Selective depletion of polymorphonuclear myeloid derived suppressor cells in tumor beds with near infrared photoimmunotherapy enhances host immune response

Takuya Kato, Hiroshi Fukushima, Aki Furusawa, Ryuhei Okada, Hiroaki Wakiyama, Hideyuki Furumoto, Shuhei Okuyama, Seiichiro Takao, Peter L. Choyke, and Hisataka Kobayashi

Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA

ABSTRACT
The immune system is recognized as an important factor in regulating the development, progression, and metastasis of cancer. Myeloid-derived suppressor cells (MDSCs) are a major immune-suppressive cell type by interfering with T cell activation, promoting effector T cell apoptosis, and inducing regulatory T cell expansion. Consequently, reducing or eliminating MDSCs has become a goal of some systemic immunotherapies. However, by systemically reducing MDSCs, unwanted side effects can occur. Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed treatment that selectively kills targeted cells without damaging adjacent normal cells. The aim of this study is to evaluate the antitumor efficacy of MDSC-directed NIR-PIT utilizing anti-Ly6G antibodies to specifically destroy polymorphonuclear (PMN)-MDSCs in the tumor microenvironment (TME) in syngeneic mouse models. PMN-MDSCs were selectively eliminated within tumors by Ly6G-targeted NIR-PIT. There was significant tumor growth suppression and prolonged survival in three treated tumor models. In the early phase after NIR-PIT, dendritic cell maturation/activation and CD8+ T cell activation were enhanced in both intratumoral tissues and tumor-draining lymph nodes, and NK cells demonstrated increased expression of cytotoxic molecules. Host immunity remained activated in the TME for at least one week after NIR-PIT. Abscopal effects in bilateral tumor models were observed. Furthermore, the combination of NIR-PIT targeting cancer cells and PMN-MDSCs yielded synergistic effects and demonstrated highly activated host tumor immunity. In conclusion, we demonstrated that selective local PMN-MDSC depletion by NIR-PIT could be a promising new cancer immunotherapy.

Introduction
Myeloid-derived suppressor cells (MDSCs) have a well-characterized immunosuppressive function and are commonly found in the tumor microenvironment (TME) in many cancers.1–3 The presence of MDSCs in tumor tissue is associated with a decrease in mature dendritic cells (DCs) in many murine tumor models.4,5 This is because the differentiation of bone marrow progenitor cells into granulocytes, macrophages, and DCs is disturbed by an immunosuppressive TME, resulting from the accumulation of MDSCs. Furthermore, MDSCs are implicated primarily in the suppression of T cells and other cell types in the immune system.6 The predominant cytokines and other mediators involved in MDSC-mediated immunosuppression are arginase-1, inducible nitric oxide synthase (iNOS), interleukin (IL)-10, and reactive oxygen species among others.2,6 These substances prevent T cell activation and promote effector T cell apoptosis.7 Furthermore, MDSCs induce regulatory T cell (Treg) expansion in the presence of IFNγ and IL-10, and disrupt innate immunity by interacting with macrophages, NK cells, and NK T cells.2,8 Thus, MDSCs act on multiple immune cell populations to promote immunosuppression and tumor progression.

In diseases such as cancer or chronic inflammation, the bone marrow and spleen increase the production of mature and immature myeloid cells comprising a spectrum of cell types from monocytes to neutrophils. Thus, there are two major subsets of MDSCs based on their phenotype and morphology: polymorphonuclear (PMN)-MDSCs representing the neutrophilic end of the spectrum and monocytic (M)-MDSCs representing the monocytic end of the spectrum.5,9,10 M-MDSCs suppress T cell responses both in an antigen-specific and antigen-nonspecific manner, while PMN-MDSCs suppress immune responses primarily in an antigen-specific manner. Induction of antigen-specific T-cell tolerance is one of the major hallmarks of these cells.11,12 In most solid malignant tumors, PMN-MDSCs were reported to be the predominant subpopulation of MDSCs infiltrating the TME or circulating in the body.13,14 In the clinical setting, intratumoral PMN-MDSCs are significantly correlated with poor prognosis in a variety of malignancies.13,15–17 Therefore, it could be logical to selectively target intratumoral PMN-MDSCs.

CONTACT Hisataka Kobayashi kobayash@mail.nih.gov Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD 20892, USA

This work was authored as part of the Contributor’s official duties as an Employee of the United States Government and is therefore a work of the United States Government. No copyright is claimed in the United States under Title 17, U.S. Code. This is an Open Access article that has been identified as being free of known restrictions under copyright law, including all related and neighboring rights (https://creativecommons.org/publicdomain/mark/1.0/). You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
MDSC subpopulations can be distinguished with surface markers such as Ly6G and Ly6C in mice, unlike CD14, CD15, CD66b, and HLA-DR markers used in humans.18 Near-infrared photothermolysis (NIR-PIT) is a novel cancer therapy which utilizes antibody-photonabsorber conjugate (APC) and near infrared (NIR) light and induces selective cell death against targeted cells without damaging adjacent normal cells.18 With the application of NIR light, rapid cell-specific, necrotic, and highly immunogenic cell death (ICD) is seen in targeted cells.18–20 Currently, in Japan, NIR-PIT utilizing human epidermal growth factor receptor (hEGFR) has been used in clinical practice since January 2021.

NIR-PIT was initially developed to target cancer cells, yet it can be applied to other types of cells, such as immunosuppressive cells. For instance, we previously developed NIR-PIT targeting Tr3 using the surface marker of CD25 or CTLA4, and have shown that intratumoral Tr3s are killed, resulting in an anti-tumor immune activation and tumor growth suppression.21,22 Applying the same logic to Ly6G, a surface marker specifically expressed on PMN-MDSCs in mouse models, it was hypothesized that Ly6G-targeted NIR-PIT could selectively deplete PMN-MDSCs thus, activate their host antitumor immunity. Hence, we evaluated the local depletion of PMN-MDSCs in the tumor bed and subsequent antitumor effects of NIR-PIT targeting Ly6G in mouse tumor models.

Materials and methods
Detailed materials and methods are described in the Supplemental online material.

Results
NIR-PIT utilizing Ly6G-IR700 selectively killed PMN-MDSCs
The successful conjugation of anti-Ly6G monoclonal antibody (mAb) and IR700 was demonstrated (Figure S1). In this study, we confirmed that Ly6G positive cells could be distinguished using Gr-1 and Ly6C antibodies and defined Gr-1hiLy6Cint myeloid cells as PMN-MDSCs and Gr-1intLy6Chi myeloid cells as M-MDSCs (Figure 1(a) and Figure S2). As shown in Figure S3, Gr-1 signal was slightly lower in Ly6G-IR700 i.v. injection only (APC-I.V.) group, suggesting that anti-Gr-1 clone RB6-8C5 may bind the common epitope as Ly6G-IR700 and competed for the binding. However, the signal reduction of Gr-1 was small and did not interfere with the gating on flowcytometric analysis. To verify the ex vivo binding of Ly6G-IR700 to PMN- and M-MDSCs, myeloid cells isolated from the spleen were incubated with Ly6G-IR700 (Figure 1(b)). PMN-MDSCs had high IR700 signal, and excess unconjugated anti-Ly6G mAbs neutralized this signal, suggesting that PMN-MDSCs expressed Ly6G, and this binding was specific. However, no signal was observed for M-MDSCs. We quantitatively assessed the cytotoxicity of Ly6G-targeted NIR-PIT against splenocytes (Figure 1(c,d)). PMN-MDSCs were decreased in a NIR light-dose dependent manner. Moreover, the cytotoxicity of NIR-PIT was not seen in M-MDSCs. No direct cytotoxicity against cancer cells was detected (Figure S4). Additionally, microscopic analysis showed that IR700-bound cells were damaged after NIR-PIT, while non-IR700-bound cells had no apparent changes (Figure 1(e)). Next, we assessed the expression of Ly6G and Ly6C in splenocytes (Figure 1(f) and Figure S5). Ly6G was expressed on the surface of PMN-MDSCs alone, while Ly6C was expressed on PMN-MDSCs, M-MDSCs, T cells, NK cells, DCS, and macrophages. To confirm which cells in tumors were depleted, ex vivo cell viability after Ly6G-targeted NIR-PIT was assessed via flow cytometry (Figure 1(g)). Consistent with Ly6G expression, only PMN-MDSCs were significantly depleted by this treatment. Thus, these results demonstrated that Ly6G-targeted NIR-PIT could selectively destroy PMN-MDSCs without damaging adjacent cells representing other subtypes.

Distribution of MDSCs and specific binding of Ly6G-IR700 in allograft tumor models
The number of PMN-MDSCs and M-MDSCs were calculated and compared in four syngeneic tumor models. In mEERL-hEGFR, MOC2-luc, and MOC1 tumors, the number of tumor-infiltrated PMN-MDSCs in CD45+ cells were significantly higher compared to MC38-luc tumor, while the number of tumor-infiltrated M-MDSCs was significantly higher in MC38-luc tumors compared to other tumors (Figure 2(a)). In the spleen, no significant differences were found in either MDSC (Figure 2(b)). These results demonstrated that the type and number of tumor infiltrating MDSCs varied by tumor models. In this study, mEERL-hEGFR, MOC2-luc, and MOC1 were used as PMN-MDSCs-rich models and MC38-luc as an M-MDSCs-rich model. Next, to evaluate the delivery and specific binding of anti-Ly6G mAbs, multiplex immunohistochemistry (IHC) was performed 1 day after administration of digoxigenin-labeled anti-Ly6G mAb (Ly6G-DIG, Figure 2(c)). Ly6G-DIG was detected on the surface of Ly6G-positive cells, while the DIG signals were not observed on CD3-positive cells. Under the same schedule, in vivo Ly6G-targeted NIR-PIT was performed to assess specific cytotoxicity (Figure 2(d,e)). The results showed that only PMN-MDSCs were decreased after NIR-PIT. Thus, Ly6G-IR700 was successfully delivered and bound to target cells within the tumors, and the selective cytotoxicity of Ly6G-targeted NIR-PIT was effective.

Ly6G-targeted NIR-PIT suppressed tumor growth
We confirmed that the optimal time for NIR light irradiation was approximately 1 day after Ly6G-IR700 administration by the biodistribution of Ly6G-IR700 injection (Figure S6). Next, in vivo therapeutic effects of Ly6G-targeted NIR-PIT were assessed in the three PMN-MDSC-rich allograft models. The treatment regimen and schema are shown in Figure 3(a). All mice injected with Ly6G-IR700 showed an intense 700 nm fluorescence signal within the tumors, and the signal was attenuated immediately after NIR light irradiation, suggesting the photobleaching of Ly6G-IR700 (Figure 3(b)). In all allograft models, the tumor growth was significantly inhibited in the NIR-PIT group compared with the other two groups (Figure 3(c)). Furthermore, the survival of the NIR-PIT group was also significantly prolonged compared with the other two groups in all allograft models (Figure 3(d)). The
efficacy of NIR-PIT against MC38-luc tumor, which contained the least amount of PMN-MDSCs, was also evaluated. Although tumor growth was significantly suppressed, the effect was minimal, and no significant difference in survival was observed (Figure 3(e,f)). Thus, these results demonstrated that Ly6G-targeted NIR-PIT inhibited tumor growth, significantly prolonged survival, and was more effective against PMN-MDSC-rich tumors.
Anti-tumor host immunity was triggered by Ly6G-targeted NIR-PIT soon after the treatment

First, we confirmed that Ly6G-targeted NIR-PIT did not induce obvious damage to cancer cells in mEERL-hEGFR tumors (Figure S7). Additionally, to test the T-cell dependency of anti-tumor response of Ly6G-targeted NIR-PIT, mEERL-hEGFR tumor growth was evaluated using T-cell deficient athymic mice (Figure S8). No significant difference was observed between the control group and the NIR-PIT group, suggesting the anti-tumor effect of Ly6G-targeted NIR-PIT was T-cell dependent. Next, to assess how the host tumor immunity was stimulated after NIR-PIT, DC maturation and activation in tumors and tumor-draining lymph nodes (TDLNs) were examined 2 days after NIR-PIT. The markers of DC maturation/activation in TDLNs and tumors were significantly increased in the NIR-PIT groups compared to the control groups (Figure 4(a,b)). We also
evaluated CD8⁺ T cell activation in TDLNs 2 days after NIR-PIT. Up-regulation of CD69 and CD25 and higher Ki67 positivity were observed in NIR-PIT groups, suggesting CD8⁺ T cells in TDLNs were activated and were proliferating (Figure 4(c)). Although the number of NK cells was not significantly changed, expressions of CD107a and klrk1 and intracellular IFNγ...
production were increased, suggesting that NK cell activation was promoted (Figure 4(d,e)). Quantitative analyses showed the phenotype of PMN-MDSCs 2 days after NIR-PIT. Although the number of PMN-MDSCs in the tumor was higher in the NIR-PIT group (figure 4(f)), the intracellular expression of arginase-1, iNOS, and IL-10, which indicates

![Diagram](image_url)

Figure 4. Host immune response after Ly6G-targeted NIR-PIT in early phase. (a-c) Cell populations in the TDLNs and tumors in the mEEEL-hEGFR tumors 2 days after Ly6G-targeted NIR-PIT. The expression of CD40, CD80, CD83, and CD86 on DCS in the TDLNs (a) and tumors (b). (c) The expression of CD69, CD25, or Ki67 on CD8 \(^+ \) T cell in the TDLNs (a-c, n = 5; mean ± SEM; unpaired \(t \) test). The population of NK cells (d) and the expression of activated or cytotoxic markers in NK cells (e) 2 days after NIR-PIT (n = 4; mean ± SEM; unpaired \(t \) test). (f-h) Cell population and intracellular expressions of MDSCs 2 days after NIR-PIT. (f) The cell population of PMN- or M-MDSCs. Representative flow cytometry histogram (g) and quantitative analysis for intracellular expression of arginase-1, iNOS, and IL-10 in PMN-MDSCs (h) were assessed in the intratumoral tissues. (f-h, n = 5; mean ± SEM; unpaired \(t \) test). *, \(P < .05; **, \(P < .01; ***, \(P < .001; ****, \(P < .0001; \text{N.S.}, \text{not significant.}
T cell suppressive activity, was significantly decreased in the NIR-PIT groups (Figure 4(g,h)). These results suggested that Ly6G-targeted NIR-PIT eliminated highly immunosuppressive PMN-MDSCs perturbing the balance in the TME between immunosuppressive and immune-activating cells.

Acquired antitumor immunity by NIR-PIT remained energized in the tumor

We next assessed whether the balance between CD8⁺ T cells and Tregs was improved by Ly6G-targeted NIR-PIT. Tumors were harvested 7 days after each treatment, and tumor-infiltrating lymphocytes (TILs) were analyzed by multiplex IHC (Figure 5(a)). The quantification of CD8⁺ T cell density was significantly higher in the NIR-PIT group than in the other two groups (Figure 5(b)). Furthermore, the ratio of CD8⁺ T cells to Tregs, which is a well-known index of strong antitumor immunity, was significantly higher compared with other groups. Additionally, we further assessed the cytotoxic potential of CD8⁺ T cells in the tumor 7 days after NIR-PIT. In the NIR-PIT group, not only was the number of CD8⁺ T cells increased but they displayed elevated expression of cytotoxic markers, including IFNγ, Perforin, and GranzymeB (Figure 5(c)). Also in TDLNs, Ki67 expression in CD8⁺ T cells remained at higher levels, while no significant difference in Tregs was observed (Figure 5(d)). Thus, these results confirmed that Ly6G-targeted NIR-PIT elicited a potent T cell-mediated antitumor immune reaction.

Abscopal effects of PMN-MDSC-targeted NIR-PIT

To evaluate the systemic antitumor immunity induced by NIR-PIT, Ly6G-targeted NIR-PIT was performed unilaterally in a bilateral mEERL-hEGFR tumor model. The treatment schema is shown in Figure 6(a). After NIR light administration, the 700 nm fluorescence signal was significantly decreased in the NIR light irradiated side tumor, while it was unchanged in the contralateral tumor.

Figure 5. Enhanced antitumor immunity remains 7 days after Ly6G-targeted NIR-PIT. (a) Multiplex IHC images 7 days after Ly6G-targeted NIR-PIT. top, composite images of DAPI (blue) and pCK (cyan) staining; bottom, composite images of lymphocyte markers (CD4, green; Foxp3, yellow; CD8, magenta). White dots line shows the boundary between tumor and stroma. Scale bars, 100 μm. (b) CD8⁺ T cell density and the ratio of CD8⁺ T cell to Treg within the tumor quantified from IHC images (n = 7; one-way ANOVA followed by Tukey’s test). (c) The population of CD8⁺ T cell and the expression of cytotoxic markers in CD8⁺ T cells were evaluated 7 days after the therapy via flow cytometry (n = 4; mean ± SEM; unpaired t test). (d) The expression of Ki67 in CD8⁺ T cells and Tregs was evaluated in the TDLNs 7 days after NIR-PIT (n = 5; mean ± SEM; unpaired t test). *, P < .05; **, P < .01.
However, tumor growth was significantly suppressed not only in the treated tumors but also in untreated tumors (Figure 6(d)). Also, animals in the NIR-PIT group demonstrated significantly prolonged survival compared to the control group (Figure 6(e)). We then evaluated TILs in the tumors 7 days after unilateral Ly6G-targeted NIR-PIT. The number of CD8$^+$ T cells in the untreated and treated tumors after NIR-PIT was significantly higher than in the control groups (Figure 6(f)). No significant changes in helper T cells and Tregs were observed.

Immunogenic memory acquired after Ly6G-targeted NIR-PIT

To test for immune memory, mice with mEERL-hEGFR tumors that had undergone Ly6G-targeted NIR-PIT were re-inoculated with mEERL-hEGFR cells on the contralateral dorsum approximately 12 weeks after the initial NIR-PIT (Figure S9). All mice in the re-inoculation group rejected the newly injected mEERL-hEGFR cancer cells definitively. This result indicated the acquisition of an anti-tumor immune memory after Ly6G-targeted NIR-PIT.
Simultaneous NIR-PIT-targeting of cancer cells and PMN-MDSCs resulted in more effective tumor suppression than targeting either alone

To evaluate the synergistic effect of NIR-PIT targeting cancer cells and PMN-MDSCs, we performed dual-targeted NIR-PIT in two allograft models. As a cancer cell-targeting agent, panitumumab was used for mEERL-hEGFR tumors, and anti-PDPN mAb was used for MOC1 tumors. The treatment schedule is shown in Figure S10. The tumor growth in mono-targeted NIR-PIT was suppressed compared with the control group; however, the dual NIR-PIT group inhibited tumor progression more effectively in both allograft models (Figure 7(a)). Furthermore, the survival of animals in the dual NIR-PIT group was significantly prolonged compared to other groups (Figure 7(b)). Therefore, we concluded that Ly6G-targeted NIR-PIT had a synergistic effect on cancer cell-targeted NIR-PIT to suppress tumor growth.

Discussion

The immunosuppressive role played by MDSCs has made them a target for several therapies. Low-dose gemcitabine and 5-fluorouracil are known to reduce MDSCs in tumors. However, these treatments also damage other cells, including effector cells in the immune system, thus, causing counterproductive effects. New therapeutic approaches using all-trans retinoic acid, 1-methyltryptophan, colony stimulating factor-1 receptor, and phosphodiesterase-5 (PDE-5) inhibitor have been considered as MDSC-targeted treatment but are still under investigation and have not been deployed clinically. In this study, we demonstrated that Ly6G-targeted NIR-PIT could trigger an anti-tumor effect by local elimination of PMN-MDSCs within the tumor. Unlike systemic depletion by continuous antibody administration, Ly6G-targeted NIR-PIT does not affect adjacent normal cells or uninvolved organs outside the NIR light-irradiated area and, therefore, would preserve the host immune system. The depletion of PMN-MDSC by Ly6G-IR700 injection alone was not substantial enough to exert a therapeutic effect because the dose of Ly6G-IR700 used in this study was relatively small and administered as a single injection. Thus, we propose Ly6G-targeted NIR-PIT as a new therapeutic approach to deplete PMN-MDSCs locally.

This study showed that host-acquired immunity was activated after Ly6G-targeted NIR-PIT. It is well-known that PMN-MDSCs suppress T cell proliferation while promoting antigen-specific T cell suppression/tolerance and T cell apoptosis, resulting in suppressed tumor immunity. Based on this finding, NIR-PIT was used to selectively kill MDSCs, resulting in almost completely MDSC reduction of pre-treatment. Despite this treatment, PMN-MDSC counts 2 days after NIR-PIT doubled compared to pre-treatment. However, the percentage of immunosuppressive MDSCs, such as arginase-1 positive cells, decreased. This is probably because less mature MDSC populations migrated into the TME after inhibitory PMN-MDSCs were selectively depleted by Ly6G-targeted NIR-PIT. Depletion of PMN-MDSCs triggered both innate and acquired immune responses, resulting in the migration of highly cytotoxic CD8+ T cells into the tumor. Meanwhile, the results of the bilateral tumor experiment in which only one tumor was treated, but the
contralateral tumor also responded, suggested that the activation of the immune system was systemic and not limited to the treated tumor.

There is considerable variability in the distribution and subtypes of MDSCs within cancers. This can be seen even among the models used in this study. Unsurprisingly, the PMN-MDSC-dominated tumors responded well to Ly6G-targeted NIR-PIT, while M-MDSC-dominated tumors were much less responsive. In the latter case, targeting Ly6C for NIR-PIT might be more effective. Similar restrictions apply to previously developed Treg-targeted NIR-PIT which was effective in Treg-rich environments but limited in effectiveness in poorly immunogenic tumors because of the smaller number of Tregs.32,33 In MDSC-dominant tumors with smaller Treg content, Ly6G-targeted NIR-PIT is predicted to be more valuable as NIR-PIT targeting immune cells rather than NIR-PIT targeting Tregs (e.g., NIR-PIT targeting Tregs had minimal effect for mEERL-heGFR tumors).34 Therefore, when contemplating future uses of this treatment, the selection of the most appropriate NIR-PIT targeting immune cells (PMN-MDSC or Treg) rests with the determination of the relative dominance of these cell types in the TME.

There are some limitations in this study. First, Ly6G and Ly6C are murine-specific surface antigens used for distinguishing MDSCs and may not be relevant to human MDSCs. In humans, several surface markers such as CD15, LOX-1, and S100A9 have been used to refine the identification of PMN-MDSCs and M-MDSCs.14,34 Additionally, the C-X-C chemokine receptor 2 (CXCR2) is expressed on MDSCs, and the CXCR2-axis plays an essential role in the migration of immunosuppressed MDSCs into the TME.35 These molecules may be alternative candidates to Ly6G-targeted NIR-PIT to eliminate PMN-MDSCs in the context of human tumors, but further investigation will be required. Second, Ly6G-expressing myeloid cells were defined as PMN-MDSCs. We could not exclude the possibility that Ly6G-positive neutrophils were admixed with other myeloid cells despite being classified as PMN-MDSCs. Furthermore, orthotopic models may be more appropriate to evaluate the immune response by NIR-PIT because of organ-specific TME changes.36

In conclusion, we demonstrated that local PMN-MDSC depletion in the tumor using Ly6G-targeted NIR-PIT enhanced the host antitumor immune system, resulting in suppression of tumor progression not only in directly irradiated tumors but also in non-irradiated tumors in the same animal. This systemic and abscopal effect was augmented when combined with cancer cell-targeted NIR-PIT. Finally, NIR-PIT targeting PMN-MDSCs may be effective in poorly immunogenic tumors that are difficult to treat by Treg-targeted NIR-PIT and will expand the number of applications of immunosuppressive cell-targeted NIR-PIT.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research [ZIA BC 011513].

ORCID

Hisataka Kobayashi http://orcid.org/0000-0003-1019-4112

References

1. Gabrilovich DI, Bronte V, Chen SH, Colombo MP, Ochoa A, Ostrand-Rosenberg S, Schreiber H. The terminology issue for myeloid-derived suppressor cells. Cancer Res. 2007 Jan 1;67 (1):425. author reply 426. 10.1158/0008-5472.CAN-06-3037.
2. Kong YY, Fuchsberger M, Xiang SD, Apostolopoulos V, Plebanski M. Myeloid derived suppressor cells and their role in diseases. Curr Med Chem. 2013;20(11):1437–1444. doi:10.2174/10221248010112010006.
3. Bosiljic M, Cederberg RA, Hamilton MJ, LePard NE, Harbourne BT, Collier JL, Halvorsen EC, Shi R, Franks SE, Kim AY, et al. Targeting myeloid-derived suppressor cells in combination with primary mammary tumor resection reduces metastatic growth in the lungs. Breast Cancer Res. 2019 Sep 5;21(1):103. doi:10.1186/s13058-019-1189-x.
4. Yang R, Cai Z, Zhang Y, Yutzy WH, Roxy KF, Roden RBS. CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+ myeloid cells. Cancer Res. 2006 Jul 1;66(13):6807–6815. doi:10.1158/0008-5472.CAN-05-3755.
5. Ribechni E, Greifenberg V, Sandwich S, Lutz MB. Subsets, expansion and activation of myeloid-derived suppressor cells. Med Microbiol Immunol. 2010 Aug;199(3):273–281. doi:10.1007/s00430-010-1515-4.
6. Messmer MN, Netherby CS, Banki D, Abrams SI. Tumor-induced myeloid dysfunction and its implications for cancer immunotherapy. Cancer Immunol, Immunotherapy. CII. 2015 Jan;64(1):1–13. doi:10.1007/s00262-014-1639-3.
7. Bronte V, Serafini P, Mazzoni A, Segal DM, Zanovello P. L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol. 2003 Jun;24(6):302–306. doi:10.1016/S1471-4906(03)00132-7.
8. Sinha P, Clements VK, Ostrand-Rosenberg S. Interleukin-13-regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis. Cancer Res. 2005 Dec 15;65(24):11743–11751. doi:10.1158/0008-5472.CAN-05-0045.
9. Zhao Y, Wu T, Shao S, Shi B, Zhao Y. Phenotype, development, and biological function of myeloid-derived suppressor cells. Oncoimmunology. 2016 Feb;5(2):e1004983. doi:10.1080/2162402X.2015.1004983.
10. Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, Mandruzzato S, Murray PJ, Ochoa A, Ostrand-Rosenberg S, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016 Jul 6;7(1):12150. doi:10.1038/ncomms12150.
11. Koehn BH, Apostolova P, Haverkamp JM, Miller JS, McCallur V, Tolar J, Munn DH, Murphy WJ, Bickerley WJ, Serody JS, et al. GVHD-associated, inflammasome-mediated loss of function in adoptively transferred myeloid-derived suppressor cells. Blood. 2015 Sep 24;126(13):1621–1628. doi:10.1182/blood-2015-03-634691.
12. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012 Mar 22;12(4):253–268. doi:10.1038/nri3173.
13. Groth C, Weber R, Lasser S, Özbuy FG, Kurzay A, Petrova V, Altevogt P, Utikal J, Umansky V. Tumor promoting capacity of
polymorphonuclear myeloid-derived suppressor cells and their neuralization. Int J Cancer. 2021 Nov 1;149(9):1628–1638. doi:10.1002/jic.33731.

14. Gabrilovich DI. Myeloid-Derived Suppressor Cells. Cancer Immunol Res. 2017 Jan;5(1):3–8. doi:10.1158/2326-6066.CIR-16-0297.

15. Rao HL, Chen JW, Li M, Xiao Y-B, Fu J, Zeng Y-X, Cai M-Y, Xie D. Increased intratumoral neutrophil in colorectal carcinomas correlates closely with malignant phenotype and predicts patients’ adverse prognosis. PLoS one. 2012;7(1):e30806. doi:10.1371/journal.pone.0030806.

16. Trelilakis S, Bruderek K, Dumitru CA, Gholaman H, Gu X, Bankfalvi A, Scherag A, Hütte J, Dominas N, Lehnerd GF, et al. Polymorphonuclear granulocytes in human head and neck cancer: enhanced inflammatory activity, modulation by cancer cells and expansion in advanced disease. Int J Cancer. 2011 Nov 1;129(9):2183–2193. doi:10.1002/jic.25892.

17. Barrera L, Montes-Servín E, Hernandez-Martinez JM, Orozco-Morales M, Montes-Servín E, Michel-Tello D, Morales-Flores RA, Flores-Estrada D, Arrieta O. Levels of peripheral blood polymorphonuclear myeloid-derived suppressor cells and selected cytokines are potentially prognostic of disease progression for patients with non-small cell lung cancer. Cancer Immunol, Immunother. 2018 Sep;67(9):1393–1406. doi:10.1007/s00262-018-2196-y.

18. Mitsunaga M, Ogawa M, Kosaka N, Rosenblum LT, Choyke PL, Kobayashi H. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med. 2011 Nov 6;17(12):1685–1691. doi:10.1038/nm.2554.

19. Sato K, Ando K, Okuyama S, Moriguchi S, Ogura T, Totoki S, Hanaoka H, Nagaya T, Kakawa T, Takakura H, et al. Photoinduced ligand release from a silicon phthalocyanine dye conjugated with monoclonal antibodies: a mechanism of cancer cell cytotoxicity after near-infrared photoimmunotherapy. ACS cent sci. 2018 Nov 28;4(11):1559–1569. doi:10.1021/acscente.8b00565.

20. Ogawa M, Tomita Y, Nakamura Y, Lee M-J, Lee S, Tomita S, Nagaya T, Sato K, Yamauchi T, Iwai H, et al. Immunogenic cancer cell death selectively induced by near infrared photoimmunotherapy initiates host tumor immunity. Oncotarget. 2017 Feb 7;8(6):10425–10436. doi:10.18632/oncotarget.14425.

21. Sato K, Sato N, Xu B, Nakamura Y, Nagaya T, Choyke PL, Hasegawa Y, Kobayashi H. Spatially selective depletion of tumor-associated regulatory T cells with near-infrared photoimmunotherapy. Sci Transl Med. 2016 Aug 17;8(352):352ra110. doi:10.1126/scitranslmed.aaf6843.

22. Okada R, Maruoka Y, Furusawa A, Inagaki F, Nagaya T, Fujimura D, Choyke PL, Kobayashi H. The effect of antibody fragments on CD25 targeted regulatory T cell near infrared photoimmunotherapy. Bioconjug Chem. 2019 Oct 16;30(10):2624–2633. doi:10.1021/acs.bioconjchem.9b00547.

23. Quezada SA, Peggs KS, Curran MA, Allison JP. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J Clin Invest. 2006 Jul;116(7):1935–1945. doi:10.1172/JCI27745.

24. Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albeda SM. Gemcitabine selectively eliminates splenic Gr-1+CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res: Off J Am Assoc Cancer Res. 2005 Sep 15;11(18):6713–6721. doi:10.1158/1078-0432.CCR-05-0883.

25. Vincent J, Mignon G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A, Martin F, Apotel L, Rébé C, Ghiringhelli F, et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 2010 Apr 15;70(8):3052–3061. doi:10.1158/0008-5472.CAN-09-3690.

26. Blevé A, Consonni FM, Porta C, Garlatti V, Sica A. Evolution and targeting of myeloid suppressor cells in cancer: a translational perspective. Cancers (Basel). 2022 Jan 20;14(3):510. doi:10.3390/cancers14030510.

27. Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ, Lush RM, Antonia S, Gabrilovich DI. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 2006 Sep 15;66(18):9299–9307. doi:10.1158/0008-5472.CAN-06-1690.

28. Iclozan C, Antonia S, Chiappori A, Chen D-T, Gabrilovich D. Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunol, Immunother. 2013 May;62(5):909–918. doi:10.1007/s00262-013-1396-8.

29. Califano JA, Khan Z, Noonan R, Rudraraju L, Zhang Z, Wang H, Goodman S, Gourin CG, Ha PK, Fakhry C, et al. Tadalafil augments tumor-specific immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res: Off J Am Assoc Cancer Res. 2015 Jan 1;21(1):30–38. doi:10.1158/1078-0432.CCR-14-1716.

30. Weid DT, Vella JL, Reis IM, De La Fuente AC, Gomez C, Sargi Z, Nazarian R, Califano J, Borrello I, Serafini P, et al. Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res: Off J Am Assoc Cancer Res. 2015 Jan 1;21(1):39–48. doi:10.1158/1078-0432.CCR-14-1711.

31. Moinihan KD, Opel CF, Szeto GL, Tzeng A, Zfu EF, Engreit J, Williams RT, Rakhra K, Zhang MH, Rothschilds AM, et al. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat Med. 2016 Dec;22(12):1402–1410. doi:10.1038/nm.4200.

32. Okada R, Kato T, Furusawa A, Inagaki F, Wakiyama H, Choyke PL, Kobayashi H. Local depletion of immune checkpoint ligand CTLA4 expressing cells in tumor beds enhances antitumor host immunity. Adv Ther. 2021;4(5):2000269. doi:10.1002/adpt.202000269.

33. Kato T, Okada R, Furusawa A, Inagaki F, Wakiyama H, Furumoto H, Okuyama S, Fukushima H, Choyke PL, Kobayashi H, et al. Simultaneously combined cancer cell- and CTLA4-targeted NIR-PIT causes a synergistic treatment effect in syngeneic mouse models. Mol Cancer Ther. 2021 Nov;20(11):2262–2273. doi:10.1158/1535-7163.MCT-21-0470.

34. Hegde S, Leader AM, Merad M. MDSC: markers, development, states, and unaddressed complexity. Immunity. 2021 May 11;54(5):875–884. doi:10.1016/j.immuni.2021.04.004.

35. Bullock K, Richmond A. Suppressing MDSC recruitment to the tumor microenvironment by antagonizing CXCR2 to enhance the efficacy of immunotherapy. Cancers (Basel). 2021 Dec 15;13(24):6293. doi:10.3390/cancers13246293.

36. Hoffman RM. Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs. 1999;17(4):343–359. doi:10.1023/A:1006326203838.