Prevalence of Bovine Trypanosomosis and Apparent Density of Tsetse Fly in Botor Tolay District, Jimma Zone, Ethiopia

Megersa Lemu, Feyisa Bekuma*, Dereje Abers and Behablom Meherenet

School of Veterinary Medicine, Collage of Medical and Health Science, Ethiopia

Received: January 04, 2019; Published: January 22, 2019

*Corresponding author: Feyisa Bekuma, school of Veterinary Medicine, Ethiopia

Abstract

It Trypanosomosis is one of the major impediments to livestock development and agricultural production in Ethiopia. It is cyclically transmitted by tsetse flies but also mechanically tsetse flies and by other biting flies. A cross sectional study was conducted in Botor tolay district of Oromia Regional State from November 2017 to may 2018 to determine the prevalence of trypanosomosis and apparent density tsetse flies. Simple random sampling was used to select 384 cattle from the purposively selected five PAs for collection of blood sample. Buffy coat technique was used to determine prevalence of bovine trypanosomosis in the study area and trap was deployed for collection of tsetse flies. The overall prevalence of trypanosomosis was (47) (12.24%). The major species of trypanonosomes identified in the study area were T. congolense 28(59.6%) and T. vivax 12(25.5%).

The mean PCV values recorded were 18.34% in parasitaemic and 24.97% in aparasitaemic animals. And low Pcv animals also found to be found significant compare with other risk factors age and sex which statistically insignificant difference (P>0.05). Identification on entomological survey shows three species of tsetse fly identified was G. morstans, G. pallidepes and G. fuscipes. Higher prevalence of trypanosomosis infection was observed in animals with poor body condition statistical significant difference (P<0.05). About 52 traps were deployed for 48 hours (2 days) for collection of tsetse fly. A total of 1206 flies were collected from a study area, of which the higher density was for tsetse fly 1139 (10.9 flies per trap per day) followed by 18 Tabanus, 36 Stomoxys and 13 Heamatopota. Generally, this study showed that trypanosomosis is still present and becomes a constraint for livestock production of the study area. So control and prevention mechanisms must be continued to reduce prevalence of the disease and tsetse flies population.

Keywords: Bovine; Trypanosomes; Tsetse Flies; Pcv

Introduction

Livestock are the main stay of the vast majority of African people. They contribute a large proportion of the continent’s gross domestic product and constitute a major source of foreign currency earning for a number of countries. Trypanosomosis is among the well-known constraints to livestock production in Africa as it causes a serious and often fatal disease of livestock mainly in the rural poor community and rightfully considered as a root cause of poverty in the continent. Despite the importance of livestock to the larger sector of the population and to the economy at large the sub sector has remained untapped Vreysen [1]. It is the main haemoparasitic disease in domestic animals and is caused by the protozoan parasites of the genus Trypanosoma. A major determinant of the distribution and epidemiology of bovine trypanosomosis is the availability of suitable habitat for tsetse.

Tsetse are restricted to various geographical areas according to habitat, the three main groups, named after the commonest species in each group, being fusa, palpalis and morstans, found respectively in forest, riverine and savannah areas. The last two groups, because of their presence in the major livestock rearing areas, have a great importance in veterinary standing view. The disease infects various species of mammals however, from an economic point of view, tsetse-transmitted trypanosomosis is particularly important in cattle Meberate et al. [2]. The parasite is transmitted biologically by the tsetse fly (Glossina species) and infects animals over an area known as the ‘tsetse belt’, which extends approximately 10 million km2 across 37 countries in Africa, from the Sahara Desert in the North to South Africa in the south llemobade [3].
African Animal Trypanosomosis (AAT) occurs where the tsetse fly vector exists in Africa, between latitude 15°N and 29°S. Tsetse flies are hematophagous insects of the family Glossinidae and are biological vectors of African trypanosomosis in both animals and man the disease also transmitted mechanically by biting flies, among which Tabanids and Stomoxys are presumed to be the most important. Clinical signs are not pathognomic and hence clinical examination is of little help in pinpointing the diagnosis. Infected animals show progressive loss of appetite, body weight, oedema of lower parts of body, intermittent fever, bilateral enlargement of prescapular lymph nodes, corneal opacity, salivation, lacrimation and abortion Taylor et al. [4]. Diagnosis is often based on history of chronic wasting condition of cattle in contact with tsetse flies.

Trypanosome can be confirmed parasitologically by demonstrating parasites in blood of infected animals and various techniques are available. In practice, many field programs of monitoring cattle for infection is based on routine screening of stained thick and thin blood films, thick films are examined to detect infected animals and thin films determine the species of infecting trypanosomes Andrews et al. [5]. Trypanosomosis is a major constraint contributing to the direct and indirect economic losses to crop and livestock production Abebe [6]. It is a severe problem to agricultural production in widespread areas of the tsetse infested regions that accounts over 10 million square kilometres of the tropical Africa. Non-tsetse transmitted trypanosomosis also affects considerable number of animal populations in tsetse free zone of the country STEP [7].

In Ethiopia, Trypanosomosis is widespread in domestic livestock in the Western, South and South-western lowland regions and the associated river systems i.e. Abay, Gibe Omo and Baro/Akobo Abebe and Jobre [8]. Currently about 220,000 Km2 areas of the above mentioned regions are infested with five species of tsetse flies namely Glossinapallidipes, G. morsitans, G. fuscipes, G. tachinoides and G. longipennis NTTICC [9]. Trypanosoma congolense, T. vivax, and T. brucei are most important in cattle with 14 million heads at risk in Ethiopia Upadhayaya [10]. Out of the nine regions of Ethiopia five (Amhara, Benishangul-gumuz, Gambella, Oromia and SNNPR) are infested with five species of tsetse flies Keno [11] Tesfaye [12]. Eventhough, trypanosomosis is economically important disease, no enough studies were done in Ethiopia and no study was done in Botor tolay district. Therefore, the present study aims at the following objectives;

- To determine the prevalence of bovine trypanosomosis in selected areas of Botor tolay district.
- To determine apparent densities of tsetse flies in the Botor tolay district.

Materials and Methods

Study Period and Area

The study was conducted from November, 2017 to may, 2018 in Botor tolay district, which is located in Jimma zone of Oromia Regional States, South Western Ethiopia. It is located about 445 kilometers from West of Addis Ababa. Geo-graphically, Botor tolay town falls between 7°C “N latitudes and 12°C”E longitudes. The study was conducted in five peasant associations namely; Madaa jalala, Kata boke, Garangaraa and Urijii Oromia are selected areas. The total land area covers 159km2 with altitudes of 900 to 3347 meter above sea level. The annual mean temperature ranges from 25oC to 32°C and receives annual rainfall between 1200-2400mm. The human population of the district is 54,640. The livestock populations of the district were estimated to be 2,191,138 cattle, 7700 sheep, 44,626 goats, 68,521 poultry, 272 horses, 385 mule and 68,92 donkeys. Crop and livestock sales are important source of income for all wealth groups CSA [13].

Study Animal

The study populations constituted were local zebu cattle (Bos indicus) from five peasant associations (PAs). The age of animals was determined by dentition Gatenby [14] and categorized into three age groups (Appendix 1). The body condition of animals was also grouped based on criteria described by Nicholson and Butterworth [14] and they also categorized into three groups (Appendix 2).

Sampling Methods and Sample Size Determination

Random and purposive sampling methods were followed to select the study animals and study sites respectively. The PA’s (peasant associations) were selected purposively due to their accessibility to transport and information from the district’s administrative body. The number of animals required for the study was determined using the formula given by Thrustfield [15] simple random sampling.

\[
N = \frac{1.96^2 \times P_{exp} \times (1 - P_{exp})}{d^2}
\]

Where,

- \(N \) = required sample size
- \(P_{exp} \) = expected prevalence
- \(d \) = desired absolute precision

The sample size was determined using 95% level of confidence, 50% expected prevalence since there was no previous study conducted in Botor Tolay district and 0.05 desired absolute precision. Therefore, a total of 384 cattle were included for this study.

Study Design

A cross sectional study was carried out to determine the prevalence of bovine trypanosomosis and apparent fly density in five peasant association (Madaa jalala, Kata boke, Yatu dhase, Garangaraa and Urijii Oromia) of Botor Tolay District of south west Jimma Zone, November 2017 to may 2018.
Study Methodology

Parasitological and Hematological Survey of Bovine Trypanosomosis:

a) **Buffy Coat Technique**: Blood was collected from an ear vein using heparinized micro-haematocrit capillary tube and the tube was sealed. A heparinized capillary tube containing blood was centrifuged for 5 min at 12,000 rpm. After the centrifugation, trypanosomes were usually found in or just above the buffy coat layer. The capillary tube was cut using a diamond tipped pen 1 mm below the buffy coat to include the uppermost layers of the red blood cells and 3 mm above to include the plasma. The content of the capillary tube was expressed on to slide, homogenized on to a clean glass slide and covered with cover slip. The slide was examined under ×40 objective and ×10 eye piece for the movement of parasite Paris et al. [16,17].

b) **Thin Blood Smear**: A small drop of blood from a microhaematocrit capillary tube to the slide was applied to a clean slide and spread by using another clean slide at an angle of 45°, air dried and fixed for 2 min in methyl alcohol, then immersed in Giemsa stain [1:10 solution] for 50 min. Drain and wash of excess stain using distilled water, allowed to dry by standing up right on the rock and examined under the microscope with oil immersion objective lens.

c) **Measuring of Packed Cell Volume (PCV)**: Blood samples were obtained by puncturing the marginal ear vein with a lancet and collected directly into a capillary tube. The capillary tubes were placed in micro haematocrit centrifuge with sealed end outer most. The tube was loaded symmetrically to ensure good balance. After screwing the rotary cover and closing the centrifuge lid, the specimens were allowed to centrifuge at 12,000 rpm for 5 min. Tubes were then placed in haematocrit and the readings were expressed as a percentage of packed red cells to the total volume of whole blood. Animals with PCV < 24% were considered to be anemic Murray [18].

d) **Entomological Survey**: A total of 52 monocoinal traps were deployed in five peasant association of the district (12 in Mada jalala, 10 in Kata boke, 10 in Yatu dhahe, 10 in Garangaraa and 10 in Urji Oromia) at ap-proximate interval of 100-200m. All traps were baited with acetone, octenol and cow urine filled in separate bottles. After 48 hours of deployment, tsetse flies in the cages were counted and identified based on their habitat and morphology to the genus and species level. Other biting flies were also identified according to their morphological structures such as size and proboscis at the genus level Uilenberg [18]. Tsetse flies were sexed just by observing the posterior end of the ventral aspect of the abdomen using hand lens. Male flies were identified by their enlarged hypopygium in the posterior ventral end of the abdomen. The apparent density of the tsetse fly was calculated as the number of tsetse catch/trap/day STEP [19].

Data Analysis

Row data on individual animals, parasitological and entomological examination results were inserted into Micro-Soft excel spreadsheets to create a data-base and transferred to Statistical package for social science (SPSS) version 20.0 software program for data analysis. Descriptive statistics was used to determine the prevalence of trypanosomosis in cattle and Chi square test (χ^2) was used to assess associated between trypanosome infection and risk factors or variables (age, sex, body condition and origin / peasant association). Student t-tests were used to compare mean PCV of study animals. In all analyses, the confidence interval level (CI) was 95% and P value $P<0.05$ was considered as significance. PCV was categorized as anemic if it is less than 24% and normal if it is greater than 24% Van den Bosseche and Rowlands [20]. The density of fly population was calculated by dividing the number of flies caught by the number of traps deployed and number odays of deployment and expressed as Fly/ Trap/ Day Pollock [21].

Results

Prevalence of Trypanosomosis

A total of 384 cattle blood sample were examined to determine the presence of trypanosomosis by Buffy coat technique and thin blood smear. Trypanosomosis were detected in 47 cattle with an overall prevalence of 12.24%. The prevalence of bovine trypanosomosis within the five PAs were 9(12.5%) at Mada jalala, 9(11.25%) at kata boke, 9(12.67%) at Yatu dhahe, 11(12.1%) at Gerangera and 9(12.8%) at Urji Oromia. Among species of trypanosome, *Trypanosoma congolense* 28(59.6%) was the most prevalent trypanosome species followed by *T. vivax* 12(25.5%) and mixed infection of *T. congolense* and *T. vivax* 7(14.9%) (Table 1). The prevalence of bovine trypanosomosis in females and males were 26(15.95%) and 21(9.5%), respectively. Though the prevalence of trypanosome infection was higher in female than in males there is no statistically significant difference ($p>0.05$) between the two sex groups.

Table 1: The overall Prevalence of trypanosomosis in five PA’s with trypanosome species at Botor tolay district.

Species	Mada jalala	Kata boke	Yatu dhahe	Gerangera	Urji Oromia	Total	Prevalence	χ^2	P value
Tc	5	2	2	1	6	7	59.6	3.272	0.993
Tv	2	2	2	1	3	12	25.5		
TcTv	2	0	1	0	7	384	100%		

Ctc: trypanosom congolense, Tv: trypanosom vivax, Tc and Tv: mixed.

Cite this article: Megersa L, Feyisa B, Dereje A, Behablom M. Prevalence of Bovine Trypanosomosis and Apparent Density of Tsetse Fly in Botor Tolay District, Jimma Zone, Ethiopia. Biomed J Sci & Tech Res 13(3)-2019. BJSTR. MS.ID.002401. DOI: 10.26717/ BJSTR.2019.13.002401.
The prevalence of trypanosomes infection differed between age categories less than two year (<2 year), three up to five year (3-5 years) and greater than five years (>5 years) but not significantly (P>0.05). Higher prevalence were observed in the age of (3-5) years with prevalence of 23 (13.21%) and lower in age <2year and >5. The prevalence trypanosomies in body condition score shows significant association with high prevalence found in poor 29(33.72%) (P<0.05) (Table 2).The mean PCV values of parasitaemic and aparasitaemic cattle were 18.34 and 24.97 respectively. There was a significant difference between PCV value of parasitaemic and aparasitaemic cattle.

Entomological Results

A total of 52 monoconical traps were placed approximately 100-200m apart and left in position for two consecutive days (48 hrs). The average tsetse fly density in the area was 1139(10.9 F/T/D) and the overall prevalence of this study was 1206 (11.6%) were flies were caught during the study period were Glossina species and other biting flies. G. Morstans 397s(3.81%), G. pallidipes 369(3.54%), and G. fuscipes 373(3.58%). 36(0.34%), 13(0.13%) and 18(0.18%) were Stomoxys, Hematopota and Tabanus, respectively. The flies caught per trap were identified, counted and apparent fly density per trap per day (f/t/d) was recorded. The tsetse flies were identified to species level Marquardt et al. [22].

Discussion

The present study revealed that from a total of 384 randomly selected cattle’s in the study area, 47 (12.24%) of animals were positive for trypanosomes. Similar findings of 12.41% in Metekel and 12.5% in Botor Tolay District, Jimma Zone, Ethiopia [33] and Bitew et al. [34]. But this is lower than previous reports: 20.40% in Wolyta and Dawe and Awi zones of northwest Ethiopia Solomon & Fita [23]. The relatively low prevalence of trypanosomiasis in this study may be related to tsetse density and low fly–animal contact and parasite and vector prevalence of trypanosomosis in this study may be related to tsetse [24]. The relatively low prevalence of trypanosomiasis in this study may be related to tsetse density and low fly–animal contact and parasite and vector prevalence of trypanosomosis in this study may be related to tsetse [24]. The relatively low prevalence of trypanosomiasis in this study may be related to tsetse density and low fly–animal contact and parasite and vector prevalence of trypanosomosis in this study may be related to tsetse [24]. The relatively low prevalence of trypanosomiasis in this study may be related to tsetse density and low fly–animal contact and parasite and vector prevalence of trypanosomosis in this study may be related to tsetse [24].

Table 2: Prevalence of Trypanosomosis between Sex, age group and body condition score.

Factors	Positive examined	Total	Prevalence	X2	P value
Sex					
Female	26	163	15.95	3.632	0.057
Male	21	221	9.5		
Age					
1-2 years	9	81	11.11	0.296	0.862
3-5 years	23	174	13.21		
>5 years	15	129	11.62		
Body condition score					
Poor	29	86	33.72	51.060	0.000
Medium	12	258	4.65		
Good	6	40	15		

Table 3: Prevalence of trypanosomosis in different Pcv of cattle.

Condition	Mean Pcv(%) + std. deviation	t-test	p-value
Aparasitaemic	24.97+4.934	3.515	0.000
Parasitaemic	18.34+3.784		
The mean PCV value of trypanosome positive animals was significantly lower (18.34 ± 3.784 SE) than that of negative animals (24.97 ± 4.934 SE). This finding is aligned with previous works by Ali & Bitew [35] and Rowland et al. [36]. This is due to the contribution of trypanosomosis for causing anemia in infected animals. This finding agreed with previous reports by Tewelde [37] in western Ethiopia and Desta [38] in upper Dedesa valley of Ethiopia. In the absence of other diseases causing anemia, a low PCV value of individual animals is a good indicator of trypanosomosis infection Abebe [6] Marcotte et al. [39]. This study indicated that from 52 monoclonal traps deployed in the study area for 48 hours, a total of 1206 flies were trapped among this flies 397 G. morsitans, 369 G. pallidepes, 373 G. fuscipes and 67 other biting flies were trapped.

The overall 11.6 flies/trap/day apparent density of the tsetse flies was recorded in botor tolay district (Table 4). This finding is lower than the previous report 19.14 flies/trap/day in Daramallo District by Ayele et al. [40] and 14.97 flies/trap/day reports in selected villages of Arbaminch by Wondewosen et al. [41-50]. This difference could be attributed to environmental conditions, agro ecological differences and the season in the study area. The presence of other biting flies are playing important role in the non-cyclical transmission of trypanosomosis in the study area [51-70].

Table 4: Apparent density of flies in the district according to peasant association.

Site	No of trap	Glossina species	Other biting flies	Over all total	Over all FTD						
		M	P	F Total	F/t/d	T	S	H Total	f/t/d		
Mada jalala	12	94	68	77 239	9.95	3	13	1 17	0.7	1206	11.6
Kata boke	10	55	79	89 223	11.15	1	0	4 5	0.25		
Yatu dahe	10	89	96	76 261	13.05	9	8	3 20	1.0		
Gerangera	10	78	60	42 180	9.0	5	9	4 18	0.9		
Urij Oromia	10	81	66	89 236	11.8	0	6	1 7	0.35		

Morsitans(M), pallidipes(P), fuscipes(F), Tabanus(T) Stomoxys(T) & Henaphota(H)

Conclusion and Recommendations

Trypanosomosis is a major constraint contributing to the direct and indirect economic losses to crop and livestock production in Africa as it causes a serious and often fatal disease of livestock mainly in the rural poor community and rightfully considered as a root cause of poverty in the continent. Despite the importance of livestock to the larger sector of the population and to the economy at large the sub sector has remained untapped [71-80]. This study results revealed that bovine trypanosomosis and apparent tsetse density survey in five peasant association in fertile areas of botor tolay woreda in Jimma Zone indicated that an overall 12.24% prevalence of the disease and density of tsetse flies with an over all apparent density of 11.6 flies/trap/day. The major species of trypanosomes identified in the study area were T. congolense and T. vivax .identification on entomological survey shows three species of tsetse fly identified was G. morsitans, G. pallidepes and G. fuscipes. Higher prevalence of trypanosomosis infection was observed in animals with poor body condition and low Pcv animals also found to be found significant compare with other risk factors age and sex which statistically insignificant [81-95]. Based on the conclusion, the following recommendations are forwarded:

a. Attempt should be made to expand government and private veterinary services to serve the community in the study areas.

b. The government and the community should continue their effort of controlling the major vectors of the disease, Glossina spp, by all available means proved to be effective.

c. Further researches directed at the discovery of better diagnostic technique suitable for the local condition should be encouraged to effectively monitor the efficacy of the control measures being implemented.

Acknowledgement

Next to God, my deepest acknowledgment with regard to the success of this paper goes to my advisor, Dr. Feyisa Belurma for sharing his time and knowledge to guide, correct my paper and his fatherly approach and who set up the program and the success of the paper.I would like to express my heartfelt appreciation and best regard to all my family for their moral assistance, patience and encouragement by providing the necessary materials to prepare this paper.Also I would like to thank Wollega University, School of Veterinary Medicine and National Tsetse and Trypanosomosis Investigation and Control Center, Bedelle (NTTICC) for their technical and material support. Finally I would like to thank Mr. Kumera Shuma and Botor tolay Veterinary Clinic workers, for their showing direction, encouragements, provision of materials and cooperation in different aspects during our work.

References

1. Vreyesen M (2006) Prospects for area-wide integrated control of tsetse flies (Diptera: Glossinidae) and trypanosomosis in sub-Saharan Africa. Revista de la Sociedad Entomológica Argentina 65: 1-21.
2. Meberate A, Menjeta B, Vreyesen M, Bencha B, Waldyes G, (2000) The distribution and relative abundance of tsetse flies in the Southern Rift valley of Ethiopia. OAU/SCTRS publication 120: 202-213.
3. Ilemobade A (2009) Tsetse and trypanosomosis in Africa: The challenges, the opportunities. Onderstepoortj of Vet Res 76(1): 35-40.
4. Taylor M, Cooper R, Wall R (2007) Veterinary parasitology, (3rd edn.), Black well publishing, New Jersey, United States, pp. 759-752.
5. Andrews A, Blowery R, Boyd H, Eddy R (2003) Bovine Medicine: Disease and Husbandry of Cattle (2nd edn.), Black well publishing, New Jersey, United States pp. 756-761.
6. Abebe G (2005) Trypanosomosis in Ethiopia. Review Article. The Biological Society of Ethiopia. J bio Soc 4(1): 75-121.

7. STEP (2012) Ministry of Science and Technology, Southern tsetse eradication project (step). Field operation manual of tsetse and trypanosomosis control and monitoring, Addis Ababa. Ethiopia p. 5-63.

8. Abebe G, Jobre Y (1996) Trypanosomiasis: A Threat to Cattle Production in Ethiopia. Revue Med Vet 147: 897-902.

9. (2004) NTTICC (National Tsetse and Trypanosomiasis Investigation and Control Centre): Annual Report on Tsetse and Trypanosomiasis Survey, Bedelle, Ethiopia.

10. Upadhyaya A (2005) Text of preventive Veterinary Medicine 1sted, International book distributing co. (Publishing Division), Army printing press, 33 Nuhru Road, saddar contt. Luck now, India.

11. Keno M (2005) The Current Situation of Tsetse and Trypanosomiasis in Ethiopia, Ministry of Agriculture and Rural Development, Veterinary Service Department, in Proceeding of 28th Meeting of International Scientific Council for Trypanosomiasis Research and Control (ISTCRC).

12. Tesfaye M (2002) Report on Tryptosome Infection Rate in G.M Murstans and G. Techninoides in Didea Valley from Bedele.

13. CSA (2011) Central Statistic Authority: Federal Democratic Republic of Ethiopia, Agri-cultural sample enumeration statistical abstract.

14. Gatenby R (1991) The Tropical Agriculture, London and Beging Stock Mc Millan Education Ltd. ACCT pp. 6-10.

15. Nicholson M, Butterworth M (1986) A Guide to condition scoring of Zebu cattle. International Livestock centre for Africa, Addis Ababa, Ethiopia.

16. Thrustfield M (2005) Veterinary epidemiology, 3rd edition Black well science, Oxford, pp: 233.

17. Paris (1982)OE: Report on the 8th meeting of the international working group Trypanosoma evansi.

18. Paris J, Murray M, Moom'bma F (1982) A comparative evaluation of the parasitological technique currently available for the diagnosis of African Trypanosomiasis in cattle, Acta Trop 39(4): 307-316.

19. Murray M, Murray P, Mc Intyre W (1988) An improved parasitological technique for the diagnosis of African trypanosomiasis. Transaction of the Royal Society of Tropical Medicine and Hygien 71: 325-326.

20. Ulleberg G (1998) A field guide for the diagnosis, treatment and prevention of African animal trypanosomosis, FAO, Rome.

21. Van Den Bosseche P, Rowlands GJ (2001) The relationships between prevalence of Trypanosomiasis and herd average PCV. Acta Trop 78(2): 163-170.

22. JN Pollock (1982) Training Manual for Tsetse Control Personnel, Rome, Italy 1.

23. Marquardt W, Denname R, Grieve R (2000) Parasitology and vector biology. (2nd edn). Academic Press, London.

24. Solomon M, Fitta G (2011) Survey on bovine trypanosomosis and its vector in Metekel and Asi zones of northwest Ethiopia. Acta Tropica 117(2): 146-151.

25. Miruk A, Hagos A, Yacob H, Asnake F, Basu A (2008) Prevalence of bovine trypanosomosis and trypanosomial disease sensitivity studies on Trypanosoma congolense in Woluya and Dawezones of southern Ethiopia. Veterinary Parasitology 152: 141-147.

26. zecharia A, Zeryehun T (2012) Prevalence of Bovine Trypanosomosis in Selected District of Arba Minch, SNWP, Southern Ethiopia. Global Veterinaria 8(2): 168-173.

27. Tekla W, Terefe D, Wondimnu A (2012) Prevalence study of bovine trypanosomosis and tsetse density in selected villages of Arbaminch, Journal of Veterinary Medicine and Animal Health 4(3): 36-41.

28. Duguma R, Tasew S, Olani A, Damena D, Alemu D, et al. (2015) Spatial distribution of Glossina sp. And Trypanosoma sp. in south-western Ethiopia Parasit Vectors 8: 430.

29. Abebe G (2005) Trypanosomosis in Ethiopia. Review Article. The Biological Society of Ethiopia. Ethiop. J Soc 4(1): 75-121.

30. Mulaw P, Scoh J, Pegram R (2011) Acute trypanosomosis visa infection of Ethiopia cattle in the apparent absence of tsetse. Trop Anim. Health prods 16: 141-147.

31. Nabilume L, Mbugua J, Ziruintunda G, Asimwe J, Ekou J (2014) Prevalence of Trypanosomiasis among Zebu Cattle in Mulanda, Tororo District, Eastern Uganda. Scholars Journal of Agriculture and Veterinary Sciences 1(4): 274-278.

32. Urquhart G, Armour J, Duncan J, Dunn A, Jennings F (2006) Veterinary Parasitology 2nd edition, Blackwell Publishing, Scotland pp. 212-224.

33. Girma K, Merseret T, Tilahun Z, Haimanot D, Frew L (2014) Prevalence of Bovine Trypanosomosis, its Vector Density and Distribution in and Around Arbaminch, Gamogofa Zone, Ethiopia. Acta Parasitologica Globalis 5(3): 169-176.

34. Fayisa G, Mandefro A, Hailu B, Chala G, Alemayhu G (2015) Epidemiological Status and Vector Identification of Bovine Trypanosomosis in Didesa District of Oromia Regional State, Ethiopia. International Journal of Nutrition and Food Sciences 4(3): 373-380.

35. Ali R, Bitew W (2011) Pathogenesis and pathology of Animal Trypanosomosis. In the African trypanosomosis (Ed. HW Mulligan) Vreyson London: Allen and Unswil p. 179.

36. Rowlands G, Leak S, Peregrine A, Nagda S, Mulatu W, et al. (2001) The incidence of new and the prevalence of recurrent trypanosome infection in cattle in Southwest Ethiopia, exposed to a high challenge with drug-resistant parasite. Acta Trop 79(2): 149-163.

37. Tewelde N (2001) Study on the occurrence of drug resistant trypanosomes in cattle in the farming in tsetse control areas FITCA Project in western Ethiopia. MsThesis, Addis Ababa University, Faculty of Veterinary Medicine, Ethiopia.

38. Desta M (2014) Trypanosome infection rate of Glossina morsitans and trypanosomosis prevalence in cattle in upper Didesa valley western Ethiopia. Int J Curr Microbiol App Sci 3(3): 378-388.

39. Marcotty T, Simukoko H, Berkvens D, Vercruysse J, Praet N, et al. (2008) Evaluating the use of packed cell volume as an indicator of trypanosomal infections in cattle in eastern Zambia, Preventive Veterinary Medicine 87(3-4): 288-300.

40. Ayele T, Ephrem D, Elias K, Tamiru B, Gizaw D, et al. (2012) Prevalence of Bovine Trypanosomosis and its Vector Density in Daramallo District, South Western Ethiopia. J Vet Adv 2(6): 266-272.

41. Wonderwosen T, Dechasa T, Anteneh W (2012) Prevalence study of bovine trypanosomosis and tsetse density in selected villages of Arbaminch, Ethiopia. J Vet Med Anim Health 4(3): 36-41.

42. Adele E, Yasine A (2013) Prevalence of bovine trypanosomosis in Wolaita Zone Kindo Koish District of Ethiopia. African Journal of Agricultural Research 8(49): 638-6387.

43. Adams E, Hamilton P, Gibson W (2010) African trypanosomes: celebrating diversity. Trends Parasitol 26(7): 324-328.

44. Aksoy S, Maudlin I, Dale C, Robinson A, O Neill S (2001) Prospects for control of African trypanosomiasis by tsetse vector manipulation. Trends Parasitol 26(7): 324-328.

45. Awoke K (2000) Study on the occurrence of drug resistant trypanosomes in cattle in the farming in tsetse control areas FITCA Project in western Ethiopia. MsThesis, Addis Ababa University, Faculty of Veterinary Medicine, Ethiopia.
Biomedical Journal of Scientific & Technical Research

Volume 13- Issue 3: 2019

47. Bauer B, Amsler Delafosse S, Clausen PH, Kabore I, Petrich Bauer J (1995) Successful application of deltamethrin pour on to cattle in a campaign against tsetse flies (Glossina spp.) in the pastoral zone of Samorogouan, Burkina Faso. Tropical Medicine and Parasitology 46(3): 183-189.

48. Bedada A, Alem T, Weldon B, Melkamew A (2012) Prevalence of Bovine Trypanosomiasis in Addisamda and Amart District of West Gojam Zone, Amhara Regional State. American-Eurasian Journal of Scientific Research 7 (3): 211-217.

49. Bitew M, Amedie Y, Abebe A (2011) Prevalence of Bovine trypanosomiasis in selected areas of Jabi Tehenan district, West Gojam of Amhara regional state, north west Ethiopia. African Journal of Agricultural Research 6(1): 141-144.

50. Bourn D, Scott M (1998) The successful use of work oxen in agricultural development of tsetse infected land in Ethiopia. Tropical Animal Health and production 10: 191-203.

51. Brightwell R, Dransfield R, Kyoku C, Golder T, Tarimo S, et al. (1987) A New Trap for Glossina pallidipes. Tropical Pest Management 33(2): 151-159.

52. Coetzee J, Thomson G, Tustin R, Kriel N (1994) Infectious diseases of livestock: with special reference to Southern Africa. Oxford University Press, USA.

53. Connor R, Van den Bossche P (2004) African animal trypanosomiasis. In: Infectious Diseases of Livestock (2nd edn.) Coetzer JAW and Tustin R, RC. Oxford University Press South Africa pp: 251-296.

54. De Lahunta A, Habel R (1986) Applied veterinary anatomy. W.B. Saunders Company, Philadelphia.

55. Doyle Burr, Nora (2012) Scientists unravel mystery of zebra stripes. Christian Science Monitor.

56. Taylor M, Coop R, Wall R (2015) Facultative Ecto-parasites and Arthropods Vectors, In: (Edn) Chapter 17: In Veterinary Parasitology pp: 921-973.

57. Ford J, Katanondo K (2011) Maps of tsetse flies (Glossina) distribution in Africa, Bulletin of Animal health and production in Africa 25: 187-193.

58. Ford J, Nash T, Welch J (2000) Control by clearing of vegetation. In: Mulligan HW, ed. The African trypanosomosis. London, George Allen and Unwin pp. 543-563.

59. Getachew A (2005) Review Article Trypanosomiasis in Ethiopia. Academic Journal of Animal Diseases 1(1): 11-15.

60. Hao Z, Kasumba I, Lehane M, Gibson W, Kwon J, et al. (2001) Tsetse immune responses and trypanosome transmission: implications for the development of tsetse-based strategies to reduce trypanosomiasis. Proc NatlAcad Sci USA 98(22): 12648-12653.

61. Hargrove J, Torr S, Kindness H (2002) Factors affecting the efficacy of using insecticide-treated cattle to control tsetse. Bulletin of Entomological Research 93: 205-217.

62. Hawse P (2005) New technology for mating disruption and prospects for integration with SIT: in book of extended synopses. FAO/IAEA.

63. Hendrichs J, Dyck V, Robinson A (2005) Sterile insect technology. Springer pp: 563-600.

64. Jordan A (1986) Trypanosomiasis control and African rural development. London and New York: Longman.

65. Jordan A (1996) Trypanosomiasis Control and tsetse research laboratory, Bristol, p: 15-19.

66. Kahn C (2005) The merk veterinary manual (9th edn). National publishing pp. 722-723.

67. Krafsur ES (2009) Tsetse flies: genetics, evolution, and role as vectors. Infect Genet E (9(1): 124-141.

68. Leak S (1998) Tsetse Biology and Ecology: Their role in the Epidemiology and Control of Trypanosomiasis.

69. Leak S (1999) Tsetse Biology and Ecology: Their role in the Epidemiology of Trypanosomiasis. CAB International, Nairobi, Kenya, pp. 568.

70. Magona J, Mayende J, Olaho Mukani W, Coleman P, Jonsson N, et al. (2003) Comparative study on the clinical, parasitological and molecular diagnosis of bovine trypanosomiasis in Uganda. Understeeport J Vet Res 70(3): 213-217.

71. Kahn and Line (2005) Merck Veterinary Manual. Wiley Publishers p. 18-35.

72. Mulligan H (1970) The African Trypanosomiasis. Ministry of Overseas Development and George Allen and Unwin, London.

73. Mulligan H (2006) The African Trypanosomiasis (Mulligan, H.W. edn.) London: George All enand Unwin Ltd pp. 950.

74. Nicholson M, Butterworth T (1996) A guide to body condition score in zebu cattle international livestock center for Africa, Addis Ababa, Ethiopia.

75. Nimpaye H, Njikou F, Njine T, Njitchouang G, Cuny G, et al. (2011) Trypanosoma vivax, T. congolense Forest Type|| and T. simiae: Prevalence in domestic animals of sleeping sickness foci of Cameroon. Parasite 18(2): 171-179.

76. (1996) NTTICC: Annual Report, Ministry of Agriculture, National Tsetse and trypanosomosis Investigation and Control Center Bedelle, Illubabor, Ethiopia p. 29.

77. (2002) NTTICC: National tsetse and Trypanosomiasis Investigation and control center report for the period7 June 2003 -6 July 2004, Bedelle, Ethiopia p. 1-4.

78. Pollock J (1982) Training manual for tsetse control personnel, Volume 2, FAO, Rome.

79. Radostitis O, Blood D, Gay C (1994) Veterinary Medicine: A text book of cattle, sheep, goat, pigs and horses, 8 edition, Baillier Tindall, UK.

80. Radostitis O, Gay C, Blood D, Hinchcliff K (2007) Veterinary Medicine, a Text Book of the Diseases of Cattle, Sheep, Goats, Pigs and Horses. 10th edn. London, Harcourt Publishers Ltd pp: 1564-1569.

81. Riviere J, Popich M (2009) Veterinary antigen. Pharmacology and therapeutics (9th edn.), Blackwell, crosspp pp: 1174-1175.

82. Robertson A (1991) The feeding habit of tsetse flies and their relevance to some tsetse control measures. Smithers.

83. Salim B, Bakheit M, Kamau J, Nakamura I, Sugimoto C (2011) Molecular epidemiology of camel trypanosomiasis based on ITS1 rDNA and RoTat 1.2 VSG gene in the Sudan. Parasit Vectors: 4: 31.

84. Shaw A, Torr SJ, Waisswa C, Cecchi G, Wint GR, et al. (2013) Estimating the costs of tsetse control options: an example for Uganda. Preventive Veterinary Medicine 110(3-4): 290-303.

85. Sligenersh H (1992) Tsetse Control and Agriculture in Ethiopian World Animals. Rev pp: 70-71.

86. SRVL (2006) Sodo Regional Veterinary Laboratory report.

87. Steventing D (2008) The history of African trypanosomiasis. Parasit Vectors 1(1): 3.

88. Taylor K, Authie M (2004) Pathogenesis of animal trypanosomiasis, in the trypanosomiasis, edited by I. Maudlin, PH Holmes & MA Miles. Oxford shire: CAB Publishing,UK, pp: 331-353.

89. Thrusfield M (2005) Veterinary Epidemiology (3rd edn.). Blackwell Publishing, Garsington road, Oxford, UK, pp: 233-250.

90. Urquart G, Armour J, Dunncan J, Dunn A, Jennings F (1995) Veterinary Parasitology, the University of Glasgow, Elbsd pp. 203-212.
Cite this article: Megersa L, Feyisa B, Dereje A, Behablom M. Prevalence of Bovine Trypanosomosis and Apparent Density of Tsetse Fly in Botor Tolay District, Jimma Zone, Ethiopia. Biomed J Sci & Tech Res 13(3)-2019. BJSTR. MS.ID.002401. DOI: 10.26717/BJSTR.2019.13.002401.