Building SO_{10}- models with D_4 symmetry

R. Ahl Laamara1,2, M. Miskaoui1,2, E.H Saidi2,3
1. LPHE-Modeling and Simulations, Faculty Of Sciences, Rabat, Morocco
2. Centre of Physics and Mathematics, CPM- Morocco
3- International Centre for Theoretical Physics, Miramare, Trieste, Italy

November 11, 2015

Abstract

Using characters of finite group representations and monodromy of matter curves in F-GUT, we complete partial results in literature by building SO_{10} models with dihedral D_4 discrete symmetry. We first revisit the S_4-and S_3-models from the discrete group character view; then we extend the construction to D_4. We find that there are three types of $SO_{10} \times D_4$ models depending on the ways the S_4-triplets break down in terms of irreducible D_4- representations: (α) as $1_{+,-} \oplus 1_{+,-} \oplus 1_{-,+}$; or (β) $1_{+,+} \oplus 1_{+,-} \oplus 1_{-,+}$; or also (γ) $1_{+,-} \oplus 2_{0,0}$. Superpotentials and other features are also given.

Key words: F-SO_{10} models, discrete groups and characters, D_4 symmetry.

1 Introduction

In F-theory set-up, the study of GUT- models with discrete symmetries Γ given by S_n permutation groups is generally done by using the splitting spectral method [1]-[7]; see also [8] and references therein. In the interesting case of $SU_5 \times \Gamma$ models, the discrete Γ’s are mainly given by subgroups of the permutation symmetry S_5; in particular those subgroups like S_4, $S_3 \times S_2$, S_3, $S_2 \times S_2$ and $S_2 \simeq \mathbb{Z}_2$. To build SU_5 GUT- models with exotic discrete groups like the alternating A_4 and the dihedral D_4, one needs extra tools like Galois-theory [9] [10] [11] [12] [13] [14] [15]. In the case of $SO_{10} \times \Upsilon$ models the situation is quite similar except that here the discrete Υ’s are subgroups of the permutation symmetry S_4.

In [9], an exhaustive study has been performed for several $SO_{10} \times \Upsilon$ models, broken down to SU_5, by using splitting spectral method applied for the discrete subgroups Υ given by
$\mathbb{S}_3, \mathbb{Z}_3, \mathbb{S}_2 \times \mathbb{S}_2$ and \mathbb{S}_2; the common denominator of these Υ’s is that they are subgroups of \mathbb{S}_4; the Weyl group of the SU_4^+ perpendicular symmetry to GUT gauge invariance in the E_8 breaking down to $SO_{10} \times SU_4^+$. In this paper, we would like to complete the analysis of [9] and subsequent studies by considering the case of the order 8 dihedral symmetry \mathbb{D}_4. This discrete group is known to have two kinds of irreducible representations with dimensions 1 and 2; their multiplicities are read from the character relation $8 = 1^2 + 1^2 + 1^2 + 1^2 + 2^2$ teaching us the two following things: (i) \mathbb{D}_4- group has four 1-dim representations $1_{p,q}$, including the trivial $1_{+,+}$, the sign $1_{-,+}$ as well as two others 1_{+-} and $1_{-,-}$; and (ii) it has a unique 2-dim representation $2_{0,0}$ with vanishing character vector $(0,0)$. These irreducible representations are phenomenologically interesting; first because one of the four possible 1-dim representations of \mathbb{D}_4 may be singled out to host the heaviest top- quark generation 16_3; and the unique 2-dim representation of \mathbb{D}_4 to accommodate the two other $16_{1,2}$ quark u- and c- families. This picture goes with the idea of [13] where Yukawa matrix $Y_{(c, s, t)}$ for the (u, c, t) quarks is approximated by a rank one matrix ($rank Y = 1$). There, the u, c quarks are taken in the massless approximation; and the third quark as a massive one. Moreover, \mathbb{D}_4- monodromy has also enough different singlets to accommodate the three quark generations independently; a property that may be used for studying superpotential prototypes leading to higher rank mass matrix with hierarchical eigenvalues.

The presentation is as follows: First we recall some useful aspects on $SO_{10} \times \Upsilon$ models concerning standard \mathbb{S}_4 and \mathbb{S}_3 discrete symmetries. By using irreducible representations R_i of these finite groups, we show how their character functions χ_{R_i} can be used to characterise the matter curve spectrum of these models. With these χ_{R_i} character tools at hand, we turn to build the above mentioned three $SO_{10} \times \mathbb{D}_4$ models. We end this study by a conclusion and discussions on building superpotentials.

2 $SO_{10} \times \mathbb{S}_4$ model

We begin by recalling that in $SO_{10} \times \mathbb{S}_4$ model of F-theory GUTs, matter curves carry quantum numbers in the $SO_{10} \times SU_4^+$ representations following from the breaking of the E_8 gauge symmetry of F-theory on elliptically fibered Calabi-Yau fourfold (CY4) with 7-brane wrapping S_{GUT}; the so called GUT surface [11] [9] [12] [13] [16],

$$
\begin{align*}
E & \rightarrow \text{CY4} \\
\downarrow & \quad , \quad B_3 \supset S_{GUT} \\
B_3 & \end{align*}
$$

2
In this construction, the base B_3 is a complex 3 dim manifold containing S_{GUT}; and the fiber E is given by a particular Tate representation of the complex elliptic curve, namely

$$y^2 = x^3 + b_5xyz + b_4x^2z + b_3yz^2 + b_2xz^3 + b_0z^5$$

where the homology classes $[x], [y], [z], [b_k]$, associated with the holomorphic sections x, y, z and b_k, are expressed in terms of the Chern class $c_1 = c_1(S_{GUT})$ of the tangent bundle of the S_{GUT} surface; and the Chern class $-t$ of the normal bundle $N_{S_{GUT}|B_3}$ as follows

$$[y] = 3(c_1 - t), \quad [z] = -t$$

$$[x] = 2(c_1 - t), \quad [b_k] = (6c_1 - t) - kc_1$$

Recall also that in SO_{10} models building with discrete symmetries Γ, the E_8 symmetry of underlying F-theory on CY4 is broken down to $SO_{10} \times \Gamma$; where SO_{10} is the GUT gauge symmetry and Γ a discrete monodromy group contained in S_4. This symmetric S_4 is isomorphic to the Weyl symmetry group of the perpendicular SU_4^\perp to GUT symmetry inside E_8; that is the commutant of SO_{10} in the exceptional E_8 group of F-theory GUTs. From the decomposition of the E_8 adjoint representations down to $SO_{10} \times SU_4^\perp$ ones namely

$$248 \rightarrow (45, 1_\perp) \oplus (1, 15_\perp) \oplus (16, 4_\perp) \oplus (\overline{16}, \bar{4}_\perp) \oplus (10, 6_\perp)$$

we learn the matter content of $SO_{10} \times SU_4^\perp$ theory; and then of the desired curves spectrum of the $SO_{10} \times S_4$ model. This spectrum is given by the following SO_{10} multiplets, labeled by four weights t_i of the fundamental representation of SU_4^\perp,

$$16_{t_1}, 16_{-t_1}, 10_{t_1 + t_2}, 1_{t_1 - t_2}$$

with the traceless condition

$$t_1 + t_2 + t_3 + t_4 = 0$$

The discrete symmetry S_4 acts by permutation of the t_i curves; it leaves stable the constraint $t_1 + t_2 + t_3 + t_4 = 0$ as well as observable of the model.

In $SO_{10} \times S_4$ theory, the 16-plets and the 10-plets are thought of as reducible multiplets of the S_4 Weyl symmetry of SU_4^\perp; however from the view of GUT phenomenology, this S_4 monodromy symmetry must be broken since it treats the three GUT generations on equal footing. But, for later use, we propose to study first the structure of the S_4 based model and some of its basic properties; then turn back to study the breaking of S_4 down to the subgroup S_3; and after to the D_4 we are interested in this paper.
2.1 Spectrum in \(S_4 \) model

The \(16_t \) components of the four 16-plets and the \(10_{t_i+t_j} \) of the six 10-plets are related among themselves by \(S_4 \) monodromy; they are respectively given by the zeros of the holomorphic sections \(b_4 \) and \(d_6 \), describing the intersections of the spectral covers \(C_4 = 0 \) and \(C_6 = 0 \) with the GUT surface \(s = 0 \). The defining eqs of these spectral covers are as shown on the following table,

matters curves	weight	\(S_4 \) homology	holomorphic section
\(16_t \)	\(t_i \)	4	\(\eta - 4c_1 \)
\(10_{t_i+t_j} \)	\(t_i + t_j \)	6	\(\eta' - 6c_1 \)

\[
b_4 = b_0 \prod_{i=1}^{4} t_i = 0
\]

\[
d_6 = d_0 \prod_{j>i=1}^{6} T_{ij} = 0
\]

with \(b_0 \) and \(d_0 \) being related to the roots \(t_i \) and \(T_{ij} \) by\(T_{ij} = t_i + t_j \). The homology class \([b_4] = \eta - 4c_1 \) is obtained by using the relation \([b_0] + \sum [t_i] \) together with the canonical class \([b_0] = \eta \) and \([t_i] = -c_1 \); the same feature leads to \([d_6] = \eta' - 6c_1 \).

The \(S_4 \) invariance of \(C_4 \) is manifestly exhibited

\[
C_4 = \frac{b_0}{4!} \sum_{\sigma \in S_4} \prod_{i=1}^{4} (s - t_{\sigma(i)})
\]

A similar relation is also valid for \(C_6 \). In what follows, and to fix ideas, we will think of the defining eqs of the spectral covers \(C_4 \) and \(C_6 \) as given by the last column of eqs (2.7) involving \(b_0 \) and the four roots \(t_i \) (resp \(d_0 \) and the six \(T_{ij} \')s).

2.2 Characters in \(SO_{10} \times S_4 \) model

The discrete symmetry group of the \(SO_{10} \times S_4 \) model has 24 elements that can be arranged into five conjugacy classes \(\mathcal{C}_1, ..., \mathcal{C}_5 \) with representatives given by p-cycles \((12...p)\) and products type \((\alpha\beta)(\gamma\delta)\) as shown on table (2.9). This finite group has five irreducible representations \(R_1, ..., R_5 \) whose dimensions can be learnt from the usual relation \(24 = 1^2 + 1^2 + 2^2 + 3^2 + 3^2 \) linking group order to the square of dim \(R_i \); their characters
\(\chi_{R_j}\), describing mappings: \(\mathbb{S}_4 \to \mathbb{C}\), are conjugacy class functions; associating to each class \(\mathcal{C}_i\) the numbers \(\chi_{ij} = \chi_{R_j}(\mathcal{C}_i)\); whose explicit expressions are as given below

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\mathcal{C}_i \backslash \text{irrep} & R_j & \chi_1 & \chi_2 & \chi_3 & \chi_4 & \text{order} \\
\hline
\mathcal{C}_1 \equiv e & 1 & 3 & 2 & 3 & 1 & 1 \\
\mathcal{C}_2 \equiv (\alpha \beta) & 1 & -1 & 0 & 1 & -1 & 6 \\
\mathcal{C}_3 \equiv (\alpha \beta)(\gamma \delta) & 1 & -1 & 2 & -1 & 1 & 3 \\
\mathcal{C}_4 \equiv (\alpha \beta \gamma) & 1 & 0 & -1 & 0 & 1 & 8 \\
\mathcal{C}_5 \equiv (\alpha \beta \gamma \delta) & 1 & 1 & 0 & -1 & -1 & 6 \\
\hline
\end{array}
\]

(2.9)

There are various manners to approach the properties of reducible \(\mathcal{R}\) and irreducible \(R_i\) representations of the permutation group \(\mathbb{S}_4\); the natural way may be the one using graphic methods based on the Young diagrams [18]; where the five irreducible representations are represented by 5 diagrams as follows

\[
\begin{align*}
1 & : \quad \begin{array}{c} \\
\end{array} \\
2 & : \quad \begin{array}{c} \\
\end{array} \\
3 & : \quad \begin{array}{c} \\
\end{array}
\end{align*}
\]

(2.10)

and

\[
\begin{align*}
3' & : \quad \begin{array}{c} \\
\end{array} \\
1' & : \quad \begin{array}{c} \\
\end{array}
\end{align*}
\]

(2.11)

But here we will deal with \(\mathbb{S}_4\) by focussing on the properties of its three generators \((a, b, c)\); these are basic operators of the \(\mathbb{S}_4\) group; and are generally chosen as given by the transpositions \(\tau_1 = (12), \tau_2 = (23)\) and \(\tau_3 = (34)\); they can be also taken as follows

\[
\begin{align*}
A & = (12) = \tau_1 \\
B & = (123) = \tau_1 \tau_2 \\
C & = (1234) = \tau_1 \tau_2 \tau_3
\end{align*}
\]

(2.12)

These three generators are not independent seen that they are non commutating operators, \(AB \neq BA, AC \neq CA, BC \neq CB\); a feature that makes extracting total information a complicated matter; so we will restrict to use their representation characters \(\chi_{R_i}(A)\), \(\chi_{R_i}(B)\) and \(\chi_{R_i}(C)\) with \(R_i\) given by (2.10)2.11); we also use the sums of \(\chi_{R_i}(G)\) and their products. To that purpose, let us briefly recall some useful tools on \(\mathbb{S}_4\) representations that we illustrate on \(SO_{10} \times \mathbb{S}_4\)-theory. First notice that the 4-dim permutation module \(\mathcal{V}_4\) of the group \(\mathbb{S}_4\) is interpreted in \(SO_{10} \times \mathbb{S}_4\)-model in terms of the four matter curves \(16_i\); its 6-dim antisymmetric tensor product \(\mathcal{V}_6 = (\mathcal{V}_4 \otimes \mathcal{V}_4)_{\text{antisym}}\) as describing
the Higgs curves $16_{[ij]}$; and the $V_4 \otimes V_4^*$ tensor product module is associated with flavons $\vartheta_{[ij]}$. All these spaces are reducible under S_4; and so permutation operators of S_4 can be generically decomposed as sums

$$n_1 \mathbf{1} \oplus n'_1 \mathbf{1}' \oplus n_2 \mathbf{2} \oplus n'_3 \mathbf{3} \oplus n''_3 \mathbf{3}$$

(2.13)
on the irreducible modules with some n_i multiplicities; for example

\[
\begin{align*}
\mathbf{4} &= 1 \oplus 3 \\
\mathbf{6} &= 3 \oplus 3' \\
\mathbf{V}_4 &= V_1 \oplus V_3 \\
\mathbf{V}_6 &= V'_3 \oplus V''_3
\end{align*}
\]

(2.14)

with $6 = (4 \otimes 4)_{\text{antisym}}$. In practice, the use of irreducible representations as in (2.13) for $SO_{10} \times S_4$ modeling is achieved by starting from eqs(2.6); then look for an adequate basis vector change of the weight $\{t_1, t_2, t_3, t_4\}$ into a new $\{x_0, x_1, x_2, x_3\}$ basis where one of the components, say x_0, has the form

$$x_0 = \frac{1}{4} (t_1 + t_2 + t_3 + t_4)$$

(2.15)

this sum of weights is associated with the trivial representation 1, the completely symmetric representation; it is invariant under S_4; but also under all its subgroups including the S_3 and the D_4 we will encounter below. The three other $(x_1, x_2, x_3) = \vec{x}$ transform as an irreducible triplet 3 under of S_4; but differently under subgroups S_3 and D_4; their explicit expressions $\vec{x} = \vec{x}(t_1, t_2, t_3, t_4)$ are given by;

\[
\begin{align*}
x_1 &= \frac{1}{4} (t_1 + t_2 - t_3 - t_4) \\
x_2 &= \frac{1}{4} (t_1 - t_2 + t_3 - t_4) \\
x_3 &= \frac{1}{4} (t_1 - t_2 - t_3 + t_4)
\end{align*}
\]

(2.16)

with (2.5) mapped to

$$x_0 + x_1 + x_2 + x_3 = t_1$$

(2.17)

With the basis change of $\{|t_\mu\rangle\}$ into $\{|x_0\rangle; |x_i\rangle\}$, the four matter 16_{t_μ} and the six Higgs $10_{t_\mu + t_\nu}$ multiplets get splitted like

$$16_{t_\mu} \rightarrow \begin{pmatrix} 16'_0 \\ 16'_t \end{pmatrix}$$

$$10_{t_\mu + t_\nu} \rightarrow \begin{pmatrix} 10'_{[ij]} \\ 10'_t \end{pmatrix}$$

(2.18)

In matrix notation with basis $\{|x_0\rangle; |x_i\rangle\}$, permutation operators $P^{(4)}_{\sigma}$ acting on V_4 and operators $P^{(6)}_{\sigma}$ on V_6 have the representation

$$P^{(4)}_{\sigma} = \begin{pmatrix} 1 & 0_{1 \times 3} \\ 0_{3 \times 1} & P^{(3)}_{\sigma} \end{pmatrix}$$

$$P^{(6)}_{\sigma} = \begin{pmatrix} P^{(3)}_{\sigma} & 0_{3 \times 3} \\ 0_{3 \times 3} & P^{(3')}_{\sigma} \end{pmatrix}$$

(2.19)
To describe the new matter curves \(\{16'_0, 16'_i\} \) and \(\{10'_i, 10'_{[ij]}\} \) we shall use the character \(\chi_{R_i}^{(G)} \) of the irreducible representations of \(S_4 \) given by (2.9); in particular the character of the \((A, B, C)\) generators of \(S_4 \); and which we denote as \(\chi_{R_i}^{(G)} \) where \(G \) stands for \((A, B, C)\).

\[
\begin{array}{cccccc}
R & x & \chi_{R} & \chi_{R'} & \chi_{3} & \chi_{c} \\
A & 1 & -1 & 0 & 1 & 1 \\
B & 1 & 0 & -1 & 0 & 1 \\
C & 1 & 1 & 0 & -1 & -1 \\
\end{array}
\] (2.20)

Because of a standard feature of the trace of direct sum of matrices namely \(Tr (A \oplus B) = Tr A + Tr B \), we also use the following property relating the characters of reducible \(R \) representations to their \(R_i \) irreducible components

\[
R = n_1 R_1 \oplus n_2 R_2 \quad \Rightarrow \quad \chi_R^{(G)} = n_1 \chi_{R_1}^{(G)} + n_2 \chi_{R_2}^{(G)}
\] (2.21)

For the example of the quartet \(4 = 1 \oplus 3 \) of the group \(S_4 \), we have the relation \(\chi_4^{(G)} = \chi_1^{(G)} + \chi_3^{(G)} \); and remembering the interpretation of the characters in terms of fix points of the permutation symmetry; the character vector

\[
\chi_4^{(G)} = (2, 1, 0) \equiv \chi_{1 \oplus 3}^{(G)}
\] (2.22)

splits therefore as the sum of two terms: \(\chi_1^{(G)} = (1, 1, 1) \) and \(\chi_3^{(G)} = (1, 0, -1) \); in agreement with the character table (2.20). Applying also this property to \(3 \oplus 3' = 6 \), we have \(\chi_6^{(G)} = \chi_3^{(G)} + \chi_{3'}^{(G)} \); from which we learn the value of the character of the reducible 6-dimensional representation of \(S_4 \); it vanishes identically. Therefore, the matter curves spectrum of the \(SO_{10} \times S_4 \) model in the \{\(|x\rangle \)\} and \{\(|x \otimes x'\rangle \)\} bases reads as follows

matters curves	\(S_4 \)	homology	\(U(1)_x \) flux	character \(\chi_R^{(G)} \)
\(16'_0 \)	\(1 \)	\(-c_1\)	0	\((1, 1, 1) \)
\(16'_i \)	\(3 \)	\(\eta - 3c_1\)	0	\((1, 0, -1) \)
\(10'_{[ij]} \)	\(3' \)	\(-3c_1\)	0	\((-1, 0, 1) \)
\(10'_i \)	\(3 \)	\(\eta' - 3c_1\)	0	\((1, 0, -1) \)

(2.23)

where the homology classes of the new matter curves \(16'_0, 16'_i \); and \(10'_{[ij]} \), \(10'_i \) are derived from the homology of the reducible curve multiplets \(16_{t_{\mu}}, 10_{t_{t_{\mu} + t_{\nu}}} \) of table eqs(2.6) as follows

\[
\begin{align*}
[16_{t_{\mu}}] & = [16'_0] + [16'_i] \\
[10_{t_{t_{\mu} + t_{\nu}}}] & = [10'_{[ij]}] + [10'_i]
\end{align*}
\] (2.24)

Notice that though the matter curves spectrum looks splitted, it is still invariant under \(S_4 \) monodromy. It is just a property of the \(|x_{0,i}\rangle \) frame where the completely symmetric \(x_0 \)
component weight, the centre of weights, is thought of as the origin of the frame. Notice also that the 15 flavons of the $SO_{10} \times S_4$ model split as $3 \oplus 12$; with the 12 charged ones splitting like $12 = 6 \oplus 6^*$ where the 6, currently denoted as $\vartheta_+(t_{\mu - t_{\nu}})$ with $\mu < \nu$; and the other 6^* with $\vartheta_-(t_{\mu - t_{\nu}})$. Because of the real values of the characters (2.9), the complex adjoints $6^* = 3^* \oplus 3'^*$ may be thought in terms of dual representations namely $3^* \sim 3$ and $3'^* \sim 3$; so the characters for the 12 charged flavons read as

flavons	character $\chi^{(G)}_{\text{R}}$
1_i	$(1, 0, -1)$
$1_{[ij]}$	$(-1, 0, 1)$
$1_{[ij]}$	$(-1, 0, 1)$
1_i	$(1, 0, -1)$

(2.25)

3 Building $SO_{10} \times D_4$ models

First we describe the key idea of our method that we illustrate on the example of $SO_{10} \times S_3$ model; seen that S_3 is a subgroup of S_4 just as D_4. Then we turn to study the $SO_{10} \times D_4$ theory; and derive its matter curves spectrum and their characters; comments on the superpotentials W of D_4 models and others aspects will be given in conclusion and discussion section.

3.1 Revisiting $SO_{10} \times S_3$ model

To engineer $SO_{10} \times \Gamma$ models with discrete symmetries Γ contained in S_4, we have to break the S_4 symmetry down to its subgroup Γ. Seen that S_4 has 30 subgroups; one ends with a proletariat of SO_{10} models with discrete symmetries; some of these monodromies are related amongst others by similarity transformations. For example, S_4 has four S_3 subgroups obtained by fixing one of the four t_i roots of the spectral cover C_4 of eq(2.7); but these S_3 groups are isomorphic to each other; and so it is enough to consider just one of them; say the one fixing the weight t_4; and permuting the other three t_1, t_2, t_3; i.e:

$$\sigma (t_4) = t_4$$
$$\sigma ([t_1, t_2, t_3]) = \{t_1, t_2, t_3\}$$

(3.1)

leading to $\sigma \in S_4 / J$, with $J = \langle t_4 - \sigma (t_4) \rangle$; it is isomorphic to S_3. Let us describe rapidly our method of engineering $SO_{10} \times S_3$ model; and extend later this construction to the case of the order 8 dihedral D_4.

Starting from the matter spectrum of the $SO_{10} \times S_4$ model (2.6), we can derive the
properties of the matter curves of the $SO_{10} \times S_3$ model by using the breaking pattern

$$S_4 \rightarrow S_3 \times S_1$$ (3.2)

where S_1 factor is associated with the fixed weight t_4; it may be interpreted in terms of a conserved U_1^+ symmetry inside SU_4^+. The descent from S_4 to S_3 model is known to be due turning on an abelian flux piercing the S_4 - matter and Higgs multiplets; and is commonly realised by the splitting spectral method like $C_4 = C_3 \times C_1$ and $C_6 = \tilde{C}_3 \times \tilde{C}_3'$. By using the gauge 2-form field strength F_X of the $U(1)_X$ gauge symmetry considered in $[9]$; and by thinking of the S_4 invariance of the $SO_{10} \times S_4$ model of table (2.23) in terms of vanishing quantized flux F^X_ξ of the 2-form F_X over a 2-cycle ξ in the homology of base of the CY4, namely

$$F^X_\xi|_H = \int_\xi F_X = 0$$
$$F^X_{c_1}|_H = \int_{c_1} F_X = 0, \quad H = S_4;$$
$$F^X_\eta|_H = \int_\eta F_X = 0$$ (3.3)

then the breaking of S_4 monodromy down to discrete subgroups H may be realised as in table 1 of ref $[9]$ by giving non zero value to F^X_ξ as follows

$$F^X_\xi|_H = N \neq 0$$
$$F^X_{c_1}|_H = 0$$
$$F^X_\eta|_H = 0$$ (3.4)

where N is an integer. The above relation is in fact just an equivalent statement of breaking monodromies by using the splitting spectral cover method where covers C_n are factorised as product $C_{n_1} \times C_{n_2}$ with $n_1 + n_2 = n$. The extra relations $F^X_{c_1}|_H = F^X_\eta|_H = 0$ are the usual conditions to avoid Green-Schwarz mass for the $U(1)_X$ gauge field potential $[2, 3, 9]$.

In our approach, the effect of the abelian non zero flux $F^X_\xi|_H$ is interpreted in terms of

\footnote{In table 1 of ref $[9]$, the $SO_{10} \times S_4$ model monodromy is broken down to \mathbb{Z}_2.}
piercing the irreducible S_4- triplets 16_i, 10_i and $10_{[ij]}$ as follows

\begin{align*}
\begin{array}{c|cc}
\text{curves} & \text{number} \\
\hline
16_i & 16_a & 3 - N = 2 \\
& 16_b & 3 - 2N = 1 \\
\end{array}
\end{align*}

(3.5)

\begin{align*}
\begin{array}{c|c}
\text{curves} & \text{number} \\
\hline
10_i & 10_a & 2 \\
& 10_b & 1 \\
\end{array}
\end{align*}

(3.6)

\begin{align*}
\begin{array}{c|c}
\text{curves} & \text{number} \\
\hline
10_{[ij]} & 10_{[a3]} & 2 \\
& 10_{[12]} & 1 \\
\end{array}
\end{align*}

(3.7)

In geometrical words, flux piercing of the 16_i triplet corresponds to breaking the isotropy of the 3-dimension subspace V_3 of eq(2.14) as a direct sum $V_1 \oplus V_2$; the same breaking happens for the spaces V'_3 and V''_3 associated with 10_i and $10_{[ij]}$; and to any non trivial representation of S_4. Due to the non zero flux, the S_4- triplet $\{x_1, x_2, x_3\}$ gets splitted into a S_3- doublet $\{|y_1\rangle, |y_2\rangle\}$ and a S_3- singlet $\{|y_3\rangle\}$; the new y_μ weights are related to the previous weights x_μ as follows

\begin{align*}
 y_1 &= \frac{1}{3} (x_1 + x_2 - 2x_3) \\
 y_2 &= \frac{1}{3} (x_1 - 2x_2 + x_3) \\
 y_3 &= \frac{1}{3} (x_1 + x_2 + x_3) \\
 y_0 &= x_0
\end{align*}

(3.8)

and

\begin{align*}
 y_1 &= \frac{1}{3} (x_1 + x_2 - 2x_3) \\
 y_2 &= \frac{1}{3} (x_1 - 2x_2 + x_3) \\
 y_3 &= \frac{1}{3} (x_1 + x_2 + x_3) \\
 y_0 &= x_0
\end{align*}

(3.9)

their expressions in terms of the canonical t_μ- weights are obtained through the relations $x_0 = x_0 (t_\mu)$, $x_i = x_i (t_\mu)$. In the $\{|y_i\rangle\}$ basis, the distribution of the abelian flux among the new directions in the 4-dim permutation module V_4 is as illustrated on the following 4×4 traceless matrix

\[
\begin{pmatrix}
 4N & -N \\
 -N & -2N \\
\end{pmatrix}_{|y_i|}
\]

(3.10)
Recall that the permutation group S_3 has order 6, three conjugacy classes and three irreducible representations: $6 = 1^2 + 1^2 + 2^2$; its character table is as follows

$C_i \backslash$ irrep R_j	χ_1	χ_2	χ_3	order
$C_1 \equiv e$	1	2	1	1
$C_2 \equiv (\alpha\beta)$	1	0	-1	3
$C_3 \equiv (\alpha\beta\gamma)$	1	-1	1	2

(3.11)

The group S_3 has two non commuting generators that can be chosen like $A = (12)$ and $B = (123)$ with characters as in above table. Using similar notations as for the case of the group S_4; in particular the property regarding the relation between the characters of reducible R and irreducible R_i representations of S_3, we have

$$\chi^{(g)}_{R} = n_1\chi^{(g)}_{R_1} + n_2\chi^{(g)}_{R_2}$$

(3.12)

where now $g = (A, B)$. Moreover, by using the interpretation of the character $\chi^{(g)}_{R}$ in terms of fix points of S_3- permutations; we have, on one hand $\chi^{(g)}_{1_{12}} = (1, 0)$; and on the other hand $\chi^{(g)}_{1} = (1, 1)$ and $\chi^{(g)}_{2} = (0, -1)$, in agreement with character table (3.11),

$$1, 0 = (1, 1) + (0, -1)$$

(3.13)

Furthermore, by remembering that the $SO_{10} \times S_3$- modeling is done by starting from S_4- multiplets and, due to non zero flux, they decompose into irreducible S_3 representations. For the matter sector of the $SO_{10} \times S_3$ model, the four 16-plets transforming in quartet multiplet 4 decomposes in terms of irreducible S_3 representations as the sum of two singlets $1_1, 1_2$ and a doublet as follows

$$4 = 1_1 \oplus 1_2 \oplus 2$$

(3.14)

However, seen that in S_3 representation theory, we have two kinds of singlets namely the trivial e and the sign ϵ, we must determine the nature of the singlets 1_1 and 1_2 involved in above equation. While one of these singlets; say the 1_1 should be a trivial singlet as it corresponds just to the weight $y_0 = x_0$ of eqs (2.15-3.9), we still have to determine the nature of the 1_2; but this is also a trivial object since it can be checked directly from our explicit construction as it corresponds precisely to the weight y_3 given by eq (3.9).

Nevertheless, this result can be also obtained by using the following consistency relation given by the restriction of the S_4 relation $\chi^{(G)}_{4} = \chi^{(G)}_{1} + \chi^{(G)}_{3}$ down to its subgroup S_3; namely

$$\chi^{(G)}_{4} \big|_{S_3} = \chi^{(G)}_{1} \big|_{S_3} + \chi^{(G)}_{3} \big|_{S_3}$$

(3.15)
By restricting this relationship to the \(g = (A, B) \) generators of \(S_3 \) and using \(\chi_3^{(g)} = \chi_1^{(g)} \oplus 2 \), the restricted \text{eq}(3.15) \) reads as \(\chi_1^{(g)} + \chi_1^{(g)} \oplus 2 \) and leads to

\[
(2, 1) = (1, 1) + (0, -1) + (k, l)
\]

from which we learn that \((k, l) \) should be equal to \((1, 1) \); and so the \(1_2 \) singlet must be in the trivial representation. A similar reasoning leads to the decompositions of the \(S_4 \)- characters \(\chi_3^{(G)} \) and \(\chi_3^{(G)}' \) down to their \(S_3 \)- counterparts; we find \(\chi_3^{(g)} = \chi_1^{(g)} \oplus 2 \) and \(\chi_3^{(g)}' = \chi_1^{(g)}' \oplus 2 \) with the value

\[
\begin{align*}
\chi_1^{(g)} & = (1, 1) + (0, -1) \\
\chi_1^{(g)}' & = (-1, 1) + (0, -1)
\end{align*}
\]

Therefore, the \(S_3 \)- matter curves spectrum following from the breaking of \((2,2,3) \) is given by

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{matters curves} & \mathcal{S}_3 & \text{homology} & \text{U(1)$_X$ flux} & \text{character } \chi_R^{(g)} \\
\hline
16'' & 1_{++} & 4\xi - c_1 & 4N & (1, 1) \\
16'' & 2_{0,-} & \eta - 2c_1 - 2\xi & -2N & (0, -1) \\
16'' & 1_{++} & -c_1 - 2\xi & -2N & (1, 1) \\
10''_{[12]} & 1_{--} & 2\xi - c_1 & 2N & (-1, 1) \\
10''_{[3]} & 2_{0,-} & -2c_1 - 2\xi & -2N & (0, -1) \\
10'' & 2_{0,-} & \eta' - 2c_1 - 2\xi & -2N & (0, -1) \\
10'' & 1_{++} & 2\xi - c_1 & 2N & (1, 1) \\
\hline
\end{array}
\]

where we have indexed the irreducible \(S_3 \)- representations by their characters. In this table, \(\xi \) is a new 2-cycle; and the integer \(N \) standing for the the abelian flux \(\int \xi F_X \) inducing the breaking down to \(S_3 \); see also \text{eq}(3.4) \). Moreover, using properties on characters of tensor products; in particular the typical relations \(X_{p,q} \otimes Y_{k,l} = \sum Z_{n,m} \) requiring \(pk = \sum n \) and \(ql = \sum m \), we obtain the following \(S_3 \)- algebra

\[
\begin{align*}
2_{0,-} \otimes 2_{0,-} & = 1_{++,} \oplus 1_{--,} \oplus 2_{0,-} \\
1_{p,+} \otimes 2_{0,-} & = 2_{0,-} \\
1_{p,+} \otimes 1_{++,} & = 1_{p,+} \\
1_{++,} \otimes 1_{--,} & = 1_{--,}
\end{align*}
\]

with \(p = \pm 1 \).

3.2 \(SO_{10} \times \mathbb{D}_4 \) models

We first recall useful aspects on the dihedral group \(\mathbb{D}_4 \) and the characters of their representations; then we build three \(SO_{10} \times \mathbb{D}_4 \)- models and give their matter and Higgs curves spectrum by using specific properties of the breaking of \(S_4 \) down to \(\mathbb{D}_4 \).
3.2.1 Characters in \mathbb{D}_4 models

The dihedral \mathbb{D}_4 group is an order 8 subgroup of \mathbb{S}_4 with the usual decomposition property $8 = 1_1 + 1_2 + 1_3 + 1_4 + 2^2$ showing that, generally speaking, \mathbb{D}_4 has 5 irreducible representations: four of them are 1-dimensional, denoted as 1_i; the fifth has 2-dimensions. The finite group \mathbb{D}_4 has two generators a and c satisfying the relations $a^2 = 1$, $c^4 = 1$, and $aca = c^3$ with $c^3 = c^{-1}$ and $a = a^{-1}$. It has 5 conjugation classes \mathcal{C}_α given by

$$\begin{align*}
\mathcal{C}_1 &\equiv \{e\}, & \mathcal{C}_2 &\equiv \{c^2\}, & \mathcal{C}_3 &\equiv \{c, c^3\}, \\
\mathcal{C}_4 &\equiv \{a, c^2a\}, & \mathcal{C}_5 &\equiv \{ca, c^3a\}.
\end{align*}$$

(3.20)

The character table of the irreducible representation of \mathbb{D}_4 is as follows

\mathcal{C}_i \ χ_{R_j}	χ_1	χ_2	χ_3	χ_4	χ_2	number
\mathcal{C}_1	1	1	1	1	2	1
\mathcal{C}_2	1	1	1	1	-2	1
\mathcal{C}_3	1	1	-1	-1	0	2
\mathcal{C}_4	1	-1	1	-1	0	2
\mathcal{C}_5	1	-1	-1	1	-0	2

(3.21)

To make contact between the three $(A, B, C) \equiv G$ generators of \mathbb{S}_4 and the two above (a, c) generators of \mathbb{D}_4; notice that the dihedral group has no irreducible 3-cycles; then we have

$$a = A|_{\mathbb{D}_4} \quad c = C|_{\mathbb{D}_4}$$

(3.22)

and therefore the following

$\chi_{ij}^{(g)}$	χ_1	χ_2	χ_3	χ_4	χ_2
a	1	-1	1	-1	0
c	1	1	-1	-1	0

(3.23)

exhibiting explicitly the difference between the four singlets. For convenience, we denote now on the 5 irreducible representations of the dihedral group by their characters as follows

$$1_{+,+}, \quad 1_{+,-}, \quad 1_{-,+}, \quad 1_{-,-}, \quad 2_{0,0}$$

(3.24)

Notice that from the above character table for the (a, c) generators of \mathbb{D}_4, we can build three different kinds of \mathbb{D}_4 algebras; these are:

- **\mathbb{D}_4- algebra I**

 $$\begin{align*}
 2_{0,0} \otimes 2_{0,0} &= 1_{+,+} \oplus 1_{-,-} \oplus 1_{+,-} \oplus 1_{-,+} \\
 1_{p,q} \otimes 1_{p,q} &= 1_{pp',qq'} \\
 1_{p,q} \otimes 2_{0,0} &= 2_{0,0}
 \end{align*}$$

(3.25)
\[\mathbb{D}_4 - \text{algebra II} \]

\[
\begin{align*}
2_{0,0} \otimes 2_{0,0} &= 1_{+,+} \oplus 1_{-,+} \oplus 2_{0,0} \\
1_{p,q} \otimes 1_{p,q} &= 1_{pp',qq'} \\
1_{p,q} \otimes 2_{0,0} &= 2_{0,0}
\end{align*}
\]

\[\mathbb{D}_4 - \text{algebra III} \]

\[
\begin{align*}
2_{0,0} \otimes 2_{0,0} &= 1_{+-} \oplus 1_{-+} \oplus 2_{0,0} \\
1_{p,q} \otimes 1_{p,q} &= 1_{pp',qq'} \\
1_{p,q} \otimes 2_{0,0} &= 2_{0,0}
\end{align*}
\]

To engineer the \(SO_{10} \times \mathbb{D}_4\) models, we proceed as in the case of \(S_3\); we start from the spectrum (2.23) of the \(S_4\) model and break its monodromy down to \(\mathbb{D}_4\) by turning on an appropriate abelian flux (3.4) that pierces the \(1 + 3\) matter curves \(16_0 \oplus 16_i\) and the \(3 + 3'\) Higgs curves \(10_i \oplus 10_{[ij]}\). We distinguish three cases depending the way the \(S_4\)-triplet is splitted; they are described below:

3.2.2 Three \(SO_{10} \times \mathbb{D}_4\) models

First, we study the two cases where the \(S_4\)-triplet \(16_i\) and the two \(S_4\)-triplets \(10_i \oplus 10_{[ij]}\) are completely reduced down in terms of \(\mathbb{D}_4\) singlets. Then, we study the other possible case where these triplets are decomposed as sums of a \(\mathbb{D}_4\)-singlet and a \(\mathbb{D}_4\)-doublet.

\(\alpha\) \(SO_{10} \times \mathbb{D}_4\) - models I and II

We will see below that according to the values of the characters of the \(\mathbb{D}_4\)-generators, there are two configurations for the splitting \(3 = 1 + 1 + 1\); they depend on presence or absence of trivial \(1_{++}\) representation as given below:

- a splitting with no \(\mathbb{D}_4\)-trivial singlet

\[
3 = 1_{+-} \oplus 1_{-+} \oplus 1_{+-}
\]

(3.28)

- a splitting with a \(\mathbb{D}_4\)-trivial singlet

\[
3 = 1_{+-} \oplus 1_{-+} \oplus 1_{++}
\]

(3.29)

To establish this claim, we start from the character of the generators of \(S_4\); and consider the computation of the following restriction down to \(\mathbb{D}_4\) subgroup

\[
\chi_4^{(g)}\bigg|_{\mathbb{D}_4} = \chi_1^{(g)}\bigg|_{\mathbb{D}_4} + \chi_3^{(g)}\bigg|_{\mathbb{D}_4}
\]

(3.30)
Thinking of the triplet \(3\) as the direct sum of three singlets \(1_1 \oplus 1_2 \oplus 1_3\), we then have the following character relationship

\[
\chi_4^{(g)} \mid_{D_4} = \chi_{1_1}^{(g)} \mid_{D_4} + \chi_{1_2}^{(g)} \mid_{D_4} + \chi_{1_3}^{(g)} \mid_{D_4} + \chi_{1_4}^{(g)} \mid_{D_4} \tag{3.31}
\]

By combining eqs (2.22) and (3.22), we learn that the left hand side of equation is nothing but \(\chi_4^{(g)} \mid_{D_4} = (2, 0)\); while, by using the characters of the singlets of table (3.21), the right hand side decomposes like

\[
(2, 0) = (1, 1) + (k_1, l_1) + (k_2, l_2) + (k_3, l_3) \tag{3.32}
\]

with \(k_i = \pm 1\) and \(l_i = \pm 1\). Explicitly

\[
\begin{align*}
 k_1 + k_2 + k_3 &= +1 \\
 l_1 + l_2 + l_3 &= -1 \tag{3.33}
\end{align*}
\]

which can be solved in two manners: (i) either as

\[
(2, 0) = (1, 1) + (1, -1) + (1, -1) + (-1, 1) \tag{3.34}
\]

involving three kinds of irreducibles 1-dim representations of \(D_4\); the trivial representation with character \((1, 1)\) and two others with characters \((-1, 1)\) appearing once and the \((1, -1)\) appearing twice; or (ii) like

\[
(2, 0) = (1, 1) + (1, -1) + (1, 1) + (-1, -1) \tag{3.35}
\]

where the trivial representation appears twice. Accordingly, we have the following curves spectrums:

- \(SO_{10} \times D_4\) model I

It is given by the decomposition (3.34); its matter spectrum reads as

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{matters curves} & \text{\(D_4\)} & \text{homology} & \text{U(1)_flux} & \text{character \(\chi_{10}^{(g)}\)} \\
\hline
16''_0 & 1_{+,+} & 4\xi - c_1 & 4N & (1, 1) \\
16''_1 & 1_{-,+} & \eta - c_1 - \xi & -N & (1, -1) \\
16''_2 & 1_{-,+} & -c_1 - \xi & -N & (1, -1) \\
16''_3 & 1_{-,+} & -c_1 - 2\xi & -2N & (-1, 1) \\
10''_{[12]} & 1_{-,+} & 2\xi - c_1 & 2N & (-1, 1) \\
10''_{[13]} & 1_{-,+} & -c_1 - \xi & -N & (1, -1) \\
10''_{[23]} & 1_{-,+} & -c_1 - \xi & -N & (1, -1) \\
10''_{1} & 1_{-,+} & \eta' + 2c_1 - \xi & -N & (1, -1) \\
10''_{2} & 1_{-,+} & -c_1 - \xi & -N & (-1, 1) \\
10''_{3} & 1_{-,+} & 2\xi - c_1 & 2N & (-1, 1) \\
\hline
\end{array}
\tag{3.36}
\]
and

flavons	character $\chi_{R}^{(g)}$
$1_{-,+}$	$(-1,1)$
$1_{+,+}$	$(1,-1)$
$1_{+,+}$	$(1,-1)$
$1_{+,+}$	$(-1,1)$
$1_{+,+}$	$(1,1)$

and their adjoints.

- $SO_{10} \times D_{4}$ - model II

It is given by the decomposition (3.35) with matter curve spectrum like

matters curves	homology	$U(1)_{\chi}$ flux	character $\chi_{R}^{(g)}$
$16_{0}''$	$1_{+,+}$	$4\xi - c_{1}$	$4N$ (1, 1)
$16_{1}''$	$1_{+,+}$	$\eta - c_{1} - \xi$	$-N$ (1, -1)
$16_{2}''$	$1_{+,+}$	$-c_{1} - \xi$	$-N$ (1, -1)
$16_{3}''$	$1_{+,+}$	$-c_{1} - 2\xi$	$-2N$ (1, 1)
$10_{[12]}''$	$1_{+,+}$	$2\xi - c_{1}$	$2N$ (1, -1)
$10_{[13]}''$	$1_{+,+}$	$-c_{1} - \xi$	$-N$ (1, 1)
$10_{[23]}''$	$1_{+,+}$	$-c_{1} - \xi$	$-N$ (1, -1)
$10_{4}''$	$1_{+,+}$	$\eta' - 2c_{1} - \xi$	$-N$ (1, -1)
$10_{2}''$	$1_{+,+}$	$-c_{1} - \xi$	$-N$ (1, 1)
$10_{3}''$	$1_{+,+}$	$2\xi - c_{1}$	$2N$ (1, 1)

and

flavons	character $\chi_{R}^{(g)}$
$1_{+,+}$	$(1, 1)$
$1_{+,+}$	(1, 1)
$1_{+,+}$	(1, 1)
$1_{+,+}$	(1, 1)

• $SO_{10} \times D_{4}$ - model III

This model corresponds to the splitting $3 = 1 \oplus 2$; the restricted character relation (3.30)
decomposes like
\[\chi_4^{(g)} \bigg|_{\mathbb{D}_4} = \chi_1^{(g)} + \chi_1^{(g)} + \chi_2^{(g)} \] (3.40)
leading to
\[(2, 0) = (1, 1) + (k_1, l_1) + (k_2, l_2) \] (3.41)
and then \((k_1, l_1) + (k_2, l_2) = (1, -1)\). However seen that the character \(\chi_2^{(g)} = (0, 0)\); it follows that
\[3 = 2_{0,0} \oplus 1_{+,-} \] (3.42)
Therefore the matter spectrum of the \(SO_{10} \times \mathbb{D}_4\) model III is given by

matters curves	\(\mathbb{D}_4\)	homology	\(U(1)_X\) flux	character \(\chi^{(g)}_R\)
16\(_{0}^{''}\)	1\(_{+,-}\)	\(4\xi - c_1\)	\(4N\)	\((1, 1)\)
16\(_{i}^{''}\)	2\(_{0,0}\)	\(\eta - 2c_1 - 2\xi\)	\(-2N\)	\((0, 0)\)
16\(_{3}^{''}\)	1\(_{+,-}\)	\(-c_1 - 2\xi\)	\(-2N\)	\((1, -1)\)
10\(_{12}^{''}\)	1\(_{-,+}\)	\(2\xi - c_1\)	\(2N\)	\((-1, 1)\)
10\(_{33}^{''}\)	2\(_{0,0}\)	\(-2c_1 - 2\xi\)	\(-2N\)	\((0, 0)\)
10\(_{3}^{''}\)	2\(_{0,0}\)	\(\eta' - 2c_1 - 2\xi\)	\(-2N\)	\((0, 0)\)
10\(_{3}^{''}\)	1\(_{+,-}\)	\(2\xi - c_1\)	\(2N\)	\((1, -1)\)

and

flavons	character \(\chi^{(g)}_R\)
1\(_{-,+}\)	\((-1, 1)\)
2\(_{0,0}\)	\((0, 0)\)
2\(_{0,0}\)	\((0, 0)\)
1\(_{+,-}\)	\((1, -1)\)

Notice that in tables (3.36-3.43), the homology classes of the new curves are obtained as usual by requiring the sum of their homology classes to be equal to the class of their mother matter curve in \(S_4\) model. The extra 2-cycle class \(\xi\) and the corresponding integral flux \(N = \int_{\xi} F_X\) are associated with the breaking of \(S_4\) down to \(\mathbb{D}_4\); the 2-form \(F_X\) is as in eq (3.4).

4 Conclusion and discussions

In this work, we have used characters of discrete group representations to approach the engineering of \(SO_{10} \times \Gamma\) models with discrete monodromy \(\Gamma\) contained in \(S_4\); this method generalises straightforwardly to \(SU_5 \times \Gamma\) and its breaking down to MSSM. In
this construction, curves of the GUT- models are described by the characters \(\chi R_i \) of the irreducible representations \(R_i \) of the discrete group \(\Gamma \).

After having introduced the idea of the character based method; we have revisited the study of the \(S_4 \)- and \(S_3 \)- models from the view of monodromy irreducible representations and their characters; see table (2.23) for the case \(\Gamma = S_4 \), the table (3.18) for \(S_3 \)- model. Then, we have extended the construction to the dihedral group where we have found that there are three \(SO_{10} \times D_4 \)- models with curves spectrum as in tables (3.36), (3.38) and (3.43).

The approach introduced and developed in this study has two remarkable particularities: (i) first it allows to build GUT- models with subgroups inside the \(S_4 \) permutation symmetry like \(D_4 \) and \(A_4 \) without resorting to the use of Galois theory. The latter is known to lead to non linear constraints on the holomorphic sections of the spectral covers; and requires more involved tools for their solutions. (ii) second, it is based on a natural quantity of discrete symmetry groups; namely the characters of their representations; known as basic objects to deal with finite order symmetry groups.

Building superpotentials using characters

The character based method developed in this study can be also used to build superpotentials. For the case of \(SO_{10} \times D_4 \)-models; superpotentials \(W \) invariant under discrete symmetry \(D_4 \) are obtained by requiring their character as \(\chi_R^{(g)}(W) = (1, 1) \). By focussing on the models (3.36(3.38); and denoting the matter curves with \((p, q) \) character as \(16_{p,q} \) and the Higgs curve with character \((\alpha, \beta) \) like \(10_{\alpha,\beta} \); and restricting to typical tri-coupling superpotential, we have the following candidate

\[
W = \sum \chi_{pq}^{p'q'} 16_{p,q} \otimes 16_{p',q'} \otimes 10_{1/p',1/q'}
\]

More general expressions can be written down by implementing flavons as well. However, to write down phenomenologically acceptable Yukawa couplings that agree with low energy effective field constraints such as reproducing a MSSM like spectrum and suppressing rapid proton decay, one must have a diagonal tree-level Yukawa coupling for the heaviest top-quark family; one also need to introduce extra discrete symmetries such as R-parity or the \(Z_2 \) geometric symmetry of \([9, 11, 12]\) to rule out undesired couplings. Diagonal tree level 3-couplings for the top-quark family have been studied in \([9]\) for the case of \(S_3 \) and its subgroups; they extend directly to our analysis; it reads in character language as

\[
W_{tree} = \lambda_{top} 16_{+-} \otimes 16_{+-} \otimes 10_{++}
\]

singing out the spectrum of the \(D_4 \)- model (3.38). For the spectrum (3.43), a superpotential with a diagonal Yukawa coupling for a top-quark in a \(D_4 \)-singlet requires flavons;
if taking the top-quark matter curve in 16_{+-} as above; a superpotential W_* candidate would have the form

$$W_* \sim 16_{+-} \otimes 16_{+-} \otimes 10_{--} \otimes 1_{++}$$

a similar conclusion is valid if taking the top-quark in 16_{++}.

Breaking symmetries in $SO_{10} \times \mathbb{D}_4$- models

The descent from $SO_{10} \times \mathbb{D}_4$- theory to $SU_5 \times \Gamma$-models with discrete symmetries $\Gamma \subset \mathbb{D}_4$ follows by using $U(1)_X$ flux to pierce the matter 16 and Higgs 10 curves as done in [9]. For matter sector for example, we start from M_{16} multiplets $\{16\}_{M_{16}}$ and use N flux units of $U(1)_X$ to pierce the curve package; and decompose it like $\{10\}_{M_{16}} \oplus \{5\}_{M_{16-N}} \oplus \{1\}_{M_{16+N}}$; similar decompositions are valid for the Higgs sector; explicit MSSM-like models using discrete group character approach will be given in [17]. One can also break the \mathbb{D}_4 monodromy group down to \mathbb{Z}_4 subgroup by using flux and following the same character based method described in this paper.

Acknowledgement 1 Saidi would like to thank the ICTP- Senior Associate programme for supporting his stay at ICTP, the International Centre for Theoretical Physics, Trieste Italy; where this work has been completed.

References

[1] C. Beasley, J. J. Heckman and C. Vafa, GUTs and Exceptional Branes in F-theory - I, JHEP 0901 (2009) 058 [arXiv:0802.3391 [hep-th]].

[2] R. Donagi and M. Wijnholt, Model Building with F-Theory, Adv. Theor. Math.Phys. 15 (2011) 1237 [arXiv:0802.2969 [hep-th]]

[3] C. Beasley, J. J. Heckman and C. Vafa, GUTs and Exceptional Branes in F-theory - II: Experimental Predictions,” JHEP 0901 (2009) 059 [arXiv:0806.0102 [hep-th]],

[4] R. Donagi and M. Wijnholt, Breaking GUT Groups in F-Theory, Adv. Theor.Math. Phys. 15 (2011) 1523 [arXiv:0808.2223 [hep-th]].

[5] R. Donagi and M. Wijnholt, Higgs Bundles and UV Completion in F-Theory, Commun. Math. Phys. 326 (2014) 287 [arXiv:0904.1218[hep-th]],

[6] J. Marsano, N. Saulina and S. Schafer-Nameki, Monodromies, Fluxes, and Compact Three-Generation F-theory GUTs, JHEP 0908 (2009) 046 [arXiv:0906.4672 [hep-th]].
[7] J.J. Heckman, A. Tavanfar and C. Vafa, The Point of $E(8)$ in F-theory GUTs, JHEP 1008 (2010) 040 [arXiv:0906.0581 [hep-th]].

[8] A. Maharana and E. Palti, Models of Particle Physics from Type IIB String Theory and F-theory: A Review, Int. J. Mod. Phys. A 28 (2013) 1330005 [arXiv:1212.0553 [hep-th]],

[9] I. Antoniadis and G. K. Leontaris, Building SO(10) models from F-theory, JHEP 1208 (2012) 001 [arXiv:1205.6930 [hep-th]],

[10] Athanasios Karozas, Stephen F. King, George K. Leontaris, Andrew K. Meadowcroft, “Phenomenological implications of a minimal F-theory GUT with discrete symmetry,” arXiv1505:009337 [hep-ph],

[11] Athanasios Karozas, Stephen F. King, George K. Leontaris and Andrew Meadowcroft, Discrete Family Symmetry from F-Theory GUTs, [arXiv:1406.6290 [hep-ph]],

[12] I. Antoniadis and G.K. Leontaris, Neutrino mass textures from F-theory, Eur. Phys. J. C 73 (2013) 2670 [arXiv:1308.1581 [hep-th]],

[13] Sergio Cecotti, Miranda C.N. Cheng, Jonathan J. Heckman, Cumrun Vafa, Yukawa Couplings in F-theory and Non-Commutative Geometry, arXiv:0910.0477.

[14] Patrick Morandi, “Field and Galois Theory”, Springer,1996,

[15] H. Ishimori, T. Kobayashi, H. Okada, H. Okada, Y. Shimizu and M. Tanimoto, “Non-Abelian Discrete Symmetries in Particle Physicists,” [arXiv:1003.3552 [hep-th]]

[16] R. Ahl Laamara, L.B Drissi, F.Z Hassani, E.H Saidi, A.A Soumail, Nucl.Phys.B847:275-296,2011, [arXiv:1011.3299], L.B Drissi, F.Z Hassani, H. Jehjouh, E.H Saidi, Phys.Rev.D81:105030,2010, [arXiv:1008.2689].

[17] R. Ahl Laamara, M. Miskaoui, E.H Saidi, MSSM-like from $SU_5 \times \mathbb{D}_4$ Model, LPHE-MS preprint (2015),

[18] William Fulton, Joe Harris, Young Tabeaux with Applications to Representation Theory and Geometry, Springer-Verlag (1991),

[19] H. Hayashi, T. Kawano, Y. Tsuchiya and T. Watari, Flavor Structure in F-theory Compactifications, JHEP 1008, 036 (2010) [arXiv:0910.2762 [hep-th]].