Pascal’s Hexagon Theorem implies a Butterfly Theorem in the Complex Projective Plane

Greg Markowsky

October 26, 2009

1 Introduction

Some time ago I attempted to prove the following for my own entertainment.

Butterfly Theorem. Let ab be a chord of a circle with midpoint m. Suppose rs and uv are two other chords that pass through m, as shown below. Let p and q be the intersections of rv and fs with ab. Then $pm = qm$.

![Butterfly Theorem Diagram](image)

Much to my delight, the proof I came up with used Pascal’s Hexagon Theorem. A few years later, I learned of the theory of conics in the complex projective plane. I attempted to translate my proof for the circle into this more general setting, and was thrilled to see that it worked very naturally.
In what follows, $cr(abcd)$ denotes the cross ratio, and C is a fixed conic in \mathbb{CP}^2. Here then is the generalization:

Theorem 1 Suppose C contains distinct points a, b. Let m be any point on ab which is not equal to a or b. Let rs and fg be any chords of C which contain m. Let $i = rg \cap ab$ and $j = fs \cap ab$. If p is chosen on ab so that $cr(pamb) = -1$, then $cr(pjmi) = -1$ as well.

The next section contains the proof of this theorem, and the final section contains a few notes on the planar case.

2 Proof of Theorem 1

Our initial aim is to define a natural way to reflect points around any chord of a conic. We need a lemma first.

Lemma 1 Let k be any line which intersects C at two points u and v, and let p denote the pole of k. Let l be a line through p which intersects C at two points y, y', and let m be a point on l. Then $cr(pymy') = -1$ if, and only if, $m = l \cap k$.

Proof: Choose homogeneous coordinates such that \(u = (0 : 1 : 0), v = (0 : 0 : 1), y' = (1 : 0 : 0), \) and \(y = (1 : 1 : 1) \). Then the equation defining \(C \) must be of the form \(Axy + Bxz + Cyz = 0 \) with \(A + B + C = 0 \). We can see that \(l : y - z = 0 \) and \(k : x = 0 \). Let \(m = l \cap k \). Then \(m = (0 : 1 : 1) \). Using the standard formula for the tangent line to a point (see [2]), the tangent at \(u \) is \(Ax + Cz = 0 \), and the tangent at \(v \) is \(Cy + Bx = 0 \). These intersect at the point \(p = (1 : -\frac{B}{C} : \frac{A}{C}) \). But \(p \) also lies on \(l \), so that \(A = B \). The equation \(A + B = -C \) therefore forces \(p = (1 : 1/2 : 1/2) \). We can projectively map \((p, y, m, y') \mapsto (1/2, 1, \infty, 0) \), so we see that indeed \(cr(pyym') = -1 \). The converse follows easily.

We begin by defining \(y \) and \(y' \) as referred to in the previous lemma as reflections of each other around \(k \). We see that this induces a natural mapping of \(C \) to itself. We can extend this to a map for any point \(y \) in the plane by \(y \mapsto y' \), where \(n = k \cap py \) and \(y' \) is the unique point on \(py \) such that \(cr(pyn'y') = -1 \)(this map is defined to be the identity on \(k \), and is undefined at \(m' \)). We will refer to this mapping as the reflection over \(k \).

Lemma 2 Let \(k \) be a line with pole \(p \), let \(y \) and \(y' \) be points which are reflections of each other over \(k \), and let \(u \) be a point on \(k \). Draw any other line through \(p \), and let \(t, t' \) be the intersections of this line with \(ru, r'u \). Then \(t \) and \(t' \) are reflections of each other.
Remark: In the picture it is shown that $u, y, y' \in C$, but this isn’t necessary for the lemma to hold.

Proof: Let $m = k \cap py$ and $n = k \cap pt$. Projecting pt from u onto py we see that $cr(ptnt') = cr(pymy')$, which is -1 by Lemma 1. □

Lemma 3 Suppose y, y' are reflections of each other over a line k with pole p, as are z, z'. Then $yz \cap y'z' \in k$.
Proof: Let \(u = yz \cap k \). Then, by Lemma 2, \(uy' \cap pz \) is the reflection of \(z \), and is therefore equal to \(z' \). Thus, \(y'z' \) passes through \(u \) as well, and \(u = yz \cap y'z' \in k \).

In this situation, we will say that the lines \(yz \) and \(y'z' \) are reflections of each other.

Lemma 4 Let \(k \) be a chord containing distinct points \(u, v \) on \(C \), and let \(p \) be the pole of \(k \). Let \(m \) be a point on \(k \), and let \(rs \) be a chord of \(C \) passing through \(m \). Let \(r' \) be the reflection of \(r \) over \(k \). Then \(x = r'v \cap su \) lies on \(pm \).

Proof: Let \(s' \) be the reflection of \(s \), and consider the hexagon \(rvr's'us \). Let \(z = rv \cap s'u \). By Lemma 4, \(r's' \cap r's \) lies on \(k \), and must therefore be equal to \(m \). By Pascal’s Theorem, \(z, m, \) and \(x \) lie on a line. The theorem will be proved if we can show that this line passes through \(p \), as is shown in this picture.
su and s'u are reflections of each other, as are rv, r'v. It follows that the reflection of x lies on both us' and vr, and is therefore equal to us' ∩ vr. Thus, z and x are reflections of each other, which implies that z, x, and p lie on a line. Hence, z, m, x, and p are collinear.

Proof of Theorem 1: In light of what has come before, we need to prove that i and j are reflections of each other. Let g' and r' be the reflections of g and r.

By Lemma 4, r'v ∩ su and fv ∩ g'u both lie on pm. Thus, by Pascal’s Theorem applied to the hexagon r'vf sug', r'g' ∩ sf = j lies on pm as well.
But $r'g'$ is the reflection of rg, so by Lemma 3, $rg \cap pm = i$ is the reflection of $r'g' \cap pm = j$, and we are done.

3 Remarks on the planar case

In [1], this method of proof is used to deduce the Butterfly Theorem for conics in \mathbb{R}^2, with one exception. The case in which the initial chord intersects a hyperbola once on each of the branches of the hyperbola could not be covered while staying entirely in \mathbb{R}^2, since the relevant polar in that case did not intersect the hyperbola at any point. To get around this difficulty, we consider \mathbb{RP}^2 as embedded in \mathbb{CP}^2 as the set of fixed points of the map $(z_1 : z_2 : z_3) \mapsto (\bar{z}_1 : \bar{z}_2 : \bar{z}_3)$. In this larger space, all lines intersect the conic, and we arrive at no difficulties. Therefore, the following generalization of the Butterfly Theorem in \mathbb{R}^2 is obtained as a corollary to the above work:

Theorem 2 Let C be a conic in the plane. Let a point m be on a chord intersecting C at two distinct points a and b. Let rs and uv be two chords passing through m. Let p and q be the intersections of ru and sv with ab. Let m' be the unique point (possibly ∞) on ab so that $cr(m'amb) = -1$. Then $cr(m'pmq) = -1$ as well.

Proof: Suppose C is given by $Ax^2 + By^2 + Qxy + Dx + Ey + F = 0$. Then $Ax^2 + By^2 + Qxy + Dxz + Eyz + Fz^2 = 0$ gives the extension of C to \mathbb{CP}^2. Since $m, a, b \in \mathbb{RP}^2$, $m' \in \mathbb{RP}^2$ as well. It follows as above that p and q are reflections of each other over the polar of m'. This polar also passes through m, though it does not necessarily intersect C in \mathbb{RP}^2. Whether or not the polar intersects C in \mathbb{RP}^2, we have $cr(m'pmq) = -1$, and we are done.

4 Acknowledgement

I would like to thank Jihun Park for several helpful conversations.

References

1. Markowsky, G. (2009) *Pascal's Hexagon Theorem implies the Butterfly Theorem*, preprint.
2. Nambda, M. (1984) *Geometry of Projective Algebraic Curves*, Marcel Dekker, Inc.

Greg Markowsky

gmarkowsky@gmail.com