Integral pinched 3-manifolds are space forms

Giovanni CATINOa and Zindine DJADLIb

a Università di Pisa - Dipartimento di Matematica
Largo Bruno Pontecorvo, 5
I56127 Pisa - Italy

b Institut Fourier - Université Grenoble 1
100 rue des Maths
F38402 Saint-Martin d'Hères Cedex - France

abstract. In this paper we prove that, under an explicit integral pinching assumption between the L^2-norm of the Ricci curvature and the L^2-norm of the scalar curvature, a closed 3-manifold with positive scalar curvature admits an Einstein metric with positive curvature. In particular this implies that the manifold is diffeomorphic to a quotient of \mathbb{S}^3.

Key Words: geometry of 3-manifolds, rigidity, conformal geometry, fully non-linear equation

AMS subject classification: 53C24, 53C20, 53C21, 53C25

1 Introduction

One of the basic questions concerning the relation between algebraic properties of the curvature tensor and manifold topologies is under which conditions on its curvature tensor a Riemannian manifold is compact or homeomorphic to a space form (a manifold of constant sectional curvature). For example, Bonnet-Myers theorem states that a complete Riemannian manifold with positive lower bound for its Ricci curvature is compact; the theorem of Klingenberg, Berger and Rauch states that a compact, simply connected, $\frac{1}{4}$-pinched manifold with positive curvature is homeomorphic to the standard sphere.

In 1982, Hamilton \cite{13} introduced the Ricci flow and it appears to be a very useful tool to study the relationships between topology and curvature. For 2-dimensional compact manifolds, Hamilton \cite{15} and Chow \cite{5} proved that the normalized Ricci flow converges and gave by the way a new proof of the well-known uniformization theorem for compact surfaces. For 3 and 4-dimensional compact manifolds with positive curvature, Hamilton, \cite{13} and \cite{14}, proved that the initial metric can be deformed into a metric of constant positive curvature; it follows that these manifolds are diffeomorphic to the sphere \mathbb{S}^3 or \mathbb{S}^4, or a quotient space of \mathbb{S}^3 or \mathbb{S}^4 by a group of fixed point free isometries in the standard metric. In dimension 3, Hamilton’s result is the following:

\textbf{Theorem 1.1 (Hamilton)} If (M, g) is a closed 3-dimensional Riemannian manifold with positive Ricci curvature, then M is diffeomorphic to a spherical space form, i.e. M admits a metric with constant positive sectional curvature.

1E-mail addresses: catino@mail.dm.unipi.it, Zindine.Djadli@ujf-grenoble.fr
In this paper, we prove the existence of an Einstein metric of positive curvature on compact, 3-dimensional manifolds satisfying an integral pinching condition involving the second symmetric function of the Schouten tensor.

More precisely, we consider \((M, g)\), a compact, smooth, 3-dimensional Riemannian manifold without boundary. Given a section \(A\) of the bundle of symmetric two tensors, we can use the metric to raise an index and view \(A\) as a tensor of type \((1, 1)\), or equivalently as a section of \(\text{End}(TM)\). This allows us to define \(\sigma_2(g^{-1}A)\) the second elementary symmetric function of the eigenvalues of \(g^{-1}A\), namely, if we denote by \(\lambda_1\), \(\lambda_2\) and \(\lambda_3\) these eigenvalues
\[
\sigma_2(g^{-1}A) = \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3.
\]

In this paper we choose the tensor \((\text{here } t \text{ is a real number})
\[
A^t_g = \text{Ric}_g - \frac{t}{4} R_g g,
\]
where \(\text{Ric}_g\) and \(R_g\) denote the Ricci and the scalar curvature of \(g\) respectively. Note that for \(t = 1\), \(A^1_g\) is the classical Schouten tensor \(A^1_g = \text{Ric}_g - \frac{1}{4} R_g g\) (see [2]). Hence, with our notations, \(\sigma_2(g^{-1}A^t_g)\) denotes the second elementary symmetric function of the eigenvalues of \(g^{-1}A^t_g\).

Our present work is motivated by a recent paper of M. Gursky and J. Viaclovsky [11]. Namely, they proved that, giving a closed 3-manifold \(M\), a metric \(g_0\) on \(M\) (with normalized volume) satisfying \(\int_M \sigma_2(g_0^{-1}A^1_0) dV_{g_0} \geq 0\) is critical (over all metrics of normalized volume) for the functional
\[
\mathcal{F} : g \rightarrow \int_M \sigma_2(g^{-1}A^1_g) dV_g
\]
if and only if \(g_0\) has constant sectional curvature.

Actually, it is not easy to exhibit a critical metric for this functional. What we prove here (this is a consequence of our main result in this paper) is that, assuming that there exists a metric \(g\) on \(M\) with positive scalar curvature and such that \(\int_M \sigma_2(g^{-1}A^1_g) dV_g \geq 0\) then the functional \(\mathcal{F}\) admits a critical point (over all metrics of normalized volume) \(g_0\) with \(\int_M \sigma_2(g_0^{-1}A^1_{g_0}) dV_{g_0} \geq 0\).

We will denote \(Y(M, [g])\) the Yamabe invariant associated to \((M, g)\) (here \([g]\) is the conformal class of the metric \(g\), that is \([g] := \{ \tilde{g} = e^{-2u} g \text{ for } u \in C^\infty(M) \}\)). We recall that
\[
Y(M, [g]) := \inf_{\tilde{g} \in [g]} \frac{\int_M R_{\tilde{g}} dV_{\tilde{g}}}{(\int_M dV_{\tilde{g}})^{\frac{3}{2}}}.
\]
An important fact that will be useful is that if \(g\) has positive scalar curvature then \(Y(M, [g]) > 0\).

Our main result is the following:

Theorem 1.2 Let \((M, g)\) be a closed 3-dimensional Riemannian manifold with positive scalar curvature. There exists a positive constant \(C = C(M, g)\) depending only on \((M, g)\) such that if
\[
\int_M \sigma_2(g^{-1}A^1_g) dV_g + C \left(\frac{7}{10} - t_0 \right) Y(M, [g])^2 > 0,
\]
for some \(t_0 \leq 2/3\), then there exists a conformal metric \(\tilde{g} = e^{-2u} g\) with \(R_{\tilde{g}} > 0\) and \(\sigma_2(g^{-1}A_{\tilde{g}}^{t_0}) > 0\) pointwise. Moreover we have the inequalities
\[
(1) \quad (3t_0 - 2)R_{\tilde{g}}\tilde{g} < 6 \text{Ric}_{\tilde{g}} < 3(2 - t_0)R_{\tilde{g}}\tilde{g}.
\]
As an application, when \(t_0 = 2/3\), we obtain
Theorem 1.3 Let \((M, g)\) be a closed 3-dimensional Riemannian manifold with positive scalar curvature. There exists a positive constant \(C' = C'(M, g)\) depending only on \((M, g)\) such that if

\[
\int_M \sigma_2(g^{-1}A_1^g) dV_g + C'Y(M, [g])^2 > 0,
\]

then there exists a conformal metric \(\tilde{g} = e^{-2u}g\) with positive Ricci curvature \((\text{Ric}_\tilde{g} > 0)\). In particular if \(\int_M \sigma_2(g^{-1}A_1^g) dV_g \geq 0\) then there exists a conformal metric \(\tilde{g} = e^{-2u}g\) with positive Ricci curvature \((\text{Ric}_\tilde{g} > 0)\).

Using Hamilton’s theorem \([11]\) we get:

Corollary 1.4 Let \((M, g)\) be a closed 3-dimensional Riemannian manifold with positive scalar curvature. There exists a positive constant \(C' = C'(M, g)\) depending only on \((M, g)\) such that if

\[
\int_M \sigma_2(g^{-1}A_1^g) dV_g + C'Y(M, [g])^2 > 0,
\]

then \(M\) is diffeomorphic to a spherical space form, i.e. \(M\) admits a metric with constant positive sectional curvature. In particular, if \(\int_M \sigma_2(g^{-1}A_1^g) dV_g \geq 0\) then \(M\) is diffeomorphic to a spherical space form.

Remark 1.5 Using the fact that \(\sigma_2(g^{-1}A_1^g) = -\frac{1}{2} |\text{Ric}_g|^2 + \frac{3}{16} R_g^2\), the assumption

\[
\int_M \sigma_2(g^{-1}A_1^g) dV_g \geq 0
\]

can be written

\[
\int_M |\text{Ric}_g|^2 dV_g \leq \frac{3}{8} \int_M R_g^2 dV_g.
\]

Actually all these results are the consequence of the following more general result:

Theorem 1.6 Let \((M, g)\) be a closed 3-dimensional Riemannian manifold with positive scalar curvature. There exists a positive constant \(C = C(M, g)\) depending only on \((M, g)\) such that if

\[
\int_M \sigma_2(g^{-1}A_1^g) dV_g + \frac{1}{24} \left(\frac{7}{10} - t_0 \right) \inf_{g' = e^{-2u}g, |\nabla u|_{g'} \leq C} \left(\int_M R_{g'}^2 e^{-u} dV_{g'} \right) > 0,
\]

for some \(t_0 \leq 2/3\), then there exists a conformal metric \(\tilde{g} = e^{-2u}g\) with \(R_{\tilde{g}} > 0\) and \(\sigma_2(g^{-1}A_1^\tilde{g}) > 0\) pointwise. Moreover we have the inequalities

\[
(3t_0 - 2)R_{\tilde{g}} \tilde{g} < 6\text{Ric}_{\tilde{g}} < 3(2 - t_0)R_{\tilde{g}} \tilde{g}.
\]

There is a way to relate these result to the so-called \(Q\)-curvature (the curvature associated to the Paneitz operator). The Paneitz operator introduced by Paneitz in \([17]\) has demonstrated its importance in dimension 4 (see for example Chang-Gursky-Yang \([3]\) and \([4]\)). In dimension 3, the \(Q\)-curvature is defined by

\[
Q_g = -\frac{1}{4} \Delta_g R_g - 2 |\text{Ric}_g|^2 + \frac{23}{32} R_g^2,
\]

the Paneitz operator being defined (in dimension 3) by

\[
P_g = \Delta_g^2 - \text{div}_g \left(-\frac{5}{4} R_g g + 4 \text{Ric}_g \right) d - \frac{1}{2} Q_g.
\]

The Paneitz operator satisfies the conformal covariant property, that is, if \(\rho \in C^\infty(M)\), \(\rho > 0\), then for all \(\varphi \in C^\infty(M)\), \(P_{\rho^{-1}g}(\varphi) = \rho^7 P_g(\rho \varphi)\). We can now state the Corollary:
Corollary 1.7 Let \((M, g)\) be a closed 3-dimensional Riemannian manifold with non-negative Yamabe invariant. If there exists a metric \(g' \in [g]\) such that the \(Q\)-curvature of \(g'\) satisfies

\[
Q_{g'} \geq \frac{1}{48} R_{g'}^2,
\]

then \(M\) is diffeomorphic to a quotient of \(\mathbb{R}^3\) if \(Y(M, [g]) = 0\) or to a spherical space form if \(Y(M, [g]) > 0\).

Let us emphasize the fact that, in our results, we don’t make any assumption on the positivity of the Ricci tensor, we only assume that its trace is positive and a pinching on its \(L^2\)-norm.

During the preparation of the manuscript of this paper, we learned that Y. Ge, C.S. Lin and G. Wang \cite{ge-lin-wang} proved a weaker version of Corollary 1.4, namely they prove that if \((M, g)\) is a closed 3-dimensional Riemannian manifold with positive scalar curvature and if \(\int_M \sigma_2(g^{-1}A_{g}^1) dV_g > 0\), then \(M\) is diffeomorphic to a spherical space form. Their proof is completely different from ours since they use a very specific conformal flow.

For the proof of Theorem 1.2 and Theorem 1.3 we will be concerned with the following equation for a conformal metric \(\tilde{g} = e^{-2u}g\):

\[
(\sigma_2(g^{-1}A_{\tilde{g}}^1))^{1/2} = fe^{2u},
\]

where \(f\) is a positive function on \(M\). Let \(\sigma_1(g^{-1}A_{g}^1)\) be the trace of \(A_{g}^1\) with respect to the metric \(g\). We have the following formula for the transformation of \(A_{g}^t\) under this conformal change of metric:

\[
A_{\tilde{g}}^t = A_{g}^t + \nabla_g^2 u + (1 - t)(\Delta_g u)g + du \otimes du - \frac{2 - t}{2} |\nabla_g u|_{g}^2 g.
\]

Since

\[
A_{g}^t = A_{g}^1 + (1 - t)\sigma_1(g^{-1}A_{g}^1)g,
\]

this formula follows easily from the standard formula for the transformation of the Schouten tensor (see \cite{schouten}):

\[
A_{g}^1 = A_{g}^1 + \nabla_g^2 u + du \otimes du - \frac{1}{2} |\nabla_g u|_{g}^2 g.
\]

Using this formula we may write \cite{schouten} with respect to the background metric \(g\)

\[
\sigma_2 \left(g^{-1} \left(A_{g}^t + \nabla_g^2 u + (1 - t)(\Delta_g u)g + du \otimes du - \frac{2 - t}{2} |\nabla_g u|_{g}^2 g \right) \right)^{1/2} = f(x)e^{2u}.
\]

Aknowledgements : The authors would like to thank Sun-Yung Alice Chang and Paul Yang for their interest in this work.

2 Ellipticity

Following \cite{schouten}, we will discuss the ellipticity properties of equation \cite{schouten}.

Definition 2.1 Let \((\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3\). We view the second elementary symmetric function as a function on \(\mathbb{R}^3\):

\[
\sigma_2(\lambda_1, \lambda_2, \lambda_3) = \sum_{1 \leq i < j \leq 3} \lambda_i \lambda_j,
\]

and we define

\[
\Gamma_2^+ = \{ \sigma_2(\lambda_1, \lambda_2, \lambda_3) > 0 \} \cap \{ \sigma_1(\lambda_1, \lambda_2, \lambda_3) > 0 \} \subset \mathbb{R}^3,
\]

where \(\sigma_1(\lambda_1, \lambda_2, \lambda_3) = \lambda_1 + \lambda_2 + \lambda_3\) denotes the trace.
For a symmetric linear transformation $A : V \to V$, where V is an n-dimensional inner product space, the notation $A \in \Gamma^n_2$ will mean that the eigenvalues of A lie in the corresponding set. We note that this notation also makes sense for a symmetric 2-tensor on a Riemannian manifold. If $A \in \Gamma^n_2$, let $\sigma_2^{1/2}(A) = \{\sigma_2(A)\}^{1/2}$.

Definition 2.2 Let $A : V \to V$, where V is an n-dimensional inner product space. The first Newton transformation associated with A is (here I is the identity map on V)

$$ T_1(A) := \sigma_1(A) \cdot I - A. $$

Also, for $t \in \mathbb{R}$ we define the linear transformation

$$ L_t(A) := T_1(A) + (1 - t)\sigma_1(T_1(A)) \cdot I. $$

We have the following:

Lemma 2.3 If $A : \mathbb{R} \to \text{Hom}(V, V)$, then

$$ \frac{d}{ds} \sigma_2(A)(s) = \sum_{i,j} T_1(A)_{ij}(s) \frac{d}{ds} (A)_{ij}(s), $$

i.e., the first Newton transformation is what arises from differentiation of σ_2.

Proof The proof of this lemma is a consequence of an easy computation. See Gursky-Viaclovsky [11]

Proposition 2.4 (Ellipticity property) Let $u \in C^2(M)$ be a solution of equation (3) for some $t \leq 2/3$ and let $\bar{g} = e^{-2u}g$. Assume that $A^t_g \in \Gamma^n_{2+}$. Then the linearized operator at u, $L^t : C^{2,\alpha}(M) \to C^{\alpha}(M)$, is invertible ($0 < \alpha < 1$).

Proof The proof of this proposition, adapted in dimension 3, may be found in [12].

3 Upper bound and gradient estimate

Throughout the sequel, (M, g) will be a closed 3-dimensional Riemannian manifold with positive scalar curvature. Since $R_g > 0$, there exists $\delta > -\infty$ such that $A^t_{g, \delta}$ is positive definite (i.e. $\text{Ric}_g - \frac{\delta}{2} R_g g > 0$ on M). Note that δ only depends on (M, g). For $t \in [\delta, 2/3]$, consider the path of equations (in the sequel we use the notation $A^{t, u_t} := A^{t, g_t}$ for g_t given by $g_t = e^{-2u_t}g$)

$$ \sigma_2^{1/2}(g^{-1}A^{t, u_t}) = fe^{2u_t}, $$

where $f = \sigma_2^{1/2}(g^{-1}A^\delta_g) > 0$. Note that $u \equiv 0$ is a solution of (6) for $t = \delta$.

Proposition 3.1 (Upper bound) Let $u_t \in C^2(M)$ be a solution of (6) for some $t \in [\delta, 2/3]$. Then $u_t \leq \bar{\delta}$, where δ depends only on (M, g).

Proof From Newton’s inequality $\sqrt{3} \sigma_2^{1/2} \leq \sigma_1$, so for all $x \in M$

$$ \sqrt{3}fe^{2u_t} \leq \sigma_1(g^{-1}A^{t, u_t}). $$

Let $p \in M$ be a maximum of u_t, then using (6), since the gradient terms vanish at p and $(\Delta u_t)(p) \leq 0$,

$$ \sqrt{3}f(p)e^{2u_t(p)} \leq \sigma_1(g^{-1}A^{t, u_t})(p) = \sigma_1(g^{-1}A^\delta_g)(p) + (4 - 3t)(\Delta u_t)(p) \leq \sigma_1(g^{-1}A^\delta_g)(p). $$

Since $t \geq \delta$, this implies $u_t \leq \bar{\delta}$, for some $\bar{\delta}$ depending only on (M, g).

5
Proposition 3.2 (Gradient estimate) Let \(u_t \in C^3(M) \) be a solution of (6) for some \(\delta \leq t \leq 2/3 \). Assume that \(u_t \leq \delta \). Then \(\| \nabla g u \|_{g, \infty} < C_1 \), where \(C_1 \) depends only on \((M, g)\) and \(\delta \).

The proof of this lemma can be found in the paper Gursky-Viaclovsky [12].

Remark 3.3 Note that we will use this proposition with \(\delta \) given by Proposition 3.1 and then, since \(\delta \) depends only on \((M, g)\), we infer that \(C_1 \) only depends on \((M, g)\).

4 A technical lemma

As we proved in the previous section, there exists two constants \(\bar{\delta} \) and \(C_1 \) depending only on \((M, g)\) such that all solutions of (6) for some \(\delta \leq t \leq 2/3 \), satisfying \(u_t \leq \bar{\delta} \) satisfies \(\| \nabla g u \|_{g, \infty} < C_1 \).

We consider the following quantity:

\[
I(M, g) := \inf_{g' = e^{-2\varphi} g, |\nabla g \varphi| \leq C_1} \left(\int_M R_{g'}^2 e^{-\varphi} dV_{g'} \right).
\]

We let, for \(g' = e^{-2\varphi} g \)

\[
i(g') := \int_M R_{g'}^2 e^{-\varphi} dV_{g'}.
\]

As one can easily check, if two metrics \(g_1 \) and \(g_2 \) are homothetic, then \(i(g_1) = i(g_2) \). So, we have

\[
I(M, g) = \inf_{g' = e^{-2\varphi} g, Vol(M, g') = 1 \text{ and } |\nabla g \varphi| \leq C_1} \left(\int_M R_{g'}^2 e^{-\varphi} dV_{g'} \right).
\]

We have the following

Lemma 4.1 There exists a positive constant \(C = C(M, g) \) depending only on \((M, g)\) such that

\[
I(M, g) \geq C (Y(M, [g]))^2.
\]

Proof As we have seen

\[
I(M, g) = \inf_{g' = e^{-2\varphi} g, Vol(M, g') = 1 \text{ and } |\nabla g \varphi| \leq C_1} \left(\int_M R_{g'}^2 e^{-\varphi} dV_{g'} \right).
\]

Take \(\varphi \in C^\infty(M) \) such that, for \(g' = e^{-2\varphi} g, Vol(M, g') = 1 \) and such that \(|\nabla g \varphi|_g \leq C_1 \) where \(C_1 \) is given by Proposition 3.2 Since \(Vol(M, g') = 1 \), if \(p \) is a point where \(\varphi \) attains its minimum we have

\[
e^{-3\varphi(p)} Vol(M, g) \geq 1,
\]

and then, there exists \(C_0 \) depending only on \((M, g)\) such that \(\varphi(p) \leq C_0 \). Now, using the mean value theorem, it follows since \(|\nabla g \varphi|_g \) is controlled by a constant depending only on \((M, g)\), that \(\max \varphi \leq C_0' \) where \(C_0' \) depends only on \((M, g)\).

Using this, we clearly have that

\[
\int_M R_{g'}^2 e^{-\varphi} dV_{g'} \geq e^{-C_0'} \int_M R_{g'}^2 dV_{g'}.
\]

Using Hölder inequality and the definition of the Yamabe invariant, we get (recall that \(Vol(M, g') = 1 \))

\[
\int_M R_{g'}^2 e^{-\varphi} dV_{g'} \geq e^{-C_0'} (Y(M, [g]))^2,
\]

and then \(I(M, g) \geq e^{-C_0'} (Y(M, [g]))^2 \). This ends the proof.
5 Lower bound

For the lower bound, we need the following lemmas:

Lemma 5.1 For a conformal metric \(\tilde{g} = e^{-2u}g \), we have the following integral transformation

\[
\int_M \sigma_2 (\tilde{g}^{-1} A_{\tilde{g}}^1) e^{-4u} dV_{\tilde{g}} = \int_M \sigma_2 (g^{-1} A_g^1) dV_g + \frac{1}{8} \int_M R_g |\nabla_g u|_{g}^2 dV_g - \frac{1}{4} \int_M |\nabla_g u|_{g}^4 dV_g + \frac{1}{2} \int_M \Delta_g u |\nabla_g u|_{g}^2 dV_g - \frac{1}{2} \int_M A_g^1 (\nabla_g u, \nabla_g u) dV_g.
\]

Proof Denote \(\tilde{\sigma}_1 = \sigma_1 (\tilde{g}^{-1} A_{\tilde{g}}^1), \) \(\sigma_1 = \sigma_1 (g^{-1} A_g^1), \) \(\tilde{\sigma}_2 = \sigma_2 (\tilde{g}^{-1} A_{\tilde{g}}^1), \) \(\sigma_2 = \sigma_2 (g^{-1} A_g^1). \) We have

\[
2\tilde{\sigma}_2 = \tilde{\sigma}_1^2 - |A_{\tilde{g}}^1|_{\tilde{g}}^2.
\]

By equation (5), we have

\[
\sigma_1 e^{-2u} = \sigma_1 + \Delta_g u - \frac{1}{2} |\nabla_g u|_{g}^2,
\]

so

\[
\sigma_1^2 e^{-4u} = \sigma_1^2 + (\Delta_g u)^2 + \frac{1}{4} |\nabla_g u|_{g}^2 + 2\sigma_1 \Delta_g u - \Delta_g u |\nabla_g u|_{g}^2 - \sigma_1 |\nabla_g u|_{g}^2.
\]

After an easy computation, we get

\[
|A_{\tilde{g}}^1|_{\tilde{g}}^2 e^{-4u} = |A_g^1|_{g}^2 + |\nabla_g u|_{g}^2 + \frac{3}{4} |\nabla_g u|_{g}^4 - \sigma_1 |\nabla_g u|_{g}^2 - \Delta_g u |\nabla_g u|_{g}^2 + 2 (A_g^1)_{ij} \nabla_{g}^2 u \nabla_{g}^i u + \nabla_{g}^i u \nabla_{g}^j u + \nabla_{g}^i u \nabla_{g}^j u - 2\sigma_1 \Delta_g u
\]

Putting all together, we obtain

\[
2\tilde{\sigma}_2 e^{-4u} = 2 \sigma_2 + (\Delta_g u)^2 - |\nabla_g u|_{g}^2 - \frac{1}{2} |\nabla_g u|_{g}^4 + 2\sigma_1 \Delta_g u
\]

Now, by simple computation, we have the following identities

\[
-2 \int_M (A_g^1)_{ij} \nabla_{g}^2 u dV_g = -2 \int_M \sigma_1 \Delta_g u dV_g,
\]

\[
-2 \int_M \nabla_{g}^2 u \nabla_{g}^i u \nabla_{g}^j u dV_g = \int_M \Delta_g u |\nabla_g u|_{g}^2 dV_g,
\]

where we integrated by parts and we used the Schur’s Lemma for the first identity. Finally we get

\[
2 \int_M \tilde{\sigma}_2 e^{-4u} dV_g = 2 \int_M \sigma_2 dV_g + \int_M [(\Delta_g u)^2 - |\nabla_g u|_{g}^2 + \frac{1}{2} |\nabla_g u|_{g}^4 + \Delta_g u |\nabla_g u|_{g}^2 - 2A_g^1 (\nabla_g u, \nabla_g u)] dV_g.
\]

Now using the integral Bochner formula

\[
\int_M |\nabla_g u|_{g}^2 dV_g + \int_M Ric_g (\nabla_g u, \nabla_g u) dV_g - \int_M (\Delta_g u)^2 dV_g = 0,
\]

we get the final result.

In the sequel of the proof, we will need the following proposition (see [12] for the proof)

Proposition 5.2 If for some metric \(g_1 \) on \(M \) we have \(A_{g_1}^t \in \Gamma^+_2 \), then

\[
-A_{g_1}^t + \sigma_1 (g_1^{-1} A_{g_1}^t) g_1 > 0,
\]

\[
A_{g_1}^t + \frac{1}{3} \sigma_1 (g_1^{-1} A_{g_1}^t) g_1 > 0.
\]
Going on with the proof for the lower bound, we have the Lemma:

Lemma 5.3 If \(A^t_y \in \Gamma_2^+ \), then we have the following estimate

\[
\frac{1}{2} \int_M A_y^t(\nabla_g u, \nabla_g u) dV_g < \frac{3 - 2t}{8} \int_M R_g |\nabla_g u|^2 e^{-2u} dV_g + \frac{1}{4} \int_M \Delta_g u |\nabla_g u|^2 dV_g - \frac{1}{4} \int_M |\nabla_g u|^2 dV_g.
\]

Proof Since \(A^t_y \in \Gamma_2^+ \), by Proposition 5.2 we get

\[-A^t_y > -\sigma_1(\tilde{g}^{-1} A^t_y) \tilde{g} = -(4 - 3t) \sigma_1(\tilde{g}^{-1} A^t_y) e^{-2u} g.\]

Hence we get

\[-A^t_y - (1 - t) \sigma_1(\tilde{g}^{-1} A^t_y) e^{-2u} g > -(4 - 3t) \sigma_1(\tilde{g}^{-1} A^t_y) e^{-2u} g,\]

which implies that

\[A^t_y < (3 - 2t) \sigma_1(\tilde{g}^{-1} A^t_y) e^{-2u} g.\]

Applying this to \(\nabla_g u \) we obtain

\[\frac{1}{2} A^t_y(\nabla_g u, \nabla_g u) < \frac{3 - 2t}{8} R_g |\nabla_g u|^2 e^{-2u}.\]

Using the conformal transformation law of the tensor \(A^t_y \), integrating over \(M \), we have the result.

Now we are able to prove the following lower bound (recall that \(C_1 \) is given by Lemma 3.2)

Proposition 5.4 (Lower Bound) Assume that for some \(t \in [\delta, 2/3] \) the following estimate holds

\[
(7) \quad \int_M \sigma_2(g^{-1} A^t_y) dV_g + \frac{1}{24} \left(\frac{7}{10} - t \right) \inf_{g' \in \mathcal{E}_{e^{-2\varphi}}} \left(\int_M R_{g'}^2 e^{-\varphi} dV_{g'} \right) := \mu_t > 0.
\]

Then there exists \(\delta \) depending only on \((M, g)\) such that if \(u_t \in C^2(M) \) is a solution of (6) and if \(A^t_{u_t} \in \Gamma_2^+ \) then \(u_t \geq \delta \).

Proof Since \(A^t_y = A^t_{u_t} + (1 - t) \sigma_1(g^{-1} A^t_y) g \), we easily have that

\[\sigma_2(A^t_y) = \sigma_2(A^t_{u_t}) + (1 - t)(5 - 3t) \sigma_1(g^{-1} A^t_y)^2.\]

Letting \(\tilde{g} = e^{-2u_t} g \),

\[e^{4u_t} f^2 = \sigma_2(g^{-1} A^t_{u_t}) = \sigma_2(g^{-1} A^t_{u_t}) + (1 - t)(5 - 3t) \left(\sigma_1(g^{-1} A^t_{u_t}) \right)^2 = e^{-4u_t} \left(\sigma_2(g^{-1} A^t_{u_t}) + \frac{1}{16}(1 - t)(5 - 3t) R_{u_t}^2 \right).\]

Integrating this with respect to \(dV_g \), we obtain

\[C \int_M e^{4u_t} dV_g \geq \int_M f^2 e^{4u_t} dV_g\]

\[= \int_M \sigma_2(\tilde{g}^{-1} A^t_{u_t}) e^{-4u_t} dV_g + \frac{1}{16}(1 - t)(5 - 3t) \int_M R_{u_t}^2 e^{-4u_t} dV_g\]

\[= \int_M \sigma_2(\tilde{g}^{-1} A^t_{u_t}) e^{-4u_t} dV_g + \frac{1}{16}(1 - t)(5 - 3t) \int_M R_{\tilde{g}}^2 e^{-u_t} dV_{\tilde{g}},\]

where \(C > 0 \) is chosen so that \(f^2 \leq C \) (recall that, since \(f = \sigma_2(g^{-1} A^t_y) \), \(C \) depends only on \((M, g)\)).

Using the fact that

\[R_{\tilde{g}} e^{-u_t} = R_{\tilde{g}} + 4 \Delta_{\tilde{g}} u_t - 2 |\nabla_{\tilde{g}} u_t|^2,\]

8
from Lemma5.1 we get
\[
\int_M \sigma_2(\tilde{g}^{-1}A_{ui}^1)e^{-4ut}dV_g = \int_M \sigma_2(g^{-1}A_{y_i}^1)dV_g + \frac{1}{8} \int_M R_g |\nabla_g u|^2 e^{-2ut}dV_g \\
- \frac{1}{2} \int_M A_{y_i}^1(\nabla_g u, \nabla_g u) dV_g.
\]

Notice that, since $A_{ui}^1 \in \Gamma_2^+$, we have
\[
0 < \sigma_1(\tilde{g}^{-1}A_{ui}^1) = (4 - 3t)\sigma_1(g^{-1}A_{ui}^1),
\]
and so $R_{\tilde{g}} > 0$. By Lemma5.3 we obtain
\[
\int_M \sigma_2(\tilde{g}^{-1}A_{ui}^1)e^{-4ut}dV_g \geq \int_M \sigma_2(g^{-1}A_{y_i}^1)dV_g - \frac{1 - t}{4} \int_M R_g |\nabla_g u|^2 e^{-2ut}dV_g \\
- \frac{1}{4} \int_M \Delta_g u |\nabla_g u|^2 dV_g + \frac{1}{4} \int_M |\nabla_g u|^4 dV_g.
\]

By Young’s inequality, one has
\[
\int_M R_{\tilde{g}}^2 e^{-ut} dV_{\tilde{g}} \geq \frac{2}{\varepsilon} \int_M R_{\tilde{g}} |\nabla_g u|^2 e^{-2ut} dV_g - \frac{1}{\varepsilon^2} \int_M |\nabla_g u|^4 dV_g,
\]
for all $\varepsilon > 0$. By an easy computation, we have
\[
\frac{1}{16}(1-t)(5-3t) = \frac{1}{24}(\frac{7}{10} - t) + P_2(t),
\]
where $P_2(t)$ is a positive, second order, polynomial in t. Putting all together, we obtain (for $C > 0$ depending only on (M, g))
\[
C \int_M e^{4ut} dV_g \geq \int_M \sigma_2(g^{-1}A_{ui}^1)e^{-4ut}dV_g + \frac{1}{16}(1-t)(5-3t) \int_M R_{\tilde{g}}^2 e^{-ut} dV_{\tilde{g}} \\
= \int_M \sigma_2(\tilde{g}^{-1}A_{ui}^1)e^{-4ut}dV_g + \left(\frac{1}{24}(\frac{7}{10} - t) + P_2(t) \right) \int_M R_{\tilde{g}}^2 e^{-ut} dV_{\tilde{g}} \\
\geq \int_M \sigma_2(g^{-1}A_{y_i}^1)dV_g + \frac{1}{24}(\frac{7}{10} - t) \int_M R_{\tilde{g}}^2 e^{-ut} dV_{\tilde{g}} \\
+ P_2(t) \int_M R_{\tilde{g}}^2 e^{-ut} dV_{\tilde{g}} - \frac{1 - t}{4} \int_M R_g |\nabla_g u|^2 e^{-2ut} dV_g \\
- \frac{1}{4} \int_M \Delta_g u |\nabla_g u|^2 dV_g + \frac{1}{4} \int_M |\nabla_g u|^4 dV_g.
\]

Now using Young’s inequality and the conformal change equation of the scalar curvature, we get (for a certain $C > 0$ depending only on (M, g))
\[
C \int_M e^{4ut} dV_g \geq \int_M \sigma_2(g^{-1}A_{y_i}^1)dV_g + \frac{7}{24} \left(\frac{7}{10} - t \right) \int_M R_{\tilde{g}}^2 e^{-ut} dV_{\tilde{g}} \\
+ \frac{2P_2(t)}{\varepsilon} - \frac{1-t}{4} \int_M R_g |\nabla_g u|^2 dV_g \\
+ \left(\frac{8P_2(t)}{\varepsilon} - (1-t) - \frac{1}{4} \right) \int_M \Delta_g u |\nabla_g u|^2 dV_g \\
+ \left(\frac{3 - 2t}{4} - \frac{P_2(t)}{\varepsilon^2} - \frac{4P_2(t)}{\varepsilon} \right) \int_M |\nabla_g u|^4 dV_g.
\]
We choose \(\varepsilon = \varepsilon(t) > 0 \), such that \(\frac{8P_2(t)}{\varepsilon} - (1 - t) - \frac{1}{t} = 0 \). One can easily check that, with this choice,
\[
\frac{2P_2(t)}{\varepsilon} - \frac{1 - t}{4} \geq 0 \quad \text{and} \quad \frac{3 - 2t}{4} - \frac{P_2(t)}{\varepsilon} - \frac{4P_2(t)}{\varepsilon} \geq 0.
\]

Finally, recalling that according to lemma 3.2 \(\| \nabla u_t \|_{g, \infty} \leq C_1 \) with \(C_1 \) depending only on \((M, g)\), we obtain the following estimate (for a certain \(C > 0 \) depending only on \((M, g)\))
\[
C \int_M e^{4u_t} dV_g \geq \int_M \sigma_2(g^{-1}A_g^1) dV_g + \frac{1}{24} \int_M R_g^2 e^{-u_t} dV_g \\
\geq \int_M \sigma_2(g^{-1}A_g^1) dV_g + \frac{1}{24} \int_M R_g^2 e^{-u_t} dV_g \\
\geq \int_M \sigma_2(g^{-1}A_g^1) dV_g + \frac{1}{24} \left(\frac{7}{10} - t \right) \int_M R_g^2 e^{-u_t} dV_g \\
\geq \int_M \sigma_2(g^{-1}A_g^1) dV_g + \frac{1}{24} \left(\frac{7}{10} - t \right) \inf_{g' = e^{-2\varphi}g, |\nabla \varphi|_g \leq C_1} \left(\int_M R_g^2 e^{-\varphi} dV_g' \right) = \mu_t > 0.
\]

This gives
\[
\max_M u_t \geq \log \mu_t - C(g).
\]
Since \(\| \nabla u_t \|_{g, \infty} < C_1 \) this implies the Harnack inequality
\[
\max_M u_t \leq \min_M u_t + C(M, g),
\]
by simply integrating along a geodesic connecting points at which \(u_t \) attains its maximum and minimum. Combining this two inequalities, we obtain
\[
\min_M u_t \geq \log \mu_t - C,
\]
where \(C \) only depends on \((M, g)\). This ends the proof of the Lemma.

6 \(C^{2, \alpha} \) estimate

We have the following \(C^{2, \alpha} \) estimate for solutions of the equation \((8) \). For the proof, see [12] and [10].

Proposition 6.1 (\(C^{2, \alpha} \) estimate) Let \(u_t \in C^4(M) \) be a solution of \((8) \) for some \(\delta \leq t < 2/3 \), satisfying \(\delta < u_t < \delta \), and \(\| \nabla u_t \|_{g, \infty} < C_1 \). Then for \(0 < \alpha < 1 \), \(\| u_t \|_{g, C^{2, \alpha}} \leq C_2 \), where \(C_2 \) depends only on \((M, g)\).

7 Proof of Theorem 1.6

We use the continuity method. Our 1-parameter family of equations, for \(t \in [\delta, t_0] \), is
\[
(8) \quad \sigma_2^{1/2}(g^{-1}A_{u_t}) = f(x)e^{2u_t},
\]
with \(f(x) = \sigma_2^{1/2}(g^{-1}A_g^0) > 0 \), and \(\delta \) was chosen so that \(A_g^0 \) is positive definite. Define
\[
S = \{ t \in [\delta, t_0] | \exists \text{a solution } u_t \in C^{2, \alpha}(M) \text{ of } (8) \text{ with } A_{u_t} \in \Gamma_2^+ \}.
\]
Clearly, with our choice of \(f, u \equiv 0 \) is a solution for \(t = \delta \). Since \(A_g^0 \) is positive definite, \(\delta \in S \), and \(S \neq \emptyset \). Let \(t \in S \), and \(u_t \) be a solution. By Proposition 2.3 the linearized operator at \(u_t \), \(L^t : C^{2, \alpha}(M) \to C^0(M) \), is invertible. The implicit function theorem tells us that \(S \) is open. From classical elliptic theory, it follows that \(u_t \in C^\infty(M) \), since \(f \in C^\infty(M) \). By Proposition 3.1 we get an uniform upper bound on the solutions \(u_t \), independent of \(t \). We may then apply Proposition 3.2 to obtain a uniform gradient bound on \(u_t \), and by Proposition 5.1 we get a uniform lower bound. Finally using Proposition 6.1 and the classical Ascoli-Arzelà’s Theorem, then implies that \(S \) must be closed, therefore \(S = [\delta, t_0] \). The metric \(\tilde{g} = e^{-2u_0}g \) then satisfies \(\sigma_2(\tilde{A}_g^0) > 0 \) and \(R_g > 0 \). The inequalities [2] follow from proposition 5.2.
8 Proof of Theorem 1.2

Theorem 1.2 is a direct consequence of Theorem 1.6 and of Lemma 4.1.

9 Proof of Corollary 1.7

Assume that M admits a metric g' such that $Q_{g'} \geq \frac{1}{48} R_{g'}^2$ and $Y(M,[g']) \geq 0$. Recall that

$$Q_{g'} = -\frac{1}{4} \Delta_{g'} R_{g'} - 2 |\text{Ric}_{g'}|^2 + \frac{23}{32} R_{g'}^2.$$

Integrating $Q_{g'}$ on M with respect to $dV_{g'}$ we obtain (since $Q_{g'} \geq 0$)

$$\int_M |\text{Ric}_{g'}|^2 dV_{g'} \leq \frac{23}{64} \int_M R_{g'}^2 dV_{g'}.$$

Now if we compute $\int_M \sigma_2(g'^{-1}A_{g'}^1)$ using (9), we have (recall that $\sigma_2(g'^{-1}A_{g'}^1) = -\frac{1}{2} |\text{Ric}_{g'}|^2 + \frac{2}{16} R_{g'}^2$):

$$\int_M \sigma_2(g'^{-1}A_{g'}^1) \geq \frac{1}{128} \int_M R_{g'}^2 dV_{g'} \geq 0.$$

Now, consider the conformal laplacian operator $L_{g'} := \Delta_{g'} - \frac{1}{8} R_{g'}$. We have using the assumption $Q_{g'} \geq \frac{1}{48} R_{g'}^2$

$$L_{g'} R_{g'} = \Delta_{g'} R_{g'} - \frac{1}{8} R_{g'}^2 \leq -8 |\text{Ric}_{g'}|^2 + \frac{22}{8} R_{g'}^2 - \frac{1}{12} R_{g'}^2 \leq \left(-\frac{8}{3} + \frac{22}{8} - \frac{1}{12} \right) R_{g'}^2 = 0.$$

Applying a Lemma due to Gursky [9], since $Y(M,[g']) \geq 0$ we have either $R_{g'} > 0$ (if $Y(M,[g']) > 0$) or $R_{g'} \equiv 0$ (if $Y(M,[g']) = 0$). If $Y(M,[g']) > 0$ we can apply Theorem 1.3 to conclude that m is diffeomorphic to a spherical space form. Otherwise, if $Y(M,[g']) = 0$, since $Q_{g'} \geq \frac{1}{18} R_{g'}^2$ and $R_{g'} \equiv 0$, we deduce, using the expression giving $Q_{g'}$, that $\text{Ric}_{g'} \equiv 0$ and then M is diffeomorphic to a quotient of \mathbb{R}^3.

This ends the proof of the Corollary.

References

[1] P.H. Bérard, From vanishing theorems to estimating theorems: the Bochner technique revisited, Bulletin of the American Mathematical Society (N.S.), 19, 1988, 371-406.

[2] Besse, Arthur L. Einstein manifolds, Springer-Verlag, Berlin, 1987.

[3] Chang S.Y.A., Gursky M.J., Yang P.C., An equation of Monge-Ampère type in conformal geometry, and four-manifolds of positive Ricci curvature, Ann. of Math. 155-3 (2002), 709-787.

[4] Chang S.Y.A., Gursky M.J., Yang P.C., A conformally invariant sphere theorem in four dimensions, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 105-143.

[5] B. Chow, The Ricci flow on the 2-sphere, Journal of Differential Geometry, 71, 1991, 325-334.

[6] Djadli Z. and Malchiodi A., Existence of conformal metrics with constant Q-curvature. ArXiv : math.AP/0410141. To appear in Annals of Mathematics.

[7] Ge Y., Lin C.S. and Wang G., On the σ_2-scalar curvature. Preprint, 2007.

[8] M.J. Gursky, Some local and non-local variational problems in Riemannian geometry, Séminaires et Congrès SMF, 4, 2000, 167-177.
[9] Gursky M., The Weyl functional, de Rham cohomology, and Kahler-Einstein metrics, Ann. of Math. 148 (1998), 315-337.

[10] Gursky, Matthew J. and Viaclovsky, Jeff A., Fully nonlinear equations on Riemannian manifolds with negative curvature, Indiana Univ. Math. J. 52 (2003), no. 2, 399-420.

[11] M.J. Gursky and J.A. Viaclovsky, A new characterization of three-dimensional space forms, Inventiones Mathematicae, 145, 2001, 251-278.

[12] Gursky, Matthew J. and Viaclovsky, Jeff A., A fully nonlinear equation on four-manifolds with positive scalar curvature, J. Differential Geom. 63 (2003), no. 1, 2003, 131-154.

[13] Hamilton, Richard S., Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255-306.

[14] R.S. Hamilton, Four-manifolds with positive curvature operator, Journal of Differential Geometry, 24, 1986, 153-179.

[15] R.S. Hamilton, The Ricci flow on surfaces, Contemporary Mathematics, 71, 1988, 237-261.

[16] Hamilton, Richard S., The formation of singularities in the Ricci flow. Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), 7–136, Internat. Press, Cambridge, MA, 1995.

[17] Paneitz S., A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds, preprint, 1983.

[18] Viaclovsky, Jeff A., Conformal geometry, contact geometry, and the calculus of variations, Duke Kath. J. 101 (2000), no. 2, 283-316.