Influence of spin fluctuations near the Mott transition: a DMF T study

Serge Florens, Priyanka Mohan, C. Janani, T. Gupta, and R. Narayanan

1Institut Néel, CNRS and Université Joseph Fourier, B.P. 166, 25 Avenue des Martyrs, 38042 Grenoble Cedex 9, France.

2Department of Physics, Indian Institute of Technology, Chennai-600036, India.

3The Institute of Mathematical Sciences, C.I.T. Campus, Chennai 600 113, India.

(Dated: June 29, 2010)

PACS numbers: 73.43.Cd, 73.43.Jn, 73.20.At, 03.65.Sq

The Mott metal-insulator transition, wherein electronic waves are localized by short-range electron-electron interactions (see [1] for a review), is one of the most complex phenomenon observed in strongly correlated electronic systems. Even though the appearance of a Mott gap is purely driven by the charge degrees of freedom, it is expected that magnetic fluctuations play a very crucial role in determining the true nature of this phase transition. In the paramagnetic Mott insulator, local moments are indeed well defined objects after their creation at high temperature (at a scale set by the local Coulomb interaction) and before their ultimate antiferromagnetic ordering at the Néel temperature, offering a simple situation in this respect occurs when the low-temperature window in which complex behavior of the spin excitations is yet to be clearly understood. Experimentally, the simplest situation in this respect occurs when the low-temperature magnetic ordering is first order, as in the case of Cr-doped V$_2$O$_3$. Since the magnetic correlations are expected to be weak in this case, many predictions can be made from a single-site approach like the Dynamical Mean Field Theory (DMFT) [2], where local moments are described as freely fluctuating from each other in the insulating state. As a consequence, the low-temperature metallic phase leads upon heating to an insulator, giving a Pomeranchuk-like effect where the entropy gain benefits to the state with magnetic degeneracy. Conversely, other classes of materials, such as the k-organics, display a continuous magnetic transition into the Néel state, so that the localized spins will experience strong collective fluctuations. The most striking experimental consequence lies in the progressive disappearance of the Pomeranchuk effect upon approaching the magnetic ordering temperature, so that the Mott transition lines in the pressure-temperature phase diagram bend at low temperature. These qualitative arguments have received recent confirmation from cluster DMFT calculations of the phase diagram of the two-dimensional Hubbard model on a frustrated lattice [3], that take into account nearest neighbor magnetic exchange leading to short-range singlet formation. However, the precise connection between the appearance of low-energy magnetic excitations and deviations from the phase diagram of the single-site approach has remained unclear.

In order to investigate this question in a controlled setting, we consider the standard Hubbard model supplemented with long-range fully-frustrated random Heisenberg interactions:

$$H = -t \sum_{\langle ij \rangle, \sigma} d_i^{\dagger} d_j + \mu \sum_i d_i^{\dagger} d_i - U \sum_i d_i^{\dagger} d_i^{\dagger} d_i d_i + \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j. \tag{1}$$

Note that hopping parameters t run over adjacent sites of a yet arbitrary lattice, while the exchange terms J_{ij} connect all the local spin variables $\vec{S}_i = \sum_{\sigma} s_i^{\sigma} \tau_\sigma$, in a random fashion (amplitude and sign). Also, in Eq. (1), μ is the chemical potential and U is the local on-site repulsion, which controls the degree of electronic correlations. This non-trivial Hamiltonian greatly simplifies in the large coordination limit, where all the quantum dynamics can be exactly encapsulated in a single-site action:

$$S = \int_0^\beta d\tau \left[\sum_{\sigma} d_\sigma^\dagger (\partial_\tau - \mu) d_\sigma + U d_\uparrow^\dagger d_\uparrow d_\downarrow^\dagger d_\downarrow \right] + \int_0^\beta d\tau \int_0^\beta d\tau' \Delta(\tau - \tau') \sum_{\sigma} d_\sigma^\dagger(\tau) d_\sigma(\tau') + \int_0^\beta d\tau \int_0^\beta d\tau' Q(\tau - \tau') \vec{S}(\tau) \cdot \vec{S}(\tau'). \tag{2}$$

Here, two different baths that depend on imaginary-time τ have been introduced ($\beta = 1/T$ is the inverse temperature): i) hopping processes from the local site into the lattice (and back) result in a retarded hybridization $\Delta(\tau - \tau')$, which corresponds to the standard DMFT single site action [2]; ii) non-local magnetic coupling exactly amounts to a retarded spin interaction $Q(\tau - \tau')$. The influence of spin fluctuations near the Mott transition: a DMF T study. 2010.06.30v2
providing friction on the local moments, hence reducing their entropy. The latter term is easily obtained through a Gaussian averaging over the disordered exchange coupling \(J_{ij} \) in Eq. (1), followed by a dynamical decoupling of a four-spin interaction, as shown in [3, 10]. For a Bethe lattice, both baths are determined self-consistently, through the rather simple set of equations:

\[
\Delta(\tau) = i^2 G_d(\tau) = \int_0^\beta d\tau' \Delta(\tau - \tau') \sum_{\sigma} f_{\sigma}^d(\tau) X(\tau) f_{\sigma}(\tau') X(\tau') \quad (3)
\]

\[
Q(\tau) = J^2 \chi(\tau). \quad (4)
\]

Here, \(G_d(\tau) \equiv -\langle d_{\sigma}(\tau)d_{\sigma}^*(0) \rangle \) is the local \(d \)-electron single-particle Green’s function, and \(\chi(\tau) \equiv \langle \tilde{S}(\tau),\tilde{S}(0) \rangle \) is the local \(d \)-electron spin susceptibility. The free \(d \)-electrons are endowed with a semi-circular local density of states with half-width \(D = 2t \), while the degree of magnetic frustration is controlled by \(J \), the width of the probability distribution used to perform the disorder average.

We now solve the still complicated quantum impurity problem [2], by laying recourse to a method that captures all the crucial physical ingredients. A simple possibility is to enlarge the spin symmetry from SU(2) to SU(\(N \)) in the large \(N \) limit [11], from which we obtain the expression above to be spin-carrying zero-charge fermions (dubbed spinons) \(f_{\sigma}^d \), with \(\sigma = 1 \ldots N \). Charge is then naturally encoded through a second auxiliary field, the phase \(\phi \) dual to the local charge, resulting in the so-called slave-rotor representation [3, 11, 12] of the physical electron: \(d_{\sigma} = f_{\sigma}^d e^{i\phi} \equiv f_{\sigma}^d X \).

Following [13], we have written the phase as a complex bosonic field \(X \) constrained as \(|X(\tau)|^2 = 1 \) through a Lagrange multiplier \(\Lambda(\tau) \), so that the action reads (particle-hole symmetry, i.e. \(\mu = -U/2 \), is assumed here):

\[
S = \int_0^\beta d\tau \left[\frac{\partial_X X|^2}{4U} + \Lambda(\tau)|X|^2 + \sum_{\sigma} f_{\sigma}^d \partial_\tau f_{\sigma}^d \right] \quad (5)
\]

\[
+ \int_0^\beta d\tau \int_0^\beta d\tau' \Delta(\tau - \tau') \sum_{\sigma} f_{\sigma}^d(\tau) X(\tau) f_{\sigma}(\tau') X(\tau') \quad (3)
\]

\[
+ \int_0^\beta d\tau \int_0^\beta d\tau' \sum_{\sigma} f_{\sigma}^d(\tau) X(\tau) f_{\sigma'}(\tau') f_{\sigma'}(\tau') X(\tau') \quad (3)
\]

In the large \(N \) limit of [13], the Green’s functions for the auxiliary particles are readily obtained from Dyson equation in Matsubara frequency:

\[
G_X^{-1}(i\omega_n) = \frac{\nu_r^2}{U} + \Lambda - \Sigma_X(i\omega_n) \quad (6)
\]

\[
G_f^{-1}(i\omega_n) = i\omega_n - \Sigma_f(i\omega_n), \quad (7)
\]

where the associated self-energies read in imaginary time:

\[
\Sigma_X(\tau) = N\Delta(\tau)G_f(\tau) \quad (8)
\]

\[
\Sigma_f(\tau) = \Delta(\tau)G_X(\tau) + Q(\tau)G_f(\tau). \quad (9)
\]

Similarly, the parameter \(\Lambda \) in Eq. (6) is obtained by the average constraint \(G_X(\tau = 0) = 1 \). When re-expressed in terms of the emergent variables, the baths entering the self-consistency conditions Eqs. (8-9) can be simplified as:

\[
\Delta(\tau) = \int_0^\beta d\tau' G_d(\tau) = \int_0^\beta G_I(\tau)G_X(\tau) \quad (3)
\]

\[
Q(\tau) = J^2 \chi(\tau) \quad (4)
\]

Together with these self-consistent equations, the above self-energies form a non-linear set of integral equations that we solve numerically. We note that two important limits are naturally incorporated in this scheme: \(i \) For \(J = 0 \) (standard Hubbard model), the spin bath \(Q(\tau) \) can be forgotten, and we recover the slave-rotor treatment [13] of the usual DMFT equations, so that a Mott metal-insulator transition occurs at a critical value of \(U/t \); \(ii \) More interestingly at \(U = \infty \), charge fluctuations are fully suppressed, as the gapped rotor propagator \(G_X(\tau) \) can be discarded in Eq. (9).

One then recovers the quantum spin liquid equations of Sachdev and Ye [11], where the exchange \(J \) is responsible for changing the high temperature Curie behavior of the spin susceptibility \(\chi(\tau) \approx 1 \) into the slow temporal decay \(\chi(\tau) \propto 1/|\tau| \). As a consequence the temperature dependence of the static susceptibility \(\chi(T) = \int_0^\beta d\tau' \chi(\tau) \) turns from a Curie law \(\chi(T) = 1/T \) at \(T \gg J \) into a slower logarithmic divergence \(\chi(T) \propto \log(1/T) \) at \(T \ll J \). This interesting absence of (spin glass) magnetic ordering at finite temperature, due to the enhanced quantum fluctuations brought by the large \(N \) fermionic representation of the spin, allows us to study the onset of magnetic fluctuations in the whole range of temperatures.

In order to investigate the interplay of Coulomb repulsion \(U \) and exchange coupling \(J \) close to the Mott metal-insulator transition, one needs to analyze the relative stability of the various phases. This can be achieved from the knowledge of the total free energy (per site) which decomposes into two parts \(F_{tot} = F_{imp} + F_{lat} \), respectively related to the local impurity problem [2] solved by the rotor equations [8-9] and to the original lattice model [11] via the self-consistency equations [3-4]. The former contribution can be obtained straightforwardly following the derivation of the slave-rotor equation as saddle-point equations [13]:

\[
F_{imp} = -\lambda + \frac{N}{\beta} \sum_{\omega_n} \left[\ln G_f(i\omega_n) - i\omega_n G_f(i\omega_n) \right] \quad (10)
\]

\[
+ \frac{1}{\beta} \sum_{\omega_n} \left[\ln G_X(i\omega_n) - (\omega_n^2/U + \lambda)G_X(i\omega_n) \right]
\]

\[
- N \int_0^\beta d\tau \left[\Delta(\tau)G_X(\tau)G_f(\tau) + \frac{1}{2} Q(\tau)G_f(\tau)^2 \right].
\]

Taken as a functional of the pseudoparticle Green’s functions, the previous expression generates the expected \(\Sigma_X \) and \(\Sigma_f \) self-energies Eqs. [3-9] by differentiation with respect to \(G_X \) and \(G_f \) respectively. The lattice contribution, associated to the DMFT equations, can similarly be
Minimization of F_{tot} with respect to the dynamical fields $\Delta(\tau)$ and $Q(\tau)$ reproduces indeed the DMFT self-consistency condition Eqs. (6-8).

We are now equipped to investigate how magnetic correlations, controlled by the exchange term J, affect the Mott metal to insulator transition. To this end, we first construct the phase diagram in the (U,T) plane for fixed values of the magnetic exchange interaction J. At low temperatures this is done by monitoring the hysteresis in the local d-electron Green's function ($G_d(\tau)$ shows either slow Fermi liquid temporal decay or fast gapped behavior in the metallic and insulating states respectively). This gives rise to two boundary lines $U_{c1}(T)$ and $U_{c2}(T)$, such that a single metallic (resp. insulating) solution exists at a given temperature T for $U < U_{c1}(T)$ (resp. $U > U_{c2}(T)$). Furthermore, we determine from Eqs. (10-11) the critical line $U_c(T)$ at which the free energies of metallic and insulating branches coincide. The resulting phase diagram obtained for several values of J is displayed on Fig. 1 in the case of the orbital index $N = 3$. We see that irrespective of J, there always exists a correlation range $U_{c1}(T) < U < U_{c2}(T)$ bounding a coexistence region. With increasing temperature, the transition lines always merge onto a critical line at $T_c \approx D/30$ for $J = 0$, consistent with Refs. [2, 13]. Interestingly, Fig. 1 shows that turning on the Heisenberg interaction J depresses both T_c and U_c, leading also to a shrinking of the coexistence region. This can be understood by an energetic stabilization of the Mott phase via magnetic exchange. Turning to the zero temperature limit, one recovers by the collapse of the $U_c(T)$ and $U_{c2}(T)$ lines at $J = 0$ the continuous metal-insulator transition described by the Brinkman-Rice scenario [2, 14]. In that case, the metal is the true ground state for all $U < U_{c2}(T = 0)$. However, as seen in Fig. 1, the switching of J markedly separates the actual critical line $U_c(T)$ from the two stability lines, so that the Mott transition becomes first order at zero temperature, in agreement with recent findings [8].

Next, we turn our attention to the orientation of the transition lines as the interaction between the local moments is increased. At $J = 0$, the $U_c(T)$ line is such that heating the correlated metal always leads to the Mott insulator, a Pomeranchuk-type effect that relates to the high entropy of the insulating phase. This feature persists even above the transition temperature: by determining at fixed $T > T_c$ the crossover interaction $\tilde{U}_c(T)$ at which the d-electron Green’s function (taken e.g. at $\tau = \beta/2$) displays an inflection point, one distinguishes between a bad metal (i.e. an increasing resistivity with increasing temperature with non quadratic behavior) and a bad insulator (i.e. a non-gapped decreasing resistivity with increasing temperature), see [15]. The continuity of the critical $U_c(T)$ line (determined from the free energy at $T < T_c$) into the crossover line $\tilde{U}_c(T)$ (determined from the Green’s function at $T > T_c$) serves as a vindication of our methodology. We also note that such a crossover at $T > T_c$ is seen experimentally in the magnetic and transport measurement of κ-BEDT salts [2, 11]. Now, as J is increased one expects the entropy of the paramagnetic Mott state to be reduced by magnetic exchange, thus weakening the Pomeranchuk lineshape. This is indeed seen in Fig. 1 by a progressive leftward bending of the critical lines at increasing J, and consistent with results of Ref. [6, 8]. A particularity of our model is the re-entrance of the Pomeranchuk effect at the lowest observable temperature, which we attribute to the reduced (with respect to $\log(2)$ of free moments) yet non-zero entropy of the insulating spin liquid state [10, 12]. We have checked also that increasing orbital degeneracy with larger N values tends to weaken all magnetic effects, recovering the standard $J = 0$ phase diagram.

A key point of our study concerns the connection between the exchange induced modifications of the phase diagram (which can be observed e.g. in transport experiments) and the actual spin dynamics. The spin susceptibility $\chi(\tau)$ in the absence of exchange $J = 0$ reduces trivially to a pure Curie law in the whole Mott state $U > U_{c2}$, as checked in Fig. 2. At finite J, Curie behavior is seen only at high temperatures such that $T \gg J$, while departure from the independent local moment picture is observed by a slower logarithmic divergence at zero temperature. A crossover scale T_{sl} characterizing the onset of the spin liquid state can be accurately determined from a fit of $\chi(T)$ by the appealing form $(1/T_d) \ln(1 + T_d/T)$ which follows the expected high and low temperature regimes (the agreement of this Ansatz with our data is excellent). This procedure allows us to extract, for a given value of J, the U-dependence of the spin-spin correlation scale T_{sl}, see Fig. 3 obtained for $N = 3$ and several
Our last yet most important prediction is the precise connection of the spin liquid scale T_{sl} to the temperature where the bending of the metal-insulator crossover takes place, as manifest from Fig. 3. This comparison indeed shows that magnetic exchange is responsible for the quenching of the Pomeranchuk effect and the bending of the Mott transition lines.

In conclusion, we have investigated the role played by fluctuating local moments coupled via frustrated long-range interactions near the Mott transition. The metal-insulator transition was found to be modified by the Heisenberg exchange in favor of the insulating state and even to turn discontinuous at zero temperature. Studying the magnetic susceptibility, we were able to connect the bending of the critical lines to the appearance of collective spin correlations, with reduced effective exchange. These effects should be generic to other microscopic models and experimental systems near the Mott transition.

We would like to acknowledge helpful discussions with S. R. Hassan, R. Moessner, and T. Vojta.

[1] M. Imada, A. Fujimori and Y. Tokura, Rev. Mod. Phys. 70, No.4 (1998).
[2] A. Georges, G. Kotliar, W. Krauth and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).
[3] S. Lefebvre, P. Wzietek, S. Brown, C. Bourbonnais, D. Jérome, C. Mézière, M. Fourmigué, and P. Batal, Phys. Rev. Lett. 85, 5420 (2000).
[4] P. Limelette, P. Wzietek, S. Florens, A. Georges, T. A. Costi, C. Pasquier, D. Jérome, C. Mézière, and P. Batal, Phys. Rev. Lett. 91, 016401 (2003).
[5] F. Kagawa, T. Itoh, K. Miyagawa, and K. Kanoda, Phys. Rev. B 69, 064511 (2004).
[6] T. Ohashi, T. Momoi, H. Tsumetsugu, and N. Kawakami, Phys. Rev. Lett. 100, 076402 (2008).
[7] H. Park, K. Haule, and G. Kotliar, Phys. Rev. Lett. 101, 186403 (2008).
[8] M. Balzer, B. Kyung, D. Sénéchal, A.-M. S. Tremblay and M. Potthoff, Europhys. Lett. 85, 17020 (2009).
[9] A. J. Bray and M. A. Moore J. Phys. C: Solid St. Phys., 13, L655 (1980).
[10] S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993).
[11] A. Auerbach “Interacting electrons and quantum magnetism”, Springer (1994).
[12] O. Parcollet and A. Georges, Phys. Rev. B 59, 5341 (1999).
[13] S. Florens and A. Georges, Phys. Rev. B 66, 165111 (2002).
[14] S. Florens and A. Georges, Phys. Rev. B 70, 035114 (2004).
[15] A. Georges, “Lectures on the Physics of Highly Correlated Electron Systems VIII” (2004), American Institute of Physics Conference Proceedings Vol. 715, also preprint arXiv:cond-mat/0403123.
[16] A. Georges, S. Florens and T. A. Costi, J. Phys. IV 114, 165 (2004).