ISARIC-COVID-19 dataset: A Prospective, Standardized, Global Dataset of Patients Hospitalized with COVID-19

ISARIC Clinical Characterization Group*, Esteban Garcia-Gallo¹, Laura Merson²,³✉, Kalynn Kennon³, Sadie Kelly³, Barbara Wanjiru Citarella³, Daniel Vidali Fryer⁴✉, Sally Shrapnel⁴,⁵, James Lee⁶, Sara Duque⁵, Yuli V. Fuentes⁵, Valeria Balan⁷, Sue Smith⁷, Jia Wei⁷, Bronner P. Gonçalves⁷, Clark D. Russell⁶, Louise Sigfrid⁷, Andrew Dagens², Piero L. Olliaro⁸, Joaquin Baruch⁸, Christiana Kartsonaki², Jake Dunning⁸, Amanda Rojek³, Aasiyah Rashan⁹, Abi Beane⁸, Srinivas Murthy⁹ & Luis Felipe Reyes¹,²✉

The International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) COVID-19 dataset is one of the largest international databases of prospectively collected clinical data on people hospitalized with COVID-19. This dataset was compiled during the COVID-19 pandemic by a network of hospitals that collect data using the ISARIC-World Health Organization Clinical Characterization Protocol and data tools. The database includes data from more than 705,000 patients, collected in more than 60 countries and 1,500 centres worldwide. Patient data are available from acute hospital admissions with COVID-19 and outpatient follow-ups. The data include signs and symptoms, pre-existing comorbidities, vital signs, chronic and acute treatments, complications, dates of hospitalization and discharge, mortality, viral strains, vaccination status, and other data. Here, we present the dataset characteristics, explain its architecture and how to gain access, and provide tools to facilitate its use.

Background & Summary
The International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) is a global federation of clinical research networks collaborating to prevent illness and death from infectious disease outbreaks through proficient and agile research response¹. In January 2020, ISARIC launched a research response to the emergence of a novel severe acute respiratory syndrome coronavirus (SARS-COV-2), detected weeks earlier in Wuhan, China²,³. The initial focus was on the clinical characterisation of COVID-19, the disease caused by SARS-CoV-2, which mainly affects the respiratory system⁴. The fatality rate of COVID-19 varies substantially across different locations, which may reflect differences in population age, comorbidities, vaccination status, and other factors⁵. In June 2022, there were more than 500 million reported cases and more than 6 million deaths. Despite unprecedented success in the rapid generation of vaccines and effective treatments, COVID-19 continues to cause severe and widespread health consequences⁶,⁷. Therefore, the continuation of high-quality, globally-representative research is critical – as are the data required to deliver it.

¹Universidad de La Sabana, Chía, Colombia. ²International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC), University of Oxford, Oxford, United Kingdom. ³Infectious Diseases Data Observatory (iDDO), University of Oxford, Oxford, United Kingdom. ⁴The University of Queensland, Brisbane, Australia. ⁵The Australian Research Council Centre of Excellence for Engineered Quantum Systems, St. Lucia, Australia. ⁶the University of Edinburgh Centre for Inflammation Research, Edinburgh, United Kingdom. ⁷Nat. Intensive Care Surveillance-M.O.R.U, Colombo, Sri Lanka. ⁸Wellcome-CRIT Care Asia- Africa, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom. ⁹Division of Critical Care, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada. *A list of authors and their affiliations appears at the end of the paper. ✉e-mail: laura.merson@ndm.ox.ac.uk; luis.reyes5@unisabana.edu.co
At the beginning of the COVID-19 outbreak, ISARIC adapted the ISARIC-WHO Clinical Characterization Protocol and data tools\(^7\) to facilitate global research collaboration and accelerate the understanding of COVID-19 as part of the public health response to the pandemic\(^8,9\). Between January 2020 and September 2021, information about the clinical presentation, treatment, and outcomes of more than 705,000 patients with COVID-19, hospitalized across 62 countries, was aggregated to form the ISARIC-COVID-19 dataset. Clinical teams in 1,559 participating institutions collected the data. Figure 1 shows the number of patients per country included in the database as of September 2021\(^1,4,10\). The number of patients included in the dataset continues to grow as data collection continues across the globe.

The objective of the dataset is to accelerate understanding of COVID-19 through access to detailed clinical information on infected patients from a range of settings. Access to data facilitates science, improves scientific transparency and integrity, and has played a substantial role in the generation of knowledge that has led to better patient management and vaccine production for COVID-19\(^11\). The diversity of populations, regions, and resource levels from which the data originate increases the generalizability of the evidence generated and supports comparisons across them. By collating, standardizing, and sharing large volumes of disparate data, curation and governance efforts are invested centrally by a specialised team, enabling efficient data access, and analysis by many researchers focused on the questions most relevant to the patients in their settings. This approach accelerates pandemic response by promoting locally-driven, locally-relevant knowledge generation, which is most likely to have an impact on public health policy and drive societal benefits beyond health\(^12,13\).

Methods

Data collection. Standardized clinical data of patients with suspected or confirmed COVID-19 are collected on the ISARIC-WHO case report forms (CRFs) (https://isaric.org/research/covid-19-clinical-research-resources/covid-19-crf/) or site-specific iterations of these forms. These forms are available in multiple languages to support accessibility for a global response.

Sites implement data collection contemporaneously to clinical care. Data are collected through direct observation and/or reviewing and extracting electronic health records or patient registries. Data can be submitted to ISARIC by completing the CRF on the Research Electronic Data Capture platform (REDCap version 10.6 Vanderbilt University\(^14\)) hosted by the University of Oxford. Alternatively, institutions using other data collection forms and/or a different data management system can share patient data in any format to the ISARIC COVID-19 data platform, hosted by the Infectious Diseases Data Observatory (IDDO, www.iddo.org). Data were prospectively collected on patients with clinical suspicion or laboratory confirmation of SARS-CoV-2 infection and admitted to a participating hospital or ward. Recruitment aimed to include all identified patients; however, resource constraints limited enrolment when patient numbers surged and health systems became overwhelmed. In such cases, or in sites where prospective data collection was impossible, data were extracted from electronic health records. Ethics approval and informed consent were obtained according to local regulations, which included a waiver of consent to collect de-identified data at several sites due to the burden on front-line
workers and the data protection framework in place. The WHO-ISARIC Clinical Characterization Protocol was approved by the WHO Ethics Committee (RPC571 and RPC572).

Data standardization. The ISARIC COVID-19 dataset is a large, clinically comprehensive, international resource. The diversity of data aggregated to create this resource required a uniform data model to standardize the structures and ontologies to a harmonized format. Thus, all data are standardized to the Clinical Data Interchange Standards Consortium (CDISC) Study Data Tabulation Model (SDTM) to facilitate pooled analyses. While there is no perfect data model, the CDISC SDTM was chosen to allow maximum flexibility to accommodate the diverse data types collected by different groups. This was preferred over other options, such as the Observational Medical Outcomes Partnership (OMOP) model, which was more rigid with a fixed number of possible tables and variables. The use of SDTM also allows for greater interoperability to enable integration with COVID-19 clinical trial data that may be added to the dataset in the future. This data model is designed for data tabulation and storage. Using the dataset requires processing to create an analysis dataset from which results can be derived. Here we present a complete description of the available data, how it is formatted, and describe a generalizable strategy to use and maximize its utility in research.

Data standardization - de-identification. Data entered in the ISARIC REDCap database or uploaded to the IDDO data platform are reviewed to ensure no direct identifiers are included. Direct identifiers, including those listed in the UK General Data Protection Regulation (https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/) and the US Health Insurance Portability and Accountability Act (https://www.hhs.gov/hipaa/index.html), are permanently deleted before data are curated through various processes.

Data standardisation - pre-mapping. Data and all documentation shared with the data, such as dictionaries, protocols, publications, and data collection forms, are reviewed by the data curator to fully understand the contents of the dataset. Queries are raised with the data contributor when required. Each variable in the dataset is assigned to the appropriate SDTM domain(s), variable(s), and controlled vocabulary (if applicable) according to the rules found within the IDDO SDTM Implementation Manual (https://www.iddo.org/tools-and-resources/data-tools). The implementation manual chronicles each type of data curated to the platform and is consulted and updated with each new dataset to ensure consistency across the repository. An audit trail of the assignments is also recorded in a dataset-specific SDTM mapping guide.

Data standardization - data wrangling. For formatting and coding, the contributed datasets are loaded into Trifacta®, a data wrangling programme. This can include merging files, splitting variables into separate domains, applying controlled terminology to variables, and adding created variables as required. IDDO-defined standardization, conversion, and categorization formulas are also used as described in the IDDO SDTM Implementation Manual. Transformations on the contributed data (in the interests of standardization) are recorded and stored in a form that documents the transformation and enables it to be reproduced.

Data standardization - review and edit checks. Data is run through Pinnacle 21® (community version) software, a CDISC standards compliance-verification tool that checks the standard SDTM implementation guide rules and requirements for regulatory submission. The resulting checks and warnings are assessed for applicability to the individual dataset. The data are also run through standard edit checks to identify possible mapping errors separate from SDTM conformance. The curator adjusts the mapping as needed to make corrections.

Figure 2 describes the workflow from data acquisition to the final, pooled dataset that researchers can access to conduct their research.

Data Records

The dataset is available from the Infectious Diseases Data Observatory – IDDO at https://doi.org/10.48688/nx85-bv3015 The ISARIC-COVID-19 dataset is a relational database consisting of 16 tables, each representing a domain of information set out in the CDISC SDTM data model. Unique identifiers link these with the suffix ‘ID’. For example, USUBJID refers to the subject’s unique identifier, which is the primary key for assessing individual-level data; STUDYID contains the unique identifier for an individual hospital or network of hospitals. Each table defines and tracks different aspects of illness and treatment.

Data tables. The tables (i.e., domains) currently included in the dataset are Demographics (DM), Disposition (DS), Environmental Risk (ER), Healthcare Encounters (HO), Inclusion/Exclusion Criteria (IE), Treatments and Interventions (IN), Laboratory Results (LB), Microbiology Specimen (MB), Reproductive System Findings (RP), Disease Response and Clinical Classification (RS), Clinical and Adverse Events (SA), Subject Visits (SV), Vital Signs (VS), COVID-19 Follow-Up questionnaire (CQ), Subject Characteristics (SC), and Pregnancy Outcomes (PO) (Supplementary Table 1); the majority of those tables are at a patient level, so it has a subject id (USUBJID) that relates the information of a single patient distributed in the multiple tables. The Trial Summary (TS), Trial Inclusion Exclusion Criteria (TI), and Device Identifiers (DI) are study-level domains; thus, there is no individual patient-level data in those domains. Instead, there is information about the uniqueness of each institution, for instance, the inclusion/exclusion criteria or the devices used at each hospital. Data collection times for each data type are presented in Fig. 3. As an example, we show in Fig. 4 a synthetic, representative subset of the available data for a female patient.

The CDISC SDTM data model has several advantages. For example:
It can adapt to any number of events. Frequently recorded events such as vital signs, laboratory tests, and patient status scores are stored as a series of events. The order is recorded in the variables with the suffix ‘DY’, which describes the day of the observation relative to the patient’s hospital admission date. For example, the variable ‘VSDY’ indicates the day when a particular vital sign was measured. Events occurring within the same day can be further ordered using the variables with the suffix ‘SEQ’, which captures the sequence of events independently of the day on which they occurred.

It captures whether or not a variable was collected for a given patient (this is critical to count denominators accurately in an aggregated collection of many different datasets). The model enables this by collecting the existence of a variable separately from the occurrence or completion of that variable. E.g., if the CRF for a dataset includes data on fever, the model shows that this question was prespecified as FEVER_PRESP = Yes; if the patient had a fever, it is captured as FEVER_OCCUR = Yes; if the patient was afebrile, it is registered as FEVER_OCCUR = No. Combining these two variables makes it possible to accurately quantify how many patients were evaluated for fever and how many had a fever. This distinction is found in the ER, HE, IN, and SA tables. A full description of how SDTM is implemented for these data, Frequently Asked Questions, and other data tools are available within the IDDO suite of curation and data resources (https://www.iddo.org/tools-and-resources/data-tools) to assist analysts in understanding these nuances.

The remaining tables contain study-level data (e.g., Study Inclusion Exclusion Criteria and Device Identifiers); thus, there are no individual-level data in these domains.

The dataset also contains a rich repository of free-text entries that capture more fine-grained information not included in the CRF solicited entries. Such information can be identified by applying simple search functions or Natural Language Processing (NLP) techniques to the **TERM variable. Supplementary Table 1 describes how data is distributed across the domain data tables and how many unique patients are included in each table.
Patient characteristics. Among the 708,158 patients whose data were entered as of September 2021, 552,366 (78%) had laboratory confirmation of SARS-CoV-2 infection, and 50,426 (7%) were clinically diagnosed (where testing was not available or results were not reported). Of these patients, the median age (interquartile ranges: first quartile (Q1) and third quartile (Q3)) is 58 (IQR: 44–72) years, 48.9% are male, and 50.9% are female (the sex of 0.1% of the patients is unknown). A total of 126,069 (20.9%) patients were admitted to a critical care unit (ICU or HDU), and in-hospital mortality was 23.5%. Table 1 provides a breakdown of the population by continent, and Supplementary Table 1 shows the number of unique patients with data reported per each domain.

The most frequently reported comorbidities, symptoms at hospital admission, and complications during hospital admission are presented in Fig. 5. Among comorbid conditions, hypertension (30.7%), diabetes mellitus (29.6%), and chronic cardiac disease (10.5%) were the most frequently reported. The top five symptoms
The teams performing analyses can develop analytic codes based on assumptions they deem appropriate. Data transformations are made during the database construction process, care is taken not to modify raw study data with scripts to help import the data into PostgreSQL and codes that enable the reuse of the data. Notably, where ISARIC COVID-19 database is provided as a collection of comma-separated value (CSV) files (i.e., tables), along with ISARIC and IDDO data management teams. When shared through the governed data access mechanisms, the ISARIC-COVID-19 dataset can generate insights facilitating quality control measures, especially in developing countries where scarce scientific resources.

Table 1. Details of the ISARIC-COVID-19 patient population by continent. The information presented in the table is based on the raw data, and there is missing data, for instance: 470 patients do not have their country of origin registered; 8143 patients do not have age; 149 do not have their sex registered, and the outcome of 10130 patients is missing.

Continent	Global	Africa	Europe	Asia	North America	South and Central America	Oceania
	n = 602792	n = 369467	n = 206992	n = 16019	n = 6687	n = 2709	n = 448
Critical care admission, counts (%)	126069 (20.91)	73095 (19.78)	35454 (17.13)	11544 (72.06)	3619 (54.12)	1872 (69.10)	427 (95.31)
Age, years, median (Q1-Q3)	58 (44–72)	54 (40–66)	70 (54–82)	58 (46–68)	64 (52–76)	54 (42–66)	62 (51–70)
Male, counts (%)	294928 (48.93)	165376 (44.76)	113148 (54.66)	10366 (64.71)	3857 (57.68)	1659 (61.24)	269 (60.04)
In-hospital mortality, counts (%)	141646 (23.5)	88737 (24.02)	46424 (22.43)	4310 (26.91)	1672 (25)	440 (16.24)	59 (13.17)

Data at admission were cough (23.7%), shortness of breath (19.8%), fever (17.5%), fatigue (11.5%), and altered consciousness (6.1%). Regarding complications, viral pneumonia (16.2%), acute respiratory distress syndrome (6.6%), acute kidney injury (5.5%), anaemia (4.3%), and bacterial pneumonia (3.8%) were the most frequently identified.

Technical Validation

Data submitted via the ISARIC REDCap system are subjected to a series of field-specific data quality checks designed by ISARIC. These trigger error alerts inform users of issues based on value limits, validate dates, flag missing variables, and perform logic checks to compare related variables. Data are further reviewed by a data manager who sends data quality reports and queries to sites when critical data are missing or outside expected values. Staff at data collection sites review the alerts and make the necessary corrections to their data in the REDCap system.

Data uploaded to the IDDO platform are verified during the ‘pre-mapping’ and ‘data review and edit checks’ processes described above. Interpretation of the data dictionary (for sites that used a unique data collection tool) and any missing values are queried directly with staff at the data collection sites. Results are charted per variable to identify and query outlier values. Where correction is suggested, the contributing site is contacted and asked to correct the data as needed before re-uploading them to the data platform.

Usage Notes

The utility of the data collected is optimised by issuing regular open-access ISARIC COVID-19 Clinical Data Reports (https://isaric.org/research/covid-19-clinical-research-resources/evidence-reports/) and periodic updates to the ISARIC COVID-19 Dashboard (https://livedataoxford.shinyapps.io/CovidClinicalDataDashboard/). Data are available for analysis through two mechanisms to maximize uptake: a collaborative mechanism for ISARIC partners who contribute data to the dataset and a data-sharing platform for external researchers. The sites that contribute to the data retain ownership and decision-making authority on their data at all times.

It is essential to highlight that more countries are globally transitioning to digital-based healthcare systems. During the transitioning process, quality control measures are necessary to enhance the effectiveness of healthcare-related communication and data quality\(^\text{16}\). Thus, the ISARIC-COVID-19 dataset can generate insights facilitating quality control measures, especially in developing countries where scarce scientific resources.

Data access.

Staff from sites that contribute data to the dataset may access data for collaborative analysis via the ISARIC Partner Analysis scheme (https://isaric.org/research/isaric-partner-analysis-frequently-asked-questions/). Proposals for these analyses are governed and supported by ISARIC and executed with all data contributors’ contributions, oversite, and accreditations\(^\text{16,20}\). ISARIC provides statistical, clinical, and administrative support to promote analyses by partners who contribute the data, especially those based in low-resource settings.

External researchers who have not contributed to the dataset are also welcome to submit a data access and analysis proposal via the IDDO platform (https://www.iddo.org/covid19). An independent Data Access Committee reviews these requests according to the Data Access Guidelines of the platform (https://www.iddo.org/covid19/data-sharing/accessing-data). Statistical analysis plans and outputs from both types of access can be viewed at: https://www.iddo.org/covid19/research/approved-uses-platform-data.

Data management, curation, governance, and the data-sharing platform are free to use and supported by the ISARIC and IDDO data management teams. When shared through the governed data access mechanisms, the ISARIC COVID-19 database is provided as a collection of comma-separated value (CSV) files (i.e., tables), along with scripts to help import the data into PostgreSQL and codes that enable the reuse of the data. Notably, where data transformations are made during the database construction process, care is taken not to modify raw study data. The teams performing analyses can develop analytic codes based on assumptions they deem appropriate.

Data use.

The breadth of analyses published to date demonstrates the diversity of science that can be generated from these data. Examples include identification of unique COVID-19 symptomology at the extremities of age\(^\text{16}\); to develop the ISARIC 4 C mortality score that outperformed existing scores and showed utility to directly...
inform clinical decision making22; to identify temporal trends in inpatient journeys and inform resource needs in an evolving pandemic10, and to improve the diagnosis of acute kidney injury23. Further analyses to develop natural language processing, understand neurological outcomes in COVID-19 and develop models that predict a range of outcomes.

The use of such a large and diverse dataset is not without challenges. Robust interpretation of analytic outputs requires an understanding of the variation in recruitment practices between sites and during the course of the outbreak and the availability of treatments and facilities (e.g., ICUs and ventilators) across the range of resource settings. ISARIC’s collaborative approach to research outputs addresses these challenges by involving all staff who contributed to the collection of data in the review of the analysis plans and manuscripts. When designing an analysis plan, researchers must also consider which data are and are not available from each site and account for high levels of missingness, particularly during regional peaks in COVID-19 transmission. The CDISC SDTM data model was selected for harmonisation of these data, specifically because it captures these aspects of data providence. Those using the dataset benefit from the richness of the model; however, they will need to master the challenges of its complexity. Tools to support understanding of the data model can be found at \url{https://www.iddo.org/tools-and-resources/data-tools}.

Collaborative research. The ISARIC WHO characterization protocol has proven to be a successful strategy for generating standardized data from multiple sites that international researchers can access for analysis18,21,22,24–27. Having a pre-prepared protocol for clinical investigation of an emerging infectious disease established before the beginning of the COVID-19 pandemic allowed us to gather patient data very early in the pandemic. As a result, contributors benefited from clinical data captured in other regions before they experienced cases and improved confidence in a larger dataset. By implementing systems to harmonize global data, ISARIC and IDDO have made international collaboration more efficient1. The evolution of these systems, including integrating epidemiological and genomic data to address new types of research questions, is in progress. Finally, ISARIC’s data governance model allows members and non-members to propose research questions that could be answered using this dataset, which has helped advance science and empowers scientists worldwide4,10,20. This open and collaborative approach maximizes the scientific utility and public health impact of global data. With a focus on ensuring the representation of patient data and researchers from lower-resourced settings, the ISARIC network has accelerated understanding of COVID-19, advanced preparedness for future pandemics, and raised the bar on global collaboration for health.

Code availability
Processing codes for the ISARIC COVID-19 database are openly available online, and contributions from the research community to share these codes are encouraged. For this reason, a public code repository has been created along with this manuscript to develop and share code collectively: \url{https://github.com/ISARICDataPlatform/ISARICBasics.git}. The content of this repository is under continuous development. Still, it has been seeded with code to generate patient-level datasets suitable for statistics and machine learning research, such as patient demographic, comorbid conditions at the time of admission, application of treatments, and severity scores, among others. It is possible for the research community to directly submit updates, improvements, and additions to the repository via GitHub. Moreover, a Jupyter Notebook containing the code used to generate the tables and descriptive statistics included in this paper is openly available on GitHub.

Received: 30 March 2022; Accepted: 29 June 2022;
Published online: 30 July 2022

\textbf{Fig. 5} Distribution of primary symptoms, comorbidities, and treatments. (A) shows the prevalence of comorbidities; (B) shows the prevalence of symptoms at admission; (C) shows the proportion of patients receiving each treatment.

A

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Condition & Yes & No \\
\hline
Hypertension & 6323 & 182590 \\
Diabetes & 13025 & 180704 \\
Other Relevant Risk Factor & 9533 & 181996 \\
Chronic Cardiovascular Disease & 8416 & 186783 \\
Smoking & 9538 & 187701 \\
Obesity & 4181 & 194998 \\
Anemia & 4077 & 196796 \\
Chronic Pulmonary Disease & 33623 & 191034 \\
Chronic Kidney Disease & 9207 & 187641 \\
HIV/AIDS & 2522 & 189742 \\
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Condition & Yes & No \\
\hline
Viral Pneumonia & 3714 & 199960 \\
Anemia & 3692 & 199297 \\
Bacterial Pneumonia & 29760 & 189903 \\
Pyrexia & 5184 & 189917 \\
Other Complication & 4279 & 194933 \\
ARDS & 3605 & 177438 \\
Cardiac Arrhythmia & 1396 & 204490 \\
Liver Dysfunction & 1168 & 203329 \\
Acute Kidney Injury & 1065 & 179517 \\
Neural Dysfunction & 2957 & 198152 \\
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Condition & Yes & No \\
\hline
Shortness Of Breath & 7557 & 200314 \\
Cough & 10969 & 199271 \\
Fever & 8035 & 199271 \\
Fatigue & 18856 & 187132 \\
Confusion & 10657 & 207954 \\
Vomiting/Regurgitate & 7538 & 201214 \\
Muscle Aches/Joint Pain & 7537 & 207954 \\
Diarhea & 7537 & 207954 \\
Obst Pains & 7537 & 207954 \\
Hemoptysis & 7537 & 207954 \\
\hline
\end{tabular}
\end{table}
References

1. ISARIC Clinical Characterization Group. The value of open-source clinical science in pandemic response: lessons from ISARIC. The Lancet. Infectious diseases 21, 1623–1624, https://doi.org/10.1016/S1473-3099(21)00563-X (2021).
2. Yang, X. et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet. Respiratory medicine 8, 475–481, https://doi.org/10.1016/S2213-2600(20)30079-5 (2020).
3. Grasselli, G. et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. Jama 323, 1574–1581, https://doi.org/10.1001/jama.2020.5394 (2020).
4. ISARIC Clinical Characterization Group. COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study. Infection 49, 889–905, https://doi.org/10.1007/s10110-021-01599-5 (2021).
5. Reyes, L. F. et al. Clinical characteristics, risk factors and outcomes in patients with severe COVID-19 registered in the International Severe Acute Respiratory and Emerging Infections Consortium WHO clinical characterisation protocol: a prospective, multinational, multicentre, observational study. ERJ Open Res 8, https://doi.org/10.1183/23120541.00552-2021 (2022).
6. Reyes, L. F. et al. Clinical characteristics, systemic complications, and in-hospital outcomes for patients with COVID-19 in Latin America. LIVEN-Covid-19 study: A prospective, multicenter, multinational, cohort study. PLoS one 17, e0265529, https://doi.org/10.1371/journal.pone.0265529 (2022).
7. Dunning, I. W. et al. Open source clinical science for emerging infections, The Lancet. Infectious diseases 14, 8–9, https://doi.org/10.1016/S1473-3099(13)70327-X (2014).
8. Bloom, C. I. et al. Risk of adverse outcomes in patients with underlying respiratory conditions admitted to hospital with COVID-19: a national, multicentre prospective cohort study using the ISARIC WHO Clinical Characterisation Protocol UK. The Lancet Respiratory medicine 9, 699–711, https://doi.org/10.1016/S2213-2600(20)30003-4 (2021).
9. Docherty, A. B. et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ 369, m1985, https://doi.org/10.1136/bmj.m1985 (2020).
10. ISARIC Clinical Characterisation Group. et al. Ten months of temporal variation in the clinical journey of hospitalised patients with COVID-19: An observational cohort. elife 10, https://doi.org/10.7554/elife.70970 (2021).
11. Vuong, Q. H. et al. Covid-19 vaccines production and societal immunization under the serendipity-mindsponge–3D knowledge management theory and conceptual framework. Humanities and Social Sciences Communications 9, 22, https://doi.org/10.1057/s41599-022-01034-6 (2022).
12. Vuong, Q. H. The (ir)rational consideration of the cost of science in transition economies. Nat Hum Behav 2, 5, https://doi.org/10.1038/s41562-018-0281-4 (2018).
13. Jakab, Z., Selbie, D., Squires, N., Mustafa, S. & Saikat, S. Building the evidence base for global health policy: the need to strengthen institutional networks, geographical representation and global collaboration. BMJ Glob Health 6, https://doi.org/10.1136/bmjgh-2021-006582 (2021).
14. Harris, P. A. et al. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research information support. J Biomed Inform 42, 377–381, https://doi.org/10.1016/j.jbi.2008.08.010 (2009).
15. ISARIC (International Severe Acute Respiratory and Emerging Infections Consortium. ISARIC COVID-19 Dataset. Exaptive, https://doi.org/10.48688/nx85-bv30 (2022).
16. Sigfrid, L. et al. What is the recovery rate and risk of long-term consequences following a diagnosis of COVID-19? A harmonised, global longitudinal observational study protocol. BMJ Open 11, e043887, https://doi.org/10.1136/bmjopen-2020-043887 (2021).
17. Sigfrid, L. et al. Long Covid in adults discharged from UK hospitals after Covid-19: A prospective, multicentre cohort study using the ISARIC WHO Clinical Characterisation Protocol. Lancet Respir Health 8, 100186, https://doi.org/10.1016/j.lanpne.2021.100186 (2021).
18. Bloom, C. I. et al. Risk of adverse outcomes in patients with underlying respiratory conditions admitted to hospital with COVID-19: a national, multicentre prospective cohort study using the ISARIC WHO Clinical Characterisation Protocol UK. Lancet Respir Med, https://doi.org/10.1016/S2213-2600(21)00133-8 (2021).
19. Vuong, Q. H., Le, T. T., La, V. P. & Nguyen, M. H. The psychological mechanism of internet information processing for post-treatment evaluation. Helyon 8, e09351, https://doi.org/10.1002/helyon.2022.e09351 (2022).
20. Bouriotis, J., Arvanitakis, M., Preiser, J. C. & Group, I. C. C. Association of body mass index with COVID-19 related in-hospital death.Clin Nutr, https://doi.org/10.1016/j.clinnu.2022.01.017 (2022).
21. ISARIC Clinical Characterization Group. COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study. Infection, https://doi.org/10.1007/s10110-021-01599-5 (2021).
22. Knight, S. R. et al. Risk stratification of patients admitted to hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: development and validation of the 4C Mortality Score. BMJ 370, m3339, https://doi.org/10.1136/bmj.m3339 (2020).
23. Wainstein, M. et al. Use of an extended KDIGO definition to diagnose acute kidney injury in patients with COVID-19: A multinational study using the ISARIC-WHO clinical characterisation protocol. PLoS Med 19, e1003969, https://doi.org/10.1371/journal.pmed.1003969 (2022).
24. Ali, R. et al. Isaric 4c Mortality Score As A Predictor Of In-Hospital Mortality In Covid-19 Patients Admitted In Ayub Teaching Hospital During First Wave Of The Pandemic. J Ayub Med Coll Abbottabad 33, 20–25 (2021).
25. Gupta, R. K. et al. Development of the ISARIC 4C Deterioration model for adults hospitalised with COVID-19: a prospective cohort study. The Lancet. Respiratory medicine 9, 349–359, https://doi.org/10.1016/S2213-2600(20)30559-2 (2021).
26. Knight, S. R. et al. Prospective validation of the 4C prognostic models for adults hospitalised with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol. Thorax https://doi.org/10.1136/thoraxjnl-2021-217629 (2021).
27. Russell, C. D. et al. Co-infections, secondary infections, and antimicrobial use in patients hospitalised with COVID-19 during the first pandemic wave from the ISARIC WHO CCP-UK study: a multicentre, prospective cohort study. Lancet Microbe 2, e354–e365, https://doi.org/10.1016/S2666-5247(21)00090-2 (2021).

Acknowledgements

The investigators acknowledge: This work is part of the Grand Challenges ICODA pilot initiative, delivered by Health Data Research UK and funded by the Bill & Melinda Gates Foundation and the Minderhoof Foundation. The philanthropic support of the donors to the University of Oxford’s COVID-19 Research Response Fund; UK Foreign, Commonwealth and Development Office and Wellcome [215091/Z/18/Z and 220757/Z/20/Z]; the Bill & Melinda Gates Foundation [OPP1209135]; the National Institute for Health Research (NIHR; award CO- CIN-01); the National Medical Research Council (MRC; grant MC_PC_19059); the NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool in partnership with Public Health England (PHE)(award 200907); NIHR HPRU in Respiratory Infections at Imperial College London with PHE (award 200927); Liverpool Experimental Cancer Medicine Centre (grant C18616/A25153); NIHR Biomedical Research Centre at Imperial College London (award IS-BRC-1215-20013); NIHR Clinical Research Network (infrastructure support); CIHR Coronavirus Rapid Research Funding Opportunity OV2170359 and was
coordinated out of Sunnybrook Research Institute; the endorsement of the Irish Critical Care- Clinical Trials Group, co-ordinated in Ireland by the Irish Critical Care- Clinical Trials Network at University College Dublin and funded by the Health Research Board of Ireland [CTN-2014-12]; Rapid European COVID-19 Emergency Response research (RECOVER) [H2020 project 101003589]; European Clinical Research Alliance on Infectious Diseases (ECRAD) [965313]; COVID clinical management team, AIIMS, Rishikesh, India; Cambridge NIHR Biomedical Research Centre; the dedication and hard work of the Groote Schuur Hospital Covid ICU Team; the Groote Schuur nursing and University of Cape Town registrar bodies coordinated by the Division of Critical Care at the University of Cape Town; Wellcome Trust fellowship [205228/Z/16/Z]; the Liverpool School of Tropical Medicine; the University of Oxford; the dedication and hard work of the Norwegian SARS-CoV-2 study team; the Research Council of Norway grant no 312780; a philanthropic donation from Vivaldi Invest A/S owned by Jon Stephenson von Tetzchner; Innovative Medicines Initiative Joint Undertaking under Grant Agreement No. 115523 COMBACTE, resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7–2007–2013) and EFPIA companies, in-kind contribution; preparedness work conducted by the Short Period Incidence Study of Severe Acute Respiratory Infection; Stiftungsfonds zur Förderung der Bekämpfung der Tuberkulose und anderer Lungenkrankheiten of the City of Vienna, Project Number: APCOV22BGM; Italian Ministry of Health “Fondi Ricerca corrente–L1P6” to IRCCS Ospedale Sacro Cuore–Don Calabria; Australian Department of Health grant (3273191); Gender Equity Strategic Fund at University of Queensland; Artificial Intelligence for Pandemics (AI4PAN) at University of Queensland; the Australian Research Council Centre of Excellence for Engineered Quantum Systems (EQUST, CE170100099); the Prince Charles Hospital Foundation, Australia; UK Medical Research Council Clinical Research Training Fellowship MR/V001671/1; Instituto de Salud Carlos III, Ministerio de Ciencia, Spain; Brazil, National Council for Scientific and Technological Development Scholarship number 303953/2018-7; Firland Foundation, Shoreline, Washington, USA; the French COVID cohort (NCT04262921) is sponsored by INSERM and is funding by the REACTing (REsearch & ACtion emergiNG infectious diseases) consortium and by a grant of the French Ministry of Health (PHRC n°20-0424). This work uses Data/Material provided by patients and collected by the NHS as part of their care and support #DataSavesLives. The Data/materails used for this research were obtained from ISARIC4C. ISARIC4C Investigators collated the COVID-19 Clinical Information Network (CO-CIN) data.

Competing interests
Allavena, C. declares personal fees from ViiVHealthcare, MSD, Janssen, and Gilead, all outside the submitted work. Andréjak, C. declares personal fees for lectures from Astra Zeneca, outside the submitted work. Antonelli, M. declares unrestricted research grants from GE and Estor/Toray, Board participation from Pfizer and Shionogi. All unrelated to the present work. Beltrame, A. has nothing to declare concerning the current work. A Borie, R. declares personal fees for Roche, Sanofi, and Boehringer Ingelheim’s lectures outside the submitted work. Bosse, Hans Martin is co-investigator for placebo studies in infants and children in clinical trials by Actelion/Janssen (Johnson&Johnson), outside the submitted work. Cheng, M. declares grants from McGill Interdisciplinary Initiative in Infection and Immunity, grants from Canadian Institutes of Health Research, during the conduct of the study; personal fees from GEN1E Lifesciences (as a member of the scientific advisory board), personal fees from nplex biosciences (as a member of the scientific advisory board), outside the submitted work. He is the co-founder of Kansas Biosciences and owns equity in the company. In addition, M. Cheng reports a patent Methods for detecting tissue damage, graft versus host disease, and infections using cell-free DNA profiling pending, and a patent Methods for assessing the severity and progression of SARS-CoV-2 infections using cell-free DNA pending. Cholley, B. declares personal fees (for lectures and participation to advisory boards) from Edwards, Amomed, Nordic Pharma, and Orion Pharma. Clauere-Del Granado, R. declares individual fees (for lectures and participation to advisory boards) from Nova Biomedical, Medtronic, and Baxter all outside the submitted work. Cruz-Bermúdez J.L. declares personal fees from Elsevier for advice outside the submitted work. Cummings, M. and O’Donnell, M. participated as investigators for clinical trials evaluating the efficacy and safety of remdesivir (sponsored by Gilead Sciences) and convalescent plasma (sponsored by Amazon) in hospitalized patients with COVID-19. Support for this work is paid to Columbia University. Dalton, H. declares personal fees for medical director of Innovative ECMO Concepts and honorarium from Abiomed/BREATHE Oxi-1 and Instrumentation Labs. Consultant fee, Entegron Inc. Dyrhol-Ruise, AM, declares grants from Gilead outside this work. Deplanque, D. declare personal fees from Biocodex, Bristol-Myers Squibb, and Pfizer (advisory boards). Donnelly, C.A. declares research funding from the UK Medical Research Council and the UK National Institute for Health Research. Douglas, J.J. declares personal fees from lectures from Sunovion and Merck, consulting fees from Pfizer. Durante-Mangoni, E. declares funding via his Institution from MSD, Pfizer, and personal fees or participation in advisory boards or participation to the speaker’s bureau of Roche, Pfizer, MSD, Angelini, Correvio, Nordic Pharma, Bio-Merieux, Abbvie, Sanofi-Aventis, Medtronic, Tyrx and DiaSorin. Gordon, AC. reports a Research Professorship from NIH (RP-2015-06-18), consulting fees from GlaxoSmithKline, Bristol Myers Squibb, and 30 Respiratory paid to his institution outside of the submitted work. Grasselli, G. declares personal fees from Getinge, Biotest, Draeger Medical, Fisher & Paykel, MSD, and unrestricted research grants from MSD and Fisher & Paykel, all outside the submitted work. Guerguerian AM. Participated as a site investigator for the Hospital for Sick Children, Toronto, Canada, through the SPRINT-SARI Study via the Canadian Critical Care Trials Group sponsored in part by the Canadian Institutes of Health Research. Hammond, TC declares consulting fees from Regeneron, Pfizer, and Agenus. Ho, A. declares grant funding from Medical Research Council UK, Scottish Funding Council - Grand Challenges Research Fund, and the Wellcome Trust, outside this submitted work. Holter, J. C. reports grants from Research Council of Norway grant no 312780, and Vivaldi Invest A/S owned by Jon Stephenson von Tetzchner, during the conduct of the study. Hulot, J.S. reports grants from Bioserenity, Sanofi, Servier, and Novo Nordisk.; speaker, advisory board or consultancy fees from Amgen, Astra Zeneca,
Bayer, Bioserena, Boehringer Ingelheim, Bristol-Myers Squibb, MSD, Novartis, Novo Nordisk, Vifor (all unrelated to the present work). Kalleberg, K.T. is a founder and shareholder of the company Age Labs, which develops epigenetic tests, including one for COVID-19 severity. Kimmoun, A. declares personal fees (payment for lectures) from Baxter, Aquettant, Aspen, Kumar, D. declares grants and personal fees from Roche, GSK, and Merck, and personal fees from Pfizer and Sanofi. Kutsogiannis, D.J., declares personal fees for a lecture from Tabuk Pharmaceuticals and the Saudi Critical Care Society. Kutsyna, G. declares the study consulting fee for clinical trial ClinicalTrials.gov Identifier: NCT04762628. Lafaye, J. reports that he has received fees for consultancy from GlaxoSmithKline and from Baxter Therapeutics for work outside the scope of this work. Lairez, O. declares grant funding from Pfizer; conference fees from Amicus, GE Healthcare, Novartis, Sanofi-Genzyme, and Takeda-Shire; and consultancy fees from Alnylam, Amicus, Pfizer, Takeda-Shire. Lee, J. reports grants from European Commission PREPARE grant agreement No 602525, European Commission RECOVER Grant Agreement No 101003589 and European Commission ECRAIID-Plan Grant Agreement 825715 supporting the conduct, coordination, and management of the work. Lee, T.C. declares research salary support from les Fonds de recherche du Québec – Santé. Lefèvre, B. declares travel/accommodation/meeting expenses from Mylan and Gilead, all outside the submitted work. Lelouche, F. declares grants from CIHR for COVID-19 studies is co-founder and administrator of Oxynov. inc, fees from Fisher&Paykel, Vygon, and Novus. Lemaigren, A. declares personal fees (payment for lectures) from MSD and Gilead; and travel/accommodation/meeting expenses from Pfizer. Leone, M declares personal fees from Gilead, MSD, Ambu, and Amomed Lescure, F.X. declares personal fees (payment for lectures) from Gilead, MSD; and travel/accommodation/meeting expenses from Astellas, Eumedica, MSD. Lim, W.S. declares his institution has received unrestricted investigator-initiated research funding from Pfizer for an unrelated multicentre cohort study in which he is the Chief Investigator, and research funding from the National Institute for Health Research, the UK, for various clinical trials outside the submitted work. Liu, K. reports personal fees from MERA and receives a salary from TXP Medical completely outside the submitted work. Maier, Lars S. has nothing to declare with respect to the present work. Mark, P.B. declares grant support from Boehringer Ingelheim, lecture fees and/or travel support from AstraZeneca, Astellas, Vifor, Pharmacosmos, and Napp, and grant funding from British Heart Foundation, Medical Research Council, National Institute for Health Research and Kidney Research UK all outside the submitted work. Martin-Blondel G declares support for attending meetings and personal fees from BMS, MSD, Janssen, Sanofi, Pfizer, and Gilead for the lectures outside the submitted work. Martin-Looches I. declared lectures for Gilead, Thermofisher, Pfizer, MSD; advisory board participation for Fresenius Kabi, Advanz Pharma, Gilead, Accelerate, Merck; and consulting fees for Gilead outside of the submitted work. Martin-Quiros, A. declares consulting fees for Gilead. Mentré F declares consulting fees from IPSEN, Servier, and Da Volterra and reports research grants to her group from Sanofi, Roche, Servier, and Da Volterra, all outside the submitted work. Montrucchio, G. declares personal fees for a lecture from Pfizer Gilead outside the submitted work. Murthy, S. declares receiving salary support from the Health Research Foundation and Innovative Medicines Canada Chair in Pandemic Preparedness Research. Nichol, A. declares a grant from the Health Research Board of Ireland to support data collection in Ireland (CTN-2014-012), an unrestricted grant from BAXTER for the TAME trial kidney substudy; and consultancy fees paid to his institution from AM-PHARMA. Nseir S. declares lectures for Gilead, Pfizer, MSD, Biomérieux, Fischer and Paykel, and Bio-Rad, outside the submitted work. Openshaw, P. has served on scientific advisory boards for Janssen/J&J, Oxford Immunotech Ltd, GSK, Nestle, and Pfizer (fees to Imperial College). He is Imperial College lead investigator on EMINENT, a consortium funded by the MRC and GSK. He is a member of the RSV Consortium in Europe (RESCEU) and Inn4Vac, Innovative Medicines Initiatives (IMI) from the European Union. Peltan, L.D. declares grant support from the National Institutes of Health and, outside the submitted work, grant support from Centers for Disease Control and Prevention, National Institutes of Health, and Janssen and payments to his institution from Regeneron and Asahi Kasei Pharma. Pesenti, A. declares personal fees from Maquet, Novalung/Xenios, Baxter, and Boehringer Ingelheim. Peytavin G. declares consulting fees (for lectures and/or participation in advisory boards) and travel grants from Gilead Sciences, Janssen, Merck, Takeda, Theratechnologies, and ViiV Healthcare. Poissy, J. declares personal fees from Gilead for lectures outside the submitting work. Povoas, D. declares consulting fees (for lectures and advisory boards) from MSD, Technophage, Sanofi, and Gilead. Póvoas, D. declares consulting fees (for lectures and/or participation in advisory boards) from Roche and ViiV Healthcare; and travel/accommodation/meeting expenses from Abbvie, Gilead Sciences, Janssen Lilag, Merck Sharp & Dohme, and ViiV Healthcare. Rewa, O. declares honoraria from Baxter Healthcare Inc and Leading Biosciences Inc. Rössler, B. declares grants from CytoSorbent Inc. Rossanese, A. declares consulting fees (for lectures and/or participation to advisory boards) from Emerging BioSolutions and Sanofi Pasteur, but all outside of the frame of the submitted work. Sândulescu, O. has been an investigator in COVID-19 clinical trials by Algeron Pharmaceuticals, Atea Pharmaceuticals, Regeneron Pharmaceuticals, Diffusion Pharmaceuticals, and Celltrion, Inc. and Atriva Therapeutics, outside the scope of the submitted work. Semple, M.G. reports grants from DHSC National Institute of Health Research UK, from the Medical Research Council UK, and from the Health Protection Research Unit in Emerging & Zoonotic Infections, University of Liverpool, supporting the conduct of the study; other interest in Integrum Scientific LLC, Greensboro, NC, USA, outside the submitted work. Serpa Neto, A. declares personal lectures fees from Drager outside the submitted work. Serrano-Balazote, P. declares funding via his Institution from Novartis and Janssen, and personal fees or participation in advisory boards or participation to the speaker’s bureau of Roche, all outside of the submitted work. Shrapnel, S. participated as an investigator for an observational study analysing ICU patients with COVID-19 (for the Critical Care Consortium including ECMOCARD) funded by The Prince Charles Hospital Foundation during the conduct of this study. S. Shrapnel reports in-kind support from the Australian Research Council Centre of Excellence for Engineered Quantum Systems (CE170100009). Streiniu-Cercel, Adrian has been an investigator in COVID-19 clinical trials by Algeron Pharmaceuticals, Atea Pharmaceuticals, Regeneron Pharmaceuticals, Diffusion Pharmaceuticals, and
Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41597-022-01534-9.

Correspondence and requests for materials should be addressed to L.M. or L.F.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

ISARIC Clinical Characterization Group

Ali Abbas10, Sheryl Ann Abdukahih11, Nurul Najmee Abdulkadir12, Ryuzo Abe13, Laurent Abel14, Lara Absi15, Kamal Abu Jaba16, Hiba Abu Zayyad16, Subhash Acharya17, Andrew Acker18, Shingo Adachi19, Elisabeth Adam20, Enrico Adriano21, Diana Adrião22, Saleh Al Ageel23, Shakeel Ahmed24, Marina Aiello21, Kate Ainscough25, Eka Airlangga26, Tharwat Aisa27, Ali Ait Hssain28, Younes Ait Tamlihat29, Takako Akimoto30, Ernita Akmal31, Eman Al Qasim11, Shingo Adachi19, Elisabeth Adam20, Enrico Adriano21, Diana Adrião22, Saleh Al Ageel23, Shakeel Ahmed24, Marina Aiello21, Kate Ainscough25, Eka Airlangga26, Tharwat Aisa27, Ali Ait Hssain28, Younes Ait Tamlihat29, Takako Akimoto30, Ernita Akmal31, Eman Al Qasim11, Tala Al-dabbous32, Abdulrahman Al-Fares33, Razi Alalqam34, Angela Alberti35, Senthilkumar Alegesan36, Cynthia Alegría37, Marta Alessi38, BeatriceAlex39, Kévin Alexandre40, Huda Alfoudri41, Adam Ali42, Imran Ali43, Naseem Ali Shah44, Naseem Ali Sheikh43, Kazali Enagnon Alidjnio44, Jeffrey Aliudin45, Qabas Alkhafajee46, Clotilde Allavena47, Nathalie Allou48, Aneela Altaf49,46, João Alves50, João Melo Alves50, Rita Alves51, Maria Amaral51, Nur Amira52, Heidi Ammerlaan53, Phoebe Ampaw54, Roberto Andini55, Claire Andrejak14, Andrea Anghenben56, François Angoulvant14, Séverine Ansart57, Sivanesan Anthonidass58, Massimo Antonelli59, Carlos Alexandre Antunes de Brito60, Kazi Rubayet Anwar61, Ardiyan Apriyana62, Yaseen Arabi63, Irene Araigo64, Francisco Arancibia65, Carolline Araujo66, Antonio Arcadipane67, Patrick Archambault68, Lukas Arenz69, Jean-Benoit Arlet70, Christel Arnold-Day71, Ana Arroca72, Lovkesh Arora72, Rakesh Arora72, Elise Artaud-Macari70, Diptesh Aryal72,73,74, Motohiro Asaki75, Angel Asensio76, Elizabeth Ashley77,78,79,80, Muhammad Ashraf81, Namra
Tellier,4 Sze Kye Teoh352, Vanessa Teotonio520, François Téoule45, Pleun Terpstra495, Olivier Terrier45, Nicolai Terzi412, Hubert Tessier-Grenier139, Adrian Tey472, Alif Adlan Mohd Thabat552, Anand Thakur452, Zhang Duan Tham558, Suvintheran Thangavelu552, Vincent Thibault852, Simon-Djamel Thiberville45, Benoît Thill174, Jananeen Thirumanickam52, Shaun Thompson523, David Thomson59, Emma C. Thomson59, Surain Raaj Thanga Thurai52, Duong Bich Thuy369, Ryan S. Thwaites19, Andrea Tichines21, Paul Tiernen249, Vadim Tieroshyn289, Peter S. Timashev156, Jean-François Timis14, Bharath Kumar Tirupakuzhi Vijayaraghavan458, Noémie Tissot451, Jordan Zhien Yang Toh559, Maria Toki556, Kristian Tonby459, Sia Loong Tonni553, Antoni Torres348, Margarida Torres554, Rosario Maria Torres Santos-Olmo451, Hernando Torres-Zevallos554, Michael Towers45, Tony Tranapi558, Théo Treoux14, Huynh Trung Trieu459, Cécile Tromeur57, Ioannis Trontzas66, Tiffany Trouillon137, Jeanne Truong525, Christelle Tualli45, Sarah Tubiana14, Helen Tuile556, Jean-Marie Turmel160, Lance C. W. Turtle39, Anders Tveita512, Pawel Twardowski152, Makoto Uchiyama457, P G Ishara Udayangani37, Andrew Udy158, Roman Ulrich156, Alberto Uribe123, Asad Usman18, Timothy M. Uyeki93, Cristinava Vajdovics24, Luis Val-Flores55, Piero Valentini557, Ana Luiza Valle552, Amélie Valran344, Ilaria Valzano25, Stijn Van de Velde359, Marcel van den Berge558,259, Maachteld Van der Feltz128, Job van der Palen110, Paul van der Valk110, Nicky Van Der Vekens359, Peter Van der Voort357, Sylvie Van Der Werf154, Marlice van Dyk413, Laura van Gulik350, Jarne Van Hattem207, Carolien van Netten529, Gitte Van Twillert331, Ilonka van Veen110, Noémie Vanel14, Henk Vanoverschelde329, Pooja Varghese156, Michael Varrone35, Shoban Raj Vasudavan138, Charline Vauchy141, Shaminee Veeran152, Aurélie Veislinger34, Sebastian Vencenck55, Sara Ventura50, Annelies Verbon312, James Vickers98, José Ernesto Vidal100, César Vieira51, Deepak Vijayan139, Joy Ann Villanueva28, Judit Villar156, Pierre-Marc Villeneuve353, Andrea Villoldo137, Nguyen Van Vinh Chau369, Gayatri Vishwanathan258, Benoît Visseaux154, Hannah Visser534, Chiara Vitiello65, Manivanh Vongsouvath78,79,80, Harald Vonkeman110, Fanny Vuotto14, Noor Hidayu Wahab558, Suhaila Abdul Wahab152, Nadirah Abdul Wahid55, Marina Wainstein101, Wan Fadzila Wan Muhd Shukeri48, Chih-Hsien Wang186, Steve Webb93, Jia Wei98, Katharina Weil136, Tan Pei Wen338, Sanne Wesselius145, T. Eoin West108, Murray Wham39, Bryan Whelan42, Nicole White201, Paul Henri Wicky135, Aurélie Wiedemann14, Surya Otto Wijaya493, Keith Wille339, Suzette Willems535, Virginie Williams117, Evert-Jan Wils145, Calvin Wong459,232, Teck Fung Wong155, Xin Ci Wong33, Yew Sing Wong392, Natalie Wright312, Gan Ee Xian93, Lim Saio Xian191, Kuan Pei Xuan153, Ioannis Xynogalas96, Sophie Yacoub369, Siti Rohani

Universitaire de Rouen), Rouen, france.

City, Kuwait. 34

Galway, Ireland. 37

King Faisal Hospital Research center, Riyadh, Saudi Arabia.

Uniklinik University Hospital, Frankfurt, Germany.

University Hospital of Parma, Parma, Italy.

Our lady of Lourdes Drogheda, Drogheda, Ireland.

Hamad General Hospital, Doha, Qatar.

Centre Hospitalier de Saintonge, Saintes, France.

King Abdulaziz Medical city, Riyadh, Saudi Arabia.

Tuanku Fauziah Hospital, Perlis, Malaysia.

Chiba University Hospital, Chiba, Japan.

INSERM, Paris, France.

CUB-Hospital Erasme, Anderlecht, Belgium.

Bar-Ilan University, Ramat Gan, Israel.

15CUB-Hopital Erasme, Anderlecht, Belgium. 16Bar-Ilan University, Ramat Gan, Israel. 17

10

19

23

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

119

121

123

125

127

129
57 Centre Hospitalier Universitaire de Brest, Brest, France. 58 Kuala Lumpur Hospital, WPKL, Kuala Lumpur, Malaysia. 59 Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy. 60 Centro de Pesquisa Aggeu Magalhães, Fiocruz, Recife, Brazil. 61 NICVD Dhaka, Dhaka, Bangladesh. 62 National Cardiovascular Center Harapan Kita Jakarta Indonesia. 63 Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal. 64 Instituto Nacional Del Tórax, Santiago, Chile. 65 Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, Palermo, Italy. 66 CISSS Chaudière-Appalaches, Sainte-Marie, Canada. 67 LMU Hospital Munich, Medical Department II, Campus Großhadern, Munich, Germany. 68 Hôpital Européen Georges-Pompidou AP-HP, Paris, France. 69 Groote Schuur Hospital, Cape Town, South Africa. 70 Hospital Ramon y Cajal, Madrid, Spain. 71 University of Iowa, Iowa City, USA. 72 St. Boniface Hospital, Manitoba, Canada. 73 Critical Care Asia Network, Bangkok, Thailand. 74 Nepal Mediciti Hospital, Lalitpur, Nepal. 75 Fufudza Municipal General Hospital, Fufudza, Japan. 76 Hospital Puerta de Hierro Majadahonda, Madrid, Spain. 77 Lao-Oxford-Mahosot Hospital-Welcome Trust Research Unit, Vientiane, Laos. 78 Luang Namtha Provincial Hospital, Luang Namtha, Laos. 79 Salavan Provincial Hospital, Salavan, Laos. 80 Xiang Khouang Provincial Hospital, Phonsavan, Laos. 81 South City Hospital Karachi, Karachi, Pakistan. 82 North West General Hospital, Peshawar, Pakistan. 83 Centre Hospitalier intercommunal de Créteil, Créteil, France. 84 McGill University Health Centre, Montreal, Canada. 85 Centre Hospitalier de Cholley, Cholley, France. 86 Centre Hospitalier de Perpignan, Perpignan, France. 87 Centre Hospitalier de Dax - Côte d’Argent, Dax, France. 88 The Norwegian Corona Cohort, Oslo, Norway. 89 Hôpital Lariboisière AP-HP, Paris, France. 90 Hôpital Cochin AP-HP, Paris, France. 91 Centre Hospitalier Intercommunal Villeneuve-Saint-Georges, Villeneuve-Saint-Georges, France. 92 Grande Prairie Queen Elizabeth II, Grande Prairie, Canada. 93 WHO-ISARIC Clinical Characterisation Protocol & SPRINT-SARI Collaboration, Hospitalier Régional Metz-Thionville, Metz, France. 94 Cohort, Oslo, Norway. 95 Hôpital Cochin AP-HP, Paris, France. 96 Local de Saúde de Alto Minho, Viana Do castelo, Portugal. 97 Centro Hospitalario Universitario de Reims, Reims, France. 98 WHO-ISARIC Clinical Characterisation Protocol & SPRINT-SARI Collaboration, Oxford, United Kingdom. 99 Pratama Rada Bolo Hospital, Karitas Hospital and Waikakubab Hospital, Sumba, Indonesia. 100 Rush University Medical Center, Chicago, USA. 101 Sotiria General Hospital, Athens, Greece. 102 Unidade Local de Saúde de Alto Miño, Viana Do Castelo, Portugal. 103 WHO-ISARIC Clinical Characterisation Protocol & SPRINT-SARI Collaboration, Bicêtre, France. 104 National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation (INI-FIOCRUZ), Ministry of Health, and D’Or Institute of Research and Education (IDOR), Rio de Janeiro, Brazil. 105 University Health centre, Montreal, Canada. 106 San Martino Hospital, Genoa, Italy. 107 Clinica Valle de Lilli, Valle de Cauca, Colombia. 108 University of Washington Medical Center - Northwest, Seattle, USA. 109 Raja Permaisuri Bainun Hospital, Perak, Malaysia. 110 Medisch Spectrum Twente, Zutphen, Netherlands. 111 Tartu University Hospital, Tartu, Estonia. 112 Hôpital de l’Enfant-Jésus, Quebec, Canada. 113 Sao Camilo Cura D’ars, Fortaleza, Brazil. 114 Centre Hospitalier Universitaire de Lyon - HCL, Lyon, France. 115 Sarawak General Hospital, Sarawak, Malaysia. 116 University of Cincinnati, Cincinnati, USA. 117 Akershus University Hospital, Nordbyhagen, Norway. 118 Hospital 12 de Octubre, Madrid, Spain. 119 Hôpital Raymond-Poincaré, Garches, France. 120 Oklahoma Heart Institute, Oklahoma, USA. 121 Centre Hospitalier Régional et Universitaire de Nancy - Hôpitaux de Brabois, Nancy, France. 122 Hôpital de la Timone, Marseille, France. 123 Ohio State University, Columbus, USA. 124 Ospedale Papa Giovanni XXIII - Bergamo, Bergamo, Italy. 125 All India Institute of Medical Sciences, Rishikesh, India. 126 Thonon-les-Bains, Thonon-les-Bains, France. 127 Civil Hospital Marie Curie, Charleroi, Belgium. 128 Hôpital Lyon Sud - HCL, Lyon, France. 129 The Centre hospitalier universitaire Sainte-Justine, Montreal, Canada. 130 Rio Hortaega University Hospital, Valladolid, Spain. 131 Jena University Hospital, Jena, Germany. 132 Centre Hospitalier Universitaire Mitterrand Dijon-Bourgogne, Dijon, France. 133 National Institute for Communicable Diseases, Johannesburg, South Africa. 134 Ziekenhuissgroep Twente, Hengelo, Netherlands. 135 Hôpital Bichat Claude-Bernard AP-HP, Paris, France. 136 University Hospital Dusseldorf, Dusseldorf, Germany. 137 Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France. 138 Hôpital Avicenne, Bobigny, France. 139 Centre hospitalier de l’université de Montréal, Montréal, Canada. 140 Centre Hospitalier de Bourg-en-Bresse, Bourg-en-Bresse, France. 141 Centre Hospitalier Universitaire de Besançon, Besançon, France. 142 Centre Hospitalier Universitaire Grenoble-Alpes, Grenoble, France. 143 Centre Hospitalier Universitaire de Nantes (Hôtel-Dieu), Nantes, France. 144 Hôpital d’Instruction des Armées Bègin, Saint-Mandé, France. 145 Franciscus Gasthuis & Vlietland, Rotterdam, Netherlands. 146 National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation (INI-FIOCRUZ), Ministry of Health, and D’Or Institute of Research and Education (IDOR), Rio de Janeiro, Brazil. 147 Centre Hospitalier de Mayotte, Mamoudzou, Mayotte. 148 Hospital Egas Moniz, Lisboa, Portugal. 149 Ospedale Molinette, Torino, Italy. 150 Cork University Hospital, Cork, Ireland. 151 Beacon Hospital, Dublin, Ireland. 152 Nelson Hospital, Nelson, New Zealand. 153 Cleveland Clinic, Weston, USA. 154 Medical University of Vienna, Vienna, Austria. 155 University del Cauca, Cauca, Colombia. 156 Sechenov University, Moscow, Russia. 157 Universitá Cattolica del Sacro Cuore, Rome, Italy. 158 Monash University, Melbourne, Australia. 159 Clinica Universidad de La Sabana, Chía, Colombia. 160 Centre Hospitalier Universitaire de Martinique, Fort-de-France, Saint Martin, France. 161 Centre Hospitalier Régional Metz-Thionville, Metz, France. 162 Emory University Healthcare System, Atlanta, USA. 163 Johns Hopkins, Baltimore, USA. 164 Comissão de Ética - Unidade Local de Saúde de Matosinhos, Porto, Portugal. 165 Presbyterian Hospital Services, Alberquerque, USA. 166 Hospital del Mar, Barcelona, Spain. 167 Reina Sofia University Hospital, Cordoba, Spain. 168 Hospital Espírito Santo de Évora, Évora, Portugal. 169 Hôpital Américain de Paris, Neuilly-sur-Seine, France. 170 Vancouver Island Health, Vancouver, Canada. 171 Centre Hospitalier Métropole Savoie, Chambéry, France. 172 University Hospital - Limerick, Limerick, Ireland. 173 Centro Hospitalar e Universitário de Coimbra - Hospital Pediátrico, Coimbra, Portugal. 174 Centre Hospitalier de Béziers, Béziers, France. 175 Hospital São Francisco Xavier, Lisboa, Portugal. 176 Policlinicodì Orsola Universitástità Bologna, Bologna, Italy. 177 Hospital du Sacre Coeur, Montreal, Canada. 178 Hospital Universitari Sagrat Cor, Barcelona, Spain. 179 Centre Hospitalier de Melun, Melun, France. 180 Sunnybrook Health Sciences Centre, Toronto, Canada. 181 Hôpital Kremlín-Bicêtre, Le Kremlín-Bicêtre, France. 182 Centre Hospitalier Universitaire Rennes (Hôpital Pontchaillou), Rennes, France. 183 Hôpital Tenon AP-HP, Paris, France. 184 Pakistan Kidney & Liver Institute, Lahore, Pakistan. 185 University of Guadalajara Health Sciences Center, Guadalajara, Mexico. 186 National Taiwan University Hospital, Taipei City, Taiwan. 187 Hôpital Saint-Antoine AP-HP, Paris, France. 188 National Institutes of Health (NIH), Ministry of Health Malaysia, Setia Alam, Malaysia. 189 Ospedale San Paolo, Milan, Italy. 190 Chonnam National University Hospital, Dong-gu, South Korea. 191 Pulau Pinang Hospital, Pulau Pinang, Malaysia. 192 Sunway Medical Centre, Selangor, Malaysia. 193 University
Hospital Virgen del Rocio/Institute of Biomedicine of Seville, Seville, Spain. 194 University of Utah, Salt Lake City, USA.

Children's Health Ireland, Dublin, Ireland. 195 Foothills Medical Centre, Calgary, Canada. 196 Connolly Hospital Blanchardstown, Dublin, Ireland. 197 Carilion Clinic, Roanoke, USA. 198 Centre Hospitalier Départemental Vendée, La Roche-sur-Yon, France. 199 Allegheny General Hospital, Pittsburgh, USA. 200 Fondazione IRCCS Ca, Milan, Italy.

University of Queensland, Brisbane, Australia. 201 Centre Hospitalier Bretagne Atlantique, Vannes, France. 202 Hôpital Jacques Monod, Le Havre, France. 203 Tergooi Hospital, Hilversum, Netherlands. 204 Michael Garron Hospital, Toronto, Canada.

Hospital de Curry Cabral - Infectious Diseases, Lisbon, Portugal. 205 Mount Sinai Medical Center, Miami, FL, USA.

Azienda Provinciale per i Servizi Sanitari della Provincia Autonoma di Trento, Arco, Italy. 206 Columbia University, New York, USA. 207 Centre Hospitalier Universitaire de Guadeloupe, Pointe-à-Pitre, Guadeloupe. 208 Ospedale Niguarda, Milan, Italy. 209 Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Canada. 210 UW Cleveland Hospital, Cleveland, USA. 211 University Hospital - Waterford, Waterford, Ireland. 212 Saint Martin, Saint Martin, Guadeloupe. 213 Leiden University Medical Center, Leiden, Netherlands. 214 Centro Hospitalar de Tondela-Viseu, Viseu, Portugal. 215 St Christopher's Hospital for Children, Philadelphia, USA. 216 Piedmont Atlanta Hospital, Atlanta, Georgia, USA. 217 Hôpital Purpan, Toulouse, France. 218 Hôpital Saint-Louis AP-HP, Paris, France. 219 Centre hospitalier Emile Roux, Le Puy-en-Velay, France. 220 Hôpital Bel-Air, Thionville, France. 221 Centre Hospitalier Universitaire Toulouse (IUCT), Toulouse, France. 222 Airjine Hospital, Leiden, Netherlands. 223 Policlinico di Pavia, Pavia, Italy.

Centre hospitalier universitaire de Nîmes (Hôpital Archet), Nice, France. 224 Hôpital Albert Calmette, Lille, France.

Universität Ziekenhuis, Gent, Belgium. 225 INOVA Fairfax Medical Center, Fairfax, Virginia, USA. 226 Hospital Universitari Dr Negrín, Las Palmas, Spain. 227 Hospital Professor Doutor Fernando Fonseca, Amadora, Portugal.

Clinica Las Condes, Santiago, Chile. 228 Centre Hospitalier Medical Centre Groningen, Groningen, Netherlands. 229 Centre Hospitalier Mont-de-Marsan, Mont-de-Marsan, France. 230 Hôpital Rosemon, Cayenne, French Guiana. 231 Tallaght University Hospital, Dublin, Ireland. 232 Lions Gate Hospital, Vancouver, Canada. 233 Flevoziekenhuis, Almere, Netherlands. 234 St James's Hospital, Dublin, Ireland. 235 St Joseph's Health Center, Sherbrooke, Canada. 236 Centre hospitalier universitaire d'Angers, Angers, France. 237 Houston Methodist Hospital, Houston, Texas, USA. 238 Rochester General Hospital, New York, USA. 239 Oslo University Hospital, Oslo, Norway. 240 Cleveland Clinic, Ohio, Ohio, USA. 241 Medical College of Wisconsin, Wisconsin, USA. 242 Hôpital de la Conception, Marseille, France. 243 Centre hospitalier de Tourcoing, Tourcoing, France. 244 Reinier de Graaff Gasthuis, Delft, Netherlands. 245 Centre hospitalier universitaire Rennes (Hôpital Sud), Rennes, France. 246 Yokohama Medical and Pharmaceutical University, Sendai, Japan. 247 Mar del Plata Medical Foundation Private Community Hospital, Mar del Plata, Argentina. 248 Long COVID India - Terna Specialty Hospital and Research Centre, Mumbai, India. 249 Hôpitaux Puerta de Hierro, Jalisco, Mexico. 250 Canisius Wilhelmina Ziekenhuis, Nijmegen, Netherlands.

Hôpital Pellegrin, Bordeaux, France. 251 Centre hospitalier Pierre Oudot, Bourgoin-Jallieu, France. 252 North York General Hospital, Toronto, Canada. 253 Doctors Hospital, Lahore, Pakistan. 254 Adult ICU Saiful Anwar Hospital, Malang, Indonesia. 255 University of California San Francisco - Fresno, Fresno, USA. 256 Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Amadora, Portugal. 257 Centre hospitalier Techer, Calais, France. 258 Centre hospitalier régional et universitaire de Tours, Tours, France. 259 University of Kansas Medical Center, Kansas, USA.

The Montreal Children's Hospital, Montreal, Canada. 260 Vancouver General Hospital, Vancouver, Canada. 261 Ospedale San Gerardo, Monza, Italy. 262 Hôpital Foch, Suresnes, France. 263 Bon Secours Hospital, Cork, Ireland. 264 Hospital Verge de la Cinta, Tortosa, Spain. 265 Hospital Escola da Universidade Federal de Pelotas, Pelotas, Brazil. 266 Saiseikai Senri Hospital, Tchigi, Japan. 267 Manipal Hospital Whitefield, Bangalore, India. 268 RSUP Fatmawati, South Jakarta, Indonesia. 269 Centre hospitalier de Pau, Pau, France. 270 Hôpital privé d'Antony, Antony, France.

Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Canada. 271 São João Hospital Centre, Porto, Portugal. 272 San Pedro de Alcantara Hospital, Cáceres, Spain. 273 Beth Israel Deaconess Medical Center, Boston, USA. 274 Ochsner Clinic Foundation, New Orleans, USA. 275 Medical College of Wisconsin, Milwaukee, WI, USA. 276 Lusgar State Medical University - Department of Internal Medicine No2, Lugansk, Ukraine. 277 Klinikum Passau, Germany. 278 Avera McKennan Hospital & University Health Center, Sioux Falls, South Dakota, USA.

Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates. 279 Columbia University, New York, USA. 280 University Hospital of Tubingen, Tubingen, Germany. 281 Permai Hospital, Johor, Malaysia. 282 University of Michigan Schools of Medicine & Public Health, Ann Arbor, USA. 283 Hospital Garcia de Orta, Almada, Portugal. 284 Wexford General Hospital, Wexford, Ireland. 285 Baylor Scott & White Health, Temple, USA. 286 Clinica Alemana De Santiago, Santiago, Chile. 287 Centre Hospitalier du Pays d'Aix, Aix-en-Provence, France. 288 Centre hospitalier universitaire Ambroise-Paré, Boulogne-Billancourt, France. 289 Grigore T Popa University of Medicine and Pharmacy, Bucharest, Romania. 290 Erasmus Medical Centre, Rotterdam, Netherlands. 291 Children's Hospital of Cleveland, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. 292 Hospital de Curry Cabral - Internal Medicine, Lisbon, Portugal. 293 Azienda Ospedaliero Universitario Pisana, Pisa, Italy. 294 Centre hospitalier universitaire Toulouse (Larrey), Toulouse, France. 295 Hospital de Amor, Sao Paulo, Brazil. 296 Middlemore Hospital (Canties Manukan Health), Otahuhu, New Zealand. 297 Centre hospitalier de Soissons, Soissons, France. 298 UT Southwestern, Dallas, USA. 299 SIUT Hospital, Karachi, Pakistan. 300 Red Deer Regional Hospital, Red Deer, Canada. 301 Lady Reading hospital, Peshawar, Pakistan. 302 McLeod Healthcare System, Florence, USA. 303 Providence Saint John's Health Center, Santa Monica, USA. 304 Klung Hospital, Johor, Malaysia. 305 Kintampo Health Research Centre, Kintampo, Ghana. 306 University of Sri Lanka Medical Centre, Colombo, Sri Lanka. 307 Azaria Middelares, Gent, Belgium. 308 Dr. Jamal Hospital, Dammam, Saudi Arabia. 309 Universidad de Las Américas, Quito, Ecuador. 310 University of Maryland, Baltimore, USA. 311 Lancaster General Health, Pennsylvania, USA. 312 PICU Saiful Anwar Hospital, Malang, Indonesia. 313 Nagoya University Hospital, Nagoya, Japan. 314 Centre Hospitalier Le Mans, Le Mans, France. 315 Sultanah Bahiyah Hospital, Kedah, Malaysia. 316 Trucku Ja'afar,
Argentina. 315Hospital Charle. 316Nantes, France. 317Institut Pasteur, Gfres. 318University of Pittsburgh, Pittsburgh, PA, USA. 319University of Cape Town, Cape Town, South Africa. 320University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. 321National Taiwan University Hospital, Taipei, Taiwan. 322European Medical School, Prif, Germany. 323University of Sheffield, Sheffield, UK. 324University of Arizona, Tucson, AZ, USA. 325Infectious Diseases Hospital, Athens, Greece. 326Hippokration Hospital, Thessaloniki, Greece. 327Hiroshima University, Hiroshima, Japan. 328Meine University Hospital, Tsu, Japan. 329Hospital Aleman, Buenos Aires, Argentina. 330Mills Memorial Hospital, Terrace, Canada. 331Raja Perempuan Zainab II Hospital, Kelantan, Malaysia. 332Catholic University, Quito, Ecuador. 333Hospital Nuestra Señora de Gracia, Zaragoza, Spain. 334Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France. 335Sentara Norfolk General Hospital, Norfolk, USA. 336Kyung Poong National University Chilgok Hospital, Daegu, South Korea. 337Consortium IMGEM, Piaseczno, Poland. 338Tawau Hospital, Sabah, Malaysia. 339Melaka Hospital, Melaka, Malaysia. 340ABC Hospital, Visakhapatnam, India. 341Princess Margaret Hospital, Kwa. 342Singal General Hospital (Paediatric), Bali, Indonesia. 343National Children's Hospital, Columbus, USA. 344Shizuoka Children's Hospital, Shizuoka, Japan. 345Washington University in St. Louis, St Louis, Missouri, USA. 346University of Oklahoma Health Sciences Center, Oklahoma, USA. 347Groupe Hospitalier Diaconesses Croix Saint-Simon, Paris, France. 348Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam. 349Unity Health Toronto, Toronto, Canada. 350Grande International Hospital, Kathmandu, Nepal. 351St. Joseph's Healthcare Hamilton, Hamilton, Canada. 352Lahat Datu Hospital, Sabah, Malaysia. 353University Hospital of North Norway, Tromso, Norway. 354Keimyung University Dong San Hospital, Daegu, South Korea. 355Kimitsu Chuo Hospital, Chiba, Japan. 356Hospital for Advanced Medicine and Surgery (HAMS) 1, Kathmandu, Nepal. 357Obihiro-Kosei General Hospital, Obihiro, Japan. 358St-Anna Ghstatu, Haarlem, Netherlands. 359Marmara University Hospital, Istanbul, Turkey. 360Kharkiv Regional Clinical Infectious Diseases Hospital, Kharkiv, Ukraine. 361University Health Network, Toronto, Canada. 362Apollo Hospitals Chennai, Chennai, India. 363Harford Healthcare, Hartford, USA. 364University Airline Hospital (Paediatric), Surabaya, Indonesia. 365Centre Hospitalier Alpes-Leman, Contamine-sur-Arve, France. 366Centre Hospitalier Universitaire Louple (Rouen), Toulouse, France. 367B & B Hospital, Lalitpur, Nepal. 368Pro Dr R. D. Kandou Central Hospital, Manado, Indonesia. 369National Hospital & Medical Center, Lahore, Pakistan. 370Centre Hospitalier Universitaire de Nîmes, France. 371Centre Hospitalier Universitaire de Poitiers, Poitiers, France. 372Queen Elizabeth Hospital, Sabah, Malaysia. 373Severance Hospital, Seoul, South Korea. 374Hôpital Henri-Mondor, Créteil, France. 375University of Applied Science and Respirology, Quebec, Canada. 376Sultanah Nur Zaharah Hospital, Terengganu, Malaysia. 377Centre Hospitalier Universitaire Gabriel Montpied, Clermont-Ferrand, France. 378Institute of TB and Lung Diseases, Warsaw, Poland. 379Watterson District Health Board, Auckland, New Zealand. 380Jinnah Hospital, Lahore, Pakistan. 381Angeles University Foundation Medical Center, Angeles, Philippines. 382Malawi-Liverpool Wellcome Trust, Lilongwe, Malawi. 383Saiseikai Utsunomiya Hospital, Tochigi, Japan. 384University of Florida, Gainesville, USA. 385Hospital de Clinicas, Buenos Aires, Argentina. 386Hospital Emergencia Ate Vitare, Lima, Peru. 387Port Macquarie Base Hospital, Port Macquarie, Australia. 388Netcare Unitas ECMO Centre, Centurion, South Africa. 389Hospital Universitario Virgen de Valme, Seville, Spain. 390Stanford University, Palo Alto, USA. 391Klinik und Poliklinik für Innere Medizin II, University Hospital Regensburg, Kiel, Germany. 392William Oster Health Sciences System - Etobicoke General Hospital, Toronto, Canada. 393Hôpital Louis-Mourier, Colombes, France. 394Mercy Hospital, Cork, Ireland. 395Hospital Vila Fx de xira, Lisbon, Portugal. 396La Paz Hospital, Madrid, Spain. 397Alberta Children's Hospital, Calgary, Canada. 398Centre Hospitalier de Colmar, Colmar, France. 399Kingston Health Sciences Centre, Kingston, Canada. 400Brooke Army Medical Centre, San Antonio, USA. 401International Islamic University Malaysia Medical Centre (IIUMMC), Pahang, Malaysia. 402Hospital Sirio-Libanes, Sao Paulo, Brazil. 403Waikato Hospital, Hamilton, New Zealand. 404Auckland City Hospital, Auckland, New Zealand. 405Mount Sinai Hospital, Toronto, Canada. 406London Health Sciences Centre, London, Canada. 407GMMC Teaching Hospital, Sukkur, Pakistan. 408Lahore General Hospital, Lahore, Pakistan. 409Centre Hospitalier de Cahors, Cahors, France. 410Borgo San Lorenzo Hospital, Trento, Italy. 411Centre Hospitalier Universitaire Rouen (Hôpital Charles Nicolle), Rouen, France. 412Hospital de Especiales Eugenio Espejo, Quito, Ecuador. 413Hospital Clinic, Barcelona, Spain. 414Tengku Ampuan Afzan Hospital, Pahang, Malaysia. 415Jinnah Post-Graduate Medical Center (SICU), Karachi, Pakistan. 416Saiin Health Systems, Toronto, Canada. 417BC Children's Hospital, Vancouver, Canada. 418Darul Sehat Hospital, Karachi, Pakistan. 419University Hospital Northern British Columbia, Prince George, Canada. 420St.-Pierre University Hospital, Brussels, Belgium. 421Hospital Do Aizo, Lisbon, Portugal. 422Queen Mary's Hospital, Pok Fu Lam, China. 423Queen Elizabeth Hospital, Yau Ma Tei, China. 424Siriraj Piyamaharajkarun Hospital (SIPH), Bangkok, Thailand. 425Oregon Health & Science University, Portland, USA. 426Department of Children's Infectious Diseases, Warsaw, Poland. 427Dr Sardjito Government Hospital, Yogyakarta, Indonesia. 428Alana Health, Oslo, Norway. 429Clinica Pasteur, Neuquén, Argentina. 430RUSD Pasar Minggu, South Jakarta, Indonesia. 431Misericordia Community Hospital, Edmonton, Canada. 432Legacy Emanuel Medical Center, Portland, USA. 433Instituto do Coração da Universidade de São Paulo (INCOR), São Paulo, Brazil. 434Joseph Brant Hospital, Burlington, Canada. 435Centres Medical Centre, Boston, USA. 436Mayo Clinic School of Medicine, Arizona, USA. 437Hospital General San Francisco, Quito, Ecuador. 438McMaster University, Hamilton, Canada. 439Azeema Sheikh Hospital, Islamabad, Pakistan. 440Hospital Beatriz Ângelo, Loures, Portugal. 441Niagara Health, Niagara, Canada. 442Isap General Hospital, Rourkela, India. 443Centre Hospitalier de Périgueux, Périgueux, France. 444University Hospital Ostrava, Ostrava-Poruba, Czechia. 445Humber River Hospital, Toronto, Canada. 446Maastricht University Medical Centre, Maastricht, Netherlands. 447University of Brescia, Brescia, Italy. 448North Estonia Medical Centre, Tallinn, Estonia. 449RSUD Dr. Soetomo, Surabaya, Indonesia. 450Pushpagiri Medical College Hospital, Kerala, India. 451Baylor University Medical Centre, Dallas, USA. 452National University Hospital, Singapore, Singapore. 453Bahria International Hospital, Islamabad, Pakistan. 454Hospital de Abrantes - ICU, Abrantes, Portugal. 455Hôpital Européen Marseille, Marseille, France. 456Centre Hospitalier Agen-Nérac, Agen, France. 457Patel Hospital, Karachi, Pakistan. 458University of Manitoba, Manitoba, Canada. 459The Center for Diagnosis, Santo Domingo, Dominican Republic. 460CHU Carémeau, Nimes, France. 461Mazankowski Heart Institute, Edmonton, Canada. 462Sheikh Zayed Medical
College Rahim yar Khan, Rahim yar Khan, Pakistan. 488 Hôpital Laennec - site de Quimper, Quimper, France. 489 Fundación Cardiovascular de Colombia, Florencia, Colombia. 490 Hospital Universitari Sant Joan D’Alacant, Alicante, Spain. 491 National Institute for Infectious Diseases Matei Bals, Bucharest, Romania. 492 Centro Hospitalar Universitário do Algarve, Portimão, Portugal. 493 RSPI Prof Dr Sulianti Saroso, Jakarta, Indonesia. 494 The Heart Hospital Baylor Plano, Plano, USA. 495 Gele Hospitals, Zutphen, Netherlands. 496 Krankenhaus Barmherzige Br, Regensburg, Germany. 497 Baylor AllSaints Medical Centre, Fort Worth, USA. 498 Sozialmedizinisches Zentrum Sud, Vienna, Austria. 499 Mehta Hospital, Chennai, India. 500 Centro Hospitalar de Leiria, Leiria, Portugal. 501 Tohoku University, Sendai, Japan. 502 Hyogo Prefectural Kakogawa Medical Center, Hyogo, Japan. 503 Tokyo Metropolitan Tama Medical Center, Tokyo, Japan. 504 St. Marianna University School of Medicine, Kawasaki, Japan. 505 Om Hospital, Kathmandu, Nepal. 506 Karuna Hospital, Kathmandu, Nepal. 507 Pamela Youde Nethersole Eastern Hospital, Chai Wan, China. 508 Grand River Hospital, Kitchener, Canada. 509 Seoul National University Bundang Hospital, Seoul, South Korea. 510 Hospital Naval Marcilio Dias, Rio De Janeiro, Brazil. 511 Hospital Universitário Clementino Fraga Filho, Rio de Janeiro, Brazil. 512 Baerum Sykehus, Gjøttem, Norway. 513 Sturgeon Community Hospital, St Albert, Canada. 514 University Hospital in Krakow, Krakow, Poland. 515 Centre Hospitalier Universitaire Grenoble-Alpes FU, Grenoble, France. 516 Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil. 517 Kyoto Medical Centre, Kyoto, Japan. 518 Yokohama City University Medical Center, Yokohama, Japan. 519 Fatmawati Hospital, Jakarta, Indonesia. 520 Complejo Hospitalario Dr Clementino Fraga, João Pessoa city, Brazil. 521 Nidan Hospital, Lalitpur, Nepal. 522 Centro Hospitalar Louis Raffali, Manosque, France. 523 University of Nebraska Medical Center, Omaha, USA. 524 Clínica Internacional, Lima, Peru. 525 Hôpital Robert-Debré AP-HP, Paris, France. 526 Dunedin Public Hospital, Dunedin, New Zealand. 527 Mater Dei Hospital, Belo Horizonte, Brazil. 528 ADRZ, Amsterdam, Netherlands. 529 Adrz, Goes, Netherlands. 530 Meander Medical Centre, Amersfoort, Netherlands. 531 Noordwest-Ziekenhuisgroep, Den Helder, Netherlands. 532 Kerala Institute of Medical Sciences, Trivandrum, India. 533 Grey Nun’s Community Hospital, Edmonton, Canada. 534 Beatrix ziekenhuis, Gorinchem, Netherlands. 535 Royal Columbian Hospital, Vancouver, Canada. 536 Kyoto Prefectural University of Medicine, Kyoto, Japan. 537 Kouritou Tousei Hospital, Seto City, Japan. 538 MedStar Washington Hospital Centre, Washington, USA. 539 Sultanah Aminah Hospital, Johor, Malaysia. 540 University of Western Australia/Fiona Stanley Hospital, Murdoch, Australia.