Role of Molecular Polarity in Thermal Transport of Boron Nitride–Organic Molecule Composites

Ruimin Ma,†,‡,∥ Xiao Wan,†,§,∥ Teng Zhang,‡ Nuo Yang,*†,§ and Tengfei Luo*†‡

State Key Laboratory of Coal Combustion and ‡Nano Interface Center for Energy, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States

Abstract: Understanding the role of fillers in the thermal transport of composite materials is of great importance to engineering better materials. The filler induces material interfaces within the composite, which influence the thermal transport between the matrix and themselves. The filler can also alter the molecular arrangement of the matrix in its vicinity, which may also impact the thermal transport. In this paper, molecular dynamics simulations are performed to study the thermal transport across the matrix–filler interfaces in hexagonal boron nitride (h-BN)–organic molecule composites. Four different organic molecules are studied as the matrixes. They include hexane (C₆H₁₄), hexaniline (C₆H₁₃NH₂), hexanol (C₆H₁₃OH), and hexanoic acid (C₅H₁₁COOH), which feature the same molecular backbone but increasingly different polar functional groups. The nominal local thermal conductivities of the hexane matrix with varying distances to the interface are calculated to demonstrate the influence of the filler on the thermal transport properties of the matrix. It is found that a more polar matrix exhibits a higher density in the near-interface region and a higher nominal local thermal conductivity, suggesting that the interfacial interaction can impact the local heat transfer ability of the matrix. In addition, the more polar matrix also leads to a larger interfacial thermal conductance with h-BN (hexane: 90.47 ± 14.49 MW/m² K, hexaniline: 113.38 ± 17.72 MW/m² K, hexanol: 136.16 ± 25.12 MW/m² K, and hexanoic acid: 155.17 ± 24.89 MW/m² K) because of the higher matrix density near the interface and thus more atoms exchanging energy with the filler. The results of this study may provide useful information for designing composite materials for heat transfer applications.

Introduction

Thermal transport is critical to a wide range of applications such as advanced electronics, optoelectronics, photovoltaic solar cells, and Li-ion batteries. It is also the key to determining the lifetime and performance of these devices. There has been an increasing demand for polymeric materials with high thermal conductivity that can dissipate heat generated by electronic devices in operation. To create efficient heat transfer pathways, various attempts have been exploited to increase the thermal conductivity of these materials by compositing high thermal conductivity fillers, such as carbonaceous materials, boron nitride, and silicon nitride. Thus, to facilitate the design of nanocomposites with high thermal conductivity, a fundamental and comprehensive understanding of the thermal transport in polymeric nanocomposites is essential.

Though it is universally known that adding high thermal conductivity materials into a low thermal conductivity matrix can improve the thermal transport, the fundamental mechanism that links the role of fillers to the overall thermal transport in nanocomposites is still lacking. A typical problem being addressed in nanocomposites is the thermal transport across the interface between the matrix and the fillers. Extensive studies have demonstrated that the interfacial thermal resistance could be decreased by tuning the alignment or surface functionalization of graphene in composites. Most of these studies only address the heat flux exchange across the interface. Beyond the direct impact on interfacial thermal conductance, the fillers also affect the nominal local thermal conductivity of the matrix, which has been studied much less intensively. It has been

Received: September 10, 2018
Accepted: September 24, 2018
demonstrated that the arrangement of matrix molecules close to the interface is influenced by their dipoles, resulting in a different density near the interface. This may imply that the nominal local thermal properties of the matrix can also be changed by the fillers, as the thermal conductivity of polymers is a strong function of their molecular-level conformations. In this work, we perform molecular dynamics (MD) simulations and analyses to explore the impact of the h-BN fillers on the thermal transport. As an insulator, h-BN fillers are preferred over graphene, a semimetal, in many applications (e.g., electronics packaging). The size dependence of interfacial thermal conductance is first examined on a single-layer hexagonal boron nitride (h-BN)/hexane (C6H14) system. Then, a series of h-BN interfaces with organic molecules of different polarization groups as the matrices are investigated. These include hexanamine (C6H13NH2), hexanol (C6H13OH), and hexanoic acid (C5H11COOH). We note that the focus of this study is to understand how different functional groups in organic molecules influence thermal transport across their interfaces with h-BN. The selection of the above four materials largely eliminates the impact of the molecular chain length and backbone on the interfacial thermal transport, leaving the functional group the only factor that contributes to the change in interfacial thermal conductance. First, we define matrix regions based on the distances to the interface and calculate the nominal local thermal conductivities of these regions. It is interesting to find that the near-interface region tends to exhibit a higher density, which leads to a higher nominal local thermal conductivity. Compared to nonpolar matrix molecules, polar molecules are more strongly attracted to the BN layer and form a near-interface region of both higher density and higher nominal local thermal conductivity. Because of the higher near-interface density, more atoms join the energy exchange across the interface and lead to a higher interfacial thermal conductance. These results, although fundamental in nature, may have implications in the design of materials or nanostructures for different applications.

## SIMULATION METHODS

Here, single-layer h-BN is used as the filler material, and four types of organic molecules, hexane (C6H14), hexanamine (C6H13NH2), hexanol (C6H13OH), and hexanoic acid (C5H11COOH) are studied as matrixes. With similar carbon backbones and different end groups, the four types of organic molecules should have similar vibrational spectra, but different polarizations. According to the group electronegativity of the functional groups in the four matrices (CH3 1.17; NH2 2.39; OH 2.85; COOH 3.09), the order of their polarity is C6H13COOH > C6H13OH > C6H13NH2 > C6H14. Thus, the differences in the interfacial thermal conductance of these four h-BN–organic molecule systems may be mostly attributed to polarization.

The Tersoff potential is used to describe the interaction among the h-BN atoms, and a modified universal force field is used for the nonbonding interaction between h-BN and organic molecules. All 12-6 Lennard-Jones (L-J) coefficients associated with the h-BN atoms are listed in Table 1. The cutoff is set to 10 Å. The charges of the B and N atoms in h-

Table 1. L-J Potential Parameters between the h-BN Atoms and the Rest of the Atoms

| pair type | ε (kcal/mol) | σ (Å) |
|-----------|--------------|-------|
| C–B       | 0.13774772708486750 | 3.53419521486273 |
| O–B       | 0.103923048000000000000 | 3.37784249000000 |
| N–B       | 0.111445053000000000000 | 3.44911438700000 |
| H–B       | 0.0889943818451480 | 3.10433658336001 |
| C–N       | 0.0851175657546667 | 3.34577013597604 |
| O–B       | 0.063428310000000000000 | 3.18941749000000 |
| N–N       | 0.059900000000000000000 | 3.66000000000000 |
| H–N       | 0.0550999992558236 | 2.91591150447333 |
BN are respectively 1.0 and –1.0, and the Hockney particle–
particle particle–mesh method is used here for the
evaluation of coulomb energies and forces. The organic
molecules are simulated using the polymer consistent force
field. All simulations are carried out using the large-scale
atomic/molecular massively parallel simulator. A timestep
size of 0.25 fs is used for all simulations.

A typical structure is shown in Figure 1a. A single layer of h-
BN is centered in the simulation domain with periodic
boundary conditions (PBCs) in all three directions. The PBCs
in the lateral directions model h-BN effectively infinite in size
without edges. This is reasonable as the focus here is the
interfaces between the basal plane of h-BN and the organic
molecules, and in reality, such interfaces are dominant in the
composite. Each organic molecular system contains 200
molecules. The whole system is heated up to 600 K under
an NPT (constant number of atoms, volume, and temper-
ature) ensemble to achieve a disordered amorphous phase and
then cooled down to 300 K with an annealing speed of 12 K/
ps. We note that the PBC in the direction perpendicular to the
h-BN surface is necessary to ensure that the NPT optimization
leads to the correct density of the organic liquid, which is
important to the interfacial thermal transport.

Nonequilibrium MD (NEMD) is used to calculate the
interfacial thermal conductance. After the NPT relaxation at
300 K and 1 atm for 1.5–2 ns, the system is then simulated
using an NVE (constant number of atoms, volume, and
energy) ensemble with a heat source (320 K) and sink (280 K)
imposed at the two ends of the system using Langevin
thermostats (Figure 1a). A layer of atoms at each end of the
simulation domain is fixed to prevent the heat transfer across
the periodic boundaries, forcing all heat flux to cross the h-
BN–organic molecule interface. The fixed atoms also prevent
the translational drift of the whole system and thus help “lock”
the position of the interface and extract the temperature
profile. The relatively large temperature difference (40 K) is
used to establish a measurable temperature gap across the
interface. Except the fixed atoms, the rest of the system,
including the thermostated regions, is simulated in the NVE
ensemble for 10 ns for nominal local thermal conductivity and
interfacial thermal conductance calculations at steady state. A
typical temperature profile at the steady state is shown in
Figure 1c. The heat flux \( q \) is calculated by averaging the
energy input and output rates from the heat source and sink.
The temperature jump \( |\Delta T| \) across the interface is defined by
the temperature difference between the organic molecules at
the two sides of the h-BN layer. The interfacial thermal
conductance \( G \) is then calculated as \( G = q/ \Delta T \). The nominal
local thermal conductivity \( \kappa \) of the matrix is calculated as \( \kappa = q/(\Delta T/L) \), where \( \Delta T \) is the temperature difference between
the two ends of the chosen region and \( L \) is the length of the
chosen region. Figure 1d shows the temperature points used to
calculate \( \Delta T \) in regions A, B, and C. h-BN/hexane system is
used here as an example. The whole system is divided into
several equal-length bins, and the corresponding temperature is
calculated for each bin. Then, the temperature points selected
for each region are strictly based on the length of each region.
The nominal local thermal conductivity is used to characterize
the heat transfer capability of the region near the interface,
which cannot be interpreted as the thermal conductivity of the
organic liquid. We conduct two independent NEMD
simulations for each system, and in each simulation, data at
eight different time intervals (1 ns each) in the steady state are
used for property calculations. Therefore, there are 16 data
points averaged for each value of the interfacial thermal
conductance. The error bars are the standard deviations of
these data.

RESULTS AND DISCUSSION

The test on the size dependence of interfacial thermal
conductance is first conducted to choose the appropriate
system size for later simulations. The interfacial thermal
conductance of systems with 200, 400, and 600 hexane
molecules are respectively 88.01 ± 13.77, 104.21 ± 14.49, and
93.62 ± 32.43 MW/m²K. As all results are within their error
bars, no size dependence is observed, and thus the system with
the size of 200 organic molecules is selected, so as to save the
simulation time but still produce justified calculations. We note
that the thermal conductance for the h-BN/hexane interface
predicted here is larger compared to that of the graphene/
polyethylene interfaces (61 MW/m²K), and this may be
attributed to the stronger L-J interactions and additional
electrostatic interactions across the h-BN/hexane interface.

Next, the nominal local thermal conductivities and densities
of the hexane matrix with varying distances to the interface are
computed, and the results are shown in Figure 2. Three regions

![Figure 2. Nominal local thermal conductivities and densities of different regions in the h-BN/hexane system.](image-url)

in the hexane matrix are chosen for exploration. Region A is
the region within a distance of 5 Å next to the interface. Region
B is the region within a distance of 10 Å next to the interface.
Region C is the whole system, except for region B, region A,
fixed region, heat source, and heat sink. Further, all the three
regions contain only organic molecules. In Figure 2, it is found
that when the hexane matrix gets closer to the h-BN interface,
its nominal local thermal conductivity becomes larger. The
higher nominal local thermal conductivity of the matrix near
the interface can be attributed to the higher density of organic
molecules, as the corresponding density increases when
approaching the interface.

Figure 3 shows the thermal conductivities and densities of
different polar matrices in region A, which is also called the
near-interface region. According to the results in Figure 2, the
region A shows the highest density and largest nominal local
thermal conductivity. Therefore, the region A is being chosen
for comparison among differently polarized matrices, so as to
test the most representative results. It is interesting to find
that when the organic matrix becomes more polarized, the
organic molecules in the near-interface region have larger
nominal local thermal conductivity, which could be explained
by the corresponding higher density, as it is known that a...
higher density of a liquid can lead to a higher nominal local thermal conductivity because of the closer intermolecular distance.26

Finally, the thermal transport across the interface is being explored via calculating the interfacial thermal conductance of all the matrixes mentioned above. As Figure 4 shows, when the matrix becomes more polarized, the interfacial thermal conductance becomes larger. Such an observation is well-correlated to the increasing trend of the local density of the matrix near the interface as the molecules become more polar. The more polar organic molecules are attracted by h-BN closer to the interface because of the stronger electrostatic interactions. Such a shorter interatomic distance can significantly enhance the heat flux contributed by the L-J interaction. In addition, the higher local density near the interface also allows more organic molecular atoms to have such close “contact” with the h-BN layer. In other words, it is the collaborative effect of the electrostatic and L-J interactions that leads to the observed increase in interfacial thermal conductance as a function of matrix molecular polarity.

CONCLUSIONS

In summary, we use the steady-state NEMD method to explore both the thermal transport across the interface and heat transfer within the matrix. Four types of organic molecules with different polarities are studied as the matrixes (hexane (C₆H₁₄), hexanamine (C₆H₁₃NH₂), hexanol (C₆H₁₃OH), and hexanoic acid (C₅H₉COOH)). The nominal local thermal conductivities of the hexane matrix with varying distances to the interface are calculated to demonstrate the influence of the fillers on the matrix. It is found that the near-interface region will form a denser layer and exhibit a higher nominal local thermal conductivity, and such an effect is more pronounced for a more polar matrix. The higher density of the near-interface region in the more polar matrix also leads to a larger interfacial thermal conductance (hexane: 90.47 ± 14.49 MW/m²K, hexanamine: 113.38 ± 17.72 MW/m²K, hexanol: 136.16 ± 25.12 MW/m²K, and hexanoic acid: 155.17 ± 24.89 MW/m²K). These conclusions may be generalized to other organic molecules and polar filler materials. The results of this study may provide useful information for designing composite materials for heat transfer applications.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: nyo@hust.edu.cn (N.Y.).
*E-mail: tluo@nd.edu (T.L.).

ORCID

Ruimin Ma: 0000-0003-1527-9289
Nuo Yang: 0000-0003-0973-1718
Tengfei Luo: 0000-0003-3940-8786

Author Contributions

R.M. and X.W. contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

N.Y. was sponsored by National Natural Science Foundation of China (no. 51576076 and no. 51711540031) and Hubel Provincial Natural Science Foundation of China (no. 2017CFA046). T.L. would also like to thank the National Science Foundation (1706039) for the financial support. This computation was supported in part by the University of Notre Dame, Center for Research Computing, and NSF through XSEDE resources provided by SDSC Comet, TACC Stampede, National Supercomputing Center in Tianjin (NSCC-TJ) and China Scientific Computing Grid (ScGrid).

REFERENCES

(1) Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; et al. Boron nitride substrates for high-quality graphene electronic devices. *Nat. Nanotechnol.* 2010, 5, 722–726.
(2) Nag, A.; Raidongia, K.; Hembram, K. P. S. S.; Datta, R.; et al. Graphene analogues of BN: novel synthesis and properties. *ACS Nano* 2010, 4, 1539–1544.
(3) Notton, G.; Cristofari, C.; Mattei, M.; Poggi, P. Modelling of a double-glass photovoltaic module using finite differences. *Appl. Therm. Eng.* 2005, 25, 2854–2877.
(4) Goli, P.; Legedza, S.; Dhar, A.; Salgado, R.; et al. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. *J. Power Sources* 2014, 248, 37–43.
(5) Shahil, K. M. F.; Balandin, A. A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. *Nano Lett.* 2012, 12, 861–867.
(6) Goli, P.; Legedza, S.; Dhar, A.; Salgado, R.; et al. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. *J. Power Sources* 2013, 248, 37–43.

D
molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024– 10035.
(31) Beckers, J. V. L.; Lowe, C. P.; De Leeuw, S. W. An iterative PPMP method for simulating Coulombic systems on distributed memory parallel computers. Mol. Simul. 1998, 20, 369–383.
(32) Sun, H.; Mumby, S. J.; Maple, J. R.; Hagler, A. T. An ab initio CFF93 all-atom force field for polycarbonates. J. Am. Chem. Soc. 1994, 116, 2978–2987.
(33) Pimppton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.
(34) Luo, T.; Lloyd, J. R. Enhancement of thermal energy transport across graphene/graphite and polymer interfaces: a molecular dynamics study. Adv. Funct. Mater. 2012, 22, 2495–2502.
(35) Hung, S.-W.; Kikugawa, G.; Shiomi, J. Mechanism of temperature dependent thermal transport across the interface between self-assembled monolayer and water. J. Phys. Chem. C 2016, 120, 26678–26685.
(36) Guo, Z.; Lee, D.; Liu, Y.; Sun, F.; et al. Tuning the thermal conductivity of solar cell polymers through side chain engineering. Phys. Chem. Chem. Phys. 2014, 16, 7764–7771.