The transcription factor NKX1-2 promotes adipogenesis and may contribute to a balance between adipocyte and osteoblast differentiation

Noah Chen1, Rebecca L. Schill2, Michael O'Donnell1, Kevin Xu1, Devika P. Bagchi2, Ormond A. MacDougald1,2, Ronald J. Koenig*1 and Bin Xu*1

From the 1Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine; 2Department of Molecular & Integrative Physiology; University of Michigan Medical School, Ann Arbor MI 48105

Running Title: NKX1-2 regulates adipogenesis

*To whom correspondence should be addressed: Ronald J. Koenig, MD. Ph.D., Bin Xu, Ph.D: Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor MI 48109-5678; rkoenig@umich.edu; bxu@umich.edu; Tel. 734-647-2883; Fax. 734-936-6684.

Keywords: adipocyte, development, differentiation, energy homeostasis, metabolic regulation, NKX proteins, obesity

ABSTRACT

Although adipogenesis is mainly controlled by a small number of master transcription factors including CCAAT/enhancer-binding protein family members and peroxisome proliferator-activated receptor γ (PPARγ), other transcription factors also are involved in this process. Thyroid cancer cells expressing a paired box 8 (PAX8)–PPARγ fusion oncogene trans-differentiate into adipocyte-like cells in the presence of the PPARγ ligand pioglitazone, but this trans-differentiation is inhibited by the transcription factor NK2 homeobox 1 (NKX2-1). Here, we tested whether NKX family members may play a role also in normal adipogenesis. Using quantitative RT-PCR (RT-qPCR), we examined the expression of all 14 NKX family members during 3T3-L1 adipocyte differentiation. We found that most NKX members, including NKX2-1, are expressed at very low levels throughout differentiation. However, mRNA and protein expression of a related family member, NKX1-2, was induced during adipocyte differentiation. NKX1-2 also was up-regulated in cultured murine ear mesenchymal stem cells (EMSCs) during adipogenesis. Importantly, shRNA-mediated NKX1-2 knockdown in 3T3-L1 preadipocytes or EMSCs almost completely blocked adipocyte differentiation. Furthermore, NKX1-2 overexpression promoted differentiation of the ST2 bone marrow–derived mesenchymal precursor cell line into adipocytes. Additional findings suggested that NKX1-2 promotes adipogenesis by inhibiting expression of the antiadipogenic protein COUP transcription factor II. Bone marrow mesenchymal precursor cells can differentiate into adipocytes or osteoblasts, and we found that NKX1-2 both promotes ST2 cell adipogenesis and inhibits their osteoblastogenic differentiation. These results support a role for NKX1-2 in promoting adipogenesis and possibly in regulating the balance between adipocyte and osteoblast differentiation of bone marrow mesenchymal precursor cells.

Obesity is associated with premature death due to its link to type 2 diabetes, hypertension, cardiovascular disease, stroke, and certain cancers (1-3). Adipose tissue plays a central role in energy homeostasis and is composed of mesenchymal stem cells (MSCs), vascular cells, preadipocytes, and mature fat cells. White adipose tissue, which expands in obesity, is specialized to store energy in the form of lipid, whereas brown and beige adipose cells primarily serve a thermogenic function (4). Adipogenesis has been studied extensively in vitro, in particular using the murine 3T3-L1 preadipocyte line that can be induced to differentiate into mature white adipocytes by exposure to an adipogenic
cocktail consisting of the synthetic glucocorticoid dexamethasone, insulin, the phosphodiesterase inhibitor isobutylmethylxanthine, and fetal bovine serum (FBS) (5-8).

This well-studied adipocyte differentiation is controlled by a tightly regulated cascade of key transcription factors (TFs), including CCAAT/enhancer-binding protein (C/EBP) family members (C/EBPα, C/EBPβ and C/EBPδ) and the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ), which have been shown both in vitro and in vivo to be the master regulators of adipogenesis (9). In addition, other TFs and cofactors, such as KLFs (10,11), STAT5 (12,13), PBX1 (14), Krox20 (15), AP1 (16,17), ATFs (18), GATA2/3 (19,20), TAF8 (21), and Mediator subunits (MED1, MED14 and NED23) (22-24), have been reported to be involved in regulating either adipocyte commitment or differentiation in cell line and/or mouse models. Recent studies using chromatin immunoprecipitation and DNase hypersensitivity mapping have provided substantial insight into the specific gene expression and epigenetic changes that underlie adipogenesis (25-34). However, due to the diversity of factors and mechanisms involved in adipocyte differentiation, the full complement of key transcriptional regulators that orchestrate adipogenesis remains to be elucidated.

The NKX family of homeodomain (HD)-containing TFs includes numerous members that display diverse functions in cell fate determination, development (especially of the nervous system) and tumorigenesis (35-37). For example, NKX1-2, which is the focus of this study, is expressed early in development in neumesdermal progenitor cells and contributes to the formation of all 3 germ layers (38-40). NKX1-1/Sax2 is expressed predominantly in the brainstem, through which it plays an important role in whole animal energy homeostasis and adiposity (41). NKX2-2 is required for cell patterning in the ventral neural tube and pancreatic islet β-cell specification (36,42,43). NKX2-5 plays important roles in cardiac and thyroid development (44). NKX5-1 plays a role in neuronal cell type specification and is required for development of the inner ear and hypothalamus (45,46). NKX6-1 is required for pancreatic β-cell development (47,48). NKX6-2 regulates axon-glial interactions and its mutation causes a form of spastic ataxia (49). Finally, NKX2-1 (also called thyroid transcription factor 1, TTF-1) is essential for development of the thyroid, lung and brain (50).

As noted above, PPARγ is a master regulator of adipogenesis. Although PPARγ is expressed at very low levels in the normal thyroid and has no known function in normal thyroid biology (51), a subset of thyroid cancers is caused by a chromosomal translocation that fuses the genes PAX8 and PPARG, resulting in expression of an oncogenic PAX8-PPARγ fusion protein, PPFP (52). We previously found that pioglitazone, a synthetic agonist ligand for PPARγ, also binds to PPFP and turns it into a strongly PPARγ-like protein, resulting in adipogenic trans-differentiation of PPFP-expressing thyroid cancer cells (53). We also found that NKX2-1 physically interacts with PPFP and inhibits PPFP/pioglitazone-mediated adipogenic trans-differentiation (54). These data led us to test whether NKX family members may play a role in normal adipogenesis. We found that the transcriptional repressor NKX1-2 promotes the differentiation of preadipocytes into adipocytes, at least in part by repressing the expression of the negative adipogenic regulator COUP-TF II (55,56). In addition, not only does NKX1-2 promote the adipogenic differentiation of ST2 cells, a bone marrow-derived mesenchymal precursor cell line, it also inhibits the differentiation of those cells into osteoblasts. Overall, our data suggest a novel role for NKX1-2 in adipogenesis and possibly in bone homeostasis.

Results
The homeodomain transcription factor NKX2-1/TTF-1 inhibits adipogenesis of 3T3-L1 cells
We recently found that thyroid cancer cells expressing the PAX8-PPARγ fusion oncogene trans-differentiate into adipocyte-like cells in the presence of the PPARγ agonist ligand pioglitazone, but that this trans-differentiation is inhibited by the homeodomain TF NKX2-1/TTF-1 (54). This led us to hypothesize that NKX family members may play a role in normal adipogenesis. To begin to test this hypothesis, we stably overexpressed NKX2-1 in
3T3-L1 preadipocytes and found that this inhibits differentiation to mature adipocytes, as indicated by reduced formation of lipid droplets and decreased expression of markers of mature adipocytes including PPARγ, C/EBPα and FABP4 (Figure S1). However, we found that, prior to and throughout differentiation, endogenous NKX2-1 is expressed at negligible levels in 3T3-L1 cells (Figure 1), calling into question the physiological relevance of the overexpression data. This led us to test whether other NKX family members may play a role in adipogenesis.

NKX1-2 is induced during adipocyte differentiation

The endogenous expression of all fourteen NKX family members was evaluated by reverse transcription-quantitative PCR (RT-qPCR) during 3T3-L1 preadipocyte differentiation. We found that most Nkx genes, including Nkx2-1, are expressed at very low levels throughout differentiation. However, the related family member Nkx1-2 is induced during adipocyte differentiation at both the mRNA and protein levels (Figures 1A, 1B).

NKX1-2 knockdown inhibits adipocyte differentiation

We next evaluated the effect of NKX1-2 depletion on adipogenesis. Two independent shRNAs targeting different regions of Nkx1-2 (Figure 2A) were used to knock down endogenous Nkx1-2 at both the protein and RNA levels in 3T3-L1 preadipocytes (Figure 2, C and D). Importantly, knockdown of endogenous NKX1-2 almost completely blocked adipocyte differentiation as indicated by decreased Oil Red O (ORO) staining of neutral lipid (Figure 2B) and reduced protein and/or RNA expression of adipocyte markers PPARγ, C/EBPα, FABP4, and adiponectin (Figure 2, C and D, and Figure S2, A and B). Furthermore, knockdown of endogenous NKX1-2 using the same shRNAs also inhibited the differentiation of cultured murine ear mesenchymal stem cells (EMSCs) into mature adipocytes, as demonstrated by reduced ORO staining (Figure 3A), and reduced expression of PPARγ, C/EBPα and FABP4 (Figure 3B).

NKX1-2 overexpression promotes differentiation of adipocyte precursor ST2 cells

We next asked whether NKX1-2 overexpression could promote adipogenesis. Interestingly, overexpression of NKX1-2 in 3T3-L1 preadipocytes (pMSCV-Nkx1-2) inhibited their proliferation compared to controls (pMSCV-EV) (data not shown); thus, we were unable to study their ability to differentiate. In contrast, overexpression of NKX1-2 did not impair the growth rate of ST2 mesenchymal precursor cells (data not shown). Importantly, overexpression of NKX1-2 in ST2 cells (Figure 4A) promoted their differentiation into adipocytes, as evidenced by increases in ORO staining (Figure 4B) and the mRNA expression of the adipocyte markers PPARγ, C/EBPα, FABP4, adiponectin, resistin and hormone sensitive lipase (HSL) (Figure 4C). Overexpressing NKX1-2 in ST2 cells significantly increased the RNA expression of PPARγ and C/EBPα even at Day 0 before hormone inductions. Overexpression of NKX1-2 also increased the protein expression of PPARγ, FABP4 and the p42 isoform of C/EBPα, but not the p30 isoform (Figure 4D). The p42 isoform of C/EBPα has been shown to be sufficient to trigger the differentiation program of 3T3-L1 preadipocytes (57,58). Overall, these data support the hypothesis that NKX1-2 is a novel proadipogenic TF that upregulates the expression of the adipocyte master TFs PPARγ and C/EBPα and their downstream targets FABP4, adiponectin, resistin and HSL.

NKX1-2 promotes adipocyte differentiation by inhibiting COUP-TF II expression, and the homeodomain (HD) of NKX1-2 is required for this inhibition

The orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II (COUP-TF II; Nr2f2) is expressed in adipose tissue in vivo and declines during differentiation (56). Two key studies revealed that COUP-TF II is an endogenous antiadipogenic factor that acts downstream of hedgehog signaling by association with GATA2 to repress C/EBPα (56), and/or downstream of Wnt/β-catenin signaling by recruitment of the SMRT corepressor complex to the PPARγ gene (55). Given that overexpression of NKX1-2 up-regulates the expression of PPARγ and C/EBPα, and that NKX1-2 is a transcriptional repressor (40), we tested whether the NKX1-2 proadipogenic effect is mediated by inhibition of...
COUP-TF II expression. Indeed, overexpressing NKX1-2 inhibited the mRNA and protein expression of COUP-TF II during ST2 cell adipogenic differentiation (Figure 5A). Conversely, knockdown of endogenous NKX1-2 in 3T3-L1 preadipocytes increased the expression of COUP-TF II during adipogenesis (Figure 5B). These results suggest that NKX1-2 promotes adipocyte differentiation at least in part by inhibiting the expression of the antiadipogenic factor COUP-TF II.

To further test this hypothesis, we knocked down endogenous COUP-TF II in shControl or shNkx1-2 3T3-L1 preadipocytes. As expected, in shControl cells (shControl 1), knockdown of COUP-TF II promoted adipocyte differentiation as shown by increased ORO staining (Figure 5C, top panels) and increased expression of PPARγ, FABP4 and C/EBPα at the protein and mRNA levels (Figure 5D & 5E, lanes 2 vs. 1). Importantly, in shNkx1-2 cells, knockdown of COUP-TF II partially reversed the repression of adipocyte differentiation caused by NKX1-2 knockdown, as indicated by increased ORO staining (Figure 5C, bottom panels) and increased expression of PPARγ, FABP4 and C/EBPα (Figure 5D & 5E, lanes 4 vs. 3). This supports the hypothesis that the adipogenic action of NKX1-2 is mediated by regulation of COUP-TF II expression. The fact that shCOUP-TF II only partially reversed shNkx1-2-mediated repression of adipocyte differentiation could reflect the fact that COUP-TF II knockdown was incomplete, or could indicate that additional mechanisms also contribute to the action of NKX1-2.

NKX1-2 is a member of the homeodomain (HD)-containing family of TFs. In the majority of cases, the DNA-binding specificity of HD-containing proteins resides exclusively within the HD itself (59), although in some cases, other domains may cooperate with the HD (60,61). Therefore, we hypothesized that the HD of NKX1-2 plays an important role in its regulation of adipogenesis. To test this hypothesis, we expressed an HD-deleted mutant of NKX1-2 from the retroviral vector pMSCV (pMSCV-Nkx1-2HDD) and transduced it in parallel with the empty vector (pMSCV-EV) and intact NKX1-2 (pMSCV-Nkx1-2) into ST2 cells (Figure 6, A and B). As expected, overexpression of full length NKX1-2 significantly increased ST2 cell differentiation into mature adipocytes as indicated by increased ORO staining (Figure 6C), and increased expressions of PPARγ, C/EBPα and FABP4 at the RNA and protein levels (Figure 6, D and E). In contrast, HD-deleted NKX1-2 (NKX1-2HDD) was unable to increase ST2 cell adipogenic differentiation. Strikingly, NKX1-2HDD also no longer inhibited the expression of the antiadipogenic factor COUP-TF II (Figure 6, D and E). Interestingly, NKX1-2 overexpression also inhibited the expression of Runx2, the master regulator of osteogenesis (62,63), at Day 2 of ST2 adipocyte differentiation, while NKX1-2HDD had no effect on Runx2 expression (Figure 6D). These findings suggest that NKX1-2 may inhibit the differentiation of ST2 cells into osteoblasts, in addition to promoting their differentiation into adipocytes.

Stable NKX1-2 overexpression inhibits ST2 cell osteoblastogenesis

Mesenchymal stem cells (MSCs) give rise to numerous cell types including adipocytes and osteoblasts, and the mouse bone marrow-derived ST2 mesenchymal stromal cell line also can be differentiated into either of these cell types (64,65). Since overexpression of NKX1-2 inhibited expression of Runx2, the master regulator of osteogenesis, at Day 2 of ST2 cell differentiation into adipocytes (Figure 6D), we tested whether NKX1-2 also inhibits ST2 cell osteoblastogenesis. Thus, we analyzed the effect of stable overexpression of NKX1-2 when ST2 cells were induced to osteoblastogenic differentiation. Overexpression of NKX1-2 inhibited ST2 cell differentiation into osteoblasts, as evidenced by decreased staining for matrix mineralization with Alizarin red (Figure 7A), and decreased expression of the osteoblast markers Osterix (Osx), alkaline phosphatase (Alpl) and osteocalcin (Ocn) (Figure 7B). In addition, there was a trend toward reduced expression of tyrosine-rich amelogenin peptide (Trap) and receptor activator of nuclear factor kappa B ligand (Rankl). In contrast, the expression of Twist1 and Runx2 was unchanged. The lack of a decrease in Runx2 could reflect the fact that these analyses were performed at the end of osteoblastic differentiation (day 18), by which time Runx2 expression has naturally declined. However, in additional experiments, we found that NKX1-2 overexpression also did not affect Runx2 expression.
expression at days 6 and 10 of differentiation (data not shown). Overall, these results indicate that Nkx1-2 regulates the bipotential ST2 cell toward an adipocyte cell fate and away from an osteoblast cell fate. However, the mechanism by which osteoblastogenesis is inhibited is unknown.

Activation of the canonical Wnt pathway does not induce Nkx1-2 mRNA expression

Expression of Nkx1-2 mRNA is induced in P19 mouse embryonal carcinoma cells by inhibitors of glycogen synthase kinase 3 (GSK3) (40). Since GSK3 inhibitors activate canonical Wnt signaling, this provides evidence that, in P19 cells, Wnt induces Nkx1-2 mRNA. However, this induction could be a GSK3 inhibitor effect independent of Wnt, or could be specific to P19 cells. Since canonical Wnt signaling inhibits adipogenesis (66) but Nkx1-2 is pro-adipogenic, Wnt induction of Nkx1-2 mRNA would seem counter-intuitive in adipogenic model systems. To evaluate whether the canonical Wnt pathway induces Nkx1-2 mRNA expression in a preadipocyte cell model, we treated primary mesenchymal stem cells isolated from mouse ears with recombinant mouse Wnt3a (Figure 8). Expression of Axin2, a known canonical Wnt target, was induced ~100-fold at 4 hours, whereas Nkx1-2 expression remained unchanged. At 24 hours of Wnt3a treatment, Axin2 expression returned to baseline and Nkx1-2 mRNA levels were slightly repressed. These data indicate that canonical Wnt signaling does not induce Nkx1-2 expression in EMSCs. Although the mechanism of the slight repression of Nkx1-2 expression with 24 hours of exposure to Wnt3a is unknown and may be indirect, this repression is consistent with the fact that Wnt3a is antiadipogenic and Nkx1-2 is proadipogenic.

Discussion

Adipogenic differentiation of 3T3-L1 preadipocytes is sequentially controlled by two waves of transcriptional networks (67), with crosstalk between TFs and activating histone marks (8). Upon exposure to an adipogenic cocktail, the first wave of TFs includes C/EBPα/δ, glucocorticoid receptor (GR) and STAT5A. These factors then activate a second wave of TFs, including PPARγ and C/EBPα that play the most prominent roles in terminal adipocyte differentiation. However, additional TFs are involved, and it is likely that others have yet to be discovered. In the present study, we found that Nkx1-2 is induced during 3T3-L1 adipogenesis, whereas other NKX family members are not induced (Figure 1). Nkx1-2 has not been associated previously with adipose biology. Importantly, depletion of Nkx1-2 by shRNAs in 3T3-L1 preadipocytes and mouse EMSCs inhibits their differentiation into mature adipocytes, as assessed both by decreased neutral lipid accumulation and decreased expression of mature adipocyte marker genes (Figures 2 and 3). Reciprocally, ectopic expression of NKX1-2 in ST2 mesenchymal precursor cells promotes their adipogenic differentiation, again assessed both by lipid accumulation and marker gene expression (Figure 4). These effects require that the NKX1-2 homeodomain (DNA binding domain) be intact (Figure 6), suggesting that NKX1-2 acts via direct interaction with its target DNA. Interestingly, ectopic expression of NKX1-2 upregulates expression of the p42 isoform of C/EBPα protein but decreases the p30 isoform (Figure 4 and 6). These isoforms derive from alternative translation start sites (58,68), suggesting that NKX1-2 may regulate alternative translation to favor the p42 isoform (in addition to inducing expression of the C/EBPα mRNA). Previous reports showed that p42 C/EBPα but not p30 has antimitotic activity and that p42 is sufficient to trigger the differentiation program of 3T3-L1 preadipocytes (57,58). Therefore, our data suggest that selective induction of the p42 C/EBPα isoform by NKX1-2 may be an important component of its proadipogenic action. However, depletion of NKX1-2 by shRNAs in 3T3-L1 preadipocytes decreases the expression of both the p42 and p30 isoforms of C/EBPα (Figures 2 and S2), suggesting that the ability of NKX1-2 to regulate the alternative translation of C/EBPα may be dose- or cell type-dependent.

Since PPARγ and C/EBPα are master proadipogenic TFs (9,67,69-74), regulation of their expression is a potentially powerful mechanism to regulate adipocyte differentiation. As such, the antiadipogenic effect of COUP-TF II has been shown to be either downstream of Wnt/β-catenin via recruitment of the SMRT corepressor complex to the Pparg gene (55), or downstream of hedgehog signaling by association with GATA2 to repress the
Our data indicate that NKX1-2, which itself is a transcriptional repressor (40), negatively regulates the expression of COUP-TF II (Figure 5), suggesting that the proadipogenic action of NKX1-2 is mediated at least in part by this mechanism. Interestingly, overexpression of NKX1-2 in ST2 cells only represses COUP-TF II expression after addition of the differentiation cocktail; it does not affect the basal level of COUP-TF II at Day 0 (Figures 5 and 6). However, overexpression of NKX1-2 does cause a small increase in the basal levels of PPARγ and C/EBPα at Day 0 before addition of the differentiation cocktail, suggesting that the mechanisms by which NKX1-2 upregulates PPARγ and C/EBPα at Day 0 and during the differentiation may differ.

Bone marrow mesenchymal stromal cells can differentiate into adipocytes or osteoblasts, and over time, excess differentiation toward adipocytes can lead to osteoporosis (75,76). ST2 cells, which are a murine bone marrow-derived mesenchymal stromal cell line, also can differentiate along adipocyte or osteoblast lineages when cultured with appropriate cocktails (64,65). Our data indicate that, in addition to enhancing ST2 cell differentiation in response to an adipogenic cocktail, NKX1-2 inhibits ST2 cell differentiation in response to an osteoblastogenic cocktail (Figure 7). This suggests that NKX2-1 may play a role in the cell fate determination of bone marrow mesenchymal stromal cells and hence may play a role in the development of osteoporosis.

The molecular mechanisms underlying how NKX1-2 regulates differentiation toward adipocytes and away from osteoblasts remain to be fully defined. Figure 9 presents a model based upon the current data, taking into account that NKX1-2 is a direct transcriptional repressor (40) and that the regulatory effects described here are lost upon deletion of the homeodomain. In this model, NKX1-2 is proadipogenic because it represses expression of COUP-TF II, which otherwise represses PPARγ and C/EBPα. The model shows that other, currently unknown mechanisms, also may contribute to the proadipogenic effect. We initially hypothesized that NKX1-2 is antiosteoblastic due to repression of Runx2, a critical proosteoblastic factor. However, we found no evidence for NKX1-2-mediated repression of Runx2 during osteoblastogenic differentiation. Therefore, the model shows this mechanism as being unknown. In addition to exploring this model in depth, future studies should address the expression and role of NKX1-2 in vivo, both in normal human physiology and in pathological states such as osteoporosis.

Experimental procedures

Cell culture, staining and reagents

Mouse 3T3-L1 preadipocytes and human embryonic kidney 293T cells were maintained in Dulbecco’s modified Eagle’s medium supplemented with 10% calf serum and penicillin-streptomycin at 37°C in 10% CO2. Mouse marrow-derived ST2 cells were incubated at 37°C in 5% CO2 in α-minimal essential medium supplemented with 10% FBS and penicillin-streptomycin. Induction of 3T3-L1 or ST2 cell differentiation was achieved by treatment of 2 day post-confluent cells (Day 0) in media supplemented with 10% FBS and a hormone cocktail containing 3-isobutyl-1-methylxanthine (0.5 mM), dexamethasone (1 μM), and insulin (0.167 μM), denoted MDI. On Day 2, the cells were treated again with 0.167 μM insulin, and subsequently were refed with growth media containing 10% FBS every 2 days. In some studies, pioglitazone or rosiglitazone (50 mM in dimethylsulfoxide) was added to the hormone cocktail to achieve a final media concentration of 5 μM (MDIP or MDIR). Ear mesenchymal stem cells (EMSCs), isolated from C57BL/6J mice as previously described (77,78), were maintained in 5% CO2 and DMEM/F12 (1:1) media supplemented with 15% FBS and 10 ng/ml recombinant bFGF (PeproTech). To induce adipocyte differentiation, the media supplements were changed to 15% FBS and MDI without bFGF. Lipid accumulation in adipocytes was visualized by staining with ORO. Briefly, differentiated adipocytes were washed with phosphate buffered saline (PBS) and fixed with 10% formaldehyde in PBS for 4 min. After two washes with water, cells were stained for 1-2 hrs with ORO working solution (0.3% (wt/vol) in 60% isopropanol). To induce osteoblastogenesis, ST2 cells were grown to confluence and fed with osteogenic medium (ST2 medium supplemented with 10 mM β-glycerophosphate, 25 μg/mL ascorbic acid-2-phosphate and 3 μM CHIR99021) (Stemgent) from Day 0 to Day 6 of differentiation. For Days 7-18 of differentiation, ST2 cells were cultured in the osteogenic medium in the absence of CHIR99021 (79), as described previously (80).
Cells were fed with fresh osteogenic medium every 2 days thereafter. The degree of mineralization in osteoblasts was determined with 2% Alizarin Red staining at Day 18 post-differentiation, as described previously (80). The stain was aspirated and cells were washed at least twice with water and photographed.

To evaluate whether the Wnt pathway induces NKX1-2 expression, confluent EMSCs were treated with 10 ng/ml recombinant mouse Wnt3a (R&D Systems, Minneapolis, MN) for 0, 4 or 24 hrs. After the respective treatment period, cells were lysed in 1 ml RNA Stat-60 (Tel Test, Alvin, TX) for RNA extraction and downstream qPCR analysis.

Antibodies against the following proteins were obtained as indicated: PPARγ (H-100, sc-7196), C/EBPα (14AA, sc-61), GAPDH (6C5, sc-32233) and NKX2-1/TTF-1 (H190, sc-13040) from Santa Cruz Biotechnology; FABP4 (Cat# MAB1443) from R&D Systems, Inc.; NKX1-2 (ab105940) from Abcam; β-actin (Cat# 4967), COUP-TF II (Cat# 6434) and HA-Tag (C29F4, Cat# 3724) from Cell Signaling Technology.

Plasmids, transfection, retroviral infection and reporter gene assays

The retroviral expression vector pMSCV-HA-TTF-1 (denoted as pMSCV-TTF-1) was described previously (54). The mouse NKX1-2 expression vector in pEF/nuc/myc (pEF-Nkx1-2-Myc) was kindly provided by Y. Marikawa (University of Hawaii, Honolulu, Hawaii). To create the retroviral expression vector pMSCV-Nkx1-2-Myc, the PCR product of Nkx1-2 cDNA with EcoRI and BglII overhangs was purified and ligated to pMSCV (80) that had been digested with EcoRI and BglII. To construct pMSCV-Nkx1-2 with its homeodomain (HD) deleted (pMSCV-Nkx1-2HDD), inverse PCR was used to delete Nkx1-2 amino acids 131-218. For retroviral infection, 293T cells were transfected by calcium phosphate coprecipitation with pMSCV empty vector (pMSCV-EV), pMSCV-TTF-1, pMSCV-Nkx1-2 or pMSCV-Nkx1-2HDD retroviral expression vectors and viral packing vectors as described previously (81). The virus-containing media were collected and applied to sub-confluent 3T3-L1 or ST2 cells followed by 2 μg/ml puromycin selection 72 hrs post infection.

shRNA knockdown of NKX1-2 and COUP-TF II

Knockdown of NKX1-2 in mouse 3T3-L1 cells and EMSCs was performed by infection with a lentivirus expressing either of two shRNAs targeting exon1 or 2 of Nkx1-2, or an shControl. Two different Mission Lentivirus-based plasmids of shRNAs (clone numbers: TRCN00000084835 and TRCN00000084836) against mouse Nkx1-2 and the shControl vector TRC2 pLKO.5-puro non-mammalian shRNA (SHC202) were obtained from Sigma-Aldrich. 293T cells were cotransfected with the shRNA and packaging plasmids psPAX2 and pMD2 by the calcium phosphate method to produce the lentivirus as described previously (81). To knock down COUP-TF II in shControl (shControl 1) or shNkx1-2 3T3-L1 preadipocytes, shControl 2 (Non Mammalian shRNA in pLKO.1-CMV-neo) or shCOUP-TF II (TRCN0000026167 in pLKO.1-CMV-neo) were obtained from Sigma-Aldrich, and were cotransfected with packaging plasmids in 293T cells as described above, and the resulting lentivirus was used to infect shControl (shControl 1) and shNkx1-2 3T3-L1 preadipocytes, respectively.

Cell lysis and immunoblotting

Cells were lysed in buffer containing 40 mM HEPES (pH 8.0), 120 mM sodium chloride, 10 mM sodium pyrophosphate, 10 mM sodium glycerophosphate, 1 mM EDTA, 50 mM sodium fluoride, 0.5 mM sodium orthovanadate, 1% Triton X-100 and protease inhibitor cocktail tablets (Cat# 11836170001, Roche). Cell lysates were gently resuspended and incubated at 4 °C with gentle rocking for 40 min to 1 h, followed by microcentrifugation for 10 min at 4 °C. The supernatants were transferred to new tubes and protein concentrations were determined. Proteins were separated by SDS-PAGE and transferred onto polyvinylidene difluoride membranes, and immunoblotting was performed using the antibodies described above. The primary and secondary antibodies were diluted with Signal enhancer HIKAR Solution 1 and Solution 2, respectively, as described previously (54). Detection by enhanced chemiluminescence was with a SuperSignal West Dura kit (Thermo Fisher Scientific) and a Bio-Rad Fluor-S Max Multi-Imager.

RNA isolation and RT-qPCR
Total RNA was isolated with an RNeasy Mini Kit (Qiagen, Cat# 74104) according to the manufacturer’s instructions. Four μg of total RNA were reverse transcribed in 20 μl total volume using SuperScript III First Strand Synthesis System (Cat# 18080051, Thermo Scientific) and real-time qPCR was performed on the cDNA from 30 ng RNA on a StepOnePlus Real-Time PCR System (Applied Biosystems) as described previously (81). Primer sequences used for qPCR are provided in Table S1.

Statistical analysis
Results are presented as the mean±SD. When comparing two groups, significance was determined using Student’s t test. When multiple experimental groups were compared to a single control group, an analysis of variance (ANOVA) was followed by Dunnett’s test. Significance is indicated as *p<0.05, **p<0.01 and ***p<0.001.
Acknowledgments: The authors thank Hiroyuki Mori for helping isolate EMSCs.

Conflict of interest: The authors declare that they have no conflicts of interest with the contents of this article.
References

1. Bornfeldt, K. E., and Tabas, I. (2011) Insulin resistance, hyperglycemia, and atherosclerosis. *Cell Metab* 14, 575-585
2. Cristancho, A. G., and Lazar, M. A. (2011) Forming functional fat: a growing understanding of adipocyte differentiation. *Nat Rev Mol Cell Biol* 12, 722-734
3. Rosen, E. D., and MacDougald, O. A. (2006) Adipocyte differentiation from the inside out. *Nat Rev Mol Cell Biol* 7, 885-896
4. Harms, M., and Seale, P. (2013) Brown and beige fat: development, function and therapeutic potential. *Nat Med* 19, 1252-1263
5. Green, H., and Kehinde, O. (1975) An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. *Cell* 5, 19-27
6. Green, H., and Meuth, M. (1974) An established pre-adipose cell line and its differentiation in culture. *Cell* 3, 127-133
7. Lefterova, M. I., and Lazar, M. A. (2009) New developments in adipogenesis. *Trends Endocrinol Metab* 20, 107-114
8. Siersbaek, R., Nielsen, R., and Mandrup, S. (2012) Transcriptional networks and chromatin remodeling controlling adipogenesis. *Trends Endocrinol Metab* 23, 56-64
9. Farmer, S. R. (2006) Transcriptional control of adipocyte formation. *Cell Metab* 4, 263-273
10. Li, D., Yea, S., Li, S., Chen, Z., Narla, G., Banck, M., Laborda, J., Tan, S., Friedman, J. M., Friedman, S. L., and Walsh, M. J. (2005) Kruppel-like factor-6 promotes preadipocyte differentiation through histone deacetylase 3-dependent repression of DLK1. *J Biol Chem* 280, 26941-26952
11. Oishi, Y., Manabe, I., Tobe, K., Tsushima, K., Shindo, T., Fujiu, K., Nishimura, G., Maemura, K., Yamachi, T., Kubota, N., Suzuki, R., Kitamura, T., Akira, S., Kadowaki, T., and Nagai, R. (2005) Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. *Cell Metab* 1, 27-39
12. Floyd, Z. E., and Stephens, J. M. (2003) STAT5A promotes adipogenesis in nonprecursor cells and associates with the glucocorticoid receptor during adipocyte differentiation. *Diabetes* 52, 308-314
13. Nanbu-Wakao, R., Morikawa, Y., Matsumura, I., Masuho, Y., Muramatsu, M. A., Senba, E., and Wakao, H. (2002) Stimulation of 3T3-L1 adipogenesis by signal transducer and activator of transcription 5. *Mol Endocrinol* 16, 1565-1576
14. Monteiro, M. C., Sanyal, M., Cleary, M. L., Sengenes, C., Bouloumie, A., Dani, C., and Billon, N. (2011) PBX1: a novel stage-specific regulator of adipocyte development. *Stem Cells* 29, 1837-1848
15. Chen, Z., Torrens, J. I., Anand, A., Spiegelman, B. M., and Friedman, J. M. (2005) Krox20 stimulates adipogenesis via C/EBPbeta-dependent and -independent mechanisms. *Cell Metab* 1, 93-106
16. Distel, R. J., Ro, H. S., Rosen, B. S., Groves, D. L., and Spiegelman, B. M. (1987) Nucleoprotein complexes that regulate gene expression in adipocyte differentiation: direct participation of c-fos. *Cell* 49, 835-844
17. White, U. A., and Stephens, J. M. (2010) Transcriptional factors that promote formation of white adipose tissue. *Mol Cell Endocrinol* 318, 10-14
18. Maekawa, T., Jin, W., and Ishii, S. (2010) The role of ATF-2 family transcription factors in adipocyte differentiation: antiobesity effects of p38 inhibitors. *Mol Cell Biol* 30, 613-625
19. Tong, Q., Dalgin, G., Xu, H., Ting, C. N., Leiden, J. M., and Hotamisligil, G. S. (2000) Function of GATA transcription factors in preadipocyte-adipocyte transition. *Science* 290, 134-138
20. Tong, Q., Tsai, J., Tan, G., Dalgin, G., and Hotamisligil, G. S. (2005) Interaction between GATA and the C/EBP family of transcription factors is critical in GATA-mediated suppression of adipocyte differentiation. *Mol Cell Biol* 25, 706-715
NKX1-2 regulates adipogenesis

21. Guermah, M., Ge, K., Chiang, C. M., and Roeder, R. G. (2003) The TBN protein, which is essential for early embryonic mouse development, is an inducible TAFII implicated in adipogenesis. *Mol Cell* **12**, 991-1001

22. Ge, K., Cho, Y. W., Guo, H., Hong, T. B., Guermah, M., Ito, M., Yu, H., Kalkum, M., and Roeder, R. G. (2008) Alternative mechanisms by which mediator subunit MED1/TRAP220 regulates peroxisome proliferator-activated receptor gamma-stimulated adipogenesis and target gene expression. *Mol Cell Biol* **28**, 1081-1091

23. Grontved, L., Madsen, M. S., Boergesen, M., Roeder, R. G., and Mandrup, S. (2010) MED14 tethers mediator to the N-terminal domain of peroxisome proliferator-activated receptor gamma and is required for full transcriptional activity and adipogenesis. *Mol Cell Biol* **30**, 2155-2169

24. Wang, W., Huang, L., Huang, Y., Yin, J. W., Berk, A. J., Friedman, J. M., and Wang, G. (2009) Mediator MED23 links insulin signaling to the adipogenesis transcription cascade. *Dev Cell* **16**, 764-771

25. Lefterova, M. I., Steger, D. J., Zhuo, D., Qatanani, M., Mullican, S. E., Tuteja, G., Manduchi, E., Grant, G. R., and Lazar, M. A. (2010) Cell-specific determinants of peroxisome proliferator-activated receptor gamma function in adipocytes and macrophages. *Mol Cell Biol* **30**, 2078-2089

30. Siersbaek, R., Nielsen, R., John, S., Sung, M. H., Baek, S., Hager, G. L., and Mandrup, S. (2011) Extensive chromatin remodelling and establishment of transcription factor 'hotspots' during early adipogenesis. *EMBO J* **30**, 1459-1472

31. Siersbaek, R., Nielsen, R., and Mandrup, S. (2010) PPARgamma in adipocyte differentiation and metabolism--novel insights from genome-wide studies. *FEBS Lett* **584**, 3242-3249

32. Wakabayashi, K., Okamura, M., Tsutsumi, S., Nishikawa, N. S., Tanaka, T., Sakakibara, I., Kitakami, J., Ihara, S., Hashimoto, Y., Hamakubo, T., Kodama, T., Aburatani, H., and Sakai, J. (2009) The peroxisome proliferator-activated receptor gamma(retinoid X receptor alpha heterodimer targets the histone modification enzyme PR-Set7/Setd8 gene and regulates adipogenesis through a positive feedback loop. *Mol Cell Biol* **29**, 3544-3555

35. Muhr, J., Andersson, E., Persson, M., Jessell, T. M., and Ericson, J. (2001) Groucho-mediated transcriptional repression establishes progenitor cell pattern and neuronal fate in the ventral neural tube. *Cell* **104**, 861-873
36. Papizan, J. B., Singer, R. A., Tschen, S. I., Dhawan, S., Friel, J. M., Hipkens, S. B., Magnuson, M. A., Bhushan, A., and Sussel, L. (2011) Nkx2.2 repressor complex regulates islet beta-cell specification and prevents beta-to-alpha-cell reprogramming. *Genes Dev* **25**, 2291-2305.

37. Thangapazham, R., Saenz, F., Katta, S., Mohamed, A. A., Tan, S. H., Petrovics, G., Srivastava, S., and Dobi, A. (2014) Loss of the Nkx3.1 tumorsuppressor promotes the TMPRSS2-ERG fusion gene expression in prostate cancer. *BMC Cancer* **14**, 16.

38. Cunningham, T. J., Colas, A., and Duester, G. (2016) Early molecular events during retinoic acid induced differentiation of neuromesodermal progenitors. *Biol Open* **5**, 1821-1833.

39. Rodrigo Albors, A., Halley, P. A., and Storey, K. G. (2018) Lineage tracing of axial progenitors using Nkx1-2CreER(T2) mice defines their trunk and tail contributions. *Development* **145**.

40. Tamashiro, D. A., Alarcon, V. B., and Marikawa, Y. (2012) Nkx1-2 is a transcriptional repressor and is essential for the activation of Brachyury in P19 mouse embryonal carcinoma cell. *Development* **139**, 1699-1710.

41. Simon, R., Britsch, S., and Bergemann, A. (2011) Ablation of Sax2 gene expression prevents diet-induced obesity. *FEBS J* **278**, 371-382.

42. Fagman, H., and Nilsson, M. (2011) Morphogenetics of early thyroid development. *J Mol Endocrinol* **46**, R33-42.

43. Hadrys, T., Braun, T., Rinkwitz-Brandt, S., Arnold, H. H., and Bober, E. (1998) Nkx5-1 controls semicircular canal formation in the mouse inner ear. *Development* **125**, 33-39.

44. Taylor, B. L., Liu, F. F., and Sander, M. (2013) Nkx6.1 is essential for maintaining the functional state of pancreatic beta cells. *Cell Rep* **4**, 1262-1275.

45. Chelban, V., Patel, N., Vandrovcova, J., Zanetti, M. N., Lynch, D. S., Ryten, M., Botia, J. A., Bello, O., Tribollet, E., Efthymiou, S., Davagnanam, I., Group, S. S., Bashiri, F. A., Wood, N. W., Rothman, J. E., Alkuraya, F. S., and Houlden, H. (2017) Mutations in NKX6-2 Cause Progressive Spastic Ataxia and Hypomyelination. *Am J Hum Genet* **100**, 969-977.

46. Kimura, S., Hara, Y., Pineau, T., Fernandez-Salgues, P., Fox, C. H., Ward, J. M., and Gonzalez, F. J. (1996) The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. *Genes Dev* **10**, 60-69.

47. Yu, J., and Koenig, R. J. (2018) Thyroid-Specific PPARgamma Deletion Is Benign in the Mouse. *Endocrinology* **159**, 1463-1468.

48. Kroll, T. G., Sarraf, P., Pecciarini, L., Chen, C. J., Mueller, E., Spiegelman, B. M., and Fletcher, J. A. (2000) PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. *Science* **289**, 1357-1360.

49. Dobson, M. E., Diallo-Krou, E., Grachchouk, V., Yu, J., Colby, L. A., Wilkinson, J. E., Giordano, T. J., and Koenig, R. J. (2011) Pioglitazone induces a proadipogenic antitumor response in mice with PAX8-PPARgamma fusion protein thyroid carcinoma. *Endocrinology* **152**, 4455-4465.
54. Xu, B., O'Donnell, M., O'Donnell, J., Yu, J., Zhang, Y., Sartor, M. A., and Koenig, R. J. (2016) Adipogenic Differentiation of Thyroid Cancer Cells Through the Pax8-PPARgamma Fusion Protein Is Regulated by Thyroid Transcription Factor 1 (TTF-1). *J Biol Chem* **291**, 19274-19286

55. Okamura, M., Kudo, H., Wakabayashi, K., Tanaka, T., Nonaka, A., Uchida, A., Tsutsumi, S., Sakakibara, I., Naito, M., Osborne, T. F., Hamakubo, T., Ito, S., Aburatani, H., Yanagisawa, M., Kodama, T., and Sakai, J. (2009) COUP-TFI acts downstream of Wnt/beta-catenin signal to silence PPARgamma gene expression and repress adipogenesis. *Proc Natl Acad Sci U S A* **106**, 5819-5824

56. Xu, Z., Yu, S., Hsu, C. H., Eguchi, J., and Rosen, E. D. (2008) The orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II is a critical regulator of adipogenesis. *Proc Natl Acad Sci U S A* **105**, 2421-2426

57. Lin, F. T., and Lane, M. D. (1994) CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3-L1 adipocyte differentiation program. *Proc Natl Acad Sci U S A* **91**, 8757-8761

58. Lin, F. T., MacDougald, O. A., Diehl, A. M., and Lane, M. D. (1993) A 30-kDa alternative translation product of the CCAAT/enhancer binding protein alpha message: transcriptional activator lacking antimitotic activity. *Proc Natl Acad Sci U S A* **90**, 9606-9610

59. Damante, G., Fabbro, D., Pellizzari, L., Civitareale, D., Guazzi, S., Polycarpou-Schwartz, M., Caucci, S., Quadrigioglio, F., Formisano, S., and Di Lauro, R. (1994) Sequence-specific DNA recognition by the thyroid transcription factor-1 homeodomain. *Nucleic Acids Res* **22**, 3075-3083

60. Sessa, G., Morelli, G., and Ruberti, I. (1993) The Athb-1 and -2 HD-Zip domains homodimerize forming complexes of different DNA binding specificities. *EMBO J* **12**, 3507-3517

61. Frey, G., Kim, S. K., and Horvitz, H. R. (1990) Novel cysteine-rich motif and homeodomain in the product of the Caenorhabditis elegans cell lineage gene lin-11. *Nature* **344**, 876-879

62. Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Bronson, R. T., Gao, Y. H., Inada, M., Sato, M., Okamoto, R., Kitamura, Y., Yoshiki, S., and Kishimoto, T. (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. *Cell* **89**, 755-764

63. Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L., and Karsenty, G. (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. *Cell* **89**, 747-754

64. Ding, J., Nagai, K., and Woo, J. T. (2003) Insulin-dependent adipogenesis in stromal ST2 cells derived from murine bone marrow. *Biosci Biotechnol Biochem* **67**, 314-321

65. Yamaguchi, A., Ishizuya, T., Kintou, N., Wada, Y., Katagiri, T., Wozney, J. M., Rosen, V., and Yoshiki, S. (1996) Effects of BMP-2, BMP-4, and BMP-6 on osteoblastic differentiation of bone marrow-derived stromal cell lines, ST2 and MC3T3-G2/PA6. *Biochem Biophys Res Commun* **220**, 366-371

66. Ross, S. E., Hemati, N., Longo, K. A., Bennett, C. N., Lucas, P. C., Erickson, R. L., and MacDougald, O. A. (2000) Inhibition of adipogenesis by Wnt signaling. *Science* **289**, 950-953

67. Lefterova, M. I., Haakonsson, A. K., Lazar, M. A., and Mandrup, S. (2014) PPARgamma and the global map of adipogenesis and beyond. *Trends Endocrinol Metab* **25**, 293-302

68. Ossipow, V., Descombes, P., and Schibler, U. (1993) CCAAT/enhancer-binding protein mRNA is translated into multiple proteins with different transcription activation potentials. *Proc Natl Acad Sci U S A* **90**, 8219-8223

69. Barak, Y., Nelson, M. C., Ong, E. S., Jones, Y. Z., Ruiz-Lozano, P., Chien, K. R., Koder, A., and Evans, R. M. (1999) PPAR gamma is required for placental, cardiac, and adipose tissue development. *Mol Cell* **4**, 585-595

70. El-Jack, A. K., Hamm, J. K., Pilch, P. F., and Farmer, S. R. (1999) Reconstitution of insulin-sensitive glucose transport in fibroblasts requires expression of both PPARgamma and C/EBPalpha. *J Biol Chem* **274**, 7946-7951

71. Freytag, S. O., Paielli, D. L., and Gilbert, J. D. (1994) Ectopic expression of the CCAAT/enhancer-binding protein alpha promotes the adipogenic program in a variety of mouse fibroblastic cells. *Genes Dev* **8**, 1654-1663
NKX1-2 regulates adipogenesis

72. Rosen, E. D., Sarraf, P., Troy, A. E., Bradwin, G., Moore, K., Milstone, D. S., Spiegelman, B. M., and Mortensen, R. M. (1999) PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4, 611-617

73. Tontonoz, P., Hu, E., and Spiegelman, B. M. (1994) Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79, 1147-1156

74. Wu, Z., Rosen, E. D., Brun, R., Hauser, S., Adelmant, G., Troy, A. E., McKeon, C., Darlington, G. J., and Spiegelman, B. M. (1999) Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell 3, 151-158

75. Nuttall, M. E., and Gimble, J. M. (2004) Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications. Current opinion in pharmacology 4, 290-294

76. Pino, A. M., Rosen, C. J., and Rodriguez, J. P. (2012) In osteoporosis, differentiation of mesenchymal stem cells (MSCs) improves bone marrow adipogenesis. Biol Res 45, 279-287

77. Mori, H., Prestwich, T. C., Reid, M. A., Longo, K. A., Gerin, I., Cawthorn, W. P., Susulic, V. S., Krishnan, V., Greenfield, A., and Macdougald, O. A. (2012) Secreted frizzled-related protein 5 suppresses adipocyte mitochondrial metabolism through WNT inhibition. J Clin Invest 122, 2405-2416

78. Rim, J. S., Mynatt, R. L., and Gawronska-Kozak, B. (2005) Mesenchymal stem cells from the outer ear: a novel adult stem cell model system for the study of adipogenesis. Faseb J 19, 1205-1207

79. Bennett, C. N., Ross, S. E., Longo, K. A., Bajnok, L., Hemati, N., Johnson, K. W., Harrison, S. D., and MacDougald, O. A. (2002) Regulation of Wnt signaling during adipogenesis. J Biol Chem 277, 30998-31004

80. Kang, S., Bennett, C. N., Gerin, I., Rapp, L. A., Hankenson, K. D., and Macdougald, O. A. (2007) Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. J Biol Chem 282, 14515-14524

81. Xu, B., Gerin, I., Miao, H., Vu-Phan, D., Johnson, C. N., Xu, R., Chen, X. W., Cawthorn, W. P., Macdougald, O. A., and Koenig, R. J. (2010) Multiple Roles for the Non-Coding RNA SRA in Regulation of Adipogenesis and Insulin Sensitivity. PLoS ONE 5, e14199
Figure 1. **NKX1-2 is induced during adipocyte differentiation.** *A*, 3T3-L1 preadipocytes were induced to differentiate with MDI and total RNA was isolated at the times indicated (Day 0 is the day of addition of the hormone cocktail). RT-qPCR was then performed to measure the mRNA expression level of each Nkx family member at each time point. RNA expression was normalized to cyclophilin mRNA, and the expression is given relative to the RNA level of Nkx2-6 at Day 0 set at 1. *B*, **Upper panel,** An independent experiment to analyze Nkx1-2 expression during 3T3-L1 cell adipocyte differentiation, using the same conditions as in *A*. RNA expression was normalized to cyclophilin mRNA, and the expression is given relative to the RNA level of Nkx1-2 at Day 0 set at 1. *B*, **Lower panel,** Immunoblot for NKX1-2 and GAPDH as a loading control. *A*, and *B* upper panel: data are given as the mean ± S.D. from triplicate samples. Statistical significance was evaluated with an analysis of variance (ANOVA) followed by Dunnett’s test compared to Day 0 expression level as control for each gene: ***p<0.001. These results are representative of three independent experiments.
Figure 2. Depletion of endogenous NKX1-2 inhibits 3T3-L1 adipocyte differentiation. A, Two shRNAs targeting different regions of endogenous murine Nkx1-2 mRNA were expressed from a lentiviral vector. CDs, protein-coding sequence. B, 3T3-L1 preadipocytes were infected with lentiviruses expressing either the control shRNA (shControl) or one of two shRNAs directed against mouse Nkx1-2 (shNkx1-2-1 or shNkx1-2-2). Preadipocytes were induced to differentiate with MDI. During the time course of differentiation indicated, cells were stained with Oil Red O (ORO) to assess neutral lipid accumulation. Day 0 is the day of addition of the hormone cocktail. All panels are the same magnification; a 100 µm scale bar is shown in the lower right panel. C, 3T3-L1 preadipocytes expressing either shControl or shNkx1-2-2 were induced to differentiate as described in B. Cells were harvested and immunoblots were performed at the time course indicated. Beta-actin and GAPDH served as loading controls. Results with shNkx1-2-1 are highly similar and are therefore presented in Supplemental Figure S2. D, Time course of mRNA expression for Nkx1-2, PPARγ, C/EBPα, FABP4 and adiponectin, analyzed by RT-qPCR. Data were normalized to cyclophilin and the expression of each gene at Day 0 in shControl was set at 1. Data are given as the mean ± S.D. of triplicate samples. Statistical significance versus shControl at each time point was evaluated with the Student’s t test: **p<0.01 and ***p<0.001. These results are representative of three independent experiments.
Figure 3. Depletion of endogenous NKKX1-2 inhibits cultured murine ear mesenchymal stem cell (EMSC) adipocyte differentiation. A, Cultured EMSCs expressing shControl, shNkx1-2-1 or shNkx1-2-2 were induced to differentiate into adipocytes with the hormone cocktail MDI. At the end of differentiation (Day 6), cells were stained with Oil Red O (ORO) to assess neutral lipid accumulation. All micrographs are the same magnification; a 100 µm scale bar is shown in the lower right panel. B, Immunoblots for NKKX1-2 protein and the mature adipocyte marker proteins PPARγ, C/EBPα or FABP4 were performed on lysates harvested at Day 0 before differentiation and Day 6 at the end of differentiation. Beta-actin served as a loading control. These results are representative of three independent experiments.
Figure 4. Ectopic expression of NKX1-2 promotes adipocyte differentiation of ST2 cells. A, Left panel, Immunoblot for NKX1-2 was performed to assess protein expression in either empty vector control (pMSCV-EV) or NKX1-2 overexpressing undifferentiated ST2 cells (pMSCV-Nkx1-2). N. S., a non-specific band. Right panel, RT-qPCR analysis was performed to assess Nkx1-2 mRNA expression in pMSCV-EV or pMSCV-Nkx1-2 undifferentiated ST2 cells. Expression is normalized to cyclophilin, with expression in the empty vector cells set at 1. Data are presented as the mean ± S.D. of triplicate samples. Statistical significance versus empty vector was evaluated with the Student’s t test: ***p<0.001. B, pMSCV-EV or pMSCV-Nkx1-2 ST2 cells were induced to differentiate to adipocytes with the hormone cocktail MDI+Rosi. Cells at the indicated time points after addition of the hormone cocktail were stained with Oil Red O to assess neutral lipid accumulation. All panels are the same magnification; a 100 µm scale bar is shown in the lower right panel. C, ST2 cells expressing pMSCV-EV or pMSCV-Nkx1-2 were induced to differentiate to adipocytes as in B, and RNA was harvested at the indicated time points. The expression of PPARγ, C/EBPα, Fabp4, Adiponectin, Resistin and Hormone sensitive lipase (HSL) was analyzed at the mRNA level by RT-qPCR. Data were normalized to cyclophilin and expression of each gene at Day 0 in pMSCV-EV was set to 1; note that adiponectin expression is presented on a Log scale. Data are presented as the mean ± S.D. of triplicate samples. Statistical significance versus empty vector was evaluated at each time point with the Student’s t test: **p<0.01 and ***p<0.001. These results are representative of three independent experiments. D, Immunoblots for adipocyte marker proteins PPARγ, C/EBPα and FABP4 were performed at the time points indicated in pMSCV-EV and pMSCV-Nkx1-2 ST2 cells. Beta-actin served as a loading control. N.S., non-specific band.
Figure 5. NKX1-2 inhibits COUP-TF II expression during adipocyte differentiation of ST2 cells.

A. Upper panel, RT-qPCR was performed to examine endogenous COUP-TF II mRNA expression in pMSCV-EV and pMSCV-Nkx1-2 ST2 cells during adipocyte differentiation following addition of the hormone cocktail MDI+Rosi at Day 0. Data were normalized to cyclophilin and expression of COUP-TF II at Day 0 in pMSCV-EV was set to 1. Data are given as the mean ± S.D. of triplicate samples. Statistical significance versus empty vector was evaluated at each time point with the Student’s t test: **p<0.01 and ***p<0.001. The results are representative of three independent experiments. A. Lower panel, Immunoblot was performed for COUP-TF II protein from cell lysates harvested as described in the upper panel. Beta-actin served as a loading control.

B. Upper panel, RT-qPCR was performed to examine endogenous COUP-TF II mRNA expression in shControl and shNkx1-2 3T3-L1 cells during adipocyte differentiation after addition of the hormone cocktail MDI. Data were normalized to cyclophilin and expression of COUP-TF II at Day 0 in shControl was set to 1. Data are given as the mean ± S.D. of triplicate samples. Statistical significance versus empty vector was evaluated at each time point with the Student’s t test: **p<0.01 and ***p<0.001. The results are representative of three independent experiments. B, lower panel, Immunoblot was performed for COUP-TF II protein from cell lysates harvested as described in the upper panel. Beta-actin served as a loading control.

C-E, as indicated in Figure 2, shControl (here defined as shControl 1) and shNkx1-2 3T3-L1 preadipocytes were further infected with either shControl (defined as shControl 2) or shCOUP-TF II expression vectors, followed by adipocyte differentiation induced by MDI (as described in Figure 2) up to Day 8. C, Cells were stained with Oil Red O (ORO) to assess neutral lipid accumulation. All panels are the same magnification; a 100 µm scale bar is shown in the lower right panel. D, Upper panel RT-qPCR was performed to examine endogenous COUP-TF II mRNA expression; Lower panel, immunoblots were performed using the antibodies indicated. E, RT-qPCR was performed to examine adipocyte gene expression. For D and E, data were normalized to cyclophilin and expression of COUP-TF II, PPARγ, FABP4 or C/EBPα p30 in double shControls was set to 1. Data are given as the mean ± S.D. of triplicate samples. Statistical significance versus empty vector was evaluated at each time point with the Student’s t test: **p<0.01 and ***p<0.001. The results are representative of three independent experiments.
Figure 6. The DNA binding homeodomain (HD) of Nkx1-2 is required to promote adipocyte differentiation.

A, Schematic presentation of the full length Nkx1-2 and its HD deletion mutant Nkx1-2HDD.

B, Immunoblot using Nkx1-2 antibody to confirm the overexpression of pMSCV-Nkx1-2 full length protein and pMSCV-Nkx1-2HDD protein. N.S., non-specific band served as a loading control.

C, pMSCV-EV, pMSCV-Nkx1-2 or pMSCV-Nkx1-2HDD ST2 cells were induced to differentiate to adipocytes by the hormone cocktail MDI+Rosi. Cells were stained with Oil Red O to assess neutral lipid accumulation at the time points indicated (hormone cocktail was added at Day 0). All panels are the same magnification; a 100 µm scale bar is shown in the lower right panel.

D, During adipocyte differentiation of pMSCV-EV, pMSCV-Nkx1-2 or pMSCV-Nkx1-2HDD ST2 cells with MDI+Rosi, RNA was harvested at the time points indicated and the mRNA expression of PPARγ, C/EBPα, Fabp4, COUP-TF II and Runx2 was analyzed by RT-qPCR. Data were normalized to cyclophilin and expression of each gene at Day 0 in pMSCV-EV was set to 1; note that Fabp4 expression is on a Log scale. Data are given as the mean ± S.D. of triplicate samples. Statistical significance was evaluated with an analysis of variance (ANOVA) followed by Dunnett’s test compared to expression level of empty vector (EV) as control at each time point: **p<0.01 and ***p<0.001. The results are representative of three independent experiments.

E, Immunoblots for adipocyte marker proteins PPARγ, C/EBPα and FABP4, as well as COUP-TF II, were performed on lysates harvested at the indicated time points of differentiation with MDI+Rosi. Beta-actin served as a loading controls.
Figure 7. Stable NKX1-2 overexpression inhibits ST2 cell osteoblastogenesis. ST2 cells overexpressing NKX1-2 or empty vector control ST2 cells were differentiated for 18 days to promote osteoblastogenesis. A, Matrix mineralization was stained using Alizarin Red. B, mRNA expression of osteogenic genes osterix, alkaline phosphatase (Alpl), osteocalcin (Ocn), tyrosine-rich amelogenin peptide (TRAP), and receptor activator of nuclear factor-kappaB ligand (Rankl), were analyzed by RT-qPCR. Transcripts were normalized to the geometric mean of TATA-binding protein (TBP), hypoxanthine-guanine phosphoribosyltransferase (HPRT), ribosomal protein L32 (RPL32), and 18S rRNA (r18S), and are presented as mean ± SD from 6 individual wells from 1 differentiation experiment. Two additional differentiation experiments demonstrated similar results in osteoblast marker expression and Alizarin Red staining. Statistical analysis was performed using a Student’s t-test. *p<0.05, **p<0.01, and ***p<0.001.
Figure 8. Activation of the canonical Wnt pathway does not induce Nkx1-2 mRNA expression. Confluent EMSCs were treated with 10 ng/ml recombinant mouse Wnt3a for 0, 4 or 24 hours before harvest and RNA isolation (n=6 wells/group). mRNA expression of Axin2, a known canonical Wnt target, and Nkx1-2 were evaluated by qPCR. Data were normalized to cyclophilin and the expression of each gene at 0 hours of Wnt3a treatment was set at 1. Data are given as the mean ± S.D. Statistical significance was evaluated with an analysis of variance (ANOVA) followed by Dunnett’s test compared to expression level at 0 hours of Wnt3a treatment: *p<0.05 and ***p<0.001.
Figure 9. Model of NKX1-2 regulation of adipogenic and osteoblastogenic differentiation. NKX1-2 binds to target DNA via its homeodomain and functions as a transcriptional repressor. In a precursor cell (not shown), to promote adipogenesis it represses expression of COUP-TF II, which would otherwise repress the expression of the key proadipogenic transcription factors PPARγ and C/EBPα. Other mechanisms also may be involved, as indicated by the dashed arrow. The target of NKX1-2 that leads to repression of osteoblastogenesis is unknown, signified by a question mark. The adipocyte schematic shows stored lipid (yellow) and an eccentric nucleus (black). The osteoblast schematic shows a centrally located nucleus (black).
The transcription factor NKX1-2 promotes adipogenesis and may contribute to a balance between adipocyte and osteoblast differentiation
Noah Chen, Rebecca L. Schill, Michael O'Donnell, Kevin Xu, Devika P. Bagchi, Ormond A. MacDougald, Ronald J. Koenig and Bin Xu

J. Biol. Chem. published online October 15, 2019

Access the most updated version of this article at doi: 10.1074/jbc.RA119.007967

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts