ON THE STAMPFLI POINT OF SOME OPERATORS AND MATRICES

THANIN QUARTZ AND ILYA M. SPITKOVSKY

Abstract. The center of mass of an operator A (denoted $\text{St}(A)$, and called in this paper as the Stampfli point of A) was introduced by Stampfli in his Pacific J. Math (1970) paper as the unique $\lambda \in \mathbb{C}$ delivering the minimum value of $\|A - \lambda I\|$. We derive some results concerning the location of $\text{St}(A)$ for several classes of operators, including 2-by-2 block operator matrices with scalar diagonal blocks and 3-by-3 matrices with repeated eigenvalues. We also show that for almost normal A its Stampfli point lies in the convex hull of the spectrum, which is not the case in general. Some relations between the property $\text{St}(A) = 0$ and Roberts orthogonality of A to the identity operator are established.

Mathematics subject classification (2020): 47B02, 47B28, 15A60.

Keywords and phrases: Stampfli point (center of mass) of operators, almost normal operators, maximal numerical range, Roberts orthogonality.

REFERENCES

[1] AMER A.-O. AND P. Y. WU, Scalar approximants of quadratic operators with applications, Operators and Matrices 12 (2018), no. 1, 253–262.
[2] L. ARAMBAŠIĆ, T. BERIĆ, AND R. RAJIĆ, Roberts orthogonality and Davis-Wielandt shell, Linear Algebra Appl. 539 (2018), 1–13.
[3] E. BROWN AND I. SPITKOVSKY, On matrices with elliptical numerical ranges, Linear Multilinear Algebra 52 (2004), 177–193.
[4] M. CHIEN AND B. TAM, Circularity of the numerical range, Linear Algebra Appl. 201 (1994), 113–133.
[5] L. Z. GEVORGYAN, On the minimal norm of a linear operator pencil, Dokl. Nats. Akad. Nauk Armen. 110 (2010), no. 2, 97–104.
[6] L. Z. GEVORGYAN, On the transcendental radius of the Volterra integration operator, Ann. Funct. Anal. 6 (2015), no. 1, 54–58.
[7] K. E. GUSTAFSON AND D. K. M. RAO, Numerical range. The field of values of linear operators and matrices, Springer, New York, 1997.
[8] A. N. HAMED AND I. M. SPITKOVSKY, On the maximal numerical range of some matrices, Electron. J. Linear Algebra 34 (2018), 288–303.
[9] F. HAUSDORFF, Der Wertvorrat einer Bilinearform, Math. Z. 3 (1919), 314–316.
[10] KH. D. IKRAMOV, On almost normal matrices, Vestnik Moskov. Univ. Ser. XV, Vychisl. Mat. Kibernet. (2011), no. 1, 5–9, 56.
[11] D. KEELER, L. RODMAN, AND I. SPITKOVSKY, The numerical range of 3×3 matrices, Linear Algebra Appl. 252 (1997), 115–139.
[12] T. MORAN AND I. M. SPITKOVSKY, On almost normal matrices, Textos de Matemática 44 (2013), 131–144.
[13] D. B. ROBERTS, On the geometry of abstract vector spaces, Tôhoku Math. J. 39 (1934), 42–59.
[14] W. RUDIN, Functional analysis, second ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991.
[15] J. G. STAMPFLI, The norm of a derivation, Pacific J. Math. 33 (1970), 737–747.
[16] E. L. STOLOV, The Hausdorff set of a matrix, Izv. Vyssh. Uchebn. Zaved. Mat. (1979), no. 10, 98–100, English translation in Soviet Math. (Iz. VUZ) 23 (1979), no. 10, 85–87.
[17] O. Toeplitz, *Das algebraische Analogon zu einem Satze von Fejér*, Math. Z. 2 (1918), no. 1–2, 187–197.

[18] Shu-Hsien Tso and Pei Yuan Wu, *Matricial ranges of quadratic operators*, Rocky Mountain J. Math. 29 (1999), no. 3, 1139–1152.