Case Report

Acute renal artery thrombosis treated with combination use of multiple interventional techniques

Abstract

Purpose: To describe the combined use of multiple interventional techniques for the treatment of acute renal artery thrombosis.

Case Report: Acute renal artery thrombosis is a rare condition, which is difficult to diagnose accurately and quickly. Failure to restore renal perfusion as quickly as possible may lead to renal dysfunction. Multiple interventional techniques are used as new options to restore renal blood flow and function. Herein we present one case of acute renal artery thrombosis treated with combination use of percutaneous rheolytic thrombectomy, catheter thrombus aspiration and intra-arterial thrombolysis in a very early stage.

Conclusion: Early diagnosis and treatment are essential to preserving the renal function, and the combined use of multiple interventional techniques is safe and effective for the restoration of renal perfusion in treating patients with acute renal artery thrombosis.

Abbreviations

CT: Computer Tomography; CTA: CT Angiography; MRA: Magnetic Resonance Angiography; NOACs: New Oral Anticoagulants; LDH: Lactate Dehydrogenase; APTT: Activated Partial Thromboplastin Time; GFR: Glomerular Filtration Rate; rt-PA: recombinant tissue Plasminogen Activator

Introduction

Acute renal artery thrombosis is a rare condition, which has a high risk of renal dysfunction. With the development of endovascular technology, various options include percutaneous rheolytic thrombectomy, catheter thrombus aspiration, or intra-arterial thrombolysis have been applied for the management of peripheral arterial thrombosis. We present one case of acute renal artery thrombosis treated with combination use of percutaneous rheolytic thrombectomy, thrombus aspiration and intra-arterial thrombolysis in a very early stage.

Case Report

A 67-year-old man with a previous medical history of hypertension and atrial fibrillation was presented to our hospital emergency room, complaining of sudden onset of left flank pain for 8 hours. The pain was severe and sharp, accompanied by nausea and vomiting. He denied any previous episodes of similar events, and also denied chronic kidney disease or acute renal failure. His medications consisted of amlodipine besylate and irbesartan, with no warfarin, NOACs or drugs for kidney disease. His vital signs revealed that the serum creatinine increased to 129 μmol/L, the pulse was irregular, and the temperature was 36.7. The rest of the physical examination was only left flank tenderness. Laboratory analysis revealed that his serum creatinine increased to 129 μmol/L (normal range: 40–106 μmol/L), LDH was 328 U/L (normal range: 248–480 U/L), D-dimer was 1170 μg/L (normal range: 500–1500 μg/L) and microscopic hematuria. Electrocardiogram indicated atrial fibrillation, but no evidence of intracardiac thrombi was found by echocardiogram and left atrial CTA. Before his admission, he underwent an abdominal CT with contrast at the outside hospital, which revealed left kidney hypoperfusion and left renal artery occlusion. With no delay, we sent him to the operating room for further evaluation and interventional treatment after obtaining his consent.

A 6-Fr sheath was placed percutaneously in the left common femoral artery. Then 3000 units of heparin were given by intra-arterial injection. The initial angiogram of the abdominal aorta revealed that the right renal artery was patent, and the left renal artery was occluded entirely (Figure 1A). Then the selective left renal artery angiogram was performed...
with the aid of a 5-Fr Cobra catheter, which demonstrated a total thrombotic occlusion at the main trunk of the left renal artery with obviously double-track sign (Figure 1B). The thrombotic occlusion was traversed by using the combination of a hydrophilic 0.035-in guidewire and a 5-Fr Cobra catheter to the distal portion of the left renal artery, and the angiogram was again performed that revealed the branch arteries were extensively occluded with no parenchymal enhancement of the nearly total left kidney (Figure 1C).

A 6-Fr AngioJet SOLENT Thrombectomy Sets (Boston Scientific Corporation, Marlborough, MA) was used, which was advanced over the guidewire to the left renal artery. Multiple thrombectomies were made by AngioJet catheter until the main trunk of the left renal artery was fully patent by angiographic confirmation (Figure 1D). Due to the residual thrombus of branch arteries, catheter thrombus aspiration was performed via a 6-Fr guiding catheter via the vacuum effect that thrombus can be suctioned, fragmented and removed with enormous success. percutaneous rheolytic thrombectomy, catheter thrombus aspiration, intra-arterial thrombolysis and so on have been adopted for diagnosis [8]. Although renal artery angiography is the gold standard for diagnosis, abdominal CT with contrast may be the preferred initial test when renal artery thrombosis is highly suspected in this case.

The standard treatment strategy for renal artery thrombosis has not been established. The traditional treatment has been anticoagulation with/without thrombolysis and surgical thrombectomy, which is associated with high morbidity and mortality [9]. With the development of endovascular technology, more and more interventional techniques including percutaneous rheolytic thrombectomy, catheter thrombus aspiration, intra-arterial thrombolysis and so on have been used with enormous success.

Percutaneous rheolytic thrombectomy by AngioJet catheter based on the Bernoulli principle is done by delivering high-velocity saline jets to the tip of the catheter to create a venturi effect that thrombus can be suctioned, fragmented and removed, which has been successfully performed for treatment of deep venous thrombosis [10], pulmonary embolism [11], acute peripheral arterial embolism [12] and hemodialysis-shunt thrombosis [13]. The AngioJet catheter for acute renal

Discussion

Acute Renal artery thrombosis is a rare condition, which may lead to renal dysfunction, with an incidence of 0.004% to 0.007% reported in the emergency department [1,2], although its postmortem incidence is 1.4% [3]. As reported in other cases, the cause of renal artery thrombosis is usually systemic embolization and rarely secondary to in situ thrombosis [4,5]. The renal artery thrombosis is strongly related to arterial fibrillation that accounts for 64% of these cases [6]. Considering that the patient had a previous medical history of atrial fibrillation, he actual cause of this case was probably secondary to the embolism from atrial fibrillation, despite no findings of intracardiac thrombi by echocardiogram and left atrial CTA [7]. The clinical symptoms include sudden flank/abdominal pain, nausea, vomiting, fever, and hematuria [7]. Since these symptoms are nonspecific, renal artery thrombosis is often misdiagnosed as acute pyelonephritis, acute cholecystitis, nephrolithiasis and myocardial infarction in the acute phase (4,7), resulting in delayed diagnosis and treatment. Various imaging techniques including duplex ultrasound, CT with/without contrast, MRA, and renal artery angiography have been adopted for diagnosis [8]. Although renal artery angiography is the gold standard for diagnosis, abdominal CT with contrast may be the preferred initial test when renal artery thrombosis is highly suspected in this case.

The patient’s flank pain was entirely resolved after the interventional treatment, and the serum creatinine decreased to 123 μmol/L on the sixth day, when nuclear medicine scan revealed that the function of the left kidney was severely damaged (GFR: 6.37ml/min), compared with the right kidney (GFR: 32.68ml/min). The ultrasound of the kidney showed that blood flow was sufficient in the left renal artery and parenchyma, although it was slightly worse than the right kidney. He was discharged with aspirin 100mg/day and an additional prescription of rivaroxaban 20mg/day for anticoagulation, not only for renal artery thrombosis but also for atrial fibrillation according to the score of CHA2DS2-VASC2. Follow-up serum creatinine level at three months postprocedure returned to normal range, at 105μmol/L. However, the patient refused to have another nuclear medicine scan in the follow-up period due to fear of radiation effects.

Figure 1: A: Angiogram of the abdominal aorta reveals an abrupt occlusion of the left renal artery (white arrow). B. Selective left renal angiogram reveals a total thrombotic occlusion with obviously double track sign (white arrow). C. Selective left renal angiogram reveals the branch arteries were extensively occluded with no parenchymal enhancement of the nearly total left kidney. D. Selective left renal angiogram following AngioJet thrombectomy shows the full patency of the main trunk of the left renal artery (white arrow), but filling defect in the inferior branch artery (white arrowhead). E. The final angiogram demonstrates almost complete resolution of thrombosis except the upper pole.

Citation: Zhang N, Xiong G, Pan Y, Shao C, Wang J, et al. (2019) Acute renal artery thrombosis treated with combination use of multiple interventional techniques. J Cardiovasc Med Cardiol 6(4): 088-091. DOI: https://dx.doi.org/10.17352/2455-2976.000099
Artery thrombosis was first reported in 2002 with satisfactory results and no complication [4], which has also been applied for recent similar cases [3,7,8,14]. The most significant advantage is quick restoration of blood flow to preserve renal function, but there exist some problems that should be for caution, including potential hemolysis, hemoglobinuria, and distal embolization [15], although the procedure time by AngioJet catheter is due to the short lesion length of renal artery as in this case only 10 seconds.

Catheter thrombus aspiration is also helpful to restore the renal artery blood flow rapidly, with successful application in the setting of acute myocardial infarction, visceral, and upper/lower limbs arteries [16,17]. Although its advantages include quick revascularization and a lower risk of possible bleeding, there are some limitations, such as fragmenting and advancing the thrombus to distal branch arteries, only partial thrombus aspirated into the catheter, and vascular injuries [16]. In this case, only the inferior branch artery was recanalized after aspirated into the catheter, and vascular injuries [16].

In humans, the kidney can tolerate approximately 30 minutes of warm ischemia without loss of renal function [20]. Once the warm ischemia time exceeds 2 hours, only 30% - 50% of renal function can be recovered [21]. More than 90 minutes of acute warm ischemia has been recommended as a cut point for the recovery of renal function [22]. While it is well known that early diagnosis and treatment are essential to preserving renal function, it is controversial to adopt treatment measures after prolonged ischemia time [23]. However, there are some cases that renal function was recovered after renal artery occlusion for several days [4,7,8,23]. Maybe the collateral circulation which arises from lumbar, suprarenal, and ureteral vessels plays a significant role in the renal function preservation after prolonged ischemia time for these cases [23,24]. The left renal function of our patient was severely damaged, in spite of only 8 hours of symptom onset and combination use of multiple interventional techniques. The discrepancy might be explained by the following reasons: (1) extensive thrombosis in the left renal artery system leads to more severe renal ischemia than local thrombosis; (2) inadequate collateral circulation can’t be able to sustain the renal viability; (3) it has been a long time between symptom onset and full patency of renal artery. Despite damaged renal function, the residual renal function is still beneficial for the patient. The serum creatinine level at three months postprocedure returned to normal range, which might reveal that renal function could be partially regained after a period of time [7].

However, there are some limitations in this case. Firstly, it was not available to acquire a creatinine value before this event due to that the patient did not have regular monitoring of renal function. Through the GFR of the right kidney, it could be inferred that the total kidney function was slightly impaired before this event, probably with a creatinine value in the normal range. Secondly, it is not rigorous to evaluate the left kidney only by the creatinine value. The nuclear medicine scan of the kidney is recognized as an accurate method to evaluate the renal function, however, the patient refused to have this examination in the follow-up period due to fear of radiation effects. Thus, it may be the only way to monitor renal function by regular testing of creatinine in this case. As reported in similar cases, a renal function could recover gradually in a few months3. So we considered that the left kidney was partially working after a period of time, with the decrease of creatinine value.

Conclusion

Acute renal artery thrombosis is a rare condition with a high risk of renal dysfunction, and therefore we should pay more attention to this disease. Early diagnosis and treatment are vital to preserving renal function. It is proved that the combined use of multiple interventional techniques is safe and effective for the restoration of renal perfusion in treating patients with acute renal artery thrombosis. Despite good angiographic results, the renal function is still damaged. For those patients with prolonged ischemia, we should also try to preserve their renal function as much as possible.

References

1. Korzets Z, Plotkin E, Bernheim J, Zissin R (2002) The clinical spectrum of acute renal infarction. Isr Med Assoc J 4: 781-784. **Link:** http://bit.ly/2rSEV9Q
2. Huang CC, Lo HC, Huang HH, Kao WF, Yen DH, et al. (2007) ED presentations of acute renal infarction. Am J Emerg Med 25: 164-169. **Link:** http://bit.ly/2OJzwDx
3. Komolafe B, Dishmon D, Sultan W, Khouzam RN (2012) Successful aspiration and rheolytic thrombectomy of a renal artery infarct and review of the current literature. Can J Cardiol 28: e761-e763. **Link:** http://bit.ly/3SRznDl
4. Greenberg JM, Steiner MA, Marshall JJ (2002) Acute renal artery thrombosis treated by percutaneous rheolytic thrombectomy. Catheter Cardiovasc Interv 56: 66-68. **Link:** http://bit.ly/2ogyg3No
5. Ganju N, Sondhi S, Kandoria A (2018) Acute renal artery embolisation: role of local catheter-based intra-arterial thrombolysis. BMJ Case Rep 2018. Link: http://bit.ly/2Ya1vl

6. Antopoloski M, Simalovska N, Stainkovic R, Salameh S, Hiller N (2012) Renal infarction in the ED: 10-year experience and review of the literature. Am J Emerg Med 30: 1055-1060. Link: http://bit.ly/2OLWWbA

7. Syed MI, Shaha A, Ullah A, Akhter TS, Rangiwala S, et al. (2010) Acute renal artery thrombosis treated with t-PA power-spray rheolytic thrombectomy. Cardiovasc Revasc Med 11: e261-267. Link: http://bit.ly/2YcbGTX

8. Tan TW, Bohannon WT, Mattos MA, Hodgson KJ, Farber A (2011) Percutaneous mechanical thrombectomy and pharmacologic thrombolysis for renal artery embolism: case report and review of endovascular treatment. Int J Angiol 20: 111-116. Link: http://bit.ly/2qg1ttj

9. Bouttier S, Valverde JP, Lacombe M, Nussaume O, Andreassian B (1988) Renal artery embolism: therapy with intra-arterial streptokinase infusion. J Urol 132: 402-404. Link: http://bit.ly/33hXtK

10. Dumantepe M, Uyar I (2018) The effect of Angiojet rheolytic thrombectomy in the endovascular treatment of lower extremity deep venous thrombosis. Phlebology 33: 388-396. Link: http://bit.ly/2YdMTyN

11. Das S, Das N, Serota H, Vissa S (2018) A retrospective review of patients with massive and submassive pulmonary embolism treated with AngioJet rheolytic thrombectomy with decreased complications due to changes in thrombolytic use and procedural modifications. Vascular 26: 163-168. Link: http://bit.ly/2P47tNf

12. Mathie AG, Bell SD, Saibal EA (1999) Mechanical thromboembolectomy in acute embolic peripheral arterial occlusions with use of the AngioJet Rapid Thrombectomy System. J Vasc Interv Radiol 10: 583-590. Link: http://bit.ly/2lPkJJ4

13. Maleux G, De Coster B, Laenen A, Vaninbroukx J, Meijers B, et al. (2015) Percutaneous rheolytic thrombectomy of thrombosed autogenous dialysis fistulas: technical results, clinical outcome, and factors influencing patency. J Endovasc Ther 22: 80-86. Link: http://bit.ly/33I6oku

14. Fiorucci B, Isernia G, Simonte G, Farchioni L, Parente B, et al. (2017) Rheolytic Thrombectomy with AngioJet((R)) Is Safe and Effective in Revascularization of Renal Arteries’ Acute Occlusion on Previous Complex Aortic Endovascular Repair. Ann Vasc Surg 45: e271-e276. Link: http://bit.ly/2Pl0Win

15. Siablis D, Liatsikos EN, Gounenos D, Karnabatidis D, Voudoukis T, et al. (2005) Percutaneous rheolytic thrombectomy for treatment of acute renal-artery thrombosis. J Endourol 19: 68-71. Link: http://bit.ly/2DI2KMU

16. Di Valentino M, Alerci M, Tutta P, Sartori F, Marone C, et al. (2004) Thrombus aspiration as a bailout procedure during percutaneous renal angioplasty. Journal of Endovascular Therapy 11: 522-526. Link: http://bit.ly/2OLlvkB

17. Rossi UG, Rollandi GA, Dallatana R, Cariati M (2019) Mechanical aspiration thrombectomy in the treatment of acute infrarenal renal artery thrombosis. Cardiovasc Revasc Med 20: 344-346. Link: http://bit.ly/33k4akD

18. Fischer CP, Konnak JW, Cho KJ, Eckhauser FE, Stanley JC (1981) Renal artery embolism: therapy with intra-arterial streptokinase infusion. J Urol 125: 402-404. Link: http://bit.ly/33hXtK

19. Ebben HP, Yang HT, Hoksbergen AWJ, Wisselink W, Ko P-J, et al. (2019) Catheter-Directed Thrombolysis for Acute Limb Ischemia in an Asian Population. Ann Vasc Surg 55: 246-250. Link: http://bit.ly/2sDzRPv

20. Desai MM, Gillis IS, Ramani AP, Spalviero M, Rybicki L, et al. (2005) The impact of warm ischaemia on renal function after laparoscopic partial nephrectomy. BJU Int 95: 377-383. Link: http://bit.ly/20NkUH

21. Semb C (1956) Partial resection of the kidney: anatomical, physiological and clinical aspects. Ann R Coll Surg Engl 19: 137-155. Link: http://bit.ly/34McXnf

22. Blum U, Billmann P, Krause T, Gabelmann A, Keller E, et al. (1993) Effect of local low-dose thrombolysis on clinical outcome in acute embolic renal artery occlusion. Radiology 189: 549-554. Link: http://bit.ly/2p9aQmN

23. Silverberg D, Menes T, Rimon U, Salomon O, Halak M (2016) Acute renal artery occlusion: Presentation, treatment, and outcome. J Vasc Surg 64: 1026-1032. Link: http://bit.ly/2sFr4uV

24. Hassanein M, Saleh Y, Randhawa M, Karve M (2018) Renal artery embolism successfully managed by ultrasound enhanced catheter directed thrombolysis. Egypt Heart J 70: 447-450. Link: http://bit.ly/380tbe