Supplementary Figure 1: Coverage achieved for whole genome sequencing: a) Mean coverage for all samples. Centre line is mean, box limit is 25th-75th percentile, error bars show range minimum to maximum. b) Percentage of bases covered at minimum read depths. Error bars are 5th-95th percentiles, centre line is median, box limit is 25th-75th percentile.
Supplementary Table 1: Clinical summaries for 150 individuals sequenced in this study.

Case ID	Clinical summary
P162	Female. Born 40/40. Left-sided hemiplegia; spasticity and dystonia.
P163	Male. Born 40/40. Hemiplegia; severe spasticity and dystonia of right arm. Hypertonia on elbow flexors, some with pronator. Ulnar deviation of the wrist. Global developmental delay; asthma. MRI - PVL just adjacent to the left lateral ventricle.
P165	Male. Spastic hemiplegia. Speech and language delay. Brother has auditory processing disorder and ADHD type symptoms. MRI - Area of abnormality in the left periventricular region with appearances of gliosis to the left ventricle, with otherwise normal findings. Homozygous for MTHFR variant with normal homocysteine level, borderline low protein C level, likely lupus anticoagulant present.
P169	Male. Born 25/40. Left-sided hemiplegia. Intracranial bleeding; secondary hydrocephalus; VP shunt; pulmonary haemorrhage; jaundice. Epilepsy - abnormal EEG - episodic altered conscious state with prominent autonomic features; esotropia - bilateral eyes (alternating); GORD; asthma. MRI - Area of abnormality in both putamina, has slightly increased lactate. Diagnosed with Leigh's encephalopathy at 2 years of age.
P176	Male. Born 24/40. IVH grade IV resulting in left hemiplegia; porencephalic cyst. Left hand with increased tone; left ankle/foot orthotic; independent walker. Seizures; autism (mild); speech limited; global developmental delay.
P178	Male. Born 30/40 following normal pregnancy. Spastic diplegia, mild tremor in hands. Inginal hernia as a baby. Moderate-severe sensorineural hearing loss; possible auditory processing disorder, otherwise developmentally normal; anxiety.
P180	Male. Born 32/40; IUGR; jaundice at birth. Mother had severe pre-eclampsia. Spastic quadriplegia. Sagittal craniosynostosis, (cousin and father also); microcephaly. Afebrile seizures from 7 months, epilepsy diagnosed; GORD; upper airways obstruction necessitating adenoidectomy at 1.5 years; global developmental delay; strabismus; poor weight gain; sleep myoclonus; lethargy.
P182	Female. Spastic diplegia with progressive dystonia and ataxia. Initial MRI - abnormality in both putamina, has slightly increased lactate. Diagnosed with Leigh's encephalopathy at 2 years of age.
P183	Female. Born 40/40 at home. Spastic hemiplegia. Right hamstring lengthening and transfer and right calf recession. CT - periventricular punctate calcification surrounding the left frontal horn of the left lateral ventricle.
P185	Female. Born 42/40 following induction. IUGR. Spastic hemiplegia. Hypothermia after birth. MRI - area of encephalomalacia involving the cortex and adjacent cortical white matter of the posterior frontal lobe in the precentral area. Recurrent bronchiolitis then chest infections from 4 mths old; diagnosed as pseudo-hypoaldosteronism without genetic cause identified; complex partial epilepsy with absence seizures and drop attacks began at 15 months; protein C deficiency; GORD.
P187	Male. Born 27/40. Spastic diplegia. Dev. Delay. MRI - Abnormally high signal in the white matter abutting the lateral ventricles bilaterally most marked in the occipital regions with minor lateral wall irregularity and dilatation. Underwent bilateral femoral osteotomies as well as soft tissue procedures.
P188	Female. Born 37/40, induced due to oligohydramnios and IUGR. Spastic quadriplegia with some evidence of dyskinesia. Hypoglycaemic day 2 and lactic acidosis on initial cord bloods; apnoeic episodes/seizures day 9; stiff abnormal flexion/extension and fine tremor; difficulties maintaining midline orientation. No evidence of encephalopathy until onset of apnoea and seizures. Day 9 MRI - extensive injury of fronto-parietal white matter basal ganglia and thalamic nuclei; symmetric hypoxic brain injury. Moderate hearing deficits; squint and cortical visual impairment; cranial nerve palsies; asthma; GORD, vomiting and slow weight gain, feeding difficulties; lactose intolerant; recurrent otitis media and tonsillitis necessitating tonsillectomy, adenoidectomy and grommets.
Case ID	Clinical summary
---------	------------------
P189	Female. Born 30/40. IUGR. Unremarkable perinatal history. Evolving spastic diplegia with dystonia which has decreased with maturity. MRI - extensive bilateral PVL white matter signal changes involving posterofrontal, parietal and occipital regions, without apparent volume loss. Mother has medically managed Graves’ disease.
P191	Female. Born 41/40. Spastic/dystonic diplegia. Neonatal seizures, resolved but later developed epilepsy. HIE grade II, born with cord around neck. Unexpected flat baby on delivery. Astigmatism. Sibling 1 with ADHD (inattentive type), ASD, astigmatism. Sibling 2 with astigmatism. Both parents with visual problems.
P192	Male. Born 29/40. Mild spastic diplegia. IVH on day 1 of life, grade 1. Respiratory distress; neopuff support. Changes of white matter injury of prematurity/PVL. No restricted diffusion to suggest an acute ischaemic focus. Squint (esotropia) requiring two operations and visual impairment. Fully independent; wears hinged AFOs. Developing some foot deformities as he is growing.
P193	Male. Born 27/40. Spastic diplegia. No evidence of PVL on MRI. Low tone and hypermobility with normal power and reflexes in upper limbs and spasticity with brisk lower limb reflexes and contractures at ankles; bilateral pes cavus with hammertoes. Past history of chronic lung disease and now asthma; increased iron levels due to congenital liver anomaly - portacaval shunt; poor growth and delayed puberty; bilateral inguinal hernias; left testicular torsion and orchidectomy; atrioseptal defect; bilateral ptosis with elongated facies and high-arched palate. Mother visual problems.
P199	Female. Born 30/40. Maternal pre-eclampsia; IUGR; respiratory distress syndrome of newborn. Spastic diplegia. Developmental delay. Sleep apnoea - adenotonsillectomy at 6 years. Bilateral hamstring lengthening and calf recession. Sleep disordered breathing; eczema; family history of Haemophilia A in father. Four cranial U/S at birth, all normal.
P201	Male. Born 39/40. Spastic quadriplegia. CT - Extensive encephalomalacia primarily involving the left parietal and frontal lobes and also to a lesser extent the superior aspect of the right parietal lobe. Developing calcification throughout the cerebral. Required bag and mask ventilation for 2mins when born. Prolonged seizures involving facial twitching and left arm and shoulder jerking at 1 month - abnormal EEG showed burst suppression pattern. Family history of epilepsy (paternal grandfather and uncle); failure to thrive; irritability; pyridoxine deficiency; GORD; severe intellectual disability; gastrostomy fed; severe scoliosis; eczema.
P205	Male. Born 29/40. Spastic diplegia. MRI - Periventricular deep white matter gliosis and volume loss consistent with PVL. Reduced fetal movement; admitted to NICU immediately after birth with fetal distress syndrome - given magnesium sulphate, ventilation and surfactant doses for 6 days; echogenic bowel was detected on morphology scan; prematurity associated jaundice; apnea of prematurity and anaemia; retinopathy of prematurity; MRSA positive; cholestasis. Congenital heart disease - multiple ventricular septal defect; cystic fibrosis (classical) - bowel obstruction secondary to meconium ileus managed by resection of some gut and jejunostomy; secondary intestinal obstruction and adhesions repaired by laparatomy and appendicectomy; chronic lung disease from mechanical ventilation (finally extubated at 50 days of age); pancreatic insufficiency; gastrostomy; conjugated hyperbilirubinaemia secondary to CF liver disease.
P211	Female. Born 40/40. IUGR. Jaundice. Spastic/dystonic hemiplegia, with severe spasticity on left side. MRI - focal dysplasia in right frontal lobe. Irregular cortex in the right frontal region, with the appearance of a dysplasia.
P214	Male. Born 40/40. Spastic/dyskinetic quadriplegia. IUGR; poor CTG and decreased fetal movements resulting in CS. Resuscitation: flat at delivery - required IPPV, ECM (1min), CPAP, oxygen. Taken to NICU, intubated approx. 3 days. Day 1 became apnoic, day 2 seizures, stiffened limbs and trunk, myoclonic jerking of limbs; hydrocephalus on CT scan; microcephaly; ongoing status epilepticus. Global developmental delay; epilepsy; cortical visual impairment; poor weight gain.
Case ID	Clinical summary
---------	------------------
P217	Male. Born 41/40. Spastic diplegia. MRI - Brain structurally normal initially, with subtle delay of myelination in temporal lobes and incidental cerebellar ectopia later noted. Kinking of optic nerves. Severe spasticity affecting lower limbs. Neurologist suspected HSP at 10 years of age on the basis of his gait pattern, normal MRI and static presentation. Gross motor delay, otherwise development is normal; tendon-Achilles tightening; iron deficiency anaemia and microcytosis.
P220	Male. Born 37/40 by CS after fetal bradycardia and maternal pyrexia. Spastic hemiplegia. Presented at day 4 with right myoclonic seizure, left MCA infarct with residual right hemiparesis. Epilepsy; developmental delay.
P225	Female. Born 29/40. IUGR; augmented labour due to chorioamnionitis and funisitis. Spastic/dyskinetic quadriplegia. MRI - Bilateral PVL, more marked on the left within the posterior frontal and parietal white matter. US: Small grade 1 germinal matrix haemorrhage. Dev. delay; heart murmur. Sister 1 ASD + ADHD, and Sister 2 ASD + OCD).
P226	Male. Born 26/40. Spastic hemiplegia. IVF pregnancy, twin 2 with IUGR, GBS positive pregnancy, Grade 4 IVH with limited extension into periventricular area and only small area of leukomalacia.
P227	Female. Born 28/40, IVF pregnancy, triplet 2/3. One triplet IUD at 23/40. Spastic diplegia. MRI - Mild generalised atrophy, increased calibre of the ventricles and extra-axial spaces. Changes of cystic encephalomalacia and volume over the parietal convexities, bilaterally.
P228	Male. Born 24/40. Spastic diplegia. Visual problems. Hypoplastic thumbs (sister also). Two sisters, both with low tone. Eosinophilic oesophagitis; laryngomalacia; Chronic lung disease; Patent ductus arteriosus; bilateral intracranial haemorrhage (grade 1). Maternal ulcerative colitis, born with 1 kidney.
P229	Female. Born 41/40. Spastic/athetoid quadriplegia. Dev. delay - Bilateral hyper intense signal within both thalamic nuclei.
P230	Male. Born 39/40. Spastic hemiplegia. MRI - Unilateral encephalomalacia within the deep white matter of the left frontal lobe extending into the anterior aspect of the left parietal lobe. Evidence of Wallerian degeneration involving the cortical spinal tracts.
P231	Female. Born 37/40. Spastic quadriplegia. Birth complicated by shoulder dystocia. Maternal GBS positive with antibiotics. Glutaric Acidemia type 2, with no metabolic condition found. Dev. delay; Epilepsy; Cortical visual impairment; impetigo.
P232	Male. Born 38/40. IVF pregnancy. Maternal pre-eclampsia and heart condition (valve problem) during pregnancy. Truncal hypotonia and increased spastic tone in leg; microcephaly; poor head control. Global developmental delay; onset of seizures at 6 years of age; CT - possible cerebral dysplasia and lissencephaly. PVL.
P233	Female. Born 38/40. Severe spastic and dystonic left hemiplegia. Neglect of left side. Strawberry nevus. Mild thoracic scoliosis and inverted left foot. MRI – thin body of corpus callosum, secondary to PVL on right side with associated exvacuo dilatation of the right lateral ventricle. Centrum semiovale gliosis / fron-to-parietal white matter loss. Small area of blooming artefact at the right periventricular region, with resultant porencephalic cyst, which communicates with the lateral ventricle.
P235	Male. Born 40/40. Spastic quadriplegia. Increasing seizure frequency, global dev delay, frontoparietal polymicrogyria, microcephaly, cortical visual impairment. Bilateral adductor releases at 2 yrs of age. Strong family history of developmental dysplasia of the hip. MRI - Extensive and diffuse bilateral symmetrical cortical dysplasia involving the majority of both hemispheres but sparing the posterior fossa. Delayed myelination.
P236	Male. Born 38/40. Spastic diplegia with some dystonia, spasticity possibly progressive. Speech and developmental delay; myopia. MRI - delayed myelination; spinal cord abnormalities. Maternal type 1 diabetes.
Case ID	Clinical summary
---------	------------------
P701	Male. Born 40/40. Spastic/dyskinetic diplegia. Uterine rupture, diagnosed neonatal encephalopathy. Non-verbal, understands signs and face expressions; mild episodic asthma; partial epileptic seizures at 3 years of age needs phenobarbitone. US - Ventricles and extra ax ial spaces are decreased in size. No intracranial haemorrhage demonstrated.
P703	Male. Dystonic/spastic quadriplegia. Cord prolapse; ill at delivery requiring 4 hrs of hand ventilation and had 2 pneumothoraxes. Neonatal seizures. Significant chronic and persistent pain relating to spasms in lower back and hips. Gait deteriorated over years. US 2 days - Increase of parenchymal echogenicity of both cerebral hemispheres, associated with thickening of sulci and moderate hyper-echogenicity of the thalami. US 6 mths: Prominent ventricular system and sulcal pattern is seen. Finding is consistent with non-specific widening of CSF containing spaces.
P704	Male. Born 40/40. IUGR. Spastic/dyskinetic quadriplegia. Hypoglycaemia, polycythemia and infection in perinatal period requiring blood transfusion. Tetralogy of Fallot (sister also). MRI - periventricular leukomalacia and left basal ganglia calcification.
P706	Male. Born 31/40. Spastic/dyskinetic quadriplegia. Epilepsy and global dev. delay. CT - Asymmetry between lateral ventricles, with both lateral ventricles slightly prominent but third and fourth ventricles normal size and extra-axial spaces not enlarged. Prominent cisterna magna but the posterior fossa structures appear normal in size.
P708	Male. Born 40/40. IUGR. Dystonic hemiplegia with some spasticity. Mobility decreased and increasing dystonia. Dev. delay; bleeding or clotting disorder; hearing loss.
P710	Female. Born 32/40. Spastic diplegia. Kidney scarring. Significant planovalgus deformity at the left ankle. MRI - Periventricular white matter loss and hyperintensity.
P711	Male. Born 40/40. IUGR. Spastic hemiplegia.
P712	Male. Born 27/40. Spastic diplegia. Neurofibromatosis type 1; hearing difficulties; slightly small cochlear nerve on left side; metopic craniosynostosis with normal appearance of brain.
P714	Male. Born at >37/40. Spastic/dystonic quadriplegia. Erb’s palsy; developmental delay. Diagnosed with HIE at term, possible acute on chronic. MRI - cortical and subcortical frontoparietal and occipital diffusion restriction extending into parasagittal white matter, centrum semiovale, posterior limb of the internal capsules bilaterally, anterior thalamus, post central gyrus on the right left posterior and inferior cerebellum. MRI at 2 years - atrophy and high signal in both parasagittal and occipital regions, as well as both motor cortex regions, more marked on the left. Mild atrophy and heterogeneity of the thalamus bilaterally. Wedge-shaped atrophy of the left cerebellar hemisphere, with subtle changes on the right. Overall asymmetry of the hemispheres with the left being smaller.
P715	Male. Born 42/40. Spastic/dystonic hemiplegia. Neonatal seizures, CVA at 3 weeks of age. Mild intellectual impairment, seizure disorder, behavioural and emotional issues (aggressive behaviour and progressive outbursts), complex congenital heart disease.
P719	Female. Born 36/40. IUGR. Spastic hemiplegia - dense right hemiparesis with dysarthria; severe drooling; Polycythemia; Epilepsy; Developmental disability and right visual field defect. MRI - Large area of cystic encephalomalacia in the left MCA territory with significant attenuation of the left MCA and its branches. Small area of cystic encephalomalacia in the right MCA territory, severe PVL with evidence of middle cerebral artery occlusion on the left side.
P720	Male. Born 40/40. Spastic hemiplegia with some dystonia in left arm. Intermittent right knee pain and headaches. Asthma. Older brother ASD. MRI - Periventricular white matter loss and areas of abnormal signal in the periventricular white matter, consistent with periventricular leukomalacia (PVL). Asymmetry in the size of the thalam.
Case ID	Clinical summary
---------	------------------
P721	Female. Spastic/dystonic quadriplegia; has had bilateral hip releases and hamstring releases. Significant planovalgus deformity, worsening. Dysphonia; breathing difficulty.
P730	Male. Born 28/40. IUGR. Spastic/dystonic quadriplegia. Significant scoliosis; dev. delay, intellectual disability; severe vision impairment; epilepsy; osteoporosis; gastro-oesophageal reflux. Maternal Protein C resistance. CT - Prominent ventricular system with irregular margins of the lateral ventricles. White matter atrophy.
P736	Female. Born 27/40. Asymmetric spastic diplegia. Left calcaneal shift and lateral column lengthening. Dev. delay; OCD (Mother also).
P737	Male. Born 26/40. Spastic/dystonic quadriplegia. Right plagiocephaly. CT - Right lambdoid suture is narrower than the left with some heaped-up bone over the inner table. Sclerosis and a relatively featureless right lambdoid suture may suggest early craniosynostosis.
P739	Male. Born 36/40. IUGR. Spastic/dystonic quadriplegia with relative sparing of right arm. Has developed severe pain in right arm (localised around elbow), otherwise stable. Visual problems. MRI – Bilateral, nearly symmetrical periventricular white matter hyperintensity, predominantly involving the deep white matter is suggestive of a demyelination/ dysmyelination disorder.
P740	Male. Born 28/40. Spastic quadriplegia, lower limbs more severely affected.
P741	Female. Born 40/40. Spastic quadriplegia, unable to bear weight and spends most of day in wheelchair; severe contracture of right wrist. Congenital CMV infection; chronic staphylococcus infection requiring 12 months antibiotics; Ep, visual problems, scoliosis, osteoporosis, dev. delay, deaf - 3/4 siblings in family deaf, 1 sibling with ASD and OCD. MRI - brain is diffusely abnormal. Cerebral appearances consistent with intrauterine CMV infection. Inner ear structures appear normal. CT - enlarged lateral ventricles, with no evidence of acute hydrocephalus.
P743	Female. Born 26/40, twin 2/2. Severe spastic/dyskinetic quadriplegia. Dev. delay, hearing loss, chronic lung condition. Severe spasm and progressive scoliosis with underlying osteoporosis causing distress and pain. MRI - Generalised bilateral cerebral atrophy, with mild progression.
P745	Male. Spastic hemiplegia.
P746	Female. Spastic diplegia. Good functional use of upper limbs; evidence of spasticity at hamstring bilaterally, with knee flexion contractures. Developing crouched gait with planovalgus foot position. Difficulty with distant vision.
P747	Female. Born 29/40. Spastic diplegia. Dev. delay, ASD, visual problems. Stiff leg with marked ankle pronation. Aggressive behaviour. MRI -bilateral periventricular leukomalacia.
P748	Male. Born 40/40. Spastic hemiplegia. Stutter; eczema. MRI - Encephalomalacia within the left corona radiata/body of the caudate. No other focal abnormality and MRA is normal.
P749	Female. Born 31/40. IUGR. Predominantly dystonic quadriplegia. Progressive and profound hearing and visual problems. Ongoing problem with hip pain. Anxiety issues; drooling; dryness in mouth. MRI - Widespread peribronchial white matter loss and gliotic change. Slight increase in signal in the vestibular cochlear nuclei. Right cochlear nerve a little smaller than left.
P750	Male. Born 42/40. Bilateral dystonia. Bilateral hip subluxation. Iron deficiency anaemia (resolved); pulmonary stenosis (balloon dilation, aged 3 months).
P751	Female. Born 26/40. Spastic/partially dystonic hemiplegia. Dev. delay. MRI - Gliotic changes in the left cerebellar hemisphere. Stable appearance of the right cerebral, left cerebellar and cerebellar vermis volume loss. Severe bilateral intraventricular and intracranial haemorrhages.
Case ID	Clinical summary
--------	--
P752	Male. Spastic hemiplegia.
P753	Male. Born term. Spastic/dystonic quadriplegia. Bilateral hip reconstruction. Obstructed labour. Born by LSCS, seizures from 6 hours of age, resistant and required multiple anticonvulsants. MRI – Bilateral periventricular cystic changes in the centum semi ovale. Extensive cystic encephalomalacia. US - Absent corpus callosum and cystic space in the right parietal region.
P754	Male. Born 40/40. Spastic quadriplegia. Global developmental delay; autistic behaviour; some visual impairment; difficult behavioural management. MRI - partial agenesis of the corpus callosum.
P756	Female. Born 40/40. Spastic hemiplegia. MRI - Small calibre M1 segment of left MCA with paucity of distal branches.
P758	Male. Born 40/40. Spastic diplegia. Autism spectrum disorder, hearing loss. MRI - open lipped schizencephaly on the right and either transmantle heterotopia or closed lip schizencephaly on the left. These are associated with large extra-axial CSF spaces. Suggestion of some mass effect on the left side with enlargement of the middle cranial fossa. Multiple areas of polymicrogyria. Absence of the septum pellucidum and small optic nerves.
P759	Male. Born 37/40. Spastic hemiplegia.
P760	Female. Born 40/40. Spastic hemiplegia. Father ADHD.
P761	Female. Born 30/40. Spastic diplegia, both knees flexed during gait. Dev. delay; visual problems.
P763	Female. Born 37/40. IUGR; emergency CS after low amniotic fluid noted. Spastic hemiplegia. Dev. delay, visual problems, epilepsy, ASD. Mother epilepsy; brother with autism, dev. delay. MRI - Ex-vacuo dilation of the left lateral ventricle associated with periventricular white matter volume loss and signal abnormality as well as reduced volume of the left basal ganglia and left side of the brain stem. Non-specific white matter signal abnormality in the right frontal region, but right cerebral hemisphere otherwise normal appearance.
P769	Male. Born 25/40. IUGR; identical twin died at 1 day old. Spastic diplegia. Global developmental delay; ASD; sleep disturbances; osteopenia; bilateral inguinal hernias; conjugated hyperbilirubinemia. Brother with ADHD.
P772	Male. Born 37/40. Dystonic dyskinetic quadriplegic CP - very dystonic with lots of involuntary dsykinetic movements. Arthrogryposis affecting leg (Father also). Dev. delay.
P773	Male. Born 28/40. Spastic diplegia. ADHD.
P775	Male. Born 38/40. Parents second cousins. IUGR. Spastic dystonic quadriplegia. Seizures as neonate; dev. delay; bilateral sensorineural hearing deficiency; visual problems; bilateral dislocated hips, left worse than right. Fixed knee flexion contracture requiring soft tissue release. Developing right wrist flexion deformity/contractures and also has dysphagia. MRI - Cystic lesions in basal ganglia and thalami with diffuse cerebral volume loss. The internal auditory canals appear bulbous bilaterally, but contain normal nerves.
P776	Male. Born 36/40. IUGR. Asymmetric spastic diplegia. ASD, dev. delay, intellectual disability and seizure disorder with consequent behaviour disturbances and aggressive behaviour; ADHD; OCD; anxiety/depression. Pregnancy complicated by bleeding at 6 months and then intermittent bleeding from 8 months until delivery. MRI - Bilateral periventricular white matter volume loss with signal changes, consistent with periventricular leukomalacia. Mild cerebral cerebellar degenerative changes noted.
P778	Female. Born 39/40. Spastic hemiplegia. Right vulpius calf release, flexor hallucis longus/flexor digitorum longus release.
P779	Female. Born 28/40. IUGR; dichorionic diamniotic twin pregnancy complicated by gestational hypertension, antepartum haemorrhage, placental abruption, foetal bradycardia and in utero death of a male twin. Mother 3 previous still births, 3 live births. Spastic diplegia. Severe periventricular
Case ID	Clinical summary
---------	------------------
P780	Male. Born 36/40. Spastic hemiplegia. Congenital motor nystagmus; epilepsy; neonatal jaundice. Sister OCD.
P782	Male. Born 36/40. IUGR. Spastic/dystonic hemiplegia. Mild to moderate developmental delay; ADHD.
P783	Male. Born 38/40. IUGR. Spastic hemiplegia. Parents are cousins. Moderate developmental disability; seizures; tachycardia; hypoglycaemia; hyperinsulinism. MRI - Right parietofrontal haemorrhage. White matter volume loss with ex vacuo dilatation of the frontal horn of the right lateral ventricle. Prominence of the ventricles and extra axial CSF spaces.
P784	Female. Born 38/40. Spastic diplegia. Global developmental delay/disability; ADHD (Mother also); history of femoral fracture; worsening contractures of knees and ankles. MRI - Progression in demyelination. Stable appearance of white matter changes; patchy in frontal regions and more confluent posteriorly.
P785	Female. Born 38/40. Spastic hemiplegia. Poor balance; speech delay; swallowing difficulties; vomits easily; muscle development and imbalance.
P786	Female. Born 25/40. Dystonic/spastic quadriplegia (GMFCS 5). Necrotising enterocolitis; retinopathy in neonatal period; developmental delay; epilepsy. US (5 weeks) - reduced sulcation, no evidence of IVH.
P788	Male. Dystonic quadriplegia with associated dysphagia. Developmental delay (brother and sister also); epilepsy. Mother 13 previous miscarriages. MRI - postnatal herpetic meningoencephalitis.
P789	Male. Born 40/40. Spastic hemiplegia. Associated homonymous hemianopia; right sided visual defects; learning difficulties; complex partial seizures. Mother polycystic kidney disease. CT - large old infarct involving the left MCA territory with associated ex vacuo dilatation of the left lateral ventricle. No identifiable hydrocephalus.
P790	Male. Born 38/40. IUGR. Pre-eclampsia. Spastic/dystonic quadriplegia. Global developmental delay/disability; cortical visual impairment; hearing impairment; dysphagia; epilepsy.
P792	Male. Born 30/40. IUGR. Asymmetic spastic diplegia. Speech delay and global development delay; drooling; complex seizures.
P795	Female. Born 25/40. Spastic/dystonic diplegia. Trend for internal rotation at hips with some knee flexion and anterior pelvic tilt bilaterally; quite significant dystonia in calves. Chronic lung disease which required home oxygen; epilepsy; auditory processing disorder and language problems; deafness; visual problems; anxiety disorder.
P796	Male. Born 40/40. Spastic/dystonic quadriplegia. Developmental delay; visual impairment; epilepsy; swallowing difficulty; seizures. Sustained a bilateral intraventricular haemorrhage, subsequently developed hydrocephalus which required a ventriculoperitoneal shunt. CT 2 weeks: Resolving left temporoparietal occipital haematoma with extensive perilesional oedema. Acute hydrocephalus with periventricular/ transependymal oedema. Possible vermar hypoplasia. Extent of haematoma unusual for a term infant. An underlying vascular malformation cannot be excluded.
P798	Female. Born 39/40. Spastic hemiplegia. Neonatal seizures. Dev. delay; learning difficulties with verbal based skills; difficulties with attention and hyperactivity. Bleeding or clotting disorder. MRI — left cerebral hemisphere oedema secondary to left middle cerebral arterial ischaemic infarcts.
P799	Male. Born 38/40. Spastic hemiplegia. Congenital microcephaly; epilepsy; autism; ADHD; OCD; anxiety/depression; developmental delay; various visual problems including hemianopia and optic nerve damage. Increasing weight causes difficulty with left foot position, increasing physical aggressiveness. MRI, 2 months - Right middle cerebral artery infarct with changes of porencephaly. Smaller capsular and basal ganglionic infarcts.
on the left side. Diffuse and generalised cortical volume loss. Thin and hypoplastic right MCA. MRI, 5 years - Gliotic change in the left periventricular region surrounding the encephalomalacic cavity has increased and evidence of wallerian degeneration has developed in the right thalamus. Extensive right middle artery territory cystic encephalomalacia and small right middle cerebral artery changes are stable. MRI, 11 years - Extensive cystic encephalomalacia and gliosis in the right middle cerebral artery territory does not show significant interval change. Wallerian degeneration involving the bilateral thalami and brainstem as described. Bilateral paranasal sinus disease.

Case ID	Clinical summary
P801	Female. Born 31/40. IUGR. Spastic triplegia with minimal effect on right leg. Visual problems. Grade 2 intraventricular haemorrhage at birth (VP shunt insertion in the newborn period).
P802	Female. Born 40/40. Spastic/dystonic hemiplegia. Visual problems.
P901	Female. Born 35/40. IUGR. Spastic hemiplegia. Dev. delay. MRI - regions of gliosis as demonstrated by T2 high signal and parenchymal volume loss are seen in the region of the right thalamus and basal ganglia.
P904	Male. Born 28/40. Twin 2/2 (monozygotic), twin 1/2 has no health conditions. Spastic diplegia. ASD; ADHD; anxiety; visual problems. MRI - periventricular white matter hyperintensity and minor dilation of the lateral ventricles.
P905	Male. Born 40/40. Dystonic hemiplegia. Neonatal seizures. Brother ADHD and anxiety/depression. MRI brain and spine – no specific pathology.
P907	Male. Twin 2/2 (dizygotic), born 28/40. IUGR. Spastic diplegia. Dev. delay. MRI – periventricular leukomalacia.
P910	Male. Born 40/40. Spastic/dystonic quadriplegia. Congenital microcephaly; infantile spasms; epilepsy; developmental delay; visual problems. MRI - bilateral polymicrogyria.
P911	Female. Born 40/40. Spastic hemiplegia. ADHD (Father also); visual problems (Mother also). MRI – periventricular leukomalacia.
P913	Male. Born 41/40. IUGR. Spastic diplegia. Speech delay; ASD (maternal uncle also). Father ADHD. MRI – no specific brain or spinal abnormality. Past osteomyelitis.
P918	Male. Born 35/40. IUGR. Spastic quadriplegia. Intellectual disability (sister also); epilepsy (sister and mother also); OCD (sister also); severe receptive and expressive language disorder; visual problems (mother also).
P919	Female. Born 28/40. Spastic hemiplegia.
P921	Male. Born 30/40. Spastic diplegia.
P926	Male. Pregnancy with placenta praevia and antepartum haemorrhage. Spastic hemiplegia. Developmental delay. Mother 3 stillbirths, 3 live births.
P928	Female. Born 29/40 following antepartum haemorrhage. Spastic diplegia.
P931	Male. Born 40/40. IUGR. Spastic/dystonic quadriplegia. Developmental delay. Bleeding or clotting disorder (father also). Parents cousins.
P934	Male. Born 41/40. Spastic hemiplegia. MRI Brain - focal area of gliosis involving the posterior limb of the right internal capsule and right centrum semiovale.
P936	Male. Born 33/40. IUGR. Spastic diplegia. Periventricular leukomalacia. Dyslexia. Two sisters with ADHD and anxiety/depression.
P938	Female. Born 31/40. Asymmetric spastic diplegia. ADHD (sibling also). Two siblings with ASD. MRI - bilateral parietal periventricular white matter abnormal T2 hyperintensity.
Case ID	Clinical summary
---------	------------------
P939	Female. Born 32/40. IUGR. Spastic hemiplegia. Congenital nystagmus with cortical visual impairment. MRI - T2 hyperintensity in the periventricular white matter around the superolateral margin of the body of the left lateral margins of the trigone on each side. Porencephaly and gliosis.
P940	Male. Born 29/40. IUGR. Spastic hemiplegia. MRI – periventricular leukomalacia.
P943	Male. Born 27/40. Spastic diplegia. Developmental delay; scoliosis. Maternal uncle ASD. MRI – periventricular leukomalacia.
P944	Male. Born 38/40. Spastic hemiplegia. Developmental delay; epilepsy; learning difficulties. MRI - Previous focal cortical infarcts in the right frontal, right parietal, and right occipital lobes.
P945	Male. Born 28/40. Spastic/dystonic quadriplegia. Developmental delay; epilepsy; visual problems. MRI - extensive PVL.
P947	Male. Born 25/40. Spastic/dystonic quadriplegia. Developmental delay.
P948	Female. Born 30/40. Spastic diplegia. MRI - Periventricular T2 hyperintensity.
P949	Male. Born 27/40. Spastic diplegia. Ventricular septal defect, closed spontaneously; hydromyelia in spinal cord; visual problems.
P953	Female. Born 40/40. Spastic hemiplegia. MRI – small area of gliosis.
P955	Female. Spastic diplegia. ID, facial dysmorphism, expressive language disorder with no speech. MRI – periventricular white matter changes.
P955	Female. Spastic diplegia. ID, facial dysmorphism, expressive language disorder with no speech. MRI – periventricular white matter changes.
P957	Male. Born 39/40. Spastic hemiplegia. Anxiety/depression. MRI – periventricular leukomalacia, changes more marked on right side.
P959	Male. Born 39/40. IUGR. Spastic/dyskinetic quadriplegia. Placental infarction. MRI – periventricular leukomalacia.
P962	Female. Born 39/40. Spastic hemiplegia. MRI - Periventricular white matter gliosis, more marked on the left.
P965	Male. Born 41/40. IUGR. Spastic hemiplegia. MRI - Right schizencephalic cleft, lined by extensive areas of polymicrogyria. Associated periventricular gliosis bilaterally.
P966	Female. Born 29/40. Spastic diplegia. Developmental delay.
P968	Female. Born 40/40. Spastic/dystonic hemiplegia. Diagnosed neonatal encephalopathy. Learning difficulty; ADHD; OCD.
P972	Female. Born 29/40. Spastic quadriplegia. Left arm involuntary movement. Pregnancy complicated by diabetes and hypertension. Patent ductus arteriosus. MRI – evidence of previous IVH and mild PVL.
P974	Female. Born 37/40. Spastic hemiplegia. ASD (Uncle also), brother with ADHD. MRI - enlarged right ventricle with periventricular gliosis.
P980	Male. Born 26/40. Spastic quadriplegia. Neonatal seizures, developmental delay; epilepsy; OCD. MRI - Grade 4 Germinal matrix haemorrhage with IVH.
P983	Male. Born 35/40. Spastic diplegia. Developmental delay; visual problems. MRI - PVL.
P1105	Male. Born 31/40. Spastic/dystonic quadriplegia, with spasticity dominant. Developmental delay; eosinophilic oesophagitis; asthma; visual problems.
P1106	Female. Born 27/40. IUGR. Spastic diplegia. Developmental delay; chronic lung disease; visual problems.
P1110	Female. Born 38/40. Spastic triplegia. Squint. Hydrocephalus and antenatal IVH detected at 37/40. Maternal uncle with ASD, ADHD.
Case ID	Clinical summary
---------	------------------
P1114	Male. Born 36/40. Spastic quadriplegia. Neonatal seizures; autistic features; shunted hydrocephalus; severe global developmental delay; seizure disorder; visual impairment with roving nystagmus. CT - Longstanding shunted hydrocephalus. Large cystic spaces predominantly in a peritrigonal distribution, in addition to Grade III intracranial haemorrhage, with bilateral intraventricular and subependymal haemorrhages and asymmetric dilation of lateral ventricles.
P1123	Male. Born 41/40. IUGR. Spastic/dystonic quadriplegia. Neonatal seizures; hypoxic ischaemic encephalopathy; foetal bradycardia intrapartum. MRI - Foci of gliosis involving periventricular deep white matter both cerebral hemispheres.
P1124	Male. Born 27/40. Spastic quadriplegia. Congenital microcephaly; antepartum haemorrhage; neonatal seizures; epilepsy; shunted hydrocephalus, aortic stenosis; developmental delay. Paternal grandmother CP.
P1129	Male. Born 37/40. Spastic hemiplegia.
P1130	Male. Born 40/40. Spastic hemiplegia. ASD (brother also); MRI - abnormal T2 weighted high signal intensity gliosis associated with ex vacuo dilation of the left lateral ventricle.
P1132	Male. Born 39/40. Spastic hemiplegia. Mild language delay. MRI - Right sided periventricular gliosis and ex vacuo dilatation of body and trigone of right lateral ventricle. Haemosiderin noted in right caudothalamic groove.
P1133	Male. Born 27/40. Spastic hemiplegia. Exomphalos; Beckwith-Wiedemann Syndrome. US - Evidence of intraparenchymal haemorrhage with ventricular dilatation/porencephalic cyst and associated periventricular leukomalacia.
P1134	Male. Spastic/dystonic hemiplegia.
P1136	Female. Born 40/40. Spastic hemiplegia. Asthma; seizures as neonate; epilepsy; developmental delay; visual problems. MRI – MCA stroke.
P1137	Female. Born 29/40. Spastic hemiplegia. Astigmatism; asthma; eczema. Stroke in utero and klebsiella pneumoniae meningitis in neonatal period.
P1138	Male. Born 41/40. Spastic hemiplegia. Right-sided porencephalic cyst.
P1140	Female. Born 26/40. Spastic hemiplegia. Intellectual impairment; developmental delay; ASD; complex partial seizures; shunted hydrocephalus; anxiety disorder; eczema; hearing loss; heart murmur. MRI - Marked white matter volume loss left parietal and occipital lobes corresponding with site of previous left grade IVH. Ventricles of normal size with VP shunt in situ.
P1141	Male. Born 40/40. Spastic quadriplegia. Pre-eclampsia. Resuscitation and ventilation required; neonatal seizures; developmental delay; epilepsy; constipation.
P1145	Male. Born 38/40. Spastic hemiplegia. Epilepsy; ASD; global developmental delay. MRI - Large area of right middle cerebral artery territory cystic encephalomalacia with marginal gliosis, associated marked volume loss right cerebral hemisphere with midline shift to the right, mild ex vacuo dilatation right lateral ventricle and secondary Wallerian degeneration involving right thalamus and right lateral aspect of brain stem.
P1146	Male. Born 27/40, twin. Spastic quadriplegia. Neonatal seizures, epilepsy, developmental delay. Neonatal ventricular haemorrhage. Shunted hydrocephalus.
P1147	Female. Born 24/40, twin. IUGR. Spastic quadriplegia, asymmetric. Epilepsy, seizure onset approx. 9 years. Hydrocephalus with VP shunt.
P1149	Male. Born 37/40. Spastic quadriplegia. Scoliosis; dislocated hip; drools failure to thrive; developmental delay; kidney abnormality. Cousin with developmental delay, hole in heart.
P1150	Female. Twin. Spastic hemiplegia.
Supplementary Table 2: Summary of prioritised variants validated in this cohort.

Case ID	Gene	Variant/Inheritance	Frequency (gnomAD or MGRB)	CADD Phred	Ratio observed/expected (gnomAD)
P162	ARHGAP32	Chr11:128848764G>T: NM_014715.3:c.934C>A:p.R312S	0	34	Missense o/e = 0.85 (CI 0.81 - 0.9)
P163	KAT6A	Chr8:41790507T>C: NM_006766.3:c.5231A>G:p.Y1744C	0	22.3	Missense o/e = 0.83 (CI 0.78 - 0.87)
P165	HTT	Chr4:3225824G>A:NM_002111.8: c.7731G>A:p.W2577*	0	52	pLOF o/e = 0.12 (CI 0.08 - 0.18)
		PARK2 Chr6:162859017_163164739dup	0.002	.	ASNT2 pLOF o/e = 0.14 (CI 0.08 - 0.25)
P169	GRIN2B	Chr12:13764700A>T:NM_000834.5: c.1739T>A:p.F580Y	0	29.8	Missense o/e = 0.48 (CI 0.44 - 0.52)
P176	ARHGAP31	Chr3:119128396del:NM_020754.2:c.1699del:P567Rfs*28	0	.	pLOF o/e = 0.09 (CI 0.05 - 0.19)
P178	MFN2	Chr1:12071568G>A:NM_001127660.2: c.2220G>A:p.W740*	0	54	pLOF o/e = 0.13 (CI 0.07 - 0.28)
		CAMTA1 Chr1:7724952C>T:NM_001349608.2:c.2255G>T:p.S752F	0	28.7	Missense o/e = 0.71 (CI 0.67 - 0.76)
		PARK2 Chr6:162717356_162916007dup	0.006	.	pLOF o/e = 0.55 (CI 0.36 - 0.86)
P180	SKI	Chr1:2237568A>T:NM_003036.4:c.1877A>T:p.K626M	7.25E-05	22.5	Missense o/e = 0.8 (CI 0.73 - 0.87)
		SLC2A1 Chr1:43395364TT>AC:NM_006516.3:c.767AA>T:p.K256V	1.42E-05	24	Missense o/e = 0.53 (CI 0.46 - 0.6)
		SCN1A Chr2:166896000C>T:NM_001165963.4:c.2522C>T:p.T841M	3.19E-05	25.3	Missense o/e = 0.55 (CI 0.51 - 0.59)
P182	GALC	Chr14:88411975C>T:NM_001201401.2:c.1523G>A:p.R508H	3.24E-05	29.4	Missense o/e = 0.97 (CI 0.89 - 1.06)
		Chr14:88452941T>C:NM_001201401.2:c.265A>G:p.T89A	2.50E-03	23	Missense o/e = 0.97 (CI 0.89 - 1.06)
P183	SCO1, GAS7	Chr17:10062326_10600121dup			
------	-----------	-------------------------------			
		Not maternal			
P185	CLCN2	Chr3:184071575C>T:NM_001171088.3:c.1598G>A:p.R533Q			
		Heterozygous, inheritance unknown			
	CACNA1C	Chr12: 2719716G>T:NM_0007197.7:c.3568G>T:p.V1190L			
		Heterozygous, inheritance unknown			
P187	ROCK2	Chr2:11104502_11337616dup			
		Inheritance unknown			
P188	COL4A4	Chr2:227872823G>A:NM_0000925.5:c.4720T>A:p.Q1574*			
		Heterozygous, inheritance unknown			
P189	NCOR1	Chr17:16042475A>T:NM_001190438.1:c.872T>A:p.L291H			
		Heterozygous, not maternal			
P191	KCNH1	Chr1:211263967A>C:NM_002238.4:c.376T>G:p.F126V			
		Heterozygous, maternal, Sibling 1 also carries			
	ADCY6	Chr12:49170894G>C:NM_015270.5:c.1369C>T:p.A457P			
		Heterozygous, not maternal, not carried by siblings			
P193	CHD7	Chr8:61655217C>T:NM_001316690.1:c.1226T>A:p.R43*			
		Heterozygous, paternal			
	COL5A2	Chr2:189916185G>A:NM_000393.5:c.2792C>T:p.P931H			
		Heterozygous, paternal			
P199	F8	ChrX:154156919G>C:NM_000132.3:c.5146C>T:p.H1716N			
		Inheritance unconfirmed, Father haemophilia A			
	NECTIN2	Chr19:45368566C>G:NM_001042724.2:c.127C>T:p.R43*			
		Heterozygous, inheritance unknown			
P201	TLR7	ChrX:12906598C>T:NM_0016562.4:c.2971C>T:p.L991I			
		Hemizygous, inheritance unknown			
	FERMT3	Chr11:63990566C>T:NM_00131471.6:c.1717C>T:p.R573*			
		Heterozygous, inheritance unknown			
P205	CFTR	Chr7:117199645TCTTTT:NM_000492.4:c.1520_1522del:			
		p.P508del			
		Homozygous, maternal, no contact with father			
	CLCN1	Chr7:143048771C>T:NM_000883.3:c.2680C>T:p.R894*			
		Heterozygous, not maternal			
P211	IL1RAP	Chr3:190374214C>G:NM_001167931.2:c.1882C>G:p.R628G			
		Heterozygous, inheritance unknown			

GAS7 pLOF o/e = 0.18 (CI 0.1 - 0.36)

Missense o/e = 0.92 (CI 0.85 - 0.99)

Missense o/e = 0.5 (CI 0.46 - 0.53)

Missense o/e = 0.73 (CI 0.68 - 0.78)

Missense o/e = 0.77 (CI 0.74 - 0.81)

Missense o/e = 0.77 (CI 0.72 - 0.82)

Missense o/e = 0.76 (CI 0.71 - 0.81)

Missense o/e = 0.12 (CI 0.06 - 0.32)

Missense o/e = 0.56 (CI 0.5-0.63)

pLOF o/e = 0.35 (CI 0.23-0.56)

pLOF o/e = 0.11 (CI 0.05-0.28)
Gene	Description	Variant Details	Heterozygous, Paternal	pLOF o/e =	pLOF o/e CI		
ITPR3	Chr6:33652174A>T:NM_002224.4: c.4978A>T:K1660*	Heterozygous, inheritance unknown	0	48	0.46 (CI 0.37-0.57)		
P214	15q11-q13 dup	Chr15:22722801_26749200dup	0	.	.		
P217	SPAST	Chr2:32347645_32354557del	Heterozygous, paternal	0	.	0.09 (CI 0.04 - 0.22)	
P220	TNR	Chr1:17537296A>G:NM_003285.3: c.556T>C:p.C186R	Heterozygous, inheritance unknown	0	28.4	0.09 (CI 0.04 - 0.22)	
P225	SPAST	Chr2:32370014A>G:NM_014946.4: c.1625A>G:p.D542G	Heterozygous, paternal, both siblings share variant	0	24.1	0.09 (CI 0.04 - 0.22)	
P228	ASTN2	Chr9:119495729G>A:NM_014010.5: c.2317C>T:p.Q773*	Heterozygous, paternal	0	46	0.14 (CI 0.08 - 0.25)	
P229	BCOR	Chr:39934249T>C:NM_001123383.1: c.350A>G:p.E117G	Heterozygous, maternal	0	25.7	0.81 (CI 0.75 - 0.86)	
P230	WNK3	Chr:54275132G>A:NM_001002838.4: c.3649C>T:p.H1217Y	Hemizygous, X-linked	4.66E-05	23.8	0.71 (CI 0.66-0.77)	
P231	SUN1	Chr7:892253C>T:NM_00171944: c.553C>T:p.R185*	Heterozygous, maternal	4.01E-06	38	0.37 (CI 0.26-0.56)	
P232	EGFR	Chr7:55223558C>T:NM_00136491.2: c.124C>T:p.R42*	De novo, not shared by 3 siblings	0	38	0.23 (CI 0.15-0.35)	
P233	SYNE2	Chr14:64628848C>T:NM_015180.6:c.16153C>T:p.Q5385*	0	45	pLOF o/e = 0.32 (CI 0.27 - 0.37)		
P235	BCOR	ChrX:39933749C>T:NM_001123383.1:c.850G>A:p.D284N	3.2E-05	26.3	Missense o/e = 0.81 (CI 0.75 - 0.86)		
WDR47		Chr1:109538428C>T:NM_001142550.2:c.1489G>A:p.G497R	3.98E-06	26.8	Missense o/e = 0.65 (CI 0.59 - 0.71)		
P236	TUBB4A	Chr19:6495282C>T:NM_006087.4:c.1228G>A:p.E410K	0	27.5	Missense o/e = 0.31 (CI 0.26 - 0.37)		
P701	KCTD17	Chr22:37453523G>A:NM_001123383.1:c.850G>A:p.D284N	1.21E-05	26.9	Missense o/e = 0.64 (CI 0.54 - 0.76)		
P703	SPG7	Chr16:89598369G>A:NM_001142550.2:c.1489G>A:p.G497R	8.23E-04	26.7	Missense o/e = 1.11 (CI 1.03 - 1.2)		
P704	CACNA1S	Chr1:201052419G>A:NM_000069.3:c.1264C>T:p.R422C	1.59E-05	33	Missense o/e = 1.01 (CI 0.96 - 1.06)		
P706	AGAP2	Chr12:58120493G>A:NM_001123383.1:c.850G>A:p.D284N	0	29.3	Missense o/e = 0.62 (CI 0.57 - 0.68)		
P708	KMT2B	Chr19:36214767G>A:NM_001123383.1:c.850G>A:p.D284N	0	25.1	Missense o/e = 0.76 (CI 0.72 - 0.8)		
KLHL3		Chr5:136961485C>T:NM_001123383.1:c.850G>A:p.D284N	0	38	pLOF o/e = 0.16 (CI 0.08 - 0.34)		
P710	F2	Chr11:46761055G>A:NM_001123383.1:c.850G>A:p.D284N	8.44E-03	.	Missense o/e = 0.7 (CI 0.63 - 0.77)		
P711	DIP2A	Chr21:47966897G>A:NM_001123383.1:c.850G>A:p.D284N	0	32	Missense o/e = 0.76 (CI 0.72 - 0.81)		
P712	FOXP1	Chr3:71027104G>A:NM_001123383.1:c.850G>A:p.D284N	0	27.9	Missense o/e = 0.67 (CI 0.6 - 0.74)		
NF1		Chr17:28992701_30408700del	0	.	pLOF o/e = 0.22 (CI 0.16 - 0.29)		
P714	STXBP1	Chr9:130425629G>A:NM_001123383.1:c.850G>A:p.D284N	3.98E-06	29.5	Missense o/e = 0.36 (CI 0.31 - 0.42)		
P715	TTN	Chr2:179476563G>A:NM_001123383.1:c.850G>A:p.D284N	0	61	pLOF o/e = 0.33 (CI 0.3 - 0.35)		
P720	EML2	Chr19:46130010A>G:NM_001123383.1:c.850G>A:p.D284N	0	28.6	Missense o/e = 0.98 (CI 0.91 - 1.06)		
Gene	Chromosome	Reference SNP	Reference Transcript	Mutation	Inheritance	Missense o/e	CI
-------	------------	---------------	----------------------	----------	-------------	--------------	---------
PIH1D3	ChrX:106466003G>A:NM_173494.2:c.361G>A:p.G121R	Hemizygous, X-linked	3.4E-05	24.7	Missense o/e = 0.84 (CI 0.68 - 1.04)		
MATN3	Chr2:20206009G>A:NM_002381.5:c.286C>T:p.P96S	Heterozygous, maternal	1.09E-05	26.8	Missense o/e = 0.86 (CI 0.76 - 0.96)		
GALC	Chr14:88412026A>G:NM_001201401.2:c.1472T>C:p.F491S	Heterozygous, not maternal	1.21E-05	31	Missense o/e = 0.97 (CI 0.89 - 1.06)		
SRCAP	Chr16:30748569G>A:NM_006662.3:c.286C>T:p.P96S	Heterozygous, maternal	0	27.6	Missense o/e = 0.86 (CI 0.83 - 0.9)		
CNTN6	Chr3:1427412G>T:NM_014461.4:c.2635G>T:p.V879L	Heterozygous, not maternal	0	26	Missense o/e = 1.36 (CI 1.28 - 1.45)		
UBQLN2	ChrX:56591528C>G:NM_013444.4:c.1222C>G:p.Q408E	Heterozygous, inheritance unknown	0	25.9	Missense o/e = 0.73 (CI 0.64 - 0.82)		
KAZALD1	Chr10:102822755G>C:NM_030929.5:c.406G>C:p.G136R	Heterozygous, not paternal	0	33	Missense o/e = 0.97 (CI 0.86 - 1.11)		
ACTN1	Chr14:69343866C>T:NM_001102.4:c.2453G>A:p.R818H	Heterozygous, not maternal	0	33	Missense o/e = 0.61 (0.56 - 0.67)		
PROC	Chr2:128186457T>C:NM_000312.4:c.1321T>C:p.Y441H	Heterozygous, not paternal	3.9E-05	28.3	Missense o/e = 0.85 (CI 0.76 - 0.95)		
DNMT1	Chr19:10247869G>A:NM_001130823.3:c.4381C>T:p.R1461W	Heterozygous, paternal	0	33	Missense o/e = 0.55 (0.51 - 0.59)		
MITF	Chr3:70008431C>T:NM_006722.3:c.1018C>T:p.R340C	Heterozygous, inheritance unknown	0	33	Missense o/e = 0.77 (0.69-0.85)		
CHD9	Chr16:53358554G>A:NM_001308319.2:c.8441T>C:p.L2814P	Heterozygous, not maternal	0	24	Missense o/e = 0.72 (0.69 - 0.76)		
ABOCA4	Chr1:94466628G>A:NM_000350.3:c.6316C>T:p.R2106C	Heterozygous, inheritance unknown	1.31E-04	33	Missense o/e = 1.05 (CI 1 - 1.1)		
ABOCA4	Chr1:94481325G>C:NM_000350.3:c.5282C>G:p.P1761R	Heterozygous, inheritance unknown	0	26.5	Missense o/e = 1.05 (CI 1 - 1.1)		
ARHGAP32	Chr11:129034251C>T:NM_001142685.2:c.188G>A:p.R63Q	Heterozygous, inheritance unknown	0	27	Missense o/e = 0.85 (CI 0.81 - 0.9)		
LDB3	Chr10:88478533G>A:NM_001080114.2:c.1577G>A:p.C526Y	Heterozygous, inheritance unknown	0	31	Missense o/e = 0.96 (CI 0.89 - 1.04)		
CCDC88C	Chr14:91757409G>C:NM_001080414.4:c.4132C>G:p.R1378G	Heterozygous, inheritance unknown	0	26.1	Missense o/e = 0.94 (CI 0.9 - 0.99)		
---	---	---	---	---			
P749	**GI2**	Chr13:20763626C>T:NM_004004.6:c.95G>A:p.R32H	Heterozygous, paternal	3.99E-06	25.3	Missense o/e = 1.17 (CI 1.03 - 1.34)	
	FGFR1	Chr8:38270868_38270907del	Heterozygous, paternal	0	.	pLOF o/e = 0.09 (CI 0.04 - 0.21)	
	ATP1A3	Chr19:42485704G>A:NM_001256213.2: c.1420C>T: p.R474C	Heterozygous, maternal	4.49E-04	28.9	Missense o/e = 0.29 (CI 0.26 - 0.33)	
P750	**VCX3A, STS, PNPLA4**	ChrX:6451301_8138000del	Hemizygous, inheritance unknown	0	.	.	
	MARVELD3	Chr16:71674692A>G:NM_001017967.4:c.995A>G:p.D332G	Heterozygous, maternal	0	23.9	Missense o/e = 0.94 (CI 0.84 - 1.04)	
P751	**CNKR2**	ChrX:21545084A>T:NM_001168649.3:c.910A>T:p.I304F	Heterozygous, maternal	5.49E-06	26.4	Missense o/e = 0.47 (CI 0.42 - 0.54)	
P752	**NWX2-6**	Chr8:23560414dup:NM_001136271.3:c.455dup:p.Q153Afs*207	Heterozygous, inheritance unknown	3.15E-05	30	pLOF o/e = 0.45 (CI 0.22 - 1.03)	
P753	**DOCK6**	Chr19:11323875G>A:NM_020812.4:c.4468C>T:p.R1490*	Heterozygous, inheritance unknown	0	47	pLOF o/e = 0.58 (CI 0.47 - 0.72)	
	CNTNAP2	Chr7:147869373G>T:NM_014141.6:c.2813G>T:p.R938L	Heterozygous, inheritance unknown	0	33	Missense o/e = 1.03 (CI 0.97 - 1.09)	
P754	**KIDINS220**	Chr2:8871669del: NM_020738.2: c.4497del: p.R1499Sfs*9	Heterozygous, not maternal, father deceased	0	.	pLOF o/e = 0.24 (CI 0.17 - 0.35)	
P756	**CACNA1A**	Chr19:13318399C>T:NM_001127222.2:c.7249G>T:p.E2417*	Heterozygous, not maternal	0	40	pLOF o/e = 0.08 (CI 0.04 - 0.13)	
P758	**ZNF74, USP41**	Chr22:20744491_20758257dup Valuated by qPCR, duplication only of ZNF74	0	.	.		
P759	**SEYX**	Chr9:135172393_135172402del: NM_001351527.2:c.5821_5830del:p.A1941Lfs*6	Heterozygous, not maternal, Father unavailable	0	.	pLOF o/e = 0.21 (CI 0.14 - 0.3)	
P760	**PNPLA6**	Chr19:7606546delG:NM_001166114.2: c.1144del: p.A383Pfs*11	Heterozygous, inheritance unknown	1.25E-04	35	pLOF o/e = 0.48 (CI 0.36 - 0.64)	
P761	SPG11	Chr15:44876084del:NM_001160227.2:c.5794del:p.H1932Mfs*19 Heterozygous, not paternal, Mother not available	0	.	pLOF o/e = 0.67 (CI 0.56 - 0.81)		
P763	CPA6	Chr8:68396042C>T:NM_001160227.2:c.5794del:p.H1932Mfs*19 Heterozygous, inheritance unknown	2.06E-03	29.1	Missense o/e = 1.09 (CI 0.98 - 1.21)		
		Chr8:68419039G>C:NM_001160227.2:c.5794del:p.H1932Mfs*19 Heterozygous, inheritance unknown	1.43E-03	26.2	Missense o/e = 1.09 (CI 0.98 - 1.21)		
STRADA	Chr17:16800689T:NM_001160227.2:c.5794del:p.H1932Mfs*19 Heterozygous, inheritance unknown	8.23E-06	25.8	pLOF o/e = 0.67 (CI 0.56 - 0.81)			
REM2	Chr14:23355873G>A:NM_001160227.2:c.5794del:p.H1932Mfs*19 Heterozygous, inheritance unknown	0	34	Missense o/e = 0.75 (CI 0.65 - 0.86)			
P769	CCDC88C	Chr14:91739384G>T:NM_001160227.2:c.5794del:p.H1932Mfs*19 Heterozygous, not paternal	0	25.6	Missense o/e = 0.94 (CI 0.9 - 0.99)		
P772	MYH4	Chr17:10360830C>G:NM_001160227.2:c.5794del:p.H1932Mfs*19 Heterozygous, not maternal, Father not available	0	27	Missense o/e = 0.99 (CI 0.94 - 1.04)		
COL6A3	Chr2:238249283A>T:NM_001160227.2:c.5794del:p.H1932Mfs*19 Heterozygous, maternal	0	28.4	Missense o/e = 1.04 (CI 1 - 1.08)			
PDGFRB	Chr5:149498359G>C:NM_001160227.2:c.5794del:p.H1932Mfs*19 Heterozygous, maternal	2.39E-05	28.1	Missense o/e = 0.8 (CI 0.75 - 0.86)			
P773	ZFHX3	Chr16:72821397G>C:NM_001160227.2:c.5794del:p.H1932Mfs*19 Heterozygous, not paternal	0	45	pLOF o/e = 0.08 (CI 0.05 - 0.14)		
P775	ATF4	Chr22:39917925C>T:NM_001160227.2:c.5794del:p.H1932Mfs*19 Heterozygous, not maternal, Father not available	0	22.8	Missense o/e = 0.7 (CI 0.59 - 0.81)		
NAA15	Chr4:140278588A>G:NM_001160227.2:c.5794del:p.H1932Mfs*19 Heterozygous, IBD	0	27	Missense o/e = 0.48 (CI 0.43 - 0.54)			
P776	RAB5C	Chr17:40280747G>C:NM_001160227.2:c.5794del:p.H1932Mfs*19 Heterozygous, maternal	0	38	pLOF o/e = 0.08 (CI 0.03 - 0.36)		
P778	VWF	Chr12:61439781G>A:NM_001160227.2:c.5794del:p.H1932Mfs*19 Heterozygous, not maternal, Father not available	3.47E-03	33	pLOF o/e = 0.93 (CI 0.89 - 0.97)		
P779	F2	Chr12:61439781G>A:NM_001160227.2:c.5794del:p.H1932Mfs*19 Heterozygous, not maternal, Father not available	1.20E-03	0	Missense o/e = 0.7 (CI 0.63 - 0.77)		
P780	NECAP1	Chr12:8242570G>C:NM_001160227.2:c.5794del:p.H1932Mfs*19 Heterozygous, not maternal, Father not available	0	29.2	Missense o/e = 0.69 (CI 0.59 - 0.81)		
P782	ARFGAP2	Chr11:47196804G>A:NM_001160227.2:c.5794del:p.H1932Mfs*19 Heterozygous, maternal	3.98E-06	37	Missense o/e = 0.32 (CI 0.2 - 0.54)		
Gene	Chromosome	Description	Allele	pLOF o/e	CI		
--------	------------	-------------------------------	--------	------------	-------------		
AHDC1	Chr1:27873829C>G:NM_001029882.3:c.4798G>C:p.V1600L	Heterozygous, maternal	0	26.5	Missense o/e = 0.75 (CI 0.7 - 0.79)		
ZFYVE26	Chr14:68220884C>A:NM_015346.4:c.7032G>T:p.L2344F	Heterozygous, inheritance unknown	0	23	Missense o/e = 0.96 (CI 0.92 - 1)		
	Chr14:68268930C>T:NM_015346.4:c.1505G>A:p.C502Y	Heterozygous, inheritance unknown	0	29.5	Missense o/e = 0.96 (CI 0.92 - 1)		
RAPGEFL1	Chr17:38348507A>C:NM_001303533.2:c.1195A>G:p.N399H	Homozygous, Likely IBD	0	25.8	Missense o/e = 0.7 (CI 0.62 - 0.79)		
GNB1	Chr1:1737942A>G:NM_001282539.2:c.239T>C:p.I80T	Heterozygous, inheritance unknown	3.98E-06	25.6	Missense o/e = 0.28 (CI 0.23 - 0.35)		
DOCK8, KANK1	Chr9:293723_686363dup	Inheritance unknown	0	.	Dock8 pLOF o/e = 0.36 (CI 0.28 - 0.48)		
ITPR1	Chr3:4753542A>G:NM_001168272.2:c.5048A>G:p.Y1683C	Heterozygous, maternal	0	29.3	Missense o/e = 0.59 (CI 0.56 - 0.63)		
ELOVL4	Chr6:80626473T>C:NM_002726.2:c.797A>G:p.Y266C	Heterozygous, maternal	0	29	Missense o/e = 0.74 (CI 0.64 - 0.86)		
BSCL2	Chr11:624792963G>A:NM_001122955.4:c.214C>T:p.P72S	Heterozygous, maternal	0	26.1	Missense o/e = 0.95 (CI 0.86 - 1.06)		
WWOX	Chr16:78269608_78348628del	Heterozygous, inheritance unknown	0	.	pLOF o/e = 1.07 (CI 0.77 - 1.53)		
CHRN82	Chr1:154544167A>T:NM_000748.3:c.868A>T:p.T290S	Heterozygous, maternal	0	24.8	Missense o/e = 0.67 (CI 0.6 - 0.75)		
CHRNA7	Chr15:32456401_32475000dup	Inheritance unknown	0	.	pLOF o/e = 0.44 (CI 0.26 - 0.77)		
IKBKG	Chr9:153792196C>T:NM_001145255.4:c.781C>T:p.H261Y	Hemizygous, inheritance unknown	0	23.3	Missense o/e = 0.99 (CI 0.79 - 1.24)		
COL4A1	Chr13:110850841C>T:NM_001303110.2:c.1258G>A:p.R420R	Heterozygous, inheritance unknown	0	18.3	Missense o/e = 0.73 (CI 0.68 - 0.77)		
CAMTA1	Chr1:7811383G>A:NM_001349613.1:c.1943G>A:p.R648Q	Heterozygous, inheritance unknown	4.03E-06	33	Missense o/e = 0.71 (CI 0.67 - 0.76)		
F2	Chr11:46761055G>A:NM_001311257.2:c.*97G>A	Heterozygous, inheritance unknown	8.44E-03	.	Missense o/e = 0.7 (CI 0.63 - 0.77)		
PIEZO2	Chr18:10763065G>T:NM_022068.4:c.2903C>A:p.S968Y	Heterozygous, paternal	0	25.3	Missense o/e = 0.75 (CI 0.71 - 0.78)		
P798	**PEX1**	Chr7:92132483dup:NM_001282677.2:c.1926dup:p.I643Yfs*42					
Heterozygous, not maternal	4.85e-4	27.6	pLOF o/e = 0.5 (CI 0.38 - 0.66)				
---	---	---	---	---	---		
P799	**PEX14**	Chr1:10596309C>T:NM_004565.2:c.124C>T:p.R42C					
Heterozygous, maternal	1.06e-5	26.4	Missense o/e = 0.76				
(CI 0.67 - 0.86)							
P799	**GNAO1**	Chr16:56377748A>C:NM_138736.3:c.951A>C:p.K317N					
Heterozygous, not maternal	0	29.2	Missense o/e = 0.41				
(CI 0.34 - 0.48)							
P801	**CDK13**	Chr7:39990904C>T:NM_001349613.1:c.290C>T:p.S97F					
Heterozygous, not maternal	0	32	Missense o/e = 0.71				
(CI 0.67 - 0.76)							
P802	**EFEMP1**	Chr2:56098226G>A:NM_004565.2:c.124C>T:p.R42C					
Heterozygous, maternal	0	25.9	Missense o/e = 0.69				
(CI 0.61 - 0.78)							
P802	**PCBP3**	Chr21:47329390G>A:NM_001130141.2:c.461A>G:p.E154G					
Heterozygous, not maternal	0	33	Missense o/e = 0.63				
(CI 0.55 - 0.72)							
P902	**CAMTA1**	Chr1:7796498C>T:NM_001282677.2:c.1926dup:p.I643Yfs*42					
Heterozygous, not maternal	4.01E-6	29.5	Missense o/e = 0.35				
(CI 0.32 - 0.38)							
P904	**SCN8A**	Chr12:52188354G>A:NM_001349613.1:c.290C>T:p.S97F					
Heterozygous, not maternal	0	32	Missense o/e = 0.71				
(CI 0.67 - 0.76)							
P905	**DST**	Chr6:56463369C>T:NM_00155485.3:c.3964G:p.K1322E					
Heterozygous, maternal	0	25.2	Missense o/e = 0.88				
(CI 0.84 - 0.91)							
P907	**TBX2**	Chr17:73948270C>T:NM_005994.4:c.1189C>T:p.R397W					
Heterozygous, not maternal	0	28.9	Missense o/e = 0.78				
(CI 0.7 - 0.85)							
P910	**TUBA1A**	Chr12:49580570G>A:NM_001349613.1:c.290C>T:p.S97F					
Heterozygous, not maternal	0	29.2	Missense o/e = 0.03				
(CI 0.01 - 0.05)							
P911	**COL4A2**	Chr13:111145620G>A:NM_001349613.1:c.290C>T:p.S97F					
Heterozygous, not maternal	0	24.7	Missense o/e = 0.81				
(CI 0.76 - 0.86)							
P913	**SLC9A5**	Chr16:67283034G>A:NM_001349613.1:c.290C>T:p.S97F					
Heterozygous, maternal	0	36	pLOF o/e = 0.48				
(CI 0.33 - 0.69)							
P918	**USP32**	Chr17:58292096A>C:NM_004565.2:c.124C>T:p.R42C					
Heterozygous, maternal	0	38	Missense o/e = 0.7				
(CI 0.64 - 0.76)							
P918	**KCNH5**	Chr14:63453878G>A:NM_001349613.1:c.290C>T:p.R42C					
Heterozygous, not maternal	1.06E-5	29.1	Missense o/e = 0.7				
(CI 0.64 - 0.76)							
P918	**DEAF1**	Chr11:687962C>T:NM_001349613.1:c.290C>T:p.R42C					
Heterozygous, not maternal	2.79E-5	24.5	Missense o/e = 0.77				
(CI 0.69 - 0.85)							
P926	NOTCH3	Chr19:15276711C>T:NM_000435.3:c.5554G>A:p.A1852T	Heterozygous, inheritance unknown	1.59E-05	26.9	Missense o/e = 0.74 (CI 0.7 - 0.77)	
P931	ALDH3A2	Chr17:19663333_19663335delinsGGGCTAAAAAGTACTGTTGGG:NM_000382.3: c.941_943delinsGGGCTAAAAAGTACTGTTGGG: p.A314_P315delinsGAKSTVGA	Homozygous, maternal, inferred IBD.	0	.	Missense o/e = 0.51 (CI 0.33 - 0.82)	
P934	NOTCH3	Chr19:15276824T>A:NM_000435.3: c.5441A>T:p.A1814V	Heterozygous, not maternal	0	25.9	Missense o/e = 0.74 (CI 0.7 - 0.77)	
	KCNA6	Chr12:4920526C>T:NM_000382.3: c.1319C>T:p.S440L	Heterozygous, not maternal	0	33	Missense o/e = 0.53 (CI 0.47 - 0.6)	
P936	FGFR2	Chr10:123247626C>T:NM_00114914.1: c.1529G>A:p.C510Y	Heterozygous, maternal	0	34	Missense o/e = 0.69 (CI 0.63 - 0.75)	
P938	NOTCH1	Chr9:139409789A>G:NM_017617.5: c.1967T>C:p.L656P	Heterozygous, not maternal	0	22.8	Missense o/e = 0.76 (CI 0.73 - 0.8)	
P939	PDGFRB	Chr5:149502705G>A:NM_002609.4: c.2083G>A:p.R695C	Heterozygous, maternal	1.13E-04	32	Missense o/e = 0.8 (CI 0.75 - 0.86)	
	PROC	Chr2:128179014G>A:NM_000312.4: c.226G>A:p.V76M	Heterozygous, not maternal	4.96E-05	21.2	Missense o/e = 0.85 (CI 0.76 - 0.95)	
P940	VAMP1	Chr12:6580127_6584844del	Heterozygous, inheritance unknown	0	.	pLOF o/e = 0.54 (CI 0.28 - 1.15)	
P943	STRIP1	Chr1:110596480G>A:NM_001270768.2: c.2175G>C:p.L725P	Heterozygous, inheritance unknown	0	44	pLOF o/e = 0.37 (CI 0.25 - 0.55)	
P944	TAF1	ChrX:70601671G>A:NM_004606.3: c.1499G>A:p.R500H	Hemizygous, inheritance unknown	1.72E-05	29.4	Missense o/e = 0.44 (CI 0.4 - 0.48)	
P945	SPTBN2	Chr11:66475075G>C:NM_0006496.4: c.1565G>C:p.A522G	Heterozygous, inheritance unknown	0	24.1	Missense o/e = 0.81 (CI 0.77 - 0.85)	
	PCBP3	Chr21:47131753_47242245del	Heterozygous, inheritance unknown	0	.	pLOF o/e = 0.17 (CI 0.08 - 0.39)	
P947	NIPA1	Chr15:23088461_23131516del	Heterozygous, inheritance unknown	0.002	.	pLOF o/e = 0.49 (CI 0.26 - 1.04)	
P948	ANKLE2	Chr12:133325764_133335225dup	Heterozygous, inheritance unknown	0	.	pLOF o/e = 0.59 (CI 0.42 - 0.85)	
P953	EMC1	Chr1:19568838C>T:NM_01271428.2: c.509+1G>T Splicing	Heterozygous, inheritance unknown	0	34	pLOF o/e = 0.79 (CI 0.62-1.01)	
ID	Gene	Chromosome	Variation	Description	Heterozygous, inheritance unknown	Missense o/e	(CI)			
P955	KMT2E	Chr7:104752315A>G:NM_018682.4:c.4112A>G:p.K1371R	Heterozygous, inheritance unknown	0	24.6	Missense o/e = 0.87 (CI 0.82 - 0.92)				
P957	MFN2	Chr1: 12064892G>A:NM_001127660.2:c.1403G>A:p.R468H	Heterozygous, inheritance unknown	2.5E-03	27.6	pLOF o/e = 0.13 (CI 0.07 - 0.28)				
P962	SPG7	Chr16:89613145C>T:NM_003119.4:c.1529C>T:p.A510V	Heterozygous, inheritance unknown	0.0029	26.8	Missense o/e = 1.11 (CI 1.03 - 1.2)				
P965	COL4A1	Chr13:110817245C>G:NM_001845.6:c.4114G>C:p.G1372R	Heterozygous, inheritance unknown	0	25.9	Missense o/e = 0.81 (CI 0.77 - 0.85)				
P972	MT-TL1	ChrM:3243A>G:NC_012920.1:m.3243A>G	Low level detectable in maternal blood-derived DNA	.	.	.				
P974	TRIO	Chr5:14480080A>T:NM_007118.4:c.6296A>T:p.K2099I	Heterozygous, inheritance unknown	0	32	Missense o/e = 0.64 (CI 0.61 - 0.68)				
P980	22q11.2dup	Chr22:18873001_19571600dup	Validated by array, event likely larger than this	0	.	.				
P983	RASGEF1B	Chr4:82363492T>A:NM_152545.3:c.967A>T:p.R323S	Heterozygous, inheritance unknown	0	29.4	Missense o/e = 0.75 (CI 0.66 - 0.84)				
P1105	WNK4	Chr17:40947642G>A:NM_032387.5:c.3023-1G>A Splicing	Heterozygous, maternal	3.98E-06	27	pLOF o/e = 0.81 (CI 0.64 - 1.05)				
P1106	PIEZO2	Chr18:10797455del:NM_002068.4:c.1444del:p.R482Efs*16	Heterozygous, not maternal, not shared by sibling, father not available	0	.	pLOF o/e = 0.28 (CI 0.22 - 0.37)				
P1110	COL4A2	Chr13:111092182T>C:NM_001846.2:c.957+2T>C Splicing	Heterozygous, not maternal, father not available	0	25	pLOF o/e = 0.45 (CI 0.35 - 0.58)				
P1114	AXL	Chr19:41748919G>T:NM_001278599.2:c.640G>T:p.G214*	Heterozygous, inheritance unknown	0	41	pLOF o/e = 0.27 (CI 0.18 - 0.44)				
P1123	SYT14	Chr1:210056221_210262039dup	Maternal	0	.	pLOF o/e = 0.15 (CI 0.07 - 0.34)				
Chr	Gene	RefSeq	Chromosome	Position	Description	Heterozygosity	pLOF o/e	pLOF CI	Missense o/e	Missense CI
-----	------	--------	-------------	----------	-------------	---------------	----------	---------	------------	------------
P1129	THRA	Chr17:38233862insGCTCTTTGCGCGCAATACTCGAGAAGAACCTCAA	Chr17:38233862insGCTCTTTGCGCGCAATACTCGAGAAGAACCTCAA	0	.	pLOF o/e = 0.23 (CI 0.13 - 0.45)				
P1130	EXD1	Chr15:41482310C>T:NM_152596.4:c.707G>A:p.W236*	Chr15:41482310C>T:NM_152596.4:c.707G>A:p.W236*	0	39	pLOF o/e = 0.88 (CI 0.63 - 1.26)				
P1132	BUB1B	Chr15:40493140C>A:NM_001190919.2:c.222+1insGCTTCTTTCGCCGCACAATCCAGAAGAACCTCCA	Chr15:40493140C>A:NM_001190919.2:c.222+1insGCTTCTTTCGCCGCACAATCCAGAAGAACCTCCA	0	36	pLOF o/e = 0.42 (CI 0.31 - 0.58)				
P1134	HTRA2	Chr2:74759053G>C:NM_013247.5:c.1115+1G>C Splicing	Chr2:74759053G>C:NM_013247.5:c.1115+1G>C Splicing	0	24.8	Missense o/e = 0.84 (CI 0.77 - 0.92)				
P1136	FARS2	Chr6:5369212A>G:NM_001318872.2:c.409A>G:p.S137G	Chr6:5369212A>G:NM_001318872.2:c.409A>G:p.S137G	0.98E-06	25.5	Missense o/e = 0.88 (CI 0.79 - 0.98)				
P1137	CTNNB1	Chr3:40831837_41291740dup	Chr3:40831837_41291740dup	0	.	pLOF o/e = 0.03 (CI 0.01 - 0.13)				
P1138	COL4A2	Chr13:111155739G>A:NM_001846.4: c.4049G>A:p.G1350D	Chr13:111155739G>A:NM_001846.4: c.4049G>A:p.G1350D	0	25.6	Missense o/e = 0.81 (CI 0.76 - 0.86)				
P1140	CLIP2	Chr7:73703473_73704908del	Chr7:73703473_73704908del	0	.	pLOF o/e = 0.09 (CI 0.04 - 0.2)				
P1141	CHD8	Chr14:21871660T>A:NM_020920.4:c.2633A>T:p.Q878L	Chr14:21871660T>A:NM_020920.4:c.2633A>T:p.Q878L	0	27.8	Missense o/e = 0.56 (CI 0.53 - 0.59)				
P1145	ROCK2	Chr2:11354970T>A:NM_0013121643.2:c.1674A>T:p.L558F	Chr2:11354970T>A:NM_0013121643.2:c.1674A>T:p.L558F	0	24.2	Missense o/e = 0.53 (CI 0.49 - 0.58)				
P1146	PIEZO2	Chr18:10715752C>T:NM_0022068.4:c.4978G>A:p.V1660M	Chr18:10715752C>T:NM_0022068.4:c.4978G>A:p.V1660M	2.31E-05	23.9	Missense o/e = 0.75 (CI 0.71 - 0.78)				
P1147	Chr1q21.1 deletion	Chr1:145382601_145616000del	Chr1:145382601_145616000del	0	.	.				
P1149	KMT2D	Chr12:49422934G>A:NM_003482.4:c.14161C>T:p.R4721C	Chr12:49422934G>A:NM_003482.4:c.14161C>T:p.R4721C	3.21E-05	33	Missense o/e = 0.81 (CI 0.79 - 0.84)				
CHD7	Chr18:63548074C>T:NM_004361.5:c.2302C>T:p.R768C	Chr18:63548074C>T:NM_004361.5:c.2302C>T:p.R768C	3.21E-05	34	Missense o/e = 0.77 (CI 0.74 - 0.81)					
P1150	UNC80	Chr2:210783302G>C:NM_032504.2:c.5060G>C:p.G1687A	0	24.3	Missense o/e = 0.63 (CI 0.59 - 0.66)					
-------	-------	---	-----	------	-------------------------------------					
		Heterozygous, not maternal								
Supplementary Table 3: Detailed interpretation of clinically reportable variants identified by whole genome sequencing.

Case ID	Gene	Variant/Inheritance	Freq (gnomAD or MGRB)	CADD Phred	ACMG classification/OMIM disorder	Clinical significance
P169	GRIN2B	NM_000834.3: c.1739T>A: p.F580Y Het, inheritance unknown	0	29.8	Likely pathogenic (PM1, PM2, PP3, PP4)/Epileptic encephalopathy, early infantile, 27 (AD) (MIM 616139)	Likely pathogenic, epilepsy with abnormal EEG, on background of extreme prematurity. Novel mutation in GRIN2B pore domain
P176	ARHGAP31	NM_020754.2: c.1699del: p.P567Rfs*28 Het, maternal	0	0	Likely pathogenic (PVS1, PM2)/Adams-Oliver syndrome (AD) (MIM 100300)	Likely pathogenic, C-terminal truncation upstream of reported variants¹. Variable penetrance and expressivity²,³, and unaffected obligate carriers reported⁴. Early embryonic vascular anomalies and neurological findings reported for ARHGAP31⁵,⁶, on background of extreme prematurity
P178⁴	MFN2	NM_001127660.1: c.2220G>A: p.W740* Het, paternal	0	54	Likely pathogenic (PS1, PM2, PP3)/Hereditary motor and sensory neuropathy VIA (AD)(MIM 601152)	Likely pathogenic, tremor, moderate-severe sensorineural hearing loss. Many pathogenic loss of function variants in ClinVar. Variable age at onset within families and incomplete penetrance reported, also carries VUS in CAMTA1
P185	CLCN2	NM_001171088.3: c.1598G>T: p.R533Q Het, inheritance unknown	2.00E-04	24	Likely pathogenic (PM1, PM2, PP3, PP5)/ Familial hyper-aldosteronism, type II (AD) (MIM 605635)	Likely pathogenic, complex phenotype: clinically diagnosed with pseudo-hypoaldosteronism - recurrent bronchiolitis then chest infections, complex partial epilepsy with absence seizures and drop attacks beginning at 15 months.
	CACNA1C	NM_000719.7: c.3568G>T: p.V1190L Het, inheritance unknown	1.22E-05	27.6	Likely pathogenic (PM1, PM2, PP2, PP3)/ Long QT syndrome 8 (AD) (MIM 618447),	
P205	CFTR	NM_000492.4: c.1520-22del: p.P508del Homozygous, maternal, father unavailable	7.17E-03	21.3	Pathogenic (PVS1, PS3, PP4, PM3)/Cystic Fibrosis, classical (AR) (MIM 219700)	Pathogenic, diagnosed cystic fibrosis. Reduced fetal movement and fetal distress syndrome, CLCN1 may contribute to complex phenotype.

¹ Andrew et al. 2015 ² John et al. 2016 ³ Smith et al. 2017 ⁴ Seo et al. 2018 ⁵ Deplazes et al. 2019 ⁶ Cui et al. 2020
Case ID	Gene	Variant/Inheritance	Freq (gnomAD or MGRB)	CADD Phred	ACMG classification/OMIM disorder	Clinical significance
P217	CLCN1	NM_000083.3:c.2680C>T: p.R894* Het, not maternal	3.18E-03	35	Pathogenic (PVS1, PS3, PP3, PP5, BS1)/ Myotonia congenita (both AR and AD) (MIM 160800)	Pathogenic, novel variant removing amino acids 367-415 at the C-terminal end of the AAA domain. Variable age of onset and penetrance within families reported for SPG47.
		Chr2:32347645_32354557del Compound het, paternal (Supplementary Figure 6)	0		Pathogenic (PVS1, PM1, PM2)/ Spastic Paraplegia 4 (SPG4) (AD) (MIM 182601)	
		NM_014946.4:c.131C>T: p.S44L Compound het, maternal	4.54E-03	21.2	Spastic Paraplegia 4 modifier	Modifier, age of onset/severity HSP7,8
P225a	SPAST	NM_014946.3:c.1625A>G: p.D542G Het, maternal, both siblings share variant	4.13E-04	21.2	Likely pathogenic (PM1, PM2, PP3, PP5)/ Spastic Paraplegia 4 (SPG4) (AD) (MIM 182601)	Likely pathogenic, Variable age of onset and penetrance within families reported for SPG47. Complex phenotype, carries additional VUS in intolerant genes.
P233	SYNE2	NM_015180.4:c.16153C>T: p.Q5385* Het, inheritance unknown	0	44	Pathogenic (PVS1, PM2, PP3)/Emery-Dreifuss muscular dystrophy 5 (AD) (MIM 612999)	Pathogenic, atypical early presentation.
P236	TUBB4A	NM_006087.4:c.1228G>A: p.E410K De novo	0	27.5	Pathogenic (PM1, PM2, PM6, PP2, PP3, PP5)/ hypomyelinating leukodystrophy, 6 (AD) (MIM 612438)	Pathogenic, known pathogenic variant6. In keeping with clinical presentation and imaging.
P708	KLHL3	NM_001257195.1:c.1446G>A: p.W482* Het, not maternal	0	38	Pathogenic (PVS1, PM2, PP3)/ Pseudo-hypoaldosteronism type IID (AD/AR) (MIM 614495)	Likely pathogenic, variant likely to escape NMD. Carrier of VUS in KMT2B
Case ID	Gene	Variant/Inheritance	Freq (gnomAD or MGRB)	CADD Phred	ACMG classification/OMIM disorder	Clinical significance
---------	------	---------------------	-----------------------	------------	-----------------------------------	----------------------
P712	NF1	Chr17:28992701_30408700del Het, inheritance unknown	0	.	Pathogenic (PVS1, PS3, PM2)/ NF1 microdeletion syndrome (AD)	Pathogenic, clinical diagnosis neurofibromatosis type 1, on background of premature birth. Cardiovascular complications are a feature of NF1.
P715	TTN	NM_001267550.2:c.50473C>T:pQ16825* Het, maternal	0	61	Pathogenic (PVS1, PM2, PP3)/ Familial hypertrophic cardiomyopathy type 9 (AD) (MIM 613765)	Likely pathogenic. Incidental finding for mother, incomplete penetrance reported.
P750	VCX3A, STS, PNPLA4	ChrX:6451301_8138000del Hemi, inheritance unknown (Supplementary Figure 5)	0	.	Pathogenic/XP22.3 deletion (XLR)	Pathogenic, possible atypical presentation without ichthyosis. Carries novel compound heterozygous VUS in MARVELD3 (Supplementary Table 6), a component of tight junctions.
P754	KIDINS220	NM_020738.2: c.4497del: p.R1499Sfs*9 Het, not maternal, Father deceased	0	.	Likely pathogenic (PVS1, PM1, PM2) / Spastic paraplegia, intellectual disability, nystagmus, and obesity (AD) (MIM 617296)	Likely pathogenic, in keeping with clinical phenotype.
P756	CACNA1A	NM_001127222.2:c.7249G>T: p.E2417* Het, not maternal	0	40	Likely pathogenic (PVS1, PM2) / Familial hemiplegic migraine 1 (AD) (MIM 141500)	Likely pathogenic, variants in CACNA1A reported with recurrent stroke. P/LP nonsense and frameshift variants in C-terminus reported in ClinVar.
P759	SETX	NM_015046.7: c.5821_5830del: p. A1941Lfs*6 Het, not maternal, father unavailable	0	.	Pathogenic (PVS1, PM2, PP3) / Spinocerebellar ataxia, with axonal neuropathy 2 (AR) (MIM 606002)/ Amyotrophic lateral sclerosis 4, juvenile (AD) (MIM 602433)	Likely pathogenic, lost to follow up.
Case ID	Gene	Variant/Inheritance	Freq (gnomAD or MGRB)	CADD Phred	ACMG classification/OMIM disorder	Clinical significance
---------	--------	---------------------------	-----------------------	------------	----------------------------------	-----------------------
P763	CPA6	NM_020361.5: c.799G>A:	2.06E-03	29.1	Likely pathogenic (PM2, PM3, PP3, PP2, BS2)/Familial temporal lobe epilepsy, type 5 (AD/AR) (MIM 614417)	Likely pathogenic, diagnosed familial epilepsy. One individual heterozygous for both variants reported.
		p.G267R Het, inheritance unknown				
		NM_020361.5: c.619C>G:	1.43E-03	26.2	Likely pathogenic (PM1, PM2, PP3, PP5, BS2)/Familial temporal lobe epilepsy, type 5 (AD/AR) (MIM 614417)	
		p.Q207E Het, inheritance unknown				
	STRADA	NM_001003787.4: c.95-2A>C splicing	8.23E-06	25.8	Likely pathogenic (PVS1, PP3, PP5) /Polyhydramnios, megalencephaly, and symptomatic epilepsy (AR) (MIM 611087)	Uncertain significance, oligohydramnios a factor in pregnancy.
P784	GNB1	NM_002074.5: c.239T>C:	3.98E-06	25.6	Likely pathogenic (PS1, PS3, PM2, PP5)/Intellectual disability, autosomal dominant 42 (AD) (MIM 616973)	Pathogenic, recurrently mutated residue, clinical fit: diagnosed global developmental disability, ADHD.
		p.I80T Het, inheritance unknown				
P792	COL4A1	NM_001845.4: c.1258G>A:	0	18.3	Likely pathogenic (PM1, PM2, PP2, PP3)/Brain small vessel disease 1 (AD) (MIM 175780)	Likely pathogenic, novel mutation altering glycine residue in Triple helix domain.
		p.G420R Het, inheritance unknown				
P910	TUBA1A	NM_006009.3: c.50G>A:	0	29.2	Likely pathogenic (PM1, PM2, PP2, PP3)/Lissencephaly 3 (AD) (MIM 611603)	Pathogenic, clinical fit: bilateral polymicrogyria, microcephaly, spastic/dystonic quadriplegia, epilepsy.
		p.G17D Het, inheritance unknown				
Case ID	Gene	Variant/Inheritance	Freq (gnomAD or MGRB)	CADD Phred	ACMG classification/OMIM disorder	Clinical significance
---------	------	---------------------	-----------------------	------------	----------------------------------	-----------------------
P911	COL4A2	NM_001846.2: c.3625G>A: p.G1209R Het, paternal	0	24.7	Likely pathogenic (PM1, PM2, PP2, PP3)/Brain small vessel disease 2 (AD) (MIM 614483)	Likely pathogenic, novel mutation altering glycine residue in Triple helix domain. Term baby with PVL and no recorded risk factors. Variable penetrance and expressivity with asymptomatic carriers reported for COL4A216.
P931	ALDH3A2	NM_000382.3: c.941_943delinsGGGCTAAAGTACTGTTGGGG: p.A314_P315delinsGAKSTVGA Hom, Inferred IBD	0	.	Pathogenic (PVS1, PM2, PM3)/Sjogren-Larsson syndrome (AR) (MIM 270200)	Pathogenic, previously described mutation17. Parents are cousins. Possible atypical presentation, lost to follow-up
P939	PDGFRB	NM_002609.3: c.2083C>T: p.R695C Het, maternal	1.13E-04	32	Likely pathogenic (PM1, PM2, PP3, PP5)/Basal ganglia calcification, idiopathic, 4 (AD) (MIM 615007)	Both variants likely pathogenic18,19. Possible complex phenotype. Porencephaly, gliosis and PVL on background of preterm birth with IUGR.
P965	COL4A1	NM_001845.4: c.4114G>C: p.G1372R Het, inheritance unknown	0	23.9	Pathogenic (PM1, PM2, PP2, PP3)/Brain small vessel disease 1 (AD) (MIM 175780)	Pathogenic, novel mutation altering glycine residue in Triple helix domain. Term baby with periventricular gliosis, schizencephalic cleft lined by extensive polymicrogyria.
Case ID	Gene	Variant/Inheritance	Freq (gnomAD or MGRB)	CADD Phred	ACMG classification/OMIM disorder	Clinical significance
---------	------------	---	-----------------------	------------	---	--
P972	MT-TL1	NC_012920.1: m.3243A>G Heteroplasmy 58%, Low level detectable in maternal blood-derived DNA	-	-	Pathogenic (PS1, PS3)/Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) (mitochondrial) (MIM 540000)	Pathogenic, known disease-causing variant\(^{20}\), responsible for 80% of MELAS cases.
P980	22q11.2 dup	Chr22:18873001_21469900dup Validated by array (Supplementary Figure 3)	0	-	Likely pathogenic/22q11.2 duplication syndrome (AD)	Pathogenic, overlapping duplications reported previously in CP\(^{21-23}\)
P1110	COL4A2	NM_001846.2: c.957+2T>C Splicing Het, not maternal	0	25	Likely pathogenic (PVS1, PM2)/Brain small vessel disease 2 (AD) (MIM 614483)	Likely pathogenic, likely LOF variant in term infant with no reported risk factors, antenatal IVH and hydrocephalus.
P1138	COL4A2	NM_001846.2: c.4049G>A: p.G1350D Het, maternal	0	25.6	Likely pathogenic (PM2, PM1, PP2, PP3)/ Brain small vessel disease 2 (AD) (MIM 614483)	Likely pathogenic, novel mutation altering glycine residue in Triple helix domain. Term baby with right sided porencephalic cyst. Variable penetrance and expressivity with asymptomatic carriers reported for COL4A2\(^{16}\).

Individuals with P/LP variants considered risk factors for CP

Case ID	Gene	Variant/Inheritance	Freq (gnomAD or MGRB)	CADD Phred	ACMG classification/OMIM disorder	Clinical significance
P165	TRIM32, ASTN2	Chr9:119311659_11946283del Het, inheritance unknown (Supplementary Figure 2)	0	-	Likely pathogenic/recurrent deletion, risk factor for NDDs	Risk factor for NDDs, including ASD, ADHD and speech delays\(^{24}\)
	HTT	NM_002111.8: c.7731G>A: p.W2577* Het, inheritance unknown	0	52	Pathogenic (PVS1, PM2, PP3)	Uncertain clinical significance, possible risk factor for NDDs
Case ID	Gene	Variant/Inheritance	Freq (gnomAD or MGRB)	CADD Phred	ACMG classification/OMIM disorder	Clinical significance
---------	------	---------------------	-----------------------	------------	-----------------------------------	----------------------
P199a	F8	NM_000132.3: c.5146C>A: p.H1716N Inheritance unconfirmed, father haemophilia A	0	25.5	Likely pathogenic (PM1, PM2, PP2, PP3, PP4)/Haemophilia A (XLR) (MIM 306700)	Risk factor, female obligate carrier of pathogenic F8 mutation with increased APTT, on background of prematurity and maternal pre-eclampsia.
P214	15q11-q13 dup	Chr15:22722801_26749200dup Likely maternal origin determined by methylation (Supplementary Figure 4), inheritance unknown	0	.	Pathogenic/15q11-q13 duplication syndrome (AD)	Risk factor, recurrent duplications associated with NDDs²⁵
P710	F2	NM_000506.5:c.*97G>A Het, inheritance unknown	8.44E-03	.	Likely pathogenic (PM2, BP7, PP5)/Venous thrombosis (AD) (MIM 601367)	Risk factor, Heterozygosity for F2 c.*97G>A (G20210A, rs1799963) is the second most common genetic risk factor for venous thrombosis²⁶. On background of premature birth. Periventricular white matter loss and hyperintensity on MRI noted at 3 years.
P747	F2	NM_001311257:c.*97G>A Het, inheritance unknown	8.44E-03	.	Likely pathogenic (PM2, BP7, PP5)/Venous thrombosis (AD) (MIM 601367)	Risk factor, Heterozygosity for F2 c.*97G>A (G20210A, rs1799963) is the second most common genetic risk factor for venous thrombosis²⁶. On background of extreme prematurity.
P752	NKX2-6	NM_001136271.3: c.455dup: p.Q153Afs*207 Het, maternal	3.15E-05	30	Pathogenic (PVS1, PP3, PP5)/Conotruncal heart malformations (AR) (MIM 217095), het mutations may predispose to atrial fibrillation	Risk factor, predisposing to congenital heart disease and stroke²⁷,²⁸.
Case ID	Gene	Variant/Inheritance	Freq (gnomAD or MGRB)	CADD Phred	ACMG classification/OMIM disorder	Clinical significance
---------	--------	---------------------	------------------------	------------	-----------------------------------	----------------------
P779	F2	NM_000506.3: c.598G>A: p.E200K Het, inheritance unknown	1.20E-03	0	Risk factor/Thrombophilia (AD) (MIM 188050); Susceptibility to recurrent pregnancy loss (AD) (MIM 614390)	Risk factor, on background of gestational hypertension, antepartum haemorrhage, placental abruption, foetal bradycardia and in utero death of twin. Mother 3 previous still births, 3 live births. Severe periventricular haemorrhage in newborn period with post-haemorrhagic hydrocephalus.
P795	F2	NM_001311257:c.*97G>A Het, inheritance unknown	8.44E-03	.	Likely pathogenic (PM2, BP7, PP5)/ Venous thrombosis (AD) (MIM 601367)	Risk factor, Heterozygosity for F2 c.*97G>A (G20210A, rs1799963) is the second most common genetic risk factor for venous thrombosis. On background of extreme prematurity.
P1147	Chr1q21.1 deletion	Chr1:145382601_145616000del Het, inheritance unknown (Supplementary Figure 7)	0	.	Pathogenic/ Chr1q21.1 microdeletion (AD) (MIM 612474)	Risk factor. Event encompassing the recurrently deleted Chr1q21.1 region, reported to predispose to a range of neurological and cardiac phenotypes.

Individuals with P/LP variants of uncertain clinical significance for CP

Case ID	Gene	Variant/Inheritance	Freq (gnomAD or MGRB)	CADD Phred	ACMG classification/OMIM disorder	Clinical significance
P182	GALC	NM_000153.4: c.1592G>A: p.R531H Het, paternal	3.24E-05	29.4	Pathogenic (PS1, PS3, PM2, PM3, PP5)/ Krabbe disease (AR) (MIM 245200)	Uncertain clinical significance, atypical early signs on imaging and lost to follow-up. Both variants previously reported with T112A associated with atypical progression.
		NM_000153.4: c.334A>G: p.T112A Het, not paternal	2.50E-03	23	Likely pathogenic (PM1, PM2, PP3, PP5)/Krabbe disease (AR) (MIM 245200)	Uncertain clinical significance, oligohydramnios and IUGR, lost to follow-up.
P188	COL4A4	NM_000092.5: c.4720C>T: p.Q1574* Het, inheritance unknown	0	46	Pathogenic (PVS1, PM2, PP3)/Alport syndrome (AR/AD) (MIM 203780)	Uncertain clinical significance, oligohydramnios and IUGR, lost to follow-up.
P228	ASTN2	NM_014010.4:c.2317C>T: p.Q773* Het, paternal	0	46	Pathogenic (PVS1, PM2, PP3)/ Loss-of-function variants in ASTN2 are a risk factor for NDDs	Uncertain significance, clinical phenotype atypical
Case ID	Gene	Variant/Inheritance	Freq (gnomAD or MGRB)	CADD Phred	ACMG classification/OMIM disorder	Clinical significance
---------	-------	---	-----------------------	------------	---	---
P232	EGFR	NM_005228.3:c.925C>T: p.R309*				
De novo, not shared by 3 siblings	0	38	Pathogenic (PVS1, PM2, PM6, PP3)/ variants associated with lung and brain cancers (AD)			
(MIM 131550)	Uncertain significance, novel candidate with role in placentation and development.					
P703	SPG7	NM_003119.2: c.1045G>A: p.G349S				
Het, inheritance unknown	8.23E-04	26.7	Likely pathogenic (PM1 PM2 PP3 PP5)/Spastic paraplegia 7 (AR)	Uncertain significance, no second variant found. Dystonic quadriplegia with deteriorating gait, on background of cord prolapse.		
P760	PNPLA6	NM_001166114.2: c.3058_3061dup: p.R1021Qfs*38				
Het, inheritance unknown	1.25E-04	35	Pathogenic (PVS1, PM2, PP3)/Spastic paraplegia 39 (AR) (MIM 612020)	Uncertain significance, likely cis inheritance based on long-read sequencing.		
		NM_001166114.2: c.1144del: p.A383Pfs*11				
Het, inheritance unknown	0		Pathogenic (PVS1, PM2, PP3)/Spastic paraplegia 39 (AR) (MIM 612020)			
P778	VWF	NM_000552.4: c.2561G>A: p.R854Q				
Het, inheritance unknown	3.47E-03	33	Pathogenic (PS1, PS3, PM1, PP5, BS1)/Von Willebrand disease type 2N (AR) (MIM 193400)	Uncertain significance. Term baby without other known risk factors.		
P1106	PIEZO2	NM_022068.2: c.1444del: p.R482Efs*16				
Het, not maternal, not shared by sibling	0		Likely pathogenic (PVS1, PM2)/ Distal Arthrogryposis types 3 (AD) (MIM 114300) and 5 (AD) (MIM 108145)	Uncertain significance, predicted to be LOF variant. On background of extreme prematurity. Infant with IUGR, restrictive lung disease and vision problems, phenotypes reported in Arthrogryposis type 5 and caused by GOF variants.		
P1132	BUB1B	NM_001211.5: c.1526G>A: p.S509*				
Het, maternal	0	36	Pathogenic (PVS1, PM2, PP3)/Premature Chromatid separation (AD) (MIM 602860)	Uncertain significance, increased risk of aneuploidy in offspring.		
Case ID	Gene	Variant/Inheritance	Freq (gnomAD or MGRB)	CADD Phred	ACMG classification/OMIM disorder	Clinical significance
---------	------	---------------------	-----------------------	------------	-----------------------------------	----------------------
P741	MITF	NM_006722.2: c.1018C>T: p.R340C Het, inheritance unknown	0	33	Likely pathogenic (PM1, PM2, PM5, PP3)/Waardenburg syndrome type 2a (AD) (MIM 193510)	Incidental finding, possible cause of familial deafness
P746	ABCA4	NM_000350.2: c.6316C>T: p.R2106C Het, inheritance unknown	1.31E-04	33	Pathogenic (PS1, PM2, PM3, PP5, PP3)/Early onset retinal dystrophy (AR) (MIM 248200)	Incidental finding, possible cause of visual problems
		NM_000350.2: c.5282C>G: p.P1761R Het, inheritance unknown	0	26.5	Likely pathogenic (PS1, PM3, PP2, PP5)/Early onset retinal dystrophy (AR) (MIM 248200)	Incidental finding, possible cause of visual problems
P749a	GJB2	NM_004004.5: c.95G>A: p.R32H Het, paternal	3.99E-06	25.3	Pathogenic (PS1, PS3, PM2, PP5, PP3)/Deafness, autosomal dominant 3A (AD) (MIM 601544)	Incidental finding, possible contributor to deafness
P802	EFEMP1	NM_001039348.3: c.1033C>T: p.R345W Het, not maternal	0	25.9	Pathogenic (PS1, PM2, PP3, PP5)/Doyne honeycomb retinal dystrophy (AD) (MIM 126600)	Incidental finding.

Forty-nine individuals had variants classified as pathogenic or likely pathogenic by ACMG criteria. For twenty-eight of these individuals, the clinically reportable variant was considered likely to be causative for cerebral palsy, while a further 9 individuals carried variants considered to be risk factors for cerebral palsy. Ten individuals carried at least one variant classified as likely pathogenic/pathogenic by ACMG criteria, but with uncertain clinical significance in the individual. A further four individuals carried ACMG pathogenic/likely pathogenic variants which were considered incidental findings likely contributing to other components of the clinical phenotype, but without a link to CP. Additional high impact candidate variants
identified in this individual (see Supplementary Table 4). *Additional compound heterozygous variants identified in this individual (see Supplementary Table 6) *premature termination codon. Abbreviations: AD, autosomal dominant; APTT, activated partial thromboplastin time; AR, autosomal recessive; XLR, X-linked recessive; ASD, Autism spectrum disorder; ADHD, Attention-deficit/hyperactivity disorder; CADD phred, combined annotation dependent depletion scaled score; del, deletion; dup, duplication; EEG, electroencephalogram; fs, frameshift; GOF, gain of function; gnomAD, genome aggregation database; hemi, hemizygous; het, heterozygous; HSP, Hereditary spastic paraplegia; IUGR, intrauterine growth restriction; LOF, loss of function; MGRB, Medical Genome Reference Bank; MRI, magnetic resonance imaging; NDD, neurodevelopmental disorders; PVL, periventricular leukomalacia; VUS, variant of uncertain significance.
Supplementary Table 4: Rare, predicted deleterious variants identified in variation intolerant candidate CP genes.

Case ID	Gene	Variant	Inheritance	Population Freq (gnomAD/MGRB)	CADD Phred	pLI/missense Z score (gnomAD)		
P163	KAT6A	NM_006766.5:c.5231A>G:p.Y1744C	Het, not maternal	0	28	Z = 2.07, o/e = 0.83 (0.78 - 0.87)		
P178	CAMTA1	NM_015215.2:c.2345C>T: p.S782F	Het, maternal	0	28.7	Z = 3.26, o/e = 0.71 (CI 0.67-0.76)		
P180	SLC2A1	NM_006516.3:c.767AA>TG: p.K256V	Het, inheritance unknown	1.42E-05	24	Z = 2.93, o/e = 0.53 (CI 0.46 - 0.6)		
	SCN1A	NM_001165963.4:c.2522C>T: p.T841M	Het, inheritance unknown	3.19E-05	25.3	Z = 5.22, o/e = 0.55 (CI 0.51 - 0.59)		
P183	SCO1, GAS7	Chr17:10062326_10600121dup	Het, not maternal	0				
P187	ROCK2	Chr2:11104502_11337616dup	Het, inheritance unknown	0				
P189	NCOR1	NM_001190438.1:c.872T>A: p.L291H	Het, not maternal	0	27.6	Z = 3.94, o/e = 0.7 (CI 0.66 - 0.74)		
P191	KCNH1	NM_002238.4:c.376T>G: p.F126V	Het, maternal, sib 1 also carries	0	27.7	Z = 3.82, o/e = 0.55 (CI 0.5 - 0.61)		
	ADCY6	NM_015270.5:c.1369G>C: p.A457P	Het, not maternal, sibs do not carry	0	30	Z = 2.68, o/e = 0.73 (CI 0.68 - 0.78)		
P193	CHD7	NM_001316690.1:c.1226C>T: p.L291H	Het, paternal	0	30	Z = 3.22, o/e = 0.77 (CI 0.74 - 0.81)		
	COL5A2	NM_000393.5:c.2792C>A: p.P931H	Het, paternal	0	29.9	Z = 2.44, o/e = 0.77 (CI 0.72 - 0.82)		
P199	NECTIN2	NM_001042724.2:c.127C>T: p.R43*	Het, inheritance unknown	0	35	pLI=0.97, o/e = 0.12 (CI 0.06 - 0.32)		
P201	TLR7	NM_016562.4:c.2971C>A: p.L991I	Hemi, inheritance unknown	2.18E-05	25.3	Z = 3.01, o/e = 0.56 (CI 0.5 - 0.63)		
	FERMT3	NM_031471.6:c.1717C>T: p.R573*	Het, inheritance unknown	0	42	pLI=0, o/e = 0.35 (CI 0.23 - 0.56)		
P211	ITPR3	NM_002224.4:c.4978A>T: p.K1660*	Het, inheritance unknown	0	48	pLI=0, o/e = 0.46 (CI 0.37-0.57)		
P225	HERC2	NM_004667.6:c.14071T>C: p.Y4691H	Het, paternal, siblings do not share	0	24.1	Z = 4.42, o/e = 0.76 (0.73 - 0.79)		
	FBN1	NM_000138.4:c.7412C>G: p.P2471R	Het, maternal, siblings do not share	2.48E-05	31	Z = 5.06, o/e = 0.64 (CI 0.61-0.68)		
Gene	Chromosome	Nucleotide Change	Protein Change	Inheritance	pLI	o/e	Z	CI
--------	------------	-------------------	----------------	-------------	------	------	------	-------
P228	THOC7	NM_025075.2:c.337C>T	p.R113*	Het, paternal	1.20E-05	40	pLI = 0.01, o/e = 0.42 (0.23 - 0.82)	
P230	WNK3	NM_020922.4:c.3649C>T	p.H1217Y	Hemi, X-linked	4.66E-05	23.8	Z=2.55, o/e = 0.71 (CI 0.66-0.77)	
P231	SUN1	NM_001130965.3:c.859C>T	p.R287*	Het, maternal	4.01E-06	38	pLI=0, Z= o/e = 0.37 (CI 0.26-0.56)	
	TENM2	NM_001122679.1:c.5483G>C	p.R1828T	Het, not maternal	1.62E-05	32	Z=3.3, o/e = 0.77 (CI 0.74-0.81)	
P706	AGAP2	NM_014770.4:c.2353G>C	p.D785H	Het, inheritance unknown	0	29.3	Z=3.39, o/e = 0.62 (CI 0.57-0.68)	
P708	KMT2B	NM_014727.3:c.3649C>T	p.H1217Y	Het, maternal	4.66E-05	23.8	Z=2.28, o/e = 0.67 (0.6 - 0.74)	
P712	FOXP1	NM_001130823.3:c.923G>T	p.R287*	Het, maternal	4.66E-05	23.8	Z=2.28, o/e = 0.67 (0.6 - 0.74)	
P714	STXBP1	NM_001130865.3:c.5483G>C	p.R1828T	Het, maternal	4.66E-05	23.8	Z=2.28, o/e = 0.67 (0.6 - 0.74)	
P730	SRCAP	NM_006662.3:c.7208G>A	p.R2403Q	Het, not maternal	0	25.7	Z=2.13, o/e = 0.86 (0.83 - 0.9)	
P739	ACTN1	NM_001102.4:c.2453G>A	p.R818H	Het, maternal	0	33	Z= 3.36, o/e = 0.61 (0.56 - 0.67)	
P740	DNMT1	NM_001130823.3:c.4381C>T	p.R1461W	Het, maternal	0	33	Z= 4.99, o/e = 0.55 (CI 0.51 - 0.59)	
P743	CHD9	NM_001130819.2:c.8441T>C	p.L2814P	Het, not maternal	0	24	Z= 3.77, o/e = 0.72 (0.69 - 0.76)	
P749	FGFR1	Chr8:38270868_38270907del:NM_015850.3:c.*239_*278del	Het, paternal	0		pLI= 1, o/e = 0.09 (CI 0.04 - 0.21)		
	ATP1A3	NM_001256213.2:c.1420C>T	p.R474C	Het, not maternal	4.49E-04	28.9	Z=6.33, o/e = 0.29 (CI 0.26 - 0.33)	
P751	CNKSR2	NM_001168649.3:c.910A>T	p.I304F	Het, maternal	5.49E-06	26.4	Z=3.61, o/e = 0.47 (CI 0.42 - 0.54)	
P775	ATP1B	NM_001168649.3:c.910A>T	p.I304F	Het, maternal	5.49E-06	26.4	Z=3.61, o/e = 0.47 (CI 0.42 - 0.54)	
NAA15	NM_001130823.3:b.4381C>T	p.R1461W	Het, paternal	5.49E-06	26.4	Z=3.61, o/e = 0.47 (CI 0.42 - 0.54)		
NAA15	NM_001130823.3:b.4381C>T	p.R1461W	Het, paternal	5.49E-06	26.4	Z=3.61, o/e = 0.47 (CI 0.42 - 0.54)		
P776	RAB5C	NM_001168649.3:c.910A>T	p.I304F	Het, maternal	5.49E-06	26.4	Z=3.61, o/e = 0.47 (CI 0.42 - 0.54)	
P782	ARFGAP2	NM_001242832.2:c.325C>T	p.R113*	Het, maternal	0	38	pLI= 0, o/e = 0.32 (CI 0.2 - 0.54)	
P785	DOCK8, KANK1	Chr9:293723-686363 dup	Inheritance unknown	0		DOCK8 pLI = 0, o/e = 0.36 (CI 0.28 - 0.48)		
P786	ITPR1	NM_001168272.2:c.5048A>G	p.Y1683C	Het, maternal	0	29.3	Z = 5.6, o/e = 0.59 (0.56 - 0.63)	
P795	CAMTA1	NM_001349613.1: c.1943G>A: p.R648Q	Het, inheritance unknown	4.03E-06	33	Z = 3.26, o/e = 0.71 (0.67 - 0.76)		
------	--------	----------------------------------	-------------------------	----------	-----	----------------------------------		
P796	PIEZO2	NM_022068.4: c.2903C>A: p.S968Y	Het, paternal	0	25.3	Z = 3.44, o/e = 0.75 (0.71 - 0.78)		
P801	CDK13	NM_003718.5: c.664C>T: p.Q222*	Het, maternal	0	35	pLI = 0.91, o/e = 0.2 (0.12 - 0.32)		
P902	CAMTA1	NM_001349613.1: c.290C>T: p.S97F	Het, not maternal	0	32	Z=3.26, o/e = 0.71 (0.67 - 0.76)		
P904	SCN8A	NM_014191.4: c.4724C>T: p.A1575V	De novo, Het, shared by monozygotic twin	4.01E-06	29.5	Z = 7.64, o/e = 0.35 (0.32 - 0.38)		
P913	ABLIM1	NM_002313.5: c.244+6delTAAGT splicing	Het, maternal	0	.	pLI=0.93, o/e = 0.19 (0.11 - 0.33)		
P918	USP32	NM_032582.3: c.1907T>A: p.L636*	Het, not maternal	0	38	pLI=1, o/e = 0.14 (0.09 - 0.22)		
P926	NOTCH3	NM_000435.3: c.5554G>A: p.A1852T	Het, inheritance unknown	1.59E-05	26.9	Z = 3.53, o/e = 0.74 (0.7 - 0.77)		
P934	NOTCH3	NM_000435.3: c.5441A>T: p.D1814V	Het, not maternal	0	25.9	Z = 3.53, o/e = 0.74 (0.7 - 0.77)		
P938	NOTCH1	NM_017617.5: c.1967T>C: p.L656P	Het, paternal	0	22.8	Z = 3.45, o/e = 0.76 (0.73 - 0.8)		
P943	STRIP1	NM_001270768.2: c.2175G>A: p.W725*	Het, inheritance unknown	0	44	pLI=0, o/e = 0.37 (0.25 - 0.55)		
P944	TAF1	NM_004606.3: c.1499G>A: p.R500H	Hemi, inheritance unknown	1.72E-05	29.4	Z= 5.49, o/e = 0.44 (0.4 - 0.48)		
P945	SPTBN2	NM_006946.4: c.1565C>G: p.A522G	Het, inheritance unknown	0	24.1	Z = 2.63, o/e = 0.81 (0.77 - 0.85)		
P955	SPTBN2	NM_006946.4: c.6146A>G: p.E2049G	Het, inheritance unknown	0	25.9	Z = 2.63, o/e = 0.81 (0.77 - 0.85)		
P974	TRIO	NM_007118.4: c.6296A>T: p.K2099I	Het, inheritance unknown	0	32	Z= 5.32, o/e = 0.64 (0.61 - 0.68)		
P1114	AXL	NM_001270768.2: c.856C>T: p.R286C	Het, inheritance unknown	2.45E-05	32	Z=5.95, o/e = 0.56 (0.53 - 0.59)		
P1123	SYT14	Chr1:210056221_210262039dup	Het, maternal	0	.	pLI=0.94, o/e = 0.15 (0.07 - 0.34)		
Sample	Gene	RefSeq	Description	Inheritance	pLI	o/e Value	Confidence Interval	
--------	------	--------	-------------	-------------	-----	-----------	-------------------	
P1129	THRA	NM_001190919.2: c.222+1insGCTTCTTTGCCGCACAATCCAGAGA	Het, inheritance unknown	0	32	pLI = 0.33, o/e = 0.23 (CI 0.13 - 0.45)		
P1134	HTRA2	NM_013247.5: c.1115+1G>C Splicing	Het, not paternal	0	32	pLI = 0, o/e = 0.4 (CI 0.23 - 0.76)		
P1137	CTNNB1	Chr3:40831837_41291740dup	Not maternal	0	33	Z = 4.35, o/e = 0.59 (0.55 - 0.64)		
P1140	CLIP2	Chr7:73703473_73704908del	Het, de novo	0	32	Z = 2.78, o/e = 0.52 (0.49 - 0.55)		
P1141	CHD8	NM_020920.4: c.2633A>T: p.Q878L	Het, maternal	0	27.8	Z = 5.95, o/e = 0.56 (0.53 - 0.59)		
P1145	ROCK2	NM_001321643.2: c.1674A>T: p.L558F	Het, not maternal	0	32	Z = 3.41, o/e = 0.75 (CI 0.71 - 0.78)		
P1146	PIEZO2	NM_022068.4: c.4978G>A: p.V1660M	Het, maternal	2.31E-05	23.9	Z = 3.44, o/e = 0.75 (CI 0.71 - 0.78)		
P1149	KMT2D	NM_003482.4: c.14161C>T: p.R4721C	Het, maternal	0	33	Z = 3.73, o/e = 0.81 (0.79 - 0.84)		
P1150	UNC80	NM_032504.2: c.5060G>C: p.G1687A	Het, not maternal	0	24.3	Z = 5.53, o/e = 0.63 (CI 0.59 - 0.66)		

Het, heterozygous; fs, frameshift; dup, duplication; del, deletion; *, premature termination codon; #, additional clinically reportable variant(s) identified in this proband (see Table 1); gnomAD, genome aggregation database; MGRB, Medical Genome Reference Bank; CADD phred, combined annotation dependent depletion scaled score; pLI, predicted loss-of-function intolerance; o/e, ratio of observed to expected number of variants; CI, confidence interval.
Supplementary Table 5: Heterozygous P/LP variants identified in genes causing autosomal recessive Hereditary Spastic Paraplegia.

Case ID	Gene	Variant	Population Freq (gnomAD)	ACMG classification	Clinical description
P703	SPG7	NM_003119.4: c.1045G>A: p.G349S Het, inheritance unknown	8.23E-04	**Likely pathogenic** (PM1, PM2, PP3, PP5) Spastic paraplegia 7 (AR)	Dystonic/spastic quadriplegia, on background of cord prolapse; ill at delivery, neonatal seizures. Gait has deteriorated over years.
P760	PNPLA6	NM_001166114.2: c.3058_3061dup: p.R1021Qfs*38 Het, inheritance unknown	1.25E-04	**Pathogenic** (PVS1, PM2, PP3)/Spastic paraplegia 39 (AR)	Spastic hemiplegia. Father ADHD. Variants likely in *cis* based in long-read sequencing.
		NM_001166114.2: c.1144del: p.A383Pfs*11 Het, inheritance unknown	0	**Pathogenic** (PVS1, PM2, PP3)/Spastic paraplegia 39 (AR)	
P761	SPG11	NM_001160227.2: c.5794del: p.H1932Mfs*19 Het, not paternal	0	**Pathogenic** (PVS1,PM1, PM2, PP3) Spastic paraplegia 11 (AR)	Spastic diplegia, both knees flexed during gait. Dev. delay; visual problems, on background of premature birth.
P913	SPG7	NM_003119.4: c.1529C>T: p.A510V Het, not maternal	0.0029	**Likely pathogenic** (PS3, PM1, PP3, BS1) Spastic paraplegia 7 (AR)	Spastic diplegia. Speech delay; ASD (maternal uncle also). Father ADHD. Also carries VUS in *ABLIM1* (maternal)
P962	SPG7	NM_003119.4: c.1529C>T: p.A510V Het, inheritance unknown	0.0029	**Likely pathogenic** (PS3, PM1, PP3, BS1) Spastic paraplegia 7 (AR)	Spastic hemiplegia.
Supplementary Table 6: Candidate compound heterozygous and digenic variants identified in CP cases.

Case ID	Gene	Variant	Inheritance	Population Freq (gnomAD/MGRB)	CADD Phred
P703	ERCC2	Chr19:45822388-45863805 del	Het, inheritance unknown	0	
	ERCC6	NM_000124.4: c.631G>C: p.A211P	Het, inheritance unknown	0	24
P750#	MARVELD3	NM_001017967.4: c.863G>A: p.G288E: Compound het, not maternal	0	26.5	
		NM_001017967.4: c.995A>G: p.D332G: Compound het, maternal	0	23.9	
P783	ZFYVE26	NM_015346.4: c.7032G>T: p.L2344F: Het, inheritance unknown	0	23	
		NM_015346.4: c.1505G>A: p.C502Y: Het, inheritance unknown	0	29.5	
	RAPGEFL1	NM_001303533.2: c.1195A>C: p.N399H: Hom, likely IBD	0	25.8	
P798	PEX1	NM_001282677.2: c.1926dup: p.L643Yfs*42: Het, not maternal. **Pathogenic** (PVS1 PM1 PM2 PP3 PPS)	4.85E-04	27.6	
	PEX14	NM_004565.3: c.124C>T: p.R42C: Het, not maternal	1.06E-05	26.4	

Het, heterozygous; Hom, homozygous; fs, frameshift; dup, duplication; del, deletion; * premature termination codon; # additional clinically reportable variant identified in this proband (see Table 1); gnomAD, genome aggregation database; MGRB, Medical Genome Reference Bank; CADD phred, combined annotation dependent depletion scaled score; IBD, identical by descent; pLI, predicted loss-of-function intolerance; o/e, ratio of observed to expected number of variants; CI, confidence interval.
Supplementary Table 7: Approved drugs and clinical trials for genetic diagnoses

Gene	Druggable genome category*	Clinical trials+	Other	Clinical utility of diagnosis
ASTN2	Tbio			
GRIN2B	Tblin (multiple drugs)	Clinical trial - L-serine, Multiple clinical trials for epileptic encephalopathies		Y
ARHGAP31	Tbion			
MFN2	Tbion		Candidate drugs\(^{36}\)	Y
CLCN2	Tblin (Lubiprostone)	Multiple trials for aldosteronism		Y (same individual as CACNA1C)
CACNA1C	Tblin (multiple drugs)	Multiple	Simons searchlight data collection	Y (same individual as CLCN2)
F8	Tbion			No change
CLCN1	Tbion	Observational studies	Multiple off-label drugs, e.g. Mexiletine\(^{36}\), Ranolazine\(^{37}\)	Y (same individual as CFTR)
CFTR	Tbclin	Multiple	Interaction with CLCN1 may have bearing on treatment in this child.	Y (same individual as CLCN1)
15q11-q13 dup	Tbion (UBE3A)	Observational studies	Simons searchlight data collection	
SPAST	Tbion	Multiple clinical trials for Hereditary Spastic Paraplegia	Simons searchlight data collection	Y (2 cases)
SYNE2	Tbion			
TUBB4A	Tblin (inhibitors only, not relevant)		L-dopa may benefit patients with extrapyramidal symptoms\(^{38}\)	Y
SPG7	Tbion	Multiple clinical trials for Hereditary Spastic Paraplegia		
KLHL3	Tbion			
F2	Tblin (multiple)	Multiple clinical trials		Y (4 cases)
NF1	Tbion	Multiple clinical trials		No change
TTN	Tbion	Multiple clinical trials		
Xp22.3 del	Tchem (STS)	Approved topical drugs only		
NKX2-6	Tbion			
KIDINS220	Tbion			
CACNA1A	Tchem (multiple, all inhibitors, not relevant)			
SETX	Tbion		Observational studies	
CPA6	Tbion			
GNB1	Tbion			
Gene	Source	Drug Class	Notes	Trials
----------	--------	------------	--	--------
COL4A1	Tbio		Multiple clinical trials for small vessel disease	Y (2 cases)
			4-Sodium phenyl butyric acid has efficacy in mouse models for mutations causing ER stress	
COL4A2	Tbio		Multiple clinical trials for small vessel disease	Y (3 cases)
			4-Sodium phenyl butyric acid has efficacy in mouse models for mutations causing ER stress	
TUBA1A	Tchem	(inhibitors only, not relevant)		
ALDH3A2	Tbio		Observational studies	
			Approved topical treatments only	
PDGFRB	Tclin	(multiple inhibitors, topical agonist)		
PROC	Tchem		Multiple	Y
22q11.2 dup	Tclin	(COMT, BCR, inhibitors)	Observational studies	
MT-TL1	-		Multiple (e.g. arginine, citrulline)	Y
			Small studies suggest L-arginine and idebenone may reduce stroke-like episodes	
1q21.1 del	-		Simons searchlight data collection	

*Druggable genome categories for genes retrieved from Pharos (https://pharos.nih.gov/), which harvests data from the National Institutes of Health (NIH) Illuminating the Druggable Genome (IDG) program. Categories: Tclin are protein drug targets with approved drugs; Tchem known to bind small molecules with high potency; Tbio limited data and no known small molecules bind; Tdark, do not meet Tclin, Tchem or Tbio criteria. + Clinical trials data retrieved from NIH Clinical Trials Database (https://clinicaltrials.gov), EU Clinical trials register (https://www.clinicaltrialsregister.eu/) and National Organization for Rare Disorders (https://rarediseases.org/).
Sample	Target gene	Primer name	Primer sequence (5'-3')	Primer name	Primer sequence (5'-3')	
P162	ARHGAP32	752F	CCAGAACAACCGAGAACCAT	753R	CTGGAAGTGAGTGGTTCG	
P163	KAT6A	756F	AGGAAGTACAGAGGAGAAA	757R	CCACACACAACCGACAGC	
P165	HTT	1072F	TCAGAGACCATAGCAGTCTG	1073R	GGTTGAGCATGCCAGTCTCT	
P169	GRIN2B	1323F	CCCCCAGCTTCTGAGAAC	1333R	GGGGTCTTCTCCCTTCAG	
P176	MFN2	726F	CCAAGGACCTGAGGAGGATA	727R	TAAGTGAGTCGAGGAGGCTCA	
P178	CAMTA1	1502F	GGATGGCTCGTCAAGTTG	1503R	ACATTCTCCTCCGAGTGAAG	
P180	SKI	1436F	CGAGGACCACTTGAGATAGA	1437R	CTCCCTCAGCTCTCCTCAG	
P180	SLC2A1	1438F	CGAGCAGCACGCTGGGGAC	1439R	ACTCTGAGCCACCTCACC	
P180	SCN1A	1094F	GCTATGTGCTGTTGGGAAA	1095R	ATCAAGCAAGCCCTTACC	
P182	GALC	1496F	GTGGATTCCATCTTCAGTTTC	1499R	ATGATTCCACACTCCCAAG	
P185	CACNA1C	1100F	CCATCCCTCACCTCTTCGC	1101R	AGGAGATGACAGGAGCAAG	
P185	CLCN2	1532F	CAAGAGACTGGTCTCAGAC	1533R	GAGCACCCTTTGCTTCTTAG	
P188	COL4A4	766F	GAACTCCGACCGAGGACG	777R	TGCACATCGCAGAGGACAGA	
P189	NCO1	1294F	GCAGTCCCCACTACTACAGGA	1295R	TGCTCTCATAAGGTCCACACT	
P191	ADCY6	768F	ATGATTTCTCCTGACTAGC	769R	TGCTCTCAGGACCATCCACCT	
P191	KCN1H	1246F	TGCTCTGAGACCATCTTAAATGC	1247R	GGAGACAGCTGTGTTGCTTCT	
P193	COL5A2	1504F	AACCTCAAGGTCAGCAGACT	1505R	TATTCATCATTGGAGTGAGGTT	
P193	CHD7	772F	CATTCCCTACAGCGCTGAG	773R	TCCTGCTGAGGATCCTAGG	
P199	F8	1108F	TCACAAAGAGGAACCGAGAAG	1109R	GGCAAAAGAAGTGAAGTGAAG	
P199	NECN	1106F	TCCTCAGCTCCCTCACTCT	1107R	GACTCTGAGCCAGTGATCC	
P201	FERMT3	1112F	AAATGCTGCTCAGGTTGTA	1113R	CAAATGTGCTGGGTGTAAGA	
P201	TL7	1110F	CTCCCCGAGACCATACAGC	1111R	ACCGGTCTCCATGAAACCTG	
P205	CLCN1	1442F	TTAGTCCCTAGCAAGAGGATAG	1443R	CACGGGTCTTATAGGAGGTC	
P211	IL1RAP	776F	CCCCCAGACCTCAGGATCGA	777R	AGATAGTAGACCCACACCC	
P211	ITPR3	956F	TGCGAGAATGAGGAGGACG	957R	TGGCCACTCTTCTCACCTCT	
P217	SPAST	1144F	AGGAAATCTCAGGCAGGAGG	1145R	GAAGATGACGGCTCGACACC	
P217	SPAST	1056F	CTACCCTCTAAAGGTCACCTCG	1059R	TCCAGACAGACTGACACTCAT	
P220	TNR	1114F	AATCCCTACTTTAAGCTTCAG	1115R	ATTCCCTCCACACCATG	
P225	FBN1	1336F	TCACCCATCTTCTGGCTGCTC	1337R	CTAATAATCTTTGTAGACCCCTG	5.00
P225	SPAST	1172F	CCAGAAGGAGGACGAGATA	1173R	TGACCTTACAAACTTTAAGGTGT	5.00
P225	HERC2	786F	AACCGAGAGAAAAGAGAGGAG	787R	GCCCTGTTGCTGGACTGAAG	
P225	ICAMS	788F2	GCCAAGAGGGCGACTACAC	789R2	GACGCCTCTGAGGAGATTA	
P226	SRGAP1	1248F	CACTCTTCTGGAGTTTCTGGA	1249R	TGCCTAAAGACGGCCATCC	
P228	ASTN2	1506F	AGGAACCTCTCTCCTTAAAGTGAC	1507R	TATGCCTCAGATGGCCTCATTCT	
P229	BOCR	1118F	GAGCTTGGCTGAGACAGG	1119R	CAGCAAAGGGTGGTGGTAAAG	
P230	WNK3	1340F	TGCTGAGTACAGCCTTGGA	1341R	TGCTCAGTCTGGCTGCAAG	
P231	TENM2	1146F	ATGCTCTGAGGCGCCACAT	1147R	AGGCTTGAAGACTGGGGAAC	
P231	CDFN	1026F	CTCTGCTGCCACGCGAGA	1027R	CCCTCTACTTCCCTCTTG	
P231	SUN1	1144F	ATTCTCTCAGCAGAGAGAG	1145R	CAGGTACACCGGCTTCTTA	
P232	EGRF	722F	CCAAGGAGGACAGTTGAGC	723R	TCTCAGGGCCAGGCAAAGAC	
P232	SYNE2	1500F	TGGATTGCGGATGCTACTA	1501R	GATGTTGCGAGGCTTGGAAG	
P235	BOCR	1034F	GCCAAAGAAAGGAGTGCTGCTC	1035R	TTCTCAGTGCTGACAAATG	
P235	WDR47	1028F	TCAGGATGACTGGAGGTTG	1029R	AGGAGGACAGCTGGACTCA	
P236	TUBB4A	994F	AGATTTGCTTCCCTGACGGG	696F	TGAGCGGAGAGAAGACAGAG	
P701	KCDC1D	1036F	TGCTCAGATGCTCAGTCTCC	1037R	GGAGACATGCTGGGGGGAAC	
P703	SPG7	1342F	CGAGAGGCTCCTGAGAGCAGTC	1343R	CCAACACAGACACCTACTC	
P704	CACNA1S	1043F	GGTGCTGCTGAGGAGTACAG	1043R	GCTCTGAGTGTGCTGAGG	
P706	AGAP2	732F2	GCAACTATACAGGGGCACCAG	733R2	GAAAGCGGAAGATTTCCCAAGA	
P708	KLHL3	800F	GCCCAAGTGAAGAAGGCTCA	801R	TCTCCCCATGGCTTGTGTTG	
P708	KMT2B	802F	CCGCTGACGCTCAATCCCT	803R	GCTTGGCTCCCCATACCACAA	
P711	DIP2A	840F	TAGAGGCTCTGCTGCTGTG	845R	TGTGGCTCCTGAGGCTTGTG	
P712	FOXP1	1148F	TGGGCACGTTTTGTTTCTC	1149R	GGGTGCTGCTGTTTCTGACCA	
Supplementary Table 9: Primer sequences for qPCR copy number variant validation:

Sample	Targeted gene	Primer sequences
P165	ASTN2	Forward: 5'-CAAACCATGAACCTCAAACCC-3'
		Reverse: 5'-TCAGGTGACGACTCAAGGC-3'
	TRIM32	Forward: 5'-TGATGAGGTTCTGAGGTTTG-3'
		Reverse: 5'-AGTAAGGCACTTCATTGGGC-3'
	PAPPA1	Forward: 5'-GTCTCTTCTTTGCCATGCC-3'
		Reverse: 5'-ATGTAATGGGAAGAGGACAGG-3'
P183	SCO1	Forward: 5'-CGATAGCGCAAGAACACAGG-3'
		Reverse: 5'-AGGTAAGGCACTCAGATGTTG-3'
P187	ROCK2	Forward: 5'-AGGGAAGCTGAAGCCTTATTCC-3'
		Reverse: 5'-GCTTCTGAGTCTGCAGTGAC-3'
P785	DOCK8	Forward: 5'-CGAGGACCTTGGAGAAGCGAAGC-3'
		Reverse: 5'-TGATGGTTAAAGGCCAAGAGC-3'
P1123	SYT14	Forward: 5'-GACCACACACTCTTTGACACC-3'
		Reverse: 5'-TGTTGAACACCCAGTTTGAC-3'
P1137	CTNNB1	Forward: 5'-CTCTGTCGACAGCGTCTG-3'
		Reverse: 5'-TGAAAGCTGCTCATTCCC-3'
P1140	CLIP2	Forward: 5'-AGGAACCTGACCTCGTTGAG-3'
		Reverse: 5'-AAGCCAAGATCCCTATCCC-3'
P945	PCBP3	Forward: 5'-GATAGATCTGACGCAGTGGTC-3'
		Reverse: 5'-GAGCCACAGAGGAATCTCCT-3'
P947	NIPA1	Forward: 5'-TTAGCAGGTTGCTGTGTTG-3'
		Reverse: 5'-TCATTGCAAGCTCCACCTTC-3'
P1130	EXD1	Forward: 5'-TGCCCTGACTGGATGTCATTC-3'
		Reverse: 5'-ATGTAATGGGACCTCTTCCT-3'

Supplementary Table 10: Probe sequences for MLPA validation of CNVs:

Sample	Target gene	Probe sequences
P785	KANK1	L:5'-GGGTCTGCCTAAAGGGTGGGAgCTGATCTCAGAAAAGATTTTCCACAAGACG-3'
		R:5'-CTCCCGAAACAGCAGTTGAGCTCGGaCTAGATGGACAGCTTGCGCAC-3'
P1130	EXD1	L:5'-GGGTCTCTCAAGGGTGGAAGCTTACATCCATACAGGAGGTGTTTCTCTCCTCA CTGAG-3'
		R:5'-CCTTGTTCTCACTTGGAGTAGATTGATCTGATACCTGGCA-3'
P1137	CTNNB1	L:5'-GGGTCTCTCAAGGGTGGAAGCTTACGTCTTAGACAGCAGCTGTG3'
		R:5'-ATCCCTCTGGGTTCCACTTACCAaatctaactctTCTAGATTTGAGCTTG CTGCAC3'
P165	ASTN2	L:5'-GGGTCTCTCCTAAAGGGTGGAAGCTTACGACTCGAAGAGGAGCTTGCTGGAC GCAC3'
		R:5'-TACCTCTGTTGACTGAGGCCAGCTTCTGACGtaaatctatctTCTAGATTTTGACCTGG CAC3'
P187	ROCK2	L:5'-GGGTCTCTCAAGGGTGGAAGCTTACGTCTATATCGCCGAGCAGATCAGATGGAGC GACT-3'
		R:5'-GTGTTGAGCAGAACATCAATCAATGGAATTTTCCACAAAAtaatctatctTCTAGATTTTGACCTGG CAC3'
MRC-	HCR Control	L:5'-GGGTCTCTCAAGGGTGGAAGCTTACGTCTACCTGAGCTTGAGAGGAGCTTGCTGG CAC3'
Probe D		R:5'-TTAATGAGGGAGGAGACTCGCAATCCCTGaatatctatctTCTAGATTTTGACCTGG CAC3'
Supplementary Figure 2: Validation of ASTN2/TRIM32 deletion in sample P165. a) Integrative Genomics Viewer image of the ClinSV call for P165 (deletion Chr9:119311659-119462832). This deletion is predicted to result in deletion of multiple exons for all ASTN2 transcripts, as well as deletion of exon 1 and 2 of TRIM32. No copy number variants were detected in this region for any samples from the Medical Genomes Research Biobank cohort (ClinSV MGRB). b) Validation of the deletion by qPCR (see Supplementary Methods, error bars are SEM). Ctrl1-3 are gDNA samples from unrelated individuals from the DNA biobank. No loss of copy number was observed for upstream gene PAPPA (primers targeting Chr9:119116950-119117069) or the region of TRIM32 downstream of the expected deletion (primers targeting Chr9:119463359-119463450). Primers targeting a region within ASTN2 (Chr9:119458018-119458115) show a loss of copy number in P165.
Supplementary Figure 3: Validation of Chromosome 22q11.21 duplication. a) Integrative Genomics Viewer image of the ClinSV call for P980 (duplication Chr22:18873001-21469900). Segmental duplications within this region mediate recurrent deletions and duplications which have been associated with neurodevelopmental disorders, but also result in poorly mapped regions in control samples (MGRB). b) Validation by SNP array confirms the presence of a duplication encompassing a minimum region of Chr22:18899402-21109441 (blue highlighted region) which is flanked by low copy repeat regions.
Supplementary Figure 4: Validation of Chromosome 15q11.2-q13.1 duplication. a) Integrative Genomics Viewer (IGV) image of the ClinSV calls for P214, likely representing one large duplication event, containing BP1-BP3 of the PWS/AS critical region (Chr15:22722801-29006700). The proximal region of Chromosome 15 contains multiple low copy repeats which result in increased susceptibility to genomic rearrangement including deletions and duplications. These repetitive regions also result in poorly mapped regions in control samples (MGRB), however large duplications were not observed in any sample in the MGRB database. b) Validation by SNP array confirms the presence of a duplication encompassing Chr15:22758737-28299213 (blue highlighted region). Parental samples were unavailable to confirm inheritance pattern for this duplication. c) CpG methylation ratio within the promoter of the maternally imprinted SNRPN gene. Tracks P214, CTRL1-CTRL5: heatmaps showing the percentage methylation calculated from MethylCapture sequencing data. P214 meth, CTRL meth: sequencing coverage for MethylCapture Sequencing data, with CpG sites indicated by colour. Blue indicates sequencing reads containing a bisulphite converted residue (i.e. not methylated) and red indicates residues protected from bisulphite conversion (i.e methylated residues). Normal copy number of the 15q imprinted region results in methylation ratio of 0.5 for the promoter of SNRPN, consistent with expression only from the paternal allele. Increased methylation ratios (>70%) of CpG Island 77 are indicative of maternal origin for 15q duplications, while decreased methylation ratios indicate paternal origin. We observed a decrease in methylation of the 5’ end of CpG island 77 in P214, suggesting possible paternal origin for the duplication.
Supplementary Figure 5: Validation of Chromosome Xq22.3 hemizygous deletion.

a) Integrative Genomics Viewer image of the ClinSV call for P750 (deletion ChrX:6856601-8138000). Segmental duplications within this region mediate recurrent deletions which cause Xp22.3 microdeletion syndrome. b) Validation by SNP array confirmed the presence of a deletion encompassing chrX:6538899-8167012 (red highlighted region).
Supplementary Figure 6: Validation of SPAST exon 7-8 deletion and SPAST p.Ser44Leu modifier allele. a) Integrative Genomics Viewer image of the ClinSV call for P217 (a novel deletion Chr2:32347645-32354557). b) Schematic of structure of SPAST showing the location of exons 1-17 (top) with respect to protein domains of the protein (bottom). The location of the deletion detected in P217 (resulting in deletion of amino acids 367-415 at the N-terminal end of the AAA domain) is indicated by the blue box. c) The SPAST exon 7-8 deletion is paternally inherited. PCR with primers flanking the deleted region (SPAST ex7-8 del) gives a 742 bp product for P217 (P) and his father (F), and no product for his mother (M) and an unrelated control sample (C). PCR from the wildtype SPAST allele with one primer within the deleted region (SPAST wildtype) gives a product of expected size (1042 bp) for all samples, confirming that both P217 and F217 are heterozygous for the deletion. d) Sanger sequencing of the SPAST ex7-8 del PCR product confirms the SPAST breakpoints called by ClinSV in both P217 and F217. e) Sanger sequencing confirms maternal inheritance of the SPAST p.Ser44Leu modifier allele. N-term, N-terminal domain; MIT, Microtubule interacting and trafficking domain; MTBD, Microtubule binding domain; AAA, ATPases Associated with a variety of cellular Activities domain.
Supplementary Figure 7: Validation of Chromosome 1q21.1 deletion. a) Integrative Genomics Viewer image of the ClinSV call for P1147 (Chr1:145382601-145616000 del). Segmental duplications within this region mediate recurrent deletions of a 1.35Mb region which causes Chr1q21.1 deletion syndrome. b) Validation by SNP array confirmed the presence of a deletion which was called by CNVPartition as a deletion encompassing Chr1:143545263-147029795 (red highlighted region).
Supplementary Figure 8: Validation of copy number variants of uncertain significance by quantitative PCR (qPCR) or multiplex ligation-dependent amplification (MLPA). See Supplementary methods for details. All data shown is from qPCR, except for KANK1. CTNNB1, ROCK2, EXD1 were independently validated by both qPCR and MLPA. Error bars are SEM.
Supplementary Figure 9: Summary of brain imaging findings in all cases in the cohort (A) compared to cases with a genetic diagnosis (B). No significant difference in the distribution of brain imaging classification was found in cases with a genetic diagnosis compared to whole of cohort (Chi-square statistic: 13.78, p=0.088), or between etiological classifications (Table 3) and whole of cohort: Chi square statistic stroke/cardiovascular 2.53, p=0.96; Hereditary spastic paraplegia 14.52, p=0.07; Neurodevelopmental disorder 10.45, p=0.24). HIE, hypoxic ischaemic encephalopathy; PVL, periventricular leukomalacia; IVH, intraventricular haemorrhage.
Supplementary References:

1. Southgate, L. et al. Gain-of-function mutations of ARHGAP31, a Cdc42/Rac1 GTPase regulator, cause syndromic cutis aplasia and limb anomalies. *Am J Hum Genet* **88**, 574-585 (2011).

2. Nwosu, B.U., Adhami S Fau - Rogol, A.D. & Rogol, A.D. Stroke in a child with Adams-Oliver syndrome and mixed diabetic ketoacidosis and hyperglycemic hyperosmolar syndrome. *25*(3-4):357-61 (2012).

3. 46. Snape, K.M. et al. The spectra of clinical phenotypes in aplasia cutis congenita and terminal transverse limb defects. *Am J Med Genet A* **149A**, 1860-1881 (2009).

4. Isrie, M., Wuyts, W., Van Esch, H. & Devriendt, K. Isolated terminal limb reduction defects: extending the clinical spectrum of Adams-Oliver syndrome and ARHGAP31 mutations. *Am J Med Genet A* **164A**, 1576-1579 (2014).

5. Caron, C. et al. CdGAP/ARHGAP31, a Cdc42/Rac1 GTPase regulator, is critical for vascular development and VEGF-mediated angiogenesis. *Scientific Reports* **6**, 27485 (2016).

6. Hassed, S., Li, S., Mulvihill, J., Aston, C. & Palmer, S. Adams-Oliver syndrome review of the literature: Refining the diagnostic phenotype. *Am J Med Genet A* **173**, 790-800 (2017).

7. 74. Parodi, O. et al. Spastic paraplegia due to SPAST mutations is modified by the underlying mutation and sex, *Brain*, **141** (12), 3331–3342 (2018).

8. Schickel, J. et al. Isoform-specific increase of spastin stability by N-terminal missense variants including intragenic modifiers of SPG4 hereditary spastic paraplegia. *Eur J Neurol* **14**, 1322-1328 (2007).
9. Blumkin, L. et al. Expansion of the spectrum of TUBB4A-related disorders: a new phenotype associated with a novel mutation in the TUBB4A gene. *Neurogenetics* **15**, 107-113 (2014).

10. Friedman, J.M. et al. Cardiovascular disease in neurofibromatosis 1: report of the NF1 Cardiovascular Task Force. *Genet Med* **4**, 105-111 (2002).

11. Franaszczyk, M. et al. Titin Truncating Variants in Dilated Cardiomyopathy - Prevalence and Genotype-Phenotype Correlations. *PloS one* **12**(1) e0169007 (2017).

12. Gudenkauf, F.J., Azamian, M.S., Hunter, J.V., Nayak, A. & Lalani, S.R. A novel CACNA1A variant in a child with early stroke and intractable epilepsy. *Molecular Genetics & Genomic Medicine* **8**, e1383 (2020).

13. Knierim, E. et al. Recurrent Stroke Due to a Novel Voltage Sensor Mutation in Cav2.1 Responds to Verapamil. *Stroke* **42**, e14-e17 (2011).

14. Sapio, M.R. et al. Naturally occurring carboxypeptidase A6 mutations: effect on enzyme function and association with epilepsy. *J Biol Chem* **287**, 42900-42909 (2012).

15. Petrovski, S. et al. Germline De Novo Mutations in GNB1 Cause Severe Neurodevelopmental Disability, Hypotonia, and Seizures. *Am J Hum Genet* **98**, 1001-1010 (2016).

16. Verbeek, E et al. COL4A2 mutation associated with familial porencephaly and small-vessel disease.*EJHG* **(20)**8: 844-851 (2012).

17. Sillén, A. et al. Spectrum of mutations and sequence variants in the FALDH gene in patients with Sjögren-Larsson syndrome. *Hum Mutat* **12**, 377-384 (1998).

18. Downes, K. et al. Diagnostic high-throughput sequencing of 2396 patients with bleeding, thrombotic, and platelet disorders. *Blood* **134**, 2082-2091 (2019).
19. Sanchez-Contreras, M. et al. Genetic screening and functional characterization of PDGFRB mutations associated with basal ganglia calcification of unknown etiology. *Hum Mutat* **35**, 964-971 (2014).

20. Kobayashi, Y. et al. A point mutation in the mitochondrial tRNA{Leu(UUR)} gene in melas (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes). *Biochemical and Biophysical Research Communications* **173**, 816-822 (1990).

21. Segel, R. et al. Copy number variations in cryptogenic cerebral palsy. *Neurology* **84**, 1660-1668 (2015).

22. Corbett, M.A. et al. Pathogenic copy number variants that affect gene expression contribute to genomic burden in cerebral palsy. *NPJ Genom Med* **3**, 33 (2018).

23. Zarrei, M. et al. De novo and rare inherited copy-number variations in the hemiplegic form of cerebral palsy. *Genet Med* **20**, 172-180 (2018).

24. Lionel, A.C. et al. Disruption of the ASTN2/TRIM32 locus at 9q33.1 is a risk factor in males for autism spectrum disorders, ADHD and other neurodevelopmental phenotypes. *Human Molecular Genetics* **23**, 2752-2768 (2013).

25. Burnside, R.D. et al. Microdeletion/microduplication of proximal 15q11.2 between BP1 and BP2: a susceptibility region for neurological dysfunction including developmental and language delay. *Hum Genet* **130**, 517-528 (2011).

26. Nguyen, A. Prothrombin G20210A polymorphism and thrombophilia. *Mayo Clin Proc* **75**, 595-604 (2000).

27. Zhao, L. et al. Prevalence and spectrum of Nkx2.6 mutations in patients with congenital heart disease. *Eur J Med Genet* **57**, 579-586 (2014).

28. Wang, J. et al. NKX2-6 mutation predisposes to familial atrial fibrillation. *Int J Mol Med* **34**, 1581-1590 (2014).
29. Mefford, H.C. et al. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. *N Engl J Med* **359**, 1685-1699 (2008).

30. Fu, L. et al. Molecular heterogeneity of Krabbe disease. *J Inherit Metab Dis* **22**, 155-162 (1999).

31. Nashabat, M., Al-Khenaizan, S. & Alfadhel, M. Report of a Case that Expands the Phenotype of Infantile Krabbe Disease. *Am J Case Rep* **20**, 643-646 (2019).

32. Shao, Y.H. et al. Mutations in GALC cause late-onset Krabbe disease with predominant cerebellar ataxia. *Neurogenetics* **17**, 137-141 (2016).

33. Spratley, S.J. et al. Molecular Mechanisms of Disease Pathogenesis Differ in Krabbe Disease Variants. *Traffic* **17**, 908-922 (2016).

34. Xu, C., Sakai, N., Taniike, M., Inui, K. & Ozono, K. Six novel mutations detected in the GALC gene in 17 Japanese patients with Krabbe disease, and new genotype-phenotype correlation. *J Hum Genet* **51**, 548-554 (2006).

35. Dang, X. et al. Discovery of 6-Phenylhexanamide Derivatives as Potent Stereoselective Mitofusin Activators for the Treatment of Mitochondrial Diseases. *J Med Chem* **63**, 7033-7051 (2020).

36. Stunnenberg, B. C. et al. Effect of Mexiletine on Muscle Stiffness in Patients With Nondystrophic Myotonia Evaluated Using Aggregated N-of-1 Trials. *JAMA* **320**, 2344-2353 (2018).

37. Novak, K. R., Norman, J., Mitchell, J. R., Pinter, M. J. & Rich, M. M. Sodium channel slow inactivation as a therapeutic target for myotonia congenita. *Annals of neurology* **77**, 320-332 (2015).

38. Tonduti, D. et al. TUBB4A-related hypomyelinating leukodystrophy: New insights from a series of 12 patients. *European Journal of Paediatric Neurology* **20**, 323-330 (2016).
39. Jones, F. E. et al. Sodium phenyl butyric acid has both efficacy and counter-indicative effects in the treatment of Col4a1 disease. *Human molecular genetics* 28, 628-638 (2019).

40. Lekoubou, A. et al. Effect of long-term oral treatment with L-arginine and idebenone on the prevention of stroke-like episodes in an adult MELAS patient. *Rev Neurol (Paris)* 167(11):852-855 (2011).

41. Sheils, T. K. et al. TCRD and Pharos 2021: mining the human proteome for disease biology. *Nucleic Acids Res* 49(D1):D1334-D1346 (2021).