Day and blue light modify growth, cell physiology and indole-3-acetic acid production of *Azospirillum brasilense* Az39 under planktonic growth conditions

R. Molina, G. López, A. Coniglio, A. Furlan, V. Mora, S. Rosas and F. Cassán

Laboratorio de Fisiología Vegetal y de la Interacción Planta-microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina

Keywords
Azospirillum, biofilms, cell aggregation, indole-3-acetic acid, light environment, oxidative stress.

Abstract
Aim: In this work, we evaluated the effects of light on growth, cell physiology and stress response of *Azospirillum brasilense* Az39, a non-photosynthetic rhizobacteria, under planktonic growth conditions.

Methods and results: Exponential cultures of Az39 were exposed to blue (BL), red (RL) and daylight (DL) or maintained in darkness for 24, 48 and 72 h. The biomass production and indole 3-acetic acid (IAA) biosynthesis increased by exposition to DL. Conversely, BL decreased IAA concentration through a direct effect on the molecule. The DL increased superoxide dismutase activity, hydrogen peroxide and thiobarbituric acid reactive substances levels, but the last one was also increased by BL. Both DL and BL increased cell aggregation but only BL increased biofilm formation.

Conclusions: We demonstrated that both BL and DL are stress effectors for *A. brasilense* Az39 under planktonic growth conditions. The DL increased biomass production, IAA biosynthesis and bacterial response to stress, whereas BL induced cell aggregation and biofilms formation, but decreased the IAA concentration by photooxidation.

Significance and Impact of the Study: Blue light and DL change growth capacity, cell physiology and plant growth promotion ability of *A. brasilense* Az39 and these changes could be considered to improve the production and functionality of biofertilizers.

Introduction
There are many light-induced photosynthetic bacteria that rely on light acquisition to fulfill their life cycle. However, light can be either beneficial or harmful for non-photosynthetic micro-organisms (Van Der Horst and Hellingswerf 2004). Daylight contains a wide range of energy with wavelengths ranging from radio waves (30 km–300 mm) to X-rays (90 nm–10 pm). Despite this, the energies derived from the visible and infrared regions of the spectrum maintain life in most biological systems (Kraiselburd et al. 2017; Schumacher 2017). The lethal or detrimental effects for life are concentrated in the regions of violet (380–450 nm) and blue (450–495 nm) while the beneficial effects are concentrated in the region of red (660–730 nm). The role of light-induced proteins in photosynthetic bacteria is well known (Giraud et al. 2002); however, the functions of such proteins are still a matter of study in non-photosynthetic bacteria (Altschul et al. 1997).

Members of genus *Azospirillum* are Gram-negative, alpha-proteobacteria with the ability to colonize over a hundred plant species (Bashan and de-Bashan 2010). Despite being defined as a non-photosynthetic bacterium, sequences coding for phytochromes (PHY) and bacterio-phytochrome heme-oxygenase proteins have been identified in the *Azospirillum brasilense* Az39 genome (Rivera et al. 2014a, 2014b). These proteins would be responsible for the bacterial capacity to perceive and respond to daylight or/and particularly to the red light (630 nm).
Although the effects of red light on growth, physiology and life style on photosynthetic bacteria are well known, there is very little information about the effects of such wavelength in non-photosynthetic ones. In *Deinococcus radiodurans*, an extremophilic and radiation-resistant bacterium, phytochromes are involved in photooxidative stress avoidance by inducing carotenoid biosynthesis (Davis *et al.* 1999). However, in *A. brasilense* Sp7, these proteins have been associated to red light tolerance by carotenoids independent pathways (Kumar *et al.* 2012). This publication represents the unique reference showing the effect of light on *A. brasilense*, with a particular emphasis on red light. On the other hand, the genome sequence analysis of *A. brasilense* Az39 has not revealed the presence of any coding sequences for other photoreceptors, such as yellow photoactive proteins (PYP or xanthopsins), light oxygen or voltage (LOV) proteins, cryptochromes or blue-light sensing using flavin (BLUF) proteins, so we have no molecular or physiological references to explain the behaviour of this bacterium in the presence of other light ranges. A previous study performed in our laboratory has shown that if *A. brasilense* Az39 is cultured under solid or semisolod culture medium conditions, the exposure to BL or DL was lethal and inhibited bacterial growth and swimming motility (Molina *et al.*, 2020). By contrast, the exposure to RL did not show any harmful effects and bacteria showed a similar behaviour than those cultured under D (Molina *et al.*, 2020).

Members of the genus *Azospirillum* are considered as metabolically versatile because they have been isolated from a wide range of environmental conditions (Reis *et al.*, 2015). This versatility would reside in their genotypic and phenotypic plasticity and their ability to respond to stressing environmental conditions, such as high and low temperatures, pH variations, low nutrient availability, metal concentrations, pesticide residues and herbicides among other environmental factors (Bashan *et al.*, 2004). The exposition to environmental stress induces an increase in the concentration of peroxide, superoxide, hydroxyl radical and singlet oxygen, defined as reactive oxygen species (ROS). ROS are natural products of normal oxygen metabolism and are important molecules for bacteria signalling and homeostasis (Imlay 2013). However, their increase resulting from stress conditions can become deleterious by reacting with DNA or RNA, lipids (lipid peroxidation) and proteins, provoking oxidative damage (Imlay 2003). Enzymes such as catalasas (CAT) and superoxide dismutases (SOD) ameliorate the damaging effects of hydrogen peroxide and superoxide, respectively (Gratão *et al.*, 2015).

Azospirillum brasilense has been one of the most widely used plant growth promoting rhizobacteria in agriculture in the last 40 years worldwide (Cassán *et al.*, 2020). The selection of *A. brasilense* strains for biofertilizers production mostly depends on the bacteria ability to grow, fix atmospheric nitrogen and produce phytohormones, mainly indole-3-acetic acid (IAA) (Tien *et al.*, 1979). Additionally, the cellular behaviour and the bacterial capacity to form aggregates, flocs or other resistance cellular structures (i.e. cystic forms) that would favour their survival in unfavourable conditions as well as their capacity to respond to environmental stresses, are important factors taken into account for selection (Sadasivan and Neyra 1985). Several physical (temperature or gas concentration), physiological (nutrient availability) or biochemical effectors (presence of signal molecules) in the medium regulate bacterial growth, auxins biosynthesis (Molina *et al.*, 2018), as well as the cell behaviour through cell aggregates and biofilms formation (Karatan and Wattenberg 2009), but no references are available in relation to the effects of light on these bacteria.

Our hypothesis claims that light acts as a strong environmental stress effector and changes bacterial physiology and some of the most significant attributes related to the *Azospirillum*’s biofertilizers strain selection. Therefore, the main objective of this paper was to evaluate the effects of DL, RL and BL on bacterial growth, cell physiology and plant growth promotor capacity of *A. brasilense* Az39 under planktonic growth conditions.

Materials and methods

Biological materials and growth conditions

Azospirillum brasilense Az39 was obtained from the Instituto de Microbiología y Zoología Agrícola (IMyZA) at the Instituto Nacional de Tecnología Agropecuaria (INTA) (Castelar, Buenos Aires, Argentina). The phenotypic variant Az39 pFAJ64, obtained by Rivera *et al.* (2018) according to the methodology proposed by Vanstockem *et al.* (1987) was also used. This strain contains the plasmid pFAJ64 with a tetracycline resistance (Tc) cassette and an *ipdC-gusA* fusion and it was constructed to quantify the expression of *ipdC* which codes for the enzyme Indole-3-pyruvate decarboxylase (EC:4.1.1.74) by the β-glucuronidase reaction (Ona *et al.*, 2005). Both *A. brasilense* Az39 and the transformed strain (pFAJ64) were grown in sterile Luria Bertani broth medium (Bertani 1951) in darkness until OD$_{595}$ reached 1.5 at 36°C overnight. Then 40 µl from this pre-inoculum was transferred into an Erlenmeyer flask containing sterile LB medium, which was incubated in a dark growth chamber at 36°C with 200 rev min$^{-1}$ shaking until exponential growth phase corresponding to OD$_{595}$ 0.1 was reached. The inoculum was then distributed in equal volume (20 ml)
into sterile polystyrene petri dishes with UV radiation absorption at 280–290 nm (Deltalab, Barcelona, Spain). This experimental model was performed to increase the exposition of culture medium to the different light conditions. Then, inoculated plates were independently exposed to experimental conditions related to the presence or absence of light: daylight (DL) (56 µW mm⁻²), generated by a 75 watt incandescent light lamp (General Electric Lighting, East Cleveland, Ohio, USA), blue light PAR 38 (BL) (11 µW mm⁻²) and red light PAR 38 (RL) (13.9 µW mm⁻²), generated by 450 and 660 nm LED lamps, respectively (Osram, Regensburg, Germany), and cultured at 36°C for 24, 48 and 72 h in static conditions. In all cases, a control treatment was performed by maintaining the same growth media and growth conditions in darkness with double aluminium foil. A Vernier, Spectro Vis-Plus spectrophotometer (USA) was used to confirm the wavelength values for each light source, and their intensity was measured using a Tenmars TM-201 lux meter (Taiwan).

Biomass production and cell viability

Biomass production was measured at different incubation times by optical density at 595 nm (Zeltex ZL5000P, Argentina). The number of viable cells was obtained in agar plates containing LB culture medium, modified by the addition of 15 ml l⁻¹ Congo Red indicator (LB-CR) (Molina et al. 2014), through the microdroplet technique (Rivera et al. 2014a, 2014b). The colony forming units per millilitre (CFU per ml) were calculated considering dilution and inoculation factors (CFU per ml = df × if × 50 (df: dilution factor; if: inoculation factor)) and converted to log10 for the figures. Inoculated plates were incubated at 36°C for 72 h and the procedure was performed in triplicate.

Indole-3-acetic acid biosynthesis

IAA production

Both *A. brasilense* Az39 and Az39 pFAJ64 cultures obtained as previously described were centrifuged at 13 500 g for 10 min to collect the supernatant. Identification and quantification of IAA was conducted by reverse-phase HPLC (Rivera et al. 2018). Briefly, an Agilent 1200 Series HPLC system with Quaternary Pump, which features an Agilent Eclipse XDB-C18 column (4.6 mm diameter, 150.0 mm length and 5.0 µm particle size), was used at a flow rate of 1 ml min⁻¹. Elution was performed with a mixture of H₂O and MeOH (60 : 40) containing 0.5% acetic acid, and monitored at 280 nm. A non-inoculated culture medium was used as control. The IAA production under similar experimental conditions was confirmed in *A. brasilense* Az39 wild-type strain. The concentration was expressed as IAA µg ml⁻¹.

ipdC gene expression

The indole-3-pyruvate pathway (IPyA) has been proposed as the main route for IAA biosynthesis in *A. brasilense*, with *ipdC* being the key regulator gene (Costacurta et al. 1994). The expression of *ipdC* was analysed in *A. brasilense* Az39 pFAJ64 by the β-glucuronidase activity in microtiter plates, using GusA extraction buffer and p-nitrophenyl β-D-glucuronide as substrate (Jefferson 1987). Cultures obtained as previously described were centrifuged at 13 500 g for 10 min to collect the supernatant. Activity was expressed in Miller (1972) units and represented the mean of three measurements and three biological replicates.

Indole-3-acetic acid degradation

The direct effect of light on the IAA molecule was evaluated. Petri dish plates containing 20 ml of no-inoculated LB medium and modified by the addition of an IAA solution to obtain a final concentration of 10 µg ml⁻¹ were used. The plates containing the cultured medium modified with the hormone were exposed to white, blue and dark light for 24, 48 and 72 h, respectively, at 36°C as described above. After exposition, the IAA concentration was determined by HPLC as previously described.

Cellular behaviour

Cell aggregation

Cell aggregation was determined according to Madi and Henis (1989), applying modifications according to Burdman et al. (1998). The volume contained in each plate exposed to different light sources or darkness conditions was transferred into a conical tube and allowed to stand for 20 min. Then, turbidity was measured at 540 nm using a Zeltex ZL5000P spectrophotometer (OD1). The culture was homogenized for 1 min and the turbidity was measured again (OD2). The aggregation percentage was calculated according to the following equation %AP (OD₂−OD₁) × 100/OD₂.

Biofilm formation

The biofilm forming capacity was quantitatively analysed by measuring the number of cells attached to a glass disk incorporated within the Petri dish containing the bacterial culture (Prouty et al. 2002), using the crystal violet staining method proposed by O’Toole and Kolter (1998) with modifications. At each exposure time, the glass was taken under aseptic conditions, washed with 1 ml of NaCl (0.9% w/v) and treated with 1 ml of crystal violet indicator (0.1% w/v) over 20 min. Then, the glasses were
washed three times with NaCl (0-9% v/v). Biofilm formation was quantified by adding 1 ml of 95% ethanol to each crystal violet stained glass. The OD560 was measured in a Zeltec ZL5000P spectrophotometer (Zeltec).

Photooxidative stress and antioxidant response

Hydrogen peroxide

The hydrogen peroxide content was estimated spectrophotometrically by its reaction with potassium iodide (KI) (Alexieva et al. 2001). Azospirillum brasilense Az39 was grown in LB medium as previously described. Cultures were centrifuged at 12,000 g for 10 min and washed twice with a physiological solution. The pellets were resuspended in 50 mmol l⁻¹ potassium phosphate buffer (pH 7) and 10% (v/v) trichloroacetic acid (TCA) and sonicated (amplitude: 80; time: 2 min; pulse: every 6 s). The extract was centrifuged for 15 min at 4°C and 2000 g. The supernatant (0-16 ml) was mixed with 0-16 ml of 100 mmol l⁻¹ K-phosphate buffer and 0-68 ml reagent (1 mol l⁻¹ KI w/v in water). The reaction was kept in the dark for 1 h after which the absorbance at 390 nm was recorded. The hydrogen peroxide content was estimated from a standard curve prepared with aliquots of 1 mmol l⁻¹ H₂O₂.

Lipid peroxidation

Lipid peroxidation evaluation was performed according to Heath and Packer (1968) with some modifications. In this reaction, thiobarbituric acid (TBA) reacts with the aldehyde group of malondialdehyde (MDA) (final product of lipoperoxidation) and other aldehyde reactive substances (TBARs) to produce a pink compound with a characteristic extinction coefficient of 155 mmol l⁻¹ cm⁻¹. Lipid peroxidation was quantified by adding 1 ml of 95% ethanol to 1 NaCl (Alexieva et al. 2001). A. brasilense Az39 was grown in LB medium as previously described. Cultures were centrifuged at 12,000 g for 10 min and washed three times with NaCl (0-9% w/v). Biofilm formation was quantified by adding 1 ml of 95% ethanol to each crystal violet stained glass. The OD560 was measured in a Zeltec ZL5000P spectrophotometer (Zeltec).

Antioxidant enzyme

Bacterial cultures were centrifuged as described earlier. The pellets were resuspended in 2 ml of extraction buffer (50 mmol l⁻¹ phosphate buffer, 1 mmol l⁻¹ Na-EDTA pH 7-5), sonicated (amplitude: 80; time: 2 min; pulse: every 6 s) and centrifuged again. Supernatants were used to determine enzyme activities. SOD activity (EC 1-15-1.1) was determined through the technique proposed by Beauchamp and Fridovich (1973), using nitroblue tetrazolium blue (NBT) in the presence of riboflavin. A volume of 1 ml reaction mixture containing 0-54 mmol l⁻¹ EDTA, 75 mmol l⁻¹ NBT, 777 mmol l⁻¹ methionine and 50 mmol l⁻¹ potassium phosphate buffer (pH 7-8), 4 mmol l⁻¹ riboflavin and 5 µg of the protein extract was placed under fluorescent light for 15 min. The specific SOD activity was determined by spectrophotometry at 560 nm and was expressed as U mg⁻¹ protein. One unit of SOD activity was defined as the amount of enzyme required to inhibit NBT reduction by 50%. CAT activity (EC 1-11-1.6) was determined using the technique proposed by Aebi (1984) in a reaction mixture containing 0-1 mg of enzyme protein, 50 mmol l⁻¹ potassium phosphate buffer (pH 7-4) and 12.5 mmol l⁻¹ H₂O₂. The specific activity of CAT was determined by the decomposition of H₂O₂ by measuring the decrease in absorbance at 240 nm. To estimate the enzyme units, the molar extinction coefficient of H₂O₂ (436 mol l⁻¹ cm⁻¹) was used. Total protein content was evaluated according to Bradford (1976) using bovine serum albumin as standard.

Statistical analysis

All assays were performed in triplicate with three repetitions for each growth condition. Data obtained were tested with ANOVA and honestly significant difference Tukey, with a 95% confidence level. Infoast software (Universidad Nacional de Córdoba, Argentina) was used to carry out the analyses, and the graphs were designed using GraphPad Prism 5.0 software (GraphPad Software, San Diego, California, USA).

Results

Biomass production and cell viability

The exposure of A. brasilense Az39 cultures to daylight (DL) caused a significant increase (29%) in biomass production in comparison with the control treatment (darkness, D) after 24-h exposure (Fig. 1a). At 48 h, there were no significant differences, but an increase trend of 6% was observed in the case of DL exposure. This trend remained significant and it was about 11% after 72-h exposure. Figure 1b shows that bacterial exposure to blue light (BL) caused a significant increase of 12% in biomass production in comparison with D, but it was reversed
after 48 h where D showed a non-significant increase of 5%. There were no significant differences between BL and D after a 72-h exposure. Figure 1c shows that bacterial exposure to red light (RL) only produced a significant difference of 10% biomass after 48 h of exposure in comparison with D. The cell viability (CFU per ml) was similar under all experimental conditions and there were no statistically significant differences between the treatments (Fig. S1). In summary, only the A. brasilense Az39 exposure to DL caused an increase in the biomass production in comparison with the control (D) or the other treatments (BL and RL), along the assay, but this behaviour was not correlated with a significant increase in the number of cells in the culture medium.

Indole-3-acetic acid biosynthesis

Some environmental factors affect IAA biosynthesis in A. brasilense. In this work, the effects of light on the production and accumulation of IAA in the culture medium were evaluated, as well as the incidence of this factor on the expression of ipdC, the key gene of the hormone biosynthesis pathway. As seen in Table 1, the IAA concentration in A. brasilense Az39 pFAJ64 cultures exposed to DL was 1.8 times higher than the concentration reached in the control maintained in darkness (D) after 24-h exposure. The same treatment caused two times increase in the IAA concentration in comparison to the culture exposed to RL which, in turn, presented a negative difference (14%) in relation to D. In the case of BL caused a 1.4 times higher bacterial capacity to produce the hormone, in comparison with D. After 48 h, DL treatment showed a maximum increase of 2.1 times in IAA concentration in comparison with D. In the case of RL, the IAA production was 33% lower than that in the case of D. For BL, there was no significant difference in comparison to the control kept in dark conditions. After 72 h of exposure to DL, the IAA concentration maintained a constant increase (2.1 times higher) in comparison to D. In the case of RL, there were no significant differences in comparison with the D treatment. On the other hand, cultures exposed to BL showed a 2.5 and 2.2 times lower in IAA concentration in comparison to the same treatment at 48 h and the control treatment (D) at 72 h. Taking into account this result, the stability of IAA molecule in non-inoculated culture medium exposed to light conditions was evaluated and it is summarized in Fig. S2. The non-inoculated culture medium supplemented with IAA 10 μg ml⁻¹ and exposed to DL and BL showed a lower IAA concentration than in D, in which the hormone concentration was higher and unalterable throughout the experiment. The BL reduced the IAA concentration by 30 and 70% after 48- and 72-h exposure, in comparison to the control D.

As seen in Table 1, the bacteria exposure to DL increased by 1.7 times the ipdC gene expression compared to D. The expression was maximum after 48 h, but it remained constant until 72 h, when it was 2.1 times higher than D. When the bacteria were exposed to BL, the ipdC expression was 1.4 times higher in comparison
to D after 24 h; however, later on, no significant differences were observed regarding this treatment. Finally, when bacteria were exposed to RL, the gene expression was increasing with time, but always remained below D. Summarizing, DL was the only treatment causing a significant increase in both the ipdC expression and the IAA concentration in the culture medium. In the case of BL, RL and D, the ipdC expression was similar, but a significant reduction in the IAA concentration was found in BL (Fig. S2). This behaviour was also slightly observed when the bacteria were exposed to DL. In summary, DL increased both the expression of ipdC and the accumulation of IAA in the culture medium, while BL, although it increased the expression of ipdC, reduced the concentration of the hormone in the culture medium through a direct effect on the molecule.

Cellular behaviour

In certain bacterial genera, cell aggregation and biofilm production are related to the bacteria response to environmental stress. In this work, the effects of light on both cell aggregates and biofilm production were evaluated in *A. brasilense* Az39. In Fig. 2, the DL and BL treatments resulted in a significant increase in the cellular aggregation percentage of *A. brasilense* Az39 in comparison to D. This increase was proportional to the exposure time, since after 24 h there was an increase of 40 and 66% for DL and BL, respectively. After 72 h of exposure, these treatments caused a maximum difference of 59 and 78% in comparison with D. In the case of RL, the lowest percentage of aggregation was observed in comparison with DL and BL, and the behaviour of the bacteria exposed to this wavelength was generally similar to D.

Figure 3 shows that the production of biofilms was time-dependent in all cases, reaching the highest production after 72 h of culture, regardless of the light treatment. Under dark conditions, the formation of biofilms was 80% higher than in the other treatments after 24 h; however, this difference disappeared after 48 h of incubation. Cultures exposed to BL showed a biofilm production lower than the D after 24- and 48-h exposure. However, BL exposure caused a maximum biofilm production after 72 h with a 23% increase in comparison to D. The DL and RL induced the lowest biofilm production compared to the rest of the treatments. In these last two conditions, the production of biofilm was on average about 30% lower than in the control at 48 and 72 h. In summary, the exposure to BL and DL caused an increase in the production of cell aggregates in planktonic cultures of *A. brasilense* Az39, but in the case of BL also caused an increase of the biofilm production.

Photooxidative stress and antioxidant response

As we have previously mentioned, BL and DL are lethal and inhibit the *A. brasilense* Az39 growth in solid culture.
medium. On the contrary, under planktonic growth conditions, bacteria are able to grow and develop. Analysing the oxidative state and the antioxidant response of Az39 to such conditions allows us to understand the bacterial perception and cell response to light stress. Figure 4a shows the production of hydrogen peroxide in cultures of A. brasilense Az39 exposed to different wavelengths compared to the treatment D. The DL caused the highest production of hydrogen peroxide, being six times higher than the values reached in D. A similar behaviour was observed in the case of BL, where the peroxide production was 1.8 times higher than in D. Finally, in the case of RL, the production of hydrogen peroxide was about 0.6 times lower than that produced in D and this difference was statistically significant. In summary, both BL and DL caused an increase in the production of hydrogen peroxide, unlike RL in which the levels were lower than in treatment D. Figure 4b shows that the production of MDA (TBARs) in the DL treatment was 1.8 times higher than in BL. No detectable levels of this compound were recorded in the RL or D conditions. On the other hand, the RL did not produce significant changes and presented a behaviour similar to that observed in D.

As shown in Fig. 5a, the catalase activity (CAT) of cultures exposed to DL, BL and RL treatments was lower than that of cultures kept in D. The CAT activity of cultures exposed to D was 35% higher than the CAT activity of cultures exposed to DL and RL; while in the case of BL, the CAT activity was 52% lower than the one measured in the control treatment. The SOD activity is summarized in Fig. 5b and presented an opposite pattern to the one observed for the CAT activity, where the cultures exposed to different types of light presented a higher activity than in D. When the bacteria were exposed to DL, the enzyme activity was 28% higher than when exposed to D and this difference was statistically significant. In the case of BL and RL, SOD activities were, respectively, 33% and 29% higher than in the D condition, although those differences were not statistically significant. In summary, BL and DL produced an increase in the hydrogen peroxide and MDA concentrations indicating an oxidative stress condition. On the other hand, at the level of antioxidant response, increases in SOD but not CAT activity were induced by DL (significant) and BL (not significant).

Discussion

Azospirillum brasilense is one of the most important rhizobacteria used in agriculture worldwide, but the information about the bacterial response to light is limited or
processes. Similar observations were previously reported by adsorption (i.e. nutrients) and refraction (i.e. water). This matrix decreases the exposure of the bacteria to light and nutrients such as amino acids, vitamins and sugars. In conditions, bacteria are immersed and surrounded by water of stress. Under liquid culture medium (planktonic), conditions, bacteria were able to grow, but showing clear indications of stress. In solid culture medium, light directly affects bacteria. In solid culture medium, light directly affects both components of the culture medium and bacteria cells deposited at the surface producing a bigger exposure of them to the light. Bacterial death due to the chemical modification of the culture medium has been previously explained by Boyd et al. (2019). In this article, we found that BL and DL were lethal for A. brasilense Az39 and cells were able to grow, but showing clear indications of stress. Under liquid culture medium (planktonic) conditions, bacteria are immersed and surrounded by water and nutrients such as amino acids, vitamins and sugars. This matrix decreases the exposure of the bacteria to light by adsorption (i.e. nutrients) and refraction (i.e. water) processes. Similar observations were previously reported by Elmnasser et al. (2007) for other bacteria such as Listeria monocytogenes, Pseudomonas fluorescens and Photobacterium phosphoreum. When these bacteria were exposed to light in solid culture medium, there was a drastic decrease in cell viability; however, under planktonic growth conditions, they showed lower sensitivity to the light.

In this work, we evaluated the photooxidative stress and the antioxidant response of A. brasilense Az39. The bacteria exposure to DL increased the levels of H$_2$O$_2$ in comparison to the control treatment and this parameter was also associated with an increase in TBARS levels, not only when exposed to DL but also to BL. From these results, it could be proposed that DL, and to a lesser extent, BL, would be effectors of oxide-reduction (redox) changes in the metabolism of the bacterium and consequently increase the generation of ROS. Considering both the H$_2$O$_2$ and malondialdehyde production, the DL and to a lesser extent BL modify the oxidative state of A. brasilense Az39 membranes, in what seems to be a direct consequence of a lipid peroxidation process. Membrane lipids are the first molecules to be affected by an oxidative burst because free radicals directly attack polyunsaturated fatty acids in the membranes and thereby initiate lipid peroxidation. TBARS are dialdehydes formed as secondary metabolites during the oxidation of polyunsaturated fatty acids and are used as indicators of lipid peroxidation and oxidative stress (Dourado and Cesar 2015; Esposito et al. 2015). SOD and CAT are enzymes involved in the protection of cells against excessive production of O$_2$- and H$_2$O$_2$, respectively (Cabisco et al. 2000). In a general way, SOD is critical for antioxidant responses to herbicides, heavy metals, and other biotic and abiotic factors; however, little is known about their activity in bacteria in the presence of light. In relation to the SOD activity, an increase was detected when exposed to DL; while in D the levels of this enzyme were lower. The H$_2$O$_2$ can be produced from SOD activity during aerobic cell growth or as a product of redox reactions with flavoproteins. In relation to CAT activity, it was superior in D compared to treatments exposed to light, including DL. From this observation, it could be assumed that the H$_2$O$_2$ detoxification system is not active through the CAT activity. Both catalases and peroxidases are the primary degraders of H$_2$O$_2$ in many bacteria. However, it has been proposed that a wide variety of additional enzymes could fulfill similar functions such as thiol peroxidase, comigratory bacterioferritin, glutathione peroxidase, cytochrome c peroxidase and rubreritrins (Mishra and Imlay 2012). Each of these enzymes is able to degrade H$_2$O$_2$ in vitro, but their contribution in vivo remains unclear. According to Méndez-Gómez et al. (2016), CAT and SOD activities are not always expressed.

![Figure 5 Activities of the enzymes (a) CAT (μmol H$_2$O$_2$ min$^{-1}$ mg$^{-1}$ protein) and (b) SOD (U mg$^{-1}$ protein) in cultures of Azospirillum brasilense Az39 in Luria-Bertani liquid medium exposed to different light conditions: white light (DL); blue (BL); red (RL) and darkness (D), after 24-h incubation at 36°C. The bars correspond to the mean ± the standard deviation. The same letters indicate that there are no significant differences between treatments, according to Tukey test ($P < 0.05$).](https://example.com/figure5.png)
simultaneously in *Azospirillum*. They reported that SOD activity of *A. brasilense* was modified by exposure to plant cell wall effectors, but CAT activity remained unchanged. Bacteria cells generally have multiple detoxification systems sometimes working alternately or decoupled so that the absence of one is hidden by the presence of another, a single enzyme would not be enough (Mishra and Imlay 2012). Overall, the redox status indicators analysis showed the detrimental effects of DL and BL on bacterial metabolism, and allowed to explain further responses induced by the exposure to these distinctive light sources.

Bacteria respond to adverse environmental factors such as UV radiation, heavy metal toxicity, pH changes, dehydration, salinity and the presence of antibiotics or antimicrobial agents through the formation of specialized structures called biofilms (Gilbert et al. 2002; Barragan et al. 2011). Significant differences in the biofilms formation were observed between the treatments under our experimental conditions. The longest time (72 h) and BL exposure showed an increase in the biofilms formation, which was directly correlated with the cell aggregation phenomenon. For most of the studied cases, the ability to form biofilms is related to an increased virulence (colonization capacity) or bacterial competition; while in the case of *Azospirillum* the biofilms formation would be also related with the bacterial capacity to overcome environmental stress conditions, such as light. The *A. brasilense* capacity to increase biofilm production by exposure to BL seems to be a particular characteristic of these bacteria. Kahl et al. (2020) reported a decrease in biofilm production in *P. aeruginosa* PA14 due to prolonged exposure to BL. Chebath-Taub et al. (2012), reported that BL produced a delayed antibacterial effect on *Streptococcus mutans*, although the bacterium did not modify its ability to produce biofilms.

Under environmental stress conditions, *Azospirillum* induces aggregation and flocculation in liquid culture media (Pereg 2015). The results presented in this work demonstrate an increase in the percentage of cell aggregation after exposure to BL and DL. The cell aggregation process is closely related to the nutritional condition in which the micro-organisms are found, but it also depends on certain environmental signals to which it is exposed (Burdman et al. 2000a, 2000b). In the case of *A. brasilense*, there is concrete evidence on the role of extracellular polysaccharides (exopolysaccharides, EPS and capsular polysaccharides, CPS) in the process of cell aggregation (Burdman et al. 2000a, 2000b). The results presented in this work demonstrate an increase in the percentage of cell aggregation after exposure to BL and DL. Previous studies have shown that cell aggregation phenomenon in *A. brasilense* is mediated by the composition of monosaccharides present in EPS (Burdman et al. 2000a, 2000b) and by proteins, such as the type of lectins (Nikitina et al. 2001). Despite the concentration of total EPS was not significantly modified by the exposure to DL and BL (data not shown), neither EPS composition nor lectins concentration was measured in our experiments to confirm this possibility. Taking into account that cell aggregation is also related to the presence of both type IV or Tad pili in certain micro-organisms (Shelud’ko and Katsy 2001) and considering that *A. brasilense* has Tad pili (Wisniewski-Dye et al. 2011) we consider this structure would be partly responsible for the cell aggregation under DL or BL exposition. Interestingly, *Sulfolobus solfataricus* showed an increase in cell aggregation as a result of the pili formation by exposure to light (Fröls et al. 2008).

The environmental stress induces significant morphological changes at the cellular level in bacteria, including loss of mobility, increased accumulation of reserve substances and production of exopolysaccharides, suggesting that cell surface remodelling is a strategic response to cope with a stressful condition (Bible et al. 2015). The bacterial biomass production was increased by the exposition to DL, but it did not correlate with an increase in the number of viable cells (CFU per ml) in the culture medium. This behaviour was opposite to that previously reported by Molina et al. (2020) using the same culture medium, but in solid state, where DL and BL where lethal for *A. brasilense* Az39. To understand this difference, we must consider that absorbance not only depends of the bacterial cells but also depends on the presence of other elements in the culture medium, such as exopolysaccharides (EPS), lipopolysaccharides (LPS), proteins, aggregates and other compounds released by bacteria into the culture medium as a result of their growth. Particularly, *Azospirillum* produces and releases into the surrounding medium carbohydrates, polysaccharides (exo- and lipo-) and proteins, among other components (Del Gallo and Haegi 1990). In this work, we did not find significant differences in the amount of exopolysaccharides produced by *A. brasilense* Az39 by exposure to BL or DL, so the increase in the optical density (biomass) could depend on additional components or metabolites produced and released by the bacteria into the culture medium. The cell aggregation was increased by exposure to BL and DL and biofilm production in BL so the cellular material responsible for cell adhesion would also been increased.

Indole-3-acetic acid is the phytohormone responsible for root growth and development promotion after inoculation with *A. brasilense* (Cassán et al. 2014). Recently, we have proven that both the cell viability and the ability of three strains of *A. brasilense* including Az39 to produce
and accumulate IAA in the culture medium are modified by the presence of different biotic and abiotic stress effectors, among which are considered the presence of several amino acids (Rivera et al. 2018), sodium salts (ionic stress), polyethylene glycol (osmotic stress), or temperature and light, among others (Molina et al. 2018). There are other reports showing the effects of several effectors on the biosynthesis of IAA in A. brasilense (Lucy et al. 2004). In fact, it has been proposed that IAA could act as a positive effector on the regulation of gene expression in this bacterium. Azospirillum is able to perceive the hormone in the culture medium and induces the expression of certain genes, including those related with IAA biosynthesis, such as the ipdC gene in a feed-forward model (Van Puyvelde et al. 2011). In other reports, the synthesis of the hormone was positively dependent on the amino acid l-tryptophan, which together with the presence of L-phenylalanine caused an increase in the ipdC gene expression (Rivera et al. 2018). Additionally, the deficiency of carbon and oxygen in the culture medium and the entrance to the stationary phase by the micro-organism are considered as positive effectors for the IAA biosynthesis (Ona et al. 2005). Summarizing, any environmental effector that modifies the ability of A. brasilense to synthesize IAA could modify its ability to promote plant growth. In this work, we reported that both the expression of ipdC and the IAA concentration were increased by the exposure to DL in A. brasilense Az39. On the contrary, in the presence of BL, although the bacterium increases the ipdC expression, a lower concentration of the hormone was found in the culture medium, as a result of a direct photooxidative effect on the molecule (Yamakawa et al. 1979). Considering the inability of the bacterium to degrade the hormone (Rivera et al. 2018) and the reduction of the IAA concentration observed after 72-h exposure to both BL and DL, we analysed the IAA stability in non-inoculated culture media exposed to light. It was observed that when exposed to blue light, the IAA concentration in the medium was inversely proportional to the incubation time, so it could be inferred that the stability of the molecule was directly affected and resulted in the destruction of this compound in the culture medium (Yamakawa et al. 1979). Summarizing, the exposure of A. brasilense Az39 to any wavelength increased its ability to produce IAA after different exposure times, but only day light significantly increased the production of this hormone with time.

Light is a beneficial environmental effector for photosynthetic micro-organisms (Biebl and Wagner-Döbler 2006). However, in those who are not able to perform this process, the impact of light on their metabolism and lifestyle can range from beneficial to damaging or even lethal. This behaviour supposes the capacity of such bacteria to perceive the light stimulus and to define a specific response. Thus, the light signal perception should depend on the presence of specialized molecules. Although a true photosynthetic apparatus is not available in non-photosynthetic bacteria, there are light-receiving structures, generally defined as photoreceptors with an associated role in the metabolism. The genome sequence of A. brasilense Az39 contains two genes for the synthesis of photoreceptor proteins fitting in the group of phytochromes (EC: 2.7.13.3), regulated by RL (630 nm) (Phy 1 ABAZ39_30745 and Phy 2 ABAZ39_31245). However, according to previous results (Molina et al. 2020) and to those generated in this work, bacterial exposure to RL did not generate any detectable change and showed similar behaviour than to the control D. In contrast, both DL and BL were responsible for most of the changes observed, but paradoxically, there are no sequences for BL receptor proteins in the genome of this bacterium. Kumar et al. (2012) reported that a mutant of A. brasilense Sp7, deficient in the expression of the phytochrome BphP1, had a lower biomass production capacity in rich liquid medium when exposed to RL in comparison with the wild type strain, for which no significant differences were observed by exposure to RL in comparison with the control in D. From these observations, the authors claimed the ability of the phytochrome BphP1 to regulate photodynamic stress in this bacterium. A. brasilense Sp7, contains 2 phytochromes sequences annotated as AbBphP-1 and AbBphP-2. One of the sequences (AbBphP-1) is homologous with AbrBphP-1 in the genome of Az39 and AtBphP-1 in the genome of A. tumefaciens C58 (model strain). According to the in silico analysis, these sequences encode for canonical phytochromes proteins activated by RL (Lamparter et al. 2017). Furthermore, Kumar et al. (2012) confirmed this capacity for AbBphP-1 by spectral characterization. Further experiments will be developed to confirm whether ABAZ39_31245 or AbBphP-2 of Sp7 is activated by far red light (FRL) and considered a Bathy-type phytochromes (Rottwinkel et al. 2010).

This is the first report showing the effects of DL and BL on planktonic cultures of A. brasilense, one of the most used plant-growth-promoting rhizobacteria in agriculture worldwide. The biofertilizers production and functionality require the bacterial capacity to grow in liquid formulations, survive under stress conditions and promote the growth of inoculated plants as ‘key’ attributes. Several physical, physiological or biochemical stress effectors have been studied and reported in the past for some Azospirillum strains. However, no references are available in relation to the light effects on these bacteria. Our results showed that day light is a powerful effector with capacity to modify the bacterial physiology and
behaviour under planktonic culture conditions. Then, this effector should be considered in the future to improve both the production of biofertilizers and the selection of new strains of Azospirillum.

Acknowledgements

We thank Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) and Fondo Nacional de Ciencia y Tecnología (FONCYT). Fabricio Cassán, Veronica Mora, Ana Furlan and Susana Rosas are researchers of CONICET at the UNRC. Romina Molina and Gastón López, are postdoc at the UNRC with grants from CONICET. Anaí Coniglio is a PhD student at the UNRC with grants from CONICET. We would like to thank Rodrigo Ponzio for the advice on the experimental setup and Coline Le Noir de Carlan for the contribution in the English revision.

Conflicts of Interest

The authors report no conflicts of interest.

Authors’ contribution

Romina Molina, Gastón López, Anaí Coniglio and Ana Furlan (1) Substantial contribution to conception and design or the acquisition and analysis of data. Verónica Mora, Susana Rosas and Fabricio Cassán (2) Drafting or critically revising the manuscript. Fabricio Cassán (3) Approval of the final submitted version.

References

Aebi, H. (1984) Catalase in vitro. Methods Enzymol 105, 121–126.
Alexieva, V., Sergiev, I., Mapelli, S. and Karanov, E. (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell and Environ 24, 1337–1344.
Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.
Barragan, V.A., Mejia, M.E., Trávez, A., Zapata, S., Hartskeerl, R.A., Haake, D.A. and Trueba, G.A. (2011) Interactions of Leptospira with environmental bacteria from surface water. Carr Microbiol 62, 1802–1806.
Bashan, Y. and de-Bashan, L.E. (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth: a critical assessment. Adv Agron 108, 77–136.
Bashan, Y., Holguín, G. and de-Bashan, L.E. (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50, 521–577.
Beauchamp, C.O. and Fridovich, I. (1973) Isozymes of superoxide dismutase from wheat germ. BBA - Protein Struct 317, 50–64.
Bertani, G. (1951) Studies on lysogenesis I. The mode of phage liberation by lysogenic Eschericia coli. J Bacteriol 62, 293–300.
Bible, A.N., Khalsa-Moyers, G.K., Mukherjee, T., Green, C.S., Mishra, P., Purcell, A., Aksenova, A., Hurst, G.B. et al. (2015) Metabolic adaptations of Azospirillum brasilense to oxygen stress by cell-to-cell clumping and flocculation. Appl Environ Microbiol 81, 8346–8357.
Biebl, H. and Wagner-Döbler, I. (2006) Growth and bacteriochlorophyll a formation in taxonomically diverse aerobic anoxygenic phototrophic bacteria in chemostat culture: Influence of light regimen and starvation. Process Biochem 41, 2153–2159.
Boyd, J.M., Lewis, K.A., Mohammed, N., Desai, P., Purdy, M., Li, W.H., Fourre, T., Miksa, D. et al. (2019) Propionibacterium acnes susceptibility to low-level 449 nm blue light photobiomodulation. Lasers Surg Med 51, 727–734.
Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.
Burdman, S., Jurkevitch, E., Schwartzbord, B., Hampel, M. and Okon, Y. (1998) Aggregation in Azospirillum brasilense: Effects of chemical and physical factors and involvement of extracellular components. Microbiology 144, 1989–1999.
Burdman, S., Jurkevitch, E., Soria-Díaz, M.E., Serrano, A.M. and Okon, Y. (2000a) Extracellular polysaccharide composition of Azospirillum brasilense and its relation with cell aggregation. FEMS Microbiol Lett 189, 259–264.
Burdman, S., Okon, Y. and Jurkevitch, E. (2000b) Surface characteristics of Azospirillum brasilense in relation to cell aggregation and attachment to plant roots. Crit Rev Microbiol 26, 91–110.
Cabisco, E., Tamarit, J. and Ros, J. (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3, 3–8.
Cassán, F., Coniglio, A., López, G., Molina, R., Nieves, S., de Carlan, C.L.N., Donadio, F., Torres, D. et al. (2020) Everything you must know about Azospirillum and its impact on agriculture and beyond. Biol Fertil 56, 461–479.
Cassán, F., Vanderleyden, J. and Spaepen, S. (2014) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33, 440–459.
Chebath-Taub, D., Steinberg, D., Featherstone, J.D. and Feuerstein, O. (2012) Influence of blue light on
Light effects on *A. brasilense Az39*

Streptococcus mutans re-organization in biofilm. *J Photochem Photobiol B* **116**, 75–78.

Costacurta, A., Keijers, V. and Vanderleyden, J. (1994) Molecular cloning and sequence analysis of an *Azospirillum brasilense* indole-3-pyruvate decarboxylase gene. *Mol Gen Genet* **243**, 463–472.

Davis, S.J., Vener, A.V. and Vierstra, R.D. (1999) Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic *eubacteria*. *Science* **286**, 2517–2520.

Del Gallo, M. and Haegi, A. (1990) Characterization and quantification of excocellular polysaccharides in *Azospirillum brasilense* and *Azospirillum lipoferum*. *Symbiosis* **9**, 155–161.

Dourado, G.K.Z.S. and Cesar, T.B. (2015) Investigation of *Heath, R.L.* and *Packer, L.* (1968) Photoperoxidation in Light effects on

1682

Costacurta, A., Keijers, V. and Vanderleyden, J. (1994) *Esposito, J.B.N.*, *Esposito, B.P.*, *Azevedo, R.A.*, *Cruz, L.S.*, *da Mairesse, S.*, *Ajon, M.*, *Wagner, M.*, *Teichmann, D.*, *Zolghadr, B.*, *Hannibal, L.*, *Genty, B.*, *Gilbert, P.*, *Maira-Litran, T.*, *McBain, A.J.*, *Rickard, A.H.* and *Whyte, F.W.* (2002) The physiology and collective recalcitrance of microbially biofilm communities. *Adv Microb Physiol* **203**–256.

Giraud, E., Fardoux, J., Fourrier, N., Hannibal, L., Genty, B., Bouyer, P., Dreyfus, B. and Verméglio, A. (2002) Bacteriophytochrome controls photosystem synthesis in anoxygenic bacteria. *Nature* **417**, 202–205.

Gratão, P.L., Monteiro, C.C., Tezotto, T., Carvalho, R.F., Alves, L.R., Peters, L.P. and Azevedo, R.A. (2015) Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants. *Biometals* **28**, 803–816.

Heath, R.L. and Packer, L. (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. *Arch Biochem Biophys* **123**, 189–198.

Imlay, J.A. (2003) Pathways of oxidative damage. *Annu Rev Microbiol* **57**, 395–418.

Imlay, J.A. (2013) The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. *Nat Rev Microbiol* **11**, 443–454.

Jefferson, R.A. (1987) Assaying chimeric genes in plants: the GUS gene fusion system. *Plant Mol Biol Rep* **5**, 387–405.

Kahl, L.J., Price-Whelan, A. and Dietrich, L.E.P. (2020) Light-mediated decreases in cyclic di-gmp levels inhibit structure formation in *Pseudomonas aeruginosa* biofilms. *J Bacteriol* **202**, e00117-20.

Karaus, E. and Watnick, P. (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. *Microbiol Mol Biol Rev* **73**, 310–347.

Kraiselburd, L., Moyano, L., Carrau, A., Tano, J. and Orellano, E.G. (2017) Bacterial photosensory proteins and their role in plant–pathogen interactions. *Photochem Photobiol* **93**, 666–674.

Kumar, S., Kateriya, S., Singh, V.S., Tanwar, M., Agarwal, S., Singh, H., Khurana, J.P., Amla, D.V. et al. (2012) Bacteriophytochrome controls carotenoid-independent response to photodynamic stress in a non-photosynthetic rhizobacterium, *Azospirillum brasilense* Sp7. *Sci Rep* **2**, 1–10.

Lucy, M., Reed, E. and Glick, B.R. (2004) Applications of free living plant growth-promoting rhizobacteria. *Antonie van Leeuwenhoek, Int J Gen Mol Microbiol* **86**, 1–25.

Madi, L.E.A. and Henis, Y. (1989) Aggregation in *Azospirillum brasilense* Cd: Conditions and factors involved in cell-to-cell adhesion. *Plant Soil* **115**, 89–98.

Méndez-Gómez, M., Castro-Mercado, E., Alexandre, G. and García-Pineda, E. (2016) Oxidative and antioxidative responses in the wheat-*Azospirillum brasilense* interaction. *Protoplasma* **253**, 477–486.

Miller, J. (1972) Assay of β-galactosidase. In *Experiments in Molecular Genetics* pp. 352–355. Astrophys Space Sci.

Mishra, S. and Imlay, J. (2012) Why do bacteria use so many enzymes to scavenge hydrogen peroxide? *Arch Biochem Biophys* **525**, 145–160.

Molina, R., López, G., Rodriguez, B., Rosas, S., Mora, V. and Cassán, F. (2020) Evaluation of growth and motility in non-photosynthetic *Azospirillum brasilense* exposed to red, blue, and white light. *Arch Microbiol* **202**, 1193–1201.

Molina, R., Obando, D., Torres, D., Rivera, D. and Cassán, F. (2014) Utilización de un medio de cultivo para la cuantificación y la diferenciación de bacterias presentes en la misma formulación. In *Presentación Oral. XV Jornadas Argentinas de Microbiología*, pp. 249. Córdoba, Argentina.

Molina, R., Rivera, D., Mora, V., López, G., Rosas, S., Spaepen, S., Vanderleyden, J. and Cassán, F. (2018) Regulation of IAA biosynthesis in *Azospirillum brasilense* under environmental stress conditions. *Curr Microbiol* **75**, 1408–1418.

Nikitina, V.E., Ponomareva, E.G., Alenkina, S.A. and Konnova, S.A. (2001) The role of cell-surface lectins in the aggregation of azospirilla. *Microbiology* **70**, 408–412.

O’Toole, G.A. and Kolter, R. (1998) Initiation of biofilm formation in *Pseudomonas fluorescens* WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. *Mol Microbiol* **28**, 449–461.

1682 Journal of Applied Microbiology **130**, 1671–1683 © 2020 The Society for Applied Microbiology
Ona, O., Van Impe, J., Prinsen, E. and Vanderleyden, J. (2005) Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled. *FEMS Microbiol Lett* **246**, 125–132.

Peregr, L. (2015) Azospirillum cells aggregation, attachment, and plant interaction. In *Handbook for Azospirillum: Technical Issues and Protocols* ed. Cassán, F.D., Okon, Y. and Creus, C. pp. 3–26. Switzerland: Springer International Publishing.

Prouty, A.M., Schwesinger, W.H. and Gunn, J.S. (2002) Biofilm formation and interaction with the surfaces of gallstones by *Salmonella* spp. *Infect Immun* **70**, 181–197.

Reis, V.M., Lucia, V., Baldani, D. and Baldani, J.I. (2015) Isolation, identification and biochemical characterization of Azospirillum spp. and other nitrogen-fixing bacteria. In *Handbook for Azospirillum: Technical Issues and Protocols* ed. Cassán, F.D., Okon, Y. and Creus, C. pp. 3–26. Switzerland: Springer International Publishing.

Rivera, D., Molina, R., Obando, D., Torres, D. and Cassán, F. (2014a) Evaluación de la técnica de recuento por microgota para la cuantificación de formulaciones conteniendo Azospirillum brasilense. *XV Jornadas Argentinas de Microbiología. Adelantos En El Diagnóstico Microbiológico*, 245.

Rivera, D., Mora, V., Lopez, G., Rosas, S., Spaepen, S., Vanderleyden, J. and Cassán, F. (2018) New insights into indole-3-acetic acid metabolism in *Azospirillum brasilense*. *J Appl Microbiol* **125**, 1774–1785.

Rivera, D., Revale, S., Molina, R., Gualpa, J., Puente, M., Maroniche, G., Paris, G., Baker, D. *et al.* (2014b) Complete genome sequence of the model rhizosphere strain *Azospirillum brasilense* Az39, successfully applied in agriculture. *Genome Announc* **2**, e00683-14.

Rottwinkel, G., Oberpichler, I. and Lamparter, T. (2010) Bathy phytochromes in rhizobial soil bacteria. *J Bacteriology* **192**, 5124–5133.

Sadasivan, L. and Neyra, C.A. (1985) Flocculation in Azospirillum brasilense and Azospirillum lipoferum: exopolysaccharides and cyst formation. *J Bacteriol* **163**, 716–723.

Schumacher, J. (2017) How light affects the life of Botrytis. *Fungal Genet Biol* **106**, 26–41.

Shelud’ko, A.V. and Katsy, E.I. (2001) formation of polar bundles of pili and the behavior of Azospirillum brasilense cells in a semiliquid agar. *Microbiology* **70**, 570–575.

Tien, T.M., Gaskins, M.H. and Hubbell, D.H. (1979) Plant growth substances produced by *Azospirillum brasilense* and their effect on the growth of pearl millet (*Pennisetum americanum* L.). *Appl Environ Microbiol* **37**, 1016–1024.

Van Der Horst, M.A. and Hellingwerf, K.J. (2004) Photoreceptor proteins, "star actors of modern times": a review of the functional dynamics in the structure of representative members of six different photoreceptor families. *Acc Chem Res* **37**, 13–20.

Van Puyvelde, S., Cloots, L., Engelen, K., Das, F., Marchal, K., Vanderleyden, J. and Spaepen, S. (2011) Transcriptome analysis of the rhizosphere bacterium *Azospirillum brasilense* reveals an extensive auxin response. *Microb Ecol* **61**, 723–728.

Vanstockem, M., Michiels, K., Vanderleyden, J. and Van Gool, A.P. (1987) Transposon mutagenesis of *Azospirillum brasilense* and *Azospirillum lipoferum*: physical analysis of Tn5 and Tn5-Mob insertion mutants. *Appl Environ Microbiol* **53**, 410–415.

Wisniewski-Dye, F., Borziak, K., Khalsa-Moyers, G., Alexandre, G., Sukharnikov, L.O., Wuichet, K., Hurst, G.B., McDonald, W.H. *et al.* (2011) *Azospirillum* genomes reveal transition of bacteria from aquatic to terrestrial environments. *PLoS Genet* **7**, e1002430.

Yamakawa, T., Kurahashi, O., Ishida, K., Kato, S., Kodama, T. and Minoda, Y. (1979) Stability of indole-3-acetic acid to autoclaving, aeration and light illumination. *Agric Biol Chem* **43**, 879–880.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Figure S1. Cell viability (log10 CFU per ml) in cultures of *Azospirillum brasilense* Az39 in Luria Bertani liquid medium subjected to different light conditions: daylight or DL (●) (1a); blue or BL (▼) and red light or RL (▲) compared to the control kept in dark conditions or D (■) during 24, 48 and 72 h of incubation at 36°C.

Figure S2. Indole-3-acetic acid concentration (IAA μg ml⁻¹) in Luria Bertani liquid medium subjected to different light conditions: daylight or DL (●) and blue light or BL (▼) compared to the control kept in dark conditions or D (■) during 24, 48 and 72 h of incubation at 36°C.