Overexpression of interleukin-35 associates with hepatocellular carcinoma aggressiveness and recurrence after curative resection

Yi-Peng Fu1,4, Yong Yi1,4, Xiao-Yan Cai1,4, Jian Sun1, Xiao-Chun Ni1, Hong-Wei He1, Jia-Xing Wang1, Zhu-Feng Lu1, Jin-Long Huang1, Ya Cao2, Jian Zhou1, Jia Fan1 and Shuang-Jian Qiu*,1,3

1Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai 200032, People’s Republic of China; 2Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China and 3Biomedical Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, People’s Republic of China

Background: Aberrant expression of interleukin-35 (IL-35) has been implicated in dampening antitumour immunity. The aim of this study was to explore the prognostic significance of IL-35 expression in patients with hepatocellular carcinoma (HCC) following curative resection. Furthermore, we aimed to formulate an effective prognostic nomogram for HCC after hepatectomy.

Methods: Immunohistochemistry was applied to explore IL-35 expression as well as CD39+ Foxp3+ and Foxp3+ regulatory T cell (Treg) infiltration in tissue microarrays in primary cohort comprising 210 randomly selected HCC patients who underwent curative resection. The results were further verified in an independent validation cohort of 138 HCC patients.

Results: Patients with higher expression of IL-35 are more likely to suffer postoperative recurrence. Interleukin-35 was also identified as an independent prognostic factor for recurrence free survival in multivariate analysis. No correlation was detected between IL-35 expression and Foxp3+ Treg infiltration, whereas significant positive correlation was found between IL-35 expression and CD39+ Foxp3+ Treg infiltration. In addition, CD39+ Foxp3+ Treg infiltration was also an independent predictor for postoperative recurrence. The nomogram comprising tumour size, tumour vascular invasion, IL-35 and CD39+ Foxp3+ Tregs had better predictive accuracy when compared with BCLC stage for RFS. These results were further validated in the validation cohort.

Conclusions: Our data suggest for the first time that IL-35 expression correlates with HCC aggressiveness and emerged as a novel independent prognostic factor for recurrence, thus conferring the rationale to develop a novel therapy of targeting IL-35. Furthermore, IL-35 should be incorporated into nomogram to generate a more accurate predictive model.
studies. These findings altogether implicate HCC as an immunogenic cancer and confer the rationale to develop immunotherapy as one of the alternative treatment strategies. Although immune-directed treatments such as cytokines, vaccines and activated immune cell infusions have been investigated for HCC treatment, only low clinical responses were reported (Makarova-Rushe et al., 2015). A accumulating evidence indicated that the immunosuppressive network within the tumour microenvironment is the major obstacle to the success of cancer immunotherapy (Hanahan and Weinberg, 2011). Cancer cells utilise multiple immunosuppressive mechanisms, predominately via the production of suppressive cytokines and induction of regulatory cells, to establish an immunosuppressive network within the tumour niche (Croci et al., 2007).

Interleukin-35 (IL-35) is a novel suppressive cytokine that is predominantly produced by Foxp3\(^+\) Tregs and is required for Treg-mediated immunosuppression (Collison et al., 2007). Interleukin-35 induces naive T cells to convert into Tregs as well as induces the conversion of human B cells into regulatory B cells (Bregs), and the converted cells play a key role in the negative regulation of immunity in autoimmune diseases (Collison et al., 2007, 2010; Wang et al., 2014). Interleukin-35 has also been implicated in tumour immunity as a novel regulatory cytokine that has potent effect on dampening T cell anticancer response (Collison et al., 2010). Recently, cancer cell-derived IL-35 was reported to promote tumour growth through the enhancement of myeloid cell accumulation and angiogenesis in tumour microenvironment (Wang et al., 2013b). High expression of IL-35 in tumour tissues and elevated plasma IL-35 levels indicated poor prognosis in several malignancies, including pancreatic ductal adenocarcinoma (Jin et al., 2014), colorectal cancer (Zeng et al., 2013), acute myeloid leukaemia (Wu et al., 2012) and non-small-cell lung cancer (Gu et al., 2014). Intriguingly, a recent study has suggested that IL-35 exerts antitumour effect via inhibiting cancer cell growth and inducing apoptosis (Long et al., 2013). Therefore, further studies are needed to shed light on the specific immunological mechanisms that IL-35 mediated in diverse cancer cell types. Although expression of IL-35 in human cancers appears to be a fairly general phenomenon, the literature is currently devoid of clinical observations of IL-35 in human HCC.

The Tregs accumulating in multiple malignancies exert tumour-promoting effect via thwarting of antitumour immunity (Nishikawa and Sakaguchi, 2010). Previously, we showed that the intratumoral balance between CTLs and Tregs is associated with prognosis in HCC patients, and a balance toward Tregs was associated with poor outcome after resection (Gao et al., 2007). Foxp3 is currently the most reliable molecular marker for natural Tregs and provides clues with which to decipher the molecular and genetic basis of Treg development and function (Sakaguchi et al., 2008). Recently, a new Treg subset has been described based on its expression and CD39\(^+\) Tregs. In HCC tissues is of great interest to be elucidated.

Patient selection and follow-up procedure. Two independent cohorts including a total of 348 patients with HCC who underwent curative resection in Zhongshan Hospital, Fudan University, in 2007 were enrolled and retrospectively analysed in this study. The patients were divided into two groups via digital random table: the first 210 were termed as training cohort and the remaining 138 as validation cohort. The exclusion criteria for the patients analysed are as follows: (1) without any preoperative anticancer treatments that could introduce any bias; (2) exact diagnosis of pathologically proven HCC; (3) complete removal of the tumour without residual cancer defined as a complete resection of all tumour lesions and the cut surface being free of cancer by histological examination; (4) with complete clinicopathological and follow-up data; (5) without any clinical evidence of infection or other inflammatory conditions other than viral hepatitis. All patients provided informed consent to participate in the study, and the study protocol was approved by the Clinical Research Ethics Committee of Zhongshan Hospital.

Conventional clinicopathological variables comprising age, gender, hepatitis B virus surface antigen (HBsAg), liver cirrhosis, \(z\)-fetoprotein (AFP), \(\gamma\)-glutamyl transferase (GGT), tumour size, number, vascular invasion, encapsulation, differentiation and BCLC stage were recorded and are detailed in Table 1. Postoperative surveillance and the treatment modality after relapse according to a uniform guideline were described in our previous study (Sun et al., 2007). Recurrence-free survival (RFS) time was defined as the interval between surgery and time of recurrence for relapsed patients or from the date of surgery to the date of last follow-up for nonrecurrent patients.

Tissue microarray and immunohistochemistry. Formalin-fixed, paraffin-embedded surgical specimens were histologically reviewed by HE staining and representative areas were selected precluding from necrotic and haemorrhagic tissue. TriPLICATE cores of 1 mm diameter were included for each surgical sample, and thus three different tissue microarray blocks were constructed and mounted on glass slides by sequencing.

Mouse anti-human IL-35 (Imgenex, Littleton, CO, USA), CD39 (Abcam, Cambridge, UK) and Foxp3 (Biolegend, San Diego, CA, USA) monoclonal antibodies were purchased. Immunohistochemistry (IHC) of serial tissue microarrays was performed as described previously (Gao et al., 2009).

Quantification of IL-35 expression and CD39\(^+\) Foxp3\(^+\) immune cell infiltration. For IL-35, all samples were anonymised and independently scored by two investigators using the semiquantitative immunoreactivity scoring (IRS) system as described previously (Weichert et al., 2008). Immunoreactivity score was derived by multiplying the intensity of IHC staining, the percentage of immunoreactive cells ranged from 0 to 12, and the
average score on each slide (three images) was used to represent a particular sample. As for CD39⁺ and Foxp3⁺ staining, the entire 1 mm core was counted manually and the average count per 1 mm disk was calculated. In case of disagreement, the slides were reviewed and a consensus was reached by the two observers. Finally, we defined 4 as the cutoff value of IL-35 and 2 of double-positive CD39⁺Foxp3⁺ Tregs, respectively, for high and low expression according to the ‘x-tile analysis’ based on their relation with RFS in training cohort, and then the cutoff values were further validated in an independent cohort.

Statistical analysis. Statistical analyses were performed with SPSS 19.0 (SPSS Inc., Chicago, IL, USA). The association between immunoreactive markers and clinicopathologic variables as well as the correlation between the density and CD39⁺Foxp3⁺ tumour-infiltrating lymphocytes (TILs) was analysed using χ² test or Fisher’s exact test or t-test as appropriate. The survival curves were determined by the Kaplan–Meier analysis and compared by the log-rank test. The Cox proportional hazards regression model was used to perform univariate and multivariate analyses, and P < 0.05 (two tailed) was considered statistically significant.

A nomogram was established based on the results of multivariate analysis and by using the package of rms in R version 2.14.1 (http://www.r-project.org/). The predictive accuracy of the nomogram was measured by concordance index (C-index) and assessed by comparing nomogram-predicted vs observed Kaplan–Meier survival curves.

Table 1. Correlation of intratumoral IL-35 expression and clinicopathologic characteristics in the training and validation set of patients with HCC

Characteristics	Training set		Validation set			
	Patients	IL-35 expression	Patients	IL-35 expression		
	No. % Low	High	P-value	No. % Low	High	P-value
All patients	210 100	99	111	138 100	64	74
Age		0.052			0.362	
≤52	102 48.6	52	50	70 50.7	34	36
>52	108 51.4	42	66	68 49.3	30	38
Gender		0.456			0.201	
Male	176 83.8	78	98	119 86.2	53	66
Female	34 16.2	16	18	19 13.8	11	8
HBsAg		0.574			0.261	
Positive	171 84.2	75	96	117 86	56	61
Negative	32 15.8	14	18	19 14	7	12
AFP (ng ml⁻¹)		0.07			0.161	
≤20	86 41	44	42	48 34.8	19	29
>20	124 59	50	74	90 65.2	45	45
GGT (units l⁻¹)		0.307			0.565	
≤54	111 52.9	52	59	56 40.6	26	30
>54	99 47.1	42	57	82 59.4	38	44
Liver cirrhosis		0.523			0.049	
Yes	175 83.3	78	79	119 86.2	59	60
No	35 16.7	16	19	19 13.8	4	14
Tumour size (cm)		0.005			0.471	
≤5	143 68.1	73	70	77 55.8	35	42
>5	67 31.9	21	46	61 44.2	29	32
Tumour encapsulation		0.232			0.353	
None	90 42.9	39	51	66 47.8	29	37
Complete	120 57.1	55	65	72 52.2	35	37
Tumour multiplicity		0.142			0.237	
Single	183 87.1	85	98	121 87.7	58	63
Multiple	27 12.9	9	18	17 12.3	6	11
Tumour differentiation		0.141			0.368	
I–II	159 75.7	75	84	100 72.5	45	55
III–IV	51 24.3	19	32	38 27.5	19	19
Vascular invasion		0.504			0.58	
Yes	66 31.4	30	36	28 20.3	13	15
No	144 68.6	64	80	110 79.7	51	59
BCLC stage		0.027			0.032	
A	143 68.1	73	70	97 70.3	54	43
B	63 30	20	43	37 26.8	9	27
C	4 19.9	1	3	4 2.9	1	4

Abbreviations: AFP — α-fetoprotein; BCLC — Barcelona Clinic Liver Cancer; GGT — γ-glutamyl transpeptidase; HBsAg — hepatitis B virus surface antigen; HCC — hepatocellular carcinoma; IL-35 — interleukin-35. P-value <0.05 marked in bold font shows statistical significant.
estimates of survival probability. The larger the C-index, the more accurate was the prognostic prediction (Huitzil-Melendez et al., 2010). Comparisons between the nomogram and BCLC stage as well as the external validation of nomogram was performed as previously described (Wang et al., 2013a).

RESULTS

Patient clinicopathologic profiles. The detailed characteristics of patients in training and validation cohorts are presented in Table 1, and the two independent sets were with an overall similar tumour burden. The median follow-up period was 53.4 months (range 1.5–61.3; s.d., 1.341). For the whole study population, RFS and overall survival (OS; in brackets) rates at 1, 3 and 5 years postoperative were 77.6% (89.7%), 61.2% (72.7%) and 48.9% (62.1%). At last follow-up (28 February 2012), 178 (51.1%) patients were diagnosed as relapse, and post-recurrent treatment modalities including reoperation (n = 35), transcatheter arterial chemoembolisation (n = 56), radiotherapy (n = 4), alternative Chinese traditional medicine (n = 4), radiofrequency ablation (n = 2) and percutaneous ethanol injection (n = 1) were administered as appropriate. However, 77 recurrent patients with severe liver dysfunction or weak general performance cannot stand any anticancer therapy.

IL-35 expression pattern in HCC tissue samples. To ascertain the manner of expression of IL-35 in HCC, tumour tissue and matched paratumour specimens of training and validation cohort were examined by IHC staining. In the tumour area, the expression of IL-35 was mainly localised in the cell cytoplasm, either in a focal or scattered pattern with variable staining intensity. For vast majority of HCC samples, IL-35 expression was evenly scattered throughout the specimens (Figures 1A–D), in concordance with their manner of expression in colorectal cancer (Zeng et al., 2013) and melanoma (Wang et al., 2013b). The expression level in tumour tissues was similar to paratumour tissues. In addition, IL-35 expression was also identified in some infiltrating lymphocytes and endothelial cells in HCC tissues (Figures 1E and F).

Correlation between IL-35 expression and clinicopathologic features in HCC patients. To evaluate the correlation of IL-35 with tumour biology, comparisons of the clinicopathologic features with IL-35 expression were analysed in both training and validation cohorts. As shown in Table 1, high expression of IL-35 was 52.9% (111 out of 210) and 53.6% (74 out of 138) in the training and validation sets, respectively. High IL-35 expression was associated with advanced BCLC stage (P = 0.006 and 0.008, respectively) in the two independent cohorts. In addition, in the training set, raised IL-35 expression was associated with larger tumour size (P = 0.005), and in validation set, high IL-35

![Image](image_url)

Figure 1. Interleukin-35 (IL-35) expression in sections of HCC tissue samples. In the tumour area, IL-35 expression was evenly scattered throughout the specimens. Representative microphotographs of IL-35 expression (A–F). Intratumoral negative control (A); intratumoral weak intensity (B); intratumoral moderate intensity (C); intratumoral strong intensity (D); tumour-infiltrating lymphocytes (arrow) (E); and endothelial cells (arrowhead) (F). Original magnification × 200.
expression was correlated with absence of liver cirrhosis (P = 0.049).

The significance of IL-35 expression and CD39⁻Foxp₃⁺ Tregs in RFS of patients with HCC. High intratumoral IL-35 expression patients were revealed to have significantly poorer RFS and OS than low IL-35 expression patients in the two independent cohorts (Table 2 and Figures 2A and D). In univariate analysis, tumour IL-35 status was found to be an independent prognostic factor for RFS. The IL-35-high patients were nearly 3 times more likely to suffer from recurrence than IL-35-low patients in the two independent sets (hazard ratio (HR), 2.878; 95% confidence interval (95% CI), 1.925–4.929 and HR, 2.874; 95% CI, 1.725–5.196; respectively, Table 3). However, the significant differences in OS disappeared on multivariate analysis.

To further investigate the significance of IL-35 expression in discriminating patients with different clinicopathologic features, we performed subgroup analysis between IL-35-high and IL-35-low patients categorised by tumour size, number, vascular invasion, differentiation, encapsulation and AFP level in the two independent cohorts. Interleukin-35 was defined to stratify patient recurrence regarding small tumour, large tumour, single tumour, well-differentiated tumour, tumour with/without encapsulation, tumour without vascular invasion and normal/elevated AFP level in both training and validation cohorts (Supplementary Table S1 and Supplementary Figures S1 and S2).

We also investigated the effect of CD39⁺Foxp₃⁺ Tregs in stratifying patient outcome in terms of RFS in the two independent cohorts. Representative images of CD39⁺Foxp₃⁺ Tregs are shown in Supplementary Figure S3. In univariate analysis, significant differences in recurrence were found between high-dose CD39⁺Foxp₃⁺ Tregs and low-dose CD39⁻Foxp₃⁺ Tregs (Table 2 and Figures 2B and E). In multivariate analysis, CD39⁺Foxp₃⁺ Treg count was found to be an independent prognostic factor for RFS. The CD39⁺Foxp₃⁺ Treg-high patients were nearly 2 times more likely to suffer from recurrence than CD39⁻Foxp₃⁻ Treg-low patients in the two independent sets (HR, 1.664; 95% CI, 1.012–2.737 and HR, 1.94; 95% CI, 0.954–3.944; respectively, Table 3). In univariate analysis, significant differences in OS was found between high-dose CD39⁺Foxp₃⁺ Tregs and low-dose CD39⁺Foxp₃⁺ Tregs, but the significant differences in OS disappeared on multivariate analysis.

Furthermore, we investigated the significance of combined IL-35 expression and CD39⁻Foxp₃⁺ Tregs in patient prognosis. Patients were divided into three groups: (A) both IL-35 and CD39⁻Foxp₃⁺ Tregs were high; (B) either IL-35 or CD39⁺Foxp₃⁺ Tregs was high; (C) both IL-35 and CD39⁺Foxp₃⁺ Tregs were low. Significant differences in recurrence was found between groups A and B as well as between groups B and C (P = 0.028 and P < 0.001, respectively; Figures 2C and F); intriguingly, more remarkably disparity was observed between groups A and C compared with the difference between IL-35-high and IL-35-low patients or between CD39⁺Foxp₃⁺ Treg-high and CD39⁺Foxp₃⁺ Treg-low groups in both training and validation sets (Figures 2C and F).

Correlation between IL-35 expression and Tregs. The count of Foxp₃⁺ Tregs was found to differentiate recurrence in univariate analysis, but the significance in discriminating prognosis failed in multivariate analysis, whereas the count of double-positive of CD39⁺Foxp₃⁺ Tregs was defined as an independent prognostic factor for RFS in multivariate analysis and further validated in an independent cohort (Tables 2 and 3 and Figures 2B and E). Then we tried to uncover the possible correlation between IL-35 and Foxp₃⁺CD39⁻Foxp₃⁺ Tregs. There was no significant correlation between IL-35 and Foxp₃⁺CD39⁻Foxp₃⁺ Tregs (P = 0.125). Intriguingly, significant positive correlation between IL-35 expression and CD39⁺Foxp₃⁺ Tregs was found in primary cohort (P = 0.044) and further verified in validation cohort (P = 0.046).

Prognostic nomogram for RFS. To generate a more accurate predictive model, we integrated the independent prognostic factors in both primary and validation cohorts (Tables 2 and 3) to create a prognostic nomogram (Figure 3A). The C-index for RFS prediction of the formulated nomogram in primary cohort is 0.7085 (95% CI, 0.7017–0.715) and the points assigned to each variable value are shown in Supplementary Table S2. The calibration plot for the
Training set
Recurrence-free survival (proportion)

CD39+Foxp3+ TILs low
CD39+Foxp3+ TILs high

0 0.2 0.4 0.6 0.8 1.0
0 24 48 72 Time after surgery (months)
P = 0.009

Validation set
Recurrence-free survival (proportion)

IL-35 low
IL-35 high

0 0.2 0.4 0.6 0.8 1.0
0 24 48 72 Time after surgery (months)
P < 0.001

Figure 2. Kaplan–Meier curves for RFS of patients with HCC according to the expression of IL-35 and the number of infiltrating CD39+Foxp3+ Tregs. Recurrence-free survival (RFS) for expression of IL-35 (A), the number of infiltrating CD39+Foxp3+ Tregs (B) and their combination (C) was found to be statistically significant. Significant differences in RFS were further validated in an independent validation cohort (D–F). The P-values were determined by the log-rank test.

Table 3. Multivariate analyses of prognostic factors associated with recurrence-free survival

Variables	HR	95% CI	P-value	HR	95% CI	P-value
HBsAg (positive vs negative)	1.802	0.887–3.664	0.104			
AFP, ng ml⁻¹ (> 20 vs ≤ 20)	1.471	0.939–2.304	0.092			
GGT, units l⁻¹ (> 54 vs ≤ 54)	1.522	0.987–2.346	0.057	1.372	0.787–2.390	0.265
Tumour differentiation (III–IV vs I–II)	1.374	0.877–2.152	0.165			
Tumour size, cm (> 5 vs ≤ 5)	1.914	1.236–2.964	0.004	1.679	1.018–2.770	0.043
Tumour multiplicity (multiple vs single)	1.603	0.939–2.738	0.084			
Vascular invasion (yes vs no)	1.798	1.162–2.783	0.008	2.044	1.183–3.531	0.002
IL-35 (high vs low)	2.878	1.925–4.929	0.002	2.874	1.725–5.196	0.003
Foxp3+ TILs (high vs low)	1.357	0.788–2.337	0.271			
CD39+Foxp3+ TILs (high vs low)	1.664	1.012–2.737	0.045	1.94	0.954–3.944	0.046

Abbreviations: AFP = α-fetoprotein; CI = confidence interval; GGT = γ-glutamyl transpeptidase; HBsAg = hepatitis B virus surface antigen; HR = hazard ratio; IL-35 = interleukin-35; TIL = tumour-infiltrating lymphocyte. P-value < 0.05 marked in bold font shows statistical significant.
IL-35 correlates with HCC aggressiveness and recurrence

Figure 3. Hepatocellular carcinoma (HCC) RFS nomogram, calibration curve and decision curve analysis. (A) Hepatocellular carcinoma (HCC) RFS nomogram (to use the nomogram, an individual patient’s value is located on each variable axis, and a line is drawn upwards to determine the number of points received for each variable value. The sum of these numbers is located on the Total Points axis, and a line is drawn downwards to the survival axes to determine the likelihood of 3- or 5-year RFS). The calibration curve for predicting RFS at (B) 3 years, (C) 4 years and (D) 5 years in training cohort and at (E) 3 years, (F) 4 years and (G) 5 years in the validation cohort. Nomogram-predicted probability of overall survival is plotted on the x axis and actual overall survival is plotted on the y axis. Decision curve analyses depict the clinical net benefit in pairwise comparisons across the different models. Nomogram is compared with the BCLC stage in terms of (H) 3-year and (I) 5-year RFS in training cohort and (J) 5-year RFS in validation cohort. Dashed lines indicate the net benefit of nomogram in each of the curves across a range of threshold probabilities. The horizontal solid black line represents the assumptions that no patient will experience the event, and the solid grey line represents the assumption that all patients will relapse. On decision curve analysis, nomogram showed superior net benefit compared with BCLC stage across a range of threshold probabilities.
probability of RFS at 3, 4 or 5 years after surgery showed optimal consistency between the prediction by nomogram and actual observation (Figures 3B–D).

The predictive accuracy of the nomogram for RFS was further verified in the validation cohort. The C-index of the constructed nomogram derived from primary cohort for RFS prediction in the validation cohort is 0.6735 (95% CI, 0.661–0.686), and the calibration curve fits well between prediction and observation in the probability of 3, 4 and 5-year RFS (Figures 3E–G).

We also examined the correlation between IL-35 expression and number of Tregs, and then consequently the significance of Tregs alone or combined with IL-35 in prediction of HCC outcome. Firstly, no significant correlation was observed between IL-35 expression and the number of Foxp3 Tregs; the underlying mechanism may be that Foxp3 is currently the most reliable molecular marker for natural but not induced Tregs (Sakaguchi et al, 2008). As an investigation suggested that IL-35 stimulation of CD39 Tregs confers protection against collagen II-induced arthritis (Kochetkova et al, 2010), accumulating evidence indicated that CD39 expressed on Tregs mediates immune suppression in autoimmune disease (Borsellino et al, 2007; Sauer et al, 2012) as well as within tumour microenvironment (Bastid et al, 2013), and more recently CD39 Foxp3 Tregs were found to be a source of IL-35 (Kochetkova et al, 2014). Taken together, it will be interesting to determine the correlation between IL-35 expression and the number of CD39 Foxp3 Tregs. Notably, significant positive correlation between IL-35 expression and CD39 Foxp3 Tregs was found and further validated. This suggests that IL-35-induced tumour immune suppression may operate through the arm of CD39 Foxp3 Tregs, although their causal link and precise nature warrant further investigation. Secondly, although Foxp3 Tregs correlated with tumour recurrence, it was not significant anymore on multivariate analysis, conferring a validation of our previous study (Gao et al, 2007). Intriguingly, CD39 Foxp3 Treg was identified as independent prognostic factor for RFS prediction; more importantly, when combined with IL-35, more remarkable disparity between different groups was observed.

In line with the predictive accuracy and superiority of nomograms as compared with the traditional staging systems in other cancer populations (Bochner et al, 2006; Wang et al, 2013a), we found that our constructed nomogram including IL-35 and Tregs had better predictive accuracy when compared with the BCLC stage. The result is provocative in suggesting that immune status within neoplastic niche should be incorporated into HCC prognostic system to improve the discriminative ability.

Several shortcomings should be considered as follows. Firstly, the study is retrospective in nature and all the data were collected from a single institution in China. Secondly, whether IL-35 can be applied to patients who receive treatment other than curative resection remains to be determined. Nonetheless, more prospective studies should be conducted to further validate the predicting probability of IL-35 and this nomogram.

In conclusion, despite the acknowledged limitations, these data suggest that IL-35 correlates with HCC aggressiveness and can be applied as a novel prognostic factor for RFS of patients. Furthermore, the proposed nomogram including IL-35 and CD39 Foxp3 Tregs presents a better prognostic model. As such, IL-35 may represent a target for HCC immunotherapy and a potential biomarker to facilitate patients in the prediction of recurrence.

ACKNOWLEDGEMENTS

This work was in part supported by the National Key Sci-Tech Special Project of China (Grant No. 2012ZX10002010–001/002), the National Natural Science Foundation of China (Grant No. 81302102), and the Basic Research Programs of Science and Technology
IL-35 correlates with HCC aggressiveness and recurrence

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Conceived and designed the experiments: Shuang-Jian Qiu, Jian Zhou and Jia Fan. Performed the experiments: Yi-Peng Fu, Yong Yi and Xiao-Yan Cai. Statistically analysed the data: Yi-Peng Fu and Yong Yi. Contributed reagents/materials/analysis tools: Jian Sun, Xiao-Chun Ni, Hong-Wei He, Jia-Xing Wang, Ya Cao, Jin-Long Huang and Zhu-Feng Lu. Wrote the paper: Yi-Peng Fu and Yong Yi.

REFERENCES

Bastid J, Cottolarda-Regairaz A, Alberici G, Bonnefouy N, Eliaou JF, Benussana A (2013) ENTPD1/CD39 is a promising therapeutic target in oncology. Oncogene 32: 1743–1751.

Bochner BH, Kattan MW, Vora KC (2006) Postoperative nomogram predicting risk of recurrence after radical cystectomy for bladder cancer. J Clin Oncol 24: 3967–3972.

Borsellino G, Kleineveldt M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, Hopner S, Centonze D, Bernardi G, Dell’Acqua ML, Rossini PM, Battistini L, Rotzsche O, Falk K (2007) Expression of ectonucleotidase CD39 by Foxp3þ T cells: hydrolysis of extracellular ATP and immune suppression. Blood 110: 1225–1232.

Collison LW, Chaturvedi V, Henderson AL, Giacomini PR, Guy C, Bankoti J, Finkelstein D, Forbes K, Workman CJ, Brown SA, Rehe JH, Jones ML, Ni HT, Artis D, Turk MJ, Vignali DA (2010) IL-35-mediated induction of a potent regulatory T cell population. Nat Immunol 11: 1093–1101.

Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, Hopner S, Centonze D, Bernardi G, Dell’Acqua ML, Rossini PM, Battistini L, Rotzsche O, Falk K (2007) Expression of ectonucleotidase CD39 by Foxp3þ T cells: hydrolysis of extracellular ATP and immune suppression. Blood 110: 1225–1232.

J Hepatol 54: 497–505.

Llovet JM, Burroughs A, Bruix J (2003) Hepatocellular carcinoma. Lancet 362: 1907–1917.

Long J, Zhang X, Wen M, Kong Q, Lv Z, An Y, Wei XQ (2013) IL-35 over-expression increases apoptosis sensitivity and suppresses cell growth in human cancer cells. Biochem Biophys Res Commun 430: 364–369.

Makarova-Rusher OV, Medina-Echeverz J, Dufy AF, Greten TF (2015) The yin and yang of evasion and immune activation in HCC. J Hepatol 62: 1420–1429.

Nagaraj S, Gabrilovich DI (2008) Tumor escape mechanism governed by myeloid-derived suppressor cells. Cancer Res 68: 2561–2563.

Nishikawa H, Sakaguchi S (2010) Regulatory T cells in tumor immunity. Int J Cancer 127: 759–767.

Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133: 773–787.

Sauer AV, Brigida I, Carriglio N, Hernandez RJ, Scaramuzza S, Clavenna D, Sanvito F, Poliani PL, Gagliani N, Carlucci F, Tabaucchi A, Roncorolo MG, Traggiai E, Villa A, Aiuti A (2012) Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID. Blood 119: 1428–1439.

Sterbern CN (2006) Are nomograms better than currently available stage groupings for bladder cancer? J Clin Oncol 24: 3819–3820.

Sun HC, Zhang W, Qin LX, Zhang BH, Ye QH, Wang L, Ren N, Zhuang PY, Zhu XD, Fan J, Tang ZY (2007) Positive serum hepatitis B e antigen is associated with higher risk of early recurrence and poorer survival in patients after curative resection of hepatitis B-related hepatocellular carcinoma. J Hepatol 47: 684–690.

Vickers AJ, Elkin EB (2006) Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making 26: 565–574.

Wang RX, Yu CR, Dambuza IM, Mahdi RM, Dolinska MB, Sergeant YY, Wingfield PT, Kim SH, Egwuagu CE (2014) Interleukin-35 induces regulatory B cells that suppress autoimmune disease. Nat Med 20: 633–641.

Wang Y, Li J, Xia Y, Gong R, Wang K, Yan Z, Wan X, Liu G, Wu D, Shi L, Lau W, Wu M, Shen F (2013a) Prognostic nomogram for intrahepatic cholangiocarcinoma after partial hepatectomy. J Clin Oncol 31: 1188–1195.

Wang Z, Liu QJ, Liu Z, Shen R, Zhang G, Xu J, Basu S, Feng Y, Bai XF (2013b) Tumor-derived IL-35 promotes tumor growth by enhancing myeloid cell accumulation and angiogenesis. J Immunol 190: 2415–2423.

Weichert W, Roske A, Gekeler V, Beckers T, Ebert MP, Pross M, Dietel M, Denkert C, Rocken C (2008) Association of patterns of class I histone deacetylation expression with patient prognosis in gastric cancer: a retrospective analysis. Lancet Oncol 9: 139–148.

Wu H, Li P, Shao N, Ma J, Ji M, Sun X, Ma D, Ji C (2012) Aberrant expression of Treg-associated cytokine IL-35 along with IL-10 and TGF-beta in active myeloid leukemia. Oncol Lett: 1119–1123.

Yi Y, He HW, Wang JX, Cai XY, Li YW, Zhou J, Cheng YF, Jin JF, Fan J, Qiu SJ (2013) The functional impairment of HCC-infiltrating gammadelta T cells, partially mediated by regulatory T cells in a TGbeta- and IL-10-dependent manner. J Hepatol 58: 977–983.

www.bjcancer.com | DOI:10.1038/bjc.2016.47
Zeng JC, Zhang Z, Li TY, Liang YF, Wang HM, Rao JJ, Zhang JA, Wang WD, Xiang WY, Kong B, Wang ZY, Wu BH, Chen XD, He L, Zhang S, Wang CY, Xu JF (2013) Assessing the role of IL-35 in colorectal cancer progression and prognosis. *Int J Clin Exp Pathol* 6:1806–1816.

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 4.0 Unported License.

Supplementary Information accompanies this paper on British Journal of Cancer website (http://www.nature.com/bjc)