INTRODUCTION

Hydrogels are water-insoluble, randomly cross-linked three-dimensional polymeric systems that have an incredible capability to swell and retain a significant amount of water within their structural framework. The water molecules entrapped into the hydrogel network crosslinks the macromolecules through physical or chemical means [1, 2]. The basic properties of hydrogels are can be brought under mechanical properties, biocompatibility properties, and swelling properties [3]. Hydrogels containing nanoparticles should be used to optimize the thermal, mechanical, optical, and chemical properties of the hydrogel [4]. Physical cross-linking of hydrogels results from weak interactions such as hydrogen bonds, hydrophilic/hydrophobic interactions, ionic/electrostatic interactions, reversible intermolecular interactions, stereo complex formation, metal coordination, π-π stacking, and polymerized entanglements. The physically cross-linked hydrogels can be easily disrupted by adding organic solvents or by changing the ionic strength, pH, or temperature owing to their weak cross-linking interaction. Chemical crosslinking results in the formation of stable hydrogel with considerable mechanical strength and are usually created by photo-polymerization; Diels-Alder clicks reaction, Michael type addition, oxime formation, Schiff base formation, and enzyme-induced crosslinks [2, 5]. Placing hydrophilic groups such as amides, sulfonic acids, hydroxyl groups, and carboxylic acids into the structure, hydrogels can absorb large amounts of water and form hydrophilic polymers [6]. It can be added through novel mechanisms that can be used to improve the physical properties of the hydrogel [7]. Hydrogels are biocompatible and biodegradable, resembling natural tissues due to their high flexibility and high moisture content. Hydrogels offer good transport properties, making them a potential drug delivery carrier to achieve targeted and prolonged-release drug delivery. Thermo-sensitive hydrogels have received considerable attention due to their ease of application, simplicity of drug formulation, less antagonistic effect on tissues, protective environment for drugs, localized drug delivery, and other attractive gelling systems [13]. Depending on thermo-sensitive groups present, the formation of thermo-sensitive hydrogels momentarily happens by a microscopic mechanism when the gelation temperature is attained. The solid phase is separated from the solution near the critical temperature [14]. Thermo-sensitive hydrogels can be classified into negatively thermo-sensitive hydrogels, dual responsive, and multi-responsive hydrogel systems.

Keywords: Thermo-sensitive hydrogels, Gelation property, Delivery of drugs, Tissue regeneration

In this review, the authors have discussed scientific advances in thermo-sensitive hydrogels over the past two decades. The ability of the thermo-sensitive hydrogel to undergo rapid changes with response to temperature makes it an attractive candidate for many biomedical applications such as targeted drug delivery, wound healing, soft contact lenses, sensors, tissue regeneration, gene, and protein delivery. This review aims to deliver a brief overview of gelation properties, merits, and demerits of various natural and synthetic thermo-sensitive polymers that have significant clinical relevance. The report emphasizes the importance of injectable thermo-sensitive hydrogels, as it can offer improved solubility of hydrophobic drugs and site-specificity, extended-release of drugs and macromolecules, improved safety, and local administration of drugs. The authors has also provided a commentary on the delivery of drugs or macromolecules from thermo-sensitive hydrogels through various approaches. This review highlights the current status of research in thermo-sensitive hydrogels and emphasizes the importance of developing nontoxic thermo-sensitive hydrogels, dual responsive, and multi-responsive hydrogel systems.

ABSTRACT

In this review, the authors have discussed scientific advances in thermo-sensitive hydrogels over the past two decades. The ability of the thermo-sensitive hydrogel to undergo rapid changes with response to temperature makes it an attractive candidate for many biomedical applications such as targeted drug delivery, wound healing, soft contact lenses, sensors, tissue regeneration, gene, and protein delivery. This review aims to deliver a brief overview of gelation properties, merits, and demerits of various natural and synthetic thermo-sensitive polymers that have significant clinical relevance. The report emphasizes the importance of injectable thermo-sensitive hydrogels, as it can offer improved solubility of hydrophobic drugs and site-specificity, extended-release of drugs and macromolecules, improved safety, and local administration of drugs. The authors has also provided a commentary on the delivery of drugs or macromolecules from thermo-sensitive hydrogels through various approaches. This review highlights the current status of research in thermo-sensitive hydrogels and emphasizes the importance of developing nontoxic thermo-sensitive hydrogels, dual responsive, and multi-responsive hydrogel systems.
delivery system depends on the temperature change to release its payload through dissolution, diffusion, disintegration, and erosion mechanism [25]. An ideal thermosensitive hydrogel drug delivery system should stream freely at ambient temperature and transform into a non-streaming gel at physiological temperature (32 °C-37 °C) [24]. This demands the development of in-situ hydrogel, which can readily arrange and harden inside the body with negligible protrusion [26]. The injectable thermosensitive hydrogel has gained special interest as it can offer improved solubility of hydrophobic metabolism and easily administered without surgical procedure [27]. Some of the limitations associated with the system include increased surgical risk associated with device implantation/retrieval and chances of clogging inside the body immediately after injection [28].

The purpose of this review is to provide an overview of thermosensitive hydrogels, important thermosensitive materials, drug delivery approaches, and applications of thermosensitive hydrogels.

Thermosensitive polymers

Thermosensitive or thermo-responsive polymers undergo macroscopic changes in the aqueous medium when lower critical solution temperature or upper critical solution temperature is reached. The thermosensitive polymers are mainly categorized into natural and synthetic polymers.

Natural polymers

Natural polymers were widely studied because of their non-toxicity, biocompatibility, biodegradability, and low inflammatory response similar to that of host tissue. However, these polymers present immunological concerns, batch to batch variation, and difficulty in purification. The natural polymers can be easily modified to obtain a wide variety of applications. Interestingly, numerous researchers obtain hydrogels by combining natural polymers with synthetic polymers. The most commonly used natural thermo-responsive polymers are categorized into polysaccharides (Cellulose derivative, Chitosan, Dextrans, Xyloglucan) and proteins (gelatin, collagen, and albumin) [29].

a. Cellulose and cellulose derivative

Cellulose is a naturally occurring water-insoluble polymer that has a greater degree of hydrophilicity on its chain structure. The insolubility of this highly hydrophilic cellulose is mainly due to the formation of strong intermolecular hydrogen bonds. The aqueous solubility of cellulose can be achieved by substitution of a certain fraction of hydroxyl groups by hydrophobic groups such as hydroxyl propyl groups or methyl groups, which in turn disrupts the intermolecular hydrogen bonds. Complete substitution of hydroxyl groups with hydrophobic moieties renders the cellulose insoluble [30]. Depending on the degree of substitution, the thermoreversibility of methycellulose can take place in the temperature range from 60 °C to 80 °C [31]. The LCST of methylcellulose hydrogels can be adjusted to physiological temperature by grafting it with other monomers. Liu et al., grafted methylcellulose with N-isopropyl acrylamide (NIPAM) in various ratios to adjust the LCST to the desired temperature [32]. The PNI-PAM grafted with lower levels of methycellulose decreased the LCST, whereas at higher levels the LCST increases. The inclusion of methycellulose into the PNI-PAM structure enhanced the mechanical stability of the gel without expulsion of the liquid. The higher LCST of cellulose derivatives limits their usage as thermo-sensitive gels. However, they are utilized as controllers to tune the other thermo-sensitive polymeric system to attain the desired LCST.

b. Chitosan

Chitosan, also known as Poliglusamis a natural poly-cationic linear oligosaccharide derived from chitin by alkaline hydrolysis. They are composed of randomly distributed acetylated and deacetylated D-glucosamine units bound with each other through 1→4 glycosidic linkages. The chitosan polymeric chains have many amine groups (–NH₂) and hydroxyl groups (–OH) [33, 34]. The amine functional group of chitosan is highly reactive and allows the derivatization of polymers for improved properties such as bio-adhesion, mucoadhesion, gene transferability, high drug loading, and controlled drug release [29, 34]. The biodegradability, biocompatibility, and low toxic potential of chitosan, make it preferable over other natural polymers [35, 33] despite their limitations such as small specific surface area and void fraction [36].

Chenite et al. (2000) were the first to explore the thermo-sensitive behavior of chitosan modified with glycerophosphate [37]. The gelation temperature remains unchanged with a varying molecular weight of chitosan, whereas it is greatly influenced by the concentration of glycerophosphate when the concentration and level of deacetylation of chitosan remain constant. The gelation temperature of the chitosan can be reduced with increasing concentration of the glycerophosphate [38, 39]. Following Chenite et al. significant advancement, several researchers were involved in the development of thermo-sensitive hydrogels on natural polymers. The mechanism of gelation involved in thermo-responsive chitosan/polyol-phosphate system has been demonstrated by Nicolas Anton et al. They stated that a hydration defensive layer of polyols is held around the chitosan through weak intermolecular hydrogen bonding; any increase in temperature disrupts the hydrogen bonding of polymer and induces gelation through stronger hydrophobic interactions [40, 41]. Bhattachar et al. produced a thermoreversible hydrogel using polyethylene glycol and chitosan without the addition of a crosslinking agent [41]. Nazar et al. synthesized N-trimethyl chitosan chloride/polyethylene glycol/glycerophosphate hydrogels for nasal drug delivery, showing thermoreversible behavior at 37 °C [42]. Though chitosan has lower mechanical strength, it is broadly utilized in the development of thermo-sensitive hydrogel systems.

c. Xyloglucan

Xyloglucan is a non-ionic hemicellulose and a hydrophilic polysaccharide that carries xylose and galactosyl-xylose. They are abundantly found in primary cell walls and seeds of all vascular plants. A "mucin-like" xyloglucan obtained from tamarind seeds are linear β-(1→4)-D-glucan chain branched with (1→6)-α-xylose or (1→2)-β-galactosyl side chains [43-45]. Xyloglucan is digested using fungal β-galactosidase to eliminate approximately 35% of the galactose residues [46, 47]. The transition temperature of xyloglucans is inversely proportional to the concentration of polymer and the percentage of galactose residues removed [48, 49]. Xyloglucans undergo a phase transition at a much lower concentration (1 to 3% wt) compared to other thermo-sensitive polymers, including block polymers [50, 51]. Xyloglucans are highly biocompatible, biodegradable, and have high water absorption/retention capacity. It has drawn a considerable research interest in developing xyloglucan hydrogels for biomedical applications [52-55]. Additionally, xyloglucan hydrogels combined with poly D-lysine showing a phase transition under physiological conditions were assessed for their possibility to deliver the cells. Poly-D-lysine-incorporated xyloglucan hydrogels promote the repair of damaged neural pathways, including the axons in the central nervous system [56]. Derivatized xyloglucans are interconnected three-dimensional microporous systems that adhere to cells and detach when the suitable temperature is reached. The microporous structure of xyloglucans directs them to be a potential delivery vehicle in the use of regenerative medication [51, 57].

d. Dextran

Dextran is a biocompatible and biodegradable polysaccharide obtained from the enzymatic decomposition of sugar cane. Dextran lacks thermosensitive behavior; however, their incorporation into other thermosensitive materials form thermosensitive hydrogels [58]. Huang et al. prepared block polymers consisting of dextran, NIPAAM, 2-hydroxyethyl methacrylate (HEMA), oligolactate that are capable of forming thermosensitive hydrogels with LCST around 32 °C. Wang et al. demonstrated the protective effects of block polymer comprising dextran, Polyacrylactone, and NIPAAm or HEMA on the remodeling of ventricular damage caused by myocardial infarction [59].

e. Gelatin

Gelatin, a thermo-reversible and cold setting polymer composed of a mixture of peptides and denatured proteins acquired by incomplete hydrolysis of collagen extracted from bones and connective tissues of animals [60]. Gelatin appears to be semi-solid beneath UCST (35 °C).
as the gelatin molecules are inter and intramolecularly crosslinked by hydrogen bonds, forming a three-dimensional triple helix steady collagen supercoil structure. The cross-linking density of the gelatin is dependent on the number of water molecules entrapped and bound to NH$_2$ groups of supercoiled chains via hydrogen bonding [61, 62]. Gelatin undergoes conformational changes from a triple helix to a random coil at 40 °C, introducing a fluidic state [61]. The fluidic state of gelatin offers a large number of reactive functional groups, allowing them for modification of gelation properties [27]. Yang and Kao developed a hydrogel composed of poly (ethylene glycol)-poly (D, L-lactide) block copolymer and gelatin, which flows effortlessly at 37 °C and remains gel at room temperature [63].

Synthetic polymers

Synthetic thermo-sensitive polymers are biodegradable and have a considerable mechanical strength depending on the molecular weight, concentration, and ratio of molecular units. Though the LCST of these polymers can be easily modified to the desired temperature, most of these polymers are non-biocompatible and requires the incorporation of natural polymers for their use as thermo-sensitive injectable hydrogels [59].

The various thermosensitive synthetic polymers include NIPAM-based system, PEO-PPO based system, PEG-biodegradable polyester, dimethylamino based system, poly (organophosphazene), pluronic hydrogel, PEG-polyester, Polyacrylamide derivative, 2-hydroxy ethyl dimethylamino based system, poly (organophosphazene), pluronic incorporation of natural polymers for their use as thermo-sensitive injectable hydrogels [59].

The various thermosensitive synthetic polymers include NIPAM-based system, PEO-PPO based system, PEG-biodegradable polyester, dimethylamino based system, poly (organophosphazene), pluronic hydrogel, PEG-polyester, Polyacrylamide derivative, 2-hydroxy ethyl dimethylamino based system, poly (organophosphazene), pluronic incorporation of natural polymers for their use as thermo-sensitive injectable hydrogels [59].

a. NIPAM based polymer

N-isopropylacrylamide based hydrogels are the most widely investigated thermo-sensitive system. The homopolymer and copolymers of Poly (N-isopropyl acrylamide) (PNIPAM) are investigated for their capability to deliver drugs, encapsulate cells, and regenerate tissues. PNIPAM polymers are amphiphilic carrying amide groups (hydrophilic) and isopropyl groups (hydrophobic) with the LCST at around 32 °C. The LCST of the PNIPAM can be modified by co-polymerizing it with hydrophilic/hydrophobic monomers. Co-polymerization of PNIPAM with more hydrophilic monomers raises the LCST, whereas with more hydrophobic monomers, the LCST tends to decrease. The hydrophilic monomers such as acrylic acid and propyl acryl acid modify the LCST of PNIPAM closer to body temperature. Though PNIPAM has an increase in temperature, allowing them to be utilized as a thermo-sensitive in-situ gel matrix. PEO/PPO copolymers hydrogels attract more consideration due to their thermo-responsive behavior and biocompatibility. However, their use is limited clinically as they are non-biodegradable in vivo and need to dilute by the body fluid after infusion, which cannot be accomplished over the long term [27].

b. PEO/PPO based systems

Poloxamers or PEO-PPO-PEO systems or Pluronics are tri-block copolymers whose thermoreversible behavior could be manipulated by varying the composition, molecular weight, and concentration at physiological temperatures. The amphiphilic nature of this polymer is due to the presence of hydrophilic ethylene oxide moiety and hydrophobic propylene oxide moiety in the structure. The varying physicochemical properties of polyethylene and polypropylene make the poloxamer block to exhibit specific gel-like properties. The temperature rise induces a micelle formation, where the moderately hydrophilic PEO chain of the poloxamer linked with the water molecules forms a shell around the hydrophobic PPO chain wrapped into it as an inner core. However, the micelle formation is also dependent on the solution concentration. When the solution concentration exceeds the critical micelle concentration, the micelle is further entrapped, accumulated, and assembled due to various forces between the micelles. The gelation of poloxamer occurs with an increase in temperature, allowing them to be utilized as a thermo-sensitive in-situ gel matrix. PEO/PPO copolymers hydrogels attract more consideration due to their thermo-responsive behavior and biocompatibility. However, their use is limited clinically as they are non-biodegradable in vivo and need to dilute by the body fluid after infusion, which cannot be accomplished over the long term [27].

c. PEG/PLGA based system

Co-polymerization of polyethylene glycol (PEG) with biocompatible polyesters delivers enticing hydrogel systems. The thermosensitive behavior of the PEG/PLGA system can be modulated by altering the length of hydrophobic polyester and PEG block significantly. PLGA-PEG-PLGA tri-block copolymer has become a more fascinating thermo-sensitive material due to its in-toxicity, biocompatibility, and biodegradability. The sol-gel transition of PLGA-PEG-PLGA tri-block polymer is majorly due to the micelle formation which is driven by hydrophobic forces [73]. The biodegradability and thermo-responsive behavior of amphiphilic PEG/PLGA block copolymers have attracted special interest in the delivery of bioactive materials.

Approaches and drug delivery system

The thermo-sensitive hydrogels are most widely administered via subcutaneous, transdermal and mucosal routes [74-76].

Subcutaneous drug delivery

Unlike implants, the thermosensitive injectable hydrogels can achieve localized delivery without the requirement of invasive surgical procedures for insertion/removal of the drug delivery system. These in-situ systems release the drug in a sustained manner by undergoing a sol-gel transition at a physiological temperature [77]. If the polymer concentration is above the critical gel concentration (CGC), a gel phase will appear [78]. Subcutaneous drug delivery offers several advantages such as reduced systemic toxicity, improved patient compliance, ease in administration [79, 80]. Gong et al. synthesized a novel in-situ thermo-sensitive composite hydrogel based on PCL-PEG-PCL copolymer and pluronic F127 for the controlled release of chemotherapeutic drugs [81]. Subcutaneous delivery of thermo-sensitive PEO-PPO-PEO tri-block polymers synthesized by Cohn et al. was reported to have long-term stability and enhanced mechanical strength [82]. For successful delivery of liposomes, nanoparticles, and microspheres, an in-situ thermo-sensitive hydrogel approach would be beneficial [83]. Yang et al. demonstrated that a mixed micelle gel prepared by adding a surfactant and thermo-sensitive polymer can improve the solubility, stability, and drug release characteristics [84]. Chen et al. found that paclitaxel-loaded hydrogel released the drug over 21 d in the subcutaneous tissue and successfully suppressed tumor growth in a rat model [85]. The sol-gel transition of thermo-sensitive hydrogel given through a subcutaneous route is represented in fig. 1.
Transdermal drug delivery

The transdermal route is considered to be a potential site to achieve systemic delivery of drugs. The major advantages of this route include termination of drug release at any moment is possible by simple removal of the device, controlled release of a drug over a longer duration, and avoidance of first-pass metabolism [86]. The limitation of this route is, only fewer drugs satisfy the physiochemical requirements (low dose, short half-life, low molar weight, partition coefficient from 1.0 to 4.0) to permeate through the skin [87]. Gong et al. developed sustained-release in-situ curcumin loaded PEG-PCL-PEG thermosensitive hydrogel to promote wound healing [88]. The thermo-sensitive sol-gel activity helps the system to adhere to wounds at skin temperature [89].

Ocular drug delivery

The ocular route is the most efficient route for topical administration of drugs that can cause systemic side effects. The ocular drug delivery system offers better bioavailability and increased drug residence time [77]. The ability to deliver liquid and semi-solid dosage form via ocular route makes in-situ forming hydrogel attractive for ocular drug delivery. Cohen et al. developed a prolonged release in-situ alginate gel with higher gluconic content for ophthalmic delivery of pilocarpine, which reduces intraocular pressure over 10 h, whereas pilocarpine solution acts for the lesser duration (3 h) [86]. In vitro studies of oxytetracycline inserts on the rabbit eye showed a prolonged release of a drug over several days. Xi et al. reported a complete release of the drug (in 25 d) with Xyloglucan C loaded poloxamer P 127 and poly(tri-methylene carbonate) thermosensitive hydrogel [90].

Rectal drug delivery

The rectal route is considered to be the most important route for the drugs which undergo extensive first-pass metabolism. Though the administered dosage form offers considerable therapeutic efficiency in this route, the patient acceptability is poor due to the discomfort associated with the administration. The preferred dosage form for rectal administration is conventional suppositories, which are solid at room temperature and melts/softens at body temperature. The controlled release of the drug, retention of the dosage form in a specific site of the rectum, migration of dosage form upward to the colon could not be achieved with the conventional suppositories [86]. Ryu et al. reported that the bioavailability of the propranolol is increased in rats, following the incorporation of thermo-sensitive, mucoadhesive polymers like poloxamer into the conventional suppositories. Similarly, incorporation of other mucoadhesive polymers such as poly(carboxyl) and sodium alginate into suppositories increased the bioavailability of propranolol to 82.3 % and 84.7 %, respectively, with the highest mucoadhesive property and negligible intrarectal movement [91]. Xyloglucan, a thermo-sensitive gel having an intrinsic mucoadhesive property is being investigated over the past two decades for rectal administration of drugs. Xyloglucan transforms into a gel at physiological temperature. Studies showed that indomethacin-loaded xyloglucan gel administered in rabbits via rectal route have well-controlled in vivo plasma concentration and time profiles when compared to the commercial suppositories containing indomethacin without compromising the bioavailability [92].

Sublingual drug delivery

The sublingual route is the most promising route for the drugs which undergo extensive degradation by the gastrointestinal enzymes. In this route, the dosage form is kept beneath the tongue to deliver the drug directly into the blood vessels, thus helps in achieving high bioavailability by overcoming the first-pass metabolism [93]. The major limitations associated with this route are shorter mean residence time, smaller area for absorption, inadvertent swallowing of dosage form, and oral mucosal irritation [94]. The polymers like chitosan/dextran cross-linked with other polymers to obtain a thermosensitive hydrogel suitable for sublingual formulations [95]. Among the various polymers, PNIPAM has been extensively used in the preparation of thermo-responsive chitosan/dextran-based cross-linked copolymers for sublingual delivery [96]. Almeida et al. demonstrated the effect of temperature on drug release from thermo-responsive Ondansetron™ sublingual films. It was reported that the Ondansetron release is retarded at 37 °C compared to its release at room temperature due to the increased degree of gel cross-linking [97].

Buccal drug delivery

The buccal mucosa is an attractive target for the administration of the majority of pharmaceuticals [98]. The buccal mucosa is highly vascularized, thus allowing the drug to enter directly into the systemic circulation. The key benefits of buccal drug delivery include patient acceptability, cost-effectiveness, avoidance of gastrointestinal degradation, bypassing first-pass metabolism, rapid onset of action, and increased bioavailability [99]. Poloxamer, a thermo-sensitive hydrogel, has gained a special interest in buccal drug delivery owing to their sol-gel transition behavior with the response to temperature. Sandri et al. developed an in-situ thermo-sensitive buccal spray composed of poloxamer 407 (PF 127) and sodium alginate for the delivery of platelet lysate towards the treatment of oral mucositis. The poloxamer/sodium alginate spray is fluid at room temperature and rapidly forms a gel at 34 °C to 35 °C [100]. The poloxamer 407 (PF127)/polyethylene oxide (PEO) composite hydrogel showed a prolonged release of the drug. The rate at which the drug is released from the PF127/PEO system was highly dependent on the concentration of PEO. The increase in the PEO concentration retarded the drug release and the steady-state concentration is achieved [101, 102].

Applications involved in thermosensitive hydrogel

The thermosensitive hydrogel is a very good candidate for many biomedical applications owing to their biocompatibility and the close resemblance with the extracellular matrix. Some of the typical applications of thermo-sensitive hydrogels include tissue engineering, wound healing, soft contact lenses, and sensors. Hydrogels are widely used for complex applications such as controlled drug delivery and tissue engineering rather than simple contact lenses. Some prominent examples of thermo-sensitive hydrogels in cancer therapy, protein delivery, gene therapy, tissue regeneration, and other therapeutic areas [27, 103] are discussed as follows.

Cancer therapy

Traditional chemotherapeutic drugs are cytotoxic and cause systemic toxicity more often. Localized delivery of chemotherapeutic drugs in a controlled manner offers better targeting and a longer duration of action, considered to be a potential approach for the treatment of cancer. Thermosensitive hydrogels as a drug delivery agent can allow the localized administration of a chemotherapeutic drug, thereby reducing their systemic side effects and increasing their efficacy. Thermosensitive hydrogels also offer controlled release of chemotherapeutic drugs at the tumor site [104, 105]. The use of thermosensitive hydrogels in humans for cancer therapy is still under investigation. One of the major hindrances in thermosensitive hydrogel-based cancer therapy, especially with pluronics, is the dramatic change in the tumor cellular response to sensitizing the multi-drug resistance [105]. Cho et al. used thermosensitive poly (organophosphazene) as a vehicle for the controlled delivery of angiogenic inhibitor 2-methoxyestradiol to limit the oxygen and nutrient supply to the tumor cell to suppress the tumor growth [106]. Chitosan-based thermosensitive hydrogels are extensively used to deliver the chemotherapeutic and immuno-therapeutic agents for cancer treatment. Han et al. developed intra tumoral Doxorubicin and Vaccinia virus vaccine (Sig/E7/1AMP-1) loaded thermosensitive chitosan-based hydrogel for the treatment of tumor. This combination neither decreased nor increased the tumor-specific CD8+ T cells up to 60 d. The survival rate of the tumor-bearing mice was significantly increased [107].

Tissue regeneration

Tissue engineering has gained special attention in the field of biomedical research due to its extensive application such as regeneration of functional tissues and delivery of bioactive components including drugs and growth factors. Thermosensitive hydrogels are found to be a promising candidate for the delivery of bioactive molecules and stem/progenitor cells needed for efficient tissue regeneration [108]. A thermosensitive hydrogel that is...
capable of delivering growth factors and cells was developed by Guan et al. Angiogenesis is the most important requirement for tissue regeneration as it can ensure the nutrient/oxygen supply. Thermosensitive hydrogels are considered to be an effective delivery vehicle for angiogenic growth factors to stimulate angiogenesis in engineered tissues [189].

Gene therapy and protein delivery
Proteins have gained special attention due to their excellent activity. However, they are more susceptible to environmental changes such as enzymes, pH, and temperature. Thermosensitive hydrogels are widely investigated for the delivery of proteins and growth factors due to their ability to control, sustain, and achieve optimal doses at local sites for effective tissue regeneration and repair. Thermosensitive hydrogels, a carrier for the protein delivery has several advantages such as uniform dispersion of protein in three-dimensional networks to prevent aggregation, precipitation, and inactivation, avoidance of denaturation of proteins during preparation, storage, and delivery by denaturation of proteins during preparation, storage, and delivery by forming a protective layer to isolate it from environment, and controlled/sustained release of proteins [110]. Chen et al. developed vascular endothelial growth factor (VEGF) loaded injectable thermosensitive poly (D, L-lactic-co-glycolic acid)-b methoxy poly (ethylene glycol) (PLGA-MPEG) hydrogel for inducing neovascularization and bone regeneration [111].

Other application of thermosensitive hydrogels
Thermosensitive hydrogels have enormous potential in several applications including wound care, cosmetology, etc. Intranasal delivery of thermosensitive hydrogels offers efficient systemic drug delivery and has the potential to bypass the blood-brain barrier by altering the permeability in the nasal cavity [112, 113]. Thermosensitive hydrogel allows heat dissipation, mimicking the biological sweating phenomenon [114]. Thermosensitive hydrogels are excellent carriers for the delivery of various biotherapeutic molecules as it can protect the incorporated cells and release them in a controlled manner [27].

Table 1: Summary of various thermosensitive hydrogels

Methods	Polymers	Drugs	Formulation	Treatment	Reference
Thin-layer evaporation	Chitosan, Poloxamer	Opiophin	Liposomes	Liver cancer	[115]
Ammonium sulfite sodium method	Carbopol, HPMC	Dextrorubicin	Liposomes	Liver cirrhosis	[116]
Emulsion evaporation method	Chitosan, gelatin	Curcumin	Nanoparticle	Glaucoma	[117]
Melt emulsification method	MPEG-PCL	Docetaxel	Nanoparticle	Anti-ovarian cancer	[118]
Emulsification and solvent diffusion method	HPMC, Pluronic F 127	Sertoconazole	Nanostructured	Fungal keratitis	[119]
Hot emulsification method	Chitosan	Methotrexate	Nanotubes	Control tumor cell growth	[120]
Ethanol injection method	Poloxamer 407, HPMC K100, Carbopol 934	Zolmitriptan	Nanoothemoses	Treat headache disorders	[121]
Simple thin-film method	Pluronic F-127 and Pluronic L 121	Dextorubicin and Docetaxel	Micelles	Treat tumor	[122]
Rotary evaporation sonication technique	Pluronic F-127	Insulin	Transfersomes	Treat diabetes mellitus	[123]
Emulsion cross-linking method	Chitosan, PF-127	Lorazepam	Microsphere	Treat epilepsy	[124]
Fluorescence imaging method	Amphiphilic co-polymer	Pachtalex	Free drug	Intraperitonal chemotherapy of carcinomatosis	[125]
Wang’s method	Hydroxy-buty1 chitosan	Dopamine	Free drug	Hemostasis	[126]

CONCLUSION
Thermo-sensitive hydrogels based on natural and synthetic polymers exhibit lower critical solution temperature, low inflammatory response, biocompatibility, biodegradability, and mechanical properties suitable for various applications such as cancer therapy, protein delivery, gene delivery, tissue regeneration, and wound care. The route of administration and physiochemical properties of the drug has an important effect on the selection of thermo-sensitive polymers. Commercially available and FDA approved PF-127 is the most used thermo-sensitive polymer to date. Evidence from various in vitro and in vivo studies showed that existing thermo-sensitive hydrogels exhibit reduced cell viability and reduced capability to deliver the cells to the target tissues. However, with the appropriate experimentation, these limitations could be easily addressed. On the other hand, the properties of thermo-sensitive hydrogel should be improved to enable its usage in clinical practice.

FUNDING
Nil

AUTHORS CONTRIBUTIONS
All the authors have contributed equally.

CONFICT OF INTERESTS
Declared none

REFERENCES
1. Xing JF, Zheng ML, Duan XM. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chem Soc Rev 2015;44:5031–9.
2. Macaya D, Spector M. Injectable hydrogel material for spinal cord regeneration: a review. Biomed Mater 2012;7:012001.
3. Surojet D, Vivek K, Rini T, Leena S, Sachidanand S. Recent advances in hydrogels for biomedical applications. Asian J Pharm Clin Res 2018;11:62-8.
4. Sabbagh F, Kiarostami K, Khatir NM, Rezania S, Muhamed I. Green synthesis of Mg0.99 Zn0.01O nanoparticles for the fabrication of k-carrageenan/NaCMC hydrogel to deliver catechins. Polym 2020;12:861.
5. Hu W, Wang Z, Xiao Y, Zhang S, Wang J. Advances in crosslinking strategies of biomedical hydrogels. Biomater Sci 2019;7:843-55.
6. Sabbagh F, Khatir NM, Karim AK, Omidvar A, Nazari Z, Jaberi R. Mechanical properties and swelling behavior of acrylamide hydrogels using montmorillonite and kaolinite as clays. J Environ Treat Tech 2011;7:211-9.
7. Huh HW, Zhao L, Kim SY. Biomimetic biocomposite organic/inorganic hybrid hydrogels on hyaluronic acid and poloxamer. Carbohydr Polym 2015;113:30–40.
8. Garima S, Alka L, Shiv Sankar B. Hydrogel as a novel drug delivery system: a review. J Fundam Pharm Res 2014;2:35-48.
9. Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimic for 3D cell culture. Biotechnol Bioeng 2009;103:655–63.
10. Jamstorp Berg E. Diffusion controlled drug release from slurry formed, porous, organic, and clay-derived pellets (Doctoral dissertation. Acta Universitatis Upsaliensis; 2012. p. 80.
11. Nersinme S, Djamel A. Synthesis, characterization, and rheological behavior of pH-sensitive poly (acrylamide-co-acrylic acid) hydrogels. Arabian J Chem 2017;10:539-47.
12. Anita D, Ujjwal N, Sarabjot K, Komal. Hydrogels: a smart drug delivery device. Asian Pac J Health Sci 2014;1:92-105.

13. Manatovic MR, Kristl J, Grabnar PA. Thermoresponsive polymers: Insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications. Int J Pharm 2014;472:262-75.

14. Ishida K, Uno T, Itoh T, Kubo M. Synthesis and property of temperature-responsive hydrogel with movable cross-linking points. Macromolecules 2012;45:6136-42.

15. Liu YY, Shao YH, Jian L. Preparation, properties and controlled release behaviors of pH-induced thermoresponsive amphiphilic gels. Biomaterials 2006;27:4016–24.

16. Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 2001;53:321–39.

17. Elena B, Andrea LS, Steven RL, Paolo D. Injectable thermoresponsive hydrogels as a drug delivery system for the treatment of central nervous system disorders: a review. J Controlled Release 2021;329:19-9.

18. Gariepy ER, Leroux JC. In situ-forming hydrogels-review of temperature-sensitive systems. Eur J Pharm Biopharm 2004;58:409-26.

19. Fundueanu G, Constantin M, Asmarandei I, Bucataru S, Harabagiu V, Scempi P, et al. Poly (N-isopropyl acrylamide-co-hydroxy ethyl acrylamide) thermoresponsive microspheres: the size of microgels dictates the pulsatile release mechanism. Eur J Pharm Biopharm 2013;85:614–23.

20. Lee JW, Jung MC, Park HD, Park KD, Ryu GH. Synthesis and characterization of thermoresponsive chitosan copolymer as a novel biomaterial. J Biomater Sci Polym Ed 2004;15:1065–79.

21. Ward MA, Georgiou TK. Thermoresponsive terpolymers based on methacrylate monomers: effect of architecture and composition. J Polym Sci Part A: Polym Chem 2010;48:775–83.

22. Li Z, Wang F, Roy S, Sen CK, Guan J. Injectable, highly flexible, and thermoresponsive hydrogels capable of delivering superoxide dismutase. Biomacromolecules 2009;10:3306–12.

23. Chitra G, Vijay J, Upen德拉 N. Formulation and optimization of thermosensitive in-situ gel of moxifloxacin hydrochloride for ocular drug delivery. Int J Pharm 2018;59:123-30.

24. Gong C, Qi T, Wei X, Qiu Y, Wu Q, Luo F, et al. Thermoresponsive polymer hydrogels as drug delivery systems. Curr Med Chem 2013;20:79–94.

25. Li SK, Emanuele AD. On-off transport through a thermoresponsive hydrogel composite membrane. J Controlled Release 2001;75:55–67.

26. Schäd H, Tirrill DA. Micro calorimetric detection of lower critical solution temperatures in aqueous polymer solutions. J Phys Chem 1990;94:4352–6.

27. Huang H, Qi X, Chen Y, Wu Z. Thermo-sensitive hydrogels for delivering biotherapeutic molecules: a review. Saudi Pharm J 2019;27:990-9.

28. Sudipta G, Pickich KH, Kan C. Thermoresponsive hydrogels and their biomedical applications: special insight into their applications in tissue based transdermal therapy. MDPI 2018;10:480.

29. Pillai O, Panchagnula R. Polymers in drug delivery. Curr Opin Chem Biol 2001;5:447-51.

30. Li L, Shan H, Yue CY, Lam YC, Tam KC, Hu X. Thermally induced association and dissociation of methylcellulose in aqueous solution. Langmuir 2002;18:7291–8.

31. Takahashi M, Shimazaki M, Yamamoto J. Thermoreversible gelation, and phase separation in aqueous methylcellulose solutions. J Polym Sci Part B: Polym Phys 2001;39:91–100.

32. Liu W, Zhang B, Lu WW, Li X, Zhu D, De Yeo K, et al. A rapid temperature-responsive sol-gel reversible poly (N-isopropyl acrylamide)-g-methylcellulose copolymer hydrogel. Biomaterials 2004;25:3005-12.

33. Matté AP, Leyre PA, Luis Carlos CI, Issa K. Biodegradable chitosan nanocarriers crosslinked with genipin. Carbohydr Polym 2013;94:836–42.

34. Xiao C, You R, Fan Y, Zhang Y. Tunable functional hydrogels formed from versatile water-soluble chitosan. Int J Biol Macromol2016;85:386-90.

35. Hamid M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 2008;60:638-49.

36. Esquerdo V, Cadaval T, Dotto G, Pinto L. Chitosan scaffold as an alternative adsorbent for the removal of hazardous food dyes from aqueous solutions. J Colloid Interface Sci 2014;424:7-15.

37. Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomater Sci 2012;2:155–61.

38. Qi FD, Jing QY, Hong L, Cheng SL, Xi GC, Qiu XJ, et al. Biological evaluation of chitosan-based in-situ forming hydrogel with a low phase transition temperature. J Appl Polym Sci 2015;132:4594.

39. Amaya N, Tóhó M, Formulation and evaluation of thermoresponsive bio gels for the nose to brain delivery of doxepin. Biomed Res Int 2014. https://doi.org/10.1155/2014/847547

40. Supper S, Anton N, Seidel N, Riemenschneider M, Snoch C, Vandamme T. Rhetorical study of chitosan/polyol-phosphate systems: influence of the polyol part on the therm-induced gelation mechanism. Langmuir 2013;29:10229–37.

41. Bhattarai N, Matsen FA, Zhang M. PEG-grafted chitosan as an injectable thermoresversible hydrogel. Macromol Biosci 2005;5:107–11.

42. Nazara H, Fatouros DG, Van der Meerse SM, Bourtropoulous G, Avgoustopolou A, Tsibouklis J, et al. Thermoresponsive hydrogels for nasal drug delivery: The formulation and characterization of systems based on N-trimethyl chitosan chloride. Eur J Pharm Biopharm 2011;77:225-32.

43. Semenzato A, Costantini A, Baratto G. Green polymers in personal care products: rheological properties of tamarind seed polysaccharide Cosmetics 2015;2:1-10.

44. Martínez Ibárru RM, Lopez Cervantes J, Sanchez Machado DL, Sanchez Silva A. Chitosan and xyloglucan-based hydrogels: an overview of synthetic and functional utility. chitin-chitosan-amyloid functionalities in science and technology. Intech Open 2018;184-18:74646.

45. Pique N, Carmen Gomez Guillen MD, Montero MP. Xyloglucan, a plant polymer with barrier protective properties over the mucous membranes: an overview. Int J Mol Sci 2018;19:6737.

46. Picone P, Sabatino MA, Ajovalaist A, Giaconomazza D, Dispensa C, Di Carlo M. Biocompatibility, hemocompatibility and antimicrobial properties of xyloglucan-based hydrogel film for wound healing application. Int J Mol Biomol 2019;121:794–95.

47. Zhang E, Li L, Zhou Y, Che P, Ren B, Qin Z, et al. Biodegradable and injectable thermoresversible xyloglucan-based hydrogel for prevention of postoperative adhesion. Acta Biomater 2017;55:420–33.

48. Amanda K, Brun Graeppi AS, Richard C, Bessodes M, Scherman D, Narita T, et al. Study on the sol-gel transition of xyloglucan hydrogels. Carbohydr Polym 2010;80:555–63.

49. Moneo Sanchez MA, Alonso Chico A, Knox JP, Dopico B, Labrador E, Martin I. β-(1, 4)-galactan remodeling in arabidopsis cell walls affects the xyloglucan structure during elongation. Planta 2018;249:351–62.

50. Chen D, Guo P, Chen S, Cao Y, Ji W, Lei X, et al. Properties of xyloglucan hydrogel as the biomedical sustained-release carriers. J Mater Sci Mater Med 2012;23:955–62.

51. Ajovalaist A, Sabatino MA, Todaro S, Alessi S, Giaconomazza D, Picone P, et al. Xyloglucan-based hydrogel films for wound dressing: structure-property relationships. Carbohydr Polym 2017;179:262-72.

52. Mahajan HS, Tyagi V, Lohiya G, Nerkar P. Thermally reversible xyloglucan gels as vehicles for nasal drug delivery. Drug Deliv 2012;19:270-6.

53. Kulkarni AD, Joshi AA, Patil CL, Amale PD, Patel HM, Surana SJ, et al. Xyloglucan: a functional biomacromolecule for drug delivery applications. Int J Biol Macromol 2019;121:794–95.

54. Simi CK, Abraham TE. Transparent xyloglucan-chitosan complex hydrogels for different applications. Food Hydrocoll 2010;24:72–80.

55. Nisbet DR, Rodda AE, Horne MK, Forsythe JS, Finkelstein DI. Injectable hydrogels: a smart drug delivery device. Asian Pac J Health Sci 2014;10:227-32.

56. Ye L, Wu X, Mu Q, Chen B, Duan YH, Geng X, et al. Heparin-conjugated PCL scaffolds fabricated by electrospinning and
loaded with fibroblast growth factor 2. J Biomerter Sci Polym Ed 2011;22:389–406.

75. Silva AK, Richard C, Ducoureit G, Bessodes M, Scherman D, Merten OW. Xyloglucan-derivated films for the culture of adherent cells and their Thermo controlled detachment: a promising alternative to cells sensitive to protease treatment. Biomacromolecules 2013;14:512-9.

76. Prabaharan M, Mano JF. Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials. Macromol Biosci 2006;6:597-606.

77. Kim MS, Park SJ, Chun HJ, Kim GH. Thermosensitive hydrogels for tissue engineering. Tissue Eng Regener Med 2011;8:117-23.

78. Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Controlled Release 2005;109:256–74.

79. Joly Duhamed C, Helio D, Djbourou M. All gelnet networks. L. Biodiversity and physical chemistry. Langmuir 2002;18:7208–17.

80. Das N. Bio-degradable hydrogels for controlled drug delivery. Cellulose Based Super Absorbent Hydrogels 2019;48:1434-70.

81. Yang H, Waj OJ. Thermoresponsive gelatin/mono methoxy poly (ethylene glycol)-poly (d, lactide) hydrogels: formulation, characterization, and antibacterial drug delivery. Pharm Res 2006;23:205-14.

82. Alexander A, Ajazuddin, Khan J, Saraf S, Saraf S. Poly (ethylene glycol)-poly (lactic-co-glycolic acid) based thermosensitive injectable hydrogels for biomedical applications. J Controlled Release 2013;172:715–29.

83. Snda K. Thermoresponsive hydrogels in biomedical applications: a seven-year update. Eur J Pharm Biopharm 2015;97:338–49.

84. Wang Q, Zhao Z, Chuccky Chong CK, Yee Lunn SS. Updates on thermosensitive hydrogel for nasal, oculair and cutaneous delivery. Int J Pharm 2019;559:66–101.

85. Le PN, Haynak CR, Tran NG. Advances in thermosensitive polymer-grafted platforms for biomedical applications. Mater Sci Eng C Mater Biol Appl 2018;92:1016-30.

86. Darge H, Andrie AT, Tsai HC, Lai JY. Polysaccharide and polypeptide based injectable thermosensitive hydrogels for local biomedical applications. Int J Biol Macromol 2019;133:545–63.

87. Yoo J, Hoffman AS, Stanley JS. Poly (N-isopropyl acrylamide-co-propyl acrylic acid) copolymers that respond sharply to temperature and pH. Biomacromolecules 2006;7:1381–5.

88. Masamichi N, Tenuo O, Takamari M, Fukushima K, Kiyotaka S, Masayuki Y. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J Controlled Release 2006;115:46–56.

89. Coughlan DC, Quinley FP, Corrigan OL. Effect of drug physicochemical properties on swelling/deswelling kinetics and pulsatile drug release from thermoresponsive poly(N-isopropyl acrylamide) hydrogels. J Controlled Release 2004;98:97–109.

90. Pei Y, Chen J, Yang L, Shi J, Tao Q, Hui B, et al. The effect of pH on the LCST of poly (N-isopropyl acrylamide) and poly(N-isopropyl acrylamide-co-acrylic acid). J Biomerter Sci Polym Ed 2004;15:85-94.

91. Kim YJ, Kim SW. Controlled drug delivery from the injectable biodegradable triblock copolymer. ACS Sympos 2002;853:300-11.

92. Tirtaamadja N, Murphy KT, Letching GS, Connor OA. Mixed micelles to deliver drugs for skeletal muscle regeneration. In: Proceedings of the international society, Asia Pacific Meeting, Sydney, Australia, September; 2010.

93. Gulsen D, Chauhan A. Dispersion of microemulsion drops in HEMA hydrogels: a potential ophthalmic drug delivery vehicle. Int J Pharm 2005;292:95–117.

94. Kim J, Conway A, Chauhan A. Extended delivery of ophthalmic drugs by silicone hydrogel contact lenses. Biomaterials 2008;29:2259–69.

95. Lin Z, Gao W, Su H, Ma K, He B, Dai W, et al. Novel thermo-sensitive hydrogel system with paclitaxel nanocrystals: high drug-loading, sustained drug release and extended local retention guaranteeing better efficacy and lower toxicity. J Controlled Release 2014;174:161-70.

96. Jeong B, Kim SW, Bae YH. Thermosensitive sol-gel reversible hydrogels. Adv Drug Delivery Rev 2002;54:37-51.

97. Madan M, Bajaj A, Lewis S, Udupa N, Baig J. In situ forming polymeric drug delivery systems. Indian J Pharm Sci 2009;71:242-51.

98. Lin Z, Mei D, Chen M, Wang Y, Chen X, Wang Z, et al. A comparative study of thermo-sensitive hydrogels with water-insoluble on the nasal mucosa: in the nasal cavity, nanocrystal, and microcrystal dispersions. Nanoscale 2015;7:14838–47.

99. Gong CY, Shi S, Dong PW, Zheng XL, Fu SZ, Guo G, et al. In vivo drug release behavior from a novel thermo-sensitive composite hydrogel based on pluronic f127 and poly (ethylene glycol)-poly (ε-caprolactone)-poly (ethylene glycol) copolymer. BMC Biotechnol 2009;9:8.

100. Cohn D, Sosnik A, Malal R, Zarka R, Garty S, Levy A. Chain extension of additives on a thermosensitive hydrogel for buccal delivery of anticancer drugs. Biomaterials 2013;34:10338–47.

101. Bindu Sri M, Ashok V, Chatterjee A. A review on hydrogels as drug delivery in the pharmaceuticai field article. Int J Pharm Chem Sci 2012;3:86–92.

102. Ali S, Yosipovitch G, Skin PH. From basic science to basic skin care. Acta Derm Venereol 2013;93:261–7.

103. Gong C, Wu Q, Wang Y, Zhang D, Luo F, Zhao X, et al. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials 2013;34:3777–82.

104. Chen X, Peng LH, Shan YH, Li N, Wei W, Yu L, et al. Atrastalgoside IV-loaded nanoparticle-enriched hydrogels induces wound healing and anti-scar activity through topical delivery. Int J Pharm 2013;447:171–81.

105. Xi L, Wang T, Zhao F, Zheng Q, Li X, Luo L, et al. Evaluation of an Injectable thermo-sensitive hydrogel as drug delivery implant for ocular glaucoma surgery. PLoS One 2014;9:e106532.

106. Ryu JM, Chung SJ, Lee MH, Kim CK, Shim CK. Increased bioavailability of propanolol in rats by retaining thermally gelling liquid suppositories in the rectum. J Controlled Release 1999;59:16–72.

107. Miyazaki S, Sushe F, Kawasaki N, Shirakawa M, Yamatotya K, Atwood D. Thermally reversible xylogalcn gels as vehicles for rectal drug delivery. J Controlled Release 1998;56:75-83.

108. Goswami T, Jasti B, Li X. Evaluation of an injectable thermostic hydrogel as drug delivery implant for oral glaucoma surgery. PLoS One 2014;9:e106532.

109. Ferreira L, Gil MH, Dordick JS. Enzymatic synthesis of dextran-containing hydrogels. Biomaterials 2002;23:3957-67.

110. Salgado Roissce R, Licia Clevere A, Arndt RF. Random copolymers of N-isopropyl acrylamide and methacrylic acid monomers with hydrophobic spacers: pH tunable temperature-sensitive biodegradable hydrogel system. Eur Polym J 2004;40:1931-46.

111. Almeida JF, Ferreira P, Alves P, Lopes A, Gil MH. Therapeutic hydrogels for sublingual administration of Ondansetron®. Int J Polymeric Materials Polymeric Biomaterials 2017;67:765-75.

112. Chinnma Reddy P, Chaitanya KSC, Madhusudan Rao Y. A review on bioadhesive buccal drug delivery systems: current status of formulation and evaluation methods. Daru 2011;19:385–403.

113. Zenga N, Dumortier G, Maury M, Mignet N, Boudya V. Influence of additives on a thermo-sensitive hydrogel for buccal delivery of salbutamol: relation between micellization, gelation, mechanical and release properties. Int J Pharm 2014;467:70-83.

114. Sandri G, Bonferroni MC, Ferrari F, Rossis S, Del Fante C, Perotti C, et al. An in situ gelling buccal spray containing platelet lysate for the treatment of oral mucositis. Curr Drug Discovery Technol 2011;8:277–85.
Park JS, Oh YK, Yoon H, Kim JM, Kim CK. In situ gelling and mucoadhesive polymer vehicles for controlled intranasal delivery of plasmid DNA. J Biomed Mater Res 2002;59:144-51.

Choi SG, Lee SE, Kang BS, Ng CL, Davaa E. Thermosensitive and mucoadhesive sol-gel composites of paclitaxel/dimethyl-b-cyclodextrin for intranasal delivery. J Drug Delivery Sci Technol 2013;30:23-6.

Vermonden T, Fedorovich NE, Geemen DV, Alblas J, van Nostrum CF. Photo-polymerized thermosensitive hydrogels: synthesis, degradation, and cytocompatibility. Biomacromolecules 2008;9:919-26.

Kabanov AV. Polymer genomics: an insight into pharmacology and toxicology of nanomedicines. Adv Drug Delivery Rev 2006;58:1597-621.

Turabee MH, Jeong TH, Ramalingam P, Kang JH, Ko YT. N, N, N -trimethyl chitosan embedded in situ pluronic F127 hydrogels for the treatment of brain tumor. Carbohyd Polym 2019;203:302-9.

Cho JK, Hong KY, Park JW, Yang HK, Song SC. The injectable thermodoerse hydrogel containing curcumin-loaded nanoparticles and thermosensitive hydrogel drug delivery system. J Biomed Nanotechnol 2020;16:40-53.

Tavakoli N, Taymouri S, Saedti A, Akbari V. Thermosensitive hydrogel containing sertaconazole loaded nanoencapsulated lipid carriers for the potential treatment of fungal keratitis. Pharm Dev Technol 2019;24:991-901.

Saeednia L, Yao L, Gluff K, Asmatulu R. Sustained releasing of metoxretazine from injectable and thermosensitive chitosan-carbon nanotube hybrid hydrogels effectively controls tumor cell growth. ACS Omega 2019;4:4040-8.

Sheike S, Shabi S, Jakupure S, Dhamecha D. Poloxamer 407-based intranasal thermoreversible gel of zolmitriptan-loaded nanoethosomes: formulation, optimization, evaluation, and permeation studies. J Liposome Res 2016;26:313–23.

Sheu MT, Jhan HJ, Su CY, Chen LC, Chang CE, Liu DZ. Codelivery of doxorubicin containing thermosensitive hydrogels incorporated with doxorubicin-loaded mixed micelles enhance local cancer therapy. Colloids Surf B 2016;143:260-70.

Marwah H, Garg T, Rath G, Goyal KA. Development of transfersomal gel for transdermal delivery of insulin using iodine complex. Drug Delivery 2016;23:1636-44.

Jose S, Ansa OR, Chiu TA, Chacko AJ, Aleykutty NA, Ferreira SV, et al. Thermosensitive gels containing lorazepam microspheres for intranasal brain targeting. Int J Pharm 2013;441:516-26.

Xu S, Fan H, Yin L, Zhang J, Dong A, Deng LD, et al. Thermosensitive hydrogel system assembled by PTX-loaded copolymer nanoparticles for sustained intraperitoneal chemotherapy of peritoneal carcinomatosis. Eur J Pharm Biopharm 2016;104:251–9.

Zhang X, Sun GH, Tian MP, Wang YN, Qu CC, Cheng XJ, et al. Mussel-inspired antibacterial polydopamine/chitosan/temperature-responsive hydrogels for rapid hemostasis. Int J Biol Macromol 2019;138:321-33.