Supplementation with high-dose trans-resveratrol improves ultrafiltration in peritoneal dialysis patients: a prospective, randomized, double-blind study

Chong-Ting Lina, Xiao-Yan Sunb and Ai-Xia Lina

aDepartment of Hemodialysis Room, Yantaishan Hospital, Taishan Medical College, Yantai, Shandong, PR China; bDepartment of Blood Purification Centre, Yeda Hospital, Yantai, Shandong, PR China

ABSTRACT

Background Ultrafiltration (UF) failure mostly contributes to technical failure in peritoneal dialysis (PD) patients, and one of its responsible factors is peritoneal angiogenesis. Resveratrol has been proposed to have an angiogenesis-ameliorating effect on tumor patients. We hypothesize trans-resveratrol has beneficial effects on angiogenesis-related markers in PD patients.

Methods In this prospective, randomized, and double-blind trial, 72 patients were randomly assigned to 12-week treatment of low-dose or high-dose (150 or 450 mg/d) trans-resveratrol or a placebo. Visits were scheduled at 0, 4, 8, and 12 weeks after treatment. Clinical indices including 24-hour UF volume, UF rate, 24-hour urine volume, residual renal function, and dialysis adequacy (kt/v) were measured. Angiogenesis markers including vascular endothelial growth factor (VEGF), fetal liver kinase-1 (Flk-1), angiopoietin-2 (Ang-2), tyrosine kinase 2 (Tie-2), and thrombospondin-1 (Tsp-1) in peritoneal effluent were also assessed by enzyme-linked immunosorbent assay.

Results Finally, 64 out of 72 patients were analyzed, 18 in the high-dose group, 22 in the low-dose group, and 24 in the placebo group. Over the 12-week period, patients in the high-dose group [mean change from baseline (95% CI): 171.4 (141.3-201.5) (mL), $p = 0.003$ (Net UF); 11.3 (10.5-12.1) (mL/h), $p = 0.02$ (UF rate)] or the low-dose group [mean change from baseline (95% CI: 98.1 (49.5-146.7) (mL), $p = 0.007$ (Net UF); 6.5 (4.4-8.6) (mL/h), $p = 0.04$ (UF rate)] versus the placebo group had a significantly greater improvement in mean net UF volume and UF rate. The appearance rates of VEGF, Flk-1, and Ang-2 were more significantly reduced (appearance rates of Tie-2 and Tsp-1 increased) in the high-dose group versus the placebo group, but not in the low-dose group.

Conclusion Supplementation with trans-resveratrol is beneficial to improve ultrafiltration in PD patients, and high-dose supplementation may improve ultrafiltration by ameliorating angiogenesis induced by conventional lactate-buffered PD solutions.

Introduction

Peritoneal dialysis (PD) is a successful modality of renal replacement therapy, but ultrafiltration (UF) failure is common and mostly contributes to technical failure in PD patients. Peritoneal angiogenesis is one of responsible factors for UF failure. As is well-known, uratemia and bioincompatible characteristics of conventional lactate-buffered PD solutions can contribute much. Great efforts including antiangiogenesis therapy and some drugs (e.g., icodextrin and sTie-2-Fc1,2) with the anti-angiogenesis effect are used to improve UF in recent years.

Vascular endothelial growth factor (VEGF), a potent angiogenesis stimulator, has also been shown to promote endothelial cell proliferation, cell migration, and tube formation. VEGF also induces vascular permeability, and this function is mainly mediated by fetal liver kinase-1 (Flk-1) (VEGFR2). As reported, the levels of VEGF and its type 2 receptor Flk-1 increase in human peritoneal mesothelial cells (HPMCs),3 animal model,4 and clinical studies5,6 under PD. In addition, the angiopoietin/tyrosine kinase 2 (Ang/Tie-2) system also plays an important role in initiation of angiogenesis in human omental tissue microvascular endothelial cells7 or PD rats.8 Thrombospondin-1 (Tsp-1), a natural angiogenesis inhibitor, counterbalances the effects of VEGF on endothelial cells. The inhibition of antiangiogenic Tsp-1 in endothelial cells could promote angiogenesis.9 Moreover, the VEGF/Tsp-1 balance could adjust angiogenesis in the remnant kidney10 and also affect diabetic retinopathy.11 Thus, angiogenesis is controlled by a dynamic balance between vessel regression and growth, and mediated by angiogenesis activators and inhibitors.

Resveratrol, a naturally-existing polyphenol, has been proposed to have antiaging, antioxidant,
antiinflammatory, anti-carcinogenic, anti-platelet-aggregation, cardio-protective, neuro-protective, and cartilage-protective effects. Resveratrol also may affect the angiogenic pathways. These effects of resveratrol are largely mediated by the members of the sirtuin family. Previous studies find resveratrol is pro-angiogenic in the ischemic myocardium and antiangiogenic in cancers both in vitro and in vivo. Resveratrol can also attenuate tumor, metastasis, diabetic nephropathy, diabetic retinopathy, rheumatoid arthritis, and other diseases by modulating pathological angiogenesis in a sirtuin-independent pathway. Peritonea angiogenesis is also pathological. Resveratrol regulates angiogenesis by down-regulating relevant activators (e.g., VEGF, Flk-1, Ang-2) and up-regulating relevant inhibitors (e.g., Tie2, Tsp-1, Leptin, endothelin) in a dose-dependent manner in vitro and in animal experiments. Resveratrol modulates HPMCs-dependent angiogenic responses in the opposite direction via modulating the secretion of VEGF and IL-8/CXCL8. Moreover, HPMCs play an important role in peritoneal angiogenesis and fibrosis. In clinical studies, resveratrol is used orally among normal people, obese participants, and diabetes patients. However, there is no study about the use of resveratrol in the dialysis population. Luckily, resveratrol is highly-orally absorbed and well-tolerated by patients.

In this prospective, randomized, and double-blind study, we aim to evaluate whether or not trans-resveratrol has beneficial effects on UF and to investigate relevant markers of angiogenesis in PD patients.

Materials and methods

Study design

This 12-week prospective, randomized, and double-blind study was conducted at our dialysis center and approved by the local Ethics Committee (Approval No. 2014027). Written informed consent was obtained from all participants before enrollment. Participants were assigned into three groups via block randomization with a block size of six with an allocation ratio of 1:1 after the completion of baseline assessments. The allocation sequence was generated independently by the study statistician and concealed in opaque envelopes. Both investigators and participants were blind to the allocations. Block scheduling and envelope preparation were performed by a nurse not involved in the sampling and data analysis. The participants were advised on life-style modification, such as daily polyphenol intake. They were asked to abstain from consumption of trans-resveratrol-containing foods or drinks during the study.

Participants and methods

The participants were 18 years or older adults undergoing stable PD for at least three months. All participants were under continuous ambulatory PD (CAPD) with PD prescription for three exchanges a day. All participants used the same type of dialysis solution containing 1.5 mmol/L dialysate calcium, as well as constant PD prescriptions during the study period. They were randomly assigned to 12-week treatment with low-dose (150 mg) trans-resveratrol (ResVida®, DSM Nutritional Products Ltd., Kaiseraugst, Switzerland; one capsule of trans-resveratrol and two capsules of placebo) or a high dose trans-resveratrol (450 mg) (three capsules) daily, or to placebo (three capsules) as a control. The flow-chart of the study protocol is depicted in Figure 1.

The prescription of trans-resveratrol for patients undergoing dialysis was not mentioned in literatures. The dose selection in this study was based on pharmacodynamics, a pharmaceutical factory’s recommendation, and previous studies. According to pharmacodynamics, about 70% of orally-administered resveratrol (25 mg) can be rapidly (<30 min) absorbed and metabolized with a peak plasma level of metabolites ≈ 2 μM and a half-life of 9–10 h, and resveratrol is mostly metabolized in the liver. The pharmaceutical factory’s recommendation states that the safe dose is <450 mg/d. In previous studies, the dosage range for trans-resveratrol is about 10–3000 mg/d irrespective of the renal function.

In the present study, 150 and 450 mg/d trans-resveratrol were chosen as the two doses were suggested to be safe yet effective and tolerant enough. We did not find any resveratrol-related adverse events, and the patients were well-tolerated at both doses. The placebo was indistinguishable by color, form, or taste from the active drug. Trans-resveratrol and placebo were both taken at 19:00–21:00 p.m.

Inclusion and exclusion criteria

The inclusion criteria are as follows: (1) diagnosis of end-stage renal disease (ESRD); reception of current conventional maintenance PD (three exchanges a day) for more than three months; ≥ 18 years old; voluntary participation; signed consent form. The exclusion criteria are as follows: peritonitis or tunnel infection during the study period; current pregnancy or lactating mothers; severe hepatic or intestinal dysfunction; excessive alcohol or caffeine intake (>210 and 140 mL/d alcohol for men and women, respectively; >450 mg/d caffeine); uncontrolled psychiatric disease; history of trans-resveratrol allergy. The patients using the solutions including 4.25%
Dianeal, Physioneal, Icodexcin, or amino-acid-containing were also excluded.

Assessment of peritoneal transport kinetics and measurement of UF

Net UF volume (in mL) and UF rate (in mL/h) were measured at both baseline and 12 weeks after treatment. The modified peritoneal equilibration test (PET) was performed at the sitting position. In brief, the infusion of 2.0 L of 4.25% dialysis solution was considered as the “zero” dwell time. The effluent was collected at 0, 60, and 240 min, and venous blood was collected at 60 min. Then the effluent and blood samples were sent for measurements of glucose, urea, creatinine, and sodium. At the completion of the 4-h dwell, the dialysate-to-plasma ratio of creatinine (D/P4Cr) was measured, and at 1 h, the dialysate-to-plasma ratio of sodium (D/P1Na) was measured.

Net UF volume during the PET was measured. For volume determination, 1 g of fluid was considered equivalent to 1 mL of fluid. All bags were weighed by a nurse before instillation and after drainage. The UF in each dwell was assessed below. Each full solution bag was weighed both before and after instillation, while the difference between the two weights was recorded as the instillation volume. Each full drainage bag was weighed after the completion of the 4-h dwell, and the empty drainage bag was weighed after dumping the effluent. The difference between these two weights plus 150 mL of the sampling volume taken during the study was recorded as the drainage volume. UF volume was calculated as “drainage volume - instillation volume”. UF rate was also calculated as “net UF volume/actual dwell time”.

Demographic and laboratory measurements

We measured basic laboratory parameters, such as hemoglobin, serum phosphorus, and high sodium at baseline levels. Blood samples were collected on the morning of the dialysis day. Measurements were done via standard methods. **kt/v** and Body mass index \([\text{BMI} = \text{weight (kg)} / \text{height (m}^2\text{)}] \) were also calculated and recorded. Information about age, sex, and primary kidney disease for renal failure, duration of PD, and PD prescription was gathered from medical records. The history of smoking and drinking was inquired from the patients. Comorbidity was scored on the number of comorbid conditions using the comorbidity index.

Angiogenesis markers including VEGF, Flk-1, Ang-2, Tie-2, and Tsp-1 from peritoneal dialysate effluent (PDE) were analyzed by an enzyme-linked immunosorbent assay (ELISA) kit (Quantikine®; R&D Systems, Minneapolis, MN) according to the manufacturer’s directions. All PDE samples for the biomarker assessment were collected.
from the overnight PDE (from exchanges with 2 L 2.5% Dianeal dialysate) at the night preceding the PET and were stored at −70°C until analysis. For correlation and comparisons, the appearance rate of each angiogenesis marker in the dialysate was calculated as “marker concentration × drained volume/dwell time” [pg (ng)/min].

Safety assessment
Safety was assessed by a review of reported adverse events and abnormal laboratory test results.

Statistical analysis
Calculations show that a sample of 64 patients is adequate enough (α = 0.05 in a two-sided t-test) for the proposed tests. The results of UF volume and UF rate from baseline to 4, 8, and 12 weeks are plotted with two panels of mean and error bars of each variable. The results are expressed as mean ± standard deviation (SD) and p < 0.05 indicates significance. Differences in means were tested using one-way analysis of variance (ANOVA) or the Mann–Whitney test as appropriate.

Comparisons among quartiles were assessed with the χ² test. Changes from baseline to 12 weeks in the angiogenesis markers were analyzed with a linear mixed model and a spatial-power covariance structure. The non-inferiority of high-dose versus low-dose (450 vs. 150 mg/d) was assessed on basis of 95% confidence intervals (CIs) for the least-squares-means difference (LSMD) derived from a mixed-effects model. All statistical analyses were evaluated on SPSS 18.00 (IBM Corporation, Armonk, NY).

Results
Characteristics of studied patients
During the 12-week study period, 8 out of 72 patients were excluded (6 in the high-dose group, 2 in the low-dose group) because of switching to hemodialysis (n = 3), reception of kidney transplantation (1) and poor adherence (4). Basic laboratory data and sociodemographic characteristics of the entire study population are depicted in Table 1. There is no significant difference in any of the characteristics at baseline among the three groups.

Table 1. Sociodemographic and clinical data in different groups.

Characteristics	Trans-resveratrol 150 mg Daily (n = 22)	Trans-resveratrol 450 mg Daily (n = 18)	Placebo (n = 24)	p-Values
Age (Yr)	57.1 ± 9.9	55.2 ± 10.7	54.5 ± 10.6	0.18
Sex (male%)	59.1	61.1	62.5	0.97
Primary kidney disease (%)				0.99
Nephritis	59.1	61.1	66.7	
Hypertensive nephrosclerosis	4.5	0	4.2	
Diabetic nephropathy	13.6	16.7	8.3	
Polycystic kidney disease	9.1	11.1	8.3	
Other	13.7	11.1	12.5	
Diabetes mellitus (%)	9.1	11.1	8.3	0.95
Body Mass index (kg/m²)	66.7 ± 10.3	69.1 ± 11.9	65.6 ± 9.4	0.29
Duration of PD (month)	35.3 ± 22.7	38.1 ± 25.9	34.8 ± 19.2	0.35
PD prescription (three exchange %)				0.91
1.5% Dianeal	45.5	38.9	41.7	
2.5% Dianeal	54.5	61.1	58.3	
Type of fluid for overnight (2.5% Dianeal %)	68.2	72.2	70.8	0.96
Peritoneal transport type (%)				0.69
High (fast)	0	0	0	
High (average)	31.9	38.9	41.7	
Low (average)	63.6	61.1	58.3	
Low (slow)	4.5	0	0	
Drinking (%)	18.2	22.2	25.0	0.85
Drinker (%)	50.0	38.9	54.2	0.61
Residual renal function (mL/min/1.7m²)	8.7 ± 4.3	8.9 ± 5.1	7.8 ± 5.2	0.23
Total kTVcrea	1.73 ± 0.49	1.68 ± 0.52	1.71 ± 0.55	0.16
Peritoneal kTVcrea	1.64 ± 0.51	1.62 ± 0.48	1.65 ± 0.47	0.72
Mean urine volume (mL)	366.8 ± 212.3	387.1 ± 195.9	374.6 ± 203.4	0.09
Net ultrafiltration volume (mL)	415.5 ± 109.5	396.4 ± 133.6	388.7 ± 124.3	0.47
Ultrafiltration rate (mL/h)	21.7 ± 8.3	20.6 ± 9.2	20.3 ± 8.7	0.21
Mean hemoglobin (g/L)	12.4 ± 5.7	11.8 ± 2.1	12.2 ± 5.0	0.12
Mean serum phosphorus (mmol/L)	1.5 ± 0.4	1.4 ± 0.3	1.4 ± 0.2	0.17
Mean serum sodium (mmol/L)	136.5 ± 8.7	139.1 ± 4.9	139.1 ± 4.9	0.33
Comorbidity index	5.7 ± 1.3	5.9 ± 2.1	5.5 ± 1.7	0.15

Notes: Differences in proportions were tested using the Pearson Chi-square test; differences in means were tested using an one-way analysis of variance or Mann–Whitney.

n, number; PD, Peritoneal Dialysis.
Net UF volume and UF rate

After 12 weeks, the high-dose group [Mean change from baseline (95% CI): 171.4 (141.3–201.5) (mL), \(p = 0.003 \) (Net UF); 11.3 (10.5–12.1) (mL/h), \(p = 0.02 \) (UF rate)] and the low-dose group [Mean change from baseline (95% CI): 98.1 (49.5–146.7) (mL), \(p = 0.007 \) (Net UF); 6.5 (4.4–8.6) (mL/h), \(p = 0.04 \) (UF rate)] versus the placebo group show significantly larger mean net UF volume and UF rate. The high-dose versus the low-dose is associated with a more significant improvement in mean change from baseline in net UF volume both (188.3 ± 58.5 vs. 115.0 ± 108.2, \(p = 0.02 \)) and UF rate (12.2 ± 1.0 vs. 7.4 ± 4.6, \(p = 0.04 \)) (Figure 2).

Some angiogenesis and inflammatory markers

The appearance rates of VEGF, Flk-1, and Ang-2 in the dialysate are significantly lower in the high-dose group versus the placebo group, and the appearance rates of Tie-2 and Tsp-1 are increasing significantly. However, none of these influencing angiogenesis markers are significantly different between the low-dose and the placebo groups (Table 2).

The non-inferiority assessment shows a significant reduction in the appearance rates of VEGF (LSMD, -115, 95% CI, -151 to -79; \(p < 0.05 \)), Flk-1 (LSMD 1010.5, 95% CI, -1821.1 to -199.9; \(p < 0.01 \)), and Ang-2 (LSMD, -335.5, 95% CI, -381.3 to -288.7; \(p < 0.05 \)), as well as a significant increase in the appearance rates of Tie2 (LSMD, 786.6, 95% CI, 237.6 to 1335.6; \(p < 0.01 \)) and Tsp-1 (LSMD, 137.8, 95% CI, 114.6 to 161.0; \(p < 0.05 \)) in the high-dose group versus the low-dose group. On the contrary, the IL-6 appearance rates are not significantly different among the three groups (\(p > 0.05 \)).

Adverse effects

Adverse events including diarrhea, constipation, muscle cramps/pain, fatigue, headache, and memory loss were observed after the use of trans-resveratrol. Adverse events led to discontinuation of medication in the trans-resveratrol groups (because of diarrhea in two cases, muscle pain in one case, and headache in one case).

Discussion

Based on previous observations about a beneficial effect of resveratrol on anti-angiogenic responses in human peritoneal mesothelial cells (HPMCs),12 and a hypothesis that trans-resveratrol could improve ultrafiltration via the anti-angiogenesis effect in PD-treated patients, here we tested the oral supplementation with trans-resveratrol in PD patients. To the best of our knowledge, this is the first report demonstrating the effects of trans-resveratrol on UF and neoangiogenesis in PD patients with ESRD. We did find a significant difference in either net UF volume or UF rate between the groups with and without oral trans-resveratrol administration. This UF improvement induced by high-dose trans-resveratrol (450 mg) was associated with less neo-angiogenesis with an up-regulation of activators (VEGF, Flk-2, and Ang-2) and down-regulation of inhibitors (Tie-2 and Tsp-1) in the dialysate.

As is well-known, angiogenesis is regulated by numerous activators and inhibitors as well as different angiogenic factors depending on the circumstance. We find higher levels of angiogenic activators (VEGF, Flk-2, and Ang-2) and lower levels of angiogenic inhibitors (Tie-2 and Tsp-1) in the effluent of patients treated with 1.5 or 2.5% Dianeal versus 450 mg trans-resveratrol, but not between the placebo group and the low-dose group. We hypothesize that high-dose trans-resveratrol administration could have the efficacy on angiogenesis. Structure–function relationship studies show that loss of UF capacity is associated with the occurrence of angiogenesis in the peritoneum both in rat models and in long-term PD patients. For most patients, exposure to glucose and especially glucose degradation products is the driving factor of angiogenesis. Many additives and substances have been studied to counteract these alterations.

The precise mechanism explaining the inhibitory effect of trans-resveratrol on angiogenesis has not been sufficiently clarified. Among many known activators, VEGF is...
believed to be the most prevalent efficacious and long-term signal that can stimulate Flk-mediated angiogenesis in vitro and in vivo. In endothelial cells, trans-resveratrol inhibits VEGF-VEGFR2-mediated endothelial cell responses via suppressing the phosphorylation of the MAP kinase or proteinkinase C (PKC) or COX enzymes.23,24 The anti-angiogenic activity of resveratrol in human umbilical vein endothelial cells (HUVECs) may also be associated with the activation of the glycogen-synthase kinase 3b (GSK3b), which leads to the down-regulation of the b-catenin signaling pathway and eventually to the decreased production of VEGF.25 Resveratrol also has the anti-angiogenic effects by up-regulating TSP-1 expression in melanoma-endothelial cells under co-culture.26

As reported, resveratrol at the given dose of 250 mg/day has no beneficial effect on angiogenesis,19 which is not found in the low-dose group of our study. In our study, the antiangiogenesis effect was seen in the high-dose group but not in the low-dose group. We think that the high-dose is more advantageous in anti-angiogenesis than the low dose or regular dose. This view was confirmed previously19 that 0.5 or 1.0 g/d resveratrol was sufficient to exert anti-carcinogenic and anti-angiogenic effects. Apart from the above-mentioned effects, resveratrol could also improve angiogenesis by adjusting the morphology of adipose tissues. As reported, the visceral fat percentage is significantly increased with the progress of PD.27,28 Adipocytokine up-regulation is accompanied by increase of visceral fat percentage. These adipocytokines including ptn and iponectin could affect the peritoneal angiogenesis.

Here we found a significant improvement of UF in the low-dose group although the relevant angiogenesis makers were not significantly changed. We think many factors besides peritoneal angiogenesis are associated with UF.29 Inflammation is one contributor to angiogenesis and UF failure,30 while inflammation could be suppressed by resveratrol in vitro and in vivo.31–33 Besides anti-inflammation, the cardio-protective effect34 and glycemic-control effect35 both could improve UF, since glucose is an osmotic gradient and the impaired cardiac function has a negative effect on UF.

In summary, trans-resveratrol (150 and 450 mg) can safely and effectively improve UF in PD-treated patients. Besides other advantages, the high-dose (450 mg)
supplementation may improve UF by ameliorating angiogenesis induced by conventional lactate-buffered PD solutions.

The present randomized controlled study is limited by the relatively small sample size and the relatively short follow-up time (12-week). The trans-resveratrol concentration in blood or effluent samples was not measured or monitored during the whole study. Further studies with more subjects, long-term anti-angiogenic and anti-fibrotic effects of resveratrol will help to confirm the findings of this study.

Declaration of interest

The authors report no conflicts of interest. The authors alone were responsible for the content and writing of the paper.

References

1. Dai HL, Lin AW, Qian JQ, et al. [Icodextrin improve angiogenesis of peritoneal membrane in continuous ambulatory peritoneal dialysis patients]. Zhonghua Yi Xue Za Zhi. 2010;90:2843–2847.
2. Xiao J, Guo J, Liu XX, et al. Soluble Tie2 fusion protein decreases peritoneal angiogenesis in uremic rats. Mol Med Rep. 2013;8:267–271.
3. Liu J, Wu X, Liu Y, et al. High-glucose-based peritoneal dialysis solution induces the upregulation of VEGF expression in human peritoneal mesothelial cells: The role of pleiotrophin. Int J Mol Med. 2013;32:1150–1158.
4. Xiao J, Gao H, Jin Y, et al. The abnormal expressions of tristetraprolin and the VEGF family in uraemic rats with remnant kidney model: I. Potential role of vascular endothelial growth factor and thrombospondin-1. Int J Artif Organs. 2012;35:655–662.
5. Yuan J, Fang W, Lin A, Ni Z, Qian J. Angiopoietin-2/Tie2 signaling involved in TNF-α induced peritoneal angiogenesis. Int J Apher Dial. 2013;17:425–430.
6. Zhang AH, Wang G, Zhang DL, et al. Association between VEGF receptors and baseline peritoneal transport status in new peritoneal dialysis patients. Ren Fail. 2012;34:582–589.
7. Yuan J, Fang W, Lin A, Ni Z, Qian J. Angiopoietin-2/Tie2 signaling involved in TNF-α induced peritoneal angiogenesis. Int J Apher Dial. 2013;35:655–662.
8. Yuan J, Fang W, Ni Z, et al. Peritoneal morphologic changes in a peritoneal dialysis rat model correlate with angiopoietin/Tie-2. Pediatr Nephrol. 2009;24:163–170.
9. Esser JS, Rahner S, Deckler M, Bode C, Patterson C, Moser M. Fibroblast growth factor signaling pathway in endothelial cells is activated by BMPER to promote angiogenesis. Arterioscler Thromb Vasc Biol. 2015;35:358–367.
10. Kang DH, Joly AH, Oh SW, et al. Impaired angiogenesis in the remnant kidney model: I. Potential role of vascular endothelial growth factor and thrombospondin-1. J Am Soc Nephrol. 2001;12:1434–1447.
11. Sorenson CM, Wang S, Gendron R, et al. Thrombospondin-1 deficiency exacerbates the pathogenesis of diabetic retinopathy. J Diabetes Metab. 2013;Suppl 12.
12. Mikula-Pietrasik J, Kuczmańska A, Kucinska M, et al. Resveratrol and its synthetic derivatives exert opposite effects on mesothelial cell-dependent angiogenesis via modulating secretion of VEGF and IL-8/CXCL8. Angiogenesis. 2012;15:361–376.
13. Neves AR, Lucio M, Lima JL, Reis S. Resveratrol in medicinal chemistry: a critical review of its pharmacokinetics, drug-delivery, and membrane interactions. Curr Med Chem. 2012;19:1663–1681.
14. Edwards JA, Beck M, Riegger C, Bausch J. Safety of resveratrol with examples for high purity, trans-resveratrol, resVida®). Ann N Y Acad Sci. 2011;1215:131–137.
15. Goh KP, Lee HY, Lau DP, Supaat W, Chan YH, Koh AF. Effects of resveratrol in patients with type 2 diabetes mellitus on skeletal muscle SIRT1 expression and energy expenditure. Int J Sport Nutr Exerc Metab. 2014;24:2–13.
16. Bo S, Ciccone G, Castiglione A, et al. Anti-inflammatory and antioxidant effects of resveratrol in healthy smokers a randomized, double-blind, placebo-controlled, cross-over trial. Curr Med Chem. 2013;20:1323–1331.
17. Kennedy DO, Wightman EL, Reay JL, et al. Effects of resveratrol on cerebral blood flow variables and cognitive performance in humans: A double-blind, placebo-controlled, crossover investigation. Am J Clin Nutr. 2010;91:1590–1597.
18. Magyar K, Halmosi R, Palfi A, et al. Cardioprotection by resveratrol: A human clinical trial in patients with stable coronary artery disease. Clin Hemorheol Microcirc. 2012;50:179–187.
19. Gliemann L, Olesen J, Bienso RS, et al. Resveratrol modulates the angiogenic response to exercise training in skeletal muscles of aged men. Am J Physiol Heart Circ Physiol. 2014;307:H1111–H1119.
20. Konings E, Timmers S, Boekschoten MV, et al. The effects of 30 days resveratrol supplementation on adipose tissue morphology and gene expression patterns in obese men. Int J Obes (Lond). 2014;38:470–473.
21. Cho KH, Do JY, Park JW, Yoon KW, Kim YL. The effect of low-GDP solution on ultrafiltration and solute transport in continuous ambulatory peritoneal dialysis patients. Perit Dial Int. 2013;33:382–390.
22. Kumar VA, Sidell MA, Yang WT, Jones JP. Predictors of peritonitis, hospital days, and technique survival for peritoneal dialysis patients in a managed care setting. Perit Dial Int. 2014;34:171–178.
23. Brakenhielm E, Cao R, Cao Y. Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes. Faseb J. 2001;15:1798–1800.
24. Dias PF, Berti FV, Siqueira JM Jr, Maraschin M, Gagliardi AR, Ribeiro-do-Valle RM. Trans-resveratrol inhibits early blood vessel formation (vasculogenesis) without impairment of embryonic growth. J Pharmacol Sci. 2008;107:118–127.
25. Wang H, Zhou H, Zou Y, et al. Resveratrol modulates angiogenesis through the GSK3β/β-catenin/TCF-dependent pathway in human endothelial cells. Biochem Pharmacol. 2010;80:1386–1395.
26. Trapp P, Parmakhtiar B, Papazian V, Willmott L, Fruehauf JP. Anti-angiogenic effects of resveratrol mediated by decreased VEGF and increased TSP1 expression in melanoma-endothelial cell co-culture. Angiogenesis. 2010;13:305–315.
27. Bai Z, Uyar ME, Tutal E, Guliyev O, Sezer S, Haberal M. Body composition analysis of patients on waiting list for cadaveric renal transplantation: A comparison of
hemodialysis and peritoneal dialysis patients. Transplant Proc. 2013;45:3489–3493.

28. Wang X, Axelsson J, Nordfors L, et al. Changes in fat mass after initiation of maintenance dialysis is influenced by the uncoupling protein 2 exon 8 insertion/deletion polymorphism. Nephrol Dial Transplant. 2007;22:196–202.

29. Kim YL. Update on mechanisms of ultrafiltration failure. Perit Dial Int. 2009;29 Suppl 2:S123–S127.

30. Cho JH, Hur IK, Kim CD, et al. Impact of systemic and local peritoneal inflammation on peritoneal solute transport rate in new peritoneal dialysis patients: A 1-year prospective study. Nephrol Dial Transplant. 2010;25:1964–1973.

31. Li J, Xie C, Zhuang J, et al. Resveratrol attenuates inflammation in the rat heart subjected to ischemia-reperfusion: Role of the TLR4/NF-kappaB signaling pathway. Mol Med Rep. 2015;11:1120–1126.

32. Minagawa T, Okui T, Takahashi N, et al. Resveratrol suppresses the inflammatory responses of human gingival epithelial cells in a SIRT1 independent manner. J Periodontal Res. 2015;50(5):586–593.

33. Zamora-Ros R, Urpi-Sarda M, Lamuela-Ravento’s RM, et al. High urinary levels of resveratrol metabolites are associated with a reduction in the prevalence of cardiovascular risk factors in high-risk patients. Pharmacol Res. 2012;65:615–620.

34. Bhatt JK, Thomas S, Nanjan MJ. Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus. Nutr Res. 2012;32:537–541.

35. Poulsen MM, Fjeldborg K, Ornstrup MJ, et al. Resveratrol and inflammation: Challenges in translating pre-clinical findings to improved patient outcomes. Biochim Biophys Acta. 2015;1852(6):1124–1136.