Freshwater fish diversity and its conservation status in different water bodies of Nepal

Kumar Khatri¹-²*, Bibhuti Ranjan Jha¹, Smriti Gurung¹, and Udhab Raj Khadka³

¹ Department of Environmental Sciences and Engineering, Kathmandu University, Dhulikhel, Nepal
² Mahendra Ratna Campus, Tribhuvan University, Kathmandu Nepal
³ Central Department of Environmental Science, Tribhuvan University, Kirtipur, Nepal

Abstract:

This review describes the current status of freshwater fish diversity, their IUCN categories and threats to fish fauna in Nepal. The freshwater systems of the country are known to harbor over 220 fish species, thereby indicating a rich ichthyofaunal diversity. However, this number varies from author to author. Cyprinidae is the most common and dominant taxon. A total of 15 endemic and 15 exotic fish species have been reported. A total of 34 fish species have been listed under the IUCN Red List threatened categories. Major threats to fish include damming and pollution. Fish diversity studies have mainly focused on inventories only. Studies focusing on river longitudinal aspects, the inclusion of spatio-temporal aspects, and rigorous taxonomic studies combined with genetic studies are crucial to develop strategic conservation measures of fish fauna in Nepal.

Keywords: Cyprinidae, fish diversity, lakes, Nepal, river

Introduction

Fishes are one of the most important and diverse groups of vertebrates, with an estimated 34,300 species (Froese & Pauly, 2020), and are directly related to human well-being (Leveque et al., 2008). An estimated 3000 species are found in Asia (Lundberg et al., 2000), with Carps (Cypriniformes) and Catfishes (Siluriformes) representing the major freshwater fish taxa from South Asia (Berra, 2007; Nelson et al. 2016). However, the knowledge of fish faunal diversity in tropical Asia, including Nepal, is still in its primal phase, where survey works are still fragmentary and sporadic, with many species yet to be discovered or to be described (Leveque et al., 2008).

Nepal is one of the richest countries in terms of freshwater resources with altitudinal variation ranging from 50 m elevation to the world’s highest peaks exceeding 8000 meters. There are as many as 6000 rivers and rivulets in Nepal. About 70% of the country is drained by four major river systems, all originating from the higher Himalayas greater than 5000 m asl (meter above sea level), with some of their tributaries entering from Tibet as well (Bricker et al., 2014; Bhandari et al., 2018). These are the Saptaposhi in the eastern part, the Saptapandali (Narayan) in the central, the Karnali in the western part and the Mahakali in the far-western part of the country. Besides these, many medium and small-sized rivers originate from the Midhills (1200-3000 m asl), Mahabharat range (3000 to 5000 m asl), and the Churia range (900-1200 m asl) (WECS, 2011; Bricker et al., 2014; Bhandari et al., 2018). Freshwater habitats - natural and manmade - in the country covers an estimated area of about 826,818 ha (GoN/NPC, 2019; Table 1).

Along with freshwater resources (WECS, 2011), the country’s geographical position linking the eastern and western Himalaya combined with varied topographical features with different climatic and ecological zones support rich fish diversity (Shrestha, 2000; HMGN/MFSC, 2002). Despite being rich in water resources, the knowledge of fish diversity in Nepal is still very inadequate and unorganized. Most of the studies have focused on inventory only on selected stretches of rivers and tributaries; and some lentic systems such as lakes, ponds, and pools and irrigation canals in the country. There are even more limited studies on fishes from marshy lands (Ghus in Nepali) in Nepal (Jha & Shrestha, 2000). The lack of systematic studies and information on the ichthyofauna in the country is a big obstacle for exploring the fish variety and strategizing any means of conservation. In addition, the provision for deposition of voucher specimens and museum specimens are still lacking which further pose obstacle in conducting sound taxonomic studies. Genetic and molecular studies, which have been proven to be effective in resolving taxonomic resolution (Zhang & Hanner, 2012), are also lacking in the country. Therefore, the main objectives of this review are to generate comprehensive information on fish diversity, their present conservation status; threats; and to identify the knowledge gap in fish diversity studies in Nepal. This will contribute to strategizing effective methods for their conservation.

* Corresponding author: khatriku.kk@gmail.com

We refer to https://doi.org/10.3126/njes.v8i1.39442 for more information.
exploration, and exploitation in the future. Extensive literature review available from Nepal in the form of published (articles and books) and unpublished (reports and thesis) works from 1981 have been performed, and information has been compiled and analyzed. The IUCN (International Union for Conservation of Nature and Natural Resources) conservation status of reported fish species was prepared.

Table 1 Freshwater types, respective surface area and percentage coverage in Nepal.

S.N.	Resources	Area (ha)	% coverage
1	Rivers	39500	47.77
2	Lakes	5000	0.6
3	Reservoirs	1500	1.38
4	Ponds	11396	1.4
5	Marginal swamps	12500	1.51
6	Irrigated paddy fields	398000	48.14
7	Irrigation canals	3160	0.38
8	Highway side ditches	262	0.03
	Total	**826818**	**100**

Source: Directorate of Livestock and Fisheries Development (2073/74 B.S.)

Fish studies in Nepal from past to present: A brief account

Fish studies in Nepal started as early as 1800s (Hamilton, 1822), and a number of contributions have been made by scholars in the field of Ichthyology since then (Jha, 2006). However, most of these studies have focused on fish inventory (Edds, 1993; Shrestha et al., 2009; Jha et al., 2015; Shrestha, 2016). The first-ever report of fish of Nepal was recorded in the eighteenth century. Colonel Kirkpatrick is considered as the first person to report fish from Nepal in 1793 during his political mission (Rajbanshi, 2012). However, Hamilton (1822) is considered as the first person to provide authentic information on fishes of Nepal when he described 269 species of fish species in his work entitled, “An account of the fishes found in the River Ganges and its branches”. Day (1878-1889) mentioned several freshwater fishes of Nepal in his work “Fishes of India, Burma and Ceylon”. The early 1900s saw the works of Boulenger (1907) and Regan (1911), who reported 7 species and 5 species of fish, respectively from Nepal. Hora (1920-1940), in the series of the Journal of Bombay Natural History Society, reported 22 species from Nepal, including Neolissochilus hegamonlepis and Tor putitora. He also described the distribution of Tor putitora all along the Himalayas. Menon (1949-1962) reported a distributional list of 69 known species of fishes from the defined drainage system in the Himalayas and from Koshi drainage. Taft (1955) prepared a checklist of 94 species of fishes representing 13 Families from Kathmandu, Trisuli, Simara and Biratnagar during his fish survey. Swan in 1954 collected 25 fish species during the California Himalayan Expedition to Makalu. De Witt (1960) reported 102 fish species belonging to 21 Families.

It was only during the late 1960s, an article entitled “Freshwater fishes and Fisheries of Nepal” was published by Nepalese authors (Majupuria & Shrestha, 1968); and since the 1970s, information on the identification and systematics of freshwater fishes have been published sporadically. Jiwan Shrestha is considered as the native pioneer Ichthyologist with her first publication in 1981 of “Fishes of Nepal” with a description of 120 species of freshwater fishes belonging to 10 Orders, 26 Families, and 63 Genera. Other works on Ichthyology include those of Shrestha (2008) who reported 11 Orders, 35 Families, and 98 Genera, whereas Edds and Ng (2007) reported 10 species from different water bodies. Sharma (2008) reported 200 fish species belonging to 11 Orders, 36 Families and 114 Genera. Similarly, Rajbanshi (2012) reported 230 fish species belonging to 11 Orders, 32 Families and 99 Genera. These studies have mainly focused on generating an inventory of freshwater fishes. Moreover, these studies have not considered the seasonal variation in fish diversity. Temporal variation in fish diversity was studied by Jha (2006) in Aandhi, Arung, Bagmati, Jhikhu, Karra, East Rapti, Seti and Narayani rivers. Jha et al. (2015, 2018) also studied temporal variation in some glacial-fed and rain-fed tributaries of the Tamor River and the Kamala River, respectively, in eastern Nepal. The total number of fish species observed from different lotic and lentic systems, and the most dominant taxon observed based on these available literatures are given in Tables 2 and 3. The largest fish found in Nepal is Bagarius yarrelli (Sykes, 1839) measuring 2 m in length, weighing up to 250 kg, while the smallest is Danio rerio (Hamilton, 1822) measuring 26 mm in length, weighing just a few grams (Shrestha, 2002; Rajbanshi, 2002). Shrestha (1994) reported Tor putitora (Hamilton, 1822) as the largest fish weighing up to 45 kg.
Table 2 Different fish taxa in different river systems of Nepal.

Name of River	Total Species recorded	Fish Taxa	Dominant Taxa	References	
Koshi River System					
Koshi River	34	2 Orders, 6 Families, 21 Genera	Cyprinidae	Shrestha, 1999	
Upper Sunkoshi River	29	4 Orders, 9 Families, 17 Genera	Cyprinidae	Ranjit, 2002	
Tamor River	30	2 Orders, 6 Families, 15 Genera	Cyprinidae	Shrestha et al., 2009	
Koshi Tappu Wildlife Reserve	63	6 Orders, 19 Families, 46 Genera	Cyprinidae	Limbu & Subba, 2011	
Melamchi River	11	3 Orders, 6 Families, 10 Genera	Cyprinidae	Mishra & Baniya, 2016	
Triyuga River	48	6 Orders, 18 Families, 37 Genera	Cyprinidae	Shrestha, 2016	
Roshi Khola	5	2 Orders, 3 Families, 3 Genera	Cyprinidae	Bhusal & Chitrakar, 2017	
Tamor River	13	2 Orders, 4 Families, 9 Genera	Cyprinidae	Jha et al., 2018	
Sunkoshi River	27	4 Orders, 6 Families, 20 Genera	Cyprinidae	Joshi, 1988	
Koshi River	69	9 Orders, 22 Families, 43 Genera	Cyprinidae	Sapkota, 1992	
Indrawati River	26	5 Orders, 9 Families, 20 Genera	Cyprinidae	Manandhar, 1994	
Bhotekoshi and Sunkoshi	16	2 Orders, 3 Families, 11 Genera	Cyprinidae	Bajracharya, 2001	
Jhikhu Khola	12	3 Orders, 4 Families, 7 Genera	Cyprinidae	Jha, 2006	
Sunkoshi River	36	4 Orders, 10 Families, 27 Genera	Cyprinidae	Mal, 2008	
Koshi River, KTWR	61	7 Orders, 23 Families, 43 Genera	Cyprinidae	Saud, 2011	
Koshi River Basin	12	4 Orders, 8 Families, 10 Genera	Cyprinidae	Singh, 2017	
Gandaki River system					
Kali-Gandaki/Narayani river	111	9 Orders, 26 Families, 69 Genera	Cyprinidae	Edds, 1986a	
Chitwan National Park	113	9 Orders, 28 Families, 71 Genera	Cyprinidae	Edds, 1986a	
Kali Gandaki	35	2 Orders, 7 Families, 23 Genera	Cyprinidae	Shrestha, 1996	
Narayani River	131	10 Orders, 30 Families, 77 Genera	Cyprinidae	Smith et al., 1996	
Narayani River	68	9 Orders, 23 Families, 32 Genera	Cyprinidae	Dhital & Jha, 2002	
Marshyangdi River	26	5 Orders, 6 Families, 18 Genera	Cyprinidae	Mandal & Jha, 2013	
Narayani River	108	10 Orders, 30 Families, 69 Genera	Cyprinidae	Jha & Bhujel, 2014	
Chitwan National Park	54	6 Orders, 20 Families, 39 Genera	Cyprinidae	Rayamajhi, 2017	
Seti Gandaki River Basin	30	5 Orders, 9 Families, 23 Genera	Cyprinidae	Pokharel et al., 2018	
Chitwan District	111	10 Orders, 31 Families, 73 Genera	Cyprinidae	Jha, 2018	
Trisuli River	28	3 Orders, 5 Families, 15 Genera	Cyprinidae	Karna, 1993	
Tadi River	18	3 Orders, 4 Families, 14 Genera	Cyprinidae	Mandal, 1995	
Mardi Khola	9	3 Orders, 4 Families, 8 Genera	Cyprinidae	Adhikari, 2004	
Narayani River	32	4 Orders, 11 Families, 25 Genera	Cyprinidae	Jha, 2006	
Aandhri River	18	4 Orders, 5 Families, 13 Genera	Cyprinidae	Jha, 2006	
Arung River	27	4 Orders, 8 Families, 20 Genera	Cyprinidae	Jha, 2006	
Karra River	25	5 Orders, 9 Families, 19 Genera	Cyprinidae	Jha, 2006	
Seti River	18	3 Orders, 5 Families, 13 Genera	Cyprinidae	Jha, 2006	
East Rapti River	30	4 Orders, 11 Families, 24 Genera	Cyprinidae	Jha, 2006	
Rapti River	59	7 Orders, 20 Families, 42 Genera	Cyprinidae	Paudel, 2006	
Reu River	26	7 Orders, 13 Families, 20 Genera	Cyprinidae	Dhakal, 2015	
Narayani/Kali Gandaki River	66	5 Orders, 16 Families, 45 Genera	Cyprinidae	Gillette et al., 2016	
Karnali River System					
Karnali River	118	9 Orders, 29 Families, 72 Genera	Cyprinidae	Smith et al., 1996	
River	Orders	Families	Genera	Family	Genera
--------------------------------------	--------	----------	--------	--------	-------------
Kathmandu River	10	10	20	Cyprinidae	(Khatri et al., 2019)
Bagmati River	16	16	32	Cyprinidae	(Shrestha, 1999)
Eastern Terai	8	8	16	Cyprinidae	(Kumar et al., 2011)
Morang District	10	10	20	Cyprinidae	(Subha et al., 2017)
Singhiya River	14	14	28	Cyprinidae	(Yadav, 2017)
Tawa Khola	4	4	8	Cyprinidae	(Jha et al., 2018)
Bakraha River	2	2	4	Cyprinidae	(Limbu et al., 2018a)
Dewmai Khola	3	3	6	Cyprinidae	(Limbu et al., 2018b)
Ratuwa River	5	5	10	Cyprinidae	(Limbu & Gupta, 2019)
Ratuwa River	3	3	6	Cyprinidae	(Limbu et al., 2019a)
Eastern Nepal	10	10	20	Cyprinidae	(Limbu et al., 2019b)
Manohara River	3	3	6	Cyprinidae	(Singh, 1992)
Tinau River	4	4	8	Cyprinidae	(Sharma, 1996)
Bagmati River	1	1	2	Nemacheilida	(Jha, 2006)
Tinau River	4	4	8	Cyprinidae	(Jha, 2006)
Mahottary District	6	6	12	Cyprinidae	(Jha, 1988)
Bagi River	3	3	6	Cyprinidae	(Jha, 2001)
Babai River	6	6	12	Cyprinidae	(Singh, 2002)
Rohini Khola	4	4	8	Cyprinidae	(Kunwar, 2002)
Daram Khola	4	4	8	Cyprinidae	(Malla, 2004)
Dano River	4	4	8	Cyprinidae	(Shrestha, 2005)
Harpan Khola	5	5	10	Cyprinidae	(Prajoo, 2007)
Meki River	5	5	10	Cyprinidae	(Pokhrel, 2008)
Dhanusha District	6	6	12	Cyprinidae	(Shilpi, 2010)
West Rapti	4	4	8	Cyprinidae	(Pokhrel, 2011)
Sharada River	3	3	6	Cyprinidae	(K.C., 2015)
Bagmati River	6	6	12	Cyprinidae	(Yadav, 2017)
Rapti River	4	4	8	Cyprinidae	(Oli, 2017)
Babai River and its tributaries	5	5	10	Cyprinidae	(Khati et al., 2019)
Table 3 Fish taxa in different Lentic systems.

Lakes/reservoirs	Total Fish Species	Fish Taxa	Dominant Taxa	Reference
Beeshazar and Associated	17	Cyprinidae	(WWF, 2006)	
Begnas Lake	25	Cyprinidae	(Husen et al., 2019)	
Begnas Lake	19	Cyprinidae	(Gurung, 1997)	
Begnas Lake	22	Cyprinidae	(Husen et al., 2016)	
Begnas Lake	20	Cyprinidae	(Husen, 2014)	
Dipang Lake	15	Cyprinidae	(Thapa, 2018)	
Ghodaghodi Lake	13	Cyprinidae	(Joshi & K.C., 2017)	
Ghodaghodi Lake	18	Cyprinidae	(Lamsal et al., 2014)	
Ghodaghodi Lake	29	Cyprinidae	(WWF, 2006)	
Jagadishpur Reservoir	25	Cyprinidae	(WWF, 2006)	
Jagadishpur Reservoir	42	Cyprinidae	(Gautam et al., 2010)	
Phewa Lake	21	Cyprinidae	(Devkota, 2011)	
Phewa Lake	19	Cyprinidae	(ELA, 2019)	
Phewa Lake	25	Cyprinidae	(Gurung et al., 2005)	
Phewa Lake	15	Cyprinidae	(Nepal et al., 2015)	
Phewa Lake	23	Cyprinidae	(Husen et al., 2016)	
Rara Lake	3	Cyprinidae	(Terashina, 1984)	
Rupa Lake	23	Cyprinidae	(Gautam et al., 2016)	
Rupa Lake	21	Cyprinidae	(Husen et al., 2016)	
Rupa Lake	13	Cyprinidae	(Husen, 2014)	
Rampur Gol	22	Cyprinidae	(Oli et al., 2013)	

Endemic fish species
The total number of endemic fish species in Nepal also differs with different authors. Shrestha reported eight endemic species in 1995 while in 1999 she reported only six endemic fish from Nepal. Rajbanshi (2002) reported seven endemic fish species from the mountainous cold waters of Nepal. However, 15 endemic fish species (Table 4) can be discerned from other literature sources (Ng & Edds, 2004, 2005; Ng, 2006; Conway & Mayden, 2008, 2010; GoN/MoFSC, 2014).

Exotic fish Species
In Nepalese freshwater bodies, several fish species have been introduced since 1956. The first exotic fish to be introduced in the country was the Common carp (*Cyprinus carpio*) (Gubbhaju, 2008). Rajbanshi (1982) reported seven exotic fish species introduced for commercial uses; Shrestha (1995) reported ten exotic fish species; GoN/MoFSC (2014) reported 12 exotic fish species whereas GoN/NPC (2019) reported eight exotic species. Compilation and analyses of these different information suggest that as of now, there are 15 exotic fish species in Nepal (Table 5).

Table 4 List of endemic freshwater fish species from Nepal.

S. No.	Fish Species	River/Location	Reference(s)
1	Batrera edizi	River Karnali	(Conway & Mayden, 2010)
2	Batrion macronotus	River Saptap Koshi	(Ng & Edds, 2004)
3	Erethistoides ascita	River Mechi, River Kankai, River Trijuga, River Koshi	(Ng & Edds, 2005a)
4	Erethistoides crassianus	River Dhungra, River Rapit, River Narayani	(Ng & Edds, 2005a)
5	Myorghalis blythii	Pharping- Kathmandu Valley	(Jayaram, 1999)
6	Pseudoecheneis crassianus	Mewa Khola (Tributary of Tamor)	(Ng & Edds, 2005b)
7	Pseudoecheneis edizi	Mahesh Khola, River Trishuli	(Ng, 2006)
8	Pseudoecheneis serracuda	River Seti, River Kali Gandaki, River Narayani, River Mahakali,	(Ng & Edds, 2005b)
Psilorhynchus nepalensis River Rapti, Seti River, Narayani River (Conway & Mayden, 2008)
Psilorhynchus pseudochenies River Dudh Koshi (Menon & Datta, 1964)
Schizothorax macropthalmus Mahendra (Rara) Lake (Terashima, 1984)
Schizothorax nepalensis Mahendra (Rara) Lake (Terashima, 1984)
Schizothorax raraensis Mahendra (Rara) Lake (Terashima, 1984)
Neungvella nepalensis Narayani River, (Shrestha, 2008)
Turcinoemacheilius himalaya Indrawati, Koshi, Kali Gandaki and Narayani Rivers (Conway et al., 2011)

Table 5 Exotic fish species reported in Nepal.

S. No.	Scientific Name	Common/Local Name
1	Barbonymus gonionotus	Silver barb
2	Carassius carassius	Goldfish
3	Catla catla	Bhakue
4	Cirrhinus mrigala	Naini
5	Clarias garipinnus	African maghur
6	Ctenopharyngodon idella	Grass carp
7	Cyprinus carpio	Common carp
8	Hypothalamichthys molitrix	Silver carp
9	Hypothalamichthys nobilis	Bighead carp
10	Labeo rohita	Rohu
11	Oncorhynchus mykiss	Rainbow trout
12	Oreochromis mossambicus	Tilapia
13	Oreochromis niloticus	Tilapia
14	Pangasianodon hypophthalmus	Pangasia
15	Salmo trutta	Brown trout

Table 6 IUCN Category of fish species in Nepal.

S. No.	Fish Species	Common/Local Name	IUCN Red List Category
1	Cyprinus carpio	Common carp	Critically Endangered
2	Schizothorax nepalensis	Snow trout	Critically Endangered
3	Schizothorax raraensis	Rara snow	Critically Endangered
4	Glyptothorax kashmirensis	Catfish	Critically Endangered
5	Hypothalamichthys coruscans	Korhi barb	Endangered
6	Schismatorhinus nukta	Nukta	Endangered
7	Tor putitora	Golden mahseer	Endangered
8	Pangasianodon hypophthalmus	Striped catfish	Endangered
9	Anguilla bengalensis	Indian mottled eel	Near Threatened
10	Balitora brucei	Gray's stone loach	Near Threatened
11	Garra rupecola	Suker	Near Threatened
12	Hypothalamichthys molitrix	Silver carp	Near Threatened
Present conservation status of fishes of Nepal

Nepal has a legal framework for the protection of aquatic organisms in Aquatic Animal Protection Act BS 2017 (1960 AD) with an amendment in 2055 BS (1997 AD) (also known as Jalchar Samrachhyan Ain 2017 BS in Nepali), but FAO (1997) claims that the Act does not have adequate regulations to implement action to conserve fish. In general, more attention has been given to the protection of wild animals rather than fishes in Nepal by organizations like IUCN (Jnawali et al., 2011). However, Shrestha (1995) has recommended ten fish species as the most important with critical status and listed in the National Red Data Book of Nepal (Anonymous, 1995) for their legal protection. A recent report has mentioned 21 fish species belonging to 12 Genera, 37 Families and 105 Orders, including exotic species. These orders are Cypriniformes (with 111 species), Siluriformes (65 species), Perciformes (21 species), Synbranchiformes (5 species) Clupeiformes (3 species), Mugiliformes and Osteoglossiformes (2 species each), Anguilliformes, Beloniformes, Cyprinodontiformes, Salmoniformes and Tetraodontiformes (1 species each).

The lotic systems are known to harbor around 213 fish species belonging to 12 Genera, 37 Families and 105 Orders, including exotic species. These orders are Cypriniformes (50.99%), Siluriformes (29.64%), Perciformes (9.88%), Synbranchiformes (2.37%), Anguilliformes, Clupeiformes and Salmoniformes (1.19% each), Beloniformes, Cyprinodontiformes, Mugiliformes and Osteoglossiformes (0.79% each); and Tetraodontiformes (0.40%). On the other hand, three species such as Glyptothorax pectinorai (Edds, 1986) in Chitwan National Park, Labeo gardi (Singh, 2002) in the Babai River, and Nemachelius gadda (Pohkeral, 2008) in Mechi River reported during review are not listed in Froese and Pauly (2020) could be attributed to confusion with local names. The different IUCN categories of reported taxa in this review are shown in Fig. 1.

Based on all the available literature cited in this review and Froese and Pauly (2020), the freshwater system of Nepal harbors a total of 255 fish species belonging to 12 Orders, 41 Families and 124 Genera including 15 endemic and 15 exotic fish species. The 12

Order	Genus	Species	
13	Labor panguiia	Pangusia labo	Near Threatened
14	Neolissochilus becagonoldeps	Copper mahseer	Near Threatened
15	Schistura derer	Loach	Near Threatened
16	Systoma claratus	Steedman barb	Near Threatened
17	Chitala chitala	Clown knife fish	Near Threatened
18	Ctenophara nobilis	Frail gourami	Near Threatened
19	Oreochromis mossambicus	Mozambique tilapia	Near Threatened
20	Parambassis lala	Highfin glassy perchlet	Near Threatened
21	Ailia coila	Gangetic ailia	Near Threatened
22	Bagarius bagarius	Goonch	Near Threatened
23	Bagarius yarrelli	Goonch	Near Threatened
24	Ompok bimaculatus	Butter catfish	Near Threatened
25	Ompok pahda	Pabda catfish	Near Threatened
26	Ompok pabo	Pabo catfish	Near Threatened
27	Wallago attu	Wallago	Near Threatened
28	Cirrhinus cirrhosis	Mrigal carp	Vulnerable
29	Cyprinodon semiplatus	Assamese kingfish	Vulnerable
30	Nemachilus ingiisi	Loach	Vulnerable
31	Physoschistura elongate	Dwarf loach	Vulnerable
32	Schistura prashadi	Creek loach	Vulnerable
33	Schizothorax richardsonii	Snow trout	Vulnerable
34	Tor chelynotoides	Dark mahseer	Vulnerable

Sources: ADB (2018) and Froese and Pauly (2020)
Of the four major river systems, the Gandaki system has been known to harbor the highest number of species (171) and Mahakali with the lowest number of species (71). In contrast, Nepalese lakes are known to harbor 79 fish species belonging to 51 Genera, 24 Families, and 7 Orders, including 11 exotic species. These orders are Cypriniformes (with 47 species), Perciformes (13 species), Siluriformes (12 species), Synbranchiformes (4 species), Beloniformes, Osteoglossiformes and Salmoniformes (1 species each). Fig. 2 shows the number of different fish taxa observed from these river systems.

Family Cyprinidae dominates freshwater fish habitats in Nepal. Fish species diversity shows distinct elevational distribution with decreased diversity with elevation gain (Bhatt et al., 2012; Swar, 2002). The Terai region shows the highest diversity (41%), followed by the Siwaliks (39%), middle mountains (4%) and high mountains (4%) (GoN/MoFSC, 2014). The Gandaki basin is the second largest river basin in the country, where the Oriental and Palaearctic realms also interdigitate the basin. Furthermore, the Kali Gandaki drainage of the basin crosses four major mountain ranges and divides the basin into at least five ecoregions -trans-Himalaya, mountain, high hills, low hills, and mid land (Edds, 1993). These factors probably explain higher fish diversity in the Gandaki river system.

In general, freshwater fish diversity in Nepal shows a distinct altitudinal gradient in accordance with the River Continuum Concept (RCC) proposed by Vannote et al. (1980). The RCC states different physico-chemical parameters of a lotic system changes from the headwaters through the middle reaches to the mouth of a river, and lotic biotic assemblages reflect these changes. The upper reaches of glacier-fed and snow-fed rivers in the mountain regions characterized by fast-flowing water regimes and rich dissolved oxygen are dominated particularly by Schizothorax species. The mid-hills are mainly inhabited by a mixed group of fishes like Tor spp., Labeo spp. etc. In contrast, lower Terai is mainly inhabited by minnows, carps, knife fish, perches, and eels (Shrestha, 2003), which are typical warm water taxa (Hoagstrom et al., 2011). A number of studies have reported the presence of Schizothorax spp. in the Himalayan streams from India as well (Sharma & Mehta, 2010; Bhat et al., 2010). However, the presence of fish beyond the tree line in Nepal has not been reported yet. High altitude lakes and rivers are known to be naturally fishless because the elevation acts as a natural physical barrier against fish migration and colonization (Ventura et al., 2017). In Nepal, only three endemic species of Schizothorax have been reported from Lake Rara - a high mountain lake in the western region of the country (Terashima, 1984, Table 3).

Threats to fish in Nepal

Both natural and anthropogenic threats are present. Natural threats include siltation of water bodies, hydrological regimes, geological weathering, temperature, surface runoff, groundwater flow and precipitation (Khadka & Khanal, 2008). Anthropogenic threats include a range of human activities and include damming, overharvesting, illegal fishing, waste dumping, and poisoning (Gurung, 2012). The two most important anthropogenic threats in Nepalese rivers are damming (ADB, 2018) and river pollution (HMGN/MFSC, 2002). With several dams existing in different rivers and many more hydroelectricity projects in the pipeline, river damming poses serious threats to many fish species (ADB, 2018). Damming and impoundments may result in loss of migratory species and decreased diversity through the loss of hydrological connectivity and alteration of flow regimes (Amezuca et al., 2019; Benejam et al., 2010; White et al., 2011). Reduced fish diversity and abundance are attributed to the disruption of the reproductive cycles of fish species through the loss of their migratory routes, fish kill and injury by turbine blades, and increased susceptibility to parasitic infection (ADB, 2018). Climate change may further exacerbate the impacts. Fifty-nine fish species in Nepalese freshwater systems have been recognized as cold-water species (Swar, 2002). Climate change...
induced altitudinal shift towards higher elevations may jeopardize several indigenous species such as *Tor* spp., *Neolissochilus hexagonolepis*, and *Schizothorax* spp. (Gurung, 2012; Swar, 2002). A summary of different threats and their likely impacts on freshwater fishes in Nepal are shown in Table 7.

Table 7 Different threats and impacts on freshwater.

Threats	Impacts	References
Impoundment in Kulekhani Reservoir	Complete disappearance of *Garra laneta*, *Pethia ticta*, *Nemacheilus* spp., *Chauna gachua*, *Glyptosternum* spp., *Coraglanis* spp., *Schizothorax richardsonii*	(Saund & Shrestha, 2007)
River pollution in Bagmati	Fish diversity reduced from 54 to 7 species	(HMGN/MFSC, 2002)
Destructive fish catch methods	Decline in fish diversity and abundance	(Gurung, 2012)
Introduction of fish	Loss of native species through competition	(Gurung, 2012)
Climate change	An altitudinal shift towards higher elevation may occur	(Gurung, 2012)

Source: Modified from Gurung (2012) and ADB (2018).

Conclusion

This review describes the status of freshwater fish diversity in Nepalese freshwater systems. The total fish species found in Nepal varies from 220 to 255, thus differs from author to author. However, most of the literature has consistently reported the total number between 186 to 232 while a recent literature suggests a total of 252. However, this study has recorded a total of 258 species indicating a rich ichthyofauna diversity. Cyprinidae is the most common as well as the dominant taxon. Gandaki basin harbors the largest number of fish diversity. A total of 34 fish species in Nepal have been listed under IUCN Red List threatened category. Major threats to fish fauna include damming and pollution of water bodies.

Many of the fish studies have been conducted at selective stretches of the rivers, which fail to reflect the gamma diversity as a river flows through different ecological zones with variable environmental parameters. Moreover, most of these studies are one-time study, which does not reflect the seasonal variation of fish abundance and diversity. Therefore, studies focusing on longitudinal aspects encompassing different seasons are crucial to capture spatio-temporal variations. Fish assemblages, like any other biotic assemblages, are affected by a range of abiotic variables. Therefore, fish diversity studies should also consider different environmental variables.

Natural and anthropogenic stressors such as siltation, flood, habitat alterations, illegal fishing, the introduction of new species and overexploitation are known to affect fish assemblages. Therefore, the assessments of impacts of such stressors also need to be understood. The provision for deposition of voucher specimens and museum specimens still lacks with poor taxonomic studies. Moreover, till now, morphology-based identification and taxonomy are widely followed in the Nepalese context. Genetic and molecular studies have been proven to be effective in resolving not only taxonomic resolution of many taxa; such studies are also important in assessing genetic diversity. For fish taxonomic resolution and diversity assessment, eDNA (environmental DNA) has been used frequently. Therefore, considering the importance of genetic diversity as the raw materials for evolution, genetic and molecular studies should also be conducted.

The findings of this study will be useful to ichthyologists, aquatic biologists as well as managers/planners working in the field of fish diversity, freshwater conservation, and management.

References

ADB. (2018). *Impact of dams on fish in the rivers of Nepal.* doi http://dx.doi.org/10.22617/TCS189802.

Adhikari, B. (2004). *Fish diversity and fishery resources of Maridi Khola, Kaski, Nepal.* (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Amezcu, F., Rajnhojova, J., Flores-de-Santiago, F., Flores-Verdugo, F., and Amezcu-Linares, F. (2019). The effect of hydrological connectivity on fish assemblages in a floodplain system from the South-East Gulf of California, Mexico. *Frontiers in Marine Science, 6:240*. doi 10.3389/fmars.2019.00240

Anonymous. (1995). Nepal’s Flora and Fauna in the Current CITES list, 1995. Published by IUCN, Nepal, 1995.

Bajracharya, B. (2001). *Fish and fishery resources of the Bhotekoshi and Sunkoshi River.* (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Benejam, L., Angermeier, P.L., Munne, A., & Garci-Aberthou, E. (2010). Assessing effects of water abstraction on fish assemblages in Mediterranean streams. *Freshwater Biology, 55*, 628–642.

Berra, T. (2007). Freshwater fish distribution. Academic press.

Bhandari, D., Upreti, M., Ghimire, G., Kumal, B., Pokharel, L., & Khadka, P. (2018). Nepal flood 2017: Wake up call for effective preparedness and response, Rugby, U.K.: Practical Action.

Bhat, F.A., Yousuf, A.R., Balkhi, M.H., Mahdi, M.D., & Shah, F.A. (2010). Length-weight relationship and morphometric characteristics of *Schizothorax* spp. in the River Lidder of Kashmir, *Indian Journal of Fisheries, 57*(2), 73–76.
Bhatt, J.P., Manish, K., & Pandit, M.K. (2012). Elevational gradients in fish diversity in the Himalaya: water discharge is the key driver of distribution patterns. PLOS ONE 7(9), e46237. doi:10.1371/journal.pone.0046237.

Bhusal, G., & Chitrakar, P. (2017). Taxonomic investigation and fish diversity study on some hill stream fishes available in Roshi Khola, Panauti of Nepal. International Journal of Fisheries and Aquatic Studies, 5(3), 213-217.

Bist, T.B. (2014). Fish diversity of Mahakali and Chameela River junction area, far western Nepal. (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Boulyenger, G.A. (1907). Reports on a collection of Batrachia, Reptiles and fish from Nepal and the western Himalayas. Records of the Indian Museum,. 1, 14-58.

Bricker, S.H., Yadav, S.K., Macdonald, A.M., Satyal, Y., Dixit, A., & Bell, R. (2014). Groundwater resilience Nepal: Preliminary findings from a case study in the Middle Hills. British Geological Survey Open Report, OR/14/069, 67.

Chataut, M.K. (2008). Biodiversity of fish and fishery resources of Mahakali River, (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Chaudhari, B.R. (1999). Ichthyological records of the Budi River of Nepal. Calama (Ostariophysi: Psilorhynchidae) and Bihotia, a new species of hill stream loach (Ostariophysi: Psilorhinchidae) and redescription of P. balitora. Ichthyological Exploration of Freshwaters, 19(3), 215-232.

Conway, K.W., Edds, D.R., Shrestha, J., & Mayden, R.L. (2011). A new species of gravel-dwelling loach (Ostariophysi: Nemacheilidae) from the Nepalese Himalayan foothills. Journal of Fish Biology, 79, 1746-1759.

Conway, K.W., & Mayden, R.L. (2008). Description of two new species of Psilorhynchus (Ostariophysi: Psilorhynchidae) and redescription of P. balitora. Ichthyological Exploration of Freshwaters, 19(3), 215-232.

Day, F. (1886). The fishes of India - being a natural history of the fishes known to inhabit the seas and fresh water of India, Burma and Ceylon. Reprinted by Today's and Tomorrow's Book Agency, New Delhi, Vols. I & II.

Day, F. (1889). The fauna of British India including Ceylon and Burma. Vols. I & II. Taylor and Francis, London.

De Witt, H.H. (1960). A contribution to the ichthyology of Nepal. Stanford Ichthyology Bull, 7(4), 63-68.

Devkota, S. (2011). Study on the impact fisheries on Jalari community of Phewa lake region Pokhara with a note on its ethnoichthyological Knowledge. (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Dhakal, D.P. (2015). Species diversity and distribution of fish community of Ren River. (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Dhital, R.R., & Jha, D.K. (2002). Fish fauna of the Narayani River System and their impact on the fishermen community in Chitwan, Nepal. In Petr, T., & Swar, D.B. (eds.), Cold water fisheries in the trans-Himalayan countries. FAO. Fisheries Technical Paper. No. 431 Rome, FAO, pp. 116-125.

Edds, D.R. (1993). Fish assemblage structure and environmental correlates in Nepal's Gandaki River. Copeia, (1), 48-60.

Edds, D.R. (1986a). The fishes of Royal Chitwan National Park. Journal of Natural History Museum, 10(1), 1-12.

Edds, D.R. (1986b). Fisheries of Kali Gandaki/Narayani Rivers. Journal of Natural History Museum, 10(1-4), 13-22.

EIA. (2019). Environmental impact assessment (E.I.A.) of Phewa Lake Waste Water Management Project, Kaski District, Gandaki Province.

FAO. (1997). Information of fisheries management of the kingdom of Nepal. Food and Agriculture Organization of the United Nations (F.A.O.).

Froese, R., & Pauly, D. (2020). Fishbase. World Wide Web electronic publication. Retrieved October 12, 2020 from www.fishbase.se.

Gautam, D., Saund, T.B., & Shrestha, J. (2010). Fish diversity of Jagadispur Reservoir, Kapilbastu district, Nepal-a Ramsar Site. Nepal Journal of Science and Technology, 11, 229-234.

Gautam, G., Jain, R., Poudel, L., & Shrestha, M. (2016). Fish faunal diversity and species richness of tectonic Lake Rupa in the mid-hill of central Nepal. International Journal of Fisheries and Aquatic Studies, 4(3), 690-694.

Gillette, D.P., Edds, D.R., & Jha, B.R. (2016). An assessment of climate change impacts on fishes in the Gandaki River basin, central Nepal. Final Report submitted to Kathmandu University, GoN/MoFSC. (2014). Nepal biodiversity strategy and action plan 2014-2020. Government of Nepal, Ministry of Forests and Soil Conservation, Kathmandu, Nepal.

GoN/NPC. (2019). Environment statistics of Nepal 2019. Government of Nepal, National Planning Commission, Central Bureau of Statistics, Thapathali, Kathmandu, Nepal.

Gubhaju, S.R. (2008). Strategies for the conservation of fish in Nepal. In: Indigenous fish stock and livelihood, workshop. 5th June 2008, F.R.D./DoFD/NARC/NEFIS, 49-60.

Gurung, M. (1997). Study on Fish diversity and fishery resources of the Begnas Lake, Pokhara Valley. (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Gurung, T.B. (2012). Native fish conservation in Nepal: Challenges and opportunities. Nepalese Journal of Bionisciences, 2, 71-79.

Gurung, T.B., Wagle, S.W., Bista, J.D., Dhakal, R.P., Joshi, P.L., Batajoo, R., Adhikari, P., & Rai, A.K. (2005). Participatory fisheries management for livelihood improvement of fishers in Phewa Lake, Pokhara, Nepal. Himalayan Journal of Sciences, 3(5), 47-52.

Hamilton, F. (1822). An account of the fishes found in the River Ganges and its branches. Edinburgh, pp. 405.

HMGN/MFSC. (2002). Nepal Biodiversity Strategy, pp. 170.

Hoagstrom, C.W., Adams, G., Neumann, R.M., & Willis, D.W. (2011). Guide to the fishes of South Dakota. Forum Communications, pp. 70.

Hora, S.L. (1940). The game fishes of India XL. The Boker of Assamese and Katli of the Nepalese Barbus (Lissocheilus hexagonolpis) McClelland. Journal of the Bombay Natural History Society, 42, 78-88.
Husen, M.A. (2014). Impact of invasive alien fish, Nile tilapia (Oreochromis niloticus) on native fish catches of sub-tropical lakes (Phewa, Begnas and Rupa) of Pokhara valley, Nepal. In Thapa, G.J., Subedi, N., Pandey, M.R., Thapa, S.K., Chapagain, N.R., & Rana, A. (eds.), Proceedings of the International Conference on Invasive Alien Species Management, pp. 112-122.

Husen, M.A., Gurung, T.B., Nepal, A.P., Rayamajhi, A., & Chand, S. (2019). First report of two fish species: Chanda nama, and Hetropterus fossils from Begnas Lake. International Journal of Fauna and Biological Studies, 6(4), 44-49.

Husen, M.A., Sharma, S., Bista, J.D, Prasad, S., & Nepal, A. (2016). Capture fishery in relation to Nile tilapia management in the mountainous lakes of Pokhara valley, Nepal. In W.W. Taylor, D.M. Bartley, C.I. Goddard, N.J. Leonard, & R. Welcome (Eds), Freshwater, fish and the future: Proceedings of the Global Cross-sectional Conference (pp. 239-250). Food and Agriculture Organization of the United Nations, Rome; Michigan State University, East Lansing; and American Fisheries Society, Bethesda, Maryland.

Jayaram, K.C. (1999). The freshwater fishes of Indian region. Narendra Publishing House, Delhi, India.

Jha, A. (2001). Industrialization and its effects on fish diversity in Bighi River Janakpur, Zone (Nepal). (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Jha, B.R. (2006). Fish ecological studies and its application in assessing ecological integrity of rivers in Nepal. Doctoral dissertation, Kathmandu University, Dhulikhel, Nepal.

Jha, B.R., Gurung, S., Khatri, K., Gurung, A., Thapa, A., K.C., M., Gurung, B., & Acharya, S. (2018). Patterns of diversity and conservation status of freshwater fishes in the glacial fed and rain fed rivers of eastern Nepal. Environmental Biology of Fishes, 101(8), 1295-1305.

Jha, B.R., Gurung, S., Khatri, K., Gurung, B., Thapa, A., & Acharya, S. (2015). River ecological study: building the knowledge such as climate change in Nepal. Journal of Mountain Area Research, 1, 28–39.

Jha, B.S. (1988). Study on fish and fishery resources of Mahottary district, Janakpur Zone Nepal (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Jha, D.K. & Shrestha, M.K. (2000). Fish biodiversity of the wetland at IAAS, Rampur, Chitwan. Phase-I and Phase-II. IAAS Research Reports, pp. 79-91.

Jha, D.K., & Bhujiel, R.C. (2014). Fish diversity of Narayani River System in Nepal. Nepalese Journal of Aquaculture and Fisheries, 1, 94-108.

Jha, D.K. (2018). Species diversity, distribution and status of fishes in Chitwan district and adjacent areas, Nepal. Journal of Natural History Museum, 30, 85-101.

Jha, D.K., Shrestha, M.K., & Rai, S.C. (1989). Fish fauna of Narayani and Rapti systems in Chitwan, Nepal. Journal of Institute of Agriculture & Animal Science, 10, 97-107.

Jnawali, S.R., Baral, H.S., Lee, S., Acharya, K.P., Upadhyay, G.P., Pandey, M., Shrestha, R., Joshi, D., Laminchhane, B.R., Griffiths, J., Khatiwada, A.P., Subedi, N., & Amin, R. (2011). The status of Nepal mammals: the national red list series, Department of National Parks and Wildlife Conservation Kathmandu, Nepal.

Joshi, D., & K.C., B. (2017). Fish diversity of Ghodaghodi Lake in Kailali, Far-West Nepal. Journal of Institute of Science and technology, 22 (1), 120-126.

Joshi, P.L. (1988). Studies on fishery resources of Sunkoshi River with particular reference to dam and its impact on fishery. (Unpublished master thesis), Tribhuvan University, Nepal.

K.C., B. (2015). Fish diversity of Sharada River in Salyan Mid-Western Nepal. (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Karki, S.K. (2000). Fish bio-diversity and fishery resources of lower Karnali, Nepal with special reference to the Eastern Part. (Unpublished master thesis), Central Department of Zoology Tribhuvan University, Nepal.

Karna, B.K. (1993). A study on the fishery ecology of the Trishuli River. (Unpublished master thesis), Central Department of Zoology Tribhuvan University, Nepal.

Khadka, R.B. & Khanal, A.B. (2008). Environmental management plan (E.M.P.) for Melamchi water supply project. Environmental Monitoring and Assessment, 146(1-3), 225-234.

Khatri, K., Jha, B.R., Gurung, S., Khadka, U.R., Pokharel, S., Adhikari, A., & Shrestha, A.K. (2019). Fish diversity and distribution status in Bheri and Babai River, mid-western, Nepal. In Gurung, S., Sitaula, B.K., Bajracharya, R.M., Raut, N., & Dahal, B.M. (Eds.), Proceedings of International Conference on Natural Resources, Agriculture and Society in Changing Climate, pp. 206-217, Kathmandu, Nepal.

Khatri, D.S. (2010). Study on fishes of Mahakali River with reference to Hill-Stream fishes. (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Kumar, P., Barma, S.K., & Subba, B.R. (2011). A checklist of fishes of eastern Terai of Nepal Nepalese Journal of Biosciences, 1, 63-65.

Kunwar, P.S. (2002). Distributional patterns and community structure of fish and invertebrate in Rabini River, Nepal. (Unpublished master thesis), Central Department of Zoology Tribhuvan University, Nepal.

Lamsal, P., Pant, K.P., Kumar, L., & Atrey, K. (2014). Diversity, uses, and threats in the Ghodaghodi Lake complex, a Ramsar Site in western lowland Nepal. 680102, doi 10.1155/2014/680102.

Lévêque, C., Oberdorff, T., Paugy, D., Stiassny M.L.J., & Tedesco, P.A. (2008). Global diversity of fish (Pisces) in freshwater. Hydrobiologia, 595(1), 545–567.

Limbu, J.H., & Gupta, S.K. (2019). Fish diversity of Damak and lower Terai region of Ratuwa River of Jhapa district, Nepal. International Journal of Fauna and Biological Studies, 6(1), 01-04.

Limbu, J.H., Prasad, A., & Baniya, C.B. (2019a). Spatio-temporal variation of fish assemblages in Ratuwa River, Ilam, Nepal. Journal of Ecology & Natural Resources, 3(3), 000168. doi 10.23880/jenr-16000168.

Limbu, J.H., Acharya, G.S., & Shrestha, O.M. (2018b). A brief report on ichthyofaunal diversity of Dewmai Khola of Ilam district, Nepal. Journal of Natural History Museum, 30, 312-317.
Limbu, J.H., Chapagain, N., Gupta, S.K., & Sunuwar, S. (2019a). Review on fish diversity of eastern Nepal. *International Journal of Fisheries and Aquatic Studies, 7*(3), 177-181.

Limbu, K.P., & Subba, B.R. (2011). Status of key faunal species in Koshi Tappu Wildlife Reserve after Koshi flood disaster 2008. *Nepalese Journal of Biosciences, 1*, 41-54.

Limbu, J.H., Shrestha, O.M., & Prasad, A. (2018a). Ichthyofaunal diversity of Bakraba River of Morang district, Nepal. *International Journal of Fisheries and Aquatic Studies, 6*(5), 267-271.

Lundberg, J.G., Kotteleat, M., Smith, G.R., Melanie, L., Staissny, J., & Gill, A.C. (2000). So many fishes, so little time: an overview of recent ichthyological discovery in continental waters. *Annals of the Missouri botanical Garden, 87*(1), 26-62.

Majuuparia, T.C., & Shrestha, J. (1968). Fresh water fishes and fisheries. HMG/UNESCO Regional Seminar of the Ecology of Tropical Highlands, Kathmandu, Nepal, 4-7.

Mali, S.R. (2008). *Study on fish resources of Dudalghat region in reference to fishing techniques, conservation fish production and marketing.* (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Malla, P.M. (2004). *Diversity, distributional patterns and frequency occurrence of fish and invertebrate species in Daram Khola, Baglung, Nepal.* (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Manandhar, S. (1994). *A study on the effect of physico-chemical parameters on the fish fauna in the Indrawati River.* (Unpublished master thesis), Central Department of Zoology Tribhuvan University, Nepal.

Mandal, R.B., & Jha, D.K. (2013). Impacts of damming on ichthyofaunal diversity of Marshyangdi River in Lamjung district, Nepal. *Our Nature, 11*(2), 168-176.

Mandal, R.B. (1995). *Studies on biodiversity of the fishes in relation to changing habitat of the Tadi River.* (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Menon, A.G.K. (1949). Notes on fishes; XLIV - Fish from the Koshi Himalayas, Nepal. *Records of the Indian Museum, 47*, 231-237.

Menon, A.G.K. (1962). A distributional list of fishes of the Himalayas. *Journal of the Zoological Society of India, 14*(1&2), 23-32.

Menon, A.G.K., & Datta, A.K. (1964). *Psilorhynchus pseudocheneti*, a new Cyprinid fish from Nepal. *Records of the Indian Museum*, 59, 253-255.

Mishra, A.R., & Baniya, C.B. (2016). Ichthyofaunal diversity and physico-chemical factors of Melamchi River, Sindhupalchok, Nepal. *Journal of Institute of Science and technology, 21*(1), 10-18.

Nelson, J.S., Grande, T.C., & Wilson, M.V.H. (2016). *Fishes of the world.* Hoboken, New Jersey: John Wiley & Sons.

Nepal, A.P., Sharma, S., & Gurung, T.B. (2015). Fish catch seasonal variation in Phewa Lake, Nepal. *Nepalese Journal of Aquaculture and Fisheries, 2*, 27-39.

Ng, H.H., & Edds, D.R. (2004). *Batasio macronotus*, a new species of Bagrid catfish from Nepal (Teleostei: Bagridae). *Ichthyological Exploration of Freshwater, 15* (4), 295-307.

Ng, H.H., & Edds, D.R. (2005). Two new species of Erethistoides (Teleostei: Erethistidae) from Nepal. *Ichthyological Exploration of Freshwater, 16*(3), 239-248.

Ng, H.H., & Edds, D.R. (2005b). Two new species of Pseudochenis rhophilus, catfish (Teleostei: Sisoridae) from Nepal. *Zootaxa*, 1047, 1-19.

Ng, H.H. (2006). The identity of *Pseudochenis sileucta* (McClelland) with description of two new species of Rhophitic catfish (Teleostei: Sisoridae). *Zootaxa*, 1254, 45-68.

Oli, B.B., Jha, D.K., Aryal, P.C., Shrestha, M.K., Dangol, D.R., & Gautam, B. (2013). Seasonal variation in water quality and fish diversity of Rampur Grol, a wetland in Chirwan, Central Nepal. *Nepalese Journal of Biosciences, 3*, 9-17.

Oli, T.B. (2017). *Fish diversity of west Rapti River, Dang, Nepal* (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Pandey, C.B. (2002). *A study on the effect of physico-chemical parameters on the Fish Fauna in the Bheri River (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.*

Paudel, S. (2006). *Study on the fish and fishery resources of the Rapti River.* (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Pokharel, K.K., Basnet, K.B., Majuparia, T.C., & Baniya, C.B. (2018). Correlations between fish assemblage structure and environmental variables of the Seti Gandaki River Basin, Nepal. *Journal of freshwater Ecology, 33*(1), 31-43.

Pokharel, B.R. (2008). *Study of water quality, fish and fishery of Mechi River.* (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Pokharel, B.P. (2011). *Fish diversity of West Rapti River Mid – Western Nepal.* (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Poudel, L. (2008). *Study on fish and fishery resources of Mahakali River at Doulbar Chandani VDC area, far western Nepal.* (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Prajoo, N. (2007). *Study on fish diversity of Hartpan Khola and socioeconomic of the Jalari women of Phewa Lake.* (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Rajbanshi, K.G. (1982). *General bibliography of fish and fisheries of Nepal.* Royal Nepal Academy, Kathmandu, pp. 99.

Rajbanshi, K.G. (2002). Zoogeographical distribution and the status of cold water fish of Nepal. In Peter, T., & Swar, D.B. (Eds), *Cold water fishes of Trans-Himalayan countries.* F.A.O. Fisheries Technical Paper No. 431, F.A.O., Rome, Italy, pp. 214-240.

Rajbanshi, K.G. (2012). *Biodiversity and distribution of fresh water fishes of central Nepal Himalayan region.* Kathmandu: Nepal Fisheries Society, pp. 136.

Ranjit, R. (2002). The current status of capture fishery in the Upper Sunkoshi River. In Pettr, T., & Swar, D.B. (Eds.), *Cold water fisheries in the trans-Himalayan countries.* FAO. Fisheries Technical Paper. No. 431 Rome, FAO, pp. 240-249.

Rayamajhi, A. (2017) Fish assemblage structure of Chitwan National Park, its buffer and adjacent zone, central Nepal.
with notes on macro habitat. International Journal of Fisheries and Aquatic Studies, 5(5), 408-416.

Regan, C.T. (1907). Reports on a collection of Batrachia, reptiles and fish from Nepal and the western Himalayas. Records of the Indian Museum, 1, 157-158.

Sapkota, K. (1992) A study of the fishery ecology of the swamplands of Koshi River. (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Saud, S. (2011). Fish diversity and fishery resources of the Koshi River at KTIFR, Nepal. (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Saund, T.B., & Shrestha, J. (2007). Fish and benthic fauna in Kulekhani Reservoir, Makwanpur Nepal Journal of Science and Technology, 8, 63-68.

Shah, R.B. (2005). Fish diversity of Budiganga River, far-western Nepal. (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Sharma, C.M. (1996). Study on the fish biodiversity and fishery resources of the Tinau River (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Sharma, C.M. (2008). Freshwater fishes, fisheries, and habitat prospects of Nepal, Aquatic Ecosystem Health & Management, 11(3), 289-297.

Sharma, I., & Mehta, H.S. (2010). Studies on snow trout Schizothorax richardsonii (Gray) in River Beas and its tributaries (Himachal Pradesh), India. Records of the Zoological Survey of India, Occasional Paper, 323, 1-69.

Shilpi, S. (2010). Study on the fish and fishery resources in Dhanusha District. (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Shrestha, J. (1981). Fisher of Nepal. C.D.C. Tribhuvan University, Kathmandu, Nepal.

Shrestha, J. (1994). Fishes, fishing implements and methods of Nepal. Smt. M.D Gupta. Lalitpur Colony, Lashkar (Gwalior), India, pp. 150.

Shrestha, J. (1995). Enumeration of the fishes of Nepal. Publication No.10. HMG/N & Govt. of Netherlands, 417/4308, 263.

Shrestha, J. (1999). Cold water fish and fisheries in Nepal. Fisheries Technical Paper, 385, 13-40. FAO, Rome.

Shrestha, J. (2002). Taxonomic revision of cold water fishes of the United Nations, Rome, Italy. F.A.O. Fisheries Technical Paper 431.

Shrestha, J., Singh, D.M., & Saund, T.B. (2009). Fish diversity of Tamor River and its major tributaries of eastern Himalayan region of Nepal. Nepal Journal of Science and Technology, 10, 219-223.

Shrestha, J.N. (2016). Fish diversity of Triyuga River, Udayapur district, Nepal. Our Nature, 14(1), 124-134.

Shrestha, S. (2005). Study on fish diversity and fishery resources of Dano River, Rapandehi district. (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Shrestha, T.K. (2003). Conservation and management of fishes in the large Himalayan rivers of Nepal. Second International Symposium on the Management of Large Rivers for Fisheries: Sustaining Livelihoods and Biodiversity in the New Millennium. Phnom Penh, Cambodia, 2003 February 11–14. F.A.O. (of the United Nations).

Shrestha, T.K. (2000). Cold water fisheries development in Nepal. In Petr, T, & Swar, D.B. (Eds.), Cold water fisheries in trans-Himalayan countries. FAO Fisheries Technical Paper, 431, 47-58.

Shrestha, T.K. (2008). Ichthyology of Nepal. A study of fishes of the Himalayan water. Himalayan ecosphere. Kathmandu, Nepal.

Singh, N.M. (1992). Study on the physicochemical parameters in relation to fish fauna of Mandaha River, Kathmandu valley. (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Singh, P.K. (2017). Ichthyofauna and socio-economic status of Mallah Community in the Koshi River Basin, Bhardaha VDC, Saptari, Nepal (Unpublished master thesis), Tribhuvan University, Nepal.

Singh, R. (2002). Fish biodiversity and fishery resources of Babai River, Nepal. (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Smith, B.D, Bhandari, B., & Sapkota, K. (1996). Aquatic biodiversity in the Karnali and Narayani River basins- Nepal. IUCN Nepal, Kathmandu, pp. xii+59.

Subba, B.R., Pokharel, N., & Pandey, M.R. (2017). Ichthyofaunal diversity of Morang district, Nepal. Our Nature, 15 (1-2), 55-67.

Swar, D.B. (2002). The status of cold water fish and fisheries in Nepal and prospects of their utilization for poverty reduction. In Petr, T, & Swar, D.B. (Eds), Cold water fisheries in the trans-Himalayan countries. Fisheries Technical Papers No. 431, Published by FAO pp. 376.

Taft, A.C. (1955). A Survey of the fisheries of Nepal, both present and potential. Nepal American Agriculture Co-operation Service, Kathmandu, Nepal.

Talwar, P.K., & Jhingran, A.G. (1991). Inland Fishes of India and Adjacent Countries. Vol I & II. Oxford & I.B.H. Publishing Co., New Delhi, India.

Terashima, A. (1984). Three new species of the cyprinoids Genus Schizothorax from lake Rara, North Western Nepal. Japanese Journal of Ichthyology, 31(2), 122-135.

Thapa, A.B. (2005). An investigation of macro invertebrates and fish diversity in river dolphin habitat of the Karnali River. (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Thapa, B. (2018). Fish diversity of Dipang lake in the Mid-hill of Kaski district, Nepal (Unpublished master thesis), Central Department of Zoology, Tribhuvan University, Nepal.

Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R., & Cushing, C.E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37(1), 130–137.

Ventura, M., Tiberi, R., Buchaca, T., Buñay, D., Sabás, I., & Miró, A. (2017). Why should we preserve fishless high mountain Lakes? In Catalán, J., Ninot, J.M., & Aniz, M.M. (Eds), High mountain conservation in a changing world, pp. 181-205.

Wagle, S.K., & Pradhan, N. (Eds.). (2011). Proceedings of the consultative workshop on fish conservation in Nepal. Fisheries Research Division (FRD), Godavari, Lalitpur, Nepal, pp. 229.
WECS. (2011). Water and Energy Commission Secretariat. Water Resources of Nepal (GoN), pp. 67.

White, S.M., Ondrac’kova’, M., & Reichard, M. (2011). Hydrologic connectivity affects fish assemblage structure, diversity, and ecological traits in the unregulated Gambia River, West Africa. *Biotropica*, 44, 551-530.

WWF. (2006). Wetlands of Nepal, Factsheet.

Yadhav, N.S. (2017). *Fish diversity of Bagmati River, Sarlabh, Nepal*. (Unpublished master thesis), Tribhuvan University, Nepal.

Yadhav, S.N. (2017). Studies on fish diversity and need for their conservation of Singhiya River, Morang district, eastern Nepal. *Agriculture, Forestry and Fisheries*, 6(3), 78-81.

Zhang, J., & Hanner, R. (2012). Molecular approach to the identification of fish in the South China Sea. *PLoS ONE*, 7(2). doi:10.1371/journal.pone.0030621.