Pleurisy Caused by *Mycobacterium abscessus* in a Young Patient with Dermatomyositis: A Case Report and Brief Review of the Literature

Shingo Noguchi¹, Kentaro Hanami², Hiroko Miyata², Ryo Torii¹, Ikuko Shimabukuro¹, Satoshi Kubo², Hideto Obata¹, Chiharu Yoshii¹ and Kazuhiro Yatera¹

Abstract:

M. abscessus is a rapidly growing mycobacteria (RGM) and is the most common cause of pulmonary RGM infection. *M. abscessus* pleurisy is extremely rare. We herein report the case of a young patient with *M. abscessus* pleurisy without any lung lesions. A laboratory analysis of the pleural effusion revealed lymphocyte predominance and increased adenosine deaminase, similar to the findings observed in tuberculous pleurisy. The patient was initially treated for tuberculous pleurisy, which resulted in the partial improvement of the patient’s symptoms and pleural effusion. *M. abscessus* pleurisy should be considered, especially in immunocompromised individuals, even in the absence of pulmonary involvement.

Key words: *Mycobacterium abscessus*, pleurisy, dermatomyositis

(Intern Med 57: 997-1002, 2018) (DOI: 10.2169/internalmedicine.9537-17)

Introduction

The rate of nontuberculous mycobacteria (NTM) infection has been increasing worldwide (1-3). The pulmonary diseases associated with NTM infection are commonly caused by *Mycobacterium avium-intracellulare* complex (MAC) and *M. kansasii*, which are slow-growing species (1).

Recently, lung diseases caused by rapidly growing mycobacteria (RGM) have often been recognized in patients with NTM infection. *M. abscessus* (formerly *M. chelonae* subspecies *abscessus*) is the most common cause of pulmonary infection by RGM and has been increasingly commonly identified as a pathogen in both healthy and immunocompromised hosts (1, 4). Morimoto et al. reported that pulmonary *M. abscessus* disease accounted for 2.6% of the pulmonary infections caused by NTM and that the incidence of *M. abscessus* disease was highest in the Kyushu-Okinawa area in a large laboratory-based analysis of Japan (5).

Pleurisy caused by NTM is relatively rare. It is reported to account for only 5% of pulmonary NTM infections (1, 6). In cases of NTM pleurisy, the most frequently identified pathogen is MAC. Thus far, there have only been a few reported cases of RGM pleurisy, which is suggested to be extremely rare (7-11).

We herein report a case of pleurisy caused by *M. abscessus* without infectious lung lesions in a young patient who was undergoing corticosteroid treatment for dermatomyositis.

Case Report

A 28-year-old Japanese man was admitted to our hospital in November 2016 due to a high-grade fever of 38.0-40.0°C that had persisted for 1 week. The patient had received prednisolone treatment for dermatomyositis at a starting dose of 50 mg since October 2014. The dose had been tapered to 10 mg in October 2016. He was a never-smoker, and he had no...
history of traumatic injury. In addition, he had no family history of chronic lung or collagen disease.

On admission, the patient’s height and body weight were 167.0 cm and 66.1 kg, respectively. A physical examination revealed the following findings: body temperature, 37.6°C; heart rate, 80 beats/min; blood pressure, 117/64 mmHg; and oxygen saturation, 95% in room air. On auscultation, the respiratory sounds in the right lower lung field were weak. In addition, facial flushing, Gottron-like eruption, and Raynaud syndrome of the maniphalanx were observed; however, no sputum production was noted at the time in which he was afebrile, before the dose of prednisolone had been reduced (from 11 mg/day to 10 mg/day). The laboratory findings on admission (Table 1) demonstrated a normal white blood cell count (6,400/μL) and creatinine kinase level (298 IU/L). The patient was negative for anti-Jo-1 and anti-aminoacyl tRNA synthase antibodies. In addition, the results of an interferon-gamma releasing assay (IGRA) for *M. tuberculosis* (T-SPOT®), anti-MAC antibodies, β-D glucan, and C7-horseradish peroxidase (HRP) were all within the normal ranges. Chest X-ray on admission showed right pleural effusion (Fig. 1), and chest computed tomography (CT) on admission also demonstrated right pleural effusion with no abnormal pulmonary or lymph node lesions (Fig. 2A, B and C). The right pleural effusion was a purulent pale yellow color. A laboratory analysis of the pleural effusion demonstrated lymphocyte predominance (54%) and a marked increase in the lactic acid dehydrogenase level (1,919 IU/L) (Table 2). In addition, no bacteria were detected in bacterial cultures or by Ziehl-Neelsen staining of the pleural effusion. At 1 week after admission, an analysis of the pleural effusion revealed that the adenosine deaminase (ADA) level was increased (132.7 U/L). Meropenem (3.0 g/day) was initiated after admission to treat the right pleurisy. However, with the exception of right pleurisy, no other obvious infectious foci were seen. Despite the treatment, there was no obvious change in the patient’s febrile condition. Although the IGRA for *M. tuberculosis* was negative, the elevated ADA level and the lymphocyte predominance of the right pleural effusion was suggestive of tuberculous pleurisy. Given the clinical and laboratory findings, isoniazid (INH) (300 mg/day), rifampicin (RFP) (450 mg/day), ethambutol (EB) (750 mg/day), and pyrazinamide (PZA) (1.2 g/day) were started on the ninth day after admission. At two weeks after the examination of the right pleural effusion, a mycobacterial culture of the right pleural effusion was finally identified as *M. abscessus*.

Table 1. The Results of the Peripheral Blood Analysis on Admission.

<Blood cell counts>	<Blood chemistry>	<Serology>	<Infection>
WBC 6,400 /μL	TP 7.2 g/dL	CRP 10.79 mg/dL	IGRA (-)
Neut 84%	Alb 3.6 g/dL	Anti-nuclear antibody <40	Anti MAC antibody (-)
Lymph 10%	T-bil 0.3 mg/dL	Anti ds-DNA antibody 2.0 IU/mL	(-)
Eos 1.0%	AST 26 IU/L	Anti Sm antibody 1.3 U/mL	β-D glucan <6.0 pq/mL
RBC 413×10⁴ /μL	ALT 28 IU/L	Anti Jo-1 antibody (-)	C7-HRP (-)
Hb 12.5 g/dL	LDH 247 IU/L	Anti centromere antibody <5.0	HIV antibody (-)
Ht 36.7%	ALP 298 IU/L	Anti RNP antibody <2.0 U/mL	(-)
Plt 20.9×10⁴ /μL	γ-GTP 69 IU/L	Anti ARS antibody (-)	(-)
ESR 74 mm/h	Cre 0.51 mg/dL	MPO-ANCA <10	(-)
	Na 141 mEq/L	PR3-ANCA <10	(-)
	K 4 mEq/L		(-)
	CK 62 IU/L		(-)

IGRA: interferon-gamma-releasing assay

Figure 1. Chest X-ray obtained on admission showed right pleural effusion and no abnormal shadows in the bilateral lung fields.
Intern Med 57: 997-1002, 2018 DOI: 10.2169/internalmedicine.9537-17

The Results of the Right Pleural Effusion Analysis on Admission.

Color	Yellow	<Bacteriological examination>	<Drug sensitivity for M. abscessus>	
Cell count	Neut 3 %	Bacterial culture	No growth	Clarithromycin S 2 (8/32)
	Lymph 54 %	Acid-fast bacilli	(-)	Amikacin S 8 (16/64)
	Eos 0 %	Smear (2w)	(+)	Rifampicin R >32 (0.5/2)
	TP 5.5 g/dL	Culture	Neut 3 %	Rifabutin R 8 (1/4)
	Alb 3.1 g/dL	DDH	M. abscessus	Ethambutol R 4 (4/8)
	BS 84 mg/dL			Streptomycin R 32 (4/32)
	Anti-nuclear antibody			Kanamycin I 8 (4/32)
	ADA 332.7 U/L			Levoflaxin R 4 (1/4)

DDH: nucleic acid identification of Mycobacterium group, MIC: minimum inhibitory concentration, S: sensitive, I: intermediate, R: resistant

Discussion

Pleurisy caused by M. abscessus was first reported in a lung transplant patient by Fairhurst et al., and a total of six case reports, including our own, have been published (Table 3) (3, 11-14). These cases are characterized by complication with pulmonary infectious lesions and comorbid diseases. In addition, only the case reported by Lai et al. and our patient showed no obvious pulmonary involvement. Therefore, physicians should consider M. abscessus pleurisy...
Table 3. Reported Cases of *M. abscessus* Pleurisy.

Reference	Age (y)	Sex	Presentation	Comorbidity	Cultured part of *M. abscessus*	Pleural effusion Predominant cell type	ADA (U/L)	Antibiotics used for outcome	Outcome
12	66	M	Lung infection + empyema	Lung transplant recipient	Pleural effusion, BALF	Lymphocyte	-	CAM, CFX, CPFX	Died
11	68	F	Lung infection + empyema	Liver cirrhosis	Pleural effusion, sputum	Neutrophil	101	CAM, AMK, IPM/CS	Improved
13	57	M	Lung infection + empyema	Old tuberculosis necessitatis	Pleural effusion, sputum	Neutrophil	-	CAM, CFX, AMK, CPFX	Improved
14	50	F	Lung infection + pleural effusion	Organizing pneumonia	Sputum	Lymphocyte	79.7	CAM, AMK, IPM/CS	Partially improved
3	44	M	Empyema + bacteremia	Diabetes mellitus, liver cirrhosis	Pleural effusion, blood	Neutrophil	-	CAM, AMK, IPM/CS	Improved
Present case	28	M	Pleurisy	Dermatomyositis	Pleural effusion	Lymphocyte	132.7	INH, RFP, EB, PZA	Partially improved

CAM: clarithromycin, CFX: cefoxitin, CPFX: ciprofloxacin, AMK: amikacin, IPM/CS: imipenem/cilastatin sodium, INH: isoniazid, RFP: rifampicin, EB: ethambutol, PZA: pyrazinamide

Figure 3. The clinical course of the patient.

In patients with pleural effusion with comorbid disease, even if lung disease is absent.

In diagnosing tuberculous pleurisy, an increased lymphocyte-to-neutrophil ratio (>0.75 lymphocytes/neutrophils) and an ADA level of >40 U/L (especially >70 U/L) are considered to be useful (15), and a meta-analysis revealed that the diagnostic odds ratio of an elevated ADA level was 110.08 (95% confidence interval: 69.96-173.20) (16). In comparison to tuberculous pleurisy, the characteristics of NTM-associated pleurisy are unknown (3, 14, 17, 18). In the five reported cases of *M. abscessus* pleurisy, the predominant cell types of pleural effusion were different. In addition, the ADA levels in the pleural effusion were only described in two patients, although both showed an increase in these levels (Table 3) (3, 11-14).

The combination of intravenous amikacin and cefoxitin or imipenem, in addition to CAM or azithromycin, was recommended for the treatment of *M. abscessus* infection in the 2007 American Thoracic Society (ATS)/Infectious Disease Society of America (IDSA) guidelines. However, no consensus treatment regimen has been established for extra-pulmonary NTM diseases (2), and poor outcomes of patients
with *M. abscessus* disease have been reported (19). Similar to our patient, anti-tuberculosis regimens were often used initially in patients with NTM pleurisy including *M. abscessus*, but RGMs are reported to show no susceptibility to treatment with these first-line agents (10, 12). A few reports have shown the clinical effect of combined treatment with CAM, EB, and RFP on patients with pulmonary NTM infection (20, 21), and improvements in the pleural effusion and high-grade fever were achieved by treatment with first-line anti-tuberculosis medications in our case. *M. abscessus* is generally resistant to RFP and EB *in vitro*, but the *in vitro* susceptibility of agents do not always represent the *in vivo* clinical activity in patients with NTM (1). However, Hsieh et al. reported a case in which an incomplete response to anti-tuberculosis drugs in patients with pulmonary NTM infection caused empyema (7). The subsequent response to treatment should therefore be carefully monitored.

An apparent response to treatment with anti-tuberculosis drugs was recognizable after approximately two weeks in our patient. During this early stage of treatment, other possible causes of the patient’s pleural effusion were considered, including comorbidities associated with dermatomyositis; however, pleural effusion due to dermatomyositis is thought to be extremely rare (22). In the present case, we made a diagnosis of *M. abscessus* pleurisy based on the results of mycobacterial culture, but tuberculous pleurisy could not be ruled out from the clinical course because *M. tuberculosis* is often uncultured in patients with tuberculous pleurisy, and *M. tuberculosis* can be missed in cases in which RGM is first cultured. In addition, the blood IGRA has been reported to not be very useful in identifying patients with tuberculous pleurisy (15); in a meta-analysis, the sensitivity and specificity of the blood IGRA for tuberculous pleurisy were 0.80 and 0.72, respectively (23). Therefore, physicians should take particular care in diagnosing *M. abscessus* pleurisy.

Only the pleural effusion obtained in the first thoracentesis procedure was positive for *M. abscessus*, and pleural mycobacterial cultures after starting anti-tuberculosis agents were negative. Shu et al. reported that the prognosis of NTM pleurisy patients with single and multiple positive results were not markedly different (2). Thus, the finding of more than one positive mycobacterial culture might be sufficient to start treatment for NTM pleurisy.

The precise pathogenetic mechanism of *M. abscessus* pleurisy is unknown; however, development from a lung parenchymal infection with *M. abscessus* and/or minor chest trauma is usually considered the pathway in patients with NTM pleurisy (17). Other mechanisms, such as the entrance of NTM into the pleural cavity through transient bacteremia or by contiguous spread from a small subpleural focus, have also been proposed (18).

In conclusion, we presented a case of *M. abscessus* pleurisy in a young patient complicated with dermatomyositis. Even in patients without preceding *M. abscessus* lung disease, *M. abscessus* pleurisy should be considered in the differential diagnosis of the cause of pleural effusion, especially in immunocompromised patients and aging individuals.

The authors state that they have no Conflict of Interest (COI).

References

1. Lai CC, Hsueh PR. Diseases caused by nontuberculous mycobacteria in Asia. Future Microbiol 9: 93-106, 2014.
2. Shu CC, Lee LN, Wang JT, et al. Non-tuberculous mycobacterial pleurisy: an 8-year single-centre experience in Taiwan. Int J Tuberc Lung Dis 14: 635-641, 2010.
3. Lai CC, Chao CM, Gau SJ, Hsueh PR. Thoracic empyema and bacteremia due to *Mycobacterium abscessus* in a patient with liver cirrhosis. J Microbiol Immunol Infect 46: 482-484, 2013.
4. Benwill JL, Wallace RJ. *Mycobacterium abscessus*: challenges in diagnosis and treatment. Curr Opin Infect Dis 27: 506-510, 2014.
5. Morimoto K, Hasegawa N, Izumi K, et al. A laboratory-based analysis of nontuberculous Mycobacterial lung disease in Japan from 2012 to 2013. Ann Am Thorac Soc 14: 49-56, 2017.
6. Satyanarayana G, Heysel SK, Scully WK, Houpt ER. Mycobacterial infections in a large Virginia hospital, 2001-2009. BMC Infect Dis 11: 113, 2011.
7. Hsieh HC, Lu PL, Chen TC, Chang K, Chen YH. *Mycobacterium chelonae* empyema in an immunocompetent patient. J Med Microbiol 57: 664-667, 2008.
8. Fabbian F, De Giorgi A, Pala M, Fratti D, Contini C. Pleural effusion in an immunocompetent woman caused by *Mycobacterium fortuitum*. J Med Microbiol 60: 1375-1378, 2011.
9. Matsumoto T, Totsuka K, Tomii K. *Mycobacterium fortuitum* thoracic empyema: a case report and review of the literature. J Infect Chemother 21: 747-750, 2015.
10. Blair P, Moshgriz M, Siegel M. *Mycobacterium fortuitum* empyema associated with an indwelling pleural catheter: case report and review of the literature. J Infect Chemother 23: 177-179, 2017.
11. Orihashi T, Yateria K, Matsuo M, et al. A case of successfully treated pulmonary *Mycobacterium abscessus* infection associated with empyema thoracis. Nihon Kokyuki Gakkai Zasshi 41: 213-218, 2012 (in Japanese, Abstract in English).
12. Fairhurst RM, Kubak BM, Shpiner RB, Levine MS, Pegues DA, Ardehali A. *Mycobacterium abscessus* empyema in a lung transplant recipient. J Heart Lung Transplant 21: 391-394, 2002.
13. Jo KW, Kim JW, Hong Y, Shim TS. A case of empyema necessitatis caused by *Mycobacterium abscessus*. Respir Med Case Rep 6: 1-4, 2012.
14. Okazaki A, Takato H, Fujimura M, Ohkura N, Kataya N, Kasahara K. Successful treatment with chemotherapy and corticosteroids of pulmonary *Mycobacterium abscessus* infection accompanied by pleural effusion. J Infect Chemother 19: 964-968, 2013.
15. Light RW. Update on tuberculous pleural effusion. Respiratory 15: 451-458, 2010.
16. Liang QL, Shi HZ, Wang K, Qin SM, Qin XJ. Diagnostic accuracy of adenosine deaminase in tuberculous pleurisy: a meta-analysis. Respir Med 102: 744-754, 2008.
17. Park SU, Koh WJ, Kwon OJ, et al. Acute pneumonia and empyema caused by *Mycobacterium intracellulare*. Intern Med 45: 1007-1010, 2006.
18. Kakugawa T, Makae H, Kajki S, et al. *Mycobacterium avium* pleuritis in a non-immunocompromised patient. Intern Med 47: 1727-1731, 2008.
19. Jarand J, Levin A, Zhang L, Huitz G, Mitchell JD, Daley CL. Clinical and microbiologic outcomes in patients receiving treatment for *Mycobacterium abscessus* pulmonary disease. Clin Infect
20. Matsuzawa K, Tsukaguchi K, Okamura H, Kasahara R, Tamura M, Kimura H. [A case of lung infection due to *Mycobacterium abscessus* (*M. abscessus*) complicated with primary macroamylasemia]. Nihon Kokyuki Gakkai Zasshi 42: 519-522, 2004 (in Japanese, Abstract in English).

21. Nishizawa Y, Fujimura M, Tagami A, et al. [Two cases of pulmonary infection by *Mycobacterium abscessus* in which drug susceptibility testing results conflicted with clinical courses]. Nihon Kokyuki Gakkai Zasshi 43: 241-246, 2005 (in Japanese, Abstract in English).

22. Bouros D, Pneumatikos I, Tzouvelekis A. Pleural involvement in systemic autoimmune disorders. Respiration 75: 361-371, 2008.

23. Zhou Q, Chen YQ, Qin SM, Tao XN, Xin JB, Shi HZ. Diagnostic accuracy of T-cell interferon-γ release assays in tuberculous pleurisy: a meta-analysis. Respirology 16: 473-480, 2011.