Research on Digital Encryption Security Information System Based on Identity Authentication

Yunli Cheng
Guangzhou Nanyang Polytechnic, Guangzhou 510925, China

Author Cheng Yunli (1980-), female, Shandong Heze, master, Communist Party member, associate professor, senior engineer, research direction: computer application technology, digital campus.

Abstract. In order to solve the problems in the current authentication system, a new authentication system scheme is proposed. The user identity is used as a key production factor by using the CPK (Combined Public Key) combination public key system. From the perspective of security design, and combining the theory of CPK combined public key system, the overall design framework of CPK key management system is proposed. According to the functional requirements of the system, the main modules of the system are divided, and its main functions are stipulated. The system uses a secure authentication card as the only identity of the user. The authentication card has a certain computing power and safe storage space. It realizes the secure storage of the user's key. Finally, from the actual application scenario, the data flow of the user in the process of registration and use in the system is given. The main modules of the system are tested successfully through the security authentication card.

1. INTRODUCTION

The authentication service provided by the network trading platform contains the authentication of the user identity and the request information. In general, it uses user passwords, fingerprinting / iris biometrics and symmetric / asymmetric key techniques[1]. Among the many authentication mechanisms that are based on asymmetric key technology, the development of the PKI system using public key infrastructure with X.509 certificates is the most mature [2]. It is widely used in CA certificate system, digital signature and key exchange, key agreement and other fields. In the PKI system, the certification authority CA plays an important role. With the rapid development of the Internet industry, the demand for network authentication has also increased exponentially [3].

2. DESIGN OF CPK KEY MANAGEMENT SYSTEM

2.1. Key management center module

The key management center (KMC) is mainly responsible for the service of generating certificates in the system. Its servers are deployed in the internal LAN that is isolated from the external network [4]. All certificates must be stored in the security authentication card in order to ensure safety, and the administrators will distribute the security authentication card from physical channel to the registration management center (RMC). In order to improve the key security, the server of the key management center (KMC) uses the seed key card CPKSeed Key Card as the generation card of the user public key and the private key of the server. It is mainly used for the generation of the user's key, and does not...
have the identity authentication function. In this system, the common CPKIDCrt Card is used as the authentication card of the server. The administrator or administrator client and the key management center server use their own CPKIDCrt Card as the authentication and secure communication of the landing server [5]. The ID certificate card contains the user's ID certificate, which uniquely identifies the user's identity and stores the user's private key information. The function of identity authentication and encryption and decryption can effectively prevent the risk of weak password landing system. The key management center includes the following modules: the system management module, the RMC management module, the identification invalidation management and the key card service module. The structure diagram of the key management center is shown in Figure 1.

![Figure 1. The structure diagram of the key management center](image)

2.2. Registration management center module
The registration management center in this system acts as a medium between the CPK key management system and the user, which directly faces the USBKEY of the terminal entity authentication card [6]. In addition, it provides services such as certificate application, certificate issuance and certificate invalidation to the USBKEY. After the system initialization or reset, all USBKEY need to register in the registry. The structure of the registry management center (RMC) is shown in Figure 2.

![Figure 2. The structure diagram of the registry management center](image)
2.3. Online query center module

Online query center module is to contact ordinary users and management system of the link. The Internet is accessed to enable online identification of user identifications. One end is connected to the public network. The other end is connected by the firewall to the internal LAN of the CPK key management system, and the independent database is set up to store all the status of the terminal entities in the CPK network. An ordinary CPK user can query the identity status and random public key of itself and other CPK users in the secure network domain through the system. The online query center module provides services only for the system registered users. When users hold their ID authentication card to
log on to the system, by checking the validity and validity of the ID Certificate in the user ID authentication card, the system will verify the current user terminal entity. The online query center module determines the current user through the ID identification database retrieval. At the same time, it is necessary to detect whether the terminal system time is consistent with the server. If they do not agree, time synchronization is required. Only pass the audit, users can use the online query center module query service. The user inquires the basic information of the user's own ID authentication card through the online query center module, including the issuing date, the validity period, the current state and so on. The workflow of the online query system is shown in Figure 3.

3. IMPLEMENTATION AND TEST OF CPK KEY MANAGEMENT SYSTEM

3.1. Development environment

The core module of this system uses C/C++ as the main development language. The MFC is used to build the interface frame, which is a convenient and quick module management system. The online query center module takes PHP as the development language, and uses JSP, JavaScript and other technical means. With the classic MVC (model view control) design mode, the module is divided into three layers: presentation layer, business layer, persistence layer. The platform is My Eclipse. Portable, powerful and perfect structure packages are most suitable for MVC design patterns. The back-end database software adopts My SQL. It has simple structure, perfect function and good stability.

3.2. The realization of the main module

3.2.1. Key card application sub-module

The most frequent business in the CPK key management system is the registration of new users. The process of applying for the terminal authentication card by the user needs to be coordinated by a registration management center (RMC) and a key management center (KMC). The model is deployed in a registry management (RMC) server. The user submits the application by the administrator of the application form information into the module, and submit registration. The registry manager center (RMC) reviews user information. After passing, the user identification information is sent to the key management center (KMC) to generate the user ID certificate. After the key management center
generates a user ID certificate, it is sent to the key card application module of the registry center, and then the system prompts that the registration is successful.

3.2.2. Key management center system management sub module
System management software is deployed in the main server of the key management center (KMC), which provides system user management, certificate generation and query services. This module has business communications with the key card application sub-module of the registration management center (RMC). It receives user registration requests and generates user ID certificates. After each user is issued a certificate, the system will do a record. According to the conditions, this page can query the specified user's application information. The certificate management sub-module of the key management center management system can realize the task of querying the user certificates issued. It is convenient for administrators to manage certificates. According to the query, it can query the specified user's certificate and its details.

In order to achieve uniformity and consistency of information coding throughout the school, to ensure "who generates, who maintains", to ensure that comprehensive information reflecting the entire school is provided and to accumulate analytical data for the school decision support system developed in the future, we have designed the university as shown in Figure 1. Share the data center system design. The workflow of the online query system is shown in Figure 4.

![Shared data center system design](image)

3.2.3. Online query module
The online query module provides convenient and quick query management services for ordinary users and administrators. The user needs to enter the correct username and password and insert the ID authentication card. After the authentication is passed, the user can log in to the system. After successfully logging in to the CPK key management system, users can see various services provided by the system, such as user management, authentication card management, and log management. The homepage of the administrator login system has more abundant management content than the ordinary user, which adds the function of database management and data statistics. It can realize the query and
routine management service of the certificate validity period in the authentication card, which is convenient for users to manage their own authentication cards online, and understand the status of authentication in time.

Topic management includes the creation of theme libraries and the management of theme objects. We know that for a topic, the related information is generally not obtained from a single library. To fully utilize the information, we need to build a comprehensive theme library. For example, for a teacher, a data topic can be formed, that is, information integration related to the teacher. For example, the personnel management system has basic information, file information, salary information, transaction information and other information related to the teacher, which can be classified into the teacher's subject, and so on, in the scientific research management system and the educational management system. Teacher-related information data can also be integrated to form a user-defined complete teacher theme, as shown in Figure 4. The above example is based on people. From another perspective, we can also use events as the center of the theme.

3.3. Test environment
In order to verify the feasibility of the system, the main modules of the system were tested. In the test, the security of the secret algorithm USBKEY was chosen. As a user terminal entity authentication card, the test is carried out from the aspects of registration, authentication and query. The USBKEY properties of the test are as follows:
- Chip: SM2, SM3, SM4 algorithm
- Interface type: USB interface
- Internal storage: 256KB
- Support algorithms: RSA, DES, SM2, SM3, SM4, SHA1 / 224/256
- Security: All hardened encryption module, random current disturbance source

Using the server as a test host, USBKEY is plugged into the server host and the device driver is installed correctly. Through the server-side deployment of system software, and combined with USBKEY, general business simulation tests are carried out. Server-side configuration is as follows:
- CPU: Intel Core i3-3240
- Memory: 2GB
- Hard drive: 500GB
- Operating system: windows server 2008

3.4. Test of the main modules of the system

3.4.1. New user registration
First of all, new users need to submit a registration form when they are registered with the entity authentication card. Then, after opening the key card module management program in the registration management center, the user enters the new user registration page. The application for registration of all items in the interface are required. After all the information is filled, the user clicks on the registration button. If the system detects a certain non-conforming condition, it will be warned directly after the project. After all the items in the system are in conformity with the regulations, the successful dialog box of the pop-up registration is given to show the success of the new user registration. The generated certificates can then be written into the user's ID authentication card through the authentication card management module. In order to verify the availability of the user authentication card, a separate test is carried out for the authentication card. The authentication card is used to generate the user's public key. Through the use of authentication and authentication card card decryption key, the user's signature is test.

The data source of the shared data center library is currently mainly integrated by the data of the national standard, the basic code table, and from the existing application system. This process is the process of data extraction. The data of the existing application system does not conform to the data specification. The process of extraction is to realize the accuracy of data from the unregulated data
source through integration into standardized data. [5].

The prerequisite for data integration is to investigate the data source of each application system to be accessed, and the application system should ensure a certain degree of data interface. This is a process from the application system to the shared data center. First, you need to determine which data to extract from the application system. What is the meaning of this data? That is to provide the corresponding data dictionary, and determine which table corresponds to the data center, the accessible data interface mode is divided into: (1) directly open the database: only need read-only account permissions, you need to absolutely guarantee the original There are system data security and integrity, which does not affect the original system operation based on the establishment of triggers. (2) Intermediate file data source: If the application system cannot open the database to the outside world, the difference data file can be exported to the specified directory. These files can be the Access file database mode or the excel file mode. The format is agreed upon at the time of implementation. The schematic of data.

3.4.2. Certification card management

After entering the user name and password, the system administrator can log in to the key management system for routine management and maintenance. When logging in, the user needs to insert the ID authentication card into the computer. The system checks the status of the certificate and user rights in the ID authentication card before logging in. If an unauthorized user is logged in, the system will give a warning. After a successful login system, the administrator can view the status of the registered authentication card in the system. At the same time, the state of key card can be changed according to the need. The key card management page contains key card information that needs to be audited, audited and not audited. At the same time, it has a query box. Administrators can manage corresponding key cards according to their needs. Through this page, users can quickly query information about key card's application time and user identification, and also can lock and unlock key cards. After testing, all the test modules can run normally, and the test results are accurate, with certain error hints and smooth interface operation.

The first thing to emphasize is that the metadata discussed here is not the data that constitutes the data in the general sense, but refers to a series of original basic data in the construction of digital campus. Metadata also refers to the true meaning of each data table and field in the management system. Metadata management completes the management and maintenance of the database structure of the shared data center, that is, registers the original data of the standard table in the shared data center to facilitate future data management.

Metadata management includes: (1) registration of the table. The Chinese name of the table name is annotated and the table is described in detail. The number of tables in a shared data center is very large and involves every aspect of the school. The registration of the table is to create a file for the shared data center for visitors to check. (2) Field registration. As with table registration, field registration also creates a file for the database structure of the shared data center for visitors to review. (3) Update the database structure. In order to adapt to the development of school informationization, it is necessary to face the times, and there are errors or errors in the face of data standards. It is necessary to update the database structure, but because of the huge implicitature in the update, it must be extremely careful, not to be changed. The principle of change is to update, add, and delete field information for unused tables, and only add new operations to the already used tables. Teacher-related information data can also be integrated to form a user-defined complete teacher theme, as shown in Figure 5.
In addition, the classification of metadata is also involved in the management of metadata. According to the classification of information subsets, the standard library can be divided into classifications familiar to business personnel to facilitate searching. There are also CheckPoint records for some data that require special attention for tracking and statistics. This is mainly for sensitive data. You need to know the ins and outs of it. Who did it at what time? Record it for later review.

3.5. Performance testing

In the process of authentication and confidential communication, a large number of computing tasks are needed. The test is carried out with the user terminal authentication card. The test is carried out using the server - side PC. The test object mainly focuses on the high-frequency computing tasks in CPK key management system, including the generation of seed matrix, the generation of public and private key matrix, the generation of public and private key of users and the signature algorithm. This test runs 100 cycles for each test item. The generated matrix size is set to 32*32. The data of the 4K is digitally signed, and then the 100 test results are calculated for their average. The final statistical results are shown in Table 1.

Test items	Test results
Public / private key factor matrix generation	0.803s
Public / private key generation	0.624s
Digital signature	0.672s

From the performance test results, no matter the generation of seed matrix or user public / private key generation, the speed is very fast. At the same time, the system disperses the main computing tasks to the terminal authentication card, which saves the cost of the system, greatly reduces the load of the server side, and improves the utilization efficiency.

4. Conclusions

The detailed architecture design, function definition and specific design scheme are given for the CPK key management system. According to the various modules of the function division, the detailed design is carried out. The development of the main functional modules of the CPK key management system is realized. Each function module is tested. The test got the expected correct result. At the same time, the system's important performance indicators are specifically tested. By averaging the results of multiple tests, a satisfactory result is obtained. In terms of security, the user terminal authentication
card can effectively protect the data and manage access rights. The user's secure storage is implemented. The server database is also limited to intranet access. To a certain extent, it proves the high security of the system. The CPK key management system proposed in this paper has fundamentally overcome the problems faced by the development of the PKI system. In accordance with the existing theoretical basis, a more complete system level implementation scheme is proposed. The specific business process is planned from the operating point of view. It not only lays a solid foundation for the construction of a new network authentication system, but also provides a possible direction for future electronic commerce.

Acknowledgments
Fund Project This article is the phased research result of the 2018 annual natural science research project (key project) "Application and Research of Intelligent Home System Based on Internet of Things" (Project No. NY-2018KYZD-1).
Fund Project This article is the phased research result of the Innovative College-strengthening Project in 2018 of Guangzhou Nanyang Polytechnic College “Information Technology Innovation and Application Base” (Project No. NY-2018CQPT-01).
Fund Project This paper is the result of the phased research project of the Guangzhou Science and Technology Commission Scientific Research Project in 2018, "Research on Key Technologies of Traffic Induction in Smart City in the Environment of Vehicle Networking".

REFERENCES
[1] Vasala U, Sakthidharan D G R. Effective Key Management In Dynamic Wireless Sensor Networks[J]. International Journal of Computer Engineering in Research Trends, 2018, 4(7): 308-312.
[2] Patel V, Patel R. Improving the security of SSO in distributed computer network using digital certificate and one time password (OTP)[J]. International Journal of Computer Applications, 2014, 89(4).
[3] Selvakumaraswamy S, Govindaswamy U. Efficient Transmission of PKI Certificates using Elliptic Curve Cryptography and its Variants[J]. International Arab Journal of Information Technology (IAJIT), 2016, 13(1).
[4] Dong Q, Ding W, Wei L. Improvement and optimized implementation of cryptoGPS protocol for low-cost radio-frequency identification authentication[J]. Security and Communication Networks, 2018, (3)