ON SPECIAL CASES OF GENERAL GEOMETRY:
geometries with changing length of vectors

S. S. Shahverdiyev*

Institute of Physics, Azerbaijan National Academy of Sciences, Baku, Azerbaijan

Abstract

We find relations between quantities defining geometry and quantities defining
the length of a curve in geometries underlying Electromagnetism and unified
model of Electromagnetism and Gravitation. We show that the length of a
vector changes along a curve in these geometries.

*e-mail:shervgis@yahoo.com
1 Introduction

In paper [1] a new geometry called General Geometry is formulated and it is shown that its the most simplest case is geometry underlying electromagnetism. However, relation between quantities defining geometry F^σ_λ and the length of a curve A_μ was assumed. Next, in paper [2] it is shown that geometry underlying unified model of electromagnetism and gravitation is also a special case of General Geometry. There, relations between quantities defining geometry F^σ_λ, $\Gamma^\sigma_{\mu\nu}$ and the length of a curve $g_{\mu\nu}$, A_μ were also assumed.

In the present paper, it is shown that relations assumed in [1] and [2] hold to be true provided that the length of a vector changes along a curve in both geometries.

In Riemannian geometry the length of a vector does not change and this makes it be an underlying geometry for Gravitation. If the length of a vector changes in Riemannian geometry then it fails to be an underlying geometry for Gravitation. This failure has been demonstrated by H. Weyl [3] who investigated Riemannian geometry with changing length of a vector in an attempt to unify electromagnetism and gravitation (for discussion see [4]). However, we show that the length of a vector changes along a curve in the presence of electromagnetic field in a geometry completely different from Riemannian one.

In summary, Geometry of Electromagnetism [1] with changing length of a vector has physical interpretation as geometry underlying Electromagnetism. Riemannian geometry with constant length of a vector has physical interpretation as geometry underlying Gravitation. Combination of Geometry of Electromagnetism and Riemannian geometry with changing length of a vector is geometry underlying unified model of Electromagnetism and Gravitation.

In the next section we prove relations assumed in [1] and [2] and show that the length of a vector changes along a curve in these geometries.

2 On Special Cases of General Geometry

We recall that Geometry of Electromagnetism [1] is defined by

$$\frac{d\xi}{du} = -F^\sigma_\lambda(x)\xi^\lambda.$$ \hspace{1cm} (1)

We consider the following metric

$$ds = \sqrt{\eta_{\mu\nu}dx^\mu dx^\nu + \frac{q}{cm}A_\mu(x)dx^\mu}, \quad \eta_{\mu\nu} = diag(1-1-1-1).$$ \hspace{1cm} (2)

Accordingly, the length of a vector $V = \xi^\lambda\frac{\partial}{\partial x^\lambda}$ is

$$dl = \sqrt{\eta_{\mu\nu}\xi^\mu\xi^\nu + \frac{q}{cm}A_\mu(x)\xi^\mu}.$$ \hspace{1cm} (3)

And we assume that

$$\frac{dl}{du} = \Phi_\nu(A_\lambda, F_{\mu\nu})\xi^\nu.$$ \hspace{1cm} (4)
where A_μ are some functions of x, Φ_ν are functions of A_μ and $F_{\mu\nu}$, and q, c, m are some parameters. Equation (4) means that the length of a vector changes along a curve due to Φ_ν. Substitution of dl in (4) by (3) leads to equations

$$\xi^\mu \xi^\nu (F_{\mu\nu} + F_{\nu\mu}) = 0, \quad \frac{q}{cm} (\partial_\mu A_\sigma x^\mu_\sigma - A_\mu F^\mu_\sigma) \xi^\sigma = \Phi_\nu (A_\lambda, F_{\mu\sigma}) \xi^\nu. \quad (5)$$

The most general solution to the first one is any antisymmetric tensor

$$F_{\mu\nu} = -F_{\nu\mu}.$$

We choose Φ_ν such that the second equation has solution

$$F_{\mu\nu} = \frac{q}{cm} (\partial_\mu A_\nu - \partial_\nu A_\mu).$$

As it is shown in [1], curvature vector R_λ is equal to $R_\lambda = \partial^\mu F_{\mu\lambda}$. Equation $R_\lambda = 0$ coincides with Maxwell equation for electromagnetic field A_μ and equation for geodesics coincides with the equation for a particle interacting with electromagnetic field A_μ. This allows us to interpret A_μ as electromagnetic field and geometry defined by (1) with (2) and (4) as geometry underlying electromagnetism. q is identified with charge, m with mass of a particle interacting with electromagnetic field A_μ, c is the speed of the light.

If we choose $\Phi_\nu = 0$ then the second equation in (5) reduces to

$$\partial_\mu A_\sigma x^\mu_\sigma - A_\mu F^\mu_\sigma = 0.$$

Multiplication by A^σ gives

$$A^\sigma \partial_\mu A_\sigma = 0.$$

This equation is a constraint for A_μ. Therefore in order to consider general functions A_μ of x we have to allow $\Phi_\nu \neq 0$. Hence, the length of a vector must change along a curve in Geometry of Electromagnetism.

Next we consider geometry underlying unified model of electromagnetism and gravitation [2] defined by

$$\frac{d\xi^\sigma}{du} = -(F^\sigma_\lambda (x) + \Gamma^\sigma_\lambda_\mu (x)x^\mu_\nu)\xi_\lambda, \quad (6)$$

and choose metric as

$$ds = \sqrt{g_{\mu\nu}dx^\mu dx^\nu} + \frac{q}{cm} A_\mu (x) dx^\mu,$$

where $g_{\mu\nu} (x)$ is a metric tensor and the length of a vector V is

$$dl = \sqrt{g_{\mu\nu} \xi^\mu \xi^\nu} + \frac{q}{cm} A_\mu \xi^\mu, \quad (7)$$

If we choose $ds = \sqrt{\eta_{\mu\nu} dx^\mu dx^\nu}$ and $\frac{d\xi^\sigma}{du} = 0$ we obtain that $F_{\mu\nu}$ is an arbitrary antisymmetric tensor and electromagnetic field A_μ has to be introduced artificially.
and it changes as
\[\frac{dl}{du} = \Phi'_\nu(A_\lambda, F_{\mu\nu})\xi^\nu. \tag{8} \]

Note that in this geometry \(\xi_\rho = g_{\rho\mu}\xi^\mu \). Substitution of \(dl \) in (8) by (7) gives rise to
\[\Gamma_{\nu,\sigma\lambda} + \Gamma_{\lambda,\sigma\nu} = \partial_\sigma g_{\lambda\nu}, \quad \frac{q}{cm}(\partial_{\mu}A_{\sigma}x_{\mu}^\sigma - A_{\mu}F_{\mu\sigma}) = \Phi'_{\sigma}. \]

Solutions to the first equation are
\[2\Gamma_{\lambda,\mu\nu} = \frac{\partial g_{\lambda\nu}}{\partial x^\mu} + \frac{\partial g_{\lambda\mu}}{\partial x^\nu} - \partial g_{\mu\nu}. \]

We choose \(\Phi' \) so that the second equation solves as
\[F_{\mu\nu} = \frac{q}{cm}(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}). \]

According to the results obtained in [2] we interpret \(g_{\mu\nu} \) as gravitational field and \(A_{\mu} \) as electromagnetic field.

3 Conclusion

In this paper we considered only two special cases of General Geometry [1]. Resuming, geometries discussed in this paper, with appropriate metrics are underlying geometries for physical theories. The most simplest case of General Geometry
\[\frac{d\xi^\sigma}{du} = -F_{\sigma}^\lambda(x)\xi^\lambda, \]
with metric
\[ds = \sqrt{\eta_{\mu\nu}dx^\mu dx^\nu + \frac{q}{cm}A_{\mu}(x)dx^\mu} \]
is geometry underlying Electromagnetism. Next order in \(x_u \), Riemannian geometry,
\[\frac{d\xi^\lambda}{du} = -\Gamma^\sigma_{\lambda\nu}(x)x_u^\nu\xi^\lambda \]
with metric
\[ds = \sqrt{g_{\mu\nu}dx^\mu dx^\nu} \tag{9} \]
is geometry underlying Gravitation. Combination of two previous geometries
\[\frac{d\xi^\sigma}{du} = -(F_{\sigma}^\lambda(x) + \Gamma^\sigma_{\lambda\mu}(x)x_u^\mu)\xi^\lambda \]
with metric
\[ds = \sqrt{g_{\mu\nu}dx^\mu dx^\nu + \frac{q}{cm}A_{\mu}(x)dx^\mu} \]
is geometry underlying unified model of Electromagnetism and Gravitation [2].
We do not discuss the other special cases in this paper. Riemannian Geometry with metric \(ds = \sqrt{g_{\mu \nu}dx^\mu dx^\nu} \) without parameters instead of (9) has been considered in [5] and applied to Kaluza-Klein theory. As we demonstrated in [1] any attempt to geometrize electromagnetism in geometries like Riemannian, (for example in the so called Finsler geometry) independent of the chosen metric must fail [6]. By choosing different metrics we do not change geometry [5], [7], [8].

4 Remarks

Thanks to moderators of [9] and [10] almost all attempts to sabotage these serious papers are made available online.

References

[1] S. S. Shahverdiyev, General Geometry and Geometry of Electromagnetism, Focus on Mathematical Physics Research P.169-176 (2004), Nova Science Publishing, hep-th/0205224

[2] S. S. Shahverdiyev, Unification of Electromagnetism and Gravitation in the framework of General geometry, Fizika 12, 2004, physics/0507034, Proceedings of the International Workshop on Particles and Fields –3, September 13-17, 2004, Baky, Azerbaijan , CERN EXT-2002-050,

[3] H. Weyl, Sitzungsber. d. Berl. Acad. p.465 (1918)

[4] W. Pauli, Theory of Relativity, Pergamon Press, 1958

[5] G. Randers, Phys. Rev. 59, 195 (1941)

[6] R. G. Bail, Foundations of Physics 33, No. 7, 1107 (2003)

[7] S. Chern, “Finsler Geometry is just Riemannian Geometry without the Quadratic restriction” Notices of AMS, September 1996, http://www.math.iupui.edu/~zshen/Finsler/history/chern.html

[8] S. S. Shahverdiyev, Comments on “Finsler Geometry and Relativistic Field Theory”, physics/0412129

[9] http://gaph.iatp.az/gaph/charl.htm

[10] http://www.geocities.com/scienews

\(^{2}\)I thank Prof. M. Anastasiei for informing me about [5] after [1], [2] and this paper have been posted on the Internet. It is surprising that Prof. M. Anastasiei recommended to publish [6] although its results contradicts those obtained in [1] (also, see [8]).