NICMOS IMAGING OF DRGs IN THE HDF-S: A RELATION BETWEEN STAR FORMATION AND SIZE AT z ≈ 2.5

ANDREW W. ZIRM,2 A. VAN DER WEL,4 M. FRANX,2 I. LABBÉ,5,6 I. TRUJILLO,7 P. VAN DOKKUM,8 S. TOFFT,9 E. DADDI,10 G. RUDNICK,11,12 H.-W. RIX,13 H. J. A. RÖTTLINGER,2 AND P. VAN DER WERF12

Received 2006 September 13; accepted 2006 November 7

ABSTRACT

We present deep, high angular-resolution HST NICMOS imaging in the Hubble Deep Field South (HDF-S), focusing on a subset of 14 distant red galaxies (DRGs) at z ≈ 2.5 that have been preselected to have J − K > 2.3. We find a clear trend between the rest-frame optical sizes of these sources and their luminosity-weighted stellar ages as inferred from their broadband spectral energy distributions (SEDs). Galaxies whose SEDs are consistent with being dusty and actively star-forming generally show extended morphologies in the NICMOS images (r_e ≥ 2 kpc), while the five sources that are not vigorously forming stars are extremely compact (r_e ≤ 1 kpc). This trend suggests a direct link between the mean ages of the stars and the size and density of the galaxies and supports the conjecture that early events quench star formation and leave compact remnants. Furthermore, the compact galaxies have stellar surface mass densities that exceed those of local galaxies by more than an order of magnitude. The existence of such massive dense galaxies presents a problem for models of early-type galaxy formation and evolution. Larger samples of DRGs and higher spatial resolution imaging will allow us to determine the universality of the results presented here for a small sample.

Subject headings: galaxies: evolution — galaxies: formation — galaxies: fundamental parameters — galaxies: high-redshift — infrared: galaxies

1. INTRODUCTION

In the local universe, the star formation rate per stellar mass (specific star formation rate) correlates strongly with galaxy concentration and stellar mass surface density (σ_S20, Kauffmann et al. 2003; Brinchmann et al. 2004). The high concentration, high σ_s0 early-type galaxies may result from the relationship between surface gas density and star formation rate (or efficiency) during their formation epoch. In any case, these relations are likely indicative of a fundamental principle of galaxy formation and evolution. By determining whether these, or similar, relations hold during earlier cosmic epochs we may address questions such as these: Where are the majority of stars formed? Is the same event that truncates star formation in early-type galaxies responsible for their concentration and high σ_s0? How is this related to their star formation rate (or efficiency) during their formation epoch? By combining rest-frame optical sizes and multiwavelength spectral energy distributions we can begin to discern the evolutionary pathways of galaxies at various redshifts (e.g., Rix et al. 2004; Trujillo et al. 2004, 2006a; Longhetti et al. 2007). At redshifts greater than unity, this requires excellent data in the near-infrared or longer wavelengths. Only recently have deep near-infrared (rest-frame optical) studies been undertaken using 8 m class telescopes. The Faint Infrared Extragalactic Survey (FIRES; Franx et al. 2003) using ESO VLT, for example, has discovered a class of galaxies (distant red galaxies [DRGs]) that are not as UV bright as previously optically selected galaxies at z ≈ 2–3. These sources are selected using the color-cut (J − K)_{Vega} > 2.3, which corresponds to rest-frame U − V at z = 2.5. Galaxies can have red U − V colors for primarily two reasons: they can have luminous starbursts that are highly dust reddened, or they can have a large mass of evolved stars (Cimatti et al. 2002; Franx et al. 2003; van Dokkum et al. 2004; Labbé et al. 2005). The brightest of these DRGs have now been confirmed and studied spectroscopically in the near-infrared (Kriek et al. 2006a, 2006b).

By combining rest-frame optical sizes and multiwavelength spectral energy distributions we can begin to discern the evolutionary pathways of galaxies at various redshifts (e.g., Rix et al. 2004; Trujillo et al. 2004, 2006a; Longhetti et al. 2007). At redshifts greater than unity, this requires excellent data in the near-infrared (NIR) for both object selection and morphologies. Previous studies of NIR-selected galaxy sizes have derived general evolutionary trends using ground-based (lower spatial resolution) data and have not addressed the relation between galaxy size and star formation (e.g., Trujillo et al. 2004, 2006a). In this paper we present deep, high spatial resolution NIR imaging of 14 of these DRGs using the Near-Infrared Camera and Multi-Object Spectrograph (NICMOS) onboard the Hubble Space Telescope (HST). These images cover the Hubble Deep Field–South (HDF-S) (Williams et al. 2000; Casertano et al. 2000) in the F160W (H_{160})
passband and are of sufficient quality to determine the rest-frame optical sizes of this recently discovered population of galaxies. The availability of broadband imaging data out to rest-frame K band allows us to relate galaxy size to the SED. We use a cosmology with $(\Omega_m, \Omega_{\Lambda}) = (0.27, 0.73)$ and $H_0 = 71$ km s$^{-1}$ Mpc$^{-1}$ throughout. At $z = 2.5$, 1" subtends 8.2 physical kpc and one NICMOS Camera 3 resolution element (FWHM $\sim 0.26''$) corresponds to 2.1 kpc. The stellar masses inferred via spectral fitting are derived using a Salpeter initial mass function with mass range $0.1-100M_{\odot}$.

2. NICMOS IMAGING AND SAMPLE SELECTION

The primary data set used in this paper is NICMOS imaging of the HDF-S. Eight pointings of NICMOS Camera 3 were required to cover the full WFPC2 field of the HDF-S. Camera 3 has a field of view of approximately 50" on a side at a pixel scale of 0.2" pixel$^{-1}$. Each of these eight pointings was imaged using a six-point, subpixel dither pattern to better sample the point-spread function (PSF). The individual exposures were reduced in the usual fashion using the pipeline within IRAF and taking particular care to mask out deviant pixels. The dither offsets were determined using cross correlation and interpolating offsets were measured using the ground-based VLT/ISAAC imaging data as a reference frame. These shifts were used as input to the drizzle task in IRAF, which was used to create the full mosaic of the field. The combined data reach a 3σ depth of 25.0 AB magnitudes in a 0.5'' radius circular aperture and have an average integration time of 5200 s.

We focus the current study on the 14 DRGs in this field. The results presented here depend on previous work, primarily rest-frame NIR imaging from Spitzer/IRAC and the subsequent broadband SED fits (Labbé et al. 2005). We follow the object numbering used by Labbé et al. (2005). These broadband data have been used to determine the photometric redshifts, stellar masses, and star formation properties of these DRGs (Rudnick et al. 2001; Rudnick et al. 2003; Labbé et al. 2005; Wuyts et al. 2007). We note that we use the Rudnick et al. (2003) photometric redshifts rather than the revised versions used in Rudnick et al. (2006), which are systematically higher. Object 327 is blended with a nearby source in the K_s-band data. We present the NICMOS data and profile fits for 327 but exclude it from any analysis dependent on the longer wavelength data. Objects 66 and 810 had relatively poor SED fits. For 66 this is likely due to emission-line contamination of the broadband fluxes, a conjecture confirmed by spectroscopy. However, we expect that its derived stellar mass is relatively unaffected. For 810 the source of the poor fit is less clear and we therefore qualify its high mass and lack of star formation as tentative claims.

3. GALAXY SIZES AND MORPHOLOGIES

We have determined galaxy sizes by fitting PSF-convolved, analytic surface brightness profiles to each of the 14 DRGs in the HDF-S sample. For each galaxy we use individually generated TinyTim (Kirst 1993) model PSFs. The final PSFs were combined in the same manner as the data itself to account for both the variation of the instrumental response over the detector and the dependence of the reconstructed PSF on the drizzle algorithm. To assess the dependence of our results on the assumed PSF we have also constructed a PSF from a suitably bright and isolated star in our final mosaic. We then fit full two-dimensional convolved models to the data using both an "in-house" code (Franx 1993; van Dokkum & Franx 1996) and the publicly available GALFIT code (Peng et al. 2002) with both the model and stellar PSFs. By fitting both model PSFs and a star to other stars in the field we derived a (conservative) minimum measurable size of approximately 0.06'' or half a pixel. All of the derived galaxy sizes are above this limit. We used the data pixel weights to optimize the fits and the SExtractor object segmentation map to mask neighboring sources.

We fit Sersic profiles (Sersic 1968) to the data, allowing the shape index (n) to take the values $n = 1$ (exponential disk), 2, 3, and 4 ($r^{1/n}$-law). For each fit, we calculated the circularized half-light radius $(r_{hl} = \sqrt{ab}$ of the best-fitting model. The optical, NIR, and model residual images for each galaxy are shown in Figure 1. We have defined a compact galaxy to be one with an r_e smaller than 1 pixel or resolved with a best-fit $n = 4$ profile. The results are essentially unchanged whether the model or stellar PSF was used for convolution. The largest difference (but still within the errors) was for the smallest source, 66, whose best-fit size increased by 18% when the stellar PSF was used. For the other galaxies the change was never larger than 15% in either direction and exhibited no systematic change. The results from the two fitting codes also agreed to within 5%–10% in every case with no observable systematic trend. Comparison between our galaxy sizes and those found by Trujillo et al. (2006b) agree within a few percent for the two galaxies that are well-resolved ($r_e > 0.5''$) in their ground-based data. For the compact galaxies the sizes derived using the NICMOS data are systematically smaller by about 10% than the ground-based determinations when using the same Sersic n-values.

As with any galaxy fitting, our results may be skewed by deviations from the assumed analytic profiles or by limitations of the data themselves. If an unresolved central source (active nucleus or starburst) is present, the true profile will not be well represented by one of our analytic galaxy profiles. Object 66 contains a spectroscopically confirmed active nucleus, and object 767 shows an excess at observed 8 μm, which may be due to an active galactic nucleus (AGN). However, the strong break in the rest-frame optical and the high quality-of-fit for these quiescent SEDs (see § 4) argues against AGNs significantly biasing our size measurements based on the NICMOS data. Furthermore, none of the DRGs are detected in the radio imaging in the HDF-S (Huynh et al. 2005). Object 767 is detected in the Spitzer MIPS 24 μm imaging perhaps due to an AGN. Our galaxy size measurements could be biased to smaller values if as little as 10% of the light is coming from the nucleus (e.g., Daddi et al. 2005). However, even for extremely powerful radio galaxies at $z \sim 1$ essentially zero rest-frame UV light escapes the central region (Zirm et al. 2003). Daddi et al. (2005) find several small, quiescent galaxies at $z \sim 1.8$, two of which are very obscured X-ray sources. It is unclear how heavy obscuration at X-ray wavelengths would not correspond to complete nuclear extinction at rest-frame UV wavelengths. Unfortunately, there is no suitable X-ray data for this field. We cannot rule out that some of these DRGs contain powerful AGNs but consider it unlikely that AGNs are responsible for every small derived galaxy size in this sample.

The surface brightness (SB) limit for our imaging is ~ 24.5 AB magnitudes arcsec$^{-2}$. Lower SB features such as extended disks may be undetected in our data and hence will be missing from our fits. To search for low SB emission around the compact DRGs we stacked the images of the compact galaxies to form a composite image. This deeper summed image shows no discernible evidence for an extended component. Comparison of ground-based H-band and NICMOS total galaxy magnitudes shows good agreement and no systematic offset indicating missed light in the
space-based imaging. Furthermore, there is no obvious visual indication of extended structures in the WFPC2 (rest-frame UV) data for the compact galaxies. We present the full size distributions in the bottom panel of Figure 2 and discuss their implications in the next section. The sizes are given in Table 1.

As a comparison sample, we also fit profiles to all the galaxies in the HDF-S that have been selected using the Lyman break technique (LBGs; Madau et al. 1996). These galaxies were selected and their photometric redshifts, masses, and sizes derived from the same exact data set used for the DRGs. They have the
suggests that a direct correspondence exists between star formation and galaxy remaining substantial in the other observed properties (see Fig. 3). This strongly between the quiescent and star-forming samples is minimal in galaxy size while line shows the average physical resolution of the data. The amount of overlap quiescent (same mean redshift as the DRG sample (see Table 1; Wuyts et al. 2007). As we will discuss further below, we have decided to use Maraston (2005) models to derive conservatively low masses for these galaxies. The lack of spectroscopic redshifts and emission line diagnostics precludes a more detailed analysis (e.g., Kriek et al. 2006b). The dusty star-forming population outnumbers the qDRGs by 9 to 5 in the HDF-S.

When we combine these results on the ages with the galaxy size determinations from the NICMOS imaging we identify a clear trend for the quiescent galaxies to be smaller than their star-forming cousins at high redshift, with little overlap between the two galaxy types. Figure 2 shows the galaxy effective radius distributions for the two populations. It is important to identify whether the correlation involves a third parameter with which both morphology and star formation rate are individually related, e.g., redshift, luminosity, or stellar mass. In Figures 2 and 3 we show the size, redshift, luminosity, mass, and apparent magnitude distributions for the two subpopulations and the LBG comparison sample. It is clear that the overlap between the two DRG subsamples is greater in redshift, mass, luminosity, and apparent magnitude than in size. Therefore it appears that there is a direct correlation between galaxy size and stellar age. In addition, comparison with the sizes of other star-forming galaxies (LBGs) in

![Fig. 2.—Half-light radii distributions for the star-forming (top panel) and quiescent (bottom panel) distant red galaxies (red) and LBGs (blue). The vertical line shows the average physical resolution of the data. The amount of overlap between the quiescent and star-forming samples is minimal in galaxy size while remaining substantial in the other observed properties (see Fig. 3). This strongly suggests that a direct correspondence exists between star formation and galaxy size for the DRGs, rather than a mutual correlation with a third parameter.]

4. Correlation between Galaxy Size and Star Formation Rate

In Labbé et al. (2005) and Wuyts et al. (2007), we have previously fit model SEDs to the observed broadband colors of the DRGs to infer their luminosity-weighted stellar ages and derive stellar masses. The ground-based near-infrared and space-based optical photometry were combined with data from Spitzer/IRAC to construct the galaxies’ SEDs. In order to characterize the star formation properties of the galaxies, we fitted two simple models from Maraston (2005) to each source SED: a single stellar population without dust, and a constant star formation model with dust. We refer to the galaxies best fitted by the dust-free SSP model as “qDRGs”, for “quiescent,” and to the galaxies best fitted by the constant star formation model as “sDRGs”, for “star-forming.” We stress that these models are simplifications, as in reality there is probably a large range in star formation rates and ages. This characterization allows us to compare the properties of the galaxies with the highest and lowest specific star formation rates. These same data have been used to derive stellar masses for the DRGs (see Table 1; Wuyts et al. 2007). As we will discuss further below, we have decided to use Maraston (2005) models to derive conservatively low masses for these galaxies. The lack of spectroscopic redshifts and emission line diagnostics precludes a more detailed analysis (e.g., Kriek et al. 2006b). The dusty star-forming population outnumbers the qDRGs by 9 to 5 in the HDF-S.

When we combine these results on the ages with the galaxy size determinations from the NICMOS imaging we identify a clear trend for the quiescent galaxies to be smaller than their star-forming cousins at high redshift, with little overlap between the two galaxy types. Figure 2 shows the galaxy effective radius distributions for the two populations. It is important to identify whether the correlation involves a third parameter with which both morphology and star formation rate are individually related, e.g., redshift, luminosity, or stellar mass. In Figures 2 and 3 we show the size, redshift, luminosity, mass, and apparent magnitude distributions for the two subpopulations and the LBG comparison sample. It is clear that the overlap between the two DRG subsamples is greater in redshift, mass, luminosity, and apparent magnitude than in size. Therefore it appears that there is a direct correlation between galaxy size and stellar age. In addition, comparison with the sizes of other star-forming galaxies (LBGs) in

Table 1

Properties of the HDF-S DRGs

ID	z_{phot}^a	SED Typeb	$I-K_s$ (AB)	r_e (arcsec)	r_e (kpc)	Stellar Mass ($10^{11} M_\odot$)	$\sigma_{r_e}^2$ ($10^{10} M_\odot$ kpc$^{-2}$)
336	$2.7^{+0.7}_{-0.1}$	Quiescent	3.6	0.06	0.48	$0.6_{-0.3}^{+0.1}$	3.88
810	$1.9_{-0.1}^{+0.1}$	Quiescent	3.9	0.07	0.56	$0.4_{-0.2}^{+0.1}$	1.92
66	$3.4_{-0.1}^{+0.1}$	Quiescent	2.8	0.08	0.63	$0.9_{-0.1}^{+0.1}$	3.36
161	$2.3_{-0.1}^{+0.1}$	Quiescent	3.8	0.09	0.72	$0.4_{-0.1}^{+0.1}$	1.25
767	$2.3_{-0.1}^{+0.1}$	Quiescent	4.5	0.14	1.16	$0.6_{-0.1}^{+0.1}$	0.73
447	$3.8_{-0.1}^{+0.1}$	Star-forming	1.7	0.18	1.28	0.2	0.20
295	$2.4_{-0.1}^{+0.1}$	Star-forming	2.4	0.19	1.59	0.2	0.11
500	$2.0_{-0.1}^{+0.1}$	Star-forming	2.9	0.25	2.12	0.3	0.09
327	$3.4_{-0.1}^{+0.1}$	Star-forming	1.6	0.28	2.14
496	$2.1_{-0.1}^{+0.1}$	Star-forming	3.2	0.35	2.97	0.5	0.08
397	$3.1_{-0.1}^{+0.1}$	Star-forming	2.3	0.42	3.29	0.4	0.06
656	$2.7_{-0.1}^{+0.1}$	Star-forming	4.4	0.55	4.42	2.4	0.20
176	$2.5_{-0.1}^{+0.1}$	Star-forming	2.2	0.86	7.06	0.4	0.01
611	$2.9_{-0.1}^{+0.1}$	Star-forming	2.4	0.89	7.07	1.2	0.04

a Photometric redshifts as derived in Rudnick et al. 2001, 2003.

b SED Type derived from Maraston (2005) population synthesis models in Wuyts et al. (2007).

c Average stellar surface mass density within the effective radius.

d This object, 66, has a spectroscopic redshift.

e Errors on the masses of the qDRGs due to the errors on the photometric redshifts.

f Object 327 is confused in the K_s-band data and is therefore excluded from the stellar mass analysis.
our results show that massive, centrally-concentrated galaxies
undergo a significant morphological transformation from late- to early-type. Furthermore, the cessation of star formation and the morphological transformation are suggested by Faber et al. (2005) and others that the same event is responsible for both the quiescent DRGs and LBGs (blue stars) in the HDF-S. The open red circles are the quiescent $z \approx 1.8$ galaxies from Daddi et al. (2005). Two of the passive sources are undetected in I and are therefore shown as lower limits (arrows). The error bar in the bottom right is representative of the fits to the quiescent galaxies. The filled red circles connected by a line show the maximal offset introduced by using a stellar rather than a model PSF (an increase in size for object 66 of 18%). Right panel: Half-light radius vs. stellar mass with the same symbols. The two sets of overplotted lines are the size-mass relationships derived by Shen et al. 2003 for early-type (black solid line) and late-type (black dotted line) galaxies in the local universe and redshifted to $z = 2.5$ using the inferred size-redshift evolution for $M_*>3 \times 10^{10} M_\odot$ galaxies from Trujillo et al. (2006b, red lines).

The quiescent DRGs are clearly ellipticals (i.e., they lie on the fundamental plane and follow M/L-law profiles) and these are their stellar masses from comparable SED fitting, also using a Salpeter initial mass function (IM; van der Wel et al. 2005, 2006).

The sDRGs and LBGs overlap the region of the local galaxy samples. The much higher densities of the qDRGs suggest that substantial downward density evolution must take place between $z \approx 2$ and the present day. However, it is nearly impossible to lower the density of a stellar distribution via secular evolution on this timescale. The relaxation time for these compact DRGs is still much longer than the Hubble time, despite their high densities. Dissipationless, or “dry,” merging (e.g., van Dokkum et al. 2005) would predict a linear decrease in the surface density with accumulated mass (e.g., Nipoti et al. 2003). The diagonal lines in Figure 5 show this power-law trend with a fiducial normalization to the qDRGs. These lines also happen to pass through some of the $z \approx 1$ galaxies that are also “overdense” compared to local early-types. These $z \approx 1$ sources are clearly ellipticals (i.e., they lie on the fundamental plane and follow M/L-law profiles) and these are their stellar masses from comparable SED fitting, also using a Salpeter initial mass function (IM; van der Wel et al. 2005, 2006).

Alternatively, the qDRGs may be something of a mixed population, both in the sense that the color and SED selection collects multiple galaxy types and that measurements may lead to misclassification of some sources. Errors in the photometric redshift determination and SED modeling may still allow significant...
uncertainty in the “compact, evolved stellar population” interpretation (see Table 1 for the photo-z errors). Of the five qDRGs only one has a spectroscopic redshift, object 66, and this source harbors an active nucleus. Also plotted in Figure 5 are the offsets in mass and density due to the photometric redshift errors. The local values for early-type (dark-gray shading) and late-type (light-gray shading) galaxies (Shen et al. 2003) are overplotted. The solid line shows the simple trend of surface density with mass expected for dissipationless mergers normalized to the qDRGs (e.g., Nipoti et al. 2003); the dotted lines show the trend if our mass estimates are systematically too high or low by a factor of 2. The open black circles are $z \sim 1$ ellipticals (van der Wel et al. 2006). The open red circles are passive galaxies found by Daddi et al. (2005) in the Ultra Deep Field at $z \sim 1.5$ using their (lower) Maraston SED mass estimates (Maraston et al. 2006) and the open red squares are dense, passive sources found in the MUNICS survey (Trujillo et al. 2006b). The blue stars are LBGs from this work. A characteristic error bar for the qDRGs is shown as an open square in the bottom right-hand corner.

We also want to know how a dense galaxy may have formed. From the modeling of their SEDs, the qDRGs have inferred luminosity-weighted stellar ages using the Maraston (Bruzual & Charlot) models between 0.3 (0.5) and 2.0 (2.3) Gyr (Wuyts et al. 2007). Mergers that involve substantial gas dissipation may result in high mass density of the remnants (Robertson et al. 2006), while dissipationless, or “dry,” mergers increase the size of the galaxies sufficiently to lower their densities (e.g., Nipoti et al. 2003; van Dokkum 2005). If the qDRGs were to evolve via dry merging, they would only reach local galaxy densities at very high masses ($\geq 10^{12} M_\odot$). It is unlikely that the small HDF-S field would contain five progenitors of such rare, giant galaxies. However, simulations do show that the progenitors of giant local galaxies may be spread over an area comparable to the HDF-S at high redshift (e.g., Gao et al. 2004). If these qDRGs were to evolve along the dry merging line, they would require more than four equal mass mergers to match the density of the $z \sim 0$ ellipticals. So while it may seem numerically possible that these qDRGs would merge with each other to produce a single giant galaxy, and the uncertain photometric redshifts in this field cannot definitively exclude this possibility, it would imply that the HDF-S is a rather special (rare) field. They may also merge with the more numerous star-forming galaxies as long as the remnant is less dense than the compact DRG.

6. DISCUSSION AND CONCLUSIONS

We have presented high spatial resolution rest-frame optical imaging data for NIR-selected distant red galaxies in the HDF-S. The combination of these data with our modeling of their broadband optical-infrared SEDs has highlighted the “quiescent” population, the qDRGs, as being particularly dense, massive stellar cores at high redshift. The evolution of the qDRGs into their counterparts at low redshift is problematic. Their relatively high stellar masses, the strong clustering (Daddi et al. 2003; Quadri et al. 2006) of the DRGs as a population, and the small sizes of the qDRGs in particular suggest that qDRGs are destined to become massive concentrated galaxies at lower redshift, i.e., ellipticals. However, their surface stellar mass densities are more than an order of magnitude higher than local ellipticals. Mergers that involve substantial gas dissipation may increase the mass density of the remnant (Robertson et al. 2006), while dissipationless, or “dry,” merging increases the size of the galaxies sufficiently to lower their densities (e.g., Nipoti et al. 2003; van Dokkum 2005). If the qDRGs were to evolve via dry merging, they would only reach local galaxy densities at very high masses ($\geq 10^{12} M_\odot$). It is unlikely that the small HDF-S field would contain five progenitors of such rare, giant galaxies. However, simulations do show that the progenitors of giant local galaxies may be spread over an area comparable to the HDF-S at high redshift (e.g., Gao et al. 2004). If these qDRGs were to evolve along the dry merging line, they would require more than four equal mass mergers to match the density of the $z \sim 0$ ellipticals. So while it may seem numerically possible that these qDRGs would merge with each other to produce a single giant galaxy, and the uncertain photometric redshifts in this field cannot definitively exclude this possibility, it would imply that the HDF-S is a rather special (rare) field. They may also merge with the more numerous star-forming galaxies as long as the remnant is less dense than the compact DRG. Interestingly, Robertson et al. (2006) find that the role of dissipation decreases as the mass of the merging galaxies increase. More and more of the gas is dynamically heated into the galactic halo and is unable to cool. It is worth noting that despite the possibility of misclassification of the qDRGs as compact, even a single dense stellar core at high redshift would require a plausible evolutionary scenario to match local galaxy properties.

Near-infrared spectroscopy can confirm the redshifts and help determine whether the light is indeed dominated by stars rather than AGNs (Kriek et al. 2006b) and may eventually enable kinematic mass estimates. Initial results from a NICMOS study of a wider field confirms the trend toward small sizes and high densities for the qDRGs quoted here (S. Toft et al. 2007, in preparation). As samples of qDRGs continue to grow, further high spatial resolution imaging (either from NICMOS/WFC3 or from...
adaptive-optics systems on the ground) will be able to discover whether this trend toward small sizes observed in the HDF-S persists over larger volumes and lower galaxy masses and determine the extent to which AGNs contribute to the phenomenon.

Support for program 9723 was provided by NASA through a grant (GO-09723.01-A) from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. The entire FIRES team thanks the staff of the Lorentz Center in Leiden for their hospitality and excellent meeting facilities. A. W. Z. gratefully acknowledges funding from NWO during his time in Leiden and thanks Colin Norman for helpful discussions. We thank the anonymous referee for useful suggestions and their prompt attention to the manuscript.

REFERENCES

Baugh, C. M., Lacey, C. G., Frenk, C. S., Granato, G. L., Silva, L., Bressan, A., Benson, A. J., & Cole, S. 2005, MNRAS, 356, 1191
Brinchmann, J., Charlot, S., White, S. D. M., Tremonti, C., Kauffmann, G., Heckman, T., & Brinkmann, J. 2004, MNRAS, 351, 1151
Casertano, S., et al. 2000, AJ, 120, 2747
Chapman, S. C., Windhorst, R., Odewahn, S., Yan, H., & Conselice, C. 2003, ApJ, 599, 92
Cimatti, A., et al. 2002, A&A, 381, L68
Conselice, C. J., et al. 2004, ApJ, 600, L139
Daddi, E., et al. 2003, ApJ, 588, 50
———. 2005, ApJ, 626, 680
Faber et al. 2005
Franx, M. 1993, ApJ, 407, L5
Franx, M., et al. 2003, ApJ, 587, L79
Gao, L., Loeb, A., Peebles, P. J. E., White, S. D. M., & Jenkins, A. 2004, ApJ, 614, 17
Giavalisco, M., Steidel, C. C., & Macchetto, F. D. 1996, ApJ, 470, 189
Huynh, M. T., Jackson, C. A., Norris, R. P., & Prandoni, I. 2005, AJ, 130, 1373
Kauffmann, G., et al. 2003, MNRAS, 341, 54
Khocharf, S., & Silk, J. 2006a, MNRAS, 370, 902
Kriek, M., et al. 2006a, ApJ, 645, 44
———. 2006b, ApJ, 649, L71
Krist, J. 1993, in ASP Conf. Ser. 52, Astronomical Data Analysis Software and Systems II, ed. R. J. Hanisch, R. J. V. Brissendend, & J. Barnes (San Francisco: ASP), 536
Labbé, I., et al. 2003, ApJ, 591, L95
———. 2005, ApJ, 624, L81
Longhetti, M., et al. 2007, MNRAS, in press (astro-ph/0610241)
Madau, P., Ferguson, H. C., Dickinson, M. E., Giavalisco, M., Steidel, C. C., & Fruchter, A. 1996, MNRAS, 283, 1388
Maraston, C. 2005, MNRAS, 362, 799
Maraston, C., Daddi, E., Renzini, A., Cimatti, A., Dickinson, M., Papovich, C., Pasquali, A., & Pirzkal, N. 2006, ApJ, 652, 85
McIntosh, D. H., et al. 2005, ApJ, 632, 191
Naab, T., Khocharf, S., & Burkert, A. 2006, ApJ, 636, 81
Nipoti, C., Londrillo, P., & Ciotti, L. 2003, MNRAS, 342, 501
Papovich, C., Dickinson, M., Giavalisco, M., Conselice, C. J., & Ferguson, H. C. 2005, ApJ, 631, 101
Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2002, AJ, 124, 266
Quadri, R., et al. 2006, ApJ, 654, 138
Rix, H.-W., et al. 2004, ApJS, 152, 163
Robertson, B., Cox, T. J., Hernquist, L., Franx, M., Hopkins, P. F., Martini, P., & Springel, V. 2006, ApJ, 641, 21
Rudnick, G., et al. 2001, AJ, 122, 2205
———. 2003, ApJ, 599, 847
———. 2006, ApJ, 650, 624
Sersic, J. L. 1968, Atlas de Galaxias Australes (Cordoba: Obs. Astron.)
Shen, S., Mo, H. J., White, S. D. M., Blanton, M. R., Kauffmann, G., Voges, W., Brinkmann, J., & Csabai, I. 2003, MNRAS, 343, 973
Trujillo, I., et al. 2004, ApJ, 604, 521
———. 2006a, ApJ, 650, 18
———. 2006b, MNRAS, van der Wel, A., Franx, M., van Dokkum, P. G., Rix, H.-W., Illingworth, G. D., & Rosati, P. 2005, ApJ, 631, 145
van der Wel, A., Franx, M., Wuyts, S., van Dokkum, P. G., Huang, J., Rix, H.-W., & Illingworth, G. D. 2006, ApJ, 652, 97
van Dokkum, P. G. 2005, AJ, 130, 2647
Wuyts, S., et al. 2007, ApJ, 655, 51
Zirm, A. W., Dickinson, M., & Dey, A. 2003, ApJ, 585, 90