Fast-Response Variable Frequency DC–DC Converters Using Switching Cycle Event-Driven Digital Control

Xiaofan Cui, Member, IEEE, and Al-Thaddeus Avestruz, Senior Member, IEEE

Abstract—This article investigates a new method to model and control variable-frequency power converters in a switching-synchronized sampled-state space for cycle-by-cycle digital control. There are a number of significant benefits in comparison to other methods, including fast dynamic performance together with ease of design and implementation. Theoretical results are presented and verified through hardware and simulations of a current-mode buck converter with constant on-time and a current-mode boost converter with constant off-time. Dynamic voltage scaling for microprocessors and LiDAR are among the applications that can benefit.

Index Terms—Constant-on-time, current-mode, cycle-by-cycle digital control, dynamic voltage scaling (DVS), event-driven control, light detection and ranging (LiDAR), nonuniform sampling, sampled-data model, switching-synchronized, switching-synchronized sampled-state space (3s), variable frequency dc–dc converters.

I. INTRODUCTION

Efficiency is achieved by power converters that provide the exact energy at the exact time. For example, in an electronic system whose power demand fluctuates rapidly, dynamic voltage scaling (DVS) is a crucial and widely used technique to optimize energy efficiency. However, traditional controllers are generally not able to provide both high-speed dynamic response and programmable flexibility at the same time, for example, analog controllers lack the flexibility in speedily tuning controller parameters for varying output voltage levels. Among these, constant-frequency dc–dc converters cannot be controlled cycle-by-cycle in a simple way over a wide voltage conversion ratio. Even existing variable frequency power converters with digital controllers have extraordinary complexities in architecture, hardware, algorithms, or sensitivities to parameter variations. A new digital control framework is needed to overcome these pervasive limitations.

There are a number of loads that are dynamically demanding. Processors require higher voltages during intensive tasks [1]. Memories are able to work at a lower voltage supply when read/write bandwidth is less [2]. Wireless network modules choose working voltages based on communication channel conditions and packet throughput [3]. Detection and ranging (LiDAR) can dynamically adjust the transmitter power to support efficient operation [4]. DVS for these kinds of electronic loads can tremendously reduce the world’s annual electrical power consumption [2], [5] and significantly extend the battery life of portable devices [6].

Recent literature suggests that to optimize a system’s energy efficiency, DVS voltage regulators should switch among a large number of voltage levels and within a sizable voltage range [1], [7]. A settling time of the order of 10 μs or shorter is the goal for DVS for processor voltage regulator modules [8]. For example, a 10 μs response for DVS reduces the power consumption of an embedded processor by 46.3% [8], [9], [10] compared to not using DVS.

Automatic power control of LiDAR is a technology where the power consumption of laser transmitters is dynamically adjusted to improve the LiDAR sensors’ detection accuracy and thermal management [4], [11], [12]. A boost converter is a good candidate for supplying the needed high voltage to LiDAR transmitters, as illustrated in Fig. 1. A high-performance boost LiDAR power supply needs a large control bandwidth to adjust the voltage level within 10 μs [12] over a wide output voltage range and good load disturbance rejection to handle the instantaneous power consumption. The dynamics of power converters vary with operating point [13]. Real-time tuning including scheduled gain approaches [4] can easily be realized on a digital controller to ensure consistently good dynamic performance, in contrast to a single analog compensation network.

Digital control allows programmable flexibility for changes in electrical dynamics with different operating points from adaptive voltage step tracking. In comparison, a dc–dc converter with an analog controller is typically built with fixed compensation; therefore, good performance cannot be always reached over a wide range of voltage and load [14]. Among controller designs,
Fig. 1. Schematics of the constant OFF-time current-mode boost power supply and LiDAR transceiver system.

Current-mode dc–dc converters are faster and more easily compensated than voltage-mode because current-mode converters are first-order systems [13]. In particular, variable frequency constant ON(OFF)-time operation of dc–dc converters does not need the additional complication of slope compensation [15] while ensuring settling to the inductor current setpoint for all operating points [16], [17]. Dc–dc converters for DVS should be digitally controlled, current-mode, and variable frequency constant ON (OFF)-time.

A typical approach to high-speed digital control is to oversample the output voltage so that the switching ripple is not aliased by the analog-to-digital converter (ADC). In variable frequency converters, higher cost and power consumption is incurred because of oversampling the highest possible switching frequency [18]. Not only does this impact the ADC, but also any subsequent digital signal processing.

The main contribution of this article is to provide a modeling and control framework for a cycle-by-cycle, event-driven controller where the output voltage sampling is synchronized to the variable switching cycle; it is worth noting that this minimizes the sampling rate. We will show that previous models including averaging and describing functions are not adequate for controller design and determining stability margin.

This article verifies the theoretical results through hardware with a current-mode buck converter with a constant ON-time and a current-mode boost voltage converter with a constant OFF-time (COT-CM) with a peak switching frequency of 3 MHz.

This rest of this article is organized as follows.
1) Section I introduces this article.
2) Section II discusses the modeling in a switching-synchronized sampled-state space.
3) Section III explains the switching-synchronized sampled-state space control concepts for dc–dc converters.
4) Section IV compares the modeling accuracy of 5S to previously known modeling methods.
5) Section V investigates the digital controller design in 5S.
6) Section VI exhibits the hardware implementations and experimental results.
7) Section VII concludes this article.

Fig. 2. Switching-synchronized control framework for power converters.

II. MODELING IN A SWITCHING-SYNCHRONIZED SAMPLED-STATE SPACE

A common approach to the design of digital controllers for power converters is based on the framework of physical time. The switched-system is converted to a time-invariant system through averaging, which is then transformed to the \(z \)-domain to design a controller. Bilinear transforms are used to convert this controller to the \(s \)-domain [18], [19]. Averaging strategies are more complicated for variable switching-frequency converters because intervals for cycle-averages are nonuniform and other methods are often used [20]; the dynamic response of these converters is ultimately limited by the longest switching period, which can happen during a transient.

This work provides a new framework to perform digital control on variable frequency power converters with faster dynamics without the computation, algorithmic, and hardware complexity in prevailing approaches. In comparison to the traditional periodic sampling and control framework, our new digital control framework shown in Fig. 2 includes a series of nonperiodic sampling and control actions that are triggered by events instead of clocks.

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.
Unlike the traditional discrete-time state space, which uses periodic sampling or interpolation to obtain a uniform correspondence to a continuous-time (CT) state space, our control framework relies on a new state space called **switching-synchronized sampled-state space (SSS)** [21], [22]. In [21] and [22], the derivations use an invariant inductor-current ramp, which is valid for small output voltage steps. This article advances the theory for large output voltage steps, which is a significant update. This section mathematically proves that the dynamics in SSS can fully reconstruct the physical circuit dynamics in the time domain, specifically no information is lost and there is a bijective mapping between SSS and CT state space. This work also mathematically proves that a controller designed in the time domain is equivalent to a controller designed in SSS, under settling time and overshoot constraints, design optimization in SSS is equivalent to optimization in the time domain.

Both direct digital design and controller implementation can be performed in SSS. Because no approximate state-space transformation is needed, unlike other methods, cycle-by-cycle digital control is precise. Also, because the z-transform can still be employed, power-converter models can be derived as simple linear, low-order systems, in contrast to more complicated plant models from the CT-derived s-domain. Familiar classical control methods for direct-digital design of controllers can be used. Because sampling is only as fast as the local switching frequency, both the burden on the ADC and the digital hardware for computation is alleviated. The naturally synchronized switch also allows sampling to be chosen to avoid switching transients.

In general, the switching-synchronized sampled-state space is a type of Poincare map [23]; similar strategies have been adopted in other areas of control theory [24], [25], [26], [27], [28]. In SSS, the capacitor voltage and inductor current trajectories are mapped from continuous-time state space to sampled state space trajectories using a nonuniform, event-driven sampling function \(S(t) \):

\[
S(t) : \{ v(t), i(t) \} \rightarrow \{ v[n], i[n] \} .
\]

The SSS state-space equations are not derived directly from the discretization of CT state-space equations of a power converter as is typically performed, e.g., [13], but rather as difference equations directly from the state trajectories at every switching interval; for example, for the familiar hard-switched converters, the inductor currents are ramps [21]. These difference equations are, in general, nonlinear. This method of derivation ensures that the relationship between capacitor charge and inductor volt-second is preserved, even in the sampled state space. No type of averaging is employed. This section shows rigorous mathematical proof that Lyapunov stability in the SSS sampled-data domain necessarily means stability in the continuous physical time domain.

Linearization is performed as the last step directly in the SSS sampled-state space. The linearized difference equations in the SSS sampled state space can be transformed to the z-domain to obtain transfer functions. Because \(S(t) \) is nonuniform (i.e., in general, the sequence of sampling times \(\{ t[n], t[n+1], \ldots \} \) are such that \(t[n+1] - t[n] \neq T_s \) for any \(n \)), conclusions from the more familiar Nyquist sampling are not valid; therefore

\[
z = e^{s T_s}
\]

where \(T_s \) is required to be a constant sampling period, which means that there is no valid s-domain equivalent or transformation. Section IV demonstrates that the switching period and hence sampling period varies significantly even during small-signal voltage step responses, which furthers the assertion of (2).

This article shows in Sections II and V that SSS z-domain transfer functions are low order and straightforward to use in controller design. A number of classical tools can be used to ensure small-signal stability, stability margins, and transient performance, including root locus and Nyquist plots.

This work shows through rigorous mathematical proof that the worst-case overshoot in the continuous physical domain can be calculated as a linear proportion of the overshoot in the SSS sampled domain. This article also shows that the worst-case settling time in the continuous physical domain can be calculated from the number of cycles for settling and overshoot in the SSS sampled domain. This means that two of the most important transient performance metrics for the control of power converters can be optimized and traded off purely in the SSS sampled domain.

A. Operation of the COT-CM Buck Converter

A COT-CM buck converter is illustrated in Fig. 3. The annotated waveforms for inductor current and capacitor voltage are shown in Fig. 4. The valley current, enforced by a controller at the instance \(t_v[n] \), is denoted at the \(n \)th switching cycle as \(i_v[n] \) with the peak occurring at \(t_p[n] \). The valley-current controller can be realized by a comparator and a digital-to-analog converter (DAC). The inductor current through \(S_2 \), converted to a voltage with a current-sense resistor, is compared to the reference value from the DAC, which is updated every cycle. If the valley current falls below the command, \(S_2 \) turns OFF and \(S_1 \) turns ON. Because the valley-current settles in one cycle for a constant ON-time controller, i.e., deadbeat, the command, and actuation of current can be considered simultaneous. The output voltage

A) Deadbeat refers to single-cycle settling for the current-control loop. b) Command is analogous terminology to setpoint and reference. c) Actuation in this case refers to actively turning the power switch on when the inductor current falls below the comparator threshold.
is sampled at every time instant \(t_s[n] \) and is denoted for the \(n \)th cycle as \(v[n] \). The ADC acquires and converts the output voltage during the ON-time of \(S_1 \). The sampling time instant of the ADC is parameterized by \(\lambda \), specifically \(t_s[n] = t_v[n-1] + \lambda T_{on} \), \(\lambda \in (0, 1) \).

The ordering of the indices for the sequences \(\{i_v[n]\} \) and \(\{v[n]\} \) in Fig. 4 is determined by circuit topology and causality. The reasoning is as follows. The output voltage that is sampled in the time domain immediately after \(i_v[n-1] \) cannot be indexed as \(v[n-1] \) because of the implication of a nonexistent direct feed-forward path from current to voltage in the circuit. This same output voltage also cannot be indexed as \(v[n+1] \) because causality dictates that \(v[n+1] \) cannot be updated ahead of \(i_v[n] \). Only the unique ordering for the indices in Fig. 4 remains. In other words, in this particular example, because the inductor current feeds the charge on the output capacitor, in the sampled data space, an update to the output capacitor voltage must occur after the inductor current from the prior interval is known.

A stabilizing voltage controller [29] uses the error between the output voltage sample and reference to adjust the command for the valley-current. The voltage controller can be realized digitally with a field-programmable gate array (FPGA). In this \(5S \) framework, all sampling and control actions are driven by events rather than time. The turn-ON event for \(S_1 \) is determined by the valley-current detection event and the turn-OFF event by the timeout event for the ON-time period. Because of this, the events are not in general periodically nor uniformly distributed in the physical time domain.

B. Usual Power Electronics Assertions for COT-CM Buck Converters

The COT-CM buck converters satisfy the following properties:
1) the ON-time \(T_{on} \) of \(S_1 \) is constant;
2) OFF-time \(t_{off}[n] \) of \(S_1 \) is determined by valley-current (the minimum inductor current every switching cycle), \(0 < t_{off}[n] < +\infty \);
3) output voltage \(v_{out} \) has small ripple so the inductor waveform can be well-approximated as a linear ramp;
4) the inductor current is piecewise linear with the slopes of the rising and falling current ramps denoted as \(m_1 \) and \(-m_2 \), respectively;
5) input voltage \(V_{in} > 0 \) is constant;
6) output capacitor voltage denoted by \(v(t) > 0 \).

C. Modeling of the Buck Converters in 5S

This section begins by analyzing the more general problem of a linear-ramp current source with intercept \(i_0 \) and slope \(m \) charging a parallel resistor \(R \) and capacitor \(C \) whose initial voltage is \(v_0 \). The solution of capacitor voltage \(v(t) \) is

\[
v(t) = \frac{1}{C} \int_0^t (i_0 + m \tau) e^{-\frac{\tau}{RC}} d\tau + v_0 e^{-\frac{\tau}{RC}}.
\]

(3)

One can approximate this voltage, which can be representative of the output of a power converter, by a quadratic using a Taylor series approximation with an error that is small for \(T_{on} \ll RC

\[
v(t) = v_0 + t \left(\frac{i_0}{C} - \frac{v_0}{RC} \right) + \frac{t^2}{2} \frac{m}{C}.
\]

(4)

From this perspective, a practical current-mode buck converter with constant on-time can be represented as a time-piecewise-linear current source charging the output of an \(RC \) filter, with the rising slope \(m_1 \) and falling slope \(m_2 \) can be expressed as

\[
m_1 = \frac{V_{in} - v_{out}[n]}{L}; \quad m_2 = \frac{v_{out}[n]}{L}.
\]

(5)

The inductor current ramp can then be written as

\[
i_p[n] = i_v[n-1] + m_1 T_{on}
\]

(6)

\[
i_v[n] = i_p[n] - m_2 t_{off}[n]
\]

(7)

where \(t_{off}[n] \) is implicitly controlled by the valley-current command.

In the time interval \([t_s[n], t_p[n]] \), one can treat the inductor current \(i_v[n-1] + m_1 T_{on} \) as a ramp that charges the output \(RC \) filter. Given capacitor voltage \(v[n] \) at time instance \(t_s[n] \), the capacitor voltage \(v(t_p[n]) \) at time instance \(t_p[n] \) can be obtained by substituting \(v(t) \) and \(v_0 \) in (4) by \(v(t_p[n]) \) and \(v[n] \), respectively

\[
v(t_p[n]) = v[n] + (1 - \lambda) T_{on} \left(\frac{i_v[n-1]}{C} - \frac{v[n]}{RC} \right) + (1 - \lambda)^2 T_{on}^2 \frac{m_1}{2C}.
\]

(8)

Equation (8) yields

\[
v(t_p[n]) = \left(1 - \frac{(1 - \lambda) T_{on}}{RC} \right) v[n] + \frac{(1 - \lambda)^2 m_1 T_{on}^2}{2C} + \frac{(1 - \lambda) T_{on} i_v[n-1]}{C}.
\]

(9)

In the time interval \([t_p[n], t_v[n]] \), given capacitor voltage \(v(t_p[n]) \), one can express the capacitor voltage \(v(t_v[n]) \) by

\[
v(t_v[n]) = \left(1 - \frac{t_{off}[n]}{RC} \right) v(t_p[n]) - \frac{m_2 t_{off}[n]}{2C} + \frac{t_{off}[n] i_p[n]}{C}.
\]

(10)
In the time interval \((t_p[n], t_s[n+1])\), given capacitor voltage \(v(t_v[n])\), one can express the capacitor voltage \(v[n+1]\) by

\[
v[n+1] = \left(1 - \frac{\lambda T_{on}}{RC}\right) v(t_v[n]) + \frac{\lambda^2 m_1 T_{on}^2}{2C} + \frac{\lambda T_{on} t_{v}[n]}{C}.
\]

(11)

Equations (9)–(11) between \(v[n+1], v[n], i_v[n] - 1\), and \(i_v[n]\) reveal a nonlinear relationship between the valley current sequence and the voltage sequence. A small perturbation to this curve leads to the linearization about the operating point

\[
v[n+1] = \gamma_v \dot{v}[n] + \gamma_i \dot{i}_v[n] + \gamma_{im1} \dot{t}_v[n-1].
\]

(12)

By denoting \(\gamma_v = 1 - (1 + M_r) \gamma_1 - 1 + M_r \gamma_2 - 1\), \(\gamma_i = \gamma_1\), and \(\gamma_{im1} = \gamma_1\) can be parameterized by

\[
\gamma_v = 1 - (1 + M_r) \tau_1 - 1 + M_r \tau_2 - 1\]
\[
\gamma_i = R \left(\frac{\lambda + M_r}{2}\right) \tau_1\]
\[
\gamma_{im1} = R \left(1 - \lambda + \frac{M_r}{2}\right) \tau_1.
\]

In SS, the power converter can be modeled as a low-order difference equation. Although SS is obtained from a nonperiodic sampling process, the z-transform can always be performed on any linearized difference equation within a region of convergence irrespective of the underlying sampling. The z-transform on linear difference equation (12) leads to the z-domain expression of the plant

\[
\dot{v}(z) = g_1 (1 - b_1 z^{-1}) z^{-1}
\]

(13)

where

\[
a_1 = 1 - (1 + M_r) \tau_1 - 1 + M_r \tau_2 - 1\]
\[
g_1 = R \left(\frac{\lambda + M_r}{2}\right) \tau_1, \quad b_1 = -1 - \frac{\lambda + M_r/2}{\lambda + M_r/2}
\]
\[
M_r = \frac{V_{in} - V_{out}}{V_{out}}, \quad \tau_1 = \frac{RC}{T_{on}}, \quad \tau_2 = \frac{L}{R T_{on}}.
\]

(14)

The z-domain transfer function gives insights to controller design because it reveals the direct relationship between circuit parameters and SS dynamics. The slow open loop pole of the power converter plant located at \(a_1\) corresponds to the output RC filter time constant. The fast open loop pole located at the origin (i.e., \(z^{-1}\)) corresponds to the one-cycle delay between when the inductor valley current is known and when the output capacitor voltage is updated. The slow pole in the transfer function indicates the amount of time scale separation between the switch on-time and the time constant of the output low-pass filter. Together the fast pole and zero describe the delay between measurement and actuation; the zero represents the delay being less than one sample period. This zero varies with \(\lambda T_{on}\), which is the delay time from the valley-current time to the voltage-sampling time. The pole \(z = 0\) corresponds to one switching cycle delay, which reflects the causality of the original physical system. In the circuit, there is no direct feed-forward from the inductor current to the capacitor voltage, which means that the sampled voltage for the current cycle is determined by the current from the previous cycle.

D. Operation of COT-CM Boost Converters

The current-mode boost converter with constant off-time is illustrated in Fig. 1. The term “constant off-time” indicates that the turn-off time \(T_{off}\) of switch \(S_1\) is predetermined and kept constant. The inductor current settles in one cycle after the peak current command is updated. The turn-on time of \(S_1\) is implicitly determined by the peak-current command \(i_{p}[n]\) at \(t_p[n]\) \((n > 0)\). The sampling of \(v_{out}\) and control algorithms are conducted cycle-by-cycle during the off-time because the off-time is constant even during transients. \(V_{in}\) and \(i_{p}[n]\) are not at the same physical time although their indices are same. The peak-current controller uses an analog comparator to determine when the inductor current crosses a threshold that is determined by the DAC reference, which is updated every cycle. Fig. 5 shows the current and the voltage of inductor \(L_i\) and capacitor \(C_i\), respectively.

The acquisition and the conversion of the output voltage occurs when \(S_1\) is turned-off. A fixed parameter \(\lambda\) quantifies the sampling time \(t_{s}[n]\), namely, \(t_{s}[n] = t_p[n - 1] + \lambda T_{off}\), \(\lambda \in (0, 1)\). The peak inductor current during each switching cycle is represented by \(i_{p}[n]\), while the \(v[n]\) sequence and the \(i_{p}[n]\) sequence do not correspond to the same physical times. In this discretization, all the measurements and the switching are event-triggered instead of clock-triggered. The peak-current detection signal triggers the turn-off event of \(S_1\), and the OFF-time timer drives the turn-on event.

E. Usual Power Electronics Assertions for Boost Converters

The constant-off-time current-mode boost converters satisfy the following properties:

1. the off-time \(T_{off}\) of \(S_1\) is constant;
2. on-time \(t_{on}[n]\) of \(S_1\) is determined by the peak-current (the maximum commanded inductor current every switching cycle), \(0 < t_{on}[n] < +\infty\);
3) output voltage v_{ou} has small ripple so the inductor waveform can be well-approximated as a linear ramp;
4) input voltage $V_{in} > 0$ is constant;
5) the circuit is in continuous-conduction-mode (CCM);
6) output capacitor voltage denoted by $v(t) > 0$.

F. Modeling of Boost Converters in 5S

By performing a similar procedure to Section II-C, which is derived in [4], the z-domain model of the boost converter is

$$
\frac{\hat{v}(z)}{i_P(z)} = g_1 \frac{(1 - b_1 z^{-1}) z^{-1}}{1 - a_1 z^{-1}}
$$

(15)

which is parameterized by

$$
a_1 = 1 - 2(\hat{\tau}_1^{-1} + \hat{\tau}_3^{-1}) - \frac{\lambda^2 + (1 - \lambda)^2}{2} \hat{\tau}_2^{-1} \hat{\tau}_1^{-1}
$$

(16)

$$
d_1 = (\lambda \hat{\tau}_1^{-1} + \frac{\lambda^2}{2} \hat{\tau}_1^{-1} \hat{\tau}_2^{-1} - 1)(\hat{\tau}_1^{-1} + \hat{\tau}_3^{-1})
$$

$$
- \left(1 + (1 - \lambda) \hat{\tau}_1^{-1} - 2(\hat{\tau}_1^{-1} + \hat{\tau}_3^{-1}) - \frac{\lambda^2}{2} \hat{\tau}_1^{-1} \hat{\tau}_2^{-1} \right)
$$

$$
\times (1 - \lambda) \hat{\tau}_1^{-1} \hat{\tau}_2^{-1},
$$

(17)

$$
d_2 = \left(\lambda \hat{\tau}_1^{-1} + \frac{\lambda^2}{2} \hat{\tau}_1^{-1} \hat{\tau}_2^{-1} - 1\right)(\hat{\tau}_1^{-1} + \hat{\tau}_3^{-1}) + \lambda \hat{\tau}_1^{-1} \hat{\tau}_2^{-1}
$$

(18)

$$
g_1 = \left(\lambda \hat{\tau}_1^{-1} - \left(1 - \lambda \hat{\tau}_1^{-1} - \frac{\lambda^2}{2} \hat{\tau}_1^{-1} \hat{\tau}_2^{-1}\right) \frac{\hat{\tau}_1^{-1} + \hat{\tau}_3^{-1}}{\hat{\tau}_2^{-1}}\right) R
$$

(19)

$$
b_1 = \frac{d_1}{d_2}.
$$

(20)

The definitions of $\hat{\tau}_1$, $\hat{\tau}_2$, and $\hat{\tau}_3$ are

$$
\hat{\tau}_1 = \frac{RC}{T_{off}}, \quad \hat{\tau}_2 = \frac{L}{R} \frac{T_{off}}{T}, \quad \hat{\tau}_3 = \frac{RC}{T_{on}}
$$

(21)

where T_{off} is the constant OFF-time, T_{on} is the ON-time, and $T = T_{off} + T_{on}$.

For example given $\lambda = 0$, which means that the voltage sampling occurs at the inductor current peak, the parameters can be simplified to

$$
a_1 = 1 - \frac{2T}{RC} - \frac{T_{off}^2}{2LC}
$$

(22)

$$
g_1 = -\frac{T}{T_{off}} \frac{L}{RC}
$$

(23)

$$
b_1 = 1 + \frac{T_{off}^2}{T} \frac{R}{L} - \left(1 + \frac{T_{on}}{T}\right) \frac{T_{off}^2}{LC}.
$$

(24)

In practice, the voltage sampling is performed after the switching transients have died down (i.e., $\lambda > 0$), to reduce the interference that corrupts the voltage measurement.

Note that the 5S transfer function has one zero and two poles, while the traditional s-domain current-mode boost converter model in [30] shows only one zero and one pole. All poles are inside the unit disk, so the open loop system in 5S is stable.

The fast pole is from the single-cycle delay between measurement and actuation, which is the causality requirement of the discretized system. The slow pole is from the output RC-filter of the boost converter, which corresponds with the traditional s-domain model. The zero in the 5S model is analogous to the right-half-plane (RHP) zero of the averaged-state-space boost converter model. One difference between the 5S model and the averaged state-space model is that this zero is not only determined by the circuit parameters and operating point, but also influenced by the sampling delay.

The theoretical voltage step response matches the simulation, which is shown in Figs. 20 and 21 in Section VI-C. The single-step voltage error $e[n]$ between the model and simulation is defined by

$$
e[n] \triangleq \frac{(V_{sim}[n] - V_{model}[n])}{V_{stepsize}} \times 100\%.
$$

(25)

Fig. 6 compares the worst-case voltage error between the small-signal model in (15) and switched-circuit simulation under different output-voltage step sizes at the initial output voltage 40 V. The reason for the increasing error in the region where the inductor current is slew-rate limited is due to the fact that slew-rate limiting is a large signal behavior and small-signal models like (15) are no longer valid. The inductor current cannot increase faster than the cycle-by-cycle inductor ramp despite the controller demanding it. The worst-case error e_w between the model and simulation is defined by

$$
e_w \triangleq \max_n |e[n]|.
$$

(26)

One can observe that the worst-case error is small (below 1%) if the voltage-step size is within 4 V. The error rises quickly when the step size is above 4 V because of large-signal effects; for example, the inductor-current slew rate limit starts to dominate the dynamics. For this COT-CM Boost converter, the first significant large-signal behavior which designers face is that the minimum ON-time is reached; hence, the actuator is saturated and the peak inductor current no longer matches the current command.
III. SWITCHING-SYNCHRONIZED SAMPLED-STATE SPACE CONTROL CONCEPTS FOR DC–DC CONVERTERS

In this section, we show that the 5S model of dc–dc converters agrees with the switched state-space model [30] concerning the stability and transient performance. However, the controller synthesis problem for 5S models is much easier than that for a switched state-space model because the former is a pure discrete system, while the latter is a hybrid system [31]. In 5S, small-signal controller design is straightforward because conventional digital controller design tools (e.g., root locus and Nyquist plots) can be used even though 5S represents something different from the conventional.

A. Stability

Stability is the minimum requirement for a closed-loop controlled system. Trajectories in 5S contain less information than the physical trajectories. Because of the discretization, the information about the system dynamics between the adjacent sampled data are lost. Because of the nonuniform sampled data, the information about physical time is lost as well. However, by utilizing the restrictions on the trajectories in Section II-B, the stability relationship is preserved. This article mathematically proves that stability in 5S enforces stability in physical time.

Stability means the capacitor voltage and inductor current waveforms converge to a periodic trajectory in the phase plane. The following procedure results in a mathematical proof. The detailed proof can be found in Theorem 1 in Appendix A. Given a constant ON(OFF)-time dc–dc converter system, this proof first shows that a point in the state space of 5S is equivalent to a specific voltage and current magnitude in the CT domain by constructing an invertible reconstruction mapping; the variable switching period can be similarly reconstructed. For a stable system in 5S, the proof shows that both the capacitor voltage and inductor current trajectories are bounded. Using the usual assertions (1), (3), (4) in Section II-B, the proof shows that the switching period is also bounded. Within this bounded switching period, the reconstruction mapping yields a proof that both capacitor voltage and inductor current converge to a periodic waveform. The proof finally confirms that the switching period converges and that there are no subharmonics in this periodic waveform. This periodic steady state is referred to as a synchronously asymptotically stable least-harmonics (SASL) equilibrium. The rigorous definition of SASL can be found in Definition 7 in Appendix A.

The stability criterion in 5S is identical to the classical discrete-time system stability theory. From root locus or Nyquist [32] stability criteria, one can provide a sufficient and necessary condition for a compensated discrete linear system: all closed-loop poles are inside the open unit disk.

B. Transient Response

The transient performance of a controlled system is usually characterized by the response to a step input [33]. For constant ON(OFF)-time dc–dc converters, this article analyzes the output voltage step response with a focus on settling time and overshoot because they are among the two most important transient performance criteria for power converter designers. This section shows that the transient performance in 5S maps to the physical time. Given a closed-loop constant ON(OFF)-time dc–dc converter system with a reference output voltage step command \(V_{c1} \to V_{c2} \), the settling time \(T_s \) is the transition time from one steady state to another and the settling cycles \(N_s \) is the number of turn-on instants from one steady state to another. The overshoot for the sampled output-voltage, peak inductor current, and output voltage is given by

\[
\sigma_d' = \frac{\max v[n] - V_{c2}}{V_{c2} - V_{c1}} \quad (27)
\]

\[
\sigma_i' = \frac{\max i[n] - I_{c2}}{I_{c2} - I_{c1}} \quad (28)
\]

\[
\sigma_v' = \frac{\max v(t) - V_{c2}}{V_{c2} - V_{c1}}. \quad (29)
\]

Because of the nonuniform sampling, the settling steps and settling time are not proportional as illustrated in Fig. 7(a). This work proves that the optimization on the settling steps in the 5S representation is equivalent to the optimization on the worst-case settling time in the physical state space. The detailed proof can be found in Theorem 2 in Appendix B. Through the volt-second relationship of the inductor current together with the capacitor charge, the proof constructs the relationship between the settling time, switching cycles, transient voltage waveforms, and steady-state current waveforms. The 5S voltage overshoot in (27) and (29) bounds the worst-case transient voltage waveforms. Finally, the proof confirms that the settling time can be bounded from above by a linear function of settling steps. By optimizing the settling steps, the worst-case settling time is also optimized.

Because of the discretization, the overshoot in 5S is smaller than that in CT as illustrated in Fig. 7(b). The mathematical proof confirms that the overshoot in the physical time is bounded from above by a linear function of the overshoot in 5S. The detailed proof can be found in Theorem 3 in Appendix B. Through the charge of the output capacitor, this article constructs the
relationship between the maximum voltage in $5S$, the maximum voltage in CT, transient voltage waveforms, and transient current waveforms. The inductor current overshoot in (28) bounds the transient inductor current. Finally, the proof confirms that the overshoot in physical time can be bounded from above by a linear function of the overshoot in $5S$. In this way, the overshoot in physical time can be safely constrained by imposing the constraints on overshoot in $5S$.

A result of the $5S$ theory is the calculation of the worst-case voltage in the physical time domain from a voltage step using the peak overshoot of the step response of the $5S$ z-domain transfer function. The discrete $5S$ overshoot is going to be less than or equal to the physical CT overshoot because sampling during the inductor current peak/valley event does not necessarily coincide with the peak CT voltage. Because the inductor current is the mechanism by which charge is added to the output capacitor, the largest possible voltage ripple (i.e., upper bound) can be calculated from the largest inductor current during the transient; this is shown in (58) and (59) for a boost converter.

Therefore, the digital controller design in the time domain can be conveniently converted to a controller design in $5S$. In other words, this work transforms a complicated hybrid2 optimization problem to a pure discrete-domain optimization problem, which is much easier to design.

IV. COMPARISON OF PREVIOUS MODELING METHODS TO $5S$

The modeling performance of $5S$ is compared to two previously known modeling efforts: averaging [13], [18], [30] and describing function methods [20]. In the first method, averaging and then linearization are first performed in the CT domain of the power converter state space equations. Sampling is then performed as the final step on these linearized averaged equations. It is worth noting that the averaging window is required to be larger than the largest switching period of a variable frequency converter. The describing function method is a small-signal model that uses a succession of approximations that rely on approximating the inductor valley current by its fundamental sinusoid.

In summary, the steps for the describing function (DF) method include the following:

1) performing a small-signal perturbation on the inductor valley current;
2) restricting the inductor valley current perturbation so that the switching frequency perturbation is small-signal and the spectrum of the perturbation contains only multiples of the switching frequency;
3) for a particular valley current command, approximating the resulting inductor current by its fundamental frequency sinusoid;
4) deriving the mapping between the valley current command to the inductor current amplitude and phase;
5) using a Pade approximation to make the transfer function between valley current command to the resulting approximate inductor current a rational transfer function;
6) using an averaging model to derive the transfer function from the approximated inductor current to the output voltage.

A switched-circuit simulation of a buck converter ($L = 100 \text{ nH}$) was performed with the event-driven controller in Fig. 2 in closed loop with a proportional controller ($K = 200$). A comparison of the step responses of the $5S$, DF, and averaging models with identical proportional controller gain is shown in Fig. 8. When comparing to a switched-circuit simulation with identical proportional gain, $5S$ more accurately models the step response. In Table I, a comparison of the phase margin from Nyquist plots shows that $5S$ gives a more accurate stability margin; this is evidenced by the agreement in the ringing cycles between $5S$ and the switched-circuit simulation.

An important discrepancy between the switched-circuit simulation and the assumptions in both averaging and DF is the typically wide variation in switching period despite a small-signal

![Fig. 8. Comparison of small-signal step responses for various models versus switched-circuit simulation.](image)

TABLE I COMPARISON OF MODELING METHODS

Performance metric	Avg. a model [13]	DF b method [20]	$5S$ c	SC d Sim
Rise time (μs)	1.81	1.81	0.856	0.768
Gain margin	∞	25.9 dB	3.7 dB	N/A
Phase margin	91.3°	84.5°	26.5°	N/A
Trans. stability margin (Ringing cycles)	0	0	4	4

a Averaging model
b Describing function-based method
c Switching-synchronized sampled-state space
d Switched-circuit simulation

2Combined continuous-time states and discrete-time states [34].
output voltage step. This is demonstrated when the switching period is plotted versus time in Fig. 9 for the switched-circuit simulation. The $5S$ framework does not require the switching period variation to be small.

From Section II, the sampling period is synchronized with the switching period. Because the switching period varies significantly during a small-signal transient, approximating the sampling period by its steady-state value is inaccurate. In $5S$, Ω is an abstract topological frequency rather than a true physical frequency whose transform is related to time; hence, any variation in the switching period is valid. It is worth noting that any transformation from the $5S$ z-domain to an s-domain that corresponds to a physical frequency (e.g., $s = j2\pi f$, where f is a physical frequency in Hz) is not possible.

V. DIGITAL CONTROLLER DESIGN IN $5S$

A. Digital Controller Design for a COT-CM Boost Converter

The open-loop converter plant for a COT-CM boost converter does not have a transient response that is fast enough to perform DVS for LiDAR because the output RC-filter results in a slow pole. This shortcoming motivates us to develop a systematic compensation method.

Previous sections of this article have shown that performance-optimized digital controller design in the time domain can be equivalently converted to a performance-optimized controller design in $5S$. Controller design problems in $5S$ can be solved by classical control methods. Root locus or Nyquist plots can be used for direct-digital design of the controller because the plant is modeled as a z-domain transfer function [32].

Any traditional discrete-time controller can be transformed to $5S$ using an event-driven sampler and actuator, which are updated synchronously with switching actions. This section illustrates a design example of a boost converter performing a voltage step task. The root-locus method is shown in Fig. 10. In the compensator, the first pole $p_k = 1$ (integrator) is placed to force the steady-state voltage error to be zero. Also, a zero z_k as well as an appropriate gain k speeds up the transient response. The resulting switching-synchronized proportional-integral (S^2PI) compensator can be expressed as

$$K(z) = k \frac{1 - z_k z^{-1}}{1 - p_k z^{-1}}.$$ (30)

A zero z_k in the neighborhood of the slow open-loop pole a_1 provides additional compensation. The perceived optimal way is to achieve pole-zero cancelation; however, this cancelation is never perfect in practice because of the uncertainty of a_1. z_k to the left of the poles $z = a_1$ and $z = 1$ provides better robust performance. From root locus rules, z_k is the destination of the root locus leaving a_1. The resulting closed-loop pole p_1 stays on the real axis and in the neighborhood of z_k. At high gain, the settling is determined by the zero z_k.

A conventional Nyquist plot is also applicable in $5S$ as illustrated in Fig. 11. Stable and unstable controller are shown...
for a proportional controller with different gains. The standard method for determining gain and phase margins are illustrated [35]. Gain margin and phase margin are the appropriate stability margins for closed-loop small-signal controller design in S.

B. Digital Controller Design for a COT-CM Buck Converter

Similarly, in a current-mode buck converter with constant ON-time, the z-domain transfer function is a second-order system with one fast pole and one slow pole. For the controller, a pole at $z = 1$ for zero steady-state error with a zero for a proportional-integral (PI) controller is all that is needed.

This section shows a controller design example here for a current-mode buck converter with constant ON-time with the hardware prototype specifications chosen with the goal of minimizing settling time with no overshoot. The uses the 5S framework with the equivalent goal of minimizing the number of cycles for settling under a zero overshoot constraint. The plant model is $0.0023(1 + 1.4390z^{-1})z^{-1}/(1 - 0.9739z^{-1})$ with a controller pole at $a = 1$ for zero steady-state error, zero at $b = 0.9750$, and gain of 50. The root locus is illustrated in Fig. 12, where it is apparent that the closed-loop dynamics are dominated by a complex-conjugate pole pair. The next section verifies the discrete-time step later with the hardware.

VI. HARDWARE, EXPERIMENTAL, AND SIMULATION RESULTS

A. Digital Controller Hardware

The digital controller hardware was implemented in a Xilinx Spartan 6 FPGA for the buck converter and Artix 7 FPGA for the boost converter. The FPGA uses synchronous logic to run the digital controller, ADCs, and DACs. Events can be asynchronous and external to the FPGA, such as when the inductor current crosses the comparator threshold, which means actions are still triggered by the internal FPGA synchronous clock; however, for an asynchronous event, the FPGA clock cycle which is closest to the time of the event synchronously clocks the trigger of the logic branch. Events can also be synchronous and internal; for example, the timeout of a fixed ON-time hardware timer within the FPGA. The transfers of data to and from the DAC and ADC are performed by divided-down FPGA clocks that are synchronized to the FPGA internal clock; it is worth noting that the divided-down clocks are much faster than the event rates. The FPGA clocking, event paths, and logic modules are illustrated in Fig. 13. The comparator event (an external event) is triggered when the inductor current crosses the comparator threshold which is determined by the DAC. This event determines the valley current for the buck converter by turning the power switch ON or the peak current for the boost by turning the power switch OFF. The comparator event also starts the ON/OFF-timer for the buck or boost, respectively. Another event is triggered when the ON/OFF-timer completes, turning the power switch OFF for the buck converter or ON for the boost converter.

For the buck converter controller in Fig. 14, (E1) corresponds to the instance when the valley inductor current crosses the comparator threshold and corresponds to $i_v[n]$ in Fig. 4. The comparator output is blanked for an interval of time so it does not retrigger events from switching transients and the power switch is turned ON in (E2) after a logic delay. After 5 FPGA clock cycles (one cycle = 5 ns), the ADC samples the output voltage in (E3) which takes approximately 20 FPGA clock cycles. The controller then processes the data and performs calculations in...
Fig. 15. Switching-synchronized sampling and control flowchart of a COT-CM boost converter.

(E4), which takes 25 FPGA clock cycles. It is worth noting that (E3) and (E4) occur while the comparator output blanking is enabled during the ON-time. When the ON-time timer completes in (E5), the power switch turns OFF, which corresponds to $i_v[n]$ in Fig. 4. After the switching transient, which is at most 70 FPGA clock cycles, blanking is disabled in (E6), after which the current-sense comparator output is reenabled.

For the boost converter controller in Fig. 15, (E1) corresponds to the instance when the peak inductor current crosses the comparator threshold and corresponds to $i_p[n]$ in Fig. 5. The comparator output is blanked for an interval of time so it does not retrigger events from switching transients and the power switch is turned OFF in (E2) after a logic delay. After 10 FPGA clock cycles (one cycle = 2.5 ns), the ADC samples the output voltage in (E3) which takes approximately 40 FPGA clock cycles. The controller then processes the data and performs calculations in (E4), which takes 20 FPGA clock cycles. It is worth noting that (E3) and (E4) occur while the comparator output blanking is enabled during the OFF-time. When the OFF-time timer completes in (E5), the power switch turns ON, which corresponds to $i_v[n]$ in Fig. 5. After the switching transient, which is at most 52 FPGA clock cycles, blanking is disabled in (E6), after which the current-sense comparator output is reenabled.

B. Buck Converter for VRM Applications

We designed and built a current-mode buck converter with constant ON-time that is controlled by a 5S digital controller, which is a prototype for dynamic voltage scaling and is shown in Fig. 16. The 1.8 V output was selected based on the power requirements for a typical microprocessor [36]. The power level was chosen to be 20 W based on the thermal design power (TDP) value [37]. The switching frequency was chosen to be 1.67 MHz to demonstrate high-speed cycle-by-cycle digital control, which can be challenging. Other circuit parameters are reported in Table II. The control algorithm follows the flowchart in Fig. 14.

C. Boost Converters for LiDAR Applications

A current-mode boost converter was designed and built with constant OFF-time that is controlled by a 5S digital controller. Our COT-CM boost regulator includes an analog peak-current-control circuit and digital voltage-control loop as shown in Fig. 1. The prototype shown in Fig. 19 was constructed with the parameters in Table III and controlled by an Artix-7 FPGA from Xilinx with a 400 MHz system clock. The control algorithm follows the flowchart in Fig. 15. One control cycle consists of approximately 80 FPGA clock cycles which determines the 200 ns constant OFF-time. The 12 V input is a common voltage

TABLE II	DESIGN PARAMETERS OF THE COT-CM BUCK CONVERTER PROTOTYPE
Param.	Values
V_{in}	8 V
V_{out}	1.8 V
T_{on}	250 ns
C	200 μF
FPGA	Spartan-6
MOSFET	IRF6620
Diode	B520

TABLE III	DESIGN PARAMETERS OF THE COT-CM BOOST CONVERTER PROTOTYPE
Param.	Values
V_{in}	12 V
V_{out}	40 V
T_{off}	200 ns
C	1 μF
FPGA	Artix-7
MOSFET	GS61004B
Diode	STPS1H100A

The prototype performs well for fast transient response in both small-signal reference step and large-signal reference step. A small-signal step of 50 mV shows a rise time as fast as 5 μs with no overshoot in Fig. 17. Theory, simulation, and experiment show good agreement in Fig. 17. A possible reason for the small discrepancy between theory and experiment might be attributed to our model assumption of a lossless circuit with real losses causing deviations in the duty ratio and switching frequency from the ideal. This result with only a small discrepancy is a verification of theory with experiment. It is worth noting that a large-signal 0.5 V reference step to a 1.8 V setpoint was demonstrated to be stable despite inductor slew rate limiting. The large-signal response in Fig. 18 shows a rise time as fast as 8 μs with less than 3% overshoot.

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.
level in a vehicle. The output voltage was selected to be 40 V based on the laser driver solution in [38]. The power level was set to be 16 W based on a commercial product [12]. The peak switching frequency is 3 MHz because LiDAR transmitters need to be more compact and portable [12] with high switching frequency largely shrinking the size and weight.

Theory, simulation, and experiment show good agreement in Figs. 20 and 21. The theoretical current is offset from the experimental data by 10%. This deviation is a result of the assumption in the theory that the converter is lossless; the prototype is instead 90% efficient. The theoretical voltage matches the experimental data in steady state because of the integrator in the controller. The actual voltage ripple is approximately 200 mV in Fig. 21.

The practical DVS task for LiDAR involves voltage steps over a wide range of setpoints. Over these laser driver operating points, a fixed controller that is stable and has no overshoot at high voltage conversion ratio will be slow at low output voltage. To maintain transient performance throughout each of the operating points’ transitions, a different controller design is used for each transition. It is worth noting that the LiDAR transmitter can be modeled as a small-signal resistive load at each operating point. The controller design is parameterized by a family of linear controllers that can be easily stored as a lookup table in the ROM of the FPGA.

Our digital implementation makes it straightforward to adapt the controller gains; this is an important advantage over analog controllers.

The experimental large-signal staircase voltage steps from 20 V → 25 V → 30 V → 35 V → 40 V shown in Fig. 22 emulate a practical dynamic laser pulse peak power corresponding to 60 W → 80 W → 100 W → 115 W → 125 W. Each voltage step exhibits a rise time of approximately 5 μs with small overshoot, which satisfies the dynamic performance requirements for state-of-the-art LiDAR transmitter systems. A load step from 16 to
D. Effect of Output Capacitance and Loading

The effects of different output capacitance and load on the voltage step response are demonstrated in simulation for the buck converter in Fig. 24 and the boost converter in Fig. 25.

22.4 W at 40 V output voltage shown in Fig. 23 emulates a laser pulser repetition rate step from 700 kHz to 1 MHz. Under a large load disturbance, the maximum voltage deviation is 1 V, which is within the 5% capacitor bank discharge limit [38].
Output capacitance is typically chosen to satisfy a particular output voltage ripple requirement or to provide holdup while the control system catches up \[39\]. Additionally, output capacitance may be constrained by the stability requirements of the current control loop \[40\]. The input voltage, nominal output voltage, constant ON and OFF times, and inductance are identical to the hardware and can be found in Tables II and III, for the buck and boost converters, respectively.

It is worth noting that the controllers in these simulations are identical to those in hardware and kept the same over output capacitance and load in Figs. 24 and 25. In both the buck and the boost, the output capacitance and load resistance values affect the pole location from the output filter. In the boost converter, the zero is predominantly affected by the output load resistance and inductor value.

One can observe a long tail settling in the buck converter when the capacitance and load are varied significantly. In practice, the controller design is typically modified so it is appropriate for the output capacitance and satisfies a specification for the load range.
switch: \(s = 0 \) represents \(S_1 \) is OFF and \(s = 1 \) represents \(S_1 \) is ON, as in Fig. 1.

The state transition matrix \(\Phi_x \) and the offset vector \(\Gamma_x \) are defined as follows. During the time interval \([t_p[n], t_p[n]+T_{off}]\) \((n \geq 0)\)

\[
x(t) = \begin{cases}
\begin{bmatrix} 1 & \alpha_1(t-t_p[n]) \end{bmatrix} \Phi_0(t, t_p[n]) x(t_p[n]) + \Gamma_0(t, t_p[n]) \\
\end{cases}
\end{array}
\]

where \(\alpha_1 = x_2(t_p[n])/C - x_1(t_p[n])/RC \)

\[\Phi_0(t_2, t_1) \equiv \begin{bmatrix} 1 - \frac{(t_2-t_1)}{RC} - \frac{(t_2-t_1)^2}{2LC} & \frac{t_2-t_1}{C} \\
\end{bmatrix}, \]

\[\Gamma_0(t_2, t_1) \equiv \begin{bmatrix} \frac{V_{in}}{2RC} (t_2 - t_1)^2 \\
\frac{V_{in}}{2RC} (t_2 - t_1) \\
\end{bmatrix} . \]

During the time interval \([t_p[n]+T_{off}, t_p[n]+1]\)

\[
x(t) = \begin{cases}
\begin{bmatrix} 1 & \alpha_1(t-t_p[n]+T_{off}) \end{bmatrix} \Phi_1(t, t_p[n]+T_{off}) x(t_p[n]+T_{off}) + \Gamma_1(t, t_p[n]+T_{off}) \\
\end{cases}
\end{array}
\]

where

\[\Phi_1(t_2, t_1) \equiv \begin{bmatrix} 1 - \frac{(t_2-t_1)}{RC} & 0 \\
\end{bmatrix}, \Gamma_1(t_2, t_1) \equiv \begin{bmatrix} 0 \\
\frac{V_{in}}{T} (t_2 - t_1) \\
\end{bmatrix} . \]

We observe that \(\Phi_x(t_2, t_1) = \Phi_x(t_2 - t_1, 0) \) and \(\Gamma_x(t_2, t_1) = \Gamma_x(t_2 - t_1, 0) \). We can write \(\Phi_x \) and \(\Gamma_x \) by

\[
\Phi_x = \begin{bmatrix} \phi_{vu}^s & \phi_{iv}^s \\
\phi_{iv}^s & \phi_{ii}^s \\
\end{bmatrix}, \Gamma_x = \begin{bmatrix} \gamma_{vu}^s \\
\gamma_{iv}^s \\
\gamma_{ii}^s \\
\end{bmatrix} . \]

From (31), the state at the sampling time \(t_s \) in the \((n+1)\)th switching cycle is

\[x(t_s[n+1]) = \Phi_0(\lambda T_{off}, 0) x(t_p[n]) + \Gamma_0(\lambda T_{off}, 0) . \] (33)

In defining \(v(t_s[n]) \) as the output voltage at the sampling time instant in the \(n \)th interval and \(v[n] \) as the sampled output voltage at \(t_s[n] \), \(v(t_s[n]+1) = v[n+1] \). Similarly, \(i(t_p[n]) = t_p[n] \) from Definition 3.

From (33), the state at the \((n+1)\)th turn-off time instant is

\[x(t_p[n]) = B u[n] + C . \] (34)

where

\[B \triangleq \begin{bmatrix} \frac{1}{\phi_{vu}^s(\lambda T_{off}, 0)} - \frac{\phi_{iv}^s(\lambda T_{off}, 0)}{\phi_{iv}^s(\lambda T_{off}, 0)} \\
\end{bmatrix}, \quad C \triangleq \begin{bmatrix} -\gamma_{vu}^s(\lambda T_{off}, 0) \\
\gamma_{iv}^s(\lambda T_{off}, 0) \\
\end{bmatrix} . \]

Because \(\phi_{vu}(t, 0) \neq 0 \) for all \(t > 0 \) from property 3 of class \(\Sigma \) power converters, \(B \) is an invertible matrix.

Any CT state during the off-time of the \((n+1)\)th switching cycle is determined by (31) and (34). The state at the \((n+1)\)th turn-ON time instant of \(S_1 \) can be reconstructed by

\[x(t_p[n]+T_{off}) = \Phi_0(T_{off}, 0) x(t_p[n]) + \Gamma_0(T_{off}, 0) . \] (35)

Based on property 5 and property 6 of class \(\Sigma \) power converters, \(t_{on}[n+1] \) can be expressed as

\[t_{on}[n+1] = \left(t_p[n+1] - t_p[n] + \frac{m_2 T_{off}}{m_1} \right) . \] (36)

where

\[E = \begin{bmatrix} 0 \\
L/V_{in} \\
\end{bmatrix}, \quad F = \begin{bmatrix} T_{off}/V_{in} - L/V_{in} \\
\end{bmatrix} . \] (37)

Any CT state during the on-time of the \((n+1)\)th switching cycle can be determined from (32), (35), and (36). A mapping \(A \) from \(\{u[n]\} \) to \(x(t) \) can be explicitly constructed as

\[A : \quad (a) \quad t_{on}[n+1] = E u[n+1] + F u[n] + T_{off} . \]

(b) \(x \left(\tau + \sum_{j=1}^{n} (T_{off} + t_{on}[j]) + t_0 \right) = \begin{bmatrix} \Phi_0(\tau, 0) B u[n] + \Phi_0(\tau, 0) C + \Gamma_0(\tau, 0) \\
\Phi_1(\tau, T_{off}) B u[n] + C \\
\Phi_1(\tau, T_{off}) \Gamma_0(T_{off}, 0) + \Gamma_1(\tau, T_{off}) \\
\end{bmatrix} . \]

\[T_{off} < \tau \leq T_{off} + t_{on}[n+1] . \] (38)

To simplify (38)-(b), we define functions \(D_{n+1} \) from \(u[n] \times \tau \) to \(x(t) \) as

\[D_{n+1}(u[n], \tau) = x \left(\tau + \sum_{j=1}^{n} (T_{off} + t_{on}[j]) + t_0 \right) . \]

\[0 < \tau \leq t_{on}[n+1] . \] (39)

We can now show that mapping \(A \) preserves stability. This result is consequential because in \(SS \), classical discrete-domain design methods can be applied to controller design.

Definition 5: From [41], the distance from a point \(x \) to a nonempty set \(\gamma \) is

\[\text{dist}(x, \gamma) \triangleq \inf \{ ||x - y||_2 | x \in \mathbb{R}^n, y \in \gamma \subseteq \mathbb{R}^n \} . \]

Definition 6: For a system \(S_1 \in S \), a CT state trajectory \(x_c(t) \) is a least harmonics equilibrium if there exists a period \(T > 0 \) such that \(x_c(t + T) = x_c(t) \) for all \(t \geq 0 \) and there is only one current peak during the period \(T \).

Definition 7: \(x_c(t) \) is an equilibrium of system \(S_1 \in S \). Assume \(x_c(t) \) is perturbed at \(t_0 \) and the perturbed trajectory is \(x(t) \). \(t_1 \geq t_0 \), and \(t_2 \geq t_0 \) occur at the current peaks of \(x(t) \) and \(x_c(t) \), respectively. \(x_c(t) \) is a synchronously asymptotically stable least harmonics equilibrium of \(S \) if there exists a \(\delta > 0 \) such that if \(||x(t_1 - t_2)||_2 < \delta \), then \(\lim_{t \to \infty} \text{dist}(x(t), x_c(t)) = 0 \).

Theorem 1: For a system \(S_1 \in S \), if a discrete state in a switching-synchronized sampled-state space representation \(u_e \) is an asymptotically stable equilibrium in the sense of Lyapunov.
Proof: We denote the induced 2-norm [42] for matrix Z by
\[\|Z\|_M \triangleq \sup_{x \neq 0} \frac{\|Zx\|_2}{\|x\|_2}. \]

1) We show $x_c(t)$ is an equilibrium. From (36), $t_{on}^e \triangleq (\nu_n - V_{in})/V_{out}$, $t_{off} = t_{on} + n$, for all $n \geq 0$. Let $T = t_{on} + t_{off}$. From (38) and (39), given any $n \geq 0$

\[x_c(\tau + nT + t_0) = D_{n+1}(u[n], \tau) = D_{n+1}(u[0] = u_c, \tau) = x_c(\tau + t_0) \]

where $0 < \tau \leq T$. Therefore, $x(t + T) = x(t), \forall t \geq t_0$, where t_0 is from Definition 4. Because there is only one peak current during each period, $x_c(t)$ is an equilibrium.

2) We show $x_c(t)$ is an asymptotically stable equilibrium. Because u_c is an asymptotically stable equilibrium ISL, $\exists \delta_1 > 0$ such that if $\|u[0] - u_c\|_2 < \delta_1$, then $\lim_{n \to \infty} u[n] = u_c$, where $\{u[n]\}$ is the corresponding class V trajectory after the perturbation. The corresponding class W trajectory is $x(t) = A((u[n]))$. For any perturbation on $x_c(t)$ at $t = t_0$, $t_1 = t_0 + t_2$ at a current peak of $x(t)$ and $t_2 = t_0 + t_3$ at a current peak of $x_c(t)$ are both at discrete state space points.

\[\|x(t_1) - x_c(t_2)\|_2 = \|B(u[0] - u_c)\|_2 \leq \|B\|_M \|\delta_1\|_2. \]

We show that if $x(t_1)$ lies in the δ_2 neighborhood of $x_c(t)$ where $\delta_2 = \|B\|_M \|\delta_1\|_2$, then given any $\epsilon_1 > 0$, there exists a $t_c > 0$ such that $dist(x, x_c(t)) \leq \epsilon_1$ for all $t \geq t_c$.

Because every entry of $\Phi_1(t, 0), \Phi_1(t, 0)$ and $\Gamma_1(t, 0)$ are continuous functions of t, from [42, Th. 2.5.4], $\|\Phi_1(0, 0)\|_M, \|\Phi_1(t, 0)\|_M$, and $\|\Gamma_1(t, 0)\|_2$ are continuous functions of t.

From the Weierstrass theorem in [42], in the closed interval $[0, 2t_{on}^e]$, there exists M_1, L_1, L_2 such that $\|\Phi_1(t, 0)\|_M \leq M_1, \|\Phi_1(t, 0)\|_M \leq L_1, \|\Gamma_1(t, 0)\|_2 \leq L_2$.

Given any $\epsilon_1 > 0, \exists N_1, \forall n \geq N_1$ such that

\[\|u[n] - u_c\|_2 \leq \min\left\{ \frac{\epsilon_1}{2M_1\|\Phi_0(t_{on}^e, 0)B\|_M}, \frac{V_{in}}{2L_1 + t_{on}^e}, \frac{V_{in}}{2L_1(a_0 + a_1 + a_2 + L_2)} \right\} \]

where $a_0 = \|\Phi_0(t_{on}^e, 0)B\|_M (\|u_c\|_2 + \delta_1), a_1 = \|\Phi_0(t_{on}^e, 0)C\|_2$ and $a_2 = \|\Gamma_0(t_{on}^e, 0)\|_2$.

Given any $t > \sum_{j=1}^{N_2} (t_{on} + t_{on}[j])$, there exists $N_2 \geq N_1$ such that $\sum_{j=1}^{N_2} (t_{on} + t_{on}[j]) < t \leq \sum_{j=1}^{N_2+1} (t_{on} + t_{on}[j])$. Let $\tau = t - \sum_{j=1}^{N_2} (t_{on} + t_{on}[j])$ and then $0 < \tau \leq t_{on} + t_{on}[N_2 + 1]$.

$t_{on}[N_2 + 1]$ is bounded in the closed interval $[0, 2t_{on}^e]$ because

\[t_{on}[N_2 + 1] - t_{on}^e \leq \frac{V_{in}}{m_1} \left(\frac{V_{out}}{m_1 L} - V_c \right) T_{off} \]

\[\leq \frac{L}{V_{in}} \|u[N_2 + 1] - u_c\|_2 + \frac{L}{V_{in}} \|u[N_2] - u_c\|_2 \]

\[+ \frac{T_{off}}{V_{in}} \|u[N_2] - u_c\|_2 \leq t_{on}^e. \]

If $\tau \leq T$, then

\[dist(x, x_c(t)) \leq \|\Phi_1(\tau, T_{off})\|_M \|u[N_2] - u_c\|_2 \leq M_1 \|\Phi_0(0, 0)B\|_M \|u[N_2] - u_c\|_2 < \epsilon_1. \]

If $\tau > T$, then

\[dist(x, x_c(t)) \leq \|\Phi_1(T, T_{off})\|_M \|u[N_2] - u_c\|_2 \]

\[+ \|\Phi_1(\tau, T_{off} - \tau)\|_M \|u[N_2] - u_c\|_2 \leq \|\Phi_1(0, 0)B\|_M \|u[N_2] - u_c\|_2 \leq \epsilon_1. \]

From the mean value theorem in [43]

\[\|\Phi_1(\tau, T_{off}) - \Phi_1(T, T_{off})\|_M \leq L_1 |\tau - T| \]

\[\|\Gamma_1(\tau, T_{off}) - \Gamma_1(T, T_{off})\|_2 \leq L_2 |\tau - T|. \]

From (46) and (47)

\[dist(x, x_c(t)) \leq M_1 \|\Phi_0(0, 0)B\|_M \|u[N_2] - u_c\|_2 \leq \|\Phi_1(0, 0)B\|_M \|u[N_2] - u_c\|_2 + \|\tau - T\|_L \|\Phi_0(0, 0)B\|_M \|u[N_2] - u_c\|_2 \leq \epsilon_1. \]

Hence, we proved that for any $\epsilon_1 > 0$, there exists a $t_c = \sum_{j=1}^{N_2} (t_{on} + t_{on}[j])$ such that $dist(x, x_c(t)) \leq \epsilon_1$ for all $t \geq t_c$.

This implies $\lim_{t \to \infty} dist(x, x_c(t)) = 0$.

From Definition 7, the CT state trajectory $x_c(t)$ is an asymptotically stable least harmonics equilibrium of S.

The stability criterion in SS is identical to the classical discrete-time system stability theory. From root locus or Nyquist [32] stability criteria, we can provide a sufficient and necessary condition for a compensated discrete linear system: all closed-loop poles are inside the open unit disk.

APPENDIX B

TRANSIENT RESPONSE

Because of the nonuniform sampling, the settling steps and settling time are not proportional as illustrated in Fig. 7(a). We mathematically proved that the optimization on the settling steps in the SS representation is equivalent to the optimization on the worst-case settling time in the physical state space.

Theorem 2: Given a system $S_1 \in S$ and u_c is an asymptotically stable equilibrium ISL. Given a system $S_1 \in S$ in the reference output voltage step command $V_{c1} \rightarrow V_{c2}$, the settling
time T_t is bounded by the following functions of the settling cycles N_t:

$$ T_t \leq \rho N_t + \gamma \quad (49) $$

where

$$ \rho(\sigma_d^v) = \frac{V_{eN}}{V_{in}} T_{off} + \frac{V_{e2} - V_{eN}}{V_{in}} T_{off} \sigma_d^v \quad (50) $$

$$ \gamma = \frac{L}{V_{in}} (I_{e2} - I_{e1}) \cdot \quad (51) $$

Proof: Assume $u_c = \left[V_c \ I_c \right]$ and the initial state is $u[0] = [V_0, I_0]$

$$ T_t = \sum_{k=0}^{N_t-1} (T_{off} + t_{on}[k + 1]) \cdot \quad (52) $$

Based on property 5 and property 6 of a class Σ power converters

$$ \frac{V_{in}}{L} t_{on}[n] - \frac{v[n]}{L} - V_{in} T_{off} = i_p[n] - i_p[n - 1] \quad (53) $$

Summing up both sides of (53) for $n = 1$ to $n = N_t$ results in

$$ \frac{V_{in}}{L} (T_t - N_t T_{off}) - \sum_{k=1}^{N_t} \frac{v[k]}{L} - N_t V_{in} T_{off} = I_{e2} - I_{e1} \cdot \quad (54) $$

From (27)

$$ \sum_{k=1}^{N_t} v[k] \leq N_t V_{e1} + \sigma_d^v N_t (V_{e2} - V_{e1}) \cdot \quad (55) $$

Substituting (55) into (54) yields

$$ T_t \leq \frac{L}{V_{in}} (I_{e2} - I_{e1}) + T_{off} N_s + \frac{V_{e1} - V_{in} T_{off} N_s}{V_{in}} T_{off} \sigma_d^v + \frac{V_{e2} - V_{e1} T_{off} N_s}{V_{in}} $$

$$ = \left(\frac{V_{e1}}{V_{in}} T_{off} + \frac{V_{e2} - V_{e1}}{V_{in}} T_{off} \sigma_d^v \right) N_s + \frac{L}{V_{in}} (I_{e2} - I_{e1}) \cdot \quad (56) $$

Because of the discretization, the overshoot in $5S$ is smaller than that in CT as illustrated in Fig. 7(b). We mathematically proved that the overshoot in the physical time is bounded from the top by a linear function of the overshoot in $5S$.

Theorem 3: Given a system $S_1 \in S$ in a reference output voltage step command $V_{e1} \rightarrow V_{e2}$, the overshoot in CT σ_{o1}^v is bounded by the following functions of the overshoot in $5S$ σ_{o2}^v:

$$ \sigma_{o1}^v \leq (1 - (1 - \lambda)\alpha)\sigma_{o2}^v + (1 - \lambda)\alpha \sigma_d^v \quad (57) $$

where $\alpha = T_{off}/RC$.

Proof: From (27) and (29), $\sigma_{o2}^v \leq \sigma_{o1}^v$. We want to bound σ_{o1}^v from above. Let $t_{on} = \arg \max v(t)$, $N = \arg \max v[n]$, and $K = \arg \max i_p[n]$. Assume t_{on} is in the Mth switching cycle. Let $\tau = t - t_{on}[M - 1]$ and $\alpha_c = (1 - \lambda)T_{off}/RC$. In time interval $0 < \tau \leq T_{off}$, the capacitor voltage $v(\tau)$ increases with τ. The charging current is the difference between current injected by the current source and charge drained by the load. During the interval $T_{off} < \tau \leq T_{off} + t_{on}[M]$, the capacitor is discharging to the load; therefore, the capacitor voltage $v(\tau)$ decreases with τ. Let $i_c(t)$ be capacitor current, then the maximum $v(\tau)$ is bounded by

$$ v(t_m) = v[M] + \int_{\lambda T_{off}}^{T_{off}} \frac{i_c(\tau)}{C} d\tau \leq v[M] + \int_{\lambda T_{off}}^{T_{off}} \frac{1}{C} \left(\frac{1}{\lambda}(\tau - v[M]) \right) d\tau \leq (1 - \alpha_c) v[N] + \frac{1}{C} \int_{\lambda T_{off}}^{T_{off}} \frac{i_c(\tau)}{C} d\tau \leq (1 - \alpha_c) v[N] + (i_p[K] - I_{e1})\alpha_c R + I_{e1} \alpha_c R \quad (58) $$

From (28)

$$ i_p[K] - I_{e1} = (\sigma_d^v + 1)(I_{e2} - I_{e1}) = (\sigma_d^v + 1)\frac{V_{e2} - V_{e1}}{R} $$

$$ V_{e1} = I_c R \quad (59) $$

Substitute (59) and (60) into (58) yields

$$ v(t_m) - V_{e1} \leq (1 - \alpha_c) (v[N] - V_{e1}) + (\sigma_d^v + 1)(V_{e2} - V_{e1})\alpha_c \cdot \quad (61) $$

Substitute (27) and (29) into (61)

$$ \sigma_{o1}^v \leq (1 - \alpha_c)\sigma_{o2}^v + \alpha_c \sigma_d^v \quad (62) $$

ACKNOWLEDGMENT

Special thanks to Xin Zan and Christopher Keller for assistance in assembling and testing hardware.

REFERENCES

[1] S.-Y. Peng et al., “Instruction-cycle-based dynamic voltage scaling power management for low-power digital signal processor with 53% power savings,” IEEE J. Solid-State Circuits, vol. 48, no. 11, pp. 2649-2661, Nov. 2013.

[2] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu, “Memory power management via dynamic voltage/frequency scaling,” in Proc. 8th ACM Int. Conf. Autonomic Comput. 2011, pp. 31–40.

[3] S. Homchaudhuri et al., “Dynamic voltage and frequency scaling in wireless modems,” Sreerik Mehta. Assignee: Qualcomm Inc. Accessed on Google Patents. Nov. 14, 2017. https://patents.google.com/patent/US9820229B2/en

[4] X. Cui, C. Keller, and A.-T. Avestruz, “Cycle-by-cycle digital control of a multi-megahertz variable-frequency boost converter for automatic power control of LiDAR,” in Proc. IEEE Energy Convers. Congr. Expo., 2019, pp. 702–711.

[5] EPA. “Report to congress on server and data center energy efficiency,” United States Environ. Protection Agency. Accessed: 2021. https://www.osi.gov/servlets/part/0929724

[6] A. Carroll, G. Heiser, and Others, “An analysis of power consumption in a smartphone,” in Proc. USENIX Annu. Tech. Conf., vol. 2010, Art. No. 2011.

[7] M. Hashimoto and Y. Masuda, “MTTP-aware design methodology for adaptive voltage scaling,” in Proc. Semicond. Technol. Int. Conf. China, pp. 1–4, 2018.

[8] T.D. Burt, T.A. Pering, A.J. Stratakos, and R.W. Brodersen, “A dynamic voltage scaled microprocessor system,” IEEE J. Solid-State Circuits, vol. 35, no. 11, pp. 1571–1580, Nov. 2000.
[9] D. C. Snowdon, S. Ruocco, and G. Heiser, “Power management and dynamic voltage scaling: Myths and facts,” IEEE Trans. Comput., vol. 4, no. 7, pp. 875–888, Jul. 2005.

[10] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner, “The limit of dynamic voltage scaling and nonmonotonic dynamic voltage scaling,” IEEE Trans. Very Large Scale Integration (VLSI) Syst., vol. 13, no. 11, pp. 1239–1252, Nov. 2005.

[11] S. Boehmke, “Dynamic Lidar sensor controller,” U.S. Patent 5,157,854, Jun. 15, 2007. [Online]. Available: https://patents.google.com/patent/US5157854A/en

[12] Velodyne’s “Velodyne’s HDL-64E: A high definition LiDAR Sensor for 3-D applications.”

[13] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics. Berlin, Germany: Springer, 2007.

[14] P. Liu, J. Liu, and L. Geng, “A dynamic buck converter with ultra fast response and low voltage ripples designed for DVS systems,” IEEE Trans. Electron. Comput., vol. 6, no. 21, pp. 1490–1496, 2009.

[15] R. Redl and I. Novak, “Instabilities in current-mode controlled switching voltage regulators,” in Proc. IEEE APEC Power Electron. Specialists Conf., 1981, pp. 17–28.

[16] X. Cui and A.-T. Avestruz, “Overcoming high frequency limitations of current-mode control using a control conditioning approach - Part I: Modeling and analysis,” 2022, arXiv:2206.10518.

[17] X. Cui and A.-T. Avestruz, “Overcoming high frequency limitations of current-mode control using a control conditioning approach - Part II: Implementation and hardware,” 2022, arXiv:2206.10523.

[18] R. Priewasser, M. Agostinelli, C. Unterrieder, S. Marsili, and M. Huemer, “Modeling, control, and implementation of dc-dc converters for variable frequency operation,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 287–301, Jan. 2014.

[19] J. Li and F. C. Lee, “Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering,” Nonlinear Dyn. Chaos, 2018.

[20] A. El Aroudi, M. Debbat, and L. Martinez-Salameiro, “Poincaré maps modeling and local orbital stability analysis of discontinuous piecewise affine periodically driven systems,” Nonlinear Dyn., vol. 50, no. 3, pp. 431–445, 2007.

[21] B. Dadashzadeh, M. J. Mahjoo, M. N. Bahrami, and C. Macnab, “Stable active running of a planar biped robot using poincare map control,” Adv. Robot., vol. 28, no. 4, pp. 231–244, 2014, doi: 10.1080/01691864.2013.865299.

[22] B. Morris and J. W. Grizzle, “A restricted poincare map for determining exponentially stable periodic orbits in systems with impulse effects: Application to bipedal robots,” in Proc. 44th IEEE Conf. Decis. Control, Eur. Control Conf., 2005, pp. 4199–4206.

[23] I. A. Hiskens, “Stability of hybrid system limit cycles: Application to the compass gait biped robot,” in Proc. 40th IEEE Conf. Decis. Control, 2001, pp. 774–779.

[24] X. Cui and A.-T. Avestruz, “Large-signal stability guarantees for cycle-by-cycle controlled DC–DC converters,” IEEE Control Syst. Lett., vol. 7, no. 3, pp. 763–768, Nov. 2022.

[25] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, MA, USA: Cambridge Univ. Press, 2004.

[26] R. A. Horn, R. A. Horn, and C. R. Johnson, Matrix Analysis. Cambridge, MA, USA: Cambridge Univ. Press, 1990.

[27] J. Dieudonné, Foundations of Modern Analysis. Redditch, U.K.: Read Books Ltd, 2011.

Xiaofan Cui (Member, IEEE) received the B.S. degree in electrical engineering and automation from Tsinghua University, Beijing, China, in 2016, the M.S. degree in mathematics, and the Ph.D. degree in electrical engineering from the University of Michigan, Ann Arbor, MI, USA in 2021 and 2022, respectively.

He is currently a Postdoctoral Fellow with the Stanford Energy Control Laboratory, Stanford University, Stanford, CA, USA. He was a Research Intern with National Renewable Energy Laboratory (NREL), Golden, CO, USA, in 2021. His research interests include the modeling, control, and design of energy systems and high-performance power electronics.

Dr. Cui was the recipient of Richard F. and Eleanor A. Towner Prize for Distinguished Academic Achievement at the University of Michigan in 2021. He is a Member of the program committee of the 24th IEEE Workshop on Control and Modeling for Power Electronics in 2023.

Al-Thaddeus Avestruz (Senior Member, IEEE) received the S.B. degree in physics with electrical engineering, the S.M. and E.E. degrees in 2006, and the Ph.D. degree in electrical engineering and computer science from the Massachusetts Institute of Technology, Cambridge, MA, USA, in 2016.

He is currently an Assistant Professor in Electrical and Computer Engineering with the University of Michigan, Ann Arbor, MI, USA. He has over a decade of industry and entrepreneurial experience, and holds 11 issued U.S. patents. He has complementary interests in circuits and systems for sensing, electromagnetic systems, feedback and controls, renewable energy, automotive, biomedical, and consumer applications. His research interests include the design, modeling, and control of high-performance power electronics and wireless power transfer for energy, mobility, medicine, and the Internet of Things.

Dr. Avestruz is the immediate past Chair of TC1: Control and Modeling of Power Electronics for the IEEE Power Electronics Society. He was the recipient of the IEEE PELS Best ECCE Paper on Emerging Technology Award Oral Presentation in 2019. He is an Associate Editor of IEEE OPEN JOURNAL OF POWER ELECTRONICS, a Guest Associate Editor of IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, an Associate Technical Program Chair for the IEEE Energy Conversion Congress and Exposition in 2019, a Technical Program Cochair for the 2021 IEEE Wireless Power Week, and the General Chair for the 24th IEEE Workshop on Control and Modeling for Power Electronics in 2023. He received the NSF CAREER award in 2022.