A generalization of c-Supplementation *

Shiheng Li, Dengfeng Liang, Wujie Shi
School of Mathematic Science, Suzhou University, Suzhou 215006, China
E-mail: lishiheng01@163.com; dengfengliang@163.com; wjshi@suda.edu.cn

Abstract

A subgroup H is said to be nc-supplemented in a group G if there is a subgroup $K \leq G$ such that $HK \trianglelefteq G$ and $H \cap K$ is contained in H_G, the core of H in G. We characterize the solvability of finite groups G with some subgroups of Sylow subgroups nc-supplemented in G. We also give a result on c-supplemented subgroups.

Keywords solvable, nc-supplemented, p-nilpotent.

Wang[6] introduces the notation of c-supplemented subgroups and determines the structure of finite groups G with some subgroups of Sylow subgroups c-supplemented in G. Here we give a new concept called nc-supplementation that is a weak version of c-supplementation and characterize the solvability of groups G with some maximal or 2-maximal subgroups nc-supplemented in G, respectively.

In this paper, π denotes a set of primes. We say $G \in E_\pi$ if G has a Hall π-subgroup; $G \in C_\pi$ if $G \in E_\pi$ and any two Hall π-subgroups of G are conjugate in G; $G \in D_\pi$ if $G \in C_\pi$ and every π-subgroup of G is contained in a Hall π-subgroups of G. We say that a number n is a π-number if every of its prime divisor is in π. $|G|_\pi$ denotes the largest π-number that divides $|G|$. $H < \cdot G$ denotes that H is a maximal subgroup of G. L is called a 2-maximal subgroup of G, if there exists a maximal subgroup M of G such that $L < \cdot M$.

Definition 1. Let G be a group and H be a subgroup of G.

(1) H is said to be c-supplemented in G if there exists a subgroup K of G such that $HK = G$ and $H \cap K \leq H_G$, where $H_G = \bigcap_{g \in G} H^g$ is the core of H in G. We say that K is a c-supplement of H in G.

(2) H is said to be nc-supplemented in G if there exists a subgroup K of G such that $HK \trianglelefteq G$ and $H \cap K \leq H_G$. We say that K is a nc-supplement of H in G. \square

Remark 1. Let H be nc-supplemented in G. Evidently, H is c-supplemented in G if H is simple; H is c-supplemented in G if H is a maximal subgroup of G. \square

In general, nc-supplementation does not implies c-supplementation.

Example. Let $G = A_4$ and $B = \{(1), (12)(34), (13)(24), (14)(23)\}$. Set $C = \{(1), (12)(34)\}$ and $D = \{(1), (14)(23)\}$. Then $C \times D = B \trianglelefteq G$ and C is nc-supplemented in G. However, C is not c-supplemented since $C_G = 1$ and A_4 has no subgroup of order 6. \square

Lemma 1. If H is nc-supplemented in G, then there exists a subgroup C of G such that $H \cap C = H_G$ and $HC \trianglelefteq G$.

*Supported by the National Natural Science Foundation of China (Grant No. 10171074).
Suppose \(H \) is \(nc \)-supplemented in \(G \). Then there is a subgroup \(C_1 \leq G \) such that \(H \cap C_1 \leq H_G \) and \(H C_1 \leq G \). Let \(C = C_1 H_G \). Then \(HC = (H C_1) H_G \leq G \) and \(H \cap C = H \cap C_1 H_G = H_G (H \cap C_1) = H_G \).

Lemma 2. Let \(H \) be \(nc \)-supplemented in \(G \).

1. If \(H \leq H \leq G \), then \(H \) is \(nc \)-supplemented in \(M \).
2. If \(N \leq H \) and \(N \leq H \), then \(H/N \) is \(nc \)-supplemented in \(G/N \).
3. If \(N \leq G \) and \((|N|, |H|) = 1 \), then \(H/N \) is \(nc \)-supplemented in \(G/N \).

Proof. Similar to the argument in the proof of [6, Lemma 2.1 (1) and (2)], we get (1) and (2), respectively.

Similar to the argument in the proof of [6, Theorem 2.2], we get the following result by computing \(|G|_2\):

Lemma 3 [1, Proposition 2.1]. If \(K \) is a normal subgroup of the group \(G \) such that \(K \leq C_\pi \) and \(G/K \leq C_\pi \), then \(G \in E_\pi \).

From [7, p.485, Theorem] we get the following result by computing \(|G|_2\):

Lemma 4. Let \(G \) be a simple group having a Sylow 2-subgroup isomorphic to \(C_2 \times C_2 \). Then \(G \cong L_2(q) \), where \(q \equiv 3 \pmod{8} \) or \(q \equiv 5 \pmod{8} \).

Theorem 1. Let \(G \) be a finite group and let \(P \) be a Sylow \(p \)-subgroup of \(G \), where \(p \) is a prime divisor of \(|G| \). Suppose that there is a maximal subgroup \(P_1 \) of \(P \) such that \(P_1 \) is \(nc \)-supplemented in \(G \).

1. If \(P_1 \neq 1 \), then \(G \) is not a non-Abelian simple group.
2. If \(P_1 \neq 1 \), then \(G \in E_2' \) and every composition factor of \(G \) is either a cyclic group of prime order or isomorphic to \(L_2(r) \), where \(r = 2^p - 1 \) is a Mersenne prime.

Proof. (a) Suppose \(P_1 \) is \(nc \)-supplemented in \(G \). If \(G \) is simple then \(P_1 \) is \(c \)-supplemented in \(G \). By [6, Theorem 2.2], it follows that \(G \) is not simple, a contradiction.

(b) Suppose \(p = 2 \). If \((P_1)_G \neq 1 \), then \(G/(P_1)_G \) satisfies the hypothesis by Lemma 2. Hence \(G/(P_1)_G \in E_2' \) by induction on \(|G| \) and thus \(G \in E_2' \) by Lemma 3. So we may assume that \((P_1)_G = 1 \). Since \(P_1 \) is \(nc \)-supplemented in \(G \), there is a subgroup \(K \) of \(G \) such that \(P_1 K \leq G \) and \(P_1 \cap K \leq (P_1)_G = 1 \). Let \(N = P_1 K \). Then \(G/N \) is solvable since \(|G/N|_2 \leq 2 \).

Remark 2. In (a) of Theorem 1, the hypothesis \(P_1 \neq 1 \) is necessary. For example, \(G = L_2(7) \) and \(p = 7 \). The example also shows that the hypothesis \(P_1 \neq 1 \) should be in the first conclusion in [6, Theorem 2.2]. Otherwise, from the example it is certain that the conclusion that \(G : K = p^r, r \geq 1 \), in the proof of [6, Theorem 2.2], is impossible.

Theorem 2. Let \(G \) be a finite group. Then \(G \) is solvable if and only if every Sylow subgroup of \(G \) is \(nc \)-supplemented in \(G \).

Proof. If \(G \) is solvable, then every Sylow subgroup of \(G \) has a complement in \(G \) and thus \(nc \)-supplemented in \(G \).
Conversely, suppose that G is a counterexample of smallest order.

(1) If $N \leq G$, then G/N is solvable.

Let P be a Sylow p-subgroup of G, where p is a prime divisor of $|G|$. Then there is a subgroup C of G such that $PC \leq G$ and $P \cap C \leq G$. Since $|PC : C| = |P : P \cap C|$ and $P \in Syl_pG$, $(|PC : C|, |PC : P|) = 1$. Hence $PC \cap N = (N \cap P)(N \cap C)$ by [2, A.1.2 Lemma]. Thus $NP \cap NC = N(P \cap C)$ by [2, A.1.6 Lemma (c)] and $PN/N \cap NC/N = N(P \cap C)/N \leq PGN/N \leq (PN/N)_{G/N}$. On the other hand, $(PN/N)/C(N/N) = (PC/N)/G/N$. And for every Sylow p-subgroup S/N of G/N, we set $P \in Syl_pS$. Then $P \in Syl_pG$ and $PN/N = S/N \in Syl_pG/N$. Therefore, G/N satisfies the hypothesis of the theorem. Then G/N is solvable since G is a counterexample of smallest order.

(2) G has a unique minimal normal subgroup N, $\Phi(G) = 1$ and $O_p(G) = 1$ for any $p||G|$. Since the class of all solvable groups is a saturated formation, G has only one minimal subgroup N and $\Phi(G) = 1$ by (1). If $O_p(G) \neq 1$, then $G/O_p(G)$ is solvable by (1) and G is solvable, which contradicts that G is a counterexample.

For any $p||G|$, and $P \in Syl_pG$, there exists a subgroup C of G such that $PC \leq G$ and $P \cap C \leq O_p(G) = 1$ by our hypothesis and (2). Then $PC \leq N$ by (2) and C is a p-complement of PC. Thus $C \cap N$ is a p-complement of N for any $p||G|$ and N is solvable by [2, I.3.5 Theorem]. Hence G is solvable, which contradicts that G is a counterexample. The final contradiction completes the proof.

Theorem 3. Let G be a finite group and let P be a Sylow 2-subgroup of G. Suppose that every maximal subgroup of P is no-supplemented in G. Then G is solvable.

Proof Assume that G is a counterexample of smallest order. In particular, G is non-
solvable.

(1) $O_2(G) = 1$ and $O_2'(G) = 1$.

Assume that $O_2(G) \neq 1$. Then $G/O_2(G)$ either is of odd order or satisfies the hypothesis of the theorem by Lemma 2. In the first case $G/O_2(G)$ is solvable by the odd order theorem. In the second case $G/O_2(G)$ is also solvable since G is a counterexample of smallest order. Thus in both cases $G/O_2(G)$ is solvable, G is also solvable, a contradiction.

Assume that $O_2'(G) \neq 1$. Then $G/O_2'(G)$ satisfies the hypothesis of the theorem by Lemma 2 and thus $G/O_2'(G)$ is solvable since G is a counterexample of smallest order. In addition $O_2'(G)$ is solvable by the odd order theorem again. Hence G is solvable, a contradiction.

(2) G has a unique minimal normal subgroup N and N is a direct product of some simple
groups, which are isomorphic to each other. Moreover, $G = PN$.

Let N be a minimal normal subgroup of G. We consider PN.

We assume that $PN < G$. By Lemma 2 PN satisfies the hypothesis of the theorem, then PN is solvable since G is a counterexample of smallest order. In particular, N is solvable. Then either $O_2(N) \neq 1$ or $O_2'(N) \neq 1$ and thus either $O_2(G) \geq O_2(N) > 1$ or $O_2'(G) \geq O_2'(N) > 1$, which contradicts (1). Now we in the case $PN = G$. Then $G/N \cong G/P \cap N$ is solvable. Since the class of all solvable groups is a saturated formation, G has a unique minimal normal subgroup N. Evidently N is not solvable and N is a direct product of some simple groups, which are isomorphic with each other.

(3) The final contradiction.

Let P_1 be a maximal subgroup of P. Then there is a $K \leq G$ such that $P_1K \leq G$ and $P_1 \cap K \leq (P_1)_G \leq O_2(G) = 1$ by (1). Thus $|K|_2 \leq 2$, K has a normal 2-complement K_2. Evidently, K_2 is also a Hall $2'$-subgroup of P_1K. In addition $N \leq P_1K$ by (2) since $P_1 \neq 1$. Hence $K_2 \cap N$ is a 2-complement of N. On the other hand $G = PN$. So K_2'
is a 2-complement of N and G. Set $N_2 = P \cap N$, $H = N_G(K_2)$ and $P' = P \cap H$. Then $N_2 \in \text{Syl}_2 N$, $G = P \cap N = PK_2$ and $G = NH = N_2 H$ by Frattini argument and [3, Theorem A]. So $P = P \cap (N_2 H) = N_2 (P \cap H) = N_2 P'$. If G is simple, then G is solvable by [6, Corollary 3.2] and Remark 1. Now we assume that G is not simple. Then $P > N_2$ and $P' \neq 1$. Since $G = N_2 H = PH$, $P' = P \cap H \in \text{Syl}_2 H$. Since $H < G$ by (1), $P > P'$. Then there is a maximal subgroup P'_1 of P such that $P' \leq P'_1$. Then there is a $K' \leq G$ such that $P'_1 K' \unlhd G$ and $P'_1 \cap K' \leq (P'_1 K') \leq O_2 (G) = 1$ by (1). By the same argument as above, with (P'_1, K') in place of (P, K), we get: the normal 2-complement K''_2 of K' is also a 2-complement of N and G, and $P'_1 K''_2 \geq N$. Then $P'_1 K''_2 = (P'_1 N_2 K''_2) = PK''_2 = G$ since $P'' \leq P'_1$. Since $G = PK''_2$, we may assume $K''_2 = K'_2$ by [5, VI,4.5] and [3, Theorem A]. Then $K' \leq N_G(K'_2) = H$ and $G = P'_1 K''_2 = P'_1 H = P'_1 P'' K''_2 = P'_1 K'_2$. Hence $|G| = |P'_1|/|K'_2| < |P|/|K_2| = |G|$, a contradiction. The final contradiction completes the proof. □

With Lemma 4, by the same argument as in the proof of theorem 3, we get the following:

Theorem 4. Let G be a finite group and P a Sylow 2-subgroup of G. If every 2-maximal subgroup of P is nc-supplemented in G and $L_2(q)$-free, where $q \equiv 3(\text{mod } 8)$ or $q \equiv 5(\text{mod } 8)$, then G is solvable.

Remark 3. With the condition nc-supplemented in place of the condition c-supplemented in [6, Theorem 3.1 and Theorem 4.2], we can get that G is solvable by Theorem 3 and Theorem 4 respectively, but cannot conclude that $G/O_p(G)$ is p-nilpotent. For example:

Let $G = H \wr \langle a \rangle$ is a wreath product of H and $\langle a \rangle$, where $H = Z_7 \times Z_3$ is a semi-direct product of Z_7 by Z_3 but $H \not\cong Z_7 \times Z_3$, and $a = (1234567)$. Let $p = 3$ and $P \in \text{Syl}_p G$. Then P is an elementary Abelian p-subgroup. For every subgroup P_1 of P there exists a subgroup C of P such that $P_1 \times C = P$. Let $F = O_7 (G)$. Then $F = Z_7 \times \cdots \times Z_7$ (7 copies of Z_7). Hence $FC \leq G$, $(FC)P_1 = FP = H \triangleleft G$ and $FC \cap P_1 = 1$. Thus P_1 is nc-supplemented in G. However, $O_p(G) = 1$ and G is not p-nilpotent. □

The following is related to c-supplemented subgroups.

Lemma A[6, Lemma 4.1]. Let G be a finite group and let p be a prime divisor of $|G|$ such that $(|G|, p - 1) = 1$. Assume that the order of G is not divisible by p^3 and G is A_4-free. Then G is p-nilpotent. In particular, if there exists odd prime p with $(|G|, p - 1) = 1$ and the order of G is not divisible by p^3. Then G is p-nilpotent. □

Remark 4. From the hypotheses of Lemma A, we cannot get that G is p-nilpotent. For example:

Let $G = (Z_{19} \times Z_{19}) \times \langle a \rangle$ and $p = 19$, where $o(a) = 5$ and $a \in \text{Aut}(Z_{19} \times Z_{19})$. Then (G, p) satisfies the hypotheses of Lemma A. However, G is not p-nilpotent. From the example, it is certain that the conclusion that $p = 2$ and $q = 3$, in the proof of [6, Lemma 4.1], is impossible. But the mistake cannot affect the results and arguments after [6, Lemma 4.1] in [6], since Lemma A holds by [4, Lemma 3.12] if p is the smallest prime divisor of $|G|$. □

From the hypotheses of Lemma A, we get the following:

Theorem 5. Let G be a finite group and let p be a prime divisor of $|G|$ such that $(|G|, p - 1) = 1$. Assume that the order of G is not divisible by p^3 and is A_4-free. Then G is p-nilpotent or $G/O_p'(G) \cong (Z_p \times Z_p) \rtimes H$, where $H \leq \text{Aut}(Z_p \times Z_p)$, and H is a cyclic group whose order is odd and divides $\frac{p^4 - 1}{2}$.

Proof If $O_p'(G) \neq 1$, then $G/O_p'(G)$ satisfies the hypotheses and $G/O_p'(G)$ is p-nilpotent or $G/O_p'(G) \cong (Z_p \times Z_p) \rtimes H$ by induction on $|G|$. So we assume $O_p'(G) = 1$.

If $|G|_p = p$, then G is p-nilpotent by [5, VI,2.6], since $|N_G(P)/C_G(P)||\text{|Aut}(P)| = (p - 1, |G|) = (p - 1, |G|) = 1,$
where $P \in Syl_p G$. Now we assume $|G|_p = p^2$. If p is the smallest prime divisor of $|G|$, then G is p-nilpotent by [4, Lemma 3.12]. So we may assume p is odd. Then $|G|$ is odd since $(|G|, p - 1) = 1$ and thus solvable by the odd order theorem. This gives $O_p(G) \neq 1$ since $O_p(G) = 1$.

In case $|O_p(G)| = p$. Then $|G/O_p(G)|_p = p$ and $G/O_p(G)$ is p-nilpotent as above. Let $T/O_p(G)$ be the normal p-complement of $G/O_p(G)$. Then $|T|_p = p$ and thus T is p-nilpotent as above again. So T has normal p-complement T_p' and T_p' is a character subgroup of T. Then $T_p' \leq G$ and $T_p' \leq O_p(G) = 1$. Thus G is a p-group and thus p-nilpotent.

In case $|O_p(G)| = p^2$. Then $O_p(G) \in Syl_p G$. Since $O_p'(G) = 1$, $F(G) = O_p(G)$ and then $C_G(O_p(G)) = O_p(G)$ by [2, A,10.6 Theorem]. Thus $G/O_p(G) \leq Aut(O_p(G))$. If $O_p(G)$ is cyclic then $|Aut(O_p(G))| = p(p - 1)$. Thus, $|G/O_p(G)||G/O_p(G)||G/O_p(G)||G/O_p(G)||G/O_p(G)| = 1$ and $G = O_p(G)$ is a p-group. Now we assume $O_p(G)$ is an elementary Abelian subgroup of (p, p)-type. Then $|Aut(O_p(G))| = (p + 1)p(p - 1)^2$ and $|G/O_p(G)||G/O_p(G)|p^2$ since $(|G|, p - 1) = 1$. In addition, G has a subgroup H such that $G = HO_p(G)$ and $H \cap O_p(G) = 1$ by Shur-Zassenhaus theorem. Therefore, $G \simeq (Z_p \times Z_p) \times H$, where $H \leq Aut(Z_p \times Z_p)$, $|H||p^2$ and $|H|$ is odd. In addition, $|L_2(p)| = (p+1)p(p-1)/2$, $|Aut(Z_p \times Z_p)| = |GL_2(p)| = (p + 1)p(p - 1)^2$, and $L_2(p)$ is a section of $GL_2(p)$. Hence H is isomorphic to a subgroup of $L_2(p)$ and thus H is cyclic by [5, II,8.27].

References

[1] Z. Arad, E. Fisman, On finite factorizable groups, J. Algebra, 86(1984), 522-548.

[2] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, New York, 1992.

[3] F. Gross, Conjugacy of odd order Hall subgroups, Bull. London. Math. Soc., 19(1987), 311-319.

[4] X. Guo, K. P. Shum, Cover-avoidance properties and the structure of finite groups, J. Pure Appl. Algebra, 181(2003), 297-308.

[5] B. Huppert, Endliche Gruppen I, Spring-Verlag, New York, 1979.

[6] Y. Wang, Finite groups with some subgroups of Sylow subgroups c-supplemented, J. Algebra, 224(2000), 467-478.

[7] D. Gorenstein, Finite Groups, Chelsea Publishing Company, New York, 1980.