Analysis of the Factors Causing Lazy Students to Study Using the ELECTRE II Algorithm

Desi Ratna Sari¹, Nurul Rofiqo¹, Dedy Hartama², Agus Perdana Windarto²*, Anjar Wanto²

¹Student of STIKOM Tunas Bangsa Pematangsiantar, North Sumatera, Indonesia.
²STIKOM Tunas Bangsa Pematangsiantar, North Sumatera, Indonesia.
*agus.perdana@amiktunasbangsa.ac.id

Abstract This study aims to search for factors causing lazy students at STIKOM Tunas Bangsa. Data obtained from student questionnaire results with a sample of 20 students. The attributes used are 4, namely body condition (A1), lack of learning motivation (A2), lecturer influence (A3) and environment (A4). The method used in the study is ELECTRE II. From the results of the study, the condition factor of the body (A1) is the first alternative to get the first rank with a pure concordance value of 1.8571 and a pure discordance value of -2. Followed by the influence factor of lecturer (A3) on the second rank with pure concordance value of 1.1905 and pure discordance value of -1.6935. With this analysis, it is expected that it can contribute to universities to pay attention to the lazy symptoms of lectures that can hinder students' success and pay attention to students based on ELECTRE II calculation analysis on the causes of lazy lectures so as to improve the educational process.

1. Introduction

Higher education is a place to gain knowledge for students where universities have a very important role in the learning process to develop students’ level of understanding. In the learning process, students have the provision to search, explore and explore the field of science by reading, observing, choosing reading materials to be studied which then poured in the form of scientific work used in student thesis writing. STIKOM Tunas Bangsa is one of the private universities in North Sumatra that is addressed at Jalan Jenderal Sudirman Blok A No.1 / 2/3 pematangsiantar engaged in computers. In carrying out educational activities, the academic field evaluates at the end of the semester for each lecture activity. In carrying out the lecture process, students are expected to be able to take part in teaching and learning activities well. But in the implementation many students who gave less attention when the learning process took place or intentionally the students did not attend the lecture. This is due to many factors such as poor body condition, no motivation to learn within, not having the right friends, low academic values, high levels of student stress, problems with the family, wrong majors, no college intentions and so on. This causative factor must be completely resolved and a solution is sought as the first step to overcome it. because it is necessary to create a system that can help solve all kinds of things that cause lazy lectures. The aim is as an initial mapping which then when the causes are known, it is likely that it will be easier to overcome and cure the lazy symptoms of college which can hamper student success. For institutions, this is an evaluation to improve the education process. Many branches of computer science can solve complex problems. This is evidenced by several studies in the field of datamining [1]–[8], field of artificial neural networks [9]–[13], in the field of decision support systems [14]–[18]. Based on this explanation, researchers used a decision support system to solve the problem above. In this case, the researcher uses the ELECTRE II
Method because the method can be used in conditions where suitable alternatives can be produced for cases with many \[19\]–\[22\]. This is evidenced by researchers \[23\] Where in this topic they propose the application of a model for GDSS multi-criteria in which simulation data are mutated genes that can cause cancer. This made the modelling flexible in accordance with the criteria established by the experts for decision making, so that the mutated gene for the determination of a person or not the criteria derived from expert opinion in the medical field. The other author\[22\], use ELECTRE to applied to case simulation, helps analyze the potential effects triggered by the absolute value of the maximum differentiated performance and the absolute value of the sum of differentiated performance under two discordance index evaluation standards. It is hoped that this research can contribute to universities in improving the teaching and learning process that is good at finding factors that cause students to be lazy to study objectively from several alternatives.

2. Methodology
2.1. Decision Support System
Decision Support Systems are computer-based systems that help solve problems and provide solutions to several problems that are not structured by several (sets) decision makers who work together as a group.

2.2. ELECTRE II
ELECTRE II’s evaluation method, developed by scholars Roy and Bertier (1971), represents an increase and promotion of ELECTRE I
The steps to complete the Electre II are as follows:
 a. Normalization of matrix values.
 b. Weighting on matrices that have been normalized
 c. Determine the concordance and discordance set.
 d. Calculates concordance and discordance matrices.
 e. Calculate pure concordance and pure discordance.
 f. Making rank by calculating the average of pure concordance and pure discordance.

2.3. Data Used
The data used in this study is the results of questionnaires from STIKOM Tunas Bangsa students in 2007-2018 (can be seen in Table 1). As for the student questionnaire data table, are as follows:

No	Alternative	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
1	A1	3	3.9	3.5	3.5	4	3.75	3.75	4.25	3	3.5
2	A2	2.15	2	3.5	2.3	3	2	3.75	3.75	2	3.3
3	A3	2.6	3.8	3.3	4	3	3	3	4	3	4
4	A4	2	3	3	2	3	3	3	4	3	2.75

No	Alternative	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20
1	A1	3	4	1.5	3	2.75	3.75	3	2	3	2
2	A2	3	3.8	1.5	2.3	3.75	3	2	3	3.25	2.25
3	A3	4	3	3	3.5	3.85	3	2.8	2.6	4.2	3
4	A4	3	2.5	2	1	2.25	2.75	1.25	2	5	2

2.4. Weighting values
The results of the weighting of each criterion can be seen in table 2, as follows:

Criteria	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
0.0952	0.0905	0.0857	0.0810	0.0762	0.0714	0.0667	0.0619	0.0571	0.0524	
0.0476	0.0429	0.0381	0.0333	0.0286	0.0238	0.0190	0.0143	0.0095	0.0048	
3. Result and Discussion
The following is a calculation process to determine which alternatives cause students to be lazy to study, here are the steps in the calculation process:

a. Data normalization.
Normalization is done by sharing the value of each criterion on the alternative with the number of criteria per each alternative. Normalization of matrix values can be done as follows:

\[
\begin{align*}
 r_{11} &= \frac{3}{\sqrt{(3)^2 + (2.15)^2 + (2.6)^2 + (2)^2}} = 0.1632 \\
 \vdots \\
 r_{120} &= \frac{2}{\sqrt{(2)^2 + (2.25)^2 + (3)^2 + (2)^2}} = 0.0997
\end{align*}
\]
So the results of the normalization matrix can be seen in Table 3 below:

No	Alternative	c1	c2	c3	c4	c5	c6	c7	c8	c9	c10
1	A1	0.1632	0.1244	0.1142	0.1043	0.1538	0.1807	0.1152	0.1109	0.1273	0.1028
2	A2	0.1170	0.0638	0.1142	0.0870	0.1134	0.0964	0.0845	0.0979	0.0849	0.0954
3	A3	0.1414	0.1213	0.1077	0.1192	0.1134	0.1446	0.0921	0.1044	0.1273	0.1154
4	A4	0.1088	0.0957	0.0653	0.0894	0.0749	0.0964	0.1075	0.0522	0.1167	0.0587

b. Weighting on the normalized matrix.
Weighting on the normalized matrix can be done by means of the weight value multiplied by the matrix value, the weighting of the matrix can be done as follows:

\[
V_{11} = 0.0952 \times 0.1632 = 0.0155 \\
\vdots \\
V_{120} = 0.0048 \times 0.0997 = 0.0005
\]
So that the results of weighting in the normalized matrix can be seen in Table 4 below:

No	Alternative	c1	c2	c3	c4	c5	c6	c7	c8	c9	c10
1	A1	0.0155	0.0113	0.0098	0.0084	0.0117	0.0129	0.0077	0.0069	0.0073	0.0054
2	A2	0.0111	0.0058	0.0098	0.0054	0.0088	0.0069	0.0056	0.0061	0.0049	0.0050
3	A3	0.0135	0.0110	0.0092	0.0096	0.0088	0.0103	0.0061	0.0065	0.0073	0.0062
4	A4	0.0104	0.0087	0.0056	0.0072	0.0059	0.0069	0.0072	0.0032	0.0067	0.0031

c. Determines the concordance and discordance index set.
1) Concordance Association
The concordance set can be searched by comparing comparative alternatives with alternatives compared to which alternative comparators must be greater than the alternatives compared. So that the concordance set in Table 5 is obtained.

Concordance	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
A1	-	1.2,3,4,5,6,7,8,9,10,11,12,13,14	1.2,3,5,6,7,8,9,10,11,12,14,15,16,1	1.2,3,4,5,6,7,8,9,10,11,12,14,15,16,1						

1.2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1
2) Set of Discordance
The concordance set can be searched by comparing the comparative alternatives with the alternatives compared which alternative comparators must be smaller than the alternatives compared. So that the concordance set in table 6 is obtained.

Discordance	A1	A2	A3	A4
A1	3.11,13,15,18,19,20	9,12,16,17	1.3,5,6,8,10,11,12,14,15,17,18,20	
A2	1.2,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20	-	1.2,3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,20	
A3	11,13,18,19,20	2.4,6,7,9,11,13,18,19,20	7,19	-

d. Calculates concordance and discordance matrices.
1) Calculate concordance
Determining the value of the concordance matrix element is by summing the weights included in the concordance subset, the results of the concordance matrix can be seen in table 7, as follows:

Discordance	A1	A2	A3	A4
A1	-	3.11,13,15,18,19,20	4.9,10,11,13,14,15,18,19,20	11,13,18,19,20
A2	1.2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,20	-	1.2,4,5,6,7,8,9,10,11,12,14,15,16,17,18,20	
A3	1.2,3,5,6,7,8,9,12,16,17	3.5,12	-	2.4,6,7,9,11,13,18,19,20
A4	1.2,3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,20	1.3,5,6,8,10,11,12,14,15,16,17,18,20	1.2,3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,20	-

2) Calculate discordance.
Determination of the value of the discordance matrix is to divide the maximum difference in the value of the criteria included in the discordance subset with the maximum difference in the value of all existing criteria. The results of the discordance matrix can be seen in table 8, as follows:

Discordance	A1	A2	A3	A4
A1	-	0.1	0.7	1
A2	1	-	0.2	0.7
A3	0.4	0.9	-	0.9
A4	0.1	0.5	0.1	-

e. Determine the dominant matrix of concordance and discordance.
1) Concordance dominant matrix
The results of the dominant matrix concordance can be seen in table 9, as follows:

No	1	2	3
	A1	A2	A3
1	-	1	1
2	0	-	0
3	0	1	-
4	0	0	0

2) Discordance dominant matrix
The results of the discordance dominant matrix can be seen in table 10, as follows:
Tabel 10. Concordance dominant matrix

No	Discordance Dominant Matrix (g)	A1	A2	A3	A4
1	A1	-	1	0	1
2	A2	0	-	0	1
3	A3	0	1	-	1
4	A4	0	0	0	-

f. Calculate pure concordance index and pure discordance
1) Calculate pure concordance index
To find the value of pure concordance can be seen in equation (9).
\[
C_1 = 0.9619 + 0.6905 + 0.9524 - (0.2619 + 0.3667 + 0.1190) = 1.8571
\]
\[
C_4 = 0.1190 + 0.4810 + 0.0762 -(0.9524+0.6571+0.9238) = -1.8571
\]

2) Calculate pure discordance index
To find pure discordance values can be seen in equation (10).
\[
D_1 = 0.1292 + 1+ 0.1888 - (1 + 1+ 1) = -2
\]
\[
D_4 = 1 + 1 + 1 - (0.1888 + 0.6880 + 0.2618) = 1.8614
\]
The next stage is to determine the best alternative by finding the average value of both pure concordance index and pure discordance. The best ranking can be seen in table 11 below:

Tabel 11. Best alternative calculation

No	Factor	Pure Concordance	Ranking	Pure Discordance	Rank	Average	Final Rank
1	Body condition	1.8571	1	-	1	1	1
2	Less in Learning Motivation	-1.1905	3	1.3731	3	3	3
3	lecturer influence	1.1905	2	-1.6935	2	2	2
4	Environment	-1.8571	4	1.8614	4	4	4

Based on the results of the calculation of the best alternative, the cause of lazy college students is the condition of the body (A1) with a pure concordance value of 1.8571 and a pure discordance value of -2.

4. Conclusion
The results of the study concluded that it had been ranked from the classification of factors causing lazy students to study at STIKOM Tunas Bangsa. There are four alternatives used in this study, namely body condition, lack of learning motivation, the influence of lecturers and the environment. From the results of the study obtained the condition of the body to be the first rank of the factors causing lazy students to study. It is expected that with the Electre II system can contribute to universities in improving the teaching and learning process in STIKOM Tunas Bangsa Pematangsiantar objectively.

References
[1] A. P. Windarto, “Implementation of Data Mining on Rice Imports by Major Country of Origin Using Algorithm Using K-Means Clustering Method,” *International Journal of artificial intelligence research*, vol. 1, no. 2, pp. 26–33, 2017.
[2] U. R. Raval and C. Jani, “Implementing and Improvisation of K-means Clustering,” *International Journal of Computer Science and Mobile Computing*, vol. 5, no. 5, pp. 72–76, 2016.
[3] M. K. Arzoo, A. Prof, and K. Rathod, “K-Means algorithm with different distance metrics in spatial data mining with uses of NetBeans IDE 8 . 2,” *International Research Journal of Engineering and Technology(IRJET)*, vol. 4, no. 4, pp. 2363–2368, 2017.
[4] S. Kumar and S. K. Rathi, “Performance Evaluation of K-Means Algorithm and Enhanced Mid-point based K-Means Algorithm on Mining Frequent Patterns,” *International Journal of Advanced Research in Computer Science and Software Engineering*, vol. 4, no. 10, pp. 545–548, 2014.
[5] S. Sudirman, A. P. Windarto, and A. Wanto, “Data Mining Tools | RapidMiner : K-Means Method on Clustering of Rice Crops by Province as Efforts to Stabilize Food Crops In Indonesia,” IOP Conference Series: Materials Science and Engineering, vol. 420, no. 12089, pp. 1–8, 2018.
[6] A. Yadav and S. Dhihgra, “An Enhanced K-Means Clustering Algorithm to Remove Empty Clusters,” IJEEDR, vol. 4, no. 4, pp. 901–907, 2016.
[7] B. Supriyadi, A. P. Windarto, T. Soemartono, and Mungad, “Classification of natural disaster prone areas in Indonesia using K-means,” International Journal of Grid and Distributed Computing, vol. 11, no. 8, pp. 87–98, 2018.
[8] H. Siahaan, H. Mawengkang, S. Efendi, A. Wanto, and A. P. Windarto, “Application of Classification Method C4.5 on Selection of Exemplary Teachers,” in IOP Conference Series, 2018, pp. 1–6.
[9] N. Nasution, A. Zamsuri, L. Lisnawita, and A. Wanto, “Polak-Ribiere updates analysis with binary and linear function in determining coffee exports in Indonesia,” IOP Conference Series: Materials Science and Engineering, vol. 420, no. 12089, pp. 1–9, 2018.
[10] S. Sumijan, A. Windarto, A. Muhammad, and B. Budiharjo, “Implementation of Neural Networks in Predicting the Understanding Level of Students Subject,” International Journal of Software Engineering and Its Applications, vol. 10, no. 10, pp. 189–204, 2016.
[11] A. Wanto, M. Zarlis, Sawaluddin, and D. Hartama, “Analysis of Artificial Neural Network Backpropagation Using Conjugate Gradient Fletcher Reeves in the Predicting Process,” Journal of Physics: Conference Series, vol. 930, no. 1, pp. 1–7, 2017.
[12] B. Febradi, Z. Zamzami, Y. Yuneuri, and A. Wanto, “Bipolar function in backpropagation algorithm in predicting Indonesia’s coal exports by major destination countries,” IOP Conference Series: Materials Science and Engineering, vol. 420, no. 12089, pp. 1–9, 2018.
[13] A. P. Windarto, L. S. Dewi, and D. Hartama, “Implementation of Artificial Intelligence in Predicting the Value of Indonesian Oil and Gas Exports With BP Algorithm,” International Journal of Recent Trends in Engineering & Research (IJRTER), vol. 3, no. 10, pp. 1–12, 2017.
[14] A. N. D. J. D. Fadhilah, “Perancangan Aplikasi Sistem Pakar PENyakit Kulit Pada Anak Dengan Metode Expert System Development Life Cycle,” Jurnal Algoritma Sekolah Tinggi Teknologi Garut, vol. 9, no. 13, pp. 1–7, 2012.
[15] S. Fekri-Ershad, H. Tajalizadeh, and S. Jafari, “Design and Development of an Expert System to Help Head of University Departments,” International Journal of Science and Modern Engineering, vol. 1, no. 2, pp. 45–48, 2013.
[16] M. Min, “A rule based expert system for analysis of mobile sales data on fashion market,” 2013 International Conference on Information Science and Applications, ICISA 2013, 2013.
[17] M. Mohammadi and S. Jafari, “An expert system for recommending suitable ornamental fish addition to an aquarium based on aquarium condition,” arXiv preprint arXiv:1405.1524, vol. 3, no. 2, pp. 1–7, 2014.
[18] I. Chen and B. L. Poole, “Performance Evaluation of Rule Grouping on a Real-Time Expert System Architecture,” vol. 6, no. 6, pp. 883–891, 2014.
[19] A. V. Devadoss and M. Rekha, “A New Intuitionistic Fuzzy ELECTRE II approach to study the Inequality of women in the society,” Global Journal of Pure and Applied Mathematics, vol. 13, no. 9, pp. 6583–6594, 2017.
[20] M. J. Mahase, C. Musingwini, and A. S. Nhleko, “A survey of applications of multi-criteria decision analysis methods in mine planning and related case studies,” Journal of the Southern African Institute of Mining and Metallurgy, vol. 116, no. 11, pp. 1051–1056, 2016.
[21] M. Sudarma, A. Agung, K. Oka, I. Cahya, A. Info, and W. Application, “Decision Support System for the Selection of Courses in the Higher Education using the Method of Elimination Et Choix Tranduit La Realite,” International Journal of Electrical and Computer Engineering (IJECE), vol. 5, no. 1, pp. 129–135, 2015.
[22] W.-C. C. Huang and C.-H. H. Chen, “Using the ELECTRE II method to apply and analyze the differentiation theory,” Proceedings of the Eastern Asia Society for Transportation Studies., vol. 5, no. January 2005, pp. 2237–2249, 2005.
[23] Ermatita, Sri Hartati, R. Wardoyo, and A. Harjoko, “Electre Methods in Solving Group Decision Support System Bioinformatics on Gene Mutation Detection Simulation.” International Journal of Computer Science and Information Technology, vol. 3, no. 1, pp. 40–52, 2011.