Effects of Selenylation Modification on Immune-Enhancing Activity of Garlic Polysaccharide

Shulei Qiu1*, Jin Chen2*, Tao Qin1, Yuanliang Hu1*, Deyun Wang1, Qiang Fan3, Cunshuai Zhang3, Xingying Chen1, Xiaolan Chen1, Cui Liu1, Zhenzhen Gao1, Xiuping Li1

1 Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China, 2 National Research Center of Veterinary Biological Engineering and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China, 3 China Institute of Veterinary Drug Control, Beijing, China

Abstract

The garlic polysaccharide was modified by HNO3-Na2SeO3 method according to orthogonal design L9(34) to obtain nine selenizing garlic polysaccharides, sGPS1-sGPS9. Their effects on chicken peripheral lymphocytes proliferation in vitro were compared by MTT assay. The results showed that sGPSs could significantly promote lymphocytes proliferation, sGPS2, sGPS5 and sGPS6 presented stronger efficacy. In vivo experiment, 14-day-old chickens were injected respectively with sGPS2, sGPS5 and sGPS6 when they were vaccinated with ND vaccine taking unmodified GPS as control. The results showed that three sGPSs could significantly promote lymphocyte proliferation, enhance serum antibody titer, IFN-γ and IL-2 contents. These results indicated that selenylation modification could significantly enhance the immune-enhancing activity of GPS, sGPS6 possessed the best efficacy and could be as a candidate drug of immunoenhancer. Its optimal modification conditions were 400 mg of sodium selenite for 500 mg of GPS, reaction temperature of 70°C and reaction time of 6 h.

Introduction

Garlic is an eatable plant and also used as medicinal herb in many countries of the world [1,2]. It contains the water of 62%–68%, carbohydrate of 26%–30%, protein of 1.5%–2.1%, amino acids of 1%–1.5% and so on [3]. Garlic polysaccharide (GPS) is one of the major medicinal components of garlic and possess a variety of bioactivities, such as enhancing immunity, antibacterium, anti-virus, anti-oxidation, hepatoprotective, hypolipidemic, hypoglycemic and so on [4–6].

Selenium is an essential trace element for organisms [7]. In most districts of the world, people and animals need supplementing selenium. The selenium source includes organic and inorganic selenium. When inorganic selenium is applied, its dose is difficultly controlled and it has the disadvantage of cumulative toxicity and mutagenic effects. While organic selenium has lower toxicity and fewer side effects, it can not only play a better role of selenium, but also more significantly stimulate immune responses in comparison with inorganic selenium [8]. Because the organic selenium source is relatively rare, the combination of sodium selenite with polysaccharide into organic selenium compounds, selenizing polysaccharide, is not only an effective measure to develop new selenium source, but also make the physiologcal and pharmacological function of selenium and polysaccharide be optimized. Many researches confirmed that selenizing polysaccharide possessed duple and higher biological activity of polysaccharide and selenium, and was easily absorbed and utilized by the organism [7]. Therefore, it has very important significance to research the biosynthesis and pharmacological activity of selenizing polysaccharide [9].

The selenylation modification method of polysaccharide includes nitric acid-sodium selenite (HNO3-Na2SeO3) method [10], Selenium oxidate-pyridine method [11–13] and so on. Among these methods, HNO3-Na2SeO3 method is commonly used since the reaction conditions are simpler, production is faster and selenium content of modifier is higher [14].

In this study, GPS was modified by HNO3-Na2SeO3 method under nine kinds of modification conditions selecting three factors, usage amount of sodium selenite, the reaction temperature and reaction time [15], at three levels according to L9(34) orthogonal design. Nine selenizing GPSs (sGPSs), sGPS1-sGPS9 were obtained. Firstly, the effects of nine sGPSs on chicken peripheral lymphocytes proliferation in vitro were compared by MTT assay. Three sGPSs with better effect were picked out then injected for the chickens vaccinated with ND vaccine. The lymphocyte proliferation, serum antibody titer, IFN-γ and IL-2 contents of the chickens were determined. The aim of this study is to explore the probability of selenylation modification to improve the immune-enhancing activity of GPS, selected out the best sGPS and modification condition, and offer theoretical evidence for the development of new-type immunopotentiator.
Materials and Methods

Reagents and vaccine
Sodium selenite bought from Shanghai Lingfeng Chemical Reagent Ltd. was dissolved into 0.05 g mL\(^{-1}\) with ultrapure water. Standard selenium stored solution at 100 μg mL\(^{-1}\) supplied by National standard substance research center was accurately diluted into 1 μg mL\(^{-1}\) of standard selenium solution. Nitric acid (HNO\(_3\)) was the product of Shanghai Lingfeng Chemical Reagent Ltd.

RPMI-1640 (GIBCO) supplemented with 100 IU mL\(^{-1}\) benzylpenicillin, 100 IU mL\(^{-1}\) streptomycin and 10% fetal bovine serum was used for washing and re-suspending cells, diluting mitogen and culturing the cells. Hanks’ solution, pH was adjusted to 7.4 with 5.6% sodium bicarbonate solution, supplemented with benzylpenicillin 100 IU mL\(^{-1}\) and streptomycin 100 IU mL\(^{-1}\), was used for diluting blood. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, American Co.) was dissolved into 5 mg mL\(^{-1}\) with calcium and magnesium-free (CMF) phosphate-buffered saline (PBS, pH 7.4). Sodium heparin was dissolved into 5 mg mL\(^{-1}\) with PBS. These reagents were filtered 1 with calcium and magnesium-free (CMF) phosphate-buffered saline (PBS, pH 7.4). Sodium heparin solution were stored at −20°C, the others were at 4°C and MTT solution was in dark bottle.

Dimethylsulfoxide (DMSO, No. 12080211263), Nitric acid (HNO\(_3\)) and Sodium selenite was the product of Shanghai Lingfeng Chemical Reagent Ltd. Lymphocytes Separation Medium (No.20121201) was manufactured by Shanghai Hengxin Chemicals Ltd.

Newcastle Disease vaccine (La Sota strain, No. 119082) was purchased from Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science.

Chickens Interferon-γ (IFN-γ) ELISA kits and Chickens Interleukin-2 (IL-2) ELISA kits were the products of Shanghai Langdu Biotechnology Inc.

Preparation of sGPS

1. Extraction and purification of GPS. Garlic was bought from a farm product market of Nanjing City, place of production was Shandong province of China. GPS was extracted by water decoction and ethanol precipitation, purified by trichloroacetic acid method to eliminate protein, through column chromatography of DEAE Cellulose-52 (1.6 cm ×50 cm) and eluted with distilled water. The flow rate was maintained at 0.8 mL min\(^{-1}\), the eluent was collected with automatic fraction collector, 8 mL per tube [16]. The carbohydrate was examined by phenol-sulfuric acid assay and elution curve was drawn (to get a peak). The eluents contained polysaccharides were mixed, concentrated under reduced pressure and freeze-dried to obtain the purified GPS. Its carbohydrate content was 94.5% determined by the phenol-sulfuric acid method [17,18].

2. Selenylation modification of GPS. Three factors respectively at three levels, the reaction temperature at 50, 70 and 90°C (A), the usage amount of sodium selenite at 200, 300 and 400 mg for 500 mg of GPS (B), and the reaction time for 6, 8 and 10 h (C), were selected [15]. Nine modification conditions were designed according to L\(_9\) (3\(^4\)) orthogonal test (Table 1). After the reaction was finished, the mixture was cooled to room temperature, adjusted pH to 5–6 with saturated sodium carbonate solution, dialyzed in dialysis sack with 1 kDa ultrafiltration membrane against tap water and till no free sodium selenium detected by ascorbic acid method [15], and the polysaccharide solution was concentrated and freeze-dried. Nine selenizing GPSs respectively named sGPS\(_1\)-sGPS\(_9\) were obtained. Their selenium contents were determined by atomic fluorescence spectrometry [19] with atomic fluorescence spectrometer (Model AFS-930, Beijing Jitian instrument Co., Ltd.), and the carbohydrate contents were determined by the phenol-sulfuric acid method.

For the test in vitro, nine sGPSs were dissolved into 0.2 mg mL\(^{-1}\) with distilled water. For experiment in vivo, sGPS\(_3\), sGPS\(_5\), sGPS\(_6\) and GPS were diluted into 1 mg mL\(^{-1}\) with distilled water. The diluted preparations were sterilized by pasteurization and detected for endotoxin by pyrogen tests. When the endotoxin amount was up to the standard of Chinese Veterinary Pharmacopoeia [less than 0.5 EU mL\(^{-1}\)] [20], they were stored at 4°C for the test [21].

Experimental animals
One-day-old White Roman chicken (male), purchased from Tangquan Poultry Farm, were housed in wire cages (40 cm×60 cm×100 cm) in air-conditioned rooms at 37°C and lighted for 24 h at the beginning of pretrial period. The temperature was gradually declined to the room temperature and the light time to 12 h per day, which was kept constant in the following days. Chickens were fed with the commercial starter diet provided by the feed factory of Jiangsu Academy of Agricultural Science. The later experimental procedures were performed in strict accordance with internationally accepted principles and Chinese legislation on the use and care of laboratory animals, and the experimental use of animals and procedures followed were

![Table 1. Modification conditions, yields and contents of selenium and carbohydrate of every sGPS.](http://www.plosone.org/)

sGPS	A Temperature (°C)	B Na\(_2\)SeO\(_3\)(mg)	C Time(h)	Rate of Yield (%)	Se content (mg g\(^{-1}\))	Carbohydrate content (%)
sGPS\(_1\)	50	200	6	36.90	6.94	46.4
sGPS\(_2\)	50	300	8	37.64	8.37	45.7
sGPS\(_3\)	50	400	10	27.65	12.49	45.2
sGPS\(_4\)	70	200	8	32.10	9.43	49.3
sGPS\(_5\)	70	300	10	30.25	10.45	56.9
sGPS\(_6\)	70	400	6	34.43	11.36	52.6
sGPS\(_7\)	90	200	10	18.10	6.21	21.2
sGPS\(_8\)	90	300	6	24.32	7.99	34.4
sGPS\(_9\)	90	400	8	19.30	8.76	24.7

doi:10.1371/journal.pone.0086377.t001
approved by the Nanjing Agricultural University Animal Care Committee. All efforts were made to minimize suffering.

In vitro test

The effects of nine sGPSs on chicken peripheral lymphocytes proliferation in vitro were determined by MTT assay [22]. sGPS1–sGPS9 were diluted with RPMI-1640 in twofold serially from 100 μg·mL⁻¹ to 0.097 μg·mL⁻¹. GPS, from 1000 μg·mL⁻¹ to 0.97 μg·mL⁻¹, total 11 concentrations. Blood samples were collected from sixty-day-old non-vaccinated chickens and transferred immediately into aseptic capped tubes with sodium heparin, then diluted with equal volume of Hanks’ solution and carefully layered on the surface of lymphocytes separation medium. After 20 min of centrifuged at 2000 rpm, a white cloud-like lymphocytes’ band was collected and washed twice with RPMI-1640 media without fetal bovine serum. The resulting pellet was re-suspended into 2.5×10⁶ mL⁻¹ with RPMI-1640 media, and inoculated into 96-well culture plates, 100 μL per well. Then, in polysaccharide groups the ten polysaccharides of five concentrations were added, 100 μL per well, four wells each concentration, in cell control group (CC), RPMI-1640 media of 100 μL. The plates were incubated at 38.5°C in a humid atmosphere of 5% CO₂. After a incubation for 44 h, 20 μL of MTT (5 μg·mL⁻¹) was added into each well, and continued to incubate for 4 h. The supernatant was removed carefully and 100 μL of DMSO were added into each well to dissolve the formazan crystals. The plates were shaken for 5 min to dissolve the crystals completely. The absorbance of cells in each well was measured by microtiter enzyme-linked immunosorbent assay reader (Model DG-3022, East China Vacuum Tube Manufacturer) at a wave length of 570 nm (A₅₇₀ value) [22,23]. When the A₅₇₀ values of polysaccharide group were not significantly lower than that of the cells control group, it indicated that the polysaccharides had no cytoxicity, the corresponding concentrations were considered as its maximal safe concentration for lymphocytes. The experiment showed that the maximal safe concentrations of all sGPSs and GPS were within 500–3.125 μg·mL⁻¹. Their safe concentrations were supposed as 3.125 μg·mL⁻¹ in order to make the comparison at the same level.

sGPS1–sGPS6 and GPS were diluted with RPMI-1640 in twofold serially from 3.125 μg·mL⁻¹ to 0.097 μg·mL⁻¹ total 5 concentrations. The preparation of lymphocytes as above, the resulting pellet was re-suspended into 2.5×10⁶ mL⁻¹ with RPMI-1640 media, and respectively inoculated into 96-well culture plates, 100 μL per well. Then, in polysaccharide groups the ten polysaccharides at series of concentrations were added, 100 μL per well, four wells each concentration, in cell control group (CC), RPMI-1640 media of 100 μL. The plates were incubated at 38.5°C in a humid atmosphere of 5% CO₂. After an incubation for 44 h, 20 μL of MTT (5 μg·mL⁻¹) was added into each well, and continued to incubate for 4 h. The supernatant was removed carefully and 100 μL of DMSO were added into each well to dissolve the formazan crystals. The plates were shaken for 5 min to dissolve the crystals completely. The absorbance of cells in each well was measured by microtiter enzyme-linked immunosorbent assay reader (Model DG-3022, East China Vacuum Tube Manufacturer) at a wave length of 570 nm (A₅₇₀ value) [22,23]. When the A₅₇₀ values of polysaccharide group were not significantly lower than that of the cells control group, it indicated that the polysaccharides had no cytoxicity, the corresponding concentrations were considered as its maximal safe concentration for lymphocytes. The experiment showed that the maximal safe concentrations of all sGPSs and GPS were within 500–3.125 μg·mL⁻¹. Their safe concentrations were supposed as 3.125 μg·mL⁻¹ in order to make the comparison at the same level.

In vivo test

1. Experimental design. One hundred and eighty 14-day-old chickens (average maternal ND-HI antibody titer was 2.8 log2) were randomly assigned into 6 groups. The chickens except for blank control (BC) group were vaccinated with ND vaccine, repeated vaccination at 28 days old. At the same time of the first vaccination, the chickens in four polysaccharide groups were intramuscularly injected respectively with 0.5 mL of sGPS₅, sGPS₂, sGPS₈ and GPS, in vaccination control (VC) and BC group, with equal volume of physiological saline, once a day for three successive days.

2. Peripheral lymphocytes proliferation assay. On days 7 (D7), 14 (D14), 21 (D21) and 28 (D28) after the first vaccination, the blood samples of four chickens randomly from each group were collected for the determination of peripheral lymphocytes proliferation by MTT assay (same to 2.3). The cellular A₅₇₀ values were determined as the index of lymphocytes proliferation. Meanwhile the average lymphocytes proliferation rate were calculated to compare the strength of lymphocytes proliferation according to the equation (Yu, et al., 2005; Lu, 2008): Average lymphocytes proliferation rate (%) = (A₅₇₀ polysaccharide group/A₅₇₀ control group)×100% (A was an average value of five concentration groups of polysaccharide or four wells of control group).

3. Serum HI antibody assay. On days 7 (D7), 14 (D14), 21 (D21) and 28 (D28) after the first vaccination, the blood samples of six chickens randomly from each group were collected for examination of serum hemagglutination inhibition (HI) antibody titer by micro-method [24].

4. Serum IFN-γ and IL-2 contents. On days 14 (D14), 21 (D21) and 28 (D28) after the first vaccination, the blood samples of six chickens randomly from each group were collected for determination of serum contents of IFN-γ and IL-2 by Enzyme-linked Immunosorbent Assay (ELISA).

Statistical analysis

Data were expressed as means ± SEM and the Duncan’s multiple range tests was used to analyze the difference among polysaccharides and control groups. Differences between means were considered significant at P<0.05.

Results

The yields and contents of selenium and carbohydrate in each sGPS

The modification conditions, yields and contents of selenium and carbohydrate of every sGPSs are listed in Table 1. The yield of sGPS₂ was the highest, up to 37.64%, and next were sGPS₁, sGPS₆ and sGPS₄. The selenium content of sGPS₃ was the highest (12.49 mg·g⁻¹), and next were sGPS₅, sGPS₇ and sGPS₈. The carbohydrate content of sGPS₅ was the highest (56.9%), and next were sGPS₈, sGPS₄ and sGPS₁.

The change of lymphocytes proliferation in vitro test

The cellular A₅₇₀ values of every group are listed in Table 2. The A₅₇₀ values in sGPS₁ at 3.125–0.391 μg·mL⁻¹, sGPS₂–sGPS₉ and GPS at all concentrations, sGPS₁ at 1.563–0.195 μg·mL⁻¹ groups were significantly larger than those of corresponding cell control group respectively (P<0.05).

The lymphocytes proliferation rates of every group are illustrated in Fig. 1. The proliferation rate in sGPS₅ group was the highest (52.16%), next was sGPS₅ group (47.93%), these two groups were significantly higher than that in GPS group (P<0.05). In sGPS₃ (43.90%), sGPS₇ (40.11%) and sGPS₂ (34.27%) groups were numerically higher than that in GPS group respectively (P>0.05).

The changes of lymphocyte proliferation in vivo test

The cellular A₅₇₀ values of every group are illustrated in Fig. 2. At all time points after vaccination, the A₅₇₀ values in all polysaccharide groups were significantly or numerically higher than those in VC and BC groups at same time points, in sGPS₅.
was the highest, and there were not significant differences between GPS group and VC group ($P>0.05$). The A_{570} values in sGPS$_1$ and sGPS$_6$ groups on D_7 and in three sGPS groups on $D_{14}-D_{28}$ were significantly higher than those in VC and GPS group at same time points ($P<0.05$).

The average lymphocyte proliferation rates of every group are illustrated in Fig. 3. The average lymphocyte proliferation rates in six sGPS groups were significantly higher than that of VC group and GPS group ($P<0.05$), in sGPS$_6$ group was the highest (45.18%) and significantly higher than that of sGPS$_1$ group (29.11%) ($P<0.05$). There was not significant difference between GPS (15.19%) group and VC (11.48%) group ($P>0.05$).

The changes of serum antibody titer

The antibody titers of every group are illustrated in Fig. 4. At all time points after vaccination, the serum antibody titers in all polysaccharide groups were significantly or numerically higher than those in VC and BC groups, and in three sGPSs groups except sGPS$_3$ on D_{21} were significantly higher than those in VC group ($P<0.05$). The antibody titers in sGPS$_3$ group on D_7 and sGPS$_6$ group on $D_{14}-D_{28}$ were the highest, and in sGPS$_1$ and sGPS$_6$ groups at all time points were significantly higher than those in GPS group at same time points ($P<0.05$). The were not significant differences between sGPS$_3$ and unmodified GPS group at all time points ($P>0.05$).

The changes of serum IFN-γ contents

The serum IFN-γ contents of every group were illustrated in Fig. 5. At all time points after vaccination, the serum IFN-γ contents in all polysaccharide groups except GPS on D_{21} were significantly higher than those in VC and BC groups at same time points ($P<0.05$) and in sGPS$_6$ group was the highest. The IFN-γ contents in sGPS$_3$ and sGPS$_6$ groups at all time points and in sGPS$_1$ group on $D_{14}-D_{28}$ were significantly higher than those in GPS group at same time points ($P<0.05$).

Table 2. The cellular A_{570} values of every group in vitro test.

Concentration (μg/mL$^{-1}$)	sGPS$_1$	sGPS$_2$	sGPS$_3$	sGPS$_4$	sGPS$_5$
3.125	0.268±0.003a	0.199±0.004d	0.242±0.005d	0.270±0.006b	0.276±0.004c
1.563	0.244±0.004b	0.213±0.004c	0.282±0.006e	0.291±0.004a	0.301±0.005b
0.781	0.232±0.004c	0.242±0.004b	0.312±0.006b	0.277±0.005ab	0.326±0.004a
0.391	0.210±0.005a	0.270±0.005a	0.336±0.005a	0.272±0.007a	0.305±0.003b
0.195	0.195±0.005a	0.265±0.005a	0.295±0.004a	0.250±0.004a	0.275±0.005a
CC	0.192±0.001a	0.177±0.001a	0.204±0.004a	0.210±0.005a	0.200±0.003a

Concentration (μg/mL$^{-1}$)	sGPS$_6$	sGPS$_7$	sGPS$_8$	sGPS$_9$	GPS
3.125	0.281±0.005a	0.201±0.002cd	0.346±0.004a	0.245±0.005b	0.264±0.005b
1.563	0.308±0.004b	0.224±0.004b	0.326±0.002b	0.257±0.003ab	0.253±0.004a
0.781	0.335±0.003b	0.236±0.004a	0.305±0.005e	0.272±0.004a	0.236±0.004b
0.391	0.320±0.003b	0.225±0.003b	0.293±0.005d	0.261±0.009a	0.229±0.004b
0.195	0.289±0.005b	0.210±0.003c	0.275±0.003b	0.265±0.007a	0.200±0.005c
CC	0.202±0.005c	0.195±0.003c	0.221±0.003c	0.210±0.002c	0.181±0.002c

Column data without the same superscripts (a–f) differ significantly ($P<0.05$). Values are mean ± standard error of the mean (SEM), $n=4$/group.

doi:10.1371/journal.pone.0086377.t002
The changes of serum IL-2 contents

The serum IL-2 contents of every group are illustrated in Fig. 6. At all time points after vaccination, the serum IL-2 contents in all polysaccharide groups were significantly higher than those in VC and BC groups (P<0.05), in sGPS6 group was the highest and in three sGPSs were significantly higher than those in GPS group at same time points (P<0.05).

Discussion

As a safe and effective immune response regulator, selenium polysaccharide has the characteristics of low toxicity, high bioavailability, clear pharmacological action and so on [25]. It includes natural selenium polysaccharide and synthetic selenizing polysaccharide. Because of natural selenium polysaccharide with rare source, its application is restrained. In the past decades, people have been exploring the artificial methods to obtain selenium polysaccharide, such as selenic enrichment, selenic biotransformation, selenylation modification of polysaccharide, and so on [7,26,27]. Tang Jiajun et al synthesized a selenizing carrageenan polysaccharide with selenium powder and carrageenan [28]. Gong Xiaozhong prepared selenizing astragalus polysaccharide and selenizing dextran with high selenium content by selenylation reaction of the polysaccharides with a selenizing reagent with acyl chloride structure (SeOCl2) [29]. By comparison we found that nitric acid-sodium selenite method was an ideal method which was characterized by simple reaction process, feasible, less environmental pollution and convenient products recovery [14]. Therefore, this method was applied to modify garlic polysaccharide.

Immune response of organism includes cellular and humoral immunity. Cellular immunity is mediated mainly by T lymphocytes [30]. The lymphocyte proliferation is an important index to evaluate cellular immunity, and the lymphocyte proliferation rate can directly reflect the strength of cellular immunity [31]. The results in vitro test showed that the A570 values in sGPS1 at 3.125–0.391 μg·mL⁻¹, sGPS2–sGPS6, sGPS8–sGPS9 and GPS at all concentrations and sGPS5 at 1.563–0.195 μg·mL⁻¹ groups were significantly larger than those in corresponding cell control group, this indicated that they could significantly promote lymphocyte proliferation at these concentrations. The lymphocyte proliferation rate in sGPS6 group was the highest, next was sGPS5, these two groups were significantly and in sGPS2, sGPS3 and sGPS8 groups were numerically higher than that of unmodified GPS group, this indicated that selenylation modification could significantly enhance the cellular immune-enhancing activity of GPS in vitro and sGPS6 possessed the best efficacy.
The results in vivo test showed that at all time points after vaccination, the A570 values in all polysaccharide groups were significantly or numerically higher than those in VC groups at same time points, and the average lymphocyte proliferation rates in three sGPSs groups were significantly lower than that of unmodified GPS group, the serum IL-2 contents in sGPS5 and sGPS6 groups on D14–D21 were significantly higher than those in unmodified GPS group at same time points, in sGPS6 was the highest, there were not significant differences between GPS group and VC group, the average lymphocyte proliferation rates in three sGPSs groups on D14–D20 were significantly higher than those in unmodified GPS group at same time points, in sGPS6, was the highest, these results indicated that selenylation modification could significantly enhance the cellular immune-enhancing activity of GPS in vivo, sGPS6 possessed the best efficacy. Liu Jia has confirmed that sGPS could promote macrophage-mediated immune reaction and boost immune response [32].

The humoral immune response mediated by B cells is a specific antigen-antibody reaction [33], and is one of the main factors to resist infectious diseases [34]. The antibody level is the marker reflected humoral immune function in bird species [35]. The results in vivo test showed that at all time points after vaccination, the serum antibody titers in all polysaccharide groups were higher than VC and BC groups, and in three sGPSs groups except sGPS3 on D21 were significantly higher than that in VC group, this indicated that these polysaccharides could significantly promote humoral immune response. The serum antibody titers in sGPS3 and sGPS6 groups at all time points were significantly higher than those in unmodified GPS group at same time points, and in sGPS6 group on D14–D21 was the highest, these results indicated that selenylation modification could significantly enhance the humoral immune-enhancing activity of GPS, sGPS6 possessed the best efficacy. Our previous research results also confirmed that selenylation modification can significantly enhance the immune-enhancing activity of CAP [36]. IFN-γ and IL-2 are secreted by Type 1 helper T cells (Th1 cell) mediating cellular immune response [37], and are the main cytokines that improve cell immunity. IL-2 can induce proliferation of B and NK cells, IFN-γ can activate macrophages and NK cells and promote the differentiation from TH0 cells into TH1 cells [38–40]. The results of this research showed that the serum IFN-γ contents in all polysaccharide groups except GPS on D21 were significantly higher than those in VC group at same time points, and the serum IL-2 contents in all polysaccharide groups at all time points were significantly higher than those in VC group at same time points, these results indicated that they could significantly promote secretion of these two cytokines, thereby enhancing immunity. The IFN-γ contents in sGPS3 and sGPS6 groups at all time points and in sGPS6 group on D14–D21 were significantly higher than those in unmodified GPS group, the serum IL-2 contents in three sGPSs were significantly higher than that in unmodified GPS group, and the serum IFN-γ and IL-2 contents in sGPS6 were the highest, these results indicated that selenylation modification could significantly promote secretion of cytokines, sGPS6 possessed the best efficacy. Other study confirmed that Se-ECZ-EPs could significantly enhance the contents of cytokine compared with Na2SO4.

Selenizing polysaccharide is synthesized with selenium and polysaccharide therefore possesses dual pharmacological activities of selenium and polysaccharide but it is not the simple addition of two kinds of activities, its activity is higher or newer as compared with selenium and polysaccharide [26,41–42]. This study found that the immune-enhancing activity of sGPS6 has certain correlation with its selenium content and carbohydrate content. Among the nine sGPSs, sGPS5, sGPS3 and sGPS6 presented stronger immune-enhancing activity in vitro, their selenium or carbohydrate contents were located in the first two places. sGPS6 presented the strongest immune-enhancing activity in vivo, its selenium and carbohydrate contents were arranged in second place, while sGPS1 had the highest selenium content and the lowest carbohydrate content, and sGPS6 had the highest carbohydrate content, the lowest selenium content, their immune-enhancing activities were lower than that of sGPS6. From this it could be seen that selenizing polysaccharide with stronger immune-enhancing activity required the combination of higher selenium content with higher carbohydrate content.

In conclusion, selenylation modification can significantly enhance the immune-enhancing activity of GPS, sGPS6, presented best efficacy and would be as a candidate drug of new-type immunoenhancer, the optimal modification conditions were 400 mg of sodium selenite for 500 mg of GPS, the reaction temperature of 70°C and the reaction time of 6 h.

Acknowledgments

We are grateful to all other staff in the Institute of Traditional Chinese Veterinary Medicine of Nanjing Agricultural University for their assistance in the experiments.

Author Contributions

Conceived and designed the experiments: YH. Performed the experiments: SQ JC TQ QF Xingying Chen Xiaolan Chen CL ZG XL. Analyzed the data: JC DW CZ. Wrote the paper: SQ.

References

1. Lau B H S, Adetumbi M A, Sanchez A (1983) Allium sativum (garlic) and atherosclerosis: A review. Nutrition Research 3: 119–128.
2. Adetumbi M A, Lau B H S (1983) Allium sativum (garlic) — A natural antibiotic. Med Hypotheses 12: 227–237.
3. Koch H P, Lavon L D (1996) Garlic: The Science and Therapeutic Application of Allium sativum L. and Related Species, second ed. pp. 1–329.
4. Zheng M, Pan S B, Jiang Y D (2003) The influence of garlic polysaccharide to serum and liver tissue ALT, AST of liver injury in mice and its acute toxicity test. Journal of Xiaanming College 17: 85–87.
5. Piraprez G, Hérent M F, Collin S (1998) Flavour retention by lipids measured in fresh cheese matrix. Food Chemistry 61: 119–127.
6. Guichard E, Langouëncie S (2000) Interactions between β-lactoglobulin and flavour compounds. Food Chemistry 71: 301–308.
7. Staal M, Yang Z N, Huttenen E, Widmark G (2000) Structural elucidation of the viscous exopolysaccharide produced by Lactobacillus helveticus L161. Carbohydrate Research 326: 113–119.
8. Hu Q, Guo B (2001) The influence of spirulina selenium polysaccharide on immune function. Journal of Chinese Marine Drugs 5: 20–29.
9. Li X, Yan J, Cui X (2006) The progress of research and application of selenium polysaccharide. Chinese Herbal Medicine 37: 7–9.
10. Yang J, Huazj J, Jiang K, Zhu G, Han Y (2009) The research of optimization of preparation process for selenizing Rhodiola Polysaccharides according to orthogonal test and the character of selenizing Rhodiola Polysaccharides. Chinese Patent Medicines 32: 1063–1067.
11. Gong X (1997) The research of selenizing Astragalus polysaccharide and selenizing gnagan—selection of Selenylation modification condition. Journal of Shenzhen University 14: 68–75.
12. Wang Y, Zhang D, Zhang L, Du G, Zhang Y, et al (2009) The research of optimization of preparation process for selenizing Ganoderma hirudin polysaccharides. Food science 30: 316–318.
13. Wang Y, Deng J, Wan E, Zuo Z, Li H (2009) The effect of flesh chickens lymphocytes immune function and Newcastle disease immunity with maduro. Animal Husbandry and Veterinary Medicine 41: 71–73.
14. Qin T, Chen J, Wang D, Hu Y, Wang M, et al (2013) Optimization of selenylation conditions for Chinese angelica polysaccharide based on immune-enhancing activity. Carbohydr Polym 92: 645–650.
15. Li G, Miu J, Liu F (2001) Selenium polysaccharide compounds and their preparation methods, Chinese Patent NO: CN121414C.
16. Liang L (2008) The research of the extraction, Purification of garlic polysaccharide and the activity its biological function. Master Thesis of Nanchang University.
17. Li G, Wang Z (2008) Sulfated esterifying technology of polysaccharide from Auricularia auricula and IR spectrum analysis. Journal of Northeast Forestry University, 36: 66–68.
18. Yu W, Yang X, Liu W, Liu F (2009) Assay study on content of polysaccharides in fucus carica by phenol-sulfuric acid method. Food Science and Technology 10: 256–258, 262.
19. Gao J, Qin S, Huang K (2006) Assay of organic selenium and inorganic selenium of enriched yeast by hydride generation atomic fluorescence spectrometry method. Journal of Analytical Science 22: 157–159.
20. Veterinary Pharmacopoeia Commission of the People’s Republic of China (2010) Veterinary pharmacopoeia of the People’s Republic of China, part I. Appendices. Beijing: Chemical Industrial Press (pp. 72–73).
21. Kong X, Hu Y, Rui R, Wang D, Li X (2004) Effects of Chinese herbal medicinal ingredients on peripheral lymphocyte proliferation and serum antibody titer after vaccination in chicken. International Immunopharmacology 4: 975–982.
22. Wang D, Hu Y, Sun J, Kong X, Zhang B (2005) Comparative study on adjuvanticity of compound Chinese herbal medicinal ingredients. Vaccine 23: 3704–3708.
23. Theliso M O, Mbatu P A, Bischoop S P R (2004) Different approaches to the vaccination of free ranging village chickens against Newcastle disease in Qwa-Qwa, South Africa, Vet Microbiol 101: 23–30.
24. Abula S, Wang J, Hu Y, Wang D, Sheng X, et al (2011) Screening on the immune-enhancing active site of Siberian solomonseal rhizome polysaccharide. Carbohydrate Polymers 85: 687–691.
25. Liu J, He X, Chen H (2003) Kappa-selenocarrageenan and its applications in food industry. Beve Fast Frozen Food Ind 9: 27–29.
26. Cui Q, Shang D, Zhou X (2003) Research progress of selenium polysaccharide. Journal of Chinese biochemical pharmaceutics 24: 155–157.
27. Zhang X, Wang L, Li G (2000) The extraction and separation and purification of Pavlova algae selenium polysaccharide. Oceanology and Limnology 31: 643–646.
28. Tang J, Rui H (1988) The preparation of selenium carrageenan and the properties of its physicochemical and the research of its biochemical activity. Biochemistry and Biophysics 20: 259–267.
29. Gong X (1997) The research of selenizing astraplus polysaccharide and selenizing glican—selection of selenylation modification condition. Journal of Shenzhen University 14: 68–75.
30. Yang H C (1997) Animal immunology. China Agri Univ Press; 2003. p. 129.
31. Li C R, Santoso S, Lo D D (2007) Quantitative analysis of T cell homeostatic proliferation. Cell Immunology 250: 40–54.
32. Liu J, Pan D D (2013) The immunomodulatory effects of selenium exopolysaccharide on mouse peritoneal macrophages. Journal of Nutrition 35: 36–38.
33. Irie T, Watarai S, Kodama H (2003) Humoral immune response of carp (Cyprinus carpio) induced by oral immunization with liposome-entrapped antigen. Developmental & Comparative Immunology 27: 413–421.
34. Guo L, Wang D, Hu Y, Zhao X, Wang Y, et al (2012) Adjuvanticity of compound polysaccharides on chickens against Newcastle disease and avian influenza vaccine. International Journal of Biological Macromolecules 50: 512–517.
35. Qin Y, Hu Y, Cui B, Zhang H, Wang Y (2007) Effects of achyranthes bidentata polysaccharide on immune efficacy of vaccine in chickens. Acta Veterinaria et Zootechnica Sinica 28: 723–727.
36. Qin T, Chen J, Wang D, Hu Y, Zhang J, et al (2013) Selenylation modification can enhance immune-enhancing activity of Chinese angelica polysaccharide. Carbohydrate Polymers 93: 183–187.
37. Lu Z, Jin M, Huang M, Wang Y (2013) Bioactivity of selenium-enriched exopolysaccharides produced by Enterobacter cloacae Z0206 in broilers. Carbohydrate Polymers 96: 131–136.
38. Basinski T M, Holzmann D, Eisegger T, Zimmermann M, Khunker S, et al (2009) Dual nature of T cell-epithelium interaction in chronic rhinosinusitis. Journal of Allergy and Clinical Immunology 124: 74–80.
39. Decker T, Müller M, Stockinger S (2005) The yin and yang of type 1 interferon activity in bacterial infection. Nature Reviews Immunology 19: 1–13.
40. Zimmermann M, Koreck A, Meyer N, Basinski T, Meiler F (2011) TNF-like weak inducer of apoptosis (TWEAK) and TNF-alpha cooperate in the induction of keratinocyte apoptosis. Journal of Allergy and Clinical Immunology 127: 18–27.
41. Cao J, Zhong X (2010) Analysis of selenium polysaccharide. Chinese folk medicine 19: 61–62.
42. Li X, Hu Y (2008) Research progress of selenium polysaccharide. Hubei journal of nationalities institute (Natural science edition) 26: 456–460.