Strong resilience of soil respiration components to drought-induced die-off resulting in forest secondary succession

Josep Barba1,2 · Jorge Curiel Yuste3 · Rafael Poyatos1 · Ivan A. Janssens4 · Francisco Lloret1,2

Received: 24 April 2015 / Accepted: 21 January 2016 / Published online: 15 February 2016 © Springer-Verlag Berlin Heidelberg 2016

Abstract How forests cope with drought-induced perturbations and how the dependence of soil respiration on environmental and biological drivers is affected in a warming and drying context are becoming key questions. The aims of this study were to determine whether drought-induced die-off and forest succession were reflected in soil respiration and its components and to determine the influence of climate on the soil respiration components. We used the mesh exclusion method to study seasonal variations in soil respiration (\(R_S\)) and its components: heterotrophic (\(R_H\)) and autotrophic (\(R_A\)) [further split into fine root (\(R_R\)) and mycorrhizal respiration (\(R_M\))] in a mixed Mediterranean forest where Scots pine (\(Pinus sylvestris\) L.) is undergoing a drought-induced die-off and is being replaced by holm oak (\(Quercus ilex\) L.). Drought-induced pine die-off was not reflected in \(R_S\) nor in its components, which denotes a high functional resilience of the plant and soil system to pine die-off. However, the succession from Scots pine to holm oak resulted in a reduction of \(R_H\) and thus in an important decrease of total respiration (\(R_S\) was 36 % lower in holm oaks than in non-defoliated pines). Furthermore, \(R_S\) and all its components were strongly regulated by soil water content-and-temperature interaction. Since Scots pine die-off and \(Quercus\) species colonization seems to be widely occurring at the driest limit of the Scots pine distribution, the functional resilience of the soil system over die-off and the decrease of \(R_S\) from Scots pine to holm oak could have direct consequences for the C balance of these ecosystems.

Keywords Heterotrophic respiration · Autotrophic respiration · Partitioning fluxes · Mediterranean forest · \(Pinus sylvestris\)

Introduction

Drought-induced forest die-off episodes are being increasingly reported globally (Allen et al. 2010), raising concerns regards their possible association with recent global warming, at least in some parts of the world (Carnicer et al. 2011). Increased tree defoliation and mortality rates have been related to chronic and episodic drought in the Mediterranean region (Peñuelas et al. 2001; Carnicer et al. 2011), where the projected increase in the frequency and intensity of droughts (Stocker et al. 2013) may enhance the risk of extensive forest die-off. Widespread drought-induced tree mortality can have dramatic effects on forest C cycling (Reichstein et al. 2013) which may differ from...
those reported for other disturbances such as fire or pest outbreaks (Anderegg et al. 2013; Borkhhuu et al. 2015). Forest ecosystems store over two-thirds of the C in their soils (Dixon et al. 1994), but the impact of drought-induced tree mortality on soil C fluxes and their post-disturbance dynamics remains poorly understood (Allen et al. 2015).

The trajectory of ecosystem C cycling in stands where the dominant overstorey species has been severely affected by a die-off event is complex in space and time (Edburg et al. 2012; Reed et al. 2014; Borkhhuu et al. 2015). At sub-decadal timescales, the trend in forest C uptake largely depends on disturbance intensity and the degree of overstorey canopy loss, the spatial pattern of tree dieback (i.e. clustered, diffuse), the compensatory responses by surviving dominant trees, and the response of understorey vegetation to competition release (Amiro et al. 2010; Brown et al. 2010; Gough et al. 2013). With regard to forest soil C losses, die-off episodes immediately curtail root and mycorrhizal respiration and reduce exudate supply from roots to soil, but they also stimulate decomposition of litter, roots and dead wood (Nave et al. 2011). Moreover, die-off episodes may increase soil moisture (Redding et al. 2008), which could enhance soil organic matter decomposition rates in water-limited ecosystems. Nevertheless, our knowledge on post-dieback ecosystem (and soil) C fluxes is still incomplete, because (1) it largely arises from studies where pests or wildfires, not drought, were the main disturbance drivers, and (2) it lacks a detailed understanding of the post-dieback trajectories of soil respiration components [heterotrophic respiration (R_h), autotrophic respiration (R_A), fine root respiration (R_fk), mycorrhizal respiration (R_M)] and their responses to environmental drivers.

Drought-induced tree mortality episodes often result in a complex spatial pattern of standing dead trees and partially defoliated individuals, together with apparently unaffected trees. These episodes may cause vegetation shifts within years or decades if adult mortality and recruitment of the dominant and most affected species are not balanced through time (Lloret et al. 2012). Given that the substituting species will likely be more drought resistant, such species replacement could have persistent effects on both stand C uptake and release processes. The spatial distribution of soil CO_2 effluxes under non-limiting soil moisture conditions is sensitive to local changes in vegetation composition following tree mortality (Barba et al. 2013), but we do not know whether the response of soil CO_2 effluxes to the main abiotic drivers (i.e. soil temperature and moisture) differs along the stages of an ongoing vegetation shift. In Mediterranean forests, the seasonal correlation between plant productivity and the course of moisture and temperature hinders determination of the effect of these variables on R_S (Tedeschi et al. 2006) because of the inherent seasonal variability of plant photosynthetic activity and belowground C allocation (Reichstein et al. 2002; Keenan et al. 2009).

The variability of soil CO_2 efflux associated with the environmental drivers may also be mediated by the differential metabolic response of microbes, roots and rhizosphere to moisture and temperature changes (Uren 2000; Kuzyakov 2006; Moyano et al. 2010). Changes in microbial community composition have been observed following drought-induced forest die-off and succession (Curiel Yuste et al. 2012), but how these shifts in microbial community composition modify the contribution of autotrophic and heterotrophic respiration to total soil respiration remains poorly understood.

Drought-induced dieback episodes, characterised by increased crown defoliation and mortality rates, have been reported in several Scots pine (Pinus sylvestris L.) populations in the northeast Iberian Peninsula (Martínez-Vilalta and Piñol 2002; Galiano et al. 2010; Hereš et al. 2012). In particular, extreme drought events together with a lack of forest management caused several Scots pine die-off episodes at the Prades Mountains in the 1990s and 2000s (Martínez-Vilalta and Piñol 2002; Hereš et al. 2012) and the associated holm oak (Quercus ilex L.) colonisation (Vilà-Cabrera et al. 2013). These processes have resulted in important changes not only in aboveground components of the forest (Aguadé et al. 2015) but also in the belowground part, altering soil microbial diversity and structure (Curiel Yuste et al. 2012), litter decomposition and nutrient cycling (Barba et al. 2015) and spatial variability of soil respiration (Barba et al. 2013). In this study, we aim to quantify the effects of this Scots pine drought-related die-off and the consequent holm oak colonisation on soil respiration and its components, at seasonal and annual timescales. During 1 year, we measured the seasonal variation of soil respiration and its heterotrophic and autotrophic (roots and mycorrhiza) components, associated with the different stages of this drought-induced die-off and species-replacement process: non-defoliated pines (NDP), partially defoliated pines (DFP), dead pines (DP), and holm oaks (HO).

We hypothesized that:

1. Heterotrophic respiration would show a gradual increase across this die-off gradient (from NDP to DFP and DP) and autotrophic respiration would decrease because of reduced above- and belowground plant activity in DFP and DP.
2. Given that holm oak is a more drought-tolerant species compared to Scots pine, for this drought-exposed site we expected higher soil respiration in holm oak and lower sensitivity to decreasing soil moisture during summer drought compared to Scots pine.
3a. The spatial and temporal variation in heterotrophic soil respiration would be mainly dependent on environmental variables (soil temperature and moisture), whereas these variables would explain little variability for autotrophic respiration.

3b. Since vegetation has the capacity to modify soil environmental conditions, we also hypothesized that the vegetation die-off and the ongoing species succession would largely influence soil CO₂ effluxes via modifications in environmental conditions such as soil water content (SWC).

Materials and methods

Study site

The study was conducted in a mixed forest in the Titllar Valley (Prades Mountains, northeastern Iberian Peninsula). The climate is Mediterranean, with a mean annual temperature of 11.2 °C and precipitation of 664 mm (Ninyerola et al. 2007a, b). The experimental area was located on the northwest face of the valley at an elevation between 1010 and 1030 m a.s.l. with a steep slope (33°). Soils are Xerochrepts with a clay loam texture (49 % sand, 32 % silt, 19 % clay) and a relatively high gravel content of 46 % (Barba et al. 2013; Sus et al. 2014). The substrate consists of fractured metamorphic schist that outcrops on a large part of the study area. Mineral soil is slightly acidic (pH is 6.2) and contains 5.9 % C, 0.27 % N and 0.044 % P (Curiel Yuste, unpublished results). No differences are found in C, N or P availabil- ity or in soil C pools (both quality and quantity) between soils associated with the different type of trees (Curiel Yuste et al. 2012). For more information related to the study area, see Hereter and Sánchez (1999); Barba et al. (2013).

This mixed forest is mainly dominated by Scots pine (Pinus sylvestris L.) in the overstorey and holm oak (Quercus ilex L.) in the understorey, with total stem density of 2235 stems ha⁻¹ (Poyatos et al. 2013). Severe drought events since the 1990s (Martínez-Vilalta and Piñol 2002) and particularly in 2001–2003 and 2005–2008 (Hereş et al. 2012) have affected the Scots pine populations, inducing a mean crown defoliation of 52 % and standing mortality of 12 % (Vilà-Cabrera et al. 2013). This situation, coupled to the low regeneration of pines (Vilà-Cabrera et al. 2013) is currently driving the replacement of pines by oaks as the dominant overstorey species.

Experimental design

Experiment scheme

Soil respiration fluxes were measured close to 12 trees (less than 2 m from the tree stem) belonging to the different stages along the vegetation shift following the Scots pine die-off process (henceforth, type of tree): three NDP, three DFP, three DP and three HO. The maximum distance between measuring points was ca. 200 m. DP were devoid of needles and small branchlets, and only the main bole and primary branches were still standing. Hereş et al. (2012) found that 86 % of the standing mortality resulted from the drought events in 2001–2003 and 2005–2008. Therefore we estimate that these trees have been dead for 3–11 years. The degree of pine defoliation was visually estimated as the percentage of green needles relative to a non-defoliated canopy of a similar sized tree from the same population (Galiano et al. 2010). Defoliated pines had less than 50 % of green leaves. Diameter at breast height for each type of tree was 37 ± 7 cm in NDP, 59 ± 9 cm in DFP, 58 ± 7 cm in DP and 14 ± 8 cm in HO (mean ± SD). The Hegyi competition index was significantly higher for HO with respect to pines, whereas no significant differences were found between NDP, DFP and DP (Curiel Yuste et al. 2012).

The root-excision method (Subke et al. 2006) was used for studying total, autotrophic and heterotrophic soil respiration, using the protocol proposed by Heinemeyer et al. (2007). Three different polyvinylchloride (PVC) collars (treatment collars) of 63 cm in diameter were installed within 3 m of each tree (Fig. 1). The first type of collar (A) was 5 cm in height and was inserted only 2 cm into the ground and fixed with three metal sticks. Thus, these A-type collars did not interfere with fine roots, mycorrhizal or soil microbial dynamics and growth. The second and the third types of collar (B and C, respectively) were 50 cm in height and were inserted to a depth of 45 cm into the soil. Collar B had four rectangular windows (17 × 5 cm) at 10 cm from the top, covering 33 % of the total collar perimeter. The windows were covered with nylon fabric of 41-μm mesh, allowing ingrowth of fungal hyphae but not of roots (Ek 1997). The deeper B-type collars prevented the ingrowth of fine roots (which are concentrated mainly in the upper centimetres of the soil (Jackson et al. 1997). C-type collars were the same size and were installed at the same depth as B-type collars, but they did not have windows, so prevented the ingrowth of both fine roots and mycorrhizal hyphae. Hence, we assumed that in C-type collars, only the non-rhizospheric microbial community remained active.

Due to the great stoniness of the soil, two modifications were made to the Heinemeyer et al. (2007) experimental design. First, treatment collars were bigger (20 cm in diameter in the original protocol), and second, we dug a hole in the soil prior to the installation of the deeper collars. After placing the collar inside the hole, we filled the space inside the collar with the previously removed soil material, preserving the original soil-horizon order. Two smaller PVC collars (sampling collars; 10 cm diameter and 4 cm height)
were installed as replicate collars within each treatment collar. Sampling collars were inserted 1 cm into the ground and fixed with polyurethane foam. These collars delimited the reference surface of our soil respiration measurements. Collar installation was done 14 months before the start of measurements in order to minimize the effects of soil disturbance on soil respiration measures.

Measurements

Soil respiration rates were measured with a close-path infra-red gas analyser coupled to a closed dynamic chamber (EGM-4 and SRC-1; PP-Systems, Hitching, UK) in the sampling collars (the soil chamber fitted well with the small collars because it had the same diameter). Soil respiration was measured every 2 weeks during 1 year, from June 2012 to June 2013 (25 campaigns). For each campaign, five rounds of measurements were made for all 72 small collars during 24 h, in order to capture the soil respiration variability associated with daily cycles. One round was started 2 h before sunrise, another was performed after sunset and the others were equally distributed during the daytime. Since soil respiration was manually measured, the effort to integrate the spatial variability of soil respiration in this extremely rocky location and also the daily soil respiration course did not allow us to increase the number of measured trees.

Soil temperature at 10 cm was measured once per big collar and per round of measurements using a thermometer (HH806AU; OMEGA, Stamford). SWC in the top 15 cm was measured in each campaign at each tree by time domain reflectometry (TDR) (Tektronix 1502C; Beaverton, Oregon). One 15-cm-long TDR probe was permanently installed vertically in the upper soil close to each tree throughout the experiment. In order to correct the SWC measurements for stoniness, gravimetrical SWC measured in soil samples close to the TDR probes were regressed against TDR measurements [for more information, see Poyatos et al. (2013)].

One litterfall trap (555 \(\times \) 355 mm) was installed within 2 m of each tree and litterfall was collected during every campaign, dried for 24 h at 70 °C and weighed.

Air temperature and relative humidity were continuously measured in a meteorological tower installed less than 100 m from the farthest tree. Continuous SWC was also recorded in the upper 30 cm of soil using four frequency domain reflectometers (CS616; Campbell Scientific, Logan, UT) randomly distributed among the trees. A data-acquisition system (CR1000 datalogger and AM16/32 multiplexers; Campbell Scientific) was used to store 15-min means of soil moisture and meteorological variables sampled every 30 s.

Data analysis

Soil respiration calculation

The five soil respiration measurements recorded for each small collar were time-averaged in order to obtain mean daily soil respiration. Then, both replicates were averaged at the big collar level (A, B and C; Fig. 1).

\[
R_S; R_H; R_A; R_R; R_M.
\]

\(R_S \) and \(R_H \) were estimated directly as the soil respiration rates measured in collars A and C, respectively. \(R_A \) was calculated by subtracting C from A; \(R_R \) by subtracting B from A; and \(R_M \) by subtracting C from B.

Fig. 1 Root-exclusion experimental design. Large collars depict the different exclusion treatments for soil CO\(_2\) efflux measurements. Small collars are pseudoreplicates within treatments and small rectangles in b represent the mesh allowing mycorrhizae ingrowth. a Roots and mycorrhizae included, b roots excluded and mycorrhizae included, c roots and mycorrhizae excluded
Soil respiration drivers

Mixed-effects models were used to analyse the relationships between soil respiration and type of tree, soil temperature, SWC, litterfall and season with campaign data. The limits of seasons were adjusted from environmental variables (i.e. summer ended with the first rainfall events in fall, which changed drastically SWC and temperature). Linear and exponential relationships between soil respiration and temperature were tested in the models, as well as linear and quadratic relationships between soil respiration and SWC. In all cases, the linear relationships performed better than the nonlinear transformations according to the corrected Akaike information criterion statistic (data not shown).

Different models were fitted for each soil respiration component (\(R_s\), \(R_h\), \(R_a\), \(R_m\) and \(R_r\)). As all variables were measured near the same trees throughout the campaigns, tree identity was included as a random factor in all models. Models with all combinations of predictor variables and their second-order interactions were performed, and the best model in terms of corrected Akaike information criterion was selected. To determine the variability explained by each mixed model, we calculated the coefficient of determination using the log likelihood of both the studied model and the null model (which did not include any predictor variables). In the root-exclusion method, the PVC collars could interfere with soil temperature and moisture (Kuzyakov 2006). Unfortunately, due to instrumental limitations, SWC was only measured at tree level (and not at collar level) in each campaign. SWC was gravimetrically measured in samples inside the 72 small collars at the end of the experiment (July 2013) and one-way ANOVA was performed to test for differences in SWC between the different treatment collars.

Annual SR

We used the models fitted in 2.3.2 to estimate daily values of \(R_s\), \(R_h\), \(R_a\), \(R_m\) and \(R_r\) for a whole year (from mid-June 2012 to mid-June 2013). Apart from fixed predictors (season, type of tree), daily aggregated values of soil temperature, SWC and litterfall were needed as inputs for the model. For each tree and collar type, linear regressions were fitted between daily averaged soil temperature measured during the campaigns and simultaneous air temperature measured at the meteorological tower (\(R^2 = 0.93 \pm 0.02\), across-trees mean \(\pm\) SD). Likewise, daily SWC for each tree was estimated from linear regressions against mean SWC measured with the four frequency domain reflectometers near the meteorological tower (\(R^2 = 0.66 \pm 0.27\), across-trees mean \(\pm\) SD). Daily litterfall across trees was linearly interpolated from litterfall measured biweekly. Modelled values of daily \(R_s\), \(R_h\), \(R_a\), \(R_m\) and \(R_r\) were then aggregated to obtain annual values.

Mixed-effects models, including tree identity as a random factor, were then used to analyse the differences in annual soil respiration and its components between types of tree. Given the high spatial variability of soil respiration, especially in this ecologically complex site (Barba et al. 2013), and the limited number of replicates (three trees per type), we considered marginally significant differences among means when \(0.05 < p < 0.1\). Additionally, a Friedman test and its post hoc analysis were applied to the daily averaged data from the 25 campaigns, to test for possible differences in soil respiration and its components between types of tree. The Friedman test is a non-parametric repeated-measure ANOVA. Its procedure involves ranking soil respiration from the different tree types and then considering the values of ranks by campaigns.

To test whether the relative contribution of \(R_h\)–\(R_m\) increases along the die-off process, mixed-effects models with tree type (for testing annual differences) or with the interaction between tree type and season (for testing differences over seasons) were used, including tree identity as a random factor. Heterotrophic relative contribution data were log transformed to achieve normality.

All the analyses were carried out using R 3.0.3. (R Foundation for Statistical Computing, Vienna). The mixed-effects models were performed using the R package nlme (Pinheiro et al. 2009) and the step-wise model selection was performed with the MuMIn package (Bartón 2014).

Results

Seasonal course of environmental variables and soil respiration components

Over the study period, climate was typical of a low-elevation Mediterranean mountain, with mean air temperature of 11.2 °C, annual precipitation of 703 mm and a relatively dry summer (93 mm from June to September and mean SWC below 15 % from mid-July to the end of September) (Fig. 2b, c). The seasonal pattern of litterfall was not as clear as those of temperature and SWC, but it seemed to peak at the end of fall (Fig. 2d).

No significant differences were found for soil temperature, SWC and litterfall among types of trees (Table 1). While type of collar did not influence soil temperature during the experiment (\(p = 0.87\), repeated-measures ANOVA), SWC measured gravimetrically at the end of experiment (July 2013) was higher for deeper collars (B and C) than for surface ones (A) (\(p = 0.03\), one-way ANOVA), 3.4 % on average.
R_S flux peaked during late spring and early summer (up to 6 µmol m$^{-2}$ s$^{-1}$; Fig. 3a) and then decreased over the course of the summer to 33% of peak values. During fall and winter, R_S was quite low (between 0 and 2 µmol C m$^{-2}$ s$^{-1}$). R_H showed a similar annual pattern to R_S with values ranging between 1 and 4 µmol C m$^{-2}$ s$^{-1}$ (Fig. 3b). No seasonal pattern was observed either for R_A, or for its components (R_M and R_R) (Fig. 3c, d). Soil CO$_2$ efflux measured in HO was the lowest in 88% of the campaigns for R_S, 76% for R_H, 68% for R_A, 56% for R_R, but only in 24% of the campaigns for R_M (Fig. 3). Indeed, the non-parametric Friedman test applied to the campaign data indicated that respiration rates under HO were lower than under the three types of pines for R_S, R_H, R_A, and R_R ($p < 0.001$ for R_S and R_H, $p = 0.001$ for R_A, $p = 0.002$ for R_R), but not for R_M.

The relative contribution of R_H to R_S did not show differences among tree types, either at annual ($p = 0.968$) or at
Table 1 Environmental variables during the study period summarized by type of tree (mean and SD)

	NDP	SD	DFP	SD	DP	SD	HO	SD
Temperature (°C)	11.68	0.29	11.70	0.68	12.00	0.40	11.21	0.14
SWC (cm³ cm⁻³)	20.20	0.04	20.21	0.06	20.21	0.02	20.20	0.05
Litterfall (g m⁻² day⁻¹)	1.84	0.67	1.19	0.11	1.92	0.89	1.96	0.19

No differences were found between type of tree (p < 0.05, mixed-effects model with tree as a random factor)

NDP Non-defoliated pines, DFP defoliated pines, DP dead pines, HO holm oaks, SWC soil water content

Fig. 3 Annual soil respiration evolution and its components. a Total soil respiration (Rₛ), b heterotrophic respiration (R₉), c root respiration (Rᵣ), d mycorrhizal respiration (Rₘ). Each symbol represents the average of five measurements within a 24-h cycle and the three trees of each type. Campaign-specific error bars were not drawn for better clarity. NDP Non-defoliated pines (blue inverted triangle), DFP defoliated pines (black square), DP dead pines (red circle), HO holm oaks (green triangle) (color figure online)
seasonal scales ($p = 0.325$) (generalised linear models with tree identity as a random factor). Nonetheless, the relative contribution of the different soil respiration components considering all tree types together varied during the year. The contribution of R_H to R_S was highest during late winter, spring and summer, and decreased during fall and early winter. In contrast, the contribution of R_R to R_S increased during fall and early winter. The contribution of R_M to R_S did not show any seasonal pattern, remaining low throughout the year (Fig. 4).

Soil respiration drivers

A mixed-effects model including the interactions between season-SWC-temperature and temperature-type of tree as predictor variables (Table 2, R_S) explained 51 % of the seasonal variability in R_S. The higher the SWC, the larger the positive effect of temperature on R_S, especially during spring and summer. However, at SWC values below 10 %, the temperature effect on R_S was negligible in summer (Fig. 5i–l). Additionally, SWC had a higher effect on R_S under HO than under pines. Similarly, tree type interacted with SWC to determine R_H, while the rest of the R_H predictors were almost the same as those in the R_S model (Table 2, R_H and Fig. 6). The R_H model explained 56 % of the total variability in R_H. The interaction between SWC and temperature had the same positive effect as in the R_S model (higher effect of temperature at high SWC values). Temperature had the lowest effect on R_H during fall and winter, a higher effect during summer and the highest effect during spring (Table 2).

Models of the autotrophic components of R_S explained much less variability than the ones fitted for R_S and R_H. The selected R_A model was able to explain only 15 % of the autotrophic respiration variability, and included the positive effect of litterfall and the positive interaction between SWC and temperature (Table 2). Likewise, the selected R_R model was able to explain only 13 % of the variability in R_R and contained the interactions season-SWC and season-temperature (Table 2). Finally, the selected R_M model was able to explain 24 % of the variability in mycorrhizal respiration and contained only the interaction between SWC-temperature (Table 2). Type of tree had no effect on R_A, nor on its fractions (R_R and R_M).

Annual R_S and its components

For the overall set of sampled trees, modelled annual R_S (mean ± SD) from July 2012 to July 2013 was 2.6 ± 0.6 µmol m$^{-2}$ s$^{-1}$, R_H was 1.7 ± 0.3 µmol m$^{-2}$ s$^{-1}$, representing 65 % of R_S, while R_A was 1.0 ± 0.5 µmol m$^{-2}$ s$^{-1}$ (36 % of R_S). R_R and R_M, as components of R_A, were 0.6 ± 0.6 µmol m$^{-2}$ s$^{-1}$ (23 % of R_S) and 0.3 ± 0.7 µmol m$^{-2}$ s$^{-1}$ (13 % of R_S), respectively.

The mixed-effects models showed that annual R_S under HO was marginally lower than under NDP (p-value 0.074) (64 % on average), whereas DFP and DP did not show differences with NDP or HO. Likewise, annual R_H under HO was significantly lower than under NDP (p-value 0.030; 36 % lower), and marginally significantly lower than under DFP (p-value 0.089; 23 % lower) and DP (p-value: 0.054;
Table 2 Summary of the selected model of total soil respiration (R_t), heterotrophic respiration (R_h), autotrophic soil respiration (R_a), fine-root respiration (R_r) and mycorrhizal respiration (R_m)

Variables	Estimate	SE	t-value	p-value
R_t				
Intercept	6.971	2.016	3.458	0.001
SWC	−0.563	0.145	−3.888	<0.001
Temperature	−0.412	0.109	−3.798	<0.001
Summer				
Fall	−8.275	3.410	−2.427	0.016
Winter	−5.869	2.640	−2.223	0.027
Spring	−4.132	3.392	−1.218	0.224
HO				
NDP	1.102	0.669	1.647	0.138
DFP	0.426	0.673	0.633	0.545
DP	0.287	0.664	0.433	0.677
SWC × temperature	0.044	0.008	5.356	<0.001
Season				
Summer				
Fall	0.093	0.028	3.331	0.001
Winter	0.081	0.032	2.577	0.011
Spring	0.007	0.002	3.850	<0.001
Temperature × type				
Temperature × HO	−0.024	0.027	−0.881	0.379a
Temperature × NDP	0.016	0.027	0.608	0.544ab
Temperature × DFP	0.051	0.026	1.963	0.051b
Season × SWC				
Sum × SWC × temperature				
Fall × SWC × temperature	−0.050	0.015	−3.453	0.001b
Win × SWC × temperature	−0.043	0.015	−2.875	0.004b
Spr × SWC × temperature	−0.029	0.015	−1.949	0.052ab
R_h				
Intercept	−0.734	0.578	−1.270	0.205
SWC	−0.032	0.029	−1.088	0.278
Temperature	0.027	0.033	0.826	0.410
SWC × temperature	0.009	0.002	1.146	0.000
Season				
Summer				
Fall	1.344	0.617	2.179	0.030
Winter	1.455	0.574	2.536	0.012
Spring	−0.079	0.586	−0.133	0.894
R_a				
Intercept	1.286	0.544	2.366	0.019
SWC	−0.081	0.032	−2.511	0.013
Temperature	0.005	0.002	3.076	0.002

HO and Summer are used as the reference categories and are included in the intercept. Different lowercase letters indicate significant differences between levels of predictor variables. For other abbreviations, see Table 1.
affect the relative contribution of heterotrophic respiration did not support what we had hypothesized (hypothesis 1). Therefore, also associated with major changes in soil respiration (both heterotrophic and autotrophic activity; see Fig. 7), contrary to what we had hypothesized (hypothesis 1). Therefore, also the relative contribution of heterotrophic respiration did not increase from NDP to DFP and DP. Defoliation did not affect R_S or its components with respect to NDP. Moreover, 3–11 years after tree death, we observed that R_S (and all its components) associated with DP had either completely recovered or remained unchanged (Fig. 7). Even the autotrophic components (R_R and R_M) of R_S, directly dependent on the substrate inputs from plant photosynthetic activity (e.g. Högb erg et al. 2001), were not affected along this die-off gradient. These effects are surprising, given that soil autotrophic respiration had been reported to be extremely sensitive to decreases in photosynthetic activity associated with defoliation and die-off (Levy-Varon et al. 2012, 2014; Moore et al. 2013; Borkhuu et al. 2015). Indeed, decreases in plant productivity have been associated with lower fine root biomass and hence lower root metabolic activity, lower belowground substrate allocation and lower root exudation, all contributing to lower R_A and its fractions (Högb erg and Read 2006).

We did not find higher R_H under DP than under NDP, which is consistent with the fact that tree mortality did not apparently result in higher soil moisture, soil temperature or litterfall under dead pines, factors which are known to stimulate R_H. Although the relative contribution of R_H to R_S (and thus, also R_A) showed a clear seasonal pattern, this pattern was preserved across the entire pine die-off gradient (NDP, DFP and DP).

The stability in R_S and in its fractions along the pine die-off gradient denotes a high degree of resilience of soil processes with respect to aboveground perturbations. Some studies have also shown that R_S remained stable after a perturbation (Binkley et al. 2006; Levy-Varon et al. 2014), suggesting that this R_S resilience could be produced by mobilization of reserve carbohydrates (Levy-Varon et al. 2012), by a higher growth rate of non-disturbed trees (Levy-Varon et al. 2014), suggesting that an increment of R_H due to an increment in organic matter availability could be compensating for a decrease in R_A (Borkhuu et al. 2015). While this has been partially shown in some studies (Levy-Varon et al. 2012, 2014; Moore et al. 2013; Borkhuu et al. 2015), here we present, to the best of our knowledge, the very first evidence that all the components of R_S remain apparently unaffected after 10 years of drought-related mortality processes.

Our results might be partially explained by the disturbance recovery findings in Nave et al. (2011), which suggest that a short perturbation of forest C cycling due to partial canopy disturbance could be rapidly recovered (within a few years), thereby stabilizing the C cycle. Nave et al. (2011) hypothesize that shortly after the perturbation, the expected decrease in ecosystem production and soil respiration (due to decrease fine root biomass and non-structural carbohydrate concentrations in roots) could be compensated for by higher growth rates of the remaining healthy trees due to reduced competition for limiting resources. At the study site, after drought-induced pine mortality in the 1990s, higher growth rates of the remaining healthy trees were observed (Martínez-Vilalta and Píñol 2002), consistent with this hypothesis.

The mechanism underlying the observed resilience of R_S following Scots pine die-off is likely more related to belowground colonization by HO than to the remaining,

Discussion

Annual soil respiration and its fractions

Mean annual R_S at the study site was 2.6 µmol m$^{-2}$ s$^{-1}$, similar to values reported for a parallel valley in the same nature reserve [2.3 µmol m$^{-2}$ s$^{-1}$ (Asensio et al. 2007)]. R_H was the most important fraction of R_S, representing about 65%. This relative importance agrees well with estimates obtained in other forest ecosystems (Rey et al. 2002; Tedeschi et al. 2006; Heinemeyer et al. 2007; Subke et al. 2011), confirming the important role of microbial soil respiration in R_S. The R_R and R_M contributions to R_S (23 and 13%, respectively) were also similar to values reported in other partitioning studies (Malhi et al. 1999; Rey et al. 2002; Subke et al. 2006; Heinemeyer et al. 2007; Ruehr and Buchmann 2010).

Soil respiration and its components following Scots pine die-off

Scots pine die-off, from NDP to DFP and DP, was not associated with major changes in soil respiration (both heterotrophic and autotrophic activity; see Fig. 7), contrary to what we had hypothesized (hypothesis 1). Therefore, also the relative contribution of heterotrophic respiration did not increase from NDP to DFP and DP. Defoliation did not affect R_S or its components with respect to NDP. Moreover, 3–11 years after tree death, we observed that R_S (and all its components) associated with DP had either completely recovered or remained unchanged (Fig. 7). Even the autotrophic components (R_R and R_M) of R_S, directly dependent on the substrate inputs from plant photosynthetic activity (e.g. Högb erg et al. 2001), were not affected along this die-off gradient. These effects are surprising, given that soil autotrophic respiration had been reported to be extremely sensitive to decreases in photosynthetic activity associated with defoliation and die-off (Levy-Varon et al. 2012, 2014; Moore et al. 2013; Borkhuu et al. 2015). Indeed, decreases in plant productivity have been associated with lower fine root biomass and hence lower root metabolic activity, lower belowground substrate allocation and lower root exudation, all contributing to lower R_A and its fractions (Högb erg and Read 2006).

We did not find higher R_H under DP than under NDP, which is consistent with the fact that tree mortality did not apparently result in higher soil moisture, soil temperature or litterfall under dead pines, factors which are known to stimulate R_H. Although the relative contribution of R_H to R_S (and thus, also R_A) showed a clear seasonal pattern, this pattern was preserved across the entire pine die-off gradient (NDP, DFP and DP).

The stability in R_S and in its fractions along the pine die-off gradient denotes a high degree of resilience of soil processes with respect to aboveground perturbations. Some studies have also shown that R_S remained stable after a perturbation (Binkley et al. 2006; Levy-Varon et al. 2014), suggesting that this R_S resilience could be produced by mobilization of reserve carbohydrates (Levy-Varon et al. 2012), by a higher growth rate of non-disturbed trees (Levy-Varon et al. 2014), suggesting that an increment of R_H due to an increment in organic matter availability could be compensating for a decrease in R_A (Borkhuu et al. 2015). While this has been partially shown in some studies (Levy-Varon et al. 2012, 2014; Moore et al. 2013; Borkhuu et al. 2015), here we present, to the best of our knowledge, the very first evidence that all the components of R_S remain apparently unaffected after 10 years of drought-related mortality processes.

Our results might be partially explained by the disturbance recovery findings in Nave et al. (2011), which suggest that a short perturbation of forest C cycling due to partial canopy disturbance could be rapidly recovered (within a few years), thereby stabilizing the C cycle. Nave et al. (2011) hypothesize that shortly after the perturbation, the expected decrease in ecosystem production and soil respiration (due to decrease fine root biomass and non-structural carbohydrate concentrations in roots) could be compensated for by higher growth rates of the remaining healthy trees due to reduced competition for limiting resources. At the study site, after drought-induced pine mortality in the 1990s, higher growth rates of the remaining healthy trees were observed (Martínez-Vilalta and Píñol 2002), consistent with this hypothesis.

The mechanism underlying the observed resilience of R_S following Scots pine die-off is likely more related to belowground colonization by HO than to the remaining,
Drought-induced substitution of Scots pine by holm oak causes a decrease in soil respiration

Changes in vegetation could produce changes in the whole plant-to-soil system, such as root biomass and distribution, nutrients and water balance, net primary production, carbohydrate allocation patterns, litter quantity and quality, decomposer community or microbial diversity (Jackson et al. 1997; Binkley and Giardina 1998; Palacio et al. 2007; Strickland et al. 2009; Curiel Yuste et al. 2012), which in turn could modify R_S and its heterotrophic and autotrophic fractions (Uren 2000; Janssens et al. 2001; Kuzyakov 2006; Cornwell et al. 2008; Vivanco and Austin 2008). Despite the strong resilience of R_S and its components along the Scots pine die-off (NDP, DFP and DP) (see “Soil respiration and its components following Scots pine die-off”), changes in R_S associated with the succession from Scots pine to holm oak were observed. Annual R_S was 36 % lower in HO compared to NDP, contrary to our hypothesis 2. Although the analysis of annual values did not show differences in R_A, R_R or R_M between NDP and HO (Fig. 7), seasonal data analysed with the non-parametric Friedman test suggested lower values for R_A and R_R under HO. However, the magnitude of these differences was small (Fig. 3) and the differences in R_S between HO and NDP

unaffected, pines. Results obtained from previous studies in the same site support this idea. Firstly, spatial variability of R_S close to dead pines has been mainly associated with the spatial distribution of HO basal area (Barba et al. 2013) suggesting a functional colonization by the HO rhizosphere. Moreover, it has been observed that rates of R_R measured in living roots under DP were similar to those measured for HO (Pereira-Blanco 2014), which suggests that fine root colonization of the disturbed gap is taking place by HO. Finally, Curiel Yuste et al. 2012 found that there was a similarity in the most abundant bacterial taxa (i.e. Actinomycetales, Rhizobiales, Xanthomonadales) between rhizosphere from DP and HO, indicating that HO colonization is also occurring at the microbial level.
were apparently more related to differences in R_H (36% lower in HO than in NDP). But the vegetation effect on R_S was not indirect via modifications in the environmental conditions (as we expected in hypothesis 3b), since no differences were found in SWC or soil temperature along the die-off stages or between species. These differences in R_S were apparently more related to differences in R_H (36% lower in HO than in NDP). But the vegetation effect on R_S was not indirect via modifications in the environmental conditions (as we expected in hypothesis 3b), since no differences were found in SWC or soil temperature along the die-off stages or between species. These differences in R_S...
were probably driven by changes in microbial community composition and functional diversity. This conclusion is supported by (1) the observed species-specific microbial community under each type of tree at the study site and the lack of differences in soil environmental conditions and in soil C pools (both quality and quantity) (Curiel Yuste et al. 2012), and (2) by the different functional diversity of the decomposer community between types of tree as observed in a litter decomposition experiment in the same study site (Barba et al. 2015).

This shift towards lower R_s under holm oak following Scots pine drought-induced mortality could have crucial implications for the C balance of this particular ecosystem and, by extension, for the C cycling in Mediterranean drought-exposed Scots pine forests where a gradual replacement by Quercus species is increasingly being reported (Martínez-Vilalta et al. 2012; Galán et al. 2013; Vilà-Cabrera et al. 2013; Carnicer et al. 2014). However, we are aware that this study has been performed with a limited number of replicates, and studies addressing this question at the ecosystem level are required in order to make more reliable projections. Additionally, selecting individual trees as the experimental unit allows the comparison of soil respiration and its components between different types of trees, but hinders the extrapolation of the results to the forest level.

Environmental controls of autotrophic and heterotrophic soil respiration along a die-off gradient and species succession

The interactions between season-SWC-temperature and temperature-type of tree were able to explain 51% of the R_s variability. The positive interaction between SWC and temperature indicated that the higher the SWC, the higher the temperature effect, and had similar effects on R_H, R_R and R_M fluxes. However, only during part of the springtime were there simultaneous high SWC and temperature values (see Fig. 2). We did not find support for our hypothesized higher sensitivity of R_s and R_A to SWC under Scots pine (hypothesis 2). On the contrary, we observed a higher sensitivity of R_H to SWC under HO (Table 2; Fig. 6), which could be due to a better adaptation to the strong seasonal changes in water availability of the microbial community associated with this typical Mediterranean species (Curiel Yuste et al. 2014) or to higher microbial biomass under HO resulting in a higher response to changes in SWC.

While environmental variables have been described as major drivers of R_A at the global scale (Piao et al. 2010), vegetation activity has been usually described as the most determinant factor for R_s at the ecosystem scale (Janssens et al. 2001; Tang et al. 2005; Högborg et al. 2009). Therefore, the limited explanatory power of environmental variables on autotrophic component models obtained in this study (and expected in hypothesis 3a) could be explained by the lack of variables reflecting properly the photosynthetic activity of trees. Indeed a parallel study in the same area has shown that variations in R_R at the tree level were positively correlated with the sap flow of the same trees (Pereira-Blanco 2014). This highlights the need for further studies on the dependency of R_s and its components on aboveground plant productivity (and not only on environmental variables), both measured at stand level, to understand the ecosystem mechanisms used to cope with climate-driven disturbances.

Acknowledgments The authors thank I. Azcoitia, G. Barba, J. Estrada, I. Ourêlo, P. Pellicer and I. Urbina for their help in fieldwork and S. Vicca for her valuable comments. The insights from two reviewers helped to improve the manuscript. This study was supported by the Spanish government projects SECASOL (CGL2009-08101), DRIM (CGL2010-16373), VULGLO (CGL2010-22180-C03-03), SECADIN (CGL2012-32965) and VERONICA (CGL2013-42271-P); by the Government of Catalonia grants (2009-SGR-00247 and 2014-SGR-453); and by a Community of Madrid grant REMEDINAL 2 (CM S2009/AMB-1783). J. B. was supported by FPI (BES-2010-036558) and EEBB (EEBB-I-13-07082) scholarships from the Spanish Ministry of Economy and Competitiveness.

Author contribution statement J. B., J. C. Y. and F. L. L. conceived and designed the experiment; J. B., J. C. Y. and R. P. performed the experiment; J. B., J. C. Y., I. J. and R. P. analysed the data; J. B. wrote the paper and all authors edited the manuscript.

References

Aguadé D, Poyatos R, Rosas T, Martínez-Vilalta J (2015) Comparative drought responses of Quercus ilex L. and Pinus sylvestris L. in a montane forest undergoing a vegetation shift. Forests 6:2505–2529

Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–684

Allen CD, Breshears DD, McDowell NG (2015) On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6(8):1–55 (art129)

Amiro BD, Barr AG, Barr JG et al (2010) Ecosystem carbon dioxide fluxes after disturbance in forests of North America. J Geophys Res 115:G00K02. doi:10.1029/2010JG001390

Anderegg WRL, Kane JM, Anderegg LDL (2013) Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Chang 3:30–36

Asensio D, Peñuelas J, Ogaya R, Llusia J (2007) Seasonal soil and leaf CO2 exchange rates in a Mediterranean holm oak forest and their responses to drought conditions. Atmos Environ 41:2447–2455

Barba J, Curiel Yuste J, Martínez-Vilalta J, Lloret F (2013) Drought-induced tree species replacement is reflected in the spatial variability of soil respiration in a mixed Mediterranean forest. For Ecol Manage 306:79–87

Barba J, Lloret F, Curiel Yuste J (2015) Effects of drought-induced forest die-off on litter decomposition. Plant Soil. doi:10.1007/s11104-015-2762-4
Bartón K (2014) MuMIn: multi-model inference. R package version 3.1-96
Binkley D, Giardina C (1998) Why do tree species affect soils? The warp and woof of tree-soil interactions. Biogeochemistry 42:89–106
Binkley D, Stape JL, Takahashi EN, Ryan MG (2006) Tree-girdling to separate root and heterotrophic respiration in two Eucalyptus stands in Brazil. Oecologia 148:447–454
Borkhuu B, Peckham SD, Ewers BE et al (2015) Does soil respiration decline following bark beetle induced forest mortality? Evidence from a lodgepole pine forest. Agric For Meteorol 214–215:201–207
Brown M, Black TA, Nesic Z et al (2010) Impact of mountain pine beetle on the net ecosystem production of lodgepole pine stands in British Columbia. Agric For Meteorol 150:254–264
Camicer J, Coll M, Ninyerola M et al (2011) Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc Natl Acad Sci USA 108:1474–1478
Camicer J, Coll M, Pons X et al (2014) Large-scale recruitment limitation in Mediterranean pines: the role of Quercus ilex and forest successional advance as key regional drivers. Glob Ecol Biogeogr 23:371–384
Cornwell WK, Cornelissen JHC, Amatangelo K et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071
Curiel Yuste J, Barba J, Fernandez-Gonzalez AJ et al (2012) Changes in soil bacterial community triggered by drought-induced gap succession preceded changes in soil C stocks and quality. Ecol Evol 2:3016–3031
Curiel Yuste J, Fernandez-Gonzalez AJ, Fernandez-Lopez M et al (2014) Strong functional stability of soil microbial communities under semi-arid Mediterranean conditions and subjected to long-term shifts in baseline precipitation. Soil Biol Biochem 69:223–233
Dixon RK, Solomon AM, Brown SE et al (1994) Carbon pools and flux of global forest ecosystems. Science (80) 263:185–90
Edburg SL, Hicke JA, Brooks PD et al (2012) Cascading impacts of bark beetle-caused tree mortality on coupled biogeochemical and biogeophysical processes. Front Ecol Environ 10:416–424
Ek H (1997) The influence of nitrogen fertilization on the carbon economy of Pinus sylvestris in ectomycorrhizal association with Betula pendula. New Phytol 135:133–142
Galiano L, Martínez-Vilalta J, Lloret F (2010) Drought-induced multifactorial decline of Scots pine in the Pyrenees and potential vegetation change by the expansion of co-occurring oak species. Ecosystems 13:978–991
Galiano L, Martínez-Vilalta J, Eugenio M et al (2013) Seedling emergence and growth of Quercus spp. following severe drought effects on a Pinus sylvestris canopy. J Veg Sci 24:580–588
Gough CM, Hardiman BS, Nave LE et al (2013) Sustained carbon uptake and storage following moderate disturbance in a Great Lakes forest. Ecol Appl 23:1202–1215
Heinemeyer A, Hartley IP, Evans SP et al (2007) Forest soil CO2 fluxes: uncovering the contribution and environmental responses of ectomycorrhizas. Glob Chang Biol 13:1786–1797
Hereș AM, Martínez-Vilalta J, Claramunt López B (2012) Growth patterns in relation to drought-induced mortality at two Scots pine (Pinus sylvestris L.) sites in NE Iberian Peninsula. Trees 26:621–630
Herreter A, Sánchez JR (1999) Experimental areas of Prades and Montseny. In: Rodà F, Retana J, Gracia CA, Bellot J (eds) Ecology of Mediterranean evergreen oak forests. Springer, Berlin, pp 15–27
Högberg P, Read DJ (2006) Towards a more plant physiological perspective on soil ecology. Trends Ecol Evol 21:548–554
Högberg P, Nordgren A, Buchmann N et al (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792
Högberg P, Löfvenius MO, Nordgren A (2009) Partitioning of soil respiration into its autotrophic and heterotrophic components by means of tree-girdling in old boreal spruce forest. For Ecol Manage 257:1764–1767
Jackson RB, Mooney HA, Schulze ED (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci USA 94:7362–7366
Janssens IA, Lankreijer H, Matteucci G et al (2001) Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Glob Chang Biol 7:269–278
Keenan T, García R, Friend AD et al (2009) Improved understanding of drought controls on seasonal variation in Mediterranean forest canopy CO2 and water fluxes through combined in situ measurements and ecosystem modelling. Biogeosciences 6:1423–1444
Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448
Levy-Varon JH, Schuster WSF, Griffin KL (2012) The autotrophic contribution to soil respiration in a northern temperate deciduous forest and its response to stand disturbance. Oecologia 169:211–220
Levy-Varon JH, Schuster WSF, Griffin KL (2014) Rapid rebound of soil respiration following partial stand disturbance by tree girdling in a temperate deciduous forest. Oecologia 174:1415–1424
Lloret F, Escudero A, Iriondo JM et al (2012) Extreme climatic events and vegetation: the role of stabilizing processes. Glob Chang Biol 18:797–805
Malhi Y, Baldocchi DD, Jarvis PG (1999) The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ 22:715–740
Martínez-Vilalta J, Piñol J (2002) Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. For Ecol Manage 161:247–256
Martínez-Vilalta J, Aguadé D, Banquè M et al (2012) Las poblaciones ibéricas de pino albar ante el cambio climático: con la muerte en los talones. Rev Ecosist 21:15–21
Moore DJP, Trahan NA, Wilkes P et al (2013) Persistent reduced ecosystem respiration after insect disturbance in high elevation forests. Ecol Lett 16:731–737
Moyano FE, Atkin OK, Bahn M et al (2010) Respiration from roots to mycorrhizosphere. In: Kutsch WL, Bahn M, Heinemeyer A (eds) Soil carbon dynamics. An integrated methodology, 1st edn. Cambridge University Press, Cambridge, pp 127–156
Nave LE, Gough CM, Maurer KD et al (2011) Disturbance and the resilience of coupled carbon and nitrogen cycling in a north temperate forest. J Geophys Res 116:G04016. doi:10.1029/2011JG001758
Ninyerola M, Pons X, Roure JM (2007a) Objective air temperature mapping for the Iberian Peninsula using spatial interpolation and GIS. Int J Climatol 27:1231–1242
Ninyerola M, Pons X, Roure JM (2007b) Monthly precipitation mapping of the Iberian Peninsula using spatial interpolation tools implemented in a geographic information system. Theor Appl Climatol 89:195–209
Palacio S, Maestro M, Montserrat-Martí G (2007) Seasonal dynamics of non-structural carbohydrates in two species of Mediterranean sub-shrubs with different leaf phenology. Environ Exp Bot 62:1764–1767
Peñuelas J, Lloret F, Montoya R (2001) Severe drought effects on a lodgepole pine forest. Agric For Meteorol 114:15–27
Peñuelas J, Lloret F, Montoya R (2001) Severe drought effects on the net ecosystem production of lodgepole pine stands in British Columbia. Agric For Meteorol 150:254–264
Pereira-Blanco E (2014) Response of fine root respiration to variation in biotic and abiotic factors in a mixed Mediterranean forest affected by drought induced secondary succession. Universitat Autònoma de Barcelona, Barcelona

© Springer

Oecologia (2016) 182:27–41
Piao S, Luyssaert S, Ciais P et al (2010) Forest annual carbon cost: a global-scale analysis of autotrophic respiration. Ecology 91:652–661
Pinheiro J, Bates D, DepRoy S (2009) Linear and nonlinear mixed effects models. R package version 3.1-96
Poyatos R, Aguadé D, Galiano L et al (2013) Drought-induced defoliation and long periods of near-zero gas exchange play a key role in accentuating metabolic decline of Scots pine. New Phytol 200:388–401
Redding T, Winkler R, Teti P et al (2008) Mountain pine beetle and watershed hydrology. BC J Ecosyst Manage 9:33–50
Reed DE, Ewers BE, Pendall E (2014) Impact of mountain pine beetle induced mortality on forest carbon and water fluxes. Environ Res Lett 9:105004
Reichstein M, Tenhunen JD, Roupsard O et al (2002) Severe drought effects on ecosystem CO₂ and H₂O fluxes at three Mediterranean evergreen sites: revision of current hypotheses? Glob Chang Biol 8:999–1017
Reichstein M, Bahn M, Ciais P et al (2013) Climate extremes and the carbon cycle. Nature 500:287–295
Rey A, Pegoraro E, Tedeschii V et al (2002) Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Glob Chang Biol 8:851–866
Ruehr NK, Buchmann N (2010) Soil respiration fluxes in a temperate mixed forest: seasonality and temperature sensitivities differ among microbial and root-rhizosphere respiration. Tree Physiol 30:165–176
Stocke TF, Qin D, Plattner GK et al (eds) (2013) IPCC, 2013: climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change
Strickland MS, Lauber C, Fierer N, Bradford MA (2009) Testing the functional significance of microbial community composition. Ecology 90:441–451
Subke J-A, Inglima I, Francesca Cotrufo M (2006) Trends and methodological impacts in soil CO₂ efflux partitioning: a metaanalytical review. Glob Chang Biol 12:921–943
Subke J-A, Voke NR,Leromni V et al (2011) Dynamics and pathways of autotrophic and heterotrophic soil CO₂ efflux revealed by forest girdling. J Ecol 99:186–193
Sus O, Poyatos R, Barba J et al (2014) Time variable hydraulic parameters improve the performance of a mechanistic stand transpiration model. A case study of Mediterranean Scots pine sap flow data assimilation. Agric For Meteorol 198–199:168–180
Tang J, Baldocchi DD, Xu L (2005) Tree photosynthesis modulates soil respiration on a diurnal time scale. Glob Chang Biol 11:1298–1304
Tedeschi V, Rey A, Manca G et al (2006) Soil respiration in a Mediterranean oak forest at different developmental stages after coppicing. Glob Chang Biol 12:110–121
Uren NC (2000) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil–plant interface, 2nd edn. Dekker, New York, pp 19–40
Vilà-Cabrera A, Martínez-Vilalta J, Galiano L, Retana J (2013) Patterns of forest decline and regeneration across Scots pine populations. Ecosystems 16:323–335
Vivanco L, Austin AT (2008) Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina. J Ecol 96:727–736