Features of IR reflection spectra of β-Tl$_{1-x}$Cu$_x$InS$_2$ single crystals ($0 \leq X \leq 0.015$)

A Kh Matiyev1,2, R T Uspazhiyev1,3, A M Gachaev1,3, I A Sysoev4, B M Khamkhoev5, T Ah Matieva5, Kh S-G Chapanov2 and A M Bagov6

1 Grozny State Oil Technical University named after M.D. Millionshikov, 100, H.A. Isaeva ave., Grozny, 364051, Russia
2 Ingush State University, 7, I.B. Zyzikova ave., Magas, 386001, Russia
3 Kh. Ibragimov Complex Institute of the Russian Academy of Sciences, 21a, Staropromyslovskoe highway, Grozny, 364906, Russia
5 North Caucasus Federal University, 1, Pushkin str., Stavropol, 1355017, Russia
6 Physical Institute named after P.N. Lebedev of the Russian Academy of Sciences, 53, Leninsky Prospekt, Moscow, 119991 GSP-1, Russia
7 Kabardino-Balkaria State University named after Kh.M. Berbekov, 173, Chernyshevsky st., Nalchik, 360004, Russia

E-mail: matiyev-akhmet@yandex.ru

Abstract. The method of long-wave spectroscopy made it possible to study the IR reflection spectra of layered single crystals β-Tl$_{1-x}$Cu$_x$InS$_2$ ($0 \leq X \leq 0.015$) in the frequency range of 40-500 cm$^{-1}$ and the temperature range of 84 ÷ 300 K. It was shown that partial substitution of thallium atoms with copper atoms leads to a decrease in the frequencies of the corresponding oscillations in the frequency range of 40-500 cm$^{-1}$ and does not lead (at these concentrations) to local oscillations. It was found that solid solutions β-Tl$_{1-x}$Cu$_x$InS$_2$ ($X= 0 \div 0.015$) exhibit the characteristic single-mode behavior. It was shown that partial substitution of thallium atoms with copper atoms in single crystals β-Tl$_{1-x}$Cu$_x$InS$_2$ ($X = 0.005; 0.010; 0.015$) weakens the ionic bond in Tl – S, as a result of which the frequencies of “internal” oscillations shift towards low temperatures.

1. Introduction
In recent years, the researchers have been paying great attention to the study of the zone structure, lattice dynamics and physical properties of semiconductor compounds of TlB$_3$C$_6$ class [1, 7-24]. This allows identifying the patterns that determine the dependence of properties on the composition, structure and nature of the chemical bond, which, in turn, makes it possible to conduct a targeted search for materials that ensure a given combination of physical properties. Highly dispersed and thin film materials with characteristic dimensions of tens and units of nanometers are increasingly used in semiconductor opto- and quantum electronics. The quality of such films and, as a rule, the parameters of the devices based on them depend on the conditions of thin films formation, the size and orientation of crystallites, and the kinetic parameters of phase transformations.

This makes the compounds TIB$_3$C$_6$ particularly interesting both from the point of view of understanding the fundamental features of the crystalline structure of layered semiconductors and from...
the point of view of practical application. The ability of these layered crystals to fold into plates with reflecting edges resulting from the sharp asymmetry of the chemical bond makes them promising materials for photoelectric converters.

It is known that the constituents TlB\(^3\)C\(^6\)\(_2\) (B-In, Ga; C- S, Se) of cations Tl\(^{+1}\) and B\(^{+3}\) are the elements of the third group and ensure various coordination of atoms, valence states and the nature of chemical bonds. These features cause sharp anisotropy of the physical properties of this group of materials. Physical characteristics and phase composition are also critical for thin-film solar cells.

2. Materials and methods
The paper presents the results of an experimental study of the IR reflection spectra of \(\beta\)-Tl\(_{1-x}\)Cu\(_x\)InS\(_2\) \((0 \leq X \leq 0.015)\) single crystals in the frequency range of 40-500 cm\(^{-1}\) and the temperature range of 84 ÷ 300 K.

Single crystals were grown using a modified Bridgman-Stockbarger method. The resulting crystals were p-type and had the resistivity of \(10^8 - 10^{10}\) Ohm-cm at 300 K. The band gap width = 2.18 eV, mobility = 65 cm\(^2\)/V·s. The samples for measurements were obtained by folding along the cohesion plane from massive \(\beta\)-Tl\(_{1-x}\)Cu\(_x\)InS\(_2\) single crystals and had dimensions of 5 x 8 x 2 mm\(^3\). Since the samples after shearing had pronounced mirror surfaces, they were not filled and polished.

The IR spectra were measured at the DVIX unit (long-wave vacuum IR spectrometer) created on the basis of the FIS-21 spectrometer [2]. The DVIX unit differs from the branded FIS-21 by the fact that an additional focus is created in the cuvette compartment of the spectrometer using the IPO-22 attachment. The IR reflection in the temperature range of 84 ÷ 300 K was measured from the planes of the fresh chipping of \(\beta\)-Tl\(_{1-x}\)Cu\(_x\)InS\(_2\) \((X = 0 ÷ 0.015)\) single crystals in geometry \(E \perp C\). The resolution throughout the spectrum was about 1 cm\(^{-1}\). The spectra of the imaginary portion of the dielectric constant \(\varepsilon'\) and the loss function \(\text{Im}[\varepsilon^{-1}]\) were calculated based on the Kramers-Kronig analysis [2].

Low temperature measurements of IR reflection were carried out using a cryostat device [3]. The temperature pitch made 5 ÷ 10° C. The system allows stabilizing the established intermediate temperature with an accuracy of at least ± 0.5 K.

3. Results and discussion
The analysis of the state of the oscillations' spectra \(\beta\)-TlInS\(_2\) crystals [4] showed, in particular, that the section of the IR reflection spectrum 250 ÷ 350 cm\(^{-1}\) is associated with oscillations of Tl –S atoms. Since thallium atoms in \(\beta\)-Tl\(_{1-x}\)Cu\(_x\)InS\(_2\) single crystals are partially replaced by copper atoms, all the intended features were to be observed precisely in the above frequency region. Proceeding from it, all our attention was drawn to the study of concentration and temperature features of IR-reflection ranges of \(\beta\)-Tl\(_{1-x}\)Cu\(_x\)InS\(_2\) \((X = 0 ÷ 0.015)\) single crystals in the frequency range of 250 ÷ 350 cm\(^{-1}\).

Figure 1 shows the IR-reflection spectra of \(\beta\)-Tl\(_{1-x}\)Cu\(_x\)InS\(_2\) \((X = 0 ÷ 0.015)\) single crystals at 84 K and 300 K. The figure shows that the frequency range of \(\varepsilon > 250\) cm\(^{-1}\) on IR-reflection spectra of \(\beta\)-Tl\(_{0.0985}\)Cu\(_{0.015}\)InS\(_2\) single crystals shows a shift of the corresponding oscillations towards low frequencies. Besides, in the frequency range of 250 ÷ 350 cm\(^{-1}\) at a temperature drop to 84 K, the IR-reflection spectrum splits.
Figure 1. Reflection spectra of β-Tl$_{1-x}$Cu$_x$InS$_2$ single crystals at 300 K (a) and 84 K (b): 1 - $x = 0.0$; 2 - $x = 0.015$.

Figure 2. Reflection spectra of β-Tl$_{1-x}$Cu$_x$InS$_2$ single crystals at 84 K (a) and 300 K (b): 1 - $x = 0.0$; 2 - $x = 0.005$; 3 - $x = 0.010$; 4 - $x = 0.015$.

Figure 3. Dispersion of the imaginary component of dielectric permeability $\varepsilon'(\nu)$ of β-Tl$_{1-x}$Cu$_x$InS$_2$ single crystals at 84 K (a) and 300 K (b): 1 - $x = 0.0$; 2 - $x = 0.005$; 3 - $x = 0.010$; 4 - $x = 0.015$.
Figures 2, 3 shows the spectra of IR reflection and $\varepsilon'(\nu)$ of β-Tl$_{1-x}$Cu$_x$In$_2S$ ($X = 0$-0.015) single crystals at 84 K and 300 K. As expected, the analysis of the figures makes it possible to conclude that partial substitution of thallium atoms with copper atoms leads to a decrease in the frequencies of the corresponding oscillations in the indicated section of the spectrum. This decrease is most noticeable at low and to a much lesser extent at room temperature.

![Figure 2: Spectra of IR reflection and $\varepsilon'(\nu)$](image1)

![Figure 3: Spectra of IR reflection and $\varepsilon'(\nu)$](image2)

Figure 4. Dispersion of function $\text{Im}[-\varepsilon(\nu)^{-1}]$ of β-Tl$_{1-x}$Cu$_x$In$_2S$ single crystals at 84 K (a) and 300 K (b): 1 - $x = 0.0$; 2 - $x = 0.005$; 3 - $x = 0.010$; 4 - $x = 0.015$.

![Figure 5: Dependence of IR active phonon frequencies on the composition of solid solutions β-Tl$_{1-x}$Cu$_x$In$_2S$ at 84 K](image3)
A similar effect of copper atoms is observed on spectra $\text{Im} [-\varepsilon (\nu)^{-1}]$ (Figure 4). Figure 5 shows the dependence of the IR active phonon frequencies on the composition of solid solutions β-Tl$_{1-x}$Cu$_x$InS$_2$ ($X = 0 \div 0.015$).

The analysis of IR-reflection ranges shows that partial replacement of thallium atoms with copper atoms in an atomic sublattice of β-TlInS$_2$ crystals does not lead (at these concentration) to local fluctuations. Solid solutions β-Tl$_{1-x}$Cu$_x$InS$_2$ ($X = 0 \div 0.015$) show characteristic features of single-mode behavior $\varepsilon''(\nu)$. According to the existing concepts [5], when replacing a heavy atom with a lighter one, the frequency of the corresponding oscillation should shift towards large frequency values. In solid solutions β-Tl$_{1-x}$Cu$_x$InS$_2$ ($X = 0.005; 0.01; 0.015$) the opposite is observed, i.e. partial substitution of thallium atoms with copper atoms leads to a decrease in the frequencies of the corresponding optical phonons. It seems that in addition to the mass factor, a sharp change in the bond force between atoms plays a significant role here. In our opinion, the partial substitution of thallium atoms with copper atoms leads to a significant decrease in the Tl – S bond force. As the concentration of copper atoms increases, the frequencies of the corresponding oscillations decrease.

On the other hand, the substitution of thallium atoms with copper atoms reduces the temperature dependence of the frequencies of the corresponding oscillations (Figures 2, 3). As follows from [6], the temperature dependence of frequencies of normal modes can be caused by two mechanisms – thermal expansion of the crystal lattice and anharmonic coupling of oscillations. It should be noted that the above mechanisms of different anharmonicity of paired interaction potential between atoms are that the first is associated with intramodal anharmonicity, and the second – with intermodal. Since in β-Tl$_{1-x}$Cu$_x$InS$_2$ crystals (Figure 3), when the temperature decreases, there is a narrowing of the bands to a half-width value, the most likely reason for the weakening of the temperature dependence of the bands is often considered a decrease in the coefficient of thermal expansion. This means that the introduced copper atoms quite strongly disturb the β-TlInS$_2$ crystal lattice, especially at low temperatures.

Table 1. Frequencies of longitudinal (LO), transverse (TO) optical phonons and optical constants of β-Tl$_{1-x}$Cu$_x$InS$_2$ single crystals at 84 K

	$x = 0$	$x = 0.005$	$x = 0.01$	$x = 0.015$				
ν, cm$^{-1}$	$4\pi \nu$	ν, cm$^{-1}$	$4\pi \nu$	ν, cm$^{-1}$	$4\pi \nu$			
TO_1	314	1.349	308	2.222	308	2.109	309	0.950
LO_1	342	336	336	337				
TO_2	302	149	298	2.222	297	2.109	295	0.910
LO_2	329	325	323	323				
TO_3	287	1.207	281	2.450	282	2.331	282	0.850
LO_3	311	309	305	307				
TO_4	277	0.639	273	0.351	272	0.333	272	0.150

The frequencies of longitudinal (LO), transverse (TO) optical phonons and optical constants of β-Tl$_{1-x}$Cu$_x$InS$_2$ ($X = 0 \div 0.015$) single crystals at 84 K are given in Table 1. The static dielectric constant was determined from the Liddane-Sachs-Teller ratio:
Oscillator forces were determined from the ratio:

\[4\pi\rho = \varepsilon_0 - \frac{\nu^2}{V_n^2} \]

Table 2. Frequencies of longitudinal (\(LO\)) and transverse (\(TO\)) optical phonons of \(\beta\)-TlInS\(_2\) and \(\beta\)-Tl\(_{1-x}\)Cu\(_x\)InS\(_2\) single crystals at 300 k

	\(v\), cm\(^{-1}\) [o.d.]	\(v\), cm\(^{-1}\) [8]	\(v\), cm\(^{-1}\) [8]	\(v\), cm\(^{-1}\) [o.d.]
\(TO_1\)	-	33	-	-
\(LO_1\)	-	38	-	-
\(TO_2\)	47	48	-	48
\(LO_2\)	55	54	-	52
\(TO_3\)	90	89	79	88
\(LO_3\)	98	97	96	97
\(TO_4\)	123	129	123	126
\(LO_4\)	142	142	142	142
\(TO_5\)	266	265	264	263
\(LO_5\)	277	278	280	275
\(TO_6\)	293	297	295	292
\(LO_6\)	324	329	380	320
\(TO_7\)	459	-	-	444
\(LO_7\)	496	-	-	484

Note: o.d. – our data

Table 2 shows the results of comparative analysis of literature data regarding frequencies (\(TO\)) and (\(LO\)) of \(\beta\)-TlInS\(_2\) crystal phonons with the data obtained from our experiments for \(\beta\)-Tl\(_{1-x}\)Cu\(_x\)InS\(_2\) (\(X = 0 \div 0.015\)) at 300 K. The comparison of the results of low-temperature studies was not possible, since there are no research results of low-temperature measurements.

By analyzing Tables 1, 2 and having tracked the change of the corresponding oscillations with transition from \(\beta\)-TlInS\(_2\) to \(\beta\)-Tl\(_{1-x}\)Cu\(_x\)InS\(_2\) (\(X = 0 \div 0.015\)) it is possible to conclude that copper atoms, in fact, replace thallium atoms in Tl – S systems.

4. Conclusion

It was shown that partial substitution of thallium atoms with copper atoms leads to a decrease in the frequencies of the corresponding oscillations in the frequency range of 40-500 cm\(^{-1}\) and does not lead (at these concentrations) to local oscillations. It was found that \(\beta\)-Tl\(_{1-x}\)Cu\(_x\)InS\(_2\) (\(X = 0 \div 0.015\)) solid solutions show characteristic features of single-mode behavior. It was shown that partial substitution of thallium atoms with copper atoms in \(\beta\)-Tl\(_{1-x}\)Cu\(_x\)InS\(_2\) (\(X = 0.005; 0.010; 0.015\)) single crystals leads to a weakening of the Tl – S ionic bond thus resulting in the shift of the frequencies of “internal” oscillations towards low temperatures.

References
[1] Matiev A Kh 2005 Phase equilibria and electron-optical properties of TiB²C²-A⁻¹B³C₆₂ systems (A-Cu, Ag; B-In, Ga; C-S, Se) The dissertation for the competition uch. Art. Dr. Physics and Mathematics Sciences (UISU)

[2] Burlakov V M 1982 Extended abstract of the dissertation of the candidate of physics and mathematics (Troitsk)

[3] Bogdanskis N I and Zhizhin G N 1974 Bulletin of Inventions AS USSR 33, 148.

[4] Gasanly N M and Dzhovadov B M 1982 Physica B-C 112 B 1 78.

[5] Kitel C 1978 Introduction to solid state physics (Moscow: Science)

[6] Burlakov B M, Vinogradov E A et al. 1984 FTT 26(5) 1271

[7] Sheleg A.U, Shevtsova V.V, Mustafaeva S.N and Kerimov E.M 2013 Low-temperature radiographic studies of TlInS₂, TlGaS₂ and TlGaSe₂ Surface X-ray, synchrotron and neutron studies 11 39-42

[8] S A Kaabi, N A Drozdov and O V Korolev 2018 Optical absorption and combination scattering of light in doped crystals TlGaSe₂ and TlInS₂ Bulletin of Saratov University New series Physics 18(2) 112-122.

[9] Matiev A Kh, Uspazhiev R T, et al 2019 «Phasing Diagrams of TiGaSe₂ - CuGaSe₂ and TlInS₂ - CuInS₂ Systems». International Symposium "Engineering and Earth Sciences: Applied and Fundamental Research" (ISEES 2019) Atlantis Highlights in Material Sciences and Technology (AHMST) I 253-256

[10] Kashida S and Kobayashi Y 1999 X-ray study of the incommensurate phase of TlInS₂. J. Phys.: Condens. Matter. 11 1027–1035

[11] Isaaks T G and Feichtner J D 1975 Growth and optical properties of TiGaSe₂ and β-TlInS₂. J. Solid State Chem. 14 260–263

[12] Shim Y, Okada W, Wakita K and Mamedov N 2007 Refractive indices of layered semiconductor ferroelectrics TlInS₂, TlGaS₂ and TlGaSe₂ from ellipsometric measurements limited to only layer-plane surfaces J. Appl. Phys. 102 083537

[13] Mustafaeva S N, Ismailov A A and Akhmedzade N D 2006. Electric properties of TlInS₂ single crystals. Semiconduct. Phys., Quant. Electron. & Optoelectron 9 82–84

[14] Say A, Martynyuk-Lototska I, Adamenko D 2017. Thermal expansion anisotropy of β-TlInS₂ crystals in the course of phase transitions Phase Trans 90 1–8

[15] Martynyuk-Lototska I, Trach I, Kokhan O and Vlokh R 2017 Efficient acousto-optic crystal, TlInS₂: acoustic and elastic anisotropy Appl. Opt 56 3179–3184

[16] Lei C, Chen L, and Du Y 2016 Enhancement of magnetooptical Faraday effects and extraordinary optical transmission in a tri-layer structure with rectangular annular arrays Opt Lett 41 729–732

[17] Adamenko D, Vasylkiv Yu and Vlokh R 2017 Faraday effect in TlInS₂ crystals. Ukr. J. Phys. Opt. 18 4 197-200

[18] S F, Samedov O A et al. 2019 Dielectric and electrical properties of near-surface layers of TlInS₂ crystals under the proton irradiation International Journal of Modern Physics B 33 (27) 1950320

[19] Klaus-Jürgen Range, Gerd Engert, Wiking Müller and Armin Weiss 2014 Hochdrucksynthese und Kristallstrukturen von TlInS₂-II und TlInS₂-III / High Pressure Synthesis and Crystal Structures of TlInS₂-II and TlInS₂-III Institut für Anorganische Chemie der Universita Published online: Zeitschrift für Naturforschung B 29 3-4

[20] Mikailzade F Sale A G, Kazan S et al 2012 Magnetic properties of Co implanted TlInS₂ and TlGaSe₂ crystals (English) In: Solid state communications 152 (5) 407-409

[21] Alekperov O Z, Ibragimov G B et al 2009 Polytypes in ferroelectric TlInS₂ and its dielectric and optic properties Special Issue: 16th International Conference on Ternary and Multinary Compounds (ICTMC16) 6 (5) 977-980
[22] Gomonaic O O and Glukhova K E Z 2019 Electronic and Optical Properties of the TlInS$_2$ Crystal: Theoretical and Experimental Studies in Proceedings of the 48th International School and Conference on the Physics of Semiconductors “Jaszowiec 2019 136 Acta physica polonica A 4 640-644.

[23] Karotki A V, Shele A U et al 2012 Optical properties of thallium indium disulfide (TlInS$_2$) single crystals Journal of Applied Spectroscopy 79 398–403

[24] Vytautas Grivickas and Patrik Ščajev 2019 Carrier Dynamics in Highly Excited TlInS$_2$: Evidence of 2D Electron-Hole Charge Separation at Parallel Layers Phys Chem Chem Phys 23 (4) 2102-2114