Nitrogen addition frequency and propagule pressure influence *Solidago canadensis* invasion into native plant community

Xuan-Shao Liu¹, Jing-Fang Cai², Lin Liu, Kai Sun, Fan Jiang, Yi-Luan Shen, Si-Ha A and Hong-Li Li ³

The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China

ABSTRACT

Introduction: Propagule pressure (i.e., the number of propagules) has long been recognized to play an essential role in plant invasion. But it is not clear whether propagule pressure influences the invasion of exotic plants into native plant communities when different frequencies of nitrogen are added.

Method: We established an experiment with three plant communities that included native plant communities alone (four grasses, two legumes and two forbs) or native plant communities with one or five invasive plants, *Solidago canadensis*, under three frequencies of nitrogen addition (no addition or low or high addition with the same amount).

Results: High propagule pressure significantly enhanced the biomass and relative dominance index of *S. canadensis*. Moreover, high propagule pressure only decreased the total and aboveground biomass of the legumes. However, the competitive effect between *S. canadensis* and the native community and biomass of the whole native community varied according to different frequencies.

Conclusion: Overall, high propagule pressure encouraged invasion by *S. canadensis*, while low nitrogen frequency was advantageous for the native community to resist invasion in this experiment. The results provide a scientific basis to manage and control the invasion of *S. canadensis*.

CONTACT Hong-Li Li ³ lhongli327@163.com School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China

1 These authors contributed to the work equally and should be regarded as co-first authors.

2 This article has been corrected with minor changes. These changes do not impact the academic content of the article.

© 2022 The Author(s). Published by Taylor & Francis Group and Science Press on behalf of the Ecological Society of China.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Another important factor for invasion success is the environment of invaded area, such as the availability of nitrogen (Yuan, Guo, and Ding et al. 2003; Britton and Fisher 2007; Elser, Bracken, and Cleland et al. 2007; Hwang and Lauenroth 2008). As is well known, nitrogen can restrict the growth and reproduction of plants (Bozzolo and Lipsn 2013). Nitrogen is usually released at different frequencies in nature, which results in heterogeneous distribution (Hodge 2004; Lamb, Stewart and Cahill 2012; Ling, XueMei, and XueJun 2012). Owing to the heterogeneity of atmospheric nitrogen deposition and sensitivity of different plants to nitrogen, there is still a high degree of uncertainty of the relationship between nitrogen deposition and plant invasion (Bradley, Blumenthal, and Wilcove et al. 2010). The addition of N, primarily ammonium salt and nitrate, is typically used to simulate nitrogen deposition in the atmosphere. Previous studies have shown that increasing the frequency of nitrogen addition can promote some growth and facilitate interspecific competition with native communities (Gebauer and Ehleringer 2000; Gebauer, Schwinning, and Ehleringer 2002; James and Richards 2007). However, other studies have not found this to be the case (Song, Bao, and Liu et al. 2012; Wang, Jiang, and Zhang et al. 2015). Furthermore, other research revealed the responses of invasive plants and native communities to pulses of nitrogen. In particular, nitrogen pulses increased the species richness and competitiveness of annual invasive herbs (Siemann and Rogers 2007; Mazzola, Chambers, and Blank et al. 2011) and promoted the spread of alien species (Li, Lei, and Zhi et al. 2011; Wang, Chen, and Yan et al. 2019; Q, Y, and Li et al. 2020). However, previous studies have rarely explored the impact of frequency of nitrogen addition on plant invasion and native plants under different propagule pressures.

Solidago canadensis L., which is strongly invasive and widely distributed, is one of the most destructive invasive clonal herbs in southeastern China. Its belowground part consists of a transverse rhizome, which produces extensive root systems that enlarge the population through vegetative propagation (Dong, Lu, and Zhang et al. 2005; Hartnett and Bazzaz 1985). They then compete with native species for resources and become the dominant species (Gusev 2015). There were some invasional mechanism about *S. canadensis*, the researches about the impact of frequency of nitrogen addition on plant invasion into native plant community under different propagule pressures were rare.

Thus, we chose the invasive plant *S. canadensis* as the focal species for a greenhouse experiment. We simulated the invasion of *S. canadensis* into a native plant community that consisted of eight native terrestrial plant species of three functional groups (grasses, legumes, and forbs) under three levels of propagule pressure and three frequencies of nitrogen addition. The goal was to test whether propagule pressure or the frequency of nitrogen addition would promote the invasion of the exotic plant *S. canadensis* into a native plant community. We sought to address the following questions: (1) Does the increased propagule pressure promote *S. canadensis* invasion? (2) Do different frequencies of nitrogen addition affect the resistance of native communities to invasion by *S. canadensis*? And (3) Does the impact of propagule pressure on *S. canadensis* invasion vary with different nitrogen frequencies?

Materials and methods

Plant preparation

Seeds of *S. canadensis* were collected from the suburbs of Hangzhou, Zhejiang Province, China, and were planted in the greenhouse at Forest Science Co., Ltd., of Beijing Forestry University (Beijing, China) (40°40′33″ N, 116°20′24″ E).

Eight local species, which are commonly found in northern China and have the same root system as *S. canadensis*, were selected as the constructed plant communities, including four grasses (*Lolium perenne, Bromus inermis, Poa pratensis*, and *Festuca arundinacea*), two legumes (*Trifolium repens* and *T. pretense*), and two non-grass broadleaf herbs (*Ixeris denticulate* and *Cichorium intybus*). The seeds of native species were purchased from China Vegetable Seed Technology Co. Ltd. (Beijing, China).

Experimental design

We established three propagule pressure treatments, including a native plant community alone and native plant communities with one or five *S. canadensis* individuals, crossed with three frequencies of nitrogen addition, including no addition, and low (every 15 days) or high (every 5 days) addition with the same amount of nitrogen. There were nine treatments with six replicates per treatment. Each replicate was distributed randomly among a plastic container (diameter, 27 cm; height, 34 cm) filled 22 cm high with a mixture of vermiculite, river sand, and peat (1:1:1 [v/v/v]).

On 4 May 2016, we constructed 54 artificial native plant communities by transplanting eight native plants. One week later, we selected several similarly sized seedlings of *S. canadensis* transplanted at the same time. We designated the transplantation of one or five seedlings of *S. canadensis* into the native plant community as low or high propagule pressure, respectively, and the native plant community alone as the no-invasion treatment. The native plant community included one individual each of the eight native plant species.

One week after *S. canadensis* was planted, nitrogen was added in the form of ammonium nitrate (NH$_4$NO$_3$). We dissolved the ammonium nitrate in deionized water and sprayed it on the plant and soil surface
(He, Yu, and Sun 2011; Li, Ning, and Alpert et al. 2014). A volume of 200 mL of deionized water was sprayed as the control. The low frequency nitrogen treatment involved the addition of 200 mL of 0.066 g water-soluble ammonium nitrate every 15 days for a total of six times. The high frequency treatment consisted of the addition of 200 mL of 0.022 g water-soluble ammonium nitrate every five days for a total of 18 times (Figure 1). The experiment was designed to simulate precipitation and atmospheric nitrogen deposition in sampled areas (Zhou, Li, and Luo et al. 2009). The total amount of nitrogen added for the frequency treatment was 10 g/m-2·a-1. The experiment was conducted in the greenhouse for 90 days from May 4 to 4 August 2016.

Measurements

We harvested all the individual *S. canadensis* plants and measured their stem lengths and numbers of leaves. All the *S. canadensis* materials were then brought back to the laboratory, and the leaf areas were determined by scanning the leaves and analyzing them with WinFOLIA (Pro2004a; Regent Instruments, Québec, Canada). The native species were harvested as three functional groups, including the legumes, grasses, and non-grass broadleaf herbs. All the plants were separated into two parts (aboveground and belowground) and weighed after oven drying at 70°C for more than 48 hours.

Statistical analysis

Data calculation

We calculated the competitive effect (CE) on native plant communities (Liu, Quan, and Dong et al. 2016) as follows:

\[
CE = \ln \left(\frac{R_D}{R_W} \right)
\]

Where, \(R_D\) is the biomass of native communities alone, and \(R_W\) is the biomass of native communities after invasion. A positive value suggests competition between *S. canadensis* and the native plant community, while a negative value indicates that *S. canadensis* invasion promotes the growth of native plant community.

We then calculated the relative dominance index (RDI) of *S. canadensis* (Liu, Quan, and Dong et al. 2016) (Lei, Wang, and Feng et al. 2012).

\[
RDI = \frac{A}{A + B}
\]

A is the biomass of *S. canadensis*, and B is the biomass of eight native plants.

Analytical data programs

A two-way analysis of variance (ANOVA) was performed to examine the effects of propagule pressure, nitrogen addition and their interaction on plant growth, and the relationship between invasive species and native communities. A Duncan test was used for multiple comparisons after the detection of significant effects. Tests of normality and homogeneity of variance were performed before analysis. The data were transformed to the natural log or square root before analysis when necessary to remove heteroscedasticity. SPSS 19.0 (IBM, Inc., Armonk, NY, USA) was used to conduct the analyses, and SigmaPlot 12.5 (Systat Software, Inc., San Jose, CA, USA) was used for graphics.

Results

The growth of *S. canadensis*

Propagule pressure significantly affected all the growth indices of *S. canadensis* (Table 1A, \(P < 0.05\)), while the frequencies of nitrogen addition and interaction between the two treatments both did not affect the growth traits of *S. canadensis* (Table 1A). High propagule pressure significantly increased all the growth indices of *S. canadensis* (Figure 2). Although not significant, all the growth indices of *S. canadensis* improved following treatment with a high frequency of nitrogen (Figure 2). At the individual level, the frequency of nitrogen addition, propagule pressure and their interaction had no significant effect on several growth indices of *S. canadensis* (Table S1; Fig. S1).

The growth of native plant communities

The frequencies of nitrogen addition significantly affected all the belowground and total biomass of the native communities (Table 1B, \(P < 0.05\)), while propagule pressure and interaction between the two treatments did not affect the biomass of native communities (Table 1B). The belowground biomass and total biomass of native communities improved following treatment with a low frequency of nitrogen addition, and it decreased under a high nitrogen frequency.
Table 1. Summary of ANOVAs for the effects of nitrogen addition (N) and propagule pressure (P) on Solidago canadensis and native communities.

	N	P	N × P
A. S. canadensis			
Leaf area	0.37	0.693	16.76
Number of leaves	1.03	0.370	45.84
Stem length	0.13	0.875	50.76
Leaf biomass	0.71	0.499	16.52
Root biomass*	1.53	0.233	17.39
Stem biomass	0.77	0.471	14.15
Aboveground biomass	0.74	0.486	16.06
Total biomass	0.89	0.423	16.52
B. Native communities			
Total biomass	3.44	0.041	0.32
Aboveground biomass	3.11	0.054	0.34
Belowground biomass	4.05	0.024	0.14
C. Legumes			
Total biomass	1.95	0.154	4.22
Aboveground biomass	1.30	0.283	5.05
Belowground biomass	2.34	0.108	3.18
D. Grass			
Total biomass*	1.23	0.302	1.72
Aboveground biomass	1.22	0.306	1.53
Belowground biomass	1.03	0.366	2.97
E. Non-grass broadleaf herbs			
Total biomass	1.92	0.158	1.15
Aboveground biomass	1.73	0.189	1.19
Belowground biomass	2.55	0.089	0.66

*indicates square root-transformed data. Significant values of F and P are shown in bold. ANOVA, analysis of variance.

(Figure 3A,C). Although not significant, the frequencies of nitrogen addition affected the aboveground biomass in a similar manner (Figure 3B).

At the function group level, propagule pressure only affected the aboveground and total biomass of the legumes (Table 1C, P < 0.05). However, the belowground biomass of legumes and all the biomass of grass and forbs were not affected by propagule pressure (Table 1C-E). The aboveground and total biomass of the legumes significantly decreased as the level of pressure of S. canadensis propagules increased (Figure 4A,D). Simultaneously, the frequency of nitrogen addition did not affect any biomass indices of all the functional groups (Table 1C-E).

Interactions between S. canadensis and the native plant community

Propagule pressure significantly increased the relative dominance index (RDI) of S. canadensis (Table 2, P < 0.05, Figure 5B), while it did not significantly affect the competitive effect (CE) (Table 2). Although the frequencies of nitrogen addition and interaction between the two treatments did not significantly affect the RDI and CE (Table 2), we observed the lowest CE at a low frequency of nitrogen, while the highest CE was apparent at the highest frequency of nitrogen (Figure 5A). Moreover, the CE was negative under the combination of low pressure and a low frequency of nitrogen addition (Figure 5A). The CE was observed at the maximum value, and a t-test indicated that it was significantly greater than 0 under the combination of high pressure and a high frequency of nitrogen addition (Figure 5A).

Discussion

Effects of the frequencies of nitrogen addition and propagule pressure on S. canadensis

Increasing the propagule number promoted the invasion of S. canadensis by significantly increasing its growth and RDI (Figures 2 and 5). Our finding coincides with other research that has shown that increasing the propagule pressure may be crucial at enhancing the invasion of exotic clonal plants (Lockwood, Cassey, and Blackburn 2019; Simberloff 2009; Liu, Chen, and Dong et al. 2014; Liu, Sun, and Müller-Schärer et al. 2016; Blackburn, Lockwood, and Cassey 2015; Enders, Havemann, and Ruland et al. 2020). High propagule pressure sometimes increased the biomass of whole plant population at the expense of the reduced growth of individual plants (Liu, Chen, and Dong et al. 2014; Barney et al., 2016; Ren, Yang, and Li et al., 2020). However, our results showed that the growth of individual S. canadensis was not inhibited (Fig. 51). This could be attributed to the low density of invasion species (Lockwood, Cassey, and Blackburn 2019).

In contrast, there were no significant effects on S. canadensis growth and RDI under different frequencies of nitrogen, which addresses the second question of this study. It is known that many factors can determine how nitrogen addition affects plant growth, including the capability of species, season, stage of plant development, and soil moisture (Waller, Allen, and Barratt 2020; Lamb, Stewart and Cahill 2012). Some plants with a robust tolerance to environmental stress are not sensitive to changes in the frequency of nitrogen addition (Grime 1994). Thus, S. canadensis, which is strongly adaptable to different ecosystems, may respond weakly to varying frequencies of nitrogen addition. More notably, S. canadensis, as an invasive plant, has greater plasticity and is better able to adapt to different resources, so it has different strategies to adapt to varying frequencies of nitrogen addition (Lamb, Stewart and Cahill 2012). Therefore, in this study, a frequency of high nitrogen helped the growth of S. canadensis to some extent, and a high propagule pressure more significantly promoted the growth and RDI of S. canadensis under high frequencies of nitrogen addition, thus, accelerating the invasion of S. canadensis. This answered the third question and
is consistent with the findings of previous studies (Lockwood, Cassey, and Blackburn 2019; Melbourne, Cornell and Davies et al. 2007; Chun, Van Kleunen, and Dawson 2010).

Effects of the frequencies of nitrogen addition and propagule pressure on native communities

At the functional group level, the aboveground and total biomass of the legumes decreased significantly with the increase in propagule pressure, while all the remaining biomasses did not respond (Figures 3 and 4). This suggested that legumes could not gain a fitness advantage in mixtures with grasses and forbs (Li, S, and Liu et al. 2021; Jensen, Carlsson, and Haugaard-Nielsen 2020; He, Montesinos, and Thelen et al. 2012). At the community level, propagule pressure did not affect the biomass of community. One possible explanation is that invasion by *S. canadensis* into plant native communities requires a longer term than that used in this experiment (Hess, Buisson, and Jaunatre et al. 2020; Catford, Smith, and Wragg et al. 2019). Furthermore, as the dominant functional group, grasses did not respond to the propagule pressure; therefore, the whole community did not respond either, which is consistent with the findings of previous studies (Phoenix, Johnson, and Grime et al. 2008).

In addition, the biomass of three functional groups did not significantly respond to different frequencies of nitrogen addition, which is consistent with previous studies (Temperton, Mwangi, and Scherer-Lorenzen 2007; Rojas-Botero, Kollmann, and Teixeira 2021). As for the community level, the biomass of invaded community increased under a low frequency of nitrogen addition.
addition, while this decreased under a high frequency of nitrogen. Our findings are consistent with those of previous studies (Britton and Fisher 2007; Hwang and Lauenroth 2008). Overall, the efficiency of native plants at utilizing resources is lower than that of invasive plants, and they are more adaptable to the original low level of nitrogen. Therefore, the nitrogen utilization efficiency of native plants and invasive plants are similar at low levels of nitrogen, while a high level of nitrogen is more advantageous to the utilization of nitrogen by invasive plants, which is not advantageous to the growth of native plant communities (He, Montesinos, and Thelen et al. 2012).

Moreover, the low frequency of nitrogen addition decreased the CE of S. canadensis on the native communities, and the CE was negative under the combination of a low frequency of nitrogen addition and low propagule pressure. This indicated that the competition between S. canadensis and local communities weakened under a low frequency of nitrogen addition,
Figure 4. Effects of the frequency of nitrogen addition and propagule pressure on biomass (mean ± SE, n = 6) of each functional group: legumes (A, D, G); grasses (B, E, H); forbs (C, F, I). Different capital letters indicate significant differences among propagule pressure, and lowercase letters indicate significant differences among the frequency of nitrogen addition.

Table 2. Summary of ANOVAs for the effects of nitrogen addition frequency (N) and propagule pressure (P) on the competitive effect (CE) and relative dominance index (RDI) of Solidago canadensis.

	N	P	P	N×P		
	F_{5,10}	P	F_{5,10}	P	F_{5,10}	P
CE	1.48	0.243	0.52	0.477	0.09	0.918
RDI *	2.22	0.126	14.46	0.001	0.03	0.973

*indicates square root-transformed data. Significant values of F and P are shown in bold. ANOVA, analysis of variance.

Figure 5. Effects of the frequency of nitrogen addition and propagule pressure on the competitive (A) and relative dominance index (B) (mean ± SE) of Solidago canadensis. Different capital letters indicate significant differences among propagule pressure, and lowercase letters indicate significant differences among the frequency of nitrogen addition.
which can help the native communities to resist invasion (Price and Pärtel 2013), weakening the competitiveness of *S. canadensis*.

Conclusion

The results of this study showed that propagule pressure significantly increased the growth and relative dominance index of *S. canadensis* and decreased the aboveground and total biomass of legumes. Compared with a high frequency of nitrogen addition, the total and belowground biomass of the native plant communities increased under a low frequency of nitrogen treatment. In summary, high propagule pressure favors the successful invasion and development in the *S. canadensis*, while a low frequency of nitrogen is beneficial to the growth of local community and helped them to resist invasion. This study helps us to understand the role of propagule pressure and frequency of nitrogen addition on the successful invasion of exotic plant *S. canadensis*. However, our experimental design limited our ability to explore the allelopathy of *S. canadensis*, and further experiments are needed to test how their allelopathy affects native communities during the density-frequency experiment. To fully explain how nitrogen deposition affects alien plant invasion, it is essential to conduct more long-term studies, including those in the field.

Acknowledgments

This work was supported by National Key Research and Development Program of China (Grant No. 2021YFC2600400), the Fundamental Research Funds for the Central Universities under Grant number 2015ZCQ-BH-01; the China Major Science and Technology Program for Water Pollution Control and Treatment under Grant number 2017ZX07602-004-003; the Ten-Thousand-Talent Program of Zhejiang Province under Grant number 2018R52016; the National Natural Science Foundation of China under Grant number 31470475.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the National Key R&D Program of China (2021YFC2600400); Fundamental Research Funds for the Central Universities (2015ZCQ-BH-01); China Major Science and Technology Program for Water Pollution Control and Treatment (2017ZX07602-004-003); National Natural Science Foundation of China (31470475); Zhejiang Provincial Ten Thousand Plan for Young Top Talents (2018R52016).

ORCID

Hong-Li Li http://orcid.org/0000-0003-4061-2485

Data availability statement

The data that support the findings of this study are available from the corresponding author, Hong-Li Li, upon reasonable request.

References

Abhilasha, D., N. Quintana, J. Vivanco, and J. Joshi. 2008. “Do allelopathic compounds in invasive Solidago canadensis s.l. restrain the native European flora?” *Journal of Ecology* 96(5): 993–1001. doi:10.1111/j.1365-2745.2008.01413.x.

Barney, J. N., M. W. Ho, and D. Z. Atwater. 2016. “Propagule Pressure Cannot Always Overcome Biotic Resistance: The Role of Diversity-dependent Establishment in Four Invasive Species.” *Weed Research* 56 (3): 208–218. doi:10.1111/wre.12204.

Blackburn, T. M., N. L. Lockwood, and P. Cassey. 2015. “The Influence of Numbers on Invasion Success.” *Molecular Ecology* 24 (9): 1942–1953. doi:10.1111/mec.13075.

Bozzolo, F. H., and D. A. Lipson. 2013. “Differential Responses of Native and Exotic Coastal Sage Scrub Plant Species to N Additions and the Soil Microbial Community.” *Plant and Soil* 371 (1–2): 37–51. doi:10.1007/s11104-013-1668-2.

Bradley, B. A., D. M. Blumenthal, D. S. Wilcove, L. H. Ziska. 2010. “Predicting Plant Invasions in an Era of Global Change.” *Trends in Ecology & Evolution* 25 (5): 310–318. doi:10.1016/j.tree.2009.12.003.

Britton-Simmons, K. H., and K. C. Abbott. 2008. “Short- and Long-term Effects of Disturbance and Propagule Pressure on a Biological Invasion.” *Journal of Ecology* 96 (1): 68–77. doi:10.1111/j.1365-2745.2007.01319.x.

Britton, A. J., and J. M. Fisher. 2007. “Interactive Effects of Nitrogen Deposition, Fire and Grazing on Diversity and Composition of Low-alpine Prostrate *Calluna vulgaris* Heathland.” *Journal of Applied Ecology* 44 (1): 125–135. doi:10.1111/j.1365-2664.2006.01251.x.

Cassey, P., S. Delean, J. L. Lockwood, J. S. Sadowski, and T. M. Blackburn. 2018. “Dissecting the Null Model for Biological Invasions: A Meta-analysis of the Propagule Pressure Effect.” *PLoS Biology* 16 (4): e2005987. DOI:10.1371/journal.pbio.2005987.

Catford, J. A., A. L. Smith, P. D. Wragg, A. T. Clark, M. Kosmala, J. Cavender-Bares, P. B. Reich, and D. Tilman. 2019. “Traits linked with Species Invasiveness and community Invisibility Vary with Time, Stage and Indicator of Invasion in a Long-term Grassland Experiment.” *Ecology Letters* 22 (4): 593–604. DOI:10.1111/ele.13220.

Chen, R., J. Ran, W. Hu, L. Dong, M. Ji, X. Jia, J. L. Lu, H. Y. Gong, M. Aqeel, S. R. Yao, L. Z. An, J. S. He, K. J. Niklas, and J. M. Deng. 2020. “Effects of Biotic and Abiotic Factors on Forest Biomass Fractions.” *National Science Review* 8(10). National Science Review nww025.

Chun, Y. J., M. Van Kleunen, and W. Dawson. 2010. “The Role of Enemy Release, Tolerance and Resistance in Plant Invasions: Linking Damage to Performance.” *Ecology Letters* 13 (8): 937–946. doi:10.1111/j.1461-0248.2010.01498.x.

Colautti, R. I., I. A. Grigorovich, and H. J. MacIsaac. 2006. “Propagule Pressure: A Null Model for Biological Invasions.” *Biological Invasions* 8 (5): 1023–1037. doi:10.1007/s10530-005-3735-y.
Matalana, N., M. L. Slate, and R. M. Callaway. 2017. "Nitrogen Pulses and Competition between Native and Invasive Plant Species." Biological Invasions 13 (12): 3005–3014. doi:10.1007/s10530-011-9985-y.

Mazzola, M. B., J. C. Chambers, R. R. Blank, D. A. Pyke, E. W. Schupp, K. G. Allcock, P. S. Doescher, and R. S. Nowak. 2011. "Effects of resource Availability and Propagule Supply on Native Species Recruitment in Sagebrush Ecosystems Invaded by Bromus Tectorum." Biological Invasions 13 (2): 513–526. DOI:10.1007/s10530-010-9846-0.

Melbourne, B. A., H. V. Cornell, K. F. Davies, C. J. Dugaw, S. Elmendorf, A. L. Freestone, R. J. Hall, S. Harrison, A. Hastings, M. Holland, M. Holyoak, J. Lambrinos, K. Moore, and H. Yokomizo. 2007. "Invasion in a Heterogeneous World: Resistance, Coexistence or Hostile Takeover?" Ecology Letters 10 (1): 77–94. DOI:10.1111/j.1461-0248.2006.00987.x.

Phoenix, G. K., D. Johnson, J. P. Grime, R. E. Booth. 2008. "Sustaining Ecosystem Services in Ancient Limestone Grassland: Importance of Major Component Plants and Community Composition." Journal of Ecology 96 S, 894–902.

Portela, R., R. Barreiro, and S. R. Roiloa. 2019. "Biomass Partitioning in Response to Resources Availability: A Comparison between Native and Invaded Ranges in the Clonal Invader Carpobrotus Edulis." Plant Species Biology 34 (1): 11–18. doi:10.1111/1442-1984.12228.

Price, J. N., and M. Pärte1. 2013. "Can Limiting Similarity Increase Invasion Resistance? A Meta-analysis of Experimental Studies." Oikos 122 (5): 649–656. DOI:10.1111/j.1600-0766.2012.01212.x.

Radny, J., and K. M. Meyer. 2018. "The Role of Biotic Factors during Plant Establishment in Novel Communities Assessed with an Agent-based Simulation Model." PeerJ 6: e5342. doi:10.7717/peerj.5342.

Ren, G. Q., H. Y. Yang, J. Li, K. Prabakaran, Z. C. Dai, X. P. Wang, K. Jiang, C. B. Zou, D. L. Du. 2020. "The Effect of Nitrogen and Temperature Changes on Solidago Canadensis phenotypic Plasticity and Fitness." Plant Species Biology 35 (4): 283–299. DOI:10.1111/1442-1984.12280.

Rojas-Botero, S., J. Kollmann, and L. H. Teixeira. 2021. "Competitive Trait Hierarchies of Native Communities and Invasive Propagule Pressure Consistently Predict Invasion Success during Grassland Establishment." Biological Invasions 24 (1): 107–122.

Rouget, M., and D. M. Richardson. 2003. "Inferring Process from Pattern in Plant Invasions: A Semimechanistic Model Incorporating Propagule Pressure and Environmental Factors." The American Naturalist 162 (6): 713–724. doi:10.1086/379204.

Siemann, E., and W. E. Rogers. 2007. "The Role of Soil Resources in an Exotic Tree Invasion in Texas Coastal Prairie." Journal of Ecology 95 (4): 689–697. doi:10.1111/j.1365-2745.2007.01253.x.

Simberloff, D. 2009. "The Role of Propagule Pressure in Biological Invasions." Annual Review of Ecology, Evolution, and Systematics 40 (1): 81–102. doi:10.1146/annurev. ecolsys.110308.120304.

Song, L., X.-M. Bao, and X.-J. Liu. 2012. "Impact of Nitrogen Addition on Plant Community in a Semi-arid Temperate Steppe in China." Journal of Arid Land 4 (1): 3–10. doi:10.3724/SP.J.1227.2012.00003.

Tempton, V. M., P. N. Mwangi, M. Scherer-Lorenzen, B. Schmid, and N. Buchmann. 2007. "Positive Interactions between Nitrogen-fixing Legumes and Four Different Neighbouring Species in a Biodiversity Experiment." Oecologia 151 (2): 190–205. DOI:10.1007/s00442-006-0576-z.

Waller, L. P., W. J. Allen, B. L. P. Barratt, L. M. Condron, F. M. Franca, J. E. Hunt, N. Koele, K. H. Orwin, G. S. Steel, J. M. Tylianakis, S. A. Wakelin, I. A. Dickie. 2020. "Biotic Interactions Drive Ecosystem responses to Exotic Plant Invaders." Science 368 (6494): 967–972. DOI:10.1126/science.aba2225.

Wang, Y. J., D. Chen, R. Yan, F. H. Yu, F. H. 2019. "Invasive Alien Clonal Plants are Competitively Superior over Co-occurring Native Clonal Plants." Perspectives in Plant Ecology, Evolution and Systematics 40 (C): 125484.

Wang, A.O., X. X. Jiang, Q. Q. Zhang, J. Zhou, H. L. Li, F. L. Luo, and F. H. Yu. 2015. "Nitrogen Addition Increases Intraspecific Competition in the Invaded Wetland Plant Alternanthera philoxeroides, but Not in Its Native Congener Alternanthera Sessilis." Plant Species Biology 30 (3): 176–183. DOI:10.1111/1442-1984.12048.

Wittmann, M. J., D. Metzler, W. Gabriel, J. M. Jeschke. 2014. "Decomposing Propagule Pressure: The Effects of Propagule Size and Propagule Frequency on Invasion Success." Oikos 123 (4): 441–450. DOI:10.1111/j.1600-0706.2013.01205.x.

You, W. H., C. M. Han, L. X. Fang, D. L. Du. 2016. "Propagule Pressure, Habitat Conditions and Clonal Integration Influence the establishment and Growth of an Invasive Clonal Plant." Alternanthera philoxeroides, Frontiers in Plant Science 7:568.

Yuan, Y. F., W. H. Guo, W. J. Ding, N. Du, Y. J. Luo, J. Liu, F. Xu, R. Q. Wang. 2013. "Competitive Interaction between the Exotic Plant Rhus Typhina L. And the Native Tree Quercus Acutissima Carr. In Northern China under Different Soil N: P Ratios." Plant and Soil 372 (1–2): 389–400. DOI:10.1007/s11104-013-1748-3.

Yuan, Y., B. Wang, S. S. Zhang, J. J. Tang, C. Tu, S. J. Hu, J. W. H. Yong, and X. Chen. 2013. "Enhanced Allelopathy and Competitive Ability of Invasive Plant Solidago Canadensis in its Introduced Range." Journal of Plant Ecology 6 (3): 253–263. DOI:10.1093/jpe/rts033.

Zhang, S., Y. Jin, J. Tang, X. Chen. 2009. "The Invasive Plant Solidago Canadensis L. Suppresses Local Soil Pathogens through Allelopathy." Applied Soil Ecology 41 (2): 215–222. DOI:10.1016/j.apsoil.2008.11.002.

Zhou, J., H. L. Li, F. L. Luo, W. J. Huang, M. X. Zhang, and F. H. Yu. 2015. "Effects of Nitrogen Addition on Interspecific Competition between Alternanthera Philoxeroides and Alternanthera Sessilis." Acta Ecologica Sinica 35 (24): 8258–8267.