Materials Research Express

PAPER

InGaAsPBi grown on InP substrate by gas source molecular beam epitaxy

Fangkun Tian, Likun Ai, Anhuai Xu, Hua Huang and Ming Qi

1 Key Laboratory of Terahertz Solid State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
E-mail: likunai@mail.sim.ac.cn

Keywords: InGaAsPBi, InP, gas source molecular beam epitaxy

Abstract

The effects of growth condition on material quality of quinary alloy InGaAsPBi grown by gas source molecular beam epitaxy (GSMBE) were investigated systematically. It is found that 0.1% of Bi incorporation can play the role of surfactant effects and is beneficial to improve the material quality. The roughness of surface RMS measured by atomic force microscope (AFM) is 0.218 nm. Furthermore, the addition of a small amount of bismuth atoms promotes the binding of phosphorus atoms to group III atoms.

1. Introduction

In the last few years, dilute bismuth has attracted more and more attention because they have the characteristics of large spin–orbit splitting and band-gap reduction [1–6]. It is well known that the isoelectronic energy level of Bi exists in the valence band of most III–V materials since it is the largest and heaviest group V element [3, 6–9]. The small number of Bi substitute As and/or P in the InP, GaAs or InGaAs leads to an unusually narrow band gap due to the valence band cross-over principle [10–13]. Furthermore, dilute bismuth has the advantages of low thermal conductivity, high power factor and insensitive band gap temperature, which is expected to be an excellent thermoelectric material and a promising semiconductor material [14]. The material properties of this band structure will provide more possibilities for optoelectronic and electronic device applications [12, 14–17].

Previously, the research on dilute bismuth alloy mainly concentrate on GaAs-based materials, such as GaAs1−xBix/GaAs or GaN1−xAlxAs1−yBiy/GaAs [11, 18–20]. Feng G etc grew the In1−yGayAs1−xBiy layers with good crystal quality on the InP substrate through molecular beam epitaxy (MBE) for the first time, and its Bi doping amount was up to 2.5%. When the growth temperature was reduced to 260 °C, bismuth incorporation was as high as 6% [10, 21, 22]. In addition, Devenson etc grew the In1−yGayAs1−xBiy layers with up to 7% Bi incorporation through MBE, and studied its optical properties and structural characteristics [23]. Up to now, Zhou etc of our group grew InGaAsBi films by gas source molecular beam epitaxy (GSMBE). The incorporation of bismuth in InGaAsBi alloy was controlled by changing indium gallium beam ratio and bismuth flux, the incorporation rate of bismuth in InGaAsBi alloy was up to about 7.5% [6, 24, 25].

In this paper, we investigated systematically the effects of growth condition including Bi contents, AsH3 pressures and substrate temperature on InGaAsPBi material. It is found that 0.1% of Bi incorporation can play the role of surfactant effects [26–29] and is beneficial to improve the material quality. The incorporation of a small number of Bi atoms can promote the binding of P atoms to III group atoms. The addition of Bi atoms will introduce P-type carriers to compensate for the effect of background N-type carriers on mobility. The band gap of the InGaAsPBi can be well adjusted by controlling III–V ratio reasonably. Controlling the Bi contents in InGaAsBi alloys is very important for optoelectronic and electronic device, high-speed digital device and high-frequency microwave device applications [24] such as HBT (heterojunction bipolar transistor) [30–33], HEMT (high electron mobility transistor) [34, 35] etc.
2. Experiment

2.1. Materials

Materials used in the research were elements indium, gallium, bismuth, P$_2$ and As$_2$. During material growth, elements indium, gallium and bismuth fluxes are controlled by adjusting effusion cell temperatures, respectively. The group V of elements P$_2$ and As$_2$ are produced by cracking phosphorane and arsenane at 1000 degrees Celsius.

2.2. Experimental procedure

2.2.1. Growth of InGaAsPBi film

All In$_{0.88}$Ga$_{0.12}$As$_{0.27}$P$_{0.37}$ and In$_{0.88}$Ga$_{0.12}$As$_x$P$_{1-x}$Bi$_y$ films were grown on semi-insulating InP (100) substrates by a VG90 gas source molecular beam epitaxy system. Using an infrared radiation thermometer to measure the substrate temperature. The reconstruction of the substrate surface is monitored by in situ reflected high energy electron diffraction (RHEED). Before the growth, samples have been pre-degassed at about 350 °C in the preparation chamber for 2 h to evaporate others volatile species. When the substrate temperature reaches 300 °C inside P$_2$ flux to protect substrate surface and followed by heating to 425 °C for 3 min until the appearance of the (4×2)-(100) In-stable reconstruction. Then 600 nm InGaAsPBi layer is grown by lowering the substrate temperature to 300 °C.

2.2.2. Characterization of InGaAsPBi film properties

The InGaAsPBi materials are investigated by using various characterization techniques. The thickness of InGaAsPBi film was measured by AMBIOS XP-2 Stair Tester. The structural qualities of all films are characterized by a Philips High Resolution x-ray Diffraction (HRXRD) equipped with a four-crystal Ge (220) monochromatic using Cu K$_\alpha$1 ($\lambda = 0.154$ 06 nm) radiation by the same scan parameters along the (004) direction. Atomic force microscopy (AFM) is used to characterize the surface morphology and roughness of the sample. Using Hall measurements to measure room temperature carrier mobility and carrier concentrations of samples. Rutherford backscattering spectroscopy (RBS) is used to measure Bi contents. The He$^{2+}$ beam will be easily scattered after impinging on them. Therefore, these are better methods to measure the concentration of atoms especially for heavy atoms.

Sample	Ts (°C)	Bi (°C)	PH$_3$ (Torr)	AsH$_3$ (Torr)	$\Delta a/a$ (ppm)	XRD FWHM (°)	Surface roughness (nm)
a1	365	0	660	90	644	43.2	1.02
a2	300	520	660	90	0	14.4	0.351
a3	300	530	660	90	−1325	36	0.294
a4	300	540	660	90	−1828	50.4	0.223
a5	300	550	660	90	−1860	57.6	0.227
a6	300	560	660	90	−2095	75.6	0.218

Figure 1. RBS spectrum of the InGaAsPBi film.

Table 1. Series A, the measured properties of InGaAsPBi with different Bi effusion cell temperature.

2. Experiment

2.1. Materials

Materials used in the research were elements indium, gallium, bismuth, P$_2$ and As$_2$. During material growth, elements indium, gallium and bismuth fluxes are controlled by adjusting effusion cell temperatures, respectively. The group V of elements P$_2$ and As$_2$ are produced by cracking phosphorane and arsenane at 1000 degrees Celsius.
3. Results and discussion

3.1. The effect of Bi contents

As shown in table 1, the properties of InGaAsPBi with different Bi effusion cell temperature are measured. The Bi contents of sample a6 is measured shown in figure 1. According to the RBS signal spectrum, the signal separation between Bi signal and other elements is detected in the 400–450 channel, and accurate quantitative analysis could be carried out in this channel. In addition, the peak/step length signal of element Bi was observed at the channel value of about 450, and the Bi content was about 0.1%. In, Ga, As and P elements contents is about 44%, 6%, 8.9% and 41% respectively.

Figure 2 shows the HRXRD swing curve of samples a1–a6. The relatively narrow and tall diffraction peaks correspond to InP diffractions and the relatively broad peaks correspond to InGaAsP and InGaAsPBi epilayers. It can be clearly seen that the mismatch between the diffraction peaks of InGaAsPBi and InP increases with the Bi contents increasing. The incorporation of a small number of Bi atoms promotes the binding of P atoms to III group atmos. Therefore, InGaAsPBi epilayers peaks moves from left to right cause the lattice constant to decrease. According to the table 1, the full width at half maximum (FWHM) of the InGaAsPBi epitaxial peaks gradually becomes wider with the increasing of Bi contents. The FWHM of sample a2–a6 is 14.4s, 36s, 50.4s, 57.6s, 75.6s respectively. If the Bi contents is properly controlled, the lattice constant of InGaAsPBi will match InP.

For samples of series A, the surface morphology of the sample was characterized by the AFM tapping mode. As shown in table 1 and figure 3, the root-mean-square (RMS) roughness in different Bi contents of the
InGaAsPBi epilayer. According to the figure 3, The RMS of sample a and sample b are 1.02 nm and 0.351 nm respectively. The RMS roughness decrease significantly with the increasing of Bi contents owing to the Bi surfactant effects.

Using Hall measurements to measure room temperature electrical properties of samples and reveal n-type. Figure 4 reports the variation of the carrier mobility and density as a function of the Bi contents, which possesses an electron concentration of 10^{17} cm$^{-3}$. Comparing to the sample a1 the electron mobility of sample a2 increased significantly after incorporation of Bi. It is owing to the Bi surfactant effects improve mobility of electrons. Because Bi incorporation introduces p-type carriers and compensate the background n-type carriers resulting in mobility decreases. The electron mobility decreases with the Bi contents increasing, which means that the intrinsic free electrons are compensated. When Bi is incorporated into InGaAsP isolated Bi atoms and

![Figure 4](image)

Figure 4. Hall mobility and Concentrations of electrons in different Bi contents for InGaAsP and InGaAsPBi samples.

Sample No.	T_s (°C)	Bi (°C)	PH_3 (Torr)	AsH_3 (Torr)	$\Delta a/a$ (ppm)	XRD FWHM (θ)	Surface roughness (nm)
b1	300	540	660	80	-2381	43.2	0.248
b2	300	540	660	90	-1828	50.4	0.223
b3	300	540	660	100	-999	39.6	0.232
b4	300	540	660	110	-657	46.8	0.428
b5	300	540	660	120	668	57.6	0.159
b6	300	540	660	130	1632	64.8	0.172

![Figure 5](image)

Figure 5. HRXRD (004) ω–2θ scans for InGaAsPBi epilayers on InP with different AsH_3 pressures.
Figure 6. The surface morphology of the InGaAsPBi samples on InP with different AsH₃ pressures.

Figure 7. Hall mobility and Concentrations of electrons in different AsH₃ pressures for InGaAsPBi samples.

Figure 8. HRXRD ω-2θ scans for InGaAsPBi epilayers on InP with different substrate temperature.
pairs or clusters of Bi will induce Bi-related acceptor states that compensate the intrinsic free electrons [6, 15, 37].

3.2. The effect of AsH$_3$

As shown in table 2, the InGaAsPBi samples with different AsH$_3$ pressures. According to the figure 5 the HRXRD ω-2θ scans of samples b1–b6. It is obvious that InGaAsPBi epilayers peaks moves from right to left with AsH$_3$ pressure increasing. As the AsH$_3$ pressure reaches 120 Torr the epitaxial peaks move the left side of the substrate peak. It is mean that transformed from tensile strain to compressive strain and the lattice constant increase. Continuing to increase the AsH$_3$ pressures, the lattice constant increase. FWHM of samples decreases at first and then increases and reaches the minimum value of 39.6s when the pressures of AsH$_3$ is 100 Torr.

From the figure 6, comparing to the AFM images at different AsH$_3$ pressures it is found that the RMS roughness value of sample b5 is 0.159 nm, which is the best. Comparing to others samples, the RMS roughness value of sample b4 become larger signifcantly. As shown in figure 7, the electron mobility and electron concentration are optimized under different AsH$_3$ pressures. It is clear that the sample b3 has better electrical properties.

3.3. The effect of substrate temperature

As shown in table 3, InGaAsPBi samples with different substrate temperature. The HRXRD ω-2θ scans of samples c1–c6 are shown in figure 8. It is obvious that the mismatch among diffraction peaks of InGaAsPBi and InP increases as the temperature decreasing. InGaAsPBi epilayers peaks moves from left to right with the substrate temperature decreasing. It is means that the lattice constant decrease. Because Bi atoms easily incorporated at lower growth temperature, the incorporation of a small number of Bi atoms can promote the binding of P atoms to III group atoms. This conclusion is consistent with the lattice constant decrease due to the increase of Bi contents.

The RMS roughness versus the different substrate temperature of the InGaAsPBi epilayer is shown in figure 9. Comparing to the AFM images at different substrate temperatures, it is found that the RMS roughness

Table 3. Series C, the measured properties of InGaAsPBi with different substrate temperature.

Sample No.	Ts (°C)	Bi (°C)	PH3 (Torr)	AsH3 (Torr)	$\Delta a/a$ (ppm)	XRD FWHM (s)	Surface roughness (nm)
c1	280	540	660	90	-1983	75.6	0.387
c2	290	540	660	90	-1816	36.0	0.227
c3	300	540	660	90	-1828	50.4	0.270
c4	310	540	660	90	-1456	43.2	0.280
c5	320	540	660	90	-881	97.2	0.308
c6	330	540	660	90	-112	72.0	0.320

Figure 9. The surface morphology of the InGaAsPBi samples with different substrate temperature.
value of sample c2 is 0.227 nm. This the surface quality is the best. The incorporation of a small amount of Bi act as a surfactant effects and improve the material quality.

Bi atoms can’t easily be incorporated if the substrate temperature too high, such as sample c6. On the contrary, if the substrate temperature too low, the surface migration of Bi will be limited, leading to a local increase in Bi contents and the formation of Bi related metallic droplets is easy, such as sample c1.

4. Conclusions

In summary, we have investigated the material quality of quinary alloy InGaAsPBi epilayers grown on InP substrates by gas source molecular beam epitaxy. The effects of growth condition including Bi flux, AsH3 pressures and temperature of substrate on material components, surface morphology and electrical characteristics were studied systematically. It is found that 0.1% of Bi incorporation can play the role of surfactant effects and is benefit to improve the quality of the material. The incorporation of a small number of Bi atoms can promote the binding of P atoms to III group element. The band gap width of the InGaAsPBi can be well adjusted by controlling III–V ratio reasonably. It is considered as the excellent semiconductor materials can be applied potential optoelectronic and electronic device.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

ORCID iDs

Fangkun Tian https://orcid.org/0000-0002-3450-1239

References

[1] Oe K 2002 Characteristics of semiconductor alloy GaAs1−xBix, Jpn. J. Appl. Phys. 41 2801–6
[2] Carrier P and Wei S H 2004 Calculated spin–orbit splitting of all diamondlike and zinc-blende semiconductors: effects of p1/2) local orbitals and chemical trends Phys. Rev. B 70 035212
[3] Flügel B, Franoceau S, Mascarenhas A, Tixier S, Young E C and Tiedje T 2006 Giant spin–orbit bowing in GaAs1−xBix, Phys. Rev. Lett. 97 4
[4] Lu X F, Beaton D A, Lewis R B, Tiedje T and Zhang Y 2009 Composition dependence of photoluminescence of GaAs1−xBix, alloys Appl. Phys. Lett. 95 3
[5] Kudrawiec R, Kopaczek J, Misiewicz J, Petropoulos J P, Zhong Y and Zide J M O 2011 Contactless electoreflectance study of E0 and E0 + ΔSO transitions in In0.53Ga0.47BixAs1−x alloys Appl. Phys. Lett. 99 1283
[6] Zhou S, Qi M, Ai L, Wang S, Xu A and Guo Q 2017 Growth and electrical properties of high-quality InGaAsBi thin films using gas source molecular beam epitaxy Jpn. J. Appl. Phys. 56 035505
[7] Alberi K, Dubon O D, Walukiewicz W, Yu K M, Bertulis K and Krotkus A 2007 Valence band antitcrossing in GaBiAs1−xBix, Appl. Phys. Lett. 91 3
[8] Astuti Y, Amri D, Widoso D S, Widiyandari H and Ogi T 2020 Effect of fuels on the physicochemical properties and photocatalytic activity of bismuth oxide, synthesized using solution combustion method International Journal of Technology 11 26
[9] Astuti Y, Fauziyah A, Widiyandari H and Widoso D 2019 Studying impact of citric acid–bismuth nitrate pentahydrate ratio on photocatalytic activity of bismuth oxide prepared by solution combustion method Rasayan J. Chem. 12 2210–7
[10] Feng G, Yoshimoto M, Oe K, Chayahara A and Horino Y 2005 New III–V semiconductor InGaAsBi alloy grown by molecular beam epitaxy Japanese Journal of Applied Physics Part 2-Letters & Express Letters 44 L1161–3
[11] Lewis R B, Masnadi-Shirazi M and Tiedje T 2012 Growth of high Bi concentration GaAs1−xBix, by molecular beam epitaxy Appl. Phys. Lett. 101 082112
[12] Sweeney S J and Jin S R 2013 Bismide-nitride alloys: promising for efficient light emitting devices in the near- and mid-infrared J. Appl. Phys. 113 043110
[13] Gu Y, Wang K, Zhou H, Li Y, Cao C, Zhang L, Zhang Y, Gong Q and Wang S 2014 Structural and optical characterizations of InPBi thin films grown by molecular beam epitaxy Nanoscale Res. Lett. 9 24
[14] Dongmo P, Zhong Y, Attia P, Bomberger C, Cheaito R, Ihlefeld J F, Hopkins P E and Zide J 2012 Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs J. Appl. Phys. 112 093710
[15] Petropoulos J P, Zhong Y and Zide J M O 2011 Optical and electrical characterization of InGaBiAs for use as a mid-infrared optoelectronic material Appl. Phys. Lett. 99 031110
[16] Marko I P et al 2012 Temperature and Bi-concentration dependence of the bandgap and spin–orbit splitting in InGaBiAs/InP semiconductors for mid-infrared applications Appl. Phys. Lett. 101 221108
[17] Jin S and John S 2013 Sweeney, InGaAsBi alloys on InP for efficient near- and mid-infrared light emitting devices J. Appl. Phys. 114 112113
[18] Schiettekatte F, Amez E, Chicoine M, Chevobbe S, Chabot J F and Rajotte J F 2003 Low energy ion implantation induced intermixing in photonic devices: Defect profiling and evolution J. L Duggan and I. L Morgan Application of Accelerators in Research and Industry pp 609–12
[19] Yoshimoto M, Huang W, Takehara Y, Chayahara A, Horino Y, Saraie J and Oe K 2004 Ieee, Molecular beam epitaxy of quaternary semiconductor alloy GaNAsBi 2004 Int. Conf. on Indium Phosphide and Related Materials, Conf. Proc. pp 501–4
[20] Lu X, Beaton A D, Lewis B R, Tiedje T and Whitwick B M 2008 Effect of molecular beam epitaxy growth conditions on the Bi content of GaAs$_{1-x}$Bi$_x$ Appl. Phys. Lett. 92 2245

[21] Furitsch M et al 2006 Comparison of degradation mechanisms of blue-violet laser diodes grown on SiC and GaN substrates Physica Status Solidi a-Applications and Materials Science 203 1797–801

[22] Yoshimoto M, Huang W, Feng G, Tanaka Y and Oe K 2007 Molecular-beam epitaxy of GaNAsBi layer for temperature-insensitive wavelength emission J. Cryst. Growth 301 975–8

[23] Devenson J, Pacebutas V, Butkute R, Baranov A and Krotkus A 2012 Structure and optical properties of InGaAsBi with up to 7% bismuth Appl. Phys. Express 5 015303

[24] Zhou S, Qi M, Xu A and Wang S 2015 Effects of buffer layer preparation and Bi concentration on InGaAsBi epilayers grown by gas source molecular beam epitaxy Semicond. Sci. Technol. 30 125001

[25] Li J-K, Ai L-K, Qi M, Xu A-H and Wang S-M 2018 Effects of growth conditions on optical quality and surface morphology of InGaAsBi Chin. Phys. B 27 048101

[26] Jun S W, Fetzer C M, Lee R T, Shurtleff J K and Stringfellow G B 2000 Bi surfactant effects on ordering in GaInP grown by organometallic vapor-phase epitaxy Appl. Phys. Lett. 76 2716

[27] Wixom R R, Rieth L W and Stringfellow G B 2004 Sb and Bi surfactant effects on homo-epitaxy of GaAs on (001) patterned substrates J. Cryst. Growth 265 367–74

[28] Gokhale A A, Kuech T F and Mavrikakis M 2007 A theoretical comparative study of the surfactant effect of Sb and Bi on GaN growth J. Cryst. Growth 303 493–9

[29] Li J K, Ai L K, Qi M, Xu A H and Wang S M 2018 Effects of growth conditions on optical quality and surface morphology of InGaAsBi Chin. Phys. B 27 048101

[30] Kashio N, Hoshi T, Kurishima K, Ida M and Matsuzaki H 2014 Composition- and doping-graded-base InP/InGaAsSb double heterojunction bipolar transistors exhibiting simultaneous and of over 500 GHz IEEE Electron Device Lett. 35 1209–11

[31] Alexandrova M, Flueckiger R, Lovblom R, Ostinelli O and Bolognesi C R 2014 GaAsSb-based DHBTs with a reduced base access distance and \(f_{\text{sub}} / f_{\text{MAX}} = 503 / 780 \) GHz Electron Device Letters IEEE 35 1218–20

[32] Griffith Z, Dahlstrom M, Rodwell M J W, Fang X M, Lubyshev D, Wu Y, Fastenau J M and Liu W K 2005 InGaAs-InP DHBTs for increased digital IC bandwidth having a 391-GHz \(f_{\text{sub}} \) and 505-GHz \(f_{\text{MAX}} \) IEEE Electron Device Lett. 26 11–3

[33] Griffith Z, Dahlstrom M, Rodwell M J W, Fang X M, Lubyshev D, Wu Y, Fastenau J M and Liu W K 2004 InGaAs-InP DHBTs for increased digital IC bandwidth having a 391-GHz \(f(T) \) and 505-GHz \(f_{\text{MAX}} \) IEEE Electron Device Lett. 26 11–3

[34] Kim D and Alamo J A 2010 30-nm InAs PHEMTs With \(f_{\text{MAX}} = 644 \) GHz and \(f_{\text{MAX}} = 681 \) GHz IEEE Electron Device Lett. 31

[35] Deal W R, Leong K, Radisic V, Sarkozy S, Gorospe B, Lee J, Liu P H, Yoshida W, Zhou J and Lange M 2011 Low noise amplification at 0.67 THz using 30 nm InP PHEMTs IEEE Microwave & Wireless Components Letters 21 368–70

[36] Metzger R A, Brown A S, McCray I G and Henige J A 1993 Structural and electrical properties of low temperature GaInAs Journal of Vacuum Science & Technology B 11 796–801

[37] Kini R N, Bhushal L, Ptak A J, France R and Mascarenhas A 2009 Electron Hall mobility in GaAsBi J. Appl. Phys. 106 043705