Supplement of:
Tectonic controls of Holocene erosion in a glaciated orogen
Byron A. Adams1,2, Todd A. Ehlers1

1Department of Geosciences, Universität Tübingen, D-72074, Germany
2Now at the School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK

Correspondence to: Byron A. Adams (byron.adams@bristol.ac.uk)

This PDF file includes:

Fig. S1. Basin sample location map.

Fig. S2. Comparison of basin-averaged erosion rates and equilibrium line altitudes (ELA).

Calculation of snow depth estimations.

Fig. S3. Monthly estimated snow depth map.

Fig. S4. Mean monthly snow depth measurements from the Buckinghorse SNOTEL meteorological station.

Table S1. Laboratory and isotopic data for new Olympic Mountain samples.

Table S2. Blank data for new Olympic Mountain samples.

Table S3. Shielding and erosion rate comparisons.

References
Figure S1. Basin sample location map. Samples marked with open circles are from Belmont et al. (2007).

Figure S2. Comparison of basin-averaged erosion rates and equilibrium line altitudes (ELA). Black and grey data are from the west and east sides of the range, respectively.

Calculation of snow depth estimations

For this study, we utilized the MODIS/Terra Snow Cover Monthly L3 Global 0.05°, Version 6 dataset (Hall and Riggs, 2015), to estimate the distribution of snow for a given month. For any given pixel in the scene the value can vary between 0 and 100. While we consider these values to be spatially accurate they are only qualitative in that they do not have a magnitude equal to a physical dimension. To scale these data to represent snow depth values, we consider the snow cover values to be analogous to a percentage of the maximum snow depth in the Olympic Mountain range.
Our best estimate of maximum snow depth in the range comes from the Buckinghorse SNOTEL meteorological station (https://www.ncdc.noaa.gov/cdo-web/datasets/; Network ID: GHCND:USS0023B18S), located at 1484 m in the southern reaches of the Elwha Valley in the core of the range (Fig. S4 and S5). This station records the highest monthly snow depth measurements within the range. In the final step, we smoothed mean monthly snow cover data (2001-2015) using a bilinear algorithm and multiplied these percentages by the mean monthly snow depth station data (2009-2015). We do not assert that the resulting maps (Fig. S4) are completely accurate. However, we have calculated them to constrain the possible effect snow shielding may have on the calculation of erosion rates across the range. We assume a snow density of 0.25 g/cm3 for shielding calculations.

Figure S3. Monthly estimated snow depth map. The dot marks the position of the Buckinghorse SNOTEL meteorological
Figure S4. Mean monthly snow depth measurements from the Buckinghorse SNOTEL meteorological station. These means are calculated for the years 2009-2015.

Table S1. Laboratory and isotopic data for new Olympic Mountain samples.

Sample Name	Effective Latitude (°N)	Centroid Longitude (°E)	Effective Elevation (m)	Quartz (g)	Be from spike (g)	Total Al from ICP (g)	Laboratory Be Number	Laboratory Al Number	³⁰Be/²⁶Be from AMS	³⁰Be/²⁶Be from AMS	Be Blank Used	³⁰Al/²⁷Al from AMS	³⁰Al/²⁷Al from AMS	Al Blank Used
WA1501	47.761893	-123.38950	1397	90.382	3.29E-04	9.62640E-03	s97728	s99935	5.0260E-14	2.5300E-15	BA10	s99935	3.257E-14	2.850E-15
WA1502	47.856058	-123.57330	1266	88.882	3.29E-04	1.81515E-02	s97729	s99935	3.9650E-14	2.0600E-15	BA11	s99935	1.065E-14	1.500E-15
WA1503	47.96357	-123.65440	1195	88.350	3.28E-04	1.64485E-02	s97730	s99935	2.9910E-14	1.7300E-15	BA11	s99935	9.386E-15	1.400E-15
WA1519	47.86627	-123.65900	1421	90.386	3.28E-04	1.86600E-02	s97731	s99935	1.4260E-14	1.1260E-15	BA10	s99947	2.6660E-15	7.492E-16
WA1520	47.90246	-123.77010	1184	81.778	3.27E-04	2.06585E-02	s97732	s99935	4.2850E-14	2.1100E-15	BA10	s99951	1.303E-14	1.670E-15
WA1522	47.977417	-123.71920	1252	51.239	3.26E-04	6.14435E-03	s98046	s99935	3.8700E-14	2.5900E-15	BA11	s10029	5.012E-14	3.490E-15
WA1523	47.89053	-123.63360	1404	73.762	3.28E-04	9.11105E-03	s97733	s99935	1.4880E-14	1.0900E-15	BA10	s99955	3.876E-15	8.750E-16
WA1524	47.832887	-123.70700	1505	99.716	3.47E-04	1.80045E-02	s97739	s99935	1.3250E-14	1.0000E-15	BA19	s9980	5.4300E-15	1.010E-15
WA1525	47.862877	-123.29530	1547	84.053	3.27E-04	1.04215E-02	s97735	s99967	2.3500E-14	1.4600E-15	BA10	s99967	9.652E-15	1.450E-15
WA1526	47.674477	-124.06220	550	99.299	3.28E-04	2.15585E-02	s97734	s99959	9.1580E-14	3.7000E-15	BA10	s99959	2.2960E-14	2.280E-15
WA1527	47.616827	-123.62340	1100	92.130	3.27E-04	1.92015E-02	s97735	s99976	4.8860E-14	2.4200E-15	BA10	s99976	1.731E-14	1.810E-15
WA1537	47.70025	-123.41140	1147	94.016	3.48E-04	8.34405E-03	s97740	s99984	2.2430E-14	1.4400E-15	BA10	s99984	1.722E-14	1.920E-15
WA1538	47.73078	-123.27090	1439	59.680	3.48E-04	1.07050E-02	s97741	s99988	5.0490E-14	2.3900E-15	BA19	s99988	2.849E-14	2.450E-15
WA1539	47.917853	-123.76290	1258	92.504	3.48E-04	1.49705E-02	s97742	s99992	8.6810E-14	3.5100E-15	BA19	s99992	4.037E-14	3.120E-15

Table S2. Blank data for new Olympic Mountain samples.

Blank Name	Laboratory Be Number	Be from spike (g)	³⁰Be/²⁶Be from AMS	³⁰Be/²⁶Be from AMS	Be Standard	Laboratory Al Number	Al from spike (g)	³⁰Al/²⁷Al from AMS	³⁰Al/²⁷Al from AMS	Al Standard
BA1	s09045	3.2750E-04	1.8410E-15	4.9500E-16	07KNSTD	--	--	--	--	--
BA10	s09737	3.2739E-04	1.9620E-15	3.6900E-16	07KNSTD	--	--	--	--	--
BA19	s09746	3.4758E-04	2.1870E-15	4.2600E-16	07KNSTD	--	--	--	--	--
BA3	--	--	--	--	--	s10024	2.5761E-03	1.647E-15	1.028E-15	KNSTD
BA11	--	--	--	--	--	s99967	2.5512E-03	1.905E-16	6.079E-16	KNSTD
BA20	--	--	--	--	--	s10008	2.5582E-03	2.077E-16	6.176E-16	KNSTD
Table S3. Shielding and erosion rate comparisons.

Sample Name	Topographic Shielding	Snow/Ice Shielding	Total Shielding	Topo+Snow Erosion Rate (m/Myr)	Erosion Rate 2σ (m/Myr)	Topo Only Erosion Rate (m/Myr)	Erosion Rate 2σ (m/Myr)	Percent Difference (%)
WA1501	0.95	0.87	0.82	638	118	726	136	12
WA1502	0.96	0.85	0.80	718	134	842	160	15
WA1503	0.95	0.86	0.81	930	183	1068	212	13
WA1519	0.95	0.85	0.80	2511	618	2922	725	14
WA1520	0.94	0.90	0.85	610	112	666	123	8
WA1522	0.95	0.87	0.82	432	90	492	103	12
WA1523	0.95	0.83	0.78	1881	442	2238	265	16
WA1524	0.94	0.87	0.81	3117	782	3558	898	12
WA1525	0.95	0.85	0.80	1451	301	1691	355	14
WA1526	0.97	0.96	0.92	224	37	235	39	4
WA1527	0.95	0.87	0.82	564	104	622	115	9
WA1537	0.93	0.86	0.79	1213	256	1396	297	13
WA1538	0.95	0.84	0.79	635	116	748	138	15
WA1539	0.96	0.87	0.83	318	55	361	63	12
U-EFMC	0.98	0.97	0.95	171	34	176	35	2
L-EFMC	0.98	0.97	0.96	129	20	131	20	2
U-WC	0.97	0.96	0.93	158	25	164	26	4
L-WC	0.98	0.96	0.93	199	31	207	32	4
DEN104	0.99	0.97	0.96	114	43	117	44	2
DEN106	0.97	0.96	0.93	237	110	246	114	3
DEN101	0.98	0.96	0.94	223	176	231	182	3

References
Belmont, P., Pazzaglia, F., and Gosse, J. C.: Cosmogenic 10 Be as a tracer for hillslope and channel sediment dynamics in the Clearwater River, western Washington State, Earth and Planetary Science Letters, 264, 123-135, 2007.

Hall, D., and Riggs, G.: MODIS/Terra snow cover Monthly L3 Global 0.05Deg CMG, Version 6. In: NASA National Snow and Ice Data Center, Distributed Active Center, Boulder, Colorado, USA, 2015.