): NCLX (green) and Mito Tracker (red) were co-localized. The nucleus was stained by DAPI (blue). DM: diabetes mellitus; HG: high glucose; NG: normal glucose; RAECs: rat aortic endothelial cells. *P < 0.05.

Reduction in NCLX protein expression (Figure 2A). [Ca^{2+}]_{mito} was monitored in RAECs, which were initially superfused with low glucose (5.5 mmol/L), followed by application of HG (35 mmol/L) with HBSS (with Ca^{2+} and Mg^{2+}). Application of HG triggered robust mitochondrial Ca^{2+} transients (Figure 2B). Knockdown of NCLX expression was followed by a time-dependent increase in Ca^{2+} influx (Figure 2C) and a time-dependent decrease in Ca^{2+} efflux (Figure 2D). Silencing of NCLX expression blocked glucose-dependent [Ca^{2+}]_{mito} efflux. Comparison of the peak amplitude of [Ca^{2+}]_{mito} signals of siNCLX vs. siControl, using HG stimulation, demonstrated an increase in cells transfected with siNCLX (Figure 2E).

Mitochondria are important sites of ROS generation, and numerous studies have confirmed that HG levels generate ROS.[28,29] Next, we determined the effect of NCLX expression on ROS production. ROS production was markedly increased by HG stimulation, in the siNCLX group (Figure 2F).
ZU Y, et al. NCLX may reduce oxidative stress and inflammasome activation in HG conditions.

Figure 2. The role of NCLX in high glucose-induced [Ca^{2+}]_{mito} transport and ROS formation. (A): Western blotting analysis of NCLX expression in siNCLX vs. siControl (50 µg) transfected RAECs; (B): silencing of NCLX expression blocks the glucose dependent mitochondrial Ca^{2+} efflux; (C): time-dependent average rates of mitochondrial Ca^{2+} influx after high glucose conditions, n = 15 (P_{ΔT180-210s} < 0.01); (D): time-dependent average rates of mitochondrial Ca^{2+} efflux, n = 15 (P_{ΔT430-460s} < 0.05); (E): average mitochondrial Ca^{2+} response peak amplitude, n = 15 (P < 0.05); (F): silencing of NCLX expression makes total intracellular ROS response more severe vs. siControl, by stimulation with high glucose levels (P < 0.01). Data are represented as the mean ± SD, of four independent experiments for each group. RAECs: rat aortic endothelial cells; ROS: reactive oxygen species; siNCLX: siRNA construct. *P < 0.05; **P < 0.01.

3.3 Knockdown of NCLX expression results in activation of the NLRP3 inflammasome

RAECs, which were cultured in medium containing normal glucose (NG), were used as the control group. We first compared the changes in total intracellular ROS production and NLRP3 expression in RAECs treated with siNCLX or siControl, which were cultured in HG (35 mmol/L) for 24 h. Total intracellular ROS production and NLRP3 expression were significantly increased in HG+siNCLX vs. HG+siControl cells (Figure 3 A&B). However, the change between the NG and the HG+siControl group was not notable. We next determined caspase-1 expression and IL-1β release, and there is the same result with NLRP3 expression among the three groups (Figure 3 C&D).

4 Discussion

The major findings of the present study include evidence that demonstrates that the mitochondrial Na^{+}/Ca^{2+} exchanger, NCLX, is richly expressed in rat aortic endothelial cell mitochondria. NCLX expression in RAECs was increased in HG conditions. Unexpectedly, knockdown of NCLX induced ROS generation and increased activation of the NLRP3 inflammasome. The results of our study demonstrated that NCLX was linked to elevated glucose, ROS generation, and activation of the NLRP3 inflammasome by mediating [Ca^{2+}]_{mito} efflux. Our findings indicated that NCLX may protect against oxidative stress and inflammasome activation in HG conditions at an early stage.

NCLX is a member of the NCX family and is phylogenetically and functionally distinct from other known NCX or NCKX family members. [30,31] The abbreviated term NCLX stands for Na/Li/Ca exchanger. Palty, et al.[16] found that NCLX can transport either lithium (Li^{+}) or sodium (Na^{+}), in exchange for Ca^{2+}, while the plasma membrane exchangers NCX and NCKX do not transport Li^{+}.
Kim’s experiments using EGFP-labeled NCLX in NIH/3T3 fibroblasts suggested that NCLX was exclusively expressed in mitochondria. Our experimental data were not only consistent with these previous studies, but also demonstrated for the first time that NCLX was expressed in endothelial cell mitochondria and was increased by HG stimulation. The balance between Ca\(^{2+}\) influx and efflux across the mitochondrial inner membrane is crucial for establishing Ca\(^{2+}\) homeostasis within the cell, and therefore, specific Ca\(^{2+}\) transport mechanisms must exist, one of which is the newly identified NCLX. NCLX expression accelerates \([\text{Ca}^{2+}]_{\text{mito}}\) efflux activity, whereas silencing of NCLX expression attenuates this process. Ca\(^{2+}\) efflux was fully rescued in NCLX-silenced cells by concomitant overexpression of NCLX.\(^{[16]}\) The expression of NCLX is essential and sufficient to functionally complement mitochondrial Na\(^+\)/Ca\(^{2+}\) exchange.\(^{[32]}\) Despite the profound effect of NCLX expression on \([\text{Ca}^{2+}]_{\text{mito}}\) efflux, it did not affect the steady-state resting \([\text{Ca}^{2+}]_{\text{mito}}\) level.\(^{[16]}\) Our results indicated that NCLX plays an important role in \([\text{Ca}^{2+}]_{\text{mito}}\) responses triggered by HG conditions in endothelial cells. Importantly, knockdown of NCLX expression increased the Ca\(^{2+}\) influx rate, particularly in the late stages of absorption, increased mitochondrial peak Ca\(^{2+}\), and blocked the Ca\(^{2+}\) efflux rate. Therefore,
Ca²⁺ mobilization may modulate inflammasome activation and [Ca²⁺]mito elevations. Our results were consistent with Nita’s study using Min6 cells. He also found that knockdown of NCLX expression was followed by a minor increase in resting [Ca²⁺]mito levels, in the Min6 cells. On the other hand, some studies have found ROS production prior to oxidative stress, and that ROS regulated Ca²⁺ release. In conclusion, there is a complex and close link between [Ca²⁺]mito transients and ROS generation. Stimulation of the tricarboxylic acid cycle and oxidative phosphorylation by Ca²⁺ enhances ROS generation. On the one hand, calcium overload in mitochondria was the major cause of ROS production. On the other hand, mitochondria maintains its stability and function via an increase in NCLX expression in the Min6 cells. However, this finding was not detected in our test with RAECs. One possibility is that this may be dependent on cell type, as the tissue distribution of NCLX has a unique pattern (high in the pancreas, skeletal muscle and stomach, and low in the kidney and lung). Further, mitochondria from different tissues exhibit large differences in their permeability to Ca²⁺.

Importantly, we found that knockdown of NCLX expression increased ROS generation induced by HG stimulation, in comparison to the siControl. Mitochondrial metabolism is likely to be affected by the activity of NCLX because Ca²⁺ activates several enzymes of the Krebs cycle. It is currently thought that mitochondria are not only centers of energy production but also important sites of ROS generation. Stimulation of the tricarboxylic acid cycle and oxidative phosphorylation by Ca²⁺ enhances ROS generation. On the one hand, calcium overload in mitochondria was the major cause of ROS production. On the other hand, mitochondria seem to be an important target in anti-apoptosis in endothelial cells. Translocation of soluble adenylyl cyclase (sAC) to mitochondria can influence the development of apoptosis by cytochrome C release and caspase-9 cleavage in endothelial cells. This work was supported by the National Natural Science Foundation of China (Grant No. 81173625, 81373458). Thanks for the kind help of Dr. Wang (Pulmonary Division, Boston Children’s Hospital, MA, USA), who was extremely helpful in the revision of the language.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 81173625, 81373458). Thanks for the kind help of Dr. Wang (Pulmonary Division, Boston Children’s Hospital, MA, USA), who was extremely helpful in the revision of the language.

References

1 Skyler JS, Bergenstal R, Bonow RO, et al. Intensive glycemic control and the prevention of cardiovascular events: implica-

13 Baughman JM, Perocchi F, Girgis HS, et al. Mitochondrial calcium overload and oxidative stress: direct cause and effect? Free Radic Biol Med 2008; 44: 1217–1231.

14 Castaldo P, Cataldi M, Magi S, et al. Mitochondria, calcium and mitochondrial destabilization. J Mol Cell Cardiol 2011; 50: 222–233.

15 Celsi F, Pizzo P, Brini M, et al. Mitochondria, calcium and cell death: a deadly triad in neurodegeneration. Biochim Biophys Acta 2009; 1787: 335–344.

16 Palty R, Silverman WF, Hershfinkel M, et al. NCLX is an essential component of mitochondrial Na⁺/Ca²⁺ exchange. Proc Natl Acad Sci U S A 2010; 107: 436–441.

17 Cai X, Lytton J. Molecular cloning of a sixth member of the K⁺-dependent Na⁺/Ca²⁺ exchanger gene family, NCKX6. J Biol Chem 2004; 279: 5867–5876.

18 Jean-Quartier C, Bondarenko AI, Alam MR, et al. Studying mitochondrial Ca(2+)-uptake - a revisit. Mol Cell Endocrinol 2012; 353: 114–127.

19 Rasola A, Bernardi P. Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis. Cell Calcium 2011; 50: 222–233.

20 De Marchi U, Santo-Domingo I, Castelhou C, et al. NCLX protein, but not LETM1, mediates mitochondrial Ca²⁺ extrusion, thereby limiting Ca²⁺-induced NAD(P)H production and modulating matrix redox state. J Biol Chem 2014; 289: 20377–20385.

21 MacGowan GA, Du C, Glonty V, et al. Rhod-2 based measurements of intracellular calcium in the perfused mouse heart: cellular and subcellular localization and response to positive inotropy. J Biomed Opt 2001; 6: 23–30.

22 Feng Z, Wei C, Chen X, et al. Essential role of Ca²⁺ release channels in angiotensin II-induced Ca²⁺ oscillations and mesangial cell contraction. Kidney Int 2006; 70: 130–138.

23 Puebla C, Farias M, Gonzalez M, et al. High D-glucose reduces SLC29A1 promoter activity and adenosine transport involving specific protein 1 in human umbilical vein endothelial cells. J Cell Physiol 2008; 215: 645–656.

24 Pauw A, Leverstein van Hall MA, van Kessel KP, et al. Yersiniabactin reduces the respiratory oxidative stress response of innate immune cells. PLoS One 2009; 4: e8240.

25 Kim B, Takeuchi A, Koga O, et al. Pivotal role of mitochondrial Na⁺/Ca²⁺ exchange in antigen receptor mediated Ca(2+)(+)/Ca(2+)(++) exchange in THP-1 monocytic cells. J Immunol 2009; 1820: 907–920.

26 Kumar S, Flacke JP, Kostin S, et al. SLC4A7 sodium bicarbonate co-transporter controls mitochondrial apoptosis in ischaemic coronary endothelial cells. Cardiovasc Res 2011; 89: 392–400.

27 Takeuchi A, Kim B, Matsuoka S. The mitochondrial Na⁺-Ca²⁺ exchanger, NCLX, regulates automaticity of HL-1 cardiomyocytes. Sci Rep 2013; 3: 2766.

28 Pelletier M, Lepow TS, Billingham LK, et al. New tricks from an old dog: mitochondrial redox signaling in cellular inflammation. Semin Immunol 2012; 24: 384–392.

29 Kumar S, Kain V, Sitawad SL. High glucose-induced Ca²⁺ overload and oxidative stress contribute to apoptosis of cardiac cells through mitochondrial dependent and independent pathways. Biochim Biophys Acta 2012; 1820: 907–920.

30 Khananshvili D. The SLC8 gene family of sodium-calcium exchangers (NCX)-structure, function, and regulation in health and disease. Mol Aspects Med 2013; 34: 220–235.

31 Boyman L, Williams GS, Khananshvili D, et al. NCLX: the mitochondrial sodium calcium exchanger. J Mol Cell Cardiol 2013; 59: 205–213.

32 Nita II, Hershfinkel M, Fishman D, et al. The mitochondrial Na⁺/Ca²⁺ exchanger upregulates glucose dependent Ca²⁺ signalling linked to insulin secretion. PLoS One 2012; 7: e46649.

33 Fieni F, Lee SB, Jan YN, et al. Activity of the mitochondrial

http://www.jgc301.com; jgc@mail.sciencep.com | Journal of Geriatric Cardiology
calcium uniporter varies greatly between tissues. Nat Commun 2012; 3: 1317.

34 Szabadkai G, Duchen MR. Mitochondria: the hub of cellular Ca²⁺ signaling. Physiology (Bethesda) 2008; 23: 84–94.

35 Csordas G, Hajnoczky G. SR/ER-mitochondrial local communication: calcium and ROS. Biochim Biophys Acta 2009; 1787: 1352–1362.

36 Chan SH, Wu KL, Wang LL, et al. Nitric oxide- and superoxide-dependent mitochondrial signaling in endotoxin-induced apoptosis in the rostral ventrolateral medulla of rats. Free Radic Biol Med 2005; 39: 603–618.

37 Brookes PS, Yoon Y, Robotham JL, et al. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 2004; 287: C817–C833.

38 Dedkova EN, Ji X, Lipsius SL, et al. Mitochondrial calcium uptake stimulates nitric oxide production in mitochondria of bovine vascular endothelial cells. Am J Physiol Cell Physiol 2004; 286: C406–C415.

39 Kim KY, Cho HJ, Yu SN, et al. Interplay of reactive oxygen species, intracellular Ca²⁺ and mitochondrial homeostasis in the apoptosis of prostate cancer cells by deoxypodophyllotoxin. J Cell Biochem 2013; 114: 1124–1134.

40 Abramov AY, Scorziello A, Duchen MR. Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci 2007; 27: 1129–1138.

41 Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 2008; 57: 1446–1454.

42 Zheng Z, Chen H, Ke G, et al. Protective effect of perindopril on diabetic retinopathy is associated with decreased vascular endothelial growth factor-to-pigment epithelium-derived factor ratio: involvement of a mitochondria-reactive oxygen species pathway. Diabetes 2009; 58: 954–964.

43 Triantafilou K, Hughes TR, Triantafilou M, et al. The complement membrane attack complex triggers intracellular Ca²⁺ fluxes leading to NLRP3 inflammasome activation. J Cell Sci 2013; 126: 2903–2913.

44 Lawlor KE, Vince JE. Ambiguities in NLRP3 inflammasome regulation: is there a role for mitochondria? Biochim Biophys Acta 2014; 1840: 1433–1440.

45 Dostert C, Petrilli V, Van Bruggen R, et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 2008; 320: 674–677.

46 Kumar S, Kostin S, Flacke JP, et al. Soluble adenylyl cyclase controls mitochondria-dependent apoptosis in coronary endothelial cells. J Biol Chem 2009; 284: 14760–14768.

47 Flacke JP, Kumar S, Kostin S, et al. Acidic preconditioning protects endothelial cells against apoptosis through p38- and Akt-dependent Bcl-xL overexpression. Apoptosis 2009; 14: 90–96.