Protein Kinase A Is a Negative Regulator of Renal Branching Morphogenesis and Modulates Inhibitory and Stimulatory Bone Morphogenetic Proteins*

(Received for publication, February 8, 1999, and in revised form, June 1, 1999)

Indra R. Gupta‡§, Tino D. Piscione‡§§, Silviu Grisaru‡§, Tien Phan‡§§, Marina Macias-Silva§, Xiaopeng Zhou‡, Catharine Whiteside¶, Jeffrey L. Wrana§, and Norman D. Rosenblum‡§

Protein kinase A (PKA) regulates morphogenetic responses to bone morphogenetic proteins (BMPs) during embryogenesis. However, the mechanisms by which PKA regulates BMP function are unknown. During kidney development, BMP-2 and high doses of BMP-7 inhibit branching morphogenesis, whereas low doses of BMP-7 are stimulatory (Piscione, T. D., Yager, T. D., Gupta, T. R., Grinfeld, B., Pei, Y., Attisano, L., Wrana, J. L., and Rosenblum, N. D. (1997) Am. J. Physiol. 273, F961-F975). We examined the interactions between PKA and these BMPs in embryonic kidney explants and in the mouse inner medullary collecting duct-3 model of collecting duct morphogenesis. H-89, an inhibitor of PKA, stimulated branching morphogenesis and enhanced the stimulatory effect of low doses of BMP-7 on tubule formation. Furthermore, H-89 rescued the inhibition of tubulogenesis by BMP-2 (or high doses of BMP-7) by attenuating BMP-2-induced collecting duct apoptosis. In contrast, 8-bromo-cAMP, an activator of PKA, inhibited tubule formation and attenuated the stimulatory effects of low doses of BMP-7. To determine mechanisms underlying the interdependence of BMP signaling and PKA activity, we examined the effect of PKA on the known signaling events in the BMP-2-dependent Smad1 signaling pathway and the effect of BMP-2 on PKA activity. PKA did not induce endogenous Smad1 phosphorylation, Smad1-Smad4 complex formation, or Smad1 nuclear translocation. In contrast, BMP-2 increased endogenous PKA activity and induced phosphorylation of the PKA effector, cAMP-response element-binding protein, in a PKA-dependent manner. We conclude that BMP-2 induces activation of PKA and that PKA regulates the effects of BMPs on collecting duct morphogenesis without activating the known signaling events in the BMP-2-dependent Smad1 signaling pathway.

Branching morphogenesis, defined as growth and branching of epithelial tubules during embryonic development, arises in the kidney through reciprocal mesenchymal-epithelial tissue interactions between the mesenchymal metanephric blastema and the epithelial ureteric bud (and its derivative collecting ducts) (1). These interactions are mediated by secreted peptide growth factors. Members of the bone morphogenetic protein (BMP) family, a subset of the TGF-β superfamily, are expressed in a temporal and spatial pattern consistent with their role as regulators of tubular growth and branching (2, 3). BMP-2 inhibits renal branching morphogenesis, whereas BMP-7 is stimulatory at low doses and inhibitory at higher doses (3). Although a growing body of evidence suggests that signals derived from inhibitory and stimulatory BMPs, as well as other growth factors, are integrated by the ureteric bud/collecting duct cells to determine the number and phenotype of tubules (4), the intracellular events that act in concert with these signals are largely undefined.

Protein kinase A (PKA), an intracellular kinase, has been implicated in the control of morphogenesis in diverse nonrenal tissues including the central nervous system (5, 6), the eye (7), and the limb (8, 9). Within these tissues, PKA interacts with growth factor signaling pathways to regulate morphogenetic responses to BMPs (7-9). Within the embryonic limb, BMP-2-mediated stimulation of chondrogenesis is dependent on PKA (9). Furthermore, the mechanism underlying the interdependence between PKA and BMP-2 signaling within the limb may be controlled by BMP-2 because treatment with BMP-2 induces PKA activity (9).

The function of PKA during kidney morphogenesis is undefined. However, evidence in cell culture models suggests a role for PKA in growth factor signaling in the kidney. In the Madin-Darby canine kidney cell model of tubulogenesis, PKA modulates responses to hepatocyte growth factor (HGF), a known regulator of renal branching morphogenesis (10). Additionally, in renal mesangial cells, TGF-β stimulates PKA by a cAMP independent mechanism (11), which provides further evidence that PKA can act downstream of TGF-β superfamily members.

We demonstrate here that PKA inhibits renal branching morphogenesis and modulates the effects of both inhibitory and stimulatory BMPs. The function of PKA during kidney morphogenesis is undefined. However, evidence in cell culture models suggests a role for PKA in growth factor signaling in the kidney. In the Madin-Darby canine kidney cell model of tubulogenesis, PKA modulates responses to hepatocyte growth factor (HGF), a known regulator of renal branching morphogenesis (10). Additionally, in renal mesangial cells, TGF-β stimulates PKA by a cAMP independent mechanism (11), which provides further evidence that PKA can act downstream of TGF-β superfamily members.
PKA Modifies BMP Effects on Renal Tubulogenesis

Materials and Methods

Embryonic Kidney Organ Culture and Treatment with Recombinant Proteins—Murine embryos were surgically resected from embryonic (E) day 12 pregnant CD1 mice and the kidneys were cultured as described previously (3). Explants were grown in Dulbecco’s modified Eagle’s medium-Ham’s F-12 nutrient mixture (DMEM-F12) with Richter’s modification (Life Technologies, Inc.) containing 50 μg/ml transferrin (Sigma) and either no ligand, 5 nM BMP-2 (kindly provided by Genetics Institute), 0.25 nM BMP-7 (originally named OP-1) (kindly provided by Creative Bionmolecules), 30 nM BMP-7 alone, or combinations of each of these growth factors with 5–10 μM H-89 (Calbiochem) for 48–60 h. Explants were fixed in 4% formaldehyde for 10 min, washed four times with PBS, and then embedded in paraffin. 5-μm tissue sections were stained with hematoxylin and eosin and imaged by light microscopy.

Mouse Inner Medullary Collecting Duct (mIMCD-3) Model of Tubulogenesis—Tubulogenesis assays were performed in type I collagen in 96-well culture plates using mIMCD-3 cells, as described previously (3). Cell culture medium was supplemented with either 5 nM BMP-2, 0.25 nM BMP-7, 30 nM BMP-7, 25 ng/ml HGF (Collaborative Bionmolecules), or combinations of these growth factors with either 1–5 μM H-89, 0.0001–500 μM 8-bromo-cAMP (8-Br-cAMP), or 1–100 μM protein kinase A inhibitor (PKI amide 14–29) (Calbiochem) for 48 h. Cells were fixed in 4% formaldehyde, washed in PBS, and then imaged by differential interference contrast (DIC) microscopy. The number of tubular structures in an area of standardized dimensions was determined in four randomly selected positions of the gel for each treatment condition by an observer blinded to the treatment condition, as described previously (3). Data were analyzed using the Statview statistical analysis program (version 4.01; Abacus Concepts, Berkeley, CA). The mean differences between the various treatment groups was analyzed in a Student’s t test (two-tailed).

Immunofluorescence—To study nuclear translocation of Smad1, mIMCD-3 cells were grown in monolayer on glass coverslips in DMEM-F12 culture medium supplemented with 0.2% fetal bovine serum (FBS), penicillin (100 units/ml), streptomycin (100 units/ml) in 5% CO2 at 37°C for 12 h. Cells were treated for 1 h with either 5 nM BMP-2, 5 μM H-89, 5 μM 8-Br-cAMP, BMP-2/H-89, or BMP-2/8-Br-cAMP. Cell lysates were subjected to immunoprecipitation with either anti-Smad1 antibody or anti-Smad4 antibody followed by adsorption to protein A-Sepharose. Immunoprecipitated proteins were washed, separated by SDS-polyacrylamide gel electrophoresis, and visualized by autoradiography.

To analyze Smad1-Smad4 complex formation, mIMCD-3 cells were incubated in DMEM-F12 with 0.2% FBS in the presence of either 5 nM BMP-2, 5 μM H-89, 5 μM 8-Br-cAMP, BMP-2/H-89, or BMP-2/8-Br-cAMP. Cell lysates were subjected to immunoprecipitation with either anti-Smad1 antibody or anti-Smad4 antibody followed by adsorption to protein A-Sepharose. Immunoprecipitated proteins were washed, separated by SDS-polyacrylamide gel electrophoresis, and transferred to nitrocellulose membranes. Analysis by immunoblotting was performed using a rabbit anti-Smad4 antibody (12) (1:1000 dilution) followed by anti-rabbit horseradish peroxidase (1:10,000) and chemiluminescence.

In Vitro Kinase Assay for PKA Activity—mIMCD-3 cells were grown in DMEM-F12 with 0.2% FBS and treated with 5 nM BMP-2, 5 μM 8-Br-cAMP, 5 μM H-89, 8-Br-cAMP/H-89, or BMP-2/H-89. Cell lysates were prepared by suspending the cells in cold extraction buffer (25 mM Tris-HCl, pH 7.4, 0.5 mM EGTA, 0.5 mM EDTA, 10 mM β-mercaptoethanol, 1 μg/ml leupeptin, 1 μg/ml aprotinin) and then homogenized using a Dounce homogenizer. Cell lysates were centrifuged, and then the supernatant was used in a nonradioactive assay for CAMP-dependent protein kinase (PKA) assay system, Promega). The amount of protein added to the kinase assay was standardized by measuring absorption by cell lysates at 280 nm using a Hewlett-Packard UV spectrophotometer. Phosphorylated and unphosphorylated forms of the PKA peptide substrate were separated by agarose gel electrophoresis and imaged by UV light.

TUNEL Assay—In situ TUNEL assays were performed in embryonic kidney explants and collagen gels using commercially available reagents (Apou Tag kit, Oncor). E12 embryonic kidneys were cultured for 2 days in Richter’s modified DMEM-F12 in the presence of 10 μM H-89, 5 nM BMP-2, or both. Deparaffinized tissue sections were treated with proteinase K followed by 3% hydrogen peroxide to quench endogenous peroxidase activity. Sections were preincubated with 100 μl of terminal deoxynucleotidyl transferase equilibration buffer for 15 min at 37°C and then incubated with 100 μl of terminal deoxynucleotidyl transferase reaction buffer for 15 min at 37°C.

Results

To analyze Smad1-Smad4 complex formation, mIMCD-3 cells were incubated in DMEM-F12 with 0.2% FBS in the presence of either 5 nM BMP-2, 5 μM H-89, 5 μM 8-Br-cAMP, BMP-2/H-89, or BMP-2/8-Br-cAMP. Cell lysates were subjected to immunoprecipitation with either anti-Smad1 antibody or anti-Smad4 antibody followed by adsorption to protein A-Sepharose. Immunoprecipitated proteins were washed, separated by SDS-polyacrylamide gel electrophoresis, and transferred to nitrocellulose membranes. Analysis by immunoblotting was performed using a rabbit anti-Smad4 antibody (12) (1:1000 dilution) followed by anti-rabbit horseradish peroxidase (1:10,000) and chemiluminescence.

In Vitro Kinase Assay for PKA Activity—mIMCD-3 cells were grown in DMEM-F12 with 0.2% FBS and treated with 5 nM BMP-2, 5 μM 8-Br-cAMP, 5 μM H-89, 8-Br-cAMP/H-89, or BMP-2/H-89. Cell lysates were prepared by suspending the cells in cold extraction buffer (25 mM Tris-HCl, pH 7.4, 0.5 mM EGTA, 0.5 mM EDTA, 10 mM β-mercaptoethanol, 1 μg/ml leupeptin, 1 μg/ml aprotinin) and then homogenized using a Dounce homogenizer. Cell lysates were centrifuged, and then the supernatant was used in a nonradioactive assay for CAMP-dependent protein kinase (PKA) assay system, Promega). The amount of protein added to the kinase assay was standardized by measuring absorption by cell lysates at 280 nm using a Hewlett-Packard UV spectrophotometer. Phosphorylated and unphosphorylated forms of the PKA peptide substrate were separated by agarose gel electrophoresis and imaged by UV light.

TUNEL Assay—In situ TUNEL assays were performed in embryonic kidney explants and collagen gels using commercially available reagents (Apou Tag kit, Oncor). E12 embryonic kidneys were cultured for 2 days in Richter’s modified DMEM-F12 in the presence of 10 μM H-89, 5 nM BMP-2, or both. Deparaffinized tissue sections were treated with proteinase K followed by 3% hydrogen peroxide to quench endogenous peroxidase activity. Sections were preincubated with 100 μl of terminal deoxynucleotidyl transferase equilibration buffer for 15 min at 37°C and then incubated with 100 μl of terminal deoxynucleotidyl transferase reaction buffer for 15 min at 37°C.

Discussion

We have previously shown that PKA can inhibit tubulogenesis in vitro by decreasing tubular cell apoptosis. Consistent with these effects, activation of PKA abrogates the stimulatory effects of low dose BMP-7. To determine whether the effect of PKA is mediated by known signaling events in the BMP-dependent Smad1 signaling pathway, we showed that PKA has no effect on endogenous Smad1 phosphorylation, Smad1-Smad4 complex formation, or Smad1 nuclear translocation. To determine whether the dependence of inhibitory BMPs on PKA is mediated by regulation of the PKA signaling pathway by BMPs, we demonstrated that BMP-2 increases endogenous PKA activity and induces phosphorylation of its downstream effector, cAMP-response element-binding protein (CREB). Taken together, our results show that PKA acts via a pathway parallel to ligand-induced Smad1 to inhibit renal branching morphogenesis and that PKA activity is positively regulated by BMP-2.

PKA acts via a pathway parallel to ligand-induced Smad1 to inhibit renal branching morphogenesis and that PKA activity is positively regulated by BMP-2.
5–7 min and then sections were rinsed in distilled water. Sections were then counterstained with hematoxylin and *Dolichos biflorus* agglutinin and mounted with DPX mountant (VWR Scientific).

Collagen gels containing mIMCD-3 cells were individually transferred from wells of a 96-well culture plate to 1.5-ml microcentrifuge tubes and treated with 0.2% trypsin at 37 °C for 2 h. Gels were washed four times in PBS, preincubated in terminal deoxynucleotidyl transferase equilibration buffer for 1 h, and subsequently treated with terminal deoxynucleotidyl transferase in reaction buffer for 5 h at 37 °C. The reaction was terminated in stop/wash buffer for 30 min at 37 °C. Cells were left overnight in blocking buffer at 4 °C and then incubated with 100 μl of anti-digoxigenin antibody diluted 1:20 in blocking buffer for 4 h at 37 °C. After four 5-min washes in PBS, cells were stained with 3-amino-9-ethylcarbazole (Zymed Laboratories Inc.) for 10–20 min and rinsed with PBS. Cells were counterstained with 1 μg/ml bisbenzamide (Hoechst No. 33258; Sigma) for 30 min at 4 °C, followed by two washes in PBS. Cells were directly imaged by DIC and fluorescent microscopy.

RESULTS

A

Effect of PKA on mIMCD-3 tubulogenesis. mIMCD-3 cells were cultured in type I collagen for 48 h in the presence of serum alone or increasing doses of 8-Br-cAMP or H-89. A, DIC images of tubules formed under control conditions and after treatment with 10 μM H-89 (magnification, ×100). B and C, dose-response analysis of the number of tubules formed in the presence of increasing doses of H-89 or 8-Br-cAMP. Number of tubules is expressed as a percentage of control (serum alone). 10 μM H-89 stimulated tubule formation (88% stimulation, p < 0.001), whereas 50 μM H-89 was inhibitory secondary to induction of cell death (88% inhibition, p < 0.001). 8-Br-cAMP was inhibitory at all concentrations tested.

B

![Graph showing the effect of PKA on the number of tubules formed.](image)

C

![Graph showing the dose-response analysis of tubule formation.](image)

PKA Controls Renal Branching Morphogenesis and Modulates the Effects of BMPs in Embryonic Kidney Explants—We investigated the role of PKA and its interaction with BMPs that control renal morphogenesis because PKA has been implicated in the control of cellular responses to BMPs (9). To determine whether PKA regulates renal development, we manipulated its activity in embryonic kidney explants and identified alterations in collecting duct morphogenesis. H-89 is a direct reversible antagonist of the activated catalytic subunit of PKA (14, 15). E12 murine metanephric explants were grown for 48 h in the presence or absence of 10 μM H-89. As shown in Fig. 1, in control explants, elongated, branched ureteric bud/collecting ducts were formed. H-89 induced stimulation of branching morphogenesis with the formation of wider, longer, and more branched tubules. To determine the function of PKA in the context of the inhibitory BMPs, BMP-2, and high dose BMP-7, kidney explants were grown for 48 h in the presence of 5 nM BMP-2, 30 nM BMP-7, H-89/BMP-2, or H-89/BMP-7. Treatment of explants for 48 h with 5 nM BMP-2 inhibited collecting duct formation resulting in short, unbranched tubules that failed to grow into the peripheral cortex. However, H-89 reversed the BMP-2 effect and promoted the formation of longer and more branched collecting tubules. Similar results were obtained in the cultures treated with high doses of BMP-7 and H-89/
BMP-7. We were not able to demonstrate enhancement of tubule formation by H-89 in the presence of low doses of BMP-7 because BMP-7, alone, exerted a potent stimulatory effect (3) (data not shown). In summary, these results suggest that antagonism of PKA promotes branching morphogenesis in embryonic explants and attenuates the inhibitory effects of BMPs.

Direct Effects of PKA during Collecting Duct Morphogenesis in Vitro—The cellular complexity of the organ culture explant precludes analysis of PKA effects on specific cells within the collecting duct system. We have used mIMCD-3 cells, which are derived from the terminal inner medullary collecting duct of the SV40 transgenic mouse and form branched tubules in three dimensional matrices (3, 16), to investigate the direct effects of PKA on branching morphogenesis. mIMCD-3 cells were seeded in type I collagen, cultured for 48 h in the presence of H-89 or the specific activator of PKA, 8-Br-cAMP (17), and then imaged by DIC microscopy. Tubules treated with H-89 were longer and more highly branched than tubules grown under control conditions consistent with our observations in renal explants (Fig. 2A). Tubules treated with 8-Br-cAMP were similar in phenotype to control tubules (data not shown). Because we also observed an effect of H-89 and 8-Br-cAMP on tubule number, we quantitated the number of tubules formed in the presence of increasing dose of H-89 or PKI with a constant concentration of BMP-2 or BMP-7. 8-Br-cAMP exerted a dose-dependent inhibitory effect with 61% inhibition at 1 nM (p < 0.005) (Fig. 2C). Taken together, the opposing effects of H-89 and 8-Br-cAMP on mIMCD-3 tubulogenesis suggest that PKA directly controls renal branching morphogenesis at the level of tubule number.
PKA Modulates the Effects of BMPs in Vitro on Renal Branching Morphogenesis—Having determined that PKA potentially modulates renal branching morphogenesis, we determined its interactions with the BMP signaling pathway. The results of our experiments in embryonic kidney explants (Fig. 1) suggested that BMP-mediated inhibition of ureteric bud/collecting duct growth and branching is dependent on PKA activity because antagonism of PKA rescued the inhibitory effects of BMPs. To test this more directly, we determined the interactions between BMPs and PKA in the mIMCD-3 culture model. Addition of H-89 to cultures treated with 5 nM BMP-2 induced a rescue of BMP-2-mediated inhibition (Fig. 3A). Quantitation of these effects showed that 5 μM H-89 inhibited tubule formation in the presence of BMP-2 by 328% (p < 0.05) (Fig. 3B). To obtain independent evidence that H-89 was acting to inhibit PKA, we determined the effects of the PKI amide 14–22 in our in vitro model of tubulogenesis. PKI rescued tubule formation in BMP-2-treated cultures in a dose-dependent manner (maximum effect: 1 nm, 190%, p < 0.05) (Fig. 3C). In contrast to H-89 and PKI, when 5 nM BMP-2 was combined with 1 μM 8-Br-cAMP, tubulogenesis was inhibited to the same degree as observed with BMP-2 treatment alone (Fig. 2B). Because BMP-2 exerts a strong inhibitory effect on tubule formation, we were not able to determine whether 8-Br-cAMP acted synergistically with BMP-2 to inhibit. Similarly, addition of H-89 to mIMCD-3 cultures treated with high doses (30 nM) of BMP-7 induced a rescue of BMP-7-mediated inhibition by 70% (p < 0.05) (Fig. 3D). However, when 30 nM BMP-7 was combined with 1 μM 8-Br-cAMP, the inhibitory effect of BMP-7 was unchanged. In summary, these data indicate that inhibitory BMPs, including BMP-2 and high dose BMP-7, are dependent on PKA to exert their inhibitory effects on renal branching morphogenesis.

BMP-7, at low doses (<0.25 nM), acts to stimulate renal branching morphogenesis (3). To determine whether PKA might also play a role in modulating this stimulatory pathway, we tested the interactions between H-89, 8-Br-cAMP and low doses of BMP-7. H-89 enhanced BMP-7 stimulated tubulogenesis by 52% compared with BMP-7 alone (p < 0.05) (Fig. 4A). In contrast, 8-Br-cAMP decreased the stimulatory effect of BMP-7 by 37% (p < 0.05). These results indicate that PKA negatively modulates stimulation by BMP-7 and are consistent with the dependence of inhibitory BMPs on PKA. To determine whether PKA modulates other stimulatory pathways, including those downstream of receptor tyrosine kinases, we tested the interaction of H-89 or 8-Br-cAMP with HGF. As shown in Fig. 4B, H-89 enhanced the stimulatory effect of HGF on tubulogenesis by 13% (p < 0.005). In contrast, 8-Br-cAMP exerted a dose-dependent inhibitory effect in the presence of HGF. Taken together, these data suggest that PKA modulates stimulatory pathways mediated by both receptor tyrosine (HGF) and receptor serine/threonine (BMPs) kinases.

Inhibition of PKA Activity Blocks BMP-2-mediated Collecting Duct Apoptosis—Our studies in embryonic kidney explants and in the mIMCD-3 model of branching morphogenesis indicate that PKA acts at a morphogenetic level to alter the phenotype of renal collecting tubules. The morphogenetic pathway for any particular tissue or structure is derived from a composite of cellular events, such as cell proliferation, apoptosis, cell shape change and cell migration (18). Because antagonism of PKA rescues BMP-mediated inhibition of tubulogenesis, we determined whether this was due to a change in collecting duct cell number. Specifically, we determined the effects of BMP-2, H-89, and both together on apoptosis in the developing collect-
PKA Modifies BMP Effects on Renal Tubulogenesis

FIG. 5. Effect of PKA on BMP-2-mediated ureteric bud/collection duct cell apoptosis. A and B, E12 embryonic mouse kidneys were cultured in serum-free medium containing 5 nM BMP-2 or both 5 nM BMP-2 and 10 μM H-89. After 48 h, paraffin-embedded 5 μm tissue sections were generated from fixed explant tissue. Apoptotic cells were identified in ureteric buds/collection ducts, identified by staining with Dolichos biflorus agglutinin, using an in situ TUNEL assay. A, bright field images of TUNEL-stained tissue sections counterstained with hematoxylin. The arrows mark the position of ureteric buds/collection ducts. Sections were imaged at ×400 magnification. A limited number of brown TUNEL-positive cells are present in the collecting system of control explants. Treatment with BMP-2 markedly attenuated development of collecting tubules and increased the number of apoptotic cells in these tubules. Treatment with H-89 induced the formation of large, elongated, and highly branched collecting tubules in which apoptotic cells were rarely observed. Treatment with H-89 in the presence of BMP-2 partially rescued the BMP-2 phenotype and decreased the number of apoptotic cells. B, quantitation of apoptosis. The ratio of apoptotic cells to the total number of ureteric bud/collection duct cells in each tissue section was determined. Data are presented as fold change from control (no BMP-2 or H-89). C and D, mIMCD-3 cells were cultured in type I collagen for 48 h in the presence of serum alone, BMP-2, H-89, or both BMP-2 and H-89. C, upper panels, immunofluorescence images of cultures stained with bisbenzamide to identify individual cells. Lower panels, DIC images of black colored cells stained with 3-amino-9-ethylcarbazole during a TUNEL assay. D, quantitation of apoptosis. The ratio of apoptotic cells to the total number of mIMCD-3 cells in each image was determined. Data are presented as fold change from control (no BMP-2 or H-89).

ing system. E12 embryonic kidney explants were cultured for 48 h in the presence of 5 nM BMP-2, 10 μM H-89, or both. Histologic sections were then prepared from fixed tissue, and ureteric bud/collection ducts were identified by staining with Dolichos biflorus agglutinin, and apoptotic cells were assessed using an in situ TUNEL assay (Fig. 5A). BMP-2 markedly enhanced the number of apoptotic cells in collecting tubules and decreased tubule formation. In contrast, H-89 induced the formation of large, elongated, and highly branched collecting tubules in which apoptotic cells were rarely observed. Treatment with H-89 in the presence of BMP-2 partially rescued the BMP-2 phenotype and ameliorated the extent of apoptosis. The effect of these treatments on ureteric bud/collection duct apoptosis was quantitated by determining the ratio of apoptotic cells to the total number of ureteric bud/collection duct cells in each tissue section. Because there was no statistically significant difference between the number of ureteric bud or collecting duct cells in control compared with BMP-2-treated explants (control, 774 ± 60 versus BMP-2, 604 ± 110; p = 0.21), and in BMP-2 compared with BMP-2/H89-treated explants (BMP-2, 604 ± 110 versus BMP-2/H-89, 503 ± 212; p = 0.53), the ratio of apoptotic to the total number of cells reflects only the effect of these treatments on apoptosis. As shown in Fig. 5B, BMP-2 increased apoptosis by 1.4-fold compared with control (no ligand), whereas antagonism of PKA attenuated collecting duct apoptosis in embryonic kidney explants by 0.4-fold compared with control and by 2.0-fold compared with BMP-2-treated explants (p < 0.05). Treatment with H-89 in the presence of BMP-2 attenuated apoptosis to an extent similar to that observed with H-89 alone (2.0-fold) (p < 0.05).

To determine the direct effects of H-89 on BMP-2-treated collecting duct cells, we measured mIMCD-3 cell apoptosis in three-dimensional cultures. mIMCD-3 cells were cultured for 48 h in the presence of BMP-2, H-89, or both. Apoptotic cells were identified by the TUNEL assay (Fig. 5C). Because the numbers of cells at the time cultures were initiated and after 48 h of culture did not differ, the ratio of the number of TUNEL-positive cells to the total number of cells (that is, the number of bisbenzamide-staining cells) reflects only an effect on apoptosis. As shown in Fig. 5D, treatment with BMP-2 induced a 3-fold increase in apoptosis compared with control (BMP-2, 11.0 ± 2.1% versus control, 3.7 ± 0.7%, p = 0.002). This BMP-2-induced increase was similar in degree to that observed after culture of mIMCD-3 cells in serum-free medium (12.3 ± 1.8%). In contrast, treatment with H-89 had no significant effect on apoptosis and totally abrogated the pro-apoptotic effect of BMP-2. Taken together, our results in embryonic kidney explants and in the mIMCD-3 model of collecting duct morpho-
genesis demonstrate that inhibition of PKA, alone and in the presence of BMP-2, protects the collecting duct cell from undergoing apoptosis.

Interaction of PKA with Intracellular Signaling Events Downstream of BMP-2—We have demonstrated that PKA modulates morphogenetic and cellular responses to BMPs. Our results provide a basis for determining the interactions between PKA and BMPs at a molecular level. Several events downstream of BMP/cell surface receptor molecular complexes have been described (19). Specifically, activated BMP receptor phosphorylates the cytoplasmic protein Smad1. Phosphorylated Smad1 complexes to Smad4 and then Smad1 translocates to the nucleus, where it is postulated to act as a transcription factor. Because BMP-mediated inhibition of branching morphogenesis is dependent on PKA, we hypothesized that PKA could induce one or more events downstream of the BMP receptor. Likewise, we predicted that inactivation of PKA would be disruptive to BMP signaling.

First, we investigated the effects of PKA on BMP-2-induced Smad1 phosphorylation in mIMCD-3 cells. mIMCD-3 cells were labeled with [32P]phosphate and then treated with either 5 nM BMP-2, 5 µM 8-Br-cAMP, 5 µM H-89, BMP-2/H-89, or BMP-2/8-Br-cAMP for 1 h. Cellular proteins were immunoprecipitated with anti-Smad1 antibody, and the immunoprecipitated proteins were then analyzed by SDS-polyacrylamide gel electrophoresis. As shown in Fig. 6A, BMP-2 induced a marked increase in Smad1 phosphorylation as indicated by both an increase in radioactive signal and a decrease in the electrophoretic migration of Smad1. This mobility shift is a direct result of phosphorylation of residues in the MH2 domain, inducing a conformational change in the protein and causing it to migrate more slowly than unphosphorylated Smad1 (19). In contrast, under basal conditions, phosphorylation of Smad1 occurs at residues located outside of the MH2 domain, does not result in a conformational change, and does not result in formation of Smad1-Smad4 complexes and nuclear translocation (12). Treatment with 8-Br-cAMP or H-89 did not induce a shift in Smad1 mobility. Moreover, treatment either with 8-Br-cAMP or with H-89 in addition to BMP-2 did not modify the increase in Smad1 phosphorylation or the shift in Smad1 mobility seen in cultures treated with BMP-2 alone. The small degree of variation in the intensity of the Smad1 protein bands observed reflects fluctuations in the yield of Smad1 isolated in the immunoprecipitation procedure. Taken together, these data indicate that the BMP-2 and PKA pathways do not converge at the level of Smad1 phosphorylation.

Second, we determined the effect of PKA on BMP-2-induced Smad1-Smad4 complex formation in mIMCD-3 cells (Fig. 6B). For this, we subjected lysates from mIMCD-3 cells to anti-Smad1 immunoprecipitation followed by immunoblotting with an anti-Smad 4 antibody as described previously (12). Under basal conditions, whereas cell lysates contained Smad4 protein (Fig. 6B, Basal), Smad 4 was not detected in association with Smad1, indicating that Smad1-Smad4 complexes do not exist.
under basal conditions. Similar to these controls, cells treated with 8-Br-cAMP or H-89 did not contain Smad1-Smad4 complexes. In contrast, treatment with 5 nM BMP-2 for 60 min resulted in the formation of Smad1-Smad4 complexes, and the efficiency of association was unaffected by 8-Br-cAMP or H-89. Taken together, these data indicate that the BMP-2 and PKA pathways do not converge at the level of Smad1-Smad4 complex formation.

Smad1-Smad4 complexes translocate to the nucleus, where they function to activate BMP-responsive genes. Thus, we determined whether PKA altered BMP-2 induced Smad1 cytoplasmic to nuclear translocation in collecting duct cells using immunofluorescence and confocal laser microscopy (60 cells analyzed/treatment group) (Fig. 6C). Under basal conditions, Smad1 protein was detected in a punctate distribution throughout the cytoplasm of mIMCD-3 cells similar to previous

FIG. 6. Effect of PKA on signaling events induced by BMP-2. mIMCD-3 cells were incubated in 5% FBS + DMEM-F12 and then treated for 1 h with either 5 nM BMP-2, 5 μM 8-Br-cAMP, 5 μM H-89, BMP-2/H-89, or BMP-2/8-Br-cAMP. A, effect of PKA on BMP-2-dependent Smad1 phosphorylation. Upper panel, mIMCD-3 cells were labeled with [32P]phosphate during treatment with BMP-2/H-89/8-Br-cAMP. After immunoprecipitation with an antibody to Smad1, proteins were analyzed by SDS-polyacrylamide gel electrophoresis and autoradiography. BMP-2 induced phosphorylation of Smad1 (arrow) as indicated by increased [32P]phosphate labeling and decreased mobility compared with basal conditions (no ligand). Middle panel, total Smad1 expression in each treatment condition. Smad1 was identified in cell lysates by immunoblotting. Lower panel, specificity of anti-Smad1 antibody. mIMCD-3 cells were treated with BMP-2, and cellular proteins were labeled with [32P]phosphate. Proteins were immunoprecipitated with either preimmune rabbit serum or Smad 1 antibody. B, effect of PKA Smad 1-Smad 4 complex formation. Upper panel, protein lysates were immunoprecipitated with an antibody to Smad4 (total lysate and basal), an antibody to Smad1 (basal, BMP-2, 8-Br-cAMP, BMP-2/8-Br-cAMP, H-89, and BMP-2/H-89), or preimmune sera (basal and BMP-2) and then analyzed by immunoblotting using antibody to Smad4 (arrow). Lower panel, immunoblot analysis with anti-Smad1 antibody of cellular proteins immunoprecipitated with anti-Smad1 antibody. A band corresponding to the nonphosphorylated form of Smad 1 is seen in all lanes. A slower migrating protein, marked by an asterisk, is seen in the BMP-2, BMP-2/8-Br-cAMP, and BMP-2/H-89 treatment groups. This band corresponds to the phosphorylated form of Smad1. C, effect of PKA on BMP-2-dependent Smad 1 nuclear translocation in mIMCD-3 cells. Immunostaining was performed using an antibody to Smad1, followed by a fluorescein-conjugated secondary antibody. Images were obtained by confocal laser microscopy (× 480 magnification).
PKA Modifies BMP Effects on Renal Tubulogenesis

FIG. 7. PKA and CREB activity in mIMCD-3 cells and effect of BMP-2. A, protein cell lysates were prepared from mIMCD-3 cells and tested for the ability to phosphorylate a PKA-specific peptide in a nonradioactive assay. The phosphorylation state of the peptide was examined by agarose gel electrophoresis. Phosphorylated peptide is positively charged, whereas unphosphorylated peptide is negatively charged. Under basal conditions, PKA activity is low. Treatment with 5 μM 8-Br-cAMP for 48 h activated PKA. In contrast, treatment with 5 μM H-89 attenuated the stimulatory effect of 8-Br-cAMP. Treatment with BMP-2 for 48 h induced PKA activation. B, protein cell lysates were tested for the presence of phospho-CREB by immunoblotting proteins isolated from cell lysates with a rabbit anti-phospho-CREB (Ser-133) antibody. Increase in CREB phosphorylation (arrow) by BMP-2 is inhibited by co-incubation H-89.

reports for transiently expressed Smad5 (20) and Smad2/3 (21, 22). However, after a 60-min treatment with 5 nM BMP-2, translocation of Smad1 protein was identified by a shift in fluorescent signal from cytoplasm to nucleus in 78% cells analyzed. No signal was detected using preimmune antiserum and fluorescein-conjugated secondary antibody (data not shown). Treatment with either 5 μM 8-Br-cAMP or with 5 μM H-89 alone did not induce Smad1 nuclear translocation and did not interfere with BMP-2 induced Smad1 nuclear translocation. Taken together, our experiments indicate that activation of PKA alone does not induce any of the known steps in the BMP-2 pathway. Furthermore, although antagonism of PKA is dominant over the inhibitory effect of BMP-2 on renal branching morphogenesis, it does not disrupt the known biochemical events that are activated in response to BMP-2. These findings suggest that PKA controls the actions of BMP-2 via a parallel signal transduction pathway.

Several types of evidence strongly suggest that members of the BMP family regulate renal branching morphogenesis. The spatial and temporal expression pattern of BMP-2 and BMP-7 is consistent with their role in modulating the inductive tissue interactions that control branching morphogenesis (2). Muta-
nional inactivation of Bmp-7 causes kidney maldevelopment, including abnormal branching morphogenesis (24, 25). Recombinant BMP-2 and BMP-7 protein control branching morphogenesis in embryonic kidney explants and in the mIMCD-3 model of collecting duct morphogenesis. Interestingly, these BMPs exert specific and dose-dependent effects. BMP-2 is inhibitory, whereas BMP-7 stimulates at low doses (<0.5 nM) and inhibits at higher doses (3). The stimulatory effects of BMP-7 taken together with the phenotype of the Bmp-7−/− mouse suggest that low dose BMP-7 acts via a stimulatory signaling pathway. In contrast, high doses of BMP-7 and BMP-2 act via the inhibitory Smad 1 signaling pathway. The ureteric bud or collecting duct cells exist within a complex environment of growth factors, including BMPs, and must integrate these diverse signals to form a tubular network. PKA is an intracellular kinase that interacts with both receptor tyrosine kinase (10) and serine/threonine kinase pathways in several tissue types, including the central nervous system (5, 6), the eye (7), and the limb (8). In this work, we show that PKA directly controls renal branching morphogenesis and, within this context, modifies the morphogenetic effects of stimulatory and inhibitory BMPs, and HGF. Our results in an in vitro model of tubulogenesis and in embryonic renal explants demonstrate that PKA directly controls renal branching morphogenesis. When PKA is activated, tubulogenesis is inhibited, whereas when PKA is antagonized, tubulogenesis is markedly enhanced. Our work also shows that PKA modifies specific growth factor-induced signaling events in the collecting duct cell. PKA inhibits the stimulatory effect of low dose BMP-7 and HGF. Consistent with these effects, antagonism of PKA in the presence of either stimulatory factor further enhances tubulogenesis. In addition, antagonism of PKA rescues the inhibitory effects of BMP-2 and high dose BMP-7. These observations suggest that PKA functions to modulate the cellular response to stimulatory and inhibitory signals during renal branching morphogenesis.

We have demonstrated the effect of PKA on collecting duct formation at a morphogenetic level. Tubule formation requires a unique combination of cellular events including cell prolifer-

2 I. R. Gupta, M. Macias-Silva, S. Kim, X. Zhou, C. Whiteside, J. L. Wrana, N. D. Rosenblum, submitted for publication.
PKA Modifies BMP Effects on Renal Tubulogenesis

PKA is a key player in the control of tubulogenesis, as evidenced by its role in the regulation of gene expression through alteration of BMP signaling. BMPs are known to stimulate transcription of the ultrabithorax gene, and PKA signaling is involved in the phosphorylation of CREB at serine 133, allowing its translocation to the nucleus. The interaction between BMP signaling and PKA signaling is complex and involves the activation of both pathways. However, the role of PKA in the regulation of BMP signaling is not fully characterized.

Acknowledgments—PKA was provided via a material transfer agreement with Genetics Institute. BMP-7 (OP-1) was provided via a material transfer agreement with Creative Biomolecules.

REFERENCES

1. Saxen, L. (1987) Organogenesis of the Kidney, pp. 51–87, Cambridge University Press, Cambridge, United Kingdom
2. Dudley, A. T., and Robertson, E. J. (1997) Dev. Dyn. 208, 349–362
3. Pejovic, T. D., Yager, T. D., Gupta, I. R., Grinfeld, B., Pei, Y., Attisano, L., Wrana, J. L., and Rosenblum, N. D. (1997) Am. J. Physiol. 273, F961–F975
4. Lechner, M. S., and Dresler, G. R. (1997) Mech. Dev. 62, 105–120
5. Hammerschmidt, M., Bitgood, M. J., and McMahon, A. P. (1996) Genes Dev. 10, 647–658
6. Epstein, D. J., Marti, E., Scott, M. P., and McMahon, A. P. (1996) Development 122, 2885–2894
7. Pan, D., and Rubin, G. M. (1995) Cell 80, 543–552
8. Lepage, T., Cohen, S. M., Diaz-Benjumea, F. J., and Parkhurst, S. M. (1995) Nature 373, 711–715
9. Lee, Y.-S., and Chuang, C.-M. (1997) J. Cell. Physiol. 170, 153–165
10. Santos, O. F. P., Moura, L. A., Rosen, E. M., and Nigam, S. K. (1993) Dev. Biol. 159, 535–548
11. Wang, L., Zhu, Y., and Sharma, K. (1998) J. Biol. Chem. 273, 8522–8527
12. Macias-Silva, M., Hoodless, P. A., Tang, S.-J., Buchwald, M., and Wrana, J. L. (1998) J. Biol. Chem. 273, 25628–25636
13. Wrana, J. L., Attisano, L., Wieser, R., Ventura, F., and Massague, J. (1994) Nature 370, 341–347
14. Chijiwa, T., Mishima, A., Hagiwara, M., Sano, M., Hayashi, K., Inoue, T., Naito, K., Toshioka, T., and Hidaka, H. (1990) J. Biol. Chem. 265, 5267–5272
15. Hidaka, H., Inagaki, M., Kawamoto, S., and Sasaki, Y. (1984) Biochemistry 23, 5036–5041
16. Cantley, L. G., Barros, E. J. G., Gandhi, M., Rauchman, M., and Nigam, S. K. (1994) Am. J. Physiol. 267, F271–F280
17. Orellana, S. A., and McKnight, G. S. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 4726–4730
18. Larsen, E., and McLaughlin, H. M. G. (1987) BioEssays 7, 130–131
19. Hoodless, P. A., Haerry, T., Abdollah, S., Stapleton, M., O’Connor, M. B., Attisano, L., and Wrana, J. L. (1996) Cell 85, 489–500
20. Nishimura, R., Kato, Y., Chen, D., Harris, S. E., Mundy, G. R., and Yoneda, T. (1998) J. Biol. Chem. 273, 1872–1879
21. Nakao, A., Imamura, T., Souchelnytskaya, S., Kawabata, M., Ishisaki, A., Oeda, E., Tamaki, K., Hani, J.-I., Helin, C.-H., Miyazono, K., and ten Dijke, P. (1997) EMBO J. 16, 5353–5362
22. Tsukazaki, T., Chiang, T. A., Davison, A. F., Attisano, L., and Wrana, J. L. (1998) Cell 95, 779–791
23. Arias, J., Alberts, A. S., Brindle, P., Claret, F. X., Smale, T., Karin, M., and Peramies, J., and Montminy, M. (1994) Nature 370, 226–229
24. Dudley, A. T., Lyons, K. M., and Robertson, E. J. (1995) Genes Dev. 9, 2795–2807
25. Luo, G., Hofmann, C., Bronckers, A. L. J., Sohocki, M., Bradley, A., and Karsenty, G. (1995) Genes Dev. 9, 2808–2820
26. McGlade, G. S. (1991) Curr. Opin. Cell Biol., pp. 226–229
27. Luo, G., Hofmann, C., Bronckers, A. L. J., Sohocki, M., Bradley, A., and Karsenty, G. (1995) Genes Dev. 9, 2795–2807
28. Eresh, S., Riese, J., Jackson, D. B., Bohmann, D., and Bienz, M. (1997) EMBO J. 16, 2014–2022
29. Topper, J. N., D’Chiara, M. R., Brown, J. D., Williams, A. M., Falb, D., Collins, T., and Gimbrone, M. A. J. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 9506–9511
30. Feng, X.-H., Zhang, Y., Wu, R.-Y., and Derynck, R. (1998) Genes Dev. 12, 2153–2163
31. Janke, K., Wells, N. J., and Hunter, T. (1998) Genes Dev. 12, 2114–2119
32. Peukonen, C., Jayaraman, L., and Massague, J. (1998) J. Biol. Chem. 273, 22865–22868
33. Zhong, H., SuYang, H., Erdjument-Bromage, H., Tempst, P., and Ghosh, S. (1997) Cell 89, 413–424

The spatial and temporal patterning of the renal collecting system is precisely controlled (1). Our previous work, as well as that of others, suggests that this development is controlled simultaneously by stimulatory and inhibitory peptide growth factors. Our current work provides insight into how these signals are integrated within the collecting duct cell and provide a basis for further investigating the genetic control of tubulogenesis.