Pseudogap, Superconducting Energy Scale, and Fermi Arcs in Underdoped Cuprate Superconductors

Hai-Hu Wen1, Lei Shan1, Xiao-Gang Wen2, Yue Wang1, Hong Gao1, Zhi-Yong Liu1, Fang Zhou1, Jiwu Xiong1, Wenxin Ti1

1National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100080, P. R. China
2Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Dated: March 23, 2022)

Through the measurements of magnetic field dependence of specific heat in \textit{La}_{2−x}\textit{Sr}_x\textit{CuO}_4 in zero temperature limit, we determined the nodal slope \(v_\Delta\) of the quasiparticle gap. It is found that \(v_\Delta\) has a very similar doping dependence of the pseudogap temperature \(T^*\) or value \(\Delta_p\). While the virtual maximum gap at \((\pi,0)\) derived from \(v_\Delta\) is found to follow the simple relation \(\Delta_0 = 0.46k_BT^*\) upon changing the doping concentration. This strongly suggests a close relationship between the pseudogap and superconductivity. It is further found that the superconducting transition temperature is determined by both the residual density of states of the pseudogap phase and the nodal gap slope in the zero temperature limit, namely, \(T_c \approx \beta v_\Delta \gamma_n(0)\), where \(\gamma_n(0)\) is the extracted zero temperature value of the normal state specific heat coefficient which is proportional to the size of the residual Fermi arc \(k_{arc}\). This manifests that the superconductivity may be formed by forming a new gap on the Fermi arcs near nodes below \(T_c\). These observations mimic the key predictions of the SU(2) slave boson theory based on the general resonating-valence-bond (RVB) picture.

PACS numbers: 74.20.Rp, 74.25.Dw, 74.25.Fy, 74.72.Dn

INTRODUCTION

Since the discovery of the cuprate superconductors, 19 years have elapsed without a consensus about its mechanism. Many exotic features beyond the Bardeen-Cooper-Schrieffer theory have been observed. One of them is the observation of a pseudogap in the electron spectral function near the antinodal points \((\pi,0)\) and \((0,\pi)\) at a temperature \(T^* \gg T_c\). In a conventional BCS superconductor, this gapping process occurs simultaneously with the superconductivity at \(T_c\). It has been heavily debated about the relationship between the pseudogap and the superconductivity in cuprates. One scenario assumes that the pseudogap \(\Delta_p\) marks only a competing or coexisting order with the superconductivity and it has nothing to do with the pairing origin. However another picture, namely the Anderson’s resonating-valence-bond (RVB) model (and its offspring) predict that the spin-singlet pairing in the RVB state (which causes the formation of the pseudogap) may lend its pairing strength to the mobile electrons and make them to naturally pair and then to condense at \(T_c\). According to this picture there should be a close relationship between the pseudogap and the superconductivity.

In order to check whether this basic idea is correct, we need to collect the information for the pseudogap and the superconducting energy scale, especially their doping dependence. The pseudogap values \(\Delta_p\) (or its corresponding temperature \(k_BT^* \sim \Delta_p\)) and its doping dependence have been measured through experiments. To determine the superconducting energy scale, we note that the normal state Fermi surface is formed by four small arcs near the nodal points. As temperature is lowered below \(T_c\), a new gap opens on these arcs. To illustrate this point more clearly, in Fig.1 we present a schematic plot for different gaps or energy scales. The dotted line represents the gap structure of the normal state, assuming the presence of Fermi arcs near the nodal points. The region of zero gap corresponds to the Fermi arc. The dash line and the solid line represent two possible gap structures for superconducting state at \(T = 0\). The solid line is the standard d-wave gap with maximum gap value \(\Delta_p\) at \((\pi,0)\) and \((0,\pi)\). From this picture, we see that the nodal gap slope, which is defined as \(v_\Delta = [d\Delta_p/d\theta]_{node}/h\), can be used to determine the superconducting energy scale. The relationship between the nodal gap slope \(v_\Delta\) and the maximum pseudogap \(\Delta_p\) remains to be a big puzzle. In particular, the two quantities may be independent of each other if the superconductivity is not induced by the formation of the pseudogap. Therefore to measure the nodal gap slope near nodal point in the zero temperature limit becomes highly desired. When combined with the known results on the pseudogap \(\Delta_p\), this will allow us to detect the relation between the pseudogap and the superconductivity.

Some previous results using, for example, angle-resolved photo-emission (ARPES) or superfluid density seem to be inconclusive due to either energy resolution (ARPES above 10meV) or unexpected difficulty in analyzing the data (e.g., a so-called Fermi liquid correction factor \(\alpha_{FL}\) is inevitably involved in analyzing the low temperature data of superfluid density). In this paper, we report the evidence of a proportionality between the nodal gap slope \(v_\Delta\) and the pseudogap temperature...
FIG. 1: Schematic plot for the pseudogap energy, superconducting energy scale and nodal gap slope. The solid line represents a standard d-wave gap $\Delta = \Delta_p \cos^2 \theta$ with maximum gap value Δ_p near $(\pi, 0)$ and θ the angle starting from k_x. The dotted line shows the pseudogap near nodes if the superconductivity would be suppressed completely (based on the Fermi arc picture). The dashed line shows a possible quasiparticle gap near nodes. The nodal gap slope is defined by the Fermi arc picture). The dashed line shows a possible quasiparticle gap near nodes. The nodal gap slope is defined as $v_\Delta = [d\Delta/d\theta]_{node}/h k_F$. The nodal gap slope v_Δ and the maximum gap Δ_p near $(\pi, 0)$ may not be related if the superconductivity (which controls the gap structure near nodes) has nothing to do with the pseudogap.

T^*. Remarkably a simple relation, namely $\Delta_q = 0.46T^*$, between the virtual maximum quasiparticle gap (Δ_q) derived from v_Δ and the pseudogap temperature T^* is found. We also find that T_c is determined by both the nodal gap slope v_Δ and the size of the Fermi arcs ($h k_F$) in the underdoped normal state. Both observations are anticipated by the SU(2) slave boson theory based on the general RVB picture.

EXPERIMENT

We determine the properties of the nodal quasiparticles by measuring the low temperature electronic specific heat. The $La_{2-x}Sr_xCuO_4$ single crystals measured in this work were prepared by travelling solvent floating-zone technique. Samples with seven different doping concentrations $p=0.063 (T_c=9K$, nominal $x=0.063$, post-annealed in Ar gas at $800 ^\circ C$ for 48 hrs $), 0.069 (T_c=12K$, as-grown sample with $x=0.063), 0.075 (T_c=15.6K$, nominal $x=0.07$ and post-annealed in O_2 gas at $750 ^\circ C$ for 12 hrs), 0.09 $(T_c=24.4K$, as grown, $x=0.09), 0.11 (T_c=29.3K$, as grown, $x=0.11), 0.15 (T_c=36.1K$, nominal $x=0.15), 0.22 (T_c=27.4K$, nominal $x=0.22$) have been investigated. The quality of our samples has been characterized by x-ray diffraction, and $R(T)$ data showing a narrow transition $\Delta T_c \leq 2$ K. The samples have also been checked by AC and DC magnetization showing also quite narrow transitions. The full squares in Fig.6 represent the transition temperatures of our samples. The $La_{2-x}Sr_xCuO_4$ system, the anomalous upturn of C/T vs. T with $A \propto 1/v_\Delta$. This square-root relation has been verified by many measurements which were taken as evidence for d-wave symmetry, for example by specific heat, thermal conductivity, tunnelling (to measure the Doppler shift of the Andreev bound states), etc. In this way one can determine the nodal gap slope (v_Δ). Since the phonon part of the specific heat is independent on the magnetic field, this allows to remove the phonon contribution by subtracting the C/T at a certain field with that at zero field, one has $\Delta \gamma = \Delta C/T = [C(H) - C(0)]/T = C_{vol}/T - \alpha T$ with α the coefficient for the quasiparticle excitations of a d-wave superconductor at zero field ($C_x = \alpha T^2$). In the zero temperature limit $\Delta \gamma = C_{vol}/T = A\sqrt{H}$ is anticipated.

FIG. 2: Field dependence of $\Delta \gamma = [C(H) - C(0)]/T$ normalized by the data at about 12 T in zero temperature limit. It is clear that Volovik’s \sqrt{H} relation describes the data rather well for all samples. This indicates a robust d-wave superconductivity in all doping regimes.
Volovik’s term in the zero temperature limit. This is reasonable when considering a contribution to the heat capacity by the competing order as $\sim T^\omega$ with $\omega > 1$. For example, the specific heat due to the spin correlation in 2D anti-ferromagnetic phase is $\sim T^2$. In zero temperature limit this term goes away. (3) The DOS induced by the Doppler shift effect in our experiment is much stronger than that induced by the impurity scattering. We will further address this point in the forthcoming discussion. To have a self-consistent check of the \sqrt{H} relation found in the zero temperature limit, we plot the raw data of $\Delta \gamma/\sqrt{H}$ vs. T at finite temperatures. A typical example for the very underdoped one ($p = 0.069$) is shown in Fig.3(a) and (b). One can see that in the low temperature region the data $\Delta \gamma/\sqrt{H}$ scale for all fields ranging from 1 T to 12 T, showing the nice consistency with the relationship $\Delta \gamma \propto \sqrt{H}$ for this sample in the zero temperature limit. From here one can also determine the prefactor A in $\Delta \gamma = A \sqrt{H}$ (here for example, $A = 0.28mJ/molK^2T^{0.5}$ for $p=0.069$) and then compare backwards to the value determined from the data shown in the main panel leading to of course the same value. The same feature appears for all other doping concentrations. For clarity they will not be shown here.

It is clear that the Volovik’s \sqrt{H} relation describes the data rather well for all doping concentrations. This successful scaling of $\Delta \gamma$ vs. \sqrt{H} makes it possible to derive the pre-factor A, and one can further determine the nodal gap slope v_Δ. Fig.4(a) shows the doping dependence of the pre-factor A. The error bar is obtained by fitting the extracted zero temperature data to $\Delta \gamma = A \sqrt{H}$. For a typical d-wave superconductor, by calculating the excitation spectrum near the nodes, it was shown that

$$A = \alpha_p \frac{4k_B^2}{3l_c} \sqrt{\frac{\pi \nu}{\Phi_0}} \frac{\nu_{mol}}{v_\Delta}$$ \hspace{1cm} (1)

here $l_c = 13.28 \text{ Å}$ is the c-axis lattice constant, $V_{mol} = 58 \text{ cm}^3$ (the volume per mol), α_p a dimensionless constant taking 0.5 (0.465) for a square (triangle) vortex lattice, $n = 2$ (the number of Cu-O plane in one unit cell), Φ_0 the flux quanta. The v_Δ has then been calculated without any adjusting parameter (taking $\alpha_p=0.465$) and shown in Fig.4(b). It is remarkable that v_Δ has a very similar doping dependence as the pseudogap temperature T^\star, indicating that $v_\Delta \propto T^\star \propto \Delta_p$. If converting the data v_Δ into the virtual maximum quasiparticle gap (Δ_q) \cite{10} via $v_\Delta = 2\Delta_q/k_F$, here $k_F \approx \pi/2a$ is the Fermi vector of the nodal point with $a = 3.8\text{Å}$ (the in-plane lattice constant), surprisingly the resultant Δ_q value [shown by the filled squares in Fig.4(b)] is related to T^\star in a simple way (\Delta_q \sim 0.46k_BT^\star). It is important to emphasize that this result is obtained without any adjusting parameters. Counting the uncertainties in determining T^\star and the value of α_p, this relation is remarkable since Δ_q and T^\star are determined in totally different experiments. Because v_Δ (or Δ_q) reflect mainly

RESULTS AND DISCUSSION

In order to get $\Delta \gamma$ in the zero temperature limit, we extrapolate the low temperature data of C/T vs. T^2 (between 2K to 4K) to zero K. The data taken in this way and normalized at 12 T are presented in Fig.2. It should be mentioned that the similar data have been published in our previous paper \cite{7}. For clarity we present the data again with more detailed analysis. It is clear that the Volovik’s \sqrt{H} relation describes the data rather well for all doping concentrations. This is to our surprise since it has been questioned whether the Volovik relation is still obeyed in the underdoped regime \cite{14} especially when competing orders are expected to appear \cite{15,19,20} and impurity scattering is present. We attribute the success of using the Volovik relation here to three reasons: (1) We use $\Delta \gamma = [C_H|c - C_{H=0}|]/T$ instead of using $\Delta \gamma = [C_{H=0}]/T$. The latter may inevitably involve the unknown DOS contributions from other kinds of vortices (for example, Josephson vortices) when $H \perp C$. (2) The contribution from a second competing order to $\Delta \gamma$ may be small compared to the

FIG. 3: (a) The typical original data of $\Delta \gamma$ vs. T for the underdoped sample $p = 0.069$ at different magnetic fields. (b) The same set of data plotted as $\Delta \gamma/\sqrt{H}$ vs. T. One can clearly see that in zero temperature limit $\Delta \gamma/\sqrt{H}$ is a constant for all fields implying the validity of the Volovik’s relation $\Delta \gamma = A \sqrt{H}$. From here one can also determine the value A which is about $0.28mJ/molK^2T^{0.5}$ as marked by the thick bar.
and the nodal gap slope \(v \) result implies a close relationship between the pseudogap \(\Delta_p \) and the superconductivity, above discovery, i.e., \(\Delta_p \sim 0.46k_BT^* \) strongly suggests a close relationship between the superconductivity and the pseudogap. A similar conclusion was drawn in underdoped \(\text{YBa}_2\text{Cu}_3\text{O}_y \) by analyzing the low temperature thermal conductivity \(\gamma \). If the pseudogap is supposed to be caused by the formation of the RVB state \(\text{F}_L \), our results here point to a fact that the RVB singlet pairing may be one of the unavoidable ingredients for superconductivity. It remains to know whether this conclusion holds also for the electron doped samples since so far it is not clear yet whether the pseudogap exists in these N-type samples.

In above discussion, we see the consistency between our low temperature specific heat data and the Volovik’s square root relation \(\Delta \gamma = A\sqrt{H} \). This seems surprising since the temperature range we considered here is about several Kelvin. At such an energy scale, the impurity scattering will strongly alter the DOS in the low energy region by generating some new quasiparticles. However, by applying a magnetic field, the Doppler shift of the quasiparticle excitation spectrum will contribute a new part to DOS. This energy shift is actually not small comparing to the temperature. We can give a simple estimation on the energy shift \(\Delta E \). It is known that \(\Delta E = \alpha FL\sqrt{\frac{\Delta q}{l_B}} \), here \(l_B \) is the magnetic length which is defined as \(l_B = (\hbar/eB)^{1/2} \), and \(0 < \alpha FL < 1 \) is a Fermi liquid correction term. Taking \(v_F = 2.73 \times 10^7 \text{cm/s} \), we have \(\Delta E = 3.67\alpha FL\sqrt{B/1T} \text{ meV} \). For example, taking the maximum field (12 T) in our experiment, we get \(\Delta E = 12.2\alpha FL\text{meV} \) which is actually a relatively big energy scale compared to the temperature \(T \) since \(\alpha FL \sim 1 \). This may explain why the Volovik’s simple square-root relation \(\Delta \gamma = A\sqrt{H} \) can be easily observed in our single crystals with inevitable certain amount of impurities.

In the following we will investigate what determines \(T_c \). Bearing the doping dependence of \(v_\Delta \) in mind, it is
easy to understand that \(v_\Delta \hbar k_F \) should not be a good estimate of the superconducting energy scale for the underdoped samples since the \(T_c \) and \(v_\Delta \) have opposite doping dependence. The basic reason is that the normal-state Fermi surfaces are small arcs of length \(k_{\text{arc}} \) near the nodal points. The superconducting transition occurs by forming extra gaps on the Fermi arcs. So the effective superconducting energy scale should be estimated as \(E_s \sim \frac{1}{2} v_\Delta \hbar k_{\text{arc}} \). From the normal state electronic specific heat \(C_{\text{ele}} = \gamma_n T \), we have \(\gamma_n = 4 n k_B^2 k_{\text{arc}} V_{\text{mol}} / \hbar v_F l_c \). Assuming \(E_s \sim k_B T_c \) we find

\[
T_c = \alpha_n \frac{\hbar^2 v_F l_c \gamma_n v_\Delta}{8 n k_B^3 V_{\text{mol}}} = \beta \gamma_n v_\Delta
\]

(2)

where \(\alpha_n \) is a dimensionless constant in the order of unity, \(v_F \) is the nodal Fermi velocity normal the Fermi surface. The value of \(\gamma_n(0) \) can be estimated from specific heat [24, 25], or indirectly by ARPES [26] or NMR [27]. Here we take the values for \(\gamma_n(0) \) summarized by Matsuzaki et al. [24] and fit it (in unit of \(mJ/mol K^2 \)) with a formula \(\gamma_n = \zeta (p - p_c)^\eta \) yielding \(\zeta = 182.6, p_c = 0.03, \eta = 1.54 \). In Fig.5 we present the doping dependence of the zero-temperature specific heat coefficient \(\gamma_n(0) \) and \(k_{\text{arc}} \). One can see that \(k_{\text{arc}} \) becomes smaller than \(2\pi/a \) in underdoped region showing the self-consistency of the picture of Fermi arcs. In Fig.6 we present the doping dependence of the truly measured \(T_c \) (filled squares) and the calculated value (open squares) by eq.(2) with \(\beta = 0.7445 K^3 mols/Jm \). In underdoped region, the truly measured and calculated \(T_c \) values coincide rather well implying the validity of eq.(2). In the overdoped region, \(\gamma_n \) will gradually become doping independent, therefore one expects \(T_c \propto v_\Delta \). So the energy scale of the superconductivity is not given by \(v_\Delta \hbar k_F \sim \Delta_p \), but by \(\frac{1}{2} v_\Delta \hbar k_{\text{arc}} \) or more precisely by eq.(2) in the underdoped region.

To have a framework about the experimental results, in the following, we will review one particular explanation based on the slave-boson approach. Within the SU(2) slave-boson theory, the pseudogap metallic state is viewed as a doped algebraic spin liquid (ASL) [28]. A doped ASL is described by spinons (neutral spin-1/2 Dirac fermions) and holons (spinless charge-\(e \) boson) coupled to a U(1) gauge field. Due to the attraction between the spinons and the holons caused by the U(1) gauge field, a spinon and a holon recombine into an electron at low energies [4, 28]. Due to the spin-charge recombination, the pseudogap metallic state is described by electron-like quasiparticles at low energy. Since the binding between the spinon and the holon is weak, the large pseudogap near the anti-nodal points \((\pi, 0)\) and \((0, \pi)\) is not affected. So the Fermi surface of the recombined electrons cannot form a large closed loop. A simple theoretical calculation [4] suggests that the Fermi surface of the recombined electrons forms four small arcs near the nodal points \((\pm \pi/2, \pm \pi/2)\). Thus the SU(2) slave boson theory contains two key features: the pseudogap due to spin singlet pairing and the Fermi arcs due to the spin-charge recombination [23]. And the superconductivity is not near the anti-nodal points. Meanwhile, since the spin pairing is responsible for both the pseudogap \(\Delta_p \) near the anti-nodal points and the nodal gap slope \(v_\Delta \) it is reasonable to see the proportionality between \(v_\Delta \) and \(T^* (\propto \Delta_p) \) or \(\Delta_q \approx 0.46 k_B T^* \). These are exactly what we found in the experiment.

CONCLUDING REMARKS

In summary, the Volovik’s relation of the d-wave pairing symmetry has been well demonstrated by low temperature specific heat in wide doping regime in \(La_{2-x}Sr_xCuO_4 \). Based on this analysis the nodal gap slope \(v_\Delta \) is derived and is found to follow the same doping dependence of the pseudogap \(\Delta_p \). This strongly indicates the close relationship between the pseudogap and the superconductivity. Meanwhile it is found that the superconducting transition temperature \(T_c \) is determined by \(v_\Delta \gamma_n(0) \) instead of \(v_\Delta \). This discovery may suggest the importance of Fermi arcs near the nodal region and the superconductivity is induced by the formation of a new gap on these arcs. Both observations are consistent with the SU(2) slave boson theory based on the general RVB picture.

This work is supported by the National Science Foundation of China, the Ministry of Science and Technology of China (973 project: 2006CB601002), the Knowledge Innovation Project of Chinese Academy of Sciences. XGW is supported by NSF Grant No.DMR–04–33632.
1. For a review on the pseudogap see, for example, T. Timusk, B. Statt, Rep. Prog. Phys. 62, 61 (1999).

2. For a recent review on RVB picture, see Patrick A. Lee, Naoto Nagaosa, Xiao-Gang Wen, cond-mat/0410445; P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. Zhang, J. Phys. Condens. Matter 16, R755 (2004); P. W. Anderson, Science 235, 1196 (1987); Z. Y. Weng, D. N. Sheng, C. S. Ting, Phys. Rev. Lett. 80, 5401 (1998).

3. S. A. Kivelson and V. J. Emery, Nature 374, 434 (1995).

4. Based on the entropy conservation, we would argue that the pseudogap is zero near (not only at) the nodal point, i.e., a Fermi arc near nodal point exists even at zero temperature in the pseudogap state. In Ref. [2], one can see that the pure pseudogap phase (when the superconductivity is completely suppressed) has actually a finite DOS at zero K based on the entropy conservation. This finite DOS at zero K of the pseudogap phase can be interpreted as due to two possible reasons: one is induced by the impurity scattering of the nodal quasiparticles of a d-wave pseudogap, another one is given by the zero-temperature Fermi arcs of the pseudogap. However in our later discussion we will see that the residual DOS at zero K in the pseudogap phase increases almost linearly with p up to the optimal doping point. This cannot be understood by the picture of impurity scattering since it is known that the optimally doped sample may have less disorders than the underdoped one. Therefore it is tempting to conclude that there are Fermi arcs near nodes in the pseudogap phase in the zero temperature limit.

5. J. Mesot, M. R. Norman, H. Ding, M. Randeria, J. C. Campuzano, A. Paramesran, H. M. Fretwell, A. Kaminski, T. Takeuchi, T. Yokoya, T. Sato, T. Takahashi, T. Mochiku, K. Kadowaki, Phys. Rev. Lett. 83, 840 (1999).

6. X. G. Wen, and P. A. Lee, Phys. Rev. Lett. 76, 503 (1996); P. A. Lee, and X.-G. Wen, Phys. Rev. Lett. 78, 4111 (1997); X.-G. Wen, and P. A. Lee, Phys. Rev. Lett. 80, 2193 (1998).

7. H. H. Wen, Z. Y. Liu, F. Zhou, J. W. Xiong, W. X. Ti, T. Xiang, S. Komiya, X. F. Sun, Y. Ando, Phys. Rev. B70, 214505 (2004).

8. G. E. Volovik, JETP Lett. 58, 469 (1993); ibid 65, 491 (1997).

9. N. B. Kopnin and G. E. Volovik, JETP Lett. 64, 690 (1996).

[10] K. A. Moler, D. J. Baar, J. S. Urbach, Ruixing Liang, W. N. Hardy, and A. Kapitulnik, Phys. Rev. Lett. 73, 2744 (1994). K. A. Moler, John R. Kirtley, Ruixing Liang, Douglas Bonn, and Walter N. Hardy, Phys. Rev. B 55, 12753 (1997).

[11] B. Revaz, J.-Y. Genoud, A. Junod, K. Neumaier, A. Erb, and E. Walker, Phys. Rev. Lett. 80, 3364 (1998).

[12] D. A. Wright, J. P. Emerson, B. F. Woodfield, J. E. Gordon, R. A. Fisher, and N. E. Phillips, Phys. Rev. Lett. 82, 1550 (1999).

[13] N. E. Phillips, R. A. Fisher, A. Schilling, B. Buffeteau, T. E. Hargreaves, C. Marcenat, R. Calemczuk, A. S. O’Connor, K. W. Dennis and R. W. McCallum, Physica B 259-261, 546 (1999).

[14] M. Nohara, H. Suzuki, M. Ishihiki, N. Mangkorntong, F. Sakai, and H. Takagi, J. Phys. Soc. Jpn. 69, 1602 (2000).

[15] S. J. Chen, C. F. Chang, H. L. Tsay, H. D. Yang, J.-Y. Lin, Phys. Rev. B 58, R14753 (1998).

[16] For a review on the low energy quasiparticles, see N. E. Hussey, Advances in Physics 51, 1685 (2002).

[17] M. Chiao, R. W. Hill, C. Lupien, B. Popic, R. Gagnon, and L. Taillefer, Phys. Rev. Lett. 82, 2943 (1999).

[18] M. Aprili, E. Badica, L. H. Greene, Phys. Rev. Lett. 83, 4630 (1999).

[19] E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, 067202 (2001); Y. Zhang, E. Demler and S. Sachdev, Phys. Rev. B 66, 094501 (2002).

[20] S. Chakravarty and H.-Y. Kee, Phys. Rev. B 61, 14821 (2000). ibid 62, 4880 (2000); 62, R6135 (2000).

[21] S. C. Zhang, Science 275, 1089 (1997).

[22] M. Sutherland, D. G. Hawthorn, R. W. Hill, F. Ronning, S. Wakimoto, H. Zhang, C. Proust, E. Boaknin, C. Lupien, and L. Taillefer, Phys. Rev. Lett. 58, 094501 (2002).

[23] X. J. Zhou, T. Yoshida, A. Lanzara, P. V. Bogdanov, S. A. Kellar, K. M. Shen, W. L. Yang, F. Ronning, T. Sasagawa, T. Kakeshita, T. Noda, H. Eisaki, S. Uchida, C. T. Lin, F. Zhou, J. W. Xiong, W. X. Ti, Z. X. Zhao, A. Fujimori, Z. Hussain, Z.-X. Shen, Nature 423, 308 (2003).

[24] T. Matsuzuki, N. Momono, M. Oda, M. Ido, J. Phys. Soc. Jpn. 73, 2232 (2004).

[25] In principle, $\gamma_0(0)$ can be determined from our own zero field specific heat data, however since the zero-field term αT^2 is too small compared to other terms (phonon, residual linear term), this makes it almost impossible to get relevant $\gamma_0(0)$ using our technique. Therefore here we use the data derived based on the entropy conservation by Matsuzuki et al. [24]. The advantage of our relaxation technique is to determine the field induced change of γ in low temperature region.

[26] A. Ino, T. Mizokawa, K. Kobayashi, and A. Fujimori, T. Sasagawa, T. Kimura, K. Kishio, K. Tamasaku, H. Eisaki, and S. Uchida, Phys. Rev. Lett. 81, 2124 (1998).

[27] S. Ohsugi, Y. Kitaoka, K. Ishida, G.-q. Zheng and K. Asayama, J. Phys. Soc. Jpn. 63, 700 (1994).

[28] W. Rantner, X. G. Wen, Phys. Rev. B 66, 144501 (2002).