The Association between Protein C and Antithrombin III Levels with the Severity of Coronavirus Disease-2019 Symptoms

Jelita Siregar1, Riyadh Ihsan2

1Department of Clinical Pathology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia; 2Department of Dermatovenereology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia

Abstract

BACKGROUND: Coronavirus disease-2019 (COVID-19) has various symptoms ranging from mild to critical. Hypercoagulation state is often observed in severe and critical COVID-19. Both coagulation and inflammation are interrelated and amplifying each other, with protein C and antithrombin (AT) III as two important mediators.

AIM: The aim of the study was to determine the association between protein C and AT III levels with the severity of COVID-19 symptoms.

METHODS: This analytical study was conducted at Hajj Adam Malik Hospital from April to July 2021. Subjects were obtained by consecutive sampling method. Inclusion criteria were patients with confirmed COVID-19 using reverse transcription polymerase chain reaction and willing to participate. Subjects were divided into two groups: Mild-moderate and severe-critical symptom groups. Demographic and blood sample was obtained from each subject. Blood samples underwent examination for leukocyte, thrombocyte, PT, aPTT, protein C, and AT III.

RESULTS: A total of 50 patients were obtained with female domination (58%) and mean age of 41.44 (standard deviation 20.90) years. Most subjects (86%) were in mild-to-moderate symptom group. There were significant differences in the level of protein C and AT III in both group (p = 0.029 and 0.034, respectively). Using the cutoff value for AT III of 45.6%, subjects who had mediator level below the value tend to develop severe and critical symptoms compared to their counterparts (odds ratio = 6.458).

CONCLUSION: AT III is associated with severity of COVID-19 symptoms. Lower AT III level increases the risk for developing severe and critical symptoms.

Introduction

The most common symptoms of coronavirus disease-2019 (COVID-19) are fever, tiredness, and dry cough. Some patients may experience aches or pains, nasal congestion, runny nose, sore throat, or diarrhea. The symptoms experienced are usually mild and appear gradually. Some infected people do not show any symptoms and still feel well. Infected patients who managed to recover without the need for special treatment are quite high, about 80% of the number of sufferers. It also said about one in six people who contracted COVID-19 developed severe pain and had difficulty breathing. Elderly people and people with pre-existing medical conditions such as high blood pressure, heart problems, or diabetes are more likely to develop more serious complications. The severity of the disease in patients is not only determined by viral virulence but also the host response [1], [2], [3], [4], [5].

Although the majority of COVID-19 patients have respiratory tract infections, approximately 60–70% of hospitalized patients have coagulation disorders such as thrombocytopenia, hypercoagulation, disseminated intravascular coagulation (DIC), and venous thrombosis [6], [7]. Activation of coagulation as well as activation of extensive vascular inflammation-associated disease has been shown to be present in severe COVID-19 patients, and autopsies revealed that nearly 58% of patients died from venous thrombosis and pulmonary embolism [8], [9].

Coagulation and inflammation are interrelated. It is well known that an exaggerated innate immune response activates coagulation, whereas activation of coagulation and subsequent formation of thrombin leads to increased inflammation [10]. In addition to promoting clot formation by activating platelets and by cleaving fibrinogen into fibrin, thrombin also exerts several cellular effects through proteases activated receptor [11], [12]. Thrombin formation and its activity are tightly regulated by anticoagulant molecules such as antithrombin (AT), tissue factor pathway inhibitors, and activated protein C (APC) [13], [14]. During inflammation, most of these anticoagulant protective mechanisms are disrupted, as noted in COVID-19 patients. As a result of impaired regulation of procoagulant–anticoagulant molecules, natural homeostasis is further shifted toward procoagulant and pro-inflammatory phenotypes that predispose to the development of intravascular thrombosis, DIC, and multiorgan failure. Overproduction
of pro-inflammatory cytokines such as tumor necrosis factor α, interleukin (IL)-6, and IL-1β as found in COVID-19 patients causes a cytokine storm, which causes hypercoagulation, platelet activation, leukocyte infiltration, and vascular hyperpermeability [15]. Acute increases in pro-inflammatory molecules in the lungs, leading to the simultaneous formation of pulmonary edema and pulmonary embolism as observed in COVID-19 patients [16]. Treatment with natural anticoagulant molecules, APC, and AT which are known to have anticoagulant and anti-inflammatory cytoprotective effects can save COVID-19 patients with hyperinflammation and coagulopathy [17]. This study aims to investigate the association between protein C and AT III levels on the severity of COVID-19 symptoms.

Methods

This analytical study was conducted at Haji Adam Malik General Hospital in Medan, North Sumatera, Indonesia, from April to July 2021. This research has been approved by the Research Ethics Committee of the Universitas Sumatera Utara. Subjects were selected using consecutive sampling method. Inclusion criteria were confirmed COVID-19 patients using reverse transcription polymerase chain reaction, admitted at Haji Adam Malik General Hospital, and willing to participate in the study. This study had been approved by The Health Research Ethical Committee, Medical School, Universitas Sumatera Utara with registry number 728/KEP/USU/2021.

COVID-19 patients who were willing to participate in this study were then grouped into two groups based on severity of symptoms: Mild-to-moderate and severe-to-critical symptom groups. The criteria for the severity of symptoms were determined by the COVID-19 control and prevention guideline from the Ministry of Health of the Republic of Indonesia (Table 1). Demographical data were also collected from the subject’s medical record.

Results

A total of 50 subjects were involved in this study with 43 subjects in mild-to-moderate group and seven in severe-to-critical group. Of all subjects, 21 were males and 29 were females. The mean age of the patients in this study was 41.44 (SD 20.90) years. There was no significant difference in gender and age between both groups. Other laboratory parameters were also similar except protein C (p = 0.029) and AT III (p = 0.034).

Table 1: Severity criteria of coronavirus disease-2019 symptoms

Severity criteria	Symptoms	Mild-to-moderate	Severe	Critical
	Fever >38°C	21 (42)	3 (43)	0.043*
	Cough	17 (39)	4 (57)	
	Sore throat	29 (58)	26 (61)	
	Nasal congestion	66.78 (29.06)	39.19 (21.28)	
	Malaise	13.42 (2.16)	39.19 (21.28)	
	Shortness of breath	4.03 (2.09)	13.42 (2.16)	
	Persistent cough and sore throat	8.03 (0.29)	7.02 (4.20)	
	Mild pneumonia (peripheral oxygen saturation<93%)	13.96 (12.44)	13.96 (12.44)	
	Mean leukocytes, mm3 (SD)	233.81 (78.14)	228.82 (77.73)	0.941*
	Mean thrombocyte count, mm3 (SD)	17.29 (13.61)	16.24 (9.41)	
	Mean hemoglobin, g % (SD)	75.31 (25.38)	82.23 (19.84)	0.029*
	Mean PT, second (SD)	36.49 (15.63)	36.37 (15.61)	
	Mean protein C, ng/mL (SD)	75.31 (25.38)	32.84 (7.57)	
	Mean APTT, second (SD)	23.51 (11.41)	23.51 (11.41)	
	Mean AT III, % (SD)	62.80 (30.66)	66.78 (29.06)	

Table 2: Demographic and laboratory characteristics of subjects

Characteristics	Total, n (%)	Mild-to-moderate	Severe	Critical	p
Sex (n)					
Men	21 (42)	17 (39)	4 (57)		0.434*
Women	29 (58)	26 (61)	3 (43)		
Mean age, year (SD)	41.44 (20.90)	39.19 (21.28)	53.14 (15.84)	0.074*	
Mean protein C, ng/mL (SD)	75.31 (25.38)	32.84 (7.57)	0.029*		
Mean PT, second (SD)	36.49 (15.63)	36.37 (15.61)	35.41 (17.42)	0.565	
Mean APTT, second (SD)	36.49 (15.63)	36.37 (15.61)	35.41 (17.42)	0.565	
Mean AT III, % (SD)	62.80 (30.66)	66.78 (29.06)	38.37 (30.96)	0.034	

References

1. Foster, E. (2021). *Acute respiratory distress syndrome, COVID-19: Coronavirus disease-2019*. [Accessed 11/14/2021].

2. Fisher’s exact test, Independent t-test, Mann–Whitney test. *p* < 0.05. SD: Standard deviation. COVID-19: Coronavirus disease-2019. AT: Antithrombin, PT: Partial thromboplastin time (PTT), aPTT: Activated partial thromboplastin time.
protein C and AT III between mild-to-moderate symptom group compared to severe-to-critical symptom group. Higher levels of protein C and AT III were observed in mild-to-moderate symptom group as shown in Figure 1.

Figure 1: Comparison of protein C and antithrombin III levels between both study groups

Statistical analysis was continued to ROC curve analysis. The area under the curve (AUC) for protein C and AT III in predicting severe-to-critical symptoms was 0.759 and 0.751, respectively (Figures 2 and 3). The highest accurate cutoff point for protein C was 5.36 ng/mL, giving a sensitivity of 69% and a sensitivity of 71.4%. For AT III, the cutoff point was 45.6% with a sensitivity of 72.1% and a specificity of 71.4%.

Figure 2: Receiver operating characteristic curve of protein C in predicting severe-to-critical COVID-19 symptoms

We further analyzed the cutoff value to determine the risk of severe-to-critical symptoms in patients with COVID-19. Patients with protein C level lower than 5.36 ng/mL had 5.769 times higher risk for developing severe-to-critical COVID-19 symptoms compared to those with protein C level higher than the cutoff. However, this result was not significant since the 95% CI interval crosses the value of 1. In the other hand, AT III level below 45.6% in patients with COVID-19 would increase the tendency for developing severe-to-critical symptoms as high as 6.458 times compared to their counterparts (Table 3).

Table 3: Risk analysis of severe-to-critical coronavirus disease-2019 symptoms based on protein C and antithrombin III cutoff values

Variable	OR	95% CI
Protein C	5.769	0.988 - 33.676
AT III	6.458	1.1 - 37.198

AT: Antithrombin, OR: Odds ratio, CI: Confidence interval.

This happens because protein C has anticoagulant and anti-inflammatory properties. When thrombin binds to thrombomodulin on the surface of endothelial cells, protein C is converted to its active form, APC. APC cleaves activated factor V and activated factor VIII and neutralizes plasminogen-activator inhibitor-1. With a 10,000-fold reduction in prothrombinase activity [19], cleavage of activated factor V results in a significant reduction in thrombin formation. Protein S further enhances APC-activated cleavage of factor V and factor VIII. The anti-inflammatory effect of APC is mainly...
through protease-activated receptor (PAR)1. PAR1 is present on the surface of endothelial cells and is unique in that it propagates both pro- and anti-inflammatory responses. APC interacts with the endothelin C receptor (EPCR), a complex that cleaves PAR1. Anti-inflammatory signaling is initiated through multiple intracellular pathways, including sphingosine kinase and inhibin 2 [20], [21], [22]. This pathway leads to anti-apoptotic, anti-inflammatory, and barrier-promoting changes in endothelial cells [20] that influence the severity of COVID-19.

In this study, we also found that patients with COVID-19 with severe and critical symptoms had significantly lower AT III levels than patients with mild-to-moderate symptoms. Likewise, the risk of COVID-19 patients with AT III levels above the cutoff showed a higher risk of exacerbation. The previous studies have also shown that AT III levels also decrease in COVID-19 cases [23], [24], [25], [26]. We suspect that this may be due to consumptive coagulopathy. Consumptive coagulopathy of varying severity can exacerbate the course of severe COVID-19 patients [24], [26]. AT III is the major endogenous thrombin inhibitor, and in addition to affecting the intrinsic, extrinsic, and general pathways of the coagulation cascade, it is a potent anti-inflammatory agent. AT III levels are reduced in coagulation disorders due to rapid uptake following formation of the AT complex and due to decreased synthesis and increased neutrophil clearance [25], [27]. Heparin treatment also results in a reduction in AT III levels [28].

Our study is the first study evaluating the association between protein C, AT III, and severity of COVID-19 symptoms in our center. This information may aid to the previous studies regarding the important role of protein C and AT III in predicting disease course of COVID-19 thus improving management and outcome of patients. However, both markers are not widely available particularly in remote area. This prevents a wide extrapolation of our study results. The main limitation of this study is that we did not adjust or match the factors that may influence protein C and AT III levels. In addition, there was an imbalance in total subjects in both groups which may affect the results.

Conclusion

Protein C and AT III are associated with severity of COVID-19 symptoms. Both are promising markers in predicting and managing severe-to-critical COVID-19 cases. Routine evaluation of protein C and AT III in COVID-19 patients is advised to improve disease outcome.

References

1. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708-20. https://doi.org/10.1056/NEJMoa2002032
2. Ruslie RH, Darmadi D. Coronavirus disease-19 and mental health. Open Access Maced J Med Sci. 2020;8(1):268-71. https://doi.org/10.3889/oamjms.2020.5304
3. Siregar GA, Siregar GP, Darmadi D, Ruslie RH. Coronavirus disease-19 and liver injury. Open Access Maced J Med Sci. 2020;8(1):154-7. https://doi.org/10.3889/oamjms.2020.5028
4. Siregar GA, Siregar GP, Darmadi D. Gastrointestinal aspects of COVID-19: A review. Open Access Maced J Med Sci. 2020;8(1):52-4. https://doi.org/10.3889/oamjms.2020.4891
5. Ruslie RH, Darmadi D, Siregar GA. Susceptibility of coronavirus disease-19 in pediatric population. Open Access Maced J Med Sci. 2020;8(1):363-5. https://doi.org/10.3889/oamjms.2020.5240
6. Biswas I, Khan GA. Coagulation disorders in COVID-19: Role of toll-like receptors. J Inflamm Res. 2020;13:823-8. https://doi.org/10.2147/jir.s271768. PMid:33149655
7. Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020;135:2033-40. https://doi.org/10.1182/blood.2020006000
PMid:32392221
8. Klok FA, Kruip MJ, van der Meer NJ, Arbous MS, Gomers DA, Kand KM, et al. Incidence of thrombocytopenic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145-7. https://doi.org/10.1016/j.thromres.2020.04.013
PMid:32291094
9. Wichmann D, Sperhake JP, Lütgehetmann M, Steurer S, Edler C, Heinemann A, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: A prospective cohort study. Ann Intern Med. 2020;173(4):268-77. https://doi.org/10.7326/m20-1206
PMid:32374815
10. Strukova S. Blood coagulation-dependent inflammation. Coagulation-dependent inflammation and inflammation-dependent thrombosis. Front Biosci. 2006;11:59-80. https://doi.org/10.2741/1780
PMid:16146714
11. Coughlin SR. Thrombin signalling and protease-activated receptors. Nature. 2000;407(6801):258-64. https://doi.org/10.1038/35025229
PMid:11001069
12. Celikel R, McClintock RA, Roberts JR, Mendolichio GL, Ware J, Varughese KI, et al. Modulation of alpha-thrombin function by distinct interactions with platelet glycoprotein IIb/IIIa. Science. 2003;301(5630):218-21. https://doi.org/10.1126/science.1084183
PMid:12855810
13. Riewald M, Petrovaj RJ, Donner A, Rulf W. Activated protein C signals through the thrombin receptor PAR1 in endothelial cells. J Endotoxin Res. 2003;9(5):317-21. https://doi.org/10.1179/096805103225002584
PMid:14577849
14. Uchiba M, Okajima K, Kaun C, Wojta J, Binder BR. Inhibition of the endothelial cell activation by antithrombin in vitro. Thromb Haemost. 2004;92(6):1420-7. https://doi.org/10.1160/th04-03-0139
PMID:15583752
15. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(10):1094-9. https://doi.org/10.1111/jth.14817
16. Han H, Yang L, Liu R, Liu F, Wu KL, Li J, et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med. 2020;58(7):1116-20. https://doi.org/10.1515/cclm-2020-0188 PMid:32220112

17. Griffin JH, Lyden P. COVID-19 hypothesis: Activated protein C for therapy of virus-induced pathologic thromboinflammation. Res Pract Thromb Haemost. 2020;4(4):506-9. https://doi.org/10.1002/rth2.12362 PMid:32548551

18. Stanne TM, Pedersen A, Gisslén M, Jern C. Low admission protein C levels are a risk factor for disease worsening and mortality in hospitalized patients with COVID-19. Thromb Res. 2021;204:13-5. https://doi.org/10.1016/j.thromres.2021.05.016 PMid:34102452

19. Bouwens EA, Staveniut F, Mosnier LO. Mechanisms of anticoagulant and cytoprotective actions of the protein C pathway. J Thromb Haemost. 2013;11(1):242-53. https://doi.org/10.1111/jth.12247 PMid:23809128

20. Sinha RK, Wang Y, Zhao Z, Xu X, Burnier L, Gupta N, et al. PAR1 biased signaling is required for activated protein C in vivo benefits in sepsis and stroke. Blood. 2018;131(11):1163-71. https://doi.org/10.1182/blood-2017-10-810895 PMid:29343482

21. Feistritzer C, Riewald M. Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood. 2005;105(8):3178-84. https://doi.org/10.1182/blood-2004-10-3985 PMid:15627632

22. Soh UJ, Trejo J. Activated protein C promotes protease-activated receptor-1 cytoprotective signaling through β-arrestin and dishevelled-2 scaffolds. Proc Natl Acad Sci U S A. 2011;108(50):E1372-80. https://doi.org/10.1073/pnas.1124828108 PMid:22106258

23. Anaklı İ, Özcan PE, Polat Ö, Orhun G, Alay GH, Tuna V, et al. Prognostic value of antithrombin levels in COVID-19 patients and impact of fresh frozen plasma treatment: A retrospective study. Turk J Haematol. 2021;38(1):15-21. https://doi.org/10.4274/tjh.galenos.2021.2020.0695 PMid:33486940

24. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844-7. https://doi.org/10.1111/jth.14768 PMid:32073213

25. Gazzaruso C, Paolozzi E, Valenti C, Brocchetta M, Naldani D, Grignani C, et al. Association between antithrombin and mortality in patients with COVID-19. A possible link with obesity. Nutr Metab Cardiovasc Dis. 2020;30(11):1914-9. https://doi.org/10.1016/j.numecd.2020.07.040 PMid:32907762

26. von Meijenfeldt FA, Havervall S, Adelmeijer J, Lundström A, Rudberg AS, Magnusson M, et al. Prothrombotic changes in patients with COVID-19 are associated with disease severity and mortality. Res Pract Thromb Haemost. 2020;5(1):132-41. https://doi.org/10.1002/rth2.12462 PMid:33537537

27. Levy JH, Sniecinski RM, Welsby IJ, Levi M. Antithrombin: Anti-inflammatory properties and clinical applications. Thromb Haemost. 2016;115(4):712-28. https://doi.org/10.1160/th15-08-0687 PMid:26676884

28. Novelli C, Borotto E, Beverina I, Punzi V, Radizzani D, Brando B. Heparin dosage, level, and resistance in SARS-CoV2 infected patients in intensive care unit. Int J Lab Hematol. 2021;43(6):1284-90. https://doi.org/10.1111/ijlh.13543 PMid:33855802