Descriptive Epidemiology and Outcomes of Soft Tissue Sarcomas in Adolescent and Young Adult Patients in Japan

Takashi Fukushima
Department of Orthopaedic Surgery, Jichi Medical University

Koichi Ogura
Department of Musculoskeletal Oncology, National Cancer Center Hospital

Toru Akiyama (✉ toruakiyama827@jichi.ac.jp)
Department of Orthopaedic Surgery Saitama Medical Center Jichi Medical University https://orcid.org/0000-0001-9493-4768

Katsushi Takeshita
Department of Orthopaedic Surgery, Jichi Medical University

Akira Kawai
Department of Musculoskeletal, National Cancer Center Hospital

Research article

Keywords: Soft tissue sarcoma, Adolescents and young adults, Cancer survival, Japan, Database, MPNST

Posted Date: January 15th, 2020

DOI: https://doi.org/10.21203/rs.2.20871/v1

License: ☕️ ① This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at Japanese Journal of Clinical Oncology on April 1st, 2021. See the published version at https://doi.org/10.1093/jjco/hyab044.
Abstract

Background: Compared to young children or older adults, the prognoses of adolescent and young adult (AYA) patients with cancer, i.e., those aged from 15 to 39 years, have not improved. In this study, we focused on soft tissue sarcoma (STS) in AYA patients and aimed to determine whether there is a correlation between the AYA age group and overall poor cancer survival in STS. We further aimed to determine which histologic subtypes are more common in AYA patients and investigate the cause of poor outcomes in this group.

Methods: The medical records of 5853 Japanese patients diagnosed with STS between 2006 and 2013 were accessed from the Bone and Soft Tissue Tumor registry (BSTT). We analyzed and compared the epidemiological features of AYA patients with those of other age groups. The cancer survival rates were calculated using the Kaplan-Meier method. Cox proportional hazards models were used to analyze the prognostic factors for cancer survival. The primary endpoint for prognosis was the occurrence of tumor-related death.

Results: On multivariate analysis, age was not a prognostic factor for poor cancer survival among these patients. Compared to the same categories in other age groups, the proportions of myxoid/round cell liposarcomas, synovial sarcomas, malignant peripheral nerve sheath tumors (MPNST), primitive neuroectodermal tumor, and rhabdomyosarcoma in AYA patients were the highest, but none of the categories were significantly more prevalent in AYA patients. The cancer survival rates of AYA patients with MPNST were poorer than those of the other age groups; however, AYA age was not a prognostic factor on multivariate analysis in MPNST patients.

Conclusions: Our study is the first to investigate STS in AYA patients using the nationwide BSTT registry. Our findings demonstrate that AYA age is not a prognostic factor for poor cancer survival among those with STS in Japan.

Background

The survival rates for cancer have significantly improved over time, except among adolescent and young adult (AYA) patients with cancer, i.e., those aged from 15 to 39 years [1]. This has been partly related to the difference in biological behavior, a lower enrollment in clinical trials, and the variability of treatment across settings [2]. AYAs with cancer comprise a unique population and have gained research and media attention in recent years. In 2005, the Joint Progress Review Group of the National Cancer Institute and the LiveStrong Foundation in Adolescent and Young Adult Oncology convened to examine the state of science associated with cancer among AYAs [3].

Lymphoma, melanoma, testicular cancer, sarcoma, thyroid cancer, leukemia, and breast cancer are the most common cancers in AYA patients [4]. Of these, sarcomas are the most frequent, accounting for up to 9% of total malignancies in this population [5]. However, sarcoma is a rare disease, with an annual incidence rate of 5.6 per 100,000 individuals in Europe [6]. Further, they have widely diverse pathologies, with more than 70 histological subtypes [7], and may develop at any age including childhood, occurring anywhere from head to foot, with varying aggressiveness, even within the same histological subtype [8]. It is therefore difficult to obtain data of sarcoma in AYAs. Moreover, studies focusing on the clinical outcomes of AYAs with sarcoma are scarce.

In 2014, the Bone and Soft Tissue Tumor (BSTT) registry in Japan became available for clinical research. The BSTT is a nationwide organ-specific cancer registry for bone and soft tissue tumors and allows large-scale nationwide epidemiological investigations in AYA patients with sarcoma in Japan. We have previously used this database for a retrospective study of bone sarcoma in AYA patients in Japan [9]. In the present study, we performed a large-scale nationwide epidemiological investigation of AYA patients with soft tissue sarcoma (STS) in Japan with the aim to determine whether there is a correlation between the AYA age group and overall poor cancer survival for STS and to identify the more common histologic subtypes in this age group. We also aimed to investigate the risk factors of the poor outcomes in AYA patients with STS.

Methods

Data source

The Japanese Orthopaedic Association (JOA) launched the BSTT registry in the 1950s. It is a nationwide patient data collection system for organ-specific bone and soft tissue tumors. This system includes almost all musculoskeletal malignant tumors in Japan.
[8] Detailed data on patients with primary bone and soft tissue tumors (both benign and malignant) and metastatic bone tumors treated at the participating hospitals are collected annually. The survey includes basic demographic data of the patient as well as information on the tumor, surgery, and any treatment other than surgery. The follow-up survey is conducted 2, 5, and 10 years after the initial registration. It includes information on several outcomes at the time of the latest follow-up.

Although it is similar to the National Cancer Institute's Surveillance, Epidemiology, and End Results Program database, our registry has several advantages. One of these is that treating physicians register several disease-specific detailed data including histologic findings, treatment modalities, and surgical, functional, and oncologic outcomes. These advantages improve the precision of our registry for detailed epidemiological studies. Use of the data from the BSTT registry for purposes of clinical research was approved by the Musculoskeletal Tumor Committee of the JOA in 2014[9] [10]. This study was approved by the Institutional Review Board of the JOA.

Data extraction

A total of 7759 patients with STS listed in the BSTT registry between 2006 and 2013 were identified. Data including the year of registration, demographic characteristics, tumor size, location, grade, histological characteristics, TNM and Enneking stages, treatment details (surgical vs. non-surgical), and prognosis at the last follow-up visit (no evidence of disease, alive with disease, death from disease, or death from other causes) were obtained from the database. Liposarcomas were subdivided owing to the variable behavior of different subtypes of liposarcoma. Well-differentiated liposarcomas were excluded because they were considered borderline malignant. Histologic subtypes that had larger absolute numbers or a higher ratio in AYA patients were analyzed as an independent histological subtype. The other subtypes were assigned to the high-grade or low-grade sarcoma groups. Patients who were registered less than 1 year from the study enrollment date and those with missing data were excluded. Data on 5853 patients with primary soft tissue sarcoma were extracted from the database.

Statistical analyses

The primary endpoint for prognosis was tumor-related death. Cancer survival was defined as the period from the date of diagnosis until tumor-related death and was estimated using the Kaplan-Meier method. Patients without tumor-related deaths or those who died from other causes were censored at their last follow-up visit. The factors associated with survival were analyzed using Cox proportional hazard models. Control variables for multivariate analysis were indicated as "references"; these included AYA, female sex, low-grade tumor, tumor size ≤5 cm, location of the tumor in the upper extremity, limb salvage after surgical removal of tumor, surgical margin negative, non-metastatic, and superficial. The alpha level for statistical significance was set at a p value of 0.05. All statistical analyses were conducted using IBM SPSS version 19.0 (IBM SPSS, Armonk, NY, USA).

Results

Of the 7759 patients with STS (4309 male and 3450 women) identified, 210 (2.7%) were aged ≤14 years (children), 1467 (18.9%) were aged 15–39 years (AYAs), 2771 (35.7%) were aged 40–64 years (adults), and 3311 (42.7%) were aged ≥65 years (elderly). The common histologic subtypes were undifferentiated pleomorphic sarcomas (UPS), myxoid/round cell liposarcomas (MRLS), synovial sarcomas (SySa), and malignant peripheral nerve sheath tumors (MPNST). Meanwhile, the histologic subtypes with a higher ratio in AYA patients were MRLS, SySa, MPNST, primitive neuroectodermal tumor (PNET), and rhabdomyosarcoma (RMS).

Table 1 shows the patient characteristics and treatments according to the age groups. The most predominant subtype among AYA was MRLS (19.5%), followed by SySa (17.7%). No other categories demonstrated differences in prevalence in the AYA patient groups when compared to the same categories in other age groups.

Table 2 shows the overall 5-year cancer survival rates among patients with STS with unadjusted and adjusted hazard ratios (HRs) derived from Cox proportional hazard models. The cancer survival rates of AYA patients with STS were poorer than those of adult age groups. However, it was not poorer than that of the child and the elderly age groups. On multivariate analysis, age was not a prognostic factor for poor cancer survival among AYA patients with STS.

Overall, the prognostic factors for poor cancer survival in patients with STS were age >65 years (HR: 1.86; 95% confidence interval [CI]: 1.47–2.34; P < 0.001), male sex (HR: 1.20; 95% CI: 1.02–1.42; P = 0.028), high tumor grade (HR: 4.08; 95% CI: 2.72–6.12; P
In this study, we presented the nationwide statistics and outcomes in AYA patients with STS. The cancer survival rates of AYA patients with STS were poorer than those of adult age groups; however, they were not poorer than those of the child and elderly age groups. Among those with STS, the AYA age range was not a prognostic factor for poor cancer survival on multivariate analysis. Although few reports have compared cancer survival in AYA patients and other age groups, it has been suggested that AYA patients with STS have poorer outcomes than those of the child and adult age groups [5]; this differed from our findings. This difference may be related to the functioning of the Japanese health insurance system, in which public medical insurance covers 70–90% of the treatment costs. This increases to 100% for people in need. This ensures universal and equal access to medical treatment. Insurance coverage rates are significantly lower in AYA patients in the United States [11], and cancer survivors in this group with no health insurance may not receive cancer-related medical care, as opposed to those with insurance [12].

In this cohort, MRLS was the predominant subtype of STS among AYA followed by SySa, consistent with previous reports [5, 8, 13–15]. We were not able to compare our results with that of previous reports owing to differences in age ranges. In addition, those studies also included patients with gastrointestinal stromal tumors and/or Kaposi's sarcomas.

Despite the small number of children included in the current study, the survival rates of AYA patients with MPNST were poorer than those of the other age groups. However, multivariate analysis demonstrated that being an AYA was not an independent poor prognostic factor for cancer survival in patients with MPNST. Tumor size > 10 cm, positive surgical margins, and the presence of metastasis were poor prognostic factors for cancer survival in patients with MPNST. Compared to other age groups, the characteristics that were more prevalent in AYA patients with MPNST were male sex, tumor size > 10 cm, positive surgical margins, and metastatic lesion(s) at presentation. Therefore, certain prognostic factors for MPNST were found particularly more frequently in AYA patients with this tumor. This concordance may be attributed to the poorer survival rates in AYA patients with MPNST than in the other age groups.

One possible reason why the survival rates of AYA patients with MPNST were poorer than those of the other age groups is that a larger part of AYA patients with MPNST may have neurofibromatosis type 1 (NF1). MPNST patients with NF1 have been reported to be significantly younger at the time of MPNST diagnosis than those with sporadic tumors (median age, 26 years vs. 53 years) and have poor outcomes [16, 17]. Thus, the mean age of MPNST patients with NF1 is within the AYA age group. The 5-year survival rate of MPNST patients with NF1 ranges from 21–49.7%. Meanwhile, the 5-year survival rate of MPNST patients with non-NF1 ranges from 42–64.9% [17–20]. However, our cohort does not distinguish NF1 patient. Thus, future analysis is required to validate this finding.
Our study has several limitations. First, findings from long-term observation of patients in the past 10 years were not available. Second, although the JOA-certified hospitals treat almost all patients with STS in Japan and the participation of all 89 JOA-certified hospitals in this nationwide registry is compulsory, the participation of other hospitals is voluntary. Therefore, only data from the participating hospitals were analyzed. The quality of life (QOL), including social functioning and employment, in AYA cancer survivors has become an important health issue in recent years; however, the factors related to the QOL were not registered in BSTT [21]. Thus, the QOL of AYA cancer survivors was not analyzed.

Conclusion

In this study, we evaluated the descriptive epidemiology and clinical outcomes of AYA patients with STS using a nationwide and large-scale database. We found that AYA patients with STS did not have poorer survival compared to other age groups. However, AYA patients with MPNST had poorer survival compared to other age groups. Our findings will provide useful information for the clinical management of AYA patients with STS. Further studies including larger cohorts with more diverse characteristics are warranted to validate our findings.

Declarations

Ethics approval and consent to participate

The research has been approved by the Ethics Committee of the Japanese Orthopaedic Association on March 17, 2016. This was a retrospective study performed using data from the Bone and Soft Tissue Tumor registry; the authors were not involved in the collection of this data. Patients were informed that their data would be used for research, and the data were de-identified before addition to the database. Retrieval of the data from this database occurred in an unlinked manner. As the data had been anonymized, the Ethical Guidelines for Epidemiological Research (Ministry of Education, Culture, Sports, Science and Technology, and Ministry of Health, Labour and Welfare of Japan) were not applicable to this study. Based on the Ethical Guidelines on Biomedical Research Involving Human Subjects (Ministry of Education, Culture, Sports, Science and Technology, and Ministry of Health, Labour and Welfare of Japan), clinicoepidemiological studies conducted on medical databases constitute research carried out on pre-existing material and data and do not require any interventions or interactions with patients. For these studies, including the present one, written informed consent is not compulsory.

Consent for publication

Not Applicable.

Availability of data and materials

The datasets generated or analyzed during the current study are not publicly available as they are anonymized patient data from the Japanese Orthopaedic Association. However, the data are available from the authors upon reasonable request and with permission of the Japanese Orthopaedic Association.

Competing interests

The authors declare that they have no competing interests.

Funding

None.

Authors' contributions

TF, KO, TA, and AK contributed to the conception and design of the study. TF, KO, TA, and KT contributed to the analysis of data. All authors contributed to the interpretation of results. TF drafted the article; all authors revised it critically and approved the final version submitted for publication. All authors have read and approved the final manuscript.

Authors' information
Not Applicable.

Author details

1Department of Orthopaedic Surgery, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma, Omiya-ku, Saitama-shi, Saitama, Japan. 2Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan. 3Department of Orthopaedic Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, Japan.

Acknowledgments

We would like to thank all the patients who volunteered for this study.

Abbreviations

ASPS, alveolar soft part sarcoma
AYA, adolescent and young adult
BSTT, Bone and Soft Tissue Tumor
CCS, clear cell sarcoma
CI, confidence interval
HR, hazard ratios
JOA, Japanese Orthopaedic Association
MPNST, malignant peripheral nerve sheath tumors
MRLS, myxoid/round cell liposarcoma
NF1, neurofibromatosis 1
PNET, primitive neuroectodermal tumor
QOL, quality of life
RMS, rhabdomyosarcoma
SySa, synovial sarcoma

References

1. Tricoli JV, Blair DG, Anders CK, Bleyer WA, Boardman LA, Khan J, et al. Biologic and clinical characteristics of adolescent and young adult cancers: Acute lymphoblastic leukemia, colorectal cancer, breast cancer, melanoma, and sarcoma. Cancer. 2016;122:1017-28.
2. Murphy D, Klosky JL, Reed DR, Termuhlen AM, Shannon SV, Quinn GP. The importance of assessing priorities of reproductive health concerns among adolescent and young adult patients with cancer. Cancer. 2015;121:2529-36.
3. Harlan LC, Lynch CF, Keegan TH, Hamilton AS, Wu XC, Kato I, et al. Recruitment and follow-up of adolescent and young adult cancer survivors: the AYA HOPE Study. J Cancer Surviv 2011, 5(3):305-14.
4. Bleyer A, O’Leary M, Barr R, Ries LAG, editors. Cancer Epidemiology in Older Adolescents and Young Adults 15 to 29 Years of Age, Including SEER Incidence and Survival: 1975-2000. National Cancer Institute, NIH Pub. No. 06-5767. Bethesda, MD 2006.
5. Bleyer A, Barr R, Hayes-Lattin B, Thomas D, Ellis C, Anderson B, et al. The distinctive biology of cancer in adolescents and young adults. Nat Rev Cancer. 2008;8:288-98.
6. Stiller CA, Trama A, Serraino D, Rossi S, Navarro C, Chirlaque MD, et al. Descriptive epidemiology of sarcomas in Europe: report from the RARECARE project. Eur J Cancer. 2013;49:684-95.

7. van der Graaf WT, Orbach D, Judson IR, Ferrari A. Soft tissue sarcomas in adolescents and young adults: a comparison with their paediatric and adult counterparts. Lancet Oncol. 2017;18:e166-e175.

8. Honore C, Meeus P, Stoeckle E, Bonvalot S. Soft tissue sarcoma in France in 2015: Epidemiology, classification and organization of clinical care. J Visc Surg. 2015;152:223-30.

9. Fukushima T, Ogura K, Akiyama T, Takeshita K, Kawai A. Descriptive epidemiology and outcomes of bone sarcomas in adolescent and young adult patients in Japan. BMC Musculoskeletal Disorders. 2018;19:297.

10. Ogura K, Higashi T, Kawai A. Statistics of bone sarcoma in Japan: Report from the Bone and Soft Tissue Tumor Registry in Japan. J Orthop Sci. 2017;22:133-43.

11. Adams SH, Newacheck PW, Park MJ, Brindis CD, Irwin CE, Jr. Health insurance across vulnerable ages: patterns and disparities from adolescence to the early 30s. Pediatrics. 2007;119(5):e1033-9.

12. Keegan TH, Tao L, DeRouen MC, Wu XC, Prasad P, Lynch CF, et al. Medical care in adolescents and young adult cancer survivors: what are the biggest access-related barriers? J Cancer Surviv. 2014;8(2):282-92.

13. Hsieh MC, Wu XC, Andrews PA, Chen VW. Racial and ethnic disparities in the incidence and trends of soft tissue sarcoma among adolescents and young adults in the United States, 1995-2008. J Adolesc Young Adult Oncol. 2013;2:89-94.

14. Herzog CE. Overview of sarcomas in the adolescent and young adult population. J Pediatr Hematol Oncol. 2005;27:215-8.

15. Ng VY, Scharschmidt TJ, Mayerson JL, Fisher JL. Incidence and survival in sarcoma in the United States: a focus on musculoskeletal lesions. Anticancer Res. 2013;33:2597-604.

16. Bergamaschi L, Bisogno G, Manzitti C, D'Angelo P, Milano GM, Scagnellato A, et al. Salvage rates and prognostic factors after relapse in children and adolescents with malignant peripheral nerve sheath tumors. Pediatr Blood Cancer. 2018;65.

17. Porter DE, Prasad V, Foster L, Dall GF, Birch R, Grimer RJ. Survival in malignant peripheral nerve sheath tumours: a comparison between sporadic and neurofibromatosis type 1-associated tumours. Sarcoma. 2009;2009:756395.

18. Valentin T, Le Cesne A, Ray-Coquard I, Italiano A, Decanter G, Bompas E, et al. Management and prognosis of malignant peripheral nerve sheath tumors: The experience of the French Sarcoma Group (GSF-GETO). Eur J Cancer. 2016, 56:77-84.

19. Evans DG, Baser ME, McGaughran J, Sharif S, Howard E, Moran A. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet. 2002, 39(5):311-4.

20. Ingham S, Huson SM, Moran A, Wylie J, Leahy M, Evans DG. Malignant peripheral nerve sheath tumours in NF1: improved survival in women and in recent years. Eur J Cancer. 2011, 47(18):2723-8.

21. Quinn GP, Goncalves V, Sefovic I, Bowman ML, Reed DR. Quality of life in adolescent and young adult cancer patients: a systematic review of the literature. Patient Relat Outcome Meas. 2015;6:19-51

Tables

Page 7/12
Table 1. Patient characteristics by age group

	AYA (15-39 years)	Overall (-14 years)	Child (-14 years)	Adult (40-64 years)	Elderly (65- years)	P value					
	N	%	N	%	N	%	N	%	N	%	
Total	1467		7759		210		2771		3311		<0.001
Sex											
Male	778	53.0%	4309	55.5%	91	43.3%	1571	56.7%	1869	56.4%	
Female	689	47.0%	3450	44.5%	119	56.7%	1200	43.3%	1442	43.6%	
Histologic subtype											<0.001
MRLS	286	19.5%	956	12.3%	3	1.4%	449	16.2%	218	6.6%	
SySa	259	17.7%	555	7.2%	36	17.1%	188	6.8%	72	2.2%	
MPNST	130	8.9%	478	6.2%	14	6.7%	173	6.2%	161	4.9%	
PNET	111	7.6%	210	2.7%	29	13.8%	54	1.9%	16	0.5%	
RMS	94	6.4%	271	3.5%	79	37.6%	51	1.8%	47	1.4%	
UPS	90	6.1%	2030	26.2%	3	1.4%	629	22.7%	1308	39.5%	
ASPS	77	5.2%	110	1.4%	13	6.2%	17	0.6%	3	0.1%	
EpiSa	73	5.0%	146	1.9%	4	1.9%	51	1.8%	19	0.5%	
CCS	51	3.5%	107	1.4%	2	1.0%	37	1.3%	17	0.5%	
High grade others	182	12.4%	2109	27.2%	16	7.6%	790	28.5%	1121	33.9%	
Low grade others	114	7.8%	787	10.1%	11	5.2%	332	12.0%	330	10.0%	
Tumor size (cm)											<0.001
≤5 cm	484	33.0%	2142	27.6%	97	46.2%	716	25.8%	845	25.5%	
>5 cm and ≤10 cm	530	36.1%	2916	37.6%	78	37.1%	989	35.7%	1319	39.8%	
>10 cm	333	22.7%	2138	27.6%	21	10.0%	839	30.3%	945	28.5%	
Unknown	120	8.2%	563	7.3%	14	6.7%	167	6.0%	202	6.1%	
Tumor location											<0.001
Upper extremity	182	12.4%	963	12.4%	48	22.9%	289	10.4%	444	13.4%	
Lower extremity	671	45.7%	3904	50.3%	88	41.9%	1412	51.0%	1733	52.3%	
Trunk	486	33.1%	2493	32.1%	45	21.4%	950	34.3%	1012	30.6%	
Head and neck	80	5.5%	216	2.8%	17	8.1%	56	2.0%	63	1.9%	
Multiple disease	48	3.3%	183	2.4%	12	5.7%	64	2.3%	59	1.8%	
Surgery	1120	76.3%	6200	79.9%	150	71.4%	2227	80.4%	2703	81.6%	<0.001
Chemotherapy	795	54.6%	2567	33.2%	148	72.2%	1159	41.9%	465	14.1%	<0.001
Radiotherapy	370	25.5%	1925	25.0%	80	39.6%	645	23.4%	830	25.2%	<0.001

SD: standard deviation, AYA: adolescent and young adult, MRLS: myxoid/round cell liposarcoma, SySa: synovial sarcoma, MPNST: malignant peripheral nerve sheath tumors, PNET: primitive neuroectodermal tumor, RMS: rhabdomyosarcoma, UPS: undifferentiated pleomorphic sarcoma, ASPS: alveolar soft part sarcoma, EpiSa: epithelioid sarcoma, CCS: clear-cell sarcoma
	No. of patients (%)	5-year survival (%)	Univariate analysis	Multivariate analysis		
			Hazard ratio (95% CI)	P value	Hazard ratio (95% CI)	P value
Total	5853	72.9%				
Age						
AYA (15-39 years)	1149	69.9%	Reference 0.80 (0.55-1.17)	0.25	Reference 0.95 (0.54-1.68)	0.872
Child (≤14 years)	165	71.8%	0.84 (0.71-0.99)	0.033	1.17 (0.92-1.49)	0.201
Adult (40-59 years)	2127	75.2%	0.98 (0.84-1.15)	0.812	1.86 (1.47-2.34)	<0.001
Elderly (≥65 years)	2412	72.5%				
Sex	3215	70.7%	Reference 1.33 (1.18-1.50)	<0.001	Reference 1.20 (1.02-1.42)	0.028
Female	2638	75.5%				
Male	953	70.7%				
Histologic grade	4878	68.2%				
Low	1065	93.2%	Reference 6.96 (5.05-9.58)	<0.001	Reference 4.08 (2.72-6.12)	<0.001
High	3823	68.2%				
Tumor size(cm)						
≤5 cm	1635	85.8%	Reference 2.23 (1.84-2.70)	<0.001	Reference 1.73 (1.35-2.22)	<0.001
>5 cm and ≤10 cm	2216	74.3%	4.07 (3.38-4.90)	<0.001	2.61 (2.02-3.37)	<0.001
>10 cm	1587	57.2%				
Tumor location	4878	68.2%				
Upper extremity	728	83.8%	Reference 1.38 (1.09-1.75)	0.007	Reference 1.22 (0.91-1.65)	0.181
Lower extremity	2955	76.8%	2.51 (1.98-3.17)	<0.001	1.97 (1.45-2.69)	<0.001
Trunk	1870	65.7%	2.62 (1.83-3.75)	<0.001	2.49 (1.29-4.79)	0.006
Head and neck	173	66.2%	6.69 (4.87-9.20)	<0.001	1.92 (1.14-3.21)	0.014
Multiple	127	35.2%				
Limb salvage status	5072	76.4%	Reference 1.98 (1.62-2.43)	<0.001	Reference 1.77 (1.39-2.25)	<0.001
Limb salvage	322	53.0%	2.82 (2.26-3.51)	<0.001	1.85 (1.43-2.38)	<0.001
Amputation	4491	79.1%	Reference 2.82 (2.26-3.51)	<0.001	Reference 1.85 (1.43-2.38)	<0.001
Negative (wide or marginal)	290	56.6%	2.82 (2.26-3.51)	<0.001	1.85 (1.43-2.38)	<0.001
Positive (intralesional)	5030	80.5%	Reference 2.82 (2.26-3.51)	<0.001	Reference 1.85 (1.43-2.38)	<0.001
Metastasis						
−	771	22.9%	7.95 (7.04-8.98)	<0.001	5.54 (4.57-6.72)	<0.001
･･･	771	22.9%	7.95 (7.04-8.98)	<0.001	5.54 (4.57-6.72)	<0.001
Tumor Depth	4280	78.3%	2.83 (2.35-3.42)	<0.001	1.29 (1.01-1.65)	0.041

CI: confidence interval
Table 3. Characteristics of MPNST patients according to age group

	AYA (15-39 years)	Overall	Child (≤14 years)	Adult (40-64 years)	Elderly (≥65 years)	P value					
	No. of patients	%	No. of patients	%	No. of patients	%					
Sex											
Male	61	58.7%	185	52.6%	2	33.3%	72	54.5%	50	45.5%	0.181
Female	43	41.3%	167	47.4%	4	66.7%	60	45.5%	60	54.5%	
Tumor size (cm)											
Total											
≤5 cm	22	22.4%	83	25.4%	3	50.0%	31	25.2%	27	27.0%	0.204
>5 cm and ≤10 cm	38	38.8%	147	45.0%	1	16.7%	61	49.6%	47	47.0%	
>10 cm	38	38.8%	97	29.7%	2	33.3%	31	25.2%	26	26.0%	
Tumor location											
Upper extremity	12	11.5%	46	13.1%	1	16.7%	14	10.6%	19	17.3%	0.706
Lower extremity	26	25.0%	119	31.3%	2	33.3%	47	35.6%	35	31.8%	
Trunk	48	46.2%	153	43.5%	3	50.0%	57	43.2%	45	40.9%	
Head and neck	12	11.5%	27	7.7%	0	0.0%	9	6.8%	6	5.5%	
Multiple disease	6	5.8%	16	4.5%	0	0.0%	9	3.8%	6	4.5%	
Depth											
superficial	16	16.0%	87	25.7%	0	0.0%	32	25.0%	39	37.1%	0.003
deep	84	84.0%	252	74.3%	6	100.0%	96	75.0%	66	62.9%	
Surgical margin											
Negative (wide or marginal)	63	84.0%	252	89.7%	4	100.0%	97	89.8%	88	93.6%	0.199
Positive (intralesional)	12	16.0%	29	10.3%	0	0.0%	11	10.2%	6	6.4%	
Metastasis											
-	83	79.8%	297	85.3%	6	100.0%	113	86.3%	95	88.8%	0.197
+	21	20.2%	51	14.7%	0	0.0%	18	13.7%	12	11.2%	
Table 4. Univariate and multivariate analyses of prognostic factors for cancer survival in MPNST patients

	No. of patients (%)	Univariate analysis	Multivariate analysis		
		Hazard ratio (95% CI)	P value	Hazard ratio (95% CI)	P value
Total	256				
Age					
AYA (15-39 years)	68	Reference		Reference	
Child (≤14 years)	4	0.000 (0.000-2.69E+11)	0.95	0.000 (0.000-)	0.977
Adult (40-59 years)	101	0.62 (0.39-0.97)	0.036	0.83 (0.44-1.57)	0.563
Elderly (≥65 years)	83	0.45 (0.26-0.77)	0.004	0.79 (0.38-1.65)	0.527
Sex					
Female	122	Reference		Reference	
Male	134	1.63 (1.07-2.46)	0.022	1.88 (1.05-3.35)	0.033
Tumor size					
≤5 cm	66	Reference		Reference	
>5 cm and ≤10 cm	125	2.65 (1.28-5.46)	0.009	2.08 (0.79-5.52)	0.14
>10 cm	65	3.71 (1.78-7.72)	<0.001	3.43 (1.26-9.35)	0.016
Tumor location					
Upper extremity	34	Reference		Reference	
Lower extremity	89	1.00 (0.49-2.01)	0.99	0.80 (0.34-1.89)	0.607
Trunk	110	1.10 (0.57-2.14)	0.775	0.84 (0.37-1.92)	0.678
Head and neck	16	1.53 (0.64-3.70)	0.342	0.36 (0.07-1.92)	0.229
Multiple	7	2.59 (1.00-6.70)	0.049	0.79 (0.10-6.64)	0.831
Surgical margin					
Negative (wide or marginal)	227	Reference		Reference	
Positive (intralesional)	29	2.46 (1.28-4.74)	0.007	2.77 (1.31-5.83)	0.007
Metastasis					
–	235	Reference		Reference	
	21	5.47 (3.57-8.37)	<0.001	4.97 (2.49-9.92)	<0.001
Tumor Depth					
Superficial	68	Reference		Reference	
Deep to fascia	125	3.92 (1.89-8.10)	<0.001	2.87 (0.99-8.25)	0.051

CI: confidence interval

Figures
Kaplan-Meier survival curves showing survival rates for all tumors. The results show survival for overall sarcomas (A), UPS (B), MRLS (C), MPNST (D), ASPS (E), CCS (F), EpiSa (G), PNET (H), RMS (I), SySa (J), other high-grade tumors (K), and other low-grade tumors (L) stratified by age. Child: ≤14 years, adolescent and young adult (AYA): 15–39 years, adult: 40–64 years, and elderly: ≥65 years.