Application of Neutron Flux from PUSPATI TRIGA Mark II Research Reactor in Enhancing Superconducting Properties of BSCCO Superconductor

Nasri A Hamid 1, a) and Zaahidah Atiqah Mohiju1

1Nuclear Engineering and Energy Group, College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia.

a) Nasri@uniten.edu.my

Abstract. The PUSPATI TRIGA Mark II Research Reactor is currently been used in various applications such as Neutron Activation Analysis (NAA), Delayed Neutron Activation Analysis (DNAA), radioisotope production for medical, industrial and agricultural purposes, Neutron Radiography and Small Angle Neutron Scattering (SANS). However, there are not much research activities on utilizing neutron flux from the reactor to study properties of superconducting materials. For superconductors to be fabricated into components of electrical and magnetic devices, the sustainability of the transition temperature, TC and the transport critical current density, JC of the materials is vital to ensure the durability and effectiveness of the devices. A strong superconducting flux pinning capability of superconductors is necessary to maintain high TC and larger JC. Meanwhile, exposure of superconductors to neutron flux is able to create the self-organization of defects that are responsible in producing higher TC and JC in superconductors where the defects act as the flux pinning centres. In this paper, we report the utilization of neutron flux from the PUSPATI TRIGA Mark II research reactor in enhancing the TC and JC of bismuth-strontium-calcium-copper oxide (BSCCO) superconductor. Appropriate sample holder and shielding was fabricated as protection from radiation effect. In this work, 2212-phase BSCCO superconductor (Bi-2212 phase) samples were synthesized using the conventional solid-state reaction method. The samples underwent fast neutron irradiation with neutron flux of 2.0×10^{11} neutrons/(cm2.s) for 6 hours. Results showed that the TC of the samples improved slightly, and the JC was found to increase by more than 3 folds.

1. Introduction
The PUSPATI TRIGA Mark II research reactor known as RTP is the only nuclear research reactor in Malaysia. The reactor starts its operation in 1982 and reached its first criticality on 28 June 1982. Its compact core allows for a low critical mass and higher neutron fluxes while ensuring a high degree of safety. RTP is a pool type reactor, where the reactor core sits at the bottom of a 7-metre high Aluminium tank surrounded by a biological shield made of high-density concrete [1]. The reactor uses solid fuel elements in which the zirconium-hydride moderator is homogeneously mixed with enriched uranium with 1.0 MW thermal power [2], [3]. Demineralized water acts both as coolant and neutron moderator, while graphite acts as a reflector. The reactor was designed to effectively implement
various fields of basic nuclear science studies and widely used for training and educational purposes. It incorporates facilities for advanced neutron and gamma radiation studies as well as for applications.

On the other hand, high-temperature superconductors (HTS) are widely used in various science and engineering fields such as power transmission lines, motors and generators, transformers, and Computerized Tomography (CT scan) devices. The bismuth-strontium-calcium-copper oxide (BSCCO) superconductor such as the Bi-2212 phase is a good candidate for consideration in many applications because its phase formation is highly stable with relatively high T_C and J_C [4]. In order for the superconducting materials such as the BSCCO superconductors to maintain high T_C and J_C, they must have effective flux pinning centers. Innovative technique has to be introduced to enhance the flux pinning capability of BSCCO superconductor to sustain high T_C and J_C. One of the methods to improve the flux pinning capability of superconducting materials is through neutron irradiation [5]. The effect of radiation on superconducting materials is depending on the nature and amount of pre-irradiative defects [6]. Neutron irradiation is able to produce point defects and cascades, resulted in enhancement of T_C and J_C in superconductors [7].

Zehetmayer et al. in their study on Hg-based high temperature superconductor discovered that the effect of neutron irradiation is more obvious at elevated temperature due to large defects created by the irradiation [8]. Aoki et al. in their work on the effect of neutron irradiation on 2223-phase BSCCO (Bi-2223 phase) and yttrium-barium-copper oxide (YBCO) superconducting tapes found that the superconducting characteristics of the tapes did not deteriorate under irradiation flux of 6.92×10^{10} neutrons/(cm2.s) [9]. Shitamichi et al. stated that neutron radiation not only improve the flux pinning, but also causes the activation of the material that can be prevented by controlling the amount of impurities, using low activation elements and reduced thermal neutron fluence [10]. In addition, elimination of impurities happened when neutron irradiation introduces homogenous distribution of defects in the superconductor microstructure, and this contributed to higher Bi-2212 phase volume fraction [11]. In the YBCO superconductor that has similar characteristics and properties as the BSCCO superconductor, there were evidences of self-organization of defects due to neutron irradiation that creates a sharp distribution of defects concentration within the sink areas [6]. This directly caused defect less superconducting region with size much larger than the coherence length of the materials and promotes high T_C and J_C.

The aim of this work is to apply the electron flux from the PUSPATI TRIGA Mark II research reactor at the Malaysian Nuclear Agency in conducting research on superconducting materials. Bi-2212 phase superconductor was used as the samples with small addition of nanosized magnesium oxide (MgO) particles. The nanosized MgO particles were added to improve the texture and reducing the formation of secondary phases in the Bi-2212 phase superconductor [12]. In this work, neutron flux of 2.0×10^{11} neutrons/(cm2.s) was utilized and the samples were irradiated for 6 hours. The transition temperature, T_C and the transport critical current density, J_C were determined using the cryogenic four-point probe equipment.

2.2. Experimental procedure

2.1. Neutron Irradiation
Neutron irradiation of samples was conducted at the Nuclear Malaysia Agency using the PUSPATI TRIGA MARK II research reactor. Water acted as coolant of the reactor since it has good thermal and nuclear properties. Furthermore, it does not capture much neutrons throughout the irradiation process. Before irradiating the samples, there were initial preparations that need to be done such as fabrication of the aluminum sample holder, and the shielding using aluminum sheet and boron carbide powder. Estimation in details of elements’ activation after termination of irradiation were also estimated. In the irradiation, neutron flux of 2.0×10^{11} neutrons/(cm2.s) was applied and the samples were irradiated for 6 hours. Thus, total fluence of 4.32×10^{15} neutrons/cm2 were exposed to the samples.
2.2. Sample preparation and characterization

The conventional solid-state method was used to synthesize the samples. Chemical powders were acquired from Sigma-Aldrich, USA. Molar ratio of bismuth (II) oxide (Bi$_2$O$_3$), strontium (II) carbonate (Sr$_2$CO$_3$), calcium carbonate (CaCO$_3$) and copper oxide (CuO) were mixed according to its ratio into composition of Bi: Sr: Ca: Cu = 2:2:1:2. The mixture was ground and heated at temperature of 800°C for 24 hours to remove impurities, and eventually resulted in the formation of Bi-2212 phase superconductor. The resultant powder was added with 5% weight percentage of nanosized MgO before reground and pressed with pressure of 7.0 tons. Each sample with mass of 2.0 g was palletized into a pellet with 13 mm in diameter and 3.0 mm in thickness. The samples were sintered at 840°C for 48 hours, then furnace-cooled to room temperature. Microstructure investigation was carried out using the Hitachi S3400N Scanning Electron Microscope (SEM). Table 1 shows the composition of each element in preparing each sample.

Element	Mass (g)
Bi	0.9388
Sr	0.3936
Ca	0.0900
Cu	0.2855
O	0.2875
MgO	0.0045

2.3. Estimation of elements’ neutron activation

Stability of nucleus in the elements may change their nucleus composition with or without any exterior influence and this feature is known as radioactivity. During nuclear decay, emission of radiation may occurs. Rate of radioactive decay of each type of sample was quantified using characterization of radionuclides half-life, $T_{1/2}$. Since radioactive decay represents the transformation of an unstable radioactive nuclide into a more stable nuclide, which may also be radioactive, it is an irreversible event for each nuclide. Mass of elements in the samples is very crucial in estimating their $T_{1/2}$. For estimation of elements’ neutron activation, the online WISE Uranium Project Calculator (https://www.wise.org) was used. Examples of input data and output parameters from the calculator are as shown in Figure 1.

2.4. Sample holder and shielding

A cylindrical aluminium sample holder of 0.05 m in diameter and 0.15 m in height was fabricated for the irradiation. Boron carbide (B$_4$C) powder was used as the filler in the sample holder. The filler is able to control the neutron irradiation from the reactor since it contains high boron’s density, non-reactive towards chemicals and excellent refractory material. During irradiation, B$_4$C absorbed neutron and decayed from boron (10B) to helium (4He) and lithium (7Li). Maximum weight of 15 grams B$_4$C is needed to occupy the empty spaces inside the sample holder. Radioactivity for the 30 g of Aluminium sample holder and 15 g of B$_4$C powder was 8.359 mCi (27Al \rightarrow 28Al) and 1.103 pCi (13C \rightarrow 14C), respectively.
2.5 Measurement of T_C and J_C

Determination of superconducting properties for superconductors are extremely crucial for industrial applications. Transition temperature (T_C) and transport critical current density (J_C) for each sample were determined using the cryogenic four-point probe equipment. Silver conductive paint was applied at the joints in between the probes and surface of the sample to ensure the connections are firm. The onset transition temperature, $T_{C,onset}$ and the zero transition temperature, $T_{C,zero}$ were determined from the plotted resistivity against temperature graph. The transport critical current, I_C was determined from the $I-V$ curve using the $1\mu V/cm$ criterion. The transport critical current density, J_C was calculated by dividing I_C with the sample cross-sectional area, A.

3. Results and Discussion

Table 2 shows the radioactivity decay of the Bi-2212 phase superconductor sample. According to the estimated calculation via WISE Uranium Project Calculator (https://www.wise.org), the highest radioactivity detected is copper-63 (Cu-63) that decayed to copper 64 (Cu-64) with radioactivity of 12.76 mCi. Particular protection such as shielding is required in handling radionuclide materials and it has to take into consideration on all the safety measures to avoid any health issue and uncontrolled circulation of radioactive materials.
Table 2. Radioactive decay of each element in the Bi-2212 superconductor sample.

Element	Mass of element	Activity	Half-life, $T_{1/2}$	
Bi-209	Bi-210	938.8 mg	16.8 µCi	5.012 d
Sr-84	Sr-85	2.111 mg	135.4 nCi	64.84 d
Ca-40	Ca-41	86.99 mg	9.841 pCi	140×10^3 a
Cu-63	Cu-64	195.5 mg	12.76 mCi	12.70 h
O-18	O-19	650.7 µg	18.03 pCi	26.91 s

Nuclear radiation such as neutron flux is able to create defects in the microstructure of superconducting materials, and formed flux pinning centers that will improve their superconducting properties [7]. Nevertheless, it may also lead to reduction of T_c due to disorientation of grain boundaries that is strongly related to oxygen vacancy in the copper dioxide (CuO_2) planes and multiple lattice distortion around them [13]. Figure 2 shows the SEM micrographs of Bi-2212 phase superconductor for both the non-irradiated and neutron irradiated samples. The micrograph of sample that was exposed to neutron flux shows more random grain orientation and higher degree of texturing. However, several types of material defects such as dislocation networks, impurities and precipitates may exists within the superconducting matrix of the irradiated sample [7,11].

![SEM micrographs of (a) non-irradiated, and (b) neutron irradiated Bi-2212 superconductor samples.](image)

Table 3 shows the T_c and J_c of non-irradiated and neutron irradiated Bi-2212 phase superconductors. The $T_{C,zero}$ for both samples are almost similar but the $T_{C,conset}$ of neutron irradiated sample increased significantly. Variation of T_c relies on the number of holes provided on the CuO$_2$ layers [13]. In such situation, the number of holes are artificially modified by the interaction between neutron flux and the CuO$_2$ layers of the Bi-2212 phase superconductor, and contributed to the enhancement of T_c.
Table 3. T_C and J_C of non-irradiated and neutron irradiated Bi-2212 superconductor samples.

Sample	$T_{C,\text{zero}}$ (K)	$T_{C,\text{onset}}$ (K)	J_C (A/cm2)
Non-irradiated	84	100	2.86
Irradiated	85	120	10.44

In addition, Table 3 shows the results of J_C for both of the Bi-2212 phase superconductor samples. There is a significant increase of I_C in the neutron irradiated sample. Critical current, I_C and J_C can be enhanced by incorporating a high density of extended defects that act as effective pinning centers and resulted in significant supercurrents flow along the CuO$_2$ planes [14]. The existence of a strongly linked network of percolative paths, combined with good interplanar coupling also contributed to higher J_C [15].

4. Conclusion

The potential to utilize neutron flux from the PUSPATI TRIGA Mark II research reactor to study superconducting properties of superconductor materials such as BSCCO superconductor is very encouraging. In this study, neutron flux has shown its ability to improve superconducting properties of Bi-2212 phase superconductor with neutron fluence of 4.32×10^{15} neutrons/cm2. From the SEM analysis and results of T_C and J_C, neutron flux is able to create homogenous distribution of defects in the superconductor microstructure. There is also the possibility that the neutron flux initiates production of holes in the CuO$_2$ planes of the Bi-2212 superconductor. This indicates that neutron irradiation has the ability to enhance the superconducting properties of superconductor. As such, there are potentials for superconductors to be applied in various electrical and magnetic devices and equipment.

5. References

[1] Alnour I A, Wagiran H, Ibrahim N, Hamzah S, Wee B S, Elias M S and. Karim J A 2013 Determination of neutron flux parameters in PUSPATI TRIGA Mark II research reactor, Malaysia, *J. Radioanal. Nucl. Chem.* **296**(3) (doi: 10.1007/s10967-012-2375-9) 1231-1237.

[2] Chen W K, Rabir M H, Zin M R M, Usang M D, Bayar A M J and Hamzah N S 2016 Neutron flux and power in RTP core-15 *AIP Conf. Proc.* **1704** (https://doi.org/10.1063/1.4940114) 050018.

[3] Rabir M H, Bayar A M J, Hamzah N S, Mustafa M K A, Karim J A, Zin M R M, Ismail Y, Hussain M H, Husin M Z M, Dan R M, Ismail A R, Husain N, Khan Z K A J, Yakin S R M, Saad M F and Masood Z 2018 Measurement and simulation of thermal neutron flux distribution in the RTP core”, *IOP Conf. Ser.: Mat. Sci. and Eng.* **298** (doi: 10.1088/1757-899X/298/1/012029) 012029.

[4] Elschner S, Breuer F, Wolf A, Noe M, Cowey L, and Bock J Characterization of BSCCO 2212 bulk material for resistive current limiters”, *IEEE Trans. Appl. Supercond.*, vol. 11, no. 1, 2001, pp.2507-2510. doi:10.1080/7.920371 7

[5] Mihalache V, Totovana A, Sandu V, Popa S, Aldica G, and Iyo A 2005The influence of neutron irradiation on (B$_{0.65}$C$_{0.35}$)Ba$_{1.4}$Sr$_{0.6}$Ca$_2$Cu$_3$O$_y$ superconducting phase: the role of the grain edge *J. Superconductivity* **18**(4) (doi: 10/1007/s10948-005-0029-7) 461-467.

[6] Sandu V, Popa S, Sandu E. Di Gioacchino D, and Tripodi P 2006 Neutron-irradiated superconducting YBa$_2$Cu$_3$(Li)O$_{7.5}$ with improved irreversibility *J. Optoelectronics and Adv. Mat.* **8**(1) 391-395.

[7] Pande C S Microstructure aspects of high and low T_C superconductors 2000*Mater. Phys. Mech.*, **2** 1-9.
Zehetmeyer M, Eisterer M, Kazakov S M, Karpinski J, Wisniewski A, Puzniak R, Daignere A, and Weber H W 2004 Effects of neutron and electron irradiation on superconducting HgBa2CuO4+δ single crystals Physica C: Superconductivity and its Appl., 408-410 30-31.

[9] Aoki T, Ueda H, Ishiyama A, Miyahara N, Kashima N, and Nagaya 2011 S Effect of neutron irradiation on high-temperature superconductors IEEE Trans. Appl. Supercond. 21 3200-3202.

[10] T. Nakano S M, Terai T, Yamawaki M, and Hoshiya T 2003 Activation of high-Tc superconductors due to neutron irradiation Physica C: Superconductivity and its Appl. 392-396(1) (https://doi.org/10.1016/S0921-4534(03)00990-0) 254-258.

[11] Mohiju Z A, Hamid N A, and Abdullah Y 2017 Enhancement of flux pinning properties in nanosized MgO added Bi-2212 superconductor through neutron irradiation AIP Conf. Proc 1799 (http://dx.doi.org/10.1063/1.4972928 040004.

[12] Ilyushechkin A, Agranvoski I, Altman I and Choi M 2010 Effect of MgO nanoparticles embedded into Bi-2212/Ag tapes on the microstructure and superconducting properties”, Materials Sci. and Eng. B 167 (doi:10.1016/j.mseb.2010.01.030) 60–64.

[13] Kleiner R. and Buckel W., Superconductivity – Fundamentals and Applications. Weinheim, Geramny: Wiley-VCH, 2004, pp. 94-100.

[14] Silver T, Pan A V, Ionescu M, Qin M J and Dou S X 2002 Developments in high temperature superconductivity Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 98. (https://doi.org/10.1039/B11186H) 323-373.

[15] Hamid N A and Abd-Shukor R 2001 Transport critical current density of Ag-sheathed (Tl,Cr)Sr2CaCu2O7 high temperature superconductor tapes Supercond. Sci. and Technol. 14(2) 113-116.

Acknowledgement
This research project is jointly funded through Universiti Tenaga Nasional BOLD Project Code 10436494/B/2019012 and IAEA Research Contract No. 18272. The authors thank the Malaysia Nuclear Agency for the collaboration extended in this project.