Original Research Article

Dissipation Pattern of Profenophos on Cabbage *(Brassica oleracea var. Capitata)*

Anugu Anil Reddy*, Shashi Vemuri, CH.S. Rao and A. Uma Rajashekar

Ainp on Pesticide Residues, Eei Premises, Rajendra Nagar, Hyderabad-500 030, A.P. India

*Corresponding author

A B S T R A C T

An experiment was conducted during kharif, 2012 to evaluate the efficacy of seven insecticides viz., emamectin benzoate 5 SG at 11 g a.i.ha⁻¹, emamectin benzoate 5 SG at 22 g a.i.ha⁻¹, profenophos 50 EC at 500 g a.i.ha⁻¹, profenophos 50 EC at 1000 g a.i.ha⁻¹, spinosad 45 SC at 100 g a.i.ha⁻¹, bifenthrin 10 EC at 100 g a.i.ha⁻¹ and Bacillus thuringiensis at 5 WP at 25 g a.i.ha⁻¹ against DBM (*Plutella xylostella*) on cabbage of which profenophos 50 EC (1000 g a.i.ha⁻¹), applied twice as foliar spray was found to be most effective in controlling the *P. xylostella* for which the dissipation studies were conducted. The dissipation pattern of profenophos 50 EC (1000 g a.i.ha⁻¹) was studied collecting samples at regular intervals i.e. 0, 1, 3, 5, 7, 10, 15 and 20 days after last spray and analyzed. The initial deposits of 0.99 mg kg⁻¹ profenophos recorded at 2 hours after last spray dissipated to 0.85, 0.82, 0.16 and 0.07 mg kg⁻¹ by 1, 3, 5 and 7 days after last spray, respectively and below determination level (BDL) by 10th day.

Keywords

Insecticides, *Plutella xylostella*, Initial deposit, Efficacy, Dissipation and Half-life.

Article Info

Accepted: 17 May 2017
Available Online: 10 June 2017

Introduction

Cabbage (*Brassica oleracea* var. capitata L.) is the second important cruciferous vegetable crop in the world. In India, it is cultivated in an area of 0.369 m ha with an average annual production of 7.949 m MT and productivity of 21.5 MT ha⁻¹. The major cabbage producing states are Maharashtra, Bihar, Karnataka, Orissa, West Bengal and Andhra Pradesh, whereas West Bengal ranks first both in area and production with 0.0753 m ha and 2.087 m MT, respectively (NHB 2011). It contains adequate quantities of vitamins A, B and C and minerals phosphorus, potassium, calcium, sodium and iron (Nath *et al.*, 1984). Though lack of quality seeds, improved cultivars, F1 hybrids and suitable production technology contribute partly to the lower yields, various other factors are responsible for low productivity among which damage by various insect pests starting from transplanting till harvest is most significant.

A host of insect pests viz., diamond back moth, [*Plutella xylostella* (L.)], cabbage leaf webber, [(*Crocodolomia rinotalis* (Zell.)), tobacco caterpillar, [(*Spodoptera litura* (Fab.))] and mustard aphid, [*Brevecornya brassicae* (L.)] etc., attack the crop, among these diamond back moth, [*Plutella xylostella* (L.)] is the most notorious and pernicious pest on cruciferous vegetables causing 52 percent loss in marketable produce (Krishna kumar *et
al., 1986), farmers apply pesticides 8 to 10 times to effectively control this pest. Indiscriminate use of pesticides leads to undesirable load of pesticide residues in marketable vegetables (Kumari et al., 2005) and cause severe ecological consequences like destruction of natural enemy fauna, effect on non-target organisms and directly effect in the form of residues. Hence studies were conducted for the efficacy of different insecticides used commonly and also to establish the dissipation pattern of relatively safer insecticides to fit in pest management strategy.

Materials and Methods

The experiment was laid out in a Randomized Block Design (RBD) with 8 treatments including untreated control replicated thrice with individual plot size of 20 m² (5mx4 m) and the insecticides viz., emamectin benzoate 5 SG at 11 g a.i.ha⁻¹, emamectin benzoate 5 SG at 22 g a.i.ha⁻¹, profenophos 50 EC at 500 g a.i.ha⁻¹, profenophos 50 EC at 1000 g a.i.ha⁻¹, spinosad 45 SC at 100 g a.i.ha⁻¹, bifenthrin 10 EC at 100 g a.i.ha⁻¹ and *Bacillus thuringiensis* at 5 WP at 25 g a.i.ha⁻¹ on cabbage first at head initiation and the second spray ten days later to evaluate the efficacy against *P. xylostella* of which profenophos 50 EC at 1000 g a.i.ha⁻¹ was the most effective and the dissipation studies were conducted for the same by collecting cabbage samples at regular intervals i.e. 0, 1, 3, 5, 7, 10, 15 and 20 days after last spray in polythene bags and brought to the laboratory immediately for further sample processing in the laboratory as detailed here under.

Results and Discussion

Initial deposits of 0.99 mg kg⁻¹, profenophos were detected at 2 hours after last spray, which dissipated to Below Determination Level (BDL) of 0.05 mg kg⁻¹, by 10th day after last spraying on cabbage. The initial deposits were dissipated to 0.85, 0.82, 0.16 and 0.07 mg kg⁻¹, by 1, 3, 5 and 7 days after last spray, respectively. The dissipation pattern showed constant decrease of residues from first day to 7th day. The residues dissipated by 14.14, 17.17, 83.84 and 92.93 % on 1, 3, 5 and 7th day, respectively. The regression equation is $Y = 1.031 + (-0.141)X$ with R^2 of 0.896. Maximum Residue Limit for profenophos in cabbage as per European Union (EU) is 0.01 mg kg⁻¹, and the calculated 14.27 days based on dissipation pattern data. Hence, a safe waiting period is 15 days is recommended. Maximum Residue Limit for profenophos in cabbage as per Codex Alimentarius Commission (CAC) has not been set. The half-life of profenophos on cabbage was 4.91 days.

The present results are in agreement with the findings of Barba *et al.*, (1987) who reported degradation of profenophos residues from 0.60 to 0.04 ppm by 7 days on globe artichokes.

The results are in the agreement with the findings of Malla Reddy (2003) who reported that, profenophos at 0.05% sprayed on cabbage heads, had very low initial deposits of 0.91 mg kg⁻¹, i.e., less than the MRL value of 1.00 mg kg⁻¹ with a waiting period of one day. The residues of profenophos (0.05%) dissipated from cabbage heads to an extent of 93.40% in ten days after spraying. The removal of upper most layers on cabbage heads and subsequent water washings reduced the initial deposit of profenophos to an extent of 91.20%.
Extraction and cleanup

Cabbage heads (5kg) were homogenized with robot coupe blixer and homogenized

15±0.1g sample was taken in 50 ml centrifuge tube

Required quantity of standard (CRM) added to get desired fortification level

30±0.1 ml acetonitrile was added to the tube

The sample was homogenized at 14000-15000 rpm for 2-3 min

Using Heidolph silent crusher

3±0.1g sodium chloride was added to tube and mixed by shaking gently

Centrifuged for 3 min at 2500-3000 rpm to separate the organic layer

The top organic layer of about 16 ml was taken into the 50 ml centrifuge tube

9±0.1 g anhydrous sodium sulphate was added to remove the moisture content

8 ml of extract was taken in to 15 ml tube containing

0.4±0.01g PSA sorbent (for dispersive solid phase d-SPE cleanup) and

1.2±0.01 gr anhydrous magnesium sulphate

The sample tube was vortexed for 30 sec

Followed by centrifugation for 5 min at 2500-3000 rpm

The extract of about 2ml was transferred into test tubes and evaporated to dryness using turbovap with nitrogen gas and reconstituted with 1ml n-Hexane: Acetone (9:1) for GC analysis with ECD and TSD for profenophos analysis.
Table 1: Dissipation of Profenophos (1000 g a.i. ha\(^{-1}\)) in cabbage

Days after last spray	Residues of profenophos (mg kg\(^{-1}\))	Dissipation %			
	R1	R2	R3	Average	
0	1.05	0.95	0.97	0.99	0
1	0.87	0.82	0.85	0.85	14.14
3	0.80	0.72	0.96	0.82	17.17
5	0.17	0.14	0.15	0.16	83.84
7	0.08	0.07	0.06	0.07	92.93
10	BDL	BDL	BDL	BDL	100
15	BDL	BDL	BDL	BDL	100
20	BDL	BDL	BDL	BDL	100

Regression equation: \(Y = 1.031 + (-0.141) X \)

\(R^2 = 0.896 \)

Half-life: 4.91 days

Safe waiting period (As per EU MRL = 0.01 mg kg\(^{-1}\)): 15 days

BDL: Below Determination Level (0.05 mg kg\(^{-1}\))

Profenophos dissipation in Cabbage

\[y = -0.141x + 1.031 \]

\[R^2 = 0.896 \]

Standard sample

zero day sample
The results of the present studies are in agreement with the findings of Reddy et al., (2007) who studied the dissipation of profenofos (0.1% a.i. ha\(^{-1}\)) on chillies sprayed at 15 days interval, starting from 45 days after transplanting and recorded initial deposits of profenofos 0.36 mg kg\(^{-1}\) after last spray which dissipated to 0.02 mg kg\(^{-1}\) by 30 days amounting to loss of 92.4% (Table 1).

Experimental results of Radwan et al., (2004) also showed a waiting period of 10 and 14 days after application of profenophos at 400 g a.i. ha\(^{-1}\) on green pepper and eggplant, respectively. Similarly, Sahoo et al., (2004) reported an initial deposit of 1.37 mg kg\(^{-1}\) following application of profenophos at 500 g a.i. ha\(^{-1}\) on tomato. These levels were reduced to below determination level (BDL) after 15 days of application.

In conclusion, the initial deposit of profenophos when sprayed thrice at 0.05% during head formation stage was 0.99 mg kg\(^{-1}\). The waiting period for safe harvest of cabbage heads when sprayed Profenophos 0.05% thrice at head formation stage was 0.672 days.

References

Barba, A., Camara, M.A., Galindo, L. and Lopez Del–Hicron, N. 1987. Persistence of profenophos in artichokes. *Revista-de-Agron-Technology-de-Alimendos*, 27(3): 457-461.

Krishna kumar, N.K. Srinivas, K. Suman, C.L and Ramachander, P.R. 1986. Optimum control strategy of cabbage pests from a chemical control, *Prog. Hort.*, 18: 104-110.

Malla Reddy, K. 2003. Bio-efficacy and dissipation of certain insecticides on pests of cabbage. M.Sc (Ag.) Thesis.
Acharya N G Ranga Agricultural University, Hyderabad, India. National Horticultural Board. Annual report 2011. p. 184-187.

Radwan, M.A., Shiboob, M.H., Abu-Elamayem, M.M. and Abdel-Aal, A. 2004. Residues of pirimiphos-methyl and profenofos on green pepper and eggplant fruit and their effects on some quality properties. *Emirates J. Agri. Sci.*, 16(1): 32-42.

Reddy, K.D. Reddy, K.N. Mahalingappa, P.B. 2007. Dissipation of fipronil and profenofos residues in chillies (*Capsicum annuum* L.). *Pesticide Res. J.*, 19(1): 106-107.

Sahoo, S.K., Kapoor, S.K and Singh, B. 2004. Estimation of flubendiamide residues of profenofos in/on tomato, *Lycopersicon esculentum* Mill. *Bull. Environ. Contamin. Toxicol.*, 72: 970-974.

How to cite this article:

Anugu Anil Reddy, Shashi Vemuri, Rao CH. S. and Uma Rajashekhkar A. 2017. Dissipation pattern of Profenophos on cabbage (*Brassica oleracea* var. Capitata). *Int.J.Curr.Microbiol.App.Sci.* 6(6): 1115-1120. doi: https://doi.org/10.20546/ijcmas.2017.606.129