MAXIMAL SUBFIELDS OF A DIVISION ALGEBRA

MAI HOANG BIEN

ABSTRACT. Let D be a division algebra over a field F. In this paper, we prove that there exist $a, b, x, y \in D^* = D\setminus \{0\}$ such that $F(ab - ba)$ and $F(xyx^{-1}y^{-1})$ are maximal subfields of D, which answers questions posted in [5].

1. Introduction

Let F be a field. A ring D is called a division algebra over F if the center $Z(D) = \{a \in D \mid ab = ba, \forall b \in D\}$ of D is equal to F, D is a finite dimensional vector space over F and D has neither proper left ideal nor proper right ideal. In other words, D is a division ring with the center F and $\dim_F D < \infty$. In some books and papers, D is also called centrally finite [4, Definition 14.1]. A central simple algebra over F is an algebra isomorphic to $M_n(D)$ for some positive integer n and division algebra D over F. For any central simple algebra A over F, $\sqrt{\dim_F A}$ is said to be degree of A.

For any division algebra D over F, it is well known from Kothe’s Theorem that there exists a maximal subfield K of D such that the extension of fields K/F is separable [4, Th. 15.12]. In [1, Theorem 7], authors proved that for any separable extension of fields K/F in D, there exists an element $c \in [D, D]$, the group of additive commutators of $(D, +)$, such that $K = F(c)$ unless $\text{Char}(F) = [K : F] = 2$ and 4 does not divide the degree of D. Hence, if K is a maximal subfield of D which is separable over F, then there exists $c \in [D, D]$ such that $K = F(c)$. In particular, there exists a maximal subfield of D such that it is of the form $F(c)$ for some element c in $[D, D]$. We have a natural question: is it true that there exists a commutator $ab - ba \in [D, D]$ such that $F(ab - ba)$ is a maximal subfield of D (see [5, Problem 28])? Almost similarly, if K/F is a separable extension of fields in D then there exists an element $d \in D' = [D^*, D^*]$, the group of multiplicative commutators of $D^* = D\setminus \{0\}$, such that $K = F(d)$ (see [5, Theorem 2.26]). Again, the author asked whether $F(xyx^{-1}y^{-1})$ is a maximal subfield of D for some $x, y \in D^*$ (see [5, Problem 29]).

The goal of this paper is to answer in the affirmative for both questions. The main tools used in this paper are generalized rational identities over a central simple algebra. Readers can find their definitions and notions in detail in [2] and [6].

2. Results

Let R be a ring. Recall that an element a of R is called algebraic of degree n over a subring S of R if there exists a polynomial $f(x)$ of degree n over S such as

\begin{align*}
\text{Key words and phrases.} & \quad \text{Maximal subfield, division algebra, commutator, algebraic.} \\
\text{2010 Mathematics Subject Classification.} & \quad 12F05, 12F10, 12E15, 16K20. \\
\text{The author would like to thank his supervisor Prof. H.W. Lenstra for the comments.} \end{align*}
Lemma 2.3. The algebra of degree m is basic.

Theorem 2.2. Assume that K is a subfield of D containing F. Then $\dim_F K \leq n$. The quality holds if and only if K is a maximal subfield of D.

Proof. See [4, Corollary 15.6 and Proposition 15.7].

Lemma 2.4. Let F be an infinite field and $n \geq 2$ be an integer. There exist two matrices $A, B \in M_n(F)$ such that the commutator $ABA^{-1}B^{-1}$ is an algebraic element of degree n over F.
Theorem 2.5. Let D be a central division algebra over a field F. There exist $x, y \in D^*$ such that $F(xyx^{-1}y^{-1})$ is a maximal subfield of D.

Proof. If F is finite then D is also finite, so that there is nothing to prove. Suppose that F is infinite and D is of degree n over F. By Lemma 2.3, it suffices to show that there exist $x, y \in D^*$ such that $\dim_F F(xyx^{-1}y^{-1}) \geq n$. Indeed, put $\ell = \max\{ \dim_F F(xyx^{-1}y^{-1}) \mid x, y \in D^* \}$. Then from Lemma 2.3,

$$g(t) = \sum_{i=0}^{\ell} a_i t^i$$

for any $a_i \in D$. Hence, $g(t)$ is a generalized rational identity for D, so that, by Lemma 2.3, $g(t)$ is a generalized rational identity for $M_n(F)$. Since $g(t)$ is an algebraic element of degree n over F.

Lemma 2.6. Let F be an infinite field and $n > 2$ be an integer. There exist two matrices $A, B \in M_n(F)$ such that $AB - BA$ is an algebraic element of degree n over F.

Proof. Put

$$A = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_{n-1} \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$

and $B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_{n-1} \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$, where

$$a_i, b_j \neq 0.$$ One has $ABA^{-1}B^{-1} = \begin{pmatrix} b_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & b_{n-1} \\ b_1b_1^{-1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & b_{n-1}b_{n-1}^{-1} \end{pmatrix}$.

If we choose $b_1b_1^{-1}, b_1b_2^{-1}, \ldots, b_{n-1}b_{n-1}^{-1}$ all distinct (it is possible since F is infinite), then the characteristic polynomial of $ABA^{-1}B^{-1}$ is a polynomial of smallest degree which vanishes on $ABA^{-1}B^{-1}$. That is, $ABA^{-1}B^{-1}$ is an algebraic element of degree n over F. ■

The following theorem answers Problem 29 in [3] Page 83].
we can choose \(b_1, b_2, \cdots, b_{n-1} \in F \) such that \(b_1, b_1 - b_2, \cdots, b_{n-2} - b_{n-1}, b_{n-1} \) all distinct. Hence, the characteristic polynomial of \(AB - BA \) is a polynomial of smallest degree vanishing on \(AB - BA \). Therefore, \(AB - BA \) is an algebraic element of degree \(n \) over \(F \). \(\blacksquare \)

Almost similar to the proof of Theorem 2.5 we have the following theorem, which answers Problem 28 in [5, Page 83].

Theorem 2.7. Let \(D \) be a central division algebra over a field \(F \). There exist \(x, y \in D \) such that \(F(xy - yx) \) is a maximal subfield of \(D \).

Proof. If \(F \) is finite then \(D \) is also finite, so that there is nothing to prove. Suppose that \(F \) is infinite and \(D \) is of degree \(n \). By Lemma 2.3 it suffices to show that there exist \(x, y \in D \) such that \(\dim F(xy - yx) \geq n \). Indeed, if \(n = 2 \), by [4, Corollary 13.5], then there exist \(x, y \in D \) such that \(xy - yx \notin F \), which implies \(F(xy - yx) = 2 = n \). Assume that \(n > 2 \). Then put \(\ell = \max \{ \dim F(xy - yx) | x, y \in D \} \). By Lemma 2.1,

\[
g_\ell(rs - sr, r_1, r_2, \cdots, r_\ell) = 0
\]

for any \(r_1, r_2, \cdots, r_\ell \in D \) and \(r, s \in D^* \). It follows \(g_\ell(xy - yx, y_1, y_2, \cdots, y_\ell) \) is a generalized rational identity of \(D \). From Lemma 2.2 \(g_\ell(xy - yx, y_1, y_2, \cdots, y_\ell) \) is also a generalized rational identity of \(M_n(F) \). But because there exist \(A, B \in M_n(F) \) such that \(AB - BA \) is algebraic of degree \(n \) (Lemma 2.4), one has

\[
g_\ell(AB - BA, r_1, r_2, \cdots, r_\ell) = 0
\]

for any \(r_1 \in M_n(F) \). Therefore, by Lemma 2.1, \(n \leq \ell \). \(\blacksquare \)

References

[1] S. Akbari, M. Arian-Nejad, M. L. Mehrabadi, On additive commutator groups in division rings, *Results Math.*, 33 (1-2), 921, 1998.
[2] S. A. Amitsur, Rational identities and applications to algebra and geometry, *J. Algebra* 3, 304–359, 1966.
[3] K. I. Beidar, W. S. Martindale 3rd and A. V. Mikhalev, *Rings with Generalized Identities*, Marcel Dekker, Inc., New York- Basel-Hong Kong, 1996.
[4] T. Y. Lam, *A first course in noncommutative rings*, MGT 131, Springer, 1991.
[5] M. Mahdavi-Hezavehi, Commutators in division rings revisited. *Bull. Iranian Math. Soc.*, 26(3): 7–88, 2000.
[6] L. H. Rowen, *Polynomial identities in ring theory*, Academic Press, Inc., New York, 1980.

Mathematisch Instituut, Leiden Universiteit, Niels Bohrweg 1,2333 CA Leiden, The Netherlands.

Current address: Dipartimento di Matematica, Università degli Studi di Padova, Via Trieste 63, 35121 Padova, Italy.

E-mail address: maihoangbien012@yahoo.com