Validity of a Novel Method for Estimation of Low-Density Lipoprotein Cholesterol Levels in Diabetic Patients

Hideto Chaen¹, Shigesumi Kinchiku², Masaaki Miyata¹, Shoko Kajiya², Hitoshi Uenomachi², Toshinori Yuasa¹, Kunitsugu Takasaki¹ and Mitsuru Ohishi¹

¹Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
²Uenomachi-Kajiya Clinic, Kagoshima, Japan

Aim: Low-density lipoprotein cholesterol (LDL-C) is routinely estimated using the Friedewald equation [LDL-C(F)]. A novel method for LDL-C [LDL-C(M)] estimation recently proposed by Martin et al. was reported to be more accurate than the Friedewald formula in subjects in the United States. The validity of LDL-C(M) in different races and patients with diabetes mellitus (DM) has not been elucidated. The purpose of this study was to validate the LDL-C(M) estimates in Japanese population with type 2 DM by comparing with LDL-C(F) and directly measured LDL-C [LDL-C(D)].

Methods: Both LDL-C(M) and LDL-C(F) levels were compared against LDL-C(D) measured by selective solubilization method in 1,828 Japanese patients with type 2 DM.

Results: On linear regression analysis, LDL-C(M) showed a stronger correlation than that shown by LDL-C(F) (R²=0.979 vs. R²=0.953, respectively) with LDL-C(D). We further analyzed the effect of serum triglyceride (TG) concentrations on the accuracy of LDL-C(F) and LDL-C(M). Although LDL-C levels showed a positive correlation with TG levels, the LDL-C(F) levels tended to show a greater divergence from LDL-C(D) levels than that shown by LDL-C(M) with changes in TG levels.

Conclusion: We for the first time demonstrated a more useful measurement of LDL-C levels estimated by Martin's method than that estimated by the Friedewald equation in Japanese patients with DM.

Key words: Low-density lipoprotein cholesterol, Friedewald formula, Diabetes mellitus

Copyright©2016 Japan Atherosclerosis Society
This article is distributed under the terms of the latest version of CC BY-NC-SA defined by the Creative Commons Attribution License.

Introduction

Coronary artery disease (CAD) is a major public health issue in industrialized countries¹. Cohort studies and randomized clinical trials have demonstrated causal association between the serum low-density lipoprotein cholesterol (LDL-C) levels and the development and progression of CAD²-⁵. Increased LDL-C concentration is a major risk factor for CAD⁶. Clinical practice guidelines recommend evaluation of LDL-C levels as a key element of routine patient care⁷.

Friedewald equation is a recommended method for estimation of LDL-C levels [LDL-C(F)]⁸, which estimates LDL-C as total cholesterol (TC) - high-density lipoprotein cholesterol (HDL-C) - [triglyceride (TG)/5] in mg/dl in the fasting state and with TG < 400 mg/dl. Although TG/5 represents the very low-density lipoprotein cholesterol (VLDL-C), simple division of TG concentrations by 5 does not provide an accurate estimation of VLDL-C and thereby that of LDL-C.

In the Lipid Research Clinics Prevalence Study⁹, the mean TG:VLDL-C ratios ranged from 5.2 to 8.9 across clinics. Therefore, Martin et al.¹⁰ proposed a novel method for LDL-C estimates [LDL-C(M)], which is derived as TC - HDL-C - (TG/adjustable factor) in mg/dl. The adjustable factor was determined as the strata-specific median TG:VLDL-C ratios from a dataset of 900,605 subjects in the United States
patients with type 2 diabetes mellitus (DM) has not been elucidated. The purpose of this study was to validate LDL-C(M) by comparing with LDL-C(F) and LDL-C(D) in Japanese patients with type 2 DM.

Methods

Patients

A total of 1,828 consecutive patients with type 2 DM and fasting serum TG levels <400 mg/dl at the Uenomachi-Kajiya Clinic were enrolled in the study. Regarding the use of antilipidemic agents, 369 patients (20.2%) were treated with statins, 47 (2.6%) with fibrates, 21 (1.1%) with ezetimib, and 12 (0.7%)
with eicosapentaenoic acids. With respect to antidiabetic medications, 1,112 patients (60.8%) were being treated with oral antidiabetic agents and 272 patients (14.9%) with insulin therapy.

The study protocol was approved by the institutional ethics committee at the Kagoshima University Hospital. Informed consent was obtained from all patients prior to their enrolment in the study.

Laboratory Measurements
Blood samples were collected after 12 h of fasting. Serum levels of TC (mg/dl), TG (mg/dl), and HDL-C (mg/dl) were measured by enzymatic methods; reagents used were T-CHO (Kainos Laboratories, Tokyo, Japan), TG-II (Kainos Laboratories, Tokyo, Japan), and MetaboLead HDL-C (Kyowa Medex, Tokyo, Japan). LDL-C (mg/dl) was directly measured by the selective solubilization methods with the use of reagent MetaboLead LDL-C (Kyowa Medex, Tokyo, Japan). LDL-C(D) was calculated by the Friedewald equation: i.e., TC = HDL-C + TG/5. LDL-C(M) was calculated by the equation: TC = HDL-C - TG/adjustable factor, where adjustable factor was the strata-specific TG; VLDL-C ratio based on TG and non-HDL-C levels (Fig. 1). Martin et al. performed multiple linear analysis examining the extent to which TG; VLDL-C was explained by information in the standard lipid profile such as TG, non-HDL-C, TC/HDL, TG/HDL, TG/TC, and age and sex in 900,605 Americans. Results from this analysis guided the choice of TG and non-HDL-C for stratification to determine strata-specific median TG; VLDL-C ratios. Glycosylated hemoglobin (HbA1c) levels were determined by cation-exchange HPLC ADAMS A1c HA-8180 analyzer (Arkray, Inc., Kyoto, Japan).

Statistical Analysis
Data are expressed as mean ± standard deviation. Between-group differences with respect to continuous variables were assessed by paired t-test. Logistic regression analysis was performed to assess the relationship between two continuous variables. Statistical analyses were performed with JMP ver.11 (SAS Institute, Cary, USA) at Kagoshima University. A value of p < 0.05 was considered indicative of a statistically significant between-group difference.

Results

Patient Characteristics
Baseline characteristics of the study population are summarized in Table 1. The mean age of patients (n = 1,828) was 60.6 ± 11.9 years; of these, 1,067 (58.4%) patients were male. Mean levels of LDL-C(D), LDL-C(F), and LDL-C(M) were 128.6 ± 32.4, 118.4 ± 33.5, and 122.0 ± 32.0 mg/dl, respectively.

Distribution of TG:VLDL-C Ratio
Based on strata of TG and non-HDL-C values, a 180-cell table of median TG: VLDL-C value was derived (Fig. 1), and LDL-C(M) levels were estimated. Fig. 2 demonstrates the distribution of TG: VLDL-C ratio in the present study. The median TG: VLDL-C ratio was 5.4 (interquartile range, 4.7–5.9). The 5th–95th percentile was 4.0–7.0.

Correlation between LDL-C(D) and LDL-C(F) or LDL-C(M)
Linear regression analysis revealed a good correlation of both LDL-C(F) and LDL-C(M) with LDL-C(D); however, LDL-C(M) levels showed a better fit with LDL-C(D) compared with that shown by LDL-C(F) (Fig. 3). In addition, we checked this correlation in patients with well controlled (HbA1c < 7.0%, HbA1c = 6.3 ± 0.5%, n = 811) and those with poorly controlled DM (HbA1c ≥ 7.0%, HbA1c = 8.6 ± 1.6%, n = 1017). As shown in Fig. 4, LDL-C(M) demonstrated a better correlation with LDL-C(D) than LDL-C(F) in patients regardless of how well the diabetes is controlled.

Effect of TG on Measurements of LDL-C(F) and LDL-C(M)
The effect of serum TG concentrations on the divergence of LDL-C(M) and LDL-C(F) levels from that of LDL-C(D) was assessed individually (Fig. 5). Although LDL difference showed a positive correla-

Table 1. Baseline patient characteristics (n = 1,828)

Characteristic	Value (Mean ± SD)
Age (years)	60.6 ± 11.9
Sex (male/female)	1,067/761
BMI (kg/m²)	22.6 ± 3.5
HbA1c (%)	7.6 ± 1.7
Total cholesterol (mg/dl)	207.7 ± 36.6
LDL-C(D) (mg/dl)	128.6 ± 32.4
LDL-C(F) (mg/dl)	118.4 ± 33.5
LDL-C(M) (mg/dl)	122.0 ± 32.0
HDL-cholesterol (mg/dl)	59.5 ± 16.3
Non-HDL cholesterol (mg/dl)	148.2 ± 36.5
TG (mg/dl)	148.8 ± 80.9
TG:VLDL-C	5.38 ± 0.96

BMI, body mass index; HbA1c, hemoglobin A1c; HDL, high-density lipoprotein; LDL-C, low-density lipoprotein cholesterol; LDL-C(D), LDL-C measured by direct assay; LDL-C(F), LDL-C calculated by Friedewald formula; LDL-C(M), LDL-C calculated by Martin's method; TG, triglyceride; TG:VLDL-C, ratio of triglyceride to very low-density lipoprotein cholesterol.
Fig. 2. Distribution of TG:VLDL-C ratio.

TG, triglyceride; VLDL-C, very low-density lipoprotein cholesterol.

Fig. 3. Comparison of correlation between LDL-C(D) and LDL-C(F) or LDL-C(M) levels.

(A) LDL-C(F) versus LDL-C(D). (B) LDL-C(M) versus LDL-C(D). LDL-C, low-density lipoprotein cholesterol; LDL-C(D), LDL-C measured by direct assay; LDL-C(F), LDL-C calculated by Friedewald formula; LDL-C(M), LDL-C calculated by Martin’s method.

Fig. 6. Although significant differences among three LDL measurements were observed in both TG < 150 mg/dl and TG ≥ 150 mg/dl groups. The differences between the three LDL measurements were larger in TG ≥ 150 mg/dl.
Concordance in Guideline Classification

We analyzed the concordance between calculated LDL-C with respect to LDL-C(D) using guidelines of the Japanese Society of Atherosclerosis\(^\text{13}\) in TG <150 mg/dL groups compared with those in TG <150 mg/dL groups.

\[\text{HbA1c} < 7.0\% \]

A

\[\text{HbA1c} \geq 7.0\% \]

C

Fig. 4. Comparison of correlation between LDL-C(D) and LDL-C(F) or LDL-C(M) levels in patients with a good (HbA1c < 7.0%) and poor (HbA1c ≥ 7.0%) control of DM.

(A) LDL-C(F) versus LDL-C(D) in patients with HbA1c < 7.0%. (B) LDL-C(M) versus LDL-C(D) in patients with HbA1c < 7.0%. (C) LDL-C(F) versus LDL-C(D) in patients with HbA1c ≥ 7.0%. (D) LDL-C(M) versus LDL-C(D) in patients with HbA1c ≥ 7.0%. LDL-C, low-density lipoprotein cholesterol; LDL-C(D), LDL-C measured by direct assay; LDL-C(F), LDL-C calculated by Friedewald formula; LDL-C (M), LDL-C calculated by Martin's method.

Concordance in Guideline Classification

We analyzed the concordance between calculated LDL-C with respect to LDL-C(D) using guidelines of the Japanese Society of Atherosclerosis\(^\text{13}\) in TG <150 mg/dL groups.
The current guidelines on the use of LDL-C for cardiovascular risk assessment are largely based on epidemiological studies that have established the link between cholesterol and cardiovascular disease14-16). Most of these studies used beta-quantification methods or the Friedewald equation for measurements of LDL-C. The gold standard method for LDL-C measurement is ultracentrifugation followed by beta-quantification [LDL-C(BQ)]17). However, beta-quantification is too expensive and inconvenient for routine clinical application18). Therefore, the Friedewald formula is widely used to derive LDL-C from measurements of TC, TG, and HDL-C levels in the fasting state.

In 1972, the Friedewald formula was first developed based on a study involving with 448 patients with familial hyperlipoproteinemia or their relatives19). Most of these studies used beta-quantification methods or the Friedewald equation for measurements of LDL-C. The gold standard method for LDL-C measurement is ultracentrifugation followed by beta-quantification [LDL-C(BQ)]17). However, beta-quantification is too expensive and inconvenient for routine clinical application18). Therefore, the Friedewald formula is widely used to derive LDL-C from measurements of TC, TG, and HDL-C levels in the fasting state.

We measured serum levels of TC, HDL-C, TG, and LDL-C(D) and calculated the LDL-C(F) and LDL-C(M) in 1,828 Japanese patients with DM. LDL-C(D) demonstrated a good correlation with both LDL-C(F) and LDL-C(M); LDL-C(M) demonstrated a better fit to LDL-C(D) compared with LDL-C(F). In addition, the effect of TG on the LDL difference was greater in LDL-C(F) compared with that on LDL-C(M); the difference between three LDL measurements was greater in TG \geq 150 mg/dl group compared with that in TG < 150 mg/dl group. In addition, LDL-C(M) demonstrated a better concordance compared with LDL-C(F) in the TG \geq 150 mg/dl group, whereas the concordance was similar for both LDL-C(F) and LDL-C(M) in the TG < 150 mg/dl group.

The current guidelines on the use of LDL-C for cardiovascular risk assessment are largely based on epidemiological studies that have established the link between cholesterol and cardiovascular disease14-16). Most of these studies used beta-quantification methods or the Friedewald equation for measurements of LDL-C. The gold standard method for LDL-C measurement is ultracentrifugation followed by beta-quantification [LDL-C(BQ)]17). However, beta-quantification is too expensive and inconvenient for routine clinical application18). Therefore, the Friedewald formula is widely used to derive LDL-C from measurements of TC, TG, and HDL-C levels in the fasting state.

In 1972, the Friedewald formula was first developed based on a study involving 448 patients with familial hyperlipoproteinemia or their relatives19). The Friedewald formula is easy to calculate and is commonly used in clinical and research settings as it precludes the use of ultracentrifugation. However, it has several limitations. First, lipid levels should be measured in the fasting state. Second, it is not recommended for use in patients with TG > 400 mg/dl. Third, an underestimation of LDL-C(F) level has been shown at low LDL-C19,20) and high TG levels21,22).

Delong et al. proposed a fixed factor of 6 rather
than 5 for the TG:VLDL-C ratio. However, considering individual variance in the TG:VLDL-C ratios, any fixed factor may not account for the variance in TG:VLDL-C ratios. Recently, Martin et al. proposed a novel method for calculation of an adjustable factor for the TG:VLDL-C ratio based on the individual’s TG and non-HDL-C levels; the method that was developed based on a dataset of 900,605 subjects in the United States and that classifies patients with superior concordance to LDL-C(D) compared with that with the Friedewald method, especially in patients with elevated TG concentrations. The 180-cell strata approach could be coded into an online calculator (http://ldlcalculator.com/), smartphone application, or automated laboratory reporting system. In the present study, LDL-C(M) demonstrated a stronger correlation with LDL-C(D) compared with LDL-C(F) and a better concordance compared with LDL-C(F) in patients with TG ≥ 150 mg/dl. Recently Rim JH et al. compared the accuracy of 10 equations to calculate LDL-C, including the Friedewald formula and Martin’s method. They directly measured LDL-C by a homogeneous direct assay using reagents from Sekisui Medical Corporation in 168,212 Korean hospital patients and subjects in the general population. They reported that Martin’s methods and the DeLong equation showed the highest intraclass correlation, indicating the best agreement with direct LDL-C measurement. In contrast, our study demonstrated the usefulness of LDL-C(M) in Japanese patients with diabetes who had higher TG levels than the general population. In addition, Dansethakul et al. compared seven formulas for LDL-C calculation, including the Friedewald formula but not Martin’s method, with direct LDL-C homogenous enzymatic measurement in 1,768 Thai. They reported that their new formula; 0.9955TC − 0.1998TG + 7.1449, exhibited a good r of 0.971 with the direct LDL-C measurement.

Several reports have suggested that LDL-C(F) may be inaccurate in patients with type 2 DM because of the tendency for having high TG levels. Rubies-Prat et al. compared LDL-C(F) and LDL-C(BQ) levels in 61 patients with type 1 DM, 50 patients with type 2 DM, and 116 healthy control subjects. The mean difference between LDL-C(F) and LDL-C(BQ) was significantly greater in patients with type 2 DM and not in type 1 DM compared with that in controls. Hirany et al. compared LDL-C(F), LDL-C(D), and LDL-C(BQ) in 148 diabetic patients and found the direct LDL-C assay as being more reliable and accurate method than the Friedewald formula for LDL-C determination in diabetic patients. Although Martin’s method is not known to be accurate in specific diseases such as DM, we demonstrated that LDL-
procedures, and is not sensitive to variations in TG levels to the same extent \(^{29}\). Watanabe et al. reported the MetaboLead LDL can be used to measure serum LDL-C levels, which are close to those measured by the modified BQ method \(^{28}\).

Second, although the Martin's method can estimate LDL-C in patients with TG \(\geq 400 \text{ mg/dl}\), we excluded these patients to compare with LDL-C \(F\). The validity of Martin's method in patients with TG \(\geq 400 \text{ mg/dl}\) was not assessed in the present study. Third, we have no data from Japanese without diabetes and could not determine whether Martin's method is applicable to such individuals. Therefore, further study is necessary to analyze the validity of Martin's method in the general Japanese population.

Conclusion

We for the first time demonstrated that LDL-C levels estimated by Martin's method were more useful than those estimated by the Friedewald equation in Japanese patients with type 2 DM. This novel method can be easily incorporated in the existing laboratory reporting systems at virtually no extra cost and may be useful in clinical and research settings.

Conflicts of Interests

The authors declare that they have no conflicts.
validity of novel LDL-C estimation

References

1) McGovern PG, Pankow JS, Shahar E, Doliszny KM, Folsom AR, Blackburn H, Luepker RV: Recent trends in acute coronary heart disease--mortality, morbidity, medical care, and risk factors. The Minnesota Heart Survey Investigators. N Eng J Med, 1996; 334: 884-890

2) Grundy SM, Cleeman JI, Merz CN, Brewer HB Jr, Clark LT, Hunninghake DB, Pasternak RC, Smith SC Jr, Stone NJ; Coordinating Committee of the National Cholesterol Education Program: Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III Guidelines. J Am Coll Cardiol, 2004; 44: 720-732

3) Cholesterol Treatment Trialists’ (CTT) Collaboration, Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, Petö R, Barnes EH, Keech A, Simes J, Collins R: Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet, 2010; 376: 1670-1681

4) Sugiyama D, Okamura T, Watanabe M, Higashiyama A, Okuda N, Nakamura Y, Hozawa A, Kita Y, Kadota A, Murakami Y, Miyamatsu N, Ohkubo T, Hayakawa T, Miyamoto Y, Miura K, Okayama A, Ueshima H; NIP-PON DATA 80/90 Research Group: Risk of hypercholesterolemia for cardiovascular disease and the population attributable fraction in a 24-year Japanese cohort study. J Atheroscler Thromb, 2015; 22: 95-107

5) Daimon M, Oizumi T, Kameda W, Matsui J, Murakami H, Ueno Y, Kubota I, Yamashita H, Kayama T, Kato T: Association of Treatment for Hyperlipidemia with Decreased Total Mortality in Japanese Individuals; the Yamagata (Takahata) Study. J Atheroscler Thromb, 2015; 22: 1030-1039

6) Yokokawa H, Yasumura S, Tanno K, Ohsawa M, Onoda T, Itai K, Sakata K, Kawamura K, Tanaka F, Yoshida Y, Nakamura M, Terayama Y, Ogawa A, Okayama A: Serum low-density lipoprotein to high-density lipoprotein ratio as a predictor of future acute myocardial infarction among men in a 2.7-year cohort study of a Japanese northern rural population. J Atheroscler Thromb, 2011; 18: 89-98

7) Japan Atherosclerosis Society: Japan Atherosclerosis Soc-
et al.}

13) Teramoto T, Sasaki J, Ishibashi S, Birou S, Kuroki M, Sakai K: Reactivity of direct assays for low-density lipoprotein (LDL) cholesterol toward charge-modified LDL in hypercholesterolemia. Circ J, 2012; 76: 2241-2248

14) Smith SC Jr, Benjamin EJ, Bonow RO, Braun LT, Crea-

15) Yamashita S, Yokode M, Yokote K: Coronary artery dis-
sease. Executive summary of the Japan Atherosclerosis
Society (JAS) guidelines for the diagnosis and prevention
of atherosclerotic cardiovascular diseases in Japan--2012
version. J Atheroscler Thromb, 2014; 21: 86-92

16) Nichols M, Townsend N, Scarborough P, Rayner M: Car-
diovascular disease in Europe: epidemiological update.
Eur Heart J, 2013; 34: 3028-3034

17) Lachmann M, Warnick GR, Rifai N: Methods for measure-
ment of LDL-cholesterol: a critical assessment of direct
measurement by homogeneous assays versus calculation.
Clin Chem, 2002; 48: 236-254

18) Sibai L, Neely RD, Jones A, Home PD: Friedewald equa-
tion underestimates LDL-C at low concentrations in
young people with and without type 1 diabetes. Diabet
Med, 2010; 27: 37-45

19) Sibai L, Neely RD, Jones A, Home PD: Friedewald equa-
tion underestimates LDL-C at low concentrations in
young people with and without type 1 diabetes. Diabet
Med, 2010; 27: 37-45

20) Nicholls D, Townend N, Scarborough P, Rayner M: Car-
diovascular disease in Europe: epidemiological update.
Eur Heart J, 2013; 34: 3028-3034

21) Jun KR, Park HI, Chun S, Park H, Min WK: Effects of
total cholesterol and triglyceride on the percentage dif-
ference between the LDL-C concentration measured directly
and calculated using the Friedewald formula. Clin Chem
Lab Med, 2008; 46: 375-371

22) Lindsey CC, Graham MR, Johnston TP, Kiroff CG,
Freshley A: A clinical comparison of calculated versus
direct measurement of low-density lipoprotein cholesterol
d level. Pharmacotherapy, 2004; 24: 167-172

23) Rim JH, Lee YH, Lee MH, Kim HY, Choi J, Lee BW,
Kang ES, Lee HC, Kim JH, Lee SG, Cha BS: Compari-
sion and Validation of 10 Equations Including a Novel
Method for Estimation of LDL-cholesterol in a 168,212
Asian Population. Medicine (Baltimore), 2016; 95: e3230

24) Dansethakul P, Thapanathamchali S, Saichanma S, War-
chartcheewan A, Pidetcha P: Determining a new formula
for calculating low-density lipoprotein cholesterol: data
mining approach. EXCLI J, 2015; 14: 478-483

25) Rubinie-Prat J, Reverter JL, Senti M, Pedro-Botet J, Salinas
I, Lucas A, Nogues X, Sanmarti A: Calculated low-density
lipoprotein cholesterol should not be used for manage-
ment of lipoprotein abnormalities in patients with diabe-
tes mellitus. Diabetes Care, 1993; 16: 1081-1086

26) Hirany S, Li D, Jialal I: A more valid measurement of
low-density lipoprotein cholesterol in diabetic patients.
Am J Med, 1997; 102: 48-53

27) Miida T, Nishimura K, Okamura T, Hirayama S, Ohmura
H, Yoshida H, Miyashita Y, Ai M, Tanaka A, Sumino H,
Makakami M, Inoue I, Kayamori Y, Nakamura M,
Nobori T, Miyazawa Y, Teramoto T, Yokoyama S: A mul-
ticenter study on the precision and accuracy of homoge-
neous LDL-cholesterol: comparison with a beta-
quantification method using fresh serum obtained from
non-diseased and diseased subjects. Atherosclerosis, 2012;
225: 208-215

28) Watanabe Y, Satoh I, Hayashi N, Fujioka Y, Kawano S:
Evaluation of modified homogeneous LDL cholesterol assay
by selective solubilization method. Japanese Journal of
Medical Technology, 2015; 64: 210-215