Global error bounds of the extended vertical linear complementarity problems for Dashnic–Zusmanovich matrices and Dashnic–Zusmanovich-B matrices

Yingxia Zhao¹ and Deshu Sun¹*

Abstract
Global error bounds of the extended vertical linear complementarity problems for Dashnic–Zusmanovich (DZ) matrices and Dashnic–Zusmanovich-B (DZ-B) matrices are presented, respectively. The obtained error bounds are sharper than those of Zhang et al. (Comput. Optim. Appl. 42(3):335–352, 2009) in some cases. Some numerical examples are given to illustrate the obtained results.

MSC: 15A18; 15A69; 65G50; 90C33

Keywords: Dashnic–Zusmanovich matrices; Dashnic–Zusmanovich-B matrices; Error bound; Extended vertical linear complementarity problem

1 Introduction
The extended vertical linear complementarity problem (EVLCP) is to find a vector $x \in \mathbb{R}^n$ such that

$$r(x) := \min(M_0 x + q_0, M_1 x + q_1, \ldots, M_k x + q_k),$$

or to prove that there is no such vector x, where the min operator works componentwise for both vectors and matrices. It is denoted by EVLCP(M, q), where

$q = (q_0, q_1, \ldots, q_k), \quad q_l \in \mathbb{R}^n, \quad l = 0, 1, \ldots, k,$

is a block vector and

$M = (M_0, M_1, \ldots, M_k), \quad M_l \in \mathbb{R}^{n \times n}, \quad l = 0, 1, \ldots, k,$

is a block matrix. When $k = 1, M_0 = I, q_0 = 0$, the EVLCP(M, q) comes back to linear complementarity problems (LCP), and when $M_0 = I, q_0 = 0$, the EVLCP(M, q) reduces to vertical linear complementarity problems (VLCP) [2]. The extended vertical linear complementarity problems are widely used in optimization theory, control theory, neural network...
model, convergence analysis, sensitive analysis, verification of the solutions, and so on, see [1, 3–7].

Many scholars are interested in the research on the error of the solution for the EVLCP \((M, q)\) including the LCP case. Various results on the solution and its error bounds for the EVLCP \((M, q)\) have appeared recently, see [8–13]. For example, Gowda and Sznajder [14] extended the sufficient and necessary condition for the existence and uniqueness of the solution from the LCP to the EVLCP. Afterwards, Sznajder and Gowda [15] provided some equivalent forms for the condition above. Xiu and Zhang [16] extended the error bound for the LCP given by [6] to the EVLCP. Zhang et al. [1] extended the error bound of the LCP given by Chen and Xiang [8] to the general EVLCP by the row rearrangement technique and provided some computable error bounds for two types of special block matrices. However, these error bounds generally cannot be calculated accurately because they involve computing the inverse of matrices. In order to overcome this shortcoming, in this paper, we continue to explore the extended vertical linear complementarity problems, and we propose new error bounds for the other types of special block matrices, named DZ matrices [17, 18] and DZ-B matrices [19], only relying on the elements of such matrices. The obtained results extend the corresponding results in [1]. The validity of new error bounds is theoretically guaranteed, and numerical examples show the validity of the new results.

The remainder of this paper is organized as follows. In Sect. 2, we recall some related definitions, theorems, lemmas, and notations, which will be used in the proof of this paper. In Sect. 3, we prove that each block in any row rearrangement of the block matrix \(M = (M_0, M_1, \ldots, M_k)\) is a DZ matrix if each matrix \(M_l (l = 0, 1, \ldots, k)\) is a DZ matrix, propose a computable error bound of the EVLCP \((M, q)\) with each matrix in \(M\) being a DZ matrix, and present numerical examples to show the effectiveness of the new error bound. In Sect. 4, we prove that each block in any row rearrangement of the block matrix \(M = (M_0, M_1, \ldots, M_k)\) is a DZ-B matrix if each matrix \(M_l (l = 0, 1, \ldots, k)\) is a DZ-B matrix, provide a calculable error bound of the EVLCP \((M, q)\) with each matrix in \(M\) being a DZ-B matrix, and use numerical examples to indicate the validity of the new error bound. Some conclusions are summarized in Sect. 5.

2 Preliminaries

In this section, we recall some theorems, definitions, lemmas, and notations. Given a matrix \(A = (a_{ij}) \in \mathbb{R}^{n \times n}, i, j \in \mathbb{N} = \{1, 2, \ldots, n\}\), denote

\[
 r_i(A) = \sum_{j=1, j \neq i}^{n} |a_{ij}|, \quad \forall i \in \mathbb{N}.
\]

The first one is the existence and uniqueness condition of the solution for the EVLCP \((M, q)\) given by Gowda and Sznajder [14].

Theorem 1 ([14]) For any block vector \(q\), the EVLCP \((M, q)\) has a unique solution if and only if the block matrix \(M = (M_0, M_1, \ldots, M_k)\) has the W-property, i.e.,

\[
 \min(M_0 x, M_1 x, \ldots, M_k x) \leq 0 \leq \max(M_0 x, M_1 x, \ldots, M_k x) \quad \Rightarrow \quad x = 0,
\]

where the min and max operators work componentwise for both vectors and matrices.
Using the row rearrangement technique, Zhang et al. [1] presented a sufficient and necessary condition for the block matrix M with the row W-property and proposed a global error bound for the $EVLCP(M, q)$.

Definition 1 ([1]) The block matrix $M' = (M'_0, M'_1, \ldots, M'_k)$ is called a row rearrangement of $M = (M_0, M_1, \ldots, M_k)$ if, for any $i \in N$,$$
(M'_i)_l = (M_i)_l \in \{(M_0)_l, (M_1)_l, \ldots, (M_k)_l\} = \{(M'_0)_l, (M'_1)_l, \ldots, (M'_k)_l\},
$$
(2)
is satisfied for all $l = 1, 2, \ldots$. Here $(M_i)_l$ means the lth row of a given matrix M_i. This is also true for the block vectors q and q'. Denote by $R(M)$ and $R(q)$ the set of all row rearrangements of M and q, respectively.

Lemma 1 ([1]) The block matrix $M = (M_0, M_1, \ldots, M_k)$ has the row W-property if and only if $(I - D)M'_j + DM'_j$ is nonsingular for any two blocks M'_j and M'_i of $M \in R(M)$ and for any $D = \text{diag}(d_l)$ with $d_l \in [0, 1]$ $(l \in N)$.

Theorem 2 ([1]) Let x^* be the solution of the $EVLCP(M, q)$. If the block matrix $M = (M_0, M_1, \ldots, M_k)$ has the row W-property, then for any $x \in R^n$,

$$
\|x - x^*\| \leq \alpha(M) \cdot \|r(x)\|,
$$

(3)
where

$$
\alpha(M) := \max_{M' \in R(M)} \max_{j,c \in \{0, 1, \ldots, k\}} \max_{d \in \{0, 1\}^n} \left\|\left[(I - D)M'_j + DM'_j\right]^{-1}\right\|,
$$

$D = \text{diag}(d_l)$ is defined as Lemma 1, and M'_j, M'_i are any two blocks in $M' \in R(M)$.

Obviously, the upper bound in (3) for $\|x - x^*\|$ cannot be calculated easily because it is difficult to compute $\left\|\left[(I - D)M'_j + DM'_j\right]^{-1}\right\|$ precisely in general. Hence, some computable upper bounds for $\alpha(M)$ are provided under various matrix norms by using the structural properties of matrices M_j, $j \in \{1, 2, \ldots, k\}$. When all M_j are strictly diagonally dominant (SDD) matrices, Zhang et al. [1] gave a calculable upper bound for $\alpha(M)$ under the infinity norm (denoted by $\alpha_{\infty}(M)$) as follows. Here a matrix $A \in C^{n \times n}$ is called an SDD matrix if $|a_{ij}| > \sum_{j \neq i} |a_{ij}|$ for each $i \in N$.

Theorem 3 ([1]) If M_0, M_1, \ldots, M_k are SDD, and for each $i \in N$, $(M_j)_{ii} > 0$ for any $j < l \in \{0, 1, \ldots, k\}$, then $M = (M_0, M_1, \ldots, M_k)$ has the row W-property and

$$
\alpha_{\infty}(M) \leq \frac{1}{\min_{e \in N} \left\{|(M_0e, M_1e, \ldots, M_ke)|\right\}},
$$

where \tilde{M}_i is the comparison matrix of M_i, i.e., $(\tilde{M}_i)_{rr} = |(M_i)_{rr}|$, $(\tilde{M}_i)_{ij} = -(M_i)_{ij}$ for $r \neq j$, $(M_i)_{ij}$ is the element in the rth row and the jth column of M_i, and $(\tilde{M}_i)_{ij}$ is the element in the rth row and the jth column of \tilde{M}_i.

Theorem 4 ([1]) If M_0, M_1, \ldots, M_k are matrices with positive diagonal entries, and the spectral radius $\rho(\max(\Lambda^{-1}_0|B_0|, \Lambda^{-1}_1|B_1|, \ldots, \Lambda^{-1}_k|B_k|)) < 1$, then $M = (M_0, M_1, \ldots, M_k)$ has
the row W-property and

\[\alpha_\infty(M) \leq \left\| I - \max_{i=0,1,\ldots,k} \left(\Lambda_i^{-1}[B_i] \right) \right\|_\infty, \]

where \(\Lambda_i \) is the diagonal part of \(M_i \), \(B_i = \Lambda_i - M_i \) for \(i = 0, 1, \ldots, k \).

3 A global error bound for the EVLCP of Dashnic–Zusmanovich matrices

Dashnic–Zusmanovich matrix, as a subclass of the class of nonsingular \(P \)-matrix, was introduced by Dashnic and Zusmanovich [17] to upper bound for the infinity norm of its inverse matrix, whose definition and related conclusion are listed as follows.

Definition 2 ([17]) A matrix \(A = (a_{ij}) \in C^{n \times n} \) is called a Dashnic–Zusmanovich (DZ) matrix if there exists an index \(i \in N \) such that for any \(j \in N \), \(j \neq i \),

\[|a_{ij}|(|a_{ij}| - r_j(A)) + |a_{ji}| > r_i(A)|a_{ij}|. \]

Theorem 5 ([18]) Let \(A = (a_{ij}) \in C^{n \times n} \) be a DZ matrix. Then

\[\|A^{-1}\|_\infty \leq \max \left\{ \max_{j \in N, j \neq i} \alpha_1(A), \max_{j \in N, j \neq i} \alpha_2(A) \right\}, \]

where

\[\alpha_1(A) = \frac{|a_{ij}| + |a_{ji}|}{(|a_{ij}| - r_j(A) + |a_{ji}|)|a_{ij}| - |a_{ij}||r_j(A)|}, \]

\[\alpha_2(A) = \frac{|a_{ij}| - r_j(A) + |a_{ji}| + r_i(A)}{(|a_{ij}| - r_j(A) + |a_{ji}|)|a_{ij}| - |a_{ij}||r_j(A)|}. \]

Next, we will propose an upper bound for \(\alpha_\infty(M) \) with each \(M_i \) \((i = 0, 1, \ldots, k)\) being a DZ matrix. Before that, some useful propositions are provided below.

Proposition 1 Let \(A = (a_{ij}) \in C^{n \times n} \) and \(B = (b_{ij}) \in C^{n \times n} \) be all DZ matrices with positive diagonal elements. If there exists an index \(i \in N \) such that, for any \(j \in N \), \(j \neq i \), \(a_{ij}b_{ji} \geq 0 \) (or \(a_{ij}b_{ji} \geq 0 \), and

\[|a_{ij}||a_{ij} - r_j(A)| + |a_{ji}| > r_i(A)|a_{ij}|, \]

\[|b_{ij}||b_{ij} - r_j(B)| + |b_{ji}| > r_i(B)|b_{ij}|, \]

\[|a_{ij}||b_{ij} - r_j(B) + b_{ji}| > r_i(A)|b_{ij}|, \]

\[|b_{ij}||a_{ij} - r_j(A) + a_{ji}| > r_i(B)|a_{ij}|, \]

then \((I - D)A + DB\) is also a DZ matrix for any \(D = \text{diag}(d_t) \) with \(d_t \in [0, 1] \) \((t \in N)\).

Proof Both \(A \) and \(B \) are DZ matrices, and there exists \(i \in N \) such that, for any \(j \in N \), \(j \neq i \),

\[|a_{ij}||a_{ij} - r_j(A)| + |a_{ji}| > r_i(A)|a_{ij}|, \]

\[|b_{ij}||b_{ij} - r_j(B)| + |b_{ji}| > r_i(B)|b_{ij}|. \]

Note that \(d_t \in [0, 1] \), then \(1 - d_t \geq 0 \) and \(d_t \geq 0 \), and they are not equal to 0 at the same time. Let \((I - D)A + DB = C = (c_{ij})\), then

\[|c_{ij}| = (1 - d_t)|a_{ij}| + d_t|b_{ij}|, \quad |c_{ij}| = (1 - d_t)|a_{ij}| + d_t|b_{ij}|, \]
Let
\[r_i(C) = \sum_{j=1}^{n} (1 - d_j) |a_{ij}| + d_j |b_{ij}| = (1 - d_i) r_i(A) + d_i r_i(B). \]

Hence, we get
\[
|c_{ij}| - r_i(C) + |c_{ji}| = (1 - d_j) |a_{ij}| + d_j |b_{ij}| - \left((1 - d_j) r_j(A) + d_j r_j(B) \right) + (1 - d_i) |a_{ji}| + d_i |b_{ji}|
\]
\[
= (1 - d_j) \left[|a_{ij}| - r_j(A) |a_{ji}| \right] + d_j \left[|b_{ij}| - r_j(B) + |b_{ji}| \right],
\]
and
\[
|c_{ii}| \left[(|c_{ji}| - r_j(C) + |c_{ij}|) \right] = (1 - d_j) (1 - d_i) \left[|a_{ij}| - r_j(A) |a_{ji}| \right] + (1 - d_i) |a_{ij}| + (1 - d_j) |b_{ij}| - r_j(B) + |b_{ji}| \]
\[
+ d_i (1 - d_j) \left[|a_{ij}| - r_j(A) |a_{ji}| \right] + d_j \left[|b_{ij}| - r_j(B) + |b_{ji}| \right] \]
\[
= (1 - d_j) (1 - d_i) r_i(A) |a_{ji}| + (1 - d_i) d_j r_i(A) |b_{ji}|
\]
\[
+ d_i (1 - d_j) r_i(B) |a_{ji}| + d_i d_j r_i(B) |b_{ji}|
\]
\[
= \left[(1 - d_i) r_i(A) + d_i d_j r_i(B) \right] \left[(1 - d_j) |a_{ji}| + d_j |b_{ji}| \right]
\]
\[
= r_i(C) |c_{ji}|,
\]
that is,
\[
|c_{ii}| \left[(|c_{ji}| - r_j(C) + |c_{ij}|) > r_i(C) |c_{ji}|. \right.
\]

From Definition 2, the conclusion follows. \(\Box\)

Based on Proposition 1, Lemma 1, and the fact that a DZ matrix is nonsingular, the block matrix composed of DZ matrices has the row W-property.

Proposition 2 If \(M_0, M_1, \ldots, M_k\) are DZ matrices and each \(M_i\) \((i = 0, 1, \ldots, k)\) satisfies the hypotheses of Proposition 1, then each \(M_i^*\) in \(M^* \in \text{R}(\mathbf{M})\) is a DZ matrix, and consequently, \(M = (M_0, M_1, \ldots, M_k)\) has the row W-property.

Proof By Definition 1, for the \(i\)th row \((M_i^*)_i\) of \(M_i^*\), \(i \in N\), there exists \(l_i \in \{0, 1, \ldots, k\}\) such that \((M_i^*)_i = (M_{l_i})_i\), i.e., \((M_{l_i})_i = (M_i^*)_i\). Since \(M_{l_i}\) is a DZ matrix, then
\[
\left| (M_{l_i})_{ii} \right| \left[\left| (M_{l_i})_{ji} \right| - r_j(M_{l_i}) + \left| (M_{l_i})_{ji} \right| > r_i(M_{l_i}) \left| (M_{l_i})_{ji} \right|, \right. \quad j \neq i, j \in N,
\]
that is,
\[
\left| (M_i^*)_i \right| \left[\left| (M_i^*)_j \right| - r_j(M_i^*) + \left| (M_i^*)_j \right| > r_i(M_i^*) \left| (M_i^*)_j \right|, \right. \quad j \neq i, j \in N.
\]

By Definition 2, \(M_i^*\) is a DZ matrix.
Let \(M_i, M_j \) be any two blocks in \(M' \in R(M) \), then \(M_i, M_j \) are all DZ matrices. Based on Proposition 1, \((I - D)M_i + DM_j \) is a DZ matrix for any \(D = \text{diag}(d_i) \), \(d_i \in [0, 1] \) \((i \in N)\). Thus \((I - D)M_i + DM_j \) is nonsingular. By Lemma 1, the block matrix \(M = (M_0, M_1, \ldots, M_k) \) has the row \(W \)-property. \(\square \)

Theorem 6 Let \(M = (M_0, M_1, \ldots, M_k) \), and let each \(M_p \) \((p = 0, 1, 2, \ldots, k)\) be a DZ matrix with positive diagonal elements and satisfy the hypotheses of Proposition 1. Then

\[
\alpha(M) \leq 2 \max \left\{ \max_{\tau \in \mathbb{N}, \tau \neq \emptyset} \alpha_1(M_D), \max_{\tau \in \mathbb{N}, \tau \neq \emptyset} \alpha_2(M_D) \right\},
\]

where

\[
\psi_{p\tau}^\tau = \max_{\tau \in \mathbb{N}} \left\{ \psi_{p\tau}^\tau \right\}, \quad \phi_{p\tau}^\tau = \left| (M_p)_{\tau\tau} \right| + \left| (M_p)_{\tau i} \right|, \quad \beta_{p\tau}^\tau = \min_{\tau \in \mathbb{N}} \left\{ \beta_{p\tau}^\tau \right\},
\]

\[
o_{\max}^\tau = \max_{\tau \in \mathbb{N}} \left\{ o_{\max}^\tau \right\}, \quad o_{\tau i}^\tau = \left| (M_p)_{\tau\tau} \right| - r_x(M_p) + \left| (M_p)_{\tau i} \right| + r_j(M_p), \quad \beta_{\max}^\tau = \left| (M_p)_{\tau\tau} \right| - r_x(M_p) + \left| (M_p)_{\tau \tau} \right| - r_x(M_p) + \left| (M_p)_{\tau i} \right|.
\]

Proof For any two blocks \(M_i, M_j \) in \(M' \in R(M) \) and any \(D = \text{diag}(d_i) \) with \(d_i \in [0, 1] \) \((i \in N)\), let \(M_D = (m_{ij}) = (I - D)M_i + DM_j \). By Propositions 1 and 2, it holds that \(M_i, M_j, \) and \(M_D \) are all DZ matrices with positive diagonal elements. By Theorem 5, we have that

\[
\left\| M_D^{-1} \right\| \leq \max \left\{ \max_{\tau \in \mathbb{N}, \tau \neq \emptyset} \alpha_1(M_D), \max_{\tau \in \mathbb{N}, \tau \neq \emptyset} \alpha_2(M_D) \right\}
\]

holds for each matrix \(D = \text{diag}(d_i) \) with \(d_i \in [0, 1] \) \((i \in N)\), where

\[
\alpha_1(M_D) = \frac{|m_{i\tau}| + |m_{\tau i}|}{(|m_{i\tau}| - r_x(M_D) + |m_{\tau i}| |m_{\tau i}| - |m_{i\tau}| r_x(M_D)),}
\]

\[
\alpha_2(M_D) = \frac{|m_{i\tau}| - r_x(M_D) + |m_{\tau i}| + r_j(M_D)}{(|m_{i\tau}| - r_x(M_D) + |m_{\tau i}| |m_{\tau i}| - |m_{i\tau}| r_x(M_D)).}
\]

Hence, it holds that

\[
|m_{i\tau}| + |m_{\tau i}| = (1 - d_i)|[(M_i')_{\tau\tau}| + d_i(|(M_i')_{\tau i}| + (1 - d_i)|((M_i')_{\tau i}| + d_i(|(M_i')_{i\tau}|)
\]

\[
< \left[|(M_i')_{\tau\tau}| + |(M_i')_{\tau i}| \right] + \left[|(M_i')_{\tau i}| + |(M_i')_{i\tau}| \right] \quad (\tau \in \mathbb{N}, \tau \neq \emptyset)
\]

\[
= \left(\psi_{\tau i}^\tau \right)^\prime + (\psi_{\tau i}^\tau)^\prime, \quad \mathbf{2} \max_{\tau \in \mathbb{N}} (\psi_{\tau i}^\tau)^\prime,
\]

where

\[
(\psi_{\tau i}^\tau)^\prime = \max_{\tau \in \mathbb{N}} \left\{ (\psi_{\tau i}^\tau)^\prime \right\}, \quad (\psi_{\tau i}^\tau)^\prime = \left| (M_i')_{\tau\tau} \right| + \left| (M_i')_{\tau i} \right|, \quad t = j, i.
\]

Further, we get

\[
|m_{i\tau}| - r_x(M_D) + |m_{\tau i}| |m_{\tau i}| - |m_{i\tau}| r_x(M_D)
\]

\[
= \left[(1 - d_i)(|((M_i')_{\tau\tau}| - r_x(M_i') + |(M_i')_{\tau i}|) + d_i(|((M_i')_{\tau i}| - r_x(M_i') + |(M_i')_{i\tau}|)\right]
\]
\[\times \left[(1 - d_i) |(M'_j)_{ii}| + d_t |(M'_j)_{ji}| \right] - \left[(1 - d_i) |(M'_j)_{ii}| + d_t |(M'_j)_{ji}| \right] \left[(1 - d_i)r_i(M'_j) + d_t r_i(M'_j) \right] \\
= (1 - d_t)(1 - d_i) |(M'_j)_{ii}| \left| r_i(M'_j) + |(M'_j)_{ji}| \right| \\
+ (1 - d_i)d_t |(M'_j)_{ii}| \left| r_i(M'_j) + |(M'_j)_{ji}| \right| \\
+ d_t (1 - d_i) |(M'_j)_{ii}| \left| r_i(M'_j) + |(M'_j)_{ji}| \right| \\
+ d_t d_t |(M'_j)_{ii}| \left| r_i(M'_j) + |(M'_j)_{ji}| \right| \\
- (1 - d_t)(1 - d_i)r_i(M'_j) |(M'_j)_{ji}| - (1 - d_t)d_t r_i(M'_j) |(M'_j)_{ji}| \\
= (1 - d_t)(1 - d_i) |(M'_j)_{ii}| \left| r_i(M'_j) + |(M'_j)_{ji}| \right| \\
+ d_t d_t |(M'_j)_{ii}| \left| r_i(M'_j) + |(M'_j)_{ji}| \right| \\
- (1 - d_t)(1 - d_i)r_i(M'_j) |(M'_j)_{ji}| - d_t d_t r_i(M'_j) |(M'_j)_{ji}| \\
= (1 - d_t)(1 - d_i) |(M'_j)_{ii}| \left| r_i(M'_j) + |(M'_j)_{ji}| - r_i(M'_j) |(M'_j)_{ji}| \right| \\
+ d_t d_t |(M'_j)_{ii}| \left| r_i(M'_j) + |(M'_j)_{ji}| - r_i(M'_j) |(M'_j)_{ji}| \right| \\
= (1 - d_t)(1 - d_i) \beta^t_{L} + d_t d_t \beta^t_{L} \\
\geq (1 - d_t)(1 - d_i) \beta^t_{L} + d_t d_t \beta^t_{L}, \]

where

\[\beta^t_{L} = \min_{t \in \mathcal{N}, \tau \in \mathcal{T}} \left\{ \beta^t_{i\tau} \right\} \]

\[\beta^t_{i\tau} = |(M'_j)_{ii}||r_i(M'_j) + |(M'_j)_{ji}| - r_i(M'_j) |(M'_j)_{ji}| \quad t = j, l. \]

Therefore, we have

\[\alpha_1(M_D) = \frac{|m_{ii}| + |m_{ii}|}{(m_{ji} + |m_{ji}|) - |m_{ji}| r_i(M_D)} \]

\[\geq \frac{2 \max_{i,j} (\varphi^t_{i})}{(1 - d_t)(1 - d_l)(\beta^t_{iL}) + d_t d_t (\beta^t_{iL})} \]

\[\geq \frac{2 \max_{i,j} (\varphi^t_{i})}{\min(\beta^t_{iL}, \beta^t_{iL})} \]
and

\[|m_{ts}| - r_t(M_D) + |m_{tt}| + r_t(M_D) \]
\[= [(1 - d_t)(M'_t)_{tt} + d_t(M'_t)_{tt}] - [(1 - d_t)r_t(M'_t) + d_t r_t(M'_t)] \]
\[+ [(1 - d_t)(M'_t)_{tt} + d_t(M'_t)_{tt}] + [(1 - d_t)r_t(M'_t) + d_t r_t(M'_t)] \]
\[= (1 - d_t)(M'_t)_{tt} + d_t r_t(M'_t) + r_t(M'_t) \]
\[+ [(1 - d_t)(M'_t)_{tt} + d_t(M'_t)_{tt}] + [(1 - d_t)r_t(M'_t) + d_t r_t(M'_t)] \]
\[< [(M'_t)_{tt} - r_t(M'_t) + (M'_t)_{tt}] + [(1 - d_t)r_t(M'_t) + d_t r_t(M'_t)] \]
\[= (\omega_{t}^l') + (\omega_{t}^l') \]
\[\leq 2 \max_{t \neq j} (\omega_{t}^l') , \]

where

\[(\omega_{t}^l') = \max_{t \in N} (\omega_{t}^l') , \]
\[(\omega_{t}^l') = |(M'_t)_{tt} - r_t(M'_t) + (M'_t)_{tt}| + r_t(M'_t) , \quad t = j, l . \]

So, it holds that

\[\alpha_2(A) = \frac{1}{(m_{ts} - r_t(M_D)) + |m_{tt}| + r_t(M_D)} \]
\[\leq \frac{2 \max_{t \neq j} (\omega_{t}^l')}{(1 - d_t)(1 - d_t)(\beta_{t}^l') + d_t d_t(\beta_{t}^l')} \]
\[\leq \frac{2 \max_{t \neq j} (\omega_{t}^l')}{\min(\beta_{t}^l'), (\beta_{t}^l')} \]

and

\[\|M_D^{-1}\|_{\infty} \leq 2 \max \left\{ \frac{\max_{t \neq j} (\omega_{t}^{l_i})'}{\min(\beta_{t}^{l_i}), (\beta_{t}^{l_i})'} \right\} \min(\beta_{t}^{l_i}), (\beta_{t}^{l_i})' \].

By Definition 1, we can regard \(M'_t, M'_t \) as two blocks in a row rearrangement of \(M = (M_0, M_1, \ldots, M_k) \), and thus for \(t = j \) or \(t = l \) and for \(i \in N \), there exists \(t_i \in \{0, 1, \ldots, k\} \) such that

\[(\omega_{t}^{l_i})' = \omega_{t_i}^{l_i}, \quad (\beta_{t}^{l_i})' = \beta_{t_i}^{l_i}, \]

this implies that

\[\max_{t \neq j} (\omega_{t}^{l_i})' = \max_{t \neq j} \left\{ \max_{t \neq j} (\omega_{t}^{l_i})' \right\} = \max_{t \neq j} \left\{ \max_{t \neq j} (\omega_{t}^{l_i})' \right\} \]
\[
\max_{\tau \in \mathbb{N}} \{ \max_{t \in \mathbb{N}} \{ (\phi^e_{\tau}) \} \} \leq \max_{\tau \in \mathbb{N}} \{ \max_{p=0,1,...,k} \{ \phi^e_{\tau} \} \}
\]

Similarly, we get
\[
\max_{t \in \mathbb{N}} \{ \max_{\tau \in \mathbb{N}} \{ (\omega^e_{\tau}) \} \} = \max_{t \in \mathbb{N}} \{ \max_{p=0,1,...,k} \{ \omega^e_{\tau} \} \}
\]

and
\[
\min_{\tau \in \mathbb{N}} \{ (\beta^e_{\min}) \} = \min_{\tau \in \mathbb{N}} \{ \min_{t \in \mathbb{N}} \{ \beta^e_{\min} \} \} = \min_{\tau \in \mathbb{N}} \{ \min_{p=0,1,...,k} \{ \beta^e_{\min} \} \}
\]

Hence, for any two blocks \(M_i', M_j'\) in \(M' \in R(M)\),
\[
\|M_i'^{-1}\|_{\infty} \leq 2 \max \left\{ \frac{\max \{ \phi^e_{\max} \}}{\min \{ \beta^e_{\min} \}}, \frac{\max \{ \omega^e_{\max} \}}{\min \{ \beta^e_{\min} \}} \right\}, \quad p = 0, 1, \ldots, k.
\]

By the arbitrariness of \(M_i'\) and \(M_j'\), the conclusion follows. \(\square\)

We illustrate our results with the following two examples.

Example 1 Let \(M = (M_0, M_1, M_2)\), where

\[
M_0 = \begin{bmatrix}
2 & 0 & 0.2 & 0.2 \\
0.3 & 3 & 1.2 & 1 \\
0.5 & 0.1 & 3 & 2 \\
0.3 & 0.1 & 1 & 2
\end{bmatrix}, \quad M_1 = \begin{bmatrix}
2 & 0 & 0.8 & 0.1 \\
0.5 & 2 & 0.3 & 0.2 \\
1 & 0.5 & 3 & 0.5 \\
0.2 & 0.5 & 1 & 3
\end{bmatrix},
\]

\[
M_2 = \begin{bmatrix}
2 & 0 & 0.2 & 0.8 \\
1.7 & 3 & 0.85 & 0.39 \\
0.12 & 0.5 & 3 & 0.1 \\
0.2 & 0.3 & 0.1 & 3
\end{bmatrix}
\]

are DZ matrices and SDD matrices. Thus \(M = (M_0, M_1, M_2)\) has the row W-property. By Theorem 6, it holds that
\[
\alpha_{\infty}(M) \leq 10.2509.
\]

By Theorem 3 (Theorem 4.4 of [1]), we have
\[
\alpha_{\infty}(M) \leq 16.6667.
\]
Since
\[\rho \left(\max \left(\Lambda^{-1}_0 |B_0|, \Lambda^{-1}_1 |B_1|, \Lambda^{-1}_2 |B_2| \right) \right) = 0.9778 < 1, \]
then by Theorem 4 (Theorem 4.3 of [1]), we get
\[\alpha_{\infty}(M) \leq 25.2523. \]

Example 2

Let \(M = (M_0, M_1, M_2) \), where
\[
M_0 = \begin{bmatrix}
2 & 0 & 0.2 & 0.2 \\
0.3 & 3 & 1.2 & 1 \\
0.5 & 0.1 & 3 & 2 \\
1 & 0.1 & 1 & 2
\end{bmatrix}, \quad M_1 = \begin{bmatrix}
2 & 0 & 0.8 & 0.1 \\
0.5 & 2 & 0.3 & 0.2 \\
1 & 0.5 & 3 & 0.5 \\
0.2 & 0.5 & 1 & 3
\end{bmatrix},
\]
\[
M_2 = \begin{bmatrix}
2 & 0 & 0.2 & 0.8 \\
1.7 & 3 & 0.85 & 0.39 \\
0.12 & 0.5 & 3 & 0.1 \\
0.2 & 0.3 & 0.1 & 3
\end{bmatrix}
\]
are DZ matrices, but \(M_0 \) is not an SDD matrix, and
\[\rho \left(\max \left(\Lambda^{-1}_0 |B_0|, \Lambda^{-1}_1 |B_1|, \Lambda^{-1}_2 |B_2| \right) \right) = 1.0728 > 1. \]

Thus Theorems 3 and 4 cannot work for this case. However, by Theorem 6, it holds that
\[\alpha_{\infty}(M) \leq 16.3429. \]

Examples 1 and 2 show that the bound in Theorem 6 is sharper than that in Theorems 3 and 4 in some cases.

4 A global error bound for the EVLCP of Dashnic–Zusmanovich-B matrices

In 2020, Zhou et al. [19] introduced error bounds of the linear complementarity problems of Dashnic–Zusmanovich-B matrices, whose definition is listed below.

Definition 3 ([19]) A matrix \(M = (m_{ij}) \in R^{n \times n} \) is called a Dashnic–Zusmanovich-B (DZ-B) matrix if \(B^+ \) is a DZ matrix, where \(M = B^+ + C \),
\[
B^+ = (b_{ij}) = \begin{pmatrix}
m_{11} - r^*_1 & \cdots & m_{1n} - r^*_1 \\
\vdots & \ddots & \vdots \\
m_{m1} - r^*_n & \cdots & m_{mn} - r^*_n
\end{pmatrix}, \quad C = \begin{pmatrix}
r^*_1 & \cdots & r^*_1 \\
\vdots & \ddots & \vdots \\
r^*_n & \cdots & r^*_n
\end{pmatrix}, \tag{4}
\]
and \(r^*_i = \max \{0, m_{ij} | i \neq j\} \).

Next, we will present an upper bound for \(\alpha_{\infty}(M) \) with each \(M_l \in R^{n \times n} (l = 0, 1, \ldots, k) \) being a DZ-B matrix. Before that, some useful results are presented as follows.
Proposition 3 Let \(A = (a_{ij}) \in R^{n \times n} \) and \(B = (b_{ij}) \in R^{n \times n} \) be all DZ-B matrices of the form
\[
A = B_A^* + C_A, \quad B = B_B^* + C_B,
\]
where \(B_A^*, B_B^*, C_A, C_B \) are as (4), and \(B_A^*, B_B^* \) are all DZ matrices and satisfy the hypotheses of Proposition 1. Then \((I - D)A + DB\) is also a DZ-B matrix for any \(D = \text{diag}(d_i) \) with \(d_i \in [0, 1] \) \((i \in N)\).

Proof Since both \(A \) and \(B \) are DZ-B matrices, then \(A \) and \(B \) can be split separately into
\[
(I - D)A + DB = (I - D)(B_A^* + C_A) + D(B_B^* + C_B)
\]
\[
= [(I - D)B_A^* + DB_B^*] + [(I - D)C_A + DC_B].
\]
By Proposition 1, we have that \((I - D)B_A^* + DB_B^*\) is a DZ matrix, and \((I - D)B_A^* + DB_B^*\) and \((I - D)C_A + DC_B\) satisfy formula (4). So, by Definition 3, \((I - D)A + DB\) is a DZ-B matrix.

Based on Proposition 3, Lemma 1, and the fact that a DZ-B matrix is nonsingular, we can prove the following result.

Proposition 4 If \(M_0, M_1, \ldots, M_k \) are all DZ-B matrices and each \(M_i \) \((i = 0, 1, \ldots, k)\) satisfies the hypotheses of Proposition 3, then each \(M'_i \) in \(M' \in R(M) \) is a DZ-B matrix, and consequently, \(M = (M_0, M_1, \ldots, M_k) \) has the row W-property.

Proof By Definition 1, for the \(i \)-th row \((M'_i)_i \) of \(M'_i \) \((i \in N)\), there exists \(l_i \in \{0, 1, \ldots, k\} \) such that \((M'_i)_i = (M_i)_i\), and \(M_i \) is a DZ-B matrix. So, it holds that
\[
M_{l_i} = B_l^* + C_{l_i}, \quad (M_i)_i = (B_l^*)_i + (C_{l_i})_i,
\]
that is,
\[
(M'_i)_i = (B_l^*)_i + (C_{l_i})_i, \quad M'_i = (B_l^*)_i + (C_{l_i})_i.
\]
By Proposition 2, \((B_l^*)_i\) is a DZ matrix, and \((B_l^*)_i\) and \((C_{l_i})_i\) satisfy formula (4). So, \(M'_i \) is a DZ-B matrix.

Let \(M'_j, M'_l \) be any two blocks in \(M' \in R(M) \), then \(M'_j \) and \(M'_l \) are all DZ-B matrices. By Proposition 3, \((I - D)M'_j + DM'_l\) is a DZ-B matrix for any \(D = \text{diag}(d_i) \) \((i \in N)\). Thus \((I - D)M'_j + DM'_l\) is nonsingular. By Lemma 1, the block matrix \(M = (M_0, M_1, \ldots, M_k) \) has the row W-property.

Theorem 7 Let \(M = (M_0, M_1, \ldots, M_k) \), and let each \(M_p \) be a DZ-B matrix of the form \(M_p = B_p^* + C_p \) as (4), and let \(B_p^* = ((b_p^{ij})_{ij}) \) satisfy the hypotheses of Proposition 3 for \(p = 0, 1, \ldots, k \). Then
\[
\alpha(M)_{\infty} \leq 2(n - 1) \max \left\{ \frac{\max \{\chi_{\max}^p\}}{\min\{\chi_{\min}^p\}} \frac{\max \{\chi_{\max}^p\}}{\min\{\chi_{\min}^p\}} \right\},
\]
where

\[
\begin{align*}
\chi_{\text{max}}^P &= \max_{\tau \in N} \left\{ \rho_{\tau} \right\}, \\
\chi_{\text{r}_1}^P &= \left| (b^P)_{\tau_1} \right| + \left| (b^P)_{\bar{\tau}_1} \right|, \\
\gamma_{\text{max}}^P &= \max_{\tau \in N} \left\{ \gamma_{\text{max}}^P \right\}, \\
\gamma_{\text{r}_1}^P &= \left| (b^P)_{\tau_1} \right| - r_1(B^P_1) + \left| (b^P)_{\bar{\tau}_1} \right| + r_1(B^P_1), \\
\lambda_{\text{min}}^P &= \min_{\tau \in N} \left\{ \lambda_{\text{min}}^P \right\}, \\
\lambda_{\text{r}_1}^P &= \left| (b^P)_{\tau_1} \right| - r_1(B^P_1) + \left| (b^P)_{\bar{\tau}_1} \right| - r_1(B^P_1) - \left| (b^P)_{\tau_{11}} \right|.
\end{align*}
\]

Proof. For any two blocks \(M^*_j, M^*_{j'} \) in \(M^* \in R(M) \) and any \(D = \text{diag}(d_i) \) with \(d_i \in [0, 1] \) \((i \in N) \), denote \(M_D = (m_{x,y}) = (I - D)M^*_j + DM^*_{j'} \). By Propositions 3 and 4, it holds that \(M^*_j, M^*_{j'}, \) and \(M_D \) are all \(DZ - B \) matrices, then we can split \(M^*_j = (B^*_j)' + (C^*_j)' \) and \(M^*_{j'} = (B^*_{j'})' + (C^*_{j'})' \) as (4). Let \((b^*_{i,j})' = ((b^*_{i,j})_{t_{ij}}) \) for \(t = j, l \). Since

\[
M_D = (I - D)M^*_j + DM^*_{j'},
\]

\[
= (I - D)[(B^*_j)' + (C^*_j)'] + D[(B^*_{j'})' + (C^*_{j'})']
\]

\[
= [(I - D)(B^*_j) + D(B^*_{j'})][(I - D)(C^*_j) + D(C^*_{j'})],
\]

then \(M_D = B^*_D + C_D \), where

\[
B^*_D = (b_{ir}) = (I - D)(B^*_j)' + D(B^*_{j'})', \quad C_D = (I - D)(C^*_j) + D(C^*_{j'})'.
\]

So, both \((B^*_j)' \) and \((B^*_{j'})' \) are \(DZ \) matrices with positive diagonal elements, and \(B^*_D \) is also a \(DZ \) matrix with positive diagonal entries by Proposition 1. Therefore, \(B^*_D \) is a nonsingular matrix, and

\[
M^{-1}_D = (B^*_D + C_D)^{-1} = (B^*_D(I + (B^*_D)^{-1}C_D))^{-1} = (I + (B^*_D)^{-1}C_D)^{-1}(B^*_D)^{-1},
\]

that is,

\[
\|M_D^{-1}\|_\infty \leq \|I + (B^*_D)^{-1}C_D\|_\infty \cdot \|B^*_D\|^{-1}\|_\infty \leq (n - 1)\|B^*_D\|^{-1}\|_\infty,
\]

where the last equality holds because \(\|I + (B^*_D)^{-1}C_D\|_\infty \leq (n - 1) \), see Theorem 2.2 in [9].

In fact, since \((B^*_j)' \), \((B^*_{j'})' \), and \(B^*_D \) are all \(DZ \) Z-matrices with positive diagonal elements, by Theorem 5, we have that

\[
\| (B^*_D)^{-1} \|_\infty \leq \max_{t \in N, t \neq l} \left\{ \max_{t \in N, t \neq l} \alpha_1(B^*_D), \max_{t \in N, t \neq l} \alpha_2(B^*_D) \right\}
\]

holds for each matrix \(D = \text{diag}(d_i) \) with \(d_i \in [0, 1] \) \((i \in N) \), where

\[
\alpha_1(B^*_D) = \frac{|b_{ir}| + |b_{ir}|}{(|b_{t+1}r_1| - r_1(B^*_D)^{-1}|b_{i+1}|) - |b_{ir}|r_1(B^*_D)^{-1}},
\]

\[
\alpha_2(B^*_D) = \frac{|b_{i+1}r_1| - r_1(B^*_D)^{-1} + |b_{ir}| + r_1(B^*_D)^{-1}}{(|b_{t+1}r_1| - r_1(B^*_D)^{-1}|b_{i+1}|) - |b_{ir}|r_1(B^*_D)^{-1}}.
\]
Hence, we get

\[
|b_{ti}| + |b_{ji}| = (1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i})) + \alpha_{t}(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))
\]

\[
< [(|b'_{ti}| - |b'_{ti}|) + [|b'_{ji}] + [(|b'_{ti}| - |b'_{ti}|)]
\]

\[
= (\chi'_{ti}) - (\chi'_{ti}) = 2 \max_{t \in I, j} (\chi'_{max})
\]

where

\[
(\chi'_{max}) = \max_{t \in I} (\chi'_{ti})
\]

Therefore, we have

\[
(|b_{ti}| - r_{t}(B'_{i}) + |b_{ti}| - |r_{i}(B'_{i})|)
\]

\[
= [(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i})) + \alpha_{t}(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))]
\]

\[
\times [(1 - \alpha_{t})(|b'_{ji}| + \alpha_{t}(|b'_{ji}|)]
\]

\[
= [(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i})) + \alpha_{t}(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))]
\]

\[
+ (1 - \alpha_{t})\alpha_{t}(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))
\]

\[
+ \alpha_{t}(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))
\]

\[
+ \alpha_{t}(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))
\]

\[
+ \alpha_{t}(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))
\]

\[
> (1 - \alpha_{t})(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ti}| - r_{t}(B'_{i}))
\]

\[
+ (1 - \alpha_{t})\alpha_{t}(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))
\]

\[
+ \alpha_{t}(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))
\]

\[
+ \alpha_{t}(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))
\]

\[
= (1 - \alpha_{t})(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ti}| - r_{t}(B'_{i}))
\]

\[
+ \alpha_{t}(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))
\]

\[
+ \alpha_{t}(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))
\]

\[
+ \alpha_{t}(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))
\]

\[
= (1 - \alpha_{t})(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ti}| - r_{t}(B'_{i}))
\]

\[
+ \alpha_{t}(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))
\]

\[
+ \alpha_{t}(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))
\]

\[
= (1 - \alpha_{t})(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ti}| - r_{t}(B'_{i}))
\]

\[
+ \alpha_{t}(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))
\]

\[
+ \alpha_{t}(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))
\]

\[
= (1 - \alpha_{t})(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ti}| - r_{t}(B'_{i}))
\]

\[
+ \alpha_{t}(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))
\]

\[
+ \alpha_{t}(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))
\]

\[
= (1 - \alpha_{t})(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ti}| - r_{t}(B'_{i}))
\]

\[
+ \alpha_{t}(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))
\]

\[
+ \alpha_{t}(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))
\]

\[
= (1 - \alpha_{t})(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ti}| - r_{t}(B'_{i}))
\]

\[
+ \alpha_{t}(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))
\]

\[
+ \alpha_{t}(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))
\]

\[
= (1 - \alpha_{t})(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ti}| - r_{t}(B'_{i}))
\]

\[
+ \alpha_{t}(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))
\]

\[
+ \alpha_{t}(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))
\]

\[
= (1 - \alpha_{t})(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ti}| - r_{t}(B'_{i}))
\]

\[
+ \alpha_{t}(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))
\]

\[
+ \alpha_{t}(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))
\]

\[
= (1 - \alpha_{t})(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ti}| - r_{t}(B'_{i}))
\]

\[
+ \alpha_{t}(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))
\]

\[
+ \alpha_{t}(1 - \alpha_{t})(|b'_{ti}| - r_{t}(B'_{i}) + |b'_{ji}| - r_{j}(B'_{j}))
\]
where

$$(\lambda_{\text{max}}^t)' = \min_{t \in N} (\lambda_{\text{max}}^t)'$$

and

$$(\lambda_{\text{max}}^t)' = |(b'_{ij})_{i} - |(b'_{ij})_{i}| |r_{i}(B_{D}^t) + |(b'_{ij})_{i}|$$

Further, we get

$$\alpha_1(B_{D}^t) = \frac{|b_{ij}| + |b_{il}|}{(|b_{ij}| - r_{i}(B_{D}^t) + |b_{il}| - |b_{il}| r_{i}(B_{D}^t))}$$

$$\geq \frac{2 \max_{t \neq j} (\gamma_{\text{max}}^t)'}{(1 - d_{i})(1 - d_{j})(\lambda_{\text{max}}^t)' + d_{i} \lambda_{\text{max}}^t)'}$$

and

$$|b_{ij}| + |b_{il}| + r_{i}(B_{D}^t)$$

$$= [(1 - d_{i})(|b_{ij}| - r_{i}(B_{D}^t)' + |b_{il}| - |b_{il}| r_{i}(B_{D}^t)' - [(1 - d_{i}) |r_{i}(B_{D}^t)'] + d_{i} r_{i}(B_{D}^t)']$$

$$+ [(1 - d_{i})(|b_{ij}| - r_{i}(B_{D}^t)' + |b_{il}| - |b_{il}| r_{i}(B_{D}^t)' - [(1 - d_{i}) |r_{i}(B_{D}^t)'] + d_{i} r_{i}(B_{D}^t)']$$

$$= (1 - d_{i})[(|b_{ij}| - r_{i}(B_{D}^t)' + |b_{il}| - |b_{il}| r_{i}(B_{D}^t)']$$

$$+ d_{i}[(|b_{ij}| - r_{i}(B_{D}^t)' + |b_{il}| - |b_{il}| r_{i}(B_{D}^t)'] + [(1 - d_{i}) |r_{i}(B_{D}^t)'] + d_{i} r_{i}(B_{D}^t)']$$

$$< [(|b_{ij}| - r_{i}(B_{D}^t)' + |b_{i}| - r_{i}(B_{D}^t)']$$

$$+ [(|b_{ij}| - r_{i}(B_{D}^t)' + |b_{il}| - r_{i}(B_{D}^t)'] + [(1 - d_{i}) |r_{i}(B_{D}^t)'] + d_{i} r_{i}(B_{D}^t)']$$

$$= (\gamma_{j}^t)' + (\gamma_{i}^t)'$$

$$\leq 2 \max_{t \neq j} (\gamma_{\text{max}}^t)'$$

where

$$(\gamma_{\text{max}}^t)' = \max_{t \neq j} (\gamma_{\text{max}}^t)'$$

and

$$(\gamma_{j}^t)' = |(b_{ij})_{i} - r_{i}(B_{D}^t)' + |(b_{i})_{i}| + r_{i}(B_{D}^t)', \quad t = j, l$$

and

$$\alpha_2(B_{D}^t) = \frac{|b_{ij}| - r_{i}(B_{D}^t) + |b_{il}| + r_{i}(B_{D}^t)}{(|b_{ij}| - r_{i}(B_{D}^t) + |b_{il}| - |b_{il}| r_{i}(B_{D}^t))}$$

$$\leq \frac{2 \max_{t \neq j} (\gamma_{\text{max}}^t)'}{(1 - d_{i})(1 - d_{j})(\lambda_{\text{max}}^t)' + d_{i} \lambda_{\text{max}}^t)'}$$
By the arbitrariness of (M_i, M'_i), and thus for $i \in N$, there exists $i \in \{0, 1, \ldots, k\}$ such that
\[
\begin{align*}
(\chi_{ij}^t)' &= \phi_{ij}^t, \\
(\gamma_{ij}^t)' &= \gamma_{ij}^t, \\
(\lambda_{ij}^t)' &= \lambda_{ij}^t,
\end{align*}
\]
this implies that
\[
\begin{align*}
\max_{t-j,l} (\chi_{ij}^t)' &= \max_{t-j,l} \{ \max_{t \in N} (\chi_{ij}^t)' \} = \max_{t \in N} \{ \max_{t \in N} (\chi_{ij}^t)' \} \\
&= \max_{t \in N} \{ \max_{t \in N} (\chi_{ij}^t)' \} \\
&= \max_{p=0,1,\ldots,k} \{ \max_{t \in N} (\chi_{ij}^t)' \} = \max_{p=0,1,\ldots,k} \{ \chi_{ij}^p \},
\end{align*}
\]

Similarly, we get
\[
\begin{align*}
\max_{t-j,l} (\gamma_{ij}^t)' &= \max_{t \in N} \{ \max_{t \in N} (\gamma_{ij}^t)' \} \\
&= \max_{p=0,1,\ldots,k} \{ \gamma_{ij}^p \},
\end{align*}
\]
and
\[
\begin{align*}
\min_{t \in N} \{ (\lambda_{ij}^t)' \} &= \min_{t \in N} \{ \min_{t \in N} (\lambda_{ij}^t)' \} = \min_{t \in N} \{ \min_{t \in N} (\lambda_{ij}^t)' \} \\
&= \min_{t \in N} \{ \min_{t \in N} (\lambda_{ij}^t)' \} = \min_{p=0,1,\ldots,k} \{ \lambda_{ij}^p \}.
\end{align*}
\]

Thus, for any two blocks (M_i, M'_i) in $M' \in \mathcal{R}(M)$, we have
\[
\alpha(M)_{\infty} \leq 2(n-1) \max \left\{ \frac{\max_{p \in \{0,1,\ldots,k\}} \max_{t \in N} (\gamma_{ij}^t)}{\min_{t \in N} (\lambda_{ij}^p)}, \frac{\max_{p \in \{0,1,\ldots,k\}} \max_{t \in N} (\gamma_{ij}^t)}{\min_{t \in N} (\lambda_{ij}^p)} \right\}, \quad p = 0, 1, \ldots, k.
\]

By the arbitrariness of M_i and M_i', the conclusion follows.

We illustrate our results with the following two examples.
Example 3 Let $M = (M_0, M_1, M_2)$, and let each M_p be $DZ-B$ matrices and SDD matrices of the form $M_p = B^+_p + C_p$ ($p = 0, 1, 2$) as (4), where

$$
M_0 = \begin{bmatrix}
3.5 & 1.5 & 0.5 \\
1 & 4 & -0.5 \\
-0.86 & 1.64 & 4.64
\end{bmatrix}, \quad M_1 = \begin{bmatrix}
3.2 & 0.2 & -2 \\
0.1 & 2.1 & 0.9 \\
-1.84 & 0.16 & 3.16
\end{bmatrix},
$$

$$
M_2 = \begin{bmatrix}
2.78 & 0.78 & -0.22 \\
1.74 & 3.5 & 1.7 \\
-0.12 & 0.5 & 3.5
\end{bmatrix}, \quad B^+_0 = \begin{bmatrix}
2 & 0 & -1 \\
0 & 3 & -1.5 \\
-2.5 & 0 & 3
\end{bmatrix},
$$

$$
B^+_1 = \begin{bmatrix}
3 & 0 & -2.2 \\
0 & 2 & -1 \\
-2 & 0 & 0
\end{bmatrix}, \quad B^+_2 = \begin{bmatrix}
2 & 0 & -1 \\
0 & 1.76 & -0.04 \\
-0.62 & 0 & 3
\end{bmatrix},
$$

Thus $M = (M_0, M_1, M_2)$ has the row W-property. By Theorem 7, it holds that

$$\alpha_\infty(M) \leq 14.6667.$$

By Theorem 3 (Theorem 4.4 of [1]), we have

$$\alpha_\infty(M) \leq 16.6667.$$

Since

$$\rho(\max(\Lambda_0^{-1}|B_0|, \Lambda_1^{-1}|B_1|, \Lambda_2^{-1}|B_2|)) = 0.9909 < 1,$$

then by Theorem 4 (Theorem 4.3 of [1]), we get

$$\alpha_\infty(M) \leq 42.8184.$$

Example 4 Let $M = (M_0, M_1, M_2)$, and let M_p be $DZ-B$ matrices of the form $M_p = B^+_p + C_p$ ($p = 0, 1, 2$) as (4), where

$$
M_0 = \begin{bmatrix}
3.5 & 1.5 & 0.5 \\
1 & 4 & -0.5 \\
-0.86 & 1.64 & 4.64
\end{bmatrix}, \quad M_1 = \begin{bmatrix}
3.2 & 0.2 & -2 \\
0.1 & 2.1 & 0.9 \\
-1.84 & 0.16 & 3.16
\end{bmatrix},
$$

$$
M_2 = \begin{bmatrix}
2.78 & 0.78 & -0.22 \\
2 & 3.5 & 1.7 \\
-0.12 & 0.5 & 3.5
\end{bmatrix}, \quad B^+_0 = \begin{bmatrix}
2 & 0 & -1 \\
0 & 3 & -1.5 \\
-2.5 & 0 & 3
\end{bmatrix},
$$

$$
B^+_1 = \begin{bmatrix}
3 & 0 & -2.2 \\
0 & 2 & -1 \\
-2 & 0 & 0
\end{bmatrix}, \quad B^+_2 = \begin{bmatrix}
2 & 0 & -1 \\
0 & 1.5 & -0.3 \\
-0.62 & 0 & 3
\end{bmatrix}.
$$

Thus $M = (M_0, M_1, M_2)$ has the row W-property. It is easy to check that M_2 is not SDD and

$$\rho(\max(\Lambda_0^{-1}|B_0|, \Lambda_1^{-1}|B_1|, \Lambda_2^{-1}|B_2|)) = 1.0347 > 1.$$.
Hence, we cannot use these bounds in Theorems 3 and 4 to estimate $\alpha_\infty(M)$. But, by Theorem 7, we get

$$\alpha_\infty(M) \leq 14.6667.$$

Examples 3 and 4 show that the bound in Theorem 7 is sharper than that in Theorems 3 and 4 in some cases.

5 Conclusions
In this paper, we present global error bounds for the extended vertical linear complementarity problems of DZ matrices and $DZ-B$ matrices. These bounds are expressed in terms of elements of the matrices, so they can be checked easily. Numerical examples show the feasibility of new results. Finding computable global error bounds for the extended vertical linear complementarity problems of other matrices ($S-SOB$ matrices, $S-SOB-B$ matrices, weakly chained diagonally dominant B-matrices, SB-matrices, etc.) under some additional conditions is an interesting problem. It is worth studying in the future.

Acknowledgements
The authors would like to thank anonymous referees and editors for their valuable comments and thoughtful suggestions, which improved the original manuscript of this paper.

Funding
This research is supported by Guizhou Provincial Science and Technology Projects (20191161, 20181079), the Natural Science Research Project of Department of Education of Guizhou Province (QJJ2022015), the Talent Growth Project of Education Department of Guizhou Province (2018143), and the Research Foundation of Guizhou Minzu University (2019YB08).

Availability of data and materials
Data sharing not applicable to this article as no data were generated or analyzed during the current study.

Declarations

Competing interests
The authors declare no competing interests.

Author contribution
YXZ: original draft writing, review writing, and editing. DSS: conceptualization, supervision, and funding acquisition. All authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 12 April 2022 Accepted: 29 August 2022 Published online: 08 September 2022

References
1. Zhang, C., Chen, X.J., Xiu, N.H.: Global error bounds for the extended vertical LCP. Comput. Optim. Appl. 42(3), 335–352 (2009)
2. Cottle, R.W., Dantzig, G.B.: A generalization of the linear complementarity problem. J. Comb. Theory 8(1), 79–90 (1970)
3. Yong, L.Q.: Linear complementarity problem and multiobjective optimization. Appl. Mech. Mater. 101–102, 236–239 (2011)
4. Stavroulakis, G.E.: Impact-echo form a unilateral interlayer crack. LCP-BEM modelling and neural identification. Eng. Fract. Mech. 62(2), 165–184 (1999)
5. Genot, F., Brogliato, B., Brach, R.M., et al.: On LCPs and tangential impacts in rigid body mechanics with unilateral constraints and dry friction. IFAC Proc. Vol. 30(20), 809–816 (1997)
6. Mathias, R., Pang, J.S.: Error bounds for the linear complementarity problem with a P-matrix. Linear Algebra Appl. 132, 123–136 (1990)
7. Wang, F., Sun, D.S.: New error bounds for linear complementarity problems for B-matrices. Linear Multilinear Algebra 66(11), 2156–2167 (2018)
8. Chen, X.J., Xiang, S.H.: Computation of error bounds for P-matrix linear complementarity problems. Math. Program. 106(3), 513–525 (2006)
9. García-Esnaola, M., Peña, J.M.: β^p -matrices and error bounds for linear complementarity problems. Calcolo 25, 813–822 (2017)
10. García-Esnaola, M., Peña, J.M.: Error bounds for linear complementarity problems for B-matrices. Appl. Math. Lett. 22(7), 1071–1075 (2009)
11. Gao, L., Wang, Y.Q., Li, C.Q.: New error bounds for the linear complementarity problem of QN-matrices. Numer. Algorithms 77, 229–242 (2018)
12. Li, C.Q., Li, Y.T.: Weakly chained diagonally dominant B-matrices and error bounds for linear complementarity problem. Numer. Algorithms 73, 985–998 (2016)
13. Dai, P.F., Li, J.C., Li, Y.T., et al.: Error bounds for linear complementarity problems of QN-matrices. Calcolo 53, 647–657 (2016)
14. Gowda, M.S., Sznajder, R.: The generalized order linear complementarity problem. SIAM J. Matrix Anal. Appl. 15(3), 779–795 (1994)
15. Sznajder, R., Gowda, M.S.: Generalizations of P_0- and P-properties; extended vertical and horizontal linear complementarity problems. Linear Algebra Appl. 223–224, 695–715 (1995)
16. Xiu, N.H., Zhang, J.Z.: A characteristic quantity of P-matrices. Appl. Math. Lett. 15(1), 41–46 (2002)
17. Dashníc, L.S., Zusmanovich, M.S.: O nekotoryh kriteriyah regulyarnosti matric i lokalizacii ih spectra. Ž. Vyčisl. Mat. Mat. Fiz. 5, 1092–1097 (1970)
18. Li, Y.Y.: Estimation of upper bound of inverse infinite norm of Dashnic–Zusmanovich matrix. J. Southwest China Norm. Univ. 44(6), 10–13 (2019)
19. Zhou, P., Huang, W.H.: Improvement of error bound estimators for linear complementarity problems of DZ matrices and DZ-B matrices. J. Sichuan Univ. Sci. Eng. 33(4), 77–82 (2020)