INTRODUCTION

Onion (Allium cepa L.) is an important bulbous vegetable grown all over the world. Onion is used to enhance flavour of different recipes. Its green leaves, immature and mature bulbs and immature inflorescence are used as vegetable. Processed products onion like, flakes, powder, paste, crush and pickles reduces transport cost and storage losses. Onions are diuretic, applied on bruises, boils and wounds. It relieves heat sensation. Onion is useful for prevention and treatment of blood and heart diseases (Augusti, 1990). India is next to china in area and production of onion. In India, Maharashtra rank first in area and production of onion and it contributes nearly 38.06% of the total production of onion. On the other hand, West Bengal ranks eighth in area (35.20 thousand ha; 2.74% area share) and production (633.60 thousand MT; 2.72% production share) among the Indian States (Ministry of Agriculture and Farmers’ Welfare, 2018). West Bengal is not self sufficient in onion production and it extremely depends upon supply from other Indian States during lean period. This situation leads to explore the scope of onion cultivation in non-traditional area. Again, in West Bengal, the productivity of onion is 18.0 MT/ha, which is at par with national average (18.01 tons/ha) but much lower than other major onion producing states (Ministry of Agriculture and Farmers’ Welfare, 2018). The productivity can be increased by varietal replacement and good management practices. West Bengal produces mostly Rabi onion. Thus, standardization of varieties for rabi season in West Bengal has immense utility. In this state the major produce comes from Murshidabad, Hooghly, Midnapur (West), Nadia and 24 Paraganas (North) (Ministry of Agriculture and Farmers’ Welfare, 2018). Sukhsagar is an heirloom onion cultivar that exclusively cultivated in entire West Bengal. In recent past, however, many new onion varieties were developed by various public institutes in India, Similarly, private seed companies also introduce some onion cultivars. Variety performance plays an important role in the selection of genotypes for yield improvement and adaptation to particular environmental conditions (Dhar et al. 2019). Haldar et al. (2009) identified some early rabi season
varieties suitable for growing under New Alluvial Zone (Gangetic plain) of West Bengal. Similarly Mohanta et al. (2017), Behera et al. (2017), Dhar et al. (2018) and Mandal et al. (2019) identified rabi and kharif onion cultivars under Red and Laterite Zone of West Bengal. However, information on production of onion under Coastal Saline Zone of West Bengal is lacking.

The South 24 Parganas (Sundarbans) comes under Coastal Saline Zone of West Bengal. Here, Agriculture is the mainstay of livelihood for majority of the people. However, specific technology for efficient utilization of natural resources hinders the prospect of raising crop in this region. Here onion is not cultivated commercially. Farmers mostly use non-descriptive onion varieties for cultivation and they often complain for low productivity. Considering the above aspects the present experiments has been conducted with the objectives to evaluate the onion cultivars for their production performance and storage and to identify suitable type(s) for Coastal Saline Zone of West Bengal.

MATERIALS AND METHODS

The experiment was conducted at Seed Farm, Ramkrishna Ashram Krishi Vigyan Kendra, Nimphith, South 24 Parganas (West Bengal) during Rabi season of 2014-15 and 2015-16. Biochemical analysis was conducted in Laboratory of Department of Chemistry, Vivakananda Mahavidyalaya, Burdwan. The soil of the experimental field was saline (EC 1.74 dS/m) with medium drainage capacity, uniform texture and neutral in reaction (pH 6.58). The available nitrogen, phosphorus and potassium content was noted 424.29 kg/ha, 56.52 kg/ha and 321.72 kg/ha respectively. Sixteen short day onion cultivars (Arka Kalyan, Arka Niketan, Agrifound Light Red, NHRDF Red, NHRDF Red – 2, NHRDF Red – 3, Sukhsagar, N-53, Bhima Shakti, Bhima Kiran, Early Grano, Pusa White Flat, Pusa Madhavi, Pusa White Round, Pusa Ridhi and Superior Light Red) were grown and assessed following Randomized Block Design with three replications. Onion seedlings were raised on permanent seedbeds. Fifty days old healthy seedlings of each cultivar were transplanted on 23rd December 2014 and 04th January 2015 in the main field on separate beds as per experiment design. Individual plot sizes were kept 3.0x2.0 m and plant spacing was given 15x10 cm. FYM @ 10 t/ha and N: P: K @ 125:100:100 kg/ha were applied to grow the crops. The observations were recorded for plant height (cm), number of leaves and neck diameter (mm) at 90 days after sowing. Observations were also taken for days to harvest, equatorial and polar diameter (mm), average bulb weight (g) and number of scales/bulb. Yield/ha was computed from the yield obtained per plot and express in quintal (q). Total soluble solids (TSS) content of bulb was estimated with the help of hand refractometer (Pocket Refractometer PAL 1, Atago, Tokyo: www.atago.net/). Pyruvic acid content of onion bulbs was tested by using Dinitrophenyl hydrazine (DNPH) reagent using the method of Schwimmer and Weston (1961) and expressed in µ mol/g fresh weight. After harvesting, five kilogram bulbs of each genotype were stored in a traditional store at ambient condition. Data on Physiological Loss in Weight (PLW), rotting and sprouting were taken after six months of storage using the following equation:

\[
\text{PLW} \% = \left( \frac{\text{Initial weight (kg)} - \text{Final weight (kg)}}{\text{Initial weight (kg)}} \right) \times 100
\]

\[
\text{Rotten} \% = \left( \frac{\text{Rotted onions weight (kg)}}{\text{Total weight of sample (kg)}} \right) \times 100
\]

\[
\text{Sprouting} \% = \left( \frac{\text{Sprouted onions weight (kg)}}{\text{Total weight of sample (kg)}} \right) \times 100
\]

The total loss at storage calculated by cumulating all the losses using the following formula:

\[
\text{Total losses} \% = \text{PLW} \% + \text{Rotten} \% + \text{Sprouting} \%
\]

The total variation among cultivars for different characters was tested for significance by ‘F’ test using analysis of variance technique. The test of significance of difference between means of two genotypes for a character was done by ‘t’ test and for that critical difference (CD) was calculated.

RESULTS AND DISCUSSION

Analysis of variance of 16 genotypes of onion for various traits revealed that cultivars were significantly differed among themselves. The range of plant height was noted 56.2 to 60.3 cm with mean 58.8 cm. The maximum plant height was noted in Bhima Kiran which was found statistically similar to NHRDF Red, Early Grano, NHRDF Red-2, Bhima Shakti, Arka Niketan, NHRDF Red-3, Pusa White Flat, Pusa Madhavi, Agrifound Light Red and N-53. The variation in plant height among different onion cultivars may be due to their different genetic makeup and adaptation ability to particular environment. Mandal et al. (2019) observed a wide range of variation in onion plant height (64.1 to 81.3 cm) in West Bengal condition. Correlation and path coefficient analysis studies of Chattoo et al. (2015) indicated that plant height was positively associated with bulb yield and also had positive direct effect on total bulb yield of onion. Maximum number of leaves per plant was noted Arka Kalyan, Arka Niketan and N-53 which was found statistically similar to Agrifound Light Red, Pusa White Flat, Pusa White Round, Bhima Kiran, Pusa Ridhi, NHRDF Red-2, NHRDF Red, Superior Light Red and Pusa Madhavi. Through photosynthesis leaves converts solar energy to stored energy in the form of carbohydrates. In onion, photosynthates are translocated in storage organ i.e. bulb. Kushal et al. (2015) noted significant and positive interrelationship of bulb yield with leaf area and leaf area index in onion. Among various factors which determine onion bulb storage ability, neck diameter of bulbs is very important. Usually, bulbs with thinner neck stored well (Tarai et al. 2015). On the other hand, bulb yield have positive and significant association with bulb neck thickness (Chattoo et al. 2015). In this study, the range of neck diameter was noted 10.0 to 13.1 mm with mean 11.8 mm. The maximum neck diameter was recorded.
in NHRDF Red-2 which was found statistically similar to Early Grano and NHRDF Red. On the other hand, the minimum neck diameter was noted in Pusa Ridhi which was found statistically similar to Arka Kalyan and Pusa White Round. Mandal et al. (2019) noted a wide range of variation for bulb neck thickness (12.3 to 20.9 mm) in onion. In this experiment, onion cv. Sukhsagar followed by Agrifound Light Red, Pusa Ridhi, Arka Niketan and Superior Light Red took relatively less time to mature. Khosa and Dhatt (2013) obtained good range of variation for days to maturity (110 to 155 days) in onion. Chattoo et al. (2015) found positive correlation between total bulb yield and days to harvest. Their path coefficient analysis study revealed that days to harvest had positive direct effect on total bulb yield in onion.

Grading of onion bulb to proper sizes is very important to fulfill specific market demand. The medium sized varieties (3.5-5.0 cm) are more preferred in Indian market (Islam et al. 2019). In this investigation, maximum equatorial diameter of bulb was observed in NHRDF Red-3 which was noted statistically similar to N-53, Pusa Madhvi and Agrifound Light Red. Similarly, maximum polar diameter of bulb was noted in NHRDF Red-3 which was found statistically similar to Arka Niketan, Agrifound Light Red and Sukhsagar. Singh et al. (2010) observed a wide range of variability for bulb size index (21.31 to 23.09 cm²) in onion. Variation in onion bulb diameter has also been reported by Tarai et al. (2015). Path coefficient analysis revealed that onion bulb diameter exerted positive and direct effect on bulb yield (Chattoo et al. 2015). Bulb weight is an important yield attributing trait in onion. Study of Chattoo et al. (2015) and Dangi et al. (2018) revealed that bulb weight exhibited positive and significant association with bulb yield in onion. The range of average bulb weight was noted 38.9 to 78.5 g with mean 47.9 g. In both the year of study and also in pooled analysis, the maximum average bulb was noted in Sukhsagar. Variation in onion bulb weight has been reported by Khosa and Dhatt (2013) (44 to 87.03 g), Behera et al. (2017) (50.2 to 82.5 g), Dangi et al. (2018) (25.85 to 75.99 g) and Mandal et al. (2019) (53.0 to 84.1 g). Dangi et al. (2018) stated that short day onion varieties have an average bulb weight of less than 100 g since they mature in 120-150 days. In cultivation of any crop, yield of the crop is the prime concern. Present study registered ample variation in bulb yield (62.8 to 124.5q ha⁻¹). The overall mean bulb yield was found 103.3q ha⁻¹. The maximum bulb yield was recorded in Sukhsagar which was found statistically similar to Agrifound Light Red, Bhima Shakti, NHRDF Red-2, Pusa white Flat and NHRDF Red-3. Singh et al. (2010) observed a wide range of variability for days to maturity (301.99 to 387.81 q ha⁻¹) and marketable yield (239.33 to 338.49q ha⁻¹) in onion and observed a wide range of variability for bulb yield (11.51 to 33.01 t ha⁻¹) in onion. In West Bengal, variation in onion bulb yield was reported by Haldar et al. (2009), Behera et al. (2017), Dhar et al. (2019) and Mandal et al. (2019).

The range of number of scales per bulb was recorded 8.0 to 11.3 with mean 9.9; while TSS was varied from 11.3 to 13.7 Brix with an average value of 12.7 Brix. Studying on short day onions, Dangi et al. (2018) obtained overall mean TSS of 11.52 Brix. Estimation of total soluble solids (TSS) gives an indirect estimate for the recovery of dehydrated onion (Islam et al. 2019). Path analysis study revealed that TSS had positive direct effect on average bulb weight.

### Table 1: Growth and yield attributes of onion cultivars (pooled data of 2014-15 and 2015-16).

| Genotypes          | Plant height (cm) | Number of leaves plant⁻¹ | Neck Diameter (mm) | Days to harvest | Equatorial Diameter (mm) | Polar Diameter (mm) | Average bulb weight (g) | Yield (q ha⁻¹) |
|-------------------|-------------------|---------------------------|--------------------|-----------------|--------------------------|----------------------|------------------------|----------------|
| Arka Kalyan       | 58.0±4           | 7.0±4                     | 10.3±4             | 106.5±4         | 43.5±4                   | 43.7±4               | 51.0±4                 | 101.7±4        |
| Arka Niketan      | 59.2±4           | 7.0±4                     | 11.6±4             | 100.6±4         | 43.9±4                   | 46.9±4               | 42.5±4                 | 107.7±4        |
| Agrifound Light Red | 58.9±4           | 6.9±4                     | 12.3±4             | 105.3±4         | 45.2±4                   | 45.5±4               | 43.2±4                 | 121.6±4        |
| NHRDF Red         | 59.8±4           | 6.9±4                     | 12.6±4             | 108.0±4         | 43.2±4                   | 44.1±4               | 46.9±4                 | 95.6±4         |
| NHRDF Red-2       | 59.7±4           | 6.7±4                     | 13.1±4             | 108.2±4         | 44.8±4                   | 44.1±4               | 41.3±4                 | 113.2±4        |
| NHRDF Red-3       | 59.2±4           | 6.6±4                     | 12.3±4             | 110.2±4         | 47.6±4                   | 47.3±4               | 60.1±4                 | 110.7±4        |
| Sukhsagar         | 58.1±4           | 6.7±4                     | 11.7±4             | 103.8±4         | 44.5±4                   | 45.5±4               | 78.5±4                 | 124.5±4        |
| N-53              | 58.9±4           | 7.0±4                     | 11.9±4             | 106.8±4         | 47.0±4                   | 45.1±4               | 51.1±4                 | 104.2±4        |
| Bhima Shakti      | 59.7±4           | 6.4±4                     | 12.2±4             | 108.8±4         | 40.7±4                   | 45.2±4               | 39.5±4                 | 120.3±4        |
| Bhima Kiran       | 60.3±4           | 6.7±4                     | 12.3±4             | 110.5±4         | 43.3±4                   | 44.1±4               | 38.9±4                 | 104.1±4        |
| Early Grano       | 59.8±4           | 6.6±4                     | 13.0±4             | 108.7±4         | 42.8±4                   | 43.2±4               | 53.0±4                 | 84.3±4         |
| Pusa White Flat   | 59.2±4           | 6.9±4                     | 11.4±4             | 109.2±4         | 38.4±4                   | 45.2±4               | 44.5±4                 | 111.5±4        |
| Pusa Madhavi      | 59.2±4           | 6.8±4                     | 11.8±4             | 108.7±4         | 45.6±4                   | 42.9±4               | 42.7±4                 | 100.2±4        |
| Pusa White Round  | 57.5±4           | 6.7±4                     | 10.4±4             | 109.5±4         | 35.3±4                   | 39.7±4               | 44.7±4                 | 62.8±4         |
| Pusa Ridhi        | 56.2±4           | 6.7±4                     | 10.0±4             | 105.8±4         | 32.5±4                   | 34.7±4               | 45.6±4                 | 90.2±4         |
| Superior Light Red| 57.2±4           | 6.9±4                     | 11.3±4             | 106.2±4         | 38.8±4                   | 44.8±4               | 42.5±4                 | 100.7±4        |
| Mean              | 58.8±4           | 6.8±4                     | 11.8±4             | 107.6±4         | 42.3±4                   | 43.9±4               | 47.9±4                 | 103.3±4        |
| CD (P=0.05)       | 1.7              | 0.3                       | 0.6                | 2.6             | 2.5                      | 1.8                  | 3.0                    | 14.4           |

**Note:** Similar alphabets in a column denote that they are statistically at par.
Table 2: Scale number, TSS and pyruvic acid content of onion cultivars.

| Genotypes          | Number of scalesbulp | TSS (Brix) | Pyruvic Acid (µ mol g⁻¹) |
|--------------------|----------------------|------------|--------------------------|
| Arka Kalyan        | 8.0c                 | 13.6ab     | 12.2d                    |
| Arka Niketan       | 10.7d               | 12.6bc     | 7.5c                     |
| Agrifound Light Red| 10.7d               | 13.7c      | 11.2c                    |
| NHRDF Red          | 9.7abc              | 11.9bc     | 12.4c                    |
| NHRDF Red-2        | 10.3abc             | 12.7abc    | 12.4d                    |
| NHRDF Red-3        | 10.0abc             | 12.3bc     | 10.5c                    |
| Sukhsagar          | 8.7cde              | 13.7a      | 11.5c                    |
| N-53               | 9.7abc              | 12.2abc    | 12.8d                    |
| Bhima Shakti       | 10.3abc             | 11.8bd     | 12.9d                    |
| Bhima Kiran        | 10.3abc             | 12.8bd     | 14.8d                    |
| Early Grano        | 9.3a                | 11.3c      | 7.6b                     |
| Pusa White Flat    | 11.3c               | 12.7bcd    | 10.8d                    |
| Pusa Madhabi       | 9.6c                | 12.5bcd    | 11.3d                    |
| Pusa White Round   | 10.3abc             | 12.7bcd    | 10.6d                    |
| Pusa Ridhi         | 10.0bcd             | 12.9bcd    | 11.5d                    |
| Superior Light Red | 9.7abc              | 13.4bd     | 11.2e                    |
| Mean               | 9.9                  | 12.7       | 11.3                     |
| CD (P=0.05)        | 1.6                  | 1.1        | 2.8                      |

Note: Similar alphabets in a column denote that they are statistically at par.

Table 3: Losses of onion cultivars after six months in store.

| Genotypes          | PLW (%) | Rotting (%) | Sprouting (%) | Total loss (%) |
|--------------------|---------|-------------|---------------|----------------|
| Arka Kalyan        | 31.6c   | 30.2c       | 11.7c         | 73.5c          |
| Arka Niketan       | 28.8cd  | 6.3a        | 0.0a          | 35.1c          |
| Agrifound Light Red| 29.4dce | 16.4cd      | 0.0a          | 45.8c          |
| NHRDF Red          | 34.5gh  | 33.8c       | 0.0a          | 68.2d          |
| NHRDF Red-2        | 36.3h   | 26.1c       | 0.0a          | 62.4d          |
| NHRDF Red-3        | 28.2c   | 29.4c       | 0.0a          | 57.6e          |
| Sukhsagar          | 20.0h   | 0.0a        | 0.0a          | 20.0h          |
| N-53               | 47.0a   | 16.7md      | 0.0a          | 63.7m          |
| Bhima Shakti       | 39.3j   | 19.5c       | 0.0a          | 58.8c          |
| Bhima Kiran        | 32.3lg  | 19.4c       | 0.0a          | 51.7c          |
| Early Grano        | 35.9h   | 63.7c       | 0.0a          | 99.6           |
| Pusa White Flat    | 18.6b   | 44.5d       | 0.0a          | 63.2            |
| Pusa Madhabi       | 53.6j   | 36.3c       | 0.0a          | 89.9           |
| Pusa White Round   | 30.9del | 26.5c       | 0.0a          | 57.3            |
| Pusa Ridhi         | 32.1l   | 24.8d       | 0.0a          | 56.9            |
| Superior Light Red | 38.9f   | 4.0c        | 9.0b          | 51.9            |
| Mean               | 33.6    | 24.8c       | 1.3           | 59.7            |
| CD (P=0.05)        | 2.5     | 2.7         | 1.2           | 2.8             |

Note: Similar alphabets in a column denote that they are statistically at par.

(Chattoo et al. 2015). Onion bulb pungency and TSS are important quality attributes for fresh market, processing and storage. Highly pungent onions are popular in India, whereas, less pungent ones are preferred in other countries. The pungent flavor of onions is produced by hydrolysis of the flavor precursor compounds, like, S-alk(en)yl-L-cysteine sulfoxides, when the cells are mechanically ruptured. The hydrolysis reaction is catalyzed by allinase (Schwimmer and Weston, 1961). The determination of pyruvate as an indicator of pungency is highly established method for pungency assessment in onion, as the pyruvic acid content of onions is highly correlated with their pungency (Gallina et al. 2012). In this study the range of pyruvic acid content was recorded 7.5 to 14.8 µmolg⁻¹ with mean 11.2 µmolg⁻¹. The maximum Pyruvic acid content was recorded in Bhima Kiran which was found statistically similar to Bhima Shakti, N-53, NHRDF Red, NHRDF Red-2 and Arka Kalyan. On the other hand, minimum Pyruvic acid content was obtained from Arka Niketan and Early Grano. Islam et al. (2019) in her study noted lowest pyruvic acid content in Early Grano (4.67 µmol), According to Randle (1992) that the genetic background seems to be the most important factor because different cultivars have different abilities to control sulphur uptake and assimilation in the biosynthesis pathway that results in the flavour. Lee et al. (2009) also found that pungent onions synthesizes greater amount of ACSOs from the same content of sulphur com-pounds in the tissues.

Harvested onion bulbs under goes several physiochemical changes like increase in respiration, physiological loss in weight (PLW), rotting and sprouting and chemical changes in stored of onions include dry matter content, pungency, abscisic acid and fructans concentration (Shiva Kumar and Chandrasekhar, 2014). Water loss, sprout loss and ambient loss were the major storage loss variables responsible for onion losses during storage. Onion is stored at ambient storage condition in most of the tropical countries where the storage losses are very high. About 40-50% of the stored onion never reaches to consumers because of various types of losses (Tripathi and Lawande, 2019). In this study the range of PLW was recorded 18.6 to 53.6% with mean 33.6%. Onion cultivars Pusa White Flat and Sukhsagar recorded minimum PLW of about 20% after six months of storage; while maximum PLW was recorded in Pusa Madhvi. The range of rotting was recorded 0.0 to 63.7%. Maximum rotting was recorded in Early Grano. On the other hand, no rotting was recorded in Sukhsagar. This may be due to the inherent capability of this variety. Superior Light Red and Arka Niketan were also performed well for this trait with a rotting percent of 4.0 and 6.3 after six months of storage respectively. Pathogens of genera Aspergillus, Alternaria, Botryis, Colletotrichum, Erwina, Fusarium, Lactobacillus, Penicillium, Pseudomonas and Rhizopus are responsible for rotting of onion bulbs in store. They cause considerable economic loss and are also harmful for human health as they produce pathogenic toxins (Fink-Gremmler, 1999). In recent study, Yurger et al. (2018) detected several potential fermenters in onion tissue. They suggest that the fermentation plays a role in the storage spoilage of onion bulbs. Sprouting was detected only in two onion varieties viz., Arka Niketan and Superior Light Red. Other onion varieties were sprout free throughout the storing period. The range of total loss in weight was recorded 20.0 to 99.6% with mean 59.7%. The minimum and maximum total loss was...
recorded in Sukhsagar and Early Grano respectively. The ability of bulb storage is a cultivar-specific genetic trait. It is highly connected to market destination, as it separates fresh and storage cultivars (Sekara et al. 2017). Ilic et al. (2009) noted that prolonged storage in ambient conditions caused a significant decrease in marketable bulbs, up to 40-60% and an increase of the amount of sprouted bulbs, up to 30-50%. The present study revealed that onion variety Sukhsagar performed outstandingly well for this character. It recorded a storage loss of 20% after six month of storage in ambient condition. Tripathi and Lawande (2019) indicated that the locally adopted short day onion varieties tend to have better storage quality. It was revealed from the storage experiment that Early Grano, which recorded almost total loss (99.6%) after six months of storage, was not at all suitable for storing.

**CONCLUSION**

Thus, in conclusion it may be stated that onion cv. Sukhsagar, Agrifound Light Red, Bhima Shakti, NH RDF Red-2, Pusa White Flat and NH RDF Red-3 can be suggested to grow under Coastal saline Zone of West Bengal for higher productivity. However, among these identified varieties, only Sukhsagar can be advocated for long term storage.

**REFERENCES**

Augusti, K.T., Brewer Ed. J.L., Rabinowitz, H.D. (1990). Therapeutic and medicinal values of onion and garlic. In Onion and Allied Crops, Baco Ratani, Florida. 3: 93-108.

Behera, T.K., Mandal, J., Mohanta, S., Patdhiary, A.K. Behera, S., Behera, D., Rout, R.K. (2017). Assessment of growth, yield and quality of onion genotypes under red and laterite zone of West Bengal. Journal of Pharmacognosy and Phytochemistry. 6: 493-497.

Chattoo, M.A., Ali, A., Kamaludin. (2015). Genetic variability, interrelationship and path analysis for yield and yield related traits in onion (Allium cepa L.) under temperate condition in Kashmir valley. Plant Archives. 15: 1161-1165.

Dangi, R., Khar, A., Islam, S. Kumar, A. (2018). Characterization and association of phenotypic and biochemical traits in onion under short day tropical conditions. Indian Journal of Horticulture. 75: 226-236.

Dhar, M., Mandal, J., Maity, T.K., Mohanta, S. (2019). Evaluation of kharif onion (Allium cepa L.) varieties under different planting dates. Journal of Pharmacognosy and Phytochemistry. 8: 1317-1321.

Fink-Gremmels, J. (1999). Mycotoxins: Their implications for human and animal health. Veterinary Quarterly. 21: 115-120.

Gallina, P.M., Cabassi, G., Maggioni, A., Natalini, A., Ferrante, A. (2012). Changes in the pyruvic acid content correlates with phenotype traits in onion clones. Australian Journal of Crop Science. 6: 36-40.

Haldar, A., Karan, C., Naik, A., Samanta, M.K., Hazra, P. (2009). Identification of suitable early rabi onion varieties under West Bengal condition. Journal of Crop and Weed. 5: 131-135.

Ilic, Z., Milekovic, L., Djurovka, M., Trajkovic, R. (2009). The effect of long-term storage on quality attributes and storage potential of different onion cultivars. Acta Horticulturae. 830: 635-642.

Islam, S., Khar, A., Singh, S., Tomar, B.S. (2019). Variability, heritability and trait association studies for bulb and antioxidant traits in onion (Allium cepa) varieties. Indian Journal of Agricultural Science. 89: 450-457.

Khosa, J.S. and Dhatt, A.S. (2013). Studies on genetic variability and heritability in bulb onion (Allium cepa L.) in North-Western plains of India. Journal of Horticultural Science. 8: 255-258.

Kushal, Patil, M.G., Patil, S.S., Pamppanna, Y., Kavita, K. (2015). Genetic variability and character association studies in onion genotypes for yield and its attributes during kharif. Green Farming. 6: 1325-1327.

Lee, E.J., Yoo, K.S., Jifon, J., Patil, B.S. (2009). Characterization of shortday onion cultivars of 3 pungency levels with flavor precursor, free amino acid, sulphur and sugar contents. Journal of Food Science. 74: 475-480.

Mandal, J., Aigalley, R., Saha, D., Mohanta, S. (2019). Growth, yield and quality of onion cultivars under Laterite Belt of Eastern India. Vegetable Science. 46: 129-131.

Ministry of Agriculture and Farmers’ Welfare (2018). Horticultural statistics at a glance. 2018. Horticulture Statics Division, Department of Agriculture, Cooperation and Farmers’ Welfare, Ministry of Agriculture and Farmers’ Welfare, Government of India. 458 P. (www.agricoop.nic.in)

Mohanta, S. and Mandal, J. (2014). Growth and yield of kharif onion (Allium cepa L.) as influenced by dates of planting and cultivars in Red and Laterite Zone of West Bengal. HortiFlora Research Spectrum. 3: 334-338.

Mohanta, S., Mandal, J., Dhakre, D.S. (2017). Growth of kharif onion (Allium cepa L.) in response to planting dates and cultivars. HortiFlora Research Spectrum. 6: 262-267.

Randle, W.M. (1992). Onion germplasm interacts with sulfur fertility for plant sulfur utilization and bulb pungency. Euphytica. 59: 151-156.

Schwimmer, S. and Weston, W.J. (1961). Enzymatic development of pyruvic acid in onion as a measure of pungency. Journal of Agricultural and Food Chemistry. 9: 301-304.

Sekara, A., Pokluda, R., Vaccio, L.D., Somma, S., Caruso, G. (2017). Interactions among genotype, environment and agronomic practices on production and quality of storage onion (Allium cepa L).-A review. Horticultural Science. 44: 21-42.

Shiva Kumar and Chandrashhekar, S.Y. (2014). Physio-chemical changes during post harvest handling of onion (Allium cepa L).-A Review. Agriculture Review. 35: 225-232.

Singh, R.K., Dubey, B.K., Bhonde, S.R., Gupta, P. (2010). Estimates of genetic variability and correlation in red onion (Allium cepa) advance lines. Indian Journal of Agricultural Sciences. 80: 160-163.

Tarai, R.K., Panda, P.K., Behera, S.K., Beura, J.K., Mohapatra, K.C., Sahoo, T.R. (2015). Varietal performance of onion in the western undulating zone of Odisha. International Journal of Scientific Research and Engineering Studies. 2: 1-4.

Tripathi, P.C. and Lawande, K.E. (2019). Onion storage in tropical region - a review. Current Horticulture. 7: 15-27.

Yurgel, S.N., Abbey, L., Loomer, N., Gillis-Madden, R., Mammoliti, M. (2018). Microbial communities associated with storage onion. Phytobiomes. 2: 35-41.