Spectral radius and the 2-power of Hamilton cycles
Xinru Yan, Xiaocong He, Lihua Feng†, Weijun Liu.

School of Mathematics and Statistics, HNP-LAMA, Central South University, New Campus, Changsha, Hunan, 410083, PR China

Abstract: Let G be a graph of order n and spectral radius be the largest eigenvalue of its adjacency matrix, denoted by $\mu(G)$. In this paper, we determine the unique graph with maximum spectral radius among all graphs of order n without containing the 2-power of a Hamilton cycle.

Keywords: 2-power of graphs; Hamilton cycle; Spectral radius.

AMS classification: 05C50, 05C35

1 Introduction

We will start with introducing some background information that will lead to our main results. Some important previously established facts will also be presented.

1.1 Background

Let $G = (V(G), E(G))$ be a simple graph and $\mu(G)$ be the largest eigenvalue of its adjacency matrix, where $V(G)$ and $E(G)$ are vertex set and edge set, respectively. For $u, v \in V(G)$, the distance between u and v is defined to be the number of edges of a shortest path from u to v. We write $d(G)$ for $|E(G)|$, $\delta(G)$ stands for the degree of the vertex u in G, and $\delta(G)$ stands for the minimum degree in G. We use K_n, S_n, P_n and C_n to denote the complete graph, the star, the path and the cycle of order n, respectively. Note that C_n is also called a Hamilton cycle of G with order n. The join of two disjoint graphs G_1 and G_2, denoted by $G_1 \cup G_2$, is the graph obtained from $G_1 \cup G_2$ by joining each vertex of G_1 to each vertex of G_2. For odd number n, we use F_n to stand for a union of $\binom{n}{3}$ triangles sharing a single common vertex. $K_{a,b}$ denotes the complete bipartite graph with vertex partition sets of sizes a and b. Let $S_{n,k}$ be the graph obtained by joining each vertex of K_k to $n-k$ isolated vertices. A wheel W_n is the graph obtained by joining C_{n-1} with an additional vertex. Let $G + e$ denote the graph obtained from G by adding an edge e between a pair of non-adjacent vertices. Let $G^−$ denote the set of graphs obtained from G by deleting any edge and G^+ denote the set of graphs obtained from G by adding a new vertex and joining it to any one vertex of G. If there is only one non-isomorphic graph in $G^−$ or G^+, then we also use $G^−$ or G^+ to denote this unique graph. Also, G^{+k} denotes the set of graphs obtained from G by adding a new vertex and joining it to any k vertices of G. Let \overline{G} denote the complement graph of G, where any two vertices in \overline{G} are adjacent if they are not adjacent in G. The k-power of a graph G, denoted by G^k, is another graph that has the same set of vertices, but in which two vertices are adjacent when their distance in G is at most k. Let H be any subgraph of G. Then $G \setminus E(H)$ denotes the graph obtained from G by deleting edges of H. We adopt the notation and terminologies in [1, 14, 31, 37, 38] except as stated otherwise.

Let $\mathcal{K}(n,t)$ be the set of graphs on n vertices with t edges. Let M_n be the $2n$-vertex graph on n independent edges. Let S_n^* be the graph obtained from S_n by adding a new vertex and joining it to a leaf of S_n. Let $T_{a,b,c}$ stand for a T-shaped tree defined as a tree with a single vertex u of degree 3 such that $T_{a,b,c} - u = P_a \cup P_b \cup P_c$ ($a \leq b \leq c$). Similarly, $T_{a,b,c,d}$ stands for a T-shaped tree defined as a tree with a single vertex u of degree 4 such that $T_{a,b,c,d} - u = P_a \cup P_b \cup P_c \cup P_d$ ($a \leq b \leq c \leq d$) and $T_{a,b,c,d,e}$ can be defined in the same way. Let D_n be the double-snake of order n, depicted in Figure 1. Let \mathcal{L}_n be a set of graphs with $n \geq 9$ and the graphs in \mathcal{L}_n are depicted in Figure 2.

For an integer $k \geq 0$, the k-closure of the graph G is a graph obtained from G by successively joining pairs of nonadjacent vertices whose degree sum is at least k (in the resulting graph at each stage) until

†Corresponding author.
Email addresses: 29172511789@qq.com (X.R. Yan) fenglh@163.com (L.H. Feng)
no such pair remains \[3, 39\]. Write \(C_k(G)\) for the \(k\)-closure of \(G\). Note that \(d_{C_k(G)}(u) + d_{C_k(G)}(v) \leq k - 1\) for any pair of nonadjacent vertices \(u\) and \(v\) in \(C_k(G)\).

For short, we omit the isolated vertices of graphs in this paper. For example, in the case \(n = 6\), \(M_2\) should be \(M_2 \cup K_3\) with minimum degree one (without considering isolated vertices). Similarly, \(S_{n-4} \cup K_3\) should be \(S_{n-4} \cup K_3 \cup K_1\) with minimum degree one.

A well known theorem of Dirac [8] states that if \(G\) is a graph on \(n\) vertices with \(\delta(G) \geq \frac{n}{2}\), then \(G\) contains a hamiltonian cycle. In 1963, Posá (see also in \([9]\) by Erdős) conjectured that if \(\delta(G) \geq \frac{2}{3}n\), then \(G\) contains a \(C_n^2\). Later in 1974, Seymour [36] generalized Posá’s conjecture and conjectured that if \(\delta(G) \geq \frac{1}{k+1}n\), then \(G\) contains a \(C_n^k\). Using the Regularity Lemma and Blow-up Lemma, Komlós, Sárközy and Szemerédi [22] proved Seymour’s conjecture in asymptotic form, then in [23, 24] they proved both conjectures for \(n \geq n_0\). Later Levitt, Sárközy and Szemerédi [25] presented another proof (and a general method) that avoids the use of the Regularity Lemma and thus the resulting \(n_0\) is much smaller.

Fan and Haggkvist [10] proved that if \(\delta(G) \geq \frac{5}{7}n\), then \(G\) contains a \(C_n^2\). Fan and Kierstead [11] showed that for every \(\epsilon \geq 0\), there exists a constant \(c\), such that if \(\delta(G) \geq (\frac{2}{3} + \epsilon)n + c\), then \(G\) contains a \(C_n^2\). Next they [12] showed that if \(\delta(G) \geq \frac{2n-1}{3}\), then \(G\) contains a \(P_n^2\). For more results about the existence of \(C_n^k\) in graphs, we refer the reader to [13, 24].

A central problem of extremal graph theory is as following: for a given graph \(H\), what is the maximum number of edges of an \(H\)-free graph of order \(n\)? This question and its extensions are called Turán type problems (for example, [20, 34]). Moreover, much attention has been paid to spectral Turán type problems, i.e., what is the maximum (signless Laplacian, \(p\)-Laplacian) spectral radius of an \(H\)-free graph of
order \(n \) (see for example, 15 14 35 58)? In recent years, some attention has been given to the relations between (signless Laplacian, \(p \)-Laplacian) spectral radius and cycles of fixed length and particularly Hamilton cycle; see 3 15 10 17 90 52 55. Yuan 20 determined the maximum number of edges of a graph without containing the 2-power of a Hamilton cycle which extends a well-known theorem of Ore 34 concerning the maximum number of edges of a graph without containing a Hamilton cycle. Motivated by 20 directly, it is worth to focus on the spectral Turán type problems, i.e., what is the maximum (signless Laplacian, \(p \)-Laplacian) spectral radius of a \(C_n^2 \)-free graph of order \(n \)? In this paper, we determine the unique graph with maximum spectral radius among all graphs of order \(n \) without containing the 2-power of a Hamilton cycle. On the other hand, in this paper, we also consider the relationship between the complement of a graph \(G \) without containing the 2-power of a Hamilton cycle and its spectral radius \(\mu(G) \), one may refer to 15 18 38. Other related results can be found in 2 6 7 4 14 19 31 37 20 27 28 29.

1.2 Main results

In this article, we determine the unique graph with maximum spectral radius among all graphs of order \(n \) without containing the 2-power of a Hamilton cycle. This extends a theorem of Long-Tu Yuan 20 in 2021 concerning the maximum number of edges of an \(n \)-vertex graph without containing the 2-power of a Hamilton cycle. We will establish the following theorems.

Theorem 1.1. Let \(G \) be graph on \(n \geq 18 \) vertices. If \(e(G) \geq \frac{n^2-3n+3}{2} \), then \(G \) contains the 2-power of a Hamilton cycle unless \(G \) is a subgraph of \(Y_n \), where \(Y_n \) is \(K_n \setminus E(S_{n-3}) \), \(K_n \setminus E(S_{n-4} \cup S_4) \) or \(K_n \setminus E(S_{n-4} \cup K_3) \).

Theorem 1.2. Let \(G \) be graph on \(n \geq 18 \) vertices. If \(\mu(G) \geq \mu(K_n \setminus E(S_{n-3})) \), then \(G \) contains the 2-power of a Hamilton cycle unless \(G = K_n \setminus E(S_{n-3}) \).

Theorem 1.3. Let \(G \) be graph on \(n \geq 18 \) vertices. If \(\mu(G) \leq \sqrt{n-5} \), then \(G \) contains the 2-power of a Hamilton cycle unless \(C_n(G) = K_n \).

1.3 Preliminaries

In this subsection, we first recall some important known results and then present a few technical lemmas which will be used in the proofs of our main results.

Theorem 1.4 (20). Let \(G \) be an \(n \)-vertex graph with \(n \geq 6 \) and without containing the 2-power of a Hamilton cycle. Then we have \(e(G) \leq \begin{cases} 25, & n = 8; \\ 49, & n = 11; \\ C_{n-1}^2 + 3, & \text{otherwise.} \end{cases} \) Moreover, the equality holds if and only if \(G = K_n \setminus E(F) \) with \(F \in \mathcal{H}_n \), where \(\mathcal{H}_n \) is a family of graphs with \(n \geq 6 \) as follows:

\[
\mathcal{H}_n = \begin{cases} S_3, & n = 6; \\ S_4, K_3, & n = 7; \\ K_3, & n = 8; \\ K_4, S_6, & n = 9; \\ K_4, S_7, & n = 10; \\ K_4, & n = 11; \\ S_9, & n = 12; \\ S_{10}, & n = 13; \\ S_{11}, K_5, & n = 14; \\ S_{n-3}, & n \geq 15. \end{cases}
\]

Proposition 1.5 (20). Let \(n \geq 6 \). If \(C_{n-1}^2 \) contains a copy of \(F \) with \(n - 1 \) vertices, then

(i) \(C_n^2 \) contains each graph in \(F^+ \) as a subgraph.

(ii) Let \(\left\lceil \frac{n-1}{4} \right\rceil - 1 = t \geq 1 \). Then \(C_n^2 \) contains each graph in \(F^+t \) as a subgraph.
Lemma 1.6 (24). Let \(n \geq 6 \). If \(n \neq 8, 11 \), then \(C_n^2 \) contains each copy of \(F \in K(n, n - 4) \backslash H_n \). If \(n = 8, 11 \), then \(C_n^2 \) contains each copy of \(F \in K(n, n - 5) \backslash H_n \).

The following fact is obvious.

Fact 1.7. Let \(n \geq 6 \). If \(\frac{n}{4} \in \mathbb{Z} \), then \(C_n^2 \) contains a copy of \(K_{\frac{n}{4}} \) but not \(K_{\frac{n}{4} + 1} \). If \(\frac{n}{4} \notin \mathbb{Z} \), then \(C_n^2 \) contains a copy of \(K_{\frac{n}{4} + 1} \).

Lemma 1.8 (19). Let \(G \) be a simple connected graph of order \(n \) with \(m \) edges. The spectral radius \(\mu(G) \) satisfies \(\mu(G) \leq \sqrt{2m - n + 1} \) with equality if and only if \(G \) is isomorphic to \(S_n \) or \(K_n \).

Theorem 1.9 (15). Let \(G \) be a graph of order \(n \) and spectral radius \(\mu(G) \). If \(\mu(G) > n - 2 \), then \(G \) contains a Hamilton cycle unless \(G = K_{n - 1} + e \). Let \(\mu(G) \) be the spectral radius of the complement graph \(\overline{G} \). If \(\mu(G) \leq \sqrt{n - 2} \), then \(G \) contains a Hamilton cycle unless \(G = K_{n - 1} + e \).

Lemma 1.10 (18). Let \(G \) be a graph of order \(n \). Then the spectral radius \(\mu(G) \) of \(G \) satisfies \(\mu(G) \geq \frac{1}{n} \sum_{u \in V(G)} d_G^2(u) \) with equality if and only if each component of \(G \) is an \(r \)-regular graph or an \((r_1, r_2)\)-biregular graph, where \(r^2 = \frac{1}{n} \sum_{u \in V(G)} d_G^2(u) \) and \(r_1, r_2 \) satisfy \(r_1 r_2 = r^2 \).

Lemma 1.11. Let \(6 \leq n \leq 15 \). Then \(C_n^2 \) contains each copy of \(F \in K(n, n - 3) \) unless \(F \) contains one of \(\mathcal{F}_n \) as a subgraph, where \(\mathcal{F}_n \) is a family of graphs with \(6 \leq n \leq 15 \) as follows:

\[
\mathcal{F}_n = \begin{cases}
S_3, & n = 6; \\
S_4, C_4, K_3, & n = 7; \\
K_3, S_5, & n = 8; \\
K_4, S_6, F_5, & n = 9; \\
K_4, S_7, S_5, & n = 10; \\
K_4, S_8, & n = 11; \\
K_5, S_9, & n = 12; \\
S_{10}, K_5, & n = 13; \\
S_{11}, K_5, & n = 14; \\
S_{12}, & n = 15.
\end{cases}
\]

Proof. Let \(n = 6 \). Then \(C_6^2 = M_3 \) and \(K(6, 2) = \{M_2, S_3\} \). Hence it is easy to see that \(K(6, 3) = \{M_3, S_3 \cup K_2, P_4, S_5, K_3\} \). Then obviously the lemma holds for \(n = 6 \).

Let \(n = 7 \). Then \(C_7^2 = C_7 \) and \(K(7, 3) = \{M_3, S_3 \cup K_2, P_4, K_3, S_4\} \). Hence it is easy to see that \(K(7, 4) = \{M_2 \cup S_3, P_4 \cup K_2, 2S_3, P_5, K_3 \cup K_2, C_4, T_{1,1,2}, S_4 \cup K_2, K_3^+; S_5\} \). Then obviously the lemma holds for \(n = 7 \).

Let \(n = 8 \). Then clearly \(C_8^2 \) does not contain a copy of \(K_3 \). It is easy to see that \(K(8, 4) = \{M_4, M_2 \cup S_3, P_4 \cup K_2, 2S_3, S_4 \cup K_2, P_5, K_4^+, C_4, S_5, K_3 \cup K_2, T_{1,1,2}\} \) and \(K(8, 5) = \{M_2 \cup P_4, M_2 \cup S_4, S_4 \cup S_4, P_5 \cup K_2, T_{1,1,2} \cup K_2, C_4^+, P_4 \cup S_3, P_6, T_{1,2,2}, 2S_3 \cup K_2, T_{1,1,3}, D_6, C_4 \cup K_2, C_5\} \cup \mathcal{F}_8' \). Let \(\mathcal{F}_8' = \{T_{1,1,1,2}, K_4^+ \cup K_2, K_3 \cup S_3, K_3 \cup M_2, S_5 \cup K_2, S_6, S_5', K_4', G_2, G_3, G_4\} \), where \(G_2, G_3 \) and \(G_4 \) are obtained from \(K_3^+ \) by adding a new vertex and joining it to a vertex of \(K_3^+ \) with degree one, two and three, respectively. It is straightforward to check that \(C_8^2 \) contains each graph in \(K(8, 5) \backslash \mathcal{F}_8' \) and the graphs in \(\mathcal{F}_8' \) contains a copy of either \(K_3 \) or \(S_5 \). So the lemma holds for \(n = 8 \).

Let \(n = 9 \). Let \(t = \left\lceil \frac{a+b}{4} \right\rceil - 1 = \left\lceil \frac{a+b}{4} \right\rceil - 1 = 1 \). Regardless of isolated vertices of \(F \), we consider the following two cases:

(a.1) \(\delta(F) \geq t + 2 = 2 \). Then the number of non-isolated vertices of \(F \) is at most \(\left\lceil \frac{2(n-3)}{t+1} \right\rceil = 6 \).

(b.1) \(\delta(F) = 1 \). Then by Proposition 1.5(i), we only need to consider \(F \in \mathcal{F}_8' \).

In case of (a.1) the graphs with \(\delta(F) \geq 2 \) and \(\epsilon(F) = 6 \) are \(C_6, 2K_3, K_4, F_5, K_2,3 \) and \(C_5 + e \). A simple observation shows that \(C_9^2 \) contains \(C_6, 2K_3, K_4, F_5, K_2,3 \) and \(C_5 + e \) as subgraphs. Now the graphs in (b.1) are the graphs obtained from a graph belonging to \(\mathcal{F}_8' \) by adding an isolated vertex \(v \) and an arbitrary edge.
In case of (a.4), the graphs with $\delta(F) \geq t + 1 = 3$. Then the number of non-isolated vertices of F is at most \(\left\lfloor \frac{2(n-3)}{(n-2)} \right\rfloor = 4\).

(b.2) $\delta(F) = 2$. Then by Proposition 1.8(iii), we only need to consider $F \in \{K_4^-, S_6\}^{+2}$.

(c.2) $\delta(F) = 1$. Then by Proposition 1.8(i), we only need to consider the graphs obtained from a graph in $K(9,6)$ which contains one of graph in F_9 as a subgraph by adding an isolated vertex v and an arbitrary edge incident with v.

Clearly, there is no graph in (a.2). As for the graphs in (b.2), we only need to consider $F \in \{K_4^-, S_6\}^{+2}$ because of $\delta(F) = 2$ without considering isolated vertices. A simple observation shows that $\overline{C_{10}}^2$ contains each graph in $\{K_4^-, S_5, S_2\}$ as a subgraph. Clearly, we know that $\overline{C_{10}}^2$ contains a copy of K_4^- but not K_4 by Fact 1.7. Thus it is not hard to show that $\overline{C_{10}}^2$ contains each graph in (c.2) except $K_4 \cup K_2, K_4^+, S_2, S_7 \cup K_2, S_8, S_7 + e$. Thus we are done for $n = 10$. Moreover, $\overline{C_{10}}^2$ contains each graph in $K(10,6) \setminus \{K_4, S_7\}$ as a subgraph by Lemma 1.6.

Let $n = 11$. Let $t = \left\lceil \frac{n-1}{2} \right\rceil - 1 = \left\lceil \frac{11-1}{2} \right\rceil - 1 = 2$. Note that $\overline{C_{11}}^2$ contains each graph in $K(11,7) \setminus \{K_4, K_4 \cup K_2, S_8\}$ by Lemma 1.6. Regardless of isolated vertices of F, we consider the following cases:

(a.3) $\delta(F) \geq t + 1 = 3$. Then the number of non-isolated vertices of F is at most \(\left\lfloor \frac{2(n-3)}{(n-2)} \right\rfloor = 5\).

(b.3) $\delta(F) = 2$. Then by Proposition 1.8(ii), we only need to consider $F \in \{K_4, S_7\}^{+2}$.

(c.3) $\delta(F) = 1$. Then by Proposition 1.8(i), we only need to consider the graphs obtained from a graph in $K(10,7)$ which contains one of graph in F_{10} as a subgraph by adding an isolated vertex v and an arbitrary edge incident with v.

In case of (a.3) the unique graph with $\delta(F) \geq 3$ and $e(F) = 8$ is W_5 and $\overline{C_{11}}^2$ contains a copy of W_5. As for the graphs in (b.3), we only need to consider $F \in \{K_4\}^{+2} = K_4^+$ because of $\delta(F) = 2$.

Clearly, we know that $\overline{C_{11}}^2$ contains a copy of K_4^- but not K_4 by Fact 1.7 and it is easy to check that $\overline{C_{11}}^2$ contains a copy of $S_{5,2}$, but it is not hard to show that $\overline{C_{11}}^2$ contains each graph in (c.3) except $S_5, S_8 \cup K_2, S_9, S_8 + e, K_4 \cup M_2, K_4 \cup S_3, K_4^+ \cup K_2, G_7, G_8$ and G_9, where G_7, G_8 and G_9 are obtained from K_4^+ by adding a new vertex and joining it to a vertex of K_4^+ with degree one, three and four respectively. Thus we are done for $n = 11$.

Let $n = 12$. Let $t = \left\lceil \frac{n-1}{2} \right\rceil - 1 = \left\lceil \frac{12-1}{2} \right\rceil - 1 = 2$. Regardless of isolated vertices of F, we consider the following cases:

(a.4) $\delta(F) \geq t + 1 = 3$. Then the number of non-isolated vertices of F is at most \(\left\lfloor \frac{2(n-3)}{(n-2)} \right\rfloor = 6\).

(b.4) $\delta(F) = 2$. Then by Proposition 1.8(ii), we only need to consider $F \in \{K_4^+, K_4 \cup K_2, S_8\}^{+2}$.

(c.4) $\delta(F) = 1$. Then by Proposition 1.8(i), we only need to consider the graphs obtained from a graph in $K(11,8)$ which contains one of graph in F_{11} as a subgraph by adding an isolated vertex v and an arbitrary edge incident with v.

In case of (a.4), the graphs with $\delta(F) \geq 3$ and $e(F) = 9$ are K_5^-, K_3, K_3 and G_{10}, where G_{10} is obtained from two vertex disjoint copies of K_5 and joining three independent edges between them. Clearly, we know that $\overline{C_{12}}^2$ contains a copy of K_4 but not K_5^- by Fact 1.7 and it is easy to check that $\overline{C_{12}}^2$ contains copies of K_3 and G_{10}. As for the graphs in (b.4), we only need to consider $F \in \{K_4^+, K_4 \cup K_2\}^{+2}$ because of $\delta(F) = 2$ and also it is not hard to see that $\overline{C_{12}}^2$ contains each graph in $\{K_4, K_2 \cup K_4\}^{+2}$.

Thus it is not hard to show that $\overline{C_{12}}^2$ contains each graph in (c.4) except $S_9, S_9 \cup K_2, S_{10}$ and $S_9 + e$. Thus we are done for $n = 12$. Moreover, $\overline{C_{12}}^2$ contains each graph in $K(12,8) \setminus \{S_9\}$ as a subgraph by Lemma 1.6.
Let $n = 13$. Let $t = \left\lceil \frac{n-1}{4} \right\rceil - 1 = \left\lceil \frac{13-1}{4} \right\rceil - 1 = 2$. Regardless of isolated vertices of F, we consider the following three cases:

(a.5) $\delta(F) \geq t + 1 = 3$. Then the number of non-isolated vertices of F is at most $\left\lceil \frac{2(n-3)}{4} \right\rceil = 6$.

(b.5) $\delta(F) = 2$. Then by Proposition 1.5(ii), we only need to consider $F \in \{S_9\}^{12}$.

(c.5) $\delta(F) = 1$. Then by Proposition 1.5(i), we only need to consider the graphs obtained from a graph in $\mathcal{K}(12,9)$ which contains one of graph in \mathcal{F}_{12} as a subgraph by adding an isolated vertex v and an arbitrary edge incident with v.

In case of (a.5), the graphs with $\delta(F) \geq 3$ and $e(F) = 10$ are K_5, W_6, G_{11}, G_{12} and G_{13}, where G_{11}, G_{12} and G_{13} are depicted in Figure 3. Clearly, we know that $\overline{C_{13}^2}$ contains a copy of K_5^2 but not K_5 by Fact 1.7 and it is not hard to check that $\overline{C_{13}^2}$ contains copies of W_6, G_{11}, G_{12} and G_{13}. As for the graphs in (b.5), there is no graph in (b.5) because of $\delta(F) = 2$. Thus it is not hard to show that $\overline{C_{13}^2}$ contains each graph in (c.5) except $S_9^*, S_{10} \cup K_2, S_{11}$ and $S_{10} + e$. Thus we are done for $n = 13$. Moreover, $\overline{C_{13}^2}$ contains each graph in $\mathcal{K}(13,9) \setminus \{S_{10}\}$ as a subgraph by Lemma 1.6 and obviously $\overline{C_{13}^2}$ contains each graph in $\mathcal{K}(13,8)$ as a subgraph.

Figure 3: G_{11}, G_{12} and G_{13}.

Let $n = 14$. Let $t = \left\lceil \frac{n-1}{4} \right\rceil - 1 = \left\lceil \frac{14-1}{4} \right\rceil - 1 = 3$. Regardless of isolated vertices of F, we consider the following four cases:

(a.6) $\delta(F) \geq t + 1 = 4$. Then the number of non-isolated vertices of F is at most $\left\lceil \frac{2(n-3)}{4} \right\rceil = 5$.

(b.6) $\delta(F) = 3$. Then by Proposition 1.5(ii), $\overline{C_{14}^2}$ contains each copy of $F \in \mathcal{K}(13,8)^{+3}$.

(c.6) $\delta(F) = 2$. Then by Proposition 1.5(ii), we only need to consider $F \in \{S_{10}\}^{+2}$.

(d.6) $\delta(F) = 1$. Then by Proposition 1.5(i), we only need to consider the graphs obtained from a graph in $\mathcal{K}(13,10)$ which contains one of graph in \mathcal{F}_{13} as a subgraph by adding an isolated vertex v and an arbitrary edge incident with v.

In case of (a.6) there does not exist a graph with $\delta(F) \geq 4$ and $e(F) = 11$. As for the graphs in (c.6), there is no graph in (c.6) because of $\delta(F) = 2$. Clearly, we know that $\overline{C_{14}^2}$ contains a copy of K_5^2 but not K_5 by Fact 1.7. Thus it is not hard to show that $\overline{C_{14}^2}$ contains each graph in (d.6) except $K_5^2, K_5 \cup K_2, S_{11}^*, S_{11} \cup K_2, S_{12}$ and $S_{11} + e$. Thus we are done for $n = 14$. Moreover, $\overline{C_{14}^2}$ contains each graph in $\mathcal{K}(14,10) \setminus \{S_{11}, K_5\}$ as a subgraph by Lemma 1.6 and obviously $\overline{C_{14}^2}$ contains each graph in $\mathcal{K}(14,9)$ as a subgraph.

Let $n = 15$. Let $t = \left\lceil \frac{n-1}{4} \right\rceil - 1 = \left\lceil \frac{15-1}{4} \right\rceil - 1 = 3$. Regardless of isolated vertices of F, we consider the following four cases:

(a.7) $\delta(F) \geq t + 1 = 4$. Then the number of non-isolated vertices of F is at most $\left\lceil \frac{2(n-3)}{4} \right\rceil = 6$.

(b.7) $\delta(F) = 3$. Then by Proposition 1.5(ii), $\overline{C_{15}^2}$ contains each copy of $F \in \mathcal{K}(14,9)^{+3}$.

(c.7) $\delta(F) = 2$. Then by Proposition 1.5(ii), we only need to consider $F \in \{S_{11}, K_5\}^{+2}$.

(d.7) $\delta(F) = 1$. Then by Proposition 1.5(i), we only need to consider the graphs obtained from a graph in $\mathcal{K}(14,11)$ which contains one of graph in \mathcal{F}_{14} as a subgraph by adding an isolated vertex v and an arbitrary edge incident with v.

In case of (a.7) the unique graph with $\delta(F) \geq 4$ and $e(F) = 12$ is $K_2 \lor C_4$ and it is easy to check that
Theorem 1.12. Let \(n \geq 15 \). Then \(\overline{C_n^2} \) contains each copy of \(F \in \mathcal{K}(n, n-3) \) unless \(F \) contains \(S_{n-3} \) as a subgraph.

Proof. We prove the lemma by induction on \(n \). For \(n = 15 \), the lemma follows from Lemma 1.14. Suppose it is true for \(n - 1 \). Then by induction hypothesis, \(\overline{C_{n-1}^2} \) contains each copy of \(F \in \mathcal{K}(n-1, n-4) \) unless \(F \) contains \(S_{n-4} \) as a subgraph. Moreover, \(\overline{C_{n-1}^2} \) contains each graph in \(\mathcal{K}(n-1, n-5) \setminus \{ S_{n-4} \} \) and each graph in \(\mathcal{K}(n-1, n-6) \) by Lemma 1.6.

It is now sufficient to show that \(\overline{C_n^2} \) contains each copy of \(F \in \mathcal{K}(n, n-3) \) unless \(F \) contains \(S_{n-3} \) as a subgraph. Let \(t = \left\lceil \frac{n-4}{3} \right\rceil - 1 \). Regardless of isolated vertices of \(F \), we consider the following two cases:

(a) \(1 \leq \delta(F) \leq t \). Applying Proposition 1.4, it is easy to see that \(\overline{C_n^2} \) contains each copy of \(F \) unless \(F \in \{ S_{n-3} \cup K_2, S_{n-3}^*, S_{n-3} + e, S_{n-2} \} \), in which each graph contains \(S_{n-3} \) as a subgraph.

(b) \(\delta(F) \geq t + 1 \). Then the number of non-isolated vertices of \(F \) is at most \(\left\lceil \frac{2(n-3)}{t+1} \right\rceil \).

We know that \(\overline{C_n^2} \) contains a copy of \(K_4^* \) by Fact 1.7. Now, if \(n \geq 22 \), then we have \(\left\lceil \frac{2(n-3)}{t+1} \right\rceil \leq \left\lceil \frac{n}{3} \right\rceil \).

Thus \(\overline{C_n^2} \) contains a copy of \(F \) for \(n \geq 22 \). Let \(n = 16 \). Then the number of non-isolated vertices of \(F \) is at most \(\left\lceil \frac{2(n-3)}{t+1} \right\rceil = 6 \) and \(e(F) = 13 \). By Fact 1.7, \(\overline{C_n^2} \) contains a copy of \(K_6^* \) which has 14 edges and one can easily check that \(\overline{C_{16}^2} \) contains a copy of \(F \). Let \(n = 17 \). Then the number of non-isolated vertices of \(F \) is at most \(\left\lceil \frac{2(n-3)}{t+1} \right\rceil = 7 \) and \(e(F) = 15 \). Actually \(F \) must be one of \(\{ K_6^*, G_{14}, G_{15} \} \) because \(\delta(F) \geq \left\lceil \frac{n-4}{4} \right\rceil = 4 \), where \(G_{14} \) and \(G_{15} \) are depicted in Figure 4. Clearly, we know that \(\overline{C_{17}^2} \) contains a copy of \(K_6^* \) by Fact 1.7 and it is not hard to check that \(\overline{C_{17}^2} \) contains copies of \(G_{14} \) and \(G_{15} \). So \(\overline{C_{17}^2} \) contains a copy of \(F \). Let \(n = 18 \). Then the number of non-isolated vertices of \(F \) is at most \(\left\lceil \frac{2(n-3)}{t+1} \right\rceil = 6 \) and \(e(F) = 15 \). Thus \(F = K_6 \) and \(\overline{C_{18}^2} \) contains a copy of \(K_6 \) by Fact 1.7. Let \(n = 19 \) or \(n = 20 \). Then the number of non-isolated vertices of \(F \) is at most \(\left\lceil \frac{2(19-3)}{t+1} \right\rceil = \left\lceil \frac{2(20-3)}{t+1} \right\rceil = 6 \) and \(e(F) = 16 \) or 17. Clearly, such \(F \) does not exist. Let \(n = 21 \). Then the number of non-isolated vertices of \(F \) is at most \(\left\lceil \frac{2(n-3)}{t+1} \right\rceil = 7 \) and \(e(F) = 18 \). By Fact 1.7, \(\overline{C_{21}^2} \) contains a copy of \(K_7 \) which has 21 edges and one can easily check that \(\overline{C_{21}^2} \) contains a copy of \(F \).

This completes the proof. \(\square \)

Figure 4: \(G_{14} \) and \(G_{15} \).
Lemma 1.13. Let $6 \leq n \leq 18$. Then $\overline{C_6^*}$ contains each copy of $F \in K(n, n-2) \backslash \{S_{n-4} \cup S_4, S_{n-4} \cup K_3\}$ unless F contains one of \mathcal{E}_n as a subgraph, where \mathcal{E}_n is a family of graphs with $6 \leq n \leq 18$ as follows:

$$
\mathcal{E}_n = \begin{cases}
S_3, & n = 6; \\
S_4, C_4, K_3, C_5, & n = 7; \\
K_3, S_5, K_{2,3}, & n = 8; \\
K_4^-, S_6, F_5, & n = 9; \\
K_4, S_7, S_{5,2}, W_5, G_1, & n = 10; \\
K_4, S_8, S_{6,2}, & n = 11; \\
K_5^-, S_9, & n = 12; \\
S_{10}, K_5, & n = 13; \\
S_{11}, K_5, & n = 14; \\
S_{12}, & n = 15; \\
S_{13}, & n = 16; \\
S_{14}, K_6, & n = 17; \\
S_{15}, & n = 18;
\end{cases}
$$

where G_1 is depicted in Figure 5.

![Figure 5: G1](image)

Proof. Let $n = 6$. Then $\overline{C_6^*} = M_3$ and $K(6, 3) = \{M_3, S_3 \cup K_2, P_4, S_4, K_3\}$. Hence it is easy to see that each graph in $K(6, 4)$ contains a copy of S_3. Then the lemma holds for $n = 6$.

Let $n = 7$. Then $\overline{C_7^*} = C_7$ and $K(7, 4) = \{M_2 \cup S_3, P_4 \cup K_2, 2S_3, P_6, K_3 \cup K_2, C_4, T_{1,1,2}, S_4 \cup K_2, K_3^+, S_5\}$. Clearly, now we only need to consider $\{M_2 \cup S_3, P_4 \cup K_2 \cup K_1, 2S_3 \cup K_1, P_6 \cup K_1, K_3 \cup K_2, 16\}$ and it is not hard to show that $\overline{C_7^*}$ contains copies of the above-mentioned graphs except $T_{1,1,3}, T_{1,2,2}, G_2, G_3, C_4^+, C_5, S_4 \cup S_5, D_6, K_3 \cup S_3, C_4 \cup K_2, K_3^+ \cup K_2, K_3 \cup M_2$ and $T_{1,2,2} \cup K_2$. Then obviously the lemma holds for $n = 7$.

Let $n = 8$. Then clearly $\overline{C_8^*}$ contains K_3 and $K_{2,3}$ but contains copies of D_6 and D_7. By Lemma 11 we know that $K(8, 5) = \{M_2 \cup P_4, M_2 \cup S_4, S_3 \cup S_4 \cup K_1, P_5 \cup K_2 \cup K_1, T_{1,1,2} \cup K_1, C_4^+ \cup K_3, P_4 \cup S_3 \cup K_1, P_6 \cup K_2, T_{1,2,2} \cup K_2, 2S_3 \cup K_2, T_{1,1,3} \cup K_2, D_6 \cup K_2, C_4 \cup K_2 \cup K_2, C_6 \cup K_3 \cup F_8^+\}$. It is straightforward to check that $\overline{C_8^*}$ contains copies of the above-mentioned graphs except $T_{1,1,1,2} \cup K_2, T_{1,1,2,2}, T_{1,1,1,3}, G_{16}, G_{17}, S_5^+ \cup K_2, S_5 \cup S_3, 2S_4, K_{2,3}, K_3 \cup S_4, K_3 \cup P_4, K_3 \cup S_3 \cup K_2, K_3^+ \cup M_2, K_3^+ \cup S_3, G_5, G_6, K_2 \cup K_2, G_3 \cup K_2, G_4 \cup K_2, G_18, G_{19}, G_{20}, G_{21}, G_{22}, G_{23}, C_5 + e$ and $K_3 \cup K_2$, where $G_{18} - G_{23}$ are depicted in Figure 6, G_{16} is obtained from D_6 by adding a new vertex and joining it to a vertex of D_6 with degree three and G_{17} is obtained from C_4^+ by adding a new vertex and joining it to a vertex of C_4^+ with degree three. So the lemma holds for $n = 8$.

For $n \geq 9$, it is clear that the graphs in $K(n, n-2)$ containing one of $S_{n-3}, S_{n-4} \cup S_4$ and $S_{n-4} \cup K_3$ as a subgraph form the set \mathcal{E}_n.

Let $n = 9$. Let $t = \left\lceil \frac{n+1}{4} \right\rceil - 1 = \left\lceil \frac{9+1}{4} \right\rceil - 1 = 1$. Regardless of isolated vertices of F, we consider the following two cases:
(a.1) $\delta(F) \geq t + 1 = 2$. Then the number of non-isolated vertices of F is at most $\left\lfloor \frac{2(n-2)}{5} \right\rfloor = 7$.

(b.1) $\delta(F) = 1$. Then by Proposition 1.3(i), we only need to consider the graphs obtained from a graph E in $\mathcal{K}(8, 6)$ which contains one of graphs in $\mathcal{E}_9 \cup \{2S_4\}$ as a subgraph by adding an isolated vertex v and an arbitrary edge incident with v.

In case of (a.1) the graphs with $\delta(F) \geq 2$ and $e(F) = 7$ are $S_{5,2}, K_1 \vee P_4, G_{24}, G_{25}, G_{26}, G_{27}, G_{28}, G_{29}, K_3$ and $K_3 \cup K_4$, where $G_{24} - G_{29}$ are depicted in Figure 7. A simple observation shows that \overrightarrow{G} contains each graph of $K_{2,3}, C_5, C_6, C_7$ and K_3 as a subgraph but does not contain copies of K_4^- and F_5. Thus it is easy to check that \overrightarrow{G} contains each graph in (a.1) except $S_{5,2}, K_1 \vee P_4$ and G_{24} which obviously contain a copy of K_4^-. As for the graphs in (b.1), note that if the graph E contains one of graphs in \mathcal{E}_9 as a subgraph, then we do not need to consider E^+. Thus, without considering the above situations, it is not hard to show that \overrightarrow{G} contains each graph left in (b.1) except those graphs in $\mathcal{E}_9 \cup \{G_{30}, G_{31}, S_{7}^+, S_7 \cup K_2, S_8, S_7 + \epsilon\}$, where G_{30} is obtained from F_5 by adding a new vertex and joining it to a vertex of F_5 with degree four and G_{31} is obtained from G_6 by adding a new vertex and joining it to a vertex of G_6 with degree four. So we are done for $n = 9$. Moreover, \overrightarrow{G} contains each copy of $F \in \mathcal{K}(9, 6)$ unless F contains one of graphs in \mathcal{F}_9 as a subgraph by Lemma 1.11.

Let $n = 10$. Let $t = \left\lceil \frac{n-1}{4} \right\rceil - 1 = \left\lfloor \frac{n-1}{4} \right\rfloor - 1 = 2$. Regardless of isolated vertices of F, we consider the following three cases:

(a.2) $\delta(F) \geq t + 1 = 3$. Then the number of non-isolated vertices of F is at most $\left\lfloor \frac{2(n-2)}{7} \right\rfloor = 5$.

(b.2) $\delta(F) = 2$. Then by Proposition 1.3(ii), we only need to consider the graphs obtained from a graph D in $\mathcal{K}(9, 6)$ which contains one of graphs in \mathcal{F}_9 as a subgraph by adding an isolated vertex v and two arbitrary edges incident with v.

(c.2) $\delta(F) = 1$. Then by Proposition 1.3(i), we only need to consider the graphs obtained from a graph E in $\mathcal{K}(9, 7)$ which contains one of graphs in $\mathcal{E}_9 \cup \{S_5 \cup S_4, S_5 \cup K_3\}$ as a subgraph by adding an isolated vertex v and an arbitrary edge incident with v.

In case of (a.2) the unique graph with $\delta(F) \geq 3$ and $e(F) = 8$ is W_5 which belongs to \mathcal{E}_{10}. Thus there is no graph in (a.2). A simple observation shows that \overrightarrow{G} contains each graph of K_4^- and F_5 as a subgraph but does not contain copies of $K_4, S_{5,2}, G_1$ and W_5. As for the graphs in (b.2), note that if the graph D contains a copy of S_6, then we do not need to consider D^+ because of $\delta(F) = 2$. Moreover, we do not need to consider the graph $D = K_4$ belonging to \mathcal{E}_{10}. Thus it is easy to check that \overrightarrow{G} contains each graph left in (b.2) except G_4 which belongs to \mathcal{E}_{10}. As for the graphs in (c.2), note that if the graph E contains one of graphs in \mathcal{E}_{10} as a subgraph, then we do not need to consider E^+. Thus, without considering the above situations, it is not hard to show that \overrightarrow{G} contains each graph left in (c.2) except those graphs in $\mathcal{E}_{10} \setminus \{S_8^+, S_8 \cup K_2, S_9, S_8 + \epsilon\}$. So we are done for $n = 10$. Moreover, \overrightarrow{G} contains each
copy of \(F \in \mathcal{K}(10,7) \) unless \(F \) contains one of graphs in \(\mathcal{F}_{10} \) as a subgraph by Lemma 1.11.

Let \(n = 11. \) Let \(t = \left\lceil \frac{n-1}{4} \right\rceil = 1 = \left\lceil \frac{11-1}{4} \right\rceil - 1 = 2. \) Regardless of isolated vertices of \(F, \) we consider the following three cases:

(a.3) \(\delta(F) \geq t + 1 = 3. \) Then the number of non-isolated vertices of \(F \) is at most \(\left\lceil \frac{2(n-2)}{2t+1} \right\rceil = 6. \)

(b.3) \(\delta(F) = 2. \) Then by Proposition 1.5 ii, we only need to consider the graphs obtained from a graph \(D \in \mathcal{K}(10,7) \) which contains one of graphs in \(\mathcal{F}_{10} \) as a subgraph by adding an isolated vertex \(v \) and two arbitrary edges incident with \(v. \)

(c.3) \(\delta(F) = 1. \) Then by Proposition 1.5 i, we only need to consider the graphs obtained from a graph \(E \in \mathcal{K}(10,8) \) which contains one of graphs in \(\mathcal{E}_{10} \cup \{ S_6 \cup S_4, S_6 \cup K_3 \} \) as a subgraph by adding an isolated vertex \(v \) and an arbitrary edge incident with \(v. \)

In case of (a.3) the graphs with \(\delta(F) \geq 3 \) and \(e(F) = 9 \) are \(K_5^-, K_{3,3} \) and \(G_{10}. \) A simple observation shows that \(C_7^{11} \) contains each graph of \(K_5^-, K_{3,3}, G_{10}, S_6, W_5 \) and \(G_1 \) as a subgraph but does not contain copies of \(K_4 \) and \(S_6. \) As for the graphs in (b.3), note that if the graph \(D \) contains a copy of \(S_t, \) then we do not need to consider \(D^{+2} \) because of \(\delta(F) = 2. \) Moreover, we do not need to consider the graph \(D \) which contains a copy of \(K_4 \) belonging to \(\mathcal{E}_{11}, \) i.e. \(D \) is either \(K_4^+ \) or \(K_4 \cup K_2 \) under the circumstance. Thus it is easy to check that \(C_7^{11} \) contains each graph left in (b.3) except \(S_6, \) which belongs to \(\mathcal{E}_{11}. \) As for the graphs in (c.3), note that if the graph \(E \) contains one of graphs in \(\mathcal{E}_{11} \) as a subgraph, then we do not need to consider \(E^+. \) Without considering the above situations, it is not hard to show that \(C_7^{11} \) contains each graph left in (c.3) except those graphs in \(\mathcal{L}_{11} \cup \{ S_5, S_9, K_2, S_{10}, S_9 + e \}. \) So we are done for \(n = 11. \) Moreover, \(C_7^{12} \) contains each copy of \(F \in \mathcal{K}(11,8) \) unless \(F \) contains one of graphs in \(\mathcal{F}_{11} \) as a subgraph by Lemma 1.11.

Let \(n = 12. \) Let \(t = \left\lceil \frac{n-1}{4} \right\rceil = 1 = \left\lceil \frac{12-1}{4} \right\rceil - 1 = 2. \) Regardless of isolated vertices of \(F, \) we consider the following three cases:

(a.4) \(\delta(F) \geq t + 1 = 3. \) Then the number of non-isolated vertices of \(F \) is at most \(\left\lceil \frac{2(n-2)}{2t+1} \right\rceil = 6. \)

(b.4) \(\delta(F) = 2. \) Then by Proposition 1.5 ii, we only need to consider the graphs obtained from a graph \(D \) in \(\mathcal{K}(11,8) \) which contains one of graphs in \(\mathcal{F}_{11} \) as a subgraph by adding an isolated vertex \(v \) and two arbitrary edges incident with \(v. \)

(c.4) \(\delta(F) = 1. \) Then by Proposition 1.5 i, we only need to consider the graphs obtained from a graph \(E \) in \(\mathcal{K}(11,9) \) which contains one of graphs in \(\mathcal{E}_{11} \cup \{ S_7, S_4, S_7 \cup K_3 \} \) as a subgraph by adding an isolated vertex \(v \) and an arbitrary edge incident with \(v. \)

In case of (a.4) the graphs with \(\delta(F) \geq 3 \) and \(e(F) = 10 \) are \(K_5, W_6, G_{11}, G_{12} \) and \(G_{13}. \) A simple observation shows that \(C_7^{12} \) contains each graph of \(K_5, W_6, S_6, G_{11}, G_{12} \) and \(G_{13} \) as a subgraph but does not contain a copy of \(K_5^- \). As for the graphs in (b.4), note that if the graph \(D \) contains a copy of \(S_5, \) then we do not need to consider \(D^{+2} \) because of \(\delta(F) = 2. \) Thus it is easy to check that \(C_7^{12} \) contains each graph left in (b.4) except those graphs in \(\mathcal{L}_{12} \cup \{ S_5, S_{10}, K_2, S_{11}, S_{10} + e \}. \) So we are done for \(n = 12. \) Moreover, \(C_7^{13} \) contains each copy of \(F \in \mathcal{K}(12,9) \) unless \(F \) contains one of graphs in \(\mathcal{F}_{12} \) as a subgraph by Lemma 1.11.

Let \(n = 13. \) Let \(t = \left\lceil \frac{n-1}{4} \right\rceil = 1 = \left\lceil \frac{13-1}{4} \right\rceil - 1 = 2. \) Regardless of isolated vertices of \(F, \) we consider the following three cases:

(a.5) \(\delta(F) \geq t + 1 = 3. \) Then the number of non-isolated vertices of \(F \) is at most \(\left\lceil \frac{2(n-2)}{2t+1} \right\rceil = 7. \)

(b.5) \(\delta(F) = 2. \) Then by Proposition 1.5 ii, we only need to consider the graphs obtained from a graph \(D \) in \(\mathcal{K}(12,9) \) which contains one of graphs in \(\mathcal{F}_{12} \) as a subgraph by adding an isolated vertex \(v \) and two arbitrary edges incident with \(v. \)

(c.5) \(\delta(F) = 1. \) Then by Proposition 1.5 i, we only need to consider the graphs obtained from a graph \(E \) in \(\mathcal{K}(12,10) \) which contains one of graphs in \(\mathcal{E}_{12} \cup \{ S_8, S_4, S_8 \cup K_3 \} \) as a subgraph by adding an isolated vertex \(v \) and an arbitrary edge incident with \(v. \)

In case of (a.5) the graphs with \(\delta(F) \geq 3 \) and \(e(F) = 11 \) are \(G_{32} - G_{40}, \) which are depicted in Figure 8. A simple observation shows that \(C_7^{13} \) contains each graph of \(K_5^-, G_{32} - G_{40} \) and \(S_6 + e \) as a subgraph.
but does not contain a copy of K_5. As for the graphs in (b.5), note that if the graph D contains a copy of S_9, then we do not need to consider D^{+2} because of $\delta(F) = 2$. Thus it is easy to check that C_{13}^t contains each graph left in (b.5). As for the graphs in (c.5), note that if the graph E contains one of graphs in E_{13} as a subgraph, then we do not need to consider E^+. Thus, without considering the above situations, it is not hard to show that C_{13}^t contains each graph left in (c.5) except those graphs in $L_{13}(\{S_{11}^*, S_{11} \cup K_2, S_{12}, S_{11} + e\})$. So we are done for $n = 13$. Moreover, C_{13}^t contains each copy of $F \in K(13, 9) \setminus \{S_{10}\}$ as a subgraph by Lemma 1.6 and C_{13}^t contains each copy of $F \in K(13, 10)$ unless F contains one of graphs in F_{13} as a subgraph by Lemma 1.11.

![Figure 8: $G_{32} - G_{40}$](image)

Let $n = 14$. Let $t = \lceil \frac{n-1}{4} \rceil - 1 = \lceil \frac{14-1}{4} \rceil - 1 = 3$. Regardless of isolated vertices of F, we consider the following four cases:

(a.6) $\delta(F) \geq t + 1 = 4$. Then the number of non-isolated vertices of F is at most $\left\lfloor \frac{2(n-2)}{4} \right\rfloor = 6$.

(b.6) $\delta(F) = 3$. Then by Proposition 1.5(ii), we only need to consider $F \in \{S_{10}\}^{+3}$.

(c.6) $\delta(F) = 2$. Then by Proposition 1.5(ii), we only need to consider the graphs obtained from a graph D in $K(13, 10)$ which contains one of graphs in F_{13} as a subgraph by adding an isolated vertex v and two arbitrary edges incident with v.

(d.6) $\delta(F) = 1$. Then by Proposition 1.5(i), we only need to consider the graphs obtained from a graph E in $K(13, 11)$ which contains one of graphs in E_{13} as a subgraph by adding an isolated vertex v and an arbitrary edge incident with v.

In case of (a.6) the unique graph with $\delta(F) \geq 4$ and $e(F) = 12$ is $K_2 \vee C_4$. A simple observation shows that C_{14}^t contains copies of K_5^- and $K_2 \vee C_4$ but does not contain a copy of K_5. As for the graphs in (b.6), there is no graph in (b.6) because of $\delta(F) = 3$. As for the graphs in (c.6), note that if the graph D contains a copy of S_{10}, then we do not need to consider D^{+2} because of $\delta(F) = 2$. Moreover, we do not need to consider the graph D which contains a copy of K_5 belonging to E_{14}.

Thus, there is no graph in (c.6). As for the graphs in (d.6), note that if the graph E contains one of graphs in E_{14} as a subgraph, then we do not need to consider E^+. Thus, without considering the above situations, it is not hard to show that C_{14}^t contains each graph left in (d.6) except those graphs in $L_{14}(\{S_{12}^*, S_{12} \cup K_2, S_{13}, S_{12} + e\})$. So we are done for $n = 14$. Moreover, C_{14}^t contains each graph in $K(14, 10) \setminus \{S_{11}, K_5\}$ as a subgraph by Lemma 1.6 and C_{14}^t contains each copy of $F \in K(14, 11)$ unless F contains one of graphs in F_{14} as a subgraph by Lemma 1.11.

Let $n = 15$. Let $t = \lceil \frac{n-1}{4} \rceil - 1 = \lceil \frac{15-1}{4} \rceil - 1 = 3$. Regardless of isolated vertices of F, we consider the following four cases:

(a.7) $\delta(F) \geq t + 1 = 4$. Then the number of non-isolated vertices of F is at most $\left\lfloor \frac{2(n-2)}{4} \right\rfloor = 6$.

(b.7) $\delta(F) = 3$. Then by Proposition 1.5(ii), we only need to consider $F \in \{S_{11}, K_5\}^{+3}$.

(c.7) $\delta(F) = 2$. Then by Proposition 1.5(ii), we only need to consider the graphs obtained from a graph D in $K(14, 11)$ which contains one of graphs in E_{14} as a subgraph by adding an isolated vertex v and two arbitrary edges incident with v.

(d.7) $\delta(F) = 1$. Then by Proposition 1.5(i), we only need to consider the graphs obtained from a graph E in $K(14, 12)$ which contains one of graphs in E_{14} as a subgraph by adding an isolated vertex v and an arbitrary edge incident with v.

In case of (a.7) the unique graph with $\delta(F) \geq 4$ and $e(F) = 13$ is $K_2 \vee K_4^-$. A simple observation shows that C_{15}^t contains copies of K_5 and $K_2 \vee K_4^-$ but does not contain a copy of K_5^-. As for the graphs in (b.7), we only need to consider $F \in \{K_5\}^{+3}$ because of $\delta(F) = 3$. As for the graphs in (c.7), note that if
the graph D contains a copy of S_{11}, then we do not need to consider D^{+2} because of $\delta(F) = 2$. Thus it is easy to check that C_{15}^2 contains each graph left in (b.7) as well as (c.7). As for the graphs in (d.7), note that if the graph E contains one of graphs in E_{15} as a subgraph, then we do not need to consider E^+. Thus, without considering the above situations, it is not hard to show that C_{15}^2 contains each graph left in (d.7) except those graphs in $L_{15} \setminus \{S_{13}, S_{13} \cup K_2, S_{14}, S_{13} + e\}$. So we are done for $n = 15$. Moreover, C_{15}^2 contains each graph in $K(15,11) \setminus \{S_{12}\}$ as a subgraph by Lemma 1.10 and C_{15}^2 contains each copy of $F \in K(15,12)$ unless F contains one of graphs in F_{15} as a subgraph by Lemma 1.11.

Let $n = 16$. Let $t = \lceil \frac{16}{4} \rceil - 1 = \lceil \frac{16-1}{4} \rceil - 1 = 3$. Regardless of isolated vertices of F, we consider the following four cases:

(a.8) $\delta(F) \geq t + 1 = 4$. Then the number of non-isolated vertices of F is at most $\left\lfloor \frac{2(n-2)}{t+1} \right\rfloor = 7$.

(b.8) $\delta(F) = 3$. Then by Proposition 1.5(ii), we only need to consider $F \in \{S_{12}\}^+$.

(c.8) $\delta(F) = 2$. Then by Proposition 1.5(ii), we only need to consider the graphs obtained from a graph D in $K(15,12)$ which contains one of graphs in F_{15} as a subgraph by adding an isolated vertex v and two arbitrary edges incident with v.

(d.8) $\delta(F) = 1$. Then by Proposition 1.5(i), we only need to consider the graphs obtained from a graph E in $K(15,13)$ which contains one of graphs in $E_{15} \cup \{S_{11} \cup S_4, S_{11} \cup K_3\}$ as a subgraph by adding an isolated vertex v and an arbitrary edge incident with v.

In case of (a.8) the graphs with $\delta(F) \geq 4$ and $e(F) = 14$ are K_6, G_{14} and G_{15}. A simple observation shows that C_{16}^2 contains copies of K_6, G_{14} and G_{15} but does not contain a copy of K_6. As for the graphs in (b.8), there is no graph in (b.8) because of $\delta(F) = 3$. As for the graphs in (c.8), note that if the graph D contains a copy of S_{12}, then we do not need to consider D^{+2} because of $\delta(F) = 2$. Thus there is no graph in (c.8). As for the graphs in (d.8), note that if the graph E contains one of graphs in E_{16} as a subgraph, then we do not need to consider E^+. Thus, without considering the above situations, it is not hard to show that C_{16}^2 contains each graph left in (d.8) except those graphs in $L_{16} \setminus \{S_{14}, S_{14} \cup K_2, S_{15}, S_{14} + e\}$. So we are done for $n = 16$. Moreover, C_{16}^2 contains each graph in $K(16,12) \setminus \{S_{13}\}$ as a subgraph by Lemma 1.10 and C_{16}^2 contains each copy of $F \in K(16,13)$ unless F contains S_{13} as a subgraph by Lemma 1.12.

Let $n = 17$. Let $t = \lceil \frac{17}{4} \rceil - 1 = \lceil \frac{17-1}{4} \rceil - 1 = 3$. Regardless of isolated vertices of F, we consider the following four cases:

(a.9) $\delta(F) \geq t + 1 = 4$. Then the number of non-isolated vertices of F is at most $\left\lfloor \frac{2(n-2)}{t+1} \right\rfloor = 7$.

(b.9) $\delta(F) = 3$. Then by Proposition 1.5(ii), we only need to consider $F \in \{S_{13}\}^+$.

(c.9) $\delta(F) = 2$. Then by Proposition 1.5(ii), we only need to consider the graphs obtained from a graph D in $K(16,13)$ which contains S_{13} as a subgraph by adding an isolated vertex v and two arbitrary edges incident with v.

(d.9) $\delta(F) = 1$. Then by Proposition 1.5(i), we only need to consider the graphs obtained from a graph E in $K(16,14)$ which contains one of graphs in $E_{16} \cup \{S_{12} \cup S_4, S_{12} \cup K_3\}$ as a subgraph by adding an isolated vertex v and an arbitrary edge incident with v.

In case of (a.9) the graphs with $\delta(F) \geq 4$ and $e(F) = 15$ are $G_{10} \lor K_1, K_3 \lor P_4, K_7 \lor C_5, K_5, G_{14} + G_{42}$ and G_{43}, where $G_{14} - G_{43}$ are depicted in Figure 9. A simple observation shows that C_{17}^2 contains copies of $G_{10} \lor K_1, G_{41}, G_{42}, K_3 \lor P_4, K_2 \lor C_5, K_5$ and G_{43} but does not contain a copy of K_6. As for the graphs in (b.9), there is no graph in (b.9) because of $\delta(F) = 3$. As for the graphs in (c.9), note that if the graph D contains a copy of S_{13}, then we do not need to consider D^{+2} because of $\delta(F) = 2$. Thus there is no graph in (c.9). As for the graphs in (d.9), note that if the graph E contains one of graphs in E_{17} as a subgraph, then we do not need to consider E^+. Thus, without considering the above situations, it is not hard to show that C_{17}^2 contains each graph left in (d.9) except those graphs in $L_{17} \setminus \{S_{14}, S_{14} \cup K_2, S_{16}, S_{15} + e\}$. So we are done for $n = 17$. Moreover, C_{17}^2 contains each graph in $K(17,13) \setminus \{S_{14}\}$ as a subgraph by Lemma 1.10 and C_{17}^2 contains each copy of $F \in K(17,14)$ unless F contains S_{14} as a subgraph by Lemma 1.12.

Obviously, C_{17}^2 contains each graph in $K(17,12)$ as a subgraph.

Let $n = 18$. Let $t = \lceil \frac{18}{4} \rceil - 1 = \lceil \frac{18-1}{4} \rceil - 1 = 4$. Regardless of isolated vertices of F, we consider the following five cases:
In case of (a.10) there does not exist a graph with \(\delta \) isolated vertex \(v \). Let \(\delta \) (e.10), note that if the graph \(F \) in (e.10), consider the following two cases:

(b.10) \(\delta(F) = 4 \). Then by Proposition 1.5(ii), \(\overline{C_{18}} \) contains each copy of \(F \in K(17, 12)^{+4} \).

(c.10) \(\delta(F) = 3 \). Then by Proposition 1.5(ii), we only need to consider \(F \in \{ S_{14} \}^{+3} \).

(d.10) \(\delta(F) = 2 \). Then by Proposition 1.5(ii), we only need to consider the graphs obtained from a graph \(D \) in \(K(17, 14) \) which contains \(S_{14} \) as a subgraph by adding an isolated vertex \(v \) and two arbitrary edges incident with \(v \).

(e.10) \(\delta(F) = 1 \). Then by Proposition 1.5(i), we only need to consider the graphs obtained from a graph \(E \) in \(K(17, 15) \) which contains one of graphs in \(\mathcal{E}_{17} \cup \{ S_{13}, S_{4}, S_{13} \cup K_{3} \} \) as a subgraph by adding an isolated vertex \(v \) and an arbitrary edge incident with \(v \).

In case of (a.10) there does not exist a graph with \(\delta(F) \geq 5 \) and \(e(F) = 16 \). A simple observation shows that \(\overline{C_{18}} \) contains copies of \(K_{6} \cup K_{2} \) and \(K_{6}^{+} \). As for the graphs in (c.10), there is no graph in (c.10) because of \(\delta(F) = 3 \). As for the graphs in (d.10), note that if the graph \(D \) contains a copy of \(S_{14} \), then we do not need to consider \(D^{+2} \) because of \(\delta(F) = 2 \). Thus there is no graph in (d.10). As for the graphs in (e.10), note that if the graph \(E \) contains one of graphs in \(\mathcal{E}_{18} \) as a subgraph, then we do not need to consider \(E^{+} \). Thus, without considering the above situations, it is not hard to show that \(\overline{C_{18}} \) contains each graph left in (e.10) except those graphs in \(\mathcal{L}_{18} \setminus \{ S_{16}, S_{16} \cup K_{2}, S_{17}, S_{16} + e \} \). So we are done for \(n = 18 \).

\[\square \]

Lemma 1.14. Let \(n \geq 18 \). Then \(\overline{C_{n}} \) contains each copy of \(F \in K(n, n - 2) \setminus \{ S_{n-4} \cup S_{4}, S_{n-4} \cup K_{3} \} \) unless \(F \) contains \(S_{n-3} \) as a subgraph.

Proof. We prove the lemma by induction on \(n \). For \(n = 18 \), the lemma follows from Lemma 1.13. Suppose it is true for \(n - 1 \). Then by induction hypothesis, \(\overline{C_{n-1}} \) contains each copy of \(F \in K(n - 1, n - 3) \setminus \{ S_{n-5} \cup S_{4}, S_{n-5} \cup K_{3} \} \) unless \(F \) contains \(S_{n-4} \) as a subgraph. Moreover, \(\overline{C_{n-1}} \) contains each graph in \(K(n - 1, n - 5) \setminus \{ S_{n-4} \} \) and contains each graph in \(K(n - 1, n - 6) \) by Lemma 1.6. And \(\overline{C_{n-1}} \) contains each copy of \(F \in K(n - 1, n - 4) \) unless \(F \) contains \(S_{n-4} \) as a subgraph by Lemma 1.12.

It is now sufficient to show that \(\overline{C_{n}} \) contains each copy of \(F \in K(n, n - 2) \setminus \{ S_{n-4} \cup S_{4}, S_{n-4} \cup K_{3} \} \) unless \(F \) contains \(S_{n-3} \) as a subgraph. Let \(t = \left\lceil \frac{n - 1}{2} \right\rceil - 1 \). Regardless of isolated vertices of \(F \), we consider the following two cases:

(a) \(1 \leq \delta(F) \leq t \). Applying Proposition 1.5, it is easy to see that \(\overline{C_{n}} \) contains each copy of \(F \) unless \(F \in \mathcal{L}_{n} \setminus \{ S_{n-3} \cup K_{2}, S_{n-2}^{+}, S_{n-2} + e, S_{n-1} \} \), in which each graph \(F \) contains either \(S_{n-3} \) as a subgraph or \(F \in \{ S_{n-4} \cup S_{4}, S_{n-4} \cup K_{3} \} \).

(b) \(\delta(F) \geq t + 1 \). Then the number of non-isolated vertices of \(F \) is at most \(\left\lfloor \frac{2(n-2)}{3} \right\rfloor \).

We know that \(\overline{C_{n}} \) contains a copy of \(K_{\frac{n}{2}} \), by Fact 1.7. Now, if \(n \geq 22 \), then we have \(\left\lfloor \frac{2(n-2)}{3} \right\rfloor \leq \left\lfloor \frac{n}{3} \right\rfloor \).

Thus \(\overline{C_{n}} \) contains a copy of \(F \) for \(n \geq 22 \). Let \(n = 19 \). Then the number of non-isolated vertices of \(F \) is at most \(\left\lfloor \frac{2(n-2)}{3} \right\rfloor = 6 \) and \(e(F) = 17 \). Clearly, such \(F \) does not exist. Let \(n = 20 \). Then the number of non-isolated vertices of \(F \) is at most \(\left\lfloor \frac{2(n-2)}{3} \right\rfloor = 7 \) and \(e(F) = 18 \). Actually \(F \) must be the graph

![Figure 9: Graphs G41, G42 and G43.](image-url)
Lemma 1.14, we have that by the Perron-Frobenius theorem. From Theorem 1.9, we have that obviously

\[\mu(n-1) = \nu(n-1) = n-2 \]

Combining the Perron-Frobenius theorem and Theorem 1.1, we have that \(G \) contains the 2-power of a Hamilton cycle or

\[Y_n \] contains \(G \) as a subgraph.

This completes the proof.

Proof of Theorem 1.2: Note that

\[\mu(G) \geq \mu(K_n \setminus E(S_{n-3})) > \mu(K_{n-1}) = n-2 \]

by the Perron-Frobenius theorem. From Theorem 1.1, we have that \(G \) contains a Hamilton cycle or \(G = K_{n-1} + e \). Since \(\mu(K_{n-1} + e) < \mu(K_n \setminus E(S_{n-3})) \), we have \(G \) contains a Hamilton cycle and obviously \(G \) is connected.

Let \(m = e(G) \). From Lemma 1.8, we have \(\mu(G) \leq n - n + 1 \) with equality if and only if \(G = K_n \) or \(K_n \). Note that \(\mu(S_n) = \sqrt{n-1} < n-2 \), then if the equality holds, then \(G = K_n \) and in this case the proof is done. If the strict inequality holds, then \(2m - n + 1 > (n-2)^2 \) and so \(m > \frac{n^2 - 3n + 3}{2} \). By Theorem 1.1, we have that \(G \) contains the 2-power of a Hamilton cycle or \(Y_n \) contains \(G \) as a subgraph, where \(Y_n \) is a family of \(K_n \setminus E(S_{n-3}), K_n \setminus E(S_{n-4} \cup S_4) \) and \(K_n \setminus E(S_{n-4} \cup K_3) \). One can easily check that

\[\mu(K_n \setminus E(S_{n-4} \cup S_4)) < \mu(K_n \setminus E(S_{n-3})) \]

and

\[\mu(K_n \setminus E(S_{n-4} \cup K_3)) < \mu(K_n \setminus E(S_{n-3})). \]

Combining the Perron-Frobenius theorem and \(\mu(G) \geq \mu(K_n \setminus E(S_{n-3})) \), we have that \(G \) contains the 2-power of a Hamilton cycle or \(G = K_n \setminus E(S_{n-3}) \). This completes the proof.

Proof of Theorem 1.3: We prove by contradiction. For short, let \(H = C_n(G) \). Assume that \(G \) does not contain the 2-power of a Hamilton cycle \(C_2^2 \). Note that \(\mu(G) \leq \sqrt{n-3} < \sqrt{n-2} \) and \(G \) contains a copy of \(\overline{H} \). By the Perron-Frobenius theorem, we obtain \(\mu(\overline{H}) \leq \mu(G) < \sqrt{n-2} \). From Theorem 1.1, we have that \(G \) contains a Hamilton cycle and obviously \(G \) is connected because \(G \neq K_{n-1} + e \) in this case

\[\mu(K_{n+1} + e) = \mu(S_{n-1}) = \sqrt{n-2} > \sqrt{n-3}. \]

Now we consider the following two cases:

(i) If \(C_n^2 \) does not contain a copy of \(\overline{H} \), we have that \(e(\overline{H}) \geq n - 4 \) by Theorem 1.4. Now the main
property of \(C_n(G) = H \) gives \(d_H(u) + d_H(v) \leq n - 1 \) for every pair of nonadjacent vertices \(u \) and \(v \) of \(H \); thus,
\[
d_{\overline{H}}(u) + d_{\overline{H}}(v) = n - 1 - d_H(u) + n - 1 - d_H(v) \geq n - 1
\]
for every edge \(uv \in E(\overline{H}) \). Summing these inequalities for all edges \(uv \in E(\overline{H}) \), we obtain
\[
\sum_{uv \in E(\overline{H})} (d_{\overline{H}}(u) + d_{\overline{H}}(v)) \geq (n - 1)e(\overline{H})
\]
and since each term \(d_{\overline{H}}(u) \) appears in the left-hand sum precisely \(d_{\overline{H}}(u) \) times, we see that
\[
\sum_{v \in V(\overline{H})} d^2_{\overline{H}}(v) = \sum_{uv \in E(\overline{H})} (d_{\overline{H}}(u) + d_{\overline{H}}(v)) \geq (n - 1)e(\overline{H}).
\]
By Lemma 1.10 we have
\[
n\mu^2(\overline{H}) \geq \sum_{v \in V(\overline{H})} d^2_{\overline{H}}(v) \geq (n - 1)e(\overline{H}).
\]
Since \(\overline{H} \subseteq \overline{G} \), we have \(\mu(\overline{H}) \leq \mu(\overline{G}) \leq \sqrt{n - 5} \) and so,
\[
n(n - 5) \geq n\mu^2(\overline{G}) \geq n\mu^2(\overline{H}) \geq (n - 1)e(\overline{H}).
\]
This easily gives
\[
e(\overline{H}) \leq \frac{n(n - 5)}{n - 1} < n - 4, n \geq 18,
\]
a contradiction.

(ii) From (i), we must have that \(\overline{C_n^2} \) contains a copy of \(\overline{H} \) but \(\overline{C_n^2} \) does not contain a copy of \(\overline{G} \). In this case our aim is to prove \(H = K_n \). Assume that there exists an edge \(uv \in E(\overline{G}) \) satisfying \(d_{\overline{H}}(u) + d_{\overline{H}}(v) \geq n - 1 \).

Now we consider \(G \) with the smallest spectral radius satisfying that \(C_n^2 \) does not contain a copy of \(G \). Firstly, we consider three graphs \(H_1, H_2 \) and \(H_3 \) with \(n \) vertices and \(n - 2 \) edges, which are depicted in Figure 10. Let \(g(\lambda), h(\lambda) \) and \(f(\lambda) \) be the characteristic polynomial of \(H_1, H_2 \) and \(H_3 \) respectively. One can easily know that
\[
g(\lambda) = \lambda^5 - (b + 2c + a + 1)\lambda^3 - 2c\lambda^2 + (ab + ac + bc)\lambda
\]
and
\[
h(\lambda) = \lambda^5 - (b + 2c + a + 1)\lambda^3 - (2c - 2)\lambda^2 + (ab + ac + bc + 2c - 1)\lambda,
\]
thus \(g(\lambda) - h(\lambda) = -\lambda(2c - 1 + 2\lambda) \). Note that \(\mu(G) \) is the largest root of the characteristic polynomial of \(G \). Thus it is obvious that \(\mu(H_2) < \mu(H_1) \). Then it is clearly that \(G \) with the smallest spectral radius satisfying that \(C_n^2 \) does not contain a copy of \(G \) is exactly \(H_3 \). Similarly, we have \(f(\lambda) = \lambda^4 + (-b - 1 - a)\lambda^2 + ab \) with \(a + b + 2 = n - 1 \) and at this time
\[
\mu(G) = \mu(H_3) = \sqrt[n]{2 + 2(n - 3) + 2\sqrt{2(n - 3) + 1 + (a - b)^2}}.
\]
To simplify the proof, we denote \(H_3 \) by \(T_{a,b} \) relying on \(a \) and \(b \) satisfying \(a + b + 2 = n - 1 \). By Lemma 1.14 we have that \(G = T_{n-5,2} \) and
\[
\mu(T_{n-5,2}) = \frac{\sqrt{2n - 4 + 2\sqrt{n^2 - 12n + 44}}}{2} > \sqrt{n - 4} > \sqrt{n - 5},
\]
a contradiction. Consequently, we have \(d_G(u) + d_G(v) \geq n \) for every pair of nonadjacent vertices \(u \) and \(v \) of \(G \). Then \(H = C_n(G) = K_n \).

This completes the proof. ■

In this paper, we consider the spectral conditions for a graph containing \(C_n^2 \) as a subgraph. What can we say for the problems for \(C_n^3 \)? Furthermore, what happens if the minimum degree is fixed? We leave them for further research. We will also consider maximum signless laplacian (\(p \)-Laplacian) spectral radius version of the problem among the same family of graphs in the near future.
Acknowledgments

This work is supported by NSFC (Nos. 11871479, 12001544, 12071484) and Natural Science Foundation of Hunan Province (Nos. 2020JJ4675, 2021JJ40707).

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, in: Graduate Texts in Mathematics, Vol. 244, Springer, 2008.
[2] J.A. Bondy, Properties of graphs with constraints on degrees, Studia Sci. Math. Hung. 4 (1969) 473-475.
[3] A. Bondy, V. Chvatal, A method in graph theory, Discrete Math. 15 (1976) 111-135.
[4] D. de Caen, An upper bound on the sum of squares of degrees in a graph, Discrete Math. 185 (1998) 245-248.
[5] V. Chvatal, On Hamilton’s ideals, J. Combin. Theory Ser. B 12 (1972) 163-168.
[6] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs–Theory and Application, Heidelberg, 1995.
[7] D. Cvetković, P. Rowlinson, S. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (2007) 155-171.
[8] G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 68-81.
[9] P. Erdős, Problem 9, in “Theory of Graphs and Its Applications” (M. Fieldler, Ed.), p. 159, Czech. Acad. Sci. Publ., Prague, 1964.
[10] G.H. Fan, R. Häggkvist, The square of a hamiltonian cycle, SIAM J. Discrete Math. 7 (1994) 203-212.
[11] G.H. Fan, H.A. Kierstead, The square of paths and cycles, J. Combinatorial Theory Ser. B 63 (1995) 55-64.
[12] G.H. Fan, H.A. Kierstead, Hamiltonian Square-Paths, J. Combinatorial Theory Ser. B 67 (1996) 167-182.
[13] R.J. Faudree, R.J. Gould, M.S. Jacobson, R.H. Schelp, On a problem of Paul Seymour, in: V.R. Kulli (Ed.), Recent Advances in Graph Theory, Vishwa International Publication, 1991, pp. 197-215.
[14] L.H. Feng, P.L. Zhang, H. Liu, W.J. Liu, M.M. Liu, Y.Q. Hu, Spectral conditions for some graphical properties, Linear Algebra Appl. 524 (2017) 182-198.
[15] M. Fiedler, V. Nikiforov, Spectral radius and Hamiltonicity of graphs, Linear Algebra Appl. 432 (2010) 2170-2173.
[16] J. Gao, X. Hou, The spectral radius of graphs without long cycles, Linear Algebra Appl. 566 (2019) 17-33.
[17] J. van den Heuvel, Hamilton cycles and eigenvalues of graphs, Linear Algebra Appl. 226-228 (1995) 723-730.
[18] M. Hofmeister, Spectral radius and degree sequence, Math. Nachr. 139 (1988) 37-44.
[19] Y. Hong, A bound on the spectral radius of graphs, Linear Algebra Appl. 108 (1988) 135-139.
[20] Z.U. Khan, L.T. Yuan, A note on the 2-power of Hamilton cycles, submitted to Discrete Math.
[21] H.A. Kierstead, J. Quintana, Square Hamiltonian cycles in graphs with maximal 4-cliques, Discrete Math. 178 (1998) 81-92.
[22] J. Komlós, G.N. Sárközy, E. Szemerédi, On the Posa-Seymour conjecture, Journal of Graph Theory 29 (1998) 167-176.

[23] J. Komlós, G.N. Sárközy, E. Szemerédi, On the square of a Hamiltonian cycle in dense graphs, Random Structures and Algorithms 9 (1996) 193-211.

[24] J. Komlós, G.N. Sárközy, E. Szemerédi, Proof of the Seymour conjecture for large graphs, Annals of Combinatorics 2 (1998) 43-60.

[25] I. Levitt, G.N. Sárközy, E. Szemerédi, How to avoid using the Regularity Lemma: Pósa’s conjecture revisited, Discrete Math. 310 (2010) 630-641.

[26] B.L. Li, B. Ning, Spectral analogues of Erdős’ and Moon-Moser’s theorems on Hamilton cycles, Linear Multilinear Algebra 64(11) (2016) 2252-2269.

[27] B.L. Li, B. Ning, X. Peng, Extremal problems on the Hamiltonicity of claw-free graphs, Discrete Math. 341(10) (2018) 2774-2788.

[28] H.Q. Lin, H.T. Guo, A spectral condition for odd cycles in non-bipartite graphs, Linear Algebra Appl. 631 (2021) 83-93.

[29] H.Q. Lin, B. Ning, B. Wu, Eigenvalues and triangles in graphs, Combin. Probab. Comput. 30(2) (2021) 258–270.

[30] B. Mohar, A domain monotonicity theorem for graphs and hamiltonicity, Discrete Appl. Math. 36 (1992) 169-177.

[31] V. Nikiforov, The sum of the squares of degrees: sharp asymptotics, Discrete Math. 307 (2007) 3187-3193.

[32] V. Nikiforov, The spectral radius of graphs without paths and cycles of specified length, Linear Algebra Appl. 432 (2010) 2243-2256.

[33] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55.

[34] O. Ore, Arc coverings of graphs. Ann. Mat. Pura Appl. (4) 55 (1961) 315-321.

[35] R. Stanley, A bound on the spectral radius of graphs with e edges, Linear Algebra Appl. 87 (1987) 267-269.

[36] P. Seymour, Problem section, in: T.P. McDonough, V.C. Mavron (Eds.), Combinatorics: Proceedings of the British Combinatorial Conference 1973, Cambridge University Press, 1974, pp. 201-202.

[37] J.F. Wang, J. Wang, X.G. Liu, F. Belardo, Graphs whose A_α-spectral radius does not exceed 2, Discuss. Math., Graph Theory 40 (2020) 677-690.

[38] M.Q. Zhai, B. Wang, L.F. Fang, The spectral Turán problem about graphs with no 6-cycle, Linear Algebra Appl. 590 (2020) 22-31.

[39] Y.J. Zhu, F. Tian, A Generalization of the Bondy-Chvatal Theorem on the k-Closure, J. Combin. Theory Ser. B 35 (1983) 247-255.