Upgrade of repetitive fast-heating fusion driver HAMA to implode a shell target by using diode pumped solid state laser

Yoshitaka MORI¹, Takashi SEKINE², Osamu KOMEDA³, Yasuhiko NISHIMURA¹,⁴, Atsushi SUNAHARA⁵, Eisuke MIURA⁶, Suisei Nakayama¹, Ryohei HANAYAMA¹, Katsuhiro ISHII¹, Nakahiro SATO², Takashi KURITA², Toshiyuki KAWASHIMA², Hirofumi KAN², Naoki NAKAMURA³, Takuya KONDO³, Manabu FUJINE³, Hiroyumi AZUMA⁵, Tatsumi HIOKI⁷, Mitsutaka KAKENO⁷, Tsutomu KAJINO⁷, Tomoyoshi MOTOHIRO⁷, Yasuhiko SENTOKU⁸, and Yoneyoshi KITAGAWA¹

¹The Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka, 431-1202, Japan
²Hamamatsu Photonics, K. K., Hamamatsu, Shizuoka, 431-1202, Japan
³Advanced Material Engineering Div., TOYOTA Motor Corporation, Susono, Shizuoka, 410-1193, Japan
⁴Toyota Technical Development Corp., Toyota, Aichi, 470-0334, Japan
⁵Institute for Laser Technology, Nishi-ku, Osaka, 550-0004, Japan
⁶National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8568, Japan
⁷TOYOTA Central Research and Development Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
⁸Department of Physics, University of Nevada, Reno, Nevada, 89557, USA

E-mail: ymori@gpi.ac.jp

Abstract. The HAMA is 1-Hz fast heating fusion driver pumped by a 10 J second-harmonic of diode-pumped Nd:glass laser: KURE-1. We have upgraded HAMA to realize an implosion of spherical shell target by using a remaining fundamental beam from KURE-1. This beam of 6 J/1 Hz is transported to the current counter irradiation system. The resulting beam includes three pulses in sequence: 2.2 J/15 ns and 0.7 J/300 ps for implosion, and 0.5 J/190 fs for heating. We estimate the implosion dynamics from 1-D radiation hydrodynamic code (START-1D). It indicates a possibility of tailored-pulse implosion by optimizing the beam spot sizes of imploding beams on the target surface. This upgrade leads to a demonstration of repetitive implosion and additional heating of a spherical shell target in accordance with a repetition of laser operation and that of a target injection system.

1. Introduction

Progress toward fusion ignition is kept going on the National Ignition Facility (NIF) by using 1.8 MJ, 500 TW single shot laser[1]. Following an effort of this scientific proof of ignition, engineering development needs to start on inertial fusion energy (IFE) by using a repetitive fusion driver.
A diode-pumped solid-state laser (DPSSL) is a promising candidate as a reactor driver for IFE because it can be operated at a high-repetition rate (>10 Hz) with high efficiency (>10 %)[2].

We have developed a repetitive fusion driver HAMA[3] by using a 10 J green DPSSL based on a road map[4]. This fusion driver has been realizing repetition-mode fusion experiments such as DD fusion reaction[5, 6], a compact fast core heating[7], and laser engagement of injected flying pellets[8, 9]. The HAMA is a Ti:sapphire laser pumped by a second-harmonic of diode-pumped Nd:glass laser: KURE-I[10]. A 3.8-J, 0.3-ns amplified chirped pulse is divided into four beams: two counter-irradiate a target, and the remaining two are pulse-compressed to 190 fs for heating the imploded target. HAMA succeeded in a compact fast core heating experiment by using double-foil deuterated polystyrene target with 11 μm thick and gap separation of 100 μm[7].

A beam energy of 1 J for implosion limits this target gap. By using a remaining fundamental beam from KURE-I of 6 J, we can approach to an imploding a spherical shell target of φ 500 μm with 7 μm thick, which is commonly used for ICF experiments[11] of kJ class single shot laser. By using 1-D radiation hydrodynamics code: STAR-1D[12], we have simulated a performance of an imploded core formation with HAMA laser including the remaining fundamental beam from KURE-1. This upgrade enables a repetitive implosion and additional heating of a spherical shell target in accordance with a repetition of laser operation and that of a target injection system. This paper describes an improvement of HAMA to accomplish the spherical shell target irradiation.

2. Laser configuration of HAMA upgrade

Figure 1 shows a diagram of HAMA including DPSSL irradiation. The HAMA is a Ti:sapphire laser pumped by a second-harmonic of diode-pumped Nd:glass laser: KURE-I[10]. It consists of a seed laser called BEAT[13] and a pump laser called KURE-I. The BEAT is a 10 Hz Ti : sapphire optical parametric chirped pulse amplification (OPCPA) system. KURE-I is a green 10 J/10 Hz DPSSL system based on a water cooled Nd : glass zigzag path slab amplification scheme [8].

In KURE-I, second-harmonic generation through CsLiB₆O₁₀ nonlinear crystal provides two beams; a second-harmonic:2ω of 8 J, and fundamental:ω of 6 J. Both beams are transported to a HAMA breadboard and split by a beam splitter. The 2ω is then transported to the HAMA amplifier as a pumping beam to amplify the seed pulse from BEAT at a repetition of 1 Hz. In relation to the seed pulse, the amplified seed pulse of 3.8 J, 0.3 ns output is divided into two beams by the L-S beam splitter. One is "L-beam" used for implosion of shell target, the remaining beam is pulse-compressed to 190 fs results in "S-beam" used for heating the ablated target.

The 2ω beam from KURE-1 arrives on the Ti:sapphire at a timing 12.4 ns in advance to the seed pulse from BEAT[13, 14]. The ω, "K-beam", is transported toward the KURE-1 bread board to make a delay, resulting in an irradiation timing of 6 ns in advance to the S-beam. This K-beam is introduced into the L beam line by using the K-L beam combiner. The divergence of K-beam is controlled by a convex lens mounted on a K beam image relay system. Three beams, K, L, and S are split and combined by a 50:50 beam splitter/combiner in the compression chamber, then transported to the irradiation chamber as BEAM-1 and BEAM-2. The resulting beam of BEAM-1 or BEAM-2 includes three pulses in sequence : 2.4 J/15 ns, 0.55 J/300 ps, and 0.40 J/190 fs, respectively.

Figure 2 shows pulse shape in sequence and beam spot profiles of BEAM-1 and BEAM-2. Timing control between K and S is electrical synchronization, L and S is optical synchronization. All of six beams are focused on the chamber center to implode and heat a spherical shell target of φ 500 μm with 7 μm thick. The beam focusing alignments are accomplished simultaneously for OAP1 and OAP2 by using a counter beam focusing monitor to minimize the spot size of short beams, respectively. The resulting beam spot size (1/e²) is 22 μm, 90 μm and 11 μm
for K, L, and S, respectively. For K-beam, spot size on the shell target surface is 100 μm in square. The spot size of L is 8 times larger than that of S, which indicates further improvement of an alignment technique or beam quality is required in the future. Beam characteristics of there beams K, L and S includes pulse duration, energy, and intensity are given in Table. 1. These intensities are values on the focusing center. K and L-beams are used for implosion, and S-beams is for heating, respectively.
Table 1. Four beams energy and intensity on target

Beam	Imploding beam	Heating beam	
Pulse width (FWHM)	15.2 ns	300 ps	192 fs
Energy (J)	2.2	0.70	0.50
Intensity (W/cm²)	1.9 x 10^{13}	6.0 x 10^{13}	4.5 x 10^{18}

3. Implosion dynamics from STAR-1D

Implosion dynamics for K and L irradiation is evaluated from 1-D radiation hydrodynamics code: STAR-1D[12] by using the laser parameters given in Table 1. Figure 3 represents a hydrodynamic flowchart (radius-time diagram) for K-beam focusing (a) on center and (b) 540 μm in focus. In Fig. 3 (a), a foot pulse of K beam makes shell implosion and core formation before the main pulse of K beam arrives. This main pulse gives re-compression of expanding core and L beam in sequence provides another core formation. By contrast, as shown in Fig. 3 (b) where the beam spot size on the target surface is 2.5 times larger than that of the case (a), the main pulse of K-beam implodes the shell and L pulse in sequence compress the core resulting in a tailored pulse compression in similar. In Fig. 3 (b), the beginning of pulse ”K” ablatively implode the shell. In sequence, the ”L” at 38 ns drives a shock to implode the target inward, resulting in the implosion at 40.5 ns. The ”heating” pulse, ”S”, would be irradiated at this timing. We will scan an irradiation timing of S-beam with scanning range of 2 ns in experiments.

![Figure 3. Hydrodynamic flowchart by START-1D.](image)

4. Conclusions

We improved the HAMA performance to realize spherical shell target implosion and fast heating. The resulting focus intensity of three pulses in sequence is 1.9×10^{13} W/cm², 6×10^{13} W/cm², and 4.5×10^{18} W/cm², respectively. In these intensities, the hydrodynamics simulation indicates implosion of spherical shell target of ϕ 500 μm with 7 μm thick and formation of the imploded core at the center.
Acknowledgments
Y. M. appreciate for Y. Takeuchi and Y. Hatano for their laser operation and S. Suita for target setting.

References
[1] Moses E I et al 2009 Phys. Plasmas 16 041006
[2] Orth C D, Payne S A and Krupke W F 1996 Nucl. Fusion 36 75
[3] Mori Y et al 2013 Nucl. Fusion 53 073011
[4] Kitagawa Y et al 2013 Plasma Fusion Res. 8 2404000
[5] Kitagawa Y et al 2011 Plasma Fusion Res. 6 1306006
[6] Komeda O et al 2013 Fusion Sci. Technol. 63 296
[7] Kitagawa Y et al 2012 Phys. Rev. Lett. 108 155001
[8] Komeda O et al 2013 Plasma Fusion Res. 8 1205020
[9] Komeda O et al 2013 Sci. Reports 3 2561
[10] Sekine T et al 2013 Opt. Express 21 8393
[11] Kitagawa Y et al 2005 Phys. Rev. E 71 016403
[12] Sunahara A et al 2008 Plasma Fusion Res. 3 043
[13] Mori Y and Kitagawa Y 2013 Appl. Phys. B 110 57
[14] Mori Y et al 2007 Int. J. Mod. Phys. B 21 572