Classifying and scoring of molecules with the NGN: new datasets, significance tests, and generalization

Eddie Y.T. Ma¹, Christopher J.F. Cameron², Stefan C. Kremer∗²

¹ Department of Biology at the University of Waterloo, Waterloo, Ontario, Canada
² School of Computer Science at the University of Guelph, Guelph, Ontario, Canada

Email: Eddie Y.T. Ma - e3ma@uwaterloo.ca; Christopher J.F. Cameron - ccameron@uoguelph.ca; Stefan C. Kremer∗-skremer@uoguelph.ca;

∗Corresponding author

Supplementary materials
Cheminformatics classification graphs

The nine graphs, Figures 1 – 4 describe grammars and datasets that converged during training. In these graphs, every single response of the graph is sorted from lowest to highest. Each response value is in turn used as the threshold value. The range of the graph is the number of correct predictions given a value as the threshold. A bulge upward indicates a system that performs favourably; a straight line indicates random guessing; and a bulge downward indicates a poorly performing system. The bounding parallelogram indicates the possible range of answers.

Figure 1: A summary of performance on three classification cross validation experiments, InChI-NGN on benzodiazepine receptor inhibitors, cyclooxygenase-2 inhibitors and dihydrofolate reductase inhibitors.
Figure 2: A summary of performance on two classification cross validation experiments, InChI-NGN on blood brain barrier penetrating particles and factor Xa inhibitors.

Figure 3: A summary of performance on two classification cross validation experiments, SMILES-NGN and InChI-NGN on estrogen receptor binders.

Figure 4: A summary of performance on two classification cross validation experiments, SMILES-NGN and InChI-NGN on androgen receptor binders.
SMILES-NGN toxicity prediction

We are providing to the community our complete dataset used for the SMILES-NGN toxicity prediction experiment. This document, supplementary2.pdf, contains a list of all molecules and LD50s with their respective sources.

Table 1 shows the results obtained when applying the ANN to the random training datasets. The first column represents the test subject. The second column contains the name of the organ implicated in the CPDB [1]. The third column represents one of 35 feature vectors that are implemented in the CDK [2]. Note that many feature vectors were unable to achieve convergence in the pre-testing phase and are therefore not included in the results. We show only the best feature vectors used with the ANN. The fourth column (Average/Epsilon) represents the average error between the ANN’s predicted LD50 and the actual LD50 value over 100 trials and standard deviation of the error over 100 trials.

The fifth column measures the standard deviation of the Epsilon value on a per trial basis along with the standard deviation of that standard deviation. The final column shows the correlation coefficient for the know LD50 values to the estimates provided by ANN.

Table 2 contains the same information as Table 1 except for the per-trial, randomized training data. Tables 3 and 4 show the data produced from this experiment with the use of the SMILES-NGN. Note, that the NGN does not use any descriptors, instead processing the entire molecule.

The final two tables represent how statistically relevant the data generated from this experiment are. Each method (ANN with all descriptor combinations and SMILES-NGN) were compared using a Wilcoxon signed-rank test. From the results, it is determined that each method belongs to a separate population where the average Epsilon and standard deviation are different. Comparison of those populations leads to the conclusion that one population is closer to zero than another. Table 5 shows the results for the grouped data, while Table 6 and Table 7 show the results from the random data. In each table, the animal, organ and descriptor used with the ANN are shown. The Wilcoxon’s test statistic is shown for both the hypothesis that “Epsilon is lower for the NGN” and that “the standard deviation is lower for the NGN”. A negative/positive value indicates the degree of support/lack-of-support for the hypothesis. A p-value of less than 0.05 indicates that the hypothesis is statistically significant at the 95% or 90% confidence interval.

From the group Wilcoxon test table it is shown that SMILES-NGN statistics may be lower than that of ANN, but it is not within a 95% or 90% confidence interval. By contrast for the random datasets, the
Table 1: Summary of the average values for trial epsilon (\(\epsilon \)), trial standard deviation (\(\sigma \)), and correlation coefficient (\(\rho \)) of the random training by ANN with a variety of feature vectors

Animal	Organ	Descriptor	Average±Standard Deviation
Mouse	Kidney	Autocorrelation Charge	0.38 ± 0.12
		Autocorrelation Mass	0.31 ± 0.12
		Weighted Path	0.39 ± 0.15
	Lung	BCUT	0.18 ± 0.06
		Chi Path	0.2 ± 0.08
		Weighted Path	0.23 ± 0.08
	Stomach	BCUT	0.2 ± 0.08
		Chi Path	0.28 ± 0.09
		Weighted Path	0.26 ± 0.1
Rat	Kidney	ALOGP	0.27 ± 0.15
		Autocorrelation Charge	0.12 ± 0.12
		Autocorrelation Mass	0.31 ± 0.16
		Autocorrelation Polarizability	0.17 ± 0.09
	Lung	BCUT	0.12 ± 0.04
		Chi Path	0.16 ± 0.08
		Kappa Shape Indices	0.26 ± 0.17
	Stomach	BCUT	0.2 ± 0.06
		Chi Cluster	0.14 ± 0.06
		Chi Path	0.15 ± 0.05
		Weighted Path	0.2 ± 0.09
		Chi Path Cluster	0.2 ± 0.08
		Weighted Path	0.19 ± 0.06
Table 2: Summary of the average values for trial epsilon (ϵ), trial standard deviation (σ), and correlation coefficient (ρ) of the group training by ANN with a variety of feature vectors

Animal	Organ	Descriptor	ϵ	σ	ρ
Mouse	Lung	BCUT	0.04 ± 0.04	0.18 ± 0.05	0.45 ± 0.07
		Chi Path	0.18 ± 0.09	0.17 ± 0.05	0.3 ± 0.3
		Weighted Path	0.15 ± 0.06	0.18 ± 0.13	0.02 ± 0.02
	Stomach	BCUT	0.15 ± 0.03	0.1 ± 0.05	0.59 ± 0.32
		Chi Path	0.24 ± 0.11	0.14 ± 0.11	0.39 ± 0.37
		Weighted Path	0.25 ± 0.08	0.25 ± 0.07	0.54 ± 0.34
Rat	Lung	ALOGP	0.37 ± 0.22	0.24 ± 0.13	0.6 ± 0.55
		Autocorrelation Charge	0.17 ± 0.13	0.2 ± 0.19	0.54 ± 0.51
		Autocorrelation Mass	0.29 ± 0.15	0.33 ± 0.15	0.66 ± 0.41
		Kappa Shape Indices	0.31 ± 0.17	0.21 ± 0.18	0.7 ± 0.45
		Weighted Path	0.15 ± 0.07	0.17 ± 0.15	0.57 ± 0.47
	Stomach	BCUT	0.14 ± 0.04	0.12 ± 0.09	0.63 ± 0.34
		Chi Cluster	0.11 ± 0.06	0.14 ± 0.12	0.57 ± 0.41
		Chi Path	0.19 ± 0.09	0.15 ± 0.09	0.55 ± 0.24
		Weighted Path	0.2 ± 0.05	0.14 ± 0.03	0.27 ± 0.23

Table 3: Summary of the average values for trial epsilon (ϵ), trial standard deviation (σ), and correlation coefficient (ρ) of the random training by SMILES submitted to the NGN

Animal	Organ	ϵ	σ	ρ
Mouse	Kidney	0.21 ± 0.11	0.14 ± 0.09	1 ± 0
	Lung	0.16 ± 0.05	0.15 ± 0.05	0.12 ± 0.14
	Stomach	0.2 ± 0.09	0.15 ± 0.09	0.48 ± 0.35
Rat	Kidney	0.18 ± 0.05	0.14 ± 0.04	0.11 ± 0.12
	Liver	0.17 ± 0.06	0.15 ± 0.06	0.14 ± 0.14
	Lung	0.12 ± 0.08	0.11 ± 0.09	0.48 ± 0.36
	Stomach	0.18 ± 0.06	0.12 ± 0.05	0.22 ± 0.24

Table 4: Summary of the average values for trial epsilon (ϵ), trial standard deviation (σ), and correlation coefficient (ρ) of the group training by SMILES submitted to the NGN

Animal	Organ	ϵ	σ	ρ
Mouse	Lung	0.16 ± 0.06	0.17 ± 0.03	0.24 ± 0.13
	Stomach	0.16 ± 0.1	0.13 ± 0.09	0.56 ± 0.33
Rat	Kidney	0.19 ± 0.03	0.14 ± 0.04	0.07 ± 0.06
	Liver	0.15 ± 0.07	0.12 ± 0.07	0.26 ± 0.17
	Lung	0.09 ± 0.06	0.1 ± 0.08	0.82 ± 0.26
	Stomach	0.2 ± 0.07	0.14 ± 0.04	0.33 ± 0.43
NGN was consistently lower than the ANN for most descriptors within a 95% confidence interval, since \(p \)-values tend to be lower than 0.05.

Table 8 shows the best-performing method for each problem (broken down in terms of animal, organ, statistic, and training method). Results that were found to be statistically significant at the 95% confidence level are asterisked. This table shows that the SMILES-NGN outperforms all other methods.

References
1. Gold LS, Ames BN, Bernstein L, Blumenthal M, Chow K, Costa MD, de Veciana M, Eisenberg S, Garfinkel GB, Haggin T, Havender WR, Hooper NK, Levinson R, Lopipero P, Magaw R, Manley NB, MacLeod PM, Peto R, Pike MC, Rohrbach L, Sawyer CB, Slone TH, Smith M, Stern BR, Wong M: Summary of Carcinogenic Potency Database by Target Organ 2005, [http://potency.berkeley.edu/pathology.table.html]. [Date of Access May 2009].

2. Steinbeck C, Han Y, Kuhn S, Hörlach O, Luttmann E, Willighagen E: The Chemistry Development Kit (CDK): An Open-Source Java Library for Chemo- and Bioinformatics. Journal of Chemical Information and Computer Sciences 2003, 43(2):493–500.
Table 5: Statistical results of Wilcoxon signed-rank test (null hypothesis of SMILES-NGN statistic is less than ANN with feature vectors, an alternative hypothesis that the true location shift is less than 0, and assumptions of unequal variations and no pairing between samples) for group training data (*95% Confidence Interval Reached)

Animal Organ Data Set Combination	Traditional Descriptor Being Compared to SMILES	Statistic	Test Statistic	p-value	90% Confidence Interval	Location Parameter
Mouse Lung	BCUT	Epsilon 5	0.5714	(−Inf, 0.1205268)	0.01499170	
	Std Dev 4	0.4286	(−Inf, 0.05418094)	−0.02241334		
	Chi Path	Epsilon 13	0.5794	(−Inf, 0.0577229)	0.003372274	
	Std Dev 13	0.5794	(−Inf, 0.04036957)	0.00565836		
	Weighted Path	Epsilon 5	0.5714	(−Inf, 0.1386837)	0.01702964	
	Std Dev 5	0.5714	(−Inf, 0.1120267)	−0.02164081		
Mouse Stomach	BCUT	Epsilon 11	0.4206	(−Inf, 0.1225372)	−0.01460621	
	Std Dev 13	0.5794	(−Inf, 0.1289036)	0.03184782		
	Chi Path	Epsilon 7	0.1548	(−Inf, 0.05902415)	−0.07127287	
	Std Dev 14	0.6548	(−Inf, 0.0966846)	0.009321175		
	Weighted Path	Epsilon 5	0.0754	(−Inf, 0.03941529)	−0.08279434	
	Std Dev 4	0.04762	(−Inf, −0.03110177)	−0.09498184		
Rat Lung	ALOGP	Epsilon 1	0.007937	(−Inf, −0.07625589)	−0.2288930	
	Std Dev 6	0.1111	(−Inf, 0.03234261)	−0.1532512		
	Autocorrelation Charge	Epsilon 8	0.2103	(−Inf, 0.03655133)	−0.05918382	
	Std Dev 7	0.1548	(−Inf, 0.0989314)	−0.02808764		
	Autocorrelation Mass	Epsilon 3	0.02778	(−Inf, −0.04183296)	−0.1904236	
	Std Dev 3	0.02778	(−Inf, −0.07286496)	−0.2644248		
	Kappa Shape Indices	Epsilon 3	0.02778	(−Inf, −0.02863745)	−0.2022525	
	Std Dev 8	0.2103	(−Inf, 0.1036486)	−0.128355		
	Weighted Path	Epsilon 6	0.1111	(−Inf, 0.02267382)	−0.05934372	
	Std Dev 10	0.3452	(−Inf, 0.1146609)	−0.05260102		
Rat Kidney	BCUT	Epsilon 5	0.1429	(−Inf, 0.06070083)*	−0.04736575	
	Std Dev 4	0.09524	(−Inf, 0.05366482)*	−0.1082352		
	Chi Cluster	Epsilon 17	0.9683	(−Inf, 0.1601299)	0.1352699	
	Std Dev 13	0.7937	(−Inf, 0.09786212)	0.03980898		
	Chi Path	Epsilon 12	0.5	(−Inf, 0.1178148)	−0.02121705	
	Std Dev 14	0.6548	(−Inf, 0.06871197)	0.006018149		
	Weighted Path	Epsilon 5	0.5714	(−Inf, 0.0877907)	0.005236316	
	Std Dev 4	0.4286	(−Inf, 0.05862452)	−0.00307102		
Table 6: Statistical results of Wilcoxon signed-rank test (null hypothesis of SMILES-NGN statistic is less than ANN with feature vectors, an alternative hypothesis that the true location shift is less than 0, and assumptions of unequal variations and no pairing between samples) for random training data (mouse only)

Animal Organ Data Set Combination	Traditional Descriptor Being Compared to SMILES	Statistic	Test Statistic	p-value	95% Confidence Interval	Location Parameter
Mouse Kidney	Autocorrelation Charge	Epsilon	465	$8.863e-12$	($-\text{Inf}, -0.1286765$)	-0.1591443
	Std Dev		933	$1.492e-05$	($-\text{Inf}, -0.0568258$)	-0.0846207
	Autocorrelation Mass	Epsilon	1415	$7.669e-06$	($-\text{Inf}, -0.06925954$)	-0.1077996
	Std Dev		1600	0.0001677	($-\text{Inf}, -0.0405733$)	-0.07627047
	Weighted Path	Epsilon	720	$2.10e-11$	($-\text{Inf}, -0.1371728$)	-0.1692975
	Std Dev		1107	$4.676e-07$	($-\text{Inf}, -0.08807012$)	-0.1344037
Mouse Lung	BCUT	Epsilon	519	0.1763	($-\text{Inf}, 0.008936544$)	-0.01157805
	Std Dev		435	0.2875	($-\text{Inf}, 0.002192690$)	-0.01972013
	Chi Path	Epsilon	1688	0.0006077	($-\text{Inf}, -0.0202857$)	-0.03864846
	Std Dev		1864	0.005045	($-\text{Inf}, -0.01017448$)	-0.03095166
	Weighted Path	Epsilon	157	0.0001426	($-\text{Inf}, -0.03756032$)	-0.06536274
	Std Dev		81	$9.415e-07$	($-\text{Inf}, -0.04588313$)	-0.06167551
Mouse Stomach	BCUT	Epsilon	2302	0.421	($-\text{Inf}, 0.02467575$)	-0.00149734
	Std Dev		2724	0.9546	($-\text{Inf}, 0.05618853$)	0.02724963
	Chi Path	Epsilon	1253	$7.333e-06$	($-\text{Inf}, -0.0492778$)	-0.07889718
	Std Dev		1892	0.06001	($-\text{Inf}, 0.001435630$)	-0.02602904
	Weighted Path	Epsilon	662	0.001193	($-\text{Inf}, -0.02736779$)	-0.06067118
	Std Dev		1051	0.5047	($-\text{Inf}, 0.03347364$)	0.0001164592
Table 7: Statistical results of Wilcoxon signed-rank test (null hypothesis of SMILES-NGN statistic is less than ANN with feature vectors, an alternative hypothesis that the true location shift is less than 0, and assumptions of unequal variations and no pairing between samples) for random training data (rat only)

Animal Organ Data Set Combination	Traditional Descriptor Being Compared to SMILES	Statistic	Test Statistic	p-value	95% Confidence Interval	Location Parameter
Rat Kidney	Epsilon	1705	0.9195	(-Inf, 0.02356395)	0.01084519	
	Std Dev	1355	0.2337	(-Inf, 0.00857399)	-0.006503034	
	Chi Path					
	Epsilon	576	3.1e-10	(-Inf, -0.09818032)	-0.13134431	
	Std Dev	1293	0.01008	(-Inf, -0.01230202)	-0.04697898	
	Autocorrelation Charge					
	Epsilon	2913	0.9504	(-Inf, 0.03885386)	0.02270924	
	Std Dev	2675	0.758	(-Inf, 0.02474942)	0.000717613	
	Autocorrelation Mass					
	Epsilon	749	1.488e-12	(-Inf, -0.1239984)	-0.157959	
	Std Dev	876	4.82e-11	(-Inf, -0.1280000)	-0.16888	
	ALOGP					
	Epsilon	1787	0.002854	(-Inf, -0.01797089)	-0.04064453	
	Std Dev	2385	0.3595	(-Inf, 0.01415508)	-0.00477124	
	Autocorrelation Polarizability					
	Epsilon	2270	0.1801	(-Inf, 0.008510483)	-0.009633803	
	Std Dev	3110	0.9925	(-Inf, 0.04492193)	0.02350813	
	BCUT					
	Epsilon	1692	0.0006423	(-Inf, -0.02117260)	-0.04049815	
	Std Dev	2819	0.8086	(-Inf, -0.03032585)	0.01228360	
	Kappa Shape Indices					
	Epsilon	1283	1.525e-06	(-Inf, -0.07393586)	-0.1256972	
	Std Dev	1704	0.001610	(-Inf, -0.02269205)	-0.09731576	
	Weighted Path					
	Epsilon	1251	3.221e-07	(-Inf, -0.05341745)	-0.076983	
	Std Dev	1359	2.722e-06	(-Inf, 0.04749109)	-0.0956124	
	Weighted Path Cluster					
	Epsilon	464	0.09473	(-Inf, 0.006444876)	-0.02265008	
	Std Dev	131	6.954e-08	(-Inf, 0.07098777)	-0.09547542	
	BCUT					
	Epsilon	1841	0.9974	(-Inf, 0.05444701)	0.03566873	
	Std Dev	1234	0.1475	(-Inf, 0.00812179)	-0.01490363	
	Chi Cluster					
	Epsilon	3247	0.9986	(-Inf, 0.04711679)	0.02936394	
	Std Dev	2774	0.8631	(-Inf, 0.02303905)	0.008679174	
	Chi Path Cluster					
	Epsilon	826	0.07944	(-Inf, 0.003611578)	-0.01963982	
	Std Dev	474	9.904e-06	(-Inf, -0.03461324)	-0.05646186	
	Weighted Path					
	Epsilon	415	0.2121	(-Inf, 0.01533738)	-0.01372751	
	Std Dev	288	0.006117	(-Inf, -0.01463408)	-0.03291495	
Table 8: Best performing method for each problem type.

Animal	Organ	Statistic (Epsilon or Standard Deviation)	Training (Grouped or Random)	Best Method
Mouse	Kidney	Epsilon	Grouped	none
		Random	SMILES-NGN*	
		Standard Deviation	Grouped	none
		Random	SMILES-NGN*	
	Lung	Epsilon	Grouped	BCUT-ANN
		Random	SMILES-NGN	
		Standard Deviation	Grouped	ChiPath-ANN or SMILES-NGN
	Stomach	Epsilon	Grouped	BCUT-ANN
		Random	SMILES-NGN	
		Standard Deviation	Grouped	BCUT-ANN*
	Kidney	Epsilon	Grouped	SMILES-NGN
		Random	ChiPath-ANN	
		Standard Deviation	Grouped	SMILES-NGN
	Liver	Epsilon	Grouped	SMILES-NGN
		Random	SMILES-NGN	
		Standard Deviation	Grouped	SMILES-NGN
		Standard Deviation	Grouped	SMILES-NGN
	Lung	Epsilon	Random	BCUT-ANN or SMILES-NGN
		Grouped	SMILES-NGN	
		Standard Deviation	Random	BCUT-ANN
	Stomach	Epsilon	Grouped	ChiCluster-ANN
		Random	ChiCluster-ANN*	
		Standard Deviation	Grouped	BCUT-ANN
		Random	ChiPath-ANN or SMILES-NGN	