Generating stationary random graphs on \mathbb{Z} with prescribed i.i.d. degrees

Maria Deijfen * Ronald Meester †

February 2006

Abstract

Let F be a probability distribution with support on the non-negative integers. Two algorithms are described for generating a stationary random graph, with vertex set \mathbb{Z}, so that the degrees of the vertices are i.i.d. random variables with distribution F. Focus is on an algorithm where, initially, a random number of “stubs” with distribution F is attached to each vertex. Each stub is then randomly assigned a direction, left or right, and the edge configuration is obtained by pairing stubs pointing to each other, first exhausting all possible connections between nearest neighbors, then linking second nearest neighbors, and so on. Under the assumption that F has finite mean, it is shown that this algorithm leads to a well-defined configuration, but that the expected length of the shortest edge of a vertex is infinite. It is also shown that any stationary algorithm for pairing stubs with random, independent directions gives infinite mean for the total length of the edges of a given vertex. Connections to the problem of constructing finitary isomorphisms between Bernoulli shifts are discussed.

Keywords: Random graphs, degree distribution, stationary algorithm, random walk, finitary isomorphism.

AMS 2000 Subject Classification: 05C80, 60G50.

1 Introduction

Recently there has been a lot of interest in the use of random graphs as models for various types of complex networks. Several models have been formulated, aiming to capture essential features of the networks in question such as degree distribution, diameter and clustering; see for instance Dorogovtsev and Mendes (2003) and Bollobás and Riordan (2003) for surveys. As for the vertex degree, power-law distributions have been identified in many of the real-world applications, implying that the ordinary Erdős-Rényi graph, introduced in Erdős and

*Chalmers University of Technology. E-mail: mia@math.su.se
†Vrije Universiteit Amsterdam. E-mail: rmeester@cs.vu.nl
Renyi (1959) and giving Poisson distributed degrees in the limit of large graph size, is not suitable as a model. This has given rise to a number of algorithms for generating graphs with an arbitrary prescribed degree distribution. The most studied one is the so-called configuration model, where each vertex is assigned a random number of stubs which are then joined pairwise completely at random to form edges. The asymptotic behavior of this model has been studied by Molly and Reed (1995, 1998), Newman et al. (2001) and van der Hofstad et al. (2005) among others. Also, Britton et al. (2005) treats a modification of the model where multiple edges and self-loops are forbidden, giving simple graphs as a final result. A different model for generating random graph with prescribed degrees is studied by Chung and Lu (2002:1, 2).

A natural generalization of the problem of generating random graphs with prescribed degree distributions, is to consider spatial versions of the same problem, where geometric aspects play a role. More precisely, given a probability distribution F with support on the non-negative integers and a set of vertices with some kind of spatial structure, how should an edge configuration on this vertex set with degree distribution F be generated? Clearly the answer of this question depends on the nature of the spatial structure and also on desired properties of the resulting configuration.

In this paper we consider the problem of generating a stationary random graph, with vertex set \mathbb{Z}, and with degrees that are i.i.d. with distribution F. We recall that a graph on \mathbb{Z} is said to be stationary if the distribution of the edge configuration restricted to any finite subset of \mathbb{Z} is translation invariant. Hence, we are looking for a stationary algorithm to obtain edges among the vertices of \mathbb{Z} in such a way that the vertex degrees become i.i.d. random variables with distribution F. We have two suggestions of how to do this.

1.1 Stepwise pairing with random directions

Our first suggestion is the one we will spend most of the paper on. The algorithm runs as follows.

1. Attach independently a random number of stubs to each vertex according to the distribution F.
2. Randomly assign a direction, left or right, to each stub, turning it into an arrow.
3. Join arrows pointing to each other stepwise, first exhausting all possible connections between nearest neighbor vertices, then looking at second nearest neighbors, and so on, until all arrows are connected.

This model will be referred to as the Stepwise Pairing algorithm with Random Directions (SPRD). In Section 2, we show that, with probability 1, the SPRD-algorithm leads to a well-defined configuration, that is, the number of steps required for a right- (left-) arrow to find a left- (right-) arrow to connect to is almost surely finite. However, already the shortest edge of a vertex turns
out to have infinite mean; see Section 4. Basically this follows from properties
of a random walk structure that arises in the analysis of the model. This anal-
ysis is complicated by the fact that the increments of the random walk are not
independent, making standard results inapplicable. In Section 5 we prove that,
if we insist on the directions of the edges of a given vertex being completely
random and also independent of the configuration at all other vertices, then we
can not achieve finite mean for the total edge length per vertex in a stationary
way. Note however that, by dropping the requirement that the directions of
the edges should be assigned randomly and independently, it is in some cases
possible to design algorithms that work; see Examples 5.1 and 5.2.

Readers familiar with Bernoulli isomorphisms might have observed that our
pairing rule is close to the pairing rule used by Meshalkin (1959) in order to con-
struct an isomorphism between two specific Bernoulli shifts with equal entropy.
In fact, there are connections, which we will explore a bit in Section 3. We also
mention the paper by Holroyd and Peres (2005), which deals with stationary
matching in a slightly different set-up.

1.2 Annihilating random walk

There is a totally different way of generating a stationary graph with the re-
quired properties, making use of random walks and which we mention for com-
pleteness. It can be described in three steps as follows.

1. Attach independently a random number of stubs to each vertex according
to the distribution F.

2. To each stub, associate a particle at the same position on \mathbb{Z} and let all
particles start a continuous time random walk on \mathbb{Z}, independent of each
other.

3. Whenever two particles - started at different locations - meet, draw an
edge between the corresponding stubs and remove the particles from the
system.

It is not hard to see, and well known (see for instance Arratia (1981)), that
this leads to a limiting configuration in which all stubs are connected. However,
we will not be concerned with this type of pairing in this paper. See Mattera
(2003) for other connections between annihilating random walks and graphs.

2 Definition of the SPRD-algorithm

Let us first describe the SPRD-algorithm in more detail. To begin with, assoc-
iate independently to each vertex $i \in \mathbb{Z}$ a random degree D_i with distribution
F. Think of this as vertex i having D_i “stubs” sticking out of it. Now turn
the stubs into arrows by randomly associating a direction to each stub. More
precisely, with probability p a stub is pointed to the right and with probability

3
1 − p it is pointed to the left. Write R_i (L_i) for the number of right- (left-) arrows of vertex i and label the arrows $\{r_{i,j}\}_{j=1}^{R_i}$, $\{l_{i,j}\}_{j=1}^{L_i}$. This gives a configuration where each vertex i has two ordered sets of arrows $\{r_{i,j}\}$ and $\{l_{i,j}\}$ associated to it. These arrows will now be matched pairwise, a pair always consisting of one right-arrow and one left-arrow, to create edges between the vertices. The matching is done stepwise as follows.

1. First consider all pairs of nearest neighbor vertices i and $i + 1$ and create $\min\{R_i, L_{i+1}\}$ edges between vertex i and $i + 1$ by joining the arrows $r_{i,j}$ and $l_{i+1,j}$ for $j = 1, \ldots, \min\{R_i, L_{i+1}\}$.

2. Next consider all pairs of second nearest neighbor vertices i and $i + 2$. If, after step 1, there is at least one unconnected right-arrow at vertex i and at least one unconnected left-arrow at vertex $i + 2$, then we create edge(s) between the vertices i and $i + 2$, by performing all possible connections, always connecting an arrow $r_{i,j}$ ($l_{i+2,j}$) before $r_{i,j+1}$ ($l_{i+2,j+1}$).

\[\vdots \]

\[n \text{. In step } n, \text{ we consider all pairs of vertices } i \text{ and } i + n \text{ at distance } n \text{ from each other and connect arrows that remain after the previous steps, never using an arrow } r_{i,j} \text{ ($l_{i+n,j}$)} \text{ before } r_{i,j-1} \text{ ($l_{i+n,j-1}$)}. \]

\[\vdots \]

The above procedure is clearly stationary, but we have yet to show that it leads to a well-defined graph. To this end, define the length of an edge in the resulting configuration to be the distance between its endpoints. In what follows, we will consider only the vertex at the origin.

Write $N_j^{(r)}$ for the length of the edge created by right-arrow number j at the origin, r_0, and set $N_j^{(r)} = \infty$ if r_0 is never connected. Also, define $N_j^{(l)}$, $j \geq 1$, analogously for the left-arrows. Write

\[N^{(r)} = \max_{1 \leq j \leq R_0} \{ N_j^{(r)} \} \quad \text{and} \quad N^{(l)} = \max_{1 \leq j \leq L_0} \{ N_j^{(l)} \}, \]

and define $N = \max\{N^{(r)}, N^{(l)}\}$.

We first show that the algorithm does not work for $p \neq 1/2$. Here, P_p denotes the probability measure associated with the SPRD-algorithm when a stub is pointed to the right with probability p.

Proposition 2.1 If $p \neq 1/2$, then $P_p(N = \infty) > 0$.

Proof: To see that $P_p(N_1^{(r)} = \infty) > 0$ for $p > 1/2$, fix $p > 1/2$, let $\Delta_i = L_i - R_i$ and define

\[\begin{cases} S'_1 = L_1; \\ S'_n = \sum_{i=1}^{n-1} \Delta_i + L_n \text{ for } n \geq 2. \end{cases} \]
Clearly, the first right-arrow at the origin gets connected as soon as \(S'_n \) takes on a positive value and hence it suffices to show that \(P_n(S'_n \leq 0 \text{ for all } n) > 0 \). This however follows easily by noting that the law of large numbers implies that \(S'_n \to \infty \) almost surely. \(\square \)

Having discarded non-symmetric versions of the algorithm, let us move on to the symmetric case where the prospects of success should be better. Indeed, the following proposition guarantees that, for \(p = 1/2 \), no arrow has to wait infinitely long before it finds something to connect to.

Theorem 2.1 We have \(P_{1/2}(N < \infty) = 1 \).

Proof: For ease of notation, write \(P_{1/2} = P \). First note that, by symmetry, it suffices to show that \(P(N^{(r)} < \infty) = 1 \). Also, by the definition of the algorithm, the arrows \(\{r_{0,j}\} \) are used in chronological order, implying that \(N^{(r)}_{j+1} \leq N^{(r)}_j \). It follows that \(N^{(r)} = N^{(r)}_{R_0} \), and, since \(R_0 < \infty \) almost surely, we are done if we can show that \(P(N^{(r)}_j < \infty) = 1 \) for all \(j \).

To do this, we first consider the case \(j = 1 \) and show that \(P(N^{(r)}_1 < \infty) = 1 \), that is, the length of the edge created by the first right-arrow \(r_{0,1} \) at the origin is almost surely finite. This is done by domination of the length of the edge by the time at which a recurrent random walk takes on a positive value for the first time. To be more specific, define \(\Delta_i = L_i - R_i \) and write \(S_n = \sum_{i=1}^{n} \Delta_i \). The variables \(\{\Delta_i\} \) are i.i.d. and symmetric, implying that \(\eta := \inf\{n; S_n > 0\} \) is finite with probability 1. Now note that, as soon as \(S_n > 0 \), we know that the arrow \(r_{0,1} \) must have found a left-arrow to connect to. Indeed, if \(S_n > 0 \), we also have \(S_n + R_n > 0 \), and the fact that \(S_n + R_n > 0 \) means that the total number of left-arrows on the vertices \(1, \ldots, n \) is strictly larger than the total number of right-arrows on the vertices \(1, \ldots, n-1 \), implying that, at some vertex \(1, \ldots, n \), there must be a left-arrow for \(r_{0,1} \) to connect to. It follows that \(N^{(r)}_1 \leq \eta \) and we are done.

Now assume in an inductive fashion that \(P(N^{(r)}_j < \infty) = 1 \) and suppose that \(P(N^{(r)}_{j+1} < \infty) > 0 \). Write \(\Psi = \{\Psi_i\} = \{(L_i, R_i)\} \) for the random configuration of arrows at the vertices and, for configurations with \(N^{(r)}_j < \infty \), introduce a coupled configuration \(\hat{\Psi} = \{\hat{\Psi}_i\} \) that is identical to \(\Psi \) except that the directions of the stubs at the vertex \(N^{(r)}_j \) are generated independently. Let \(\hat{N}^{(r)}_j \) be the length of the edge formed by \(r_{0,j} \) in \(\hat{\Psi} \) and define

\[
A_j = \left\{ N^{(r)}_{j+1} = \infty \right\} \cap \left\{ \hat{L}_{N^{(r)}_j} = 0 \right\}.
\]

Note that, on the event \(A_j \), we have \(\hat{N}^{(r)}_j = \infty \): Indeed \(r_{0,j} \) cannot connect before vertex \(N^{(r)}_j \) in \(\hat{\Psi} \), since left-arrows have been removed at \(N^{(r)}_j \) without any new right-arrows being added. Furthermore, if \(r_{0,j} \) is connected to a left-arrow at vertex \(m \geq N^{(r)}_j \) in \(\hat{\Psi} \) it would imply that \(r_{0,j+1} \) was connected at
the latest to \(m \) in \(\Psi \) and this conflicts with the fact that \(N_{j+1}^{(r)} = \infty \). Hence we have \(P(\tilde{N}_j^{(r)} = \infty) \geq P(A_j) \). It follows from the assumption that \(P(A_j) > 0 \) and, since clearly \(N_j^{(r)} \) and \(\tilde{N}_j^{(r)} \) have the same distribution, we have shown that \(P(N_j^{(r)} = \infty) > 0 \). But this is a contradiction and, by induction over \(j \), we conclude that \(P(N_j^{(r)} < \infty) = 1 \) for all \(j \), as desired. \(\square \)

3 Connections to Bernoulli isomorphisms

Consider a stochastic process \(X \) indexed by \(Z \) with i.i.d. marginals taking values in 1, 2, \ldots, \(s \), with probabilities \(p_1, \ldots, p_s \), respectively. The process \(X \) is often called a Bernoulli shift, and is identified with the vector \((p_1, \ldots, p_s) \). Next, consider another such process \(Y \), with values in 1, 2, \ldots, \(t \) and probabilities \(q_1, \ldots, q_t \), respectively. We write \(S^X = \{1, 2, \ldots, s\}^Z \) and \(S^Y = \{1, 2, \ldots, t\}^Z \). Loosely speaking, \(X \) and \(Y \) are called isomorphic if there exists a pairing of almost all realisations of \(X \) and \(Y \) in a bijective way, such that the pairing commutes with the shift operator on \(S^X \) and \(S^Y \).

Meshalkin (1959) was one of the first to explicitly identify such a coding between two particular Bernoulli shifts, namely between \((\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}) \) and \((\frac{1}{2}, \frac{1}{2}, \frac{1}{6}, \frac{1}{6}) \). His coding corresponds to our algorithm in the case when each vertex has at most one edge associated to it, as follows. Associate to each edge a random label, \(a \) or \(b \), independently and with equal probability. This leads to four equally likely symbols, namely \((l, a), (l, b), (r, a) \) and \((r, b)\), where \(l \) and \(r \) refer to the edge pointing to the left or to the right. The coding is now defined so that, whenever we see \((r, a)\) or \((r, b)\) we write an \(r \), and whenever we see an \(l \) we write \((l, x, y)\), where \(x \) and \(y \) are the symbols corresponding to the edge that is formed with the unique stub at that position. It is not hard to see that this codes the original four symbols into five new symbols with probabilities \(\frac{1}{2} \) and four times \(\frac{1}{8} \), and that this coding is invertible. Furthermore, the coding is finitary, that is, one has to look only a (random) finite distance in both directions to see what symbol that should be written in the coding. Indeed, once we have identified the stub that connects to our current stub of interest, we can write down the correct symbol.

This idea can be stretched to apply for a general degree distribution \(F \) with bounded support in our pairing algorithm, that is, every \(F \) with bounded support leads to an isomorphism between two particular Bernoulli shifts, as the reader can easily verify. Certain results of coding between Bernoulli shifts then have corollaries for our algorithm. We mention the well known fact (see for instance Parry (1979) or Schmidt (1984)) that in any nontrivial situation, the expected distance that has to be explored in a finitary coding between two Bernoulli shifts with equal entropy has infinite expectation. From this it follows that the longest edge at a given vertex in the SPDR-algorithm has infinite expected length. Below we strengthen this result to the shortest edge, which does not have an interpretation in the coding setup described here.
4 The mean length of the shortest edge

For the remainder of the paper we only consider the symmetric SPRD-algorithm, which, by Theorem 2.1, leads to well-defined configurations. The next task is to look at the expected length of the edges. For distributions with finite mean, we will prove the following theorem.

Theorem 4.1 If \(F \) has finite mean, then both \(\mathbb{E}[N_1^{(r)}] \) and \(\mathbb{E}[N_1^{(l)}] \) are infinite.

Define \(X_i = L_i - R_{i-1} \), that is, \(X_i \) is a difference between the number of left and right arrows involving two neighboring vertices. Let \(S_n^{(m)} = \sum_{i=m+1}^{n+1} X_i \), and write \(\tau_{i}^{(m,x)} \) for the first time when the process \(S_n^{(m)} \) reaches above the level \(x \), that is,

\[
\tau_{i}^{(m,x)} = \min\{n; S_n^{(m)} \geq x\}.
\]

Clearly, to prove Theorem 4.1, it suffices to show that \(\mathbb{E}[N_1^{(r)}] = \infty \). To see why this should be the case, note that, if \(L_1 = 0 \) (which happens with positive probability), then the first right-arrow at the origin is connected when \(S_1^{(1)} \) takes on a value larger than or equal to 0, that is, \(N_1^{(r)} = \tau_{1}^{(1,0)} + 1 \). If \(S_1^{(1)} \) had independent increments, it would follow from standard random walk theory that \(\tau_{1}^{(1,0)} \) had infinite mean. However, \(X_i \) and \(X_{i+1} \) are not independent, since information about the arrow configuration at vertex \(i \) is used for both variables.

Let \(\mu \) denote the mean of \(F \). The following lemma will play a key role in the proof of Theorem 4.1.

Lemma 4.1 For all \(i \in \mathbb{Z} \), we have \(\mathbb{E}[\tau_{i}^{(i,2\mu)}] = \infty \).

Proof of Lemma 4.1 By stationarity, it suffices to show that \(\mathbb{E}[\tau_{1}^{(0,2\mu)}] = \infty \). Assume for contradiction that \(\mathbb{E}[\tau_{1}^{(0,2\mu)}] < \infty \) and define \(\tau_{i}^{(m,x)} \) to be the first time when the process \(S_n^{(m)} \) reaches below the level \(x \), that is,

\[
\tau_{i}^{(m,x)} = \min\{n; S_n^{(m)} \leq x\}.
\]

Note that, by symmetry, we have \(\mathbb{E}[\tau_{0}^{(0,-2\mu)}] = \mathbb{E}[\tau_{0}^{(0,2\mu)}] \). The idea of the proof is to use the finite mean assumption to create a linear negative drift for the process \(S_0^{(0)} \). By symmetry, \(S_0^{(0)} \) must then also have the same positive drift and to maintain both these drifts it is forced to oscillate more and more vigorously between large positive and large negative values, something which it will not be able to do in the long run. To turn this heuristics into a proof, introduce an i.i.d. sequence \(\{\Delta \tau_j\} \) with mean \(\mathbb{E}[\tau_{i}^{(0,-2\mu)}] + 1 \) by defining

\[
\begin{cases}
\Delta \tau_0 = 0; \\
\Delta \tau_j = \min\left\{ n; S_n^{(\sum_{i=0}^{j-1} \Delta \tau_i)} \leq -2\mu \right\} + 1, & \text{for } j \geq 1;
\end{cases}
\]
here, the +1 is added to get independence, noting that \(X_i \) and \(X_k \) are independent as soon as \(|i-k| \geq 2 \). This sequence gives rise to a renewal process with time increments \(\{ \Delta \tau_j \} \) and events referred to as \textit{down-transitions} occurring at the time points \(\{ \tau_i \} \), where \(\tau_i = \sum_{j=1}^{i} \Delta \tau_j \). Write \(M_n \) for the number of down-transitions in the time interval \([0,n]\) and note that, by the renewal theorem, we have

\[
\frac{M_n}{n} \rightarrow (E[\tau_{(0,-2\mu)}] + 1)^{-1} \quad \text{as } n \rightarrow \infty.
\]

Hence, defining \(2c = (E[\tau_{(0,-2\mu)}] + 1)^{-1} \) and \(E_m = \{ M_n > nc \text{ for all } n \geq m \} \), it follows that

\[
P(E_m) \rightarrow 1 \quad \text{as } m \rightarrow \infty. \tag{1}
\]

At the point \(\tau_d \) of the \(d \)-th down-transition we have

\[
S_{\tau_d}^{(0)} \leq -2\mu d + \sum_{i=1}^{d} X_{\tau_i},
\]

where \(X_{\tau_i} = L_{\tau_i} - R_{\tau_i-1} \leq L_{\tau_i} \). The degree of a vertex \(\tau_i - 1 \) is atypical, since it is defined as a first passage point for the process \(S_{\tau_i-1} \). However, the vertex \(\tau_i \) has the unconditional degree distribution \(F \), meaning that \(E[L_{\tau_i}] = \mu/2 \). Also, since \(|\tau_i - \tau_{i-1}| \geq 2 \), the variables \(\{ L_{\tau_i} \} \) are independent. Combining this we get from the strong law of large numbers that

\[
\frac{1}{d} \sum_{i=1}^{d} X_{\tau_i} \leq \frac{1}{d} \sum_{i=1}^{n} L_{\tau_i} \rightarrow \frac{\mu}{2} \quad \text{a.s. as } n \rightarrow \infty,
\]

and, defining

\[
F_m = \left\{ \sum_{i=1}^{\lfloor nc \rfloor} X_{\tau_i} \leq \lfloor nc \rfloor \mu \text{ for all } n \geq m \right\},
\]

it follows that

\[
P(F_m) \rightarrow 1 \text{ as } m \rightarrow \infty. \tag{2}
\]

At the point \(\tau_d \) of the \(d \)-th down-transition we have

\[
S_{\tau_d}^{(0)} \leq -2\mu d + \sum_{i=1}^{d} X_{\tau_i},
\]

where \(X_{\tau_i} = L_{\tau_i} - R_{\tau_i-1} \leq L_{\tau_i} \). The degree of a vertex \(\tau_i - 1 \) is atypical, since it is defined as a first passage point for the process \(S_{\tau_i-1} \). However, the vertex \(\tau_i \) has the unconditional degree distribution \(F \), meaning that \(E[L_{\tau_i}] = \mu/2 \). Also, since \(|\tau_i - \tau_{i-1}| \geq 2 \), the variables \(\{ L_{\tau_i} \} \) are independent. Combining this we get from the strong law of large numbers that

\[
\frac{1}{d} \sum_{i=1}^{d} X_{\tau_i} \leq \frac{1}{d} \sum_{i=1}^{n} L_{\tau_i} \rightarrow \frac{\mu}{2} \quad \text{a.s. as } n \rightarrow \infty,
\]

and, defining

\[
F_m = \left\{ \sum_{i=1}^{\lfloor nc \rfloor} X_{\tau_i} \leq \lfloor nc \rfloor \mu \text{ for all } n \geq m \right\},
\]

it follows that

\[
P(F_m) \rightarrow 1 \text{ as } m \rightarrow \infty. \tag{2}
\]

At the point \(\tau_d \) of the \(d \)-th down-transition we have

\[
S_{\tau_d}^{(0)} \leq -2\mu d + \sum_{i=1}^{d} X_{\tau_i},
\]

where \(X_{\tau_i} = L_{\tau_i} - R_{\tau_i-1} \leq L_{\tau_i} \). The degree of a vertex \(\tau_i - 1 \) is atypical, since it is defined as a first passage point for the process \(S_{\tau_i-1} \). However, the vertex \(\tau_i \) has the unconditional degree distribution \(F \), meaning that \(E[L_{\tau_i}] = \mu/2 \). Also, since \(|\tau_i - \tau_{i-1}| \geq 2 \), the variables \(\{ L_{\tau_i} \} \) are independent. Combining this we get from the strong law of large numbers that

\[
\frac{1}{d} \sum_{i=1}^{d} X_{\tau_i} \leq \frac{1}{d} \sum_{i=1}^{n} L_{\tau_i} \rightarrow \frac{\mu}{2} \quad \text{a.s. as } n \rightarrow \infty,
\]

and, defining

\[
F_m = \left\{ \sum_{i=1}^{\lfloor nc \rfloor} X_{\tau_i} \leq \lfloor nc \rfloor \mu \text{ for all } n \geq m \right\},
\]

it follows that

\[
P(F_m) \rightarrow 1 \text{ as } m \rightarrow \infty. \tag{2}
\]

Note at this point that, if the sequence \(\tau_i \) were to be defined in terms of up-transitions instead of down-transitions, then, to estimate the value of the process after some large number of transitions would require a lower bound for the sum of the auxiliary steps \(X_{\tau_i} \). This however would cause trouble, since, as mentioned above, the negative part of a variable \(X_{\tau_i} \) concerns the arrow configuration at a first passage vertex which is presumably difficult to control. Hence we are in the peculiar situation of being able to show a statement for down-transitions but not for up-transitions directly, in an otherwise completely symmetric situation.

Next divide \(\mathbb{Z}^+ \) into intervals \(\{ I_k \}_{k \geq 0} \) of length \(l \), where \(I_k = \{ i; kl \leq i < (k+1)l \} \), and write \(B_k \) for the event that the interval \(I_k \) contains a down-transition in the renewal process \(\{ \tau_i \} \). Clearly, by picking \(l \) large, we can make
sure that $P(B_k) \geq 0.99$ for all k. Define Y_k to be the sum of the degrees of all vertices in I_k, that is, $Y_k = \sum_{i=k}^{(k+1)|l-1} D_i$. The distribution of Y_k does not depend on k and $Y_k < \infty$ almost surely, implying that

$$P(Y_k \geq 2\mu|klc|) \to 0 \text{ as } k \to \infty. \quad (3)$$

By (1), (2) and (3), if we pick k large enough, we have

(i) $P(E_{kl}) \geq 0.99$;

(ii) $P(F_{kl}) \geq 0.99$;

(iii) $P(Y_k \geq 2\mu|klc|) \leq 0.5$.

Fix such a k and define

$$D_k^- = \{\exists n \in I_k \text{ such that } S_n^{(0)} \leq -\mu|klc|\}$$

and

$$D_k^+ = \{\exists n \in I_k \text{ such that } S_n^{(0)} \geq \mu|klc|\}.$$

Now observe that $B_k \cap E_{kl} \cap F_{kl} \subset D_k^-$. Indeed, the event E_{kl} implies that $m \geq |klc|$ down-transitions have occurred in $[0, kl]$, and F_{kl} implies that $\sum_{i=1}^{m+1} X_{\tau_i} \leq \mu(m + 1)$. Hence, at the point τ_{m+1} of the next down-transition, we have

$$S_{\tau_{m+1}}^{(0)} \leq -2\mu(m + 1) + \sum_{i=1}^{m+1} X_{\tau_i} \leq -2\mu|klc| + \mu|klc| = -\mu|klc|.$$

But this means that D_k^- must occur, since, on the event B_k, at least one down-transition is to take place in I_k, that is, $\tau_{m+1} \in I_k$. It follows that

$$P(D_k^-) \geq P(B_k \cap E_{kl} \cap F_{kl}) \geq 1 - P(B_k^c) - P(E_{kl}^c) - P(F_{kl}^c) \geq 0.97.$$

By symmetry, we have $P(D_k^+ = P(D_k^-)$ and hence $P(D_k^+ \cap D_k^-) \geq 0.94$. Now note that, on $D_k^+ \cap D_k^-$, we are to visit both a state above the level $\mu|klc|$ and a state below the level $-\mu|klc|$ in the interval I_k, meaning that $Y_k \geq 2\mu|klc|$ on $D_k^+ \cap D_k^-$. Thus

$$P(Y_k \geq 2\mu|klc|) \geq P(D_k^+ \cap D_k^-) \geq 0.94.$$
But this contradicts (iii) in the choice of k. Hence the assumption that $E[\tau_1^{(0,2\mu)}] < \infty$ must fail and the lemma is proved. \qed

Proof of Theorem 4.1 By symmetry, it suffices to show that $E[N_1^{(r)}] = \infty$. To do this, as before, write $\Psi = \{\Psi_i\} = \{(L_i, R_i)\}$ for the random configuration of arrows at the vertices and pick k so large that $P(\sum_{i=1}^k D_i \geq 2\mu) > 0$. Introduce a coupled configuration $\hat{\Psi} = \{\hat{\Psi}_i\}$ with the same degrees at all vertices and $\hat{\Psi}_i = \Psi_i$ for $i \notin \{1, \ldots, k+1\}$, but where the directions of the arrows at the vertices $1, \ldots, k+1$ are generated independently. Define

$$A = \left\{ \sum_{i=1}^k D_i \geq 2\mu \right\} \cap \left\{ \hat{L}_i = 0 \text{ for all } i = 1, \ldots, k+1 \right\},$$

and let $\hat{N}_1^{(r)}$ be the length of the edge formed by $r_{0,1}$ in $\hat{\Psi}$. We then have

$$E[\hat{N}_1^{(r)}] \geq E[\hat{N}_1^{(r)} | A] P(A).$$

Since clearly $\hat{N}_1^{(r)}$ has the same distribution as $N_1^{(r)}$ and $P(A) > 0$, we are done if we can show that $E[\hat{N}_1^{(r)} | A] = \infty$. To this end, let $\hat{S}_n^{(m)}$ be defined in the same way as $S_n^{(m)}$ but based on the coupled configuration $\hat{\Psi}$ and write $\hat{\tau}_n^{(m,x)} = \inf\{n; \hat{S}_n^{(m)} \geq x\}$. On A, there are in total at least 2μ right-arrows attached to the vertices $1, \ldots, k$ while there are no left-arrows at all on the vertices $1, \ldots, k+1$. Thus, a right-arrow at the origin can not be connected until the process $\hat{S}_n^{(k+1)}$ takes on a value larger than 2μ. It follows that

$$E[\hat{N}_1^{(r)} | A] \geq (k + 1) + E[\hat{\tau}_1^{(k+1,2\mu)} | A].$$

The effect that the conditioning on A has on $\hat{\tau}_1^{(k+1,2\mu)}$ is that the first term in the unconditional sum $\hat{S}_n^{(k+1)}$ is replaced by $L_{k+2} - D_{k+1}$, since, on A, all D_{k+1} stubs at vertex $k + 1$ point to the right. This means that, conditional on A, the passage time $\hat{\tau}_1^{(k+1,2\mu)}$ is stochastically larger than in the unconditional case, implying that $E[\hat{\tau}_1^{(k+1,2\mu)} | A] \geq E[\hat{\tau}_1^{(k+1,2\mu)}]$. Hence

$$E[\hat{N}_1^{(r)} | A] \geq (k + 1) + E[\hat{\tau}_1^{(k+1,2\mu)}].$$

Since $\hat{\tau}_1^{(k+1,2\mu)}$ has the same distribution as $\tau_1^{(k+1,2\mu)}$, it follows from Lemma 4.1 that $E[\hat{\tau}_1^{(k+1,2\mu)}] = \infty$ and the theorem is proved. \qed

5 Finite mean is impossible

We are now at the point of having formulated a stationary algorithm that takes a discrete distribution F as input and produces a stationary random edge configuration on \mathbb{Z} with i.i.d. vertex degrees with distribution F. Provided that F
has finite mean, all connections are almost surely finite but the expected length of the connections is infinite. The obvious question is: Can we do better? The following simple examples show that, if we no longer assign i.i.d. directions to the stubs, then, for certain distributions \(F \), indeed we can.

Example 5.1 Write \(f_j \) for the probability that a given vertex has degree \(j \), fix \(n \in \mathbb{N} \) and let \(F \) be defined by

\[
\begin{align*}
f_j &= (n + 1)^{-1} \quad j = 0, 2, 4, \ldots, 2n; \\
f_j &= 0 \quad j \notin \{0, 2, \ldots, 2n\}.
\end{align*}
\]

A configuration with this degree distribution and connections with finite mean is generated by proceeding in the same way as in the SPRD-algorithm except that the directions of the stubs are not assigned randomly but according to the deterministic rule that a vertex with degree \(2k \) is equipped with exactly \(k \) arrows in each direction. To see this, note that, assuming that the origin has degree \(d \), all right-arrows at the origin will be connected as soon as a vertex \(i \geq 1 \) with degree larger than \(d \) is encountered. The expected distance until we come across a vertex with degree exactly \(d \) is \(f_d^{-1} \) and removing the conditioning on \(d \) it follows that the expected length of the longest connection to the right is bounded by \(n \). By symmetry, the expected maximal length to the left is also bounded by \(n \).

Example 5.2 Let \(F = \delta_1 \), that is, every vertex is to have exactly one edge connected to it. To generate such a configuration, attach one stub to each vertex and then imagine that a coin is flipped. If the coin comes up heads the stubs at the odd vertices are pointed to the right and the stubs at the even vertices to the left and if it comes up tails we do the other way around. The arrows are then connected according to the stepwise paring algorithm. It is easy to see that with this procedure (which is clearly stationary), all connections will end up having length 1.

Recall that, in the SPRD-algorithm, the directions of the stubs are assigned (i) randomly, and (ii) independently, for each stub. This gives rise to a random walk type structure which is recurrent but has infinite mean. In Example 5.1 above, the directions of the edges are not random and, in Example 5.2, they are not independent. This destroys the random walk arguments and makes it possible to obtain configurations where the connections have finite mean. Thus, for some distributions \(F \), it is indeed possible to outdo the SPRD-algorithm by being clever when assigning the directions of the stubs. However, we conjecture that, if the directions are assigned independently for each stub, then it is impossible to formulate a rule for connecting right-arrows with left-arrows so that the expected length of the resulting edges becomes finite. A weaker formulation of this conjecture is proved in Theorem 5.1 below.

Let \(\Psi \) be a random configuration of arrows on \(\mathbb{Z} \) generated by the RD-algorithm, that is, first a random number of stubs with distribution \(F \) is attached to each vertex and then each stub is randomly assigned the direction left or right. An algorithm \(\mathcal{A} \) for connecting the arrows in \(\Psi \) will be called a *pairing rule* if,
with probability 1, each left-arrow is connected to exactly one right-arrow and each right-arrow is connected to exactly one left-arrow. Furthermore, \(\mathcal{A} \) is said to be stationary if the resulting joint edge length distributions are translation invariant. For a given pairing rule \(\mathcal{A} \), write \(T_\mathcal{A} \) and \(N_\mathcal{A} \) for the total length of all edges connected to the origin and the length of the longest edge connected to the origin respectively.

Theorem 5.1 If \(F \) has finite mean, then, for all stationary pairing rules \(\mathcal{A} \), we have that \(E[T_\mathcal{A}] = \infty \). If, in addition, \(F \) has bounded support, then \(E[N_\mathcal{A}] = \infty \).

The proof of this theorem is based on a combinatorial lemma involving the concept of nested graphs. To define this concept, consider a given edge configuration \(\{(i,j)\}_{i,j \in \mathbb{Z}} \) on \(\mathbb{Z} \). Two edges \((i, j)\) and \((i', j')\) are said to cross each other if \(i < i' < j < j' \) or \(i' < i < j' < j \) and the configuration \(\{(i,j)\}_{i,j \in \mathbb{Z}} \) is called nested if it does not contain any crossing edges. An important observation is that, for a given configuration \(\psi \) of arrows on \(\mathbb{Z} \), there is a unique nested edge configuration, to be denoted by \(\mathcal{N}_\psi \), which is obtained by the stepwise pairing algorithm. Indeed, to avoid crossing edges we are forced to perform all possible connections between vertices at distance \(n = 1, 2, \ldots \), starting with \(n = 1 \), and, conversely, successively performing all possible connections between vertices at distance \(n \), with \(n \) increasing, can never in any step create crossing edges, since this would mean that a possible connection in a previous step was missed.

To formulate the aforementioned lemma, write \(\Gamma \) for the set of all arrow configurations \(\psi \) on \(\mathbb{Z} \) for which all edges in \(\mathcal{N}_\psi \) are finite. Pick \(\psi \in \Gamma \) and, for an edge \(e \in \mathcal{N}_\psi \), let \(\psi_e^{(r)} \) and \(\psi_e^{(l)} \) be the set of right-arrows and left-arrows respectively in \(\psi \) that are used to form the edge \(e \) and the edges ‘under’ \(e \) in \(\mathcal{N}_\psi \). More precisely, if \(e \) is made up of the arrows \(r_{i,j} \) and \(l_{i+n,j'} \), then \(\psi_e^{(r)} \) consists of the arrows \(\{r_{i,k}\}_{k=1}^{i+n-1} \) together with all right-arrows at the vertices \(i+1, \ldots, i+n-1 \), and \(\psi_e^{(l)} \) consists of \(\{l_{i+n,k}\}_{k=1}^{j'} \) and all left-arrows at the vertices \(i+1, \ldots, i+n-1 \). Write \(t_e(\mathcal{N}_\psi) \) for the total length of all edges ‘under’ \(e \) in \(\mathcal{N}_\psi \).

Next, let \(\mathcal{E}_\psi \) be some edge configuration based on the same arrow configuration \(\psi \). Call an edge in \(\mathcal{E}_\psi \) a \(\psi_e^{(r)} \)-edge if it contains an arrow belonging to the set \(\psi_e^{(r)} \) and let \(t_e^{(r)}(\mathcal{E}_\psi) \) denote the total length of all \(\psi_e^{(r)} \)-edges in the configuration \(\mathcal{E}_\psi \). Define \(t_e^{(l)}(\mathcal{E}_\psi) \) analogously. The lemma now reads as follows.

Lemma 5.1 For all \(\psi \in \Gamma \), all configurations \(\mathcal{E}_\psi \) based on \(\psi \), and all \(e \in \mathcal{N}_\psi \), we have \(t_e(\mathcal{N}_\psi) \leq t_e^{(r)}(\mathcal{E}_\psi) \) and \(t_e(\mathcal{N}_\psi) \leq t_e^{(l)}(\mathcal{E}_\psi) \).

Proof of Lemma 5.1 Fix a \(\psi \in \Gamma \), an edge \(e \in \mathcal{N}_\psi \) and an edge configuration \(\mathcal{E}_\psi \) based on \(\psi \). Define \(w_k^{(r)} \) to be the number of \(\psi_e^{(r)} \)-edges in \(\mathcal{E}_\psi \) that crosses the interval \([k-1, k]\). More precisely, \(w_k^{(r)} \) is the number of edges in \(\mathcal{E}_\psi \) that has its left endpoint at a vertex \(l \leq k-1 \), its right endpoint at \(l' \geq k \) and that is created by a right-arrow that belongs to \(\psi_e^{(r)} \). Also, let \(w_k^{(l)} \) be the same quantity in the nested configuration \(\mathcal{N}_\psi \). We will show that
Since clearly \(t_e(N_\psi) = \sum_{k=-\infty}^{\infty} \tilde{w}_k^{(r)} \) and \(t_e^{(l)}(E_\psi) = \sum_{k=-\infty}^{\infty} w_k^{(l)} \) this implies that \(t_e(N_\psi) \leq t_e^{(l)}(E_\psi) \). The inequality \(t_e(N_\psi) \leq \tilde{t}^{(l)}_e(E_\psi) \) is proved similarly.

To establish (4), assume that the edge \(e \) connects the vertices \(i \) and \(i + n \), and is created by right-arrow number \(j \) at vertex \(i \). In the nested configuration, all arrows in \(\psi_e^{(r)} \) are connected to left-arrows at the vertices \(i + 1, \ldots, i + n \), meaning that \(w_k^{(r)} = 0 \) for \(k \not\in \{i + 1, \ldots, i + n\} \), and hence trivially \(w_k^{(r)} \geq \tilde{w}_k^{(r)} \) for such \(k \). To deal with \(k \in \{i + 1, \ldots, i + n\} \), note that in any edge configuration based on \(\psi \), at least \(j \psi_e^{(r)} \) edges must cross the interval \([i, i + 1]\), implying that \(w_{i+1}^{(r)} \geq j \). Furthermore, the interval \([i + 1, i + 2]\), must be crossed by at least \(j + r_{i+1} - l_{i+1} \psi_e^{(r)} \)-edges, where \(r_{i+1} (l_{i+1}) \) denotes the number of right- (left-) arrows at vertex \(i + 1 \). Hence \(w_{i+2}^{(r)} \geq j + r_{i+1} - l_{i+1} \). Continuing in the same way, we obtain lower bounds for all \(w_k^{(r)} \)'s with \(k \in \{i + 1, \ldots, i + n\} \) and, from the construction of the nested configuration \(N_\psi \), it follows that these bounds hold with equality for the \(\tilde{w}_k^{(r)} \)'s, and (4) follows.

Proof of Theorem 5.1: Let \(A \) be a stationary pairing rule for an arrow configuration \(\Psi \) generated by the RD-algorithm. If, with positive probability, \(A \) gives rise to configurations with infinitely long connections, the conclusion of the proposition is immediate. Thus assume that all edges in a configuration obtained from \(A \) are finite almost surely, and write \(T_A^{(r)} \) and \(T_A^{(l)} \) for the total length of the edges created by the right-arrows and left-arrows respectively at the origin in an edge configuration generated by \(A \). We will show that \(E[T_A^{(r)}] \) and \(E[T_A^{(l)}] \) are both infinite.

To prove that \(E[T_A^{(r)}] = \infty \), let \(T_{N}^{(r)} \) be the total length of all edges created by the right-arrows at the origin in a nested configuration obtained from the stepwise pairing algorithm and note that, by Theorem 4.1, we have \(E[T_N^{(r)}] = \infty \). If, with probability 1, \(A \) results in a nested configuration, then \(T_A^{(r)} \) has the same distribution as \(T_N^{(r)} \) and the claim follows. So assume that with positive probability \(A \) produces unnested configurations and let \(E \) be such a configuration with underlying arrow configuration \(\psi \). Write \(\tilde{t}_i^{(r)} \) and \(\tilde{t}_i^{(l)} \) for the total length of the edges created by the right-arrows at vertex \(i \) in the configuration \(E \) and \(N_\psi \) respectively and let \(\tilde{m}_i^{(r)} \) be the length of the longest edge formed by the right-arrows at vertex \(i \) in \(N_\psi \). It follows from Lemma 5.1 that, for all \(i \), we have

\[
\sum_{j=i}^{i+\tilde{m}_i^{(r)}-1} \tilde{t}_j^{(r)} \geq \sum_{j=i}^{i+\tilde{m}_i^{(r)}-1} \tilde{t}_j^{(r)}.
\]

By the ergodic theorem, \(E[T_N^{(r)}] \) is equal to the average of \(\tilde{t}_j^{(r)} \) and hence, for every realization of \(A \), the average right-degree is bounded below by \(E[T_N^{(r)}] \).
proving that $E[T^{(r)}_A] = \infty$. That $E[T^{(j)}_A] = \infty$ is proved analogously and the first claim of the theorem follows.

The second claim is established by noting that if k is an upper bound for the support of F, we have $T_A \leq kM_A$. □

References

Arratia, R. (1981), Limiting point processes for rescalings of coalescing and annihilating random walks on \mathbb{Z}^d, *The Annals of Probability* 9, 909-936.

Bollobás, B. and Riordan, O. (2003), Mathematical results on scale-free random graphs, in *Handbook of graphs and networks*, Wiley, pp 1-34.

Britton, T., Deijfen, M. and Martin-Löf, A. (2005), Generating simple random graphs with prescribed degree distribution, preprint (www.math.su.se/~mla).

Chung, F. and Lu, L. (2002:1), Connected components in random graphs with given degrees sequences, *Ann. Comb.* 6, 125-145.

Chung, F. and Lu, L. (2002:2), The average distances in random graphs with given expected degrees, *Proc. Natl. Acad. Sci.* 99, 15879-15882.

Dorogovtsev, S. and Mendes, J. (2003), *Evolution of Networks, from Biological Nets to the Internet and WWW*, Oxford University Press.

Erdős, P. and Rényi, A. (1959), On random graphs, *Publ. Math.* 6, 290-297.

Hofstad, R. van der, Hooghiemstra, G. and Znamenski, D. (2005), Random graphs with arbitrary i.i.d. degrees, preprint (www.win.tue.nl/~rhofstad).

Holroyd, A.E. and Peres, Y. (2005), Extra heads and invariant allocations. *The Annals of Probability* 33, 31-52.

Mattera, M. (2003), Annihilating random walks and perfect matchings of planar graphs, *Discrete Math. and Theor. Comp. Science* AC, 173-180.

Meshalkin, L.D. (1959), A case of isomorphisms of Bernoulli schemes, *Dkl. Akad. Nauk. SSSR* 128, 41-44.

Molloy, M. and Reed, B. (1995), A critical point for random graphs with a given degree sequence, *Rand. Struct. Alg.* 6, 161-179.

Molloy, M. and Reed, B. (1998), The size of the giant component of a random graph with a given degree sequence, *Comb. Prob. Comp.* 7, 295-305.

Newman, M., Strogatz, S. and Watts, D. (2001), Random graphs with arbitrary degree distributions and their applications, *Phys. Rev. E* 64, 026118.

Parry, W. (1979), An information obstruction to finite expected coding length, *Ergodic Theory* (Proc. Conf., Math. Forschungsinst., Oberwolfach 1978), 163-168, Lecture Notes in Math. 729, Springer, Berlin.

Schmidt, K. (1984), Invariants for finitary isomorphisms with finite expected coding lengths, *Invent. Math.* 76, 33-40.