Introduction

Bacteremia is defined as the presence of viable bacteria in the bloodstream and it can cause mild to life-threatening illnesses through activation of a series of proinflammatory, antiinflammatory and apoptotic cascades that ultimately result in a disruption of physiologic homeostasis. The incidence of bloodstream infections either of community-acquired origin or of hospital-acquired origin has dramatically increased all over the world [1,2]. Bacteremia is typically associated with prolonged hospital stay and increased medical cost, particularly if accompanied with leukopenia, since patients with leukopenia have a worse prognosis than infected but non-leukopenia patients [3–5]. For example, patients hospitalized as a consequence of community-acquired, health care associated or hospital-acquired pneumonia have increased mortality rates if they were also leukopenia [6].

Researches in bacteremia have identified C-reactive protein, IL-6 and procalcitonin as markers of bloodstream infections [7,8]. In previous study, we proved that bacteremia induced by pandrug-resistant Klebsiella pneumonia caused less damage compared with bacteremia induced by drug-susceptible Klebsiella pneumonia, but little work have been carried out to find the pathogenicity factors of bacteria which could result into leukopenia [9].

Immunoproteomics, a technique involving two-dimensional electrophoresis followed by immunoblotting, holds considerable promise for the discovery of pathogenicity factors in different diseases, including cancer, autoimmune diseases, and infections [10–12]. In this study, we applied an immunoproteomic approach to survey the leukopenia caused by pathogenicity factors of Klebsiella pneumonia and identified 6 pathogenicity factors.

Method

Ethical statement

Study protocols were approved by the medical ethics committee of First Affiliated Hospital of Anhui Medical University. Written informed consent was obtained from all subjects prior to participation.

Bacteria samples and patients serum

Case group consist of Klebsiella pneumonia isolates from patients with Klebsiella pneumonia bacteremia and leukopenia and control group consist of Klebsiella pneumonia isolates from patients with Klebsiella pneumonia bacteremia and leukocytosis. All Klebsiella pneumonia isolates in this study were drug-susceptible isolates. Serum specimens were collected from the...
patients when they got Klebsiella pneumonia. Bacteria samples and serum samples were kept frozen at −80°C, and thawed just before analysis. All patients were recruited between Jan 2011 and Oct 2013 in the first affiliated hospital of Anhui medicine university, China. Acute Physiology and Chronic Health Evaluation (APACHE) II was calculated according to the initial pathography of patients when they were hospitalized. Leukocyte count and CRP were recorded when the patients got Klebsiella pneumonia. Leukopenia was defined as WBC count <4000/μL. Leukocytosis was defined as WBC count >10000/μL. Patients with underlying diseases (diabetes mellitus, heart disease, et al) and chemotherapy were excluded from the study.

Preparation of Klebsiella pneumonia lysates

Cell Culture. Bacteria were inoculated in liquid Luria-Bertani culture medium and grown 24 h at 37°C. Bacteria density was measured spectrophotometrically at 600 nm. Bacteria were pelleted by centrifugation (10 min, 20 000 g, 4°C) and washed thrice in sterile PBS (Na2HPO4 0.01 M; NaCl 0.15 M; 0.05% sodium azide, pyruvate dehydrogenase, glutathione synthetase, chymotrypsin, and Glu-C, and the resulting peptides were analyzed by MALDI-TOF MS. The corresponding spectra were used to identify the proteins with the Mascot search program. The reactive proteins were identified as S-adenosylmethionine synthetase, pyruvate dehydrogenase, glutathione synthetase, pathogenicity factors in controls.

In-gel enzyme digestion and mass spectrometry

Each differentially expressed spot from the gels was dehydrated with 50 ml of ACN for 5 min, incubated in 50 mL of 10 mM DTT at 37°C for 1 hour, and then incubated in 50 mL of 55 mM iodoacetamide (alkylating solution) for 45 min. The spots were dehydrated with 50 ml of ACN and rehydrated in 5 ml of porcine trypsin, followed by the addition of 10 ml of 25 mM ammonium bicarbonate. Protein digestion was performed overnight at 37°C and stopped by adding 10 ml of 2% formic acid. Resulting peptides were concentrated and mixed with alpha-cyano-4-hydroxycinnamic acid (Sigma, St. Louis, MO, USA), deposited on a 384-well MALDI target, and air-dried. Analyses were performed with a Biflex IV (Bruker Daltonics, Germany). MS data were compared against tryptic peptide sequences from the SWISS-PROT database using Mascot (Matrix Sciences, London, UK) search algorithms.

Western blot verification

New bacteria sample were subjected to 12.5% SDS-PAGE and then transferred onto polyvinylidene difluoride (Millipore, Billerica, MA) membranes, which were blocked for 30 minutes with 5% nonfat milk in Tris-buffered saline with 0.05% Tween-20 (TBST). Samples were incubated overnight at 4°C with 1:400 v/v solutions of EF-Tu Ab (Abcam UK). The membranes were washed 3 times in TBST for 5 minutes each and blotted for 2 hours with a 1:500 solution of HP-conjugated secondary rabbit antihuman IgG at RT. The membranes were washed twice with TBST, followed by another wash in TBS. Immunoreactive bands were visualized with a Western Blotting Detection System (Pierce, Rockford, IL).

Results

Patients characteristics

During the study period, 8 patients (6 males and 2 female; median age, 63 years) in case group and 8 patients (5 males and 3 female; median age, 61 years) in control groups were enrolled. There was no difference between the two groups in APACHE II score. In the case group, the mean leukocyte counts was 3.2×10^9/L and the mean CRP was 37.3 mg/L. In the control group, the mean leukocyte counts was 12.3×10^9/L and the mean CRP was 87.6 mg/L.

Klebsiella pneumonia pathogenicity factors

Total protein extracts of Klebsiella pneumonia were separated by 2-D PAGE and transferred to PVDF membranes. Serum samples from patients were mixed. The serum proteins were the primary antibody and goat antihuman IgG was the secondary antibody in our assay. By compared the results in cases and controls, approximately 40 protein spots localized in the 4–7 pI range were detected on the 2-DE gels. Six differentially expressed protein spots between 10 and 170 kDa were identified. Pathogenicity factors in cases were compared directly with pathogenicity factors in controls.

Detection of bacteria pathogenicity factors by Western blotting

After protein transfer, the PVDF membranes were incubated for 2 hours in blocking buffer comprising 5% milk in 10 mM Tris-HCl (pH 7.5), 2.5 mM EDTA (pH 8.0), and 50 mM NaCl. Serum samples from patients were mixed together as the source of primary antibodies at 1:200 dilution under room temperature (RT) for 2 hours. After 3 washes with washing buffer (Tris-buffered saline containing 0.01% Tween 20), membranes were incubated with goat antihuman IgG antibodies (Beijing Zhongshan Company, China) at a dilution of 1:5000 for 1 hour at RT.
UDP-galactose-4-epimerase, acetate kinase A and elongation factor Tu (Fig. 1, Table 1).

Western blot analysis to validate the reactive proteins

To confirm the immunoproteomic data, another 3 Klebsiella pneumonia isolates from patients with bacteremia and leukopenia were compared with another 3 Klebsiella pneumonia isolates from patients with leukocytosis by Western blot. Drug-susceptible isolates with bacteremia and leukopenia had high levels of elongation factor tu expression (Fig 2A, Fig 2B).

Discussion

Identification of disease-specific pathogenicity factors is essential for understanding the diseases and defining biomarkers for detection of preclinical disorders. With prolonged hospital stay and increased medical cost from leukopenia induced by bacteremia, it is very important to find out that how bacteremia has caused leukopenia. In this study we revealed 6 pathogenicity factors for leukopenia caused by Klebsiella pneumonia bacteremia. S-adenosylmethionine synthetase, pyruvate dehydrogenase, glutathione synthetase, UDP-galactose-4-epimerase, acetate kinase A are housekeeping enzymes. EF-Tu (elongation factor thermo unstable) is one of the prokaryotic elongation factors. It is part of

Table 1. Differentially Expressed Proteins Identified by MALDI-TOF-MS.

accession number	Sequence coverage	Score	pI/Mr	Protein name
WP_004133543	22%	92	5.14/39378	S-adenosylmethionine synthetase
WP_004178692	35%	106	5.07/36538	pyruvate dehydrogenase subunit beta
WP_004205176	44%	84	5.19/35656	glutathione synthetase
WP_009308200	58%	192	5.63/37155	UDP-galactose-4-epimerase
WP_004201756	37%	109	5.89/43527	acetate kinase A
WP_004169020	47%	109	4.86/37221	elongation factor Tu, partial
A Klebsiella pneumonia from patients with leukopenia

B Klebsiella pneumonia from patients with leukocytosis

Figure 2. Western blot analysis to validate the reactive proteins. Klebsiella pneumonia from Klebsiella pneumonia bacteremia patients with (A) leukopenia and (B) leukocytosis were respectively examined by Western blot analysis to validate the reactive proteins ef-tu. Note the higher expression levels of ef-tu in patients with leukopenia caused by Klebsiella pneumonia.
doi:10.1371/journal.pone.0110011.g002

the mechanism that synthesizes new proteins by translation at the ribosome. Intrinsic differences between Klebsiella pneumonia with respect to differences in protein expression profiles was negated by pooling the lysates of Klebsiella pneumonia isolates from patients, further strengthening the association of these six candidate pathogenicity factors with leukopenia. In addition, the presence of the pathogenicity factor EF-Tu in lysates was confirmed by western blot analysis. Our immunoproteomics approach for proteins profile of Klebsiella pneumonia bacteremia with leukopenia is a convenient and effective tool for detecting pathogenicity factors.

S-adenosyl-L-methionine (SAM) acts as a methyl donor in amino acid, protein, phospholipid, and DNA synthesis. The majority of cellular SAM is used in methylation of macromolecules of prokaryotes and eukaryotes, yielding S-adenosylhomocysteine (SAH) as a product. Quorum Sensing systems regulate pathogen-host cell interactions, bacterial virulence and the formation of bacterial biofilms. SAM is the substrate for the LuxI-type enzymes which consist of quorum sensing circuits in gram-negative bacterial pathogens [13]. Knockout mutants of luxS genes in V. cholerae, S. pyogenes, S. pneumoniae, N. meningitidis and C. perfringens exhibited severe defects in the expression of genes encoding virulence factors, suggesting that inhibitors of MTA/SAH nucleosidase could possibly become new anti-infective drugs against various bacterial pathogens [14].

Pyruvate dehydrogenase is the first component enzyme of pyruvate dehydrogenase complex. The pyruvate dehydrogenase complex contributes to transforming pyruvate into acetyl-CoA by a process called pyruvate decarboxylation.

In a study focused on the activation of the Pseudomonas aeruginosa type III secretion system, which is a recently identified virulence determinant of P. aeruginosa, the results suggest that in the pyruvate dehydrogenase mutants essA expression is not induced, which does not allow the type III secretion system to function efficiently [15,16]. In a recent research studying the modes of action of antimicrobial compounds, using an exometabolome profiling approach, Birkenstock identified a unique TPBC (triphénylbismuthdichloride)-mediated change in the metabolites of staphylococcus aureus was, indicating that TPBC blocks bacterial pyruvate catabolism [17].

Glutathione synthetase is the second enzyme in the glutathione biosynthesis pathway. It catalyses the condensation of gamma-glutamylcysteine and glycine, to form glutathione [18]. The role of glutathione synthetase in bacteria is very important, it can protect bacteria from damage of osmotic stress, low pH, toxicity of ethylyglycol and oxidative stress [19–22]. UDP-galactose-4-epimerase is an essential enzyme of the Leloir pathway of galactose metabolism and catalyzes the interconversion of UDP-galactose and UDP-glucose [23]. UDP-galactose thus formed serves as galactose donor for the biosynthesis of galactosyl residues in glycoproteins and complex polysaccharides, including both the core and O-antigen polysaccharide of the LPS [24]. Acetate kinase, a conserved enzyme that is widespread in bacteria, is responsible for the phosphorylation of acetate [25]. In a study showed inhibition of Escherichia coli growth by the two inhibitors of acetate kinase, suggests the potential role of acetate kinase could be a potential bacteriostatics target [26].

EF-Tu is a component of the prokaryotic mRNA translation apparatus that delivers aminoacyl-RNAs to the ribosome during the elongation cycle of protein synthesis [27]. In proteomic profiling of immunodominant spore antigens of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis, EF-Tu was identified one of differentially expressed and immunogenic spore proteins [28]. In other study of Burkholderia infection, Nieves et al found active immunization with EF-Tu induced antigen-specific antibody and cell-mediated immune responses in mice. Mucosal immunization with EF-Tu also reduced lung bacterial loads in mice challenged with aerosolized B. thailandensis, showing the utility of EF-Tu as a novel vaccine immunogen against bacterial infection [29]. In a research of Lactobacillus johnsonii, Granato et al found EF-Tu was expressed intracellularly, as well as on the bacterial cell surface where it participated in gut homeostasis through its binding to the intestinal mucosa [30].

However, the limitations of the present study should be acknowledged. First, the number of Klebsiella pneumonia patients was too small to general current findings to a large population. As a result, all outcomes need to be confirmed in further study with large sample size. Second, the lack of controlled Klebsiella pneumonia bacteremia with normal leukocyte counts follow up data makes it difficult to choose more accurate pathogenicity factors. In conclusion, our proteomic analysis identified 6 housekeeping enzymes and EF-Tu was linked to leukopenia induced by Klebsiella pneumonia bacteremia. We suggest EF-Tu could be a potential pathogenicity factor for leukopenia caused by Klebsiella pneumonia.

Author Contributions
Conceived and designed the experiments: ZZ. Performed the experiments: HL. Analyzed the data: WW. Contributed reagents/materials/analysis tools: WS ZC. Wrote the paper: HL ZZ.

References
1. Friedman ND, Kaye KS, Stout JE, McGarry SA, Trivette SL, et al. (2002) Health care–associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Ann Intern Med 137: 791–7.

2. Siegman-Igra Y, Foure R, Orn-Wasserlauf R, Golani Y, Noy A, et al. (2002) Reappraisal of community-acquired bacteremia: a proposal of a new classification for the spectrum of acquisition of bacteremia. Clin Infect Dis 34: 1431–9.
1. Yahr TL, Goranson J, Frank DW (1996) Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway. Mol Microbiol 22: 991–1003.

2. Zhou Z, Liu H, Gu G, Wang G, Wu W, et al. (2013) Immunoproteomic to identify antigens in the intestinal mucosa of Crohn's disease patients. PLoS One 8:e81662.

3. Holden HM, Rayment I, Thoden JB (2003) Structure and function of enzymes of the Leloir pathway for galactose metabolism. J Biol Chem 278: 43885–8.

4. Dacheux D, Epaulard O, de Groot A, Guery B, Leberre R, et al. (2002) Activation of the Pseudomonas aeruginosa type III secretion system requires an intact pyruvate dehydrogenase aceAB operon. Infect Immun 70: 3973–7.

5. Leibovici L, Drucker M, Samra Z, Konisberger H, Pitlik SD (1995) Prognostic significance of the neutrophil count in immunocompetent patients with bacteremia. J Infect Dis 171: 831–40.

6. Venditti M, Falcone M, Corrao S, Licata G, Serra P (2009) Study Group of the Italian Society of Internal Medicine. Outcomes of patients hospitalized with community-acquired, health care-associated, and hospital-acquired pneumonia. Ann Intern Med 150: 19–26.

7. Sierra R, Baile ´n MA, Benı´tez E, Gordillo A, Gordillo A, et al. (2004) C-reactive protein used as an early indicator of infection in patients with systemic inflammatory response syndrome. Intensive Care Med 30: 2038–43.

8. Schirmer J, Wieden HJ, Rodnina MV, Aktories K (2002) Inactivation of the acetate kinase from Methanosarcina thermophila. J Bacteriol 184: 1155–8.

9. Zhou Z, Ren J, Liu H, Gu G, Li J (2011) Pandrug-resistant isolate of Klebsiella pneumoniae causes less damage than isolates in a rabbit model. Clin Invest Med 34:E38–44.

10. Klade CS (2002) Proteomics approaches towards antigen discovery and vaccine development. Curr Opin Mol Ther 4: 216–23.

11. Jungblut PR (2001) Proteome analysis of bacterial pathogens. Microbes Infect 3: 831–40.

12. Zhou Z, Liu H, Gu G, Wang G, Wu W, et al. (2013) Immunoproteomic to identify antigens in the intestinal mucosa of Crohn's disease patients. PLoS One 8:e101662.

13. Miller MB, Bassler BI (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55: 165–99.

14. Parveen N, Cornell KA (2011) Methylthioadenosine/S-adenosylhomocysteine nucleosidase, a critical enzyme for bacterial metabolism. Mol Microbiol 79: 7–20.

15. Dachex D, Epaulard O, de Groot A, Guery B, Leberre R, et al. (2002) Activation of the Pseudomonas aeruginosa type III secretion system requires an intact pyruvate dehydrogenase aceAB operon. Infect Immun 70: 3973–7.

16. Yahr TL, Goranson J, Frank DW (1996) Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway. Mol Microbiol 22: 991–1003.

17. Birkenstock T, Liebeke M, Winstel V, Krisner B, Gekeler C, et al. (2012) Exometabolome analysis identifies pyruvate dehydrogenase as a target for the antibiotic triphenylbismuth dichloride in multiresistant bacterial pathogens. J Biol Chem 287: 2807–95.

18. Njåhson R, Noergren S (2005) Physiological and pathological aspects of GSH metabolism. Acta Paediatr 94: 132–7.

19. Smirnova GV, Krasnykh TA, Oktyabrsky ON (2001) Role of glutathione in the response of Escherichia coli to osmotic stress. Biochemistry 66: 973–8.

20. Ricciolo PM, Muglia CJ, de Bruijn EJ, Roe AJ, Booth IR, et al. (2000) Glutathione is involved in environmental stress responses in Rhizobium tropici, including acid tolerance. J Bacteriol 182: 1748–55.

21. Ferguson GP, Booth IR (1998) Importance of glutathione for growth and survival of Escherichia coli cells: detoxification of methylglyoxal and maintenance of intracellular K+. J Bacteriol 180: 4314–8.

22. Carmel-Harel O, Storz G (2000) Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 54: 439–61.

23. Holden HM, Rayment I, Thoden JB (2003) Structure and function of enzymes of the Leloir pathway for galactose metabolism. J Biol Chem 278: 43883–8.

24. Potter MD, Lo RY (1996) Cloning and characterization of the gaE locus of Pasteurella haemolytica A1. Infect Immun 64: 835–60.

25. Lawrence SH, Ferrer JG (2006) Steady-state kinetic analysis of phosphotransacetylase from Methanosarcina thermophila. J Bacteriol 188: 1155–8.

26. Asgari S, Shariati P, Ehrahim-Hahabi A (2013) Targeting acetate kinase: inhibitors as potential bacteriostatics. J Microbiol Biotechnol 23: 1544–53.

27. Schirmer J, Wieden HJ, Rodnina MV, Aktories K (2002) Inactivation of the elongation factor Tu by mosquitocidal toxin-catalyzed mono-ADP-ribosylation. Appl Environ Microbiol 68: 4894–9.

28. Delvecchio VG, Connolly JP, Alefantis TG, Walz A, Quan MA, et al. (2006) Proteomic profiling and identification of immunodominant spore antigens of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Appl Environ Microbiol 72: 6535–63.

29. Nieves W, Hrang J, Asakrah S, Ho¨ner zu Bentrup K, Roy CJ, et al. (2006) Role of glutathione in the response of Escherichia coli to osmotic stress. Biochemistry 66: 973–8.

30. Granato D, Bergonzelli GE, Priddmore RD, Marvin L, Rouzet M, et al. (2004) Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucus. Infect Immun 72: 2160–9.