The evolution of skin pigmentation
association variation in West Eurasia

Dan Ju¹, Iain Mathieson¹

¹ Department of Genetics, Perelman School of Medicine, University of Pennsylvania

Correspondence to danju@pennmedicine.upenn.edu or mathi@pennmedicine.upenn.edu
Abstract

Skin pigmentation is a classic example of a polygenic trait that has experienced directional selection in humans. Genome-wide association studies have identified well over a hundred pigmentation-associated loci, and genomic scans in present-day and ancient populations have identified selective sweeps for a small number of light pigmentation-associated alleles in Europeans. It is unclear whether selection has operated on all the genetic variation associated with skin pigmentation as opposed to just a small number of large-effect variants. Here, we address this question using ancient DNA from 1158 individuals from West Eurasia covering a period of 40,000 years combined with genome-wide association summary statistics from the UK Biobank. We find a robust signal of directional selection in ancient West Eurasians on skin pigmentation variants ascertained in the UK Biobank, but find this signal is driven mostly by a limited number of large-effect variants. Consistent with this observation, we find that a polygenic selection test in present-day populations fails to detect selection with the full set of variants; rather, only the top five show strong evidence of selection. Our data allow us to disentangle the effects of admixture and selection. Most notably, a large-effect variant at SLC24A5 was introduced to Europe by migrations of Neolithic farming populations but continued to be under selection post-admixture. This study shows that the response to selection for light skin pigmentation in West Eurasia was driven by a relatively small proportion of the variants that are associated with present-day phenotypic variation.

Significance

Some of the genes responsible for the evolution of light skin pigmentation in Europeans show signals of positive selection in present-day populations. Recently, genome-wide association studies have highlighted the highly polygenic nature of skin pigmentation. It is unclear whether selection has operated on all of these genetic variants or just a subset. By studying variation in over a thousand ancient genomes from West Eurasia covering 40,000 years we are able to study both the aggregate behavior of pigmentation-associated variants and the evolutionary history of individual variants. We find that the evolution of light skin pigmentation in Europeans was driven by frequency changes in a relatively small fraction of the genetic variants that are associated with variation in the trait today.
Introduction

Skin pigmentation exhibits a gradient of variation across human populations that tracks with latitude (1). This gradient is thought to reflect selection for lighter skin pigmentation at higher latitudes, as lower UVB exposure reduces vitamin D biosynthesis which affects calcium homeostasis and immunity (2–4). Studies of present-day and ancient populations have revealed signatures of selection at skin pigmentation loci (5–9), and single nucleotide polymorphisms (SNPs) associated with light skin pigmentation at some of these genes exhibit a signal of polygenic selection in Western Eurasians (10). However, this observation, the only documented signal of polygenic selection for skin pigmentation, is based on just four loci (*SLC24A5*, *SLC45A2*, *TYR*, and *APBA2/OCA2*).

Therefore, while the existence of selective sweeps at a handful of skin pigmentation loci is well-established, the evidence for polygenic selection—a coordinated shift in allele frequencies across many trait-associated variants (11)—is less clear. Recently, genome-wide association studies (GWAS) of larger samples and more diverse populations (12–15) have emphasized the polygenic architecture of skin pigmentation. This raises the question of whether selection on skin pigmentation acted on all of this variation or rather was driven by selective sweeps at a relatively small number of loci.

The impact of demographic transitions on the evolution of skin pigmentation also remains an open question. The Holocene history (~12,000 years before present (BP)) of Europe was marked by waves of migration and admixture between three highly diverged populations: hunter-gatherers, Early Farmers, and Steppe-ancestry populations (16, 17). Skin pigmentation-associated loci may have been selected independently or in parallel in one or more of these source populations or may instead only have been selected after admixture. The impact of ancient shifts in ancestry is difficult to resolve using present-day data, but using ancient DNA, we can separate the effects of ancestry and selection and identify which loci were selected in which populations.

Here we use ancient DNA to track the evolution of loci that are associated with skin pigmentation in present-day Europeans. Although we cannot make predictions about the
phenotypes of ancient peoples, we can assess the extent to which they carried the same light pigmentation alleles that are present today. This allows us to identify which pigmentation-associated variants have changed in frequency due to positive selection and the timing of these selective events. We present the first systematic survey of the evolution of European skin pigmentation-associated variation, tracking over a hundred loci over 40,000 years of human history—almost the entire range of modern human occupation of Europe.

Results

Skin pigmentation associated SNPs show signal of positive selection in ancient West Eurasians

We obtained skin pigmentation-associated SNPs from the UK Biobank GWAS for skin colour released by the Neale Lab (14). We analyzed the evolution of these variants using two datasets of publicly available ancient DNA (Fig. 1 A-C, Fig. S1). The first (“capture-shotgun”) consists of data from 1158 individuals dating from 45,000 to 715 years BP genotyped at ~1.2 million variants (7, 16, 26–35, 18, 36–45, 19, 46–52, 20–25). The second (“shotgun”) is a subset of 248 individuals with genome-wide shotgun sequence data (16, 18, 31–33, 39, 42, 45–49, 20, 50, 53–60, 22, 24, 26–30). This smaller dataset allows us to capture variants that may not be well-tagged by the genotyped SNPs in the capture-shotgun dataset. Weighting variants by their GWAS-estimated effect sizes, we show that the polygenic score—the weighted proportion of dark pigmentation alleles—decreased significantly over the past 40,000 years (Fig. 1 A & B, \(P < 1 \times 10^{-4} \) based on a genomic null distribution and accounting for changes in ancestry; Fig. S2). The genetic scores of the oldest individuals in the dataset fall within the range of present-day West African populations, showing that Early Upper Paleolithic [~50-20,000 years BP] modern humans, such as Ust’Ishim, carried few of the light skin pigmentation alleles that are common in present-day Europe.

Over the past 15,000 years, which covers most of the data, the polygenic score decreased (\(P < 1 \times 10^{-4} \)) at a similar rate to the estimated rate over the 40,000 year period (5.27 x 10^{-5} per-year vs 3.47 x 10^{-5} per-year; \(P = 0.04 \)). Stratifying individuals by ancestry (hunter-gatherer, Early Farmer, and Steppe) using ADMIXTURE revealed baseline differences in genetic score across groups (Fig. 1C). Mesolithic hunter-gatherers carried fewer light pigmentation alleles than Early Farmers or Steppe ancestry populations. This difference (0.091 score units) was similar to the
difference between Mesolithic hunter-gatherers and Early Upper Paleolithic populations (0.097 score units). We tested for evidence of change in score over time within groups, finding no significant change within hunter-gatherer or Early Farmer populations ($P = 0.24; P = 0.29$).

Steppe ancestry populations, however, exhibited a significant decrease, even after accounting for changes in ancestry over time ($P = 0.008$), with a steeper slope than that of Early Farmer or hunter-gatherer ($P = 0.004$ and $P = 0.08$, respectively).

While the UK Biobank is well-powered to detect variation that is segregating in present-day Europeans, it may not detect variants that are no longer segregating. We therefore manually curated a separate list of 18 SNPs identified as associated with skin pigmentation from seven studies of populations representing diverse ancestries (Table S6). Using this set of SNPs to generate unweighted scores, we observed similar results as with the UK Biobank ascertained SNPs (Fig. 1 D-F). We find a significant decrease in genetic score over both 40,000 and 15,000 years in the capture-shotgun dataset ($P < 1 \times 10^{-4}$ for both), although the decrease in the shotgun dataset was not significant ($P = 0.17$), probably reflecting a lack of power from the small number of ancient samples and SNPs.

Ancestry and selection have different effects on the histories of each variant

Next, we investigated the evolution of each variant independently. We separated the effects of ancestry and selection in the data by regressing presence or absence of the alternate allele for each pigmentation-associated SNP on both date and ancestry, inferred using PCA (61). Significant effects of the ancestry on frequency can be interpreted as changes in allele frequency that can be explained by changes in ancestry. Significant changes in frequency over time, after accounting for ancestry, can be interpreted as evidence for selection in West Eurasia occurring during the analyzed time period.

The SNP rs16891982 at the SLC45A2 locus shows the strongest evidence for selection across analyses (Fig. 2), but we note this does not necessarily imply positive selection over the entire time transect. We observed little evidence for demographic transitions in driving the increase in light allele frequency over time for this SNP. In addition, we found robust signals of selection for the light allele of rs1126809 near TYR, rs12913832 and rs1635168 near HERC2, and rs7109255 near GRM5 (Fig. 2 B & C). In some cases—for example at rs6120849 near EDEM2 and
rs7870409 near RALGPS1—light alleles decreased in frequency more than can be explained by changes in ancestry (Fig. 2 B & C). The dark allele at rs6120849 (EDEM2) is also associated with increased sitting and standing height in the UK Biobank, and the dark allele of rs7870409 (RALGPS1) is associated with increased arm and trunk fat percentage (62). These observations raise the possibility of pleiotropic effects constraining the evolution of these loci or of spurious pleiotropy due to uncorrected population structure in the GWAS.

On the other hand, the changes in frequencies of several variants appear to have been driven largely by changes in ancestry. For example, rs4778123 near OCA2, rs2153271 near BNC2 and rs3758833 near CTSC show evidence that their changes in frequency were consistent with changes in genome-wide ancestry (Fig. 2 B & C). At SLC24A5, rs2675345 shows evidence of change with both ancestry and time, suggesting that even after the spread of the light allele from migrating populations in the Neolithic (7), selection continued to occur post-admixture. Again, not all of these cases involve an increase in the frequency of the light pigmentation allele over time. The light allele of rs4778123 (OCA2) was at high frequency in hunter-gatherers but lower in later populations (Fig. S4). From the manually curated set of SNPs (Fig. 2 D-F), rs12203592 near IRF4 also displays a marked effect of ancestry with higher light allele frequency in hunter-gatherers as well. While rs12203592 was not present in the UK Biobank summary statistics, another SNP at the IRF4 locus, rs3778607, was present but with a lower ancestry effect (Fig S5).

Lack of PBS selection signal across pigmentation SNPs in source populations of Europeans

As we described in the previous section, the frequencies of several skin pigmentation SNPs appear to have been driven by changes in ancestry. This observation suggests that their frequencies have diverged between the European source populations and then subsequently been driven by admixture. Frequency differences across the source populations might reflect the action of either genetic drift or selection. To examine this question, we looked for evidence of selection at skin pigmentation SNPs in each ancestral population using the population branch statistic (PBS) test (63). We assigned ancient individuals to the groups hunter-gatherer, Early Farmer, and Steppe ancestry based on unsupervised ADMIXTURE with K=3 (Fig. S6) and used the observed frequencies in each group to calculate PBS in non-overlapping 50-SNP windows.
Few of the skin pigmentation loci show extreme PBS values (Fig. 3, Fig. S7). On the Early Farmer and Steppe ancestry branches, but not hunter-gatherer branch, the $SLC24A5$ locus exhibited the strongest signal (Fig. 3 B & C), indicating selection at the locus in both Early Farmer and Steppe source populations. The $RABGAP1$ locus also exhibited an elevated signal of selection in Early Farmer and Steppe, which remained when using a 20-SNP window size (Fig. S8 B and C). However, unlike the $SLC24A5$ variant, this SNP (rs644490) did not show a substantial effect of ancestry from the individual SNP regression analysis. Across the ancestral groups, we observed an elevated PBS at the $OCA2$ locus around rs9920172, with the most extreme value on the hunter-gatherer branch. As expected, this SNP does not show an effect of ancestry in allele frequency change over time. As a whole, the PBS values of the 170 skin pigmentation SNPs do not significantly deviate from the genome-wide distribution of PBS for any of the ancient source populations (Fig. S9).

Signals of selection are restricted to the SNPs with the largest effect sizes

Since our results suggest that pigmentation-associated variants exhibit different changes in allele frequency, we further examined the signal of selection found in Fig. 1. In general, SNPs with larger GWAS effect sizes changed more in frequency over time than those with small effect sizes ($P = 2.8 \times 10^{-18}$; adjusted R$^2=0.36$) (Fig. S10A). To understand the contribution of these large GWAS effect size SNPs, we iteratively removed SNPs from the polygenic score calculations (Fig 4A). Removing the SNP rs16891982 at $SLC45A2$, we still found a significant decrease of score over time ($P < 1 \times 10^{-4}$), but the estimated rate of change (β_{time}) decreased by 39 percent. Removing the top two SNPs at the $SLC45A2$ and $SLC24A5$ locus further attenuated the signal with a decrease in β_{time} of 58 percent ($P = 3.96 \times 10^{-4}$). We removed the five SNPs with the largest GWAS effect sizes and found the effect of time attenuated ($P = 0.026$) with a decrease in β_{time} of 78 percent. Removing the top 10 SNPs attenuated the signal even more ($P = 0.050$) with an 81 percent decrease and removal of 15 or 20 SNPs essentially abolished the signal ($P = 0.147$ and $P = 0.52$).

Using present-day populations from the 1000 Genomes Project (64), we also tested for polygenic selection with the Q_x statistic (10), which measures overdispersion of trait-associated SNPs relative to the genome-wide expectation. We performed the test with different numbers of SNPs...
ordered by largest to smallest absolute GWAS effect size (Fig. 4B). Using all 170 SNPs in the
test, we failed to observe a signal of polygenic selection ($P = 0.27$). However, when we restricted
to the top 5 largest GWAS effect size SNPs, we found a significant signal ($P < 2.5 \times 10^{-7}$). We
observed a significant Q_x statistics at $P < 0.05$ up to the top 30 SNPs, but it appears this signal is
driven by the top SNPs of the largest effect. After removing the top 5 SNPs and testing the
remaining 25 top SNPs, the signal of polygenic selection disappeared ($P = 0.59$). Examining the
predicted variance explained per SNP (Fig. 4C, Fig. S11) we predict that of the UK Biobank
SNPs two SNPs at $SLC45A2$ and $SLC24A5$ contribute substantially to the difference between
West African and European populations. Most UK Biobank skin pigmentation-associated SNPs
thus are predicted to contribute relatively little to the between-population variance.

Discussion

Large whole-genome ancient DNA datasets have, in the past few years, allowed us to track the
evolution of variation associated with both simple and complex traits (65, 66). The majority of
samples are from Western Eurasia and we focus on that region, noting that a parallel process of
selection for light skin pigmentation has acted in East Asian populations (9, 67). In West Eurasia,
selection for skin pigmentation appears to have been dominated by a small number of selective
sweeps at large-effect variants. There are a number of possible explanations for this. Many of the
variants detected by the UK Biobank GWAS may have such small effects that they were
effectively neutral or experienced such weak selection that we cannot detect it. Other variants
may not have been selected because of pleiotropic constraint. Finally, GWAS effect size
estimates in European populations today may not reflect the impact these variants had in the past
due to epistatic or gene-environment interactions. This would not affect the individual SNP time
series and PBS analyses since they do not rely on effect sizes as weights but would reduce power
for the weighted polygenic score and Q_x analyses.

We find little evidence of parallel selection on independent haplotypes at skin pigmentation loci,
suggesting that that differences in allele frequency across ancestry groups were mostly due to
 genetic drift. One exception is that the light allele at $SLC24A5$ was nearly fixed in both Early
Farmer and Steppe ancestry populations due to selection. However, even for this variant we
 observe a signal of ongoing selection in our data even after admixture with hunter-gatherers,
indicating continued selection after admixture. This is analogous to the rapid selection at the
same locus for the light allele introduced via admixture into the KhoeSan, who now occupy
southern Africa (12, 68).

We are also able to test previous claims about selection on particular pigmentation genes. In
contrast to reports of positive selection in Europeans at the *MC1R* locus (69, 70), we find no
evidence of positive selection in Europeans. Among UK Biobank SNPs, rs1805007 near *MC1R*
explains a relatively large amount of variation within the UK but is predicted to explain
relatively little of the variation between Europe and West Africa (Fig. 4C). The *TYRPI* locus has
been previously identified as a target of selection in Europeans (5, 8, 9, 71, 72) although some
studies (73, 74) have questioned this finding. Our analysis supports the hypothesis of selection at
this locus, with a window centered around rs1325132 in the top 0.77% of genome-wide PBS
windows on the hunter-gatherer lineage. At the *KITLG* locus, we find some support for a shared
selective sweep in East Asians and Europeans (9, 75, 76). Some studies (73, 77) detect a signal
of more recent selection in Europeans at the *KITLG* SNP rs12821256 that is functionally
associated with blond hair color (78). We find no evidence of selection on the West Eurasian
lineage at this SNP, but this may reflect a lack power to detect selection on a relatively rare
variant. Finally, at the *OCA2* locus, we recapitulate an observation of independent selection in
Europeans and East Asians (67, 79) (Fig. S7). In the ancient populations, we found an elevated
PBS signal around rs9920172 that was most prominent in hunter-gatherers but also elevated in
Early Farmer and Steppe ancestry populations (Fig. 3), suggesting a relatively early episode of
selection in West Eurasians.

Relatively dark skin pigmentation in Early Upper Paleolithic Europe would be consistent with
those populations being relatively poorly adapted to high latitude conditions as a result of having
recently migrated from lower latitudes. On the other hand, although we have shown that these
populations carried few of the light pigmentation alleles that are segregating in present-day
Europe, they may have carried different alleles that we cannot now detect. As an extreme
example, Neanderthals and the Altai Denisovan individual show genetic scores that are in a
similar range to Early Upper Paleolithic individuals (Table S1), but it is highly plausible that
these populations, who lived at high latitudes for hundreds of thousands of years, would have
adapted independently to low UV levels. For this reason, we cannot confidently make statements about the skin pigmentation of ancient populations.

Our study focused, for reasons of data availability, on the history of skin pigmentation evolution in West Eurasia. But there is strong evidence that a parallel trend of adaptation to low UVB conditions occurred in East Asia (67, 80–82). Less is known about the loci that have been under selection in East Asia, aside from some variants at OCA2 (79, 80, 82). Similarly, multiple studies have documented selection for both lighter and darker skin pigmentation in parts of Africa (12, 13, 83). Future work should test whether the process of adaptation in other parts of the world was similar to that in Europe. The lack of known skin pigmentation loci in scans of positive selection in East Asian populations (84, 85) raises the possibility that selection may have been more polygenic in East Asians than in Europeans. Finally, the evidence for polygenic directional selection on other complex traits in humans is inconclusive (86, 87). We suggest that detailed studies of other phenotypes using ancient DNA can be helpful at more generally identifying the types of processes that are important in human evolution.

Methods

Capture-shotgun ancient DNA dataset

We downloaded version 37.2 of the publicly available dataset of 2107 ancient and 5637 present-day (Human Origins dataset) samples from the Reich Lab website: https://reich.hms.harvard.edu/downloadable-genotypes-present-day-and-ancient-dna-data-compiled-published-papers. Ancient individuals were treated as pseudo-haploid (i.e. carry only one allele) because most samples are low coverage. For many of these samples, 1,233,013 sites were genotyped using an in-solution capture method (88), while those with whole-genome shotgun sequence data were genotyped at the same set of sites. For our regression models, we included ancient individuals from West Eurasia, defined here as the region west of the Ural Mountains (longitude < 107° E) and north of 35° N (Figure S1). We excluded samples with less than 0.1X coverage. We removed duplicate and closely related samples (e.g. first-degree relatives), by calculating pairwise IBS between ancient individuals. For each individual we identified a corresponding individual with the highest IBS. Based on the distribution of highest IBS values, we identified the pairs with IBS Z-score > 7 as duplicates and retained the individual
with fewest missing sites. We also manually removed related samples that were explicitly
annotated, selecting the highest coverage representative. Finally, we incorporated additional
ancient samples from the Iberian Peninsula from two recent papers (43, 51), applying the same
criteria for coverage and relatedness. Ultimately, we compiled a list of 1158 ancient pseudo-
haploid individuals in our analyses covering a timespan of the last 40,000 years. Only 11
individuals were dated to >15,000 years BP, and 1147 individuals lived during the last 15,000
years.

Shotgun ancient DNA dataset

We organized a dataset of samples that were shotgun sequenced without enrichment using the
capture array (23, 25–32, 35, 39, 42, 45, 47–51, 54, 56, 58, 60–67). To generate the first 10 PCs
from sites on the 1240K capture array, we combined shotgun samples with available genotype
data from v37.2 of the Reich lab dataset and 15 individuals that we ourselves pulled down from
BAM files. We manually removed duplicate samples in the shotgun dataset, preserving the
sample with higher coverage. We checked for first degree relatives in the dataset by considering
familial annotations but found none. The final shotgun dataset included 249 individuals.

Skin pigmentation SNP curation

We obtained summary statistics for UK Biobank GWAS for skin colour (data-field 1717) from
the publicly available release by the Neale Lab (version 3, Manifest Release 20180731) (14).
The GWAS measured self-reported skin colour as a categorical variable (very fair, fair, light
olive, dark olive, brown, black). To identify genome-wide significant and independent SNPs, we
performed clumping using PLINK v1.90b6.6 (89) with 1000 Genomes GBR as an LD reference
panel (--clump-p1 5 x 10^{-8} --clump-r2 0.05 --clump-kb 250), and followed up with clumping
based on physical distance to exclude SNPs within 100 kb of each other. We made two separate
lists of UK Biobank SNPs for the shotgun and capture-shotgun datasets because the capture-
shotgun dataset was restricted to the 1240K array sites. For the capture-shotgun dataset, we
intersected all UK Biobank SNPs with 1240K array SNPs before identifying 170 independent
and genome-wide significant SNPs (Table S2), which were used in Figures 1B, 1C, 2B, 2C, 3,
and 4. For the shotgun dataset, we identified 189 independent and genome-wide significant SNPs
(Table S3), which were used in Figures 1A and 2A.
We also manually curated a list of skin pigmentation-associated SNPs from the literature (Table S4). We identified 12 suitable studies (12, 13, 95, 96, 76, 79, 81, 90–94), 9 of which were GWAS conducted in diverse populations (Table S5). We did not include SNPs from all the considered papers for our analysis because some studies reported associations that were not genome-wide significant ($P < 5 \times 10^{-8}$). However, we included sub-significant SNPs from a GWAS in Europeans (93) with evidence of replication ($P < 5 \times 10^{-8}$) in the UK Biobank GWAS. For a GWAS in African populations (12), we selected a SNP for each LD block, which was defined by the study authors, with the greatest support based on multiple lines of evidence (e.g. P-value and functional annotations). For a GWAS in South Asians (92), we picked SNPs that were 200 kb away from each other and based the selection of SNPs that were in physical proximity by considering P-value. The other studies presented a set of independent SNPs that we considered for inclusion. Lastly, we manually clumped the SNPs curated across studies, selecting SNPs 200 kb apart with more statistical and/or functional evidence than nearby SNPs. Specific details about the choices made on which SNPs to exclude can be found in the “Notes” column for highlighted SNPs in Table S4. We ended with a final list of 18 SNPs for the manually curated set, 10 of which are present on the 1240K capture array (Table S6). We also made pseudo-haploid calls for each of the 18 SNPs in the shotgun dataset, picking a random allele from the reads at each site as for the overall dataset.

ADMIIXTURE analysis on capture-shotgun data

We performed unsupervised ADMIIXTURE (97) on the dataset of ancient individuals with $K=3$, which we found to produce the lowest cross-validation error for $2<K<9$. The three identified clusters could easily be identified as corresponding to hunter-gatherer, Early Farmer, and Steppe (also referred to as Yamnaya) ancestry.

Time series analysis of genetic scores

We calculated genetic scores for each individual from present-day 1000 Genomes populations (64) and ancient individuals. We computed the scores in two ways. First, we weighted by the GWAS-estimated effect sizes. Because of variable coverage across ancient samples, not all SNPs were present in a given sample. To account for missing information in the creation of weighted scores, we devised a weighted proportion in which we divided the realized score over the
maximum possible score given the SNPs present in the sample:

\[\text{Score}_{\text{weighted}} = \frac{\sum_{i=1}^{m} d_i \beta_i}{\sum_{i=1}^{m} \beta_i} \]

where \(m \) is the number of skin pigmentation SNPs genotyped in the individual, \(d_i \) is the presence of the dark allele at the \(i^{th} \) SNP, and \(\beta \) is the GWAS-estimated effect size (Fig. 1 A-C). For the manually curated list of SNPs where we did not have comparable effect size estimates, we computed an unweighted score, effectively assuming that all variants had the same effect size. This score is the proportion of dark alleles an individual carries out of the SNPs used in the construction of the score:

\[\text{Score}_{\text{unweighted}} = \frac{1}{m} \sum_{i=1}^{m} d_i \]

where \(m \) is the number of SNPs genotyped in the individual and \(d_i \) is the presence of the dark allele at the \(i^{th} \) SNP (Fig. 1 D-F).

We used logistic regression to examine the association between weighted and unweighted genetic score and time for all ancient samples. We fitted separate models for ancient samples that the shotgun and capture-shotgun datasets. We included ancestry as a covariate in the model by including the first ten principal components. Principal components analysis (PCA) was performed using smartpca v16000 (61) to generate PCs from present day populations and we projected ancient individuals onto these axes of variation. For the shotgun dataset and the capture-shotgun dataset that included all samples (40,000 years BP), we used 1000 Genomes samples. For the capture dataset that restricted to samples later than 15,000 BP, we used West Eurasians from the Human Origins dataset (16).

We model the score of each individual as the proportion of successes in a binomial sample of size \(m_i \). That is, \(m_i S_i \sim \text{Binomial}(m_i, p_i) \), where, for individual \(i \), \(m_i \) is the number of SNPs genotyped, \(S_i \) is the (weighted or unweighted) score, the probability of success \(p_i \) is given by

\[\log \left(\frac{p_i}{1-p_i} \right) = \alpha + \beta_{\text{date}} \text{date}_i + \beta_{\text{lat}} \text{lat}_i + \beta_{\text{lon}} \text{lon}_i + \beta_{\text{PC1}} PC1_i + \ldots + \beta_{\text{PC10}} PC10_i, \]

and \(\text{date}_i, \text{lat}_i \) and \(\text{lon}_i \) are the dates, latitude, and longitude of each individual. For the weighted score, \(m_i S_i \) is non-integer, but the likelihood can be computed in the same way.

For the stratified analysis, we divided the capture-shotgun dataset into mutually exclusive ancestry groups. We categorized individuals for this analysis as hunter-gatherer if they carried over 60 percent of the ADMIXTURE-estimated hunter-gatherer component. For placement into the Early Farmer group, we required that an individual carry over 60 percent of that component.
Individuals we categorized as Steppe had over 30 percent of the ADMIXTURE component and were dated to less than 5000 years BP. Based on these cutoffs, there were 102 hunter-gatherer, 499 Early Farmer, and 478 Steppe ancestry assigned individuals.

Because the fitted model parameters are overdispersed (Fig. S2), we computed P-values from a genome-wide empirical null distribution for β_{date}. We made this null distribution by running the regression model described above on scores from sets of random, frequency-matched (+/- 1%) SNPs across the genome, maintaining the same effect sizes for the weighted score. We matched the derived allele frequency based on the EUR superpopulation frequencies from 1000 Genomes. We reported P-values based on 10,000 random samples.

Time series analysis of individual SNP allele frequencies

We performed logistic regression for each individual SNP using date of the sample and ancestry as covariates. That is, the probability that the haplotype sampled from individual carries the derived allele is p_i, where

$$\log\left(\frac{p_i}{1-p_i}\right) = \alpha + \beta_{date}date_i + \beta_{PC} PC1_i + \ldots + \beta_{PC10} PC10_i.$$

We compared the full model above to a nested model with no principal components by performing a likelihood ratio test (in R we use `anova(nested model, full model, test='Chisq')`) to obtain a P-value for the ancestry term which encompasses $\beta_{PC1} \ldots \beta_{PC10}$. To obtain a P-value for β_{date}, we compare a nested model without β_{date} to the full model.

Qx polygenic selection test

We used the Q_x test for directional, polygenic selection on skin pigmentation (10). For this test, we used skin pigmentation SNPs obtained from the UK Biobank in all 1000 Genomes populations. We restricted sites to those on the 1240K and constructed a covariance matrix from a total of 1 million SNPs. To calculate empirical P-values, we sampled a total of 500,000 null genetic values matching skin pigmentation SNPs based on a +/- 2% frequency on the minor allele. However, we report 1 million runs for the top 7 SNPs and 2 million runs for the top 5 and 6 to better distinguish the deviation of the tested SNP sets from the expectation under drift.
We estimated the variance explained in the phenotype by a SNP within the UK population using
\[VE_{within} = 2\beta^2 f(1-f) \]
where \(\beta \) is the UK Biobank GWAS-estimated effect size and \(f \) is the allele frequency in the GBR population from 1000 Genomes. We calculated the proportion of variance explained as
\[PVE_{within} = \frac{VE_{within}}{VE_{within} + 2N\sigma^2 f(1-f)} \]
where \(N \) is the GWAS sample size (356,530) and \(\sigma \) is the standard error of the estimated \(\beta \) (98). To estimate the variance explained between GBR and YRI, we calculated the between population variance as
\[VE_{between} = \beta^2(f_{avg}(1-f_{avg}) - 0.5[f_1(1-f_1) + f_2(1-f_2)]) \]
where \(f_1 \) and \(f_2 \) are the allele frequencies of GBR and YRI, \(\beta \) is the UK Biobank GWAS-estimated effect size, and \(f_{avg} \) is 0.5\((f_1 + f_2)\).

Population branch statistic
We calculated the population branch statistic (PBS) (63) for different sets of ancient groups and present-day groups. To obtain groups with ancient individuals corresponding to the three ancestral populations of Europeans, we used the ADMIXTURE inferred ancestry proportions. Individuals were included in the hunter-gatherer and Early Farmer groups based on having \(\geq 80\% \) global ancestry. For Yamnaya or Steppe, we required \(\geq 60\% \) ancestry and an estimated date \(< 6500 \) years BP. Based on these cutoffs (more stringent than the ones used for the stratified time series analysis), there were 75 hunter-gatherer, 241 Early Farmer, and 81 Steppe ancestry assigned individuals.

Using the allele frequencies from these ancient groups and present-day 1000 Genomes populations, we estimated pairwise Hudson’s \(F_{ST} \) between groups for the PBS test. The estimator is calculated as
\[\bar{F}_{st} = \frac{(p_1-p_2)^2 - p_1(1-p_1) - p_2(1-p_2)}{p_1(1-p_2) + p_2(1-p_1)} \]
where for population \(i \), \(n_i \) is the sample size and \(p_i \) is the allele frequency of the sample. SNPs were excluded if a sample group did not contain at least 10 individuals. Because of variable
coverage in ancient genomes, not all sites were used in the calculation. F_{ST} was calculated using 20 and 40-SNP non-overlapping windows throughout the genome. F_{ST} values were transformed to calculate genetic divergence between populations as $T = -\log(1 - F_{ST})$. We calculated PBS for ancient group X (i.e. hunter-gatherers, Early Farmers, or Steppe) using 1000 Genomes Han Chinese (CHB) and Yoruba (YRI) as

$$PBS_{X} = \frac{\tau_{XYRI} + \tau_{XCHB} - \tau_{YRI,CHB}}{2}.$$

We identified nearby genes by examining the NCBI RefSeq track for assembly GRCh37/hg19 (downloaded from https://genome.ucsc.edu/cgi-bin/hgTables) for genes that overlap with windows with high PBS values for hunter-gatherers or Early Farmers.

Code availability

Scripts used to generate the main results and figures of this paper are available at https://github.com/mathilab/SkinPigmentationCode.

Acknowledgments

We thank Sarah Tishkoff, Alexander Platt, Bábara Bitarello, Samantha Cox, Arslan Zaidi, and Andrew Chen for helpful comments on earlier versions of this manuscript. This research was supported by a Research Fellowship from the Alfred P. Sloan foundation [FG-2018-10647], a New Investigator Research Grant from the Charles E. Kaufman Foundation [KA2018-98559], NIGMS award number [R35GM133708], and NRSA T32 [T32GM008216]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
References

1. N. G. Jablonski, G. Chaplin, The evolution of human skin coloration. *J. Hum. Evol.* **39**, 57–106 (2000).

2. N. G. Jablonski, G. Chaplin, Human skin pigmentation as an adaptation to UV radiation. *Proc. Natl. Acad. Sci.* **107**, 8962–8968 (2010).

3. A. A. Zaidi, *et al.*, Investigating the case of human nose shape and climate adaptation. *PLoS Genet.* **13**, 1–31 (2017).

4. F. Sassi, C. Tamone, P. D’amelio, Vitamin D: Nutrient, hormone, and immunomodulator. *Nutrients* **10**, 1656 (2018).

5. B. F. Voight, S. Kudaravalli, X. Wen, J. K. Pritchard, A map of recent positive selection in the human genome. *PLoS Biol.* **4**, e72 (2006).

6. P. C. Sabeti, *et al.*, Genome-wide detection and characterization of positive selection in human populations. *Nature* **449**, 913–918 (2007).

7. I. Mathieson, *et al.*, Genome-wide patterns of selection in 230 ancient Eurasians. *Nature* **528**, 499–503 (2015).

8. J. K. Pickrell, *et al.*, Signals of recent positive selection in a worldwide sample of human populations. *Genome Res.* **19**, 826–837 (2009).

9. O. Lao, J. M. De Gruijter, K. Van Duijn, A. Navarro, M. Kayser, Signatures of positive selection in genes associated with human skin pigmentation as revealed from analyses of single nucleotide polymorphisms. *Ann. Hum. Genet.* **71**, 354–369 (2007).

10. J. J. Berg, G. Coop, A Population Genetic Signal of Polygenic Adaptation. *PLoS Genet.* **10**, e1004412 (2014).

11. J. K. Pritchard, J. K. Pickrell, G. Coop, The Genetics of Human Adaptation: Hard Sweeps, Soft Sweeps, and Polygenic Adaptation. *Curr. Biol.* **20**, R208–R215 (2010).

12. N. G. Crawford, *et al.*, Loci associated with skin pigmentation identified in African populations. *Science* **358**, eaan8433 (2017).

13. A. R. Martin, *et al.*, An Unexpectedly Complex Architecture for Skin Pigmentation in Africans. *Cell* **171**, 1340-1353.e14 (2017).

14. Data from Neale Lab UK Biobank GWAS. Dropbox. Available at https://www.dropbox.com/s/vylf2wdxmpufw3e/1717.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0 -O 1717.gwas.imputed_v3.both_sexes.tsv.bgz. Deposited 1 August 2018.
15. K. Adhikari, et al., A GWAS in Latin Americans highlights the convergent evolution of lighter skin pigmentation in Eurasia. Nat. Commun. 10, 358 (2019).

16. I. Lazaridis, et al., Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).

17. I. Lazaridis, The evolutionary history of human populations in Europe. Curr. Opin. Genet. Dev. 53, 21–27 (2018).

18. M. E. Allentoft, et al., Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015).

19. C. E. G. Amorim, et al., Understanding 6th-century barbarian social organization and migration through paleogenomics. Nat. Commun. 9, 3547 (2018).

20. L. M. Cassidy, et al., Neolithic and Bronze Age migration to Ireland and establishment of the insular atlantic genome. Proc. Natl. Acad. Sci. U. S. A. 113, 368–373 (2016).

21. P. De Barros Damgaard, et al., 137 ancient human genomes from across the Eurasian steppes. Nature 557, 369–374 (2018).

22. P. de Barros Damgaard, et al., The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science 360 (2018).

23. D. M. Fernandes, et al., A genomic Neolithic time transect of hunter-farmer admixture in central Poland. Sci. Rep. 8 (2018).

24. Q. Fu, et al., The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).

25. Q. Fu, et al., An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).

26. C. Gamba, et al., Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 5, 5257 (2014).

27. G. González-Fortes, et al., Paleogenomic Evidence for Multi-generational Mixing between Neolithic Farmers and Mesolithic Hunter-Gatherers in the Lower Danube Basin. Curr. Biol. 27, 1801-1810.e10 (2017).

28. T. Günther, et al., Ancient genomes link early farmers from Atapuerca in Spain to modern-day Basques. Proc. Natl. Acad. Sci. U. S. A. 112, 11917–11922 (2015).

29. Z. Hofmanová, et al., Early farmers from across Europe directly descended from Neolithic Aegeans. Proc. Natl. Acad. Sci. 113, 6886–6891 (2016).
30. E. R. Jones, et al., Upper Palaeolithic genomes reveal deep roots of modern Eurasians. *Nat. Commun.* **6**, 8912 (2015).
31. R. Pinhasi, et al., The Neolithic Transition in the Baltic Was Not Driven by Admixture with Early European Farmers. *Curr. Biol.* **27**, 576–582 (2017).
32. G. M. Kılınç, et al., The Demographic Development of the First Farmers in Anatolia. *Curr. Biol.* **26**, 2659–2666 (2016).
33. A. Keller, et al., New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. *Nat. Commun.* **3**, 698 (2012).
34. M. Krzewińska, et al., Ancient genomes suggest the eastern Pontic-Caspian steppe as the source of western Iron Age nomads. *Sci. Adv.* **4**, eaat4457 (2018).
35. M. Krzewińska, et al., Genomic and Strontium Isotope Variation Reveal Immigration Patterns in a Viking Age Town. *Curr. Biol.* **28**, 2730-2738.e10 (2018).
36. I. Lazaridis, et al., Genetic origins of the Minoans and Mycenaeans. *Nature* **548**, 214–218 (2017).
37. I. Lazaridis, et al., Genomic insights into the origin of farming in the ancient Near East. *Nature* **536**, 419–424 (2016).
38. M. Lipson, et al., Parallel palaeogenomic transects reveal complex genetic history of early European farmers. *Nature* **551**, 368–372 (2017).
39. R. Martiniano, et al., Genomic signals of migration and continuity in Britain before the Anglo-Saxons. *Nat. Commun.* **7**, 10326 (2016).
40. R. Martiniano, et al., The population genomics of archaeological transition in west Iberia: Investigation of ancient substructure using imputation and haplotype-based methods. *PLoS Genet.* **13**, e1006852 (2017).
41. I. Mathieson, et al., The genomic history of southeastern Europe. *Nature* **555**, 197–203 (2018).
42. I. Olalde, et al., Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. *Nature* **507**, 225–228 (2014).
43. I. Olalde, et al., The genomic history of the Iberian Peninsula over the past 8000 years. *Science* **363**, 1230–1234 (2019).
44. I. Olalde, et al., The Beaker phenomenon and the genomic transformation of northwest Europe. *Nature* **555**, 190–196 (2018).
559 45. I. Olalde, et al., A common genetic origin for early farmers from mediterranean cardial and central european LBK cultures. Mol. Biol. Evol. 32, 3132–3142 (2015).
560 46. A. Omrak, et al., Genomic Evidence Establishes Anatolia as the Source of the European Neolithic Gene Pool. Curr. Biol. 26, 270–275 (2016).
561 47. L. Saag, et al., Extensive Farming in Estonia Started through a Sex-Biased Migration from the Steppe. Curr. Biol. 27, 2185-2193.e6 (2017).
562 48. S. Schiffels, et al., Iron Age and Anglo-Saxon genomes from East England reveal British migration history. Nat. Commun. 7, 10408 (2016).
563 49. M. Sikora, et al., Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science 358, 659–662 (2017).
564 50. P. Skoglund, et al., Genomic diversity and admixture differs for stone-age Scandinavian foragers and farmers. Science 344, 747–750 (2014).
565 51. V. Villalba-Mouco, et al., Survival of Late Pleistocene Hunter-Gatherer Ancestry in the Iberian Peninsula. Curr. Biol. 29, 1169-1177.e7 (2019).
566 52. M. Unterländer, et al., Ancestry and demography and descendants of Iron Age nomads of the Eurasian Steppe. Nat. Commun. 8, 14615 (2017).
567 53. Q. Fu, et al., Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514, 445–449 (2014).
568 54. T. Günther, et al., Population genomics of Mesolithic Scandinavia: Investigating early postglacial migration routes and high-latitude adaptation. PLoS Biol. 16, e2003703 (2018).
569 55. S. Brace, et al., Ancient genomes indicate population replacement in Early Neolithic Britain. Nat. Ecol. Evol. 3, 765–771 (2019).
570 56. A. Seguin-Orlando, et al., Genomic structure in Europeans dating back at least 36,200 years. Science 346, 1113–1118 (2014).
571 57. K. R. Veeramah, et al., Population genomic analysis of elongated skulls reveals extensive female-biased immigration in Early Medieval Bavaria. Proc. Natl. Acad. Sci. U. S. A. 115, 3494–3499 (2018).
572 58. M. A. Yang, et al., 40,000-Year-Old Individual from Asia Provides Insight into Early Population Structure in Eurasia. Curr. Biol. 27, 3202-3208.e9 (2017).
573 59. M. Rasmussen, et al., The genome of a Late Pleistocene human from a Clovis burial site in western Montana. Nature 506, 225–229 (2014).
M. Gallego Llorente, et al., Ancient Ethiopian genome reveals extensive Eurasian admixture throughout the African continent. *Science* **350**, 820–822 (2015).

N. Patterson, A. L. Price, D. Reich, Population structure and eigenanalysis. *PLoS Genet.* **2**, 2074–2093 (2006).

O. Canela-Xandri, K. Rawlik, A. Tenesa, An atlas of genetic associations in UK Biobank. *Nat. Genet.* **50**, 1593–1599 (2018).

X. Yi, et al., Sequencing of Fifty Human Exomes Reveals Adaptation to High Altitude. *Science* **329**, 75–78 (2010).

R. A. Gibbs, et al., A global reference for human genetic variation. *Nature* **526**, 68–74 (2015).

S. L. Cox, C. B. Ruff, R. M. Maier, I. Mathieson, Genetic contributions to variation in human stature in prehistoric Europe. *Proc. Natl. Acad. Sci. U. S. A.* **116**, 21484–21492 (2019).

S. Mathieson, I. Mathieson, FADS1 and the timing of human adaptation to agriculture. *Mol. Biol. Evol.* **35**, 2957–2970 (2018).

H. L. Norton, et al., Genetic evidence for the convergent evolution of light skin in Europeans and East Asians. *Mol. Biol. Evol.* **24**, 710–722 (2007).

M. Lin, et al., Rapid evolution of a skin-lightening allele in southern African KhoeSan. *Proc. Natl. Acad. Sci. U. S. A.* **115**, 13324–13329 (2018).

S. A. Savage, et al., Nucleotide diversity and population differentiation of the Melanocortin 1 Receptor gene, MC1R. *BMC Genet.* **9**, 31 (2008).

C. Martínez-Cadenas, et al., Simultaneous purifying selection on the Ancestral MC1R allele and positive selection on the melanoma-risk Allele V60L in South Europeans. *Mol. Biol. Evol.* **30**, 2654–2665 (2013).

A. Urnikyte, et al., Patterns of genetic structure and adaptive positive selection in the Lithuanian population from high-density SNP data. *Sci. Rep.* **9**, 1–11 (2019).

S. R. Grossman, et al., A composite of multiple signals distinguishes causal variants in regions of positive selection. *Science* **327**, 883–886 (2010).

A. J. Stern, P. R. Wilton, R. Nielsen, An approximate full-likelihood method for inferring selection and allele frequency trajectories from DNA sequence data. *PLoS Genet.* **15**, 1–32 (2019).
74. J. M. de Gruijter, et al., Contrasting signals of positive selection in genes involved in human skin-color variation from tests based on SNP scans and resequencing. *Investig. Genet.* 2 (2011).

75. S. Beleza, et al., The timing of pigmentation lightening in Europeans. *Mol. Biol. Evol.* 30, 24–35 (2013).

76. C. T. Miller, et al., cis-Regulatory Changes in Kit Ligand Expression and Parallel Evolution of Pigmentation in Sticklebacks and Humans. *Cell* 131, 1179–1189 (2007).

77. Y. Field, et al., Detection of human adaptation during the past 2000 years. *Science* 354, 760–764 (2016).

78. C. A. Guenther, B. Tasic, L. Luo, M. A. Bedell, D. M. Kingsley, A molecular basis for classic blond hair color in Europeans. *Nat. Genet.* 46, 748–752 (2014).

79. M. Edwards, et al., Association of the OCA2 polymorphism His615Arg with melanin content in East Asian populations: Further evidence of convergent evolution of skin pigmentation. *PLoS Genet.* 6, e1000867 (2010).

80. K. Eaton, et al., Association study confirms the role of two OCA2 polymorphisms in normal skin pigmentation variation in East Asian populations. *Am. J. Hum. Biol.* 27, 520–525 (2015).

81. K. Adhikari, et al., A GWAS in Latin Americans highlights the convergent evolution of lighter skin pigmentation in Eurasia. *Nat. Commun.* 10 (2019).

82. Z. Yang, et al., A Genetic Mechanism for Convergent Skin Lightening during Recent Human Evolution. *Mol. Biol. Evol.* 33, 1177–1187 (2016).

83. F. Tekola-Ayele, et al., Novel genomic signals of recent selection in an Ethiopian population. *Eur. J. Hum. Genet.* 23, 1085–1092 (2015).

84. Y. Okada, et al., Deep whole-genome sequencing reveals recent selection signatures linked to evolution and disease risk of Japanese. *Nat. Commun.*, 1–10 (2018).

85. Y. Yasumizu, et al., Genome-Wide Natural Selection Signatures Are Linked to Genetic Risk of Modern Phenotypes in the Japanese Population. *Mol. Biol. Evol.*, msaa005 (2020).

86. M. Sohail, et al., Polygenic adaptation on height is overestimated due to uncorrected stratification in genome-wide association studies. *Elife* 8, 1–17 (2019).

87. J. J. Berg, et al., Reduced signal for polygenic adaptation of height in UK biobank. *Elife* 8, e39725 (2019).
88. W. Haak, et al., Massive migration from the steppe was a source for Indo-European languages in Europe. *Nature* **522**, 207–211 (2015).

89. C. C. Chang, et al., Second-generation PLINK: Rising to the challenge of larger and richer datasets. *Gigascience* **4**, s13742–015–0047–8 (2015).

90. S. I. Candille, et al., Genome-Wide Association Studies of Quantitatively Measured Skin, Hair, and Eye Pigmentation in Four European Populations. *PLoS One* **7**, e48294 (2012).

91. N. Hernandez-Pacheco, et al., Identification of a novel locus associated with skin colour in African-admixed populations. *Sci. Rep.* **7**, 1–9 (2017).

92. R. P. Stokowski, et al., A Genomewide Association Study of Skin Pigmentation in a South Asian Population. *Am. J. Hum. Genet.* **81**, 1119–1132 (2007).

93. F. Liu, et al., Genetics of skin color variation in Europeans: genome-wide association studies with functional follow-up. *Hum. Genet.* **134**, 823–835 (2015).

94. H. Nan, P. Kraft, D. J. Hunter, J. Han, Genetic variants in pigmentation genes, pigmentary phenotypes, and risk of skin cancer in Caucasians. *Int. J. Cancer* **125**, 909–917 (2009).

95. S. Beleza, et al., Genetic Architecture of Skin and Eye Color in an African-European Admixed Population. *PLoS Genet.* **9**, e1003372 (2013).

96. J. Han, et al., A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation. *PLoS Genet.* **4**, e1000074 (2008).

97. D. H. Alexander, J. Novembre, K. Lange, Fast model-based estimation of ancestry in unrelated individuals. *Genome Res.* **19**, 1655–1664 (2009).

98. H. Shim, et al., A multivariate genome-wide association analysis of 10 LDL subfractions, and their response to statin treatment, in 1868 Caucasians. *PLoS One* **10**, e0120758 (2015).
Figure 1. Genetic scores for skin pigmentation over time. Solid lines indicate fitted mean scores with gray 95% confidence intervals. Weighted scores based on UK Biobank SNPs and unweighted scores based on manually curated SNPs for samples in the (A,D) shotgun dataset, (B,E) capture-shotgun dataset, and (C,F) capture-shotgun dataset dated within the past 15,000 years. Scores of labelled samples are plotted but not included in regressions. Averages for 1000 Genomes super-populations are plotted at time 0. Area of points scale with number of SNPs genotyped in the individual.
Figure 2. Plot of P-values for ancestry and time for individual skin pigmentation SNPs. Dashed lines indicate fifth percentile of P-values. UK Biobank SNPs using the shotgun dataset are plotted in (A) and capture-shotgun dataset in (B,C). Manually curated SNPs using the shotgun dataset are plotted in (D) and capture-shotgun dataset in (E,F). SNPs are colored according to whether the light allele is increasing over time (red) or decreasing (blue), with saturation determined by the magnitude of change.
Figure 3. Joint PBS distributions for 40-SNP windows across the genome for GBR-CHB-YRI on the x-axis and X-CHB-YRI on the y-axis, with X being (A) hunter-gatherer, (B) Early Farmer, and (C) Steppe. Boxes represent windows centered around UK Biobank skin pigmentation SNPs and are colored redder according to how much higher the light allele frequency is in X compared to YRI. Plusses (+) mark windows around SNPs at the extremes of the time P-value distribution from Fig. 2, whereas crosses (X) mark windows around SNPs at the extremes of the ancestry distribution. Nearest genes are labelled. Orange and red lines represent top 1 and 0.1 percentiles.
Figure 4. (A) Regressions of genetic score based on UK Biobank SNPs using the capture-shotgun dataset over date, with scores using all SNPs and iteratively removing top GWAS effect size SNPs. (B) Q_t empirical $-\log_{10}(P$-values$)$ using UK Biobank skin pigmentation associated variants with all 1000 Genomes populations. Different numbers of SNPs were used to calculate Q_t which were ordered by GWAS-estimated effect size. (C) Variance explained by UK Biobank SNPs with nearest gene labelled between UK and YRI populations (y-axis) and within the UK population (x-axis).