Introduction

Chitin is a structural, long-chain polysaccharide of N-acetylglicosamine subunits with beta 1,4 glycosylated bonds and the second postcellulose polysaccharide in nature [1]. This compound is found in the exoskeleton of arthropods, flatworms, protozoans, and crustaceans [2]. The fungal cell wall also contains chitin and chitosan [3]. Chitin is a structural, long-chain polysaccharide of N-acetylglicosamine subunits with beta 1,4 glycosylated bonds and the second postcellulose polysaccharide in nature [1]. This compound is found in the exoskeleton of arthropods, flatworms, protozoans, and crustaceans [2]. The fungal cell wall also contains chitin and chitosan [3]. Chitin forms about 20–58% of the total weight of shell waste, which is responsible for generating over 100 billion tons of chitin wastes annually [4].

Chitinolytic enzymes are capable of decomposing the insoluble chitin polymer [5]. Since chitin is resistant to degradation because of its crystalline structure, its decomposition usually requires the activity of more than one type of enzyme. Chitinases include exochitinases, endochitinases, N-acetylhexasaminidase, and tranoglucosylase enzymes. The products of chitinase activity can control microbes and tumors, wound healing, sewage treatment, and drug delivery [6–8].

Chitinases are found in higher plants, some invertebrates, arthropods, and nematodes [9,10]. Bacteria and fungi also widely synthesize chitinases. Genomic studies...
have shown that fungi have about 25 different chitinases [5]. Fungi associated with plants, such as phytopathogenic and mycorrhizal fungi, are also capable of producing chitinases [11,12]. Chitosanases are also isolated from bacteria and fungi [13,14].

Although the purpose of the existence of such a wide variety of chitinases in fungi is not fully understood yet, they are known to provide various functions including controlling hyphal development, spore production and germination, cell division, and parasitism [15,16]. Other functions of chitinases in nature are associated with morphogenesis, protection, preserving the structure of the fungal cell wall, nutrition, and pathogenicity [17]. Fungal chitinases also play an important role in the decomposition of chitin in the carbon and nitrogen cycles [18]. Fungi that produce chitinolytic enzymes have been exploited for biocontrol of pathogenic fungal and nematodes [19, 20]. The synthesis of chitinase has been studied in Talaromyces emersonii, Neurospora crassa, Beauveria bassiana, Chaetomium globosum, and Phascolomyces articulosus [21–23].

Chitinase-producing fungi are studied much less than are chitinolytic bacteria. Currently the only commercial application of fungal chitinases is an enzyme isolated from the Trichoderma harzianum. Penicillium janthinellum has been used in vitro to produce chitinase [24]. Liu et al. [25] isolated the 46-kDa endochitinase gene from a biocontrol species, Chaetomium globosum. Expression of this gene is influenced by the cell wall of pathogenic fungi of plants, and seems to be involved in biocontrol activity of this fungus. Metarhizium anisopliae produces at least six different chitinases. Aspergillus fumigatus also has multichitinolytic enzymes of which the functions of five different chitinases have been identified [26]. A 42-kDa chitinase enzyme has been purified from Piromyces communis by Sakurada [27]. Pinto et al. [28] purified a chitinase with a molecular weight of 30 kDa from M. anisopliae. A chitinase with a 43-kDa molecular weight has also been isolated from T. harzianum [29]. Isaria japonica species produce two chitinases, P-1 and P-2, with molecular weights of 43.273 kDa and 31.134 kDa, respectively [30]. Souza et al. [31] purified a 43-kDa endochitinase from Colletotrichum gloeosporioides. Two 67-kDa isozymes of the N-acetyl-β-d-glucosaminidase group have been isolated from Fusarium oxysporum [32].

To date, no study has been conducted to investigate the presence of chitinase genes in the fungal species occurring in Southern Khorasan Province and Birjand plain, a desert region in Eastern Iran. The current study was conducted to identify the presence of chitinase genes in the fungal isolates from Southern Khorasan Province.

Material and methods

Fungal isolates were collected from soil and infected plant tissues from the Birjand plain (South Khorasan Province, Iran) during 2013–2017, and investigated for chitinase production. Chitin degrading fungi were identified using the methods described by Agrawal and Kotasthane [33], which includes spreading spore suspensions on minimal medium (K₂HPO₄, 1.0 g/L; NaCl, 0.5 g/L; MgSO₄·7H₂O, 0.5 g/L; FeSO₄·7H₂O, 0.01 g/L; agar, 15 g/L; water, 1 L), containing 1% colloidal chitin from crab bodies (Nano Yakhteh Co., Tehran, Iran) as a source of carbon and nitrogen, and 0.5% Rose Bengal as a colony growth inhibitor. The protocol of Murthy and Bleakley [34] was used for the preparation of colloidal chitin.

Isolates were cultured on the minimal medium and then transferred to the minimal medium containing 1% colloidal chitin. To increase and stabilize the ability of the isolates to decompose chitin, tubes containing 0.1 g of pure chitin powder were prepared and sterilized in an autoclave at 121°C for 15 minutes. A spore suspension from each isolate was prepared in sterile water, one drop of each suspension was individually transferred to the tubes containing the pure chitin powder, and incubated for 1–2 months at 27°C.

Analysis of biodegradation ability

Chitin biodegradation by the fungal isolates was carried out according to the methods previously described by Loc et al. [35] using a minimal medium containing 1% colloidal...
chitin with Lugol's iodine staining solution. The isolates were cultured for 5–7 days at 27°C. Hydrolysis of colloidal chitin was detected by staining using 1.5% Lugol's solution. The appearance of a bright halo around the colonies was indicative of the ability of the isolates to biodegrade chitin.

Hyperparasitic activity

Hyperparasitism of the fungal isolates was evaluated by coculturing of the Trichoderma and Clonostachys isolates with two strains of Bipolaris spp. and a strain of Alternaria alternata on potato dextrose agar (PDA) medium. Interaction of the fungal hypha was evaluated by light microscopy.

Molecular studies

The presence of chitinase enzyme genes was investigated by amplification of extracted DNA from fungal isolates by polymerase chain reaction (PCR) using the Chit2 degenerative primer set (forward primer: 5′-TCCATYGNGNTGGACNTG-3′ and reverse primer: 5′-GRKSWNGYTCCCARAACAAT-3′) and DECH degenerative primer set (forward primer: 5′-TCCCARAYHCRTTCTCCCA-3′, and reverse primer: 5′-AAYYTBATGCGYTAHGACT-3′) [36]. DNA was extracted from the fungal isolates using 600–800 μL of cetyltrimethyl ammonium bromide (CTAB) 2× extraction buffer and 1 μL of proteinase K (Cinnagen Co., Iran) added to the fungal cells and incubated 65–70°C for 60 min. An equal volume of chloroform was added to each tube and centrifuged for 10 min at 13,000 rpm at 4°C. The supernatant was transferred to the new Eppendorf tubes, 600 μL of cold ethanol was added and centrifuged for 10 min at 13,000 rpm. After removing the supernatant, the pellets were air-dried and then dissolved in distilled water [37]. The Chit2 and DECH degenerate primers amplified the target areas of the extracted DNAs and the PCR products were sequenced by Macrogen Co. (South Korea). The sequences of the amplicons were aligned using the National Center for Biotechnology Information (NCBI) GeneBank database, and a phylogenetic tree was generated using Geneious R11 software (Biomatters Co., New Zealand).

Results

In this study, the presence of chitinase genes and the ability to express chitinolytic enzymes by the Trichoderma and Clonostachys isolates collected from the Birjand region of Eastern Iran were investigated using molecular screening for the chitinase genetic markers and in vitro analysis of enzymatic activity on solid culture medium containing chitin. The culture medium used in this study contained 1% colloidal chitin as a source of carbon and nitrogen. The components of the minimal media used in this study was similar to the Czapek-Dox agar culture media [38], but colloidal chitin was used to replace sucrose as the carbon source. The NaNO₃ in the Czapek-Dox media was also been replaced with NaCl in the current study, so that chitin was used also the source of nitrogen.

Several fungal colonies grew on the medium after culturing suspensions prepared from the collected soil samples. Colonies with aerial and well-developed mycelia were transferred to 2-mL Eppendorf tubes containing pure sterilized chitin, to evaluate their ability to use chitin as a sole nutrient source and to grow well on wet chitin powder. In some cases this led to changes in the color of the chitin or to degradation of the chitin powder (Fig. 1A). After 1–2 months of maintaining the cultures in pure chitin, a bright halo was detected around the colonies of some isolates that had been transferred to minimal medium containing chitin and stained with Lugol's iodine solution. The development of halos varied among the isolates and species (Fig. 1B,C). The isolates that produced a bright halo biodegraded chitin, while isolates with no clear halo around their colonies did not produce chitinase enzymes (Fig. 1D). The size of the halo was relative to the enzymatic activity with the larger halos being produced by the fungal
isolates with greater enzymatic activity (Fig. 1B). The halos that were formed around the colonies were caused by the degradation of complex carbohydrate chitin that was colored by the iodine in the Lugol’s solution, into simple carbohydrates that did not absorb the iodine [39]. The DECH and Chit2 primers amplified 250-bp and 600-bp fragments of the target DNA, respectively, from the Trichoderma and Clonostachys isolates (Fig. 1H).

Fig. 1 Determination of chitinase activity of Trichoderma (A) and Clonostachys (B,C) isolates on minimal media containing 0.1% (w/v) colloidal chitin and chitin powder. Control (D). Hyperparasitism of Trichoderma isolates on Alternaria alternata hypha (E–G). Agarose gel electrophoresis of PCR products (H) of Chit2 (1) and DECH (2) primers.

Discussion

The development of a halo around the colonies of the Trichoderma and Clonostachys isolates was indicative of the ability to degrade chitin. Based on the staining using Lugol’s solution, 46 and six isolates of Trichoderma and Clonostachys, respectively, were able to degrade chitin (Tab. 1). Since the Trichoderma fungi exhibited rapid growth and fully occupied the culture media, the entire surface of the culture media developed a light color (Fig. 1B). The above-mentioned Trichoderma species were able to decompose much of the chitin in the culture medium, but for the remaining Clonostachys isolates,
Number	Isolate	Organism	Isolation source	Location	GeneBank accession number
1	M11	*Trichoderma harzianum*	Soil (Agaricus bisporus baiting method)	Birjand	
2	M12	*T. harzianum*	Soil	Birjand	
3	M16	*T. harzianum*	Soil (A. bisporus baiting method)	Birjand	
4	M23	*T. harzianum*	Barley loose smut (not disinfected)	Faculty of Agriculture farms, Amirabad	
5	M24	*T. harzianum*	Soil (A. bisporus baiting method)	Birjand	
6	M25	*T. harzianum*	Fruiting bodies of the nonidentified fungus	Birjand	
7	M26	*T. harzianum*	Fruiting bodies of the nonidentified fungus	Birjand	
8	F46	*T. harzianum*	*Tilletia tritici* spores (disinfected)	Faculty of Agriculture farms, Amirabad	MG601052
9	M37	*T. harzianum*	Soil	Birjand	
10	M39	*T. harzianum*	Soil (A. bisporus baiting method)	Birjand	
11	M40	*T. harzianum*	Soil	Birjand	
12	F49	*T. harzianum*	Soil (A. bisporus baiting method)	Birjand	MG601053
13	M49	*T. harzianum*	Soil (A. bisporus baiting method)	Birjand	
14	M5	*T. harzianum*	*Puccinia graminis* (Berberis vulgaris Rust) spore; not disinfected	Darmian	
15	F51	*T. harzianum*	Soil (A. bisporus baiting method)	Birjand	MG601054
16	M64	*T. harzianum*	Barley loose smut (not disinfected)	Faculty of Agriculture farms, Amirabad	MG601048
17	M67	*T. harzianum*	Soil (A. bisporus baiting method)	Birjand	
18	P56	*Trichoderma virens*	Soil (A. bisporus baiting method)	Birjand	MG601050
19	R1	*T. harzianum*	Soil	Birjand	
20	R10	*T. harzianum*	Almond Shukatabad orchard	Birjand	MG601048
21	R11	*T. harzianum*	Basil	Chahkand farm	
22	R12	*T. harzianum*	Soil	Birjand	
23	R13	*T. harzianum*	Almond	Shukatabad orchard	
24	R14	*T. harzianum*	Pistachio	Sarayan	MG601047
25	R15	*T. brevicom pactum*	Wheat	Gayok farm	MG601046
26	R16	*Clonostachys rogersonia*	Almond	Mohammad Shahr	
27	R17	*C. rosea*	Apple	Mud orchard	MG601045
the area around the colony was indistinguishable from the other parts of the media. For the Clonostachys isolates, the size of the halos were smaller compared with those of the Trichoderma isolates (Fig. 1B). The degradation of colloidal chitin obtained from crab body in the culture medium demonstrated that these fungi were able to use chitin as a source of carbon and nitrogen. However, as the results also indicated, the chitinolytic ability of the fungal species differed. The greatest chitin degradation capability was observed in the T. harzianum isolates (Fig. 1B and Fig. 2).

Based on sequence analysis of the amplified regions of the T. harzianum isolates R10 (MG601048), R14 (MG601047), R19 (MG601044), R26 (MG601041), F46 (MG601052), F49 (MG601053), and F51 (MG601054), T. brevicompactum isolate R15 (MG601046), and T. longibrachiatum isolate R28 (MG601040), portions of the endochitinase gene Chi18 were replicated by the DECH and Chit2 primers. In T. virens isolates P56 (MG601050) and R5 (MG601049), a portion of the ech1 gene of class V chitinas were amplified (Tab. 1). The sequence of the amplified regions of this gene had similarity to the sequence of the T. harzianum gene chi18-5 deposited in the NCBI GenBank (Fig. 3). The 42-kDa protein encoded by this gene is secreted extracellularly and is an orthologue of ech42 [40]. The ech42 gene-locus is

Number	Isolate	Organism	Isolation source	Location	GeneBank accession number
28	R18	T. harzianum	Inside the water jumble (soil)	Mohammad Shahr	
29	R19	T. harzianum	Basil	Chahkand farm	MG601044
30	R2	T. harzianum	Soil	Birjand	
31	R20	T. harzianum	Basil	Chahkand farm	
32	R21	T. harzianum	Common fig	Aliabad orchard	
33	R22	C. rosea	Walnut	Chahkand	MG601043
34	R23	C. rosea	Berberis	Mud orchard	
35	R24	C. rosea	Jujube	Bojd orchard	MG601042
36	R25	T. harzianum	Sesame	Amirabad	
37	R26	T. harzianum	Soil	Birjand	MG601041
38	R27	T. harzianum	Radish	Sarbishe	
39	R28	T. longibrachiatum	Sugar beet	Qaen	MG601040
40	R29	T. harzianum	Pear	Chahkand orchard	
41	R3	T. harzianum	Common fig	Aliabad orchard	
42	R30	T. harzianum	Barley	Bojd farm	
43	R31	T. harzianum	Okra	Shukatabad farm	
44	R32	T. harzianum	Pine	Amirabad	
45	R33	T. virens	Pear	Chahkand orchard	
46	R4	T. harzianum	Soil	Birjand	
47	R5	T. virens	Pomegranate	Shukatabad orchard	MG601049
48	R6	T. harzianum	Soil	Birjand	
49	R7	T. harzianum	Tomato	Birjand	
50	R8	T. harzianum	Inside the water jumble (soil)	Khusf	
51	R9	T. harzianum	Grape	Mohammad Shahr	

Tab. 1 Continued

Number	Isolate	Organism	Isolation source	Location	GeneBank accession number
52	R10	T. harzianum	Inside the water jumble (soil)	Mohammad Shahr	
53	R11	T. harzianum	Basil	Chahkand farm	MG601044
54	R12	T. harzianum	Soil	Birjand	
55	R13	T. harzianum	Basil	Chahkand farm	
56	R14	T. harzianum	Common fig	Aliabad orchard	
57	R15	T. harzianum	Walnut	Chahkand	MG601043
58	R16	T. harzianum	Berberis	Mud orchard	
59	R17	T. harzianum	Jujube	Bojd orchard	MG601042
60	R18	T. harzianum	Sesame	Amirabad	
61	R19	T. harzianum	Soil	Birjand	MG601041
62	R20	T. harzianum	Radish	Sarbishe	
63	R21	T. longibrachiatum	Sugar beet	Qaen	MG601040
64	R22	T. harzianum	Pear	Chahkand orchard	
65	R23	T. harzianum	Common fig	Aliabad orchard	
66	R24	T. harzianum	Barley	Bojd farm	
67	R25	T. harzianum	Okra	Shukatabad farm	
68	R26	T. harzianum	Pine	Amirabad	
69	R27	T. virens	Pear	Chahkand orchard	
70	R28	T. longibrachiatum	Sugar beet	Qaen	MG601049
71	R29	T. harzianum	Soil	Birjand	
72	R30	T. harzianum	Tomato	Birjand	
73	R31	T. harzianum	Inside the water jumble (soil)	Khusf	

Fig. 2 Diameters of the bright halos around the colonies of the fungal isolates on minimal medium containing 1% colloidal chitin after staining with Lugol's solution.
The activity of this gene is increased in the presence of chitin and appears to be one of the genes important in mycoparasitic activity. In addition to being one of the most well-protected Trichoderma genes, ech42 is also one of the most important genes involved in the interaction of Trichoderma and fungal pathogens [40]. The chitinase gene ech42 is expressed at a high rate when Trichoderma is grown in medium containing chitin, and has a lethal effect on the cell wall of many other fungi, especially Botrytis cinerea [42]. During the interaction of mycorrhizal fungi and plant pathogens, ech42 is expressed at a very high level. Genes chit33, ech42, chit42, and nag1, which play a role in the early stages of mycoparasitic interactions, have all been identified in Trichoderma [43]. Trichoderma chitt33 encodes a 33-kDa protein and its sequence has high homology with fungal and herbal chitinases. Studies have shown that the activity of this single-copy gene is more closely associated with the saprophytic and mycoparasitic characteristics of Trichoderma than to the morphological characteristics [43]. Expression of chitt33 is reduced in the presence of glucose.

Studies by Kovacs et al. [44] showed that T. longibrachiatum has the highest production levels of extracellular chitinases under conditions of fermentation. Seven unique chitinases have been isolated from T. harzianum, which include two N-acetylglucosaminidase (73 and 102 kDa), four endochitinases (31, 33, 42, and 53 kDa) and a 40-kDa ketobiosidase [12]. The species T. reesei produces 18 different chitinases with a molecular weights ranging from 40 to 180 kDa [45].

Isolate M5 was recovered from the nondisinfected pustule of Puccinia graminis, rust pathogen of seedless barberry (Berberis vulgaris L. var. asperma) in the Darmian...
region. This isolate was a hyperparasite of Bipolaris and Alternaria (Fig. 1E–G), but its effects on P. graminis was not evaluated. It may be an epiphytic fungus of seedless barberry, or a hyperparasite and biocontrol agent of P. graminis.

Isolate M36 from loose smut of wheat fungal spores (Ustilago tritici), and isolate M64 from the fungal spores of smut of barley (U. hordei) were isolated by spreading Ustilago spores onto minimal medium agar containing chitin (Tab. 1). M36 was isolated from disinfected spores may be a hyperparasite of U. tritici.

Several isolates were recovered from soil using the Agaricus bisporus baiting method (Tab. 1). Because these isolates caused infection in Agaricus, they were shown to have apparent hyperparasitic activity on A. bisporus.

Several studies have been conducted on the enzymes of Trichoderma species from Iran. Seyed Asli et al. [47] investigated the production of chitinase enzyme in Trichoderma species from different regions of Iran and reported the presence of three endochitinase genes in the T. harzianum. Shahnazi et al. [48] enhanced the activity of the chitinase gene of T. harzianum using gamma-inducible inductive mutations in native isolates of Trichoderma fungi. Mostafanezhad et al. [49] studied the biocontrol of the disease, and the induction of defensive compounds in Meloidogyne javanica-infected tomato plants using several Trichoderma isolates, and concluded that three isolates of 125, 126, and Bi10 from T. harzianum showed the highest activity of the chitinase enzyme.

Baharvand et al. [50] studied the production of chitinolytic enzymes from T. viride mutant-isolates and showed that the highest levels of extracellular protein was detected in T. viride isolates M7 and M8, and that the highest activity of the chitinase enzyme was found in T. viride mutant-isolates M19, M1, M5, M4, and M6. The results indicate that β-1,4-N-acetylglucosaminidase and acetylglucosamine enzymes are present in different isolates. The highest enzyme activity was observed in T. viride mutant-isolate M19, which has the highest levels of endochitinase enzymes (31 and 42 kDa), and enzyme β-(1,4)-N-acetylglucosaminidase (73 kDa). The induction of gamma-ray mutations in Trichoderma fungi by these researchers led to improve production of chitinase enzymes for the biological control of plant diseases.

Yazdanpanah-Samani et al. [51], by examining the heterologous expression of the 36-kDa chitinase enzyme from T. asperellum in T. atroviride, showed that the best expression conditions at the time of induction are an optical density (OD600) 0.3, and 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) with an incubation time of 6 h. Kavari et al. [52] investigated the expression of the chitinase enzyme by several isolates of Trichoderma fungi and its effect on the biological control of a root nematode of tomatoes, M. javanica, and isolates T.BI, T6, T65, which demonstrated enzymatic activities of 19.2, 18.3, and 17 units per mL, respectively, and were reported to be the most active isolates. Ataei et al. [53] evaluated the activity of chitinase 42 against Candida albicans and showed that the enzyme had significant inhibitory activity against this fungus compared with that against a control group.

Although in many species of chitinase producing fungi, especially in the fungal pathogens of insect, the role of chitinase in fungal infiltration into the host body is not well understood, but in Trichoderma species, these enzymes play a role in the penetration into the host. Also, in C. rosea, the role of these enzymes has been shown to aid in entering the host body. Clearly, the reactions and levels of resistance of various fungal species to these enzymes differ depending upon the particular species [54,55]. Xian et al. [56] isolated Trchi1 chitinase gene from T. roseum, and transferred the gene into a tobacco plant, which increased the plant’s resistance to A. alternata and Colletotrichum nicotianae. Zhang et al. [57] isolated tachi from T. asperellum and transferred the gene into soybean plants resulting in increased resistance of the plants to Sclerotinia sclerotiorum. Tachi encoded a 44-kDa chitinase from family 18 of glycoside hydrolase.

The Trichoderma and Clonostachys species isolated in this study contained chitinase genes, produced chitinolytic enzymes, were hyperparasitic to A. alternata and Bipolaris mycelia, and may potentially be used as a biocontrol agent against pathogenic plant fungi that have chitinous hyphae, or be used as industrial chitinase producing isolates.
References

1. Requera G, Leschine SB. Chitin degradation by cellulolytic anaerobes and facultative aerobes from soils and sediments. FEMS Microbiol Lett. 2001;204(2):367–374. https://doi.org/10.1111/j.1574-6968.2001.tb0912.x

2. Suzuki K, Suzuki M, Taijyoji M, Nikaidou N, Watanabe T. Chitin binding protein (CBP21) in the culture supernatant of *Serratia marcescens* 2170. Biosci Biotechnol Biochem. 1998;62(1):128–135. https://doi.org/10.1271/bbb.62.128

3. Muzzarelli RAA. Chitin. Kent: Elsevier; 2014.

4. Ramli AN, Mahadi NM, Rabu A, Murad AM, Bakar FD, Illias RM. Molecular cloning, expression and biochemical characterisation of a cold-adapted novel recombinant chitinase from *Glaciozyma antarctica* P112. Microb Cell Fact. 2011;10(1):94. https://doi.org/10.1186/1475-2859-10-94

5. Seidl V. Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biol Rev. 2008;22(1):36–42. https://doi.org/10.1016/j.fbr.2008.03.002

6. Hamman JH. Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar Drugs. 2010;8(4):1305–1322. https://doi.org/10.3390/md8041305

7. Da Sacco L, Masotti A. Chitin and chitosan as multipurpose natural polymers for groundwater arsenic removal and As2O3 delivery in tumor therapy. Mar Drugs. 2010;8(5):1518–1525. https://doi.org/10.3390/md8051518

8. Nam T, Park S, Lee SY, Park K, Choi K, Song IC, et al. Tumor targeting chitosan nanoparticles for dual-modality optical/MR cancer imaging. Bioconjug Chem. 2010;21(4):578–582. https://doi.org/10.1021/bc900408z

9. Okazaki K, Kato F, Watanabe N, Yasuda S, Masui Y, Hayakawa S. Purification and properties of two chitinases from *Streptomyces* sp. J-13-3. Biosci Biotechnol Biochem. 1995;59(8):1586–1587. https://doi.org/10.1271/bbb.59.1586

10. Yusupova DV, Porfir'eva OV, Sokolova RB, Ponomareva AZ, Gabdrakhmanova LA. The physiological and biochemical characteristics of the *Serratia marcescens* strain with enhanced chitinase activity. Biotechnologiya. 1997;2:3–9.

11. Bougoure DS, Cairney JW. Chitinolytic activities of ericoid mycorrhizal and other root-associated fungi from *Epacris pulchella* (Ericaceae). Mycol Res. 2006;110(3):328–334. https://doi.org/10.1016/j.jfr.2008.03.002

12. Liu Z, Gay LM, Tuveng TR, Agger JW, Westereng B, Mathiesen G, et al. Structure and function of a broad-specificity chitin deacetylase from *Aspergillus nidulans* FGSC A4. Sci Rep. 2017;7:1746. https://doi.org/10.1038/s41598-017-02043-1

13. Liu H, Bao X. Overexpression of the chitosanase gene in *Fusarium solani* via *Agrobacterium tumefaciens*-mediated transformation. Curr Microbiol. 2009;58(3):279–282. https://doi.org/10.1007/s00284-008-9334-2

14. de Marco JL, Lima LHC, de Sousa MV, Felix CR. A *Trichoderma harzianum* chitinase destroys the cell wall of the phytopathogen *Crinipellis perniciosa*, the causal agent of witches' broom disease of cocoa. World J Microbiol Biotechnol. 2000;16(4):383–386. https://doi.org/10.1023/A:1008964324425

15. Karlsson M, Stenlid J. Comparative evolutionary histories of the fungal chitinase gene family reveal non-random size expansions and contractions due to adaptive natural selection. Evolutionary Bioinformatics. 2008;4:47–60. https://doi.org/10.4137/EBO.S604

16. Sampson MN, Gooday GW. Involvement of chitinases of *Bacillus thuringiensis* during pathogenesis in insects. Microbiology. 1998;144(8):2189–2194. https://doi.org/10.1099/00221287-144-8-2189

17. Kellner H, Vandenbol M. Fungi unearthed: transcripts encoding lignocellulolytic and chitinolytic enzymes in forest soil. PLoS One. 2010;5(6):e10971. https://doi.org/10.1371/journal.pone.0010971

18. Klemsdal SS, Clarke JL, Hoell IA, Eijsink VG, Brurberg MB. Molecular cloning, characterization, and expression studies of a novel chitinase gene (ech30) from the mycoparasite *Trichoderma atroviride* strain P1. FEMS Microbiol Lett. 2006;256(2):282–289. https://doi.org/10.1111/j.1574-6968.2006.00132.x

19. Gan Z, Yang J, Tao N, Liang L, Mi Q, Li J, et al. Cloning of the gene *Lecanicillium*
psalliotae chitinase Lpchi1 and identification of its potential role in the biocontrol of root-knot nematode Meloidogyne incognita. Appl Microbiol Biotechnol. 2007;76(6):1309–1317. https://doi.org/10.1007/s00253-007-1111-9
21. Chigaleĭchik A, Pirieva D, Rydkin S. Chitinase from Serratia marcescens BKM B-851. Prikl Biokhim Mikrobiol. 1976;12(4):381–386.
22. Balasubramanian R, Manocha MS. Cytosolic and membrane-bound chitinases of two mucoraceous fungi: a comparative study. Can J Microbiol. 1992;38(4):331–338. https://doi.org/10.1139/m92-056
23. McNab R, Glover LA. Inhibition of Neurospora crassa cytosolic chitinase by allosamidin. FEMS Microbiol Lett. 1991;82(1):79–82. https://doi.org/10.1111/j.1574-6968.1991.tb0483.x
24. Fenice M, Di Giambrattista R, Raetz E, Leuba JL, Federici F. Repeated-batch and continuous production of chitinolytic enzymes by Penicillium janthinellum immobilised on chemically-modified macroporous cellulose. J Biotechnol. 1998;62(2):119–131. https://doi.org/10.1016/S0168-1656(98)00051-0
25. Liu Z, Yang Q, Hu S, Zhang J, Ma J. Cloning and characterization of a novel chitinase gene (chi46) from Chaetomium globosum and identification of its biological activity. Appl Microbiol Biotechnol. 2008;80(2):241–252. https://doi.org/10.1007/s00253-008-1543-x
26. Alcazar-Fuoli L, Clavaud C, Lamarre C, Aimanianda V, Seidl-Seiboth V, Mellado E, et al. Functional analysis of the fungal/plant class chitinase family in Aspergillus fumigatus. Fungal Genet Biol. 2011;48(4):418–429. https://doi.org/10.1016/j.fgb.2010.12.007
27. Sakurada M, Morgavi, DP, Komatani K, Tomita Y, Onodera R. Purification and characteristics of cytosolic chitinase from Piromyces communis OTS1. FEMS Microbiol Lett. 1996;137(1):75–78. https://doi.org/10.1111/j.1574-6968.1996.tb08085.x
28. Pinto AS, Barreto CC, Vainstein MH, Schrank A, Ulhoa CJ. Purification and characterization of an extracellular chitinase from the entomopathogen Metarhizium anisopliae. Can J Microbiol. 1997;43(4):322–327. https://doi.org/10.1139/m97-045
29. El-Katatny M, Gudelj M, Robra KH, Elnaghy M, Gübitz G. Characterization of a chitinase and an endo-ß-1,3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii. Appl Microbiol Biotechnol. 2001;56(1):137–143. https://doi.org/10.1007/s002530100646
30. Kawachi I, Fujieda T, Ujita M, Ishii Y, Yamagishi K, Sato H, et al. Purification and properties of extracellular chitinases from the parasitic fungus Isaria japonica. J Biosci Bioeng. 2001;92(6):544–549. https://doi.org/10.1016/S1389-1723(01)80313-3
31. Souza R, Gomes R, Coelho R, Alviano C, Soares R. Purification and characterization of an endochitinase produced by Colletotrichum gloeosporioides. FEMS Microbiol Lett. 2003;221(1):45–50. https://doi.org/10.1016/S0378-1097(03)00220-9
32. Gkargkas K, Mamma D, Nedey G, Topakas E, Christakopoulos P, Kekos D et al. Studies on a N-acetyl-β-d-glucosaminidase produced by Fusarium oxysporum F3 grown in solid-state fermentation. Process Biochem. 2003;39(3):1599–1605. https://doi.org/10.1016/S0032-9592(03)00287-5
33. Agrawal T, Kotasthane AS. Chitinolytic assay of indigenous Trichoderma isolates collected from different geographical locations of Chhattisgarh in Central India. Springerplus. 2012;1(1):73. https://doi.org/10.1186/2193-1801-1-73
34. Murthy N, Bleakley B. Simplified method of preparing colloidal chitin used for screening of chitinase-producing microorganisms. Internet J Microbiol. 2012;10(2):e2bc3.
35. Loc NH, Quang HT, Hung NB, Huy ND, Phuong TTB, Ha TTT. Trichoderma asperellum Chi42 genes encode chitinase. Mycobiology. 2011;39(3):182–186. https://doi.org/10.5941/MYCO.2011.39.3.182
36. Meng H, Wang Z, Meng X, Xie L, Huang B. Cloning and expression analysis of the chitinase gene Itu-chit2 from Isaria fumosorosea. Genet Mol Biol. 2015;38(3):381–389. https://doi.org/10.1590/S1415-475320150003
37. Griffiths LJ, Anyim M, Doffman SR, Wilks M, Millar MR, Agrawal SG. Comparison of DNA extraction methods for Aspergillus fumigatus using real-time PCR. J Med Microbiol. 2006;55(9):1187–1191. https://doi.org/10.1099/jmm.0.46510-0
38. Abildgren M, Lund F, Thrane U, Elmholt S. Czapek-Dox agar containing iprodione and dicloran as a selective medium for the isolation of Fusarium species. Lett Appl Microbiol. 1987;5(4):83–86. https://doi.org/10.1111/j.1472-765X.1987.tb01620.x
39. Takahashi Y. Binding properties of alginic acid and chitin. In: Atwood JL, Davies JED,
40. Carsolio C, Benhamou N, Haran S, Cortés C, Gutiérrez A, Chet I, et al. Role of the *Trichoderma harzianum* endochitinase gene, ech42, in mycoparasitism. Appl Environ Microbiol. 1999;65(3):929–935.

41. Reithner B, Ibarra-Laclette E, Mach RL, Herrera-Estrella A. Identification of mycoparasitism-related genes in *Trichoderma atroviride*. Appl Environ Microbiol. 2011;77(13):4361–4370. https://doi.org/10.1128/AEM.00129-11

42. Carsolio C, Gutiérrez A, Jiménez B, van Montagu M, Herrera-Estrella A. Characterization of ech-42, a *Trichoderma harzianum* endochitinase gene expressed during mycoparasitism. Proc Natl Acad Sci USA. 1994;91(23):10903–10907. https://doi.org/10.1073/pnas.91.23.10903

43. Haran S, Schickler H, Chet I. Molecular mechanisms of lytic enzymes involved in the biocontrol activity of *Trichoderma harzianum*. Microbiology. 1996;142(9):2321–2331. https://doi.org/10.1099/00221287-142-9-2321

44. Kovacs K, Szakacs G, Pusztahelyi T, Pandey A. Production of chitinolytic enzymes with *Trichoderma longibrachiatum* IMI 92027 in solid substrate fermentation. Appl Biochem Biotechnol. 2004;118(1–3):189–204. https://doi.org/10.1385/ABAB:118:1-3:189

45. Seidl V, Huemer B, Seiboth B, Kubicek CP. A complete survey of *Trichoderma* chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J. 2005;272(22):5923–5939. https://doi.org/10.1111/j.1742-4658.2005.04994.x

46. Carsolio C, Gutiérrez A, Jiménez B, van Montagu M, Herrera-Estrella A. Characterization of *ech-42*, a *Trichoderma harzianum* endochitinase gene expressed during mycoparasitism. Proc Natl Acad Sci USA. 1994;91(23):10903–10907. https://doi.org/10.1073/pnas.91.23.10903

47. Seyed Asli N, Harighi M, Zamani M, Motalebi M. Study of chitinolytic enzyme production in *Trichoderma* isolates. Iranian Journal of Biology. 2004;17(3):227–246.

48. Shahbazi S, Askari H, Mohamadi A, Naseripour T. Investigation of mutation in chitinase gene in gamma radiated mutants of *Trichoderma harzianum* by STS marker. International Journal of Advanced Biological and Biomedical Research. 2014;2:1–10.

49. Mostafanezhad H, Sahebani N, Abdi M, Rouhani H, Etebarian H. Biocontrol of disease and induction of certain defence compounds in tomato infected with *Meloidogyne javanica* by several *Trichoderma* isolates. Iran J Plant Pathol. 2014;50(2):177–181.

50. Baharvand A, Shahbazi S, Afsharmanesh H, Ali M. Investigation of gamma irradiation on morphological characteristics and antagonist potential of *Trichoderma viride* against *M. phaseolina*. International Journal of Farming and Allied Sciences. 2014;3(11):1157–1164.

51. Yazdanpanah-Samani M, Zamani MR, Motallebi M, Moghaddass Jahromi Z. Heterologous expression of *Chit36* from *Trichoderma atroviride* in prokaryotic system. Journal of Molecular and Cellular Research. 2015;28(3):448–457.

52. Kavari M, Mahdikhani-Moghaddam E, Rouhani H. Survey on chitinase production by several isolates of *Trichoderma* and its biological control effect on tomato root-knot nematode *Meloidogyne javanica*. Journal of Plant Protection. 2015;29(1):123–133. https://doi.org/10.22067/jpp.v29i1.32918

53. Ataei A, Zamani M, Motallebi M, Ziaei M, Moghaddass Jahromi Z, Jourabchi E. Antifungal study of heterologous expressed *chitinase42* against *Candida albicans* caused agent of human infection. In: Second International and Fourteenth Iranian Genetics Congress; 2016 May 21–23; Tehran, Iran. Tehran: Iranian Genetic Society; 2016. p. 1–4.

54. Cruz J, Hidalbo‐Gallego A, Lora JM, Benitez T, Pintor‐Toro JA, Llobell A. Isolation and characterization of three chitinases from *Trichoderma harzianum*. FEBS J. 1992;206(3):859–867. https://doi.org/10.1111/j.1432-1033.1992.tb16994.x

55. Di Pietro A, Lorito M, Hayes C, Broadway R, Harman G. Endochitinase from *Gliocladium virens*: isolation, characterization, and synergistic antifungal activity in combination with gliotoxin. Phytopathology. 1993;83(3):308–313. https://doi.org/10.1094/Phyto-83-308

56. Xian H, Li J, Zhang L, Li D. Cloning and functional analysis of a novel chitinase gene *Trchi1* from *Trichothecium roseum*. Biotechnol Lett. 2012;34(10):1921–1928. https://doi.org/10.1007/s10529-012-0989-1
57. Zhang F, Ruan X, Wang X, Liu Z, Hu L, Li C. Overexpression of a chitinase gene from *Trichoderma asperellum* increases disease resistance in transgenic soybean. *Appl Biochem Biotechnol*. 2016;180(8):1542–1558. https://doi.org/10.1007/s12010-016-2186-5