First Complete Genome Sequences of Xanthomonas citri pv. vignicola Strains CFBP7111, CFBP7112, and CFBP7113 Obtained Using Long-Read Technology

Mylène Ruh, Martial Briand, Sophie Bonneau, Marie-Agnès Jacques, Nicolas W. G. Chen
IRHS, INRA, Agrocampus Ouest, Université d’Angers, SFR4207 QUASAV, Beaucouzé, France

ABSTRACT Xanthomonas citri pv. vignicola strains cause bacterial blight of the legume crop cowpea. We report whole-genome sequences of three X. citri pv. vignicola strains obtained using PacBio single-molecule real-time sequencing. Such genomic data provide new information on pathogenicity factors, such as transcription activator-like effectors.

Cowpea (Vigna unguiculata) is a legume crop grown in semiarid tropical and subtropical regions of Africa, America, and Asia (1). It is used as staple food in different forms (grain, green pods, roots, or leaves) and as animal feed (2). Cowpea bacterial blight (CoBB) is a major disease of cow pea that severely reduces crop yields (3) and is present wherever cowpea is grown (4). The causal agent of CoBB is Xanthomonas citri pv. vignicola (formerly X. Axonopodis pv. vignicola) (5). X. Citri pv. vignicola mainly produces symptoms on leaves, starting as tiny water-soaked spots that evolve into large necrotic areas surrounded by a yellow halo. This pathogen can also cause stem canker and water-soaking of pods, providing the opportunity for the bacteria to gain access to seeds (6). CoBB is seed-borne and can also be transmitted by aerosols and insects (7). Moreover, X. citri pv. vignicola is able to survive in infected plant debris, seeds, and soil, which constitute different inoculum sources (8, 9). Some genotypes of cowpea have been selected for resistance to CoBB (10); however, no information on the molecular basis for this resistance is available to date.

We sequenced three strains of X. citri pv. vignicola using PacBio single-molecule real-time (SMRT) sequencing (11). Genomic DNA was extracted using the Wizard genomic DNA purification kit (Promega) according to the manufacturer’s recommendations. Whole genomes were sequenced using the PacBio RSII SMRT technology at the Icahn School of Medicine at Mount Sinai (New York, NY). One SMRT cell was used per strain to achieve ~100 X coverage. De novo assembly was performed using Canu version 1.5 (12), circularization of the contigs was done using Cirlcator version 1.5.1 (13), and polishing was done using the Quiver algorithm (14). Annotation was performed with the NCBI Prokaryotic Genome Annotation Pipeline (15).

Each X. citri pv. vignicola genome comprised one chromosome plus zero to three circularized plasmids per strain. The genome of strain CFBP7111 comprised three plasmids, for a total assembly size of 5,710,499 bp, with a G+C content of 64.5% and a total of 5,095 predicted coding sequences (CDS). The genome of strain CFBP7112 comprised two plasmids, for a total assembly size of 5,155,996 bp, with a G+C content of 64.7% and a total of 4,460 predicted CDS. The genome of strain CFBP7113 comprised no plasmids, for a total assembly size of 5,105,205 bp, with a G+C content of 64.7% and a total of 4,446 predicted CDS. Interestingly, the content and localization of genes encoding transcription activator-like type III effectors (tal) differed among the three...
 genomes. Strain CFBP7111 had no tal gene, while strain CFBP7112 contained seven tal genes located on plasmids, and strain CFBP7113 bore one tal gene located on the chromosome. This diversity may reflect different modes of adaptation of these strains to cowpea.

Accession number(s). The three whole-genome sequences have been deposited at GenBank under accession numbers CP022263 to CP022266 for strain CFBP7111, CP022267 to CP022269 for strain CFBP7112, and CP022270 for strain CFBP7113.

ACKNOWLEDGMENTS

This work was supported by grants from the French National Research Agency (CROpTAL project, grant number ANR-14-CE19-0002-04) and Angers-Loire Metropole, France (X-HOT project).

We thank Laurent D. Noël, Boris Szurek, Lionel Gagnevin, and Ralf Koebnik for recurrent scientific exchanges on the project CROpTAL led by Laurent D. Noël.

PacBio sequencing was performed at the Icahn School of Medicine at Mount Sinai (NY, USA) under the supervision of Robert Sebra and preliminary quality control of DNA was performed at the ANAN platform from the SFR 4207 QUASAV (Angers, France).

We also thank the CIRM-CFBP (Angers, France) for strain preservation and supply.

REFERENCES

1. Ehlers JD, Hall AE. 1997. Cowpea (Vigna unguiculata L. Walp.). Field Crops Res 53:187–204. https://doi.org/10.1016/S0378-4290(97)00031-2.

2. Singh BB, Ajeigbe HA, Tarawali SA, Fernandez-Rivera S, Abubakar M. 2003. Improving the production and utilization of cowpea as food and fodder. Field Crops Res 84:169–177. https://doi.org/10.1016/S0378-4290(03)00148-5.

3. de Lima-Primo HE, de L. Nechet K, de Oliveira JR, Mizubuti ESG, de Souza GR. 2015. Epidemiological aspects of cowpea bacterial blight. Trop Plant Pathol 40:46–55. https://doi.org/10.1007/s40858-015-0007-y.

4. Khatrivi-Chhetri GB, Wydra K. 2003. Metabolic diversity of Xanthomonas axonopodis pv. vignicola, causal agent of cowpea bacterial blight and pustule. Eur J Plant Pathol 109:85–96. https://doi.org/10.1023/A:1012610471650.

5. Constantin EC, Cleenwerck I, Maes M, Baeyen S, Van Malderghem C, De Vos P, Cottyn B. 2016. Genetic characterization of strains named Xanthomonas axonopodis pv. manihotis and X. axonopodis pv. vignicola, causal agents of cassava and cowpea bacterial blight. J Phytopathol 164:371–382. https://doi.org/10.1111/ppa.12461.

6. Williams RJ. 1975. Diseases of cowpea (Vigna unguiculata (L.) Walp.) in Nigeria. Trop Pest Manag 21:253–267. https://doi.org/10.1080/09670875.09411407.

7. Zandjanakou-Tachin M, Fanou A, Le Gall P, Wydra K. 2007. Detection, survival and transmission of Xanthomonas axonopodis pv. manihotis and X. axonopodis pv. vignicola, causal agents of cassava and cowpea bacterial blight, respectively, in/by insect vectors. J Phytopathol 155:159–169. https://doi.org/10.1111/j.1439-0434.2007.01210.x.

8. Okechukwu R, Ewe ET, 2008. Survival of Xanthomonas campestris pv. vignicola in infested soil, cowpea seed and cowpea debris. Trop Agric Res Ext 11:45–48.

9. Sikirou R, Wydra K. 2004. Persistence of Xanthomonas axonopodis pv. vignicola in weeds and crop debris and identification of Sphenostylis stenocarpa as a potential new host. Eur J Plant Pathol 110:939–947. https://doi.org/10.1007/s10658-004-8949-9.

10. Duche TR, Ikeukwumere CC, Omoigui L. 2015. Evaluation of selected cowpea genotypes for resistance to bacterial blight. Int J Curr Microbiol Appl Sci 4:257–270.

11. Eid J, Fahr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dixon J, Fougert M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearsns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillip M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Viecelli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S. 2009. Real-time DNA sequencing from single polymerase molecules. Science 323:133–138. https://doi.org/10.1126/science.1162986.

12. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736. https://doi.org/10.1101/gr.150877.116.

13. Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA, Harris SR. 2015. Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol 16:294. https://doi.org/10.1186/s13059-015-0849-0.

14. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. 2013. Non-hybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569. https://doi.org/10.1038/nmeth.2474.

15. Angiuoli SV, Sussman A, Klimke W, Cochrane G, Field D, Garrity GM, Kodira CD, Kyrpides N, Madupu R, Markowitz V, Tatusova T, Thomson N, White O. 2008. Toward an online repository of standard operating procedures (SOPs) for (meta) genomic annotation. OMICS 12:137–141. https://doi.org/10.1089/omi.2008.0017.