A GENERALIZATION OF KING’S EQUATION VIA NONCOMMUTATIVE GEOMETRY

GOURAB BHATTACHARYA AND MAXIM KONTSEVICH

Abstract. We introduce a framework in noncommutative geometry consisting of a *-algebra, a bimodule endowed with a derivation ("1-forms") and a Hermitian structure (a “noncommutative Kähler form”), and a cyclic 1-cochain whose coboundary is determined by the previous structures. This data leads to moment map equations on the space of connections on arbitrary finitely-generated projective Hermitian module. As particular cases, we obtain a large class of equations in algebra (King’s equations for representations of quivers, including ADHM equations), in classical gauge theory (Hermitian Yang-Mills equations, Hitchin equations, Bogomolny and Nahm equations, etc.), as well as in noncommutative gauge theory by Connes, Douglas and Schwarz. We also discuss Nekrasov’s beautiful proposal for re-interpreting noncommutative instantons on $\mathbb{C}^n \simeq \mathbb{R}^{2n}$ as an infinite-dimensional solution of King’s equation

$$\sum_{i=1}^{n} [T_i^\dagger, T_i] = \hbar \cdot n \cdot \text{id}_{\mathcal{H}}$$

where \mathcal{H} is a Hilbert space completion of a finitely-generated $\mathbb{C}[T_1, \ldots, T_n]$-module (e.g. an ideal of finite codimension).

1. Introduction

There is a remarkable similarity between self-dual Yang-Mills equations and equations introduced by King in [12] for representations of quivers. The underlying reason is that both equations are obtained from appropriate moment maps. We introduce in this paper a common generalization based on noncommutative geometry. In this setup the moment map equation is governed by a cyclic 1-cochain. Examples of a generalized King’s equation include ADHM equations, noncommutative instantons, vortex equations (in particular Hitchin and Vafa-Witten equations), as well as Bogomolny and Nahm equations for the gauge group $U(k)$. Furthermore, we discuss Nekrasov’s suggestion to reinterpret noncommutative instantons as infinite-dimensional versions of King’s equation, also related to Quantum minimal surfaces considered recently in [3].

2. Some motivations and backgrounds

2.1. Mumford stability and harmonic representatives: examples. One of major recurrent themes in Kähler geometry is an equivalence between the algebro-geometric property of a polystability, and the existence of a kind of harmonic metric. Let us start with several motivating examples.

2.1.1. Kempf-Ness Theorem. Let G be an algebraic reductive group over \mathbb{C} acting linearly on a finite dimensional vector space V over \mathbb{C}.

Definition 2.1. A non-zero orbit $G \cdot v \subset V - \{0\}$ is called semistable iff its closure does not contain 0.

It is easy to see that the union of all semistable orbits forms an open G-invariant subset of V (possibly empty).

Definition 2.2. A semistable orbit is called polystable iff it is closed (equivalently, closed in the semistable locus).

Let us choose a maximal compact subgroup $K \subset G$ and a Hermitian norm $\|\cdot\|$ on V invariant under the K-action. By definition, on a semistable orbit $G \cdot v$ the function $\log(\text{norm})$ is bounded below.
Theorem 2.3. (Kempf-Ness [11]) A semistable orbit $G \cdot v$ is polystable iff the restriction of the function $\log(\text{norm})$ to this orbit achieves a minimum. Moreover, in this case the locus of minima is a unique orbit of K.

The set of polystable orbits coincides with the set of \mathbb{C}-points of the reduced scheme $\mathcal{M} := \text{Spec}(A) - \{0\}$, where $A = \mathbb{C}[V]^G$ is the algebra of invariants.

The function,
\[
H : G \cdot v \mapsto \min_{g \in G} \log(\|g \cdot v\|) \in \mathbb{R}
\]
is a plurisubharmonic continuous function on \mathcal{M}. Moreover, on the smooth locus of \mathcal{M}, the function H is the potential of a Kähler metric $\omega_M = i \partial \bar{\partial} H$.

Example 2.4. Fix integers $r, n \geq 1$. If $G = GL(r, \mathbb{C})$ (with the maximal compact subgroup $K = U(r)$) and the representation V is the direct sum of n copies of the adjoint representation of G, then the local minima of the function $\log(\text{norm})$ on non-zero orbits are non-zero collections (T_1, \ldots, T_n) of n operators in \mathbb{C}^r satisfying
\[
\sum_{i=1}^n [T_i^\dagger, T_i] = 0
\]
where T_i^\dagger is the Hermitian conjugate to T_i. The polystable orbits, together with the zero orbit, are exactly the conjugacy classes of r-dimensional semisimple representations of the free algebra $\mathbb{C}(T_1, \ldots, T_n)$.

2.1.2. King’s Theorem. A quiver is a finite oriented graph. Here is the formal definition:

Definition 2.5. A quiver $Q = (Q_0, Q_1, s, t)$ is a tuple consisting of finite sets Q_0, Q_1 (whose elements are called vertices and arrows of Q respectively), and two maps $s : Q_0 \to Q_1$, $t : Q_1 \to Q_0$, (called the source and the target maps).

Definition 2.6. A representation \mathcal{E} of a quiver Q over a field k is given by a collection of k-vector spaces \mathcal{E}_v for each vertex $v \in Q_0$, and a collection of morphisms $T_a : \mathcal{E}_{s(a)} \to \mathcal{E}_{t(a)}$ for each arrow $a \in Q_1$.

The representations of a given quiver form an abelian category.

Definition 2.7. Let us fix a collection of numbers $\eta = (\eta_v \in \mathbb{R})_{v \in Q_0}$ associated with the vertices of Q. Let \mathcal{E} be a non-zero finite dimensional representation of a quiver Q such that,
\[
\sum_{v \in Q_0} \eta_v \cdot \dim \mathcal{E}_v = 0 \in \mathbb{R}.
\]

Then, \mathcal{E} is called semistable with slope η (or, equivalently η-semistable) iff for any subrepresentation $\mathcal{E}' \subset \mathcal{E}$ such that $\mathcal{E}' \neq 0, \mathcal{E}$, one has $\sum_{v \in Q_0} \eta_v \cdot \dim \mathcal{E}'_v \leq 0$. A η-semistable representation is called η-stable iff in the previous condition one has strict inequality $\sum_{v \in Q_0} \eta_v \cdot \dim \mathcal{E}'_v < 0$. A η-semistable representation is called polystable iff it is a direct sum of η-stable ones.

For any given η, the semistable representations with slope η, together with the zero representation, form an artinian abelian category. The simple objects in this category are exactly the η-stable representations, whereas the non-zero semisimple objects are exactly the η-polystable representations.

Theorem 2.8. (A. D. King [12]) In the case $k = \mathbb{C}$, a representation is η-polystable iff there exists a collection of Hermitian norms $(\|\cdot\|_v)_{v \in Q_0}$ on vector spaces $(\mathcal{E}_v)_{v \in Q_0}$ such that on the orthogonal direct sum $E := \bigoplus_v \mathcal{E}_v$ one has the following equality:
\[
\sum_{a \in Q_1} [T_a^\dagger, T_a] = \sum_{v \in Q_0} \eta_v \cdot \text{Pr}_{\mathcal{E}_v}
\]
taking place in the algebra of operators in E, where $\text{Pr}_{\mathcal{E}_v}$ is the orthogonal projection to the direct summand \mathcal{E}_v.

\[
(\|\cdot\|_v)_{v \in Q_0}
\]

\[
\sum_{v \in Q_0} \eta_v \cdot \dim \mathcal{E}_v = 0 \in \mathbb{R}.
\]

\[
(\|\cdot\|_v)_{v \in Q_0}
\]
Notice that (2.4) is equivalent to a collection of individual constraints for each vertex \(v \in Q_0 \):

\[
\forall v \in Q_0 : \quad \sum_{a \in Q_1} Pr_{\mathcal{E}_v} \cdot [T^1_a, T_a] \cdot Pr_{\mathcal{E}_v} = \eta_0 \cdot Pr_{\mathcal{E}_v} \in Pr_{\mathcal{E}_v} : \text{End}(E) \cdot Pr_{\mathcal{E}_v} \simeq \text{End}(\mathcal{E}_v).
\]

Similarly to the Kempf-Ness theorem, the set of isomorphism classes of \(\eta \)-polystable representation of \(Q \) with a given dimension vector, \[\dim(\mathcal{E}) := (\dim(\mathcal{E}_v)_{v \in Q_0}) \in \mathbb{Z}_{\geq 0}^n, \] is the set of \(\mathbb{C} \)-points of a reduced separated scheme over \(\mathbb{C} \). Moreover, its open dense subset of smooth points is endowed with a natural Kähler metric.

2.1.3. Donaldson-Uhlenbeck-Yau (DUY) Theorem. Let \(X/\mathbb{C} \) be a smooth connected Kähler manifold of complex dimension \(n > 0 \), and \(\nu \in H^2(X; \mathbb{R}) \cap H^{1,1}(X) \) be a Kähler class. We assume that

\[
(2.7) \quad \langle [X], \nu^n \rangle = 1.
\]

Definition 2.9. For \(\lambda \in \mathbb{R} \), a holomorphic vector bundle \(\mathcal{E} \) on \(X \) is called \(\lambda \)-stable if

\[
(2.8) \quad \langle [X], c_1(\mathcal{E}) \cdot \nu^{n-1} \rangle = \lambda \cdot \text{rank}(\mathcal{E})
\]

and for any torsion-free coherent subsheaf \(0 \neq \mathcal{E}' \subset \mathcal{E} \) such that \(\text{rank}(\mathcal{E}') < \text{rank}(\mathcal{E}) \) one has

\[
(2.9) \quad \langle [X], c_1(\mathcal{E}) \cdot \nu^{n-1} \rangle < \lambda \cdot \text{rank}(\mathcal{E}')
\]

Equivalently, in (2.9) one can replace torsion-free subsheaves by subbundles of \(\mathcal{E} \) restricted to the complements \(X - Z \) to closed analytic subsets \(Z \subset X \) of complex codimension at least 2. A \(\lambda \)-polystable bundle is defined as a finite sum of \(\lambda \)-stable ones.

Theorem 2.10. ([8], [16]) For a choice of a Kähler \((1,1)\)-form \(\omega^{1,1} \) on \(X \) with \([\omega^{1,1}] = \nu \), we have the following: a vector bundle \(\mathcal{E} \) is \(\lambda \)-polystable if and only if it admits a Hermitian metric \(h_\mathcal{E} \) such that the curvature form \(F = F_{h_\mathcal{E}} \) of the canonical connection associated with \(h_\mathcal{E} \) satisfies the Hermitian Yang-Mills equation (HYM in short):

\[
(2.10) \quad \frac{1}{2\pi} F \cdot (\omega^{1,1})^{n-1} = \lambda \cdot \text{id}_{\mathcal{E}} \cdot (\omega^{1,1})^n \in \Gamma(\mathcal{E}^* \otimes \mathcal{E} \otimes \Omega_X^{n,n}).
\]

The DUY theorem is a famous example of Kobayashi-Hitchin type correspondences in differential geometry.

Later this result was generalized in [6] by S. Bando and Y.-T. Siu to so-called reflexive sheaves

\[
(2.11) \quad \mathcal{E} \in \text{Coh}(X), \quad \mathcal{E} = \mathcal{E}^{**} \quad \text{where} \ \mathcal{E}^* := \mathcal{H}om(\mathcal{E}, \mathcal{O}_X),
\]

which can be alternatively viewed as vector bundles defined outside of closed analytic subsets of complex codimension at least 2.

2.2. Geometry of moment maps. Let \((M, \omega_M) \) be a symplectic manifold. Let a connected compact Lie group \(K \) with Lie algebra \(\mathfrak{k} \) acts smoothly on \(M \) and preserves the symplectic form \(\omega_M \). Then we get a homomorphism of Lie algebras

\[
(2.12) \quad u \in \mathfrak{k} \mapsto X_u \in \Gamma(M, T_M), \quad X_{[u_1, u_2]} = [X_{u_1}, X_{u_2}], \quad \mathcal{L}_{X_u} \omega_M = 0.
\]

The condition \(\mathcal{L}_{X_u} \omega_M = 0 \) implies that the 1-form \(i_{X_u} \omega_M \) is closed, as follows from the Cartan formula \(\mathcal{L}_{X_u} = d \circ i_{X_u} + i_{X_u} \circ d \) and the closedness of \(\omega_M \).

The symplectic action as above is called Hamiltonian if a homomorphism is chosen

\[
(2.13) \quad \mathfrak{R} \to (C^\infty(M), \{\cdot, \cdot\}), \quad u \in \mathfrak{R} \mapsto H_u
\]

\[1\]This is a simplifying assumption which holds in the context of our paper.
to the Lie algebra of functions on M endowed with the standard Poisson bracket $\{\cdot, \cdot\}$, lifting the homomorphism $u \mapsto X_u$ from \mathfrak{k} to the Lie algebra of symplectic vector fields on M. Explicitly, it means that

\begin{equation}
(2.14) \quad dH_u = i_{X_u} \omega_M \quad \forall u \in \mathfrak{k},
\end{equation}

\begin{equation}
(2.15) \quad H_{[u_1, u_2]} = \{H_{u_1}, H_{u_2}\} := \omega_M(i_{X_{u_1}}, i_{X_{u_2}}) \quad \forall u_1, u_2 \in \mathfrak{k}.
\end{equation}

The collection of Hamiltonians $(H_u)_{u \in \mathfrak{k}}$ gives a moment map

\begin{equation}
(2.16) \quad \mu : M \to \mathfrak{k}^*, \quad x \mapsto (u \mapsto H_u(x) \in \mathbb{R}).
\end{equation}

This is a K-equivariant map. We define the symplectic quotient of (M, ω_M) for a given Hamiltonian action to be the quotient of the space $\mu^{-1}(0) \subset M$ by the action of K. This quotient is a locally compact singular space in general, but it is symplectic on its open dense subset of smooth points. Moreover, if M is endowed with a complex structure such that ω_M is the imaginary part of a Kähler (1,1)-form and K acts by Kähler isometries, then the quotient space $\mu^{-1}(0)/K$ is a reduced complex-analytic space with a Kähler metric on its smooth locus.

The constraint $\mu(x) = 0$ on a point $x \in M$ is called the moment map equation.

Remark 2.11. For a given symplectic K-action, the obstruction to the existence of a Hamiltonian lift is a class in $H^2(\mathfrak{k}, \mathbb{R})$. If the obstruction vanishes, then the set of all various lifts to a Hamiltonian action is a torsor over the group of abelian characters $Hom_{\text{Lie}}(\mathfrak{k}, \mathbb{R}) = H^1(\mathfrak{k}, \mathbb{R})$.

Example 2.12. (King’s equations as moment map equations)

Let Q be a finite quiver. Fix a finite-dimensional Hermitian vector space E_v for each vertex $v \in Q_0$. Then the compact Lie group

\begin{equation}
(2.17) \quad K := \prod_{v \in Q_0} U(E_v)
\end{equation}

acts on the finite-dimensional complex vector space

\begin{equation}
(2.18) \quad M := \prod_{a \in Q_1} \text{Hom}(E_{s(a)}, E_{t(a)})
\end{equation}

parameterizing representations of Q in $(E_v)_{v \in Q_0}$. We endow M with the constant (i.e., translationally invariant) Kähler metric associated with the Hermitian norm on M given by

\begin{equation}
(2.19) \quad \| (T_a)_{a \in Q_1} \|^2 := \sum_{a \in Q_1} \text{Trace}(T_a^* T_a).
\end{equation}

The moment map in this example is given (in terms of Hamiltonians) by the formula, where $u = (u_v)_{v \in Q_0} \in \mathfrak{k}$,

\begin{equation}
(2.20) \quad H_u((T_a)_{a \in Q_1}) := \sqrt{-1} \cdot \text{Trace} \left(\sum_{v \in Q_0} u_v \cdot \left(\sum_{a \in Q_1} [T_a^*, T_a] - \sum_{v \in Q_0} \eta_v \cdot P r e_v \right) \right).
\end{equation}

We see that the vanishing of the moment map is equivalent to King’s equation (2.4).

Example 2.13. (Hermitian Yang-Mills equations as moment map equations)

Let $\mathcal{E} \to X$ be a complex vector bundle over a Kähler manifold $(X, \omega_X^{1,1})$, endowed with a Hermitian metric. We define the “compact” group K to be the group of unitary automorphisms of \mathcal{E}. The infinite-dimensional manifold M on which K acts will be the affine space of unitary automorphisms \mathcal{E} (not necessarily integrable). The space of ∂-connections has the tangent space (at each point) equal to $\Gamma(X, \text{End} \mathcal{E} \otimes \Omega_X^{1,1})$, and it is endowed with the Hermitian structure given by

\begin{equation}
(2.21) \quad (\alpha, \beta) := \sqrt{-1} \int_X \text{Trace}(\alpha \wedge \beta) \wedge (\omega_X^{1,1})^{\dim_X X - 1}.
\end{equation}
We define a constant (i.e. translationally invariant) Kähler metric $\omega^{1,1}_M$ on the affine space of connections by the form (2.21) on each tangent space. The action of group K is by Kähler isometries, hence symplectic. Moreover, this action has a canonical Hamiltonian lift, with the moment map given by

$$(2.22) \quad H_u(\nabla^{0,1}) := \int_X \text{Trace}(u \cdot \frac{1}{2\pi\sqrt{-1}} F_{\nabla^{0,1}} \cdot (\omega^{1,1}_X)_{\text{dimc} X-1} - \lambda u \cdot (\omega^{1,1}_X)_{\text{dimc} X}).$$

Again, we see that the vanishing of the moment map is equivalent to the HYM equation.

2.3. Further examples of harmonic representatives.

2.3.1. ADHM construction.

In physics (gauge theory) one is interested in solutions of HYM equations (2.10) in the case of a non-compact space $X = \mathbb{R}^4 = \mathbb{C}^2$ endowed with the standard flat metric. The solution with finite energy $\int \| F \|^2 < \infty$ are called instantons. A classical result [4] identifies instantons for the gauge group $U(k)$ and total charge $N \in \mathbb{Z}_{\geq 0}$ (the second Chern class c_2), with a conjugacy classes (under the natural action of $U(k) \times U(N)$) of solutions of the system of ADHM equations

$$(2.23) \quad [\alpha, \beta] + ba = 0, \quad [\alpha^\dagger, \alpha] + [\beta^\dagger, \beta] + b^\dagger b - a a^\dagger = 0$$

where

$$(2.24) \quad \alpha, \beta \in \text{End}(\mathbb{C}^N), \quad a \in \text{Hom}(\mathbb{C}^k, \mathbb{C}^N), \quad b \in \text{Hom}(\mathbb{C}^N, \mathbb{C}^k)$$

satisfying the following non-degneracy condition:

$$(2.25) \quad \text{the stabilizer of } (a, b, \alpha, \beta) \text{ in } \text{GL}(k) \text{ is trivial.}$$

Framed instantons are defined as solutions of ADHM equations satisfying the nondegeneracy condition (2.25), modulo the (free) action of the group $U(N)$ only. In terms of algebraic geometry, framed instantons on \mathbb{R}^4 correspond to polystable holomorphic vector bundles \mathcal{E} on $\mathbb{C}P^2 \supset \mathbb{C}^2 \simeq \mathbb{R}^4$ with the Chern classes

$$(2.26) \quad \text{rank } \mathcal{E} = k, \quad c_1(\mathcal{E}) = 0, \quad \langle [\mathbb{C}P^2], c_2(\mathcal{E}) \rangle = N$$

and with the trivialization of the restriction of \mathcal{E} to the projective line at infinity $\mathbb{C}P^1_\infty := \mathbb{C}P^2 - \mathbb{C}^2$. The residual action of $U(k) \subset \text{GL}(k, \mathbb{C})$ is via changing the trivialization isomorphism

$$(2.27) \quad \mathcal{E}_{\mathbb{C}P^1_\infty} \simeq \mathbb{C}^k \otimes \mathcal{O}_{\mathbb{C}P^1_\infty}.$$

One can view instantons on $\mathbb{R}^4 = \mathbb{C}^2$ as solutions of HYM on $\mathbb{C}P^2$ for a singular Kähler metric (which is the flat metric on \mathbb{C}^2), with singularities at $\mathbb{C}P^1_\infty \subset \mathbb{C}P^2$.

(Framed) ADHM equations can be re-interpreted as King’s equation for the following quiver $Q^{(k)}$. The set of vertices is two-element set $\{1, 2\}$. Quiver $Q^{(k)}$ has two arrows α, β connecting vertex 1 with itself, k arrows a_1, \ldots, a_k connecting 2 with 1, and k arrows b_1, \ldots, b_k connecting 1 with 2.

![Diagram of quiver Q(k)](image-url)
A solution of ADHM equations gives a representation \mathcal{F} of $Q^{(k)}$ in the Hermitian spaces $\mathcal{F}_1 = \mathbb{C}^N$, $\mathcal{F}_2 = \mathbb{C}^1$ (endowed with the standard Hermitian norm), satisfying the constraints

\begin{equation}
[\alpha, \beta] + \sum_{i=1}^{k} b_i a_i = 0,
\end{equation}

\begin{equation}
[\alpha^\dagger, \alpha] + [\beta^\dagger, \beta] + \sum_{i=1}^{k} b_i^\dagger b_i - \sum_{i=1}^{k} a_i a_i^\dagger = 0.
\end{equation}

Equation (2.28) can be viewed as a relation in the path algebra of $Q^{(k)}$, and equation (2.29) can be viewed as King’s equation at vertex 1, cf. (2.5). Notice that the King’s equation at vertex 2 is automatically satisfied by the following reason: we have an obvious trace identity

\begin{equation}
\text{Trace} \left([\alpha^\dagger, \alpha] + [\beta^\dagger, \beta] + \sum_{i=1}^{k} b_i^\dagger b_i + \sum_{i=1}^{k} a_i a_i^\dagger \right) = 0.
\end{equation}

Therefore, equation (2.29) implies that the l.h.s. of the King’s equation at the vertex 2 has also trace 0, but it is an endomorphism of the 1-dimensional space $\mathcal{F}_2 = \mathbb{C}^1$, hence it is equal to 0 as an operator.

2.3.2. Instantons on noncommutative \mathbb{R}^4 and deformed ADHM construction. About 20 years ago, motivated by ideas from string theory, following pioneering work [1], N. Nekrasov and A. Schwarz in [15] proposed a generalization of ADHM construction and HYM equations to the case of noncommutative flat space \mathbb{R}^4_θ. The latter is understood as certain completion of quantum algebra A_θ generated by coordinates x_1, x_2, x_3, x_4 satisfying commutation relations

\begin{equation}
[x_1, x_j] = \sqrt{-1} \cdot \theta_{ij}
\end{equation}

where $\theta = (\theta_{ij})_{1 \leq i, j \leq 4}$ is a real non-degenerate skew-symmetric 4×4 matrix. A bundle over the noncommutative space, corresponding to A_θ, is understood as a finitely-generated projective A_θ-module. The space of framed instantons on noncommutative \mathbb{R}^4_θ is in one-to-one correspondence with the set of solutions of the deformed ADHM equations

\begin{equation}
[\alpha, \beta] + ba = 0, \quad [\alpha^\dagger, \alpha] + [\beta^\dagger, \beta] + b^\dagger b - aa^\dagger = \eta \cdot \text{id}_{\mathbb{C}^N}, \quad \eta \neq 0
\end{equation}

without any non-degeneracy condition like (2.25). The deformed ADHM equations can be (again) interpreted as King’s equations for the same quiver $Q^{(k)}$ but with the deformed moment map (parameters η as in (2.3)).

Each instanton on noncommutative space \mathbb{R}^4_θ gives a torsion-free module E over $\mathbb{C}[z_1, z_2]$ where z_1, z_2 are two complex coordinates on $\mathbb{C}^2 \simeq \mathbb{R}^4$, which is extended to a coherent sheaf on $\mathbb{C}P^2$ trivialized as a bundle at $\mathbb{C}P^1$. In contrast with the commutative case, E is not necessarily locally-free (i.e. not a vector bundle globally). For example, E could be an ideal of finite codimension in $\mathbb{C}[z_1, z_2]$, giving a large class of examples of instantons of rank $k = 1$ on \mathbb{R}^4_θ which does not have any analog in the commutative limit $\theta \to 0$. Notice that such torsion-free coherent sheaves are not reflexive (see (2.11), hence are are excluded in the classical (commutative) Kobayashi-Hitchin correspondence.

2.3.3. Nekrasov’s proposal: an infinite-dimensional King’s equation. Soon after [15] it was observed in works by K. Furuuchi [9] and by N. Nekrasov [14] that the equations for an instanton on \mathbb{R}^4_θ for $\theta \neq 0$ are in a sense equivalent to a structure of pre-Hilbert space on $\mathbb{C}[z_1, z_2]$-module E satisfying certain constraint which is an infinite-dimensional generalization of King’s equation, which differs drastically from ADHM equations. This equivalence is not translationally invariant, in a sense it depends on a specific coherent state for algebra A_θ which is “centered” at point $0 \in \mathbb{R}^4$.

Many years ago one of us (M.K) was told by N. Nekrasov that the correspondence between solutions of HYM equations on flat noncommutative spaces and solutions of the infinite-dimensional King’s equation should exist in any complex dimension n of the flat space $\mathbb{C}^n \simeq \mathbb{R}^{2n}$, beyond the hyperkähler case $n = 2$ where we have ADHM construction at our disposal.
In what follows we will describe informally the infinite-dimensional King’s equation from Nekrasov’s proposal. In the last section of the paper 6.5 we will sketch a derivation of the infinite-dimensional King’s equation from HYM equations on flat noncommutative spaces \mathbb{R}^2_n for arbitrary n.

Let $E = E_{\text{global}}$ be a finitely generated torsion-free $\mathbb{C}[z_1, z_2, \ldots, z_n]$-module, corresponding to an algebraic coherent sheaf \mathcal{E} on CP^n which is a vector bundle outside of a finite set of points in $C^n \subset CP^n$, together with the trivialized restriction to $CP^{n-1} := CP^n - C^n$.

The infinite-dimensional King’s-like equation (which we suggest to call Nekrasov equation) is the equation on a positive Hermitian inner product $h = h_{\text{global}}$ on E_{global}. Let us denote by $\mathcal{H} = \mathcal{H}_h$ the completion of the vector space E_{global} with respect to h. The action of generators $z_i \in \mathbb{C}[z_1, z_2, \cdots, z_n]$ give rise to commuting unbounded operators Z_i on \mathcal{H}. The proposed equation is,

$$\sum_{i=1}^n [Z_i^\dagger, Z_i] = \hbar \cdot n \cdot \text{id}_\mathcal{H} \tag{2.33}$$

where the ”Planck’s constant” $\hbar > 0$ is only a real parameter, and Hermitian conjugates Z_i^\dagger are taken with respect to h.

We cannot help but ask the reader to notice the remarkable similarity between King’s equation (2.2) (for the quiver with one vertex and n loops) and Nekrasov equation (2.33).

This is not yet a precise mathematical formulation because one should specify the ”behaviour at infinity”. Presumably, it is given by the condition

$$\forall 1 \leq i, j \leq n: \quad [Z_i^\dagger, Z_j] = \hbar \delta_{ij} \cdot \text{id}_\mathcal{H} + \text{trace class operator} \tag{2.34}$$

Also, Nekrasov argued that for torsion-free algebraic coherent sheaves on C^n of higher ($k > 1$) rank, the solutions of noncommutative HYM should approximate the solutions of the usual HYM equation in the limit $h \to 0$, at least at the open locus in C^n where the sheaf is a bundle. First, the space of positive Hermitian products on E_{global} is an approximation to the space of Hermitian metrics on a holomorphic vector bundle over X. Indeed, e.g. for $\mathcal{E} = \mathcal{O}_{C^n}^{\otimes k}$ the Hermitian product on $E_{\text{global}} = \mathcal{O}_{C^n}^{\otimes k} \otimes \mathbb{C}[z_1, z_2, \cdots, z_n]$ is given (roughly) by a positive self-adjoint element in

$$E_{\text{global}} \otimes \overline{E}_{\text{global}} = \mathbb{C}[z_1, z_2, \cdots, z_n] \otimes \mathbb{C}[\overline{z}_1, \overline{z}_2, \cdots, \overline{z}_n] \otimes (\mathbb{C}^k \otimes \overline{\mathbb{C}}^k) \cong C^\infty(\mathbb{R}^{2n}) \otimes \mathbb{R} \text{Mat}(k \times k, \mathbb{C}),$$

and then should give a metric in the trivial bundle of rank k on C^n.

Following two (informal) conjectures are due to Nekrasov.

Conjecture 1. Equation (2.33) has a unique solution with a given appropriate boundary condition at infinity.

Conjecture 2. In the limit $h \to 0$ solutions of the equation (2.33) approaches to the solutions of the equation (2.10) with parameter $\lambda = 0$.

It seems that one can generalize all this to arbitrary coherent sheaves on C^n, not necessarily torsion-free. Presumably, the sheaf should be pure of certain dimension $m \leq n$ (meaning that the dimension of support of the sheaf is m), and the sheaf has no non-zero subsheaves with at most $(m - 1)$-dimensional support. Moreover, the trivialization at infinity (in the case $m = n$) should be replaced by an extension to CP^{n-1}_∞ together with a metric on it satisfying HYM equation. The corresponding Nekrasov equation is

$$\sum_{i=1}^n [Z_i^\dagger, Z_i] = \hbar \cdot m \cdot \text{id}_\mathcal{H} \tag{2.36}$$

As an example we mention King’s equation for finite-dimensional representations of $\mathbb{C}[z_1, \ldots, z_n]$ (the case $m = 0$, the equation is literally the same as (2.2)), and the case $m = 1$ for curves in affine spaces studied partially before (see [3] and references therein).
3. Algebraic formalism: synopsis

Let us fix some notations. For an associative unital algebra A over \mathbb{C}, we denote by \overline{A} the complex-conjugate algebra:

$$f \cdot \overline{g} = \overline{f \cdot g}, \quad \overline{f + g} = \overline{f} + \overline{g}, \quad \overline{\lambda f} = \overline{f}, \quad \forall f, g \in A, \forall \lambda \in \mathbb{C},$$

and by A^{op} the opposite algebra

$$f^{op} + g^{op} = (f + g)^{op}, \quad f^{op} \cdot g^{op} = (g \cdot f)^{op}, \quad (\lambda f)^{op} = \lambda \cdot f^{op} \quad \forall f, g \in A, \forall \lambda \in \mathbb{C}.$$

There are canonical isomorphisms

$$(3.3) \quad (A_1 \otimes A_2)^{op} \simeq A_2^{op} \otimes A_1^{op}, \quad \overline{A_1 \otimes A_2} \simeq \overline{A_1} \otimes \overline{A_2}, \quad A^{op} \simeq A^{op}, \quad \overline{A} \simeq (A^{op})^{op} \simeq A.$$

If E is a left module over A then E^{op} is a left module over \overline{A}. Similarly, a right module over A is the same as a left module over A^{op}. We have a duality between finitely-generated projective left module E over A and finitely-generated projective right modules

$$(3.4) \quad E \leftrightarrow E^{\vee} := \text{Hom}_{A^{mod}}(E, A) \in \text{mod} - A, \quad E = \text{Hom}_{\text{mod} - A}(E^{\vee}, A).$$

A $*$-algebra is an associative unital algebra A over \mathbb{C} endowed with an anti-linear involution $f \mapsto f^*$ satisfying

$$(3.5) \quad (f^*)^* = f, \quad f^* + g^* = (f + g)^*, \quad f^* \cdot g^* = (g \cdot f)^*, \quad (\lambda f)^* = \overline{\lambda} \cdot f^* \quad \forall f, g \in A, \forall \lambda \in \mathbb{C}.$$

For any $*$-algebra A we have a canonical isomorphism $\overline{A} \simeq A^{op}$, $f \mapsto (f^{op})$. An element $f \in C$ is called Hermitian if $f = f^*$, and non-negative iff it can be written as a finite sum of the form $\sum f_i^* f_i$.

In particular, for a $*$-algebra A and a bimodule B over A (i.e. a module over $A \otimes A^{op}$, we can write $B \in A - \text{mod} - A$), the complex-conjugate \overline{B} (which is a module over $\overline{A} \otimes A^{op}$) is naturally again a bimodule over A via the chain of canonical isomorphisms of algebras

$$(3.6) \quad \overline{A \otimes A^{op}} \simeq A \otimes A^{op} \simeq A^{op} \otimes A \simeq A \otimes A^{op}.$$

The setup (in which later we will define the moment map equations) is the following: we are given

(A1) an associative unital $*$-algebra A over \mathbb{C},

(A2) a bimodule Ω^1 over A,

(A3) a derivation $d : A \to \Omega^1$, i.e. a \mathbb{C}-linear map d satisfying the Leibniz rule

$$(3.7) \quad d(f \cdot g) = f \cdot d(g) + d(f) \cdot g, \quad \forall f, g \in A,$$

(A4) a bilinear form $\omega : \Omega^1 \otimes_{\mathbb{C}} \Omega^1 \to \mathbb{C}$ (a “noncommutative Kähler form”) satisfying the properties

$$(3.8) \quad \omega(\alpha, \overline{\beta}) = \overline{\omega(\beta, \alpha)}, \quad \omega(f \cdot \alpha \cdot g, \beta) = \omega(\alpha, f^* \cdot \beta \cdot g^*), \quad \omega(\alpha, \overline{\beta}) > 0 \quad \forall \alpha \neq 0,$$

(A5) a linear functional $\eta : A \to \mathbb{C}$ satisfying

$$(3.9) \quad \eta(f^*) = -\overline{\eta(f)}, \quad \eta(\{f, g\}) = \frac{-1}{2\sqrt{-1}} \left(\omega(df, d(g^*)) - \omega(dg, d(f^*)) \right).$$

This setup will be applied to

(M1) a finitely-generated projective A-module E,

(M2) a connection on E which is defined as a \mathbb{C}-linear map $\nabla : E \to \Omega^1 \otimes_A E$ satisfying

$$(3.10) \quad \nabla(f \cdot \phi) = df \otimes \phi + f \cdot \nabla(\phi), \quad \forall f \in A, \phi \in E,$$
(M3) a Hermitian form on E which is defined to be a bilinear map $H : E \otimes_C E \to \mathcal{A}$ satisfying
\begin{equation}
H(f\phi_1, g\phi_2) = f \cdot H(\phi_1, \overline{\phi_2}) \cdot g^*
\end{equation}
and such that the induced morphism of right modules over \mathcal{A}
\begin{equation}
E \to E^\vee = \text{Hom}_{\mathcal{A}-\text{mod}}(E, \mathcal{A}), \quad \phi_2 \mapsto (\phi_1 \mapsto H(\phi_1, \overline{\phi_2}))
\end{equation}
is an isomorphism and is positive-definite, in the sense $H(\phi, \overline{\phi}) \geq 0$ for all $\phi \in E$.

We will explain in the next section (see Proposition 2) that the action of the gauge group of unitary automorphisms of E on the space of connections on E can be lifted using (3.9) to a Hamiltonian action. In particular, we will get the notion of a harmonic representative.

Definition 3.1. For a finitely-generated projective \mathcal{A}-module \mathcal{E} endowed with connection ∇, a Hermitian form H is called harmonic iff it satisfies the moment map equation (5.70) defined later in section 5.3.

Remark 3.2. Our setup differs from the one proposed in [10]. It would be interesting to compare two formalisms.

4. **Explanations in two basic examples**

We will illustrate our axiomatics in the case of a quiver, or a compact C^∞-manifold X.

(A1)+(M1): The algebra \mathcal{A} is either a finite sum \mathbb{C}^Q_0 of copies of \mathbb{C} (quiver case), or the algebra $C^\infty_C(X) := C^\infty(X) \otimes_R \mathbb{C}$ of smooth \mathbb{C}-valued functions on a manifold X, with the involution $*$ given by the complex conjugation. In these examples \mathcal{A} happen to be commutative, although this property does not play any role in the general formalism. In the noncommutative gauge theory the algebra \mathcal{A} is the algebra of functions on a noncommutative deformation of \mathbb{R}^4.

In general, a finitely-generated projective \mathcal{A}-module E is a left \mathcal{A}-module which is isomorphic to $\mathcal{A}^n \cdot P$ where $P \in \text{Mat}(n \times n, \mathcal{A})$ is a projector, $P^2 = P$.

Such a module is the same data as a collection of finite-dimensional complex vector spaces $(\mathcal{E}_v)_{v \in Q_0}$ where $E := \oplus_v \mathcal{E}_v$ (quiver case), or the same data as a finite-dimensional complex vector bundle \mathcal{E} over X where $E = \Gamma(X, \mathcal{E})$ (manifold case).

A2: The bimodule Ω^1 in the quiver case is the complex vector space \mathbb{C}^{Q_1} spanned by the set of arrows Q_1 of the quiver, with the structure of a bimodule over \mathcal{A} given by
\begin{equation}
a = \pi_{s(a)} \cdot a \cdot \pi_{t(a)},
\end{equation}
where $\pi_v \in \mathcal{A} = \mathbb{C}^{Q_0}$ denotes the projector (the base vector) corresponding to arbitrary $v \in Q_0$.

In the case of a manifold, the bimodule Ω^1 is the space of complex-valued 1-forms on X with both the left and the right action given by the point-wise multiplication. More generally, one can consider pairs (X, \mathcal{F}) where $\mathcal{F} \subset T_X \otimes_R \mathbb{C}$ is a complex vector subbundle of the complexified tangent bundle T_X to X such that
\begin{equation}
\mathcal{F} + \overline{\mathcal{F}} = T_X \otimes_R \mathbb{C}.
\end{equation}
We define in this case the bimodule Ω^1 as the space of sections of the dual bundle $\Gamma(X, \mathcal{F}^*)$, which is the quotient of the space $\Gamma(X, T_X^* \otimes \mathbb{C})$ of complex-valued 1-forms on X.

The condition (4.2) is satisfied e.g. when X is endowed with a complex structure and $\mathcal{F} = T_X^{0,1}$. More generally, the case when (4.2) is satisfied and \mathcal{F} is formally integrable (which means that $\Gamma(X, \mathcal{F}) \subset \Gamma(X, T_X \otimes \mathbb{C})$ is closed under the Lie bracket), corresponds to a foliation on X with a transversal holomorphic structure. The foliation is given by the real distribution $\mathcal{F} \cap T_X$. In this case the sheaf of functions on X are killed by all the complex-valued vector fields which are local sections of \mathcal{F}, is the same as the sheaf of functions which are locally constant along the foliation and holomorphic on the complex quotient.

In what follows, we will call the case $\Omega^1 = \Gamma(X, T_X^{0,1} \otimes \mathbb{C})$ the totally real case, and the case $\Omega^1 = \Gamma(X, (T_X^{0,1})^*)$ when X is endowed with a complex structure, the totally complex case.
(A3)+(M2): the derivation \(d \) is equal to zero in the quiver case, and to the de Rham differential in the manifold case when \(\Omega^1 = \Gamma(X, T_X^* \otimes_{\mathbb{R}} \mathbb{C}) \). More generally, in the case of a complex distribution \(\mathcal{F} \) as above, the differential \(d \) is the composition of the de Rham differential \(\mathcal{A} = C^\infty_C(X) \to \Gamma(X, T_X^* \otimes_{\mathbb{R}} \mathbb{C}) \) and of the projection \(\Gamma(X, T_X^* \otimes_{\mathbb{R}} \mathbb{C}) \to \Gamma(X, \mathcal{F}^*) \).

In the quiver case, a connection on a finitely-generated projective module \(E = (\mathcal{E}_x)_{x \in Q_0} \) is the same as an action of arrows
\[
T_a : \mathcal{E}_{s(a)} \to \mathcal{E}_{t(a)} \quad \forall a \in Q_1
\]
which extend to an action of the path algebra of the quiver.

In the manifold case, a connection is the usual connection on a complex vector bundle, or a connection along distribution \(\mathcal{F} \). In the totally complex case when \(\mathcal{F} = T_X^{0,1} \), the connection in algebraic sense is the same as \(\mathcal{E} \)-connection on \(\mathcal{E} \).

In the general algebraic setup, the differential \(d : \mathcal{A} \to \Omega^1 \) gives rise to a structure of a bimodule on \(B := \mathcal{A} \oplus \Omega^1 \) given by
\[
f \cdot (h, \alpha) \cdot g := (f \cdot h \cdot g, f \cdot \alpha \cdot g + df \cdot h \cdot g), \quad \forall f, h, g \in \mathcal{A}, \alpha \in \Omega^1
\]
endowed with an epimorphism \(\pi_B \) onto the diagonal bimodule \(\mathcal{A}_{\text{diag}} \) given by \((h, \alpha) \mapsto h \), and a splitting \(h \mapsto (h, 0) \) which is a monomorphism \(i_B \) of right modules over \(\mathcal{A} \). Conversely, any \(\mathcal{A} \)-bimodule \(B \) together with morphisms\(^2\)
\[
\pi_B \in \text{Hom}_{\mathcal{A} \text{-mod} - \mathcal{A}}(B, \mathcal{A}_{\text{diag}}), \quad i_B \in \text{Hom}_{\mod - \mathcal{A}}(\mathcal{A}_{\text{diag}}, B)
\]
such that \(\pi_B \circ i_B = \text{id}_B \) is the same data as a bimodule \(\Omega^1 := \text{ker}(\pi_B) \) together with a derivation \(d : \mathcal{A} \to \Omega^1 \) satisfying the analogous condition (3.10). The notion of a connection satisfying the analogous condition (3.10) can be rephrased as a homomorphism of left \(\mathcal{A} \)-modules
\[
\nabla : E \to B \otimes_{\mathcal{A}} E, \quad \nabla \in \text{Hom}_{\mathcal{A} \text{-mod}}(E, B \otimes_{\mathcal{A}} E)
\]
satisfying the constraint
\[
(\pi_B \circ i_B) \circ \nabla : E \to \mathcal{A}_{\text{diag}} \otimes_{\mathcal{A}} E \simeq E \quad \text{is equal to } \text{id}_E.
\]
Explicitly, the correspondence is given by
\[
\nabla \rightsquigarrow \text{morphism } \nabla : \phi \mapsto (\phi, \nabla(\phi)) \in E \oplus (\Omega^1 \otimes_{\mathcal{A}} E) = B \otimes_{\mathcal{A}} E.
\]
Assume that \(B \) is a finitely-generated projective when considered as a right module over \(\mathcal{A} \) (equivalently, one can replace \(B \) by \(\Omega^1 \) because \(\Omega^1 \oplus \mathcal{A}_{\text{diag}} \simeq B \) in \(\mod - \mathcal{A} \)). Then \(B \) can be represented as the dual to a finitely-generated projective left \(\mathcal{A} \)-module which we denote by \(\text{Diff}_{\leq 1} : \)
\[
\text{Diff}_{\leq 1} \simeq \text{Hom}_{\mathcal{A} \text{-mod} - \mathcal{A}}(B, \mathcal{A}), \quad B \simeq \text{Hom}_{\mod - \mathcal{A}}(\text{Diff}_{\leq 1}, \mathcal{A})
\]
In the manifold case and \(\Omega^1 = \Gamma(X, T_X^* \otimes_{\mathbb{R}} \mathbb{C}) \) the space \(\text{Diff}_{\leq 1} \) can be naturally identified with the space of differential operators of order \(\leq 1 \), hence the notation.

The left \(\mathcal{A} \)-action on \(\Omega^1 \) gives a right action on \(\text{Diff}_{\leq 1} \), therefore we have \(\text{Diff}_{\leq 1} \in \mathcal{A} - \mod - \mathcal{A} \). The epimorphism \(\pi_B \) gives (by duality) a monomorphism of bimodules \(\pi_B^* : \mathcal{A}_{\text{diag}} \to \text{Diff}_{\leq 1} \). We define the algebra \(\text{Diff} \) of “noncommutative differential operators” as the quotient of the tensor algebra
\[
T_{\mathcal{A}}(\text{Diff}_{\leq 1}) := \mathcal{A} \oplus \text{Diff}_{\leq 1} \oplus (\text{Diff}_{\leq 1} \otimes_{\mathcal{A}} \text{Diff}_{\leq 1}) \oplus \ldots
\]
by the two-sided ideal generated by the subspace
\[
\{ f - \pi_B^*(f) \mid f \in \mathcal{A} \} \subset \mathcal{A} \oplus \text{Diff}_{\leq 1} \subset T_{\mathcal{A}}(\text{Diff}_{\leq 1}).
\]
The algebra \(\text{Diff} \) is filtered (with the component \(\text{Diff}_{\leq n} \subset \text{Diff} \) defined as the image of the subspace \(\text{Diff}_{\leq 1} \subset T_{\mathcal{A}}(\text{Diff}_{\leq 1}) \)), and endowed with a homomorphism \(\mathcal{A} \to \text{Diff} \). It follows from definitions
\[\text{In the formulation of the notion of a connection below, the homomorphism } i_B \text{ plays no role. It can be completely omitted. What we really need is just a bimodule } B \text{ and a morphism } \pi_B : B \to \mathcal{A}_{\text{diag}} \text{ of bimodules.}\]
that finitely-generated \mathcal{A}-modules with connections can be identified with Diff-modules which are finitely-generated projective as \mathcal{A}-modules. The algebra Diff is the usual path algebra in the quiver case, and a “free analog” of the algebra of differential operators in the manifold case. In the totally real case $
abla^1 = \Gamma(X, T_X \otimes \mathbb{R})$, in the local coordinates (x_1, \ldots, x_k) on X, an element of Diff can be written as a finite sum

$$
(4.12) \sum_{l \leq N, i_1, \ldots, i_l \in \{1, \ldots, k\}} f_{i_1, \ldots, i_l} \cdot \partial_{i_1} \cdot \cdots \cdot \partial_{i_l} \quad \text{for some} \ N < \infty, \ f_{i_1, \ldots, i_l} \in C^\infty_{\mathbb{C}}(X),
$$

where ∂_i are free noncommutative variables obeying the exchange relation with the elements of C:

$$
(4.13) \partial_i \cdot f - f \cdot \partial_i = \frac{\partial f}{\partial x_i} \in \mathcal{A} = C^\infty_{\mathbb{C}}(X).
$$

In the totally complex case one replaces free variables ($\partial_i = \partial_x$) by the antiholomorphic derivatives (∂_x) by the antiholomorphic derivatives. If we are interested e.g. in flat connections (or bundles with a holomorphic structure in the complex case), we should impose certain additional relations in Diff (e.g. the commutativity relation $\partial_i \cdot \partial_j = \partial_j \cdot \partial_i$). The corresponding quotient algebra is either the usual algebra of (complex-valued) differential operators in the totally real case, or its subalgebra of differential operators in $\bar{\partial}$-direction in the totally complex case.

A4: In the quiver case, a choice of ω is equivalent to a choice of a collection of Hermitian norms on vector spaces

$$
(4.14) \Omega^1_{v_1, v_2} := \pi_{v_1} \cdot \Omega^1 \cdot \pi_{v_2} = \mathbb{C} \{ a \in \mathbb{Q} | s(a) = v_1, t(a) = v_2 \}
$$

for all pairs (v_1, v_2) of vertices of Q. For example, one can declare the generating set

$$
\{ a \in \mathbb{Q} | s(a) = v_1, t(a) = v_2 \}
$$

to be an orthonormal basis of $\Omega^1_{v_1, v_2}$.

In the manifold case, the choice of ω is equivalent to a choice of a Hermitian form on the vector bundle $\mathcal{F} \subset T_X \otimes \mathbb{R}$. In the totally real (resp. totally complex) cases, a particular choice of such a form is given by a Riemannian metric (resp. a Kähler metric) on X.

A5: Let us denote by d^1 the derivation $\mathcal{A} \to \overline{\Omega^1}$ given by

$$
(4.15) d^1(f) := -\overline{\partial f}.
$$

Two derivations d, d^1 with values in \mathcal{A}-bimodules $\Omega^1, \overline{\Omega^1}$ and a linear map $\omega : \Omega^1 \otimes \overline{\Omega^1} \to \mathbb{C}$ satisfying

$$
(4.16) \omega((f \cdot \alpha \cdot g) \otimes \alpha') = \omega(\alpha \otimes (g \cdot \alpha' \cdot f)), \quad \alpha \in \Omega^1, \alpha' \in \overline{\Omega^1}, \ f, g \in \mathcal{A}
$$

give rise to a skew-symmetric functional on \mathcal{A}

$$
(4.17) \Psi(f \otimes g) := \omega(df \otimes d^1 g) - \omega(dg \otimes d^1 f)
$$

satisfying an additional reality constraint

$$
(4.18) \overline{\Psi(f \otimes g)} = -\Psi(f^* \otimes g^*).
$$

Lemma 4.1. The functional Ψ satisfies the identity

$$
(4.19) \Psi(f_0 f_1 \otimes f_2) + \Psi(f_1 f_2 \otimes f_0) + \Psi(f_2 f_1 \otimes f_0) = 0.
$$

Proof: A direct calculation using (3.7) and (4.16) gives

$$
(4.20) \Psi(f_0 f_1 \otimes f_2) + \Psi(f_1 f_2 \otimes f_0) + \Psi(f_2 f_1 \otimes f_0) = \Psi(f_0 f_1 \otimes f_2) + \cdots = \omega(df_0 f_1 \otimes d^1 f_2) + \omega(df_0 f_1 \otimes d^1 f_2) - \omega(df_2 \otimes d^1 f_0 f_1) - \omega(df_2 \otimes f_0 d^1 f_1) + \cdots = \omega(df_0 \otimes f_1 d^1 f_2) + \omega(df_0 \otimes f_1 d^1 f_2) - \omega(df_2 \otimes d^1 f_0 f_1) - \omega(df_2 \otimes d^1 f_0 f_1) + \cdots = 0
$$

where triple dots in each line denote terms obtain by cyclic permutation of indices $0 \to 1 \to 2 \to 0$. ■
So, we see that \(\Psi \) is a 2-cocycle in the cyclic cochain complex of \(\mathcal{A} \). Recall that the latter is defined by
\[
C_{\text{cycl}}^n(\mathcal{A}) := \{ \psi : \mathcal{A}^{\otimes n} \to \mathbb{C} \mid \psi(f_2 \otimes \cdots \otimes f_n \otimes f_1) = (-1)^{n-1} \psi(f_1 \otimes \cdots \otimes f_n) \}
\]
with the differential
\[
d\psi(f_0 \otimes \cdots \otimes f_n) = \sum_{i \in \mathbb{Z}/(n+1)\mathbb{Z}} (-1)^m \psi(f_i f_{i+1} \otimes f_{i+2} \otimes \cdots \otimes f_{i-1}).
\]

The existence of \(\eta \) satisfying the constraint (4.9) means that the 2-cocycle \(\Psi \) is a coboundary. The obstruction lies in \(H^2_{\text{cycl}}(\mathcal{A}) \).

In the quiver case for \(\mathcal{A} = \mathbb{C} Q_0 \), there is no obstructions as \(H^2_{\text{cycl}}(\mathbb{C} Q_0) = 0 \). In the manifold case, the 2-nd continuous cyclic cohomology of \(\mathcal{A} = C_c^\infty(X) \) coincides with the continuous dual to \(\Omega^1(X)/d\Omega^0(X) \). Assume for simplicity that \(X \) is oriented. In this case, a dense subset of the continuous dual, as above, consists of closed forms on \(X \) of degree equal to \(\dim(X) - 1 \). Any closed form
\[
\beta \in \Gamma(X, \wedge^{\dim X - 1} T^* X \otimes_R \mathbb{C}), \quad d\beta = 0
\]
gives a cyclic 2-cochain by the formula
\[
f_1 \otimes f_2 \mapsto \int_X f_1 df_2 \wedge \beta.
\]

In our example of a complex distribution \(\mathcal{F} \subset TX \otimes \mathbb{C} \) and a Hermitian form on \(\mathcal{F} \), the corresponding obstruction class in \(H^2_{\text{cycl}}(\mathcal{A}) \) is represented by the differential of certain form \(\delta \) of degree \(\dim_R X - 2 \). The vanishing of the obstruction means that \(\delta \) is closed. This is a necessary and sufficient condition for the existence of a solution \(\eta \) for the constraint (3.9). In the case of HYM equations on complex Kähler manifolds the form \(\delta \) is equal to \((\omega_X)^{\dim_X X - 1} \), where \(\omega_X \) is the Kähler form on \(X \).

Remark 4.2. We already observed that (for a given data \(\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \mathbf{A}_4 \)) the obstruction to the existence of functional \(\eta \) is a class in \(H^2_{\text{cycl}}(\mathcal{A}) \) satisfying the reality constraint (4.18). If the obstruction vanishes, the set of choices of possible functionals \(\eta \) is a torsor over the real subspace of \(H^1_{\text{cycl}}(\mathcal{A}) = \text{Hom}(\mathcal{A}/[A,A], \mathbb{C}) \) given by the fixed points of the anti-linear involution
\[
\eta \mapsto \eta^*, \quad \eta^*(f) := -\overline{\eta(f^*)}.
\]

Notice the similarity with the analogous question for the liftings of a symplectic action to a Hamiltonian one, cf. Remark 2.11.

(M3): In the quiver case, a Hermitian \(\mathcal{A} \)-valued form on \(\mathcal{A} \)-module \(E \) is equivalent to the collection of Hermitian forms on the individual complex vector spaces \(E_v \) for all vertices \(v \in Q_0 \).

In the manifold case (independently on the choice of complex distribution \(\mathcal{F} \)), a Hermitian \(\mathcal{A} \)-valued form on an \(\mathcal{A} \)-module is equivalent to a Hermitian norm on the corresponding complex vector bundle \(E \).

In general, when a projector \(P \in \text{Mat}(n \times n, \mathcal{A}) \), \(P^2 = P \) is self-adjoint:
\[
P = (p_{ij})_{1 \leq i,j \leq n} \in \text{Mat}(n \times n, \mathcal{A}), \quad p_{ij}^* = p_{ji} \forall i,j, \quad P^2 = P,
\]
then the submodule \(E := \mathcal{A}^n \cdot P \) carries an \(\mathcal{A} \)-valued Hermitian form given by the restriction to \(E \subset \mathcal{A}^n \) of the standard form on \(\mathcal{A}^n \):
\[
H_{\text{standard}}((f_1, \ldots, f_n), (g_1, \ldots, g_n)) := \sum_i f_i g_i^*.
\]

Remark 4.3. The framework of [1] (and then of [15]) fits (partially) into our setup. In order to define the notion of a connection, authors of [1] use a collection \((\partial_i)_{i=1,\ldots,n} \) of derivations of an algebra \(\mathcal{A} \) closed under the Lie bracket. In our formalism the corresponding bimodule is \(\Omega^1 := A_{\text{diag}}^{\otimes n} \) endowed with the derivation
\[
d(f) := (\partial_1 f, \ldots, \partial_n f) \in \Omega^1.
\]
5. Formula for the Hamiltonian action.

5.1. The case of a trivial bundle.
Let us assume that \(E \cong A^n = \mathbb{C}^n \otimes A \) is a free finitely generated left module over \(A \), endowed with the canonical Hermitian \(A \)-valued form (see (4.27)).

The set \(M \) of connections on \(E \) can be identified in the usual way with the space of matrices of 1-forms:

\[
(5.1) \quad A = (A_{ij})_{1 \leq i, j \leq n} \in Mat(n \times n, \Omega^1) \quad \mapsto \quad \nabla_A : E \to \Omega^1 \otimes_A E, \quad \nabla_A(\phi) = d\phi + \phi \cdot A.
\]

The Lie algebra of the “compact gauge group” is defined as

\[
(5.2) \quad \mathfrak{k} := \{(u_{ij})_{1 \leq i, j \leq n} \in Mat(n \times n, A) \mid u_{ij} = -u_{ji} \quad \forall i, j\}.
\]

It acts on the (infinite-dimensional) complex affine space \(M \) of connections by the infinitesimal affine transformations

\[
(5.3) \quad (d + \cdot A) \mapsto (1 - \epsilon u) \circ (d + \cdot A) \circ (1 - \epsilon u)^{-1} = d + \cdot A + \epsilon(du + [u, A])
\]

where \(\epsilon \) is a formal variable satisfying \(\epsilon^2 = 0 \), and notation \(\cdot A \) stays for the operator of right multiplication by \(A \), and similarly for other symbols. In other words, the value of the vector field \(X_u \) corresponding to \(u \in \mathfrak{k} \) on \(M \) at the point \(A \) is

\[
(5.4) \quad X_u|_A = du + [u, A].
\]

An \(A \)-valued Hermitian form \(H_0 \) on \(E \) together with a “noncommutative Kähler metric” \(\omega \) produces a usual \(\mathbb{C} \)-valued Hermitian form on the complex vector space \(Mat(n \times n, \mathbb{C}) \otimes \Omega^1 \) given by

\[
(5.5) \quad \omega_0(A^{(1)}, A^{(2)}) := \sum_{ij} \omega(A^{(1)}_{ij}, A^{(2)}_{ij}).
\]

This form is strictly positive on non-zero vectors by (3.8), and the infinitesimal action of \(\mathfrak{k} \) via \(A \mapsto A + \epsilon[u, A] \) preserves \(\omega_0 \). Therefore, the infinitesimal action of \(\mathfrak{k} \) on affine space \(M \) of connections endowed with the “constant” Kähler metric corresponding to \(\omega_0 \) is by Kähler isometries, because the vector field \(X_u \) is the sum of the infinitesimal generator of the linear action \(A \mapsto A + \epsilon[u, A] \) (which is an isometry), and of the shift by a constant vector \(A \mapsto A + \epsilon \cdot du \) (which is also an isometry).

In what follows, we will use an identity which follows directly from (3.8) and the definition (5.5)

\[
(5.6) \quad \omega_0([A^{(1)}, u], [A^{(2)}]) = \omega_0(A^{(1)}, [u, A^{(2)}]) \quad \forall A^{(1)}, A^{(2)} \in M, \quad \forall u \in \mathfrak{k}.
\]

The constant (i.e. invariant under shifts) symplectic form \(\omega^{\text{sym}}_M \) on \(M \) corresponding to the Kähler metric \(\omega_0 \) is given by the real skew-symmetric form on the tangent space

\[
(5.7) \quad \omega^{\text{sym}}_M(A^{(1)}, A^{(2)}) := \text{Im} \, \omega_0(A^{(1)}, A^{(2)}) = \frac{1}{2\sqrt{-1}} \left(\omega_0(A^{(1)}, \bar{A}^{(2)}) - \omega_0(A^{(2)}, \bar{A}^{(1)}) \right).
\]

For a given \(u \in \mathfrak{k} \), the corresponding vector field \(X_u \) is an infinitesimal Kähler isometry, hence it preserves the symplectic form \(\omega^{\text{sym}}_M \). We claim that this symplectic action of \(\mathfrak{k} \) can be lifted to a Hamiltonian action. Let us denote for \(u \in \mathfrak{k} \) by \(H_u \) the following real-valued function on \(M \):

\[
(5.8) \quad H_u(A) := \eta(\text{Trace}(u)) - \omega^{\text{sym}}_M(A, du) + \frac{1}{2}\omega^{\text{sym}}_M(A, [A, u]).
\]

Proposition 1. The assignment \(u \mapsto H_u \) is a Lie algebra homomorphism lifting the action \(u \mapsto X_u \).
Proof: First, it is immediate to see that the vector field X_u corresponds to the Hamiltonian H_u:

\begin{equation}
\label{eq:5.10}
\iota_{X_u} \omega_M^{sym} = dH_u.
\end{equation}

It suffices (see (2.15)) to prove that

\begin{equation}
\label{eq:5.11}
\omega_M^{sym}(X_{u_1}, X_{u_2}) = H_{[u_1, u_2]} \quad \forall u_1, u_2 \in \mathfrak{g}.
\end{equation}

In other words, we have to check that for any $A \in M$

\begin{equation}
\label{eq:5.12}
\omega_M^{sym}(du_1 + [u_1, A], du_2 + [u_2, A]) = \eta(\text{Trace}([u_1, u_2])) - \omega_M^{sym}(A, d[u_1, u_2]) + \frac{1}{2} \omega_M^{sym}(A, [u_1, [u_1, u_2]]).
\end{equation}

Indeed, we have

\begin{equation}
\label{eq:5.13}
\omega_M^{sym}(du_1 + [u_1, A], du_2 + [u_2, A]) = \text{Im} \omega_0\left(du_1 + [u_1, A], \overline{du_2 + [u_2, A]}\right)
= \text{Im} \omega_0(du_1, \overline{du_2}) + \text{Im} \omega_0([u_1, A], \overline{du_2}) + \text{Im} \omega_0\left(du_1, [u_2, A]\right) + \text{Im} \omega_0\left([u_1, A], [u_2, A]\right).
\end{equation}

Then we use

\begin{equation}
\label{eq:5.14}
\text{Im} \omega_0([u_1, A], \overline{du_2}) + \text{Im} \omega_0\left(du_1, \overline{du_2, A}\right) = -\text{Im} \omega_0([A, u_1], \overline{du_2}) + \text{Im} \omega_0\left([A, u_2], \overline{du_1}\right) = -\omega_M^{sym}(A, d[u_1, u_2]),
\end{equation}

and, utilizing the antisymmetry of ω_M^{sym},

\begin{equation}
\label{eq:5.15}
\text{Im} \omega_0\left([u_1, A], [u_2, A]\right) = \frac{1}{2} \left(\text{Im} \omega_0\left([A, u_1], [A, u_2]\right) - \text{Im} \omega_0\left([A, u_2], [A, u_1]\right)\right) = \frac{1}{2} \text{Im} \omega_0\left(A, [A, [u_1, u_2]]\right) = \frac{1}{2} \omega_M^{sym}(A, [A, [u_1, u_2]]).
\end{equation}

This calculation finishes the proof of (5.11).
Later we will need a formula for $H_u(A)$ written in a slightly different form:

$$H_u(A) = \eta(\text{Trace}(u)) - \omega^{symp}(A, du) + \frac{1}{2} \omega^{symp}(A, [A, u]) = \eta(\text{Trace}(u)) + \frac{1}{2 \sqrt{-1}} \left[-\omega_0(A, du) + \omega_0(du, A) + \frac{1}{2} \omega_0(A, [A, u]) - \frac{1}{2} \omega_0([A, u], A) \right].$$

5.2. General bundle.

Let P be a self-adjoint (see (4.26)) projector in $Mat(n \times n, A)$. Then the free module $E = A^n$ splits into the orthogonal sum of two submodules (here we denote id_{A^n} as 1 for brevity)

$$E \simeq E_1 \oplus E_2, \quad E_1 := E \cdot P, \quad E_2 := E \cdot (1 - P).$$

We will consider the action of the gauge group of unitary automorphisms of E_1 on the space M_1 of connections on E_1. First, consider the Lie subalgebra \mathfrak{t}_{1+2} of \mathfrak{t} consisting of infinitesimal unitary symmetries preserving the direct sum decomposition (5.17)

$$\mathfrak{t}_{1+2} := \{ u \in \mathfrak{t} \mid u = PuP + (1 - P)u(1 - P) \}.$$

It is clear that \mathfrak{t}_{1+2} is the direct sum of two subalgebras

$$\mathfrak{t}_1 := \{ u \in \mathfrak{t} \mid u = PuP \}, \quad \mathfrak{t}_2 := \{ u \in \mathfrak{t} \mid u = (1 - P)u(1 - P) \}$$

and \mathfrak{t}_1 is the Lie algebra of infinitesimal unitary symmetries of E_1.

Next, consider the space of connections on E preserving the direct sum decomposition (5.17):

$$\mathfrak{M}_{1+2} := \{ A \in Mat(n \times n, A) \mid d + A = P \cdot (d + A) \cdot P + (1 - P) \cdot (d + A) \cdot (1 - P) \}.$$

It is an affine subspace of the affine space M of connections on E, and it is isomorphic to the product of the space M_1 of connections in E_1 and the space M_2 of connections in E_2.

There is a distinguished point $A_{can} \in M_{1+2}$ given by

$$A_{can} = P \cdot dP + (1 - P) \cdot d(1 - P) = (2P - 1) \cdot dP$$

which gives points $A_{can,1} \in M_1$, $A_{can,2} \in M_2$ after the identification $M_{1+2} \simeq M_1 \times M_2$. Then we identify M_1 with an affine subspace $M_{(1)} \subset M_{1+2}$ consisting of connections whose restriction to E_2 is $A_{can,2}$. Explicitly, we have

$$M_{(1)} = \{ A \in M \mid A = A_{can} + \delta_A, \quad \delta_A = P\delta_A P \}.$$

The Lie subalgebra $\mathfrak{t}_1 \subset \mathfrak{t}$ preserves the submanifold $M_{(1)} \subset M$. In particular, for any $u \in \mathfrak{t}_1$ the value of the vector field X_u restricted to $M_{(1)}$ is given (see (5.4)) at the point $A_{can} + \delta_A$ by

$$X_u|_{A_{can} + \delta_A} = du + [u, A_{can} + \delta_A].$$

Using (5.11), this formula implies for any $u_1, u_2 \in \mathfrak{t}_1$

$$\omega^{symp}(X_{u_1}, X_{u_2}) = \omega^{symp}(du_1 + [u_1, A], du_2 + [u_2, A]) = \eta(\text{Trace}(u_1, u_2)) - \omega^{symp}(A, du_1, du_2 + [u_2, A]) = \frac{1}{2} \omega^{symp}(A, [A, u_1, u_2]),$$

where $A := A_{can} + \delta_A$. We conclude
Proposition 2. The assignment

\[H_{(1),u}(A_{\text{can}} + \delta A) := \eta(\text{Trace}(u)) - \omega^\text{symp}(A_{\text{can}} + \delta A, du) + \frac{1}{2}\omega^\text{symp}(A_{\text{can}} + \delta A, [A_{\text{can}} + \delta A, u]) \]

gives a Hamiltonian action of \(k \) on \(M(1) \simeq M_1 \) lifting the symplectic action by gauge transformations. ■

5.3. Universal formula for the moment map.

In this section we propose a formula for the moment map written in an “invariant” way, which does not refer explicitly to the representation of finitely-generated projective \(\mathcal{A} \)-module \(E \) as an image of a self-adjoint projector \(P \in \text{Mat}(n \times n, \mathcal{A}) \) for some \(n < \infty \).

In order to be able to write the formula, we will need to introduce some notations and constructions.

5.3.1. More about Hermitian modules. In this section \(\mathcal{A} \) denotes an arbitrary \(*\)-algebra. Recall (see (3.12)) that a Hermitian structure \(H \) on a finitely-generated \(\mathcal{A} \)-module \(E \) gives rise to an isomorphism of \(\mathcal{A} \text{-}\)modules

\[\text{iso}_H : E \simeq E^\vee \]

(here we consider the \(\overline{\mathcal{A}} \)-module \(\overline{E} \) as an \(\mathcal{A}^{op} \)-module via the canonical isomorphism of algebras \(\overline{\mathcal{A}} \simeq \mathcal{A}^{op} \)).

With any endomorphism \(u : E \rightarrow E, \ u \in \text{Hom}_{\mathcal{A}\text{-}mod}(E,E) \) we can associate

1. the complex-conjugate morphism \(\overline{u} : E \rightarrow E, \ u \in \text{Hom}_{\mathcal{A}\text{-}mod}(E,E) \),

2. the adjoint morphism, by applying the contravariant functor \(\text{Hom}_{\mathcal{A}\text{-}mod}(-, \mathcal{A}) \)

\[u^t : E^\vee \rightarrow E^\vee, \ u^t \in \text{Hom}_{\mathcal{A}\text{-}mod}(E^\vee,E^\vee). \]

The Lie algebra of infinitesimal unitary symmetries of \((E,H)\) is defined (generalizing (5.2),(5.19)) as

\[\mathfrak{k} := \{ u \in \text{Hom}_{\mathcal{A}\text{-}mod}(E,E) | u^t = -u \}, \ u^t := \overline{u^t} = \overline{u^\vee}. \]

Recall (see (4.4),(4.5) and (4.6),(4.7)) that a connection \(\nabla \) on \(\mathcal{A} \)-module \(E \) we can recast as a homomorphism of \(\mathcal{A} \)-modules

\[\overline{\nabla} \in \text{Hom}_{\mathcal{A}\text{-}mod}(E, B \otimes \mathcal{A} E) \]

such that

\[(\pi_B \otimes \text{id}_E) \circ \overline{\nabla} = \text{id}_E. \]

The complex conjugation gives

\[\overline{\nabla} \in \text{Hom}_{\overline{\mathcal{A}}\text{-}mod}(\overline{E}, \overline{B} \otimes \overline{\mathcal{A}} E), \ (\pi_{\overline{B}} \otimes \text{id}_{\overline{E}}) \circ \overline{\nabla} = \text{id}_{\overline{E}}. \]

Applying the isomorphism \(\text{iso}_{\overline{\mathcal{A}}} \) from (5.26) we obtain another morphism

\[\overline{\nabla} \in \text{Hom}_{\overline{\mathcal{A}}\text{-}mod}(\overline{E}^\vee, \overline{E}^\vee \otimes \overline{\mathcal{A}} \overline{B}), \ (\text{id}_{\overline{E}^\vee} \otimes \pi_{\overline{B}}) \circ \overline{\nabla} = \text{id}_{\overline{E}^\vee}, \]

where we treat \(\overline{B} \) as a \(\mathcal{A} \otimes \mathcal{A}^{op} \)-module via the canonical isomorphism of algebras \(\mathcal{A} \otimes \mathcal{A}^{op} \simeq \overline{\mathcal{A}} \otimes \overline{\mathcal{A}}^{op} \).

Finally, using the following chain of isomorphisms

\[\text{Hom}_{\overline{\mathcal{A}}\text{-}mod}(\overline{E}^\vee, \overline{E}^\vee \otimes \overline{\mathcal{A}} \overline{B}) \simeq \text{Hom}_{\overline{\mathcal{A}}\text{-}mod}(\overline{E}^\vee, \text{Hom}_{\overline{\mathcal{A}}\text{-}mod}(\overline{E}, \overline{B})) \simeq \text{Hom}_{\overline{\mathcal{A}}\text{-}mod}(\overline{E}, \text{Hom}_{\overline{\mathcal{A}}\text{-}mod}(\overline{E}^\vee, \overline{B})) \simeq \text{Hom}_{\overline{\mathcal{A}}\text{-}mod}(\overline{E}, \overline{B} \otimes \overline{\mathcal{A}} E) \]
we obtain the Hermitian-conjugate connection (formulated in terms of a morphism of \(\mathcal{A}\)-modules)

\[
(5.33) \quad \nabla^\dagger \in \text{Hom}_{\mathcal{A}-\text{mod}}(E, B \otimes_{\mathcal{A}} E), \quad (\pi_{\overline{\mathcal{B}}} \otimes \text{id}_E) \circ \nabla^\dagger = \text{id}_E.
\]

Here in (5.32) we use the fact that for any finitely-generated projective \(\mathcal{A}\)-module \(E\) and an arbitrary \(\mathcal{A}\)-module \(F\), the canonical map

\[
(5.34) \quad E^\vee \otimes_{\mathcal{A}} F \to \text{Hom}_{\mathcal{A}-\text{mod}}(E, F),
\]

\[
E^\vee \otimes_{\mathcal{A}} F = \text{Hom}_{\mathcal{A}-\text{mod}}(E, \mathcal{A}) \otimes_{\mathcal{A}} \text{Hom}_{\mathcal{A}-\text{mod}}(\mathcal{A}, F) \overset{\text{composition}}{\longrightarrow} \text{Hom}_{\mathcal{A}-\text{mod}}(E, F)
\]

is an isomorphism.

Alternatively, let us use the Hermitian-conjugate derivation \(d^\dagger\) with values in \(\overline{\Omega^1}\) (see (4.15))

\[
(5.35) \quad d^\dagger : \mathcal{A} \to \overline{\Omega^1}, \quad d^\dagger(f) := -d(f^\dagger), \quad d^\dagger(f \cdot g) = f \cdot d^\dagger(g) + d^\dagger(f) \cdot g \quad \text{for free}.
\]

The bimodule \(\overline{B}\) is identified with

\[
(5.36) \quad \mathcal{A} \oplus \overline{\Omega^1}, \quad \text{with the bimodule structure } f \cdot (h, \omega) \cdot g := (f \cdot h \cdot g, f \cdot \alpha \cdot g + d^\dagger f \cdot h \cdot g) \quad \text{(as in (4.4))}
\]

by the map

\[
(5.37) \quad (h, \omega) \in \overline{B} \mapsto (h^\dagger, \overline{\omega} - d\overline{\omega}) \in \mathcal{A} \oplus \overline{\Omega^1}.
\]

For the trivial \(\mathcal{A}\)-module \(E = \mathcal{A}^n\) with the canonical Hermitian \(\mathcal{A}\)-valued form (4.27), for any connection \(A\) given by a \((n \times n)\) matrix

\[
(5.38) \quad A = (A_{ij})_{1 \leq i, j \leq n} \in \text{Mat}(n \times n, \Omega^1)
\]

the Hermitian conjugate connection is given by

\[
(5.39) \quad A^\dagger = ((A^\dagger)_{ij})_{1 \leq i, j \leq n} \in \text{Mat}(n \times n, \overline{\Omega^1}), \quad (A^\dagger)_{ij} := \overline{A_{ji}} \quad \forall i, j.
\]

5.3.2. Bimodules and traces. In this section \(\mathcal{A}\) denotes an arbitrary associative algebra over \(\mathbb{C}\) (not necessarily a \(*\)-algebra). With every \(\mathcal{A}\)-bimodule \(G\) we associate a vector space \(#(G)\) by the formula

\[
(5.40) \quad #(G) := G/\{\text{linear span of } \alpha \cdot g - g \cdot \alpha \mid \alpha \in \mathcal{A}, g \in G\} \cong G \otimes_{\mathcal{A} \otimes_{\mathcal{A}^\text{op}} \mathcal{A}} \mathcal{A}_{\text{diag}}.
\]

It follows form the definition that for any finite sequence of bimodules \(G_1, \ldots, G_n\) one has a chain of canonical isomorphisms

\[
(5.41) \quad #(G_1 \otimes_{\mathcal{A}} G_2 \otimes_{\mathcal{A}} \cdots \otimes_{\mathcal{A}} G_n) \simeq #(G_2 \otimes_{\mathcal{A}} G_3 \otimes_{\mathcal{A}} \cdots \otimes_{\mathcal{A}} G_1) \simeq #(G_n \otimes_{\mathcal{A}} G_1 \otimes_{\mathcal{A}} \cdots \otimes_{\mathcal{A}} G_{n-1}).
\]

For any finitely-generated \(\mathcal{A}\)-module \(E\), any \(\mathcal{A}\)-bimodule \(G\) and any morphism of \(\mathcal{A}\)-modules

\[
(5.42) \quad \Phi : E \to G \otimes_{\mathcal{A}} E
\]

we define its trace along \(E\) (denoted by \(\text{Trace}_E(\Phi)\)) with values in \(#(G)\), via the chain of isomorphisms

\[
(5.43) \quad \Phi \in \text{Hom}_{\mathcal{A}-\text{mod}}(E, G \otimes_{\mathcal{A}} E) \overset{(5.34)}{=} E^\vee \otimes_{\mathcal{A}} G \otimes_{\mathcal{A}} E \simeq G \otimes_{\mathcal{A} \otimes_{\mathcal{A}^\text{op}} \mathcal{A}} \mathcal{A}_{\text{diag}} \simeq #(G) \ni \text{Trace}_E(\Phi),
\]

and a map

\[
(5.44) \quad G \otimes_{\mathcal{A} \otimes_{\mathcal{A}^\text{op}} \mathcal{A}} \mathcal{A}_{\text{diag}} \overset{\text{id}_G \otimes_{\mathcal{A} \otimes_{\mathcal{A}^\text{op}} \mathcal{A}} \text{id}_E}{\longrightarrow} G \otimes_{\mathcal{A} \otimes_{\mathcal{A}^\text{op}} \mathcal{A}} \mathcal{A}_{\text{diag}} = #(G) \ni \text{Trace}_E(\Phi),
\]

where

\[
(5.45) \quad \delta_E : E \otimes_{\mathcal{A}} E^\vee \to \mathcal{A}_{\text{diag}}, \quad \delta_E(\alpha \otimes \alpha^\vee) := \alpha^\vee(\alpha) \in \mathcal{A}, \quad \forall \alpha \in E, \forall \alpha^\vee \in \text{Hom}_{\mathcal{A}-\text{mod}}(E, \mathcal{A}) = E^\vee
\]

is the canonical morphism of \(\mathcal{A}\)-bimodules.
Remark 5.1. The constraints for the left and right action form on the noncommutative Kähler form ω (see (3.8)) can be interpreted as follows: ω is equal to the composition of a linear functional
\begin{equation}
\omega' : #(\Omega^1 \otimes_A \Omega^2) \to \mathbb{C}
\end{equation}
and of the canonical surjection
\begin{equation}
\Omega^1 \otimes_C \Omega^2 \to #(\Omega^1 \otimes_A \Omega^2).
\end{equation}

5.3.3. Linear functional on the triple tensor product. In this section we work in the setup (A1)−(A5). Recall that we have automatically two derivations d, d^\dagger (see (5.35)), hence we can define a doubled bimodule by
\begin{equation}
\mathcal{B} := \mathcal{A} \oplus \Omega^1 \oplus \Omega^2, \quad f \cdot (h, \alpha, \beta) \cdot g := (f \cdot h \cdot g, f \cdot \alpha \cdot g + df \cdot h \cdot g, f \cdot \beta \cdot g + d^\dagger f \cdot h \cdot g).
\end{equation}
Define a linear map
\begin{equation}
\Xi : \mathcal{B} \otimes_C \mathcal{B} \otimes_C \mathcal{B} \to \mathbb{C}
\end{equation}
by the following formulas (the missing terms map to zero):
\begin{align}
&f_1 \otimes f_2 \otimes f_3 \mapsto \frac{1}{3} \left(-2\sqrt{-1} \eta(f_1 f_2 f_3) - \omega(df_1, df_1 f_2 f_3) + \omega(df_2, f_3, df_3 f_1 f_2 f_3) \right) + (1 \to 2 \to 3), \\
&\alpha_1 \otimes f_2 \otimes f_3 \mapsto +\omega(\alpha_1, d f_2 f_3), \quad \text{and the same r.h.s. for } f_3 \otimes \alpha_1 \otimes f_2, \ f_2 \otimes f_3 \otimes \alpha_1, \\
&\nu_1 \otimes f_2 \otimes f_3 \mapsto -\omega(df_2, f_3, \nu_1), \quad \text{and the same r.h.s. for } f_3 \otimes \nu_1 \otimes f_2, \ f_2 \otimes f_3 \otimes \nu_1, \\
&\alpha_1 \otimes \nu_2 \otimes f_3 \mapsto -\omega(\alpha_1, \nu_2, f_3) \quad \text{and the same r.h.s. for } f_3 \otimes \alpha_1 \otimes \nu_2, \ \nu_2 \otimes f_3 \otimes \alpha_1, \\
&\nu_1 \otimes \alpha_2 \otimes f_3 \mapsto +\omega(\alpha_2, f_3, \nu_1) \quad \text{and the same r.h.s. for } f_3 \otimes \nu_1 \otimes \alpha_2, \ \alpha_2 \otimes f_3 \otimes \nu_1.
\end{align}

Proposition 3. The map Ξ descends to a map
\begin{equation}
\Xi' : #(\mathcal{B} \otimes_A \mathcal{B} \otimes_A \mathcal{B}) \to \mathbb{C}.
\end{equation}

Proof: It follows from the definition that the map Ξ is $\mathbb{Z}/3\mathbb{Z}$-invariant, where $\mathbb{Z}/3\mathbb{Z}$ acts by cyclic permutations of factors in \mathcal{B}^\otimes_3. This symmetry reduces the number of possible checks to the following list:
\begin{align}
-f_1 \cdot g \otimes f_2 \otimes f_3 + f_1 \otimes g \cdot f_2 \otimes f_3 + f_1 \otimes dg \cdot f_2 \otimes f_3 + f_1 \otimes d^3 g \cdot f_2 \otimes f_3 \mapsto 0, \\
-f_1 \cdot g \otimes f_2 \otimes \alpha_3 + f_1 \otimes g \cdot f_2 \otimes \alpha_3 + f_1 \otimes d^3 g \cdot f \otimes \alpha_3 \mapsto 0, \\
-f_1 \cdot g \otimes f_2 \otimes \nu_3 + f_1 \otimes g \cdot f_2 \otimes \nu_3 + f_1 \otimes dg \cdot f \otimes \nu_3 \mapsto 0, \\
-f_1 \cdot g \otimes \alpha_2 \otimes f_3 + f_1 \otimes g \cdot \alpha_2 \otimes f_3 \mapsto 0, \\
-f_1 \cdot g \otimes \nu_2 \otimes f_3 + f_1 \otimes g \cdot \nu_2 \otimes f_3 \mapsto 0, \\
-f_1 \cdot g \otimes \alpha_2 \otimes f_3 + \alpha_1 \otimes g \cdot f_2 \otimes f_3 + \alpha_1 \otimes d^3 g \cdot f_2 \otimes f_3 \mapsto 0, \\
-\nu_1 \cdot g \otimes f_2 \otimes f_3 + \nu_1 \otimes g \cdot f_2 \otimes f_3 + \nu_1 \otimes dg \cdot f_2 \otimes f_3 \mapsto 0.
\end{align}

\footnote{Notice, that the cyclic group action descends to #(B \otimes_A B \otimes_A B) by (5.41). The functional Ξ' is cyclically invariant as well.
All the checks are straightforward corollaries of the Leibniz rule, of the fact that \(\omega \) descends to a functional \(\omega' : \#(\Omega^1 \otimes_A \Omega_A) \to \mathbb{C} \) (see (5.47)), and of the relation (3.9). Here is the most non-trivial check (5.56).

\[
\begin{align*}
- f_1 \cdot g & \otimes f_2 \otimes f_3 + f_1 \cdot g \cdot f_2 \otimes f_3 + f_1 \otimes dg \cdot f_2 \otimes f_3 + f_1 \otimes d^i g \cdot f_2 \otimes f_3 \\
& \quad \quad + \frac{1}{3} \left(\omega(f_1 \cdot dg, d^i f_2 \cdot f_3) + \omega(df_3, f_1 \cdot d^i f_2) - \omega(df_3, f_1 \cdot f_3) - \omega(df_1, d^i g \cdot f_2 \cdot f_3) - \\
& \quad \quad - \omega(f_1 \cdot dg, f_2, d^i f_3) - \omega(df_2, f_3, f_1 \cdot d^i g) + \omega(df_2, f_3, d^i f_1) + \omega(df_3, f_1, d^i g \cdot f_2) \right) + \\
& \quad \quad + \omega(df_1, f_2, d^i f_3) - \omega(df_1, f_1, d^i g) = \\
& \quad \quad = \frac{1}{3} \left(\omega(dg, d^i (f_2 f_3 f_4)) \right) + \omega(d(f_2 f_3 f_4), d^i g) \\
& \quad \quad + \omega(df_2, f_3, f_1, d^i g) + \omega(df_3, f_1, d^i g) + \omega(f_2 f_3, f_1, d^i g) = 0.
\end{align*}
\]

The rest is a routine calculation. \(\blacksquare \)

5.3.4. **Formula for the moment map in terms of \(\Xi' \).** Our goal (in the setup \(\text{(A1)-(A5)} \)) is to associate with any Hermitian module \((E, \mathcal{H})\) endowed with a connection \(\nabla \), a \(\mathbb{R} \)-linear functional on the Lie algebra \(\mathfrak{t} \) defined as in (5.27). In other words, we want to define a number

\[
H_u(\mathcal{H}, \nabla) \in \mathbb{R}
\]

depending \(\mathbb{R} \)-linearly on \(u \in \mathfrak{t} \), extending the formulas (5.8),(5.25).

We can form the following a chain of morphisms of \(\mathcal{A} \)-modules:

\[
\begin{align*}
E & \xrightarrow{i_E} E \xrightarrow{\nabla} \mathcal{B} \mathcal{A} E \xrightarrow{id_{\mathcal{B} \mathcal{A} E}} \mathcal{B} \mathcal{A} E \\
& \quad \quad \quad \xrightarrow{\mathrm{id}_{\mathcal{B} \mathcal{A} E}} \mathcal{B} \mathcal{A} E
\end{align*}
\]

where \(\nabla : E \to \mathcal{B} \mathcal{A} E \) is the morphism of \(\mathcal{A} \)-modules associated with the connection \(\nabla \otimes \nabla^1 : E \to (\Omega^1 \otimes \Omega_A) \otimes_A E \).

The composition in (5.65) is a morphism of \(\mathcal{A} \)-modules

\[
C_3 : E \to \mathcal{B} \mathcal{A} E.
\]

Applying the trace along \(E \) to the morphism \(C_3 \) we obtain an element

\[
\text{Trace}_E(C_3) \in \#(\mathcal{B} \mathcal{A} \mathcal{B} \mathcal{A} \mathcal{B} \mathcal{A} E).
\]

Definition 5.2. The moment map (see (5.64)) is given by

\[
H_u(\mathcal{H}, \nabla) := \frac{\sqrt{-1}}{2} \cdot \Xi'(\text{Trace}_E(C_3))
\]

where \(\Xi' \) is well-defined by Proposition 3. The equation on the Hermitian form

\[
H_u(\mathcal{H}, \nabla) = 0 \quad \forall u \in \mathfrak{t}
\]

we call the **universal moment map equation.**

Proposition 4. In the case when Hermitian finitely-generated projective \(\mathcal{A} \)-module \(E \) is isomorphic to the image of a self-adjoint projector \(P \in \text{Mat}(n \times n, \mathcal{A}) \) for some \(n < \infty \) endowed with the induced Hermitian \(\mathcal{A} \)-valued pairing, the definition of the moment map via (5.69) and as in (5.25) agree.
Proof: In order to alleviate the notations we will perform the check in the simplest case when E is the free module of rank 1 endowed with the standard Hermitian form. Hence, u is a (1×1)-matrix, which is just an element of \mathcal{A} satisfying $u^* = -u$. Similarly, the connection is an element $\alpha \in \Omega^1$.

The morphism $\nabla: E \to \mathbb{B} \otimes \mathcal{A}$ is given (on the base element $1 \in E = \mathcal{A}$) by
\begin{equation}
\nabla: 1 \mapsto (1, \alpha, \overline{\alpha}) \otimes 1.
\end{equation}

The chain (5.65) applied to the element $1 \in \mathcal{A} = E$ is given by
\begin{equation}
1 \mapsto u \mapsto (u, u \cdot \alpha, u \cdot \overline{\alpha}) \otimes (1, \alpha, \overline{\alpha}) \mapsto (u, u \cdot \alpha, u \cdot \overline{\alpha}) \otimes (1, \alpha, \overline{\alpha}) \otimes 1.
\end{equation}

Hence, we have to calculate
\begin{equation}
\Xi(\Xi' \text{Trace}_E(C_3)) = -2\sqrt{-1} \eta(u) + \omega(\alpha, d^1u) - \omega(du, \overline{\alpha}) + \omega(\alpha \cdot u, \overline{\alpha}) - \omega(u \cdot \alpha, \overline{\alpha}).
\end{equation}

Using the fact $d^1 = d 1 = 0$.

6. Examples

6.1. Quiver type. The case of a quiver was essentially described above. The algebra \mathcal{A} is $\mathbb{C}Q_0$, the bimodule Ω^1 is $\mathbb{C}Q_1$, the derivation d is 0. The choice of functional η corresponds to the choice of a real cyclic 1-cocycle of \mathcal{A}. The resulting moment map equation is thus the general King’s equation.

As particular examples relevant for gauge theory we would mention ADHM equations (2.23), deformed ADHM equations (2.32), and the 0-dimensional reduction of HYM: $[z_1, z_2] = 0, [\overline{z}_1, z_1] + [\overline{z}_2, z_2] = 0$.

6.2. Manifold type. For a real Riemannian or for a complex Kähler manifold \(X \) we set \(\mathcal{A} := C^\infty(X) \otimes_{\mathbb{R}} \mathbb{C} \), the bimodule \(\Omega^1 \) is either \(\Gamma(X, T_X^\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}) \) or \(\Gamma(X, (T^{0,1})^*) \). We get HYM equations in the complex case, and a real version in the totally real case. In the case of flat connection over a Riemannian manifold we obtain the well-known equation for the harmonic metric on a non-unitary local system.

In the mixed real/complex case one gets a generalization which coincides with Bogomolny equations when \(\dim_X = 3 \) and the complex distribution \(\mathcal{F} \) is in local coordinates \((x_1, x_2, x_3)\) generated by
\[
\mathbb{C} \cdot \partial_{x_1} + \mathbb{C} \cdot (\partial_{x_2} + i \partial_{x_3}) .
\]

6.3. Mixed manifold/quiver case.

6.3.1. Twisted quiver bundles (following [2]). Suppose that we are given a Kähler manifold \(X \) with a Kähler form \(\omega_X^{1,1} \), a finite quiver \(Q \), and a collection of holomorphic vector bundles \(M_a \) over \(X \) for each arrow \(a \in Q_1 \), endowed with Hermitian metrics \(H_a \). Then we have the following algebra \(\mathcal{A} := \mathbb{C}^{Q_0} \otimes \mathbb{C}^{Q_1}(X) \). The bimodule \(\Omega^1 \) defined as
\[
\Omega^1 := \left(\bigoplus_{v \in Q^0} \pi_v \cdot \Omega^0(X) \cdot \pi_v \right) \oplus \left(\bigoplus_{a \in Q_1} \pi_{s(a)} \cdot \Gamma(X, C^\infty_X, \mathcal{O}_X \otimes \mathcal{M}^*_a) \cdot \pi_{t(a)} \right) ,
\]
and the derivation \(d : \mathcal{A} \to \Omega^1 \) is a \(\mathcal{F} \)-operator taking values in the first summand of \((6.2) \).

An example of a module with a connection is an \(M \)-twisted \(Q \)-bundle, which is by definition (see [2]) a collection of holomorphic vector bundles \((\mathcal{E}_v)_{v \in Q_0} \) together with a collection of holomorphic morphisms
\[
\forall a \in Q_1 : \quad \phi_a : M_a \otimes \mathcal{E}_{s(a)} \to \mathcal{E}_{t(a)} .
\]

For such a module an \(\mathcal{A} \)-valued Hermitian form is a collection of Hermitian metrics \((h_v)_{v \in Q_0} \) on the individual bundles \(\mathcal{E}_v \). Let \(\rho \) and \(\sigma \) be collections of real numbers \(\rho_v \) and \(\sigma_v > 0 \). The harmonicity equation on \((h_v)_{v \in Q_0} \) (e.g. the moment map equation) is called twisted quiver \((\rho, \sigma) \)-vortex equation, and it is:
\[
\forall v \in Q_0 : \quad \sigma_v \sqrt{-1} \Lambda F_{H_v} + \sum_{a \in s^{-1}(v)} \phi_a \circ \phi_a^{H_a} - \sum_{a \in t^{-1}(v)} \phi_a^{H_a} \circ \phi_a = \rho_v \text{id}_{\mathcal{E}_v} ,
\]
where \(\Lambda \) is the contraction with the bivector field \((\omega_X^{1,1})^{-1} \), and \(F_H = (F_{H_v}) \) is the curvature corresponding to the metric \(H = H_v \), \(\forall v \in Q_0 \). Here the compositions on the l.h.s. are defined as
\[
\phi_a \circ \phi_a^{H_a} : \mathcal{E}_{s(a)} \to M_a \otimes \mathcal{R}_{t(a)} \to \mathcal{E}_{s(a)} , \quad \phi_a^{H_a} \circ \phi_a : \mathcal{E}_{t(a)} \to M_a \otimes \mathcal{E}_{s(a)} \to \mathcal{E}_{t(a)} .
\]

A special case of the above vortex equation is when \(Q \) is one vertex \(v \) with one loop \(a \), and map \(M_a \otimes \mathcal{E}_v \to \mathcal{E}_v \) gives a map from \(M := M_a \) to commuting endomorphisms of \(\mathcal{E} := \mathcal{E}_v \). Such an object can be interpreted as a coherent sheaf on the total space of the dual bundle \(M^* \) with \(\dim_X \) -dimensional support which is proper and finite over \(X \), and such that the direct image to \(X \) is a vector bundle. In the case \(M = T_X \) this is equivalent to the Hitchin equation. When \(\dim_X = 2 = M = \wedge^2 T_X^\mathbb{C} \) we get Vafa-Witten equation, and when \(n = \dim_X > 2 \) and \(M = \wedge^n T_X^\mathbb{C} \) we get a generalization of Vafa-Witten equations considered by one of us (G.B.) in an unpublished manuscript. In all these examples the total space of \(M^* \) is a non-compact Calabi-Yau space in the algebroid-geometric sense, i.e. it is endowed with a non-vanishing holomorphic volume form.

Remark 6.1. For any quiver \(Q \) and a collection of bundles \(M_a \) labeled by the arrows of \(Q \) one can construct a new quiver \(Q' \) with the same set of vertices \(Q'_0 = Q_0 \) and with exactly one edge \(a'_{ij} \) for every ordered pair \((i, j)\) of vertices. The new bundles \(M'_{ij} \) can be defined as the direct sums
\[
M'_{ij} := \oplus_{a \in Q_1 : s(a) = i, t(a) = j} M_a .
\]

There is an obvious equivalence between the \(M \)-twisted \(Q \)-bundles and the \(M' \)-twisted \(Q' \)-bundles, and the corresponding harmonic metrics. Nevertheless, for bookkeeping purposes, it is more convenient to work with the original description.
6.3.2. **Nahm’s equation.** The algebra C is $C^\infty(X)$ where X is a 1-dimensional manifold. The bimodule is supported on the diagonal and is $\Gamma(X, T_X^* \otimes \mathbb{R}) \oplus C^\infty(X)$, looks like the tensor product of 1-forms on X and the quiver with one vertex and one loop. The equation for harmonic representatives is exactly Nahm equation for the group $U(k)$: $\dot{A}_i = \epsilon_{ijk}[A_j, A_k]$ where $A_i = -A_i^\dagger \in Mat(k \times k, \mathbb{C})$ are functions of time.

6.4. **Noncommutative instantons.** Ignoring the problem related to the noncompactness of the noncommutative space \mathbb{R}^2_n, the corresponding framework is the following. The algebra A is certain C^∞-version of the algebra generated by generators z_1, \ldots, z_n and their Hermitian conjugates z_1^*, \ldots, z_n^* satisfying relations\footnote{One can further generalize these relations and get holomorphic noncommutative spaces, via replacing (6.7) by $[z_i, z_j] = c_{ij}$ and $[z_i^*, z_j^*] = -\Sigma_{ij}$ where $(c_{ij})_{1 \leq i, j \leq n}$ is any skew-symmetric complex $n \times n$ matrix.} (6.7)

$$[z_i, z_j] = 0, \quad [z_i^*, z_j^*] = 0,$$

(6.8)

$$[z_i^*, z_j] = \hbar \delta_{ij}.$$

The algebra A is endowed with commuting derivations $\partial_1, \ldots, \partial_n$ and $\overline{\partial}_1, \ldots, \overline{\partial}_n$ given by (6.9)

$$\partial_i(z_j) = \overline{\partial}_i(z_j^*) = \delta_{ij},$$

(6.10)

$$\overline{\partial}_i(z_j^*) = \partial_i(z_j) = 0.$$

A noncommutative HYM instanton is a finitely-generated projective A-module E endowed with a A-valued Hermitian form (see (3.11))

$$H : E \otimes \mathbb{C} E \to A, \quad H(f \phi_1, g \phi_2) = f \cdot H(\phi_1, \overline{\phi}_2) \cdot g^*$$

endowed with \mathbb{C}-linear endomorphisms $\nabla_1, \ldots, \nabla_n$ and $\overline{\nabla}_1, \ldots, \overline{\nabla}_n$ satisfying relations (6.12)

$$[\nabla_i, \nabla_j] = [\nabla_i, \nabla_j^*] = 0,$$

(6.13)

$$[\nabla_i, z_j] = [\nabla_i, z_j^*] = \delta_{ij},$$

(6.14)

$$[\overline{\nabla}_i, \overline{\nabla}_j] = [\overline{\nabla}_i, \overline{\nabla}_j^*] = 0,$$

(6.15)

$$\sum_{i=1}^n [\overline{\nabla}_i, \nabla_i] = 0,$$

and (6.16)

$$H(\overline{\nabla}_i(\phi_1), \overline{\phi}_2) + H(\phi_1, \overline{\nabla}_i(\overline{\phi}_2)) = \overline{\partial}_i(H(\phi_1, \overline{\phi}_2)).$$

6.5. **From noncommutative HYM to infinite-dimensional King’s equation.** The algebra A has a positive functional (state) $\int_\rho : A \to \mathbb{C}$ (depending on arbitrary constant $\rho > 0$) satisfying

$$(6.17) \quad \int_\rho aa^* \geq 0 \quad \forall a \in A$$

and given by

$$\int_\rho \prod_i z_i^{-k_i} \prod_i (z_i^*)^{l_i} = \prod_{i=1}^n \delta_{k_i, l_i} \rho^{k_i l_i}.$$

One can check using (6.18) that one has $\forall a \in A$, $\forall i \in \{1, \ldots, n\}$:

$$\int_\rho \overline{\nabla}_i(a) = \frac{1}{\rho + \hbar} \int_\rho a \cdot z_i,$$

$$\int_\rho z_i \cdot a = \frac{\rho}{\rho + \hbar} \int_\rho a \cdot z_i.$$
Let us introduce a non-negative \mathbb{C}-valued pre-Hermitian pairing on E by

$$\langle \phi_1, \phi_2 \rangle := \int_{\rho} H(\phi_1, \overline{\phi_2}).$$

We conclude from (6.16) and (6.19) that

$$\langle \nabla_i \phi_1, \phi_2 \rangle = \int_{\rho} H(\nabla_i(\phi_1), \overline{\phi_2}) = \int_{\rho} \nabla_i(H(\phi_1, \overline{\phi_2})) - \int_{\rho} H(\phi_1, \nabla_i(\overline{\phi_2})) = \frac{1}{\rho + \hbar} \int_{\rho} H(\phi_1, \overline{\phi_2}) \cdot z_i - \langle \phi_1, \nabla_i(\phi_2) \rangle = \langle \phi_1, \frac{1}{\rho + \hbar} z_i^* \cdot \phi_2 - \nabla_i(\phi_2) \rangle.$$

Also, it follows from (6.20) that

$$\langle z_i \cdot \phi_1, \phi_2 \rangle = \int_{\rho} H(z_i \cdot \phi_1, \phi_2) = \int_{\rho} z_i \cdot H(\phi_1, \phi_2) = \frac{\rho}{\rho + \hbar} \int_{\rho} H(\phi_1, \phi_2) \cdot z_i = \langle \phi_1, \frac{\rho}{\rho + \hbar} z_i^* \cdot \phi_2 \rangle.$$

Let us introduce operators in the Hilbert space \mathcal{H} which is the completion of E with respect to $\langle \cdot, \cdot \rangle$:

$$Z_i = z_i - \rho \nabla_i.$$

The equations (6.22) and (6.23) imply that

$$Z_i^\dagger = \rho \nabla_i.$$

Finally, using (6.13) and (6.15) we conclude that

$$\sum_{i=1}^{n} [Z_i^\dagger, Z_i] = \rho \cdot n \cdot \text{id}_\mathcal{H}.$$

Consider the subspace $\mathcal{H}_0 \subset \mathcal{H}$ which the common kernel of operators ∇_i, $i = 1, \ldots, n$. This subspace is preserved by the operators z_i, hence it is preserved by the operators Z_i. We claim (the argument in not totally rigorous) that $\mathcal{H}_0 \subset \mathcal{H}$ is also preserved by the adjoint operators Z_i^\dagger. Indeed, it is the case when E is the trivial bundle of rank one (in this case \mathcal{H}_0 is a completion of $\mathbb{C}[z_1, \ldots, z_n]$). In general, let us consider the orthogonal decomposition

$$\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1, \quad \mathcal{H}_1 := \mathcal{H}_0^\perp.$$

In this splitting we have for any $i = 1, \ldots, n$:

$$Z_i = \begin{pmatrix} Z_{i00}^0 & Z_{i01}^0 \\ 0 & Z_{i11}^1 \end{pmatrix}, \quad Z_i^\dagger = \begin{pmatrix} (Z_{i00}^0)^\dagger & 0 \\ (Z_{i01}^1)^\dagger & (Z_{i11}^1)^\dagger \end{pmatrix}.$$

We conclude that

$$\sum_i [Z_i^00]^\dagger, Z_i^{00}] + \sum_i (Z_i^{01})^\dagger Z_i^{01} = \rho \cdot n \cdot \text{id}_{\mathcal{H}_0}.$$

For each i the operator $[Z_i^{00}, Z_i^{00}] - \rho \cdot \text{id}_{\mathcal{H}_0}$ is of trace class, hence its trace is equal to zero (reasoning: the trace does not change by small deformations). Together with (6.29) this vanishing of traces implies that

$$\sum_i \text{Trace}((Z_i^{01})^\dagger Z_i^{01}) = 0,$$

and therefore all operators Z_i^{01} vanish. Hence, the equation (6.26) holds on \mathcal{H}_0 as well. This concludes the argument.
7. Acknowledgements

The first author acknowledges the financial support from Fondation CFM pour la Recherche, Institut des Hautes Études Scientifiques for their hospitality. He thanks his first mathematics teacher in high school, Shri Susanta Kumar Brahma, he also thanks Professor Ranendra Narayan Biswas, Professor Mandar Mitra, Professor Athanase Papadopoulos, Professor Yuri Manin, Professor Igor Volovich, Professor Francois Laudenbach, Professor Valentin Poenaru, and Professor Pierre Cartier for useful discussions and help of various kinds.

The second author thanks Nikita Nekrasov for the introducing him to the beautiful equation [6.26] many years ago.

Both authors thank Frederic Paulin for the remarks he made and his interest to the paper.

References

[1] Connes, A; Douglas, M. R., Schwarz, A. Noncommutative geometry and Matrix theory, JHEP 9802(1998), 003.
[2] Álvarez-Cónsl, L.; García-Prada, O., HitchinKobayashi correspondence, quivers, and vortices, Comm. Math. Phys. 238, 133 (2003).
[3] Arnlind, Joakim; Hoppe, Jens; Kontsevich, Maxim, Quantum Minimal Surfaces, arXiv:1903.10792.
[4] Atiyah, Michael Francis; Drinfeld, V. G.; Hitchin, N. J.; Manin, Yu. I., Construction of instantons, Phys. Lett. A, 65 (3): 185187 (1978).
[5] Atiyah, Michael Francis; Hitchin, N. J., The Geometry and Dynamics of Magnetic Monopoles, Porter Lectures Series, 1988, Princeton University Press.
[6] Bando, S.; Siu, Y.-T., Stable sheaves and Einstein-Hermitian metrics, Geometry and analysis on complex manifolds, 3950, World Sci. Publ., River Edge, NJ 1994.
[7] Donaldson, Simon, Instantons and Geometric Invariant Theory, Comm. Math. Phys., 93, 453-460 (1984).
[8] Donaldson, Simon, Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. LMS 50 (1985), 1-26.
[9] Furuuchi, K., Instantons on noncommutative R^4 and projection operators, Prog. Theor. Phys. 103, 1043 (2000).
[10] Haiden, Fabian; Katzarkov, Ludmil; Kontsevich, Maxim; Pandit, Pranav, Iterated logarithms and gradient flows, arXiv:1802.04123.
[11] Kempf, G.; Ness, L., On the lengths of vectors in representation spaces, Springer LNM 732 (1982) 233243.
[12] King, A.D., Moduli of representations of finite dimensional algebras. Quart. J. Math. Oxford 45, 515 530 (1994).
[13] Mumford, David, Fogarty; John, Kirwan, Frances, Geometric Invariant Theory third edition, Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge, Volume 34, 1994, Springer-Verlag.
[14] Nekrasov, Nikita A., Noncommutative instantons revisited Comm. Math. Phys. 241, 143-160 (2003).
[15] Nekrasov, N.; Schwarz, A.: Instantons on noncommutative R^4, and $(2,0)$-superconformal six dimensional theory, Comm. Math. Phys. 198, 689703(1998).
[16] Uhlenbeck, K.K.; Yau, S.T., On the existence of HermitianYangMills connections on stable bundles over compact Kähler manifolds, Comm. Pure and Appl. Math. 39S (1986) 257293; 42 (1989) 703707.

Institut des Hautes Études Scientifiques, 35 route de Chartres, Laboratoire Alexander Grothendieck, F-91440, Bures-sur-Yvette, France.

E-mail address: bhattacharya@ihes.fr, gourabmath@gmail.com
E-mail address: maxim@ihes.fr