PROOFS OF SOME CONJECTURES OF KEITH AND ZANELLO ON t-REGULAR PARTITION

AJIT SINGH AND RUPAM BARMAN

Abstract. For a positive integer t, let $b_t(n)$ denote the number of t-regular partitions of a nonnegative integer n. In a recent paper, Keith and Zanello established infinite families of congruences and self-similarity results modulo 2 for $b_t(n)$ for certain values of t. Further, they proposed some conjectures on self-similarities of $b_t(n)$ modulo 2 for certain values of t. In this paper, we prove their conjectures on $b_3(n)$ and $b_{25}(n)$. We also prove a self-similarity result for $b_{21}(n)$ modulo 2.

1. Introduction and statement of results

A partition of a positive integer n is any non-increasing sequence of positive integers whose sum is n. The number of such partitions of n is denoted by $p(n)$. Let t be a fixed positive integer. A t-regular partition of a positive integer n is a partition of n such that none of its part is divisible by t. Let $b_t(n)$ denote the number of t-regular partitions of n. The generating function of $b_t(n)$ is given by

$$\sum_{n=0}^{\infty} b_t(n)q^n = \frac{f_t}{f_1},$$

(1.1)

where $f_k := (q^k; q^k)^{\infty} = \prod_{j=1}^{\infty} (1 - q^{jk})$ and k is a positive integer.

In a very recent paper [2], Keith and Zanello studied t-regular partition for certain values of t. They proved various congruences for $b_t(n)$ modulo 2 for certain values of $t \leq 28$, and posed several open questions. One of the congruences they proved for $b_3(n)$ is the following:

$$\sum_{n=0}^{\infty} b_3(26n + 14)q^n \equiv \sum_{n=0}^{\infty} b_3(2n)q^{13n} \pmod{2}.$$

(1.2)

More generally, they conjectured that:

Conjecture 1.1. [2 Conjecture 6] For any prime $p > 3$, let $\alpha \equiv -24^{-1} \pmod{p^2}$, $0 < \alpha < p^2$. It holds for a positive proportion of primes p that

$$\sum_{n=0}^{\infty} b_3(2(pm + \alpha))q^n \equiv \sum_{n=0}^{\infty} b_3(2n)q^{pn} \pmod{2}.$$

(1.3)

The congruence (1.2) is a specific case of (1.3) corresponding to $p = 13$. In [5], we proved a specific case of (1.3) corresponding to $p = 17$. The aim of this...
article is to prove two conjectures of Keith and Zanello. Our first theorem confirms Conjecture 1.1.

Theorem 1.2. Conjecture 1.1 is true.

Keith and Zanello also studied 2-divisibility of $b_{25}(n)$ and proved several congruences for primes $p \equiv 11, 13, 17, 19 \pmod{20}$ and $p \equiv 31, 39 \pmod{40}$. To be specific, if $p \equiv 11, 13, 17, 19 \pmod{20}$ is prime, then they proved that

$$b_{25}(8(p^2n + kp - 3 \cdot 4^{-1}) + 5) \equiv 0 \pmod{2}$$

for all $1 \leq k < p$, where $3 \cdot 4^{-1}$ is taken modulo p^2. Further, they conjectured the following:

Conjecture 1.3. [2, Conjecture 28] For a positive proportion of primes p, it holds that

$$\sum_{n=0}^{\infty} b_{25}(2pn + \alpha)q^n \equiv q^\beta \sum_{n=0}^{\infty} b_{25}(2n + 1)q^n \pmod{2},$$

for some α and β depending on p.

Our second theorem confirms Conjecture 1.3.

Theorem 1.4. Conjecture 1.3 is true.

Next, we prove a self-similarity result for $b_{21}(n)$ modulo 2. More precisely, we prove the following theorem:

Theorem 1.5. For a positive proportion of primes p, it holds that

$$\sum_{n=0}^{\infty} b_{21}(p(n + 11\gamma + 1))q^n \equiv \sum_{n=0}^{\infty} b_{21}(n + 1)q^n \pmod{2},$$

for some γ depending on p.

2. Preliminaries

We recall some definitions and basic facts on modular forms. For more details, see for example [3, 4]. We first define the matrix groups

$$\text{SL}_2(\mathbb{Z}) := \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\},$$

$$\Gamma_0(N) := \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \text{SL}_2(\mathbb{Z}) : c \equiv 0 \pmod{N} \right\},$$

$$\Gamma_1(N) := \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma_0(N) : a \equiv d \equiv 1 \pmod{N} \right\},$$

and

$$\Gamma(N) := \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \text{SL}_2(\mathbb{Z}) : a \equiv d \equiv 1 \pmod{N}, \text{ and } b \equiv c \equiv 0 \pmod{N} \right\},$$

where N is a positive integer. A subgroup Γ of $\text{SL}_2(\mathbb{Z})$ is called a congruence subgroup if $\Gamma(N) \subseteq \Gamma$ for some N. The smallest N such that $\Gamma(N) \subseteq \Gamma$ is called the level of Γ. For example, $\Gamma_0(N)$ and $\Gamma_1(N)$ are congruence subgroups of level N.
Let \(\mathbb{H} := \{ z \in \mathbb{C} : \text{Im}(z) > 0 \} \) be the upper half of the complex plane. The group
\[
GL_2^+(\mathbb{R}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{R}^4 : a, b, c, d \in \mathbb{R} \text{ and } ad - bc > 0 \right\}
\]
acts on \(\mathbb{H} \) by
\[
\begin{bmatrix} a & b \\ c & d \end{bmatrix} z = \frac{az + b}{cz + d} \quad \text{for all } z \in \mathbb{H}.
\]
We identify \(\infty \) with \(1/0 \) and define \(\begin{bmatrix} a & b \\ c & d \end{bmatrix} r/s = \frac{ar + bs}{cr + ds} \) where \(r/s \in \mathbb{Q} \cup \{ \infty \} \). This gives an action of \(GL_2^+(\mathbb{R}) \) on the extended upper half-plane \(\mathbb{H}^* = \mathbb{H} \cup \mathbb{Q} \cup \{ \infty \} \). Suppose that \(\Gamma \) is a congruence subgroup of \(SL_2(\mathbb{Z}) \). A cusp of \(\Gamma \) is an equivalence class in \(P^1 = \mathbb{P}^1 = \mathbb{Q} \cup \{ \infty \} \) under the action of \(\Gamma \).

The group \(GL_2^+(\mathbb{R}) \) also acts on functions \(f : \mathbb{H} \to \mathbb{C} \). In particular, suppose that \(\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL_2^+(\mathbb{R}) \). If \(f(z) \) is a meromorphic function on \(\mathbb{H} \) and \(\ell \) is an integer, then define the slash operator \(|\ell\gamma \) by
\[
(f|\ell\gamma)(z) := (\det \gamma)^{\ell/2}(cz + d)^{-\ell}f(\gamma z).
\]

Definition 2.1. Let \(\Gamma \) be a congruence subgroup of level \(N \). A holomorphic function \(f : \mathbb{H} \to \mathbb{C} \) is called a modular form with integer weight \(\ell \) on \(\Gamma \) if the following hold:

1. We have
\[
f(\begin{bmatrix} a & b \\ c & d \end{bmatrix} z) = (cz + d)^\ell f(z)
\]
for all \(z \in \mathbb{H} \) and all \(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma \).

2. If \(\gamma \in SL_2(\mathbb{Z}) \), then \((f|\ell\gamma)(z) \) has a Fourier expansion of the form
\[
(f|\ell\gamma)(z) = \sum_{n \geq 0} a_n(\gamma) q^n,
\]
where \(q_N := e^{2\pi iz/N} \).

In addition, if \(a_{\gamma}(0) = 0 \) for all \(\gamma \in SL_2(\mathbb{Z}) \), then \(f \) is called a cusp form.

For a positive integer \(\ell \), the complex vector space of modular forms (resp. cusp forms) of weight \(\ell \) with respect to a congruence subgroup \(\Gamma \) is denoted by \(M_\ell(\Gamma) \) (resp. \(S_\ell(\Gamma) \)).

Definition 2.2. [4, Definition 1.15] If \(\chi \) is a Dirichlet character modulo \(N \), then we say that a modular form \(f \in M_\ell(\Gamma_1(N)) \) (resp. \(S_\ell(\Gamma_1(N)) \)) has Nebentypus character \(\chi \) if
\[
f(\begin{bmatrix} a & b \\ c & d \end{bmatrix} z) = \chi(d)(cz + d)^\ell f(z)
\]
for all \(z \in \mathbb{H} \) and all \(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma_0(N) \). The space of such modular forms (resp. cusp forms) is denoted by \(M_\ell(\Gamma_0(N), \chi) \) (resp. \(S_\ell(\Gamma_0(N), \chi) \)).

In this paper, the relevant modular forms are those that arise from eta-quotients. Recall that the Dedekind eta-function \(\eta(z) \) is defined by
\[
\eta(z) := q^{1/24}(q; q)_\infty = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n),
\]
where \(q := e^{2\pi i z} \) and \(z \in \mathbb{H} \). A function \(f(z) \) is called an eta-quotient if it is of the form

\[
 f(z) = \prod_{\delta \mid N} \eta(\delta z)^{r_{\delta}},
\]

where \(N \) is a positive integer and \(r_{\delta} \) is an integer. We now recall two theorems from [4, p. 18] which are very useful in checking modularity of eta-quotients.

Theorem 2.3. [4, Theorem 1.64] If \(f(z) = \prod_{\delta \mid N} \eta(\delta z)^{r_{\delta}} \) is an eta-quotient such that

\[
 \ell = \frac{1}{2} \sum_{\delta \mid N} r_{\delta} \equiv 0 \pmod{24}
\]

and

\[
 \sum_{\delta \mid N} \delta r_{\delta} \equiv 0 \pmod{24},
\]

then \(f(z) \) satisfies

\[
 f \left(\frac{az + b}{cz + d} \right) = \chi(d)(cz + d)^{\ell} f(z)
\]

for every \(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma_0(N) \). Here the character \(\chi \) is defined by \(\chi(d) := \left(\frac{-1}{d} \right)^{\ell s/d} \), where \(s := \prod_{\delta \mid N} \delta^{r_{\delta}} \).

Suppose that \(f \) is an eta-quotient satisfying the conditions of Theorem 2.3 and that the associated weight \(\ell \) is a positive integer. If \(f(z) \) is holomorphic (resp. vanishes) at all of the cusps of \(\Gamma_0(N) \), then \(f(z) \in M_{\ell}(\Gamma_0(N), \chi) \) (resp. \(S_{\ell}(\Gamma_0(N), \chi) \)). The following theorem gives the necessary criterion for determining orders of an eta-quotient at cusps.

Theorem 2.4. [4, Theorem 1.65] Let \(c, d \) and \(N \) be positive integers with \(d \mid N \) and \(\gcd(c, d) = 1 \). If \(f \) is an eta-quotient satisfying the conditions of Theorem 2.3 for \(N \), then the order of vanishing of \(f(z) \) at the cusp \(\frac{c}{d} \) is

\[
 \frac{N}{24} \sum_{\delta \mid N} \frac{\gcd(d, \delta)^2 r_{\delta}}{\gcd(d, \frac{d}{\delta})} \delta^s.
\]

We next recall the definition of Hecke operators. Let \(m \) be a positive integer and

\[
 f(z) = \sum_{n=0}^{\infty} a(n) q^n \in M_{\ell}(\Gamma_0(N), \chi).
\]

Then the action of Hecke operator \(T_m \) on \(f(z) \) is defined by

\[
 f(z)|T_m := \sum_{n=0}^{\infty} \sum_{d \mid \gcd(n, m)} \chi(d) d^{\ell - 1} a \left(\frac{nm}{d^2} \right) q^n.
\]

In particular, if \(m = p \) is prime, we have

\[
 f(z)|T_p := \sum_{n=0}^{\infty} \left(a(np) + \chi(p) p^{\ell - 1} a \left(\frac{n}{p} \right) \right) q^n.
\]

We adopt the convention that \(a(n/p) = 0 \) when \(p \nmid n \).

We finally recall a result of Serre [7] (also see [6, Proposition 4.2]) about the action of Hecke operator on cusp forms. For a number field \(K \), let \(\mathcal{O}_K \) denote its ring of integers.
Theorem 2.5. [7, Exercise 6.4] Suppose that
\[f(z) = \sum_{n=1}^{\infty} a(n)q^n \in S_k(\Gamma_0(N), \chi) \]
has coefficients in \(O_K \), and \(M \) is a positive integer. Furthermore, suppose that \(k > 1 \). Then a positive proportion of the primes \(p \equiv -1 \pmod{MN} \) have the property that
\[f(z) \mid T_p \equiv 0 \pmod{M}. \]

3. Proof of Theorem 1.2

Proof. We first recall the following even-odd dissection of the 3-regular partitions [2, (6)]:
\[\sum_{n=0}^{\infty} b_3(n)q^n = \frac{f_1}{f_3} + \frac{q f_3}{f_1} \pmod{2}. \]
Extracting the terms with even powers of \(q \), we obtain
\[\sum_{n=0}^{\infty} b_3(2n)q^n \equiv \frac{f_4}{f_3} \pmod{2}. \] \((3.1)\)

Let
\[A(z) := \prod_{n=1}^{\infty} \frac{(1 - q^{24n})^2}{(1 - q^{48n})} = \frac{\eta^2(24z)}{\eta(48z)}. \]
Then using the binomial theorem we have
\[A(z) = \frac{\eta^2(24z)}{\eta(48z)} \equiv 1 \pmod{2}. \]

Define \(B(z) \) by
\[B(z) := \left(\frac{\eta^4(24z)}{\eta(72z)} \right) A(z) = \frac{\eta^6(24z)}{\eta(72z)\eta(48z)}. \]
Modulo 2, we have
\[B(z) \equiv \frac{\eta^4(24z)}{\eta(72z)} = q^{24} \frac{q^{24}q^{144}}{q^{72}q^{72}}. \] \((3.2)\)
Combining \((3.1)\) and \((3.2)\), we obtain
\[B(z) \equiv \sum_{n=0}^{\infty} b_3(2n)q^{24n+1} \pmod{2}. \] \((3.3)\)
Now, \(B(z) \) is an eta-quotient with \(N = 3456 \). We next prove that \(B(z) \) is a modular form. We know that the cusps of \(\Gamma_0(3456) \) are represented by fractions \(\frac{c}{d} \), where \(d \mid 3456 \) and gcd\((c,d) = 1 \). By Theorem 2.5, we find that \(B(z) \) vanishes at a cusp \(\frac{c}{d} \) if and only if
\[L := 12 \frac{\gcd(d, 24)^2}{\gcd(d, 48)^2} - 2 \frac{\gcd(d, 72)^2}{3 \gcd(d, 48)^2} - 1 > 0. \]
We now consider the following four cases according to the divisors of 3456 and find the values of \(G_1 := \frac{\gcd(d, 24)^2}{\gcd(d, 48)^2} \) and \(G_2 := \frac{\gcd(d, 72)^2}{\gcd(d, 48)^2} \). Let \(d \) be a divisor of \(N = 3456 \).
Case (i). For \(d = 2^{r_1}3^{r_2} \), where \(0 \leq r_1 \leq 3 \) and \(0 \leq r_2 \leq 1 \), we find that
\[G_1 = G_2 = 1. \text{ Hence, } L > 0. \]

Case (ii). For \(d = 2^i 3^r \), where \(0 \leq r_1 \leq 3 \) and \(2 \leq r_2 \leq 3 \), we find that \(G_1 = 1 \) and \(G_2 = 9 \). Hence, \(L > 0. \)

Case (iii). For \(d = 2^i 3^r \), where \(4 \leq r_1 \leq 7 \) and \(0 \leq r_2 \leq 1 \), we find that \(G_1 = G_2 = 1/4 \). Hence, \(L > 0. \)

Case (iv). For \(d = 2^i 3^r \), where \(4 \leq r_1 \leq 7 \) and \(2 \leq r_2 \leq 3 \), we find that \(G_1 = 1/4 \) and \(G_2 = 9/4 \). Hence, \(L > 0. \)

Thus, \(B(z) \) vanishes at every cusp \(\frac{a}{b} \). Using Theorem 2.3, we find that the weight of \(B(z) \) is equal to 2. Also, the associated character for \(B(z) \) is given by \(\chi_1 = (\frac{2}{13^3}). \) This proves that \(B(z) \in S_2(\Gamma_0(3456), \chi_1) \). Also, the Fourier coefficients of \(B(z) \) are all integers. Hence by Theorem 2.5, a positive proportion of the primes \(p \equiv -1 \pmod{6912} \) have the property that

\[B(z) \mid T_p \equiv 0 \pmod{2}. \quad (3.4) \]

Let \(B(z) = \sum_{n=1}^{\infty} a(n)q^n \). Then, (3.3) yields

\[\sum_{n=1}^{\infty} b_3 \left(\frac{2(n-1)}{24} \right) q^n = \sum_{n=1}^{\infty} a(n)q^n \pmod{2}. \quad (3.5) \]

Now, from (3.4) we obtain

\[B(z) \mid T_p = \sum_{n=1}^{\infty} (a(pm) + p\chi_1(p)a(n/p))q^n \equiv 0 \pmod{2} \]

which yields

\[\sum_{n=1}^{\infty} a(pm)q^n \equiv \sum_{n=1}^{\infty} a(n/p)q^n \pmod{2}. \quad (3.6) \]

Combining (3.5) and (3.6), we find that

\[\sum_{n=1}^{\infty} b_3 \left(\frac{2(pm-1)}{24} \right) q^n = \sum_{n=1}^{\infty} b_3 \left(\frac{2(n/p-1)}{24} \right) q^n \pmod{2} \]

\[= \sum_{n=1}^{\infty} b_3 \left(\frac{2(n-1)}{24} \right) q^n \pmod{2} \]

\[= \sum_{n=0}^{\infty} b_3 \left(\frac{2n}{24} \right) q^{pn+p} \pmod{2}. \]

Multiplying both sides by \(q^{-p} \) we obtain

\[\sum_{n=p}^{\infty} b_3 \left(\frac{2(pm-1)}{24} \right) q^{n-p} \equiv \sum_{n=0}^{\infty} b_3 \left(\frac{2n}{24} \right) q^n \pmod{2} \]

which yields

\[\sum_{n=0}^{\infty} b_3 \left(\frac{2(pm + p^2 - 1)}{24} \right) q^n \equiv \sum_{n=0}^{\infty} b_3 \left(\frac{2n}{24} \right) q^n \pmod{2} \]
Let \(\alpha = \frac{p^2 - 1}{24} \). Since, \(p \equiv -1 \pmod{6912} \), so \(\alpha \) is a positive integer, and \(\alpha \equiv -24^{-1} \pmod{p^2} \), \(0 < \alpha < p^2 \). Replacing \(n \) by \(24n \) and then substituting \(q^{24} \) by \(q \) we get
\[
\sum_{n=0}^{\infty} b_3(2(n + \alpha))q^n \equiv \sum_{n=0}^{\infty} b_3(2n)q^{pn} \pmod{2}.
\]
This completes the proof of the theorem. \(\square \)

4. PROOF OF THEOREM 1.4

Proof. Putting \(t = 25 \) in (1.1) we have
\[
\sum_{n=0}^{\infty} b_{25}(n)q^n = \frac{f_{25}}{f_1}.
\]
(4.1)

We use identity [1, (4)], namely
\[
f_1f_5 \equiv f_1^6 + qf_5^6 \pmod{2}.
\]
Dividing both sides by \(f_1^3 \) we obtain
\[
\frac{f_5}{f_1} \equiv f_1^4 + q\frac{f_5}{f_1} \pmod{2}.
\]
(4.2)

Therefore, by (4.1) and (4.2) we have
\[
\sum_{n=0}^{\infty} b_{25}(n)q^n = \frac{f_{25}}{f_1} = \frac{f_{25}f_5}{f_1 f_1}
\]
\[
\equiv f_1^4 f_5^4 + q^6 f_5^4 f_{25}^6 f_1 + q^5 f_5^{10} f_1 + q^5 f_5 f_{25}^6 f_1^4 \pmod{2}.
\]
Extracting the terms involving \(q^{2n+1} \), and then dividing by \(q \) and replacing \(q^2 \) by \(q \), we find that
\[
\sum_{n=0}^{\infty} b_{25}(2n + 1)q^n \equiv \frac{f_5^5}{f_1} + q^2 \frac{f_1^2 f_{25}^2}{f_5} \pmod{2}
\]
\[
\equiv f_1^4 f_5^4 + q^6 f_5^4 f_{25}^6 f_1 + q^5 f_5^{10} f_1 + q^7 f_1^2 f_{25}^2 \pmod{2}.
\]

Extracting the terms involving \(q^{2n} \), we obtain
\[
\sum_{n=0}^{\infty} b_{25}(4n + 1)q^{2n} \equiv f_2^2 f_{10}^2 + q^2 f_2 f_{10} f_{50} \pmod{2}.
\]
(4.3)

Define \(F(z) \) by
\[
F(z) := \eta^2(2z)\eta^2(10z) + \eta(2z)\eta^2(10z)\eta(50z).
\]
(4.4)

Combining (4.3) and (4.4), we obtain
\[
F(z) \equiv \sum_{n=0}^{\infty} b_{25}(4n + 1)q^{2n+1} \pmod{2}.
\]
(4.5)

Now using Theorems 2.3 and 4.1, we find that \(\eta^2(2z)\eta^2(10z) \in S_2(\Gamma_0(100), \chi_3) \) and \(\eta(2z)\eta^2(10z)\eta(50z) \in S_2(\Gamma_0(100), \chi_3) \) for some Nebentypus character \(\chi_3 \) and hence \(F(z) \in S_2(\Gamma_0(100), \chi_3) \). Also, the Fourier coefficients of \(F(z) \) are all integers.
Hence by Theorem 2.5 a positive proportion of the primes \(p \equiv -1 \) (mod 200) have the property that

\[
F(z) \mid T_p \equiv 0 \pmod{2}. \tag{4.6}
\]

Let \(F(z) = \sum_{n=1}^{\infty} d(n)q^n \). Then, (4.5) yields

\[
\sum_{n=1}^{\infty} b_{25}(2(n - 1) + 1)q^n = \sum_{n=1}^{\infty} d(n)q^n \quad \text{(mod 2).} \tag{4.7}
\]

Now, from (4.6) we obtain

\[
F(z) \mid T_p = \sum_{n=1}^{\infty} (d(pm) + p\chi_3(p)d(n/p))q^n \equiv 0 \pmod{2}
\]

which yields

\[
\sum_{n=1}^{\infty} d(pm)q^n \equiv \sum_{n=1}^{\infty} d(n/p)q^n \quad \text{(mod 2).} \tag{4.8}
\]

Combining (4.7) and (4.8) we find that

\[
\sum_{n=1}^{\infty} b_{25}(2n - 1)q^n \equiv \sum_{n=1}^{\infty} b_{25}(2(n/p - 1) + 1)q^n \quad \text{(mod 2)}
\]

\[
\equiv \sum_{n=1}^{\infty} b_{25}(2(n - 1) + 1)q^{pn} \quad \text{(mod 2)}
\]

\[
\equiv \sum_{n=0}^{\infty} b_{25}(2n + 1)q^{pn+p} \quad \text{(mod 2).}
\]

Replacing \(n \) by \(n + 1 \) on the left side and then dividing both sides by \(q \) we obtain

\[
\sum_{n=0}^{\infty} b_{25}(2pn + \alpha)q^n \equiv q^\beta \sum_{n=0}^{\infty} b_{25}(2n + 1)q^{pn} \pmod{2},
\]

where \(\alpha = 2p - 1 \) and \(\beta = p - 1 \). This completes the proof of the theorem. \(\square \)

5. Proof of Theorem 1.5

Proof. We begin with the identity \([2, \text{Section 7}] \), namely

\[
\sum_{n=0}^{\infty} b_{21}(4n + 1)q^n \equiv \frac{f_4^4}{f_4} \pmod{2}. \tag{5.1}
\]

Let

\[
G(z) := \prod_{n=1}^{\infty} \frac{(1 - q^{24n})^2}{(1 - q^{88n})} = \frac{\eta^2(24z)}{\eta(48z)}.
\]

Then using the binomial theorem we have

\[
G(z) = \frac{\eta^2(24z)}{\eta(48z)} \equiv 1 \pmod{2}.
\]

Define \(H(z) \) by

\[
H(z) := \left(\frac{\eta^4(72z)}{\eta(24z)} \right) G(z) = \frac{\eta^4(72z)\eta(24z)}{\eta(48z)}.
\]
Modulo 2, we have
\[H(z) \equiv \frac{\eta^4(72z)}{\eta(24z)} = q^{11} \frac{(q^{72}; q^{72})^4}{(q^{24}; q^{24})^\infty}, \]
(5.2)

Combining (5.1) and (5.2), we obtain
\[H(z) \equiv \sum_{n=0}^{\infty} b_{21}(4n + 1)q^{24n+11} \pmod{2}. \]
(5.3)

Now using Theorems 2.3 and 2.4, we find that
\[H(z) \in S_2(\Gamma_0(3456), \chi_2) \]
for some Nebentypus character \(\chi_2 \). Also, the Fourier coefficients of \(H(z) \) are all integers. Hence by Theorem 2.5, a positive proportion of the primes \(p \equiv -1 \pmod{6912} \) have the property that
\[H(z) \mid T_p \equiv 0 \pmod{2}. \]
(5.4)

Let \(H(z) := \sum_{n=1}^{\infty} c(n)q^n \). Then, (5.3) yields
\[\sum_{n=1}^{\infty} b_{21} \left(\frac{4(n - 11)}{24} + 1 \right) q^n \equiv \sum_{n=1}^{\infty} c(n)q^n \pmod{2}. \]
(5.5)

Now, from (5.4) we obtain
\[H(z) \mid T_p = \sum_{n=1}^{\infty} (c(pn) + p\chi_2(p)c(n/p))q^n \equiv 0 \pmod{2} \]
which yields
\[\sum_{n=1}^{\infty} c(pn)q^n \equiv \sum_{n=1}^{\infty} c(n/p)q^n \pmod{2}. \]
(5.6)

Combining (5.5) and (5.6) we find that
\[\sum_{n=1}^{\infty} b_{21} \left(\frac{4(pm - 11)}{24} + 1 \right) q^n \equiv \sum_{n=1}^{\infty} b_{21} \left(\frac{4(n/p - 11)}{24} + 1 \right) q^n \pmod{2} \]
\[\equiv \sum_{n=1}^{\infty} b_{21} \left(\frac{4(n - 11)}{24} + 1 \right) q^{pn} \pmod{2} \]
\[\equiv \sum_{n=0}^{\infty} b_{21} \left(\frac{4n}{24} + 1 \right) q^{pm+11p} \pmod{2}. \]

Multiplying both sides by \(q^{-11p} \) we obtain
\[\sum_{n=11p}^{\infty} b_{21} \left(\frac{pm - 11}{6} + 1 \right) q^{n-11p} \equiv \sum_{n=0}^{\infty} b_{21} \left(\frac{n}{6} + 1 \right) q^{pn} \pmod{2} \]
which yields
\[\sum_{n=0}^{\infty} b_{21} \left(\frac{pm + 11(p^2 - 1)}{6} + 1 \right) q^n \equiv \sum_{n=0}^{\infty} b_{21} \left(\frac{n}{6} + 1 \right) q^{pn} \pmod{2}. \]
Let $\gamma = \frac{p^2 - 1}{6}$. Since $p \equiv -1 \pmod{6912}$, so γ is a positive integer, and $\gamma \equiv -6^{-1} \pmod{p^2}$, $0 < \gamma < p^2$. Replacing n by $6n$ and then substituting q^6 by q we get

$$\sum_{n=0}^{\infty} b_{21}(pn + 11\gamma + 1)q^n \equiv \sum_{n=0}^{\infty} b_{21}(n + 1)q^{pn} \pmod{2}.$$

This completes the proof of the theorem. \hfill \Box

6. Acknowledgements

We are extremely grateful to Professor Ken Ono for many helpful discussions while working on this project.

References

[1] S. Judge, W. J. Keith, and F. Zanello, On the Density of the Odd Values of the Partition Function, Ann. Comb. 22 (2018), 583–600.
[2] W. J. Keith and F. Zanello, Parity of the coefficients of certain eta-quotients, Journal of Number Theory, DOI: 10.1016/j.jnt.2021.06.034.
[3] N. Koblitz, Introduction to elliptic curves and modular forms, Springer-Verlag, New York (1991).
[4] K. Ono, The web of modularity: arithmetic of the coefficients of modular forms and q-series, CBMS Regional Conference Series in Mathematics, 102, Amer. Math. Soc., Providence, RI, 2004.
[5] A. Singh and R. Barman, Divisibility of certain ℓ-regular partitions by 2, arXiv:2110.14156v1 [math.NT].
[6] S. Treneer, Congruences for the coefficients of weakly holomorphic modular forms, Proc. Lond. Math. Soc. 93 (2006), 304–324.
[7] J.-P. Serre, Divisibilité des certaines fonctions arithmétiques, Enseign. Math. 22 (1976), 227–260.
[8] E. X. W. Xia and X. M. Yao, Some modular relations for the Göllnitz-Gordon functions by an even-odd method., J. Math. Anal. Appl. 387 (2012), 126–138.

Department of Mathematics, Indian Institute of Technology Guwahati, Assam, India, PIN- 781039

Email address: ajit18@iitg.ac.in

Department of Mathematics, Indian Institute of Technology Guwahati, Assam, India, PIN- 781039

Email address: rupam@iitg.ac.in