Effect of Soil Mulching and Cobalt on Growth and Yield of (Phaseolus Vulgaris L.) Under Protected Conditions

Faez Drfeel Hatamman¹ and Abdullah A.A Abdullah²

¹,²Department of Horticulture and Garden Engineering, Faculty of Agriculture, Basra University, Iraq.

Email: drfeelфаэz1992@gmail.com
Email: drabdullah648@gmail.com

Abstract

The study was conducted during the winter season 2021 at the Agricultural Research Station of the College of Agriculture, University of Basra. In order to study the effect of soil Mulching and the addition of cobalt on the growth and green yield of green bean plants grown under greenhouses conditions, the experiment included 12 factorial treatments, which consist of the four types of plastic coverings (black, white, transparent and without Mulching) and three concentrations of cobalt as a cobalt sulfate (zero, 5 and 10) ml g L⁻¹, as the Mulching with white plastic achieved the best results in most of study parameters. The addition of cobalt at concentrations 5 and 10 ml g L⁻¹ recorded the best values in plant height, number of leaves, leaf area and number of root nodes, and white and black caps also outperformed in pod weight, yield of plant green pods, total yield of green pods and pod length. The white cover achieved the best value in the percentage of protein of seeds, while the transparent cover was recorded best value in the percentage of dry matter in the seeds. Foliar cobalt application of concentrations 5 and 10 mlg L⁻¹ recorded best value in pod weight and per the yield of pods. Plant yield, pod diameter and the percent of dry matter in the seeds, and the concentration of 5 mlg L⁻¹ achieved the highest value in the number of pods and protein content in the seeds.

Keywords: Cobalt, Green beans, Soil Mulching, Vegetable growth.

1. Introduction

Green beans (Phaseolus vulgaris L.) to fabaceae, one of the world's most widely spread vegetable crops with a high nutritional and medical value, it is green thrones per 100 g of which contains 90.14. G water, 2.31 g protein, 0.5 g fat, 6.41 g carbohydrate, 3.4 g fiber gives 33 calories plus mineral elements (calcium, iron, magnesium, phosphorus, potassium, sodium, copper and manganese) and a range of vitamins(C, B1, B2, B3) [1]. It is important in improving the soil's natural, chemical and vital properties [2]. The agricultural cycles is important to increase the soil fertility and stabilization of nitrogen [3,4]. It is known that the plants of the legumes family are characterized by their ability to stabilize atmospheric nitrogen through the root nodes resulting from the infection of rhizobium [5], rhizobium bacteria and in a co-existing way as legumes are equipped with nitrogen in ammonia form used in events The different vitality of the plant [6]. Green beans are considered to be legumes plants that are inactive of the nitrogen stabilization so it has been found that the addition of cobalt gives good results through the activation of enzymes that help increase the activity of vitamin B12. What matters is in the work of bacteria installed for the atmospheric nitrogen Biological [7].

many studies confirmed the role of Mulching and cobalt addition in improving the growth and yield, [8], he indicated when treating bean plants in the stage of three real leaves With irrigation water with different concentrations of cobalt (0.4, 8, 12,16,20) ppm, the concentrations exceeded 12.16 ppm significantly in plant height, the number of leaves, soft and dry weight of the vegetable, total and the yield of pods, and between [9], to add Cobalt with a concentration of 20 ppm caused a significant increase in the number of pods in the plant and in the total crop of seeds, the soil mulching with black cover gave significant differences in the number of pods in the plant, the length and diameter of the pod, the number of seeds in the pod and the total yield of the pods. Because of the lack of studies in in Iraq about the impact of cobalt addition, soil Mulching. Therefore the study was conducted in Basra province to study the soil Mulching in different types in the growth and yield of bean plants grown in plastic houses conditions of Basra.
2. Materials and Methods

The experiment was carried out during the winter season 2021-2020 Faculty of Agriculture at Basra University, where the land of the plastic house was well plowed and sterilized by solar sterilization and then irrigated. The soil was ploughed to prepare and divided. Then add the decomposing cattle residues to the lines before planting and while preparing the soil of chemical fertilizer was added super calcium phosphate (45%) at the rate of 27 kg to each plastic house\(^1\), the irrigation system was installed drip system, the seeds were grown directly on 2020/10/15, at a depth of 6 cm and Mulching was prepared with holes, then cobalt added with irrigation system after 2 weeks of planting, NPK fertilizers were added based on recommendation with irrigation system.

Study included 2 factors, the first factor Mulching with 4 levels (black, white, transparent, without Mulching) and the second factor cobalt addition with three concentrations (5, 10 mgL\(^{-1}\) and control), and the experimental units was 36 units. The experiment was conducted based on split plot according to (R.C.B.D.) design, where the main plot types of soil Mulching, while the sub plot cobalt levels. The results of the statistically analyzed and compared to L.S.D test at the level of 0.05 [10], using genstat 2008 statistical analysis.

3. Results and Discussion

Table 1,2,3,4 showed that soil Mulching, cobalt addition and overlap between them significantly affected on studied parameters, the Mulching of white plastic has been achieved the best value in Plant highest, Number of leaves plant\(^{-1}\), leave area (dcm2), Weight of the pod (plant\(^{-1}\)), Protein ratio in seeds (%).The plant yield of pods (g) while the black mulching recorded the best value in leave area, Number of pods, the cobalt concentration of 5 mg.L\(^{-1}\) achieved the highest values in Plant highest, Number of leaves plant\(^{-1}\), Root nodes number\(^{-1}\), Number of pods, Protein ratio in seeds, while the concentration 10 mg.L\(^{-1}\) achieved the best values in Leave area, Pods Weight, yield of plant g. Tables 1,2,3,4 confirmed that overlap interaction recorded a significant affect in most of study parameters, the treatment of white mulching *Cobalt 10 mg.L\(^{-1}\) achieved the best value in Plant height, Number of leaves, leave area, Pods Weight, The yield of plant while the treatment mg.L\(^{-1}\) *Black mulching achieved the highest value in number of root nodes and Number of pods.

Table 1. The effect of Mulching and cobalt treatment in plant height (cm) and the number of leaves (plant leaf\(^{-1}\)) for green beans.

Transaction	Plant height (cm)	Number of leaves plant\(^{-1}\)
without Mulching	248.6	19.44
Transparent	255.1	18.56
White	285.3	24.00
Black	267.0	22.78
LSD (0.05)	11.11	1.38
Zero	253.8	17.42
Cobalt mgl.L\(^{-1}\)		
5	271.6	23.17
10	266.7	23.00
LSD (0.05)	11.24	1.49
without Mulching	209.7	15
5	249.0	21
10	287.0	22.33
Zero	250.0	17.67
5	279.7	20
Transparent		
10	235.7	18
Zero	274.7	18
5	289.0	25.33
Overlap between Mulching and Cobalt		
White		
10	292.3	28.67
Zero	280.7	19
Black		
5	268.7	26.33
10	251.7	23
LSD (0.05)	20.29	2.67
Table 2. The effect of Mulching, cobalt spraying and their overlaps in the leave area (cm2 plant$^{-1}$) and the number of root nodes (plant$^{-1}$) of green beans.

Transaction	Leave area cm2	Root nodes number$^{-1}$
	without Mulching	
Mulching		
Transparent	28.91	23.89
White	19.64	20.44
Black	45.22	21.44
Black	41.42	21.78
LSD (0.05)	4.76	NS
Cobalt ml.L$^{-1}$		
Zero	25.49	7.33
5	37.69	32
10	38.21	25
LSD (0.05)	4.31	4.63
	Zero	21.55
without Mulching	26.45	7.67
5	26.74	38
Zero	21.40	7.33
5	17.13	45
Transparent	10	20.37
Zero	27.56	7.33
5	49.49	32
Overlap between Mulching and Cobalt		
White		
Zero	58.63	25
10	58.63	25
Zero	31.45	6.67
5	57.70	41.33
Black	35.12	17.33
LSD (0.05)	7.99	8.27

Table 3. The effect of Mulching, cobalt spraying and their overlaps in the total number of pods (plant$^{-1}$) and the weight of the pod (plant$^{-1}$) of green beans.

Transaction	Number of pods	Pods Weight (plant$^{-1}$)
	without Mulching	
Mulching		
Transparent	20.11	7.72
White	20	7.10
Black	23.22	8.74
Black	27.22	7.90
LSD (0.05)	2.27	0.98
Cobalt ml.L$^{-1}$		
Zero	20.83	7.20
5	25.50	7.84
10	21.58	8.55
LSD (0.05)	3.19	0.84
	Zero	22.67
without Mulching	5	6.07
10	21.67	7.75
Zero	16	9.33
5	18.67	7.19
10	21.33	7.05
Transparent	10	7.07
Zero	20	7.67
5	20.67	8.41
Overlap between Mulching and Cobalt		
White		
Zero	22	7.86
5	38.33	8.15
10	21.33	7.68
LSD (0.05)	5.48	NS
Table 4. The effect of Mulching, cobalt spraying and their interference in the protein ratio in seeds and the yield of one plant green pods for green beans.

Transaction	Protein ratio in seeds (%)	The yield of plant g	
without Mulching	Transparent	11.41	149.2
	White	11.75	141.1
	Black	20.71	200.2
	LSD (0.05)	10.86	181.2
	Zero	1.11	30.34
	5	13.92	148.6
	10	15.05	174.4
	LSD (0.05)	12.08	180.8
Cobalt ml.L⁻¹	0.72	13.16	
	5	8.28	137.3
	10	12.31	166.3
	LSD (0.05)	12.65	144.0
	Zero	12.50	134.5
	5	9.89	148.0
Transparent	10	12.86	141.3
	LSD (0.05)	10	14.53
	Zero	25.73	153.3
	5	24.50	173.3
Overlap between Mulching and Cobalt	1.50	34.29	
White	10	11.90	274.0
	LSD (0.05)	9.18	169.7
	Zero	12.50	210.0
	5	10.90	164.0
Black	10	1.50	34.29

Tables (1,2) show that Mulching has had a significant impact on plant height, number of leaves and paper area, that may be due to soil Mulching increases the temperature, which stimulates the total radical to increase the absorption of water and nutrients which produced the plant hormones such as gibberellins and cytokines that have an impact on the strength of vegetable growth [11]. The Mulching reduces moisture loss due to maintaining a regular soil content along the soil and depths, which provides a suitable conditions for the growth of roots as well as reducing the growth of weeds [12,13], which accelerates the growth of the soil. The addition of cobalt has significantly affected in plant height, number of leaves and leave area, may be due to the role of cobalt, which inhibits the action of ethylene and increases the efficiency of growth-promoting hormones such as Auxins, Gibberellins and cytokines and improved readiness and movement of nutrients [14], which has positively affected the characteristics of the vegetative group. Cobalt also reduces the loss of water from leaves by preventing Wilted and increasing the efficiency of water consumption within plant cell tissues,. These results are consistent with his findings [15-18].

Cobalt has significantly affected the number of nodes and the increase in the number of root nodes may be attributed to the role of cobalt, involved in the formation of vitamin B12, which is important in the formation of root nodes on the roots of legumes plants, thereby increasing the number of root nodes in plants, which the plant's ability to stabilize atmospheric nitrogen increases [19], as well as for the role of cobalt In its participation in many physiological and chemical processes that take place within the plant, which reflected the increased ability of the plant to absorb nutrients and make it easier to distribute to the constituent estuaries [20], by increasing plant height leave area (Table 1 and 2) in succession, which has positively affected the yield (tables 3,4).

Tables (3,4) clear that Mulching affected on the yield parameters, may be due to these differences because the Mulching provided a suitable conditions s for plant growth through, improving its physical and chemical properties, and increasing their ability to retain water and nutrients and facilitate their absorption by the plant [21-23].
Conclusions

The white and Black mulching have been achieved the highest values in yield parameters compared to other mulching, both of cobalt concentrations 5 and 10 mg L\(^{-1}\) achieved the best results compared to control treatment.

References

[1] Abu Dahi, Youssef Muhammad and Muayyad Ahmad Al-Younes. 1988. Plant Nutrition Handbook. Ministry of Higher Education and Scientific Research. Baghdad University. p: 410.
[2] Al Rayes, Abdul Hadi Jawad (1987) Plant Nutrition Part Two, University of Baghdad, Ministry of Higher Education and Scientific Research. P: 253.
[3] AL-Bayati, H.J., Ibraheem F.F., Allela,W.B. and D. K.A. Al-Taey .2019. ROLE OF ORGANIC AND CHEMICAL FERTILIZER ON GROWTH AND YIELD OF TWO CULTIVARS OF PEA (PISUM SATIVUM L.). Plant Archives Vol. 19, Supplement 1, 2019 pp. 1249-1253.
[4] Al-Masoum, Ahmed Abdel-Rahman (1996). The role of ground covers (Mulches) in the production of vegetables in dry areas. Emirates Journal of Agricultural Sciences, 8: 1-25.
[5] Al-Rawi, Khasha Mahmoud and Abdulaziz Muhammad Khalaf Allah. (1980). Design and analysis of agricultural experiments (Dar Al-Kutub Institution for Printing and Publishing, University of Mosul, Iraq): p. 488.
[6] Al-Sahaf, Fadel Hussein, Muhammad Zaidan Khalaf Al-Mohareb and Ahmad Hammoud Mahmoud (2012) Response of cowpea to methods of addition and concentrations of cobalt. Iraqi Journal of Agricultural Sciences 58-53: (643).
[7] Al-Taey, D. K. A. (2017). Alliation of Salinity Effects by Poultry Manure and Gibberellin Application on growth and Peroxidase activity in pepper. International Journal of Environment, Agriculture and Biotechnology ;2(4) 1851-1862 http://dx.doi.org/10.22161/ijeab/2.4.49
[8] Al-Taey, D. K. A., S. S. M. Al-Azawi, M. J. H. Al-Shareefi, and A. R. Al-Tawaha (2018) Effect of saline water, NPK and organic fertilizers on soil properties and growth, antioxidant enzymes in leaves and yield of lettuce (Lactuca sativa var. Parris Island) Res. Crops 19 : 441-449. DOI: 10.31830/2348-7542.2018.0001.14
[9] Al-Taey, D.K.A., Mijwel A.K. and Al-Azawy S.S. 2018. Study efficiency of poultry litter and kinetin in reduced effects of saline water in Vicia faba. Research J. Pharm. and Tech. 2018; 11(1): 294-300.
[10] Al-Taey, D.K.A., M.J.H. Al-Shareefi, A.K. Mijwel, A. RZ. Al-Tawaha, and A. RM. Al-Tawaha.(2019). The beneficial effects of bio-fertilizers combinations and humic acid on growth, yield parameters and nitrogen content of broccoli grown under drip irrigation. Bulgarian Journal of Agricultural Science, 25 (5), 959–966.
[11] Al-Taey, D.K.A.; Al-Janabi A.S.H. and Rachid A.M. (2017). Effect of water salinity, Organic and minerals fertilization on growth and some nutrients elements in cabbage Brassica oleracea varaparipate. Babylon Journal of Pure and Applied science, 25(6): 2046-2064, https://www.journalofbabylon.com/index.php/JUBPAS/article/view/300/152
[12] Al-Tamimi, Jamil Yassin. 2010. Effect of Bacterial and Cobalt Pollination on Growth, Yield and Chemical Characteristics of Trigonella foenum-graecum L., Tikrit Journal of Agricultural Sciences Vol. 15 No. (1) p.: 228-238.
[13] Awomi,T.A, A.K.Singh, M.Kumar and L.J.Bordolou. (2012). Effect of phosphorus, Molybdenum and Cobalt Nutrition on yield and Quality of Mung bean (Vigna radiate L.) in Acidic Soil of North east India. India Journal of Hill Farming 25(2): 22-26.
[14] Gad, N. and H. Kandil .2009. The influence of cobalt on sugar Beet (Beta vulgaris L.) production.inter. j.of Academic Rese.1(2)52
[15] Gad, N., M E.Fekry Ali M.M. Abbas and M R. Abdl Al Rayes (2002). Effect of mulching on growth and yield of potato crop (Solanum tuberosum L.). Asian Journal of Plant Sciences 26: (6)500.
[16] Gad, N. and H. Kandil .2009. The influence of cobalt on sugar Beet (Beta vulgaris L.) production.inter. j.of Academic Rese.1(2)52
[17] Gad, N., M.E. fekry Ali M.M. Abbas and M R. Abd- Moez (2018). Maximization of drought tolerance of bean plant using cobalt supplementation. A-Growth, yield and nutritional status. Middle East J. Agri. Res. 7 (4): 1818-1826.
[18] Gad, N.M E.Fekry Ali,Land S.D.Abou-Hussein.(2017).Improvement of Faba bean (Vicia faba L.) Productivity by using cobalt and different levels of compost under new reclaimed lands.Middle East J. of Applied Sci.Vol 07(03):493-500.
[19] Hala and Kandil.(2007). Effect of Cobalt Fertilizer on Growth, Yield and Nutrients Status of Faba Bean (Vicia faba L.) Plants. Journal of Applied Sciences Research, 3(9): 867-872.
[20] kandil, H.; I.M. Farid and A. El Maghraby (2013). Effect of Cobalt level and nitrogen source on quantity and quality of soybean plant.J. Basic. A. appl. sci., Res., 3(12): 185-192.
[21] Lamont , W.J. (1993). Plastic mulches for production of Vegetable crop Horticulture Technology , (3) : 35 – 39.
[22] Mahmoud, M.M; K. Farooq; A. Hussain and R. Sher (2002). Effect of mulching on growth and yield of potato crop (Solanum tuberosum L.)., Asian Journal of Plant Sciences , 1 (2): 132-133.
[23] Mattloob, Adnan Nasser and Izz al-Din Sultan Muhammad and Karim Saleh(1989) Vegetable Production, Ministry of Higher Education and Scientific Research, University of Mosul, p. 336.
[24] Postagate , j.R.(1982). The Fundamentals of nitrogen fixation . Cambridge Univ. Press.