Profile of dorsal root ganglion neurons: study of oxytocin expression

Taisei Noguri
 Waseda University: Waseda Daigaku

Dai Hatakeyama
 Tokushima Bunri University: Tokushima Bunri Daigaku

Takashi Kitahashi
 Kushiro Nature Conservation office

Kotaro Oka
 Keio University: Keio Gijuku Daigaku

Etsuro Ito (✉ eito@waseda.jp)
 Waseda University: Waseda Daigaku https://orcid.org/0000-0002-1877-6566

Research Article

Keywords:

Posted Date: February 28th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1387439/v1

License: ☕️ 📧 This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Although Dorsal root ganglion (DRG) neurons have been so far classified according to the difference in their fibers (Aβ, Aδ, and C), this classification should be further subdivided according to gene expression patterns. We focused on oxytocin (OXT) and its related receptors, because OXT plays a local role in DRG neurons. We measured the mRNA levels of OXT, OXT receptor (OXTR), vasopressin V1a receptor (V1aR), transient receptor potential cation channel subfamily V member 1 (TRPV1), and piezo-type mechanosensitive ion channel component 2 (Piezo2) in single DRG neurons by using real-time PCR, and then performed a cluster analysis. According to gene expression patterns, DRG neurons were classified into 4 clusters: Cluster 1 was characterized mainly by Piezo2, Cluster 2 by TRPV1, Cluster 4 by OXTR, and neurons in Cluster 3 did not express any of the target genes. The cell body diameter of OXT-expressing neurons was significantly larger in Cluster 1 than in Cluster 2. These results suggest that OXT-expressing DRG neurons with small cell bodies (Cluster 2) and large cell bodies (Cluster 1) probably correspond to C-fiber neurons and Aβ-fiber neurons, respectively. Furthermore, the OXT-expressing neurons contained not only TRPV1 but also Piezo2, suggesting that OXT may be released by mechanical stimulation regardless of nociception. Thus, mechanoreception and nociception themselves may induce the autocrine/paracrine function of OXT in the DRG, contributing to alleviation of pain.

Introduction

The dorsal root ganglia (DRGs) convey peripheral sensory information to the central nervous system, and they are composed of several types of neurons and glial cells [1]. DRG neurons have been classically categorized by cell body size and myelinated/unmyelinated fibers. Previous reports showed that DRG neurons with large cell bodies and myelinated Aβ fibers transmit mechanoreception, whereas those with medium-sized cell bodies and myelinated Aδ fibers and those with small cell bodies and unmyelinated C fibers transmit nociception [1]. However, because a variety of gene expression patterns are observed in DRG neurons, it is now considered that the classification of DRG neurons should be further subdivided [2, 3].

On the other hand, recent reports indicated that the neuropeptide oxytocin (OXT) plays a role in the DRGs [4–6]. OXT is released from the posterior pituitary gland and has long been known as a neuropeptide that stimulates uterine contractions to hasten childbirth and is involved in lactation [7]. However, because OXT also acts on DRG neurons to suppresses the firing of action potentials, its analgesic effects have also attracted attention [8, 9]. Expression of OXT has also been confirmed in DRG neurons [10]. These facts suggest that OXT expressed in DRG neurons may locally exert a rapid analgesic effect, apart from the classic effects of OXT released from the posterior pituitary gland.

Based on the hypothesis that the expression and action of OXT differ depending on the type of DRG neuron, we examined the expression of OXT and its related receptors in DRG neurons and attempted to classify DRG neurons according to their gene expression profiles.
Methods

Preparation of single DRG neurons

We used male C57BL/6JJmsSlc mice (8–10 weeks old). These mice were obtained from Japan SLC and maintained in specific pathogen-free conditions in our animal facility. The isolation method of DRG neurons was modified from previous studies [11]. Briefly, 6 mice were anesthetized with sevoflurane and then decapitated. The DRGs were taken out from L1-L6 and incubated in HBSS(-) containing 0.65 mg/mL collagenase and 3.0 mg/mL dispase for 30 min at 37°C. The cells were further kept in the above collagenase solution for more than 1 h at room temperature, and then dispersed in MEM with 5% FBS by pipetting. The cells were incubated in MEM with 5% FBS on collagen-coated dishes for 4 h at 37°C under 5% CO₂. The diameter of each neuron in the dishes was measured with a micrometer equipped with a microscope.

Single-cell Real-time Pcr

The protocol of single-cell real-time PCR was modified from previous studies [12]. Single DRG neurons were picked up from the dishes with a micropipette and put into micro tubes. RNA extraction and reverse-transcription were performed using RT-RamDA cDNA synthesis kit (RMD-201T, Toyobo) according to the manufacturer’s instructions. We measured the expression levels (Ct values) of mRNA for OXT [13], OXT receptor (OXTR) [14], vasopressin V1a receptor (V1aR, cross-reacts with OXT) [8, 11], transient receptor potential cation channel subfamily V member 1 (TRPV1, a marker for nociceptive neurons) [15, 16], and piezo-type mechanosensitive ion channel component 2 (Piezo2, a marker for mechanoreceptive neurons) [17] by using single-cell real-time PCR. All PCR amplifications were performed using BlasTaq 2× qPCR MasterMix (G891, Applied Biological Materials) according to the manufacturer’s instructions. Briefly, PCR was performed in a total volume of 10 µL containing 1 µL of cDNA sample, 5 µL of MasterMix, 0.05 µL of a forward primer (50 µM, Table 1), 0.05 µL of a reverse primer (50 µM, Table 1) and 3.9 µL of sterilized water using StepOnePlus real-time PCR system (Applied Biosystems). GAPDH and β-actin were used as the reference genes. Relative expression levels of the target genes were calculated using the ΔCt method (ΔCt value = Ct value of target gene - averaged Ct value of the 2 reference genes). To perform cluster analysis and statistical analysis, when the results of real-time PCR of a sample showed ‘undetermined’ (i.e., the expression level was below the detection limit), we assigned 41 as the Ct value of the sample, as PCR was performed until the 40th cycle was conducted.
Table 1
Primers for single-cell real-time PCR

Primer	Primer sequence (5'-3')	Accession number
OXT	Forward: TTGGCTTACTGGCTCTGACCTC	NM_011025
	Reverse: GGGAGACACTTTGCGCATATCCAG	
OXTR	Forward: TTCTTCTGTCAGATGGAG	NM_001081147
	Reverse: CCTCAGGTACCGACAGCAG	
V1aR	Forward: TGTGGTCAGTCTGGGATACC	NM_016847
	Reverse: GGGAAGCTCTGGACACAATC	
TRPV1	Forward: ATCATCAACGAGGACCAG	NM_001001445
	Reverse: TGCTATGCCTATCTCGAGTC	
Piezo2	Forward: TCAGAAACCACAAAGCAACG	NM_001039485
	Reverse: TTGTAAGCAGGTGTGATGCG	
GAPDH	Forward: TATGACTCCACTCACGGCAAAT	NM_001289726
	Reverse: GGGTCTCGCTCCTGGAAAGAT	
β-actin	Forward: GACTCATCGTACTCCTGCTTG	NM_007393
	Reverse: GATTACTGCTCTGGCTCCTAG	

Cluster Analysis

Using the Morisita-Horn index [18] of the similarity in the target gene expression pattern, cluster analysis of DRG neurons was performed. The distance among the clusters was determined by the Ward method [19]. Note that in the following sections, results of the present study are discussed in terms of both gene expression patterns and neuron diameters, whereas the cluster analysis was performed based on gene expression patterns only.

Statistics

One-way ANOVA followed by a post-hoc Scheffé test was used for comparison among multiple groups. Mann-Whitney U test was used for comparison between two groups. $P < 0.05$ was considered to be statistically significant. The statistics software used was R (version 4.1.2) and FreeJSTAT (version 22.0E).
Results

Size of isolated DRG neurons and their expression of oxytocin and its related receptors

The diameters of single DRG neurons picked up from the culture dishes were measured with a micrometer (Fig. 1a). The diameters varied from 14.5 µm to 49.0 µm (n = 79). The amount of the mRNA for 5 molecules in relation to OXT, i.e., OXT, OXTR, V1aR, TRPV1, and Piezo2, was examined in single DRG neurons by using real-time PCR. When fluorescence signal strength above threshold was obtained by the 40th cycle (Ct ≤ 40), we judged that the single DRG neuron expresses the target molecule. Of 79 single DRG neurons, 58 neurons expressed Piezo2, 38 neurons TRPV1, 31 neurons OXTR, 23 neurons OXT, and 4 neurons V1aR (Fig. 1b).

Cluster Analysis Of Isolated Single Drg Neurons

A cluster analysis was performed by using the Morisita-Horn index and the Ward method (Fig. 2). Based on the gene expression pattern, DRG neurons were classified into 4 groups. Of 79 single DRG neurons, Cluster 1 contained 46 neurons, Cluster 2 contained 16 neurons, Cluster 3 contained 12 neurons, and Cluster 4 contained 5 neurons. Cluster 1 had the most distinctive gene expression pattern compared to other clusters.

Cell Body Size And Expression Of Oxytocin And Its Related Receptors In The 4 Clusters

The characteristics of the 4 clusters were examined (Fig. 3). The median diameters of DRG neurons in Clusters 1, 2, 3, and 4 were 34.5, 19.0, 24.0, and 20.0 µm, respectively (Fig. 3a). The cell sizes of Cluster 1 DRG neurons were significantly larger than those of Cluster 2 neurons (P < 0.01). When focusing on the percentage of cells expressing a particular target molecule in the cluster, we found that Cluster 1 was characterized mainly by the high expression of Piezo2, Cluster 2 by TRPV1, and Cluster 4 by OXTR, whereas cells in Cluster 3 did not express any of the target genes (Fig. 3b-e).

Comparison Of Characteristics Between Cluster 1 And Cluster 2

Comparing Cluster 1 and Cluster 2, the relative expression level of TRPV1 was significantly higher in Cluster 2 (Fig. 4a, P < 0.01). It is important to note that the smaller ΔCt is, the higher the expression level is. For Piezo2, the relative expression level in Cluster 1 was significantly higher compared to Cluster 2 (Fig. 4b, P < 0.01). For OXT and OXTR, there were no significant statistical differences between Cluster 1
and Cluster 2 (Fig. 4c, d). When we focused on OXT-expressing cells among DRG neurons, average diameter of OXT-expressing neurons in Cluster 1 was 40.5 µm, indicating that OXT-expression neurons are relatively large cells in Cluster 1. On the other hand, average diameter of OXT-expressing neurons in Cluster 2 was 18.1 µm, which was significantly smaller than that in Cluster 1 (Fig. 4e, P < 0.01).

Co-expression Of Oxt And Trpv1 And That Of Oxt And Piezo2 In Single Drg Neurons

Previous reports showed that OXT and TRPV1 were co-expressed in DRG neurons [10]. Our single-cell real-time PCR approach showed that about three fourths of DRG neurons expressing OXT also co-expressed TRPV1 (Fig. 5), reconfirming the co-expression of OXT and TRPV1 in DRG neurons [10]. Furthermore, most OXT-expressing DRG neurons, including those do not express TRPV1, were found to co-express Piezo2. As far as we know, the co-expression of OXT and Piezo2 was confirmed for the first time in the present study.

Discussion

In the present study, we classified DRG neurons into four clusters according to the expression patterns of OXT and its related receptors using single-cell real-time PCR. Cluster 1 was characterized mainly by the high expression of Piezo2, Cluster 2 by TRPV1, and Cluster 4 by OXTR. Whereas Cluster 1 contained cells with a wide range of diameters, OXT-expressing cells were found to be the large cells in the cluster. In particular, the OXT-expressing DRG neurons with large-diameter cell bodies (Cluster 1) may correspond to neurons of Aβ fibers (mechanoreception) and the OXT-expressing DRG neurons with small-diameter cell bodies (Cluster 2) may correspond to neurons of C fibers (nociception).

The DRG neurons classified as Cluster 2 in the present study highly expressed TRPV1 and are supposed to be unmyelinated C fibers. As it has been shown that OXT acts directly on TRPV1 [16], it is possible that the analgesic effect of OXT is exerted by alleviating the perception of pain transmitted through the activation of the DRG neurons in Cluster 2.

In the present study, some cells in Cluster 2 showed co-expression of V1aR and TRPV1 (about 4%). Han and colleagues have shown that the peripheral analgesic effects of OXT were attributable to the activation of V1aR and resulting decrease in TRPV1 activity and increase of potassium conductance in DRG neurons [11]. Thus, the analgesic effects of OTX via activation of V1aR may occur in the DRG neurons that are classified as Cluster 2.

In terms of peripheral OXT secretion, our results demonstrated that OXT-expressing neurons contain Piezo2 in addition to TRPV1 for the first time, suggesting that not only nociception but also mechanical stimulation can induce OXT secretion in the DRGs. Taken together, in the DRGs, OXT should be released by mechanoreception and nociception, acting on non-myelinated C fibers to relieve pain. The pain-relief effects of massage or patch adhesion [20] could be via this peripheral action of OXT.
Previous studies have suggested that humans and other mammals feel comfort (i.e., pleasure) when the perception of mild skin stimulation is sent to the brain via C fibers [21]. It is possible that, in such a situation, OXT is released not only from the hypothalamus but also in the DRG. It will be interesting to see how the central and local actions of OXT interact with each other in future studies.

Abbreviations

DRG
Dorsal root ganglion
OXT
oxotocin
OXTR
OXT receptor
Piezo2
piezo-type mechanosensitive ion channel component 2
TRPV1
transient receptor potential cation channel subfamily V member 1
V1aR
vasopressin V1a receptor.

Declarations

Acknowledgements

Not applicable.

Authors’ contributions

TN performed the experiments. TN, DH and TK analyzed the data. KO advised from the perspective of neuroscience. TN and EI wrote the manuscript. DH, TK and KO edited the manuscript. EI supervised the whole project. All authors read and approved the final manuscript.

Funding

This work was supported by a Grant-in-Aid (grant number 19H00633) for Scientific Research (A) from the Japan Society for the Promotion of Science to K.O. and E.I. The funder had no role in study design, data collection, and analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials

All of the data generated and analyzed in this study are included in this published article.

Declarations
Ethics approval and consent to participants

All animal experiments were performed according to the protocols approved by the Institutional Animal Care and Use Committee at Waseda University (2021-A004).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1Department of Biology, Waseda University, Tokyo 162-8480, Japan. 2Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan. 3Kushiro Nature Conservation Office, Ministry of the Environment, Kushiro 085-8639, Japan. 4Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan. 5Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan. 6Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan

References

1. Kandel ER, Schwartz JH, Jessell TM. Principles of Neural Science, 4th ed., Chap. 24: The perception of pain. New York: McGraw-Hill; 2000. p. 472–491.
2. Meltzer S, Santiago C, Sharma N, Ginty DD. The cellular and molecular basis of somatosensory neuron development. Neuron. 2021;109:3736–57. doi:10.1016/j.neuron.2021.09.004.
3. Graham RD, Sankarasubramanian V, Lempka SF. Dorsal root ganglion stimulation for chronic pain: Hypothesized mechanisms of action. J Pain. 2022;23:196–211. doi:10.1016/j.jpain.2021.07.008.
4. Wang F, Stefano GB, Kream RM. Epigenetic modification of DRG neuronal gene expression subsequent to nerve injury: etiological contribution to complex regional pain syndromes (Part II). Med Sci Monit. 2014;20:1188–200. doi:10.12659/MSM.890707.
5. Saito N, Shima R, Yamada Y, Nagaoka M, Ito E, Yoshioka T. A Proposed molecular mechanism for physical analgesia in chronic pain. Neural Plast. 2018;2018:1260285. doi:10.1155/2018/1260285.
6. Ito E, Shima R, Yoshioka T. A novel role of oxytocin: Oxytocin-induced well-being in humans. Biophys Physicobiol. 2019;16:132–9. doi:10.2142/biophysico.16.0_132.
7. Hyodo S. 8C: Oxytocin, In Handbook of Hormones 2nd ed., Ed. by Ando H, Ukena K, Nagata S. London: Elsevier (2021).
8. Qiu F, Qiu CY, Cai H, Liu TT, Qu ZW, Yang Z, Li JD, Zhou QY, Hu WP. Oxytocin inhibits the activity of acid-sensing ion channels through the vasopressin, V1A receptor in primary sensory neurons. Br J Pharmacol. 2014;171:3065–76. doi:10.1111/bph.12635.

9. Gong L, Gao F, Li J, Li J, Yu X, Ma X, Zheng W, Cui S, Liu K, Zhang M, Kunze W, Liu CY. Oxytocin-induced membrane hyperpolarization in pain-sensitive dorsal root ganglia neurons mediated by Ca\(^{2+} / nNOS/NO/KATP\) pathway. Neuroscience. 2015;289:417–28. doi:10.1016/j.neuroscience.2014.12.058.

10. Dayanithi G, Forostyak O, Forostyak S, Kayano T, Ueta Y, Verkhratsky A. Vasopressin and oxytocin in sensory neurones: expression, exocytotic release and regulation by lactation. Sci Rep. 2018;8:13084. doi:10.1038/s41598-018-31361-1.

11. Han RT, Kim HB, Kim YB, Choi K, Park GY, Lee PR, Lee J, Kim HY, Park CK, Kang Y, Oh SB, Na HS. Oxytocin produces thermal analgesia via vasopressin-1a receptor by modulating TRPV1 and potassium conductance in the dorsal root ganglion neurons. Korean J Physiol Pharmacol. 2018;22:173–82. doi:10.4196/kjpp.2018.22.2.173.

12. Li CL, Li KC, Wu D, Chen Y, Luo H, Zhao JR, Wang SS, Sun MM, Lu YJ, Zhong YQ, Hu XY, Hou R, Zhou BB, Bao L, Xiao HS, Zhang X. Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity. Cell Res. 2016;26:83–102. doi:10.1038/cr.2015.149.

13. Yang Q, Wu ZZ, Li X, Li ZW, Wei JB, Hu QS. Modulation by oxytocin of ATP-activated currents in rat dorsal root ganglion neurons. Neuropharmacology. 2002;43:910–6. doi:10.1016/s0028-3908(02)00127-2.

14. Moreno-López Y, Martínez-Lorencana G, Condés-Lara M, Rojas-Piloni G. Identification of oxytocin receptor in the dorsal horn and nociceptive dorsal root ganglion neurons. Neuropeptides. 2013;47:117–23. doi:10.1016/j.npep.2012.09.008.

15. Ito E, Ikemoto Y, Yoshioka T. Thermodynamic implications of high Q_{10} of thermo-TRP channels in living cells. Biophysics. 2015;11:33–8. doi:10.2142/biophysics.11.33.

16. Nersesyan Y, Demirkhanyan L, Cabezas-Bratesco D, Oakes V, Kusuda R, Dawson T, Sun X, Cao C, Cohen AM, Chelluboina B, Veeravalli KK, Zimmermann K, Domene C, Brauchi S, Zakharian E. Oxytocin modulates nociception as an agonist of pain-sensing TRPV1. Cell Rep. 2017;21:1681–91. doi:10.1016/j.celrep.2017.10.063.

17. Michel N, Narayanan P, Shomroni O, Schmidt M. Maturational changes in mouse cutaneous touch and Piezo2-mediated mechanotransduction. Cell Rep. 2020;32:107912. doi:10.1016/j.celrep.2020.107912.

18. Horn HS. Measurement of “overlap” in comparative ecological studies. Am Nat. 1966;100:419–24.

19. Legendre P, Legendre L. Numerical Ecology, 3rd ed., Chap. 8: Cluster analysis. Amsterdam: Elsevier; 2012. p. 373–424.

20. Saito N, Shima R, Yen CT, Yang RC, Ito E, Yoshioka T. Adhesive pyramidal thorn patches provide pain relief to athletes. Kaohsiung J Med Sci. 2019;35(4):230–7. doi:10.1002/kjm2.12044.
21. McGlone F, Wessberg J, Olausson H. Discriminative and affective touch: sensing and feeling. Neuron. 2014;82:737–55. doi:10.1016/j.neuron.2014.05.001.

Figures

Figure 1

Size of isolated DRG neurons and gene expression in the cells. (a) Diameters of DRG neurons varied from 14.5 µm to 49.0 µm. The total number of the isolated cells was 79. (b) Percentage of DRG neurons expressing each target molecule. OXT: oxytocin, OXTR: OXT receptor, V1aR: vasopressin V1a receptor, TRPV1: transient receptor potential cation channel subfamily V member 1, Piezo2: piezo-type mechanosensitive ion channel component 2.

Figure 2

Cluster analysis for isolated DRG neurons. The neurons were classified into 4 clusters by cluster analysis of gene expression patterns using the Morisita-Horn index. Cluster 1, Cluster 2, Cluster 3, and Cluster 4 contained 46, 16, 12, and 5 cells, respectively. The height was obtained by the Ward method.

Figure 3

Characterization of the 4 clusters. (a) Diameters of DRG neurons in each cluster are expressed in a box plot. **P < 0.01. (b-e) Percentage of isolated DRG neurons expressing target molecules in Cluster 1, Cluster 2, Cluster 3, and Cluster 4 are shown. The abbreviations are the same as those in Fig. 1.

Figure 4

Comparison between Cluster 1 and Cluster 2. (a) Comparison of ΔCt value for TRPV1. The smaller the ΔCt value is, the larger the expression level is. **P < 0.01. (b) Comparison of ΔCt value for V1aR. (c) Comparison of ΔCt value for OXT. There is no significant difference between the 2 clusters. (d) Comparison of ΔCt value for OXTR. There is no significant difference between the 2 clusters. (e) Diameters of OXT-expressing neurons in Cluster 1 and Cluster 2. **P < 0.01.
Co-expression of OXT and TRPV1 and that of OXT and Piezo2 in DRG neurons. The co-expression of OXT and Piezo2 was confirmed for the first time in the present study, suggesting that OXT is expressed not only in nociceptor neurons but also in mechanoreceptor ones.