Li, Chunyi

Stability conditions on Fano threefolds of Picard number 1. (English)

J. Eur. Math. Soc. (JEMS) 21, No. 3, 709-726 (2019).

Summary: We prove the conjectural Bogomolov-Gieseker type inequality for tilt-stable objects on each Fano threefold \(X \) of Picard number 1. In view of the previous works \([A. Bayer et al., J. Algebr. Geom. 23, No. 4, 693–710 (2014; Zbl 1310.14026)], [A. Bayer et al., Invent. Math. 206, No. 3, 869–933 (2016; Zbl 1360.14057)]\) and \([A. Bayer et al., J. Algebr. Geom. 23, No. 1, 117–163 (2014; Zbl 1306.14005)]\) on Bridgeland stability conditions, this induces an open subset of geometric stability conditions on \(D^b(X) \).

We also get a new stronger bound for Chern characters of slope semistable sheaves on \(X \).

MSC:
- 14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
- 14J45 Fano varieties

Keywords:
- stability condition
- Fano threefolds
- Bogomolov-Gieseker type inequality

Full Text: DOI arXiv

References:

[1] Bayer, A., Bertram, A., Macr'i, E., Toda, Y.: Bridgeland stability conditions of threefolds II: An application to Fujita’s conjecture. J. Algebraic Geom. 23, 693–710 (2014)\(\text{Zbl 1310.14026} \) MR 3263665 · Zbl 1310.14026

[2] Bayer, A., Macr'i, E., Stellari, P.: The space of stability conditions on abelian threefolds, and on some Calabi–Yau threefolds. Invent. Math. 206, 869–933 (2016)\(\text{Zbl 1360.14057} \) MR 3573975 · Zbl 1360.14057

[3] Bayer, A., Macr'i, E., Toda, Y.: Bridgeland stability conditions on threefolds I: Bogomolov–Gieseker type inequalities. J. Algebraic Geom. 23, 117–163 (2014)\(\text{Zbl 1360.14005} \) MR 3121850 · Zbl 1360.14005

[4] Bridgeland, T.: Stability conditions on triangulated categories. Ann. of Math. (2) 166, 317–345 (2007)\(\text{Zbl 1137.18008} \) MR 2373143 · Zbl 1137.18008

[5] Cutkosky, S. D.: On Fano 3-folds. Manuscripta Math. 64, 189–204 (1990)\(\text{Zbl 0704.14032} \) MR 0998485 · Zbl 0704.14032

[6] Iskovskikh, V. A., Prokhorov, Yu. G.: Fano varieties. In: Algebraic Geometry, V, Encyclopaedia Math. Sci. 47, Springer, Berlin, 1–247 (1999)\(\text{Zbl 0912.14013} \) MR 1668579 726

[7] Maciocia, A., Piyaratne, D.: Fourier–Mukai transforms and Bridgeland stability conditions on abelian threefolds. Algebra Geom. 2, 270–297 (2015)\(\text{Zbl 1322.14040} \) MR 3370123 · Zbl 1322.14040

[8] Maciocia, A., Piyaratne, D.: Fourier–Mukai transforms and Bridgeland stability conditions on abelian threefolds II. Int. J. Math. 27, no. 1, 1650007, 27 pp. (2016)\(\text{Zbl 1360.14064} \) MR 3454685 · Zbl 1322.14040

[9] Macr'i, E.: A generalized Bogomolov–Gieseker inequality for the three-dimensional projective space. Algebra Number Theory 8, 173–190 (2014)\(\text{Zbl 1308.14016} \) MR 3207582

[10] Piyaratne, D., Toda, Y.: Moduli of Bridgeland semistable objects on 3-folds and Donaldson–Thomas invariants.arXiv:1504.01177(2015)

[11] Schmidt, B.: A generalized Bogomolov–Gieseker inequality for the smooth quadric threefold. Bull. London Math. Soc. 46, 915–923 (2014)\(\text{Zbl 1307.14024} \) MR 3262194 · Zbl 1307.14024

[12] Schmidt, B.: Counterexample to the generalized Bogomolov–Gieseker inequality for threefolds. Int. Math. Res. Notices 2017, 2562–2566MR 3658208

[13] Shen, M.: Rational curves on Fano threefolds of Picard number one. Ph.D. Thesis, Columbia Univ., Ann Arbor, MI (2010)MR 2782335

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.