Neutron transfer reactions induced by ^8Li on ^9Be

V. Guimarães, R. Lichtenthäler, O. Camargo, A. Barioni,

Instituto de Física, Universidade de São Paulo
P.O.Box 66318, 05389-970 São Paulo, SP, Brazil.

M. Assunção,

Universidade Federal de Sao Paulo,
Campus Diadema, 09941-510 São Paulo, SP, Brazil.

J. J. Kolata,

Department of Physics, University of Notre Dame,
Notre Dame, Indiana, 46556, USA.

H. Amro, F. D. Becchetti, Hao Jiang,

Department of Physics, University of Michigan,
Ann Arbor, Michigan 48109-1120, USA.

E. F. Aguilera, D. Lizcano, E. Martines-Quiroz, and H. Garcia.

Instituto Nacional de Investigaciones Nucleares,
A. P. 18-1027, C.P. 11801, Distrito Federal, Mexico.

(Dated: March 30, 2022)
Abstract

Angular distributions for the elastic scattering of 8Li on 9Be and the neutron transfer reactions 9Be(8Li,7Li)10Be and 9Be(8Li,9Li)8Be have been measured with a 27 MeV 8Li radioactive nuclear beam. Spectroscopic factors for 8Li⊗n=9Li and 7Li⊗n=8Li bound systems were obtained from the comparison between the experimental differential cross section and finite-range DWBA calculations with the code FRESCO. The spectroscopic factors obtained are compared to shell model calculations and to other experimental values from (d,p) reactions. Using the present values for the spectroscopic factor, cross sections for the direct neutron-capture reactions 7Li(n,γ)8Li and 8Li(n,γ)9Li were calculated in the framework of a potential model.

PACS numbers: 21.10.Jx, 25.60.Je, 25.40.Lw
I. INTRODUCTION

Spectroscopic study of nuclei far from the valley of β stability is one of the major active fields in nuclear physics. To perform nuclear spectroscopic investigation on such nuclei, direct reaction processes that add or remove one or a few nucleons, such as direct stripping and pickup reactions, from which one can identify single-particle orbitals, energies and their occupancies are commonly used. With the improvement of radioactive ion beam intensities it is now possible to obtain reliable measurements of transfer cross sections induced by unstable projectiles, and together with finite-range computer codes such as FRESCO, it becomes possible to obtain spectroscopic information on unstable nuclei with good precision.

In particular, spectroscopic investigation of unstable lithium isotopes is of interest not only for understanding nuclear structure and reaction mechanisms, where spectroscopic factors of these isotopes can be an important experimental probe for single-particle dynamics, shell model calculations, and halo properties, but also for astrophysics. In the inhomogeneous nucleosynthesis models, reactions with ^8Li can bridge the A=8 mass gap and heavier elements would then be synthesized in the early universe. It also has been pointed out that neutron-induced three-particle interactions can be important in a high neutron abundance environment. In this case, heavier elements would be synthesized via the reaction sequence $^4\text{He}(2n,\gamma)^6\text{He}(2n,\gamma)^8\text{He}(\beta^+)^8\text{Li}$. Here again, ^8Li plays an important role in the subsequent synthesis of heavier elements. Likewise, light neutron-rich nuclei such as ^8Li have been found to be important to produce seed nuclei for the r-process, e.g., in Type-II supernovae.

Once ^8Li is produced two possible competing chains of reactions can take place: $^8\text{Li}(\alpha,n)^{11}\text{B}(n,\gamma)^{12}\text{B}(\beta^+)^{12}\text{C}$ and $^8\text{Li}(n,\gamma)^9\text{Li}(\alpha,n)^{12}\text{B}(\beta^+)^{12}\text{C}$. The key reaction for the second chain is $^8\text{Li}(n,\gamma)^9\text{Li}$. Direct measurement of this reaction is impossible because no neutron target exists and the half-life of ^8Li is too short (838 ms) for ^8Li to be used as a target. Thus, experimental information on the cross section for this reaction has to be obtained by some indirect methods. Kobayashi et al. used the Coulomb dissociation method, which is the inverse of the capture process. However, in this work only an upper limit for the cross section at low energy was obtained. Another indirect approach that may be used to investigate capture reactions is the ANC (Asymptotic Normalization Coefficient) method, where the (d,p) reaction in inverse kinematics is used to extract an “asymptotic normal-
ization coefficient” that can be related to the capture cross section. The ANC is obtained from peripheral transfer reactions whose amplitudes contain the same overlap function as the amplitude of the corresponding capture reaction of interest \cite{11} and therefore can be used to normalize the non-resonant part of the capture reaction. The method is based on the assumption that capture reactions at stellar energies usually proceed through the tail of the nuclear overlap function. The amplitude of the radiative capture cross section is then dominated by contributions from large relative distances of the participating nuclei. However, it has been shown that s-wave neutron capture, even at rather low energies, is not peripheral \cite{12, 13} and so it is necessary to use a potential model to calculate the wave function of the incoming neutron in this case. This indirect approach, based on the potential model, has been recently applied in the analysis of the $^{16}\text{O}(d,p)^{17}\text{O}$ and $^{16}\text{O}(d,n)^{17}\text{F}$ transfer reactions to determine the corresponding $^{16}\text{O}(p,\gamma)^{17}\text{F}$ and $^{16}\text{O}(n,\gamma)^{17}\text{O}$ astrophysical direct capture cross sections \cite{14}.

Early measurements of neutron transfer reactions induced by stable lithium isotopes on a ^9Be target ($^9\text{Be}(^7\text{Li},^6\text{Li})^{10}\text{Be}$ \cite{15} and $^9\text{Be}(^6\text{Li},^7\text{Li})^8\text{Be}$ \cite{16}) have shown that these reactions are good tools to obtain spectroscopic information. In this paper, we report on the measurement and analysis of angular distributions for two neutron-transfer reactions induced by a radioactive ^8Li beam: $^9\text{Be}(^8\text{Li},^9\text{Li})^8\text{Be}$ and $^9\text{Be}(^8\text{Li},^7\text{Li})^{10}\text{Be}$. From a FR-DWBA analysis of these angular distributions, the spectroscopic factors for the $^7\text{Li}_{gs} \otimes n = ^8\text{Li}_{gs}$ and $^8\text{Li}_{gs} \otimes n = ^9\text{Li}_{gs}$ bound systems were extracted, and cross sections and nucleosynthesis reaction rates for the non-resonant part of the $^7\text{Li}(n,\gamma)^{8}\text{Li}$ and $^8\text{Li}(n,\gamma)^{9}\text{Li}$ capture reactions were derived.

II. THE EXPERIMENT

Angular distributions for ^8Li elastic scattering and the $^9\text{Be}(^8\text{Li},^9\text{Li})^8\text{Be}$ and $^9\text{Be}(^8\text{Li},^7\text{Li})^{10}\text{Be}$ neutron transfer reactions have been measured at the Nuclear Structure Laboratory of the University of Notre Dame, USA. The 27 MeV secondary ^8Li radioactive beam was obtained from the TwinSol RNB system \cite{17}. In this system, the beam is produced in a primary target via the $^9\text{Be}(^7\text{Li},^8\text{Li})$ reaction, where a 30 MeV primary ^7Li beam having an intensity of up to 1 e\(\mu\)A was obtained from a 9.5 MV Tandem Van de Graaff Accelerator. The production target consisted of a beryllium foil 12 \(\mu\)m thick mounted as
the exit window of a gas cell which was filled with 4He gas at a pressure of 1 atm for cooling purposes (the entrance window of the gas cell consisted of a 2 μm thick Havar foil). The two superconducting solenoids in the TwinSol system act as thick lenses to collect, select, and focus the secondary beam into a scattering chamber. The 27 MeV 8Li beam had an average intensity of 5.0×10^5 particles per second per 1 μA of primary beam, and an energy resolution of 0.450 MeV (FWHM) determined from the elastic scattering measurement on a gold target. The beam was focused onto a 1.44 mg/cm2 thick 9Be secondary target. Some beam contaminants (4He, 6He and 7Li) with the same magnetic rigidity as 8Li were also present but did not produce reaction products with mass $A=8$ or $A=9$ in the same range of energy as the particles from the neutron transfer reactions of interest.

The scattered 8Li particles and 7Li and 9Li reaction products were detected by an array of ΔE-E Si telescopes. The measurements were performed with two setups, where a combination of the 3 telescopes covered the range of laboratory angles from 15-40 degrees. An overlap of angles in these setups was useful for normalization purposes. The telescopes consisted of 20-25 μm Si ΔE detectors backed by 300 μm thick Si E detectors. The detector telescopes had circular apertures which subtended a solid angle of 4 msr for the most forward-angle measurements and 8-15 msr for the backward angles. A collimator placed in front of the first solenoid limited the angular acceptance of the particles produced in the primary target to the range of $2.5^0 - 6.0^0$. This introduces an angular divergence in the secondary beam of about $\pm 3^0$. Since the angular aperture of the collimators in front of the detectors was also about $\pm 3^0$, the average detection angle were determined by a Monte Carlo simulation, which took into account the collimator size in front of the detectors, the secondary beam spot size on the secondary target (4mm), the secondary beam divergence and the angular distribution in the range of the detector aperture (Rutherford on gold and calculated in an iterative way for the 9Be target).

The simultaneous measurement of the transfer products and elastic scattering was very useful to check the consistency of the overall normalization and to select an optimal set of optical-model potential parameters. The latter are very important in the FR-DWBA transfer calculations. During the experiment 8Li elastic scattering on a gold target, which was pure Rutherford, was also measured to obtain the absolute normalization of the data.
III. DATA ANALYSIS

Reaction products were identified using a two dimensional $[C(Z, M) \times E_{\text{total}}]$ plot. The particle identification constant, $C(Z, M)$, is given by: $C(Z, M) = (E_{\text{total}})^b - (E_{\text{total}} - \Delta E)^b$ \cite{18}, where $E_{\text{total}} = \Delta E + E_{\text{residual}}$ and $b = 1.70$ for these light particles. This constant appears as straight lines as a function of the energy for each Z and M particle in the two dimensional spectrum $[C(Z, M) \times E_{\text{total}}]$. A typical particle identification spectrum is shown in Fig. 1 for the lithium and helium isotope region. In this plot the ^8Li scattered beam particles and the ^9Li and ^7Li reaction products are shown and could be easily identified.

A. Elastic scattering

The ^8Li energy spectra were obtained by selecting and projecting the ^8Li region in the $[C(M, Z) \times E_{\text{total}}]$ plot. The experimental resolution, 0.450 MeV (FWHM), was sufficient to separate elastic scattering from inelastic scattering to the first excited state of ^8Li ($E_x=0.980$ MeV). The experimental angular distribution obtained for the elastic scattering of ^8Li on ^9Be is shown in Fig. 2. The data were analyzed with the optical model (OM) using volume-type Woods-Saxon nuclear potentials and Coulomb potentials due to uniform charged spheres. The optical parameters used to describe the $^9\text{Be}(^8\text{Li},^8\text{Li})$ elastic scattering are from Refs. \cite{15} and \cite{19} and they are listed in Table I. The results of the OM calculations using these potential parameters can be seen in Fig. 2. The OM calculations show more oscillations than the elastic scattering data. In the Fig. 2-b we show the calculated angular distributions smeared by the range of the angular aperture and beam angular dispersion ($\Delta\Theta=10$ deg. in the C.M.). As one can see, the comparison with the data is improved by smearing the calculated angular distributions. The curve indicated as the SP-Potential corresponds to OM calculations using the Sao Paulo Potential \cite{20}, which is a double-folding potential with energy dependence and non-locality correction. Including a spin-orbit term, $V_{SO} = 7.0$ MeV, in the optical potential did not change the results. Although there was no attempt to adjust the parameters to fit the data, the calculations with all of these potentials give a good description of the elastic scattering data. The SP-Potential also reproduces quite well the absolute normalization, which is of some interest considering that this folding-model potential has no free parameters.
These potentials were used in the DWBA calculations for the transfer reactions as described in the following sections.

B. Neutron stripping reaction: $^{9}\text{Be}(^{8}\text{Li},^{7}\text{Li})^{10}\text{Be}$

The $^{9}\text{Be}(^{8}\text{Li},^{7}\text{Li})^{10}\text{Be}_{gs}$ reaction has a positive Q-value of $+4.780$ MeV. Thus, the ^{7}Li particles from this transfer reaction could easily be separated from the elastic ^{8}Li particles in the $C(M, Z) \times$ Energy plot. At the most forward angles (15 and 18 degrees) the ^{7}Li group was double peaked due to inelastic scattering to the first excited state of $^{7}\text{Li}^{*}$ at Ex$=0.470$ MeV. Although the overall experimental energy resolution (0.450 MeV) was barely sufficient to resolve the ^{7}Li ground state from the first excited state, it appears that $(^{8}\text{Li},^{7}\text{Li}_{gs})$ was the dominant neutron-transfer mode. At backward angles, the ^{7}Li groups observed were centered at the g.s. energies and were not double peaked, at least within the statistics obtained. At the most forward angles, the second excited state of ^{7}Li (Ex$=2.70$ MeV) was also observed but is not considered in the present analysis. The angular distribution for the $^{9}\text{Be}(^{8}\text{Li},^{7}\text{Li}_{gs})^{10}\text{Be}_{gs}$ reaction is shown in Fig. 3. As can be seen, the differential cross sections for this transfer process are not very large (less than 1 mb/sr) which made the measurements quite difficult at the backward angles due to the limited secondary beam intensity.

Finite-range distorted-wave Born approximation (FR-DWBA) calculations for the $^{9}\text{Be}(^{8}\text{Li},^{7}\text{Li})$ neutron transfer reaction have been performed using the code FRESCO [1]. For each FR-DWBA calculation, the same optical-model potential parameters (Table-I) were used for both entrance ($^{8}\text{Li}+^{9}\text{Be}$) and exit ($^{7}\text{Li}+^{10}\text{Be}$) channels. The bound-state wave functions were generated with Woods-Saxon potentials and geometric parameters $r = 1.25$ fm and $a = 0.65$ fm, with the depths of the potentials adjusted to give the correct separation energies. In the present $(^{8}\text{Li},^{7}\text{Li})$ DWBA calculation the neutron is considered to be transferred from the $p_{3/2}$ orbital in $^{8}\text{Li}_{gs}(J^{\pi} = 2^{+})$ to the $p_{3/2}$ orbital in $^{10}\text{Be}_{gs}(J^{\pi} = 0^{+})$, leaving ^{7}Li in its ground-state $J^{\pi} = \frac{3}{2}^{-}$. There is a possibility of a contribution from the $p_{1/2}$ admixture in the ^{8}Li ground-state but according to a spectroscopic factor calculation by Cohen and Kurath this contribution is about 5% and it was not considered in the transfer reaction DWBA calculation. One-nucleon transfer reactions provide a spectroscopic factor for one vertex if that of the other vertex is known. In the FR-DWBA calculation for the
The $^9\text{Be}^{(8\text{Li},7\text{Li})^{10}\text{Be}}$ neutron transfer reaction, the spectroscopic factor for the $^9\text{Be}_{gs}\otimes n=^{10}\text{Be}_{gs}$ system was taken to be $S_{_{10Be}}=2.23\pm0.13$, which is the average of values from two (d,p) studies \cite{21, 22} (see Table-II). By normalizing the calculation to the experimental data, a spectroscopic factor of $S_{_{7Li}}(g.s.)=1.03 \pm 0.15$ was obtained for the $^7\text{Li}_{gs}\otimes n=^9\text{Li}_{gs}$ vertex. This value is compatible with the Cohen and Kurath shell model calculations \cite{23} (see Table-II). A similar situation has been found in the analysis of the $^9\text{Be}^{(7\text{Li},6\text{Li})^{10}\text{Be}}$ \cite{15} and $^9\text{Be}^{(6\text{Li},7\text{Li})^{8}\text{Be}}$ reactions \cite{16}, where the spectroscopic factor for both vertices involved in the transfer agreed with values calculated by Cohen and Kurath. These results indicate that Cohen-Kurath wave functions describe stable lithium and beryllium isotopes in the mass range $A=6$ to $A=10$ reasonably well.

C. Neutron pick-up: $^9\text{Be}^{(8\text{Li},9\text{Li})^{8}\text{Be}}$

The $^9\text{Be}^{(8\text{Li},9\text{Li})^{8}\text{Be}}$ neutron-transfer reaction can proceed by two possible contributions that leave ^9Li in its ground state. These correspond to neutron transfer to either a $1p_{1/2}$ or $1p_{3/2}$ orbit in ^9Li. Here only transfer to the $1p_{3/2}$ orbit is considered because the contribution of the $1p_{1/2}$ orbit has been found to be less than 5\% \cite{24}. Finite-range distorted-wave Born approximation (FR-DWBA) calculations for the $^9\text{Be}^{(8\text{Li},9\text{Li})}$ neutron transfer reaction have been performed using also the code FRESCO \cite{1}. For each FR-DWBA calculation, the same optical-model potential parameters (Table-I) were used for both entrance ($^8\text{Li}+^9\text{Be}$) and exit ($^9\text{Li}+^{8}\text{Be}$) channels. The bound-state wave functions were generated with Woods-Saxon potentials and geometric parameters $r = 1.25$ fm and $a = 0.65$ fm, with the depths of the potentials adjusted to give the correct separation energies. To obtain the spectroscopic factor for the $^8\text{Li}_{gs}\otimes n=^9\text{Li}_{gs}$ vertex, the spectroscopic factor for $^8\text{Be}_{gs}\otimes n=^{9}\text{Be}_{gs}$ must be known. A value of $S_{_{9Be}} = 0.44(7)$ was used for this vertex, which is the average of spectroscopic factors from two (d,t) reactions \cite{21, 26}. This is somewhat smaller than the Cohen-Kurath prediction (see Table-II). Normalizing the FR-DWBA calculation to the experimental data, a spectroscopic factor of $S_{_{7Li}} = 0.62 \pm 0.13$ was obtained for the $^8\text{Li}_{gs}\otimes n=^9\text{Li}_{gs}$ bound system. The results of the FR-DWBA calculations with different sets of parameters are shown in Fig. 4. As one can see, the calculations agree extremely well with the data at forward angles. The uncertainty in the spectroscopic factor is estimated to be about 20\% due to the uncertainties in the experimental data at forward angles and in the spectroscopic
factor for the $^8\text{Be}_{gs} \otimes n = ^9\text{Be}_{gs}$ vertex.

The spectroscopic factor obtained for the $^8\text{Li}_{gs} \otimes n = ^9\text{Li}_{gs}$ system in the present analysis is compared with other experimental values and shell model calculations in Table-II. Our result agrees very well with the value from the shell model calculation of Ref. [5] and with the experimental value obtained from a (d,p) reaction at lower energy [25], but is lower than the values obtained from a recent calculation using Cohen and Kurath wave functions [27] and from a (d,p) reaction study at higher energy [28]. An analysis with the SP folding-model potential was also performed and spectroscopic factors $S_{^8\text{Li}} = 0.68$ and $S_{^9\text{Li}} = 0.40$ were obtained. These values are about 35% lower than those obtained with SET 1,2, and 3 for both the ($^8\text{Li},^7\text{Li}$) and ($^8\text{Li},^9\text{Li}$) transfer reactions. This may be related to non-locality effects which are taken into account in the folding-model potential but not in the optical model potentials. Further investigation of this subject appears to be warranted.

To extract the spectroscopic factors from the present transfer angular distributions, only the angular range $\theta_{\text{CM}} \leq 45$ degrees was considered. To verify the peripherality of this transfer reaction, the influence of the internal part of the overlap function was tested in the DWBA calculation. The result of such a test can be seen in Fig. 5. Increasing the radius cut in the radial integral up to $R_{\text{cut}} = 4.0$ fm did not produce any change in the FR-DWBA calculation in the angular range from 0-45 deg. Only for $R_{\text{cut}} > 5.0$ fm, which corresponds to a radius larger than the distance of closest approach of the two interacting nuclei (i.e., $R = 1.25 \times (A_1^{1/3} + A_2^{1/3})$ fm), is the calculation sensitive to the radius cut, as observed in the change of the trend in the curve for $R_{\text{cut}} = 5.0$ fm as compared with the other curves in Fig. 5.

IV. RADIATIVE NEUTRON CAPTURE REACTIONS

To calculate the $^7\text{Li}(n,\gamma)^8\text{Li}$ and $^8\text{Li}(n,\gamma)^9\text{Li}$ radiative capture reaction cross sections, the computer code RADCAP [29], based on a potential model, was used. In the potential-model framework, the direct neutron radiative capture by a nucleus b going to a composite nucleus c via a transition with E1 electric dipole character is given by:

$$
\sigma_{b \rightarrow c}^{E1}(n, \gamma) = \frac{16\pi}{9\hbar^2} k_{\gamma}^3 |Q_{b \rightarrow c}^{E1}|^2,
$$

where $k_{\gamma} = \epsilon_{\gamma}/\hbar c$ is the wave number corresponding to a γ-ray energy ϵ_{γ}. The term $Q_{b \rightarrow c}^{E1}$ is
the E1 transition matrix element given by:

\[Q_{b \rightarrow c}^{E1} = \langle \psi_{\text{scat}} | O^{E1} | I_{\text{bound}} \rangle, \]

(2)

where \(O^{E1} \) stands for the electric dipole operator and the initial-state wave function \(\psi_{\text{scat}} \) is the incoming neutron wave function scattered by the neutron-nucleus potential. Here the effective charge for the neutrons used in the electric dipole operator is given by \(e_{\text{eff}} = -eZ/A \), where \(A \) is the mass of the compound nucleus. The wave functions necessary in the potential model are obtained by solving the scattering and bound-state systems, respectively, for a given potential. Thus, the essential ingredients of the model are the potentials used to generate the wave functions \(\psi_{\text{scat}} \) and \(I_{\text{bound}} \), and the normalization for the latter which is given by the spectroscopic factor.

A. The \(^7\text{Li}(n,\gamma)^8\text{Li}\) capture reaction

The direct radiative capture (DRC) of a s- or d-wave neutron by \(^7\text{Li}\), leaving the \(^8\text{Li}\) compound nucleus in either the ground state \((J^\pi = 2^+)\) or the first excited state \((J^\pi = 1^+, E_x = 0.980 \text{ MeV})\) proceeds by an E1 transition. To calculate the capture cross section in the potential model, a Woods-Saxon form with radius and diffuseness parameters \(r_0 = 1.25 \text{ fm and } d = 0.65 \text{ fm} \), respectively, was adopted for both bound-state and scattering potentials. The depth of the bound-state potentials, \(V_0(\text{g.s.}) = 46.38 \text{ MeV and } V_0(1\text{st.}) = 43.30 \text{ MeV} \), were adjusted to reproduce the corresponding binding energies \((E_{\text{g.s.}} = 2.033 \text{ MeV and } E_{1\text{st}} = 1.052 \text{ MeV})\) of the \(^8\text{Li}\) ground state and first excited state, respectively. The potentials used to describe the scattering of the neutron by the \(^7\text{Li}\) nucleus also had geometric parameters \(r_0 = 1.25 \text{ fm and } d = 0.65 \text{ fm} \). Well depths of \(V_0 = 56.15 \text{ MeV and } V_0 = 46.50 \text{ MeV} \) were used for the two channel-spin components \(s = 2 \) and \(s = 1 \), respectively. These potentials were obtained by Nagai \textit{et al.} [13] by adjusting the well depths to reproduce the experimental n+\(^7\text{Li}\) scattering lengths \((a_+ = -3.63 \text{ and } a_- = +0.87)\) of the two channel-spin components. To calculate the cross sections for the \(^7\text{Li}(n,\gamma)^8\text{Li}\) capture reaction, leaving \(^8\text{Li}\) in the ground state \((J^\pi = 2^+)\) and first excited state \((J^\pi = 1^+)\), we used the same potential parameters for the scattering potentials and the same spectroscopic factors (i.e., \(S_{7Li}(\text{g.s.})=0.87 \) and \(S_{7Li}(1\text{st.})=0.48 \) for the \(^7\text{Li}_{gs} \otimes n = ^8\text{Li}_{gs} \) and \(^7\text{Li}_{gs} \otimes n = ^8\text{Li}_{1\text{st.}} \), respectively) as obtained by Nagai \textit{et al.} [13]. The results of this calculation, assuming only
an s-wave neutron capture, are compared in Fig. 6 with the experimental data from Refs. [13], [38], [39], [40] and [41]. The s-wave direct neutron capture contribution is the dominant process, and the contribution from the d-wave neutron is found to be negligible (less than 0.5 percent) at these low energies. The upper solid curve in Fig. 6 was obtained by using the spectroscopic factor $S_{8Li}(g.s.) = 1.03 (15)$ for the $^7Li_{gs} \otimes n = ^8Li_{gs}$ bound state obtained from the present analysis of the $^9Be(^8Li,^7Li)$ transfer reaction. The different potentials used for the two different couplings of the entrance channel spin were crucial in the calculation to correctly describe the known data. As can be seen, this produces a better agreement of the calculation with the low-energy data. Once we have verified that the procedure to obtain the parameters used in the potential model calculation reproduced the experimentally known cross section for the $^7Li(n,\gamma)^8Li$ capture reaction, we now extend this procedure to calculate the cross section for the $^8Li(n,\gamma)^9Li_{gs}$ capture reaction.

B. The $^8Li(n,\gamma)^9Li$ capture reaction

As mentioned above, the radiative neutron capture cross section for the $^8Li(n,\gamma)^9Li_{gs}$ reaction cannot be obtained from a direct measurement. We here use the same prescription, based on a potential model, that was followed to calculated the cross section for the $^7Li(n,\gamma)^8Li$ reaction. The capture cross sections were calculated assuming that the $^8Li(n,\gamma)^9Li_{gs}$ reaction proceeds by direct $E1$ capture of an s-wave neutron by $^8Li(J^\pi = 2^+)$ leading to the $^9Li(J^\pi = 3/2^-)$ ground state. The optical-model potential used to generate the distorted wave for neutron scattering on the unstable 8Li nucleus cannot be obtained experimentally. Instead, we used the same volume integral per nucleon as that of the n-^{7}Li potentials. Experimental optical-model parameters can vary strongly for different systems, but the volume integral per nucleon of a potential is known to have less ambiguity and thus it can be considered a more stable quantity as a function of the masses of the interacting nuclei [25, 42, 43]. Thus, by scaling the real depth of the two entrance-channel spin components, $s = 1$ and $s = 2$, from the known n-^{7}Li potential in the previous analysis, and keeping the same volume integrals of the potential per nucleon ($J_V/A = 793$ MeV fm3 and $J_V/A = 657$ MeV fm3, respectively), $V_0 = 58.15$ MeV and $V_0 = 48.15$ are obtained for the depths of the potential wells for the two channel-spins ($s = 5/2$ and $s = 3/2$, respectively) of the n$(1/2^+)^{8}Li(2^+)$ system. To calculate the overlap integral of the $^8Li\otimes n = ^9Li_{gs}$ bound-
system, a Woods-Saxon shaped potential is also considered. A depth $V_0 = 47.82$ MeV was obtained for potential by adjusting it to reproduce the binding energy ($E = 4.064$ MeV). The normalization of this overlap integral is giving by the spectroscopic factor $S_{9Li}(g.s.) = 0.62$ (7) extracted from the present analysis of the 9Be(8Li,9Li)8Be transfer reaction. With these potentials and the spectroscopic factor, the cross sections for the non-resonant part of the s-wave neutron capture reaction were calculated as a function of relative energy for both channel spins. The results of these calculations are shown in Fig. 7. The curve labeled (a) corresponds to the sum of the contribution of channel-spin $s = 3/2$ and $s = 5/2$, where each contribution was calculated with different scattering potential. The curves (b) correspond to a different assumption for the scattering potential in which the well depths are the same as that for the bound state. The dotted curve is obtained considering only an s-wave neutron, and the solid line is the sum of the s and d-wave contributions. As one can see in Fig. 7, the onset of the higher partial wave component is observable only at higher energies.

In order to compare our results for the 8Li(n,γ)9Li$_{gs}$ capture reaction with other measurements and calculations, we have computed the nucleosynthesis reaction rate. The expression for the reaction rate for E1 capture in cm3mol$^{-1}$s$^{-1}$ is given by [30]:

$$N_A <\sigma v > = K \int_0^\infty \sigma(E)E\exp(-C_2E/T_9)dE, \quad (3)$$

where

$$K = C_1\mu^{-1/2}T_9^{-3/2}$$

and $C_1 = 3.7313 \times 10^{10}$, $C_2 = 11.605$, N_A is Avogadro’s number, μ is the reduced mass of the system, T_9 is the temperature in units of 10^9 K, σ is the capture cross section, v is the relative velocity, and E is the energy in the center-of-mass system. E is given in MeV and the cross section in barns.

The reaction rate for the 8Li(n,γ)9Li$_{gs}$ capture reaction was estimated at a temperature $T_9 = 1$ and the integral of the expression [3] was performed up to 1.2 MeV. At this temperature, the capture reaction becomes important for the synthesis of heavier elements in the inhomogeneous Big Bang model. Also, the role of light neutron-rich nuclei for the r-process in Type-II supernovae seems to be important at temperatures $0.5 < T_9 < 4$ [9].
Although the resonant capture through the $\frac{5}{2}^-$ resonance in 9Li could be important for temperatures higher than $T_9 = 0.5$, in the present calculation only the direct capture to 9Li at the ground-state is considered.

At energies up to 1 MeV, the capture reaction is completely dominated by s-wave neutrons. The contribution of the d-wave neutron to the reaction rate is estimated to be less than 0.5% at these energies and it becomes important only at high energies. Assuming a distorted wave from the potentials that have the same volume integral per nucleon as for the n+7Li system, the reaction rate for the 8Li(n,γ)9Li gs capture reaction was deduced to be $N_A < \sigma v >= (3.17 \pm 0.70) \times 10^3 \ cm^3\text{mol}^{-1}\text{s}^{-1}$, where the uncertainty is from the uncertainty in the spectroscopic factor used in the calculation (20%) and from the variation of ±1 MeV in the potentials used to determined the distorted wave (10%). As suggested by Mengoni, et al. [12], a different assumption would be to use the same potential for the incoming channel as that for the bound state. With this assumption for the n-8Li potential, the reaction rate is determined to be $N_A < \sigma v >= (3.23 \pm 0.71) \times 10^3 \ cm^3\text{mol}^{-1}\text{s}^{-1}$. The average value adopted here is:

$$N_A < \sigma v >= (3.20 \pm 0.70) \times 10^3 \ cm^3\text{mol}^{-1}\text{s}^{-1}.$$

In Fig. 8, this value is compared with theoretical calculations reported in Refs. [31, 32, 33, 34, 35, 36] and experimental estimations from Refs. [37, 10, 25]. Our result is comparable to the most recent theoretical calculations [33, 34, 35, 36] and is in good agreement with the value from a recent (d,p) experiment [25]. The small difference obtained in the reaction rate between these two experiments can be attributed in part to the different approaches used in the calculation of the neutron scattering potential. Both results are significantly higher than the upper limit obtained in the most recent Coulomb dissociation experiment by Kobayashi, et al. [10].

A $1/v$ behavior of the capture cross section as a function of relative energy is expected for s-wave neutron capture at low energies. However, as can be seen in Fig. 7, the reaction rate obtained in the potential model follows a $1/v$ dependence only for very low energies ($E_n < 0.1$ MeV). Normalizing a $1/v$ curve to the values given by the potential model in the energy range from 0-0.1 MeV, the corresponding expression for the capture cross section becomes:
\[\sigma(n, \gamma) = 3.95 \times E_n^{-1/2}, \]

where \(E_n \) is the neutron energy in MeV and \(\sigma(n, \gamma) \) is given in \(\mu b \). The corresponding reaction rate integrated over the range up to 1.2 MeV (which would be in this case energy independent) is:

\[N_A < \sigma v > = 3.27 \times 10^3 \text{ cm}^3 \text{mol}^{-1} \text{s}^{-1}, \]

which is in agreement with the value obtained directly from the potential model and also much higher than the upper limit obtained by Kobayashi et al. [10].

V. SUMMARY

We have measured the angular distributions for the elastic scattering of \(^8\text{Li}\) on \(^9\text{Be}\) and the neutron transfer reactions \(^9\text{Be}(^8\text{Li},^7\text{Li})^{10}\text{Be}\) and \(^9\text{Be}(^8\text{Li},^9\text{Li})^8\text{Be}\) at \(E_{LAB} = 27.0 \text{ MeV} \). Spectroscopic factors for the \(^8\text{Li}_{gs} \otimes n = ^9\text{Li}_{gs}\) and \(^7\text{Li}_{gs} \otimes n = ^8\text{Li}_{gs}\) bound systems were obtained from the comparison between the experimental differential cross sections and FR-DWBA calculations with the code FRESCO. The spectroscopic factors obtained are compared with shell model calculations and also with experimental values from (d,p) reactions. Using the spectroscopic factors extracted from the angular distributions for the \(^8\text{Li}_{gs} \otimes n = ^9\text{Li}_{gs}\) and \(^7\text{Li}_{gs} \otimes n = ^8\text{Li}_{gs}\) bound system, we have derived the cross-sections for the \(^7\text{Li}(n, \gamma)^8\text{Li}\) and \(^8\text{Li}(n, \gamma)^9\text{Li}_{gs}\) neutron capture reactions based on a potential model. The reaction rates for the non-resonant part of the \(^8\text{Li}(n, \gamma)^9\text{Li}_{gs}\) reaction are compared with the results from previous indirect methods and with theoretical calculations. Our work has shown that low energy radioactive nuclear beams can be very suitable not only to perform spectroscopic investigations but also to determine the non-resonant parts of capture reactions of astrophysics interest.
Acknowledgments

The authors wish to thank the Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP 2001/06676-9 and 2006/00629-2) for financial support. This work was also funded in part by the U.S. NSF under Grants No. PHY03-54828 and INT03-05347.

[1] I. J. Thompson, Comp. Phys. Rep. 7, 167 (1988) and www.fresco.org.uk.
[2] T. Nakamura et al., Phys. Rev. Lett. 96, 252502 (2006).
[3] N. Michel, W. Nazarewicz, M. Ploszajczak and J. Rotureau, Eur. Journ. Phys. A 25, 493 (2005).
[4] M. B. Tsang, J. Lee and W. G. Lynch, Phys. Rev. Lett. 95, 222501 (2005).
[5] P. Navratil, Phys. Rev. C 70, 054324 (2004).
[6] P. Santi et al., Phys. Rev. C 67, 024606 (2003).
[7] T. Kajino and R. N. Boyd, Astrophys. J. 359, 267 (1990).
[8] J. Gorres, H. Herndl, I. J. Thompson, and M. Wiescher, Phys. Rev. C 52, 2231 (1995).
[9] M. Terasawa, K. Sumiyoshi, T. Kajino, G. J. Mathews, and I. Tanihata, Astrophys. J. 562, 470 (2001).
[10] H. Kobayashi et al., Phys. Rev. C 67, 015806 (2003).
[11] C. A. Gagliardi, A. Azhari, V. Burjan, F. Carstoiu, V. Kroha, A. M. Mukhamedzhanov, A. Sattarov, X. Tang, L. Trache, R. E. Tribble, Eur. Phys. J. A13, 227 (2002).
[12] A. Mengoni, T. Otsuka, and M. Ishihara, Phys. Rev. C 52, R2334 (1995).
[13] Y. Nagai, M. Igashira, T. Takaoka, T. Kikuchi, T. Shima, A. Tomyo, A. Mengoni and T. Otsuka, Phys. Rev. C 71, 055803 (2005).
[14] M. Assunção, R. Lichtenhaler, V. Guimarães, A. Lepine-Szily, and A. M. Moro. Pos(NIC-IX-2006), Proceedings of Science, 071, (2006), and Phys. Rev. C 70, 054601 (2004).
[15] K. W. Kemper, G. E. Moore, R. J. Puigh, and R. L. White, Phys. Rev. C 15, 1726 (1977).
[16] J. Cook and K. W. Kemper, Phys. Rev. C 31, 1745 (1985).
[17] F. D. Becchetti et al., Nucl. Instr. and Methods in Res. A 505, 377 (2003).
[18] Radiation Detection and Measurement, Glenn E. Knoll, John Wiley & Sons, page 380. (1989).
[19] C. M. Perey and F. G. Perey Atomic Data and Nuclear Data Tables 17, 1 (1976).
[20] L. C. Chamon, B. V. Carlson, L. R. Gasques, D. Pereira, C. De Conti, M. A. G. Alvarez, M. S. Hussein, M. A. Cndido Ribeiro, E. S. Rossi, Jr., and C. P. Silva, Phys. Rev. C 66, 014610 (2002).
[21] S. E. Darden, G. Murillo, S. Sen, Nucl. Phys. A266, 29 (1976).
[22] D. L. Powell, G. M. Grawley, B. V. N. Rao, B. A. Robson, Nucl. Phys. A147, 65 (1970).
[23] S. Cohen and D. Kurath, Nucl. Phys. A101, 1 (1967).
[24] P. Mohr, Phys. Rev. C 67, 065802 (2003).
[25] Z. H. Li et al., Phys. Rev. C 71, 052801-R (2005).
[26] W. Fitz, R. Jahr and R. Santo, Nucl. Phys. A101, 449 (1967).
[27] H. B. Jeppeser et al., Phys. Letters B 635, 17 (2006).
[28] A. H. Wuosmaa et al., Phys. Rev. Lett. 94, 082502 (2005).
[29] C. A. Bertulani, Comput. Phys. Commun. 156, 123 (2003).
[30] C. Angulo et al., Nucl. Phys. A656, 3 (1999)
[31] R. A. Malaney and W. A. Fowler, Astrophys. J. 345, L5 (1989).
[32] Z. Q. Mao and A. E. Champagne, Nucl. Phys. A522, 568 (1991).
[33] F. K. Thielemann, J. H. Cowan, and M. Wiescher, in Nuclei in the Cosmos, edited by H. Oberhummer, et al. (Springer, Berlin, 1991).
[34] P. Descouvemont, Astrophys. J. Lett. 405, 518 (1993).
[35] T. Rauscher, J. H. Applegate, J. J. Cowan, F. K. Thielemann, and M. Wiescher, Astrophys. J. 429, 499 (1994).
[36] C. A. Bertulani, J. Phys. G 25, 1959 (1999).
[37] P. D. Zecher et al., Phys. Rev. C 57, 959 (1998).
[38] M. Heil, F. Kaeppeler, M. Wiescher, and A. Mengoni, Astrophys. J. 507, 997 (1998).
[39] Y. Nagai, M. Igashira, N. Mukai, T. Ohsaki, F. Uesawa, K. Takeda, T. Ando, H. Kitazawa, S. Kubono, and T. Fukuda, Astrophys. J. 381, 444 (1991).
[40] M. Wiescher, R. Steininger, and F. Kappeler, Astrophys. J. 344, 464 (1989).
[41] W. L. Imhof et al., Phys. Rev. 114, 1037 (1959).
[42] G. R. Satchler, Oxford University Press, New York, second edition, pg. 192 (1990).
[43] F. D. Becchetti and G.W. Greenlees, Phys. Rev. 182, 1190 (1969).
TABLE I: Optical-model potential parameters. Radii are given by $R_x = r_x \times A_T^{1/3}$.

SET	V^a	r_R	a_R	W_V^a	r_I	a_I	r_C	References
1	173.1	1.19	0.78	8.90	2.52	0.924	1.78	$^7\text{Li} + ^9\text{Be}$ at 34 MeV [15]
2	234.4	1.21	0.76	8.90	2.43	1.020	1.78	$^7\text{Li} + ^9\text{Be}$ at 34 MeV [15]
3	152.0	1.38	0.75	6.72	2.72	0.900	1.20	$^7\text{Li} + ^9\text{Be}$ at 24 MeV [19]

a) Volume-Wood-Saxon potential

TABLE II: Spectroscopic factors C^2S.

J^π	Shell Model calculation	(d,p)	(d,t)	This work
$^8\text{Li}_{gs} \otimes n = ^9\text{Li}_{gs}$	3/2-	0.628a	0.885b	0.62(13)
$^7\text{Li}_{gs} \otimes n = ^8\text{Li}_{gs}$	2+	0.977c	0.87f	1.03(15)
$^8\text{Be}_{gs} \otimes n = ^9\text{Be}_{gs}$	3/2-	0.580c	0.44h	
$^9\text{Be}_{gs} \otimes n = ^{10}\text{Be}_{gs}$	0+	2.357c	2.23 (13)g	

a) from Ref. [5]
b) from Ref. [27] using same Cohen Kurath wave-function
c) from Cohen and Kurath [23]
d) from (d,p) reaction at 39 MeV [25]
e) from (d,p) reaction at 76 MeV [28]
f) from Ref. [13]
g) average of S=2.10 from Ref. [21] and S=2.356 from Ref. [22]
h) average of S=0.37 from Ref. [21] and S=0.51 from Ref. [26]
FIG. 1: Typical particle identification spectrum \[C(Z, M) \times E_{total}\] showing the lithium and helium isotope region for the interaction of \(^8\text{Li}^+\,^9\text{Be}\) at 15 degrees. The elastic scattering \(^8\text{Li}\) and reaction products \(^7\text{Li}\) and \(^9\text{Li}\) are indicated, as well as the \(^4\text{He}\) and \(^6\text{He}\) contamination in the secondary beam.
FIG. 2: The differential cross sections for elastic scattering $^9\text{Be}(^8\text{Li},^8\text{Li})^9\text{Be}$ at 27 MeV incident ^8Li lab energy. The curves are optical-model calculations with the sets of parameters listed in Table I.
FIG. 3: The differential cross sections for the $^{9}\text{Be}(^{8}\text{Li},^{7}\text{Li})^{10}\text{Be}^{gs}$ neutron transfer reaction at 27 MeV incident energy. The curves are FR-DWBA calculations using the code FRESCO with the potentials indicated (see Table I), as discussed in the text.
FIG. 4: The differential cross sections for the 9Be(8Li,9Li)8Be$_{gs}$ neutron transfer reaction at 27 MeV incident energy. The curves are FR-DWBA calculation using the code FRESCO with the potentials indicated, as discussed in the text.
FIG. 5: Angular distribution for the 9Be(8Li,9Li)$_{gs}$ transfer reaction at 27 MeV incident energy. The solid line corresponds to the FR-DWBA calculation with potential SET-1 (Table-I). The dotted lines are FR-DWBA calculations with cutoffs in the radial form factor integral as indicated. The dashed curve is the FR-DWBA calculation with a cutoff radius of 5.0 fm.
FIG. 6: The cross sections for the $^7\text{Li}(n,\gamma)^8\text{Li}$ capture reaction. The experimental points are from Refs. [13] and [38, 39, 40, 41]. The curve labeled (a) is the sum of channel-spin $s = 1$ and $s = 2$ contributions for the neutron capture reaction to the first excited state of ^8Li, while curve (b) is the sum of the channel-spin $s = 1$ and $s = 2$ contributions for the ^8Li ground-state. The thin solid line is the sum of these two contributions using the spectroscopic factor $S_{^8\text{Li}}(\text{g.s.}) = 0.87$. The thick solid line is the same calculation but considering the spectroscopic factor $S_{^8\text{Li}}(\text{g.s.}) = 1.03$ (15) obtained from the present work.
FIG. 7: The results of the capture cross section calculations for the $^{8}\text{Li}(n,\gamma)^{9}\text{Li}_{gs}$ reaction. The lower curves labeled (a) correspond to the sum of channel-spin $s = 3/2$ and $s = 5/2$ assuming potential depths scaled from the $n+^{7}\text{Li}$ capture reaction analysis, as explained in the text. Curves labeled (b) correspond to the assumption of same potential for the incoming wave-function as for the bound state, for s-wave neutron only (dotted curve) and s and d-wave neutrons (solid curve). The uppermost curve (dashed line) corresponds to a $1/v$ fit to the low-energy cross sections.

FIG. 8: Reaction rate for the direct neutron capture reaction $^{8}\text{Li}(n,\gamma)^{9}\text{Li}_{gs}$ calculated at $T_9=1$. The open squares are calculations from Refs. [31, 32, 33, 34, 35, 36] while the full triangles are experimental estimations from Refs. [37], [10] and [25].