Contributions of a regional approach to document hematologic disease in Mexico: a 10-year experience in an open population

José Carlos Jaime-Pérez, Goel Treviño-Reyna, Patrizia Aguilar-Calderón, Olga G. Cantú-Rodríguez, Luis Javier Marfil-Rivera and David Gómez-Almaguer

Department of Hematology, Internal Medicine Division, Dr. José E. González University Hospital, School of Medicine of the Universidad Autónoma de Nuevo León, Monterrey, Mexico

ABSTRACT

Objectives: To demonstrate the importance of regional efforts to register features and report frequency of hematologic diseases in the context of incomplete national registries.

Methods: Frequencies and salient characteristics of hematologic diseases in Northeast Mexico were documented in a reference center at a tertiary care university hospital during the decade 2005–2015. Disease categories were grouped by age, sex and diagnosis. Age group distribution followed WHO guidelines in years as children (0–17), adults (18–64) and elders (+65).

Results: 2406 patients were included: 1239 (51.5%) were females and 1167 (48.5%) males; F:M ratio was 1.06:1; median age was 35 years (0–95). The frequency by age group included adults, 1370 cases (56.9%), children, 695 cases (28.9%), and elderly, 341 (14.2%). Most frequent diagnoses were acute lymphoblastic leukemia (ALL) 18.2% (n = 438), anemia 15.9% (n = 383), non-Hodgkin’s lymphoma (NHL) 15.7% (n = 378), immune thrombocytopenic purpura (ITP) 9.8% (n = 235) and Hodgkin’s lymphoma (HL) 6.5% (n = 156). Median age for the whole cohort was 35 years; for children, was 6 years, for adults 40 and for the elderly 73. Results for ALL, anemia and ITP were comparable to high-income countries; NHL, HL and chronic myeloid leukemia presented a decade earlier.

Discussion: Complete, opportune reliable information on the number of cases, age and sex distribution with the potential to influence strategies for timely diagnosis and treatment options for important hematologic diseases can be accrued by regional centers.

Conclusion: Information on hematology diseases derived of regional registries in low-middle income countries is a reasonable alternative to complement and update national registries.

Introduction

In low-middle income countries (LMIC), there is limited data regarding the frequency and age distribution of hematologic diseases. This group of pathologies is not easily documented due to lack of national registries, local underreporting and isolated efforts to document these relatively infrequent diseases. Hematologic diseases are customarily included in comprehensive oncology reports like GLOBOCAN 2008/2012 [1] and Cancer statistics [2]; in these databases, malignant hematologic diseases are among the most important cause of morbidity–mortality and benign pathologies are overlooked.

Globally, malignant hematologic diseases are responsible for approximately 7% of each estimated new cancer cases and deaths in Europe [1,3] and almost 10% in the United States during 2015 [2]. Benign hematologic diseases such as anemia are still some of the most important causes of disability worldwide. They had a global prevalence of 32.9% in 2010, accounting for 8.8% of total disabilities, causing over 68 million-years lived with disability [4].

The incidence of hematologic diseases is partially documented in Mexico; many reports are limited and pertain to individual diseases or single centers, halting the development of successful strategies to improve diagnosis and treatment at the national level. These strategies are of great importance against malignant diseases, which frequently develop in children and adults during academic and productive age; thus hematologic diseases represent a societal burden and affect the quality of life and income, given their severity and prognosis. In addition, new treatments are expensive and their use prolonged [5,6], making them difficult to afford in LMIC whose health budgets are restricted.

Leukemias were the seventh cause of death due to malignancy among individuals aged 20 years and older, accounting for 1259 deaths; 4.2% of total cancer deaths in Mexico during 2013 [7]. The frequency, age and sex of the patients with acute and chronic leukemias at two large centers in Mexico City were recently reported [8].

The frequencies and characteristics of open population, uninsured patients with hematologic diseases
in the Northeast region of the country were analyzed including all cases diagnosed during a 10-year period attending a hematology reference center of a tertiary care public institution in the State of Nuevo León, with a population close to five million, half of which have no medical insurance [9].

Material and methods
Clinical files and electronic databases of patients diagnosed with a hematological disease who attended the Hematology Department of the Dr. Jose E. Gonzalez University Hospital of the School of Medicine of the Universidad Autónoma de Nuevo Leon, in Monterrey, Mexico, between 2005 and 2015 were analyzed. The hospital provides health services for the open population in three States of the Northeast. Inhabitants in these States add up to 11.5 million, half of them uninsured. Age distribution in the population of the three neighboring Mexican Northeast States in the area of the study is as follows: 0–17 years, 3,110,000; 18–64 years, 7,400,000; ≥65 years, 970,000; females constitute 50.5% and males 49.5% [9]. Data including gender, age, specific hematologic diagnosis, comorbidities, signs and symptoms were documented. For the purposes of this study, patients were divided into three groups: children (0–17 years), adults (18–64 years) and elderly (≥65 years). A database was built incorporating the patient’s diagnosis and epidemiologic information. Data were analyzed using the statistical package SPSS v.21.

Results
Results are summarized in Tables 1–4. During the 10-year study period, 2406 hematology patients were registered, 1239 (51.5%) female and 1167 (48.5%) male, for an F:M ratio of 1.06:1; median age for the whole cohort was 35 years (0–95). The frequency by age group was higher in adults with 1370 cases (56.9%), followed by children in 695 cases (28.9%) and 341 (14.2%) in the elderly. The most frequent diagnoses were acute lymphoblastic leukemia (ALL, 18.2%), followed by anemia (15.9%), non-Hodgkin’s lymphoma (NHL, 15.7%), immune thrombocytopenic purpura (ITP, 9.8%) and Hodgkin’s lymphoma (HL, 6.5%). These five diseases compose 66.1% of the total. The remaining 33.9% corresponded to miscellaneous diagnoses (Table 1).

In the children’s group, there were 695 patients, 405 boys (58.3%) and 290 girls (41.7%), with an M:F ratio of 1.39:1. Median age was 6 years (0–17). The most frequent diagnoses were ALL (45.5%), ITP (12.5%) and anemia (5.9%), followed by others with lower frequencies (Table 2). The adult group consisted of 1370 patients, 603 men (44%) and 767 women (56%) with an F:M ratio of 1.27:1; median of age at diagnosis was 40 years (18–64). The most frequent disease was anemia (20.5%), followed by NHL (17.5%) and ITP (9.10%); 16 additional diagnostic categories with lower frequencies were found (Table 3). The elderly group included 341 patients, 159 males (46.6%) and 182 females (53.4%), with an F:M ratio of 1.14:1. Median age at diagnosis was 73 years (65–95). The most frequent diseases were NHL (32%), anemia (18.20%) and multiple myeloma (MM) (10.30%), followed by less frequent pathologies (Table 4).

Findings for more frequent diagnostic categories are discussed with respect to what is known in other populations in the next section.

Discussion
Data on frequency, sex and age distribution of hematologic diseases are scarce in many LMICs. We documented these important aspects over 10 years analyzing malignant and benign pathologies and report the relevant findings. Although our study has several limitations, it is the first study carried out in Mexico to gather all-age data on malignant as well as benign hematological diseases in a specific region and time period in a well-defined homogeneous segment of the open uninsured population.

The adult group predominated over children and the elderly. The most frequent diseases were ALL, anemia, NHL, ITP, HL, chronic myeloid leukemia (CML) and MM explaining over 75% of the cases. Findings for these diagnostic categories are discussed below.

Acute lymphoblastic leukemia
In northeast Mexico, ALL is the principal cause of death by malignant cancer in children and adolescents between 0 and 19 years, accounting for 48.5% of all cases [7]. We documented 437 patients with ALL in the study period with an M:F ratio of 1.1:1, slightly lower than 1.3:1 reported in the US [10] but the same as that found in the UK, 1.1:1 [11]. Median age was 10 years (0–79), five years younger than in the US [10]. In our children’s group, median age was 6 years (0–17), similar to other LMICs, with results between 5 and 6.4 years [12,13]. Recently, we defined survival rates for adult ALL patients [14], for children [15] and adolescents [16] as well as relapse and its outcomes in the pediatric group [17] over a decade. In an effort to bridge this critical information gap, we documented epidemiologic characteristics of over 1000 acute leukemia patients in five States of Mexico [18].

Median age in our adult ALL group was 31.5 years (18–64) with an M:F ratio of 1.2:1. Age of diagnosis in the US was reported to be almost 10 years older, at 40 years [19]. In a previous study in central Mexico, median age was 5 years younger than ours, 27 years [20], underscoring the biological and geographic
Table 1. Diagnosis and demographic characteristics of 2406 patients with hematologic diseases attending a reference regional center in Northeast Mexico between 2005 and 2015.

Diagnosis	Gender	Total f (%)	Age, years median (%)	
	Male (%)	Female (%)	n = 2406	
Acute lymphoblastic leukemia	323 (53)	206 (47)	438 (18.2)	10 (1–79)
Anemia	98 (25.5)	285 (74.4)	383 (15.9)	42 (0–91)
Non-Hodgkin’s lymphoma	222 (58.7)	156 (41.3)	378 (15.7)	53 (0–92)
Immune thrombocytopenic purpura	92 (39.1)	143 (60.9)	235 (9.8)	25 (0–94)
Hodgkin’s lymphoma	95 (60.9)	61 (39.1)	156 (6.5)	28.5 (0–81)
Acute myeloid leukemia	71 (51.8)	66 (48.2)	137 (5.7)	34 (0–85)
Chronic myeloid leukemia	53 (52)	49 (48)	102 (4.2)	40 (2–81)
Multiple myeloma	48 (52.2)	44 (47.8)	92 (3.8)	60 (25–87)
Aplastic anemia	29 (48.3)	31 (51.7)	60 (2.5)	33 (1–72)
Myeloproliferative neoplasm	29 (51.8)	27 (48.2)	56 (2.3)	57.5 (1–88)
Myelodysplasia	23 (43.4)	30 (56.6)	53 (2.2)	55 (0–95)
Bleeding disorders	41 (82)	9 (18)	50 (2.1)	16 (0–76)
Autoimmune hemolytic anemia	16 (34.8)	30 (65.2)	46 (1.9)	32.5 (1–82)
Chronic lymphocytic leukemia	21 (53.8)	18 (46.2)	39 (1.6)	62 (22–92)
Hypercoagulable state	17 (48.6)	18 (51.4)	35 (1.5)	34 (7–78)
Hemoglobinopathies	14 (46.7)	16 (53.3)	30 (1.2)	25 (0–76)
Hereditary spherocytosis	8 (28.6)	20 (71.4)	28 (1.2)	6.5 (0–38)
Plasmacytoma	4 (44.4)	5 (55.6)	9 (0.4)	54 (38–80)
Evans’ syndrome	4 (44.4)	5 (55.6)	9 (0.4)	29 (1–66)
Paroxysmal nocturnal hemoglobinuria	3 (37.5)	5 (62.5)	8 (0.3)	2 (1–3)
Miscellaneous erythroid lineage	25 (86.2)	4 (13.8)	29 (1.2)	0 (0–49)
Miscellaneous white lineage	21 (72.4)	8 (27.6)	29 (1.2)	11 (0–75)
Miscellaneous platelets	1 (25)	3 (75)	4 (0.2)	39 (1–74)

heterogeneity of ALL. The deleterious effect of increasing age at diagnosis of ALL has been reported for our cohort [21].

Anemia

In 2015, the WHO estimated that approximately 50% of cases of anemia are due to iron deficiency (ID) [22]. The global prevalence of anemia is 27% and 1.93 billion people are affected, with developing countries accounting for 90% of the burden; 43% of preschool children and 29% women of reproductive age have anemia worldwide [22]. ID anemia is the dominant cause (62.6%). Anemia thus affects one in four persons globally.

In Mexico, the national prevalence of ID anemia in children <5 years was 23.3% and 10.1% in children aged 5–11 years with no gender difference. In adolescents between 12 and 19 years, the prevalence was 5.6%, predominant in girls, 70% vs. 30% in boys. Seventeen percent of pregnant women (12–49 years) and 11.6% of non-pregnant women had anemia. In the same study, the prevalence of anemia in the elderly was 16.5% [23]. Median of age at diagnosis of anemia in our study group was 42 years (0–91 years). In the children’s group (0–17), median age was 2 years with an F:M ratio of 1.4:1, while in the adult group, median age was 40 years with an F:M ratio of 3.2:1. Prevalence was similar between genders at a young age and higher in females at adult age [23]. Our highest

Table 2. Diagnosis and demographic characteristics of 695 children with hematologic diseases in Northeast México diagnosed between 2005 and 2015 in Monterrey, México.

Diagnosis	Gender	Total f (%)	Age, years median (%)	
	Male (%)	Female (%)	n = 695	
Acute lymphoblastic leukemia	167 (52.8)	149 (47.2)	316 (45.5)	6 (0–17)
Immune thrombocytopenic purpura	47 (54)	40 (46)	87 (12.5)	8 (0–17)
Anemia	17 (41.5)	24 (58.5)	41 (5.9)	2 (0–17)
Bleeding disorder	34 (97.1)	1 (2.9)	35 (5)	4 (0–17)
Acute myeloid leukemia	21 (63.3)	12 (36.4)	33 (4.7)	7 (0–17)
Hodgkin’s lymphoma	23 (71.9)	9 (28.1)	32 (4.6)	11 (0–17)
Non-Hodgkin’s lymphoma	18 (60)	12 (40)	30 (4.3)	8 (0–17)
Hereditary spherocytosis	7 (38.9)	11 (61.1)	18 (2.6)	4 (0–11)
Aplastic anemia	11 (78.6)	3 (21.4)	14 (2)	8.5 (1–15)
Hemoglobinopathies	7 (70)	3 (30)	10 (1.4)	5 (0–14)
Autoimmune hemolytic anemia	3 (37.5)	5 (62.5)	8 (1.2)	10.5 (1–17)
Chronic lymphocytic leukemia	1 (16.7)	5 (83.3)	6 (0.9)	11.5 (2–15)
Hypercoagulable state	4 (66.7)	2 (33.3)	6 (0.9)	13 (7–17)
Myelodysplasia	1 (20)	4 (80)	5 (0.7)	9 (0–13)
Myeloproliferative neoplasm	3 (75)	1 (25)	4 (0.6)	3.5 (1–15)
Evans’ syndrome	1 (50)	1 (50)	2 (0.3)	7.5 (1–14)
Paroxysmal nocturnal hemoglobinuria	1 (100)	0 (0)	1 (0)	0 (0–9)
Miscellaneous erythroid lineage	24 (85.7)	4 (14.3)	28 (4)	3.5 (0–16)
Miscellaneous white lineage	14 (77.8)	4 (22.2)	18 (2.6)	3.5 (0–16)
Miscellaneous platelets	1 (100)	0 (0)	1 (0)	1
prevalence was found in those aged between 0 and 4 and 35 and 45 years. We recently documented the need to provide targeted teaching regarding ID diagnosis and treatment for non-hematologists and first contact physicians in a general hospital [24].

Non-Hodgkin's lymphoma

In a study from Mexico’s National Cancer Institute, 5083 new cases with 2815 deaths due to NHL during 2015 were censored [25]. We documented 378 patients with NHL in the study period with an M:F ratio of 1.4:1. Median age was 53 years and thus it occurred one decade earlier than in industrialized countries [26], but a decade later than 42.5 years in Pakistan [27].

NHL was the most frequent hematologic disease in the elderly, with a similar median age to previous studies [26]. It increases exponentially with age. In the UK, each year around half (49%) of NHL cases are diagnosed in people aged 70 or older [28], while more than 70% of cases reported in the US were in people aged 55 and older [10]. We found a younger median age, with most cases diagnosed around 40 years of age, 15 years earlier than in high-income countries. Usually, NHL is a disease of the elderly; however, we found an important frequency in the population in the 20s and 30s. NHL has been acknowledged as a major contributor to the early death of young adults in Canada, where it accounts for 11% of cancer diagnosed in young men, only second to testicular cancer, and it is an important cause of potential years of life lost for young men aged 20–44 [29]. In a recent study, we described advanced stages at diagnosis, younger age and low cure rate for NHL in our reference center, even after

Table 3. Salient characteristics of 1370 patients in the adult group with hematologic diseases in Northeast México during 2005–2015.

Diagnosis	Gender: male (%)	Female (%)	Frequency (%)	Age, years (median %)
Anemia	M: 60 (21.4); F: 220 (78.6)	280 (20.5)	40 (18–64)	
Non-Hodgkin’s lymphoma	M: 142 (59.4); F: 97 (40.6)	239 (17.5)	47 (18–64)	
Immune thrombocytopenic purpura	M: 37 (29.6); F: 88 (70.4)	125 (9.10)	37.5 (18–64)	
Acute lymphoblastic leukemia	M: 65 (55.1); F: 53 (44.9)	118 (8.6)	31.5 (18–64)	
Hodgkin’s lymphoma	M: 66 (58.4); F: 47 (41.6)	113 (8.3)	31 (18–62)	
Chronic myeloid leukemia	M: 51 (54.8); F: 42 (45.2)	93 (6.8)	40 (18–64)	
Acute myeloid leukemia	M: 42 (47.2); F: 47 (52.8)	89 (6.5)	37 (18–63)	
Multiple myeloma	M: 33 (57.9); F: 24 (42.1)	57 (4.2)	54 (25–64)	
Aplastic anemia	M: 16 (40); F: 24 (60)	40 (2.9)	35 (18–61)	
Myeloproliferative neoplasm	M: 17 (50); F: 17 (50)	34 (2.5)	51 (21–64)	
Autoimmune hemolytic anemia	M: 8 (25); F: 24 (75)	32 (2.3)	34 (18–63)	
Myelodysplasia	M: 14 (48.3); F: 15 (51.7)	29 (2.1)	49 (21–64)	
Hypercoagulable state	M: 12 (42.9); F: 16 (57.1)	28 (2)	36.5 (21–64)	
Chronic lymphocytic leukemia	M: 11 (47.8); F: 12 (52.2)	23 (1.7)	55 (22–64)	
Hemoglobinopathies	M: 7 (38.9); F: 9 (61.1)	18 (1.3)	29 (20–63)	
Bleeding disorders	M: 7 (53.8); F: 6 (46.2)	13 (0.9)	28 (19–56)	
Hereditary spherocytosis	M: 1 (100); F: 9 (90)	10 (0.7)	22.5 (19–38)	
Paroxysmal nocturnal hemoglobinuria	M: 2 (33.3); F: 4 (66.7)	6 (0.4)	38.5 (26–46)	
Plasmacytoma	M: 4 (66.7); F: 2 (33.3)	6 (0.4)	44.5 (38–58)	
Evans’ syndrome	M: 2 (33.3); F: 4 (66.7)	6 (0.4)	35.5 (18–61)	
Miscellaneous white lineage	M: 5 (62.5); F: 3 (37.5)	8 (0.6)	41.5 (18–59)	
Miscellaneous platelets	F: 2 (100)	2 (0.1)	39 (27–51)	
Miscellaneous erythroid lineage	M: 1 (100)	1 (0.1)	49 (27–51)	

Table 4. Characteristics of 341 elderly patients with hematologic diseases treated at a reference center in Northeast México between 2005 and 2015.

Diagnosis	Gender: Male (%)	Female (%)	Frequency (%)	Age, years (median %)
Non-Hodgkin’s lymphoma	M: 62 (56.9); F: 47 (43.1)	109 (32)	73 (65–95)	
Anemia	M: 21 (33.9); F: 41 (66.1)	62 (18.2)	74 (65–91)	
Multiple myeloma	M: 15 (42.9); F: 20 (57.1)	35 (10.3)	75 (65–87)	
Immune thrombocytopenic purpura	M: 8 (34.8); F: 15 (65.2)	23 (6.7)	74 (65–94)	
Myelodysplasia	M: 8 (42.1); F: 11 (57.9)	19 (5.6)	73 (65–95)	
Myeloproliferative neoplasm	M: 9 (50); F: 9 (50)	18 (18)	73.5 (66–88)	
Chronic lymphocytic leukemia	M: 10 (62.5); F: 6 (37.5)	16 (4.7)	71 (65–92)	
Acute myeloid leukemia	M: 8 (53.3); F: 7 (46.7)	15 (4.4)	79 (68–85)	
Hodgkin’s lymphoma	M: 6 (54.5); F: 5 (45.5)	11 (3.2)	68 (65–81)	
Aplastic anemia	M: 2 (33.3); F: 4 (66.7)	6 (1.8)	68 (65–72)	
Autoimmune hemolytic anemia	M: 5 (83.3); F: 1 (16.7)	6 (1.8)	75 (67–82)	
Acute lymphoblastic leukemia	F: 4 (100)	4 (1.2)	75 (68–79)	
Chronic myeloid leukemia	M: 1 (33.3); F: 2 (66.7)	3 (0.9)	78 (72–81)	
Plasmacytoma	F: 3 (100)	3 (0.9)	77 (66–80)	
Hemoglobinopathies	F: 2 (100)	2 (0.6)	70.5 (67–76)	
Bleeding disorders	F: 2 (100)	2 (0.6)	73 (70–76)	
Paroxysmal nocturnal hemoglobinuria	M: 2 (66.7); F: 1 (33.3)	3 (0.9)	69 (67–75)	
Miscellaneous white lineage	M: 2 (66.7); F: 1 (33.3)	3 (0.9)	69 (67–75)	
Miscellaneous platelets	F: 1 (100)	1 (0.3)	74 (27–51)	
the addition of rituximab [30]. Recently, detailed data on NHL in Mexican children have been reported from the Instituto Mexicano del Seguro Social (IMSS) [31].

Immune thrombocytopenic purpura

We documented 87 children with ITP during the 5-year period, with an M:F ratio of 1.1:1, similar to that reported in the intercontinental study with an M:F ratio of 1.2:1 [32]. Our median of age at diagnosis was 8 years, higher than in the US, Turkey and intercontinental reports, where median age was 5–5.7 years [32].

There were 148 adults (over 18 years) with ITP, with an F:M ratio of 2.26:1, higher than the 1.5:1 ratio in the UK [33]. As reported, in this group, the incidence is greater in women but our median age was 42 years, one and a half decades earlier than in the UK, 59 years [33]. In another study from our country, median age was 36.8 years (1–90) with an F:M ratio of 1.98:1 [34].

No significant seasonal fluctuation in the incidence of ITP was found in our children between cold seasons (September–March), 48.3%, vs. warm seasons (April–August), 51.7% (P= .320). None of our patients presented intracranial hemorrhage.

Hodgkin’s lymphoma

It affects approximately 5000 new patients in Latin America each year [2], whereas in Mexico, 935 cases were reported in 2003 [35]. In a recent report from the National Cancer Institute in Mexico, 1677 new cases of HL with 675 deaths were documented during 2015 [25]. We recently reported data on HL patients in Northeast México, finding a high rate of refractory disease, advanced stages at diagnosis and decreased survival [36].

HL affects people of all ages with peaks around 30 and after 60 years of age with this being the most common cancer in young adults [37]. The first peak in our study was at 4–7 years vs. 6–10 years in India [38]. Our second peak was at 17–26 years, different from a previous report from our country of between 15 and 19 years [35], underscoring regional geographic heterogeneity.

We documented 156 HL patients, with an M:F ratio of 1.55:1 different from India at 2.6:1. Our median age was 28.5 years (0–81), similar to India 28.7 [38], but younger than other countries like Japan with 34 years [39] and a decade earlier than in the US with 39 years [10].

Acute myeloid leukemia

There is no precise information regarding the epidemiologic aspects of acute myeloid leukemia (AML) in Mexico, but 600 new cases were reported in 1998 [40]. AML increases with age, and its incidence varies from 2–3 per 100,000 in young people to 15–20 in the older population [41]. The risk of developing AML increases 10 times after reaching 30 years, from 1 to 10 cases per 100,000/year [42].

We have reported the general characteristics and survival rates for AML in our center [43] documenting 137 patients with AML over five years with an M:F ratio of 1.07:1 [43]. In the US, this ratio is higher in males 1.4:1 [10]. The median age in our group was 34 years (0–85), similar to a previous regional study with a median of 32 years [43]. In contrast, reports from the US and Europe found considerably higher medians of 67–69 years [2,10,44], almost 35 years older than our patients, attesting to the many epigenetic influences in this malignancy. In this respect, the adolescent and young adult AML group has particular characteristics requiring an intensified chemotherapy approach and early access to transplantation, as reported in our patients [45].

Chronic myeloid leukemia

We documented 102 CML patients with an M:F ratio of 1.08:1, whereas in other studies, male predominance was more notable; in Spain, the ratio was 1.4:1 and in the US 1.35:1 [46,47]. The median age at onset was 40 years (2–81), differing considerably from 64 years in the US [10]; thus CML is currently diagnosed almost 25 years earlier at our regional center in Northeast Mexico, again underscoring geographic variation in biologic expression of leukemic clones. In our population, the percentage of patients between 20 and 44 years was 54.1%, superior to 31.7% in another report [46]. Patients 40 years or younger corresponded to 61.8% in our study, this differs from the US where the majority of patients (73%) were in the >40 years group [47]; in the UK, 50% of CML cases are diagnosed in people aged 65 and over [48], thus contrasting significantly with our population. Important cultural and socioeconomic factors affect negatively adherence to treatment in CML as recently documented by our group [49].

Multiple myeloma

We documented 92 MM patients with an M:F ratio of 1.09:1; as cited in other articles [10,50]. The median age of onset was 60.5 years (25–87 years), similar to previous studies in Mexico [51], whereas the US and Sweden report a median of 69 and 70 years, almost 10 years older than our population [10,50]. In our group, 62% of patients were <65 years (25–64 years) and 38% were 65 or older (65–87 years). In other studies, most patients belong to the elderly group, and in the UK, 59% cases are diagnosed in people aged 70 and older [52].

Although there is no complete recent data on MM, a previous report on lymphoproliferative diseases in México found a lower frequency than in Caucasian
populations [53]. In a recent report, we compared the characteristics of MM patients from our open population, with no access to bortezomib, with those of insured individuals that received treatment with bortezomib [54].

As exemplified in this study, regional reports on frequency and distribution of hematologic diseases are important, particularly in LMIC, where consolidated, periodically updated information is not always available. These data are required for the design and implementation of successful strategies leading to an opportune diagnosis and timely and effective treatment of hematologic diseases, as well as for middle- and long-term health budget planning for resource allocation.

In conclusion, these findings underscore the importance of accruing detailed data for regional consolidated frequency analysis to define and map influences associated with specific hematologic diseases at the national level.

Acknowledgements
We thank Sergio Lozano-Rodriguez, M.D., and Alejandro Quiroga-Garza, M.D., for their review of the manuscript.

Disclosure statement
No potential conflict of interest was reported by the authors.

ORCID
José Carlos Jaime-Pérez http://orcid.org/0000-0001-6804-9095
Patrizia Aguilar-Calderón http://orcid.org/0000-0003-3307-5503
Olga G. Cantú-Rodríguez http://orcid.org/0000-0003-2134-3734
David Gómez-Almaguer http://orcid.org/0000-0002-0460-6427

References
[1] Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–E386.
[2] Siegel R, Miller K, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.
[3] Ferlay J, Steliarov Foucher E, Lortet-Tieulent J, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374–1403.
[4] Kassebaum NJ, Jasrasaria R, Naghavi M, et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood. 2014;123(5):615–624.
[5] Jaime-Pérez JC, Heredia-Salazar AC, Cantú-Rodríguez OG, et al. Cost structure and clinical outcome of a stem cell transplantation program in a developing country: the experience in northeast Mexico. Oncologist. 2015;20(4):386–392.
[6] Bhakta N, Martiniuk ALC, Gupta S, et al. The cost effectiveness of treating paediatric cancer in low-income and middle-income countries: a case-study approach using acute lymphocytic leukaemia in Brazil and Burkitt lymphoma in Malawi. Arch Dis Child. 2013;98(2):155–160.
[7] Borja-Aburto VH, Dávila-Torres J, Rascón-Pacheco RA, et al. Cancer mortality in the Mexican social security institute, 1989–2013. Salud Publica Mex. 2016;58(2):153–161.
[8] Santoyo-Sanchez A, Olarte-carrillo I, Collazo-jaloma J, et al. The age and sex frequencies of patients with leukemia seen in two reference centers in the metropolitan area of Mexico City. 2016;152(2):186–189.
[9] INEGI. Encuesta Intercensal [Internet]. Encuesta Intercensal. 2015. Available from: http://www.inegi.org.mx/est/contenidos/Proyectos/encuestas/hogares/especiales/ei2015/.
[10] National Cancer I. SEER Stat Facts Sheets Cancer 2016: NCI Division of Cancer Control and Population Sciences [Internet]. 2016. Available from: https://seer.cancer.gov/statfacts/.
[11] Cancer Research UK. Acute lymphoblastic leukaemia (ALL) statistics London [Internet]. 2014. Available from: http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/leukaemia-ALL.
[12] Ducasse K, Fernández JP, Salgado C, et al. Caracterización de los episodios de neutropenia febril en niños con leucemia mieloida aguda y leucemia linfoblástica aguda. Rev Chil infectologia. 2014;31(3):333–338.
[13] Demanelis K, Sripunl H, Meza R, et al. Differences in childhood leukemia incidence and survival between Southern Thailand and the United States: A population-based analysis. Pediatr Blood Cancer. 2015;62(10):1790–1798.
[14] Jaime-Pérez JC, Jiménez-Castillo RA, Herrera-Garza JL, et al. Survival rates of adults with acute lymphoblastic leukemia in a low-income population: a decade of experience at a single institution in Mexico. Clin Lymphoma Myeloma Leuk. 2017;17(1):60–68.
[15] Jaime-Pérez JC, López-Razo ON, García-Arellano G, et al. Results of treating childhood acute lymphoblastic leukemia in a low-middle income country: 10 year experience in northeast mexico. Arch Med Res. 2016;47(8):668–676.
[16] Jaime-Pérez JC, Jiménez-Castillo RA, Pinzón-Uresti MA, et al. Real-world outcomes of treatment for acute lymphoblastic leukemia during adolescence in a financially restricted environment: results at a single center in Latin America. Pediatr Blood Cancer. 2017;64(7):1–8.
[17] Jaime-Pérez JC, Pinzón-Uresti MA, Jiménez-Castillo RA, et al. Relapse of childhood acute lymphoblastic leukemia and outcomes at a reference center in Latin America: organomegaly at diagnosis is a significant clinical predictor. Hematology. 2018;23(1):1–9.
[18] Gómez-Almaguer D, Marcos-Ramirez ER, Montaño- Figueroa EH, et al. Acute leukemia characteristics are different around the world: the Mexican perspective. Clin Lymphoma Myeloma Leuk. 2017;17(1):46–51.
[19] Kantarjian H, Thomas D, O’Brien S, et al. Long-term follow-up results of hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (hyper-CVAD), a dose-intensive regimen, in adult acute lymphocytic leukemia. Cancer. 2004;101(12):2788–2801.
[20] Arteaga-Ortiz L, Buitrón-Santiago N, Rosas-López A, et al. Experiencia del INCMNSZ en pacientes adultos con leucemia linfoida aguda. Cohorte 2003–2007 con
esquemas de tratamiento Hiper-CVAD y Protocolo 0195. Rev Investig Clin. 2008;60(6):459–469.

[21] Jaime-Pérez JC, Fernández LT, Jiménez-Castillo RA, et al. Age acts as an adverse independent variable for survival in acute lymphoblastic leukemia: data from a cohort in northeastern Mexico. Clin Lymphoma Myeloma Leuk. 2017;17(9):590–594.

[22] World Health Organization. The global prevalence of anaemia in 2011. WHO Rep [Internet]. 2011:48. Available from: http://apps.who.int/iris/bitstream/10665/177094/1/9789241564960_eng.pdf?ua = 1.

[23] Gutiérrez J, Rivera-Dommarco J, Shamah-Levy T, et al. Encuesta Nacional de Salud y Nutrición 2012. Resultados Nacionales. Salud Publica Mex. 2012;1:1–196.

[24] López-García YK, Colunga-Pedraza PR, Tarín-Arzaga L, et al. Iron deficiency anemia referral to the hematologist. Real-world data from Mexico: the need for targeted teaching in primary care. Hematology. 2018;44:1–6.

[25] Candelaria M. Advances in the diagnosis and control of lymphomas. Salud Publica Mex. 2016;58(2):296–301.

[26] Freire SM, Calderón AM, Proaño GD, et al. Estudio Descriptivo: Características Clínicas. Demográficas e Histopatológicas de Pacientes con Diagnóstico de Linfoma no Hodgkin. 2015;7(3):230–235.

[27] Naz E, Mirza T, Aziz S, et al. Frequency and clinicopathologic correlation of different types of Non Hodgkin’s lymphoma according to WHO classification. J Pak Med Assoc. 2011;61(3):260–263.

[28] Cancer Research UK. Non-Hodgkin lymphoma (NHL) Key Stats [Internet]. CancerStats. 2014. Available from: http://www.cancerresearchuk.org/cancer-info/cancersstats/keyfacts/non-hodgkin-lymphoma/.

[29] Marrett LD, Foord J, Nishri D, et al. Cancer incidence in young adults in Canada: preliminary results of a cancer surveillance project. Chronic Dis Can. 2002;23(2):58–64.

[30] Jaime-Pérez JC, Gamboa-Alonso CM, Vazquez-Mellado de Larracoechea A, et al. Non-Hodgkin lymphomas: impact of rituximab on overall survival of patients with diffuse large B-cell and follicular lymphoma. J Med Res. 2015;46(6):454–461.

[31] Rendón-Macías ME, Valencia-Ramón EA, Fajardo-Gutiérrez A, et al. Childhood lymphoma incidence patterns by ICCD-3 subtype in Mexico City metropolitan area population insured by Instituto Mexicano del Seguro Social, 1996–2010. Cancer Causes Control. 2015;26(6):849–857.

[32] Kühne T, Imbach P, Bolton-Maggs PH, et al. Newly diagnosed idiopathic thrombocytopenic purpura in childhood: an observational study. Lancet. 2001;358(9299):2122–2125.

[33] Abrahamson PE, Hall SA, Feudjo-Tepie M, et al. The incidence of idiopathic thrombocytopenic purpura among adults: a population-based study and literature review. Eur J Haematol. 2009;83(2):83–89.

[34] García-Stivalet AL, Muñoz-Flores A, Montiel-Jarquín ÁJ, et al. Análisis de 200 casos clínicos de púrpura trombocitopénica idiopática. Rev Medica Ins Mex. 2014;52(3):322–325.

[35] Ferlay J, Shin HR, Bray F, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–2917.

[36] Jaime-Pérez JC, Gamboa-Alonso CM, Padilla-Medina JR, et al. High frequency of primary refractory disease and low progression-free survival rate of Hodgkin’s lymphoma: A decade of experience in a Latin American center. Rev Bras Hematol Hemoter. 2017;39(4):325–330.

[37] Bröckelmann PJ, Borchmann P, Engert A. Current and future immunotherapeutic approaches in Hodgkin lymphoma. Leuk Lymphoma. 2016;57(9):2014–2024.

[38] Konkay K, Paul T, Uppin S, et al. Hodgkin lymphoma: a clinicopathological and immunophenotypic study. Indian J Med Paediatr Oncol. 2016;37(1):59.

[39] Makita S, Maruyama D, Maeshima AM, et al. Clinical features and outcomes of 139 Japanese patients with Hodgkin lymphoma. Int J Hematol. 2016;104(2):236–244.

[40] Guía de Práctica Clínica. Diagnóstico y tratamiento de la Leucemia Mieloide Aguda, México: Secretaría de Salud; 2010. p. 1–46.

[41] Ociás LF, Larsen TS, Vestergaard H, et al. Trends in hematological cancer in the elderly in Denmark, 1980–2012. Acta Oncol (Madr). 2016;55(1):98–107.

[42] Buitrón-Santiago N, Arteaga-Ortiz L, Rosas-López A, et al. Experiencia del INCANMSZ en pacientes adultos con leucemia mieloide aguda. Cohorte 2003–2008. Rev Investig Clin. 2010;62(2):100–108.

[43] Jaime-Pérez JC, Brito-Ramírez AS, Pinzon-Uresti MA, et al. Characteristics and clinical evolution of patients with acute myeloblastic leukemia in Northeast Mexico: An eight-year experience at a university hospital. Acta Haematol. 2014;132(2):144–151.

[44] Bower H, Andersson TML, Bjorkholm M, et al. Continued improvement in survival of acute myeloid leukemia patients: an application of the loss in expectation of life. Blood Cancer J. 2016;6(39):1–6.

[45] Jaime-Pérez JC, Padilla-Medina JR, Fernández LT, et al. Outcomes of adolescents and young adults with acute myeloid leukemia treated in a single Latin American center. Clin Lymphoma Myeloma Leuk. 2018;18(4):286–292.

[46] Osorio S, Casado LF, Giraldo P, et al. Leucemia mielóidea crónica en españa: sus características de presentación han cambiado. sección española del registro poblacional EUTOS. Rev Clin Esp. 2016;216(6):293–300.

[47] Brunner AM, Campigotto F, Sadrazadeh H, et al. Trends in all-cause mortality among patients with chronic myeloid leukemia: a surveillance, epidemiology, and end results database analysis. Cancer. 2013;119(14):2620–2629.

[48] Cancer Research UK. Cancer Research Chronic Myeloid Leukemia Statistics [Internet]. 2014. Available from: http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/leukaemia-cml.

[49] Cantu-Rodriguez OG, Sanchez-Cardenas M, Gutierrez-Aguirre CH, et al. Cultural factors related to adherence to imatinib in CML: a Mexican perspective. Hematology. 2015;20(2):72–76.

[50] Kyle RA, Gertz MA, Witzig TE, et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc. 2003;78(1):21–33.

[51] Ruiz-Argüelles GJ, Gómez-Rangel JD, Ruiz-Delgado GJ, et al. Multiple myeloma in Mexico: a 20-year experience at a single institution. Arch Med Res. 2004;35(2):163–167.

[52] Cancer Research UK. Myeloma incidence statistics [Internet]. Cancer Research UK. 2014. Available from: http://www.cancerresearchuk.org/cancer-info/cancersstats/types/myeloma/incidence/.

[53] Ruiz-Argüelles G, Cantu-Rodriguez O, Mercado-Diaz L, et al. Some chronic lymphoproliferative malignancies in Mexico are less frequent than in Caucasian population. Blood. 1996;88(10):3596.

[54] Tarín-Arzaga L, Arredondo-Campos D, Martínez-Pacheco V, et al. Impact of the affordability of novel agents in patients with multiple myeloma: Real world data of current clinical practice in Mexico. Cancer. 2018;124(9):1946–1953.