Quantitative study of destructive quantum interference effect on the lin∥lin CPT.

E. Breschi¹, G. Kazakov², R. Lammegger³, G. Miletí, B. Matisov², L. Windholz³

¹Laboratoire Temps-Fréquence - University of Neuchâtel, 2000 Neuchâtel, Switzerland
²St. Petersburg State Polytechnic University, St. Petersburg, 195251, Russia
³Institute of Experimental Physics TU-Graz, 8010 Graz, Austria

We investigate experimentally and theoretically the Coherent Population Trapping (CPT) effect occurring in 87Rb D$_1$ line due to the interaction with linearly polarized laser light (lin∥lin CPT). In this configuration the coherence is strongly influenced by the structure of the excited state; consequently the quantum interference between dark states is an essential feature of this interaction scheme. We study the lin∥lin CPT resonance as a function of the laser optical detuning. The comparison between experimental theoretical results allows us to quantify the contribution from different dark states to the total signal. Based on these results we investigate the signal depending on both the pressure broadening of the optical transition and the laser linewidth, and we find in which conditions the laser linewidth does not degrade the lin∥lin CPT resonance.

PACS numbers:

I. INTRODUCTION

The first investigations of the Coherent Population Trapping (CPT) effect were performed theoretically and experimentally in the seventies [1]. In accordance with these early works, the CPT effect is due to a coherence between ground states caused by the interaction with a quasi resonant, two-frequency and coherent light field. CPT and related effects (such as Electromagnetically Induced Transparency [2] and Absorption [3]) have an impact on both, the atomic system state and the light beam propagation through the media.

CPT resonances with a narrow linewidth can be recorded in the simplest case in quantum systems with two long-lived ground states and one excited state coupled by a dichromatic coherent light field. In this configuration the quantum system is prepared in a non absorbing state (the dark state). The energy levels in such a configuration are arranged similar to the Greek letter Λ (so called Λ-System) and can be found, for instance, in alkali atoms. In the experiment CPT resonances are recorded by varying the frequency difference of two spectral electromagnetic field components around the value of the frequency splitting of the ground states. The properties of the CPT resonances can be exploited in a wide range of applications such as atomic magnetometry [3], atomic frequency standards [5], pulse delaying and compression for optical memory [6].

The problem in the use of CPT effect in those applications is its low strength: often the dark state induces only a small variation in the light transmitted through the atomic sample. To overcome this limitation recently several novel light-atom interaction schemes were proposed [7-8]. In particular in work [8] the authors show that a significant enhancement of the CPT effect can be obtained in the so-called lin∥lin CPT configuration. Here two co-propagating linearly polarized laser waves with parallel linear polarization vectors are resonant with the transitions to $^5{\text{P}}_{1/2}$ F$_e = 1$ of the 87Rb isotope. A detailed analysis of the two-photon Λ transition process shows that in a lin∥lin CPT configuration the CPT resonance depends critically on the excited state hyperfine structure (HFS) [10], in a way different to that of the well known CPT resonance obtained by a circularly polarized laser field [11]. In the case of circularly and linearly polarized laser field the dark state arise from a vectorial ($\Delta m_F=0$) and quadrupolar coupling ($\Delta m_F=2$), respectively.

A theoretical study of four-level system describing the CPT resonance depending on the structure of the ground and excited atomic levels has been published in [12]. The interest of these systems relies to the possibility of controlling its optical properties via the quantum interference arising between two dark states, for instance, by means of the phases of the laser fields [13, 14] or the local phase of the dark states [15]. In the present work we study the behavior of the lin∥lin CPT resonance occurring within the manifold of the hyperfine transitions of the 87Rb D$_1$ line. In our case the CPT resonance depends on the structure of the excited hyperfine states and it is described in detail in section III with the model developed for the data interpretation. We analyze the lin∥lin CPT resonances as a function of the laser detuning and the homogeneous broadening (in section IV), which depends on the pressure broadening (due to the buffer gas in the cell) and the laser linewidth. Note that the evaluation of the laser linewidth influence on the dark states is crucial for applications and has not been investigated much so far. A theoretical study of the laser linewidth effects on CPT resonance for achieving selective excitation of atoms (with application in laser cooling and quantum computing) is presented in reference [16]; while in [17] the author has demonstrated with his model a scheme that allows large time delay for large bandwidth optical pulse.

We perform our studies with two different light sources: a pair of Phase-Locked (PL) Extended Cavity Diode
Lasers (ECDLs) and a current modulated Vertical Cavity Surface Emitting Diode Laser (VCSEL). The PL-ECDLs have, in good approximation, pure dichromatic fields with a narrow linewidth. On the contrary, the modulated VCSEL has a multi-frequency spectrum with broader linewidth. A detailed discussion of the laser sources and the experimental setup is presented in section III.

A. Application of the lin||lin CPT resonance in compact atomic clocks

In the last years many efforts has been steered into the realization of compact CPT-based atomic clocks. The CPT excitation scheme usually used is based on the interaction of Cs or Rb atoms with a circularly polarized laser field, i.e. either σ⁺ or σ⁻ transitions are induced by the two frequency components of the driving laser field (in the following called σ-σ CPT). A typical excitation scheme in case of the manifold of hyperfine transitions within the $^{87}\text{Rb} D_1$ (the same case we will discuss for the lin||lin CPT configuration) is illustrated in figure 1. Here, a weak magnetic field of few tens of μT oriented in laser propagation direction, is applied to lift the degeneracy of the Zeeman sublevels. In this configuration the resonance used as reference in frequency standard applications is the coherent superposition of the sublevels $|F_y = 1, m_F = 0\rangle$ and $|F_y = 2, m_F = 0\rangle$ being in first order not sensitive to magnetic fields.

The problem of this interaction scheme relies on the fact that the state $|F_y = 2, m_F = 2\rangle$ is not involved in the excitation process. As a consequence, the optical pumping effect caused by the isotropic spontaneous decay of the excited states accumulates the population into this idle state which, thus, represents a loss mechanism for the clock reference resonance. This leads (especially at higher laser intensities and low buffer gas pressure) to a reduced signal/noise ratio because most of state population is concentrated in those Zeeman sublevels with highest (lowest) m_F quantum numbers.

On the contrary, in case of a lin||lin CPT configuration (discussed in section III) no idle states are present and the state population is concentrated symmetrically around the Zeeman sublevel with quantum number $m_F = 0$. This can be understood qualitatively because there is no transfer of net angular momentum from the linear polarized light to the atoms in the excitation process. Thus a better signal-to-noise ratio is expected especially in the case of higher laser intensities and low buffer gas pressures. This characteristic makes the lin||lin CPT resonance a valid candidate for high performance compact atomic clock (a detailed study is presented in [19]).

II. MODEL AND INTERACTION SCHEME

A model based on the density matrix approach has been used for the data interpretation and has been described in detail in reference [20]. Here we report on the basic approach and we give an intuitive picture of the results essential for our discussion.

Let us to consider a ^{87}Rb atom excited by a two-frequency laser field resonant to hf-transitions $5^2 S_{1/2} F_y = 1, 2 \leftrightarrow 5^2 P_{1/2} F_e = 1$ of the D_1 line. For such a system the density matrix evolution is given by

$$\dot{\rho}_{ij} = -\frac{i}{\hbar} \sum_k [H_{ik}\rho_{kj} - \rho_{ik}H_{kj}] + \sum_{k,l} \Gamma_{ijkl} \rho_{kl}. $$

(1)

The Hamiltonian, \hat{H} has two terms: the atomic unperturbed Hamiltonian, \hat{H}_0, and the interaction operator, \hat{V}, i.e. $\hat{H} = \hat{H}_0 + \hbar \hat{V}$. Γ_{ijkl} is the relaxation matrix element describing the relaxation processes.

The two frequency laser field can be written as follow:

$$\hat{E}(z,t) = \sum_{j=1,2} \frac{E_j}{2} \exp[i(\omega_j t + \varphi_j(t) - k_j z)] + c.c.,$$

(2)

whereas the laser line width is modeled by the phase fluctuations $\varphi_j(t)$.

The absorbed laser power in a optically thin gas cell (weak absorption) can be calculated by:

$$\Delta P = \rho_{exc} \hbar \omega_{opt} \gamma N_a,$$

(3)

where ρ_{exc} is the total excited state population, ω_{opt} is the optical transition frequency, γ is the excited state...
relaxation rate, and \(N_a \) is the number of active atoms taking part in the excitation process. In a optically thin gas cell, due to a weak absorption, \(\rho_{exc} \) is not a function of the optical path because the matrix elements of the interaction Hamiltonian \(\hbar V_{ij} \) are assumed to be constant along the optical path. At high temperatures the gas cell becomes optically thick. The consequence is that the density matrix elements (and with them the dark states) are functions of the light intensity along the optical path. Modeling of such a coupled behavior is rather complicated because, strictly speaking, the effects of propagation determined by the Maxwell equations are strongly coupled with the density matrix equations of the quantum system. Our experiments are performed with an optically thick \(^{87}\text{Rb} \) vapor cell. Therefore in the model the optical path is divided in a set of subsequent parts. Assuming constant electric fields \((E_z = \text{const}) \) in each thin layer the density matrix is calculated. Finally the Maxwell equations for the slowly varying E-field amplitude and phase \([21] \) are used to calculate the variations of the E-fields within the layer. Thereafter the density matrix of the next layer is determined by using the new E-field derived from the previous layer. This procedure is repeated for all subsequent parts. In the numerical calculations we don’t take into account modifications of the transverse intensity distribution. Nevertheless, this simple phenomenological approach allows us to reproduce the experimental results (see Section [V]). In the following the ground and excited state Zeeman sublevels are called \(g \), \(g' \) and \(e \), respectively. Note that \(g \) and \(g' \) belong to different hyperfine ground states and a dark state can be created when the two transitions, \(|g\rangle \leftrightarrow |e\rangle \) and \(|g'\rangle \leftrightarrow |e\rangle \), are excited simultaneously. If the laser field intensity is much lower than the saturation limit for each optical transition and the cell is optically thin, the total excited state population \(\rho_{exc} \) is proportional to the light power absorbed (c.f. equation [4]). Neglecting fast oscillating terms \(\sim O(\omega_i + \omega_j) \) and \(\sim O(2\omega_i) \) etc. (rotating wave approximation) the excited state density matrix element is connected via

\[
\rho_{exc} = \sum_{e,g,g'} \frac{V_{e,g} V_{g',e}}{\gamma_{gg'}} (G_{ge} + G_{g'e} + i(F_{ge} - F_{g'e})) \rho_{gg'}
\]

(4)

to the ground state density matrix elements which can be derived from the following set of equations:

\[
\dot{\rho}_{gg'} = -i \rho_{gg'} (\omega_{gg'} - \omega_g + \omega_{g'}) + \Gamma \left(\frac{1}{2} \delta_{gg'} - \rho_{gg'} \right) - \sum_{g''',e} \frac{V_{e,g} V_{g''',e} \gamma_{gg''}}{\gamma_{g'g''}} (G_{g''',e} + i F_{g''',e}) \rho_{g'g''} - \sum_{g'',e} \frac{V_{e,g} V_{g'',e} \gamma_{gg''}}{\gamma_{g'g''}} (G_{g'',e} - i F_{g'',e}) \rho_{gg''} + \delta_{gg'} \frac{1}{8}.
\]

\[
\sum_{e,g''',g''''} \frac{V_{e,g'} V_{g''',e} \gamma_{g'g''}}{\gamma_{gg''}} (G_{g''',e} + G_{g''',e} + i(F_{g''',e} - F_{g''',e}))
\]

(5)

Here \(\hbar V_{ij} \) are the matrix elements of the interaction Hamiltonian (Rabi frequencies) in the frame rotating with the corresponding laser frequency component; \(\gamma' \) is the decay rate of the optical coherence \(\rho_{eg} = \delta_{gg'} \) is the Kronecker delta. \(\omega_g \) is the frequency of laser component interacting with the level \(g \); and \(\omega_{gg'} \) is the frequency spacing between the levels \(|g\rangle \) and \(|g'\rangle \). The ground state relaxation rate denoted by \(\Gamma \) depends on the temperature of the cell, type and pressure of buffer gas, geometry of the cell, the laser power and the geometry of laser beam [22]. In our simulation \(\Gamma \) is the free fit parameter in our simulation which is estimated from the measurements.

In \[23\], the authors demonstrate that the optical coherence decay rate \(\gamma' \) is determined by the laser linewidth \(\Gamma_L \), by the spontaneous relaxation rate \(\gamma_{sp} \) which is for Rubidium \(\simeq 2\pi \cdot 5.6 \text{ MHz} \), and by the pressure broadening \(\gamma_c \) which depends on the type of buffer gas and on the buffer gas pressure in the cell:

\[
\gamma' = \frac{\gamma_{sp} + \gamma_c + \Gamma_L}{2}.
\]

To understand the physical meaning of \(\gamma' \) let us consider a generic single transition \(|g\rangle \leftrightarrow |e\rangle \). The excitation of this transition by a laser light field of linewidth \(\Gamma_L \), results in an homogeneous broadened profile that can be described with a Lorentzian curve of linewidth \(\gamma' \) (figure [2]).

The coefficients \(G_{ge} \) and \(F_{ge} \) in equation [4] and [5] are real and equal to:

\[
G_{ge} = \int_{-\infty}^{+\infty} \frac{(\gamma')^2 M(v)}{(\gamma')^2 + (\delta_{gg}^L - kv)^2} dv
\]

(6)

\[
F_{ge} = \int_{-\infty}^{+\infty} \frac{(\gamma')^2 \delta_{gg}^L M(v)}{(\gamma')^2 + (\delta_{gg}^L - kv)^2} dv
\]

(7)

where \(M(v) \) is the atomic velocity distribution and \(\delta_{gg}^L \) is the laser detuning. The coefficient \(G_{ge} \) is proportional to the strength of the single optical transition \(|g\rangle \leftrightarrow |e\rangle \); while the coefficient \(F_{ge} \) allows to calculate the shift of the resonance frequency. For our intent we focus our attention to the coefficient \(G_{ge} \) which is schematically represented in figure [2] \(G_{ge} \) is proportional to the grey area delimited by the product of two profiles: the Doppler profile, represented by a Gaussian curve \(M(v) \) of linewidth \(\Gamma_D \), and the homogeneous profile, represented by a Lorentzian curve \(L(kv) \) of linewidth \(\gamma' \). If different \(|g\rangle \leftrightarrow |e\rangle \) transitions are excited, \(G_{ge} \) characterizes the contribution of each transition to the total excitation process.

Now we extend the previous consideration made for a single optical transition to a dark state. The necessary condition for creating the dark state is that the transitions from both ground states \(|g\rangle \) and \(|g'\rangle \) towards the same excited level \(|e\rangle \) are simultaneously excited by two
coherent electromagnetic field components, i.e. the relative frequency jitter of the electromagnetic field components is negligible. This condition is fulfilled either in the VCSEL and in the PL-ECDLs (see Section [I]). The straightforward consequence is that the one-photon detuning of both light field components must coincide ($\delta_{L}^{g} = \delta_{L}^{g'}$). Under this condition, from equation [8] the relation $G_{ge}= G_{g'e}=G_{e}$ can be derived. In synthesis the G-coefficient for a general dark state depends only on the excited states involved (and not on the ground states). When different dark states occur simultaneously, the contribution to the total signal of each single dark state can be characterized by calculating G_{e}. Our model takes into account the Zeeman and hyperfine structure of the 8Rb atoms. In the following we define the interaction scheme, i.e. which group of atomic sublevels are involved in the dark state preparation. Finally we present the results obtained by applying the model to an isolated redressed system, in order to show how the G_{e} coefficients describe the CPT resonance strength.

Figure 3 shows the relevant transitions induced by the coherent σ^{+} and σ^{-} components of the linearly polarized light fields expressed in spherical tensor basis. In figure 3 we do not report the σ^{+}-σ^{+} and σ^{-}-σ^{-} groups of transitions. In general, the existence of a CPT resonance is connected directly via the phase relation between the Rabi frequencies (phase relation of laser fields and atomic wave functions) of each transition of the Λ-scheme [13]. In the specific case of lin\midlin excitation the dark states arising from the σ^{+}-σ^{+} and σ^{-}-σ^{-} are orthogonal, thus they interfere destructively and do not contribute to the CPT resonance at $\omega \approx \omega_{HFS}$ [7].

We study the σ^{+}-σ^{-} transitions between ground state Zeeman sublevels with $m_{F}= \pm 1$. The feature of the CPT resonance is related with the presence of two excited levels ($F_{e}=1,2$), both allowed for dipole transitions. In synthesis, four dark states contribute to the lin\midlin CPT resonance at $\omega \approx \omega_{HFS}$: $|\Psi_{a}\rangle$ and $|\Psi_{b}\rangle$ are the coherent superpositions of the Zeeman sublevels $|1a\rangle \leftrightarrow |2a\rangle$ and $|1b\rangle \leftrightarrow |2b\rangle$ through the excited state $F_{e}=1$, while $|\Psi'_{a}\rangle$ and $|\Psi'_{b}\rangle$ are the coherent superpositions of the same Zeeman sublevels via the excited state $F_{e}=2$. When a magnetic field is applied along the quantization axis $|\Psi_{a}\rangle$-$|\Psi_{b}\rangle$ and $|\Psi'_{a}\rangle$-$|\Psi'_{b}\rangle$ split with a factor of $+28$ Hz/μT determined by the nuclear g-factor. Remark that the transitions towards the outermost Zeeman sublevels $|F_{e}=2, m_{F}= \pm 2\rangle$, play an important role in the formation of the CPT dark state $|\Psi_{a}\rangle$ and $|\Psi_{b}\rangle$, as we are going to show in next paragraph.

A. Simplified atomic system: analytical solution

To point out how the G_{e} coefficients can describe the lin\midlin CPT resonance we apply the approach presented at the beginning of this section to figure 3 (a), under the hypothesis that the 6 levels participating to the interaction are isolated. Similar considerations can be applied to figure 3 (b) and then to the lin\midlin CPT resonance. Figure 4 is the diagram of the isolated 6-level system. The Zeeman sublevels are named with a short
The transitions expressed as multiples of the coefficient f:

$$f = -\left(\Gamma + W\right) \cdot f - 4D_{12} \cdot J + W_2 - W_1, \quad (11)$$

$$\dot{R} = -\left(\Gamma + W\right) \cdot R + (\Omega - \Delta) \cdot J - W_{12}, \quad (11)$$

$$\dot{J} = D_{12} \cdot J - (\Gamma + W) \cdot f - (\Omega - \Delta) \cdot R.$$

Here $\Omega = (\omega_2 - \omega_1 - \omega_21)$ is the Raman detuning and Γ is ground state relaxation rate. W is the so-called “optical-pumping rate” and the quantity Δ is a measure for the light shift of the micro-wave transition (i.e. the shift of ω_21, i.e. the frequency difference between $|1>$ and $|2>$ in figure [4]).

Following our notation we obtained:

$$W_1 = \frac{|V_{1B}|^2}{\gamma'}G_1 + \frac{|V_{1T}|^2 + |V_{1R}|^2}{\gamma'}G_2, \quad (12)$$

$$W_2 = \frac{|V_{2B}|^2}{\gamma'}G_1 + \frac{|V_{2T}|^2 + |V_{2L}|^2}{\gamma'}G_2, \quad (13)$$

$$W = W_1 + W_2, \quad (14)$$

$$W_{12} = \frac{V_{1B}V_{2B}}{\gamma'}G_1 + \frac{V_{1T}V_{2T}}{\gamma'}G_2, \quad (15)$$

$$D_{12} = \frac{V_{1B}V_{2B}}{\gamma'}F_1 + \frac{V_{1T}V_{2T}}{\gamma'}F_2, \quad (16)$$

$$\Delta = \frac{|V_{1B}|^2 - |V_{1B}|^2}{\gamma'}F_1 +$$

$$\frac{|V_{2T}|^2 + |V_{2L}|^2 - |V_{1T}|^2 - |V_{1R}|^2}{\gamma'}F_2. \quad (17)$$

Where G_1 and G_2 are the G-coefficients for $e = 1, 2$ determined by applying eq. 5 to the simplified 6-level scheme. Substituting the stationary solution of the set of equations (11) into (10), we obtain the following analytical expression for the total excited state population:

$$\rho_{exc} = \frac{1}{\gamma} \left[W - \frac{(W_1 - W_2)^2 + 4W_{12}^2}{(\Gamma + W)^2} \left(D_{12}(W_1 - W_2) - W_{12}(\Omega - \Delta)^2 \right) \right] \left(\frac{1}{\gamma} \right) \left(4D_{12}(W_1 - W_2) - W_{12}(\Omega - \Delta)^2 \right). \quad (18)$$

The first two terms in (18) do not depend on the two-photon detuning Ω; the third term gives the change in the absorption due to the CPT effect. Finally, we substitute the Rabi frequencies (V_{eg}) into (12), (13) and (15) and we get:

$$W_1 = \frac{|V_{1B}|^2}{\gamma'} \left[\frac{1}{12}G_1 + \frac{7}{12}G_2 \right], \quad (19)$$

$$W_2 = \frac{|V_{1B}|^2}{\gamma'} \left[\frac{3}{12}G_1 + \frac{5}{12}G_2 \right], \quad (20)$$

$$W_{12} = \frac{|V_{1B}|^2}{\gamma'} G_2 - G_1 \frac{4}{\sqrt{3}}. \quad (21)$$

When $G_1 = G_2$, the two terms ($W_1 - W_2$) and W_{12} are vanishing, therefore the third term in (18) is vanishing, and the CPT resonance goes to zero. This is evidence of destructive quantum interference between the different dark states prepared through the two excited state hyperfine sublevels.
In this section we summarize a method for calculating the CPT resonance based on the fact that the light power absorbed by the atoms is proportional to the detected signal and can be calculated by using equation 8 and 5. On the basis of a simplified 6-level system, we showed analytically that the excited state hyperfine structure of ^{87}Rb plays an important role in the CPT excitation process due to a destructive quantum interference effect. It is found that the characteristic of this interference can be well described by the ratio G_1/G_2 determined by the laser detuning δ_L and the optical coherence decay rate γ. A ratio close to unity expresses similar (excitation) strengths in both dark states which leads to a high degree of interference and to a cancellation of the CPT resonance.

III. EXPERIMENTAL SETUP

A sketch of the experimental setup is shown in figure 5. The core is a glass cell with a volume of a few cm3 containing the ^{87}Rb isotope and N$_2$ as buffer gas. In particular two similar cells are used containing 0.5 and 1.5 kPa of buffer gas, respectively. The cell temperature during is stabilized to (68±1)$^\circ$C, corresponding to a Doppler broadening of $\Gamma_D = 2\pi \cdot 540$ MHz of the optical transitions. Since the light fields are both co-propagating the Doppler broadening of the CPT resonance is due to the 6.8 GHz difference frequency. Note, that - in the case of a buffer gas cell - the micro-wave Doppler effect is strongly reduced by the Dicke narrowing [26] because the atoms are confined within a volume much smaller than the 4.4 cm wavelength corresponding to the 6.8 GHz frequency. At a temperature of 68$^\circ$C the ^{87}Rb cell becomes optically thick. Therefore, when a single mode laser (VCSEL or ECDL) is in resonance, the cell transmittance (i.e. the ratio between the laser intensity after and before the cell (I/I_0)) is always ≤ 0.3 corresponding to an optical thickness ≥ 1.

The laser radiation transmitted through the cell is collected onto a photodetector (PD) whose signal is amplified in a current amplifier afterwards. Finally, the variation (increase) of the optical transmission is recorded by a digital oscilloscope directly connected to the current amplifier. Additionally, the CPT resonance can be monitored by using a lock-in amplifier.

In order to avoid the influence of spurious magnetic fields and magnetic gradients, the cell was inserted in a CO-NETIC alloy magnetic shield. Inside the shielding, a solenoid provided the longitudinal magnetic field, $B_z = (3.0 \pm 0.2)$ μT in order to lift the degeneracy of the Zeeman sublevels. The magnetic field has been regularly monitored during the experiments by using the g_J dependence of the outermost CPT resonance 3, i.e. the dark states created by the coherence of $|F_e = 1, m_F = 0\rangle$ and $|F_e = 2, m_F = \pm 2\rangle$. The functional block VCSEL or PL-Laser indicates that the experiments are performed either with a current modulated VCSEL or with PL-ECDLs. Both laser system have a Gaussian beam profile and a beam waist of 2 mm (1/e2). However, it is important to outline that the relevant difference between both laser systems is their spectral linewidth $\Gamma_L > 100 \cdot \Gamma_{PL}$. The characteristic of the two laser systems are shortly described in the following.

Modulated VCSEL (see ref [24]): The injection current of a single mode VCSEL emitting at 795 nm, is directly modulated with 3.417 GHz (i.e. half of ground state hyperfine separation in ^{87}Rb) with 10 dBm of RF power. The VCSEL has a broad spectrum, the measured linewidth is $\Gamma_L \approx 2 \pi \cdot 100$ MHz. The modulation performance has been evaluated through the one-photon ^{87}Rb absorption spectrum by changing the frequency and the amplitude of the current modulation. We did not notice any influence of amplitude modulation, and the frequency modulation index was evaluated to be about 1.8. Under these conditions about 68% of the total laser power is equally distributed in the first-order side-bands which are used for dark state excitation. The remaining 32% of the total power is distributed among mainly the carrier frequency and the higher-order side-bands. These off-resonant parts of the VCSEL-spectrum can cause one-photon excitation processes because of the Doppler broadening of the hyperfine transitions. Additionally, the not absorbed off-resonant light is increasing the dc and shot-noise levels of the photo-detector.

Phase-Locked (PL) lasers: The PL-laser system basically consists of two Extended Cavity Diode Lasers (ECDLs) called master and slave laser (both characterized by narrow spectrum, $\Gamma_{ECDL} \approx 0.5$ MHz). The master laser is stabilized to the ^{87}Rb D$_1$ line 5S$_{1/2}$ F$\downarrow = 2 \rightarrow ^5P_{1/2}$ F$\downarrow = 1$ transition, using an auxiliary evacuated ^{87}Rb cell in a DF-DAVLL configuration [28]. Due to the high speed servo loop for the laser stabilization, the linewidth

![FIG. 5: Schematic block diagram of the experimental setup.](image-url)
of the master is reduced by a factor 10. The slave laser is - via a heterodyne beat signal - phase locked to the master laser. Therefore, the light beams from the master and the slave laser are superimposed on a fast photodiode which detects the 6.8 GHz beat required for the experiments. After amplification, the heterodyne beat signal is down converted in a double balanced ring mixer to 50 MHz and is compared with a reference frequency signal stemming from an Intermediate Frequency (IF) oscillator. A phase/frequency detector provides an output signal proportional to the phase difference between the down converted beat-note and the IF-Oscillator. To close the feedback loop the phase detector’s output signal is fed back to the slave laser. In the setup a combined analogue-digital phase detector is used. In this way a large capture range and a dead zone free locking is achieved simultaneously. The root mean square (rms) phase noise level (relative phase-jitter) of the PL-setup is $\Phi_{\text{rms}} \leq 50$ mrad

(measured in the band of 1 Hz-1 MHz). As $\Phi_{\text{rms}} \ll \pi$ is well fulfilled no degradation or additional broadening of the CPT-resonance is observable [30]. In the case of PL-ECDLs, the frequency components of the dichromatic electromagnetic field are separated by 6.835 GHz to bridge over the splitting of the 87Rb hyperfine ground states. The intensities as well as the linear polarization state are selected to be the same for both frequency components. Finally, to avoid a residual broadening of the CPT-resonances due to a wave vector mismatch, a polarization maintaining single mode fibre is used to ensure perfect collinear wave vectors of the two frequency components.

Figure 6 shows the photocurrent variation (top plot) and the lock-in signal (bottom plot) for a typical CPT resonance prepared with PL-ECDLs. In our experiments the CPT resonance amplitude, A_C, is defined as the photocurrent variation relative to its background; and the CPT resonance linewidth, $\Delta \nu_C$, is the full width at half maximum (FWHM) of the resonance. We chose this definition of A_C [23] because we aim the quantitative study of quantum interference between dark states. Our approach allows to separate the strength of the CPT effect, which is affected by the quantum interference, and the light level in the experiments, which changes using PL-ECDLs or VCSEL because of the contribution of the off-resonance frequencies in the modulated VCSEL spectrum. The role of the (background) light level - mainly determined by the Signal/Noise Ratio - in the experiments is very important for the applications and deserves to be studied in detail separately. In accordance with the definitions given above, for the experimental conditions of figure 6 the normalized optical transmission due to the CPT effect is about 4% and 3% for PL-ECDLs and modulated VCSEL, respectively.

IV. INFLUENCE OF EXCITED-STATE HFS ON THE LIN||LIN CPT RESONANCE

The influence of the excited state hyperfine structure of the 87Rb D$_1$ line is evidenced by studying the lin||lin CPT resonance versus the laser detuning (δ_L) in a cell containing 87Rb and N$_2$ as buffer gas, $P_{N_2} = 0.5$ kPa. The collisional broadening γ_c at this pressure is about $2\pi \cdot 70$ MHz [31], i.e. γ_c is almost 12 times smaller than the splitting of the hyperfine excited states ($\omega_{\text{HFS}} = 2\pi \cdot 817$ MHz). As a consequence the hyperfine excited state structure remains resolved.

These measurements can be easily performed with a modulated VCSEL since the VCSEL output frequency can be tuned with injection current over a wide frequency range (more than ten GHz). The situation is different for the PL-ECDLs. Here, the frequency of the master laser (i.e. the detuning δ_L) was determined via an 87Rb saturation spectrum additionally overlapped by transmission fringes stemming from a confocal Fabry Perot interferometer with a free spectral range of $\nu_{\text{FSR}} = 149.85$ MHz.
FIG. 7: The lower plots show the dependence of CPT resonance amplitude (A_C) versus laser detuning (δ_L) in case of a total resonant laser intensity of 3.8 mW/cm2, a temperature of 68 °C and for a Rb cell with $P_{N_2} = 0.5$ kPa; while in the upper plots the G_1/G_2 ratio (calculated for both cases) is reported. The maximum of absorption is marked by the vertical lines (the pressure shift is about -30 MHz). The value $\delta_L = 0$ is defined with respect to an evacuated 87Rb cell. In both cases, A_C goes to zero when $(G_1/G_2) = 1$ and has two maxima at the maximum and the minimum of (G_1/G_2), respectively. Remark that the maxima of A_C are shifted with respect to the maxima of absorption in the cell.

Therefore a tuning range of about 2 GHz (within the hfs of the excited state $5^2P_{1/2}$) with a frequency uncertainty of $\delta \nu \sim 5$ MHz is achieved with both laser system.

The dependence of the CPT resonance amplitude (A_C) on δ_L is shown in the lower plots of figure 4 for experiments performed with PL-ECDLs and modulated VCSEL, left and right column respectively. In figure 7 the points are the results of the experiments while the solid lines are the model results obtained numerically by solving the coupled set of density matrix and Maxwell equations with Γ as free fit parameter (see section 11). The value of the ground state relaxation rate, Γ, is determined by fitting the CPT resonance width $\Delta \nu_C$ obtained in the experiments. In case of the VCSEL source, a width $\Delta \nu_C = 1$ kHz and $\Delta \nu_C = 10$ kHz is measured for a laser detuning $\delta_L = 0$ (transitions towards $F_e = 1$) and $\delta_L = +2\pi \cdot 817$ MHz (transitions towards $F_e = 2$) respectively. As mentioned in 9 the CPT resonance arising from the group of transitions towards $F_e = 2$ is broader than the one arising from transitions towards $F_e = 1$. But, interestingly, negligible differences in the width $\Delta \nu_C$ are observed for CPT resonances prepared by the PL ECDL system.

To quantify the influence of the each dark state contributing to the CPT resonance, in section 11 the coefficients G_e have been introduced. In the two upper plots of figure 7 the calculated (G_1/G_2) values are reported as a function of the laser detuning for the two sets of data. In each plot $\delta_L = 0$ refers to the unperturbed group of transitions toward $F_e = 1$ (evacuated cell); and the dotted lines represent the maxima of absorption for $F_e = 1$ ($\delta_L \approx -2\pi \cdot 30$ MHz) and $F_e = 2$ ($\delta_L \approx +2\pi \cdot 787$ MHz) in the cell containing $P_{N_2} = 0.5$ kPa (collisional shift is (-22.2 ± 0.4) GHz K (kPa)$^{-1}$ [31]). For each laser system, we observe that A_C shows two relative maxima which are both shifted with respect to the two maxima of absorption in the cell. In particular the maxima of A_C coincide with the maximum and the minimum value of (G_1/G_2), respectively. Note that in general the dark state $|\Psi'_g\rangle$ is affected by the losses due to the one-photon transitions towards to the outermost excited levels $5^2P_{1/2} F_e = 2$, $m_F = \pm 2$ (see figure 3). For this reason when $(G_1/G_2) \leq 1$ the resulting lin\|lin CPT resonance is smaller than the one for $(G_1/G_2) > 1$ [4]. The values of A_C noticeably decrease when the light sources (PL-ECDLs or VCSEL) are tuned between the two group of transitions. In fact we showed that the dark states prepared via different excited hyperfine sublevels interfere destructively, and, if their involvements into excitation process are equal, i.e. $G_1/G_2 = 1$, the CPT resonance vanishes. Similar effect has been discussed in the case of two Zeeman sublevels belonging to the same hyperfine manifold in [32]. Moreover, by comparing the left and right part of figure 7 we can observe that the A_C maximum recorded in the experiments using PL-ECDLs is larger than the A_C maximum obtained with the modulated VCSEL. The measured behavior of A_C vs. δ_L is well reproduced by the model calculations. In particular - at the experimental conditions referring to figure 7 - the G_e coefficients calculated for PL-ECDLs are bigger than these coefficients calculated for the modulated VCSEL, either for $e = 1$ and 2.

The behavior of the $\sigma\sigma$ CPT resonance amplitude, width and position as a function of the laser detuning δ_L is studied in a higher pressured buffer gas cell (5 kPa of Neon) by the authors in [33]. As anticipated in section 11 the dark states obtained by interactions with linearly and circularly polarized are intrinsically different. In the case of circularly polarized light fields, the dark states arise from a vectorial coupling ($\Delta m_F = 0$) and no quantum interference occurs [10]. This different nature of the lin\|lin and $\sigma\sigma$ CPT is shown in figure 8. Here, the master laser (determining the laser detuning δ_L) of the PL-ECDLs is tuned at the crossover resonance between the transitions: $F_g = 1 \leftrightarrow F_e = 1$ and $F_g = 1 \leftrightarrow F_e = 2$. In case of the lin\|lin CPT the resonance amplitude A_C is strongly suppressed because both dark states - via the excited states $F_e = 1$ and $F_e = 2$ - have equal strengths $G_1 = G_2$ and interfere destructively (c.f. figure 7). Unlike, in case of $\sigma\sigma$ CPT such a destructive interference is not observable due to the specific phase relation of the Rabi frequencies.
FIG. 8: Evidence of the different nature of dark state excited with circular and linear light field, σ-σ and lin||lin CPT resonance, respectively. The two records are recorded under the same experimental conditions. In particular, the laser ($I = 3.8$ mW/cm2) is tuned near by the cross-over resonance ($\delta_L = \delta_L/(2\pi) = +408$ MHz) of the $5^2 P_1/2$ $F_e = 1$ and $F_e = 2$ states (evacuated 87Rb cell). The lin||lin CPT resonance is about 40 times weaker than the σ-σ one because of the destructive interference influence.

A. lin||lin CPT resonance amplitude versus homogeneous broadening

The previous results allow us to predict the influence of the homogeneous broadening γ' (equation 7) on the lin||lin CPT resonance. In practice we compare the experiments performed with PL-ECDLs and modulated VCSEL in a selected 87Rb cell containing 0.5 kPa of N_2 for a fixed value of the laser detuning. In this section we compare the dark state prepared with the two lasers systems in two 87Rb cell with different relevant pressure N_2. In particular we study the case of detuning $\delta_L = 0$, when the master laser of the PL-ECDLs is stabilized. Under such conditions a PL-laser linewidth Γ_P of $2\pi \cdot 0.04$ MHz is achieved, i.e. it is 2500 times narrower than the VCSEL linewidth ($\Gamma_V \approx 2\pi \cdot 100$ MHz). Figure 9 shows the CPT resonance amplitude (A_C) versus the resonant laser power for 87Rb cells with $P_{N_2} = 0.5$ kPa and $P_{N_2} = 1.5$ kPa, figure 9(a) and (b) respectively. The main difference between the experiments performed with those cells is the relation of the collisional broadening in each cell and the VCSEL linewidth. For $P_{N_2} = 0.5$ kPa, the collisional broadening contribution $\gamma_c = 2\pi \cdot 70$ MHz is smaller than the linewidth of the VCSEL ($\gamma_c < \Gamma_V$). On the contrary, for $P_{N_2} = 1.5$ kPa γ_c is $2\pi \cdot 210$ MHz, i.e. about 2 times of Γ_V. In both cases, γ_c is much bigger than the PL-laser linewidth ($\gamma_c \gg \Gamma_P$). In figure 9(a) and (b) the solid points refer to the experiments performed with the modulated VCSEL and the PL-ECDLs, respectively. The solid lines show the results of the theoretical model (c.f sec. 11), which are in good quantitative agreement with the experimental results. We observe that the difference in A_C obtained with the two laser systems is large in (a) while it is reduced, and almost negligible, for $I_L < 1$ mW/cm2, in (b). To explain the observed behavior we first note that in reference [27] the authors showed a reduction of the CPT resonance amplitude when the laser linewidth is larger than the pressure broadening for the dark states created via the interaction with circularly polarized laser light. They explained this results by considering that the dark state is excited in atoms belonging to several velocity classes. This argument is still valid, of course, in the case of lin||lin excitation, but can only partially explain our results. In the previous parts of this communication we have demonstrated that in the case of dark state arising from a quadrupolar coupling ($\Delta m_F = 2$) the excited state hyperfine structure must be taken into account for each δ_L. Under quadrupolar coupling conditions the phase relations of all Rabi frequencies, involved within the excitation scheme, plays a major role. Using the formalism developed in our model, we can conclude that for intensities lower than the saturation of the optical transitions, when $\gamma_c > \Gamma_L$ (condition satisfied in figure 9(b)), it is possible to obtain the same (G_1/G_2) ratio for the two laser systems. It is possible, then, to find experimental conditions in which the amplitude of the lin||lin CPT resonance, $A_{C||CPT}$, is independent of the laser linewidth. On the contrary, when $\gamma_c < \Gamma_L$ (condition satisfied in figure 9(a)), the laser linewidth plays an important role: the ratio (G_1/G_2) for experiments with the modulated VCSEL is smaller than (G_1/G_2) for the PL-ECDLs. We can not appreciate the influence of the laser linewidth in the CPT linewidth (Δ_C). For both laser sources, Δ_C increases linearly with the laser intensity in the same range of values. The values of $\Delta\nu_C$ extrapolated to zero laser intensities, are $\approx 2\pi \cdot 1.5$ kHz and $\approx 2\pi \cdot 0.8$ kHz for the cell with 0.5 kPa and 1.5 kPa.
buffer gas pressure respectively, mainly caused by collisional broadening effects [34].

V. CONCLUSIONS

We present a study the CPT resonance prepared in lin configuration, focusing our attention to the signal between ground state Zeeman sublevels such as $m_F = \pm 1$, which is a good candidate for compact and high performance atomic clocks. This interaction scheme is characterized by quantum interference between dark states prepared through the two excited hyperfine states. A model is developed taking into account the multi-level structure of the atomic system and the linewidth of the lasers. We study the signal as a function of the laser detuning, i.e., the excited state hyperfine structure. By comparing the model and the experimental results we can quantify the influence of each dark state on the lin CPT resonance. Finally the good quantitative agreement between theory and experiments allows predicting the effects of the laser linewidth on the lin CPT resonance.

VI. ACKNOWLEDGMENTS

We are grateful to Prof. Pierre Thomann and Dr. Igor Mazets for the stimulating discussion. The work is supported by the INTAS-CNES-NSAU grant 06-1000024-9321, by the the Fund for Non-Profit ’Programs Dynasty’, by the Swiss National Research Foundation (grant. 200020-118062), and by the Austrian Science Found (FWF) (Project L300N02).

[1] K. Takagi, R.F. Curl, R.T.M. Su, Appl. Phys., 7 (1975) 298. G. Alzetta, A. Gozzini, M. Moi, G. Orrilol, Nuovo Cimento B 36, (1976) 5. E. Arimondo, G. Orrilol, Nuovo Cimento Lett., 17, (1976) 333.
[2] S. E. Harris, Phys. Today 50, (1997) 7.
[3] A. Lezama, S. Barreiro, A. M. Akulshin, Phys. Rev. A 59 (1999) 4732.
[4] A. Nagel, K. Graf, A. Naumov, E. Mariotti, V. Biancalana, D. Meschede, R. Wynands, Europhys. Lett. 44, (1998) 31.
[5] J. Vanier, Appl. Phys. B, 81, 421442 (2005).
[6] L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, Nature 397, (1999) 594. G. P. Djoyyan, Opt. Exp. 4, (1999) 113.
[7] M. Rosenbluh, V. Shah, S. Knappe, J. Kitching, Opt. Exp. 14, 15, (2006) 6588.
[8] J. Kitching, L. Hollberg, A. V. Taichenachev, V. L. Velichansky, V. I. Yudin, Laser Phys. Lett. 1, 10, (2004) 257. G.A. Kazakov, I.E. Mazets, Yu.V. Rozhdhestvensky, et.al., Eur. Phys. J. D 35, (2005) 445. A.B. Post, Y.-Y. Jau, N.N. Kuzma et.al., Phys. Rev. A 72, (2005) 033417.
[9] T. Zanon, S. Guerandel, E. de Clerq, et.al., Phys. Rev. Lett. 89, (2005) 193002. G. Kazakov, B. Matisov, I. Mazets, G. Mileti, J. Delporte, Phys. Rev. A 72, (2005) 063408.
[10] V. I. Yudin, V. L. Velichansky, S. A. Zibrov, Pis'ma ZhETF 82, (2005) 449.
[11] A. V. Taichenachev, A. V. Velichansky, S. A. Zibrov, Pis'ma ZhETF 82, (2005) 449.
[12] R. Wynands, A. Nagel, S. Brandt, D. Meschede, A. Weiss, Phys. Rev. A 58 (1998) 196.
[13] S. Knappe, M. Stiherl, C. Affolderbach, A.V. Taichenachev, V.I. Yudin and R. Wynands, Appl. Phys. B 76 1 (2003) 57-63.
[14] M. D. Lukin, S. F. Yelin, M. Fleischhauer, M. O. Scully, Phys. Rev. A 60 (1999) 3225.
[15] D. V. Kosachev, B. G. Matisov, Yu. V. Rozhdhestvensky, J. Phys. B 25 (1992) 2473.
[16] E. A. Kosmaryuk, N. Leinfehelner, A. Huss, S. Baluschev and L. Windholz, Phys. Rev. A 50 (1999) 2302.
[17] C. Affolderbach, S. Knappe, R. Wynands, A.V. Taichenachev, V. I. Yudin, Phys. Rev. A 65 (2002) 043810.
[18] M. J. McDonnell, D. N. Stacey, A. M. Steane, Phys. Rev. A 70 (2004) 053802.
[19] D. Happer, Phys. Rev. A 75 (2007) 031801(R).
[20] S. Knappe, Comprehensive Microsystems Published by Elsevier B.V., 3 571-612 (2008).
[21] V. I. Yudin, Laser Phys. Lett. 39, (2003) 303810.
[22] V. I. Yudin, et.al., Phys. Rev. A 67, (2003) 033810.
[23] V. I. Yudin, Quant. Electr. 25 11 (1995) 1089-1094.
[24] P. Violino, Nuovo Cimento 6, 1968, 440.
[25] B. G. Matisov, I. E. Mazets, and Yu. V. Rozhdhestvensky, Technical Physics, 32, (2006) 1414. A.V. Taichenachev, V.I. Yudin, et.al., Phys.Rev. A 67, (2003) 033810.
[26] V. I. Yudin, Quantum Theory of Angular Momentum. World Scientific, Singapore (1988).
[27] L.D. Landau, E.M. Lifshitz, Vol. 3. Quantum mechanics, non-relativistic theory. Pergamon (1991).
[28] R.H. Dicke, Phys. Rev. 89 2 (1953) 472.
[29] C. Affolderbach, A. Nagel, S. Knappe, C. Jung, D. Wiedenmann, R. Wynands Appl. Phys. B 70, (2000) 407-413.
[30] G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, P. Appl. Phys. B 75 (2002) 613-619.
[31] A. Zibrov, A. Moskalev, V.K Khersonskii, Quantum Theory of Angular Momentum. World Scientific, Singapore (1988).
[32] G. Kazakov, B.G. Matisov, I.E. Mazets, and Yu.V. Rozhdhestvensky, Technical Physics, 32, (2006) 1414. A.V. Taichenachev, V.I. Yudin, et.al., Phys.Rev. A 67, (2003) 033810.
[33] V. I. Yudin, Quant. Electr. 25 11 (1995) 1089-1094.
[34] V. I. Yudin, et.al., Phys. Rev. A 67, (2003) 033810.
[35] V. I. Yudin, Phys. Rev. B 70, (2000) 407-413.
[36] V. I. Yudin, Phys. Rev. A 75 (2007) 031801(R).
[37] S. Knappe, Comprehensive Microsystems Published by Elsevier B.V., 3 571-612 (2008).
[38] V. I. Yudin, Laser Phys. Lett. 39, (2003) 303810.
[39] V. I. Yudin, et.al., Phys. Rev. A 67, (2003) 033810.
[40] V. I. Yudin, Quant. Electr. 25 11 (1995) 1089-1094.
[41] V. I. Yudin, et.al., Phys. Rev. A 67, (2003) 033810.