Exact inversion of Funk-Radon transforms with non-algebraic geometries

Victor Palamodov

November 29, 2017

Abstract. Any even function defined on 2-sphere is reconstructed from its integrals over big circles by means of the classical Funk formula. For the non-geodesic Funk transform on the sphere of arbitrary dimension, there is the explicit inversion formula similar to that for the geodesic transform. A function defined on the sphere of radius one is integrated over traces of hyperplanes tangent to a sphere contained in the unit ball. This reconstruction is generalized in the paper for Riemannian hypersurfaces in an affine space.

MSC (2010) Primary 53C65; Secondary 44A12

1 Introduction

A Riemannian manifold X is embedded as a hypersurface in an affine space. A function defined on X is integrated over intersections of X with hyperplanes tangent to an ellipsoid Σ (called cam). We prove the reconstruction formula that looks like the inversion formula for the non-geodesic Funk transform on the sphere stated in [2]. The only condition on X and Σ is that no three points x, y, σ are collinear.

2 Auxiliary

Let X and Σ be manifolds of dimension $n > 1$ with volume forms dX and $d\Sigma$ and Φ be a real smooth function defined on $X \times \Sigma$ such that $d\Phi (x, \sigma) \neq 0$ as $\Phi (x, \sigma) = 0$. The Funk-Radon transform M_{Φ} generated by this function is defined by

$$
M_{\Phi} f (\sigma) = \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} \int_{|\Phi| \leq \varepsilon} f dX = \int_{Z(x)} f (x) \frac{dX}{d\Phi} \sigma \in \Sigma.
$$

Suppose that (I): the map $D : Z \times \mathbb{R}_{+} \to T^{*} (X) \setminus 0$ is a diffeomorphism, where $Z = \{ \Phi (x, \sigma) = 0 \}$ and $D (x, \sigma, t) = (x, td_{\sigma} \Phi (x, \sigma))$. This implies that for any $x \in X$, set $Z (x) = \{ \sigma ; \Phi (x, \sigma) = 0 \}$ is diffeomorphic to the sphere S^{n-1}. Points $x, y \in X$ are called conjugate for a generating function Φ, if $x \neq y$, $\Phi (x, \sigma) =$
Φ(y, σ) = 0 and d_σΦ(x, σ) \parallel d_σΦ(y, σ) for some σ ∈ Σ. Under condition (I) and condition (II): there are no conjugate points, the integral

\[Q_n(x, y) = \int_{Z(y)} (Φ(x, σ) - i0)^{-n} \frac{dΣ}{d_σΦ(y, σ)} \]

is well defined for any x, y ∈ X, y ≠ x.

Theorem 1 Let dX be the volume form of a Riemannian metric g on X and Φ be a generating function satisfying (I), (II) and condition (III):

\[\text{Re } i^nQ_n(x, y) = 0 \text{ for all } x, y ∈ X \text{ such that } x \neq y. \quad (1) \]

For any odd n, an arbitrary function \(f \in C^{n-1}(X) \) with compact support can be reconstructed from data of the Funk-Radon transform by

\[f(x) = \frac{1}{2j^{n-1}D_n(x)} \int_{Σ} \delta^{(n-1)}(Φ(x, σ)) M_Φ f(σ) dΣ. \quad (2) \]

For even n, any function \(f \in C^{n-1+ε}(X) \), is recovered by

\[f(x) = \frac{(n-1)!}{j^nD_n(x)} \int_{Σ} M_Φ f(σ) \frac{dΣ}{Φ(x, σ)^n}, \quad (3) \]

where for any n

\[D_n(x) = \frac{1}{|S^{n-1}|} \int_{Z(x)} \frac{1}{|∇_xΦ(x, σ)|_g^n d_σΦ(x, σ)}. \]

The integrals (3) and (2) converge to f uniformly on any compact set K ⊂ X.

See [2] for a proof. The singular integrals like (3) and (2) are defined as follows

\[\int \frac{ω}{Φ^n} = \frac{1}{2} \left(\int \frac{ω}{(Φ - i0)^n} + \int \frac{ω}{(Φ + i0)^n} \right), \]
\[\int_{Σ} δ^{(n-1)}(Φ) ω = (-1)^{n-1} \frac{(n-1)!}{2πi} \left(\int \frac{ω}{(Φ - i0)^n} - \int \frac{ω}{(Φ + i0)^n} \right) \]

for any smooth n-form ω.

3 Reconstructions

Theorem 2 Let \(E^{n+1} \) be an affine space with an invariant volume form dV and X be a smooth hypersurface in \(E^{n+1} \) (occasionally not closed) with a Riemannian metric g. Let Σ be an ellipsoid in \(E^{n+1} \) such that (E): any line that meets X at least twice or is tangent to X does not touch Σ. Then for any odd n, any function \(f \in C_0^{n-1}(X) \) can be recovered from integrals

\[M_Φ f(σ) = \int_{Σ} δ(⟨x - σ, ∇q(σ)⟩) f(x) d_σX = \int_{Z(σ)} f(x) \frac{d_σX}{⟨dx, ∇q(σ)⟩}, \sigma ∈ Σ \]
by
\[f(x) = \frac{1}{2^{j-1}D_n(x)} \int_{\Sigma} \delta^{(n-1)}(\langle x - \sigma, \nabla q(\sigma) \rangle) M_\Phi f(\sigma) d\Sigma. \]

For any even \(n \), an arbitrary function \(f \in C^{n-1+\varepsilon}_0(X) \) can be reconstructed by
\[f(x) = \frac{(n-1)!}{\int^{n} \Delta_n(x) \int_{\Sigma} \frac{M_\Phi f(\sigma)}{\langle x - \sigma, \nabla q(\sigma) \rangle} d\Sigma. \]

For any \(n \), \(Z(\sigma) = \{ x; \langle x - \sigma, \nabla q(\sigma) \rangle = 0 \} \), \(d\Sigma = dV/dq \) and
\[\Delta_n(x) \equiv \frac{1}{|S^{n-1}|} \int_{Z(x)} \frac{1}{|\nabla_x \Phi|_g} d\sigma \langle x - \sigma, \nabla q(\sigma) \rangle, \ x \in X. \]

The integrals converge uniformly on any compact set in \(X \).

Remark 1. Here \(d_g X \) is the volume form of the Riemannian metric \(g \) on \(X \) and \(|\cdot|_g \) is the Riemannian norm of a covector.

Remark 2. Generating function \(\Phi \) can be replaced by
\[\Phi'(x, \sigma) = \langle x - e, \nabla q(\sigma) \rangle - r, \ r = 2 - 2q(e) \quad (4) \]
where \(e \) is the center of \(\Sigma \). It coincides with \(\Phi \) on \(X \times \Sigma \) and is linear in \(\sigma \). The ellipsoid can be replaced by an arbitrary hyperboloid \(H \) in \(E^{n+1} \) and the volume form \(T^*(dV) \) where \(T \) is a projective transform of the ambient projective space \(P^{n+1} \) such that \(T(H) \) is an ellipsoid.

Remark 3. If \(Y \) is a closed and convex manifold in \(E^{n+1} \), and the cam is inside of \(Y \), then for any \(\tau \in \Sigma \), the manifold \(X = \{ x \in Y: \Phi(x, \tau) > 0 \} \) fulfills (\(E \)). If \(Y \) is a sphere with the center at a one-point cam then \(X \) is a hemisphere and Theorem 2 provides inversion of the Funk theorem \([1]\). If \(X \) is a hyperplane and the cam is a point in \(E^{n+1} \) or at infinity Theorem 2 is equivalent to the Radon inversion theorem. In the latter case to fulfill (\(I \)) one need to take each hyperplane through the cam point two times with the opposite conormal vectors.

Theorem 2 was obtained in \([2]\) for the case \(X \) is a subset of the sphere \(S^n \) and the cam is a sphere in the inside \(S^n \). This result with one-point cam was considered also in \([3]\). Note that for arbitrary \(X \) and one-point cam \(\{ e \} \), Theorem 2 is reduced to Funk’s result by the central projection of \(X \) to the unit sphere \(S^n \) with the center \(e \).

4 Proof

The reconstruction formulas as above are invariant with respect to any affine transformation. Therefore we can assume that \(\Sigma \) is a sphere (which makes some geometric arguments more obvious). The function \(\Phi \) generates the family of hyperplane sections of \(X \) since any hyperplane \(H \) tangent to \(\Sigma \) can be written in the form \(H_\sigma = \{ x; \langle x - \sigma, \nabla q(\sigma) \rangle = 0 \} \) for some \(\sigma \in \Sigma \). Now we check that \(\Phi(x, \sigma) = \langle x - \sigma, \nabla q(\sigma) \rangle \) satisfies conditions (\(I \)), (\(II \)) and (\(III \)) as in Sect.2.
Lemma 3 Φ satisfies (I).

Proof. We have $d_x \Phi \neq 0$ on Z since of (E). For any point $x \in X$ and any covector $v \in T^*_x (X)$, $v \neq 0$, there exists one and only one hyperplane H_σ such that $x \in H_\sigma$ and $v = td_x \Phi (x, \sigma)$ on $T^*_x (X)$ for some $t > 0$. It follows that the map D_X is bijective. We prove that D_X is a local diffeomorphism. This condition can be written in the form

$$\det J_{\xi, \tau} (x, \sigma) \neq 0, \quad (x, \sigma) \in Z,$$

where

$$J_{\xi, \tau} = \begin{pmatrix} t \nabla_\xi \Phi & \nabla_\xi \nabla_\tau \Phi \\ 0 & \nabla_\tau \Phi \end{pmatrix}$$

and ξ, τ are arbitrary local systems of coordinates on X and Σ respectively. Let $T = (t, t_0)$ be a $n + 1$-vector such that $TJ = 0$ where

$$J_{\xi, \tau} = \begin{pmatrix} \langle \partial x / \partial \xi, \nabla q \rangle & \langle \partial x / \partial \xi \times \partial \sigma / \partial \tau, \nabla^2 q (\sigma) \rangle \\ \langle (x - \sigma) \times \partial \sigma / \partial \tau, \nabla^2 q (\sigma) \rangle & \langle (x - \sigma) \rangle \end{pmatrix}$$

and $\langle \partial \sigma / \partial \tau, \nabla q (\sigma) \rangle = 0$ since q is constant on Σ. Equation $TJ = 0$ is equivalent to

$$\langle (t, \partial x / \partial \xi), \nabla q \rangle = 0,$$

$$\langle (t, \partial x / \partial \xi) + t_0 (x - \sigma) \times \partial \sigma / \partial \tau_j, \nabla^2 q (\sigma) \rangle = 0, \quad j = 1, ..., n. \quad (7)$$

Vector $(t, \partial x / \partial \xi)$ is tangent to X and (7) means that it is also tangent to Σ at σ. Vector $x - \sigma$ is also tangent to Σ since of $\Phi (x, \sigma) = 0$. Therefore there exist constants $c_1, ..., c_n$ such that

$$\theta \triangleq c_1 \partial \sigma / \partial \tau_1 + ... + c_n \partial \sigma / \partial \tau_n = \langle t, \partial x / \partial \xi \rangle + t_0 (x - \sigma).$$

Taking the corresponding linear combination of equations (7) we get

$$\langle \theta \times \theta, \nabla^2 q (\sigma) \rangle = 0$$

which implies $\theta = 0$ since the form $\nabla^2 q$ is strictly positive. It follows that $\langle t, \partial x / \partial \xi \rangle + t_0 (x - \sigma) = 0$ which implies that both terms vanish since the first one is tangent to X and the second one is transversal to X. Finally $t = 0$, $t_0 = 0$ and $T = 0$ which completes the proof of (II) and of the Lemma. \hfill \Box

Condition (II). Check that generating function Φ coincides with $[I]$. This follows from

$$\Phi' (x, \sigma) - \Phi (x, \sigma) = \langle x - e, \nabla q (\sigma) \rangle - r = 2 (q (\sigma) - q (e)) - r = 0 \quad (8)$$

since $q (\sigma) - q (e)$ is a quadratic form of $\sigma - e$, $\sigma \in \Sigma$. Suppose that this condition violates for some points $x, y \in X$. We have then $a \langle x - e, \nabla^2 q (\sigma) \rangle = b \langle y - e, \nabla^2 q (\sigma) \rangle$ for some vector $(a, b) \neq (0, 0)$ and a point $\sigma \in \Sigma$. This implies that $a (x - e) = b (y - e)$ since the matrix $\nabla^2 q$ is nonsingular. This yields that $x, y,$ and e belong to one line. This line crosses the cam which is impossible since of (E).
Lemma 4 Function Φ fulfils (III).

Proof. We are going to show that integral

$$Q_n(x,y) = \text{Re} i^n \int_{Z(y)} (\Phi(x,\sigma) - i0)^{-n} \frac{d\Sigma}{d\sigma \langle y - \sigma, \nabla q(\sigma) \rangle}$$

(9)

vanishes for all $x, y \in X, y \neq x$. We have

$$\Phi(x,\sigma) = \Phi(x,\sigma) - \Phi(y,\sigma) = \langle x - y, \nabla q(\sigma) \rangle$$
on $Z(y)$. The right hand side does not change its sign if and only if the point x is contained in the convex closed cone bounded by the lines through points y that are tangent to $Z(y)$. It is not the case since of (E). Therefore $\Phi(x,\sigma)$ does change its sign on $Z(y)$. By (8)

$$d\sigma \langle y - \sigma, \nabla q(\sigma) \rangle - \langle y - e, d\sigma \nabla q(\sigma) \rangle = -d(\sigma - e, \nabla q(\sigma)) = -d(q(\sigma) - q(e)) = 0$$
on Σ since $q(\sigma) = 1$. The volume form in (8) equals

$$\frac{d\Sigma}{d\sigma \langle y - \sigma, \nabla q(\sigma) \rangle} = \frac{dV}{dq \wedge \langle y - e, d\sigma \nabla q(\sigma) \rangle}.$$

Choose affine coordinates $\sigma = A\xi + e$ on E^{n+1} where A is the diagonal matrix such that $2q(A\xi + e) = |\xi|^2$. Then $dV = \det A d\xi_1 \wedge ... \wedge d\xi_{n+1}$, $dq = \sum \xi_i d\xi_i$ and $\langle y - e, d\nabla q(\sigma) \rangle = \langle s, d\xi \rangle$ for some vector $s \in E^{n+1}$. This yields

$$\frac{dV}{\xi d\xi \wedge \langle s, d\xi \rangle} = \frac{\Omega_n}{\langle s, d\xi \rangle} = |s|^{-1} \Omega_{n-1}$$

up to the factor $\det A$. Here Ω_k denotes the volume form of the euclidean k-sphere S^k. Finally, we apply [2] Theorem A.20 to Φ and to the sphere $Z(y) \cong S^{n-1}$ which implies vanishing of $Q_n(x,y)$. \blacktriangleleft

Application of Theorem [1] completes the proof of Theorem 2 for any nondegenerated ellipsoid. In the case of one-point cam $\{e\}$ one can take the generating function $\Phi(x,\sigma) = \langle x - e, \sigma \rangle, \sigma \in S^n$ and follow the above arguments. \blacktriangleleft

References

[1] Funk P 1913 Über Flächen mit lauter geschlossenen geodätischen Linien Math. Annal. 74(2), 278–300

[2] Palamodov V 2016 Reconstruction from data of integrals CRC

[3] Salman Y 2016 An inversion formula for the spherical transform in S^2 for a special family of circles of integration Anal. Math. Phys. 6 43–58