THE INFLUENCE OF THE COMPLEX TRAINING METHOD ON MAXIMAL ISOMETRIC FORCE PRODUCTION OF JUNIOR BASKETBALL PLAYERS

INFLUENCIA DEL MÉTODO COMPLEJO DE ENTRENAMIENTO EN LA MANIFESTACIÓN DE FUERZA ISOMÉTRICA MÁXIMA DE LOS BALONCESTISTAS JUVENILES

Aleksandar S. Kukrić¹, Saša Jakovljević², Radenko Dobraš³, Borko Petrović¹, Igor Vučković¹, Nenad Janković²

¹ Faculty of Physical Education and Sport, University of Banja Luka, Bosnia and Herzegovina
² Faculty of Sport and Physical Education, University of Belgrade, Serbia

ABSTRACT

During the period of ten weeks, a study has been conducted on the effects of a complex training method on the maximal isometric muscle force, its peaking time, and the rate of force development in the semi-squat test. The participants of the study were twenty junior basketball players (average age 16.4 +/- 0.7; mean body height 186.2 cm +/- 9.2; mean body weight 75.4 +/- 7.5 kg; mean body fat percentage 12.83% +/- 1.15). The participants were divided into experimental (n=10) and control group (n=10). The experimental group, besides technical-tactical training sessions, had additional complex training, while the control group had technical-tactical training sessions only. At the final testing, the results of maximal isometric muscle force and the explosive power index, have significantly improved in the experimental group, while the control group did not make significant progress. There were no significant changes in the maximal isometric muscle force's peak time at the final testing. The study findings indicate that application of the complex training method has positive effects on the development of maximal isometric force, and the rate of force development.

Key words: EXPLOSIVE POWER / POSTACTIVATING POTENTIATION / REACTIVE TRAINING / JUNIOR BASKETBALL PLAYERS

EXTRACTO

En el período de diez semanas se ha realizado una investigación de los efectos del método complejo de entrenamiento sobre la fuerza muscular isométrica máxima, el tiempo de su alcance y el índice de la fuerza explosiva en la prueba de flexión de piernas. En la investigación participaron los 20 baloncestistas de edad juvenil (edad promedio 16.4 +/- 0.7 años; de altura corporal promedio 186.2 cm +/- 9.2; de masa corporal promedio 75.4 +/- 7.5 kg; de valor promedio del porcentaje de tejido graso 12.83 % +/- 1.15). Los examinados se han dividido en el grupo experimental (n=10) y en el grupo de control (n=10). El grupo experimental, además de los entrenamientos técnico-tácticos de baloncesto, realizaba adicionalmente el programa de entrenamiento complejo, mientras que el grupo de control tenía solo los entrenamientos técnico-tácticos de baloncesto. En la medición final los resultados de la máxima fuerza muscular isométrica y del índice de la fuerza explosiva tenían estadísticamente una mejoría considerable en el grupo experimental, mientras que en el grupo de control no se han notado cambios importantes. En la medición final no se han notado unos cambios más importantes en el tiempo de alcanzar la fuerza isométrica máxima. Sobre la base de los resultados de la investigación se puede concluir que la aplicación del método complejo de entrenamiento tiene efectos positivos en el desarrollo de la fuerza muscular isométrica máxima, como también en el índice de la fuerza explosiva.

Palabras claves: FUERZA EXPLOSIVA / POTENCIACIÓN POST-ACTIVACIÓN / ENTRENAMIENTO RECREATIVO / BALONCESTISTAS JUVENILES

Correspondence with the author: Aleksandar Kukrić, e-mail: aleksandar.kukric@ffvs.unibl.org
INTRODUCTION

Complex training belongs to the group of reactive training methods, whose main role is to develop maximal muscle force through overcoming large and small loads in high speed movements (Siff, & Verkhoshansky, 1999). Reactive training method is one of the methods with explosive dynamic efforts, alongside complex training method, and the plyometric method. The complex training has been founded by Russian scientists, and its mechanism of operation draws more attention during the 80s. National Strength and Conditioning Association – NSCA, in 1986 organized a visit of 40 coaches from the USA and Canada to the Institute of Sports in Moscow, where they for the first time saw a new training method that rest on the overcoming of large and small loads within a single set (Xenofondos et al., 2010). The method was based on the execution of several exercise sets with large loads and low movement speed, followed by a series of exercises with a relatively small load and high movement speed. The exercises ought to be performed in a biomechanically similar way, and to be anatomically congruent, hence to activate the same muscle groups in both exercises of one complex (i.e. squat and vertical jump). Apart from the complex method, other known methods include contrast and traditional method. Contrast training means alternating large and small loads within one set, while traditional training connotes alternating small and large loads within one set (Duthie, Young, & Aitken, 2002).

At the heart of the complex training method is the physiological mechanism of post-activation potentiation (PAP). Robins (2005) defines PAP as a physiological phenomenon, which due to muscle activation, enables improvement of the following muscle activation. Muscle excitability resulting from acute physiological adaptation will lead to an improvement in the exertion of muscle force in subsequent muscle activation. The force gradient, which represents the rate of increase of force in a unit of time, will increase particularly. Studies have shown that after coping with large external loads, in the next period, for a few seconds, up to several minutes, significant effects of PAP can be induced, especially in activities such as jumping, sprinting, throwing (Robbins, 2005; Jensen, & Ebbe, 2003). Two physiological mechanisms are thought to be responsible for the existence of PAP. The first one is based on the phosphorylation of myosin regulatory light chains, which makes actin and myosin more sensitive to calcium, which is released from the sarcoplasmic reticulum during explosive muscle contraction (Robbins, 2005; Weber et al., 2008; Hodgson, Docherty, & Zehr, 2008). The second mechanism is based on the existence of increased synaptic excitation within the spinal cord, leading to increased generation of muscle force (Wilson et al., 2013). In programming a complex training method, consideration should be given to reconciling two variables: the magnitude of the external load and the length of the break between the two exercises in the complex. The study has mainly examined the effect of training levels, types of muscle fibers, gender, varying intensity and volume of preload, as well as types of preload (dynamic or isometric), on different output parameters of the athlete’s motor skills (jump, sprint, throw, force and power parameters) (Tsolakis et al., 2011; French, Kramer, & Cooke, 2003; Requena et al., 2008; Rixon, Lamont, & Bemben, 2007; Kukrić et al., 2009; Ebbe, Jensen, & Blackard, 2000; Roden, Lambson, & DeBeliso, 2014).

Some studies have shown that trained athletes are more responsive to PAP than recreational athletes (Gourougous et al., 2003; Chiu, et al., 2003). The effects of PAP are more evident in fast muscle fibers compared to slow muscle fibers (Seitz, de Villarreal, & Haff, 2014). Concerning gender, Jensen et al. (1999), concluded that there was no difference in the effects of PAP between men and women. Wilson et al. (2013), in a meta-analysis of PAP effects, concluded that the greatest effect is achieved by applying an external load in the range of 60-84% of 1RM and that the break between the two exercises in the complex is 7-10 minutes. Besides, it was concluded that there were no statistically significant differences between the application of dynamic and isometric preloads. More research recommends a break of 3 to 4 minutes between the two exercises in the complex because then the effects of PAP are most pronounced (Burger, Boyer-Kendrick, & Dolny, 2000; Jensen et al., 1999; Ebbe, et al., 2000; Wilson et al., 2013).

The effects of PAP have generally been tested under conditions of dynamic movements (jump, sprint, throw). The purpose of this study is to investigate the effect of PAP on the isometric muscle force of leg extensions. Since these are young athletes, changes in isometric muscle force are expected at the end of the
experiment. There are studies that have examined the effects of plyometric training, as a reactive training method, on isometric muscle force. Behrens et al. (2016), tested the effects of plyometric training on isometric, concentric and eccentric muscle contraction. The results showed that regardless of the mode of muscle work, plyometric training has positive effects on the exertion of muscle force. Another study confirmed that plyometric exercises, consisting of maximal vertical jumps and deep jumps from different heights, increase the maximal isometric force of the extensor muscle in the knee joint (Clutch et al., 2013).

On the other hand, it should be noted that there are also research that have not proven the effectiveness of PAP (Comyns, Harrison, & Hennessy, 2010; Comyns et al., 2006; Ebben & Blackard, 1997; Gossen & Sale, 2000).

The aim of this study is to investigate the impact of a complex training method on maximal isometric muscle force, its peak time, and rate of force development. Using the special training program, the effects of dynamic training on the force-velocity curve under isometric stress conditions were tested.

METHOD

Participants

Twenty junior basketball players, with at least five years of playing experience, participated in the study (average age 16.4+/-.7; mean body height 186.2cm+/-.9.2; mean body weight 75.4+/-.7.5kg; mean body fat percentage 12.83%+/-.1.15). Before the commencement of the experimental program, participants were divided into experimental and control group. There were 10 participants in each group. Based on the Z-values, the groups were homogenized, which was one of the important methodological conditions for starting the experiment with parallel groups. The participants are of normal health status, free of injuries and orthopedic limitations that could affect the results of the study and are fully aware of the goals and objectives of the experiment and have voluntarily accepted to participate in the research.

Variables

The variables are divided into two groups. Independent variables related to the morphological characteristics of the participants: body weight (BW), body height (BH) and body fat percentage (BFP). The dependent variables represented the maximum isometric muscle force in the semi-squat test (SST), the time of maximum isometric muscle force (MIF) and the rate of force development (RFD). The maximum isometric muscle force is expressed in newton (N), the time to reach the maximum isometric muscle force is expressed in seconds (s), while the RFD is expressed in N/s.

Procedure

The plan and program of the experiment were presented to the participants in detail. At the first gathering, the morphological characteristics of the participants were measured, after which the maximum isometric muscle effort was measured with the semi-squat test. Since the muscle can develop maximum muscle force only at the appropriate joint angle, called the optimum joint angle, testing was performed at a 90° angle at the knee joint. At this angle, due to the longest force arm, the total torque in the knee joint is the greatest. One study found that there was a high correlation (r = 0.77) between an isometric semi-squat at an angle of 90° in the knee joint and one repetitive maximum in a semi-squat exercise (Bazyler, Beckham, & Sato, 2015).

The testing was performed on a semi-squat fitness machine. The testing protocol implied that the participants take the standard position of the body for performing the semi-squat, with a goniometer determining the angle of 90° in the knee joint. This fulfills the biomechanical prerequisites for proper semi-squat. The testing of isometric effort took at least 3 seconds from the beginning of the development of muscle force. The participants were required to perform the contraction as fast as they could. The next day, following the recommendations of Brzycki (1993), participants performed the semi-squat test with one repetitive maximum (1RM).
Based on all of the measurements, the participants were divided into two homogeneous groups. The experiment was organized over 10 weeks, in which the participants of the experimental group, in addition to regular basketball training, had twice a week sessions with a complex training model. The training program consisted of 3 to 5 exercises aimed at the development of the lower extremities. The exercise complex consisted of the back semi-squat exercise, with a high external load (80% of 1RM) in 4 sets, with 4 to 6 reps, with a break between sets of 3 minutes. This would be followed by a 2-minute break and after that a set of vertical jump exercises in 4 sets, with 10 reps each, with a 3-minute break between sets. In addition to this set of exercises, other exercises were used that are anatomically and biomechanically very similar to the example above (e.g. semi-squat on one leg and jump with one leg; front squat and long jump...).

Using the Globus Ergo Teys System 1000, Real power (Italy) dynamometer, the maximum isometric muscle force and the time at which it was reached in the semi-squat test were measured with dynamometric method.

Statistical data processing

Using the appropriate operational statistical program (SPSS), the arithmetic mean and standard deviation were calculated for all variables. Post hoc analysis (Tukey’s HSD criterion) was used to determine whether the groups differ from each other in the initial measurement. By applying the t-test for dependent samples, the difference of the results at the initial and final measurements for each group was tested. The significance level was set at p = 0.05.

RESULTS

Table 1. shows the mean and standard deviations of the morphological characteristics of junior basketball players. The values of body height, body weight and body fat percentage are approximately equal in the experimental and control groups at the initial and final measurements.

Variable	Initial measurement	Final measurement				
	Experimental group	Control group				
	Mean	SD	Mean	SD	Mean	SD
BH (cm)	186.00	4.34	186.40	4.19		
BW (kg)	75.00	4.57	75.80	3.08		
BFP (%)	12.81	1.43	12.86	0.91		

Table 2. shows the mean values and standard deviations of the maximum isometric muscle force, its peak time, and the rate of force development in the semi-squat test at the initial and final measurement.
Table 2. Statistical indicators of maximal isometric muscle force, its peak time, and the rate of force development in the semi-squat test at the initial and final measurement.

Variable	Initial measurement	Final measurement						
	Exper. group	Cont. group	Exper. group	Cont. group				
	Mean	SD	Mean	SD	Mean	SD	Mean	SD
SST (N)	1442.21	198.49	1441.01	149.31	1647.32	174.06	1461.51	145.97
MIF (s)	1.47	0.25	1.45	0.16	1.43	0.22	1.44	0.16
RFD (N/s)	981.09	220.41	993.80	162.40	1151.97	185.47	1014.93	155.31

Table 3. shows the results of the analysis of variance at the initial measurement. There were no statistically significant differences observed in the tested variables between the experimental and control groups at the initial measurement. This satisfied one of the basic methodological requirements of research with parallel groups, where it is necessary that at the beginning of the experiment, there is no statistically significant difference in the tested variables between the groups.

Table 3. Results of the analysis of variance of the experimental and control groups at the initial measurement

Variable	F-test	Control group
SST (N)	.39	.68
MIF (s)	.11	.89
RFD (N/s)	.99	.38

Table 4. shows the results of the t-test for dependent samples. The significance of differences between the means of the experimental and control group variables at the initial and final measurements was tested. Measurement results indicate that there is no statistically significant difference in the experimental group in the SST and RFD variables, whereas no statistically significant differences were observed in the MIF variable. No significant differences were observed in the control group in any of the tested variables.

Table 4. Significance of differences between variable means of the experimental and control group at the initial and final measurements

Variable	Experimental group	Control group		
	t-test	Sig.	t-test	Sig.
SST (N)	-16.59*	.00*	-1.76	.11
MIF (s)	1.33	.21	.10	.91
RFD (N/s)	-6.89	.00	- .59	.56
* Statistically significant difference

Figures 1, 2 and 3 show the significance of differences in the arithmetic means of the tested variables of the experimental and control group participants at the initial and final measurements in the semi-squat test.

Figure 1. Significance of differences in the arithmetic means of the maximal isometric muscle force (N) of the experimental and control group participants at the initial and final measurements
FIGURE 2. Significance of mean differences in the peak time of the maximum isometric muscle force (s) of the experimental and control group participants at the initial and final measurements.

FIGURE 3. Significance of differences in arithmetic means the rate of force development (N/s) of experimental and control group participants at the initial and final measurements.

DISCUSSION

The values of the measured morphological characteristics indicate that the participants are of the appropriate ratio of body height and body mass, with a relatively small proportion of fat tissue in the body composition (Table 1.). There were no significant changes in the participants' morphological attributes observed on the final measurement. The whole exercise program made no significant effects on body weight and the body fat percentage. Concerning body height, no significant changes were expected during the short period of the experimental program. Considering the impact of a complex training method, based on the performance of explosive and rapid movements, it is quite clear why there was no activation of metabolic processes, which would significantly affect the percentage of fat tissue and body weight.

The measured values of maximal isometric muscle force, its peak time, and the rate of force development at the initial measurement indicate that the participants have approximately similar abilities in producing isometric effort in the semi-squat test (Table 2). The results of the analysis of variance at the initial measurement indicate the absence of significant differences between the sample groups, which allowed the commencement of the experimental program (Table 3).

The results of the final measurement of isometric effort in the semi-squat test indicate that, after a ten-week exercise program, certain changes occurred in the production of maximal isometric muscle force (Table 4, Figures 1, 2 and 3). On the final measurement, statistically significant differences were found in the SST and RFD variables in the experimental group. Monitoring the parameter changes in the semi-squat test revealed an increase in the maxi-
maximum isometric force by 14.22%, as well as improving the rate of force development by 17.41% over initial measurement. Although no significant changes in the peak time of reaching maximal isometric muscle force occurred, the improvement in the rate of force development was the result of a significant increase in maximal isometric muscle force. No significant changes in the tested variables were registered in the control group.

The absence of significant changes in the control group variables was fully expected since the participants did not undergo the training program for the development of force and strength; therefore no significant changes could be expected on the force-velocity curve. As no significant changes occurred in the control group, any resulting improvements in the experimental group, with a high level of probability, could be attributed to the implementation of the experimental ten-week exercise program.

Significantly higher values of maximal isometric muscle force in the semi-squat test indicate that dynamic exercises have a positive effect on isometric effort. Although a change in the rate of muscular contraction was also expected, since the exercise program involved the execution of explosive movements in eccentric-concentric contraction mode, this change did not occur this time. Some studies have confirmed that resistance training can affect the speed of muscle force development in isometric conditions. One of the studies concluded that resistance training can increase the frequency of nerve impulse discharges and that this increase may cause a greater rate of muscle force development (Sale, 2003). As one of the possible reasons why there was no change in the time of manifestation of maximal isometric muscle force, the relatively short break between potentiation and explosive exercise can be considered.

As it is known, the effects of performing high-speed explosive exercises are greatest under conditions of complete muscle recovery. It may be possible that the two-minute break was not sufficient for a full recovery, especially for the recovery of the neural component of muscle activity, which largely depends on the speed of exertion of muscle force. Seitz et al. (2014) concluded in their study that the most pronounced effects of PAP were observed in trained athletes after a 6-minute break between exercises in the complex, while in less-trained athletes breaks were as long as 9 minutes. As only significant changes in isometric force were observed, it can be concluded that the effects of complex training are primarily directed to muscle adaptation and that the changes probably occurred as a result of alterations in physiological muscle cross-section.

There are two components that determine the exertion of maximum muscle force. The neural component refers to the activity of the central nervous system (CNS), which in many ways affects muscle activity. From the aspect of CNS influence, a maximal muscular force can be developed by recruiting as many motor units as possible, optimal frequency of nerve impulse discharge in order to create tetanus contraction and simultaneous action of motor units in a short period during maximal voluntary contraction (Sale, 2003). Muscle component refers to the influence of muscle structure and architecture on the maximum muscle force. Maximum muscle force may increase at the expense of an increase in physiological muscle cross-section (Luthi et al., 1986; Young, Stokes, & Round, 1983; Folland, & Williams, 2007; Fitts, & Widrick, 1996), which may result from two physiological mechanisms, hypertrophy, and hyperplasia.

The greatest changes in muscular architecture result from hypertrophy rather than hyperplasia. Häkkinen, Komi, & Alén (1985) examined the influence of explosive strength training on the isometric force of the leg extensor muscle over 24 weeks. They applied electromyographic measurement and analyzed the force-velocity curve and found a statistically significant improvement in the maximal isometric force of the leg extensor muscles, as well as an improvement in the rate of isometric muscle force generation. As one of the causes of these improvements, the authors cite an increase in muscle physiological cross-section, especially in the conditions of performing plyometric exercises in combination with additional external loading. Similar results were found in a 12-week study where muscle changes were followed by biopsy in the cross-section of m. bicep brachii. An increase was found in the cross-section of fast twitch fibers by 17% and slow twitch fibers by 10% (McCall et al., 1996).
CONCLUSION

In recent decades, the effects of complex training, which is a reliable method in the preparation of athletes, have been increasingly explored and many coaches recommend it as an effective method in training process. The special significance of this research is reflected in the examination of the effects of complex training on the parameters of force and time at isometric muscle effort. The results of the study confirmed the effectiveness of a complex training method to exert maximum isometric muscle force. Statistically significant improvements in results were obtained in the group that trained with the complex method of training compared to the control group. The application of the experimental program did not lead to significant changes in the time of maximum isometric force. It is evident that under the influence of the experimental program only adaptations of muscle tissue to force and strength training occurred, which led to significant improvements in the production of maximal muscle force in conditions of isometric effort.

REFERENCE

1. Bazyler, C.D., Beckham, G.K., Sato, K. (2015). The Use of the Isometric Squat as a Measure of Strength and Explosiveness. Journal of Strength & Conditioning Research, 29(5), 1386–1392.
2. Behrens, M., Mau Moeller, A., Mueller, K., Sandra Heise, S., Gube, M., Beuster, N., Herlyn, P.K.E., Fischer, D.C., & Bruhn, S. (2016). Plyometric training improves voluntary activation and strength during isometric, concentric and eccentric contractions. Journal of Science and Medicine in Sport, 19(2), 170-176.
3. Brzycki, M. (1993). Strength testing: Predicting a one-rep max from reps to fatigue. Journal of Physical Education, Recreation and Dance, 64, 88–90.
4. Burger, T., Boyer-Kendrick, T., & Dolny, D. (2000). Complex training compared to a combined weight training and plyometric training program. Journal of Strength & Conditioning Research, 14(3), 360-361
5. Chiu, L. Z., Fry, A. C., Weiss, L. W., Schilling, B. K., Brown, L. E., & Smith, S. L. (2003). Postactivation Potentiation Response in Athletic and Recreationally Trained Individuals. Journal of Strength and Conditioning Research, 17(4), 671-677.
6. Clutch, D., Wilton, M., McGown, C., & Bryce, G.R. (2013). The Effect of Depth Jumps and Weight Training on Leg Strength and Vertical Jump. Research Quarterly for Exercise and Sport, 54(1), 5-10.
7. Comyns, T.M., Harrison, A.J., & Hennessy, L.K. (2010). Effect of squatting on sprinting performance and repeated exposure to complex training in male rugby players. Journal of Strength & Conditioning Research, 24, 610–618.
8. Comyns, T.M., Harrison, A.J., Hennessy, L.K., & Jensen, R.L. (2006). The optimal complex training rest interval for athletes from anaerobic sports. Journal of Strength & Conditioning Research, 20, 471–476.
9. Duthie, G. M., Young, W. B., & Aitken, D. A. (2002). The acute effects of heavy loads on jump squat performance an evaluation of the complex and contrast methods of power development. Journal of Strength and Conditioning Research, 16(4), 530-538.
10. Ebben, W.P., & Blackard, D.O. (1997). Complex training with combined explosive weight training and plyometric exercises. Olympic Coach, 7, 11–12.
11. Ebben, W.P., Jensen, R.L., Blackard, D.O. (2000). EMG and kinetic analysis of complex training exercise variables. Journal of Strength & Conditioning Research, 14: 451–456.
12. Fitts, R.H., & Widrick, J.J. (1996). Muscle mechanics: adaptations with exercise-training. Exercise and Sport Sciences Reviews, 24, 427-473.
13. Folland, J.P., & Williams, A.G. (2007). The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Medicine, 37(2), 145-68.
14. French, D., Kramer, W.J., Cooke, C.B. (2003). Changes in Dynamic Exercise Performance Following a Sequence of Preconditioning Isometric Muscle Actions. Journal of Strength & Conditioning Research, 17(4), 678-685.
15. Gossen, E.R., & Sale, D.G. (2000). Effect of postactivation potentiation on dynamic knee extension performance. European Journal of Applied Physiology, 83(6), 524-530.

16. Gourgoulis, V., Aggeloussis, N., Kasimatis, P., Mavromatis, G., & Garas, A. (2003). Effect of a submaximal half-squats warm-up program on vertical jumping ability. Journal of Strength and Conditioning Research, 17(2) 342-344.

17. Häkkukinen, K., Komi, P.V. & Alén, M. (1985). Effect of explosive type strength training on isometric force and relaxation time, electromyographic and muscle fibre characteristics of leg extensor muscles. Acta Physiologica Scandinavica, 125, 587–600.

18. Hodgson, M.J., Docherty, D., Zehr E.Z. (2008). Postactivation Potentiation of Force Is Independent of H-Reflex Excitability. International Journal of Sports Physiology and Performance, 3(2), 219-231.

19. Jensen, R.L., & Ebben, W.P. (2003). Kinetic analysis of complex training rest interval effect on vertical jump performance. Journal of Strength & Conditioning Research, 17(2), 345-9.

20. Jensen, R.L., Ebben, W.P., Blackard, D.O., Mclaughlin, B.P., & Watts, P.B. (1999). Kinetic and electromyographic analysis of combined strength and plyometric training in women basketball players. Medicine & Science in Sport & Exercise, 31(5), 193.

21. Kukrić, A., Karalejić, M., Petrović, B., Jakovljević, S. (2009). Effect of complex training on explosive strength of legs extensors in junior basketball players. Physical Culture, 63(2), 165-180.

22. Luthi, J.M., Howald, H., Cbsen, H., Rosler, K., & Vodc, P.H. (1986). Structural changes in skeletal muscle tissue with heavy resistance exercise. International Journal of Sports & Medicine, 7(3), 123-127.

23. McCall, G. E., Byrnes, W. C., Dickinson, A., Patterson, P. M., & Fleck, S. J. (1996). Muscle fiber hypertrophy, hyperplasia, and capillary density in college men after resistance training. Journal of Applied Physiology, 81(5), 2004–2012.

24. Requena, B., Gapeyeva, H., Garcia, I., Ereline, J., Paasuke, M. (2008). Twitch potentiation after voluntary versus electrically induced isometric contractions in human knee extensor muscles. Euro Journal of Applied Physiology, 104(3), 463-472.

25. Rixon, K.P., Lamont, H.S., Bemben, M.G. (2007). Influence of type of muscle contraction, gender, and lifting experience on postactivation potentiation performance. Journal of Strength & Conditioning Research, 21(2), 500-505.

26. Robbins, D.W. (2005). Postactivation potentiation and its practical applicability: a brief review. Journal of Strength & Conditioning Research, 19(2), 453-458.

27. Roden, D., Lambson, R., DeBeliso, M. (2014). The Effects of a Complex Training Protocol on Vertical Jump Performance in Male High School Basketball Players. Journal of Sports Science, 2, 21-26.

28. Sale, D. G. (2003). Neural adaptations to strength training. In: Komi PV, editor. Strength and Power in Sport. 2nd ed. Malden (MA), Blackwell Science, 281–314.

29. Seitz, L.B., de Villarreal, E.S., & Haff, G.G. (2014). The temporal profile of postactivation potentiation is related to strength level. Journal of Strength & Conditioning Research, 28(3), 706-715.

30. Siff, M. C. & Verkoshansky, Y. V. (1999). Supertraining. Denver: Supertraining International.

31. Toslakis, C., Bogdanis, G., Nikolaou, A., Zacharogiannis, E. (2011). Influence of type on muscle contraction and gender on postactivation potentiation of upper and lower explosive performance in elite fencers. Journal of Sports Science and Medicine, 10, 577-583.

32. Weber, K.R., Brown, L.E., Coburn, J.W., & Zinder, S.M. (2008). Acute effects of heavy load squats on consecutive squat jump performance. Journal of Strength & Conditioning Research, 22(3), 726-30.

33. Wilson, J.M., Duncan, N.M., Marin, P.J., Brown, L.E., Loenneke, J.P., Wilson, S.M., Jo, E., Lowery, R.P., & Ugrinowitsch, C. (2013). Meta-analysis of postactivation potentiation and power: effects of conditioning activity, volume, gender, rest periods, and training status. Journal of Strength & Conditioning Research, 27(3), 854-9.

34. Xenofondos, A., Laparidis, K., Kyranoudis, A., Galazoulas, Ch., Bassa, E., & Kotzamanidis, C. (2010). Postactivation potentiation: factors affecting it and the effect on performance. Journal of Physical Education and Sport, 28(3), 32-38.
35. Young, A., Stokes, M., & Round, J.M. (1983). The effect of high resistance training on the strength and cross sectional area of the human quadriceps. *European Journal of Clinical Investigation*, 13(5), 411-417.

36. Young, W. B., Jenner, A., & Griffiths, K. (1998). Acute enhancement of power performance from heavy load squats. *Journal of Strength & Conditioning Research*, 12(2), 82-84.

Submitted: 06.9.2018.
Accepted: 14.1.2019.
Published Online First: 13.4.2019.
УТИЦАЈ КОМПЛЕКСНОГ МЕТОДА ТРЕНИНГА НА ИСПОЉАВАЊЕ МАКСИМАЛНЕ ИЗОМЕТРИЈСКЕ СИЛЕ МЛАДИХ КОШАРКАША
Александар С. Кукрић1, Саша Јаковљевић2, Раденко Дobraш1, Игор Вучковић1, Ненад Јанковић2
1 Факултет физичког васпитања и спорта, Универзитет у Бањој Луци, Босна и Херцеговина
2 Факултет спорта и физичког васпитања, Универзитет у Београду, Србија
Сажетак
У периоду од десет недеља, сprovedено је истраживање ефеката комплексног метода тренинга на максималну изометријску мишићну силу, врсте њеног достизања и индекс експлозивне снаге у тесту получучања. У истраживању је учествовало двадесет кошаркаша јуниорског узраста (просечне старости 16.4±0.7 год.; просечне телесне висине 186.2 cm+/-9.2; просечне телесне масе 75.4±7.5 kg; просечне вредности процента масног ткива 12,83%+/-1.15). Испитаници су подељени у експерименталну (n=10) и контролну (n=10) групу. Експериментална група, поред техничко-тактичких кошаркашких тренинга, додатно је проводила програм комплексног тренинга, док је контролна група имала само техничко-тактички кошаркашки тренинге. На финалном меренju, резултати максималне изометријске мишићне силе и индекса експлозивне снаге су се статистички значајно побољшали у експерименталној групи, док у контролнoj групи нису забележене значајније промене. Нису забележене значајније промене времена достизања максималне изометријске силе на финалном меренju. На основу резултата истраживања, може се закључити да примена комплексног метода тренинга има позитивне ефекте на развој максималне изометријске мишићне силе, као и на индекс експлозивне снаге.
Кључне речи: ЕКСПЛОЗИВНА СНАГА/ПОСТАКТИВАЦИЈСКА ПОТЕНЦИЈАЦИЈА/РЕАКТИВНИ ТРЕНИНГ/КОШАРКАШИ ЈУНИОРИ
УВОД
Комплексни тренинг је један од метода реакцивуних динамичких напредања, у коме се поред комплексног тренинга налази још и плометријски метод тренинга. Комплексни тренинг утемељен је од стране руских научника, а о његовом механизму деловања почело се тек говорити осамдесетих година прошлог века. У организацији National Strenght and Conditioning Association – NSCA, 1986. године, четрдесет тренера из Јужних Америчких Држава и Канаде, посетили су Институт за спорт у Москви, где су се први пут сусрели са једном новом методом у тренажном процесу, у чијој основи леги савладавање великог и малог оптерећења у оквиру једне серије извођења (Xenofondos et al., 2010). Метод се заснива на извођењу неколико серија вежби у коме се савладава велико оптерећење, са малом брзином извођења покрета, након чега би уследила серија вежби у коме се савладава малом оптерећењу у условима великег брзине покрета. Вежбе би требало да се биомеханички изводе на сличан начин, да се анатомски подударавају, односно, требало би да активирају исте мишићне групе у обе вежбе Једног комплекса (нпр. задњи получучај и вертикали скок из места). У пракси су поред комплексног, познате и друге методе, као што су, Кореспонденција са аутором: Александар Кукрић, E mail: aleksandar.kukric@gmail.com
ктарни и традиционални метод. Контрасни тренинг подразумева наизменично савладавање великог, па малог оптерећења у оквиру једне серије, док традиционални тренинг подразумева савладавање малог, па великог оптерећења, у оквиру једне серије (Duthie, Young, & Aitken, 2002).

У основи комплексног метода тренинга налази се физиолошки механизам постактивацијског потенцијала (ПАП). Робинс (Robins, 2005) дефинише ПАП као физиолошки феномен, који ће услед мишићне активације обезбедити да наредна контракција мишића буде значајно побољшана. Мишићна раздражљивост, настала услед акутне физиолошке адаптације, доведе до побољшања испољавања мишићне силе у наредној мишићној активацији. Посебно ће се повећати градијент силе, који представља брзину прираштаја силе у јединици времена. Истраживања су показала да након савладавања великих спољашњих оптерећења, у наредном периоду, у трајању од неколико секунди, па до неколико минута, могу се изазвати значајни ефекти ПАП, посебно у активностима какве су скок, спринт, бацања (Robbins, 2005; Jensen, et al., 2003).

Ефекти ПАП углавном су тестиране у условима извођења динамичких покрета кретања (скок, спринт, бацања). Намера овог истраживања је да се испита утицај ПАП на изометријску мишићну силу опужача ногу. Будући да се ради о младим спортистима, на крају експеримента се очекују промене у изометријској мишићној сили. Постоје истраживања која су испитивала ефекте плиометријског тренинга, као реакциивне методе тренинга, на изометријску мишићну силу. Бехренс (Behrens, et al., 2016) је тестирао ефекте плиометријског тренинга на изометријску, концентричну и ексцентричну мишићну контракцију. Резултати су показали да без обзира на режим мишићног рада, плиометријски тренинг има позитивне ефekte на испољавање мишићне силе. Још једно истраживање је потврдило да плиометријске вежбе, које су се састојале од максималних вертикалних скокова и скокова у дубину са различите висине, утичу на повећање максималне изометријске силе мишића екстензора у зглобу колена (Clutch et al, 2013).

Са друге стране, треба истаћи да постоје и истраживања која нису доказала ефикасност ПАП (Comyns, Harrison, & Hennessy, 2010; Comyns et al., 2006; Ebben & Blackard, 1997, Gossen & Sale, 2000).
Циљ овог истраживања је да испита утицај комплексног метода тренинга на максималну изометријску мишићну силу, време њеног достизања и индекс експлозивне снаге. Применом посебног тренажног programa, тестирану су ефекти динамичког тренинга на криву силабрзина у условима изометријског напрезања.

МЕТОД РАДА

Узорак испитаника

У истраживању је учествовало двадесет кошаркаш јуниорског узраста (просечне старости 16.4 +/-0.7 год.; просечне телесне висине 186.2cm +/-9.2; просечне телесне масе 75.4 +/-7.5kg; просечне вредности процента мазног ткива 12.83% +/-1.15), са најмање пет година испитавања кошарком. Пре почетка експерименталног programa, испитаници су подељени у експерименталну и контролну групу. У свакој групи налазило се 10 испитаника. На основу Z-вредности групе су хомогенизоване, што је био један од важних методолошких услова за почетак експеримента са паралелним групама. Испитаници су нормалног здравственог статуса, без повреда и ортопедских ограничења која би могла утицати на резултате истраживања и у потпуности су упознати са циљевима и задацима експеримента, те су својевољно прихватили да учествују у истраживању.

Узорак варијабли

Варијабле су подељене у две групе. Независне варијабле су се односиле на морфолошке карактеристике испитаника: телесна маса (ТМ), телесна висина (ТВ) и проценат масног ткива (МТ). Зависне варијабле представљале су максималну изометријску мишићну силу у тесту полућања (МИС), време остварења максималне изометријске мишићне силе (ВМИС) и индекс експлозивне снаге (ИЕС) (eng - Race of force development – RFD). Максимална изометријска мишићна сила изражава се у њутнима (N), време достизања максималне изометријске мишићне силе изражава се у секундама (s), док се ИЕС изражава у N/s.

ток и поступци истраживања

Испитаницима је детаљно представљен планираним програмом експеримента. На првом окупљању измерене су морфолошке карактеристике испитаника, након чега је измерен максимални изометријски напрезањ мишића у тесту полућања. Будући да мишић може да развије максималну мишићну силу само при одговарајућем зглобном углу, који се назива оптимални зглобни угл, тестирање је вршено при углу од 90° у зглобу колена. При том углу, захваљујући најдужем краку силе, укупни момент силе у зглобу колена је највећи. У једном од искуство установљено је да постоји висока корелација (r=0,77) између изометријског напрезања при углу од 90° у зглобу колена и репетитивног максимума у вежби полућања (Bazyler, Beckham, & Sato, 2015). Мерење је вршено на фитнес машини за полућања. Протокол мерења је подразумевао да испитаници заузимају стандардну позицију тела за констрање полућања, при чему је за сваког испитаника гонометром утврђен угл од 90° у зглобу колена. Тиме су задовољени биомеханички предуслови за извођење правилног полућања. Мерење изометријског напрезања трајало је најмање 3 секунде од почетка развоја мишићне снаге. Од испитаника се захтевало да контракцију изведу најбрже што могу. Следећи дан, по препорукама (Brzycki, 1993.), испитаницима је урађена процена једног репетитивног максимума (1РМ) у тесту полућања. На основу свих мерења, испитаници су подељени у две групе. Експеримент је организован у периоду од 10 седмица, у коме су испитаници експерименталне групе, поред редовних кошаркашког тренинга, тренирали два пута недељно комплексним моделом тренинга. Програм тренинга састојао се од примене 3 до 5 вежби, усмерених на развој доњих екстремитета. Комплекс вежби се састојао од вежби задњог полућања, при чему се савладавало велико спољашње оптерећење (80% од 1РМ) у 4 серијама, док је пауза између серија била 3 минута. Након тога уследила је пауза од 2
минута, а потом би се изводила вежба вертикаланог скока у месту, у 4 серије, са по 10 понављања, док је пауза између серија износила 3 минута. Поред овог комплекса вежби, користиле су се и друге вежбе, које су анатомски и биомеханички врло сличне претходно наведеном примеру (нпр. получучањ на једној нози и скок са једне ноге; предњи чучањ и скок у даљ...). Јанг и сарадници (Young, Jenner, & Griffiths, 1998) препоручују врло сличан програм тренинга, при чему је пауза између две вежбе у комплексу 2 минута. Контролна група, осим редовних кошаркашких тренинга, није имала додатни рад. Након десетонедељног периода, урађено је финално мерење варијабли, на идентичан начин као што је то рађено на иницијалном мерењу.

Сва мерења су обављена у лабораторијским условима. Телесна висина измерена је висинометром Seca (Germany), док су маса тела и проценат масног ткива измерени специјализованом вагом за процену телесне композиције Tanita BC-418ma (Japan). Уз помоћ динамометра Globus ergo tesys system 1000, Real power (Italy), динамометријском методом измерена је максимална изометријска мишићна сила и време њеног достизања у тесту получучањ.

Статистичка обрада података

Применом одговарајућег оперативног статистичког програма (SPSS), за све варијабле израчуната је аритметичка средина и стандардна девијација. Како би утврдили да ли се групе међусобом разликују на иницијалном мерењу кориштена је Post hoc анализи (Takey-ev HSD критеријум). Применом T-теста за зависне узорке, тестирана је разлика резултата на иницијалном и финалном мерењу за сваку групу. Ниво значајности је постављен на $p=0.05$.

РЕЗУЛТАТИ

У табели 1 приказане су средње вредности и стандардне девијације морфолошких карактеристика кошаркаша јуниора. Вредности телесне висине, телесне масе и процента масног ткива су приближно једнаке у експерименталној и контролној групи на иницијалном и финалном мерењу.

| Табела 1 Основни статистички показатељи морфолошких карактеристика узорка на иницијалном и финалном мерењу |
|---|---|---|---|
| | Иницијално мерење | | Контролна група |
| | Експериментална група (N=10) | | Контролна група (N=10) |
| | AC | SD | AC | SD |
| TB (cm) | 186.00 | 4.34 | 186.40 | 4.19 |
| TM (kg) | 75.00 | 4.57 | 75.80 | 3.08 |
| МТ (%) | 12.81 | 1.43 | 12.86 | 0.91 |
| | | | | |
| | Финално мерење | | |
| | Експериментална група | | Контролна група |
| | AC | SD | AC | SD |
| TB (cm) | 186.40 | 4.22 | 186.80 | 4.21 |
| TM (kg) | 75.30 | 4.78 | 76.15 | 2.71 |
| МТ (%) | 12.56 | 1.23 | 12.81 | 0.74 |
У табели 2 приказане су средње вредности и стандардне девијације максималне изометријске мишићне сили, времена њеног достигања и индекса експлозивне снаге у тесту получучањ на иницијалном и финалном мерењу.

Табела 2 Статистички показатељи максималне изометријске мишићне сили, времена њеног достигања и индекс експлозивне снаге у тесту получучањ на иницијалном и финалном мерењу

Варијабле	Иницијално мерење	Финално мерење						
	Екс. група	Кон. група	Екс. група	Кон. група				
МИС (N)	AC	SD	AC	SD	AC	SD		
	1442.21	198.49	1441.01	149.31	1647.32	174.06	1461.51	145.97
ВМИС (s)	1.47	0.25	1.45	0.16	1.43	0.22	1.44	0.16
ИЕС (N/s)	981.09	220.41	993.80	162.40	1151.97	185.47	1014.93	155.31

У табели 3 приказани су резултати анализе варијансе на иницијалном мерењу. Нису забележене статистички значајне разлике у тестираним варијаблама између експерименталне и контролне групе на иницијалном мерењу. Тиме је задовољен један од основних методолошких захтева истраживања са паралелним групама, по коме је неопходно да на почетку експеримента, између група не постоји статистички значајна разлика у тестираним варијаблама.

Табела 3 Резултати анализе варијансе експерименталне и контролне групе на иницијалном мерењу

Варијабле	F-test	Sig.
МИС (N)	.39	.68
ВМИС (s)	.11	.89
ИЕС (N/s)	.99	.38

У табели 4 приказани су резултати t-теста за зависне узорке. Тестирана је значајност разлика између просечних вредности варијаблe експерименталне и контролне групе на иницијалном и финалном мерењу. Резултати мерења указују да у експерименталној групи постоји статистички значајна разлика у варијаблама МИС и ИЕС, док у варијабли ВМИС нису забележене статистички значајне разлике. У контролној групи нису забележене статистички значајне разлике ни у једној тестираној вријабли.

Табела 4 Значајност разлика између средњих вредности варијаблe експерименталне и контролне групе на иницијалном и финалном мерењу

Варијабле	Екс. група	Кон. група		
	t	Sig.	t	Sig.
МИС (N)	-16.59*	.00*	-1.76	.11
ВМИС (s)	1.33	.21*	.10	.91
ИЕС (N/s)	-6.89*	.00*	-.59	.56

* статистички значајна разлика

У сликама 1, 2 и 3 приказане су значајност разлика аритметичких средина тестираних варијаблe испитанка експерименталне и контролне групе на иницијалном и финалном мерењу у тесту получучања.
Слика 1 Значајност разлика аритметичких средина максималне изометријске мишићне силе (N) испитаника експерименталне и контролне групе на иницијалном и финалном мерењу.

Слика 2 Значајност разлика аритметичких средина времена достизања максималне изометријске мишићне силе (s) испитаника експерименталне и контролне групе на иницијалном и финалном мерењу.

Слика 3 Значајност разлика аритметичких индекса експлозивне снаге (N/s) испитаника експерименталне и контролне групе на иницијалном и финалном мерењу.
ДИСКУСИЈА

Вредности измерених морфолошких карактеристика указују да се ради о испитницима одговарајућег односа телесне висине и масе тела, са релативно малим уделом масног ткива у телесној композицији (Тabela 1). На финалном мерењу нису забележене значајније промене у праћеним морфолошким атрибутима испитника. Целокупан програм вежбања није остварио значајнији ефекте на телесну масу и процент масног ткива. Када је у питању телесна висина, нису ни очекиване значајније промене у измереним морфолошким карактеристикама испитника (Тabela 2).

Измерене вредности максималне изометријске мишићне силе, време њеног достизања и индекса експлозивне снаге није остварио значајнији ефект на телесну масу и проценат масног ткива. Вредности измерених морфолошких карактеристика указују да се ради о испитницима одговарајућег односа телесне висине и масе тела, са релативно малим уделом масног ткива у телесној композицији (Тabela 1). На финалном мерењу нису забележене значајније промене у праћеним морфолошким атрибутима испитника. Целокупан програм вежбања није остварио значајнији ефекте на телесну масу и проценат масног ткива. Када је у питању телесна висина, нису ни очекиване значајније промене у измереним морфолошким карактеристикама испитника (Тabela 2).

Резултати финалног мерења изометријског напрезања у тесту положача указују да се након десетонедељног програма вежбања догодиле одређене промене у време испољавања максималних изометријских мишићних сила (Тabela 3). На финалном мерењу утврђене су великих разлика између група узорка, што је разумљиво започање експерименталног програма (Тabela 3).

Резултати финалног мерења изометријског напрезања у тесту положача, указују да је дошло до великих разлика између испитаних група узорка. Праћењем промена параметара у тесту положача, установљено је повећање максималних изометријских сила за 14.22%, као и побољшање индекса експлозивне снаге за 17.41% у односу на иницијално мерење. Иако се нису догодиле значајније промене у проценату масног ткива и телесне масе, као што је очекивано, могу се приписати ефекти комплексног десетонедељног програма вежбања.
Постоје две компоненте које одређују испољавање максималне мишићне силе. Неуравномерна компонента се односи на активност централног нервног система (ЦНС), који на више начина утиче на мишићну активност. Са аспекта утицаја ЦНС, максимална мишићна сила може да се развије: регрутовањем што већег броја моторних јединица, оптималном фреквенцијом пражњења нервних импулса у циљу стварања тетанусне контракције и истовременим деловањем моторних јединица у кратком временском периоду током максималне вољне контракције (Sale, 2003). Мишићна компонента се односи на утицај структуре и архитектуре мишића на максималну мишићну силу. Максимална мишићна сила се може повећати нарачун повећања физиолошког пресека мишића (Luthi et al, 1986; Young, Stokes, & Round, 1983; Folland, & Williams, 2007; Fits, & Widrick, 1996), која може настати као резултат два физиолошка механизма, хипертрофије и хиперплазије. Највеће промене у мишићној архитектури резултат је пре хипертрофије, него хиперплазије. Хакинен и сарадници (Hakkukinen, Komi, & Alén, 1985) су у периоду од 24 недеље испитивали утицај тренинга експлозивне снаге на изометријску силу мишића екстензора нога. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електромиографским мерењем анализирали су криву сила-брзина и установили статистички значајно побољшање у максималној изометријској силе мишића екстензора ногу. Електроме...
17. Häkkukinen, K., Komi, P.V. & Alén, M. (1985). Effect of explosive type strength training on isometric force and relaxation time, electromyographic and muscle fibre characteristics of leg extensor muscles. Acta Physiologica Scandinavica, 125, 587–600.

18. Hodgson, M.J., Docherty, D., Zehr E.Z. (2008). Post-activation Potentiation of Force Is Independent of H-Reflex Excitability. International Journal of Sports Physiology and Performance, 3(2), 219-231.

19. Jensen, R.L., & Ebben, W.P. (2003). Kinetic analysis of complex training rest interval effect on vertical jump performance. Journal of Strength & Conditioning Research, 17(2), 345-9.

20. Jensen, R.L., Ebben, W.P., Blackard, D.O., Mclaughlin, B.P., & Watts, P.B. (1999). Kinetic and electromyographic analysis of combined strength and plyometric training in women basketball players. Medicine & Science in Sport & Exercise, 31(5), 193.

21. Кукрић, А., Каралејић, М., Петровић, Б., Јаковљевић, С. (2009). Утицај комплексног тренинга на експлозивну снагу опружача ногу код кошаркаша јуниора. Физичка култура, 63(2), 165-180.

22. Luthi, J.M., Howald, H., Cbsen, H., Rosler, K., & Vodc, PH. (1986). Structural changes in skeletal muscle tissue with heavy resistance exercise. International Journal of Sports & Medicine, 7(3), 123-127.

23. McCall, G. E., Byrnes, W. C., Dickinson, A., Patten, P. M., & Fleck, S. J. (1996). Muscle fiber hypertrophy, hyperplasia, and capillary density in college men after resistance training. Journal of Applied Physiology, 81(5), 2004–2012.

24. Requena, B., Gapeyeva, H., García, I., Ereline, J., Paasuke, M. (2008). Twitch potentiation after voluntary versus electrically induced isometric contractions in human knee extensor muscles. Euro Journal of Applied Physiology, 104(3), 463-472.

25. Rixon, K.P., Lamont, H.S., Bemben, M.G. (2007). Influence of type of muscle contraction, gender, and lifting experience on postactivation potentiation performance. Journal of Strength & Conditioning Research, 21(2), 500-505.

26. Robbins, D.W. (2005). Postactivation potentiation and its practical applicability: a brief review. Journal of Strength & Conditioning Research, 19(2), 453–458.

27. Roden, D., Lambson, R., DeBeliso, M. (2014). The Effects of a Complex Training Protocol on Vertical Jump Performance in Male High School Basketball Players. Journal of Sports Science, 2, 21-26.
28. Sale, D. G. (2003). Neural adaptations to strength training. In: Komi PV, editor. Strength and Power in Sport. 2nd ed. Malden (MA), Blackwell Science, 281–314.

29. Seitz, L.B., de Villarreal, E.S., & Haff, G.G. (2014). The temporal profile of postactivation potentiation is related to strength level. *Journal of Strength & Conditioning Research, 28*(3), 706-715.

30. Siff, M. C. & Verkhoshansky, Y. V. (1999). *Supertraining*. Denver: Supertraining International.

31. Tsolakis, C., Bogdanis, G., Nikolaou, A., Zacharogiannis, E. (2011). Influence of type on muscle contraction and gender on postactivation potentiation of upper and lower explosive performance in elite fencers. *Journal of Sports Science and Medicine, 10*, 577-583.

32. Weber, K.R., Brown, L.E., Coburn, J.W., & Zinder, S.M. (2008). Acute effects of heavy load squats on consecutive squat jump performance. *Journal of Strength & Conditioning Research, 22*(3), 726-30.

33. Wilson, J.M., Duncan, N.M., Marin, P.J., Brown, L.E., Loenneke, J.P., Wilson, S.M., Jo, E., Lowery, R.P., & Ugrinowitsch, C. (2013). Meta-analysis of postactivation potentiation and power: effects of conditioning activity, volume, gender, rest periods, and training status. *Journal of Strength & Conditioning Research, 27*(3), 854-9.

34. Xenofondos, A., Laparidis, K., Kyranoudis, A., Galazoulas, Ch., Bassa, E., & Kotzamanidis, C. (2010). Postactivation potentiation: factors affecting it and the effect on performance. *Journal of Physical Education and Sport, 28*(3), 32-38.

35. Young, A., Stokes, M., & Round, J.M. (1983). The effect of high resistance training on the strength and cross sectional area of the human quadriceps. *European Journal of Clinical Investigation, 13*(5), 411-417.

36. Young, W. B., Jenner, A., & Griffiths, K. (1998). Acute enhancement of power performance from heavy load squats. *Journal of Strength & Conditioning Research, 12*(2), 82-84.