RESEARCH ARTICLE

The Roles of Variants in Human Multidrug Resistance (MDR1) Gene and Their Haplotypes on Antiepileptic Drugs Response: A Meta-Analysis of 57 Studies

Hui Li1☯, Bing Wang2☯, Cheng Chang1, Minghua Wu1, Yun Xu3*, Yajun Jiang1*

1 Department of neurology, Jiangsu Province Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, China, 2 Department of neurology, Huai’an Hospital of Traditional Chinese Medicine, Jiangsu, China, 3 Department of neurology, Nanjing Drum Tower Hospital affiliated with Medical School of Nanjing University, Nanjing, Jiangsu, China

☯ These authors contributed equally to this work.
* jiangyjtcm@sina.com (YJ); yunxuguilou@126.com (YX)

Abstract

Objective

Previous studies reported the associations between the ATP-binding cassette sub-family B member 1 (ABCB1, also known as MDR1) polymorphisms and their haplotypes with risk of response to antiepileptic drugs in epilepsy, however, the results were inconclusive.

Methods

The Pubmed, Embase, Web of Science, CNKI and Chinese Biomedicine databases were searched up to July 15, 2014. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using a fixed-effects or random-effects model based on heterogeneity tests. Meta-regression and Galbraith plot analysis were carried out to explore the possible heterogeneity.

Results

A total of 57 studies involving 12407 patients (6083 drug-resistant and 6324 drug-responsive patients with epilepsy) were included in the pooled-analysis. For all three polymorphisms (C3435T, G2677T/A, and C1236T), we observed a wide spectrum of minor allele frequencies across different ethnicities. A significantly decreased risk of AEDs resistance was observed in Caucasian patients with T allele of C3435T variant, which was still significant after adjusted by multiple testing corrections (T vs C: OR=0.83, 95%CI=0.71-0.96, p=0.01). However, no significant association was observed between the other two variants and AEDs resistance. Of their haplotypes in ABCB1 gene (all studies were in Indians and Asians), no significant association was observed with AEDs resistance. Moreover, sensitivity and Cumulative analysis showed that the results of this meta-analysis were stable.
Conclusion

In summary, this meta-analysis demonstrated that effect of C3435T variant on risk of AEDs resistance was ethnicity-dependent, which was significant in Caucasians. Additionally, further studies in different ethnic groups are warranted to clarify possible roles of haplotypes in ABCB1 gene in AEDs resistance, especially in Caucasians.

Introduction

Epilepsy, one of the most common, chronic and disabling neurologic disorder, affects approximately 1% of the population worldwide, especially in developing countries.[1, 2] Although the prognosis for the most patients with epilepsy is good, 20%-30% of patients do not achieve seizure freedom despite multiple antiepileptic drugs (AEDs) treatment.[3–5] Recently, several factors have been identified to partly account for resistance to antiepileptic drugs, such as early onset, alcohol abuse, type of seizure, suboptimal dosing, poor drug compliance, and a high frequency of seizures in the diagnostic assessment period.[6–8] However, the exact mechanism of resistance remains poorly understood.

The ATP-binding cassette sub-family B member 1 (ABCB1, also known as MDR1) gene, which encodes human P-glycoprotein, can transport several AEDs.[9] In addition, previous studies have demonstrated that ABCB1 was also overexpressed in brain tissue from patients with refractory epilepsy, suggesting ABCB1 gene might be an important candidate gene responsible for refractory epilepsy.[10, 11] Siddiqui et al first reported that patients with drug-resistant epilepsy were more likely to have the CC genotype in C3435T variant, a well-known polymorphism in ABCB1 gene [12]. To date, an accumulating number of studies focused on the association between three polymorphisms (C3435T, G2677T/A, and C1236T) in ABCB1 gene and responsiveness to AEDs, however, the results were contradictory, mainly due to studies with ethnic differences, limited sample sizes, and inadequate statistical power.

To date, six meta-analyses focused on the association of ABCB1 variants with AEDs resistance. [13–18] However, the recent one included studies published up to 2012 (although the last search was updated in February 2013) and only investigated the association between one polymorphism (C3435T) and AEDs response.[15] The other recent meta-analysis reported the association in Chinese population.[18] Moreover, associations of the other variants in MDR1 gene (G2677T/A and C1236T variants) and the haplotypes with AEDs resistance were only analyzed in one research[17]. Since then, numerous additional studies reporting contradictory results were published.[19–26] Hence, we conducted a meta-analysis to clarify the associations of three polymorphisms in ABCB1 gene and their haplotypes with responsiveness to AEDs in patients with epilepsy.

Materials and Methods

Search strategy

A comprehensive electronic search involving Pubmed, Embase, and Web of science, CNKI (China National Knowledge Infrastructure) and Chinese Biomedicine Databases was carried out to identify the association of ABCB1 gene polymorphisms with antiepileptic drug response in patients with epilepsy, using the following search terms: “multidrug resistance 1 gene” or “ABCB1” or “MDR1” or “C1236T” or “C3435T” or “G2677T/A” or “rs1045642” or
“rs1128503” or “rs2032582”, “polymorphism” or “variant” or “SNP”. AND “epilepsy” or “seizure” (the last search update was 15 July 2014). In addition, the bibliographies of all retrieved articles were hand-searched for additional potential studies.

Inclusion and exclusion criteria
The studies were eligible for the meta-analysis if they meet the following criteria: 1) case-control or cohort design 2) reported the association between MRD1 polymorphisms and drug response in epilepsy patients 3) phenotypes of drug response were clearly defined. Studies were excluded for the following exclusion criteria: 1) compared drug-resistant patients with healthy individuals 2) did not describe the definition of drug response 3) comments, review articles, or articles only with an abstract.

Data extraction
Two independent investigators extracted the following data from each included study: first author, publication year, ethnicity (Caucasians, Asians, or Africans), age and sample size of patients with drug-resistance and drug responsiveness, definition of drug-resistance and drug responsiveness, allele and genotype distribution in drug-resistant and drug-responsive patients. Disagreements were resolved by consulting with a third author. In addition, articles that reported results from more than one subpopulation or adults and children separately were considered as separate studies.

Statistical analysis
The overall association between three polymorphisms in ABCB1 gene (C3435T, C1236T, and G2677T/A) and antiepileptic drug-resistance was assessed by odds ratios (ORs) with 95% confidence intervals (CIs). The significance of the pooled OR was determined by the Z-test, and the P values were adjusted using Bonferroni correction by the number of compared SNPs. (P = 0.05/3 = 0.017). For simplification of the analysis of the G2677T/A variant, the A allele was included with the T allele as previously described.[17] Chi-square based Q test and I² test were carried out to assess the heterogeneity between studies, which was considered significant when P<0.10.[27, 28] A random effects model (DerSimonian-Laird) was used when the significant heterogeneity existed, otherwise, a fixed model was used (Mantel-Haenszel). [29, 30] Moreover, subgroup analysis and meta-regression analysis were carried out to explore the possible heterogeneity among different kinds of studies.[31] Finally, the Galbraith plot was used to spot the outliers as the possible major sources of heterogeneity. [32, 33]

To assess the stability of the results, sensitivity analysis by sequential removal of each study was carried out. Moreover, sensitive analysis limited to English language studies or studies in HWE was also performed to assess the stable of results. Cumulative meta-analyses for each polymorphism were also performed to investigate the trend and the stability of risk effect as evidence accumulated over time, through assortment of studies with publication time.

Begg’s Funnel plots and Egger regression asymmetry test were performed to assess the potential publication bias, and a p-value from the Egger’s test less than 0.05 was considered statistically significant.[34, 35] If there was some evidence of significant publication bias, ORs and 95% CIs would be adjusted by Duval and Tweedie’s nonparametric trim and fill methods.[36] All statistical analyses were performed by STATA software, version 12 (StataCorp LP, College Station, Texas).
Results

Study characteristics

The literature review identified 811 studies, of which 741 articles were excluded by review of titles and abstracts and 20 studies were excluded after assessing of full-text articles (S1 Table). Finally, a total of 50 articles were eligible for the pooled analysis (Table 1). Among these, 2 articles reported 6 subpopulations and 3 articles investigated adults and children, respectively. Finally, a total of 57 studies involving 6083 drug-resistant and 6324 drug-responsive patients with epilepsy were eligible for the meta-analysis. Among all eligible studies, 53, 25 and 20 studies reported the data on C3435T, G2677T, and C1236T variant, respectively. In addition, 10 studies investigated the association of ABCB1 haplotype (C1236T–G2677T–C3435T loci) with AEDs response. The details for the literature search were shown in Fig. 1.

In the drug-resistant patients, we observed that T allele frequency of C3435T variant was significant higher in Caucasians (49.75±8.24%) than those in Asians (40.47±8.09%), which was also observed in drug-response and overall patients with epilepsy. (S2 Table) For G2677T polymorphism, a similar distribution of the T/A allele was observed across Caucasians and Asians both in drug-resistant and drug-responsive patients with epilepsy. For C1236T variant, T allelic frequency was similar in Indians (58.95±4.85%) and Asians (63.46±4.96%) but lowest in Caucasians (44.85±7.88%, p = 0.01).

Association of C3435T variant with antiepileptic drug-resistance

The fifty six studies that investigated the correlation between C3435T variant and drug response included 12407 patients with epilepsy (6083 drug-resistance and 6324 drug-response). Although a significant association of C3435T polymorphism with antiepileptic drug-resistance was observed in the allelic and genetic models (T vs C: OR = 0.88(0.79, 0.98), p = 0.02; TT vs CC: T OR = 0.79(0.63, 0.98), p = 0.03) (Table 2 and Fig. 2), the significance was removed after adjusted by multiple testing corrections. In the subgroup analysis stratified by ethnicity, we observed a significantly decreased risk of drug-resistance in Caucasians (OR = 0.83(0.71, 0.96), p = 0.01), but not among Asians (OR = 0.87(0.74, 1.03), p = 0.11). However, when stratifying by age, no statistical association between C3435T variant and drug-responsiveness was observed in children or adult patients with epilepsy. (Table 2)

Association of G2677T variant with antiepileptic drug-resistance

In the pooled analysis of 25 studies for G2667T polymorphism, no significant association was recorded (T vs G: OR = 0.95(0.80, 1.12), p = 0.52). (S3 Table) Similarly, sub-analysis showed no significant association between G2677T polymorphism and responses to AEDs in Asian, Caucasian or Indian subgroup, child or adult subgroup, large or small sample size, and publication after 2010 or before 2010. (OR = 0.90(0.65, 1.27), p = 0.56; OR = 0.92(0.76, 1.11), p = 0.39; OR = 1.05(0.89, 1.23), p = 0.57; OR = 1.14(0.95, 1.36), p = 0.16; OR = 0.78(0.53, 1.15), p = 0.21; OR = 0.90(0.75, 1.09), p = 0.28; OR = 1.14(0.83, 1.55), p = 0.42; OR = 0.82(0.59, 1.14), p = 0.25; OR = 1.06(0.93, 1.20), p = 0.37, respectively)

Association of C1236T variant with antiepileptic drug-resistance

The associations of ABCB1 C1236T variant with responses to AEDs were investigated in 20 studies, and the results presented in S4 Table. The results showed that no obvious association was observed between C1236T variant and antiepileptic drug-resistance in any genetic models in overall populations (T vs C: OR = 0.97(0.90, 1.06), p = 0.56; TT vs CC: OR = 0.96(0.81, 1.14), p = 0.67; TC vs CC: OR = 1.01(0.86, 1.20), p = 0.88; TT+TC vs CC: OR = 0.99(0.84,
Table 1. Characteristics of studies analyzed for meta-analysis of association between the C1236T, G2677T, and C3435T variants in ABCB1 gene and drug response in patients with epilepsy.

Author and year	Ethnicity	Sample size	DNR	DR
Siddiqui, 2003	Caucasians	200 115	≥4 seizures (1 year), ≥3 AEDs	No seizure (1 year)
Soranzo, 2004	Caucasians	286 135	≥4 seizures (1 year), ≥3 AEDs	No seizure (1 year)
Tan, 2004	Caucasians	401 208	≥4 seizures (1 year), ≥3 AEDs	No seizure (1 year)
Sills, 2005	Caucasians	230 170	≥1 seizure (1 year), ≥2 AEDs	No seizure (1 year)
Kim, 2006	Asians	99 108	≥4 seizures (1 year), ≥3 AEDs	No seizure (1 year)
Ozgon, 2006	Caucasians	44 53	≥4 seizures (6 months), CBZ	No seizure (1 year)
Seo, 2006	Asians	126 84	≥1 seizure (1 year), CBZ	No seizure (1 year)
Kim, 2006	Asians	63 108	≥4 seizures (1 year), ≥3 AEDs	No seizure (1 year)
Chen, 2007	Asians	50 164	≥1 seizure/month (1 year), ≥2 AEDs	No seizure (1 year)
Lu, 2007	Asians	72 62	<50% reduction in seizure frequency (1 year)	≥50% reduction in seizure frequency (1 year)
Leschziner, 2007	Caucasians	73 76	≥4 seizures (1 year), ≥2 AEDs	Not fulfilling DNR criteria
Ebid, 2007	Caucasians	60 37	≥1 seizure (3 months), PHT	No seizure (3 months)
Hung, 2007	Asians	114 213	≥10 seizures (1 year), ≥2 AEDs	No seizure (2 years)
Kwan, 2007	Asians	221 297	≥1 seizure/month (1 year), ≥2 AEDs	No seizure (1 year)
Shahwan, 2007	Caucasians	198 242	<50% reduction in seizure frequency (1 year), ≥3 AEDs	≥50% reduction in seizure frequency (1 year)
Wang, 2008	Asians	40 40	≥4 seizures/month (2 years)	No seizure (1 year), 1 AED
Gao, 2009	Asians	70 62	≥1 seizure/month (6 months), ≥2 AEDs	No seizure (1 year)
Kim, 2009	Asians	198 193	≥4 seizures (1 year), ≥3 AEDs	No seizure (1 year)
Kwan, 2009	Asians	194 270	≥1 seizure/month (1 year), ≥2 AEDs	No seizure (1 year)
Lakhan, 2009	Indians	94 231	≥4 seizures (1 year), 3 AEDs	No seizure (1 year)
Szeoke, 2009	Caucasians	133 152	≥1 seizure (1 year)	No seizure (1 year)
Szeoke, 2009	Caucasians	64 148	≥1 seizure (1 year)	No seizure (1 year)
Szeoke, 2009	Asians	11 34	≥1 seizure (1 year)	No seizure (1 year)
Ufer, 2009	Caucasians	118 103	Receiving second-line drug due to non-response or adverse reactions to initial AED treatment	Responders to the first-line drug
Vahab, 2009	Asians	113 129	<6 months terminal remission, ≥2 AEDs	No seizure (1 year)
Von Stülpnagel, 2009	Caucasians	160 71	Failing to be seizure-free, and/or having epilepsy surgery, ≥3AEDs	Seizure-free ≤6 months, ≤2 AEDs
Zheng, 2009	Asians	31 33	≥4 seizures/month, 2 years	No seizure (1 year)
Grover, 2010	Indians	95 133	≥1 seizure (10 months)	No seizure (10 months)
Jin, 2010	Asians	108 122	<50% reduction in seizure frequency (12 months), ≥2 AEDs	≥50% reduction in seizure frequency (1 year)
Jin, 2010	Asians	108 122	<50% reduction in seizure frequency (12 months), ≥2 AEDs	≥50% reduction in seizure frequency (1 year)
Maleki, 2010	Caucasians	132 200	≥1 seizure/month or ≥10 seizures (12 months), ≥2 AEDs	No seizure (1 year), 1 AED
Maleki, 2010	Caucasians	132 200	≥1 seizure/month or ≥10 seizures (12 months), ≥2 AEDs	No seizure (1 year), 1 AED
Sánchez, 2010	Caucasians	52 28	≥4 seizures (1 year), ≥3 AEDs	No seizure (1 year)
Sánchez, 2010	Caucasians	126 83	≥4 seizures (1 year), ≥3 AEDs	No seizure (1 year)
Dong, 2010	Asians	157 193	≥4 seizures (1 year), ≥2 AEDs	No seizure (1 year)
Di, 2011	Asians	91 79	≥1 seizure/month (2 years), ≥2 AEDs	<1 seizure/month (2 years)
Dong, 2011	Asians	95 80	<50% reduction in seizure frequency (1 year)	≥50% reduction in seizure frequency (1 year)
Haerian, 2011	Asians	131 146	≥1 seizure/month (1 year), CBZ or VPA	No seizure (1 year), CBZ or VPA
Haerian, 2011	Asians	67 93	≥1 seizure/month (1 year), CBZ or VPA	No seizure (1 year), CBZ or VPA

(Continued)
1.16), p = 0.88; TT vs TC+CC: OR = 0.97(0.86, 1.09), p = 0.63) or in the subgroup analysis by ethnicity, age of patients, sample size, and publication years.

Association of ABCB1 “C1236T/G2677T/C3435T” haplotypes with antiepileptic drug-resistance

We further investigated the association of the haplotypic combinations of C1236T, G2677T, and C3435T variants with AEDs response, which included 10 studies involving 1113 drug-resistant and 1454 drug-responsive patients. (S5 Table) Haplotype pooled analysis showed no significant association of the three haplotypic models (TTT vs CGC: OR = 1.04(0.82, 1.32), p = 0.72; TTT vs non-TTT: OR = 1.31(0.94, 1.81), p = 0.11; and non-CGC vs CGC: OR = 0.83 (0.51, 1.35), p = 0.46) with the response to AEDs in overall populations. In addition, no statistical association was detected in two subgroups (Indians and Asians) when stratified by ethnicity. Heterogeneity was observed in major models in overall populations and subgroups stratified by ethnicity. (S6 Table)

Tests for heterogeneity

There was significant heterogeneity in most comparisons of C3435T and G2677T variants in overall populations. (T vs C for C3435T: \(P_h<0.01\), and T vs G for G2677T: \(P_h<0.01\) The
heterogeneity was removed in the subgroup of Caucasians, Indian, children, small sample size, publications before 2010 for C3435T variant, but only in children subgroup for G2677T variant. Then, meta-regression was performed to assess the source of heterogeneity for allelic model by ethnicity, age of patients, sample size and year of publications. However, the results showed that no source contributed to the substantial heterogeneity. In addition, Galbraith plot for observing heterogeneity identified 1 study in G2677T polymorphism and 10 studies in C3435T polymorphism as outliers, which were the potential origin of heterogeneity. (S1 Fig.) For the analysis of C1236T polymorphism, we did not observe any heterogeneity in all allelic and genotypic models (T vs C: $P_h = 0.51$, TT vs CC: $P_h = 0.69$, TC vs CC: $P_h = 0.81$, dominant model: $P_h = 0.75$, and recessive model: $P = 0.65$).

Sensitivity and cumulative analysis

Sensitivity analysis was performed for three polymorphisms (C3435T, G2677T, and C1236T) by sequential removal of each study, the results of which showed that no single study qualitatively changed the pooled ORs, suggesting that the results of this meta-analysis are highly stable. (S2 Fig.) Moreover, sensitivity analyses limited to English language studies showed the ORs did not change after excluding Chinese-language studies. There were 12, 6 and 3 studies which deviated from HWE for C3435T, G2677T, and C1236T variant respectively, whereas the pooled ORs were not materially altered when these studies were excluded. (Table 2, S3 Table, and S4 Table) In the cumulative meta-analysis, the results showed that the pooled OR tended...
to be stable, whereas the association was still not significant with accumulation of more data over time. (S3 Fig.)

Publication bias

Begg’s funnel plot and Egger’s test were performed to assess potential publication bias of literatures. The shapes of the Begg’s funnel plots did not reveal any signs of obvious asymmetry. (Fig. 3) In addition, Egger’s test did not show statistical significance for publication bias (P = 0.111 for T vs C in C3435T, p = 0.679 for T vs G in G2677T, and p = 0.218 for T vs C in C1236T).

Discussion

ABCB1, a kind of multidrug transporters, belongs to the adenosine triphosphate (ATP)-binding cassette super family. Protein encoded by ABCB1 gene is a 170-kDa transmembrane glycoprotein expressed in blood–brain barrier [78], which acts as a drug-efflux pump, involved in
Fig 2. Odds ratio (OR) estimates for the association between the ABCB1 C3435T polymorphism and AEDs resistance. The sizes of the squares reflect the weighting of the included studies. Bars represent 95% CIs. The center of the diamond represents the summary effect; left and right points of the diamond represent the 95% CI. AEDs: antiepileptic drugs; CI: confidence interval; ABCB1: ATP-binding cassette sub-family B member 1.

doi:10.1371/journal.pone.0122043.g002
absorption and excretion. ABCB1 may pump AEDs back from brain into the blood and reduce antiepileptic drug concentration around neurons in the seizure focus, contributing to AED resistance. Accumulated animal and clinical studies suggested that ABCB1 might be a possible factor responsible for refractory epilepsy [10–12,79]. Kimchi-Sarfaty C et al showed that polymorphisms in ABCB1 might affect the timing of cotranslational folding and insertion of P-gp into the membrane, thereby altering the structure of substrate and inhibitor interaction sites. [80] Recently, attention has been focused on the genetic mutations in ABCB1 gene that affect responsiveness to AEDs in patients with epilepsy, whereas previous studies reporting the association between ABCB1 gene polymorphisms and response to AEDs provided inconclusive results.

In this comprehensive meta-analysis involving 57 studies, we found that patients with a T allele in C3435T polymorphism had a significantly decreased risk of drug-resistance in Caucasians, but not among Asians and Indians. No statistical associations were observed of the other two variants in ABCB1 gene (G2677T and C1236T) with risk of drug-resistance in overall populations or subgroup analysis by ethnicity, sample size, date of publication, and age of patients. Additionally, the pooled analysis did not reveal evidence of the association between haplotypes of these three loci and AEDs responsive.

Genetic polymorphism often varies between ethnic groups, which was one of the factors that might affect the results. Distribution of allelic frequencies in ABCB1 C3435T variant also displays an ethnic difference. [12,37,47] In the present study, we showed that T alleles in C3435T variant were more common in Caucasians than those in Asians, but lower than those in Indians. Moreover, stratified meta-analysis showed an ethnic-dependent susceptibility to AEDs of C3435T polymorphism, which was significant associated with AEDs resistance in Caucasian population, but not in Asian and Indian subgroups. These observations might be attributed to that different populations are under distinct environmental or cultural pressures.

Fig 3. Begg’s funnel plots for publication bias test of the association between the ABCB1 C3435T polymorphism and AEDs resistance. No significant funnel asymmetry that could indicate publication bias was observed. The horizontal line in the funnel plot indicates the random-effects summary estimate, and the sloping lines indicate the expected 95% confidence interval for a given standard error, assuming no heterogeneity between studies. Log(OR) is the natural logarithm of the odds ratio. AEDs: antiepileptic drugs; ABCB1: ATP-binding cassette sub-family B member 1.
Age might be another factor that influences the AEDs response. Types of AEDs are often be different regarding patient age, use of valproate and carbamazepine is more frequently in children, while adults are more usually treated with phenytoin or phenobarbital. Moreover, children often require higher dosages than those recommended for adults attributed to the more rapid clearance and variability in elimination kinetics of AEDs. In our meta-analysis, however, when stratified by age, no significant associations were observed in children or adults subgroups. Moreover, for C3435T variant, majority of studies included in our meta-analysis reported mixed age of patients, range from children to adults (30/53). On the other hand, only 12 and 11 studies investigated adult and child patients, respectively. Thus, the small sample size might contribute to, at least partially, the lack of association in the adult and child subpopulation.

Previous study demonstrated that C3435T in exon 26 is a silent variant (no amino acid change), it may influence the AEDs drug response by linkage disequilibrium with another variant, including G2677T and C1236T variants in ABCB1 gene. Linkage disequilibrium was defined as the association between different variant alleles at multiple polymorphic sites in the genome. Here, pooled analysis of 2567 patients did not showed any associations of haplotypes (TTT vs CGC, TTT vs non-TTT, and non-CGC vs CGC) with drug-resistance in patients with epilepsy in overall populations or Asian and Indian subgroups. However, studies investigating the association between C1236T/G2677T/C3435T haplotypes and AEDs resistance in Caucasians were not reported, thus further studies are required to explore whether ABCB1 haplotypes had an ethnic-dependent effect similar to C3435T polymorphisms.

Heterogeneity was significant for the most comparisons of C3435T and G2677T variants in overall population. To identify the potential source of heterogeneity, we performed subgroup analysis, meta-regression and Galbraith plot analysis. The results showed that heterogeneity was removed or significantly decreased in Indian and children subgroup group for C3435T variant, and in Caucasian, Indian, and children for G2677T variants. These might be attributed to different genetic backgrounds, different environments, different lifestyles or different AEDs among different ethnicities and ages. However, meta-regression analysis did not found any potential source contributing to the heterogeneity.

In addition, variability in the definitions of drug-response and drug-resistance might also contribute to the significant heterogeneity. Of all included studies, the follow-up time ranged from 3 months to 2 years (most studies followed 1 year), whereas the new definition of treatment outcome from International League Against Epilepsy (ILAE) reported that the shortest follow-up period was 12 months. Moreover, the new definition of drug resistant epilepsy was failure of adequate trials of two tolerated and appropriately chosen and used AED schedules to achieve sustained seizure freedom. In all eligible studies, types of AEDs were also variable (from only 1 to more than 3). Moreover, drug-response was defined as patients with no seizure for more than three times the pretreatment interseizure interval or 12 months, whichever is longer, which was applied only in three studies.

Several limitations need to be considered for interpretation of our results. First, most AED responses are influenced by an interaction of multiple factors: environmental or patient-related factors and characteristics of the epilepsy itself, and genetic factors, statistical adjustment for individual level factors were not carried out for the insufficient data. Second, types of seizures might also cause variety in AEDs types, dosage, and drug response, a subgroup analysis by types of seizures was necessary in further meta-analysis. Finally, the definition used to classify patients as being drug-resistance has varied in different studies, which may contribute to the variations in the results.

In conclusion, the present systematic review and meta-analysis involving 57 studies with 12407 PWE suggested that C3435T variant, but not G2667T or C1236T variant, might play a
role in altered AEDs response ethnicity-dependently. In addition, the association between haplotypes of ABCB1 variants and AEDs response were reported only in Indians and Asians, thus, further studies in different ethnic groups are warranted to clarify possible roles of haplotypes in ABCB1 gene in AEDs resistance, especially in Caucasians. As the new definition of the ILAE has been published, variability in the definitions of AEDs resistance in further studies should be avoided. Finally, these findings might provide predictive genetic markers for antiepileptic drug effectiveness or resistance in individual patients or a possibility for future pharmacogenetically-adjusted dosing of AED, which could be translated into clinical practice.

Supporting Information

S1 PRISMA Checklist. PRISMA checklist.

S1 Table. Reasons for exclusion of full-texts.

S2 Table. Distribution of allelic frequencies (T allele in C1236T variant, T allele in G2677T variant, and T allele in C3435T variant) across different ethnic groups.

S3 Table. Summary odds ratios and heterogeneity of the G2677T polymorphism in ABCB1 gene on drug response in patients with epilepsy stratified by age, ethnicity, sample size and date of publication.

S4 Table. Summary odds ratios and heterogeneity of the C1236T polymorphism in ABCB1 gene on drug response in patients with epilepsy stratified by age, ethnicity, sample size and date of publication.

S5 Table. Distribution of haplotypic frequencies of the ACBC1 polymorphisms at C1236T, G2677T and C3435T.

S6 Table. Summary odds ratios and heterogeneity of haplotypic comparisons in ABCB1 gene on drug response in patients with epilepsy stratified by ethnicity.

S1 Fig. Galbraith plots of MDR1 C3435T polymorphism and AEDs resistance. The regression runs through the origin interval (central solid line). The 95% confidence interval is between the two outer parallel lines at two units above and below the regression line.

S2 Fig. Sensitivity analysis on the associations of MDR1 C3435T polymorphism with AEDs resistance. Results were computed by omitting each study (left column) in turn, Bars: 95% confidence interval.

S3 Fig. Cumulative meta-analysis of associations between MDR1 C3435T polymorphism and AEDs resistance. The circles and horizontal lines show the accumulation of estimates as results from each study at the end of each year were added.
Author Contributions
Conceived and designed the experiments: HL BW YJ. Performed the experiments: HL CC MW. Analyzed the data: HL BW YX. Contributed reagents/materials/analysis tools: CC MW YX. Wrote the paper: BW YX YJ.

References
1. Duncan JS, Sander JW, Sisodiya SM, Walker MC. Adult epilepsy. Lancet. 2006; 367:1087–100. PMID: 16581409
2. Brodie MJ, Shorvon SD, Canger R, Halasz P, Johannessen S, Thompson P, et al. Commission on European Affairs: appropriate standards of epilepsy care across Europe. ILAE. Epilepsia. 1997; 38:1245–50. PMID: 9579928
3. Kwan P, Brodie MJ. Early identification of refractory epilepsy. The New England journal of medicine. 2000; 342:314–9. PMID: 10660394
4. Brodie MJ, Dichter MA. Antiepileptic drugs. The New England journal of medicine. 1996; 334:168–75. PMID: 8531974
5. Sander JW. Some aspects of prognosis in the epilepsies: a review. Epilepsia. 1993; 34:1007–16. PMID: 8243439
6. MacDonald BK, Johnson AL, Goodridge DM, Cockerell OC, Sander JW, Shorvon SD. Factors predicting prognosis of epilepsy after presentation with seizures. Annals of neurology. 2000; 48:833–41. PMID: 1117539
7. Caserta I, Granieri E, Monetti VC, Gilli G, Tola MR, Paulino E, et al. Early predictors of intractability in childhood epilepsy: a community-based case-control study in Copparo, Italy. Acta neurologica Scandinavica. 1999; 99:329–33. PMID: 10577265
8. Regesta G, Tanganelli P. Clinical aspects and biological bases of drug-resistant epilepsies. Epilepsy research. 1999; 34:109–22. PMID: 10210025
9. Loscher W, Potschka H. Role of multidrug transporters in pharmacoresistance to antiepileptic drugs. The Journal of pharmacology and experimental therapeutics. 2002; 301:7–14. PMID: 11907151
10. Sisodiya SM, Lin WR, Harding BN, Squier MV, Thom M. Drug resistance in epilepsy: expression of drug resistance proteins in common causes of refractory epilepsy. Brain: a journal of neurology. 2002; 125:22–31. PMID: 11834590
11. Tishler DM, Weinberg KI, Hinton DR, Barbaro N, Annett GM, Raffel C. MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia. 1995; 36:1–6. PMID: 8001500
12. Siddiqui A, Kerb R, Weale ME, Brinkmann U, Smith A, Goldstein DB, et al. Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1. The New England journal of medicine. 2003; 348:442–5. PMID: 12687600
13. Boumissen FG, Moretti ME, Juurlink DN, Koren G, Walker M, Finkelstein Y. Polymorphism of the MDR1/ABCB1 C3435T drug-transporter and resistance to anticonvulsant drugs: a meta-analysis. Epilepsia. 2009; 50:898–903. doi: 10.1111/j.1528-1167.2008.01858.x PMID: 19178561
14. Nurmohamed L, Garcia-Boumissen F, Buono RJ, Shannon MW, Finkelstein Y. Predisposition to epilepsy—does the ABCB1 gene play a role? Epilepsia. 2010; 51:1882–5. doi: 10.1111/j.1528-1167.2010.02588.x PMID: 20491876
15. Li M, Tan J, Yang X, Su L, Xie J, Liang B, et al. The ABCB1-C3435T polymorphism likely acts as a risk factor for resistance to antiepileptic drugs. Epilepsy research. 2014; 108:1052–67. doi: 10.1016/j.eplepsyres.2014.03.019 PMID: 24794827
16. Haerian BS, Rosian H, Raymond AA, Tan CT, Lim KS, Zulkifli SZ, et al. ABCB1 C3435T polymorphism and the risk of resistance to antiepileptic drugs in epilepsy: a systematic review and meta-analysis. Seizure: the journal of the British Epilepsy Association. 2010; 19:339–46.
17. Haerian BS, Lim KS, Tan CT, Raymond AA, Mohamed Z. Association of ABCB1 gene polymorphisms and their haplotypes with response to antiepileptic drugs: a systematic review and meta-analysis. Pharmacogenomics. 2011; 12:713–25. doi: 10.2217/pgs.10.212 PMID: 21391884
18. Cheng JW, Zhang LJ, Hou YQ, Zhao Q, Zhang XJ, Chen XF, et al. Association between MDR1 C3435T polymorphism and refractory epilepsy in the Chinese population: a systematic review and meta-analysis. Epilepsy & behavior: E&B. 2014; 36:173–9.
19. Buathet K, Chinvanuray, Towanabut S, Kijsanayotin P. Association of ABCB1 polymorphism with lamarigine-resistant epilepsy in Thais. Thai J Pharm Sci. 2013; 146–51.
20. Emich-Widera E, Likus W, Kazek B, Niemiec P, Balcerzyk A, Sieron AL, et al. CYP3A5 20.35. Tang JL, Liu JL. Misleading funnel plot for detection of bias in meta-analysis. Journal of clinical epidemiology. 2013; 66:365–72. doi: 10.1016/j.ymgme.2013.03.005. PMID: 23625522

21. Huang H, Xu Z, Xu C, Liang W, Fang H, Ke J. The Relationship between ABCB1-C3435T Polymorphism and Drug-resistant Epilepsy. Progress in Modern Biomedicine. 2013; 13:3826–9.

22. Subenthiran S, Abdullah NR, Joseph JP, Muniandy PK, Mok BT, Kee CC, et al. Linkage disequilibrium between polymorphisms of ABCB1 and ABCG2 to predict the treatment outcome of Malaysians with complex partial seizures on treatment with carbamazepine mono-therapy at the Kuala Lumpur Hospital. PloS one. 2013; 8:e64827. doi: 10.1371/journal.pone.0064827 PMID: 23717663

23. Balan S, Bharatharap SP, Vellichiramanal NN, Sathyans, Joseph V, Radhakrishnan K, et al. Genetic association analysis of ATP binding cassette protein family reveals a novel association of ABCB1 genetic variants with epilepsy risk, but not with drug-resistance. PloS one. 2014; 9:e89253. doi: 10.1371/ journal.pone.0089253 PMID: 24586633

24. Seven M, Batar B, Unai S, Yesil G, Yuksel A, Guven M. The drug-transporter gene MDR1 C3435T and G2677T/A polymorphisms and the risk of multidrug-resistant epilepsy in Turkish children. Molecular biology reports. 2014; 41:331–6. doi: 10.1007/s11033-013-2866-y PMID: 24213830

25. Saygi S, Alehan F, Atac FB, Erol I, Verdi H, Erdem R. Multidrug resistance 1 (MDR1) 3435C/T genotyping in childhood drug-resistant epilepsy. Brain & development. 2014; 36:137–42.

26. Shaheen U, Prasad DK, Sharma V, Suryaprabha T, Ahuja YR, Jyothy A, et al. Significance of MDR1 gene polymorphism C3435T in predicting drug response in epilepsy. Epilepsy research. 2014; 108:251–6. doi: 10.1016/j.eplepsypres.2013.11.009 PMID: 24300029

27. Trikalinos TA, Salanti G, Zintzaras E, Ioannidis JP. Meta-analysis methods. Advances in genetics. 2008; 59:311–34. doi: 10.1016/S0065-2660(07)00413-0 PMID: 18358326

28. Zintzaras E, Ioannidis JP. Heterogeneity testing in meta-analysis of genome searches. Genetic epidemiology. 2005; 28:123–37. PMID: 15593093

29. DarSimonian R, Laird N. Meta-analysis in clinical trials. Controlled clinical trials. 1986; 7:177–88. PMID: 3802833

30. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. Journal of the National Cancer Institute. 1959; 22:719–48. PMID: 13650060

31. Kriston L, Harns A, Berner MM. A meta-regression analysis of treatment effect modifiers in trials with flexible-dose oral sildenafil for erectile dysfunction in broad-spectrum populations. International journal of impotence research. 2006; 18:559–65. PMID: 16688210

32. Galbraith RF. A note on graphical presentation of estimated odds ratios from several clinical trials. Statistics in medicine. 1988; 7:889–94. PMID: 3413368

33. Huy NT, Thao NT, Diep DT, Kikuchi M, Zamora J, Hirayama K. Cerebrospinal fluid lactate concentration to distinguish bacterial from aseptic meningitis: a systemic review and meta-analysis. Crit Care. 2010; 14:R240. doi: 10.1186/cc9395 PMID: 21194480

34. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997; 315:629–34. PMID: 9310563

35. Tang JL, Liu JL. Misleading funnel plot for detection of bias in meta-analysis. Journal of clinical epidemiology. 2000; 53:477–84. PMID: 10812319

36. Duval S, Tweedie R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000; 56:455–61. PMID: 11037105

37. Soranzo N, Cavalleri GL, Weale ME, Wood NW, Depondt C, Marguerie R, et al. Identifying candidate causal variants responsible for altered activity of the ABCB1 multidrug resistance gene. Genome research. 2014; 24:1333–44. PMID: 15197162

38. Tan NC, Heron SE, Scheffer IE, Pelekanos JT, McMahon JM, Vears DF, et al. Failure to confirm association of a polymorphism in ABCB1 with multidrug-resistant epilepsy. Neurology. 2004; 63:1090–8. PMID: 15452306

39. Sills GJ, Mohananraj R, Butler E, McCrindle S, Collier L, Wilson EA, et al. Lack of association between the C3435T polymorphism in the human multidrug resistance (MDR1) gene and response to antiepileptic drug treatment. Epilepsia. 2005; 46:643–7. PMID: 15877428

40. Kim DW, Kim M, Lee SK, Kang R, Lee SY. Lack of association between C3435T nucleotide MDR1 genetic polymorphism and multidrug-resistant epilepsy. Seizure: the journal of the British Epilepsy Association. 2006; 15:344–7.

41. Ozgon GO, Bebek N, Gul G, Cine N. Association of MDR1 (C3435T) polymorphism and resistance to carbamazepine in epileptic patients from Turkey. European neurology. 2008; 59:67–70. PMID: 17917461
42. Seo T, Ishitsu T, Ueda N, Nakada N, Yurube K, Ueda K, et al. ABCB1 polymorphisms influence the response to antiepileptic drugs in Japanese epilepsy patients. Pharmacogenomics. 2006; 7:551–61. PMID: 16753003
43. Kim YO, Kim MK, Woo YJ, Lee MC, Kim JH, Park KW, et al. Single nucleotide polymorphisms in the multidrug resistance 1 gene in Korean epileptics. Seizure: the journal of the British Epilepsy Association. 2006; 15:67–72.
44. Chen L, Liu C, Hu Y, Xiao Z, Chen Y, Liao J. Association of a polymorphism in MDR1 C3435T with response to antiepileptic drug treatment in ethic Han Chinese children with epilepsy. Chin J Contemp Pediatr. 2007; 9:11–4.
45. Ebib AH, Ahmed MM, Mohammed SA. Therapeutic drug monitoring and clinical outcomes in epileptic Egyptian patients: a gene polymorphism perspective study. Therapeutic drug monitoring. 2007; 29:305–12. PMID: 17529887
46. Hung CC, Jen Tai J, Kao PJ, Lin MS, Liou HH. Association of polymorphisms in NR1I2 and ABCB1 genes with epilepsy treatment responses. Pharmacogenomics. 2007; 8:1151–8. PMID: 17924830
47. Kwan P, Baum L, Wong V, Ng PW, Lui CH, Sin NC, et al. Association between ABCB1 C3435T polymorphism and drug-resistant epilepsy in Han Chinese. Epilepsy & behavior: E&B. 2007; 11:112–7.
48. Shahwan A, Murphy K, Doherty C, Cavalleri GL, Muckian C, Dicker P, et al. The controversial association of ABCB1 polymorphisms in refractory epilepsy: an analysis of multiple SNPs in an Irish population. Epilepsy research. 2007; 73:192–8. PMID: 17125969
49. Wang S, Gao F, Xia Z, Yang C, Feng J, Li H, et al. Association of a polymorphism in MDR1 C3435T with intractable epilepsy of children. Zhejiang Medical Journal. 2008; 30:1307–12.
50. Gao X, Zhou S, Guo Q, Sun D. Polymorphism of multidrug-resistance gene in childhood refractory epilepsy. J Clin Pediatr. 2009; 27:1014–8.
51. Kim DW, Lee SK, Chu K, Jang I, Yu KS, Cho JY, et al. Lack of association between ABCB1, ABCG2, and ABC22 genetic polymorphisms and multidrug resistance in partial epilepsy. Epilepsy research. 2009; 84:86–90. doi: 10.1016/j.eplepsres.2008.12.001 PMID: 19167193
52. Kwan P, Wong V, Ng PW, Lui CH, Sin NC, Poon WS, et al. Gene-wide tagging study of association between ABCB1 polymorphisms and multidrug resistance in epilepsy in Han Chinese. Pharmacogenomics. 2009; 10:723–32. doi: 10.2217/pgs.09.32 PMID: 19450124
53. Lakhan R, Misra UK, Kailita J, Pradhan S, Gogtay NJ, Singh MK, et al. No association of ABCB1 polymorphisms with drug-refractory epilepsy in a north Indian population. Epilepsy & behavior: E&B. 2009; 14:78–82.
54. Szoeke C, Sills GJ, Kwan P, Petrovski S, Newton M, Hitiris N, et al. Multidrug-resistant genotype (ABCB1) and seizure recurrence in newly treated epilepsy: data from international pharmacogenetic cohorts. Epilepsia. 2009; 50:1689–96. doi: 10.1111/j.1528-1167.2009.02059.x PMID: 19453704
55. Vahab SA, Sen S, Ravindran N, Mony S, Mathew A, Vijayan N, et al. Analysis of genotype and haplotype effects of ABCB1 (MDR1) polymorphisms in the risk of medically refractory epilepsy in an Indian population. Drug metabolism and pharmacokinetics. 2009; 24:255–60. PMID: 19571437
56. Ufer M, Mosyagin I, Muhe H, Jacobsen T, Haenisch S, Hasler R, et al. Non-response to antiepileptic pharmacotherapy is associated with the ABCCC2 -24C>T polymorphism in young and adult patients with epilepsy. Pharmacogenetics and genomics. 2009; 19:353–62. PMID: 19415824
57. von Stulpnagel C, Plischke H, Zill P, Baumel C, Spiegel R, Gruber R, et al. Letter: lack of association between MDR1 polymorphisms and pharmacoresistance to anticonvulsive drugs in patients with childhood-onset epilepsy. Epilepsia. 2009; 50:1835–7. doi: 10.1111/j.1528-1167.2009.02077.x PMID: 20831524
58. Grover S, Bala K, Sharma S, Gourie-Devi M, Baghel R, Kaur H, et al. Absence of a general association between ABCB1 genetic variants and response to antiepileptic drugs in epilepsy patients. Biochimie. 2010; 92:1207–12. doi: 10.1016/j.biochi.2010.04.008 PMID: 20417680
59. Sanchez MB, Herranz JL, Leno C, Arteaga R, Oterino A, Valdizan EM, et al. Genetic factors associated with drug-resistance of epilepsy: relevance of stratification by patient age and aetiology of epilepsy. Seizure: the journal of the British Epilepsy Association. 2010; 19:93–101.
60. Dong L, Luo R, Tong Y, Cai X, Mao M, Yu D. Lack of association between ABCB1 gene polymorphisms and pharmacoresistant epilepsy: an analysis in a western Chinese pediatric population. Brain research. 2011; 1391:114–24. doi: 10.1016/j.brainres.2011.03.028 PMID: 21420937
61. Haerian BS, Lim KS, Mohamed EH, Tan HJ, Tan CT, Raymond AA, et al. Lack of association of ABCB1 and PXR polymorphisms with response to treatment in epilepsy. Seizure: the journal of the British Epilepsy Association. 2011; 20:387–94.
62. Meng H, Guo G, Ren J, Zhou H, Ge Y, Guo Y. Effects of ABCB1 polymorphisms on plasma carbamazepine concentrations and pharmacoresistance in Chinese patients with epilepsy. Epilepsy & behavior: E&B. 2011; 21:27–30.

63. Sayyah M, Kamgarpour F, Maleki M, Karimipoor M, Gharagozli K, Shamshir AR. Association analysis of intractable epilepsy with C3435T and G2677T/A ABCB1 gene polymorphisms in Iranian patients. Epileptic disorders: international epilepsy journal with videotape. 2011; 13:155–65. doi: 10.1684/epd.2011.0443 PMID: 21636342

64. Qu J, Zhou BT, Yin JY, Xu XJ, Zhao YC, Lei GH, et al. ABCC2 polymorphisms and haplotype are associated with drug resistance in Chinese epileptic patients. CNS neuroscience & therapeutics. 2012; 18:647–51.

65. Sterjev Z, Trencevska GK, Cvetkovska E, Petrov I, Kuzmanovski I, Ribarska JT, et al. The association of C3435T single-nucleotide polymorphism, Pgp-glycoprotein gene expression levels and carbamazepine maintenance dose in patients with epilepsy. Neuropsychiatric disease and treatment. 2012; 8:191–6. doi: 10.2147/NDT.S28285 PMID: 22570551

66. Hung CC, Tai JJ, Lin CJ, Lee MJ, Liou HH. Complex haplotypic effects of the ABCB1 gene on epilepsy treatment response. Pharmacogenomics. 2005; 6:411–7. PMID: 16004559

67. Maleki M, Sayyah M, Kamgarpour F, Karimipoor M, Arab A, Rajabi A, et al. Association between ABCB1-T1236C polymorphism and drug-resistant epilepsy in Iranian female patients. Iranian biomedical journal. 2010; 14:89–96. PMID: 21079659

68. Leschziner GD, Andrew T, Leach JP, Chadwick D, Coffey AJ, Balding DJ, et al. Common ABCB1 polymorphisms are not associated with multidrug resistance in epilepsy using a gene-wide tagging approach. Pharmacogenetics and genomics. 2007; 17:217–20. PMID: 17460550

69. Sporl D, Bašić S, Božina N, Babić T, Hajnšek S, Sertić J, et al. ABCB1 gene variants as predictors of multidrug-resistant epilepsy in Croatian population. Neurol Croat. 2011; 60:63–70.

70. Di Q, Wang L, Xu L, Yu N, Jiang Y, Jiang W, et al. Association between the C3435T polymorphism of human multidrug resistance 1 gene and refractory epilepsy. Chin J Neuromed. 2011; 10:127–31.

71. Dong T, Xu X, Qi M, Gu H, Zhang Q. Association analysis of ABCB1-C3435T polymorphism and drug-resistant epilepsy in Hui and Han-nation epilepsy patients. Journal of Apoplexy and Nervous Diseases. 2011; 28:237–41.

72. Lu J, Ren H, Zhu G, Yu L, Ding D, Hong Z. Association of the C3435T polymorphism in the multidrug resistance gene 1 and response to antiepileptic drug treatment in epilepsy patients. Chin J Neurol. 2007; 40:584–7.

73. Wang X, Lin R, Shi D, Bai Z, Yang P. Association of C3435T Polymorphism in Multidrug Resistance Gene 1 with Refractory Epilepsy. Progress in Modern Biomedicine. 2011; 11:2717–9.

74. Yang M, Li T, Huang Y, Chen X. The relationship between genetic polymorphism and expressed matter of MDR1 gene with efficacy of carbamazepine Chin Differ and Compil Cas. 2012; 11:594–6.

75. Zheng X, Wu S, Xia M, Li Q. Association of a polymorphism in MDR1 C3435T with response to antiepileptic drug treatment in intractable epilepsy. J Apoplexy and Nervous Diseases. 2009; 26:44–5.

76. Jin R, Yang C, Xu X, Li B, Ge L. Frequency of the C3435T single-nucleotide polymorphism in MDR1 genes and association of this polymorphisms with multidrug-resistant epilepsy. Chin Clinicians. 2010; 4:2153–7.

77. Jin R, Wang L, Ge L, Wang J, Sun R. Frequency of C1236T Polymorphism in Multidrug Resistance Gene 1 and Association of Its Polymorphisms with Multidrug-Resistant. J Appl Clin Pediatr. 2010; 25:1583–92.

78. Jette L, Tetu B, Beliveau R. High levels of P-glycoprotein detected in isolated brain capillaries. Biochimica et biophysica acta. 1993; 1150:147–54. PMID: 8102251

79. Potschka H, Loscher W. A comparison of extracellular levels of phenytoin in amygdala and hippocampus of kindled and non-kindled rats. Neureport. 2002; 13:167–71. PMID: 11924892

80. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science. 2007; 315:525–8. PMID: 17185560

81. Nadjarki S, Bojaioe J, Devinsky O. Current treatments of epilepsy. Neurology. 2005; 64:S2–11. PMID: 15994220

82. Loscher W, Klotz U, Zipirich F, Schmidt D. The clinical impact of pharmacogenetics on the treatment of epilepsy. Epilepsia. 2009; 50:1–23. doi: 10.1111/j.1528-1167.2009.02376.x PMID: 19941537

83. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathem G, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2010; 51:1069–77. doi: 10.1111/j.1528-1167.2009.02397.x PMID: 19889013