NOVEL intronic CAPN3 Roma mutation alters splicing causing RNA mediated decay

Fabiola Mavillard1,2, Marcos Madruga-Garrido1,3, Eloy Rivas1,4, Emilia Servián-Morilla1,2, Rainiero Avila-Polo1,4, Irene Marcos1,5,6, Francisco J. Morón1, Carmen Paradas1,2,7 & Macarena Cabrera-Serrano1,2,7

1Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Sevilla, Spain
2Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de salud Carlos III, Sevilla, Spain
3Neuromuscular Disorder Unit, Pediatric Neurology Department, Hospital U. Virgen del Rocío, Sevilla, Spain
4Department of Pathology, Hospital U. Virgen del Rocío, Sevilla, Spain
5Department of Maternal-Fetal Medicine, Genetics and Reproduction, Hospital U. Virgen del Rocío, Sevilla, Spain
6Centro Investigación Biomédica en Red Enfermedades Raras (CIBERER), Seville, Spain
7Department of Neurology, Hospital Virgen del Rocío, Sevilla, Spain

Correspondence
Carmen Paradas and Macarena Cabrera-Serrano, Department of Neurology, Hospital Universitario Virgen del Rocío, Calle Manuel Siurot sn. 41013 Sevilla, Spain. Tel: +34 955 923070; Fax: +34 955 923 101; E-mails: cparadas@us.es and macabrera@us.es

Funding information
This project has been founded by ISCIII and FEDER “a way to achieve Europe”; Grant number P16/00612(MC-S) and P16/01843 (CP). MC-S was supported by ISCIII (JR15/00042) and Junta de Andalucía-Consejería de Salud (B-0005-2017).

Received: 20 June 2019; Revised: 2 September 2019; Accepted: 10 September 2019

Annals of Clinical and Translational Neurology 2019; 6(11): 2328–2333
doi: 10.1002/acn3.50910

Introduction

The Roma population is the most numerous ethnic minority in Europe. A small number of ancestors, subsequent endogamy, and population fissions causing secondary founder effects explain the increased frequency of Mendelian disorders in this population.1–5 Founder mutations are often found to cause 100% of the cases of a specific disease in this population group,6,7 with important implications for diagnosis. Several neuromuscular disorders are particularly frequent among the Roma.7–9 The identification of founder mutations would allow a rapid diagnosis and prevention of future cases in this population group through genetic counselling.

CAPN3 encodes a calcium modulated nonlysosomal protease predominantly expressed in skeletal muscle.10 Limb girdle muscle dystrophy 2A (LGMD2A), due to CAPN3 mutations is one of the most frequent muscular dystrophies, however, its presence in the Roma population has not been reported before. Different mutation types have been reported in CAPN3, including splice site mutations.12 Here, we describe a novel intronic mutation...
that causes exclusion of exon 17 and RNA mediated decay.

**Patients and Methods**

**Subjects of study**

Findings from two nonrelated Iberian Roma subjects from Andalusia (Spain) are reported. The study was approved by the local Ethics Committee at Hospital Universitario Virgen del Rocío. Informed consent was obtained from the legal representative.

**Muscle histology**

Muscle samples were obtained by open biopsy from both patients and processed following standard procedures. Usual stains for muscle and routine immunohistochemical stainings (IHC) including utrophin (Novocastra Ref. DRP3/20C5), and calpain-3 (Leica NCL-CALP-2C4 and Leica NCL-CALP-12A2) were performed.

**Western blot analysis**

Protein lysates from muscle were resolved on 10% SDS-PAGE gels and transferred to PDVF membranes. Full size calpain-3 and autolytic fragments were detected with the above described antibodies. Rabbit anti-GAPDH (Sigma-Aldrich, Ref. G9545) was developed as load control.

**CAPN3 genetic screening**

DNA was extracted from blood and screened by Sanger sequencing of the 24 exons and the flanking sequence of each intron of CAPN3 (ABI3730 DNA Sequencer).

**Next generation sequencing**

Targeted next generation sequencing of 106 neuromuscular disease genes, including 15 LGMD genes, 12 distal myopathy genes and 52 CMT genes was performed (Illumina) on both patients. To cover other genes of interest, exome sequencing was performed on patient 1 with a median coverage of 100x (Illumina) and genes included in GeneTable 2018 (www.musclegenetable.fr) were screened for pathogenic variants.

**Transcript analysis**

RNA was extracted from frozen muscle (RNA purification kit Norgen, Ref.17200). Integrity of RNA was checked using the Agilent 2100 BioAnalyzer system. PrimeScript™ RT Master Mix kit (Takara, Ref. RR036A) was used to obtain cDNA. CAPN3 cDNA was amplified by PCR. DES and DAG1 cDNA was also amplified as controls. CAPN3 cDNA PCR products were sequenced by Sanger method.

**Haplotype analysis**

Relatedness of the two cases was studied by haplotype analysis. The two affected individuals and parents of Patient 2 were included in the analysis. No first-degree relatives of Patient 1 were available. Six microsatellite markers spanning 13 Mb around CAPN3 were amplified by PCR using fluorescently labeled forward primers. PCR products were analyzed in an ABI3500 Genetic Analyzer and their sizes were estimated using GeneMapper software 4.1. Additionally, five single nucleotide polymorphisms with minor allele frequency close to 50% were analyzed by Sanger sequencing.

**Results**

**Clinical findings**

Patient 1 was born to consanguineous parents. She was first investigated at the age of 13 after an incidental finding of high levels of serum CK (8900 IU/L). When asked, she reported low performance on sports and motor activities for the last year. Examination at age 13 showed mild proximal lower limb weakness and hypoactive deep tendon reflexes. She later developed difficulty to climb stairs and to run. Last examination at age 15 showed asymmetric scapular winging, weakness of wrist and finger extensors, and interossei and proximal lower limb weakness. A muscle MRI performed at age 13 showed mild fat infiltration of posterior compartment of thighs (Fig. 1A). Patient 2 was born to consanguineous parents. He presented at age 8 years after finding a serum CK of 3700 IU/L. He reported muscle cramps when playing sports as the only muscle symptom. At age 10 he was found to have mild proximal upper and lower limb weakness. Last examination at age 12 revealed bilateral scapular winging and waddling gate. He could stand from a seat but needed support to stand from a squat. There was weakness of deltoids, biceps, glutei, tibialis anterior, and adductor hallucis longus, being able to walk on his toes but not on his heels.

**Muscle histopathology**

Muscle biopsies were performed at age 13 in Patient 1 and at age 10 in Patient 2. Both showed a mild dystrophic pattern, absence/deficiency of calpain-3, and overexpression of utrophin (Fig. 1B).
Immunoblot performed on muscle tissue showed absence of the full-length form of calpain-3 in muscle from Patient 1, and severe reduction in Patient 2. Absence of autocatalytic forms was found in both patients (Fig. 1C).

Genetic screening

Sanger sequencing of CAPN3 identified an intronic homozygous NM_000070.2 c.1992 + 2T>G variant in both patients (Fig. 2A). Accordingly, parents of Patient 2 were heterozygous carriers. Targeted NGS performed in Patients 1 and 2 and exome sequencing in Patient 1 confirmed the presence of a homozygous CAPN3 c.1992 + 2T>G variant and did not identify pathogenic variants in genes related with other neuromuscular disease. The CAPN3 c.1992 + 2T>G variant is not present in databases of normal controls (gnomAD).11 Screening of whole exome sequencing data from 50 Roma controls did not identify any carriers. The variant involves the second position of the canonical donor splice site (GT) of intron 17, is predicted to be damaging by DANN,12 MutationTaster13 and FATHMM-MKL14 and to break the donor splice site by SSPP analysis NetGene2.15 A pathogenic T> A variant at the same c.1992 + 2 position has been reported, although no characterization is available (https://www.ncbi.nlm.nih.gov/clinvar/variation/596001/).
Figure 2. Molecular characterization of the \textit{CAPN3} \texttt{c.1992 + 2T>G} variant. (A) Sanger sequencing of genomic DNA of Patient 1 showing a homozygous nucleotide substitution T to G at position + 2 of intron 17 (B) Sanger sequencing of exons 11-21 of cDNA from muscle showing skipping of exon 17. (C, D, E) Structural changes induced in the \textit{CAPN3} \texttt{c.1992 + 2T>G} mRNA molecule. (C) Predicted full-length wild-type \textit{CAPN3} mRNA structure. Exon 17 is marked in red. The black box highlights the region of the mRNA that harbors the structural changes. (D, E) Magnification of the region showing the structural change of the mRNA molecule. (D) Wild-type \textit{CAPN3} mRNA and (E) \texttt{c.1992 + 2T>G CAPN3} mRNA. (F) Haplotype analysis showing a shared area of homozygosity and common haplotype around the position of \textit{CAPN3}. Microsatellite markers and single nucleotides polymorphisms used for the analysis are shown. (G) Diagram of chromosome 15 showing the region studied including the position of the markers used. Position of \textit{CAPN3} is marked in a green box. Microsatellite markers positions are highlighted in red and single nucleotide polymorphisms in blue.
RNA analysis

To investigate whether the c.1992 + 2T>G variant affects splicing, total muscle RNA was retrotranscribed to cDNA and amplified. No CAPN3 cDNA was detected in Patient 1. In Patient 2, severely reduced levels were observed. Sanger sequencing of cDNA in Patient 2 revealed skipping of exon 17 (Fig. 2B), predicted to cause a 25 amino-acid in-frame deletion. PCR amplification of control cDNAs expressed in muscle (DES and DAG1) was efficient in patients and controls (Fig. 1D).

RNAfold program (Vienna RNA package) analysis of the mutant RNA molecule predicted the introduction of strong secondary structure changes involving a large part of the molecule (Fig. 2C–E).

Haplotype analysis

To investigate whether the identified mutation has a common ancestral origin in the two families we analysed the genotype of 11 markers spanning 13Mb which identified an area of at least 6.2Mb of homozygosity and common haplotype, around the position of the mutation, shared by the two patients, revealing a common ancestor and a founder effect (Fig. 2F–G).

Discussion

Here, we report a novel Roma mutation causing LGMD. This is, to our knowledge, the first CAPN3 mutation reported in the Roma population. The mutation, identified in apparently unrelated patients, has a common ancestor supporting the notion that this is a Roma founder mutation. Analysis of subsequent cases would be necessary to corroborate this founder effect.

Our patients displayed distal weakness from early in disease course. The clinical presentation of CAPN3 mutations is highly variable, including asymptomatic HyperCK, pelvic girdle weakness and scapulohumeral weakness. Distal muscle involvement, although rare, have been previously described. However, to our knowledge, involvement of distal upper limb muscles at early stages has not been documented before.

Splicing

Sanger sequencing of cDNA in Patient 2 revealed skipping of exon 17 (Fig. 2B), predicted to cause a 25 amino-acid in-frame deletion. PCR amplification of control cDNAs expressed in muscle (DES and DAG1) was efficient in patients and controls (Fig. 1D).

RNAfold program (Vienna RNA package) analysis of the mutant RNA molecule predicted the introduction of strong secondary structure changes involving a large part of the molecule (Fig. 2C–E).

RNA quality control systems identify and degrade aberrant mRNAs through different mRNA surveillance pathways. Non-sense and non-stop mediated decay (NMD, NSD) are mechanisms to trigger RNA degradation. The most recently known RNA surveillance mechanism is No-Go Decay (NGD), in which aberrant secondary structures causing stalls in translation elongation trigger mRNA endonucleolytic cleavage. NGD has been described as the pathogenic mechanism in other splice site mutation, causing human disease.

Different levels of protein detected by immunoblot among patients with the same CAPN3 mutation have previously been described, however, it is interesting that in our report, different protein and RNA levels are seen in patients of the same background, both being equally clinically affected from a young age and sharing a characteristic phenotype with distal involvement. The different RNA and protein levels observed may represent unequal efficiency in the RNA degradation mechanisms, which are not completely understood.

We have shown how the CAPN3 c.1992 + 2T>G induces structural changes in the mutant RNA. These profound structural alterations of the mRNA molecule may cause stalls during translation and elongation. In our patients, RNA is severely reduced or absent. These findings are in keeping with no-go mediated decay as a novel pathogenic mechanism in calpainopathies.

Acknowledgment

This project has been founded by ISCIII and FEDER “a way to achieve Europe”; Grant number PI16/00612(MC-S) and PI16/01843 (CP). MC-S was supported by ISCIII (JR15/00042) and Junta de Andalucia-Consejería de Salud (B-0005-2017).

Conflict of interest

The authors declare no conflicts of interest.

Author Contributions

F.M., G.P., and M.C.-S. were responsible for the conception and design of this study. M.M.-G. and M.C.-S. assessed the patients, provided clinical information and collected biological samples. E.R., E.S.-M. and R.A.-P. processed and studied muscle biopsy and western blot. F.M., I.M., and FJ.M performed the genetic analysis and haplotype. F.M. performed the genetic analysis and haplotype. F.M. performed and in silico analysis. F.M., C.P., and M.C.-S. drafted the manuscript and figures. M.C.-S. coordinated all the study. All authors read and approved the final manuscript.

References

1. Kalaydjieva L, Chamova T. Congenital Cataracts, Facial Dysmorphism, and Neuropathy. In: R. A. Pagon, M.
12. Quang D, Chen Y, Xie X. DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics 2015;31:761–763.

13. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 2014;11:361–362.

14. Shihaib HA, Rogers MF, Gough J, et al. An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics 2015;31:1536–1543.

15. Brunak S, Engelbrecht J, Knudsen S. Prediction of human mRNA donor and acceptor sites from the DNA sequence. J Mol Biol 1991;220:49–65.

16. Gruber AR, Lorenz R, Bernhart SH, et al. The Vienna RNA web suite. Nucleic Acids Res 2008;36:W70–W74.

17. Angelini C, Fanin M. Calpainopathy. In: M. P.Adam, H. H.Ardinger, R. A.Pagon, eds. GeneReviews(R). Seattle (WA): University of Washington, 1993.

18. Luo SS, Xi JY, Lu JH, et al. Clinical and pathological features in 15 Chinese patients with calpainopathy. Muscle Nerve 2011;43:402–409.

19. Shirafuji T, Otsuka Y, Kobessho H, et al. [Case of LGMD2A (calpainopathy) clinically presenting as Miyoshi distal myopathy]. Rinsho Shinkeigaku (Clin Neurol) 2008;48:651–655.

20. Krähn M, Pechex C, Chapon F, et al. Transcriptional explorations of CAPN3 identify novel splicing mutations, a large-sized genomic deletion and evidence for messenger RNA decay. Clin Genet 2007;72:582–592.

21. Stehlikova K, Zapletalova E, Sedlackova J, et al. Quantitative analysis of CAPN3 transcripts in LGMD2A patients: involvement of nonsense-mediated mRNA decay. Neuromuscul Disord 2007;17:143–147.

22. Blazquez L, Azpitarte M, Saenz A, et al. Characterization of novel CAPN3 isoforms in white blood cells: an alternative approach for limb-girdle muscular dystrophy 2A diagnosis. Neurogenetics 2008;9:173–182.

23. Nascimbeni AC, Fanin M, Tasca E, Angelini C. Transcriptional and translational effects of intronic CAPN3 gene mutations. Hum Mutat 2010;31:E1658–E1669.

24. Wu X, Brewer G. The regulation of mRNA stability in mammalian cells: 2.0. Gene 2012;500:1094–1104.

25. Maquat LE. Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol 2002;3:226–236.

26. van Hoof A, Frischmeyer PA, Dietz HC, Parker R. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 2002;295:2262–2264.

27. Doma MK, Parker R. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 2006;440:561–564.

28. Colobran R, Lois S, de la Cruz X, et al. Identification and characterization of a novel splice site mutation in the SERPING1 gene in a family with hereditary angioedema. Clin Immunol 2014;150:143–148.

29. Fanin M, Fulizio L, Nascimbeni AC, et al. Molecular diagnosis in LGMD2A: mutation analysis or protein testing? Hum Mutat 2004;24:52–62.

P.Adam, H. H.Ardinger, et al., eds. GeneReviews(R). Seattle (WA): University of Washington, 1993.