Benthos Composition and Abundance in Lentic Ecosystems

Fatima M, Ahmad U, Bhat BN, Hassan T and Parveen S*
Limnology Research Laboratory, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India

Abstract

The Benthic invertebrates such as nymphs of stonefly, mayfly, caddisfly larvae, snails, mussels, crustaceans, rat-tailed maggot, etc., convert and transport nutrients from one part of the water body to another, influencing nutrient cycling. In the present study, phyto-benthos comprised of three major groups namely Bacillariophyceae, Chlorophyceae, and Myxophyceae, whereas zoobenthos comprised of eleven major groups namely Protozoa, Rotifera, Cladocera, Ostracoda, Coleoptera, Diptera, Ephemeroptera, Hemiptera, Trichoptera, Gastropoda, and Odonata. The study revealed that zoobenthos were more dominant than phyto-benthos. Among zoobenthos, Diptera were found to be abundant followed by Cladocerans and least were Trichopterans, whereas among phyto-benthos Bacillariophyceae was found to be most dominant followed by Chlorophyceae and Myxophyceae. The negative but significant correlation between zoobenthos and phyto-benthos in all selected water bodies during study indicated grazing of former on latter proving top down control in these lentic ecosystem.

Keywords: Benthos; Phyto-benthos; Zoobenthos; Lentic water bodies

Introduction

Freshwater ecosystems are considered as one of the most essential natural resources for the survivability and success of all the living organisms including man. The habitat is generally divided into Lentic and Lotic ecosystems. The term lentic refers to standing bodies of water such as lakes, reservoirs, and ponds. These ecosystems generally have three zones – Littoral, Limnetic and Benthic zone. The term Benthos is derived from two Greek words "Ben" meaning ‘the collection of organisms living in or on the sea or lakes’ and “Thos” ‘the bottom of sea or lakes’. Benthos can be classified on a number of basis i.e., on the basis of size; Macro-benthos, Meiobenthos and Micro benthos; On the Basis of Location; Endobenthos, Epibenthos and Hyperbenthos; On the basis of Type; Zoobenthos includes animals and Phyto-benthos which comprises of plants. The Benthic invertebrates such as nymphs of stonefly, mayfly, caddisfly larvae, snails, mussels, crustaceans, rat-tailed maggot, etc., convert and transport nutrients from one part of the water body to another, influencing nutrient cycling. They ingest organic matter such as leaf litter and detritus and in turn serve food for higher aquatic organisms such as fish, forming a basic link between organic matter and higher aquatic animals in food web. They are sensitive to changes in habitat and pollution, especially to organic pollution [1].

Materials and Methods

Sites (Plate 1–4)

The present study was carried out on four fresh water bodies of Aligarh (latitude 27° 30’ N and longitude 79° 40’ E), namely Shekha Jheel, Nai Basti pond, Laldiggi pond and Chautal pond. Laldiggi, Chautal and Nai Basti ponds having 1 ha area, located in the vicinity of the Aligarh Muslim University campus receive water from domestic discharge and rain water which accumulates during rainy season. These are used by washer men extensively for washing clothes, thus adding detergents and certain chemicals that bring changes in its chemical composition. The Shekha Jheel is a 25 ha lake near the village of Shekha, 17 km east of Aligarh. It is a fresh water perennial water body that came into existence after the formation of the Upper Ganges Canal which flows adjacent to the lake. It is maintained by the Forest Department. Sampling was done fortnightly from 9th March, 2016 to 23rd April, 2016. Samples were collected from selected water bodies between 8 am and 9 am and were analysed for following physico-chemical parameters were analysed: Air and water temperatures, dissolved oxygen (DO) and free carbon dioxide (CO₂).

Benthos collection, separation and identification

The bottom mud scraper with low towline designed and described by Michae [2] was used to collect the samples from the waterbodies. For benthos analysis, samples were diluted with tap water to prepare slurry in a bucket and sticks, leaves, debris were removed. Then slurry was divided into ten subsamples. Each subsample was first sieved by B.S. no. 30 (0.5 mm) mesh sieve kept above the sieve B.S. no. 72 (0.2 mm) in order to retain smaller organisms (meio) on the latter. Organisms were kept in separate vials and fixed in 10% formalin solution (4% formaldehyde) and labelled. For qualitative and quantitative analysis 1 mL of fixed sample was taken on glass slide and studied under dissecting microscope. Individuals were identified up to genus level with the help of keys given by Edmondson et al. [3] and Needham and Needham [4] and frequency of each taxon was noted and expressed as individual/m² [2–4].

Results and Discussion

Physico-chemical parameters

In all selected water bodies air temperature ranged from a minimum of 26.4°C to a maximum of 38.8°C from 8th March to 23rd April, 2016 whereas water temperature ranged from a minimum of 23.1°C to a maximum of 33.2°C from 8th March to 23rd April, 2016. The surface water temperature of all selected water bodies followed closely the trend of air temperature during study period. Reduction in solar radiation due to shorter day length may explain lower temperature
during the month of March. Increase in both air and water temperature during the month of April is attributed to the increase in solar radiation comparatively due to longer day length. pH values of all selected water bodies ranged from a minimum of 7.0 to a maximum of 8.0 during month of March, 2016 whereas during the month of April, it ranged from a minimum of 7.5 to a maximum of 8.5. Increased values of pH in all selected water bodies during the study period could be related to increased level of photosynthesis carried out by phytoplankton and macrophytes, wherein CO₂ is consumed, and hence pH is raised. The decrease in dissolved oxygen and the increase in Carbon dioxide in all the selected water bodies from 8th March to 23rd April, 2016 clearly justify the fact that as temperature increases oxygen holding capacity of water decreases while carbon dioxide increases due to high rate of decomposition. Lower values of carbon dioxide were observed in Nai Basti. The decrease in dissolved oxygen and the increase in Carbon dioxide in all the selected water bodies from 8th March to 23rd April, 2016 clearly justify the fact that as temperature increases oxygen holding capacity of water decreases while carbon dioxide increases due to high rate of decomposition. Lower values of carbon dioxide were observed in Nai Basti. The decrease in dissolved oxygen and the increase in Carbon dioxide in all the selected water bodies from 8th March to 23rd April, 2016 clearly justify the fact that as temperature increases oxygen holding capacity of water decreases while carbon dioxide increases due to high rate of decomposition. Lower values of carbon dioxide were observed in Nai Basti. The decrease in dissolved oxygen and the increase in Carbon dioxide in all the selected water bodies from 8th March to 23rd April, 2016 clearly justify the fact that as temperature increases oxygen holding capacity of water decreases while carbon dioxide increases due to high rate of decomposition (Tables 1-4).

Lower values of carbon dioxide were observed in Nai Basti pond during study period (Table 2), might be due to high photosynthesis of phyto benthos and macrophytes.

Benthos

In distribution of benthic flora, light plays a very important role when the water is sufficiently shallow. The studied waterbodies, being shallow light reaches the bottom sediments in plenty and as a result of it, phy to benthos grow in greater abundance. The phyto benthos comprised of three major groups namely Bacillariophyceae, Chlorophyceae and Myxophyceae. The variations in Phyto benthos density in the selected water bodies were recorded from a minimum of 38 No/m² to a maximum of 151 No/m² (Tables 5-7; Figures 1-4) in

Dates	Temperature (°C)	pH	D.O. (mg/L)	Co₂ (mg/L)
9/3/2016	26.4°C	7.5	4.6 mg/L	21.0 mg/L
23-03-2016	29.0°C	8	4.0 mg/L	30.0 mg/L
8/4/2016	33.0°C	8	1.8 mg/L	35.0 mg/L
23-04-2016	34.3°C	8.5	2.0 mg/L	39.0 mg/L

Table 1: Fortnight variations in physicochemical parameters in Lal Diggi pond.

Dates	Temperature (°C)	pH	D.O. (mg/L)	Co₂ (mg/L)
9/3/2016	28.3°C	8	3.0 mg/L	18.0 mg/L
23-03-2016	31.2°C	7.5	2.5 mg/L	16.0 mg/L
8/4/2016	34.0°C	8.5	1.6 mg/L	20.0 mg/L
23-04-2016	35.9°C	8.5	1.6 mg/L	25.0 mg/L

Table 2: Fortnight variations in physicochemical parameters in Nai Basti pond.

Dates	Temperature (°C)	pH	D.O. (mg/L)	Co₂ (mg/L)
9/3/2016	27.8°C	7	3.1 mg/L	26 mg/L
23-03-2016	30.8°C	7.5	2.4 mg/L	24 mg/L
8/4/2016	33.0°C	7.5	2.1 mg/L	28 mg/L
23-04-2016	35.0°C	7.5	1.9 mg/L	36 mg/L

Table 3: Fortnight variations in physicochemical parameters in Chautal pond.
Nai Basti pond ranged from a minimum of 85 No/m² to a maximum of 151 No/m²; in Shekha jheel, from a minimum of 39 No/m² to a maximum of 74 No/m². Phyto benthos of Chautal pond; from a minimum of 51 No/m² to a maximum of 117 No/m² and in Lal diggi pond, phyto benthos ranged from a minimum of 38 No/m² to a maximum of 73 No/m² (Tables 5-7). Chlorophyceae formed the most abundant group followed by Bacillariophyceae and Myxophyceae (Figure 5a-5d). Chlorophyceae showed a direct relation with the temperature. Kumar et al. [5] reported that higher water temperature and low dissolved oxygen support the growth of Chlorophyceae. Statistically, phytobenthos showed positive significant correlation with Water temperature, Carbon dioxide and pH whereas negative but significant correlation with zoobenthos, in all the four studied waterbodies. With dissolved oxygen significant positive correlation in shekha jheel only whereas significant negative in rest of the waterbodies (Tables 8-11). Benthic fauna are widespread in their

Date/Genera	9/3/2016	23-03-2016	8/4/2016	23-04-2016
Bacillariophyceae				
Navicula spp.	8	13	18	15
Diatoma spp.	-	-	-	-
Cocconeis spp.	11	16	12	17
Total	19	29	30	32
Chlorophyceae				
Chlorella spp.	-	-	-	-
Ulothrix spp.	5	7	3	9
Clorococcus spp.	-	-	-	-
Oedogonium spp.	-	-	-	-
Tetrapedia spp.	-	-	-	-
Crucigenia spp.	-	-	-	-
Hydrlichtyon spp.	-	-	-	-
Total	5	7	3	9
Myxophyceae				
Gomorphosphaeria spp.	-	-	-	-
Oscillatoria spp.	6	5	8	11
Nostoc spp.	9	12	19	22
Total	15	17	27	33
Grand total	39	53	60	74

Table 7: Fortnight distribution of phytobenthos (no/m²) in shekha jheel.

Date/Genera	9/3/2016	23-03-2016	8/4/2016	23-04-2016
Bacillariophyceae				
Navicula spp.	12	17	27	21
Diatoma spp.	-	-	-	-
Cocconeis spp.	-	-	-	-
Total	12	17	27	21
Chlorophyceae				
Chlorella spp.	-	-	-	-
Ulothrix spp.	-	-	-	-
Clorococcus spp.	-	-	-	-
Oedogonium spp.	3	2	1	5
Tetrapedia spp.	11	18	15	25
Crucigenia spp.	-	-	-	-
Hydrlichtyon spp.	-	-	-	-
Total	14	20	16	30
Grand total	38	52	59	73

Table 8: Fortnight distribution of phytobenthos (no/m²) in lal diggi.
present investigation Cladocerans were found to be abundant in Nai Basti pond while Dipterans in Chautal pond and Gastropods in Shekha jheel. The abundance of dipterans was represented by Chironomus and Culex. Chironomus can survive in low oxygen condition as well as polluted water body. Therefore, its high number in Chautal pond indicated polluted nature [6]. The availability of maximum number of Gastropods could be correlated to the cumulative effect of alkaline nature of water, high calcium contents and macrophytic vegetation [7]. Trichopterans were found to be the least abundant in all ponds. Kabir et al. [6] reported that these insects are sensitive to pollution. The zoobenthos showed negative but significant correlation with Water temperature and pH in Chautal pond, Shekha jheel and in Lal Diggi pond.

Table 9: Fortnight distribution of zoobenthos (no/m²) in nai basti pond.

Date /Genera	9-03-2016	23-03-2016	9-04-2016	23-04-2016
Coleoptera				
Berosus sp.	-	-	-	-
Total	-	-	-	-
DIPTERA				
Chironomus sp.	27	25	21	28
Culex sp.	27	25	21	28
Ephemeroptera				
Cynigmula sp.	-	-	-	-
Total	-	-	-	-
Hemiptera				
Belostoma sp.	-	-	-	-
Notonecta sp.	5	4	8	3
Ptilostomis sp.	-	-	-	-
Total	5	4	8	3
Odonata				
Libellula sp.	-	-	-	-
Total	-	-	-	-
Trichoptera				
Phryganaea larvae	-	-	-	-
Total	-	-	-	-
Cladocera				
Bosmina sp.	-	-	-	-
Moina sp.	15	23	13	6
Chydorus sp.	14	17	17	4
Daphnia sp.	21	18	12	6
Total	50	58	32	16
Ostracoda				
Cypris sp.	13	9	12	7
Cypridopsis sp.	-	-	-	-
Total	13	9	12	7
Gastropoda				
Amnicola sp.	-	-	-	-
Gyraulus sp.	-	-	-	-
Campeloma sp.	-	-	-	-
Rotifer				
Asplanchna sp.	-	-	-	-
Keratella sp.	-	-	-	-
Protozoa				
Euglena sp.	19	21	7	5
Total	19	21	7	5
Grand total	114	117	80	59

Table 10: Fortnight distribution of zoobenthos (no/m²) in shekha jheel.

Date/Genera	9/3/2016	23/03/2016	8/4/2016	23/04/2016
Coleoptera				
Berosus sp.	28	16	11	-
Total	28	16	11	-
DIPTERA				
Chironomus sp.	3	8	18	11
Culex sp.	-	-	-	-
Total	3	8	18	11
Ephemeroptera				
Cynigmula sp.	25	18	9	-
Total	25	18	9	-
Hemiptera				
Belostoma sp.	21	15	8	13
Notonecta sp.	19	12	7	4
Ptilostomis sp.	-	-	-	-
Total	40	27	15	17
Odonata				
Libellula sp.	11	3	8	23
Total	11	3	8	23
Trichoptera				
Phryganaea larvae	-	-	-	-
Total	-	-	-	-
Cladocera				
Bosmina sp.	-	-	-	-
Moina sp.	-	-	-	-
Chydorus sp.	-	-	-	-
Daphnia sp.	-	-	-	-
Total	50	58	32	16
Ostracoda				
Cypris sp.	-	-	-	-
Cypridopsis sp.	-	-	-	-
Total	-	-	-	-
Gastropoda				
Amnicola sp.	-	-	-	-
Gyraulus sp.	-	-	-	-
Campeloma sp.	-	-	-	-
Rotifer				
Asplanchna sp.	-	-	-	-
Keratella sp.	-	-	-	-
Protozoa				
Euglena sp.	-	-	-	-
Total	-	-	-	-
Grand total	120	92	95	101
Diggi; with CO$_2$ in Chautal pond and Shekha jheel, whereas in Nai Basti pond zoobenthos showed positive significant correlation with water temperature, pH and CO$_2$. However, with dissolved oxygen these animals showed positive significant correlation in all water bodies (Tables 10-13). The result of present investigation revealed that zoobenthos were more dominant than phytobenthos. Among zoobenthos, Diptera was found to be the abundant group followed by Cladocerans and least was Trichopterans. Chironomus which is a representative of Dipterans is the pollution indicator. Trichopterans are sensitive to the pollution, so they are least abundant. Chlorophyceae formed the most abundant group in Lal Diggi, Chautal and Nai Basti pond. Zoobenthos are inversely related to phyto benthos in all the ponds indicating former grazing on latter proving top down control in these lentic ecosystems [8-10].

Conclusion

Present investigation revealed that zoobenthos were more dominant than phytobenthos. Among zoo benthos, Diptera was found to be the abundant group followed by Cladocerans and least was Trichopterans. Chironomus which is a representative of Dipterans is the pollution indicator. Trichopterans are sensitive to the pollution, so they are least abundant. Chlorophyceae formed the most abundant group in Lal Diggi, Chautal and Nai Basti pond. Zoobenthos are inversely related to phyto benthos in all the ponds indicating former grazing on latter. The presence of zoo benthos along with phytobenthos in all samples indicated nutrient rich and productive pond bottom thereby proving favourable environment for benthic animals especially fish.
Table 13: Statistical brief of water quality parameters in chautal pond.

Parameters	Correlation (r value)	Significant at p=0.05	
Air temperature	Water temperature	0.982	✓
Water temperature	Carbon dioxide	0.982	✓
	Dissolved oxygen	0.998	✓
	pH	0.947	✓
	Zoo benthos	0.998	✓
	Phyto benthos	0.932	✓
Carbon dioxide	Phyto benthos	0.98	✓
	Zoo benthos	0.988	✓
	Dissolved oxygen	0.911	✓
	pH	0.947	✓
Dissolved oxygen	Zoo benthos	0.941	✓
	Phyto benthos	-0.863	✓
	pH	0.753	✓
pH	Phyto benthos	0.981	✓
	Zoo benthos	0.888	✓

Table 14: Statistical brief of water quality parameters in laldiggi pond.

Parameters	Correlation (r value)	Significant at p=0.05	
Air temperature	Water temperature	0.997	✓
Water temperature	Carbon dioxide	0.722	✓
	Dissolved oxygen	0.975	✓
	pH	0.734	✓
	Zoo benthos	0.879	✓
	Phyto benthos	0.95	✓
Carbon dioxide	Phyto benthos	0.885	✓
	Zoo benthos	-0.802	✓
	Dissolved oxygen	0.842	✓
	pH	0.146	✓
Dissolved oxygen	Zoo benthos	0.946	✓
	Phyto benthos	0.996	✓
	pH	0.643	✓
pH	Phyto benthos	0.585	✓
	Zoo benthos	0.671	✓

Table 15: Statistical brief of water quality parameters in shekha jheel.

Parameters	Correlation (r value)	Significant at p=0.05	
Air temperature	Water temperature	0.997	✓
Water temperature	Carbon dioxide	0.722	✓
	Dissolved oxygen	0.975	✓
	pH	0.734	✓
	Zoo benthos	0.879	✓
	Phyto benthos	0.95	✓
Carbon dioxide	Phyto benthos	0.885	✓
	Zoo benthos	-0.802	✓
	Dissolved oxygen	0.842	✓
	pH	0.146	✓
Dissolved oxygen	Zoo benthos	0.946	✓
	Phyto benthos	0.996	✓
	pH	0.643	✓
pH	Phyto benthos	0.585	✓
	Zoo benthos	0.671	✓

Table 16: Statistical brief of water quality parameters in nai basti pond.

Parameters	Correlation (r value)	Significant at p=0.05	
Air temperature	Water temperature	0.991	✓
Water temperature	Carbon dioxide	0.749	✓
	Dissolved oxygen	0.970	✓
	pH	0.563	✓
	Zoo benthos	0.869	✓
	Phyto benthos	0.96	✓
Carbon dioxide	Phyto benthos	0.671	✓
	Zoo benthos	0.978	✓
	Dissolved oxygen	0.773	✓
	pH	0.834	✓
Dissolved oxygen	Zoo benthos	0.886	✓
	Phyto benthos	-0.989	✓
	pH	0.715	✓
pH	Phyto benthos	0.642	✓
	Zoo benthos	0.816	✓
Zoo benthos	Phyto benthos	0.808	✓
Acknowledgements

The first author is indebted to Chairman Professor Iqbal Pervez, Department of Zoology Aligarh Muslim University, Aligarh for providing necessary facilities to complete this project.

References

1. Ramachandra TV, Ahalya N, Murthy R (2005) Aquatic ecosystem Conservation restoration and management. Capital Publishing Company New Delhi.
2. Michael P (1984) Ecological methods for field and laboratory investigations. McGraw Hill Publishing Company Limited: 400.
3. Edmondson WT, Ward HB, Whipple GC (1978) Freshwater Biology (2nd edn.), John Wiley and Sons Inc New York: 1248.
4. Needham JG, Needham PR (1962) A Guide to the Study of the Freshwater Biology. Holden-Dey Inc Francisco: 108.
5. Kumar NJI, Sharma G, Kumar RN, Joseph S (2005) An assessment of eutrophication and weed growth of certain wetlands of Gujarat. Trivedy RK editor. In Recent advances in water pollution research book Enclave Jain Bhavan Jaipur: 129-150.
6. Kabir H, Parveen S, Ahmad U, Ganai AH (2013) Benthic insect diversity in sewage fed pond of Aligarh region. Int J of Biodiversity and Conservation 5: 209-214.
7. Garg RK, Rao RJ, Saksena DN (2011) correlation of molluscan diversity with physicochemical characteristics of Ramsagar reservoir Ind. International Journal of Biodiversity and Conservation 1: 202-207.
8. APHA (1992) Standard methods for Examination of Water and Wastewater. American Public Health Association AWWA WPCF Washington DC USA: 1193.
9. Ahmad U, Parveen S, Hassan T, Bhat BN (2013) A study on Limnology and Biodiversity of Crustaceans and Macrophyte infested water bodies of Aligarh region. International journal of plant animal and environmental sciences.
10. Trivedy RK, Goel PK (1984) Chemical and biological methods for water pollution studies. Environmental Publications Karad India: 250.