An empirical evaluation of the impact scenario of pooling bodies of evidence from randomized controlled trials and cohort studies in medical research

Nils Bröckelmann¹*, Julia Stadelmaier¹*, Louisa Harms¹, Charlotte Kubiak¹, Jessica Beyerbach¹, Martin Wolkewitz², Jörg J Meerpohl¹,²,³, Lukas Schwingshackl¹

¹ Institute for Evidence in Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

² Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany.

³ Cochrane Germany, Cochrane Germany Foundation, Freiburg, Germany.

* contributed equally

Corresponding author: Lukas Schwingshackl, PhD

Briesacher Straße 86, 79110 Freiburg, Germany

M: schwingshackl@ifem.uni-freiburg.de

P: +49 (0)761 203-96867

ORCID number: 0000-0003-3407-7594

Twitter: https://twitter.com/LSchwingshackl
Content Supplement

Appendix S1: Search strategy for systematic reviews in MEDLINE via PubMed 3
Table S1: Explanation and definition for Population (P), Intervention/Exposure (I/E), Comparator (C), Outcome (O) similarity degree ... 4
Table S2: Ratings of Population (P), Intervention/Exposure (I/E), Comparator (C), Outcome (O) similarity degree for all identified body of evidence-pairs 6
Table S3: Differences between published (reported) effect estimates and re-calculated effect estimates .. 15
Table S4: Reason for exclusion from the pooling scenario .. 22
Table S5: Pooling results of bodies of evidence from cohort studies with RCTs based on random effects and common effect model, 95% prediction intervals, heterogeneity, test for subgroup difference, and Population (P), Intervention (I) /Exposure (E), Comparator (C) Outcome similarity degree ... 23
Figure S1 to 118: Forest plots .. 33
Supplementary References ... 151
ID	Search
#1	"lancet london england"[Journal] OR "JAMA"[Journal] OR "bmj clinical research ed"[Journal] OR "jama internal medicine"[Journal] OR "Annals of internal medicine"[Journal] OR "PLoS medicine"[Journal] OR "BMC medicine"[Journal] OR "The Cochrane database of systematic reviews"[Journal] OR "Mayo Clinic proceedings"[Journal] OR "Canadian Medical Association journal"[Journal] OR "Nat Rev Dis Primers"[Journal] OR "J Cachexia Sarcopenia Muscle"[Journal] OR "N Engl J Med"[Journal]
#2	"systematic review"[Title/Abstract] OR "systematic literature review"[Title/Abstract] OR "systematic scoping review"[Title/Abstract] OR "systematic meta-review"[Title/Abstract] OR "systematic search"[Title/Abstract] OR "systematic review"[Publication Type] OR "meta analys*"[Title/Abstract] OR "meta analy*"[Publication Type] OR "cochrane database syst rev"[Journal]
#3	"random*"[Title/Abstract] OR "placebo"[Title/Abstract] OR "clinical trials as topic"[MeSH Terms:noexp] OR "trial"[Title]
#4	"epidemiolog*"[Title/Abstract] OR "cohort stud*"[Title/Abstract] OR "observation*"[Title/Abstract] OR "non rct*"[Title/Abstract] OR "non random*"[Title/Abstract]
#5	#1 AND #2 AND #3 AND #4
#6	#1 AND #2 AND #3 AND #4 Filters: from 2010/1/1 - 2019/12/31
Table S1: Explanation and definition for Population (P), Intervention/Exposure (I/E), Comparator (C), Outcome (O) similarity degree

Rating	Population	Intervention/Exposure	Comparator	Outcome
1 = “more or less identical”	Same health status and type of population	Same drug, invasive procedure, nutrition-intervention or vaccine	- Same drug or invasive procedure - Nutrition: Placebo vs. Nil or low intake; Low intake vs. Low intake	Same outcome
2 = “similar but not identical”	Populations with mixed health status in RCTs and/or cohort studies	- Different drugs of the same class/ Any drug of the same class vs. Specific drug of the same class - Similar invasive procedure/ same invasive procedure with different co-interventions - Similar vaccines or identical vaccine with different route of administration - Supplementary or free food vs. Intake - Similar but not identical time frame of intervention	- Different drugs of the same class - Similar invasive procedures, drug, vaccine or diet - General dietary advice vs. High intake	- Similar outcome - Both with mixed similar outcomes

Example cases:
- Populations:
 - Both BoE with either healthy population, general population or diseased population
 - Same age category (both adults, both postmenopausal women)
- Interventions/Exposures:
 - Both Enoxaparin - Both PCI - Both high dairy-intake
- Comparators:
 - Both no Enoxaparin - Both UKA - Placebo vs. No intervention or low intake
- Outcomes:
 - Mortality in both BoE
| 3 = “broadly similar” | e.g. | e.g. | e.g. | e.g. |
|----------------------|------|------|------|------|
| Merged healthy and diseased population in one BoE vs. healthy population in the other BoE | -Both different SGAs | -Both similar regional anaesthetic nerve blocks | -Both different DDP-4 inhibitors | -Late stage only or all CRC vs. All CRC |
| Both BoE with merged healthy and diseased population | -Various pneumococcal vaccines (2,3,12,14,17 and 23-valent) versus 23-valent only | -“Best medical treatment” with Aspirin and additionally with various other drugs | -No vaccination or delayed vaccination versus no vaccination |
| Population with cardiovascular risk factors (without manifest disease) vs. Healthy population | -One or two doses of measles containing vaccines versus unclear number of doses | -Transfemoral vs. transapical TAVI | -Transfemoral versus no vaccination |
| | -Free non-caloric beverages vs. Low intake of SSBs | -General dietary advice vs. High red meat intake | -General dietary advice vs. Transfemoral TAVI |
| | -Early intervention with different time frame (first 14 vs. first 24 hours) | | -Early intervention with different time frame (first 14 vs. first 24 hours) |
| Different health status of populations in RCTs and cohort studies | Same drug for different indication | Active intervention (drug, invasive procedure, nutrient) vs. No intervention or placebo | | |
| Other substantial differences (e.g. Age-category, type of population) | -Enhanced treatment vs. Any treatment | -Different time frame/ early treatment vs. Any treatment | -Different time frame |
| | -Supplement vs. Status | | |
| Healthy population in one BoE vs. population with cardiovascular disease in the other BoE | e.g. | e.g. | e.g. | e.g. |
| Children/adolescents vs. Adults | Digoxin for HF vs. digoxin post-myocardial infarction without HF | Restrictive transfusion vs. No transfusion | Colorectal adenoma vs. Cancer |
| Travellers vs. Pregnant women | Dispatcher-assisted bystander CPR vs. unassisted bystander CPR | Placebo vs. Low selenium status | |
| | Enhanced training of birth attendants vs. Any support by birth attendant | -No vaccination of health care workers vs. Low share of vaccinated health care workers per facility | |
| | Selenium supplements vs. High selenium status | -Pregnant women with untreated bacteriuria vs. Pregnant without screening for bacteriuria | |
| | Early ART vs. Any ART | -Delayed ART vs. No ART | | |

ART: antiretroviral therapy; BoE: bodies of evidence; CRC: colorectal cancer; CPR: cardiopulmonary resuscitation; DDP-4: dipeptidyl peptidase 4; HF: heart failure; PCI: percutaneous coronary intervention; PI/ECO: population, intervention/ exposure, comparator, outcome; RCT: randomized controlled trial; SGA: second-generation antipsychotic; SSBs: sugar-sweetened beverages; TAVI: transcatheter aortic valve replacement; UKA: unicompartmental knee arthroplasty
Table S2: Ratings of Population (P), Intervention/Exposure (I/E), Comparator (C), Outcome (O) similarity degree for all identified body of evidence-pairs

Reference	Intervention/Exposure (as defined by the authors)	Intervention/Exposure type	Outcome (as defined by the authors)	Outcome-category (e.g., cancer outcomes, cardiovascular disease, all-cause mortality)	Rating of PI/ECO-similarity degree	Included in the pooling scenario (Yes/No)										
Abou-Setta 2011 (1)	Nerve block	Invasive	Delirium	Neurological	2 2 2 1 2	No										
Abou-Setta 2011 (1)	Spinal anaesthesia	Invasive	All-cause mortality	All-cause mortality	2 1 1 1 2	No										
Aburto 2013 (2)	Low sodium	Nutrition	All-cause mortality	All-cause mortality	2 2 2 1 2	Yes										
Aburto 2013 (2)	Low sodium	Nutrition	Cardiovascular disease	Cardiovascular disease	2 2 2 2 2	Yes										
Ahmad 2015 (3)	Intra-aortic balloon pump	Invasive	All-cause mortality	All-cause mortality	1 1 1 1 1	Yes										
Alexander 2017 (4)	High DHA and EPA	Nutrition	Coronary heart disease	Cardiovascular disease	2 2 2 1 2	No										
Alexander 2017 (4)	High DHA and EPA	Nutrition	Coronary heart disease mortality	Cardiovascular disease	2 2 2 1 2	No										
Alexander 2017 (4)	High DHA and EPA	Nutrition	Coronary heart disease incidence	Cardiovascular disease	2 2 2 1 2	No										
Alipanah 2018 (5)	Self-administered therapy	Drug	Treatment success	Infectiological	3 2 1 1 3	Yes										
Alipanah 2018 (5)	Self-administered therapy	Drug	Treatment completion	Drug safety	3 2 1 1 3	Yes										
Alipanah 2018 (5)	Self-administered therapy	Drug	All-cause mortality	All-cause mortality	3 2 1 1 3	Yes										
Anglemyer 2013 (6)	Antiretroviral therapy	Drug	HIV infection	Infectiological	2 2 3 1 3	Yes										
Azad 2017 (7)	Nonnutritive sweeteners	Nutrition	Body Mass Index	Metabolic	2 2 1 1 2	Yes										
Study	Intervention Description	Type	Primary Outcome	Barnard 2015 (8)	Barnard 2015 (8)	Barnard 2015 (8)	Bellemain-Appaix 2012 (9)	Bellemain-Appaix 2012 (9)	Bellemain-Appaix 2012 (9)	Bellemain-Appaix 2014 (10)	Bellemain-Appaix 2014 (10)	Bellemain-Appaix 2014 (10)	Bloomfield 2016 (11)			
------------------------------	--	--------	----------------------------------	-----------------	-----------------	-----------------	---------------------------	---------------------------	---------------------------	---------------------------	---------------------------	------------------------				
Barnard 2015 (8)	Surgical abortion by mid-level providers	Invasive	Failure or incomplete abortion	2	2	1	1	2	2	2	Yes					
Barnard 2015 (8)	Surgical abortion by mid-level providers	Invasive	Complications	2	2	1	1	2	Yes							
Barnard 2015 (8)	Surgical abortion by mid-level providers	Invasive	Abortion failure and complications	2	2	1	1	2	Yes							
Bellemain-Appaix 2012 (9)	Clopidogrel pretreatment for percutaneous coronary intervention	Drug	All-cause mortality	2	2	2	1	2	Yes							
Bellemain-Appaix 2012 (9)	Clopidogrel pretreatment for percutaneous coronary intervention	Drug	Major bleeding	2	2	2	1	2	Yes							
Bellemain-Appaix 2012 (9)	Clopidogrel pretreatment for percutaneous coronary intervention	Drug	Coronary heart disease	2	2	2	1	2	Yes							
Bellemain-Appaix 2014 (10)	P2Y12 inhibitor pretreatment in non-ST elevation acute coronary syndrome	Drug	All-cause mortality	2	2	2	1	2	Yes							
Bellemain-Appaix 2014 (10)	P2Y12 inhibitor pretreatment in non-ST elevation acute coronary syndrome	Drug	Major bleeding	2	2	2	1	2	Yes							
Bellemain-Appaix 2014 (10)	P2Y12 inhibitor pretreatment in non-ST elevation acute coronary syndrome	Drug	Main composite ischemic endpoint	2	2	2	1	2	Yes							
Bloomfield 2016 (11)	Mediterranean diet	Nutrition	Breast cancer	2	2	2	1	2	Yes							
Authors	Intervention & Process	Nutritional Component	Outcome	Disease Area	Effect											
------------------	------------------------	-----------------------	---------	---------------------	---------											
Bolland 2015 (12)	High calcium	Nutrition	All fractures	Orthopaedic	1	2	1	1	2	Yes						
Bolland 2015 (12)	High calcium	Nutrition	Vertebral fracture	Orthopaedic	1	2	1	1	2	Yes						
Bolland 2015 (12)	High calcium	Nutrition	Hip fracture	Orthopaedic	1	2	1	1	2	Yes						
Brenner 2014 (13)	Sigmoidoscopy	Invasive	Colorectal cancer mortality	Oncological	1	1	1	1	1	Yes						
Brenner 2014 (13)	Sigmoidoscopy	Invasive	Colorectal cancer incidence	Oncological	1	1	1	2	2	Yes						
Chowdhury 2012 (14)	High omega-3	Nutrition	Cerebrovascular disease	Cardiovascular disease	2	2	1	1	2	Yes						
Chowdhury 2014a (15)	High α-linolenic acid	Nutrition	Coronary heart disease	Cardiovascular disease	3	2	2	1	3	Yes						
Chowdhury 2014a (15)	High omega-3	Nutrition	Coronary heart disease	Cardiovascular disease	3	2	2	1	3	Yes						
Chowdhury 2014a (15)	High omega-6	Nutrition	Coronary heart disease	Cardiovascular disease	3	2	2	1	3	Yes						
Chowdhury 2014b (16)	High vitamin D	Nutrition	All-cause mortality	All-cause mortality	2	3	3	1	3	No						
Chung 2011 (17)	High vitamin D	Nutrition	Colorectal cancer	Oncological	2	3	3	1	3	No						
Chung 2011 (17)	High vitamin D	Nutrition	Breast cancer	Oncological	2	3	3	1	3	No						
Chung 2016 (18)	High calcium	Nutrition	Cardiovascular mortality	Cardiovascular disease	2	2	1	1	2	Yes						
Ding 2017 (19)	High dairy	Nutrition	Systolic blood pressure	Cardiovascular disease	2	1	1	1	2	Yes						
Fenton 2018 (20)	Radiation therapy	Invasive	Erectile dysfunction	Urological	1	1	2	1	2	Yes						
Fenton 2018 (20)	Radical Prostatectomy	Invasive	Urinary incontinence	Urological	1	1	2	1	2	Yes						
Fenton 2018 (20)	Radical Prostatectomy	Invasive	Erectile dysfunction	Urological	1	1	2	1	2	Yes						
Filippini 2017 (21)	Disease-modifying drugs	Drug	Conversion to clinically definite multiple sclerosis	Neurological	1	2	1	1	2	Yes						
Reference	Intervention	Type	Endpoint	Cause	Score	Yes										
----------------	---	----------	--	---------------------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	------
Fluri 2010 (22)	Extracranial-intracranial arterial bypass	Invasive	All-cause mortality	All-cause mortality	2	1	2	1	2	Yes						
Fluri 2010 (22)	Extracranial-intracranial arterial bypass	Invasive	Stroke	Cardiovascular disease	2	1	2	1	2	Yes						
Fluri 2010 (22)	Extracranial-intracranial arterial bypass	Invasive	Stroke mortality or dependency	Cardiovascular disease	1	1	2	1	2	Yes						
Gargiulo 2016 (23)	Transcatheter aortic valve implantation	Invasive	Early all-cause mortality	All-cause mortality	2	2	1	1	2	Yes						
Gargiulo 2016 (23)	Transcatheter aortic valve implantation	Invasive	Mid-term all-cause mortality	All-cause mortality	2	2	1	1	2	Yes						
Gargiulo 2016 (23)	Transcatheter aortic valve implantation	Invasive	Long-term all-cause mortality	All-cause mortality	2	1	1	1	2	Yes						
Hartling 2013 (24)	Treating gestational diabetes mellitus	Nutrition	High birth weight	Obstetrical	2	1	1	1	2	Yes						
Hartling 2013 (24)	Treating gestational diabetes mellitus	Nutrition	Large-for-gestational age neonate	Obstetrical	2	1	1	1	2	Yes						
Hartling 2013 (24)	Treating gestational diabetes mellitus	Nutrition	Shoulder dystocia	Obstetrical	2	1	1	1	2	Yes						
Henderson 2019 (25)	Treating asymptomatic bacteriuria	Drug	Pyelonephritis	Infectiological	2	2	3	1	3	Yes						
Higgins 2016 (26)	Bacillus Calmette-Guérin vaccination	Vaccine	All-cause mortality	All-cause mortality	3	1	2	1	3	Yes						
Higgins 2016 (26)	Measles containing vaccines	Vaccine	All-cause mortality	All-cause mortality	3	2	2	1	3	Yes						
Hopley 2010 (27)	Total hip arthroplasty	Invasive	Reoperation	Orthopaedic	2	1	1	1	2	Yes						
Hopley 2010 (27)	Total hip arthroplasty	Invasive	Dislocation	Orthopaedic	2	1	1	1	2	Yes						
Hopley 2010 (27)	Total hip arthroplasty	Invasive	Deep infection	Infectiological	2	2	1	1	2	Yes						
Hüpf 2010 (28)	Chest-compression-only cardiopulmonary	Cardiopulmonary	Survival	All-cause mortality	1	3	3	1	3	Yes						
Reference	Year	Intervention	Field	Outcome	Score 1	Score 2	Score 3	Score 4	Score 5	Score 6	Result					
-----------	------	--------------	-------	---------	---------	---------	---------	---------	---------	---------	--------					
Jamal 2013 (29)	2013	Non-calcium-based phosphate binders	Drug	All-cause mortality	All-cause mortality	2	2	1	1	2	Yes					
Jefferson 2010 (30)	2010	Parenteral influenza vaccine	Vaccine	Influenza-like illness	Infectiological	2	2	3	1	3	Yes					
Jefferson 2010 (30)	2010	Parenteral influenza vaccine	Vaccine	Influenza	Infectiological	2	2	1	1	2	Yes					
Jefferson 2012 (31)	2012	Inactivated influenza vaccines	Vaccine	Influenza	Infectiological	1	2	1	1	2	Yes					
Jefferson 2012 (31)	2012	Inactivated influenza vaccines	Vaccine	Influenza-like illness	Infectiological	1	2	1	1	2	Yes					
Jin 2012 (32)	2012	High total flavonoids	Nutrition	Colorectal neoplasms	Oncological	3	2	2	3	3	Yes					
Johnston 2019 (33)	2019	Red meat	Nutrition	All-cause mortality	All-cause mortality	2	2	2	1	2	No					
Johnston 2019 (33)	2019	Red meat	Nutrition	Cardiovascular mortality	Cardiovascular disease	2	2	2	1	2	No					
Johnston 2019 (33)	2019	Red meat	Nutrition	Cardiovascular disease	Cardiovascular disease	2	2	2	1	2	No					
Kansagara 2013 (34)	2013	Transfusion	Transfusion	All-cause mortality	All-cause mortality	2	3	3	2	3	Yes					
Keag 2018 (35)	2018	Caesarean section	Invasive	Urinary incontinence	Obstetrical	3	2	2	1	3	Yes					
Keag 2018 (35)	2018	Caesarean section	Invasive	Fecal incontinence	Obstetrical	3	2	2	1	3	Yes					
Kredo 2014 (36)	2014	Antiretroviral therapy by nurses	Drug	All-cause mortality	All-cause mortality	2	3	1	1	3	Yes					
Kredo 2014 (36)	2014	Antiretroviral therapy by nurses	Drug	Attrition	Drug safety	2	3	1	1	3	Yes					
Kredo 2014 (36)	2014	Nurses for maintenance of antiretroviral therapy	Drug	All-cause mortality	All-cause mortality	2	3	2	1	3	Yes					
Li 2014 (37)	2014	Exenatide	Drug	Acute pancreatitis	Drug safety	2	1	2	2	2	Yes					
Li 2016 (38)	2016	DDP-4 inhibitors	Drug	Heart failure	Drug safety	2	2	2	1	2	Yes					
Reference	Treatment	Indication	Outcome Measure	Risk Factor	RR Ratio	95% CI Low	95% CI High	P Value	Safety Downstream Events							
-----------------	---	---	--------------------------------------	-------------	----------	------------	-------------	---------	--------------------------							
Li 2016 (38)	DDP-4 inhibitors	Drug admission for heart failure	Drug safety	2	2	2	1	2	Yes							
Matthews 2018 (39)	Tamoxifen	Drug Heart failure	Drug safety	2	3	1	1	3	Yes							
Menne 2019 (40)	SGLT-2 inhibitors	Drug Acute kidney injury	Drug safety	2	2	2	1	2	Yes							
Mesgarpour 2017 (41)	Erythropoiesis stimulating agents	Drug Venous thromboembolism	Drug safety	2	2	2	1	2	Yes							
Mesgarpour 2017 (41)	Erythropoiesis stimulating agents	Drug All-cause mortality	All-cause mortality	2	2	2	1	2	Yes							
Moherley 2013 (42)	Pneumococcal polysaccharide vaccines	Vaccine Invasive pneumococcal disease	Infectiological	2	2	1	1	2	Yes							
Molnar 2015 (43)	Neoral (Cyclosporin)	Drug Acute rejection of kidney transplant	Drug safety	2	1	2	1	2	Yes							
Navarese 2013 (44)	Early intervention for NSTE-ACS	Invasive All-cause mortality	All-cause mortality	2	2	1	1	2	Yes							
Navarese 2013 (44)	Early intervention for NSTE-ACS	Invasive Myocardial infarction	Cardiovascular disease	2	2	1	1	2	Yes							
Navarese 2013 (44)	Early intervention for NSTE-ACS	Invasive Major bleeding	Drug safety	2	2	1	1	2	Yes							
Nelson 2010 (45)	Caesarean section	Invasive Anal incontinence, feces	Obstetrical	3	2	2	1	3	Yes							
Nelson 2010 (45)	Caesarean section	Invasive Anal incontinence, flatus	Obstetrical	3	2	2	1	3	Yes							
Nieuwenhuijse 2014 (46)	Ceramic-on-ceramic bearings for total hip arthroplasty	Invasive Harris Hip Score	Orthopaedic	2	1	1	1	2	Yes							
Nieuwenhuijse 2014 (46)	High-flexion total knee arthroplasty	Invasive Flexion	Orthopaedic	2	1	1	1	2	Yes							
Nieuwenhuijse 2014 (46)	Gender-specific total knee arthroplasty	Invasive Flexion-extension range	Orthopaedic	2	1	1	1	2	Yes							
Nikooie 2019 (47)	Second generation antipsychotics	Drug Sedation	Drug safety	2	2	1	2	2	Yes							
Study (Year)	Intervention	Treatment Category	Outcomes	Level 1	Level 2	Level 3	Level 4	Yes/No								
-------------	--------------	-------------------	----------	---------	---------	---------	---------	--------								
Nikooie 2019 (47)	Second generation antipsychotics	Drug	Neurologic outcomes	Drug safety	2	2	1	2	2	Yes						
Ochen 2019 (48)	Surgery for achilles tendon rupture	Invasive	Re-rupture	Orthopaedic	1	2	2	1	2	Yes						
Ochen 2019 (48)	Surgery for achilles tendon rupture	Invasive	Complications	Orthopaedic	1	2	2	1	2	Yes						
Pittas 2010 (49)	High vitamin D	Nutrition	Hypertension	Cardiovascular disease	2	3	3	1	3	Yes						
Raman 2013 (50)	Carotid endarterectomy	Invasive	Ipsilateral stroke	Cardiovascular disease	2	1	2	1	2	Yes						
Raman 2013 (50)	Carotid endarterectomy	Invasive	Stroke	Cardiovascular disease	2	1	2	1	2	Yes						
Raman 2013 (50)	Carotid artery stenting	Invasive	Periprocedural stroke	Cardiovascular disease	2	2	2	1	2	Yes						
Schweizer 2013 (51)	Nasal deconolization	Drug	Surgical site infection	Infectiological	2	2	1	1	2	Yes						
Schweizer 2013 (51)	Glycopeptide prophylaxis	Drug	Surgical site infection	Infectiological	2	2	2	1	2	Yes						
Silvain 2012 (52)	Enoxaparin	Drug	All-cause mortality	All-cause mortality	2	1	2	1	2	Yes						
Silvain 2012 (52)	Enoxaparin	Drug	Major bleeding	Drug safety	2	1	2	1	2	Yes						
Silvain 2012 (52)	Enoxaparin	Drug	All-cause mortality or myocardial infarction	Cardiovascular disease	2	1	2	1	2	Yes						
Suthar 2012 (53)	Antiretroviral therapy	Drug	Tuberculosis infection	Infectiological	2	3	3	1	3	Yes						
Te Morenga 2013 (54)	High sugar intake	Nutrition	Weight gain	Metabolic	2	1	2	1	2	Yes						
Te Morenga 2013 (54)	High sugar intake	Nutrition	Body Mass Index	Metabolic	2	2	2	1	2	Yes						
Thomas 2010 (55)	Influenza vaccines	Vaccine	Influenza-like illness	Infectiological	2	3	3	1	3	Yes						
Tickell-Painter 2017 (56)	Mefloquine	Drug	Discontinuation due to adverse effects	Drug safety	2	1	1	1	2	Yes						
Reference	Treatment Type	Endpoint Description	Field	Score	Grade	Absolute Mortality	Yes/No									
-------------------	---	---------------------------------------	------------------------	-------	-------	--------------------	--------									
Tickell-Painter 2017 (56)	Mefloquine Drug	Serious adverse events or effects	Drug safety	3	1	1	2	Yes								
Tickell-Painter 2017 (56)	Mefloquine Drug	Nausea	Drug safety	3	1	1	1	Yes								
Tricco 2018 (57)	Live-attenuated zoster vaccines	Suspected Herpes Zoster	Infectiological	2	2	2	1	Yes								
Vinceti 2018 (58)	High selenium Nutrition	Cancer	Oncological	2	3	3	2	Yes								
Vinceti 2018 (58)	High selenium Nutrition	Cancer mortality	Oncological	2	3	3	1	Yes								
Vinceti 2018 (58)	High selenium Nutrition	Colorectal cancer	Oncological	2	3	3	1	Yes								
Wilson 2011 (59)	Training for traditional birth attendants/assistance by traditional birth attendants	Birth assistance	Perinatal mortality	All-cause mortality	1	2	3	1	Yes							
Wilson 2011 (59)	Training for traditional birth attendants/assistance by traditional birth attendants	Birth assistance	Neonatal mortality	All-cause mortality	1	2	3	1	Yes							
Wilson 2019 (60)	Unicompartmental knee arthroplasty	Invasive Venous thromboembolism	Orthopaedic	2	1	1	1	Yes								
Wilson 2019 (60)	Unicompartmental knee arthroplasty	Invasive Flexion-extension range	Orthopaedic	2	1	1	1	Yes								
Wilson 2019 (60)	Unicompartmental knee arthroplasty	Invasive Operation duration	Orthopaedic	2	1	1	1	Yes								
Yank 2011 (61)	Recombinant factor VII Drug	All-cause mortality	All-cause mortality	2	2	1	1	Yes								
Yank 2011 (61)	Recombinant factor VII Drug	Thromboembolism	Drug safety	2	2	1	1	Yes								
Zhang 2016 (62)	Everolimus-eluting bioreabsorbable vascular scaffold	Invasive Stent thrombosis	Cardiovascular disease	2	1	1	1	Yes								
Author	Year	Study Details	Intervention	Outcomes	All-cause mortality	Cardiovascular disease	Drug safety	Drug	Outcome							
---------	------	--	--------------	----------	--------------------	------------------------	------------	------	---------							
Zhang	2016	Everolimus-eluting bioresorbable vascular scaffold	Invasive	All-cause mortality	2	1	1	1	2	Yes						
Zhang	2016	Everolimus-eluting bioresorbable vascular scaffold	Invasive	Coronary heart disease mortality	2	1	1	1	2	Yes						
Zhang	2017	Percutaneous coronary intervention	Invasive	All-cause mortality	2	2	1	1	2	Yes						
Zhang	2017	Percutaneous coronary intervention	Invasive	Cardiovascular mortality	2	2	1	1	2	Yes						
Zhang	2017	Percutaneous coronary intervention	Invasive	Myocardial infarction	2	2	1	1	2	Yes						
Ziff	2015	Digoxin	Drug	All-cause mortality	3	1	1	1	3	Yes						
Ziff	2015	Digoxin	Drug	Cardiovascular mortality	3	1	1	1	3	Yes						
Ziff	2015	Digoxin	Drug	Hospital admission	2	1	1	1	2	Yes						

DDP 4: Dipeptidylpeptidase-4; DHA and EPA: Docosahexaenoic acid and eicosapentaenoic acid; HIV: human immunodeficiency virus; NSTE-ACS: Non-ST-Segment Elevation Acute Coronary Syndromes; PI/ECO: population – intervention/exposure – comparator – outcome ; SGLT-2: Sodium dependent glucose transporter 2.
Reference	Intervention / Exposure (as defined by the authors)	Outcome (as defined by the authors)	RCTs Reported* RR/HR/OR or MD (95% CI)	Recalculated (RE and inverse-variance model) RR/HR/OR or MD (95% CI)	Cohort Studies Reported* RR/HR/OR or MD (95% CI)	Recalculated (RE and inverse-variance model) RR/HR/OR or MD (95% CI)	
Aburto 2013 (2)	Low sodium	Cardiovascular disease	RR: 0.89 (0.75, 1.08)	RR: 0.90 (0.75, 1.08)			
Ahmad 2015 (3)	Intra-aortic balloon pump	Mortality	RR: 0.81 (0.73, 0.89)	RR: 0.81 (0.74, 0.88)	RR: 0.90 (0.67, 1.56)		
Alipanah 2018 (5)	Self-administered therapy	Treatment success	RR: 0.79 (0.56, 1.11)	RR: 0.95 (0.87, 1.03)	RR: 1.00 (0.91, 1.33)		
Alipanah 2018 (5)	Self-administered therapy	Treatment completion	RR: 1.10 (0.90, 1.35)	RR: 1.10 (0.91, 1.33)	RR: 1.10 (0.91, 1.33)		
Alipanah 2018 (5)	Self-administered therapy	Mortality	RR: 1.35 (1.00, 1.84)	RR: 1.35 (1.00, 1.83)			
Anglemyer 2013 (6)	Antiretroviral therapy	HIV Infection	RR: 0.11 (0.04, 0.32)	RR: 0.11 (0.04, 0.30)	RR: 0.59 (0.36, 0.97)		
Barnard 2015 (8)	Surgical abortion by mid-level providers	Failure or incomplete abortion	RR: 2.97 (0.21, 41.82)	RR: 2.84 (0.24, 32.97)	RR: 2.47 (1.44, 4.23)		
Barnard 2015 (8)	Surgical abortion by mid-level providers	Complications	RR: 0.99 (0.17, 5.7)	RR: 0.94 (0.14, 6.44)	RR: 1.30 (0.57, 2.96)		
Barnard 2015 (8)	Surgical abortion by mid-level providers	Abortion failure and complications	RR: 2.93 (0.19, 44.15)	RR: 3.07 (0.16, 59.08)	RR: 2.93 (0.19, 44.15)		
Bellemain-Appaix 2012 (9)	Clopidogrel pretreatment for percutaneous coronary intervention	All-cause mortality	OR: 0.90 (0.80, 1.11)	OR: 0.80 (0.75, 1.08)			
Bellemain-Appaix 2012 (9)	Clopidogrel pretreatment for percutaneous coronary intervention	Major bleeding	OR: 0.79 (0.53, 1.18)	OR: 0.79 (0.53, 1.18)			
Study	Intervention	Endpoint	OR (95% CI)				
---	--	---------------------------------	------------------------------				
Bellemain-Appaix 2012 (9)	Clopidogrel pretreatment for percutaneous coronary intervention	Coronary heart disease	-				
Bellemain-Appaix 2014 (10)	P2Y12 inhibitor pretreatment in non-ST elevation acute coronary syndrome	All-cause mortality	OR: 0.92 (0.43, 1.98)				
Bellemain-Appaix 2014 (10)	P2Y12 inhibitor pretreatment in non-ST elevation acute coronary syndrome	Major bleeding	OR: 1.45 (0.97, 2.15)				
Bellemain-Appaix 2014 (10)	P2Y12 inhibitor pretreatment in non-ST elevation acute coronary syndrome	Main composite ischemic endpoint	OR: 0.85 (0.67, 1.07)				
Bolland 2015 (12)	High-calcium	All fractures	RR: 0.90 (0.83, 0.96)				
Bolland 2015 (12)	High-calcium	Vertebral fracture	-				
Bolland 2015 (12)	High-calcium	Hip fracture	-				
Brenner 2014 (13)	Sigmoidoscopy	Colorectal cancer mortality	-				
Brenner 2014 (13)	Sigmoidoscopy	Colorectal cancer incidence	RR: 0.82 (0.75, 0.89)				
Chowdhury 2012 (14)	High omega-3	Cerebrovascular disease	RR: 0.98 (0.89, 1.08)				
Chowdhury 2014a (15)	High α-linolenic acid	Coronary heart disease	-				
Chung 2016 (18)	High calcium	Cardiovascular mortality	RR: 1.05 (0.82, 1.33)				
Study (Year)	Intervention	Outcome	Odds Ratio (95% CI)				
-------------	--------------	---------	--------------------				
Fenton 2018 (20)	Radiation therapy	Erectile dysfunction	-	RR: 1.30 (1.19, 1.43)¹			
Fenton 2018 (20)	Radical Prostatectomy	Urinary incontinence	RR: 2.27 (1.82, 2.84)	RR: 2.25 (1.80, 2.82)	RR: 2.91 (1.80, 4.71)¹		
Fenton 2018 (20)	Radical Prostatectomy	Erectile dysfunction	RR: 1.60 (1.23, 2.07)	RR: 1.60 (1.24, 2.07)	RR: 1.49 (1.33, 1.66)¹		
Filippini 2017 (21)	Disease-modifying drugs	Conversion to clinically definite multiple sclerosis	HR: 0.52 (0.46, 0.60)⁴	-	HR: 0.48 (0.30, 0.78)⁴		
Fluri 2010 (22)	Extracranial-intracranial arterial bypass	Mortality	-	-	OR: 0.97 (0.58, 1.62)¹,⁷		
Fluri 2010 (22)	Extracranial-intracranial arterial bypass	Any stroke	OR: 0.44 (0.06, 3.24)⁷	-	OR: 0.76 (0.49, 1.17)¹,⁷		
Fluri 2010 (22)	Extracranial-intracranial arterial bypass	Death or dependency	-	-	OR: 0.80 (0.50, 1.29)⁷	OR: 0.81 (0.50, 1.31)⁷	
Gargiulo 2016 (23)	Transcatheter aortic valve implantation	Early mortality	OR: 0.80 (0.51, 1.25)	OR: 0.80 (0.58, 1.11)	OR: 1.08 (0.84, 1.39)¹		
Gargiulo 2016 (23)	Transcatheter aortic valve implantation	Mid-term mortality	OR: 0.90 (0.64, 1.26)	OR: 0.90 (0.71, 1.13)	-		
Gargiulo 2016 (23)	Transcatheter aortic valve implantation	Long-term mortality	OR: 1.03 (0.65, 1.62)	OR: 1.03 (0.77, 1.37)	OR: 1.70 (1.23, 2.35)	OR: 1.70 (1.31, 2.20)	
Hartling 2013 (24)	Treating Gestational Diabetes Mellitus	Birth weight > 4000g	-	-	RR: 0.69 (0.31, 1.54)³		
Hartling 2013 (24)	Treating Gestational Diabetes Mellitus	Shoulder dystocia	-	-	RR: 0.38 (0.19, 0.78)	RR: 0.38 (0.18, 0.80)	
Henderson 2019 (25)	Treating asymptomatic bacteriuria	Pyelonephritis	-	-	RR: 0.29 (0.15, 0.57)³		
Higgins 2016 (26)	Bacillus Calmette-Guérin vaccination	Mortality	-	RR: 0.67 (0.40, 1.14)¹	-		
Higgins 2016 (26)	Measles containing vaccines	Mortality	-	-	RR: 0.53 (0.40, 0.70)¹		
Hopley 2010 (27)	Total hip arthroplasty	Reoperation	-	-	RR: 0.45 (0.19, 1.08)¹		
Study (Year)	Intervention	Event	Outcome	RR (95% CI)	RR (95% CI)	OR (95% CI)	OR (95% CI)
-------------	--------------	-------	---------	-------------	-------------	-------------	-------------
Hopley 2010 (27)	Total hip arthroplasty	Dislocation	-	-	-	RR: 0.79 (0.27, 2.35)	
Jamal 2013 (29)	Non-calcium-based phosphate binders	Mortality	RR: 0.78 (0.61, 0.98)	RR: 0.78 (0.62, 0.98)	-	-	
Jefferson 2010 (30)	Parenteral influenza vaccine	Influenza-like illness	-	-	-	RR: 0.76 (0.66, 0.87)	
Jefferson 2010 (30)	Parenteral influenza vaccine	Influenza	-	-	-	RR: 0.51 (0.27, 0.97)	
Jefferson 2012 (31)	Inactivated influenza vaccines	Influenza	-	-	-	RR: 0.20 (0.10, 0.39)	
Jefferson 2012 (31)	Inactivated influenza vaccines	Influenza-like illness	-	-	-	RR: 0.29 (0.07, 1.15)	
Kansagara 2013 (34)	Transfusion	Mortality	RR: 0.94 (0.61, 1.42)	RR: 0.94 (0.62, 1.43)	-	RR: 2.49 (1.40, 4.43)	
Keag 2018 (35)	Caesarean section	Urinary incontinence	-	-	-	OR: 0.56 (0.47, 0.66)	
Keag 2018 (35)	Caesarean section	Fecal incontinence	OR: 3.07 (0.90, 10.49)	OR: 3.07 (0.90, 10.47)	-	-	
Li 2014 (37)	Exenatide	Acute pancreatitis/Admission for acute pancreatitis	RR: 0.86 (0.22, 3.37)	RR: 0.86 (0.22, 3.39)	-	RR: 0.92 (0.69, 1.22)	
Li 2016 (38)	DDP-4 Inhibitors	Heart failure	RR: 0.90 (0.61, 1.35)	RR: 0.95 (0.60, 1.50)	-	RR: 1.10 (1.04, 1.17)	
Matthews 2018 (39)	Tamoxifen	Heart failure	RR: 0.52 (0.33, 0.71)	RR: 0.52 (0.33, 0.79)	RR: 0.84 (0.65, 1.07)	RR: 0.85 (0.66, 1.09)	
Menne 2019 (40)	SGLT-2 inhibitors	Acute kidney injury	-	-	OR: 0.40 (0.33, 0.48)	OR: 0.40 (0.31, 0.52)	
Mesgarpour 2017 (41)	Erythropoiesis stimulating agents	Venous thromboembolism	-	-	RR: 1.87 (0.59, 5.92)	RR: 1.92 (0.64, 5.76)	
Mesgarpour 2017 (41)	Erythropoiesis stimulating agents	Mortality	RR: 0.81 (0.71, 0.93)	RR: 0.82 (0.71, 0.93)	RR: 1.07 (0.65, 1.77)	RR: 1.08 (0.66, 1.78)	
Molnar 2015 (43)	Neoral (cyclosporine)	Acute rejection of kidney transplant	OR: 1.23 (0.64, 2.36)	OR: 1.25 (0.61, 2.56)	-	OR: 0.46 (0.25, 0.86)	
Study	Intervention/Procedure	Outcome/Secondary Outcome	OR (95% CI)	CI (95% CI)	p-Value		
--------------	---	----------------------------	-------------	------------	---------		
Navarese 2013 (44)	Early intervention for NSTE-ACS	Myocardial infarction	OR: 1.15 (0.65, 2.01)	OR: 1.16 (0.67, 2.00)	-		
Nelson 2010 (45)	Caesarean section	Anal incontinence, feces	-	-	-		
Nelson 2010 (45)	Caesarean section	Anal incontinence, flatus	-	-	-		
Nieuwenhuijse 2014 (46)	Ceramic-on-ceramic bearings for total hip arthroplasty	Harris Hip Score	MD: -0.23 (-1.09, 0.63)^4	-	MD: -0.50 (-2.09, 1.09)^4		
Nieuwenhuijse 2014 (46)	High-flexion total knee arthroplasty	Flexion (degrees)	MD: 1.68 (0.28, 3.08)^4	-	MD: 3.78 (1.64, 5.92)^4		
Nieuwenhuijse 2014 (46)	Gender-specific total knee arthroplasty	Flexion-extension range (degrees)	MD: 1.40 (-0.18, 2.99)^1,4	-	MD: 3.15 (-0.03, 6.34)^1,4		
Nikooie 2019 (47)	Second generation antipsychotics	Sedation	-	-	-		
Nikooie 2019 (47)	Second generation antipsychotics	Neurologic outcomes	-	-	-		
Ochen 2019 (48)	Surgery for achilles tendon rupture	Re-rupture	-	-	RR: 0.42 (0.28, 0.64)		
Ochen 2019 (48)	Surgery for achilles tendon rupture	Complications	RR: 3.26 (1.26, 8.41)	RR: 3.13 (1.33, 7.38)	-		
Raman 2013 (50)	Carotid endarterectomy	Ipsilateral stroke	-	-	RR: 0.47 (0.05, 4.46)^1		
Raman 2013 (50)	Carotid endarterectomy	Any stroke	-	-	RR: 0.73 (0.43, 1.22)^1		
Raman 2013 (50)	Carotid artery stenting	Periprocedural stroke	-	RR: 1.75 (0.87, 3.52)^3	-		
Schweizer 2013 (51)	Nasal deconolization	Surgical site infection	RR: 0.63 (0.63, 1.13)	RR: 0.63 (0.36, 1.12)	-		
Schweizer 2013 (51)	Glycopeptide prophylaxis	Surgical site infection	-	-	RR: 0.34 (0.11, 1.10)		
Silvain 2012 (52)	Enoxaparin	Mortality	-	RR: 0.88 (0.70, 1.10)^4	-		

^1 p < 0.05, ^3 p < 0.01, ^4 p < 0.001
Study	Intervention	Outcome/Effect	RR/HR (95% CI)	MD (95% CI)
Silvain 2012 (52)	Enoxaparin	Major bleeding	RR: 0.88 (0.62, 1.24)	
		Death or Myocardial infarction	RR: 0.86 (0.74, 0.99)	
Suthar 2012 (53)	Antiretroviral therapy	Tuberculosis infection	HR: 0.50 (0.34, 0.75)	
Te Morenga 2013 (54)	High sugar intake	Weight gain (kg)	MD: 0.75 (0.30, 1.19)	MD: 0.74 (0.30, 1.19)
Te Morenga 2013 (54)	High sugar intake	Body Mass Index (kg/m²)	MD: -0.06 (-0.15, 0.04)	
Tickell-Painter 2017 (56)	Mefloquine	Discontinuation due to adverse effects	RR: 0.70 (0.14, 3.53)	RR: 0.68 (0.11, 4.27)
		Serious adverse events or effects	RR: 0.70 (0.14, 3.53)	RR: 0.68 (0.11, 4.27)
Tickell-Painter 2017 (56)	Mefloquine	Nausea	RR: 1.35 (1.05, 1.73)	RR: 1.34 (1.04, 1.71)
			RR: 1.85 (1.42, 2.43)	RR: 1.86 (1.42, 2.42)
Tricco 2018 (57)	Live-attenuated zoster vaccines	Suspected Herpes Zoster	RR: 0.61 (0.48, 0.93)	RR: 0.60 (0.54, 0.66)
			RR: 0.48 (0.27, 0.84)	RR: 0.48 (0.27, 0.83)
Wilson 2011 (59)	Training for traditional birth attendants/assistance by traditional birth attendants	Perinatal mortality	RR: 0.76 (0.64, 0.88)	RR: 0.77 (0.66, 0.89)
Wilson 2011 (59)	Training for traditional birth attendants/assistance by traditional birth attendants	Neonatal mortality	RR: 0.79 (0.69, 0.88)	RR: 0.80 (0.71, 0.90)
Wilson 2019 (60)	Unilateral knee arthroplasty	Venous thromboembolism	-	
Wilson 2019 (60)	Unilateral knee arthroplasty	Range of movement (degrees)	-	
Wilson 2019 (60)	Unilateral knee arthroplasty	Operation duration (minutes)	-	

1. 1-sided 95% CI
2. 2-sided 95% CI
| Study Year | Treatment | Event Type | RR (95% CI) | OR (95% CI) | HR (95% CI) | CI: confidence interval; DDP 4: Dipeptidylpeptidase-4; HIV: human immunodeficiency virus; HR: hazard ratio; MD: mean difference; NSTE-ACS: Non–ST-Segment Elevation Acute Coronary Syndromes; OR: odds ratio; RCT: randomized controlled trial; RE: random effects; RR: risk ratio; SGLT-2: Sodium dependent glucose transporter 2. *some estimates were converted (detailed description is reported elsewhere (65)).
1 Only re-calculated data is shown since we excluded some primary studies from the original estimate due to inappropriate study design.
2 Pooled estimate includes observational analysis of randomized controlled trials.
3 Primary studies were not pooled in the original paper.
4 In the original paper cohort studies and randomized controlled trials were pooled together (sometimes without a subgroup).
5 Re-analysis with unpublished data.
6 Data converted (risk difference to risk ratio).
7 In the original paper common effects were reported, we calculated estimates with random effects model. |
| Systematic Review | Intervention/Exposure | Outcome | Reason for exclusion |
|-----------------------|--|--|--|
| Abou-Setta 2011 (1) | Nerve block | Delirium (OR) | Forest plots not available |
| Abou-Setta 2011 (1) | Spinal anaesthesia | Mortality (OR) | Forest plots not available |
| Alexander 2017 (4) | High docosahexaenoic acid and eicosapentaenoic acid | Any coronary heart disease event (RR) | Forest plots not available |
| Alexander 2017 (4) | High docosahexaenoic acid and eicosapentaenoic acid | Fatal coronary heart disease events (RR) | Forest plots not available |
| Alexander 2017 (4) | High docosahexaenoic acid and eicosapentaenoic acid | Non-fatal coronary heart disease events (RR) | Forest plots not available |
| Chowdhury 2014b (16) | High vitamin D | Mortality (RR) | Forest plot not available for RCTs |
| Chung 2011 (17) | High vitamin D | Colorectal cancer (RR) | Forest plots not available |
| Chung 2011 (17) | High vitamin D | Breast cancer (RR) | Forest plots not available |
| Johnston 2019 (33) | Low red meat | Mortality (HR) | Forest plot not available for cohort studies |
| Johnston 2019 (33) | Low red meat | Cardiovascular mortality (HR) | Forest plot not available for cohort studies |
| Johnston 2019 (33) | Low red meat | Cardiovascular disease (HR) | Forest plot not available for cohort studies |

HR: Hazard ratio; OR: Odds ratio; RCT: randomized controlled trial; RR: Risk ratio;
Table S5: Pooling results of bodies of evidence from cohort studies with RCTs based on random effects and common effect model, 95% prediction intervals, heterogeneity, test for subgroup difference, and Population (P), Intervention (I) / Exposure (E), Comparator (C) Outcome similarity degree.

Author, year, and reference	Intervention/ Exposure	Outcome	BoE CSs, n	Effect estimate (95% CI)	I^2 (%) / tau²	Pooled effect estimate (95%) RE (95% prediction interval)	I^2 (%) / tau²	Weight CS (%)	CS conclusion modified	Pooled effect estimate (95%) CE	Degree of PI/ECO similarity*	
Aburto 2013 (2)	Low sodium	Mortality	7	RR: 0.94 (0.83, 1.06)	61/ 0.02	RR: 0.93 (0.83, 1.04) / (0.68, 1.26)	47/ 0.02	95.0	No	RR: 0.94 (0.88, 1.00)	2	
Aburto 2013 (2)	Low sodium	Cardiovascular disease	9	RR: 0.90 (0.75, 1.08)	78/ 0.07	RR: 0.89 (0.75, 1.06) / (0.49, 1.62)	74/ 0.07	91.3	No	RR: 0.86 (0.80, 0.93)	2	
Ahmad 2015 (3)	Intra-aortic balloon pump	Mortality	14	OR: 1.02 (0.57, 1.82)	97/ 1.03	OR: 1.02 (0.67, 1.56) / (0.14, 7.32)	95/ 0.86	62.2	No	OR: 0.76 (0.72, 0.82)	1	
Alipanah 2018 (5)	Self-administered therapy	Treatment success	16	RR: 0.81 (0.74, 0.88)	91/ 0.02	RR: 0.84 (0.78, 0.90) / (0.62, 1.14)	89/ 0.02	80.9	No	RR: 0.92 (0.90, 0.94)	3	
Alipanah 2018 (5)	Self-administered therapy	Treatment completion	14	RR: 1.10 (0.91, 1.33)	86/ 0.07	RR: 1.02 (0.84, 1.23) / (0.51, 2.02)	88/0.10	75.6	No	RR: 1.12 (1.07, 1.17)	3	
Alipanah 2018 (5)	Self-administered therapy	Mortality	23	RR: 1.35 (1.00, 1.83)	90/ 0.34	RR: 1.26 (0.95, 1.67) / (0.37, 4.28)	88/ 0.33	90.2	No	RR: 1.26 (1.18, 1.34)	3	
Anglemyer 2013 (6)	Antiretroviral therapy	HIV infection	9	RR: 0.59 (0.36, 0.97)	63/ 0.25	RR: 0.45 (0.26, 0.78) / (0.09, 2.31)	75/ 0.42	88.2	No	RR: 0.72 (0.64, 0.82)	3	
Azad 2017 (7)	Non-nutritive sweeteners	BMI	1	MD: 0.77 (0.47, 1.07)	NA	MD: 0.23 (-0.77, 1.23) / (-3.88, 4.34)	79/ 0.65	38.6	Yes	MD: 0.53 (0.26, 0.80)	2	
Barnard 2015 (8)	Surgical abortion by mid-level providers	Failure or incomplete abortion	2	RR: 2.47 (1.44, 4.23)	0/ 0.00	RR: 2.23 (1.15, 4.32) / (0.24, 20.54)	33/ 0.15	65.5	No	RR: 2.14 (1.35, 3.39)	2	
Barnard 2015 (8)	Surgical abortion by mid-level providers	Complications	2	RR: 1.30 (0.57, 2.96)	70/ 0.26	RR: 1.31 (0.70, 2.42) / (0.17, 10.11)	32/ 0.13	90.3	No	RR: 1.51 (1.05, 2.17)	2	
Study Year	Group 1	Group 2	Outcome	RR 95% CI	P Value	Effect Size	RR 95% CI	P Value	RR 95% CI	P Value		
------------	---------	---------	---------	-----------	---------	-------------	-----------	---------	-----------	---------		
Barnard 2015 (8)	Surgical abortion by mid-level providers	Abortion failure and complications	3	RR: 1.33 (0.78, 2.27)	74/0.16	65/0.17	80.5	No	RR: 1.43 (1.12, 1.82)	2		
Bellemain-Appaix 2012 (9)	Clopidogrel pretreatment for percutaneous coronary intervention	Mortality	8	OR: 0.79 (0.53, 1.18)	79/0.23	66/0.17	69.3	No	OR: 0.65 (0.57, 0.75)	2		
Bellemain-Appaix 2012 (9)	Clopidogrel pretreatment for percutaneous coronary intervention	Major bleeding	8	OR: 1.03 (0.69, 1.53)	64/0.16	46/0.08	59.6	No	OR: 1.07 (0.92, 1.24)	2		
Bellemain-Appaix 2012 (9)	Clopidogrel pretreatment for percutaneous coronary intervention	Major coronary event	8	OR: 0.76 (0.60, 0.95)	82/0.08	69/0.05	64.0	No	OR: 0.78 (0.73, 0.85)	2		
Bellemain-Appaix 2014 (10)	P2Y12 inhibitor pretreatment in non-ST elevation acute coronary syndrome	Mortality	4	OR: 0.69 (0.35, 1.32)	35/0.17	10/0.01	33.2	No	OR: 0.91 (0.80, 1.04)	2		
Bellemain-Appaix 2014 (10)	P2Y12 inhibitor pretreatment in non-ST elevation acute coronary syndrome	Major bleeding	4	OR: 1.13 (0.92, 1.39)	0/0.00	0/0.00	50.3	No	OR: 1.27 (1.10, 1.47)	2		
Bellemain-Appaix 2014 (10)	P2Y12 inhibitor pretreatment in non-ST elevation acute coronary syndrome	Main composite ischemic endpoint	4	OR: 0.78 (0.56, 1.08)	65/0.07	52/0.02	45.0	Yes	OR: 0.85 (0.78, 0.93)	2		
Bloomfield 2016 (11)	Mediterranean diet	Breast cancer	13	RR: 0.96 (0.90, 1.03)	52/0.01	57/0.01	99.1	No	RR: 0.98 (0.95, 1.02)	2		
Bolland 2015 (12)	High calcium	All fractures	5	RR: 1.02 (0.93, 1.12)	68/0.01	50/0.01	42.0	No	RR: 0.99 (0.96, 1.02)	2		
Bolland 2015 (12)	High calcium	Vertebral fracture	1	RR: 1.40 (1.10, 1.78)	NA	22/0.02	23.3	Yes	RR: 0.98 (0.87, 1.11)	2		
Bolland 2015 (12)	High calcium	Hip fracture	6	RR: 1.09 (0.91, 1.30)	50/0.03	46/0.04	57.2	No	RR: 0.98 (0.91, 1.07)	2		
Study (Year)	Intervention	Outcome	RR (95% CI)	N	Mortality Rate	RR (95% CI)	N	Mortality Rate				
-------------	--------------	---------	-------------	---	---------------	-------------	---	---------------				
Brenner 2014 (13)	Sigmoidoscopy, screening for CRC	Colorectal cancer mortality	1	RR: 0.59 (0.45, 0.77)	NA	RR: 0.70 (0.64, 0.77)	0/0.00	12.7	No	RR: 0.70 (0.64, 0.77)	1	
Brenner 2014 (13)	Sigmoidoscopy, screening for CRC	Colorectal cancer incidence	2	RR: 0.50 (0.37, 0.69)	0/0.00	RR: 0.78 (0.69, 0.89)	65/0.01	11.0	No	RR: 0.79 (0.74, 0.84)	2	
Chowdhury 2012 (14)	High omega-3-fatty acids	Cerebrovascular disease	10	RR: 0.89 (0.80, 0.99)	17/0.01	RR: 0.93 (0.85, 1.01)	21/0.00	59.3	Yes	RR: 0.95 (0.89, 1.01)	2	
Chowdhury 2014a (15)	High α-linolenic acid	Coronary event	7	RR: 0.99 (0.88, 1.11)	61/0.02	RR: 0.99 (0.88, 1.11)	54/0.02	78.6	No	RR: 1.01 (0.95, 1.08)	3	
Chowdhury 2014a (15)	High omega-3-fatty acids	Coronary event	16	RR: 0.87 (0.78, 0.97)	76/0.03	RR: 0.90 (0.83, 0.97)	61/0.02	61.9	No	RR: 0.93 (0.89, 0.97)	3	
Chowdhury 2014a (15)	High omega-6-fatty acids	Coronary event	8	RR: 0.98 (0.90, 1.06)	54/0.01	RR: 0.94 (0.87, 1.03)	56/0.01	70.0	No	RR: 0.96 (0.94, 1.01)	3	
Chung 2016 (18)	High calcium	Cardiovascular disease mortality	6	RR: 0.97 (0.86, 1.09)	37/0.01	RR: 0.99 (0.92, 1.07)	11/0.00	89.9	No	RR: 1.01 (0.95, 1.07)	2	
Ding 2017 (19)	High dairy	Systolic blood pressure	27	MD: -0.11 (-0.20, -0.02)	30/0.01	MD: -0.11 (-0.20, -0.03)	24/0.01	98.8	No	MD: -0.16 (-0.21, -0.11)	2	
Fenton 2018 (20)	Radiation therapy	Erectile dysfunction	7	RR: 1.30 (1.19, 1.43)	31/0.00	RR: 1.24 (1.09, 1.41)	70/0.02	85.7	No	RR: 1.23 (1.15, 1.32)	2	
Fenton 2018 (20)	Radical Prostatectomy	Urinary incontinence	5	RR: 2.91 (1.80, 4.71)	67/0.18	RR: 2.54 (1.97, 3.27)	51/0.06	52.1	No	RR: 2.46 (2.08, 2.90)	2	
Fenton 2018 (20)	Radical Prostatectomy	Erectile dysfunction	6	RR: 1.49 (1.33, 1.66)	63/0.01	RR: 1.53 (1.37, 1.70)	75/0.02	65.1	No	RR: 1.50 (1.42, 1.58)	2	
Filippini 2017 (21)	Disease-modifying drugs	Conversion to clinically definite multiple sclerosis	2	HR: 0.48 (0.30, 0.78)	62/0.08	HR: 0.53 (0.47, 0.59)	0/0.00	70.0	No	HR: 0.53 (0.47, 0.59)	2	
Fluri 2010 (22)	Extracranial-intracranial arterial bypass	Mortality	11	OR: 0.97 (0.58, 1.62)	0/0.00	OR: 0.84 (0.66, 1.06)	0/0.00	20.3	No	OR: 0.84 (0.66, 1.06)	2	
Study (Year)	Intervention	Outcome	Event Rate	RR/95% CI	Event Rate	RR/95% CI	p-value	RR/95% CI				
-------------	--------------	---------	------------	-----------	------------	-----------	---------	-----------				
Fluri 2010 (22)	Extracranial-intracranial arterial bypass	Any stroke	15	OR: 0.76 (0.49, 1.17)	2/ 0.02	OR: 0.77 (0.50, 1.17)	29/ 0.17	67.5	No	OR: 0.95 (0.78, 1.16)	2	
Fluri 2010 (22)	Extracranial-intracranial arterial bypass	Death or dependency	8	OR: 0.81 (0.50, 1.31)	0/ 0.00	OR: 0.91 (0.73, 1.14)	0/ 0.00	20.6	No	OR: 0.91 (0.73, 1.14)	2	
Gargiulo 2016 (23)	Transcatheter aortic valve implantation	Early mortality	29	OR: 1.08 (0.84, 1.39)	41/ 0.16	OR: 1.01 (0.81, 1.26)	39/ 0.13	81.6	No	OR: 1.02 (0.88, 1.19)	2	
Gargiulo 2016 (23)	Transcatheter aortic valve implantation	Mid-term mortality	18	OR: 1.00 (0.81, 1.24)	46/ 0.08	OR: 0.96 (0.82, 1.13)	40/ 0.05	71.0	No	OR: 0.93 (0.83, 1.04)	2	
Gargiulo 2016 (23)	Transcatheter aortic valve implantation	Long-term mortality	6	OR: 1.70 (1.31, 2.20)	0/ 0.00	OR: 1.28 (1.00, 1.65)	62/ 0.08	46.7	Yes	OR: 1.18 (1.03, 1.35)	2	
Hartling 2013 (24)	Treating Gestational Diabetes Mellitus	Birth weight > 4000g	6	RR: 0.69 (0.31, 1.54)	88/ 0.64	RR: 0.58 (0.40, 0.86)	79/ 0.25	48.3	Yes	RR: 0.54 (0.46, 0.63)	2	
Hartling 2013 (24)	Treating Gestational Diabetes Mellitus	Large-for-gestational age neonate	4	RR: 0.43 (0.27, 0.70)	58/ 0.13	RR: 0.47 (0.36, 0.62)	60/ 0.07	49.8	No	RR: 0.45 (0.39, 0.52)	2	
Hartling 2013 (24)	Treating Gestational Diabetes Mellitus	Shoulder dystocia	4	RR: 0.38 (0.19, 0.75)	16/ 0.09	RR: 0.39 (0.26, 0.60)	0/ 0.00	50.1	No	RR: 0.39 (0.26, 0.60)	2	
Henderson 2019 (25)	Treating asymptomatic bacteriuria	Pyelonephritis	2	RR: 0.29 (0.15, 0.57)	0/ 0.00	RR: 0.25 (0.16, 0.39)	48/ 0.28	15.1	No	RR: 0.30 (0.23, 0.40)	3	
Higgins 2016 (26)	BCG	Mortality	8	RR: 0.46 (0.30, 0.69)	63/ 0.19	RR: 0.51 (0.36, 0.72)	67/ 0.19	70.1	No	RR: 0.57 (0.48, 0.68)	3	
Higgins 2016 (26)	Measles containing vaccines	Mortality	13	RR: 0.53 (0.40, 0.70)	67/ 0.14	RR: 0.57 (0.45, 0.72)	58/ 0.11	80.4	No	RR: 0.65 (0.57, 0.74)	3	
Hopley 2010 (27)	Total hip arthroplasty	Reoperation	6	RR: 0.45 (0.19, 1.08)	23/ 0.28	RR: 0.66 (0.33, 1.32)	34/ 0.39	56.1	No	RR: 0.72 (0.43, 1.20)	2	
Hopley 2010 (27)	Total hip arthroplasty	Dislocation	5	RR: 0.79 (0.27, 2.35)	18/ 0.28	RR: 1.20 (0.52, 2.76)	12/ 0.17	63.7	No	RR: 1.16 (0.54, 2.52)	2	
Study (Year)	Intervention	Outcome	RR with 95% CI	OR with 95% CI	P-value	Risk Difference	Comment					
-------------	--------------	---------	----------------	----------------	---------	----------------	---------					
Hopley 2010 (27)	Total hip arthroplasty	Deep infection	4	RR: 0.91 (0.25, 3.28)	0/ 0.00	RR: 1.37 (0.64, 2.94)	0/ 0.00	35.9	No	RR: 1.37 (0.64, 2.94)		
Hüpf 2010 (28)	Chest-compression-only cardio-pulmonary resuscitation	Survival	7	RR: 0.96 (0.83, 1.11)	0/ 0.00	RR: 1.04 (0.92, 1.19)	0/ 0.00	13/ 0.01	61.9	No	RR: 1.05 (0.93, 1.18)	
Jamal 2013 (29)	Non-calcium-based phosphate binders	Mortality	3	RR: 0.89 (0.78, 1.00)	0/ 0.00	RR: 0.87 (0.77, 0.97)	28/ 0.01	49.1	Yes	RR: 0.89 (0.82, 0.96)		
Jefferson 2010 (30)	Parenteral influenza vaccine	Influenza-like illness	30	RR: 0.76 (0.66, 0.87)	57/ 0.07	RR: 0.73 (0.64, 0.82)	54/ 0.06	85.6	No	RR: 0.70 (0.65, 0.75)		
Jefferson 2010 (30)	Parenteral influenza vaccine	Influenza	10	RR: 0.51 (0.27, 0.97)	64/ 0.52	RR: 0.51 (0.32, 0.80)	59/ 0.34	68.7	No	RR: 0.60 (0.47, 0.78)		
Jefferson 2012 (31)	Inactivated influenza vaccines	Influenza	1	RR: 0.20 (0.10, 0.39)	NA	RR: 0.37 (0.26, 0.53)	44/ 0.11	15.2	No	RR: 0.34 (0.27, 0.43)		
Jefferson 2012 (31)	Inactivated influenza vaccines	Influenza-like illness	2	RR: 0.29 (0.07, 1.15)	95/ 1.43	RR: 0.56 (0.46, 0.68)	87/ 0.04	34.8	Yes	RR: 0.74 (0.71, 0.77)		
Jin 2012 (32)	High total flavonoids	Colorectal neoplasms	3	RR: 1.00 (0.80, 1.25)	66/ 0.02	RR: 1.03 (0.88, 1.20)	56/ 0.01	69.6	No	RR: 1.02 (0.93, 1.13)		
Kansagara 2013 (34)	Transfusion	Mortality	11	RR: 2.49 (1.40, 4.43)	97/ 0.94	RR: 1.84 (1.10, 3.07)	96/ 1.00	74.4	No	RR: 3.32 (3.03, 3.65)		
Keag 2018 (35)	Caesarean section	Urinary incontinence	8	OR: 0.56 (0.48, 0.66)	70/ 0.04	OR: 0.58 (0.50, 0.68)	68/ 0.04	90.0	No	OR: 0.62 (0.57, 0.67)		
Keag 2018 (35)	Caesarean section	Fecal incontinence	5	OR: 1.04 (0.73, 1.48)	72/ 0.10	OR: 1.11 (0.78, 1.58)	71/ 0.12	93.6	No	OR: 1.11 (0.94, 1.31)		
Kredo 2014 (36)	Antiretroviral therapy by nurses	Mortality	2	RR: 1.23 (1.14, 1.33)	0/ 0.00	RR: 1.13 (0.94, 1.36)	76/ 0.02	64.7	Yes	RR: 1.17 (1.10, 1.26)		
Reference	Intervention	Outcome	RR	95% CI	OR	95% CI	Events	Event Rate	Outcome	RR	95% CI	
-------------------	---	--------------------------	-----	------------------	-----	------------------	--------	------------	-----------	-----	------------------	
Kredo 2014 (36)	Antiretroviral therapy by nurses	Attrition	2	RR: 0.30 (0.05, 1.94)	98/ 1.77	65.6	Yes	RR: 0.75 (0.71, 0.79)	3			
Kredo 2014 (36)	Nurses for maintenance of antiretroviral therapy	Mortality	1	RR: 0.19 (0.05, 0.78)	NA	RR: 0.61 (0.28, 1.35)	56/ 0.28	20.2	Yes	RR: 0.79 (0.54, 1.16)	3	
Li 2014 (37)	Exenatide	Acute pancreatitis/ Admission for acute pancreatitis	2	RR: 0.92 (0.69, 1.22)	0/0.00	RR: 0.92 (0.69, 1.22)	0/0.00	96.0	No	RR: 0.92 (0.69, 1.21)	2	
Li 2016 (38)	DDP-4 Inhibitors	Heart failure	4	RR: 1.10 (1.04, 1.17)	0/0.00	RR: 1.10 (1.04, 1.17)	0/0.00	98.4	No	RR: 1.10 (1.04, 1.17)	2	
Li 2016 (38)	DDP-4 Inhibitors	Hospital admission for heart failure	6	OR: 0.85 (0.74, 0.97)	33/0.01	OR: 0.74 (0.83, 1.08)	55/0.02	58.1	Yes	OR: 0.97 (0.90, 1.05)	2	
Matthews 2018 (39)	Tamoxifen	Heart failure	2	RR: 0.85 (0.66, 1.09)	10/0.00	RR: 0.74 (0.53, 1.04)	59/0.05	70.5	No	RR: 0.75 (0.61, 0.92)	3	
Menne 2019 (40)	SGLT-2 inhibitors	Acute kidney injury	5	OR: 0.40 (0.31, 0.52)	39/0.03	OR: 0.58 (0.49, 0.69)	27/0.05	36.9	No	OR: 0.62 (0.56, 0.68)	2	
Mesgarpour 2017 (41)	Erythropoiesis stimulating agents	Venous thromboembolism	5	RR: 1.92 (0.64, 5.76)	75/1.03	RR: 1.26 (0.76, 2.10)	84/0.70	28.4	No	RR: 1.71 (1.45, 2.01)	2	
Mesgarpour 2017 (41)	Erythropoiesis stimulating agents	Mortality	7	RR: 1.08 (0.66, 1.78)	91/0.35	RR: 0.88 (0.64, 1.21)	92/0.46	33.5	No	RR: 2.20 (2.15, 2.25)	2	
Moberley 2013 (42)	Pneumococcal polysaccharide vaccines	Invasive pneumococcal disease	2	OR: 0.57 (0.36, 0.89)	0/0.00	OR: 0.40 (0.26, 0.61)	12/0.07	51.9	No	OR: 0.42 (0.29, 0.59)	2	
Molnar 2015 (43)	Neoral (cyclosporine)	Acute rejection of kidney transplant	2	OR: 0.46 (0.25, 0.86)	5/0.02	OR: 0.74 (0.36, 1.54)	56/0.29	50.4	Yes	OR: 0.71 (0.46, 1.10)	2	
Navarese 2013 (44)	Early intervention for NSTE-ACS	Mortality	4	OR: 0.80 (0.63, 1.02)	78/0.04	OR: 0.82 (0.69, 0.97)	45/0.03	74.8	Yes	OR: 0.86 (0.80, 0.94)	2	
Navarese 2013 (44)	Early intervention for NSTE-ACS	Myocardial infarction	3	OR: 0.86 (0.69, 1.08)	86/0.03	OR: 0.97 (0.77, 1.22)	81/0.08	49.4	No	OR: 0.90 (0.83, 0.97)	2	
Study	Category	Outcome	No.	RR (95% CI)	MD (95% CI)	OR (95% CI)	OR (95% CI)	Outcome				
-------------------------------	-----------------------------------	--------------------------	-----	-------------	-------------	-------------	-------------	----------				
Navarese 2013 (44)	Early intervention for NSTE-ACS	Major bleeding	3	OR: 1.12		OR: 0.92		92/0.17				
				(0.69, 1.82)		(0.68, 1.24)		70/0.11				
						(0.39, 2.15)		56.3				
								No				
								OR: 1.00				
								(0.88, 1.13)				
Nelson 2010 (45)	Caesarean section	Anal incontinence, feces	12	OR: 0.91		OR: 0.92		0/0.00				
				(0.72, 1.16)		(0.74, 1.16)		90.0				
						(0.72, 1.19)		No				
								OR: 0.92				
								(0.74, 1.16)				
Nelson 2010 (45)	Caesarean section	Anal incontinence, flatus	4	OR: 1.02		OR: 1.00		0/0.00				
				(0.87, 1.20)		(0.86, 1.16)		90.3				
						(0.78, 1.28)		No				
								OR: 1.00				
								(0.86, 1.16)				
Nieuwenhuijse 2014 (46)	Ceramic-on-ceramic bearings for total hip arthroplasty	Harris Hip Score	3	MD: -0.50	62/ 1.08	MD: -0.29	32/ 0.31	40.7				
				(-2.09, 1.09)		(-0.96, 0.38)		No				
						(-1.81, 1.22)		MD: -0.20				
								(-0.66, 0.26)				
Nieuwenhuijse 2014 (46)	High-flexion total knee arthroplasty	Flexion (degrees)	26	MD: 3.78	78/ 19.12	MD: 2.91	73/ 12.7	53.2				
				(1.64, 5.92)		(1.56, 4.27)		No				
						(-4.42, 10.25)		MD: 2.49				
								(1.84, 3.14)				
Nieuwenhuijse 2014 (46)	Gender-specific total knee arthroplasty	Flexion-extension range (degrees)	2	MD: 3.15	29/ 1.58	MD: 1.80	9/ 0.40	25.6				
				(-0.03, 6.34)		(0.40, 3.21)		Yes				
						(-0.53, 4.14)		MD: 1.85				
								(0.54, 3.16)				
Nikooie 2019 (47)	Second generation antipsychotics	Sedation	3	RR: 1.84	34/ 0.84	RR: 1.29	0/0.00	6.0				
				(0.40, 8.54)		(0.95, 1.74)		No				
						(0.91, 1.83)		RR: 1.29				
								(0.95, 1.74)				
Nikooie 2019 (47)	Second generation antipsychotics	Neurologic outcomes	5	RR: 0.76	0/0.00	RR: 0.73	0/0.00	91.0				
				(0.59, 0.99)		(0.57, 0.93)		No				
						(0.56, 0.95)		RR: 0.73				
								(0.57, 0.93)				
Ochen 2019 (48)	Surgery for achilles tendon rupture	Re-rupture	18	RR: 0.42	30/0.19	RR: 0.43	21/0.12	69.6				
				(0.28, 0.65)		(0.31, 0.60)		No				
						(0.20, 0.96)		RR: 0.65				
								(0.54, 0.79)				
Ochen 2019 (48)	Surgery for achilles tendon rupture	Complications	15	RR: 2.93	0/0.00	RR: 2.72	41/0.28	57.8				
				(2.28, 3.75)		(1.84, 4.02)		No				
						(0.84, 8.82)		RR: 2.63				
								(2.13, 3.27)				
Pittas 2010 (49)	High vitamin D	Hypertension	3	RR: 0.57	0/0.00	RR: 0.68	77/0.14	61.8				
				(0.41, 0.79)		(0.43, 1.07)		Yes				
						(0.10, 4.51)		RR: 1.00				
								(0.95, 1.05)				
Raman 2013 (50)	Carotid endarterectomy	Ipsilateral stroke	2	RR: 0.47	83/2.19	RR: 0.70	38/0.05	11.9				
				(0.05, 4.46)		(0.51, 0.97)		Yes				
						(0.29, 1.69)		RR: 0.72				
								(0.58, 0.89)				
Raman 2013 (50)	Carotid endarterectomy	Any stroke	3	RR: 0.73	0/0.00	RR: 0.67	0/0.00	9.7				
				(0.43, 1.22)		(0.57, 0.79)		Yes				
						(0.53, 0.84)		RR: 0.67				
								(0.57, 0.79)				
Author	Year	Study Intervention	Outcomes	RR (CI)	p-value	Odds Ratio (CI)	p-value	Event Rate	Outcome	Note (RR) (CI)		
-----------------	-------	--------------------	---------------------------	--------------------------	---------	----------------	---------	--------------	-----------	---------------		
Raman 2013	50	Carotid artery stenting	Periprocedural stroke	RR: 1.91 (1.72, 2.11)	7/0.00	98.2	No	RR: 1.91 (1.74, 2.10)	2			
Schweizer 2013	51	Nasal deconolization	Surgical site infection	RR: 0.40 (0.28, 0.57)	0/0.00	44/0.15	No	RR: 0.54 (0.42, 0.69)	2			
Schweizer 2013	51	Glycopeptide prophylaxis	Surgical site infection	RR: 0.35 (0.12, 1.03)	80/1.44	62/0.25	No	RR: 1.04 (0.66, 1.24)	2			
Silvain 2012	52	Enoxaparin	Mortality	RR: 0.50 (0.40, 0.62)	0/0.00	46/0.08	No	RR: 0.66 (0.56, 0.77)	2			
Silvain 2012	52	Enoxaparin	Major bleeding	RR: 0.72 (0.56, 0.93)	0/0.00	30/0.05	Yes	RR: 0.84 (0.72, 0.98)	2			
Silvain 2012	52	Enoxaparin	Death or Myocardial infarction	RR: 0.44 (0.35, 0.55)	0/0.00	58/0.07	No	RR: 0.77 (0.71, 0.85)	2			
Suthar 2012	53	Antiretroviral therapy	Tuberculosis infection	HR: 0.32 (0.23, 0.41)	27/0.03	26/0.03	No	HR: 0.37 (0.31, 0.44)	3			
Te Morenga 2013	54	High sugar intake	Weight gain (kg)	MD: 0.31 (-0.07, 0.68)	99/0.14	NA	Yes	MD: 0.59 (0.58, 0.60)	2			
Te Morenga 2013	54	High sugar intake	BMI (kg/m²)	MD: -0.02 (-0.05, 0.00)	74/0.00	58/0.00	No	MD: -0.01 (-0.03, -0.00)	2			
Thomas 2010	55	Influenza vaccines	Influenza-like illness	RR: 0.31 (0.26, 0.36)	NA	94/0.28	24.5	No	RR: 0.48 (0.43, 0.53)	3		
Tickell-Painter 2017	56	Mefloquine	Discontinuation due to adverse effects	RR: 2.73 (1.84, 4.06)	31/0.11	15/0.04	79.2	No	RR: 2.85 (2.19, 3.71)	2		
Tickell-Painter 2017	56	Mefloquine	Serious adverse events or effects	RR: 3.09 (0.38, 24.95)	0/0.00	0/0.00	43.7	No	RR: 1.31 (0.33, 5.23)	3		
Tickell-Painter 2017	56	Mefloquine	Nausea	RR: 1.86 (1.42, 2.42)	0/0.00	0/0.00	46.3	No	RR: 1.56 (1.30, 1.87)	3		
Study	Intervention	Outcome	RR (95% CI)	P value								
---------------	---	--------------------------	-------------	---------	-------------	---------	-------------	---------	-------------	---------	-------------	---------
Tricco 2018	Live-attenuated zoster vaccines	Suspected Herpes Zoster	3	0.48 (0.27, 0.83)	99/ 0.24	0.55 (0.40, 0.77)	97/ 0.14	0.72 (0.70, 0.74)	2			
Vinceti 2018	Selenium	Any cancer	7	0.72 (0.55, 0.93)	46/ 0.06	0.86 (0.73, 1.01)	64/ 0.04	0.94 (0.88, 1.01)	3			
Vinceti 2018	Selenium	Cancer mortality	7	0.76 (0.59, 0.97)	66/ 0.07	0.78 (0.64, 0.95)	65/ 0.05	0.88 (0.80, 0.96)	3			
Vinceti 2018	Selenium	Colorectal cancer	6	0.82 (0.72, 0.94)	0/ 0.00	0.83 (0.74, 0.94)	0/ 0.00	0.83 (0.74, 0.94)	3			
Wilson 2011	Training for traditional birth attendants	Perinatal mortality	1	0.82 (0.38, 1.78)	NA	0.77 (0.67, 0.89)	52/ 0.01	0.79 (0.73, 0.86)	3			
Wilson 2011	Training for traditional birth attendants	Neonatal mortality	2	0.80 (0.47, 1.37)	0/ 0.00	0.80 (0.67, 0.95)	14.0/ 0.00	0.80 (0.74, 0.87)	3			
Wilson 2019	Unilateral knee arthroplasty	Venous thromboembolism	8	0.42 (0.30, 0.57)	24/ 0.04	0.43 (0.33, 0.55)	8/ 0.01	0.45 (0.37, 0.54)	2			
Wilson 2019	Unilateral knee arthroplasty	Range of movement	11	-8.43 (-10.15, -6.71)	86/ 6.20	-7.60 (-9.27, -5.93)	91/ 7.85	-8.29 (-8.63, -7.95)	2			
Wilson 2019	Unilateral knee arthroplasty	Operation duration	8	-23.80 (-40.43, -7.17)	99/ 491.19	-17.07 (-29.11, -5.04)	98/ 365.45	-11.25 (-12.71, -9.97)	2			
Yank 2011	Recombinant factor VII	Mortality	2	0.91 (0.39, 2.12)	0/ 0.00	1.08 (0.56, 2.09)	0/ 0.00	1.08 (0.56, 2.09)	2			
Yank 2011	Recombinant factor VII	Thromboembolic events	2	1.81 (0.67, 4.87)	0/ 0.00	1.88 (0.85, 4.16)	0/ 0.00	1.88 (0.85, 4.16)	2			
Study (Year)	Drug/Treatment	Outcome	Effect Size	CI	p Value	Evidence	RR	CI	p Value	Evidence		
-------------	---	---------------------------	-------------	------------	---------	----------	-------------	------------	---------	----------		
Zhang 2016 (62)	Everolimus-eluting bioresorbable vascular scaffold	Stent thrombosis	3	OR: 2.22 (1.00, 4.93)	0/ 0.00	Yes	OR: 2.09 (1.20, 3.64)	0/ 0.00	48.9	Yes		
Zhang 2016 (62)	Everolimus-eluting bioresorbable vascular scaffold	Mortality	4	OR: 0.63 (0.24, 1.63)	0/ 0.00	Yes	OR: 0.73 (0.34, 1.57)	15/ 0.20	48.3	No		
Zhang 2016 (62)	Everolimus-eluting bioresorbable vascular scaffold	Cardiac death	4	OR: 0.94 (0.43, 2.06)	0/ 0.00	Yes	OR: 1.05 (0.53, 2.12)	0/ 0.00	78.6	No		
Zhang 2017 (63)	Percutaneous coronary intervention	Mortality	17	HR: 1.07 (0.92, 1.26)	37/ 0.03	No	HR: 1.05 (0.93, 1.20)	32/ 0.03	74.4	No		
Zhang 2017 (63)	Percutaneous coronary intervention	Cardiovascular mortality	5	HR: 1.08 (0.51, 2.28)	78/ 0.49	No	HR: 1.05 (0.69, 1.59)	72/ 0.25	48.8	No		
Zhang 2017 (63)	Percutaneous coronary intervention	Myocardial infarction	5	HR: 2.00 (1.65, 2.44)	0/ 0.00	No	HR: 1.69 (1.22, 2.33)	57/ 0.12	46.3	No		
Ziff 2015 (64)	Digoxin	Mortality	8	RR: 1.60 (1.31, 1.96)	63/ 0.05	No	RR: 1.38 (1.15, 1.66)	75/ 0.06	69.8	No		
Ziff 2015 (64)	Digoxin	Cardiovascular mortality	3	RR: 2.53 (1.12, 5.70)	96/ 0.48	No	RR: 1.71 (1.04, 2.80)	96/ 0.29	58.1	No		
Ziff 2015 (64)	Digoxin	Hospital admission	4	RR: 0.92 (0.85, 0.99)	64/ 0.00	No	RR: 0.93 (0.88, 0.98)	61/ 0.00	62.2	No		

BCG: Bacillus Calmette-Guérin; BMI: Body Mass Index; BoE: Bodies of Evidence; CE: Common Effects; CI: Confidence Interval; CRC: Colorectal Cancer; CS: Cohort Studies; DDP 4: Dipeptidylpeptidase-4; HIV: Human Immunodeficiency Virus; HR: Hazard Ratio; MD: Mean Difference; NA: Not Applicable; NSTE-ACS: Non–ST-Segment Elevation Acute Coronary Syndromes; OR: Odds Ratio; PI/ECO: Population – Intervention/Exposure – Comparator – Outcome; RCT: Randomized Controlled Trial; RE: Random Effects; RR: Risk Ratio; SGLT-2: Sodium Dependent Glucose Transporter 2;
Figure S1: Aburto 2013; Intervention/Exposure: Low sodium; Outcome: All-cause mortality
Figure S2: Aburto 2013; Intervention/Exposure: Low-sodium; Outcome: Cardiovascular disease
Figure S3: Ahmad 2015; Intervention/ Exposure: Intra-aortic balloon pump; Outcome: All-cause mortality
Figure S4: Alipanah 2018

Intervention/Exposure: Self-administered therapy
Outcome: Treatment success (Risk Ratio >1 indicates a favorable effect)**

Study or Subgroup	Weight	IV, Random, 95% CI	Risk Ratio	Weight	IV, Random, 95% CI
6.1.1 RCTs					
Kamolratnarakul	6.6%	0.90 [0.84, 0.97]			
Valleroy 2001a	5.8%	1.01 [0.89, 1.15]			
Zwarenesen 1998	2.9%	1.19 [0.85, 1.66]			
Zwarenesen 2000	3.5%	0.91 [0.68, 1.20]			
Subtotal (95% CI)	19.1%	0.95 [0.87, 1.03]			
Heterogeneity	Tau² = 0.00; Chi² = 3.58; df = 3 (p = 0.26); I² = 25%		Test for overall effect: Z = 1.22 (p = 0.22)		

6.1.2 Cohort studies					
Akkari 1999	5.8%	0.83 [0.73, 0.94]			
Ar suwadontrisksale 2008	7.0%	0.78 [0.74, 0.83]			
Covercante 2007	7.0%	0.96 [0.82, 1.10]			
Chung 2007	5.5%	0.70 [0.50, 1.02]			
Daniel 2006	5.0%	0.67 [0.55, 0.81]			
Das 2014	1.0%	0.77 [0.47, 1.24]			
Erohova 2014	11.0%	0.69 [0.35, 1.31]			
Jyuan 2006	11.0%	0.36 [0.28, 0.45]			
Mathema 2001	6.6%	0.66 [0.62, 0.70]			
Mohr 2017	4.7%	1.02 [0.83, 1.25]			
Nirmala 2005	4.3%	0.96 [0.77, 1.19]			
Olle-Goerg 2001	5.5%	0.67 [0.47, 0.93]			
Szczesniak 2009	5.3%	0.77 [0.65, 0.93]			
Tsuchida 2003	4.1%	0.70 [0.62, 1.00]			
Xu 2006	8.0%	0.64 [0.59, 0.71]			
Yan 2013	7.1%	1.04 [0.81, 1.34]			
Subtotal (95% CI)	80.9%	0.81 [0.74, 0.88]			
Heterogeneity	Tau² = 0.02; Chi² = 170.26; df = 16 (p < 0.00001); I² = 91%		Test for overall effect: Z = 4.73 (p < 0.00001)		

Total (95% CI) | 100.0% | 0.84 [0.78, 0.90] | | | |
| **Heterogeneity** | Tau² = 0.02; Chi² = 180.41; df = 19 (p < 0.00001); I² = 99% | | Test for overall effect: Z = 5.60 (p < 0.00001) |
| **Test for subgroup differences** | Chi² = 6.33; df = 1 (p = 0.01); I² = 84.2% | |
Figure S5: Alipanah 2018; Intervention/ Exposure: Self-administered therapy; Outcome: Treatment completion (Risk Ratio >1 indicates a favorable effect)
Figure S6: Alipanah 2018; Intervention/Exposure: Self-administered therapy; Outcome: All-cause mortality
Figure S7: Anglemyer 2013; Intervention/Exposure: Antiretroviral therapy; Outcome: HIV infection
Figure S8: Azad 2017; Intervention/Exposure: Nonnutritive sweeteners; Outcome: Body Mass Index
Figure S9: Barnard 2015; Intervention/Exposure: Surgical abortion by mid-level providers; Outcome: Failure or incomplete abortion
Figure S10: Barnard 2015; Intervention/Exposure: Surgical abortion by mid-level providers; Outcome: Complications
Figure S11: Barnard 2015; Intervention/Exposure: Surgical abortion by mid-level providers; Outcome: Abortion failure and complications
Figure S12: Bellemain-Appaix 2012; Intervention/ Exposure: Clopidogrel pretreatment for percutaneous coronary intervention; Outcome: All-cause mortality
Figure S13: Bellemain-Appaix 2012; Intervention/Exposure: Clopidogrel pretreatment for percutaneous coronary intervention; Outcome: Major bleeding
Figure S14: Bellemain-Appaix 2012; Intervention/Exposure: Clopidogrel pretreatment for percutaneous coronary intervention; Outcome: Coronary heart disease
Figure S15: Bellemain-Appaix 2014; Intervention/ Exposure: P2Y12 inhibitor pretreatment in non-ST elevation acute coronary syndrome; Outcome: All-cause mortality
Figure S16: Bellemain-Appaix 2014; Intervention/Exposure: P2Y12 inhibitor pretreatment in non-ST elevation acute coronary syndrome; Outcome: Major bleeding
Figure S17: Bellemain-Appaix 2014; Intervention/Exposure: P2Y12 inhibitor pretreatment in non-ST elevation acute coronary syndrome; Outcome: Main composite ischemic endpoint
Study or Subgroup	Weight	Risk Ratio IV, Random, 95% CI	Risk Ratio IV, Random, 95% CI
12.1.1 RCTs			
Toledo 2015 FREDI MED	0.9%	0.43 [0.21, 0.88]	
Subtotal (95% CI)	0.9%	0.43 [0.21, 0.88]	
Heterogeneity: Not applicable			
Test for overall effect: $Z = 2.31$ ($P = 0.02$)			
12.1.2 Cohort studies			
Adeyemo et al. 2005	4.5%	0.90 [0.68, 1.19]	
Aguas-Collins 2009	5.7%	0.86 [0.68, 1.09]	
Bueckmann 2013	14.0%	0.94 [0.88, 1.00]	
Cade 2011	3.7%	0.96 [0.70, 1.32]	
Calgary 2015	5.0%	0.73 [0.55, 0.92]	
Coulo 2013	13.9%	1.08 [1.00, 1.17]	
Dufour 2006	12.0%	0.99 [0.88, 1.09]	
Lack 2013	12.2%	1.12 [1.01, 1.24]	
Mannisto 2005	4.1%	0.90 [0.67, 1.21]	
NBBS	5.1%	0.84 [0.65, 1.09]	
ORDET	0.9%	0.72 [0.55, 1.14]	
Terry 2001	7.4%	0.92 [0.75, 1.11]	
Vello 2005	0.0%	1.03 [0.88, 1.21]	
Subtotal (95% CI)	99.1%	0.98 [0.90, 1.03]	
Heterogeneity: $Tau^2 = 0.01$, Ch $P = 25.21$, df = 12 ($P = 0.01$); $I^2 = 52\%$			
Test for overall effect: $Z = 1.09$ ($P = 0.28$)			
Total (95% CI)	100.0%	0.05 [0.89, 1.62]	
Heterogeneity: $Tau^2 = 0.01$, Ch $P = 30.86$, df = 13 ($P = 0.004$); $I^2 = 57\%$			
Test for overall effect: $Z = 1.34$ ($P = 0.18$)			
Test for subgroup differences: Ch $P = 4.85$, df = 1 ($P = 0.030$); $I^2 = 79.4\%$			

Figure S18: Bloomfield 2016; Intervention/Exposure: Mediterranean diet; Outcome: Breast cancer
Figure S19: Bolland 2015; Intervention/ Exposure: High calcium; Outcome: All fractures
Study or Subgroup	Weight	Risk Ratio IV, Random, 95% CI	Risk Ratio IV, Random, 95% CI
Chevalley 1994	2.0%	0.75 [0.53, 1.08]	
Fujita 2004	1.0%	0.76 [0.54, 1.09]	
Grant 2005	1.4%	0.61 [0.43, 0.85]	
Hansson 1987	0.4%	1.03 [0.67, 1.58]	
Jackson 2006	27.0%	0.92 [0.75, 1.12]	
Peacock 2000	3.8%	0.56 [0.24, 1.30]	
Prince 2006	11.6%	0.97 [0.63, 1.50]	
Recknor 1986	12.2%	0.86 [0.59, 1.26]	
Reid 1983	0.5%	0.33 [0.01, 1.28]	
Reid 2006	10.0%	0.72 [0.44, 1.16]	
Riggs 1998	3.3%	0.87 [0.35, 2.19]	
Salvyaza 2010	3.8%	0.69 [0.30, 1.61]	

Subtotal (95% CI): 76.7% [0.74, 1.00]

Heterogeneity: Test $I^2 = 0.00$; $Chi^2 = 3.86$, df = 11 ($P = 0.97$); $I^2 = 0$

Test for overall effect: $Z = 2.02$ ($P = 0.04$)

13.4.2 Cohort studies

Study or Subgroup	Weight	Risk Ratio IV, Random, 95% CI	Risk Ratio IV, Random, 95% CI
Cumming 1997	23.3%	1.40 [1.10, 1.78]	
Subtotal (95% CI)	23.3%	1.40 [1.10, 1.78]	

Heterogeneity: Not applicable

Test for overall effect: $Z = 2.74$ ($P = 0.006$)

Total (95% CI): 100.0% [0.79, 1.11]

Heterogeneity: Test $I^2 = 0.24$; $Chi^2 = 15.42$, df = 12 ($P = 0.22$); $I^2 = 22$

Test for overall effect: $Z = 0.75$ ($P = 0.40$)

Test for subgroup differences: $Chi^2 = 11.47$, df = 1 ($P = 0.0007$); $I^2 = 91.3$

Figure S20: Bolland 2015; Intervention/Exposure: High calcium; Outcome: Vertebral fracture
Figure S21: Bolland 2015; Intervention/ Exposure: High calcium; Outcome: Hip fracture
Table: Risk Ratio

Study or Subgroup	Weight	Risk Ratio IV, Random, 95% CI	Risk Ratio IV, Random, 95% CI
14.2.1 RCTs			
Atkin 2010	36.0%	0.89 [0.59, 0.81]	
Hoff 2009	4.8%	0.73 [0.47, 1.11]	
Schoen 2012	36.0%	0.74 [0.33, 0.87]	
Segnan 2011	8.5%	0.78 [0.56, 1.09]	
Subtotal (95% CI)	87.3%	0.72 [0.65, 0.80]	
Heterogeneity: Tau^2 = 0.00, Ch^2 = 3 (P = 0.89), I^2 = 0%			
Test for overall effect Z = 0.21 (P = 0.89201)			

14.2.2 Cohort studies			
Mihara 2013	12.7%	0.59 [0.45, 0.77]	
Subtotal (95% CI)	12.7%	0.59 [0.45, 0.77]	
Heterogeneity: Not applicable			
Test for overall effect Z = 3.02 (P = 0.0001)			

Total (95% CI)	100.0%	0.70 [0.64, 0.77]	
Heterogeneity: Tau^2 = 0.00, Ch^2 = 7.16 (P = 0.0061), I^2 = 0%			
Test for overall effect Z = 3.02 (P = 0.0001)			
Test for subgroun differences: Ch^2 = 1.84, df= 1 (P = 0.18), I^2 = 45.5%			

Figure S22: Brenner 2014; Intervention/Exposure: Sigmoidoscopy; Outcome: Colorectal cancer mortality
Figure S23: Brenner 2014; Intervention/ Exposure: Sigmoidoscopy; Outcome: Colorectal cancer incidence
Figure S24: Chowdhury 2012; Intervention/ Exposure: High omega-3; Outcome: Cerebrovascular disease
Figure S25: Chowdhury 2014a; Intervention/Exposure: High α-linolenic acid; Outcome: Coronary heart disease
Figure S26: Chowdhury 2014a; Intervention/Exposure: High omega-3; Outcome: Coronary heart disease
Study or Subgroup	Weight	IV. Random, 95% CI	Study or Subgroup	Weight	IV. Random, 95% CI
DART	6.3%	0.91 [0.72, 1.15]	ATBC	11.4%	1.05 [0.92, 1.19]
FMHS	2.7%	0.59 [0.37, 0.93]	Group 5	5.2%	0.93 [0.68, 1.28]
LA Veteran	4.6%	0.74 [0.53, 1.03]	HPFS	14.3%	0.97 [0.93, 1.02]
MCH	5.7%	1.19 [0.98, 1.48]	KHD	8.3%	1.13 [0.98, 1.48]
MRC	4.2%	0.88 [0.61, 1.22]	MALMO	10.3%	1.09 [0.93, 1.29]
OSLO	2.3%	0.66 [0.33, 0.94]	MOROEN	5.7%	0.95 [0.72, 1.28]
SDHS	2.3%	1.74 [1.04, 2.92]	MRFIT	4.5%	0.70 [0.50, 0.98]
STARS	0.3%	0.41 [0.03, 1.49]	NHS	9.7%	0.82 [0.63, 1.06]
Subtotal (95% CI)	30.8%	0.86 [0.69, 1.07]	**Subtotal (95% CI)**	79.6%	0.8 [0.63, 1.07]

Heterogeneity: Tau² = 0.05, Chi² = 17.72, df = 7 (P = 0.02), I² = 59%
Test for overall effect: Z = 1.37 (P = 0.17)

Figure S27: Chowdhury 2014a; Intervention/ Exposure: Omega-6; Outcome: Coronary heart disease
Figure S28: Chung 2016; Intervention/Exposure: High calcium; Outcome: Cardiovascular mortality
Figure S29: Ding 2017; Intervention/Exposure: High dairy; Outcome: Systolic blood pressure
Figure S30: Fenton 2018; Intervention/Exposure: Radiation therapy; Outcome: Erectile dysfunction
Figure S31: Fenton 2018; Intervention/Exposure: Radical prostatectomy; Outcome: Urinary incontinence

Study or Subgroup	Weight	Risk Ratio IV, Random, 95% CI	Risk Ratio IV, Random, 95% CI
Donovan 2016	17.2%	2.07 [1.44, 2.98]	
Johansson 2011	13.9%	2.25 [1.60, 3.16]	
Will 2012	12.7%	2.69 [1.91, 4.01]	
Subtotal (95% CI)	47.9%	2.25 [1.80, 2.82]	

Heterogeneity: $I^2 = 0.00$, $Q = 0.07$, df = 2 ($P = 0.71$), $I^2 = 0%$
Test for overall effect: $Z = 7.11$ ($P < 0.000001$)

24.5.2 Cohort studies

Study or Subgroup	Weight	Risk Ratio IV, Random, 95% CI	Risk Ratio IV, Random, 95% CI
Barocas 2017	14.8%	2.34 [1.49, 3.85]	
Chen 2017	13.9%	1.58 [0.99, 2.53]	
Hoffman 2003	14.8%	4.27 [2.76, 6.80]	
Schapira 2001	1.6%	11.11 [5.57, 23.47]	
Smith 2009	7.2%	3.77 [1.98, 8.46]	
Subtotal (95% CI)	52.1%	2.01 [1.80, 4.71]	

Heterogeneity: $I^2 = 0.18$, $Q = 12.30$, df = 4 ($P = 0.02$), $I^2 = 87%$
Test for overall effect: $Z = 4.36$ ($P < 0.0001$)

Total (95% CI) 100.0% 2.54 [1.97, 3.27]

Heterogeneity: $I^2 = 0.08$, $Q = 14.20$, df = 7 ($P = 0.05$), $I^2 = 51%$
Test for overall effect: $Z = 7.25$ ($P < 0.00001$)
Test for subgroups differences: $Q = 0.90$, df = 1 ($P = 0.34$), $I^2 = 0%$
Figure S32: Fenton 2018; Intervention/ Exposure: Radical Prostatectomy; Outcome: Erectile dysfunction

24.4.1 RCTs

Study or Subgroup	Weight
Donovan 2018	12.1%
Johansson 2011	10.6%
Witt 2012	12.2%
Subtotal (95% CI)	34.9%

Heterogeneity: $\tau^2 = 0.05; \chi^2 = 16.80, df = 2 (P = 0.0004); I^2 = 87\%$

Test for overall effect $Z = 3.57 (P = 0.0004)$

24.4.2 cohort studies

Study or Subgroup	Weight
Schapira 2001	7.3%
Chen 2017	12.6%
Barocas 2017	13.5%
Siegel 2001	10.4%
Smith 2009	11.8%
Hoffman 2003	9.4%
Subtotal (95% CI)	65.1%

Heterogeneity: $\tau^2 = 0.01; \chi^2 = 13.51, df = 5 (P = 0.02); I^2 = 63\%$

Test for overall effect $Z = 5.89 (P < 0.00001)$

Total (95% CI)

Weight
100.0%

Heterogeneity: $\tau^2 = 0.02; \chi^2 = 31.41, df = 8 (P = 0.0001); I^2 = 75\%$

Test for overall effect $Z = 7.89 (P < 0.00001)$

Test for subgroup differences: $\chi^2 = 0.25, df = 1 (P = 0.62); I^2 = 0\%$
Figure S33: Filippini 2017; Intervention/Exposure: Disease-modifying drugs; Outcome: Conversion to clinically definite multiple sclerosis

Study or Subgroup	Weight	IV, Random, 95% CI	Hazard Ratio
22.1.1 RCTs			
BENEFIT 2006	12.8%	0.60 [0.36, 0.66]	
CHAMPS 2000	9.2%	0.68 [0.38, 0.83]	
CHAMPS 2000	0.5%	0.14 [0.02, 1.12]	
ETOMUS 2001	10.3%	0.65 [0.45, 0.94]	
ORACLE 2014	7.8%	0.39 [0.25, 0.59]	
PREDICT 2009	13.7%	0.55 [0.40, 0.77]	
REFLEX 2012	7.3%	0.49 [0.31, 0.74]	
TOPIC 2014	8.4%	0.57 [0.38, 0.86]	
Subtotal (95% CI)	70.0%	0.52 [0.46, 0.60]	

Heterogeneity, Tau² = 0.00, Chi² = 5.74, df = 7 (P = 0.57), I² = 0%
Test for overall effect: Z = 0.98 (P < 0.00001)

22.1.2 Cohort studies			
ACIBS 2010	4.7%	0.35 [0.19, 0.62]	
MEGASIS 2016	26.0%	0.59 [0.46, 0.73]	
Subtotal (95% CI)	30.0%	0.48 [0.30, 0.78]	

Heterogeneity, Tau² = 0.08, Chi² = 2.64, df = 1 (P = 0.10), I² = 82%
Test for overall effect: Z = 2.95 (P = 0.003)

Total (95% CI)

100.0% 0.53 [0.47, 0.59]

Heterogeneity, Tau² = 0.00, Chi² = 8.43, df = 9 (P = 0.49), I² = 0%
Test for overall effect: Z = 10.59 (P < 0.00001)
Test for subgroup difference: Chi² = 0.11, df = 1 (P = 0.74), I² = 0%

Favours disease-modifying drugs Favours control

0.01 0.1 1 10 100
Figure S34: Fluri 2010; Intervention/Exposure: Extracranial-intracranial arterial bypass; Outcome: All-cause mortality
Figure S35: Fluri 2010; Intervention/Exposure: Extracranial-intracranial arterial bypass; Outcome: Stroke
Figure S36: Fluri 2010; Intervention/Exposure: Extracranial-intracranial arterial bypass; Outcome: Stroke mortality or dependency.
Figure S37: Gargiulo 2016; Intervention/ Exposure: Transcatheter aortic valve implantation; Outcome: Early all-cause mortality
Figure S38: Gargiulo 2016; Intervention/ Exposure: Transcatheter aortic valve implantation; Outcome: Mid-term all-cause mortality
Figure S39: Gargiulo 2016; Intervention/ Exposure: Transcatheter aortic valve implantation; Outcome: Long-term all-cause mortality

Study or Subgroup	Odds Ratio (IV, Random, 95% CI)	Weight
21.3.1 RCTs		
NOTION	0.81 [0.35, 1.87]	6.1%
PARTNER	1.49 [1.10, 2.02]	15.2%
PARTNER 2A	0.96 [0.78, 1.24]	16.7%
U.S. CoreValve	0.01 [0.00, 1.09]	15.3%
Subtotal (95% CI)	1.03 [0.77, 1.37]	53.3%

Heterogeneity: $\text{I}^2 = 0.05; \text{Ch}^2 = 0.48; df = 3 (P = 0.04); P = 0.86$

Tests for overall effect $Z = 0.18 (P = 0.86)$

21.3.2 Cohort studies	Odds Ratio (IV, Random, 95% CI)	Weight
Hotzley	1.74 [1.12, 2.73]	12.2%
Munarotto	2.66 [1.49, 4.76]	9.6%
Papasopoulou	0.86 [0.32, 2.39]	4.8%
Santoro	1.74 [0.61, 4.98]	4.4%
Schymik	1.43 [0.89, 2.38]	10.9%
Zweng	1.30 [0.49, 3.53]	4.6%

Subtotal (95% CI): 1.70 [1.31, 2.20]

Heterogeneity: $\text{I}^2 = 0.00; \text{Ch}^2 = 4.56; df = 5 (P = 0.47); P = 0.83$

Test for overall effect $Z = 4.01 (P < 0.0001)$

Total (95% CI): 1.28 [1.00, 1.65]

Heterogeneity: $\text{I}^2 = 0.06; \text{Ch}^2 = 23.63; df = 9 (P = 0.006); P = 62%$

Test for overall effect $Z = 1.92 (P = 0.05)$

Test for subgroup differences: $\text{Ch}^2 = 6.45; df = 1 (P = 0.01); P = 64.5%$
Study or Subgroup	Weight	Risk Ratio IV, Random, 95% CI	Risk Ratio IV, Random, 95% CI
Beizer 1999	3.0%	0.11 [0.02, 0.64]	
Landon 2009	13.1%	0.41 [0.27, 0.63]	
Crowther 2005	14.1%	0.46 [0.34, 0.63]	
Eronero 1997	9.2%	0.50 [0.22, 1.13]	
Garber 1987	12.4%	0.86 [0.53, 1.42]	
Subtotal (95% CI)	51.7%	0.50 [0.36, 0.71]	

Heterogeneity: $\text{I}^2 = 79\%$, $\text{Chi}^2 = 21.9$, df = 4 ($P = 0.003$); $I^2 = 79\%$

Test for overall effect: $Z = 2.74$ ($P = 0.006$)

Test for sub-group differences: $\text{Chi}^2 = 41.87$, df = 8 ($P < 0.00001$); $I^2 = 79\%$

Figure S40: Hartling 2013; Intervention/Exposure: Treating gestational diabetes mellitus; Outcome: High birth weight
Figure S41: Hartling 2013; Intervention/ Exposure: Treating gestational diabetes mellitus; Outcome: Large-for-gestational age neonate
Figure S42: Hartling 2013; Intervention/ Exposure: Treating gestational diabetes mellitus; Outcome: Shoulder dystocia
Figure S4: Henderson 2019; Intervention/Exposure: Treating asymptomatic bacteriuria; Outcome: Pyelonephritis
Figure S44: Higgins 2016; Intervention/Exposure: Bacillus Calmette-Guérin vaccination; Outcome: All-cause mortality
Figure S45: Higgins 2016; Intervention/Exposure: Measles containing vaccines; Outcome: All-cause mortality
Figure S46: Hopley 2010; Intervention/Exposure: Total hip arthroplasty; Outcome: Reoperation
Study or Subgroup	Weight	Risk Ratio IV, Random, 95% CI	Risk Ratio IV, Random, 95% CI
28.5.1 RCTs			
Baker 2005	7.5%	7.17 [0.38, 134.62]	
Keating 2008	22.2%	1.61 [0.33, 7.75]	
Macaulay 2008	6.6%	4.00 [0.17, 92.57]	
Subtotal (95% CI)	36.3%	2.47 [0.69, 8.76]	
28.5.2 Cohort studies			
Byssel 1994	19.8%	0.35 [0.07, 1.90]	
Gebhard 1992	13.8%	0.46 [0.06, 3.73]	
Narayan 2005	7.5%	7.70 [0.41, 142.01]	
Squires 1999	11.2%	2.59 [0.25, 23.38]	
Xu 2002	11.5%	0.36 [0.04, 3.90]	
Subtotal (95% CI)	63.7%	0.79 [0.27, 2.35]	
Total (95% CI)	100.0%	1.20 [0.52, 2.70]	

Heterogeneity: $\tau^2 = 0.07$, $I^2 = 45\%$, $p = 0.34$; $I^2 = 12\%$
Test for overall effect: $Z = 0.43$, $p = 0.67$

Test for subgroup differences: $\chi^2 = 7.91$, $df = 7$, $p = 0.34$; $I^2 = 12\%$

Figure S47: Hopley 2010; Intervention/Exposure: Total hip arthroplasty; Outcome: Dislocation
Figure S48: Hopley 2010; Intervention/ Exposure: Total hip arthroplasty; Outcome: Deep infection
Figure S49: Hüpfl 2010; Intervention/Exposure: Chest-compression-only cardiopulmonary resuscitation; Outcome: Survival (Risk Ratio > 1 indicates a favorable effect)
Study or Subgroup	Weight	Risk Ratio IV, Random, 95% CI	Risk Ratio IV, Random, 95% CI
Barreto 2008	0.3%	0.12 [0.02, 0.81]	
Block 2007	3.2%	0.83 [0.28, 1.00]	
Chertow 2002	1.0%	1.22 [0.39, 3.88]	
Di Iorio 2012	3.0%	0.54 [0.28, 1.03]	
Quindi 2008	0.8%	0.44 [0.12, 1.68]	
Sadik 2003	0.3%	0.33 [0.04, 2.23]	
Suki 2008	24.5%	0.97 [0.84, 1.12]	
Wilson 2009	17.9%	0.95 [0.70, 1.05]	
Subtotal (95% CI)	50.9%	**0.78 [0.62, 0.98]**	

Heterogeneity: Tau² = 0.03, Ch² = 12.27, df = 7 (P = 0.08), I² = 43%
Test for overall effect: Z = 2.09 (P = 0.04)

Study or Subgroup	Weight	Risk Ratio IV, Random, 95% CI	Risk Ratio IV, Random, 95% CI
Borzechski 2007	20.6%	0.82 [0.69, 0.98]	
Jean 2011	12.7%	0.89 [0.78, 1.02]	
Pancheri 2010	15.9%	0.83 [0.74, 1.18]	
Subtotal (95% CI)	49.1%	**0.89 [0.78, 1.00]**	

Heterogeneity: Tau² = 0.00, Ch² = 1.57, df = 2 (P = 0.46), I² = 0%
Test for overall effect: Z = 1.90 (P = 0.06)

Total (95% CI)

Risk Ratio IV, Random, 95% CI
0.87 [0.77, 0.97]

Heterogeneity: Tau² = 0.01, Ch² = 13.83, df = 10 (P = 0.18), I² = 28%
Test for overall effect: Z = 2.40 (P = 0.02)
Test for subgroup differences: Ch² = 0.91, df = 1 (P = 0.34), I² = 0%

Figure S50: Jamal 2013; Intervention/Exposure: Non-calcium-based phosphat binders; Outcome: All-cause mortality
Figure S51: Jefferson 2010; Intervention/ Exposure: Parenteral influenza vaccine; Outcome: Influenza-like illness
31.4.1 RCTs

Study or Subgroup	Weight	IV, Random, 95% CI
Edmondsdon 1971	8.4%	0.36 [0.12, 1.06]
Ouwae 1984	13.0%	0.41 [0.23, 0.74]
Rudenko 2001	9.9%	0.50 [0.20, 1.25]
Subtotal (95% CI)	31.3%	**0.42 [0.27, 0.66]**

Heterogeneity: *I^2* = 0.00; *Chi^2* = 0.25, df = 2 (*P* = 0.66); *P* = 0%
Test for overall effect: *Z* = 3.79 (*P* = 0.0002)

31.4.2 Cohort studies

Study or Subgroup	Weight	IV, Random, 95% CI
Cuneo Devani 1980	3.7%	0.21 [0.03, 1.74]
Feary 1976	12.6%	0.16 [0.01, 1.92]
Gross 1986	3.7%	0.11 [0.01, 0.94]
Howarth 1967a	5.2%	0.21 [0.04, 1.14]
Howarth 1967b	1.9%	0.33 [0.01, 3.00]
Morena 1985	2.5%	1.41 [0.10, 20.60]
Nicholson 1988	4.0%	0.05 [0.01, 0.37]
Ruben 1974	10.5%	0.54 [0.23, 1.25]
Taylor 1992	11.7%	2.05 [1.01, 4.19]
Voordouw 2003	12.6%	0.50 [0.27, 0.91]
Subtotal (95% CI)	68.7%	**0.51 [0.27, 0.97]**

Heterogeneity: *I^2* = 0.52; *Chi^2* = 25.28, df = 9 (*P* = 0.003); *P* = 64%
Test for overall effect: *Z* = 2.07 (*P* = 0.04)

Total (95% CI): 100.0% 0.51 [0.32, 0.80]

Heterogeneity: *I^2* = 0.34; *Chi^2* = 23.15, df = 12 (*P* = 0.004); *P* = 59%
Test for overall effect: *Z* = 2.80 (*P* = 0.004)
Test for subgroup differences: *Chi^2* = 0.24, df = 1 (*P* = 0.62), *P* = 0%

Figure S52: Jefferson 2010; Intervention/ Exposure: Parenteral influenza vaccine; Outcome: Influenza
Figure S53: Jefferson 2012; Intervention/ Exposure: Inactivated influenza vaccines; Outcome: Influenza
Figure S54: Jefferson 2012; Intervention/Exposure: Inactivated influenza vaccines; Outcome: Influenza-like illness
Figure S55: Jin 2012; Intervention/Exposure: High total flavonoids; Outcome: Colorectal neoplasms
Study or Subgroup	Weight	Risk Ratio IV, Random, 95% CI	Risk Ratio IV, Random, 95% CI
Bush 1997	4.6%	1.02 [0.97, 1.07]	
Carson 1998	2.3%	1.00 [0.90, 1.11]	
Carson 2011	5.2%	1.44 [0.91, 2.25]	
Carson 2013	5.2%	0.14 [0.02, 1.10]	
Cooper 2011	2.6%	0.57 [0.30, 1.06]	
Hébert 2001	6.4%	0.81 [0.53, 1.26]	
Subtotal (95% CI)	25.6%	0.84 [0.62, 1.14]	

Heterogeneity: Tau² = 0.05, Chi² = 6.00, df = 5 (P = 0.31); η² = 17%
Test for overall effect: Z = 0.30 (P = 0.76)

35.1.2 Cohort studies - Converted RR

Study	Weight	Risk Ratio IV, Random, 95% CI
Boulé 2009	4.7%	5.38 [1.45, 20.01]
Carson 1998	5.6%	1.06 [0.78, 1.48]
Chase 2003	6.7%	3.21 [2.64, 3.89]
Doyle 2008	6.6%	8.90 [6.30, 12.68]
Doyle 2008	6.6%	10.10 [13.59, 23.97]
Garty 2009	5.8%	0.31 [0.14, 0.66]
Malvanada 2009	0.2%	1.40 [0.90, 2.45]
Nikolsky 2009	5.6%	4.71 [1.97, 11.26]
Rao 2004	6.7%	3.94 [3.26, 4.75]
Shishibor 2009	0.5%	3.89 [2.66, 5.68]
Singla 2007	6.3%	2.26 [1.36, 3.80]
Wu 2001	6.0%	0.23 [0.12, 0.46]
Subtotal (95% CI)	74.4%	2.49 [1.40, 4.43]

Heterogeneity: Tau² = 0.04, Chi² = 23.19, df = 11 (P < 0.0001); η² = 97%
Test for overall effect: Z = 3.12 (P = 0.002)

Figure S56: Kansagara 2013; Intervention/Exposure: Transfusion; Outcome: All-cause mortality
Figure S57: Keag 2018; Intervention/Exposure: Caesarean section; Outcome: Urinary incontinence
Figure S58: Keag 2018; Intervention/ Exposure: Caesarean section; Outcome: Fecal incontinence
Figure S59: Kredo 2014; Intervention/ Exposure: Antiretroviral therapy by nurses; Outcome: All-cause mortality
Figure S60: Kredo 2014; Intervention/ Exposure: Antiretroviral therapy by nurses; Outcome: Attrition
Figure S61: Kredo 2014; Intervention/Exposure: Nurses for maintenance of antiretroviral therapy; Outcome: All-cause mortality
Figure S62: Li 2014; Intervention/Exposure: Exenatide; Outcome: Acute pancreatitis
Figure S63: Li 2016; Intervention/Exposure: DDP-4 inhibitors; Outcome: Heart failure
Figure S64: Li 2016; Intervention/ Exposure: DDP-4 inhibitors; Outcome: Hospital admission for heart failure
Heterogeneity: Not applicable
Test for overall effect: Z = 3.02 (P = 0.003)

Heterogeneity: Tau^2 = 0.03, Ch^2 = 1.11, df = 1 (P = 0.29), I^2 = 10%
Test for overall effect: Z = 1.29 (P = 0.20)

Heterogeneity: Tau^2 = 0.05, Ch^2 = 4.93, df = 2 (P = 0.08), I^2 = 59%
Test for overall effect: Z = 1.72 (P = 0.08)
Test for subgroup differences: Ch^2 = 3.78, df = 1 (P = 0.05), I^2 = 73.5%

Figure S65: Matthews 2018; Intervention/ Exposure: Tamoxifen; Outcome: Heart failure
Figure S66: Menne 2019; Intervention/Exposure: SGLT-2 inhibitors; Outcome: Acute kidney injury
Figure S67: Mesgarpour 2017; Intervention/Exposure: Erythropoiesis stimulating agents; Outcome: Venous thromboembolism
Figure S68: Mesgarpour 2017; Intervention/Exposure: Erythropoiesis stimulating agents; Outcome: All-cause mortality
Figure S69: Moberley 2013; Intervention/Exposure: Pneumococcal polysaccharide vaccines; Outcome: Invasive pneumococcal disease
Figure S70: Molnar 2015; Intervention/Exposure: Neoral (Cyclosporin); Outcome: Acute rejection of kidney transplant
Figure S71: Navarese 2013; Intervention/Exposure: Early intervention for NSTE-ACS; Outcome: All-cause mortality
Figure S72: Navarese 2013; Intervention/Exposure: Early intervention for NSTE-ACS; Outcome: Myocardial infarction

Study or Subgroup	Weight	Odds Ratio IV, Random, 95% CI	Odds Ratio IV, Random, 95% CI
ABOARD	4.9%	2.13 [0.89, 5.10]	
ELISA	3.4%	1.20 [0.39, 3.70]	
ISAR-COOL	6.2%	0.56 [0.27, 1.16]	
LIPSIA-NSTEMI	7.0%	2.84 [1.45, 5.68]	
OPTIMA	7.0%	2.36 [1.20, 4.63]	
TIMACS	13.1%	0.63 [0.50, 1.14]	
Zhang et al. 2010	9.0%	0.45 [0.26, 0.70]	
Subtotal (95% CI)	50.6%	1.16 [0.67, 2.00]	

Heterogeneity: Tau² = 0.41; Chi² = 30.88, df = 6 (P < 0.0001); I² = 81%
Test for overall effect: Z = 0.54 (P = 0.59)

45.2.2 Cohort studies

Study	Weight	Odds Ratio IV, Random, 95% CI	Odds Ratio IV, Random, 95% CI
ACUITY	16.3%	0.70 [0.60, 0.82]	
CRUSADE	16.0%	1.04 [0.91, 1.17]	
SYNERGY	16.4%	0.87 [0.75, 1.00]	
Subtotal (95% CI)	49.4%	0.85 [0.69, 1.00]	

Heterogeneity: Tau² = 0.03; Chi² = 14.64, df = 2 (P = 0.0007); I² = 86%
Test for overall effect: Z = 1.32 (P = 0.19)

Total (95% CI)

Weight	Odds Ratio IV, Random, 95% CI	Odds Ratio IV, Random, 95% CI
100.0%	0.97 [0.77, 1.22]	

Heterogeneity: Tau² = 0.08; Chi² = 48.30, df = 9 (P < 0.00001); I² = 81%
Test for overall effect: Z = 0.29 (P = 0.78)

Test for subgroup differences: Chi² = 1.00, df = 1 (P = 0.32); I² = 0%
Figure S73: Navarese 2013; Intervention/Exposure: Early intervention for NSTE-ACS; Outcome: Major bleeding
Figure S74: Nelson 2010; Intervention/Exposure: Caesarean section; Outcome: Anal incontinence, feces
Figure S75: Nelson 2010; Intervention/Exposure: Caesarean section; Outcome: Anal incontinence, flatus
Figure S76: Nieuwenhuijse 2014; Intervention/ Exposure: Ceramic-on-ceramic bearings for total hip arthroplasty; Outcome: Harris Hip Score
Figure S77: Nieuwenhuijse 2014; Intervention/Exposure: High-flexion total knee arthroplasty; Outcome: Flexion in degrees
Figure S78: Nieuwenhuijse 2014; Intervention/ Exposure: Gender-specific total knee arthroplasty; Outcome: Flexion-extension range
Figure S79: Nikooie 2019; Intervention/Exposure: Second generation antipsychotics; Outcome: Sedation
Figure S80: Nikooie 2019; Intervention/Exposure: Second generation antipsychotics; Outcome: Neurologic outcomes
Figure S81: Ochen 2019; Intervention/Exposure: Surgery for achilles tendon rupture; Outcome: Re-rupture
Figure S82: Ochen 2019; Intervention/ Exposure: Surgery for achilles tendon rupture; Outcome: Complications
Figure S83: Pittas 2010; Intervention/Exposure: High vitamin D; Outcome: Hypertension
Figure S84: Raman 2013; Intervention/ Exposure: Carotid endarterectomy; Outcome: Ipsilateral stroke

Study or Subgroup	Weight (%)	Risk Ratio 4, Random, 95% CI	Risk Ratio 4, Random, 95% CI
51.1.1 RCTs			
ACAS 1995	20.8%	0.84 [0.42, 0.98]	
ACST 2010	39.4%	0.76 [0.57, 1.01]	
VA 1993	10.9%	0.76 [0.42, 1.35]	
Subtotal (95% CI)	88.1%	0.72 [0.58, 0.90]	
Heterogeneity: $\tau^2 = 0.00$; $\chi^2 = 0.42$, df = 2 ($P = 0.81$); $I^2 = 0\%$			
Test for overall effect: $Z = 2.88$ ($P = 0.004$)			

51.1.2 Cohort studies			
Caracci 1996	4.5%	0.14 [0.03, 0.62]	
Lubman 1994	7.4%	1.41 [0.48, 4.31]	
Subtotal (95% CI)	11.9%	0.47 [0.05, 4.46]	
Heterogeneity: $\tau^2 = 2.19$; $\chi^2 = 6.93$, df = 1 ($P = 0.01$); $I^2 = 83\%$			
Test for overall effect: $Z = 0.65$ ($P = 0.51$)			

| Total (95% CI) | 100.0% | 0.70 [0.51, 0.97] | |
| Heterogeneity: $\tau^2 = 0.05$; $\chi^2 = 6.48$, df = 4 ($P = 0.17$); $I^2 = 33\%$
| Test for overall effect: $Z = 2.15$ ($P = 0.03$) |
| Test for suborco differences: $\chi^2 = 0.14$, df = 1 ($P = 0.71$), $P = 9\%$ |

0.01 0.1 1 10 100
Favours carotid EE Favours control

Favours carotid EE Favours control
Study or Subgroup	Weight	IV, Random, 95% CI	Study or Subgroup	Weight	IV, Random, 95% CI
ACAS 1996	26.1%	0.71 [0.61, 0.87]			
ACST 2010	63.7%	0.81 [0.49, 0.76]			
VA 1993	10.6%	0.92 [0.56, 1.51]			
Total (95% CI)	**100.0%**	**0.67 [0.57, 0.75]**	**Total (95% CI)**	**100.0%**	**0.67 [0.57, 0.75]**

Heterogeneity: Tau² = 0.00; Ch² = 2.78, df = 5 (P = 0.73), I² = 0%
Test for overall effect: Z = 4.85 (P < 0.00001)
Test for subcategory differences: Ch² = 0.07, df = 1 (P = 0.79), P = 0%

Figure S85: Raman 2013; Intervention/ Exposure: Carotid endarterectomy; Outcome: Stroke
Figure S86: Raman 2013; Intervention/ Exposure: Carotid artery stenting; Outcome: Periprocedural stroke
Figure S87: Schweizer 2013; Intervention/ Exposure: Nasal deconolization; Outcome: Surgical site infection
Figure S88: Schweizer 2013; Intervention/Exposure: Glycopeptide prophylaxis; Outcome: Surgical site infection
Figure S89

Silvain 2012; Intervention/Exposure: Enoxaparin; Outcome: All-cause mortality

Study or Subgroup	Risk Ratio IV, Random, 95% CI	Weight	Heterogeneity, Tau² = 0.00, Ch² = 5.00, df = 5 (P = 0.50), I² = 0%
ASSENT-3 2003	8.3% 0.93 [0.47, 1.85]	8.3%	Test for overall effect: Z = 1.13 (P = 0.26)
ATOLL 2011	10.0% 0.60 [0.33, 1.06]	10.0%	
EXTRACT-TIMI 25 2007	15.8% 0.98 [0.71, 1.37]	15.8%	
Galeote et al 2002	0.8% 2.94 [0.12, 70.49]	0.8%	
STEEPLE 2008	4.7% 1.30 [0.50, 3.80]	4.7%	
SYNERGY 2006	11.5% 0.75 [0.45, 1.23]	11.5%	
Subtotal (95% CI)	51.1% 0.88 [0.70, 1.16]	51.1%	

Total (95% CI) | 100.0% 0.61 [0.49, 0.82] | 100.0% | Heterogeneity, Tau² = 0.09, Ch² = 4.33, df = 12 (P = 0.46), I² = 0% |

Test for overall effect: Z = 6.19 (P < 0.00001)

Test for subgroup differences: Ch² = 12.37, df = 12 (P = 0.0084), I² = 51.9%
Figure S90: Silvain 2012; Intervention/ Exposure: Enoxaparin; Outcome: Major bleeding
Study or Subgroup	Weight	Risk Ratio IV, Random, 95% CI	Risk Ratio IV, Random, 95% CI
53.3.3 RCTs			
ACTION 2005	4.0%	0.57 [0.25, 1.00]	
ATOLL 2011	7.7%	0.96 [0.59, 1.55]	
CRUGGE 2003	4.1%	1.13 [0.80, 2.56]	
Drozdz et al 2001	0.4%	0.20 [0.01, 4.06]	
Dudek et al 2000a	3.2%	0.39 [0.15, 1.02]	
Dudek et al 2000b	5.6%	1.25 [0.00, 3.10]	
ExTRACT-TIMI 25 2007	13.2%	0.77 [0.46, 1.30]	
Gisle et al 2002	1.0%	1.63 [0.41, 6.47]	
Her et al 2006	0.6%	0.52 [0.05, 5.63]	
Rabah et al 1999	0.4%	0.33 [0.01, 7.87]	
STEEPLE 2006	11.1%	1.06 [0.80, 1.39]	
SYNERGY 2006	13.2%	0.91 [0.78, 1.06]	
ZELUS 2000	2.6%	0.29 [0.00, 0.02]	
Subtotal (95% CI)	65.7%	0.98 [0.23, 0.99]	

Heterogeneity Tau² = 0.01; CH² = 15.18, df= 12 (P = 0.23); I² = 21%
Test for overall effect: Z = 2.07 (P = 0.04)

53.3.4 Cohort studies	Weight	Risk Ratio IV, Random, 95% CI	Risk Ratio IV, Random, 95% CI
Bieger et al 2011	5.8%	0.44 [0.24, 0.83]	
Drez et al 2009	5.3%	0.50 [0.25, 0.98]	
Gisle et al 2008	0.7%	0.37 [0.04, 3.46]	
Krompas et al 2008	1.6%	0.95 [0.00, 20.35]	
Li et al 2010	10.2%	0.46 [0.03, 0.63]	
Zeyner et al 2005	3.9%	0.97 [0.18, 0.87]	
Zeyner et al 2008	6.7%	0.36 [0.21, 0.63]	
Subtotal (95% CI)	34.3%	0.44 [0.35, 0.55]	

Heterogeneity Tau² = 0.00; CH² = 1.62, df= 6 (P = 0.95); I² = 0%
Test for overall effect: Z = 7.06 (P = 0.00001)

Total (95% CI) 100.0% 0.67 [0.55, 0.81]
Heterogeneity Tau² = 0.07; CH² = 44.04, df= 19 (P = 0.0007); I² = 58%
Test for overall effect: Z = 4.04 (P = 0.0001)
Test for subgroup differences: CH² = 23.73, df= 1 (P = 0.000001), I² = 95.8%

Figure S91: Silvain 2012; Intervention/ Exposure: Enoxaparin; Outcome: All-cause mortality or myocardial infarction
Figure S92: Suthar 2012; Intervention/Exposure: Antiretroviral therapy; Outcome: Tuberculosis infection
Figure S93: Te Morenga 2013; Intervention/Exposure: High sugar intake; Outcome: Weight gain
Figure S94: Te Morenga 2013; Intervention/ Exposure: High sugar intake; Outcome: Body Mass Index
Figure S95: Thomas 2010; Intervention/ Exposure: Influenza vaccines; Outcome: Influenza-like illness
Figure S96: Tickell-Painter 2017; Intervention/ Exposure: Mefloquine; Outcome: Discontinuation due to adverse effects
Figure S97: Tickell-Painter 2017; Intervention/ Exposure: Mefloquine; Outcome: Serious adverse events or effects
Figure S98: Tickell-Painter 2017; Intervention/Exposure: Mefloquine; Outcome: Nausea
Figure S99: Tricco 2018; Intervention/ Exposure: Live-attenuated zoster vaccines; Outcome: Suspected Herpes Zoster
Figure S100: Vinceti 2018; Intervention/Exposure: High selenium; Outcome: Cancer
Figure S101: Vinceti 2018; Intervention/Exposure: High selenium; Outcome: Cancer mortality
Figure S102: Vinceti 2018; Intervention/Exposure: High selenium; Outcome: Colorectal cancer
Figure S103: Wilson 2011; Intervention/ Exposure: Training for traditional birth attendants/ assistance by traditional birth attendants; Outcome: Perinatal mortality
Figure S104: Wilson 2011; Intervention/Exposure: Training for traditional birth attendants/assistance by traditional birth attendants; Outcome: Neonatal mortality
Figure S105: Wilson 2019; Intervention/Exposure: Unicompartmental knee arthroplasty; Outcome: Venous thromboembolism
Figure S106: Wilson 2019; Intervention/ Exposure: Unicompartmental knee arthroplasty; Outcome: Flexion-extension range
Study or Subgroup

Study or Subgroup	Weight	Mean Difference IV, Random, 95% CI	Mean Difference IV, Random, 95% CI
61.6.1 RCTs			
Beaud 2017	10.2%	-1.00 [-4.43, 2.43]	
Kunsche 2017	9.8%	0.00 [1.49, 16.51]	
Sun 2011	10.0%	-1.20 [-19.01, -6.39]	
Subtotal (95% CI)	30.2%	-1.72 [-11.86, 8.45]	
Heterogeneity: τ² = 71.80, Chi² = 18.81, df = 2 (P = 0.0301); I² = 90%			
Test for overall effect: Z = 0.33 (P = 0.74)			

61.6.3 Cohort studies			
Courtoy 2019	10.1%	-6.20 [-12.32, 0.07]	
Duchmann 2014	10.3%	-1.20 [-3.81, -3.09]	
Lombarst 2009	10.1%	-5.00 [-10.06, 0.08]	
Lum 2010		Not estimable	
Manzotti 2007	10.1%	-6.50 [-12.05, -6.06]	
Schwab 2015	10.1%	-21.00 [-25.59, -16.51]	
Sihak 2018	8.0%	-30.80 [-45.01, -16.59]	
Siman 2017	10.1%	-45.50 [-35.12, -53.99]	
Subtotal (95% CI)	58.8%	-23.20 [-40.43, -7.71]	
Heterogeneity: τ² = 49.19, Chi² = 464.14, df = 6 (P < 0.00001); I² = 99%			
Test for overall effect: Z = 2.80 (P = 0.005)			

| **Total (95% CI)** | 100.0% | -17.07 [-29.11, -5.04] | |
| **Heterogeneity:** τ² = 38.45, Chi² = 542.69, df = 9 (P < 0.00001); I² = 98% |
| Test for overall effect: Z = 2.78 (P = 0.005) |
| Test for subgroup differences: Chi² = 4.83, df = 1 (P = 0.03), I² = 79.7% |

Figure S107: Wilson 2019; Intervention/Exposure: Unicompartmental knee arthroplasty; Outcome: Operation duration
Figure S108: Yank 2011; Intervention/Exposure: Recombinant factor VII; Outcome: All-cause mortality
Figure S109: Yank 2011; Intervention/ Exposure: Recombinant factor VII; Outcome: Thromboembolism
142

Figure S110: Zhang 2016; Intervention/Exposure: Everolimus-eluting bioresorbable vascular scaffold; Outcome: Stent thrombosis
Figure S111: Zhang 2016: Intervention/ Exposure: Everolimus-eluting bioresorbable vascular scaffold; Outcome: All-cause mortality
Figure S112: Zhang 2016; Intervention/Exposure: Everolimus-eluting bioresorbable vascular scaffold; Outcome: Coronary heart disease mortality

Study of Subgroup	Odds Ratio	Weight IV, Random, 95% CI	Odds Ratio	Weight IV, Random, 95% CI
63.3.1 RCTs				
ABSORB China, 2015	5.3%	0.14 [0.01, 2.73]		
ABSORB III, 2015	10.6%	0.02 [0.52, 0.20]		
EVERBIO II, 2015	3.5%	0.12 [0.13, 7.66]		
Subtotal (95% CI)	20.7%	1.40 [0.17, 11.23]	20.7%	1.40 [0.17, 11.23]
63.3.2 Cohort study	33.1%	1.20 [0.37, 3.65]	33.1%	1.20 [0.37, 3.65]
Abizaid, 2015	35.9%	1.00 [0.32, 3.14]		
Costopoulus, 2015	4.5%	0.33 [0.01, 0.20]		
Subtotal (95% CI)	79.3%	0.91 [0.42, 1.97]	79.3%	0.91 [0.42, 1.97]

Heterogeneity: Tau² = 1.49, Chi² = 5.65, df = 2 (P = 0.17), P = 44%
Test for overall effect: Z = 0.31 (P = 0.75)

Total (95% CI) 100.0% 1.63 [0.52, 2.04]

Heterogeneity: Tau² = 0.00, Chi² = 4.7, df = 3 (P = 0.09), P = 9%
Test for overall effect: Z = 0.23 (P = 0.82)
Test for substantial differences: Chi² = 0.14, df = 1 (P = 0.71), P = 0%
Figure S113: Zhang 2017; Intervention/Exposure: Percutaneous coronary intervention; Outcome: All-cause mortality
Figure S114: Zhang 2017; Intervention/ Exposure: Percutaneous coronary intervention; Outcome: Cardiovascular mortality
Figure S115: Zhang 2017; Intervention/ Exposure: Percutaneous coronary intervention; Outcome: Myocardial infarction

Study or Subgroup	Hazard Ratio IV, Random, 95% CI	Weight
64.3.1 RCTs		
EKCEL 2016	0.93 [0.67, 1.29]	19.1%
LE MANS 2016	0.88 [0.24, 3.23]	4.9%
NOBLE 2016	2.88 [1.43, 5.92]	10.6%
PRECOMET 2015	1.20 [0.37, 3.93]	5.8%
SYNTAX 2014	1.67 [0.91, 3.06]	13.0%
Subtotal (95% CI)	1.39 [0.86, 2.28]	53.7%

Heterogeneity: Tau² = 0.16; Chi² = 9.34, df = 4 (P = 0.05); I² = 57%

Test for overall effect: Z = 1.33 (P = 0.19)

64.3.2 Cohort studies	Hazard Ratio IV, Random, 95% CI	Weight
CREDO-Kyoto 2 2012	2.47 [0.81, 7.53]	6.2%
CUSTOMIZE registry 2011	4.80 [1.30, 17.90]	1.3%
Jeong 2013	4.73 [0.99, 22.60]	3.6%
Yu 2016	1.86 [0.94, 2.93]	13.7%
Zheng 2016	2.00 [1.61, 2.48]	21.5%
Subtotal (95% CI)	2.00 [1.65, 2.44]	46.3%

Heterogeneity: Tau² = 0.00; Chi² = 2.10, df = 4 (P = 0.72); I² = 0%

Test for overall effect: Z = 6.81 (P < 0.0001)

Total (95% CI): 1.50 [1.22, 1.88]

Heterogeneity: Tau² = 0.12; Chi² = 21.05, df = 9 (P = 0.01); I² = 67%

Test for overall effect: Z = 3.17 (P < 0.002)

Test for subgroup differences: Chi² = 1.58, df = 1 (P = 0.17); I² = 46.8%
Figure S116: Ziff 2015; Intervention/Exposure: Digoxin; Outcome: All-cause mortality
Figure S117: Ziff 2015; Intervention/Exposure: Digoxin; Outcome: Cardiovascular mortality
Figure S118: Ziff 2015; Intervention/Exposure: Digoxin; Outcome: Hospital admission

Study or Subgroup	Weight	Risk Ratio IV, Random, 95% CI	Risk Ratio IV, Random, 95% CI
65.3.1 RCTs			
Ahmed 2006	15.4%	1.01 [0.92, 1.11]	
DIG 1997	22.4%	0.92 [0.97, 0.97]	
Subtotal (95% CI)	37.8%	0.96 [0.87, 1.05]	

Heterogeneity: $I^2 = 0.00, \chi^2 = 3.83, df = 1 (P = 0.06)$; $I^2 = 65$

Test for overall effect: $Z = 0.97 (P = 0.33)$

65.3.2 Cohort studies			
Ahmed 2014	21.9%	0.68 [0.93, 0.93]	
Banerjee 1998	16.5%	0.68 [0.82, 0.94]	
Ghali 2004	2.3%	1.30 [0.93, 1.82]	
Khazraie 2013	16.5%	0.66 [0.89, 1.04]	
Subtotal (95% CI)	62.2%	0.92 [0.85, 0.99]	

Heterogeneity: $I^2 = 0.00, \chi^2 = 8.3, df = 3 (P = 0.04)$; $I^2 = 84$

Test for overall effect: $Z = 2.28 (P = 0.02)$

Total (95% CI)

100.0% 0.93 [0.88, 0.98]

Heterogeneity: $I^2 = 0.00, \chi^2 = 12.93, df = 6 (P = 0.02)$; $I^2 = 61$

Test for overall effect: $Z = 2.06 (P = 0.04)$

Test for sub-group differences: $\chi^2 = 0.47, df = 1 (P = 0.49), P = 0.00$
Supplementary References

1. Abou-Setta AM, Beaupre LA, Rashiq S, Dryden DM, Hamm MP, Sadowski CA, et al. Comparative effectiveness of pain management interventions for hip fracture: a systematic review. Ann Intern Med. 2011;155(4):234-45.

2. Aburto NJ, Ziolkovska A, Hooper L, Elliott P, Cappucio FP, Meerpoohl JJ. Effect of lower sodium intake on health: systematic review and meta-analyses. Bmj. 2013;346:f1326.

3. Ahmad Y, Sen S, Shun-Shin MJ, Ouyang J, Finegold JA, Al-Lamee RK, et al. Intra-aortic Balloon Pump Therapy for Acute Myocardial Infarction: A Meta-analysis. JAMA Intern Med. 2015;175(6):931-9.

4. Alexander DD, Miller PE, Van Elswyk ME, Kuratko CN, Bylsma LC. A Meta-Analysis of Randomized Controlled Trials and Prospective Cohort Studies of Eicosapentaenoic and Docosahexaenoic Long-Chain Omega-3 Fatty Acids and Coronary Heart Disease Risk. Mayo Clin Proc. 2017;92(1):15-29.

5. Alipanah N, Jarlsberg L, Miller C, Linh NN, Falzon D, Jaramillo E, et al. Adherence interventions and outcomes of tuberculosis treatment: A systematic review and meta-analysis of trials and observational studies. PLoS Med. 2018;15(7):e1002595.

6. Anglemyer A, Rutherford GW, Horvath T, Baggaley RC, Egger M, Siegfried N. Antiretroviral therapy for prevention of HIV transmission in HIV-discordant couples. Cochrane Database Syst Rev. 2013(4):Cd009153.

7. Azad MB, Abou-Setta AM, Chauhan BF, Rabbani R, Lys J, Copstein L, et al. Nonnutritive sweeteners and cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials and prospective cohort studies. Canadian Medical Association Journal. 2017;189(28):E929.

8. Barnard S, Kim C, Park MH, Ngo TD. Doctors or mid-level providers for abortion. Cochrane Database Syst Rev. 2015(7):Cd011242.

9. Bellemain-Appaix A, O'Connor SA, Silvain J, Cucherat M, Beygui F, Barthelemy O, et al. Association of clopidogrel pretreatment with mortality, cardiovascular events, and major bleeding among patients undergoing percutaneous coronary intervention: a systematic review and meta-analysis. JAMA. 2012;308(23):2507-16.

10. Bellemain-Appaix A, Kerneis M, O'Connor SA, Silvain J, Cucherat M, Beygui F, et al. Reappraisal of thienopyridine pretreatment in patients with non-ST elevation acute coronary syndrome: a systematic review and meta-analysis. Bmj. 2014;349:g6269.

11. Bloomfield HE, Koeller E, Greer N, MacDonald R, Kane R, Wilt TJ. Effects on Health Outcomes of a Mediterranean Diet With No Restriction on Fat Intake: A Systematic Review and Meta-analysis. Ann Intern Med. 2016;165(7):491-500.

12. Bolland MJ, Leung W, Tai V, Bastin S, Gamble GD, Grey A, et al. Calcium intake and risk of fracture: systematic review. Bmj. 2015;351:h4580.

13. Brenner H, Stock C, Hoffmeister M. Effect of screening sigmoidoscopy and screening colonoscopy on colorectal cancer incidence and mortality: systematic review and meta-analysis of randomised controlled trials and observational studies. Bmj. 2014;348:g2467.
14. Chowdhury R, Stevens S, Gorman D, Pan A, Warnakula S, Chowdhury S, et al. Association between fish consumption, long chain omega 3 fatty acids, and risk of cerebrovascular disease: systematic review and meta-analysis. Bmj. 2012;345:e6698.

15. Chowdhury R, Warnakula S, Kunutsor S, Crowe F, Ward HA, Johnson L, et al. Association of dietary, circulating, and supplement fatty acids with coronary risk: a systematic review and meta-analysis. Ann Intern Med. 2014;160(6):398-406.

16. Chowdhury R, Kunutsor S, Vitezova A, Oliver-Williams C, Chowdhury S, Kiefte-de-Jong JC, et al. Vitamin D and risk of cause specific death: systematic review and meta-analysis of observational cohort and randomised intervention studies. Bmj. 2014;348:g1903.

17. Chung M, Lee J, Terasawa T, Lau J, Trikalinos TA. Vitamin D with or without calcium supplementation for prevention of cancer and fractures: an updated meta-analysis for the U.S. Preventive Services Task Force. Ann Intern Med. 2011;155(12):827-38.

18. Chung M, Tang AM, Fu Z, Wang DD, Newberry SJ. Calcium Intake and Cardiovascular Disease Risk: An Updated Systematic Review and Meta-analysis. Ann Intern Med. 2016;165(12):856-66.

19. Ding M, Huang T, Berghold HK, Nordestgaard BG, Ellervik C, Qi L. Dairy consumption, systolic blood pressure, and risk of hypertension: Mendelian randomization study. Bmj. 2017;356:j1000.

20. Fenton JJ, Weyrich MS, Durbin S, Liu Y, Bang H, Melnikow J. Prostate-Specific Antigen-Based Screening for Prostate Cancer: Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA. 2018;319(18):1914-31.

21. Filippini G, Del Giovane C, Clerico M, Beiki O, Mattosco M, Piazza F, et al. Treatment with disease-modifying drugs for people with a first clinical attack suggestive of multiple sclerosis. Cochrane Database Syst Rev. 2017;4:Cd012200.

22. Fluri F, Engelter S, Lyrer P. Extracranial-intracranial arterial bypass surgery for occlusive carotid artery disease. Cochrane Database Syst Rev. 2010(2):Cd005953.

23. Gargiulo G, Sannino A, Capodanno D, Barbanti M, Buccheri S, Perrino C, et al. Transcatheter Aortic Valve Implantation Versus Surgical Aortic Valve Replacement: A Systematic Review and Meta-analysis. Ann Intern Med. 2016;165(5):334-44.

24. Hartling L, Dryden DM, Guthrie A, Muise M, Vandermeer B, Donovan L. Benefits and harms of treating gestational diabetes mellitus: a systematic review and meta-analysis for the U.S. Preventive Services Task Force and the National Institutes of Health Office of Medical Applications of Research. Ann Intern Med. 2013;159(2):123-9.

25. Henderson JT, Webber EM, Bean SI. Screening for Asymptomatic Bacteriuria in Adults: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA. 2019;322(12):1195-205.

26. Higgins JP, Soares-Weiser K, Lopez-Lopez JA, Kakourou A, Chaplin K, Christensen H, et al. Association of BCG, DTP, and measles containing vaccines with childhood mortality: systematic review. Bmj. 2016;355:i5170.

27. Hopley C, Stengel D, Ekkernkamp A, Wich M. Primary total hip arthroplasty versus hemiarthroplasty for displaced intracapsular hip fractures in older patients: systematic review. Bmj. 2010;340:c2332.
28. Hüpfl M, Selig HF, Nagele P. Chest-compression-only versus standard cardiopulmonary resuscitation: a meta-analysis. Lancet. 2010;376(9752):1552-7.

29. Jamal SA, Vandermeer B, Raggi P, Mendelssohn DC, Chatterley T, Dorgan M, et al. Effect of calcium-based versus non-calcium-based phosphate binders on mortality in patients with chronic kidney disease: an updated systematic review and meta-analysis. Lancet. 2013;382(9900):1268-77.

30. Jefferson T, Di Pietrantonj C, Al-Ansary LA, Ferroni E, Thorming S, Thomas RE. Vaccines for preventing influenza in the elderly. Cochrane Database Syst Rev. 2010(2):Cd004876.

31. Jefferson T, Rivetti A, Di Pietrantonj C, Demicheli V, Ferroni E. Vaccines for preventing influenza in healthy children. Cochrane Database Syst Rev. 2012(8):Cd004879.

32. Jin H, Leng Q, Li C. Dietary flavonoid for preventing colorectal neoplasms. Cochrane Database Syst Rev. 2012(8):Cd009350.

33. Johnston BC, Zeraatkar D, Han MA, Vernooij RWM, Valli C, El Dib R, et al. Unprocessed Red Meat and Processed Meat Consumption: Dietary Guideline Recommendations From the Nutritional Recommendations (NutriRECS) Consortium. Ann Intern Med. 2019;171(10):756-64.

34. Kansagara D, Dyer E, Englander H, Fu R, Freeman M, Kagen D. Treatment of anemia in patients with heart disease: a systematic review. Ann Intern Med. 2013;159(11):746-57.

35. Keag OE, Norman JE, Stock SJ. Long-term risks and benefits associated with cesarean delivery for mother, baby, and subsequent pregnancies: Systematic review and meta-analysis. PLoS Med. 2018;15(1):e1002494.

36. Kredo T, Adeniyi FB, Bateganya M, Pienaar ED. Task shifting from doctors to non-doctors for initiation and maintenance of antiretroviral therapy. Cochrane Database Syst Rev. 2014(7):Cd007331.

37. Li L, Shen J, Bala MM, Busse JW, Ebrahim S, Vandvik PO, et al. Incretin treatment and risk of pancreatitis in patients with type 2 diabetes mellitus: systematic review and meta-analysis of randomised and non-randomised studies. Bmj. 2014;348:g2366.

38. Li L, Li S, Deng K, Liu J, Vandvik PO, Zhao P, et al. Dipeptidyl peptidase-4 inhibitors and risk of heart failure in type 2 diabetes: systematic review and meta-analysis of randomised and observational studies. Bmj. 2016;352:i610.

39. Matthews A, Stanway S, Farmer RE, Strongman H, Thomas S, Lyon AR, et al. Long term adjuvant endocrine therapy and risk of cardiovascular disease in female breast cancer survivors: systematic review. Bmj. 2018;363:k3845.

40. Menne J, Dumann E, Haller H, Schmidt BMW. Acute kidney injury and adverse renal events in patients receiving SGLT2-inhibitors: A systematic review and meta-analysis. PLoS Med. 2019;16(12):e1002983.

41. Mesgarpour B, Heidinger BH, Roth D, Schmitz S, Walsh CD, Herkner H. Harms of off-label erythropoiesis-stimulating agents for critically ill people. Cochrane Database Syst Rev. 2017;8:Cd010969.

42. Moberley S, Holden J, Tatham DP, Andrews RM. Vaccines for preventing pneumococcal infection in adults. Cochrane Database Syst Rev. 2013(1):Cd000422.
43. Molnar AO, Fergusson D, Tsampalieros AK, Bennett A, Fergusson N, Ramsay T, et al. Generic immunosuppression in solid organ transplantation: systematic review and meta-analysis. Bmj. 2015;350:h3163.

44. Navarese EP, Gurbel PA, Andreotti F, Tantry U, Jeong YH, Kozinski M, et al. Optimal timing of coronary invasive strategy in non-ST-segment elevation acute coronary syndromes: a systematic review and meta-analysis. Ann Intern Med. 2013;158(4):261-70.

45. Nelson RL, Furner SE, Westercamp M, Farquhar C. Cesarean delivery for the prevention of anal incontinence. Cochrane Database Syst Rev. 2010(2):Cd006756.

46. Nieuwenhuijse MJ, Nelissen RG, Schoones JW, Sedrakyan A. Appraisal of evidence base for introduction of new implants in hip and knee replacement: a systematic review of five widely used device technologies. Bmj. 2014;349:g5133.

47. Nikooie R, Neufeld KJ, Oh ES, Wilson LM, Zhang A, Robinson KA, et al. Antipsychotics for Treating Delirium in Hospitalized Adults: A Systematic Review. Ann Intern Med. 2019.

48. Ochen Y, Bekx RB, van Heijl M, Hietbrink F, Leenen LPH, van der Velde D, et al. Operative treatment versus nonoperative treatment of Achilles tendon ruptures: systematic review and meta-analysis. Bmj. 2019;364:k5120.

49. Pittas AG, Chung M, Trikalinos T, Mitri J, Brendel M, Patel K, et al. Systematic review: Vitamin D and cardiometabolic outcomes. Ann Intern Med. 2010;152(5):307-14.

50. Raman G, Moorothy D, Hadar N, Dahabreh IJ, O'Donnell TF, Thaler DE, et al. Management strategies for asymptomatic carotid stenosis: a systematic review and meta-analysis. Ann Intern Med. 2013;158(9):676-85.

51. Schweizer M, Perencevich E, McDanel J, Carson J, Formanek M, Hafner J, et al. Effectiveness of a bundled intervention of decolonization and prophylaxis to decrease Gram positive surgical site infections after cardiac or orthopedic surgery: systematic review and meta-analysis. Bmj. 2013;346:f2743.

52. Silvain J, Beygui F, Barthelemy O, Pollack C, Cohen M, Zeymer U, et al. Efficacy and safety of enoxaparin versus unfractionated heparin during percutaneous coronary intervention: systematic review and meta-analysis. Bmj. 2012;344:e553.

53. Suthar AB, Lawn SD, del Amo J, Getahun H, Dye C, Sculier D, et al. Antiretroviral therapy for prevention of tuberculosis in adults with HIV: a systematic review and meta-analysis. PLoS Med. 2012;9(7):e1001270.

54. Te Morenga L, Mullan S, Mann J. Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies. Bmj. 2013;346:e7492.

55. Thomas RE, Jefferson T, Lasserson TJ. Influenza vaccination for healthcare workers who work with the elderly. Cochrane Database Syst Rev. 2010(2):Cd005187.

56. Tickell-Painter M, Maayan N, Saunders R, Pace C, Sinclair D. Mefloquine for preventing malaria during travel to endemic areas. Cochrane Database Syst Rev. 2017;10:Cd006491.

57. Tricco AC, Zarin W, Cardoso R, Veroniki AA, Khan PA, Nincic V, et al. Efficacy, effectiveness, and safety of herpes zoster vaccines in adults aged 50 and older: systematic review and network meta-analysis. Bmj. 2018;363:k4029.
58. Vinceti M, Filippini T, Del Giovane C, Dennert G, Zwahlen M, Brinkman M, et al. Selenium for preventing cancer. Cochrane Database Syst Rev. 2018;1:Cd005195.

59. Wilson A, Gallos ID, Plana N, Lissauer D, Khan KS, Zamora J, et al. Effectiveness of strategies incorporating training and support of traditional birth attendants on perinatal and maternal mortality: meta-analysis. Bmj. 2011;343:d7102.

60. Wilson HA, Middleton R, Abram SGF, Smith S, Alvand A, Jackson WF, et al. Patient relevant outcomes of unicompartmental versus total knee replacement: systematic review and meta-analysis. Bmj. 2019;364:l352.

61. Yank V, Tuohy CV, Logan AC, Bravata DM, Staudenmayer K, Eisenhut R, et al. Systematic review: benefits and harms of in-hospital use of recombinant factor VIIa for off-label indications. Ann Intern Med. 2011;154(8):529-40.

62. Zhang XL, Zhu L, Wei ZH, Zhu QQ, Qiao JZ, Dai Q, et al. Comparative Efficacy and Safety of Everolimus-Eluting Bioresorbable Scaffold Versus Everolimus-Eluting Metallic Stents: A Systematic Review and Meta-analysis. Ann Intern Med. 2016;164(11):752-63.

63. Zhang XL, Zhu QQ, Yang JJ, Chen YH, Li Y, Zhu SH, et al. Percutaneous intervention versus coronary artery bypass graft surgery in left main coronary artery stenosis: a systematic review and meta-analysis. BMC Med. 2017;15(1):84.

64. Ziff OJ, Lane DA, Samra M, Griffith M, Kirchhof P, Lip GY, et al. Safety and efficacy of digoxin: systematic review and meta-analysis of observational and controlled trial data. Bmj. 2015;351:h4451.

65. Bröckelmann N, Balduzzi S, Harms L, Beyerbach J, Petropoulou M, Kubiak C, et al. Evaluating agreement between bodies of evidence from randomized controlled trials and cohort studies in medical research: a meta-epidemiological study. BMC Med. 2022;20(1):174.