Cold-Start and Interpretability: Turning Regular Expressions into Trainable Recurrent Neural Networks

Chengyue Jiang, Yinggong Zhao, Shanbo Chu, Libin Shen, Kewei Tu*

School of Information Science and Technology, ShanghaiTech University
Leyan Technologies
Symbolic rules vs. neural networks

Neural Network (NN)
- have good performance after trained on sufficient training data
- hard to interpret the results.

Rule based systems
- Highly interpretable, support fine-grained human inspection and manipulation, no training needed.
- Can not learn from data. Sometimes it’s hard to write rules.
Symbolic rules vs. neural networks

• Regular expressions (RE) are one of the most representative and useful forms of symbolic rules.
• RE are widely used for solving tasks such as pattern matching and intent classification.
• We aim to combine the advantages of NN and rules, by directly turning a RE-based system into a NN.
RE matches string x

In the corresponding automaton, there exists at least a path from the start state to one of the final states after reading x.
Vocabulary size: V
State size: K
One-hot transition tensor: $T \in \mathbb{R}^{V \times K \times K}$
One-hot start vector: $\alpha_0 \in \mathbb{R}^K$
One-hot final vector: $\alpha_\infty \in \mathbb{R}^K$
Running a FA – Forward Algorithm

\[
\alpha_0^T \cdot \left(\prod_{i=1}^{N} T[x_i] \right) \cdot \alpha_\infty
\]

\[
\begin{align*}
\alpha_0 & \quad T_1 & \quad T_2 \sim T_3 & \quad T_4 & \quad T_5 & \quad T_6 \sim T_{11} & \quad \alpha_\infty \\
<BOS> & \quad \text{Tell me} & \quad \text{how} & \quad \text{far} & \quad \text{is Oakland airport} & \quad <EOS>
\end{align*}
\]
RUN FA – Forward Algorithm

\[
\alpha_0^T \cdot \left(\prod_{i=1}^{N} T[x_i] \right) \cdot \alpha_\infty
\]

Meaning of \(h_t[i] \):
After reading \(x_1, x_2, \ldots, x_t \), the total number of paths from start state to state \(i \).

Meaning of \(h_N[j], s_j \in S_\infty \)
The number of paths from start state to each final states.

\[
h_0 = \alpha_0^T
\]

\[
h_t = h_{t-1} \cdot T[x_t], \ 1 \leq t \leq N
\]

\[
\mathcal{B}_{\text{forward}}(A, x) = h_N \cdot \alpha_\infty
\]
FA-RNN (I) Reducing model parameter size using Tensor Decomposition

Tensor Rank Decomposition

\[
T \in \mathbb{R}^{V \times K \times K} \quad \rightarrow \quad E_R \in \mathbb{R}^{V \times r}, \quad D_1 \in \mathbb{R}^{K \times r}, \quad D_2 \in \mathbb{R}^{K \times r}
\]

\[
\begin{align*}
 v_t &= E_R(x_t) \\
 h_t &= h_{t-1} \cdot T[x_t] \quad \rightarrow \quad a = (h_{t-1} \cdot D_1) \circ v_t \\
 h_t &= a \cdot D_2^T
\end{align*}
\]
FA-RNN (II) Integrating Word Vectors to Inject Word Information.

\[E_w \in \mathbb{R}^{V \times D} \quad \text{Word Embedding Matrix} \]

\[u_t \in \mathbb{R}^D \quad \text{Word Vector} \]

\[\beta \in [0, 1] \quad \text{Balancing Constant} \]

\[G \in \mathbb{R}^{D \times r} \quad \text{Projection Matrix from D (embedding dim) to r (rank)} \]

\[G = E_w^T E_R \]

\[u_t G \rightarrow v_t \]

\[a = (h_{t-1} \cdot D_1) \circ v_t \]

\[h_t = a \cdot D_2^T \]

\[z_t = \beta v_t + (1 - \beta) u_t G \]

\[a = (h_{t-1} \cdot D_1) \circ z_t \]

\[h_t = a \cdot D_2^T \]
FA-RNN (III) Gated Variants

Add forget gate and reset gate like GRU, initialize them to 1

\[z_t = \beta v_t + (1 - \beta) u_t G \]
\[f_t = \sigma(W_f z_t + U_f h_{t-1} + b_f) \]
\[r_t = \sigma(W_r z_t + U_r h_{t-1} + b_r) \]

\[\hat{h}_{t-1} = (1 - r_t) \circ h_0 + r_t \circ h_{t-1} \]
\[a = (\hat{h}_{t-1} \cdot D_1) \circ z_t \]
\[\hat{h}_t = a \cdot D_2^T \]
\[h_t = (1 - f_t) \circ h_{t-1} + f_t \circ \hat{h}_t \]
FA-RNN (IV) Bidirectional Variants

We reverse the RE

\[\text{free }^* (\text{phone | phones})^* \]
\[^* (\text{phone | phones})^* \text{ free} \]

Convert to FA-RNN and feed in the reversed input to obtain

\[\vec{h}_t \]

Averaging the forward and backward hidden states.

\[(\vec{h}_t + \vec{h}_t) / 2 \]
Propositional Logic:
AND/OR/NOT

Logic	Soft Logic
\neg A	1 - a
A \lor B	\min(1, a + b)
A \land B	\max(0, a + b - 1)

Use soft logic to construct MLP layer

RE-System => FA-RNN system (I)
RE-System => FA-RNN system (II) Training

- Feed logits into CrossEntropy loss function and optimize with Adam optimizer.
- We use fixed E_R, so FA-RNN has comparable model parameters to traditional RNNs.
Experiments (I) Datasets

- 3 intent classification datasets: ATIS, QC(TREC-6), SMS.
- Different settings: zero-shot/low-resource/rich-resource

| | #Train | #Dev | #Test | \(|\mathcal{L}|\) | \(|\mathcal{R}|\) | \(K\) | %Acc |
|------|--------|------|-------|-----------------|-----------------|------|-----|
| ATIS | 3982 | 996 | 893 | 26 | 27 | 107 | 87.0|
| QC | 4965 | 500 | 500 | 6 | 68 | 94 | 64.4|
| SMS | 4502 | 500 | 500 | 2 | 36 | 52 | 93.2|

ATIS: $*flights | flight | ((go | get | fly) from $* to $*

QC: $* what $? does $+ (stand? for) $* \rightarrow ABBREVIATION

SMS: $* free $* (phone | phones) $* \rightarrow SPAM
Experiments (II) Baselines: NNs and Rule Enhanced NNs

- Bi-(RNN/GRU/LSTM)/CNN/DAN + Linear + CE
- Enhancement by RE parsed results. (+i, +o, +io) [Luo et al., 2016]
- Knowledge Distillation. (+pr, +kd) [Hu et al., 2016; Hinton et al., 2015]
Results (I) Zero-shot

	ATIS	QC	SMS
RE system	87.01	64.40	93.20
FA-RNN	86.53	61.95	93.00
FA-GRU	86.81	62.90	93.20
BiFA-RNN	88.10	62.90	93.00
BiFA-GRU	88.63	62.90	93.20
BiGRU+i	1.34	18.75	11.90
BiGRU+o	30.74	27.50	30.40
BiGRU+io	38.69	25.70	73.25
BiGRU+i+u	86.42	64.85	92.75
BiGRU+o+u	83.03	64.95	93.05
BiGRU+io+u	86.14	64.75	92.70
Results (II)

Low-resource and full dataset

	ATIS (26-class)		QC (6-class)		SMS (2-class)				
	1%	10%	100%	1%	10%	100%	1%	10%	100%
FA-RNN	90.43	90.79	96.52	67.75	79.6	91.3	93.1	96.75	98.8
FA-GRU	88.94	90.85	96.61	66.2	80.7	91.85	94.25	96.8	99.2
BiFA-RNN	89.31	90.85	96.72	57.65	81.5	91.55	91.7	96.7	99
BiFA-GRU	90.62	90.26	96.64	64.15	82.8	92.4	93.9	96.75	98.8
CNN	71.61	86.09	94.74	50.9	74.9	89.25	89.85	95.9	98.8
DAN	71.02	83.68	90.4	47.25	65.4	77.8	89.9	93.7	98.6
RNN	70.91	75.17	91.55	22.4	67.9	85	85.1	89.85	97.75
LSTM	69.37	78.14	95.72	40.45	75.75	90	86.2	95.75	97.85
GRU	70.72	88.52	96.3	42.35	79.75	91.2	86.15	95.55	98.05
BiRN	70.72	79.98	93.39	49.35	75.95	87.35	86.75	94.9	97.8
BiLSTM	70.77	87.12	96.25	55.95	76.75	90.95	92.15	95.8	97.7
BiGRU +i	70.69	88.35	96.75	62.7	80.05	91.5	89.6	95.95	98.4
BiGRU +o	82.84	90.01	96.56	66.3	80.25	92	90.95	96.75	98.55
BiGRU +io	80.21	89.22	96.33	60.15	80.2	91.7	90.6	95.95	98.4
BiGRU +pr	82.61	89.95	95.46	65.05	79.65	90.7	93.85	96.75	98.25
BiGRU +kd	72.4	88.89	96.5	61.6	80.45	91.85	90.9	96.05	98.45
BiGRU +kd	73.38	88.86	**96.75**	62.65	80.3	**91.25**	87.65	96	98.55
FA-RNN	ATIS	QC	SMS						
-----------	-------	-------	------						
-F	96.52	91.30	98.80						
-V	95.66	88.20	97.85						
-F-O	94.51	87.80	99.20						
-F-Rand	92.16	80.60	95.40						
-V-Rand	91.26	78.60	97.00						
-F-Rand\(E_w\)	94.17	84.40	97.00						
-Train\(E_R\)	96.41	89.20	99.00						
Figure 3: Performance of FA-RNN with different β
Interpretability (I) Convert FA-RNN back to WFA

Model parameters after training

$$\Theta_{RE} = \left\langle \hat{E}_R, \hat{D}_1, \hat{D}_2, \hat{G} \right\rangle \ E_w$$

Recover the WFA tensor from Model parameters

$$\hat{E}_{wR} = \beta \cdot \hat{E}_R + (1 - \beta) \cdot E_w \hat{G}$$

$$\hat{T}_{(1)} = (\hat{D}_2 \odot \hat{D}_1) \hat{E}_{wR}^T$$
Interpretability (III) Convert FA-RNN back to RE

We threshold the WFA tensor to obtain an NFA, and convert the NFA to RE.

Extracted RE vs original RE
ATIS +0.45%
QC +9.2%
SMS -1.2%
Conclusion

- We propose FA-RNN.
- It can be initialized from REs and learn from data.
- It outperforms previous neural classification approaches in zero-shot and low-resource scenarios and is competitive in rich-resource scenarios.
- It is also interpretable and can be converted back into REs.