Review

Antimicrobial potentials of medicinal plant’s extract and their derived silver nanoparticles: A focus on honey bee pathogen

Shahid Ullah Khan a,⇑, Syed Ishtiaq Anjum c, Muhammad Javed Ansari d,e, Muhammad Hafeez Ullah Khan a, Sajid Kamal f, Khaista Rahman b, Muhammad Shoai b, Shad Man h, Abdul Jamil Khan h, Salim Ullah Khan i, Dilaraz Khan i

a College of Plant Sciences and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China
b State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
c Department of Zoology, Kohat University of Science and Technology, Kohat 26000, Pakistan
d Bee Research Chair, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
e Department of Botany, Hindu College Moradabad, M.J.P Rohilkhand University, 244001, India
f School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
g State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
h School of Life Sciences, Inner Mongolia University Hohhot, Inner Mongolia 010021, PR China
i Institute of Chemical Sciences, Gomal University Dera Ismail Khan, KPK, Pakistan

Article history:
Received 27 November 2017
Revised 12 February 2018
Accepted 15 February 2018
Available online 21 February 2018

Keywords:
Medicinal plants
Bactericidal
Fungicidal and Honey bee Pathogen

Abstract

Infectious (or Communicable) diseases are not only the past but also the present problem in developing as well as developed countries. It is caused by various pathogenic microbes like fungi, bacteria, parasites and virus etc. The medicinal plants and nano-silver have been used against the pathogenic microbes. Herbal medicines are generally used for healthcare because they have low price and wealthy source of antimicrobial properties. Like medicinal plants, silver nanoparticles also have emergent applications in biomedical fields due to their immanent therapeutic performance. Here, we also explore the various plant parts such as bark, stem, leaf, fruit and seed against Gram negative and Gram-positive bacteria, using different solvents for extraction i.e. methanol, ethyl acetate, chloroform, acetone, n. hexane, butanol, petroleum ether and benzene. Since ancient to date most of the countries have been used herbal medicines, but in Asia, some medicinal plants are commonly used in rural and backward areas as a treatment for infectious diseases. In this review, we provide simple information about medicinal plants and Silver nanoparticles with their potentialities such as antiviral, bactericidal and fungicidal. Additionally, the present review to highlights the versatile applications of medicinal plants against honey bee pathogen such as fungi (Ascosphaera apis), mites (Varroa spp. and Tropilaelaps sp.), bacteria (Melissococcus plutonis Paenibacillus larvae), and microsporidia (Nosema apis and Nosema ceranae). In conclusion, promising non-chemical (plant extracts) are innocuous to adult bees. So, we strongly believed that this effort was made to evaluate the status of medicinal plants researches globally.

© 2018 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Today infectious (or Communicable) diseases are the most important global problem (Nair et al., 2017), and it has the prime source of the death (Vu et al., 2015), and almost 50,000 people’s deaths per day (Namita and Mukesh, 2012). Infectious diseases due to various pathogenic bacterial strains namely, Staphylococcus aureus (Nathwani et al., 2016), E. coli (Wang et al., 2016) Klebsiella pneumonia (Sidjabat et al., 2011), bloodstream associated Staphylococcus epidermidis (Hijazi et al., 2016) Salmonella spp, Shigella spp.
Vibrio cholerae are the most common pathogenic bacteria (Namita and Mukesh, 2012).

According to World health organization (WHO), more than 80% of the humanity inhabitants depend on heritage medicine for their most important health care needs (Nair and Chanda, 2005). The total reported plants species in the world is about 258,650. Among these, more than 10% are used for therapeutic purposes. North-West of Pakistan is granted with a variety of therapeutic plants assets because of diverse geographical and habitat conditions. The medicinal utilization of plants for healing a variety of remedies is a vital part of the region’s cultural heritage (Shinwari, 2010).

The area of Pakistan has 80,943 km2, lies between 60° 55’ to 75° 30’ E longitude and 23° 45’ to 36° 50’ N latitude. Pakistan has a rich flora, about 6000 species of higher plants. It has been reported that 600 to 700 species having good potential for therapeutic uses.

More recently it was reported that plant metabolites are an excellent source to control and reduce microbes (Samoilova et al., 2014; Ribeiro et al., 2018). Medicinal plants have good potential against microorganism, which can be used as an alternate source of antibiotics (Ameya et al., 2017; Girish and Satish, 2008; Shinwari, 2010; Malik et al., 2011; Walter et al., 2011; Rahim et al., 2015).

The medicinal plants are used in India, China and the north east as a source of relief from sickness. The Compound of natural as well as an artificial source has been the base of numerous therapeutic agents (Mahesh and Satish, 2008). India has wealthy tradition background on plant-based drugs both for use in precautionary and medicinal medication. India has rich flora for the improvement of drugs from a medicinal plant. Because of the potential of the Medicinal plants to cure various diseases now the plants are used as novel antimicrobial substances. Considering the vast potentiality of the plant as sources for antimicrobial drugs the present study is based on the review of such plants (Saranraj and Sivasakthi, 2014).

Moreover, the present review to highlights the versatile applications of medicinal plants, as the whole plant, selected parts, or in extract form, such as antiviral, antibacterial, fungicidal, antiparasitic and miticides against bee mites (Varroa destructor). Hence, the advancement of unconventional control approaches is likely and needs to be considered. Besides, that a novel approach to plants extracts application is to mitigate the honey bee pathogen like Bacteria (*Paenibacillus larva*), Mite (*Varroa destructor*), Fungi (*Ascosphaera apis*) had also been reported.

The most important field to generate the nanomaterials for biomedical purposes and other fields (horticulture, electronic, food and power etc) is termed as Nanotechnology (Ahlulwalia et al., 2018; Gurunanathan et al., 2014). Outbreak of the various infectious diseases, the researchers and pharmaceuticals companies are searching for the developed new type of antibiotic against these pathogens. The present period, nanoparticles have emerged due to unique physical and chemical properties, high surface to volume ratio as novel antimicrobial agents (Rai and Ingle, 2012; Duran and Marcato, 2013; Butler et al., 2015). Among the different type of nanoparticles, particularly, the silver nanoparticles has observed for its biomedical applications in the treatment of bacterialid (Tanvir et al. 2017; Manikandan et al., 2015), fungicidal (Sre et al., 2015) antiviral (Villeret et al. 2018; Malachová et al., 2011) and anti-protozoals (Fayaz et al., 2012).

Silver nanoparticles have been renowned practical applications against antibacterial properties. Furthermore, in recent years the Nanosilver potentialities have been evaluated against the different pathogens such as arthropods vectors infections, various types of cancer cells, but still, now there are many questions which are not yet solved, but in future, the scientists have been attention to solve in further research. Importantly, silver nanoparticles being measured for use as an alternative control in bee hives requires significant inhibitory activity against the bee disease without nontoxic effect on adult honeybees.

2. Antibacterial potential of medicinal plants

In this portion, we present medicinal plants and their different fractions, different parts (various methods and different microorganisms) (Tables 1 and 2) and both Gram-negative and positive strains of bacteria (Table 1) and their percentage use is shown in (Figs. 1 and 2) respectively. Furthermore, this review demonstrates the silver nanoparticles potentialities against microbes and parasites which are listed in Table 3.

Girish and Satish (2008), studied three plants mainly the leaves portion had been utilized as shown in Table 2. Two Gram-positive (*Bacillus cereus*, *Bacillus subtilis*) and three Gram-negative (*Escherichia coli*, *Pseudomonas aeruginosa* and *Salmonella typhi*) bacteria strains, by using agar well diffusion method. The result indicated that methanol fraction shows a potent result against the entire tested organisms, apart from *Zizyphus sativa* plant inactive against *Salmonella typhi* and *Pseudomonas aeruginosa*. The n-Hexane extracts showed the promising action against both strains, while the *Zizyphus sativa* fraction of n-Hexane also has no performance against *Bacillus cereus* and *Salmonella typhi* (Girish and Satish, 2008).

Nair and his company (2005) evaluated nine plants. Antibacterial activity was tested against 6 bacterial strains, *Pseudomonas testosteroni*, *Staphylococcus epidermidis*, *Klebsiella pneumoniae*, *Bacillus subtilis*, *Proteus morganii* and *Micrococcus flavususing* Agar disk and agar ditch diffusion method. The result showed that *Pseudomonas testosteroni* and *Klebsiella pneumoniae* were the great resistant strains, while the *Sapindus merrutus* has greater bactericidal potential against all the tested strains (Nair et al., 2005).

Gram positive Bacteria	*Bacillus cereus*, *Bacillus pumilus*, *Bacillus subtilis*, *Staphylococcus*, *Micrococcus*, *Listeria*, *Streptococcus*, *Cocci*, *Lactobacillus* (feci)
Gram negative Bacteria	*Enterobacter*, *Escherichia coli*, Panthoeagglomerans Proteus, *Shigella*, *Pseudomonas aeruginosa*, *Serratia*, *Vibrio*, *Klebsiella*, *Salmonella*, *Yersinia* and *Citrobacter*
Fungal species	*Trichophytonmentagrophytes*, Candidakrussei, Candida albicans, Candida glabrata, Candidakrussei, *Aspergillus*, *A. flavus*, *A. niger*, *Curvularia sp.*, Fusarium sp., *Rhizopus and Candidaparapsilosis*
Viruses	*Monkeypoxvirus*, *respiratorysyncytial virus*, *HIV-1*, *hepatitis B virus*, and *herpes simplex virus type 1*, *Vaccinia virus*, *human parainfluenza virus type 3* (HPIV-3), *Herpes simplex virus type 1 and type 2* (HSV-1 and HSV-2), *tacaribe virus* (TCRV), *hepatitis B virus* (HBV), *Coxsackie virus B3* and *influenza virus*
Method Used	Agar well diffusion, Agar disk diffusion, Agar ditch diffusion, Tube diffusion, Bauer disc diffusion, Broth dilution, Micro dilution, Liquid dilution and Serial dilution
Solvent Used	Methanol, n-Hexane, *Aquosae*, *Chloroform*, *Ethyl Acetate*, *Benzone*, *Petroleum Ether*, *Acetone*, *Ethanol*, *Dichloromethane*, *Dimethyl Sulphoxide* and *Diethyl Ether*

Table 1

Microorganism, methods and solvents described in the text.
Sr. no.	Plant Name	Part Used	Essential oil	Whole plant	Stem	Root/ Rhizome	Seed	Flower	Fruit	Bark	References
1	Ajugabracteosa	Leaves	–	–	–	–	–	–	–	–	Girish and Satish (2008)
2	Calotropis procera	Leaves	–	–	–	–	–	–	–	–	Girish and Satish (2008)
3	Zizyphus sativa	Leaves	–	–	–	–	–	–	–	–	Girish and Satish (2008)
4	Sopinduse marginatus	Leaves	–	–	–	–	–	–	–	–	Nair et al. (2005)
5	Hibiscus rosasinensis	Leaves	–	–	–	–	–	–	–	–	Nair et al. (2005)
6	Mirabilis jalapa	–	–	–	–	–	–	–	–	–	Nair et al. (2005)
7	Rhoeo discolor	Leaves	–	–	–	–	–	–	–	–	Nair et al. (2005)
8	Nycanthus arbor-tristis	Leaves	–	–	–	–	–	–	–	–	Nair et al. (2005)
9	Colocasia esculenta	–	–	–	–	–	–	–	–	–	Nair et al. (2005)
10	Gracilariacorticata	Leaves	–	–	–	–	–	–	–	–	Nair et al. (2005)
11	Dictyota sp	Leaves	–	–	–	–	–	–	–	–	Nair et al. (2005)
12	Pulicariawightiana	Leaves	–	–	–	–	–	–	–	–	Nair et al. (2005)
13	Anisomeles indica	Leaves	–	–	–	–	–	–	–	–	Ramasamy and Manoharan (2004)
14	Blumealacera	Leaves	–	–	–	–	–	–	–	–	Ramasamy and Manoharan (2004)
15	Melia azedarach	Leaves	–	–	–	–	–	–	–	–	Ramasamy and Manoharan (2004)
16	Phyllanthususambar	Leaves	–	–	Root	–	–	–	–	–	Aliero and Afolayan (2006)
17	Gallnsogacilata	Leaves	–	–	–	–	–	–	–	–	Poonkothai et al. (2005)
18	Hippophaerhamnoides	–	–	–	–	Seeds	–	–	–	–	Kumar et al. (2007)
19	Parkiyanica	–	Essential oil	–	–	–	–	–	–	–	Saha et al. (2007)
20	Hemidesmusindicus (L.)	–	Essential oil	–	–	–	–	–	–	–	Kumar et al. (2007)
21	Eclipta alba	–	–	–	–	–	–	–	–	–	Kumar et al. (2007)
22	Coscinium fenestratum	–	Essential oil	–	–	–	–	–	–	–	Kumar et al. (2007)
23	Tephrosiapurpurea	–	Essential oil	–	–	–	–	–	–	–	Kumar et al. (2007)
24	Menthae nepeta	Leaves	–	–	–	–	–	–	–	–	Kumar et al. (2007)
25	Pongamia pinnata	–	–	–	–	–	–	–	–	–	Kumar et al. (2007)
26	Puerarin	–	–	–	–	–	Seeds	–	–	–	Kumar et al. (2007)
27	Symlocosracemosa	–	–	–	–	–	–	Seeds	–	–	Kumar et al. (2007)
28	Euphorbiabirta	–	–	–	–	–	–	–	–	–	Kumar et al. (2007)
29	Tinospora cordifolia	–	Essential oil	–	–	–	–	–	–	–	Kumar et al. (2007)
30	Thespesia populnea	–	Essential oil	–	–	–	–	–	–	–	Kumar et al. (2007)
31	Jasminum officinale	–	Essential oil	–	–	–	–	–	–	–	Kumar et al. (2007)
32	Marrubium vulgare	Leaves	–	Essential oil	–	–	–	–	–	–	Warda et al. (2009)
33	Thymus pallidus	–	–	–	–	–	–	–	–	–	Warda et al. (2009)
34	Eryngium ilicifolium	–	–	Whole plant	–	–	–	–	–	–	Warda et al. (2009)
35	Lavandula officinalis	–	Essential oil	–	–	–	–	–	–	–	Warda et al. (2009)
36	Mimosa pudica	Leaves	–	–	–	–	–	–	–	–	Balakrishnan et al. (2006)
37	Angelonervigera	–	–	–	–	–	–	–	–	Balakrishnan et al. (2006)	
38	Sida cordifolia	Leaves	–	–	–	–	–	–	–	Balakrishnan et al. (2006)	
39	Acalypha indica	–	–	–	–	–	–	–	–	Ushimaru et al. (2007)	
40	Mollugo haloides	–	–	Whole plant	–	–	–	–	–	Ushimaru et al. (2007)	
41	Nelumbo nucifera	Leaves	–	–	–	–	–	–	–	Ushimaru et al. (2007)	
42	Garcinia mangostana	Leaves	–	–	–	–	–	–	–	Ushimaru et al. (2007)	
43	Punicagranatum	Leaves	–	–	–	–	–	–	–	Ushimaru et al. (2007)	
44	Quercus infectoria	–	–	Whole plant	–	–	–	–	–	Ushimaru et al. (2007)	
45	Daturaramel	Leaves	–	Essential oil	–	–	–	–	–	–	Saranraj (2011)
46	Phylla nodiflora	–	Essential oil	–	–	–	–	–	–	–	Saranraj (2011)
47	Zingiber officinalis	–	Essential oil	–	–	–	–	–	–	–	Norajit et al. (2007)
48	Alpinia galanga	–	Essential oil	–	–	–	–	–	–	–	Norajit et al. (2007)
49	Curcuma longa	–	Essential oil	–	–	–	–	–	–	–	Norajit et al. (2007)
50	Boesenbergia purpurea	–	Essential oil	–	–	–	–	–	–	–	Norajit et al. (2007)
51	Anomum xanthophyllum	–	Essential oil	–	–	–	–	–	–	–	Norajit et al. (2007)
52	Pterocarpus santolensis	–	Essential oil	–	–	–	–	–	–	–	Norajit et al. (2007)
53	Lippia alba	–	Essential oil	–	–	–	–	–	–	–	Norajit et al. (2007)
54	Zingiber officinalis	–	Essential oil	–	–	–	–	–	–	–	Norajit et al. (2007)
55	Curcuma longa	–	Essential oil	–	–	–	–	–	–	–	Norajit et al. (2007)
56	Commiphora mukul	–	Essential oil	–	–	–	–	–	–	–	Norajit et al. (2007)

(continued on next page)
Sr. no.	Plant Name	Part Used	Essential oil	Whole plant	Stem	Root/ Rhizome	Seed	Flower	Fruit	Bark	References	
57	Pimpinella anisum	– –	plants	Whole plants	– –	– – – – – –	– –	– –	– –	Al-Daihan et al. (2013)		
58	Elaeagnus angustifolia	Leaves	– –	Stem	Root	– – – –	–	–	–	– Khan et al. (2013)		
59	Elaeagnus angustifolia	Leaves	– –	–	–	– –	–	–	–	Farzaei et al. (2015)		
60	Stephanotisflabellata	– –	– –	–	–	–	–	–	–	– Sennal et al. (2009)		
61	Woodfordia fruticosa	– –	–	–	–	–	Flowers	–	–	–	Chougale et al. (2009)	
62	Beta vulgaris	– –	Whole plant	–	–	–	–	–	Bark	Kumaraswamy et al. (2008)		
63	Bidens pilosa	– –	Whole plant	–	–	–	–	–	–	Patel et al. (2007)		
64	Buxus sempervirens	– –	Whole plant	–	–	–	–	–	–	Patel et al. (2007)		
65	Cinnamomum cassia	– –	Whole plant	–	–	–	–	–	–	Patel et al. (2007)		
66	Cinchona officinalis	– –	Whole plant	–	–	–	–	–	–	Patel et al. (2007)		
67	Gliricidia sepium	– –	Whole plant	–	–	–	–	–	–	Patel et al. (2007)		
68	Justicia secunda	– –	Whole plant	–	–	–	–	–	–	Patel et al. (2007)		
69	P. paniculata	– –	Whole plant	–	–	–	–	–	–	Patel et al. (2007)		
70	Piper nigrum	– –	Whole plant	–	–	–	–	–	–	Patel et al. (2007)		
71	Bixa orellana	– –	Whole plant	–	–	–	–	–	–	Patel et al. (2007)		
72	Jr. senegalensis	– –	Whole plant	–	–	–	–	–	–	Patel et al. (2007)		
73	Spilanthes acmella	– –	Whole plant	–	–	–	–	–	–	Patel et al. (2007)		
74	Azadirachta indica	– –	–	–	–	–	Seeds	–	–	–	El-Mahmood et al. (2010)	
75	Albizia lebbeck (L.)	Leaves	–	–	–	–	–	–	–	Patel et al. (2007)		
76	Christia ovata (Roxb.)	Leaves	–	–	–	–	–	–	–	Patel et al. (2007)		
77	Emblica officinalis	– –	–	–	–	–	–	–	–	Patel et al. (2007)		
78	Emblica officinalis	– –	–	–	–	–	–	–	–	Patel et al. (2007)		
79	Eucalyptus deglupta	Leaves	–	–	–	–	–	–	–	Patel et al. (2007)		
80	Eucalyptus tereticornis	Leaves	–	–	–	–	–	–	–	Patel et al. (2007)		
81	Eupatorium odoratum	Leaves	–	–	–	–	–	–	–	Patel et al. (2007)		
82	Ocimum basilicum	Leaves	–	–	–	–	–	–	–	Patel et al. (2007)		
83	Hevea brasiliensis	Leaves	–	–	–	–	–	–	–	Patel et al. (2007)		
84	Lantana camara	Leaves	–	–	–	–	–	–	–	Patel et al. (2007)		
85	Acaia nitida	Leaves	–	–	–	–	Root	–	–	–	Mahesh and Satish (2008)	
86	P. betle	Leaves	–	–	–	–	Root	–	–	–	Mahesh and Satish (2008)	
87	P. paniculata	– –	Whole plant	–	–	–	–	–	–	Patel et al. (2007)		
88	Withania somnifera	Leaves	–	–	–	–	–	–	–	Patel et al. (2007)		
89	Ziziphus mauritiana	Leaves	–	–	–	–	Root	–	–	–	Patel et al. (2007)	
90	Lantana indica	Leaves	–	–	–	–	–	–	–	Patel et al. (2010)		
91	Ardisia crenata	Leaves	–	–	–	–	–	–	–	Patel et al. (2010)		
92	Acerola	Leaves	–	–	–	–	–	–	–	Patel et al. (2010)		
93	Boerhavia diffusa	Leaves	–	–	–	–	–	–	–	Patel et al. (2010)		
94	Solanum melongena	Leaves	–	–	–	–	–	–	–	Patel et al. (2010)		
95	Vitex negundo	Leaves	–	–	–	–	–	–	–	Patel et al. (2010)		
96	Butea monosperma	Leaves	–	–	–	–	–	–	–	Patel et al. (2010)		
97	P. betle	Leaves	–	–	–	–	–	–	–	Patel et al. (2010)		
98	Andrographis paniculata	Leaves	–	–	–	–	–	–	–	Patel et al. (2010)		
99	Syzygium aromaticum	–	–	–	Stem,	–	–	–	–	Phattayakorn and Wanchitaanawong (2009)		
100	Piper nigrum	Leaves	–	–	–	–	–	–	–	Phattayakorn and Wanchitaanawong (2009)		
101	Curcuma longa Linn.	Leaves	–	–	–	Rhizome	–	–	–	Phattayakorn and Wanchitaanawong (2009)		
102	Panicum miliaceum Linn.	Leaves	–	–	–	–	–	–	–	Phattayakorn and Wanchitaanawong (2009)		
103	Garcinia cambogia Linn.	Leaves	–	–	–	–	–	–	–	Phattayakorn and Wanchitaanawong (2009)		
104	Andrographis paniculata	Leaves	–	–	–	Stem	–	–	–	Phattayakorn and Wanchitaanawong (2009)		
105	Senna alata (Linn.)	Leaves	–	–	–	–	Seed	–	–	–	Phattayakorn and Wanchitaanawong (2009)	
106	Boesenbergia pandurata	Leaves	–	–	–	–	Rhizome	–	–	–	Phattayakorn and Wanchitaanawong (2009)	
107	Cassia angustifolia	Leaves	–	–	–	–	–	–	–	Phattayakorn and Wanchitaanawong (2009)		
Sr. no.	Plant Name	Part Used	Essential oil	Whole plant	Stem	Root/ Rhizome	Seed	Flower	Fruit	Bark	References	
--------	------------	-----------	---------------	-------------	------	--------------	------	--------	-------	------	------------	
108	Cinnamomum zeylanicum	Leaves	–	–	–	–	–	–	–	Bark	Phattayakorn and Wanchaitanawong (2009)	
109	Caesalpinia sappan Linn.	–	–	–	–	–	–	–	–	Bark	Phattayakorn and Wanchaitanawong (2009)	
110	Curcuma xanthorrhiza	–	–	–	–	–	–	–	–	Rhizome	Phattayakorn and Wanchaitanawong (2009)	
111	Syzygium aromaticum Linn.	–	–	–	–	–	–	–	–	Stem	Phattayakorn and Wanchaitanawong (2009)	
112	Piper betle Linn.	Leaves	–	–	–	–	–	–	–	–	Phattayakorn and Wanchaitanawong (2009)	
113	Curcuma longa Linn.	–	–	–	–	–	–	–	–	Rhizome	Phattayakorn and Wanchaitanawong (2009)	
114	Punicagranatum Linn.	–	–	–	–	–	–	–	–	Fruit	Phattayakorn and Wanchaitanawong (2009)	
115	Garciniamangostana Linn.	–	–	–	–	–	–	–	–	Fruit	Phattayakorn and Wanchaitanawong (2009)	
116	Andrographispaniculata	Leaves	–	–	Stem	–	–	Flower	–	–	Phattayakorn and Wanchaitanawong (2009)	
117	Sennaalata (Linn.)	–	–	–	–	–	Seed	–	–	–	Phattayakorn and Wanchaitanawong (2009)	
118	Boesenbergiapandurata	–	–	–	–	–	–	Rhizome	–	–	Phattayakorn and Wanchaitanawong (2009)	
119	Cassia angustifolia	Leaves	–	–	–	–	–	–	–	–	Phattayakorn and Wanchaitanawong (2009)	
120	Cinnamomumzeylanicum	–	–	–	–	–	–	–	–	Bark	Phattayakorn and Wanchaitanawong (2009)	
121	Caesalpiniasappan Linn.	–	–	–	–	–	–	–	–	Bark	Phattayakorn and Wanchaitanawong (2009)	
122	Curcuma xanthorrhiza	–	–	–	–	–	–	–	–	Rhizome	Phattayakorn and Wanchaitanawong (2009)	
123	Carthamustinctorius Linn.	–	–	–	–	–	–	–	–	Flower	Phattayakorn and Wanchaitanawong (2009)	
124	Derris scandens	–	–	–	–	–	–	–	–	Fruit	Phattayakorn and Wanchaitanawong (2009)	
125	Cyperusrotundus Linn.	–	–	–	–	–	–	–	–	Rhizome	Phattayakorn and Wanchaitanawong (2009)	
126	Acanthus ebracteatus	Leaves	–	–	Stem	–	–	–	–	–	Phattayakorn and Wanchaitanawong (2009)	
127	Tinosporacistroph(L.)	–	–	–	–	–	Stem	–	–	–	Phattayakorn and Wanchaitanawong (2009)	
128	Eclipta prostate	Leaves	–	–	Stem	–	–	Flower	–	–	Phattayakorn and Wanchaitanawong (2009)	
129	Phyllanthusemblica Linn.	–	–	–	–	–	–	–	–	Fruit	Phattayakorn and Wanchaitanawong (2009)	
130	AzadirachtaindicaA.	Leaves	–	–	–	–	–	–	–	Fruit	Phattayakorn and Wanchaitanawong (2009)	
131	Morindacrispa,	–	–	–	–	–	–	–	–	–	Phattayakorn and Wanchaitanawong (2009)	
132	Sennasiamea	–	–	–	–	–	–	–	–	–	Phattayakorn and Wanchaitanawong (2009)	
133	Morus alba Linn.	Leaves	–	–	–	–	–	–	–	–	Phattayakorn and Wanchaitanawong (2009)	
134	Citrus aurantium	–	–	–	–	–	–	–	–	Fruit	Phattayakorn and Wanchaitanawong (2009)	
135	Calotropis procera	–	–	–	–	–	–	–	–	Flower	Phattayakorn and Wanchaitanawong (2009)	
136	Aloe Vera	–	–	–	Stem	–	–	–	–	–	Phattayakorn and Wanchaitanawong (2009)	
137	Azadirachta indica	Leaves	–	–	–	–	–	–	–	–	Yasmeen et al. (2012)	
138	Allium sativum	–	–	–	–	–	–	–	–	–	Yasmeen et al. (2012)	
139	Calotropis procera	Leaves	–	–	–	–	–	–	–	Rhizome	Yasmeen et al. (2012)	
140	Cannabis sativa	Leaves	–	–	–	–	–	–	–	–	Yasmeen et al. (2012)	
141	Carum carvi	–	–	–	–	–	–	–	–	–	Yasmeen et al. (2012)	
142	Eucalyptus camaldulensi	Leaves	–	–	–	–	–	–	–	–	Yasmeen et al. (2012)	
143	Lantana camara,	–	–	–	–	–	–	–	–	Flower	Yasmeen et al. (2012)	
144	Mangifera indica,	Leaves	–	–	–	–	–	–	–	–	Yasmeen et al. (2012)	
145	Mentha piperita,	Leaves	–	–	–	–	–	–	–	–	Yasmeen et al. (2012)	
146	Nigella sativa,	–	–	–	–	–	–	–	–	Seed	Yasmeen et al. (2012)	
147	Opuntia	–	–	Whole plant	–	–	–	–	–	Flower	Yasmeen et al. (2012)	
148	Ficusindica,	–	–	Whole plant	–	–	–	–	–	–	Yasmeen et al. (2012)	
149	Piper nigrum	Leaves	–	–	–	–	–	–	–	Fruit	Yasmeen et al. (2012)	
150	Zingiberofficinalis	–	–	–	–	Rhizome	–	–	–	–	Yasmeen et al. (2012)	
Sr. no.	Plant Name	Part Used	Essential Oil	Whole plant	Stem	Root/ Rhizome	Seed	Flower	Fruit	Bark	References	
--------	------------	-----------	---------------	-------------	------	---------------	------	--------	-------	------	------------	
151	Achyranthes bidentata	Leaves	–	–	–	–	–	–	–	–	–	Janovska et al. (2003)
152	Belamcanda chinensis	Leaves	–	–	–	–	–	–	–	–	–	Janovska et al. (2003)
153	Chelidonium majus	Leaves	–	–	–	–	–	–	–	–	–	Janovska et al. (2003)
154	Houttuynia cordata	Leaves	–	–	–	–	–	–	–	–	–	Janovska et al. (2003)
155	Platycodon grandiflorum	Leaves	–	–	–	–	–	–	–	–	–	Janovska et al. (2003)
156	Rehmannia glutinosa	–	–	–	–	–	–	–	–	–	–	Janovska et al. (2003)
157	Sanguschisandra officinalis	Leaves	–	–	–	–	–	–	–	–	–	Janovska et al. (2003)
158	Schizandra chinensis	–	–	–	–	–	–	–	–	–	–	Janovska et al. (2003)
159	Tribulus terrestris	Leaves	–	–	–	–	–	–	–	–	–	Janovska et al. (2003)
160	Tussilago farfara	–	–	–	–	Whole plant	–	–	–	–	–	Janovska et al. (2003)
161	Achillea millefolium	Leaves	–	–	–	–	–	–	–	–	–	Nascimento et al. (2000)
162	Caryophyllum aromaticum	Leaves	–	–	–	–	–	–	–	–	–	Nascimento et al. (2000)
163	Melissa officinalis	Leaves	–	–	–	–	–	–	–	–	–	Nascimento et al. (2000)
164	Ocimum basilicum	Leaves	–	–	–	–	–	–	–	–	–	Nascimento et al. (2000)
165	Psidium guajava	Leaves	–	–	–	–	–	–	–	–	–	Nascimento et al. (2000)
166	Punicum granatum	Leaves	–	–	–	–	–	–	–	–	–	Nascimento et al. (2000)
167	Rosmarinus officinalis	Leaves	–	–	–	–	–	–	–	–	–	Nascimento et al. (2000)
168	Salvia officinalis	Leaves	–	–	–	–	–	–	–	–	–	Nascimento et al. (2000)
169	Syzygium jambos	Leaves	–	–	–	–	–	–	–	–	–	Nascimento et al. (2000)
170	Thymus vulgaris	Leaves	–	–	–	–	–	–	–	–	–	Nascimento et al. (2000)
171	Albizia lebeck	Leaves	–	–	–	–	–	–	–	–	–	Acharya et al. (2009)
172	Terminalia chebula	Leaves	–	–	–	–	–	–	–	–	–	Acharya et al. (2009)
173	Syzygium cumini	–	–	–	–	–	–	–	–	–	–	Acharya et al. (2009)
174	Solanum nigrum	Leaves	–	–	–	–	–	–	–	–	–	Acharya et al. (2009)
175	Picrorhiza kurrooa	–	–	Whole plant	–	–	–	–	–	–	–	Acharya et al. (2009)
176	Butea monosperma	Leaves	–	–	–	–	–	–	–	–	–	Acharya et al. (2009)
177	Saraca indica	Leaves	–	–	–	–	–	–	–	–	–	Acharya et al. (2009)
178	Aegle marmelos	Leaves	–	–	–	–	–	–	–	–	–	Acharya et al. (2009)
179	Withania somnifera	Leaves	–	–	–	–	–	–	–	–	–	Acharya et al. (2009)
180	Tamarix Gallica	–	–	Whole plant	–	–	–	–	–	–	–	Zaouia et al. (2010)
181	Muscari Comosum	–	–	Whole plant	–	–	–	–	–	–	–	Zaouia et al. (2010)
182	Rheinolepis	–	–	Whole plant	–	–	–	–	–	–	–	Zaouia et al. (2010)
183	Taraxacum officinale	–	–	Whole plant	–	–	–	–	–	–	–	Zaouia et al. (2010)
184	Zygophyllum album	–	–	Whole plant	–	–	–	–	–	–	–	Zaouia et al. (2010)
185	Urtica dioica	–	–	Whole plant	–	–	–	–	–	–	–	Zaouia et al. (2010)
186	Silybum marianum	–	–	Whole plant	–	–	–	–	–	–	–	Zaouia et al. (2010)
187	Tragacanthum	–	–	Whole plant	–	–	–	–	–	–	–	Zaouia et al. (2010)
188	Bhamnussp	–	–	Whole plant	–	–	–	–	–	–	–	Zaouia et al. (2010)
189	Sedum kamtschaticum	Leaves	–	–	–	Root	–	–	–	–	–	Kang et al. (2011)
190	Geum japonicum	Leaves	–	–	–	Root	–	–	–	–	–	Kang et al. (2011)
191	Geranium sibiricum	Leaves	–	–	–	Root	–	–	–	–	–	Kang et al. (2011)
192	Saururus chinensis	Leaves	–	–	–	Root	–	–	–	–	–	Kang et al. (2011)
193	Agrimonia pilosa	Leaves	–	–	–	–	–	–	–	–	–	Kang et al. (2011)
194	Houttuynia cordata	Leaves	–	–	–	–	–	–	–	–	–	Kang et al. (2011)
195	Perilopatus scens	–	–	–	–	Root	–	–	–	–	–	Kang et al. (2011)
196	Agastacherus	Leaves	–	–	–	Root	–	–	–	–	–	Kang et al. (2011)
197	Persicaria	Leaves	–	–	–	–	–	–	–	–	–	Philip et al. (2009)
198	Persicaria grandiflora	Leaves	–	–	–	–	–	–	–	–	–	Philip et al. (2009)
200	Curcuma zedoaria	–	–	–	–	Rhizome	–	–	–	–	–	Philip et al. (2009)
201	Curcuma mangga	–	–	–	–	Rhizome	–	–	–	–	–	Philip et al. (2009)
202	Curcuma inodora	–	–	–	–	Rhizome	–	–	–	–	–	Philip et al. (2009)
203	Zingiber officinale var. officinale	–	–	–	–	Rhizome	–	–	–	–	–	Philip et al. (2009)
204	Zingiber officinale var. rubrum	–	–	–	–	Rhizome	–	–	–	–	–	Philip et al. (2009)
205	Curcuma aeruginosa	–	–	–	–	Rhizome	–	–	–	–	–	Philip et al. (2009)
206	Hypericum scabrum	–	–	–	–	Rhizome	–	–	–	–	–	Philip et al. (2009)
207	Myrtus communis	–	–	Whole plant	–	–	–	–	–	–	–	Ghasemi et al. (2010)
208	Pistacia atlantica	–	–	Whole plant	–	–	–	–	–	–	–	Ghasemi et al. (2010)
In another study, three plants were used. The result indicated that acetone and methanol fractions of all the tested plants display stout antibacterial effect, while the petroleum ether and aqueous did not show any result. *Pseudomonas aeruginosa* and *Serratia marcescens* were comparatively more sensitive (Ramasamy and Pseudomonas aeruginosa did not show any result. stout antibacterial effect, while the petroleum ether and aqueous that acetone and methanol fractions of all the tested plants display supreme antibacterial effect. The same MIC values i.e. (0.049 mg/L, 20 mg/mL and 80 mg/mL) (Aliero and Afolayan, 2006).

Poonkothai and his colleagues demonstrated leaves of a single plant against both strains of bacteria using Agar well diffusion method. The results showed instead of *Escherichia coli* and Pseudomonas aeruginosa, all the fractions i.e. acetone, petroleum ether and benzyl ethyl acetate of the leaves of *Galinisoga ciliate* have strong property against *Bacillus subtilis* (Poonkothai et al., 2005). The bactericidal potential of *Parrotia persican* leaves was tested against *Yersinia enterocolitica* and *Yersinia enterocolitica*, the MIC values were found to be 750 ppm and 1000 ppm respectively (Mohammad et al., 2007). Furthermore, the author and his friends tested the *parikajavanica* medicinal plant bark against three different bacterial strains. The result demonstrated that excluding *Escherichia coli* all the tested bacteria showed the strong result (Saha et al., 2007).

Recently, Kumar et al. examined 12 medicinal plants. The disc diffusion method result showed that among the 12 plants the 07 medicinal plants could forbid the growth of *Propioni bacterium acnes*. Amid that *Hemidesmus indicus, Coscinium fenestratum, Tephrosia purpurea, Euphorbia hirta, Symplocos racemosa, Curcubita pepo and Eclipta alba* had strong inhibitory effects. Based on a broth dilution method, the *Coscinium fenestratum* extract had the supreme antibacterial effect. The same MIC values i.e. (0.049 mg/mL) for both bacterial species and the MBC values were 0.049 and 0.165 mg/mL against *Propioni bacterium acnes* and *Staphylococcus epidermidis* (Kumar et al., 2007).

Table 2 (continued)

Sr. no.	Plant Name	Part Used	Essential oil	Whole plant	Stem	Root/ Rhizome	Seed	Flower	Fruit	Bark	References	
209	Arnebiaeuchroma,	–	–	Whole plant	–	–	–	–	–	–	–	–
210	Salvia hydranga,	–	–	Whole plant	–	–	Roots	–	–	–	–	–
211	Satureja buckthriarica,	–	–	–	–	–	–	–	–	–	–	
212	Thymus daenensis	–	–	Essential oils	–	–	–	–	–	–	–	
213	Kelisia dorsotissima	–	–	Essential oils	–	–	–	–	–	–	–	

References

- Saha et al. (2007)
- Aliero and Afolayan (2006)
- Poonkothai et al. (2005)
- Mohammad et al. (2007)
- Hassan et al. (2009)
- Prabhath and Navneet (2010)
- Prabhath and Navneet (2010)
In recent study four (04) medicinal plants were used, the result was to be found that, the methanol extract of Marrubium vulgare, Thymus pallidus and Lavandula stoechas shows significant result against bacterial strains (Warda et al., 2009). Sidaco xidifolia Minos apudica and Aegle marmelos medicinal plants were used against bacterial strains. The result indicated that highest zone of inhibition Sida coxidifolia against Bacillus subtilis (35 mm) and Salmonella typhi (26 mm), while the rest plants also show activity against tested organisms (Balakrishnan et al., 2006).

Ushimaru and his company (2009) tested three (03) plants against bacterial strains. The results demonstrated that the aqueous fraction of Mollugo latoides and Acal ypha indica were displayed potent activity against Escherichia coli at various concentrations, Nelumbo nucifera alcoholic extract was to be found 0.390 mg/mL against Klebsiella pneumonia (Ushimaru et al., 2007).

Moreover, three plants and their various parts were used; all the plants displayed the great potential against the tested bacteria. The MICs and MBCs were to be observed for Staphylococcus aureus of 0.1, 0.2 and 0.1 mg/mL, 0.4–1.6 mg/mL and 0.4, 3.2 and 1.6 mg/mL, respectively (Saranraj, 2011). The author examined the phytochemicals and bacterial activity of Datura metel leaf, using Ager well diffusion method. The author reported that ethanol fraction of the plant had the highest zone of inhibition (26 mm) against Bacillus subtilis and Escherichia coli, while the Staphylococcus aureus has the lowest zone of inhibition (8 mm). The ethyl acetate fraction display strong zone of inhibition against E. coli, but no effect against Pseudomonas aeruginosa (Saranraj, 2011).

The author and his co-authors used phyla nodiflora plant against bacteria. The author and his coworker concluded that n-hexane and n-butanol fractions were observed to be positive against E. coli and P. aeruginosa, while the chloroform, n-butanol, ethyl acetate and n-hexane fractions show potential action against Salmonella and MRSA except for the crude fraction (Ullah et al., 2013).

Norajit and his coworkers screened the essential oil of five plants used by disc diffusion method. The outcomes of the essential oils obtained from Boesenbergia pandurata and Amomum xanthioides stop the growth of all tested bacteria, while the essential oil of Zingiber officinale had the highest potential against three positive strains of bacteria (S. aureus, B. cereus and L. monocyotogenes). It was to be found that the minimum concentration of inhibition to be 6.25 mg/mL against B. cereus and L. monocyotogenes (Norajit et al., 2007).

In another study, two plants were used. The results indicated that the acetone extract had displayed significant property against all strains, 0.0156 mg/mL against Staphylococcus aureus, while 2 mg/mL against Enterobacter cloacae. The essential oil obtained from Lippia javanica was also found to be reasonable result against Entamoeba histolytica. The inhibitory concentrations (IC50) of 25 and 100 mg/mL, respectively (Samie et al., 2009).

Al-Daihan et al. phytochemically screened four different medicinal plants used against different bacterial strains. The result shows that methanol extract of C. molmol and C. longa against S. pyogenes and S. aureus displayed maximum activity (19 mm), while the minimum activity of aqueous fraction against P. anisum against E. coli and P. aeruginosa (7 mm) (Al-Daihan et al., 2013). Khan and his company examined Elaeagnus angustifolia plant against different bacteria. The various parts of the plant were used i.e. leaves, branches, stem bark, root and root bark. The author reported that methanolic crude extract, n-hexane, and ethyl acetate showed bactericidal activity against Er scherichia coli, Staphylococcus aureus, while n-hexane and ethyl acetate also showed an antibacterial effect against Pseudomonas aeruginosa (Khan et al., 2013).

The Elaeagnus angustifolia leaves were also used for bactericidal and antioxidant potential. The result was to be found that, methanolic fraction inhibit the growth of Yersinia enterocolitica, while the MIC range against clinical strain coagulate negative Staphylococci to be 3250–6500 μg/mL (Okmen and Turkcan, 2013a; Okmen and Turkcan, 2013b). Furthermore, the soft extract of the Elaeagnus angustifolia was used. The author summarized that all samples showed the potent activity against the bacteria (Farzaei et al., 2015). Samwal and his coworkers (2009) demonstrated the rhizome of the plant species against antimicrobial property. Three extracts were used, the result summarized that among this only ethanolic fraction had strong activity against the tested microorganisms. Using novobiocin (15 μg/mL) as standard to check the zone of inhibition, the minimum inhibition concentration was to
be found 50 µg/mL against *S. mutants* and *S. epidermidis* (Semwal et al., 2009).

Woodfordia fruticosekurz medicinal plant was used to check the antibacterial potential. The results summarized that the various amount of acetone (80 µg and 120 µg) were shows promising activity against all the tested bacteria. It was further tested against standard antibiotic erythromycin) (Chougale et al., 2009). In another study, *Betulautilis* was used for antibacterial and phytochemical analysis using Agar well diffusion method. And they used 15 microorganisms namely, *Escherichia coli*, *Klebsiella pneumonia*, *Proteus mirabilis*, *Pseudomonas aeruginosa*, *Salmonella paratyphi*, *Salmonella typhi*, *Salmonella typhimurium*, *Shigella flexneri*, *Shigella sonnei*, *Staphylococcus aureus*, *Streptococcus faecalis*, *Shigella boydii*, *Citrobacter spp.*, *Salmonella paratyphi* B and *Shigella boydii*. The result indicated that methanol, ethanol and aqueous extracts were to be found significant activity against all the tested bacteria, while petroleum and chloroform extract inactive (Kumaraswamy et al., 2008).

Patel and his company screened (2007) medicinal plants against antimicrobial potential. The result demonstrated that aqueous fractions of *Bidenspilosa*, *Jacaranda mimosifolia*, and *Piper pulchrum* shows significant action against *Bacillus cereus* and *Escherichia coli* than antibiotic gentamycin sulfate. While the ethanol fraction of all samples was active against *Staphylococcus aureus* except for *Justicia secunda*. Furthermore, *Bixa orellana*, *Justicia secunda* and *Piper pulchrum* showed minimum MICs against *Escherichia coli* (0.8, 0.6 and 0.6 µg/mL, respectively) compared to gentamycin sulfate (0.98 g/mL). *Bixa orellana* was found to be strong MIC against *Bacillus cereus* (0.2 µg/mL) than gentamycin sulfate (0.5 µg/mL) (Patel et al., 2007).

Seeds of the *Azadarichat indica* were used against pathogenic bacteria. The results showed that both strains growth were inhib-

Fig. 2. (a) Number of various plant parts used in the review, showing antibacterial potential. (b) Percentage use of Gram-positive Bacteria. (c) Percentage use of Gram-negative Bacteria. (d) The Gram positive VS Gram negative% use in the text.
Main Gram - ve Bacteria used in the review and there percentage use

- Escherichia coli
- Pseudomonas aeruginosa
- Klebsiella
- Proteus
- Serratia
- Salmonella
- Shigella
- Vibrio
- Yersinia
- Enterobacter
- Pantoea agglomerans
- Citrobacter
- Xanthomonas axonopodis

Fig. 2 (continued)

(c)

(d)

Gram-ve VS Gram+ve bacteria percentage use

- Gram-ve: 59%
- Gram+ve: 41%

Fig. 2 (continued)

It is also found that gram positive are more susceptible as compared to gram negative bacteria. The control laboratory strains were reported as more sensitive to the toxic effects of the crude extracts than the corresponding test bacteria. Hexane extracts were reported as more effective, producing larger zones of growth inhibition sizes and smaller MIC and MBC values, than the aqueous
extracts. The MIC values ranged from 1.59 to 25 mg/mL while the MBC values ranged from 3.17 to 50 mg/mL (El-Mahmood et al., 2010).

Recently, Maity et al. (2010) evaluated the antimicrobial activity of the leaves of eight plants species. The various fractions of Albizia lebbeck, Cleistanthus collinus, Emblica officinalis, Eucaulypus deglupta, Eupatorium odoratum, Ocimum sanctum and Hevea brasiliensis were showed the healthier zone of inhibition (>11 mm) against Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Bacillus cereus, Vibrio cholerae and Candida albicans. The zone of inhibition of 11–13 mm was reported by Lantana camara against Klebsiella pneumoniae, Staphylococcus aureus, Bacillus cereus, Vibrio cholerae and Candida albicans. The extract of Butea frondosa, Melastoma malabathricum, Terminalia Arjuna, and Lycopodium japonicum were showed to be significant activity (8–11 mm) against all the tested bacteria. The plants like Adina cordifolia, Asparagus racemosus, Aegle marmelos, Cassia tora, Dillenia pentagona, Valeriana wallichii were found to be a poor activity (5–8 mm) against all the tested bacteria. Ocimum basilicum were found to be reasonable activity (05–08 mm). The MIC values of plant extracts were found to exhibit significant at 0.35–0.80 mg/mL. Among the tested plants, Albizia lebbeck, Cleistanthus collinus, Emblica officinalis, Eucaulypus deglupta, Eupatorium odoratum, Ocimum sanctum and Hevea brasiliensis were reported to show the minimum MIC values of 0.17–0.25 mm. Among the tested plants, Albizia lebbeck, Cleistanthus collinus, Emblica officinalis, Eucaulypus deglupta, Eupatorium odoratum, Ocimum sanctum and Hevea brasiliensis were reported to show the minimum MIC values of 0.17–0.25 mm. The ethanol extracts of the three herbs (Malacca tree, cassod tree, and pomegranate) were the most efficient antimicrobial. The results were to be found that, the bactericidal potential of the crude extracts of selected plants i.e. B. persicum, A. concinna, A. lebbeck, A. nobilis, C. indica, S. albicaule, V. nigundu, and B. diffusa, and was shown significant performance against all tested bacteria (Menghani et al., 2011).

Phattayakorn and friend (2009) screened antimicrobial potential of various medicinal plants. The results were exposed that; Piper betle could inhibit all strains of bacteria. Furthermore, Phylanthus emblica (Malacca tree), Senna siamea (cassod tree) and Punica granatum (pomegranate) show greater significant (P < 0.05) antimicrobial activity when compared with other herb extracts, with the zone of inhibition ranging from 12.330.58 to 25.017.3 mm. The ethanol extracts of the three herbs (Malacca tree, cassod tree, and pomegranate) were the most efficient antimicrobial compounds. The values of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) of the herb extracts were 0.3–2.4, >3 and 1.2–2.4 (w/v), respectively (Phattayakorn and Wanchaitanawong, 2009).

Yasmeen et al. (2012) evaluated fourteen plants species. Serial dilution method for antibacterial activity, while Nessler reagents and colorimetric method were used for estimation of Ammonia and urease activity. The results indicated that, the Allium sativum alcoholic and aqueous fractions had shown (pH: 8.5560, 8.8480, Ammonia: 4.42, 3.52 µg/mL, Urease: 0.009, 0.007 IU/mL respectively) as compared to control positive (pH: 9.03, Ammonia: 6.7 µg/mL, Urease: 0.013 IU/mL). However, alcoholic extracts of Mangifera indica (8.8820, 5.42 µg/mL, 0.010 IU/mL), Mentha piperita (8.8880, 4 µg/mL, 0.008 IU/mL) and aqueous extract of Opuntia ficus-indica (8.8100, 5.22 µg/mL, 0.010 IU/mL) to be found moderate activity against P. mirabilis. Furthermore, alcoholic and aqueous fractions of Eucalyptus camaldulensis (pH: 8.91, 8.96, Ammonia: 5.16, 5.06 µg/mL, Urease: 0.01, 0.01 IU/mL) had poor inhibitory effect. They also reported that all the commercial products were to be found the excellent antibacterial property (pH: 4.8–6.8, Ammonia: 0 µg/mL, Urease: 0 IU/mL). The rest of the herbal extracts were not significantly different (p < 0.05) from positive control. It was concluded that all products had strong antibacterial activity against P. mirabilis (Yasmeen et al., 2012).

Venkataswamy et al. (2010) screened the leaves of the single plant. The results were found that the aqueous and methanol fraction of the leaf shows maximum inhibition against E. coli, Proteus vulgaris, Staphylococcus aureus, Streptococcus pyogenes, Klebsiella pneumonia, while moderate inhibitory action against Pseudomonas aeruginosa and Salmonella typhi (Venkataswamy et al., 2010). Recently, eight Indian medicinal plants were screened for antimicrobial potential. The results were to be found that, the bactericidal potential of the crude extracts of selected plants i.e. B. persicum, A. concinna, A. lebbeck A. nobilis, C. indica, S. albicaule, V. nigundu, and B. diffusa, and was shown significant performance against all tested bacteria (Menghani et al., 2011).
S. no	Plant name	Common name	Bacteria	Fungus	Part used	References	
1.	Trachyspermum ammi	Ajwain	P. larvae	Whole plant	Ansari et al. (2016)		
2.	Punugundullosa	Almond	P. larvae	Whole plant	Ansari et al. (2016)		
3.	Ocimum tenuiflorum	Tulsi	P. larvae	Whole plant	Ansari et al. (2016)		
4.	Citrus bergamia	Bergamot	P. larvae	Whole plant	Ansari et al. (2016)		
5.	Juniperus virginiana	Cedar wood	P. larvae	Whole plant	Ansari et al. (2016)		
6.	Azadirachta indica	Neem	P. larvae	Whole plant	Ansari et al. (2016)		
7.	Elettaria cardamomum	Cardamom	P. larvae	Whole plant	Ansari et al. (2016)		
8.	Murraya koenigii	Curry	P. larvae	Whole plant	Ansari et al. (2016)		
9.	Zingiber officinale	Ginger	P. larvae	Whole plant	Ansari et al. (2016)		
10.	Vetiveria zizanoides	Khas	P. larvae	Whole plant	Ansari et al. (2016)		
11.	Daucus carota	Carrot	P. larvae	Whole plant	Ansari et al. (2016)		
12.	Laurus nobilis	Bay	P. larvae	Whole plant	Ansari et al. (2016)		
13.	Citrus bergamia	Bergamot	P. larvae	Whole plant	Ansari et al. (2016)		
14.	Melaleuca alternifolia	Cajeput	P. larvae	Whole plant	Ansari et al. (2016)		
15.	Ocimum sanctum	Tulsi	P. larvae	Whole plant	Ansari et al. (2016)		
16.	Pimenta dioica	Jamaica pepper	P. larvae	Whole plant	Ansari et al. (2016)		
17.	Lotus corniculatus	Mountain pepper	P. larvae	Whole plant	Ansari et al. (2016)		
18.	Myristica fragrans	Nutmeg	P. larvae	Whole plant	Ansari et al. (2016)		
19.	Aniba rosea	Rosewood	P. larvae	Whole plant	Ansari et al. (2016)		
20.	Mentha piperita	Peppermint	P. larvae	Whole plant	Ansari et al. (2016)		
21.	Illicium verum	Star anise	P. larvae	Whole plant	Ansari et al. (2016)		
22.	Limonum crassifolium	Lime	P. larvae	Whole plant	Ansari et al. (2016)		
23.	Matricaria chamomilla	Chamomile	P. larvae	Whole plant	Ansari et al. (2016)		
24.	Mentha arvensis	Corn mint	P. larvae	Whole plant	Ansari et al. (2016)		
25.	Anethum graveolens	Dill	P. larvae	Whole plant	Ansari et al. (2016)		
26.	Pelargonium graveolens	Geranium	P. larvae	Whole plant	Ansari et al. (2016)		
27.	Simmondsia chinensis	Jojoba	P. larvae	Whole plant	Ansari et al. (2016)		
28.	Sesamum indicum	Sesame	P. larvae	Whole plant	Ansari et al. (2016)		
29.	Triticum vulgare	Wheat germ	P. larvae	Whole plant	Ansari et al. (2016)		
30.	Baccharis halimifolia	Groundsel bush	V. destructor	Whole plant	Damiani et al. (2011)		
31.	M. thunbergii var. verticillata	Pepper	V. destructor	Whole plant	Damiani et al. (2011)		
32.	Lavandula x intermedia	Lavandin	Acshaoferaapis	Whole plant	Larraw et al. (2001)		
33.	Coriandrum sativum	Coriander	A. shiokeraapis	Whole plant	Larraw et al. (2001)		
34.	Lavandula officinalis	Lavanda	A. shiokeraapis	Whole plant	Larraw et al. (2001)		
35.	Lavandula angustifolia	False camphor	A. shiokeraapis	Whole plant	Larraw et al. (2001)		
36.	Ocimum basilicum	Basil	A. shiokeraapis	Whole plant	Larraw et al. (2001)		
37.	Tagetes minuta	Tagetes	A. shiokeraapis	Whole plant	Larraw et al. (2001)		
38.	Rosmarinus officinalis	Rosemary	A. shiokeraapis	Whole plant	Larraw et al. (2001)		
39.	Eucalyptus globulus	Eucalyptus	A. shiokeraapis	Whole plant	Larraw et al. (2001)		
40.	Polygonum bistorta	Bistort	Paenibacillus larvae	Leaves, stem	Cecotti et al. (2012)		
41.	Polygonum bistorta	Bistort	Melissococcus platani	Leaves, stem	Cecotti et al. (2012)		
42.	Tamarindus indica	Mountain pepper	A. shiokeraapis	Whole plant	Ansari et al. (2017)		
43.	Syzygium aromaticum	Clove	A. shiokeraapis	Bud	Ansari et al. (2017)		
44.	Piper betle	Betel	A. shiokeraapis	Leaves	Ansari et al. (2017)		
45.	Anisomelis indica	Kala Bhangra	A. shiokeraapis	Whole plant	Ansari et al. (2017)		
46.	Mentha spicata	Spearmint	A. shiokeraapis	Whole plant	Ansari et al. (2017)		
47.	Matricaria chamomilla	Chamomile	A. shiokeraapis	Whole plant	Ansari et al. (2017)		
48.	Daucus carota	Carrot	A. shiokeraapis	Seed	Ansari et al. (2017)		
49.	Cuminum cyminum	Cumin	A. shiokeraapis	Seed	Ansari et al. (2017)		
50.	Ocimum gratissimum	Clove basil	A. shiokeraapis	Whole plant	Ansari et al. (2017)		
51.	Allium sativum	Garlic	A. shiokeraapis	Whole plant	Ansari et al. (2017)		
52.	Aegle marmelos	Stone apple	A. shiokeraapis	Whole plant	Ansari et al. (2017)		
53.	Pelargonium graveolens	Geranium rose	A. shiokeraapis	Whole plant	Ansari et al. (2017)		
54.	Callistemon citrinus	Bottle brush	A. shiokeraapis	Whole plant	Ansari et al. (2017)		
55.	Myristica fragrans	Nutmeg	A. shiokeraapis	Whole plant	Ansari et al. (2017)		
56.	Cymbopogon martini	Palmrosa oil	A. shiokeraapis	Whole plant	Ansari et al. (2017)		
57.	Elettaria cardamomum	Cardamom	A. shiokeraapis	Whole plant	Ansari et al. (2017)		
58.	Foeniculum vulgare	Fennel seed oil	A. shiokeraapis	Whole plant	Ansari et al. (2017)		
59.	Trachyspermum ammi	Ajwain oil	A. shiokeraapis	Whole plant	Ansari et al. (2017)		
60.	Anethum graveolens	Dill oil	A. shiokeraapis	Whole plant	Ansari et al. (2017)		
61.	Cannabis sativa	Hempseed oil	A. shiokeraapis	Whole plant	Ansari et al. (2017)		
62.	Gilepticocoronaria	Garland Daisy oil	A. shiokeraapis	Whole plant	Ansari et al. (2017)		
S. no	Plant	Common name	Mites	Bacteria	Fungus	Part used	References
-------	-------	-------------	-------	----------	--------	-----------	------------
63.	Azadirachta indica	Neem	Varroia jacobseni	Ascospaera apis	Whole plant	Melathopoulos et al. (2000)	
64.	Brassica napus	Canola oil	Varroia jacobseni	Ascospaera apis	Whole plant	Melathopoulos et al. (2000)	
65.	Azadirachta indica	Neem	Acrapiswoodi	Ascospaera apis	Whole plant	Melathopoulos et al. (2000)	
66.	Brassica napus	Canola oil	Acrapiswoodi	Ascospaera apis	Whole plant	Melathopoulos et al. (2000)	
67.	Lavandula angustifolia	English lavender	Ascospaera apis	Whole plant	Boudegga et al. (2010)		
68.	Rosmarinus officinalis	Rosemary	Ascospaera apis	Whole plant	Boudegga et al. (2010)		
69.	Salvia officinalis	Sage	Ascospaera apis	Whole plant	Boudegga et al. (2010)		
70.	Thymus vulgaris	Thyme	Ascospaera apis	Whole plant	Boudegga et al. (2010)		
71.	Mentha piperita	Peppermint	Ascospaera apis	Whole plant	Boudegga et al. (2010)		
72.	Pelargonium graveolens	Rose geranium	Ascospaera apis	Whole plant	Boudegga et al. (2010)		
73.	Prunus dulcis	Almond	Ascospaera apis	Whole plant	Boudegga et al. (2010)		
74.	Citrus aurantium	Key lime	Ascospaera apis	Whole plant	Boudegga et al. (2010)		
75.	Olea europaea	Olive	Ascospaera apis	Whole plant	Boudegga et al. (2010)		
76.	Laurensobolis	Bay laurel	Nosema ceranae	Whole plant	Porrini et al. (2011)		
77.	Rosmarinus officinalis	Rosemary	V. destructor	P. larvae	Whole plant	Maggi et al. (2011)	
78.	Azadirachta indica	Neem	V. destructor	P. larvae	Whole plant	Anjum et al. (2015)	
79.	Vitex trifolia	Barbata	V. destructor	P. larvae	Whole plant	Anjum et al. (2015)	
80.	Azadirachta indica	Neem	Bacillus subtilis	Whole plant	Anjum et al. (2015)		
81.	Azadirachta indica	Neem	Staphylococcus hominis	Whole plant	Anjum et al. (2015)		
82.	Vitex trifolia	Barbata	Bacillus subtilis	Whole plant	Anjum et al. (2015)		
83.	Vitex trifolia	Barbata	Staphylococcus hominis	Whole plant	Anjum et al. (2015)		
84.	Carapoaianensis	Andiroba oil	V. destructor	P. larvae	Whole plant	Santos et al. (2012)	
85.	Copaifera langsdorffii	Copaiba oil	V. destructor	P. larvae	Whole plant	Santos et al. (2012)	
86.	Lepidium latifolium	Pepperwort	V. destructor	Whole plant	Razavi et al. (2015)		
87.	Zataria multiflora	Satar	V. destructor	Whole plant	Razavi et al. (2015)		
88.	Populus fremontii	Fremonts	V. destructor	P. larvae	Whole plant	Wilson et al. (2017)	
89.	Olea europaea	Olive	P. larvae	Whole plant	ARENAS (2015)		
90.	Olea europaea	Olive	Nosema species	Leaves	ARENAS (2015)		
91.	Olea europaea	Olive	Melissosoccus plutomius	Leaves	ARENAS (2015)		
92.	Thymus satureoides	Thyme	V. destructor	Whole plant	Ramzi et al. (2017)		
93.	Origanum elongatum	Majorana	V. destructor	Whole plant	Ramzi et al. (2017)		
94.	Lippia berlandieri	Oregano	Beauveria bassiana	Whole plant	Ramzi et al. (2017)		
95.	Lippia berlandieri	Oregano	Metarhizium anisopliae	Whole plant	Ramzi et al. (2017)		
96.	Thymus kotschyanus	Thymol	V. destructor	Whole plant	Ghasemi et al. (2011)		
97.	Ferula assa-foetida	Devils dung	V. destructor	Whole plant	Ghasemi et al. (2011)		
98.	Eucalyptus camaldulensis	River red gum	V. destructor	Whole plant	Ghasemi et al. (2011)		
99.	Ocimum basilicum	Basil	P. larvae	Whole plant	Mährig et al. (2011)		
100.	Thymus vulgaris	Thyme	P. larvae	Whole plant	Mährig et al. (2011)		
101.	Urtica dioica	Nettle	P. larvae	Whole plant	Mährig et al. (2011)		
102.	Humulus lupulus	Common hop	P. larvae	Whole plant	Flesar et al. (2010)		
103.	Myrtus communis	Myrtle	P. larvae	Whole plant	Flesar et al. (2010)		
104.	Achyranthes bidentata	Macela	P. larvae	Whole plant	Gonzalez and Marioli (2010)		
105.	Chenopodium ambrosioides	Wormseed	P. larvae	Whole plant	Gonzalez and Marioli (2010)		
106.	Eucalyptus cinerea	Argyle apple	P. larvae	Whole plant	Gonzalez and Marioli (2010)		
107.	Gnaphalium australis	P. larvae	Whole plant	Gonzalez and Marioli (2010)			
108.	Lippia tubinata	P. larvae	Whole plant	Gonzalez and Marioli (2010)			
109.	Marrubium vulgare	Common horehound	P. larvae	Whole plant	Gonzalez and Marioli (2010)		
S. no	Plant Common name	Common name	Mites	Bacteria	Fungus	Part used	References
-------	------------------	-------------	-------	----------	--------	-----------	------------
110.	Minthostachys verticillata	Peperina	P. larvae	Whole plant	Gonzalez and Marioli (2010)		
111.	Origanum vulgare	Common originum	P. larvae	Whole plant	Gonzalez and Marioli (2010)		
112.	Tagetes minuta	Black mint	P. larvae	Whole plant	Gonzalez and Marioli (2010)		
113.	Thymus vulgaris	Thyme	P. larvae	Whole plant	Gonzalez and Marioli (2010)		
114.	Laurus nobilis	Bay laurel	P. larvae	Whole plant	Damiani et al. (2014)		
115.	Piper betle	Betel	A. apis	Whole plant	Chantawannakul et al. (2005)		
116.	Cinnamomum cassia	Cassia	A. apis	Whole plant	Chantawannakul et al. (2005)		
117.	Lavandula angustifolia	Lavenda	V. destructor	Whole plant	Damiani et al. (2009)		
118.	Laurus nobilis	Laurel	V. destructor	Whole plant	Damiani et al. (2009)		
119.	Thymus vulgaris	Thyme	V. destructor	Whole plant	Beligon et al. (2013)		
120.	Scutia umbrosa	Coronilha	Paenibacillus species	Whole plant	Fuselli et al. (2007)		
121.	Acantholippia serapioides	Andean thyme	P. larvae	Whole plant	Fuselli et al. (2008)		
122.	Citrus paradise	Grapefruit	P. larvae	Whole plant	Fuselli et al. (2008)		
123.	Citrus sinensis	Sweet orange	P. larvae	Whole plant	Fuselli et al. (2008)		
124.	Citrus limon	Lemon	P. larvae	Whole plant	Fuselli et al. (2008)		
125.	Citrus nobilis	Mandarin	P. larvae	Whole plant	Fuselli et al. (2008)		
126.	Artemisia absinthium	Wormwood	P. larvae	Whole plant	Fuselli et al. (2008)		
127.	Artemisia annua	Sweet wormwood	P. larvae	Whole plant	Fuselli et al. (2008)		
128.	Lepechinia floribunda	Pitcher sage	P. larvae	Whole plant	Damiani et al. (2009)		
129.	Tagetes minuta	Black mint	V. destructor	Whole plant	Damiani et al. (2009)		
130.	Tessaria absinthium	Black mint	V. destructor	Whole plant	Fuselli et al. (2008)		
131.	Aloysia gratissima	Whitebrush	A. apis	Whole plant	Dellacasa et al. (2003)		
132.	Heterotheca latifolia	Camphorweed	A. apis	Whole plant	Dellacasa et al. (2003)		
133.	Lippia integrifolia	A.apis	Whole plant	Dellacasa et al. (2003)			
134.	Lippia turbinata	A. apis	Whole plant	Dellacasa et al. (2003)			
135.	Achyrocline vueeoides	Macela	Varroa mites	P. larvae	Whole plant	Sabaté et al. (2012)	
136.	Achyrocline vueeoides	Thyme	Varroa mites	P. larvae	Whole plant	Ariana et al. (2002)	
137.	Achyrocline vueeoides	Savory	Varroa mites	P. larvae	Whole plant	Ariana et al. (2002)	
138.	Mentha spicata	Spearmint	Varroa mites	P. larvae	Whole plant	Reyes et al. (2012)	
139.	Mentha spicata	Thyme	Varroa mites	P. larvae	Whole plant	Reyes et al. (2012)	
140.	Flourensia sp	Palmarosa	P. larvae	Whole plant	Hernández-López et al. (2014)		
141.	Flourensia sp	Citronella grass	P. larvae	Whole plant	Gende et al. (2009)		
142.	Flourensia sp	Black mint	P. larvae	Whole plant	Gende et al. (2009)		
143.	Flourensia sp	Green anise	P. larvae	Whole plant	Fuselli et al. (2010)		
144.	Pimpinella anisum	Fennel	P. larvae	Whole plant	Fuselli et al. (2010)		
145.	Melaleuca alata	Tea tree	P. larvae	Whole plant	Fuselli et al. (2010)		
146.	Melaleuca alternifolia	Citronella	P. larvae	Whole plant	Fuselli et al. (2010)		
147.	Melaleuca alternifolia	Tea tree	P. larvae	Whole plant	Fuselli et al. (2010)		
148.	Cymbopogon winterianus	Palmarosa	P. larvae	Whole plant	Fuselli et al. (2010)		
149.	Cymbopogon martini	Cinnamon	Bacillus larva	A. apis	Whole plant	Fuselli et al. (2010)	
150.	Cinnamomum verum	Palmarosa	Bacillus larva	A. apis	Whole plant	Fuselli et al. (2010)	
151.	Laurus nobilis	Bay leaf	Bacillus larva	A. apis	Whole plant	Calderone et al. (1994)	
152.	Cinnamomum camphora	Camphor	Bacillus larva	A. apis	Whole plant	Calderone et al. (1994)	
153.	Syzygium aromaticum	Clove	Bacillus larva	A. apis	Whole plant	Calderone et al. (1994)	
154.	Cymbopogon winterianus	Citronella	Bacillus larva	A. apis	Whole plant	Calderone et al. (1994)	
155.	Origanum vulgare	Origanum	Bacillus larva	A. apis	Whole plant	Calderone et al. (1994)	
156.	Thymus vulgaris	Thyme	Bacillus larva	A. apis	Whole plant	Calderone et al. (1994)	
Pseudomonas aeruginosa, Escherichia coli, Bacillus cereus and Staphylococcus aureus. Out of ten medicinal plants, five plants showed antimicrobial potentials, while the Tussilago farfara, Chelidonium majus and Sanguisorba officinalis were most active medicinal plant against antimicrobes (Janovska et al., 2003).

In another study, different plants species were screened for phytochemicals and biological activities. The result exposed that, great potential against antimicrobes were found for the extracts of Syzygium jambos and Caryophyllus aromaticus, which inhibited 57.1% 64.2 and 64.2% of the tested bacterial strains, respectively, while strong activity against antibiotic-resistant bacteria (83.3%). Some plant extracts were inactive, while in case of association of plant extracts and antibiotic to be found active against antibiotic resistant bacteria. The extracts clove, jambolan, pomegranate and thyme inhibited the growth of Pseudomonas aeruginosa (Nascimento et al., 2000).

Acharya et al. (2009) evaluated the antimicrobial activity total nine plants. All of these plants had a bacterial effect. Further, Syzygium cuminii, Skeels (Myrtaceae) and Terminalia chebula Retz (Combretaceae) was observed the most promising bactericidal action, inhibiting the growth of all tested organism, especially Bacillus subtilis, Aeromonas hydrophila and Vibrio cholera. The MBC was found to be in the range of 0.25–4 mg/ml (Acharya et al., 2009).

Recently, the antimicrobial activities of total nine plants were evaluated. The author reported that among nine plants the most active plants were Muscari Comosanum, Rhihetoilei ssp and Tamarix gallica. Among the all tested extracts, the methanolic fraction of Rhihetoilei ssp and aqueous extract of Tamarix gallica were to be found most active, and their diameter was in the range of 15 mm, 22 mm and 10 mm, 17 mm respectively (Zaouia et al., 2010).

In another study, eight plants were reported against Gram-negative and Gram-positive bacteria strains. The microorganisms were obtained from American Type Culture Collection (ATCC) and Proteus mirabilis (CDC S 17), Proteus vulgaris (CDC 527C), and Listeria monocytogenes. Namely, Staphylococcus aureus (ATCC 29213), Staphylococcus epidermidis (ATCC 1228), Bacillus subtilis (ATCC 31091), Bacillus cereus (ATCC 11778), Salmonella typhimurium (ATCC14028), Pseudomonas aeruginosa (ATCC 9027), E. coli (ATCC 31165), Salmonell enteritidis (ATCC 4931), Klebsiella pneumoniae (ATCC 13883), E. coli O157:H7 (ATCC 43894), Enterobact aerogenes (ATCC 29010), Shigella dysenteriae (ATCC 29026). The result showed that all plants extracts were active against both tested strains. Furthermore, Gram-negative was found strong potential than Gram positive bacteria (Kang et al., 2011).

Philip et al. (2009) were studied eight plants. The aqueous fraction had no inhibition, while all the tested plants were to be found inactive in Escherichia coli. However, Curcuma mango displayed action against the tested bacterial strain (Philip et al., 2009). In another study the author reported 8 medicinal plants and their various parts; the results showed that the essential oils of T. daenensis and M. communis were most active against antimicrobes. The MIC values were to be found for essential oils and active extract 0.039 and 10 mg/ml. Furthermore, some plants extracts and their oils also used as food preservation (Ghasemi et al., 2010).

Recently, seven medicinal plants were examined for antibacterial potential, the result indicated that the methanolic extract of Phyllanthus niruri (stone breaker) was to be found strong action against Staphylococcus sp, while the aqueous and methanolic fraction had minimum activity as compared to methanolic (Selvamohan et al., 2012). The author used total six plants, against dental pathogens. All the plants were active against all the tested pathogens. The methanolic extract of T. chebula was to be observed highest zone of inhibition against S. aureus 27 mm, while the lowest value for petroleum ether extract of A. aspera and M. elengi against S. aureusand S. mutans (9 mm). It was concluded that high contents of phytochemicals in these plants might have exerted synergistic antimicrobial effect (Prabhat and Navneet, 2010).

Hassan and his company screened various medicinal plants. The result indicated that Escherichia coli, Salmonella typshi, Pseudomonas aeruginosa were the most inhibited microorganisms. The extract of Sphar eranthu hirtus was the most active against multi-drug resistant Pseudomonas aeruginosa and enterohemorrhagic E. coli. The ethanolic extract of S. hirtus exhibited a higher effect than the hot water extract (Hassan et al., 2009). The author investigated six plants leaves against Klebsiella, Pseudomonas and E. coli. The result was to be found that, the aqueous lemon leaf fraction against E. coli, while Eucalyptus leaf ethanol extract against Klebsiella shows potent activity. Furthermore, except Tulsi plant, Pseudomonas showed resistant to all tested fractions (Zwetlana et al., 2014).

Johnson and his colleagues (2011) screened five important medicinal plants, and the results observed that the maximum of Aloe vera plant was to be exposed against S. aureusand E. coli, while Lanatracamara inactive against bacterial strains. However, the aqueous fraction of the Pongamia pinnata had more active as compared to alcoholic extract against E. coli. Calotrops procera medicinal plant showed antibacterial potential against E. coli and Staphylococcus aureus, while Datura stramonium only active against Staphylococcus aureus (Johnson et al., 2011).

3. A novel application of plant extracts against honey bee pathogens

Honeybees would seem particularly vulnerable to pests and pathogens as each colony is a dense group of individuals. Although honeybees possess many types of defenses against diseases, such as hygienic behavior or the production of anti-microbial substances, colonies still suffer from a number of diseases and pests (Martin, 2001; Simone-Finstrom et al., 2017). But they are threatened by various pathogens like Gut microflora and parasitic mites globally and this may lead to serious consequences (Ansari et al., 2017). Some of the important pathogens of Honey bees are Paenibacillus larva (Bacteria), Varroa destructor (mite) and Ascosphaera apis (Fungi).

Recently, it was demonstrated that, in Europe and the US, prominent losses of honeybee colonies are associated with the mite Varroa destructor (Ryabov et al., 2017; Oddie et al. 2017). The spore-forming bacterium Paenibacillus larva (Genersch, 2010) are the agent causing American foulbrood (AFB) (Alvarado et al., 2017). It is a widespread larval pathogen of the honey bee, infecting young larvae through ingestion of contaminated food. The bacterial spores germinate and proliferate in the midgut lumen after which they start to breach the epithelium and invade the haemocoeal. Young larvae (from the first and second instars) are highly susceptible to this disease and can become infected by as few as 10 spores. However, the dosage-mortality relationship is greatly affected by larval age, genetic makeup and bacterial strain. This disease can be mitigated both through hygienic behavior by adult workers and through larval resistance traits (Qin et al., 2006).

Besides that, essential oils are being used to control these microbial strains. Such strategy allows an alternative way for the control of this serious disease affecting honey and its by-products (wax, pollen and propolis). Also, it can meet consumer demand for a diminution or absence of other antimicrobial chemical substances, which can be substituted by the addition of natural substances.

More, recently in vitro studies have revealed that propolis, and specific compounds within propolis, prevent the development of two infectious pathogens of honey bees, Paenibacillus larva and Ascosphaera apis (Wilson et al., 2017; Borba and Spivak, 2017).
The essential oils proved to be highly effective against *Paenbacillus larvae* are Jamaica pepper oil (*Pimenta dioica*), mountain pepper oil (*Litsea cubeba*), ajwain oil (*Trachyspermum ammi*), corn mint oil, spearmint oil (*Mentha spicata*), star anise oil (*Illicium verum*), nutmeg oil (*Myristica fragrans*), camphor oil (*Cinnamomum camphora*) (Ansari et al., 2016), Barbaka (*Vitex trifolia*) and neem extracts (*Azadirachta indica*) (Anjum et al., 2015), nettle (*Urtica dioica*), basil (*Ocimum basilicum*) (Mârghitaș et al., 2011), Argyle apple (*Eucalyptus cinerea*), Peperina (*Minthostachys verticillata*) (Gonzalez and Marioli, 2010), Nepeta clarkei water extracts against honey bee pathogen *Paenbacillus larvae* (Anjum et al., 2017) laurel (*Laurus nobilis*) (Damiani et al., 2014), Corinhiha (*Scutia buxifolia*) (Boligon et al., 2013), grapefruit (*Citrus paradisi*) (Fuselli et al., 2008), wormwood (*Artemisia absinthium*), sweet wormwood (*Artemisia annua*), Lepechinia floribunda (*sartchesigans*) (Fuselli et al., 2008), Achyrocline satureoides (*Macela*) (Sabaté et al., 2012), *Flourensia riparia*, *Flourensia fiebrigii* (Reyes et al., 2013), Hypericum perforatum (Hernández-López et al., 2014) (as mentioned in Table 4).

It is an ecto-parasitic mesostigmata mite. *Varroa* causes many physical and physiological detrimental effects at the individual bee and colony levels. Repeated *Varroa* feeding on adult bee and brood hemolymph injures the bees physically, leads to a reduction in their protein content and wet and dry body weights, and interferes with organ development. In addition, the parasitic mite and the viruses they vector contribute to morphological deformities like small body size, shortened abdomen, deformed wings. These morphological deformities reduce vigor and longevity. They also affect flight duration and the homing ability of foragers (Conte et al., 2010).

The *Varroa* mite is responsible for the horizontal and vertical transmission of many viruses like DWV, SBV, APV, IAPV and KBV. The horizontal transmission of viruses from nurse bees to larvae occurs through larval food and via brood to adults (Conte et al., 2010). Usually, untreated *Varroa*-infested colonies usually die within six months to two years of mite infestation at the colony level (Conte et al., 2010). V. destructor is supposed to be a very serious threat to the honey bees. *Varroa* parasitism plays in the recent honey bee losses worldwide (Conte et al., 2010). To lower the hazardous effects caused by V. destructor, several plant extracts have been found to be extremely effective. These are Groundsel bush (*Baccharis flabellate*), Peperina (*Minthostachys verticillata*) (Damiani et al., 2011), Pepperwort (*Lepidium latifolium*) (Razavy et al., 2011), Thymol (*Thymus kotschyanus*) (Ghasemi et al., 2017), Argyle apple (*Eucalyptus cinerea*), *Baccharis flabellate* (Damiani et al., 2014), Coronilha (*Coronilha*), laurel (*Laurus nobilis*), ajwain oil (*Pimpinella anisum*), clove bud oil (*Cinnamomum zeylanicum*), cumin seed oil and clove bud oil (Ansari et al., 2017), Pelargonium oil (*Pelargonium graveolens*), Thyme oil (*Thymus vulgaris*) (Boudegga et al., 2010), *Cinnamomum cassia* and Piper betel (Chantawannakul et al., 2005), *Tessaria absinthioides*, *Alyssia gratissima*, *Heterotheca latifolia*, *Lippia juneliana*, *L. integrifolia* and *L. turbinata* (Dellacasa et al., 2003).

Two microsporidia species have been shown to infect *Apis melifera*, *Nosema apis* and *Nosema ceranae*. The honey bee immune response is significantly suppressed by *N. ceranae* infection, although this effect was not observed following infection with *N. apis*. Immune suppression would also increase susceptibility to other bee pathogens and senescence.

Despite the importance of both *Nosema* species in honey bee health, there is no information about their effect on the bees’ immune system (Antúnez et al., 2009). One plant extract was found to be highly effective against this pathogen i-e *Laurus nobilis* (Porrini et al., 2011).

4. Emerging and remarkable applications of silver nanoparticles exploiting as anti-agent

Silver is one of the most important metals which are used in various fields, in magnetic, optics, electronics (Emam and Ahmed, 2016), besides these it has also used as anticancer, bactericidal, fungicidal, antiviral and anti-protozoal agent (Lansdown, 2006). As antimicrobes potentials, silver is one of the most important metals and generally examined against with antimicrobial properties (Lansdown, 2006). It has been reported that, at low amount silver has great potential against microorganisms, while the silver nanoparticles at high concentration (>10 μM), toxic against mammals as well as host organisms (Conrad et al., 1999). In one other report, Lansdown demonstrated that nanosilver is pharmaceutical recommended as well as nontoxic to human beings (Lansdown, 2006).

4.1. Bactericidal potential of silver nanoparticles

Nano-Silver has great potential against both strains i.e. Gram-positive and Gram-negative bacteria and also against the antibiotic resistant bacteria (Kim et al., 2007). The bactericidal action of NSPs depends on concentration and size of NSPs. Generally, small particles sizes at low concentration can kill bacteria while high concentration has also effective against ant microbes. The shape of NSPs has also a great influence on antimicrobial function. Sadeghi and his coworkers examined three different shapes of nanosilver namely silver nanoparticles, silver nanorods and silver nanoparticles against *Staphylococcus aureus* and *E. coli*. Among these, the nanoparticles had the excellent antimicrobial activity (Sadeghi et al., 2012).

From the research survey, it has been also proved that combined form of different antibiotic and nanosilver have a potent role as compared to their alone usage. In a recent study, it is reported that the combining effect of amoxicillin and naosilver against *E. coli* found greater than they have used alone (Li et al., 2005). NSPs are important to test against antimicrobes. Some studies have been reported against this type of pathogen by Kumar et al. (2014) and Velmurugan et al. (2013). The exact mechanism of Ag nanoparticles is not completely clear. It is reported that DNA damage, cell membrane damage, mitochondrial damage and oxidative stress are involved (Velmurugan et al., 2013). Silver nanoparticles when to react with a thiol group, the resultant product reactive oxygen
species (ROS) are formed. As a result, it inhibits the respiratory enzyme and thus leads to cell death (Krishnaraj et al., 2010).

Recent literature showed that the biocidal effect of maltose reduced silver nanoparticles (AgNPs) is effective against honey bee bacterial diseases (American foulbrood and European foulbrood pathogens) (Culha et al., 2017). Similarly, tea tree oil (TTO) nanoparticles were found efficacious against P. larvae and Melissococcus plutonius (Christ Vianna Santos et al., 2014) These bacterial bee pathogens have been gaining a reputation as there are few satisfying control options beyond citing the problem of resistance to medicine/antibiotics using conventionally. Additionally, Glycerol Nano capsules were able to destroy spores of Paenibacillus larvae without causing harm to bees (Lopes et al., 2016). Therefore, researches with nanotechnology characterize, possibly, a viable control option for infectious diseases in honey bees.

4.2. Fungicidal potential of nano silver

One of the other important infectious diseases which cause a significant burden on healthcare is fungus (Brown et al., 2012a, b). To control this infection in human beings, researchers’ required a new type of antifungal agents (Brown et al., 2012a; Zuo et al., 2016). Like bacteria, NSPs has also fungicidal action against broad spectrum fungi. In one study Kim and his company reported antifungal performance of 44 strains of six fungal species. Among these Trichophyton mentagrophytes, Candida krusei, Candida albicans, Candida glabrata, Candida krusei and Candida parapsilosis growth stop applying NSPs (Kim et al., 2008). The silver and chitosan nanoparticles were tested against Rhizoctonia solani, Alternaria alternata and A. flavus from chickpea seeds and they showed potent fungicidal properties (Kaur et al., 2012).

Savithramma and his colleagues demonstrated antifungal activity against A. flavus, A. niger, Curvularia spp., Fusarium spp. and Rhizopus spp, using silver nanoparticles synthesized from medicinal plants namely, Svensonia hyderobadensis, Boswellia ovalifoliolata and Shorea tumbuguga. All the tested NSPs showed significant properties against the entire tested microorganism, while among these, nanosilver obtained from Svensonia hyderobadensis had excellent activity as compared to other plants (Savithramma et al., 2011).

In a recent study, silver nanoparticles and natamycin were tested against 216 strains of fungi from patients suffering from severe keratitis. Among these, 112 isolates of Fusarium, 82 isolates of Aspergillus and 10 Alternaria isolates. The result showed that silver nanoparticles had great potential than natamycin (Xu et al., 2013). The exact mechanism of NSPs against fungi is not yet clear, but it was observed that nanosilver can damage the cellular membrane and inhibit the normal budding process (Kim et al., 2009; Nasrollahi et al., 2011).

In addition, new natural biocides like biopolymer chitosan and three monoterpenes i.e. camphor, menthol and thymol were found useful against Honey bee pathogenic fungi and bacteria (Rabea and Badawy, 2014). Similarly, a compound juglone (walnut green husk extracts) also showed antifungal against different pathogenic fungi including A. Apis (Wianowska et al., 2016).

4.3. Virucidal potential of nano silver

It was also reported that small size SNPs like 25 cm or less nanosilver are more effective against viral infection (Speshock et al., 2010). Lara and his colleagues reported that nanosilver inhibits the initial stages of HIV-1 cycle. The mechanism of binding of NSPs attachment with glycoprotein 120, also inhibits cluster of differentiation 4-dependent binding, fusion and infectivity. Thus they perform an antiviral action to block HIV-1 cell free and cell associated infection (Lara et al., 2010). Different studies have proven the behavior of SNPs without a capping agent means naked nanosilver antiviral properties of various viruses, namely Vaccinia virus (Trefry and Woolsey, 2013), human parainfluenza virus type 3, Herpes simplex virus type 1 and type 2 (Gaikwad et al., 2013), tacaribe virus (Speshock et al., 2010), hepatitis B virus (Lu et al., 2008), Coxsackie virus B3 (Ben Salem et al., 2012), influenza virus (Xiang et al., 2011) and monkey pox virus (Rogers et al., 2008).

Several studies also explain the behavior of coated SNPs as an antiviral agent namely, respiratory syncytial virus (Sun et al., 2008), human immunodeficiency virus type-1 (Lara et al., 2011) and HSV (Baram-Pinto et al., 2009). It was observed that nano silver coated with poly (N-vinyl-2-pyrrolidone) having size about 1–10 nm were most effective to inhibit replication of HIV (Elechiguerra et al., 2005).

Although, very little information regarding the silver nanoparticles against honey bee viruses has been yet investigated. Sacbrood virus (SBV) a single-stranded RNA virus severely infectious in honey bee colonies all over Asia. Hence, silver ions were found effective against natural KSBV (Korean sac brood virus) infection in A. cerana. colonies. In this research, bioaccumulation in bees and recommended concentrations of silver residue in honey or other hive products were not considered (Ahn et al., 2015).

5. Conclusion

The antibacterial activities of medicinal plants are mostly carried out in Pakistan and India for ethno-pharmacological information, while critically to evaluate the relationship between the antimicrobial potential, phyto-chemical isolation and traditional medicine uses. Medicinal plants and Silver Nanoparticles studies are very important for various types of biological activities and there different therapeutic applications. Plant based silver nanoparticles have open applications in various fields such as optical, electronic and various biological properties. Due to these emergent potentials of Silver Nanoparticles, it is also used as therapeutic platforms in biomedical agriculture/apiculture. Furthermore, before their wide use in medical fields and apiculture, it is very important to know their impact on human health adult bees and hive products as well. This review indicates general information about the different medicinal plants having bactericidal, miticidal, virucidal etc potentials which have been used globally. We expect that this review will be helpful for future studies because these medicinal plants have various important phytochemicals which are an easy tool for scientific studies to choose the valuable plants and their potential for bactericidal activities.

Acknowledgements

The author S. Ullah. Khan has been supported by the Chinese Scholarship Council for his PhD study.

References

Abdel-Aziz, M.S., Shaheen, M.S., El-Nekeety, A.A., Abdel-Wahhab, M.A., 2014. Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using chenopodium murale leaf extract. J. Saudi Chem. Soc. 18 (4), 356–363.
Acharyya, S., Patra, A., Bag, P.K., 2009. Evaluation of the antimicrobial activity of some medicinal plants against enteric bacteria with particular reference to multi-drug resistant vibrio cholerae. Tropical J. Pharm. Res. 8 (3).
Ahluwalia, V., Elumalai, S., Kumar, V., Kumar, S., Sangwan, R.S., 2018. Nano silver particle synthesis using Svertara paniculata herbal extract and its antimicrobial activity. Microbial Pathogenesis 114, 402–408.
Ahn, A.-J., Ahn, K.-S., Suh, G.-H., Noh, J.-H., Kim, Y.-H., Yoo, M.-S., Kang, S.-W., Shin, S.-S., 2015. Efficacy of silver ions against sacbrood virus infection in the eastern honey bee apis cerana. J. Vet. Sci. 16 (1), 289–295.
Ajitha, B., Reddy, Y.A.K., Reddy, P.S., 2015. Green synthesis and characterization of silver nanoparticles using lantana camara leaf extract. Mater. Sci. Eng., C 49, 373–381.
Chougale, A., Padul, M., Saiful, A., Kakad, S., 2009. Antibacterial activity directed against some bacterial pathogens. J. Insect Sci. 9 (1), 1–10.

Cecotti, R., Carpana, E., Falchero, L., Paoletti, R., Tava, A., 2012. Determination of the antimicrobial activities of plant essential oils against Paenibacillus larvae. J. Invertebr. Pathol. 109 (1), 145–152.

Calderone, N.W., Shimanuki, H., Allen-Wardell, G., 1994. An in vitro evaluation of the effects of plant essential oil on paenibacillus larvae. Biocontrol Sci. Technol. 4 (4), 319–327.

Cecotti, R., Carpana, E., Falchero, L., Paoletti, R., Tava, A., 2012. Determination of the antimicrobial activity against two major honeybee pathogens. J. Insect Sci. 12 (2), 701–709.

Calderone, N.W., Shimanuki, H., Allen-Wardell, G., 1994. An in vitro evaluation of the effects of plant essential oil on paenibacillus larvae. Biocontrol Sci. Technol. 4 (4), 319–327.

Ameya, G., Manilal, A., Merdekios, B., 2017. Antibacterial activity and phytochemical screening of some medicinal plants commonly used in saudi arabia against selected pathogenic microorganisms. J. Biotechnol. Biotechnol. Equip. 30 (1), 49–55.

Ameya, G., Manilal, A., Merdekios, B., 2017. Antibacterial activity and phytochemical screening of some medicinal plants commonly used in saudi arabia against selected pathogenic microorganisms. J. Biotechnol. Biotechnol. Equip. 30 (1), 49–55.

Ameya, G., Manilal, A., Merdekios, B., 2017. Antibacterial activity and phytochemical screening of some medicinal plants commonly used in saudi arabia against selected pathogenic microorganisms. J. Biotechnol. Biotechnol. Equip. 30 (1), 49–55.

Ameya, G., Manilal, A., Merdekios, B., 2017. Antibacterial activity and phytochemical screening of some medicinal plants commonly used in saudi arabia against selected pathogenic microorganisms. J. Biotechnol. Biotechnol. Equip. 30 (1), 49–55.

Ameya, G., Manilal, A., Merdekios, B., 2017. Antibacterial activity and phytochemical screening of some medicinal plants commonly used in saudi arabia against selected pathogenic microorganisms. J. Biotechnol. Biotechnol. Equip. 30 (1), 49–55.
Selvamohan, T., Ramadas, V., Kishore, S.S.S., 2012. Antimicrobial activity of selected medicinal plants against some selected human pathogenic bacteria. Adv. Appl. Sci. Res. 3 (5), 3374–3381

Sarraj, P., 2011a. Antibacterial evaluation and phytochemical screening of datura species. J. Ind. Crops Products 50, 209–210.

Razavi, S.M., Asadpour, M., Jafari, A., Malekpour, S.H., 2015. The field efficacy of nanosilver and monoperenones against the honeybee pathogen paenibacillus larvae and ascosphaera apis. J. Insect Sci. 15 (2), 416–419.

Raza, V.M., Aslam, M., Aslam, M., 2012. Performance of silver nanoparticles in controlling the spread of Varroa destructor virus-1, a honey bee pathogen, in the United States. J. Nanosci. Nanotechnol. 12 (1), 19–23.

Riklin, D., Jiao, Y., Jia, J., Jiao, L., 2011. Silver nanoparticles synthesized using essential oil. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 135, 1137–1144.

Sujitha, V., Murugan, K., Paulpandi, M., Panneerselvam, C., Suresh, U., Roni, M., Nicoletti, M., Higuchi, A., Madhubhagan, P., Subramaniam, J., 2015. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (den-2) and its primary vector aedes aegypti. Parasitol. Res. 114 (9), 3315–3325.

Sun, L., Singh, A.K., Vig, K., Pillai, S.R., Singh, S.R., 2008. Silver nanoparticles inhibit replication of respiratory syncytial virus. J. Biomed. Nanotechnol. 4 (2), 149–158.

Tanvir, F., Yaqub, A., Tanvir, S., Anderson, W.A., 2017. Poly-L-arginine coated silver nanoparticles and their anti-bacterial properties. Nanomaterials 7 (10), 296.

Ullah, Z., Rehman, A., Ullah, N., Khan, S.A., Khan, S.U., Ahmad, I., 2013. Antibacterial activity of methanol extract of ahyla nodiflora Int. J. Chem. Pharm. Res. 5 (3), 323–326.

Ullah, Z., Rehman, A., Ullah, N., Khan, S.A., Khan, S.U., Ahmad, I., 2013. Antibacterial activity of methanol extract of ahyla nodiflora Int. J. Chem. Pharm. Res. 5 (3), 323–326.

Vilas, V., Philip, D., Mathew, J., 2014. Catalytically and biologically active silver nanoparticles synthesized using essential oil. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 135, 743–750.

Villaret, B., Dieu, A., Straube, M., Solhonne, B., Miklavc, P., Hamadi, S., Diallo, D., 2010. Interaction of silver nanoparticles with tacaribe virus. J. Nanobiotechnol. 8 (1), 19.

Vu, T.T., Kim, H., Tran, V.K., Le Dang, Q., Nguyen, H.T., Kim, H., Kim, J.C., 2015. In vitro antibacterial activity of selected medicinal plants traditionally used in Vietnam against human pathogenic bacteria. BMC Complementary Alternative Med. 16 (1), 46.

Walter, C., Shinwari, Z.K., Afzal, I., Malik R.N., 2011. Antibacterial activity in herbal products used in pakistan. J. Ethnopharmacol. 134 (3), 553–563.

Warda, K., Markouk, M., Bekkouche, K., Larhsini, M., Abbad, A., Sidalo, D., 2011. Silver nanoparticles impair retinoic acid-inducible gene I mediated mitochondrial anti-viral immunity by blocking the apoptotic flux in lung epithelial cells. ACS Nano.

Vu, T.T., Kim, H., Tran, V.K., Le Dang, Q., Nguyen, H.T., Kim, H., Kim, J.C., 2015. In vitro antibacterial activity of selected medicinal plants traditionally used in Vietnam against human pathogenic bacteria. BMC Complementary Alternative Med. 16 (1), 46.

Walter, C., Shinwari, Z.K., Afzal, I., Malik R.N., 2011. Antibacterial activity in herbal products used in pakistan. J. Ethnopharmacol. 134 (3), 553–563.

Warda, K., Markouk, M., Bekkouche, K., Larhsini, M., Abbad, A., Romane, A., Boukraoua, M., 2009. Antibacterial evaluation of selected mrocan medicinal plants against staphylococcus pneumoniae. Afr. J. Pharm. Pharmacol. 3 (3), 101–104.

Wang, L.-H., Li, P.-P., Wei, D.-B., Liu, Y., Wan, L.-G., Xiang, T.-X., Zhang, Y.-J., 2016. Chloramphenicol isolates of uropathogenic escherichia coli producing mdm-7 metallo-beta-lactamase in china. Int. J. Antimicrobial Agents.

Warda, K., Markouk, M., Bekkouche, K., Larhsini, M., Abbad, A., Romane, A., Boukraoua, M., 2009. Antibacterial evaluation of selected mrocan medicinal plants against staphylococcus pneumoniae. Afr. J. Pharm. Pharmacol. 3 (3), 101–104.

Wang, L.-H., Li, P.-P., Wei, D.-B., Liu, Y., Wan, L.-G., Xiang, T.-X., Zhang, Y.-J., 2016. Chloramphenicol isolates of uropathogenic escherichia coli producing mdm-7 metallo-beta-lactamase in china. Int. J. Antimicrobial Agents.

Xiang, D.-X., Chen, Q., Pang, L., Zheng, C.-L., 2011. Inhibitory effects of silver nanoparticles on h1n1 influenza virus in vitro. J. Virol. Methods 178 (1), 137–142.

Xu, Y., Gao, C., Li, X., He, Y., Zhou, L., Pang, G., Sun, S., 2013. In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi. J. Ocular Pharmacol. Therapeutics 29 (2), 270–274.

Yasmeen, R., Hashmi, A., Anjum, A., Saeed, S., Muhammad, K., 2012. Antibacterial activity of indigenous herbal extracts against anae bacteria producing bacteria. J. Animal Plant Sci. 22 (2), 416–419.

Zaouia, K., Segui, L., Nouredinne, G., Redha, O.M., 2010. Antimicrobial activity of nine medicinal plants growing in the south of algeria. Ann. Biol. Res. 1 (4), 145–147.

Zuo, R., Garrison, A.T., Basak, A., Zhang, P., Huigens, R.W., Ding, Y., 2016. In vitro antifungal and antibiofilm activities of halogenated quinoline analogues against Candida albicans and cytotoxicity of neoformans. Int. J. Antimicrobial Agents.

Zwetlana, A., Nandini, M., Dorcas, K., 2014. Antimicrobial activity of medicinal plant extracts. Braz. J. Microbiol. 38 (4), 717–722.

Zwetlana, A., Nandini, M., Dorcas, K., 2014. Antimicrobial activity of medicinal plant extracts. Braz. J. Microbiol. 38 (4), 717–722.