Ecomorphological patterns in otoliths of tropical fishes: assessing trophic groups and depth strata preference by shape

Ivan O. Assis · Victor E. L. da Silva · Daniele Souto-Vieira · Alfredo P. Lozano · Alejandra V. Volpedo · Nidia N. Fabré

Received: 11 January 2019 / Accepted: 17 February 2020
© Springer Nature B.V. 2020

Abstract The morphology and morphometry of otoliths have emerged as powerful indicators of ecological characteristics of fishes. However, shape descriptors that can accurately predict well-documented functions played by species in tropical ecosystems are either restricted to a few groups or poorly known. Therefore, we evaluated the power of two otolith shape descriptors (ecomorphological indexes and Fourier harmonics) in discriminating trophic and depth strata preference groups of tropical fish species. Differences in otolith shape of ecological groups were visualized by linear discriminant analysis (LDA), and tested by a jack-knife cross-validation method and permutational multivariate analysis of variance (PERMANOVA) for both methods. Visually and statistically, both descriptors were good predictors of trophic groups and depth preference categories (PERMANOVA, p < 0.05). Overall jack-knifed classification success between both descriptors were very similar, with harmonics correctly classifying 90.38% of assigned trophic groups and 75.96% of given depth preference categories, against 82% and 56.25% of ecological indexes, respectively. Our results suggest that Fourier descriptors and ecomorphological indexes of otoliths should be used as functional traits in future studies, as otolith shape provides a wider range of ecological information regarding feeding habitat, mobility, substrate association and water column use.

Keywords Ecological indicators · Feeding habit · Functional diversity · Sagittae · Surrogate

Introduction

Many dimensions of a species’ niche can be assessed by the identification of relationships between morphological variation and ecological performance of organisms (Williams 1972; Winemiller 1991; Norton et al. 1995). Indeed, ecomorphological patterns found in body structures have provided numerous insights about some of the oldest issues in biology, especially in the understanding of competitive and coevolution mechanisms, and the performance capability of species (Losos 1990; Wainwright and Richard 1995; Tulli et al. 2011). In fishes, for example, the eye size and length of digestive tract have been associated to differences in foraging behavior (Watson and Balon 1984; Soares et al. 2013), the body shape has been used as a predictor of mobility in tropical species (Micheli and Halpern 2005; Passos et al. 2016; Souza et al. 2018), the relative body height is related to the fish ability to move vertically (Pouilly et al. 2003), and otolith morphology have helped to understand water-column use by species and association

I. O. Assis · V. E. L. da Silva · D. Souto-Vieira · A. P. Lozano · N. N. Fabré
Laboratory of Ecology, Fishes and Fisheries, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
e-mail: lopesdasilvavictor@gmail.com

A. V. Volpedo
Institute of Animal Production Research, Faculty of Veterinary Sciences, University of Buenos Aires, Buenos Aires, Argentina

Published online: 02 March 2020
with different types of substrate (Volpedo and Echeverría 2003).

Otoliths, in particular, have been shown as good predictors of ecological characteristics of species due to their variability in shape that may result from - or be associated to - many factors (Schulz-Mirbach et al. 2006). These calcium carbonate structures are found in the inner ear of fishes, being formed and shaped throughout the life history of species by the deposition and interaction of organic matrix fibers and carbonate crystals (Morales-Nin 2000). The layer deposition process results in the formation of translucent and opaque rings as well as microscopic zones – growth increments – (Secor et al. 1992), and the overall shape of otoliths is dually regulated by genetics and the environmental history experienced by species (Lombarte and Lleonart 1993). Moreover, since otoliths are metabolically inert, elements and compounds deposited onto their growing surface produce permanent records of fishes’ life cycle (Campana 1999), allowing these structures to be used as natural tags.

In Teleostei fishes, otoliths have many functions, mainly related to the sound detection (Fay and Popper 1974), notion of acceleration (Flock and Goldstein 1978) and water column positioning of the fish. The environmental sensorial perception of sagittae otoliths in non-ostariophysian fishes and its ecological implications have been vastly discussed in literature (Aguirre and Lombarte 1999; Volpedo and Echeverría 2003; Tuset et al. 2003; Volpedo et al. 2008). For Schulz-Mirbach et al. (2019), otolith mass and overall shape may be associated with the auditory function of fishes as different otolith shapes may affect the endolymph flow dynamics and how the sensory epithelium functions in the semicircular canals. Therefore, if a fish has simple movements, a more spherical or ellipsoidal otolith is expected, whereas an increase in shape complexity of otoliths may be associated with higher mobility (Schellart and Popper 1992). In addition, the shape and extent of the acoustic sulcus may also play an important role in fish ecology due to its close relationship with the auditory ability (Schulz-Mirbach et al. 2010; Lombarte and Tuset 2015; Tuset et al. 2016b). Lombarte and Fortuño (1992) evaluated the ratio between sulcus size (as a proxy for the macula size) and otolith size, finding correlation with the depth of the water column, whereas Aguirre and Lombarte (1999) related sulcus with the type of food and habitat used by fishes.

Although it has been discussed by many authors that otolith shape is a species-specific feature that results from the phylogenetic history of species (Wilson 1985), new studies have shown that it may also reflect patterns in the use of resources and habitats by different groups (Aguirre and Lombarte 1999; Nonogaki et al. 2007). This occurs because variability in otolith shape may result from many factors related to fish ecology, such as substrate type (Volpedo and Cirilli 2006), feeding habit (Nonogaki et al. 2007), ontogenetic shifts (Pérez and Fabré 2013) and environmental conditions – e.g. temperature and depth – (Lombarte and Lleonart 1993). Indeed, the morphology of these structures has recently been used as an indicator of roles that organisms play within ecosystems (Tuset et al. 2016a). Nevertheless, the use of otolith morphology as a functional trait – features that strongly influence organismal performance and/or individual fitness (McGill et al. 2006) – has been restricted to a few groups and species (Tuset et al. 2016a; Quinn 2018). For instance, the current knowledge on which descriptors of otolith shape can be related to well-documented functions played by fishes in tropical ecosystems is very scarce (Tuset et al. 2015).

Although there are several tools used to describe external contour and morphological patterns of otoliths – i.e. geodesic methods (Benzinou et al. 2013), wavelet functions (Sadighzadeh et al. 2014), Fourier descriptors (Tracey et al. 2006), ecomorphological indexes (Volpedo and Echeverría 2003) and geometric morphometric analysis (Ramírez-Pérez et al. 2010) –, in some cases, the biological interpretations of results may be complex because of their mathematical foundations (Stransky and MacLellan 2005). While a few advances have been achieved in the establishment of relationships between otolith shape and habitat and water column use by species (Galley et al. 2006; Jaramilo et al. 2014), the link of otolith shape to other ecological characteristics, such as feeding behavior is still poorly understood, especially for tropical fish species.

According to Gagliano and McCormick (2004), describing patterns in otoliths that reflect the feeding history of species can be a difficult task due to the intricate processes that influence otolith growth and shape. For instance, many factors that can affect feeding strategies of species – i.e. depth preference and use of substrate type – have also an impact on otoliths (Allen et al. 2006), making necessary to take a closer examination on different features of otolith morphology to identify patterns that can accurately be linked to species’ feeding ecology. The identification of such patterns might be a key element in the development of new approaches for
functional ecology (Tuset et al. 2016a), especially for species in tropical regions where studies of feeding ecology are often difficult to be carried out due to the great diversity of prey items consumed by species and high niche differentiation among and within species (Nonogaki et al. 2007; Davis et al. 2012; da Silva and Fabré 2019).

In this context, the present study aims to test whether descriptors of otolith shape can be good predictors of functions performed by fishes in tropical coastal ecosystems. The main question underlying our study is whether or not ecomorphological patterns found in otoliths can be accurately linked to ecological aspects of tropical species expressed by functional guilds. Therefore, we used discriminant and multivariate analysis to comprehend the power of different descriptors of otolith shape in identify the trophic group and depth preference of species.

Materials and methods

Sampling and otolith preparation

We sampled 208 otoliths of 33 species collected along the coast of Alagoas (09°47′08.4″S; 35°49′56″W and 10°21′26.8″S; 36°05′32.9″W), located in the tropical south-west Atlantic ecoregion of the north-east Brazil (Fig. 1). This coastline is characterized by a narrow continental shelf (50 km), and it is influenced by the many reef formations, lagoons and estuarine areas found in the region (Medeiros et al. 2007). Fishes were collected by ten nylon gillnets linked by ropes in a chain arrangement in 18 sampling sites distributed along the coast (Federal Scientific Fish Sampling License 1,837,810). The chain of 10 nets was 100 m long and 2.9 m high with mesh sizes that ranged from 20 to 80 mm randomly located along the chain. Four sampling surveys were undertaken in January, April, May and July 2013, encompassing the two well-established seasons of the study area (dry and wet seasons).

In laboratory, fishes were identified at level species using regional taxonomic keys (Figueiredo and Menezes 1978, 1980; Menezes and Figueiredo 1980, 1985), measured to the nearest mm (total length) and sexed. Otoliths were removed using the open-the-hatch technique as described by Secor et al. (1992), cleaned from tissues with 5% NaOH, washed with distilled water, dried and stored in labeled vials. To avoid the effect of ontogenetic variability, only otoliths from sexually mature specimens were used in this study (Stransky and MacLellan 2005), hence, maturity stage of individuals was assigned using macroscopic gonadal examination following Vazzoler (1996). A digital picture of the left sagittae from each individual was taken using a stereoscopic binocular microscope Leica S8-APO equipped with a camera Leica EC3. Otoliths were always positioned with their respective dorsal margin to the top of the image, anterior (rostral) region to the left and sulcus-side-up.

Fig. 1 Map of study area showing sampling sites (•) and depth strata (grey lines) where sampling surveys were carried out.
The morphology of otoliths was described by two different approaches. First, we calculated four ecomorphological indexes (see Table 1 for details) to identify patterns in otolith form: the E, R and S indexes which describe otolith shape and dimensions (Volpedo and Echeverría 2003; Volpedo et al. 2008), and an edge complexity index (EC) based on Kalff’s shoreline development factor (SFD) which was used to describe irregularities on otoliths’ edge (Kalff 2002). These indexes were calculated using the following morphometrical measurements, which were record in millimeters (mm) for all otoliths using the shapeR package in the R statistic software (Libungan and Pálsson 2015) – otolith length (OL), otolith width (OW), otolith area (OA) and otolith perimeter (OP) – and the image processing system ImageJ (Rasband 2012): rostrum length (RL) and sulcus area (SA). All measurements were size-corrected before analysis to ensure unbiased comparisons between groups (Reist 1985). Second, we retrieved the elliptic Fourier descriptors (EFD) for each otolith using the shapeR package in the R statistics software (Kuhl and Giardina 1982; Lestrel 1997). This method is considered one of the best techniques for capturing the entire shape variation and small-scale individual differences (Campana and Casselman 1993), allowing the deconstruction of otolith shape in orthogonal series, which are called harmonics. Harmonics represent a series of sine and cosine curves that are generated by a Fourier expansion, taking the elliptic shape as reference (Younker and Ehrlich 1977; Bird et al. 1986).

Data analysis

Prior to analysis, studied species were categorized according to a trophic group and a depth strata preference category (see Table 2 for species’ classification), which are two ecological features of species commonly related to functions performed by them in ecosystems. Fishes were assigned to a trophic group based on the main diet of adults according to existing published data. To promote uniformity in the trophic group classification of species, the categories used herein followed Ferreira et al. (2004): carnivorous (fishes that feed predominantly on sessile invertebrates, but may also feed on other organisms, including fishes); mobile invertebrate feeders (fishes that only feed on mobile invertebrates); omnivorous (fishes that feed on a variety of food items, including planktonic, benthic and nektonic organisms) and piscivorous (fishes that feed mainly on other fish species). Depth preference was assigned using data found in online databases such as FishBase, taking in consideration three depth strata: shallow (0–40 m), medium (41–60 m) and deep (61–150 m).

To evaluate whether ecomorphological indexes and harmonics could be used as a tool for distinguishing trophic and depth preference groups, linear discriminant analysis (LDA) were carried in the PAST statistics software. The LDA reduces the ratio of within-class variance and maximizes the ratio of between-class variance, seeking directions on space that have maximum discriminability among given classes (Rezzi et al. 2007), making this analysis a powerful tool in the identification of groups. In addition to graphic visualization, to evaluate the effective discriminant power of both descriptors (harmonics and ecomorphological indexes), we first used a jack-knife method for the estimation of the classification error, and statistically test differences among and within groups by permutational multivariate analysis of variance – PERMANOVA – (Anderson 2017).

Additionally, the mean contour of each group (trophic and depth preference) was reconstructed by the

Indexes	Meaning	Formula	Reference
EC	Describes edge irregularities in otoliths	\(EC = \frac{OP}{2 \sqrt{OA \cdot \pi}} \)	Kalff (2002)
E	Expresses the tendency in the shape of the sagittae (circular or elongate)	\(E = \frac{OA}{OL} \)	Volpedo and Echeverría (2003)
R	Expresses how much of the otolith length that corresponds to the rostrum	\(R = \frac{RL}{OL} \)	Volpedo and Echeverría (2003)
S	Tendency of macula nervosa to have a greater surface area of information uptake to transmit to the fish brain	\(S = \frac{SA}{OA} \)	Gauldie (1988)
Table 2: Average ecomorphological indexes values for species collected in the south-west Atlantic and their respective trophic
groups “TG” (Carn – carnivorous, MIF – mobile invertebrate
feeders, Omn – omnivorous, Pisc – piscivorous) and depth pref-
erence categories “DP” (shallow, medium and deep)

Family / Species	N	Ecomorphological indexes	TG	DP			
		EC	E	R	S		
Albulidae							
Albula nemoptera	3	1.19	0.43	0	0.40	Carn	Medium
Albula vulpes	16	1.18	0.55	0	0.40	Carn	Shallow
Bothidae							
Bothus ocellatus	1	1.05	0.63	0	0.30	Carn	Deep
Carangidae							
Caranx cryos	9	1.39	0.40	0.29	0.29	Pisc	Deep
Chloroscombrus chrysurus	18	1.26	0.46	0.31	0.22	Omn	Deep
Oligoplites saurus	6	1.23	0.58	0.19	0.33	Carn	Medium
Clupeidae							
Opisthonema oglinum	30	1.45	0.47	0.36	0.37	Omn	Medium
Cynoglossidae							
Symphurus tessellatus	2	1.02	1.08	0	0.15	MIF	Medium
Gerreidae							
Diapterus rhombeus	30	1.15	0.64	0.21	0.24	Carn	Deep
Eucinostomus argenteus	19	1.16	0.57	0	0.24	Carn	Medium
Haemulidae							
Conodon nobilis	7	1.09	0.66	0.12	0.26	Carn	Deep
Haemulon aurolineatum	16	1.07	0.68	0.17	0.24	MIF	Shallow
Haemulon steindachneri	2	1.07	0.69	0.13	0.26	MIF	Medium
Haemulopsis corvinaeformis	30	1.08	0.71	0.14	0.22	MIF	Medium
Orthopristis ruber	10	1.09	0.61	0.21	0.28	MIF	Deep
Lutjanidae							
Lutjansus analis	2	1.11	0.56	0.18	0.29	Carn	Medium
Lutjansus synagris	11	1.12	0.60	0.19	0.30	Carn	Medium
Mullidae							
Pseudupeneus maculatus	3	1.18	0.74	0.15	0.30	Carn	Deep
Paralichthyidae							
Syacium micrurum	10	1.08	0.70	0	0.42	MIF	Deep
Sciaenidae							
Cynoscion jamaicensis	2	1.13	0.61	0	0.51	Carn	Deep
Larimus breviceps	31	1.07	0.67	0	0.48	MIF	Medium
Macrodon ancylodon	2	1.18	0.74	0	0.49	Carn	Medium
Menticirrhus americanos	11	1.24	0.38	0	0.57	Carn	Medium
Micropogonias furnieri	34	1.07	0.78	0	0.43	MIF	Medium
Paralichthys brasiliensis	1	1.15	0.46	0	0.54	MIF	Medium
Stellifer brasiliensis	2	1.12	0.64	0	0.33	MIF	Medium
Umbrina caerulea	3	1.05	0.68	0	0.50	MIF	Shallow
Scombridae							
Scomberomorus brasiliensis	5	1.21	0.51	0.32	0.33	Pisc	Medium
Scomberomorus caerulea	3	1.35	0.50	0.33	0.40	Pisc	Shallow
The Fourier harmonics were normalized in relation to the first harmonic – represented by a displacement circle with barely no information about the original shape (Kuhl and Giardina 1982; Iwata and Ukai 2002) – and the mean contour as well as its standard deviation were formed by the outline reverse Fourier transform. All statistical analyses were performed at a significance level of \(p < 0.05 \).

Results

Among the 45 Fourier harmonics extracted to describe otolith shape, the first 12 harmonics explained more than 99.99% of variation and were thus used for the multivariate analysis. Although harmonics were able to visually discriminate both trophic and depth preference groups better than ecomorphological indexes (Figs. 2 and 3), overall jack-knifed classification success between both descriptors were very similar, with harmonics correctly classifying 90.38% of assigned trophic groups and 75.96% of given depth preference categories, against 82% and 56.25% of ecological indexes, respectively (Tables 3 and 4). In both descriptors, misclassification percentages among trophic groups were particularly high between mobile invertebrate feeders and carnivorous species, while considering depth preference categories greater similarity was found among species from medium and deep depths (Tables 3 and 4).

Statistically, both descriptors were good predictors of trophic groups and depth preference categories (PERMANOVA, \(P_{\text{pseudo}} < 0.05 \)), however no interactions between these two factors were found (\(P_{\text{pseudo}} = 0.998 \)). Differences in average shapes between trophic groups and depth preference categories could be observed by the reconstructed outlines of the mean Fourier harmonics. The main shape difference between trophic groups occurred in otolith elongation due to rostrum development and complexity, with piscivorous and omnivorous species presenting a more developed rostrum and elongated otolith with high complexity, while carnivorous and mobile invertebrate feeders individuals showed a tendency towards a rounded shape (Fig. 2). Considering the depth preference categories, otoliths of species living in deeper depths showed a rounded shape in comparison to otoliths of the ones from shallow waters (Fig. 3).

Discussion

In our study, both studied descriptors of otolith morphology were good predictors of features related to tropical species’ ecology, such as trophic groups and depth strata preference. In both methods, species in the same group clustered together regardless variability in...
body shape and phylogenetic relationships, indicating that otoliths can retain a wider range of ecological information in their shape, which can be retrieved from simpler analysis such the use of ecomorphological indexes, or more complex methods like the use of geomorphometric analysis.

![Linear discriminant analysis scores for the classification of trophic guilds of studied species based on Fourier descriptors (a) and ecomorphological indexes (b)](image1)

![Linear discriminant analysis scores for the classification of depth strata preference of studied species based on Fourier descriptors (a) and ecomorphological indexes (b)](image2)
Although ecomorphological indexes were not able to visually distinguish trophic groups or depth strata categories as Fourier harmonics did (Figs. 2 and 3), both methods can clearly indicate differences between different ecological groups as shown by PERMANOVA and jack-knifed cross-validation results. In general, harmonics have been considered a powerful method to describe otolith shapes comprehensively (Lestrel 1997), especially when it comes to understanding ecological features of species since this method captures the entire shape variation and small-scale individual differences (Gagliano and McCormick 2004). However, our results show that ecomorphological indexes can also be good descriptors of ecological functions, despite being simpler indicators of morphology (Mahe et al. 2016).

In previous works, ecomorphological indexes have been widely used to describe water column use and associations to different types of substrate (Volpedo and Echeverría 2003; Volpedo et al. 2008), but in the present study, their combination with Fourier harmonics allowed us to identify relationships with other aspects of species’ ecology. For example, piscivorous and omnivorous species presented otoliths with a tendency towards a more elongated shape, pronounced rostrum and high complexity which enhance fishes’ swimming capability and help in prey detection and capture due to specialization in acoustic communication (O’Toole et al. 2010; Ferguson et al. 2015; Schrandt et al. 2015). Moreover, as prey consumed by these groups are often found in the middle of the water column, some adaptive aspects, such as a well-developed rostrum, are required to support a high luminosity and noisy pelagic environment near the sea surface (Begg and Hopper 1997; Paxton 2000; Lombarte and Cruz 2007). This feature allow species to process information faster than sedentary species, making them quicker swimmers and enhancing its ability to capture preys (Lychakov and Redbane 1993; Popper et al. 2005). Additionally, higher edge complexity found for piscivorous and omnivorous species may be associated to greater levels of food consumption, as it has been shown by studies that otolith lobes’ formation depends on the protein accretion process (Hüssy 2008).

On the other hand, carnivorous and mobile invertebrate feeders were characterized by otoliths with rounded shape, regular edges and smaller or not-developed rostrum. Fish species in these groups feed mainly on organisms associated with the substrate – e.g., crustaceous, polychaetas –, which do not require them to move up in the water column (Crabtree et al. 1998; Marques et al. 2009), neither a great swimming performance to capture their preys (Freitas et al. 2011;...
Our results agree with Volpedo et al. (2008) which found that not active swimmers exhibit tendency towards a rounded otolith.

In relation to patterns found in otoliths associated to depth strata preference of species, the presence of fishes with elongated otoliths in coastal and shallow areas goes against the expected. According to Lombarte and Cruz (2007), otolith size tends to increase with depth as a compensatory response to the reduction of light. However, the pattern found in our study may be explained by the narrow extension of the oceanic shelf in the studied region (50 km), which allows pelagic species to undertake migratory movements to coastal and estuarine areas for feeding or reproduction (Kadison et al. 2010). One reason for this investment in migratory movements may be associated to the estuarization process that occurs in the tropical region (Passos et al. 2016) which creates a highly productive zone that attracts species from deeper regions.

Furthermore, it is important to notice that otolith morphology was able to identify trophic groups despite body shape similarities and phylogenetic relationships among studies species. For example, although the three studied carangid species in our paper have a close phylogenetic relationship and resembling body structures, they were all clustered separately, being placed near to species that share similar feeding habits with them. Comparable results were found for Gagliano and McCormick (2004) that showed that otolith shape embodies a sensitive record of individual recent feeding histories independently of their size or age. Factors that allow morphological patterns in otoliths to accurately reflect ecological characteristics of species include their lack of extreme morphologies – which strongly influence ecomorphological indexes – (Tuset et al. 2016a), and the fact that otolith shape is a species-specific feature formed throughout fish life-history (Wilson 1985) which allows the retaining of information regarding habitat use, locomotion, mobility and feeding behavior (Volpedo and Echeverría 2003; Lombarte and Cruz 2007; Volpedo et al. 2008).

In summary, our results show that ecomorphological patterns and Fourier harmonics are good predictors of ecological groups of tropical fishes, providing a wider range of information regarding the feeding strategies and habitat use by species. Such information is of great importance to estimate the functional structure of assemblages and help us to understand more about the role played by species in the ecosystems (da Silva et al. 2019). Therefore, we conclude that Fourier descriptors and ecomorphological indexes that are associated to the shape, rostrum length and sulcus area of otoliths can be included in future studies as functional traits in order to obtain a more realistic picture of how functionally diversity the studied communities are. Besides that, in our work we had an approach exploring 2D data (e.g., linear measures), for the future, we intend to add 3D data, which may provide new insights about functional characteristics of otoliths.

Acknowledgments We would like to thank colleagues Carol Passos, Marcia Sousa, Rosa Costa and Vandick Batista for their assistance during field and laboratory work, and Richard Ladle for checking the English of the manuscript. This research was funded by the Brazilian National Council for Scientific and Technological Development – CNPq (N. Fabré, grant #306624/2014-1) and the Coordination for the Improvement of Higher Education Personnel – CAPES. Data collection and analysis was funded by a grant from the State Funding Agency of Alagoas (FAPEAL) and the Brazilian Ministry of Fisheries and Aquaculture (MPA). The research was carried out in accordance with the principles of the Basel Declaration and following the recommendations of the Brazilian Animal Protection Law. All procedures were approved by the System of Biodiversity Authorization and Information (SISBIO committee) under the license #13392.

References

Adams A, Guindon K, Horodysky A, MacDonald T, McBride R, Shenker J, Ward R (2012) Albula nemoptera. Aguirre H, Lombarte A (1999) Ecomorphological comparisons of sagittae in Mullus barbatus and M. surmuletus. J Fish Biol 55:105–114. https://doi.org/10.1006/jfi.1999.0974

Akadje C, Diaby M, Le Loc’hi F, Konan JK, N’Da K (2013) Diet of the barracuda Sphyraena guachancho in Côte d’Ivoire (equatorial eastern Atlantic Ocean). Cybium. 37:285–293

Allen LG, Pondella DJ, Horn MH (2006) Ecological classification. In: the ecology of marine fishes: California and adjacent waters. Univ of California press, pp 81–114

Anderson M. J (2017) Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef Stat Ref Online 1–15. doi: https://doi.org/10.1002/9781118445112.stat07841

Begg GA, Hopper GA (1997) Feeding patterns of school mackerel (Scomberomorus queenslandicus) and spotted mackerel (S. munnii) in Queensland east-coast waters. Mar Freshw res. https://doi.org/10.1071/MF97064

Benzinou A, Curbini S, Nasreddine K et al (2013) Discriminating stocks of striped red mullet (Mullus surmuletus) in the north-west European seas using three automatic shape classification methods. Fish Res 143:153–160. https://doi.org/10.1016/j.fishres.2013.01.015

Bessa E, Santos FB, Pombom M, Denadai M, Fonseca M, Turra A (2014) Population ecology, life history and diet of the shorthorn drum Larimus breviceps in a tropical bight in...
southeastern Brazil. J Mar Biol Assoc United Kingdom 94: 615–622. https://doi.org/10.1017/S0025315413001690
Bird JL, Eppler DT, Checkley DM (1986) Comparisons of herring otoliths using fourier series shape analysis. Can J Fish Aquat Sci 43:1228–1234. https://doi.org/10.1139/f86-152
Bowman R, E Stillwell C, E Michaels W, L Grosslein M, D (2000) Food of Northeast Atlantic fishes and two common species of squid. NOAA technical memorandum NMFS-NE-155. https://www.nfsc.noaa.gov/publications/tm/tm155/. Accessed 18 November 2018
Campana SE, Casselman JM (1993) Stock discrimination using otoliths. Can J Fish Aquat Sci 50:1062–1083. https://doi.org/10.1139/v93-123
Castro D N, de Lima W, M G, Mendes N C, B, de Nascimento M S, de Freitas Lutz I, A, Cardoso C, D, N, A, da Silva B, B (2015) Dieta natural de Macrodon ancydon (Bloch & Schneider, 1801) capturada por embarcações pesqueiras industriais sediadas no Estado do Pará. Biotia Amaz 5:50–54. doi: https://doi.org/10.18561/2179-5746/biotamazonia.v5n3p50-54
Chaves PDTDC, Umbria SC (2003) Changes in the diet composition of transitory fishes in coastal systems, estuary and continental shelf. Brazilian Arch Biol Technol 46:41–46. https://doi.org/10.1590/S1519-88842003000100007
Crabtree RE, Stevens C, Snodgrass D, Stengard FJ (1998) Feeding habits of bonefish, Albula vulpes, from the waters of the Florida keys. Fish Bull 96:754–766
da Silva VEL, Fabré NN (2019) Rare species enhance niche differentiation among tropical estuarine fish species. Estuar Coasts 42:890–899. https://doi.org/10.1007/s12237-019-00524-2
da Silva VEL, Silva-Firmiano LPS, Teresa FB et al (2019) Functional traits of fish species: adjusting resolution to accurately express resource partitioning. Front Mar Sci 6:1–11. https://doi.org/10.3389/fmars.2019.00303
Davis B, Johnston R, Baker R, Sheaves M (2012) Fish utilisation of wetland nurseries with complex hydrological connectivity. PLoS One 7. https://doi.org/10.1371/journal.pone.0049107
Denadai MR, Santos FB, Bessa E, Fernandez WS, Lorca L, Turra A (2013) Population biology and diet of Pomadasys corvinaforms (Perciformes: Pomadasyidae) in Caraguatatuba Bay, southeastern Brazil. Rev Biol Trop 61: 1947–1954
Denadai MR, Santos FB, Bessa E, Fernandez WS, Paschoal CC, Turra A (2012) Diets of Eucinostomus argenteus (Baird & Girard, 1855) and Diapterus rhombus (Cuvier, 1829) (Perciformes: Gerreidae) in Caraguatatuba Bay, southeastern Brazil. Panam J Aquat Sci 7:143–155
Denadai MR, Santos FB, Bessa E et al (2015) Feeding habits of whitemouth croaker Micropogonias furnieri (Perciformes: Sciaenidae) in Caraguatatuba Bay, southeastern Brazil. Brazilian J Oceanogr 63:125–134. https://doi.org/10.1590/S1679-87592015084706302
DeVane JC (1978) Food of king mackerel, Scomberomorus cavalla, in Onslow Bay, North Carolina. Trans Am Fish Soc 107:583–586. https://doi.org/10.1577/1548-8659(1978)107<583:FOFMSC>2.0.CO;2
Duque-Nivia G, Acero PA, Santos-Martinez A, Rubio ER (1996) Food habits of the species of the genus Oligoplites (Carangidae) from the Cienaga Grande de Santa Marta-Colombian Caribbean. Cybium 20:251–260
Estrada M (1986) Hábitos alimentarios de los peces del genero Haemulon (Pisces: Haemulidae) de los arrecifes de la región de Santa Marta, Colombia. An Inst Investig Mar 15(16):49–66. https://doi.org/10.25268/bimc.invermar.1986.15.0.464
Fay BYRR, Popper AN (1974) Acoustic stimulation of the ear of the goldfish (Carassius auratus). J Exp Biol:243–260
Ferguson AR, Huber DR, Lajeunesse MJ, Motta PJ (2015) Feeding performance of king mackerel, Scomberomorus Cavalla. J Exp Zool Part A Ecol Genet Physiol 323:399–413. https://doi.org/10.1002/jez.1933
Ferreira CEL, Floeter SR, Gasparini JL et al (2004) Trophic structure patterns of Brazilian reef fishes: a latitudinal comparison. J Biogeogr 31:1093–1106. https://doi.org/10.1111/j.1365-2699.2004.01044.x
Figueiredo JL, Menezes NA (1980) Manual de Peixes Marinhos do Sudeste do Brasil. Museu de Zooloxia, Universidade de São Paulo, São Paulo
Figueiredo JL, Menezes NA (1978) Manual de Peixes Marinhos do Sudeste do Brasil. II. Museu de Zooloxia, Universidade de São Paulo, São Paulo
Flock A, Goldstein MH (1978) Cupular movement and nerve impulse response in the isolated semicircular canal. Brain Res 157:11–19. https://doi.org/10.1016/0006-8993(78)90992-7
Freitas MO, Abelhova V, da Costa Silva GH (2011) Feeding ecology of Lutjanus analis (Teleostei: Lutjanidae) from Abrolhos Bank, eastern Brazil. Neotrop Ichthyol 9:411–418. https://doi.org/10.1590/S1679-62252011005000022
Gagliano M, McCormick MI (2004) Feeding history influences otolith shape in tropical fish. Mar Ecol Prog Ser 278:291–296. https://doi.org/10.3354/meps278291
Galley EA, Wright PJ, Gibb FM (2006) Combined methods of otolith shape analysis improve identification of spawning areas of Atlantic cod. ICES J Mar Sci. https://doi.org/10.1016/j.icesjms.2006.06.014
Gómez-Canchong P, Manjarrés LM, Duarte LO, Altamar J (2004) Estratégia ecológica de Haemulon spiniferum (Pisces: Haemulidae) de los arrecifes de la región de Santa Marta, Colombia. An Inst Investig Mar 15(16):49–66. https://doi.org/10.1016/S1679-62252011005000022
Gómez-Canchong P, Manjarrés LM, Duarte LO, Altamar J (2004) Estratégia ecológica de Haemulon spiniferum (Pisces: Haemulidae) de los arrecifes de la región de Santa Marta, Colombia. An Inst Investig Mar 15(16):49–66. https://doi.org/10.1016/S1679-62252011005000022
Hüsey K (2008) Otolith shape in juvenile cod (Gadus morhua): ontogenetic and environmental effects. J Exp Mar Biol Ecol 364:35–41. https://doi.org/10.1016/j.exmbio.2008.06.026
Iwata H, Ukai Y (2002) SHAPE: a computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. J Hered. https://doi.org/10.1093/jhered/93.5.384
Jaramilo AM, Tombari AD, Benedito Dura V et al (2014) Otolith eco-morphological patterns of benthic fishes from the coast of Valencia (Spain). Thalassas 30:57–66
Kalidson E, D’Alessandro EK, Davis GO, Hood PB (2010) Age, growth, and reproductive patterns of the great barracuda, Sphyraena Barracuda, from the Florida keys. Bull Mar Sci 86:773–784. https://doi.org/10.5343/bms.2009.1070
Kalff J (2002) Limnology: inland water ecosystems. Prentice Hall, New Jersey

Kehrig HA, Seixas TG, Di Benedito AP, Malm O (2013) Selenium and mercury in widely consumed seafood from South Atlantic Ocean. Ecotoxicol Environ Saf 93:156–162. https://doi.org/10.1016/j.ecoenv.2013.03.034

Kuhl FP, Giardina CR (1982) Elliptic Fourier features of a closed contour. Comput Graph Image Process. https://doi.org/10.1016/0146-664X(82)90034-X

Lestrel PE (1997) Introduction and overview of Fourier descriptors. In: Lestrel PE (ed) Fourier descriptors and their applications in biology. Cambridge University Press, Cambridge, pp 22–43

Libungan LA, Pálsson S (2015) ShapeR: an R package to study otolith shape variation among fish populations. PLoS One 10:e0121102. https://doi.org/10.1371/journal.pone.0121102

Lombarte A, Cruz A (2007) Otolith size trends in marine fish communities from different depth strata. J Fish Biol 71:53–76. https://doi.org/10.1111/j.1095-8649.2007.01465.x

Lombarte A, Fortuño JM (1992) Differences in morphological features of the saccule of the inner ear of two hakes (Merluccius capensis and M. paradoxus), gadiformes) inhabits from different depth of sea. J Morphol 214:97–107. https://doi.org/10.1002/jmor.1052140107

Lombarte A, Lleonart J (1993) Otolith size changes related with body growth, habitat depth and temperature. Environ Biol Fish 37:297–306. https://doi.org/10.1007/BF00004637

Lombarte A, Tuset V (2015) Morphometria de otólitos. In: Métodos de estudio com otólitos: principios e aplicações. CAFP-BAPIESC, Buenos Aires, pp 269–302

Losos JB (1990) Ecomorphology, performance capability, and scaling of west Indian Anolis lizards: an evolutionary analysis. Ecol Monogr 60:369–388. https://doi.org/10.2307/1943062

Lychakov DV, Redbane YT (1993) Effect of otolith shape on directional sound perception in fish. J Evol Biochem Physiol 28:707–714

Mahe K, Oudard C, Mille T et al (2016) Imaging and identification of otoliths in the Mediterranean using Fourier descriptors. Environ Biol Fish 78:13. https://doi.org/10.1007/s10641-006-9074-8

Menezes NA, Figueiredo JL (1980) Manual de Peixes Marinhos do Sudeste do Brasil. V. Teleostei (3). Museu de Zoologia, Universidade de São Paulo, São Paulo

Menezes NA, Figueiredo JL (1985) Manual de Peixes Marinhos do Sudeste do Brasil. V. Teleostei (4). Museu de Zoologia, Universidade de São Paulo, São Paulo

Micheli F, Halpern BS (2005) Low functional redundancy in coastal marine assemblages. Ecol Lett 8:391–400. https://doi.org/10.1111/j.1461-0248.2005.00731.x

Morales-Nin B (2000) Review of the growth regulation processes of otolith daily increment formation. Fish Res 46:53–67. https://doi.org/10.1016/S0165-7836(00)00133-8

Nonogaki H, Nelson JA, Patterson WP (2007) Dietary histories of herivorous loricaria catfishes: evidence from δ13C values of otoliths. Environ Biol Fish 78:13–21. https://doi.org/10.1007/s10641-006-9074-8

Norton SF, Luczkovich JJ, Motta PJ (1995) The role of ecomorphological studies in the comparative biology of fishes. Environ Biol Fish 44:287–304. https://doi.org/10.1007/BF00005921

O’Toole AC, Murchie KJ, Pullen C et al (2010) Locomotory activity and depth distribution of adult great barracuda (Sphyraena barracuda) in Bahamian coastal habitats determined using acceleration and pressure biotelemetry transmitters. Mar Freshw Res 61:1446–1456. https://doi.org/10.11711/1071/1456

Passos CVB, Fabré NN, Mallhado ACM, Batista VS, Ladle RJ (2016) Estuarization increases functional diversity of demersal fish assemblages in tropical coastal ecosystems. J Fish Biol 89:847–862. https://doi.org/10.1111/jfb.13029

Paxton JR (2000) Fish otoliths: do sizes correlate with taxonomic group, habitat and/or luminescence? Philos Trans R Soc Biol Sci 355:1299–1303. https://doi.org/10.1098/rsteb.2000.0688

Pérez A, Fabré NN (2013) Spatial population structure of the Neotropical catfish Pseudoplatystoma metaense: skull and otolith shape variation. J Fish Biol 82:1453–1468. https://doi.org/10.1111/jfb.12046

Pombo M, Denadai MR, Bessa E, Santos FB, de Faria VH, Turra A (2014) The barred grunt Conodon nobilis (Perciformes: Haemulidae) in shallow areas of a tropical bight: spatial and temporal distribution, body growth and diet. Helgol Mar Res 68:271–279. https://doi.org/10.1016/j.helmar.2015.08.002

Ramírez-Pérez JS, Quiñónez-Velázquez C, García-Rodríguez FJ et al (2010) Using the shape of sagitta otoliths in the discrimination of Syacium micrurum (Pisces, Pleuronectiformes), in Bolivian Amazonian floodplains. J Fish Biol 62:1137–1158. https://doi.org/10.1111/j.1095-8649.2010.03108.x

Quinn TP (2018) The behavior and ecology of Pacific salmon and trout. University of Washington Press

Ramírez-Pérez JS, Quiñónez-Velázquez C, García-Rodríguez FJ et al (2010) Using the shape of sagitta otoliths in the discrimination of phenotypic stocks in Scomberomorus sierra (Jordan and starks, 1895). J Fish Aquat Sci 5:82–93. https://doi.org/10.3923/jfas.2010.82.93

Randall JE (2002) Mullidae: goatfishes. In: Carpenter KE (ed) The living marine resources of the Western Central Atlantic. FAO, Rome, pp 1654–1659

Rasband W (2012) ImageJ. U S Natl Institutes Heal Bethesda, Maryland

Reist JD (1985) An empirical evaluation of several univariate methods that adjust for size variation in morphometric data. Can J Zool 63:1429–1439. https://doi.org/10.1139/z85-213
Rezzi S, Giani I, Heberger K, Al E (2007) Classification of gilthead sea bream (Sparus aurata) from 1H NMR lipid profiling combined with principal component and linear discriminant analysis. J Agric Food Chem 55:9963–9968. https://doi.org/10.1021/jf070736g

Sabinson LM, Rodrigues-Filho JI, Peret AC, Branco JO, Verani JR (2015) Feeding habits of the congeneric species Stellifer rasrifer and Stellifer brasiliensis (Acanthopterygii: Sciaenidae) co-occurring in the coast of the state of Santa Catarina, Brazil. Braz J Biol 75:423–430. https://doi.org/10.1590/S1519-6984.15813

Sadighzadeh Z, Valinasab T, Vosugi G et al (2014) Use of otolith shape for stock identification of John’s snapper, Lutjanus johnii (Pisces: Lutjanidae), from the Persian Gulf and the Oman Sea. Fish Res 155:59–63. https://doi.org/10.1016/j.fishres.2014.02.024

Santos MN, Rocha GR, Freire KM (2016) Diet composition for three sciaenids caught off northeastern Brazil. Rev Biol Mar Oceanogr 51:493–504. https://doi.org/10.4067/S0718-19572016000300002

Schellart NAM, Popper AN (1992) Functional aspects of the evolution of the auditory system of Actinopterygian fish. In: The evolutionary biology of hearing. Springer New York, New York, pp 295–322

Schrandt MN, Powers SP, Maresha JF (2015) Habitat use and fishery dynamics of a heavily exploited coastal migrant, Spanish mackerel. North Am J Fish Manag 35:352–363. https://doi.org/10.1080/02755947.2015.1009659

Schulz-Mirbach T, Ladich F, Plath M, Hefd M (2019) Enigmatic ear stones: what we know about the functional role and evolution of fish otoliths. Biol Rev 94:457–482. https://doi.org/10.1111/brv.12463

Schulz-Mirbach T, Ladich F, Riesch R, Plath M (2010) Otolith morphology and hearing abilities in cave- and surface-dwelling ecotypes of the Atlantic Molly, Poecilia mexicana (Teleostei: Poeciliidae). Hear Res 267:137–148. https://doi.org/10.1016/j.heares.2010.04.001

Schulz-Mirbach T, Reichenbacher B, Yildirim MZ, Atalay MA (2006) Otolith characteristics of species, subspecies, and populations of Aphanus Nardo, 1827 (Teleostei, Cyprinodontiformes) from Anatolia (Turkey). J Nat Hist 40: 1687–1705. https://doi.org/10.1080/00222930600964498

Secor DH, Dean JM, Laban EH (1992) Otolith removal and preparation for microstructural examination. In: Stevenson DK, Campana SE (eds) Otolith microstructure examination and analysis. Canadian special publication of fisheries and aquatic sciences 117. Departament of Fisheries and Oceans, Ottawa, pp 19–57

Sley A, Jarboui O, Ghorbel M, Bouain A (2009) Food and feeding habits of Carassius cyprinus from the Gulf of Gabès (Tunisia). J Mar Biol Assoc United Kingdom 89:1375–1380. https://doi.org/10.1017/S0025315409000265

Soares BE, Ruffeil TOB, Montag LF d A (2013) Ecomorphological patterns of the fishes inhabiting the tide pools of the Amazonian coastal zone, Brazil. Neotrop Ichthyol 11:845–858. https://doi.org/10.1590/S1679-62252013000400013

Souza CD, Batista VS, Fabrè NN (2018) What are the main local drivers determining richness and fishery yields in tropical coastal fish assemblages? Zoologia 35:1–12. https://doi.org/10.3897/zoologia.35.e12898

Stransky C, MacLellan SE (2005) Species separation and zoogeography of redfish and rockfish (genus Sebastes) by otolith shape analysis. Can J Fish Aquat Sci 62:2265–2276. https://doi.org/10.1139/f05-143

Tracey SR, Lyle JM, Duhamel G (2006) Application of elliptical Fourier analysis of otolith form as a tool for stock identification. Fish Res 77:138–147. https://doi.org/10.1016/j.fishres.2005.10.013

Tulli MJ, Abdala V, Cruz FB (2011) Relationships among morphology, clining performance and habitat use in Liolemaeni lizards. J Evol Biol 24:843–855. https://doi.org/10.1111/j.1420-9101.2010.02218.x

Tuset VM, Farré M, Otero-Ferrer JL et al (2016a) Testing otolith morphology for measuring marine fish biodiversity. Mar Freshw Res 67:1037–1048. https://doi.org/10.1071/FR15052

Tuset VM, Imondi R, Aguado G et al (2015) Otolith patterns of rockfishes from the northeastern pacific. J Morphol 276:458–469. https://doi.org/10.1002/jmor.20335

Tuset VM, Lozano IJ, Gómez JA et al (2003) Shape indices to identify regional differences in otolith morphology of comb- coral, Serrius cabrilla (L., 1758). J Appl Ichthyol 19:88–93. https://doi.org/10.1046/j.1439-0426.2003.00344.x

Tuset VM, Otero-Ferrer JL, Gómez-Zurita J, Venerus LA, Stransky C, Imondi R, Orlov AM, Ye Z, Santschi L, Alansisie PK, Zhand L, Farré M, Love MS, Lombarte A (2016b) Otolith shape lends support to the sensory drive hypothesis in rockfishes. J Evol Biol 29:2083–2097. https://doi.org/10.1111/jeb.12932

Vazzoler AEAM (1996) Biologia da reprodução de peixes teleostéos: teoria e prática. EDUEM, Maringá, Maringá

Vega-Cendejas ME, Mexicanocintora G, Arce AM (1997) Biology of the thread herring Opisthonema oglinum (Pisces: Clupeidae) from a beach seine fishery of the Campeche Bank, Mexico. Fish Res 30:117–126. https://doi.org/10.1016/S0165-7836(96)00547-4

Volpodo A, Echeverria DD (2003) Ecomorphological patterns of the sagitta in fish on the continental shelf off argentine. Fish Res 60:551–560. https://doi.org/10.1016/S0165-7836(02)00170-4

Volpodo AV, Tombari AD, Echeverria DD (2008) Ecomorphological patterns of the sagitta of Antarctic fish. Polar Biol 31:635–640. https://doi.org/10.1007/s00300-007-0400-1

Volpodo AV, Cirelli AF (2006) Otolith chemical composition as a useful tool for sciaenid stock discrimination in the South-Western Atlantic. Sci Mar 70:325–334. https://doi.org/10.3989/scimar.2006.70n235

Wainwright PC, Richard BA (1995) Predicting patterns of prey use from morphology of fishes. Environ Biol Fish 44:97–133. https://doi.org/10.1007/BF00005909

Watson DJ, Balon EK (1984) Ecomorphological analysis of fish used from morphology of fishes. Environ Biol Fish 44:97–133. https://doi.org/10.1111/j.1095-8649.1984.tb04885.x

Williams EE (1972) The origin of faunas. Evolution of lizard congeners in a complex island fauna: a trial analysis. In: Dobzhansky T, Hecht MK, Steere WC (eds) Evolutionary biology. Springer, New York, pp 47–89

Wilson RR (1985) Depth-related changes in sagitta morphology in six Macrourid fishes of the Pacific and Atlantic oceans. Copeia 4:1011–1017. https://doi.org/10.2307/1445256

Winemiller KO (1991) Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions.
Younker JL, Ehrlich R (1977) Fourier biometrics: harmonic amplitudes as multivariate shape descriptors. Syst Biol. https://doi.org/10.1093/sysbio/26.3.336

Zahorcsak P, Silvano RA, Sazima I (2000) Feeding biology of a guild of benthivorous fishes in a sandy shore on south-eastern Brazilian coast. Rev Bras Biol 60:511–518. https://doi.org/10.1590/S0034-7108200000300016

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.